$$I = \underbrace{\frac{h}{3} \left[f(x_0) + 4f(x_1) + f(x_2) \right]}_{\text{Regra 1/3 de Simpson}} - \underbrace{\frac{1}{90} f^{(4)}(\xi) h^5}_{\text{Erro de truncamento}}$$

$$h = 6 - 6 = 1 - 6 = 0.5$$
 $\pi = 4 \int_{0}^{1} \frac{dx}{1 + x^{2}}$

$$\pi = 4 \int_0^1 \frac{dx}{1+x^2}$$

$$f^{(IV)}(x) = \frac{24}{(1+x^2)^3} - \frac{288x^2}{(1+x^2)^4} + \frac{384x^4}{(1+x^2)^5}$$

$$x'' = c = 0$$
 \ \frac{1}{2}

$$x_2 = b = 1$$
, $f(1) = 0.5$

$$E = 0.5 \cdot [1 + 4.0,8 + 0.15] = 0.283933$$

$$E_{k} = -\frac{1}{90} \cdot \int_{0.08333}^{140} (8) h^{5} = -\frac{1}{90} \cdot 0.5^{5} \cdot 0.5^{5} = 0.008333...$$

$$x^2 = p$$

$$y = \frac{p-a}{p-a}$$

$$E_1 = \frac{h}{3} \cdot \left[f(x_2) + 4 f(x_1) + f(x_2) \right]$$

$$I = \frac{N}{3}. \left[f(a_0) + 4 f(a_1) + 2 f(a_2) + 4 f(a_3) + 2 f(a_4) + 4 f(a_5) \right]$$

Calcular o valor de \u03c3, dado pela expressão:

$$\pi = 4 \int_0^1 \frac{dx}{1+x^2}$$

i	x_i	Уi	ci
0	0,000	1,000000	1
1	0,125	0,984615	4
2	0,250	0,941176	2 .
3	0,375	0,876712	4
4	0.500	0,800000	2
5	0,625	0,719101	4
6	0,750	0,640000	2
. 7	0,875	0,566372	4
8	1,000	0,500000	1-

coluna dos coeficientes

$$x_0 = 0$$
 $x_1 = 0_1 125$
 $x_2 = 0_1 250$
 $x_3 = 1$

$$I = \frac{3}{3} \cdot \left[\frac{1}{3} \cdot \left[$$

5.5.4.1. Dada a função y = f(x), definida a partir da tabela 5.15

Tabela 5.15

i	xi	Уi
0	0,00	0,600
1	0,25	0,751
2	0,50	0,938
3	0,75	1,335
4	1,00	2,400

calcular o valor de

$$I = \int_{0}^{1} f(x)dx$$

- a) aplicando a 1ª regra de Simpson com n=2
- b) aplicando a 1^a regra de Simpson com n=4

$$t = \frac{0.25}{3} \left[\int_{0.5}^{0.0} (1.0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4) \right]$$

$$t = \frac{3}{2} \left[\int_{0.5}^{0.0} (1.0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4) \right]$$

Calcular o valor da integral:

$$I = \int_{-1}^{4} \ln (x^3 + \sqrt{e^x + 1}) dx$$

aplicando a regra dos 3/8 com 3 e 9 subintervalos.

i	xi	y _i	Cį
0	1	1,0744	1
1	2	2,3884	3
2	3	3,4529	3
3	4	4.2691	1

$$h = \frac{6-\alpha}{3} = \frac{4-1}{3} = 1$$

$$L = \frac{3h}{8} \cdot \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right]$$

$$t = \frac{3}{5}$$
. $\begin{bmatrix} 1.0744 + 3.2,3844 + 3.3,4529 \\ + 1.2691 \end{bmatrix}$

Calcular o valor da integral:

$$I = \int_{-1}^{4} \ln{(x^3 + \sqrt{e^x + 1})} dx$$

aplicando a regra dos 3/8 com 3 e 9 subintervalos.