Departemen Statistika

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

PEMODELAN KLASIFIKASI PERTEMUAN #3

K-NEAREST NEIGHBOR

Bagus Sartono

bagusco@apps.ipb.ac.id
2020

Supervised Classification

Data terdiri atas amatan-amatan yang berisi informasi mengenai:

- Keanggotaan Kelas/Grup
- Karakteristik amatan (sering disebut sebagai variabel, atribut, feature)

Informasi dari data digunakan untuk memperoleh "aturan" bagi penentuan keanggotaan kelas dari amatan lainnya nanti.

Supervised Classification

Terbagi atas:

- Metode yang berbasis model
- Metode yang tidak berbasis model

Metode yang berbasis model

- Model berupa fungsi matematis
- Model berupa aturan logika

Supervised Classification

Metode yang tidak berbasis model

k-nearest neighbor

Metode yang berbasis model

- Regresi logistik
- Analisis diskriminan
- Classification tree
- SVM
- dll

K Nearest Neighbor

Nama lain:

- K-Nearest Neighbors
- Memory-Based Reasoning
- Example-Based Reasoning
- Instance-Based Learning
- Case-Based Reasoning
- Lazy Learning

KNN

Konsep dasar

- Menyimpan data training
- Mengklasifikasikan amatan baru berdasarkan kemiripan dengan amatan dalam data training
- Kelas yang dipilih adalah kelas dari amatan-amatan yang paling mirip (tetangga terdekatnya)

Ilustrasi: data training

Ilustrasi: masuk kelas mana amatan baru 🛑 ini?

Ilustrasi: k-NN dengan k = 1

 X_1

Ilustrasi: k-NN dengan k = 3

 X_2

Amatan baru masuk ke kelas lingkaran biru, karena dari tiga tetangga, dua dari kelas tersebut

Ilustrasi: k-NN dengan k = 5

 X_2

Amatan baru masuk ke kelas lingkaran biru, karena dari lima tetangga, tiga dari kelas tersebut

Perhatikan ilustrasi berikut

Age	Loan	Default	Distance
25	\$40,000	Ν	102000
35	\$60,000	Ν	82000
45	\$80,000	Ν	62000
20	\$20,000	Ν	122000
35	\$120,000	Ν	22000
52	\$18,000	Ν	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$1 <i>5</i> 0 , 000	Υ ←	8000
48	\$142,000	?	

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Perhatikan ilustrasi berikut

Age	Loan	Default	Distance
0.125	0.11	Ν	0.7652
0.375	0.21	Ν	0.5200
0.625	0.31	N<	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Υ	0.6669
0.5	0.22	Υ	0.4437
1	0.41	Y	0.3650
0.7	1.00	Y	0.3861
0.325	0.65	Υ	0.3771
0.7	0.61	→ ;	

$$X_{s} = \frac{X - Min}{Max - Min}$$

Beberapa isu dalam analisis kNN

Bagaimana menghitung kemiripan antar amatan?

- Jarak apa yang digunakan? Euclid? Mahalanobis? Lainnya?
- Perlu pembakuan data? Penskalaan variabel?

Berapa banyak tetangga (k)?

- Saran:
 - Gunakan nilai ganjil
 - Lakukan validasi atau validasi silang

Ilustrasi: data

Data → ilustrasiknn.txt

Terdiri atas dua variabel x1 dan x2

Berisi data dari dua kelompok, yang diindikasikan oleh kolom 'class'

- class = 1, 14 amatan
- class = 2, 10 amatan

data <- read.table("D:/bagusco/Kuliah S2 --- Pemodelan
Klasifikasi/ilustrasiknn.txt", header=TRUE)</pre>

Ilustrasi: plot tebaran data

plot(data\$x1, data\$x2, col=data\$class)

Ilustrasi: plot tebaran data

Ilustrasi: mengidentifikasi kelas dari amatan baru, x1=15, x2=19

Ilustrasi: mengidentifikasi kelas dari amatan baru, x1=15, x2=19

```
training <- data[,1:2]
kelas <- as.factor(data[,3])
maudiprediksi <- c(15,19)

library(class)
prediksi <- knn(training, maudiprediksi, kelas, k = 5)
prediksi</pre>
```

Amatan dengan x1=15, x2=19 masuk ke class = 2

Ilustrasi: mengidentifikasi kelas dari amatan baru, x1=20, x2=19

Ilustrasi: mengidentifikasi kelas dari amatan baru, x1=20, x2=19

```
training <- data[,1:2]
kelas <- as.factor(data[,3])
maudiprediksi <- c(20,19)

library(class)
prediksi <- knn(training, maudiprediksi,
    kelas, k = 5)
prediksi</pre>
```

Amatan dengan x1=20, x2=19 masuk ke class = 1

Ilustrasi: mengidentifikasi batas antar kelas berdasarkan knn dengan k = 12

```
> m <- NULL
> a < - seq(8, 26, by = 0.5)
> b < - seq(14, 25, by = 0.5)
> for (i in a){
 for (i in b) {
  m <- rbind(m, c(i, j))</pre>
prediksi \leftarrow knn(training, m, kelas, k = 12)
> plot(m[,1], m[,2],
         col=ifelse(prediksi=="1",
         "cyan", "yellow"),
         pch=ifelse(prediksi=="2",17,12))
                                                        10
                                                                15
                                                                                  25
> points(data$x1, data$x2, col=data$class,
                                                                   m[, 1]
         pch=ifelse(data$class>1,17,12),
cex=2)
```

Ilustrasi: mengidentifikasi batas antar kelas berdasarkan knn dengan k = 3

```
> m <- NULL
> a < - seq(8, 26, by = 0.5)
> b < - seq(14, 25, by = 0.5)
> for (i in a){
 for (i in b) {
  m <- rbind(m, c(i, j))</pre>
prediksi \leftarrow knn(training, m, kelas, k = 3)
> plot(m[,1], m[,2],
         col=ifelse(prediksi=="1",
         "cyan", "yellow"),
                                                      10
                                                               15
                                                                        20
                                                                                 25
         pch=ifelse(prediksi=="2",17,12))
                                                                  m[, 1]
> points(data$x1, data$x2, col=data$class,
         pch=ifelse(data$class>1,17,12),
cex=2)
```

Ilustrasi: mengidentifikasi batas antar kelas berdasarkan knn dengan k = 1

```
> m < - NUII
> a < - seq(8, 26, by = 0.5)
> b < - seq(14, 25, by = 0.5)
> for (i in a){
 for (i in b) {
  m <- rbind(m, c(i, j))</pre>
prediksi \leftarrow knn(training, m, kelas, k = 1)
> plot(m[,1], m[,2],
         col=ifelse(prediksi=="1".
         "cyan", "yellow"),
                                                      10
                                                               15
                                                                        20
                                                                                 25
         pch=ifelse(prediksi=="2",17,12))
> points(data$x1, data$x2, col=data$class,
                                                                  m[, 1]
         pch=ifelse(data$class>1,17,12),
cex=2)
```

Perbedaan batas kelas hasil kNN dengan k berbeda-beda

Mana yang lebih baik?

Gunakan validasi atau validasi silang