Overview

This tutorial will focus on our target problem and dataset

We will include some additional topics, including:

- Building Cartesian plots
- Building histograms
- Building scatter plots

Overview

The lecture relies on the the following proficiencies and tools:

- Python programming
- Data handling using the pandas module
- Plotting using <u>matplotlib</u>

You will need them only if you plan to handle these tasks yourself

Our Target Problem

Let's assume we want to estimate real-estate prices in Taiwan

Loading the Data

Data for this problem is available (in csv format) from the data folder

We will load the data via a Python library, called <u>pandas</u>

```
In [8]: data = pd.read_csv('data/real_estate.csv', sep=',')
data.head() # Head returns the first 5 elements
```

Out	[8]	

	house age	dist to MRT	#stores	latitude	longitude	price per area
0	14.8	393.2606	6	24.96172	121.53812	7.6
1	17.4	6488.0210	1	24.95719	121.47353	11.2
2	16.0	4066.5870	0	24.94297	121.50342	11.6
3	30.9	6396.2830	1	24.94375	121.47883	12.2
4	16.5	4082.0150	0	24.94155	121.50381	12.8

■ The file content is a made accessible in a table-like object (called DataFrame)

Loading the Data

Let's have a peek at the data

In [9]:	dat	ca.head()				
Out[9]:		house age	dist to MRT	#stores	latitude	longitude	price per area
	0	14.8	393.2606	6	24.96172	121.53812	7.6
·	1	17.4	6488.0210	1	24.95719	121.47353	11.2
	2	16.0	4066.5870	0	24.94297	121.50342	11.6
·	3	30.9	6396.2830	1	24.94375	121.47883	12.2
	4	16.5	4082.0150	0	24.94155	121.50381	12.8

- The first four columns contain quantities that easy to estimate
- ...But that's not true for the last one!

Obtaining price information requires actual houses to be sold and bought

- Our goal is to use the data to learn a model
- ...That can estimate the price based on the easily available information

Inspecting the Dataset

Now that we roughly know our goal, it's a good idea to inspect the dataset

Typically, this is done by building plots, e.g.:

- Histograms
 - x-axis: values for one attribute
 - y-axis: number of occurrences in the dataset
 - Continuous attributes are typically discretized (i.e. binned) first
- Cartesian plots
 - x-axis: table row number
 - y-axis: one attribute
- Scatter plots
 - x-axis: one attribute
 - y-axis: the target

Let's inspect the "house age" attribute

Let's inspect the "house age" attribute

■ There seem to be two clusters w.r.t. this attribute

Let's inspect the "dist to MRT" attribute

Let's inspect the "dist to MRT" attribute

■ This attribute has a large range and low values are much more prevalent

Let's inspect the "#stores" attribute

Let's inspect the "#stores" attribute

■ The dataset covers rather uniformly the range for this attribute

Let's inspect the "latitude" attribute

Let's inspect the "latitude" attribute

■ There is a central cluster w.r.t. this attribute

Let's inspect the "longitude" attribute

Let's inspect the "longitude" attribute

■ The dataset is a bit less uniformly distributed w.r.t. longitude

Let's inspect the target (i.e. "price per area")

Let's inspect the target (i.e. "price per area")

■ There are a few significant outliers here

Let's inspect the "house age" attribute

Let's inspect the "house age" attribute

No significant pattern here

Let's inspect the "dist to MRT" attribute

Let's inspect the "dist to MRT" attribute

■ This attribute roughly decreases along the table

Let's inspect the "#stores" attribute

```
In [19]: plt.figure()
       data['#stores'].plot(xlabel='#example', grid=':', figsize=figsize)
       plt.tight_layout()
        10
```

Let's inspect the "#stores" attribute

```
In [19]: plt.figure()
       data['#stores'].plot(xlabel='#example', grid=':', figsize=figsize)
       plt.tight layout()
        10
```

■ This attribute roughly increases along the table

Let's inspect the "latitude" attribute

```
In [20]: plt.figure()
         data['latitude'].plot(xlabel='#example', grid=':', figsize=figsize)
        plt.tight_layout()
          25.00
          24.98
          24.96
          24.94
                                      100
                                                                                300
                                                                                                     400
                                                           200
                                                           #example
```

Let's inspect the "latitude" attribute

```
In [20]: plt.figure()
         data['latitude'].plot(xlabel='#example', grid=':', figsize=figsize)
        plt.tight layout()
          25.00
          24.98
          24.96
          24.94
                                      100
                                                                                300
                                                                                                     400
                                                           200
                                                           #example
```

■ This attribute roughly increases along the table

Let's inspect the "longitude" attribute

Let's inspect the "longitude" attribute

■ This attribute roughly increases along the table

Let's inspect the target (i.e. "price per area")

Let's inspect the target (i.e. "price per area")

■ The dataset is sorted according to this attribute!

Using Scatter Plots

Let's inspect how "house age" and the target are linked

Using Scatter Plots

Let's inspect how "house age" and the target are linked

■ There does not seem to be a strong correlation here

Let's inspect how "dist to MRT" and the target are linked

Let's inspect how "dist to MRT" and the target are linked

■ The correlation is a bit stronger here

Let's inspect how "#stores" and the target are linked

Let's inspect how "#stores" and the target are linked

A slightly positive correlation here

Let's inspect how "latitude" and the target are linked

Let's inspect how "latitude" and the target are linked

A somewhat complicated relation

Let's inspect how "longitude" and the target are linked

Let's inspect how "longitude" and the target are linked

Another complicated one

Conclusions and Take-Home Messages

Inspecting a new dataset is very important

- We can get a sense of the dataset
- We can spot the main challenges we will have to face
- ...Including potentially some critical issues (inadequate data)
- It may prevent us from making some mistakes later
- ...And it will allow us some sanity check over the results

Of course, these benefits depend a lot on your experience

- Perhaps some of you already got idea by looking at the plots
- ...But for now the important things is just to keep them in mind