Synchrones CDMA:

Mit synchronen CDMA lassen sich unterschiedliche Datenströme parallel auf einen dedizierten gemeinsam genutzten Frequenzband übertragen. Zur Unterscheidung werden den beteiligten Stationen *Spreizcodes* oder *Codefolgen* zugeordnet, welche welche bestimmte Eigenschaften wie Orthogonalität aufweisen.

D: Datensignal, S: Übertragenes Signal Spreizcode Länge = 10: Bandspreizung um Faktor 10

- Um eine 1 zu übertragen sendet eine Station die ihr zugeordnete Codefolge im aktuellen Zeitfenster.
- \bullet Um eine θ zu übertragen sendet eine Station die Negation der ihr zugeordneten Codefolge im aktuellen Zeitfenster.
- Um keine Übertragung im aktuellen Zeitfenster durchzuführen sendet eine Station nichts.

Das resultierende Signal aus S_1 (Signal der ersten Station) und S_2 ist definiert als S_1+S_2 . Ein resultierendes Signal kann mit Hilfe der \bullet Verknüpfung untersucht werden, dabei ist die Verknüpfung \bullet definiert als: $S \bullet A \equiv \frac{1}{m} \sum_{i=1}^m S_i A_i$. Hierbei gelten folgende Bedingungen:

•
$$S \bullet A \equiv \frac{1}{m} \sum_{i=1}^{m} S_i A_i = +1 \Rightarrow' 1'$$
gesendet

•
$$S \bullet A \equiv \frac{1}{m} \sum_{i=1}^{m} S_i A_i = -1 \Rightarrow' 0'$$
gesendet

•
$$S \bullet A \equiv \frac{1}{m} \sum_{i=1}^{m} S_i A_i = 0 \Rightarrow A$$
 nicht beteiligt.

Übungsaufbau und Bedingungen:

- 1. Bilden Sie drei Gruppen, dabei stellt jede Gruppe eine *Station* dar. Die Stationen sind gegeben durch:
 - A = (-1, -1, -1, +1, +1, -1, +1, +1)
 - B = (-1, -1, +1, -1, +1, +1, +1, -1)
 - C = (-1, +1, -1, +1, +1, +1, -1, -1)
- 2. Denken Sie sich ein Folge von 8bit (oder weniger) aus die Sie übertragen wollen und erstellen Sie daraus das Signal $S=S_1,S_2,S_3,S_4,S_5,S_6,S_7,S_8$ Ihrer Station.
- 3. Geben Sie Ihr Signal an die Nachbargruppe weiter und erstellen Sie das resultierende Signal $(S_{G1} + S_{G2})$ aus Ihrem Signal und dem der Nachbargruppe. Wiederholen Sie den Vorgang bis alle Signale in dem resultierenden Signal aufgenommen wurden $(S_{G1} + S_{G2} + S_{G3})$.
- 4. Jede Gruppe sollte nun das resultierenden Signal $S_{G1} + S_{G2} + S_{G3}$ vorliegen haben. Stellen Sie fest welche bit-Folge die beiden andern Stationen gesendet haben, indem Sie das resultierende Signal $S_{G1} + S_{G2} + S_{G3}$ skalar mit dem jeweiligen Stationscode multiplizieren (•).