Thema 1xHIT

Kerstin Kollitsch, TGM Wien - Abteilung Informationstechnologie

kerstin.kollitsch@tgm.ac.at

01 331 26 294

H924, Hochhaus 9. Stock

Inhaltsübersicht

- Normalformen
- KV-Diagramme

Normalformen

- Verschiedene Formen der Darstellung von logischen Aussagen möglich
- normierte Darstellungsmöglichkeit
- Kommen mit AND, OR und NOT aus

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

- Vollkonjunktionen (= konjunktive Verknüpfung aller Variablen) werden disjunktiv verknüpft
- Beispiel: $f(e1, e2, e3) = (e1 -> e2) \land (\neg e1 <-> e3)$

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

Schritt 1: Wahrheitstabelle für bool'sche Aussage

e1	e2	e3	e1 -> e2	¬e1 <-> e3	(e1 -> e2)∧(¬e1<->e3)

Schritt 1: Wahrheitstabelle für bool'sche Aussage

e1	e2	e3	e1 -> e2	¬e1 <-> e3	(e1 -> e2) (¬e1<->e3)
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	1	0	0

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

Schritt 2: Auswahl der Zeilen mit wahrem Ergebnis

e1	e2	e3	e1 -> e2	¬e1 <-> e3	(e1 -> e2) (¬e1<->e3)
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	1	0	0

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

Schritt 3: Variablen mit Wert 0 werden negiert, andere direkt übernommen

e1	e2	e3	e1	e2	еЗ
0	0	1			
0	1	1			
1	1	0			

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

Schritt 3: Variablen mit Wert 0 werden negiert, andere direkt übernommen

e1	e2	e3	e1	e2	e3
0	0	1	¬ e1	¬ e2	e3
0	1	1	¬ e1	e2	e3
1	1	0	e1	e2	¬ e3

• $\neg e1 \land \neg e2 \land e3$, $\neg e1 \land e2 \land e3$, $e1 \land e2 \land \neg e3$

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

Schritt 4: einzelne "Zeilen" werden disjunktiv verknüpft

$$(\neg e1 \land \neg e2 \land e3) \lor (\neg e1 \land e2 \land e3) \lor (e1 \land e2 \land \neg e3)$$

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

- Volldisjunktionen (= disjunktive Verknüpfung aller Variablen) werden konjunktiv verknüpft
- Beispiel: $f(e1, e2, e3) = (e1 \land e2) \lor e3$

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

Schritt 1: Wahrheitstabelle für bool'sche Aussage

e1	e2	e3	e1 ∧ e2	(e1 ∧ e2) v e3

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

Schritt 1: Wahrheitstabelle für bool'sche Aussage

e1	e2	e3	e1 ∧ e2	(e1 ∧ e2) v e3
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Schritt 2: Auswahl der Zeilen mit falschem Ergebnis

e1	e2	e3	e1 ∧ e2	(e1 ∧ e2) v e3
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Schritt 3: Variablen mit Wert verden negiert, andere direkt übernommen

e1	e2	еЗ	e1	e2	e3
0	0	0			
0	1	0			
1	0	0			

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

Schritt 3: Variablen mit Wert 1 werden negiert, andere direkt übernommen

e1	e2	e3	e1	e2	e3
0	0	0	e1	e2	e3
0	1	0	e1	¬ e2	e3
1	0	0	¬ e1	e2	e3

• e1 v e2 v e3, e1 v ¬ e2 v e3, ¬ e1 v e2 v e3

JUST DO HÖHERE ABTEILUNG FÜR INFORMATIONSTECHNOLOGIE

 Volldisjunktionen (= disjunktive Verknüpfung aller Variablen) werden konjunktiv verknüpft

 $(e1 \ v \ e2 \ v \ e3) \land (e1 \ v \ \neg \ e2 \ v \ e3) \land (\neg \ e1 \ v \ e2 \ v \ e3)$

- Graphische Veranschaulichung zum Vereinfachen von Funktionen
- für maximal 4 Variablen sinnvoll anwendbar
- jedes Feld entspricht einer Vollkonjunktion der DNF

für 2 Variablen

Vorgehensweise

- von DNF ausgehend
- für jede in der DNF vorkommende Vollkonjunktion im KV-Diagramm eine "1" im entsprechenden Feld eintragen
- Zusammenfassung der Felder mit "1" in Blöcke
- zusammengefasste Blöcke entsprechen den Vollkonjunktionen der minimalen DNF

• $f(A, B, C) = (A \land \neg B \land \neg C \land \neg D) \lor (\neg A \land \neg B \land \neg C \land \neg D)$

• $f(A, B, C) = (A \land \neg B \land \neg C \land \neg D) \lor (\neg A \land \neg B \land \neg C \land \neg D)$

• $f(A, B, C) = (A \land \neg B \land \neg C \land \neg D) \lor (\neg A \land \neg B \land \neg C \land \neg D)$

 $\neg B \land \neg C \land \neg D$

• $f(A, B, C) = (A \land \neg B \land \neg C \land \neg D) \lor (\neg A \land \neg B \land \neg C \land \neg D)$

 $\neg B \land \neg C \land \neg D$

• $f(A, B, C) = (A \land B \land D) \lor (\neg B \land D) \lor (\neg A \land B \land \neg C \land D)$

• $f(A, B, C) = (A \land B \land D) \lor (\neg B \land D) \lor (\neg A \land B \land \neg C \land D)$

tgm | Technologisches Gewerbemuseum | Höhere technische Bundes-Lehr- und Versuchsanstalt

• $f(A, B, C) = (A \land B \land D) \lor (\neg B \land D) \lor (\neg A \land B \land \neg C \land D)$

• $f(A, B, C) = (A \land B \land D) \lor (\neg B \land D) \lor (\neg A \land B \land \neg C \land D)$

 $\neg A \land \neg B \land D$

•
$$f(A, B, C) = (A \land B \land D) \lor (\neg B \land D) \lor (\neg A \land B \land \neg C \land D)$$

$$= (A \land D) \lor (\neg C \land D) \lor (\neg A \land \neg B \land D)$$

