

10/519325

1/15

DT09 Rec'd PCT/PTO 23 DEC 2004

SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> Preventing and treating agent for cancer

<130> P03-0038PCT

<150> JP 2002-186799

<151> 2002-06-26

<150> JP 2002-186815

<151> 2002-06-26

<160> 26

<210> 1

<211> 296

<212> PRT

<213> Human

<400> 1

Met Glu His Leu Lys Ala Phe Asp Asp Glu Ile Asn Ala Phe Leu Asp

5 10 15

Asn Met Phe Gly Pro Arg Asp Ser Arg Val Arg Gly Trp Phe Thr Leu

20 25 30

Asp Ser Tyr Leu Pro Thr Phe Phe Leu Thr Val Met Tyr Leu Leu Ser

35 40 45

Ile Trp Leu Gly Asn Lys Tyr Met Lys Asn Arg Pro Ala Leu Ser Leu

50 55 60

Arg Gly Ile Leu Thr Leu Tyr Asn Leu Gly Ile Thr Leu Leu Ser Ala

65 70 75 80

Tyr Met Leu Ala Glu Leu Ile Leu Ser Thr Trp Glu Gly Gly Tyr Asn

85 90 95

Leu Gln Cys Gln Asp Leu Thr Ser Ala Gly Glu Ala Asp Ile Arg Val

100 105 110

Ala Lys Val Leu Trp Trp Tyr Tyr Phe Ser Lys Ser Val Glu Phe Leu

115	120	125
Asp Thr Ile Phe Phe Val Leu Arg Lys Lys Thr Ser Gln Ile Thr Phe		
130	135	140
Leu His Val Tyr His His Ala Ser Met Phe Asn Ile Trp Trp Cys Val		
145	150	155
Leu Asn Trp Ile Pro Cys Gly Gln Ser Phe Phe Gly Pro Thr Leu Asn		
165	170	175
Ser Phe Val His Ile Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Val Phe		
180	185	190
Pro Ser Met His Lys Tyr Leu Trp Trp Lys Lys Tyr Leu Thr Gln Ala		
195	200	205
Gln Leu Val Gln Phe Val Leu Thr Ile Thr His Thr Met Ser Ala Val		
210	215	220
Val Lys Pro Cys Gly Phe Pro Phe Gly Cys Leu Ile Phe Gln Ser Ser		
225	230	235
Tyr Met Leu Thr Leu Val Ile Leu Phe Leu Asn Phe Tyr Val Gln Thr		
245	250	255
Tyr Arg Lys Lys Pro Met Lys Lys Asp Met Gln Glu Pro Pro Ala Gly		
260	265	270
Lys Glu Val Lys Asn Gly Phe Ser Lys Ala Tyr Phe Thr Ala Ala Asn		
275	280	285
Gly Val Met Asn Lys Lys Ala Gln		
290	295	

<210> 2

<211> 888

<212> DNA

<213> Human

<400> 2

atggAACATC taaaggcctt ttagatgtgaa atcaatgcTT ttggacAA tatgtttggA	60
cccgAGAGATT ctgcagtcAG agggtggtTC acgttgGACT cttaccttCC tacTTTTT	120
cttaCTGTCA tggatCTGt ctcAATATGG ctgggtAAAC agtatATGAA gaacAGACCT	180
gtctttCTC tcaggGGTAT ctcACCTTG tataatCTG gaatCACACT tctctCCGCG	240
tacatGCTGG cagAGCTCAT tctctCCACT tggGAAGGAG gctacaACCT acagtGTCAA	300
gatCTTACCA gcgcAGGGGA agctgacATC cgggtAGCCA aggtgCTTg gtggTactAT	360
ttctccAAAT cagtagAGTT cctggACACA atttctcg tttgcggAA aaaaACGAGT	420

cagattacctt ttcttcatgt atatcatcat gcttctatgt ttaacatctg gtgggtgtc 480
 ttgaactgga taccttgtgg acaaagtttc tttggaccaa cactgaacag ttttgtccac 540
 attcttatgt actctacta tggactttc gtgttccat ctatgcacaa gtatcttgg 600
 tggaagaaaat atctcacaca ggctcagctg gtgcagttcg tgctcaccat cacgcacacc 660
 atgagcgcgg tcgtgaaacc gtgtggcttc ccctcggtt gtctcatctt ccagtcatct 720
 tatatgctaa cgtagtcat cctcttcta aattttatg ttcagacata ccgaaaaaaag 780
 ccaatgaaga aagatatgca agagccacct gcagggaaag aagtgaagaa tggttttcc 840
 aaaggctact tcactgcgcg aaatggagtg atgaacaaga aagcacaa 888

<210> 3

<211> 4002

<212> DNA

<213> Human

<400> 3

gatagcgcgg ggcagaggga cccggctacc ctggacagcg catcgccgcc cgccccgggtc 60
 gccgcgcccac agccgctgca gatcatggaa catctaaagg ctttgatga taaaatcaat 120
 gctttttgg acaaatatgtt tggaccgcga gattctcgag tcagagggtg gttcacgttg 180
 gactcttacc ttcctacett tttcttact gtcatgtatc tgctctcaat atggctgggt 240
 aacaagtata tgaagaacag acctgtctt tcttcagggtt gtatcctcac cttgtataat 300
 cttggaatca cacttcctc cgcgtacatg ctggcagagc tcattctc cacttggaa 360
 ggaggctaca acttacagtg tcaagatctt accagcgcag ggaaagctga catccggta 420
 gccaagggtgc ttgggtgta ctatctcc aatcagtag agttctggta cacaattttc 480
 ttcggttgc ggaaaaaaaaac gagtcagatt actttcttc atgtatatac tcatgettct 540
 atgttaaca tctgggtgt tgcattgaac tggatacctt gtggacaaag tttcttgaa 600
 ccaacactga acagtttgc ccacattttt atgtactct actatggact ttctgtttt 660
 ccatctatgc acaagtatct ttgggtgaaag aatatctca cacaggctca gctgggtcag 720
 ttcggtctca ccatcagca caccatgagc gccgtcgta aaccgtgtgg cttcccttc 780
 ggttgcgtca tctccagtc atcttatatg ctaacgttag tcatccttctt cttaaatttt 840
 tatgttcaga cataccgaaa aaagccatg aagaaagata tgcaagagcc acctgcagg 900
 aaagaagtga agaatggttt ttccaaagcc tacttcactg cagcaatgg agtgtatgaac 960
 aagaaagcac aataaaaatg agtaacagaa aaagcacata tactagccta acagattggc 1020
 ttgtttaaa gcaaagactg aattgaaggt tacatgtttt aggataaact aatttctttt 1080
 gagttcataa atcatttgc cccagaatgt attaatatat tgcttattagg ttaatctgtt 1140
 aactgaatgc tttgatcagc attgaggtga tgctcacctc cgaggacctc agaactggtg 1200
 cagttctct ctccctccct cccacagact gaaccttcg ccagaagctg tccttataac 1260
 gccttatacg catacacagc cagggaaacgt ggagcattgt ttctcacaga gagtctcaa 1320

ataaaaaaggg ttttgttcag attaaaatgt ttacaacaaa atgtaatta tattctaaat 1380
 acagggtatg ttctaatactt tattaagcaa taatgccagt gcataatcat tccatttgc 1440
 ccttagcaa tcaaccccg aaaaatattaa aatgggatca tacacagaag atagaaaaat 1500
 ctagcaaaac ttctttct gtaagccaga gtctgtctc tcagattccc acaaccactc 1560
 ctgattctaa atttagtgat atgtaatga aattggatt tattttaaat attagttatt 1620
 ctaaggagaa aaaaatgcct ctgcaagatt ttcataattc agggctgtg gataggattg 1680
 ttccctgtt tccctaatac ttcatctgtt catgtctccc tcttgcgc gtcagectag 1740
 gttatacaga tgccatgctc cacaccacga gcagtgtaca aatctggctg cccgttact 1800
 ttctgagcaa gcactggagt ccactccgac cttttctt gaacatgcat gctgctggaa 1860
 tatgtataaa tcagaactag cagaagtagc agagtgtatgg gagcaaaata ggcactgaat 1920
 tcgtcaactc tttttgtga gcctacttgtt gaatattacc tcagataacct gttgtcactc 1980
 ttcacaggtt atttaagttt ttgaagctgg gaggaaaaag atggagtagc ttggaaagat 2040
 tccagcactg agccgtgggc cggtcatgag ccacgataaa aatgccagt ttggcaaact 2100
 cagcactcct gttccctgct caggtatatg cgatctctac tgagaagcaa gcacaaaagt 2160
 agacaaaagt attaatgagt atttccttcc tccataagt caggactgtt actcactact 2220
 aaactctacc aagaatggaa acaaagaata ttttctgaag attttttgtaa agattaattt 2280
 ataccctata aaataaaaact tggtagcttc gatgaagtc cttcatcttc ttcctaccc 2340
 tattttttta aataagttt taggtcttga cactgacatc aaatacatgc acaccagaaa 2400
 ggcatttcca ccaccgtccc cactcattag cgtccagagt gccttctct ctcggcttt 2460
 ttccccctt gagctctagt tttaaacttt ctccgtttaa aaaaattgtt cttttatcc 2520
 atgtaaactg cccctctgag gatttggca tatttttgg aaggtgccta atgcttagga 2580
 tagtctctag ggtgatgcac tgcacctgtc tcctccctt cagtgccggcc gaccatttc 2640
 tggtaacag atgtctctg tggatgcctt ctgactctta catttatctt tctaaatcat 2700
 ttctgaagc tgacttgctc taggggtctt catcaccact tccatcttc atcacctat 2760
 aactgttctg tcttgcctc tccagcaat ttattttaaa acaagggtt gttcaagca 2820
 tgactgtttaa tggctcttc tggacaaaaac acaagttgga ccaaggagaa agcccttgg 2880
 agaaaactgga ccctagttca gtttagatct caaatatagg ctgaaatctc ttaccaaagt 2940
 gcttccaga taaaaatgag acttagaaga cagactggct taatatgctc actggtcata 3000
 acattcagct tattcttacg tgccagttagt gcccataaggct ctcagtgcatacgtt 3060
 ccactcttggaa tggtttcttgg ggcttccat cttgtatggca aggagggagc tggcttcag 3120
 cagacaaaagt caagcagctt taagtacaag gcagcttggaa acctctctga tgaaagtggaa 3180
 aaatgtgggt agcttatact ttcaaaactaa tgccagtgcac tagagagagg tttcattcat 3240
 gatgtgtatt tccaatttgg tcttcaatttca aagagatgtc tctataaaca cttatagect 3300
 taaaccattc aagggttaat taaaaaaaata gttatgaaat cttggccaca aaaaataaaat 3360
 caggtaaaca tttaaacctg tcgttaagt gttgtacttca aaaaaaccaa aatgcttatt 3420
 ttaatgtgtat ttcttcttcaaaat cttgtaaaaa attaatattt ctataatctt taaaaaaaat 3480
 tggagaatgt ttctcttcaaaat tttccctgt acccatggga atgaaaatac ttaaatactg 3540

taaaggcatat ctattaataa ttcccccaat ttttaaact aacaaaatgg aatgttaact 3600
gaatggaaatt aaacatagca attgtcaagc catcaaaaatt atatatcgaa ccacttaggc 3660
atgttacggg gtaaagtctt caccctgca tttgagaaat attttattat ttttatttt 3720
aggcaaaaca gtgttactg tgatggcag aacagccctt tgtatctagg agtccatttg 3780
agtttttcc aatatttcca tatcgttcat aaatgtgtct gggggcttcc ttgtttggaa 3840
aatatggata tcgcttggtt ttccttgaa agtaattata tcttaagaac atagtatcat 3900
gaatggagta gacagggagg ctgcagaagc catttcttctt tgtagataaa aagcattatc 3960
tatgattgtt gtataataaa ttgattttta cattaaaaaa aa 4002

<210> 4

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 4

atgacggagg ttgtgaggca ctgccccac catgagcgc 39

<210> 5

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 5

gcgctcatgg tggggcagt gcctcacaac ctccgtcat

39

<210> 6

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 6

cctgtcgtaa agtgttgtaa cttc 24

<210> 7

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 7

attgttaat tccattcagt taacattcc 29

<210> 8

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 8

ccggaattca tggaacatct aaaggcctt gatgatg 37

<210> 9

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 9

ccggcgccgc cttattgtgc ttcttgc atcactcca 39

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense oligonucleotide designed for ELOVL2

<400> 10
agccacacgg tttcacgacg 20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 11
gcagcactt ggcacacccga 20

<210> 12
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 12
gctcaccatc acgcacaccca t 21

<210> 13
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 13

aaccgaaggg gaagccacac 20

<210> 14

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 14

gcgaattcag aacatctaaa ggccttgat gatgaaatc 39

<210> 15

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 15

cgtctagatt atttgtgctt cttgttcatc actccattt 39

<210> 16

<211> 479

<212> PRT

<213> Human

<400> 16

Met Leu Gln Ile Asn Gln Met Phe Ser Val Gln Leu Ser Leu Gly Glu

5	10	15
Gln Thr Trp Glu Ser Glu Gly Ser Ser Ile Lys Lys Ala Gln Gln Ala		
20	25	30
Val Ala Asn Lys Ala Leu Thr Glu Ser Thr Leu Pro Lys Pro Val Gln		
35	40	45
Lys Pro Pro Lys Ser Asn Val Asn Asn Asn Pro Gly Ser Ile Thr Pro		
50	55	60
Thr Val Glu Leu Asn Gly Leu Ala Met Lys Arg Gly Glu Pro Ala Ile		
65	70	75
Tyr Arg Pro Leu Asp Pro Lys Pro Phe Pro Asn Tyr Arg Ala Asn Tyr		
85	90	95
Asn Phe Arg Gly Met Tyr Asn Gln Arg Tyr His Cys Pro Val Pro Lys		
100	105	110
Ile Phe Tyr Val Gln Leu Thr Val Gly Asn Asn Glu Phe Phe Gly Glu		
115	120	125
Gly Lys Thr Arg Gln Ala Ala Arg His Asn Ala Ala Met Lys Ala Leu		
130	135	140
Gln Ala Leu Gln Asn Glu Pro Ile Pro Glu Arg Ser Pro Gln Asn Gly		
145	150	155
160		
Glu Ser Gly Lys Asp Met Asp Asp Asp Lys Asp Ala Asn Lys Ser Glu		
165	170	175
Ile Ser Leu Val Phe Glu Ile Ala Leu Lys Arg Asn Met Pro Val Ser		
180	185	190
Phe Glu Val Ile Lys Glu Ser Gly Pro Pro His Met Lys Ser Phe Val		
195	200	205
Thr Arg Val Ser Val Gly Glu Phe Ser Ala Glu Gly Glu Gly Asn Ser		
210	215	220
Lys Lys Leu Ser Lys Lys Arg Ala Ala Thr Thr Val Leu Gln Glu Leu		
225	230	235
240		
Lys Lys Leu Pro Pro Leu Pro Val Val Glu Lys Pro Lys Leu Phe Phe		
245	250	255
Lys Lys Arg Pro Lys Thr Ile Val Lys Ala Gly Pro Glu Tyr Gly Gln		
260	265	270
Gly Met Asn Pro Ile Ser Arg Leu Ala Gln Ile Gln Gln Ala Lys Lys		
275	280	285
Glu Lys Glu Pro Asp Tyr Val Leu Leu Ser Glu Arg Gly Met Pro Arg		
290	295	300

Arg Arg Glu Phe Val Met Gln Val Lys Val Gly Asn Glu Val Ala Thr
 305 310 315 320
 Gly Thr Gly Pro Asn Lys Lys Ile Ala Lys Lys Asn Ala Ala Glu Ala
 325 330 335
 Met Leu Leu Gln Leu Gly Tyr Lys Ala Ser Thr Asn Leu Gln Asp Gln
 340 345 350
 Leu Glu Lys Thr Gly Glu Asn Lys Gly Trp Ser Gly Pro Lys Pro Gly
 355 360 365
 Phe Pro Glu Pro Thr Asn Asn Thr Pro Lys Gly Ile Leu His Leu Ser
 370 375 380
 Pro Asp Val Tyr Gln Glu Met Glu Ala Ser Arg His Lys Val Ile Ser
 385 390 395 400
 Gly Thr Thr Leu Gly Tyr Leu Ser Pro Lys Asp Met Asn Gln Pro Ser
 405 410 415
 Ser Ser Phe Phe Ser Ile Ser Pro Thr Ser Asn Ser Ser Ala Thr Ile
 420 425 430
 Ala Arg Glu Leu Leu Met Asn Gly Thr Ser Ser Thr Ala Glu Ala Ile
 435 440 445
 Gly Leu Lys Gly Ser Ser Pro Thr Pro Pro Cys Ser Pro Val Gln Pro
 450 455 460
 Ser Lys Gln Leu Glu Tyr Leu Ala Arg Ile Gln Gly Phe Gln Val
 465 470 475

<210> 17
 <211> 1437
 <212> DNA
 <213> Human

<400> 17

atgcttcaaa taaatcagat gtttcagtg cagctgagtc ttggtagc gacatggaa	60
tccgaaggca gcagtataaa gaaggctcg caggctgtt ccaataaagc ttgactgaa	120
tctacgcttc ccaaaccagt tcagaagcca cccaaaagta atgttaacaa taaccaggc	180
agtataactc caactgtgga actgaatggg ctgcgtatga aaaggggaga gcctgccatc	240
tacaggccat tagatccaaa gccattccca aattatagag ctaattacaa cttcggggc	300
atgtacaatc agaggtatca ttgcccagtg cctaagatct tttatgttca gtcactgtatc	360
ggaaataatg aattttttgg ggaaggaaag actcgacaag ctgcgtacaca caatgtgc	420
atgaaagccc tccaagcact gcagaatgaa cctattccag aaagatctcc tcagaatggt	480

gaatcagaa aggatatgga tcatgacaaa gatgcaaata agtctgagat cagcttagtg 540
 ttgaaattg ctctgaagcg aaatatgcct gtcagtttg aggttattaa agaaagtgg 600
 ccaccacata tgaaaagctt tttactcga gtgtcagtag gagagtttc tgcagaaggaa 660
 gaaggaaata gcaaaaaactt ctccaagaag cgccgtcga ccaccgtctt acaggagctt 720
 aaaaaacttc cacctttcc tgggtggaa aagccaaaac tatttttaa aaaacgccct 780
 aaaacaatag taaaggccgg accagaatat ggccaaggga tgaaccctat tagccgcctg 840
 gcgcaaattc aacaggccaa aaaggaaaag gagccggatt atgtttgct ttcagaaaga 900
 ggaatgcctc gacgtcgaga atttgtatg caggtgaagg taggcaatga agttgctaca 960
 ggaacaggac ctaataaaaa gatagccaaa aaaaatgtc cagaagcaat gctgttacaa 1020
 cttggttata aagcatccac taatctttagt gatcaacttga agaagacagg ggaaaacaaa 1080
 ggatggatgt gtccaaagcc tgggttcctt gaaccaacaa ataatactcc aaaaggaattt 1140
 cttcattttgtt ctctgtatgtt tatcaagag atggaagcca gcccacaa agtaatctt 1200
 ggcactactc taggttattt gtcacccaaa gatatgaacc aaccccaag ctctttttc 1260
 agtatatctc ccacatcgaa tagttcagttt acaattgcca gggacttct tatgaatgg 1320
 acatcttcta cagctgaagc cataggtttta aaaggaagttt ctcctactcc ccctgttct 1380
 ccagtcacac cttcaaaaca actggaatat ttagcaagga ttcaaggctt tcaggtt 1437

<210> 18

<211> 4058

<212> DNA

<213> Human

<400> 18

ccaatgttgg agccgtctgc aaagtgtccc cggcaagaag aggctgccta ccacaaggac 60
 tttagcttac ttttaaaga ttgaagaaaaaaa aaaagaagac agaaaaagaa gaactcaaag 120
 atacacaaag taatttgaac caaggctcag aagttttgg agccgtgagg gatacagcag 180
 ttggtaat attgtcttaa catgcttcaa ataaatcaga ttttcgttgcgttgcgttgcgtt 240
 cttggtgagc agacatggga atccgaaggc agcgtataaa agaaggctca gcaggctt 300
 gccaataaaag ctttgactga atctacgctt cccaaaccag ttcagaagcc accaaaaagt 360
 aatgttaaca ataaccagg cagtataact ccaactgtgg aactgaatgg gcttgcgtatg 420
 aaaaggggag agcctgccccat ctacaggcca ttagatccaa agccattccc aaattataga 480
 gctaattaca actttcgaaaat catgtacaat cagaggtatc attgcccagt gcctaaatgc 540
 tttatgttc agctcactgtt agggaaataat gaatttttg gggaggaaaaa gactcgacaa 600
 gctgcttagac acaatgtgc aatgaaagcc ctccaaggcac tgcagaatga acctattcca 660
 gaaagatctc ctcagaatgg tgaatcagga aaggatatgg atgatgacaa agatgcaat 720
 aagtctgaga tcagcttagt gtttggaaattt gctctgaagc gaaatatgcc tgcgtttttt 780
 gaggttattaa aagaaagtgg accaccat atgaaaagctt tttactcgtt agtgcgtt 840

<210> 19

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 19

atgacggagg ttgtgaggca ctgccccac catgagcgc 39

<210> 20

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 20

gctcgatgg tggggcagt gcctcacaac ctccgtcat

39

<210> 21

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 21

agagaaagcg gacaataacc ag

22

<210> 22

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 22

ccaaggaaaa tgctcaaagt

20

<210> 23

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 23

ccgatatcat gttcaata aatcagatgt ttcgtgc

39

<210> 24

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 24

ttgcggccgc tcagacggcc gagtttgcatt tcttgc

36

<210> 25

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense oligonucleotide designed for STAU2

<400> 25

gcaccacgac aaaacaatca

20

<210> 26

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 26

actaacaaaaa cagcaccacg

20