

MULTIPLE LINEAR REGRESSION-PART V EXHAUSTIVE SEARCH

LECTURE 26

DR. GAURAV DIXIT

DEPARTMENT OF MANAGEMENT STUDIES

- Steps to reduce the no. of predictors
 - Summary statistics and graphs
 - Statistical methods using computational power
 - Exhaustive search: all possible combinations
 - Partial-iterative search: algorithm based
- Exhaustive Search
 - Large no. of subsets
 - Criteria to compare models
 - Adjusted R²

Adjusted R²

$$R_{adj}^2 = 1 - \frac{n-1}{n-p-1} (1 - R^2)$$

Where R² is proportion of explained variability in the model

$$R^{2} = 1 - \frac{SSE}{SST} = 1 - \frac{\sum_{i=1}^{n} (yi - \hat{y}_{i})}{\sum_{i=1}^{n} (yi - \bar{y})}$$
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

• R² is called coefficient of determination

• R² would be equal to squared correlation in a single predictor model, that is how R² gets its name

 Adjusted R² introduces a penalty on the no. of predictors to trade-off between artificial increase vs. amount of information

• High adjusted R² values -> low $\hat{\sigma}^2$

- Exhaustive Search
 - Criteria to compare models
 - Mallow's C_p
- Mallow's C_p

$$C_{p} = \frac{SSR}{\widehat{\sigma_{f}}^{2}} + 2(p+1) - n$$

Where $\hat{\sigma}_f^2$ is estimated value of σ^2 in the full model

and SSR =
$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})$$

- Mallow's C_p
 - Assumption: full model with all predictors is unbiased
 - · Predictors elimination would reduce the variability
 - Best subset model would have $C_p \sim p+1$ and p would be a small value
 - Requires high n value for the training partition relative to p
- Open RStudio

- Partial-iterative search
 - Computationally cheaper
 - Best subset is not guaranteed
 - Potential of missing "good" sets of predictors
 - Produce close-to-best subsets
 - Preferred approach for large no. of predictors
 - For moderate no. of predictors, exhaustive search is better
- Trade-off between computation cost vs. potential of finding best subset

- Partial-iterative search algorithms
 - Forward selection
 - Add predictors one by one
 - Strength as a single predictor is used
 - Backward elimination
 - Drop predictors one by one
 - Stepwise regression
 - Add predictors one by one and consider dropping insignificant ones
- Open RStudio

Key References

- Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data by EMC Education Services (2015)
- Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner by Shmueli, G., Patel, N. R., & Bruce, P. C. (2010)

Thanks...