Formulário nº2

0. Média e variância de uma amostra (dados classificados)

$$x_{o} = \frac{1}{n} \sum_{i=1}^{c} x_{i} n_{i}$$

$$s^{2} = \frac{n(\sum_{i=1}^{c} x_{i}^{2} n_{i}) - (\sum_{i=1}^{c} x_{i} n_{i})^{2}}{n(n-1)}$$

c- número de valores ou classes distintas da amostra

Nota 1 - Para dados não classificados considerar n_i=1

Nota 2 - Para dados contínuos x_i representam os pontos médios das classes

1. Amostragem

1.1 Distribuição da média amostral e diferença de médias amostrais

$$\bar{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} \sim N(\mu; \frac{\sigma^{2}}{n})$$

$$\bar{X}_{1} - \bar{X}_{2} \sim N(\mu_{1} - \mu_{2}; \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}})$$

1.2 Distribuição da proporção amostral e diferença de proporções amostrais

$$\hat{P} = \frac{X}{n} \sim N(p; \frac{pq}{n})$$

$$\hat{P}_1 - \hat{P}_2 \sim N\left(p_1 - p_2; \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}\right)$$

2. Inferência estatística

2.1 Valores críticos
$$z_{1-\alpha/2} = \Phi^{-1} \left(1 - \frac{\alpha}{2} \right)$$
, $z_{1-\alpha} = \Phi^{-1} (1 - \alpha)$

Grau de confiança: $1-\alpha$	0,99	0,98	0,96	0,95	0,9	0,8
Significância: $lpha$	0,01	0,02	0,04	0,05	0,1	0,2
$Z_{1-\alpha/2}$	2,575	2,33	2,05	1,96	1,645	1,28
$z_{1-\alpha}$	2,33	2,05	1,75	1,645	1,28	0,84

2.2 Intervalos de confiança

2.2.1 Intervalos de confiança para médias e proporções, grandes amostras

$$\begin{aligned} &\text{IC para } \mu \\ &IC_{\mu} = \left[\overline{x}_0 - \Delta, \, \overline{x}_0 + \Delta \right] \\ &\Delta = z_{1-\alpha/2} \, \frac{\sigma}{\sqrt{n}} \\ &\text{IC para diferença de médias} \\ &IC_{\mu 1-\mu 2} = \left[\overline{x}_1 - \overline{x}_2 - \Delta, \, \overline{x}_1 - \overline{x}_2 + \Delta \right] \\ &\Delta = z_{1-\alpha/2} \sqrt{\frac{\hat{p}_0 \hat{q}_0}{n}}, \quad \hat{q}_0 = 1 - \hat{p}_0 \\ &\text{IC para diferença de proporções} \\ &IC_{\mu 1-\mu 2} = \left[\hat{p}_1 - \hat{p}_2 - \Delta, \, \hat{p}_1 - \hat{p}_2 + \Delta \right] \\ &\Delta = z_{1-\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}, \\ &\Delta = z_{1-\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}, \\ &\hat{q}_1 = 1 - \hat{p}_1, \\ &\hat{q}_2 = 1 - \hat{p}_2 \end{aligned}$$

2.3 Testes de hipóteses

2.3.1 Testes de hipóteses para médias e proporções, grandes amostras

Tipo	Unilateral à esquerda	Bilateral	Unilateral à direita	Estatística teste obs.
Teste de	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$z_0 = \frac{\overline{x}_0 - \mu_0}{\sigma}$
média	$H_1: \mu < \mu_0$	$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$\frac{\sigma}{\sqrt{n}}$
Teste de	$H_0: p = p_0$	$H_0: p = p_0$	$H_0: p = p_0$	$z = \frac{\hat{p}_0 - p_0}{1 + p_0}$
proporção	$H_1: p < p_0$	$H_1: p \neq p_0$	$H_1: p > p_0$	$z_0 = \frac{\hat{p}_0 - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$
Região crítica	$RC_z =]-\infty, -z_{1-\alpha}]$	$RC_z =]-\infty, -z_{1-\alpha/2}] \cup [z_{1-\alpha/2}, +\infty[$	$RC_z = [z_{1-\alpha}, +\infty[$	
Valor de prova	$pvalue = P(Z < z_0)$	$pvalue = 2P(Z > z_0)$	$pvalue = P(Z > z_0)$	

2.3.2 Testes de hipóteses para diferença de médias e diferença de proporções, grandes amostras

Tipo Teste de dif. média	Unilateral à esquerda $H_0: \mu_1-\mu_2=0$ $H_1: \mu_1-\mu_2<0$	Bilateral $H_0: \mu_1-\mu_2=0$ $H_1: \mu_1-\mu_2\neq 0$	Unilateral à direita $H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 > 0$	Estatística teste obs. $z_0 = \frac{\overline{x}_1 - \overline{x}_0}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}}}$
Teste de dif. Prop.	$H_0: p_1 - p_2 = 0$ $H_1: p_1 - p_2 < 0$	$H_0: p_1 - p_2 = 0$ $H_1: p_1 - p_2 \neq 0$	$H_0: p_1 - p_2 = 0$ $H_1: p_1 - p_2 > 0$	$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{pq(\frac{1}{n_1} + \frac{1}{n_2})}}$
Região crítica	$RC_z =]-\infty, -z_{1-\alpha}]$	$RC_z =]-\infty, -z_{1-\alpha/2}] \cup [z_{1-\alpha/2}, +\infty[$	$RC_z = [z_{1-\alpha}, +\infty[$	$p = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$
Valor de prova	$pvalue = P(Z < z_0)$	$pvalue = 2P(Z > z_0)$	$pvalue = P(Z > z_0)$	q = 1 - p

2.4 Teste do Qui quadrado

$$Q = \sum_{i=0}^{k} \frac{(N_i - e_i)^2}{e_i} \sim \chi^2 (k - m - 1)$$

$$n$$
≥30 e e_i ≥ 5: i =1,..., k .

k – Número total de classes ou valores individuais considerados na amostra (após validação do quadro comparativo).

m – Número de parâmetros que foi necessário estimar para definir H₀

$$\mathsf{q} = \sum_{i=0}^k \frac{(n_i - e_i)^2}{e_i} \;, \;\; RC = [c, +[\; onde \; P(Q \geq c) = \alpha, \;\; pvalue = P(Q > q_0)]$$