Complete Binary Tree (CBT)

A binary tree is said to be a CBT if it satisfies below properties.

- i) All the nodes have to be filled revel by level from left to right.
- ii) All the levels should be completely filled encept the last revel.

<u>Em</u> ',-

Not a CBT

Mote: - AU Balanced Binary Tree's are CBT? NO + hodes | h(LST) - h(RST) | <=1

Note AU CBT's are Balanced Binary Tree's?
YES

Frence et max (1).

Buiz If there are N nodes in a CBT, theight?

Height (Balanced B.T) = Height (CBT) = log N

Height (CBT)	min Nodes	max Nodes
1	ر = 2 ^۱	$3 = 2^2 - 1$
2	4 = 22	7 = 23-1
3	8 = 23	15 = 24-1
4	16 = 24	$31 = 2^{9}-1$
<u>;</u>		ì
44	24	2 -1

$$2^{H} (Min Nodes)$$

$$2^{H+1} - 1 (Man Nodes)$$

$$2^{H} = N \Rightarrow H = log N$$

$$2^{H+1} - 1 = N \Rightarrow 2^{H+1} = N+1$$

$$1 + 1 = log(N+1)$$

$$1 + 2 + 1 = log(N+1)$$

$$2^{H} (Min Nodes)$$

$$2^{H} (Min Nodes)$$

$$1 + 1 = log(N+1)$$

$$1 + 1 = log(N+1)$$

$$1 + 1 = log(N+1)$$

Implementation of CBT:-

Pusent: 21, 18, 30, 40,50,60

8,97,12,25,21,18,30,40,50,60

Steps:-

- 7 Level Order traversal.
- Whenever a new node is created, insert it in a queue 4 delete the front of the queue only if it's both left 4 right Children are fines.

TC: O(N) for inserting N nodes. SC: D(N) L) Queue

Disadvantages:

- 8C: 0(N)
- 2) Iterating from child to parent is NOT allowed.

(; 5, 2, 9, 6, 8, 7, 2, 14, 16) List (int) | Vector (int)

TC of inserting N elements: O(N) SC: O(1)

Min Hear Insert: O(log N) get Min(): O(1) Search: O(N) delete Min (): O(log N)

Man Heap Ensert: O(log N) getMan: O(1) Search: O(N)

delete Min ():0(log N) delete Man ():0(log N)

Insert in Min heap.

10 1 2 3 4 5 6 7 8 9 10 List 3 10 16 11 14 17 18 12 15 20 5

nin treap

inden Parent if (Alind) (
Alparent))

10 4 => Surap.

TC: 0(log N)

Void insert (list (int) arr, int ele) {

arr. add (ele)

inden = arr. size() -1;

farent = (inden -1) | 2;

while (inden | = 0 4 arr [farent]) arr [inden]) {

Swap (arr [farent], arr [inden]);

inden = farent

farent = (inden -1) | 2;

}

3 ___ # get Min () / get Man () > O(1)
in Min

Heap

Heap

uturn list [0];

search Operation :-

Linear search on the list of elements.

TC: O(N) { Both min | man heap?

Delite nun operation (MIN HEAP)

gteps: -

- ([1-0] A swap (A so) A swap (i
- ii) Pelete last element.
- III) Propogate down.

Delete nin

- i) swap (A(O), A(A))
- 11) Delete Alaj

and a
$$x$$
 min-ind
0 1 2 1 $ywap$
1 3 4 $ywap$
3 7 8 $ywap$
8 $ywap$
8 $ywap$
17 18
 $ywap$

delete Min () } => O(log N)

delete Man ()

- i) Search: O(N)
- 11) Swap mith last inden: O(1)
- III) Delete the last inden: O(1)
- 111) Propogate Down: O(log N)

TC: 0(N)

Heap.	BBST
O(logN)	O(logN)
0(1)	0 (log N)
0 (log N)	0 (log 10)
0(10)	O(logN)
0(10)	0 (log N)
	0(logN) 0(1) 0(logN) 0(N)

If below 3 operations are frequent the go with

1) Insert

2) get Min () | get Man

3) delete Min () | delete Man ()

Inbuilt library

i) C++: priority-queue.

11) Java: Priority Queue <->

11) Python: heapq

i :