TDAB01 Sannolikhetslära och Statistik

Jose M. Peña IDA, Linköpings Universitet

Föreläsning 5

Översikt

- ► Stora talen lag
- ► Centrala gränsvärdessatsen
- **▶** Simulering
- ► Monte Carlo metoder

Stora talens lag

- Medelvärde: $\bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$
- Medelvärdet av många oberoende slumpvariabler med samma väntevärde μ och varians kommer att ligga allt närmare μ.

Stora talens lag

$$\lim_{n\to\infty} \boldsymbol{P}\left(\left|\bar{X}_n - \mu\right| > \epsilon\right) = 0$$

Bevis via Chebyshevs olikhet. Låt $X = \bar{X}_n$. Då $\mathbb{E}(X) = \mu$. Då

$$P(|X - \mu| > \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

eftersom σ^2 är $Var(X) = Var(\bar{X}_n) = Var(X_i)/n \to 0$ när $n \to \infty$.

Centrala gränsvärdessatsen

• Hur är \bar{X}_n fördelad ?

Centrala gränsvärdessatsen. Låt $X_1, X_2, ..., X_n$ vara oberoende variabler med samma väntevärde μ och standardavvikelse σ , och låt

$$S_n = X_1 + X_2 + \cdots + X_n$$

När $n \to \infty$ så kommer den standardiserade summan

$$Z_n = \frac{S_n - \mathbb{E}(S_n)}{\operatorname{Std}(S_n)}$$

att konvergera i fördelning till en N(0,1) variabel, dvs

$$F_{Z_n}(z) = \mathbf{P}\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le z\right) \to \Phi(z)$$

▶ Då S_n och \bar{X}_n konvergerar i fördelning till $N(n\mu, \sigma\sqrt{n})$ och $N(\mu, \sigma/\sqrt{n})$. Vanlig tumregel: n > 30. Se Example 4.13 i Baron.

Centrala gränsvärdessatsen

- Man kan approximera en binomialfördelning med $N(np, \sqrt{np(1-p)})$ för n>30 pga CLT och faktumet att en binomial är en summa av n lika Bernoulli variabler. Samma gäller för negativa binomialfördelningen (summa av k geometriska variabler), och gamma fördelningen (summa av α exponentiala variabler).
- Låt $X \sim Bin(n,p)$. Vad är P(X = x) ? Obs. P(X = x) = 0 för $N(np, \sqrt{np(1-p)})$. Byt frågan till vad P(x-0.5 < X < x + 0.5) är.
- Låt $X \sim Bin(n,p)$. Vad är P(X < x) ? Obs. $P(X < x) = P(X \le x)$ för $N(np, \sqrt{np(1-p)})$. Byt frågan till vad P(X < x 0.5) är.

Simulering

- **Pseudoslumptalsgenerator**: Datorer kan generera en lång sekvens tal som ser ut som U(0,1) slumptal. Good enough.
- R: runif(1). Matlab: rand. Python: numpy.random.uniform().
- Från $U \sim U(0,1)$ kan vi skapa slumptal från andra fördelningar.
- ► Exempel: **Bernoulli** med sannolikhet *p* att lyckas:

$$X = \begin{cases} 1 & \text{om } U$$

- ▶ R kod Bernoulli: U=runif(1); X=(U<p)
- Exempel: Binomial. Summan av Bernoullis
 - R-kod för Binomial(n,p): U=runif(n); X=sum(U<p)</p>

Simulering från diskret fördelning

Simulering från allmän diskret fördelning, dvs

$$p_i = \mathbf{P}(X = x_i), \quad \sum_{i=1}^{n} p_i = 1$$

- ▶ Dela upp intervallet [0,1] i delintervall:
 - $A_1 = [0, p_1)$
 - $A_2 = [p_1, p_2)$

 - $A_n = [p_{n-1}, 1)$
- ► Slumpa *U* ~ *U*(0,1).
- Om $U \in A_i$ låt $X = x_i$.
- Se Example 5.9 i Baron.

Inversa cdf metoden: Diskreta fallet

Inversa cdf metoden: Kontinuerliga fallet

Theorem. Låt X vara en kontinuerlig variabel med cdf $F_X(x)$ och låt $U = F_X(X)$ vara en ny slumpvariabel. Då gäller att $U \sim U(0,1)$.

▶ Inversa transformationsmetoden: Antag att X har cdf F(X). X kan då simuleras med hjälp av en $U \sim U(0,1)$ variabel, dvs

$$X = F^{-1}(U)$$

Dvs, lös ut X från ekvationen U = F(X).

• Exempel: $X \sim Exp(\lambda)$. Då

$$U = 1 - e^{\lambda X}$$
$$X = -\frac{1}{\lambda} \ln(1 - U)$$

Inversa cdf metoden: Kontinuerliga fallet

Simulering i R

- ▶ *n* slumptal från $N(\mu = 2, \sigma^2 = 3^2)$ simuleras med rnorm(n, mean = 2, sd = 3)
- ▶ n slumptal från $Gamma(\alpha = 2, \lambda = 3)$ simuleras med rgamma(n, shape = 2, rate = 3)
- ▶ Beräkna **pdf:en** i punkten x = 1.5 för $N(\mu = 2, \sigma^2 = 3^2)$ dnorm(x=1.5, mean = 2, sd = 3)
- ▶ Beräkna **cdf:en** i punkten x = 1.5 för $N(\mu = 2, \sigma^2 = 3^2)$ pnorm(x=1.5, mean = 2, sd = 3)

Testar inversa CDF metoden

- Följande funkar (dvs Fx blir likformigt fördelad):
 - x = rgamma(10000, shape = 2, rate = 3)
 - Fx = pgamma(x, shape = 2, rate = 3)
 - hist(Fx,30)

- Följande funkar inte (dvs Fx blir inte likformigt fördelad):
 - x = rgamma(10000, shape = 2, rate = 3)
 - Fx = pgamma(x, shape = 1, rate = 3)
 - hist(Fx,30)

Monte Carlo metoder

- Simulering från fördelningar kan användas för att approximera t ex olika sannolikheter.
- Låt X_1, X_2, \ldots, X_N vara oberoende dragningar från en sannolikhetsfördelning. Vi kan t ex approximera sannolikheten p = P(X < 2) med

$$\hat{\rho} = \hat{\boldsymbol{P}}(X < 2) = \frac{\text{antal av } X_1, X_2, \dots, X_N \text{ som \"{ar mindre \"{an}}} 2}{N}$$

- $\hat{\theta}$ (t ex \hat{p}) är en **estimator** (uppskattning) av kvantiteten θ (t ex p).
- x = rnorm(10000, mean = 1, sd = 2)
 pHat = sum(x<2)/10000</pre>

Monte Carlo metoder

- Men \hat{p} är bara en **skattning** av p. Varierar från stickprov till stickprov.
- Om vi upprepar hela receptet flera gånger, varje gång med ett nytt stickprov av storleken N, kommer vi då att ha rätt i genomsnitt? Dvs, är $\mathbb{E}(\hat{p}) = p$?
- Hur mycket kommer β att variera från stickprov till stickprov? Hur stor är Var(β)?
- Y = antal $X_1, ..., X_N$ som är mindre än 2. Då $Y \sim Bin(N, p)$. Så

$$\mathbb{E}(\hat{\rho}) = \mathbb{E}\left(\frac{Y}{N}\right) = \frac{1}{N}N \cdot \rho = \rho$$

så \hat{p} är en **väntevärdesriktig** (unbiased på engelska) estimator av p.

$$Var(\hat{p}) = Var\left(\frac{Y}{N}\right) = \frac{1}{N^2}Np(1-p) = \frac{p(1-p)}{N}$$

Monte Carlo integration

Mål: $\mathcal{I} = \int_0^1 g(x) dx$ där $0 \le x \le 1$ och $0 \le g(x) \le 1$.

- ▶ Simulera likformigt fördelade tal $U_1, ..., U_N$ och $V_1, ..., V_N$.
- ► Monte Carlo skattning

$$\hat{\mathcal{I}} = \frac{\mathsf{Antal\ dragningar\ d\"{a}r\ } V_i < g(U_i)}{N}$$

Översikt

- ► Stora talen lag
- ► Centrala gränsvärdessatsen
- **▶** Simulering
- ► Monte Carlo metoder