EE669: VLSI Technology

Dopant Diffusion in Silicon

Anil Kottantharayil, Professor, Department of EE, IIT Bombay

1

Diffusion examples

- Deposition of a glass containing high concentration of the dopant on the Si surface and subsequent high temperature "drive-in"
 - Phosphosilicate glass deposition on Si wafers from solid sources, by reaction with POCl₃ + O₂, or by reaction with H₃PO₄ + O₂
 - The glass has to be etched away subsequent to the drive-in process
- Implantation (deposition) of dopants into the semiconductor and subsequent high temperature annealing to remove implant damage, dopant activation, and some times intentional diffusion
- Deposition of doped silicon and diffusion during the deposition (epitaxial silicon) or during a subsequent anneal step (poly-Si emitter process for Bipolar Junction Transistor fabrication)
- Diffusion of dopants already present in silicon during any high temperature process (e.g.: oxide growth, epitaxial growth of low doped Si on heavily doped Si)

2024 Monsoon

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

Solid solubility

The maximum concentration of a dopant that can be dissolved in a semiconductor under equilibrium conditions without formation of separate phases.

J. D. Plummer, M. D. Deal, P. G. Griffin, Silicon VLSI Technology, Pearson Education, 2001

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil 2024 Monsoon

5

Solution for fixed dose condition

$$C(x,t) = \frac{Q}{2\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) = C(0,t) \exp\left(-\frac{x^2}{4Dt}\right)$$

Exercise: Prove that the equation given is a solution to the Fick's second law of diffusion.

$$C(x,t) = C(0,t) \exp\left(-\frac{x^2}{L_D^2}\right); \qquad L_D = 2\sqrt{D}$$

J. D. Plummer, M. D. Deal, P. G. Griffin, Silicon VLSI Technology, Pearson Education, 2001

2024 Monsoon

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

8

Diffusion theory: quick review

• Fick's first law of diffusion: $F = -D \frac{\partial C}{\partial x}$

 $D = D_0 e^{-E_a/k_B T}$ • Diffusion coefficient:

• Fick's second law of diffusion: $\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right)$

2024 Monsoon

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

Solution for fixed dose at the surface of the semiconductor (3)

$$C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) = C(0,t) \exp\left(-\frac{x^2}{4Dt}\right)$$

For example, phosphorous diffusion using POCl₃.

J. D. Plummer, M. D. Deal, P. G. Griffin, Silicon VLSI Technology, Pearson Education, 2001

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

9

2024 Monsoon

Exercise

Derive the solution for the diffusion equation for diffusion from an infinite source.

2024 Monsoon

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

10

10

Intrinsic diffusivities in Si

The dopant concentrations are low such that at the process temperature, the semiconductor can be considered intrinsic.

$$D = D_0 \exp\left(-\frac{E_A}{kT}\right)$$

	Si	В	In	As	Sb	Р	Units
D_0	560	1.0	1.2	9.17	4.58	4.7	cm ² s ⁻¹
E_A	4.76	3.5	3.5	3.99	3.88	3.68	eV

J. D. Plummer, M. D. Deal, P. G. Griffin, Silicon VLSI Technology, Pearson Education, 2001

2024 Monsoon

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

11

The concept of thermal budget

- The factor "Dt" is seen to appear together in the solutions we have worked out for diffusion.
- Suppose that the "Dt" is the same for two different diffusion processes conducted at two different temperatures, the two processes have same "thermal budget".
- The thermal budget of various processes (also other than diffusion) are important as any dopants already present in the semiconductor can diffuse during other high temperature processes.

Exercise:

- (1) For a fixed dose diffusion of Boron from a delta profile positioned at the center (along the thickness) of a silicon wafer, the following parameters are given: Q = 10¹⁵ cm⁻², T = 1000°C, t = 30 min. Plot the diffusion profile at the end of the diffusion. You may assume intrinsic diffusion.
- (2) In the above problem, supposing that the diffusion was carried out at 900°C with the same thermal budget, what was the duration of diffusion.

2024 Monsoon

EE669: Dopant Diffusion in Silicon; Anil Kottantharayil

13

