DEFINITION:

A set of vectors $\{\bar{u}_1, \ldots, \bar{u}_p\}$ in \mathbb{R}^n is said to be an <u>orthogonal set</u> if each pair of distinct vectors from the set is orthogonal, that is

$$\bar{u}_i \cdot \bar{u}_j = 0$$

for any $i \neq j$.

EXAMPLE:

Let

$$ar{u}_1 = egin{bmatrix} 3 \ 0 \ 0 \end{bmatrix}, \; ar{u}_2 = egin{bmatrix} 0 \ 8 \ 0 \end{bmatrix}, \; ar{u}_3 = egin{bmatrix} 0 \ 0 \ -1 \end{bmatrix}.$$

Then $\{\bar{u}_1, \ \bar{u}_2, \ \bar{u}_3\}$ is an orthogonal set.

PROBLEM:

Let

$$ar{u}_1 = egin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \; ar{u}_2 = egin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \; ar{u}_3 = egin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}.$$

Show that $\{\bar{u}_1, \ \bar{u}_2, \ \bar{u}_3\}$ is an orthogonal set.

SOLUTION:

We have

$$\bar{u}_1 \cdot \bar{u}_2 = 3(-1) + 1 \cdot 2 + 1 \cdot 1 = 0$$

$$ar{u}_1 \cdot ar{u}_3 = 3 \left(-rac{1}{2}
ight) + 1 (-2) + 1 \left(rac{7}{2}
ight) = 0$$

$$ar{u}_2 \cdot ar{u}_3 = -1 \left(-rac{1}{2}
ight) + 2 (-2) + 1 \left(rac{7}{2}
ight) = 0$$

THEOREM:

If $S = \{\bar{u}_1, \dots, \bar{u}_p\}$ is an orthogonal set of nonzero vectors in R^n , then S is linearly independent and hence is a basis (so-called, an orthogonal basis) for the subspace spanned by S. Of course, if p = n, then S is a basis for R^n .

EXAMPLE:

Let $S = \{\bar{u}_1, \ \bar{u}_2, \ \bar{u}_3\}$, where

$$ar{u}_1=egin{bmatrix} 3 \ 1 \ 1 \end{bmatrix},\ ar{u}_2=egin{bmatrix} -1 \ 2 \ 1 \end{bmatrix},\ ar{u}_3=egin{bmatrix} -1/2 \ -2 \ 7/2 \end{bmatrix}.$$

Then S is an orthogonal basis for \mathbb{R}^3 .

PROBLEM:

Let $S = \{\bar{u}_1, \ \bar{u}_2, \ \bar{u}_3\}$, where

$$ar{u}_1 = egin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \; ar{u}_2 = egin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \; ar{u}_3 = egin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}.$$

Find coordinates of $\bar{y} = (6, 1, -8)$ in S.

SOLUTION:

We have:

$$\begin{bmatrix} 3 & -1 & -1/2 & 6 \\ 1 & 2 & -2 & 1 \\ 1 & 1 & 7/2 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -2 & 1 \\ 3 & -1 & -1/2 & 6 \\ 1 & 1 & 7/2 & -8 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & -2 & 1 \\ 0 & -7 & 5.5 & 3 \\ 0 & -1 & 5.5 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -2 & 1 \\ 0 & -1 & 5.5 & -9 \\ 0 & -7 & 5.5 & 3 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & -2 & 1 \\ 0 & -1 & 5.5 & -9 \\ 0 & 0 & -33 & 66 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -2 & 1 \\ 0 & 1 & -5.5 & 9 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

THEOREM:

Let $S = \{\bar{u}_1, \dots, \bar{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \bar{y} in W the weights in the linear combination

$$\bar{y} = c_1 \bar{u}_1 + \ldots + c_p \bar{u}_p$$

are given by

$$c_j = rac{ar{y} \cdot ar{u}_j}{ar{u}_j \cdot ar{u}_j} \quad (j = 1, \dots, p).$$

PROOF:

Let c_1, \ldots, c_p be such numbers that

$$\bar{y} = c_1 \bar{u}_1 + c_2 \bar{u}_2 + \ldots + c_p \bar{u}_p.$$
 (*)

If we multiply both sides of (*) by \bar{u}_1 , we get

$$\bar{y}\cdot \bar{u}_1$$

$$=c_1\bar{u}_1\cdot\bar{u}_1+c_2\bar{u}_2\cdot\bar{u}_1+\ldots+c_p\bar{u}_p\cdot\bar{u}_1$$

$$=c_1\bar{u}_1\cdot\bar{u}_1+0+\ldots+0$$

$$=c_1\bar{u}_1\cdot\bar{u}_1$$

because of orthogonality of $\bar{u}_1, \ldots, \bar{u}_p$. So, $\bar{y} \cdot \bar{u}_1 = c_1 \bar{u}_1 \cdot \bar{u}_1$, therefore

$$c_1 = \frac{\bar{y} \cdot \bar{u}_1}{\bar{u}_1 \cdot \bar{u}_1}.$$

Similarly, if we multiply both sides of (*) by \bar{u}_i , we deduce

$$c_j = rac{ar{y} \cdot ar{u}_j}{ar{u}_j \cdot ar{u}_j} \quad (j = 1, \ldots, p).$$

PROBLEM:

Let $S = \{\bar{u}_1, \ \bar{u}_2, \ \bar{u}_3\}$, where

$$ar{u}_1 = egin{bmatrix} 3 \ 1 \ 1 \end{bmatrix}, \ ar{u}_2 = egin{bmatrix} -1 \ 2 \ 1 \end{bmatrix}, \ ar{u}_3 = egin{bmatrix} -1/2 \ -2 \ 7/2 \end{bmatrix}.$$

Find coordinates of $\bar{y} = (6, 1, -8)$ in S.

SOLUTION:

We have:

$$ar{y}\cdot ar{u}_1 = 11, \ \ ar{y}\cdot ar{u}_2 = -12, \ \ ar{y}\cdot ar{u}_3 = -33$$
 and

$$\bar{u}_1 \cdot \bar{u}_1 = 11, \ \bar{u}_2 \cdot \bar{u}_2 = 6, \ \bar{u}_3 \cdot \bar{u}_3 = 33/2,$$

$$\begin{aligned} c_1 &= \frac{\bar{y} \cdot \bar{u}_1}{\bar{u}_1 \cdot \bar{u}_1} = \frac{11}{11} = 1 \\ c_2 &= \frac{\bar{y} \cdot \bar{u}_2}{\bar{u}_2 \cdot \bar{u}_2} = \frac{-12}{6} = -2 \\ c_3 &= \frac{\bar{y} \cdot \bar{u}_3}{\bar{u}_3 \cdot \bar{u}_3} = \frac{-33}{33/2} = -2 \end{aligned}$$

therefore

$$[ar{x}]_{\S} = egin{bmatrix} c_1 \ c_2 \ c_3 \end{bmatrix} = egin{bmatrix} 1 \ -2 \ -2 \end{bmatrix}.$$

AN ORTHOGONAL PROJECTION

PROBLEM:

Let \bar{u} and \bar{y} be nonzero vectors in \mathbb{R}^n . Find vectors \hat{y} and \bar{z} such that

$$\bar{y} = \hat{y} + \bar{z}$$

where \hat{y} is a multiple of \bar{u} and \bar{z} is orthogonal to \bar{u} .

SOLUTION:

Rewrite $\bar{y} = \hat{y} + \bar{z}$ as $\bar{z} = \bar{y} - \hat{y}$ and multiply both sides by \bar{u} :

$$\bar{z} \cdot \bar{u} = (\bar{y} - \hat{y}) \cdot \bar{u}$$

But \bar{z} is orthogonal to \bar{u} , therefore

$$0 = (\bar{y} - \hat{y}) \cdot \bar{u}. \tag{*}$$

Since \hat{y} is a multiple of \bar{u} , we have

 $\hat{y} = \alpha \bar{u}$, where α is a scalar.

Substituting this into (*), we get

$$0 = (\bar{y} - \alpha \bar{u}) \cdot \bar{u} = \bar{y} \cdot \bar{u} - \alpha \bar{u} \cdot \bar{u},$$

hence

$$lpha = rac{ar{y} \cdot ar{u}}{ar{u} \cdot ar{u}} \quad ext{and} \quad \hat{y} = rac{ar{y} \cdot ar{u}}{ar{u} \cdot ar{u}} ar{u}.$$

DEFINITION:

The vector \hat{y} is called the <u>orthogonal</u> projection of \bar{y} onto \bar{u} and denoted by

$$\operatorname{proj}_{\bar{u}}\bar{y}.$$

The vector \bar{z} is called the component of \bar{y} orthogonal to \bar{u} .

EXAMPLE:

Let $\bar{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\bar{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of \bar{y} onto \bar{u} . Write \bar{y} as a sum of two orthogonal vectors, one in Span $\{\bar{u}\}$ and one orthogonal to \bar{u} .

SOLUTION:

We first find the orthogonal projection of \bar{y} onto \bar{u} . We have

$$\hat{y} = \frac{\bar{y} \cdot \bar{u}}{\bar{u} \cdot \bar{u}} \bar{u} = \frac{7 \cdot 4 + 6 \cdot 2}{4 \cdot 4 + 2 \cdot 2} \bar{u} = 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}.$$

We now find the component \bar{z} . We have

$$\bar{z} = \bar{y} - \hat{y} = \left[\begin{matrix} 7 \\ 6 \end{matrix} \right] - \left[\begin{matrix} 8 \\ 4 \end{matrix} \right] = \left[\begin{matrix} -1 \\ 2 \end{matrix} \right].$$

Finally, we write \bar{y} as a sum of two orthogonal vectors, one in Span $\{\bar{u}\}$ and one orthogonal to \bar{u} :

$$\left[\begin{matrix} 7 \\ 6 \end{matrix} \right] = \left[\begin{matrix} 8 \\ 4 \end{matrix} \right] + \left[\begin{matrix} -1 \\ 2 \end{matrix} \right].$$

REMARK:

Note that the orthogonal projection of \bar{y} onto \bar{u} is exactly the same as the orthogonal projection of \bar{y} onto $c\bar{u}$, where c is any nonzero scalar. Hence this projection is determined by the subspace L spanned by \bar{u} . Therefore sometimes we denote \hat{y} by

$$\operatorname{proj}_L \bar{y}$$
.

So,

$$\hat{y} = \mathrm{proj}_{ar{u}}ar{y} = \mathrm{proj}_Lar{y} = rac{ar{y}\cdotar{u}}{ar{u}\cdotar{u}}ar{u}.$$

DEFINITION:

A set of vectors $\{\bar{u}_1, \ldots, \bar{u}_p\}$ in \mathbb{R}^n is said to be an <u>orthonormal set</u> if it is an orthogonal set of unit vectors.

A set of vectors $\{\bar{u}_1, \ldots, \bar{u}_p\}$ in \mathbb{R}^n is said to be an <u>orthonormal basis</u> if it is an orthogonal basis of unit vectors.

EXAMPLE:

Let

$$ar{e}_1 = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}, \; ar{e}_2 = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}, \; ar{e}_3 = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}.$$

Then $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ is the orthonormal basis for R^3 .

EXAMPLE:

We know that

$$ar{u}_1=egin{bmatrix} 3 \ 1 \ 1 \end{bmatrix}, \ ar{u}_2=egin{bmatrix} -1 \ 2 \ 1 \end{bmatrix}, \ ar{u}_3=egin{bmatrix} -1/2 \ -2 \ 7/2 \end{bmatrix}.$$

is the orthogonal basis for \mathbb{R}^3 . Then

$$ar{w}_1 = rac{ar{u}_1}{\|ar{u}_1\|} = rac{1}{\sqrt{11}} egin{bmatrix} 3 \ 1 \ 1 \end{bmatrix}$$

$$ar{w}_2=rac{ar{u}_2}{\|ar{u}_2\|}=rac{1}{\sqrt{6}}\left[egin{array}{c} -1\ 2\ 1 \end{array}
ight]$$

$$ar{w}_3 = rac{ar{u}_3}{\|ar{u}_3\|} = \sqrt{rac{2}{33}} \left[egin{array}{c} -1/2 \ -2 \ 7/2 \end{array}
ight] = rac{1}{\sqrt{66}} \left[egin{array}{c} -1 \ -4 \ 7 \end{array}
ight]$$

is the orthonormal basis for R^3 .