last update: Dec. 28th, 2020 Changes are purple marked

電磁學 (一) Electromagnetics (I)

15. 電感

Inductance

授課老師:國立清華大學 電機工程學系 黃衍介 教授

Yen-Chieh Huang, National Tsing Hua University, Taiwan

In this lecture, we will learn about magnetic circuits, including a magnetic-flux storage device, called an inductor.

- 15.1 Magnetic circuit 磁電路
- ■15.2 Self-inductance 自電感(自感)
- ■15.3 Mutual Inductance 互電感(互感)
- 15.4 Inductor Circuit 電感電路
- **15.5 Review** 單元回顧

電感 Inductance

15.1 磁電路 Magnetic Circuit

Magnetic Circuit Model

From Ampere's law, for small l_g

$$\oint_{\mathcal{C}} \vec{H} \cdot d\vec{l} = NI \Rightarrow H_g l_g + H_f l_f = NI$$

where the subscripts, g and f, denote quantities in the gap and ferrite regions, respectively.

From the boundary condition, $B_{1n} = B_{2n}$, one has $\mu_g H_g = \mu_f H_f$

ferrite

gap

$$B_{g} = B_{f} = \frac{NI}{l_{f} / \mu_{f} + l_{g} / \mu_{g}} \Rightarrow \Phi = BS = \frac{NI}{l_{f} / \mu_{f} S + (l_{g} / \mu_{g} S)} \Rightarrow \Phi = \frac{V_{m}}{R_{f} + R_{g}}$$

where S is the cross sectional area, R is the magnetic reluctance, and $V_{\rm m} = NI$ is the magnetomotive force (mmf).

*Recall resistance $R = l/\sigma S$

Analogy between Magnetic and Electric Circuits

Magnetic Circuit

Electric Circuit

$$abla imes ec{H} = ec{J}$$
 $abla imes ec{M} = NI$
 $abla imes ec{M} = NI$

$$abla imes ec{E} = ec{f}$$
 emf V_{em}

magnetic flux Φ

electric current I

Magnetic reluctance $R = l/\mu S$

Electric resistance $R = l/\sigma S$

$$\frac{1}{R} = \mu S/l = \frac{\Phi}{NI}$$
: generated flux per unit current.

$$\Phi \propto S \& \mu$$
, because of $\Phi = \int_S \vec{B} \cdot d\vec{s} = \mu \int_S \vec{H} \cdot d\vec{s}$

 $\Phi \propto 1/l$, because, from Ampere's law, the longer l, the weaker $H \& \Phi$ for a given NI.

Kirchhoff's Voltage Law for a Magnetostatic Loop

$$\sum_{j} V_{m,j} = \sum_{j} N_{j} I_{j} = \sum_{k} R_{k} \Phi_{k} \quad \text{(resulting from } \nabla \times \vec{H} = \vec{J} \text{)}$$
 *Compare it with Kirchhoff's voltage law for electrostatics

$$\sum_{j} V_{em,j} = \sum_{k} R_{k} I_{k}$$

Kirchhoff's Current Law for a Magnetostatic Node

$$\sum_{k} \Phi_{k} = 0 \text{ (resulting from } \nabla \cdot \vec{B} = 0 \text{)}$$

*Compare it with Kirchhoff's current law for electrostatics at a current node

$$\sum_{i} I_{k} = 0$$
 (resulting from $\nabla \cdot \vec{J} = 0$)

E.g. Determine the magnetic flux in the center leg in the following magnetic circuit with a ferromagnetic core.

One can solve ϕ_1 (flux in the central leg) and ϕ_2 from the two equations.

* Recall the magnetic reluctance $R_i = \frac{l_i}{l_i}$

 $R_i = \frac{v_i}{\mu S}$

15.1 磁電路

Magnetic Circuit

Magnetic Circuit

mmf
$$V_m = NI$$

magnetic flux Φ

Magnetic reluctance $R = l/\mu S$

Electric Circuit

emf
$$V_{em}$$

electric current I

Electric resistance $R = l/\sigma S$

$$R = l/\sigma S$$

Kirchhoff's Voltage Law for a Magnetostatic Loop $\sum_{i} V_{m,j} = \sum_{i} N_{j} I_{j} = \sum_{k} R_{k} \Phi_{k}$

$$\sum_{j} V_{m,j} = \sum_{j} N_{j} I_{j} = \sum_{k} R_{k} \Phi_{k}$$

Kirchhoff's Current Law for a Magnetostatic Node $\sum_{k} \Phi_{k} = 0$

$$\sum_{k} \Phi_{k} = 0$$

電感 Inductance

15.2 自電感(自感) Self-inductance **Inductor:** a device that stores magnetic flux and provides a certain amount of inductance.

The inductor bank of a high-voltage modulator at the NTHU HOPE Laboratory

In a linear medium, inductance is a function of spatial dimensions and permeability.

Inductance: magnetic linkage per unit current

Self-Inductance

Self-Inductance
$$L_{11} = \frac{N_1 \Phi_{11}}{I_1} = \frac{\Lambda_{11}}{I_1}$$
 where $\Phi_{11} = \int_{S_1} \vec{B_1} \cdot d\vec{S_1} = \oint_{C_1} \vec{A_1} \cdot d\vec{I_1}$ refer to flux loop refer to current

is the magnetic flux through C_1 due to I_1 ,

and

$$\Lambda_{11} = N_1 \Phi_{11}$$

is the magnetic linkage associated with C_1 due to I_1 . **Self-inductance** L_{11} is the magnetic linkage per unit current in the loop itself.

E.g. Find the inductance of an *N*-turn toroid with μ_0 inside

Apply Ampere's law
$$\oint_C \vec{H} \cdot d\vec{l} = NI$$

$$H_{\phi} \cdot 2\pi r = NI \Rightarrow H_{\phi} = \frac{NI}{2\pi r}$$

$$\Rightarrow B_{\phi} = \mu_0 H_{\phi} = \frac{\mu_0 NI}{2\pi r}$$
*adapted from Fig. 6-23 [1]

*adapted from Fig. 6-23 [1]

The magnetic flux is calculated from

$$\Phi_{11} = \int_{S_1} \vec{B}_1 \cdot d\vec{s}_1 = \int_a^b B_\phi \underline{h} dr = \frac{\mu_0 N I h}{2\pi} \ln \frac{b}{a}$$
The magnetic linkage is calculated from $\Lambda_{11} = N_1 \Phi_{11} = \frac{\mu_0 N^2 I h}{2\pi} \ln \frac{b}{a}$

The inductance is therefore $L_{11} = \frac{\Lambda_{11}}{I_1} = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{b}{a}$

15.2 自電感(自感)

Self-inductance

- An inductor is a magnetic-flux storage device.
- Specifically, inductance is the magnetic linkage per unit current.
- Self-inductance is the magnetic linkage per unit current without considering coupling from other current loops.

電感 Inductance

15.3 互電感(互感) Mutual Inductance

Mutual Inductance refer to flux where $\Phi_{12} = \int_{S_2} \vec{B}_1 \cdot d\vec{s}_2 = \oint_{C_2} \vec{A}_1 \cdot d\vec{l}_2$ is the magnetic flux through C_2 due to I_1 , and

 $\Lambda_{12} = N_2 \Phi_{12}$ is the magnetic linkage associated with C_2 due to I_1 .

Mutual inductance L_{12} is the magnetic linkage through C_2 per unit current in loop C_1 .

Given the mutual inductance $L_{12} = \frac{N_2 \Phi_{12}}{I} = \frac{\Lambda_{12}}{I}$ Recall the total magnet flux $\Phi = \int_{S} \vec{B} \cdot d\vec{s} = \oint_{C} \vec{A} \cdot d\vec{l}$

 $\Rightarrow L_{12} = \frac{N_2 \Phi_{12}}{I_1} = \frac{N_2}{I_1} \oint_{C_2} \vec{A}_1 \cdot d\vec{l}_2$

Recall the vector potential
$$\vec{A} = \frac{\mu_0 I}{4\pi} \oint_{C'} \frac{d\vec{l}'}{R}$$

$$-\oint_{C_1} \frac{dl_1}{R}$$

 $L_{12} = \frac{N_2}{I_1} \oint_{C_2} \vec{A}_1 \cdot d\vec{l}_2 = \frac{N_2}{I_1} \oint_{C_2} \left(\vec{A}_1 = \frac{\mu_0 N_1 I_1}{4\pi} \oint_{C_1} \frac{d\vec{l}_1}{R} \right) \cdot d\vec{l}_2$ $\Rightarrow L_{12} = \frac{\mu_0 N_1 N_2}{4\pi} \oint_{C_1} \oint_{C_2} \frac{d\vec{l}_1 \cdot d\vec{l}_2}{R} = L_{21}$ No difference when 1

and 2 are exchanged.

E.g. A wire of N_1 turns is wound inside a wire of N_2 turns carrying currents I_1 and I_2 respectively. Find the mutual inductance of such a device.

*To avoid dealing with the fringe fields, it is easier to calculate the field in N_1 .

To find
$$\Phi_{12}$$
, use Ampere's law to obtain $B_1 = \frac{\mu_0 N_1 I_1}{d_1}$ (valid only when d_1 is long enough)

The magnetic flux in Coil 2 is $\Phi_{12} = B_1 S_2 = B_1 S_1 = \pi a^2 \frac{\mu_0 N_1 I_1}{d_1}$

The magnetic linkage is $\Lambda_{12} = N_2 \Phi_{12} = \pi a^2 \frac{\mu_0 N_1 N_2 I_1}{d_1}$

The mutual inductance is $L_{12} = \frac{\Lambda_{12}}{I_1} = \pi a^2 \frac{\mu_0 N_1 N_2}{d_2}$

15.3 互電感(互感) Mutual Inductance

- Mutual inductance L_{12} is the magnetic linkage through loop 2, per unit current in loop 1.
- In general, $L_{12} = L_{21}$
- Therefore, in a problem, you choose to calculate either L_{12} or L_{21} , whichever easier.

電感 Inductance

15.4 電感電路 Inductor Circuit

Faraday's Law of Magnetic Induction

Consider a single contour loop C in a space with a time-varying magnetic flux $\Phi(t)$ through it, where

$$\Phi = \int_{S} \vec{B} \cdot d\vec{s}$$

Based on experimental observation, a voltage V(t) is induced around the loop C, given by $V = -\frac{d\Phi}{dt} = -L\frac{di}{dt}$

(The "-" sign is from the so-called Lenz's law - the induced voltage is to oppose the change of the magnetic flux)

Serial Inductors

Circuit expression

$$V = L_{sr} \frac{di}{dt} = \sum_{i} V_{i} = L_{1} \frac{di}{dt} + L_{2} \frac{di}{dt} \dots + L_{N} \frac{di}{dt}$$

Equivalent inductance = sum of individual inductances L_i

$$L_{sr} = L_1 + L_2 ... + L_N$$

Parallel Inductors

Circuit expression
$$\frac{V}{L_1}$$
 $\frac{V}{L_2}$ $\frac{V}{L_n}$ $\frac{V}{L_n}$ $\frac{V}{L_n}$ $V = L_p \frac{di_{total}}{dt} = L_p \left(\frac{di_1}{dt}\right) \left(\frac{di_2}{dt}\right) \left(\frac{di_3}{dt}\right) + \dots + \left(\frac{di_n}{dt}\right) = L_p \left(\frac{V}{L_1} + \frac{V}{L_2} + \frac{V}{L_3} \dots + \frac{V}{L_n}\right)$

Equivalent inductance = sum of individual inductances

$$\Rightarrow \frac{1}{L_p} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} \dots + \frac{1}{L_n}$$

RL Circuit

Kirchhoff's voltage law over the whole loop:

$$V_{DC} = V_R(t) + V_L(t)$$

Recall $V_L = L \frac{di}{dt}$

Inductor current increases to a steadystate value of V_{DC}/R with a time constant of $\tau = L/R$

15.4 電感電路

Inductor Circuit

 The equivalent inductance of serial inductors is the sum of all the individual inductances.

$$L_{sr} = L_1 + L_2 \dots + L_N$$

 The inverse of the equivalent inductance of parallel inductors is the inverse sum of all the individual inductances.

$$\frac{1}{L_p} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} \dots + \frac{1}{L_n}$$

• A DC-voltage powered RL circuit reaches a steady-state current with a characteristic time constant equal to $\tau = L/R$.

電感 Inductance 15.5 單元回顧 Review

單元回顧

- 1. An inductor, driven by a current, is a magnetic-flux storage device.
- 2. The analogy between magnetic and electric circuits can be summarized as

Magnetic Circuit

$$abla imes \vec{H} = \vec{J}$$
 $mmf \ \ V_m = NI$
 $magnetic \ flux \ \Phi$

Magnetic reluctance $R = l/\mu S$

Electric Circuit

$$abla imes ec{E} = ec{f} \$$
 $emf \ V_{em} \$
 $electric \ current \ I \$

Electric resistance $R = l/\sigma S$

單元回顧

3. The Kirchhoff's laws for a magnetostatic circuit are written as:

Kirchhoff's Voltage Law for a Magnetostatic Loop

$$\sum_{j} V_{m,j} = \sum_{j} N_{j} I_{j} = \sum_{k} R_{k} \Phi_{k}$$
 Kirchhoff's Current Law for a Magnetostatic Node

$$\sum_{k} \Phi_{k} = 0$$

4. **Self-inductance** is the magnetic linkage per unit current in the current loop

itself.

$$L_{11} = \frac{N_1 \Phi_{11}}{L} = \frac{\Lambda_{11}}{L}$$

itself. $L_{11} = \frac{N_1 \Phi_{11}}{I_1} = \frac{\Lambda_{11}}{I_1}$ where $\Phi_{11} = \int_{S_1} \vec{B}_1 \cdot d\vec{s}_1 = \oint_{C_1} \vec{A}_1 \cdot d\vec{l}_1$

is the magnetic flux through C_1 due to I_1 ,

5. Mutual inductance L_{12} is the magnetic linkage through loop 2, per unit current in loop 1 or

$$L_{12} = \frac{N_2 \Phi_{12}}{I_1} = \frac{\Lambda_{12}}{I_1}$$

單元回顧

- 6. In general, $L_{12} = L_{21}$.
- 7. Faraday's law of magnetic induction: A time varying magnetic flux can induce a voltage V(t) around a contour loop C, according to

$$V = -rac{d\Phi}{dt} - Lrac{di}{dt}$$
 The induced current opposes the change of Φ .

8. The equivalent inductance of serial inductors is the sum of all the individual inductances.

單元回顧

9. The inverse of the equivalent inductance of parallel inductors is the inverse sum of all the individual inductances.

$$\frac{1}{L_p} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} \dots + \frac{1}{L_n} \quad i_1 \downarrow \qquad i_2 \downarrow \qquad i_3 \downarrow \qquad i_4 \downarrow \qquad i_n \downarrow \qquad i_{total}(t) \qquad i_{tota$$

10. A DC-voltage powered RL circuit reaches a steady-state current with a characteristic time constant equal to $\tau = L/R$.

THANK YOU FOR YOUR ATTENTION