

Sistemas Digitais 2017/2018

Pedro Salgueiro

pds@di.uevora.pt

Sumário

- Elementos de memória
 - Conceitos
 - Tipos
 - Variedade
- Latches
 - Latch SR
 - Latch SRE
 - Latch D
- Edge-triggered
 - Edge-triggered D
 - Edge-triggered JK
 - Edge-triggered T

Conceitos

- Flip-flop (circuito bi-estável)
 - Circuito que permite estabelecer e memorizar um bit de informação
 - Pode ter em permanência um de dois estados possíveis

- Estado

- Valor lógico à saída do flip-flop
- Tipo de comportamento
 - Sensível ao nível → latch (trancar)
 - Sensível à transição → edge-triggered

Tipos de flip-flops

- Latch
 - Funcionamento transparente das entradas para as saídas
 - Uma alteração das entradas pode provocar uma mudança de estado imediata das saídas
- Edge-triggered
 - A mudança de estado dá-se num momento bem determinado e sob controlo do utilizador
 - Independentemente do momento em que as entradas se alteram
 - Tem uma entrada de sincronização: relógio
 - À entrada de relógio são aplicados impulso de relógio
 - Existem flip-flops sensíveis à
 - transição ascendente
 - Transição descendente

Flip-flop *latch*(exemplo)

- Entradas e saídas
 - Entradas
 - dados: D (data)
 - controlo: E (enable)
 - Saídas Q
- Comportamento
 - E = 1
 - Circuito transparente de D para Q
 - E = 0
 - Q mantém o valor que estava em D no instante anterior à transição
 - Q é insensível ao que ocorre em D

- Circruito

Símbolo lógico

Flip-flop edge-triggered (exemplo)

- Entradas e saídas
 - Entradas
 - dados: D (data)
 - controlo: CLK (relógio)
 - Saídas Q

- Comportamento
 - O circuito é receptivo ao valor de D no momento da transição ascendente de CLK

- Símbolo lógico

Flip-flop sensível à transição descendente

- Símbolo lógico

Variedade e modularidade

- Latch
 - SR, SRE, D
- Edge-triggered
 - D, JK, T
- Diferenças
 - Nº de entradas
 - Comportamento relativamente às entradas
- Latch SR
 - É a célula de memória básica
 - Qualquer outro flip-flop pode ser sintetizado a partir deste

Latch SR

Latch SR

- Entradas

- S (set): impõe o estado 1
- R (reset): repõe o estado 0
- Saídas
 - Q: define o estado do flip-flop
 - \overline{Q} : complementar de Q
- Comportamento
 - set

$$- S = 1, R = 0 \rightarrow Q = 1$$

reset

$$- S = 0, R = 1 \rightarrow Q = 0$$

• manutenção

-
$$S = 0$$
, $R = 0 \rightarrow Q = Q^*$ (mantém o estado anterior)

Nota: não há regra estabelecida para a activação simultânea de S e R

Latch SR

Características

- Símbolo lógico

Diagrama temporal

Tabela de verdade

S	R	Q*	Q	
0	0	0	0	manutenção
0	0	1	1	manutenção
0	1	-	0	reset
1	0	-	1	set
1	1	-		

- Mapa de karnaugh

Q*SI	R 00	01	11	10
0	0	0	-2	1
1	1	0	-	1

Latch SR

Síntese

- Comportamentos distintos consoante a atribuição de valores às condições de indiferença
- Indiferença = 1
 - $Q = S + Q^* \overline{R} = \overline{S} (\overline{Q^* \overline{R}})$
- Indiferença = 0
 - $Q = S \overline{R} + Q^* \overline{R} = R (\overline{S + Q^*})$

 $\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$

- S tem predomínio sobre R
 - S = 1, R = 1 → força ambas as saídas a 1
- R tem predomínio sobre S
 - S=1, R=1 → força ambas as saídas a 0

Latch SRE

Latch SRE

- Latch SR com entrada de controlo
- Entradas
 - S (set), R (reset)
 - E (enable): entrada de controlo
- Saídas
 - Q, Q
- Comportamento
 - $E = 1 \rightarrow latch SR$
 - $E = 0 \rightarrow$ insensível às entradas (modo manutenção)

Latche SRE

Características

- Símbolo lógico

Diagrama temporal

Tabela de verdade

Е	S	R	Q*	Q	
0	-	-	0	0	manutenção
0	-	-	1	1	manutenção
1	0	0	0	0	manutenção
1	0	0	1	1	manutenção
1	0	1	-	0	reset
1	1	0	-	1	set
1	1	1	-		

- Síntese

Latch D

Latch D

- Latch com entrada de controlo que memoriza o nível presente à entrada
- Entradas
 - D (data)
 - E (enable): entrada de controlo
- Saídas
 - Q, \overline{Q}
- Comportamento
 - $E = 1 \rightarrow Q = D \pmod{\text{cópia}}$
 - $E = 0 \rightarrow \text{insensível à entrada (modo manutenção)}$

Latch D

Características

- Símbolo lógico

Diagrama temporal

Tabela de verdade

E	D	Q*	Q	
0	-	0	0	manutenção
0	-	1	1	manutenção
1	0	-	0	cópia
1	1	-	1	cópia cópia

- Síntese

Edge-tiggered D

Edge-tiggered D

- Entradas
 - D (data)
 - CLK (clock): entrada de relógio
- Saídas
 - Q, \overline{Q}

Comportamento

 No instante da transição ascendeste do relógio (CLK) transfere a entrada D para a saída Q, mantedo-a memorizada até que ocorra outra transição ascendente do relógio

Edge-triggered D

Características

- Símbolo lógico

Diagrama temporal

Tabela de verdade

CLK	D	Q*	Q	
1	0	0	0	cópia
↑	1	1	1	cópia
0	-	Q*	Q*	manutenção
1	-	Q*	Q*	manutenção
↓ ↓	-	Q*	Q*	manutenção

- Síntese

Edge-tiggered D

Edge-tiggered D

Arquitectura master-slave

Arquitectura de latches a 2 níveis

- 1º nível: master

- 2º nível: slave

Tabela de excitação

Q*	Q	D
0	0	0
0	1	1
1	0	0
1	1	1

- Se o estado se mantiver a 0, infere-se que D = 0
- Se a transição for de 0 para 1, infere-se que D = 1

•

Edge-tiggered JK

Edge-tiggered JK

- Entradas
 - ၂
 - K
 - CLK (clock)
- Saídas
 - Q, Q
- Comportamento
 - Na transição ascendeste de relógio, considera os valores de J e K
 - J = 0, $K = 0 \rightarrow$ mantém o estado anterior
 - $J = 0, K = 1 \rightarrow Q = 0$
 - $J = 1, K = 0 \rightarrow Q = 1$
 - J = 1, K = 1 \rightarrow inverte o estado anterior

Edge-triggered JK

Características

- Símbolo lógico

Diagrama temporal

- Tabela de verdade

CLK	J	K	Q*	Q	
↑	0	0	Q*	Q*	manutenção
↑	0	1	-	0	reset
↑	1	0	-	1	set
↑	1	1	Q*	Q *	comutação
0	-	-	Q*	Q*	manutenção
1	-	-	Q*	Q*	manutenção
\downarrow	-	-	Q*	Q*	manutenção

Edge-triggered JK

Características

- Síntese

- Tabela de excitação

Q*	Q	J	K
0	0	0	-
0	1	1	-
1	0	_	1
1	1	_	0

Edge-tiggered T

Edge-tiggered T

- Entradas
 - T
 - CLK (clock)
- Saídas
 - Q, \overline{Q}
- Comportamento
 - A cada transição ascendente de relógio, considera o valor de T
 - $-T = 0 \rightarrow$ mantém o estado anterior
 - $T = 1 \rightarrow$ inverte o estado anterior

Edge-triggered T

Características

- Símbolo lógico

Diagrama temporal

- Tabela de verdade

CLK	T	Q*	Q	
1	0	Q*	Q*	manutenção
↑	1	Q*	Q*	comutação
0	-	Q*	Q*	manutenção
1	-	Q*	Q*	manutenção
\	-	Q*	Q*	manutenção

Edge-triggered T

Características

- Síntese

Tabela de excitação

Q*	Q	T
0	0	0
0	1	1
1	0	1
1	1	0

Entradas assíncronas

Entradas assíncronos

- Preset

 Coloca o flip-flop no estado 1 independentemente das entradas (e condições do clock)

Clear

 Coloca o flip-flop no estado 0 independentemente das entradas (e condições do clock)

Símbolo lógico

