

Assuntos abordados

- Modelo atômico clássico;
- Momento magnético atômico;
- Magnetização da matéria;
- Desmagnetização natural da matéria;
- Tipos de materiais:
 - Diamagnéticos;
 - Paramagnéticos;
 - Ferromagnéticos;
 - Antiferromagnéticos
 - Ferrimagnéticos;

Modelo atômico orbital clássico

- Átomo:
 - Núcleo: prótons + neutrons;
 - Nuvem eletrônica: elétrons;
- 7 camadas de energia:
 - K, L, M, N, O, P e Q;
- 4 subcamadas:
 - s:1 orbital;
 - p: 3 orbitais;
 - d: 5 orbitais;
 - f: 7 orbitais;
- Cada orbital: máximo 2 e-:
 - Semipreenchido x totalmente preenchido;
 - Spin's contrários;

Momento Magnético Atômico

• Corrente elétrica orbital;

Momento Magnético Atômico

- Corrente elétrica orbital:
 - Momento magnético orbital;
- Corrente elétrica de spin:
 - Momento magnético de spin;
 - Orbital semipreenchido: ≠o;
 - Orbital totalmente preenchido: =0;
- Momento magnético atômico:

$$- \vec{m}_a = \Sigma \vec{m}_o + \Sigma \vec{m}_s$$

- Aglomeração da matéria:

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

 $v\'{a}cuo: \overrightarrow{m}_a = 0 \rightarrow \mu_r = 1$

matéria: $\overrightarrow{m}_a \neq 0 \rightarrow \mu_r \neq 1$

* antiparalelismo: subtração $\rightarrow 0 < \mu_r < 1$

* paralelismo: adição $\rightarrow \mu_r > 1$

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

 $v\'{a}cuo: \overrightarrow{m}_a = 0 \rightarrow \mu_r = 1$

matéria: $\overrightarrow{m}_a \neq 0 \rightarrow \mu_r \neq 1$

* antiparalelismo: subtração $\rightarrow 0 < \mu_r < 1$

* paralelismo: adição $\rightarrow \mu_r > 1$

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

 $v\'{a}cuo: \overrightarrow{m}_a = 0 \rightarrow \mu_r = 1$

matéria: $\overrightarrow{m}_a \neq 0 \rightarrow \mu_r \neq 1$

* antiparalelismo: subtração $\rightarrow 0 < \mu_r < 1$

* paralelismo: adição $\rightarrow \mu_r > 1$

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

Reação à Remoção do Campo Magnético Externo

Prof. Elmano – Eletromagnetismo Aplicado - UFC Campus Sobral

• Diamagnéticos:

- Momento magnético atômico natural nulo;
- Imposição do campo externo:
 - Redução do momento magnético orbital;
 - $\overrightarrow{m}_a \neq 0$;
 - Antiparalelismo;

$$-\mu \approx \mu_o :: \mu_r \approx 1;$$

- Exemplos:
 - Ouro: μ_r =0,99986;
 - Prata: μ_r =0,99998;
 - Água: μ_r =0,99999;

• Paramagnéticos:

- Momento magnético atômico fraco;
- Paralelismo;

$$-\mu \approx \mu_o :: \mu_r \approx 1;$$

- Exemplos:

• Ar: $\mu_r = 1,0000004;$

• Alumínio: $\mu_r = 1,00002$;

• Platina: µ_r=1,003;

• Ferromagnéticos:

- Momento Magnético Atômico Elevado;
 - Spin não compensado;
- Aglomeração em domínios:
 - Alta densidade de átomos;
 - Alinhamento magnético;
- Momento magnético macroscópico nulo;
- Paralelismo;
- Exemplos:
 - Cobalto: μ_r =250;
 - Níquel: μ_r =600;
 - Ferro (99,8%): μ_r =5.000;
 - Ferro (99,96%): μ_r =280.000;

- Antiferromagnéticos:
 - Momento Magnético Atômico Elevado;
 - Paralelismo e Antiparalelismo;
 - Momento magnético macroscópico nulo;
 - Comportamento observado apenas em baixas temperaturas;
 - Exemplos:
 - Cloreto de Cobalto: µ_r≈1;
 - Óxido de Níquel: µ_r ≈1;
 - Sulfeto de Ferro: µ_r ≈1;

- Ferrimagnéticos:
 - <u>Similares</u> aos antiferromagnéticos;
 - Diferença de ordem de grandeza entre os paralalelo e os antipralelo;
 - Momento magnético macroscópico <u>não</u> nulo;
 - Exemplos:
 - Óxido de Ferro : μ_r≈1000;
 - Ferrite de Níquel-Zinco: µ_r ≈1000;
 - Ferrite de Níquel: μ_r ≈1000;

Aplicações em Dispositivos Magnéticos

- Aplicações típicas:
 - Materiais ferromagnéticos (<1kHz): Máquinas elétricas, transformadores, indutores acoplados e indutores:
 - Aço silício;
 - Aço silício grão orientado;
 - Materiais ferrimagnéticos (>1kHz): indutores, indutores acoplados, indutores, transformadores de pulso e filtros de EMI:
 - Ferrite de Manganês-Zinco;
 - Ferrite de Níquel-Zinco;