

Open-Minded

On-Demand Blind Packet Forwarding

30 September 2021

UNIVERSITÄT
DUISBURG

Open-Minded

Irfan Simsek

Networking Technology Group
Institute for Computer Science &
Business Information Systems
University of Duisburg-Essen

Agenda

- Motivation
- Blind Packet Forwarding (BPF)
- Selective Masked Routing
- Fully BPF On Demand
- Implementation and evaluation
- Conclusion

Motivation

- Network Address Confidentiality (NAC)
 - classifies all third parties and nodes as adversaries and limits access to packet addresses in cleartext exclusively to communicating endpoints
 - → Sender/recipient and relationship unlinkability
 - Packets can not be linked to source/destination and to communicating endpoints
- Blind Packet Forwarding (BPF)
 - realizes NAC and its unlinkability properties
 - redesigns packet forwarding and its associated network functions to blind ones transferring and processing packet addresses in end-to-end encrypted form
 - builds on Locator/Identifier (Loc/ID) Split
 - separately masks identifiers and locators
- Semi-BPF masks only identifiers
 - NAC and its unlinkability properties apply only to identifiers and communicating endpoints
- Fully BPF masks both locators and identifiers
 - NAC and its unlinkability properties apply to both parts of addresses and communicating endpoints as well as domains and local networks
 - Issue: Full blindness requires to set up and maintain masked routing tables in entire domains → Costly process
 - Idea: Only nodes on the route between two communicating endpoints need to maintain according masked routing table entries

BPF – Public key Encryption with Keyword Search (PEKS)

$$KeyGen \rightarrow (A_{pub}, A_{priv})$$
 $PEKS(A_{pub}, W) \rightarrow E(W)$
 $Trapdoor(A_{priv}, V) \rightarrow T(V)$
 $Test(E(W), T(V)) \rightarrow 1 \Leftrightarrow W = V, \rightarrow 0 \text{ otherwise}$

■ PEKS enables to correctly determine for two ciphertexts whether their cleartext values are the same, without decrypting the ciphertexts.

■ PEKS encryption function is not deterministic

BPF – Architecture & Blindness Taxonomies

BPF – Masked Routing & Packet Forwarding

Open-Minded

 $Test(E(N_i), T(N_j))$ for each entry i and j in table and update msg

mLoc., Trapd.	Port	Distance
$E(N_1), T(N_1)$	0	0
$E(N_2), T(N_2)$	1	1
$E(N_3), T(N_3)$	1	2

 $Test(E(N_3), T(N_i))$ for each entry i $Test(E(N_3), T(N_3)) \rightarrow 1$ $Test(E(N_i), T(N_j))$ for each entry i and j in table and update msg

	mLoc., Trapd.	Port	Distance
	$E(N_2), T(N_2)$	0	0
٠	$E(N_1), T(N_1)$	1	1
	$E(N_3), T(N_3)$	2	1

 $Test(E(N_3), T(N_i))$ for each entry i

 $Test(E(N_3), T(N_3)) \rightarrow 1$

 $Test(E(N_i), T(N_j))$ for each entry i and j in table and update msg

mLoc., Trapd.	Port	Distance
$E(N_3), T(N_3)$	0	0
$E(N_2), T(N_2)$	1	1
$E(N_2), T(N_2)$	1	2

 $Test(E(N_3), T(N_i))$ for each entry i

 $Test(E(N_3), T(N_3)) \rightarrow 1$

BPF – Packet Delivery

Selective Masked Routing – Case 1

Selective Masked Routing – Case 2

Selective Masked Routing – Case 3

Fully BPF On-Demand

Implementation & Testbed

- OLV-OpenFlow
 - replaces the Type Length Value (TLV)-based mechanism in OpenFlow with an Offset Length Value (OLV)-based proceeding
- OLV-NOX: OLV-OpenFlow compatible controller
- Blind Network Stack (BNS)
- Emulated by Mininet (Intel Core i5-7200U 2.50 GHz CPU)

Evaluation – Masked Routing Table Entry Setup Times

Evaluation – Masking Setup Times in Blindness Taxonomies 1 & 2

Open-Minded

Masking rank combinations in blindness taxonomy 1 (src. addr, dst. addr)

Conclusion

- Full blindness in a domain needs to set up and maintain masked entries in the entire domain
 - Costly process
- On-Demand BPF provides selective masked routing and full blindness on demand
- Performance

Open-Minded

Thank you for your attention!

Questions?

