CSC 430/530 : DATABASE MANAGEMENT SYSTEMS/ DATABASE THEORY

Lecture 4: Introduction to database design

primitives: The ER Model

113

Questions

117

Recap

Review: Data Models

- Data Model:
 - A set of concepts to describe the structure of a database, the operations for manipulating these structures, and certain constraints that the database should obey.
- Data Model Structure and Constraints:
 - Constructs are used to define the database structure
 - Constructs typically include elements (and their data types) as well as groups of elements (e.g. entity, record, table), and relationships among such groups
 - Constraints specify some restrictions on valid data; these constraints must be enforced at all times

Recap

Review: Data Models (continued)

· Data Model Operations:

- These operations are used for specifying database retrievals and updates by referring to the constructs of the data model.
- Operations on the data model may include:
 - Basic model operations (e.g. generic insert, delete, update) and
 - User-defined operations (e.g. compute_student_gpa, update_inventory)

119

Recap

Database Schema vs. Database State (continued)

Distinction

- The database schema changes very infrequently.
- The database state changes every time the database is updated.
- Schema is also called intension.
- State is also called extension.

Recap

History of Data Models

- Network Model
- Hierarchical Model
- Relational Model

REMEMBER: we are doing relational model in the class

- Object-oriented Data Models
- Object-Relational Models

127

Worked Example: COMPANY Database

- We need to create a database schema design based on the following (simplified) requirements of the COMPANY Database:
 - The company is organized into DEPARTMENTs.
 - Each department has a name, number and an employee who manages the department.
 - We keep track of the start date of the department manager.
 - A department may have several locations.
 - Each department controls a number of PROJECTs.
 - Each project has a unique name, unique number and is located at a single location.

Example COMPANY Database (Contd.)

- We store each EMPLOYEE's social security number, address, salary, sex, and birthdate.
 - Each employee works for one department but may work on several projects.
 - We keep track of the number of hours per week that an employee currently works on each project.
 - We also keep track of the direct supervisor of each employee.
- Each employee may have a number of DEPENDENTs.
 - For each dependent, we keep track of their name, sex, birthdate, and relationship to the employee.

133

ER Model Concepts

- Entities and Attributes
 - Entities are specific objects or things in the mini-world that are represented in the database.
 - For example the EMPLOYEE John Smith,
 - the Research DEPARTMENT.
 - the ProductX PROJECT
 - Attributes are properties used to describe an entity.
 - For example an EMPLOYEE entity may have the attributes Name, SSN, Address, Sex, BirthDate

ER Model Concepts

- A specific entity will have a value for each of its attributes.
 - For example a specific employee entity may have
 - Name='John Smith',
 - SSN='123456789',
 - Address = '731, Fondren, Houston, TX',
 - Sex='M',
 - BirthDate='09-JAN-55'
- Each attribute has a value set (or data type) associated with it
 - e.g. integer, string, subrange, enumerated type, ...

135

Types of Attributes (1)

- **Simple:** Each entity has a single atomic value for the attribute.
 - · For example, SSN or Sex.
- Composite: The attribute may be composed of several components.
 - For example:
 - Address (Apt#, House#, Street, City, State, ZipCode, Country), or
 - Name (FirstName, MiddleName, LastName).
 - Composition may form a hierarchy where some components are themselves composite.

137

Types of Attributes (2)

- Multi-valued: An entity may have multiple values for that attribute.
 - For example, Previous Degrees of a STUDENT.
 - Denoted as {PreviousDegrees}.
- In general, composite and multi-valued attributes may be nested arbitrarily to any number of levels, although this is rare.
 - For example, PreviousDegrees of a STUDENT is a composite multi-valued attribute denoted by {PreviousDegrees (College, Year, Degree, Field)}
 - Multiple Previous Degrees values can exist
 - · Each has four subcomponent attributes:
 - College, Year, Degree, Field

Entity Types and Key Attributes (1)

- Entities with the same basic attributes are grouped or typed into an entity type.
 - For example, the entity type EMPLOYEE and PROJECT.
- An attribute of an entity type for which each entity must have a unique value is called a **key attribute** of the entity type.
 - For example, SSN of EMPLOYEE.

139

Entity Types and Key Attributes (2)

- A key attribute may be composite.
 - VehicleTagNumber is a key of the CAR entity type with components (Number, State).
- An entity type may have more than one key.
 - The CAR entity type may have two keys:
 - VehicleIdentificationNumber (popularly called VIN)
 - VehicleTagNumber (Number, State), aka license plate number.
- · Each key is underlined

Displaying an Entity type

- In ER diagrams, an entity type is displayed in a rectangular box
- Attributes are displayed in ovals
 - Each attribute is connected to its entity type
 - Components of a composite attribute are connected to the oval representing the composite attribute
 - Each key attribute is underlined
 - Multivalued attributes displayed in double ovals
- See CAR example on next slide

141

Entity Type CAR with two keys and a corresponding Entity Set

The CAR entity type with two key attributes, Registration and Vehicle_id. (a) ER diagram

notation. (b) Entity set with three entities.

Figure 3.7

Entity Type CAR with two keys and a corresponding Entity Set

CAR

Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

CAR₁

((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 (red, black))

CAR₂

((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR₃

((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

:

143

Entity Set

CAR
Registration (Number, State), Vehicle Jd, Mala, Model, Year, (Color)

CAR,
(ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 (red, black))

CAR,
((ABC 123, NEW YORK), WP9872, Nesan Maxima, 4-door, 2005, (blue))

CAR,
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, (white, blue))

- Each entity type will have a collection of entities stored in the database
 - Called the entity set
- Previous slide shows three CAR entity instances in the entity set for CAR
- Same name (CAR) used to refer to both the entity type and the entity set
- Entity set is the current state of the entities of that type that are stored in the database

Worked Example: Initial Design of Entity Types for the COMPANY Database Schema

- Based on the requirements, we can identify four initial entity types in the COMPANY database:
 - DEPARTMENT
 - PROJECT
 - EMPLOYEE
 - DEPENDENT
- Their initial design is shown on the following slide
- The initial attributes shown are derived from the requirements description

145

147

Accomplishment!!!

- · Congratulations!!! we have our initial design.
- · Points to introspect
- 1. Given the entity description and their corresponding Entity diagrams, can store data for multiple instances.
- 2. Can I say that I have an effective database?
- 3. What are the caveats to such a design?