České vysoké učení technické v Praze Fakulta elektrotechnická

Sbírka řešených příkladů

Optimalizace a teorie her

Jakub Adamec Praha, 2025

https://github.com/knedl1k/A8B010GT

Obsah

			Strana	
1	První týden			
	1.1	Důkaz souvislosti minima a maxima	2	
	1.2	Hledání přípustných množin	2	
	1.3	Hledání přípustných množin	2	
	1.4	Maximalisační úloha	3	
	1.5	Minimalisační úloha	3	
	1.6	Optimalisační úloha s nadrovinami	4	
	1.7	Uzavřená úsečka	6	
	1.8	Je nadrovina konvexní?	6	
	1.9	Je uzavřený poloprostor konvexní?	6	
	1.10	Je uzavřená koule konvexní?	6	
	1.11	Je okolí konvexní?	6	
	1.12	Je průnik množin konvexní?	7	
	1.13	Důkaz, že rozdíl a sjednocení nezachovává konvexitu	7	
	1.14	Důkaz, že afinní zobrazení je konvexní	7	
	1.15	Důkaz, že obraz konvexní množiny při afinním zobrazení je konvexní	8	
	1.16	Důkaz, že kartézský součin je konvexní	8	
	1.17	Určení definitnosti matic	9	
	1.18	Existence matice	10	
2	Dru	hý týden	12	
	2.1	Věta o nejlepší aproximaci	12	
	2.2	Projekce bodu a variační nerovnost	12	
	2.3	Koule?	13	
	2.4	Věta o ortogonálním rozkladu	13	
3	Tře	tí týden	15	
	3.1	Metoda nejmenších čtverců	15	
	3.2	Příklad výpočtu metody nejmenších čtverců	15	
	3.3	Příklad výpočtu metody nejmenších čtverců	16	
	3.4	Věta o oddělitelnosti bodu a konvexní množiny	16	
	3.5	Příklad na použití věty o oddělitelnosti nadrovinou	17	
	3.6	Lemma neprázdné uzavřené konvexní	17	
	3.7	Farkasovo lemma	18	

	3.8	Krajní body konvexní množiny	18
	3.9	Kreinova-Milmanova věta	19
	3.10	Výpočet gradientu skalárního součinu	19
	3.11	Ověření konvexnosti množiny	20
	3.12	Práce s maticemi	20
	3.13	Proložení bodů pomocí MNČ	21
	3.14	Formulace úlohy MNČ	22
4	Čtv	rtý týden	23
	4.1	Konvexní funkce	23
	4.2	Příklad konvexní funkce	23
	4.3	Příklad konvexní funkce	23
	4.4	Dolní úrovňová množina	24
	4.5	Použití dolní úrovňové množiny	24
	4.6	Součet a součin zachovávají konvexitu	24
	4.7	Příklad ověření konvexity	25
	4.8	Skládání zachovává konvexitu	25
	4.9	Věta o extrémech konvexních funkcí	26
		Věta o konvexitě a první derivaci	26
		Věta o konvexitě a druhé derivaci	27
		Příklad ověření konvexnosti pomocí derivace	28
		Příklad ověření konvexnosti pomocí derivace	28
	4.14	Příklad ověření konvexnosti funkce s parametrem	29
	4.15	Příklad ověření konvexity množiny	29
5	Páts	ý týden	31
U	5.1	Kužel přípustných směrů	31
	5.2	Přípustné směry poklesu	31
	5.3	Kužel směrů poklesu	32
	5.4	Nutná geometrická podmínka lokálního extrému	32
	5.5	Silný směr poklesu - linearisace směru poklesu	32
	5.6	Tvrzení o souvislosti přípustných směrů poklesu a jejich linearisaci	32
	5.7	Fermatova věta - nutná podmínka optimality	33
	5.8	Věta o nutných a postačujících podmínkách pro konvexní úlohu	33
	5.9	Hledání bodu minima	34
		Věta o podmínkách optimality 2. řádu	34
		Příklad použití větv o podmínkách optimality 2. řádu	34

	5.12	Hledání bodu minima	35
	5.13	Omezení ve tvaru nerovnosti - aproximace $\mathcal{F}(M;\hat{x})$	35
	5.14	Příklad výpočtu $\mathcal G$ a $\mathcal F$	36
	5.15	Ukázka, že aproximací ${\mathcal F}$ lze zkazit prázdnost průniku	37
	5.16	Věta o nutných KKT podmínkách	38
	5.17	Příklad použití KKT podmínek	39
	5.18	Příklad, že KKT podmínky vždy nenaleznou všechny body	39
	5.19	Věta o postačujících KKT podmínkách	40
	5.20	Afinní podmínka regularity	40
	5.21	Slaterova podmínka regularity	40
	5.22	Použití podmínek regularity k ověření KKT podmínek	40
	5.23	Určení nutných a postačujících podmínek optimality	41
	5.24	Určení KKT podmínek	41
	5.25	Určení KKT podmínek	43
	5.26	Určení KKT podmínek s trikem	44
6	Šest	ý týden	45
	6.1	Pomocný důkaz vlastnosti infima	45
	6.2	Dualita - motivační příklad	45
	6.3	Tvrzení o konkávnosti duální úlohy	46
	6.4	Věta o slabé dualitě	47
	6.5	Důsledek věty o slabé dualitě	47
	6.6	Ukázkový příklad na slabou dualitu	48
	6.7	Věta o silné dualitě	48
7	Sedi	mý týden	49
	7.1	Úvod do lineární programování	49
	7.2	Zápis úlohy lineárního programování	50
	7.3	Basický přípustný bod	50
	7.4	Příklad BPB	51
	7.5	Tvrzení o charakterisaci BPB	51
	7.6	Tvrzení, že dva různé PBP musí mít různé množiny B	51
	7.7	Příklad na degenerované BPB	52
	7.8	Příklad na souvislost BPB a krajních bodů	52
	7.9	Věta o souvislosti BPB a krajních bodů	53
	7.10	Základní věta lineárního programování	53
	7.11	Příklad na hledání duální úlohy	54

	7.12 Příklad na hledání duální úlohy	55
	7.13 Tvrzení o množině všech řešení úlohy LP	55
	7.14 Příkad na Simplexovu metodu	55
8	Osmý týden	56
9	Devátý týden	57
10	Desátý týden	58
11	Jedenáctý týden	59
12	Dvanáctý týden	60
13	Třináctý týden	61
14	Čtrnáctý týden	62

$\mathbf{\acute{U}vod}$

Tento text není psán jako učebnice, nýbrž jako soubor řešených příkladů, u kterých je vždy uveden celý korektní postup a případné moje poznámky, které často nebývají formální, a tedy by neměly být používány při oficálním řešení problémů, například při zkoušce. Jedná se pouze o pokus předat probíranou látku z různých úhlů pohledu, pokud by korektní matematický nebyl dostatečně výřečný.

Velmi ocením, pokud čtenáři zašlou své podněty, úpravy anebo připomínky k textu. Budu rád za všechnu konstruktivní kritiku a nápady na změny. Dejte mi také prosím vědět, pokud v textu objevíte překlepy, chyby a jiné.

Errata a aktuální verse textu bude na stránce https://github.com/knedl1k/A8B010GT.

Poděkování. Rád bych poděkoval docentu Martinu Bohatovi nejen za zadání, okolo kterých je postavena celá sbírka, ale také za celý předmět Optimalizace a teorie her.

Text je vysázen makrem IAT_EX Leslieho Lamporta s využitím balíků hypperref Sebastiana Rahtze a Heiko Oberdiek.

Stručné informace o textu

Všechny růžové texty jsou zároveň hypertextové odkazy. Často jsou použity u přednáškových příkladů, pomocí nichž lze vidět ukázkové řešení příkladu na přednášce.

U každého příkladu je pro ušetření místa a zpřehlednění sbírky řešení jednotlivých příkladů ihned pod zadáním.

1 První týden

1.1 Důkaz souvislosti minima a maxima

Tvrzení. Pro $f:D\to\mathbb{R}, M\subseteq D, \hat{x}\in M$ platí:

$$(1) \ \hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x) \iff \hat{x} \in \underset{x \in M}{\operatorname{argmax}} (-f(x)),$$

(2) jesliže
$$\hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x)$$
, pak $\underset{x \in M}{\min} f(x) = -\underset{x \in M}{\max} (-f(x))$.

Důkaz.

$$(1)\ \hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x), \operatorname{tj.}\ f(\hat{x}) \leq f(x), \forall x \in M \iff -f(\hat{x}) \geq -f(x), \forall x \in M, \operatorname{tj.}\ \hat{x} \in \underset{x \in M}{\operatorname{argmax}} (-f(x)). \quad \Box$$

(2) At
$$\hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x)$$
, pak $\underset{x \in M}{\min} f(x) = f(\hat{x}) = -(-f(\hat{x})) \stackrel{(1)}{=} -\underset{x \in M}{\max} (-f(x))$.

1.2 Hledání přípustných množin

minimalizujte
$$x^2 + 1$$

za podmínek
$$\frac{3}{x} \le 1$$
,

$$x \in \mathbb{N}$$

Upravíme podmínky a uděláme jejich průnik: $(x-3 \ge 0) \land (x \in \mathbb{N}) \Rightarrow M = \mathbb{N} \setminus \{1,2\}.$

Úvahou pak lze uhodnout minimum - minimum leží v bodě x = 3.

1.3 Hledání přípustných množin

maximalizujte
$$\ln x$$

za podmínek
$$x \leq 5$$
,

$$\cos(\pi x) = 1.$$

$$D(f) = (0, \infty).$$

Udělejme průnik definičního oboru funkce a podmínek: $(x \in (0, \infty)) \land (x \le 5) \land (\cos(\pi x) = 1)$.

Očividně tedy $M = \{2, 4\}.$

Úvahou pak lze uhodnout $\underset{x \in M}{\operatorname{argmax}} \ln x = \{4\}.$

1.4 Maximalisační úloha

Banka nabízí dva investiční produkty. Očekávaný měsíční výnos prvního investičního produktu (v tis. Kč) při investici x (v tis. Kč) je $\frac{2x}{4x+25}$ a očekávaný měsíční výnos druhého invetičního produktu (v tis. Kč) při investici x (v tis. Kč) je $\frac{x}{x+50}$. Jakým způsobem má investor rozdělit částku c=100000 Kč mezi uvedené dva produkty tak, aby celkový očekávaný měsíční výnos byl co největší?

maximalisujme
$$\frac{x}{x+50} + \frac{2y}{4y+25}$$
 za podmínek $x+y=100,$ $x,y \geq 0.$

Vyjádřeme si jednu proměnnou v závislosti na druhé, například x = 100 - y. Následně dosadíme do úlohy a vyšetříme stacionární body pomocí první derivace.

$$\frac{\mathrm{d}}{\mathrm{d}y}\left(\frac{100-y}{150-y} + \frac{2y}{4y+25}\right) = \frac{-50}{(150-y)^2} + \frac{50}{(4y+25)^2} \stackrel{!}{=} 0$$

Zbavme se zlomků:

$$-50(4y + 25)^{2} + 50(150 - y)^{2} = 0$$
$$(150 - y)^{2} - (4y + 25)^{2} = 0$$
$$(150 - y - 4y - 25) - (150 - y + 4y + 25) = 0$$
$$(125 - 5y)(175 + 3y) = 0$$
$$y_{1} = 25, y_{2} \approx -58.3$$

Tedy aby byly splněny všechny podmínky je jediné možné řešení $y=25 \rightarrow x=75$.

1.5 Minimalisační úloha

Ve firmě potřebují nalézt rozměry otevřené krabice (tj. krabice bez horní stěny) se čtvercovou podstavou o objemu 10 dm³ tak, aby obsah plochy jejího pláště byl co nejmenší. Formulujte odpovídající optimalisační úlohu za předpokladu, že krabice je vyrobena z materiálu, jehož tloušťka je zanedbatelná. Tuto úlohu poté vyřešte.

minimalisujme
$$4xy + x^2$$

za podmínek $x^2y = 10$,
 $x, y > 0$.

Vyjádřeme si jednu proměnnou v závislosti na druhé, například $y = \frac{10}{x^2}$. Následně dosadíme do úlohy a vyšetříme stacionární body pomocí první derivace.

$$\frac{\mathrm{d}}{\mathrm{d}y} \left(4x \frac{10}{x^2} + x^2 \right) = \frac{-40}{x^2} + 2x \stackrel{!}{=} 0$$

Zbavme se zlomků:

$$-40 + 2x^3 = 0$$
$$x^3 = 20$$
$$x = \sqrt[3]{20}$$

Tedy jediné možné řešení $x = \sqrt[3]{20} \rightarrow y = \frac{10}{\left(\sqrt[3]{20}\right)^2} = \sqrt[3]{\frac{5}{2}}.$

1.6 Optimalisační úloha s nadrovinami

V \mathbb{R}^n jsou dány množiny bodů $A = \{a_1, \ldots, a_k\}$ a $B = \{b_1, \ldots, b_t\}$. Ať $w \in \mathbb{R}^n$ a $\lambda \in \mathbb{R}$. Předpokládejme, že H je nadrovina o rovnici $\langle x, w \rangle + \lambda = 0$, H_1 je nadrovina o rovnici $\langle x, w \rangle + \lambda = 1$ a H_2 je nadrovina o rovnici $\langle x, w \rangle + \lambda = -1$.

- (a) Ukažte, že vzdálenost mezi nadrovinami H_1 a H_2 je $\frac{2}{||w||}$. Dále ukažte, že $\frac{1}{||w||}$ je vzdálenost H od H_2 .
- (b) Iterpretujte optimalisační úlohu

maximalisujte
$$g(w, \lambda) = \frac{2}{||w||}$$
 za podmínek $\langle a_i, w \rangle + \lambda \geq 1$ pro všechna $i = 1, \dots, k$, $\langle b_i, w \rangle + \lambda \leq -1$ pro všechna $j = 1, \dots, l$.

(c) Ukažte, že $(\hat{w}, \hat{\lambda})$ je řešením úlohy z předchozího bodu právě tehdy, když je řešením úlohy (kvadratického programování) ve tvaru

minimalisujte
$$h(w, \lambda) = \frac{1}{2}||w||^2$$

za podmínek $\langle a_i, w \rangle + \lambda \ge 1$ pro všechna $i = 1, \dots, k$,
 $\langle b_i, w \rangle + \lambda \le -1$ pro všechna $j = 1, \dots, l$.

(a)

Pak vzdálenost mezi nadrovinami H_1 a H_2 je dána rozdílem průsečíků P a Q v normě. Tedy:

$$||Q - P|| = \left\| \frac{1 - \lambda}{||w||^2} w + \frac{1 + \lambda}{||w||^2} w \right\| = \left\| \frac{2w}{||w||^2} \right\| = \frac{2}{||w||^2} ||w|| = \frac{2}{||w||}.$$

To je príma, to jsme přesně chtěli. \Box

(b)

(c) V úloze (b) maximalisujeme zlomek, kde se proměnná nachází ve jmenovateli. Tedy snažíme se najít co nejmenší možný jmenovatel, aby zlomek měl co největší hodnotu. Můžeme úlohu převrátit a minimalisovat samotný jmenovatel. Protože násobení je lineární a zachovává nám všechny nerovnosti, můžeme různě modifikovat jakou konstantou násobíme námi minimalisovanou proměnnou. Zároveň si můžeme dovolit umocnit normu, protože i to nám zachová všechny nerovnosti. Zde si tedy chytře zvolíme násobení $\frac{1}{2}$, protože při následném hledání stacionárních bodů funkce nám vyskočí z kvadrátu dvojka, jenž pěkně pokrátíme. Podmínky nám zůstaly stejné, není co řešit.

Konvexní množiny

Definice. Množina $C \subseteq \mathbb{R}^n$ se nazve konvexní, jestliže pro každé $x, y \in C$ je $[x, y] \in C$.

1.7 Uzavřená úsečka

Nechť $x, y \in \mathbb{R}^n$. Množina

$$[x,y] := \{\lambda x + (1-\lambda)y \mid 0 \le \lambda \le 1\}$$

se nazývá uzavřená úsečka s krajními body x a y.

1.8 Je nadrovina konvexní?

Definice nadroviny: $H(y; \alpha) := \{x \in \mathbb{R}^n \mid \langle x, y \rangle = \alpha\}, y \in \mathbb{R}^n, \alpha \in \mathbb{R}.$

Důkaz.

Af $x, z \in H(y, \alpha), \lambda \in [0, 1].$

Cíl: $\lambda x + (1 - \lambda)z \in H(y, \alpha)$. Tedy dokazujeme podle definice.

$$\langle \lambda x + (1-\lambda)z, y \rangle = \lambda \underbrace{\langle x, y \rangle}_{\alpha} + (1-\lambda) \underbrace{\langle z, y \rangle}_{\alpha} = \lambda \alpha + (1-\lambda)\alpha = \alpha.$$

$$\Rightarrow \lambda x + (1 - \lambda)z \in H(y, \alpha). \quad \Box$$

1.9 Je uzavřený poloprostor konvexní?

1.10 Je uzavřená koule konvexní?

Definice uzavřené koule: $B(a,r)=\{a\in\mathbb{R}^n\mid ||x-a||\leq r\},$ o středu $a\in\mathbb{R}^n$ a poloměru r>0.

Důkaz.

At $x, y \in \mathbb{R}^n, \lambda \in [0, 1]$.

Cíl: $||[\lambda x + (1 - \alpha)y] - a|| \le r$. Tedy za x z definice dosadíme úsečku mezi body x a y, které jsme si vybrali a chceme ukázat, že i tato úsečka leží v uzavřené kouli, dle definice.

$$||[\lambda x + (1 - \alpha)y] - a|| = ||\lambda x - (1 - \lambda)a + (1 - \lambda)y - \lambda a|| = ||\lambda(x - a) + (1 - \lambda)(y - a)||$$

$$\leq \lambda ||\underbrace{x - a}_{\leq r}|| + (1 - \lambda)||\underbrace{y - a}_{\leq r}|| \leq \lambda r + (1 - \lambda)r = r. \quad \Box$$

1.11 Je okolí konvexní?

Definice okolí: $B(a,r) = \{a \in \mathbb{R}^n \mid ||x-a|| < r\}$, o středu $a \in \mathbb{R}^n$ a poloměru r > 0.

Důkaz.

At $x, y \in \mathbb{R}^n, \lambda \in [0, 1]$.

Cíl: $||[\lambda x + (1 - \alpha)y] - a|| < r$. Dle definice.

$$||[\lambda x + (1-\alpha)y] - a|| = ||\lambda x - (1-\lambda)a + (1-\lambda)y - \lambda a|| = ||\lambda(x-a) + (1-\lambda)(y-a)||$$

$$\leq \lambda ||\underbrace{x-a}_{< r}|| + (1-\lambda)||\underbrace{y-a}_{< r}|| < \lambda r + (1-\lambda)r = r. \quad \Box$$

1.12 Je průnik množin konvexní?

Úvaha pro 2 množiny ve \mathbb{R}^2 :

Mějme jednu modrou $(y \ge 0)$ a druhou červenou $(x \ge 0)$ konvexní množinu. Jejich průnik je pak nezáporný ortant, tedy

$$\mathbb{R}^n_+ = \{(x_1, \dots, x_n)^T \in \mathbb{R}^n \mid x_1 \ge 0, \dots, x_n \ge 0\}.$$

Visuálně je průnik nekonvexní.

Důkaz.

Nechť
$$x, y \in \bigcap_{i \in I} \mathbb{M}_i, \forall i \in I \implies [x, y] \in \mathbb{M}_i, \forall i \in I \implies [x, y] \subseteq \bigcap_{i \in I} \mathbb{M}_i.$$

1.13 Důkaz, že rozdíl a sjednocení nezachovává konvexitu

Mějme $[0,1] \setminus (0,1) = \{0,1\} = \{0\} \cup \{1\}.$

[0,1]a (0,1)jsou konvexní množiny. Jejich rozdíl ale už konvexní není.

 $\{0\}$ a $\{1\}$ jsou konvexní množiny. Jejich sjednocení ale už konvexní není.

Afinní zobrazení

Definice. Zobrazení $f: \mathbb{R}^n \to \mathbb{R}^m$ se nazývá afinní, existují-li $A \in \mathbb{M}_{m,n}(\mathbb{R})$ a $b \in \mathbb{R}^m$ tak, že f(x) = Ax + b.

1.14 Důkaz, že afinní zobrazení je konvexní

Tvrzení.

Nechť $f: \mathbb{R}^n \to \mathbb{R}^m$. Pak f je afinní \iff pro každé $x, y \in \mathbb{R}^n$ a každé $\lambda \in \mathbb{R}$ platí

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y).$$

Důkaz.

 \Rightarrow ": At f(x) = Ax + b, kde $A \in \mathbb{M}_{m,n}(\mathbb{R}), b \in \mathbb{R}^n$.

At $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}$.

$$f(\lambda x + (1 - \lambda)y) = A[\lambda x + (1 - \lambda)y] + b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + \lambda$$

" \Leftarrow ": Cíl: Ukázat, že f je afinní, tedy f(x) = Ax + b.

Zvolme $\varphi(x) = f(x) - f(0)$.

Pokud je f afinní, pak zobrazení φ by mělo být dáno jako Ax, tedy být lineární.

Cíl: φ je lineární zobrazení.

Musíme ověřit uzavřenost na násobení a sčítání z definice.

(1) At $x \in \mathbb{R}^n$, $\alpha \in R$.

Cíl: $\varphi(\alpha x) = \alpha \varphi(x)$.

$$\varphi(\alpha x) = f(\alpha x) - f(0) = f(\alpha x + (1 - \alpha)0) - f(0) = \alpha f(x) + (1 - \alpha)f(0) - f(0) = \alpha f(x) - \alpha f(0) = \alpha f(x) - f(0) = \alpha \varphi(x - 0). \quad \Box$$

(2) At $x, y \in \mathbb{R}^n$.

Cíl: $\varphi(x+y) = \varphi(x) + \varphi(y)$.

$$\varphi(x+y) = \varphi\left(2\left(\frac{1}{2}(x+y)\right)\right) \stackrel{(1)}{=} 2\varphi\left(\frac{1}{2}(x+y)\right) = 2\left[f(\frac{1}{2}x + \frac{1}{2}y) - f(0)\right] = 2\left[\frac{1}{2}f(x) + \frac{1}{2}f(y) - f(0)\right] = f(x) + f(y) - f(0) - f(0) = \underbrace{f(x) - f(0)}_{\varphi(x)} + \underbrace{f(y) - f(0)}_{\varphi(y)} = \varphi(x) + \varphi(y). \quad \Box$$

1.15 Důkaz, že obraz konvexní množiny při afinním zobrazení je konvexní

Tvrzení.

Je-li $f: \mathbb{R}^n \to \mathbb{R}^m$ afinní a $C \subseteq \mathbb{R}^n$ konvexní, pak f(C) je konvexní.

Důkaz.

Mějme $a, b \in f(C) \implies \exists x, y \in C : f(x) = a, f(y) = b.$

Dle předpokladu je
$$C$$
 konvexní. $\Longrightarrow [x,y] \subseteq C \Longrightarrow \underbrace{f([x,y])}_{\subseteq f(C)} = \underbrace{[f(x),f(y)]}_{b} \subseteq f(C)$. \square

1.16 Důkaz, že kartézský součin je konvexní

Tvrzení.

Nechť $C_1 \subseteq \mathbb{R}^n$ a $C_2 \subseteq \mathbb{R}^m$. Pak C_1 a C_2 jsou konvexní množiny právě tehdy, když $C_1 \times C_2$ je konvexní množina.

Důkaz.

"⇒": Mějme
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
, $\begin{bmatrix} c \\ d \end{bmatrix} \in C_1 \times C_2, \lambda \in [0,1]$

Cil:
$$\lambda \begin{bmatrix} a \\ b \end{bmatrix} + (1 - \lambda) \begin{bmatrix} c \\ d \end{bmatrix} \in C_1 \times C_2$$
. Dle definice.

$$\lambda \begin{bmatrix} a \\ b \end{bmatrix} + (1 - \lambda) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} \lambda a \\ \lambda b \end{bmatrix} + \begin{bmatrix} (1 - \lambda)c \\ (1 - \lambda)d \end{bmatrix} = \begin{bmatrix} \lambda a + (1 - \lambda)c \\ \lambda b + (1 - \lambda)d \end{bmatrix} \in C_1 \times C_2. \quad \Box$$

"
—": Definujme afinní zobrazení $f:\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^n$ předpisem

$$f(x,y) = x$$
.

Pak f je afinní. Navíc $f(C_1 \times C_2) = C_1$. $\Longrightarrow C_1$ je konvexní, protože afinní zobrazení zachovává konvexitu. A důkaz bude obdobný pro C_2 , zde zadefinujme afinní zobr. $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ předpisem

$$q(x,y) = y.$$

Pak g je afinní. Navíc $g(C_1 \times C_2) = C_2$. $\Longrightarrow C_2$ je konvexní, protože afinní zobrazení zachovává konvexitu. \square

1.17 Určení definitnosti matic

Určete definitnost matice A, jestliže

(a)
$$\begin{bmatrix} 9 & 6 \\ 6 & 4 \end{bmatrix}$$
;

(b)
$$\begin{bmatrix} 15 & 3 & 2 \\ 3 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix};$$

(c)
$$\begin{bmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix};$$

(d)
$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} ;$$

(e)
$$\begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 2 \\ 1 & 2 & -3 \end{bmatrix};$$

(f)
$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 1 \end{bmatrix} .$$

Matice, u které ch
ceme určovat definitnost, musí být
 $\underbrace{\text{symetrická}}_{Q=Q^T}.$

Pak platí:

$$\langle Qx, x \rangle \ge 0 \forall x \in \mathbb{R}^n \iff Q$$
 je positivně semidefinitní. $\langle Qx, x \rangle > 0 \forall x \in \mathbb{R}^n \iff Q$ je positivně definitní.

Analogicky pro negativně semidefinitní, respektive definitní.

Matice je indefitní pokud nesplňuje ani jednu možnost.

Pro symetrické matice také platí, že Q je negativně (semi)defitní, jestliže (-Q) je positivně (semi)defintní.

Pomocí Sylvesterova kritéria lze určit positivní, či negativní definitnost. Pro případy podezření na semidefinitnost je potřeba navíc prozkoumat menší minory matice.

(a)
$$\begin{bmatrix} 9 & 6 \\ 6 & 4 \end{bmatrix} \rightarrow |9| = 9 > 0, \\ \begin{vmatrix} 9 & 6 \\ 6 & 4 \end{bmatrix} = 36 - 36 = 0. \rightarrow \text{podezření na positivní semidefinitnost.}$$

Hlavní minory jsou $Q_{\{1\}}$ a $Q_{\{1,2\}}$. Menší minory: Q_I , kde $I\subseteq\{1,\ldots,n\}$ neprázdná. Aby matice byla positivně semidefinitní, tak $\det Q_I \geq 0.$

Tedy:
$$Q_{\{2\}} = [4]$$
. det $Q_{\{2\}} = 4 > 0$.

Tedy matice $\begin{bmatrix} 9 & 6 \\ 6 & 4 \end{bmatrix}$ je positivně semidefinitní.

(b)
$$\begin{vmatrix} 15 & 3 & 2 \\ 3 & 1 & 0 \\ 2 & 0 & 1 \end{vmatrix}$$
 $\begin{vmatrix} R_1 - 2R_3 \\ R_2 \\ R_3 \end{vmatrix} = \begin{vmatrix} 11 & 3 & 0 \\ 3 & 1 & 0 \\ 2 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 11 & 3 \\ 3 & 1 \end{vmatrix} = 11 - 9 = 2 > 0$. Matice je positivně definitní.

9

(c)
$$Q = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$

Pozorování: Matice je lineárně závislá, tedy $\det Q = 0$.

$$Q_{\{1\}} = 4 > 0,$$

$$Q_{\{2\}} = 1 > 0,$$

$$Q_{\{3\}} = 0 = 0.$$

Tedy matice je jedině positivně semidefinitní, nebo indefinitní.

Spočtěme tedy vedlejší minor, například vynechejme 1. řádek a 1. sloupec:

 $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1 < 0$. Aby matice Q byla positivně semidefinitní, musely by i všechny vedlejší minory být ≥ 0 . Protože jsme našli případ, kdy tomu tak není, matice Q je indefinitní.

(e)
$$\begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 2 \\ 1 & 2 & -3 \end{bmatrix}$$

Pozorování: matice může být negativně (semi)definitní, nebo indefinitní.

Využijme tedy vlastnosti symetrických matic a určeme definitnost pro matici (-Q).

$$-Q = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & -2 \\ -1 & -2 & 3 \end{bmatrix}$$

$$\det(-Q) = \begin{vmatrix} 1 & 0 & -1 & R_1 \\ 0 & 2 & -2 & R_2 \\ -1 & -2 & 3 & R_3 + R_1 + R_2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 2 & -2 \\ 0 & 0 & 0 \end{vmatrix} = 0.$$

Tedy matice (-Q) je positivně semidefinitní, nebo indefinitní.

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = 2 \ge 0. \begin{vmatrix} 2 & -2 \\ -2 & 3 \end{vmatrix} = 2 \ge 0. \begin{vmatrix} 1 & -1 \\ -1 & 3 \end{vmatrix} = 2 \ge 0.$$

 $\implies (-Q)$ je positivně semidefinitní
 $\iff Q$ je negativně semidefinitní.

1.18 Existence matice

 $A\dot{t}$ $A \in \mathbb{M}_n(\mathbb{R})$.

- (a) Ukažte, že $\langle Ax, y \rangle = \langle x, A^T y \rangle$ pro všechna $x, y \in \mathbb{R}^n$.
- (b) Ukažte, že existují matice $B, C \in \mathbb{M}_n(\mathbb{R})$ takové, že $B^T = B$, $C^T = -C$ a A = B + C. Jsou matice B a C určeny jednoznačně?

10

(c) Ukažte, že existuje symetrická matice $B \in \mathbb{M}_n(\mathbb{R})$ taková, že $\langle Ax, x \rangle = \langle Bx, x \rangle$.

Zadefinujme si vlastnost skalárního součinu: $\langle a, b \rangle = b^T a$, kde $b^T = (b_1, \dots, b_n)$, $a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$.

(a) Využijme zmíněné vlastnosti.

$$\langle Ax, y \rangle = y^T Ax = \underbrace{y^T (A^T)^T}_{(A^T y)^T} x = \langle A^T y \rangle^T x = \langle x, A^T y \rangle. \quad \Box$$

(b) Pozorování: Matice B je symetrická a matice C je antisymetrická.

Zvolme:
$$B = \frac{1}{2}(A + A^{T}) \\ C = \frac{1}{2}(A - A^{T}) \\ B + C = A.$$

$$C^{T} = \frac{1}{2}(A - A^{T})^{T} = \frac{1}{2}(A^{T} - A) = -\frac{1}{2}(A - A^{T}) = -C.\checkmark$$

$$B^{T} = \frac{1}{2}(A + A^{T})^{T} = \frac{1}{2}(A^{T} + A) = \frac{1}{2}(A + A^{T}) = B.\checkmark \quad \Box$$

$$(c) \langle Cx, x \rangle \stackrel{?}{=} 0$$

$$\langle Cx, x \rangle \stackrel{(a)}{=} \langle x, C^T x \rangle \stackrel{-C = C^T}{=} -\langle x, Cx \rangle = -\langle Cx, x \rangle = 0.$$

Matice C tedy nijak nepřispívá do výsledku. Takže platí $\langle Ax,x\rangle=\langle Bx,x\rangle.$

$\mathbf{2}$ Druhý týden

Věta o nejlepší aproximaci 2.1

Je-li $C \subseteq \mathbb{R}^n$ neprázdná uzavřená konvexní množina, pak pro každé $x \in \mathbb{R}^n$ existuje právě jeden bod $\hat{y} \in C \text{ tak, } \check{\text{ze dist}}(x; C) = ||x - \hat{y}||.$

Důkaz.

1. Existence

Cíl: Existuje bod minima

Úvaha:

M je obecná konvexní množina.

c x
$$R = ||x - z||$$
,
 $Cz = M \cap B(x, R) = M \cap \{a \in \mathbb{R}^n \mid ||z - a|| \le R\}$.

uzavřená, omezená, neprázdná

kompaktní

Tedy $a \mapsto ||x - a||$ je spojitá.

⇒ Spojitost na kompaktní množině znamená, že f nabývá na C_z minima dle Weierstrassovy věty.

Ať y je bod minima. Všechny body v M mají od x vzdálenost $\geq ||x-y||$. \square

2. Jednoznačnost.

Cîl: Pokud $a, b \in \mathbb{R}^n : ||x - a|| = ||x - b|| = \underbrace{\operatorname{dist}(x, M)}^{\circ}$, pak a = b. Lemma, rovnoběžníkové pravidlo: $u, v \in \mathbb{R}^n \Rightarrow ||u+v||^2 + ||u-v||^2 = 2 (||u||^2 + ||v||^2)$. Důkaz lemma:

$$\begin{aligned} ||u+v||^2 + ||u-v||^2 &= \langle u+v, u+v \rangle + \langle u-v, u-v \rangle = ||u||^2 + 2\langle u, v \rangle + ||v||^2 + ||u||^2 - 2\langle u, v \rangle + ||v||^2 \\ &= 2\left(||u||^2 + ||v||^2\right). \quad \Box \end{aligned}$$

Důkaz jednoznačnosti:

At
$$y = \frac{1}{2}a + \frac{1}{2}b$$
.

At
$$y = \frac{1}{2}a + \frac{1}{2}b$$
.
Pak $\delta^2 \le ||x - y||^2 = ||x - \frac{1}{2}a - \frac{1}{2}b||^2 = ||\frac{1}{2}(x - a) + \frac{1}{2}(x - b)||^2 = \frac{1}{4}||\underbrace{(x - a)}_u + \underbrace{(x - b)}_v||^2$

$$\stackrel{\text{lemma}}{=} \frac{1}{4} \left[2 \left(\underbrace{||x-a||^2}_{\delta^2} + \underbrace{||x-b||^2}_{\delta^2} \right) - \underbrace{||(x-a) + (x-b)||^2}_{b-a} \right] = \delta^2 - \frac{1}{4} ||b-a||^2 \Rightarrow \delta^2 \le \delta^2 - \underbrace{\frac{1}{4} ||b-a||^2}_{\le 0 \Rightarrow a=b}.$$

Projekce bodu a variační nerovnost

Nechť $C \subseteq \mathbb{R}^n$ je neprázdná uzavřená konvexní množina, $x \in \mathbb{R}^n$ a $y \in C$. Pak následující tvrzení isou ekvivalentní:

- (1) $y = P_C(x)$, kde $P_C(x)$ je projekční operátor.
- (2) Pro každé $z \in C$ je $\langle x y, z y \rangle \leq 0$.

Důkaz.

(1)
$$\Rightarrow$$
 (2):
At $v_{\lambda} = y + \lambda(z - y), \lambda \in (0, 1].$

Pak

$$||x-y||^2 \le ||x-v_{\lambda}||^2 = ||x-y-\lambda(z-y)||^2 = \langle (x-y)-\lambda(z-y), (x-y)-\lambda(z-y) \rangle$$

$$||x-y||^2 \le ||x-y||^2 - 2\lambda \langle x-y, z-y \rangle + \lambda^2 ||z-y||^2$$

$$\Rightarrow \langle x-y, z-y \rangle \le \frac{\lambda}{2} ||z-y||^2 \to 0 \text{ pro } \lambda \to 0^+$$

$$\Rightarrow \langle x-y, z-y \rangle < 0. \quad \Box$$

 $(2) \Rightarrow (1)$:

Ať $z \in C$.

Pak

$$0 \ge \langle x - y, z - y \rangle = \langle x - y, (z - x) + (x - y) \rangle = \langle x - y, z - y \rangle + ||x - y||^2$$
$$\langle x - y, z - y \rangle + ||x - y||^2 \ge ||x - y||^2 - \underbrace{|\langle x - y, z - y \rangle|}_{\text{odhad shora}} \ge \star$$

$$\star = ||x - y||^2 - ||x - y|| \cdot ||z - x||.$$

Je-li $x \neq y$, pak vydělíme: $||z - x|| \geq ||x - y||$. Je-li x = y, pak $y \in C : x \in C \dots$ triviální.

2.3 Koule?

2.4 Věta o ortogonálním rozkladu

Nechť $L \subseteq \mathbb{R}^n$ je lineární podprostor. Potom platí:

- (a) $P_L: \mathbb{R}^n \to \mathbb{R}^n$ je lineární zobrazení.
- (b) Pro každé $x \in \mathbb{R}^n$ je $P_{L^{\perp}}(x) = x P_L(x)$.
- (c) Pro každé $x \in \mathbb{R}^n$ existují jednoznačně určené body $y \in L$ a $z \in L^{\perp}$ tak, že x = y + z. Navíc $y = P_L(x)$ a $z = P_{L^{\perp}}(x)$.

Důkaz.

(a)

Cíl: Dokázat vlastnosti lineárního zobrazení, tedy

- 1. $P_L(\alpha x) = \alpha \cdot P_L(x), \forall \alpha \in \mathbb{R}, x \in \mathbb{R}^n$.
- 2. $P_L(x+y) = P_L(x) + P_L(y), \forall x, y \in \mathbb{R}^n$.
- 1. : Ať $z \in L$. Pak

$$\langle \alpha x - \alpha P_L(x), z - \alpha P_L(x) \rangle = \alpha \langle x - P_L(x), z - \alpha P_L(x) \rangle$$

$$\stackrel{\alpha \neq 0}{=} \underbrace{\alpha^2}_{>0} \langle x - P_L(x), \underbrace{\frac{1}{\alpha} \cdot z}_{\in L} - P_L(x) \rangle$$

Tedy $P_L(\alpha x) = \alpha P_L(x), \forall \alpha \neq 0$. Pro $\alpha = 0$ zřejmě plyne z lineárnosti zobrazení.

 $2.: At' z \in L.$

$$\underbrace{\langle \underline{x} + y - (P_L(x) + P_L(y)), z - (P_L(x) + P_L(y)) \rangle}_{(x - P_L(x)) + (y - P_L(y))} + \langle x - P_L(x), \underbrace{(z - P_L(y))}_{\in L} - P_L(x) \rangle + \langle y - P_L(y), \underbrace{(z - P_L(x))}_{\in L} - P_L(y) \rangle}_{\leq 0} \leq 0.$$

Z variační nerovnosti tedy plyne, že P_L je nutně lineární. \square

(b) Pro každé $x \in \mathbb{R}^n$ je $P_{L^{\perp}}(x) = x - P_L(x)$.

L ... lineární podprostor \mathbb{R}^n , $L^{\perp} = \{x \in \mathbb{R}^n \mid \langle x, y \rangle = 0, \forall y \in L\}.$

Důkaz.

Cíl: $P_{L^{\perp}}(x) = x - P_L(x)$. Ať $x \in \mathbb{R}^n, z \in L^{\perp}$. Pak

$$\langle x - (x - P_L(x)), z - (x - P_L(x)) \rangle = \langle \underbrace{P_L(x)}_{\in L}, z - (x - P_L(x)) \rangle$$
$$= \underbrace{\langle P_L(x), z \rangle}_{0} - \langle P_L(x), x - P_L(x) \rangle = \langle x - P_L(x), 0 - P_L(x) \rangle \leq 0. \quad \Box$$

(c) Pro každé $x \in \mathbb{R}^n$ existují jednoznačně určené body $y \in L$ a $z \in L^{\perp}$ tak, že x = y + z. Navíc $y = P_L(x)$ a $z = P_{L^{\perp}}(x)$.

Ať $x \in \mathbb{R}^n$.

Důkaz existence.

Pak
$$x = \underbrace{P_L(x)}_{\in L} + \underbrace{(x - P_L(x))}_{\in L^{\perp}}.$$

Důkaz jednoznačnosti.

Ať $a \in L, b \in L^{\perp}$ takové, že x = a + b.

Cíl: $a = P_L(x)$

Ať $z \in L$.

$$\langle x-a,z-a\rangle = \langle b,\underbrace{z-a}_{\in L}\rangle = 0 \leq 0 \implies a = P_L(x) \implies x-P_L(x) = b \stackrel{(2)}{\Longrightarrow} P_{L^{\perp}}(x) = b. \quad \Box$$

3 Třetí týden

3.1 Metoda nejmenších čtverců

Pokud $b \in L$, řešíme úlohu Ax = b. Pokud $b \notin L$, řešíme $Ax = P_L(b)$.

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|Ax - b\| = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|Ax - b\|^2$$

Důkaz.

Chceme ukázat, že $\hat{x} \in \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|Ax - b^2\| \iff A^T A \hat{x} = A^T b.$

$$\Rightarrow$$
 ": At $\hat{A}\hat{x} = P_L(b) \stackrel{\text{(2)}}{=} b - P_{L^{\perp}}(b) / A^T$

$$A^T A \hat{x} = A^T b - \underbrace{A^T P_{L^{\perp}}(b)}_{\stackrel{?}{=0}}$$

$$\rightarrow \|A^T P_{L^{\perp}}(b)\|^2 = \langle A^T P_{L^{\perp}}(b), A^T P_{L^{\perp}}(b) \rangle = \langle \underbrace{P_{L^{\perp}}(b)}_{\in L^{\perp}}, \underbrace{(A^T)^T (A^T P_{L^{\perp}}(b))}_{\in L} \rangle = 0. \quad \Box$$

 $, \Leftarrow$ ": At $A^T A \hat{x} = A^T b$.

At $x \in \mathbb{R}^n$.

$$0 = \langle \underbrace{x, A^T A \hat{x} - A^T b}_{A^T (A \hat{x} - b)} \rangle = \langle \underbrace{(A^T)^T x}_{L}, A \hat{x} - b \rangle \implies A \hat{x} - b \in L^{\perp}$$

$$\rightarrow b = \underbrace{A\hat{x}}_{\in L} + \underbrace{(b - A\hat{x})}_{L^{\perp}} \stackrel{\text{(c)}}{\Longrightarrow} A\hat{x} = P_L(b). \quad \Box$$

3.2 Příklad výpočtu metody nejmenších čtverců

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

$$A^T A \hat{x} = A^T b$$

$$A^T A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \rightarrow \det = 3 \implies \text{existuje inverze.}$$

$$(A^T A)^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \implies \hat{x} = (A^T A)^{-1} A^T b = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$1 \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \quad 1 \begin{bmatrix} 2 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

3.3 Příklad výpočtu metody nejmenších čtverců

V rovině jsou dány body $(0, -\frac{1}{2})^T$, $(1, \frac{1}{3})^T$ a $(2, \frac{2}{3})^T$. Pomocí metody nejmenších čtverců proložme těmito body přímku o rovnici y = kx + q, kde $k, q \in \mathbb{R}$.

$$A^T A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 3 \end{bmatrix}$$

$$(A^T A)^{-1} = \frac{1}{6} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix}$$

$$\hat{x} = \frac{1}{6} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{3} \\ \frac{2}{3} \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} \frac{5}{3} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{6} \begin{bmatrix} \frac{7}{2} \\ -\frac{5}{2} \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 7 \\ -5 \end{bmatrix}.$$

3.4 Věta o oddělitelnosti bodu a konvexní množiny

 $C\in\mathbb{R}^n$ je neprázdná uzavřená konvexní množina. $x\in\mathbb{R}^n\setminus C\implies$ existuje $v\in\mathbb{R}^n\setminus\{0\}$ a $\alpha\in\mathbb{R}$ tak, že $\langle y,v\rangle\leq\alpha<\langle x,v\rangle,\quad\forall y\in C.$

Důkaz.

$$v = x - P_L(x) \neq 0$$

$$\langle v, y \rangle = \langle v, P_L(x) \rangle \le 0, \quad \forall y \in C.$$

$$\langle y, v \rangle \le \langle v, P_L(x) \rangle, \quad \forall y \in C.$$

Položme $\alpha = \langle v, P_L(x) \rangle$.

$$\langle y, v \rangle \le \alpha, \quad \forall y \in C.$$

$$\langle x, v \rangle - \underbrace{\langle v, P_L(x) \rangle}_{\langle P_L(x), v \rangle} = \langle \underbrace{x - P_L(x)}_{v}, v \rangle = ||v||^2 > 0. \implies \alpha < \langle x, v \rangle. \quad \Box$$

Důsledek: Každá uzavřená konvexní množina v \mathbb{R}^n je průnikem všech poloprostorů, které ji obsahují.

Důkaz sporem.

Ať neplatí: tj. existuje $C \in \mathbb{R}^n$ uzavřená konvexní množina tak, že není průnikem P všech poloprostorů obsahujících C.

Pak $x \in P$ tak, že $x \notin C$. Z věty o oddělitelnosti bodu a konvexní množiny existuje poloprostor M takový, že $C \subseteq M$ a $x \neq M$. Ale to je ve sporu s tím, že $x \in P$. \square

3.5 Příklad na použití věty o oddělitelnosti nadrovinou

Nechť
$$A=\begin{bmatrix}1&1\\2&-1\end{bmatrix}$$
 a $b\in\mathbb{R}^2.$ Označme

$$\begin{split} C &= \left\{ Ax \middle| x \in \mathbb{R}_+^2 \right\} = \left\{ \alpha \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix} \middle| \alpha, \beta \geq 0 \right\} \\ K &= \left\{ y \in \mathbb{R}^2 \middle| A^T y \leq 0 \right\} \\ &= \left\{ y \in \mathbb{R}^2 \middle| \left\langle \begin{bmatrix} 1 \\ 2 \end{bmatrix}, y \right\rangle \leq 0, \left\langle \begin{bmatrix} 1 \\ -1 \end{bmatrix}, y \right\rangle \leq 0 \right\}. \end{split}$$

Vždy nastane jeden z případů:

- (a) $b \in C$
- (b) $b \notin C$ existuje nenulový vektor $y \in K$ svírající s b úhel $\varphi \in [0, \frac{\pi}{2})$.

3.6 Lemma neprázdné uzavřené konvexní

Jestliže $A \in \mathbb{M}_{m,n}(\mathbb{R})$, pak $\{Ax \mid x \in \mathbb{R}^n_+\}$ je neprázdná uzavřená konvexní množina. Důkaz.

- neprázdná vždy obsahuje alespoň 0,
- konvexní lineární zobrazení (matice) zachovává konvexitu,
- uzavřenost dokazovat nebudeme.

3.7 Farkasovo lemma

Výslovnost [farkášovo].

Je-li $A \in \mathbb{M}_{m,n}(\mathbb{R})$ a $b \in \mathbb{R}^m$, pak platí právě jedno z následujících tvrzení:

- (a) Existuje $x \in \mathbb{R}^n$ tak, že Ax = b a $x \ge 0$.
- (b) Existuje $y \in \mathbb{R}^m$ tak, že $A^T y \leq 0$ a $\langle y, b \rangle > 0$.

Důkaz.

$$(a) \implies \neg (b)$$
":

$$\Delta t' \ x \in \mathbb{R}^n \ \text{a.u.} \in \mathbb{R}^m \ \text{tak. \'ae.} \ Ax - b.a$$

At $x \in \mathbb{R}^n_+$ a $y \in \mathbb{R}^m$ tak, že Ax = b a $A^T y \leq 0$.

$$\langle y, b \rangle \stackrel{b=Ax}{=} \langle y, Ax \rangle = \langle \underbrace{A^T y}_{\leq 0}, \underbrace{x}_{\geq 0} \rangle \leq 0. \quad \Box$$

$$,\neg(a) \implies (b)$$
":

"¬(a) \Longrightarrow (b)": Ať $C=\left\{Ax\mid x\in\mathbb{R}^n_+\right\}$ \Longrightarrow $b\not\in C,\,C\dots$ uzavřená neprázdná konvexní množina.

$$\overset{\text{odd} \check{\text{elitelnost}}}{\Longrightarrow} \text{ existuje } y \in \mathbb{R}^m \setminus \{0\} \,, \alpha \in \mathbb{R} \text{ tak, \check{\text{ze}}: } \langle Ax, y \rangle \leq \alpha < \langle b, y \rangle, \quad \forall x \in \mathbb{R}^n_+.$$

Začněme s $\alpha < \langle b, y \rangle$. Chceme, aby $\langle b, y \rangle$ byl kladný. Pak nám y bude svírat ostrý úhel s b.

Protože v $0 \in C$, je $0 \le \alpha < \langle b, y \rangle$ (za Ax dosadíme 0, takže budeme mít $\langle 0, y \rangle$).

Teď musíme dokázat, že y skutečně řeší zadanou soustavu nerovnic.

Víme tedy, že:

$$\langle Ax, y \rangle \le \alpha, \quad \forall x \in \mathbb{R}^n_+$$

 $\langle x, A^T y \rangle < \alpha, \quad \forall x \in \mathbb{R}^n_+$

Odtuď $\langle x, A^T y \rangle \leq 0$, $\forall x \in \mathbb{R}^n_+$, neboť:

Ať
$$\tilde{x} \in \mathbb{R}^n_+$$
 je takový, že $\langle \tilde{x}, A^T y \rangle > 0$.
Pak $\langle \underbrace{\lambda \tilde{x}}_{\lambda > 0, \text{ tedy } \lambda \tilde{x} \in \mathbb{R}^n_+}, A^T y \rangle = \lambda \underbrace{\langle \tilde{x}, A^T y \rangle}_{> 0} \to +\infty$, pro $\lambda \to +\infty$. Což je spor s $\langle x, A^T y \rangle \leq \alpha, \forall x \in \mathbb{R}^n_+$.

At
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$$
. Pak $(A^T y)_i \le 0$, $\forall i \in \{1, \dots, n\}$, neboť $(A^T y)_i = \langle e_i, A^T y \rangle$. \square

Krajní body konvexní množiny

Mějme konvexní množinu. Když sestrojíme libovolnou nedegenerativní (tzn. netriviální = není to pouze bod) úsečku, vždy nalezneme bod, který bude ležet přesně uprostřed této úsečky.

Co když ale vezmeme například zelený bod vyznačený na nákresu? V takovém případě nejsme schopni sestroji nedegenerativní úsečku, na jejímž středu by ležel tento bod.

Definujme: Krajní bod $x \in C$ konvexní množiny $C \subseteq \mathbb{R}^n$ je takový bod, pro který neexistují dva různé body y, z tak, že

$$x = \frac{1}{2}y + \frac{1}{2}z.$$

 $\operatorname{ext}(C)$... množina všech krajních (extremálních) bodů

3.9 Kreinova-Milmanova věta

Jestliže $C \subseteq \mathbb{R}^n$ je kompaktní (tj. omezená a uzavřená) konvexní množina, pak C = conv(ext(C)). Důkaz vynecháme.

Kompaktnost je důležitá.

- Interval (0,1) není uzavřený a $ext((0,1)) = \emptyset$.
- Množina \mathbb{R}^2_+ není omezená a $\operatorname{ext}(\mathbb{R}^2_+) = \{0\}.$

3.10 Výpočet gradientu skalárního součinu

Nalezněte $\nabla f(x)$ a $\nabla^2 f(x)$, jestliže

- (a) $f(x) = \langle x, c \rangle$, kde $c \in \mathbb{R}^n$;
- (b) $f(x) = \langle Ax, x \rangle$, kde $A \in \mathbb{M}_n(\mathbb{R})$. Určete také $\nabla f(x)$ a $\nabla^2 f(x)$ za dodatečného předpokladu, že A je symetrická matice.

(a)
$$\frac{\partial f}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n x_i c_i \stackrel{\text{limita}}{=} \sum_{i=1}^n c_i \frac{\partial x_i}{\partial x_k} = \sum_{i=1}^n c_i \delta_{ik} \stackrel{\text{rozvoj}}{=} c_k$$

$$\implies \nabla f(x) = \begin{bmatrix} c_1 \\ \vdots \\ c_i \end{bmatrix} = c; \implies \nabla^2 f(x) = 0, \text{ kde } \delta_{ik} = \begin{cases} 1, \text{ pokud } i = k, \\ 0, \text{ pokud } i \neq k. \end{cases}$$

$$\frac{\partial f}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \underbrace{\left[\sum_{j=1}^n a_{ij} x_j\right]}_{(Ax)_i} x_i = \sum_{i,j=1}^n a_{ij} \underbrace{\left(\frac{\partial x_i}{\partial x_k} x_j + x_i \frac{\partial x_j}{\partial x_k}\right)}_{\text{derivace součinu}} = \sum_{i,j=1}^n a_{ij} (\delta_{ik} x_j + x_i \delta_{jk})$$

$$= \sum_{i,j=1}^{n} a_{ij} \delta_{ik} x_j + a_{ij} \delta_{jk} x_i = \underbrace{\sum_{j=1}^{n} a_{kj} x_j}_{(Ax)_k} + \underbrace{\sum_{i=1}^{n} a_{ik} x_i}_{(A^T x)_k}$$

$$\implies \nabla f(x) = Ax + A^Tx$$
 (Speciálně: $\nabla f(x) = 2Ax$ pro $A = A^T$)

$$\frac{\partial^2 f}{\partial x_k x_l} = \sum_{j=1}^n a_{kj} \delta_{jl} + \sum_{i=1}^n a_{ik} \delta_{il} = a_{kl} + a_{lk}$$

$$\implies \nabla^2 f(x) = A + A^T$$

3.11 Ověření konvexnosti množiny

Je množina
$$M = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid |x| + |y| \le 1 \right\}$$
 konvexní?

1. způsob - dle definice

$$\lambda \begin{bmatrix} x \\ y \end{bmatrix} + (1 - \lambda) \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \lambda x + (1 - \lambda)a \\ \lambda y + (1 - \lambda)b \end{bmatrix} \stackrel{?}{\in} M, \lambda \in [0, 1].$$

$$|\lambda x + (1 - \lambda)a| + |\lambda y + (1 - \lambda)b| \le \underbrace{\lambda |x| + (1 - \lambda)|a| + \lambda |y| + (1 - \lambda)|b|}_{\lambda \underbrace{(|x| + |y|)}_{\leq 1} + (1 - \lambda)\underbrace{(|a| + |b|)}_{\leq 1}}_{\leq 1} \subseteq \lambda + 1 - \lambda = 1 \quad \Box$$

M je konvexní.

2. způsob - úvaha nad vlastnostmi

|x| je konvexní, |y| je konvexní. Součet zachovává konvexitu, tedy i |x| + |y| je konvexní.

3.12 Práce s maticemi

Je dána matice $A \in \mathbb{M}_{m,n}(\mathbb{R})$. Ať $L = \{Ax \mid x \in \mathbb{R}^n\}$.

Ukažte, že A má lineárně nezávislé sloupce $\iff A^T A$ je invertibilní.

Pomocný důkaz.

Ukažme, že: $\ker(A) = \ker(A^T A)$

Chci: $ker(A) \subseteq ker(A^T A)$

$$x \in \ker(A) \Rightarrow Ax = 0 / A^T$$

 $A^T A = 0 \Rightarrow x \in \ker(A^T A) \square$

Chci: $ker(A^T A) \subseteq ker(A)$

$$x \in \ker(A^T A) \Rightarrow A^T A x = 0 \Rightarrow 0 = \langle A^T A x, x \rangle$$

= $\langle A x, A x \rangle$
= $||Ax||^2 \Rightarrow A x = 0 \Rightarrow x \in \ker(A)$ \square

Konec pomocného důkazu.

A má lineárně nezávislé sloupce \iff $\{0\} = \ker(A) = \ker(A^T A) \iff A^T A$ je invertibilní (protože $A^T A$ je čtvercová a $A^T A$ je prosté).

20

3.13 Proložení bodů pomocí MNČ

Jsou dány body $a=\begin{bmatrix} -2\\-1\end{bmatrix}, b=\begin{bmatrix} -1\\-2\end{bmatrix}, c=\begin{bmatrix} 0\\0\end{bmatrix}, d=\begin{bmatrix} 1\\2\end{bmatrix}$. Metodou nejmenších čtverců proložte těmito body graf

(a) afinní funkce $f(x) = \alpha x + \beta$, kde $\alpha, \beta \in \mathbb{R}$;

(b) funkce $f(x) = \alpha x^2 + \beta x + \gamma$, kde $\alpha, \beta, \gamma \in \mathbb{R}$.

(a)

$$\begin{aligned}
-2\alpha + \beta &= -1 \\
-\alpha + \beta &= -2 \\
0\alpha + \beta &= 0 \\
\alpha + \beta &= 2
\end{aligned}
\iff A \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = b, \text{ kde } A = \begin{bmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 2 \end{bmatrix}.$$

 $A^TA\begin{bmatrix}\alpha\\\beta\end{bmatrix}=A^Tb.$ A má lineárně nezávislé sloupce $\Rightarrow (A^TA)^{-1}$ existuje.

Pak:
$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = (A^T A)^{-1} A^T b.$$

$$A^T A = \begin{bmatrix} -2 & -1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & -2 \\ -2 & 4 \end{bmatrix} \Rightarrow (A^T A)^{-1} = \frac{1}{20} \begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}.$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -2 & -1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ -2 \\ 0 \\ 2 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 11 \\ 3 \end{bmatrix} \Rightarrow \alpha = \frac{11}{10}; \beta = \frac{3}{10}.$$

(b)

$$\begin{aligned} & 4\alpha - 2\beta + \gamma = -1 \\ & \alpha - \beta + \gamma = -2 \\ & 0\alpha + 0\beta + \gamma = 0 \\ & \alpha + \beta + \gamma = 2 \end{aligned} \iff A \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = b, \text{ kde } A = \begin{bmatrix} 4 & -2 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \ b = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 2 \end{bmatrix}.$$

Amá lineárně nezávislé sloupce $\Rightarrow A^TA$ je invertibilní.

$$A^{T}A = \begin{bmatrix} 4 & 1 & 0 & 1 \\ -2 & -1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & -2 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 18 & -8 & 6 \\ -8 & 6 & -2 \\ 6 & -2 & 4 \end{bmatrix} \Rightarrow (A^{T}A)^{-1} = \frac{1}{20} \begin{bmatrix} 5 & 5 & -5 \\ 5 & 9 & -3 \\ -5 & -3 & 11 \end{bmatrix}.$$

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 5 & 5 & -5 \\ 5 & 9 & -3 \\ -5 & -3 & 11 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 25 \\ 35 \\ -15 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 5 \\ 7 \\ -3 \end{bmatrix} \Rightarrow \alpha = \frac{5}{4}; \ \beta = \frac{7}{4}; \ \gamma = \frac{-3}{4}.$$

3.14 Formulace úlohy MNČ

Ať závislost výstupního signálu $(y_n)_{n=0}^{\infty}$ systému na vstupním signálu $(x_n)_{n=0}^{\infty}$ je dána konvolucí posloupnosti $(x_n)_{n=0}^{\infty}$ s posloupnosti $(h_n)_{n=0}^{\infty}$ ($(h_n)_{n=0}^{\infty}$ popisuje odezvu systému na jednotkový impuls), tj. $y_n = \sum_{i=0}^n h_i x_{n-i}$. Předpokládejte dále, že $h_n = 0$ pro všechna $n \geq 4$. Měřením byla zjištěna hodnota koeficientů y_0, \ldots, y_{20} výstupního signálu, když na vstupu byl signál s počátečními koeficienty x_0, \ldots, x_{20} . Formulujte úlohu nejmenších čtverců pro nalezení koeficientů h_0, h_1, h_2, h_3 .

$$(x_n)_{n=0}^{\infty} \longrightarrow (h_n)_{n=0}^{\infty} \longrightarrow (y_n)_{n=0}^{\infty}$$

$$y_0 = h_0 x_0$$

$$y_1 = h_1 x_0 + h_0 x_1$$

$$y_2 = h_2 x_0 + h_1 x_1 + h_0 x_2$$

$$y_3 = h_3 x_0 + h_2 x_1 + h_1 x_2 + h_0 x_3$$

$$y_4 = h_3 x_1 + h_2 x_2 + h_3 x_3 + h_0 x_4$$

$$\vdots$$

$$y_{20} = h_3 x_{17} + h_2 x_{18} + h_1 x_{19} + h_0 x_{20}$$

Minimalisujme $f(x) = ||Ax + b||^2$, kde

$$A = \begin{bmatrix} x_0 & 0 & 0 & 0 \\ x_1 & x_0 & 0 & 0 \\ x_2 & x_1 & x_0 & 0 \\ x_3 & x_2 & x_1 & x_0 \\ \vdots & \vdots & \vdots & \vdots \\ x_{20} & x_{19} & x_{18} & x_{17} \end{bmatrix}; b = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{20} \end{bmatrix}.$$

4 Čtvrtý týden

4.1 Konvexní funkce

Nechť $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ a $C\subseteq D$ je neprázdná konvexní množina. Řekněme, že f je

(a) konvexní na C, jestliže pro každé $x,y\in C$ a každé $\lambda\in[0,1]$ je

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

(b) ryze konvexní na C, jestliže pro každé dva různé body $x, y \in C$ a $\lambda \in (0,1)$ je

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

(c) konkávní (resp. ryze konkávní) na C, jestliže (-f) je konvexní (resp. ryze konvexní) na C.

$$\begin{aligned} & \underline{A} = (\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y)) \\ & \underline{B} = (\lambda x + (1 - \lambda)y, f(\lambda x + (1 - \lambda)y)) \\ & \underline{C} = \lambda x + (1 - \lambda)y \end{aligned}$$

Pozorování: úsečka vždy leží nad funkcí.

4.2 Příklad konvexní funkce

Je afinní zobrazení $f: \mathbb{R}^n \to \mathbb{R}^n$ (tj. $f(x) = \langle x, a \rangle + b, b \in \mathbb{R}$) konvexní?

Důkaz.

At $x, y \in \mathbb{R}^n, \lambda \in [0, 1]$.

$$\begin{split} f(\lambda x + (1-\lambda)y) &= \langle \lambda x + (1-\lambda)y, a \rangle + b \\ &= \lambda \langle x, a \rangle + (1-\lambda)\langle y, a \rangle + \lambda b + (1-\lambda)b \\ &= \lambda f(x) + (1-\lambda)f(y) \implies f \text{ je konvexní i konkávní.} \quad \Box \end{split}$$

4.3 Příklad konvexní funkce

Je funkce f(x) = ||x|| konvexní?

Důkaz.

At At $x, y \in \mathbb{R}^n, \lambda \in [0, 1]$.

$$f(\lambda x + (1 - \lambda)y) = \|\lambda x + (1 - \lambda)y\| \stackrel{\text{odhad}}{\leq} \|\lambda x\| + \|(1 - \lambda)y\| = \lambda \|x\| + (1 - \lambda)\|y\|$$
$$= \lambda f(x) + (1 - \lambda)f(y) \implies f \text{ je konvexní.} \quad \Box$$

4.4 Dolní úrovňová množina

Dolní úrovňování množina funkce $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^n$ hladiny $\alpha\in\mathbb{R}$ je množina

$$lev_{\leq}(f; \alpha) := \{x \in D \mid f(x) \leq \alpha\}.$$

Je-li f konvexní na $C \subseteq \mathbb{R}^n$, pak lev $\leq (f|_C; \alpha)$ je konvexní pro $\forall \alpha \in \mathbb{R}$.

Důkaz.

Af
$$x, y \in \text{lev}_{\leq}(f|_C; \alpha), \lambda \in [0, 1].$$

Cíl:
$$\lambda x + (1 - y)\lambda \stackrel{?}{\in} \operatorname{lev}_{\leq}(f|_{C}; y).$$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \le \lambda \alpha + (1 - \lambda)\alpha = \alpha.$$

Poznámka.

Opačná implikace neplatí. Tedy pomocí dolní úrovňové množiny **nelze** určit, jestli původní funkce je konvexní.

Například $f=x^3$ není konvexní funkce na intervalu x=[-2,2], ale když zvolíme $\alpha=8$, tak dolní úrovňová množina bude konvexní.

4.5 Použití dolní úrovňové množiny

Je množina
$$M = \left\{ x \in \mathbb{R}^2 \mid \|x\| \le 1, \left\langle x, \binom{2}{1} \right\rangle \le 1 \right\}$$
 konvexní?

Důkaz.

Rozdělme si množinu M na dvě podmnožiny M_1 a M_2 , kde:

 $M_1 = \left\{x \in \mathbb{R}^2 \mid \|x\| \leq 1\right\} = \mathrm{lev}_{\leq}(\|x\|, 1) \to \text{konvexn\'i, protože norma je konvexn\'i funkce.}$

$$M_2 = \left\{ x \in \mathbb{R}^2 \mid \left\langle x, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\rangle \leq 1 \right\} = \text{lev}_{\leq} \left(\left\langle x, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\rangle, 1 \right) \rightarrow \text{konvexní, protože skalární součin je konvexní}$$

To nám ale dává průnik dvou konvexních množin, tedy $M=M_1\cap M_2$ je také konvexní. $\ \, \Box$

4.6 Součet a součin zachovávají konvexitu

Mějme funkce f, g, které jsou konvexní na $C, \alpha \geq 0$. Pak:

- (a) f + g je konvexní na C
- (b) αf je konvexní na C

Důkaz.

(a) At $\lambda \in [0, 1], x, y \in C$.

$$(f+g)(\lambda x + (1-\lambda)y) = \underbrace{f(\lambda x + (1-\lambda)y)}_{\leq \lambda f(x) + (1-\lambda)f(y)} + \underbrace{g(\lambda x + (1-\lambda)y)}_{\leq \lambda g(x) + (1-\lambda)g(y)}$$

$$\leq \lambda f(x) + (1-\lambda)f(y) + \lambda g(x) + (1-\lambda)g(y) = \lambda (f+g)(x) + (1-\lambda)(f+g)(y). \quad \Box$$

(b) At $\lambda \in [0, 1], x, y \in C, \alpha \ge 0$.

4.7 Příklad ověření konvexity

Je funkce $f(x) = e^x - 3 \ln x + 2x$ konvexní?

Rozeberme si jednotlivé části funkce.

- e^x ... exponenciála je z grafu očividně konvexní.
- $-3 \ln x$... logaritmus je konkávní, ale díky "-" se celý výraz stane konvexní. Násobení konstatou konvexitu neovlivní, viz důkaz (b).
- 2x ... lineární funkce je konvexní.

Protože všechny komponenty funkce f jsou konvexní, pak je i funkce f nutně konvexní.

4.8 Skládání zachovává konvexitu

Skládání konvexních funkcí není obecně konvexní funkce. Například: $f(x) = x^2$ a $g(x) = x^2 - 1$ jsou konvexní, ale

$$(f \circ g)(x) = (f(g(x))) = (x^2 - 1)^2$$
 z grafu očividně není konvexní.

1. Mějme tedy tvrzení.

Nechť f je konvexní na $K \subseteq \mathbb{R}^m$, $C \subseteq \mathbb{R}^n$ je neprázdná konvexní a $g : \mathbb{R}^n \to \mathbb{R}^m$ je afinní. Jestliže $g(C) \subseteq K$ (tedy g "obtiskne" množinu C do K), pak $f \circ g$ je konvexní na C.

Důkaz.

Ať
$$x, y \in C, \lambda \in [0, 1].$$

Pak

$$f(g(\lambda x + (1 - \lambda)y)) \stackrel{g \text{ je afinn'i}}{=} f(\lambda \overbrace{g(x)}^{\in K} + (1 - \lambda) \overbrace{g(y)}^{\in K}) \stackrel{f \text{ je konvexn'i}}{\leq} \lambda f((g(x))) + (1 - \lambda) f(g(y))$$

A to přesně dle definice konvexní funkce dává, že $f \circ q$ je konvexní funkce. \square

2. Mějme ještě druhé tvrzení.

Jestliže f je konvexní a **neklesající** na intervalu I, g je konvexní na $C \subseteq \mathbb{R}^n$ a $g(C) \subseteq I$, pak $f \circ g$ je konvexní na C.

Důkaz.

At
$$x, y \in C$$
, $\lambda \in [0, 1]$.

Pak

$$f(\underbrace{g(\lambda x + (1 - \lambda)y)}_{\substack{\leq \lambda g(x) + (1 - \lambda)g(y) \\ \text{odbad, diffy konvexite } g}}) \xrightarrow{f \text{ je neklesající}}_{g \text{ je konvexní}} f(\lambda g(x) + (1 - \lambda)g(y)) \xrightarrow{f \text{ je konvexní}}_{\leq x} \lambda f(g(x)) + (1 - \lambda)f(g(y))$$

A to přesně dle definice konvexní funkce dává, že $f\circ g$ je konvexní funkce. \square

4.9 Věta o extrémech konvexních funkcí

Nechť f je konvexní na $C \subseteq \mathbb{R}^n$. Potom platí:

- (a) Každý bod lokálního minima f na C je bodem minima f na C.
- (b) Množina $\operatorname{argmin}_{x \in C} f(x)$ je konvexní. Je-li navíc f ryze konvexní na C, pak existuje nejvýše jeden bod minima funkce f na C.

Důkaz (a).

Sporem. Ať $\hat{x} \in C$ je bod lokálního minima f na C a ať existuje $\hat{y} \in C$ tak, že $f(\hat{y}) < f(\hat{x})$. $\lambda \in [0, 1)$. Pak

$$f(\lambda \hat{x} + (1 - \lambda)\hat{y}) \overset{f \text{ je konvexn}\acute{}}{\leq} \lambda f(\hat{x}) + (1 - \lambda) \underbrace{f(\hat{x})}_{\text{odhad}} \overset{< f(\hat{x})}{\lambda} f(\hat{x}) + (1 - \lambda) f(\hat{x}) = f(\hat{x})$$

Což je ale spor s naším předpokladem, protože kdykoliv si vezmu bod na úsečce mezi \hat{x} a \hat{y} , tak je v něm hodnota ostře menší než funkční hodnota v bodě $f(\hat{x})$.

Důkaz (b).

Ať $\hat{x}, \hat{y} \in \operatorname{argmin}_{x \in C} f(x), \lambda \in [0, 1].$

Pak

$$f(\lambda \hat{x} + (1 - \lambda)\hat{y}) \stackrel{f \text{ je konvexn} \hat{i}}{\leq} \lambda f(\hat{x}) + (1 - \lambda) \underbrace{f(\hat{y})}_{f(\hat{y})} = f(\hat{x})$$

 $\implies \lambda \hat{x} + (1 - \lambda)\hat{y} \in \operatorname{argmin}_{x \in C} f(x). \quad \Box$

Ať f je navíc ryze konvexní na C.

Cíl: $\operatorname{argmin}_{x \in C} f(x)$ má nejvýše jeden prvek.

Důkaz.

Sporem. At $\hat{x}, \hat{y} \in \operatorname{argmin}_{x \in C} f(x), \hat{x} \neq \hat{y}. \lambda \in (0, 1).$

Pak

$$f(\lambda \hat{x} + (1 - \lambda)\hat{y}) \stackrel{f \text{ je ryze konv.}}{<} \lambda f(\hat{x}) + (1 - \lambda) \underbrace{f(\hat{y})}_{=f(\hat{x})} = f(\hat{x})$$

Což je ale spor, protože mám nějakou funkční hodnotu bodu úsečky mezi \hat{x} a \hat{y} ostře menší jak funkční hodnotu bodu \hat{x} . To ale nemůže nastat, protože jako body minima funkce f na C musí mít stejnou hodnotu. Body \hat{x} a \hat{y} musí tedy nutně být stejné body. \Box

4.10 Věta o konvexitě a první derivaci

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená, $C \subseteq \Omega$ neprázdná konvexní a $f \in C^1(\Omega)$. Potom platí:

(a) f je konvexní na C právě tehdy, když pro každé $x, y \in C$ je

$$f(x) + \langle \nabla f(x), y - x \rangle \le f(y).$$

(b) f je ryze konvexní na C právě tehdy, když pro každé dva různé body $x,y\in C$ je

$$f(x) + \langle \nabla f(x), y - x \rangle < f(y).$$

Důkaz (b) vynecháme.

Důkaz (a).

$$\Rightarrow$$
 ": At $x, y \in C, \lambda \in (0, 1]$.

$$f(x + \lambda(y - x)) = f(\lambda y + (1 - \lambda)x) \overset{f \text{ je konvexn}'}{\leq} \lambda f(x) + (1 - \lambda)f(x) = f(x) + \lambda[f(y) - f(x)]$$

$$\Rightarrow \underbrace{\frac{f(x + \lambda(y - x)) - f(x)}{\lambda}}_{=\langle \nabla f(x), y - x \rangle \text{ pro } \lambda \to 0_{+}} \leq f(y) - f(x). \quad \Box$$

$$\xrightarrow{\text{z definice směrové derivace}}$$

 $, \Leftarrow$ ": At $x, y \in C, \lambda \in [0, 1]$.

$$z \coloneqq \lambda x + (1 - \lambda)y \in C$$

Z předpokladu:

$$f(z) + \langle \nabla f(z), x - z \rangle \le f(x) / \lambda$$
 (1)

$$f(z) + \langle \nabla f(z), y - z \rangle \le f(y) / \cdot (-\lambda)$$
 (2)

Pronásobením a sečtením dostaneme:

$$f(z) + \lambda \langle \nabla f(z), \underbrace{\lambda x + (1 - \lambda)y}_{z} - z \rangle \le \lambda f(x) + (1 - \lambda)f(y)$$
$$\Rightarrow f(z) \le \lambda f(x) + (1 - \lambda)f(y)$$

Což ale po dosazení za z je přesně ta nerovnost, která říká, že f je konvexní. \Box

4.11 Věta o konvexitě a druhé derivaci

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená, $C \subseteq \Omega$ neprázdná konvexní a $f \in C^2(\Omega)$. Potom platí:

- (a) Jestliže pro každé $x \in C$ je $\nabla^2 f(x)$ positivně semidefinitní matice, pak f je konvexní na C.
- (b) Jestliže f je konvexní na C a C je otevřená, potom $\nabla^2 f(x)$ je positivně semidefinitní matice pro každé $x \in C$.
- (c) Jestliže pro každé $x \in C$ je $\nabla^2 f(x)$ positivně definitní matice, pak f je ryze konvexní na C.

Důkaz (a).

At $x, y \in C$.

Taylorův polynom: existuje $\xi \in \{\lambda x + (1 - \lambda)y \mid \lambda \in (0, 1)\} \subseteq C$ tak, že

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \underbrace{\frac{1}{2} \langle \nabla^2 f(\xi)(y - x), y - x \rangle}_{\geq 0}$$

$$\Rightarrow f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

Což je přesné znění věty o konvexitě a první derivaci. Tedy f je nutně konvexní na C.

Důkaz (b).

Cil: $\langle \nabla^2 f(x) y, y \rangle \ge 0, \forall y \in \mathbb{R}^n$

Ať $x \in C, y \in \mathbb{R}^n$.

Pak C otevřená \Rightarrow existuje $\delta > 0$ tak, že $x + \alpha y \in C \ \forall \alpha \in (0, \delta]$.

Taylorův polynom:

$$f(x + \alpha y) = f(x) + \alpha \langle \nabla f(x), y \rangle + \frac{1}{2} \alpha^2 \langle \nabla^2 f(x)y, y \rangle + \alpha^2 ||y||^2 \omega(\alpha y),$$

kde w má nulovou limitu v 0.

Použijme fakt, že f je konvexní:

$$f(x + \alpha y) \ge f(x) + \langle \nabla f(x), \alpha y \rangle$$

Když tedy dosadíme:

$$f(x) + \alpha \langle \nabla f(x), y \rangle + \frac{1}{2} \alpha^2 \langle \nabla^2 f(x)y, y \rangle + \alpha^2 ||y||^2 \omega(\alpha y) \ge f(x) + \langle \nabla f(x), \alpha y \rangle$$

Upravíme a podělíme výrazem $\frac{1}{2}\alpha^2$ ($\alpha > 0$).

$$\langle \nabla^2 f(x)y, y \rangle + \underbrace{2\|y\|^2 \omega(\alpha y)}_{\to 0 \text{ pro } \alpha \to 0_{\perp}} \ge 0$$

V limitě $\alpha \to 0_+$ tedy máme $\langle \nabla^2 f(x) y, y \rangle \ge 0$, což je přesně to, co jsme chtěli. \Box Poznámka. Nutnost otevřenosti C je velmi důležitá!

Důkaz (c). Podobně jako (a).

4.12 Příklad ověření konvexnosti pomocí derivace

 $f(x,y)=x^2-y^2$ je konvexní na $\mathbb{R}\times\{0\}$. (\rightarrow množina $\mathbb{R}\times\{0\}$ není otevřená, jedná se o přímku) $\nabla^2 f(x,y)=\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$ je indefinitní, tedy funkce f(x,y) není konvexní.

4.13 Příklad ověření konvexnosti pomocí derivace

 $f(x,y)=x^2+xy+y^2$ je ryze konvexní.

$$\nabla^2 f(x,y) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \to 2 > 0, \ \det \nabla^2 f(x,y) = 4 - 1 > 0 \implies \text{dle Sylvesterova kritéria je } \nabla^2 f(x,y)$$
 positivně definitní.

A podle bodu (c) věty o konvexitě a druhé derivaci můžeme říct, že funkce f je ryze konvexní.

4.14 Příklad ověření konvexnosti funkce s parametrem

Mějme funkci $f(x) = \langle Ax, x \rangle$, kde

$$A = egin{bmatrix} 2 & 2 & 3 \\ 1 & 3 & 1 \\ 1 & 2 & \alpha \end{bmatrix}, lpha \in \mathbb{R} \text{ je parametr.}$$

Pro jaké α je funkce f konvexní?

$$\nabla^2 f(x) = \overbrace{A + A^T}^{\text{ze symetrie}} = \begin{bmatrix} 4 & 3 & 4 \\ 3 & 6 & 3 \\ 4 & 3 & 2\alpha \end{bmatrix}$$

$$\det \nabla^2 f(x) = \begin{vmatrix} 4 & 3 & 4 \\ 3 & 6 & 3 \\ 4 & 3 & 2\alpha \end{vmatrix} = \begin{vmatrix} 4 & 3 & 4 \\ 3 & 6 & 3 \\ 0 & 0 & 2\alpha - 4 \end{vmatrix} = (2\alpha - 4) \begin{vmatrix} 4 & 3 \\ 3 & 6 \end{vmatrix} = 3(2\alpha - 4) \begin{vmatrix} 4 & 3 \\ 1 & 2 \end{vmatrix} = 30(\alpha - 2)$$

Tedy aby f byla konvexní funkce: $30(\alpha - 2) \ge 0 \iff \alpha \ge 2$.

Musíme vyšetřit menší minory matice.

Vyškrtněme 3. řádek a 3. sloupec:

$$\begin{vmatrix} 4 & 3 \\ 3 & 6 \end{vmatrix} = 15 > 0$$

Vyškrtněme 2. řádek a 2. sloupec:

$$\begin{vmatrix} 4 & 4 \\ 4 & 2\alpha \end{vmatrix} = 8 \begin{vmatrix} 1 & 1 \\ 2 & \alpha \end{vmatrix} = 8(\alpha - 2) \ge 0 \iff \alpha \ge 2 \dots \text{tuto podmínku již vyžadujeme}.$$

Vyškrtněme 1. řádek a 1. sloupec:

$$\begin{vmatrix} 6 & 3 \\ 3 & 2\alpha \end{vmatrix} = 3 \begin{vmatrix} 2 & 1 \\ 3 & 2\alpha \end{vmatrix} = 3(4\alpha - 3) \ge 0 \iff \alpha \ge \frac{3}{4} \dots \text{vyžadujeme již silnější podmínku}.$$

A teď zbylé minoru po vyškrtání dvou řádků a sloupců:

$$4 \ge 0$$
, $6 \ge 0$, $2\alpha \ge 0 \iff \alpha \ge 0 \dots$ vyžadujeme již silnější podmínku.

 \implies Pokud $\alpha \ge 2$, pak je funkce f konvexní. Při $\alpha > 2$ je ryze konvexní.

4.15 Příklad ověření konvexity množiny

Mějme množinu

$$M = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x + 2e^{-x+y^2} \le 4, \ -x^2 + 3xy - 3y^2 \ge -1 \right\}.$$

Je M konvexní?

Označme:
$$g_1(x,y) = x + 2e^{-x+y^2} \dots M_1 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| g_1(x,y) \le 4 \right\}$$

 $g_2(x,y) = x^2 - 3xy + 3y^2 \dots M_2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| g_2(x,y) \le 1 \right\}$

 $M=M_1\cap M_2\implies$ ukážeme konvexnost M_1 a M_2 , protože průnik zachovává konvexitu. $\implies g_1$ a g_2 musí být konvexní.

\bullet g_1 :

- xje afinní funkce \rightarrow konvexní.
- součet zachovává konvexitu.
- násobení zachovává konvexitu.
- exponenciála je konvexní funkce (dokonce striktně rostoucí).
- vnitřní funkce $(-x+y^2)$ je také konvexní.
- $\implies g_1$ je konvexní funkce $\implies M_1$ je konvexní množina.

\bullet g_2 :

- kvadrát je konvexní.
- je ale člen "xy" konvexní? Musíme se podívat na Hessovu matici.

$$\nabla^2 g_2(x,y) = \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix}$$

$$\det \nabla^2 g_2(x,y) = 12 - 9 = 3 > 0$$

$$2 \ge 0$$

$$g_2 \text{ je (ryze) konvexní funkce} \implies M_2 \text{ je konvexní množina.}$$

Protože M_1 i M_2 jsou konvexní množiny, pak nutně i $M_1 \cap M_2 = M$ je konvexní množina.

5 Pátý týden

5.1 Kužel přípustných směrů

Nechť $M \subseteq \mathbb{R}^n$ a $x \in M$.

- Vektor $d \in \mathbb{R}^n$ se nazve přípustný směr množiny M v bodě x, jestliže existuje $\delta > 0$ tak, že pro každé $\alpha \in (0, \delta]$ je $x + \alpha d \in M$.
- Množina $\mathcal{F}(M;x)$ všech přípustných směrů množiny M v bodě x se nazývá kužel přípustných směrů množiny M v bodě x.

 $\mathcal{F}(M;x) \neq \emptyset.$

Je-li $x \in \text{int}(M)$, pak $\mathcal{F}(M; x) = \mathbb{R}^n$.

Je-li M konečná (neprázdná), pak $\mathcal{F}(M;x)=\{0\}$ pro každé $x\in M$.

5.2 Přípustné směry poklesu

Mějme

- (a) Je-li M = S(0; 1), pak $\mathcal{F}(M; x) = \{0\}$ pro každé $x \in M$.
- (b) Je-li C = B(0; 1) a $\hat{x} = (1, 0)^T$, pak

$$F(C; \hat{x}) = \left\{ \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \in \mathbb{R}^2 \,\middle|\, d_1 < 0 \right\} \cup \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

(a)
$$M = S(0; 1) = \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$$

Úvaha: Polopřímka z bodu (1,0) projde maximálně $2 \times$ skrz kružnici.

Ať $d \neq 0 \in \mathbb{R}^2$

$$1 = \|x + \alpha d\|^2 = \langle x + \alpha d, x + \alpha d \rangle = \underbrace{\|x\|^2}_{1} + 2\alpha \langle x, d \rangle + \alpha^2 \|d\|^2$$

$$\to 0 = \alpha(2\langle x, d \rangle + \alpha \|d\|^2) \implies \alpha = -\frac{2\langle x, d \rangle}{\|d\|^2} \implies \mathcal{F}(M; x) = \{0\}$$

(b) Uvažujme kouli

$$M = S(0;1) = \{x \in \mathbb{R}^2 \mid ||x|| \le 1\}; x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$1 \geq \left\| \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha d \right\|^2 = \left\langle \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha d, \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha d \right\rangle = \underbrace{\left\| \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\|^2}_1 + 2\alpha \left\langle \begin{bmatrix} 1 \\ 0 \end{bmatrix}, d \right\rangle + \alpha^2 \|d\|^2$$

$$\rightarrow 0 \ge \alpha (2d_1 + \alpha \|d\|^2) \implies \alpha = -\frac{2d_1}{\|d\|^2} \implies \mathcal{F}\left(M; \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \left\{ \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \in \mathbb{R}^2 \,\middle|\, d_1 < 0 \right\}.$$

5.3 Kužel směrů poklesu

Nechť $D \subseteq \mathbb{R}^n$, $x \in D$ a $f: D \to \mathbb{R}$.

- Vektor $d \in \mathbb{R}^n$ se nazve směr poklesu funkce f v bodě x, jestliže existuje $\delta > 0$ tak, že pro každé $\alpha \in (0, \delta]$ je $f(x + \alpha d) < f(x)$.
- Množina $\mathcal{D}(f;x)$ všech směrů poklesu funkce f v bodě x se nazývá kužel směrů poklesu funkce f v bodě x.

Definice implicitně obsahuje podmínku $[x, x + \delta d] \subseteq D$.

5.4 Nutná geometrická podmínka lokálního extrému

Jestliže x je bod lokálního minima funkce $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ na $M\subseteq D$, pak $\mathcal{F}(M;x)\cap D(f;x)=\emptyset$.

Důkaz. Sporem.

At ne, tj. existuje $d \in \mathcal{F}(M, x) \cap D(f, x)$.

Pak: $f(x + \alpha d) < f(x)$ a $x + \alpha d \in M$ pro všechna $\alpha > 0$ dostatečně malá.

Tedy spor s tím, že x je bod lokálního minima f na M.

5.5 Silný směr poklesu - linearisace směru poklesu

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $x \in \Omega$ a $f \in C^1(\Omega)$.

- Vektor $d \in \mathbb{R}^n$ se nazve silný směr poklesu funkce f v bodě x, jestliže $\langle \nabla f(x), d \rangle < 0$.
- Množina $\mathcal{D}_0(f;x)$ všech silných směrů poklesu funkce f v bodě x se nazývá kužel silných směrů poklesu funkce f v bodě x.

Kužel $\mathcal{D}_0(f;x)$ je množina všech řešení lineární nerovnice

$$\langle \nabla f(x), d \rangle < 0.$$

 $\mathcal{D}_0(f;x)$ je konvexní kužel.

5.6 Tvrzení o souvislosti přípustných směrů poklesu a jejich linearisaci

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $x \in \Omega$ a $f \in C^1(\Omega)$. Potom platí:

- (a) Je-li $d \in \mathcal{D}(f; x)$, potom $\langle \nabla f(x), d \rangle \leq 0$.
- (b) $\mathcal{D}_0(f;x) \subseteq \mathcal{D}(f;x)$ (tj. jestliže $\langle \nabla f(x), d \rangle < 0$, pak $d \in \mathcal{D}(f;x)$).

Důkaz.

(a) At $d \in D(f; x)$.

$$\frac{f(x+\alpha d)-f(x)}{\alpha}<0 \text{ pro }\alpha>0 \text{ dostatečně malé.}$$

$$\Longrightarrow \varprojlim_{x\to 0^+} \frac{f(x+\alpha d-f(x))}{\alpha} \leq 0 \quad \square$$

(b) At
$$\alpha > 0$$
.

$$f(x+\alpha d) = f(x) + \alpha \langle \nabla f(x), d \rangle + \alpha \|d\| \underbrace{\omega(\alpha d)}^{\text{zbytek}}$$

$$\underbrace{\frac{f(x+\alpha d) - f(x)}{\alpha}}_{\text{---}} = \underbrace{\frac{\langle \nabla f(x), d \rangle + \|d\|\omega(\alpha d)}{\text{---}}}_{\text{----}} \Longrightarrow \underbrace{\frac{f(x+\alpha d) - f(x)}{\alpha}}_{\text{----}} < 0 \text{ pro všechna } \alpha < 0 \text{ dostatečně malá.}$$
 a navíc $\langle \nabla f(x), d \rangle = 0$

5.7 Fermatova věta - nutná podmínka optimality

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $M \subseteq \Omega$ a $\hat{x} \in M$ je bodem lokálního minima funkce $f \in C^1(\Omega)$ na M. Potom platí:

- (a) $\mathcal{F}(M;\hat{x}) \cap \mathcal{D}_0(f;\hat{x}) = \emptyset$ (tj. $\langle \nabla f(\hat{x}), d \rangle \geq 0$ pro všechny $d \in \mathcal{F}(M;\hat{x})$).
- (b) Jestliže $\hat{x} \in \text{int}(M)$, pak $\nabla f(\hat{x}) = 0$.

Důkaz.

(a) Víme, že $\mathcal{F}(M; \hat{x}) \cap \mathcal{D}(f; \hat{x}) = \emptyset$.

Pak:

$$\mathcal{D}_0(f,\hat{x}) \subseteq D(f,\hat{x}) \implies \mathcal{F}(M;\hat{x}) \cap \mathcal{D}_0(f,\hat{x}) = \emptyset. \quad \Box$$

(Tj.
$$\langle \nabla f(\hat{x}), d \rangle \ge 0 \quad \forall d \in \mathcal{F}(M, \hat{x})$$
)

(b)

$$\hat{x} \in \text{int}(M) \implies \mathcal{F}(M; \hat{x}) = \mathbb{R}^n \stackrel{(a)}{\Longrightarrow} \langle \nabla f(\hat{x}), d \rangle \ge 0 \quad \forall d \in \mathbb{R}^n$$

 $A\dot{t} d = -\nabla f(\hat{x}).$

$$-\|\nabla f(\hat{x})\|^2 \ge 0 \implies \nabla f(\hat{x}) = 0.$$

5.8 Věta o nutných a postačujících podmínkách pro konvexní úlohu

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $f \in C^1(\Omega)$ je konvexní na $C \subseteq \Omega$ a $\hat{x} \in C$. Potom platí:

- (a) $\hat{x} \in \operatorname{argmin}_{x \in C} f(x)$ právě tehdy, když $\mathcal{F}(C; \hat{x}) \cap \mathcal{D}_0(f; \hat{x}) = \emptyset$.
- (b) Předpokládejme, že $\hat{x} \in \text{int}(C)$. Pak $\hat{x} \in \operatorname{argmin}_{x \in C} f(x)$ právě tehdy, když $\nabla f(\hat{x}) = 0$.

Důkaz.

(a)

" \Rightarrow ": Víme. Když máme bod minima, je určitě bodem lokálního minima \implies průnik je prázdný. " \Leftarrow ": Sporem.

At existuje
$$y \in C$$
: $f(y) < f(\hat{x})$.
At $d = y - \hat{x} (\neq 0) \in \mathcal{F}(C, \hat{x})$.
Cíl: $d \in \mathcal{F}(C, \hat{x}) \cap \mathcal{D}_0(f, \hat{x})$.

$$\underbrace{\hat{x} + \alpha d}_{\hat{x} + \alpha(y - \hat{x}) = \alpha y + (1 - \alpha)\hat{x}} \forall \alpha \in [0, 1] \text{ z konvexity } C.$$

f je konvexní na $C \iff f(\hat{x}) + \langle \nabla f(\hat{x}), \widehat{y-\hat{x}} \rangle \leq f(y). \implies \langle \nabla f(\hat{x}), d \rangle \leq f(y) - f(\hat{x}) \underset{\text{z předp.}}{<} 0.$ To je ale spor, protože byl předpoklad, že průnik je prázdný. My jsme ale ukázali, že není. \square

$$, \Leftarrow$$
 "At $\nabla f(\hat{x}) = 0.$

$$\operatorname{Pak} \left\langle \nabla f(\hat{x}), d \right\rangle = 0 \quad \forall d \in \mathbb{R}^n = \mathcal{F}(C; \hat{x}). \text{ Nemáme tedy žádný směr poklesu} \stackrel{(a)}{\Longrightarrow} \hat{x} \in \operatorname{argmin}_{x \in C} f(x). \quad \Box$$

5.9 Hledání bodu minima

$$f(x,y) = x^2 + 3y^2 - 2xy + x - 2y$$

 $abla^2 f(x,y) = \begin{bmatrix} 2 & -2 \\ -2 & 6 \end{bmatrix} \dots$ dle Sylvesterova kritéria je positivně definitní. $\implies f$ je nutně (ryze) konvexní.

$$0 = \nabla f(x,y) = \begin{bmatrix} 2x - 2y + 1 \\ 6y - 2x - 2 \end{bmatrix} \to \begin{cases} 2x - 2y = -1 \\ -2x + 6y = 2 \end{cases} \to y = \frac{1}{4} \Rightarrow x = -\frac{1}{4}.$$

5.10 Věta o podmínkách optimality 2. řádu

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $M \subseteq \Omega$, $\hat{x} \in \text{int}(M)$ a $f \in C^2(\Omega)$. Potom platí:

- (a) Jestliže \hat{x} je bod lokálního minima funkce f na M, pak $\nabla^2 f(\hat{x})$ je positivně semidefinitní.
- (b) Jestliže $\nabla f(\hat{x}) = 0$ a $\nabla^2 f(\hat{x})$ je positivně definitní, pak \hat{x} je bod ostrého lokálního minima.

Důkaz vynecháme.

5.11 Příklad použití věty o podmínkách optimality 2. řádu

Je dána funkce

$$f(x,y) = \frac{1}{3}x^3 + \frac{1}{2}y^2 + xy + 2y.$$

Určete lokální extrémy funkce.

$$0 = \nabla f(x,y) = \begin{bmatrix} x^2 + y \\ y + x + 2 \end{bmatrix} \to \begin{cases} x^2 + y = 0 \\ y + x + 2 = 0 \end{cases} \to x^2 - x - 2 = 0 \to (x+1)(x-2) = 0$$

Podezřelé body jsou:

•
$$x = -1 \implies y = -1$$

•
$$x = 2 \implies y = -4$$

$$\nabla^2 f(x,y) = \begin{bmatrix} 2x & 1 \\ 1 & 1 \end{bmatrix}$$

 $\nabla^2 f(-1,-1) = \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix} \dots \text{ dle Sylvesterova kritéria není positivně semidefinitní, není ani negativně semidefinitní, je indefinitní. Dle věty o podmínkách optimality 2. řádu není lokálním minimem ani maximem.}$

 $abla^2 f(2,-4) = \begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix} \dots$ dle Sylvesterova kritéria je positivně definitní. V bodě (2,-4) se tedy nachází (ostré) lokální minimum, nikoliv však globální.

5.12 Hledání bodu minima

Nalezněte, pokud existují, všechny body minima funkce

$$f(x,y,z) = 2x^2 + y^2 + z^2 + xy - 2xz$$

$$\nabla^2 f(x,y,z) = \begin{bmatrix} 4 & 1 & -2 \\ 1 & 2 & 0 \\ -2 & 0 & 2 \end{bmatrix}$$

$$\det \nabla^2 f(x,y,z) = \begin{vmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ -2 & 0 & 2 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 6 > 0$$

$$\begin{vmatrix} 4 & 1 \\ 1 & 2 \end{vmatrix} = 7 > 0$$

$$|4| = 4 > 0$$
 positivně definitní $\Longrightarrow f$ je ryze konvexní.

Protože f je konvexní, body minima budou přesně stacionární body. A protože f je ryze konvexní, tak bude mít právě jeden bod minima.

$$4x + y - 2z = 0 \Rightarrow 2z + y = 0 \Rightarrow z = -2y$$

$$x + 2y = 0 \Rightarrow x = -2y$$

$$-2x + 2z = 0 \Rightarrow x = z$$

Jediný bod minima je tedy očividně $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$

5.13 Omezení ve tvaru nerovnosti - aproximace $\mathcal{F}(M;\hat{x})$

Ať g_1, \ldots, g_k jsou reálné funkce definované na množině $\Omega \subseteq \mathbb{R}^n$, $M = \{x \in \Omega \mid g_1(x) \leq 0, \ldots, g_k(x) \leq 0\}$ a $x \in M$. Označme si:

- Množina $\mathcal{I}\left((g_i)_{i=1}^k;x\right) := \{i \in \{1,\ldots,k\} \mid g_i(x)=0\}$ se nazývá indexová množina aktivních omezení v bodě x.
- Jestliže $i \in \mathcal{I}\left((g_i)_{i=1}^k; x\right)$, pak $g_i(x) \leq 0$ se nazve **aktivní** omezení (ve tvaru nerovnosti) v bodě x.
- Jestliže $i \notin \mathcal{I}\left((g_i)_{i=1}^k; x\right)$, pak $g_i(x) \leq 0$ se nazve **neaktivní** omezení (ve tvaru nerovnosti) v bodě x.

Poznámka. V textu dále se obvykle bude uvádět pouze $\mathcal{I}(x) = \{i \in \{1, ..., k\} \mid g_i(x) = 0\}$. Když přeindexujeme funkce $g_i(x)$, znamenalo by to něco jiného, proto se u \mathcal{I} uvádí $((g_i)_{i=1}^k; x)$, ale my většinou přeindexovávat nebudeme.

Definice.

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $g_1, \ldots, g_k \in C^1(\Omega)$, $x \in M$ a $M = \{x \in \Omega \mid g_1(x) \leq 0, \ldots, g_k(x) \leq 0\}$. Definujme množinu

$$\mathcal{G}\left((g_i)_{i=1}^k; x\right) := \left\{d \in \mathbb{R}^n \mid \langle \nabla g_i(x), d \rangle \le 0 \quad \forall i \in \mathcal{I}(x)\right\}$$
$$= \bigcap_{i \in \mathcal{I}(x)} \left\{d \in \mathbb{R}^n \mid \langle \nabla g_i(x), d \rangle \le 0\right\}$$

jako aproximaci $\mathcal{F}(M; \hat{x})$.

5.14 Příklad výpočtu \mathcal{G} a \mathcal{F}

Je dána množina

$$M = \{(x, y)^T \in \mathbb{R}^2 \mid y - x^3 \le 0, -y \le 0\}$$

a bod $\hat{x} = (0,0)^T$. Určete množiny $\mathcal{F}(M;\hat{x})$ a $\mathcal{G}((g_i)_{i=1}^k;\hat{x})$.

Nákres množiny.

Výpočet $\mathcal{F}(M; \hat{x})$.

? $0 + \alpha d \in M \quad \forall \alpha > 0$ dostatečně malé.

$$\alpha d_2 - \alpha^3 d_1^3 \le 0 \tag{3}$$

$$-\alpha d_2 \le 0 \quad \forall \alpha > 0$$
 dostatečně malé. (4)

$$(4) \implies d_2 \ge 0$$

(3)
$$\implies d_2 \le \alpha^2 d_1^3 \quad \forall \alpha > 0$$
 dostatečně malé.

 $d_2 \ge 0 \implies d_1 \ge 0$ a protože to platí $\forall \alpha > 0$ dostatečně malá, pak $d_2 = 0$, protože si můžu vzít libovolné malé, tedy i limitně blízké nule, α .

$$\implies \mathcal{F}(M;(0,0)) = \left\{ \begin{bmatrix} d_1 \\ 0 \end{bmatrix} \in \mathbb{R}^2 \,\middle|\, d_1 \ge 0 \right\}.$$

Výpočet $G((g_i)_{i=1}^k; \hat{x})$.

Označme si $g_1(x,y) = y - x^3$ a $g_2(x,y) = -y$.

Pak:

$$\langle \nabla g_1(0), d \rangle = \left\langle \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \right\rangle = d_2 \le 0$$
$$\langle \nabla g_1(0), d \rangle = \left\langle \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \right\rangle = d_2 \ge 0$$
$$d_2 = 0$$

$$\implies \mathcal{G}((g_1,g_2),(0,0)) = \left\{ \begin{bmatrix} d_1 \\ 0 \end{bmatrix} \middle| d_1 \in \mathbb{R} \right\} \to \mathcal{G} \text{ je větší jak } \mathcal{F}.$$

Protože \mathcal{G} je pouze aproximací \mathcal{F} , může a bude se stávat, že \mathcal{G} bude větší jak \mathcal{F} .

Přidejme si další, fakticky zbytečnou, podmínku navíc.

$$M = \{(x,y)^T \in \mathbb{R}^2 \mid \underbrace{y - x^3}_{g_1(x,y)} \le 0, \underbrace{-y}_{g_2(x,y)} \le 0, \underbrace{-x - y}_{g_3(x,y)} \le 0 \}$$

$$\langle \nabla g_3(0), d \rangle = \left\langle \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \right\rangle = -d_1 - \underbrace{d_2}_{-0} \leq 0 \implies -d_1 \leq 0$$

$$\implies \mathcal{G}((g_1,g_2,g_3),(0,0)) = \left\{ \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \mid d_1 \geq 0 \right\}. \text{ Což odpovídá přesně množině } \mathcal{F}.$$

Je tedy očividné, že \mathcal{G} závisí na popisu množiny.

5.15 Ukázka, že aproximací $\mathcal F$ lze zkazit prázdnost průniku

Mějme optimalisační úlohu

minimalisujte
$$x + y$$

za podmínek $y - x^3 \le 0$,
 $-y \le 0$.

Pak

$$\begin{split} \mathcal{D}_0(f;0) &= \{d \in \mathbb{R}^n \mid \langle \nabla f(0), d \rangle < 0\} \\ &= \sum_{f(0) = (1,1)} \left\{ \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \mid d_1 + d_2 < 0 \right\} \dots \text{ například } \begin{bmatrix} -1 \\ 0 \end{bmatrix} \in \mathcal{D}_0(f;0), \text{ ale } \begin{bmatrix} -1 \\ 0 \end{bmatrix} \in \mathcal{G}(x)! \end{split}$$

Tedy $\mathcal{G}(\hat{x}) \cap \mathcal{D}_0(f; \hat{x}) \neq \emptyset \implies$ nahrazením podmínek optimality můžeme zkazit prázdnost průniku, protože \mathcal{G} může být větší jak \mathcal{F} .

5.16 Věta o nutných KKT podmínkách

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $f, g_1, \dots, g_k \in C^1(\Omega)$,

$$M = \{x \in \Omega \mid g_1(x) \le 0, \dots, g_k(x) \le 0\}$$

a $\hat{x} \in M$. Jestliže $\overline{\mathcal{F}(M; \hat{x})} = \mathcal{G}(\hat{x})$ a \hat{x} je bod lokálního minima na f na M, pak existuje $(\mu_1, \dots, \mu_k)^T \in \mathbb{R}^k$ tak, že

$$\begin{split} \nabla f(\hat{x}) + \Sigma_{i=1}^k \mu_i \nabla g_i(\hat{x}) &= 0, \\ \mu_i g_i(\hat{x}) &= 0 \text{ pro všechna } i \in \{1, \dots, k\} \,, \\ \mu_i &\geq 0 \text{ pro všechna } i \in \{1, \dots, k\} \,. \end{split}$$

Důkaz.

- $\mathcal{I}(\hat{x}) = \emptyset \implies \hat{x} \in \text{int}(M) \implies \nabla f(\hat{x}) = 0$ z Fermatovy věty. \rightarrow volba $\mu_1 = \dots = \mu_k = 0$. Pak KKT podmínky splněny.
- $\emptyset \neq \mathcal{I}(\hat{x}) = \{1, \dots, l\}$

Víme, že máme bod lokálního minima $(\hat{x}) \xrightarrow{\text{Fermatova}} \mathcal{F}(M; \hat{x}) \cap \mathcal{D}_0(f; \hat{x}) = \emptyset$, tj. $\langle \nabla f(\hat{x}), d \rangle \geq 0 \quad \forall d \in \mathcal{F}(M; \hat{x})$.

Teď chceme dokázat, že platí $\langle \nabla f(\hat{x}), d \rangle \geq 0 \quad \forall d \in \mathcal{G}(\hat{x}).$

Protože $\overline{\mathcal{F}(M;\hat{x})}$ koinciduje s $\mathcal{G}(\hat{x})$ a ze spojitosti skalárního součinu plyne, že $\langle \nabla f(\hat{x}), d \rangle \geq 0 \quad \forall d \in \underbrace{\overline{\mathcal{F}(M;\hat{x})}}_{G(\hat{x})}$.

To tedy znamená $\langle \nabla f(\hat{x}), d \rangle \geq 0 \quad \forall d \in \mathcal{G}(\hat{x})$. Z toho plyne, že neexistuje $d \in \mathbb{R}^n$, pro který platí:

$$\langle \nabla f(\hat{x}), d \rangle < 0 \dots \text{ tj. } \langle -\nabla f(\hat{x}), d \rangle > 0$$

$$\langle \nabla g_1(\hat{x}), d \rangle \leq 0$$

$$\vdots$$

$$\langle \nabla g_l(\hat{x}), d \rangle \leq 0$$

$$A^T d \leq 0, \text{ kde } A = (\nabla g_1(\hat{x}), \dots, \nabla g_l(\hat{x}))$$

No a z Farkasova lemma tedy nutně platí: ex. $\mu = (\mu_1, \dots, \mu_l)^T \in \mathbb{R}^l_+ : \underbrace{A\mu}_{\sum_{i=1}^l \mu_i \nabla g_i} = -\nabla f(\hat{x}).$

 \rightarrow volme dále $\mu_{l+1}, \ldots, \mu_k = 0$. Pak

$$-\nabla f(\hat{x}) = \sum_{i=1}^{k} \mu_i \nabla g_i(\hat{x}),$$

$$\mu_i \nabla g_i(\hat{x}) = 0 \text{ pro všechna } i \in \{1, \dots, k\},$$

$$\mu_i \ge 0 \text{ pro všechna } i \in \{1, \dots, k\}.$$

A to jsou přesně KKT podmínky. □

5.17 Příklad použití KKT podmínek

minimalisujte
$$\underbrace{x+y}_{f(x,y)}$$
 za podmínek $\underbrace{x}_{g_1(x,y)} \geq 0$,
$$\underbrace{y}_{g_2(x,y)} \geq 0.$$

Určete KKT body.

$$\nabla f(x,y) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \nabla g_1(x,y) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \nabla g_2(x,y) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}.$$

KKT podmínky:

$$1 + \mu_1(-1) + \mu_2(0) = 0 \longrightarrow \mu_1 = 1$$

$$1 + \mu_1(0) + \mu_2(-1) = 0 \longrightarrow \mu_2 = 1$$

$$\mu_1(-x) = 0$$

$$\mu_2(-y) = 0$$

$$\mu_1, \mu_2 \ge 0$$

Jediný KKT bod je tedy $\hat{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ a jedná se o bod minima.

5.18 Příklad, že KKT podmínky vždy nenaleznou všechny body

minimalisujte x

za podmínek
$$x^2 + (y-1)^2 \le 1$$
,
 $x^2 + (y+1)^2 \le 1$.

Nákres.

Přípustná množina: $M = \{0\} \rightarrow$ určitě konvexní množina.

KKT podmínky:

$$1 + \mu_1(2 \cdot 0) + \mu_2(2 \cdot 0) = 0 X$$

:

 $\Rightarrow (0,0)$ není KKT bod i když je úloha konvexní a bod (0,0) je očividně bodem minima.

5.19 Věta o postačujících KKT podmínkách

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $f, g_1, \ldots, g_k \in C^1(\Omega)$ jsou konvexní funkce na $C = \{x \in \Omega \mid g_1(x) \leq 0, \ldots, g_k(x) \leq 0\}$. Jestliže $\hat{x} \in C$ je KKT bod, pak \hat{x} je bod minima funkce f na C.

Důkaz. Ať x inC.

Cíl: $f(x) - f(\hat{x}) \ge 0$ (= \hat{x} je minimum)

Charakterisace pomocí tečné nadroviny: $f(\hat{x}) + \langle \nabla f(\hat{x}), x - \hat{x} \rangle \leq f(x) \quad x, \hat{x} \in C$

$$f(x) - f(\hat{x}) \underset{\text{f je konvexní}}{\geq} \langle \nabla f(\hat{x}), x - \hat{x} \rangle \underset{\text{stacionarity}}{\overset{\text{podmínka}}{=}} \langle -\sum_{i=1}^{k} \mu_{i} \nabla g_{i}(\hat{x}), x - \hat{x} \rangle$$

$$= \sum_{i=1}^{k} -\langle \nabla g_{i}(\hat{x}), x - \hat{x} \rangle \mu_{i} = \sum_{i=1}^{n} (g_{i}(\hat{x}) - g_{i}(x)) \mu_{i} \underset{\text{komplementarity}}{\overset{\text{podmínka}}{=}} -\sum_{i=1}^{n} \underbrace{\mu_{i}}_{\underset{\text{podmínka}}{\overset{\leq 0 \, \forall x \in C}{g_{i}(x)}} \geq 0. \quad \Box$$

5.20 Afinní podmínka regularity

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $g_1, \ldots, g_k \in C^1(\Omega)$ a

$$M = \{x \in \Omega \mid g_1(x) \le 0, \dots, g_k(x) \le 0\}.$$

Řekněme, že $(g_i)_{i=1}^k$ splňuje afinní podmínku regularity, jestliže g_1, \ldots, g_k jsou afinní.

5.21 Slaterova podmínka regularity

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená množina, $g_1, \ldots, g_k \in C^1(\Omega)$ a

$$M = \{x \in \Omega \mid g_1(x) \le 0, \dots, g_k(x) \le 0\}.$$

Řekněme, že $(g_i)_{i=1}^k$ splňuje Slaterovu podmínku regularity, jestliže g_1, \ldots, g_k jsou konvexní na Ω a existuje $x \in \Omega$ tak, že pro každé $i \in \{1, \ldots, k\}$ je $g_i(x) < 0$.

5.22 Použití podmínek regularity k ověření KKT podmínek

$$\begin{array}{ll} \mbox{minimalisujte} & 2x^2+y^2 \\ \mbox{za podmínek} & x^2+y^2-1 \leq 0, \\ & -x \leq 0. \end{array}$$

Afinní podmínka splněna není, ověříme Slaterovu.

Množina je očividně konvexní a zároveň zvolme $x = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix} \in \Omega$. Pak $g_i(x) < 0$, Slaterova podmínka je tedy očividně splněna.

$$\nabla f(x) = \begin{bmatrix} 4x \\ 2y \end{bmatrix}, \nabla g_1(x) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}, \nabla g_2(x) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$$

⇒ KKT podmínky:

$$4x + \mu_1 2x + \mu_2 (-1) = 0 \leftrightarrow 2x(2 + \mu_1) - \mu_2 = 0$$

$$2y + \mu_1 2y + \mu_2 0 = 0 \Leftrightarrow 2y(1 + \mu_1) = 0 \Longrightarrow_{\mu_1 \ge 0} y = 0$$

$$\mu_1 (x^2 + y^2 - 1) = 0$$

$$\mu_2 (-x) = 0$$

$$\mu_1, \mu_2 \ge 0$$

y = 0:

$$2x(2 + \mu_1) = \mu_2
\mu_1(x^2 + 1) = 0
\mu_2 x = 0
\mu_1, \mu_2 \ge 0$$

$$x \ne 0 \Rightarrow \mu_2 = 0 \Rightarrow 2 + \mu_1 = 0 \dots \text{ spor s } \mu_1 \ge 0.
x = 0 \Rightarrow \mu_1 = 0 \Rightarrow \mu_2 = 0 \quad \checkmark$$

Existuje bod $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, pro který jsou splněny nutné a postačující KKT podmínky.

5.23 Určení nutných a postačujících podmínek optimality

Ať $A \in \mathbb{M}_{m,n}(\mathbb{R}), D \in \mathbb{M}_{r,n}(\mathbb{R}), b \in \mathbb{R}^m$ a $\lambda > 0$. Je dána úloha

minimalisujte
$$f(x) = ||Ax - b||^2 + \lambda ||Dx||^2$$
 na \mathbb{R}^n .

Jaké jsou nutnné a postačující podmínky optimality?

$$f(x) = \langle Ax - b, Ax - b \rangle + \lambda \langle Dx, Dx \rangle$$
$$= \langle \underbrace{Ax, Ax}_{A^T Ax, x} \rangle - 2\langle Ax, b \rangle + ||b||^2 + \lambda \langle \underbrace{Dx, Dx}_{D^T Dx, x} \rangle$$

$$\implies f(x) = \left\langle \left(A^TA + \lambda D^TD\right)x, x\right\rangle - 2\left\langle x, A^Tb\right\rangle + \|b\|^2$$

Je f konvexní?

Ano, neboť $\nabla^2 f(x) = 2(A^T A + \lambda D^T D)$ je positivně semidefinitní, protože pro $x \in \mathbb{R}$:

$$\langle 2 (A^T A + \lambda D^T D) x, x \rangle = 2 [\langle Ax, Ax \rangle + \lambda \langle Dx, Dx \rangle]$$
$$= 2 [\|Ax\|^2 + \lambda \|Dx\|^2] \ge 0$$

Tedy f je konvexní \implies stačí najít stacionární body.

$$0 = \nabla^2 f(x) = 2(A^T A + \lambda D^T D)x - 2(A^T b) + 0$$
$$= (A^T A + \lambda D^T D)x - A^T b$$
$$\implies A^T b = (A^T A + \lambda D^T D)x$$

A to je nutná a postačující podmínka pro x, aby byl bodem minima f na \mathbb{R}^n .

5.24 Určení KKT podmínek

minimalisujte
$$x^4+y^4+12x^2+6y^2-xy-x-y$$
 za podmínek $x+y\geq 6,$
$$2x-y\geq 3,$$

$$x,y\geq 0.$$

- (a) Napište KKT podmínky.
- (b) Jsou nutné a postačující?
- (c) Ukažte, že $(3,3)^T$ je jediný bod minima.
- (a) Mějme

$$g_1(x,y) = -x - y + 6,$$

$$g_2(x,y) = 2x - y + 3,$$

$$g_3(x,y) = -x,$$

$$g_4(x,y) = -y,$$

$$f(x,y) = x^4 + y^4 + 12x^2 + 6y^2 - xy - x - y.$$

 \rightarrow použijeme afinní podmínku regularity $\rightarrow g_i$ jsou affiní.

KKT podmínky:

$$\nabla f(x,y) + \mu_1 \nabla g_1(x,y) + \mu_2 \nabla g_2(x,y) + \mu_3 \nabla g_3(x,y) + \mu_4 \nabla g_4(x,y) = 0$$
$$\mu_i g_i(x,y) = 0, i = 1, 2, \dots,$$
$$\mu_i \ge 0, i = 1, 2, \dots$$

Tedy:

$$4x^{3} + 24x - y - 1 - \mu_{1} - 2\mu_{2} - \mu_{3} = 0$$

$$4y^{3} + 12y - x - 1 - \mu_{1} + \mu_{2} - \mu_{4} = 0$$

$$\mu_{1}(-x - y + 6) = 0,$$

$$\mu_{2}(x - 2y + 3) = 0,$$

$$x\mu_{3} = 0,$$

$$y\mu_{4} = 0,$$

$$\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4} \ge 0.$$

Jsou postačující? Máme konvexní úlohu? Musíme ověřit konvexitu u g_i a f.

- g_i jsou afinní \Longrightarrow jsou konvexní.
- *f* :
 - kvadráty jsou ryze konvexní
 - součet ryzích konvexních je ryzí konvexní

$$h(x,y)=12x^2+6y^2-xy-x-y$$

$$\nabla^2 h(x,y)=\begin{bmatrix}24&-1\\-1&12\end{bmatrix}=24\cdot12-1>0;\quad 24>0\implies h(x,y) \text{ je positivně definitní}.$$

 $\implies h(x,y)$ je ryze konvexní.

A proto je i f(x,y) ryze konvexní, protože součet ryze konvexních dává ryze konvexní \implies existuje právě jeden bod minima.

Ověříme
$$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
. Ať $x=y=3$. Pak

$$4 \cdot 27 + 24 \cdot 3 - 4 - \mu_1 + \mu_2 - \mu_3 = 0 \quad \text{(I.)}$$

$$4 \cdot +12 \cdot 3 - 4 - \mu_1 - 2\mu_2 - \mu_4 = 0 \quad \text{(II.)}$$

$$\mu_1 \cdot 0 = 0$$

$$\mu_2 \cdot 0 = 0$$

$$3\mu_3 = 0 \implies \mu_3 = 0$$

$$3\mu_4 = 0 \implies \mu_4 = 0$$

$$\mu_1, \mu_2 \ge 0$$

I. – II.:
$$24 \cdot 3 - 12 \cdot 3 - 3\mu_2 = 0 \implies \mu_2 = \frac{1}{3}(24 \cdot 3 - 12 \cdot 3) > 0.$$

 $\mu_1 = 4 \cdot 27 + 24 \cdot 3 - 4 - \frac{2}{3}(24 \cdot 3 - 36) > 0.$

5.25 Určení KKT podmínek

minimalisujte
$$\alpha x+y, \alpha \in \mathbb{R}$$
 je parametr. za podmínek $x^2+y^2-25 \leq 0,$
$$x-y-1 \leq 0.$$

Určete α tak, aby $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ bylo řešení.

KKT podmínky:

$$\alpha + \mu_1(2x) + \mu_2 \cdot 1 = 0$$

$$1 + \mu_1(2y) - \mu_2 = 0$$

$$\mu_1(x^2 + y^2 - 25) = 0,$$

$$\mu_2(x - y - 1) = 0,$$

$$\mu_1, \mu_2 > 0.$$

 g_i jsou konvexní, f je konvexní \Longrightarrow KKT podmínky jsou postačující. Slaterova podmínka optimality je splněna \Longrightarrow KKT podmínky jsou nutné.

x = 4, y = 3:

$$\alpha + 8\mu_1 + \mu_2 = 0$$
 (I.)
 $1 + 6\mu_1 - \mu_2 = 0$, (II.)
 $\mu_1, \mu_2 \ge 0$.

I.+II.:
$$\alpha + 1 + 14\mu_1 = 0$$

 $\mu_1 = \frac{-\alpha - 1}{14} \stackrel{!}{\geq} 0 \implies -1 \geq \alpha$. A tedy $\mu_2 = 1 + 6\mu_1 \geq 0$.
Tedy aby $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ bylo řešení této úlohy, musí platit $\alpha \leq -1$.

5.26 Určení KKT podmínek s trikem

Mějme zadání

minimalisujte
$$\frac{x_1}{x_2}$$
 za podmínek $\frac{1}{x_1} + x_2 \le 2$, $x_1, x_2 > 0$.

Z nákresu množina vypadá konvexní, co ale minimalisovaná funkce?

$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} 0 & -\frac{1}{x_2^2} \\ -\frac{1}{x_2^2} & \frac{2x_1}{x_2^3} \end{bmatrix}$$

$$\det \nabla^2 f(x_1, x_2) = -\frac{1}{x_2^4} < 0 \dots$$
indefinitní

 \implies KKT podmínky jsou jen nutné, nikoliv postačující.

Využijeme trik, uděláme substituci: $x_1 = e^{y_1}$, $x_2 = e^{y_2}$... $\varphi(y_1, y_2) = (e^{y_1}, e^{y_2})$, $\varphi(\hat{y}_1, \hat{y}_2) = (\hat{x}_1, \hat{x}_2)$. A úlohu převedeme na:

minimalisujte
$$e^{y_1} - e^{y_2}$$

za podmínek $e^{-y_1} + e^{y_2} \le 2$.

$$e^{\hat{y}_1 - \hat{y}_2} \le e^{y_1 - y_2}$$

$$\underbrace{e^{\hat{y}_1}}_{f(\varphi(\hat{y}_1, \hat{y}_2))} \le \underbrace{e^{y_1}}_{f(\varphi(y_1, y_2))}$$

$$f(\hat{x}_1, \hat{x}_2) \le f(x_1, x_2) \quad \forall (x_1, x_2) \in M.$$

Slaterova podmínka je splněna $\rightarrow (y_1, y_2) = (1, 0)$.

⇒ KKT podmínky jsou nutné a postačující.

$$e^{y_1 - y_2} + \mu(-e^{-y_1}) = 0 \tag{I}$$

$$-e^{y_1-y_2} + \mu e^{y_2} = 0 \to \mu = \frac{e^{y_1-y_2}}{e^{y_2}} = e^{y_1-2y_2}$$
 (II)

$$\mu(e^{-y_1} + e^{y_2} - 2) = 0 \tag{III}$$

$$\mu \ge 0$$
 (IV)

Očividně $\mu \neq 0 \implies e^{-y_1} + e^{y_2} - 2 = 0$ (III).

Dosazení (II) do (I):
$$e^{y_1-y_2}-e^{-2y_2}=0$$
.
$$e^{y_1-y_2}=e^{-2y_2}$$

$$y_1-y_2=-2y_2$$

$$y_1=-y_2$$

Dosazením do (III) získáme $2e^{y_2}-2=0 \Rightarrow e^{y_2}=1 \Rightarrow y_2=0=y_1$. Jediný bod minima je $[0,0]^T$.

Teď zpětný chod na původní úlohu: $x_1 = e^0 = 1$, $x_2 = e^0 = 1$.

Původní úloha má řešení $[1,1]^T$.

6 Šestý týden

6.1 Pomocný důkaz vlastnosti infima

$$\inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) = \inf_{x \in M} h_1(x) + \inf_{y \in N} h_2(x)$$

Důkaz.

"≥":

$$\inf_{x \in M} h_1(x) \le h_1(t) \quad \forall t \in M$$

$$\inf_{y \in N} h_2(y) \le h_2(t) \quad \forall t \in N$$

$$\implies \inf_{x \in M} h_1(x) + \inf_{y \in N} h_2(y) \le \inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \quad \Box$$

"≤":

$$\inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \le h_1(t) + h_2(s) \quad \forall \begin{bmatrix} t \\ s \end{bmatrix} \in M \times N$$
 což lze upravit:
$$-h_2(s) + \inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \le h_1(t) \quad \forall t \in M, \forall s \in N.$$

$$\Longrightarrow -h_2(s) + \inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \le \inf_{x \in M} h_1(x) \quad \forall s \in N.$$

A to samé lze ukázat i pro h_2 :

$$-h_1(t) + \inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \le h_2(s) \quad \forall t \in M, \forall s \in N.$$

$$\implies -h_1(t) + \inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \le \inf_{y \in N} h_2(y) \quad \forall t \in M.$$

Teď sečtěme tyto dvě nerovnice:

$$-h_1(t) - h_2(s) + 2 \inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \le \inf_{x \in M} h_1(x) + \inf_{y \in N} h_2(y) \quad \forall t \in M, \forall s \in N.$$

Tedy stačí dokázat, že

$$\inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \le -h_1(t) - h_2(s) + 2 \inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \quad \forall t \in M, \forall s \in N.$$

$$0 \le -h_1(t) - h_2(s) + \inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \quad \forall t \in M, \forall s \in N.$$

$$h_1(t) + h_2(s) \le \inf_{(x,y)^T \in M \times N} (h_1(x) + h_2(y)) \quad \forall t \in M, \forall s \in N.$$

6.2 Dualita - motivační příklad

Je dána úloha

minimalisujte
$$2x + 3y$$
 za podmínek $1 - x - y \le 0$,
$$x, y \in [0, 2].$$

Označme
$$f(x,y)=2x+3y,\,M=\left\{\begin{bmatrix}x\\y\end{bmatrix}\in[0,2]^2\,\middle|\,1-x-y\leq0\right\}$$
 a $\hat{f}=\min_{x\in M}f(x).$

Odhadněme min funkce ze spoda.

Pro $(x,y)^T \in M$:

$$f(x,y) \ge f(x,y) + g_1(x,y) = 2x + 3y + (1-x-y) = x + 2y + 1 \ge 1.$$

A protože $\hat{f} = \min f(x)$, nutně musí platit $\hat{f} \geq 1$.

Zkusme teď jiný odhad.

$$f(x,y) \ge f(x,y) + 2g_1(x,y) = 2x + 3y + 2(1-x-y) = 2y + 1 \ge 2.$$

Nalezli jsme lepší odhad: $\hat{f} \geq 2$. Jak tedy správně určit "nejlepší" možný dolní odhad \hat{f} ? Definujme si

$$L(x, y, \mu) = 2x + 3y + \mu(1 - x - y),$$

$$\varphi(\mu) = \min_{(x,y)^T \in [0,2]^2} L(x, y, \mu).$$

Pro každé $\mu \geq 0$ pak platí:

$$\varphi(\mu) = \min_{(x,y)^T \in \Omega} L(x,y,\mu) \leq \min_{(x,y)^T \in M} L(x,y,\mu) \leq \hat{f}$$

"Optimální" dolní odhad \hat{f} pomocí φ vede na úlohu

maximalisujte $\varphi(\mu)$, za podmínek $\mu \geq 0$.

Kde

$$\varphi(\mu) = \min_{(x,y)^T \in [0,2]^T} \left[(2-\mu)x + (3-\mu)y + \mu \right]$$

$$= \mu + \min_{x \in [0,2]} (2-\mu)x + \min_{y \in [0,2]} (3-\mu)y$$

$$= \begin{cases} \mu & \mu < 2 \\ \mu + 4 - 2\mu & \mu \in [2,3) \\ 10 - 3\mu & \mu \in [3,\infty) \end{cases}$$

Tu budeme nazývat duální úlohou.

Hodnota $\max \varphi(\mu)$ na $[0, +\infty)$ je $\hat{\varphi} \implies \hat{\varphi} \leq \hat{f}$.

6.3 Tvrzení o konkávnosti duální úlohy

Jestliže $D_{\varphi} \neq \emptyset$, pak φ je konkávní.

Důkaz.

Mějme $\mu, \nu \in D_{\varphi}, \lambda \in [0, 1].$

$$\varphi(\lambda\mu + (1-\lambda)\nu) \stackrel{?}{=} \inf_{x \in \Omega} \overbrace{f(x)}^{\lambda f(x) + (1-\lambda)f(x)} + \overbrace{\langle g(x), \mu \rangle + (1-\lambda)\langle g(x), \nu \rangle}^{\lambda \langle g(x), \mu \rangle + (1-\lambda)\langle g(x), \nu \rangle}$$

$$= \inf_{x \in \Omega} \lambda (f(x) + \langle g(x), \mu \rangle) + (1-\lambda)(f(x) + \langle g(x), \nu \rangle)$$

$$\stackrel{\text{vlastnost}}{\geq} \lambda \inf_{x \in \Omega} (f(x) + \langle g(x), \mu \rangle) + (1-\lambda) \inf_{x \in \Omega} (f(x) + \langle g(x), \nu \rangle)$$

$$= \lambda \varphi(\mu) + (1-\lambda)\varphi(\nu) > -\infty \implies \lambda \mu + (1-\lambda)\nu \in D_{\varphi}. \quad \Box$$

6.4 Věta o slabé dualitě

- (a) Pro každé $x \in M$ a $\mu \in N$ je $\varphi(\mu) \leq f(x)$.
- (b) $\hat{\varphi} \leq \hat{f}$.
- (a) Důkaz.

Víme: $L(x, \mu) \le f(x) \quad \forall x \in M, \forall \mu \ge 0.$

$$\varphi(\mu) = \inf_{y \in \Omega} L(y, \mu) \leq \inf_{y \in M} L(y, \mu) \leq L(x, \mu) \leq f(x) \quad \forall x \in M, \forall \mu \in N. \quad \Box$$

(b) Důkaz.

Z (a) máme
$$\sup_{\mu \in N} \varphi(\mu) \le f(x) \quad \forall x \in M.$$

$$\implies \hat{\varphi} \le \inf_{x \in M} f(x) = \hat{f}. \quad \Box$$

6.5 Důsledek věty o slabé dualitě

(a) Jestliže existují $\hat{x} \in M$ a $\hat{\mu} \in N$ splňující $\varphi(\hat{\mu}) = f(\hat{x})$, pak

$$\hat{\mu} \in \operatorname*{argmax}_{\mu \in N} \varphi(\mu) \quad \text{ a } \quad \hat{x} \in \operatorname*{argmin}_{x \in M} f(x).$$

- (b) Je-li $\hat{f} = -\infty$, pak $N = \emptyset$.
- (c) Je-li $\hat{\varphi} = +\infty$, pak $M = \emptyset$.

Důkaz (a).

Z věty o slabé dualitě platí:

$$\varphi(\mu) \leq f(\hat{x}) \overset{\text{předpoklad}}{=} \varphi(\hat{\mu}) \quad \forall \mu \in N \iff \hat{\mu} \in \operatorname*{argmax}_{\mu \in N} \varphi(\mu).$$

Analogicky:

$$f(\hat{x}) \overset{\text{předpoklad}}{=} \varphi(\hat{\mu}) \leq f(x) \quad \forall x \in M \iff \hat{x} \in \operatorname*{argmin}_{x \in M} f(x). \quad \Box$$

Důkaz (b).

Sporem. At $N \neq \emptyset$. Volme $\mu \in N$.

Pak
$$\underbrace{\varphi(\mu)}_{\in \mathbb{R}} \leq \hat{\varphi} \leq \hat{f} = -\infty \dots \text{ spor.} \quad \Box$$

Důkaz (C).

Sporem. At $M \neq \emptyset$. Volme $x \in M, \mu \in N$.

Pak
$$\varphi(\mu) \le \hat{\varphi} = +\infty \le \underbrace{f(x)}_{\in \mathbb{R}} \dots \text{ spor.} \quad \Box$$

6.6 Ukázkový příklad na slabou dualitu

Je dána úloha

minimalisujte
$$-x^2$$

za podmínek $2x - 1 \le 0$,
 $x \in [0, 1]$.

Tedy:

$$L(x,\mu) = -x^2 + \mu(2x - 1) = (-x^2 + 2x\mu) - \mu$$
$$\varphi(\mu) = \left[\min_{x \in [0,1]} (-x^2 + 2x\mu)\right] - \mu$$

Pozorování. Minimalisovaná funkce je (ryze) konkávní. Nemůže tedy v žádném vnitřním bodě nabývat minima. Dosazení krajních bodů intervalu:

$$\varphi(\mu) = \min\left\{0, 2\mu - 1\right\} - \mu = \begin{cases} \mu - 1 & \text{pro } \mu < \frac{1}{2}, \\ -\mu & \text{pro } \mu \ge \frac{1}{2}. \end{cases}$$

Z grafu vyčteme: $\hat{\varphi}=-\frac{1}{2}.$ A to samé uděláme pro f, kde výsledek bude $\hat{f}=-\frac{1}{4}.$

Tedy $\hat{\varphi} < \hat{f}$.

6.7 Věta o silné dualitě

Nechť $\hat{f} < \infty$ a cílová funkce $f: \mathbb{R}^n \to \mathbb{R}$ je konvexní. Předpokládejme, že platí alespoň jedna z následujících podmínek:

- (a) Komponenty g_1, \ldots, g_k zobrazení g splňují Slaterovu podmínku regularity.
- (b) Zobrazení g je afinní a Ω je konvexní polyedrická množina.

Potom $\hat{f} = \hat{\varphi}$. Je-li navíc $\hat{f} \in \mathbb{R}$, pak existuje řešení úlohy (D).

Důkaz vynecháme.

7 Sedmý týden

7.1 Úvod do lineární programování

Úlohy lineárního programování jsou optimalisační úlohy, ve kterých je

- (a) cílová funkce afinní (bez újmy na obecnosti se můžeme omezit na lineární funkce)
- (b) přípustná množina je konvexní polyedrická množina (tj. lze popsat pomocí konečné soustavy lineárních rovnic a nerovnic)

Příklad.

Firma vyrábí 2 druhy výrobků A a B. V tabulce je uvedeno množství materiálu (ve vhodných jednotkách) potřebný k výrobě jednotkového množství daného druhu výrobku a také jeho prodejní cena.

	Materiál X	Materiál Y	Cena
Výrobek A	2	3	6000 Kč
Výrobek B	4	4	10000 Kč

Na skladu je jen 10 jednotek materiálu X a 12 jednotek materiálu Y. Jak mají ve firmě nastavit výrobni proces, aby celková cena za vyrobené množství výrobků byla co největší?

Odpověď je přímo v zadání.

 $x_1 \dots \text{množství výrobku } A$

 $x_2 \dots$ množství výrobku B

maximalisujte
$$6x_1 + 10x_2$$

za podmínek $2x_1 + 4x_2 \le 10$, $3x_1 + 4x_2 \le 12$, $x_1, x_2 \ge 0$.

Graficky lze nalézt, že maximum se nabývá v bodě $(2, \frac{3}{2})^T$. Maximum je $f(2, \frac{3}{2}) = 27$.

Pokračování příkladu.

Obchodník chce od firmy koupit veškerý materiál ze skladu. Jaké ceny za materiál X a Y by měl firmě nabídnout, aby zaplatil co nejmenší částku a firmě se přesto vyplatilo materiál prodat namísto výroby výrobků?

Tato otázka vede na úlohu:

 $y_1 \dots$ cena za jednotkové množství materiálu X $y_2 \dots$ cena za jednotkové množství materiálu Y

minimalisujte
$$10y_1 + 12y_2$$

za podmínek $2y_1 + 3y_2 > 6$, $4y_1 + 4y_2 > 10$, $y_1, y_2 \ge 0$.

Pozorování. Tyto dvě úlohy jsou navzájem duální.

7.2 Zápis úlohy lineárního programování

Je dána úloha

minimalisujte
$$x_1 - x_2$$

za podmínek $2x_1 - 3x_2 = 5$,
 $-2 \le x_2 \le 3$,
 $x_1 \le 0$.

Zapišme úlohu v kanonickém tvaru.

Pomocné substituce: $y_1 = -x_1, x_2 = y_2 - y_3, y_2, y_3 \ge 0.$

minimalisujte
$$-y_1 - y_2 + y_3$$
 za podmínek $-2y_1 - 3y_2 + 3y_3 \ge 5$,
$$2y_1 + 3y_2 - 3y_3 \ge -5$$
,
$$-y_2 + y_3 \ge -3$$
,
$$y_2 - y_3 \ge -2$$
,
$$y_1, y_2, y_3 \ge 0$$
.

Zapišme úlohu ve standardním tvaru.

minimalisujte
$$-y_1-y_2+y_3$$
 za podmínek $-2y_1-3y_2+3y_3=5,$
$$y_2-y_3-y_4=-2,$$

$$y_2-y_3+y_5=3,$$

$$y_1,y_2,y_3,y_4,y_5\geq 0.$$

7.3 Basický přípustný bod

Bod $x \in M$ se nazve basický přípustný bod (BPB) úlohy lineárního programování, pokud existuje m-prvková množina $B \subseteq \{1, \dots, n\}$ taková, že

- (a) A_B je regulární,
- (b) $x_j = 0$ pro každé $j \in \mathbb{N}$.

Množina B z definice BPB se nazývá přípustná báse.

Příklad BPB

Nechť
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \end{bmatrix}$$
 a $b = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$. Jaké jsou BPB?

•
$$B = \{1, 2\} \dots A_B = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$
. Evidentně invertibilní.
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \dots \underbrace{Ax}_{A_B x_B + A_N} \underbrace{x_N}_{X_N} = b. \text{ Tedy } \begin{bmatrix} 1 & 2 & 5 \\ 0 & 2 & 3 \end{bmatrix} \rightarrow x = \frac{1}{2} \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} \in M \text{ je BPB.}$$

• $B = \{1, 3\} \dots A_B = \begin{bmatrix} 1 & 3 \\ 0 & 3 \end{bmatrix}$. Evidentně invertibilní.

Tedy
$$\begin{bmatrix} 1 & 3 & 5 \\ 0 & 3 & 3 \end{bmatrix} \rightarrow x = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \in M$$
 je BPB.

• $B = \{2, 3\} \dots A_B = \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}$. Evidentně není regulární. Žádný bod nemůže být BPB.

7.5 Tvrzení o charakterisaci BPB

Nechť $x \in M$. Pak x je BPB právě tehdy, když $\{a_j \mid j \in J(x)\}$ je lineárně nezávislá množina.

Důkaz.

" \Rightarrow ": x je BPB \implies existuje $B \subseteq \{1, \ldots, n\}$ m-prvková tak, že $\{a_j \mid j \in B\}$ je lineárně nezávislá. Navíc $J(x) \subseteq B$, protože J(x) obsahuje ty indexy, které odpovídají kladným komponentám a všechny komponenty indexované mimo indexy z B jsou nulové.

Tedy $\{a_j \mid j \in J(x)\}$ je lineárně nezávislá.

 $, \Leftarrow$ ": Je-li |J(x) = m|, pak jasné (B = J(x)).

Ať |J(x)| < m. Z předpokladu víme rank(A) = m. Pak lze J(x) doplnit do m-prvkové množiny $B \subseteq \{1, \dots, n\}$ tak, že $\{a_j \mid j \in B\}$ je lineárně nezávislá. $\implies x$ je BPB.

7.6 Tvrzení, že dva různé PBP musí mít různé množiny B

Pro každou m-prvkovou množinu $B \subseteq \{1, \ldots, n\}$ takovou, že A_B je regulární, existuje nejvýše jedno $x \in M$ splňující $x_j = 0$ pro každé $j \in N$.

Důkaz. Sporem.

Ať $x, y \in M$ jsou různé a splňují $x_j = y_j = 0$ pro každé $j \in N$.

$$b = Ax = \sum_{j=1}^{n} x_j a_j = \sum_{j \in B} x_j a_j = A_B x_B$$

$$b = Ay = A_B y_B$$

$$A_B x_B = A_B y_B$$

A protože A je dle předpokladu regulární, tak dostaneme:

$$x_B = y_B \implies x = y$$

Což je ale spor, protože x a y mají být různé.

Horní hranice počtu BPB úlohy LP je tedy $\binom{n}{m}$.

7.7 Příklad na degenerované BPB

Nechť

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \quad \text{a} \quad b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Určete všechny basické přípustné body.

- $B=\{1,2\}$. Tedy $A_B=\begin{bmatrix}1&0\\1&1\end{bmatrix}$ je určitě regulární. Pak očividně $\begin{bmatrix}1,0,0,0\end{bmatrix}^T$ je BPB s přípustnou básí B.
- $B = \{1,3\}$. Tedy $A_B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ je určitě regulární. Pak $\begin{bmatrix} 1,0,0,0 \end{bmatrix}^T$ je BPB s přípustnou básí B.
- $B = \{1,4\}$. $A_B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ je singulární, tedy není přípustnou básí BPB.
- $B = \{2,3\}$. Tedy $A_B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ je určitě regulární. Pak $\begin{bmatrix} 0,1,1,0 \end{bmatrix}^T$ je BPB s přípustnou básí B.
- $B = \{2,4\}$. Tedy $A_B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ je určitě regulární. Pak $\begin{bmatrix} 0,0,0,1 \end{bmatrix}^T$ je BPB s přípustnou básí B.
- $B = \{3,4\}$. Tedy $A_B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ je určitě regulární. Pak $\begin{bmatrix} 0,0,0,1 \end{bmatrix}^T$ je BPB s přípustnou básí B.

7.8 Příklad na souvislost BPB a krajních bodů

Nechť

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \end{bmatrix} \quad \text{a} \quad b = \begin{bmatrix} 5 \\ 3 \end{bmatrix}.$$

 $M = \left\{ x \in \mathbb{R}^3_+ \mid Ax = b \right\}.$

Již víme, že $x=\begin{bmatrix}2\\0\\1\end{bmatrix}$ a $y=\begin{bmatrix}2\\\frac{3}{2}\\0\end{bmatrix}$ jsou BPB.

$$Ax = b \dots \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 2 & 3 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 2 & 3 & 3 \end{bmatrix}$$

Tedy řešení soustavy $z=\begin{bmatrix}2\\\frac{1}{2}(3-3t)\\t\end{bmatrix}, t\in\mathbb{R}.$ Kdy je $z\in\mathbb{R}^3_+$?

Právě tehdy, když $t \ge 0$ a $1 \ge t$, tedy $t \in [0, 1]$.

$$z \in [x,y] \iff z = tx + (1-t)y = \begin{bmatrix} 2\\ \frac{3}{2}\\ 0 \end{bmatrix} + t \begin{bmatrix} 0\\ -\frac{3}{2}\\ 1 \end{bmatrix} = \begin{bmatrix} 2\\ \frac{3}{2}(1-t)\\ t \end{bmatrix}, t \in [0,1].$$

Tedy M = [x, y].

7.9 Věta o souvislosti BPB a krajních bodů

- (a) Nechť $x \in M$. Pak x je BPB úlohy LP právě tehdy, když x je krajní bod množiny M.
- (b) M je neprázdná právě tehdy, když existuje BPB úlohy LP.

Důkaz (a).

"⇒": Sporem.

Existují dva různé body $y, z \in M$ tak, že $x = \frac{y+z}{2}$. Ať B je přípustná báse BPB x.

Pak $y_j = z_j = 0$ pro každé $j \in N$. Navíc A_B je regulární dle definice BPB. Ale dle této stejné definice platí, že y a z jsou BPB s přípustnou básí B. Ale dle tvrzení nemohou mít dva různé BPB stejnou přípustnou bási. $\Longrightarrow y = z$, což je spor.

"⇐": Sporem.

Ať x není BPB. Pak z charakterisace BPB plyne, že $\{a_j \mid j \in J(x)\}$ je lineárně závislá množina.

 \rightarrow existují $d_j \in \mathbb{R}, j \in J(x)$, ne všechny nulové tak, že

$$\sum_{j \in J(x)} d_j a_j = 0.$$

Definujme $d_j = 0$ pro každé $j \in \{1, ..., n\} \setminus J(x)$.

Pak Ad=0. Odtud $A(x\pm\alpha d)=b\pm\alpha\underbrace{Ad}_{=0}=b$ pro všechna $\alpha\in\mathbb{R}.$

Pro dostatečně malé $\alpha > 0$ je $x \pm \alpha d \ge 0$. Pro takové α je $x \pm \alpha d \in M$. Pak $x + \alpha d \ne x - \alpha d$ a navíc evidentně platí $x = \frac{(x + \alpha d) + (x - \alpha d)}{2}$. To je spor s tvrzením, že máme krajní bod. \square

Důkaz (b). Vynecháme.

7.10 Základní věta lineárního programování

- (a) Úloha LP má řešení právě tehdy, když M je neprázdná a $\langle x,c\rangle$ je zdola omezená na M.
- (b) Má-li LP řešení, pak existuje řešení úlohy LP, které je BPB.

Důkaz (a).

" \Rightarrow ": Když máme řešení, pak určitě leží v M a je určitě zdola omezená, protože to je právě to ono řešení.

"←": Weierstrassova věta. □

Důkaz (b). Ať $\hat{x} \in \operatorname{argmax}_{x \in M} \langle x, c \rangle$. Protože M je kompaktní a konvexní, tak víme $\hat{x} \in \operatorname{conv}(\operatorname{ext}(M))$. $\operatorname{ext}(M) \dots$ konečná množina, tj. $\operatorname{ext}(M) = \{e_1, \dots, e_k\}$.

$$\underset{\text{obal}}{\overset{\text{konvexn}'}{\Longrightarrow}} \hat{x} = \sum_{i=1}^{l} \lambda_i e_i \text{ pro nějaké } \lambda_1, \dots, \lambda_l \ge 0 \text{ a } \sum \lambda_i = 1.$$

Alespoň jeden krajní bod musí být mezi e_i .

Ať $e_N \in \text{ext}(M)$ splňuje $\langle e_N, c \rangle = \min_{i \in \{1, \dots, l\}} \langle e_i, c \rangle$.

$$\langle \hat{x}, c \rangle = \sum_{i=1}^{l} \lambda_i \langle e_i, c \rangle \ge \left(\sum_{i=1}^{l} \lambda_i \right) \langle e_N, c \rangle = \langle e_N, c \rangle \implies e_N \in \operatorname*{argmax}_{x \in M} \langle x, c \rangle. \quad \Box$$

7.11 Příklad na hledání duální úlohy

Mějme úlohu

minimalisujte
$$x_1 + 2x_2$$

za podmínek $x_1 + x_2 \ge 1 \dots - x_1 - x_2 + 1 \le 0$,
 $x_1, x_2 \ge 0$.

- (a) Najděte duální úlohu, jestliže $x_1, x_2 \ge 0$ je přímé omezení.
- (b) Najděte duální úlohu, jestliže $x_1, x_2 \in \mathbb{R}$ je přímé omezení.

(a)
$$L(x_1, x_2, \mu) = x_1 + 2x_2 + \mu(-x_1 - x_2 + 1)$$

$$\varphi(\mu) = \inf_{(x_1, x_2) \in \mathbb{R}^2_+} L(x_1, x_2, \mu) = \inf_{(x_1, x_2) \in \mathbb{R}^2_+} (1 - \mu)x_1 + \mu$$

$$\varphi(\mu) = \left[\inf_{x_1 \in \mathbb{R}_+} (1 - \mu)x_1\right] + \left[\inf_{x_2 \in \mathbb{R}_+} (2 - \mu)x_2\right] + \mu$$

$$= \begin{cases} 0 & \text{pro } 1 \ge \mu, \\ -\infty & \text{pro } 1 < \mu. \end{cases} = \begin{cases} 0 & \text{pro } 2 \ge \mu, \\ -\infty & \text{pro } 2 < \mu. \end{cases}$$

$$\implies \varphi(\mu) = \begin{cases} \mu & \text{pro } \mu \in [0, 1], \\ -\infty & \text{pro } \mu \notin [0, 1]. \end{cases}$$

A tedy duální úloha je

maximalisujte
$$\mu$$
 za podmínek $\mu \in [0, 1]$.

(b)
$$L(x_1, x_2, \mu_1, \mu_2, \mu_3) = x_1 + 2x_2 + \mu_1(-x_1 - x_2 + 1) + \mu_2(-x_1) + \mu_3(-x_2)$$

$$\varphi(\mu) = \inf_{(x_1, x_2) \in \mathbb{R}^2} L(x_1, x_2, \mu_1, \mu_2, \mu_3) = \inf_{(x_1, x_2) \in \mathbb{R}^2} (1 - \mu_1 - \mu_2) x_1 + (2 - \mu_1 - \mu_3) x_2 + \mu_1$$

$$\varphi(\mu) = \left[\inf_{x_1 \in \mathbb{R}} (1 - \mu_1 - \mu_2) x_1\right] + \left[\inf_{x_2 \in \mathbb{R}} (2 - \mu_1 - \mu_3) x_2\right] + \mu_1$$

$$= \begin{cases} 0 & \text{pro } 1 - \mu_1 - \mu_2 = 0, \\ -\infty & \text{pro } 1 - \mu_1 - \mu_2 \neq 0. \end{cases} \begin{cases} 0 & \text{pro } 2 - \mu_1 - \mu_3 = 0, \\ -\infty & \text{pro } 2 - \mu_1 - \mu_3 \neq 0. \end{cases}$$

$$\varphi(\mu_1, \mu_2, \mu_3) = \begin{cases} \mu_1 & \text{pro } D_{\varphi} = \left\{(\mu_1, \mu_2, \mu_3) \in \mathbb{R}^3_+ \mid 1 - \mu_1 - \mu_2 = 0, 2 - \mu_1 - \mu_3 = 0\right\}, \\ -\infty & \text{jinak}. \end{cases}$$

A tedy duální úloha je

maximalisujte
$$\mu_1$$
 za podmínek $1-\mu_1-\mu_2=0,$
$$2-\mu_1-\mu_3=0,$$

$$\mu_1,\mu_2,\mu_3\geq 0.$$

7.12 Příklad na hledání duální úlohy

Mějme úlohu

minimalisujte
$$x_1^2 + x_2^2$$

za podmínek $-x_1 - x_2 + 4 \le 0$,
 $x_1, x_2 \ge 0$.

- (a) Najděte duální úlohu, jestliže $x_1, x_2 \geq 0$ je přímé omezení.
- (b) Najděte duální úlohu, jestliže $x_1, x_2 \in \mathbb{R}$ je přímé omezení.

7.13 Tvrzení o množině všech řešení úlohy LP

Množina všech řešení úlohy LP je konvexní polyedrická množina.

7.14 Příkad na Simplexovu metodu

Je dána úloha

minimalisujte
$$-x_1 - 3x_2$$

za podmínek $2x_1 + 3x_2 + x_3 = 6$,
 $-x_1 + x_2 + x_4 = 1$,
 $x_1, x_2, x_3, x_4 \ge 0$.

$$z \\ x_3 \\ x_4 \\ \hline{ \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & b \\ -1 & -3 & 0 & 0 & 0 \\ \hline 2 & 3 & 1 & 0 & 6 \\ -1 & 1 & 0 & 1 & 1 \end{bmatrix}}; \text{ BPB je } \begin{bmatrix} 0 \\ 0 \\ 6 \\ 1 \end{bmatrix}.$$

Vyměníme x_2 a x_4 v BPB.

$$x_2 = 1 + x_1 - x_4$$

$$\Rightarrow z = -x_1 - 3(1 + x_1 - x_4) = -4x_1 + 3x_4 - 3$$

$$\Rightarrow x_3 = 6 - 2x_1 - 3(1 + x_1 - x_4) = 3 - 5x_1 + 3x_4$$

$$z = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & b \\ \hline -4 & 0 & 0 & 3 & -3 \\ \hline -5 & 0 & 0 & 3 & 3 \\ x_2 & 1 & 0 & 0 & -1 & 1 \end{bmatrix}; \text{ BPB je } \begin{bmatrix} 0 \\ 1 \\ 3 \\ 0 \end{bmatrix}.$$

8 Osmý týden

9 Devátý týden

10 Desátý týden

11 Jedenáctý týden

12 Dvanáctý týden

13 Třináctý týden

14 Čtrnáctý týden