The many ways of GIS for digital humanities

Summer School on Digital Humanities
Course material available at
https://github.com/AugustoCiuffoletti/DHSS_2025

Augusto Ciuffoletti

lave magnum fine

24 marzo 2025

The many ways of GIS for digital humanities

What is digital cartography (aka GIS)

- Digital cartography shares fundamental principles with classical cartography:
 - It records the geographical position of objects or reference points.
 - It represents the morphological features of the landscape.
 - It maps travel routes and pathways.
 - It associates specific attributes and characteristics with mapped objects.
 - It can depict imaginary landscapes or reconstruct past and future territorial scenarios.

Why do we use digital cartography?

- Digital and conventional cartography share similar purposes.
- Both serve as essential tools for:
 - Measuring geometric dimensions of objects and areas.
 - Defining and recording state and property boundaries.
 - Planning and navigating routes to specific destinations.
 - Documenting journeys and various forms of travel.
 - Geographically situating human or natural events to analyze relationships.
 - Depicting and teaching about distant or inaccessible places.
- These applications can relate to the present, as well as to past or future scenarios.

The many ways of GIS for digital humanities

The advantages of digital cartography

- Digital and traditional cartography differ primarily in the medium! used to store maps.
 - Digital maps are recorded on various types of digital media and accessed via suitable devices.
- This distinction brings several key advantages:
 - Easy sharing due to the dematerialization of maps.
 - Automatic acquisition of positions and movements.
 - Ability to merge data from multiple maps.
 - Integration of multimedia information.
 - Simplified creation and reuse of maps.

Cartography and public history

- History and cartography are deeply interconnected.
 - History records events in relation to places.
- The way we represent the world reflects our perspectives and values.
- Was a medieval geographer creating maps for his king a public historian?
 - Engaging the public with the past.
 - Applying history to practical use.
 - Encouraging critical reflection.
- Can the T-and-O map be considered a public history document?
- Will today's maps become public history documents in the future?
- Who has the authority to create such historical records?
- Digital cartography introduces new perspectives on this question.
 - The answer depends on its accessibility and widespread use.

The many ways of GIS for digital humanities 0000 ●000000000

Diffusion of digital cartography

- Digital cartography relies on:
 - Powerful graphics processors
 - High-definition displays
- In the Pentium era, these were largely inaccessible to personal computers
 - …limiting the advantages previously mentioned
- Digital cartography became widely affordable around 2005
- Today, nearly everyone carries a pocket-sized GIS engine
- Despite advancements, multiple representation standards still exist (standardization is ongoing)
- Cartography is now accessible to anyone with the necessary technical skills
- Current challenges:
 - Simplifying access to cartographic tools
 - Harmonizing representation to enable data integration
- Future directions:
 - Developing autonomous devices to continuously record environmental features
 - Enhancing the communication of historical narratives

Web Mapping

- The Web is a powerful medium for sharing resources
- Web mapping technology emerged a few years after the creation of the WWW in 1989
- The evolution of the Web paralleled the advancement of Web mapping
- In the early '90s, maps were primarily static, offering limited interaction or layering
- By the late '90s, users gained the ability to manipulate maps and create new ones
 - ...with computationally intensive tasks handled on the server side
- Between 2000 and 2005, advancements in Web technologies facilitated the rise of Web mapping services
 - ...enabling seamless integration with other services via standardized interfaces
 - ...making the definition of standard representations and protocols increasingly important

The many ways of GIS for digital humanities

Web Mapping in Web 2.0

- More powerful personal computing devices enable real-time interaction with Web mapping servers
 - ...allowing maps to be generated as mashups from multiple databases
- The advent of Web 2.0 (2005) introduces crowd-sourced geospatial data
- Increased computing power enables client-side manipulation of map features
 - ...with cloud storage and servers facilitating authentication and data sharing

Access: open vs closed digital cartography

- A fundamental choice in online content:
 - Data can be publicly accessible or restricted to private use
- The same distinction applies to digital cartography

Examples:

- **Open-source cartography:** OpenStreetMap
 - Maps are freely available in the public domain
 - Anyone can contribute by adding features
 - Maps can be reused without restrictions
- **Freely accessible but proprietary cartography:** Google Maps
 - Access is provided through a private service
 - Users can create and overlay their own maps
- **Commercial/private cartography:** Mapbox
 - Maps are provided as a paid service
 - Costs scale with usage (e.g., number of views)

The many ways of GIS for digital humanities

Fundamental Core Concepts

- Concepts that simplify access to geographic data
- Coordinates: Latitude and Longitude
- Geographic Features:
 - Point Defined by a single coordinate pair
 - Segment A straight line connecting two points
 - Line A sequence of connected segments
 - Area A closed shape formed by a continuous line

• Data Models:

- Vector Model A collection of features with attributes
- Raster Model A grid of cells storing attributes
 - Often derived from graphic formats like JPEG

Additional Core Elements:

- Attributes Data linked to features and cells
- Layers Organized sets of maps for structured visualization
- A suite of tools supports the manipulation and visualization of these concepts
- Those that simplify access

Geographic Coordinate Systems

- A Geographic Coordinate System (GCS) defines how a point is represented on the Earth's surface
- A standard GCS plays a crucial role in sharing meaningful information about positions, paths, and distances
- The standard evolves over time to accommodate changing needs and advances in technology
 - Originally, latitude was computed based on the maximum duration of daylight

The many ways of GIS for digital humanities

World Geodetic System of 1984

- A widely adopted Geographic Coordinate System (GCS) today is wgs84 (World Geodetic System 1984)
- The label EPSG4326 refers to its "non-projected" version
 - For example, EPSG:3856 represents its Pseudo-Mercator projection on a square surface
- wGS84 EPSG4326 is used by the Global Positioning System (GPS) and for data storage formats such as GeoJSON
- wgs84 Epsg3856 is used by Google Maps and computer visualization tools
- Key features of wgs84 EPSG4326:
 - Coordinates are expressed in latitude (north) and longitude (east) (in this order)
 - Coordinates are expressed in degrees (decimal format)

Goals

- This tutorial provides the fundamental skills required to update and create GIS maps
- We approach GIS from different perspectives (local, server-based, and cloud)
- The tutorial covers the basics of:
 - Creating new features
 - Generating new raster layers
 - Tracking an itinerary using a GPS receiver
 - Uploading our track to a GIS map
 - Creating a new GIS service

A glimpse on GIS databases

- Specialized databases store features and their associated attributes
- Example in PostGIS:

```
INSERT INTO places (name, coord)
VALUES ('Pisa', ST_GeographyFromText ('SRID_=_4326;_POINT_(10.41_43.72)'));
```

- Legend:
 - places is a table I created earlier
 - It contains two columns: one for the name of a point and one for its coordinates
 - Using the INSERT command, I can add a new entry
 - The new point is named Pisa
 - Coordinates are added using the STGeographyFromText function in PostGIS
 - The text string includes an SRID parameter to specify the Coordinate system
 - 4326 refers to WGS84 EPSG: 4326
 - The coordinates follow a specific format: first longitude, then latitude (note the reversal from wgs84 convention)
- Specialized databases register features and attributes

GeoJSON is gaining momentum

- GeoJSON is an extension of the JSON object description language
- It is flexible and programmer-friendly
- It is commonly hosted by NoSQL databases
- Example in GeoJSON:

```
{ "type": "Feature",
   "properties": {},
   "geometry": {
      "type": "Point",
      "coordinates": [ 12.338194, 45.433048 ]
   }
}
```