$Chem\ 2$

Etienne Herzig

21. September 2022

1 Overview

1.1 Grading

Only the better two tests get counted and make up 80% of the grade. Homework & Assignments should be submitted within online within two weeks and make up 20% of the grade. A bonus of 4% can be earned with consistent presence

1.2 Test Dates

 $\begin{array}{c} 9.11.2022 \\ 14.12.2022 \\ 25.01.2023 \end{array}$

2 Lessons

2.1 Lesson 1 - 21.09.2022

Revision of principles learned in Chem 1, which bear relevance in Chem 2. Important things to remember:

- 1. Distinction Atom / Molecule
- 2. Polar / Non-Polar
 - A molecule is polar if the majority of bond in said molecule are polar.
 A bond is polar if one Atom in the bond has a higher electronegativity.
 - Important Polar Bonds
 - * C O
 - * O H
 - * N H
 - Important Non-Polar Bonds
 - * C C
 - * C H
 - Boiling Points are related to the inter-molecular bond strength. (The higher the bond strength between molecules the higher the boiling point)
 - There are three relevant inter-molecular bond forces (here ranked by strength from weakest to strongest)
 - * Van der Walls forces
 Occurs in non-polar bonds.
 non-polar molecules gain in bond strength the longer the "chain"
 of the molecule and the less "branched" it is.
 - * The Dipol-Dipol Force Occurs in polar bonds
 - * Hydrogen Bond (Wasserstoffbrücken) Occurs in polar bonds involving a Hydrogen Atom (Overrules the Dipol-Dipol Force)
- 3. SP3 Hybridisierung
 - the S1 Orbital can be combined with the P Orbital to form the SP3 Orbital, which is on a single energy level.

Examples:

A Has 3 Non Polar Bonds (C-C, C-H, C-H)
 and 3 Polar Bonds (C-O, C-H) and is therefore Non-Polar.

- B has 7 Non Polar Bonds (C-H * 7) and 2 Polar Bonds (C-O, O-H) is therefore Non-Polar. (more than A)

- C has 10 Non Polar Bonds (C-H * 7) and 0 Polar Bonds and is therefore exclusively Non-Polar.

- D has 19 Non Polar Bonds (C-C * 5, C-H * 14) and is therefore exclusively Non-Polar.

- E has 19 Non Polar Bonds (C-C * 5, C-H * 14) and is therefore exclusively Non-Polar.

It however has a lower boiling point than item D, because the Van der waals bonds are weaker when more "nested".

2.2 Lesson 2 - 28.09.2022

Organic Chemistry What is Organic Chemistry

- Old The Chemistry of Alive Stuff
- New The Chemistry of Carbon including some exceptions

Hydrocarbons

- Saturated Hydrocarbons
 - Just single bonds
- Unsaturated Hydrocarbons
 - Allows all bonds

Alkane

• Methane - C1H4

• Ethane - C_2H_6

• Propane - C_3H_8

• Butane - C_4H_{10}

• Hexane - C_6H_{14}

$$\bullet \ \ H - - C - C - C - C - C - C - C - F$$

$$\bullet \ \ H - H - H - H - H - H - H - H$$

• Heptane - C_7H_{16}

 \bullet Octane - $\mathrm{C_8H_{18}}$

• Nonane - C_9H_{20}

 \bullet Decane - $\mathrm{C}_{10}\mathrm{H}_{22}$

Drawing Conventions: Example: Pentane

Isomers

Example: Hexane

2.3 Lesson 3 - 05.10.2022

Benennung von Alkanen mit IUPAC Rezept:

- Längste C-Kette gibt Stammnamen
- Nummerieren der Stammkette
- Lage der Seitenketten durch vorherige Nummern angeben
- \bullet Länge der Seitenkette: Stamm +yl
- Bei mehreren gleichen Seitenketten: Di-, Tri-, Tetra-, Penta-, ...
- Seitenketten alphabetisch nach Stamm eingeben
- Stammname hinten hinschreiben

Rechtschreibregeln:

- Zwischen zwei Zahlen: Beistrich
- Zwischen Zahl und Buchstabe: Bindestrich
- Erster Buchstabe groß, alle anderen klein
- Wörter zusammenschreiben

Beispiel:

1. - Längste C-Kette gibt Stammnamen.

Hier ist die längste Kette ein Decan, und bildet somit den Stamm des Moleküls.

2. Nummerieren der Stammkette

- 3. Lage der Seitenketten durch vorherige Nummern angeben.
- 4. Länge der Seitenkette: Stamm + yl.

N C-Atom	Kette
2	Methyl
3	Methyl
4	Methyl
4	Ethyl
5	Methyl
5	Propyl
6	Methyl
6	Methyl
7	Ethyl
7	Ethyl

Kette	Anzahl
Methyl	6
Ethyl	3
Propyl	1

Bei mehreren gleichen Seitenketten: Di-, Tri-, Tetra-, Penta-, . . . :

- $6 \text{ Methyl-Ketten} \implies \text{Hexamethyl}$
- 3 Ethyl-Ketten \implies Triethyl
- 1 Propyl-Kette \implies Propyl

Seitenketten alphabetisch nach Stamm eingeben:

der Hex & Tri Prefix ist nicht teils des Stammes und wird somit nicht im Sortieren betrachtet.

Lösung:

4,7,7-Triethyl-2,3,4,5,6,6-Hexamethyl-5-Propyldecan

Ringförmige Alkane

Structure	Composition	Name
	$\mathrm{C_{3}H_{6}}$	Cyclopropan
	$\mathrm{C_4H_8}$	Cyclobutan
	$\mathrm{C_{5}H_{10}}$	Cyclopentan
	$\mathrm{C_6H_{12}}$	Cyclohexan

Cyclohexan liegt nicht flach und hat in dem 3-Dimensionalen Raum zwei verschiedene Formen:

- Sesselform (am energieärmsten deswegen die häufigste und stabilste)
- \bullet Halbsesselform
- Twist
- Wanne

Hier eine Illustration, welche die Struktur der Formen zeigt:

Hier eine Illustration, welche die Energie der Formen zeigt:

