http://users.auth.gr/natreas Σημειώσεις: Εγώ Κεφ. 3-4-5 Κεχαγιάς Κεφ. 1-2-6 Βιβλία:

- Churchill Brown (για μηχανικούς)
- Marjden (πιο μαθηματικό)

Μέρος Ι

Ατρέας

Μιγαδικοί Αριθμοί

Έστω
$$\mathbb{C}=\left\{ egin{array}{l} ext{γεωμετρική παράσταση μιγαδικού} \\ z=\overbrace{(x,y)};\ x,y\in\mathbb{R} \end{array}
ight\}$$

Είναι σύνολο εφοδιασμένο με τις πράξεις:

(α) Πρόσθεση μιγαδικών

Αν
$$z_1=(x_1,y_1)$$
 και $x_2=(x_2,y_2)$, τότε: $z_1+z_2=(x_1+x_2,\,y_1+y_2)$

(β) Γινόμενο $\lambda \in \mathbb{R}$ με μιγαδικό z

Av
$$z = (x, y)$$
, τότε ορίζω:

$$\lambda z = (\lambda x, \lambda y)$$

(γ) Πολλαπλασιασμό μιγαδικών αριθμών

Av
$$z_1=(x_1,y_1),\ z_2=(x_2,y_2)$$
, τότε ορίζω:

$$z_1z_2 = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$$

Καλείται σύνολο των μιγαδικών αριθμών.

- Δεν μπορώ να συγκρίνω μιγαδικούς
- Οι γνωστές ιδιότητες των πράξεων ισχύουν στους μιγαδικούς

Η γεωμετρική παράσταση του $\mathbb C$ είναι το λεγόμενο μιγαδικό επίπεδο.

$$x \in \mathbb{R} \stackrel{\text{1-1}}{\longleftrightarrow} A = \{(x,0) : x \in \mathbb{R}\}$$

•
$$(x,0), (y,0) \in A \implies (x,0) + (y,0) = (x+y,0) \in A$$

•
$$(x,0)(y,0) = (xy,0) \in A$$

Στο εξής γράφω:

$$1 = (1, 0)$$

$$x = (x, 0)$$

Ορίζω:

$$i = (0, 1)$$

και καλείται φανταστική μονάδα του μιγαδικού επιπέδου.

$$i^2 = (0,1)(0,1) = (0 \cdot 0 - 1 \cdot 1, \ 0 \cdot 1 + 1 \cdot 0) = (-1,0) = -1$$

$$\boxed{i^2 = -1}$$

Έτσι:

$$z = (x, y) = x(1, 0) + y(0, 1)$$

$$\stackrel{x=(x,0)}{=} x \cdot 1 + yi$$

$$\implies z = x + iy$$

$$z = x + iy \iff z = (x, y)$$

Έστω z = x + iy

$$\stackrel{\text{поλικές}}{=} \rho \cos \theta + i \rho \sin \theta =
= \rho(\cos \theta + i \sin \theta)$$
(1)

Έτσι, η (1) γράφεται ως:

$$z = |z| \underbrace{(\cos \theta + i \sin \theta)}_{= |z| \cdot e^{i\theta}}$$

όπου στο εξής:

$$e^{i\theta} = \cos \theta + i \sin \theta$$
τύπος του Euler

Τελικά:

$$z=|z|e^{i heta}$$
(πολική μορφή μιγαδικών)

Σημείωση: $\cos \theta + i \sin \theta$

$$\begin{array}{l} \overset{\text{osipés}}{\underset{\text{McLaurin}}{=}} \left(1-\frac{\theta^2}{2!}+\frac{\theta^4}{4!}+\ldots\right)+i\left(\theta-\frac{\theta^3}{3!}+\frac{\theta^5}{5!}-\ldots\right) \\ i^2 \overset{=-1}{\underset{=}{=}} \left(1+\frac{(i\theta)^2}{2!}+\frac{(i\theta)^4}{4!}+\ldots\right)+\left(i\theta+\frac{(i\theta)^3}{3!}+\frac{(i\theta)^5}{5!}+\ldots\right) \\ =1+(i\theta)+\frac{(i\theta)^2}{2!}+\frac{(i\theta)^3}{3!}+\cdots+\frac{(i\theta)^n}{n!}+\cdots=e^{i\theta} \end{array}$$

• Ορίζω Πρωτεύον όρισμα ${
m Arg}z$ (μη μηδενικού) μιγαδικού z να είναι η γωνία θ που σχηματίζει ο θετικός πραγματικός ημιάξονας του $\mathbb C$ με την ημιευθεία OA, όπου A το σημείο της γεωμετρικής παράστασης του z=x+iy.

Έτσι:

$$z=|z|e^{i{
m Arg}\,z}$$
 πολική μορφή του z

$$z_1 z_2 = |z_1| e^{i\operatorname{Arg} z_1} |z_2| e^{i\operatorname{Arg} z_2}$$
$$z_1 z_2 = |z_1| |z_2| e^{i(\operatorname{Arg} z_1 + \operatorname{Arg} z_2)}$$

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \frac{e^{i\theta_1}}{e^{i\theta_2}}$$
$$= \left| \frac{z_1}{z_2} \right| e^{i(\theta_1 - \theta_2)}$$

Ιδιότητα: $z\bar{z}=|z|^2$

Μιγαδικές συναρτήσεις

Κάθε συνάρτηση $f:A\subseteq\mathbb{C}\to\mathbb{C}$ καλείται μιγαδική συνάρτηση μιγαδικής μεταβλητής.

$$f=\int (\underbrace{z}_{\text{η μεταβλητή μιγαδικός}})$$

п.х.

$$\begin{split} f(z) &= z^2 \implies f(x+iy) = (x+iy)^2 = x^2 + (iy)^2 + 2x \cdot \underbrace{x^2 - y^2}_{\text{Re}(f)} + i\underbrace{(2xy)}_{\text{Im}(f)} \\ &\stackrel{\text{yewmetrrikh}}{=} (x^2 - y^2, \ 2xy) \end{split}$$

Τελικά:
$$f(x,y)=(x^2-y^2,\,2xy)$$
 $\mathbb{R}^2 \to \mathbb{R}^2$

п.х.

$$\begin{split} f(z) &= \frac{1}{|z|\bar{z}} \stackrel{z=x+iy}{=} \frac{1}{\sqrt{x^2 + y^2}} \cdot \frac{z}{\bar{z}z} \\ \stackrel{z\bar{z}=|z|^2}{=} \frac{1}{\sqrt{x^2 + y^2}} \cdot \frac{z}{|z|^2} &= \frac{x + iy}{(x^2 + y^2)^{3/2}} \\ \stackrel{\text{YEWL}}{=} \frac{(x,y)}{(x^2 + y^2)^{3/2}} \stackrel{\vec{r}=(x,y)}{=} \boxed{\frac{\vec{r}}{|\vec{r}|^3}} \end{split}$$

Κεντρικό διαν. πεδίο που θυμίζει το πεδίο Coulomb.

$$\underbrace{f = f(z)}_{\text{IIVA} \text{ μεταβλ.}} \overset{\text{1-1}}{\longleftrightarrow} F(x,y) = \left(u(x,y), v(x,y)\right)$$

όπου u,v πραγματ. συναρτ. 2 μεταβλητών

Υπάρχουν $f:A\subseteq\mathbb{R}\to\mathbb{C}$, μιγαδικές πραγματικής μεταβλητής π.χ

$$f(t) = e^{it}, t \in (0, \pi]$$
$$= \cos t + i \sin t$$

$$t \to (\cos t, \sin t)$$
 καμπύλη $x^2 + y^2 = \cos^2 t + \sin^2 t = 1$

Η γραφ. παράσταση της $f(t)=e^{it},\ t\in (-\pi,\pi)$ είναι ο μοναδιαίος κύκλος κέντρου (0,0) με αντιωρολογιακή φορά.

$$g(t) = 1 + it, t \in \mathbb{R}, = (1, t) = (1, 0) + t(0, 1)$$

Το πεδίο ορισμού μιγαδικών συναρτήσεων μιγαδ. μεταβλητών υπολογίζεται ως συνήθως (με τις πραγματικές συναρτήσεις) ΜΕ ΚΑΠΟΙΕΣ Διαφοροποιήσεις

$$f(z) = \frac{1}{z}$$

Πρέπει ο παρον. να είναι διάφορος του μηδενός: Έτσι $z \neq 0$ Άρα Π.Ο $= \mathbb{C} - \big\{(0,0)\big\}$

$$g(z) = \frac{z}{z^2 + 2}$$

Σημείωση Η g είναι **ρητή** συνάρτηση (δηλ. πηλίκο δύο (μιγαδικών) πολυωνύμων). Κάθε συνάρτηση της μορφής $a_0+a_1z+\cdots+a_nz^n,\ a_0,\ldots,a_n\in\mathbb{Z}$ καλείται (μιγαδικό) πολυώνυμο. Πρέπει παρον. $\neq 0$ δηλ:

$$z^2+2=0 \left(\begin{array}{c} \text{ΠΡΟΣΟΧΗ!!} \ \text{Κάθε μιγαδικό} \\ \text{πολυώνυμο βαθμού } N \text{ έχει} \\ \text{ΑΚΡΙΒΩΣ } N \text{ ρίζες στο } \mathbb{C} \end{array}\right)$$

$$z^2+2=0 \xrightarrow{i^2=-1} z^2-2i^2=0$$

$$\Longrightarrow \left(z-\sqrt{2}i\right)\left(z+\sqrt{2}i\right)=0$$

$$\Longrightarrow \left[z=\pm\sqrt{2}i\right]$$

Τελικά
$$\Pi.O = \mathbb{C} - \left\{ \pm \sqrt{2}i \right\}$$

$$h(z) = \operatorname{Arg} z, \ \Pi.O = \mathbb{C} - \{0\}$$

Για z=0 ΔΕΝ ορίζεται όρισμα, επειδή $0=|0|\cdot e^{i\theta}$ $\forall \theta$

Shmeiwsh $az^2 + bz + c = 0$ $a,b,c \in \mathbb{C}$

Λύνεται με διακρίνουσα κατά τα γνωστά.

Επίσης μπορείτε να χρησιμοποιήσετε και σχήμα Horner για πολυώνυμα (με πραγματικούς συντελεστές) βαθμού $N \geq 3$.

$$a(z) = e^z = e^{x+iy} = e^x \cdot e^{iy}$$
$$= e^x (\cos y + i \sin y)$$
$$= (e^x \cos y, e^x \sin y), \quad x, y \in \mathbb{R}$$

Ως διανυσματικό πεδίο προφανώς Π.Ο = \mathbb{R}^2 Έτσι Π.Ο = \mathbb{C} .

$$l(z) = {
m Log}$$
 (αντίστροφη της e^z)
$$\underbrace{{
m Log}}_{\ \,
m correct}^{
m orighós} {
m ln}\, |z| + i {
m Arg}\, z$$
 μιγαδικός λογάριθμος
$${
m \Pi.O} = {\Bbb C} - \{0\}$$

$$Log(3) = \ln |-3| = iArg(-3)$$
$$= \ln 3 + i\pi$$

$$\lambda(z) = \sin z \stackrel{\text{orighos}}{:=} \frac{e^{iz} - e^{-iz}}{2i}$$

$$\begin{pmatrix} e^{i\theta} &= \cos \theta + i \sin \theta & \theta \in (-\pi, \pi] \\ e^{-i\theta} &= \cos \theta - i \sin \theta \\ \hline \sin \theta &= \frac{e^{i\theta} - e^{-i\theta}}{2i} \end{pmatrix}$$

 $\Pi.O = \mathbb{C}$

$$m(z) = \cos z \stackrel{\text{orighás}}{:=} \frac{e^{iz} + e^{-iz}}{2}$$

$$\text{P.O} = \mathbb{C}$$

Όλες οι γνωστές τριγωνομετρικές ταυτότητες ισχύουν στο $\mathbb C$ όπως στο $\mathbb R$.

$$h(z) = \sqrt[n]{z} := \sqrt[n]{|z|} e^{i\frac{2k\pi + \text{Arg } z}{n}} \quad (k = 0, 1, \dots, n-1)$$

(Η $\sqrt[n]{a}$ ορίζεται ως το **σύνολο** όλων των λύσεων της εξίσωσης $z^n=a,\quad a\in\mathbb{C}$)

$$\Pi.O = \mathbb{C} - \{0\}$$

Όριο/Συνέχεια

μιγαδικών συναρτήσεων μιγαδικής μεταβλητής

Ορισμός

Έστω f(z)=f(x+iy)=u(x,y)+iv(x,y) μιγ. συνάρτηση ορισμένη σε σύνολο $A\subset\mathbb{C},\ z_0=x_0+iy_0$ είναι σ.συσσ. του A και έστω $a=a_0+ib_0$. Τότε

$$\lim_{z \to z_0} f(z) = a \in \mathbb{C}$$

$$\updownarrow$$

$$\begin{cases} \lim_{(x,y) \to (x_0,y_0)} u(x,y) = a_0 \\ \text{KAI} \\ \lim_{(x,y) \to (x_0,y_0)} v(x,y) = b_0 \end{cases}$$

Επίσης, αν $z_0 \in A$, τότε

f συνεχής στο σημείο z_0

οι συναρτήσεις $u,v:A\subset\mathbb{R}^2\to\mathbb{R}$ είναι ΣΥΝΕΧΕΙΣ στο σημείο $(x_0,y_0$ (ως πραγματικές συναρτήσεις δύο μεταβλητών)

Έτσι:

Ορίζω το ∞ του μιγαδικού επιπέδου να είναι το σύνολο σημείων που απέχουν "άπειρη" απόσταση από την αρχή των αξόνων.

Το επεκτεταμένο μιγαδικό επίπεδο ορίζεται ως:

$$\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$
 , о́пои:

$$\infty + z = \infty \quad \forall z \in \mathbb{C}$$
$$\infty \cdot z = \infty \quad \forall z \neq 0$$
$$\frac{z}{\infty} = 0 \quad \forall z \neq \infty$$

Όλες οι πράξεις του ορίου που ξέρετε ισχύουν και στους μιγαδικούς (αρκεί να μην εμφανίζονται οι γνωστές απροσδιόριστες μορφές):

$$0\cdot\infty,\frac{\infty}{\infty},0^0,1^\infty,\infty^0$$

Ο κανόνας De l' Hospital ισχύει στους μιγαδικούς.

Σημείωση:

$$\lim_{z \to \infty} f(z) = a \in \mathbb{C} \iff \lim_{z \to 0} f\left(\frac{1}{z}\right) = a \in \mathbb{C}$$

$$\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0$$

$$\lim_{z \to z_0} f(z) = 0 \iff \lim_{z \to z_0} |f(z)| = 0$$

Θ.

Έστω $\operatorname{Arg} z:\mathbb{C}-\{0\}\to (-\pi,\pi]$ Τότε η $\operatorname{Arg} z$ είναι συνεχής στο σύνολο:

$$\mathbb{C}^* = \mathbb{C} - \{x + iy : x \le 0 \text{ KAI } y = 0\}$$

Έστω z = x + iy

(a)
$$x > 0, y > 0$$

(
$$\beta$$
) $x < 0, y > 0$

$$\operatorname{Arg} z = \begin{cases} \arctan \left| \frac{y}{x} \right|, & x, y > 0 \\ \pi - \arctan \left| \frac{y}{x} \right|, & x < 0, y > 0 \\ -\pi + \arctan \left| \frac{y}{x} \right|, & x < 0, y < 0 \\ -\arctan \left| \frac{y}{x} \right|, & x > 0, y < 0 \end{cases}$$

Για
$$x=0,$$
 τότε $\mathrm{Arg}:=\frac{\pi}{2}$ ή $-\frac{\pi}{2}$ $y=0,$ τότε $\mathrm{Arg}:=0$ ή π Έστω $z_0=x_0<0$

• Έστω $z=x_0+it\quad (t>0)$ Για $t\to 0^+,\; z\to z_0=x_0$, αλλά:

$$\lim_{z \to z_0} \operatorname{Arg} z \stackrel{z = x_0 + it}{=} \lim_{t \to 0^+} \operatorname{Arg} \left(x_0 + it \right) \stackrel{\text{20 tet.}}{=} \lim_{t \to 0^+} \left(\pi - \arctan \left| \frac{t}{x_0} \right| \right) = \pi - \arctan 0 = \pi$$

• Για $z=x_0+it\quad (t<0)$, τότε:

$$t
ightarrow 0^-, \quad z
ightarrow z_0,$$
 kai

$$\lim_{z \to z_0} \operatorname{Arg} z = \lim_{t \to 0^-} \operatorname{Arg} \left(x_0 + it \right) \stackrel{\text{30 tet.}}{=} -\pi + \arctan 0 = -\pi$$

Άρα το όριο στο $z_0=x_0$ ΔΕΝ υπάρχει, και έτσι η ${
m Arg}\,z$ ασυνεχής στα $z=x_0$ με $x_0\leq 0$. Αν ${
m Arg}\,z\in[0,2\pi)$ πού είναι ασυνεχής;

Μιγαδική παράγωγος

Την εβδομάδα της $28^{ης}$ θα γίνουν κανονικά τα μαθήματα του Ατρέα.

Ορισμός

Έστω $f:A\subset\mathbb{C}\to\mathbb{C}$, A ανοικτό, $z_0\in A$. Λέμε ότι η f είναι μιγαδικά παραγωγίσιμη στο σημείο z_0 , αν υπάρχει το OPIO:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = a \in \mathbb{C}$$

(ή ισοδύναμα $\lim_{h\to 0} rac{f(z_0+h)-f(z_0)}{h}=a\in\mathbb{C}$) Στο εξής το όριο αυτό συμβολίζουμε με $f'(z_0)$ ή $rac{\mathrm{d} f(z_0)}{\mathrm{d} z}$

Ορισμός

Aν $f:A\in\mathbb{C}\to\mathbb{C}$, A ανοικτό, $z_0\in A$, θα λέμε στο εξής ότι η f είναι ΟΛΟΜΟΡΦΗ (ή ΑΝΑ-ΛΥΤΙΚΗ - holomorphic/analytic) **στο σημείο \mathbf{z_0}**, εάν η f είναι μιγαδικά παραγωγίσιμη **ΣΕ ΚΑΘΕ**

ΣΗΜΕΙΟ του ανοικτού δίσκου (

$$D_{\epsilon}(z_0) = \left\{ z \in \mathbb{C} : |z - z_0| < \epsilon \right\}$$

για κάποιο $\epsilon>0$

Av f ολόμορφη σε ΚΑΘΕ σημείο του A λέμε ότι η f ολόμορφη στο A.

Ορισμός

Αν A μη ανοικτό, λέμε ότι η f ολόμορφη στο A, αν υπάρχει $B\supset A$, B ανοικτό ώστε η f στο B.

Όλες οι γνωστές ιδιότητες της παραγώγου που γνωρίζετε ισχύουν και για τη μιγαδική παράγωγο

π.χ. Έστω f,g **μιγαδικά** παραγωγίσιμες σε σημείο z_0 . Τότε:

- f παραγ. στο $z_0 \implies f$ συνεχής στο z_0
- $(af \pm by)'(z_0) = af'(z_0) + bg'(z_0) \, \forall a, b \in \mathbb{C}$
- $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$
- $\left(\frac{f}{g}\right)(z_0) = \frac{f'(z_0)g(z_0) f(z_0)g'(z_0)}{g^2(z_0)} \quad \left(g(z_0) \neq 0\right)$
- Ο κανόνας αλυσίδας ισχύει στις μιγαδικές συναρτήσεις:

$$(h \circ g)'(z_0) = h'(g(z_0)) g'(z_0)$$

υπό την προϋπόθεση ότι η σύνθεση καλά ορισμένη

Παραγώγιση αντίστροφης συνάρτησης Έστω f ολόμορφη σε σημείο z_0 με $f'(z_0) \neq 0$. Αν $w_0 = f(z_0)$, τότε υπάρχουν $\epsilon, \epsilon' > 0$ ώστε η αντίστροφη συνάρτηση $f^{-1}: D_\epsilon(w_0) \to D_{\epsilon'}(z_0)$ καλά ορισμένη, ολόμορφη στο w_0 και

$$\left(f^{-1}\right)'(w_0) = \frac{1}{f'(z_0)}$$

Θ.: Εξισώσεις Cauchy-Riemann

Έστω $f:A\subseteq\mathbb{C}\to\mathbb{C}:f(z)=f(x+iy)=u(x+y)+iv(x,y).$ Θεωρώ $z=x+iy,\ z_0=x_0+iy_0$ και A ανοικτό.

Τότε:

f μιγαδικά παραγωγίσιμη στο z_0

 \updownarrow

(a) Η ${f F}(x,y)=\left(u(x,y),\,v(x,y)\right)$ είναι διαφορίσιμο διανυσμ. πεδίο στο σημείο (x_0,y_0)

KAI

(β)

$$\begin{cases} u_x(x_0,y_0) = v_y(x_0,y_0) & \underbrace{\text{exiowdeig C-R}} \\ u_y(x_0,y_0) = -v_x(x_0,y_0) & \end{aligned}$$

Πόρισμα (ΠΡΑΚΤΙΚΟΤΑΤΟ) Av f(z)=f(x+iy)=u(x,y)+iv(x,y) είναι έτσι ώστε:

(a) u,v έχουν συνεχείς μερικές παραγώγους στο (x_0,y_0) και "κοντά" στο (x_0,y_0)

(β)
$$\begin{cases} u_x(x_0, y_0) = v_y(x_0, y_0) \\ u_y(x_0, y_0) = -v_x(x_0, y_0) \end{cases} \leftarrow C-R$$

Τότε (\Longrightarrow) η f είναι μιγαδικά παραγωγίσιμη στο $z_0=x_0+iy_0$

Παρ.

$$z^2 = (x + iy)^2 = x^2 + 2ixy - y^2 =$$
 $= x^2 - y^2 + i(2xy), \text{ ápa}$
 $f = (x^2 - y^2, 2xy)$
 $\begin{vmatrix} u_x = v_y \\ u_y = -v_x \end{vmatrix}$

Παρατηρήσεις

(a) Έστω f μιγαδικά παραγ. συνάρτηση σε σημείο $z_0=x_0+iy_0$. Τότε ε ξ' ορισμού υπάρχει το όριο

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

- Έστω $z=x+iy_0 \quad (x\in\mathbb{R})$ είναι τυχαίο σημείο της "οριζόντιας" ευθείας που διέρχεται από το z_0
- Για $x\to x_0$, τότε $z=x+iy_0\to x_0+iy_0=z_0$ (δηλ. $z\to z_0$ όταν $x\to x_0$ πάνω στην οριζόντια ευθεία)

11

Tότε για $z = x + iy_0$ έχω:

$$f'(z_0) = \lim_{x \to x_0} \frac{u(x, y_0) + iv(x, y_0) - (u(x_0, y_0) + iv(x_0, y_0))}{x + iy_0 - (x_0 + iy_0)}$$

$$= \lim_{x \to x_0} \frac{u(x, y_0) - u(x_0, y_0)}{x - x_0} + i \lim_{x \to x_0} \frac{v(x, y_0) - v(x_0, y_0)}{x - x_0}$$

$$= u_x(x_0, y_0) + iv_x(x_0, y_0)$$

$$\implies \boxed{f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)} := \frac{\partial f(x_0, y_0)}{\partial x}$$

Με όμοιο τρόπο, αν εργαστούμε κατά μήκος της "κάθετης" ευθείας που διέρχεται από το z_0 , έχουμε:

$$f'(z_0) = v_y(x_0, y_0) - iu_y(x_0, y_0) := -i\frac{\partial f(x_0, y_0)}{\partial y}$$

(β) Γεωμετρική ερμηνεία της παραγώγου

$$f'(z_0) = \frac{\mathrm{d}f(z_0)}{\mathrm{d}z}$$

$$\Longrightarrow \boxed{\mathrm{d}f(z_0) = f'(z_0)\,\mathrm{d}z}$$

 $\mathrm{d}z := egin{array}{c} \mathrm{\sigma}$ τοιχειώδης όγκος $\mathrm{\sigma}$ το επίπεδο xy

στοιχειώδες χωρίο στο επίπεδο uv $\mathrm{d}f(z_0):=$ στο οποίο μετασχηματίζεται το $\mathrm{d}z$ μέσω της απεικόνισης f

$$df(z_0) = |f'(z_0)| e^{i\operatorname{Arg} f'(z_0)} dz \quad (f'(z_0) \neq 0)$$

Μέρος ΙΙ

Κεχαγιάς

Σπιτεργασίες λιγότερες από πέρσι, για 1 βαθμό, αφορούν μόνο το μέρος του Κεχ.

- 1. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
- 2. ΒΑΣΙΚΕΣ ΜΙΓΑΔΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
- 3. ΑΚΟΛΟΥΘΙΕΣ, ΣΕΙΡΕΣ
- 4. ΔΥΝΑΜΟΣΕΙΡΕΣ
- 5. ΑΡΜΟΝΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
- 6. ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ με μερικές παραγώγους

Μιγαδικοί αριθμοί

$$\begin{split} z = & x + iy \in \mathbb{C} \\ & x, y \in \mathbb{R} \qquad i^2 = -1 \end{split}$$

$$\begin{aligned} z_1 &= x_1 + iy_1 \\ z_2 &= x_2 + iy_2 \\ z_1 + z_2 &= (x_1 + x_2) + i(y_1 + y_2) \\ z_1 \cdot z_2 &= (x_1 + iy_1) \cdot (x_2 + iy_2) \\ &= x_1 x_2 + iy_1 y_2 + ix_1 y_2 + ix_2 y_1 \\ &= (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1) \\ \frac{z_1}{z_2} &= \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy^2)(x_2 - iy_2)} \\ &= \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{-x_1 y_2 + x_2 y_1}{x_2^2 + y_2^2} \\ z &= x + iy \\ \bar{z} &= x - iy \\ \mathbf{Re}(z) &= x \in \mathbb{R} \\ \mathbf{Im}(z) &= y \in \mathbb{R} \end{aligned}$$

$$r=\sqrt{x^2+y^2}=\sqrt{z\bar{z}}=|z|\leftarrow \text{μέτρο του }z$$
 γενίκευση της απόλυτης τιμής (δηλ. $z=x\in\mathbb{R},\ |z|=\sqrt{x^2}=|x|$)

$$z = x + iy = r \cdot \cos \theta + ir \sin \theta$$
$$= r(\cos \theta + i \sin \theta)$$
$$= r \cdot e^{i\theta} \quad \text{(Euler)}$$

$$\begin{split} e^{i\theta} &= \cos\theta + i\sin\theta \, \text{dist} \\ e^{i\theta} &= 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \dots \\ &= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots\right) \\ &= \cos\theta + i\sin\theta \end{split}$$

Επίσης:

$$z = x + iy$$

$$= \sqrt{x^2 + y^2} \left(\frac{x}{\sqrt{x^2 + y^2}} + i \frac{y}{\sqrt{x^2 + y^2}} \right)$$

$$= r \cdot (\cos \theta + i \sin \theta)$$

$$= r \cos \theta + ir \sin \theta$$

$$\begin{split} z_1 &= 1 + i = \sqrt{2} \cdot e^{i\pi/4} \\ r_1 &= \sqrt{1^2 + 1^2} = \sqrt{2} \\ \theta_1 &= \arctan\frac{1}{1} = \frac{\pi}{4} \\ \\ z_2 &= -1 - i = \sqrt{2}e^{i5\pi/4} = \sqrt{2}e^{i\cdot\left(-3\pi/4 = \sqrt{2}e^{i13\pi/4}\right)} \\ r_2 &= \sqrt{(-1)^2 + (-1)^2} = \sqrt{2} \\ \theta_2 &= \arctan\frac{-1}{-1} = \frac{\pi}{4} \\ \\ \mathrm{Fevik\'a:} -1 - i &= \sqrt{2}e^{i\left(\frac{5\pi}{4} + 2k\pi\right)}, \quad k \in \mathbb{Z} \end{split}$$

Συναρτήσεις

$$\mathbb{C} \to \mathbb{R}$$

$$z = x + iy$$

$$\operatorname{mod}(z) = \sqrt{x^2 + y^2}$$

$$\operatorname{Arg}(z) = \begin{cases} \theta_0 & \text{an } z \in 1^\circ \text{ tetarthissign} \\ \pi - \theta_0 & \text{an } z \in 2^\circ \text{ tetarthissign} \\ \pi + \theta_0 & \text{an } z \in 3^\circ \text{ tetarthissign} \\ 2\pi - \theta_0 & \text{an } z \in 4^\circ \text{ tetarthissign} \end{cases} \theta_0 = \arctan\left(\left|\frac{y}{x}\right|\right)$$

$$\forall z \in \mathbb{C} - \{0\} \text{ } \operatorname{Arg}(z) \in [0, 2\pi)$$

Ορίζω και την πλειότιμη συνάρτηση $\arg(z) = \left\{ \mathrm{Arg}\left(z\right) + 2k\pi, \; k \in \mathbb{Z} \right\}$

$$z = x + iy = \operatorname{mod}(z) \cdot e^{i\operatorname{Arg}(z)}$$

$$= \operatorname{mod}(z) \cdot e^{i\left(\operatorname{Arg}(z) + 2k\pi\right)}$$

$$z_1 = \operatorname{mod}(z_1)e^{i\operatorname{Arg}(z_1)}$$

$$z_2 = \operatorname{mod}(z_2)e^{i\operatorname{Arg}(z_2)}$$

$$z_1z_2 = \operatorname{mod}(z_1)\operatorname{mod}(z_2)e^{i\cdot\left(\operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)\right)}$$

$$\operatorname{Arg}(z_1z_2) \neq \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) \operatorname{eneidh}$$

$$\operatorname{Arg}\left(e^{i\frac{7\pi}{4}}e^{i\frac{7\pi}{4}}\right) = \frac{7\pi}{4} + \frac{7\pi}{4} - 2\pi$$
Γενικά, αν $A + B = \{a + b : a \in A, b \in B\}$, τότε:

Όμως:

$$arg(z^z) = arg(z) + arg(z)$$

 $\neq 2arg(z)$

 $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$

διότι:

$$A = \{a_1, a_2, \dots\}$$

$$B = \{b_1, b_2, \dots\}$$

$$A + B = \{a + b : a \in A, b \in B\}$$

$$A + A = \{a_1 + a_2 : a_1, a_2 \in A\}$$

$$2A = \{2a : a \in A\}$$

$$A = \{1, 2, 3\}$$

$$B = \{4, 5\}$$

$$A + B = \{a + b : a \in A, b \in B\} = \{1 + 4, 1 + 5, 2 + 4, 2 + 5, 3 + 4, 3 + 5\} = \{5, 6, 7, 8\}$$

$$A + A = \{2, 3, 4, 5, 6\}$$

$$2A = \{2, 4, 6\}$$

η-οστές ρίζες

$$z = a^{1/n} \iff z^n = a$$

 Δ ηλ. ποιο z ικανοποιεί αυτή

$$a = |a|e^{i\theta}$$
$$z = re^{i\phi}$$

(Όμως αρκεί να πάρω $k \in \{0, 1, \dots, N-1\}$)

$$a^{1/n} = \left\{ \sqrt[n]{|a|} e^{i\theta/n}, \sqrt[n]{|a|} e^{\frac{i\theta+2\pi}{n}}, \dots \right\}$$

Παρ.
$$a^{1/2} = 1^{1/2}$$

$$a = 1 = 1 \cdot e^{i0} \quad |a| = 1, \theta = 0$$

$$u_0 = \sqrt[2]{1} \cdot e^{i\left(\frac{0+2\cdot0\cdot\pi}{2}\right)} = e^{i0} = 1$$

$$u_1 = \sqrt[2]{1} \cdot e^{i\left(\frac{0+2\cdot\pi}{2}\right)} = e^{i\pi} = -1$$

Παρ.
$$a^{1/3} = 1^{1/3} = z$$

$$a = 1 = e^{i0}, |a| = 1, \theta = 0$$

$$u_1 = e^{i2\pi/3} = \frac{-1 + i\sqrt{3}}{2}$$

$$u_2 = e^{i4\pi/3} = \frac{-1 - i\sqrt{3}}{2}$$

Διαφορετικά

$$1^{1/3} = z \iff 1 = z^3$$

$$\iff z^3 - 1 = 0$$

$$\iff (z - 1)(z^2 + z + 1) = 0$$

$$\iff (z - 1)\left(z + \frac{1 - i\sqrt{3}}{2}\right)\left(z + \frac{1 + i\sqrt{3}}{2}\right) = 0$$

Παρ.
$$1^{1/11} = z \iff 1 = z^{11}$$

$$\iff z^{11} - 1 = 0$$

 $\iff (z - 1)(z^{11} + z^{10} + \dots + z^{1} + 1) = 0$

$$\{u_09, u_1, \dots, u_{10}\}$$

Βασικές μιγαδικές συναρτήσεις

$$e^z$$
, $\log(z)$

$$e^z \stackrel{\text{ορισμός}}{=} e^x e^{iy} = e^x (\cos y + i \sin y)$$

Ήξερα
$$e^x: \mathbb{R} \to \mathbb{R}$$
 $e^{iy}: \mathbb{R} \to \mathbb{C}$

Τώρα η νέα συνάρτηση $e^z:\mathbb{C}\to\mathbb{C}$ και **γενικεύει** τις δύο προηγούμενες συναρτήσεις.

Παρ.

$$e^{1+i} = ee^{i} = e \cdot (\cos 1 + i \sin 1)$$
$$= e \cdot \cos 1 + i \cdot e \cdot \sin 1$$
$$\operatorname{Re}\left(e^{1+i}\right) = e \cos 1$$
$$\operatorname{Im}\left(e^{1+i}\right) = e \sin 1$$

$$\log(e) = 1$$
$$\log(-1) = \log\left(e^{i(\pi+2k\pi)}\right) = i(\pi + 2k\pi)$$

Δηλ. η λογαριθμική συνάρτηση είναι πλειότιμη.

$$z = |z|e^{i\theta}$$
$$\log(z) = \ln(|z|) + i\theta$$

Ορίζω

Πλειότιμη
$$\log(z) = \ln(|z|) + i arg(z)$$

Μονότιμη $\operatorname{Log}(z) = \ln \left(|z| \right) + i \operatorname{Arg}\left(z \right)$ είναι ο πρωτεύων κλάδος της πλειότιμης

$$\log(1+i) = \log\left(\sqrt{2}e^{i\left(\pi/4 + 2k\pi\right)}\right)$$
$$= \log\left(\sqrt{2}\right) + i\left(\frac{\pi}{4} + 2k\pi\right)$$

$$\left\{ \frac{1}{2}\ln(2) + i\left(\frac{\pi}{4} + 2k\pi\right) \right\}$$

Από σήμερα: ${\rm Arg}\,(z)\in (-\pi,\pi]$ Πριν 7 ημέρες: $e^z=e^{x+iy}=e^x \overline{\cos y+i\sin y}$

Σήμερα:
$$\exp(z) \stackrel{\text{op}}{=} 1 + z + \frac{z^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

- Θ. Η $\exp(z)$ είναι παραγωγίσιμη σε κάθε $z\in\mathbb{C}$ και ικανοποιεί:
 - $(1) \ \forall z : (\exp(z))' = \exp(z)$
 - (2) $\forall z_1, z_2 : \exp(z_1 + z_2) = \exp(z_1) \exp(z_2)$
 - (3) $\forall \theta \in \mathbb{R} : \exp(i\theta) = \cos \theta + i \sin \theta$

Απόδ.

(1)

$$(\exp(z))' = \left(1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots\right)'$$
$$= 0 + 1 + z + \frac{z^2}{2!} + \dots = \exp(z)$$

(2)
$$g(z) = \exp(z) \exp(\zeta - z)$$

$$\frac{dg}{dz} = \exp(z) \exp(\zeta - z) + \exp(z) \exp(\zeta - z)(-1) = 0$$

$$\implies g(z) = c \implies c = g(0) = \exp(\zeta)$$

$$\implies \exp(\zeta) = g(z) = \exp(z) \exp(\zeta - z)$$

Θέτω: $z=z_1,\ \zeta=z_1+z_2$

Οπότε:

$$\exp(z_1 + z_2) = \exp(z_1) \cdot \exp(z_2)$$

(3)

$$\exp(i\theta) = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \dots$$
$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + i \cdot \left(\theta - \frac{\theta^3}{3!} + \dots\right)$$
$$= \cos\theta + i\sin\theta$$

 $\exp(z) e^z$

$$\exp(1+i)=1+(1+i)+rac{(1+i)^2}{2!}+\dots$$

$$e^{1+i}=1+(i+1)+\dots$$
 ή ο αρ. $e=2.718$ υψωμένος στη μιγαδική δύναμη $1+i$

 ${\sf P.}$ Η $\exp(z)$ είναι περιοδική με περίοδο $2\pi i$

Απόδ.

$$\exp(z + 2\pi i) = \exp(z) \exp(2\pi i) = \exp(z)$$

Η εικόνα του συνόλου $A\subseteq\mathbb{C}$ υπό την συνάρτηση f(z) Δηλ.

$$f(A) = \{ w = f(z), z \in A \}$$

Παρ. Να δειχθεί ότι $\exp(\mathbb{C}) = \mathbb{C} - \{0\}$

Διότι: έστω $w=re^{i\phi}\in\mathbb{C}-\{0\}.$

Θα βρω $z = \rho e^{i\theta} = x + iy$ τ.ώ: $\exp(z) = w$.

$$\exp(z) = \exp(x + iy) = \exp(x) \exp(iy)$$

$$w = re^{i\phi}$$

$$\exp(x) = |\exp(z)| = |w| = r \implies \boxed{x = \ln(r)}$$

$$Arg (exp(z)) = Arg (w)$$

$$Arg (exp(z)) = Arg (exp(x) exp(iy)) = y$$

$$\operatorname{Arg}(w) = \operatorname{Arg}(re^{i\phi}) = \phi$$

$$\operatorname{Arg}\left(\exp(z)\right) = \operatorname{Arg}\left(w\right) \implies \boxed{y = \phi}$$

Τελικά $z=x+iy=\ln(r)+i\phi$ ικανοποιεί $\exp(z)=re^{i\phi}=w$. Άρα $\exp(\mathbb{C})=\mathbb{C}-\{0\}$ Στην πραγματικότητα, δεν χρειάζομαι όλο το \mathbb{C} διότι:

$$\exp(U) = \mathbb{C} - \left\{0\right\}, \quad \text{\'otou} \ U = \left\{x + iy : x \in \mathbb{R}, \ y \in (-\pi, \pi]\right\}$$

