## AUTOMATING THE CYBERSECURITY TRIAGE PROCESS

A COMPARATIVE STUDY ON THE PERFORMANCE OF LARGE LANGUAGE MODELS



PASCAL BAKKER SUPERVISED BY JAIR SANTANNA 2024-07-05

## **HOSPITAL – TRIAGE**



- 1. Immediate
- 2. Emergent
- 3. Urgent
- 4. Less urgent
- 5. Non-urgent

## **HOSPITAL – TRIAGE**



- 1. Immediate
- 2. Emergent
- 3. Urgent
- 4. Less urgent
- 5. Non-urgent



## THE PROBLEM WITH TRIAGE











### Immense numbers of alarms

- Too little time → Superficial analysis
- Fatigue → Missed alarms
- Burnout / turnover
- Human error



## LARGE LANGUAGE MODELS (LLMS)



- Natural Language Processing
- Much data → General understanding
- 1. Generating natural language
- 2. Identifying contextual relationships
- 3. Recognizing complex patterns
- 4. Analyzing semantics
- Many existing applications

→ Automate triage



How can <u>LLMs</u> be integrated into the existing incident response workflow to streamline the triage process?



What suitable <u>evaluation metrics</u> should be used to assess the performance of LLMs in cybersecurity triage?



## **DEFINING TRIAGE**









Very little documentation

Interview

### **DEFINING TRIAGE**





#### **EXISTING OPTIMIZATIONS**

- Organize alarms in trees [12]
- Integrate thread intelligence [41]
- Follow steps of senior analysts [25, 48]







#### **EXISTING OPTIMIZATIONS**

- Organize alarms in trees [12]
- Integrate thread intelligence [41]
- Follow steps of senior analysts [25, 48]

Do not automate natural language tasks



## OPTIMIZING TRIAGE USING LLMS

- 1. Detecting cybersecurity announcement emails
- 2. Detecting relation between email and alarm
- 3. Finding correlation between alarms
- 4. Determine position in kill chain
- 5. Determine priority of alarm



## OPTIMIZING TRIAGE USING LLMS

- 1. Detecting cybersecurity announcement emails
- 2. Detecting relation between email and alarm
- 3. Finding correlation between alarms
- 4. Determine position in kill chain
- 5. Determine priority of alarm







#### **ANNOUNCEMENT DETECTION**

- 1. Give email to LLM
- 2. Is this a cybersecurity announcement?
- 3. True / false



## TASK 1 EVALUATING LLMS



#### **ANNOUNCEMENT DETECTION**

- 1. Give email to LLM
- 2. Is this a cybersecurity announcement?
- 3. True / false

Customer X will add the user "sea\_line" to the local administrators on the computer "FRLIM-IPC-0017".

"True"  $\rightarrow$ 

"False"  $\rightarrow$   $\times$ 





# **EVALUATING LLMS**

#### TACTIC DETECTION

- 1. Give email to LLM
- 2. What MITRE ATT&CK tactic can consequential alarms have?
- 3. e.g. "exfiltration"



## TASK 2 EVALUATING LLMS



#### TACTIC DETECTION

- 1. Give email to LLM
- 2. What MITRE ATT&CK <u>tactic</u> can <u>consequential alarms</u> have?
- 3. e.g. "exfiltration"

Customer X will add the user "sea\_line" to the local administrators on the computer "FRLIM-IPC-0017".

"privilege escalation" → <

"persistence"  $\rightarrow$ 

"reconnaissance" → X



### **EVALUATING AND COMPARING LLMS**

#### **EVALUATION METRICS**

For different prompts:

- F1-score / accuracy
- Median time
- Error rate



### **EVALUATING AND COMPARING LLMS**

#### **EVALUATION METRICS**

For different prompts:

- F1-score / accuracy
- Median time
- Error rate

#### **DATASET**

- 40 labeled emails
- 20 announcements with labeled tactics



### **EVALUATING AND COMPARING LLMS**

#### **EVALUATION METRICS**

For different prompts:

- F1-score / accuracy
- Median time
- Error rate

#### **DATASET**

- 40 labeled emails
- 20 announcements with labeled tactics

#### LARGE LANGUAGE MODELS

(And variations)

- GPT-4
- Llama 3
- Mistral
- Phi-3
- Gemma
- Aya 23
- Code Llama





















## **RESULTS – COMPARISON**



## **RESULTS – COMPARISON**





How can <u>LLMs</u> be integrated into the existing incident response workflow to streamline the triage process?



What suitable <u>evaluation metrics</u> should be used to assess the performance of LLMs in cybersecurity triage?





How can <u>LLMs</u> be integrated into the existing incident response workflow to streamline the <u>triage process</u>?





What suitable <u>evaluation metrics</u> should be used to assess the performance of LLMs in cybersecurity triage?





How can <u>LLMs</u> be integrated into the existing incident response workflow to streamline the <u>triage process</u>?





What suitable <u>evaluation metrics</u> should be used to assess the performance of LLMs in cybersecurity triage?







How can <u>LLMs</u> be integrated into the existing incident response workflow to streamline the triage process?





What suitable <u>evaluation metrics</u> should be used to assess the performance of LLMs in cybersecurity triage?







### **TAKEAWAYS**

- 1. GPT-4 performed the best
  - Followed by <u>Llama 3</u> and <u>Mistral</u>
  - Phi-3 3.8B good in simple tasks
- 2. Prompt size had no effect on time
- 3. <u>Baseline</u> towards further usage of LLMs
  - Defined key steps of triage
  - Identified optimizations
  - Evaluation framework
  - → Other tasks and models



## AUTOMATING THE CYBERSECURITY TRIAGE PROCESS

A COMPARATIVE STUDY ON THE PERFORMANCE OF LARGE LANGUAGE MODELS



PASCAL BAKKER SUPERVISED BY JAIR SANTANNA 2024-07-05

## THE INCIDENT RESPONSE WORKFLOW



## **ERROR RATE**

```
{
  "is_announcement": True
}
```









### **EVALUATION METRICS**

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$F1 = \frac{2*Precision*Recall}{Precision+Recall}$$