Heart Disease Prediction

Cristopher Delgado

Agenda

Business Understanding

05

Methods

03

Business Problem Data

5 06

Results Evaluation

Business Understanding

Cardiovascular Diseases

- Leading cause of death globally
- 32% Proportion
- Risk Mitigation

Diagnostic Future

- Machine Learning Algorithms
- Continuous monitoring
- Software Medical Device

Business Problem

Identify Important Aspects

- Age
- Cholesterol
- Electrocardiogram

Develop Medical Devices

- At Home Use
- Clinical Setting

Goal: Predict Heart Disease

Data

Source

- Cleveland clinic (Cleveland, Ohio)
- Hungarian Institute of Cardiology (Budapest, Hungary)
- University Hospitals (Zurich and Basel, Switzerland)
- Veterans Administration Medical Center (Long Beach, California)
- Stalog (Heart) Data Set

Overview

- University of California Irvine Machine Learning Repository
- 5 heart datasets are combined over
 11 common features

Methods

Cleaning

- Appropriate Data Types
- Numerically Encode Categories

Baseline Models

- Baseline vs Optimized
- Scoring Metric: Recall (Sensitivity)

Normalization

- Prepare for modeling
- All continuous features are on the same scale

Optimized Models

Evaluation

- 1. Incorporate the Random Forest model into diagnostic medical device software for the purposes of monitoring Cardiovascular related symptoms for Cardiovascular Diseases.
- 2. I recommend to develop medical devices geared towards monitoring the slope of the S-T segment of the Electrocardiogram, Exercise-induced angina, and measuring the S-T segment depression.

Questions?

github.com/cristopher-d-delgado

linkedin.com/cristopher-d-delgado/