

1. Основни определения и понятия

$$ho = rac{1}{\sigma}$$
 , ho .m където

 $oldsymbol{
ho}$ е специфично електрическо съпротивление

 $oldsymbol{\sigma}$, S/m $\,$ e специфична електрическа проводимост

$$\mu=rac{B}{H}=\mu_0.\mu_r$$
 , H/m където

 μ е магнитна проницаемост;

 $m{B}$, t T е магнитна индукция;

H, A/m е интензитет на магнитното поле;

 μ_0 е магнитната проницаемост на абсолютния вакуум;

 μ_r е относителната магнитна проницаемост.

Според стойността на μ_r има две групи вещества:

При $\mu_r pprox 1$ веществата са *неферомагнитни* (те не влияят на магнитното поле)

При
$$\mu_r >> 1$$
 веществата са феромагнитни ($\mu_r = f(H)$).

1. Основни определения и понятия

Получената характеристика B(H) (от т.0 до т.1) е известна като *основна крива на намагнитване* на феромагнитните материали.

Явлението хистерезис

хистерезисна крива (т.1, т.2, т.3, т.4, т.5, т.6, т.1)

остатьчна магнитна индукция + B_r (т.2) или **– B_r** (т.5)

коерцитивна сила – H_c (т.3) или + H_c (т.6)

загубите от хистерезис

$$S_{X.U.} = \Delta P_X$$

магнитно меки и **магнитно твърди** феромагнитни материали

2. Магнитни вериги – основни величини

Магнитна верига — съвкупност от *източници* на магнитно поле, *въздушни междини* и *магнитопроводи*, през които се затварят силовите линии на магнитното поле.

Процесите в магнитните вериги се описват с интегралните величини магнитен поток, магнитодвижещо напрежение и магнитно напрежение.

a) магнитен поток – Φ , измерва с във Wb

Изобщо магнитен поток няма! Има магнитен поток за затворен контур с определена площ.

Разглеждат се два случая. И в двата случая говорим за пълен магнитен поток.

1-ви случай:

През една повархнина преминават няколко потока

$$\Psi = \sum_{k=1}^{n} \Phi_{k}$$

2-ри случай:

Един поток преминава през някалко повърхности

$$\Psi = N.\Phi$$

б) магнитодвижещо напрежение – F, измерва се в **A**

магнитодвижещото напрежение.

$$F = N.i$$

в) магнитно напрежение – oldsymbol{U}_{oldsymbol{\mu}oldsymbol{a}oldsymbol{b}} , измерва се в oldsymbol{A}

$$u_{\mu_{ab}} = H.l_{ab}$$

3. Елементи на магнитните вериги

Съставните части на магнитната верига се наричат нейни елементи.

Всяка магнитна верига се състои от:

- Източник на магнитно поле (магнитен възбудител)
- Магнитопровод;
- Въздушни междини.

а) магнитен възбудител

Основни възбудители на магнитно поле са:

- намотки, през които протича електрически ток;
- постоянни магнити.

б) магнитопровод – провежда магнитен поток, усилва магнитното поле

Магнитопроводите се изработват от феромагнитни материали. Не е желателно да има големи загуби. Подходящи са магнитно меки материали. Магнитна им проницаемост многократно надвишава тази на въздуха, т.е.

$$\mu \gg \mu_0$$

При работа в магнитна верига магнитопроводът се характеризира със своето магнитно съпротивление R_{μ} (измерва се в H^{-1}).

Един участък от магнитна верига с дължина $m{l}$ и напречно сечение $m{S}$ има магнитно съпротивление

$$R_{\mu} = \frac{l}{\mu . S}$$

в) въздушна междина

Това са участъци от магнитните вериги, в които силовите линии на магнитното поле се затварят при условията на лоша магнитна проводимост. Въздушните междини са неферомагнитни среди и магнитна им проницаемост слабо се различава от тази на въздуха, т.е.

$$\mu = \mu_0 = const$$

4. Аналогия между електрически и магнитни вериги

Когато се говори за магнитни вериги, може да се каже, че процесите и в електрическите и в магнитните вериги се описват чрез аналогични математически зевисимости. По тази причина може за се каже, че между тях съществува формално сходство (аналогия).

Величини в електрическа верига	Величини в магнитна верига	
i — електрически ток, А	Φ — магнитен поток, Wb	
\mathcal{U} — електрическо напрежение, V	u_{μ} — магнитно напрежение, А	
e — е.д.н., V	F — м.д.н., А	
R — електрическо съпротивление, Ω	R_{μ} — магнитно съпротивление, ${\it H}^{{\scriptscriptstyle -1}}$	
σ — специфична електрическа проводимост, S/m	μ — магнитна проницаемост, H/m	

5. Основни закони в магнитните вериги

Закон	Закони в електрическа верига	Закони в магнитна верига
І-ви закон на Кирхоф	$\sum_{k=1}^{n} i_k = 0$	$\sum_{k=1}^{n} \Phi_k = 0$
II-ри закон на Кирхоф	$\sum_{k=1}^{n} e_k = \sum_{s=1}^{m} u_s$	$\sum_{k=1}^n F_k = \sum_{s=1}^m u_{\mu_s}$
Закон на Ом	$I = \frac{U}{R}$	$arPhi = rac{U_{\mu}}{R_{\mu}}$

а) I-ви закон на Кирхоф за магнитна верига (отнася се за възел на магнитна верига)

Алгебричната сума от магнитните потоци в един възел на магнитна верига е равен на нула във всеки момент от времето.

$$\sum_{k=1}^{n} \Phi_k = 0$$

б) II-ри закон на Кирхоф за магнитна верига (отнася се за контур на магнитна верига)

Алгебричната сума от магнитните напрежителни падове в произволен затворен контур на магнитна верига е равен на алгебричната сума от магнитодвижещите напрежения в същия контур.

$$\sum_{k=1}^{n} F_{k} = \sum_{s=1}^{m} u_{\mu_{s}}$$

в) закон на Ом

$$\Phi = rac{U_{\mu}}{R_{\mu}}$$