Foundations of Cybersecurity

IX-Public-Key Cryptography

Paweł Szałachowski 2017

Primes

- a divides b if you can divide b by a w/o leaving a reminder
 - a | b, e.g., 7 | 35
- a number is a *prime* when it has two positive divisors (1 and itself)
 - otherwise the number is called a *composite*

Primes

- If a | b and b | c then a | c.
- Let n > 1 and d > 1 be the smallest divisor of n. Then d is prime.
- There are an infinite number of primes.
- Any integer > 1 can be written in exactly one way as the product of primes.

Modulo

- Operator modulo: a mod N returns remainder after division of a by N
 - Results are 0,1,...,N-1 e.g., 25 mod 7 = 4
 - to compute $r = (a \mod N)$, find integers q and r: a = qN + r
 - 25 mod 7 = 4 what if a is negative (e.g., -3) ?
- In cryptography N is usually a prime
 - we use notation mod p

Computations Modulo

- Addition
 - (a + b) mod N
 - Compute and reduce modulo
 - $(a + b + c + d) \mod N$
 - You can compute (a mod N + b mod N + ...) mod N
- Subtraction analogically

Computations Modulo

- $x^*y \mod N = y^*x \mod N$
- $x^*x^*....^*x \mod N = x^a \mod N$
- $x^{ab} \mod N = x^{ba} \mod N$
- $(x^a)^b \mod N = x^{ab} \mod N$

Computations Modulo

- Division
 - a/b mod N is the multiplication ab⁻¹ mod N
 - (another notation of b^{-1} is 1/b)
 - b^{-1} (a modular inverse of b) is a number such that $bb^{-1} = 1 \mod N$
 - What is 5⁻¹ mod 7?
 - How to compute modular inverses?

The Greatest Common Divisor

GCD of numbers a and b is the largest k such that k | a and k | b

```
function gcd(a, b)
    while a ≠ b
    if a > b
        a := a - b;
    else
        b := b - a;
    return a;
```

Extended Euclidean Algorithm

For given (a,b) returns (r,s,t) such that r=gcd(a,b) and sa+tb=r

```
function egcd(a, b)
    s := 0;    old_s := 1
    t := 1;    old_t := 0
    r := b;    old_r := a
    while r ≠ 0
        quotient := old_r div r
        (old_r, r) := (r, old_r - quotient * r)
        (old_s, s) := (s, old_s - quotient * s)
        (old_t, t) := (t, old_t - quotient * t)
    return (old_r, old_s, old_t)
```

- How to compute $b^{-1} \mod p$ (for $1 \le b \le p$)?
 - Compute r,s,t = egcd(b, p)
 - sb + tp = r (r will be 1 as p is prime)
 - sb = 1 tp, so $sb = 1 \mod p$, so $s = 1/b \mod p$

Generating Large Primes

- 2048-8192 bits long primes
- Probabilistic
 - Take a random number and check if it passes primality test(s)
 - The Rabin-Miller test

Diffie-Hellman (DH)

Problem definition

- Secure communication over insecure channel?
 - Two parties: Alice and Bob
 - Eavesdropping adversary: Eve

How Alice and Bob can establish a shared secret?

Alice

Common paint

Math Background: cyclic group

- Group (reminder)
 - Set and operation, for example [0, 11] and addition mod 12

- Multiplicative group of integers modulo N
 - set [1, N-1] and multiplication mod N

Math Background: cyclic group

- g is a generator of mod N if every element of [1, N-1] can be written as g^x mod N
- Every number > 1 is a generator if N is prime

Example: $mod\ 11, g = 2$

```
2^{0} \mod 11 = 1 2^{5} \mod 11 = 10
2^{1} \mod 11 = 2 2^{6} \mod 11 = 9
2^{2} \mod 11 = 4 2^{7} \mod 11 = 7
2^{3} \mod 11 = 8 2^{8} \mod 11 = 3
2^{4} \mod 11 = 5 2^{9} \mod 11 = 6
```

Discrete Logarithm Problem

Discrete Logarithm Problem (DLP):

for known Y,g,N find X such that: $Y = g^X \mod N$

• Examples: g = 2, N = 13

$$2 = 2^{X} \mod 13$$
 $X = 1$

$$3 = 2^{X} \mod 13$$
 $X = 4$

$$4 = 2^{X} \mod 13$$
 $X = 2$

$$5 = 2^{X} \mod 13$$
 $X = 9$

Difficult (secure) when N is a large prime (e.g., 2048 bits)

2143512082772104306311491706279052757332819365350270236916619636267651473110852794594690121588759046304882342815119985428892042 604427608335711847366885192193296128232974167042736105925970485551575408786146057302507914866994805958463029863674231507767605 8654193185282927250356998785958415575881841411031093880658086633067469830081139764522105170108562855558139043580800539734898746 108361004674150661832306964399024263472249734260526991394535358856194229841900239384394337166360046344734779600165530865879362 144752939863330997697036578519527084377910216025745541416611237904706819511395029439640094554495074110424652379

Bob

Publicly known parameters: g, p (large prime)

Random secret a

ga mod p

Random secret b

$$K = (g^b)^a \mod p$$

$$K = (g^a)^b \mod p$$

Properties

- Parameters can be sent by Alice (don't have to be hardcoded)
- DH problem: Eve has to compute K with g^a mod p and g^b mod p
 - If she can solve DLP then it is trivial to compute K
 - At least as easy as DLP. Can it be easier than solving DLP?
- Efficiency
 - $g^{p-1} \mod p = 1$, thus $g^a \mod p = g^{(a \mod p-1)} \mod p$
 - easy for g = 2 (can express other generators as 2^x)

Security

Key and parameters sizes

Date	Symmetric	Factoring Modulus	Discrete Logarithm Key Group Elliptic Curve		Hash		
2017 - 2022	128	2000	250	2000	250	SHA-256 SHA-512/256 SHA-384 SHA-512	SHA3-256 SHA3-384 SHA3-512
> 2022	128	3000	250	3000	250	SHA-256 SHA-512/256 SHA-384 SHA-512	SHA3-256 SHA3-384 SHA3-512

- The protocol is unauthenticated
 - Secure only against passive adversaries
 - Eve can impersonate Alice to Bob and Bob to Alice

RSA

Public-Key Encryption

- Gen()
 - returns a key pair (i.e., public and private key)
- Enc(pub_key, msg)
 - Encrypts a message using a public key. Returns a ciphertext.
- Dec(priv_key, ctxt)
 - Decrypts a ciphertext using a private key. Returns a message.

RSA Encryption

- Gen()
 - Select (large) random prime numbers p, q such that p!=q
 - Compute modulus n = pq
 - Compute $\Phi = (p-1)(q-1)$
 - Select public exponent $e = 1 < e < \Phi$ such that $gcd(e, \Phi) = 1$
 - Compute private exponent $d = e^{-1} \mod \Phi$
 - Return public key (n, e), and private key d
- Enc({n, e}, msg)
 - return msge mod n
- Dec(*d*, *ctxt*)
 - return ctxtd mod n

Digital Signatures

- Gen()
 - returns a key pair (i.e., public and private key)
- Sign(priv_key, msg)
 - Signs the message using the private key. Returns the signatures
- Verify(pub_key, msg, sign)
 - Verifies the signatures of the message, using the public key.
 Returns boolean (true/false).

RSA Signatures

- Gen() (the same as in the encryption)
 - Select (large) random prime numbers p, q such that p!=q
 - Compute modulus n = pq
 - Compute $\Phi = (p-1)(q-1)$
 - Select public exponent $e = 1 < e < \Phi$ such that $gcd(e, \Phi) = 1$
 - Compute private exponent $d = e^{-1} \mod \Phi$
 - Return public key (n, e), and private key d
- Sign(*d*, *msg*)
 - return $H(msg)^d \mod n$
- Verify({n, e}, msg, sign)
 - return signe mod n == H(msg)

Properties

- RSA Problem
 - Compute P given (n,e) and $C = P^e \mod n$
 - At least as easy as integer factorization of n. Can it be easier?
- Do not use the same keypair for encrypting and signing
- n should be >= 2048 bits

Date	Symmetric	Factoring Modulus	Discrete Logarithm Key Group		Elliptic Curve	Hash	
2017 - 2022	128	2000	250	2000	250	SHA-256 SHA-512/256 SHA-384 SHA-512	SHA3-256 SHA3-384 SHA3-512
> 2022	128	3000	250	3000	250	SHA-256 SHA-512/256 SHA-384 SHA-512	SHA3-256 SHA3-384 SHA3-512

- p and q should be of equal size
- Timing attacks

Properties

- Encryption
 - e is usually small to speed up computations
 - Be careful with encrypting short messages
 - Adv. can try to precompute ciphertexts if message space is small
 - Can also distinguish encryptions
 - If two messages are the same, the ciphertexts will be the same
 - Optimal Asymmetric Encryption Padding

Why it is Important?

Discussion&Classwork