METHOD AND DEVICE FOR BODY RECOGNITION, AND RECORDING MEDIUM

Patent Number:

JP2002040139

Publication date:

2002-02-06

Inventor(s):

MATSUOKA KEIJI; SAGAWA YOSHIE; OKATA KOJI; NOZAWA TOYOJI; SHIRAI

TAKAMASA

Applicant(s):

DENSO CORP

Application

Number:

JP20000229234 20000728

Priority Number(s):

IPC Classification: G01S17/93; B60R21/00; G01S13/93; G08G1/16

EC Classification:

Equivalents:

JP3405327B2

Abstract

PROBLEM TO BE SOLVED: To prevent a body which is not a vehicle from being misrecognized as a vehicle in front.

SOLUTION: The corresponding area of distance measurement data is decided by using a non-vehicle decision map, and when the distance measurement data are within a non-vehicle range, the data are deleted. This map is a three- dimensional map, where the range of light reception intensity for discriminating between a vehicle and a non-vehicle body is set corresponding to the presence area of a reflecting body, when the vehicle width, vehicle height; and vehicle front direction are defined as X, Y. and Z axes respectively and are separated into three areas, i.e., an area nearby the center, an area at its periphery, and the lowest end area in the XY directions, and the correspondence relation between the Z-directional positions and photodetection intensity is set, as shown in (a) to (c) corresponding to the respective areas. The correspondence relation (b) corresponds to the area nearby the center in the XY directions, the correspondence relation (a) corresponds to the area at its periphery, and the correspondence relation (c) corresponds to the lowest end area.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-40139 (P2002-40139A)

(43)公開日 平成14年2月6日(2002.2.6)

(51) Int.Cl.7	識別記号	ΡI	テーマコード(参考)		
G01S 17/93		B60R 21/0	0 624D 5H180		
B60R 21/00	624		624B 5J070		
			626A 5J084		
	6 2 6	•	6 2 6 F		
			6 2 8 F		
	審査部	前求 有 請求項の	数17 OL (全 20 頁) 最終頁に続く		
(21)出願番号	特願2000-229234(P2000-229234)	(71)出願人 00	(71)出題人 000004260		
		树	式会社デンソー		
(22)出顧日	平成12年7月28日(2000.7.28)	爱	知県刈谷市昭和町1丁目1番地		
		(72)発明者 松	·岡 ・		
		***	知県刈谷市昭和町1丁目1番地 株式会		
		社	デンソー内		
		(72)発明者 寒	圳 佳江		
		製	知果刈谷市昭和町1丁目1番地 株式会		
		· 社	:デンソー内		
		(74)代理人 10	00082500		
		弁	理士 足立 勉		

最終頁に続く

(54) 【発明の名称】 物体認識方法及び装置、記録媒体

(57)【要約】

【課題】非車両を誤って前方車両であると認識してしま わないようにする。

【解決手段】非車両判定マップを用いて測距データの対応領域を判定し、測距データが非車両の範囲であればデータ削除を行う。このマップは車幅・車高及び車両前方方向をそれぞれX軸、Y軸及びZ軸とした場合の反射物体の存在領域に対応して、車両と非車両を区別するための受光強度の範囲が設定された3次元マップであり、XY方向については、中心付近の領域、その周囲の領域、最下端領域の3つにわけられ、それら各領域に対応して乙方向位置と受光強度との対応関係が(a)~(c)のように設定されている。XY方向についての中心付近の領域は(b)の対応関係が対応し、その周囲の領域は(a)の対応関係が対応し、最下端領域は(c)の対応関係が対応している。

【特許請求の範囲】

【請求項1】車幅方向及び高さ方向それぞれの所定角度 範囲内に渡り送信波を照射し、その反射波に基づいて車 両前方の物体を認識する物体認識方法であって、

前記送信波を照射する前記2方向の所定角度範囲内において、認識対象とすべき物体が存在する可能性が低い領域に前記送信波を照射する場合には、認識対象とすべき物体が存在する可能性が高い領域に照射する場合に比較して、前記送信波の出力が相対的に小さくなるように、且つその可能性の低さに応じて調整することを特徴とする物体認識方法。

【請求項2】車幅方向及び高さ方向それぞれの所定角度 範囲内に渡り送信波を照射し、その反射波に基づいて車 両前方の物体を認識する物体認識方法であって、

認識対象とすべき物体が存在する可能性が低い領域から 前記反射波が返ってきた場合には、認識対象とすべき物 体が存在する可能性が高い領域から返ってきた場合に比 較して、前記反射波の受信感度が相対的に小さくなるよ うに、且つその可能性の低さに応じて調整することを特 徴とする物体認識方法。

【請求項3】車幅方向及び高さ方向それぞれの所定角度 範囲内に渡り送信波を照射し、その反射波に基づいて車 両前方の物体を認識する物体認識方法であって、

認識対象とすべき物体が存在する可能性の高低を前記反射波が返ってきた領域に対して設定しておくと共に、各領域において認識対象とすべき物体からの反射波であれば取り得る受信信号強度を設定しておき、

前記反射波が返ってきた領域及び前記反射波の受信信号 強度に基づいて、前記認識対象物体であるか否かを判定 することを特徴とする物体認識方法。

【請求項4】車幅方向及び高さ方向それぞれの所定角度 範囲内に渡り送信波を照射し、その反射波に基づいて車 両前方の物体を認識すると共に、認識した物体が認識対 象としている所定の物体である確率も判定する物体認識 方法であって、

認識対象とすべき物体が存在する可能性の高低を前記反射波が返ってきた領域に対して設定しておくと共に、各領域において認識対象とすべき物体からの反射波であれば取り得る受信信号強度を設定しておき、

前記反射波が返ってきた領域及び前記反射波の受信信号 強度に基づいて、前記認識対象物体である確率を判定す ることを特徴とする物体認識方法。

【請求項5】車幅方向及び高さ方向それぞれの所定角度 範囲内に渡り送信波を照射し、その反射波に基づいて車 両前方の物体を認識する物体認識方法であって、

前記反射物体が一時的に検出できなくなった場合の対処 として、検出できなくなった時点から所定時間は、検出 できていた際の状態を保持して存在していると仮定した 補完物体を作成するが、前記反射波に基づいて得られる 反射物体の存在領域が認識対象としている所定の車両で は存在する可能性があり得にくい領域の場合、前記補完 物体を作成しないことを特徴とする物体認識方法。

【請求項6】車幅方向及び高さ方向それぞれの所定角度 範囲内に渡り送信波を照射し、その反射波に基づいて反 射物体までの距離と前記車幅方向及び高さ方向の2方向 の角度とを検出するレーダ手段と、

該レーダ手段による検出結果である距離及び前記2方向 の角度に基づき、自車前方の物体を認識する認識手段と を備えた物体認識装置であって、

前記レーダ手段は、

前記送信波を照射する前記2方向の所定角度範囲内において、認識対象とすべき物体が存在する可能性が低い領域では、認識対象とすべき物体が存在する可能性が高い領域に比較して前記送信波の出力が相対的に小さくなるように、その可能性の低さに応じて調整することを特徴とする物体認識装置。

【請求項7】車幅方向及び高さ方向それぞれの所定角度 範囲内に渡り送信波を照射し、その反射波に基づいて反 射物体までの距離と前記車幅方向及び高さ方向の2方向 の角度とを検出するレーダ手段と、

該レーダ手段による検出結果である距離及び前記2方向の角度に基づき、自車前方の物体を認識する認識手段と を備えた物体認識装置であって、

前記レーダ手段は、

認識対象とすべき物体が存在する可能性が低い領域から 前記反射波が返ってきた場合には、認識対象とすべき物 体が存在する可能性が高い領域から返ってきた場合に比 較して、前記反射波の受信感度が相対的に小さくなるよ うに、且つその可能性の低さに応じて調整することを特 徴とする物体認識装置。

【請求項8】請求項7記載の物体認識装置において、 前記受信感度の調整は、前記反射波による受信信号の増 幅度合いを調整して実現することを特徴とする物体認識 装置。

【請求項9】車幅方向及び高さ方向それぞれの所定角度 範囲内に渡り送信波を照射し、その反射波に基づいて反 射物体までの距離と前記車幅方向及び高さ方向の2方向 の角度とを検出するレーダ手段と、

該レーダ手段による検出結果である距離及び前記2方向の角度に基づき、自車前方の物体を認識する認識手段と を備えた物体認識装置であって、

前記認識手段は、

認識対象とすべき物体が存在する可能性の高低を前記反射波が返ってきた領域に対して設定しておくと共に、各領域において認識対象とすべき物体からの反射波であれば取り得る受信信号強度を設定しておき、

前記レーダ手段による検出結果としての前記反射波が返ってきた領域及び前記反射波の受信信号強度に基づいて、前記認識対象物体であるか否かを判定することを特徴とする物体認識装置。

【請求項10】車幅方向及び高さ方向それぞれの所定角度範囲内に渡り送信波を照射し、その反射波に基づいて反射物体までの距離と前記車幅方向及び高さ方向の2方向の角度とを検出するレーダ手段と、

該レーダ手段による検出結果である距離及び前記2方向 の角度に基づき、自車前方の物体を認識すると共に、車 両である確率も判定する認識手段とを備えた物体認識装 置であって、前記認識手段は、

認識対象とすべき物体が存在する可能性の高低を前記反射波が返ってきた領域に対して設定しておくと共に、各領域において認識対象とすべき物体からの反射波であれば取り得る受信信号強度を設定しておき、

前記レーダ手段による検出結果としての前記反射波が返ってきた領域及び前記反射波の受信信号強度に基づいて、前記認識対象物体である確率を判定することを特徴とする物体認識装置。

【請求項11】車幅方向及び高さ方向それぞれの所定角度範囲内に渡り送信波を照射し、その反射波に基づいて反射物体までの距離と前記車幅方向及び高さ方向の2方向の角度とを検出するレーダ手段と、

該レーダ手段による検出結果である距離及び前記2方向の角度に基づき、自車前方の物体を認識する認識手段と を備えた物体認識装置であって、

前記認識手段は、

前記レーダ手段にて検出した反射物体が一時的に検出できなくなった場合の対処として、検出できなくなった時点から所定時間は、検出できていた際の状態を保持して存在していると仮定した補完物体を作成するが、前記反射波に基づいて得られる反射物体の存在領域が認識対象とすべき物体では存在する可能性が低い領域の場合、前記補完物体を作成しないことを特徴とする物体認識装置。

【請求項12】請求項7~11のいずれか記載の物体認識装置において、

前記領域は、前記検出結果である距離及び前記2方向の 角度から定まる3次元の領域であることを特徴とする物 体認識装置

【請求項13】請求項6~12のいずれか記載の物体認識装置において、

さらに、自車前方の道路形状を認識する道路形状認識手段を備え、

前記認識対象とすべき物体が存在する可能性の高低を区別する領域が、それぞれ前記道路形状認識手段にて認識された車両前方の道路形状に応じて設定されていることを特徴とする物体認識装置。

【請求項14】請求項13記載の物体認識装置において、

前記道路形状認識手段は、

自車両の旋回状態に基づいて前記道路形状を認識することを特徴とする物体認識装置。

【請求項15】請求項13記載の物体認識装置において.

前記道路形状認識手段は、

道路形状を認識するのに有効な物体に対する前記レーダ 手段による検出結果に基づいて前記道路形状を認識する ことを特徴とする物体認識装置。

【請求項16】請求項13記載の物体認識装置において、

前記道路形状認識手段は、

道路形状を判定可能な情報を含む地図情報を記憶していると共に、現在地を検出可能であり、その検出した現在地に対応する地図情報に基づいて前記道路形状を認識することを特徴とする物体認識装置。

【請求項17】請求項6~16のいずれか記載の物体認識装置の認識手段としてコンピュータシステムを機能させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車幅方向及び高さ 方向それぞれの所定角度範囲内に渡り送信波を照射し、 その反射波に基づいて自車両の前方の物体を認識する技 術に関する。

[0002]

【従来の技術】従来より、例えば光波、ミリ波などの送 信波を照射し、その反射波を検出することによって、前 方の物体を認識する物体認識装置が考えられている。こ の種の装置としては、例えば、前方車両を検出して警報 を発生する装置や、先行車両と所定の車間距離を保持す るように車速を制御する装置などに適用され、それらの 制御対象としての前方車両の認識に利用されている。こ のような認識に際しては、前方車両を車幅方向及び高さ 方向それぞれの所定角度範囲内に渡り送信波を照射し、 その反射波に基づいて前方車両を3次元的に認識する手 法が考えられている。この手法であれば、通常の車両で あれば存在し得ないような高さにおいて反射物体が存在 している場合に、それを車両ではないと認識することが 考えられる。これによって、例えば白線や水しぶき(ス プラッシュ)、砂塵あるいは排気煙など路面上あるいは 路面からあまり高くない位置で検知される物体を前方車 両と誤って認識しないようにすることができる。

[0003]

【発明が解決しようとする課題】しかしながら、この手法の場合に得られる高さとは、路面を基準とした高さではなく認識装置の取り付け位置を基準としている。そのため、認識装置を取り付けた車両にピッチングが生じた場合には、上述の「通常の車両であれば存在し得ないような高さ」に前方の車両が位置してしまうことも考えられ、車両として認識されなくなってしまう。このような不都合を避けるために、例えば停止物体であることを条

件として車両でないと判定することも考えられる。しかし、上述した白線や自車の至近距離に浮遊する水しぶき(スプラッシュ)、砂塵あるいは排気煙、さらには連続して設置されている路面上のデリニエータ(通称「キャッツアイ」)などは、自車との相対的な位置が変わらないため、しばしば移動物体として検知されてしまうことがある。そのため、車両であると誤認識し、誤った車間制御や車間警報などを行ってしまうことになる。

【0004】そこで本発明は、このような非車両を誤って前方に存在する車両であると認識してしまわないようにすることを目的とする。

[0005]

【課題を解決するための手段】請求項6に示す発明は、 請求項1に示した物体認識方法を実現するための装置と しての一例であり、この請求項6記載の物体認識装置に よれば、レーダ手段にて車幅方向及び高さ方向それぞれ の所定角度範囲内に渡り送信波を照射し、その反射波に 基づいて検出した反射物体までの距離と車幅方向及び高 さ方向の2方向の角度に基づき、認識手段が自車前方の 物体を認識する。ここで、レーダ手段は、送信波を照射 する2方向の所定角度範囲内において、認識対象とすべ き物体が存在する可能性が低い領域では、認識対象とす べき物体が存在する可能性が高い領域に比較して送信波 の出力が相対的に小さくなるように、その可能性の低さ に応じて調整して送信波を照射する。なお、認識対象物 体としては例えば車両が挙げられ、認識対象物体として 車両を想定した説明が理解が容易であるので、適宜、認 識対象物体の例としての車両を用いて以下の説明を行う こととする。

【0006】このような送信波の出力調整をすることの意図は、上述した路面上の白線やスプラッシュなどの非車両と車両とを区別して認識し易くするためであるが、非車両と車両とでは反射強度に違いがあり、さらにその存在位置に違いがあるという知見に基づいた工夫である。すなわち、通常の車両では存在する可能性があり得にくい領域において出力を小さくすれば、それだけ反射強度も小さくなる。これによって、送信波の出力が同じであっても元々車両よりも反射強度が小さくなる非車両については、出力が小さくなることでさらに反射強度が小さく得られることとなる。したがって、反射強度に基づいて車両と非車両とを区別して認識し易くなり、路面上の白線やスプラッシュなどを誤って前方に存在する車両であると認識してしまう可能性が低くなる。

【0007】なお、「(認識対象物体としての)車両では存在する可能性が低い領域」においても車両が存在する可能性は0ではない。上述したように自車両のピッチングによってその「存在する可能性が低い領域」において前方車両からの反射波を得ることもあり得るため、その領域における車両は認識したい。したがって、送信波出力を相対的に小さくする場合には、車両であれば認識

できるような出力低下度合いにしておくことが好ましい。つまり、出力を例えば通常の場合の80%や50%程度にとどめておき、0%にはしないということである。

【0008】また、「送信波の出力が相対的に小さくな るように、その可能性の低さに応じて調整」する場合、 複数段階に小さくしてもよい。例えば図5に示すよう に、路面付近の領域においては出力を通常の場合の50 %にし、上端付近や左右端付近の領域においては出力を 通常の場合の80%にする、といったことである。な お、ここで用いた数値は一例であり、何ら限定されるも のではないが、路面付近の領域の方を上端あるいは左右 端付近の領域よりも小さな出力としたのは、次の理由か らである。つまり、上端付近では例えばトンネルの天井 や看板などを検知する可能性があり、左右端においては ガードレールや植え込みなどを検知する可能性がある。 一方、路面付近においては、自車両から比較的近距離に おいて発生するスプラッシュや砂塵、あるいは白線など を検知する可能性がある。したがって、これらを考慮す ると、路面付近への送信波の出力をより小さくし、得ら れる反射強度をより小さくした方がよいと考えられるか らである。

【0009】請求項6の場合には、送信波の出力を調整することで対処したが、請求項2に示す物体認識方法を実現するための装置としての一例である請求項7の場合のように、レーダ手段の受信感度を調整することで対処してもよい。つまり、認識対象とすべき物体が存在する可能性が低い領域から反射波が返ってきた場合には、認識対象とすべき物体が存在する可能性が高い領域から返ってきた場合に比較して、反射波の受信感度が相対的に小さくなるように、且つその可能性の低さに応じて調整するのである。この受信感度の調整は、例えば請求項8に示すように、反射波による受信信号の増幅度合いを調整して実現することが考えられる。

【0010】基本的な考え方は請求項6の場合と同じで あり、認識手段へ検出結果として出力される時点では、 (認識対象物体としての)車両と非車両とが区別して認 識し易い信号強度にされていることとなる。但し、本請 求項7の場合には、車両が存在する可能性の高低を決め る際の領域として、請求項6と同じように、送信波を照 射する2方向の所定角度範囲内を基準とした反射物体の 「2次元位置」に基づいて特定してもよいし、さらには 反射物体までの距離を加えた「3次元位置」に基づいて 特定してもよい(請求項12参照)。 これは、請求項6 の場合には送信波の出力調整であったため、その調整対 象となる領域は、送信波の照射角度でしか特定できず、 車幅方向及び高さ方向それぞれの角度による2次元的な 特定しかできない。それに対して、受信感度を調整する 場合は、反射波に基づいて反射物体までの距離と車幅方 向及び高さ方向の2方向の角度を検出できるため、3次

元的に位置を特定できるためである。もちろん、2次元的な位置を基準として受信感度を調整してもよいが、3次元的な位置による「車両では存在する可能性が低い領域」に応じて受信感度を調整することで、より適切な認識を実現できる。つまり、受信部における反射波の受信信号は一般的に微弱であるため、増幅が一般的に行われる。そして、検出した物体位置が近い場合には相対的に弱い増幅を行うことも一般的に行われている。従って、3次元的な位置に基づいた受信感度調整を行うことが好ましいのである。

【0011】ところで、非車両と車両とでは反射強度に違いがあるという知見を説明したが、この知見に基づけば、請求項3に示す物体認識方法を実現するための装置としての一例である請求項9に示すように、レーグ手段において出力調整や受信感度調整を行わずに、認識手段において、レーグ手段による検出結果としての反射波が返ってきた領域及び反射波による受信信号強度に基づいて認識対象物体(例えば車両)であるか否かを判定してもよい。例えば、反射波が返ってきた領域が車両の存在する可能性が大きな領域であれば、信号強度が相対的に小さくても車両と判定することができる。逆に、反射波が返ってきた領域が車両の存在する可能性が小さな領域であれば、信号強度が相対的に大きくない限り車両と判定しない、といった適切な判定が可能となる。

【0012】また、認識対象物体でないとの判定自体は行わず、請求項4に示す物体認識方法を実現するための装置としての一例である請求項10に示すように認識対象物体である確率を低くしてもよい。この場合は、認識手段が認識対象物体である確率も判定することを前提としており、レーダ手段による検出結果としての反射波が返ってきた領域及び反射波による受信信号強度に基づいて認識対象物体(例えば車両)である確率を判定するのである。この場合には、例えば本物体認識装置を用いて車間制御の対象となる先行車を選択するシステムを構築する場合において、その(認識対象物体としての)車両である確率に基づいて先行車選択を行うことが考えられる。つまり、車両である確率が小さければ先行車として選択される可能性が低くなり、結果として誤った車間制御が実行されることを防止できる。

【0013】また、レーダ手段にて検出した反射物体が一時的に検出できなくなった場合の対処として、検出できなくなった時点から所定時間は、検出できていた際の状態を保持して存在していると仮定した補完物体を作成することを前提とする場合には、請求項5に示す物体認識方法を実現するための装置としての一例である請求項11に示すように、その補完物体の存在領域が認識対象物体では存在する可能性が低い領域の場合、補完物体を作成しないようにすることも考えられる。補完物体を作成することで一時的に前方物体を見失った場合のフォローができるが、認識対象物体でない物体についても補完

物体を作成してしまうことは誤認識を助長することにな るため、そのような可能性が大きい場合には作成しない ようにすなお、請求項7の説明に際して、車両が存在す る可能性の高低を決める際の領域として、物体の「2次 元位置」に基づいて特定してもよいし、「3次元位置」 に基づいて特定してもよいことを述べた。これは、請求 項8~11の場合でも同様である(請求項12参照)。 【0014】ところで、これまで認識対象物体では存在 する可能性が低い領域を考慮して出力調整や受信感度調 整、あるいは補完物体の作成有無などを判定したが、こ の領域を固定にするのではなく、請求項13に示すよう に、自車前方の道路形状に応じて設定してもよい。例え ば前方の道路がカーブしている場合には、通常の状態で もカーブの内側に認識対象物体としての車両が存在し得 るため、請求項6のように出力調整するのであれば、カ ーブしていない場合に比べて、カーブ内側方向への出力 は相対的に大きくし、逆にカーブ外側方向への出力を相 対的に小さくする。また、前方の道路が上り坂になって いる場合には通常の状態でも上方向に車両が存在するた め、上り坂になっていない場合に比べて、上方向への出 力は相対的に大きくすることが考えられる。このように 道路形状に基づいて車両の存在する可能性がある領域を 把握することで、より適切な前方車両の認識が実現でき る。請求項7~12の場合も同様に、車両前方の道路形 状に応じて可能性の高低を区別する領域を設定すること が考えられる。

【0015】なお、道路形状認識手段としては、例えば請求項14に示すように、自車両の旋回状態に基づいて道路形状を認識するものが考えられる。ステアリングセンサから得た操舵角やヨーレートセンサから得た車両旋回角などに基づいて推定認識する。また、請求項15に示すように、道路形状を認識するのに有効な物体に対するレーダ手段による検出結果に基づいて道路形状を認識してもよい。例えば路側に複数存在するデリニエータを検知すれば道路形状を認識できる。さらには、請求項16に示すように、道路形状を判定可能な情報を含む地図情報を記憶しておき、検出した現在地に対応する地図情報を記憶しておき、検出した現在地に対応する地図情報を記憶しておき、検出した現在地に対応する地図情報に基づいて道路形状を認識することも考えられる。いわゆるナビゲーションシステムを搭載している車両であれば、そのシステムからこれらの情報を得ることができ、道路形状の認識も可能である。

【0016】なお、請求項17に示すように、物体認識 装置の認識手段をコンピュータシステムにて実現する機能は、例えば、コンピュータシステム側で起動するプログラムとして備えることができる。このようなプログラムの場合、例えば、フロッピー(登録商標)ディスク、光磁気ディスク、CD-ROM、ハードディスク等のコンピュータ読み取り可能な記録媒体に記録し、必要に応じてコンピュータシステムにロードして起動することにより用いることができる。この他、ROMやバックアッ

プRAMをコンピュータ読み取り可能な記録媒体として前記プログラムを記録しておき、このROMあるいはバックアップRAMをコンピュータシステムに組み込んで用いても良い。

[0017]

【発明の実施の形態】次に、本発明が適用された車両制御装置1について、図面と共に説明する。この車両制御装置は、自動車に搭載され、警報すべき領域に障害物が所定の状況で存在する場合に警報を出力したり、前車(先行車両)に合わせて車速を制御したりする装置である。

【0018】図1は、そのシステムブロック図である。 車両制御装置は認識・車間制御ECU3を中心に構成されている。認識・車間制御ECU3はマイクロコンピュータを主な構成として入出力インターフェース(I/O)および各種の駆動回路や検出回路を備えている。これらのハード構成は一般的なものであるので詳細な説明は省略する。

【0019】認識・車間制御ECU3は、レーザレーダ センサ5、車速センサ7、ブレーキスイッチ9、スロッ トル開度センサ11から各々所定の検出データを入力し ており、警報音発生器13、距離表示器15、センサ異 常表示器17、ブレーキ駆動器19、スロットル駆動器 21および自動変速機制御器23に所定の駆動信号を出 力している。また認識・車間制御ECU3には、警報音 量を設定する警報音量設定器24、警報判定処理におけ る感度を設定する警報感度設定器25、クルーズコント ロールスイッチ26、図示しないステアリングホイール の操作量を検出するステアリングセンサ27、ヨーレー トセンサ28及びワイパスイッチ30が接続されてい る。また認識・車間制御ECU3は、電源スイッチ29 を備え、その「オン」により、所定の処理を開始する。 【0020】ここで、レーザレーダセンサ5は、図2に 示すように、発光部、受光部及びレーザレーダCPU7 0などを主要部として次のように構成されている。 発光 部は、パルス状のレーザ光を、発光レンズ71及びスキ ャナ72を介して放射する半導体レーザダイオード(以 下、単にレーザダイオードと記載)75を備えている。 そして、レーザダイオードフラは、レーザダイオード駆 動回路76を介してレーザレーダCPU70に接続さ れ、レーザレーダCPU70からの駆動信号によりレー ザ光を放射(発光)する。また、スキャナ72にはポリ ゴンミラー73が鉛直軸を中心に回転可能に設けられ、 レーザレーダCPU70からの駆動信号がモータ駆動部 74を介して入力されると、このポリゴンミラー73は 図示しないモータの駆動力により回転する。なお、この モータの回転位置は、モータ回転位置センサ78によっ て検出され、レーザレーダCPU70に出力される。

【0021】本実施形態のポリゴンミラー73は、面倒れ角が異なる6つのミラーを備えているため、車幅方向

及び車高方向それぞれの所定角度の範囲で不連続にレーザ光を掃引照射(スキャン)して出力する。このようにレーザ光を2次元的に走査するのであるが、その走査パターンを図3(a)を参照して説明する。なお、図3(a)において、出射されたレーザビームのパターン92は測定エリア91内の右端と左端に出射された場合のみを示しており、途中は省略している。また、出射レーザビームパターン92は、図3(a)では一例として略円形のものを示しているが、この形に限られるものではなく楕円形、長方形等でもよい。さらに、レーザ光を用いるものの他に、ミリ波等の電波や超音波等を用いるものであってもよい。また、スキャン方式にこだわる必要はなく、距離以外に2方位を測定できる方式であればよい。

【0022】図3(a)に示すように、測定エリアの中 心方向を2軸としたとき、これに垂直なXY平面内の所 定エリアを順次走査する。本実施形態では、高さ方向で あるY軸を基準方向、車幅方向であるX軸を走査方向と し、スキャンエリアは、X軸方向にはO. 15deg× 105点=16degであり、Y軸方向にはO.7de g×6ライン=4degである。また、スキャン方向は X軸方向については図3(a)において左から右へ、Y 軸方向については図3(a)において上から下へであ る。具体的には、まずY軸方向に見た最上部に位置する 第1走査ラインについてX軸方向にO. 15° おきにス キャンする。これで1走査ライン分の検出がなされるの で、次に、Y軸方向に見た次の位置にある第2走査ライ ンにおいても同様にX軸方向にO. 15° おきにスキャ ンする。このようにして第6走査ラインまで同様のスキ ャンを繰り返す。したがって、左上から右下に向かって 順に走査がされ、105点×6ライン=630点分のデ ータが得られることとなる。

【0023】このような2次元的なスキャンにより、走査方向を示すスキャン角度 θ x, θ y と測距された距離 r とが得られる。なお、2つのスキャン角度 θ x, θ y は、それぞれ出射されたレーザビームとX Z 平面に投影した線とZ 軸との角度を横スキャン角 θ x と定義する。

【0024】一方、受光部は、図示しない物体に反射されたレーザ光を受光レンズ81を介して受光し、その強度に対応する電圧を出力する受光素子83とを備えている。そして、この受光素子83の出力電圧は、可変増幅器85に入力される。可変増幅器85は入力電圧を増幅してコンパレータ87に出力するのであるが、この増幅率は時間の経過と共に増大するよう制御される。また、この増幅率をどのように変化させるかは、レーザレーダCPU70によって適宜変更させることができるように構成されている。コンパレータ87は可変増幅器85の出力電圧を基準電圧と比較し、出力電圧>基準電圧とな

ったとき所定の受光信号を時間計測回路89へ出力す る。

【0025】時間計測回路89には、レーザレーダCP U70からレーザダイオード駆動回路76へ出力される 駆動信号も入力され、図3(c)に示すように、上記駆 動信号をスタートパルスPA、上記受光信号をストップ パルスPBとし、2つのパルスPA, PB間の位相差 (すなわちレーザ光を出射した時刻T0と反射光を受信 した時刻T1との差ΔT)を2進デジタル信号に符号化 する。また、ストップパルスPBのパルス幅も時間とし て計測する。そして、それらの値を2進デジタル信号に 符号化してレーザレーダCPU70へ出力する。レーザ レーダCPU70は、時間計測回路89から入力された 2つのパルスPA, PB間の入力時間差から物体までの 距離を算出し、その距離及び対応するスキャン角度 θ x, θ yを基にして位置データを作成する。つまり、レ ーザレーダ中心を原点(0,0,0)とし、車幅方向を X軸、車高方向をY軸、車両前方方向をZ軸とするXY Z直交座標に変換する。そして、この(X, Y, Z)デ ータ及び受光信号強度データ(ストップパルスPBのパ ルス幅が相当する)を測距データとして認識・車間制御 ECU3へ出力する。

【0026】なお、本実施形態の可変増幅器85はバイ ポーラトランジスタを用いて構成されており、次のよう な特性を持っている。つまり、受光信号の強度が小さい 場合には図2(b)に示すように飽和しないが、受光信 号の強度が大きくなると図2(c)に示すようにアンプ 出力が飽和してしまう(飽和電圧Vsat)。但し、二点 鎖線で示すように、少数キャリヤ蓄積効果により、受光 信号強度が大きければ大きいほど信号パルスの立ち下が りが遅れる特性を持っている。また、アンプ出力である 信号パルスが所定のしきい値電圧よりも大きくなってい る時間を示すパルス幅は、受光信号強度と相関関係があ り、受光信号強度の対数に略比例している。そのため、 たとえ図2(c)のようにアンプ出力が飽和して受光信 号強度が直接得られなくても、パルス幅を基にし、上述 の相関関係を参照すれば、受光信号強度を推定すること ができる。

【0027】認識・車間制御ECU3は、このように構成されていることにより、レーザレーダセンサ5からの測距データを基にして物体を認識し、その認識物体から得た先行車の状況に合わせて、ブレーキ駆動器19、スロットル駆動器21および自動変速機制御器23に駆動信号を出力することにより車速を制御する、いわゆる車間制御を実施している。また、認識物体が所定の警報領域に所定時間存在した場合等に警報する警報判定処理も同時に実施している。この場合の物体としては、自車の前方を走行する前車やまたは停止している前車等が該当する。

【0028】続いて認識・車間制御ECU3の内部構成

について制御ブロックとして説明する。レーザレーダセ ンサ5から出力された測距データは物体認識ブロック4 3に送られる。物体認識ブロック43では、測距データ として得た3次元位置データに基づいて、物体の中心位 置(X,Y,Z)、大きさ(W,D,H)を求めると共 に、中心位置(X, Y, Z)の時間的変化に基づいて、 自車位置を基準とする前車等の障害物の相対速度(V x、Vy、Vz)を求める。さらに物体認識プロック4 3では、車速センサ7の検出値に基づいて車速演算ブロ ック47から出力される車速(自車速)と上記求められ た相対速度(Vx, Vy, Vz)とから物体が停止物体 であるか移動物体であるかの認識種別が求められ、この 認識種別と物体の中心位置とに基づいて自車両の走行に 影響する物体が選択され、その距離が距離表示器15に より表示される。なお、物体の大きさを示す(W,D, H)は、それぞれ(横幅, 奥行き, 高さ)である。

【0029】また、ステアリングセンサ27からの信号に基づいて操舵角演算ブロック49にて操舵角が求められ、ヨーレートセンサ28からの信号に基づいてヨーレート演算ブロック51にてヨーレートが演算される。そしてカーブ半径(曲率半径)算出ブロック57では、車速演算ブロック47からの車速と操舵角演算ブロック49からの操舵角とヨーレート演算ブロック51からのヨーレートとに基づいて、カーブ半径(曲率半径)Rを算出する。そして物体認識ブロック43では、このカーブ半径Rおよび中心位置座標(X,Z)などに基づいて車両形状確率や自車線確率を算出する。この車両形状確率や自車線確率については後述する。

【0030】このようなデータを持つ物体のモデルを「物標モデル」と呼ぶこととする。この物体認識ブロック43にて求めたデータが異常な範囲の値がどうかがセンサ異常検出ブロック44にて検出され、異常な範囲の値である場合には、センサ異常表示器17にその旨の表示がなされる。

【0031】一方、先行車判定ブロック53では、物体 認識ブロック43から得た各種データに基づいて先行車 を選択し、その先行車に対する距離Zおよび相対速度V zを求める。そして、車間制御部及び警報判定部ブロッ ク55が、この先行車との距離 Z、相対速度 V z、クル ーズコントロールスイッチ26の設定状態およびブレー キスイッチ9の踏み込み状態、スロットル開度センサ1 1からの開度および警報感度設定器25による感度設定 値に基づいて、警報判定ならば警報するか否かを判定 し、クルーズ判定ならば車速制御の内容を決定する。そ の結果を、警報が必要ならば、警報発生信号を警報音発 生器13に出力する。また、クルーズ判定ならば、自動 変速機制御器23、ブレーキ駆動器19およびスロット ル駆動器21に制御信号を出力して、必要な制御を実施 する。そして、これらの制御実行時には、距離表示器1 5に対して必要な表示信号を出力して、状況をドライバ 一に告知している。

【0032】このような車間制御や警報判定に際しては、その前提となる物体認識、さらに詳しく言えば、ここでの認識対象物体である車両の認識が適切に行われていることが重要である。そこで、その車両認識を適切に行うための工夫について、いくつかの態様を説明する。【0033】[態様1]本態様1は、レーザレーダセンサ5における測距データを得る時点において工夫するものであり、具体的には、レーザダイオード75からの出力調整によって対応するものである。

【0034】図4はレーザレーダセンサ5にて実行され る処理を示すフローチャートであり、モータ回転位置セ ンサ78からの出力に基づいてモータ回転位置を検出し (S11)、その回転位置に対応するレーザダイオード 75からのレーザ光の照射方向を検出する(S12)。 そして、レーザダイオードフラを発光させてレーザ光を 出力する際の出力レベルを調整した後(S13)、レー ザダイオード駆動回路76を制御して、レーザダイオー ド75を発光させる(S14)。その発光に対応し、図 示しない前方物体に反射されたレーザ光を受光素子83 にて受光して電圧に変換し、その変換した電圧を可変増 幅器85にて増幅する(S15)。そして、コンパレー タ87を介して出力された上述のスタートパルスPA及 びストップパルスPBに基づき、時間計測回路89にて 反射時間を計測し(S16)、さらにストップパルスP Bのパルス幅に基づいて受光信号強度を検出する(S1 7)。そして、上述したように、直交座標に変換した位 置データ及び反射強度(受光信号強度)を測距データと して認識・車間制御ECU3へ出力する(S18)。

【0035】このように、従来であれば、スキャンエリア内のいずれの方向においても同じ出力レベルでレーザ光を照射していたが、本態様では、照射方向に応じて出力レベルを変更するようにした(S11~S13)。S13における出力調整は、図5に示すLD発光出力調整マップを参照して行う。

【0036】このマップは、車幅方向及び車高方向をそれぞれX軸及びY軸とした場合のレーザ光の照射方向範囲内において、どの方向領域を何%の出力レベルでレーザ光を発光出力させるかを示すものである。具体的には、照射方向範囲の中心付近は100%の出力レベル領域であり、その周囲に80%の出力レベル領域が設定されている。そのため、照射方向範囲の上端領域及び左右端領域は80%の出力レベルとなっている。また、下方領域に関しては、最下端に50%の出力レベル領域があり、下方から上方に向かって、50%→80%→100%→80%という領域設定になっている。

【0037】このような領域設定にする意図は、認識対象としている物体、つまりここでは前方に存在する車両では存在する可能性の高低に応じ、可能性が低い領域方向へは、送信波の出力が相対的に小さくなるようにして

いる。例えば路面上の白線や自車の至近距離に浮遊する 水しぶきなどは、図5で言えば最下端領域に存在すると 考えられるため、その部分は50%にする。また、上端 付近では例えばトンネルの天井や看板などを検知する可 能性があり、左右端においてはガードレールや植え込み などを検知する可能性があるため、これらの領域では出 カレベルを80%としている。

【0038】このようにすることで、当然ながら反射強度も小さくなる。出力レベルが同じであっても元々車両よりも反射強度が小さくなるこれら白線などについては、発光出力を小さくなることでさらに反射強度が小さく得られることとなり、この反射強度に基づいて車両とを区別して認識し易くなる。なお、この「車両と非車両との区別」に関しては、例えば区別反射強度が小さくなってコンパレータ87の基準電圧自体を上回らなくなり、時間計測回路89にストップパルスPB自体が出力されないことで区別可能となる状態が得られてもよいし、ストップパルスPB自体は出力されるが、そのパルス幅(受光信号強度)が小さいため、認識・車間制御ECU3において受光信号強度が所定のしきい値未満のデータは削除することで区別可能となる状態が得られても良い。

【0039】なお、「車両では存在する可能性が小さな領域」においても車両が存在する可能性は0ではない。例えば自車両のピッチングによってその「可能性が小さな領域」において前方車両からの反射波を得ることもあり得るため、その領域における車両は認識したい。したがって、発光出力を相対的に小さくするとはいっても、車両であれば認識できるような出力低下度合いにしておくために、80%や50%といった値を採用し、0%にはしない。

【0040】本態様1は、このようにレーザレーダセンサ5から認識・車間制御ECU3へ出力されるデータの時点で、車両と非車両とが区別可能な状態にされていることが特徴であるが、認識・車間制御ECU3の物体認識ブロック43において実行される物体認識にかかる動作についても、説明をしておく。

【0041】図6(a)のフローチャートに物体認識に係るメイン処理を示す。図6(a)の最初のステップであるS110では、レーザレーダセンサ5から1スキャン分の測距データの読み込みを行う。レーザレーダセンサ5でのスキャン周期は100msecとし、100msec毎にデータを取り込むこととする。

【0042】続くS120では、データのセグメント化を行う。上述したように、測距データとして得た3次元位置データをグルーピングしてセグメントを形成する。このセグメント化においては、所定の接続条件(一体化条件)に合致するデータ同士を集めて1つのプリセグメントデータを生成し、さらにそのプリセグメントデータ同士の内で所定の接続条件(一体化条件)に合致するも

のを集めて1つの本セグメントデータとするというもの である。プリセグメントデータは、例えば点認識された データ同士のX軸方向の距離△Xが0.2m以下、Z軸 方向の距離△Zが2m以下という2条件を共に満たす場 合に、その点集合を一体化して求める。本実施形態で は。Y軸方向に6つの走査ラインがあるが、プリセグメ ント化によって各ライン毎にプリセグメントデータが生 成されている。そのため、本セグメント化では、3次元 (X, Y, Z)空間で近接するプリセグメントデータ同 士を一体化(本セグメント化)する。本セグメントデー タは、X軸,Y軸及びZ軸にそれぞれ平行な3辺を持つ 直方体の領域であり、その中心座標(X,Y,Z)と大 きさを示すための3辺の長さ(W, H, D)をデータ内 容とする。なお、特に断らない限り、本セグメント(デ ータ) のことを単にセグメント (データ) と称すること とする。

【0043】続くS130では、認識対象の個々の車両 などを物標化する物標化処理を行う。物標とは、一まと まりのセグメントに対して作成される物体のモデルであ る。この物標化処理を図6(b)のフローチャートなど を参照して説明する。物標化処理においてはまず、物標 モデルの対応セグメントを検索する(S131)。これ は、前回までに得た物標モデルが、今回検出したセグメ ントの内のいずれと一致するかを検索する処理であり、 物標に対応するセグメントとは次のように定義する。ま ず、物標が前回処理時の位置から前回処理時における相 対速度で移動したと仮定した場合、現在物標が存在する であろう推定位置を算出する。続いて、その推定位置の 周囲に、X軸、Y軸、Z軸方向それぞれに所定量の幅を 有する推定移動範囲を設定する。そして、その推定移動 範囲に少なくとも一部が含まれるセグメントを対応する セグメントとする。

【〇〇44】続くS132では、物標のデータ更新処理を実行する。この処理は、対応するセグメントがあれば物標モデルの過去データの更新及び現在位置データの更新を行うもので、更新されるデータは、中心座標(X、Y、Z)、幅W、高さH、奥行きD、X軸方向、Y軸方向、Z軸方向の相対速度(Vx、Vy、Vz)、中心座標(X、Y、Z)の過去4回分のデータ、自車線確率などである。なお、対応するセグメントがない場合は、物標モデルのデータ更新は行わず、新規物標モデルの登録を行う

【0045】その後、車両形状確率の算出(S133) 及び自車線確率の算出(S134)を行う。

●車両形状確率の算出

路側にデリニエータが狭い間隔で多数設置されているような場合やガードレールを検出しているような場合には、これらの停止物を移動物であると誤認識してしまう可能性がある。これは、同一位置に常に何かを検出することにより、その位置に自車と同速度で走行している車

両が存在すると判断してしまうからである。そこで、このように移動物であると誤認識した物標が先行車判定ブロック53において誤って先行車と判断されてしまわないように、この車両形状確率に基づくことで走行車両でないと判断できるようにする。例えば先行車判定ブロック53においてこの車両形状確率が50%未満の場合に路側物であると判定する。

【0046】車両形状確率の取り得る範囲は0~100%であり、瞬間的なノイズやバラツキによる影響を低減するために、下式のように加重平均して求める。まで取り柄ルーチンそして、各物標ごとに自車線確率瞬時値を算出したら、次に、下式を用いて、フィルタ処理をする。ここで、αは距離Ζに依存するパラメータであり、図7(b)のマップを用いて求める。自車線確率の初期値は、0%とする。

今回の車両形状確率←前回値×α+今回の瞬時値×(1-α)

なお、初期値は50%とし、 α は例えば0.8といった値を採用する。また、車両形状確率の瞬時値は、相対加速度、縦横の長さD、W、検出時間などに基づいて算出する。

【0047】相対加速度については、例えば $|\alpha_j|>$ $\alpha_0+\alpha_n/j^2$ が成立すれば -50%とし、不成立の場合はそのまま(プラスもマイナスもしない)とすることが考えられる。なお、 α_j は算出した相対加速度であり、 α_0 は許容相対加速度、 α_n は測距誤差によるノイズサンプリング周期のときの値である。この式に関しては、特開平9-178848号の図7のステップ307にて示した式と同じであるため、詳しい説明は省略する

【0048】また、縦横の長さD、Wについては、車両らしい横長物であれば+30%とし、ガードレールのような縦長物であれば-50%とし、点物体あるいは上記以外の形状の物体であれば+10%とすることが考えられる。なお、横長物とは、XZ平面上の形状が横幅W大の長方形であるものを指し、縦長物とは、奥行きD大の長方形であるものを指す。そして、車両らしい横長物の具体例としては、1.2m≤横幅W<2.5m、且つ奥行きD<5.0m、且つ縦横比D/W<5という条件を満たすものが挙げられる。また、ガードレールのような縦長物の具体例としては、奥行きD≧5.0m、且つ縦横比D/W≥5という条件を満たすものが挙げられる。さらに点物体としては、横幅W<1.2m、且つ奥行きD<5.0m、且つ縦横比D/W<5という条件を満たすものが挙げられる。

【0049】また、検出時間については、例えば検出時間が2秒以上のものは+20%とし、検出時間が5秒以上のものは+50%とすることが考えられる。先行車に追従走行している場合は、先行車を長時間安定して検出することができるのに対し、路側のデリニエータ群やガ

ードレールを検出している場合には、同じ検出状態が長 時間は続かないので、多数の物標が消えて無くなった り、新たに現れたりする。したがって、長時間検出して いる物標は走行車両である可能性が高いと言えるため、 検出時間に応じて車両形状確率の瞬時値をアップさせて いる。

【0050】②自車線確率の算出

自車線確率とは、物標が自車と同一レーンを走行してい

$$X \leftarrow X \circ -Z \circ^2 / 2R$$

 $Z \leftarrow Z \circ$

R:カーブ半径算出ブロック57で得た推定R

右カーブ: 符号正 左カーブ:符号負

なお、円の方程式は、 | X | ≪ | R | , Zという仮定の もとで、近似した。また、レーザレーダセンサラが車両 中心から離れたところに取り付けられている場合には、 そのオフセット量を加味し、車両中心が原点になるよう にX座標を補正するものとする。すなわち、ここでは実 質的にはX座標のみ変換している。

【0052】このように直進路に変換して得られた中心 位置(X, Z)を、図8に示す自車線確率マップ上に配 置して、各物体の瞬時自車線確率、すなわち、その時点 で自車線に存在する確率を求める。確率として存在する のは、カーブ半径算出ブロック57(図1参照)にて求 めた曲率半径Rは認識物標あるいは操舵角などから推定 した値であり、実際のカーブの曲率半径との間に誤差が 存在するからである。その誤差を考慮した制御をするた

る車両である確からしさを表すパラメータである。本実 施形態では、自車線確率瞬時値(その瞬間の検出データ に基づいて算出された値〉を算出した後、所定のフィル 夕処理を施して自車線確率を求める。

【0051】まず、物標の位置を、直線路走行時の位置 に換算する。もともとの物標の中心位置を (Xo, Z o)としたとき、次の変換式により、直線路変換位置 (X, Z) が得られる(図7(a)参照)。

> …[式1] … [式2]

め、ここで各物体の瞬時自車線確率を求める。

【0053】図8において、横軸はX軸、すなわち自車 の左右方向であり、縦軸は2軸、すなわち自車の前方を 示している。本実施形態では、左右5m、前方100m までの領域を示している。ここで領域は、領域a(自車 線確率80%)、領域b(自車線確率60%)、領域c (自車線確率30%)、領域d(自車線確率100 %)、それ以外の領域(自車線確率0%)に別れてい る。この領域の設定は、実測により定めたものである。 特に、領域はは自車直前への割込も考慮することにより 設定された領域である。

【0054】領域a, b, c, dを区切る境界線La、 Lb、Lc、Ldは、例えば次の式3~6で与えられる ものである。なお、境界線しa′、Lb′, Lc′, L d'は、それぞれ境界線La、Lb, Lc, LdとはY 軸で対称の関係にある。

```
La: X=0.7+(1.75-0.7)\cdot(Z/100)^{-2}
                                                …[式3]
Lb: X=0.7+(3.5-0.7)\cdot(2/100)^{-2}
                                               …[式4]
Lc: X=1.0+(5.0-1.0)\cdot(Z/100)^2
                                               …[式5]
                                               ...[式6]
Ld: X=1.5 \cdot (1-Z/60)
```

これを一般式で表すと次式7~10のようになる。

…[式7] La: $X=A1+B1\cdot(Z/C1)^2$ Lb: $X=A2+B2\cdot (Z/C2)^2$ [8た]… …[式9] $Lc: X=A3+B3 \cdot (Z/C3)^{2}$ …[式10] $Ld: X=A4 \cdot (B4-Z/C4)$

この式7~10から一般的には、次の式11~13を満 足させるように領域を設定する。実際の数値の決定は、

> A1 \(\) A 2 \(\) A 3 \(\) A 4 …「式11] B1≦B2≦B3 および B4=1 …[式12] …[式13] C1=C2=C3 (C4に制約無し)

なお、図8の境界線La、Lb, Lc, La´、L b´, Lc´は、計算処理速度の点から、放物線として いるが、処理速度が許すならば、円弧にて表す方が良 い。境界線Ld,Ld′についても処理速度が許すなら

◎領域 dを少しでも有する物体

②領域 a 内に中心が存在する物体

③領域 b 内に中心が存在する物体

●領域 c 内に中心が存在する物体

⑤上記①~**④**を全て満たさない物体 → P0= 0%

ば外側に膨らんだ放物線または円弧にて表す方が良い。 【0055】次に、各物標の直線路換算位置を図8の自 車線確率マップと照合する。下記要領で、マップと照合 することで、自車線確率瞬時値PO が得られる。

 \rightarrow P0=100%

実験にて決定する。

 \rightarrow P0= 80%

 \rightarrow P0= 60%

 \rightarrow P0= 30%

そして、各物標ごとに自車線確率瞬時値を算出したら、 次に、下式を用いて、フィルタ処理をする。

自車線確率←自車線確率前回値 $\times \alpha$ +自車線確率瞬時値 \times (1- α)

ここで、αは距離 Z に依存するパラメータであり、図7 (b) のマップを用いて求める。自車線確率の初期値は、0%とする。

【0056】なお、本自車線確率は、上述した車両形状確率の値によっても影響を受ける。具体的には、車両形状確率が50%未満のときは自車線確率を35%で上限リミットする。これは、車両形状確率が50%未満のときは路側物である可能性が高いので、自車線確率を低く抑える意図である。また、35%でリミットしている理由は、車両形状確率が50%未満から50%以上になったとき、自車線確率マップの100%領域に2回連続存在したら、自車線確率が50%以上になるような上限リミット値を選んだからである。

【0057】そして、このように算出した車両形状確率及び自車線確率も含めた物標モデルのデータが、図1に示す物体認識ブロック43から先行車判定ブロック53へ出力される。なお、先行車判定ブロック53では、例えば車両形状確率が所定のしきい値(例えば50%)以上、且つ自車線確率が所定のしきい値(例えば50%)以上の物標の中で、距離Zが最小のものを先行車と判断する。この判断結果は車間制御部及び警報判定部ブロック55に出力されることとなる。

【0058】このように、本態様1においては、レーザレーダセンサ5から認識・車間制御ECU3へ出力されるデータの時点で、車両と非車両とが区別可能な状態にされているため、非車両を誤って前方に存在する車両であると認識することが防止でき、適切な車間制御や警報制御が実行できる。

【0059】 [態様2] 本態様2も、態様1と同様にレーザレーダセンサ5における測距データを得る時点において工夫するものであるが、態様1がレーザダイオード75からの出力調整によって対応するものであったのに対して、本態様2は可変増幅器85における増幅率を変更して受信感度を調整することで対処する。

【0060】図9は本態様2の場合のレーザレーダセンサ5にて実行される処理を示すフローチャートであるが、これは、上述した態様1の場合の図4のフローチャートにおけるS13の「発光出力調整」処理がなくなり、代わりに図9のS24の「受光増幅率調整」処理が追加されたものである。その他の処理内容は同じであり、図4のS11、S12、S14、S15、S16、S17、S18は、それぞれ図9のS21、S22、S23、S25、S26、S27、S28と対応する。したがって、それら同じ部分についての説明は省略し、S24の処理について説明する。

【0061】図3(c)に示すように、可変増幅器85

における増幅率は時間の経過と共に増大するようレーザ レーダCPU70によって制御されるのであるが、従来 は、スキャンエリア内のいずれの方向から返ってきた反 射光であっても、この増幅率の時間的変化は同じであっ た。それに対して、本態様2では、反射物体の3次元位 置が認識対象物体では存在する可能性が低い領域の場 合、その可能性の低さに応じて反射波の受信感度が相対 的に小さくなるようにする。具体的には、反射物体の位 置に応じて増幅率を調整するようにした。この増幅率調 整は、図10に示す増幅率判定マップを参照して行う。 【0062】このマップは、車幅方向及び車高方向をそ れぞれX軸及びY軸とした場合の反射物体の存在領域に 対応して、どのような増幅率の時間的変化にするかを示 すものである。具体的には、図10中に(a)~(c) で示すような3種類の増幅率変化が設定されており、そ れぞれがどの領域に対応するかが設定されている。

【0063】領域設定に関しては、中心付近の領域、その周囲の領域、最下端領域の3つにわけられており、中心付近の領域は(b)の増幅率変化が対応し、その周囲の領域は(a)の増幅率変化が対応し、下方領域に関しては、最下端に(c)の増幅率変化が対応している。なお、この(a),(b),(c)が対応する領域は、それぞれ図5に示した80%の出力レベル領域、100%の出力レベル領域、50%の出力レベル領域に対応するものである。

【0064】そして、増幅率の変化度合いに関しては、(b)の増幅率変化は従来と同様のものであり、(a)の増幅率変化は、(b)の増幅率変化に対してその変化度合いを全体的に小さくしたものである。また、(c)の増幅率変化は、時刻0から所定の時刻t1まではほとんど増加率を上げずに低レベルに維持し、その後、

(b)の増幅率変化に対してその変化度合いを全体的に小さくしたような変化をさせるものである。このような変化度合いに設定した意図は次の通りである。態様1における図5の領域設定に関しても説明した通り、路面上の白線や自車の至近距離に浮遊する水しぶきなどは、図10で言えば最下端領域に存在すると考えられ、また、上端付近では例えばトンネルの天井や看板などを検知する可能性があり、左右端においてはガードレールや植え込みなどを検知する可能性があるため、これらの領域では増幅率の変化度合いが、中央付近の領域に対応する

(b) の増幅率変化度合いに対して全体的に低くなるようにされている。

【0065】このようにすることで、これら路面上の白線や水しぶき、トンネルの天井や看板、ガードレールや植え込みなどによる反射光は増幅度合いが小さくなり、この増幅後の信号強度に基づいて車両と非車両とを区別して認識し易くなる。また、上述したように、(c)の増幅率変化は、単に増幅率の変化度合いが(b)の増幅率変化度合いに対して低くなるだけでなく、時刻0から

所定の時刻 t 1 まではほとんど増加率を上げずに低レベ ルに維持している。これは、例えば路面上の白線などは 自車から極近距離に存在することとなり、そこからの反 射光を車両からの反射光と適切に区別するための工夫で ある。つまり、極近距離にあれば反射光を得るまでの時 間も短くなるため、測距開始から短時間に得た反射光に 対しては増幅率を相当小さくしておくのである。一方、 時刻も以降は増幅率をそれなりに上げているのは、次の 理由からである。この最下端の領域は、通常であれば車 両は存在する可能性の小さな領域であるが、例えば自車 のピッチングによって車両前端が相対的に上昇している 場合には、この領域においても車両からの反射光を得る 可能性がある。但し、極近距離に車両が存在する可能性 は小さく、七以上の時間をかけて反射光を得た場合には ある程度自車から離れた物体からの反射光であるため、 このような範囲においては検出した反射光に対してはそ れなりの増幅率を確保するようにしたのである。このよ うに、本態様2の場合には、XY方向の位置だけでな く、Z方向の位置についても加味した設定となってい る。

【0066】このように、本態様2においても、態様1の場合と同じように、レーザレーダセンサ5から認識・車間制御ECU3へ出力されるデータの時点で、車両と非車両とが区別可能な状態にされているため、非車両を誤って前方に存在する車両であると認識することが防止でき、適切な車間制御や警報制御が実行できる。

【0067】[態様3]上述した態様1,2は、レーザレーダセンサ5における出力調整や受信感度調整によって測距データ自体を車両と非車両と区別し易い(あるいは非車両のデータを削除した)状態にした。これは、非車両と車両とでは反射強度に違いがあるという知見に基づくものであるが、この知見に基づけば、レーザレーダセンサ5においては特段の工夫を加えず、その測距データを得た認識・車間制御ECU3において対処してもよい。そのような対処の一つとして態様3を説明する。

【0068】図11(a)のフローチャートに本態様3に係る物体認識に係るメイン処理を示す。S210においてレーザレーダセンサ5から読み込んだ測距データに対して、S220において非車両判定を行う。この非車両判定処理は、図11(b)のフローチャートに示すように、非車両判定マップを用いて測距データの対応領域を判定し(S221)、測距データが非車両の範囲であれば(S222:YES)、データ削除を行い(S223)、非車両でない(つまり車両である)範囲であれば(S222:NO)、そのまま本処理を終了するという内容である。

【0069】S221にて用いている非車両判定マップは、図12に示すように、車幅方向、車高方向及び車両前方方向をそれぞれX軸、Y軸及びZ軸とした場合の反射物体の存在領域に対応して、車両と非車両を区別する

ための受光強度の範囲が設定された3次元マップである。具体的には、XY方向については、中心付近の領域、その周囲の領域、最下端領域の3つにわけられており、それら各領域に対応してZ方向位置と受光強度との対応関係が(a)~(c)のように設定されている。XY方向についての中心付近の領域は(b)の対応関係が対応し、その周囲の領域は(a)の対応関係が対応し、最下端領域は(c)の対応関係が対応している。なお、この(a),(b),(c)が対応するXY方向についての領域は、それぞれ図5に示した80%の出力レベル領域、100%の出力レベル領域、50%の出力レベル領域に対応するものである。

【0070】続いて、Z方向位置と受光強度との対応関係について説明する。まず、(b)の対応関係は、所定のZ方向しきい値Z1までの範囲であって且つ受光強度が所定範囲内のものが非車両、それ以外が車両と設定されている。XY方向については中心付近の領域であるため、Z方向に極近距離でない限り、受光強度に関係なく車両が存在する可能性が高いと考えられる。一方、Z方向に極近距離においても車両が存在する可能性はなくはないが、その場合には、受光強度がある程度以上に大きくなるため、全体として(b)に示すような対応関係に設定することで、車両・非車両の区別が付くと考えられる

【0071】次に、(a)の対応関係について説明する。この場合、XY方向については上端あるいは左右端であり、トンネルの天井や看板あるいはガードレールや植え込みなどを検知する可能性がある。そのため、

(b)の場合は2方向しきい値Z1より遠くにおいては実質的に受光強度による判定をしなくても問題ないが、(a)の場合には、そのような範囲においても非車両である可能性が相対的に高いので、受光強度による実質的な判定をする。したがって、(b)の場合のZ方向しきい値Z1に比べてより遠くのZ方向しきい値Z2までは、受光強度によるしきい値が設定されている。なお、近距離の場合に同じ物体であっても相対的に受光強度が大きくなるため、受光強度のしきい値も相対的に大きくなっている。

【0072】次に、(c)の対応関係について説明する。この場合、XY方向については最下端であり、路面上の白線などを検知する可能性がある。逆に車両を検知する可能性は、他の領域に比べて最も少ないと考えられる。そこで、(a)の場合と比較していうならば、受光強度によるしきい値が大きい範囲が、より遠くまで適用されている。これは、白線などはそれなりの反射強度を持つため、それらを適切に非車両であると判定するに受光強度によるしきい値を上げたことと、元々車両が存在する可能性が非常に低いため、このようにしきい値を上げても問題が少ないからである。もちろん、上述したように、この最下端の領域であっても例えば自車のピッチ

ングによって前方車両からの反射光を得る可能性がある。但し、その場合も、受光強度は相対的に高くなるため、ここでは、白線などを排除することを主眼にして受 光強度のしきい値を上げることを優先した。

【0073】以上が図11(a)のS220の処理説明

であったが、続くS230では、データのセグメント 化、S240では物標化を行う。これらの処理は、態様 1の場合に説明した図6(a)のS120及びS130 の処理内容を同様じなので、ここでは説明は繰り返さな い。要は、このようなセグメント化や物標化(S23 O、S240)の前に、非車両であると判定された測距 データを削除しておくため(S220)、非車両を誤っ て前方に存在する車両であると認識することが防止で き、適切な車間制御や警報制御が実行できるのである。 【0074】なお、図11(b)の非車両判定処理で は、非車両の場合にデータ削除(S223)をしたが、 あえてデータ削除までしない手法も採用できる。つま り、車両として認識しにくい状態にすればよく、例えば 態様1において説明した図6(b)のS133における 車両形状確率を、非車両である場合には一律に所定%下 げる (例えば-30%) といった対処も考えられる。 【0075】[態様4]態様4は、態様3と同様に、レ ーザレーダセンサ5においては特段の工夫を加えず、そ の測距データを得た認識・車間制御ECU3において対 処する場合の一例である。本態様4は、レーザレーダセ ンサ5にて検出した反射物体が一時的に検出できなくな った場合の対処として、検出できなくなった時点から所

【0076】図13(a)のフローチャートに本態様4に係る物体認識に係るメイン処理を示す。S310においてレーザレーダセンサ5から読み込んだ測距データに対して、データのセグメント化(S320)及び物標化(S330)を行う。これらの処理は、態様1の場合に説明した図6(a)のS110~S130の処理内容を同様なので、ここでは説明は繰り返さない。そして、この物標化(S330)の後に、補完(S340)を行う。

定時間は、検出できていた際の状態を保持して存在して

いると仮定した補完物体を作成することを前提とするも

のである。

【0077】この補完処理は、図13(b)のフローチャートに示すように、まず、物標が前回の処理において「車両」として認識されていたか否かを判断する(S341)。そして、車両として認識されていない場合には(S341:NO)、何ら処理することなく本処理を終了するが、車両として認識されていた場合には(S341:YES)、物標が前回処理時の位置から前回処理時における相対速度で移動したと仮定した場合の推定位置に現在もその「車両」は認識されているか否かを判断する(S342)。現在も車両が認識されているのであれば(S342:YES)、補完の必要がないため、その

まま本処理を終了する。

【0078】一方、現在は車両が認識されていないのであれば(S342:NO)、前回の測距データを読み込み(S343)、前回位置が補完許可エリアであれば(S344:YES)、補完物体を作成し(S345)、補完許可エリアでなければ(S344:NO)、そのまま本処理を終了する。

【0079】ここで、S344の補完許可エリアか否かは、図14に示す補完許可エリアマップを用いて判定する。このマップは、車幅方向、車高方向及び車両前方方向をそれぞれX軸、Y軸及びZ軸とした場合の反射物体の存在領域に対応して、車両と非車両を区別するための受光強度の範囲が設定された3次元マップである。具体的には、XY方向については、中心付近の領域、その周囲の領域、最下端領域の3つにわけられており、それら各領域に対応してZ方向位置と受光強度との対応関係が(a)~(c)のように設定されている。XY方向についての中心付近の領域は(b)の対応関係が対応し、その周囲の領域は(a)の対応関係が対応し、最下端領域は(c)の対応関係が対応している。なお、この

(a), (b), (c)が対応するXY方向についての 領域は、それぞれ図5に示した80%の出力レベル領 域、100%の出力レベル領域、50%の出力レベル領 域に対応するものである。

【0080】続いて、Z方向位置と補完の許可・非許可との対応関係について説明する。まず、(b)の対応関係は、Z=0から所定のZ方向しきい値Z1までの範囲が補完非許可であり、Z1よりも遠い範囲は補完許可である。同様に、(a)の対応関係は、Z=0から所定のZ方向しきい値Z2までの範囲が補完非許可であり、Z2よりも遠い範囲は補完許可、(c)の対応関係は、Z=0から所定のZ方向しきい値Z3までの範囲が補完非許可であり、Z3よりも遠い範囲は補完許可である。そして、これら3つのZ方向しきい値Z1, Z2, Z3の大小関係は、Z1<Z2<Z3と設定されている。つまり、X4Y5向についての中心付近の領域では、(b)に示すように、Z5向によほど至近距離でなければ補完を許可し、(a)→(c)に行くにつれて、補完を許可しない範囲を長くしていく。

【0081】このように、本態様4においては、レーザレーダセンサ5にて検出した反射物体が一時的に検出できなくなった場合に、車両であった可能性の高い領域において検出できなくなったのであれば(S344:YES)補完物体を作成し(S345)、車両であった可能性が低く非車両である可能性が高い領域において検出できなくなったのであれば(S344:NO)補完物体を作成しないため、非車両を誤って前方に存在する車両であると継続して認識することが防止でき、適切な車間制御や警報制御が実行できる。

【0082】本実施形態においては、レーザレーダセン

サ5がレーダ手段に相当し、認識・車間制御ECU3の物体認識ブロック43が認識手段に相当する。また、図4、図9に示す処理がレーダ手段としての処理の実行に相当し、図6、図11、図13に示す処理が認識手段としての処理の実行に相当する。

【0083】なお、本発明はこのような実施形態に何等限定されるものではなく、本発明の主旨を逸脱しない範囲において種々なる形態で実施し得る。

(1)上述した各態様(1~4)においては、それぞれ LD発光出力調整マップ(図5)、増幅率判定マップ(図10)、排車両判定マップ(図12)、補完許可工 リアマップ(図14)を用いて所定の処理を行った。このマップにおける XY方向の領域に関しては、いずれも 中央付近の領域、その周囲の領域、最下端領域という3 種類の領域設定をした。これらは、その順番で車両が存在する可能性が高いと想定されることに基づいた設定であるが、その領域設定を固定にするのではなく、道路形状に応じて可変にしてもよい。

【0084】例えば図15(b)に示すように、前方の 道路が左カーブしている場合には、通常の状態でもカーブの内側に車両が存在し得るため、図15(a)に示すようなカーブしていない場合に比べて、図15(b)に示すように、マップ内の各領域をカーブ内側方向へ全体的に移動させることが好ましい。もちろん、右カーブであれば右側に移動させればよい。これによって、例えば態様1であれば、カーブ内側方向領域への出力を相対的に大きくし、逆にカーブ外側方向への出力を相対的に小さくすることができる。他の態様においても同様に、実状にあった対処が可能となる。

【0085】また、例えば図16(b)に示すように、前方の道路が上り坂になっている場合には、通常の状態でも上方向に車両が存在するため、図16(a)に示すような上り坂になっていない場合に比べて、図16

(b) に示すように、マップ内の各領域を上側へ全体的 に移動させることが好ましい。もちろん、下り坂であれば下側に移動させればよい。

【0086】このように道路形状に基づいて車両の存在する可能性がある領域を把握することで、より適切な前方車両の認識が実現できる。なお、道路形状を認識するための手段としては、例えば自車両の旋回状態に基づいて道路形状を認識するものが考えられ、図1に示したカーブ半径算出ブロック57にて算出したカーブ半径に基づいて推定認識することができる。また、例えば路側に複数存在するデリニエータを検知することで道路形状を認識してもよい。さらには、車両がナビゲーションシステムを搭載しており、そのシステムが道路形状を判定可能な情報を含む地図情報を記憶しる場合には、そのシステムから現在位置の前方に存在する道路の形状を得てもよい。

【0087】(2)上記実施形態では、レーザ光の2次

元スキャンを行うために面倒れ角が異なるポリゴンミラー73を用いたが、例えば車幅方向にスキャン可能なガルバノミラーを用い、そのミラー面の倒れ角を変更可能な機構を用いても同様に実現できる。但し、ポリゴンミラー73の場合には、回転駆動だけで2次元スキャンが実現できるという利点がある。

【0088】(3)上記実施形態では、レーザレーダセンサ5内部において、距離及び対応するスキャン角度 θ x, θ y を極座標系からXYZ 直交座標系に変換していたが、その処理を物体認識ブロック4 3 において行っても良い。

(4)上記実施形態では「レーダ手段」としてレーザ光を用いたレーザレーダセンサ5を採用したが、ミリ波等の電波や超音波等を用いるものであってもよい。また、スキャン方式にこだわる必要はなく、距離以外に方位を測定できる方式であればよい。そして、例えばミリ波でFMCWレーダ又はドップラーレーダなどを用いた場合には、反射波(受信波)から先行車までの距離情報と先行車の相対速度情報が一度に得られるため、レーザ光を用いた場合のように、距離情報に基づいて相対速度を算出するという過程は不要となる。

【図面の簡単な説明】

【図1】本発明が適用された車両制御装置の構成を示す ブロック図である。

【図2】 レーザレーダセンサに関する説明図である。

【図3】 (a)はレーザレーダセンサの走査パターンを示す概略斜視図であり、(b)は物体Wを直方体として認識する際の説明図であり、(c)は測距動作に関するタイムチャートである。

【図4】 態様1の場合のレーザレーダセンサにて実行される処理を示すフローチャートである。

【図5】 LD発光出力調整マップの説明図である。

【図6】(a)は物体認識に係る処理を示すフローチャートであり、(b)は(a)の処理中で実行される物標化処理を示すフローチャートである。

【図7】(a)は各物標位置を直線路走行時の位置に変換する際の説明図であり、(b)は自車線確率を求めるためのパラメータ α のマップの説明図である。

【図8】 自車線確率マップの説明図である。

【図9】 態様2の場合のレーザレーダセンサにて実行される処理を示すフローチャートである。

【図10】 増幅率判定マップの説明図である。

【図11】 (a)は態様3の場合の物体認識に係る処理を示すフローチャートであり、(b)は(a)の処理中で実行される非車両判定処理を示すフローチャートである。

【図12】 非車両判定マップの説明図である。

【図13】 (a)は態様4の場合の物体認識に係る処理を示すフローチャートであり、(b)は(a)の処理中で実行される補完処理を示すフローチャートである。

【図14】 補完許可エリアマップの説明図である。

【図15】 道路形状に応じて車両が存在する可能性の高 低に対応する領域を変更する際の説明図である。

【図16】 道路形状に応じて車両が存在する可能性の高 低に対応する領域を変更する際の説明図である。

【符号の説明】

1…車両制御装置、3…認識・車間制御ECU、5…レ ーザレーダセンサ、7…車速センサ、9…ブレーキスイ ッチ、11…スロットル開度センサ、13…警報音発生 器、15…距離表示器、17…センサ異常表示器、19 …ブレーキ駆動器、21…スロットル駆動器、23…自 動変速機制御器、24…警報音量設定器、25…警報感 度設定器、26…クルーズコントロールスイッチ、27

…ステアリングセンサ、28…ヨーレートセンサ、29 …電源スイッチ、30…ワイパスイッチ、43…物体認 識ブロック、44…センサ異常検出ブロック、47…車 速演算ブロック、49…操舵角演算ブロック、51…ヨ ーレート演算ブロック、53…先行車判定ブロック、5 5…車間制御部及び警報判定部ブロック、57…カーブ 半径算出ブロック、70…レーザレーダCPU、71… 発光レンズ、72…スキャナ、73…ミラー、74…モ ータ駆動回路、75…半導体レーザダイオード、76… レーザダイオード駆動回路、77…ガラス板、81…受 光レンズ、83…受光素子、85…アンプ、87…コン パレータ、89…時間計測回路

【図1】

【図12】

【図13】

【図14】

【図16】

フロントページの続き

(51) Int. Cl. 7	識別記号	FI	テーマコード(参考)
B60R 21	/00 628	G 0 1 S 13/93	Z
G01S 13	/93	G08G 1/16	С
G08G 1	/16		E
		G O 1 S 17/88	Α

(72)発明者 大方 浩司 愛知県別公市昭和町1 丁目1 悉地

愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内

(72)発明者 野澤 豊史

愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内

(20) \$2002-40139 (P2002-401**日**

(72)発明者 白井 孝昌

愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内

Fターム(参考) 5H180 AA01 CC03 CC11 CC12 CC14

CC15 LL01 LL04 LL07 LL09

5J070 AC02 AC11 AE01 AF03 AH14

AH19 AH39 AK13 BF02 BF10

BF19

5J084 AA05 AA10 AA14 AB01 AC02

AD01 BA04 BA36 BA50 BB01

BB26 CA23 CA26 CA31 CA32

EA22 EA29 FA03

THIS PAGE BLANK (USPTO)