

Locality-Sensitive Hashing for f-Divergences and Kreın Kernels: Mutual Information Loss and Beyond

Lin Chen 1,2 , Hossein Esfandiari 1 , Thomas Fu 1 , and Vahab Mirrokni 1

¹Google Research, ²Yale University

1. Locality-Sensitive Hashing (LSH)

 \mathcal{M} : the set of items (the database), endowed with a distance D. Intuition of LSH: For any p and q in \mathcal{M} ,

- ▶ If they are close, they are more likely to have the same hash value;
- If they are far apart, they are more likely to have different hash values. (r_1, r_2, p_1, p_2) -sensitive LSH: Let $\mathcal{H} = \{h : \mathcal{M} \to U\}$ be a family of hash functions, where U is the set of possible hash values. Assume a distribution $h \sim \mathcal{H}$ over the family of functions. This family \mathcal{H} is called (r_1, r_2, p_1, p_2) -sensitive $(r_1 < r_2 \text{ and } p_1 > p_2)$ for D, if for $\forall p, q \in \mathcal{M}$ the following statements hold:
- $lacksquare ext{If } D(p,q) \leq r_1$, then $\Pr_{h \sim \mathcal{H}}[h(p) = h(q)] \geq p_1$;
- $lacksquare ext{If } D(p,q) > r_2$, then $\Pr_{h \sim \mathcal{H}}[h(p) = h(q)] \leq p_2$.

2. f-Divergence

ightharpoonup f-divergence from P to Q is defined by

$$D_f(P \parallel Q) = \sum_{i \in \Omega} Q(i) f\left(rac{P(i)}{Q(i)}
ight) , \qquad (1$$

for f convex and f(1)=0. Generally $D_f(P\parallel Q)
eq D_f(Q\parallel P)$.

KL-Divergence

$$D_{ ext{KL}}(P \parallel Q) = \sum_{i \in \Omega} P(i) \ln rac{P(i)}{Q(i)}$$

is the f_{KL} -divergence, where $f_{\mathrm{KL}}(t) = t \ln t + (1-t)$.

► Squared Hellinger Distance (SHD)

$$H^2(P,Q) = rac{1}{2} \sum_{i \in \Omega} (\sqrt{P(i)} - \sqrt{Q(i)})^2$$

is the hel-divergence, where $\operatorname{hel}(t) = \frac{1}{2}(\sqrt{t}-1)^2$.

▶ Jensen-Shannon Divergence (JSD) is a symmetrized version of the KL divergence. If M=(P+Q)/2, it is defined by

$$D_{ ext{JS}}(P \parallel Q) = rac{1}{2} D_{ ext{KL}}(P \parallel M) + rac{1}{2} D_{ ext{KL}}(Q \parallel M)$$
 . (2)

3. Mutual Information Loss (MIL)

Let $X \in \mathcal{X}$ be the feature value of a data item, $C \in \mathcal{C}$ be its label, and the joint distribution p(X,C) model a dataset [1].

Consider clustering two feature values x,y into a new combined value z:

$$\pi_{x,y}:\mathcal{X} o \mathcal{X}\setminus\{x,y\}\cup\{z\}$$
 s.t. $\pi_{x,y}(t)=egin{cases} t,&t\in\mathcal{X}\setminus\{x,y\}\ z,&t=x,y \,. \end{cases}$

To make the dataset after clustering preserve as much information of the original dataset as possible, we want to minimize mutual information loss

$$\operatorname{mil}(x,y) = I(X;C) - I(\pi_{x,y}(X);C)\,,$$

where $I(\cdot; \cdot)$ is the mutual information [3].

 $\min(x,y) = \min(y,x) \geq 0$ due to the data processing inequality [3].

4. Generalized Jensen-Shannon Divergence (GJSD)

Let P and Q be the conditional distribution of C s.t. P(c)=p(C=c|X=x) and Q(c)=p(C=c|X=y). The MIL can be re-written as

$$\lambda D_{\mathrm{KL}}(P \parallel M_{\lambda}) + (1 - \lambda) D_{\mathrm{KL}}(Q \parallel M_{\lambda})$$
, (3)

where $\lambda = \frac{p(x)}{p(x) + p(y)}$ and the distribution $M_{\lambda} = \lambda P + (1 - \lambda)Q$. (3) is a generalized version of (2) with $\lambda = 1/2$. Therefore, for $\lambda \in [0, 1]$, we define the GJSD by

 $D_{\mathrm{GJS}}^{\lambda}(P \parallel Q) = \lambda D_{\mathrm{KL}}(P \parallel M_{\lambda}) + (1 - \lambda)D_{\mathrm{KL}}(Q \parallel M_{\lambda}).$ In contrast to the MIL divergence, the GJSD $D_{\mathrm{GJS}}^{\lambda}(\cdot \parallel \cdot)$ is not symmetric unless $\lambda = 1/2$.

Lemma 1 The GJSD is m_{λ} -divergence, where $m_{\lambda}(t) = \lambda t \ln t - (\lambda t + 1 - \lambda) \ln(\lambda t + 1 - \lambda)$.

5. Positive Definite Kernel and Krein Kernel

Positive definite (PD) kernel. A symmetric map $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a PD kernel on \mathcal{X} if for all $a_1, \ldots, a_n \in \mathbb{R}$, and $x, \ldots, x_n \in \mathcal{X}$, it holds that $\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i, x_j) \geq 0$. Krein kernel. $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a Krein kernel on \mathcal{X} if there exist

PD kernels k_1 and k_2 s.t. $k(x,y) = k_1(x,y) - k_2(x,y)$.

6. LSH Schemes for f-Divergences

We build LSH schemes for f-divergences based on approximation via another f-divergence if the latter admits an LSH family. **Proposition 1** Let $\beta_0 \in (0,1), L, U > 0$ and let f and g be convex and s.t. f(1) = 0, g(1) = 0, and f(t), g(t) > 0 for every $t \neq 1$. Let \mathcal{P} be a set of probability measures on Ω s.t. for every $i \in \Omega$ and $P, Q \in \mathcal{P}$, $0 < \beta_0 \leq \frac{P(i)}{Q(i)} \leq \beta_0^{-1}$. Assume that for every $\beta \in (\beta_0, 1) \cup (1, \beta_0^{-1})$, it holds that $0 < L \leq \frac{f(\beta)}{g(\beta)} \leq U < \infty$. If \mathcal{H} forms an (r_1, r_2, p_1, p_2) -sensitive family for g-divergence on \mathcal{P} , then it is also an (Lr_1, Ur_2, p_1, p_2) -sensitive family for f-divergence on \mathcal{P} .

References

- [1] MohammadHossein Bateni, Lin Chen, Hossein Esfandiari, Thomas Fu, Vahab S Mirrokni, and Afshin Rostamizadeh. Categorical feature compression via submodular optimization. *ICML*, 2019.
- [2] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In *STOC*, pages 380–388. ACM, 2002.
- [3] Thomas M Cover and Joy A Thomas. *Elements of information theory*. John Wiley & Sons, 2012.
- [4] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In *SoCG*, pages 253–262. ACM, 2004.
- [5] Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric Ishs for inner product search. In *ICML*, pages 1926–1934, 2015.
- [6] Anshumali Shrivastava and Ping Li. Asymmetric Ish (alsh) for sublinear time maximum inner product search (mips). In *NeurIPS*, pages 2321–2329, 2014.

7. Example: LSH for Generalized Jensen-Shannon Divergence via Hellinger Approximation

We choose to approximate GJSD via the SHD.

Theorem 1 For every t>0 and $\lambda\in(0,1)$, we have

 $L(\lambda)H^2(P,Q) \leq D_{\mathrm{GJS}}^{\lambda}(P \parallel Q) \leq U(\lambda)H^2(P,Q) \leq H^2(P,Q),$ where $L(\lambda) = 2\min\{\eta(\lambda),\eta(1-\lambda)\}$, $\eta(\lambda) = -\lambda\ln\lambda$ and $U(\lambda) = rac{2\lambda(1-\lambda)}{1-2\lambda}\lnrac{1-\lambda}{\lambda}.$

Theorem 1 is based on the following two-sided approximation between m_{λ} and hel. This result might be of independent interest.

Lemma 2 Define $\kappa_\lambda(t)=\frac{m_\lambda(t)}{\mathrm{hel}(t)}$. For every t>0 and $\lambda\in(0,1)$, we have $\kappa_\lambda(t)=\kappa_{1-\lambda}(1/t)$ and $\kappa_\lambda(t)\in[L(\lambda),U(\lambda)]$.

We identify P and Q with vectors $[P(i)]_{i\in\Omega}, [Q(i)]_{i\in\Omega} \in \mathbb{R}^{|\Omega|}$. In this case, $H^2(P,Q) = \frac{1}{2}\|\sqrt{P} - \sqrt{Q}\|_2^2$, where $\sqrt{P} \triangleq [\sqrt{P(i)}]_{i\in\Omega}$ and $\sqrt{Q} \triangleq [\sqrt{Q(i)}]_{i\in\Omega}$. Therefore, the SHD can be endowed with the L^2 -LSH family [4] applied to the square root of the vector. The LSH for the GJSD is

$$h_{\mathrm{a},b}(P) = \left\lceil rac{\mathrm{a}^ op \sqrt{P} + b}{r}
ight
ceil,$$
 (4)

where a $\sim \mathcal{N}(0,I)$, $b \sim \mathrm{Unif}[0,r]$, and r>0. Theorem 2 Let $c=\|\sqrt{P}-\sqrt{Q}\|_2$ and f_2 be the probability density function of the absolute value of $\mathcal{N}(0,1)$. The hash functions $\{h_{\mathrm{a},b}\}$ defined in (4) form a $(R,c^2\frac{U(\lambda)}{L(\lambda)}R,p_1,p_2)$ -sensitive family for the

GJSD, where R>0, $p_1=p(1)$, $p_2=p(c)$, and $p(u)=\int_0^r \frac{1}{u}f_2(t/u)(1-t/r)dt.$

8. MIL is a Krein Kernel

Recall that we assume a joint distribution p(X,C). Let $x,y\in\mathcal{X}$ be represented by $\mathbf{x}=[p(c,x):c\in\mathcal{C}]\in[0,1]^{|\mathcal{C}|}$ and $\mathbf{y}=[p(c,y):c\in\mathcal{C}]\in[0,1]^{|\mathcal{C}|}$.

Theorem 4 $\min(\mathbf{x},\mathbf{y})$ is a Kreın kernel on $[0,1]^{|\mathcal{C}|}$: $\min = K_1 - K_2$, where $K_1(\mathbf{x},\mathbf{y}) = k(\sum_{c \in \mathcal{C}} p(c,x), \sum_{c \in \mathcal{C}} p(c,y))$ and $K_2(\mathbf{x},\mathbf{y}) = \sum_{c \in \mathcal{C}} k(p(c,x),p(c,y))$ are PD kernels, and $k(a,b) = a \ln \frac{a}{a+b} + b \ln \frac{b}{a+b}$.

To construct explicit feature maps for K_1 and K_2 , we need Lemma 3. Lemma 3 k is a PD kernel on [0,1] s.t.

 $k(x,y)=\langle \Phi(x),\Phi(y)
angle ext{ } extstyle \int_{\mathbb{R}} \Phi_w(x)^*\Phi_w(y)dw$, where $\Phi_w(x) ext{ } extstyle e^{-iw\ln(x)}\sqrt{x
ho(w)}$, $ho(w)=rac{2\operatorname{sech}(\pi w)}{1+4w^2}$ and * denotes the complex conjugate.

9. Intuition of Krein-LSH: Reduction to Maximum Inner Product Search (MIPS)

We reduce the problem of designing the LSH for a Kreın kernel to the problem of designing the LSH for MIPS [6].

Reduction to MIPS: If $K_i(x,y)=\langle \Psi_i(x),\Psi_i(y)\rangle$ (i=1,2), then $K=K_1-K_2$ can also represented as an inner product

$$K(x,y) = \langle \Phi_1(x) \oplus \Phi_2(x), \Phi_1(y) \oplus -\Phi_2(y)
angle \; ,$$

where \oplus denotes the direct sum.

Apply LSH to MIPS As an example, we use the Simple-LSH [5]. Assume that for all $x \in \mathcal{M}$, $||x||_2^2 \leq M$. For $x,y \in \mathcal{M}$, Simple-LSH performs the following transform

$$L_1(\mathbf{x}) riangleq [\mathbf{x}, \sqrt{M-\|\mathbf{x}\|_2^2}, 0], L_2(\mathbf{y}) riangleq [\mathbf{y}, 0, \sqrt{M-\|\mathbf{y}\|_2^2}]$$
 .

Since $\|L_1\|_2 = \|L_2\|_2 = M$, their cosine similarity equals their inner product. In fact, Simple-LSH is a reduction from MIPS to LSH for the cosine similarity. An LSH for the cosine similarity [2]

 $h(\mathrm{x}) riangleq \mathrm{sign}(\mathrm{x}^ op L_i(\mathrm{x})), \quad \mathrm{a} \sim \mathcal{N}(0,I), i=1,2$ can be used for MIPS and thereby LSH for the MIL via our reduction.

10. Algorithm: Krein-LSH

To make the above intuition practical, we have to truncate and discretize the integral $k(x,y)=\int_{R}\Phi_{w}(x)^{*}\Phi_{w}(y)dw$.

Input: Discretization parameters $J\in\mathbb{N}$ and $\Delta>0$.

Output: The left and right Krein transform η_1 and η_2 .

- 1: $w_j \leftarrow (j-1/2)\Delta$ for $j=1,\ldots,J$
- 2: Construct the atomic transform

$$egin{aligned} au(x,w,j) & riangleq \left[\cos(w\ln(x))\sqrt{2x\int_{(j-1)\Delta}^{j\Delta}
ho(w')dw'},
ight. \ & ext{ } \sin(w\ln(x))\sqrt{2x\int_{(j-1)\Delta}^{j\Delta}
ho(w')dw'}
ight] \,. \end{aligned}$$

3: Construct the left and right basic transform

$$egin{aligned} \eta_1(\mathrm{x}) & riangleq igoplus_{j=1}^J au(p(x), w_j, j) \oplus igoplus_{j=1}^J igoplus_{c \in \mathcal{C}} au(p(c, x), w_j, j) \,, \ \eta_2(\mathrm{x}) & riangleq igoplus_{j=1}^J au(p(x), w_j, j) \oplus igoplus_{j=1}^J igoplus_{c \in \mathcal{C}} - au(p(c, x), w_j, j) \,. \ j & riangleq igoplus_{j=1}^J au(p(x), w_j, j) \oplus igoplus_{j=1}^J igoplus_{c \in \mathcal{C}} - au(p(c, x), w_j, j) \,. \end{aligned}$$

4: Construct the left and right Krein transform

$$T_1(\mathrm{x}, M) riangleq [\eta_1, \sqrt{M - \|\eta_1(\mathrm{x})\|_2^2, 0}], \ T_2(\mathrm{y}, M) riangleq [\eta_2, 0, \sqrt{M - \|\eta_2(\mathrm{x})\|_2^2}].$$

where M is a constant s.t. $M \geq \|\eta_1(\mathbf{x})\|_2^2 = \|\eta_2(\mathbf{x})\|_2$.

5: Sample $\mathbf{a} \sim \mathcal{N}(\mathbf{0}, I)$ and construct the hash function $h(\mathbf{x}; M) \triangleq \mathrm{sign}(\mathbf{a}^{\top} T(\mathbf{x}, M))$, where T is either the left or right transform.