力迫关系 _{力迫初步 (3)}

张体云

"力迫学习小组"

2020年7月19日

关于力迫条件相容性的勘误

力迫条件的相容性不是传递的。例子: 考虑有穷部分函数 $f_1 = \{\langle 0, 0 \rangle\}, f_2 = \{\langle 1, 1 \rangle\}, f_3 = \{\langle 0, 1 \rangle\}.$

ℙ-名字定义勘误

首先,力迫偏序的记号改为 ℙ,以便和幂集符号区分。

定义 (错误的)

递归定义 \mathbb{P} -名字层谱 $\langle N_{\alpha} \rangle_{\alpha \in \mathbf{On} \cap \mathbf{M}}$:

$$N_{\alpha} = \{ \tau \subset N_{<\alpha} \times \mathbb{P} : \operatorname{ran}(\tau)$$
向上封闭 $\}$

令 $N = \bigcup_{\alpha \in \mathbf{On} \cap \mathbf{M}} N_{\alpha}$ 。 我们称 $\tau \in N$ 为 \mathbb{P} -名字。

定义 (正确的)

递归定义 \mathbb{P} -名字层谱 $\langle N_{\alpha} \rangle_{\alpha \in \mathbf{On} \cap \mathbf{M}}$:

$$N_{\alpha} = \{ \tau \in \mathbf{M} \cap P(N_{\leq \alpha} \times \mathbb{P}) : (\langle \sigma, p \rangle \in \tau \land p \subseteq q) \to \langle \sigma, q \rangle \}$$

我们称 τ 为 \mathbb{P} -名字,如果存在 $\alpha \in \mathbf{On} \cap \mathbf{M}$ 使得 $\tau \in \mathbf{N}_{\alpha}$ 。

- 1 等式的力迫
 - ■力迫关系
 - ■等式的力迫

- 2 力迫基本定理
 - ■力迫基本定理
 - 分离公理、幂集公理、替换公理与选择公理

力迫关系

前面说过力迫条件是完整构造的片段,这些片段记录了有关完整构造的部分信息—— $p \in G$ 能决定 $\mathbf{M}[G]$ 中某些公式是否成立。

定义

给定公式 $\phi(x_1,\ldots,x_n)$, $p\in\mathbb{P}$ 和 \mathbb{P} -名字 τ_1,\ldots,τ_n ,我们称 p 力 迫 $\phi(\tau_1,\ldots,\tau_n)$,写作

$$p \Vdash \phi(\tau_1, \ldots, \tau_n)$$

如果对任意脱殊理想 G, $p \in G$ 蕴含 $\mathbf{M}[G] \models \phi(\tau_{1G}, \dots, \tau_{nG})$ 。

注意,给定 ϕ ,力迫关系是对象语言中的一个公式,它用到的参数是 $p, \tau_1, \ldots, \tau_n$ 。

由理想的向下封闭性,p有力迫关系蕴含了p的任意扩张有力迫关系。

等式的力迫

今天要证明的力迫基本定理告诉我们,M[G] 满足的任何公式,都是被 G 中的某一个元素所力迫的,并且力迫关系可以在 M 中定义。乍听之下这强得令人难以置信,但是注意到所以公式都是递归地构造出来的,所以实际上需要解决的是几个基本的情况。而证明中最繁琐的部分在于力迫 $x_1 = x_2$ 。这是本节的任务。

我们首先在 \mathbf{M} 中递归地定义一列集合 $\langle \mathcal{F}_{\alpha} \rangle_{\alpha \in \mathbf{On} \cap \mathbf{M}}$,然后再证明 $p \Vdash \tau_1 = \tau_2$ 当且仅当 $\langle p, \tau_1, \tau_2 \rangle$ 属于其中之一,从而证明等式的力迫关系是在 \mathbf{M} 中可定义的。

在 M 中定义等式力迫关系

在 M 中定义等式力迫关系

$$\label{eq:problem} \diamondsuit \ \operatorname{nr}(\tau_1,\tau_2) = \max\{\mathbb{P}\text{-}\operatorname{rank}(\tau_1),\mathbb{P}\text{-}\operatorname{rank}(\tau_2)\} \text{.}$$

定义

在 M 中递归定义 $\langle \mathcal{F}_{\alpha} \rangle_{\alpha \in \mathbf{On} \cap \mathbf{M}} \circ \langle p, \tau_1, \tau_2 \rangle \in \mathcal{F}_{\mathit{nr}(\tau_1, \tau_2)}$ 当且仅当

$$\begin{array}{c} \mathbf{1} \ \, (\forall \langle \sigma_1, q_1 \rangle \in \tau_1)[\mathsf{p} \subseteq \mathsf{q}_1 \to \\ (\exists \langle \sigma_2, q_2 \rangle \in \tau_2)(\mathsf{q}_1 \subset \mathsf{q}_2 \land \langle \mathsf{q}_2, \sigma_1, \sigma_2 \rangle \in \mathcal{F}_{\mathit{nr}(\sigma_1, \sigma_2)})] \end{array}$$

2
$$(\forall \langle \sigma_2, q_2 \rangle \in \tau_2)[p \subseteq q_2 \rightarrow (\exists \langle \sigma_1, q_1 \rangle \in \tau_1)(q_2 \subset q_1 \land \langle q_1, \sigma_2, \sigma_1 \rangle \in \mathcal{F}_{\mathit{nr}(\sigma_1, \sigma_2)})]$$

注意,整个递归是相对化到 ${f M}$ 中的,因而 ${\cal F}_{lpha}={\cal F}_{lpha}^{f M}\in{f M}$ 。

脱殊理想的几个性质

定理

对任意脱殊理想 G,

- **I** $D \in \mathbf{M}$, 如果任意 $p \in G$ 都和 D 中某个元素相容,那么 $G \cap D \neq \emptyset$ 。
- ② $D \in \mathbf{M}$, 如果存在 $p \in G$ 使得 D 在 p 以上稠密,那么 $G \cap D \neq \emptyset$ 。
- 3 A ∈ M,如果 G ⊂ A,那么存在 p ∈ G 使得 p 的所有扩张都 属于 A。

 $D \in \mathbf{M}$,如果任意 $p \in G$ 都和 D中某个元素相容,那么 $G \cap D \neq \emptyset$ 。

 $D \in \mathbf{M}$, 如果存在 $p \in G$ 使得 D 在 p 以上稠密, 那么 $G \cap D \neq \emptyset$ 。

 $A \in \mathbf{M}$,如果 $G \subset A$,那么存在 $p \in G$ 使得 p 的所有扩张都属于 A。

等式的力迫基本定理

定理

对任意 \mathbb{P} -名字 τ_1, τ_2 , (a) 对任意脱殊理想 G, $\tau_1_G = \tau_2_G$ 当且仅 当存在 $p \in G$ 使得 $p \Vdash \tau_1 = \tau_2$ 。

(b) 对任意 $p \in \mathbb{P}$, $p \Vdash \tau_1 = \tau_2$ 当且仅当 $(\exists \alpha) \langle p, \tau_1, \tau_2 \rangle \in \mathcal{F}_{\alpha}$

对 $\operatorname{nr}(\tau_1,\tau_2)$ 作归纳。

$$A = \{q_1 : (\forall \langle \sigma_1, q_1 \rangle \in \tau_1)(\exists \langle \sigma_2, q_2 \rangle \in \tau_2)(q_1 \subseteq q_2 \land q_2 \Vdash \sigma_1 = \sigma_2)\}$$

Claim:

- (i) 如果 $\tau_{1G} \subseteq \tau_{2G}$,那么 $G \subset A$ 。
- (ii) 如果存在 $p \in G$ 使得 p 的每个扩张都属于 A,那么 $\tau_{1G} \subseteq \tau_{2G}$ 。

证明 (i)

$$A = \{q_1 : (\forall \langle \sigma_1, q_1 \rangle \in \tau_1)(\exists \langle \sigma_2, q_2 \rangle \in \tau_2)(q_1 \subseteq q_2 \land q_2 \Vdash \sigma_1 = \sigma_2)\}$$

(i) 如果 $\tau_{1G} \subseteq \tau_{2G}$,那么 $G \subset A_{\circ}$

证明 (ii)

$$\mathcal{A} = \{q_1 : (\forall \langle \sigma_1, q_1 \rangle \in \tau_1)(\exists \langle \sigma_2, q_2 \rangle \in \tau_2)(q_1 \subseteq q_2 \land q_2 \Vdash \sigma_1 = \sigma_2)\}$$

(ii) 如果存在 $p \in G$ 使得 p 的每个扩张都属于 A,那么 $\tau_{1G} \subseteq \tau_{2G}$ 。

证明 (a)

(a) 对任意脱殊理想 G, $\tau_{1G} = \tau_{2G}$ 当且仅当存在 $p \in G$ 使得 $p \Vdash \tau_{1} = \tau_{2}$ 。

证明 (b)

(b) 对任意 $p \in \mathbb{P}$, $p \Vdash \tau_1 = \tau_2$ 当且仅当 $(\exists \alpha) \langle p, \tau_1, \tau_2 \rangle \in \mathcal{F}_{\alpha}$

力迫基本定理其实是个定理模式。现在我们要证明对所有公式 ϕ 都有相应的定理成立,思路和等式的情况一样,先在 M 中递归定义集合。这里有两个递归,首先是对公式复杂度的递归,然后是对参数的 \mathbb{P} -rank 的递归。

定义

给定 ϕ ,根据它的形式,在 M 中递归地定义 $\langle \mathcal{F}_{\alpha}^{\phi} \rangle_{\alpha \in \mathbf{On} \cap \mathbf{M}}$ 。 令 $\alpha = nr(\tau_1, \dots, \tau_n)$, $\langle p, \tau_1, \dots, \tau_n \rangle \in \mathcal{F}_{\alpha}^{\phi}$ 当且仅当 $(x_1 \in x_2) \qquad \{q: (\exists \langle \sigma, q \rangle \in \tau_2) q \Vdash \tau_1 = \sigma\} \text{ 在 } p \text{ 以上稠密} \text{ o.}$ 不存在 p 的扩张 q 使得 $\langle q, \tau_1, \dots, \tau_n \rangle \in \mathcal{F}_{\alpha}^{\psi}$ 。 对任意 p 的扩张 q_1 使得 $\langle q_1, \tau_1, \dots, \tau_n \rangle \in \mathcal{F}_{\alpha}^{\psi_1}$, $q_1 \text{ 有扩张 } q_2 \text{ 使得 } \langle q_2, \tau_1, \dots, \tau_n \rangle \in \mathcal{F}_{\alpha}^{\psi_2} \text{ o.}$ 对任意 τ , $\{q: \langle q, \tau, \tau_1, \dots, \tau_n \rangle \in \mathcal{F}_{\alpha}^{\psi_2} \}$ 在 p 以上稠密。

力迫基本定理

定理模式

给定 $\phi(x_1,\ldots,x_n)$ 。对任意 \mathbb{P} -名字 τ_1,\ldots,τ_n ,

- (a) 对任意脱殊理想 G, $\mathbf{M}[G] \models \phi(\tau_{1G}, \dots, \tau_{nG})$ 当且仅当存在 $p \in G$ 使得 $p \Vdash \phi(\tau_{1}, \dots, \tau_{n})$ 。
- (b) 对任意 $p \in \mathbb{P}$, $p \Vdash \phi(\tau_1, \dots, \tau_n)$ 当且仅当 $(\exists \alpha) \langle p, \tau_1, \dots, \tau_n \rangle \in \mathcal{F}^{\phi}_{\alpha}$

与等式力迫的证明类似,根据公式的形式,我们定义相应的 *A*,然后证明:

- (i) 如果 $\mathbf{M}[G] \models \phi(\tau_1, \ldots, \tau_n)$,那么 $G \subset A$ 。
- (ii) 如果存在 $p \in G$ 使得 p 的每个扩张都属于 A,那么 $\mathbf{M}[G] \models \phi(\tau_1, \ldots, \tau_p)$ 。

有这两条命题以后,剩下的证明就和等式力迫的情形几乎相同。

∈ 的情形

定义
$$A = \{q : (\exists \langle \sigma, q' \rangle \in \tau_2) (q \subseteq q' \land q' \Vdash \tau_1 = \sigma)\}$$
。

¬ 的情形

定义
$$A = \{q : q \not \Vdash \psi\}$$
。

→ 的情形

定义
$$A = \{q: q \Vdash \neg \psi_1 \lor (\exists q' \supseteq q)q \Vdash \psi_2\}$$
。

∀ 的情形

定义
$$A = \{q : (\forall \tau)(\exists q' \supset q) q \Vdash \psi(\tau)\}$$
。

M[G] 满足分离公理模式

定理模式

给定公式 ϕ 。对任意 \mathbb{P} -名字 $\tau, \tau_1, \ldots, \tau_n$,

$$y = \{x \in \tau_G : \mathbf{M}[G] \models \phi(x, \tau_{1G}, \dots, \tau_{nG})\}$$

属于 M[G]。

M[G] 满足幂集公理

定理

定义 $\hat{\tau} = \{\langle \sigma, p \rangle : \sigma \subset \tau \land \sigma$ 是 \mathbb{P} -名字 $\wedge p \in \mathbb{P}\}$ 。 对任意 \mathbb{P} -名字 τ , $P(\tau_G) \cap \mathbf{M}[G] = \hat{\tau}_G \in \mathbf{M}[G]$ 。

M[G] 的集合层谱

定理

定义
$$\tilde{V}_{\alpha} = \{ \sigma_{G} : \sigma \in N_{\alpha} \}$$
。则对任意 $\alpha \in \mathbf{On} \cap \mathbf{M}$, $\tilde{V}_{\alpha} = P(\tilde{V}_{<\alpha}) \cap \mathbf{M}[G]$ 。

M[G] 满足替换公理模式

定理模式

给定公式 $\phi(x, y, x_1, \dots, x_n)$ 。对任意 \mathbb{P} -名字 $\tau, \tau_1, \dots, \tau_n$,如果 $\mathbf{M}[G] \models (\forall x \in \tau_G)(\exists ! y) \phi(x, y, \tau_{1G}, \dots, \tau_{nG})$,那么

$$R = \{ y \in \mathbf{M}[G] : (\exists x \in \tau_G) \phi(x, y, \tau_{1G}, \dots, \tau_{nG}) \}$$

属于 M[G]。

等式的力迫

M[G] 满足选择公理

定理

 $\mathbf{M}[G] \models$ 任意集合上都有良序。

元定理

对 ZFC 中的任意公理 ϕ ,ZFC⁺ \vdash 「 如果 $\mathbb{P} \in \mathbf{M}$,G 是 \mathbb{P} 上的 脱殊理想,那么 $\mathbf{M}[G] \models \phi$ 。