Introdução à Teoria de Probabilidades

Prof. José Roberto Silva dos Santos

Depto. de Estatística e Matemática Aplicada - UFC

Fortaleza, 30 de março de 2022

Sumário

1 Medida de probabilidade

Álgebra de Eventos

Conjunto das Partes

Definição:

Dados um conjunto qualquer A, pode-se definir outro conjunto, conhecido como conjunto das partes de A, e denotado por $\mathcal{P}(A)$, cujos elementos são subconjuntos de A. Por exemplo, seja $A = \{1, 2, 3\}$, então

$$\mathcal{P}(A) = \{\emptyset, A, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}\$$

Pode-se provar que a cardinalidade do conjunto das partes é sempre maior do que a cardinalidade de A.

Álgebra de Eventos

Coleção de Eventos

- A medida de probabilidade é restrita a uma coleção especial \mathcal{A} de subconjuntos do espaço amostral.
- Os elementos de \mathcal{A} também são conjuntos, que são eventos de interesse no que se refere ao experimento aleatório.
- $\mathcal A$ é denominada σ -álgebra de eventos. O domínio de uma medida de probabilidade é uma σ -álgebra.

Definição:

Uma álgebra de eventos é uma coleção não vazia de subconjuntos de Ω fechada em relação a união finita, intersecção finita e complementos. Em outras palavras, para que \mathcal{A} seja álgebra devemos ter

- (i) $\Omega \in \mathcal{A}$
- (ii) $A \in \mathcal{A}$ implies $A^c \in \mathcal{A}$
- (iii) $A, B \in \mathcal{A}$ implies $A \cup B \in \mathcal{A}$.

Definição:

Uma σ -Álgebra \mathcal{F} é uma coleção não vazia de subconjuntos de Ω fechada em relação a união enumerável, intersecção enumerável e complementos. O menor conjunto de postulados para que \mathcal{F} seja dita uma σ -álgebra é

- (i) $\Omega \in \mathcal{F}$
- (ii) $A \in \mathcal{F}$ implies $A^c \in \mathcal{F}$
- (iii) $A_i \in \mathcal{F}$ para todo $i \geq 1$ implica $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Dado um espaço amostra Ω , a maior σ -álgebra é o conjunto das partes de Ω , e a menor é $\mathcal{F} = \{\emptyset, \Omega\}$.

• Seja $A \subset \Omega$. A menor σ -álgebra contendo A é dada por

$$\mathcal{F} = \{\varnothing, A, A^c, \Omega\}.$$

- σ -álgebra de Borel: pode ser gerada por intervalos da reta real do tipo $(-\infty, x]$ com $x \in \mathbb{R}$. Notação: $\mathcal{B}(\mathbb{R})$.
- Se o resultado de um experimento é um número real, ou seja $\Omega = \mathbb{R}$, então todas as perguntas práticas de interesse se referem a um elemento de $\mathcal{B}(\mathbb{R})$.

Exemplos:

• Considere $\Omega = \{1, 2, 3\}$, verifique se as seguintes coleções de subconjuntos são σ -álgebras:

$$\mathcal{F}_1 = \{\emptyset, \Omega, \{1\}, \{2, 3\}\}$$

$$\mathcal{F}_2 = \{\emptyset, \Omega, \{1\}, \{2\}, \{1,3\}, \{2,3\}\}$$

Exemplos:

• Seja $\Omega = \mathbb{N}$ e considere $\mathcal{F} = \{ A \subseteq \mathbb{N} \mid \#A < \infty \text{ ou } \#A^c < \infty \}$. Verifique se \mathcal{F} é uma σ -álgebra de subconjuntos de Ω .

Sumário

1 Medida de probabilidade

Frequência Relativa

- O terceiro elemento de um modelo probabilístico, constitui-se em uma medida numérica que quantifica a probabilidade de ocorrência de um determinado evento.
- Tal medida é motivada em grande parte pelas propriedades da frequência relativa, que nada mais é do que a fração de vezes que um dado evento ocorreu em n repetições de um experimento.
- **Definição:** A frequência relativa de um evento A determinada por n repetições de um experimento ϵ é dada por

$$f_A = \frac{\#A}{n},$$

em que #A é o número de vezes que o evento A ocorreu nas n repeticões.

Frequência Relativa

- A frequência relativa apresenta as seguintes propriedades de fácil verificação:
 - $0 \le f_A \le 1.$

 - Se A e B forem eventos mutuamente excludentes, e se $f_{A\cup B}$ for a frequência relativa associada ao evento $A\cup B$, então, $f_{A\cup B}=f_A+f_B$.
 - f_A , com base em n repetições do experimento e considerada como uma função de n, "converge" em um certo sentido probabilístico para uma constante quando $n \to \infty$.

Probabilidade (Axiomas de Kolmogorov)

- Finalmente podemos definir com mais rigor o que é uma probabilidade.
- Uma função \mathbb{P} , definida na σ -álgebra \mathcal{F} de subconjuntos de Ω e com valores em [0,1], é uma *probabilidade* se satisfaz os seguintes axiomas:
 - (1) $\mathbb{P}(\Omega) = 1$;
 - (2) Para todo subconjunto $A \in \mathcal{F}$, $\mathbb{P}(A) \geq 0$;
 - (3) Para toda sequência $A_1, A_2, \dots \in \mathcal{F}$ dois a dois disjuntos, temos

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{n} \mathbb{P}(A_i).$$

• A trinca $(\Omega, \mathcal{F}, \mathbb{P})$ é denominada espaço de probabilidade. Os subconjuntos de \mathcal{F} são denominados eventos e é somente a eles que se atribui probabilidade.

Propriedades

- É possível demostrar, através do Teorema da Extensão de Caratheodory, que uma medida de probabilidade definida em uma álgebra pode ser estendida para uma σ -álgebra conveniente.
- A partir dos axiomas apresentados, podemos deduzir várias propriedades, que acabam fazendo sentido intuitivo e podem ser facilmente demonstradas a partir das propriedades de operações de conjuntos que foram anteriormente enumeradas.
 - (1) $\mathbb{P}(\emptyset) = 0$.
 - (2) $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$.
 - (3) Se A e B forem dois eventos quaisquer, então $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B).$
 - (4) Se $A, B \in C$ forem très eventos quaisquer, então $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) \mathbb{P}(A \cap B) \mathbb{P}(A \cap C) \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C).$
 - (5) Se $A \subset B$, então $\mathbb{P}(A) \leq \mathbb{P}(B)$.

Propriedades (cont.)

(6) **Princípio da Inclusão-Exclusão**: Sejam A_1, \ldots, A_n , eventos quaisquer então

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{i < j} \mathbb{P}(A_{i} \cap A_{j})$$

$$+ \sum_{i < j < k} \mathbb{P}(A_{i} \cap A_{j} \cap A_{k}) - \cdots + (-1)^{n-1} \mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right).$$

Espaços amostrais finitos

• Assumindo que Ω é finito e que os resultados do experimento são equiprováveis, para todo $A \in \mathcal{F}$, define-se

$$\mathbb{P}(A) = \frac{\#A}{\#\Omega} \text{ em que,}$$

#A é o número de casos favoráveis (número de elementos) ao evento A.

 $\#\Omega$ número de casos possíveis (ou número de elementos de Ω)

• A expressão acima não serve como definição geral de probabilidade. Ela é somente uma consequência do fato de que todos os resultados do evento são equiprováveis, e só deve ser usada quando isto acontecer.

• Lançar uma moeda duas vezes.

$$C = cara$$

$$K = coroa$$

- $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$ $\omega_1 = (C, C); \ \omega_2 = (C, K); \ \omega_3 = (K, C); \ \omega_4 = (K, K)$
- \bullet considerando que a moeda é honesta: $\mathbb{P}(\omega_i) = \frac{1}{4}, \, \forall \ i=1,2,3,4$
- Qual a probabilidade de obter duas faces iguais?

Espaços amostrais finitos

Exemplos

- Da linha de produção de uma fábrica são retirados três artigos, e cada um é classificado como bom (B) ou defeituoso (D).
 - (a) Descreva o espaço amostral associado a este experimento.
 - (b) Qual a probabilidade de obter exatamente dois artigos defeituosos?
 - (c) Qual a probabilidade de obter pelo menos um defeituoso?
 - (d) Qual a probabilidade de que nenhum seja defeituoso?
 - (e) Qual a probabilidade de que no máximo 2 sejam defeituosos?

• De um lote de 18 bovinos cinco são machos e com mais de dois anos de idade, quatro são machos e com menos de dois anos, seis são fêmeas com mais de dois anos e três são fêmeas com menos de dois anos de idade. Definem-se os seguintes eventos:

 $A = \{$ o bovino tem mais de dois anos $\},$

 $B = \{$ o bovino tem menos de dois anos $\}$, $C = \{$ o bovino é macho $\}$ e $D = \{$ o bovino é fêmea $\}$. Nestas condições, determine a probabilidade dos seguintes eventos:

- (a) $A^c \cap C^c$.
- (b) $B \cup D$.

Espaços amostrais finitos

Exemplos

- Peças que saem de uma linha de produção são marcadas defeituosa (D) ou não defeituosa (N). As peças são inspeciondas e sua condição registrada, até que duas peças defeituosas consecutivas sejam fabricadas ou que quatro peças tenham sido inspecionadas, aquilo que ocorra em primeiro lugar.
 - (a) Descreva o espaço amostral associado a este experimento.
 - (b) Qual a probabilidade de serem observadas exatamente duas peças defeituosas.
 - (c) Qual a probabilidade de serem observadas pelo menos duas peças defeituosas.
 - (d) Qual a probabilidade de serem observadas no máximo duas peças defeituosas.
 - (e) Qual a probabilidade de que nenhuma peça defeituosa seja observada.