Results of the 2016 IEEE WCCI/CEC Competition on Niching Methods for Multimodal Optimization

M.G. Epitropakis¹, X. Li², and A. Engelbrecht³

¹Data Science Institute, Department of Management Science, Lancaster University, UK

²School of Computer Science and Information Technology, RMIT University, Australia

³Department of Computer Science, University of Pretoria, South Africa

IEEE Congress on Evolutionary Computation, Vancouver, Canada, July 25-29, 2016

Outline

- 1 Introduction
- Participants
- 3 Results
- 4 Winners
- 5 Summary

Introduction

- Many real-world problems are "multi-modal" by nature, i.e., multiple satisfactory solutions exist
- Niching methods: promote and maintain formation of multiple stable subpopulations within a single population
 - Aim: maintain diversity and locate multiple globally optimal solutions.
- Challenge: Find an efficient optimization algorithm, which
 is able to locate multiple global optimal solutions for
 multi-modal problems with various characteristics.

Competition: CEC 2013/2015/2016

Provide a common platform that encourages fair and easy comparisons across different niching algorithms.

X. Li, A. Engelbrecht, and M.G. Epitropakis, "Benchmark Functions for CEC'2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization", Technical Report, Evolutionary Computation and Machine Learning Group, RMIT University, Australia, 2013

- 20 benchmark multi-modal functions with different characteristics
- 5 accuracy levels: $\varepsilon \in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$
- The benchmark suite and the performance measures have been implemented in: C/C++, Java, MATLAB, (Python soon)

Benchmark function set

X. Li, A. Engelbrecht, and M.G. Epitropakis, "Benchmark Functions for CEC'2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization", Technical Report, Evolutionary Computation and Machine Learning Group, RMIT University, Australia, 2013

ld	Dim.	# GO	Name	Characteristics
$\overline{F_1}$	1	2	Five-Uneven-Peak Trap	Simple, deceptive
F_2	1	5	Equal Maxima	Simple
F_3	1	1	Uneven Decreasing Maxima	Simple
F_4	2	4	Himmelblau	Simple, non-scalable, non-symmetric
F_5	2	2	Six-Hump Camel Back	Simple, not-scalable, non-symmetric
$\overline{F_6}$	2,3	18,81	Shubert	Scalable, #optima increase with D,
				unevenly distributed grouped optima
F_7	2,3	36,216	Vincent	Scalable, #optima increase with D,
				unevenly distributed optima
F_8	2	12	Modified Rastrigin	Scalable, #optima independent from D,
				symmetric
$\overline{F_9}$	2	6	Composition Function 1	Scalable, separable, non-symmetric
F_{10}	2	8	Composition Function 2	Scalable, separable, non-symmetric
F_{11}	2,3,5,10	6	Composition Function 3	Scalable, non-separable, non-symmetric
F_{12}	2,3,5,10	8	Composition Function 4	Scalable, non-separable, non-symmetric

Measures:

Peak Ratio (PR) measures the average percentage of all known global optima found over multiple runs:

$$PR = \frac{\sum_{run=1}^{NR} \text{# of Global Optima}_i}{(\text{# of known Global Optima}) * (\text{# of runs})}$$

Who is the winner:

- The participant with the highest average Peak Ratio performance on all benchmarks wins.
- In all functions the following holds: the higher the PR value, the better

Participants

Submissions to the competition:

- (rlsis): Restarted Local Search with Improved Selection of Starting Points, Simon Wessing
- (rs-cmsa-es): Benchmarking Covariance Matrix Self Adaption Evolution Strategy with Repelling Subpopulations, Ali Ahrari, Kalyanmoy Deb and Mike Preuss
- (ascga): Adaptive species conserving genetic algorithm, Jian-Ping Li, Felician Campean
- (nea2+): Niching the CMA-ES via Nearest-Better Clustering: First Steps Towards an Improved Algorithm, Mike Preuss

Participants (2)

Implemented algorithms for comparisons:

- (CrowdingDE) Crowding Differential Evolution [7]
- (DE/nrand/1) Niching Differential Evolution algorithms with neighborhood mutation strategies [8]
- (dADE/nrand/1) A Dynamic Archive Niching Differential Evolution algorithm for Multimodal Optimization [9]
- (NEA2) Niching the CMA-ES via Nearest-Better Clustering [10]
- (NMMSO) Niching Migratory Multi-Swarm Optimiser [6]

In the repository: CMA-ES, IPOP-CMA-ES, DE/nrand/1,2, DECG, DELG, DELS-aj, CrowdingDE, dADE/nrand/1,2, NEA1, NEA2, N-VMO, PNA-NSGAII, A-NSGAII, ALNM, MEA, MSSPSO, LSEAGP, LSEAEA, NMMSO, etc

Results

Summary:

- 4 new search algorithms
- 5 classic comparators (based on CEC 2013, 2015)
- 20 multi-modal benchmark functions
- 5 accuracy levels $\varepsilon \in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$
- Results: per accuracy level & over all accuracy levels
- In total (CEC2013 & CEC2015) more than 21 algorithms in the repository:

https://github.com/mikeagn/CEC2013

Accuracy level $\varepsilon = 10^{-1}$

Accuracy level $\varepsilon = 10^{-2}$

Accuracy level $\varepsilon = 10^{-3}$

Accuracy level $\varepsilon = 10^{-4}$

Accuracy level $\varepsilon = 10^{-5}$

Performance per benchmark across all accuracy levels

Performance per algorithm

Overall performance (1)

Overall performance (2)

	Algorithm	Statistics				
		Mean	Median	St.D.	Rank	
16	ascga	0.604	0.657	0.348	7	
CEC2016	nea2+	0.810	0.819	0.190	3	
\Box	rlsis	0.802	0.872	0.225	4	
ਠ	rs-cmsa	0.856	0.974	0.174	1	
/5	NMMSO	0.822	0.988	0.253	2	
5	NEA2	0.794	0.851	0.233	5	
CEC2013/5	DE/nrand/1	0.580	0.639	0.333	8	
	dADE/nrand/1	0.738	0.748	0.301	6	
	CrowdingDE	0.573	0.666	0.361	9	

Overall performance: CEC2013 + 2015 + 2016

Algorithm	Statistics				
	Mean	Median	St.D.	Rank	
rs-cmsa	0.8566	0.9743	0.1746	1	
NMMSO	0.8221	0.9885	0.2538	2	
nea2+	0.8105	0.8193	0.1902	3	
rlsis	0.8027	0.8723	0.2250	4	
NEA2	0.7940	0.8513	0.2332	5	
LSEAEA	0.7477	0.9030	0.3236	6	
dADE/nrand/1	0.7383	0.7488	0.3010	7	
LSEAGP	0.7302	0.7900	0.3268	8	
CMA-ES	0.7137	0.7550	0.2807	9	
N-VMO	0.6983	0.7140	0.3307	10	
dADE/nrand/2	0.6931	0.7150	0.3174	11	
ALNM	0.6594	0.7920	0.3897	12	
PNA-NSGAII	0.6141	0.6660	0.3421	13	
NEA1	0.6117	0.6496	0.3280	14	
DE/nrand/2	0.6082	0.6667	0.3130	15	
ascga	0.6048	0.6575	0.3485	16	
DE/nrand/1	0.5809	0.6396	0.3338	17	
DELS-aj	0.5760	0.6667	0.3857	18	
CrowdingDE	0.5731	0.6667	0.3612	19	
DELG	0.5706	0.6667	0.3925	20	
DECG	0.5516	0.6567	0.3992	21	
IPOP-CMA-ES	0.3625	0.2600	0.3117	22	
MEA	0.3585	0.2075	0.3852	23	
A-NSGAII	0.3275	0.0740	0.4044	24	
MSSPSO	0.2188	0.0000	0.3913	25	

Winners

Ranking based on average PR values (only CEC2016)

- (rs-cmsa-es): Benchmarking Covariance Matrix Self Adaption Evolution Strategy with Repelling Subpopulations, Ali Ahrari, Kalyanmoy Deb and Mike Preuss
- (nea2+): Niching the CMA-ES via Nearest-Better Clustering: First Steps Towards an Improved Algorithm, Mike Preuss
- (rlsis): Restarted Local Search with Improved Selection of Starting Points, Simon Wessing
- (ascga): Adaptive species conserving genetic algorithm, Jian-Ping Li, Felician Campean

Note: The algorithms have not been fine-tuned for the specific benchmark suite!

Conclusions

Summary

- Four new search algorithms (in total 25 algorithms!)
- Winner: rs-cmsa-es: Benchmarking Covariance Matrix Self Adaption Evolution Strategy with Repelling Subpopulations, Ali Ahrari, Kalyanmoy Deb and Mike Preuss
 - Competitive on average performance, (CMA-ES, repelling strategy)
 - CMA-ES: Strong local searcher to accurately locate global optima
 - Repelling: To avoid wasting effort in already searched areas

Conclusions (2)

- The competition gave a boost to the multi-modal optimization community
- New competitive and very promising approaches

Key characteristics of the algorithms:

- Usage of local models to maintain diversity and exploit locally the neighborhoods
- Methodologies: repelling, restarts, surrogates
- Algorithms: CMA-ES, Evolutionary Algorithms, Multi-swarms. GAs.

Future Work

Possible objectives:

- Re-organize the competitions in future
- Enhance the benchmark function set
- Introduce new performance measures
- Further automate the experimental design and results output
- Boost multi-modal optimization community

Acknowledgment

We really want to thank for their help:

The participants :-)

Stay tuned!

- IEEE CIS Task Force on Multi-Modal Optimization
- http://www.epitropakis.co.uk/ieee-mmo/

(-: Thank you very much for your attention :-)

Questions ???

Michael G. Epitropakis: m.epitropakis@lancaster.ac.uk Xiaodong Li: xiaodong.li@rmit.edu.au Andries Engelbrecht: engel@driesie.cs.up.ac.za

References (not complete)

- An Active Learning Based Niching Method with Sequential Binary Probabilistic Classification and Class Split Threshold Updating, Yuqing Zhou and Kazuhiro Saitou, University of Michigan, Ann Arbor.
- [2] R. K. Ursem, "Multinational evolutionary algorithms," in Proceedings of the Congress on Evolutionary Computation, 1999, pp. 1633-1640.
- [3] J. Zhang, D.-S. Huang, and K.-H. Liu, "Multi-Sub-Swarm Optimization Algorithm for Multimodal Function Optimization," in IEEE Congress on Evolutionary Computation, 2007, pp. 3215-3220.
- [4] J. E. Fieldsend, "Multi-Modal Optimisation using a Localised Surrogates Assisted Evolutionary Algorithm," in UK Workshop on Computational Intelligence (UKCI 2013), 2013, pp. 88-95.
- [5] J. E. Fieldsend, "Using an adaptive collection of local evolutionary algorithms for multi-modal problems," Soft Computing, vol. Advance online publication. doi: 10.1007/s00500-014-1309-6, 2014.
- [6] J. E. Fieldsend, "Running Up Those Hills: Multi-Modal Search with the Niching Migratory Multi-Swarm Optimiser." in IEEE Congress on Evolutionary Computation, 2014, pp. 2593 - 2600.
- [7] R. Thomsen, "Multimodal optimization using crowding-based differential evolution," In the IEEE Congress on Evolutionary Computation, 2004. CEC2004, vol.2, pp. 1382-1389, 19-23 June, 2004
- [8] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, "Finding multiple global optima exploiting differential evolution's niching capability," in 2011 IEEE Symposium on Differential Evolution (SDE), April 2011, pp. 1-8.
- [9] M. G. Epitropakis, Li, X., and Burke, E. K., "A Dynamic Archive Niching Differential Evolution Algorithm for Multimodal Optimization", IEEE Congress on Evolutionary Computation, 2013. CEC 2013. Cancun, Mexico, pp. 79-86, 2013.
- [10] M. Preuss. "Niching the CMA-ES via nearest-better clustering." In Proceedings of the 12th annual conference companion on Genetic and evolutionary computation (GECCO '10). ACM, New York, NY, USA, pp. 1711-1718, 2010.