

Sterowanie Procesami Ciągłymi

Opracowanie zagadnień laboratoryjnych nr 1, 2, 3

Charakterystyki czasowe Charakterystyki częstotliwościowe Parametry regulatora liniowo-kwadratowego

Skład grupy

Filip Chmielowski, Eryk Możdżeń

Wydział i kierunek studiów

W12N, Automatyka i Robotyka

Kod grupy zajęciowej, termin zajęć

Y01-38g, śr. 13:15 - 15:00 TN

Prowadzący

Mgr inż. Maciej Filiński

Data wykonania ćwiczenia, termin oddania sprawozdania

1: 12.10.2022, 2: 26.10.2022, 3: 09.11.2022, Oddanie: 23.11.2022

1 Charakterystyki czasowe

1.1 Zadanie 1

Impuls, wyrażony jako bardzo wąski prostokąt, który spełnia zależność $\int_{-\infty}^{\infty} \delta(t)dt = 1$, został podany w czasie t = 1.

Otrzymany przebieg ma kształt zbliżony do skoku.

(b) **Człon różniczkujący** Otrzymany przebieg składa się z dwóch "szpilek".

Otrzymany przebieg równy jest przeskalowanemu wejściu.

Rysunek 1: Odpowiedzi impulsowe podstawowych członów dynamiki

1.2 Zadania 2 i 3

Funkcję skoku podano w czasie t = 1.

(a) Układ stabilny bez oscylacji

Stabilność układu implikuje położenie obydwu biegunów po lewej (ujemnej) stronie płaszczyzny zespolonej.

Brak oscylacji oznacza, że obydwa bieguny leżą na osi liczb rzeczywistych.

(c) Układ stabilny z oscylacjami

Stabilność układu implikuje położenie obydwu biegunów po lewej (ujemnej) stronie płaszczyzny zespolonej.

Oscylacje oznaczają, że obydwa bieguny posiadają niezerową część urojoną.

(b) Układ niestabilny bez oscylacji

Niestabilność układu implikuje położenie co najmniej jednego z dwóch biegunów po prawej (dodatniej) stronie płaszczyzny zespolonej. Brak oscylacji oznacza, że obydwa bieguny leżą na osi liczb rzeczywistych.

(d) Układ niestabilny z oscylacjami

Niestabilność układu implikuje położenie co najmniej jednego z dwóch biegunów po prawej (dodatniej) stronie płaszczyzny zespolonej. Oscylacje oznaczają, że obydwa bieguny posiadają niezerową część urojoną.

Rysunek 2: Odpowiedzi skokowe dla różnych parametrów a i b (różnego położenia biegunów)

2 Charakterystyki częstotliwościowe

2.1 Podpunkt 1

Dla obiektu inercyjnego o transmitancji $K(s)=\frac{k}{Ts+1}$ wyznaczono charakterystykę amplitudowo-fazową, wykorzystując do tego celu funkcję nyquist().

Na powyższym wykresie, interesująca jest jedynie górna połowa elipsy, znajdująca się powyżej osi liczb rzeczywistych.

2.2 Podpunkt 2

Dla obiektu inercyjnego o transmitancji $K(s) = \frac{k}{Ts+1}$ wyznaczono charakterystykę amplitudowo-fazową, wykorzystując do tego celu metodę ręczną - przepuszczono falę sinusoidalną $u(t) = sin(\omega_0 t)$ oraz zaobserwowano na wyjściu składową ustaloną $y_{ust}(t) = Asin(\omega_0 t + \phi)$.

Na powyższy wykres charakterystyki częstotliwościowej naniesione zostały odczytane wcześniej wartości. Na ich podstawie jesteśmy w stanie (mniej lub bardziej dokładnie) odtworzyć charakterystykę pierwotną.

- 1. Punkt 1 (niebieski):
 - $x_1 = 0.4851$
 - $y_1 = 0.5198$
- 2. Punkt 2 (pomarańczowy):
 - $x_2 = 0.0138$
 - $y_2 = 0.1051$
- 3. Punkt 3 (żółty):
 - $x_3 = -0.0018$
 - $y_3 = 0.0139$
- 4. Punkt 4 (fioletowy):
 - $x_4 = 0,00040126$
 - $y_4 = 0.002$

Aby możliwe było odtworzenie oczekiwanej charakterystyki, dobraliśmy wartości ω_0 w taki sposób, aby wartości odczytanych punktów leżały w pobliżu przebiegu wykresu.

3 Badanie parametrów regulatora liniowo-kwadratowego (LQR) na przykładzie odwróconego wahadła

Dany jest system dynamiczny opisany w przestrzeni stanu:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -\frac{b}{M} & -\frac{mg}{M} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -\frac{b}{ML} & -\frac{(m+M)g}{ML} & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ \frac{1}{M} \\ 0 \\ \frac{1}{ML} \end{bmatrix} u$$

$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{x}$$

 $\mathbf{x} = [x, \dot{x}, \theta, \dot{\theta}]^T$

Stałe, wykorzystywane w ćwiczeniu, prezentują się następująco:

- M=0.5 masa wózka
- m=0,2 masa wahadła
- $\bullet \ L=0,\!3$ długość od mocowania do środka ciężkości wahadła
- $\bullet \ b=0,\!1$ współczynnik tarcia wózka
- \bullet g = 9.8 przyspieszenie ziemskie

Sterowanie odwróconym wahadłem przyjmuje następującą postać:

$$u = -Kx$$

Warunek początkowy x_0 oraz docelowe położenie wózka $y^* = [y, 0, 0, 0]^T$ pozostało niezmienne podczas procesu przeprowadzania symulacji.

3.1 Przypadek 1

Symulację przeprowadzono dla poniższych parametrów Q oraz R:

$$Q = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 100 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$R = 0.01$$

Macierz K, minimalizująca funkcję kosztu $J=\int_0^\infty (x^TQx+u^TRu)dt$, ma postać:

$$K = \begin{bmatrix} 10.0000 & 18.1417 & 107.1870 & 6.4463 \end{bmatrix}$$

Wymagane jest, aby **wychylenie** wahadła ustabilizowało się możliwie maksymalnie szybko na wartości równej 0 - informuje o tym komórka o wartości równej 100 w macierzy diagonalnej Q (macierz ta zawiera koszt związany z wektorem stanu).

Mała wartość macierzy (w tym wypadku skalara) R, zawierającej koszt związany ze sterowaniem, powoduje większą wartość piku siły (100), co poprawia wysterowanie układu.

3.2 Przypadek 2

Symulację przeprowadzono dla poniższych parametrów Q oraz R:

$$Q = \left[\begin{array}{cccc} 100 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$R = 100$$

Macierz K,minimalizująca funkcję kosztu $J=\int_0^\infty (x^TQx+u^TRu)dt,$ ma postać:

$$K = \left[\begin{array}{cccc} 1.0000 & 1.0988 & 0.0840 & -0.0033 \end{array} \right]$$

Wymagane jest, aby **pozycja** wózka ustabilizowała się możliwie maksymalnie szybko na wartości równej 10 - informuje o tym komórka o wartości równej 100 w macierzy diagonalnej Q (macierz ta zawiera koszt związany z wektorem stanu).

Duża wartość macierzy (w tym wypadku skalara) R, zawierającej koszt związany ze sterowaniem, powoduje mniejszą wartość piku siły (10), co pogarsza wysterowanie układu.

3.3 Przypadek 3

Symulację przeprowadzono dla poniższych parametrów Q oraz R:

$$Q = \left[\begin{array}{cccc} 100 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$R = 0.01$$

Macierz K, minimalizująca funkcję kosztu $J = \int_0^\infty (x^TQx + u^TRu)dt$, ma postać:

$$K = \begin{bmatrix} 100.0000 & 37.0975 & 56.0387 & 0.4516 \end{bmatrix}$$

Wymagane jest, aby **pozycja** wózka ustabilizowała się możliwie maksymalnie szybko na wartości równej 10 - informuje o tym komórka o wartości równej 100 w macierzy diagonalnej Q (macierz ta zawiera koszt związany z wektorem stanu).

Mała wartość macierzy (w tym wypadku skalara) R, zawierającej koszt związany ze sterowaniem, powoduje większą wartość piku siły (1000), co poprawia wysterowanie układu.

3.4 Przypadek 4

Symulację przeprowadzono dla poniższych parametrów Q oraz R:

$$Q = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 100 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$R = 100$$

Macierz K, minimalizująca funkcję kosztu $J=\int_0^\infty (x^TQx+u^TRu)dt$, ma postać:

$$K = \begin{bmatrix} 0.1000 & 0.3041 & 0.1625 & 0.1425 \end{bmatrix}$$

Wymagane jest, aby **wychylenie** wahadła ustabilizowało się możliwie maksymalnie szybko na wartości równej 0 - informuje o tym komórka o wartości równej 100 w macierzy diagonalnej Q (macierz ta zawiera koszt związany z wektorem stanu).

Duża wartość macierzy (w tym wypadku skalara) R, zawierającej koszt związany ze sterowaniem, powoduje mniejszą wartość piku siły (1), co pogarsza wysterowanie układu.

4 Bibliografia

- \bullet Laboratorium 1
- ullet Laboratorium 2
- Laboratorium 3
- Odwrócone wahadło