# CS 371 Notes

# Thomas Liu

# April 13, 2024

# Contents

| 1 | Cha | pter 1: Floating Point Arithmetic                       | 4   |
|---|-----|---------------------------------------------------------|-----|
|   |     | 1.0.1 Definition: Approximation                         | 4   |
|   | 1.1 | Section 1.1 Floating Point number System                | 4   |
|   |     | 1.1.1 Defintion: Floating Point System                  | 4   |
|   |     | 1.1.2 Definition: Normalized                            | 4   |
|   |     | 1.1.3 General Formula                                   | 4   |
|   |     | 1.1.4 Definition: Machine Epsilon                       | 5   |
|   |     | 1.1.5 Definition: Subnormal Numbers                     | 5   |
|   | 1.2 | Rounding, Overflow, Underflow                           | 5   |
|   |     | 1.2.1 Definition: rounding                              | 5   |
|   |     | 1.2.2 Definition: Overflow, Underflow                   | 5   |
|   |     | 1.2.3 Theorem: Unit Roundoff                            | 6   |
|   | 1.3 | Standard Floating Point Systems                         | 6   |
|   |     | 1.3.1 Double Precision Format (64-bit (8-bytes) memory) | 6   |
|   | 1.4 | Floating Point Operations                               | 7   |
|   |     | 1.4.1 Definition                                        | 7   |
|   |     | 1.4.2 Proposition                                       | 7   |
|   | 1.5 | Condition of a Mathematical Problem                     | 7   |
|   |     | 1.5.1 Definition: Conditioning of $P$                   | 7   |
|   |     | 1.5.2 Vector Norms                                      | 7   |
|   |     | 1.5.3 Condition Number of a Problem                     | 7   |
| 2 | Cha | pter 2: Road Finding                                    | 8   |
|   | 2.1 |                                                         | 8   |
|   |     | 2.1.1 Intermediate Value Theorem                        | 8   |
|   |     | 2.1.2 Corollary                                         | 8   |
|   | 2.2 | Form Algorithm for Root Finding                         | 8   |
|   | 2.3 | Intro of Convergence Analysis                           | . 1 |
|   |     | 2.3.1 Error at Iteration                                | . 1 |
|   |     | 2.3.2 Order of Convergence                              | 1   |
|   | 2.4 |                                                         | 2   |

|   |      | 2.4.1   | Bisection Method                                                                                                                                                                        |
|---|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |      | 2.4.2   | Fixed Point Iteration                                                                                                                                                                   |
|   |      | 2.4.3   | Newton's Method                                                                                                                                                                         |
|   |      | 2.4.4   | Secant Method                                                                                                                                                                           |
| 3 | Nur  | merical | Linear Algebra 14                                                                                                                                                                       |
|   | 3.1  |         | $egin{array}{c} { m uction} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $                                                                                                                     |
|   |      | 3.1.1   | Determinant                                                                                                                                                                             |
|   |      | 3.1.2   | Theorem: Existence and Uniqueness of Solution of $A\vec{x} = \vec{b} \dots \dots$ |
|   | 3.2  | Guassi  | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                      |
|   |      | 3.2.1   | LU Factorization                                                                                                                                                                        |
|   |      | 3.2.2   | Guassian Elimination (full version)                                                                                                                                                     |
|   |      | 3.2.3   | Pivoting                                                                                                                                                                                |
|   | 3.3  | Condit  | tioning of $A\vec{x} = \vec{b}$ and stability of Gaussian Elimination                                                                                                                   |
|   |      | 3.3.1   | Matrix Norm                                                                                                                                                                             |
|   |      | 3.3.2   | Condition number of a matrix                                                                                                                                                            |
|   |      | 3.3.3   | Proposition                                                                                                                                                                             |
|   |      | 3.3.4   | Gaussian Elimination with Partial Pivoting                                                                                                                                              |
|   | 3.4  | Interat | tive Methods for Solving $A \vec{x} = \vec{b}$                                                                                                                                          |
|   |      | 3.4.1   | Definition                                                                                                                                                                              |
|   |      | 3.4.2   | Iterative Method                                                                                                                                                                        |
|   |      | 3.4.3   | Definition                                                                                                                                                                              |
|   |      | 3.4.4   | Definition: Stationary Iteration Based on Matrix Splitting                                                                                                                              |
|   |      | 3.4.5   | Jacobi Method                                                                                                                                                                           |
|   |      | 3.4.6   | Gauss-Seidel Method                                                                                                                                                                     |
|   |      | 3.4.7   | Successive Over-Relaxation (SOR)                                                                                                                                                        |
|   | 3.5  | Conve   | rgence of Iterative Methods                                                                                                                                                             |
|   |      | 3.5.1   | Definition: Spectral Radius of Matrix                                                                                                                                                   |
|   |      | 3.5.2   | Theorem: Convergence of Iterative Methods                                                                                                                                               |
|   | 3.6  | Definit | tion                                                                                                                                                                                    |
|   |      | 3.6.1   | Proposition                                                                                                                                                                             |
|   | 3.7  | Theore  | ${ m em}$                                                                                                                                                                               |
|   |      | 3.7.1   | Proposition                                                                                                                                                                             |
| 4 | Inte | erpolat | ion 20                                                                                                                                                                                  |
|   | 4.1  | Polyno  | omial Interpolation                                                                                                                                                                     |
|   |      | 4.1.1   | Vandermonde Matrix                                                                                                                                                                      |
|   |      | 4.1.2   | Lagrange Form                                                                                                                                                                           |
|   |      | 4.1.3   | Hermite Interpolation                                                                                                                                                                   |
|   | 4.2  | Piecew  | vise Polynomial Interpolation                                                                                                                                                           |
|   |      | 4.2.1   | Piecewise Linear Interpolation                                                                                                                                                          |
|   |      | 4.2.2   | Spline Interpolation                                                                                                                                                                    |
|   | 43   | Error   | Analysis for Polynomial Interpolation 29                                                                                                                                                |

|   |     | 4.3.1 Newton's Form                              | 29 |
|---|-----|--------------------------------------------------|----|
|   |     | 4.3.2 Error Estimate of Polynomial Interpolation | 30 |
| 5 | Nui | nerical Integration                              | 31 |
|   | 5.1 | Quadrature faced on Interpolating Polynomial     | 31 |
|   |     | 5.1.1 Midpoint Rule                              | 31 |
|   |     |                                                  | 31 |
|   |     | 5.1.3 Simpson's Rule                             | 32 |
|   |     | 5.1.4 Degree of Precision                        | 32 |
|   | 5.2 |                                                  | 33 |
|   | 5.3 |                                                  | 33 |
|   |     | 5.3.1 Orthogonal Polynomials                     | 33 |
| 6 | Dis | rete Fourier Methods                             | 34 |
|   | 6.1 | Introduction                                     | 34 |
|   | 6.2 |                                                  | 34 |
|   |     | 6.2.1 Fourier Series and Orthogonal Basis        | 34 |
|   |     |                                                  | 35 |
|   | 6.3 |                                                  | 36 |
|   |     |                                                  | 36 |
|   |     |                                                  | 37 |
|   |     | 6.3.3 FFT                                        | 37 |

# 1 Chapter 1: Floating Point Arithmetic

Numerical algorithm and computers are operating on finite precision arithmetic We don't have the totality of  $\mathbb{R}$  ar our disposal  $\rightarrow$  only a tiny position of it

# 1.0.1 Definition: Approximation

Let  $\hat{x}$  be an approximation to a real number x. Two fundamental measures of  $\hat{x}$ :

- absolute error:  $\triangle x = x \hat{x}$
- relative error:  $\delta x = \frac{x \hat{x}}{x}$

# 1.1 Section 1.1 Floating Point number System

# 1.1.1 Defintion: Floating Point System

A floating point system  $F \subset \mathbb{R}$  is subset of real numbers of following form:

$$Z = \pm (0.x_1 x_2 \cdots x_m)_b \times b^{\pm (y_1 y_2 \cdots y_e)_b}$$

where  $0 \le x_i \le b-1$ ,  $0 \le y_i \le b-1$ ,  $\forall 1 \le i \le m$ ,  $1 \le j \le e$  three parameters of F

- base:  $b_f$
- $\bullet$  mantissa:  $m_f$
- exponent:  $e_f$

$$F[b = b_f, m = m_f, e = e_f]$$

# 1.1.2 Definition: Normalized

A floating point number in  $F \subset \mathbb{R}$ 

$$Z = \pm (0.x_1 x_2 \cdots x_m)_b \times b^{\pm (y_1 y_2 \cdots y_e)_b}$$

is normalized when  $x_1 \geq 1$ 

#### 1.1.3 General Formula

$$(a_n a_{n-1} \cdots a_1 a_0 a_{-1} \cdots a_m)_b$$
  
=  $a_n b^n + a_{n-1} b^{n-1} + \cdots + a_1 b^1 + a_0 b^0 + a_{-1} b^{-1} + \cdots + a_{-m} b^{-m}$ 

# 1.1.4 Definition: Machine Epsilon

The distance from 1.0 to the next largest (normalized) floating point number is called machine epsilon, denoted by  $\epsilon$  mach

$$1 = (0.10 \cdots 0)_b \times b^{(0 \cdots 01)_b}$$

$$next = (0.10 \cdots 01)_b \times b^{(0 \cdots 01)_b}$$

$$\epsilon \ mach = (0.0 \cdots 01)_b \times b^{(0 \cdots 01)_b} = b^{-m} \times b = b^{1-m}$$

- number m is also called precision
- $\epsilon$  mach is also called machine precision
- $\epsilon \ mach = b^{1-m}$
- important: formula  $\epsilon$   $mach = b^{1-m}$  is subject to slight change in practical (single / double formats)

#### 1.1.5 Definition: Subnormal Numbers

The system F can be extended by including (filling the gap) subnormal numbers which are represented by:

$$\pm (0.0x_2 \cdots x_m)_b \times b^{-(b_{-1},b_{-1},\cdots,b_{-1})_b}$$

where  $0 \le x_2, x_3 \cdots, x_m \le b - 1$ , and  $(0.0x_2 \cdots x_m)_b \ne 0$ 

- closest to zero normalized numbers:  $\pm (0.10\cdots 0)_b \times b^{-(b_{-1},b_{-1},\cdots,b_{-1})_b}$
- subnormal numbers are closer to 0 than normalized numbers
- if we denote the smallest nonnormalized positive number as  $\lambda$ , then subnormal numbers fill the gap between 0 and  $\lambda$  with the same spacing between  $\lambda$  and  $b\lambda$

# 1.2 Rounding, Overflow, Underflow

# 1.2.1 Definition: rounding

Let  $G \subset \mathbb{R}$  denote all read numbers of the form

$$z = \pm (0.x_1 \cdots x_m)_b \times b^y$$
  $y \in \mathbb{Z}$ 

For  $\forall x \in \mathbb{R}$ , then fl(x) denotes an element of G nearest to x, and the transformation  $x \to fl(x)$  is called rounding

#### 1.2.2 Definition: Overflow, Underflow

We say fl(x) overflows if  $|fl(x)| > \max\{|z| : z \in F\}$  and fl(x) underflow if  $0 < |fl(x)| < \min\{|z| : 0 \neq z \in F\}$ 

#### 1.2.3 Theorem: Unit Roundoff

Every real number x lying in the range (such that fl(x) is normalized in F) of F can be rounded to an element in F with a relative error no larger than  $u = \frac{1}{2}\epsilon$  mach Mathematically, if  $x \in \mathbb{R}$  lies in the range of F, then

$$fl(x) = x(1+\delta), |\delta| < u = \frac{1}{2}\epsilon \ mach$$

# 1.3 Standard Floating Point Systems

• single precision format (32-bit (4-bytes) memory)

s 
$$\mid m = 23 \text{ bits } \mid e = 8 \text{ bits}$$

where s is sign bit of mantissa, s = 1 means negative, s = 0 means positive

- we have  $2^8 = 256$  exponents from 0 to  $255 \rightarrow [0, 255]$
- want a range of signal exponents
- convertion: they are subtracted by a bias  $127 \rightarrow [-127, 128]$
- $e = (0 \cdots 0)_2 \rightarrow -127 \& e = (1 \cdots 1) \rightarrow 128$ , special numbers (non-normalized)

exponent mantissa= 0 mantissa
$$\neq$$
 0  $(00000000)_2$   $\pm$ zero subnormal numbers  $(11111111)_2$   $\pm$ infinity NaN (not a number)

- when  $e \in [-126, 127]$ , when string normalized values, instead of wasting a bit on storing the leading  $x_1 1$ , this is assumed
- a general formula

$$x_0|x_1\cdots x_{23}|y_1\cdots y_8\to (-1)^{x_0}\times (1\cdot x_1x_2\cdots x_{23})_2\times 2^{(y_1\cdots y_8)_2-127}$$

# 1.3.1 Double Precision Format (64-bit (8-bytes) memory)

we omit details about double precision except:

- 1. it's matlab default
- 2.  $10^{-16}$  is a special number for (modern) numerical analyst since  $eps("double") \approx 2.2204 \times 10^{-16}$ . When we have an error of  $\approx 10^{-16}$  from our algorithm we are happy

# 1.4 Floating Point Operations

#### 1.4.1 Definition

Floating point addition  $\oplus$  is defined by

$$\forall x, y \in \mathbb{R} : x \oplus y = fl(fl(x) + fl(y))$$

subtraction  $\ominus$ , multiplication  $\otimes$  & division  $\oslash$  can be similarly defined

# 1.4.2 Proposition

For any floating point number systems F,  $x \oplus y = (fl(x) + fl(y))(1 + s)$  with  $|s| \le u$ , the unit roundoff. same applies to  $\ominus, \otimes, \bigcirc$ 

#### 1.5 Condition of a Mathematical Problem

Consider a problem P with input  $\vec{x}$  and output (exact)  $\vec{z} = f_p(\vec{x})$ 

# 1.5.1 Definition: Conditioning of P

- P is said to be well-conditioned w.r.t. the absolute error if small change  $\triangle \vec{x}$  in  $\vec{x}$  results in small changes  $\triangle \vec{z}$  in  $\vec{z}$
- P is said to be ill-conditioned w.r.t. the absolute error if small change  $\triangle \vec{x}$  in  $\vec{x}$  results in large changes  $\triangle \vec{z}$  in  $\vec{z}$
- similarly define with w.r.t. the relative error

#### 1.5.2 Vector Norms

Suppose V is a vector space over  $\mathbb{R}$ . Then  $|\cdot|$  is a vector norm on V iff  $||\vec{v}|| \geq 0$ , and

- $||\vec{v}|| = 0$  iff  $\vec{v} = \vec{0}$
- $||\lambda \vec{v}|| = |\lambda|||\vec{v}|| \ \forall \vec{v} \in V, \ \forall \lambda \in \mathbb{R}$
- $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}|| \ \forall \vec{u}, \vec{v} \in V$  (triangle inequality)

#### 1.5.3 Condition Number of a Problem

 $\bullet$  The condition number of a problem P w.r.t. the absolute error is given by the absolute condition number

$$\kappa_A = \frac{||\triangle \vec{z}||}{||\triangle \vec{x}||}$$

ullet The condition number of a problem P w.r.t. the relative error is given by the relative condition number

$$\kappa_R = \frac{||\triangle \vec{z}||/||\vec{z}||}{||\triangle \vec{x}||/||\vec{x}||}$$

# 2 Chapter 2: Road Finding

# 2.1

# 2.1.1 Intermediate Value Theorem

if f(x) is continuous on a closed interval [a,b] and  $c \in [f(a),f(b)]$ , then  $\exists x^* \in [a,b]$  such that  $f(x^*) = c$ 

# 2.1.2 Corollary

If  $f(a) \cdot f(b) < 0$  for a closed interval [a, b], then [a, b] will contain at least one root  $x^*$  as long as f(x) is continuous

# 2.2 Form Algorithm for Root Finding

| 2.2.1 | Bisection method.                                                                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|
|       | Theorem 2.3 If fix, is continuous on [a., b.) such that                                                                             |
|       | Bisection method.  Theorem 2.3 If fix, is continuous on [ao, bo] such that  f(ao). f(bo) < 0 then the interval [ak, bk], defined by |
|       |                                                                                                                                     |
|       | [ ] aku+bk-1 ]                                                                                                                      |
|       | $[a_{k-1}, \frac{a_{k-1}+b_{k-1}}{2}] \leq 0$                                                                                       |
|       | San bel = 2                                                                                                                         |
|       | 200k, DR. 1                                                                                                                         |
|       |                                                                                                                                     |
|       | ~ / / 2                                                                                                                             |
|       |                                                                                                                                     |
|       | Then, it holds that flak) flak) so for any k >1.                                                                                    |
|       |                                                                                                                                     |

|        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 6k-1 - 6k-1                                                                                                                                                                                                                   |
|        | $f\left(\frac{\partial k_{-1} + b_{h,i}}{\partial a_{h,i}}\right) f\left(a_{h,i}\right) \leq o \Rightarrow a_{h}$                                                                                                             |
|        |                                                                                                                                                                                                                               |
|        | $\left(\frac{(\Delta k_{ij} + b_{k,l})}{2}\right) \left((a_{kij}) >_{o} => $ are                                                                                                                                              |
|        |                                                                                                                                                                                                                               |
|        | Algorithm 2.1 (7) section method) under the condition                                                                                                                                                                         |
|        | Algorithm 2.1 (Bisection method)  Tupnt: f(x), [a,b], tolerance \( \tau \) (that \$\frac{1}{2}(a) \) \$\frac{1}{2}(b) \( \text{CO} \) Detput: \( \text{X} \), an approximant of \( \text{X}^* \) (\( \frac{1}{2}(x^*) = 0 \)) |
|        | while  b-a  > ~ OR:  f(\frac{a+b}{2}) > ~                                                                                                                                                                                     |
|        | $C = (\alpha + b)/2$                                                                                                                                                                                                          |
|        | if f(n) * f(c) < 0                                                                                                                                                                                                            |
|        | b=c<br>else                                                                                                                                                                                                                   |
|        | A= C                                                                                                                                                                                                                          |
|        | end if                                                                                                                                                                                                                        |
|        | end while                                                                                                                                                                                                                     |
|        | $\chi = (a+b)/2$                                                                                                                                                                                                              |
|        |                                                                                                                                                                                                                               |
|        |                                                                                                                                                                                                                               |
| 2.2.2. | Fixed point Aeration                                                                                                                                                                                                          |
|        | Pefinition 2.1 We say that X* is a fixed point of                                                                                                                                                                             |
|        |                                                                                                                                                                                                                               |
|        | Problem Root finding of fix is equivalent to finding                                                                                                                                                                          |
|        | the fixed print of f(xx)=0 => xx-f(xx)=xx                                                                                                                                                                                     |
|        | Problem Root finding of f(x) is equivalent to finding  the fixed point of $f(x^*)=0 \Rightarrow x^*-f(x^*)=x^*$ $g(x) \triangleq x - f(x) \ g(x^*)=x^*= x^*-f(x^*)=x^*= f(x^*)=0$                                             |
|        | * The fixed point iteration goes like this.                                                                                                                                                                                   |
|        | * The fixed point iteration goes like this:<br>$X_{AH} = g(x_A)  n = 0, 1, 2, 3$                                                                                                                                              |
|        | U                                                                                                                                                                                                                             |





# 2.3 Intro of Convergence Analysis

# 2.3.1 Error at Iteration

For a sequence  $\{x_i\}_{i=0}^{\infty}$  and point  $x^*$ , the error at iteration i is

$$e_i = x_i - x^*$$

# 2.3.2 Order of Convergence

The sequence  $\{x_i\}_{i=0}^{\infty}$  converges to  $x^*$  with order of convergence q iff

- 1.  $\{x_i\}_{i=0}^{\infty}$  converges to  $x^*$
- 2.  $|e_{i+1}| = c_i |e_i|^q$  where  $\lim_{i \to \infty} c_i = c^*$  for some constant  $c^* \in (0, \infty)$
- 3. (special case): when q = 1, we call the convergence linear and we require  $c^* < 1$ , which is also called the rate of convergence

| Method      | Guaranteed Convergence                      | Order                  | Knowledge of $f'(x)$ |
|-------------|---------------------------------------------|------------------------|----------------------|
| Bisection   | yes                                         | linear                 | nope                 |
| Fixed-point | not always, depend on $g(x)$ and $x_0$      | linear                 | nope                 |
| Newton      | not always, depend on $f(x)$ and $x_0$      | quadratic              | yes                  |
| Secant      | not always, depend on $f(x), x_0$ and $x_1$ | $\frac{1+\sqrt{5}}{2}$ | nope                 |

# 2.4 Convergence Theory of the Root Finding Algorithm

#### 2.4.1 Bisection Method

Consider the sequence  $\{L_i\}_{i=1}^{\infty}$  with  $L_i = |b_i - a_i|$  and  $x_i = \frac{a_i + b_i}{2}$ 

- $\bullet \ L_{i+1} = \frac{1}{2}L_i$
- $|e_n| \le L_n \le (\frac{1}{2})^n L_0 = (\frac{1}{2})^n (b_0 a_0)$

#### 2.4.2 Fixed Point Iteration

Suppose g is continuous on [a,b]. Then g is said to be a contraction on [a,b] if there exists a constant  $L \in (0,1)$  such that

$$|g(x) - g(y)| \le L|x - y| \quad \forall x, y \in [a, b]$$

# Proposition

If g(x) is differentiable on [a,b] with  $|g'(x)| < 1 \ \forall x \in [a,b]$ . Then g(x) is a contraction on [a,b] with

$$L = \max_{x \in [a,b]} |g'(x)|$$

# Definition: Mean Value Theorem

If g(x) is continuous on [a, b] and differentiable on (a, b), then  $\exists c \in (a, b)$  such that the tangent at c is parallel to the secant line connecting (a, g(a)) and (b, g(b))

$$g'(c) = \frac{g(b) - g(a)}{b - a}$$

# Theorem: Cantraction Mapping Theorem

Let g be continuous on [a, b] and assume that

- $g(x) \in [a, b]$
- g(x) is contraction on [a, b]

Then

- g has a unique fixed point  $x^*$  in the interval [a, b]
- the sequence  $\{x_k\}$  defined by

$$x_{k+1} = g(x_k)$$

converges to  $x^*$  as  $k \to \infty$  for any starting point  $x_0$  in [a, b]

# Corollary: Convergence of Fixed Point Iteration

Let g'(x) be continuous on [a, b] and assume that

- $g(x) \in [a, b]$
- $\bullet \quad \max_{x \in [a,b]} |g'(x)| < 1$

Then

- 1. g has a unique fixed point  $x^*$  in the interval [a, b]
- 2. the sequence  $\{x_k\}_{k=0}^{\infty}$  defined by

$$x_{k+1} = g(x_k)$$

converges to  $x^*$  as  $k \to \infty$  for any starting point  $x_0$  in [a, b]

3. the sequence  $\{x_k\}_{k=0}^{\infty}$  converges with

$$|e_{k+1}| = c_k |c_k|$$

and

$$\lim_{k \to \infty} c_k = |g'(x^*)|$$

If  $|g'(x^*)| \in (0,1)$ , we have linear convergence If  $g'(x^*) = 0$ , we have faster convergence

# Divergence of Fixed Point Iteration

Let g'(x) be continuous on [a,b] and g(x) has a unique fixed point  $x^*$  on [a,b] If  $|g'(x^*)| > 1$ , then the sequence  $\{x_k\}_{k=0}^{\infty}$  diverges for any starting point  $x_0$ 

# 2.4.3 Newton's Method

# Convergence of Newton's Method

If  $f(x^*) = 0$ ,  $f'(x^*) \neq 0$  and f, f', f'' are all continuous in  $I_{\delta} = [x^* - \delta, x^* + \delta]$  with  $x_0$  sufficiently close to  $x^*$  then the sequence  $\{x_k\}_{k=0}^{\infty}$  converges quadratically to  $x^*$  with

$$|e_{k+1}| = c_k |e_k|^2$$

where 
$$\lim_{k\to\infty} c_k = \frac{|f''(x^*)|}{|2f'(x)|}$$

#### 2.4.4 Secant Method

# Convergence of Secant Method

If  $f(x^*) = 0$ ,  $f'(x^*) \neq 0$  and f, f', f'' are all continuous in  $I_{\delta} = [x^* - \delta, x^* + \delta]$  with  $x_0, x_1$  sufficiently close to  $x^*$  then the sequence  $\{x_k\}_{k=0}^{\infty}$  converges to  $x^*$  with order of convergence  $q = \frac{1}{2}(1 + \sqrt{5}) \approx 1.62$ 

$$|e_{k+1}| = c_k |e_k|^{\frac{1+\sqrt{5}}{2}} \& \lim_{k \to \infty} c_k = c^* > 0$$

# 3 Numerical Linear Algebra

# 3.1 Introduction

#### 3.1.1 Determinant

The determinant of matrix  $A \in \mathbb{R}^{n \times n}$  is given by

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

- i can be any number from 1 to n
- $A_{ij}$  is the  $(n-1) \times (n-1)$  matrix obtained by removing row i and column j from the original matrix A

# 3.1.2 Theorem: Existence and Uniqueness of Solution of $A\vec{x} = \vec{b}$

Case 1:  $\det(A) \neq 0$ ,  $\vec{x} = A^{-1}\vec{b}$  is the unique solution of  $A\vec{x} = \vec{b}$ Case 2:  $\det(A) = 0$ 

- if  $\vec{b} \in \text{Range}(A)$  then  $A\vec{x} = \vec{b}$  has infinite many solutions
- if  $\overrightarrow{b} \notin \text{Range}(A)$  then  $A\overrightarrow{x} = \overrightarrow{b}$  has no solutions

#### 3.2 Guassian Elimination

#### 3.2.1 LU Factorization

#### Gaussian Elimination

- Phase 1: reduce the matrix A to upper triangle form
- Phase 2: solve the reduced system

#### Definition

A matrix  $A \in \mathbb{R}^{n \times n}$  with components  $a_{ij}$  is said to be

- upper-triangular: if  $a_{ij} = 0$  for all i > j
- lower-triangular: if  $a_{ij} = 0$  for all i < j

A is said to be triangular if it is eiter upper- or lower-triangular

Algorithm: Forward & Backward Substitutions

# 

# Inversion Property

 $L_i = m_i^{-1}$  can be obtained from  $m_i$  by swapping the signs of the off-diagonal elements

# Combination Property

$$L = L_1 L_2 \cdots L_{n-1} = m_1^{-1} m_2^{-1} \cdots m_{m-1}^{-1}$$

 $L = L_1 L_2 \cdots L_{n-1} = m_1^{-1} m_2^{-1} \cdots m_{m-1}^{-1}$  L can be obtained by placing all off-diagonal elements of  $L_i$  in the corresponding position in L

# LU Factorization/Decomposition

For  $A \in \mathbb{R}^{n \times n}$ 

LU factorization may be computed as follow

$$A^{(1)} = A$$

$$A^{(2)} = m_1 A^{(1)}$$

$$A^{(3)} = m_2 A^{(2)} = m_2 m_1 A^{(1)}$$

$$\vdots$$

$$A^{(n)} = m_{n-1} \cdots m_{(2)} m_{(1)} A^{(1)}$$

 $m_j$  is a matrix where the diagonal is 1,  $c_{ij} = -\frac{a_{ij}}{a_{ji}}$  for  $j+1 \le i \le n$ 

# 3.2.2 Guassian Elimination (full version)

- phase 1: decompose A = LU,  $LU\vec{x} = \vec{b}$
- phase 2: solve  $L\vec{y} = \vec{b}$  for  $\vec{y}$  by forward substitution
- phase 3: solve  $U\vec{x} = \vec{y}$  for  $\vec{x}$  by backward substitution

# 3.2.3 Pivoting

#### Definition

 $P \in \mathbb{R}^{n \times n}$  is a permutation matrix iff P is obtained from the identity matrix by swapping any number of rows

#### Theorem

For all  $A \in \mathbb{R}^{n \times n}$  there exists a permutation matrix P, a unit lower triangular matrix L and an upper triangular matrix U such that

$$PA = LU$$

# Corollary

If A is nonsingular then  $A\vec{x} = \vec{b}$  can be solved by LU factorization applied to PA

# Algorithm and Computational Cost

Algorithm 3.3 Phase /: A = LU. L = diag(1) : identity matrix. U = Afor P = 1 : N-1for Y = P+1 : M t = -U(Y, p) / U(P, P) U(Y, p) = 0for C = P+1 : M U(Y, c) = U(Y, c) + t U(P, c)end for L(Y, p) = -tend for

end for

Algorithm 3.3 Phase 2: 
$$Ly = b$$
 forward substitution

 $y = b$ 

for  $r = 2: n$ 

for  $c = 1: r - 1$ 
 $y(r) = y(r) - L(r,c) * y(c)$ 

end for

end for

Algorithm 3.3 Phase 3: 
$$U\vec{x} = \vec{y}$$
 backward substitution

 $X = y$ 

for  $Y = M : -1 : 1$ 
 $Y = Y = X(T) - U(T, C) \times X(C)$ 
 $Y = Y = X(T) - U(T, C) \times X(C)$ 

end for

 $X(T) = X(T) / U(T, C)$ 

end for

# 3.3 Conditioning of $A\vec{x} = \vec{b}$ and stability of Gaussian Elimination

• condition of the mathematical problem  $A\vec{x} = \vec{b}$ 

$$\vec{x} = f_p(A, \vec{b}) = A^{-1}\vec{b}$$

- absolute condition number

$$\mathcal{K}_A = ||\triangle \vec{x}||/||\triangle (A, \vec{b})||$$

- relative condition number

$$\mathcal{K}_{R} = \frac{||\triangle \vec{x}||}{||\vec{x}||} / \frac{||\triangle (A, \vec{b})||}{||(A, \vec{b})||}$$

# 3.3.1 Matrix Norm

# Definition

The natural matrix p-norm:

$$||A||_p = \sup_{||vx||_p \neq 0} \frac{||A\overrightarrow{x}||_p}{||\overrightarrow{x}||_p}$$

# Theorem

 $||A||_p$  is a norm  $\forall A \in \mathbb{R}^{m \times n}$ 

- $||A||_p \ge 0$ ,  $||A||_p = 0$  iff A = 0
- $||\alpha A||_p = |\alpha|||A||_p \ \forall \alpha \in \mathbb{R}$
- $||A + B||_p \le ||A||_p + ||B||_p \ \forall B \in \mathbb{R}^{m \times n}$

# Proposition

- $||A\overrightarrow{x}||_p \le ||A||_p ||\overrightarrow{x}||_p$
- $||AB||_p \le ||A||_p ||B||_p$

# Proposition

• 
$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

# Singular Value Decomposition

\* Given A & Raxan, a Singular value decomposition (SVD)

of A is a factorization:

A = UEV

Where · UE |Raxan is orthogonal (UUT=UTU=I)

· V & Raxan is orthogonal

· E | Raxan is diagonal

E = (TI

TI

The diagonal entries To of I are

nonnegative and in nondecreasing order

the singular values for singular

uniquely determined.

#### 3.3.2 Condition number of a matrix

The condition number of a matrix A (det $(A) \neq 0$ ) is

$$\mathcal{K}(A) = ||A||||A^{-1}||$$

$$\mathcal{K}_p(A) = ||A||_p ||A^{-1}||_p$$

# 3.3.3 Proposition

For  $A \in \mathbb{R}^{n \times n}$ ,  $det(A) \neq 0$  and p = 2 for vector and matrix norms in question

$$\mathcal{K}_2(A) = ||A||_2 ||A^{-1}||_2 = \frac{\sqrt{1}(A)}{\sqrt{n}(A)}$$

# 3.3.4 Gaussian Elimination with Partial Pivoting

Essentially, during every step of the LU factorization, ie steps where we compare  $m_i$ , we rearrange the rwo such that we get the largest pivoting element (in absolute value)

# 3.4 Interative Methods for Solving $A\vec{x} = \vec{b}$

#### 3.4.1 Definition

 $A \in \mathbb{R}^{n \times n}$  is a square matrix iff the number of nonzero elements in A is "much smaller" than  $n^2$ , or equally, "most" of the elements of A are zero

#### 3.4.2 Iterative Method

For solving  $A\vec{x} = \vec{b}$ , general stationary itertive method takes the form

$$\overrightarrow{x}^{(k+1)} = G\overrightarrow{x}^{(k)} + \overrightarrow{c}$$

where

- G is called iteration matrix
- if G does not depend on k, we have stationary iterative method

#### 3.4.3 Definition

TL residual of a linear system  $A\vec{x} = \vec{b}$  for some vector  $\vec{u}$  is given by  $\vec{r} = \vec{b} - A\vec{u}$ 

# 3.4.4 Definition: Stationary Iteration Based on Matrix Splitting

The iteration for solving  $A\vec{x} = \vec{b}$  based on splitting A = M + N is given by

$$G = -M^{-1}N$$

#### 3.4.5 Jacobi Method

Algorithm 3.5 (Jacobi idenations)

(initial guess 
$$\vec{\chi}^{(0)}$$
 $k=0$ ;  $\vec{r}^{(0)}=\vec{b}-A\vec{\chi}^{(0)}$ 

while  $\|\vec{r}^{(k)}\|_2/\|\vec{r}^{(0)}\|_2 > Trel$  do

for  $i=l\sim n$ 
 $\vec{v}=0$ 

for  $j=l\sim n$ 

# 3.4.6 Gauss-Seidel Method

| Algorithm 3.6 (Guass-Seidel iterations)                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------|
| initial guess $\overline{\chi}$ ; initial residual: $\overrightarrow{F}^{(0)} = \overrightarrow{b} - A \overrightarrow{\chi}$ |
| $\gamma = \gamma^{(0)}$                                                                                                       |
| while 17/2/1700/12 > Trel do                                                                                                  |
| for i=1~n                                                                                                                     |
| 0=0                                                                                                                           |
| $for \hat{s} = 1 \sim m$                                                                                                      |
| if it i                                                                                                                       |
| σ= σ + aij X;                                                                                                                 |
| end                                                                                                                           |
| end                                                                                                                           |
| $\chi_i = (b_i - \sigma)/a_{ii}$                                                                                              |
| ond.                                                                                                                          |
| デーザー人文                                                                                                                        |
| end                                                                                                                           |
|                                                                                                                               |

# 3.4.7 Successive Over-Relaxation (SOR)

• matrix spliting: A = M + N where

$$M = \frac{1}{w}D + L$$

$$N = (1 - \frac{1}{w})D + U$$

w: relaxation factor (w = 1 is Gauss-Seidel) method

• iteration matrix

$$G = (\frac{1}{w}D + L)^{-1}((\frac{1}{w} - 1)D - U)$$

• iteration:

$$\overrightarrow{x}^{(k+1)} = (\frac{1}{w}D + L)^{-1}((\frac{1}{w} - 1)D - U)\overrightarrow{x}^{(k)} + \frac{1}{w}(\frac{1}{w}D + L)^{-1}\overrightarrow{b}$$

Algorithm 3.7 (SOR Itenations)

initial guess 
$$\overline{X}$$
; initial residual:  $\overline{\Gamma}^{(0)} = \overline{b} - A\overline{X}$ 
 $\overline{T} = \overline{\Gamma}^{(0)}$ 

while  $\|\overline{T}\|_2 / \|\overline{T}^{(0)}\|_2 > Trel$  do

for  $i = 1 \sim n$ 
 $\overline{T} = 0$ 

for  $j = 1 \sim n$ 

if  $j \neq i$ 
 $\overline{T} = \overline{T} + Aij X_j$ 

end

 $X_i = (1 - \omega) X_i + \omega (b_i - \overline{T}) / aii$ 

end

 $\overline{T} = \overline{b} - A\overline{X}$ 

end

# 3.5 Convergence of Iterative Methods

# 3.5.1 Definition: Spectral Radius of Matrix

Let  $\{\lambda_1, \dots, \lambda_n\}$  be the set of eigenvalus of  $A \in \mathbb{R}^{n \times n}$ . The spectral radius of A is given by

$$\rho(A) = \max\{|\lambda_1|, \cdots, |\lambda_n|\}$$

# 3.5.2 Theorem: Convergence of Iterative Methods

Let iterative method given by  $\vec{x}^{(k+1)} = G\vec{x}^{(k)} + \vec{c}$  with initial guess  $\vec{x}^{(0)}$ . Then it converges for all  $\vec{c} \in \mathbb{R}^n$  iff

$$\rho(G) < 1$$

#### 3.6 Definition

 $A \in \mathbb{R}^{n \times n}$  is strictly diagonally dominant if if for all  $i = 1, \dots, n$ ,

$$|a_{ii}| > \sum_{j=1, j \neq i}^{m} |a_{ij}|$$

# 3.6.1 Proposition

A strictly diagonally dominant matrix A is nonsingular

# 3.7 Theorem

Consider  $A\vec{x} = \vec{b}$  and starting vector  $\vec{x}^{(0)}$ . Let  $\{x^{(i)}\}_{i=0}^{\infty}$  be sequence generated by either Jacobi, Gauss-Seidel method. If A is strictly diagonally dominant, the sequence converges to the unique solution of  $A\vec{x} = \vec{b}$ 

#### 3.7.1 Proposition

For any natural matrix norm,  $||\cdot||$ , and a square matrix  $G \in \mathbb{R}^{n \times n}$ 

$$\rho(G) \le ||G||$$

# 4 Interpolation

# 4.1 Polynomial Interpolation

# 4.1.1 Vandermonde Matrix

# Definition

Given n+1 discrete data point  $\{(x_i, f_i)\}_{i=0}^n$  with  $x_i \neq x_j$ , for  $i \neq j$ , the interpolating polynomial  $P_n$  is given by

$$P_n(x) = a_0 + a_1 x + \dots + a_n x^n$$

st 
$$P_n(x_i) = f_i$$
 for  $0 \le i \le n$ 

# Algorithm

solver  $(n+1) \times (n+1)$  linear system

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_n x_0^n = f_0 \\ a_0 + a_1 x_1 + \dots + a_n x_1^n = f_1 \\ \vdots \\ a_0 + a_1 x_n + \dots + a_n x_n^n = f_n \end{cases}$$

can be written as  $V\vec{a} = \vec{f}$ 

# Proposition

The determinant of V is

$$det(V) = \prod_{0 \le i < j \le n} (x_j - x_i)$$

#### Theorem

Interpolating polynomial  $P_n(x) \in P_n$  given  $\{(x_i, f_i)\}_{i=0}^n$  exists and unique

# 4.1.2 Lagrange Form

# Lagrange Form of Interpolating Polynomial

n+1 Lagrange polynomial for a set of points  $\{(x_i,f_i)\}_{i=0}^n$  are  $P_n$  polynomial that satisfy

$$l_i(x_j) \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

or

$$l_i(x_j) = f_{ij}(\text{kronecker symbol})$$

• we can write out  $l_i(x)$ 

$$l_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

• Lagrange form of iterpolating polynomial

$$P_n(x) = \sum_{i=0}^n f_i l_i(x)$$

# 4.1.3 Hermite Interpolation

#### Definition

Given  $\{(x_i, f_i, f_i')\}_{i=0}^n$ , Hermite interpolating polynomial  $H_n(x)$  is the polynomial that satisfies

$$p(x) \in P_{2n+1}$$

 $\operatorname{st}$ 

$$p(x_i) = f_i$$
 n+1 condition

$$p'(x_i) = f'_i$$
 n+1 condition $\rightarrow$ 2n+1 degree

thus

$$H_n(x) = \sum_{i=0}^n f_i h_i(x) + \sum_{i=0}^n f'_i \tilde{h}_i(x)$$

where

$$h_i(x) = [1 - 2l'_i(x_i)(x - x_i)](l_i(x))^2$$
$$\tilde{h}_i(x) = (x - x_i)(l_i(x))^2$$

# Proposition

For given  $\{(x_i, f_i, f_i')\}_{i=0}^n$  where  $x_i \neq x_j$ , there exists unique interpolating polynomial  $p(x) \in P_{2n+1}$  st

$$\begin{cases} p(x_i) = f_i \\ p'(x_i) = f'_i \end{cases}$$

and  $p(x) = H_n(x)$ 

# 4.2 Piecewise Polynomial Interpolation

#### 4.2.1 Piecewise Linear Interpolation

# Definition

Define a set of polynomial  $p_1^{[i]}(x), 1 \leq j \leq n$  where domain of  $p_1^{[i]}(x)$  is  $I_i = [x_{i-1}, x_i]$ 

$$p_1^{[i]}(x) = \frac{x - x_2}{x_{i-1} - x_2} f_{i-1} + \frac{x - x_{i-1}}{x_i - x_{i-1}} f_i$$

The interpolating piecewise polynomial  $P_1(x)$  is equal to  $p_1^{[i]}(x)$  on  $I_i = [x_{i-1}, x_i]$  for all

# 4.2.2 Spline Interpolation

#### Definition

Given  $\{(x_i, f_i)\}_{i=0}^n$ , p(x) is a degree k spline if

- p(x) is piecewise  $P_k$  polynomial on each interval  $I_i = [x_{i-1}, x_i]$ , denote  $p^{[i]}(x)$  as restriction of p(x) on  $I_i$
- $p^{[i]}(x_{i-1}) = f_{i-1}$  and  $p^{[i]}(x_i) = f_i$
- for each iterior node  $x_i$

$$\begin{cases} p^{[j]'}(x_j) = p^{[j]'}(x_j) \\ p^{[j]''}(x_j) = p^{[j]''}(x_j) \\ \vdots \\ p^{[j]^{(k-1)}}(x_j) = p^{[j](k-1)}(x_j) \end{cases}$$

- - free boundary:  $p^{[1]''}(x_0) = 0, p^{[n]''}(x_n) = 0$ 
  - clamped boundary: specify the  $1^{st}$  derivatives at the end with  $f'_0$ ,  $f'_n$ :  $p^{[1]'}(x_0) = f'_0$ ,  $p^{[n]'}(x_n) = f'_n$
  - periodic boundary: if  $f_0 = f_n$ , we impose that first and second derivatives also math end points

$$p^{[1]'}(x_0) = p^{[n]'}(x_n)$$
$$p^{[1]''}(x_0) = p^{[n]''}(x_n)$$

# 4.3 Error Analysis for Polynomial Interpolation

#### 4.3.1 Newton's Form

#### Proposition

For all  $f[x_0, x_1, \cdots, x_n]$ 

$$f[x_0, x_1] = \frac{f_1 - f_0}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$f[x_0, x_1, \cdots, x_n] = \frac{f[x_1, x_2, \cdots, x_n] - f[x_0, x_1, \cdots, x_{n-1}]}{x_n - x_0}$$

#### **Definition: Newton's Form**

Given  $\{(x_i, f_i)\}_{i=0}^n$  with distinct  $x_i$ , Newton's form at interpolating polynomial of degree n of f(x) can be written

$$P_n(x) = f_0 + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \dots + (x - x_0) \cdot \dots \cdot (x - x_{n-1})f[x_0, \dots, x_n]$$

#### 4.3.2 Error Estimate of Polynomial Interpolation

#### Notation

For  $\{x_i\}_{i=0}^n$ ,  $\tau\{x_0,\dots,x_n\}$  denotes the closed interval

$$[\min\{x_0,\cdots,x_n\},\max\{x_0,\cdots,x_n\}]$$

# Proposition

Let f be given real valued function withh n cts derivatiives. For  $\{(x_i, f_i)\}_{i=0}^n$ , there exists  $\delta \in \tau\{x_0, \dots, x_n\}$  such that

$$f[x_0,\cdots,x_n]=\frac{f^{(n)}(\delta)}{n!}$$

#### Theorem

Given  $\{(x_i, f_i)\}_{i=0}^n$  with distinct  $x_i$ 's and f, a real valued function with n+1 cts derivatives on the interval  $\tau_t = \delta\{t, x_0, \dots, x_n\}$  with t some given real number where we evaluate the error of interpolation

There exists  $\delta \in \tau_t$ 

$$f(t) - P_n(t) = (t - x_0) \cdots (t - x_n) \frac{f^{(n+1)}(\delta)}{(n+1)!}$$

where  $P_n(t)$  is the degree n interpolating polynomial of f(t) on  $\{(x_i, f_i)\}_{i=0}^n$ 

#### Corollary

Let p(x) be piecewise linear interpolating polynomial of f(x) on  $I = [x_0, x_n]$ Then for any  $1 \le i \le n$  and  $x_{i-1} < t < x_i$ 

$$|f(t) - p(t)| \le \frac{(x_i - x_i - 1)^2}{\delta} \max_{x_{i-1} \le x \le x_i} |f^{(2)}(x)|$$

# 5 Numerical Integration

# 5.1 Quadrature faced on Interpolating Polynomial

# 5.1.1 Midpoint Rule

Let  $P_0(x)$  be the constant interpolating polynomial of f(x) on I=[a,b] at  $\frac{a+b}{2}$ 

$$\hat{I}_M(f) = I(P_0(x)) = \int_a^b P_0(x)dx = \int_a^b f(\frac{a+b}{2})dx = (b-a)f(\frac{a+b}{2})$$

# Midpoint Rule

To approximate  $\int_a^b f(x)dx$ , the midpoint rule reads

$$\hat{I}_M(f) := (b-a)f(\frac{a+b}{2}) \xrightarrow{approx} I(f) = \int_a^b f(x)dx$$

The error of the rule is

$$E_M(f) := I(f) - \hat{I}_M(f)$$

# Error Estimate of Midpoint Rule

Let f be given real valued function with 2 cts derivatives. Then there exists  $\delta \in (a,b)$  st

$$|E_M(f)| = |\frac{(b-a)^3}{24}f''(\delta)|$$

#### 5.1.2 Trapezoidal Rule

Let  $P_z(x)$  be linear interpolating polynomial of f(x) on [a, b] with interpolating data point  $\{(a, f(a)), (b, f(b))\}$ 

$$\hat{I}_T(f) = I(P_1(x)) = \frac{b-a}{2}(f(a) + f(b))$$

#### Trapezoidal Rule

To approximate  $\int_a^b f(x)dx$ , the midpoint rule reads

$$\hat{I}_T(f) := \frac{b-a}{2} (f(a) + f(b)) \xrightarrow{approx} I(f) = \int_a^b f(x) dx$$

The error of Trapezoidal rule is

$$E_T(f) := I(f) - \hat{I}_T(f)$$

# Error Estimate of Trapezoidal Rule

Let f be given real valued function with 2 cts derivatives. Then there exists  $\delta \in (a, b)$  st

$$|E_T(f)| = |\frac{(b-a)^3}{12}f''(\delta)|$$

# 5.1.3 Simpson's Rule

Let  $P_2(x)$  be the  $2^{nd}$  degree interpolating polynomial of f(x) on [a,b] with interpolating data point  $\{(a,f(a)),(\frac{a+b}{2},f(\frac{a+b}{2})),(b,f(b))\}$ 

$$\hat{I}_S(f) = I(P_2(x)) = \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b))$$

#### Simpson's Rule

To numerically approximate  $\int_a^b f(x)dx$ , the Simpson's rule reads

$$\hat{I}_S(f) = \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b)) \xrightarrow{approx} I(f) = \int_a^b f(x)dx$$

The error of Simpson's rule is

$$E_S(f) := I(f) - \hat{I}_S(f)$$

#### Error Estimate of Simpson's Rule

Let f be given real valued function with 4 cts derivatives. Then there exists  $\delta \in (a, b)$  st

$$|E_S(f)| = \left| \frac{(b-a)^5}{2880} f^{(4)}(f) \right|$$

#### 5.1.4 Degree of Precision

#### Degree of Precision of Quadrature

The following statements are equivalent

- $\hat{I}(f)$  has degree of precision m
- $E(f) = I(f) \hat{I}(f) \equiv 0$  for any  $f(x) \in P_m$
- $\hat{I}(f)$  integrates any polynomial  $f(x) \in P_m$  exactly

Midpoint rule and trapezoidal rule have degree of precision 1, Simpson's rule has degree of precision 3

# 5.2 Composite Quadrature

# Composite Trapezoidal Rule

Local error estimate:

$$|E_{CT}^{i}(f)| = |\frac{(x_i - x_{i-1})^3}{12}f''(q_i)| \quad q_i \in (x_{i-1}, x_i)$$

Global error estimate:

$$E_{CT}(f) = \mathcal{O}(h^2)$$

# Composite Simpson's Rule

Global error estimate:

$$E_{CS}(f) = \mathcal{O}(h^4)$$

# Composite Midpoint Rule

Global error estimate:

$$E_{CM}(f) = \mathcal{O}(h^2)$$

# 5.3 Gaussian Integration

#### Lemma

Given any distinct set of nodes  $x_1, \dots, x_n$  in [-1, 1], one can find unique set of weights  $w_1, \dots, w_n$  such that the quadrature is at least degree of precision n-1

#### 5.3.1 Orthogonal Polynomials

#### Definition

Consider space of all polynomial on [-1,1] denoted by P Define inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

# Lemma

All n roots of orthogonal polynomial  $p_n(x)$  reside in (-1,1) and all simple

#### Gaussian Legendre Quadrature

Let  $\{x_i\}_{i=1}^n$  be roots of  $p_n(x)$ , and let  $\{w_i\}_{i=1}^n$  be solution of system. Then

- $\{w_i\}_{i=1}^n$  ais of degree of precision 2n-1
- no quadrature exceeds this order

# 6 Discrete Fourier Methods

#### 6.1 Introduction

# Complex Numbers and Complex Plane

Complex number z = a + bi is defined as point in the xy-plane having Cartesian coordinates (a, b)The plane is denoted  $\mathbb{C}$  and called complex plane

# Addition and Multiplication of Complex Number

• Addition:  $z_1 + z_2$  is giving by

$$z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$$

• Multiplication is given by

$$z_1 \cdot z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$

#### Euler's Formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

#### 6.2 Fourier Series

Goal: Given a function on [a, b], expand it in sum of sines and cosines

#### 6.2.1 Fourier Series and Orthogonal Basis

# Orthogonal Basis & Orthonormal Basis

A basis  $B = \{v_1, \dots, v_n\}$  is orthogonal basis iff

$$\langle v_i, v_i \rangle = c_{ij}$$

where  $c_{ij}$  is nonzero iff i = j

When  $c_{ij} = 1$ , call B an orthonormal basis

#### Square Integrable Function

Define vector space of square integrable functions on  $[-\pi, \pi]$  as

$$V = L^{2}([-\pi, \pi]) = \{f(x) | \int_{-\pi}^{\pi} f(x)^{2} dx < \infty\}$$

The inner product  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$  is defined as

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$$

# Basis of Vector Space of Infinite Dimension

Say  $\{v_i\}_{i=1}^{\infty}$  is a basis of infinite dimensional vector V if  $\forall v \in V$ , there exists unique sequence  $\{c_i\}_{i=1}^{\infty}$  such that

$$v = \sum_{i=1}^{\infty} c_i v_i$$

# Proposition

Let  $V = \{f(x) | \int_{-\pi}^{\pi} f(x)^2 dx < \infty\}$  and  $B = \{1, \cos(kx), \sin(kx)\}_{k=1}^{\infty}$ . Then B is orthogonal basis of V

# Fundamental Convergence Theorem for Fourier Series

Let  $V = \{ f(x) | \int_{-\pi}^{\pi} f(x)^2 dx < \infty \}$ 

Then for  $\forall f(x) \in V$ , there exists a unique set of coefficients  $\{a_0, a_k b_k\}_{k=1}^{\infty}$  such that

$$f_n(x) = \frac{a_0}{2} = \sum_{k=1}^{n} [a_k \cos(kx) + b_k \sin(kx)]$$

converges to f(x) as  $n \to \infty$ 

#### Definition

The Fourier series of f(x) on  $[-\pi, \pi]$  is given by  $g(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \cos(kx)]$  with

$$\begin{cases} a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx & (k \ge 0) \\ b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx & (k \ge 1) \end{cases}$$

#### 6.2.2 Complex Form of the Fourier Series

#### Square Integrable Complex-valued Functions

Define vector space of square integrable functions on  $[-\pi, \pi]$  as

$$V = L_2([-\pi, \pi]) = \{ f(x) | \int_{-\pi}^{\pi} |f(x)|^2 dx < \infty \}$$

where |f(x)| is modules of  $f(x) \in \mathbb{C}$ 

Inner product  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$  is defined as

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$$

# Proposition

Let  $V = \{f(x)|\int_{-\pi}^{\pi}|f(x)|^2dx < \infty\}$  and  $B = \{\exp(ikx)\}_{k=-\infty}^{\infty}$ Then B is orthogonal basis of V

#### Definition

Fourier series of complex-valued f(x) on  $[-\pi, \pi]$  is given by

$$g(x) = \sum_{k=-\infty}^{\infty} c_k \exp(ikx)$$

with

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{\exp(ikx)} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \exp(-ikx) dx$$

# Proposition

The real and complex Fourier coefficients of a real function f(x) obey:

- $\overline{c_k} = c_{-k}, a_{-k} = a_k, b_{-k} = -b_k$
- $a_k = 2Re(c_k), b_k = -2Im(c_k)$
- $b_0 = 0, c_0 = \frac{1}{2}a_0, c_k = \frac{1}{2}(a_k ibk)$

#### Theorem

For a real function f(x), its real and complex forms of Fourier series are equivalent: g(x) = h(x)

#### 6.3 Discrete Fourier Transform

# 6.3.1 Approximation to Fourier Series Coefficients

 $N^{th}$  roots of unity

The  $N^{th}$  roots of unity are integer powers of  $W_N = \exp(i\frac{2\pi}{N})$ They evenly divide unit circle on  $\mathbb{C}$ 

# DFT

The discrete Fourier transform of a discrete time signal f[n] with  $-\frac{N}{2}+1 \le n \le \frac{N}{2}$  is

$$F[k] = DFT\{f[n]\} = \frac{1}{N} \sum_{n = -\frac{N}{2} + 1}^{\frac{N}{2}} f[n]W_N^{nk}$$

for 
$$-\frac{N}{2} + 1 \le k \le \frac{N}{2}$$

# **IDFT**

The inverse discrete Fourier transform of a discrete frequency signal F[k] with  $-\frac{N}{2}+1 \le k \le \frac{N}{2}$  is

$$f[n = IDFT\{F[k]\}] = \sum_{k = -\frac{N}{2} - 1}^{\frac{N}{2}} F[k]W_N^{nk}$$

where 
$$-\frac{N}{2} + 1 \le n \le \frac{N}{2}$$

# 6.3.2 Properties of DFT

# Properties of DFT

- F[k] = F[k + sN] with  $s \in \mathbb{Z}$
- if signal f[n] is real
  - Re(F[k]) is even in k
  - -Im(F[k]) is odd in k
  - $\overline{F[k]} = F[-k]$
  - -f[n] is even in n, then Im(F[k]) = 0
  - -f[n] is odd in n, then Re(F[k]) = 0

# Dot Porduct in $\mathbb{C}$

$$\forall \vec{x}, \vec{y} \in \mathbb{C}^n, \langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^n x_i \overline{y_i}$$

#### Porposition

 $\{\vec{F_k}\}_{k=0}^{N-1}$  forms orthogonal basis of  $\mathbb{C}^n$ 

# 6.3.3 FFT