Math 645 Problem Set 2

Tucker DiNapoli

<2016-09-28 Wed>

			Noodles	Pigs	Sausage
1.	(a)	Noodles	10%	80%	10%
		Pigs	50%	20%	30%
		Sausage	20%	40%	40%

- (b) N = 0.1S + 0.8P + 0.1N
 - P = 0.5S + 0.2P + 0.3N
 - S = 0.2S + 0.4P + 0.4N
- (c) I'm not really sure what you mean by this. Even if we set S to 100 this is an over determined system. If we plug in S = 100 and solve we get N = P = 100, as is to be expected. The math to show this is easy enough so I'm not going to do it out.
- 2. (a) i. False, Ax = 0 has the trivial solution for any A, the columns of A are linearly independent if A has only the trivial solution
 - ii. False, if S is a linearly dependent set, then at least one vector is a linear combination of the others
 - iii. True, Given a vector in \mathbb{R}^4 there can be at most 3 other vectors (in \mathbb{R}^4) that are linearly independent from it. A 4x5 matrix has 5 vectors in \mathbb{R}^4 meaning at least one must be a linear combination of the others.
 - iv. True, This is true by definition.
 - (b) i. True, If u and v are linearly independent vectors then au + bv = 0 or u = cv, which is the equation of a line through the origin.
 - ii. False, Any set containing the zero vector is linearly dependent, so a set could have fewer members than dimensions but, if it had the zero vector in it, it would still be linearly dependent.
 - iii. True, This is true by definition.
 - iv. False, See the answer to part b.
- 3. (a) u,v are linearly independent vector in \mathbb{R}^3 , P is a plane through u,v and 0, with the equation x = st + uv. Show a linear transformation T: $\mathbb{R}^3 -> \mathbb{R}^3$ maps P to either a plane, line or point containing the origin.

(b) f(x) = mx + b

Show that f is only a linear transformation when b == 0, why is f called a linear function

```
f is linear if \forall c \in \mathbb{R} f(cu) = cf(u)
f(cu) = mcu + b, cf(u) = c*(mu + b) = cmu + c*b;
mcu + b = cmu + cb -> b = cb
```

b = cb only when c or b is 0, since c can be any real number in order for f(cu) to equal cf(u) b must be 0. so f is only a linear transformation when b is 0. It is called a linear function because it is the function of a line (duh).

(c) Show an affine transformation (T(x)=Ax + b) is a linear transformation only when b = 0.

As with the last problem when we simplify T(cx) = cT(x) we get A(cx) + b = A(cx) + cb -> b = cb, which is only true (for nonzero c) when b is zero. We can make this a linear transformation by adding another dimension (i.e using homogeneous coordinates).

4. 1.9 #4,6,11,15,19,23

(a) The 2x2 rotation matrix is: $[[\cos(\theta), -\sin(\theta)], [\sin(\theta), \cos(\theta)]]$. So the matrix for a $-\pi/4$ radian rotation is:

```
A = [[\cos(-\pi/4),-\sin(\pi/4)], [\sin(\pi/4),\cos(\pi/4)]] or [[\operatorname{sqrt}(2)/2,-\operatorname{sqrt}(2)/2],[\operatorname{sqrt}(2)/2,sqrt(2)/2]]].
```

- (b) the 2x2 shear matrix is [[a,1],[1,b]], where a is the horizontal shear and b is the vertical shear. Which means to shear y by 3x you would use the following, [[3,1],[1,0]].
- (c) Any reflection is just a rotation, in this case by π radians, this would be given by the matrix: $A = [[\cos(\pi), -\sin(\pi)], [\sin(\pi), \cos(\pi)]] = [[-1,0], [0,-1]]$. A reflection about some line is equivalent to a 3d rotation about that line by pi radians. Despite being a 3d rotation the fact the angle is π means the result will still be expressable as a 2d vector.
- (d) [[3,0,-2],[4,0,0],[1,-1,1]]
- (e) [[1,-5,4],[0,1,-6]]
- (f) i. True, the columns of an nxn identity matrix form a set of orthogonal basis vectors in Rⁿ, so any column vector in Rⁿ can be expressed as a linear combination of the columns of an identity matrix. Since T is a linear transformation we can transform a column vector into a linear combination of the unit vectors and then add them together and we get the same result as if we applied T to the original vector.
 - ii. True, a rotation of by angle ϕ about the origin can be expressed by the 2x2 matrix [[$\cos(\phi)$, $\sin(\phi)$,[$\sin(\phi)$, $\cos(\phi)$]]
 - iii. False, assume $f: \mathbb{R}^m \to \mathbb{R}^n$ and $g: \mathbb{R}^n \to \mathbb{R}^1$ are linear transformations, then $h = g \circ f: \mathbb{R}^m \to \mathbb{R}^1$ must also be linear. If we let A and B be the transformation matrices of f and g then f(x) = Ax and g(y) = By, thus h(x) = B(Ax) = (BA)x. Since we can express h as a matrix transformation it must be a linear transformation.
 - iv. False, $T:\mathbb{R}^n \to \mathbb{R}^m$ is onto if $\forall y \in \mathbb{R}^m \exists x \in \mathbb{R}^n$ such that T(x) = y. By the wording in the question T could just map every x onto 1 y.

v. True, Assume f(x) = Ax: $R^3 -> R^2$ was one to one, then there must exist an inverse function g(x) = Bx: $R^2 -> R^3$. This would imply that we could span R^3 with only vectors from R^2 , which is impossible, thus f cannot be one to one.