Statistics Review

Ricson

July 12, 2017

Contents

1	Probability Theory				
	1.1	Conjugate Priors	4		
	1.2	Basic manipulations of Multivariate Gaussians	4		
	1.3	Extremal Value Distributions			
2	Info	ormation Theory	4		
	2.1	Basics	4		
	2.2	KL Divergence			
	2.3	Fisher Information Matrix	4		
3	Lin	ear Algebra	4		
	3.1	Identities	4		
	3.2	Singular Value Decomposition	4		
	3.3	Principle Component Analysis	4		
4	Pro	babilistic Graphical Models	4		
		Viterbi and Forward Backward Algorithm	4		
	4.2	Message Passing and Loopy Belief Propagation			
	4.3	Efficient Inference in Dense Gaussian CRFS			
5	Lin	ear and Nonlinear Bayesian Models	7		
	5.1	Bayesian Linear Regression	7		
		5.1.1 Evidence Approximation			
	5.2	Bayesian Logistic Regression			
	~ · -	5.2.1 Laplace Approximation	7		

	5.3	Spline and Wavelet Bases				
	5.4	Bayesian Neural Networks				
6	App	roximate Inference 7				
	6.1	Expectation Maximization				
	6.2	Variational Inference				
7	Sampling Algorithms 7					
	7.1	Importance Sampling				
	7.2	Monte Carlo Markov Chain				
	-	7.2.1 Metropolis Hastings				
		7.2.2 Reversible Jump MCMC				
	7.3	Gibbs Sampling				
8	Opt	imization 7				
	8.1	Lagrange Multipliers				
	8.2	Lagrangian Duality				
	8.3	KKT Conditions				
	8.4	SGD Variants				
	8.5	BADMM Algorithm				
9	Reir	nforcement Learning 7				
	9.1	Optimal Control				
	· -	9.1.1 LQR				
		9.1.2 MPC and ILQR				
		9.1.3 Stochastic Optimal Control				
	9.2	Policy Gradients				
	9.3	Natural Policy Gradients				
	9.4	Trust Region Policy Optimization				
	9.5	Guided Policy Search				
	9.6	End to End Deep Visuomotor Policies				
		•				
10		ral Networks 7				
		Variational Autoencoders				
	10.2	Architectures				
		10.2.1 Neural Turing Machine				
		10.2.2 Neural GPU				
		10.2.3 Crid I STM 7				

11	Miscellaneous					
	11.1	Matrix Differentials				
	11.2	Calculus of Variations				
	11.3	Echo State Networks				
	11.4	Gumbel Trick				
	11.5	Support Vector Machines				
	11.6	Gaussian Processes				
	11.7	Independent Component Analysis				

1 Probability Theory

- 1.1 Conjugate Priors
- 1.2 Basic manipulations of Multivariate Gaussians
- 1.3 Extremal Value Distributions
- 2 Information Theory
- 2.1 Basics
- 2.2 KL Divergence
- 2.3 Fisher Information Matrix
- 3 Linear Algebra
- 3.1 Identities
- 3.2 Singular Value Decomposition
- 3.3 Principle Component Analysis

4 Probabilistic Graphical Models

4.1 Viterbi and Forward Backward Algorithm

The key to deriving the forward backward algorithm for the linear-chain CRF is to realize that there is no fundamental difference between HMM and CRF. The likelihood of a linear-chain CRF is defined to be the product of all the potentials. But before we get mixed up in math here: o_i denotes observation and x_i denotes the hidden state.

$$P(\mathbf{x}) = \prod_{i} \phi(x_i) \prod_{i,i+1} \phi(x_i, x_{i+1})$$

On the other hand, the likelihood of the equivalent HMM model is the following:

$$P(x) = \prod_{i} P(o_i|x_i)P(x_i|x_{i+1})$$

Note this product is incorrect when i = n, but let's ignore that.

Now if you squint really closely, you're realize that these two equations are actually the same thing. We can just replace $P(o_i|x_i)$ with $\phi(x_i)$ and $P(x_i|x_{i+1})$ with $\phi(x_i,x_{i+1})$. So it suffices to solve inference on the general setting of CRFs. However, we'll start on HMMs simply to avoid a bit of headaches.

We want to solve for $P(x_k|\mathbf{o})$. The key is the following manipulation:

$$P(x_k|\mathbf{o}) = \frac{P(\mathbf{o}|x_k)p(x_k)}{P(\mathbf{o})}$$

$$\propto P(\mathbf{o}|x_k)p(x_k)$$

$$= P(\mathbf{o}_{1:k}|x_k)P(\mathbf{o}_{k+1:n}|x_k)P(x_k)$$

Let's take that second term and apply Bayes' Theorem again

$$P(\mathbf{o}_{k+1:n}|x_k) = \frac{P(x_k|\mathbf{o}_{k+1:n})P(\mathbf{o}_{k+1:n})}{P(x_k)}$$
$$\propto \frac{P(x_k|\mathbf{o}_{k+1:n})}{P(x_k)}$$

And substitute it back in...

$$P(\mathbf{o}_{1:k}|x_k)P(\mathbf{o}_{k+1:n}|x_k)P(x_k) = P(\mathbf{o}_{1:k}|x_k)\frac{P(x_k|\mathbf{o}_{k+1:n})}{P(x_k)}P(x_k)$$
$$= P(\mathbf{o}_{1:k}|x_k)P(x_k|\mathbf{o}_{k+1:n})$$

So now we just need to figure out how to compute $P(\mathbf{o}_{1:k}|x_k)$ and $P(x_k|o_{k+1:n})$

- 4.2 Message Passing and Loopy Belief Propagation
- 4.3 Efficient Inference in Dense Gaussian CRFS
- 5 Linear and Nonlinear Bayesian Models
- 5.1 Bayesian Linear Regression
- 5.1.1 Evidence Approximation
- 5.2 Bayesian Logistic Regression
- 5.2.1 Laplace Approximation
- 5.3 Spline and Wavelet Bases
- 5.4 Bayesian Neural Networks
- 6 Approximate Inference
- 6.1 Expectation Maximization
- 6.2 Variational Inference
- 7 Sampling Algorithms
- 7.1 Importance Sampling
- 7.2 Monte Carlo Markov Chain
- 7.2.1 Metropolis Hastings
- 7.2.2 Reversible Jump MCMC
- 7.3 Gibbs Sampling
- 8 Optimization
- 8.1 Lagrange Multipliers
- 8.2 Lagrangian Duality
- 8.3 KKT Conditions
- 8.4 SGD Variants
- 8.5 BADMM Algorithm
- 9 Reinforcement Learning

7