# Appunti del corso Istituzioni di algebra

Riccardo Zanotto, Andrea Gallese $7\ {\rm ottobre}\ 2019$ 

# **Indice**

| Indice   |                     |                                  | ii |
|----------|---------------------|----------------------------------|----|
| 1        | Algebra commutativa |                                  |    |
|          | 1.1                 | Estensioni intere                | 1  |
|          | 1.2                 | Dimensione                       | 3  |
|          | 1.3                 | Azione di Galois                 | 4  |
|          | 1.4                 | Valutazioni e completamenti      | 5  |
| <b>2</b> | Algebra omologica   |                                  |    |
|          | 2.1                 | $E$ -strutture e $H^1$ di gruppi | 6  |
|          | 2.2                 | Categorie abeliane e complessi   | 8  |
|          |                     | Coomologia di gruppi             |    |
|          | 2.4                 | Gruppo di Brauer                 | 12 |
|          | 2.5                 | Costruzione dei funtori derivati | 16 |

# Algebra commutativa

**Lemma 1.0.1.** Sia  $\varphi: A \to B$  di anelli, e  $\mathfrak{p} \subset A$  ideale primo. Allora esiste  $\mathfrak{q} \subset B$  primo con  $\mathfrak{p} = \mathfrak{q}^c$  se e solo se  $\mathfrak{p} = \mathfrak{p}^{ce}$ .

**Lemma 1.0.2.** Sia A un PID: un modulo M è piatto se e solo è libero da torsione.

# 1.1 Estensioni intere

**Definizione 1.1.1.** Dati  $A \subset B$  anelli,  $b \in B$  si dice *intero su* A se esiste un polinomio monico  $f \in A[t]$  tale che f(b) = 0.

Se  $I \subset A$  è un ideale, diciamo che b è intero su I se esiste  $f \in I[t]$  monico che annulla b.

Se  $f:A\to B$  è morfismo di anelli con 1,  $I\subset A$ , diciamo che b è intero su I se lo è su  $I^e$ .

**Proposizione 1.1.2** (Funzionamento Tecnico degli Interi). Siano  $A\subset B,$   $b\in B.$  Sono equivalenti:

- i. b è intero su A.
- ii. A[b] è finitamente generato come A-modulo.
- iii.  $\exists C$  anello tale che  $A[b] \subset C$  e C è fin. gen. come A-modulo.
- iv.  $\exists M \ un \ A[b]$ -modulo fedele, fin. gen. come A-modulo.

# **Definizione 1.1.3.** Siano $A \subset B$ .

- Definiamo  $\overline{A}^B = \{b \in B \mid b$  è intero su  $A\}$  la chiusura integrale di A in B.
- Diciamo che  $A \subset B$  è intera se vale  $\overline{A}^B = B$ .
- Diciamo che  $A \subset B$  è finita se B è un A-modulo finitamente generato.

#### Proposizione 1.1.4.

- Se  $b_1, \ldots, b_n \in B$  sono interi su A, allora  $A[b_1, \ldots, b_n]$  è fin. gen. come A-modulo.
- $\overline{A}^B$  è un sottoanello di B.
- Un'estensione finita è anche intera.

- Se  $A \subset B \subset C$  con  $A \subset B, B \subset C$  finite, allora anche  $A \subset C$  è finita.
- Se  $A \subset B \subset C$  con  $A \subset B, B \subset C$  intere, allora anche  $A \subset C$  è intera.

**Lemma 1.1.5.** Sia  $A \subset B$  intera,  $I \subset A$  ideale. Detto  $\overline{I}^B = \{b \in B \mid b \text{ è intero su } I\}$ , vale  $\overline{I}^B = \sqrt{I^e}$ .

**Proposizione 1.1.6.** Sia  $A \subset B$  intera, J ideale di B, S parte moltiplicativa di A. Abbiamo che:

- $A_{J^c} \subset B_{J}$  è intera;
- $\bullet \ \overline{S^{-1}A}^{S^{-1}B} = S^{-1}(\overline{A}^B).$

**Definizione 1.1.7** (Normale). Se A è un dominio. Si dice che A è normale se è integralmente chiuso del suo campo dei quozienti:  $\overline{A}^K = A$ , dove K sarà il campo dei quozienti.

Proposizione 1.1.8. Ogni UFDè normale.

**Teorema 1.1.9** (Comodità dei Normali). Sia A dominio normale, K il campo dei quozienti; sia  $K \subset L$  un'estensione algebrica; sia  $I \subset A$  un ideale. Dato un  $x \in L$  vale  $x \in \overline{I}^L \iff \mu_x(t) \in \sqrt{I}[t]$ . In particolare

$$x \in \overline{A}^L \iff \mu_x(t) \in A[t].$$

Esempio 1.1.10. Se 
$$A = \mathbb{Z}, K = \mathbb{Q}, L = \mathbb{Q}[\sqrt{d}]$$
, allora  $\overline{A}^L = \begin{cases} \mathbb{Z}[\sqrt{d}] & d \equiv 2, 3 \pmod{4} \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & d \equiv 1 \pmod{4} \end{cases}$ 

**Lemma 1.1.11.** Sia  $A \subset B$  intera di domini. Allora A è un campo se e solo se B è un campo.

**Corollario 1.1.12.** Sia  $A \subset B$  intera,  $\mathfrak{p} \subset B$  primo. Allora  $\mathfrak{p}$  è massimale se e solo se  $\mathfrak{p}^c$  è massimale.

Corollario 1.1.13. Sia  $A \subset B$  intera,  $\mathfrak{p} \subset \mathfrak{q} \subset B$  ideali primi. Se  $\mathfrak{p}^c = \mathfrak{q}^c$  allora  $\mathfrak{p} = \mathfrak{q}$ .

**Teorema 1.1.14** (Lying over).  $Sia\ A\subset B\ intera.\ Allora\ \varphi: \operatorname{Spec} B\to \operatorname{Spec} A$  è surgettiva.

**Definizione 1.1.15.** Sia  $A \subset B$ , e  $\mathfrak{p}_1 \subset \mathfrak{p}_2 \subset A$  ideali primi.

- Si dice che vale il going up se dato  $\mathfrak{q}_1 \subset B$  con  $\mathfrak{q}_1^c = \mathfrak{p}_1$ , allora esiste  $\mathfrak{q}_2 \supset \mathfrak{q}_1$  con  $\mathfrak{q}_2^c = \mathfrak{p}_2$ .
- Si dice che vale il going down se dato  $\mathfrak{q}_2 \subset B$  con  $\mathfrak{q}_2^c = \mathfrak{p}_2$ , allora esiste  $\mathfrak{q}_1 \subset \mathfrak{q}_2$  con  $\mathfrak{q}_1^c = \mathfrak{p}_1$ .

**Teorema 1.1.16** (Going Down).  $Sia\ A \subset B$ .

- Se l'estensione è intera, allora  $\varphi: \operatorname{Spec} B \to \operatorname{Spec} A$  è chiusa.
- $Se \varphi : Spec B \to Spec A \ \grave{e} \ chiusa, \ allora \ vale \ il \ going \ up.$

**Proposizione 1.1.17.** Sia  $A \subset B$ ; se vale il going up e B è noetheriano, allora  $\varphi : \operatorname{Spec} B \to \operatorname{Spec} A$  è chiusa.

1.2. Dimensione 3

**Lemma 1.1.18** (degli Aperti).  $Sia\ f: A \to B,\ e\ \varphi: Y = \operatorname{Spec} B \to \operatorname{Spec} A = X;\ dato\ \mathfrak{q} \in Y,\ definiamo\ Y_{\mathfrak{q}} = \operatorname{Spec} B_{\mathfrak{q}} = \{r \in Y \mid r \subset \mathfrak{q}\}.\ Allora$ 

1. 
$$Y_{\mathfrak{q}} = \bigcap_{\alpha \neq \mathfrak{q}} Y_{\alpha}$$

2. 
$$\varphi(Y_{\mathfrak{q}}) = \bigcap_{\alpha \neq \mathfrak{q}} \varphi(Y_{\alpha})$$

**Teorema 1.1.19** (Going Down). Sia  $f: A \to B$  e  $\varphi: \operatorname{Spec} B \to \operatorname{Spec} A$ . Se  $\varphi$  è aperta, allora vale il going down per f.

**Teorema 1.1.20.** Sia  $A \subset B$  intera con A, B domini, e A normale. Allora  $\varphi : \operatorname{Spec} B \to \operatorname{Spec} A$  è aperta.

**Proposizione 1.1.21.** Sia  $f: A \to B$ , e supponiamo che valga il going down; se  $A \ \grave{e}$  noetheriano, allora  $\varphi \ \grave{e}$  aperta.

#### 1.2 Dimensione

**Definizione 1.2.1.** La dimensione di un anello A è la massima lunghezza di una catena di ideali primi: se  $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ , allora diciamo che dim  $A \geq n$ .

**Proposizione 1.2.2.** *Se*  $A \subset B$  *è* intera, allora dim  $A = \dim B$ .

**Teorema 1.2.3.** Sia A una k-algebra fin. gen,  $A = k[y_1, \ldots, y_n]$  (le  $y_i$  sono generatori come algebra); allora esistono  $x_1, \ldots, x_m \in A$  algebricamente indipendenti tali che  $k[x_1, \ldots, x_m] \subset A$  è intera.

Inoltre se  $y_1, \ldots, y_n$  sono algebricamente dipendenti, allora m < n e per k infinito le  $x_i$  possono essere scelte come combinazioni lineari delle  $y_i$ .

**Proposizione 1.2.4.** Vale dim  $k[x_1, ..., x_n] = \dim k[x_1, ..., x_n]_f = n$  per ogni  $f \in k[x_1, ..., x_n]$ .

**Definizione 1.2.5.** Se A è un dominio e  $k \subset A$ , una base di trascendenza di A su k è un insieme massimale di elementi algebricamente indipendenti

**Lemma 1.2.6.** Se  $x_{\alpha}$  è base di trascendenza di A su k, allora l'estensione  $k(x_{\alpha}) \subset \mathbb{Q}(A)$  è algebrica.

Teorema 1.2.7. Tutte le basi di trascendenza hanno la stessa cardinalità.

Corollario 1.2.8. Se A è una k-algebra fin. gen. e un dominio, allora  $\dim A = \operatorname{Tr} \deg_k A$ .

**Definizione 1.2.9.** Sia  $\mathfrak{p} \subset A$  un ideale primo; definiamo

- l'altezza  $\operatorname{ht}(\mathfrak{p}) = \dim A_{\mathfrak{p}} = \max\{n \mid \mathfrak{q}_0 \subsetneq \cdots \subsetneq \mathfrak{q}_n = \mathfrak{p}\}$
- la  $coaltezza \operatorname{coht}(\mathfrak{p}) = \dim A/\mathfrak{p} = \max\{n \mid \mathfrak{p} = \mathfrak{q}_0 \subsetneq \cdots \subsetneq \mathfrak{q}_n\}$

**Lemma 1.2.10.** Sia A un dominio e una k-algebra fin. gen; sia  $\mathfrak p$  un primo di altezza 1. Allora  $\dim A/\mathfrak p = \dim A - 1$ .

Teorema 1.2.11. Sia A una k-algebra fin. gen. Allora

- 1. Se  $\mathfrak{p} \in \operatorname{Spec} A$ , allora  $\operatorname{ht}(\mathfrak{p}), \operatorname{coht}(\mathfrak{p}) < \infty$ .
- 2. Dati  $\mathfrak{p} \subset \mathfrak{q}$  due primi, ogni catena massimale  $\mathfrak{p} = \mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_r = \mathfrak{q}$  ha lunghezza  $\operatorname{coht}(\mathfrak{p}) \operatorname{coht}(\mathfrak{q})$ .
- 3. Se  $A \stackrel{.}{e} un dominio$ ,  $\mathfrak{p} \in \operatorname{Spec} A$ , allora vale  $\dim A = \operatorname{ht}(\mathfrak{p}) + \operatorname{coht}(\mathfrak{p})$ .

Cosa succede in dimensione bassa?

**Teorema 1.2.12.** Sia A un anello. Allora A è artiniano se e solo se è noetheriano e dim A = 0.

**Definizione 1.2.13** (Lunghezza). La lunghezza di modulo M è limite superiore sulle lunghezze delle catene di sottomoduli:

$$l(M): \{n \mid \exists M_0 \subseteq M_1 \subseteq \cdots \subseteq M_n\}$$

**Proposizione 1.2.14.** Se esiste una catena di sottomoduli massimale di lunghezza finita, allora sono tutte finite e della stessa lunghezza.

**Proposizione 1.2.15.** La lunghezza l(M) è finita se e solo se M è artiniano e noetheriano.

**Teorema 1.2.16.** Se  $A \subseteq B$  è finita, si trovano solo finiti primi di Q sopra  $ogni \mathfrak{p} \in \operatorname{Spec} A$ .

#### 1.3 Azione di Galois

Sia A un dominio normale,  $K = \mathbb{Q}(A)$  e  $L \supset K$  un'estensione di Galois con gruppo G; sia  $B = \overline{A}^L$ :

$$\begin{array}{c|c}
B & \longrightarrow & L \\
 & & | \\
A & \longrightarrow & K.
\end{array}$$

Definiamo  $Y = \operatorname{Spec} B$ ,  $X = \operatorname{Spec} A$ ,  $\varphi: Y \to X$ ; sia poi  $Y_{\mathfrak{p}} = \varphi^{-1}(\mathfrak{p})$ , cioè i primi di B che stanno sopra A (che non è lo stesso  $Y_{\mathfrak{p}}$  di sopra!).

Osservazione. Se  $b \in B$ , allora  $\sigma(b) \in B$  per ogni  $\sigma \in G$ . Inoltre se  $\mathfrak{q} \in Y_{\mathfrak{p}}$ , allora  $\sigma(\mathfrak{q}) \in Y_{\mathfrak{p}}$ .

**Teorema 1.3.1.** Il campo fissato dal gruppo di decomposizione  $L^{G_{\mathfrak{q}}}$  è la più piccola estensione di K sopra cui  $\mathfrak{q}L^{G_{\mathfrak{q}}}$  troviamo un unico primo.

**Teorema 1.3.2.** Il gruppo G agisce transitivamente sull'insieme  $Y_{\mathfrak{p}}$ .

**Definizione 1.3.3.** Fissato un primo  $\mathfrak{q} \in Y$ , definiamo il gruppo di decomposizione  $G_{\mathfrak{q}} = \{ \sigma \in G \mid \sigma(\mathfrak{q}) = \mathfrak{q} \}.$ 

**Definizione 1.3.4.** Se  $\mathfrak{p} = \mathfrak{q}^c$ , detto  $S = A \setminus \mathfrak{p}$ , otteniamo un'estensione di campi

$$k(\mathfrak{p}) = S^{-1}A_{/S^{-1}\mathfrak{p}} \subset S^{-1}B_{/S^{-1}\mathfrak{q}} = k(\mathfrak{q})$$

**Proposizione 1.3.5.**  $G_{\mathfrak{q}}$  agisce dunque su  $k(\mathfrak{q})$  tenendo fisso  $k(\mathfrak{p})$ , e la mappa

$$G_{\mathfrak{q}} \to \{ \varphi : k(\mathfrak{q}) \to k(\mathfrak{q}) \mid \varphi|_{k(\mathfrak{p})} = \mathrm{id} \} = \mathrm{Gal}\left(\frac{k(q)}{k(p)}\right)$$

è surgettiva.

**Teorema 1.3.6.** Sia A 
in un dominio normale dimensione dim <math>A = 1. Chiamiamo e l'indice di ramificazione (il numero per cui  $\mathfrak{p}B_{\mathfrak{q}} = \mathfrak{q}^e B_{\mathfrak{q}}$ ), f l'indice d'inerzia (il grado dell'estensione  $[\kappa(\mathfrak{q}) : \kappa(\mathfrak{p})]$ ) e r la cardinalità di  $Y_{\mathfrak{q}}$ . Si ha che

$$[L:K] = mef.$$

Teorema 1.3.7 (Finitezza dell'estensione intera). Nel classico setup

$$\begin{array}{c|c}
B & \longrightarrow & L \\
 & & | \\
A & \longrightarrow & K,
\end{array}$$

supporre K/L separabile e finita e A normale e noetheriano è sufficiente per concludere che l'estensione degli anelli degli interi  $A \subseteq B$  è a sua volta finita.

# 1.4 Valutazioni e completamenti

**Definizione 1.4.1.** Sia k un campo; una mappa  $v:k^*\to\mathbb{Q}$  si dice valutazione se rispetta

- v(xy) = v(x) + v(y)
- $v(x+y) \ge \min(v(x), v(y))$

Data una valutazione si definisce  $A = \{x \in k \mid v(x) \geq 0\}$  e  $\mathfrak{m} = \{x \in k \mid v(x) > 0\}$  un ideale di A. La valutazione v si dice discreta se  $\operatorname{Im} v = \mathbb{Z} \cdot q$  per qualche  $q \neq 0$ ; in questo caso A è un DVR.

Proposizione 1.4.2. Sia A l'anello appena definito. Allora

- ullet A è anello locale con unico massimale  ${\mathfrak m}.$
- Se v è discreta, allora A è noetheriano, dim A=1 e tutti gli ideali sono della forma  $(\pi^m)$  dove  $v(\pi)=q$ .

**Teorema 1.4.3.** Sia A un anello locale noetheriano, con dim A = 1. Allora sono equivalenti:

- i. A è un DVR
- ii. A è un dominio normale
- iii. l'ideale massimale è principale

Osservazione. Nel caso valgano le condizioni sopra, allora  $\dim_{A/\mathfrak{m}} \mathfrak{m}/\mathfrak{m}^2 = 1$ .

**Proposizione 1.4.4.** Sia  $f \in \mathbb{C}[x,y]$  irriducibile, e  $A = \mathbb{C}[x,y]$ /(f). Allora A è normale se e solo se f = 0 è una curva liscia, ovvero  $\nabla f \neq 0$  nei punti in cui f = 0.

# Algebra omologica

# E-strutture e $H^1$ di gruppi

**Lemma 2.1.1.** Sia  $E \subset F$  finita di Galois con gruppo  $\Gamma$ ; V un E-spazio vettoriale.

- 1. Detto  $V_F = F \otimes_E V$ ,  $\Gamma$  agisce su  $V_F$  tramite  $\gamma(\lambda \otimes v) = \gamma(\lambda) \otimes v$  per  $v \in V$ . Valgono allora
  - $V_{E}^{\Gamma} = V$
  - $\gamma(\lambda v) = \gamma(\lambda)\gamma(v) \ per \ v \in V_F$
- 2. Se W è un F spazio vettoriale, e  $\Gamma$  agisce su W in modo che  $\gamma(\lambda v) =$  $\gamma(\lambda)\gamma(v)$ , allora detto  $W_0 = W^{\Gamma}$  valgono
  - $W_0$  è un E-spazio vettoriale
  - la mappa  $F \otimes_E W_0 \to W$  che manda  $\lambda \otimes v \mapsto \lambda v$  è un isomorfismo

**Teorema 2.1.2.** Sia  $E \subset F$  un'estensione di Galois infinita. Allora

$$\operatorname{Gal}\left(F_{/E}\right) \cong \varprojlim_{[L:E]<\infty} \operatorname{Gal}\left(L_{/E}\right)$$

**Definizione 2.1.3.** Data  $E \subset F$  di Galois, un'azione di Gal $\left(F/E\right)$  su uno spazio X è detta continua se  $\forall x \in X \exists L \supset E$  finita di Galois, con Gal  $(F/L) \subset$  $\operatorname{stab} x$ 

**Lemma 2.1.4.** Sia  $E \subset F$  di Galois infinita, V un F-spazio vettoriale; supponiamo che  $\Gamma = \operatorname{Gal}\left(F/E\right)$  agisca in modo continuo su V e valga  $\gamma(\lambda v) =$  $\gamma(\lambda)\gamma(v)$ ; allora valgono le conclusioni del punto 2 del lemma precedente, in particolare  $V \cong F \otimes_E V^{\Gamma}$ .

**Definizione 2.1.5.** Sia  $E \subset F$  estensione di Galois con gruppo  $\Gamma$ ; siano  $A_0, B$ due E-algebre, e  $R = F \otimes A_0 \cong F \otimes B$ . Sia  $\gamma_0 = \gamma \otimes_E \mathrm{id}_{A_0}$  l'azione di  $\Gamma$  estesa su R, e similmente  $\gamma_B$ .

Sia  $c: \Gamma \to \operatorname{Aut}(R)$  dato da  $c_{\gamma} = \gamma_B \cdot \gamma_A^{-1}$ .

# Proposizione 2.1.6.

• Per ogni  $\gamma$ ,  $c_{\gamma}$  è F-lineare, quindi ho definito  $c: \Gamma \to \operatorname{Aut}_F(R)$ 

• Vale  $c_{\gamma\delta} = c_{\gamma} \circ^{\gamma} c_{\delta}$ , dove  ${}^{\gamma}\varphi = \gamma_0 \circ \varphi \circ \gamma_0^{-1}$ 

**Definizione 2.1.7.** Definiamo  $Z^1(\Gamma, \operatorname{Aut}_F(R)) = \{c : \Gamma \to \operatorname{Aut}_F(R) \mid c_{\gamma\delta} = c_{\gamma} \circ^{\gamma} c_{\delta}\}.$ 

Se  $c, c' \in Z^1$ , diciamo che  $c \sim c'$  se  $\exists f \in \operatorname{Aut}_F R$  tale che  $c'_{\gamma} = f \circ c_{\gamma} \circ^{\gamma} f^{-1}$ .

Definiamo poi  $H^1(\Gamma, \operatorname{Aut}_F(R)) = Z^1(\Gamma, \operatorname{Aut}_F(R)) /\!\!\!\! \sim$ 

### Teorema 2.1.8.

$$\{E\text{-}strutture\ di\ A\}_{isomorfismo}\cong H^1(\Gamma, \operatorname{Aut}_F(R))$$

Sia ora G un gruppo che agisce sullo spazio X; sia  $\Gamma$  un gruppo che agisce su G conservando il prodotto e su X compatibilmente con G.

**Definizione 2.1.9.** Sia  $Z^1(\Gamma, G) = \{c : \Gamma \to G \mid c_{\gamma\delta} = c_{\gamma} \cdot^{\gamma} c_{\delta}\}$ . Diciamo inoltre che  $c \sim d$  se esiste  $g \in G$  tale che  $d_{\gamma} = g \cdot c_{\gamma} \cdot^{\gamma} (g^{-1})$ . Sia infine  $H^1(\Gamma, G) = Z^1(\Gamma, G)$ .

**Proposizione 2.1.10.** Sia  $1 \to H \to G \to K \to 1$  una successione esatta di gruppi su cui agisce  $\Gamma$  in modo compatibile con le mappe. Allora  $1 \to H^{\Gamma} \to G^{\Gamma} \to K^{\Gamma} \to H^1(\Gamma, H) \to H^1(\Gamma, G) \to H^1(\Gamma, K)$  è una successione esatta di insiemi puntati.

**Teorema 2.1.11** (Hilbert 90). Sia  $E \subset F$  di Galois finita con gruppo  $\Gamma$ ; sia  $G = \operatorname{GL}_n(F)$  e  $\Gamma$  agisce su G coefficiente per coefficiente. Allora  $H^1(\Gamma, \operatorname{GL}_n(F)) = \{1\}$ .

Corollario 2.1.12. Anche  $H^1(\Gamma, \operatorname{SL}_n(F)) = \{1\}.$ 

**Proposizione 2.1.13.** Sia  $x_0 \in X^{\Gamma}$  e  $H = \operatorname{stab}_G x_0$ ; supponiamo che G agisca transitivamente su X. Se  $H^1(\Gamma, G) = \{1\}$ , allora le orbite di  $G^{\Gamma}$  in  $X^{\Gamma}$  sono in bigezione con  $H^1(\Gamma, H)$ .

# 2.2 Categorie, categorie abeliane e complessi

**Lemma 2.2.1** (di Yoneda). Sia C una categoria piccola e  $F: C \to \mathbf{Set}$  un funtore controvariante nella categoria degli insiemi. Si ha una bigezione

$$Nat(h_X, F) \leftrightarrow F(X)$$
.

**Proposizione 2.2.2** (che fa impallidire anche Yoneda). I limiti sono coequalizzatori. Sia I un sistema proiettivo, allora  $\varprojlim F(i)$  è isomorfo all'equalizzatore del diagramma

$$\prod_{i} F(i) \xrightarrow{T} \prod_{\varphi: i \to j} F(j)_{\varphi}$$

 $dove\ otteniamo\ T\ ed\ S\ sfruttando\ la\ proprietà\ universale\ del\ prodotto\ per\ completare\ i\ diagrammi$ 

$$\prod_{i} F(i) \xrightarrow{T} \prod_{\varphi: i \to j} F(j)_{\varphi} \qquad \qquad \prod_{i} F(i) \xrightarrow{S} \prod_{\varphi: i \to j} F(j)_{\varphi} \\
\downarrow^{\pi_{b}} \qquad \qquad \downarrow^{\pi_{b\varphi}} \qquad \qquad \downarrow^{\pi_{a}} \qquad \qquad \downarrow^{\pi_{b\varphi}} \\
F(b) \xrightarrow{\text{id}} F(b)_{\varphi}, \qquad F(a) \xrightarrow{\varphi} F(b)_{\varphi}.$$

**Definizione 2.2.3.** Una categoria  $\mathcal{C}$  si dice *additiva* se soddisfa le seguenti proprietà:

- $\forall X, Y \in \mathcal{C}$ , l'insieme Hom(X, Y) è un gruppo abeliano
- La composizione di morfismi  $\operatorname{Hom}(Y,Z) \times \operatorname{Hom}(X,Y) \to \operatorname{Hom}(X,Z)$  è bilineare
- Esiste un oggetto zero, cioè  $0 \in \mathcal{C}$  tale che  $\operatorname{Hom}(X,0) = \operatorname{Hom}(0,X)$  sono il gruppo banale
- Dati  $X,Y \in \mathcal{C}$  esiste il coprodotto  $X \coprod Y$ , definito dalla seguente pro-

prietà universale:  $X \xrightarrow[i_X]{f} X \coprod Y \xleftarrow[i_Y]{g} Y$ 

**Proposizione 2.2.4.** In una categoria additiva, il coprodotto è isomorfo al prodotto, e si indica con  $X \oplus Y$ .

**Definizione 2.2.5.** Fissata una mappa  $\varphi: X \to Y$ , diciamo che:

•  $\ell: Z \to X$  è il nucleo di  $\varphi$  se  $\varphi \circ \ell = 0$  e per ogni  $\alpha: U \to X$  tale che  $\varphi \circ \alpha = 0$ , esiste un'unica  $\tilde{\alpha}: U \to Z$  che faccia commutare

$$Z \xrightarrow[\tilde{\alpha}]{\ell} X \xrightarrow{\varphi} Y$$

$$U$$

•  $m: Y \to Q$  è il conucleo di  $\varphi$  se  $m \circ \varphi = 0$  e per ogni  $\beta: Y \to U$  tale che  $\beta \circ \varphi = 0$ , esiste un'unica  $\tilde{\beta}: Q \to U$  che faccia commutare

**Definizione 2.2.6.** Una categoria additiva  $\mathcal{C}$  è detta *abeliana* se per ogni mappa  $\varphi: X \to Y$  esistono  $\alpha = \ker \varphi$  e  $\beta = \operatorname{coker} \varphi$ , e inoltre  $\operatorname{coker} \alpha \cong \ker \beta$  e questo oggetto si dice  $\operatorname{Im} \varphi$ .

$$K \xrightarrow{\alpha} X \xrightarrow{\varphi} Y \xrightarrow{\beta} Q$$

$$\downarrow^{\pi} \qquad \downarrow^{\psi} \qquad \downarrow^{j}$$

$$\operatorname{coker} \alpha \xrightarrow{-\frac{\sim}{A}} \ker \beta$$

**Proposizione 2.2.7.** In una categoria abeliana  $\varphi$  è un isomorfismo se e solo se  $\ker \varphi = 0$  e  $\operatorname{coker} \varphi = 0$ .

**Definizione 2.2.8.** La successione  $X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z$  si dice *esatta* in Y se  $\psi \varphi = 0$  e vale Im  $\varphi \cong \ker \psi$  (o equivalentemente Im  $\psi \cong \operatorname{coker} \varphi$ ).

**Proposizione 2.2.9.** In una categoria abeliana valgono lo snake lemma e il lemma dei 5.

**Lemma 2.2.10.** Nella categoria degli A-moduli il limite inverso  $\varprojlim$  è esatto a sinistra.

Teorema 2.2.11. In realtà le categorie abeliane sono gli A-moduli...

#### Complessi

Mettiamoci in una categoria abeliana C.

**Definizione 2.2.12.** Una complesso  $X^{\bullet}$  è una successione di oggetti e frecce

$$\dots \xrightarrow{\partial^{n-1}} X^n \xrightarrow{\partial^n} X^{n+1} \xrightarrow{\partial^{n+1}} \dots$$

tali che  $\partial^{n+1} \circ \partial^n = 0$  per ogni  $n \in \mathbb{Z}$ .

Un morfismo di complessi  $\varphi^{\bullet}: X^{\bullet} \to Y^{\bullet}$  è una successione di mappe  $\varphi^n: X^n \to Y^n$  tali che tutti i quadrati commutino:

$$X^{n-1} \xrightarrow{\partial_X^{n-1}} X^n \xrightarrow{\partial_X^n} X^{n+1}$$

$$\downarrow \varphi^{n-1} \qquad \downarrow \varphi^n \qquad \downarrow \varphi^{n+1}$$

$$Y^{n-1} \xrightarrow{\partial_Y^{n-1}} Y^n \xrightarrow{\partial_Y^n} Y^{n+1}$$

Possiamo allora considerare le categorie  $Com(\mathcal{C})$ ,  $Com^+(\mathcal{C})$  e  $Com^-(\mathcal{C})$  dei complessi (eventualmente limitati in una delle due direzioni).

**Proposizione 2.2.13.** Le categorie  $Com(\mathcal{C})$ ,  $Com^+(\mathcal{C})$  e  $Com^-(\mathcal{C})$  sono abeliane.

**Definizione 2.2.14.** Sia  $X^{\bullet}$  un complesso; definiamo  $Z^{n}(X) = \ker(\partial^{n})$  e  $B^{n}(X) = \operatorname{Im}(\partial^{n-1})$ . Definiamo poi  $H^{n}(X) = Z^{n}(X)/B^{n}(X)$  l'n-esimo gruppo di coomologia.

**Proposizione 2.2.15.** Se  $\varphi^{\bullet}: X^{\bullet} \to Y^{\bullet}$  è morfismo di complessi, otteniamo una successione di mappe  $H^n(\varphi): H^n(X) \to H^n(Y)$ .

**Teorema 2.2.16.** Sia  $0 \to X^{\bullet} \xrightarrow{\varphi^{\bullet}} Y^{\bullet} \xrightarrow{\psi^{\bullet}} Z^{\bullet} \to 0$  una successione esatta di complessi. Allora la successione

$$H^n(X) \to H^n(Y) \to H^n(Z) \xrightarrow{\omega_n} H^{n+1}(X) \to H^{n+1}(Y) \to H^{n+1}(Z)$$

è esatta.

**Definizione 2.2.17.** Sia  $\varphi: X^{\bullet} \to Y^{\bullet}$ ; diciamo che  $\varphi \sim 0$  è *omotopa* a 0 se esistono delle mappe  $h^n: X^n \to Y^{n-1}$  tali che  $\varphi^n = \partial_Y^{n-1} \circ h^n + h^{n+1} \circ \partial_X^n$ .

**Proposizione 2.2.18.** Se  $\varphi \sim 0$ , allora vale  $H^n(\varphi) = 0$ ; in particolare se vale id  $\sim 0$ , allora il complesso è esatto.

**Definizione 2.2.19.** Se  $X^{\bullet}$  è un complesso, diciamo che il complesso  $Y^{\bullet}$  è una risoluzione iniettiva di  $X^{\bullet}$  se gli  $Y^n$  sono oggetti iniettivi ed esiste un morfismo di complessi  $\varphi^{\bullet}: X^{\bullet} \to Y^{\bullet}$  che sia un isomorfismo in coomologia.

**Definizione 2.2.20.** Sia  $A \in \mathcal{C}$  e  $F : \mathcal{C} \to \mathcal{C}'$  un funtore additivo, esatto a sinistra.

Sia  $I^{\bullet}$  una risoluzione iniettiva del complesso  $\ldots \to 0 \to A \to 0 \to \ldots$ . Definiamo l'*i*-esimo funtore derivato come  $R^iF(A) = H^i(FI^{\bullet})$  l'*i*-esimo gruppo di coomologia del complesso  $0 \to FI^0 \to FI^1 \to \ldots$ 

Osservazione. Verificheremo che la risoluzione iniettiva esiste, e che il funtore derivato non dipende dalla scelta della risoluzione iniettiva.

**Definizione 2.2.21.** Se  $X^{\bullet}$  è un complesso, diciamo che il complesso  $P^{\bullet}$  è una risoluzione proiettiva di  $X^{\bullet}$  se i  $P^n$  sono oggetti iniettivi ed esiste un morfismo di complessi  $\varphi^{\bullet}: P^{\bullet} \to X^{\bullet}$  che sia un isomorfismo in coomologia.

**Definizione 2.2.22.** Sia  $A \in \mathcal{C}$  e  $F : \mathcal{C} \to \mathcal{C}'$  un funtore controvariante, additivo, esatto a sinistra.

Sia  $P^{\bullet}$  una risoluzione iniettiva del complesso  $\ldots \to 0 \to A \to 0 \to \ldots$ . Definiamo l'*i*-esimo funtore derivato come  $L^iF(A) = H^i(FP^{\bullet})$  l'*i*-esimo gruppo di coomologia del complesso  $0 \to FP^0 \to FP^1 \to \ldots$ .

**Definizione 2.2.23.** Siano X,Y oggetti; siano F,G i funtori  $F=\operatorname{Hom}(X,-)$  e  $G=\operatorname{Hom}(-,Y).$ 

Definiamo allora  $\operatorname{Ext}^i(X,Y) = R^i F(Y)$  e  $\operatorname{Ext}^i(X,Y) = L^i G(X)$ .

**Esempio 2.2.24.** Siano  $m, n \in \mathbb{Z}$  e scriviamo m = dm', n = dn' con  $d = \gcd(m, n)$ .

Allora 
$$\underline{\operatorname{Ext}}^0(\mathbb{Z}_{(m)}, \mathbb{Z}_{(m)}) \cong \underline{\operatorname{Ext}}^1(\mathbb{Z}_{(m)}, \mathbb{Z}_{(m)}) \cong \mathbb{Z}_{(d)}.$$

**Proposizione 2.2.25.** Se X,Y sono oggetti, allora  $\operatorname{Ext}^i(X,Y) \cong \operatorname{\underline{Ext}}^i(X,Y)$ .

# 2.3 Coomologia di gruppi

Sia G un gruppo e R un anello commutativo con unità. Lavoreremo nella categoria degli R[G] moduli, dove  $R[G] = \bigoplus_{g \in G} Re_g$ .

**Definizione 2.3.1.** Sia M un R[G]-modulo; definiamo  $F_1(M)=M^G=\operatorname{Hom}_{R[G]}(R,M)$  e  $F_2(M)=M/\langle m-gm\rangle=R\otimes_{R[G]}M$ .

Definiamo  $H^n(G, M) = \operatorname{Ext}^n(R, M) = R^n F_1(M)$ ; sappiamo però che è isomorfo a  $\operatorname{Ext}^n(R, M)$ , che è il funtore derivato di  $\operatorname{Hom}_{R[G]}(-, M)$ . Inoltre  $H_n(G, M) = \operatorname{Tor}_n(R, M)$  il funtore derivato di  $F_2$ .

**Proposizione 2.3.2** (risoluzione libera di R). Siano  $P^0 = R[G], P^{-1} = R[G \times G], P^{-2} = R[G \times G \times G], \ldots$ ; sia  $\varepsilon : P^0 \to R$  data da  $\varepsilon(g) = 1$ . Sia poi  $\partial^{-n} : P^{-n} \to P^{-n+1}$  data da

$$\partial^{-n}(e_{g_0,\dots,g_n}) = \sum_{i=0}^n (-1)^i e_{g_0,\dots,\hat{g_i},\dots,g_n}$$

Allora la successione  $0 \leftarrow R \xleftarrow{\varepsilon} P^0 \xleftarrow{\partial^{-1}} P^{-1} \xleftarrow{\partial^{-2}} \dots$  è una risoluzione proiettiva di R.

**Proposizione 2.3.3.** La mappa  $\Phi_n : \text{Hom}_{R[G]}(P^{-n}, M) \to \{f : G^n \to M\} =: C^n(G, M) \ data \ da \ \Phi_n(\psi)(g_1, \dots, g_n) = \psi(1, g_1, g_1g_2, \dots, g_1 \cdots g_n) \ \dot{e} \ un \ isomorfismo.$ 

Inoltre la mappa  $\delta_C^n: C^n(G,M) \to C^{n+1}(G,M)$  data da  $\delta_C^n f = \Phi_{n+1}((\Phi_n^{-1} f) \circ \partial^{-n})$  ha la formula esplicita

$$(\delta_C^n f)(g_1, \dots, g_{n+1}) = g_1 \cdot f(g_2, \dots, g_{n+1}) + \sum_{i=1}^n (-1)^i f(g_1, \dots, g_i \cdot g_{i+1}, \dots, g_{n+1}) + (-1)^n f(g_1, \dots, g_n)$$

**Esempio 2.3.4.** Osserviamo che  $(\delta^0 f)(g) = gf(1) - f(1)$  e  $(\delta^2 f)(g,h) = gf(h) - f(gh) + f(g)$ , ovvero  $Z^1(G,M) = \{f: G \to M \mid f(gh) = f(g) + gf(h)\}$  e perciò  $H^1(G,M) = Z^1/\{g \mapsto gm - m\}$ , che è esattamente la definizione data nel capitolo precedente con i cocicli  $c_{\gamma}$ .

**Definizione 2.3.5.** Sia  $f: H \to G$  un omomorfismo di gruppi e M un G-modulo. Allora  $f^*M$  è un H-modulo tramite l'azione  $h \cdot m = f(h)m$ . Inoltre f induce un morfismo di complessi  $C^q(G,M) \to C^q(H,M)$ , da cui si ottiene una mappa  $Res^q: H^q(G,M) \to H^q(H,f^*M)$  in coomologia.

**Definizione 2.3.6.** Sia  $f: H \to G$  un omomorfismo di gruppi e N un H-modulo.

Definiamo  $\operatorname{Ind}_H^G N = R[G] \otimes_{R[H]} N$  che è un G-modulo tramite  $g \cdot (x \otimes n) = xg \otimes n$ .

Definiamo poi coInd $_H^G N = \operatorname{Hom}_H(R[G], N)$ , dove R[G] è un H-modulo tramite l'azione  $h \cdot g = gf(h^{-1})$ . Questo ha una struttura di G-modulo con l'azione  $(g \cdot \varphi)(x) = \varphi(g^{-1}x)$ .

**Proposizione 2.3.7.** Sia M un G-modulo e N un H-modulo, e  $f: H \to G$ . Allora valgono

- $\operatorname{Hom}_H(N, f^*M) \cong \operatorname{Hom}_G(\operatorname{Ind}_H^G, M)$
- $\operatorname{Hom}_H(f^*M, N) \cong \operatorname{Hom}_G(M, \operatorname{coInd}_H^G N)$

**Proposizione 2.3.8.** Siano F, G due funtori aggiunti tra due categorie A, B, ovvero tali che  $\text{Hom}_{A}(a, Gb) = \text{Hom}_{B}(Fa, b)$ . Allora valgono:

- F conserva i limiti diretti, è esatto a destra e manda proiettivi in proiettivi
- G conserva i limiti inversi, è esatto a sinistra e manda iniettivi in iniettivi
- ullet Se  $\mathcal{A}, \mathcal{B}$  sono abeliane, F e G sono additivi

Teorema 2.3.9.  $Sia\ H < G\ e\ N\ un\ H$ -modulo. Allora

- $H^i(G, \operatorname{coInd}_H^G N) = H^i(H, N)$
- $H_i(G, \operatorname{Ind}_H^G N) = H_i(H, N)$

**Definizione 2.3.10.** Dato G un gruppo, H < G di indice finito, M un G-modulo, abbiamo le mappe:

- $i: M^G \to M^H$  la mappa di inclusione
- $N: M^H \to M^G$  la "norma": se  $x_1, \ldots, x_n$  sono i rappresentanti di G/H, definiamo  $N(m) = \sum x_i m$

Inoltre, se  $0 \to M \to I_M^{\bullet}$  è risoluzione iniettiva come G-modulo, lo è anche come H-modulo.

Perciò le due mappe passano a mappe di complessi, e quindi in coomologia:

- $\operatorname{Res}^q: H^q(G,M) \to H^q(H,M)$
- $\operatorname{coRes}^q: H^q(H,M) \to H^q(G,M)$

**Proposizione 2.3.11.** Sia H < G di indice finito. Allora  $\operatorname{coRes}^q \circ \operatorname{Res}^q = [G:H]\operatorname{id}$ .

Corollario 2.3.12. Se G è finito, vale  $\#G \cdot H^q(G, M) = 0$  per q > 0.

# 2.4 Gruppo di Brauer

Consideriamo ora anelli A con unità, non necessariamente commutativi.

# Algebre centrali semplici

**Definizione 2.4.1.** Sia M un A-modulo. Si dice semplice se  $M \neq 0$  e non ha sottomoduli propri. M si dice semisemplice se  $M = \sum_{S \subset M} \sum_{\text{semplice}} S$ .

Teorema 2.4.2. Sia A anello con 1, M un A-modulo. Sono equivalenti

- 1.  $\exists S_i \subset M \text{ semplici tali che } M = \bigoplus S_i$ .
- 2. M è semisemplice.
- 3. Per ogni  $N \subset M$  esiste un  $P \subset M$  tale che  $M = N \oplus P$ .

Osservazione. Sottomoduli e quozienti di semisemplici sono semisemplici.

**Definizione 2.4.3.** Un anello A si dice semisemplice se lo è come A-modulo sinistro.

Proposizione 2.4.4. Sia A un anello. Sono equivalenti

- 1. A è semisemplice.
- 2. Ogni A-modulo è semisemplice.
- 3. Ogni A-modulo è proiettivo.

Lemma 2.4.5 (Schur). Siano S, T moduli semplici. Allora

- $Sia \varphi: S \to T$ .  $Si ha che \varphi = 0$  oppure è un isomorfismo.
- $\operatorname{End}(S)$  è un corpo.

**Teorema 2.4.6** (Wedderburn). Sia A un anello semisemplice. Allora  $A = \bigoplus_i \operatorname{Mat}_{n_i \times n_i}(D_i)$  con  $D_i$  corpi univocamente determinati.

**Proposizione 2.4.7.** Sia  $E = \overline{E}$ , e  $D \supset E$  un corpo di dimensione finita con  $E \subset Z(D)$ . Allora D = E.

**Definizione 2.4.8.** Una E-algebra A di dimensione finita si dice *centrale* se Z(A) = E; si dice *semplice* se A non contiene ideali bilateri non banali.

Proposizione 2.4.9. Sia A una E-algebra di dimensione finita. Sono equivalenti

- 1. A è semplice.
- 2.  $A = \operatorname{Mat}_{n \times n}(D)$  con D corpo tale che  $E \subset Z(D)$ .

Corollario 2.4.10. A è un'E-algebra centrale semplice se e solo se  $A = \operatorname{Mat}_{n \times n}(D)$ , con Z(D) = E.

**Lemma 2.4.11.** Sia V un E-spazio vettoriale, D un corpo E-centrale,  $V_D = V \otimes_E D$  e  $W \subset V_D$  un sottospazio vettoriale stabile per D a destra e a sinistra. Detto  $W' = W \cap V$ , vale  $W = W' \otimes_E D$ .

**Teorema 2.4.12.** Sia A una E-acs;  $E \subset F$  estensione di campi. Allora  $F \otimes_E A$  è una F-acs.

**Teorema 2.4.13.** Siano A, A' delle E-acs. Allora anche  $A \otimes_E A'$  è una E-acs.

**Definizione 2.4.14.** Sia A una E-acs. Diciamo che spezza su F se  $A \otimes_E F = \operatorname{Mat}_{n \times n}(F)$ 

**Teorema 2.4.15.** Sia A una E-acs. Allora esiste un'estensione di campi  $E \subset F$  finita e separabile tale che A spezza su F.

**Definizione 2.4.16.** Sia E un campo; definiamo il suo gruppo di Brauer come  $\mathcal{A} = \{E\text{-acs}\}/\sim$ , dove  $A \sim A'$  se sono algebre di matrici sullo stesso corpo. Questo è un gruppo, con l'operazione  $[A] \cdot [A'] = [A \otimes A']$  ed elemento neutro [E].

Osservazione. L'elemento inverso è l'algebra opposta, in quanto  $A\otimes A^{op}=\operatorname{End}_E(A)=\operatorname{Mat}_{n\times n}(E).$ 

# Descrizione coomologica

**Lemma 2.4.17.** Dato un campo F vale  $Aut_F(Mat_{n\times n}(F)) = PGL_n(F)$ 

**Definizione 2.4.18.** Sia  $E \subset L$  finita di Galois con gruppo  $\Gamma$ . Definiamo i seguenti oggetti:

- $\mathcal{A}_L = \{ [A] \in \mathcal{A} \mid A \text{ spezza su } L \}$
- $A_n = \{A \text{ } E\text{-acs} \mid \dim_E A = n^2\}/\text{isom}.$
- $\mathcal{A}_{n,L} = \{A \text{ } E\text{-acs } \mid \dim_E A = n^2, A \text{ } \text{spezza su } L\}/\text{isom.}$

Osservazione. Le algebre  $\mathcal{A}_{n,L}$  sono proprio le E-strutture di  $\mathrm{Mat}_{n\times n}(L)$ , pertanto c'è la corrispondenza biunivoca  $\mathcal{A}_{n,L} \leftrightarrow H^1(\Gamma, PGL_n(L))$ .

**Definizione 2.4.19.** Definiamo la mappa  $\delta_{n,L}: \mathcal{A}_{n,L} \to H^2(\Gamma, L^*)$  tramite la successione lunga data da  $1 \to L^* \to GL_n(L) \to PGL_n(L) \to 1$ .

Lemma 2.4.20. Siano  $A \in A_{n,L}$  e  $A' \in A_{m,L}$ . Allora

- $\delta_{nm}(A \otimes A') = \delta_n(A) \cdot \delta_m(A')$ .
- Se [A] = [A'] nel gruppo di Brauer, allora  $\delta_n(A) = \delta_m(A')$ .
- La mappa  $\delta_k$  è surgettiva per k = [L : E].

**Teorema 2.4.21.** Le mappe  $\delta_n$  permettono di costruire l'isomorfismo di gruppi

$$\mathcal{A}_L \cong H^2(\Gamma, L^*)$$

# Corollario 2.4.22.

- Se D è un corpo finito, allora è un campo.
- Il gruppo di Brauer di  $\mathbb{R}$  è  $\mathbb{Z}/(2)$ , ovvero  $\{\mathbb{R},\mathbb{H}\}$

#### Galois infinito

**Definizione 2.4.23.** In generale, sia G un gruppo,  $H \subseteq G$  e M un G-modulo. La mappa naturale  $Inf^q: H^q\left(G/H, M^H\right) \to H^q(G, M)$  è detta inflazione.

Consideriamo ora  $E \subset F$  di Galois con gruppo  $\Gamma$ ; per ogni  $E \subset L$  finita di Galois indichiamo  $\Sigma_L = \operatorname{Gal}\left(F/L\right), \ \Gamma_L = \operatorname{Gal}\left(L/E\right) = \Gamma/\Sigma_L.$ 

**Definizione 2.4.24.** Un Γ-modulo M è detto liscio se vale  $M = \bigcup M^{\Sigma_L}$ , dove l'unione è fatta sulle L finite di Galois.

**Definizione 2.4.25.** Possiamo definire  $H^q_{cont}(\Gamma, M) = \varinjlim H^q(\Gamma_L, M^{\Sigma_L})$ , dove il sistema diretto è dato dalle L estensioni finite di Galois e le mappe sono le inflazioni.

**Lemma 2.4.26.** Sia  $0 \to A_i \to B_i \to C_i \to 0$  una successione esatta per ogni indice i; allora vale  $0 \to \varprojlim A_i \to \varprojlim B_i \to \varprojlim C_i \to 0$ .

**Lemma 2.4.27.** Sia M un  $\Gamma$ -modulo continuo, e  $M = \bigcup M_{\alpha}$  con  $\alpha$  insieme filtrante. Allora  $\lim_{n \to \infty} H^q(\Gamma, M_{\alpha}) = H^q_{cont}(\Gamma, M)$ .

**Teorema 2.4.28.** Sia  $0 \to A \to B \to C \to 0$  una successione esatta di moduli lisci. Allora ho la successione esatta lunga in coomologia con gli  $H^q_{cont}$ .

**Teorema 2.4.29.** Sia E un campo, F la sua chiusura separabile e  $\Gamma = \operatorname{Gal}\left(F/E\right)$ . Allora il gruppo di Brauer di E è  $A = A_F \cong H^2(\Gamma, F^*)$ .

# 2.5 Costruzione dei funtori derivati

#### Risoluzione iniettiva

**Definizione 2.5.1.** Un oggetto I è detto iniettivo se



Osservazione. Prodotto di iniettivi è iniettivo.

**Definizione 2.5.2.** Un A-modulo I è divisibile se  $\forall x \in I, a \in A \setminus 0$  esiste un  $y \in I$  tale che ay = x.

**Teorema 2.5.3.** Se A è un PID e I è un A-modulo, allora I è iniettivo se e solo se è divisibile

Corollario 2.5.4.  $\mathbb{Q}$  e  $\mathbb{Q}/\mathbb{Z}$  sono degli  $\mathbb{Z}$ -moduli iniettivi.

**Proposizione 2.5.5.** Sia M uno  $\mathbb{Z}$ -modulo. Allora esiste un modulo iniettivo I e un'immersione  $\varphi: M \to I$ .

**Lemma 2.5.6.** Sia M un A-modulo e N uno  $\mathbb{Z}$ -modulo. Allora vale  $\operatorname{Hom}_{\mathbb{Z}}(M,N) \cong \operatorname{Hom}_{A}(M,N_{A})$ , dove  $N_{A} = \operatorname{Hom}_{\mathbb{Z}}(A,N)$  che è un A-modulo con l'azione  $(a \cdot \varphi)(x) = \varphi(xa)$ .

In particolare il funtore  $N_A$  manda iniettivi in iniettivi.

**Teorema 2.5.7.** Sia M un A-modulo. Allora esiste un A-modulo iniettivo I tale che  $0 \to M \to I$ . Ovvero M od $_A$  ha abbastanza iniettivi.

Corollario 2.5.8. Ogni A-modulo ammette una risoluzione iniettiva, costruita nel seguente modo



**Teorema 2.5.9.** Sia C la categoria degli A-moduli. Sia  $F \subset C$  una classe di moduli tali che  $\forall M \in C \exists I \in F$  tale che  $0 \to M \to I$ . Allora dato un  $M^{\bullet} \in \text{Com}^+(C)$  esiste  $X^{\bullet} \in \text{Com}^+(F)$  con una mappa  $\varphi : M^{\bullet} \to X^{\bullet}$  che è un quasi isomorfismo e iniettiva in ogni grado.

### Categorie triangolate

**Definizione 2.5.10.** Sia  $\mathcal{C}$  una categoria additiva con un funtore invertibile [1], e una famiglia di triangoli distinti  $X \to Y \to Z \to X[1]$ .  $\mathcal{C}$  si dice *pretriangolata* se valgono

TR1 a)  $\forall X \in \mathcal{C}$  il triangolo  $X = X \to 0 \to X[1]$  è distinto.

- b)  $\forall \varphi: X \to Y$  esiste un triangolo distinto  $X \to Y \to Z \to X[1]$ .
- c) Un triangolo isomorfo ad un distinto è ancora distinto.

TR2 Il triangolo  $X \to Y \to Z \to X[1]$  è distinto se e solo se  $Y \to Z \to X[1] \to Y[1]$  è distinto.

TR3

$$\begin{array}{cccc} X & \longrightarrow & Y & \longrightarrow & Z & \longrightarrow & X[1] \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ X' & \longrightarrow & Y' & \longrightarrow & Z' & \longrightarrow & X'[1] \end{array}$$

**Teorema 2.5.11.** Se  $\mathcal{C}$  è abeliana, la categoria  $\mathrm{Kom}^+(\mathcal{C})$ , con funtore  $(X[1])^n = X^{n+1}$  e  $\partial_{X[1]}^n = -\partial_X^{n+1}$ , e triangoli distinti della forma  $X \xrightarrow{\varphi} Y \to C(\varphi) \to X^{n+1}$ 

$$X[1] \ dati \ da \ C(\varphi)^n = Y^n \oplus X^{n+1} \ e \ \partial^n_{C(\varphi)} = \begin{pmatrix} \partial_Y & \varphi \\ 0 & -\partial_X \end{pmatrix} \ \grave{e} \ pretriangolata.$$

**Proposizione 2.5.12.** Sia  $X \to Y \to Z \to X[1]$  un triangolo distinto in una categoria pretriangolata. Allora  $\forall U$  la successione  $\operatorname{Hom}(U,X) \to \operatorname{Hom}(U,Y) \to \operatorname{Hom}(U,X[1])$  è esatta di gruppi abeliani.

**Proposizione 2.5.13.** Sia  $X^{\bullet} \to Y^{\bullet} \to Z^{\bullet} \to X^{\bullet}[1]$  un triangolo distinto nella categoria omotopica degli A-moduli. Allora per ogni i la successione  $H^{i}(X) \to H^{i}(Y) \to H^{i}(Z) \to H^{i+1}(X)$  è esatta.

**Proposizione 2.5.14.** Sia  $0 \to X^{\bullet} \xrightarrow{\varphi} Y^{\bullet} \xrightarrow{\pi} Z^{\bullet} \to 0$  una successione esatta di complessi. Consideriamo la mappa  $F: C(\varphi) \to Z$  data da  $F(y,x) = \pi(y)$ . Questa è un quasi isomorfismo, e inoltre fa commutare il diagramma

# Funtori derivati

**Lemma 2.5.15.** Sia  $X^{\bullet}$  un complesso esatto, e  $I^{\bullet}$  un complesso di oggetti iniettivi. Allora  $\operatorname{Hom}_{\operatorname{Kom}}(X,I)=0$ .

Proposizione 2.5.16. Siano A, B complessi e I complesso iniettivo.

- 1.  $Se \varphi : A \to B \ e \ un \ quasi \ isomorfismo, \ allora \ Hom_{Kom}(B,I) \to Hom_{Kom}(A,I)$  $e \ un \ isomorfismo.$
- 2. La risoluzione iniettiva di un complesso è unica in Kom a meno di unico isomorfismo.
- 3. Dette  $A \to I_A$  e  $B \to I_B$  le risoluzioni iniettive, c'è una mappa iniettiva  $\operatorname{Hom}_{\operatorname{Kom}}(A,B) \hookrightarrow \operatorname{Hom}_{\operatorname{Kom}}(I_a,I_B)$ .

**Definizione 2.5.17.** Sia  $F : A \to B$  un funtore additivo di categorie abeliane; supponiamo che A abbia abbastanza iniettivi.

Per ogni  $X \in \text{Com}^+(\mathcal{A})$  esiste una (unica in Kom) risoluzione iniettiva  $I_X$ . Definiamo allora  $RF : \text{Kom}^+(\mathcal{A}) \to \text{Kom}^+(\mathcal{B})$  tramite  $RF(X) = F(I_X)$ . Sia poi  $R^iF : \text{Kom}^+(\mathcal{A}) \to \mathcal{B}$  dato da  $R^iF(X) = H^i(RF(X))$ .

Osservazione. Se F è esatto a sinistra, allora  $R^0F(X) = F(X)$ .

**Proposizione 2.5.18.** Il funtore RF manda triangoli distinti in triangoli distinti.

**Definizione 2.5.19.** Sia  $\mathcal{A}$  categoria abeliana,  $X \in \mathcal{A}$ . Definiamo  $F_X(Y) = \operatorname{Hom}(X,Y)$  e  $\underline{F_X}(Y) = \operatorname{Hom}(Y,X)$ . Definiamo allora

- $\operatorname{Ext}^{i}(X,Y) = R^{i}F_{X}(Y) \text{ per } Y \in \operatorname{Com}^{+}(A).$
- $\underline{\operatorname{Ext}}^i(X,Y) = R^i \underline{F_Y}(X)$  per  $X \in \operatorname{Com}^+(\mathcal{A})$  (devo usare una risoluzione proiettiva, perché è controvariante).

**Definizione 2.5.20.** Un complesso doppio è un insieme di oggetti  $X^{i,j}$  e mappe  $\partial_O^{i,j}$  e  $\partial_V^{i,j}$  messi così:

Sia poi  $T^n=\bigoplus_{i+j=n}X^{i,j}$  il complesso totale, con bordi  $\partial^n_T\big|_{X^{i,j}}=\partial^{i,j}_O+(-1)^i\partial^{i,j}_V.$ 

**Proposizione 2.5.21.** Sia  $X^{i,j}$  un complesso doppio con  $X^{i,j} = 0$  per i < 0 o j < 0. Supponiamo inoltre che le righe e le colonne siano esatte, tranne al più in 0; definiamo  $A^j = \ker \partial_O^{0,j}$  e  $B^i = \ker \partial_V^{i,0}$ . Siano poi  $\alpha : A^{\bullet} \to T$  e  $\beta : B^{\bullet} \to T$  le inclusioni.

Allora  $\alpha, \beta$  sono mappe di complessi e quasi isomorfismi.

**Proposizione 2.5.22.** Siano X, Y oggetti. Allora  $\operatorname{Ext}^i(X, Y) = \operatorname{\underline{Ext}^i}(X, Y)$