RELAZIONE PROGETTO

Calcolo Numerico

Stefano Staffolani

Anno accademico 2021-2022

1 Intro

In questo progetto sono state messe in pratica alcune tecniche di ricostruzione di immagini. Quando si ricava un'immagine da un oggetto reale, questa è ben diversa poichè presenta del Blur e del rumore. Il Blur è una sfuocatura dovuta all'apparecchio che immagazzina i dati, mentre il rumore si va ad aggiungere dopo la digitalizzazione di essa. Quanto detto può essere formalizzato matematicamente come un problema di analisi numerica infatti:

- Sia x l'oggetto reale;
- Sia K il filtro di Blur;
- Sia η il rumore;

Quindi l'immagine immagazzinata è: $b = Kx + \eta$, dove Kx è il prodotto di convoluzione che dà come risultato l'immagine blurrata e η è il rumore aggiunto. Il problema di ricostruzione è mal condizionato, quindi una piccola perturbazione sui dati causa una grande perturbazione sul risultato. Viene dunque risolto con il metodo ai minimi quadrati:

$$r = \arg\min_{x} ||Kx - b||_2^2$$

Vogliamo dunque minimizzare il vettore residuo r. Possiamo anticipare subito che il problema sopra non darà mai una buona ricostruzione poichè non teniamo conto del rumore w. Per tenerne conto e avere una ricostruzione migliore andiamo a sommare $\lambda\phi(x)$, ottenendo

$$r = \arg\min_{x} ||Kx - b||_2^2 + \lambda \phi(x)$$

dove:

- λ : è detto parametro di regolarizzazione;
- $\phi(x)$: è detto termine di regolarizzazione;

Il parametro λ è stato scelto in maniera euristica, mentre il termine di regolarizzazione varia a seconda della tecnica. Le tecniche utilizzate sono state due:

- **Tikhonov**: $\phi(x)$ è definito come $||Ax||_2^2$, dove per semplicità A = I la matrice identità;
- Variazione Totale: $\phi(x)$ è definito come $||\nabla x(i,j)||_1$, ovvero il gradiente calcolato nel punto (i,j);

Data la non differenziabilità della norma 1 possiamo modificare il problema così:

$$\phi(x) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sqrt{||\nabla u(i,j)||_{2}^{2} + \epsilon^{2}}$$

dove ϵ è una piccola quantità positiva.

1.1 costruzione del problema test

Per la creazione del problema test sono state caricate 10 immagini in scala di grigio in formato PNG di grandezza 512x512, di queste 10: 2 sono immagini mediche che rappresentano rispettivamente un addome e un rene; 8 sono immagini geometriche generate da noi. Per valutare la ricostruzione usiamo 2 indicatori che sono:

• Peak Signal Noise Ratio(PSNR): indica quanto segnale è presente, maggiore è il PSNR migliore è la ricostruzione; è definito come:

$$PSNR = 20log_{10} \frac{max_{ij}g(i,j)}{\frac{1}{MxN}||w||}$$

dove g è l'immagine e w è il rumore.

• Mean Squared Error(MSE): indica l'errore tra le due immagini

2 Risultati su 3 immagini

A seguito vengono riportati i risultati su 3 immagini. Dove è stato applicato un filtro di blur di dimensione 5x5 e $\sigma=0.5$. Il rumore aggiunto ha deviazione standard di 0.05. Gli algoritmi utilizzati per risolvere i problemi di ottimizzazione sono stati:

- 1. Metodo Gradienti Coniugati (CG) della funzione scipy.optimize.minimize();
- 2. Metodo del Gradiente (GD) implementato a lezione;

Nella ricostruzione con Tikhonov sono state fatte due esecuzioni con entrambi i metodi. Per la ricostruzione naive è stato usato solo CG, mentre per la ricostruzione con TV è stato usato solo GD. I parametri di regolarizzazione utilizzati sono $\lambda = [0.1, 0.01.0.001]$.

2.1 Set Geometry

Di seguito viene riportato l'intero set di immagini di natura geometrica. Notiamo subito che la ricostruzione naive appare molto opaca e conferma ciò che avevamo già detto all'inizio. Per quanto riguarda le ricostruzioni con Tikhonov notiamo che il metodo del gradiente ci dà una ricostruzione migliore rispetto al metodo dei gradienti coniugati. In particolare la ricostruzione migliore con i gradienti coniugati è quella con prametro di regolarizzazione $\lambda=0.001$; mentre la migliore per il metodo del gradiente è quella con $\lambda=0.01$. Quindi possiamo dire che i metodi si comportano in maniera diversa con stessi parametri. La ricostruzione migliore è quella con variazione totale e $\lambda=0.01$, questo lo vediamo dal bordo superiore destro dei due cerchi, infatti la tecnica della variazione totale tende a mettere molto in risalto i bordi.

2.2 Set Addome

Di seguito viene riportato l'intero set di immagini di una radiografia dell'addome. L'immagine naive è estremamente opaca e infatti ha un PSNR molto basso (6.944844). Nelle ricostruzioni con Tikhonov vediamo dei buoni risultati con il metodo del gradiente in corrispondenza di $\lambda=0.01$. Per quanto riguarda il metodo dei gradienti coniugati non abbiamo delle buone ricostruzioni, l'unica accettabile è quella con $\lambda=0.001$. Per quanto riguarda la ricostruzione con variazione totale il risultato migliore è quello con $\lambda=0.01$, mentre negli altri due siamo sugli stessi livelli di Tikhonov con GD.

2.3 Set Rene

Di seguito viene riportato l'intero set di immagini di un'altra radiografia, questa volta di un rene. Su questo set rispetto agli altri è visibile ad occhio una buona ricostruzione con il metodo dei gradienti coniugati, se volessimo confrontarli in base al PSNR vedremmo che la migliore è quella con $\lambda = 0.001$. Molto buona è la ricostruzione con i metodi del gradiente sia per quanto riguarda Tikhonov, sia per quanto riguarda la variazione totale.

2.4 Conclusione

Concludendo da queste immagini possiamo affermare che i metodi di ricostruzione utilizzati non si sono comportati alla stessa maniera. In particolare, di tutte le ricostruzioni su tutti e 3 i set abbiamo le migliori con la Variazione Totale. I valori di PSNR e MSE dei set sono confrotabili ai punti 3.1, 3.2, 3.3, rispettivamente nella prima tabella di ogni sezione.

3 Variazioni PSNR e MSE

Vengono riportate di seguito delle tabelle che mostrano i valori del PSNR e MSE al variare di alcuni parametri di regolarizzazione ($\lambda 1 = 0.001 \ \lambda 2 = 0.01 \ \lambda 3 = 0.1$) e al variare della deviazione standard del rumore (0.01, 0.025, 0.05).

3.1 Immagine Geometry

Immagine 1 dimensione kernel 5x5				
$\sigma = 0.5$	deviazione=0.01	one=0.01 deviazione= 0.025 deviazione= 0.025		
PSNR Blurred	37.002792	31.397641	25.846162	
MSE Blurred	0.000199	0.000725	0.002602	
PSNR naive	35.982037	13.194179	6.944844	
MSE naive	0.000252	0.047927	0.202076	
PSNR Tik. CG λ1	34.266519	25.118586	18.267134	
MSE Tik. CG λ1	0.000374	0.003077	0.003077	
PSNR Tik. CG $\lambda 2$	32.497532	32.351157	19.292898	
MSE Tik. CG λ2	0.000563	0.000582	0.011768	
PSNR Tik. CG $\lambda 3$	28.880456	26.786853	23.31647	
MSE Tik. CG λ3	0.001294	0.002096	0.00466	
PSNR Tik. GD $\lambda 1$	39.047517	33.091203	28.280775	
MSE Tik. GD $\lambda 1$	0.000125	0.000491	0.000491	
PSNR Tik. GD $\lambda 2$	38.497409	33.008167	28.337278	
MSE Tik. GD $\lambda 2$	0.000141	0.0005	0.001466	
PSNR Tik. GD $\lambda 3$	29.041729	27.931452	25.438836	
MSE Tik. GD $\lambda 3$	0.001247	0.00161	0.002858	
PSNR TV GD $\lambda 1$	39.54864	33.559703	28.572062	
MSE TV GD $\lambda 1$	0.000111	0.000441	0.000441	
PSNR TV GD $\lambda 2$	43.623526	37.538625	30.955869	
MSE TV GD $\lambda 2$	4.3e-05	0.000176	0.000802	
PSNR TV GD $\lambda 3$	39.817154	39.279229	37.808665	
MSE TV GD $\lambda 3$	0.000104	0.000118	0.000166	

In questa tabella vengono riportati i PSNR e MSE dell'immagine Geometry dove il filtro di Blur applicato aveva dimensione del kernel uguale a 5x5 e $\sigma=0.5$, dall'immagine deblurrata sono state poi ottenute altre 3 immagini ognuna con l'aggiunta di rumore con una certa deviazione. Da questi valori possiamo dedurre che più è alta la deviazione del rumore più è difficile la ricostruzione, con qualsiasi tecnica. Questo è anche visibile poichè la colonna di destra presenta dei valori di PSNR minori rispetto alle altre due rispettive colonne. Per quanto riguarda i valori del MSE sono quasi tutti nello stesso range, fatta eccezione per la Variazione Totale in corrispondenza di $\lambda 2$, ovvero dove abbiamo il valore di PSNR più alto.

Immagine 1 dimensione kernel 7x7				
$\sigma = 1.0$	deviazione=0.01 deviazione=0.025 deviazione=		deviazione=0.05	
PSNR Blurred	36.992723	31.401618	25.862333	
MSE Blurred	0.0002	0.000724	0.002593	
PSNR naive	25.659666	-2.088153	26.422459	
MSE naive	0.002717	1.617392	0.002279	
PSNR Tik. CG λ1	31.271419	24.876885	26.450511	
MSE Tik. CG λ1	0.000746	0.003253	0.002264	
PSNR Tik. CG $\lambda 2$	31.52493	25.816464	19.42597	
MSE Tik. CG $\lambda 2$	0.000704	0.00262	0.011413	
PSNR Tik. CG $\lambda 3$	29.25931	28.057925	25.381016	
MSE Tik. CG $\lambda 3$	0.001186	0.001564	0.002897	
PSNR Tik. GD $\lambda 1$	38.209796	34.843804	30.963566	
MSE Tik. GD $\lambda 1$	0.000151	0.000328	0.000801	
PSNR Tik. GD $\lambda 2$	37.943661	34.734137	31.030221	
MSE Tik. GD $\lambda 2$	0.000161	0.000336	0.000789	
PSNR Tik. GD $\lambda 3$	29.200569	28.650144	27.127901	
MSE Tik. GD $\lambda 3$	0.001202	0.001365	0.001937	
PSNR TV GD $\lambda 1$	38.458978	34.512153	30.821629	
MSE TV GD $\lambda 1$	0.000143	0.000354	0.000828	
PSNR TV GD $\lambda 2$	44.648257	40.024084	32.897019	
MSE TV GD $\lambda 2$	3.4e-05	9.9e-05	0.000513	
PSNR TV GD $\lambda 3$	41.239975	37.226065	36.532077	
MSE TV GD $\lambda 3$	7.5e-05	0.000189	0.000222	

Questa tabella mostra i valori del PSNR e MSE dell'immagine degradata con un filtro di Blur di dimensione 7x7, con $\sigma=1.0$. Notiamo che nella colonna centrale in corrispondenza della soluzione Naive c'è un valore negativo, questo è possibile poichè il PSNR è un logaritmo. Il valore di PSNR negativo indica una ricostruzione estremamente brutta. In compenso anche qua i valori del PSNR tolto questo caso decrescono con lo spostarsi verso destra, mentre i MSE restano bene o male sullo stesso ordine di grandezza fatta eccezione per la ricostruzione con variazione totale con $\lambda 2$ che è appunto la ricostruzione migliore.

Immagine 1 dimensione kernel 9x9				
$\sigma = 1.3$	deviazione=0.01 deviazione=0.025 deviazione=0		deviazione=0.05	
PSNR Blurred	36.976885	31.400851	25.861825	
MSE Blurred	0.000201	0.000724	0.002593	
PSNR naive	27.99676	17.76506	5.57869	
MSE naive	0.001586	0.01673	5.57869	
PSNR Tik. CG $\lambda 1$	24.818876	20.512721	18.853731	
MSE Tik. CG λ1	0.003297	0.008886	0.01302	
PSNR Tik. CG $\lambda 2$	30.18626	25.491405	29.941013	
MSE Tik. CG $\lambda 2$	0.000958	0.002824	0.001014	
PSNR Tik. CG $\lambda 3$	29.264031	28.307976	26.038013	
MSE Tik. CG $\lambda 3$	0.001185	0.001476	0.00249	
PSNR Tik. GD $\lambda 1$	37.247617	34.909217	31.609858	
MSE Tik. GD λ1	0.000188	0.000323	0.00069	
PSNR Tik. GD $\lambda 2$	37.110212	34.817234	31.677319	
MSE Tik. GD $\lambda 2$	0.000195	0.00033	0.00068	
PSNR Tik. GD $\lambda 3$	29.140108	28.618018	27.448354	
MSE Tik. GD $\lambda 3$	0.001219	0.001375	0.0018	
PSNR TV GD $\lambda 1$	37.423416	35.241983	31.840277	
MSE TV GD $\lambda 1$	0.000181	0.000299	0.000655	
PSNR TV GD $\lambda 2$	41.408428	39.19993	33.933283	
MSE TV GD $\lambda 2$	7.2e-05	0.00012	0.000404	
PSNR TV GD $\lambda 3$	39.487578	40.840515	39.303699	
MSE TV GD $\lambda 3$	0.000113	8.2e-05	0.000117	

In questa tabella invece il filtro di Blur applicato ha dimensione 9x9 e $\sigma=1.3$. Di questa tabella possiamo dire che ha un risultato relativamente migliore anche se con valore più basso rispetto alle altre colonne è dato dalla ricostruzione con Variazione Totale con $\lambda 3$, infatti il PSNR passa da circa 25 dell'immagine Blurrata a 39 nella ricostruzione. Vediamo comunque un PSNR minore nella colonna di destra.

3.2 Immagine Addome

Immagine 2 dimensione kernel 5x5				
$\sigma = 0.5$	deviazione=0.01 deviazione=0.025 deviazione=0		deviazione=0.05	
PSNR Blurred	30.350906	28.396001	24.808113	
MSE Blurred	0.000922	0.001447	0.003305	
PSNR naive	20.878086	12.942357	6.940883	
MSE naive	0.008169	0.050788	0.202261	
PSNR Tik. CG λ1	32.189611	23.077974	12.020415	
MSE Tik. CG λ1	0.000604	0.004923	0.004923	
PSNR Tik. CG $\lambda 2$	31.921661	26.120172	17.945817	
MSE Tik. CG λ2	0.000642	0.002443	0.016048	
PSNR Tik. CG $\lambda 3$	25.438065	25.219772	24.504485	
MSE Tik. CG λ3	0.002859	0.003006	0.003544	
PSNR Tik. GD $\lambda 1$	31.090723	29.412772	26.556757	
MSE Tik. GD $\lambda 1$	0.000778	0.001145	0.001145	
PSNR Tik. GD $\lambda 2$	30.966865	29.358253	26.575801	
MSE Tik. GD $\lambda 2$	0.0008	0.001159	0.0022	
PSNR Tik. GD $\lambda 3$	27.541862	26.694614	24.647962	
MSE Tik. GD $\lambda 3$	0.001761	0.002141	0.003429	
PSNR TV GD $\lambda 1$	31.042652	29.362576	26.775849	
MSE TV GD $\lambda 1$	0.000787	0.001158	0.001158	
PSNR TV GD $\lambda 2$	30.163612	29.334686	27.405681	
MSE TV GD $\lambda 2$	0.000963	0.001166	0.001817	
PSNR TV GD $\lambda 3$	26.427107	26.387883	26.271872	
MSE TV GD $\lambda 3$ 0.002277 0.002297			0.002359	

In questa tabella sono riportati i valori del PSNR e MSE dell'immagine Addome. Il filtro di Blur applicato ha dimensione 5x5 e come possiamo vedere il PSNR cala con l'aumento della deviazione del rumore. Nella colonna di sinistra vediamo che i valori più alti sono in corrispondeza di $\lambda 1$, e addirittura abbiamo un PSNR maggiore con Tikhonov CG. Questa cosa non avviene nella colonna di destra dove il PSNR di Tikhonov $\lambda 1$ è tra i più bassi. Nella colonna al centro possiamo notare che il PSNR di TV $\lambda 1$ e $\lambda 2$ sono simili.

Immagine 2 dimensione kernel 7x7				
$\sigma = 1.0$	deviazione=0.01 deviazione=0.025 deviazione=		deviazione=0.05	
PSNR Blurred	27.736968	26.557084	23.898776	
MSE Blurred	0.001684	0.002209	0.004075	
PSNR naive	23.651085	-6.775316	-14.87571	
MSE naive	0.004314	4.759174	30.730598	
PSNR Tik. CG λ	29.635874	24.189743	20.912772	
MSE Tik. CG λ1	0.001087	0.003811	0.008104	
PSNR Tik. CG $\lambda 2$	29.710759	27.407086	20.069181	
MSE Tik. CG $\lambda 2$	0.001069	0.001817	0.009842	
PSNR Tik. CG $\lambda 3$	24.322524	24.237882	23.957188	
MSE Tik. CG λ3	0.003696	0.003769	0.004021	
PSNR Tik. GD $\lambda 1$	28.140703	27.674784	26.406859	
MSE Tik. GD $\lambda 1$	0.001534	0.001708	0.002287	
PSNR Tik. GD $\lambda 2$	28.071944	27.622187	26.319788	
MSE Tik. GD $\lambda 2$	0.001559	0.001729	0.002334	
PSNR Tik. GD $\lambda 3$	26.010964	25.699477	24.814896	
MSE Tik. GD $\lambda 3$	0.002506	0.002692	0.0033	
PSNR TV GD $\lambda 1$	28.110865	27.534195	26.440562	
MSE TV GD $\lambda 1$	0.001545	0.001764	0.00227	
PSNR TV GD $\lambda 2$	27.694909	27.374283	26.704436	
MSE TV GD $\lambda 2$	0.0017	0.001831	0.002136	
PSNR TV GD $\lambda 3$	25.431417	25.418255	25.360619	
MSE TV GD $\lambda 3$	0.002863	0.002872	0.00291	

In questa tabella è stato applicato un filtro di blur di dimensione 7x7 con $\sigma=1.0$. Ci sono due PSNR negativi in corrispondenza delle ricostruzioni naive, inoltre notiamo che in corrispondenza di questi valori c'è anche un valore estremamente alto di MSE. Quindi queste ricostruzioni non sono buone. Per il resto non ci sono anomalie nei valori della tabella, che rispetta all'incirca l'andamento delle precedenti.

Immagine 2 dimensione kernel 9x9				
$\sigma = 1.3$	deviazione=0.01	0.01 deviazione= 0.025 deviazione= 0		
PSNR Blurred	26.966432	25.962372	23.540855	
MSE Blurred	0.002011	0.002534	23.540855	
PSNR naive	24.614639	15.655455	12.847063	
MSE naive	0.003456	0.027193	12.847063	
PSNR Tik. CG λ1	27.165845	23.074207	22.497936	
MSE Tik. CG λ1	0.001921	0.004927	0.005626	
PSNR Tik. CG $\lambda 2$	28.700392	27.277263	24.569166	
MSE Tik. CG λ2	0.001349	0.001872	0.003492	
PSNR Tik. CG $\lambda 3$	23.934094	23.876779	23.667675	
MSE Tik. CG λ3	0.004042	0.004096	0.004298	
PSNR Tik. GD $\lambda 1$	27.33696	27.035443	26.071417	
MSE Tik. GD $\lambda 1$	0.001846	0.001979	0.002471	
PSNR Tik. GD $\lambda 2$	27.278256	26.986922	26.058738	
MSE Tik. GD $\lambda 2$	0.001871	0.002001	0.002478	
PSNR Tik. GD $\lambda 3$	25.509281	25.2954	24.635385	
MSE Tik. GD $\lambda 3$	0.002812	0.002954	0.003439	
PSNR TV GD $\lambda 1$	27.312361	26.869803	26.118967	
MSE TV GD $\lambda 1$	0.001857	0.002056	0.002444	
PSNR TV GD $\lambda 2$	26.831774	26.702632	26.261986	
MSE TV GD $\lambda 2$	0.002074	0.002137	0.002365	
PSNR TV GD $\lambda 3$	25.03434	25.081536	25.038411	
MSE TV GD $\lambda 3$	0.003137	0.003103	0.003134	

In questa tabella non ci sono anomalie nei valori. I valori sono distribuiti come nelle tabelle precedenti.

3.3 Immagine Rene

Immagine 3 dimensione kernel 5x5				
$\sigma = 0.5$	deviazione=0.01 deviazione=0.025 deviazione=0			
PSNR Blurred	38.449696	31.749904	25.942779	
MSE Blurred	0.000143	0.000668	0.002545	
PSNR naive	20.967678	12.929918	6.965906	
MSE naive	0.008003	0.050934	0.201099	
PSNR Tik. CG λ1	28.723463	20.097575	12.260495	
MSE Tik. CG λ1	0.001342	0.009778	0.009778	
PSNR Tik. CG $\lambda 2$	34.945133	26.638509	22.606491	
MSE Tik. CG λ2	0.00032	0.002168	0.005487	
PSNR Tik. CG $\lambda 3$	34.025099	30.945662	26.551878	
MSE Tik. CG λ3	0.000396	0.000804	0.002212	
PSNR Tik. GD $\lambda 1$	40.057117	33.31799	28.394727	
MSE Tik. GD $\lambda 1$	9.9e-05	0.000466	0.000466	
PSNR Tik. GD $\lambda 2$	39.583255	33.341397	27.591486	
MSE Tik. GD $\lambda 2$	0.00011	0.000463	0.001741	
PSNR Tik. GD $\lambda 3$	33.855658	31.046504	26.894915	
MSE Tik. GD $\lambda 3$	0.000412	0.000786	0.002044	
PSNR TV GD $\lambda 1$	40.508746	33.767843	28.601715	
MSE TV GD $\lambda 1$	8.9e-05	0.00042	0.00042	
PSNR TV GD $\lambda 2$	41.616524	37.136418	30.856786	
MSE TV GD $\lambda 2$	6.9e-05	0.000193	0.000821	
PSNR TV GD $\lambda 3$	35.510791	35.33918	34.753628	
MSE TV GD $\lambda 3$ 0.000281 0.000292			0.000335	

In questa tabella vengono riportati i valori di PSNR e MSE dell'immagine del rene. In particolare possiamo vedere un MSE molto basso nella prima colonna per quanto riguarda sia Tikhonov sia la Variazione Totale. Vediamo inoltre nella colonna di destra un aumento in percentuale del PSNR nella ricostruzione con variazione totale maggiore rispetto alle altre colonne.

Immagine 3 dimensione kernel 7x7				
$\sigma = 1.0$	deviazione=0.01	zione=0.01 deviazione=0.025 deviazione=0		
PSNR Blurred	37.048987	31.400041	25.853312	
MSE Blurred	0.000197	0.000724	0.002598	
PSNR naive	38.966052	10.660071	-8.92483	
MSE naive	0.000127	0.0859	7.80698	
PSNR Tik. CG λ1	38.98324	21.572237	9.493819	
MSE Tik. CG λ1	0.000126	0.006963	0.112362	
PSNR Tik. CG $\lambda 2$	39.037067	33.800419	25.769322	
MSE Tik. CG $\lambda 2$	0.000125	0.000417	0.002649	
PSNR Tik. CG $\lambda 3$	33.98494	31.19189	26.676631	
MSE Tik. CG λ3	0.000399	0.00076	0.002149	
PSNR Tik. GD $\lambda 1$	39.739464	35.511944	30.464725	
MSE Tik. GD $\lambda 1$	0.000106	0.000281	0.000899	
PSNR Tik. GD $\lambda 2$	39.568343	35.465594	30.518576	
MSE Tik. GD $\lambda 2$	0.00011	0.000284	0.000887	
PSNR Tik. GD $\lambda 3$	33.881544	32.102588	29.229013	
MSE Tik. GD $\lambda 3$	0.000409	0.000616	0.001194	
PSNR TV GD $\lambda 1$	39.8462	35.834564	31.391129	
MSE TV GD $\lambda 1$	0.000104	0.000261	0.000726	
PSNR TV GD $\lambda 2$	39.802813	37.813568	33.494141	
MSE TV GD $\lambda 2$	0.000105	0.000165	0.000447	
PSNR TV GD $\lambda 3$	34.50374	34.768496	34.492205	
MSE TV GD $\lambda 3$	0.000355	0.000334	0.000355	

In questa tabella vengono riportati i valori di PSNR e MSE con applicato un filtro di Blur di dimensione 7x7. In particolre notiamo che c'è un valore di PSNR negativo in corrispondenza della ricostruzione naive della colonna di destra. Non sono presenti altre anomalie.

Immagine 3 dimensione kernel 9x9				
$\sigma = 1.3$	deviazione=0.01	deviazione=0.025 deviazione=0.		
PSNR Blurred	36.415174	31.245424	25.793096	
MSE Blurred	0.000228	0.000751	0.002634	
PSNR naive	19.225912	13.927142	4.055616	
MSE naive	0.011951	0.040484	0.393041	
PSNR Tik. CG λ1	35.247689	25.374082	9.755375	
MSE Tik. CG λ1	0.000299	0.002901	0.105794	
PSNR Tik. CG $\lambda 2$	38.512893	34.340372	26.778741	
MSE Tik. CG λ2	0.000141	0.000368	0.0021	
PSNR Tik. CG $\lambda 3$	33.718873	31.430122	28.996854	
MSE Tik. CG λ3	0.000425	0.000719	0.00126	
PSNR Tik. GD $\lambda 1$	39.13348	35.905044	31.363034	
MSE Tik. GD $\lambda 1$	0.000122	0.000257	0.000731	
PSNR Tik. GD $\lambda 2$	39.035664	35.837865	31.39849	
MSE Tik. GD $\lambda 2$	0.000125	0.000261	0.000725	
PSNR Tik. GD $\lambda 3$	33.731031	32.353974	29.732872	
MSE Tik. GD $\lambda 3$	0.000424	0.000582	0.001063	
PSNR TV GD $\lambda 1$	39.152238	36.182772	31.614052	
MSE TV GD $\lambda 1$	0.000122	0.000241	0.00069	
PSNR TV GD $\lambda 2$	38.900496	37.530948	33.976544	
MSE TV GD $\lambda 2$	0.000129	0.000177	0.0004	
PSNR TV GD $\lambda 3$	34.209717	34.458523	34.14462	
MSE TV GD $\lambda 3$	0.000379	0.000358	0.000385	

Anche in questa tabella non sono presenti anomalie e i valori ripettano le distribuzioni dei risultati precedenti.

3.4 Conclusioni

Da queste tabelle possiamo concludere che le ricostruzioni naive possono essere davvero pessime e raggiungere valori di PSNR negativo. Inoltre che i valori di PSNR diminuiscono con l'aumento della deviazione del rumore e anche con l'aumento delle dimensioni del filtro di Blur, come potevamo immaginarci. Tra le varie ricostruzioni quella con PSNR più alto e MSE più basso è stata quella della Variazione Totale, per un valore di λ variabile in base all'immagine. Solo in alcuni casi il metodo di Tikhonov con metodo del gradiente ha raggiunto valori quasi uguali a quelli di TV.

4 Media e deviazione sul set di immagini

I valori di seguito riportati in tabella sono le medie e le deviazioni standard su tutto il set di otto immagini geometriche per dei valori fissati.

- $\sigma = 1$
- Kernel = 7x7
- Deviazione rumore = 0.025
- $\lambda = 0.01$

	Media PSNR	Dev. PSNR	Media MSE	Dev. MSE
Blurred	29.9383206	0.4651415	$1.015e^{-3}$	$1.076e^{-4}$
Naive	14.981556	10.83834	0.3792520	0.8010355
Tikhonov CG	28.2387743	2.341747	$1.6207e^{-3}$	$8.112e^{-4}$
Tikhonov GD	32.8469886	1.0532915	$5.603e^{-4}$	$1.417e^{-4}$
TV GD	35.3445201	1.3220953	$3.057e^{-4}$	$9.119e^{-5}$

Nel grafico sopra sono riportate le distribuzioni dei PSNR e degli MSE della tabella. Il grafico è un Box-plot, ogni elemento è formato da un rettangolo detto "Scatola" e da due segmenti detti "Baffi". La Scatola è delimitata dal primo e dal terzo quartile. I quartili suddividono l'intera popolazione di dati in quattro parti di uguale numerosità. La linea arancione presente dentro la Scatola rappresenta la mediana del set. I Baffi rappresentano il minimo e il massimo dell'insieme. Dal primo grafico possiamo dedurre che le ricostruzioni fatte con il metodo del gradiente, sia Tikhonov sia Variazione Totale hanno restituito un valore mediano più alto rispetto agli altri, dunque superando anche il PSNR del set Blurred. Possiamo dunque affermare che sono una buona ricostruzione dell'immagine. Nel secondo grafico vengono plottati i valori del MSE e vediamo che appare molto omogeneo, tranne che per il set Naive, questo ci dice che nel set naive il Mean Squared Error è molto più alto rispetto agli altri e conferma quanto detto, ovvero che il metodo Naive non è una buona ricostruzione. Purtroppo data la

differnza di ordine di grandezza è risultato difficile un plot dei valori di MSE. Nel boxplot naive è stato escluso il plot di un punto 'outliner', poichè rendeva il plot illeggibile.

5 Analisi degli algoritmi utilizzati

Di seguito vengono riportati i grafici riguardo gli algoritmi utilizzati. Sono state fatte quattro esecuzioni, ovvero sono state prese due immagini del set e per ognuna sono stati applicati entrambi i metodi.

5.1 Prima Immagine

Dai due grafici possiamo affermare che entrambi i metodi danno una buona approssimazione del minimo, tuttavia il metodo dei Gradienti Coniugati impiega molte meno iterazioni, e questo lo rende preferibile.

5.2 Seconda Immagine

In questa seconda esecuzione i due algoritmi si comportano in maniera differente, infatti vediamo che anche dopo poche iterazioni l'errore assoluto non si stabilizza perfettamente nel metodo dei Gradienti Coniugati, cosa che invece avviene nell'altro netodo. Possiamo affermare dunque che in questo caso il metodo del gradiente è preferibile.

5.3 Concludendo

Concludendo i due metodi si sono comportati in maniera differente per quanto riguarda numero di iterazioni e errori assoluti, ma entrambi hanno dato una buona minimizzazione della funzione obiettivo, confermata anche dall'andamento della norma del gradiente in tutti e quattro i grafici.