2. Przegląd ważniejszych klas funkcji.

2.1. Funkcje elementarne.

Podstawowe funkcje elementarne obejmują funkcje: stałe, potęgowe, wykładnicze, logarytmiczne, trygonometryczne i cyklometryczne.

Funkcje, które można otrzymać z podstawowych funkcji elementarnych za pomocą skończonej ilości działań arytmetycznych oraz operacji złożenia funkcji nazywamy funkcjami elementarnymi.

2.1.1. Wielomian i funkcja wymierna.

Wielomianem stopnia $n \in N \cup \{0\}$ nazywamy funkcję $W: R \to R$ postaci

$$W(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

gdzie $a_i \in R$, $0 \le i \le n$, $a_n \ne 0$.

Funkcję, którą można zapisać w postaci ilorazu dwóch wielomianów nazywamy funkcją wymierną. Dziedzina funkcji wymiernej to zbiór wszystkich liczb rzeczywistych z wyłączeniem miejsc zerowych mianowanika.

2.1.2. Funkcja potęgowa.

Funkcją potęgową nazywamy funkcję postaci $f(x) = x^r$, gdzie $r \in R$. Dziedzina funkcji potęgowej zależy od wykładnika r, np.

- $r \in N \cup \{0\}$ \Rightarrow $D_f = R$,
- $r \in Z \setminus (N \cup \{0\})$ \Rightarrow $D_f = R \setminus \{0\},$
- $(r \in R \setminus Z \land r > 0) \Rightarrow D_f = R_+ \cup \{0\},$
- $(r \in R \setminus Z \land r < 0) \Rightarrow D_f = R_+.$

Funkcje $y=x^n$ i $y=x^{\frac{1}{n}}$ są w przedziałe $[0,\infty)$ wzajemnie odwrotne.

2.1.3. Funkcja wykładnicza.

Funkcją wykładniczą nazywamy funkcję $f:R\to (0,\infty)$ postaci $f(x)=a^x,$ gdzie a>0 i $a\neq 1.$

Zatem $D_f = R$, $W_f = (0, \infty)$.

$0 \leqslant a \leqslant 1$

6

2.1.4. Funkcja logarytmiczna.

Logarytm liczby dodatniej b>0 przy podstawie a, gdzie a>0 i $a\neq 1$, jest wykładnikiem potęgi, do której należy podnieść a, aby otrzymać liczbę logarytmowaną b, tj.

$$z = \log_a b \iff a^z = b.$$

Z definicji logarytmu wynika

- $\bullet \log_a 1 = 0,$
- $\log_a a = 1$.

Oznaczamy

- $\log_{10} b = \log b$ $\log \operatorname{arytm}$ dzisiętny,
- $\log_e b = \ln b$ logarytm naturalny, $e \approx 2,7182$.

Własności logarytmów:

Niech a, b, c > 0, $a \neq 1$, $r \in R$.

- $\log_a(b \cdot c) = \log_a b + \log_a c$,
- $\log_a \frac{b}{c} = \log_a b \log_a c$,
- $r \log_a b = \log_a b^r$,
- $\log_b c = \log_b a \cdot \log_a c$, ezyli $\log_a c = \frac{\log_b c}{\log_b a}$, przy $b \neq 1$.

Funkcją logarytmiczną nazywamy funkcję $f:(0,\infty)\to R$ postaci f(x) alaman policzną o i radzi

 $f(x) = \log_a x$, gdzie a > 0 i $a \neq 1$.

Zatem $D_f = (0, \infty), \quad W_f = R.$

Funkcje $y=a^x$ i $y=\log_a x$ są wzajemnie odwrotne.

2.1.5. Funkcje trygonometryczne.

$$y = \sin x$$
, $D_f = R$, $W_f = [-1, 1]$;

$$y = \cos x$$
, $D_f = R$, $W_f = [-1, 1]$;

$$y = \operatorname{tg} x$$
, $D_f = R \setminus \{\frac{\pi}{2} + k\pi : k \in Z\}$, $W_f = R$;

$$y = \operatorname{ctg} x$$
, $D_f = R \setminus \{k\pi : k \in Z\}$, $W_f = R$.

2.1.6. Funkcje cyklometryczne (kołowe).

Funkcje cyklometryczne to funkcje odwrotne do funkcji trygonometrycznych.

• $f(x) = \arcsin x$ (arcussinus) to funkcja odwrotna do funkcji sinus obciętej do przedziału $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad D_f = \left[-1, 1\right], \quad W_f = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right];$

• $f(x) = \arccos x$ (arcuscosinus) to funkcja odwrotna do funkcji cosinus obciętej do przedziału $[0, \pi], D_f = [-1, 1], W_f = [0, \pi];$

• $f(x) = \operatorname{arctg} x$ (arcustangens) to funkcja odwrotna do funkcji tangens obciętej do przedziału $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $D_f = R$, $W_f = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$;

• $f(x) = \operatorname{arc} \operatorname{ctg} x$ (arcuscotangens) to funkcja odwrotna do funkcji cotangens obciętej do przedziału $(0,\pi)$, $D_f = R$, $W_f = (0,\pi)$.

2.2. Funkcje nieelementarne.

2.2.1. Część całkowita.

Funkcją część całkowita nazywamy funkcję $E:R\to Z$ zadaną wzorem

$$E(x) = k$$
 dla $k \le x < k+1$, $k \in \mathbb{Z}$.

Część całkowita liczby x jest największą liczbą całkowitą nie większą od x.

2.2.2. Funkcja signum.

Funkcją signum nazywamy funkcję $sgn:R\rightarrow \{-1,0,1\}$ określoną następująco:

- sgn(x) = -1 dla x < 0,
- sgn(x) = 0 dla x = 0,
- $sgn(x) \equiv 1 \text{ dla } x > 0.$

2.2.3. Funkcja Dirichleta.

Funkcją Dirichleta nazywamy funkcję $D\,:\,R\to\{0,1\}$ określoną następująco:

- D(x) = 1 dla $x \in Q$,
- $D(x) \equiv 0 \text{ dla } x \notin Q$.

