Fine-tuning Language Model For Text Classification

Overview

Operating System: Ubuntu 20.04 LTS Graphic Card: Geforce RTX 1050 Ti Graphic Driver: Nvidia 470 + CUDA 11.4

Google Colab: Tesla-T4 ML Framework: Pytorch Low-Rank Adaptation (LoRA, QLoRA)

Model Consideration

Encoder based models: (BERT, DistilBERT, ...)

- Strong embedding capability as encoder based model
- SOTA performance on classic ML tasks including text-classificati
- Lightweight by today's standard

What about decoder based models such as LLMs? (Mistral-7B, Phi-2)

- Fine-tuning can be very computationally heavy.
- Few-short learning is usually enough for the task.
- Very good for generation task (translation, conversation), but for tasks that are very embedding focused, encoder type models usually performs better.

Multiclass Classification

Encoder VS Decoder

Output DistilBERT is selected for the following consideration: Probabilities BERT based encoder models are already quite good at text classification Softmax 40% smaller than BERT while training 97% performance. **GPT** Linear LLMs are heavy to fine-tune Add & Norm Feed Decoder **BERT** Forward Add & Norm Add & Norm Multi-Head Feed Encoder N× OpenAI Forward Add & Norm N× Add & Norm Masked Multi-Head Attention Attention Positional Positional **Good at Generating Text** Encoding Encoding with Prompts (GPT series: Output Input GPT2,3,3.5,4, Turbo models, Embedding Embedding Good at Analyzing Text Mistral, Llama, Falcon, Vicuna but do not generate etc) Inputs Outputs text (BERT) (shifted right)

Low-Rank Adaptation (LoRA & QLoRA)

- Finetune large models with low compute
- Adapt large models in a low-data regime
- Further optimisation of QLoRA with the introduction of 4-bit quantization
- Easy to implement with the Hugging Face PEFT package.

Weight update in regular finetuning Weight update in LoRA Outputs LoRA matrices A and B Outputs approximate the weight update matrix ΔW Weight B Pretrained Pretrained update weights weights ΔW \overline{W} Inputs x

```
from peft import LoraConfig
config = LoraConfig(
    r=8,
    lora_alpha=16,
    target_modules=["q", "v"],
    lora_dropout=0.01,
    bias="none"
    task_type="SEQ_2_SEQ_LM",
)
```

The inner dimension r is a hyperparameter

Application for Risk Classification

Supervised fine-tuned (SFT) BERT based encoder models:

- Binary Classification: Single risk type classification. Easiest to prepare data but require one model per risk type.
- Multi-Class Classification: Risk severity classification. (quantised output)
- Multi-Label Classification: Multiple risk types detection. Performance won't be as good as binary classifiers and class imbalance and be a challenge.
- Tabular Classification: Feed extra attributes related to the content as tabular data for training.

Few-Short Learned LLM (with SFT Encoder)

- Few-short prompt a LLM with a small set of representative (boundary) data.
- Use LLM directly for classification, or as a data labeller for labelling and augmentation to train a smaller model.

Thank you.

