

化工原理实验

雷诺

演示实验

300-2实验室

实验装置图

雷诺演示实验

一、目的

观察流体流动状态

观察流体质点速度分布

二、原理

$$Re = \frac{du\rho}{\mu}$$

Re<2000: 层流 Re>4000: 湍流

雷诺演示实验

三、操作

打开红墨水阀门,调节水流量,记录水温

四、记录现象

设备号:1 管径:0.0195 m 温度:20℃

	层流状态	过渡状态	湍流状态
流量/LPM	Q < 2.0	2.0 <q<3.7< th=""><th>3.7<<i>Q</i></th></q<3.7<>	3.7< <i>Q</i>
Re范围	Re<2200	2200 <re<4000< th=""><th>4000<re< th=""></re<></th></re<4000<>	4000 <re< th=""></re<>

雷诺演示实验

流动状态示意图

化工原理实验

伯努利

演示实验

实验装置图

伯劳利演示实验

一、目的

验证伯努利方程

二、原理

$$z_1 + \frac{p_1}{\rho g} + \frac{u_1^2}{2g} + h_e = z_2 + \frac{p_2}{\rho g} + \frac{u_2^2}{2g} + h_f$$

伯劳利演示实验

三、操作

启动泵,调节水流量至4号液柱显示1600Pa

四、记录现象

	1#截面	2#截面	3#截面	4#截面
位压头				
动压头				
静压头				
机械能				
$oldsymbol{h}_f$				

实验简图

机械能守恒: $W_1 = W_2 = W_3 = W_4$

测压管液柱高度分析

