CPU简易设计文档

CPU简易设计文档

该文档适用于p6,以求更快速度的增添指令

一. 主控制信号

1.指令与控制信号的对应

指令	NPCSel	ExtOp	RegDst	ALUSrc	ALUControl	MemWrite	RegWriteSel	RegWrite	TuseRs	TuseRt	Tnew	Ор	Func	DataExtOp	MDControl	MDDataOp
位数	[1:0]	[1:0]	[1:0]	[1:0]	[2:0]	[0:0]	[1:0]	[0:0]	[1:0]	[1:0]	[1:0]	[5:0]	[5:0]	[2:0]	[2:0]	[0:0]
ADD	0	0	1	0	0	0	0	1	1	1	1	000000	100000	0	0	0
SUB	0	0	1	0	1	0	0	1	1	1	1	000000	100010	0	0	0
AND	0	0	1	0	4	0	0	1	1	1	1	000000	100100	0	0	0
OR	0	0	1	0	2	0	0	1	1	1	1	000000	100101	0	0	0
SLT	0	0	1	0	5	0	0	1	1	1	1	000000	101010	0	0	0
SLTU	0	0	1	0	6	0	0	1	1	1	1	000000	101011	0	0	0
ORI	0	0	0	1	2	0	0	1	1	3	1	001101		0	0	0
ADDI	0	0	0	1	0	0	0	1	1	3	1	001000		0	0	0
ANDI	0	0	0	1	4	0	0	1	1	3	1	001100		0	0	0
LUI	0	2	0	1	0	0	0	1	3	3	1	001111		0	0	0
LW	0	1	0	1	0	0	1	1	1	3	2	100011		0	0	0
SW	0	1	0	1	0	1	0	0	1	2	"0"	101011		0	0	0
JAL	2	0	2	0	0	0	2	1	3	3	0	000011		0	0	0
JR	3	0	0	0	0	0	0	0	0	3	"0"	000000	001000	0	0	0
BEQ	1	0	0	0	1	0	0	0	0	0	"0"	000100		0	0	0
BNE	4	0	0	0	1	0	0	0	0	0	"0"	000101		0	0	0
SLL	0	0	1	2	3	0	0	1	1	3	1	000000	000000	0	0	0
LB	0	1	0	1	0	0	1	1	1	3	2	100000		2	0	0
LH	0	1	0	1	0	0	1	1	1	3	2	100001		4	0	0
SB	0	1	0	1	0	3	0	0	1	2	"0"	101000		0	0	0
SH	0	1	0	1	0	2	0	0	1	2	"0"	101001		0	0	0
MULT	0	0	0	0	0	0	0	0	1	1	"0"	000000	011000	0	1	0
MULTU	0	0	0	0	0	0	0	0	1	1	"0"	000000	011001	0	2	0
DIV	0	0	0	0	0	0	0	0	1	1	"0"	000000	011010	0	3	0
DIVU	0	0	0	0	0	0	0	0	1	1	"0"	000000	011011	0	4	0
MTLO	0	0	0	0	0	0	0	0	1	3	"0"	000000	010011	0	5	0
MTHI	0	0	0	0	0	0	0	0	1	3	"0"	000000	010001	0	6	0
MFLO	0	0	1	0	0	0	3	1	3	3	1	000000	010010	0	7	0
MFHI	0	0	1	0	0	0	3	1	3	3	1	000000	010000	0	7	1

注: Tnew的"0", Tuse的3代表无意义

2.各个控制信号的意义

取值	功用	0	1	2	3	4	5	6	7
nPCSel	下一条地址	正常PC+4	小跳转 偏移offset	大跳转 imm26	GRF值				
ExtOp	立即数扩展	无/0扩展	符号扩展	立即数置高位					
RegDst	写入GRF地址	Rt	Rd	31					
ALUSrc	ALU第二计算数选择	GRF读出的第二个数	立即数	Rt(移位操作)					
ALUControl	ALU计算操作	无/加法	减法	或	逻辑左移	与	有符号小于置1	无符号小于置1	
MemWrite	是否写入存储器&处理写入数据	否	SW 是	SH 是	SB 是				
RegWrite	是否写入寄存器	否	是						
RegWriteSel	写入寄存器的值选择	ALU计算结果	存储器读出结果	PC+8	乘除模块HILO读出结果				
DataExtOp	处理存储器读出数据	无处理	无符号扩展字节	有符号扩展字节 (LB)	无符号扩展半字	有符号扩展半字 (LH)			
MDControl	乘除模块操作&判断是否为乘除指令	非乘除指令	有符号乘	无符号乘	有符号除	无符号除	写入LO	写入HI	读出HI/LO

第1页 共2页 2022/11/20 22:41

CPU简易设计文档

取值	功用	0	1	2	3	4	5	6	7
MDDataOp	乘除模块读出选择	无/LO	Н						

注: MemWrite信号需配合Addr[1:0]进一步判断产生Byteen信号

二. 暂停转发矩阵

利用AT法判断每条指令的TuseRT TuseRS Tnew

Tnew	E	E	E	М	М	w
TuseRs rt	0	1	2	0	1	0
0	F(Forward)	S(Stall)	s	F	S	F
1	0	0	s	F	F	F
2	F	F	F	F	F	F

整体思路: D级强制阻塞,后级但凡出现冒险一定能通过转发解决,尽可能多转发,每级皆转发(共五个转发多路选择器RD1,RD2,ALUA,ALUB,StoreData)

注: 暂停一共只有四种情况 无过多值得注意的地方

三. 有关延迟槽

1.B/J型指令会用到延迟槽,紧随其后的一条指令不会清除而是会执行,因此JAL应链接下两条指令,即PC+8;

2.无需考虑分支冒险, 仅考虑数据冒险即可

四.整体通路结构

图片导入略麻烦 见思考题

乘除模块的延时信号已经发出立即进行阻塞判断