求解一类双线性规划问题的数值算法

答辩人: 胡雨宽 指导老师: 殷俊锋

同济大学数学科学学院

2019.6.4

提纲

- 11 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

提纲

- 1 引言
- ② 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

问题背景

最优运输问题 (Villani '08):

- 建立有效比较概率分布的几何工具.
- 极小化将一概率分布"运输"到另一概率分布的"花费".

Monge 问题

令 $P,Q \subset \mathbb{R}^d$. f 为 P 上的概率密度函数, g 为 Q 上的概率密度函数. $c: P \times Q \to [0,\infty)$ 为连续函数. Monge 问题

$$\inf_T M(T) := \int_P c(p, T(p)) f(p) \, \mathrm{d}p, \quad \text{s.t. } T \# f = g.$$

其中 T#f = g定义为

$$\int_{B} g(q) dq = \int_{T^{-1}(B)} f(p) dp, \quad \forall B \subset Q,$$

c可以看做是成本泛函.

问题背景 (续)

当 f, g 为离散概率分布函数:

•
$$P = \{p_1, \dots, p_m\}, Q = \{q_1, \dots, q_n\}.$$

• $\{f_1, \ldots, f_m\}, \{g_1, \ldots, g_n\}.$

(LP)
$$\begin{aligned} \min_{a_{ij}} & \sum_{i,j} c_{ij} a_{ij} \\ \text{s.t.} & \sum_{j} a_{ij} = f_i, \quad i = 1, \dots, m, \\ & \sum_{i} a_{ij} = g_j, \quad j = 1, \dots, n, \\ & a_{ij} \geq 0, \quad i = 1, \dots, m, j = 1, \dots, n, \end{aligned}$$

这里 $c_{ij} := c(p_i, q_i)$.

问题陈述

$$\min_{X,Y} \quad \sum_{i \neq j} \frac{x_{ij}}{|r_i - r_j|} + \sum_{i \neq k} \frac{y_{ik}}{|r_i - r_k|} + \sum_{i,j,k:j \neq k} \frac{x_{ij}y_{ik}}{|r_j - r_k|}$$
s.t.
$$\sum_{i} x_{ij} = \rho_i, \quad i = 1, \dots, n,$$

$$\sum_{i} x_{ij} = \rho_j, \quad j = 1, \dots, n,$$

$$\sum_{i} y_{ik} = \rho_i, \quad i = 1, \dots, n,$$

$$\sum_{i} y_{ik} = \rho_k, \quad i = 1, \dots, n,$$

$$x_{ij}, y_{ik} \ge 0, \quad i, j, k = 1, \dots, n,$$

$$x_{ii}, y_{ii} = 0, \quad i = 1, \dots, n,$$

$$x_{ii}, y_{ii} = 0, \quad i = 1, \dots, n,$$

其中 $X, Y \in \mathbb{R}^{n \times n}, r = (r_1, \dots, r_n)^T, \rho = (\rho_1, \dots, \rho_n)^T \in \mathbb{R}^n_+$. 将 $\{|r_i - r_j|\}$ 储存于 $R = (r_{ij}) \in \mathbb{R}^{n \times n}$, 其中

$$r_{ij} = \begin{cases} 1/|r_i - r_j|, & i \neq j, \\ 0, & i = j. \end{cases}$$

研究现状

角度 1 可分离约束的双线性规划. 广泛的应用 (Konno '71等).

已有方法:

- 割平面法 (Ritter '66等).
- 分支定界法 (Falk '73等).

角度 2 非凸二次规划.

已有方法 (Nocedal/Wright '06):

- 逐步二次规划 (SQP).
- 积极集法 (Active-set Methods).
- 内点法 (Interior-point Methods).
- . .

研究现状

角度 1 可分离约束的双线性规划. 广泛的应用 (Konno '71等).

已有方法:

- 割平面法 (Ritter '66等).
- 分支定界法 (Falk '73等).

角度 2 非凸二次规划。

已有方法 (Nocedal/Wright '06):

- 逐步二次规划 (SQP).
- 积极集法 (Active-set Methods).
- 内点法 (Interior-point Methods).
- ...

以上方法均以列向量为求解对象 ⇒计算量问题.

预备知识

标准矩阵内积

对 $\forall A, B \in \mathbb{R}^{n \times n}$, 定义

$$\langle A, B \rangle := \operatorname{tr}(A^T B) = \sum_{i,j} a_{ij} b_{ij}.$$

求导规则:

$$\frac{\mathrm{d}}{\mathrm{d}A}\langle A, B \rangle = B, \quad \frac{\mathrm{d}}{\mathrm{d}B}\langle A, B \rangle = A.$$

预备知识

标准矩阵内积

对 $\forall A, B \in \mathbb{R}^{n \times n}$, 定义

$$\langle A, B \rangle := \operatorname{tr}(A^T B) = \sum_{i,j} a_{ij} b_{ij}.$$

求导规则:

$$\frac{\mathrm{d}}{\mathrm{d}A}\langle A, B \rangle = B, \quad \frac{\mathrm{d}}{\mathrm{d}B}\langle A, B \rangle = A.$$

问题(1)即可化为矩阵形式:

$$\min_{X,Y} \quad \langle R, X \rangle + \langle R, Y \rangle + \langle Y, XR \rangle
\text{s.t.} \quad X\mathbf{1} = \rho, X^T \mathbf{1} = \rho, \text{tr}(X) = 0, X \ge 0,
Y\mathbf{1} = \rho, Y^T \mathbf{1} = \rho, \text{tr}(Y) = 0, Y \ge 0,$$
(2)

其中1为全1向量.

预备知识(续)

实验表明 ...

假设

问题(2)的所有稳定点 (X, Y) 均满足 X = Y.

预备知识(续)

实验表明 ...

假设

问题(2)的所有稳定点 (X, Y) 均满足 X = Y.

⇒ 简化问题:

$$\min_{X} \quad 2\langle X, R \rangle + \langle X, XR \rangle
\text{s.t.} \quad X\mathbf{1} = \rho, X^{T}\mathbf{1} = \rho, \text{tr}(X) = 0, X \ge 0.$$
(3)

预备知识(续)

实验表明 ...

假设

问题(2)的所有稳定点 (X, Y) 均满足 X = Y.

⇒ 简化问题:

$$\min_{X} 2\langle X, R \rangle + \langle X, XR \rangle
\text{s.t.} X\mathbf{1} = \rho, X^{T}\mathbf{1} = \rho, \text{tr}(X) = 0, X \ge 0.$$
(3)

引入分裂变量 $Z \in \mathbb{R}^{n \times n}$, 进一步得到等价的

$$\min_{X,Z} \quad f(X,Z) \triangleq 2\langle X,R \rangle + \langle Z,XR \rangle
\text{s.t.} \quad X\mathbf{1} = \rho, \text{tr}(X) = 0,
Z^T \mathbf{1} = \rho, Z \ge 0,
X = Z.$$
(4)

之后重点求解问题(4).

提纲

- 1 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

最优性条件

$$\mathcal{L}_0(X, Z, \lambda_1, \lambda_2, \mu, \Phi, \Omega) = f(X, Z) - \langle \lambda_1, X\mathbf{1} - \rho \rangle - \langle \lambda_2, Z^T\mathbf{1} - \rho \rangle - \mu \operatorname{tr}(X) - \langle \Omega, Z \rangle - \langle \Phi, X - Z \rangle.$$

最优性条件

$$\mathcal{L}_0(X, Z, \lambda_1, \lambda_2, \mu, \Phi, \Omega) = f(X, Z) - \langle \lambda_1, X\mathbf{1} - \rho \rangle - \langle \lambda_2, Z^T\mathbf{1} - \rho \rangle - \mu \operatorname{tr}(X) - \langle \Omega, Z \rangle - \langle \Phi, X - Z \rangle.$$

问题(4)的 KKT 条件

 \dot{z} \dot{z} 为问题(4)的解,则存在拉格朗日乘子 $\mu^* \in \mathbb{R}, \lambda_1^*, \lambda_2^* \in \mathbb{R}^n$, $\Phi^*, 0 < \Omega^* \in \mathbb{R}^{n \times n}$. 使得

$$\left\{ \begin{array}{l} \nabla_{X}\mathcal{L}_{0} = 2R + Z^{*}R - \lambda_{1}^{*}\mathbf{1}^{T} - \Phi^{*} - \mu^{*}I = 0, \\ \nabla_{Z}\mathcal{L}_{0} = X^{*}R - \mathbf{1}\left(\lambda_{2}^{*}\right)^{T} + \Phi^{*} - \Omega^{*} = 0, \\ X^{*}\mathbf{1} = \rho, \operatorname{tr}(X^{*}) = 0, \\ \left(Z^{*}\right)^{T}\mathbf{1} = \rho, Z^{*} \geq 0, \\ \Omega^{*} \geq 0, \\ \Omega^{*} \circ Z^{*} = 0. \end{array} \right\}$$
 原始可行性条件,

原始可行性条件,

互补松弛条件.

(5)

这里 "o" 表示 Hadamard 积.

提纲

- 1 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

ADMM 算法简介

ADMM 算法 (介绍可见Boyd, et al. '10) 求解问题—般形式:

$$\min_{x \in \mathbb{R}^d} \quad \theta(x) := \sum_{i=1}^n \theta_i(x_i) + \ell(x_1, \dots, x_n)
\text{s.t.} \quad \sum_{i=1}^n A_i x_i = b,$$
(6)

这里 $\theta_i: \mathbb{R}^{d_i} \mapsto (-\infty, +\infty], \ell: \mathbb{R}^d \mapsto (-\infty, +\infty]; x_i \in \mathbb{R}^{d_i}; A_i \in \mathbb{R}^{m \times d_i}, b \in \mathbb{R}^m$. 问题(6)的增广拉格朗日函数为

$$\mathcal{L}_{A}(x_{1}, \dots, x_{n}, \bar{\mu}) = \sum_{i=1}^{n} \theta_{i}(x_{i}) + \ell(x_{1}, \dots, x_{n})$$
$$- \bar{\mu}^{T} \left(\sum_{i=1}^{n} A_{i}x_{i} - b \right) + \frac{\bar{\beta}}{2} \left\| \sum_{i=1}^{n} A_{i}x_{i} - b \right\|^{2},$$

其中 $\bar{\mu} \in \mathbb{R}^m$ 为拉格朗日乘子, $\bar{\beta} > 0$ 为惩罚因子.

算法 $\mathbf{1}$ n 块 ADMM 算法

$$\hat{\mathbf{m}}\lambda$$
: $x_2^0,\ldots,x_n^0,\bar{\mu}^0,k:=0.$

输出:
$$x_1^k, x_2^k, \dots, x_n^k, \bar{\mu}^k$$
.

- 1: while 收敛性测试未通过 do
- 2: $x_1^{k+1} := \arg\min_{x_1 \in \mathbb{R}^{d_1}} \mathcal{L}_A(x_1, \dots, x_n^k, \bar{\mu}^k);$
- 3:
- 4: $x_n^{k+1} := \arg\min_{x_n \in \mathbb{R}^{d_n}} \mathcal{L}_A(x_1^{k+1}, \dots, x_n, \bar{\mu}^k);$

5:
$$\bar{\mu}^{k+1} := \bar{\mu}^k - \bar{\beta} \left(\sum_{i=1}^n A_i x_i^{k+1} - b \right);$$

- 6: k := k + 1;
- 7: end while

现有工作简介:

- 两块凸可分问题 (Boyd, et al. '10, He/Yuan '12等): $n = 2, \ell = 0$, θ_1, θ_2 是凸函数.
- 多块凸可分问题 (He/Tao/Yuan '12, Cai/Han/Yuan '17等): $n \geq 3, \ell = 0, \ \theta_1, \dots, \theta_n$ 是凸函数. 可能发散 (Chen, et al. '16). \Rightarrow 无假设的困境.

现有工作简介:

- 两块凸可分问题 (Boyd, et al. '10, He/Yuan '12等): $n = 2, \ell = 0$, θ_1, θ_2 是凸函数.
- 多块凸可分问题 (He/Tao/Yuan '12, Cai/Han/Yuan '17等): $n \geq 3, \ell = 0, \, \theta_1, \dots, \theta_n$ 是凸函数. 可能发散 (Chen, et al. '16). \Rightarrow 无假设的困境.
- 凸不可分问题 (Hong, et al. '14, Chen, et al. '19). 即使 $n=2, \theta(\cdot)$ 凸, 仍然开放 (Hong/Luo/Razaviyayn '16).

现有工作简介:

- 两块凸可分问题 (Boyd, et al. '10, He/Yuan '12等): $n = 2, \ell = 0$, θ_1, θ_2 是凸函数.
- 多块凸可分问题 (He/Tao/Yuan '12, Cai/Han/Yuan '17等): $n \geq 3, \ell = 0, \, \theta_1, \dots, \theta_n$ 是凸函数. 可能发散 (Chen, et al. '16). \Rightarrow 无假设的困境.
- 凸不可分问题 (Hong, et al. '14, Chen, et al. '19). 即使 $n=2,\theta(\cdot)$ 凸, 仍然开放 (Hong/Luo/Razaviyayn '16).
- 非凸问题. 理论缺乏, 应用广泛.
 - Wen, et al. '13等: 需要强加无法验证的条件.
 - Hong/Luo/Razaviyayn '16: 只需要 θ_i 's 和 ℓ 满足合理的正则条件, 且 $\bar{\beta}$ 充分大.

$$\mathcal{L}_A(X, Z, \Phi) = f(X, Z) - \langle \Phi, X - Z \rangle + \frac{\beta}{2} ||X - Z||_F^2.$$

框架 2 求解问题 (4) 的 ADMM 算法框架

输入: $X^0, Z^0, \Phi^0, \beta^0, k := 0.$

输出: X^k, Z^k, Φ^k .

1: while 收敛性测试未通过 do

2:
$$X^{k+1} = \arg\min_{X: X\mathbf{1} = \rho, \operatorname{tr}(X) = 0} \mathcal{L}_A(X, Z^k, \Phi^k);$$

3:
$$Z^{k+1} = \arg\min_{Z:Z^T \mathbf{1} = \rho, Z \geq 0} \mathcal{L}_A(X^{k+1}, Z, \Phi^k);$$

- 4: 更新 Φ^k 得到 Φ^{k+1} ;
- 5: 如有需要, 更新 β^k 得到 β^{k+1} ;
- 6: k := k + 1:
- 7: end while

子问题的求解 -X 子问题

省去上标 k, 改用 '+' 标记更新值.

$$\min_{X} 2\langle X, R \rangle + \langle Z, XR \rangle - \langle \Phi, X - Z \rangle + \frac{\beta}{2} ||X - Z||_F^2
\text{s.t.} \quad X\mathbf{1} = \rho, \quad \text{tr}(X) = 0.$$
(7)

带等式约束的凸二次规划

子问题的求解 -X 子问题

省去上标 k, 改用 '+' 标记更新值.

$$\min_{X} 2\langle X, R \rangle + \langle Z, XR \rangle - \langle \Phi, X - Z \rangle + \frac{\beta}{2} ||X - Z||_F^2
\text{s.t.} \quad X\mathbf{1} = \rho, \quad \text{tr}(X) = 0.$$
(7)

带等式约束的凸二次规划⇒ 拉格朗日乘数法.

$$\beta X + (2R + ZR - \lambda_1 \mathbf{1}^T - \mu I - \Phi - \beta Z) = 0,$$
 (8a)

$$-tr(X) = 0, (8b)$$

$$-(X\mathbf{1} - \rho) = 0. \tag{8c}$$

子问题的求解 -X 子问题 (续)

由(8a),

$$X^{+} = -\frac{1}{\beta}(2R + ZR - \lambda_1 \mathbf{1}^T - \mu I - \Phi - \beta Z).$$
 (9)

由(9)和(8b),(8c), 令

$$M_1 = 2R\mathbf{1} + ZR\mathbf{1} - \Phi\mathbf{1} - \beta Z\mathbf{1} + \beta \rho,$$

$$m_1 = 2\operatorname{tr}(R) + \operatorname{tr}(ZR) - \operatorname{tr}(\Phi) - \beta \operatorname{tr}(Z).$$

乘子为

$$\mu = \frac{1}{n-1} \left(-\frac{1}{n} \mathbf{1}^T M_1 + m_1 \right), \quad \lambda_1 = \frac{1}{n} (M_1 - \mathbf{1}\mu).$$
 (10)

(10)和(9)给出 X 子问题(7)的解 X+.

子问题的求解 - Z 子问题

$$\min_{\substack{Z \\ \text{s.t.}}} \langle Z, X^+ R \rangle - \langle \Phi, X^+ - Z \rangle + \frac{\beta}{2} ||X^+ - Z||_F^2$$
s.t. $Z^T \mathbf{1} = \rho$, $Z > 0$. (11)

同样是凸二次规划, 但是有不等式约束.

子问题的求解 - Z 子问题

$$\min_{\substack{Z \\ \text{s.t.}}} \langle Z, X^+ R \rangle - \langle \Phi, X^+ - Z \rangle + \frac{\beta}{2} ||X^+ - Z||_F^2
\text{s.t.} \quad Z^T \mathbf{1} = \rho, \quad Z \ge 0.$$
(11)

同样是凸二次规划, 但是有不等式约束. quadprog()?

子问题的求解 - Z 子问题

$$\min_{Z} \quad \langle Z, X^{+}R \rangle - \langle \Phi, X^{+} - Z \rangle + \frac{\beta}{2} ||X^{+} - Z||_{F}^{2}
\text{s.t.} \quad Z^{T} \mathbf{1} = \rho, \quad Z \ge 0.$$
(11)

同样是凸二次规划, 但是**有不等式约束**. quadprog()?

忽略非负约束, 类似 X 子问题求超平面 Z^T **1** = ρ 上的一点 \widetilde{Z} :

$$\lambda_2 = \frac{1}{n} \left[R \left(X^+ \right)^T \mathbf{1} + \Phi^T \mathbf{1} - \beta \left(X^+ \right)^T \mathbf{1} + \beta \rho \right],$$
$$\widetilde{Z} = \frac{1}{\beta} (X^+ R + \Phi - \beta X^+ - \mathbf{1} \lambda_2^T).$$

子问题的求解 - Z 子问题 (续)

问题(11)的等价形式:

$$\begin{aligned} & \min_{Z} & & \|Z - \widetilde{Z}\|_F^2 \\ & \text{s.t.} & & Z^T \mathbf{1} = \rho, \quad Z \geq 0. \end{aligned}$$

子问题的求解 - Z 子问题 (续)

问题(11)的等价形式:

$$\begin{aligned} & \min_{Z} & & \|Z - \widetilde{Z}\|_F^2 \\ & \text{s.t.} & & Z^T \mathbf{1} = \rho, \quad Z \geq 0. \end{aligned}$$

分块

$$Z = [z_1, \dots, z_n], \quad \widetilde{Z} = [\widetilde{z}_1, \dots, \widetilde{z}_n].$$

$$\Leftrightarrow \min_{z_1, \dots, z_n} \sum_{j=1}^n ||z_j - \widetilde{z}_j||^2$$

$$\text{s.t.} \quad \mathbf{1}^T z_j = \rho_j, \quad z_j \ge 0, \quad j = 1, \dots, n.$$

$$(12)$$

 $quadprog() \Rightarrow Z^+.$

子问题的求解 - Z 子问题 (续)

问题(11)的等价形式:

分块

$$Z = [z_1, \dots, z_n], \quad \widetilde{Z} = [\widetilde{z}_1, \dots, \widetilde{z}_n].$$

$$\Leftrightarrow \min_{z_1, \dots, z_n} \sum_{j=1}^n ||z_j - \widetilde{z}_j||^2$$

$$\text{s.t.} \quad \mathbf{1}^T z_j = \rho_j, \quad z_j \ge 0, \quad j = 1, \dots, n.$$

$$(12)$$

quadprog() $\Rightarrow Z^+$.

注

若未恰当引入分裂变量 Z. 子问题求解难度不言而喻.

拉格朗日乘子的更新

对一般的等式约束非线性优化问题

$$\min_{x} \bar{f}(x)$$
s.t. $c_i(x) = 0, \quad i \in \mathcal{E},$

增广拉格朗日函数法 $(\gamma^k$ 是惩罚因子):

$$\lambda_i^{k+1} = \lambda_i^k - \gamma^k c_i(x^k), \quad \forall i \in \mathcal{E}.$$

拉格朗日乘子的更新

对一般的等式约束非线性优化问题

$$\min_{x} \ \overline{f}(x)$$
s.t. $c_i(x) = 0, \quad i \in \mathcal{E},$

增广拉格朗日函数法 (γk 是惩罚因子):

$$\lambda_i^{k+1} = \lambda_i^k - \gamma^k c_i(x^k), \quad \forall i \in \mathcal{E}.$$

因此我们的拉格朗日乘子更新策略可选为

$$\Phi^{+} = \Phi - \beta (X^{+} - Z^{+}). \tag{13}$$

若带松弛因子 $\alpha > 0$, 则

$$\Phi^{+} = \Phi - \alpha \beta (X^{+} - Z^{+}). \tag{14}$$

停机准则与 KKT 违反度

对 X 子问题:

$$X^{k+1} = \arg\min_{X: X\mathbf{1} = \rho, \operatorname{tr}(X) = 0} \mathcal{L}_A(X, Z^k, \Phi^k)$$

$$\Rightarrow \exists \lambda_1^{k+1}, \mu^{k+1}$$
 使得

$$2R + Z^{k}R - \Phi^{k} + \beta(X^{k+1} - Z^{k}) - \lambda_{1}^{k+1}\mathbf{1}^{T} - \mu^{k+1}I = 0,$$
 (15a)

$$X^{k+1}\mathbf{1} = \rho, \operatorname{tr}(X^{k+1}) = 0.$$
 (15b)

停机准则与 KKT 违反度

对 X 子问题:

$$X^{k+1} = \arg\min_{X: X\mathbf{1} = \rho, \operatorname{tr}(X) = 0} \mathcal{L}_A(X, Z^k, \Phi^k)$$

 $\Rightarrow \exists \lambda_1^{k+1}, \mu^{k+1}$ 使得

$$2R + Z^{k}R - \Phi^{k} + \beta(X^{k+1} - Z^{k}) - \lambda_{1}^{k+1}\mathbf{1}^{T} - \mu^{k+1}I = 0,$$
 (15a)

$$X^{k+1}\mathbf{1} = \rho, \operatorname{tr}(X^{k+1}) = 0.$$
 (15b)

等式(15a),(15b)分别对应于问题(4)KKT 条件(5)中的

$$2R + Z^*R - \lambda_1^* \mathbf{1}^T - \mu^* I - \Phi^* = 0, \tag{16a}$$

$$X^* \mathbf{1} = \rho, \operatorname{tr}(X^*) = 0.$$
 (16b)

• 使用更新策略(13):

$$2R + Z^{k}R - \Phi^{k} + \beta(X^{k+1} - Z^{k}) - \lambda_{1}^{k+1}\mathbf{1}^{T} - \mu^{k+1}I$$

=2R + Z^{k+1}R - \Phi^{k+1} - \lambda_{1}^{k+1}\mathbf{1}^{T} - \mu^{k+1}I + (Z^{k+1} - Z^{k})(\beta I - R),

• 使用更新策略(14):

$$\begin{split} 2R + Z^k R - \Phi^k + \beta (X^{k+1} - Z^k) - \lambda_1^{k+1} \mathbf{1}^T - \mu^{k+1} I \\ = & 2R + Z^{k+1} R - \Phi^{k+1} - \lambda_1^{k+1} \mathbf{1}^T - \mu^{k+1} I \\ & + (Z^{k+1} - Z^k) (\beta I - R) + (1 - \alpha) \beta (X^{k+1} - Z^{k+1}). \end{split}$$

对 Z 子问题:

$$Z^{k+1} = \arg\min_{Z:Z^T \mathbf{1} = \rho, Z > 0} \mathcal{L}_A(X^{k+1}, Z, \Phi^k)$$

$$\Rightarrow \exists \lambda_2^{k+1}, \Omega^{k+1} \geq 0$$
 使得

$$X^{k+1}R - \Phi^k - \beta(X^{k+1} - Z^{k+1}) - \mathbf{1}\left(\lambda_1^{k+1}\right)^T - \Omega^{k+1} = 0,$$
 (17a)

$$(Z^{k+1})^T \mathbf{1} = \rho, Z^{k+1} \ge 0,$$
 (17b)

$$\Omega^{k+1} \ge 0, \tag{17c}$$

$$\Omega^{k+1} \circ Z^{k+1} = 0. \tag{17d}$$

$$X^{k+1}R - \Phi^k - \beta(X^{k+1} - Z^{k+1}) - \mathbf{1}\left(\lambda_1^{k+1}\right)^T - \Omega^{k+1} = 0,$$
 (17a)

$$(Z^{k+1})^T \mathbf{1} = \rho, Z^{k+1} \ge 0,$$
 (17b)

$$\Omega^{k+1} \ge 0, \tag{17c}$$

$$\Omega^{k+1} \circ Z^{k+1} = 0. \tag{17d}$$

等式(17a)-(17d)分别对应于问题(4)KKT 条件(5)中的

$$X^*R - \mathbf{1}(\lambda_2^*)^T + \Phi^* - \Omega^* = 0,$$
 (18a)

$$(Z^*)^T \mathbf{1} = \rho, Z^* \ge 0,$$
 (18b)

$$\Omega^* \ge 0, \tag{18c}$$

$$\Omega^* \circ Z^* = 0. \tag{18d}$$

• 使用更新策略(13):

$$X^{k+1}R - \Phi^k - \beta(X^{k+1} - Z^{k+1}) - \mathbf{1} \left(\lambda_2^{k+1}\right)^T - \Omega^{k+1}$$
$$= X^{k+1}R - \Phi^{k+1} - \mathbf{1} \left(\lambda_2^{k+1}\right)^T - \Omega^{k+1}.$$

• 使用更新策略(14):

$$X^{k+1}R - \Phi^k - \beta(X^{k+1} - Z^{k+1}) - \mathbf{1} \left(\lambda_2^{k+1}\right)^T - \Omega^{k+1}$$

= $X^{k+1}R - \Phi^{k+1} - \mathbf{1} \left(\lambda_2^{k+1}\right)^T - \Omega^{k+1} - (1 - \alpha)\beta(X^{k+1} - Z^{k+1}).$

KKT 违反度:

$$t^{k+1} \triangleq \|X^{k+1} - Z^{k+1}\|_{\infty}$$
 原始残差,
 $s^{k+1} \triangleq \|(Z^{k+1} - Z^k)(\beta I - R)\|_{\infty}$ 对偶残差. (19)

KKT 违反度:

$$t^{k+1} \triangleq \|X^{k+1} - Z^{k+1}\|_{\infty}$$
 原始残差, $s^{k+1} \triangleq \|(Z^{k+1} - Z^k)(\beta I - R)\|_{\infty}$ 对偶残差. (19)

停机准则:

情形 1 t^{k+1}, s^{k+1} 都足够小;

情形 2 对某个 $p^{k+1} \in (0,1)$, $p^{k+1}s^{k+1} + (1-p^{k+1})t^{k+1}$ 足够小. 其中 p^{k+1} 反映了我们主观上对两类残差所赋的权值.

KKT 违反度:

$$t^{k+1} \triangleq \|X^{k+1} - Z^{k+1}\|_{\infty}$$
 原始残差,
 $s^{k+1} \triangleq \|(Z^{k+1} - Z^k)(\beta I - R)\|_{\infty}$ 对偶残差. (19)

停机准则:

情形 1 t^{k+1} . s^{k+1} 都足够小:

情形 2 对某个 $p^{k+1} \in (0,1)$, $p^{k+1}s^{k+1} + (1-p^{k+1})t^{k+1}$ 足够小. 其中 p^{k+1} 反映了我们主观上对两类残差所赋的权值.

我们使用

$$E^{k+1} = (1 - p^{k+1})t^{k+1} + p^{k+1}s^{k+1}$$
(20)

作为 KKT 违反度.

完整算法

算法 **3** 求解问题 (4) 的 ADMM 算法

```
输入: X^0, Z^0, \Phi^0, \beta^0, \epsilon, k := 0, s^0 := 1, t^0 := 1, \alpha > 0(默认值为1),
   p^0 \in (0,1).
输出: X^k, Z^k, \Phi^k
 1: E^k = (1 - p^k)t^k + p^k s^k:
 2: while E^k > \epsilon do
      由公式(10),(9)计算 X^{k+1}:
 3:
      使用 MATLAB 内置函数 quadprog()求解列子问题(12)得到 \mathbb{Z}^{k+1};
 4:
      \Phi^{k+1} = \Phi^k - \alpha \beta^k (X^{k+1} - Z^{k+1}):
 5:
      由公式(19)计算 t^{k+1}, s^{k+1};
 6:
    更新 \beta^k 得到 \beta^{k+1}:
 7:
      更新 p^k 得到 p^{k+1}:
 8:
   由公式(20)得到 E^{k+1};
 9:
    k := k + 1:
10:
11: end while
```

提纲

- 1 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

收敛性分析

定理 (算法3的收敛性定理)

假设算法3每一步,Z 子问题均精确求解, 且产生的迭代序列 $\{X^k\},\{Z^k\},\{\Phi^k\}$ 分别收敛到 X^*,Z^*,Φ^* , 满足 $X^*=Z^*$.则 (X^*,Z^*,Φ^*) 为问题(4)的稳定点.

收敛性分析

定理 (算法3的收敛性定理)

假设算法3每一步,Z 子问题均精确求解, 且产生的迭代序列 $\{X^k\},\{Z^k\},\{\Phi^k\}$ 分别收敛到 X^*,Z^*,Φ^* , 满足 $X^*=Z^*$.则 (X^*,Z^*,Φ^*) 为问题(4)的稳定点.

关键点:

- $\bullet X^* \in \arg\min_{X = \rho, \operatorname{tr}(X) = 0} f(X, Z^*) \langle \Phi^*, X Z^* \rangle.$

提纲

- 1 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

数值实验

使用 MATLAB 内置函数 randn()和 abs()生成随机问题. 小型问题以n=3,4,5 各一问题为代表, 大型问题以n=20,30,40 各一问题为代表. 小型问题中的常量取法:

$$\alpha = 1, \quad \beta^k \equiv 10^3, \quad \epsilon = 10^{-8}, \quad p^k \equiv 0.5.$$

大型问题中的常量取法:

$$\alpha = 1, \quad \beta^k \equiv 10^4, \quad \epsilon = 10^{-6}, \quad p^k \equiv 0.5.$$

数值实验-收敛曲线

图 1: n=4 收敛曲线

数值实验 -松弛因子 α

 $\alpha = 0.1, 0.2, \dots, 1.0.$

表 1: n=3, 不同的松弛因子

0.	n = 3				
α	迭代数	所耗时间(s)	KKT 违反度	目标值	
0.1	452	0.0072	3.40×10^{-9}	1.1722	
0.2	491	0.0079	8.45×10^{-9}	1.1722	
0.3	510	0.0088	7.07×10^{-9}	1.1722	
0.4	517	0.0098	2.86×10^{-9}	1.1722	
0.5	503	0.0080	7.45×10^{-9}	1.1722	
0.6	534	0.0103	7.79×10^{-9}	1.1722	
0.7	538	0.0093	5.69×10^{-9}	1.1722	
0.8	525	0.0082	3.24×10^{-9}	1.1722	
0.9	548	0.0105	8.97×10^{-9}	1.1722	
1.0	560	0.0097	8.02×10^{-9}	1.1722	

数值实验 -松弛因子 α

 $\alpha = 0.1, 0.2, \dots, 1.0.$

表 2: n=30, 不同的松弛因子

0.	n = 30				
α	迭代数	所耗时间(s)	KKT 违反度	目标值	
0.1	117886	74.7150	9.74×10^{-7}	26.2298	
0.2	69365	42.6729	8.60×10^{-7}	25.8871	
0.3	70989	43.2812	8.88×10^{-7}	25.8828	
0.4	65533	40.0219	6.46×10^{-7}	25.8757	
0.5	122029	76.4424	9.28×10^{-7}	25.6165	
0.6	112336	82.8559	9.63×10^{-7}	25.6165	
0.7	112002	70.1342	8.81×10^{-7}	25.6165	
0.8	109121	67.5131	7.99×10^{-7}	25.6165	
0.9	113655	70.1853	8.83×10^{-7}	25.6165	
1.0	207788	129.1006	6.00×10^{-7}	24.9461	

$$\left\{ \begin{array}{ll} \beta = 10^2, 10^3, 10^4, 10^5, & n = 3, 4, 5, \\ \beta = 10^3, 10^4, 10^5, & n = 20, \\ \beta = 10^4, 10^5, & n = 30. \end{array} \right.$$

表 3: n=3, 不同的惩罚因子

β	n=3			
ρ	迭代数	所耗时间(s)	KKT 违反度	目标值
100	224	0.0043	5.46×10^{-9}	1.1722
1000	560	0.0095	8.02×10^{-9}	1.1722
10000	3998	0.0647	4.92×10^{-9}	1.1722
100000	38377	0.5818	7.68×10^{-9}	1.1722

$$\left\{ \begin{array}{ll} \beta = 10^2, 10^3, 10^4, 10^5, & n = 3, 4, 5, \\ \beta = 10^3, 10^4, 10^5, & n = 20, \\ \beta = 10^4, 10^5, & n = 30. \end{array} \right.$$

表 4: n=5, 不同的惩罚因子

Β	n=5			
β	迭代数	所耗时间(s)	KKT 违反度	目标值
100	969	0.0465	5.00×10^{-9}	2.7741
1000	860	0.0384	9.54×10^{-9}	2.7741
10000	3857	0.1698	4.64×10^{-9}	2.7741
100000	33470	1.4344	9.47×10^{-9}	2.7741

$$\left\{ \begin{array}{ll} \beta = 10^2, 10^3, 10^4, 10^5, & n = 3, 4, 5, \\ \beta = 10^3, 10^4, 10^5, & n = 20, \\ \beta = 10^4, 10^5, & n = 30. \end{array} \right.$$

表 5: n=20, 不同的惩罚因子

β	n=20			
ρ	迭代数	所耗时间(s)	KKT 违反度	目标值
1000	12122	4.1522	9.95×10^{-7}	9.8692
10000	79052	26.7695	5.02×10^{-7}	9.8692
100000	753429	255.0805	9.98×10^{-7}	9.8692

$$\left\{ \begin{array}{ll} \beta = 10^2, 10^3, 10^4, 10^5, & n = 3, 4, 5, \\ \beta = 10^3, 10^4, 10^5, & n = 20, \\ \beta = 10^4, 10^5, & n = 30. \end{array} \right.$$

表 6: n = 30, 不同的惩罚因子

β	n = 30			
ρ	迭代数	所耗时间(s)	KKT 违反度	目标值
10000	207788	133.6154	6.00×10^{-7}	24.9461
100000	2053406	1327.5987	7.08×10^{-7}	24.9542

$$\left\{ \begin{array}{ll} \beta = 10^2, 10^3, 10^4, 10^5, & n = 3, 4, 5, \\ \beta = 10^3, 10^4, 10^5, & n = 20, \\ \beta = 10^4, 10^5, & n = 30. \end{array} \right.$$

图 2: $n = 30, \beta = 10^3$ 残差陷入循环. 左: 原始残差; 右: 对偶残差

数值实验 -测试问题

- 目的: 表明算法3的确可以达到全局最优解.
- 构造方式: 给定一数对 $(p,q): p \neq q, p, q \in \{1,2,\ldots,n\}$, 定义 R 为

$$r_{ij} = \begin{cases} 1, & i = p, j = q \le i = q, j = p, \\ 0, & \not = \varepsilon. \end{cases}$$
 (21)

$$\rho := \mathbf{1}$$
.

$$\min_{X} 2x_{pq} + 2\sum_{i} x_{ip}x_{iq}
\text{s.t.} X\mathbf{1} = \rho, X^{T}\mathbf{1} = \rho, X \ge 0, \text{tr}(X) = 0.$$
(22)

最优值为 0.

数值实验 -测试问题 (续)

$$\min_{X} 2x_{pq} + 2\sum_{i} x_{ip}x_{iq}$$
s.t. $X\mathbf{1} = \rho, X^{T}\mathbf{1} = \rho, X \ge 0, \operatorname{tr}(X) = 0.$

$$n=5,10,15,20,\ (p,q)=(3,4),\ \alpha=1,\beta=10^3,\epsilon=10^{-8}.$$

表 7: 测试问题,
$$n = 5, 10, 15, 20$$

\overline{n}	迭代数	所耗时间(s)	KKT 违反度	目标值
5	3187	0.1536	3.00×10^{-9}	-1.44×10^{-11}
10	1447	0.1766	1.65×10^{-9}	-4.94×10^{-15}
15	2243	0.3284	2.30×10^{-9}	6.54×10^{-13}
20	2030	0.3299	4.53×10^{-9}	-8.07×10^{-13}

数值实验 -与求解非凸二次规划的算法比较

• MATLAB 内置函数 fmincon(),调用算法'sqp','active-set'求解问题(3)和(2),设置停机准则 ConstraintTolerance为上文默认值. 在使用算法3求解 n=50,60,70,80 的问题,设置惩罚因子

$$\left\{ \begin{array}{ll} \beta = 10^4, & n = 50, 60, \\ \beta = 2 \times 10^4, & n = 70, 80. \end{array} \right.$$

数值实验 -与求解非凸二次规划的算法比较 (续)

图 3: 算法3和 SQP 运行时间对比

结论: 对于小型问题, 积极集法和 SQP 最为便捷; 对于大型问题, 算法3更具优势. 算法3的缺点在于, 我们需要根据问题的维度不断重新设置惩罚因子 β .

提纲

- 1 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

总结

- 针对问题(4)特殊结构设计了 ADMM 算法.
- 证明了一定条件下 ADMM 算法3收敛到问题(4)的稳定点.
- 在随机生成的问题上进行数值实验; 讨论了多个人工给定因子对算 法效果的影响; 与求解非凸二次规划的算法做了比较, 得出算法3在 大型问题上更具优势的结论.

感谢聆听!

huyukuan2015@tongji.edu.cn