Περιεχόμενα

Πρόλ	λογος ελλ	l. έκδοσης	6	
Πρόλ	lογος		7	
Κεφ	άλαιο	1 Μοντέλα για ενεργές συσκευές ολοκληρωμένου κυκλώματος	23	
1.1	Εισαγο	 Ͽγή	23	
1.2		χή απογύμνωσης μιας επαφής <i>pn</i>		
	1.2.1	Χωρητικότητα της περιοχής απογύμνωσης	28	
	1.2.2	Κατάρρευση επαφής	30	
1.3	Συμπε	ριφορά μεγάλου σήματος των διπολικών τρανζίστορ	33	
	1.3.1	Μοντέλα μεγάλου σήματος στην ενεργό περιοχή ορθής λειτουργίας	33	
	1.3.2	Επίδραση της τάσης συλλέκτη στις χαρακτηριστικές μεγάλου		
		σήματος στην ενεργό περιοχή ορθής λειτουργίας	41	
	1.3.3	Περιοχή κόρου και ενεργός περιοχή ανάστροφης λειτουργίας		
	1.3.4	Τάσεις κατάρρευσης του τρανζίστορ	49	
	1.3.5	Εξάρτηση του κέρδους ρεύματος eta_F του τρανζίστορ από		
		τις συνθήκες λειτουργίας	54	
1.4	Μοντέλα μικρού σήματος για διπολικά τρανζίστορ			
	1.4.1	Διαγωγιμότητα	58	
	1.4.2	Χωρητικότητα φορτίου βάσης		
	1.4.3	Αντίσταση εισόδου		
	1.4.4	Αντίσταση εξόδου		
	1.4.5	Βασικό μοντέλο μικρού σήματος του διπολικού τρανζίστορ	63	
	1.4.6	Αντίσταση συλλέκτη-νάσης		
	1.4.7	Παρασιτικά στοιχεία στο μοντέλο μικρού σήματος		
	1.4.8	Προσδιορισμός της απόκρισης συχνότητας του τρανζίστορ		
1.5		ριφορά μεγάλου σήματος του τρανζίστορ MOSFET		
	1.5.1	Χαρακτηριστική μεταφοράς των συσκευών MOS	74	
	1.5.2	Σύγκριση των περιοχών λειτουργίας των διπολικών τρανζίστορ		
		και των τρανζίστορ MOS		
	1.5.3	Ανάλυση της τάσης πύλης-πηγής		
	1.5.4	Θερμοκρασιακή εξάρτηση της τάσης κατωφλίου	87	
	1.5.5	Περιορισμοί τάσης σε συσκευές ΜΟS		
1.6		λα μικρού σήματος για τρανζίστορ MOS		
	1.6.1	Διαγωγιμότητα		
	1.6.2	Ενδογενής χωρητικότητα πύλης-πηγής και πύλης-απαγωγού		
	1.6.3	Αντίσταση εισόδου		
	1.6.4	Αντίσταση εξόδου	93	

	1.6.5	Βασικό Μοντέλο μικρού σήματος του τρανζίστορ ΜΟS	93
	1.6.6	Διαγωγιμότητα σώματος	
	1.6.7	Παρασιτικά στοιχεία στο μοντέλο μικρού σήματος	95
	1.6.8	Απόκριση συχνότητας του τρανζίστορ MOS	
1.7	Επιδρό	ισεις μικρού μήκους καναλιού σε τρανζίστορ MOS	
	1.7.1	Κορεσμός ταχύτητας από το οριζόντιο πεδίο	102
	1.7.2	Διαγωγιμότητα και συχνότητα μετάβασης	
	1.7.3	Υποβάθμιση ευκινησίας από το κάθετο πεδίο	
1.8	Ασθεν	ής αναστροφή σε τρανζίστορ MOS	
	1.8.1	Ρεύμα απαγωγού στην ασθενή αναστροφή	
	1.8.2	Διαγωγιμότητα και συχνότητα μετάβασης στην ασθενή αναστροφή	
1.9	Ροή ρε	ύματος υποστρώματος σε τρανζίστορ MOS	
П.1.		η παραμέτρων ενεργών συσκευών	
		A	
		Σ	
Ken	άλαιο	2 Διπολική, MOS, και BiCMOS τεχνολογία ολοκληρωμένων	
πυφ	analo E		120
		κυκλωμάτων	
2.1		ογή	
2.2		ες διεργασίες για την κατασκευή ολοκληρωμένου κυκλώματος	
	2.2.1	Ηλεκτρική ειδική αντίσταση του πυριτίου	
	2.2.2	Διάχυση Στερεάς Κατάστασης	
	2.2.3	Ηλεκτρικές ιδιότητες των στρωμάτων διάχυσης	134
	2.2.4	Φωτολιθογραφία	137
	2.2.5	Επιταξιακή ανάπτυξη	139
	2.2.6	Εμφύτευση Ιόντων	140
	2.2.7	Τοπική οξείδωση	141
	2.2.8	Εναπόθεση πολυπυριτίου	142
2.3	Κατασ	κευή διπολικών ολοκληρωμένων κυκλωμάτων υψηλής τάσης	143
2.4	Προηγ	μένη κατασκευή διπολικών ολοκληρωμένων κυκλωμάτων	148
2.5	Ενεργέ	ς συσκευές σε διπολικά ολοκληρωμένα κυκλώματα	153
	2.5.1	Τρανζίστορ ηρη ολοκληρωμένων κυκλωμάτων	153
	2.5.2	Τρανζίστορ pnp ολοκληρωμένων κυκλωμάτων	168
2.6	Παθητ	ικά στοιχεία ολοκληρωμένων κυκλωμάτων	
	2.6.1	Αντιστάτες διάχυσης	179
	2.6.2	Επιταξιακοί αντιστάτες και επιταξιακοί αντιστάτες περιορισμού	182
	2.6.3	Πυκνωτές ολοκληρωμένων κυκλωμάτων	184
	2.6.4	Δίοδοι Zener	
	2.6.5	Δίοδοι επαφής	
2.7	Τροπο	ποιήσεις στη βασική διπολική διεργασία	
	2.7.1	Διηλεκτρική απομόνωση	
	2.7.2	Συμβατή διεργασία για ενεργές συσκευές υψηλής απόδοσης	
	2.7.3	Παθητικά στοιχεία υψηλής απόδοσης	
		. 70 1 1 15 15	

2.8	Κατασκευή ολοκληρωμένων κυκλωμάτων ΜΟS	194
2.9	Ενεργές συσκευές σε ολοκληρωμένα κυκλώματα MOS	
	2.9.1 Τρανζίστορ καναλιού η	
	2.9.2 Τρανζίστορ καναλιού ρ	
	2.9.3 Συσκευές απογύμνωσης	
	2.9.4 Διπολικά τρανζίστορ	
2.10	Παθητικά στοιχεία σε τεχνολογία MOS	
	2.10.1 Αντιστάτες	
	2.10.2 Πυκνωτές σε τεχνολογία MOS	
	2.10.3 Κλείδωμα εκκίνησης σε τεχνολογία CMOS	
2.11	Τεχνολογία BiCMOS	
2.12	Ετεροεπαφικά διπολικά τρανζίστορ	
2.13	Καθυστέρηση διασύνδεσης	
2.14	Οικονομικές πτυχές της κατασκευής ολοκληρωμένων κυκλωμάτων	
	2.14.1 Μελέτη της απόδοσης κατασκευής των ολοκληρωμένων κυκλωμάτων	
	2.14.2 Μελέτη του κόστους κατασκευής ολοκληρωμένων κυκλωμάτων	
2.15	Συσκευασία των ολοκληρωμένων κυκλωμάτων	
	2.15.1 Μέγιστη κατανάλωση ισχύος	
	2.15.2 Η επίδραση της συσκευασίας στην αξιοπιστία των κυκλωμάτων	
П.2.1	Παράμετροι μοντέλων Spice	
	ΛΗΜΑΤΑ	
Пара	ΠΟΜΠΕΣ	251
Κεφά	ιλαιο 3 Ενισχυτές ενός τρανζίστορ και πολλών τρανζίστορ	255
3.1	Επιλογή μοντέλου συσκευής για την προσεγγιστική ανάλυση	
5.1	αναλογικών κυκλωμάτων	257
3.2	Δίθυρα μοντέλα ενισχυτών	
3.3	Βασικές βαθμίδες ενισχυτών απλού τρανζίστορ	
3.3	3.3.1 Συνδεσμολογία κοινού εκπομπού	
	3.3.2 Συνδεσμολογία κοινής πηγής	
	3.3.3 Συνδεσμολογία κοινής βάσης	
	3.3.4 Συνδεσμολογία κοινής πύλης	
	3.3.5 Συνδεσμολογία κοινής βάσης και κοινής πύλης με πεπερασμένη r_o	
	3.3.5.1 Αντίσταση εισόδου κοινής βάσης και κοινής πύλης	
	3.3.5.2 Αντίσταση εξόδου κοινής βάσης και κοινής πύλης	
	3.3.6 Συνδεσμολογία κοινού συλλέκτη (ακόλουθος εκπομπού)	
	3.3.7 Συνδεσμολογία κοινού απαγωγού (ακόλουθος πηγής)	
	3.3.8 Ενισχυτής κοινού εκπομπού με εκφυλισμό εκπομπού	
	3.3.9 Ενισχυτής κοινής πηγής με εκφυλισμό πηγής	
3.4	3.3.9 Ενιοχυτής κοινής μηγής με εκφυλισμο πηγής Βαθμίδες ενισχυτών με πολλά τρανζίστορ	
J. +	3.4.1 Οι συνδεσμολογίες CC–CE, CC–CC, και Darlington	
	J.7.1 Οι συνοεσμολογίες CC-CE, CC-CC, και Darnington	ムフフ

	3.4.2		οδική συνδεσμολογία	
		3.4.2.1	Η διπολική κασκοδική συνδεσμολογία	
	2.4.2	3.4.2.2	• • •	
	3.4.3		ός κασκοδική συνδεσμολογία	
	3.4.4		κόλουθος πηγής	
3.5				315
	3.5.1		τηριστική μεταφοράς dc ενός ζεύγους συζευγμένου	
			ύ	
	3.5.2	Η χαρακ	τηριστική μεταφοράς dc με εκφυλισμό εκπομπού	319
	3.5.3	Η χαρακ	τηριστική μεταφοράς dc ενός ζεύγους συζευγμένης πηγής	320
	3.5.4		τική ανάλυση μικρού σήματος για τους διαφορικούς	222
	255		ς	323
	3.5.5		ηριστικά μικρού σήματος για τους ισοσταθμισμένους	220
	2 - 6		κούς ενισχυτές	328
	3.5.6		σματα της έλλειψης απόλυτου ταιριάσματος	
			κευών στους διαφορικούς ενισχυτές	
		3.5.6.1	Τάση και ρεύμα μετατόπισης εισόδου	337
		3.5.6.2	Τάση μετατόπισης εισόδου για ζεύγος	
			συζευγμένου εκπομπού	338
		3.5.6.3	Τάση μετατόπισης εισόδου για ζεύγος συζευγμένου	
			εκπομπού: προσεγγιστική ανάλυση	339
		3.5.6.4	Ολίσθηση της τάσης μετατόπισης στο ζεύγος	
			συζευγμένου εκπομπού	342
		3.5.6.5	Ρεύμα μετατόπισης εισόδου στο ζεύγος	
			συζευγμένου εκπομπού	342
		3.5.6.6	Τάση μετατόπισης της εισόδου για ζεύγος	
				344
		3.5.6.7	Τάση μετατόπισης της εισόδου για ζεύγος συζευγμένης	
			πηγής: προσεγγιστική ανάλυση	345
		3.5.6.8	Ολίσθηση της τάσης μετατόπισης για το ζεύγος	
			συζευγμένης πηγής	347
		3.5.6.9	Χαρακτηριστικά μικρού σήματος των μη	
			ισοσταθμισμένων διαφορικών ενισχυτών ¹¹	348
П 3 1	Στοινει	ώδης στα	τιστική και η Gaussian κατανομή	358
			To the first of Guassian Ravayopi	
_				
DIDAI	ОПАФІА			500
Κεφά	ιλαιο 4	Καθρέ	πτες ρεύματος, ενεργά φορτία, και αναφορές	
-		_	-ρεύματος	369
4 1	E	• • •		
4.1				
4.2	-		Χτος	
	4.2.1		ιδιότητες	
	4.2.2	Απλός κ	αθρέπτης ρεύματος	372

		4.2.2.1	Διπολικός καθρέπτης	372
		4.2.2.2	Καθρέπτης ΜΟΣ	
	4.2.3		αθρέπτης ρεύματος με βοηθό του βήτα	
		4.2.3.1	Διπολικός καθρέπτης	
		4.2.3.2	Καθρέπτης ΜΟS	
	4.2.4		αθρέπτης με εκφυλισμό εκπομπού	
		4.2.4.1	Διπολικός καθρέπτης	
		4.2.4.2	Καθρέπτης ΜΟΣ	
	4.2.5		ικός καθρέπτης ρεύματος	
		4.2.5.1	Διπολικός καθρέπτης	
		4.2.5.2	Καθρέπτης ΜΟS	
	4.2.6		της ρεύματος Wilson	
		4.2.6.1	Διπολικός καθρέπτης	
4.3	Ενεονά	φορτία		
	4.3.1			
	4.3.2		ής κοινού εκπομπού/κοινής πηγής	
			ληρωματικό φορτίο	406
	4.3.3		ής κοινού εκπομπού/κοινής πηγής με φορτίο απογύμνωσης	
	4.3.4		ής κοινού εκπομπού/κοινής πηγής με διοδικά	
			μένο φορτίο	412
	4.3.5	Διαφοριι	κό ζεύγος με φορτίο καθρέπτη ρεύματος	416
		4.3.5.1	Ανάλυση μεγάλου σήματος	416
		4.3.5.2	Ανάλυση μικρού σήματος	
		4.3.5.3	Λόγος απόρριψης κοινού σήματος (CMRR)	
4.4	Αναφοί		και ρεύματος	
	4.4.1		σε μικρά ρεύματα	
		4.4.1.1	Διπολική πηγή ρεύματος Widlar	
		4.4.1.2	Πηγή ρεύματος Widlar τεχνολογίας MOS	437
		4.4.1.3	Διπολική πηγή μέγιστου ρεύματος	438
		4.4.1.4	Πηγή μέγιστου ρεύματος MOS	
	4.4.2		χαμηλής ευαισθησίας ως προς την τάση τροφοδοσίας	
		4.4.2.1	Πηγές ρεύματος Widlar	
		4.4.2.2	Πηγές ρεύματος που χρησιμοποιούν άλλες	
			πρότυπες τάσεις	444
		4.4.2.3	Αυτοπόλωση	
	4.4.3		όλωσης με χαμηλή ευαισθησία ως προς τη θερμοκρασία	
		4.4.3.1	Διπολικό κύκλωμα πόλωσης με αναφορά την τάση	
			του χάσματος ζώνης	457
		4.4.3.2	Κύκλωμα πόλωσης CMOS με αναφορά την τάση	
			του χάσματος ζώνης	466
П.4.1	Μελέτη	του ταιοι	ιάσματος σε καθρέπτες ρεύματος	
			ός καθρέπτης	
			EEG MOS	
		1		

П.4.2	Τάση μ	ετατόπισι	ης εισόδου σε διαφορικό ζεύγος με ενεργό φορτίο	479		
			ό ζεύγος			
			MOS			
ПРОВ						
Κεφά	ίλαιο 5	Βαθμί	δες εξόδου	495		
5.1	Εισαγα	γή		495		
5.2	Ο ακόλ	.ουθος εκ <i>τ</i>	τομπού ως βαθμίδα εξόδου	495		
	5.2.1	Χαρακτι	ηριστικές μεταφοράς για τον ακόλουθο εκπομπού	496		
	5.2.2	Ισχύς εξ	όδου και απόδοση	500		
	5.2.3	Χαρακτι	ηριστικά οδήγησης ακόλουθου εκπομπού	509		
	5.2.4	Ιδιότητε	ς μικρού σήματος του ακόλουθου εκπομπού	510		
5.3	Ο ακόλ	ουθος πη	γής ως βαθμίδα εξόδου	512		
	5.3.1	Χαρακτι	ηριστικές μεταφοράς του ακόλουθου πηγής	512		
	5.3.2	Παραμό	ρφωση στον ακόλουθο πηγής	515		
5.4	Βαθμίδα εξόδου τάξης Β Push-Pull ^{4,5}					
	5.4.1	Χαρακτι	ηριστική μεταφοράς για βαθμίδα Τάξης Β	521		
	5.4.2	Ισχύς εξ	όδου και απόδοση της βαθμίδας Τάξης Β	524		
	5.4.3	Ποακτικές υλοποιήσεις συμπληρωματικών βαθμίδων				
		εξόδου 🛚	Γάξης Β ⁶	529		
	5.4.4	Βαθμίδα	ι εξόδου Τάξης Β μόνο με Τρανζίστορ <i>npn</i> ^{7,8,9}	538		
	5.4.5	Μερικώ	ς συμπληρωματικές βαθμίδες εξόδου 10	542		
	5.4.6	Προστασ	σία από υπερφόρτωση	544		
5.5	Βαθμίδ	ες εξόδου	CMOS Τάξης AB	547		
	5.5.1		ιολογία κοινού απαγωγού			
	5.5.2	Συνδεσμ	ιολογία κοινής πηγής με ενισχυτές σφάλματος	550		
	5.5.3	Εναλλακ	cτικές συνδεσμολογίες	559		
		5.5.3.1	Συνδυασμένη συνδεσμολογία κοινού απαγωγού/			
			κοινής πηγής	559		
		5.5.3.2	Συνδυασμένη συνδεσμολογία κοινού απαγωγού/			
			κοινής πηγής με υψηλό εύρος ταλάντευσης			
		5.5.3.3	Παράλληλη συνδεσμολογία κοινής πηγής	562		
ПРОВ	Λ HMAT A	١		569		
ПАРА	.ПОМПΕΣ	<u> </u>		575		
Κεφά	ίλαιο ઉ	Τελεσ	τικοί ενισχυτές απλής εξόδου	577		
6.1	Εφαρμο	ογές των 1	τελεστικών ενισχυτών	578		
	6.1.1		έννοιες ανάδρασης			
	6.1.2		έφων ενισχυτής			
	6.1.3		στρέφων ένισχυτής			

	6.1.4	Διαφορικός ενισχυτής	583
	6.1.5	Μη γραμμικές αναλογικές λειτουργίες	
	6.1.6	Ολοκληρωτής και διαφοριστής	
	6.1.7	Εσωτερικοί ενισχυτές	
		6.1.7.1 Ενισχυτής μεταγόμενου πυκνωτή	
		6.1.7.2 Ολοκληρωτής μεταγόμενου πυκνωτή	594
6.2	Αποκλ	ίσεις από την ιδανική συμπεριφορά σε πραγματικούς	
	τελεστ	ικούς ενισχυτές	598
	6.2.1	Ρεύμα πόλωσης εισόδου	598
	6.2.2	Ρεύμα μετατόπισης εισόδου	599
	6.2.3	Τάση μετατόπισης εισόδου	
	6.2.4	Εύρος εισόδου κοινού σήματος	
	6.2.5	Λόγος απόρριψης κοινού σήματος (CMRR)	601
	6.2.6	Λόγος απόρριψης τροφοδοσίας (PSRR)	602
	6.2.7	Αντίσταση εισόδου	
	6.2.8	Αντίσταση εξόδου	
	6.2.9	Συχνοτική απόκριση	
	6.2.10	Ισοδύναμο κύκλωμα τελεστικού ενισχυτή	
6.3	Βασικο	οί τελεστικοί ενισχυτές MOS δύο βαθμίδων	
	6.3.1	Αντίσταση εισόδου, αντίσταση εξόδου, και κέρδος τάσης	
		ανοικτού βρόχου	607
	6.3.2	Εύρος ταλάντευσης εξόδου	
	6.3.3	Τάση μετατόπισης εισόδου	
	6.3.4	Λόγος απόρριψης κοινού σήματος (CMRR)	
	6.3.5	Περιοχή εισόδου κοινού σήματος	
	6.3.6	Λόγος απόρριψης τροφοδοσίας (PSRR)	
	6.3.7	Επίδραση των τάσεων υπεροδήγησης	
	6.3.8	Θέματα φυσικού σχεδίου	
6.4	Τελεσι	τικοί ενισχυτές ΜΟς δύο βαθμίδων με κασκοδικά τρανζίστορ	
6.5		κοπικός κασκοδικός τελεστικός ενισχυτής MOS	
6.6		τλωμένοι κασκοδικοί τελεστικοί ενισχυτές MOS	
6.7	Ενεργο	οί κασκοδικοί τελεστικοί ενισχυτές MOS	641
6.8		κοί τελεστικοί ενισχυτές	
	6.8.1	Ανάλυση DC του τελεστικού ενισχυτή 741	
	6.8.2	Ανάλυση μικρού σήματος για τον τελεστικό ενισχυτή 741	
	6.8.3	Τάση μετατόπισης εισόδου, ρεύμα μετατόπισης εισόδου, και	
		λόγος απόρριψης κοινού σήματος του ενισχυτή 741	669
6.9	Σγεδια	στικές θεωρήσεις για διπολικούς μονολιθικούς τελεστικούς ενισχυτές	
	6.9.1	Σχεδιασμός τελεστικών ενισχυτών χαμηλής ολίσθησης	673
	6.9.2	Σχεδιασμός τελεστικών ενισχυτών με χαμηλό ρεύμα εισόδου	
ПРОБ		Α	
	ПОМПЕ		

Κεφά	ίλαιο	Απόκριση συχνότητας των ολοκληρωμένων κυκλωμάτων	691
7.1	Εισαγο		691
7.2		τές μίας βαθμίδας	
, . <u> </u>	7.2.1	Οι ενισχυτές τάσης μίας βαθμίδας και η επίδραση Miller	
	,,_,,	7.2.1.1 Ο διπολικός διαφορικός ενισχυτής:	0, _
		Κέρδος διαφορικού σήματος	699
		7.2.1.2 Ο διαφορικός ενισχυτής MOS: Κέρδος διαφορικού σήματος	
	7.2.2	Απόκριση συχνότητας του κέρδους κοινού σήματος	
		ενός διαφορικού ενισχυτή	706
	7.2.3	Απόκριση συχνότητας των απομονωτών τάσης	709
		7.2.3.1 Απόκριση συχνότητας του ακόλουθου εκπομπού	
		7.2.3.2 Απόκριση συχνότητας του ακόλουθου πηγής	
	7.2.4	Απόκριση συχνότητας των απομονωτών ρεύματος	
		7.2.4.1 Απόκριση συχνότητας για τον ενισχυτή κοινής βάσης	
		7.2.4.2 Απόκριση συχνότητας ενισχυτή κοινής πύλης	
7.3	Απόκρ	ιση συχνότητας για ενισχυτές πολλών βαθμίδων	
	7.3.1	Προσέγγιση κυρίαρχου πόλου	
	7.3.2	Ανάλυση σταθερών χρόνου μηδενικής τιμής	
	7.3.3	Απόκριση συχνότητας για ενισχυτές τάσης σε σειρά	
	7.3.4	Απόκριση συχνότητας για έναν κασκοδικό ενισχυτή	
	7.3.5	Απόκριση συχνότητας για καθρέπτη ρεύματος	
		που λειτουργεί ως φορτίο σε διαφορικό ζεύγος	751
	7.3.6	Σταθερές χρόνου βραχυκυκλώματος	
7.4	Ανάλυ	ση απόκρισης συχνότητας για τον τελεστικό ενισχυτή 741	
	7.4.1	Ισοδύναμο κύκλωμα υψηλών συχνοτήτων για τον ενισχυτή 741	
	7.4.2	Υπολογισμός της συχνότητας -3 dB για τον τελεστικό ενισχυτή 741	
	7.4.3	Μη κυρίαρχοι πόλοι του τελεστικού ενισχυτή 741	
7.5	Σχέση	μεταξύ απόκρισης συχνότητας και απόκρισης χρόνου	
ПРОВ		A	
		Σ	
		_	
Κεφά	ίλαιο	Ανάδραση	781
8.1	Εξίσως	τη ιδανικής ανάδρασης	781
8.2		ησία κέρδους	
8.3		ιση της αρνητικής ανάδρασης στην παραμόρφωση	
8.4	-	ογίες ανάδρασης	
	8.4.1	Ανάδραση σε σειρά-παράλληλα	
	8.4.2	Ανάδραση παράλληλα-παράλληλα	
	8.4.3	Ανάδραση παράλληλα-σε σειρά	
	8.4.4	Ανάδραση σε σειρά-σε σειρά	
8.5		ικές τοπολογίες και η επίδραση της φόρτισης	
	8.5.1	Ανάδραση παράλληλα-παράλληλα	
	8.5.2	Ανάδραση σε σειρά-σε σειρά	

	8.5.3	Ανάδραση σε σειρά-παράλληλα	816
	8.5.4	Ανάδραση παράλληλα-σε σειρά	
	8.5.5	Σύνοψη	
8.6	Ανάδρ	αση μίας Βαθμίδας	
	8.6.1	Τοπική ανάδραση σε σειρά-σε σειρά	
	8.6.2	Τοπική ανάδραση σε σειρά-παράλληλα	
8.7	Ο ρυθι	ιιστής τάσης ως κύκλωμα ανάδρασης	
8.8		ση κυκλώματος ανάδρασης με χρήση του λόγου επιστροφής	
	8.8.1	Κέρδος κλειστού βρόχου με χρήση του λόγου επιστροφής	
	8.8.2	Υπολογισμός της εμπέδησης κλειστού βρόχου	
		με χρήση του λόγου επιστροφής	853
	8.8.3	Σύνοψη της ανάλυσης με το λόγο επιστροφής	
8.9	Μοντε	λοποίηση των θυρών εισόδου και εξόδου	
		λώματα ανάδρασης	862
ПРОВ		A	
		Σ	
Venå	,) au	Απόκριση συχνότητας και ευστάθεια των ενισχυτών ανάδραση	~ Q77
κεψυ	ixuio	Αποκρισή συχνοτήτας και ευστασεία των ενισχυτών ανασμασής	• ···O / /
9.1	Εισαγο	ογή	877
9.2	Σχέση	μεταξύ κέρδους και εύρους ζώνης στους ενισχυτές ανάδρασης	878
9.3		εια και το κριτήριο του Nyquist¹	
9.4	Αντιστ	άθμιση	889
	9.4.1	Θεωρία αντιστάθμισης	
	9.4.2	Μέθοδοι αντιστάθμισης	895
	9.4.3	Αντιστάθμιση ενισχυτών ΜΟς δύο βαθμίδων	
	9.4.4	Αντιστάθμιση τελεστικών ενισχυτών CMOS μίας βαθμίδας	
	9.4.5	Ένθετη αντιστάθμιση Miller	
9.5	Τεχνικ	ές γεωμετρικού τόπου ριζών ^{1,18}	932
	9.5.1	Γεωμετρικός τόπος ριζών για μια συνάρτηση μεταφοράς	
		με τρεις πόλους	932
	9.5.2	Κανόνες για τη σύνθεση του γεωμετρικού τόπου των ριζών	936
	9.5.3	Γεωμετρικός τόπος ριζών για αντιστάθμιση του κυρίαρχου πόλου	
	9.5.4	Γεωμετρικός τόπος ριζών για αντιστάθμιση μηδενικής ανάδρασης	
9.6	Ρυθμό	. 0	
	9.6.1	Προέλευση των περιορισμών ως προς το ρυθμό ανόδου	955
	9.6.2	Μέθοδοι βελτίωσης του ρυθμού ανόδου σε τελεστικούς ενισχυτές	
		δύο βαθμίδων	959
	9.6.3	Βελτίωση του ρυθμού ανόδου σε διπολικούς τελεστικούς ενισχυτές.	
	9.6.4	Βελτίωση του ρυθμού ανόδου σε τελεστικούς ενισχυτές MOS	
	9.6.5	Επίδραση στην ημιτονική συμπεριφορά μεγάλου σήματος	
	, .	από τους περιορισμούς ως προς το ρυθμό ανόδου	969
П.9 1	Ανάλη	ση των παραμέτρων του λόγου επιστροφής	
		ευτεροβάθμιας εξίσωσης	
11.7.4	2 1 1303 000 100 000 000 000 000 000 000		

ПРОЕ	ВАНМАТА	975
	ΛΠΟΜΠΕΣ	
Κεφ	άλαιο 10 Μη γραμμικά αναλογικά κυκλώματα	987
10.1	Εισαγωγή	987
10.2	Ανόρθωση ακριβείας	
10.3	Αναλογικοί πολλαπλασιαστές με διπολικά τρανζίστορ	
	10.3.1 Το ζεύγος συζευγμένου εκπομπού ως απλός πολλαπλασιαστής	
	10.3.2 Ανάλυση dc για τη δομική μονάδα του πολλαπλασιαστή Gilbert	
	10.3.3 Η δομική μονάδα Gilbert ως αναλογικός πολλαπλασιαστής	
	10.3.4 Πλήρες κύκλωμα αναλογικού πολλαπλασιαστή ³	1004
	10.3.5 Η δομική μονάδα του πολλαπλασιαστή Gilbert	
	ως ισοσταθμισμένος διαμορφωτής και ως ανιχνευτής φάσης	1005
10.4	Βρόχος κλειδωμένης φάσης (PLL)	1010
	10.4.1 Βασικές αρχές λειτουργίας του βρόχου κλειδωμένης φάσης	1011
	10.4.2 Ο βρόχος κλειδωμένης φάσης στην κλειδωμένη κατάσταση	
	10.4.3 Ολοκληρωμένα κυκλώματα PLL	
	10.4.4 Ανάλυση του μονολιθικού βρόχου κλειδωμένης φάσης 560Β	
10.5	Σύνθεση μη γραμμικών συναρτήσεων	
ПРОЕ	ВАНМАТА	1043
ПАРА	ΛΠΟΜΠΕΣ	1047
Κεφ	άλαιο 11 Θόρυβος σε ολοκληρωμένα κυκλώματα	1049
11.1	Εισαγωγή	1049
11.2	Πηγές θορύβου	1049
	11.2.1 Θόρυβος βολής ^{1,2,3,4}	1049
	11.2.2 Θερμικός θόρυβος ^{1,3,5}	1053
	11.2.3 Θόρυβος αναλαμπής ^{6,7,8} (θόρυβος 1/f)	1055
	11.2.4 Θόρυβος ριπής ⁷ (θόρυβος popcorn)	1057
	11.2.5 Θόρυβος χιονοστιβάδας 10	1058
11.3	Μοντέλα θορύβου για τα στοιχεία των ολοκληρωμένων κυκλωμάτων	1059
	11.3.1 Δίοδος επαφής	1060
	11.3.2 Διπολικό τρανζίστορ 11	1061
	11.3.3 Τρανζίστορ MOS ¹²	1063
	11.3.4 Αντιστάτες	
	11.3.5 Πυκνωτές και επαγωγοί	1065
11.4	11.3.5 Πυκνωτές και επαγωγοί Υπολογισμός του θορύβου για τα κυκλώματα ^{15, 16}	1065
	11.4.1 Επίδραση του θορύβου σε διπολικά τρανζίστορ	
	11.4.2 Ισοδύναμος θόρυβος εισόδου και ελάχιστο ανιχνεύσιμο σήμα	1073
11.5	Ισοδύναμες γεννήτριες θορύβου στην είσοδο ¹⁷	1076
	11.5.1 Γεννήτριες θορύβου διπολικών τρανζίστορ	
	11.5.2 Γεννήτριες θορύβου σε τρανζίστορ MOS	1084
11.6	Επίδραση της ανάδρασης στη συμπεριφορά ως προς το θόρυβο	1088

	11.6.1	Επίδραση της ιδανικής ανάδρασης στη συμπεριφορά	1000
	11.6.2	ως προς το θόρυβοΕπίδραση ενός πραγματικού δικτύου ανάδρασης	1088
	11.0.2	στη συμπεριφορά ενός ενισχυτή ως προς το θόρυβο	1000
11.7	Επίδοα	ση του θορύβου σε άλλες συνδεσμολογίες τρανζίστορ	
11./		ση του υσρυρού σε αλλές συνοεσμολογιές τρανζιστορ Επίδραση του θορύβου στη συμπεριφορά	1098
	11./.1	επιοραση του θορυρου στη συμπεριφορα των βαθμίδων κοινής βάσης	1009
	11.7.2	Επίδραση του θορύβου στη συμπεριφορά του ακόλουθου εκπομπού	
		Επίδραση του θορύβου στη συμπεριφορά του διαφορικού ζεύγους	
11.8		Επιορασή του θορυρού στη συμπεριφορά του διαφορικού ζευγούς βος στους τελεστικούς ενισχυτές	
11.9	•	ρος στους τελεστικους ενισχυτες ζώνης θορύβου	
		ς και θερμοκρασία θορύβου	
11.10		ς και θερμοκρασία θορυρου Δείκτης θορύβου	
Прор		Ε Θερμοκρασία θορύβου	
		A	
HAPA	HOMHE	· · · · · · · · · · · · · · · · · · ·	1131
Kemá	ıγαιο	Πλήρως διαφορικοί τελεστικοί ενισχυτές	1133
_			
12.1	Εισαγα	ργή ες των πλήρως διαφορικών ενισχυτών ^{1,2}	1133
12.2	Ιδιότητ	ες των πλήρως διαφορικών ενισχυτών '	1133
12.3		λα μικρού σήματος για ισοσταθμισμένους διαφορικούς ενισχυτές	
12.4		αση κοινού σήματος	
		Ανάδραση κοινού σήματος στις χαμηλές συχνότητες	
		Μελέτη της ευστάθειας και της αντιστάθμισης σε ένα βρόχο CMFB	
12.5		ματα CMFB	
		Κυκλώματα CMFB με ωμικό διαιρέτη και ενισχυτή	
	12.5.2	Βρόχος CMFB με δύο διαφορικά ζεύγη	
	12.5.3	Βρόχος CMFB με τρανζίστορ στην τριοδική περιοχή	
	12.5.4	Βρόχος CMFB μεταγόμενου πυκνωτή	
12.6	• • • • • • • • • • • • • • • • • • • •	ς διαφορικοί τελεστικοί ενισχυτές	
	12.6.1	Πλήρως διαφορικοί τελεστικοί ενισχυτές δύο βαθμίδων	1172
	12.6.2	Πλήρως διαφορικός τηλεσκοπικός κασκοδικός	
		τελεστικός ενισχυτής	1186
	12.6.3	Πλήρως διαφορικός αναδιπλωμένος κασκοδικός	
		τελεστικός ενισχυτής	1188
	12.6.4	Διαφορικός τελεστικός ενισχυτής με δύο διαφορικές	
		βαθμίδες εισόδου	
	12.6.5	Ουδετεροποίηση σταθμισμένα πλήρως διαφορικά κυκλώματα ^{1,2}	1191
12.7			
12.8		ζώνης του βρόχου CMFB	
		1	
ПАРА	ПОМПЕХ	2	1212
Enace	-ńoro		1212
$\mathbf{E}_{\mathbf{U}}$	ւ ոլբա .		1413