

4

ലോഹനിർമാണം

6210 കത്തെ മാറ്റി മറിച്ച കണ്ടെത്തലുകളിൽ ഏറ്റവും സുപ്രധാനമാണ് ലോഹത്തിന്റേത്. മാനവപു രോഗതിയുടെ ചരിത്ര വഴികളിൽ ലോഹയുഗങ്ങളായി തന്നെ ഇവ അടയാളപ്പെടുത്തിയിട്ടുണ്ട്. മൃഗ ങ്ങളെ വേട്ടയാടാനും ആഹാര സമ്പാദനത്തിനുമായി കൂർത്ത ശിലകളും മരക്കമ്പുകളും ഉപയോഗിച്ച സ്ഥാനത്ത് ലോഹ ഉപകരണങ്ങൾ വന്നതോടെ അധാനഭാരം ലഘൂകരിക്കപ്പെടുകയാണ് ചെയ്തത്. കാർഷികമേഖലയും വ്യാവസായിക മേഖലയും അഭിവൃദ്ധിപ്പെടാൻ ലോഹങ്ങൾ തന്നെയല്ലേ കാരണം? ആലോചിച്ചുനോക്കു.

മൊട്ടുസൂചി മുതൽ വിമാനം വരെയുള്ള ഉപകരണങ്ങൾ നിർമിക്കാൻ ഉപയോഗിക്കുന്ന ഇരുമ്പും നിതൃ ജീവിതത്തിൽ വിവിധ ആവശ്യങ്ങൾക്ക് ഉപയോഗിക്കുന്ന ചെമ്പും അലുമിനിയവുമൊക്കെ ചരിത്രഗതി മാറ്റിയ ലോഹങ്ങളാണ്. ആഭരണനിർമാണത്തിനുപയോഗിക്കുന്ന സ്വർണ്ണവും വെള്ളിയും പ്ലാറ്റിനവു മെല്ലാം ലോഹങ്ങളാണല്ലോ?

ഇവയെല്ലാം എങ്ങനെയാണ് പ്രകൃതിയിൽനിന്ന് വേർതിരിച്ചെടുക്കുകയെന്ന് നിങ്ങൾ ചിന്തിച്ചിട്ടുണ്ടോ? നേരിട്ട് ഉപയോഗിക്കാവുന്ന തരത്തിൽ പ്രകൃതിയിൽനിന്ന് ഇവ ലഭിക്കുമോ? നമുക്ക് പരിശോധിക്കാം. ഭൂവൽക്കത്തിൽ ക്രിയാശീലം കൂടിയ ലോഹങ്ങൾ അവയുടെ സംയുക്താവ സ്ഥയിലും ക്രിയാശീലം വളരെ കുറഞ്ഞവ (പ്ലാറ്റിനം, സർണം മുതലായവ) സ്വതന്ത്രാവസ്ഥയിലും കാണപ്പെടുന്നു. ഭൂവൽക്കത്തിൽ കാണപ്പെടുന്ന ലോഹ സംയുക്തങ്ങളെ പൊതുവെ ധാതുക്കൾ എന്നു വിളിക്കുന്നു. ഒരേ ലോഹം അടങ്ങിയ അനേകം ധാതുക്കളുണ്ടാകാം. ഉദാഹരണത്തിന് അലുമിനിയത്തിന്റെ ചില ധാതുക്കളാണ് ബോക്സൈറ്റ് ($Al_2O_3.2H_2O$), ക്രയോലൈറ്റ് (Na_3AlF_6), കളിമണ്ണ് ($Al_2O_3.2SiO_2.2H_2O$) എന്നിവ. പക്ഷേ എല്ലാ ധാതുക്കളെയും ലോഹങ്ങളുടെ വ്യാവസായിക നിർമാണത്തിന് ഉപയോഗിക്കാറില്ല.

ലോഹം വേർതിരിച്ചെടുക്കാൻ ഉപയോഗിക്കുന്ന ധാതുക്കൾക്ക് എന്തൊക്കെ പ്രത്യേകതകൾ ഉണ്ടായിരിക്കണം?

- സുലഭമായിരിക്കണം.
- എളുപ്പത്തിലും ചെലവ് കുറഞ്ഞ രീതിയിലും ലോഹം വേർതിരിച്ചെടു ക്കാവുന്നതാകണം.
- ലോഹത്തിന്റെ അംശം കൂടിയിരിക്കണം.

ഒരു ധാതുവിൽ നിന്ന് എളുപ്പത്തിലും വേഗത്തിലും ചെലവ് കുറഞ്ഞ രീതിയിലും ലോഹം വേർതിരിച്ചെടുക്കാൻ കഴിയുന്നുവെങ്കിൽ അതിനെ ആ ലോഹത്തിന്റെ **അയിര് (Ore)** എന്നു വിളിക്കാം.

അലുമിനിയത്തിന്റെ ധാതുക്കളിൽ ഈ പ്രത്യേകതകൾ ഉള്ളത് ബോക്സൈ റ്റിനാണ്. അതുകൊണ്ട് ബോക്സൈറ്റാണ് അലൂമിനിയത്തിന്റെ അയിര്. എല്ലാ അയിരുകളും ധാതുക്കളാണ്. എന്നാൽ എല്ലാ ധാതുക്കളും അയിരുകളാണോ?

ചില ലോഹങ്ങളും അവയുടെ അയിരുകളുടെ പേരും, രാസസൂത്രവും പട്ടിക രൂപത്തിൽ നൽകിയിരിക്കുന്നത് വിശകലനം ചെയ്ത് (പട്ടിക 4.1) ചുവടെ കൊടുത്തിരിക്കുന്നവ കണ്ടെത്തി രേഖപ്പെടുത്തുക.

ലോഹം	അയിരുകൾ	രാസസൂത്രം
അലുമിനിയം	ബോക്സൈറ്റ്	Al_2O_3 . $2H_2O$
അയൺ	ഹേമറ്റൈറ്റ് മാഗ്നറ്റൈറ്റ്	Fe ₂ O ₃ Fe ₃ O ₄
കോപ്പർ	കോപ്പർ പൈറൈറ്റ്സ് കുപ്രൈറ്റ്	CuFeS ₂ Cu ₂ O
സിങ്ക്	സിങ്ക് ബ്ലെൻഡ് കലാമിൻ	ZnS ZnCO ₃

പട്ടിക 4.1

- കലാമിൻ ഏതു ലോഹത്തിന്റെ അയിരാണ്?
- അലുമിനിയത്തിന്റെ അയിര് ഏത്?
- സൾഫൈഡ് അയിരുകൾ ഏതെല്ലാം ലോഹങ്ങൾക്കാണുളളത്?

ഒരു അയിരിൽ നിന്ന് ശുദ്ധ ലോഹം വേർതിരിക്കുന്നതുവരെയുള്ള മുഴുവൻ പ്രക്രിയകളും ചേർന്നതാണ് ലോഹനിഷ്കർഷണം (മെറ്റലർജി). ഇതിന് പ്രധാനമായും മൂന്നു ഘട്ടങ്ങളുണ്ട്.

I അയിരുകളുടെ സാന്ദ്രണം (Concentration of ores)

ഭൂവൽക്കത്തിൽ നിന്ന് ലഭിക്കുന്ന അയിരിൽ അടങ്ങിയ അപദ്രവ്യങ്ങളെ (ഗാങ്) നീക്കം ചെയ്യുന്ന പ്രക്രിയയാണ് അയിരിന്റെ സാന്ദ്രണം. അയിരിന്റെയും അപ ദ്രവ്യങ്ങളുടെയും സ്വഭാവമനുസരിച്ച് വിവിധ സാന്ദ്രണ രീതികളുണ്ട്.

1. ജലപ്രവാഹത്തിൽ കഴുകിയെടുക്കൽ (Levigation or hydraulic washing)

അപദ്രവ്യം സാന്ദ്രത കുറഞ്ഞതും അയിര് സാന്ദ്രത കൂടിയതുമാകു മ്പോൾ ഭാരം കുറഞ്ഞ അപ ദ്രവ്യങ്ങളെ ജലപ്രവാഹത്തിൽ കഴു കിമാറ്റുന്നു (ചിത്രം 4.1). ഉദാ: ഓക്സൈഡ് അയിരുകളുടെ സാന്ദ്ര ണം, സ്വർണത്തിന്റെ അയിരുകളുടെ സാന്ദ്രണം.

2. പ്ലവന പ്രക്രിയ (Froth floatation)

അപദ്രവ്യം സാന്ദ്രത കൂടിയതും അയിര് സാന്ദ്രത കുറഞ്ഞതുമാകു മ്പോഴാണ് ഈ പ്രക്രിയ ഉപയോഗി ക്കുന്നത് (ചിത്രം 4.2). പ്രധാനമായും സൾഫൈഡ് അയിരുകളെയാണ് ഈ മാർഗം ഉപയേഗിച്ച് സാന്ദ്രണം ചെയ്യു ന്നത്.

അയിര് + പൈൻ മാർഗം ഉ സ്റ്റിറർ ന്നത്.

കറങ്ങുന്ന പാഡിൽ

3. കാന്തികവിഭജനം (Magnetic separation)

അയിരിനോ അപ്യദവൃത്തിനോ ഏതെങ്കിലും ഒന്നിന് കാന്തിക സ്വഭാവമുണ്ടെങ്കിൽ സാന്ദ്രണം ചെയ്യാൻ ഈ മാർഗം ഉപയോഗിക്കാം (ചിത്രം 4.3). മാഗ്നറ്റെറ്റ് എന്ന ഇരുമ്പിന്റെ അയിരിനെ സാന്ദ്രണം ചെയ്യുന്നതിനും കാന്തികമല്ലാത്ത ടിന്നിന്റെ അയിരായ ടിൻ സ്റ്റോണിൽ (SnO_2) നിന്ന് കാന്തിക അപ്യദവ്യ മായ അയൺ ടംങ്സ്റ്റേറ്റിനെ നീക്കം ചെയ്യുന്നതിനും ഈ പ്രക്രിയ ഉപയോഗിക്കുന്നു.

ചിത്രം 4.3

വായു

64

4. ലീച്ചിങ് (Leaching)

അനുയോജ്യമായ ലായനിയിൽ അയിര് ചേർക്കുമ്പോൾ അത് രാസപ്ര വർത്തനത്തിൽ ഏർപ്പെട്ട് ലയിക്കുന്നു. ലയിക്കാത്ത അപദ്രവ്യങ്ങളെ അരി ച്ചുമാറ്റുന്നു. അരിച്ചുകിട്ടിയ ലായനിയിൽ നിന്ന് രാസപ്രക്രിയയിലൂടെ ശുദ്ധമായ അയിര് വേർതിരിക്കുന്നു. അലുമിനിയത്തിന്റെ അയിരായ ബോക്സൈറ്റ് ഈ രീതിയിലാണ് സാന്ദ്രണം ചെയ്യുന്നത്.

ലോഹ അയിരുകളുടെയും അവയിൽ അടങ്ങിയിരിക്കുന്ന മാലിനൃങ്ങളുടെയും ചില പ്രത്യേകതകൾ പട്ടികപ്പെടുത്തിയിരിക്കുന്നു. അനുയോജ്യമായ സാന്ദ്ര ണരീതി കണ്ടെത്തി പട്ടിക 4.2 പൂർത്തിയാക്കുക.

അയിരുകളുടെ പ്രത്വേകത	അയിരിൽ അടങ്ങിയ മാലിന്വങ്ങളുടെ പ്രത്യേകത	സ്വീകരിക്കാവുന്ന സാന്ദ്രണ രീതി
സാന്ദ്രത കൂടിയവ	സാന്ദ്രത കുറഞ്ഞവ	
കാന്തിക സ്വഭാവമുള്ളവ	കാന്തിക സ്വഭാവമില്ലാത്തവ	
സാന്ദ്രത കുറഞ്ഞ സൾഫൈഡ് അയി രുകൾ	സാന്ദ്രത കൂടിയവ	
ലായനിയിൽ ലയിക്കുന്ന അലുമിനിയം അയിരുകൾ	അതേ ലായനിയിൽ ലയിക്കാത്തവ	

പട്ടിക 4.2

ചുവടെ നൽകിയിരിക്കുന്ന അയിരുകൾക്ക് അനുയോജ്യമായ സാന്ദ്രണ രീതി പട്ടികപ്പെടുത്തുക.

അയിര്	സാന്ദ്രണരീതി
ടിൻസ്റ്റോൺ	
ബോക്സൈറ്റ്	
സിങ്ക് ബ്ലെൻഡ്	

പട്ടിക 4.3

II. സാന്ദ്രീകരിച്ച അയിരിൽനിന്ന് ലോഹത്തെ വേർതിരിക്കൽ (Extraction of metals from concentrated ore)

ഇതിന് സാധാരണയായി രണ്ടു ഘട്ടങ്ങളുണ്ട്.

- a) സാന്ദ്രീകരിച്ച അയിരിനെ ഓക്സൈഡ് ആക്കൽ
- b) ഓക്സൈഡാക്കിയ അയിരിന്റെ നിരോക്സീകരണം.

a) സാന്ദ്രീകരിച്ച അയിരിനെ ഓക്സൈഡാക്കൽ

- i) കാൽസിനേഷൻ (Calcination) : വായുവിന്റെ അസാന്നിധ്യത്തിൽ അയിരിനെ അതിന്റെ ദ്രവണാങ്കത്തേക്കാൾ കുറഞ്ഞ താപനില യിൽ ചൂടാക്കുന്ന പ്രക്രിയയാണ് കാൽസിനേഷൻ. ലോഹകാർബ ണേറ്റുകളും ഹൈഡ്രോക്സൈഡുകളും വിഘടിച്ച് ഓക്സൈഡായി മാറുന്നു.
- ii) റോസ്റ്റിങ് (Roasting) : വായുവിന്റെ സാന്നിധ്യത്തിൽ അയിരിനെ അതിന്റെ ദ്രവണാങ്കത്തേക്കാൾ കുറഞ്ഞ താപനിലയിൽ ചൂടാക്കുന്ന പ്രക്രിയയാണ് റോസ്റ്റിങ്.

സാന്ദ്രീകരിച്ച അയിരുകളെ റോസ്റ്റിങ്ങിന് വിധേയമാക്കുമ്പോൾ അവയിലെ ജലാംശം ബാഷ്പമായി പുറത്ത് പോകുന്നു. സൾഫൈഡ് അയിരുകൾ ഓക്സിജനുമായി ചേർന്ന് ഓക്സൈഡുകളായി മാറുന്നു. ഉദാ: $\mathrm{Cu}_2\mathrm{S}$ അയിര് റോസ്റ്റിങ് വഴി $\mathrm{Cu}_3\mathrm{O}$ ആക്കിമാറ്റുന്നു.

b) ഓക്സൈഡാക്കിയ അയിരിന്റെ നിരോക്സീകരണം

ഓക്സൈഡാക്കിയ അയിരിൽ നിന്ന് ലോഹം നിർമിക്കുന്ന പ്രവർത്തനം നിരോക്സീകരണമാണ്. അനുയോജ്യമായ നിരോക്സീകാരികൾ ഇതി നായി ഉപയോഗിക്കാം.

ലോഹങ്ങളുടെ ക്രിയാശീലത്തിന്റെ അടിസ്ഥാനത്തിൽ ലോഹനിർമാ ണവേളയിൽ വൈദ്യുതി, കാർബൺ, കാർബൺ മോണോക്സൈഡ് എന്നിവ നിരോക്സീകാരിയായി ഉപയോഗിക്കുന്നു.

ക്രിയാശീലം കൂടിയ സോഡിയം, പൊട്ടാസ്യം, കാൽസ്യം പോലുള്ള ലോഹങ്ങളെ അവയുടെ അയിരുകളിൽ നിന്ന് വേർതിരിക്കാൻ നിരോ ക്സീകാരിയായി വൈദ്യുതി ഉപയോഗിക്കുന്നു.

III. ലോഹശുദ്ധീകരണം (Refining of metals)

നിരോക്സീകരണം വഴി ലഭിക്കുന്ന ലോഹത്തിൽ മറ്റു ലോഹങ്ങളും ലോഹ ഓക്സൈഡുകളും ചെറിയ തോതിൽ ചില അലോഹങ്ങളും അപദ്രവൃങ്ങളായി കാണാറുണ്ട്. ഈ അപദ്രവൃങ്ങളെ നീക്കം ചെയ്ത് ശുദ്ധമായ ലോഹം നിർമിക്കുന്ന പ്രക്രിയയാണ് ലോഹശുദ്ധീകരണം.

ശുദ്ധീകരിക്കേണ്ട ലോഹങ്ങളുടെയും അവയിൽ അടങ്ങിയിരിക്കുന്ന മാലിനൃങ്ങളുടെയും സ്വഭാവം അടിസ്ഥാനമാക്കി ലോഹശുദ്ധീകരണ ത്തിന് വിവിധ മാർഗങ്ങൾ സ്വീകരിക്കുന്നു. ചില മാർഗങ്ങൾ ചുവടെ നൽകിയിരിക്കുന്നത് ശ്രദ്ധിക്കു.

a. ഉരുക്കി വേർതിരിക്കൽ (Liquation)

കുറഞ്ഞ ദ്രവണാങ്കമുള്ള ടിൻ, ലെഡ് എന്നീ ലോഹങ്ങളിൽ അപദ്രവ്യമായി ഉയർന്ന ദ്രവണാങ്കമുള്ള മറ്റു ലോഹങ്ങൾ, ലോഹ ഓക്സൈഡുകൾ തുടങ്ങിയവ ഉണ്ടായിരിക്കും. ഇത്തരം ലോഹങ്ങൾ ഫർണസിന്റെ ചരിഞ്ഞ പ്രതലത്തിൽ വച്ച് ചൂടാക്കുമ്പോൾ ശുദ്ധലോഹം അപദ്രവ്യങ്ങളിൽ നിന്ന് വേർതിരിഞ്ഞ് ഉരുകി താഴേക്ക് വരുന്നു (ചിത്രം 4.4). ഈ പ്രക്രിയയാണ് ഉരുക്കിവേർതിരിക്കൽ.

b. cmismo (Distillation)

താരതമ്യേന കുറഞ്ഞ തിളനിലയുള്ള ലോഹങ്ങളായ സിങ്ക്, കാഡ്മി യം, മെർക്കുറി എന്നിവ ശുദ്ധീകരിക്കുന്നതിന് ഈ രീതി ഉപയോഗിക്കുന്നു. അപദ്രവൃമടങ്ങിയ ലോഹം ഒരു റിട്ടോർട്ടിൽ വച്ച് ചൂടാക്കുമ്പോൾ ശുദ്ധലോഹം മാത്രം ബാഷ്പീകരിക്കുന്നു. ഈ ബാഷ്പം ഘനീഭവിച്ച് ശുദ്ധലോഹം ലഭിക്കുന്ന രീതിയാണ് സേദനം.

c. വൈദ്യുതവിശ്ലേഷണശുദ്ധീകരണം (Electrolytic refining)

ഒരു ചെറിയ കഷണം ശുദ്ധ ലോഹം നെഗറ്റീവ് ഇലക്ട്രോഡായും ശുദ്ധീകരിക്കേണ്ട അപദ്രവൃമടങ്ങിയ ലോഹം പോസിറ്റീവ് ഇലക്ട്രോ ഡായും ആ ലോഹത്തിന്റെ ലവണലായനി ഇലക്ട്രോലൈറ്റായും

എടുത്ത് വൈദ്യുതവിശ്ലേഷണത്തിലൂടെ ലോഹം ശുദ്ധീകരിക്കുന്ന പ്രക്രിയയാണ് വൈദ്യുതവിശ്ലേഷണ ശുദ്ധീകരണം. കോപ്പറിനെ ശുദ്ധീകരിക്കാൻ ഈ മാർഗം ഉപയോഗിക്കാം. കോപ്പറിന്റെ ശുദ്ധീകരണവുമായി ബന്ധപ്പെട്ട ചിത്രം ചുവടെ നൽകിയിരിക്കുന്നത് ശ്രദ്ധിക്കുക.

ചിത്രം 4.5

ചിത്രം നിരീക്ഷിച്ച് പട്ടിക പൂർത്തിയാക്കുക.

ആനോഡ്	
കാഥോഡ്	
ഇലക്ട്രോലൈറ്റ്	
ആനോഡിൽ നടക്കുന്ന രാസപ്ര വർത്തനത്തിന്റെ സമവാക്യം	
കാഥോഡിൽ നടക്കുന്ന രാസ പ്രവർത്തനത്തിന്റെ സമവാക്വം	

പട്ടിക 4.4

ഇരുമ്പിന്റെ വ്യാവസായിക നിർമാണം

അയണിന്റെ ധാതുക്കളാണ് ഹേമറ്റൈറ്റ്, മാഗ്നറ്റൈറ്റ്, അയൺ പൈറ്റൈറ്റ്സ് എന്നിവ. ഇവയിൽ അയണിന്റെ അയിരുകൾ ഏതെല്ലാം? അയൺ പെറൈറ്റ്സിനെ വിഡ്ഢികളുടെ സ്വർണം എന്നറിയപ്പെടാൻ കാരണമെന്തെന്ന് ചിന്തി ച്ചിട്ടുണ്ടോ? ഇതിന്റെ മഞ്ങിയ മഞ്ഞകലർന്ന ബ്രാസിന്റെ നിറം സ്വർണത്തോട് സാദൃശ്യം കാണിക്കുന്നതിനാലാണ് ഇതിനെ വിഡ്ഢികളുടെ സ്വർണം എന്ന റിയപ്പെടുന്നത്.

ഇരുമ്പ് വ്യാവസായികമായി നിർമിക്കുന്നത് പ്രധാനമായും ഹേമറ്റൈറ്റിൽ നിന്നാണ്. ഇതിൽനിന്നും സാന്ദ്രത കുറഞ്ഞ അപദ്രവൃങ്ങളെ ജലപ്രവാഹത്തിൽ കഴുകി മാറ്റുന്നു. കാന്തികവിഭജനത്തിലൂടെയും മാലിന്യങ്ങൾ നീക്കം ചെയ്യാം.

തുടർന്ന് ലഭിക്കുന്ന അയിരിനെ റോസ്റ്റിംഗിന് വിധേയമാക്കുന്നു. അപ്പോൾ അയിരിൽ അടങ്ങിയിരിക്കുന്ന മാലിന്യങ്ങളായ സൾഫർ, ആഴ്സനിക്, ഫോസ്ഫറസ് തുടങ്ങിയ മാലിന്യങ്ങളെ അവയുടെ ഓക്സൈഡുകളാക്കി വാതകരൂപത്തിൽ നീക്കം ചെയ്യുന്നു. ഇതോടൊപ്പം ജലാംശവും നീക്കം ചെയ്യപ്പെടുന്നു. എന്നാൽ അയിരിൽ കാണപ്പെടുന്ന ഗാങ് ആയ സിലിക്കൺ ഡൈ ഓക്സൈഡ് (സിലിക്ക) നീക്കം ചെയ്യപ്പെടുന്നില്ല.

ബ്ലാസ്റ്റ് ഫർണസ് എന്ന സംവിധാനം ഉപയോഗിച്ചാണ് ഹേമറ്റൈറ്റിനെ അയ ണാക്കി മാറ്റുന്നത്. ഈ ഫർണസിന്റെ അടിവശത്തുകൂടി ഉയർന്ന താപ നിലയിലുളള ശക്തമായ വായുപ്രവാഹം കടത്തിവിടുന്നു. അതിനാലാണ് ഈ ഫർണസിനെ ബ്ലാസ്റ്റ് ഫർണസ് എന്നുപറയുന്നത്. ഫർണസിന്റെ മുകൾവശത്തുള്ള പ്രത്യേക ക്രമീകരണത്തിലൂടെ ഹേമറ്റൈറ്റ്, ചുണ്ണാമ്പുകല്ല്, കോക്ക് എന്നിവ നിക്ഷേപിക്കുന്നു.

ബ്ലാസ്റ്റ് ഫർണസിന്റെ വിവിധഭാഗങ്ങളിൽ നടക്കുന്ന രാസപ്രവർത്തനങ്ങൾ പരിശോധിക്കുക.

ചിത്രം 4.6

$$C + O_2 \rightarrow CO_2 +$$
താപര $CO_2 + C +$ താവര $\rightarrow 2CO$

ഈ കാർബൺ മോണോക്സൈഡാണ് പ്രധാനമായും ഹേമ റൈറ്റിനെ നിരോക്സീകരിച്ച് അയണാക്കിമാറ്റുന്നത്.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_3$$

ഫർണസിലെ ഉയർന്ന താപനിലയിൽ കാൽസ്യം കാർബ ണേറ്റ് വിഘടിച്ച് കാൽസ്യം ഓക്സൈഡും കാർബൺ ഡൈഓക്സൈഡും ഉണ്ടാകുന്നു.

$$CaCO_3 \rightarrow CaO + CO_2$$

ഈ കാൽസ്യം ഓക്സൈഡ് (ഫ്ളക്സ്) അയിരിലെ SiO_2 (ഗാങ്) വുമായി പ്രവർത്തിച്ച് എളുപ്പത്തിൽ ഉരുകുന്ന കാൽസ്യം സിലിക്കേറ്റ് (സ്ലാഗ്) ആയി മാറുന്നു.

$${
m CaO} \ + \ {
m SiO}_2 \
ightarrow \ {
m CaSiO}_3$$

ഫ്ളക് + ഗാങ് സ്ലാഗ്

ഗാങിന് ആസിഡ് സ്വഭാവമാണെങ്കിൽ ബേസിക് സ്വഭാവമുള്ള ഫ്ളക്സ് ആയിരിക്കണം ഉപയോഗിക്കേണ്ടത്. ഗാങിന് ബേസിക് സ്വഭാവമാണെ ങ്കിൽ അസിഡിക് സ്വഭാവമുള്ള ഫ്ളക്സ് ആയിരിക്കണം ഉപയോഗി ക്കേണ്ടത്.

സാന്ദ്രത കുറഞ്ഞ ഉരുകിയ സ്ലാഗ് ഉരുകിയ ഇരുമ്പിനുമീതെ പൊങ്ങികിടക്കുന്നു. ഫർണസിൽ നിന്നും ഉരുകിയ രൂപത്തിൽ സ്ലാഗും അയണും പ്രത്യേകം പ്രത്യേകമായി പുറത്തെടുക്കുന്നു. ബ്ലാസ്റ്റ് ഫർണസിൽ നിന്നു ലഭിക്കുന്ന ഉരുകിയ അയണിൽ 4% കാർബണും മറ്റ് മാലിനൃങ്ങളായ മാംഗനീസ് സിലിക്കൺ, ഫോസ്ഫറസ് എന്നിവ അടങ്ങിയിട്ടുണ്ട്. ഇതിനെ പിഗ് അയൺ എന്നുവിളിക്കുന്നു.

അയണിന്റെ നിർമാണവുമായി ബന്ധപ്പെട്ട് ചുവടെ കൊടുത്തിരിക്കുന്ന പട്ടിക 4.5 പൂർത്തിയാക്കുക.

ഇരുമ്പിന്റെ അയിര്	
ബ്ലാസ്റ്റ് ഫർണസിലേക്ക് നിക്ഷേപി ക്കുന്ന അസംസ്കൃത പദാർഥങ്ങൾ	
ഹേമറ്റൈറ്റിനെ നിരോക്സീകരിക്കാൻ ഉപയോഗിക്കുന്ന പദാർഥം	
ഗാങ്	
ഫ്ളക്സ്	
സ്ലാഗ്	
സ്ലാഗ് രൂപീകരണ പ്രവർത്തനത്തിന്റെ സമവാക്യം	

പട്ടിക 4.5

വിവിധതരം അലോയ് സ്റ്റീലുകൾ

സ്റ്റീലിൽ മറ്റു ലോഹങ്ങൾ ചേർത്ത് അലോയ് സ്റ്റീൽ നിർമിക്കുന്നു. വിവിധതരം അലോയ് സ്റ്റീലുകളുടെ പേര്, അവയുടെ ഘടകങ്ങൾ, പ്രത്യേകത, ഉപയോഗം എന്നിവ പട്ടിക രൂപത്തിൽ (പട്ടിക 4.6) നൽകിയിരിക്കുന്നത് ശ്രദ്ധിക്കൂ. സ്റ്റീലി ന്റേതിൽ നിന്നും വൃതൃസ്ത സ്വഭാവം പുലർത്തുന്നവയാണ് അലോയ് സ്റ്റീലുകൾ.

അലോയ് സ്റ്റീലുകൾ	ഘടകങ്ങൾ	പ്രത്യേകത	ഉപയോഗം
സ്റ്റെയിൻലസ് സ്റ്റീൽ	Fe, Cr, Ni, C	ഉറപ്പുള്ളത്	പാത്രങ്ങൾ, വാഹനഭാഗങ്ങൾ ഇവ നിർമിക്കുന്നതിന്
തൽനിക്കോ അൽസിക്കോ	Fe, Al, Ni, Co	കാന്തിക സ്വഭാവം	— ം സ്ഥിരകാന്തങ്ങൾ നിർമിക്കുന്നതിന്
നിക്രോം	Fe, Ni, Cr, C	ഉയർന്ന പ്രതിരോധം	ഹീറ്റിങ് കോയിലുകൾ നിർമിക്കുന്നതിന്

പട്ടിക 4.6

- ഹീറ്റിങ് കോയിലുകൾ നിർമിക്കാൻ ഉപയോഗിക്കുന്ന അലോയ് സ്റ്റീൽ ഏത്? കാരണം വൃക്തമാക്കുക.
- സ്റ്റെയിൻലസ് സ്റ്റീൽ, നിക്രോം എന്നിവയിലെ ഘടകങ്ങൾ ഒന്നു തന്നെ യാണെങ്കിലും അവയുടെ ഗുണത്തിലെ വൃത്യാസത്തിന് കാരണം കണ്ടെത്തി രേഖപ്പെടുത്തുക.
- സ്ഥിരകാന്തങ്ങൾ നിർമിക്കാൻ ഉപയോഗിക്കുന്ന അലോയ് സ്റ്റീൽ ഏത്?

ഘടക മൂലകങ്ങൾ വ്യത്യാസപ്പെടുത്തിയും അവയുടെ അനുപാതം വ്യത്യാസപ്പെടുത്തിയും വിവിധതരം ലോഹസങ്കരങ്ങൾ നിർമി ക്കാം.

അലുമിനിയത്തിന്റെ നിർമാണം

അലുമിനിയത്തിന്റെ സവിശേഷതകൾ പ്രയോജനപ്പെടുത്തി നിതൃജീവിത ത്തിൽ നാം ഈ ലോഹത്തെ എങ്ങനെയെല്ലാം പ്രയോജനപ്പെടുത്തുന്ന തെന്ന് ചിന്തിച്ചിട്ടുണ്ടോ?

വൈദ്യുതി പ്രേഷണം ചെയ്യുന്നതിനും പാചകത്തിനുപയോഗിക്കുന്ന വിവി ധതരം പാത്രങ്ങൾ നിർമിക്കുന്നതിനും വാഹനങ്ങളുടെ ബോഡി ഭാഗങ്ങൾ നിർമിക്കുന്നതിനും റിഫ്ളക്ടറ്ററുകൾ നിർമിക്കുന്നതിനും മറ്റ് അനേകം ആവ ശൃങ്ങൾക്കും ഈ ലോഹം ഉപയോഗിക്കുന്നു. ഇത്തരത്തിലുള്ള ഉപയോ ഗങ്ങൾക്ക് ആധാരമായ ലോഹത്തിന്റെ സവിശേഷതകൾ പട്ടികപ്പെടുത്തൂ.

ഉപയോഗം	സവിശേഷത
വൈദ്യുതപ്രേഷണം	
പാചകപാത്രങ്ങൾ	
റിഫ്ളക്ടറ്ററുകൾ	

പട്ടിക 4.7

ആദ്യ കാലങ്ങളിൽ അലൂമിനിയം വേർതിരിച്ചെടുക്കുന്നതിന്റെ ചെലവ് വളരെ കൂടുതലായതിനാൽ ഇതിന് സ്വർണത്തെക്കാൾ വിലയായിരുന്നു. ഈ ലോഹത്തെ ഹാൾ-ഹെറൗൾട്ട് പ്രക്രിയയിലൂടെ സാധാരണക്കാരന്റെ ലോഹമാക്കി മാറ്റി.

അലുമിനിയത്തിന്റെ പ്രധാനപ്പെട്ട അയിരാണ് ബോക്സൈറ്റ്. രണ്ട് പ്രധാന ഘട്ടങ്ങളിലൂടെയാണ് അലൂമിനിയം വ്യാവസായികമായി നിർമിക്കുന്നത്. ബോക്സൈറ്റിന്റെ സാന്ദ്രണവും സാന്ദ്രീകരിച്ച അലൂമിനിയുടെ വൈദ്യുത വിശ്ലേഷണവുമാണ് പ്രധാനപ്പെട്ട ഘട്ടങ്ങൾ.

ബോക്സൈറ്റിന്റെ സാന്ദ്രണം

ബോക്സൈറ്റിന്റെ സാന്ദ്രണത്തിന് ഉപയോഗിക്കുന്ന മാർഗമാണ് ലീച്ചിങ്. അപദ്രവ്യങ്ങൾ അടങ്ങിയ ബോക്സൈറ്റ് ചൂടുള്ള ഗാഢ NaOH ലായനി യിൽ ചേർക്കുന്നു. ബോക്സൈറ്റ് സോഡിയം അലുമിനേറ്റായി മാറുന്നു. അപദ്രവ്യങ്ങളെ അരിച്ചു മാറ്റുന്നു. വളരെ കുറച്ച് പുതുതായി തയാറാക്കിയ അലുമിനിയം ഹൈഡ്രോക്സൈഡ് അവക്ഷിപ്തം ചേർത്ത് ജലമൊഴിച്ച് നേർപ്പിച്ച് കൂടുതൽ $Al(OH)_3$ അവക്ഷിപ്തപ്പെടുത്തുന്നു. ഈ അലുമിനിയം ഹൈഡ്രോക്സൈഡിൽ നിന്ന് എങ്ങനെ അലുമിന ലഭിക്കും? അവക്ഷിപ്തം വേർതിരിച്ച് നന്നായി കഴുകിയശേഷം ശക്തിയായി ചൂടാക്കുമ്പോൾ അലുമിന ലഭിക്കുന്നു.

ചാൾസ് മാർട്ടിൻ ഹാൾ (1863 - 1914)

പോൾ ഹെറൗൾട്ട് (1863 - 1914)

ബോക്സൈറ്റിന്റെ സാന്ദ്രണവുമായി ബന്ധപ്പെട്ട് ചുവടെ കൊടുത്തിരി ക്കുന്ന ഫ്ളോ ഡയഗ്രം പൂർത്തിയാക്കുക.

അലുമിനിയം ഹൈഡ്രോക്സൈഡ് ചൂടാക്കുമ്പോൾ നടക്കുന്ന പ്രവർത്തന ത്തിന്റെ രാസസമവാക്യം പൂർത്തിയാക്കൂ.

$$2Al(OH)_3 \rightarrow \dots + 3H_2O$$

അലുമിനയിൽനിന്ന് അലുമിനിയം വേർതിരിക്കുന്നതിന് ഏത് മാർഗം ഉപ യോഗിക്കാം? നിരോക്സീകാരിയായി കാർബൺ ഉപയോഗിക്കാൻ കഴിയുമോ എന്തുകൊണ്ട്?

അലുമിനിയത്തിന് ക്രിയാശീലം വളരെ കൂടുതലായതിനാൽ അലുമിനയെ വൈദ്യുതി ഉപയോഗിച്ച് നിരോക്സീകരിച്ചാണ് അലുമിനിയം നിർമിക്കുന്നത്.

അലൂമിനയുടെ വൈദ്യുതവിശ്ലേഷണം

സാന്ദ്രണത്തിലൂടെ ലഭിച്ച അലുമിനയിലേക്ക് (Al_2O_3) ഉരുകിയ ക്രയോലൈറ്റ് (Na_3AlF_6) ചേർത്ത് വൈദ്യുതവിശ്ലേഷണം നടത്തുന്നു. അലുമിനയുടെ ദ്രവണാങ്കം വളരെ കൂടു തലാണ്. ഇത് കുറയ്ക്കാനും വൈദ്യുതചാലകത വർധിപ്പിക്കാനും വേണ്ടിയാണ് അലു മിനയിൽ ക്രയോലൈറ്റ് ചേർക്കുന്നത്. വൈദ്യുതി കടത്തിവിടുമ്പോൾ നടക്കുന്ന പ്രവർത്തനങ്ങളുടെ രാസസമവാക്യം പരിശോധിക്കുക.

$$Al_2O_3 \rightarrow 2Al^{3+} + 3O^{2-}$$

 $Al^{3+} + 3e^- \rightarrow Al$

$$2O^{2-} \rightarrow O_2 + 4e^{-}$$

$$C + O_2 \rightarrow CO_2$$

• Al³+ അയോൺ ഏത് ഇലക്ട്രോഡിലേക്കാണ് നീങ്ങുന്നത്?

• ഓക്സൈഡ് അയോണോ?

അലുമിനയുടെ വൈദ്യുത വിശ്ലേഷണവുമായി ബന്ധപ്പെട്ട പട്ടിക പൂർത്തിയാക്കുക.

ആ നോഡ്	
കാഥോഡ്	
ഇലക്ട്രോലൈറ്റ്	
ആനോഡിൽ നടക്കുന്ന രാസപ്രവർത്തനത്തിന്റെ സമവാക്വം	
കാഥോഡിൽ നടക്കുന്ന രാസ പ്രവർത്തനത്തിന്റെ സമവാക്വം	

അൽനിക്കോ

പട്ടിക 4.8 **വിലയിരുത്താം**

- ചുവടെ നൽകിയിരിക്കുന്ന സന്ദർഭങ്ങളിൽ ലോഹങ്ങളുടെ ഏത് സവിശേഷതയാണ് പ്രയോജന പ്പെടുത്തിയിരിക്കുന്നത്?
 - ഭക്ഷണം പാകം ചെയ്യാൻ അലുമിനിയം പാത്രങ്ങൾ ഉപയോഗിക്കുന്നു.
 - പാത്രങ്ങൾ നിർമിക്കുന്നതിന് ചെമ്പ് ഉപയോഗിക്കുന്നു.
 - ആഭരണങ്ങളിൽ സ്വർണക്കമ്പികൾ ഉപയോഗിക്കുന്നു.
- 2. ലോഹം വേർതിരിക്കാൻ ധാതുക്കൾ തിരഞ്ഞെടുക്കുമ്പോൾ ശ്രദ്ധിക്കേണ്ട കാര്യങ്ങൾ എന്തെല്ലാം?
- 3. മെറ്റലർജിയിൽ ഉൾപ്പെട്ടിട്ടുള്ള വിവിധ ഘട്ടങ്ങൾ എഴുതുക.
- 4. ലോഹശുദ്ധീകരണത്തിന്റെ വിവിധ മാർഗങ്ങൾ ഏതെല്ലാം?
- 5. ഇരുമ്പ് വ്യാവസായികമായി നിർമിക്കുന്നതെങ്ങനെ?
- 6. താഴെ നൽകിയിരിക്കുന്നവയുടെ ഉപയോഗങ്ങൾ എഴുതുക.
 - 0 0 = 3, 0 0
- 7. ബോക്സൈറ്റിൽ നിന്ന് അലുമിന നിർമിക്കുന്ന പ്രക്രിയ വിശദമാക്കുക.

സ്റ്റെയിൻലസ് സ്റ്റീൽ

8. വൈദ്യുതവിശ്ലേഷണം വഴി അലുമിനയിൽ നിന്ന് ശുദ്ധമായ അലുമിനിയം വേർതിരിക്കുന്ന രീതി വിശദമാക്കുക. ഈ പ്രക്രിയയിൽ കാർബൺ ആനോഡുകൾ ഇടയ്ക്കിടയ്ക്ക് മാറ്റേണ്ടി

വരുന്നത് എന്തുകൊണ്ട്?

നിക്രോം

തുടർപ്രവർത്തനം

ഉരുകിയ ലോഹസംയുക്തങ്ങളിൽ നിന്ന് വൈദ്യുതവിശ്ലേഷണം വഴി ലോഹങ്ങൾ വേർതിരി ക്കാമല്ലോ?

Na, Ca, Mg എന്നീ ലോഹങ്ങൾ വേർതിരിക്കുന്നതെങ്ങനെയെന്ന് കണ്ടെത്തുക.