18.445 Introduction to Stochastic Processes Lecture 10: Hitting times

Hao Wu

MIT

16 March 2015

Hao Wu (MIT) 18.445 16 March 2015 1 / 8

Recall

• Consider a network $(G = (V, E), \{c(e) : e \in E\})$. The effective resistance is defined by

$$R(a \leftrightarrow z) = (W(a) - W(z))/||I||.$$

 Consider a random walk on the network, the Green's function is defined by

$$G_{\tau}(a, x) = \mathbb{E}[\sharp \text{visits to } x \text{ before } \tau].$$

We have that

$$G_{\tau_z}(a,a)=c(a)R(a\leftrightarrow z).$$

Today's Goal

- hitting time
- commute time
- transitive network

2/8

Target time

Suppose that $(X_n)_{n\geq 0}$ is an irreducible Markov chain with transition matrix P and stationary measure π . Let τ_X be the hitting time :

$$\tau_X=\min\{n\geq 0: X_n=x\}.$$

Lemma

The quantity

$$\sum_{\mathsf{x}} \mathbb{E}_{\mathsf{a}}[\tau_{\mathsf{x}}] \pi(\mathsf{x})$$

does not depend on a ; and we call it target time and denote it by t_{\odot} .

Hao Wu (MIT) 18.445

3/8

Hitting time

Definition

$$t_{hit} := \max_{x,y} \mathbb{E}_x[\tau_y] \geq t_{\odot}.$$

Lemma

Suppose that the chain is irreducible with stationary measure π . Then

$$t_{hit} \leq 2 \max_{w} \mathbb{E}_{\pi}[\tau_{w}].$$

Theorem

For an irreducible transitive Markov chain, we have

$$t_{hit} \leq 2t_{\odot}$$
.

4/8

Hao Wu (MIT) 18.445 16 March 2015

Transitive Markov chain

Roughly, a transitive Markov chain "looks the same" from any point in the state space.

Definition

A Markov chain is called transitive if for each pair $(x, y) \in \Omega \times \Omega$, there is a bijection $\varphi : \Omega \to \Omega$ such that

$$\varphi(x) = y; \quad P(\varphi(z), \varphi(w)) = P(z, w), \forall z, w.$$

Example: simple random walk on *N*-cycle, on hypercube.

Lemma

For a transitive Markov chain on finite state space Ω , the uniform measure is stationary.

Hao Wu (MIT) 18.445 16 March 2015 5

Commute time

Definition

Suppose that the Markov chain starts from $X_0 = a$. The commute time between a and b is defined by

$$\tau_{ba}=\min\{n\geq\tau_b:X_n=a\}.$$

Theorem (Commute Time Identity)

Consider a random walk on the network $(G = (V, E), \{c(e) : e \in E\})$, we have

$$\mathbb{E}_{a}[\tau_{ba}] = \mathbb{E}_{a}[\tau_{b}] + \mathbb{E}_{b}[\tau_{a}] = c_{G}R(a \leftrightarrow b).$$

Lemma

Suppose that the Markov chain is irreducible with stationary measure π . Suppose that τ is a stopping time satisfying $\mathbb{P}_a[X_\tau=a]=1$. Then $G_\tau(a,x)=\mathbb{E}_a[\tau]\pi(x)$.

Transitive network

Generally, $\mathbb{E}_a[\tau_b]$ and $\mathbb{E}_b[\tau_a]$ can be very different (see Exercise 10.3). However, if the network is transitive, they are equal.

Definition

A network $(G = (V, E), \{c(e) : e \in E\})$ is transitive if for each pair $(x, y) \in V \times V$, there exists a bijection $\varphi : V \to V$ such that

$$\varphi(x) = y$$
; $c(\varphi(z), \varphi(w)) = c(z, w), \forall z, w$.

Remark: The random walk on a transitive network is a transitive Markov chain.

Theorem

For the random walk on a transitive (connected) network, for any vertices a and b, we have

$$\mathbb{E}_{a}[\tau_{b}] = \mathbb{E}_{b}[\tau_{a}].$$

Summary

For random walk on network

- $t_{\odot} \leq t_{hit} \leq 2 \max_{w} \mathbb{E}_{\pi}[\tau_{w}].$
- $\mathbb{E}_a[\tau_{ba}] = c_G R(a \leftrightarrow b)$.

For random walk on transitive network

- $t_{\odot} \leq t_{hit} \leq 2t_{\odot}$.
- $\bullet \ \mathbb{E}_a[\tau_b] = \mathbb{E}_b[\tau_a].$
- $2\mathbb{E}_a[\tau_b] = c_G R(a \leftrightarrow b)$.

8/8