Chernobyl disaster optimization

Примакова Е.Е.

гр. 9301

1. Введение

Chernobyl Disaster Optimizer (CDO) - это метаэвристический алгоритм, вдохновленный поведением ядерной радиации во время Чернобыльской катастрофы. Он имитирует движение α , β и γ частиц, которые распространяются от центра взрыва (области наибольшего давления) и «атакуют» человеческие цели (области наименьшего давления). При этом алгоритм, также учитывает физические свойства частиц, такие как: скорость распространения и сособность проходить через те или иные материалы. Каждый тип частицы (α , β и γ) по сути своей является уникальным поисковым агентом.

Так γ частицы, являясь наиболее быстрыми и "проникающими", играют роль агентов глобального поиска - наиболее быстро исследуют пространство поиска, при этом с не очень высокой точностью. β частицы - агенты балансирующие между глобальным и локальным поиском, в то время как α частицы - самые медленные и с наихудшей способность проходить через материалы, являются агентвми локального поиска.

Как и в случае с реальным радиоактивным излучением, β и γ частицы проходят сквозь человеческое тело, в то время как α останавливаются. Поэтому поисковым агентом, который приходит к глобальному миимуму являются именно α частицы.

Также следует отметить, что поисковые агенты зависимы между собой по аналогии с PSO - все притягиваются к текущему лучшему решению, что обеспечивает сходимость и эффективное использование свойств поисковых агентов.

2. Алгоритм и тестовые функции

2.1. Описание алгоритма

Как уже говорилось, после ядерного взрыва излучение состит из α , β и γ частиц. Эти частицы летят от точки взрыва (область высокого давления) до тех пор, пока не достигнут человеческих территорий (область низкого давления), где и произойдет катастрофа. Алгоритм предролагает, что жертвы (люди) идут, и эти частицы атакуют их в одно и тоже время, с разной скоростью (Табл. 1).

Тип частицы	Скорость (s)
α	$0.16 \cdot 10^{5}$
β	$2.7 \cdot 10^{5}$
γ	$3 \cdot 10^{5}$

Таблица 1: Скорость частиц

Скорость движения людей "бегущих" от радиации линейно снижается с каждой итерацией t, иными словами, в соответствии с (1), на последней итерации алгоритма T все умрут.

$$WS_h = 3 - 3\frac{t}{T},\tag{1}$$

Изначально создаются n агентов, которые представляют собой частицы трёх типов. Их начальные позиции распределяются случайным образом по всему пространству поиска. Скорости частиц ($s^{\gamma}, s^{\beta}, s^{\alpha}$) задаются в соответствии с их физическими характеристиками. Например, скорость γ -частиц является самой высокой, что делает их эффективными в глобальном поиске, тогда как α -частицы действуют медленно, выполняя локальную оптимизацию.

Обновление позиций частиц осуществляется на каждой итерации на основе следующих формул:

$$v_{i,j}(t+1) = \sum_{p \in \{\gamma, \beta, \alpha\}} \left(\frac{r \cdot A \cdot P_{i,j} - P_j^p}{s^p \cdot \operatorname{rand}(0, 1)} - WS_h \right), \tag{2}$$

$$P_{i,j}(t+1) = P_{i,j}(t) + v_{i,j}(t+1), \tag{3}$$

где $v_{i,j}$ — скорость частицы, $P_{i,j}$ — положение частицы, A — радиус действия частиц, WS_h — скорость жертвы, а r — случайный коэффициент.

Каждая частица оценивается по значению целевой функции f. Если текущая пригодность частицы лучше, чем у её типа (например, у α -частиц), то обновляются наилучшие известные значения для данного типа частиц.

Процесс повторяется до тех пор, пока не будет достигнуто максимальное количество итераций T или не будет удовлетворено условие остановки. Алгоритм поддерживает равновесие между глобальным и локальным поиском благодаря сочетанию различных типов частиц и их взаимодействию через обновление скоростей.

Ниже приведены основные этапы алгоритма CDO:

- 1. Инициализация. Создание агентов с случайными начальными позициями.
- 2. Обновление скоростей и позиций. Расчёт новых скоростей и позиций с использованием физических моделей распространения частиц (1-3).
- 3. Оценка. Вычисление значений целевой функции и обновление лучших значений.
- 4. Конвергенция. Завершение работы алгоритма при достижении заданных условий.

Основной принцип CDO заключается в использовании разных типов частиц, чтобы обеспечить эффективный баланс между исследованием пространства и уточнением решений.

Ниже приведен псевдокод рассматриваемого метода оптимизации. Входные параметры алгоритма указаны в псевдокоде.

В пердставленном псевдокоде функция случайных чисел rand принимает первым аргументом размерность вектора случайных чисел, вторым аргументом - пределы в которых выбирается случайное число.

```
Algorithm 1: Chernobyl Disaster Optimizer (CDO)
 Входные данные:
 f;
                                                                               /* Целевая функция */
 d:
                                                                       /* Размерность проблемы */
                                                                                    /* Число частиц */
 n;
 T;
                                                                     /* Максимальная итерация */
 [l,u];
                                       /* Границы начального распределения частиц */
 Результат:
                                                                                /* Точка минимума */
 x_{min};
 f_{min};
                                                                   /* Значение функции в x_{\min} */
 Алгоритм:
  /* Константы скорости распространения частиц
 s^{\gamma}, sf^{\gamma} \leftarrow 3 \cdot 10^5, 1;
 s^{\alpha}, sf^{\alpha} \leftarrow 0.16 \cdot 10^5, 0.25;
 s^{\beta}, sf^{\beta} \leftarrow 2.7 \cdot 10^5, 0.5;
  /* Инициализация положений частиц в пространстве
 P_i \leftarrow \operatorname{rand}(d, [l, u]) \mid i \in [1 \dots n];
  /* Основной цикл
 for t \leftarrow 1 to T do
      for i \leftarrow 1 to n do
          fitness \leftarrow f(P_i);
          if fitness < \alpha Score then
              \alpha Score \leftarrow fitness;
              P^{\alpha} \leftarrow P_i;
          else if fitness < \beta Score then
              \beta Score \leftarrow fitness;
              P^{\beta} \leftarrow P_i;
          else if fitness < \gamma Score then
              \gamma Score \leftarrow fitness;
              P^{\gamma} \leftarrow P_i;
          end
      end
      WS_h \leftarrow 3 - 3(\frac{t}{T});
                                                                /* Скорость ходьбы человека */
      /* Обновление положений частиц в пространстве
                                                                                                               * /
      for i \leftarrow 1 to n do
          \nu_j \leftarrow 0 \mid j \in [1 \dots d];
                                                                /* Инициализация градиентов */
          for j \leftarrow 1 to d do
              foreach p in [\gamma, \alpha, \beta] do
                  S \leftarrow sf^p \cdot \log(\text{rand}(1, [1, s^p]));
                                                                             /* Скорость частицы */
                  x_h \leftarrow \pi \cdot \text{rand}(1, [0, 1])^2;
                                                               /* Радиус зоны ходьбы людей */

ho \leftarrow \frac{x_h}{S} - WS_h \cdot \mathrm{rand}(1, [0,1])); /* Распространение частицы */
                  A \leftarrow \pi \cdot \mathrm{rand}(1, [0,1])^2; /* Радиус распространения частицы */
                  \Delta \leftarrow |A \cdot P_{i,j} - P_i^p|;
                  \nu_j \leftarrow \nu_j + P_{i,j} - \rho \cdot \Delta;
                                                               /* Вектор скорости частицы */
              end
          end
          P_i = \nu \oslash 3;
      end
 end
 f_{min}, x_{min} \leftarrow \alpha Score, P^{\alpha};
 return x_{min}, f_{min}
```

2.2. Тестовые проблемы

2.2.1. Проблеммы с множественным локальным минимумом

Функции этой категории характеризуются наличием множества локальных минимумов, что делает оптимизацию сложной для алгоритмов, основанных на градиентных методах, которые могут легко

застрять в локальных минимумах. Эвристические и метаэвристические подходы, такие как генетические алгоритмы, оптимизация роя частиц и моделируемый отжиг, обычно лучше подходят для таких функций, поскольку они исследуют пространство решений более глобально.

Ackley Function Функция Ackley широко используется для тестирования алгоритмов оптимизации благодаря множеству локальных минимумов и единственному глобальному минимуму. Высокая частота колебаний мешает градиентным методам, в то время как метаэвристические алгоритмы превосходят их благодаря способности исследовать различные области пространства решений.

$$f(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{d}\sum_{i=1}^{d} x_i^2}\right) - \exp\left(\frac{1}{d}\sum_{i=1}^{d} \cos(2\pi x_i)\right) + 20 + e,\tag{4}$$

$$-5 \le x_i \le 5$$
, $x_{\min} = (0, \dots, 0)$, $f_{\min} = 0$.

Eggholder Function Функция Eggholder известна своим сложным ландшафтом с многочисленными крутыми долинами и хребтами. Резкие переходы градиента делают ее сложной для квазиградиентных методов. Такие алгоритмы, как дифференциальная эволюция и роевые методы, часто оказываются более эффективными.

$$f(x_1, x_2) = -(x_2 + 47)\sin\left(\sqrt{|x_2 + x_1/2 + 47|}\right) - x_1\sin\left(\sqrt{|x_1 - (x_2 + 47)|}\right),\tag{5}$$

$$-512 \le x_1, x_2 \le 512, \quad x_{\min} \approx (512, 404.2319), \quad f_{\min} \approx -959.6407.$$

2.2.2. Проблемы "чаши"

Эти функции гладкие и унимодальные, с одним глобальным минимумом, который лежит в параболической области. Они хорошо подходят для градиентных и квазиньютоновских методов благодаря своей выпуклой природе.

Sphere Function Sphere это простой квадратичный тест, используемый для оценки алгоритмов оптимизации. Его гладкая поверхность делает его идеальным для алгоритмов, использующих информацию о градиенте.

$$f(x) = \sum_{i=1}^{d} x_i^2,$$
 (6)

$$-5.12 \le x_i \le 5.12$$
, $x_{\min} = (0, \dots, 0)$, $f_{\min} = 0$.

Trid Function Функция Trid создана для того, чтобы бросить вызов алгоритмам оптимизации с неквадратичной формой чаши. Хотя она остается унимодальной, нелинейность требует квазиньютоновских методов или продвинутых градиентных оптимизаторов для эффективного сближения.

$$f(x) = \sum_{i=1}^{d} (x_i - 1)^2 - \sum_{i=2}^{d} x_i x_{i-1},$$
(7)

$$-d^2 \le x_i \le d^2$$
, $x_{\min} = (1, 2, \dots, d)$, $f_{\min} = -d(d+4)(d-1)/6$.

2.2.3. Функции "плато"

Эти функции имеют плоские области или плато, что может замедлить работу алгоритмов оптимизации. Линейные методы и простой градиентный спуск часто оказываются здесь неэффективными, в то время как эвристические подходы, использующие случайную выборку или имитацию отжига, могут быть более эффективными.

McCormick Function Функция McCormick - это двумерная функция с относительно простой поверхностью, но невыпуклыми свойствами. Плато может ввести в заблуждение градиентные алгоритмы, но эвристические методы справляются неплохо.

$$f(x_1, x_2) = \sin(x_1 + x_2) + (x_1 - x_2)^2 - 1.5x_1 + 2.5x_2 + 1,$$
(8)

$$-1.5 \le x_1 \le 4, -3 \le x_2 \le 4, \quad x_{\min} \approx (-0.54719, -1.54719), \quad f_{\min} \approx -1.9133.$$

Booth Function Функция Booth широко используется в оптимизации для тестирования алгоритмов с двумя переменными. Хотя функция имеет простую структуру, области плато могут замедлить сходимость для линейных или простых градиентных методо

$$f(x_1, x_2) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2, (9)$$

$$-10 < x_1, x_2 < 10, \quad x_{\min} = (1, 3), \quad f_{\min} = 0.$$

2.2.4. Проблемы "долины"

Эти функции имеют узкие долины, в которых трудно найти глобальный минимум. Градиентные алгоритмы могут колебаться в пределах долины, прежде чем сходятся. Алгоритмы с адаптивным размером шага или гибридные метаэвристические методы могут работать лучше.

Rosenbrock Function The Rosenbrock, также известная как функция Банана, является классическим эталоном с изогнутой долиной, ведущей к глобальному минимуму. Градиентные методы часто оказываются неэффективными из-за плоскости вдоль оси долины, что требует применения продвинутых импульсных методов.

$$f(x) = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right], \tag{10}$$

$$-5 \le x_i \le 10$$
, $x_{\min} = (1, \dots, 1)$, $f_{\min} = 0$.

Six-Hump Camel Function The Six-Hump Camel function is a challenging two-dimensional test case with multiple local minima. It requires algorithms with global search capabilities, such as simulated annealing or genetic algorithms, to avoid getting stuck in local minima.

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{x_1^6}{3} + x_1x_2 - 4x_2^2 + 4x_2^4, \tag{11}$$

$$-3 \le x_1 \le 3, -2 \le x_2 \le 2, \quad x_{\min} \approx (\pm 0.0898, \mp 0.7126), \quad f_{\min} \approx -1.0316.$$

2.2.5. Проблемы "хребтов и падений"

Функции этой категории характеризуются резкими изменениями градиента, что делает их труднопроходимыми для алгоритмов оптимизации. Метаэвристические методы, выполняющие широкую выборку, подходят лучше, чем традиционные градиентные подходы.

Easom Function Функция Easom имеет один резкий глобальный минимум, окруженный крутыми гребнями. Эта функция бросает вызов как градиентным, так и квазиградиентным алгоритмам, требуя стратегий глобального поиска для эффективного нахождения минимума.

 $-100 < x_1, x_2 < 100, \quad x_{\min} = (\pi, \pi), \quad f_{\min} = -1.$

$$f(x_1, x_2) = -\cos(x_1)\cos(x_2)\exp\left(-(x_1 - \pi)^2 - (x_2 - \pi)^2\right),\tag{12}$$

Michalewicz Function Функция Michalewicz - это мультимодальная проблема, зависящая от параметров d (размерность) и m (резкость минимумов). Крутые спады и узкие минимумы затрудняют работу большинства детерминированных методов, делая метаэвристические алгоритмы, такие как оптимизация муравьиной колонии или моделированный отжиг, более эффективными.ментальные метолы

$$f(x) = -\sum_{i=1}^{d} \sin(x_i) \left[\sin\left(\frac{ix_i^2}{\pi}\right) \right]^{2m}, \tag{13}$$

 $0 \le x_i \le \pi$, x_{\min} varies with d, m.

3. Результаты

 $Puc.\ 1:\ T$ раектория поиска для проблем c множественным локальным минимумом. a - $Ackley,\ b$ - Eggholder

Рис. 2: Траектория поиска для проблем a - Sphere, b - Trid

Рис. 3: Траектория поиска для проблем а - McCormick, b - Booth

Рис. 4: Траектория поиска для проблем.... a - Rosenbrock, b - Six-Hump Camel

Рис. 5: Траектория поиска для проблем.... а - Easom, b - Michalwicz

4. Выводы

Для функции Ackley, характеризующейся множеством локальных минимумов, алгоритм эффективно показал способность избегать преждевременной сходимости. Быстрое исследование пространства с помощью γ -частиц позволяет охватить всю область поиска, в то время как α -частицы уточняют решение вблизи глобального минимума.

Функция Booth, будучи унимодальной и выпуклой, продемонстрировала быстрое достижение глобального минимума. Замедленное движение α -частиц помогает точному нахождению решения, в то время как β - и γ -частицы обеспечивают глобальный охват.

Резкий пик функции Easom и узкий глобальный минимум создают сложность для многих оптимизаторов. γ -частицы быстро находят область, где расположен минимум, а α -частицы успешно сужают поиск для достижения точного результата.

Сложный ландшафт функции Eggholder с крутыми гребнями и долинами демонстрирует способность оптимизатора работать в таких условиях. γ -частицы эффективно исследуют пространство, находя долины, а β -и α -частицы постепенно уточняют решения.

Гладкость и простая нелинейность функции McCormick позволяют алгоритму быстро сходиться. Баланс между различными типами частиц приводит к быстрому достижению минимума.

Обманчивый характер функции Michalewicz, включающий узкие долины и сложный рельеф, подчёркивает преимущества алгоритма. γ -частицы предотвращают застревание в локальных минимумах, в то время как α -частицы уточняют результаты.

Функция Rosenbrock с характерной "бананообразной" долиной представляет вызов для многих оптимизаторов. β -частицы играют важную роль в навигации по долине, тогда как α -частицы обеспечивают точное достижение минимума.

Для функции с несколькими локальными минимумами, как Six-Hump Camel, алгоритм демонстрирует способность эффективно находить глобальный минимум благодаря сбалансированной работе γ , β и α -частиц.

Гладкая и выпуклая природа функции Sphere позволяет алгоритму быстро находить минимум. Сочетание различных частиц обеспечивает высокую скорость сходимости.

Функция Trid с уникальной кривизной и нелинейностью демонстрирует эффективность β -частиц в балансе между локальным и глобальным поиском, в то время как α -частицы уточняют решение.

- 1. **Исследование и уточнение:** Разделение ролей между γ , β и α -частицами позволяет эффективно балансировать между глобальным поиском и локальной оптимизацией.
- 2. Адаптивность: Алгоритм показал гибкость при работе с разнообразными тестовыми функциями, включая мультиэкстремальные и унимодальные.
- 3. Сходимость: Взаимодействие частиц обеспечивает надёжное достижение глобального минимума без застревания в локальных экстремумах.

Таким образом, результаты тестирования подтверждают эффективность и универсальность оптимизатора CDO.