7.1.1 重なりのあるクラス分布

平成 28 年 9 月 11 日

概 要

PRMLの「7.1.1 重なりのあるクラス分布」についての実装と考察

目 次

i	ν -S	VM																															8
4	1.4	まとめ .			•												•	•	•			•	•				•		•	•			8
	-	ガウスカ	-																														-
-		多項式力	-																														
4		内積カー	•																														
i	結果	:																															3
	コー	・ド																															3
	アルゴリズム															2																	
	問題設定															2																	
	릳	引題	問題設定	問題設定	問題設定	問題設定	問題設定																										

1 問題設定

重なりのあるクラス分布に対する、サポートベクトルマシンについて考える.

2 アルゴリズム

一般には一部のデータの誤分類を許すように SVM を修正する.

まず、スラック変数 $\xi_n \ge 0$ $(n=1,\ldots,N)$ を導入する.データが正しく分類されかつマージンの境界の上または外側に存在する場合は $\xi_n=0$.それ以外は $\xi_n=|t_n-y(\mathbf{x}_n)|$ ととる.つまり、

$$\xi = 0$$
 (正しく分類されマージン境界の上または外側) $0 < \xi < 1$ (正しく分類され決定面とマージン境界との間) $\xi = 1$ (決定面の上) $\xi > 1$ (誤分類されている)

となる. これより, 制約条件は

$$t_n y(\mathbf{x}_n) \ge 1 - \xi_n, \ n = 1, \dots, N \ (7.20)$$

と修正する. この条件の下で、ソフトにペナルティを与えつつマージンを最大化することが目的で

$$C\sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2$$
 (7.21)

を最大化する. これにはラグランジュ未定乗数法を用いる.

$$L(\mathbf{w}, b, \boldsymbol{\xi}, \mathbf{a}, \boldsymbol{\mu}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n \{t_n y(\mathbf{x}_n) - 1 + \xi_n\} - \sum_{n=1}^{N} \mu_n \xi_n \quad (7.22)$$

ここで、KKT条件は

$$a_n \ge 0 \ (7.23), \ t_n y(\mathbf{x}_n) - 1 + \xi_n \ge 0 \ (7.24), \ a_n(t_n y(\mathbf{x}_n) - 1 + \xi_n) = 0 \ (7.25)$$

$$\mu_n \ge 0 \ (7.26), \ \xi_n \ge 0 \ (7.27), \ \mu_n \xi_n = 0 \ (7.28)$$

で与えられる. また, \mathbf{w} , b, $\boldsymbol{\xi}$ で微分したものを 0 とすると,

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$
 (7.29),
$$\sum_{n=1}^{N} a_n t_n = 0$$
 (7.30),
$$a_n = C - \mu_n$$
 (7.31)

この結果から、双対系のラグランジュ関数が得られ

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m) \quad (7.32)$$

これを最大化する. ただし、以下の条件の下で

$$0 \le a_n \le C$$
 (7.33), $\sum_{n=1}^{N} a_n t_n = 0$ (7.34)

これによって、パラメータ a が求まり、前と同様に

$$b = \frac{1}{N_M} \sum_{n \in M} \left(t_n - \sum_{m \in S} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right) \quad (7.37)$$

でパラメータ b が求まる. ただし, M は $0 \le a_n \le C$ となるデータ点の添え字集合である.

3 コード

重なりのあるクラス分布における SVM のコード (SVM1.py).

```
"""カーネル関数の定義 """
theta=0.05
def gauss(x,z):
 return np.exp(-theta*norm(x-z)**2)
""" aの決定 """
a=np.zeros(N)
I=np.ones(N)
K=np.zeros((N,N))
for n in range(N):
  for m in range(N):
   K[n,m]+=t[n]*t[m]*gauss(x[n,:],x[m,:])
#共役勾配法
for C in [0.05,5,500]:
        Q = cvxopt.matrix(K)
        p = cvxopt.matrix(-np.ones(N))
        temp1 = np.diag([-1.0]*N)
        temp2 = np.identity(N)
        G = cvxopt.matrix(np.vstack((temp1, temp2)))
        temp1 = np.zeros(N)
        temp2 = np.ones(N) * C
        h = cvxopt.matrix(np.hstack((temp1, temp2)))
        A = cvxopt.matrix(t, (1,N))
        b = cvxopt.matrix(0.0)
        sol = cvxopt.solvers.qp(Q, p, G, h, A, b)
        a = np.array(sol['x']).reshape(N)
        print("\n",a)
        """bの決定"""
        b=0
        Ns, Nm=0, 0
        S, M = [], []
        for n in range(N):
          if 10**-5<a[n]:
            S.append(n)
            Ns+=1
            if a[n] < C:
              M.append(n)
              Nm += 1
        for n in M:
          sum_b=0
          for m in S:
              sum_b+=a[m]*t[m]*gauss(x[n,:],x[m,:])
          b+=t[n]-sum_b
        b/=Nm
        print(b)
        **求まったパラメータからモデル関数を作り
        def model(z):
          res=0
          for n in range(N):
            res+=a[n]*t[n]*gauss(z,x[n,:])
          return res+b
```

4 結果

N=30,50, C=0.05,5,500 に対して, $y(\boldsymbol{x})=-1,0,1$ となる面とサポートベクトルをプロットした.

4.1 内積カーネル

カーネル関数に

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = \boldsymbol{x}_n^T \boldsymbol{x}_m$$

を用いた.

 \boxtimes 1: N = 30, C = 0.05, 5, 500

4.2 多項式カーネル

カーネル関数に

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = (\boldsymbol{x}_n^T \boldsymbol{x}_m + 1)^{\theta}$$

を用いた. $\theta = 1, 2, 3$ で試した.

 $\theta = 1 \mathcal{O} \mathcal{E}$ き

 $\boxtimes 3$: N = 30, C = 0.05, 5, 500

 $\theta = 2$ のとき

 \boxtimes 5: N = 30, C = 0.05, 5, 500

 $\theta = 3 \text{ OZ}$

 \boxtimes 7: N = 30, C = 0.05, 5, 500

4.3 ガウスカーネル

カーネル関数に以下のガウスカーネルを用いた. $\theta = 0.05$ とした.

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = exp(-\theta \|\boldsymbol{x}_n - \boldsymbol{x}_m\|^2)$$

ガウスカーネルは面白かったので追加する. 重なりを多くし N=100,200 に対し $\theta=0.05,1$ で試した.

 $\theta = 0.05$ のとき

 $\boxtimes \ 11: \ N=100, \ C=0.05, 5, 500$

 $\theta = 1 \mathcal{O} \mathcal{E}$ き

4.4 まとめ

サポートベクトルは全体のデータ数よりは少ないが、線形分離可能なときよりも多い. Cが大きくなるにつれマージンが狭くなる. そして、誤分類は減るが過学習によってしまう. 図 11~図 14 より、パラメータの最適化が非常に重要であることが分かる.

5 ν -SVM

結果は重なりのあるクラス分布に対する SVM と同じであるが、違った定式化を与えることができる.

$$\tilde{L}(\mathbf{a}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$
 (7.38)

を次の条件の下で最大化する.

$$0 \le a_n \le 1/N$$
 (7.39), $\sum_{n=1}^{N} a_n t_n = 0$ (7.40), $\sum_{n=1}^{N} a_n \ge \nu$ (7.41)