

North South University

Department of Electrical & Computer Engineering

Project

Final Report

Course Title: CSE231

Course Instructor: Faculty Name: Fahimul Haque (FHE)

Date of Submission: 20 April 2019

Section: 05

Group Number: 08

Submitted By: Fahad Rahman Amik

Student ID: Group Members

1. Fahad Rahman Amik	[1721277642]
2. Shakil Ahmed	[1721087042]
3. Khairunnahar Suchana	[1722031642]
4. Syed Md Eftekhar Alam	[1721197042]
5. Mynur Rahman	[1711021642]

Project : CSE 231

Objective:

Switching on the circuit through **ON/OFF Switch** results in the string of characters being displayed on the seven-segment display one character at a time at a set time interval of 2-3 seconds. At the end of the sequence, the string is repeated.

The sequential logic circuit produces a sequence of codes to represent the string of characters "CSE231-8".

Apparatus:

- BreadBoard
- Jumping wire
- 7 segment LED display
- 9v connection with switch
- 5v converter 7805-IC
- NE555 Pulse Frequency Duty Cycle Adjustable Module Timer
- T Filp Flop -3 units (using J k Flip Flop by attaching J & K) 7476 IC 2units
- 2 Input And Gate || 7408 IC 4 units
- 3 Input Or gate || 4075 IC 2 units
- Not Gate || 7404 IC 1 unit

Wire Marking:

- Green wire A
- Blue wire B
- Silver wire C
- Orange wire A'
- Pink wire B'
- White wire C'
- Brown wire Preset
- Blue wire Clock
- White wire Input of Flip Flops

- Orange wire Clear
- Pink wire Output of Flip Flops (Q0)
- Yellow wire JK short
- Red wire VCC connection
- Black wire GND connection

Combinational Part

Truth Table

CSE231-8

Minterm	A	В	C	a	b	С	d	e	f	g	Letter
0	0	0	0	1	0	0	1	1	1	0	С
1	0	0	1	1	0	1	1	0	1	1	S
2	0	1	0	1	0	0	1	1	1	1	Е
3	0	1	1	1	1	0	1	1	0	1	2
4	1	0	0	1	1	1	1	0	0	1	3
5	1	0	1	0	1	1	0	0	0	0	1
6	1	1	0	0	0	0	0	0	0	1	-
7	1	1	1	1	1	1	1	1	1	1	8

By using the truth table we find out the equations with the help of K Map .

1.Using Basic Gates:

Algebric Expressions:

K map for **a**

1	1	1	1
1		1	

$$a = A' + B'C' + BC$$

K map for \boldsymbol{b}

		1	
1	1	1	

$$b = AB' + BC$$

K map for **C**

	1		
1	1	1	

$$c = AB' + AC + B'C$$

K map for \boldsymbol{d}

1	1	1	1
1		1	

$$d = A' + B'C' + BC$$

K map for **e**

1	1	1
	1	

$$e = A'C' + BC$$

K map for ${f f}$

1	1		1
		1	

$$f = A'B' + A'C' + ABC$$

K map for ${f g}$

	1	1	1
1		1	1

$$g = A'C + AC' + B$$

By using the equations we have build the combinational part of the circuit .

Here is the Logisim of the combinational part of the circuit by using **Basic Gates.**

Using Basic Gates [CSE231-8]

2. Using Nand Gates:

By replacing the basics gates with equivalent nand or nor gates we can implement the same circuit.

We have used nand gates to make the circuits Logisim.

Using Nand Gates

3 . Using 4*1 Multiplexer

Truth Table:

Minterm	A	В	C	a	b	c	d	e	f	g	Letter
0	0	0	0	1	0	0	1	1	1	0	С
1	0	0	1	1	0	1	1	0	1	1	S
2	0	1	0	1	0	0	1	1	1	1	Е
3	0	1	1	1	1	0	1	1	0	1	2
4	1	0	0	1	1	1	1	0	0	1	3
5	1	0	1	0	1	1	0	0	0	0	1
6	1	1	0	0	0	0	0	0	0	1	-
7	1	1	1	1	1	1	1	1	1	1	8

C	a
0	1
1	1
0	1
1	1
0	1
1	0
0	0
1	1

C	b
0	0
1	0
0	0
1	1
0	1
1	1
0	0
1	1

C	c
0	0
1	1
0	0
1	0
0	1
1	1
0	0
1	1

C	d
0	1
1	1
0	1
1	1
0	1
1	0
0	0
1	1

С	e
0	1
1	0
0	1
1	1
0	0
1	0
0	0
1	1

С	f		
0	1		
1	1		
0	1		
1	0		
0	0		
1	0		
0	0		
1	1		

С	g
0	9 0
1	1
0	1
1	1
0	1
1	0
0	1
1	1

By using 4*1 MUX the circuit can be build . Using C , C' , 1 , 0 as the data input and A,B as the selection input. It needs 7 MUXes to build the circuit .

Logisim (Multiplexer 4*1)

4. Using Decoder:

We can use a 3*8 Decoder to make the circuit. The inputs will be A,B,C . The Outputs will be min term for a, b, c, d, e, f, g .

Using Decoder

Sequential Part

Process:

By shorting JK FF IC's J & K we make a T FF . .

State diagram of 3-bit binary counter

T FF Excitation Table

Q	Q [†]	T	
0	0	0	
0	1	1	
1	0	1	
1	1	0	
T Flip-flop			

T FF State Table

Present State		Next State			Flip-Flop Inputs			
A	В	C	A	В	C	TA	ТВ	Tc.
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	1	1
1	1	1	0	0	0	1	1	1

T FF Input K map

Logic diagram of three-bit binary counter using T flip-flop

After Building the T Flip Flop circuit then we connected the out put of T F's A,B,C with the combinational part's A,B,C.

Explanation:

Combinational Part

We have used 3 two input And gate ICs,1 Not Gate IC , 2 three input OR Gate ICs and 1 two input OR Gate IC to make the combinational part .

Here are the Pin Diagrams of the ICS

7408 AND GATE

7432 OR GATE

7404 INVERTER

4075 3 INPUT OR

Sequential Part

We have used a 7805 Ic to convert the 9v supply into 5 volt .

LM7805 PINOUT DIAGRAM

We have used 2 JK FF IC 7476. Then we short the J & K to make it a T FF.

The End