13.2_Sympy_and_Lineal_Algebra

December 2, 2014

Figure 1: BY-SA

 $Authors: Sonia Estrad\'e \\ Jos\'e M. G\'omez \\ Ricardo Graciani \\ Manuel L\'opez \\ Xavier Luri \\ Josep Sabater$

1 13.6 Symbolic linear algebra

Sympy implements operations with matrices and vectors, ie linear algebra. It provides a Matrix class equivalent to the numpy, but supporting symbolic items.

1.1 Creating Matrices

1.1.1 From a list

A Matrix object can be created from a list (or nested list):

When a \mathtt{Matrix} is created from a simple list, it produces a column vector. Like in numpy, sympy matrices can be reshaped.

As mentioned above, the members of a Matrix can also be any sympy Symbol.

1.1.2 Using the functions zeros(), ones(), eye(), diag()

Like in *numpy*, they produce a matrix full of zeros or ones, the identity matrix or a diagonal matrix.

$$\left(\begin{bmatrix}0 & 0 & 0\\0 & 0 & 0\end{bmatrix}, \begin{bmatrix}1 & 1\\1 & 1\\1 & 1\end{bmatrix}, \begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix}, \begin{bmatrix}1 & 0 & 0 & 0 & 0\\0 & 2 & 0 & 0 & 0\\0 & 0 & 3 & 0 & 0\\0 & 0 & 0 & 4 & 0\\0 & 0 & 0 & 0 & 5\end{bmatrix}\right)$$

sp.diag() also admits matrices as arguments, placing each of them diagonally, completing with zeros as needed:

```
In [6]: sp.diag( matrix, matrix0, matrix1, matrixI, matrixD )
Out[6]:
```

1.1.3 Using a function

The function should accept 2 arguments, row and column, and the matrix is filled with the values returned by the function.

1.2 Accesing the elements of a Matrix

The elements of Matrix objects can be access with [row, col] or [row range, col range], as used in vector slicing.

```
Out[8]:
In [9]: print( 'Element 1,2:', matrix[1,2])
          matrix[0:2,0:3]
Element 1,2: 4
Out [9]:
                                                     \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \end{bmatrix}
   Complete rows and columns can be accessed using the methods row() and col():
In [10]: import sympy as sp
            sp.init_printing()
            matrix = sp.Matrix([[1, -1, 0], [2, 3, 4], [0, 2, 7]])
            matrix
Out[10]:
                                                     \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 2 & 7 \end{bmatrix}
In [11]: matrix.row(1)
Out[11]:
                                                      \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}
In [12]: matrix.col(2)
Out[12]:
   Notice that they return a matrix object of the appropriate shape.
   The transposed matrix it is also easily accesible using the T data member of the object:
In [13]: matrix, matrix.T
```

Out[13]:

 $\left(\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 2 & 7 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 2 \\ 0 & 4 & 7 \end{bmatrix}\right)$

1.3 Basic operations

M,M**2, M**3

The basic operators +, -, *, /, ** are defined for Matrix objects as the usual matrix operations.

```
In [14]: import sympy as sp
                   sp.init_printing()
                   # Definim les matrius
                   M = sp.Matrix([[1, -1, 0], [2, 3, 4], [0, 2, 7]])
                   N = sp.Matrix([[5, 6, 2], [8, 7, 7], [5, 1, 1]])
                   print( 'M, N' )
                   M,N
M, N
Out[14]:

\left(\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 2 & 7 \end{bmatrix}, \begin{bmatrix} 5 & 6 & 2 \\ 8 & 7 & 7 \\ 5 & 1 & 1 \end{bmatrix}\right)

In [15]: # Addition and substraction
                   print( 'M+N, M-N')
                   M+N, M-N
M+N, M-N
Out[15]:

\left( \begin{bmatrix} 6 & 5 & 2 \\ 10 & 10 & 11 \\ 5 & 3 & 8 \end{bmatrix}, \begin{bmatrix} -4 & -7 & -2 \\ -6 & -4 & -3 \\ -5 & 1 & 6 \end{bmatrix} \right)

In [16]: # Product
                   print( 'M*N' )
                   M*N
M*N
Out[16]:
                                                                                  \begin{bmatrix} -3 & -1 & -5 \\ 54 & 37 & 29 \\ 51 & 21 & 21 \end{bmatrix}
In [17]: # Division (product by the inverse)
                   M/N, M*N.inv()
Out[17]:

\left(\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 2 & 7 \end{bmatrix} \left(\begin{bmatrix} 5 & 6 & 2 \\ 8 & 7 & 7 \\ 5 & 1 & 1 \end{bmatrix}\right)^{-1}, \begin{bmatrix} -\frac{1}{4} & \frac{1}{108} & \frac{47}{108} \\ -\frac{1}{4} & \frac{77}{108} & -\frac{53}{108} \\ -\frac{5}{4} & \frac{55}{22} & -\frac{422}{22} \end{bmatrix}\right)

In [18]: # Power
```

Out [18]:

$$\left(\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 2 & 7 \end{bmatrix}, \begin{bmatrix} -1 & -4 & -4 \\ 8 & 15 & 40 \\ 4 & 20 & 57 \end{bmatrix}, \begin{bmatrix} -9 & -19 & -44 \\ 38 & 117 & 340 \\ 44 & 170 & 479 \end{bmatrix}\right)$$

Important: Matrix operate as mathematical matrices, thus it is not possible to add (or substract) scalars. It must be done using an auxiliary ones() Matrix:

```
In [19]: # These operations are not allowed
    # M + 2
    # 3 - M

print( 'Adding or substracting a scalar: M + 2, 3 - M')
    M, M + 2 * sp.ones(M.rows, M.cols), 3 * sp.ones(M.rows, M.cols) - M
```

Adding or substracting a scalar: M + 2, 3 - M

Out [19]:

$$\left(\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 2 & 7 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 4 & 5 & 6 \\ 2 & 4 & 9 \end{bmatrix}, \begin{bmatrix} 2 & 4 & 3 \\ 1 & 0 & -1 \\ 3 & 1 & -4 \end{bmatrix}\right)$$

We have done all these examples with "numeric" matrices, but sympy operates in the same way with "symbolic" matrices.

Matrix M

Out [20]:

$$\begin{bmatrix} x & 2x & x \\ x^2 & 3 & 4 \\ x - 1 & x & x^3 \end{bmatrix}$$

In [21]: M**2

Out [21]:

$$\begin{bmatrix} 2x^3 + x^2 + x(x-1) & 3x^2 + 6x & x^4 + x^2 + 8x \\ x^3 + 3x^2 + 4x - 4 & 2x^3 + 4x + 9 & 5x^3 + 12 \\ x^3(x-1) + x^3 + x(x-1) & x^4 + 2x(x-1) + 3x & x^6 + x(x-1) + 4x \end{bmatrix}$$

sympy does not attempt to simplify the resulting expression, it can be instructed to do so using the method simplify():

Out [22]:

$$\begin{bmatrix} x (2x^2 + 2x - 1) & 3x (x + 2) & x (x^3 + x + 8) \\ x^3 + 3x^2 + 4x - 4 & 2x^3 + 4x + 9 & 5x^3 + 12 \\ x (x^3 + x - 1) & x (x^3 + 2x + 1) & x (x^5 + x + 3) \end{bmatrix}$$

In [23]: M**-1

Out[23]:

Out[24]:

$$\begin{bmatrix} \frac{-3x^2+4}{2x^5-4x^3-x+5} & \frac{x(2x^2-1)}{2x^5-4x^3-x+5} & -\frac{5}{2x^5-4x^3-x+5} \\ \frac{x^5-4x+4}{x(2x^5-4x^3-x+5)} & \frac{-x^3+x-1}{2x^5-4x^3-x+5} & \frac{-x^2+4}{2x^5-4x^3-x+5} \\ \frac{-x^3+3x-3}{x(2x^5-4x^3-x+5)} & \frac{-x+2}{2x^5-4x^3-x+5} & \frac{2x^2-3}{2x^5-4x^3-x+5} \end{bmatrix}$$

simplify() is a transformation of the Matrix object. It returns None and, if possible modifies the inplace the given Expression.

1.4 Other advanced operations

Apart from basic Matrix algebra sympyalso provide other advanced operations.

1.4.1 Transpose

The T data member of a Martrix object allows to access the transpose representation of a given matrix. Now for a symbolic matrix.

Transpose of M

Out [25]:

$$\left(\begin{bmatrix} x & 2x & 0 \\ 2 & x-1 & 4 \\ x+1 & 2 & 7 \end{bmatrix}, \begin{bmatrix} x & 2 & x+1 \\ 2x & x-1 & 2 \\ 0 & 4 & 7 \end{bmatrix} \right)$$

1.4.2 Determinant

The determinat of a Matrix can be calculated using the method det().

```
In [26]: import sympy as sp sp.init_printing()  \begin{array}{l} \text{sp.var("x")} \\ \text{M = sp.Matrix([[x, 2*x, 0], [2, x-1, 4], [x+1, 2, 7]])} \\ \text{print( "Determinant of M" )} \\ \text{M,M.det()} \\ \\ \text{Determinant of M} \\ \\ \text{Out[26]:} \\ \\ \begin{pmatrix} \begin{bmatrix} x & 2x & 0 \\ 2 & x-1 & 4 \\ x+1 & 2 & 7 \end{bmatrix}, & 15x^2-35x \end{pmatrix} \\ \end{array}
```

1.5 Generator vectors of the kernel

The nullspace() method provides a base of the kernel, subspace that solves the equation:

$$M \cdot v = 0$$

1.5.1 Eigenvalues and Eigenvectors

Matrix([[0], [0]])
Matrix([[0], [0]])

The method eignevals() returns a dictionary with the eigenvalues (keys) and their multiplicities (values). The full information, in the form of tuples, is returned by eigenvects(). Each item of the tuple includes: eigenvalue (λ), multiplicity and eigenvectors (v). These methods provide the solution to the equation:

$$M\cdot v=\lambda\cdot v$$

In [30]: M.eigenvects()

Out[30]:

$$\left[\begin{pmatrix} -2, & 1, & \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} \end{pmatrix}, & \begin{pmatrix} 3, & 1, & \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \end{pmatrix}, & \begin{pmatrix} 5, & 2, & \begin{bmatrix} 1\\1\\1\\0 \end{pmatrix}, & \begin{bmatrix} 0\\-1\\0\\1 \end{bmatrix} \end{pmatrix} \right] \right]$$

Matrix([[0], [-2], [-2]], [-2]]) = Matrix([[0], [-2], [-2], [-2]])
Matrix([[3], [3], [3], [3]]) = Matrix([[3], [3], [3], [3]])
Matrix([[5], [5], [5], [0]]) = Matrix([[5], [5], [5], [0]])
Matrix([[0], [-5], [0], [5]]) = Matrix([[0], [-5], [0], [5]])

1.5.2 Diagonalization

The method M.diagonalize() returns a tuple (P, D) that solves the equation:

$$M = P \times D \times P^{-1}$$

where D is a diagonal matrix with the eigenvalues of M.

Out[32]:

$$\begin{pmatrix}
\begin{bmatrix} 2 & x \\ x & 3 \end{bmatrix}, & \begin{bmatrix} -\frac{2x}{\sqrt{4x^2+1}-1} & \frac{2x}{\sqrt{4x^2+1}+1} \\ 1 & 1 \end{bmatrix}, & \begin{bmatrix} -\frac{1}{2}\sqrt{4x^2+1} + \frac{5}{2} & 0 \\ 0 & \frac{1}{2}\sqrt{4x^2+1} + \frac{5}{2} \end{bmatrix}, & \begin{bmatrix} -\frac{x}{\sqrt{4x^2+1}} & \frac{1}{2} - \frac{1}{2\sqrt{4x^2+1}} \\ \frac{x}{\sqrt{4x^2+1}} & \frac{1}{2} + \frac{1}{2\sqrt{4x^2+1}} \end{bmatrix} \end{pmatrix}$$

```
In [33]: P_M * D_M * invP_M
Out [33]:
 \begin{bmatrix} \frac{2x^2\left(-\frac{1}{2}\sqrt{4x^2+1}+\frac{5}{2}\right)}{\sqrt{4x^2+1}\left(\sqrt{4x^2+1}-1\right)} + \frac{2x^2\left(\frac{1}{2}\sqrt{4x^2+1}+\frac{5}{2}\right)}{\sqrt{4x^2+1}\left(\sqrt{4x^2+1}+1\right)} \\ -\frac{x}{\sqrt{4x^2+1}}\left(-\frac{1}{2}\sqrt{4x^2+1}+\frac{5}{2}\right) + \frac{x\left(\frac{1}{2}\sqrt{4x^2+1}+\frac{5}{2}\right)}{\sqrt{4x^2+1}} \end{bmatrix}
                                                                              -\frac{2x}{\sqrt{4x^2+1}-1}\left(\frac{1}{2}-\frac{1}{2\sqrt{4x^2+1}}\right)\left(-\frac{1}{2}\sqrt{4x^2+1}+\frac{5}{2}\right)+\frac{2x}{\sqrt{4x^2+1}+1}\left(\frac{1}{2}+\frac{1}{2\sqrt{4x^2+1}}\right)\left(-\frac{1}{2}\sqrt{4x^2+1}+\frac{5}{2}\right)
                                                                                               \left(\frac{1}{2} - \frac{1}{2\sqrt{4x^2+1}}\right)\left(-\frac{1}{2}\sqrt{4x^2+1} + \frac{5}{2}\right) + \left(\frac{1}{2} + \frac{1}{2\sqrt{4x^2+1}}\right)\left(\frac{1}{2}\sqrt{4x^2+1}\right)
In [34]: M_sol = P_M * D_M * invP_M
                 M_sol.simplify()
                 M_sol
Out[34]:
                                                                                 \begin{bmatrix} 2 & x \\ x & 3 \end{bmatrix}
1.5.3 Solving systems of equations
Given the system (same we used with numpy):
        x - y + z = 4
       2x + y - 3z = 1
       7x - y - 3z = 14
     Three different ways to solve this system:
In [35]: import sympy as sp
                 sp.init_printing()
                 sp.var("x, y, z")
                 expre1 = x - y + z - 4
                 expre2 = 2*x + y - 3*z - 1
                 expre3 = 7*x - y - 3*z - 14
                 sp.solve( [expre1, expre2, expre3] )
Out[35]:
                                                                  \left\{x: \frac{2z}{3} + \frac{5}{3}, \quad y: \frac{5z}{3} - \frac{7}{3}\right\}
In [36]: eq1 = sp.Eq(x - y + z, 4)
                 eq2 = sp.Eq(2*x + y - 3*z, 1)
                 eq3 = sp.Eq(7*x - y - 3*z, 14)
                 sp.solve([eq1, eq2, eq3])
Out [36]:
                                                                  \left\{x: \frac{2z}{3} + \frac{5}{3}, \quad y: \frac{5z}{3} - \frac{7}{3}\right\}
In [37]: M = sp.Matrix( [[1, -1, 1], [2, 1, -3], [7, -1, -3]] )
                 eq = sp.Eq(M * sp.Matrix([x,y,z]), sp.Matrix([4, 1, 14]))
In [38]: sp.solve(eq )
Out[38]:
                                                                \left[\left\{x: \frac{2z}{3} + \frac{5}{3}, \quad y: \frac{5z}{3} - \frac{7}{3}\right\}\right]
```