READING SEMINAR: PRIMES OF THE FORM $x^2 + ny^2$

Starters

- (1) Ring of integers
 - (a) Define number fields, ring of integers, Dedekind domains.
 - (b) Explain the unique factorization of ideals.
 - (c) Define fraction ideals and ideal class group.
 - (d) Explain (b),(c) in the case of algebraic curves.
- (2) Ramification
 - (a) Define ramification index, inertial degree.
 - (b) Draw a table, compare the notions: unramified, totally split, tamely ramified, totally ramified.
 - (c) Determine the ramification behavior of prime in a monic extension.
 - (d) Work out everything for quadratic extension.
- (3) The Frobenius
 - (a) Define the decomposition group and inertia group.
 - (b) Explain the sequence:

$$0 \to I_{\mathfrak{P}} \to D_{\mathfrak{P}} \to \operatorname{Gal}(\kappa(P)/\kappa(\mathfrak{p})) \to 0.$$

- (c) Define the Frobenius element.
- (d) Introduce the Legendre symbol and quadratic reciprocity.

Entrees

- (1) Hilbert class field
 - (a) Define the Artin symbol.
 - (b) Justify the notion of maximal unramified extension.
 - (c) Define the Hilbert class field.
 - (d) Artin Reciprocity theorem+Galois theory⇒ Class field theory.
- (2) Proof of main result, when $n \neq 1 \pmod{4}$, n square free.
 - (a) Explain: $p = x^2 + ny^2$ iff p totally splits in Hilb $(\mathbb{Q}(\sqrt{-n}))$.
 - (b) Carefully explain the proof.
 - (c) Show $Hilb(\mathbb{Q}(\sqrt{-14})) = \mathbb{Q}(\sqrt{\sqrt{2}-1}, \sqrt{-14}).$
 - (d) Other examples, $\mathbb{Q}(\sqrt{-6})$, $\mathbb{Q}(\sqrt{-10})$, $\mathbb{Q}(\sqrt{-35})$ and $\mathbb{Q}(\sqrt{-17})$, $\mathbb{Q}(\sqrt{-55})$.

Specials

- (1) Historical remark: Genus theory
 - (a) Explain terminologies, uniqueness of reduced primitive positive definite forms.
 - (b) Genus of quadratic forms with a fixed discriminant.
 - (c) Use genus theory to prove some old results.
 - (d) Explain why the genus theory cannot deal with n = 14.
- (2) Class field theory
 - (a) Artin reciprocity theorem in terms of modulus.
 - (b) Explain the conductor theorem.
 - (c) Explain The existence theorem.
 - (d) Prove the Kronecker-Weber theorem.
- (3) Chebotarev's theorem
 - (a) Explain the theorem.
 - (b) Show there are infinitely primes in arithemtic progression.
 - (c) Show there are infinitely many prime represented by a primitive quadratic form.
 - (d) Show splitting behaviour of primes determine the extension.
- (4) Complex multiplication and class field.
 - (a) Define elliptic curves.
 - (b) Weierstrass functions and equation.
 - (c) Define *j*-invariant.
 - (d) Show the class field is generated by the $j(\mathbb{C}/\mathfrak{a})$.

Sides

- (1) Ring class field,
 - (a) $p = x^2 + ny^2$ for all n.
 - (b) Norm primes, primes of the form $p = x^3 + 11b^3 + 121c^3 33abc$
- (2) Orders in imaginary quadratic fields
 - (a) Define orders.
 - (b) Define class group of orders.
 - (c) Explain $Cl(\mathcal{O}) \cong I(\mathcal{O}, f)/P(\mathcal{O}, f) \cong I(\mathcal{O}_K, f)/P(\mathcal{O}_K, f)$.
 - (d) Explain the notions in the case of algebraic curves.
- (3) The two class groups
 - (a) Define form class group.
 - (b) Prove form class group coincide with ideal class group.