4 relações binárias

- 107. Para os conjuntos A e B e relação R de A em B, indique o domínio, o contradomínio de R e o conjunto imagem de X por R:
 - (a) $A = \{1, 2, 3\}$ e $B = \{1, 2, 3, 4, 5, 6, 7\}$; $R = \{(1,1), (1,3), (3,5), (3,7)\};$

$$X = \{2, 3\};$$

(b) $A = B = \mathbb{N}$;

$$R = \{(n, m) \in \mathbb{N} \times \mathbb{N} : m = 2n\};$$

$$X = 4\mathbb{N};$$

(c) $A = B = \mathbb{R}$;

R é relação binária em \mathbb{R} definida por $x R y \Leftrightarrow x^2 + y^2 = 4$;

$$X = \{-2, -1, 1, 2\};$$

- (d) $A = B = \{x : x \text{ \'e um triângulo no plano}\};$
 - $R = \{(x, y) \in A \times A \mid \text{ os triângulos } x \text{ e } y \text{ são semelhantes}\};$

X é o conjunto formado por um triângulo equilátero cujo lado mede 3cm;

(e) A é o conjunto de todas as pessoas e B é o conjunto de todos os livros;

$$R = \{(a, b) \in A \times B \mid a \text{ leu } b\};$$

$$X = \{a \in A : a \text{ \'e rec\'em-nascido}\}.$$

- 108. Para cada uma das relações binárias definidas em \mathbb{Z} , determine a imagem e a imagem completa inversa de $\{3\}$:
 - (a) $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a = |b|\};$
 - (b) $S = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \text{ \'e divisor de } b\};$
 - (c) $T = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (\exists k \in \mathbb{Z})b = 4k + a\};$
 - (d) $U = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a + b = 7\}.$
- 109. Considere os conjuntos $A = \{1, 2, 3\}$ e $B = \{4, 5, 6\}$ e as relações $R = \{(1, 4), (1, 5), (2, 5), (3, 6)\}$ e $S = \{(4,5), (4,6), (5,4), (6,6)\}$ definidas de A para B e de B para B, respetivamente. Determine:
 - (a) $S \circ S$:

- (c) $R \circ S$; (e) R^{-1} ; (g) $S^{-1} \circ R$; (d) $S^{-1} \circ R$; (f) $R^{-1} \circ S$.
- (b) $S \circ R$;
- (d) S^{-1} :
- (f) $R^{-1} \circ S$:
- (h) $(S^{-1} \circ R)^{-1}$.

Resolução

- (a) $S \circ S = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in S\} = \{(4,4),(4,6),(5,5),(5,6),(6,6)\}.$ De facto,
 - porque $(4,5), (5,4) \in S$, temos que $(4,4) \in S \circ S$;
 - porque $(4,6), (6,6) \in S$, temos que $(4,6) \in S \circ S$;
 - porque $(5,4), (4,5) \in S$, temos que $(5,5) \in S \circ S$;
 - porque $(5,4),(4,6) \in S$, temos que $(5,6) \in S \circ S$;
 - porque $(6,6), (6,6) \in S$, temos que $(6,6) \in S \circ S$.

- (b) $S \circ R = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S\} = \{(1,5),(1,6),(1,4),(2,4),(3,6)\}.$ De facto.
 - porque $(1,4) \in R$ e $(4,5) \in S$, temos que $(1,5) \in S \circ R$;
 - porque $(1,4) \in R$ e $(4,6) \in S$, temos que $(1,6) \in S \circ R$;
 - porque $(1,5) \in R$ e $(5,4) \in S$, temos que $(1,4) \in S \circ R$;
 - porque $(2,5) \in R$ e $(5,4) \in S$, temos que $(2,4) \in S \circ R$;
 - porque $(3,6) \in R$ e $(6,6) \in S$, temos que $(3,6) \in S \circ R$.
- (c) $R \circ S = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R\} = \emptyset$, uma vez que $D'_S \cap D_R = \emptyset$.
- (d) $S^{-1} = \{(x,y) \in A \times A : (y,x) \in S\} = \{(5,4), (6,4), (4,5), (6,6)\}$
- (e) $R^{-1} = \{(x,y) \in A \times A : (y,x) \in R\} = \{(4,1),(5,1),(5,2),(6,3)\}$
- (f) $R^{-1} \circ S = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in S \text{ e } (z,y) \in R^{-1}\} = \{(x,y) \in S \text{ e } (z,y) \in S$ $A(x,z) \in S$ e $(y,z) \in R$ = {(5,1), (4,1), (4,2), (6,3), (4,3) }. De facto,
 - $(5,1) \in R^{-1} \circ S$ porque $(5,4) \in S$ e $(1,4) \in R$;
 - $(4,1) \in R^{-1} \circ S$ porque $(4,5) \in S$ e $(1,5) \in R$;
 - $(4,2) \in R^{-1} \circ S$ porque $(4,5) \in S$ e $(2,5) \in R$;
 - $(6,3) \in R^{-1} \circ S$ porque $(6,6) \in S$ e $(3,6) \in R$;
 - $(4,3) \in R^{-1} \circ S$ porque $(4,6) \in S$ e $(3,6) \in R$.
- (g) $S^{-1} \circ R = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A \times A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\} = \{(x,y) \in A : (\exists z \in A)(x,z) \in R \text{ e } (z,y) \in S^{-1}\}$ $A(x,z) \in R \in (y,z) \in S$ = {(1,5), (1,4), (2,4), (3,6), (3,4)}. De facto,
 - $(1,5) \in S^{-1} \circ R$ porque $(1,4) \in R$ e $(5,4) \in S$;
 - $(4,1) \in S^{-1} \circ R$ porque $(1,5) \in R$ e $(4,5) \in S$;
 - $(4,2) \in S^{-1} \circ R$ porque $(2,5) \in R$ e $(4,5) \in S$;
 - $(6,3) \in S^{-1} \circ R$ porque $(3,6) \in R$ e $(6,6) \in S$;
 - $(3,4) \in R^{-1} \circ S$ porque $(3,6) \in R$ e $(4,6) \in S$.

ou, tendo em conta a alínea anterior,

$$S^{-1} \circ R = (R^{-1} \circ S)^{-1} = \{(x, y) \in A \times A : (y, x) \in R^{-1} \circ S\} = \{(1, 5), (1, 4), (2, 4), (3, 6), (3, 4)\}.$$

- $\text{(h)} \ \ (S^{-1}\circ R)^{-1}=\{(x,y)\in A\times A: (y,x)\in S^{-1}\circ R\}=\{(5,1),(4,1),(4,2),(6,3),(4,3)\}.$
- 110. Considere o conjunto $A = \{2, 4, 6, 8, 10\}$ e as relações

$$R = \{(2,2), (2,4), (2,6), (10,8)\},$$
 $S = \{(10,2), (10,8)\},$ $T = \{(6,2), (6,4), (8,10)\}$

nele definidas. Determine:

- 111. Sejam $E = \{(p,q) \in P \times P : \text{ a pessoa } p \text{ \'e inimiga da pessoa } q\}$ e $F = \{(p,q) \in P \times P : \text{ } q \in P : \text{$ a pessoa p é amiga da pessoa q, onde P é o conjunto de todas as pessoas. Que significado tem o ditado "Inimigo de um meu inimigo meu amigo é" em termos das relações E e F?

Resolução

Se me identificar com x, identificar o meu inimigo por y e o inimigo do meu inimigo por z, nas condições do enunciado, podemos traduzir a expressão "inimigo do meu inimigo" por

$$(z,y),(y,x)\in E.$$

A condição $(z,x) \in F$ traduz que o primeiro (z) é meu amigo. Assim, o provérbio pode ser traduzido pela implicação

$$(z,y) \in E \in (y,x) \in E \Rightarrow (z,x) \in F$$
,

ou seja,

$$(z,x) \in E \circ E \Rightarrow (z,x) \in F$$
,

o que pode ser traduzido em termos das relações binárias E e F por

$$E \circ E \subseteq F$$
.

112. Seja A um conjunto de pessoas. Definam-se em A as relações binárias:

 $aRb \Leftrightarrow "b \text{ \'e progenitor de }a";$

 $a S b \Leftrightarrow "b \text{ \'e irmão de } a";$

 $a T b \Leftrightarrow "b \in conjuge de a"$.

Qual o grau de parentesco entre a e b se:

- (a) $a R \circ S b$;
- (c) $a T \circ S b$;
- (e) $a R \circ T b$;

- (b) $a T \circ R b$;
- (d) $a S \circ R b$;
- (f) $a R \circ T \circ S b$.

Resolução

(a) Como

$$a \ R \circ S \ b \iff (\exists c \in A) \ a \ S \ c \in C \ R \ b \iff (\exists c \in A) \ c \ \text{\'e} \ \text{irmão de} \ a \in b \ \text{\'e} \ \text{progenitor de} \ c$$

podemos concluir que

 $a \ R \circ S \ b$ se e só se b é progenitor de a.

(e) Como

$$\begin{array}{ll} a\ R\circ T\ b &\Leftrightarrow (\exists c\in A)\ a\ T\ c\ {\rm e}\ c\ R\ b \\ &\Leftrightarrow (\exists c\in A)\ c\ {\rm \acute{e}}\ {\rm c\^{o}njuge}\ {\rm de}\ a\ {\rm e}\ b\ {\rm \acute{e}}\ {\rm progenitor}\ {\rm de}\ c \end{array}$$

podemos concluir que

 $a \ T \circ R \ b$ se e só se b é sogro de a.

113. Sejam $A = \{1, 2, 3, 4, 5\}$ e

$$R = \{(1,1), (1,2), (1,3), (2,3), (2,4), (3,1), (3,4), (3,5), (4,2), (4,5), (5,1), (5,2), (5,4)\}.$$

Encontre: R^2 (ou seja $R \circ R$), R^3 (ou seja $R^2 \circ R$), R^4 e R^5 .

- 114. Sejam A, B e C conjuntos, R e S relações binárias de A em B e T e U relações binárias de B em C. Mostre que:
 - (a) $R \circ id_A = R$;

(f) $T \subseteq U \Rightarrow T \circ R \subseteq U \circ R$;

(b) id $B \circ R = R$;

(g) $(T \cup U) \circ R = (T \circ R) \cup (U \circ R)$;

(c) $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$;

(h) $T \circ (R \cup S) = (T \circ R) \cup (T \circ S)$;

(d) $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$;

(i) $(T \cap U) \circ R \subseteq (T \circ R) \cap (U \circ R)$;

(e) $R \subseteq S \Rightarrow T \circ R \subseteq T \circ S$;

(j) $T \circ (R \cap S) \subseteq (T \circ R) \cap (T \circ S)$.

Resolução (b) Como

$$(x,y) \in \text{id } B \circ R \iff (\exists z \in B)(x,z) \in R \text{ e } (z,y) \in \text{id } B$$

 $\Leftrightarrow (\exists z \in B)(x,z) \in R \text{ e } z = y$
 $\Leftrightarrow (x,y) \in R,$

temos que id $B \circ R = R$.

(d) Como

$$\begin{split} (x,y) \in (R \cap S)^{-1} &\Leftrightarrow (y,x) \in R \cap S \\ &\Leftrightarrow (y,x) \in R \text{ e } (y,x) \in S \\ &\Leftrightarrow (x,y) \in R^{-1} \text{ e } (x,y) \in S^{-1} \\ &\Leftrightarrow (x,y) \in R^{-1} \cap S^{-1}, \end{split}$$

temos que $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$.

(f) Sabendo que $T\subseteq U$, queremos provar que $T\circ R\subseteq U\circ R$. Como

$$\begin{array}{ll} (x,y) \in T \circ R & \Leftrightarrow (\exists z \in B)(x,z) \in R \text{ e } (z,y) \in T \\ & \Rightarrow (\exists z \in B)(x,z) \in R \text{ e } (z,y) \in U \quad [\text{por hipótese}] \\ & \Leftrightarrow (x,y) \in U \circ R \end{array}$$

Logo, podemos concluir que $T \circ R \subseteq U \circ R$.

(i) Como

$$(x,y) \in (T \cap U) \circ R \quad \Leftrightarrow (\exists z \in B)(x,z) \in R \text{ e } (z,y) \in T \cap U \\ \quad \Leftrightarrow (\exists z \in B)(x,z) \in R \text{ e } (z,y) \in T \text{ e } (z,y) \in U \\ \quad \Rightarrow (\exists z \in B: \ (x,z) \in R \text{ e } (z,y) \in T) \text{ e} \\ \quad (\exists z \in B: \ (x,z) \in R \text{ e } (z,y) \in U \\ \quad \Leftrightarrow (x,y) \in T \circ R \text{ e } (x,y) \in U \circ R \\ \quad \Leftrightarrow (x,y) \in (T \circ R) \cap (U \circ R),$$

podemos concluir que

$$(T \cap R) \circ R \subseteq (T \circ R) \cap ((U \circ R).$$

- 115. Sejam A e B conjuntos e R uma relação binária de A em B.
 - (a) Determine condições que definam as seguintes relações:

i.
$$R^{-1} \circ R$$
; ii. $R \circ R^{-1}$; iii. $R \circ \omega_A$;

ii.
$$R \circ R^{-1}$$
;

iii
$$B \circ \omega_A$$

iv.
$$\omega_B \circ R$$
;

- (b) Para $A = \{1, 2, 3\}, B = \{a, b, c, d\}$ e $R = \{(1, a), (1, b), (2, b), (2, c)\},$ determine as relações definidas em (a).
- 116. Sejam $A = \{1, 2, 3, 4\}$ e $B = \{3, 4, 5, 6\}$. Dê exemplo, ou justifique que não existe, de:
 - (a) uma relação binária R de A em B tal que $R=R^{-1}$;
 - (b) relações binárias R e S em A tais que $R \circ S = S \circ R$ e $R \neq S$;
 - (c) uma relação binária R em A tal que id $A \subseteq R$ e id $A \not\subseteq R^{-1}$;
 - (d) uma relação binária R de A em B tal que $D_R = \emptyset$;
 - (e) relações binárias R de A em B e S de B em A tais que $R \circ S = \mathrm{id}_{B}$ e $S \circ R = \mathrm{id}_{A}$.

117. Sejam $A=\{1,2,3\}$ e $B=\{x,y,w,z\}$. Considere as relações binárias R, de A em B, e S, de B em A:

$$R = \{(1, x), (1, z), (2, y), (2, z)\}\$$

$$S = \{(x, 1), (x, 3), (y, 2), (w, 2), (z, 3)\}.$$

Sejam $T = S \circ R$ e $U = R \circ S$.

- (a) Determine R^{-1} , S^{-1} , T, $T \circ T$, $U \in U \circ U$.
- (b) Verifique que $T^{-1} = R^{-1} \circ S^{-1}$.
- (c) Indique o domínio e a imagem de R.
- (d) Indique quantas relações binárias de A em B existem.
- (e) Indique todas as relações binárias de A em B cujo domínio é $\{2,3\}$ e cuja imagem é $\{x,z\}$.
- (f) Dê um exemplo de relações binárias não vazias R', de A em B, e S', de B em A, tais que $S' \circ R' \neq \emptyset$ e $R' \circ S' = \emptyset$.
- 118. Seja A um conjunto. Diga, justificando, se as seguintes proposições são verdadeiras ou falsas:
 - (a) Para qualquer relação binária R definida em A, $R \circ R^{-1} = \operatorname{id} A$;
 - (b) Para qualquer relação binária R definida em A, $R \circ id_A = id_A \circ R = R$;
 - (c) Para qualquer relação binária R definida em A, $R \subseteq R \circ \omega_A$.

Resolução

(a) A afirmação é falsa. Considere-se o seguinte contra exemplo: Para o conjunto $A=\{1,2\}$ e a relação binária $R=\{(1,2)\}$ definida em A, temos que

$$R\circ R^{-1}=\{(2,2)\}\neq {\rm id}\ _A=\{(1,1),(2,2)\}.$$

A igualdade só se verifica se $D_R = A$.

- (b) A afirmação é verdadeira (o resultado já foi provado no exercício 114, alíneas (a) e (b)).
- (c) A afirmação é verdadeira. Como $\omega_A = A \times A$, temos que

$$(x,y) \in R \Leftrightarrow (x,x) \in \omega_A \ \mathbf{e} \ (x,y) \in R$$

 $\Rightarrow (x,y) \in R \circ \omega_A$