电子工程训练(甲)实验报告

课程训练项目部分一

目录

1	电子	仪器的	内使	厈

	1.1	仪器	使用练习数据	1
	1	.1.1	万用表	1
	1	.1.2	电源	2
	1	.1.3	信号源与示器	2
2	3	实验电	路调试	
	2.1	电路	· 调试数据	4
	2	2.1.1	呼吸灯	4
	2	2.1.2	幸运转盘	4
	2	2.1.3	贴片流水灯	4
3	总结	吉		
	3.1	实验	内容以及学习收获	5
	3 2	课程	· · · · · · · · · · · · · · · · · · ·	5

1 电子仪器的使用

1.1 仪器使用练习数据

1.1.1 万用表

(1) 对三个不同电阻,读取电阻标称值、允许偏差,用万用表测量其阻值并计算电阻偏差。记录数据如下:

序号	1	2	3
标称值/Ω	57000	10000	620
允许偏差/%	1	1	1
测量值/Ω	56280	9916	611
相对偏差/%	1.26	0.84	1.45

分析: 电阻2 的测量相对偏差在允许偏差之内,而电阻1 与电阻3 的测量相对偏差超出其允许偏差,推测原因是万用表读数出现误差,或测量时与元件的接触不稳固。

(2) 对三个不同电容,读取电容标称值、允许偏差,用万用表测量其电容值并计算电容偏差。记录数据如下:

序号	1	2	3
标称值/µF	22	47	470
测量值/µF	23.00	44.96	508.5
相对偏差/%	4.55	4.34	8.19

分析:使用万用表测量电容值较大电容时,测量误差较大。

(3) 对二极管,用万用表判断其极性,测量并记录其正向导通电压。

测得正向导通电压为0.6117 V。

分析: 理论值为0.6 V~0.8 V,测量结果在理论值范围内。

(4) 对三极管,用万用表确定其集电极、基级及发射极,画出三极管外观图并标注管脚。

三极管外观及管脚标注图:

1.1.2 电源

(1) 设定电源电压分别为5 V, 12 V, 用万用表"直流电压"档测量实际输出电压并记录, 计算相对偏差。记录数据如下:

端口	CH1	CH2
设定电压/V	5	12
实际电压/V	5.065	12.182
相对偏差/%	1.30	1.52

分析: 测量结果在实验误差允许范围内。

(2) 设定电源电压分别为±5 V , ±12 V , 用万用表"直流电压"档测量实际输出电压并记录,计算相对偏差。记录数据如下:

端口	CH1	CH2	CH1	CH2
设定电压/V	-5	5	-12	12
实际电压/V	-5.132	5.080	-12.294	12.183
相对偏差/%	2.64	1.60	2.45	1.53

分析:测量结果在实验误差允许范围内。

(3) 设定电源电压为1 V ,限定电流为0.5 A ,用万用表"2 A 直流电流"档测量短路限制电流并记录,计算相对偏差。

设置限制电流为0.5 A , 测量限制电流为0.4566 A , 相对偏差为8.68 % 。

分析:测量结果在实验误差允许范围内。

1.1.3 信号源与示波器

(1) 示波器探头接校准信号源,观察记录波形。用光标法读取信号的幅度和周期(或频率)并记录。记录波形为Sine ,信号幅度178.0 mV ,信号频率50.00 kHz。

(2) 调节信号源,使信号源输出幅度为0.2 Vp-p ,频率分别为10 kHz ,100 kHz ,10 MHz ,10 MHz Sine 信号。用示波器CH1 测量信号源的输出,选择触发通道为"CH1",触发模式为"自动",调节触发电平 "LEVEL"使得波形显示稳定。调节相应的量程旋钮"VOLTS/DIV",和扫描周期旋钮"TIME/DIV"使得波形显示大小合适,记录设定的电压量程和扫描时间。按"Measure",记录测量波形的幅度和周期(或频率)。记录数据如下:

信号源输出频率	10 kHz	100 kHz	1 MHz	10 MHz
电压量程/mV	50	50	50	50
扫描时间	25 µs	2.5 μs	250 ns	25 ns
幅度/mV	207	208	210	206
测量频率	9.962 kHz	100.100 kHz	0.998 MHz	10.030 MHz

(3) 在步骤(2) 的基础上,改变信号波形分别为方波、三角波,用示波器测量波形的幅度和周期(或频率)并记录。

①方波信号,记录数据如下:

信号源输出频率	10 kHz	100 kHz	1 MHz
电压量程/mV	50	50	50
扫描时间	25 μs	2.5 µs	250 ns
幅度/mV	206	211	213
测量频率	9.958 kHz	100.200 kHz	0.998 MHz

②三角波信号,记录数据如下:

信号源输出频率	10 kHz	100 kHz
电压量程/mV	50	50
扫描时间	25 μs	2.5 µs
幅度/mV	204	202
测量频率	10.020 kHz	100.300 kHz

(4) 信号源输出频率保持200 kHz 不变,改变信号幅度在0.5 Vp-p 至2 Vp-p间,步进0.5 Vp-p。用示波器观察信号变化情况,通过光标法分别测量幅度值并做相应的记录,分别计算测量偏差。记录实验数据如下:

信号幅度(V)	0.5 Vp-p	1 Vp-p	1.5 Vp-p	2 Vp-p
测量值/V	0.502	0.996	1.510	1.980
相对误差/%	0.40	0.40	0.67	1.00

2 实验电路调试

2.1 电路调试数据

2.1.1 呼吸灯

(1) 用示波器测量集成电路脚1。

集成电路脚1 处波形为三角波,波形幅度为2.68 Vp-p,频率为769.2 mHz。

(2) 用示波器测量集成电路脚7。

集成电路脚7处波形为方波,波形幅度为9.19 Vp-p,频率为775.2 mHz。

(3) 调整电位器R3, 随着呼吸灯频率变慢, 波形周期变长。

2.1.2 幸运转盘

(1) 用示波器测量集成电路U1 脚3。

集成电路U1 脚3 处波形幅度为5.51 Vp-p ,周期为10.20 ms ,负脉冲宽度为49.00 µs 。

(2) 用示波器测量集成电路U2 任一计数输出脚4。

集成电路U2 的任一计数输出脚波形幅度为1.86 Vp-p ,周期为102.0 ms ,正脉冲宽度为10.20 ms 计算得占空比为10%。

(3) 用示波器测量三极管Q1 发射极电压波形。按启动键,发射极电压升高,灯开始闪烁;松开启动键,电压开始下降,当灯刚好停止闪烁时,记录此时的发射极电压为2.79 V。

2.1.3 贴片流水灯

- (1) 用示波器测得NE555 脚3 输出信号幅度为2.44 V , 频率为13.59 Hz。
- (2) 用示波器测得上升时间为102.0 ns , 下降时间为107.0 ns 。
- (3) 用示波器测得4017 环形计数器输出波形周期为720.0 ms ,脉冲宽度为71.00 ms。 计算得到占空比为9.86%。理论值应为10%。
- (4) 用示波器测得Q1 集电极信号周期为730.0 ms。

3总结

3.1 实验内容总结及学习收获

- (1) 对一些常见的电子元器件进行认识与辨别,掌握了色环电阻的参数读取方法,了解学习了电感、电容、二极管、三极管的结构原理以及电路板的制作方法与焊接过程。
- (2) 通过对电子器件主要参数的实践测量,学习掌握了万用表、电源、示波器与信号源的使用方法以及电容、二极管、三极管的结构特性。实践练习了电路板的焊接,完成了呼吸灯与幸运转盘的制作。
- (3) 学习贴片器件的焊接方法,并进行了实践练习,完成了贴片流水灯的制作。
- (4) 对呼吸灯、幸运转盘及贴片流水灯进行调试,在调试过程中学习了解其工作原理,同时提升了电子仪器使用的熟练度。

3.2 课程内容、教学方法的评价及建议

- (1) 本课程的课程内容安排翔实,课时之间的知识点与技术方法教学连接密切,难度适中,对学生基础电子器件的学习有较大提升,课程收获颇丰。
- (2) 受条件限制,在本课程选课人数众多的情况下不易演示课程相关的实验操作,但可通过询问助教学习掌握。