期中考试 (闭卷)

U08M11002 Spring 2022; 总分 20 分 北京时间 2022 年 5 月 7 日 19:00-21:00, 教西 A101

常用傅里叶变换对 / 傅里叶变换定理

$$x(t) = \delta(t) \iff X(j\omega) = 1$$

$$x(t) = 1 \iff X(j\omega) = 2\pi\delta(\omega)$$

$$x(t) = e^{-\alpha t}U(t) \iff X(j\omega) = \frac{1}{\alpha + j\omega}, \alpha > 0$$

$$x(t) = \begin{cases} 1, & |t| \le T \iff X(j\omega) = \frac{2\sin(\omega T)}{\omega} \end{cases}$$

$$x(t) = \frac{\sin(Wt)}{\pi t} \iff X(j\omega) = \begin{cases} 1, & |\omega| \le W \\ 0, & |\omega| > W \end{cases}$$

$$x_1(t) * x_2(t) \iff X_1(j\omega)X_2(j\omega)$$

$$x_1(t)x_2(t) \iff \frac{1}{2\pi}X_1(j\omega) * X_2(j\omega)$$

傅立叶级数的指数形式

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\Omega t}$$
$$F_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\Omega t} dt$$

题目 1. (2pts) 现有如下图所示的电路。**请以 P 算子的形式**写出(注意: 写成 p^2 前面的系数为 1 的形式):

- (1) (1pt) 以 $u_C(t)$ 为响应的微分方程;
- (2) (1pt) 以 $i_L(t)$ 为响应的微分方程。

题目 2. (4pts) 已知某 LTI 系统的常微分方程为 y'(t) + y(t) = f(t),

- (1) (1pt) 若完全响应为 $y(t) = [3e^{-t} + 2e^{-3t}]U(t)$,且 $y(0^-) = 3$,求该系统的零输入响应和零状态响应;
- (2) (1pt) 若 $y(0^-) = 10$, 求系统的零输入响应;
- (3) (1pt) 若完全响应为 $y(t) = [3e^{-t} + 2e^{-3t}]U(t)$, 且 $y(0^-) = 3$, 求 y'(t) + y(t) = f(t-2) 的零状态响应;
- (4) (1pt) 若完全响应为 $y(t) = [3e^{-t} + 2e^{-3t}]U(t)$,且 $y(0^-) = 3$,求 y'(t) + y(t) = f'(t) + 3f(t) 的零状态响应。

题目 3. (3pts)求下图**周期信号**的傅里叶级数,已知 $T = 4\tau$ (请给出推导过程,如果直接给结论则不给分)(1pt),并画出频谱幅度图 (1pt)。现在,如果 τ 不变,让周期 T 变成 2T,频谱图会发生什么样的变化 (1pt)?

题目 4. (4pts) 已知
$$f(t) = \left(\frac{\sin 2\pi t}{2\pi t}\right)^2$$
, $-\infty < t < \infty$,

- (1) (2pts) 求 F(jw)(如果不想列出数学公式,可以画图表示结果。需要给出推理过程。)。
- (2) (2pts) $\vec{x} \int_{-\infty}^{\infty} f(t) dt$

题目 5. (4pts) 描述某线性时不变系统的方程为 y''(t) + 7y'(t) + 12y(t) = f'(t) + 2f(t), 试求:

- (1) (2pts) 求该系统的冲激响应 h(t);
- (2) (2pts) 若输入 $f(t) = 6e^{-t}U(t)$, 求系统的零状态响应 $y_f(t)$ 。

题目 6. (3pts) 某一线性系统、输入信号 f(t) 的频谱 F(jw) 如下图所示。通过系统 $H_1(w)$ 后便用冲激串 $\delta_T(t)$ 进行抽样, $|H_1(jw)|$ 的特性如图 8(c) 所示。

- (1) (1pt) 为保证不出现混叠效应,求最低抽样频率 f_s (注意:采样频率的单位是 Hz,请注意转换,答案写成角频率不给分);
- (2) (1pt) 求抽样输出信号 y(t) 的频谱函数(假设采样角频率为 w_s ,采样角频率可以保证不发生频谱混叠);
- (3) (1pt) 若抽样输出的脉冲调幅信号通过理想信道,为了使接收端能实现无失真地恢复原信号 f(t),假设 $H_1(jw)$ 在 $[-\omega,\omega]$ 区间是一个线性相位,问接入的系统 $H_2(jw)$ 应具有什么样的特性(请画出 $H_2(jw)$ 的频谱图)。

