"TD-SCDMA标准与测试"技术培训

一移动流媒体业务

信息产业部电信研究院通信标准研究所 无线与移动研究室 吴伟 wuwei@mail.ritt.com.cn

信息产业部电信研究院通信标准研究所

4

内容提要

- ▶ 移动流媒体业务及分类
- 网络模型和系统结构
- 移动流媒体的主要业务流程
- 移动流媒体的编解码与文件格式
- 移动流媒体相关协议
- ■国际标准的情况
 - R4、R5、R6

信息产业部电信研究院通信标准研究所

移动流媒体业务

- 移动流媒体业务
 - ◆ 移动流媒体业务主要是利用目前2.5G或3G的移动通信网,为手机终端提供音频、视频服务;
 - * 从业务形式上划分,移动流媒体业务包括直播、点播和下载服务
 - ◆ 从内容形式上划分,包括新闻资讯、影视、MTV、体育、教育、行业和专项应用等;
- TD-SCDMA系统在业务提供上的特点主要体现在分组数据业务的 提供上。
 - ◆ TD-SCDMA系统可以提供WCDMA系统提供的所有分组数据业务
 - ◆ 它的TDD特性可以使TD一SCDMA比单纯的FDD技术更为有效地处理非对称业务。
- 移动流媒体具有3G核心增值业务的特征

信息产业部电信研究院通信标准研究所

3G核心增值业务的特征

- 带宽需求较大,符合3G业务的特征
 - * 3G网络提供高速无线数据服务,
 - * 业务能够充分利用带宽的优势,为用户带来更好的体验;
- 作为核心业务,用户易于广泛使用
 - ◆ 使用简单方便,一键进入,适合大部分用户;
 - * 没有复杂的设置,对用户不会造成使用障碍;
- 展现形式丰富,应用广泛:
 - ◆ 视频音频,内容丰富,可以拓展更多的业务;
 - ◆ 休闲娱乐,闲暇时间的利用
 - ◆ 实时资讯的获取
 - * 强势媒体的特征

信息产业部电信研究院通信标准研究所

5

移动流媒体方面的特性

- 资源受限:
 - ◆ 终端功能有限,业务的优化,以及与其他业务之间的协调统一
 - ◆ 空口无线资源的缺乏,终端屏幕小,有限的存储容量和带宽
- ▶ 终端能力的多样性
 - 终端可以是普通的PC,也可以是很小的移动终端
 - ◆ 需要对终端能力的信息进行交换和协商
- 无线传输方式
 - ◆ 优化无线资源的使用
- 计费和数字版权管理: Digital Rights Management
 - 内容的保护和确保收费,应具有标准化

信息产业部电信研究院通信标准研究所

移动流媒体业务的内容

- 移动流媒体的业务内容主要来自三类
 - 新闻
 - ◆ 音乐
 - 体育
- 内容提供商往往提供他们的组合,例如新闻+音乐, 或新闻+体育。
- 视频广告: 提供给广告商的应用
- ▶ 关于电影
 - ◆ 初期不会成为移动流媒体业务的重要内容。影视流媒体的应 用主要应在宽带网络实现。

信息产业部电信研究院通信标准研究所

7

业务类型——播放方式

- 流媒体点播(VOD):
 - 内容提供商将预先录制好的多媒体内容编码压缩成相应格式,存放在内容服务器上并把内容的描述信息以及链接放置在流媒体的portal上。最终用户就可以通过访问portal,发现感兴趣的内容,有选择的进行播放。
- 流媒体直播:
 - 流媒体编码服务器将实时信号编码压缩成相应的格式,并经由流媒体服务器分发到用户的终端播放器。
 - ◆ 根据实时内容信号源的不同,又可以分为电视直播、远程监控等。
- ▶ 下载播放:
 - 申 用户将流媒体内容下载并存储到本地终端中,然后可以选择 在任意时间进行播放。
 - 对于下载播放,主要的限制指标是终端的处理能力和终端的存储能力,内容提供商可以制作出较高质量的视音频内容(高带宽,高帧速率),但需要考虑内容的下载时间及终端的存储空间。

信息产业部电信研究院通信标准研究所

内容提要

- 移动流媒体业务及分类
- 网络模型和系统结构
- 移动流媒体的主要业务流程
- 移动流媒体的编解码与文件格式
- 移动流媒体相关协议
- ■国际标准的情况
 - R4、R5、R6

信息产业部电信研究院通信标准研究所

9

流媒体业务的基本模型 ■ 用户终端要求并获得实时的多媒体信息 ■ 媒体流信息通过GPRS或UMTS承载 Streaming Client Streaming Server GPRS or UMTS GPRS or UMTS GPRS or UMTS 10

系统结构

■ 移动流媒体业务可以采用IP或其他方式承载。下层承载网络支持GSM、GPRS、CDMA以及未来的3G网络。

信息产业部电信研究院通信标准研究所

11

网络实体

- 核心部分
 - ◆ 流媒体内容服务器(Content Server)
 - ◆ 内容缓冲服务器(Cache Server)
- ▶ 外围部分
 - ◆ 用户终端档案服务器(User Agent Profile)
 - ♥ 数字版权管理服务器(DRM)
 - ♥ 业务管理服务器
 - 门户服务器
 - 直播内容采集服务器
 - 等

信息产业部电信研究院通信标准研究所

内容提要

- 移动流媒体业务及分类
- 网络模型和系统结构
- ▶ 移动流媒体的主要业务流程
- 移动流媒体的编解码与文件格式
- 移动流媒体相关协议
- ■国际标准的情况
 - R4、R5、R6

信息产业部电信研究院通信标准研究所

3GPP流媒体初始化

- 参见TS 26.234
- 使用PSS终端得到初始会话描述的方法作为会话建立的方式
- PSS终端应支持下列格式指定的初始会话描述:
 - SMIL
 - SDP
 - Plain RTSP URL
- 除了"rtsp://", PSS终端应支持以"file://"(用于本地文件)和"http://"(用于通过HTTP)开始的URL作为效的初始会话描述。例如下列均为合法的输入:
 - file://temp/morning_news.smil
 - http://mediaportal/morning_news.sdp
 - rtsp://mediaportal/morning_news.
- 终端可以通过多种方式获得URL,具体方式不作为规范的内容。
- 符合3GPP PSS规范的应用应至少支持上述类型的URL。

信息产业部电信研究院通信标准研究所

内容提要

- 移动流媒体业务及分类
- 网络模型和系统结构
- 移动流媒体的主要业务流程
- 移动流媒体的编解码与文件格式
- 移动流媒体相关协议
- 国际标准的情况
 - R4、R5、R6

信息产业部电信研究院通信标准研究所

19

移动流媒体的编解码(1)

- 视频格式方面,3GPP PSS R6要求的视频媒体格式如下:
 - ◆ H.263 profile 0 Level 45 (Shall、基本)
 - H.263 profile 3 Level 45 (Should)
 - MPEG-4 Visual Simple Profile level **0b** (Should)
 - H.264 (AVC) Baseline Profile Level 1b (Should) 并且
 - constraint_set1_flag=1
 - 不要求输出的时间顺序
- H.263 最初定义了7个Level, 2004年3月修订的版本增加了一个 Level (45)
 - ◆ 同样要求最大画面格式为QCIF (176 × 144)
 - ◆ 支持Level 45, 意味着必然也支持Level 10
 - ◆ 与Level 10的差别
 - Level 10: 要求最大比特率为64kbps
 - Level 45: 要求最大比特率为2×64kbps

信息产业部电信研究院通信标准研究所

移动流媒体的编解码(2)

- 语音
 - AMR-NB
 - ♥ 可选支持AMR-WB
- 音频
 - ▶ 四种编解码方式
 - Enhanced aacPlus;
 - Extended AMR-WB;
 - MPEG-4 AAC Low Complexity (AAC-LC)——基本要求
 - MPEG-4 AAC Long Term Prediction (AAC-LTP)
 - ◆ 其中:
 - Enhanced aacPlus解码器应同时能够对AAC-LC的内容进行解码。
 - Extended AMR-WB解码器应同时能够对AMR-WB的内容进行解码。
 - AAC: 解码器支持的最大取样速率为48kHz

信息产业部电信研究院通信标准研究所

21

移动流媒体的编解码(3)

- 静态图像
 - ◆ ISO/IEC JPEG, 仅适用以下两种方式
 - baseline DCT, non-differential, Huffman coding, as defined in table B.1, symbol 'SOF0' in CCITT T.81
 - progressive DCT, non-differential, Huffman coding, as defined in table B.1, symbol 'SOF2' in CCITT T.81
 - JFIF: JPEG File Interchange Format
- 位图
 - GIF87a
 - GIF89a
 - PNG
- 向量图
 - SVG Tiny 1.2
 - ECMA Script

信息产业部电信研究院通信标准研究所

移动流媒体的编解码(4)

- 文本
 - UTF-8
 - UCS-2
- 同步文本/定时文本(Timed text)
 - ◆ 主要用于与画面相配的字幕
 - ◆ 若支持定时文本,应依据3GPP TS 26.245。
 - ◆ 同步文本可以在RTP上传输,或者在使用基本模式的3GP文件或3G2中下载。

信息产业部电信研究院通信标准研究所

23

文件格式

- 3GP (3GPP)
 - ◆ 适用于UMTS
 - ◆ 参见3GPP TS 26.244 "PSS: 3GPP file format (3GP)"
 - **26244-630**
- 3G2 (3GPP2)
 - ◆ 适用于CDMA2000
 - 参见3GPP2 C.S0050-0 v1.0 "3GPP2 File Formats for Multimedia Services"
 - C12-20050418-012__Editor_C.P0050-Av0.2.3.doc

信息产业部电信研究院通信标准研究所

文件标识(1)

- 文件标识由3部分组成
 - ◆ 文件扩展名: 文件名后缀
 - ◆ MIME类型
 - ◆ 文件商标 (Brand Identifier)
- ▶ 文件名后缀
 - .3gp、 .3g2、 .mp4
- MIME类型
 - ◆ video/3gpp、video/3gpp2: 用于视频或音视频内容
 - ◆ audio/3gpp、audio/3gpp2: 用于音频内容
 - audio/qcelp: 用于.qcp
 - audio/sp-midi: SP-MIDI
 - audio/mobile-xmf: mobile-XMF
- 文件商标(Brand Identifier)
 - 3gp6、3gr6、3gs6、3gg6、mp42等
 - 3g2a \ 3g2b?

信息产业部电信研究院通信标准研究所

文件标识(2)——文件商标(Brand Identifier)

- 3gp4: H.263 and AMR
- 3gp5:
 - H.263 and AMR
 - * MPEG-4 video , 与MP4兼容
- 3gp6: Basic profile
 - H.263 and AMR.
 - H.263, AMR and Timed text
 - H.264 (AVC) and AMR
 - 3gr6: Progressive-download profile
 - H.263
 - interleaved H.263 and AMR
 - interleaved H.264 (AVC) and AMR
- 3gs6: Streaming-server profile AMR and hint track
 - H.263, AMR and hint tracks
 - 3ge6: Extended-presentation profile
- - SMIL, AMR and JPEG images, MBMS extended presentations
- 3gg6: General profile
 - 4 tracks H.263 (and no hint tracks)
- 2 tracks H.263, 3 tracks AMR

- 3gpp2: EVRC、13k

- 2 tracks H.263 and 2 hint tracks

- fragmented H.263 and AMR

- fragmented and interleaved H.263 and AMR

Timed text

- 3gpp2: 13k

- mp42: 文件后缀.mp4
- MPEG-4 video and AAC
- 3g2b: H.263 and 13K (Release A)

3g2a: H.263 and 13K. 与3gp4兼信息产业部电信研究院通信标准研究所

内容提要

- ▶移动流媒体业务及分类
- 网络模型和系统结构
- 移动流媒体的主要业务流程
- 移动流媒体的编解码与文件格式
- 移动流媒体相关协议
- ■国际标准的情况
 - R4、R5、R6

信息产业部电信研究院通信标准研究所

27

PSS协议

Video Audio Speech <u>Timed Text</u>	Capability Exchange Scene Description Presentation Description Still Images Bitmap Graphics Vector Graphics Text Timed Text Synthetic Audio	Capability Exchange Presentation Description		
Payload Format	HTTP	RTSP		
RTP	ппР	KISP		
UDP	TCP	UDP		
	IP			

- R5新增内容
- R6新增内容

信息产业部电信研究院通信标准研究所

协议

- 能力交换:
 - Capability Exchange
- RTSP
- ▶ 内容表示描述:
 - Presentation Description
 - SDP
- 流媒体传输
 - RTP/RTCP
- H.264

信息产业部电信研究院通信标准研究所

实时流协议——RTSP

- Real-time Streaming Protocol
- 是由Real Networks、Netscape共同提出的一种协议, 它定义了如何使一对多应用程序有效地通过IP网络传 送多媒体数据。
- RTSP在体系结构上位于RTP、RTCP之上,它使用 TCP或RTP完成数据传输。
- 与HTTP相比,RTP传送的是多媒体数据,而HTTP传送HTML。
- 在使用RTSP时,客户机和服务器均可发出请求,也就 是说RTSP可双向服务,而HTTP的请求是由客户机发 出,服务器进行响应。
- RTSP的主要命令:
 - ◆ DESCRIBE、PLAY、PAUSE、SET PARAMETER
 - * TEARDOWN、OPTIONS、SETUP

信息产业部电信研究院通信标准研究所

3

3GPP PSS对RTSP的扩展

- Range头字段,并在PLAY的响应中包含这个字段;
- Bandwidth头字段;
- 3GPP-link-Char头字段:
 - * 用于移动流媒体客户端向移动流媒体服务器报告无线链路特性
- 3GPP-Adaptation头字段:
 - ◆ 用于移动流媒体客户端设置速率自适应参数
- QoE头字段:
 - ◆ 用于移动流媒体客户端和服务器协商移动流媒体客户端应发送哪些QoS Metrics,以什么样的频率发送以及如何取消发送这些Metrics
- Video Buffering头字段:
 - ◆ 用于Buffer的管理。

信息产业部电信研究院通信标准研究所

展示描述——SDP协议

- SDP协议可用于移动流媒体的展示描述协议,用于移 动分组流媒体业务的客户端和服务器,规定对描述会话的必要信息怎样进行编码。
- 发送给移动流媒体客户端的SDP应通过编解码方式特 定的MIME媒体类型来表明会话中使用的每一种媒体类
- SDP只是一种用于会话描述的格式(协议),它并不 是一个传输协议,也不包含在媒体的编解码之中,而是用于在不同传输协议间的传递消息的通知协议,其主要目的是解决多媒体会话通知、邀请和另外一些媒 体会话的初始化工作。
- SDP不包含任何传输机制,也不包含任何种类的参数 协商。
- 除了RFC2327中规定的SDP文件通常包含的字段以 外。一个PSS移动流媒体服务器还应在SDP文件中包 含一些扩展字段 息产业部电信研究院通信标准研究

SDP协议的结构

- SDP包一般包括:
 - ◆ 一个会话描述信息
 - 会话名和目的
 - 会话时间
 - 会话使用的带宽
 - 会话负责人的联系信息
 - ◆ 一个或多个时间描述信息
 - ◆ 一个或多个媒体描述信息
 - 媒体类型,例如:视频或音频
 - 传输协议,例如: RTP/UDP/IP, H.320
 - 媒体格式,例如: H.263视频或者MPEG4视频
 - 多播地址和媒体传输端口(IP多播会话)

信息产业部电信研究院通信标程研究所系地址和媒体传输端口

SDP会话描述

■ SDP会话描述由许多文本行组成。文本行的格式为: 类型=值。其中"类型"是一个字母,"值"是结构话的文 本串。例如:

m=video 53000 RTP/AVP 31

- ◆ m代表这一行代表媒体信息;
- ◆ video代表是视频流
- ◆ 53000代表UDP端口号是53000
- * RTP/AVP指媒体传输协议使用RTP/AVP
- ◆ 31代表媒体格式使用H.261并且使用90KHz的时钟

信息产业部电信研究院通信标准研究所

35

PSS扩展——SDP会话层

Session	n Description				
٧	Protocol version		R	R	
0	Owner/creator and se	ssion identifier	R	R	
S	Session Name		R	R	
ı	Session information		0	О	
U	URI of description		0	0	
E	Email address		0	o	
Р	Phone number		0	0	
С	Connection Informati	on	R	R	
В	Bandwidth	AS	0	0	
	information	RS	ND	0	
		RR	ND	0	
One or	more Time Descriptions	•	•		
Z	Time zone adjustmen	ts	0	0	
K	Encryption key		0	0	
Α	Session attributes	control	0	R	
		range	0	R	
		alt-group	ND	0	
		3GPP-QoE-Metrics	ND	0	
		3GPP-Asset-Information	ND	0	
		3GPP-Integrity-Key	ND	0	
		3GPP-SDP-Auth	ND	0	

信息产业部电信研究院通信标准研究所

Media [Description			\.	
М	Media name and transport address		R	R	
I	Media title		0	0	
С	Connection information		R	R	
В	Bandwidth information	AS	0	R	
		RS	ND	R	
		RR	ND	R	
ĸ	Encryption Key	•	0	0	
Α	Attribute Lines	control	0	R	
		range	0	R	
		fmtp	0	R	
		rtpmap	0	R	
		X-predecbufsize	ND	0	
		X-initpredecbufperiod	ND	0	
		X-initpostdecbufperiod	ND	0	
		X-decbyterate	ND	0	
		framesize	ND	R (see note 5)	
		alt	ND	0	
		alt-default-id	ND	0	
		3GPP-Adaptation-Support	ND	0	
		3GPP-QoE-Metrics	ND	0	
		3GPP-Asset-Information	ND	0	
		3GPP-SRTP-Config	ND	0	
		rtcp-fb	0	0	

协议——RTP

- Real-time Transport Protocol
- 是在Internet上针对多媒体数据流的一种传输协议,工作于一对一或一对多的传输情况,可提供时间信息和实现流同步。
- RTP通常使用UDP来传送数据,也可在TCP或ATM协议之上工作。当应用程序开始一个RTP会话时,会使用到两个端口,一个给RTP,一个给RTCP。
- RTP本身并不能为按顺序传送数据包提供可靠的传送机制,也不 提供流量控制或拥塞控制,而是依靠RTCP提供这些服务。
- 通常RTP算法并不作为一个独立的网络层来实现,而是作为应用程序代码的一部分。

信息产业部电信研究院通信标准研究所

协议——RTCP

- Real-time Transport Control Protocol
- 与RTP共同提供流量控制和拥塞控制服务。
- 在RTP会话期间,参与者周期性地传送RTCP包,这些包中含有已发送数据包的数量、丢失数据包的数量等统计数据,服务器可根据这些信息动态地改变传输速率,甚至改变有效载荷类型。
- RTP与RTCP的配合使用可有效地进行反馈,从而减小 开销,提高传输效率,非常适合传送网上的实时数据。

信息产业部电信研究院通信标准研究所

39

RTP与RTCP

- RTP和RTCP配合使用,能以有效的反馈和最小的开销 使传输效率最佳化,适合传送实时数据。
- 用于移动流媒体传输的RTP/RTCP进行了一些扩展, 以支持传输的完整性、RTP重传、拥塞控制和速率自 适应等功能。
- RTCP的一个关键作用就是能让接收方同步多个RTP流,例如: 当音频与视频一起传输的时候,由于编码的不同,RTP使用两个流分别进行传输,这样两个流的时间戳以不同的速率运行,接收方则必须同步两个流,以保证声音与影像的一致。
- RTP只是保证同一媒体流的时间戳功能,但是对于同时需要不同媒体流(音频+视频)的业务时,RTCP把时间戳和实时时钟联系起来,保证了媒体的同步,同时RTCP保证参与会话的成员反馈通信信息,从而保证通信的质量。

信息产业部电信研究院通信标准研究所

关于H.264

- H.264是最新的数字视频编码标准
- ITU-T的VCEG(视频编码专家组)和ISO/IEC的MPEG(活动图像编码专家组)的联合视频组(JVT: joint video team)开发的一个新的数字视频编码标准。
- 2003年3月正式定稿。
- 2004年9月纳入3GPP R6的PSS规范中

信息产业部电信研究院通信标准研究所

41

内容提要

- 移动流媒体业务及分类
- 网络模型和系统结构
- 移动流媒体的主要业务流程
- 移动流媒体的编解码与文件格式
- 移动流媒体相关协议
- 国际标准的情况
 - R4、R5、R6

信息产业部电信研究院通信标准研究所

国际标准的情况

- 3GPP PSS
 - R4
 - R5
 - R6
- 3GPP2

信息产业部电信研究院通信标准研究所

43

规范的背景

- PSS- Packet-switched Streaming Service
 - ◆ 在众多的标准化组织 (IETF, W3C, ITU, MPEG, 3GPP)
- PSS第一版本是在 R4中完成的
- 在R5和R6中都有新的版本
- 活跃的公司:
 - Ericsson, Nokia, Matsushita (Panasonic), Emblaze Systems, Philips, Fraunhofer, Sharp, Packet Video, Toshiba Corporation, NTT DoCoMo Inc., Vodafone, Microsoft, Motorola,, Siemens, Alcatel, Real Networks, Apple, France Telecom ...

信息产业部电信研究院通信标准研究所

R4特性——协议和编码

- Audio和video
 - ◆ AMR (NB与WB), AAC, H.263和MPEG-4视频
 - ◆ 传输控制协议: RTSP (Real-Time Streaming Protocol)
 - ◆ 内容表达方式描述: SDP (Session Description Protocol)
 - ♥ 媒体内容传输: RTP over UDP
 - ◆ 文件格式定义: MPEG-4, 便于和MMS的互操作

信息产业部电信研究院通信标准研究所

R4 PSS的场景描述

- 场景描述
 - ◆ SMIL 2.0子集
 - ◆ 通过HTTP在标准的Web服务器上获取内容
 - 包含空间和时间的格式布局
 - 包含所有媒体要素的链接,而不是实际的媒体内容本身,如 图片和视频
- 文本和图像
 - ◆ 基本XHTML
- JPEG

Graphics Interchange Format Hyper Text Transfer Protocol Joint Photographic Experts Group Session Description Protocol Synchronized Multimedia Integration Language eXtensible Hyper Text Markup Language

- ◆ JPEG和GIF
- ◆ 通过HTTP在标准的Web服务器上获取内容
- ◆ 在SMIL文件中定义时序

信息产业部电信研究院通信标准研究所

R4 PSS的编解码

- Speech
 - AMR
 - AMR-WB
- Audio (NO mandatory codec!)
 - AAC LC ("should")
 - AAC LPT ("may")
- Video
 - H.263 baseline,
 - H.263 v2 Profile 3 level 10 ("should")
 - MPEG4 simple profile level 0 ("should")

- Still images
 - JPEG baseline
- Bitmap Graphics(NO mandatory codec!)
 - GIF87a, GIF89a ("should")
- Text
 - * XHTML
 - UTF-8
 - UCS-2

信息产业部电信研究院通信标准研究所

R4 PSS的SMIL

- SMIL是一种格式布局和同步语言,由W3C定义
- 3GPP R4 PSS使用:
 - * SMIL 2.0, Basic Language Profile
 - ◆ 并且有以下扩展
 - Event Timing: 事件定时
 - Media Clipping: 媒体剪辑
 - Meta Information: 元素信息

信息产业部电信研究院通信标准研究所

49

PSS Release 5

- 与R4完全的后向兼容
- 使用UAProf作为能力交换(Capability exchange)
 - * 定义了PSS特定的扩展
- 合成音频 (should)
 - Scalable Polyphony MIDI (SP-MIDI)
- 附加的图像格式 (should)
 - PNG
- 矢量图形格式 (should)
 - Scalable Vector Graphics (SVG)
- 可选的视频流缓冲模型(video buffering model)
- 特定的字幕文本格式 (should)

■ SMIL扩展

PNG SP-MIDI UAProf SVG

Portable Networks Graphics Scalable Polyphony Musical Instrument Digital Interface User Agent Profile

■ 更新的文件格式: .3gp 信息产业部电信研究院通信标准研究所

50

R6的后续工作

- 适应性流媒体
 - Adaptive streaming
 - End-to-end (ready)
 - Buffer handling
 - Robust
 - Hand over
- 新的媒体类型和传输格式
 - AMR-WB+/AAC+
 - DLS (downloadable sound)
 - XMF (eXtended MIDI File)
 - AVC (H.264/MPEG4 part 10)
 - SVG development
 - SMIL extensions

- 更新的文件格式: .3gp
 - Server
 - Downloadable
- 可靠的流媒体
- DRM (joint with OMA)
- 终端能力协商UAProf (joint with OMA)
- IMS消息
- Super container format (open)
- MBMS(open)
- Application layer QoS reporting (open)

信息产业部电信研究院通信标准研究所

51

3GPP2

- Release 0: C.S0050:3GPP2 File Formats for Multimedia Services
- Release A版本尚未完成:
 - C12-20050418-012__Editor_C.P0050-Av0.2.3.doc
- 定义了文件格式,编解码、SMIL等
- 文件格式中大量使用了3GPP定义的Brand,并依据3GPP2的版本分别定义了3g2a和3g2b
- 文件格式特性
 - Movie fragment
- 具有几种cdma2000专用的编解码格式
 - MPEG4音频中使用QCELP和13K语音
 - SMV
 - EVRC
- 对3GPP定时文本的增强
 - Link functionality for phone and mail is enhanced compared to 3GPP Timed Text
 - Word wrap is enhanced compared to 3GPP Release 4 and 5 Timed Text. (3GPP Release 6 includes word wrap feature.)

信息产业部电信研究院通信标准研究所

流媒体小节

- 3G多媒体规范涉及几个方面: MMS、IMS和PSS
- PSS是一个多组织环境的规范(an umbrella standard),涉及 IETF、W3C、ITU和MPEG等
- 确保MMS-PSS和IMS-PSS之间的互操作
- 规范中涉及的协议和编解码方法
 - * RTSP, HTTP, H263, AMR, AAC...
 - * 与Internet方案的融合: 移动流媒体与宽宽带流媒体
 - ◆ 与其他3GPP业务的融合
- 最初的版本为3GPP Release 4,在后续的Release 5和Release 6 规范中增加业务特性
- 所有的release确保完全的后向兼容性

信息产业部电信研究院通信标准研究所

