Lineare Algebra 1 Hausaufgabenblatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 19, 2023)

Problem 1. Es sei K ein Körper. Ferner seien $a, b \in K[t] \setminus \{0\}$ Polynome.

Wir definieren $r_0 := a, r_1 := b$ und definieren für $k \in \mathbb{N}$ q_k und r_{k+1} als Polynome, die

$$r_{k-1} = q_k r_k + r_{k+1}$$
 $\deg(r_{k+1}) < \deg(r_k)$

erfüllen, falls $r_k \neq 0$ und ansonsten definieren wir $r_{k+1} = r_k = 0$.

- (a) Zeigen Sie: Es gibt ein minimales $k_0 \in \mathbb{N}$, sodass $r_k = 0$ für alle $k > k_0$.
- (b) Zegen Sie: Mit dieser Wahl ist $r_{k_0} \neq 0$ und r_{k_0} ist ein gemeinsamer Teiler von a und b.
- (c) Zeigen Sie: Ist $s \in K[t]$ ein gemeinsamer Teiler von a und b, dann ist s auch ein Teiler von r_{k_0} .
- *Proof.* (a) Es gilt $\deg(r_k) < \deg(r_k)$, also die Folge $\deg(r_k)$ ist streng monoton fallend. Weil es nur endliche Möglichkeiten k für die Grad eines Polynomes mit $k < \deg(b)$ gibt, muss es ein Zahl k_0' geben, mit $\deg(r_{k_0'}) = -\infty$.

(Die Möglichkeiten sind $\{-\infty, 0, 1, \dots, \deg(b)\}$.)

 $\deg(r_{k_0}) = -\infty$ genau dann, wenn $r_{k_0} = 0$. Es folgt per Definition, $r_{k_0+1} = 0$ und $r_k = 0 \ \forall k \geq k_0$ per Induktion.

Weil $\{0,1,\ldots,k'_0\}$ endlich ist, gibt es ein minimales Zahl k_0 mit die gewünsche Eigenschaft.

Mit dieser Wahl ist $r_{k_0} \neq 0$.

(b)

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Sonst wäre es ein Widerspruch, weil k_0 nicht die kleinste Zahl mit diese Eigenschaft wäre. Falls $r_{k_0}=0$, wäre k_0-1 eine kleine Zahl mit die gewünschte Eigenschaft.

(i) Wir beweisen zuerst die folgende Behauptung:

Sei p ein gemeinsamer Teiler von r_k und r_{k+1} . Dann ist p auch ein gemeinsamer Teiler von r_k und r_{k-1} .

Per Definition teilt $p r_k$. Wir wissen auch, dass

$$r_{k-1} = q_k r_k + r_{k+1}$$
.

Weil p teilt r_k , teilt p $q_k r_k$ auch. Da p teilt auch r_{k+1} , teilt p $q_k r_k + r_{k+1}$, also p teilt r_{k-1} . Dann ist p ein gemeinsamer Teiler von r_k und r_{k-1} .

(ii) Sei p ein gemeinsamer Teiler von r_{k-1} und $r_k, k \le k_0$. Dann ist p auch ein gemeinsamer Teiler von a und b.

Wir beweisen es per Induktion. Für k = 1 ist es klar, dass alle gemeinsamer Teiler von a und b auch gemeinsamer Teiler von a und b sind.

Jetzt nehmen wir an, dass es für eine beliebige $\mathbb{N} \ni k < k_0$ gilt, dass alle gemeinsamer Teiler von r_k und r_{k-1} auch gemeinsamer Teiler von a und b sind.

Jetzt betrachten wir r_k und r_{k+1} . Sei p ein gemeinsamer Teiler von r_k und r_{k+1} . Aus (i) folgt, dass p auch ein Teiler von r_k und r_{k-1} ist. Per Induktionvoraussetzung ist p auch ein gemeinsamer Teiler von a und b.

- (iii) Insbesondere gilt, dass alle gemeinsamer Teiler p von r_{k_0} und r_{k_0-1} auch gemeinsamer Teiler von a und b sind.
- (iv) In (a) haben wir schon bewiesen, dass r_{k_0} ein Teiler von r_{k_0-1} ist. Daraus folgt, dass r_{k_0} ein gemeinsamer Teiler von r_{k_0} und r_{k_0-1} ist. Es folgt, dass r_{k_0} ein gemeinsamer Teiler von a und b ist.
- (c) Der Beweis läuft ähnlich:

(i) Wir beweisen per Induktion:

Sei p ein gemeinsamer Teiler von a und b. p ist dann ein gemeinsamer Teiler von r_k und r_{k-1} für alle $k \in \{0, 1, \dots, k_0\}$.

- (ii) Induktionsvoraussetzung: Wir nehmen an, dass es für beliebige $\mathbb{N} \ni k \le k_0 1$, dass alle gemeinsamer Teiler von a und b auch gemeinsamer Teiler von r_k und r_{k-1} sind.
- (iii) Wir betrachten p, was ein gemeinsamer Teiler von a und b ist, also per Induktionsvoraussetzung ist p ein gemeinsamer Teiler von r_k und r_{k-1} .

Es gilt $r_{k+1} = r_{k-1} - q_k r_k$, also weil p r_k teilt, teilt p $q_k r_k$. Es folgt, dass p teilt $r_{k-1} - q_k r_k$, und p teilt r_{k+1} . Also p ist ein gemeinsamer Teiler von r_{k+1} und r_k .

Insbesondere gilt, dass wenn $s \in K[t]$ ein gemeinsamer Teiler von a und b ist, ist s ein gemeinsamer Teiler von r_{k_0} und r_{k_0-1} , also s ist ein Teiler von r_{k_0} . \square

- **Problem 2.** (a) Zeigen Sie: Ist K ein endlicher Körper, so gibt es ein Polynom $p \neq 0$, das alle $x \in K$ als Nullstelle hat. Folgern Sie daraus, dass die Abbildung $K[t] \to \mathrm{Abb}(K,K)$, $f \to (x \to f(x))$ in diesem Fall nicht injektiv ist.
 - (b) Zeigen Sie: Ist $p \in K[t]$ ein Polynom vom Grad o, 1, 2 oder 3, das keine Nullstelle in K hat, dann hat von zwei Polynomen f, g mit $f \cdot g = p$ mindestens eines Grad o.
 - (c) Bestimmen Sie mit dem vietaschen Nullstellensatz alle rationalen Nullstellen von

$$q = 99 \cdot t^3 - 63 \cdot t^2 - 44 \cdot t + 28 \in \mathbb{Q}[t].$$

- (d) Beweisen Sie, dass das Polynom $t^8-2\in\mathbb{Q}[t]$ keine rationalen Nullstellen hat.
- (e) Es seien $f=(2+3i)X^7-5$ und $g=X^2-2i$ in $\mathbb{C}[X]$ gegeben. Bestimmen Sie wie im Existenzbeweis von Satz 2.4.26 die Polynome $q,r\in\mathbb{C}[X]$ mit $\deg(r)<\deg(g)$ und

$$f = q \cdot g + r.$$

Proof. (a) Wir beweisen es konstruktiv. Sei $p = \prod_{r \in K} (x - r)$. Es gilt, für alle $x \in K$, dass x - x = 0, also p(x) = 0. Aber $p \neq 0$, z.B. ist das Koeffizient $a_n = 1$, wobei n = |K|.

Wir wissen, dass die Abbildung das konstruierte Polynom auf die Nullfunktion abbildet. Aber die Abbildung bildet auch das Nullpolynom auf die Nullfunktion ab. Also wir haben $K[t] \ni 0 \neq p \in K[t]$, aber die Abbildung bildet 0 und p auf die gleiche Funktion, also es ist nicht injektiv.

(b) Es gilt

$$\deg(p) = \deg(f) + \deg(g),$$

also es gibt nur zwei Möglichkeiten für deg(f) und deg(g): Entweder haben wir 0+3=3 oder 1+2=3.

Sei $\deg(f)=1$ und $\deg(g)=2$, mit $p=f\cdot g$. Per Definition ist $f(t)=a_0+a_1t$, $a_0,a_1\in K$. Sei $t=-a_1^{-1}a_0\in K$. Es gilt $\tilde{f}(t)=a_0-a_1a_1^{-1}a_0=0$, also t ist eine Nullstelle von f.

Es folgt daraus, dass t ist eine Nullstelle von p, ein Widerspruch zu die Annahme, dass p keine Nullstellen hat.

Jetzt bleibt nur eine Möglichkeit, dass von f, g mindestens eines (eigentlich genau eine) Grad 0 hat.

(c) Für alle rationale Nullstellen $a/b, a \in \mathbb{N} \cup \{0\}$, $b \in \mathbb{Z}$, a, b teilerfremd gilt

$$a|28$$
 $b|99$.

Weil $28 = 2^2 \times 7$ und $99 = 3^2 \times 11$, sind die Möglichkeiten dafür:

$$a \in \{1, 2, 4, 7, 14, 28\}$$

 $b \in \{1, 3, 9, 11, 33, 99\}$

Man kann alle 36 Kominationen probieren, die rationale Nullstellen sind:

$$\lambda_1 = -\frac{2}{3}, \qquad \lambda_2 = \frac{7}{11}, \qquad \lambda_3 = \frac{2}{3}.$$

(d) Wir verwenden Satz 2.4.37. Sei $x=\frac{p}{q}\in\mathbb{Q},\ p,q\in\mathbb{Z},q>0$ teilerfremd, eine Nullstelle von t^8-2 . Dann gilt

$$p|-2 q|1,$$

also q=1 und $p\in\{-2,-1,0,1,2\}$, dann $x\in\{-2,-1,0,1,2\}$. Aber für keine mögliche x gilt $x^8-2=0$, also $t^8-2\in\mathbb{Q}[t]$ hat keine rationale Nullstellen.

(e)

$$(2+3i)X^{7} - 5 = (X^{2} - 2i)((2+3i)X^{5} - (6-4i)X^{3} - (8+12i)X) + \underbrace{(24-16i)X - 5}_{r}.$$

Problem 3. Beweisen oder widerlegen Sie folgende Behauptungen:

- (a) R wird mit der gewöhnlichen Addition und Multiplikation ein Q-Vektorraum.
- (b) \mathbb{Z} wird mit der gewöhnlichen Addition und der Multiplikation $\mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$: $\overline{0} \cdot z = 0, \overline{1} \cdot z = z$ zu einem $\mathbb{Z}/2\mathbb{Z}$ -Vektorraum.
- (c) Der Ring $\mathbb{C} \times \mathbb{R}$ wird mit der Multiplikation $a \cdot (z,r) = (az,ar)$ zu einem \mathbb{R} -Vektorraum.
- (d) Der Ring $\mathbb{C} \times \mathbb{R}$ wird mit der Multiplikation $a \cdot (z, r) = (az, ar)$ zu einem \mathbb{C} -Vektorraum.
- (e) Jeder C-Vektorraum ist mit der entsprechend eingeschränkten Multiplikation auch ein R-Vektorraum.
- *Proof.* (a) Wahr. Wir wissen, dass $(\mathbb{R}, +, 0)$ eine abelsche Gruppe ist.

Die andere Gruppenaxiome folgen aus die analoge Axiome für Addition und Multiplikation in \mathbb{R} , wenn man $(\mathbb{Q}, +, \cdot, 0, 1)$ als Unterring von $(\mathbb{R}, +, \cdot, 0, 1)$ betrachtet.

(b) Falsch. Das Distributivgesetz wird verletzt. Sei $a \in \mathbb{Z}$, $a \neq 0$ und daher $a + a \neq 0$. Es gilt

$$a + a = \overline{1} \cdot a + \overline{1} \cdot a$$
$$\neq (\overline{1} + \overline{1})a$$

$$=\overline{0} \cdot a$$

$$=0$$

(c) Wahr. Es folgt ähnlich zu (a):

Wir haben $+, \cdot : \mathbb{C} \to \mathbb{C}$. Wir wissen, dass $(\mathbb{R}, +|_{\mathbb{R} \times \mathbb{R}}, \cdot|_{\mathbb{R} \times \mathbb{R}}, 0, 1)$ ein Unterring ist. Daraus folgt, dass $\mathbb{C} \times \mathbb{R}$ mit der Multiplikation $a \cdot (z, r) = (az, ar)$ ein \mathbb{R} -Vektorraum ist.

(d) Falsch. Es gilt, z.B. $(1,1) \in \mathbb{C} \times \mathbb{R}$, $i \in \mathbb{C}$, aber

$$i \cdot (1,1) = (i,i) \notin \mathbb{C} \times \mathbb{R}.$$

Problem 4. Es sei (V, +) eine abelsche Gruppe. Zeigen Sie:

(a) Die Menge End (V) aller Homomorphismen von $V \to V$ bildet mit den Verknüpfungen

$$\oplus : \operatorname{End}(V) \times \operatorname{End}(V) \to \operatorname{End}(V), f \oplus g := (V \to V, x \to f(x) + g(x))$$

und \circ der gewöhnlichen Hintereinanderausführung von Abbildungen, einen Ring mit 1.

- (b) Enthält End(V) einen Körper K, dann ist (V,+) mit der skalaren Multiplikation $k \cdot v := k(v)$ ein K-Vektorraum.
- *Proof.* (a) (i) Wir wissen, weil (V, +) abelsch ist, dass $(\text{End}(V), \oplus)$ auch eine abelsche Gruppe ist.
 - (ii) Wir wissen auch, dass Verkettung von Funktionen assoziativ ist.
 - (iii) Distributivgesetz: Sei $f, g, h \in \text{End}(V)$. Es gilt, für beliebige $x \in V$,

$$[f \circ (g \oplus h)](x) = f(g(x) + h(x))$$

$$= f(g(x)) + f(h(x)) \qquad f \text{ ist ein Homomorphismus}$$

$$= (f \circ g)(x) + (f \circ h)(x)$$

$$= [(f \circ g) \oplus (f \circ h)](x)$$

Weil x beliebig war, ist $f \circ (g \oplus h) = (f \circ g) \oplus (f \circ h)$

(iv) Sei $1 \in \text{End}(V)$, $x \to x$. Sei außerdem $f \in \text{End}(V)$, und $x \in V$ beliebig. Es gilt

$$f \circ 1 = 1 \circ f = f$$
,

also End(V) ist ein Ring mit 1.

- (b) V ist eine abelsche Gruppe (das haben wir vorausgesetzt). Wir müssen nur die andere Axiome betrachten. In folgendes Sei $\lambda, \mu \in K$ beliebiger Elemente von der Körper und $v, w \in V$. Weil K ein Körper ist, enthält K 1.
 - (i) $(\lambda \oplus \mu) \cdot v = \lambda \cdot v + \mu \cdot v$ folgt per Definition von \oplus .
 - (ii) $\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$ gilt, weil λ ein Homomorphismus ist.

(iii)

$$(\lambda \circ \mu) \cdot v = \lambda(\mu(v))$$
$$= \lambda \cdot (\mu \cdot v)$$

(iv) Es gilt $1 \cdot v = 1(v) = v$ per Definition von 1.