Local Sensitive Discriminant Analysis

Sommaire

- 1. Présentation générale
- 2. Théorie
- 3. Implémentation

Présentation générale

La LSDA est une version modifiée de la LDA qui permet de prendre en compte la structure locale des données.

Présentation générale

La LSDA est une **version modifiée de la LDA** qui permet de prendre en compte la **structure locale** des données.

Utile lorsque peu de données disponibles

Basé sur une méthode de réduction de dimension usuelle

Facile à mettre en oeuvre

Objectif: Trouver une projection qui maximise la variance entre les individus de classes différentes dans chaque voisinage <u>local</u>.

Comment? Via une structure de graphe.

On définie:

- la matrice $X=(\mathbf{x}_1,\cdots,\mathbf{x}_m)$ des individus
- l'ensemble $N(\mathbf{x}_i) = \{\mathbf{x}_i^1, \cdots, \mathbf{x}_i^k\}$ des k plus proche voisins de x_i
- ullet l'ensemble $N_w({f x}_i)$: les individus de $N({f x}_i)$ de même label que ${f x}_i$
- ullet l'ensemble $N_b(\mathbf{x}_i)$: les individus de $N(\mathbf{x}_i)$ de label différent de x_i

On a alors:

G:
$$W_{i,j} = \begin{cases} 1 & \text{si } x_i \in N(x_j) \text{ ou } x_j \in N(x_i) \\ 0 & \text{sinon} \end{cases}$$

Gw:
$$W_{b,ij} = \begin{cases} 1, & \text{if } \mathbf{x}_i \in N_b(\mathbf{x}_j) \text{ or } \mathbf{x}_j \in N_b(\mathbf{x}_i) \\ 0, & \text{otherwise.} \end{cases}$$

Gb:
$$W_{w,ij} = \begin{cases} 1, & \text{if } \mathbf{x}_i \in N_w(\mathbf{x}_j) \text{ or } \mathbf{x}_j \in N_w(\mathbf{x}_i) \\ 0, & \text{otherwise.} \end{cases}$$

On souhaite obtenir une représentation où les points de **même label** sont **proches** et où les points de **labels différents** sont **éloignés**.

Ainsi on choisit d'optimiser les fonctions suivantes :

$$\min \sum_{ij} (y_i - y_j)^2 W_{w,ij}$$

$$\max \sum_{ij} (y_i - y_j)^2 W_{b,ij}$$

Ce problème d'optimisation se réécrit sous la forme :

$$\underset{\mathbf{a}}{\operatorname{arg max}} \quad \underset{\mathbf{a}}{\operatorname{a}^{T}} X \left(\alpha L_{b} + (1 - \alpha) W_{w} \right) X^{T} \mathbf{a}$$

$$\underset{\mathbf{a}}{\operatorname{a}^{T}} X D_{w} X^{T} \mathbf{a} = 1$$

$$\operatorname{avec} \quad \begin{cases} 0 \leq \alpha \leq 1 \\ D_{w,ii} = \sum_{j} W_{w,ij} \\ D_{b,ii} = \sum_{j} W_{b,ij} \\ L_{b} = D_{b} - W_{b} \end{cases}$$

... et est minimisé par la plus plus grande valeur propre λ solution de l'équation :

$$X(\alpha L_b + (1 - \alpha)W_w)X^T \mathbf{a} = \lambda X D_w X^T \mathbf{a}$$
 (1)

On obtient la projection souhaitée en effectuant la multiplication matricielle

$$X_{projected} = AX$$

où $A = (\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_d)$ est la matrice des d vecteurs propres associés aux d plus grandes valeurs propres $\lambda_1 > \cdots > \lambda_d$ solutions de l'équation (1).

 $X_{projected}$ est alors de taille m x d.

Implémentation

```
Entrée [1]: from lsda import LSDA
model = LSDA(n_neighbors=5)
model.fit(X, y)
X_embedded = model.transform(X)
```


Quelques commentaires

Il est possible:

- d'appliquer une ACP pour éliminer les valeurs propres nulles lorsque il y a plus de variables que d'individus.
- d'utiliser l'astuce du noyau si les variétés sous-jacentes sont non linéaires.

Références

1. D. Cai, X. He, K. Zhou, J. Han, and H. Bao, "Locality sensitive discriminant analysis," in International Joint Conference on Artificial Intelligence (IJCAI'07), 2007

Local Sensitive Discriminant Analysis