Gramáticas LL

Clase 23

IIC 2223

Prof. Cristian Riveros

Definiciones de prefijos (recordatorio)

Definiciones

$$w|_{k} = \begin{cases} a_{1} \dots a_{n} & \text{si } n \leq k \\ a_{1} \dots a_{k} & \text{si } k < n \end{cases} \qquad L|_{k} = \{w|_{k} \mid w \in L\}$$

$$u \odot_{k} v = (u \cdot v)|_{k} \qquad L_{1} \odot_{k} L_{2} = \{w_{1} \odot_{k} w_{2} \mid w_{1} \in L_{1} \text{ y } w_{2} \in L_{2}\}$$

Los operadores $|_k$ y \odot_k "miran" hasta un prefijo k.

Definición de first $_k$ y follow $_k$ (recordatorio)

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 1$.

Definiciones

Se define la función $first_k : (V \cup \Sigma)^* \to 2^{\Sigma^{\leq k}}$ tal que, para $\gamma \in (V \cup \Sigma)^*$:

$$first_k(\gamma) = \{u|_k \mid \gamma \stackrel{\star}{\Rightarrow} u\}$$

Se define la función follow $_k:V\to 2^{\sum_\#^{\le k}}$ como:

$$follow_k(X) = \{ w \mid S \stackrel{\star}{\Rightarrow} \alpha X \beta \text{ y } w \in first_k(\beta \#) \}$$

Propiedades de follow $_k$

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 1$.

$$follow_k(X) = \{ w \mid S \stackrel{\star}{\Rightarrow} \alpha X \beta \text{ y } w \in first_k(\beta \#) \}$$

Si consideramos $X \neq S$:

$$\begin{split} \text{follow}_k(X) &= \bigcup_{\substack{S \stackrel{\star}{\Rightarrow} \alpha X \beta \\ S \stackrel{\star}{\Rightarrow} \alpha Y \beta \Rightarrow \alpha \alpha' X \beta' \beta}} \text{first}_k(\beta'\beta\#) \\ &= \bigcup_{\substack{S \stackrel{\star}{\Rightarrow} \alpha Y \beta \Rightarrow \alpha \alpha' X \beta' \beta \\ Y \rightarrow \alpha' X \beta'}} \bigcup_{\substack{f \text{irst}_k(\beta'\beta\#) \\ Y \rightarrow \alpha' X \beta' \\ S \stackrel{\star}{\Rightarrow} \alpha Y \beta}} \text{first}_k(\beta') \odot_k \text{first}_k(\beta\#) \\ &= \bigcup_{\substack{Y \rightarrow \alpha' X \beta' \\ Y \rightarrow \alpha' X \beta'}} \text{first}_k(\beta') \odot_k \bigcup_{\substack{S \stackrel{\star}{\Rightarrow} \alpha Y \beta \\ S \stackrel{\star}{\Rightarrow} \alpha Y \beta}} \text{first}_k(\beta\#) \\ &= \bigcup_{\substack{Y \rightarrow \alpha' X \beta' \\ Y \rightarrow \alpha' X \beta'}} \text{first}_k(\beta') \odot_k \text{follow}_k(Y) \end{split}$$

Propiedades de follow $_k$

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 1$.

$$follow_k(X) = \{ w \mid S \stackrel{\star}{\Rightarrow} \alpha X \beta \text{ y } w \in first_k(\beta \#) \}$$

Si consideramos $X \neq S$:

$$\begin{array}{ll} \operatorname{follow}_k(X) & = & \bigcup_{S \overset{\star}{\Rightarrow} \alpha X \beta} \operatorname{first}_k(\beta \#) \\ & \vdots \\ & = & \bigcup_{Y \to \alpha' X \beta'} \operatorname{first}_k(\beta') \odot_k \operatorname{follow}_k(Y) \end{array}$$

Si consideramos X = S:

$$\begin{split} \text{follow}_k(S) &= & \{\#\} \cup \bigcup_{S \overset{+}{\Rightarrow} \alpha S \beta} \text{first}_k(\beta \#) \\ &= & \{\#\} \cup \bigcup_{S \overset{+}{\Rightarrow} \alpha Y \beta \Rightarrow \alpha \alpha' S \beta' \beta} \text{first}_k(\beta' \beta \#) \\ &= & \{\#\} \cup \bigcup_{Y \rightarrow \alpha' S \beta'} \text{first}_k(\beta') \odot_k \text{follow}_k(Y) \end{split}$$

Propiedades de follow $_k$

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 1$.

Teorema

Para
$$X \neq S$$
: $\operatorname{follow}_k(X) = \bigcup_{Y \to \alpha X \beta} \operatorname{first}_k(\beta) \odot_k \operatorname{follow}_k(Y)$
$$\operatorname{follow}_k(S) = \{\#\} \cup \bigcup_{Y \to \alpha S \beta} \operatorname{first}_k(\beta) \odot_k \operatorname{follow}_k(Y)$$

Defina el siguiente programa recursivo para todo $X \in V$:

$$\begin{array}{lll} \mathsf{Para}\; X \neq S \colon & \mathsf{follow}_k^0(X) & \coloneqq & \varnothing \\ & & \mathsf{follow}_k^0(S) & \coloneqq & \{\#\} \\ \\ \mathsf{Para}\; X \neq S \colon & \mathsf{follow}_k^i(X) & \coloneqq & \bigcup_{Y \to \alpha X\beta} \mathsf{first}_k(\beta) \odot_k \mathsf{follow}_k^{i-1}(Y) \\ & & \mathsf{follow}_k^i(S) & \coloneqq & \{\#\} \; \cup \; \bigcup_{Y \to \alpha S\beta} \mathsf{first}_k(\beta) \odot_k \mathsf{follow}_k^{i-1}(Y) \end{array}$$

¿cómo calcular follow $_k$?

Similar al caso de $first_k$:

- follow $_k^{i-1}(X) \subseteq \text{follow}_k^i(X)$ para todo i > 1.
- Como follow_k(X) $\subseteq \Sigma^{\leq k}$, entonces para algún $i \leq k \cdot |\Sigma|^k \cdot |V|$:

$$\operatorname{follow}_k^j(X) = \operatorname{follow}_k^{j+1}(X)$$
 para todo $j \ge i$.

Teorema

Sea i^* el menor número tal que follow $_k^{i^*}(X)$ = follow $_k^{i^*+1}(X)$ para todo $X \in V$. Entonces para todo $X \in V$:

$$follow_k^{i^*}(X) = follow_k(X)$$

Demostración: ejercicio.

...y podemos calcular $follow_k(X)$ con un algoritmo similar que $first_k(X)$.

 $\mathsf{icómo}\ \mathsf{calculamos}\ \mathsf{first}_k\ \mathsf{y}\ \mathsf{follow}_k\ \mathsf{eficientemente}?$

- Algoritmos toman $\mathcal{O}(k \cdot |\Sigma|^k \cdot |V|)$ repeticiones en el peor caso.
- Si k = 1, el número de repeticiones será $\mathcal{O}(|\Sigma| \cdot |V|)$ y tiempo del algoritmo será polinomial en $|\mathcal{G}|$ en el peor caso.
- Para k = 1 incluso se puede hacer en tiempo $\mathcal{O}(|V| \cdot |P|)$ en total.

Volviendo a la clase de hoy: motivación

Para una gramática $\mathcal{G} = (V, \Sigma, P, S)$ podemos construir un PDA alternativo \mathcal{D} que acepta $\mathcal{L}(\mathcal{G})$:

$$\mathcal{D} = (V \cup \Sigma \cup \{q_0, q_f\}, \Sigma, \Delta, q_0, \{q_f\})$$

La relación de transición Δ se define como:

$$\begin{array}{lll} \Delta &=& \big\{ \left(q_0, \epsilon, S \cdot q_f \right) \big\} & & \cup \\ & & \big\{ \left(X, \epsilon, \gamma \right) \mid X \rightarrow \gamma \in P \big\} & \cup & \big(\text{Expandir} \big) \\ & & & \big\{ \left(a, a, \epsilon \right) \mid a \in \Sigma \big\} & \big(\text{Reducir} \big) \end{array}$$

¿cómo elegir la siguiente producción para expandir?

¿cómo elegir la siguiente producción para expandir?

$$X \rightarrow \alpha \mid \beta$$

¿cómo elegir entre α o β ?

Estrategia (intuición)

- 1. Mirar k símbolos del resto del input v (k-lookahead).
- 2. Usar $v|_k$ y decidir cual regla $X \to \gamma$ para expandir.

¿cómo caracterizamos las gramáticas que cumplen con esta propiedad?

Gramáticas LL(k)

Significado

Primera L: leer el input de izquierda a derecha (Left-right).

Segunda L: producir una derivación por la izquierda (Leftmost).

Parámetro k: el número de letras en adelante que utiliza (lookahead).

LL(k) son las gramáticas que **caracterizan** la propiedad anterior.

Outline

Definición LL

Caracterización LL

Outline

Definición LL

Caracterización LL

Definición Gramáticas LL(k)

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 1$.

Definición

Decimos que G es una gramática LL(k) si para todas derivaciones:

- $S \overset{\star}{\Rightarrow} uY\beta \Rightarrow u\gamma_1\beta \overset{\star}{\Rightarrow} uv_1$
- $S \overset{\star}{\underset{lm}{\Rightarrow}} uY\beta \underset{lm}{\Rightarrow} u\gamma_2\beta \overset{\star}{\underset{lm}{\Rightarrow}} uv_2 \quad y$
- $v_1|_k = v_2|_k$

entonces se cumple que $\gamma_1 = \gamma_2$.

Notar que la elección de $Y \rightarrow \gamma$ depende de Y, $v|_k$ y u.

Ejemplo 1: Gramática LL(1)

$$\mathcal{G}_{1}: \quad S \rightarrow (S) \mid n$$

$$S \overset{\star}{\underset{\text{Im}}{\Rightarrow}} \underbrace{(\cdots(S))\cdots} \underset{\text{Im}}{\Rightarrow} \underbrace{(\cdots(\gamma_{1})\cdots)} \overset{\star}{\underset{\text{Im}}{\Rightarrow}} \underbrace{(\cdots(v'_{1})\cdots)} \overset{\star}{\underset{\text{Im}}{\Rightarrow}} \underbrace{(\cdots(v'_{2})\cdots)} \overset{\star}{\underset{\text{Im}}{\Longrightarrow}} \underbrace{(\cdots(v'_{2})\cdots)} \overset{\star}{\underset{\text{Im}}{\Longrightarrow}} \underbrace{(\cdots$$

En ambos casos, tenemos que γ_1 = γ_2 y \mathcal{G}_1 es una **gramática** LL(1).

• Si $v_1|_1 = v_2|_1 = ($, entonces $\gamma_1 = \gamma_2 = (S)$.

Ejemplo 2: Gramática LL(1)

- Si $v_1|_1 = v_2|_1 = (o'n', entonces \gamma_1 = \gamma_2 = SX.$
- Si $v_1|_1 = v_2|_1 =$), entonces $\gamma_1 = \gamma_2 = \epsilon$.

Por lo tanto, tenemos que γ_1 = γ_2 y \mathcal{G}_2 es **también** una gramática LL(1).

Ejemplo 3: Gramática **NO** LL(1)

 $\mathcal{G}_3: S \rightarrow (X) \mid n+S \mid n$

Como $v_1|_1 = v_2|_1 = n$ pero $\gamma_1 \neq \gamma_2$, entonces \mathcal{G}_3 **NO** es una gramática LL(1).

• Si $v_1|_2 = v_2|_2 = n+$, entonces $\gamma_1 = \gamma_2 = n+S$.

Ejemplo 3: ¿LL(2)?

Si $v_1|_1 = v_2|_1 = na$ con $a \neq +$, entonces $\gamma_1 = \gamma_2 = n$.

Por lo tanto, tenemos que $\gamma_1 = \gamma_2$ y \mathcal{G}_2 es LL(2) y **no** LL(1).

Como $v_1|_k = v_2|_k = (\stackrel{k}{\cdots} (\text{ pero } \gamma_1 \neq \gamma_2, \text{ entonces}))$

 G_3 **NO** es una gramática LL(k) para todo k.

Ejemplo 4: Gramática **NO** LL(k)

¿es posible transformar \mathcal{G}_4 para que si sea LL(k)?

$$\begin{array}{c} \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} } \end{array} = S \underset{\text{lm}}{\overset{\star}{\Rightarrow}} uY\beta \underset{\text{lm}}{\Rightarrow} u\gamma_1\beta \underset{\text{lm}}{\overset{\star}{\Rightarrow}} uv_1 \\ \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} } S \underset{\text{lm}}{\overset{\star}{\Rightarrow}} uY\beta \underset{\text{lm}}{\Rightarrow} u\gamma_2\beta \underset{\text{lm}}{\overset{\star}{\Rightarrow}} uv_2 \\ \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} } y \\ \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} } v_1|_k = v_2|_k \\ \end{array} } \end{array} \right) \text{ entonces } \gamma_1 = \gamma_2.$$

Ejemplo 4: Gramática **NO** LL(k) **transformada** en LL(2)

. . .

Demuestre que \mathcal{G}_4' es una gramática LL(2).

Ejemplo 5: Lenguaje **NO** LL(k)

Para todo $k \ge 1$, se tiene que \mathcal{G}_5 **NO** es una gramática LL(k).

Es posible demostrar que, para toda gramática $\mathcal G$ con $\mathcal L(\mathcal G_5) = \mathcal L(\mathcal G)$, $\mathcal G$ NO es una gramática LL(k) para todo $k \geq 1$.

Outline

Definición LL

Caracterización LL

Definiciones de prefijos (recordatorio)

Definiciones

$$w|_{k} = \begin{cases} a_{1} \dots a_{n} & \text{si } n \leq k \\ a_{1} \dots a_{k} & \text{si } k < n \end{cases} \qquad L|_{k} = \{w|_{k} \mid w \in L\}$$

$$u \odot_{k} v = (u \cdot v)|_{k} \qquad L_{1} \odot_{k} L_{2} = \{w_{1} \odot_{k} w_{2} \mid w_{1} \in L_{1} \text{ y } w_{2} \in L_{2}\}$$

Los operadores $|_k$ y \odot_k "miran" hasta un prefijo k.

Definición de first $_k$ y follow $_k$ (recordatorio)

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 1$.

Definiciones

Se define la función $first_k : (V \cup \Sigma)^* \to 2^{\Sigma^{\leq k}}$ tal que, para $\gamma \in (V \cup \Sigma)^*$:

$$first_k(\gamma) = \{u|_k \mid \gamma \stackrel{\star}{\Rightarrow} u\}$$

Se define la función follow $_k:V\to 2^{\sum_\#^{\le k}}$ como:

$$follow_k(X) = \{ w \mid S \stackrel{\star}{\Rightarrow} \alpha X \beta \text{ y } w \in first_k(\beta \#) \}$$

Caracterización de gramáticas LL(k)

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto reducida y $k \ge 1$.

Teorema

 $\mathcal G$ es una gramática $\mathsf{LL}(k)$ si, y solo si, para todas dos reglas distintas $Y \to \gamma_1, \, Y \to \gamma_2 \in P$ y para todo $S \overset{\star}{\underset{\operatorname{Im}}{\Rightarrow}} uY\beta$, se tiene que:

$$first_k(\gamma_1\beta) \cap first_k(\gamma_2\beta) = \emptyset$$

Demostración (⇒)

Por contra-positivo, supongamos que $v \in \text{first}_k(\gamma_1\beta) \cap \text{first}_k(\gamma_2\beta)$. Como \mathcal{G} es reducida (sin variables inútiles), entonces:

para algún $v_1, v_2 \in \Sigma^*$. Como $\gamma_1 \neq \gamma_2$, entonces \mathcal{G} **NO** es LL(k).

Caracterización de gramáticas LL(k)

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto reducida y $k \ge 1$.

Teorema

 $\mathcal G$ es una gramática $\mathsf{LL}(k)$ si, y solo si, para todas dos reglas distintas $Y \to \gamma_1, \, Y \to \gamma_2 \in P$ y para todo $S \overset{\star}{\underset{\operatorname{lm}}{\Rightarrow}} uY\beta$, se tiene que:

$$first_k(\gamma_1\beta) \cap first_k(\gamma_2\beta) = \emptyset$$

Demostración (←)

Por contra-positivo (de nuevo), supongamos que \mathcal{G} no es LL(k). Como \mathcal{G} no es LL(k), entonces tenemos derivaciones de la forma:

 $v_1|_k = v_2|_k = v$, pero $\gamma_1 \neq \gamma_2$. Por lo tanto, $v \in \mathtt{first}_k(\gamma_1\beta) \cap \mathtt{first}_k(\gamma_2\beta)$.

Caracterización de gramáticas LL(k)

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto reducida y $k \ge 1$.

Teorema

 $\mathcal G$ es una gramática $\mathsf{LL}(k)$ si, y solo si, para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ y para todo $S \underset{\lim}{\overset{\star}{\Rightarrow}} uY\beta$, se tiene que:

$$first_k(\gamma_1\beta) \cap first_k(\gamma_2\beta) = \emptyset$$

¿cómo usamos esta caracterización para demostrar que una gramática es LL(k)?

... buscaremos condiciones más simples para verificar si una gramática es LL(k).

Gramáticas LL(k) fuerte

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto y $k \ge 1$.

Definición

 $\mathcal G$ es una gramática LL(k) fuerte si para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ se tiene que:

$$first_k(\gamma_1) \odot_k follow_k(Y) \cap first_k(\gamma_2) \odot_k follow_k(Y) = \emptyset$$

¿Si \mathcal{G} es LL(k) fuerte, entonces es \mathcal{G} un gramática LL(k)?

```
\begin{split} & \operatorname{first}_k(\gamma_1\beta) \, \cap \, \operatorname{first}_k(\gamma_2\beta) &= \\ & \operatorname{first}_k(\gamma_1) \odot_k \operatorname{first}_k(\beta) \, \cap \, \operatorname{first}_k(\gamma_2) \odot_k \operatorname{first}_k(\beta) &\subseteq \\ & \operatorname{first}_k(\gamma_1) \odot_k \operatorname{follow}_k(Y) \, \cap \, \operatorname{first}_k(\gamma_2) \odot_k \operatorname{follow}_k(Y) &= \varnothing \end{split}
```

¿si G es LL(k), entonces es LL(k) fuerte?

 \mathcal{G} es LL(k), entonces es LL(k) fuerte?

Contra-ejemplo

$$\mathcal{G}: S \rightarrow aXaa \mid bXba$$

 $X \rightarrow b \mid \epsilon$

Recordatorio: \mathcal{G} es LL(k) si para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ y para todo $S \overset{\star}{\underset{\operatorname{Im}}{\Rightarrow}} uY\beta$, se tiene que:

$$\operatorname{first}_k(\gamma_1\beta) \cap \operatorname{first}_k(\gamma_2\beta) = \emptyset$$

- Si $S \stackrel{\star}{\underset{\text{lm}}{\Rightarrow}} aXaa$, entonces $\text{first}_2(baa) \cap \text{first}_2(aa) = \emptyset$.
- Si $S \stackrel{*}{\underset{|m}{\Rightarrow}} bXba$, entonces $first_2(bba) \cap first_2(ba) = \emptyset$.

Por lo tanto, \mathcal{G} es LL(2).

¿si \mathcal{G} es LL(k), entonces es LL(k) fuerte?

Contra-ejemplo

$$\mathcal{G}: S \rightarrow aXaa \mid bXba$$

 $X \rightarrow b \mid \epsilon$

Recordatorio: \mathcal{G} es una gramática LL(k) fuerte si para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ se tiene que:

$$first_k(\gamma_1) \odot_k follow_k(Y) \cap first_k(\gamma_2) \odot_k follow_k(Y) = \emptyset$$

Si vemos $X \to b$ y $X \to \epsilon$:

$$\begin{aligned} & \operatorname{first}_2(b) \odot_2 \operatorname{follow}_2(X) \cap \operatorname{first}_2(\epsilon) \odot_2 \operatorname{follow}_2(X) \\ &= \{b\} \odot_2 \{aa, ba\} \cap \{\epsilon\} \odot_2 \{aa, ba\} \\ &= \{ba, bb\} \cap \{aa, ba\} \\ &= \{ba\} \end{aligned}$$

 \ldots y $\mathcal G$ no es LL(2) fuerte.

Caso LL(1)

Supongamos que \mathcal{G} es LL(1) y $Y \to \gamma_1, Y \to \gamma_2 \in P$ son reglas distintas.

1. Si $\epsilon \notin \text{first}_1(\gamma_1)$ y $\epsilon \notin \text{first}_1(\gamma_2)$, entonces (por caract. de LL(1)):

```
 \varnothing = \operatorname{first}_1(\gamma_1\beta) \cap \operatorname{first}_1(\gamma_2\beta) 
 = \operatorname{first}_1(\gamma_1) \cap \operatorname{first}_1(\gamma_2) 
 = \operatorname{first}_1(\gamma_1) \odot_1 \operatorname{follow}_1(Y) \cap \operatorname{first}_1(\gamma_2) \odot_1 \operatorname{follow}_1(Y)
```

Caso LL(1)

Supongamos que \mathcal{G} es LL(1) y $Y \rightarrow \gamma_1, Y \rightarrow \gamma_2 \in P$ son reglas distintas.

1. Si $\epsilon \notin \text{first}_1(\gamma_1)$ y $\epsilon \notin \text{first}_1(\gamma_2)$, entonces (por caract. de LL(1)):

$$\varnothing = first_1(\gamma_1) \odot_1 follow_1(Y) \cap first_1(\gamma_2) \odot_1 follow_1(Y)$$

2. Si $\epsilon \in \text{first}_1(\gamma_1)$ y $\epsilon \notin \text{first}_1(\gamma_2)$, entonces (por caract. de LL(1)):

$$\varnothing = first_1(\gamma_1\beta) \cap first_1(\gamma_2\beta)$$

$$= first_1(\gamma_1\beta) \cap first_1(\gamma_2)$$

$$= first_1(\gamma_1\beta) \cap first_1(\gamma_2\beta')$$

para todo $\beta' \in (V \cup \Sigma)^*$. Por lo tanto:

$$\operatorname{first}_1(\gamma_1) \odot_1 \operatorname{follow}_1(Y) \cap \operatorname{first}_1(\gamma_2) \odot_1 \operatorname{follow}_1(Y)$$

$$= \bigcup_{\substack{S \stackrel{\star}{\Rightarrow} uY\beta}} \operatorname{first}_1(\gamma_1\beta) \cap \bigcup_{\substack{S \stackrel{\star}{\Rightarrow} uY\beta'}} \operatorname{first}_1(\gamma_2\beta') = \varnothing$$

Caso LL(1)

Teorema

Una gramática \mathcal{G} es LL(1) si, y solo si, \mathcal{G} es LL(1) fuerte, esto es, para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$:

$$first_1(\gamma_1) \odot_1 follow_1(Y) \cap first_1(\gamma_2) \odot_1 follow_1(Y) = \emptyset$$

Podemos verificar esta condición en **tiempo polinomial** en \mathcal{G} .