Rain Prediction
Using
Machine
Learning

Aldimeola Alfarisy

Table of Contents

01

Business Background and Objectives

O2
Data Preparation

O3 Exploratory Data

Analysis (EDA)

O4

Feature Engineering

Modelling and Evaluation

O6
Conclusion and
Recommendation

Background **Objectives** 01

Introduction and Problems

The weather has a significant impact on many life aspects, one of which is agricultural industry and because of that, being able to predict it helps farmers in their day-to-day decisions such as how to plan efficiently, minimize costs and maximize yields.

A major agricultural company needs to have an accurate **rain prediction algorithm** that will improve their decision-making on typical farming activities such as **planting** and **irrigating**.

Using historical rain information from Australia regions in 10 years as research data, it is necessary to predict weather(rain) in next day.

Objectives

- What factors and conditions in current day that will cause rain in the next day?
- What machine learning algorithms are suitable for predicting rain in the next day?
- Where is the location that has the highest frequency of rain?
- What is the impact of the predictive model for business problems operating in the agricultural sector?

Data Preparation

02

Overview

Target distribution is **imbalance**, I will use **AUC** as model metric evaluation

Data contains 145460 rows and 22 features and 1 binary column with RainTomorrow as target.

All features are the weather and climate elements that occur on that day in certain location that are used to predict rain in the next day.

Features consist 6 categorical features, and 16 numerical features (Date will be transform to datetime format).

Numerical Features		Categorical Features
 MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustSpeed WindSpeed9am WindSpeed3pm 	 Humidity9am Humidity3pm Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm 	 Date Location WindGustDir WindDir9am WindDir3pm RainToday

Dataset obtained from here.

Location Feature Filtering

There are some **features** in certains locations that values is **completely missing** in 10 years observation. I decide to drop those locations.

Missing Values Handling

Missing Values Ratio

Location	0.000000
Month	0.000000
Year	0.000000
Day	0.000000
MinTemp	0.705897
MaxTemp	0.688406
Rainfall	2.153923
Evaporation	11.068216
Sunshine	17.833583
WindGustDir	3.445777
WindGustSpeed	3.413293
WindDir9am	3.516992
WindDir3pm	1.136932
WindSpeed9am	0.864568
WindSpeed3pm	0.845827
Humidity9am	1.101949
Humidity3pm	1.014493
Pressure9am	1.444278
Pressure3pm	1.434283
Cloud9am	10.805847
Cloud3pm	12.435032
Temp9am	0.770865
Temp3pm	0.715892
RainToday	2.153923
RainTomorrow	2.160170

Fill missing value by median value for numerical data and mode value for categorical data based on each Location and each Month.

Exploratory Data Analysis (EDA)

03

Outliers Detection

Seven features have extreme outliers and need to removed based IQR (Interquartile Range) upper and lower limit.

Temperature Aspects

Temperatures in Australia regions have range around from 10 until 30 degrees Celsius. The data distribution quietly normal. We can conclude temperature in Australia regions relatively stable.

Wind Gust Direction

Wind Gust Direction that Cause Rain in the Next Day

Rain is tend to happens in the next day majority when direction of wind gust in between West to North.

Fraction of Sky Obscured by Cloud (in Oktas)

Sky in Australia mostly **cloudy** (Fraction of sky obscured by cloud is **7 oktas**). Rain in the next day tend to happen when **cloud** in **9am** and **3pm** is **7** or **8 oktas**.

(Reference: Worldweather)

Rain Condition Based on Locations

Portland is the location in Australia that experiences the most rain.

Rain Condition in Portland

Rain in Portland is most common to happen from May to August. We can conclude that these period is the rainy season in Portland.

Amount Rainfall in Portland

Mean : 2.49 mm

Median : 0.2 mm

Amount of Rainfall in Portland majority in range around 0 - 8 mm with average of rainfall amount is 2.49 mm

Multivariate Analysis

- Humidity3pm (positive correlation), and
 Sunshine (negative correlation) are the features that have the highest correlation with target.
- There are multicollinearity that correlated with Temperature and Pressure aspects.
 - Pressure9am and Temp3pm have higher correlation with target. These two features will be kept for modelling.
- When Humidity3pm ratio is high and number of hours of bright Sunshine is low, rain in the next day tend to happen.

Feature Engineering

04

Feature Engineering

Aspects	Action	
Categorical features	Categorical feature with 2 distinct values -> Binary Encoding Categorical with more than 2 distinct values -> One Hot Encoding	
Drop Features	Multicollinearity -> Pressure3pm, MinTemp, MaxTemp, and Temp9am Don't contribute for modelling -> Year	
Imbalance Data	Resampling use Undersampling	
Scaling	Min-Max Scaler	

Modelling and Evaluation

05

Modelling

Model	AUC
K-Nearest Neighbors	78%
Logistic Regression	87%
Decision Tree	71%
Random Forest	88%
XG-Boost	87%

I split dataset become **train** and **test** data with **80:20** proportion. Since the data is **imbalance**, I use **AUC** (Area Under Cover) instead.

Random Forest have the best AUC score compared than other models.

Hyper Parameter Tuning

Random Forest Algorithm	AUC
Before Tuned	88%
After Tuned	88%

Overall, the **AUC** score before and after **tuned** is relatively same.

Before Tuned

After Tuned

ROC curve from before and after tuned also didn't really have differences. It means before tuned, the model already have optimum performance. But still, hyperparameter tuning is essentials part for controlling model behavior. It's also very important to avoid model overfitting.

Confusion Matrix

Potential Impact in Business

We can do simulation our predictive model for business in the agricultural sector in Australia. For example, in irrigation activities.

Before

Water needs = 155.5 kl/month
Price of water = 0.26 USD/m³
Cost for water = 40.43 Millions AUD

After

Water needs = 95.7 kl/monthPrice of water = 0.26 USD/m^3

Cost for water = 24.89 Millions AUD

SAVING \$ 15,540,000 (38%)

on water supply for irrigation per month

Feature Importances

Based on SHAP value, Humidity3pm and Sunshine feature have the highest effect on the prediction. It's same with heatmap correlation.

Conclusion and Recommendation

Conclusion

- Based on Heatmap and SHAP values for feature importances, Humidity at 3pm and Sunshine has the big impact to cause rain in the next day.
- Random Forest classifier is the best model algorithm for predicting rain the next day because have the highest AUC score than other classifier algorithm.
- The location with the most rain frequency is Portland with rain season tend to happen in May until August.
- Based on simulation, model performance can help saving company cost for water supply by 38%.

Recommendation

If we want to start running the company that operating in agricultural sector, I think Australia regions is become one of the good choice since the temperature is relatively stable. Many agricultural products that can grown well based on temperatures range. Also, I think Portland is the best location due to high rain frequency in a year, because it's very helpful for doing farming activities, such as planting and irrigation.

The best time for harvesting and make as much water stock is May until August. So, when the dry season comes, we won't too worried about lack of water and still can do activities like irrigation and farm will not easily to drought.

As a model performance test, it would be better if the model was applied in Portland as the location with the highest rainfall frequency.

Thank You

