4 1 ▶

Séries numériques

Antoine MOTEAU antoine.moteau@wanadoo.fr

Table des matières

1	Défi	nitions, notations	2
	1.1	Notion de série	2
	1.2	Séries convergentes, divergentes	2
	1.3	Objectifs	2
	1.4	Calcul approché de la somme d'une série convergente	2
2	Séri	es "absolument" convergentes	3
3	Exe	mples	3
	3.1	Séries de référence	3
	3.2	Séries simples, élémentaires	3
	3.3	Autres exemples (à re-démontrer à chaque fois)	3
4	Thé	orèmes d'ordre général	4
	4.1	Suppression, modification d'un nombre fin de termes	4
	4.2	Condition Nécessaire de convergence	4
	4.3	Opérations arithmétiques	4
5	Séri	es et suites	5
_	5.1	Etude directe de la suite des sommes partielles	5
	5.2	Simplifications entre des termes successifs	5
_	a.		
6		es réelles à termes positifs (ou de signe constant), rtir d'un certain rang	6
	6.1	Comparaison à une intégrale généralisée (impropre)	6
	6.2	Comparaison des termes généraux de deux séries	7
		6.2.1 Majoration-minoration	7
		6.2.2 Equivalents	7
	6.3	Comparaison à une série de Riemann (exemples simples)	7
	6.4	Comparaison à une série géométrique (Règle de d'Alembert)	8
7	Séri	es réelles alternées	9
8	Séri	es quelconques, plan d'étude	10
9	Eva	uation de la somme d'une série convergente	11
	9.1		11
		9.1.1 Utilisation de séries dont la somme est connue	11
			11
			11
		*	11
	0.0	• 1	12
	9.2		14
		·	14 15
			$\frac{15}{15}$
			$15 \\ 15$
		·	16
			16
		-	

4 2 ▶

Séries numériques

1 Définitions, notations

1.1 Notion de série

A une <u>suite</u> $(u_n)_{n\in\mathbb{N}}$, de terme général u_n (réel ou complexe), on associe la <u>suite</u> $(U_n)_{n\in\mathbb{N}}$, dont le terme général U_n est défini par : $U_n = \sum_{k=0}^n u_k$

- Cette association définit la série de terme général u_n .
- $U_n = \sum_{k=0}^n u_k$ est la somme partielle d'ordre n de la <u>série</u> de terme général u_n

1.2 Séries convergentes, divergentes

- La série de terme général u_n est dite
 - convergente si la <u>suite</u> $(U_n)_{n\in\mathbb{N}}$ de ses sommes partielles est convergente.
 - divergente sinon
- La somme d'une <u>série</u> convergente est la limite S de la <u>suite</u> $(U_n)_{n\in\mathbb{N}}$ de ses sommes partielles.

$$S = \lim_{n \to +\infty} \left(\sum_{k=0}^{n} u_k \right) \quad \text{se note } S = \sum_{k=0}^{+\infty} u_k$$

 \bullet Le reste d'ordre n d'une <u>série</u> convergente est la quantité :

$$R_n = S - U_n = S - \sum_{k=0}^n u_k$$
 et se note $R_n = \sum_{k=n+1}^{+\infty} u_k$ $(R_n \xrightarrow[n \to +\infty]{} 0)$

1.3 Objectifs

Etant donnée une <u>série</u> de terme général u_n , on cherchera à

- déterminer si cette série est convergente
- en cas de convergence, à établir
 - la valeur exacte de sa somme (si cela est possible)
 - à trouver une valeur approchée à une précision donnée de sa somme.

1.4 Calcul approché de la somme d'une série convergente

 $R_n = \sum_{k=n+1}^{+\infty} u_k$ est l'erreur commise en approchant la somme $S = \sum_{k=0}^{+\infty} u_k$, par la somme partielle d'ordre n.

- R_n est inconnu, mais, pour un $\varepsilon > 0$ donné, on peut essayer (par majorations) de déterminer un (plus petit) indice n tel que $|R_n| = |S U_n| < \varepsilon$.
 - $U_n = \sum_{k=0}^n u_k$ sera une approximation théorique à ε près de la somme S de la série.
- Le calcul de $U_n = \sum_{k=0}^n u_k$ se faisant en pratique par valeur approchée (à??? près), on essaiera de partager l'incertitude finale maximale attendue ($\varepsilon > 0$) en deux parties :
 - $\frac{\varepsilon}{2}$ pour la précision théorique
 - $\frac{\varepsilon}{2}$ pour l'incertitude sur le calcul approché de U_n

en espérant que la précision théorique imposée n'entraı̂ne pas le choix d'un indice n pour lequel on ne soit pas capable d'obtenir une approximation de U_n à la précision voulue. (dans un tel cas, on est obligé de revoir ses exigences à la baisse!)

2 Séries "absolument" convergentes

Plus précisément, il s'agit des séries convergentes en • valeur absolue (séries à termes réels)
• module (séries à termes réels ou complexes)

Théorème 2.0.1. $AC \Longrightarrow C$

Si la <u>série</u>, de terme général $|u_n|$ converge, alors la <u>série</u> de terme général u_n converge.

<u>Preuve</u>. Admis.

Définition 2.0.1.

Lorsque la série, de terme général $|u_n|$ est convergente, la série de terme général u_n est dite "absolument convergente".

Une série convergente et non absolument convergente est parfois qualifiée de "semi-convergente".

Remarque. L'expression "absolument convergente" désigne aussi bien les séries "convergentes en valeur absolue" (à termes réels) que les séries "convergentes en module" (à termes complexes).

Exemple 2.0.0.1. La <u>série</u> de terme général $u_n = \frac{\sin n}{n^{\alpha}}$ $(\alpha \in \mathbb{R})$, est

divergente si $\alpha \leq 0$ (preuve différée : le terme général ne tends pas vers 0).

"semi"-convergente si $0 < \alpha \leqslant 1$ (admis).

absolument convergente si $\alpha > 1$ (preuve différée : majoration de $|u_n|$).

3 **Exemples**

Séries de référence 3.1

Séries géométriques $\label{eq:de problem} \mbox{de raison } k \in \mathbb{C}$	$\sum_{n=0}^{+\infty} k^n$	convergente si $ k < 1$ et de somme $\frac{1}{1-k}$ divergente si $ k \geqslant 1$
Séries de Riemann $\alpha \in \mathbb{R}$	$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$	convergente si et seulement si $\alpha > 1$

3.2 Séries simples, élémentaires

Série harmonique	$\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n}$	"semi" convergente, de somme $\ln(2)$
	$\sum_{n=1}^{\infty} n$	
Séries alternée simples	$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n}$	divergente si $\alpha \leq 0$ "semi" convergente si $0 < \alpha \leq 1$
$\alpha \in \mathbb{R}$	$\sum_{n=1}^{\infty} n^{\alpha}$	absolument convergente si $\alpha > 1$

Autres exemples (à re-démontrer à chaque fois)

Série de Bertand $\alpha,\beta\in\mathbb{R}$	$\sum_{n=2}^{+\infty} \frac{1}{n^{\alpha} \ln^{\beta} n}$	divergente si ? convergente si ?
Série de Bertand généralisée $p\in\mathbb{C}\ ,\ \alpha,\beta\in\mathbb{R}$	$\sum_{n=2}^{+\infty} \frac{e^{-p n}}{n^{\alpha} \ln^{\beta} n}$	divergente si ? convergente si ?

4 Théorèmes d'ordre général

4.1 Suppression, modification d'un nombre fin de termes

Théorème 4.1.1.

On ne change pas la nature d'une <u>série</u> en modifiant (ou en supprimant) un nombre fini de termes.

(Par contre, cela change la valeur de la somme en cas de convergence)

Intérêt : s'affranchir de propriétés non régulières des premiers termes . . .

Vocabulaire usuel: "...à partir d'un certain rang..."

4.2 Condition Nécessaire de convergence

Théorème 4.2.1.

Si une $\underline{s\acute{e}rie}$ converge, alors son terme $\underline{g\acute{e}n\acute{e}ral}$ tends vers 0.

commentaire : Surtout intéressant par sa contraposée!

Preuve.

Si
$$U_n = \sum_{k=0}^n u_k \xrightarrow[n \to \infty]{} S$$
, comme $u_n = U_n - U_{n-1}$, on en déduit que $u_n \xrightarrow[n \to \infty]{} 0$.

Exemples 4.2.0.1.

- 1. Série de terme général $u_n = \left(1 \frac{1}{n}\right)^n$.
- 2. Série de terme général $u_n = \frac{1}{n}$ (remarque : $\frac{1}{n} > \int_n^{n+1} \frac{1}{x} dx$, donc $U_n = \sum_{k=1}^n u_k \geqslant \ldots$).
- 3. Série de terme général $u_n = n \sin(n)$.

4.3 Opérations arithmétiques

Théorème 4.3.1.

Si les <u>séries</u>, indicées par $n \in \mathbb{N}$, de terme général u_n et v_n sont convergentes, de sommes respectives S et S', alors

la <u>série</u> de terme général

- $u_n + v_n$ est convergente, de somme S + S'
- λu_n est convergente, de somme λS

Preuve. Il s'agit simplement de l'application de la linéarité de la limite (ou du résultat sur les suites).

Remarque. La première partie du théorème pourrait s'énoncer : la somme de deux séries convergentes est convergente et . . . la somme de la somme est la somme des sommes.

La somme de deux séries divergentes pourrait être convergente! Par exemple :

avec
$$\begin{cases} u_n = \frac{1}{n} \\ v_n = \frac{-1}{n+1} \end{cases}$$
, on a $u_n + v_n = \frac{1}{n} - \frac{1}{n+1}$ et $\sum_{k=1}^n (u_k + v_k) = 1 - \frac{1}{n+1} \xrightarrow{n \to \infty} 1$

5 Séries et suites

5.1 Etude directe de la suite des sommes partielles

Rappels de ressources pour l'étude de suites numériques, en particulier :

- Suites réelles monotones . . .
- Suites réelles adjacentes (avec encadrement de la limite) ...
- Suites extraites, de T.G d'indice pair, d'indice impair ...

Exemples 5.1.0.2. Exemples classiques, simples.

- 1. Série de terme général $u_n = \frac{1}{n^2}$, pour $n \ge 1$.

 La suite (U_n) des sommes partielles est croissante, majorée : $\begin{cases} u_n \leqslant \int_{n-1}^n \frac{dx}{x^2} & \text{(si } n \ge 2) \\ U_n \leqslant u_1 + \int_1^n \frac{dx}{x^2} < 2 \end{cases}$
- 2. Série de terme général $u_n = \frac{1}{n!}$, pour $n \ge 0$. les deux suites de termes général $U_n = \sum_{k=0}^n u_k$ et $V_n = U_n + u_n$ sont adjacentes.
- 3. Série de terme général $u_n = \frac{(-1)^n}{n}$, pour n > 0. les deux suites, de termes général $U_{2n} = \sum_{k=1}^{2n} u_k$ et $U_{2n+1} = \sum_{k=1}^{2n+1} u_k$, sont adjacentes.

5.2 Simplifications entre des termes successifs

Exemples 5.2.0.3. Exemples classiques.

1. Convergence et calcul de la somme de la série $\sum_{n\geqslant 1} \frac{1}{n(n+1)}$:

On constate que $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ et on en déduit :

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 1$$

2. Convergence et calcul de la somme de la série $\sum_{n\geq 0} \arctan \frac{1}{n^2+n+1}$:

On constate que $\arctan \frac{1}{n} - \arctan \frac{1}{n+1} = \arctan \frac{1}{n^2+n+1}$ et on en déduit :

$$\begin{split} &\sum_{k=0}^{n}\arctan\frac{1}{k^2+k+1}=\arctan\frac{1}{1}+\sum_{k=1}^{n}\arctan\frac{1}{k^2+k+1}\\ &=\arctan\frac{1}{1}+\sum_{k=1}^{n}\left(\arctan\frac{1}{k}-\arctan\frac{1}{k+1}\right)=\frac{\pi}{4}+\left(\frac{\pi}{4}-\arctan\frac{1}{n+1}\right)\xrightarrow[n\to+\infty]{\pi} \xrightarrow{\pi} \end{split}$$

3. Montrer la convergence et calculer la somme exacte de la série $\sum_{n>0} \ln \left(1 + \frac{2}{n(n+3)}\right)$.

On constate que $\ln\left(1+\frac{2}{n(n+3)}\right)=\ln\left(\frac{(n+1)\,(n+2)}{n\,(n+3)}\right)$ et on en déduit :

$$\sum_{k=1}^{n} \ln\left(1 + \frac{2}{k(k+3)}\right) = \ln\left(\frac{\left(\prod_{k=1}^{n} (k+1)\right) \left(\prod_{k=1}^{n} (k+2)\right)}{\left(\prod_{k=1}^{n} k\right) \left(\prod_{k=1}^{n} (k+3)\right)}\right) = \ln\left(\frac{(\ldots)(\ldots)}{(\ldots)(\ldots)}\right) \xrightarrow[n \to +\infty]{} \ldots$$

6 Séries réelles à termes positifs (ou de signe constant), à partir d'un certain rang

6.1 Comparaison à une intégrale généralisée (impropre).

Définition 6.1.1. (voir plus précisément le cours sur les intégrales généralisées)

Soit f une fonction définie et continue par morceaux sur $[a, +\infty]$.

L'intégrale généralisée (impropre) $\int_a^{+\infty} f(x) dx$ est dite convergente, de valeur $L \in \mathbb{R}$ si la fonction $F: x \longmapsto \int_a^x f(t) dt$ admet la limite $L \in \mathbb{R}$ lorsque x tends vers $+\infty$.

(sinon, l'intégrale généralisée (impropre) est dite divergente).

Théorème 6.1.1.

 $Soit \ f \ une \ fonction \ \underline{continue} \ \underline{positive} \ et \ \underline{d\acute{e}croissante} \ sur \ [a,+\infty[.$

La série de terme général $u_n = f(n)$ (pour n > a) et l'intégrale généralisée $\int_a^{+\infty} f(x) dx$ sont de même nature.

En cas de convergence, $\forall n \geqslant a$, $\int_{n+1}^{+\infty} f(t) dt \leqslant \sum_{k=n+1}^{+\infty} u_k \leqslant \int_{n}^{+\infty} f(t) dt$

<u>Preuve</u>. à illustrer à l'aide d'une figure ...

Dans les conditions du théorème, la série étant à termes positifs à partir d'un rang $n_0 > a + 1$, la suite de ses sommes partielles est croissante.

1.
$$0 \leqslant \sum_{k=n_0}^n u_k \leqslant \sum_{k=n_0}^n \int_{k-1}^k f(t) dt = \int_{n_0-1}^n f(t) dt$$
 et on en déduit que

- Si l'intégrale converge, la suite des sommes partielles est majorée
- Si la série diverge, l'intégrale sera divergente

2.
$$0 \leqslant \int_{n_0}^{n+1} f(t)dt = \sum_{k=n_0}^{n} \int_{k}^{k+1} f(t) dt \leqslant \sum_{k=n_0}^{n} u_k$$
 et on en déduit que

- Si l'intégrale diverge, la suite des sommes partielles est divergente
- Si la série converge, l'intégrale sera croissante majorée donc convergente

Exemple 6.1.0.2.

- 1. Les séries de Riemann : $\sum_{k=1}^{+\infty} \frac{1}{n^{\alpha}} \quad (\text{avec } \alpha \in \mathbb{R})$
 - Si $\alpha \leq 0$, le terme général ne tends pas vers 0
 - Si $\alpha > 0$, la fonction $f: x \longmapsto \frac{1}{x^{\alpha}}$, continue, positive et décroissante sur $[1, +\infty[$, vérifie les hypothèses du théorème. On calcule (facilement) $\int_a^x f(t) dt$, et on a la conclusion selon les valeurs de α .
- 2. Les séries de Bertrand : $\sum_{k=2}^{+\infty} \frac{e^{-p \, n}}{n^{\alpha} \, \ln^{\beta}(n)} \quad (\text{avec } p \in \mathbb{R} \text{ (ou } \mathbb{C}), \, \alpha \in \mathbb{R}, \, \beta \in \mathbb{R}).$ Le seul cas qui demanda combinitaria de la combination de la combination

Le seul cas qui demande explicitement l'application du théorème de comparaison à une intégrale impropre est le cas où $p=0, \alpha=1, \beta>0$.

(les autres cas pourront être réglés plus simplement, avec des théorèmes ultérieurs \dots)

Avec $p = 0, \alpha = 1, \beta > 0$, la fonction $f: x \longmapsto \frac{1}{x \ln^{\beta} x}$, continue, positive et décroissante sur

 $[2, +\infty[$, vérifie les hypothèses du théorème. On calcule (facilement) $\int_a^x f(t) dt$, et on a la conclusion selon les valeurs de β .

6.2 Comparaison des termes généraux de deux séries

6.2.1 Majoration-minoration

Théorème 6.2.1.

Si, à partir d'un certain rang, $0 \le u_n \le v_n$, alors

- $Si \sum v_n$ converge alors $\sum u_n$ converge
- $Si \sum u_n$ diverge alors $\sum v_n$ diverge.

<u>Preuve</u>. C'est l'application des théorèmes élémentaires sur les suites aux suites des sommes partielles.

Exemple 6.2.1.1.

- 1. Avec la série de terme général $u_n = \frac{\sin n}{n^2}$, on a $0 \le |u_n| \le \frac{1}{n^2}$
- 2. Avec la série de terme général $u_n = \frac{\ln(n^2 + 1)}{n}$, on a $u_n \geqslant \frac{1}{n} \geqslant 0$

6.2.2 Equivalents

Théorème 6.2.2.

Soient $\sum u_n$ et $\sum v_n$ des séries <u>strictement</u> positives (à partir d'un certain rang).

Si $u_n \underset{n \to \infty}{\sim} v_n$ alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

\underline{Preuve} .

 $\frac{u_n}{v_n} \xrightarrow[n \to \infty]{} 1 \text{ et à partir d'un certain rang, } \frac{1}{2} < \frac{u_n}{v_n} < \frac{3}{2}, \text{ ou encore } \frac{1}{2} v_n < u_n < \frac{3}{2} v_n,$ ce qui nous ramène à l'application du théorème précédent.

Exemple 6.2.2.1.

- 1. Série de terme général $u_n = \sin \frac{1}{n^{\alpha}}$. Discuter selon les valeurs de α .
- 2. Série de terme général $u_n = \ln(n^2 + 1) 2 \ln n$. Prouver la convergence.

6.3 Comparaison à une série de Riemann (exemples simples)

Tenter de calculer $\lim_{n\to\infty} n^{\alpha} u_n$, avec α à choisir <u>judicieusement</u>.

Exemple 6.3.0.2.

- 1. Avec la série de terme général $u_n = e^{-\sqrt{n}}$, on a $n^2 u_n \xrightarrow[n \to \infty]{} 0 \quad (< 1)$. A partir d'un certain rang, $0 < u_n < \frac{1}{n^2}$.
- 2. Avec la série de terme général $u_n = \frac{1}{\ln^{\beta}(n)}$, on a $n u_n \xrightarrow[n \to \infty]{} + \infty$ (> 1). A partir d'un certain rang, $\frac{1}{n} < u_n$.
- 3. Avec la série de terme général $u_n = \frac{1}{n!}$, on a $n^2 u_n \xrightarrow[n \to \infty]{} 0 \quad (< 1)$.

 A partir d'un certain rang, $0 < u_n < \frac{1}{n^2}$.

Comparaison à une série géométrique (Règle de d'Alembert)

Théorème 6.4.1. (Règle de d'Alembert)

Soit une série de terme général u_n , <u>strictement</u> positif (à partir d'un certain rang).

• Si il existe une contante k, 0 < k < 1, et $n_0 \in \mathbb{N}$ tels que

$$\forall n \geqslant n_0 \; , \; \frac{u_{n+1}}{u_n} < k$$

alors $\sum u_n$ converge

• Si il existe $n_0 \in \mathbb{N}$ tels que $\forall n \geq n_0$, $\frac{u_{n+1}}{u_n} \geq 1$ alors $\sum u_n$ diverge

Preuve. (application d'un théorème précédent)

• Dans le premier cas, pour $n \ge n_0$, on aura $0 < u_{n+1} < k u_n$ et, par une récurrence simple

$$0 < u_{n+1} < k^{n+1} \frac{u_{n_0}}{k^{n_0}}$$

Comme la série de terme général k^n est convergente, on en déduit la convergence de $\sum u_n$

• Dans le second cas, pour $n \ge n_0, u_n \ge u_{n_0} > 0$ et le terme général ne tends pas vers 0

Remarque. Ce théorème ne sera employé que lorsque l'on cherche à majorer le reste d'ordre n. En général, on commencera par utiliser le théorème suivant, quite à revenir ensuite dans les conditions de ce premier théorème pour calculer une valeur approchée de la somme à une précision donnée.

Théorème 6.4.2. (Règle de d'Alembert à la limite)

Soit une série de terme général u_n , <u>strictement</u> positif (à partir d'un certain rang).

Si $\frac{u_{n+1}}{u_n}$ admet une limite ℓ lorsque n tends vers $+\infty$,

• $Si \ \ell < 1$, $alors \sum u_n \ converge$

- $Si \ \ell > 1$, $alors \sum u_n \ diverge$
- $Si \ \ell = 1$, alors ... pas de conclusion générale!

<u>Preuve</u>. Soit $\ell \in \mathbb{R}$ la limite de $\frac{u_{n+1}}{u_n}$ lorsque n tends vers $+\infty$.

- Si $\ell < 1$, en posant $k = \frac{\ell+1}{2}$, on aura
 - 0 < *k* < 1
 - il existe $n_0 \in \mathbb{N}$ tels que $\forall n \geqslant n_0$, $\frac{u_{n+1}}{u_n} \leqslant k$

D'après le théorème précédent, on en déduit la convergence de $\sum u_n$

• Si $\ell > 1$, il existe $n_0 \in \mathbb{N}$ tels que $\forall n \geqslant n_0$, $\frac{u_{n+1}}{u_n} > 1$ D'après le théorème précédent, on en déduit la divergence de $\sum u_n$

- Si $\ell=1$, il suffit de donner deux exemples où les conclusions sont opposées :
 - avec $u_n = \frac{1}{n}$, $\frac{u_{n+1}}{u_n} \xrightarrow[n \to \infty]{} 1$ et la série $\sum \frac{1}{n}$ est divergente.
 - avec $u_n = \frac{1}{n^2}, \frac{u_{n+1}}{u_n} \xrightarrow[n \to \infty]{} 1$ et la série $\sum \frac{1}{n^2}$ est convergente.

Exemple 6.4.0.3. Soient les séries de terme général

$$u_n = \frac{n!}{n^n} \; ; \; u_n = \left(\frac{n+1}{n}\right)^n \; ; \; u_n = \frac{n^2}{2^n + n} \; ; \; u_n = \frac{\ln^n n}{n!} \; ; \; u_n = \frac{2^n}{n^2} \; ; \; u_n = \sin^2 n \; ; \; u_n = \frac{\sin^2 n}{n}$$

- Calculer $\lim_{n\to\infty} \frac{u_{n+1}}{u_n}$ (si cette limite existe).
- Si la règle de d'Alembert ne permet pas de conclure, chercher un autre critère

Séries réelles alternées

Définition 7.0.1.

La série de terme général réel u_n est dite alternée (à partir d'un certain rang n_0) si

$$\forall n \geqslant n_0 , u_n u_{n+1} < 0$$

Exemples 7.0.0.1.

•
$$\sum \frac{(-1)^n}{n^n}$$
; $\sum \frac{(-1)^n}{n+(-1)^n}$; $\sum \frac{\sin\left(\frac{\pi}{2}+n\pi\right)}{n+1}$ sont alternées

•
$$\sum \frac{(-1)^n \sin(n)}{n^n}$$
; $\sum \frac{(-1)^n \sin(\frac{\pi}{2} + n\pi)}{n+1}$ ne sont pas alternées.

•
$$\sum \frac{(-1)^n \sin(n)}{n^n}$$
; $\sum \frac{(-1)^n \sin\left(\frac{\pi}{2} + n\pi\right)}{n+1}$ ne sont pas alternées.
• $\pi = \sum_{k=0}^{\infty} \frac{4(-1)^k}{2k+1}$ et $\ln(2) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ (sommes de séries alternées convergentes).

Théorème 7.0.3. (Critère spécial des séries alternées)

Soit une série alternée (à partir d'un certain rang), de terme général u_n .

$$Si \left\{ \begin{array}{c} u_n \xrightarrow[n \to \infty]{} 0 \\ \text{et} \end{array} \right.$$

 $Si \begin{cases} u_n \xrightarrow[n \to \infty]{} 0 \\ \text{et} \end{cases}$ $|u_n| \text{ est d\'ecroissant en fonction de } n \quad (\grave{a} \text{ partir d'un certain rang})$

alors la série est convergente.

Preuve.

En prenant, par exemple, le terme général sous la forme $u_n = (-1)^n |u_n|$, à partir de $n_0 = 0$, on montre que les sommes partielles d'indice pair et impair sont adjacentes :

$$\text{Avec } U_n = \sum_{k=0}^n u_k, \quad \begin{cases} U_{2(n+1)} - U_{2n} = u_{2n+2} + u_{2n+1} = |u_{2n+2}| - |u_{2n+1}| \leqslant 0 \\ U_{2(n+1)+1)} - U_{2n+1} = u_{2n+3} + u_{2n+2} = -|u_{2n+3}| + |u_{2n+2}| \geqslant 0 \\ U_{2n+1} - U_{2n} = u_{2n+1} \xrightarrow[n \to \infty]{} 0 \end{cases}$$

On en déduit que la suite (U_n) est convergente (ide que la série est convergente).

Approximation de la somme U d'une série alternée.

Si la série satisfait aux hypothèses du théorème spécial à partir de $n=n_0$, on en déduit :

• un encadrement de la somme :

Pour
$$n \ge n_0$$

$$\begin{cases} U_{2n+1} \le U \le U_{2n} & \text{(si } u_n = (-1)^n |u_n|) \\ \text{ou} \\ U_{2n} \le U \le U_{2n+1} & \text{(si } u_n = (-1)^{n+1} |u_n|) \end{cases}$$

• une majoration du reste d'ordre n: Pour $n \ge n_0$ $|R_n| \le |u_{n+1}| \le |u_n|$

Exemple 7.0.0.4. Prouver la convergence des séries de terme général

•
$$u_n = \frac{(-1)^n}{\sqrt{n}}$$
; $u_n = \frac{\sin\left(n\frac{\pi}{2}\right)}{n}$

•
$$u_n = \frac{(-1)^n}{n + (-1)^n}$$
 Exemple fondamental qui prouve qu'un théorème doit être maîtrisé!

■ 10 **▶**

8 Séries quelconques, plan d'étude

On s'intéresse à des séries numériques qui peuvent être (à partir d'un certain rang)

- à termes complexes
- à termes réels, de signe constant (positif ou négatif)
- à termes réels, non de signe constant
 - non alternées
 - alternées, satisfaisant aux hypothèses du critère spécial
 - alternées, ne satisfaisant pas aux hypothèses du critère spécial
- 1. Vérifier que la série est bien définie..
- 2. Etude de la limite du terme général en $+\infty$ (CN de convergence).
- 3. Etude de la convergence :
 - (a) Etude de l'absolue convergence : utilisation des critères relatifs au séries à termes positifs. Les critères sont multiples, il faut choisir un critère adapté au cas particulier de la série
 - La règle de d'Alembert ne permet pas toujours de conclure
 - Le critère de comparaison à une intégrale n'est pas toujours applicable ni simple
 - L'utilisation (maîtrisée) d'équivalents donne souvent des résultats simples
 - La comparaison à une série de Riemann $\sum \frac{1}{n^{\alpha}}$ est souvent intéressante, mais il faut proposer une valeur pertinente pour α !
 - ...
 - (b) Cas particulier des séries alternées.
 - Le théorème spécial n'est pas toujours applicable.
 - L'utilisation d'un développement limité donne souvent de bon résultats.
 - On peut envisager de grouper les termes (par exemple deux par deux).
 - •
 - (c) Utilisation d'un développement limité (ou asymptotique).
 - (d) Décomposition en somme de séries. Attention : on risque de faire apparaître des séries divergentes. Remarque.
 - La somme de deux séries divergentes peut être convergente,
 - La somme d'une série convergente et d'une série divergente est divergente.
 - (e) Etude directe de la suite des sommes partielles.
 - Théorèmes sur les suites.
 - Simplifications (collisions) à l'intérieur des sommes partielles.
 - ...
 - (f) Calcul exact de la somme (dans certains cas).
 - (g) Utilisation de résultats spécifiques à d'autres théories
 - Séries entières (dérivation, intégration de la fonction somme d'une série entière).
 - Séries de Fourier (théorème de Dirichlet, théorème de Parseval).
- 4. Calcul de la somme :
 - Exactement (dans certains cas).
 - Par valeurs approchée (voir exemples ci-dessous)

L'encadrement à l'aide du reste est déduit du critère de convergence utilisé.

9 Evaluation de la somme d'une série convergente

9.1 Calcul exact de la somme d'une série convergente

Quand le calcul exact de la somme d'une série est possible, <u>ce qui est rare</u>, cela se fait à l'aide de méthodes spécifiques (chaque cas en un cas particulier).

9.1.1 Utilisation de séries dont la somme est connue

Exemple 9.1.1.1. Vérifier que
$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$$
, sachant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

9.1.2 Utilisation de séries entières

(voir le cours sur les séries entières).

Exemple 9.1.2.1.
$$\sum_{n=1}^{\infty} \frac{1}{n(2n+1)} = 2 - 2 \ln 2$$

Pour
$$x \in [-1, 1]$$
, on pose $f(x) = \sum_{n=1}^{\infty} \frac{x^{2n+1}}{n(2n+1)}$ (convergente pour $x \in [-1, 1]$)

Pour $x \in]-1,1[$, on a : $f'(x) = \sum_{n=1}^{\infty} \frac{x^{2n}}{n}$ et on en déduit que :

$$f''(x) = \sum_{n=1}^{\infty} 2x^{2n-1} = 2x \sum_{k=0}^{\infty} (x^2)^k = \frac{2x}{1-x^2}$$

Par intégrations successives, $f(x) = -(1+x)\ln(1+x) + (1-x)\ln(1-x) + 2x + 0$ pour $x \in]-1,1[$, puis, par continuité à gauche en 1, on a $f(1) = 2 - 2\ln 2$

9.1.3 Utilisation de séries trigonométriques (séries de Fourier)

(voir le cours sur les séries de Fourier).

Exemple 9.1.3.1.
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

- Application du théorème de Dirichlet à la fonction f, 2π -périodique et paire, définie sur $[0,\pi]$ par $f(x)=x(x-\pi)$.
- Application de la formule (théorème) de Parseval, à la fonction f, 2π -périodique, définie sur $[-\pi, \pi[$ par f(x) = x.

9.1.4 Réduction des sommes partielles

On utilise une décomposition du terme général permettant la réduction par téléscopage ...

Exemple 9.1.4.1.

- calcul exact de $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ (vu précédemment)
- calcul exact de $\sum_{n=1}^{\infty} \ln \left(1 + \frac{2}{n(n+3)} \right)$ (vu précédemment)
- calcul exact de $\sum_{n=0}^{\infty} \arctan \frac{1}{n^2+n+1}$ (vu précédemment)

Quelques exemples de somme exactes

$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} = \ln 2$	• DSE de $f: x \longmapsto \ln(1+x)$ (et valeur en $x=1$)
$\sum_{p=0}^{+\infty} \frac{(-1)^p}{2p+1} = \frac{\pi}{4}$	• DSE de $f: x \longmapsto \arctan(x)$ • SF en $\frac{\pi}{2}$ de f , 2π -périodique, $f(x) = x$ sur $[-\pi, \pi[$
$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$	• SF en 0 de f 2π -périodique paire, $f(x)=x(x-\pi)$ sur $[0,\pi]$ • Th de Parseval, f 2π -périodique, $f(x)=x$ sur $[-\pi,\pi[$
$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}$	• SF en 0 de f 2π -périodique paire, $f(x) = x$ sur $[0, \pi]$ • Th de Parseval, f 2π -périodique, $f(x) = x$ sur $[-\pi, \pi[$ • déduite de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$
$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$	• SF en 0 de f 2π -périodique paire, $f(x)=x^2$ sur $[0,\pi]$ • déduite de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$
$\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)^2} \approx 0.915965594$ (constante de Catalan)	• = $\int_0^1 \frac{\arctan x}{x} dx$ (d'après le DSE de arctan)
+∞	

$$\sum_{n=0}^{+\infty} \frac{1}{4n^2 - 1} = \frac{-1}{2}$$

• Réduction de collisions dans les sommes partielles • SF en 0 de
$$f$$
 2π -périodique, $f(x)=\sup(\sin(x),0)$

$$\bullet$$
 DSE de . . .

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{4n^2 - 1} = \frac{-2 - \pi}{4}$$

$$\bullet$$
 SF en $\frac{\pi}{2}$ de f $2\pi\text{-périodique},$ $f(x)=\sup(\sin(x),0)$

$$\sum_{n=0}^{+\infty} \frac{1}{(4n^2 - 1)^2} = \frac{\pi^2 + 8}{16}$$

• Th de Parseval, $f(2\pi)$ -périodique, $f(x) = \sup(\sin(x), 0)$

$$\sum_{n=0}^{+\infty} \frac{n^2}{(4n^2-1)^2} = \frac{\pi^2}{64}$$

 \bullet Th
 de Parseval, f2 π -périodique,
 $f(x)=\sin\left(\frac{x}{2}\right)$ sur $]-\pi,\pi]$

$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - \alpha^2} = \frac{1}{2\alpha^2} - \frac{\pi}{2\alpha \sin(\alpha \pi)}$

• SF en 0 de f 2π -périodique, $f(x) = \cos(\alpha x)$ sur $[-\pi, \pi[$

$$\sum_{n=1}^{+\infty} \frac{1}{n^2 - \alpha^2} = \frac{1}{2 \alpha^2} - \frac{\pi}{2 \alpha \tan(\alpha \pi)}$$

• SF en π de f 2π -périodique, $f(x) = \cos(\alpha x)$ sur $[-\pi, \pi]$

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + a^2} = \frac{a \pi - \operatorname{sh}(a \pi)}{2 a^2 \operatorname{sh}(a \pi)}$$

• SF en 0 de f 2π -périodique, $f(x) = \operatorname{ch}(a x)$ sur $[-\pi, \pi[$

$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + a^2} = \frac{a \pi \, \operatorname{ch}(a \, \pi) - \operatorname{sh}(a \, \pi)}{2 \, a^2 \, \operatorname{sh}(a \, \pi)}$$

 \bullet SF en π de f 2 π -périodique, $f(x)=\operatorname{ch}(a\,x)$ sur $[-\pi,\pi[$

$$\sum_{n=1}^{+\infty} \frac{1}{(n^2 + a^2)^2} = \frac{a^2 \pi^2 + a \pi \operatorname{sh}(a \pi) \operatorname{ch}(a \pi) - 2 \operatorname{sh}^2(a \pi)}{4 a^4 \operatorname{sh}^2(a \pi)}$$

• Th de Parseval, $f(2\pi)$ -périodique, $f(x) = \operatorname{ch}(ax)$ sur $[-\pi, \pi]$

$$\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)^3} = \frac{\pi^3}{32}$$

 \bullet SF de $\frac{\pi}{2}$ de f 2 π -périodique, impaire, $f(x) = x(\pi - x) \text{ sur } [0,\pi]$

$$f(x) = x(\pi - x) \operatorname{sur} [0, \pi]$$

$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^4}{96}$$

• Th de Parseval, $f(2\pi)$ -périodique, paire, $f(x) = x \sin [0, \pi]$

• déduite de
$$\sum_{n=1}^{+\infty} \frac{1}{n^4}$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

• Th de Parseval, f 2π -périodique, paire, $f(x) = x^2$ sur $[0, \pi]$

• déduite de
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4}$$

$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^6} = \frac{\pi^6}{960}$$

 \bullet Th
 de Parseval, f2
π-périodique, impaire,

$$f(x) = x(\pi - x) \operatorname{sur} [0, \pi]$$

• déduite de
$$\sum_{n=1}^{+\infty} \frac{1}{n^6}$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$$

 \bullet Th de Parseval, f . . .

• déduite de
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^6}$$

Approximation de la somme d'une série convergente

L'erreur commise en approchant $S = \sum_{k=0}^{+\infty} u_k$ par $U_n = \sum_{k=0}^{n} u_k$ est $R_n = \sum_{k=n+1}^{+\infty} u_k$.

1. Approximation théorique à ε près :

 R_n est inconnu, mais, pour un $\varepsilon > 0$ donné, on peut essayer (par majorations) de déterminer un (plus petit) indice n tel que $|R_n| = |S - U_n| < \varepsilon$.

 $U_n = \sum_{k=0}^{\infty} u_k$ sera une approximation <u>théorique</u> à ε près de la somme S de la série.

2. Approximation pratique à ε près :

Une fois l'approximation théorique effectuée, le calcul de $S_n = \sum_{k=1}^{n} u_k$ se fait en pratique par valeur

approchée (à??? près), ce qui introduit une incertitude supplémentaire.

On essaiera de partager l'incertitude finale maximale attendue $(\varepsilon > 0)$ en deux parties : • $\frac{\varepsilon}{2}$ pour la précision théorique, avec le calcul d'un indice n tel que $|R_n| \leqslant \frac{\varepsilon}{2}$

$$\frac{\varepsilon}{2}$$
 pour l'incertitude sur le calcul approché de U

 $\frac{\varepsilon}{2}$ pour l'incertitude sur le calcul approché de U_n

en espérant que la précision théorique imposée n'entraîne pas le choix d'un indice n pour lequel on ne soit pas capable d'obtenir une approximation de U_n à la précision voulue.

Si on est amené à calculer U_n pour un n élevé, avec des erreurs pratiques importantes, on sera obligé de revoir les exigences à la baisse : réduire la précision attendue, jusqu'à ce que l'on obtienne un indice n suffisamment faible pour que l'approximation pratique sur le calcul de U_n soit au plus de l'ordre de la moitié de l'incertitude théorique.

Remarque. A force de réduire les exigences, on pourrait arriver à ne pas être capable de calculer une valeur approchée de la somme avec une précision significative!

Majoration du reste d'une série absolument convergente

$$\left| \sum_{k=n+1}^{\infty} u_k \right| \leqslant \sum_{k=n+1}^{\infty} |u_k|$$

Cette majoration très large risque de conduire à un indice élevé pour le calcul de l'approximation.

Exemple 9.2.1.1. Trouver une approximation théorique à 10^{-5} près de $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}$

1. Première méthode: Majoration, suivie de comparaison à une intégrale impropre

$$\forall n \geqslant 1, |R_n| = \left| \sum_{k=n+1}^{\infty} \frac{(-1)^n}{n^2} \right| \leqslant \sum_{k=n+1}^{\infty} \frac{1}{n^2} \leqslant \int_n^{+\infty} \frac{dx}{x^2} = \frac{1}{n}$$

Pour avoir $|R_n| \le 10^{-5}$, il suffit de prendre $n \ge 1$ tel que $\frac{1}{n} \le 10^{-5}$. n = 100000 convient.

$$\sum_{k=1}^{100000} \frac{(-1)^k}{k^2} \text{ est une approximation (th\'eorique), à } 10^{-5} \text{ pr\`es, de } \sum_{k=1}^{\infty} \frac{(-1)^n}{n^2}$$

2. Deuxième méthode : Série alternée vérifiant dès n=1 les hypothèses du théorème spécial, d'où :

$$\forall n \geqslant 1 , |R_n| \leqslant |u_n| = \frac{1}{n^2}$$

Pour avoir $|R_n| \leq 10^{-5}$, il suffit de prendre $n \geq 1$ tel que $\frac{1}{n^2} \leq 10^{-5}$. n = 317 convient.

$$\sum_{k=1}^{317} \frac{(-1)^k}{k^2} \text{ est une approximation (théorique), à } 10^{-5} \text{ près, de } \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

9.2.2 Suites d'encadrement de la somme

Exemple 9.2.2.1. Calcul d'une approximation théorique à 10^{-5} près de $e = \sum_{n=0}^{\infty} \frac{1}{n!}$

Les suites de terme général $U_n = \sum_{k=0}^n \frac{1}{k!}$ et $V_n = U_n + \frac{1}{n!}$ sont adjacentes. Elles encadrent la somme e de

la série et, en particulier, on a : $\forall n \geqslant 0$, $0 < R_n = e - \sum_{k=0}^n \frac{1}{k!} < \frac{1}{n!}$

Pour avoir $|R_n| \le 10^{-5}$, il suffit de prendre $n \ge 0$ tel que $\frac{1}{n!} \le 10^{-5}$. n = 9 convient.

$$\sum_{k=0}^{9} \frac{1}{k!}$$
 est une approximation (théorique), à 10^{-5} près, de $e = \sum_{n=0}^{\infty} \frac{1}{n!}$

9.2.3 Comparaison à une intégrale

Si on reprends le théorème de comparaison à une intégrale impropre :

- $\bullet \ u_n = f(n)$
- f continue, positive décroissante sur $[a, +\infty[$,
- $\int_{a}^{+\infty} f(t) dt$ est convergente (existe)

avec
$$n_0 = \lceil a \rceil$$
, on $a : \forall n \geqslant n_0$, $0 \leqslant R_n = \sum_{k=n+1}^{\infty} u_k \leqslant \int_n^{+\infty} f(t) dt$

Exemple 9.2.3.1. Calcul d'une approximation théorique à 10^{-5} près de $\sum_{n=0}^{\infty} \frac{1}{n^4 + n + 1}$

 $u_n = f(n)$ avec $f: x \longmapsto \frac{1}{x^4 + x + 1}$ qui est continue, positive décroissante sur $[1, +\infty[$, donc :

$$\forall n \geqslant 1, \ 0 \leqslant R_n = \sum_{k=n+1}^{\infty} \frac{1}{k^4 + k + 1} \leqslant \int_n^{+\infty} \frac{dt}{t^4 + t + 1} \leqslant \int_n^{+\infty} \frac{dt}{t^4} = \frac{1}{3 n^3}$$

Pour avoir $|R_n| \le 10^{-5}$, il suffit de prendre $n \ge 1$ tel que $\frac{1}{3n^3} \le 10^{-5}$. n = 33 convient.

$$\sum_{k=0}^{33} \frac{1}{k^4+k+1} \text{ est une approximation (th\'eorique), à } 10^{-5} \text{ pr\`es, de } \sum_{n=0}^{\infty} \frac{1}{n^4+n+1}$$

9.2.4 Série majorante

Si pour $n \ge n_0$, $0 \le |u_n| \le v_n$ alors $\forall n \ge n_0$, $0 \le |R_n| = \left| \sum_{k=n+1}^{\infty} u_k \right| \le \sum_{k=n+1}^{\infty} v_k$

Exemple 9.2.4.1. Calcul d'une approximation théorique à 10^{-5} près de $\sum_{n=1}^{\infty} \frac{\sin n}{n^4}$

 $|u_n| = \left|\frac{\sin n}{n^4}\right| \le \frac{1}{n^4} = f(n) \text{ avec } f: x \longmapsto \frac{1}{x^4} \text{ continue, positive décroissante sur } [1, +\infty[, \text{ d'où} :]]$

$$\forall n \ge 1 , \ 0 \le |R_n| \le \sum_{k=n+1}^{\infty} \frac{1}{k^4} \le \int_n^{+\infty} \frac{dt}{t^4} = \frac{1}{3 n^3}$$

Pour avoir $|R_n| \le 10^{-5}$, il suffit de prendre $n \ge 1$ tel que $\frac{1}{3n^3} \le 10^{-5}$. n = 33 convient.

$$\sum_{k=1}^{33} \frac{\sin k}{k^4} \text{ est une approximation (th\'eorique), à } 10^{-5} \text{ pr\`es, de } \sum_{n=1}^{\infty} \frac{\sin n}{n^4}$$

9.2.5 Critère de d'Alembert

On n'utilise que le **premier** théorème de d'Alembert :

Si, pour $n \ge n_0$, on a $0 \le \left| \frac{u_{n+1}}{u_n} \right| \le k$, où k est une <u>constante</u> telle que k < 1, alors $\sum_{p=n+1}^{\infty} u_p$

converge absolument et $\forall n \ge n_0$, $0 \le |R_n| = \left| \sum_{p=n+1}^{\infty} u_p \right| \le |u_{n+1}| \frac{1}{1-k}$

En effet, pour $n \ge n_0$,

$$|R_n| \le |u_{n+1}| + |u_{n+2}| + |u_{n+3}| + \dots + |u_{n+p}| + \dots$$

$$\le |u_{n+1}| + k|u_{n+1}| + k^2|u_{n+1}| + \dots + k^{p-1}|u_{n+1}| + \dots \le |u_{n+1}| \sum_{n=0}^{\infty} k^p$$

Exemple 9.2.5.1. Calcul d'une approximation théorique à 10^{-9} près de $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n+1)!}$

On a $\left| \frac{u_{n+1}}{u_n} \right| = \dots = \frac{(n+1)^2}{(2n+3)(2n+1)} \xrightarrow[n \to \infty]{} \frac{1}{4}$ (théorème à la limite, non utilisable).

En étudiant la fonction $f: x \longmapsto \frac{(x+1)^2}{(2x+3)(2x+1)}$, on constate que f est positive, décroissante à

partir d'au moins n = 1, et pour $n \ge n_0 = 5$ (par exemple), on a $0 \le f(n) \le k = \frac{3}{11} < 1$

$$\forall n \geqslant n_0 = 5 , \ 0 \leqslant |R_n| = \left| \sum_{p=n+1}^{\infty} u_p \right| \leqslant |u_{n+1}| \frac{1}{1-k} = \frac{\left((n+1)! \right)^2}{(2n+3)!} \frac{11}{8}$$

Pour avoir $|R_n| \le 10^{-9}$, il suffit de prendre $n \ge 5$ tel que $\frac{((n+1)!)^2}{(2n+3)!} \frac{11}{8} \le 10^{-9}$. n = 14 convient.

$$\sum_{p=0}^{14} \frac{(p!)^2}{(2p+1)!}$$
 est une approximation (théorique), à 10^{-9} près, de
$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n+1)!}$$

9.2.6 Séries alternées : utilisation du théorème "Critère spécial"

Lorsqu'une série alternée vérifie, à partir de $n = n_0$, toutes les hypothèses du théorème spécial, on a :

$$\forall n \geqslant n_0, |R_n| \leqslant |u_n|$$

Exemple 9.2.6.1. Calcul d'une approximation théorique à 10^{-7} près de $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}$

On a une série alternée,

- le terme général tends vers 0.
- $\left| \frac{u_{n+1}}{u_n} \right| = \frac{1}{(2n+3)(2n+2)} < 1 \text{ dès } n \geqslant n_0 = 1 \text{ et ainsi, dès } n \geqslant n_0 = 1, |u_{n+1}| < |u_n|.$

La série vérifie, à partir de $n = n_0 = 1$, toutes les hypothèses du théorème spécial, d'où

$$\forall n \geqslant n_0 = 1 , |R_n| \leqslant |u_n| = \frac{1}{(2n+1)!}$$

Pour avoir $|R_n| \le 10^{-7}$, il suffit de prendre $n \ge 1$ tel que $\frac{1}{(2n+1)!} \le 10^{-7}$. n=5 convient.

$$\sum_{k=0}^{5} \frac{(-1)^k}{(2k+1)!}$$
 est une approximation (théorique), à 10^{-7} près, de
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}$$

$$<$$
 \mathcal{FIN} $>$