K-Nearest Neighbor Classification

Import packages and data set

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
{\it matplotlib} inline
df = pd.read_table("Classified_Data.txt",sep=',', index_col=0)
df.head()
```

	WTT	PTI	EQW	SBI	LQE	QWG	FDJ	PJF	HQE
0	0.913917	1.162073	0.567946	0.755464	0.780862	0.352608	0.759697	0.643798	0.879422
1	0.635632	1.003722	0.535342	0.825645	0.924109	0.648450	0.675334	1.013546	0.621552
2	0.721360	1.201493	0.921990	0.855595	1.526629	0.720781	1.626351	1.154483	0.957877
3	1.234204	1.386726	0.653046	0.825624	1.142504	0.875128	1.409708	1.380003	1.522692
4									>

df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 1000 entries, 0 to 999 Data columns (total 11 columns):

Data	a columns (cocal il columns).						
#	Column	Non-Null Count	Dtype				
0	WTT	1000 non-null	float64				
1	PTI	1000 non-null	float64				
2	EQW	1000 non-null	float64				
3	SBI	1000 non-null	float64				
4	LQE	1000 non-null	float64				
5	QWG	1000 non-null	float64				
6	FDJ	1000 non-null	float64				
7	PJF	1000 non-null	float64				
8	HQE	1000 non-null	float64				
9	NXJ	1000 non-null	float64				
10	TARGET CLASS	1000 non-null	int64				
<pre>dtypes: float64(10), int64(1)</pre>							

memory usage: 93.8 KB

df.describe()

	WTT	PTI	EQW	SBI	LQE	QWG	FDJ	PJF	HQE	CXN	
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000
mean	0.949682	1.114303	0.834127	0.682099	1.032336	0.943534	0.963422	1.071960	1.158251	1.362725	(
std	0.289635	0.257085	0.291554	0.229645	0.243413	0.256121	0.255118	0.288982	0.293738	0.204225	(
min	0.174412	0.441398	0.170924	0.045027	0.315307	0.262389	0.295228	0.299476	0.365157	0.639693	(
25%	0.742358	0.942071	0.615451	0.515010	0.870855	0.761064	0.784407	0.866306	0.934340	1.222623	(
50%	0.940475	1.118486	0.813264	0.676835	1.035824	0.941502	0.945333	1.065500	1.165556	1.375368	(
75%	1.163295	1.307904	1.028340	0.834317	1.198270	1.123060	1.134852	1.283156	1.383173	1.504832	
4											•

Check the spread of the features

```
l=list(df.columns)
1[0:len(1)-2]
```

```
( ['WTT', 'PTI', 'EQW', 'SBI', 'LQE', 'QWG', 'FDJ', 'PJF', 'HQE']
```

Run a 'for' loop to draw boxlots of all the features for '0' and '1' TARGET CLASS

sns.pairplot(df)

Identify the Target Classes from the Dataset and their Counts

```
l=list(df.columns)
l[0:len(1)-2]

for i in range(len(1)-1):
    sns.boxplot(x='TARGET CLASS',y=l[i], data=df)
    plt.figure()
```

