Remarks

In the text, a topological space is presumed to be T_0 axiomatically; thus, any time space is mentioned, one means a T_0 topological space.

Def. A topological group G is a group (G,\cdot) such that the underlying set of G forms a topological (T_0) space, and such that the maps $\mu\colon G\times G\to G$ by $\mu(x,y)=x\cdot y$ and $i\colon G\to G$ by $i(x)=x^{-1}$ are continuous.

1.11.1. If H is a subgroup of G and if $x, y \in \overline{H}$, then $xy \in \overline{H}$.

Proof: Since multiplication is continuous, we have that for any open $U \subset G$ containing $xy, x \in \pi_1(\mu^{-1}(U))$ and $y \in \pi_2(\mu^{-1}(U))$, and as these are open, there exist $h_1, h_2 \in H$ with $h_1 \in \pi_1(\mu^{-1}(U))$ and $h_2 \in \pi_2(\mu^{-1}(U))$, so $h_1h_2 \in U$ so $U \cap H \neq \emptyset$, hence $xy \in \overline{H}$.

Similarly, x^{-1} belongs to the closure.

Thus, \overline{H} is a group, and we shall call \overline{H} a **closed** subgroup.

Examples of topological groups

1. The sets $M_n(\mathbb{R})$ and $M_n(\mathbb{C})$ of $n \times n$ matrices over \mathbb{R} and \mathbb{C} under addition with the distance of $A = (a_{ij})$ and $B = (b_{ij})$ defined by

$$d(A,B) = \max_{i,j} |a_{ij} - b_{ij}|$$

gives a topological group whose topological space is metrizable.

The spaces of these two groups are homeomorphic to E_{n^2} and E_{2n^2} . They are in fact the sets of real or complex vectors with n^2 coordinates, and hence are vector spaces as well as groups. Another example is the set H of continuous real valued functions on a compact metric space under addition.

In this example, the multiplication function on the topological group is addition, so $\mu(A, B) = A + B$ and i(A) = -A. Let $(A, B) \in M_n(\mathbb{R}) \times M_n(\mathbb{R})$ and take an ε -neighborhood of A + B, so $X \in B(A + B, \varepsilon)$ iff

$$\max_{i,j} |a_{ij} + b_{ij} - x_{ij}| < \varepsilon.$$

Take an $\frac{\varepsilon}{2}$ -neighborhood of A and B, then $U = B(A, \frac{\varepsilon}{2}) \times B(B, \frac{\varepsilon}{2})$ is an open set in $M_n(\mathbb{R}) \times M_n(\mathbb{R})$ containing (A, B). And furthermore, if $(C, D) \in U$, then

$$d(\mu(C, D), \mu(A, B)) = \max_{i,j} |c_{ij} + d_{ij} - a_{ij} - b_{ij}| \le \max_{i,j} |a_{ij} - c_{ij}| + \max_{i,j} |b_{ij} - d_{ij}| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus μ is continuous.

For $i: M_n(\mathbb{R}) \to M_n(\mathbb{R})$, suppose $A \in M_n(\mathbb{R})$. Take any $B \in B(A, \varepsilon)$. Thus $\max_{i,j} |a_{ij} - b_{ij}| < \varepsilon$. Then

$$d\left(i(A),i(B)\right) = \max_{i,j} \left|-a_{i,j} - (-b_{i,j})\right| < \varepsilon.$$

Hence i is continuous too.

2. The set of non-singular real or complex $n \times n$ matrices $GL(n, \mathbb{R}), GL(n, \mathbb{C})$ under multiplication; these are subsets of $M_n(\mathbb{R})$ and $M_n(\mathbb{C})$ induced topology. They are open subsets and are therefore locally compact and locally euclidean (1.27).

Suppose $\mu: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to M_n(\mathbb{R})$ is matrix multiplication. Here $M_n(\mathbb{R})$ is isomorphic to \mathbb{R}^{n^2} and can be thought of as such. A map into \mathbb{R}^{n^2} is continuous if each coordinate function is continuous. Now, each coordinate function is of the form

$$\sum_{r=1}^{n} a_{ir} b_{rj}$$

which is the i, j coordinate of $\mu(A, B)$. The sum and product of continuous function into \mathbb{R} is continuous, so if we can show that the map $p_{ij}: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to M_n(\mathbb{R})$ is continuous where $p_{ij}(A, B) = a_{ij}$, then we are done.

Suppose $\varepsilon > 0$. Then let $B(A, \varepsilon) \times M_n(\mathbb{R})$ is an open neighborhood of (A, B) and for any $(C, D) \in B(A, \varepsilon) \times M_n(\mathbb{R})$, we have

$$|p_{ij}(A,B) - p_{ij}(C,D)| = |a_{ij} - c_{ij}| < \max_{r,k} |a_{rk} - c_{rk}| < \varepsilon$$

so p_{ij} is continuous.

The restriction to subspaces does not affect continuity, so $\mu \colon GL(n,\mathbb{R}) \times GL(n,\mathbb{R}) \to GL(n,\mathbb{R})$ is continuous.

3. Let S be a compact metric space and let G be the group of all homeomorphisms of S onto itself topologized as a subspace of the space of continuous maps of S into itself.

1.12 Isomorphism of topological groups

The spaces associated with two topological groups may be homeomorphic but the groups essentially different, for example, one abelian and the other not.

Example. The matrices

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, \quad a, b \in \mathbb{R}$$

under addition is an abelian group with E_2 as space where $E_n = \underbrace{E_1 \times \ldots \times E_1}_{n \text{ times}}$ and E_1 is the set of all

real numbers in its customary topology.

The matrices

$$\begin{pmatrix} e^a & b \\ 0 & e^{-a} \end{pmatrix}, \quad a, b \in \mathbb{R}$$

under multiplication forms a non-abelian group with E_2 as space as well.

To show that this is homeomorphic to E_2 , define a map $f: \mathbb{R}^2 \to X = \left\{ \begin{pmatrix} e^a & b \\ 0 & e^{-a} \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$ by $f(x,y) = \begin{pmatrix} e^x & y \\ 0 & e^{-x} \end{pmatrix}$.

Suppose $\varepsilon > 0$. Then $f(x', y') \in B(f(x, y), \varepsilon)$ if and only if $\left| e^x - e^{x'} \right|, \left| e^{-x} - e^{-x'} \right|, \left| y - y' \right| < \varepsilon$. Now, since exp is continuous, there exists $\delta_1 > 0$ such that $|x - x'| < \delta_1 \implies \left| e^x - e^{x'} \right| < \varepsilon$ and $\delta_2 > 0$ such that $|x - x'| < \delta_2 \implies \left| e^{-x} - e^{-x'} \right| < \varepsilon$. Let $\delta = \min\{\delta_1, \delta_2, \varepsilon\}$. Then supposeing $x' \in B(x, \delta)$ and $y' \in B(y, \delta)$, we get

$$\left| f(x', y') - f(x, y) \right| \le \min \left\{ \left| e^x - e^{x'} \right|, \left| y - y' \right|, \left| e^{-x} - e^{-x'} \right| \right\} < \varepsilon$$

so f is continuous. Now, define $g\colon X\to\mathbb{R}^2$ by $g\left(\begin{pmatrix}x&b\\0&y\end{pmatrix}\right)=(\ln(x),b).$ Now,

$$\begin{split} |\ln(x) - \ln(x')| < \varepsilon &\iff \left| \ln(\frac{x}{x'}) \right| < \varepsilon \\ &\iff e^{-\varepsilon} < \frac{x}{x'} < e^{\varepsilon} \\ &\iff x'e^{-\varepsilon} < x < x'e^{\varepsilon}, \quad \text{if } x' \in R_+ \\ &\iff x'(e^{-\varepsilon} - 1) < x - x' < x'(e^{\varepsilon} - 1) \end{split}$$

Let
$$A = \begin{pmatrix} e^a & b \\ 0 & e^{-a} \end{pmatrix}$$
, $B = \begin{pmatrix} e^c & d \\ 0 & e^{-c} \end{pmatrix}$

Let $A = \begin{pmatrix} e^a & b \\ 0 & e^{-a} \end{pmatrix}, B = \begin{pmatrix} e^c & d \\ 0 & e^{-c} \end{pmatrix}$. So letting $\delta = \min \left\{ \varepsilon, |x'\left(e^{-\varepsilon} - 1\right)|, |x'\left(e^{\varepsilon} - 1\right)| \right\}$, we have $B \in B(A, \delta)$ implies

$$d_{max}(g(B), g(A)) = \max\{|b - d|, |a - c|\} < \varepsilon.$$

Hence g is also continuous, and clearly, $g \circ f = 1$ and $f \circ g = 1$, so f is a homeomorphism.

If we give the space in this example (or example 1) the discrete topology, we obtain a new topological group with the same algebraic structure.

Example 3. In the additive group of integers, for each pair of distinct integers h and k, let the set $\{h+nk\colon n\in\mathbb{Z}\}\$ be called an open set, and let the collection of all these sets be taken as a basis for open sets.

Example 4. Introduce a metric into the additive group of integers, depending on the prime number p, defined thus:

$$d(a,b) = \frac{1}{p^n}$$

if $a \neq p$ and p^n is the highest power of p which is a factor of a - b, i.e. $n = v_p(a, b)$.

Example 5. Let G be the integers under addition with the finite-complement topology. Algebraically G is a group and it is also a topological space; however, it is not a topological group because addition is now not simultaneously continuous: suppose $\mu(n,m) = n+m$. Then $\mu^{-1}(\mathbb{Z}-\{0\}) = \{(-n,n) \mid n \in \mathbb{Z}\}^c$. Now, $\mathbb{Z} - \{0\}$ is open as the complement is finite; however, $\{(-n,n) \mid n \in \mathbb{Z}\}^c$ is not open as its complement is infinite. Hence, μ is not continuous.

It is true, however, that addition is continuous in each variable separately.

For some types of group spaces, separate continuity implies simultaneous continuity. I is not known whether this is true for a compact Hausdorff group space.

Definition. Two topological groups will be called isomorphic if there is a bijective correspondence between their elements which is a group isomorphism and a space homeomorphism.

1.13Set products

If G is a group, $A \subset G$, let A^{-1} denote the inverse set $\{a^{-1}: a \in A\}$. If $B \subset G$, let $AB = \{ab \mid a \in A, b \in B\}$. If $B = \emptyset$ then $AB = \emptyset$.

A set H in G is called **invariant** if gH = Hg for every $g \in G$, or equivalently, if $gHg^{-1} = H$.

Theorem 1. Let G be a topological group and let $A \subset G$ be an open set. Then A^{-1} is open.

Proof: Since inverses are unique, we have $i^{-1}(A) = A^{-1}$, so since A is open, A^{-1} is open.

In a slightly different way, suppose $x \in A^{-1}$; then $x^{-1} \in A$, so by continuity of the inverse, there exists an open set containing x, say U, such that $b \in U$ implies $b^{-1} \in A$. Hence $U^{-1} \subset A$, so $x \in U \subset A^{-1}$. Thus A^{-1} is open.

Corollary. The map $x \mapsto x^{-1}$ is a homeomorphism.

Lemma. Let G be a topological group, A an open subset, b an element. Then Ab and bA are open.

Proof: If $f: X \times Y \to Z$ is continuous, then $g: X \to Z$ defined by $g(x) = f(x, y_0)$ is continuous for any $y_0 \in Y$.

Define the map $k: X \to X \times Y$ by $k(x) = (x, y_0)$. Thus if $k = (k_1, k_2)$, then $k_1 = 1$ and $k_2 = y_0$. Since both maps are continuous, k is continuous. And since μ is continuous, $\mu \circ k \colon X \to Z$ is continuous as the composition of continuous maps.

Now, define the map $k: G \to G \times G$ by k(g) = (g, b). Then we claim that the map $r_b: G \to G$ by $r_b(g) = gb$ is a homeomorphism.

It is continuous since $r_b = \mu \circ k$ which is a composition of continuous maps, and it is bijective clearly. The inverse, is given by $r_{b^{-1}} = \mu \circ l$ where $l: G \to G \times G$ is $l(g) = (g, b^{-1})$.

Thus it is a homeomorphism. Since $Ab = r_b(A)$, it is open. Similarly for bA.

Corollary. For each $a \in G$, the left and right translations: $x \mapsto ax$, $x \mapsto xa$ are homeomorphisms.

Theorem 2. Let G be a topological group and let A and B be subsets. If A or B is open then AB is open.

Proof: If A is open, then Ab is open for all b, so $AB = \bigcup_{b \in B} Ab$ is open. Similarly for the case where B is open.

Corollary. Let A be a closed subset of a topological group. Then Ab and bA are closed.

Example. Let E_1 be the additive group of real numbers and G a topological group. A continuous homomorphism, h(t), of E_1 into G, is called a **one-parameter group** in G. If h is defined only on an open interval around zero satisfying h(xy) = h(x)h(y) for $x, y \in E_1$ so far as it has meaning, then h(t) is called a local one-parameter group in G. If h(t) is a one-parameter group, the image of E_1 may consist of e alone and then h(t) is a trivial one-parameter group. If this is not the case and if for some $t_1 \neq 0, h(t_1) = e$, then the image of E_1 is homeomorphic to S^1 . In case h(t) = e only for t = 0, the image of E_1 is a bijective image of the line which may be a homeomorphism of the line or a very complicated imbedding of the line. To illustrate this, let G be a torus which we obtain from the plane vector group E_2 by reducing mod one in both the x and y directions. In E_2 any line through the origin is a subgroup isomorphic to E_1 and after reduction, the line y = ax is mapped onto the torus G thus giving a one-parameter group in G. If G is rational the image is a simple closed curve but if G is irrational, the image is everywhere dense on the torus.

1.14 Products of closed sets

If A, B are subgroups of a group G, AB is not necessarily a subgroup. However, if A is an invariant subgroup, i.e., $g^{-1}Ag = A, \forall g \in G$, and B is a subgroup, then AB is a subgroup.

The product of closed subsets, even if they are subgroups, need not be closed.

E.g.: $G = (\mathbb{R}, +)$, let $H_1 = (\mathbb{Z}, +)$ and $H_2 = (\{\pm n\sqrt{2} : n \in \mathbb{Z}\}, +)$. Then H_1H_2 is countable and a subgroup, but it is not closed as it is dense in \mathbb{R} .

For example, we have that $\mathbb{Z}\left[\sqrt{2}\right]$ has infinitely many units, so there exist infinitely many $m,n\in\mathbb{Z}$ such that $n^2-2m^2=1$, so $(m+\sqrt{2}n)(m-\sqrt{2}n)=1$, and hence $(m-\sqrt{2}n)=\frac{1}{m+\sqrt{2}n}$. Suppose m>>0. If n<<0 then $m-\sqrt{2}n$ is large, so $m+\sqrt{2}n=\frac{1}{m-\sqrt{2}n}$ is small. If n is not large and negative, then $m+\sqrt{2}n$ is large, so $m-\sqrt{2}n=\frac{1}{m+\sqrt{2}n}$ is small. In particular, we can make $m\pm n\sqrt{2}\in(0,\varepsilon)$ for any $\varepsilon>0$. Now, since $\mathbb{Z}\left[\sqrt{2}\right]$ is closed under addition, we have that this gives that the set is dense.

It will be shown later that if A is a compact invariant subgroup and B is a closed subgroup then AB is a closed subgroup.

1.15 Neighborhoods of the identity

Let G be a topological group and U an open subset containing the identity e. We showed in 1.13 that xU is open and clearly $x \in xU$. Conversely, if $x \in O$ and O is open, then $U = x^{-1}O$ is open and contains e.

If a collection of open sets $\{U_{\alpha}\}$ is a basis for open sets at e then every open set of G is a union of open sets of the form $x_{\alpha}U_{\alpha}, x_{\alpha} \in G, U_{\alpha} \in \{U_{\alpha}\}$, and the topology of G is completely determined by the basis at e. In particular, the collection $\{xU_{\alpha}\}$ is a basis for open sets at x (so also i $\{U_{\alpha}x\}$).

If U is a neighborhood of e, U^{-1} is a neighborhood of e and $U \cap U^{-1}$ is a symmetric neighborhood of e.

Theorem. Let G be a topological group and U a neighborhood of e. There exists a symmetric neighborhood W of e such that $W^2 \subset U$.

Proof: Let $\mu^{-1}(U) = U'$. There exists a basis element $V \times W \subset U'$ with V, W open. Then by definition $e = e \cdot e \in VW \subset U$. Let $W = V \cap V^{-1} \cap W \cap W^{-1}$. Then $W^2 \subset U$ as $VW \subset U$ and it is symmetric as the intersection of symmetric neighborhoods of e.

Corollary. Let G be a topological group. If $x \neq e$, there exists a neighborhood W of e such that $W \cap xW = \emptyset$.

Proof: Since G is T_0 , there either exists an open set W_1 containing x but not e or an open set W_2 containing e but not x. If W_2 exists, there exists by the previous theorem a symmetric neighborhood W of e such that $W^2 \subset W_2$. Suppose $w \in W \cap xW$. Then w = xw' so $x = ww'^{-1} \in W^2 \subset U$, contradiction.

Thus, suppose W_1 exists. Then $i^{-1}(W_1) = W_1^{-1}$ is open, and xW_1^{-1} is a neighborhood around e not containing x. By the previous theorem, there exists a symmetric neighborhood W around e such that $W^2 \subset xW_1^{-1}$. Suppose $w \in W \cap xW$. Then w = xw' so $x = ww'^{-1} \in W^2 \subset xW_1^{-1}$, but xW_1^{-1} does not contain x; contradiction.

- **1.15.1** If G is a topological group then a set S of open neighborhood s $\{V\}$ which forms a basis at the identity e has the following properties:
 - 1. The intersection of all V in S is $\{e\}$.
 - 2. The intersection of two sets of S contains a third set of S.
 - 3. Given $U \in S$ there is a V in S such that $VV^{-1} \subset U$.
 - 4. If $U \in S$ and $a \in U$ then there is a $V \in S$ such that $Va \subset U$.
 - 5. If $U \in S$ and $a \in G$, there is a $V \in S$ such that $aVa^{-1} \subset U$.

Conversely, a system of subsets of an abstract group having these properties may be used to determine a topology in G as follows:

Theorem. Let G be an abstract group in which there is given a system S of subsets satisfying 1-5 above. If open sets in G are defined as unions of sets of the form $Va, a \in G$, then G becomes a topological space with S as a basis for open sets at e. This is the only topology making G a topological group with S a basis at e.

Proof: Suppose G is a topological group with S the basis at e.

Then if $x \in G - \{e\}$, we get by the previous corollary that there exists a neighborhood W of e such that $W \cap xW = \emptyset$. Now, since $e \in W$, we have $x \in xW$, so $x \notin W$. As S is a basis, there exist open sets $\{U_{\alpha}\} \subset S$ such that $W = \bigcup U_{\alpha}$, so $x \notin U_{\alpha}$ for any α , hence $x \notin \bigcap U_{\alpha} \supset \bigcap_{V \in S} V$. Since e is in any $V \in S$, we have $e \in \bigcap_{V \in S} V$, giving 1.

- 2. is clear as the intersection of two open sets at e is an open set at e hence contains a basis open set of S.
- 3. This follows from the theorem above. There exists open symmetric W such that $WW^{-1}=W^2\subset U$. Let $W=\bigcup_{V_\alpha\in S}V_\alpha$. Then $V_\alpha V_\alpha^{-1}\subset WW^{-1}=W^2\subset U$.
- 4. Suppose $U \in S$ and $a \in U$. Then $e \in Ua^{-1}$, so there exists a $V \in S$ such that $V \subset Ua^{-1}$. Hence $Va \subset U$.
- 5. If $U \in S$ then $e \in U$, so $e = a^{-1}ea \in a^{-1}Ua$ and hence there exists $V \in S$ such that $V \subset a^{-1}Ua$ so $aVa^{-1} \subset U$

Now, suppose G is a group with a system S of subsets satisfying 1-5. We claim $\{gU \mid g \in G, U \in S\}$ is a basis for a topology. Firstly, for any $g \in G$, $g \in gU$ for any $U \in S$ as $e \in U$, so the union of all such sets gives the whole space G.

Now, suppose $x \in gU \cap g'U'$. Then $e \in (x^{-1}g)U \cap (x^{-1}g')U'$, so by the second property, there exists a $U'' \in S$ such that $e \in U'' \subset (x^{-1}g)U \cap (x^{-1}g')U'$, so $x \in xU'' \subset gU \cap g'U'$.

This gives that $\{gU \mid g \in G, U \in S\}$ is a basis for a topology on G. Suppose $e, x \in gU$. We want to find $U' \in S$ with $x \in U' \subset gU$.

1.16 Coset spaces

Let G be a group and H a subgroup. The sets xH and yH for $x,y \in G$ either coincide or are mutually exclusive; and xH = yH iff $xy^{-1} \in H$.

Def 1.16.1. By the natural map T of a group onto the coset space G/H, H being a subgroup of G, we mean the map

$$T \colon x \to xH, \quad x \in G, xH \in G/H.$$

For any subset $U \subset H$ we have

$$T^{-1}\left(T(U)\right)=UH\subset G.$$

It will become clear as we proceed that unless the group H is a closed subgroup of G, it will not be possible in general to have T continuous and G/H a topological space; for this reason, only the case where H is closed will be considered.

Theorem. $T: G \to G/H$ is open, and if $xH \neq yH$, there exist neighborhoods W_1 and W_2 of xH and yH respectively, such that $W_1 \cap W_2 = \emptyset$.

Proof: Let $U \subset G$ be open. We must show that T(U) is open. But since T is a quotient map, T(U) is open if and only if $T^{-1}(T(U))$ is open in G. Now since for any $\overline{g} \in G/H$, $T^{-1}(\overline{g}) = \bigcup_{T(x)=\overline{g}} \{x\} = \bigcup_{xg^{-1} \in H} \{x\} = Hg$, we have

$$T^{-1}\left(T(U)\right) = \bigcup_{g \in U} Hg = \bigcup_{h \in H} hU$$

and since $g \mapsto hg$ is a homeomorphism $G \to G$, we have that hU is open, so $T^{-1}(T(U))$ is open. So T is open.

Now, we wish to show that if $xH \neq yH$ then there exist open neighborhoods W_1 and W_2 around xH and yH, respectively, such that $W_1 \cap W_2 = \emptyset$.

Since $xH \neq yH$, we have $x \notin yH$, so since yH is closed, we have that $\tilde{W} = (G - yH)x^{-1}$ is an open set around e. By the theorem in 1.15, there exists a symmetric neighborhood W of e such that $W^2 \subset \tilde{W}$. So Wx is an open set around x with $Wx \cap yH = \varnothing$ since $\tilde{W}x \cap yH = \varnothing$. We claim $WxH \cap WyH = \varnothing$. Otherwise, wxh = w'yh' so $(w'^{-1}w)x = y(h'h^{-1})$; but $(w'^{-1}w) \in W^2 \subset \tilde{W}$ and $h'h^{-1} \in H$ as H is a subgroup. So $\tilde{W}x \cap yH \neq \varnothing$, contradiction. Hence $WxH \cap WyH = \varnothing$, and Wx, Wy are open, so T(Wx), T(Wy) are open and $T(Wx) \cap T(Wy) = T(WxH \cap WyH) = \varnothing$. This gives the result.

Corollary. A topological group G and a coset-space G/H, with H closed in G, are Hausdorff spaces.

Corollary. Suppose that G is a topological group and H a closed invariant (normal) subgroup. Then with the customary definition of product (xH)(yH) = xyH, G/H becomes a topological group. The natural map of G into G/H is a continuous and open homomorphism.