2015 AUMC Solutions

1. Coin weights.

A silver coin weighs 117/4 grams and a gold coin 143/4 grams. To find these, let g be the weight of a gold coin and s the weight of a silver coin, in grams. Then

$$9g = 11s$$
 and $8g + s = 10s + g - 13$.

The second equation simplifies to 7g - 9s = -13, and on solving simultaneously we find s = 117/4 and g = 143/4.

2. A 2015-term sum.

The sum is 1,015,560. For, the sum of the arithmetic progression

$$\frac{1}{n} + \frac{2}{n} + \dots + \frac{n-1}{n} = \frac{n(n-1)}{2n} = \frac{n-1}{2}.$$

Thus the given sum simplifies to

$$\frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \dots + \frac{2015}{2} = \frac{(2015)(2016)}{4} = (2015)(504) = 1,015,560.$$

3. A rational square root.

Let x = b - c, y = c - a and z = a - b. Then x + y + z = 0, $xyz \neq 0$, and we want to show that

$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{y^2 z^2 + x^2 z^2 + x^2 y^2}{x^2 y^2 z^2}$$

is the square of a rational number. For this it suffices to show that the numerator is the square of a rational number. If we write $z^2 = (x + y)^2$, the numerator becomes

$$y^{2}(x+y)^{2} + x^{2}(x+y)^{2} + x^{2}y^{2}$$

and upon multiplying out and collecting terms we obtain

$$x^4 + 2x^3y + 3x^2y^2 + 2xy^3 + y^4,$$

which is $(x^2 + xy + y^2)^2$, as one may directly verify.

page 1 of 5

Problem 3, second solution.

This time let

$$x = \frac{1}{b-c}$$
, $y = \frac{1}{c-a}$ and $z = \frac{1}{a-b}$.

Then

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0,$$

and we want to show that $x^2 + y^2 + z^2$ is the square of a rational number. Now,

$$x^{2} + y^{2} + z^{2} = (x + y + z)^{2} - 2(xy + yz + xz).$$

But

$$xy + yz + xz = xyz\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = 0,$$

so
$$x^2 + y^2 + z^2 = (x + y + z)^2$$
.

4. The same sum.

This is an application of the pigeon-hole principle. There are $\binom{10}{5} = 252$ different five-element subsets of a ten-element set. Since each element is less than or equal to 50, each sum of a 5-element subset is less than 250, so there are fewer than 250 possible different sums. It follows that some two of the 252 five-element subsets have the same sum.

5. A differential equation with only the zero solution.

As f is differentiable it is continuous on [a, b] and therefore has an absolute maximum and an absolute minimum value on [a, b]. Let c be a point in [a, b] where f(x) achieves its maximum value. If c is in (a, b) then by standard theorems from elementary calculus, f'(c) = 0 and $f''(c) \leq 0$. From the differential equation it follows that $f(c) = f''(c) \leq 0$, and therefore $f(x) \leq f(c) \leq 0$ for all x in [a, b]. If c is at a or b we have $f(x) \leq f(c) = 0$ for all x in [a, b], so in all cases $f(x) \leq 0$ for all x in [a, b]. Similarly if d is a point where f(x) achieves its minimum value on [a, b], then f(d) = 0 and $f''(d) \geq 0$, and it follows that $f(x) \geq 0$ for all x in [a, b]. Thus f(x) = 0 for all x in [a, b].

6. 2015 integers, mostly composite.

If k = mr where r is an odd integer, $r \ge 3$, then $10^k + 1 = (10^m)^r + 1$ has $10^m + 1$ as a factor:

$$(x^{r}+1) = (x+1)(x^{r-1}-x^{r-2}+\cdots-x+1).$$

Thus any noncomposite numbers in S must be of the form $10^k + 1$ where k is a power of 2. There are only 10 such elements in S, somewhat less than 1% of the 2015 elements. Thus more than 99% are composite.

7. Limit of a function.

No, the limit need not exist. Here are two quite different counterexamples. The first is an unbounded function, the second a bounded one.

(1) Let
$$f(x) = 1/(1-x)$$
 for $0 \le x < 1$, and for $n \le x < n+1$, let

$$f(x) = \frac{1}{n}f(x-n) = \frac{1}{n}\left(\frac{1}{1-(x-n)}\right) = \frac{1}{n(n+1-x)}.$$

Then for $0 \le a < 1$,

$$f(a+n) = \frac{1}{n}f(a) \to 0$$
 as $n \to \infty$,

and for $a \ge 1$, the sequence $\{f(a+n)\}$ is a subsequence of such a sequence $\{f(b+n)\}$ with $0 \le b < 1$, so every sequence $\{f(a+n)\}$ converges to 0. But in every interval [n, n+1) there is a number x_n such that $f(x_n) = 1$: For $n \le x < n+1$,

$$f(x) = \frac{1}{n(n+1-x)} = 1$$

provided that n+1-x=1/n; i.e., $x_n=n+1-(1/n)$. Thus $\lim_{x\to\infty} f(x)$ does not exist.

(2) Choose a positive irrational number α and let f(x) = 1 if $x = n\alpha$ for some integer n > 0, and f(x) = 0 otherwise. It is clear that f(x) does not have a limit as $x \to \infty$. Also, in any sequence $\{f(a+n)\}$, at most one term is 1 and all others are 0, for if $a+k=n\alpha$ and $a+l=m\alpha$ for some integers k,l,m,n, then $k-l=(n-m)\alpha$. Because α is irrational, this is impossible unless k-l=0. Thus every sequence $\{f(a+n)\}$ converges to 0.

8. An even function.

Let $P(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5 + c_6 x^6$. Then

$$0 = P(a) - P(-a) = 2c_1a + 2c_3a^3 + 2c_5a^5$$
(1)

and

$$0 = P(b) - P(-b) = 2c_1b + 2c_3b^3 + 2c_5b^5.$$
(2)

Also, $P'(x) = c_1 + 2c_2x + 3c_3x^2 + 4c_4x^3 + 5c_5x^4 + 6c_6x^5$, so $0 = P'(0) = c_1$, and equations (1) and (2) simplify to $2c_3a^3 + 2c_5a^5 = 0$ and $2c_3b^3 + 2c_5b^5 = 0$. Because $a \neq 0$ and $b \neq 0$, these are equivalent to

$$c_3 + c_5 a^2 = 0$$
 and $c_3 + c_5 b^2 = 0$.

Subtracting the first from the second we obtain $c_5(b^2 - a^2) = 0$, whence $c_5 = 0$ because $b^2 \neq a^2$. It follows that $c_3 = 0$. Thus we have $c_1 = c_3 = c_5 = 0$, so $P(x) = c_0 + c_2 x^2 + c^4 x^4 + c_6 x^6$, and P(-x) = P(x) for all x.

9. Diagonals of a regular nonagon.

The exterior angle of a regular nonagon is 40° , so angle ABC is 140° and each of angles BAC, BCA, DCE and DEC is 20° . Then angle ECA is 100° and each of CEA and CAE is 40° . Thus $\angle EAB = 60^{\circ}$ and $\angle BCE = 120^{\circ}$. Let c be the length of the diagonal BE. By the law of cosines in triangle ABE,

$$c^2 = a^2 + d^2 - 2ad\cos 60^\circ = a^2 + d^2 - ad.$$

By the law of cosines in triangle BCE,

$$c^2 = a^2 + b^2 - 2ab\cos 120^\circ = a^2 + b^2 + ab.$$

Equating the two expressions for c^2 and simplifying, we obtain $d^2 - ad = b^2 + ab$, whence $d^2 - b^2 = a(d+b)$, and as $d+b \neq 0$, it follows that d-b = a.

10. Distance less than 1/2015?.

Yes, there are such points. Although the vertical distance between these curves is always at least 1, and gets arbitrarily large as x increases, the horizontal distance becomes arbitrarily small, as we now show. Consider $A = (a, a^3)$ and $B = (b, b^3 + |b| + 1)$, where $a^3 = b^3 + |b| + 1$ and a > b > 0. These points are on the horizontal line of height a^3 , so the distance between A and B is a - b. But

$$a-b = \frac{a^3 - b^3}{a^2 + ab + b^2} = \frac{b+1}{a^2 + ab + b^2} < \frac{b+1}{3b^2}.$$

Then for b > 1 we have

$$a-b<\frac{2b}{3b^2}<\frac{1}{b}.$$

Thus, if b = 2015 and $a = \sqrt[3]{2015^3 + 2015 + 1}$, the distance between $A = (a, a^3)$ and $B = (b, b^3 + |b| + 1)$ is less than 1/2015.