

(19)日本国特許庁 (JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開平7-106266

(43)公開日 平成7年(1995)4月21日

(51) Int. Cl. 6

識別記号

FΙ

H01L 21/22

E 9278-4M

C30B 29/04

V 8216-4G

H01L 21/324

P

審査請求 未請求 請求項の数3 FD (全5頁)

(21)出願番号

特願平5-268391

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(22)出願日 平成5年(1993)9月30日

(72)発明者 佐藤 淳一

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 髙月 亨

(54) 【発明の名称】ダイアモンド半導体の製造方法

(57)【要約】

【目的】 ダイアモンド構造の破壊のおそれなく、ダイアモンドにn型ドーピングを行うことができ、また高濃度のn型ドーピングも可能とする技術を提供する。

【構成】 炭素を主成分とするダイアモンド半導体の製造方法において、必要に応じ表面をクリーニングしたダイアモンド102にリチウム原子(リチウムの窒素化合物例えばアジ化リチウムから生成されたものであってよい)をECRプラズマを用いてドーピングして拡散層106を得るダイアモンド半導体の製造方法。

(B)

2

【特許請求の範囲】

【請求項1】炭素を主成分とするダイアモンド半導体の 製造方法において、リチウム原子をECRプラズマを用 いてドーピングすることを特徴とするダイアモンド半導 体の製造方法。

1

【請求項2】前記リチウム原子はリチウムの窒素化合物 から生成されたものであることを特徴とする請求項1に 記載のダイアモンド半導体の製造方法。

【請求項3】前記リチウムの窒素化合物はアジ化リチウムであることを特徴とする請求項2に記載のダイアモン 10ド半導体の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はダイアモンド半導体の製造方法に関する。特に、ダイアモンド半導体へのドーピング技術を改良したダイアモンド半導体の製造方法に関するものである。

[0002]

【従来の技術及びその問題点】ダイアモンドを人工的に合成しようとする試みは古くから行われてきているが、1960年代に入り、低圧下でもダイアモンド合成に成功し出し始め、現在では真空下に近い圧力でその薄膜が作製できるようになってきた。これに伴い、ダイアモンドの薄膜によりダイアモンド半導体を得、これを使って、半導体デバイスを作ろうとする動きが盛んになってきた。

【0003】ダイアモンドはシリコンに比べ、

- (1) キャリアー移動度が大きいため、動作速度が数倍 速い。
- (2) バンドギャップが 5. $5 \in V$ と広く、シリコンよ 30 り圧倒的に高い $7 \in 0 \in V$ でも壊れずに動作する。 (シリコンでは $1 \in 0 \in V$ で動作状態の劣化の傾向が出る。)
- (3) 放射線に強い。とりわけ、超LSIで問題となる α 線によるソフトエラーが少ない。よって使用環境の悪い所でも使用できる。

等の特性を有し、シリコンでは対応できない宇宙空間や 原子炉周り等の使用環境の厳しい所での使用が期待され ている。

【0004】しかし、ダイアモンド半導体の実用化にあたっては、解決しなければならないいくつかの問題点も 40 ある。即ち、

- ⊕単結晶の薄膜を成長させる安価な方法がまだない。
- ②n型のドーピングができない。
- ③複雑な回路を描くためのエッチング技術がまだ確立していない。

等が今後解決すべき問題である。

【0005】特に上記②のn型ドーピングができないという問題は、デバイスを作る上で致命的と言うことすらでき、今後のダイアモンド半導体の実用化の隘路になっている。

【0006】この点について以下に詳しく説明する。ダイアモンド自体、半導体材料として用いるには、一般にドープの効率は極めて悪い。例えば、p型の半導体に関しても、1000ppmのボロン(硼素)のドーピングによって、10E16cm³程度のキャリアー濃度しか得られていない。

【0007】また、n型ドーピングに対しては、ダイアモンドの構成元素が炭素であり、シリコンなどに比べると、その原子半径が小さいことから、シリコンプロセスで用いられている燐などは用いることはできず、勢い、原子半径が炭素に近い窒素を用いることになる(例えば特開平4-266020号参照)。しかし窒素を用いると、つぎに述べるような問題がある。

【0008】即ち、窒素原子の5番目の価電子は窒素原子に強く束縛されており、これを開放するには、1.7 eVと大きな電子エネルギーが必要で、室温では極く僅かの電子しか結晶内を移動できないので、有効にデバイスが作用しなくなる。従って、窒素原子をドーパントとして用いる場合、結晶構造を破壊することなく、しかも高濃度でドーピングする必要があり、ドーピング方法に工夫を要するという問題があり、よってドーピング手段としては使いにくいものであった。従って、窒素以外を用いるn型ドーピング技術が求められていた。

【0009】従来技術として、リチウムまたはリチウム 化合物を含有する液状有機化合物(アセトン、メタノー ル、エタノール、アルトアルデヒド等にリチウム単体、 酸化リチウム、水酸化リチウム、塩化リチウム、リチウ ムエチラート等を溶解したもの)を原料として熱フィラ メント法を用いた気相成長(CVD)によりダイアモン ド半導体を形成する技術(特開平3-205398 号)、また上記のようなリチウムまたはリチウム化合物 を加熱装置により原料ガス(メタン等)中に混入させて 熱フィラメントCVD、各種プラズマCVDによってダ イアモンド半導体を形成する技術(特開平4-1752 95号)が提案されている。しかしこれらは必ずしもそ の実現性が明らかとは言えず、また、いずれもダイアモ ンド半導体薄膜形成と同時に不純物を導入するもので、 形成されたダイアモンド半導体にドーピングを行う技術 ではない。

0 【発明の目的】

【0010】本発明は前記問題点に鑑みて創案されたもので、前記問題点を解決し、ダイアモンド構造の破壊のおそれなく、ダイアモンドにn型ドーピングを行うことができ、また高濃度のn型ドーピングをも可能とする技術を提供せんとするものである。

【課題を解決するための手段】

【0011】本出願の請求項1の発明は、炭素を主成分とするダイアモンド半導体の製造方法において、リチウム原子をECRプラズマを用いてドーピングすることを 50 特徴とするダイアモンド半導体の製造方法であって、こ

20

3

の構成により上記問題を解決するものである。

【0012】本出願の請求項2の発明は、前記リチウム原子はリチウムの窒素化合物から生成されたものであることを特徴とする請求項1に記載のダイアモンド半導体の製造方法であって、この構成により上記問題を解決するものである。

【0013】本出願の請求項3の発明は、前記リチウムの窒素化合物はアジ化リチウムであることを特徴とする請求項2に記載のダイアモンド半導体の製造方法であって、この構成により上記問題を解決するものであ。

【0014】本出願の各発明の実施にあたって、前記ECRプラズマは、マイクロ波がパルス状に供給される構成をとることができる。

【0015】また、前記ドーピングに先立ち、ダイアモンド表面をドライクリーニングする工程を含む構成をとることができる。

【0016】また、前記ドライクリーニングする工程 を、ECRプラズマを用い、前記ドーピングと同じ装置 を用いる構成をとることができる。

【0017】本発明は、本発明者による次の知見によりなされたものである。即ち、ダイアモンド半導体のp型ドーパントとして、ボロンが使われることは周知のことであるが、これに中性子があたるとボロンがリチウムになってn型化するということが問題点として指摘されているので、この問題を逆に利用し、リチウムを用いるようにした。リチウムは炭素原子より原子半径が小さいので、ドーバントとして好適である。

【作用】

【0018】ECR放電では、いわゆる電子サイクロトロン共鳴を用いることにより、10¹² c m⁻³程度の高密度プラズマを形成できる。このため、活性なリチウム原子を高密度で生成できる。しかも、イオンエネルギーは小さいので結晶構造を破壊することはない。

【0019】ここでリチウム元素のソースであるが、リチウム化合物は殆どが常温で固体であり、前記参照したリチウムまたはリチウム化合物を用いてダイアモンド半導体を得る従来技術で提供されている化合物は、必ずしも使い易いものではなく、ガス化し易いものを用いるのが好ましい。そのような化合物の例として、リチウム窒素化合物があり、とりわけアジ化リチウムは120℃位40で分解するので、CVD等のソースとして好ましく用いることができる。また、アジ化リチウムが分解したとき、他に生成する元素は窒素であり、窒素はダイアモンドに対してn型のドーパントになるものであり(特開平4-266020号参照。本出願人による提案もある)、汚染の問題はない。

【0020】また、一般的に言って、ブラズマ発生装置においてパルス状にマイクロ波を供給すると、高電離度のプラズマを、装置に負担をかけずに得ることができる。例えば、イオン密度にして10''cm'3以上の高温 50

ブラズマを得るためには、一般にマイクロ波の出力は10W/cm²以上でなければならないが、このような大電力のマイクロ波を連続波としてチャンバーに供給すると、チャンバーと導波管の間の窓材やチャンバーの内壁に大きなダメージを与えてしまうおそれがあるが、マイクロ波をパルス状に供給ずれば、このような問題なく高密度ブラズマが得られ、ガスの解離も進み、活性なリチウム原子を高密度で生成できる。

【0021】また、同じECRプラズマCVD装置を用いてアジ化リチウムガスを流す前にRFバイアスを印加して窒素系ガスを流してやれば、ダイアモンド半導体表面のクリーニングができ、しかも、窒素系ガスなので汚染が問題となることはない。

【0022】以上述べたように本発明を用いれば、ダイアモンド半導体の有効なn型ドーピングができ、高濃度でダイアモンド半導体に窒素をドープしてやることも可能である。

[0023]

【実施例】以下本発明の実施例について、図面を参照して説明する。但し、当然のことながら、本発明は以下の実施例に限定されるものでなはく、本発明の範囲内で種々の態様をとることができ、例えば各構造、条件等は適宜変更可能である。

【0024】実施例1

この実施例は、本発明を、アジ化ナトリウムガスを用い、RFバイアスをかけずにECRプラズマによりリチウムをドーピングする態様で実施したものである。

【0025】図2に、本実施例に用いたECRプラズマ ドーピング装置を示す。この装置は、有磁場マイクロ波 プラズマドーピング装置であって、これについて略述す ると、マグネトロン1で発生されたマイクロ波2を、必 要に応じてパルス発生器でパルス状にして(本実施例で はパルス状にはしない)、導波管3を通じて、石英ベル ジャー4にて囲まれた反応室5に移送し、この反応室5 を囲む形で設置されているソレノイドコイル6にて、マ イクロ波の周波数(2.45GHz)といわゆるECR 放電をおこす磁場(8.75E-2T)を発生させ、そ れにより、ガスプラズマ7を生ぜしめる。基板8は、サ セプター9上に載置され、これは図示しない搬送手段で 搬送、設置される。基板8を載置するサセプター9は、 ヒーター (図示せず) から、加熱管10を通じて加熱さ れ、これにより基板8も加熱される。ガスは、ガス導入 管11を通じて導入され、図示しない排気系で、排気管 より排気される。なお、図示はしていないが、アジ化ナ トリウムは加熱可能なタンクに収納して、120℃に加 熱して供給した。

【0026】本実施例では、次のようにして、ダイアモンド半導体へのドーピングを行った。図1を参照する。 【0027】基板101上にダイアモンド半導体膜102を低圧合成で形成し、更にその上の絶縁膜(SiO,

1

膜) 103を通常のブラズマCVDで200nm形成し、レジストパターン104を形成した。その後、エッチングにより開口部を形成し、露出部105とした(図1(A))。

【0028】次に、ダイアモンド半導体膜 102の露出 部 105に、以下の条件で、上記説明した図 2の装置を 用いて、ドーピングを行い、拡散層 106を形成した。 ガス流量: LiN₃ = 30SCCM

圧力: 1. 33Pa

温度:150℃

マイクロ波:850W (2. 45GHz)

RFパイアス:0W

【0029】この時、マイクロ波を供給してあるので、 ECR放電により高密度(10¹²cm⁻³程度)のブラズ マが発生し、高密度にリチウム原子がドープされ、図1 (B)に示すように、効率良く拡散層106が形成され た。

【0030】このダイアモンド半導体を作動試験したところ、良好な半導体動作がなされた。

【0031】以上のように本実施例によれば、従来技術 20 の隘路になっていたダイアモンド半導体への n型のドーピングを効率良く行うことができ、生産性良く、かつ安価に高性能なダイアモンド半導体を製造することができる。

【0032】実施例2

本実施例は、プラズマをパルス状にして、ダイアモンド 半導体へのドーピングを行った例である。ECRプラズ マドーピング装置は、実施例1と同様の、図2に示す装 置を用いた。

【0033】以下、被処理体の構造は実施例1と同様の 30 ものを用いたので、図1を参照して説明する。

【0034】実施例1と同様に、基板101上にダイアモンド半導体膜102を低圧合成で形成し、更にその上のSiO,膜103を通常のプラズマCVDで200nm形成し、レジストパターン104を形成した後、エッチングにより、開口部を形成して露出部105とした。これにより、図1(A)の構造とした。

【0035】次に、ダイアモンド半導体膜102の露出 部105に、以下の条件で、図2の装置を用いて、ドー ピングを行い、拡散層106を形成した。

ガス流量: LiN₃ = 30SCCM

圧力: 1. 33Pa

温度:150℃

マイクロ波:850W (2.45GHz)

R F バイアス: 0 W パルス比: 1:2

【0036】この時、本実施例ではパルス状にマイクロ波を供給してあるので、高密度($10^{14}\,\mathrm{cm}^{-3}$)程度のプラズマが発生し、高密度にリチウム原子がドープされ、これにより図1(B)の構造が得られた。そのほ

か、本実施例により、実施例1と同様の効果が得られた。

【0037】 実施例3

この実施例は、表面クリーニングと組み合わせて実施する態様をとった例である。 E C R プラズマドーピング装置は、実施例 I と同様のものを用いた。

【0038】以下、同じく本発明を実際のダイアモンド 半導体へのドーピングに用いた例を図1を参照して説明 する。

10 【0039】基板101上にダイアモンド半導体膜102を低圧合成で形成し、更にその上のSiO,膜103を通常のプラズマCVDで200nm形成し、レジストパターン104を形成した後、エッチングにより、開口部を形成し、露出部105とした(図1(A))。

【0040】次に、ダイアモンド半導体膜102の露出部105に、以下の条件で、図2の装置を用いて表面のクリーニングを行った。この時、RFバイアスを印加してやれば、エッチングも行うことができるのは言うまでもなく、本実施例はその原理を利用したものである。なお、基板温度はは30℃とした。また、マイクロ波は常時オンとした。このときに用いるN、Oガスは、ダイアモンドのエッチングガスとして知られているものであり、ダイアモンドに対して悪い影響を与えず、汚染のおそれもない。もちろん窒素ガスなど他の窒素系ガスを用いることも可能である。このように窒素系ガスを用いると、クロスコンタミネーション(相互汚染)を避けることができる。

ガス流量: N_z O=30SCCM

圧力: 1. 33Pa

30 温度:30℃

マイクロ波:850W (2. 45GHz)

RFバイアス:30W

【0041】次に、同じく、ダイアモンド半導体膜102の露出部105に、以下の条件で図2の装置を用いて、ドーピングを行い、拡散層106を形成した。この場合下記のように実施例2と同じ条件にした。

ガス流量:LiN, =30SCCM

圧力: 1. 33Pa

温度:100℃

40 マイクロ波:850W(2.45GHz)

RFバイアス:0W

パルス比:1:2

上記のように、パルス状にマイクロ波を供給したので、 高密度(10^{14} c m^{-3} 程度)のプラズマが発生し、高密 度にリチウム原子がドープされた(図1 (B))。

【0042】本実施例は、実施例2についてクリーニングを併用する形のものであるが、クリーニングを併用して実施例1と同様に行っても、効果的である。

【発明の効果】

50 【0043】本発明によれば、ダイアモンド構造に悪影

6

響を与えずに、ダイアモンドにn型ドーピングを行うことができ、高濃度のn型ドーピングも可能な技術を提供することができた。

【図面の簡単な説明】

【図1】 実施例の工程を示す図である。

【図2】 実施例に用いたECRプラズマドーピング装置である。

【符号の説明】

- 101 基板
- 102 ダイアモンド半導体膜
- 103 SiO, 膜
- 104 レジストパターン
- 105 開口部(露出部)

【図1】

実施例1の工程

105 鍵出部 104 レジストパターン 103 絶縁膜 (SiO₂) 101 基 板

(B)

106 拡散層

- 1 マグネトロン
- 2 マイクロ波
- 3 導波管
- 4 石英ペルジャー
- 5 反応室
- 6 ソレノイドコイル
- 7 ガスプラズマ
- 8 基板
- 10 9 サセプター
 - 10 加熱管
 - 11 ガス導入管
 - 12 排気管

【図2】

実施例1で用いたECRプラズマ発生装置

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07106266 A

(43) Date of publication of application: 21.04.95

(51) Int. CI

H01L 21/22 C30B 29/04 H01L 21/324

(21) Application number: 05268391

(22) Date of filing: 30.09.93

(71) Applicant:

SONY CORP

(72) Inventor:

SATO JUNICHI

(54) MANUFACTURE OF DIAMOND SEMICONDUCTOR

(57) Abstract:

PURPOSE: To enable N-type doping for diamond without possibility of breakdown of diamond structure, and N-type doping of high concentration.

CONSTITUTION: In the manufacturing method of a diamond semiconductor whose main component is carbon, a diffusion layer 106 is obtained by doping a diamond 102 whose surface is cleaned if necessary, with lithium atoms (nitrogen compound of lithium, e.g. compound formed of lithium azide may be used) by using ECR plasma.

COPYRIGHT: (C)1995,JPO

(B)

