

Required background knowledge

- Denavit-Hartenberg Convention
- General Transformation matrixes i-1T_i
- Roll-Pitch-Yaw convention and RPY Matrix
- Inverse kinematics of a two-link arm geometric solution
- · Inverse kinematics via algebraic solution

Estela Bicho 4

Robotic Structure and reference frames

 Yaskawa Motoman MH5 robotic structure can be split into a consecutive series of links connected by joints.

Fig. 1 – Yaskawa Motoman MH5, 6 degrees of freedom (DoF) serial robotic manipulator.

Fig. 2 – Yaskawa Motoman MH5, kinematic structure (frames attached to each joint).

Estela Bicho

5

Denavit-Hartenberg Convention

- Most common convention to characterise the robotic structure.
- 1. Start by assigning frames to each joint along the manipulator arm (Fig. 2).
- 2. The relation between $link_{(i)}$ and $link_{(i+1)}$ is represented by four parameters:
 - α_{i-1} , angle of rotation around X_i axis;
 - a_{i-1} , distance of translation along X_i axis;
 - θ_i , angle of rotation around Z_i axis, after the rotation around X_i axis;
 - d_i , distance of translation along Z_i axis, after the rotation around X_i axis.
- 3. The homogenous transformation ${}^{i-1}T_i$, from frame {i-1} to {i} is defined as the result of:

$$^{i-1}T_i = Rot_X(\alpha_{i-1}) * Trans_X(\alpha_{i-1}) * Trans_Z(\alpha_i) * Rot_Z(\theta_i)$$

Estela Bicho

Denavit-Hartenberg parameters

 ${\bf Table~4.6:~Denavit\text{-}Hartenberg~parameters~for~the~Motoman~MH5~arm.}$

iT_{i+1}	α_{i-1}	a_{i-1}	θ_i	d_i
	(deg)	(mm)	(deg)	(mm)
$\boxed{\{0\} \rightarrow \{1\}}$	0	0	θ_1	L_1
$\{1\} \rightarrow \{2\}$	-90	L_2	$\theta_2 - 90$	0
$\{2\} \rightarrow \{3\}$	0	L_3	$ heta_3$	0
$\{3\} \rightarrow \{4\}$	-90	L_4	$ heta_4$	L_5
$\{4\} \rightarrow \{5\}$	90	0	$ heta_5$	0
$\{5\} \rightarrow \{6\}$	-90	0	$ heta_6$	L_6

Estela Bicho

Denavit-Hartenberg Matrix

 $^{i-1}\mathbf{T}_i = Rotation_X(\alpha_{i-1}) \cdot Translation_X(a_{i-1}) \cdot Translation_Z(d_i) \cdot Rotation_Z(\theta_i)$

$$i^{-1}\mathbf{T}_{i} = \begin{bmatrix} \cos(\theta_{i}) & -\sin(\theta_{i}) & 0 & a_{i-1} \\ \sin(\theta_{i})\cos(\alpha_{i-1}) & \cos(\theta_{i})\cos(\alpha_{i-1}) & -\sin(\alpha_{i-1}) & -\sin(\alpha_{i-1})d_{i} \\ \sin(\theta_{i})\sin(\alpha_{i-1}) & \cos(\theta_{i})\sin(\alpha_{i-1}) & \cos(\alpha_{i-1}) & \cos(\alpha_{i-1})d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4.27)

Do it yourself: compute the individual matrices

Estela Bicho

9

Direct Kinematics

 Having defined the homogeneous transformation matrices along the robotic manipulator arm (Denavit-Hartenberg notation), the transformation from the robot base (frame) to the robot-tip (frame 6) is given by:

 ${}^{0}T_{6} = {}^{0}T_{1} \, {}^{1}T_{2} \, {}^{2}T_{3} \, {}^{3}T_{4} \, {}^{4}T_{5} \, {}^{5}T_{6}$

Do it yourself: compute ${}^{0}T_{6}$

Fig. 2 – Yaskawa Motoman MH5, kinematic structure (frames attached to each joint).

Estela Bicho

Inverse Kinematics Problem

- Unlike Direct Kinematics (a solution always exists and it's unique), Inverse Kinematics may generate:
 - Several possible solutions
 - Possible and unique solutions (near dexterous workspace limit)
 - Undetermined solutions (in dexterous workspace)
 - Impossible solutions (outside dexterous workspace)
- A non-redundant 6-DoF manipulator like Yaskawa Motoman MH5 can reach a given position and orientation in space with 4 different postures.
- A cost-function is usually defined to choose the best fitting solution from the 4 different poses.

Estela Bicho

11

Inverse Kinematics

To simplify the problem we split the robotic arm structure in 2 parts:

- From base {B} (or frame 0 in Fig. 2) to wrist {W} (or frame 4 in Fig. 2);
- From wrist {W} (frame 4) to robot tip (or frame 6 in Fig. 2)
- A geometric approach is used to determine the lower arm joint values $(\theta_1, \theta_2, \theta_3)$, and an algebraic approach is used to determine the upper arm joint values $(\theta_4, \theta_5, \theta_6) \rightarrow {}^{0}T_3$ and ${}^{3}T_6$ are going to be useful matrixes

Figure 4.2: Anthropormorphic arm.

Figure 4.4: Spherical wrist.

Estela Bicho

Inverse Kinematics

Knowing the desired robot tip position and orientation in the robot base frame {B}, ${}^BP_e = ({}^Bp_{e,x}, {}^Bp_{e,y}, {}^Bp_{e,z}, {}^B\gamma_{e,\theta}, {}^B\gamma_{e,\psi}, {}^B\gamma_{e,\phi})$ we start by **computing the wrist {W} position**.

- 1. Compute the RPY Matrix from $\gamma_e = ({}^B \gamma_{e,\theta}, {}^B \gamma_{e,\psi}, {}^B \gamma_{e,\phi}) \rightarrow {}^B \hat{\mathbf{z}}_{RPY} = ?$
- 2. The position of the wrist $\{W\}$ (Bp_w) in $\{B\}$ can be calculated by:

$${}^{B}\boldsymbol{p}_{w}={}^{B}\boldsymbol{p}_{e}-L_{6}*{}^{B}\boldsymbol{\hat{z}}_{RPY}$$

Being:

 B $p_{e} = (^{B}p_{e,x}, ^{B}p_{e,y}, ^{B}p_{e,z})$ – the position specified for the robot tip (3x1 vector)

- L_6 , the distance from the robot tip to joint 5 (frame 4 or 5 in Fig.2).
- ${}^B \hat{\mathbf{z}}_{RPY}$, is the z-axis of the RPY matrix.

frame {B}=frame{0}

Estela Bicho

13

Euler Angles: Roll-Pitch-Yaw (RPY)

1.Compute the RPY Matrix from $\gamma = ({}^{B}\gamma_{e,\theta}, {}^{B}\gamma_{e,\psi}, {}^{B}\gamma_{e,\phi})$.

Remember:

- Euler convention used (Roll-Pitch-Yaw): accumulation of three rotations:
 - Rot_{θ} around **X**; (Yaw)
 - Rot_{ψ} around **Y**; (Pitch)
 - Rot_{ϕ} around **Z**; (Roll)

Pre-multiplying: $RPY_{3\times3} = R_{\phi} R_{\psi} R_{\theta}$

 $RPY(\gamma) = Rotation_Z(\phi) \quad Rotation_Y(\psi) \quad Rotation_X(\theta)$

²section 4.2 The Roll-Pitch-Yaw matrix (4.16) is written in a compressed form to fit the printing area. Therefore, c() stands for cos() and s() stands for sin().

Note that: the RPY(γ) $\equiv {}^{0}R_{6}$

Thus we know the numeric values of the elements in this matrix!

Estela Bicho

A geometric approach:

4. We can simplify the problem of computing θ_2 and θ_3 to a planar 2-link robot.

nd 3.

 ${}^{\mathrm{S}}\mathbf{p}_{\mathrm{w}}$ - position of the wrist with respect to the shoulder:

$${}^{\mathsf{S}}\mathbf{p}_{\mathsf{w}} = {}^{\mathsf{B}}\mathbf{p}_{\mathsf{w}} - {}^{\mathsf{B}}\mathbf{p}_{\mathsf{o},2} = (p_{\mathsf{w},\mathsf{x}}, p_{\mathsf{w},\mathsf{y}}, p_{\mathsf{w},\mathsf{z}}) = ({}^{\mathsf{B}}p_{\mathsf{w},\mathsf{x}} - L_2, {}^{\mathsf{B}}p_{\mathsf{w},\mathsf{y}}, {}^{\mathsf{B}}p_{\mathsf{w},\mathsf{z}} - L_1)$$

Estela Bicho

17

Inverse Kinematics: θ_2 and θ_3

4 (cont). We can simplify the problem of computing θ_2 and θ_3 to a planar 2-link robot.

Considering $r = \sqrt{p_{w,x}^2 + p_{w,y}^2}$, we easily prove that,

$$^{\mathrm{S}}\mathbf{p}_{\mathrm{w}} = (p_{\mathrm{w}} \times p_{\mathrm{w}}, p_{\mathrm{w}}, p_{\mathrm{w}})$$

$$\begin{cases} r = L_B \sin \theta_2 + L_C \sin (\theta_2 + \theta_3) \\ p_{w,z} = L_B \cos \theta_2 + L_C \cos (\theta_2 + \theta_3) \end{cases}$$

Which (as we've seen) can be solved using:

- · an algebraic approach
- · a geometric approach

Figure 4.3: Plane projection formed by links 2 and 3 $\,$

Estela Bicho

Inverse Kinematics: θ_2 and θ_3

4 (cont). We can simplify the problem of computing θ_2 and θ_3 to a planar 2-link robot.

GEOMETRIC APPROACH:

Cosine theorem: Computation of $\boldsymbol{\theta}_3$

Figure 4.3: Plane projection formed by links 2 and 3

Estela Bicho

Inverse Kinematics: θ_2 and θ_3

4 (cont). We can simplify the problem of computing θ_2 and θ_3 to a planar 2-link robot.

GEOMETRIC APPROACH:

Cosine theorem: Computation of θ_2

$$\theta_2 = 90^{4} - \alpha - \beta_1$$

$$\alpha = \arctan(p_{w,z}, r)$$

$$L_c^2 = L_B^2 + r'^2 - 2L_B r' \cos(\beta_1)$$

 $\theta_2 = 90^{\circ}$ - arctan $(p_{w,z},r)$ - acos $((L_B^2 + r'^2 - L_c^2)/(2L_B r'))$

Figure 4.3: Plane projection formed by links 2 and 3.

Estela Bicho

Inverse Kinematics: θ_4 , θ_5 and θ_6

Having solved the inverse kinematics for joints $(\theta_1, \theta_2, \theta_3)$, we can compute the numeric values of the elements in 0R_3 . Being 0R_6 , the RPY matrix computed from γ_e (which is known), we can solve the equation for 3R_6 (upper arm or spherical wrist):

$${}^{3}R_{6} = {}^{3}R_{0} {}^{0}R_{6} = inv({}^{0}R_{3}) {}^{0}R_{6} = {}^{0}R_{3}{}^{T} {}^{0}R_{6}$$

$$^3R_6(\theta_4,\theta_5,\theta_6) =$$

Using the wrist spherical properties,
$$\theta_5$$
:
$$\theta_5 = \arctan_2(\pm\sqrt{1-(r_{23})^2}, r_{23})$$

$$3R_6 = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Then, depending on θ_5 , we get different values for θ_4 and θ_6 :

$$\begin{cases} \theta_4 = 0 & \wedge & \theta_6 = \arctan_2(r_{12}, r_{32}) & \text{if } \theta_5 = 0 \\ \theta_4 = 0 & \wedge & \theta_6 = -\arctan_2(-r_{12}, -r_{32}) & \text{if } \theta_5 = \pi \end{cases}$$
 Singularity
$$\begin{cases} \theta_4 = \arctan_2(r_{33}, -r_{13}) \\ \theta_6 = \arctan_2(-r_{22}, -r_{21}). \end{cases}$$
 Do it yourself!

$$\theta_4 = \arctan_2(r_{33}, -r_{13})$$

$$\theta_6 = \arctan_2(-r_{22}, -r_{21})$$

Estela Bicho

Conclusion

- We have studied how to solve the problems of the direct and inverse kinematics of the industrial 6 DoF manipulator Yaskawa Motoman MH5
- Direct kinematics was obtained using the Denavit-Hartenberg convention and the general transformation matrixes
- The solutions of the inverse kinematics were obtained combining two approaches:
 - Geometrical approach for the lower arm joint values $(\theta_1, \theta_2, \theta_3)$
 - Algebraic approach for the upper arm joint values $(\theta_4, \theta_5, \theta_6)$

Bibliography:

(2013) C. Faria, E. Bicho, M. Rito, L. Louro, S. Monteiro, W. Erlhagen. "Robotic Assisted Deep Brain Stimulation Neurosurgery: first steps on system development". In Proceedings of the 10th IASTED International Conference on Biomedical Engineering (BioMed 2013), February 13-15, 2013, Innsbruck, Austria. DOI: 10.2316/P.2013.791-033.

Best Student Paper Award.

Estela Bicho