

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1641773

A1

(51) 5 С 01 В 33/18

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГННТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 4482233/26

(22) 26.07.88

(46) 15.04.91. Бюл. № 14

(71) Белорусский технологический
институт им. С. М. Кирова и Череповец-
кое производственное объединение
"Аммофос"

(72) А. Н. Мурашкевич, Н. И. Воробьев,
Л. В. Белякова, В. В. Печковский,
В. И. Полойко, И. Н. Громова, С. В. Нут-
рихина, С. Н. Мальчугин и П. С. Кислицин

(53) 678.046 (088.8)

(56) Авторское свидетельство СССР
№ 1542899, кл. С 01 В 33/18, 19.02.88.

(54) СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРС-
НОГО ДИОКСИДА КРЕМНИЯ

(57) Изобретение относится к способам
получения высокодисперсного диоксида

2

кремния, применяемого в качестве ми-
нерального наполнителя в шинной и ре-
зинотехнической промышленности, и
позволяет сократить время проведения
процесса за счет ускорения процесса
фильтрации. 18–26%-ную гексафторкрем-
ниевую кислоту смешивают в струйном
смесителе с аммиачной водой при рас-
пылении при величине критерия Вебера,
равной $(0,005-2) \cdot 10^4$, полученную су-
спензию перемешивают и обрабатывают
10–26%-ным раствором фторида аммония
или раствором той же концентрации,
содержащим смесь фторида и бифторида
аммония, или маточным раствором, по-
лученным после фильтрации супензии,
причем обработку ведут при массовом
соотношении супензия:раствор 2,52 –
3,28:1. 1 табл.

Изобретение относится к способам
получения высокодисперсного диоксида
кремния, применяемого в качестве ми-
нерального наполнителя в шинной и
резинотехнической промышленности.

Цель изобретения – сокращение вре-
мени проведения процесса за счет ус-
корения процесса фильтрации.

При мер. 188 мл 22%-ного раст-
вора гексафторкремниевой кислоты сме-
шивают в струйном смесителе с 179 мл
аммиачной воды концентрацией 24 мас.%
при значении критерия Вебера (We) 100.
На выходе из смесителя в поток ней-
трализованной до pH 8,8 супензии
вводят 188 мл 18%-ного раствора фто-
рида аммония со скоростью 1,6 л/мин,

обеспечивающей массовое соотношение
между супензией диоксида кремния и
раствором фторида аммония 2,9:1. Ко-
нечную супензию перемешивают 20 мин
при 45°C, затем фильтруют под вакуу-
мом, осадок промывают на фильтре во-
дой в количестве 450 мл и сушат при
120–150°C до постоянной массы в не-
подвижном слое. Подсушенный продукт
имеет удельную поверхность по фенолу
165 м²/г, насыпную массу 160 г/л, ко-
эффициент фильтрации $0,45 \cdot 10^{-5}$ см/с,
содержание F-иона в нем 0,5 мас.%,
выход продукта 97% от теоретического.
Маточный раствор фторида аммония пос-
ле фильтрации содержит 18,7 мас.%
соли.

(60) SU (11) 1641773
A1

Результаты остальных опытов и данные по известному способу представлены в таблице.

Маточный раствор содержит смесь фторида и незначительного количества гексафторсиликата аммония (примеры 6, 8-12).

Коэффициенты фильтраций определяются по формуле

$$K_{\Phi} = \frac{Q \times 1}{S \cdot H \cdot C} \quad (\text{cm}/\text{c}),$$

где Q - объем фильтрата, см³;
 l - толщина слоя осадка, см;
 s - поверхность осадка на фильтре, см²;
 H - разрежение под фильтром, см вод.ст.;
 t - время фильтрации, с.

По примерам 10 и 12 достигается высокая скорость фильтрации, однако не обеспечивается получение продукта с высокой удельной поверхностью в пределах 160–200 м²/г. По примерам 9 и 11 наблюдается резкое увеличение насыпной массы продукта, что отрицательно сказывается на усиливающих свойствах резин.

Таким образом, предлагаемый способ позволяет ускорить процесс за счет увеличения коэффициента фильтрации суспензии и получить продукт с развитой удельной поверхностью и низкой насыпной массой в пределах 160 - 180 г/л.

Ф о р м у л а и з о б р е т е н и я

Способ получения высокодисперсного диоксида кремния, включающий смешение гексафторкремниевой кислоты с аммиачной водой при распылении при величине критерия Вебера ($0,005-2$) \times 10^4 , перемешивание полученной суспензии, фильтрацию, промывку и сушку осадка, отличаясь тем, что, с целью сокращения времени проведения процесса за счет ускорения процесса фильтрации, используют 18–26%-ную гексафторкремниевую кислоту и до стадии фильтрации суспензию обрабатывают 10–26%-ным раствором фторида аммония или раствором той же концентрации, содержащим смесь фторида и бифторида аммония, или маточным раствором, полученным после фильтрации суспензии, причем обработку ведут при массовом соотношении суспензия:раствор $2,52-3,28:1$.

Иримеры по спо- собу	Условия получения					Результаты опытов				
	Концен- трация H_2SiF_6 , мас.%	Состав раствора фторида аммония, мас.%	Массовое соотно- шение сuspен- зии к раствору	We	pH	Удельная поверх- ность по фенолу, м ² /г	Коэффи- циент фильт- рации см/сек·10 ⁻⁵	Насыпная масса, г/л	Содержа- ние F- иона в продук- те, мас.%	Содержа- ние NH_4F в фильтра- те, мас.%
11	22	NH_4F 7 (NH_4F) ₂ SiF_6 0,05 } 2,52:1		100	8,8	195	0,15	236	0,58	14,4
12	22	NH_4F 30 (NH_4F) ₂ SiF_6 0,3 } 3,28:1		100	8,8	136	0,47	190	0,35	25,4

Составитель И. Веденеева

Редактор М.Петрова

Техред А.Кравчук

Корректор А.Обручар

Заказ 1120

Тираж 317

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-издательский комбинат "Патент", г.Ужгород, ул. Гагарина, 101