Technische Universität Berlin

Fakultät II – Institut für Mathematik Hoffmann/Karow/Scheutzow WS 07/08 18. Februar 2008

Februar – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorna	me:				
MatrNr.:	Studi	engang	;			
Neben einem handbeschriebenen A4 zugelassen.	Blatt 1	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	sung [°] lö	sbar se	in. Ge	0
Die Bearbeitungszeit beträgt eine Stu	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 13				,	•	
Korrektur						
	1	2	3	4	5	\sum

1. Aufgabe 5 Punkte

Geben Sie jeweils ein Beispiel ohne Begründung für

- a) eine abgeschlossene, aber nicht kompakte Menge $B \subseteq \mathbb{R}^3$,
- b) eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, die nicht stetig ist,
- c) ein Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$, das kein Potential besitzt,
- d) eine stetige Funktion $g:]0,1[\times]0,1[\to\mathbb{R},$ die kein Maximum besitzt,
- e) eine konvexe Menge $K \subseteq \mathbb{R}^2$ mit $K \notin \{\emptyset, \mathbb{R}^2\}$,

an.

2. Aufgabe 8 Punkte

Welche der folgenden Aussagen sind wahr, welche sind falsch? Notieren Sie Ihre Lösungen **ohne** Begründung auf einem separaten Blatt. Für eine richtige Antwort bekommen Sie einen Punkt, für eine falsche verlieren Sie einen Punkt. Die minimale Punktzahl dieser Aufgabe beträgt 0.

- a) Die Fourierreihe an der Stelle t einer stetigen, stückweise monotonen und periodischen Funktion f konvergiert gegen f(t).
- b) Stetige Funktionen, deren Definitionsbereich nicht kompakt ist, besitzen kein Maximum.
- c) Wenn U und V offene Teilmengen des \mathbb{R}^n sind, so ist $U \setminus V$ offen.
- d) Ist $f: \mathbb{R}^n \to \mathbb{R}$ partiell differenzierbar in $x_0 \in \mathbb{R}^n$, so ist f stetig in x_0 .
- e) Jede lineare Abbildung $A: \mathbb{R}^n \to \mathbb{R}^m$ ist total differenzierbar.
- f) Die leere Menge in \mathbb{R}^3 ist kompakt.
- g) Sei $\emptyset \neq G \subset \mathbb{R}^3$ offen. Ein differenzierbares Vektorfeld $\vec{v}: G \to \mathbb{R}^3$ besitzt genau dann ein Potential, wenn rot $\vec{v} = 0$.
- h) Wenn das Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ ein Vektorpotential besitzt, so verschwindet das Flussintegral $\iint_F \vec{v} \cdot d\vec{O}$ über jede geschlossene Fläche F.

3. Aufgabe 11 Punkte

Sei f diejenige Funktion, die jedem Punkt des Ellipsoids $E=\{(x,y,z)^T\in\mathbb{R}^3\mid x^2+\frac{y^2}{4}+\frac{z^2}{9}=1\}$ den Abstand zum Nullpunkt zuordnet.

- a) Zeigen Sie, dass f ein lokales Maximum und ein lokales Minimum besitzt.
- b) Welche Gleichungen müssen die möglichen Kandidaten erfüllen?

Hinweis: Sie müssen die Gleichungen nicht lösen.

4. Aufgabe

8 Punkte

Bestimmen Sie die Menge aller Punkte, in denen die Funktion

$$\begin{split} f: \mathbb{R}^2 \to & \mathbb{R} \\ (x,y) \mapsto \begin{cases} \frac{xy}{|x|}, & \text{falls } x \neq 0 \\ y, & \text{falls } x = 0 \end{cases} \end{split}$$

stetig ist.

5. Aufgabe

8 Punkte

Nutzen Sie den Satz von Gauß um folgendes Integral zu berechnen:

$$\iint_{S} \vec{v} \cdot d\vec{O},$$

wobei S die Oberfläche der Halbkugel

$$H = \{(x, y, z) \mid (x - 1)^2 + (y - 2)^2 + (z - 3)^2 \le \frac{1}{4}, z \ge 3\}$$

ist und

$$\vec{v}(x,y,z) = \begin{pmatrix} 4y^2 + x \\ e^x - z \\ z + y \end{pmatrix}.$$

Warum dürfen Sie den Satz von Gauß überhaupt anwenden?

Hinweis: Das Volumen einer Kugel mit Radius R beträgt $\frac{4}{3}\pi R^3$.