1

ICSE 10,2019

AI21BTECH11016

I. PROBLEM 4-C

1) Draw a circle of radius 4cm. Take a point P outside the circle at a distance of 7cm from the centre of the circle and construct a pair of tangents to the circle from that point. Measure and write down the length of any one tangent.

Solution: The input parameters for this construction are available in TABLE 1.1.

Symbol	Value	Description
r	4	Radius
d	7	Distance of P from the origin
$sin\theta$	$\frac{r}{d}$	Angle between the tangent from P and d
P	0	Origin
О	$\begin{pmatrix} d \\ 0 \end{pmatrix}$	Center of circle
\mathbf{Q}_i	$r \cot \theta \begin{pmatrix} \cos \theta \\ \pm \sin \theta \end{pmatrix}$	Points of Contact

TABLE 1.1

2) Generating the figure using Python.

Fig. 2.1.

Given:

$$OP = 7 (2.1)$$

$$OQ2 = 4 \tag{2.2}$$

3) Consider $\triangle OQ2P$, $\angle OQ2P = \Pi/2$,

⇒From Pythogorean Theorem,

$$OP^2 = OQ2^2 + PQ2^2 (3.1)$$

4) From equations 2.1, 2.2 and 3.1

$$\Rightarrow (7)^2 = (4)^2 + PQ2^2$$
$$\Rightarrow PQ2^2 = 33$$

$$\Rightarrow PQ2 = \sqrt{33}$$
.

... The length of tangent drawn from P onto the Circle is $\sqrt{33}$.