

TRABAJO FIN DE GRADO INGENIERÍA EN ...

Análisis de procesos

Subtitulo del Proyecto

Autor

María Isabel Ruiz Martínez (alumno)

Directores

Luis Castillo Vidal (tutor1) Nombre Apellido1 Apellido2 (tutor2)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, mes de 201

Análisis de procesos

Subtítulo del proyecto.

Autor

María Isabel Ruiz Martínez (alumno)

Directores

Luis Castillo Vidal (tutor1) Nombre Apellido
1 Apellido2 (tutor2)

Análisis de procesos: Subtítulo del proyecto

Nombre Apellido1 Apellido2 (alumno)

Palabras clave: palabra_clave1, palabra_clave2, palabra_clave3,

Resumen

Poner aquí el resumen.

Project Title: Project Subtitle

First name, Family name (student)

 $\textbf{Keywords} \hbox{:} \ Keyword1, \ Keyword2, \ Keyword3, \$

Abstract

Write here the abstract in English.

Fdo: María Isabel Ruiz Martínez

Granada a X de mes de 201 .

- D. Luis Castillo Vidal (tutor1), Profesor del Área de XXXX del Departamento YYYY de la Universidad de Granada.
- D. Nombre Apellido1 Apellido2 (tutor2), Profesor del Área de XXXX del Departamento YYYY de la Universidad de Granada.

Informan:

Que el presente trabajo, titulado *Análisis de procesos, Subtítulo del proyecto*, ha sido realizado bajo su supervisión por María Isabel Ruiz Martínez (alumno), y autorizamos la defensa de dicho trabajo ante el tribunal que corresponda.

Y para que conste, expiden y firman el presente informe en Granada a X de mes de 201 .

Los directores:

Luis Castillo Vidal (tutor1) Nombre Apellido1 Apellido2 (tutor2)

Agradecimientos

Poner aquí agradecimientos...

Índice general

1.	Introducción, motivaciones, objetivos y estructura
	1.1. Introducción
	1.2. Motivaciones
	1.3. Objetivos
	Planificación 2.1. Herramientas
	Análisis 3.1. Planteamiento del problema

Índice de figuras

Índice de cuadros

Capítulo 1

Introducción, motivaciones, objetivos y estructura

1.1. Introducción

La necesidad de comprender el proceso de aprendizaje y de personalizar la enseñanza para realizar una mejor adaptación a las necesidades del individuo ha motivado la *Analítica de Aprendizaje* o *Learning Analytics*, disciplina que consiste en la recogida de datos de un entorno de aprendizaje y el análisis de los mismos cuyo objetivo es asistir en el proceso de aprendizaje del alumnado.

Además, el uso de laboratorios virtuales y remotos en la enseñanza está en auge. Entre muchas de sus ventajas tenemos una mayor privacidad para el alumnado, accesos planficados a los mismos o soporte para reportar la actividad de los alumnos y la calificación de los mismos.

En este trabajo fin de grado se usarán datos de cinco cursos académicos obtenidos en el labotorio virtual para sistemas multiagente de la asignatura del cuarto curso académico Desarrollo Basado en Agentes del grado de Ingeniería Informática de la Universidad de Granada (España).

El laboratorio virtual diseñado para la asignatura recoge el trabajo diario de los alumnos almacenando las interacción entre los diferentes agentes y obteniendo así un extenso dataset que nos proporciona una base sólida para el uso de diversas analíticas de aprendizaje.

Así pues, se empleará un enfoque "data-driven" o impulsado por datos, tomando decisiones estratégicas basándose en el análisis de los datos y en la interpretación de los mismos.

1.2. Motivaciones

El buen maestro hace que el mal estudiante se convierta en bueno y el buen estudiante en superior.

Maruja Torres

Como decía Maruja Torres, un buen profesor puede influenciar positivamente en el desarrollo académico de sus alumnos. Así pues, uno de las principales motivaciones de este trabajo es, precisamente, ayudar a identificar buenas y malas prácticas de los alumnos precozmente para que el profesorado pueda asistirles mejor durante su proceso de aprendizaje y mejorar su rendimiento académico.

Así pues, la motivación última de los estudios expuesto en este documento es ayudar a aprender al alumnado.

Asimismo, creo que es de gran interés práctico conocer cuáles son las mejores estrategias a la hora de programar un sistema multiagente que desconoce el entorno que le rodea y que intenta conseguir un objetivo preestablecido.

1.3. Objetivos

Tras un primer análisis de los datos, se pretende tratar de relevar posibles estrategias escondidas en los mismos utilizando técnicas de minería de procesos, donde se considerará que una estrategia es el proceso seguido por los alumnos hasta que llegan a su objetivo.

Es decir, se prentende identificar patrones de comportamiento de los drones en los diferentes mundos virtuales con la finalidad de ayudar al profesorado de la asignatura a guiar al alumnado.

Capítulo 2

Planificación

2.1. Herramientas

En la realización de un proyecto investigación, la elección de las herramientas para su desarrollo es clave. A continuación se expone una lista con las que se han utilizado este trabajo fin de grado:

- En el desarrollo del software se han empleado los lenguajes de programación R y C++.
- Se ha empleado la herramienta de míneria de procesos DISCO.
- Se ha utilizado GitHub para alojar todo el contenido del proyecto y gestionar las distintas versiones del mismo.
- Para la redacción de la memoria se ha empleado el editor gratuito Texmaker utilizando el sistema de composición de textos IATEX.
- Para el seguimiento del proyecto se han utilizado las Hojas de cálculo de Google.

Capítulo 3

Análisis

3.1. Planteamiento del problema

El servidor contiene varios mundos virtuales. Cada mundo virtual es una matriz cuadrada que representa espacios abiertos (en color blanco), obstáculos (en negro) y objetivos (en rojo) tal y como se muestra en la Figura ??. Los agentes de los alumnos deben entrar en uno de esos mundos virtuales, percibir su vecindario, navegar a través de los espacios abiertos (empleando alguna clase de heurística exploratoria), evitar obstáculos y tratar de llegar al objetivo.

La percepción del agente de su entorno es crítica para resolver estos mundos. En este laboratorio virtual los alumnos pueden configurar cuál de los siguientes sensores estarán enchufados en sus agentes (cualquier combinación de ellos):

- Un **GPS** que indica al agente sus coordenadas (x, y) en el mundo virtual.
- Un sensor de batería. Cada agente está alimentado con una batería cuya capacidad es limitada y cuya carga decrece conforme el agente realiza algún movimiento. La batería nunca debe ser vaciada por completo.
- Un sensor radar que informa al agente acerca de los tipos de celdas que lo rodean con una percepción local de 5x5 (observar Figura ??).
- Un sensor escáner que actúa como detector del objetivo e indica al agente la distancia al objetivo medida desde cada una las celdas de su entorno 5x5 (observar Figura ??).

Basados en su percepción del mundo virtual, cada agente decidirá ejecutar alguna de las siguientes acciones en su entorno implementando cualquier heurística o proceso de búsqueda.

- LOGIN. Entrar en cualquiera de los mundos virtuales.
- MOVE. Mover al agente a una de las 8 celdas adyacentes y gastar una cierta cantidad de batería. Si la celda destino es un obstáculo o el agente se queda sin batería, el agente se rompe y se sale del mundo virtual.
- REFUEL. El agente recarga completamente su batería. A los agentes se les permite recargar su batería tantas veces como deseen.