Gabarito da Lista de Exercícios 1 de Analise Numérica

Prof.: Fabrício Murai

Informações importantes:

- Data de entrega: até 23:59 do dia 23/03/2018.
- Questões podem ser discutidas entre até três alunos. Nomes dos colegas precisam ser listados. Contudo, a escrita das soluções e submissão deve ser feita individualmente.
- Submissão deve ser feita em formato PDF através do Moodle, mesmo que tenham sido resolvidas a mão e escaneadas.
- Todas as soluções devem ser justificadas.
- Se puder, peço por favor que marque o tempo gasto para resolver a lista, para que o tamanho da lista de exercícios seja ajustado em semestres futuros.
- 1. Considere o seguinte computador hipotético, onde a representação de um número real qualquer, em ponto flutuante, pode ser generalizado da forma F(2, 3, -7, 7).
 - (a) Como será representado o número $(-11.9)_{10}$ neste computador?

$$-(1011)_2 + \epsilon = -(0.1011)_2 \times 2^4 + \epsilon$$

Como o tamanho máximo da mantissa é 3, teremos:

- (b) O número $(1.1)_{10} \times 2^{-9}$ pode ser representado? Por que? Sim. O menor número que pode ser representado nesse sistema é $(0.001)_2 \times 2^{-7} = 2^{-9}$. Note que embora ele não possa ser representado de forma exata, ele não gera um "erro".
- 2. Considere o polinômio

$$p(x) = (x-2)^9 = x^9 - 18x^8 + 144x^7 - 672x^6 + 2016x^5 - 4032x^4 + 5376x^3 - 4608x^2 + 2304x - 512x^4 + 2016x^2 + 2016x^2$$

a. Plote p(x) para $x=1.920,\,1.921,\,1.922,\ldots,2.080$ calculando p através dos seus coeficientes $1,\,-18,\,144,\ldots$, isto é, usando a expansão. Dica: o método linspace do numpy vai ser útil para isso.

```
import numpy as np
import matplotlib.pyplot as plt

start = 1.920
end = 2.080
step = 0.001
num = (end - start)/step

c = [1, -18, 144, -672, 2016, -4032, 5376, -4608, 2304, -512]

x = np.linspace(start, end, num)
y = np.polyval(c, x)
```

```
plt.plot(x, y)
plt.title('Questao_2_(a)')
```


b. Plote o mesmo gráfico novamente, agora calculando p através da expressão $(x-2)^9$.

```
import numpy as np
import matplotlib.pyplot as plt

start = 1.920
end = 2.080
step = 0.001
num = (end - start)/step

def f(x): return (x-2)**9

x = np.linspace(start, end, num)
y = f(x)

plt.plot(x, y)
plt.title('Questao_2_(b)')
```


c. Explique a diferença.

Solução. Em 2.a, para avaliar o polinômio é necessário realizar um grande número de operações (adições, multiplicações, potenciações e subtrações), o que acarreta em uma grande propagação de erros. Em 2.b, foi realizado apenas uma subtração e uma multiplicação para cada ponto, o que gerou um erro menor.

3. Quantos números diferentes existem usando precisão-dupla (float de 64 bits)? Escreva sua resposta usando potências de 2.

Solução. Um float de 64 bits, também conhecido como double tem sua representação computacional especificada pelo padrão IEEE 754 da seguinte maneira:

Bit de sinal: 1 bitExpoente: 11 bitsMantissa: 52 bits

Assim, $2^1 * 2^{11} * 2^{52} = 2^{64}$ valores reais. Porém:

- Há duas representações possíveis para o número 0, uma com sinal e outra sem sinal.
- Há dois valores infinitos, +infinito e -infinito, quando a mantissa é tudo zero e o expoente é todo 1.
- Também há valores NaN quando o expoente é todo 1 e a mantissa tem dígitos não zero.

Assim, temos $2*(2^{11}-1)*2^{52}-1$ números distintos.

4. Considere a matriz

$$A = \left[\begin{array}{ccc} 2 & -1 & 4 \\ 3 & 5 & 19 \end{array} \right]$$

(a) Mostre que suas colunas são linearmente dependentes.

Solução. Para isto, basta mostrar que existem coeficientes $(a_1, a_2, a_3) \neq (0, 0, 0)$ que satisfazem

$$a_1 \left[\begin{array}{c} 2 \\ 3 \end{array} \right] + a_2 \left[\begin{array}{c} -1 \\ 5 \end{array} \right] + a_3 \left[\begin{array}{c} 4 \\ 19 \end{array} \right] = 0.$$

Solução 1. De fato, $(a_1, a_2, a_3) = (3, 2, -1)$ satisfaz a equação.

Solução 2. (Essa solução não requer que você adivinhe os coeficientes.) Observa-se que a solução requer que todos os coeficientes sejam não-nulos, caso contrário, um dos vetores seria "múltiplo" de outro. Logo, se as colunas são linearmente dependentes, temos que

$$b_1 \left[\begin{array}{c} 2 \\ 3 \end{array} \right] + b_2 \left[\begin{array}{c} -1 \\ 5 \end{array} \right] = \left[\begin{array}{c} 4 \\ 19 \end{array} \right].$$

onde $b_1 = -a_1/a_3$ e $b_2 = -a_2/a_3$. Resolvendo esse sistema linear de duas equações e duas variáveis, obtem-se $b_1 = 3$ e $b_2 = 2$.

Solução 3. Usando escalonamento de colunas, podemos zerar a última coluna. Isto mostra que as colunas são linearmente dependentes.

(b) Qual o posto da matriz A?

Solução 1. Removendo-se uma das colunas, permanecemos com duas colunas que não são linearmente dependentes (ou, equivalentemente, múltiplas uma da outra). Logo, o posto é 2.

Solução 2. O posto de linhas é sempre igual ao posto de colunas. Como as linhas são linearmente independentes, conclui-se que o posto é 2.

5. Se D = BC, onde

$$B = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \quad \text{e} \quad C = \begin{bmatrix} -1 & 0 & 3 \\ -2 & 0 & 2 \\ -3 & 0 & 1 \end{bmatrix},$$

é correto afirmar que a matriz D possui inversa? Por quê?

Solução 1. Se D possui inversa, então $D^{-1} = C^{-1}B^{-1}$. No entanto, não existe nenhuma matriz $C^{-1}B^{-1}$, pois a matriz B é singular e, portanto, não admite inversa. Isso porque $\det(B) = 0$ quando uma das linhas ou colunas é nula (pode ser provado usando a definição recursiva de determinante).

Solução 2. (Baseada em propriedade sobre os determinantes não vista em sala). Sabe-se que

$$D = BC \Rightarrow \det(D) = \det(B) \det(C)$$

Como det(B) = 0, D é singular e não admite inversa.

6. Considere a matriz

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & 3 \end{array} \right]$$

(a) Escreva o polinômio característico desta matriz.

$$det(A - \lambda I) = \det \left(\begin{bmatrix} 1 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix} \right)$$

$$(1 - \lambda)(3 - \lambda) - 1 = 0$$
$$\lambda^2 - 4\lambda + 2 = 0$$

(b) Encontre os autovalores de A.

Resolvendo-se a equação do segundo grau acima, temos $\lambda_1=2+\sqrt{2}$ e $\lambda_2=2-\sqrt{2}$.

7. Considere o sistema de equações lineares dado por

$$\begin{bmatrix} 4 & 0 & 0 \\ -2 & 5 & 0 \\ 1 & 7 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 12 \\ 4 \\ 20 \end{bmatrix}$$

4

- (a) Sem resolver o sistema, determine se este possui uma única solução. Seja A a matriz de coeficientes. Como $\det(A)=4\times 5\times 3\neq 0$, conclui-se que o sistema possui uma única solução.
- (b) Resolva utilizando o método das substituições sucessivas.

$$x_1 = 12/4 = 3$$
 $x_2 = \frac{4 - [(-2) \times 3]}{5} = 2$
 $x_3 = \frac{20 - [1 \times 3 + 7 \times 2]}{3} = 1$

- 8. Sejam o sistema linear Ax = b, de ordem n, e a matriz C de ordem n e não singular. Assinale V antes da sentença se ela for verdadeira e F se for falsa e justifique:
 - () A matriz CA não é singular.

Falso. Se A for singular, det(CA) = det(C) det(A) = 0, ou seja, CA pode ser singular.

() Se C for uma matriz de permutação, então $\det(CA) = \det(A)$.

Falso. Se C for uma matriz de permutação, então $\det(CA) = \det(A)$.

O correto é $\det(CA) = (-1)^t \det(A)$, onde t é o número de trocas de linhas necessártias para se transformar C na matriz identidade.

() O sistema Ax = b não é necessariamente equivalente ao sistema CAx = Cb.

Falso. O sistema Ax = b não é necessariamente equivalente ao sistema CAx = Cb.

Se C não é singular, sempre pode ser multiplicado dos dois lados da equação.

9. Seja
$$A = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix}$$
.

- (a) Calcule a decomposição (manualmente) PA = LU Não precisa resolver Ly = Pb, nem Ux = y.
- (b) Calcule o determinante de A a partir de P, L e U.

L	Multiplicadores	A	Operações	p
1	$m_{11} = 0.75$	3 2 4		1
2	$m_{21} = 0.25$	1 1 2		2
3		$\underline{4} \ 3 \ -2$		3
4		$0 \ \underline{-0.25} \ 5.5$	$L_1 - 0.75L_3$	$\frac{1}{2}$
5	$m_{22} = -1$	0 0.25 2.5	$L_2 - 0.25L_3$	2
6		0 0 8	$L_5 + L_4$	2

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0.75 & 1 & 0 \\ 0.25 & -1 & 1 \end{bmatrix} e U = \begin{bmatrix} 4 & 3 & -2 \\ 0 & -0.25 & 5.5 \\ 0 & 0 & 8 \end{bmatrix}.$$

10. Modifique o método LU (sem pivotação) abaixo para que funcione <u>in-place</u>. Isto é, a implementação não deve alocar memória nova para L ou U, mas sim sobrescrever A.

5

def LU(A):# U = np.copy(A)

$$m, n = A.shape$$

$$\# L = np.eye(n)$$

```
\begin{array}{lll} & \text{for } k \text{ in } \text{range}\,(n-1): \\ & \text{for } j \text{ in } \text{range}\,(k+1,n): \\ & & A[\,j\,\,,k\,] = A[\,j\,\,,k\,]/A[\,k\,,k\,] & \# \,\,L[\,j\,\,,k\,] = U[\,j\,\,,k\,]/U[\,k\,\,,k\,] \\ & & A[\,j\,\,,k:n\,] \,\, -\!\!= \,\,A[\,j\,\,,k\,] \,\, * \,\,A[\,k\,\,,k:n\,] \,\,\# \,\,U[\,j\,\,,k:n\,] \,\, -\!\!= \,\,L[\,j\,\,,k\,] \,\, * \,\,U[\,k\,\,,k:n\,] \\ & \text{return } L, \,\,U \end{array}
```

11. Modifique o método LU visto em sala para incluir pivotação. Dica: o método swap será útil.

```
def swap(a,b):
    temp = np.copy(a)
    a[:] = b
    b[:] = temp
```

Solução.

```
def LUPivot(A) :
    U = np.copy(A)
    m, n = A.shape
    L = np.eye (n)
    for k in range (n-1):
        maxLine = np.argmax( abs(U[:,k]) )
        swap( U[k,:] , U[maxLine,:] )
        for j in range (k+1, n) :
        L[j, k] = U[j, k] / U[k, k]
        U[j, k:n] -= L[j, k] * U[k, k:n]
        swap( L[k,:] , L[maxLine,:] )
    return L, U
```