Massenspektrometer

Tin Vrkic (2459981), Mika Nock (248486404.11.2024

Zusammenfassung

Unter der Massenspektrometrie versteht man ein Verfahren zur Messung der Masse von Atomen und Molekülen. Dazu müssen im zu untersuchenden Gas Ionen erzeugt werden, die sich dann durch das Massenspektrometer selbst zu einem Detektor bewegen. Das Massenspektrometer filtert hierbei die Teilchen, die nicht die gewollte Masse besitzen. Mit verschiedenen Massenspektrometern können unterschiedliche Auflösungsvermögen erreicht werden, um damit entweder breite Massenspektren aufzunehmen und so zu verstehen, welche Atome und Moleküle in einem Gas vorhanden sind, oder aber sehr enge Spektren aufzunehmen, um so die Häufigkeit bestimmmter Atome bzw. Moleküle nachzuvollziehen.

Inhaltsverzeichnis

1	Vorbereitung			3
	1.1	Theoretische Grundlagen		3
		1.1.1	Ionenquellen	3
		1.1.2	Elektronenstoß Ionisation	3
		1.1.3	Vakuumpumpen	6
		1.1.4	Ionisationsmanometer	7
		1.1.5	Massenspektrometer	7
	1.2	Versuo	chsdurchführung	9
		1.2.1	Aufgabe 1: Einführung	
		1.2.2	Aufgabe 2: Auftrittsenergie von Argon	
		1.2.3	Aufgabe 3: Dissoziationsenergien von Stickstoff	9
		1.2.4	Aufgabe 4: qualitative Analyse	10
		1.2.5	Aufgabe 5: Qualitative Analyse	
		1.2.6	Aufgabe 6: Thermische Zersetzung	
		1.2.7	Aufgabe 7	11
2	${ m Lit}\epsilon$	eratur		12

1 Vorbereitung

Im Abschnitt Theoretische Grundlagen wollen wir verstehen, wie wir die nötigen Ionen erzeugen und im Massenspektrometer filtern. Dazu beleuchten wir die Funktionsweise des Massenspektrometers, welches in diesem Versuch zum Einsatz kommt, sowie die Unterschiede zu anderen Arten von Massenspektrometern. Im Abschnitt Experimenteller Aufbau beschäftigen wir uns mit dem Aufbau und Zusammenspiel der Geräte, gehen auf die Funktionsweise der Drehschieberund Turbomolekularpumpe zur Erzeugung eines Vakuums im Stoßraum ein und betrachten den Detektor, der die Ionen nach dem Durchlauf des Massenspektrometers detektieren und ein nutzbares Signal ausgeben soll.

1.1 Theoretische Grundlagen

1.1.1 Ionenquellen

Für unsere Belange unterscheidet man im Wesentlichen 3 Arten, Ionen zu erzeugen, von denen in diesem Versuch lediglich eine Verwendung findet, nämlich die Stoßionisation.

- Stoßionisation: Hierbei wird das zu analysierende Gas in einen evakuierten Stoßraum eingeleitet und mit Elektronen, Photonen oder Ionen beschossen, wodurch die Atome bzw. Moleküle des Gases positiv oder negativ ionisiert werden ([1] S.6).
- Thermische Oberflächenionisation: Es wird der Langmuir-Effekt ausgenutzt, wonach adsorbierte neutrale Atome und Moleküle von einer heißen Metalloberfläche mit großer Wahrscheinlichkeit als positive oder negative Ionen abdampfen ([1] S.6).
- Feldionisation: In starken inhomogenen elektrischen Feldern entstehen aus neutralen Atomen und Molekülen positive Ionen auf Grund des Tunneleffektes ([1] S.6).

1.1.2 Elektronenstoß Ionisation

In Abb. 1 sieht man den Ionisierungsraum einer Elektronenstoß-Ionenquelle. Hier werden aus der Kathode Elektronen herausgelöst und mit der Beschleunigungsspannung in den evakuierten Stoßraum beschleunigt. Von oben wird das zu untersuchende Gas eingeleitet, die Elektronen stoßen mit den Atomen / Molekülen und erzeugen so auf unterschiedliche Weisen Ionen, die dann nach unten aus den Stoßraum herausbewegen. Der Impulsübertrag durch die Stöße in senkrechter Richtung zur Bewegungsrichtung der Ionen ist vernachlässigbar, da die Masse der Elektronen deutlich niedriger ist als die der zu ionisierende Teilchen. Man kann einen Totalionenstrom I definieren:

$$I = N \cdot Q \cdot p \cdot l \cdot i$$

Abbildung 1: Ionisierungsraum einer Elektronenstoß-Ionenquelle

Das Produkt $N \cdot Q$ ist die sog. differentielle Ionisierung. Die Größe gibt an, wie viele Ionen ein Elektron pro cm seines Weges über einen Querschnitt von 1cm^2 durch ein Gas mit Druck von 1 Torr bildet. Weiter ist p der Gasdruck, unter dem das zu untersuchende Gas in den Stoßraum geleitet wird, l die Länge des Stoßraums in Flugrichtung der Elektronen und i der Elektronenstrom.

Grundsätzlich gibt es für Atome sowie Moleküle eine Mindestenergie, bei der Ionen überhaupt erst auftreten. Das ist die sog. Auftrittsenergie, auf englisch "appearance potential", die bei Atomen gleich der Ionisierungsenergie ist, bei Molekülen analog der nötigen Energie, ein Elektron aus dem höchsten Molekül-Orbital zu entfernen.

Es gibt einige verschiedene Arten, wie Ionen durch Stöße erzeugt werden. Hauptsächlich unterscheidet man, ob Atome oder Moleküle mit den Elektronen stoßen. Diese sollen im folgenden kurz erklärt werden.

Atome Atome sind im Vergleich zu Molekülen recht einfach zu verstehen. Die Stoßelektronen können, je nach Energie und verfügbaren Elektronen im Atom, auch mehr als nur 1 Elektron auslösen. In Abb. 2 ist die Ionenausbeute in Abh. von der Elektronenenergie am Beispiel von Argon aufgezeichnet. Man sieht das appearance potential bei knapp unter 12 eV, dann bis etwa 13 eV einen sehr steilen Anstieg und ab dann einen linearen Anstieg. Die Kurve erreicht dann, auch bei anderen Atomen und Molekülen, im Bereich von 40 bis 90 eV ein Maximum, um dann ab 100 eV wieder langsam abzufallen. Mit Erhöhung der Elektronenenergie steigt nämlich die Ionisierungswahrscheinlichkeit, aber das tut sie nicht für immer höhere Energien, denn ab etwa 100 eV ist die Wechselwirkungsdauer der Stoßelektronen mit den Atomelektronen zu kurz, und die Ionenausbeute sinkt wieder. Es können aber auch statt nur einem, zwei oder drei Elektronen aus dem Argon-Atom ausgelöst werden. Die Energien, die dafür nötig sind, sind entsprechend höher, nämlich 43.6 eV und 88.4 eV. Wird jedoch so ein stärker ionisiertes Atom detektiert, erscheint es nicht bei einer Atommasse von 40 unit. Da das Quadrupol-Massenspektrometer über die angelegte Spannung das Verhältnis e/m filtert und auf diese Weise die Massen misst, erscheinen doppelt bzw. dreifach ionisierte Argon-Atome unter der halben bzw. einem drittel der tatsächlichen Masse. Ist die Energie für die dreifache Ionisierung von Argon erreicht, erscheinen auf dem Schirm also drei Linien, je eine bei den Massen 40 unit (Ar^+) , 20 unit (Ar^{2+}) und 40/3 unit (Ar^{3+}) .

Abbildung 2: Ionenausbeute in Abh. der Elektronenergie am Beispiel von Argon

Moleküle Da Moleküle aus 2 oder mehr Atomen bestehen, und diese Atome untereinander Bindungen eingehen, gibt es hier einige Möglichkeiten der Ionenentstehung. Es ist noch keinem theoretischen Ansatz gelungen, den Zusammenhang zwischen Ionisierungswahrscheinlichkeit und Stoßenergie über einen breiten Energiebereich korrekt zu beschreiben, lediglich für einige zweiatomige Moleküle lässt sich das berechnen. Es existieren diverse Prozesse, die bei Molekülen Ionen hervorrufen:

- Der einfachste Prozess ist analog zu dem im Atom: Das Stoßelektron entfernt das am schwächsten gebundene Elektron aus dem höchsten Molekül-Orbital. Die notwendige Mindestenergie wird hier ebenfalls als appearance potential bezeichnet und ist von Molekül zu Molekül unterschiedlich.
- Bruchstückionen entstehen, wenn das Molekül aufgrund des Stoßes dissoziiert. Der Stoßpartner kann das Molekül zunächst anregen, dessen Atome sich vor dem eigentlichen Zerfall verlagern können (intramolekulare Umlagerungen), wodurch Bruchstückionen entstehen, die durch simplen Zerfall des Moleküls nicht entstehen könnten. Eine Wechselwirkung mit neutralen (und u.U. auch angeregten) Molekülen kann Ionen hervorrufen, die schwerer sind als das ursprüngliche Ion (Ion-Molekül-Reaktion). Generell hängt der Prozess der Dissoziation stark vom filigranen Zusammenspiel von Atomabstand im Molekül und Energie des Stoßpartners ab. Die Atome im Molekül sind nicht

starr, sondern sie können gegeneinander schwingen. Die Energie des Stoßelektrons regt dann die Atombindungen an. Ein Elektron kann dann z.B. ein Wasserstoffmolekül dissoziieren, da der Abstand der beiden Wasserstoffatome groß war und sie schwächer gebunden waren, während ein anderes Elektron der selben Energie ein anderes Wasserstoffmolekül nicht dissoziieren kann, da der Atomabstand sehr viel kleiner war und sie damit stärker gebunden waren. Daran ist zu erkennen, warum es so schwer ist, für mehratomige Moleküle präzise Theorien zur Ionisierungswahrscheinlichkeit zu formulieren.

 Negative Ionen können entstehen, wenn das Molekül das Stoßelektron einfängt, statt dass letzteres ein Elektron herausschlägt oder wenn Bruchstückionen negativ geladen sind.

1.1.3 Vakuumpumpen

Um das Massenspektrometer zu betreiben soll ein Hochvakuum von ca. $10^{-7}mbar$ erzeugt werden. Durch dieses werden Ablenkungen durch Teilchen im Restgas minimiert und ein Durchbrennen einiger Bauteile verhindert. Um ein solches Vakuum zu erhalten ist eine Hintereinanderschaltung zweier Pumpen nötig.

Drehschieberpumpe (DSP) Um ein Vorvakuum von ca. $3 \cdot 10^{-2}mbar$ zu erzeugen, wird zunächst eine Drehschieberpume benötigt. Eine Skizze des Aufbaus findet sich in Abb. 3. Die federgelagerten Schieber (3 und 4) und der rotierende Zylinder (2) schließen immer mit dem äußeren Volumen ab und erzeugen so begrenzte Bereiche. Durch Rotation des Zylinders (2) wird Luft auf der Einlassseite (blauer Pfeil) angesaugt. Dreht sich der Zylinder weiter, bis der gegenüberliegende Schieber die Einlassöffnung überschritten hat, bilden beide Schieber ein abgeschlossenes Volumen. Sobald der erste Schieber die Auslassseite (roter Pfeil) passiert, wird das eingeschlossene Volumen herausgepresst. Währenddessen beginnt der Prozess auf der anderen Seite von vorne.

Aufgrund der Funktionsweise wird klar, warum nur ein Vorvakuum von ca. $3\cdot 10^{-2}mbar$ erzeugt werden kann. Daher wird zur Erzeugung geringerer Drücke die Turbomolekularpumpe benötigt.

Turbomolekularpumpe (TMP) Mittels der Turbomolekularpumpe wird nun der eigentlich benötigte Druck erreicht. Diese ist in Abb. 4 gezeigt. Sie besteht aus einem Stator und einem Rotor, an dem mehrere Schichten von Rotorblättern angebracht sind. Die Kipprichtung der Rotoblätter wechselt sich hierbei zwischen benachbarten Schichten ab. Wird nun der Rotor bewegt, ergibt sich für die Teilchen in der Pumpe ein Impulsübertrag, der insgesamt in Pumprichtung zeigt und somit zu einem Teilchenstrom führt. Um einen nennenswerten Impulsübertrag zu erreichen müssen sich die Rotorblätter mindestens genauso schnell wie die Gasteilchen bewegen.

Abbildung 3: Schemazeichnung Drehschieberpumpe [2]

Abbildung 4: Turbomolekularpumpe [3]

1.1.4 Ionisationsmanometer

Da es sich in diesem Versuch um ein Hochvakuum handelt wird der herrschende Druck mittels eines Glühkathoden-Ionisationsvakuumeters vom Typ Bayard-Alpert ermittelt. Eine schematische Zeichnung ist zu sehen in Abb. 5.

In diesem werden an der Kathode Elektronen emittiert, die in Richtung der Anode beschleunigt werden. Die Elektronen sind nun in der Lage Restgasteilchen zu ionisieren, die vom negativ geladenen Ionenfänger angezogen werden. Die Neutralisierung eines Ions führt zu einem Strom, dessen Stärke von der Dichte des Restgases abhängt. Somit kann der Druck über die Messung dieses Stromes bestimmt werden.

1.1.5 Massenspektrometer

Beim vorliegenden Massenspektrometer vom Typ MASSTORR FX handelt es sich um ein Quadrupol-Massenspektrometer. Dieses besteht aus vier parallel angeordneten Stabelektroden, von denen jeweils zwei Gegenüberliegende

Abbildung 5: Schemazeichnung Ionisationsvakuumeter [4]

Abbildung 6: Schemazeichnung des Massenspektrometers [1]

miteinander verbunden sind. An ein Paar von Elektroden wird das Potenzial $\phi = U + V \cos \omega t$ und an das andere $-\phi$ angelegt. Ein hindurchfliegendes Ion wird nun abhängig von seiner spezifischen Ladung $\frac{q}{m}$ und vom Verhältnis $\frac{U}{V}$ auf stabile bzw. instabile Bahnen abgelenkt. So kann beeinflusst werden, Teilchen welcher Masse am Detektor registriert werden und welche vorher mit den Elektroden kollidieren. es lässt sich hierbei nachweise, dass die Ionen den Mathieu'schen Differentialgleichungen folgen.

1.2 Versuchsdurchführung

1.2.1 Aufgabe 1: Einführung

Im ersten Teil des Versuches soll sich zunächst mit dem Massenspektrometer vertraut gemacht werden, indem ein Spektrum des Restgases bei Standardbedingungen aufgenommen wird (Elektronenenergie E=65eV, Elektronenstrom $I_e=1mA$). Außerdem soll versucht werden, Bestandteile mit geringerem Partialdruck nachzuweisen. Da es sich beim Restgas um Luft handelt werden stark ausgeprägte Linien der Massen $m \in \{18, 28, 32, 44\}$ u erwartet.

Außerdem soll für eine der dominanten Linien der Partialdruck p in Abhängigkeit vom Elektronenstrom I_e bestimmt werden. Hierfür wird der Ionenstrom I umgerechnet, da p von diesem abhängt. Es wird erwartet, dass eine Verstärkung von I_e zu einer Verstärkung von I führt, da mehr Elektronen mehr Moleküle ionisieren können.

Abschließend wird anhand einer Linienbreite im niedrigen und einer im hohen Massenbereich das Auflösungsvermögen des Spektrometers in Abhängigkeit von der gemessenen Masse bestimmt. Wir wählen hierfür die %-Linienbreite-Definition, da wir so das Auflösungsvermögen anhand einer einzelnen Linie bestimmen können. Die genaue Prozentzahl mit der gearbeitet wird, soll noch mit dem Tutor abgesprochen werden.

1.2.2 Aufgabe 2: Auftrittsenergie von Argon

Es soll nun mithilfe des Massenspektrometers die Auftrittsenergie von Argon bestimmt werden, die im Fall von Atomen mit der Ionisierungsenergie übereinstimmt. Zunächst wird bei ausgeschalteten Filamenten Argon in das Vakuum eingelassen, bis zu einem Maximaldruck von ca. $5 \cdot 10^{-6}$. Es wird nun dauerhaft der Massenbereich von 40u bei verschiedenen Elektronenenergie betrachtet. Sind die Elektronen nun schnell genug um Argon zu ionisieren, ist ihre Energie also groß genug, werden Argon Atome detektiert. Reicht die Energie sogar aus um A^{++} zu erzeugen werden Ionen nachgewiesen, deren spezifische Ladung nun doppelt so groß ist. Sie verhalten sich wie einfach geladene Ionen der Masse 20u. Der Messbereich muss also entsprechend angepasst werden.

1.2.3 Aufgabe 3: Dissoziationsenergien von Stickstoff

Stickstoff ist eines der wenigen Elemente des Periodensystems, das natürlich vorwiegend molekular statt atomar auftaucht, d.h. als N_2 -Molekül. Es gibt bei der Ionisierung die folgenden zwei Prozesse:

$$N_2 + e^- \to N_2^+ + 2e^-$$

 $N_2 + e^- \to N + N^+ + 2e^-$ (1)

Das Molekül kann also einerseits einfach ionisiert werden und andererseits in ein neutrales und ein einfach ionisiertes Atom dissoziieren. Wir erwarten also im Massenspektrum zwei Striche: einen bei m=14 (Masse des atomaren Stickstoff-Ions N^+) und einen bei m=28 (Masse des molekularen Stickstoff-Ions N_2^+).

Ziel der Aufgabe ist es jetzt, die Dissoziationsenergien des Stickstoffmolekül-Ions und des neutralen Stickstoffmoleküls zu bestimmen. Die Dissoziationsenergie beschreibt dabei die Energie, die notwendig ist, die Bindungen im Molekül aufzubrechen. Diese kann nicht direkt gemessen werden, sondern wird stattdessen über die verschiedenen Auftrittsenergien bestimmt.

 neutrales Stickstoffmolekül: Um die Dissoziationsenergie von neutralen Stickstoffmolekülen zu bestimmen, muss der zweite Prozess von oben ablaufen. Aus der Auftrittsenergie von atomaren Stickstoff-Ionen, die man messen kann, und der Ionisierungsenergie von atomarem Stickstoff, kann man die Dissoziationsenergie von neutralen Stickstoffmolekülen über die folgende Formel berechnen:

$$E_D(N_2) = E_A(N^+) - E_I(N)$$
 (2)

Die Ionisierungsenergie ist in der Vorbereitung gegeben als $E_I(N)=14.5\,eV$

 Stickstoffmolekül-Ion: Die Dissoziationsenergie von Stickstoffmolekül-Ionen berechnet man aus der Differenz der Auftrittsenergien von atomaren und molekularen Stickstoff-Ionen. Mathematisch sieht das aus wie folgt:

$$E_D(N_2^+) = E_A(N^+) - E_A(N_2^+) \tag{3}$$

Es müssen also lediglich $E_A(N^+)$ und $E_A(N_2^+)$ gemessen werden, um beide Dissoziationsenergien zu bestimmen. Neben der eigentlichen Messung soll außerdem ein Untergrund in Abhängigkeit von der Elektronenenergie bestimmt werden, sodass dessen Einfluss im Nachhinein bestimmt werden kann.

1.2.4 Aufgabe 4: qualitative Analyse

Im Gegensatz zu Aufgabe 1 soll nun der Mengenanteil der verschiedenen Stoffe im Restgas bestimmt werden. Es wird erneut ein Untergrund ermittelt und die Messkammer bis zum Maximaldruck belüftet. Nun wird der Partialdruck des höchsten Peaks einer Gruppe gemessen und mit der relativen Empfindlichkeit des Spektrometers verrechnet. Außerdem soll die Summe der gewichteten Partialdrücke mit dem Wert der Ionisationsmessröhre verglichen und die Genauigkeit der Messung mittels Literaturwerten ermittelt werden.

1.2.5 Aufgabe 5: Qualitative Analyse

In dieser Aufgabe soll qualitativ ein unbekanntes Gas C_xH_y untersucht werden. Dazu lassen wir auch dieses bis zum Maximaldruck in die Kammer ein und nehmen dann Spektren bei den Energien $E=\{15\,\mathrm{eV},30\,\mathrm{eV},65\,\mathrm{eV}\}$ auf. Mithilfe der Cracking-Pattern bestimmen wir dann die Gasart.

Abbildung 7: Cracking-Pattern für verschiedene Gase

1.2.6 Aufgabe 6: Thermische Zersetzung

Mittels der vorhandenen Tigelheizung soll eine Probe $CaCO_3$ bis zu ihrem Zersetzungspunkt bei 500C oder einem Maximaldruck von $5 \cdot 10^{-7}$ erhitzt werden. Es handelt sich hierbei um den Prozess des Kalkbrennens, bei dem CO_2 sowie Branntkalk CaO entsteht. Beim Abkühlen soll der Partialdruck der Gasförmigen Komponente bestimmt werden, bei der es sich vermutlich um CO_2 handelt. Zur genauen Auswertung dieses Versuches wird Rücksprache mit dem Tutor gehalten, da keine Gleichung bekannt ist, mit der eine Bestimmung der Enthalpie in dieser Situation möglich wäre.

1.2.7 Aufgabe 7

Es sollen nun erneut zwei Restgasspektren aufgenommen werden. Bei einem davon soll sich im oberen Tank flüssiger Stickstoff befinden um eine möglichst niedrige Temperatur in der Messkammer zu erzeugen.

Es wird erwartet, dass sich weniger Ionen im Spektrum zeigen, da Teile des Restgases am Tank kondensieren könnte und so kein Nachweis Dieser mehr möglich ist.

2 Literatur

Literatur

- [1] Literatur zu Massenspektrometer in ILIAS
- [2] https://de.wikipedia.org/wiki/Drehschieberpumpe (zuletzt abgerufen am 29.10.24)
- [3] https://de.wikipedia.org/wiki/Turbomolekularpumpe (zuletzt abgerufen am 29.10.24)
- [4] https://de.wikipedia.org/wiki/Ionisations-Vakuummeter (zuletzt abgerufen am 29.10.24