ECE 272 Lab 3 Fall 2018

Combinational Logic (Seven-Segment Driver) Phi Luu

October 24^{th} , 2018

Grading TA: Edgar Perez

Lab Partner: Benjamin Geyer

1 Introduction

Figure 1: Seven-segment display showing hexadecimal digits [1]

2 Design

Figure 2: Block diagram

	Seg_A						
AB CD	00	01	11	10			
00	0	1	0	0			
01	1	0	1	0			
11	0	0	0	1			
10	0	0	0	0			
$Seg_A = \overline{ABCD} + \overline{ABCD} + AB\overline{CD} + A\overline{BCD}$							

CD AB	00	01	11	10			
00	0	0		0			
01	0	1	0	0			
11	0	0	1	1			
10	0	1	(1)	0			
$Seg_{B} = BC\overline{D} + ACD + AB\overline{D} + \overline{ABCD}$							

 Seg_B

	$Seg_{_C}$							
AB CD	00	01	11	10				
00	0	0		0				
01	0	0	0	0				
11	0	0		0				
10	(1)	0	1	0				
$Seg_C = ABC + ABD + \overline{ABCD}$								

	Seg_{D}							
AB CD	00	01	11	10				
00	0	1	0	0				
01	1	0	0	0				
11	0	1	1)	0				
10	0	0	0					
$S_{eg} = RCD + ARCD + ARCD + ARCD$								

	Seg_{E}								
CD AB	00	01	11	10					
00	0	1	0	0					
01 _			0	1					
11	1	1	0	0					
10	0	0	0	0					
	$S_{\varrho g} = \overline{AD} + \overline{ARC} + \overline{RCD}$								

	Seg_F							
CD AB	00	01	11	10				
00	0	0	0	0				
01	$\begin{pmatrix} 1 \end{pmatrix}$	0	1	0				
11	1	1)	0	0				
10	1	0	0	0				
Seg_{F}	$=\overline{A}CD$	$+\overline{AB}D+\overline{AB}D$	$\overline{\overline{ABC}} + A$	\overline{BCD}				

	$Seg_{_G}$							
CD AB	00	01	11	10				
00		0		0				
01	$\left(1\right)$	0	0	0				
11	0	1	0	0				
10	0	0	0	0				
Se	$Seg_C = \overline{ABC} + \overline{ABCD} + AB\overline{CD}$							

Input (Hexadecimal)	Input (4-bit Binary)	$\operatorname{Seg}_{\mathbf{A}}$	$\operatorname{Seg}_{\operatorname{B}}$	$\mathrm{Seg}_{\mathrm{C}}$	$\operatorname{Seg}_{\operatorname{D}}$	$\operatorname{Seg}_{\operatorname{E}}$	$\mathrm{Seg}_{\mathrm{F}}$	$\mathrm{Seg}_{\mathbf{G}}$
0	0000	0	0	0	0	0	0	1
1	0001	1	0	0	1	1	1	1
2	0010	0	0	1	0	0	1	0
3	0011	0	0	0	0	1	1	0
4	0100	1	0	0	1	1	0	0
5	0101	0	1	0	0	1	0	0
6	0110	0	1	0	0	0	0	0
7	0111	0	0	0	1	1	1	1
8	1000	0	0	0	0	0	0	0
9	1001	0	0	0	0	1	0	0
a	1010	0	0	0	1	0	0	0
b	1011	1	1	0	0	0	0	0
c	1100	0	1	1	0	0	0	1
d	1101	1	0	0	0	0	1	0
e	1110	0	1	1	0	0	0	0
f	1111	0	1	1	1	0	0	0

Table 1: Conversion table between hexadecimal, 4-bit binary, and seven-segment decoder

Figure 3: A schematic for the seven-segment display decoder. Due to the large difference between the size of the schematic and the available space, an image with higher resolution has been uploaded here.

Figure 4: Simulation waveform of the program with each 10-nanosecond interval representing a hexadecimal digit

3 Results

4 Experiment Notes

Reflection

Study Questions

1. When is a simulation necessary? Was it useful for this section?

Appendix

No appendix is available in this lab.

References

[1] E. E. S. Exchange, "Hex to 7 segment decoder for a common anode 7 seg display." https://electronics.stackexchange.com/questions/373034/hex-to-7-segment-decoder-for-a-common-anode-7-seg-display, 2018.