Árvores-B+

SCC-203 – Algoritmos e Estruturas de Dados II

Graça Nunes

Tipos de Acesso a Arquivos

- Alternativas (até o momento)
 - acesso indexado
 - arquivo pode ser visto como um conjunto de registros que são indexados por uma chave
 - acesso sequencial
 - arquivo pode ser acessado sequencialmente (i.e., registros fisicamente contínuos)
- Objetivo
 - arquivos devem suportar <u>acesso indexado eficiente</u>, e também <u>acesso sequencial</u>

Exemplo

- Arquivo indexado por um índice árvore-B
 - acesso indexado pela chave: desempenho excelente ©
 - acesso sequencial aos registros ordenados pela chave: desempenho péssimo ⁽³⁾
- Arquivo com registros ordenados pela chave
 - processamento sequencial (acessar todos registros): apropriado © (buferização)
 - processamento randômico: inapropriado ② logarítimico (ordem 2 – busca binária)

Meta

 Organizar um arquivo de modo que seja eficiente tanto para processamento sequencial quanto aleatório

Um Modelo Híbrido

 Arquivo de dados é organizado em blocos de tamanho fixo, de registros sequenciais, ordenados pelas chaves, e encadeados (Sequence Set)

Privilegiando o acesso sequencial

bloco 1	ADAMS	 BAIRD	 BIXBY	 BOONE	
bloco 2	BYNUM	 CART	 COLE	 DAVES	
bloco 3	DENVER	 ELLIS			

Um Modelo Híbrido

- Arquivo de índices é organizado como uma Árvore-B, cujas folhas são os blocos de registros sequenciais
 - Privilegiando busca aleatória

 Páginas não folhas contêm chaves ou partes de chaves separadoras para os filhos

Árvore-B+ de prefixos simples

Árvores-B+

- Todas as chaves estão apenas nas páginas folhas;
- As páginas não folhas abrigam apenas <u>separadores</u> de chaves (<u>prefixos</u> mínimos de tamanhos variáveis, para economizar espaço);
- As páginas folhas consistem de blocos sequenciais e ordenados dos registros de dados
- As páginas folhas são encadeadas de modo que possam ser acessadas independentemente da árvore

Índice Simples (Tabela)

- Se todos os índices couberem na RAM, uma tabela poderia substituir a Árvore-B:
 - Busca binária (adaptada) para encontrar a chave

ļ						
	ADAMS-BERNE	BOLEN-CAGE	CAMP-DUTTON	EMBRY-EVANS	FABER-FOLK	FOLKS-GADIS
Į	1	2	3	4	5	6

chave	bloco			
BERNE	1			
CAGE	2			
DUTTON	3			
EVANS	4			
FOLK	5			
GADIS	6			

<u>Índice de 1 nível</u>

- registros de tamanho fixo
- contém a chave do último registro no bloco

Sequence Set

 Registros ordenados fisicamente pela chave (sequence set)

Organizados como blocos de registros

um bloco consiste na unidade básica de entrada e saída e deve ter seu tamanho determinado pelo tamanho do *buffer-pool*

Uso de Blocos

Características

- o conteúdo de cada bloco está ordenado, e pode ser recuperado em um acesso
- cada bloco mantém um 'ponteiro' para o bloco antecessor e um 'ponteiro' para o bloco sucessor
- blocos logicamente adjacentes não estão (necessariamente) fisicamente adjacentes
- Garante <u>acesso sequencial ao arquivo</u>

Problema 1

 Inserção de registros pode provocar overflow em um bloco

Solução

- dividir o bloco, em um processo análogo ao realizado em árvores-B
- passos
 - divide os registros entre os dois blocos
 - rearranja os ponteiros

não existe promoção!

Problema 2

 Remoção de registros pode provocar underflow em um bloco

Solução

- concatenar o bloco com o seu antecessor ou sucessor na sequência lógica
- redistribuir os registros, movendo-os entre blocos logicamente adjacentes

Exemplo: Inserção de CARTER

bloco 1	ADAMS	 BAIRD	 BIXBY	 BOONE	 Ь
bloco 2	BYNUM	 CART	 COLE	 DAVES	
bloco 3	DENVER	 ELLIS			}
bloco 1	ADAMS	 BAIRD	 BIXBY	 BOONE	
bloco 2	BYNUM	 CART	 CARTER		
bloco 3	DENVER	 ELLIS			-
bloco 4	COLE	 DAVIS			

Exemplo: Remoção de DAVIS

bloco 1	ADAMS	 BAIRD		BIXBY	 BOONE	 Ы
bloco 2	BYNUM	 CART		CARTER		
bloco 3	DENVER	 ELLIS				
bloco 4	COLE	 DAVIS				
bloco 1	ADAMS	 BAIRD		BIXBY	 BOONE	 Н
bloco 2	BYNUM	 CART		CARTER		
bloco 3		disponíve	l para	uso]
bloco 4	COLE	 DENVER		ELLIS		

Uso de Blocos

- Custos associados
 - devido à fragmentação gerada pelas inserções, o arquivo pode ocupar mais espaço do que um arquivo ordenado comum
 - melhorias incluem redistribuição antes do particionamento, split 2-to-3, etc.

 a ordem física dos registros não é necessariamente sequencial ao longo do arquivo

Index Set (Árvore-B)

 Para localizar eficientemente um bloco com um registro particular, dada a chave do registro

 Ao invés de chaves, prefixos de chaves (de tamanho variável) compõem as páginas não folhas das árvore-B

Separadores

- Características
 - são mantidos no índice, ao invés das chaves de busca
 - possuem tamanho variável
- Exemplo

Separadores

Desafio

escolher o menor separador para utilizar no índice

Tabela de decisão

chave de busca x separador	decisão
chave < separador	procure à esquerda
chave = separador	procure à direita
chave > separador	procure à direita

Separadores

Programa para gerar separadores mínimos

```
iditima chave do prefixo separador de um bloco próximo bloco gerado

find_sep(char key1[], char key2[], char sep[]) {
  while ( (*sep++ = *key2++) == *key1++);
  *sep='\0';
}
```

 Pode acontecer de o separador mínimo ser uma chave inteira

Árvore-B+

- Estrutura híbrida
 - chaves
 - organizadas como árvore-B (i.e., index set)
 - nós folhas
 - consistem em blocos de sequence set
- Árvores-B+ de prefixos simples
 - armazena na árvore as <u>cadeias separadoras mínimas</u> entre cada par de blocos
 - usar separadores mínimos faz com que os nós possam ser maiores
 - Necessidade de maior controle do tamanho do nó e de onde começa e termina cada cadeia separadora

Árvore-B+ de prefixos simples

Manutenção

- Cenários
 - inserção
 - remoção
 - overflow
 - underflow

- Efeitos colaterais
 - sequence set
 - árvore-B+

Remoção de EMBRY

Remoção de EMBRY

- Efeito no sequence set
 - limitado a alterações no bloco 4

Remoção de EMBRY

- Efeito na árvore-B+
 - nenhum: 'E' é uma boa chave separadora

Remoção de FOLKS

Remoção de FOLKS

- Efeito no sequence set
 - limitado a alterações no bloco 6

Remoção de FOLKS

- Efeito na árvore-B+
 - nenhum: custos elevados se fosse arrumar

Inserção de EATON

Inserção de EATON

- Efeito no sequence set
 - limitado a alterações no bloco 4

Inserção de EATON

- Efeito na árvore-B+
 - nenhum: 'E' ainda é uma boa chave separadora

Inserção de AVERY

Inserção de AVERY

- Efeito no sequence set
 - dados do bloco 1 + AVERY distribuídos entre os blocos 1 e 7

Inserção de AVERY

- Efeito na árvore-B+
 - Criação e promoção de separador adicional AY;
 - Overflow; splitting e promoção de BO

Remoção de CAEL

Remoção de CAEL

- Efeito no sequence set
 - concatenação dos blocos 2 e 3

Remoção de CAEL

- Efeito na árvore-B+
 - remoção de CAM e concatenação de nós

Inserção e Remoção

Primeiro passo: Sequence Set

inserir ou remover o dado

- tratar, caso necessário
 - split
 - concatenação
 - redistribuição

alterações são sempre realizadas a partir do arquivo de dados

Inserção e Remoção

- Segundo passo: Árvore-B+
 - se split no sequence set
 inserir um novo separador no índice

 se concatenação no sequence set remover um separador do índice

se distribuição no sequence set
 alterar o valor do separador no índice

Observações Adicionais

Tamanho físico de um nó no índice (i.e., árvore-B+) Tamanho físico de um bloco no sequence set

- Escolha direcionada pelos mesmos quesitos
 - tamanho do bloco
 - características do disco
 - quantidade de memória disponível

Observações Adicionais

Tamanho físico de um nó no índice um bloco no (i.e., árvore-B+) Tamanho físico de um bloco no sequence set

- Facilidade para a <u>implementação da</u> <u>árvore-B+ virtual</u>
 - Várias páginas em RAM

Observações Adicionais

Tamanho físico de um nó no índice um bloco no (i.e., árvore-B+) Tamanho físico de um bloco no sequence set

- Uso de um mesmo arquivo para armazenar os blocos do índice e os blocos do sequence set
 - evita seeks entre dois arquivos separados

Exercícios de Árvore-B+

Características

- Árvore-B+ (index set)
 - ordem: 3

- Blocos (sequence set)
 - número máximo de registros: 4
 - número mínimo de registros: 2
 - underflow: 1 registro

Exercícios

Quais os separadores dos sequence sets?

- 2. Construa a árvore-B+
- 3. Realize as seguintes operações
 - a) inserção de CARTER
 - b) inserção de DRAG
 - c) remoção de BIXBY
 - d) remoção de COLE

1. Quais os separadores dos *sequence sets*?

bloco 1	ADAMS	 BAIRD	 BIXBY	 BOONE	 \mathbb{H}
bloco 2	BYNUM	 CART	 COLE	 DAVES	
bloco 3	DENVER	 ELLIS	 FOLK	 FRANK]

BY DE

2. Construa a árvore-B+

3. inserção de CARTER

3. inserção de DRAG

3. remoção de BIXBY

3. remoção de COLE

