Markov Switching Dynamic Regression Model

Importing the necessary libraries and modules

```
In [52]:
```

```
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
import warnings
plt.rcParams['figure.figsize']=10,5
warnings.filterwarnings('ignore')
```

In [53]:

```
df=pd.read_excel("bond_stock_data.xlsx", sheet_name=0)
```

In [54]:

```
#Examine the first few columns
df.head()
```

Out[54]:

	Months	10YBond Returns	Stock Returns	Monetary Policy Rate	Inflation Rate	Exchange Rate
0	2015-01-01	0.153	0.00001	0.11	165.766401	66.466240
1	2015-02-28	0.159	0.01830	0.11	166.901129	76.353096
2	2015-03-31	0.161	0.05450	0.11	168.419862	73.372332
3	2015-04-30	0.144	0.09330	0.11	169.708184	73.047738
4	2015-05-31	0.140	-0.01150	0.11	171.577356	73.208693

In [55]:

```
#Check the columns
df.columns
```

Out[55]:

In [56]:

```
#Examine the data type of the columns df.info()
```

dtypes: datetime64[ns](1), float64(5)
memory usage: 2.9 KB

In [57]:

```
#Ensure the Month column is indeed in datetime format
df['Months']=pd.to_datetime(df['Months'])
```

In [58]:

```
#Examine the data again
df.head()
```

Out[58]:

Months	10YBond Returns	Stock Returns	Monetary Policy Rate	Inflation Rate	Exchange Rate
0 2015-01-01	0.153	0.00001	0.11	165.766401	66.466240
1 2015-02-28	0.159	0.01830	0.11	166.901129	76.353096
2 2015-03-31	0.161	0.05450	0.11	168.419862	73.372332
3 2015-04-30	0.144	0.09330	0.11	169.708184	73.047738
4 2015-05-31	0.140	-0.01150	0.11	171.577356	73.208693

In [59]:

```
#Plotting the stock 10YBond Returns value to see the trends
plt.plot('Months','10YBond Returns',data=df);
```


Estimating the model with 2 regimes

In [60]:

```
 \label{eq:concat}  \mbox{exog = pd.concat((df["Stock Returns"],df["Monetary Policy Rate"],df["Inflation Rate"],df["Exchange Rate"]), axis=1) }
```

In [61]:

```
# Fit the model
#exog=df["Stock Returns","Monetary Policy Rate","Inflation Rate","Exchange Rate"]
df_model = sm.tsa.MarkovRegression(df['10YBond Returns'], k_regimes=2,exog=exog1)
result = df_model.fit()
```

In [62]:

```
result.summary()
```

Out[62]:

Markov Switching Model Results

Dep. Variable:	10YBond Returns	No. Observations:	60
Model:	MarkovRegression	Log Likelihood	186.305
Date:	Sun, 03 Jan 2021	AIC	-346.610
Time:	06:56:17	BIC	-319.384
Sample:	0	HQIC	-335.961
	- 60		
Covariance Type:	approx		

Regime 0 parameters

	coef	std err	z	P> z	[0.025	0.975]
const	-0.0028	0.000	-6.146	0.000	-0.004	-0.002
x1	-0.0497	0.0001	-497.244	0.000	-0.050	-0.050
x2	0.5097	6.12e-05	8322.582	0.000	0.510	0.510
х3	-0.0001	0.139	-0.001	0.999	-0.272	0.272
х4	0.0012	0.027	0.044	0.965	-0.052	0.055

Regime 1 parameters

	coef	std err	z	P> z	[0.025	0.975]
const	0.1324	0.016	8.172	0.000	0.101	0.164
x 1	0.0017	0.024	0.071	0.944	-0.046	0.049
x2	-0.2795	0.170	-1.641	0.101	-0.613	0.054
х3	-5.468e-05	4.07e-05	-1.344	0.179	-0.000	2.51e-05
х4	0.0007	0.000	4.961	0.000	0.000	0.001

Non-switching parameters

```
        coef
        std err
        z
        P>|z|
        [0.025
        0.975]

        sigma2
        0.0001
        2.15e-05
        5.477
        0.000
        7.55e-05
        0.000
```

Regime transition parameters

	coef	std err	z	P> z	[0.025	0.975]
p[0->0]	1.219e-10	0.000	3.62e-07	1.000	-0.001	0.001
p[1->0]	2.201e-20	nan	nan	nan	nan	nan

Warnings:

- [1] Covariance matrix calculated using numerical (complex-step) differentiation.
- [2] Covariance matrix is singular or near-singular, with condition number 1.22e+23. Standard errors may be unstable.

Estimating the model for 3 regimes

In [67]:

```
# Fit the model
#exog=df["Stock Returns","Monetary Policy Rate","Inflation Rate","Exchange Rate"]
df_model2 = sm.tsa.MarkovRegression(df['10YBond Returns'], k_regimes=3,exog=exog1)
result2 = df_model.fit()
```

In [68]:

```
result2.summary()
```

Out[68]:

INIGITOR OMITOTING INFOME ITESUITS

Dep. Variable:	10YBond Returns	No. Observations:	60
Model:	MarkovRegression	Log Likelihood	186.305
Date:	Sun, 03 Jan 2021	AIC	-328.610
Time:	07:02:58	BIC	-282.535
Sample:	0	HQIC	-310.588
	- 60		
Covariance Type:	approx		

Regime 0 parameters

	coef	std err	z	P> z	[0.025	0.975]
const	-0.0228	0.018	-1.269	0.204	-0.058	0.012
x 1	-0.0485	0.001	-72.203	0.000	-0.050	-0.047
x2	0.2901	0.003	97.994	0.000	0.284	0.296
х3	-0.0001	4.134	-3.5e-05	1.000	-8.103	8.103
x4	0.0020	2.298	0.001	0.999	-4.502	4.506

Regime 1 parameters

	coef	std err	z	P> z	[0.025	0.975]
const	0.0298	53.772	0.001	1.000	-105.362	105.422
x1	-0.0526	7.264	-0.007	0.994	-14.290	14.185
x2	0.5023	1.746	0.288	0.774	-2.920	3.925
х3	-7.165e-05	0.875	-8.19e-05	1.000	-1.716	1.716
х4	0.0006	2.705	0.000	1.000	-5.302	5.303

Regime 2 parameters

	coef	std err	z	P> z	[0.025	0.975]
const	0.1324	0.016	8.172	0.000	0.101	0.164
x 1	0.0017	0.024	0.071	0.944	-0.046	0.049
x2	-0.2795	0.170	-1.641	0.101	-0.613	0.054
х3	-5.468e-05	4.07e-05	-1.344	0.179	-0.000	2.51e-05
х4	0.0007	0.000	4.961	0.000	0.000	0.001

Non-switching parameters

	coef	std err	z	P> z	[0.025	0.975]
sigma2	0.0001	2.15e-05	5.477	0.000	7.55e-05	0.000

Regime transition parameters

	coef	std err	z	P> z	[0.025	0.975]
p[0->0]	3.83e-20	0.028	1.38e-18	1.000	-0.054	0.054
p[1->0]	5.976e-18	nan	nan	nan	nan	nan
p[2->0]	1.631e-17	nan	nan	nan	nan	nan
p[0->1]	0.9895	0.135	7.305	0.000	0.724	1.255
p[1->1]	1.044e-05	45.739	2.28e-07	1.000	-89.646	89.646
p[2->1]	7.447e-09	nan	nan	nan	nan	nan

Warnings:

- [1] Covariance matrix calculated using numerical (complex-step) differentiation.
- [2] Covariance matrix is singular or near-singular, with condition number 1.96e+25. Standard errors may be unstable.

#Plotting the Stock Returns values to see the trends
plt.plot('Months','Stock Returns',data=df);

In [22]:

```
\ensuremath{\#\#} 
 <code>Descriptive statistics of the data df.describe()</code>
```

Out[22]:

	10YBond Returns	Stock Returns	Monetary Policy Rate	Inflation Rate	Exchange Rate
coun	t 60.000000	60.000000	60.00000	60.000000	60.000000
mean	n 0.145617	0.000142	0.13300	231.947597	84.771377
ste	d 0.013192	0.059974	0.01176	43.422691	12.276301
min	n 0.112000	-0.165000	0.11000	165.766401	62.154535
25%	0.139250	-0.037525	0.13500	192.229193	73.331423
50%	0.145000	-0.005800	0.14000	235.595284	86.935094
75%	0.156250	0.031050	0.14000	268.906596	93.995561
ma	x 0.166000	0.159500	0.14000	307.473107	107.348376

In [23]:

```
## Correlation matrix of the data df.corr()
```

Out[23]:

	10YBond Returns	Stock Returns	Monetary Policy Rate	Inflation Rate	Exchange Rate
10YBond Returns	1.000000	0.145354	0.068170	-0.033807	0.465805
Stock Returns	0.145354	1.000000	0.029720	-0.074271	0.190054
Monetary Policy Rate	0.068170	0.029720	1.000000	0.584491	0.609954
Inflation Rate	-0.033807	-0.074271	0.584491	1.000000	0.422335
Exchange Rate	0.465805	0.190054	0.609954	0.422335	1.000000

Smoothed probablity for 2 regimes

In [51]:

```
fig, axes = plt.subplots(2, figsize=(10,7))
ax = axes[0]
```

```
ax.plot(df["Months"], result.smoothed_marginal_probabilities[0])
ax.set(title='Smoothed probability of recession-free regime')

ax = axes[1]
ax.plot(df["Months"], result.smoothed_marginal_probabilities[1])
ax.set(title='Smoothed probability of recession regime')

fig.tight_layout()
```



```
In [ ]:
```

In []:

Smoothed probability for 3 regimes

```
In [70]:
```

```
fig, axes = plt.subplots(3, figsize=(10,7))

ax = axes[0]
ax.plot(df["Months"], result2.smoothed_marginal_probabilities[0])
ax.set(title='Smoothed probability of boom regime')

ax = axes[1]
ax.plot(df["Months"], result2.smoothed_marginal_probabilities[1])
ax.set(title='Smoothed probability of recession regime')

ax = axes[2]
ax.plot(df["Months"], result2.smoothed_marginal_probabilities[2])
ax.set(title='Smoothed probability of recession-free regime')

fig.tight_layout()
```

```
1e-15 Smoothed probability of boom regime
5 4
```

