本项目是中山大学数学学院每日一题的模板,使用方法为:

\begin{daily}[类型, 日期, 星级, 标题] 正文

\end{daily}

方括号[]中的参数的顺序不影响结果. 其中类型如下:

- theorem
- definition
- proposition
- lemma
- corollary
- fact
- example
- think
- calculate
- brain

日期未设置时, 默认为当天日期, 未设置类型时, 默认为命题:

命题1: 2024年4月3日

今天是2024年4月3日.

定理 2: abc 1111 年 11 月 11 日

令 \mathbb{I} 是 \mathbb{R} 中的某开区间,令 $f \in C^{\infty}(\mathbb{I})$,称其在 x_0 处解析,若在 x_0 某邻域内下式成立:

$$f(x) = \sum_{n \ge 0} a_n (x - x_0)^n.$$

记为 $f \in C^{\omega}(x_0)$ 。任给 $E \subset \mathbb{I}$,定义 $C^{\omega}(E) = \bigcap_{x \in E} C^{\omega}(x)$ 。现在证明:

1. 倘若

$$\sup_{n\geq 1} \frac{1}{n} \log \left(\frac{\sup_{x\in \mathbb{I}} |f^{(n)}(x)|}{n!} \right) < \infty.$$

那么 $f \in C^{\omega}(\mathbb{I})$ 。

2. 倘若 $f \in C^{\omega}(x_0)$, 那么在 x_0 的某邻域 J 内, 下式成立:

$$\sup_{n\geqslant 1}\frac{1}{n}\log\Bigl(\frac{\sup_{x\in J}|f^{(n)}(x)|}{n!}\Bigr)<\infty.$$

- 3. 证明以下解析函数的刻画:
 - (a) 第二款的逆命题;
 - (b) $f \in C^{\omega}(\mathbb{I})$ 当且仅当任给 $[\alpha, \beta] \in \mathbb{I}$,均有

$$\sup_{n\geq 1} \frac{1}{n} \log \left(\frac{\sup_{\alpha < x < \beta} |f^{(n)}(x)|}{n!} \right) < \infty.$$