

Objetivos

- Sugerir um grupo de municípios para a entrada de uma multinacional varejista no Brasil
 - Caracterizar os municípios em grupos
 - Classificar novos municípios entre os grupos

O que busca uma empresa de varejo?

Demanda Potencial

- Maior renda
- Maior densidade populacional
- Maior população urbana

Baixos Custos

- Proximidade a centros de distribuição
- Proximidade à rodovias federais

O problema

O Brasil é um país gigantesco. E a localização ideal nem sempre é simples de se decidir.

Renda Per Capita, 2000 (em Log)

Modelagem

Parte I: Aprendizado Não-Supervisionado

Objetivo

 Buscar agrupamento de cidades com potencial para ser porta de entrada da multinacional de supermercados

Método

- Existência de misturas de gaussianas;
- Gaussian Mixtures!

from sklearn.mixture import GaussianMixture

```
gm = GaussianMixture(n_components=8, random_state=42)
y_pred = gm.fit_predict(municipios_features)
```

municipios_com_geo["y_pred"] = y_pred

Cluster	Nº
0	895
1	562
2	472
3	921
4	172
5	1137
6	297
7	1051

Modelagem

Parte II: Aprendizado Supervisionado

Objetivo

 Classificar novos municípios entre os 8 grupos encontrados.

Método

Modelo de Classificação: Random Forests


```
from skearn.model_selection import train_test_split
X = municipios_com_geo[features]
y = municipios_com_geo["y_pred"]
X_train, X_test, y_train, y_test = train_test_split(
  Χ,
  test_size=0.2,
  random_state=42,
  stratify=y
```

from sklearn.ensemble import RandomForestClassifier best_params = {'n_estimators': 183, 'min_samples_split': 0.0006950940663198544, 'min_samples_leaf': 6.84953650608236e-06, 'max_depth': None, 'max_features': 0.20117959445844186, 'class_weight': None} rf = RandomForestClassifier(random_state=42, **best_params) rf.fit(X_train, y_train) y_pred = rf.predict(X_test)

Métricas no Conjunto de Teste

Acurácia: 0.809

▶ ROC AUC: 0.977

Precision: 0.812

Recall: 0.809

▶ F1 Score: 0.808

Conclusões

Qual grupo de municípios tem a melhor porta de entrada para a empresa?

- O grupo 4 fornece as melhores condições;
 - Demanda potencial
 - Menor custo

FIM

Repositório:

https://github.com/silasge/case-plusoft/

