Lecture 10 Homework by Aj. Suppawong:

Ex	Size X	Color X	Shape X	Class (Y)
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negative
4	large	blue	circle	negative

attr	ributes Class
	$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k}$
	# of values of X_i 7N of attributes
χ:	P(small Y) = 1 + 1 = 2 = 0.4

ล้านวน ของ Pas หั่งหมด Calculate P(Y) and $P(X_i | Y)$ with smoothing for conditional probability.

Probability (Smoothed)	Y= positive	Y= negative
P(<i>Y</i>)	2/4 = 0.5 มีใจร ข จาก 4	2/4 = 0.5
P(small Y)	(1+1)/(2+3) = 2/5 = 0.4	(1+1)/(2+3) = 2/5 = 0.4
P(medium Y)	(0+1)/(2+3) = 1/5 = 0.2	(0+1)/(2+3) = 1/5 = 0.2
P(large Y)	(1+1)/(2+3) = 2/5 = 0.4	(1+1)/(2+3) = 2/5 = 0.4
P(red Y)	(2+1)/(2+3) = 3/5 = 0.6	(1+1)/(2+3) = 2/5 = 0.4
P(blue Y)	(0+1)/(2+3) = 1/5 = 0.2	(1+1)/(2+3) = 2/5 = 0.4
P(green Y)	(0+1)/(2+3) = 1/5 = 0.2	(0+1)/(2+3) = 1/5 = 0.2
P(square Y)	(0+1)/(2+3) = 1/5 = 0.2	(0+1)/(2+3) = 1/5 = 0.2
P(triangle Y)	(0+1)/(2+3) = 1/5 = 0.2	(1+1)/(2+3) = 2/5 = 0.4
P(circle Y)	(2+1)/(2+3) = 3/5 = 0.6	(1+1)/(2+3) = 2/5 = 0.4

ล้านวน ของ Small ที่เป็น Pos

๑ั= กำหนางกำหั
Given x = <medium ,red, circle>, calculate P(Y=positive|x) and P(Y=negative|x)

$$P(+|x) = P(medium|+) \cdot P(red|+) \cdot P(circle|+) \cdot P(+)/P(x)$$

$$= 0.2 \cdot 0.6 \cdot 0.6 \cdot 0.5 / P(x)$$

= 0.036 / P(x)

$$P(-|x) = P(medium|-) \times P(red|-) \times P(circle|-) \times P(-)/P(x)$$

$$= 0.2 \cdot 0.4 \cdot 0.4 \cdot 0.5 / P(x)$$

= 0.016 / P(x)

P(+|x) + P(-|x) = 1 → 0.036+0.016 = P(x) → P(x) = 0.052 =
$$\frac{0.036}{P(x)} + \frac{0.016}{P(x)} = \frac{1}{P(x)}$$

$$P(+|x) = 0.036/0.052 = 0.69$$

$$P(-|x) = 0.016/0.052 = 0.31$$

Which class should x be classified into?

$$\frac{Q.052}{P(x)} = 1$$

$$P(x) = 0.052$$

Probability Estimation Example

Ex	Size	Color	Shape	Class
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negative
4	large	blue	circle	negative

Probability	Y= positive	Y= negative		
P(<i>Y</i>)	0.5	0.5		
P(small Y)	0.5	0.5		
P(medium Y)	0.0	0.0		
P(large Y)	0.5	0.5		
P(red <i>Y</i>)	1.0	0.5		
P(blue Y)	0.0	0.5		
P(green Y)	0.0	0.0		
P(square Y)	0.0	0.0		
P(triangle <i>Y</i>)	0.0	0.5		
P(circle Y)	1.0	0.5		

* No smoothing has been applied yet.

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k}$$
of values of X_i

Ex:
$$P(\text{Small}|Y) = \frac{1}{2} = \frac{1}{2} = 0.5$$
ล้านวน ของ Small ที่ เป็น Pos
ล้านวน ของ Pos ทั้ง ทามถ

How is star classified by:

(i) 1-NN → O

(ii) 3-NN → X

(iii) 9-NN → O

(iv) 15-NN → X

Lecture 11 Homework Solution by Aj. Suppawong

Data

Subject	X	Υ
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Initial Centroids

Group	Subjects	Centroid	
Α	1	(1.0, 1.0)	
В	4	(5.0, 7.0)	

With the settings above, run K-Means until it converges (cluster members do not changes). After each iteration, list the members of each group and the new centroids. In case of tie, choose group A. Each iteration includes the assignment and recomputation steps.

- (x2-x1)+(y2-y1)2 A) 20 20

\	X_1	(λ_{z}		,	•				
	Iteration 0	(Iteratio			Iteration	2		Iteration	3
Point	Data table	Dist uA	Dist uB	Assigned u	Dist uA	Dist uB	Assigned u	Dist uA	Dist uB	Assigned u
1	(1,1)	0.00	7.21	A	1.57	5.38	A	0.56	5.02	Α
2	(1.5,2)	1.12	6.10	Α	0.47	4.28	Α	0.56	3.92	Α
3	(3,4)	3.61	3.61	A (tie)	2.03	1.78	В	3.05	1.42	В
4	(5,7)	7.21	0.00	В	5.64	1.85	В	6.66	2.20	В
5	(3.5,5)	4.72	2.50	В	3.14	0.73	В	4.16	0.41	В
6	(4.5,5)	5.32	2.06	В	3.77	0.53	В	4.78	0.61	В
7	(3.5,4.5)	4.30	2.92	В	2.73	1.08	В	3.75	0.72	В
Centroid	ls	1+1.5+3	1+2+4							
uA	(1,1)	1.83	2.33		1.25	1.50		1.25	1.50	
uВ	(5,7)	4.13	5.38		3.90	5.10		3.90	5.10	

6870175	579 Datalá	ams:	- √(x ₂ -;	x13+Cy2-yi	-					
↓	Iteration 0		Iteratio		<u> </u>	Iteration 2	2		Iteration	3
Point		Dist uA	Dist uB	Assigned u	Dist uA	Dist uB	Assigned u	Dist uA	Dist uB	Assigned u
1	(1,1)	0.00	7.21	А	1.57	5.38	А	0.56	5.02	А
2	(1.5,2)	1.12	6.10	А	0.47	4.28	Α	0.56	3.92	Α
3	(3,4)	3.61	3.61	A (tie)	2.03	1.78	В	3.05	1.42	В
4	(5,7)	7.21	0.00	В	5.64	1.85	В	6.66	2.20	В
5	(3.5,5)	4.72	2.50	В	3.14	0.73	В	4.16	0.41	В
6	(4.5,5)	5.32	2.06	В	3.77	0.53	В	4.78	0.61	В
7	(3.5,4.5)	4.30	2.92	В	2.73	1.08	В	3.75	0.72	В
607 Inti	Centroids (xi)									
Centroids										
uA	(1,1)	1.83	2.33		1.25	1.50		1.25	1.50	
uВ	(5,7)	4.13	5.38	1	3.90	5.10	'	3.90	5.10	

Iteration 1

ที่ใปใช้อยๆ จน คู่รบ จากขั้น ฏู จำนวน แต่วะตรของ A และ B มาคิดใน Centroids แบบนั้

พับ A ได้ 3 ในช่องของ UA = X ของตัวที่ ได้ค่า Assigned U รวมกัน mu N

 $U_A = \frac{1+1.5+3}{3} = \frac{1.83}{3} U_A = \frac{1+2+4}{3} = 2.33$ й в в 4 5+3.5+4.5+3.5 - 4.13 7+5+5+4.5 4 teration 2 ทา m มือน ครั้ง แรก แต่ x, , y, เช่น Centro: ds vos iteration [

Centroids แบบนั้

นับ A ได้ 2 ในช่องของ UA = X ของตัวที่ ได้ค่า Assigned U รวมกัน ทาบ N

 $V_A = \frac{1+1.5}{2} = 1.25$ $V_A = \frac{1+2}{2} = 1.5$ 3+5+35+45+35 = 3.90 4+7+5+5 +45 = 5.10

Lecture 12 Homework Solution by Aj. Suppawong

Assume that we are working with the following graph with 12 nodes.

▶ Initially, each node is assigned a PageRank score of $PR_0 = \frac{1}{12} \approx 0.083333$. Run PageRank for 2 iterations. At the end of each iteration, report the PageRank score of each page. The PageRank score is calculated using the following equation: $PR(p) = \sum_{v \in B_p} \frac{PR(v)}{N_v}$

$$PR(p) = \sum_{v \in B_n} \frac{PR(v)}{N_v}$$

▶ Where p is a page, B_p is the set of p's backlinks, N_v is the number of v's out-going links.

Page		Iteration 0 (Initialization)	Iteration 1	Iteration 2
	Α	0.083333	0.15	0.16
	В	0.083333	0.03	0.01
	С	0.083333	0.13	0.09
	D	0.083333	0.11	0.10
ore	Е	0.083333	0.08	0.03
PageRank Score	F	0.083333	0.07	0.09
eRan	G	0.083333	0.03	0.01
Page	Н	0.083333	0.04	0.06
	ı	0.083333	0.03	0.01
	J	0.083333	0.04	0.06
	K	0.083333	0.08	0.17
	L	0.083333	0.21	0.23

Iteration 1

(A) ดูง่าอะไร Point กัง A ขับ (B) ดูว่า ส่วนกาลี Point ออกจากส่วเองกำลัน

aun yul

$$P_{j} = \begin{cases} P_{ij} & P_{ij} \\ P_{ij} & P_{ij} \end{cases}$$

Iteration a

(A) กานมือนาดิม แต่เอาดาจาก iteration 1

$$\frac{0.15}{3} + \frac{0.03}{3} + \frac{0.07}{1} = 0.155 \approx 0.16 + 4$$
A B F

1. Find the Eigenvalues of the given matrix. Order the Eigenvalues from largest to smallest when answering.

$$\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1-\lambda & 4 \\ 2 & 3-\lambda \end{bmatrix} = (1-\lambda)(3-\lambda) - 4\times 2 = 0$$

$$3 - x - 3x + x - 4\times 2$$

$$4 - 6c$$

$$5 - 5 - x - 3x + x^{2}$$

$$5 - 5 - 4x + x^{3}$$

$$5 - 5 - 4x + x^{3}$$

Ans: 5, -1

2. Find the Eigenvalues of the given matrix. Order the Eigenvalues from largest to smallest when answering.

$$\begin{bmatrix} 7.5148 & 0 & 0 \\ 0 & 5.3215 & 0 \\ 0 & 0 & 1.9921 \end{bmatrix} \qquad \begin{array}{c} \vdots \times^{2} 4 \times -5 \\ (\times_{+} 1) (\times_{-} 5) \\ \vdots \\ [-5, 1] \end{array}$$

Ans: 7.5148, 5.3215, 1.9921

3. The given matrix A can be decomposed into $A = U\Sigma V^T$, using Singular Value Decomposition. Compute Σ , where Σ has the same dimension as A, containing singular values ordered in the descending order.

$$A = \begin{bmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$

Ans:

$$\begin{bmatrix} 5.8205 & 0 & 0 \\ 0 & 1.0591 & 0 \end{bmatrix}$$

Solving for Eigenvalues and Eigenvectors

$$A - \lambda I = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 1 - \lambda & 1 \\ 4 & 1 - \lambda \end{bmatrix}$$

$$\begin{vmatrix} 1 - \lambda & 1 \\ 4 & 1 - \lambda \end{vmatrix} = 0 \qquad (1 - \lambda)(1 - \lambda) - (4)(1) = 0$$

$$1 - 2\lambda + \lambda^2 - 4 = 0$$

$$\lambda^2 - 2\lambda - 3 = 0$$

$$(\lambda - 3)(\lambda + 1) = 0$$

Eigenvalue — $\lambda = 3$, $\lambda = -1$

Solving for Eigenvalues and Eigenvectors

$$A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \quad \begin{matrix} \lambda = 3 \\ \lambda = -1 \end{matrix} \quad (A - \lambda I)\vec{X} = \vec{O}$$

$$A - (-1)I = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{aligned} 2x_1 + x_2 &= 0 \\ x_2 &= -2x_1 \end{bmatrix} \qquad \stackrel{\rightharpoonup}{\chi} , \quad \begin{bmatrix} 1 \\ -q \end{bmatrix} \\ \text{Change } x_1 \in I \end{aligned}$$

Solving for Eigenvalues and Eigenvectors

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 3 & -2 - \lambda & 0 \\ 2 & 3 & 4 - \lambda \end{bmatrix}$$

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 3 & -2 - \lambda & 0 \\ 2 & 3 & 4 - \lambda \end{bmatrix}$$

$$\begin{vmatrix} 1 - \lambda & 0 & 0 \\ 3 & -2 - \lambda & 0 \\ 2 & 3 & 4 - \lambda \end{vmatrix} = (1 - \lambda)[(-2 - \lambda)(4 - \lambda) - (0)(3)] - 0 + 0$$

$$(1 - \lambda)(-2 - \lambda)(4 - \lambda) = 0$$

$$\lambda = 1$$
 $\lambda = -2$

Solving for Eigenvalues and Eigenvectors

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & -2 & 0 \\ 2 & 3 & 4 \end{bmatrix} \begin{array}{c} \lambda = 1 \\ \lambda = -2 \\ \lambda = 4 \end{array} \quad (A - \lambda I) \overrightarrow{X} = \overrightarrow{O}$$

$$A - (-2)I = \begin{bmatrix} 1 & 0 & 0 \\ 3 & -2 & 0 \\ 2 & 3 & 4 \end{bmatrix} - \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 3 & 0 & 0 \\ 2 & 3 & 6 \end{bmatrix}$$

$$x_{1} = 0 2x_{1} + 3x_{2} + 6x_{3} = 0$$

$$x_{1} = 0 3x_{1} + 6x_{3} = 0 x_{3} = 1 x_{1} = 0$$

$$3x_{1} - 0x_{2} - 0x_{3} = 0 x_{2} + 6x_{3} = 0 x_{1} = 1$$

$$x_{1} = 0 3x_{1} + 6x_{3} = 0 x_{2} + 6x_{3} = 0$$

$$x_{2} + 6x_{3} = 0 x_{3} = 1 x_{1} = 1$$

Solving for Eigenvalues and Eigenvectors

$$A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \quad \frac{\lambda = 3}{\lambda = -1} \quad (A - \lambda I) \overrightarrow{X} = \overrightarrow{O}^{\vee}$$

$$A - 3I = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \xrightarrow{\theta_{12} \in 2\theta_{11}} \begin{bmatrix} -2 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad -2x_1 + x_2 = 0 \\ x_2 = 2 \qquad \qquad \vec{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

making x2-2

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

$$\det(A) = a * \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b * \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c * \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Finally det(A) is: det (A): aci - afh - bdi + btq + cdh - ceg det(A) = aei - afh - bdi + bfg + cdh - ceg

Solving for Eigenvalues and Eigenvectors

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & -2 & 0 \\ 2 & 3 & 4 \end{bmatrix} \begin{array}{c} \lambda = 1 \\ \lambda = -2 \\ \lambda = 4 \end{array} \quad (A - \lambda I)\vec{X} = \vec{O}$$

$$A - (1)I = \begin{bmatrix} 1 & 0 & 0 \\ 3 & -2 & 0 \\ 2 & 3 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 3 & -3 & 0 \\ 2 & 3 & 3 \end{bmatrix}$$

$$3x_{1} - 3x_{2} = 0 \quad 2x_{1} + 3x_{2} + 3x_{3} = 0$$

Solving for Eigenvalues and Eigenvectors

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & -2 & 0 \\ 2 & 3 & 4 \end{bmatrix} \begin{array}{c} \lambda = 1 \\ \lambda = -2 \\ \lambda = 4 \end{array} \quad (A - \lambda I)\vec{X} = \vec{O}$$

$$A - (4)I = \begin{bmatrix} 1 & 0 & 0 \\ 3 & -2 & 0 \\ 2 & 3 & 4 \end{bmatrix} - \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 3 & -6 & 0 \\ 2 & 3 & 0 \end{bmatrix}$$

$$A - (4)I = \begin{bmatrix} 1 & 0 & 0 \\ 3 & -2 & 0 \\ 2 & 3 & 4 \end{bmatrix} - \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 3 & -6 & 0 \\ 2 & 3 & 0 \end{bmatrix}$$

$$\xrightarrow{3X_{1} \cdot 0} \qquad X_{1} = 0 \qquad 2\cancel{X}_{1} + \cancel{3}\cancel{X}_{2} = 0 \qquad \overrightarrow{X} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\xrightarrow{3X_{1} \cdot 0} \qquad X_{2} = 0 \qquad X_{3} \Rightarrow \text{free variable}$$