Association Rules

Analyze the relationship of each's cryptos' return.

Before ... My interested field

- quantitive trading
- cryptocurrency
- decentralized finance

Most of financial issues applying mining association rule is to find the relationship or correlation of stocks' return, so I choose this topic. From lots of cryptocurrencies' hourly return, find the relationship by Apriori Algorithm.

Data

Origin data format for example. It will be n's DataFrame for n cryptocurrencies.

Time

2021/1/1 14:00

2021/1/1 13:00	100	110	80	105

105

Open

High

135

(18250, 60)

Volume

2500

3200

Close

100

Low

95

Dataset from Binance exchange

^{• 2019/9/1 ~ 2021/9/30}

Hourly crypto price

 ⁶⁰ crypto

Data Preprocessing

- 1. Fill n.a. from former value to get complete timeline DataFrame.
- 2. Concat each DataFrame with only one column Close.
- 3. Calculate simple return from close price.
- 4. Classify to three discrete variables Up, Down, Flat by custom parameter (%)
- 5. Covert DataFrame with Up, Down variables in one columns.

Data Preprocessing

Preprocessing data format for example.

1	[BTC_up, ETH_up, BNB_down, FTT_down]	
2	[ETH_up, XRP_up, FTT_up]	
3	[BTC_up, BNB_down, FTT_down, PERP_down] [PERP_down]	
4		
5	[BTC_down, ETH_down]	
6	[BTC_up, BNB_down, FTT_down, PERP_up, CAKE_up]	

(18250, 1)

Decide custom parameter (%) for hourly return

- Totally 60 crypto in this dataset in two year
- Find appropriate hourly return for analysis from 0.001 to 0.03
- Choose 0.006 and 0.01 to analyze in the end

Applying Apriori Algorithm

Final Result

Return threshold = 0.006 min_support = 0.16 min_confidence = 0.6 min_lift = 2.5 Return threshold = 0.01 min_support = 0.105 min_confidence = 0.5 min_lift = 2

ONT_lower
BAT_lower
ONT_lower
IOST_lower
NEO_lower
LINK_lower
ONT_lower
NEO_lower
VET_lower
ONT_upper
NEO_upper

ALGO_lower	ATOM_lower
ATOM_lower	ALGO_lower
ALGO_lower	FTM_lower
CELR_lower	FET_lower
CELR_lower	ONE_lower
ONE_lower	CELR_lower
ENJ_lower	FTM_lower
FET_lower	FTM_lower
MATIC_lower	FTM_lower
ONE_lower	FTM_lower
TOMO_lower	FTM_lower
VET_lower	FTM_lower
ZIL_lower	FTM_lower

Observation

- All relation is same direction, such as upper to upper.
- Most relation is lower to lower.
- That is totally different result from two different parameters. I guess I can lighten the range to see more relation, but that is too much to observe.
- Most relation are relative. Like A to B and B to A.
- Maybe we can compare the result with correlation coefficient, and use in portfolio optimization in the future.