B.01.01 – Máquinas Hidráulicas de Fluxo

Normas e Grandezas Básicas

Prof. C. Naaktgeboren, PhD

Normas em Máquinas de Fluxo

Definições - IEC 60193

Nomenclatura

- Máquinas de fluxo são uma aplicação muito antiga em fluidos;
- A nomenclatura empregada é bastante heterogênea;
- Referências incluem acadêmicas e industriais:
- Maiores fornecedores mundiais convergem para o padrão IEC.
- E também o material desta disciplina.

• Definições – IEC 60193

Referências

B.01.01 - Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definicões – IEC 60193

Norma IEC 60193

IEC é o acrônimo da International Electrotechnical Commission.

- A IEC 60193:2019 cancela e revoga a 2ª Ed. de 1999;
- Aplica-se para modelos de laboratório de máquinas de ação e de reação;
- Aplica-se para turbinas hidráulicas, bombas de armazenamento, ou turbina-bombas;
- com potência unitária > 5 MW, ou
- com diâmetro > 3 m:
- Esta norma objetiva definir termos e quantidades empregados;
- além de estabelecer várias outras especificações, asserções e garantias...
- Este conteúdo visa apenas o ensino. Não serve de substituto, parcial ou total à nenhuma norma.

Definições – IEC 60193

Outras Normas

- IEC 60041 Field acceptance test to determine the hydraulic performance of hydraulic turbines, storage pumps and pump-turbines.
- IEC 60609 Cavitation pitting evaluation in hydraulic turbines, storage pumps and pump-turbines.
- IEC 60609-2 Cavitation pitting evaluation in hydraulic turbines, storage pumps and pump-turbines Part 2: Evaluation in Pelton turbines.
- IEC 61364 Nomenclature of hydraulic machinery.
- VIM International vocabulary of basic and general terms in metrology (ABNT ISO/IEC GUIA 99).

Prof. C. Naaktgeboren, PhD B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições - IEC 60193

Normas em Máquinas de Fluxo Referências

Subscritos e Símbolos Pertinentes

Símbolo	Definição		
1	Seção de referência de alta pressão		
2	Seção de referência de baixa pressão		
1'	Seção de medição de alta pressão		
2'	Seção de medição de baixa pressão		
max, min Máximo ou mínimo valor, respectivamente			
P	Referente ao protótipo, em tamanho real		
M	Referente ao modelo em escala reduzida		
ref	Valores em condição de referência especificada		
amb	Valores referentes ao ambiente		
pl	Valores da planta		
R	Referente à condição de disparo (runaway)		

Definicões - IEC 60193

Prof. C. Naaktgeboren, PhD B.01.01

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definicões – IEC 60193

Termos Geométricos

Símbolo	Definição
$A (m^2)$	Área
a (m)	Abertura de palhetas (menor distância média entre palhetas adjacentes)
α ($^{\circ}$)	Ângulo de abertura de palhetas (valor médio à partir do fechamento)
β (°)	Ângulo de abertura de pá de rotor
D(m)	Diâmetro de referência (geralmente mínimo e não variável)
z (m)	Nível, ou quota (elevação em rel. a uma ref.: nível do mar)

Definições - IEC 60193

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos de Vazão e Velocidade

Símbolo	Definição
$Q (m^3/s)$	Vazão (taxa de escoamento volumétrica) ou descarga
$\rho Q (kg/s)$	Vazão mássica (taxa de massa)
$Q_{1'}$ ou $Q_{2'}$	Vazão volumétrica medida
Q_1 ou Q_2	Vazão volumétrica na seção de referência
$Q_R (\mathrm{m}^3/\mathrm{s})$	Vazão volumétrica em condição de disparo (runaway)
$Q_0 ({\rm m}^3/{\rm s})$	Vazão volumétrica da turbina em potência mecânica nula (no-load)
$q (\mathrm{m}^3/\mathrm{s})$	Vazão de vazamentos (perdas)

Definições - IEC 60193

Quantidades e Propriedades Físicas

	Símbolo	Definição
	$g (\text{m/s}^2)$	Aceleração devido à gravidade
	$\Theta(K)$	Temperatura termodinâmica
θ (°C)		Temperatura em Celsius, $\theta = \Theta - 273, 15$
	$\rho (kg/m^3)$	Densidade. Subscritos incluem: w , a e Hg , para água, ar e Mercúrio
	p_{va} (Pa)	Pressão absoluta de vapor d'água (uma função da temperatura)
	μ (Pa·s)	Viscosidade dinâmica
	$v (m^2/s)$	Viscosidade cinemática, ou difusividade do movimento, $v = \mu/\rho$
	σ∗ (J/m²)	Tensão superficial

Prof. C. Naaktgeboren, PhD

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos de Vazão e Velocidade (Cont.)

Símbolo	Definição			
v (m/s) Velocidade média, $v = Q/A$				
n(1/s) (Velocidade de) rotação: revoluções por unidade de tempo				
u (m/s)	Velocidade periférica (de rotor), $u = \pi Dn$			
$n_R (1/s)$	Rotação, em regime permanente, em condição de disparo (runaway)			
$n_{Rmax} (1/s)$	Rotação, em regime permanente, máxima em condição de disparo			

Definições - IEC 60193

Termos de Pressão

Símbolo	Definição							
p _{abs} (Pa)	Pressão absoluta — pressão estática de um fluido em relação ao vácuo							
p_{amb} (Pa)	Pressão ambiente — pressão absoluta do ar ambiente Pressão manométrica, $p = p_{abs} - p_{amb}$, no nível de referência da							
p (Pa)								
	medição.							

Prof. C. Naaktgeboren, PhD B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições – IEC 60193

Termos de Energia Específica (Cont.)

Símbolo	Definição				
σ (–)	Número de Thoma, indicativo das condições de operação quanto à				
	cavitação, $\sigma = NPSE/E$				
σ_{nD} (–)	Coeficiente de cavitação, $\sigma_{nD} = NPSE/(n^2D^2)$				
σ_0 (-)	Número de Thoma zero, incipiente da redução de performance				
σ_1 (-)	Número de Thoma um, de 1% de redução de performance				
σ_i (–)	Número de Thoma incipiente, de visível cavitação em rotor				
σ_{pl} (–)	Número de Thoma da planta, nas condições de operação do protótipo				
E_I (J/kg)	Perda de energia hidráulica específica, entre quaisquer duas secões				

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos de Energia Específica

Símbolo	Definição						
e (J/kg)	Energia específica — energia hidráulica por unidade de massa da água						
E(J/kg)	Energia hidráulica específica da máquina						
	$E = \frac{p_{abs1} - p_{abs2}}{\bar{o}} + \frac{v_1^2 - v_2^2}{2} + (z_1 - z_2)g, \text{ com } \bar{\rho} = \frac{\rho_1 + \rho_2}{2}$						
E_0 (J/kg)	Energia hidráulica específica da bomba estrangulada na alta pressão						
E_s (J/kg)	Energia potencial específica de sucção da máquina						
	$E_s = g(z_r - z_{2'})$						
NPSE (J/kg)							
	$NPSE = \frac{p_{abs2} - p_{va}}{\rho_2} + \frac{v_2^2}{2} - g(z_r - z_2)$						

Prof. C. Naaktgeboren, PhD

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições – IEC 60193

Definições - IEC 60193

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos de Potência e Torque

Símbolo	Definição					
$P_h(W)$	Potência hidráulica disponível (turb.) ou fornecida (bombas) na/à água					
	$P_h = E(\rho Q_1)$					
P(W)	Potência mecânica entregue pela (turb.) ou à (bombas) máquina					
$P_m(W)$	Potência mecânica do rotor					
P_{Lm} (W)	Perda de potência mecânica, devido a vedações e mancais					
	$P = P_m - P_{Lm}$ (turb.) ou $P = P_m + P_{Lm}$ (bombas)					
$P_0(W)$	Potência da bomba em condição de estrangulamento					
$T(N \cdot m)$	Torque de eixo correspondente à potência mecânica					
$T_m(\mathbf{N} \cdot \mathbf{m})$	Torque de rotor correspondente à potência mecânica de rotor					
$T_{Lm} (\mathbf{N} \cdot \mathbf{m})$	Torque de atrito, devido a vedações e mancais					

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos de Elevações e Quedas

Símbolo	Definição
h (m)	Queda ou carga: energia por unidade de peso em qualquer seção, $h =$
	e/g
H(m)	Queda da turbina ou carga da bomba, $H = E/g$
H_0 (m)	Carga da bomba em condição de estrangulamento, $H_0 = E_0/g$
Z_s (m)	Altura de sucção da bomba, $Z_s = E_s/g$
NPSH (m)	Net pos. suction head queda de sucção positiva líquida = NPSE/g
	$NPSH = \frac{p_{abs2} - p_{va}}{\rho_2 g} + \frac{v_2^2}{2g} - (z_r - z_2)$
z_r (m)	Nível de referência (elevação do ponto de referência) da máquina

Prof. C. Naaktgeboren, PhD

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições - IEC 60193

Fonte: Adaptado de parte da Fig. 6, IEC 60193 (1999) para fins de ensino. Não pode ser comercializado. Não substitui a norma nem parte dela.

Para turbinas:

$$q = q' + q''$$

$$Q_1 = Q_m + q$$

$$P_h = E(\rho Q)_1$$

$$P = P_m - P_{Lm}$$

Fonte: Adaptado de parte da Fig. 6, IEC 60193 (1999) para fins de ensino. Não pode ser comercializado. Não substitui a norma nem parte dela.

UTFPR

Prof. C. Naaktgeboren, PhD

B.01.01 - Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos de Eficiência

Símbolo	Definicão

	3						
η _h (—)	Eficiência	hidráulica,	da	transformação	hidráulica	\leftrightarrow	mecânica
		P		$P_{l_{2}}$			

Turbinas:
$$\eta_h = \frac{P_m}{P_h}$$
. Bombas: $\eta_h = \frac{P_h}{P_n}$

Turbinas:
$$\eta_h = \frac{P_m}{P_h}$$
. Bombas: $\eta_h = \frac{P_h}{P_m}$.

 η_m (—) Eficiência mecânica, com base em torques de saída \leftrightarrow entrada Turbinas: $\eta_m = \frac{P}{P_m}$. Bombas: $\eta_m = \frac{P_m}{P}$.

Furbinas:
$$\eta_m = \frac{P}{P}$$
. Bombas: $\eta_m = \frac{P_m}{P}$

$$\eta$$
 (—) Eficiência, da composição $\eta = \eta_h \cdot \eta_m$.

$$\eta_W$$
 (—) Eficiência média ponderada

$$\eta_W = \frac{w_1 \eta_1 + w_2 \eta_2 + w_3 \eta_3 + \dots}{w_1 + w_2 + w_3 + \dots}$$

Para bombas:

$$q = q' + q''$$

$$Q_1 = Q_m - q$$

$$P_h = E(\rho Q)_1$$
$$P = P_m + P_{I,m}$$

Bomba

Fonte: Adaptado de parte da Fig. 6, IEC 60193 (1999) para fins de ensino. Não pode ser comercializado. Não substitui a norma nem parte dela.

Prof. C. Naaktgeboren, PhD

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definicões - IEC 60193

Termos de Eficiência (Cont.)

Para turbinas:

$$\eta_{\nu} = \frac{Q_m}{Q_1}$$

$$\eta_h = \frac{P_m}{P_h}$$

$$\eta = \frac{P}{P_h}$$

Fonte: Adaptado de parte da Fig. 6, IEC 60193 (1999) para fins de ensino. Não pode ser comercializado. Não substitui a norma nem parte dela.

Termos de Eficiência (Cont.)

Para bombas:

$$\eta_{v} = \frac{Q_{1}}{Q_{m}}$$

$$\eta_h = \frac{P_h}{P_n}$$

$$\eta = \frac{P_h}{P}$$

Fonte: Adaptado de parte da Fig. 6, IEC 60193 (1999) para fins de ensino. Não pode ser comercializado. Não substitui a norma nem parte dela.

B.01.01 - Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definicões - IEC 60193

Fatores Adimensionais

Símbolo Definição

 n_{ED} (—) Speed factor ou Fator de velocidade

$$n_{ED} = \frac{nD}{E^{0.5}} = \frac{1}{E_{nD}^{0.5}}$$

 Q_{ED} (—) Discharge factor ou Fator de vazão (ou descarga)

$$Q_{ED} = \frac{Q_1}{D^2 E^{0,5}} = \frac{Q_{nD}}{E_{nD}^{0,5}}$$

 T_{ED} (—) Torque factor ou Fator de torque

$$T_{ED} = \frac{T_m}{\rho_1 D^3 E} = \frac{T_{nD}}{E_{nD}}$$

P_{ED} (—) Power factor ou Fator de potência

$$P_{ED} = \frac{P_m}{\rho_1 D^2 E^{1,5}} = \frac{P_{nD}}{E_{nD}^{1,5}}$$

Normas em Máquinas de Fluxo

Definicões - IEC 60193

Termos de Escala e Grupos Adimensionais em Fluidodinâmica

Símbolo Definição

Número de Reynolds, razão entre forças de inércia e viscosas

$$Re = \frac{Du}{v}$$

Fr (—) Número de Froude, raiz da razão entre forças de inércia e gravitacionais

$$Fr = \sqrt{\frac{E}{gD}}$$

We (—) Número de Weber, razão entre forças de inércia e superficiais

We =
$$\sqrt{\frac{\rho L v^2}{\sigma \star}}$$

Eu (—) Número de Euler, razão entre forças de inércia e de pressão

$$Eu = \frac{\Delta p}{\rho v^2}$$

B.01.01 - Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definicões - IEC 60193

Coeficientes Adimensionais

Símbolo Definição

 E_{nD} (—) Energy coefficient ou Coeficiente de energia

$$E_{nD} = \frac{E}{n^2 D^2}$$

 Q_{nD} (—) Discharge coefficient ou Coeficiente de vazão (ou descarga)

$$Q_{nD} = \frac{Q_1}{nD^3}$$

 T_{nD} (—) Torque coefficient ou Coeficiente de torque

$$T_{nD} = \frac{T_m}{\rho_1 n^2 D^5}$$

 P_{nD} (—) Power coefficient ou Coeficiente de potência

$$P_{nD} = \frac{P_m}{\rho_1 n^3 D^5}$$

Definições - IEC 60193

Coeficientes e Números Adimensionais

 σ_{nD} (—) Cavitation coefficient ou Coeficiente de cavitação

Prof. C. Naaktgeboren, PhD

$$\sigma_{nD} = \frac{NPSE}{n^2D^2} = \sigma E_{nD} = \frac{\sigma}{n_{ED}^2}$$

$$N_{QE}$$
 (—) Specific speed ou Velocidade específica
$$N_{QE} = \frac{nQ^{0.5}}{E^{0.75}} = n_{ED}Q_{ED}^{0.5}$$

B.01.01 - Máquinas Hidráulicas de Fluxo

Referências

Potter, M. C., et al.

Mecânica dos Fluidos. Seção 12-1. Cengage. São Paulo. ISBN 978-85-221-1568-6.

International Electrotechnical Commission, IEC 60193

Hydraulic turbines, storage pumps and pump-turbines – Model acceptance tests. International Standard. 2019. webstore.iec.ch/publication/60951.

Prof. C. Naaktgeboren, PhD

B.01.01 – Máquinas Hidráulicas de Fluxo