MIT OCW 8.05 - 2013 Pset-3 P5 Shlok Vaibhav Singh 2020/06/24

a) Given $V = U_1 \oplus W$ and $V = U_2 \oplus W$

So we know that $U_1\cap W=\{0\}$ and $U_2\cap W=\{0\}$, this means $(U_1-U_2)\cap W=\phi$ (Difference is distributive over intersection). This means if U_1 has an element a which is not in U_2 , it will not be an element of W as well, this means it will not be in the direct sum of U_1 and W as well, this means it is not an element of V, but this is a contradiction, this means $U_1-U_2=\phi \Rightarrow U_2\subseteq U_1$. Similarly it can be shown that $U_1\subseteq U_2$, this means that $U_1=U_2$.

- b) In a finite-dimensional vector space, the length of any spanning list must be larger than or equal to the length of any list of linearly independent vectors. Let the dimensionality of F^{∞} be k, where elements of F^{∞} be represented by the sequence $\{a_n\}$, then can choose a set of linearly independent vectors as sequences : v_i : $\{a_n=1 \ if \ n=i, \ else \ a_n=0\}, \ 1< i\leq k$, clearly the vector v_{k+1} is linearly independent to each element of our chosen set, this implies the dimensionality of F^{∞} is atleast k+1, thus our assumption about k being an finite number is wrong.
- c) Let T be injective, this means there is only one element, $a \in T$: $null(T) = \{a\}$ since two elements cannot map to 0, now it is shown in lecture notes that $T(0)=0 \Rightarrow null(T)=\{0\}$, now let T be a linear map such that $null(T)=\{0\}$, now assume $u, v \in T$: $T(v)=T(u) \Rightarrow T(v-u)=T(v)-T(u)=0 \Rightarrow v-u \in null(T) \Rightarrow v=u$. Thus T is injective. And we have shown that T is injective iff $null(T)=\{0\}$.