$12a_{0332} (K12a_{0332})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{36} + 2u^{35} + \dots + b + 1, \ u^{36} - 3u^{35} + \dots + 2a - 3, \ u^{37} - 3u^{36} + \dots + u + 2 \rangle$$

$$I_2^u = \langle -u^{26}a - 2u^{27} + \dots - a + 2, \ 2u^{27}a + 2u^{26}a + \dots + a^2 + 1, \ u^{28} + u^{27} + \dots - u^2 + 1 \rangle$$

$$I_3^u = \langle u^7 - u^6 - u^5 + 3u^3 + b - u, \ -u^7 + 2u^6 + u^5 - 2u^4 - 3u^3 + 4u^2 + a + 2u - 2, \ u^8 - u^6 + 3u^4 - 2u^2 + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 101 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{36} + 2u^{35} + \dots + b + 1, \ u^{36} - 3u^{35} + \dots + 2a - 3, \ u^{37} - 3u^{36} + \dots + u + 2 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{36} + \frac{3}{2}u^{35} + \dots + u + \frac{3}{2} \\ u^{36} - 2u^{35} + \dots - u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{5}{2}u^{36} + \frac{5}{2}u^{35} + \dots - 5u - \frac{1}{2} \\ -2u^{36} + 9u^{35} + \dots + 13u + 9 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{36} - \frac{3}{2}u^{35} + \dots - u - \frac{1}{2} \\ -2u^{36} + 3u^{35} + \dots - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} - 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} - 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} - 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} - 2u^{2} + 1 \\ u^{6} - u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} - 2u^{2} + 1 \\ u^{6} - u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} - 2u^{2} + 1 \\ u^{6} - u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{13} - u^{11} + 3u^{9} - 2u^{7} + 2u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{13} - u^{11} + 3u^{9} - 2u^{7} + 2u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{13} - u^{11} + 3u^{9} - 2u^{7} + 2u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{13} - u^{11} + 3u^{9} - 2u^{7} + 2u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{13} - u^{11} + 3u^{9} - 2u^{7} + 2u^{5} - u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{array}{l} -2u^{36} + 12u^{35} - 2u^{34} - 54u^{33} + 30u^{32} + 204u^{31} - 162u^{30} - 520u^{29} + 510u^{28} + 1120u^{27} - 1224u^{26} - 1954u^{25} + 2294u^{24} + 2956u^{23} - 3538u^{22} - 3846u^{21} + 4422u^{20} + 4450u^{19} - 4544u^{18} - 4538u^{17} + 3660u^{16} + 4144u^{15} - 2156u^{14} - 3248u^{13} + 644u^{12} + 2146u^{11} + 292u^{10} - 1052u^9 - 570u^8 + 292u^7 + 378u^6 + 46u^5 - 134u^4 - 70u^3 + 4u^2 + 26u + 26u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{37} + 16u^{36} + \dots - 5u - 1$
c_2, c_3, c_6 c_7	$u^{37} + 8u^{35} + \dots + 3u - 1$
c_4, c_{11}	$u^{37} + 3u^{36} + \dots + u - 2$
c_5	$u^{37} - 21u^{36} + \dots + 11969u - 898$
c_9, c_{10}, c_{12}	$u^{37} - 9u^{36} + \dots + 9u - 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{37} + 20y^{36} + \dots + 83y - 1$
c_2, c_3, c_6 c_7	$y^{37} + 16y^{36} + \dots - 5y - 1$
c_4, c_{11}	$y^{37} - 9y^{36} + \dots + 9y - 4$
c_5	$y^{37} - 9y^{36} + \dots + 9968617y - 806404$
c_9, c_{10}, c_{12}	$y^{37} + 39y^{36} + \dots + 257y - 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.956735 + 0.301871I		
a = 0.107211 + 0.253891I	4.07996 - 1.69437I	12.28632 + 1.79481I
b = -0.426927 - 0.834723I		
u = -0.956735 - 0.301871I		
a = 0.107211 - 0.253891I	4.07996 + 1.69437I	12.28632 - 1.79481I
b = -0.426927 + 0.834723I		
u = 0.958389 + 0.235458I		
a = -0.753757 + 0.244529I	4.44965 + 3.84432I	12.5649 - 6.9040I
b = 0.864634 + 0.110338I		
u = 0.958389 - 0.235458I		
a = -0.753757 - 0.244529I	4.44965 - 3.84432I	12.5649 + 6.9040I
b = 0.864634 - 0.110338I		
u = 0.974044 + 0.110846I		
a = 0.438179 + 0.800925I	1.78420 - 6.55614I	9.22168 + 4.71128I
b = -0.697177 + 1.212880I		
u = 0.974044 - 0.110846I		
a = 0.438179 - 0.800925I	1.78420 + 6.55614I	9.22168 - 4.71128I
b = -0.697177 - 1.212880I		
u = -0.869494 + 0.549252I		
a = 1.04527 + 1.02873I	-2.07404 + 1.88888I	3.74513 - 1.47237I
b = 0.332238 - 0.481286I		
u = -0.869494 - 0.549252I		
a = 1.04527 - 1.02873I	-2.07404 - 1.88888I	3.74513 + 1.47237I
b = 0.332238 + 0.481286I		
u = -0.985335 + 0.388773I		
a = -1.78941 - 1.15884I	0.19576 - 12.29670I	5.96416 + 10.82953I
b = 0.368742 + 0.784022I		
u = -0.985335 - 0.388773I		
a = -1.78941 + 1.15884I	0.19576 + 12.29670I	5.96416 - 10.82953I
b = 0.368742 - 0.784022I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.806001 + 0.770895I		
a = 0.69552 + 1.27487I	-1.90734 + 2.28917I	4.88020 - 3.21889I
b = 0.833243 - 1.116330I		
u = -0.806001 - 0.770895I		
a = 0.69552 - 1.27487I	-1.90734 - 2.28917I	4.88020 + 3.21889I
b = 0.833243 + 1.116330I		
u = 0.695248 + 0.472483I		
a = 0.444025 - 1.024300I	-1.19445 + 1.82713I	4.12966 - 6.04101I
b = -0.122253 + 0.573991I		
u = 0.695248 - 0.472483I		
a = 0.444025 + 1.024300I	-1.19445 - 1.82713I	4.12966 + 6.04101I
b = -0.122253 - 0.573991I		
u = 0.826193 + 0.842773I		
a = -0.567500 - 0.335315I	-3.16743 + 0.36820I	6.31788 - 2.12826I
b = 0.360895 - 0.189373I		
u = 0.826193 - 0.842773I		
a = -0.567500 + 0.335315I	-3.16743 - 0.36820I	6.31788 + 2.12826I
b = 0.360895 + 0.189373I		
u = -0.492238 + 0.655396I		
a = 0.068505 + 1.209380I	-3.23955 - 6.28444I	0.23042 + 7.24447I
b = -0.723783 - 1.213940I		
u = -0.492238 - 0.655396I		
a = 0.068505 - 1.209380I	-3.23955 + 6.28444I	0.23042 - 7.24447I
b = -0.723783 + 1.213940I		
u = -0.942981 + 0.761048I		
a = 1.151510 + 0.744837I	-1.50596 - 8.08923I	6.07656 + 8.51523I
b = -0.60571 - 2.01178I		
u = -0.942981 - 0.761048I		
a = 1.151510 - 0.744837I	-1.50596 + 8.08923I	6.07656 - 8.51523I
b = -0.60571 + 2.01178I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.827155 + 0.889743I		
a = 1.41124 - 2.73920I	-8.12556 - 10.18450I	0.37161 + 5.66795I
b = 2.08237 + 4.08970I		
u = 0.827155 - 0.889743I		
a = 1.41124 + 2.73920I	-8.12556 + 10.18450I	0.37161 - 5.66795I
b = 2.08237 - 4.08970I		
u = 0.960937 + 0.799626I		
a = 0.367828 + 0.480609I	-2.75006 + 5.76064I	7.04693 - 2.89668I
b = -0.706212 - 0.437969I		
u = 0.960937 - 0.799626I		
a = 0.367828 - 0.480609I	-2.75006 - 5.76064I	7.04693 + 2.89668I
b = -0.706212 + 0.437969I		
u = 0.888234 + 0.886878I		
a = -1.24637 + 2.29159I	-10.85650 + 5.89802I	-1.00813 - 7.72734I
b = -1.53871 - 3.88705I		
u = 0.888234 - 0.886878I		
a = -1.24637 - 2.29159I	-10.85650 - 5.89802I	-1.00813 + 7.72734I
b = -1.53871 + 3.88705I		
u = -0.916359 + 0.865710I		
a = -1.40408 - 1.51780I	-8.85573 - 3.20735I	5.22275 + 2.78415I
b = -0.73441 + 3.20038I		
u = -0.916359 - 0.865710I		
a = -1.40408 + 1.51780I	-8.85573 + 3.20735I	5.22275 - 2.78415I
b = -0.73441 - 3.20038I		
u = 0.947451 + 0.860827I		
a = -2.19419 + 1.40646I	-10.66820 + 0.56453I	-0.58196 + 3.04417I
b = -0.12980 - 3.94938I		
u = 0.947451 - 0.860827I		
a = -2.19419 - 1.40646I	-10.66820 - 0.56453I	-0.58196 - 3.04417I
b = -0.12980 + 3.94938I		
-		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.983458 + 0.824484I		
a = 2.65593 - 1.57243I	-7.6317 + 16.5331I	1.29247 - 10.38801I
b = -0.29611 + 5.01537I		
u = 0.983458 - 0.824484I		
a = 2.65593 + 1.57243I	-7.6317 - 16.5331I	1.29247 + 10.38801I
b = -0.29611 - 5.01537I		
u = -0.240182 + 0.666603I		
a = -0.12252 - 1.87056I	-2.16954 + 8.48653I	0.54078 - 6.28516I
b = 0.79192 + 1.32245I		
u = -0.240182 - 0.666603I		
a = -0.12252 + 1.87056I	-2.16954 - 8.48653I	0.54078 + 6.28516I
b = 0.79192 - 1.32245I		
u = -0.595207		
a = 0.354844	0.761151	13.8790
b = 0.343586		
u = -0.054179 + 0.561331I		
a = 0.765177 + 0.865041I	1.44057 - 1.28380I	5.75923 + 3.39663I
b = 0.175261 - 0.166101I		
u = -0.054179 - 0.561331I		
a = 0.765177 - 0.865041I	1.44057 + 1.28380I	5.75923 - 3.39663I
b = 0.175261 + 0.166101I		

II.
$$I_2^u = \langle -u^{26}a - 2u^{27} + \dots - a + 2, \ 2u^{27}a + 2u^{26}a + \dots + a^2 + 1, \ u^{28} + u^{27} + \dots - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{26}a + 2u^{27} + \dots + a - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{27} - 3u^{26} + \dots - 2a + 1 \\ 2u^{25}a + 2u^{24}a + \dots + 2au - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{27}a - 4u^{26}a + \dots + 2a + 2u \\ 2u^{27}a + 4u^{27} + \dots + 2a - 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{13} + 2u^{11} - 5u^{9} + 6u^{7} - 6u^{5} + 4u^{3} - u \\ u^{13} - u^{11} + 3u^{9} - 2u^{7} + 2u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{27} - 2u^{26} + \dots - 2a + 2 \\ -2u^{27}a - 4u^{26}a + \dots + 2a - 2 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{26} - 4u^{25} + 12u^{24} + 16u^{23} - 44u^{22} - 52u^{21} + 88u^{20} + 116u^{19} - 168u^{18} - 204u^{17} + 236u^{16} + 284u^{15} - 288u^{14} - 312u^{13} + 280u^{12} + 256u^{11} - 224u^{10} - 152u^9 + 136u^8 + 40u^7 - 64u^6 + 16u^5 + 16u^4 - 16u^3 + 4u + 6$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{56} + 31u^{55} + \dots + 27u + 4$
c_2, c_3, c_6 c_7	$u^{56} - u^{55} + \dots + u + 2$
c_4, c_{11}	$(u^{28} - u^{27} + \dots - u^2 + 1)^2$
c_5	$(u^{28} + 7u^{27} + \dots + 8u + 1)^2$
c_9, c_{10}, c_{12}	$(u^{28} - 7u^{27} + \dots - 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{56} - 13y^{55} + \dots + 927y + 16$
c_2, c_3, c_6 c_7	$y^{56} + 31y^{55} + \dots + 27y + 4$
c_4, c_{11}	$(y^{28} - 7y^{27} + \dots - 2y + 1)^2$
c_5	$(y^{28} + y^{27} + \dots + 62y + 1)^2$
c_9, c_{10}, c_{12}	$(y^{28} + 29y^{27} + \dots + 14y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.899770 + 0.359295I		
a = 1.02424 + 1.44935I	-2.76021 - 3.76187I	4.54869 + 7.99757I
b = 0.317596 + 0.143962I		
u = -0.899770 + 0.359295I		
a = -2.28758 - 0.15491I	-2.76021 - 3.76187I	4.54869 + 7.99757I
b = 1.40296 + 0.75227I		
u = -0.899770 - 0.359295I		
a = 1.02424 - 1.44935I	-2.76021 + 3.76187I	4.54869 - 7.99757I
b = 0.317596 - 0.143962I		
u = -0.899770 - 0.359295I		
a = -2.28758 + 0.15491I	-2.76021 + 3.76187I	4.54869 - 7.99757I
b = 1.40296 - 0.75227I		
u = -0.954301 + 0.165131I		
a = 0.453330 - 0.469903I	3.64668 + 1.29573I	12.16340 + 0.19021I
b = -0.670608 - 1.151640I		
u = -0.954301 + 0.165131I		
a = -0.381153 - 0.148423I	3.64668 + 1.29573I	12.16340 + 0.19021I
b = 0.877426 - 0.189403I		
u = -0.954301 - 0.165131I		
a = 0.453330 + 0.469903I	3.64668 - 1.29573I	12.16340 - 0.19021I
b = -0.670608 + 1.151640I		
u = -0.954301 - 0.165131I		
a = -0.381153 + 0.148423I	3.64668 - 1.29573I	12.16340 - 0.19021I
b = 0.877426 + 0.189403I		
u = 0.971170 + 0.356128I		
a = -0.056263 - 0.455331I	2.55576 + 6.87695I	9.38448 - 7.29150I
b = -0.331645 + 0.653502I		
u = 0.971170 + 0.356128I		
a = -1.66109 + 0.82974I	2.55576 + 6.87695I	9.38448 - 7.29150I
b = 0.635990 - 0.561304I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.971170 - 0.356128I		
a = -0.056263 + 0.455331I	2.55576 - 6.87695I	9.38448 + 7.29150I
b = -0.331645 - 0.653502I		
u = 0.971170 - 0.356128I		
a = -1.66109 - 0.82974I	2.55576 - 6.87695I	9.38448 + 7.29150I
b = 0.635990 + 0.561304I		
u = 0.816311 + 0.219669I		
a = 1.44748 - 0.37350I	-1.87609 + 0.68499I	8.66956 - 0.56233I
b = -0.48686 + 1.64839I		
u = 0.816311 + 0.219669I		
a = 0.89236 - 1.56400I	-1.87609 + 0.68499I	8.66956 - 0.56233I
b = -0.222133 - 0.418971I		
u = 0.816311 - 0.219669I		
a = 1.44748 + 0.37350I	-1.87609 - 0.68499I	8.66956 + 0.56233I
b = -0.48686 - 1.64839I		
u = 0.816311 - 0.219669I		
a = 0.89236 + 1.56400I	-1.87609 - 0.68499I	8.66956 + 0.56233I
b = -0.222133 + 0.418971I		
u = 0.894569 + 0.739690I		
a = 0.546052 - 0.607895I	-1.35470 + 2.81005I	6.61718 - 2.93426I
b = -0.438838 + 1.131330I		
u = 0.894569 + 0.739690I		
a = 0.522067 - 0.615995I	-1.35470 + 2.81005I	6.61718 - 2.93426I
b = 0.467816 + 0.278002I		
u = 0.894569 - 0.739690I		
a = 0.546052 + 0.607895I	-1.35470 - 2.81005I	6.61718 + 2.93426I
b = -0.438838 - 1.131330I		
u = 0.894569 - 0.739690I		
a = 0.522067 + 0.615995I	-1.35470 - 2.81005I	6.61718 + 2.93426I
b = 0.467816 - 0.278002I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.594944 + 0.540484I		
a = 0.796189 - 0.763146I	-1.33499 + 1.97473I	3.44037 - 3.90307I
b = -0.123628 + 0.489316I		
u = 0.594944 + 0.540484I		
a = 0.187055 - 1.218540I	-1.33499 + 1.97473I	3.44037 - 3.90307I
b = -0.446420 + 0.779097I		
u = 0.594944 - 0.540484I		
a = 0.796189 + 0.763146I	-1.33499 - 1.97473I	3.44037 + 3.90307I
b = -0.123628 - 0.489316I		
u = 0.594944 - 0.540484I		
a = 0.187055 + 1.218540I	-1.33499 - 1.97473I	3.44037 + 3.90307I
b = -0.446420 - 0.779097I		
u = -0.824272 + 0.873080I		
a = -0.868359 + 0.410750I	-5.36393 + 4.77850I	3.36601 - 2.38985I
b = 0.860810 + 0.419716I		
u = -0.824272 + 0.873080I		
a = 1.10511 + 2.56923I	-5.36393 + 4.77850I	3.36601 - 2.38985I
b = 2.16209 - 3.37931I		
u = -0.824272 - 0.873080I		
a = -0.868359 - 0.410750I	-5.36393 - 4.77850I	3.36601 + 2.38985I
b = 0.860810 - 0.419716I		
u = -0.824272 - 0.873080I		
a = 1.10511 - 2.56923I	-5.36393 - 4.77850I	3.36601 + 2.38985I
b = 2.16209 + 3.37931I		
u = 0.848977 + 0.862822I		
a = -1.61944 + 2.47231I	-10.42220 - 0.98573I	-1.20004 + 1.21736I
b = -1.04855 - 4.31824I		
u = 0.848977 + 0.862822I		
a = 0.52453 - 2.98229I	-10.42220 - 0.98573I	-1.20004 + 1.21736I
b = 3.47400 + 2.91986I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.848977 - 0.862822I		
a = -1.61944 - 2.47231I	-10.42220 + 0.98573I	-1.20004 - 1.21736I
b = -1.04855 + 4.31824I		
u = 0.848977 - 0.862822I		
a = 0.52453 + 2.98229I	-10.42220 + 0.98573I	-1.20004 - 1.21736I
b = 3.47400 - 2.91986I		
u = -0.883885 + 0.841772I		
a = -0.579421 - 0.504600I	-8.24265 - 2.93440I	1.90343 + 3.53352I
b = -0.614694 + 1.257450I		
u = -0.883885 + 0.841772I		
a = -1.73296 - 2.18260I	-8.24265 - 2.93440I	1.90343 + 3.53352I
b = -0.90166 + 3.97609I		
u = -0.883885 - 0.841772I		
a = -0.579421 + 0.504600I	-8.24265 + 2.93440I	1.90343 - 3.53352I
b = -0.614694 - 1.257450I		
u = -0.883885 - 0.841772I		
a = -1.73296 + 2.18260I	-8.24265 + 2.93440I	1.90343 - 3.53352I
b = -0.90166 - 3.97609I		
u = -0.921489 + 0.824235I		
a = -0.547487 - 0.474537I	-8.12146 - 3.27187I	2.26749 + 1.59380I
b = -0.21718 + 1.66408I		
u = -0.921489 + 0.824235I		
a = -2.04938 - 1.94889I	-8.12146 - 3.27187I	2.26749 + 1.59380I
b = -0.66887 + 3.95674I		
u = -0.921489 - 0.824235I		
a = -0.547487 + 0.474537I	-8.12146 + 3.27187I	2.26749 - 1.59380I
b = -0.21718 - 1.66408I		
u = -0.921489 - 0.824235I		
a = -2.04938 + 1.94889I	-8.12146 + 3.27187I	2.26749 - 1.59380I
b = -0.66887 - 3.95674I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.956709 + 0.821698I		
a = 2.87664 - 0.62418I	-10.08390 + 7.24627I	-0.35343 - 6.30493I
b = -2.04478 + 4.61109I		
u = 0.956709 + 0.821698I		
a = -2.34992 + 1.84192I	-10.08390 + 7.24627I	-0.35343 - 6.30493I
b = -0.59666 - 4.17927I		
u = 0.956709 - 0.821698I		
a = 2.87664 + 0.62418I	-10.08390 - 7.24627I	-0.35343 + 6.30493I
b = -2.04478 - 4.61109I		
u = 0.956709 - 0.821698I		
a = -2.34992 - 1.84192I	-10.08390 - 7.24627I	-0.35343 + 6.30493I
b = -0.59666 + 4.17927I		
u = -0.975960 + 0.814541I		
a = 0.461489 - 0.788364I	-4.88826 - 11.04430I	4.28365 + 7.20583I
b = -1.176520 + 0.452581I		
u = -0.975960 + 0.814541I		
a = 2.47158 + 1.26067I	-4.88826 - 11.04430I	4.28365 + 7.20583I
b = -0.68026 - 4.45661I		
u = -0.975960 - 0.814541I		
a = 0.461489 + 0.788364I	-4.88826 + 11.04430I	4.28365 - 7.20583I
b = -1.176520 - 0.452581I		
u = -0.975960 - 0.814541I		
a = 2.47158 - 1.26067I	-4.88826 + 11.04430I	4.28365 - 7.20583I
b = -0.68026 + 4.45661I		
u = 0.190095 + 0.611771I		
a = 0.740553 - 0.573961I	0.14328 - 3.38176I	3.65042 + 2.75424I
b = 0.0110804 - 0.0583490I		
u = 0.190095 + 0.611771I		
a = 0.25617 + 1.77312I	0.14328 - 3.38176I	3.65042 + 2.75424I
b = 0.491611 - 1.016080I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.190095 - 0.611771I		
a = 0.740553 + 0.573961I	0.14328 + 3.38176I	3.65042 - 2.75424I
b = 0.0110804 + 0.0583490I		
u = 0.190095 - 0.611771I		
a = 0.25617 - 1.77312I	0.14328 + 3.38176I	3.65042 - 2.75424I
b = 0.491611 + 1.016080I		
u = -0.313097 + 0.488114I		
a = -0.290579 + 1.243310I	-4.53523 + 0.50746I	-2.74123 - 1.23953I
b = -1.211500 - 0.586102I		
u = -0.313097 + 0.488114I		
a = 0.61878 - 2.72822I	-4.53523 + 0.50746I	-2.74123 - 1.23953I
b = -0.32060 + 1.46145I		
u = -0.313097 - 0.488114I		
a = -0.290579 - 1.243310I	-4.53523 - 0.50746I	-2.74123 + 1.23953I
b = -1.211500 + 0.586102I		
u = -0.313097 - 0.488114I		
a = 0.61878 + 2.72822I	-4.53523 - 0.50746I	-2.74123 + 1.23953I
b = -0.32060 - 1.46145I		

$$III. \\ I_3^u = \langle u^7 - u^6 - u^5 + 3u^3 + b - u, \ -u^7 + 2u^6 + \dots + a - 2, \ u^8 - u^6 + 3u^4 - 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{7} - 2u^{6} - u^{5} + 2u^{4} + 3u^{3} - 4u^{2} - 2u + 2 \\ -u^{7} + u^{6} + u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{6} - 2u^{2} + u \\ -u^{7} + u^{5} + u^{4} - 2u^{3} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{7} - u^{6} - u^{5} + u^{4} + 3u^{3} - 2u^{2} - 2u + 1 \\ -u^{7} + u^{5} - 3u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{6} + u^{4} - 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{6} + u^{4} - 3u^{2} + u + 1 \\ -u^{7} + u^{5} - 2u^{3} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^6 + 4u^4 12u^2 + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^8$
c_2, c_3, c_6 c_7	$(u^2+1)^4$
c_4, c_{11}	$u^8 - u^6 + 3u^4 - 2u^2 + 1$
<i>C</i> ₅	$u^8 - 5u^6 + 7u^4 - 2u^2 + 1$
c ₈	$(u+1)^8$
c_9,c_{10}	$(u^4 + u^3 + 3u^2 + 2u + 1)^2$
c_{12}	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y-1)^8$
c_2, c_3, c_6 c_7	$(y+1)^8$
c_4, c_{11}	$(y^4 - y^3 + 3y^2 - 2y + 1)^2$
c_5	$(y^4 - 5y^3 + 7y^2 - 2y + 1)^2$
c_9, c_{10}, c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.720342 + 0.351808I		
a = -0.417258 - 0.893260I	-3.07886 + 1.41510I	-0.17326 - 4.90874I
b = 0.157709 - 0.792046I		
u = 0.720342 - 0.351808I		
a = -0.417258 + 0.893260I	-3.07886 - 1.41510I	-0.17326 + 4.90874I
b = 0.157709 + 0.792046I		
u = -0.720342 + 0.351808I		
a = 1.82449 + 1.98811I	-3.07886 - 1.41510I	-0.17326 + 4.90874I
b = -0.643355 - 1.006420I		
u = -0.720342 - 0.351808I		
a = 1.82449 - 1.98811I	-3.07886 + 1.41510I	-0.17326 - 4.90874I
b = -0.643355 + 1.006420I		
u = 0.911292 + 0.851808I		
a = -2.28927 + 2.37001I	-10.08060 + 3.16396I	-3.82674 - 2.56480I
b = -1.08282 - 5.08987I		
u = 0.911292 - 0.851808I		
a = -2.28927 - 2.37001I	-10.08060 - 3.16396I	-3.82674 + 2.56480I
b = -1.08282 + 5.08987I		
u = -0.911292 + 0.851808I		
a = -1.11796 - 1.27516I	-10.08060 - 3.16396I	-3.82674 + 2.56480I
b = -0.43154 + 2.29140I		
u = -0.911292 - 0.851808I		
a = -1.11796 + 1.27516I	-10.08060 + 3.16396I	-3.82674 - 2.56480I
b = -0.43154 - 2.29140I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^{37} + 16u^{36} + \dots - 5u - 1)(u^{56} + 31u^{55} + \dots + 27u + 4)$
c_2, c_3, c_6 c_7	$((u^{2}+1)^{4})(u^{37}+8u^{35}+\cdots+3u-1)(u^{56}-u^{55}+\cdots+u+2)$
c_4, c_{11}	$(u^8 - u^6 + 3u^4 - 2u^2 + 1)(u^{28} - u^{27} + \dots - u^2 + 1)^2$ $\cdot (u^{37} + 3u^{36} + \dots + u - 2)$
c_5	$(u^8 - 5u^6 + 7u^4 - 2u^2 + 1)(u^{28} + 7u^{27} + \dots + 8u + 1)^2$ $\cdot (u^{37} - 21u^{36} + \dots + 11969u - 898)$
c ₈	$((u+1)^8)(u^{37}+16u^{36}+\cdots-5u-1)(u^{56}+31u^{55}+\cdots+27u+4)$
c_{9}, c_{10}	$((u^4 + u^3 + 3u^2 + 2u + 1)^2)(u^{28} - 7u^{27} + \dots - 2u + 1)^2$ $\cdot (u^{37} - 9u^{36} + \dots + 9u - 4)$
c_{12}	$((u^4 - u^3 + 3u^2 - 2u + 1)^2)(u^{28} - 7u^{27} + \dots - 2u + 1)^2$ $\cdot (u^{37} - 9u^{36} + \dots + 9u - 4)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8	$((y-1)^8)(y^{37} + 20y^{36} + \dots + 83y - 1)(y^{56} - 13y^{55} + \dots + 927y + 16)$
$c_2, c_3, c_6 \ c_7$	$((y+1)^8)(y^{37}+16y^{36}+\cdots-5y-1)(y^{56}+31y^{55}+\cdots+27y+4)$
c_4, c_{11}	$((y^4 - y^3 + 3y^2 - 2y + 1)^2)(y^{28} - 7y^{27} + \dots - 2y + 1)^2$ $\cdot (y^{37} - 9y^{36} + \dots + 9y - 4)$
<i>C</i> ₅	$((y^4 - 5y^3 + 7y^2 - 2y + 1)^2)(y^{28} + y^{27} + \dots + 62y + 1)^2$ $\cdot (y^{37} - 9y^{36} + \dots + 9968617y - 806404)$
c_9, c_{10}, c_{12}	$((y^4 + 5y^3 + 7y^2 + 2y + 1)^2)(y^{28} + 29y^{27} + \dots + 14y + 1)^2$ $\cdot (y^{37} + 39y^{36} + \dots + 257y - 16)$