Índice general

1	Va	riables aleatorias discretas	3		
1.	Distribución Binomial				
	1.1.	Descripción	4		
		1.1.1. Características	4		
		1.1.2. Ejemplos	5		
		1.1.2.1. Lanzamiento de monedas	Ę		
		1.1.2.2. Apuestas a la ruleta	6		
	1.2.	Condición de cierre	6		
	1.3.	Esperanza	7		
	1.4.	Variancia y desvió estándar			
2.	Dist	tribución Geométrica	8		
	2.1.	Descripción	8		
		2.1.1. Características	8		
		2.1.2. Ejemplos	8		
	2.2.	Condición de cierre	8		
	2.3.	Esperanza	8		
		Variancia y desvió estándar			
3.	Dist	tribución Hipergeométrica	9		
		Descripción	ç		
		3.1.1. Características	ç		
		3.1.2. Ejemplos	S		
	3.2.	Condición de cierre			
	3.3.	Esperanza			
		Variancia v desvió estándar			

4.	Dist	tribución de Pascal	10					
	4.1.	Descripción	10					
		4.1.1. Características	10					
		4.1.2. Ejemplos	10					
	4.2.	Condición de cierre	10					
	4.3.	Esperanza	10					
	4.4.	Variancia y desvió estándar	10					
5.	Distribución de Poisson 11							
	5.1.	Descripción	11					
		5.1.1. Características	11					
		5.1.2. Ejemplos	11					
	5.2.	Condición de cierre	11					
	5.3.	Esperanza	11					
	5.4.	Variancia y desvió estándar						
6.	Distribución Multinomial							
	6.1.	Descripción	12					
		6.1.1. Características						
		6.1.2. Ejemplos						
	6.2.	Condición de cierre						
		Esperanza						
		Variancia v desvió estándar	12					

Parte I Variables aleatorias discretas

Distribución Binomial

1.1. Descripción

La distribución binomial es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos.

Es decir, sean \mathcal{E} un experimento, S el espacio muestral asociado a tal experimento y A un suceso del espacio con probabilidad p, entonces X: «Numero de ocurrencias del suceso A en n repeticiones independientes de \mathcal{E} » es una variable aleatoria con distribución binomial.

$$X \sim B(n, p)$$

1.1.1. Características

- $R_X = \{0, \dots, n\}.$
- $P(X = x) = \binom{n}{x} p^x q^{n-x}.$
- $X = \sum_{i=1}^{n} Y$ donde Y es la variable de Bernoulli $Y(y) = \begin{cases} 1 & y = A \\ 0 & y = \overline{A} \end{cases}$.

5

1.1.2. Ejemplos

1.1.2.1. Lanzamiento de monedas

 \mathcal{E} : «Se tira una moneda y se observa el resultado».

•
$$S = \{ \odot, \otimes \}. \# S = 2.$$

•
$$A = \{ \text{Salio cara} \}. \# A = 1. P(A) = \frac{1}{2}.$$

• X: «Cantidad de caras en 3 repeticiones independientes de \mathcal{E} ». $X \sim B\left(3, \frac{1}{2}\right)$.

$$X(x_1, x_2, x_3) = \sum_{i=1}^{3} Y(x_i) = Y(x_1) + Y(x_2) + Y(x_3).$$

•
$$P(X = x) = \binom{3}{x} \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{3-x}$$
. • $R_X = \{0, \dots, 3\}$.

•
$$X(\otimes, \otimes, \otimes) = 0$$
. • $X(\odot, \otimes, \otimes) = 1$.

•
$$X(\otimes, \otimes, \odot) = 1$$
. • $X(\odot, \otimes, \odot) = 2$.

•
$$X(\otimes, \odot, \otimes) = 1$$
. • $X(\odot, \odot, \otimes) = 2$.

•
$$X(\otimes, \odot, \odot) = 2$$
.
• $X(\odot, \odot, \odot) = 3$.

1. ¿Cual es la probabilidad de que salgan 2 caras en 3 repeticiones del experimento?

a)
$$P(X=2) = \binom{3}{2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^{3-2} = 3 \cdot \frac{1}{4} \cdot \frac{1}{2} = \frac{3}{8}$$
.

b) Probabilidad clásica:

•
$$S' = \{(x_1, x_2, x_3) / x_i \in S\}. \#S' = 2^3 = 8.$$

■
$$B = \{\text{Salieron exactamente 2 caras}\} = \{(\otimes, \odot, \odot), (\odot, \otimes, \odot), (\odot, \odot, \otimes)\}.$$

•
$$P(B) = \frac{\#B}{\#S'} = \frac{3}{8}$$
.

2. ¿Cual es la probabilidad de que salgan al menos 2 caras en 3 repeticiones del experimento?

a)
$$P(X \ge 2) = p(2) + p(3) = \frac{3}{8} + {3 \choose 3} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^{3-3} = \frac{3}{8} + 1 \cdot \frac{1}{8} \cdot 1 = \frac{4}{8}$$
.

b) Probabilidad clásica:

•
$$C = \{\text{Salieron exactamente 3 caras}\} = \{(\odot, \odot, \odot)\}. \ \#C = 1.$$

■
$$D = \{\text{Salieron al menos 2 caras}\} = B \cup C$$
. $\#D = 3 + 1 = 4$.

•
$$P(D) = \frac{\#D}{\#S'} = \frac{4}{8}$$
.

1.1.2.2. Apuestas a la ruleta

 \mathcal{E} : «Se tira la bolilla y se observa el resultado».

- $S = \{0, \dots, 36\}. \#S = 37.$
- $A = \{ \text{Sale un numero negro} \}. \#A = 18. P(A) = \frac{18}{37}.$
- X: «Cantidad de números negros en 4 repeticiones independientes de \mathcal{E} ». $X \sim B\left(4, \frac{18}{37}\right)$.
- $P(X = x) = {4 \choose x} \left(\frac{18}{37}\right)^x \left(\frac{19}{37}\right)^{4-x}$. $R_X = \{0, \dots, 4\}$.
- 1. ¿Cual es la probabilidad de que la mayoría sean negros?

a)
$$P(X > 2) = p(3) + p(4) = {4 \choose 3} \left(\frac{18}{37}\right)^3 \left(\frac{19}{37}\right)^{4-3} + {4 \choose 4} \left(\frac{18}{37}\right)^4 \left(\frac{19}{37}\right)^{4-4} = \frac{16399584}{69343957} + \frac{104976}{1874161} \approx 0,2925.$$

- b) Probabilidad clásica:
 - $\#S' = 37^4 = 1874161.$
 - $B = \{\text{Hay exactamente 3 numeros negros}\}. \#B = 4 \cdot 19 \cdot 18^3 = 443232.$
 - $C = \{\text{Hay exactamente 4 numeros negros}\}. \#C = 18^4 = 104976.$
 - $D = \{\text{La mayoria son negros}\} = B \cup C$. #D = 548208.
 - $P(D) = \frac{\#D}{\#S'} = \frac{548208}{1874161} \approx 0,2925.$

1.2. Condición de cierre

1

$$\sum_{i \in R_X} P(X = i) = \sum_{i=0}^{n} \binom{n}{i} p^i q^{n-i} \underbrace{=}_{1} (p+q)^n = 1^n = 1$$

¹Teorema del binomio

1.3. Esperanza

$$\begin{split} E\left(X\right) &= \sum_{i \in R_X} i P\left(X=i\right) = \sum_{i=0}^n i \binom{n}{i} p^i q^{n-i} = \sum_{i=0}^n i \binom{n}{i} p^i \left(1-p\right)^{n-i} = \\ &= \sum_{i=1}^n i \frac{n!}{i! \left(n-i\right)!} p^i \left(1-p\right)^{n-i} = \sum_{i=1}^n \frac{n!}{\left(i-1\right)! \left(n-i\right)!} p^i \left(1-p\right)^{n-i} = \\ &= \sum_{i=0}^{n-1} \frac{n!}{i! \left(n-\left[i+1\right]\right)!} p^{i+1} \left(1-p\right)^{n-(i+1)} = \sum_{i=0}^{n-1} \frac{n \left(n-1\right)!}{i! \left(n-i-1\right)!} p p^i \left(1-p\right)^{n-i-1} = \\ &= n p \sum_{i=0}^{n-1} \frac{(n-1)!}{i! \left(n-i-1\right)!} p^i \left(1-p\right)^{n-i-1} = n p \sum_{i=0}^{n-1} \binom{n-1}{i} p^i \left(1-p\right)^{n-i-1} = \\ &= n p \left[p + (1-p)\right]^{n-1} = n p \end{split}$$

Alternativa Si $X \sim B(n, p)$ podemos expresar a X como suma de n variables de Bernoulli Y_i , es decir: $X = \sum_{i=1}^n Y_i$. Luego:

$$E(X) = E\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} E(Y_i) = \sum_{i=1}^{n} p = np$$

1.4. Variancia y desvió estándar

$$V(Y_i) = E(Y_i^2) - [E(Y_i)^2] = p - p^2 = p(1 - p) = pq$$

$$V(X) = V\left[\sum_{i=1}^n Y_i\right] = \sum_{i=1}^n V(Y_i) = \sum_{i=1}^n pq = npq$$

$$\sigma_X = \sqrt{npq}$$

Distribución Geométrica

- 2.1. Descripción
- 2.1.1. Características
- 2.1.2. Ejemplos
- 2.2. Condición de cierre
- 2.3. Esperanza
- 2.4. Variancia y desvió estándar

Distribución Hipergeométrica

- 3.1. Descripción
- 3.1.1. Características
- 3.1.2. Ejemplos
- 3.2. Condición de cierre
- 3.3. Esperanza
- 3.4. Variancia y desvió estándar

Distribución de Pascal

- 4.1. Descripción
- 4.1.1. Características
- 4.1.2. Ejemplos
- 4.2. Condición de cierre
- 4.3. Esperanza
- 4.4. Variancia y desvió estándar

Distribución de Poisson

- 5.1. Descripción
- 5.1.1. Características
- 5.1.2. Ejemplos
- 5.2. Condición de cierre
- 5.3. Esperanza
- 5.4. Variancia y desvió estándar

Distribución Multinomial

- 6.1. Descripción
- 6.1.1. Características
- 6.1.2. Ejemplos
- 6.2. Condición de cierre
- 6.3. Esperanza
- 6.4. Variancia y desvió estándar