

<u>PES University, Bengaluru</u> (Established under Karnataka Act No. 16 of 2013)

UE17/18/19MA251

Dec 2021: END SEMESTER ASSESSMENT (ESA) B TECH IV SEMESTER

UE17/18/19MA251 - Linear Algebra and Its Applications

Time: 3 Hrs Answer All Questions	Max Marks: 100
----------------------------------	----------------

1	a)	Do the three planes $x + 2y + z = 4$, $y - z = 1$ and $x + 3y = 0$ have at least one common point of intersection? Explain. Is	_
1	(a)	the system consistent if the last equation is changed to $x + 3y = 5$? If so, solve the system completely.	7
	b)	Apply elimination to produce the factors L and U for $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & -2 & 4 \end{pmatrix}$.	6
		Is A=LU possible? Explain. Write down the permutation matrices if any.	
	c)	Compute inverse of the following matrices by Gauss Jordan method. $ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & 2 & 4 \end{pmatrix} $	7
			_
2	a)	Examine if the following sets of vectors are linearly independent. When the set is dependent find a relation between the vectors:	
		$\left\{t^2+t+2,\ 2t^2+t,\ 3t^2+2t+2\right\}$	7
	b)	Find a basis for the set of vectors in R ³ in the plane x+2y+z=0. Also find its dimension.	6
	c)	If the column space of A is spanned by the vectors $(1,2,0)$, $(-2,3,-7)$, $(5,2,8)$ find all those vectors that span the left null space of A, Determine whether or not the vector $b=(-4,2,2)$ is in that subspace What are the bases and dimensions of $C(A^T)$ and $N(A^T)$.	7
3	a)	Find the matrix P that projects every point in R^3 onto the line of intersection of the planes $x+y+t=0$ and $x-t=0$. What are the column space and row space of this matrix.	7
	b)	For each of the following linear transformations T, find a basis and the dimension of the range and kernel of $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z)=(x+y, y-z)$	6
	c)	Find the projection of $b=(3,3,3)$ onto the column space of A spanned by $(1,0,2)$ and $(1,1,4)$. Split b into $p+q$ with p in $C(A^T)$ and q in $N(A)$.	7
4	- \		
4	a)	Given the orthonomal basis $S = \left\{ \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right), (0,1,0), \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) \right\}$ for R ³ . Express the	7
		vector (1,2,3) as a linear combination of the vectors in S.	

		SRN	
	b)	Factor $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ into $S\Delta S^{-1}$ and hence compute A ⁸⁵ .	6
	c)	Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} -6 & -1 \\ 2 & -3 \end{pmatrix}$. Verify that the trace	7
		equals the sum of eigenvalues and the determinant equals their product. If we shift A to A – 7 I what are the eigenvalues and eigenvectors and how are they related to those of A?	Ц
5	a)	If $A = Q\Delta Q^T$ is symmetric positive definite, then $R = Q\sqrt{\Delta}Q^T$ is its symmetric positive definite square root. Why does R have positive eigen values? Compute R and verify $R^2 = A$ for $A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}$	7
	b)	Write the symmetric matrix which corresponds to the following quadratic forms: $(i)Q(x) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$	4
	c)	Find SVD of the matrix $A = \begin{pmatrix} 4 & 1 & 1 & 1 & 4 \\ 8 & 7 & -2 \end{pmatrix}$	9
