EAS 2023 - Inferenzstatistik

Prof. Dr. Ansgar Steland

2021

Agenda

- Einstieg in die Statistische Inferenz
- Parametrische Modelle
- Schätzverfahren

Wozu schließende Statistik?

Beispiel

Sind User der Spielekonsole __ zufrieden?

- Umfrage unter n = 500 zufällig ausgewählten registrierten Usern.
- k = 400 sind mit ihrer Konsole zufrieden.

Sind diese Zahlen belastbar?

- Ist der Anteil von k/n = 80% zufriedenen Nutzern eine gute Schätzung des wahren Anteils in der Grundgesamtheit?
- Wie stark streut das Stichprobenergebnis? Wie sicher ist die Schätzung?
- Wie kann objektiv nachgewiesen werden, dass der wahre Anteil zufriedener User zumindest höher als (z. B.) 75% ist?

Wege zur Lösung...

- Finde geeignetes Verteilungsmodell für die Daten. Hier: Bin(n, p), p unbekannt.
- 2 Wie kann man p (optimal?) aus den Daten schätzen?
- **3** Wie kann man die Hypothese p > 0.75 nachweisen?

Wahrscheinlichkeitsrechnung - Schließende Statistik

Wahrscheinlichkeitsrechnung:

- Liefert Regeln, wie man mit Wahrscheinlichkeiten und Verteilungen rechnet.
- Gegeben: Stochastisches Modell $X \sim F$. Oft: $F = F_{\vartheta}$ (parametrisiert durch ϑ).
- F wird (gedanklich) als bekannt/gegeben angenommen.
- Bsp: $X \sim N(\mu, \sigma^2) \Rightarrow P(X \le 2) = \Phi((2 \mu)/\sigma)$. Liefert eine Formel, die von $\vartheta = (\mu, \sigma^2)$ abhängt. Einsetzen spezieller Werte, z.B. $\vartheta = (4, 2)$, liefert eine konkrete Zahl.

Wahrscheinlichkeitsrechnung - Schließende Statistik

Schließende Statistik:

- Gegeben: Verrauschte (zufallsbehaftete) Daten $X_1, \ldots, X_n \sim F_{\vartheta}$.
- Gesucht: Das Modell F_{ϑ} , also ϑ .
- Ziel: Schließe aus den Daten auf das zugrunde liegende Modell.
- Relevant Schritte:
 - Gute Modellklasse für die Daten finden.
 - Schätzen des Modells aus den Daten.
 - **3** Testen: Gilt $\vartheta \in \Theta_0$ oder $\vartheta \in \Theta_1$?

 - 4 Untersuche, ob das Modell die Daten gut erklärt. Modellvalidierung

Modellierung

Schätzen

Testen

Prof. Dr. Ansgar Steland (ISW)

Grundbegriffe: Stichprobe

Stichprobe

 X_1, \ldots, X_n heißt **Stichprobe** vom **Stichprobenumfang** n, wenn

$$X_1, \ldots, X_n : (\Omega, \mathcal{A}, P) \to (\mathbb{R}, \mathcal{B})$$

Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) sind. Zufallsvektor $\mathbf{X} = (X_1, \dots, X_n)$ nimmt Werte im **Stichprobenraum**

$$\mathcal{X} = \{ \mathbf{X}(\omega) : \omega \in \Omega \} \subset \mathbb{R}^n$$

an. Realisierungen: Vektoren $(x_1, \ldots, x_n) \in \mathcal{X}$.

Hinweis

In der Statistik interessiert i.d.R. der zugrunde liegende W-Raum (Ω, \mathcal{A}, P) nicht, sondern lediglich der Stichprobenraum \mathcal{X} und die Verteilung $P_{\mathbf{X}}$ von $\mathbf{X} = (X_1, \dots, X_n)'$ hierauf!

Grundbegriffe: Verteilungsmodell

Verteilungsmodell

Eine Menge \mathcal{P} von (möglichen) Verteilungen auf \mathbb{R}^n (für die Stichprobe (X_1, \ldots, X_n)) heißt **Verteilungsmodell**.

 \mathcal{P} heißt parametrisches Verteilungsmodell, falls

$$\mathcal{P} = \{P_{\vartheta} : \vartheta \in \Theta\}$$

für eine Menge $\Theta \subset \mathbb{R}^k$ von Parametervektoren.

Θ: Parameterraum.

D.h.: Es gibt eine Bijektion $\mathcal{P} \leftrightarrow \Theta$.

Ein Verteilungsmodell, das nicht durch einen endlichdimensionalen Parameter parametrisiert werden kann, heißt nichtparametrisches Verteilungsmodell.

Beispiele:

Beispiel

Parametrische Verteilungsmodelle:

- 1). $\mathcal{P} = \{Bin(n, p) : p \in [0, 1]\}$ für ein festes n. Parameter: $\vartheta = p \in \Theta = [0, 1]$.
- 2). $\mathcal{P} = \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, 0 < \sigma^2 < \infty\}$. Parameter: $\vartheta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times (0, \infty)$.
- 3). Sei $Y = g_{net}(\mathbf{X})$ mit $\mathbf{X} \sim N(\mu, \mathbf{I}_p)$, $\mu \in \mathbb{R}^p$, $p \in \mathbb{N}$ $y = g_{net}(\mathbf{x})$ Deep Learner mit Netzparametern $\mathbf{w} \in \mathbf{W} \subset \mathbb{R}^q$, $q \in \mathbb{N}$. Bezeichne $G_{(\mu,\mathbf{w})}(y)$ die Verteilungsfunktion von Y bei Input \mathbf{X} . $\mathcal{P} = \{G_{(\mu,\mathbf{w})} : \mu \in \mathbb{R}^p, \mathbf{w} \in \mathbf{W}\}$ Menge möglicher Verteilungen für Y. Parameter: $\vartheta = (\mu,\theta) \in \Theta = \mathbb{R} \times (0,\infty)$.

Nichtparametrische Verteilungsmodelle:

- 4). $\mathcal{P} = \{F : \mathbb{R} \to [0,1] : F \text{ ist Verteilungs funktion}\}$
- 5). $\mathcal{P} = \{f : \mathbb{R} \to \mathbb{R}^+ : f \text{ ist stetige Dichtefunktion}\}$

Statistik, Schätzfunktion, Schätzer

Statistik,...

Sei X_1, \ldots, X_n eine Stichprobe (und o.E. $\mathcal{X} = \mathbb{R}^n$).

Eine Abbildung

$$T: \mathbb{R}^n \to \mathbb{R}^d$$

mit $d \in \mathbb{N}$ (oft: d = 1) heißt **Statistik**.

Bildet T in den Parameterraum ab, d.h.

$$T: \mathbb{R}^n \to \Theta$$
,

dann heißt T Schätzfunktion oder kürzer Schätzer (für ϑ).

Allgemein: Schätzung von Funktionen $g(\vartheta)$ von ϑ durch Statistiken $T: \mathbb{R}^n \to \Gamma$ mit $\Gamma = g(\Theta) = \{g(\vartheta) | \vartheta \in \Theta\}.$

Beispiele

Beispiel: Seien $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, $\sigma^2 > 0$, und

$$T_1(X_1,\ldots,X_n)=\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i ,$$

$$T_2(X_1,\ldots,X_n)=S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2.$$

 $T_1(X_1,\ldots,X_n)$ bildet in den Parameterraum $\Theta_1=\mathbb{R}$ für μ ab und ist daher eine Schätzfunktion für μ .

 $T_1(X_1,\ldots,X_n)$ bildet in den Parameterraum $\Theta_2=(0,\infty)$ von σ^2 ab und ist daher eine Schätzfunktion für σ^2 .

Standard-Notation: Ist $T: \mathbb{R}^n \to \Theta$ ein Schätzer für ϑ , dann schreibt man

$$\widehat{\vartheta} = T(X_1, \ldots, X_n)$$

zu schreiben. Analog: $\widehat{F}_n(x)$ ist Schätzer für F(x), etc.

Allgemeinstes nichtparametrisches Modell:

$$X_1,\ldots,X_n \stackrel{i.i.d.}{\sim} F(x)$$

mit beliebiger Verteilungsfunktion

$$F(x) = P(X_1 \le x), \qquad x \in \mathbb{R}.$$

Frage:

- Wie kann man F(x) ohne zusätzliche Annahmen schätzen?
- ② Wie kann man einen solchen Schätzer $\widehat{F}(x)$ rechtfertigen?

Empirische Verteilungsfunktion

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(-\infty,x]}(X_i), \qquad x \in \mathbb{R}.$$

Hierbei: $\mathbf{1}_{(-\infty,x]}(X_i) = \mathbf{1}(X_i \le x)$.

 $\widehat{F}_n(x)$: Anteil der Beobachtungen, die kleiner oder gleich x sind.

- ① Die Anzahl $n\widehat{F}_n(x)$ der Beobachtungen $\leq x$ ist binomialverteilt mit Parametern n und $p(x) = E(\mathbf{1}(X_i \leq x)) = F(x)$.
- 2 Daher folgt:

$$E(\widehat{F}_n(x)) = P(X_i \le x) = F(x), \quad Var(\widehat{F}_n(x)) = \frac{F(x)(1 - F(x))}{n}.$$

3 Nach dem Hauptsatz der Statistik konvergiert $\widehat{F}_n(x)$ mit Wahrscheinlichkeit 1 gegen F(x) (gleichmäßig in x).

Sehr viele Statistiken leiten sich von der empirischen Verteilungsfunktion ab, z.B.:

- Arithmetisches Mittel \overline{X}_n .
- Stichprobenvarianz S^2 .
- Empirisches Quantil.

(da die Funktion $\widehat{F}(x)$ die geordnete Stichprobe kodiert).

Dichteschätzung

Nichtparametrisches Verteilungsmodell:

$$X_1,\ldots,X_n\sim f(x)$$

mit einer Dichtefunktion f(x).

Mögliche Schätzer:

- Histogramm-Schätzer (schätzt eine Vergröberung der Dichte).
- Kerndichteschätzer $\widehat{f}_n(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x-X_i}{h})$, $K: \mathbb{R} \to [0,1], \ h>0$ Bandbreite. $K(z) = \frac{1}{2} \mathbf{1}_{[-1,1]}(z)$ liefert das gleitende Histogramm $(\widehat{f}_n(x))$: Anteil der Beob. in [x-h,x+h]).

Das Likelihood-Prinzip

Wichtiges Schätzprinzip der parametrischen Statistik.

Motivation:

Information:

- 1 Ein Restaurant hat zwei Köche A und B.
- Yoch A versalzt die Suppe mit Wkeit 0.1.
- **3** Koch B versalzt die Suppe mit Wkeit 0.3.

Sie gehen ins Restaurant und essen eine Suppe. Die Suppe ist versalzen. Wer war der Koch?

Formalisierung

Wir beobachten $x \in \{0,1\}$. (1: Suppe versalzen, 0: nicht versalzen). Parameter: $\vartheta \in \Theta = \{A,B\}$ (der wahre Koch).

Statistisches Problem: Schätze ϑ bei Vorliegen der Beobachtung x. Jeder Koch erzeugt eine W-Verteilung auf $\mathcal{X} = \{0, 1\}$.

$\setminus p_{\vartheta}(x)$	Bec	bachtung	
$\vartheta \setminus$	0	1	Summe
A	0.9	0.1	1.0
В	0.7	0.3	1.0

Lösungsheuristik: ϑ umso plausibler, größer $p_{\vartheta}(x)$ ist.

Likelihood-Funktion

Likelihood-Funktion

Sei $p_{\vartheta}(x)$ eine Zähldichte (in $x \in \mathcal{X}$) und $\vartheta \in \Theta$ ein Parameter. Für eine gegebene (feste) Beobachtung $x \in \mathcal{X}$ heißt die Funktion

$$L(\vartheta|x) = p_{\vartheta}(x), \qquad \vartheta \in \Theta,$$

Likelihood-Funktion.

Likelihood-Prinzip

Ein Verteilungsmodell ist bei gegebenen Daten plausibel, wenn es die Daten mit hoher Wahrscheinlichkeit erzeugt. Entscheide Dich für das plausibelste Verteilungsmodell!

Verallgemeinerung

Situation 1:

Diskreter Parameterraum $\Theta = \{\vartheta_1, \dots, \vartheta_L\}$. Diskreter Stichprobenraum $\mathcal{X} = \{x_1, \dots, x_K\}$.

	<i>x</i> ₁	 XK	Summe
$\overline{\vartheta_1}$	$p_{\vartheta_1}(x_1)$	 $p_{\vartheta_1}(x_K)$	1
ϑ_{2}	$p_{\vartheta_2}(x_1)$	 $p_{\vartheta_2}(x_K)$	1
:	:	:	
ϑ_L	$p_{\vartheta_L}(x_1)$	 $p_{\vartheta_L}(x_K)$	1

Algorithmus: Bestimme Spaltenmaximum für gegebene Beobachtung $x \in \{x_1, \dots, x_K\}$.

Verallgemeinerung

Situation 2: (Standardfall bei diskreten Beobachtungen)

Parameterraum $\Theta \subset \mathbb{R}$ Intervall oder ganz \mathbb{R}

Diskreter Stichprobenraum: $\mathcal{X} = \{x_1, x_2, \dots\}$.

Keine Tabellendarstellungen mehr. Zeit für eine formale Definition:

Maximum-Likelihood-Schätzer

 $p_{\vartheta}(x)$ sei Zähldichte (in $x \in \mathcal{X}$). $\vartheta \in \Theta \subset \mathbb{R}^k$, $k \in \mathbb{N}$ wie oben.

Dann heißt $\widehat{\vartheta} = \widehat{\vartheta}(x) \in \Theta$ Maximum-Likelihood-Schätzer (ML-Schätzer), wenn für festes x gilt:

$$p_{\widehat{\vartheta}}(x) \ge p_{\vartheta}(x)$$
 für alle $\vartheta \in \Theta$.

(Falls Maximum nicht eindeutig, so wähle eines aus).

Hierdurch ist eine Funktion $\widehat{\vartheta}: \mathcal{X} \to \Theta$ definiert.

Maximum-Likelihood

- Also: Maximiere $(\vartheta, x) \mapsto p_{\vartheta}(x)$ für festes x in der Variablen $\vartheta \in \Theta$.
- Typischerweise ist $p_{\vartheta}(x)$ differenzierbar in ϑ .
- Wende bekannte Methoden zur Maximierung an.

Likelihood für Dichten

Problem: Was tun bei stetigen Variablen: $X \sim f_X(x)$?

Für alle $x \in \mathbb{R}$ gilt:

$$P(X = x) = 0$$

Wie kann man jetzt eine Likelihood-Funktion definieren?

Likelihood für Dichten

Idee:

- Beobachtung x sei fest.
- 2 Vergröbere die Information 'x beobachtet' zu: 'ungefähr x beobachtet':

$$\{x\} \mapsto [x - dx, x + dx].$$

dx 'infinitesimal' klein.

3 Jetzt ist die Likelihood wie oben definiert:

$$L(\vartheta|[x-dx,x+dx]) = \int_{x-dx}^{x+dx} f_{\vartheta}(s) ds \approx f_{\vartheta}(x) \cdot (2dx).$$

9 Die rechte Seite wird maximiert, wenn $\vartheta \mapsto f_{\vartheta}(x)$ maximiert wird.

Likelihood für Dichten

Likelihood für Dichten

 $f_{\vartheta}(x)$ eine Dichtefunktion (in x), $\vartheta \in \Theta \subset \mathbb{R}^k$, $k \in \mathbb{N}$. Für festes x heißt die Funktion

$$L(\vartheta|x) = f_{\vartheta}(x), \qquad \vartheta \in \Theta,$$

Likelihood-Funktion. $\widehat{\vartheta} \in \Theta$ heißt **Maximum-Likelihood-Schätzer**, wenn bei festem x gilt:

$$f_{\widehat{\vartheta}}(x) \geq f_{\vartheta}(x), \quad \text{für alle } \vartheta \in \Theta.$$

Likelihood einer Stichprobe

Kompakt: $X \sim f_{\vartheta}(x)$, f_{ϑ} eine Zähldichte oder Dichtefunktion. Dann ist

$$L_{\vartheta}(x) = f_{\vartheta}(x)$$

Sei nun speziell $\mathbf{X} = (X_1, \dots, X_n)'$ mit

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} F$$

Dann ist die gemeinsame (Zähl-) Dichte die Produkt-(Zähl-) Dichte. Also:

$$L_{\vartheta}(\mathbf{x}) = f_{\vartheta}(x_1) \cdots f_{\vartheta}(x_n)$$

(Gilt für Zähldichten und Dichtefunktionen).

Beispiele

Beispiele...

Computerexperiment: Likelihood

```
# Likelihood der B(n,p)-Verteilung
# p: (Vektor der) Erfolgswahrscheinlichkeit(en)
# y: beobachtete Anzahl der Erfolge
# n: Stichprobenumfang
likeli = function( p, n, y ) {
  choose(n,y) * p^y * (1-p)^(n-y)
}
# Bsp: n = 10, y = 7 Erfolge
n = 10; y = 7
pp = seq(0, 1, len=100)
L = likeli(pp, n, v)
plot( pp, L, type="1", lwd=2, col="blue" )
# ML-Schä zer (numerisch im Intervall [0,1] mit max. Fehler 1e-10)
optimize( likeli, c(0,1), maximum=TRUE, tol=1e-10, n=10, y=7)
```

Computerexperiment: Likelihood

