

SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings

Charley Yejia Zhang, Pengfei Gu, Nishchal Sapkota, Danny Z. Chen University of Notre Dame, Computer Science and Engineering

Motivation

UNIVERSITY OF NOTRE DAME

(I) Drawbacks in Traditional Segmentation

- Medical image segmentation (seg.) is a critical task where masks of pertinent objects are predicted
- Traditional seg. [1] uses discrete representations (masks as pixel grids) which has several disadvantages:
 - X Limited spatial flexibility
 - × Poor computational scaling
 - X No direct shape modeling
 - Unconstrained predictions (unrealistic objects) esp. with limited labels and inbalanced classes

(II) Seg. w/ Implicit Neural Representations (INRs)

- INR-based seg. [2] uses **continuous representations** with an MLP decoder that maps an image coordinate and a shape embedding (i.e., vector with shape info.) to a class score. With INRs, fix-sized image inputs can:
 - ✓ predict masks of arbitrary sizes by modulating the density of continuous coordinates
 - ✓ attain constant memory scaling w.r.t. image size
 - directly model shapes (an object's boundary is the MLP decoder's decision boundary)
 - ✓ train better and more efficiently with less labels
- We divide objects into parts (i.e., images into patches) and use INR segmentation to predict local shapes, unlike others that do point-wise or per-image prediction

SwIPE Framework

SwIPE (Segmentation with Implicit Patch Embeddings) uses patch and image embeddings to predict point-wise occupancies:

- 1 Encoder Backbone extracts 4 multi-scale feature maps
- 2 Encoder Neck enriches features in a bottom-up cascade
- MEA dynamically weighs global/abstract to local/fine-grained info. and gets final patch embeddings
- Patch-wise decoding is performed at an image coordinate using 5 inputs
- Image-wise decoding is performed given the image embedding and an image coordinate

Results

I. Main Results

- + Beats discrete SOTAs w/ 10x fewer params.
- + Outperforms INR SOTAs (+2.5% F1 on Sessile, +4.5% F1 on BCV)

	2D Polyp	Sessile		3D CT BCV							
Method	Params (M)	FLOPs (G)	Dice (%)	Method	Params (M)	FLOPs (G)	Dice (%)				
Discrete Approaches											
U-Net ₁₅	7.9	83.3	63.89 ± 1.30	U-Net ₁₅	16.3	800.9	74.47±1.57				
PraNet_{20}^*	30.5	15.7	$82.56{\pm}1.08$	$UNETR_{21}^*$	92.6	72.6	81.14 ± 0.85				
${\rm Res2UNet}_{21}$	25.4	17.8	81.62 ± 0.97	${ m Res} 2 { m UNet}_{21}$	38.3	44.2	79.23 ± 0.66				
Implicit Approaches											
$\overline{\mathrm{OSSNet}_{21}}$	5.2	6.4	76.11±1.14	$OSSNet_{21}$	7.6	55.1	$73.38{\pm}1.65$				
$IOSNet_{22}$	4.1	5.9	78.37 ± 0.76	$IOSNet_{22}$	6.2	46.2	$76.75{\pm}1.37$				
SwIPE (ours)	2.7	10.2	85.05 ±0.82	SwIPE (ours)	4.4	71.6	81.21 ±0.94				

II. Robustness (datasets & resolutions)

- + Superior inference dice for both ¹/_{2 I} segmentation tasks (left table) ³ s
- + Improved prediction accuracy across resolutions (right table)

Across Datasets			Across Resolutions						
Method	Dice			Method	Size	Dice			
$olyp \ Sessile \rightarrow CVC$			Varying Output Size						
PraNet	68.37		1	PraNet	128↓	72.64			
IOSNet	59.42		2	IOSNet	128↓	76.18			
SwIPE	70.10		3	SwIPE	128↓	81.26			
$T BCV \rightarrow CT AMOS$			4	PraNet	896↑	74.95			
ver class only	<i>ı)</i>		5	IOSNet	896↑	78.01			
UNETR	81.75		6	SwIPE	896↑	84.33			
IOSNet	79.48		$Varying\ Input\ Size$						
SwIPE	82.81			PraNet	128↓	68.79			
			8	PraNet	896↑	43.92			

Evaluated on 2 tasks, and 4 datasets

Task 1 - 2D polyp seg. (colonoscopy): Sessile & CVC

Task 2 - 3D organ seg. (CT): BCV & AMOS

III. Model Parameter and Annotation Efficiency

+ On 2D polyp segmentation, SwIPE outperforms competitors across model depths, widths, and annotation availabilities

References

- [1] Salpea et al. "Medical image segmentation: A review of modern architectures." ECCV Workshops. Cham: Springer Nature Switzerland, 2022.
- [2] Khan et al. "Implicit Neural Representations for Medical Imaging Segmentation." MICCAI. Cham: Springer Nature Switzerland, 2022.