БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Отчет по лабораторной работе №1 Тема: «Численное решение нелинейных уравнений»

Выполнил: Гаргома А.О.

Преподаватель: Горбачева Ю.Н.

Содержание

1	Постановка задачи				
2	Теория 2.1 Метод простой итерации решения нелинейных уравнений . 2.2 Вычислительный процесс метода Ньютона	1 1 2			
3	Листинг программы	3			
4	Результаты				
5	Выводы	8			

1 Постановка задачи

Решить уравнение f(x)=0 согласно своему варианту с точностью $\epsilon=10^{-7}$ методом простой итерации и методом Ньютона. Корень отделяем сначала графически, затем с помощью метода половинного деления до $\epsilon=10^{-2}$. Если корней несколько, то необходимо найти ближайший к началу координат. Провести сравнительный анализ полученных результатов.

$$f(x) = \ln(x+2) - x^2 (1)$$

2 Теория

2.1 Метод простой итерации решения нелинейных уравнений

Рассмотрим уравнение вида

$$f(x) = 0 (2)$$

где f — некоторая заданная функция, x - неизвестная величина. Пусть уравнение (2) каким-либо способом приведено к виду, пригодному для итерации:

$$x = \phi(x)$$

Будем считать, что корень x_{∞} отделен и указано некоторое начальное приближение x_0 . Тогда уточнение этого значения производят по правилу

$$x_{k+1} = \phi(x_k), k = 0, 1, \dots$$
 (3)

Формула (3) задаёт вычислительный процесс метода простой итерации решения нелинейных уравнений.

Теорема 1. Пусть функция $\phi(x)$ на отрезке $\Delta = x : |x - x_0| \le \beta$ имеет непрерывную производную и удовлетворяет условиям

$$|\phi'(x)| \le q < 1, x \in \Delta \tag{4}$$

$$|x_0 - \phi(x_0)| \le (1 - q)\delta$$

Тогда уравнение $x = \phi(x)$ имеет на отрезке Δ единственное решение, и последовательность (3) сходится к этому решению.

2.2 Вычислительный процесс метода Ньютона

Рассмотрим уравнение вида

$$f(x) = 0$$

где f - заданная функция, x - неизвестная числовая величина.

Предположим, что каким-либо способом получено приближение x_k к корню x_{∞} . Погрешность этого приближения обозначим через ϵ_k . При известном x_k поиск корня равносилен поиску погрешности ϵ_k . Имеем:

$$f(x_k + \epsilon_k) = 0 (5)$$

Рассмотрим разложение левой части уравнения (5) в ряд Тейлора, взяв в разложении два первых слагаемых:

$$f(x_k) + \epsilon_k f'(x_k) + O(\epsilon_k^2) = 0$$

Если считать величину ϵ_k небольшой по модулю и отбросить остаточный член $O(\epsilon_k^2)$, то получим приближенное равенство

$$f(x_k) + \epsilon_k * f'(x_k) \approx 0$$

из которого найдём некоторое приближение Δx_k значения ϵ_k :

$$\Delta x_k = -\frac{f(x_k)}{f'(x_k)}$$

Прибавив эту поправку Δx_k к x_k получим новое приближение:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0, 1, \dots$$
 (6)

Теорема 2. *Если:*

- 1) функция f(x) определена и дважды непрерывно дифференцируема на отрезке S_0 вещественной оси с концами в точках x_0 и x_0+2h_0 , где $h_0=-\frac{f(x_0)}{f'(x_0)}$, при этом на концах отрезка $S_0f(x)f'(x)\neq 0$
- 2) выполняется неравенство $2|h_0|M \le |f'(x_0)|$, где $M = \max x \in S_0|f''(x)|$, то 1) внутри отрезка S_0 единственный корень
- 2)последовательность приближений может быть построена по методу Ньютона, которая будет сходится к этому корню

3 Листинг программы

```
1 # coding: utf-8
2 import itertools as it
3 import sympy as sp
4 from math import *
5 import matplotlib.pylab as pl
6 import numpy as np
7 import scipy.optimize as opt
8 from tabulate import tabulate
10
11 def f(x):
      return log(x + 2) - x ** 2
14 from IPython.display import display, Markdown, Latex
16 # Локализация корня методом дихотомии
 def localize_root(func, a0, b0, epsilon):
      k = [0]
      a = [a0]
19
      b = [b0]
      f_a = [func(a0)]
    f_b = [func(b0)]
      med = [(a[-1] + b[-1]) / 2]
      f_{med} = [func(med[-1])]
      error = [abs(a0 - b0) / 2]
      while (error[-1] >= epsilon):
26
          if (f_med[-1] > 0):
27
               a.append(a[-1])
28
               b.append(med[-1])
          elif (f_med[-1] < 0):</pre>
```

```
b.append(b[-1])
31
               a.append(med[-1])
32
           else:
               break
34
           k.append(k[-1] + 1)
35
          f_a.append(func(a[-1]))
36
           f_b.append(func(b[-1]))
37
           med.append((a[-1] + b[-1]) / 2)
38
           f_med.append(func(med[-1]))
39
           error.append(abs(a[-1] - b[-1]) / 2)
      display(Markdown(tabulate([[', *, + column + ', *, for column
                                    ['k', 'a_k', 'b_k', 'f(a_k)',
42
       'f(b_k)', '\\frac{a_k+b_k}{2}', 'f(\\frac{a_k+b_k}{2})',
                                      '\\epsilon_k']],
43
                                   *list(zip(k, a, b, f_a, f_b,
44
     med, f_med, error))], headers='firstrow', tablefmt='pipe')
     ))
45
      return a[-1], b[-1]
46
47
48 delta = [-1, -0.5]
_{49} error = 10 ** -7
50 localization_error = 10 ** -2
a, b = localize_root(f, *delta, localization_error)
53
  t = sp.symbols('t')
54
55
56 def phi(t):
      return t + c * f(t)
58
60 def fsym(x):
      return sp.log(t + 2) - t ** 2
61
62
63
_{64} c = -0.3
deriv = sp.lambdify(t, sp.diff(t + c * fsym(t), t)) #
     производная \phi
x0 = (a + b) / 2
delta1 = abs(b - x0)
q = 0.45
abs(x0 - phi(x0)) \le (1 - q) * delta1
71 # Метод простых итераций
72 def im(a, b, x0, error):
      k = [0]
73
      result = [x0]
```

```
eps = [float('inf')]
75
      while (eps[-1] >= error):
76
           result.append(phi(result[-1]))
           eps.append(abs(result[-1] - result[-2]))
78
           k.append(k[-1] + 1)
79
      return k, result, eps
80
83 df = sp.lambdify(t, sp.diff(fsym(t), t))
85 # Метод Ньютона
  def newton(a, b, x0, error):
      k = [0]
87
      result = [x0]
      eps = [float('inf')]
      while (eps[-1] >= error):
90
           result.append(result[-1] - f(result[-1]) / df(result
      [-1]))
           eps.append(abs(result[-1] - result[-2]))
92
           k.append(k[-1] + 1)
93
      return k, result, eps
94
95
98 k1, res1, eps1 = im(a, b, x0, error)
99 k2, res2, eps2 = newton(a, b, x0, error)
print(tabulate([*list(it.zip_longest(k1, res1, eps1, res2,
     eps2, fillvalue='-'))], tablefmt='pipe', floatfmt='.9f'))
```

4 Результаты

Для отделения корня построим график функции. Будем находить корень $x \in [-1; -0.5]$ (графическое отделение)

Рис. 1: График функции f(x)

При помощи метода дихотомии, уточним значение корня до $\epsilon=10^{-2}.$

k	a_k	b_k	$f(a_k)$	$f(b_k)$	$\frac{a_k+b_k}{2}$	$f(\frac{a_k+b_k}{2})$	ϵ_k
0	-1	-0.5	-1	0.155465	-0.75	-0.339356	0.25
1	-0.75	-0.5	-0.339356	0.155465	-0.625	-0.0721713	0.125
2	-0.625	-0.5	-0.0721713	0.155465	-0.5625	0.0464992	0.0625
3	-0.625	-0.5625	-0.0721713	0.0464992	-0.59375	-0.0116125	0.03125
4	-0.59375	-0.5625	-0.0116125	0.0464992	-0.578125	0.0177479	0.015625
5	-0.59375	-0.578125	-0.0116125	0.0177479	-0.585938	0.00314401	0.0078125

Таблица 1: Метод половинного деления

Для уточнения значения корня до $\epsilon=10^{-7}$ воспользуемся методам простых итераций и методом Ньютона.

Метод простых итераций. Поскольку корень x_{∞} локализован на отрезке [-1;-0.5], то для функции $\phi(x)$ достаточно проверить выполнение условия (4).

Приведём функцию (1) к виду, пригодному для итераций:

$$\phi(x) = x + 0.3(\ln(x+2) - x^2)$$

Проверим выполнение условия (4):

$$\phi'(x) = 1 + \frac{0.3}{x+2} - 0.6 * x \tag{7}$$

Найдём максимум (7) на отрезке $x \in [-1; -0.5]$

$$\phi''(x) \neq 0, x \in [-1; -0.5]$$

$$\phi'(-1) = 0.43 \qquad \qquad \phi'(-0.5) = 0.44$$

Условие (4) выполняется \Rightarrow итерационный процесс метода простых итераций сходится.

Метод Ньютона. Возьмем начальное приближение $x_0 = -0.5859375$ Для применения (6) найдём f'(x), f''(x) и проверим условия теоремы 2:

$$f'(x) = \frac{1}{x+2} - 2x$$
$$f''(x) = -\frac{1}{(x+2)^2} - 2$$

Функция дважды непрерывно дифференцирумая на отрезке $[x_0; x_0+2h], h_0=-0.001673, M=-2.5024$

$$2 * 0.001673 * 2.5024 < 1.879 \equiv 0.00837 < 1.879$$

Следовательно можно построить итерационный процесс по методу Ньютона

k	Метод простой итерации		Метод Ньютона		
, r	x_k	ϵ_k	x_k	ϵ_k	
0	-0.5859375	∞	-0.5859375	∞	
1	-0.5868807	0.0009432	-0.5876106865525098	0.0016731865525098	
2	-0.5872919	0.0004112	-0.5876088279784095	1.8585741002885e-08	
3	-0.5874709	0.0001790	-0.5876088279761155	2.2940538357829e-10	
4	-0.5875488	0.0000779	_	-	
5	-0.5875827	0.0000339	-	-	
6	-0.5875975	0.0000147	-	-	
7	-0.5876039	0.0000064	_	-	
8	-0.5876067	0.0000028	-	-	
9	-0.5876079	0.0000012	_	-	
10	-0.5876084	0.0000005	_	-	
11	-0.5876087	0.0000002	_	-	
12	-0.5876088	0.0000001	-	-	

Таблица 2: Метод простой итерации и метод Ньютона

5 Выводы

Для решения нелинейных уравнений применяются метод Ньютона и метод простых итераций (МПИ), МПИ сходится со скоростью геометрической прогрессии со знаменателем ${\bf q}$, а метон Ньютона обладает квадратичной скоростью сходимости, что сразу заметно в Таблице 2