Санкт-Петербургский государственный электротехнический университет им.

В.И. Ульянова (Ленина)

Реализация алгоритма сетевого планировщика hClock на базе компонентов с открытым исходным кодом

Выполнила: Кочнева Ольга Романовна, гр. 5303

Руководитель: Кринкин Кирилл Владимирович, к.т.н., зав. каф. МО ЭВМ

Консультант: Соснин Владимир Валерьевич, к.т.н., инженер-

исследователь в ООО "Техкомпания Хуавэй"

Санкт-Петербург 2021

Актуальность

Ни один из существующих сетевых планировщиков не удовлетворяет всем этим свойствам одновременно:

- Открытый доступ.
- Простота интеграции в ОС Linux.
- Поддержка иерархических конфигураций.
- Гарантия минимальной пропускной способности
- Взвешенное перераспределение трафика.
- Ограничение пропускной способности сверху.
- Наличие контроля доступа.

Информационная база исследования

Данное исследование основывается на работе:

Billaud J. P., Gulati A. hClock: Hierarchical QoS for packet scheduling in a hypervisor //Proceedings of the 8th ACM European Conference on Computer Systems. – 2013. – C. 309-322.

Краткое содержание:

Представлен алгоритм сетевого планировщика под названием hClock, встроенный в гипервизор VMware. Алгоритм удовлетворяет большинству вышеупомянутых свойств, кроме простоты интегрирования в ОС и доступности.

Краткая характеристика исследования

Цель - снизить сложность и стоимость внедрения hClock-подобного алгоритма управления пропускной способности в сети за счет применения компонентов с открытым исходным кодом в Linux.

Объект исследования - сетевые планировщики. Предмет исследования - способ реализации hClock-подобного алгоритма для планирования трафика сети с использованием компонентов с открытым исходным кодом.

Задачи

- 1. Выполнить обзор существующих сетевых планировщиков.
- 2. Разработать алгоритм, имитирующий алгоритм hClock.
- 3. Провести эксперименты для анализа разработанного алгоритма.
- 4. Сформулировать рекомендации по применению разработанного алгоритма.

Обзор

Критерий	SFQ	DRR, QFQ	нтв	HFSC	WFQ, CBWFQ	hClock	BW	SG-QoS
Доступность	+	+	+	+	+	-	-	-
Простота интеграции	+	+	+	+	-	-	-	-
Иерархия	•	+	+	+	-	+	+	+
Резервирован ие		-	-	,	-	+	+	-
Bec	1	+	+	+	+	+	+	+
Ограничение	1	-	+	+	-	+	+	+
Контроль доступа	-	-	-	-	-	+	+	-

Алгоритм: блок-схема

Сокращения:

- п = количество классов
- CH = пропускная способность
- UT = нераспределенная пропускная способность
- АС = контроль допуска
- $R = \{r_i\}_{i \in [1,n]}$ reservations
- $L = \{l_i\}_{i \in [1,n]}$ limit
- $S = \{s_i\}_{i \in [1,n]}$ shares
- $UL = \{ul_i\}_{i \in [1,n]}$ $Upper\ Limit$
- $LS = \{ls_i\}_{i \in [1,n]}$ Link Shares

Алгоритм: контроль допуска в сеть (Admission Control)

Алгоритм: отображение параметров

Алгоритм: SUM(R,S) семантика

Неиспользованная пропускная способность распределяется среди потоков пропорционально значению Shares каждого потока.

Пример: LS = 10 + 70 * 2 / (2 + 8) = 24, где неиспользованная пропускная способность 70 = 100 - 10 - 20.

№ потока	R	L	S	ls/rate	ul/ceil
1	10	100	2	24	100
2	20	100	8	76	100

Тестирование: условия эксперимента

Тестирование: простая конфигурация

№ потока	R	L	S	ls/rate	ul/ceil
50000	10	100	2	24	100
50001	20	100	8	76	100

Bandwidth sharing experiment №1618303847

Тестирование: сложная конфигурация (прим. из статьи hClock)

Тестирование: сложная конфигурация

Bandwidth sharing experiment №1618328662

Апробация и рекомендации по применению

- 1. Выступление на конгрессе "КМУ X Конгресс Молодых Ученых".
- 2. Публикация научной статьи "Алгоритм сетевого планировщика на базе компонентов с открытым исходным кодом" в сборнике трудов конгресса (принята к публикации).
- 3. Репозиторий проекта: <u>rls-network-schedulers</u>

Рекомендации по применению

Реализованный алгоритм может быть применим в:

- гипервизорах с открытым исходным кодом
- программных маршрутизаторах
- Android-устройствах и любых других устройствах, ОС которых основана на ядре Linux

Выводы

Был реализован алгоритм предоставляющий возможность распределять пропускную способность сети обладающий следующими свойствами:

- распределение пропускной способности аналогично распределению, представленному в алгоритме hClock, если все классифицированные потоки насыщенные или при отсутствии резервирования;
- простота интеграции в ОС Linux, не требующая перекомпиляции или реконфигурирования ядра;
- наличие GPL-лицензии.

Спасибо за внимание!