1343 2

UNIVERSITÀ DI PISA

DIPARTIMENTO DI INGEGNERIA DELLA INFORMAZIONE

TEORIA DEI SEGNALI – 18/04/13

Esercizio 1. Si calcoli la trasformata di Fourier del segnale $x(t) = t \ rect \left(\frac{t}{T}\right)$.

Esercizio 2. Si calcoli l'energia del segnale $x(t) = \text{sinc}(2Bt)\cos(2\pi f_0 t)$ con $f_0 = 3B$ e $f_0 = B/4$.

Esercizio 3. Sia X una variabile aleatoria con densità di probabilità di Rayleigh data da $f_X(x) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right) u(x)$.

- 1) Si calcoli la funzione di distribuzione di X
- 2) Si supponga ora che X rappresenti il punto di atterraggio (in m) di un paracadutista dal centro di un'area bersaglio. Si ponga $\sigma^2 = 100$. Si calcoli la probabilità che il paracadutista atterri entro una distanza di 10 m dal centro dell'area bersaglio.
- 3) Si calcoli ora la stessa probabilità del punto 2 sapendo però che l'atterraggio avviene entro 50 m dal centro.

Esercizio 4. Sia Y(t)=X(t)+W(t), dove X(t)=A e A è una variabile aleatoria con media nulla e varianza σ_A^2 , mentre W(t) è rumore bianco in banda B indipendente da A e con potenza σ^2 .

- 1) Si dimostri che Y(t) è stazionario in senso lato;
- 2) Si calcoli la densità spettrale di potenza di Y(t).