CS461 Quiz Two

CS461 Section #:	
Name:	
NetID:	

0. True / False Questions.

- Both Naive Bayes and logistic regression models learn posterior density $P(C_k|x)$. (True / False)
- Perceptron algorithm converges regardless of whether the data is linearly separable. (True / False)
- Logistic regression converges regardless of whether the data is linearly separable. (True / False)
- When data is linearly separable, logistic regression's sigmoid function becomes infinitely steep around the decision boundary. (**True** / False)
- When an SVM model is trained with a Gaussian kernel, it constructs a maximal margin classifier in an infinite-dimensional feature space. This results in high sensitivity (or high variance) to different training data sets. (True / False)

1. The figure shows the loss function: $L(y\vec{w}^tx)$ for the various classification algorithms for one data point (x,y), where $x \in \mathcal{R}^M$ and $y \in \{-1,1\}$. Please check all correct descriptions.

- (1) The value of $|y\vec{w}^tx|$ implies the distance of x to the decision hyperplane.
- (2) The positive side of $y\vec{w}^tx > 0$ presents the case of correct classification.
- (3) The negative side of $y\vec{w}^t x < 0$ presents the case of misclassification.
- (4) Perceptron prefers a larger margin.
- (5) Logistic regression does not promote any margin.
- (6) Perceptron loss considers only misclassified samples.
- (7) Logistic regression loss considers only misclassified samples.
- (8) Soft-SVM loss considers the samples on the correct side of the margin.

2. Suppose you classify a sample x using the MAP rule.

$$\mathcal{K}^* = \arg\max_k P[C_k|x] \propto P[x|C_k]P[C_k]$$

2.1 Classify the sample x = 0 when $P[C_1] = P[C_2] = \frac{1}{2}$. Use the two conditional densities above.

•
$$K^* = 1$$

$$P[C1|x=0] = P[x=0|C1]P[C1] = 1/3*1/2 = 1/6$$

$$P[C2|x=0] = P[x=0|C2]P[C2] = 1/4 * 1/2 = 1/8$$

2.2 Classify the sample x=0 when $P[C_1]=\frac{2}{3}$ and $P[C_2]=\frac{1}{3}$. Use the same conditional density above.

•
$$K^* = 1$$

$$P[C1|x=0] = P[x=0|C1]P[C1] = 1/3 * 2/3 = 2/9$$

$$P[C2|x=0] = P[x=0|C2]P[C2] = 1/4 * 1/3 = 1/12$$

2.3 Please define the three decision regions for the classes 1,2, and 3 over the range $-2 \le x \le 2$. Use the conditional densities below. Priors are uniform $P[C_k] = \frac{1}{3}, \forall k$.

- $\mathcal{R}_1: -2 \le x < -2/5$ (it is okay if $-2 \le x \le -2/5$)
- $\mathcal{R}_2: -2/5 \le x < 2/5$
- $\mathcal{R}_3: 2/5 \le x \le 2$

3. Hard margin SVM found the maximum margin decision boundary as below.

3.1 Please compute the margin of the classifier. You can use the formula: the distance between the hyperplane $w^t x + b = 0$ and x_0 : $\frac{|w^t x_0 + b|}{||w||}$.

• margin=
$$\frac{1}{\sqrt{2}}$$

3.2 Please find a minimal data set that will yield the same decision boundary as the same SVM algorithm is used. Circle the data points in the figure below. There are two possible solutions; please provide one example case.

• possible answer: (0,1), (1,0)

• answer: (-1,2), (2,-1)

• answer: (0,2), (2,0)

• answer: (0,3), (3,0)

3.3 Draw a data sample that would produce a different decision boundary in the figure below. The same SVM algorithm will be used. Infinite many solutions are possible; please provide one example case.

sol) If there is any data point within the margin, then the SVM will produce a different decision boundary.

