

Toward Black-box Detection of Logic Flaws in Web Applications

Giancarlo Pellegrino

gpellegrino@deeds.informatik.tu-darmstadt.de

Davide Balzarotti davide.balzarotti@eurecom.fr

Agenda

- Problem
- Approach
 - Model Inference
 - Behavioral Patterns Extraction
 - Attack Pattern-based Test Case Generation
 - Test Execution and Oracle
- Evaluation
- Conclusion

Logic Flaws

- Also known as design flaws/errors, business/application logic errors/flaws
- Lack a formal definition
 - CWE-ID 840: Business logic errors are "weaknesses [...] that commonly allow attackers to manipulate the business logic of an application"
- Mainly caused by insufficient validation of the application workflow and data flow
- Can exhibit patterns, e.g.
 - Improper authentication/authorization

		Explicit Documentation						
		Yes	No					
Source code	Yes							
	No							

Yes No

White-box

White-box

- White-box testing [BalzarottiCCS07, FelmetsgerUSENIX10, ...]
 - Source code of WA may not be available → White-box not applicable!

- White-box testing [BalzarottiCCS07, FelmetsgerUSENIX10, ...]
 - Source code of WA may not be available → White-box not applicable!
- Design verification [LoweCSF97, ArmandoCSF07, ...]
 - Specification of WA may not be available → DV not applicable!

- White-box testing [BalzarottiCCS07, FelmetsgerUSENIX10, ...]
 - Source code of WA may not be available → White-box not applicable!
- Design verification [LoweCSF97, ArmandoCSF07, ...]
 - Specification of WA may not be available → DV not applicable!
- Black-box testing, e.g., web scanners [DoupèDIMVA10, WangS&P11, WangS&P12]
 - Cannot <u>automatically</u> detect logic flaws
- → Testing for logic flaws is done manually

Our Approach

Overview

1) Model Inference

74.125.230.240 > 192.168.1.89 192.168.1.89 > 74.125.230.240 74.125.230.240 > 192.168.1.89

Resource Abstraction

Resource Clustering

2) Behavioral Patterns

Data flow Patterns

Workflow Patterns

3) Test Cases Generation

Test Cases

4) Test Cases Execution

Model Inference

1) Model Inference

74.125.230.240 > 192.168.1.89 192.168.1.89 > 74.125.230.240 74.125.230.240 > 192.168.1.89

Resource Abstraction

Resource Clustering

2) Behavioral Patterns

Data flow Patterns

Workflow Patterns

3) Test Cases Generation

Test Cases

4) Test Cases Execution

Verdict: Flaw found in test 1 and 2

Behavioral Patterns Extraction

1) Model Inference

74.125.230.240 > 192.168.1.89 192.168.1.89 > 74.125.230.240 74.125.230.240 > 192.168.1.89 Resource Abstraction

Resource Clustering

2) Behavioral Patterns

Data flow Patterns

Workflow Patterns

3) Test Cases Generation

Test Cases

4) Test Cases Execution

Workflow Patterns

Traces:

$$\pi_1 = \langle a, b, a, c, d, e, f, e \rangle$$

$$\pi_2 = \langle a, c, d, e, f, e \rangle$$

Model:

Workflow Patterns

Traces:

$$\pi_1 = \langle a, b, a, c, d, e, f, e \rangle$$

$$\pi_2 = \langle a, c, d, e, f, e \rangle$$

Model:

TrWP: Trace Waypoints

Rp : Repeatable Operations

Data flow Patterns

Trace 2: Trace 1: http://store.com/index.php http://store.com/index.php <HTML> <HTML> [...] [...] http://store.com/add.php?tok=DDA124 http://store.com/view.php?tok=8AFFB0 <HTML> <HTML> N N [...] [...] http://store.com/add.php?tok=8AFFB0 <HTML> ယ [...]

Test Case Generation

1) Model Inference

74.125.230.240 > 192.168.1.89 192.168.1.89 > 74.125.230.240 74.125.230.240 > 192.168.1.89

Resource Abstraction

Resource Clustering

2) Behavioral Patterns

Data flow Patterns

Workflow Patterns

3) Test Cases Generation

Test Cases

4) Test Cases Execution

74.125.230.240 > 192.168.1.89 192.168.1.89 74.125.230.24 (5.230.240) 74.125.230.24 (1.168.1.89)

Attack Pattern-based Test Case Generation

Attack Pattern-based Test Case Generation

Test Case Execution and Oracle

1) Model Inference

74.125.230.240 > 192.168.1.89 192.168.1.89 > 74.125.230.240 74.125.230.240 > 192.168.1.89

Resource Abstraction

Resource Clustering

2) Behavioral Patterns

Data flow Patterns

Workflow Patterns

3) Test Cases Generation

Test Cases

4) Test Cases Execution

74.125.230.240 > 192.168.1.89 192.168.1.89 74.125.230.240 74.125.230.240 Oracle

Verdict: Flaw found in test 1 and 2

Test Case Execution and Oracle

1) Model Inference

74.125.230.240 > 192.168.1.89 192.168.1.89 > 74.125.230.240 74.125.230.240 > 192.168.1.89

Resource Abstraction

Resource Clustering

2) Behavioral Patterns

Security Property:

 $ord_{placed} \wedge onStore(S) \Longrightarrow$ $\mathbb{O}(paid(U,I) \wedge toStore(S) \wedge$ $\mathbb{O}(ack(U,I) \wedge onStore(S)))$

3) Test Cases Generation

Test Cases

4) Test Cases Execution

Execution

74.125.230.240 > 192.168.1.89 192.168.1.89 74.125.230.24 Oracle

Verdict: Flaw found in test 1 and 2

Evaluation

Case Study: Shopping Cart Web Applications

- Target: 7 popular eCommerce Web Applications
 - Deployed by >13M online stores
- Testbed: created 12 Paypal sandbox configurations

In total **3,145**

test cases

- Target: 7 popular eCommerce Web Applications
 - Deployed by >13M online stores
- Testbed: created 12 Paypal sandbox configurations

- Target: 7 popular eCommerce Web Applications
 - Deployed by >13M online stores
- Testbed: created 12 Paypal sandbox configurations

- Target: 7 popular eCommerce Web Applications
 - Deployed by >13M online stores
- Testbed: created 12 Paypal sandbox configurations

Vulnerabilities

- 10 previously-unknown vulnerabilities
 - Allowing to shop for free or pay less

Application	Shop for free	Pay less	Session Fixation	
AbanteCart	х			Notified Devel.
Magento			1.	
OpenCart		хх	4	Notified Devel.
osCommerce	X	x		CVE-2012-2991
PrestaShop				
TomatoCart	x	хх	х	CVE-2012-4934
CS-Cart	x			CVE-2013-0118

Conclusion

Conclusion

- Proposed a black-box technique to detect logic flaws in web applications
- Combined passive model inference and attacker pattern-based test case generation
- Developed a prototype
 - assessed against 7 popular eCommerce web applications
- Discovered 10 previously-unknown logic flaws
 - allow an attacker to shop for free or pay less

References

- [BalzarottiCCS07] D. Balzarotti, M. Cova, V. Felmetsger, G. Vigna,
 Multi-Module Vulnerability Analysis of Web-based Applications. CCS 2007
- [FelmetsgerUSENIX10] V. Felmetsger, L. Cavedon, C. Kruegel, G. Vigna
 Toward Automated Detection of Logic Vulnerabilities in Web Applications. USENIX
 2010
- [LoweCSF97] G. Lowe
 A Hierarchy of Authentication Specifications. TACAS96
- [ArmandoCSF07] A. Armando, R. Carbone, and L. Compagna LTL Model Checking for Security Protocols. CSF '07.
- [DoupèDIMVA10] A. Doupè, M. Cova, and G. Vigna Why Johnny Can't Pentest: An Analysis of Black-Box Web Vulnerability Scanners. DIMVA2010
- [WangS&P11] R. Wang, S. Chen, X. Wang, S. Qadeer How to Shop for Free Online - Security Analysis of Cashier-as-a-Service Based Web Stores. IEEE S&P 2011
- [WangS&P12] R. Wang, S. Chen, X. Wang Signing Me onto Your Accounts through Facebook and Google: a Traffic-Guided Security Study of Commercially Deployed Single-Sign-On Web Services. IEEE S&P 2012

Thank you

Contact Information:

Giancarlo Pellegrino gpellegrino@deeds.informatik.tu-darmstadt.de

Backup slides

Results

Applications	CaaS	# Test Cases	# TC Exec.	Property Violations	
				due to Bugs	due to Vulns
AbanteCart	Std	233	74	16	1
Magento	Exp	343	240	65	-
	Std	386	210	126	-
OpenCart	Exp	173	140	46	12
	Std	135	71	30	-
osCommerce	Exp	165	117	22	20
	Std	225	128	34	1
PrestaShop	Exp	137	85	-	-
TomatoCart	Exp	302	238	65	25
	Std	224	115	24	-
CS-Cart	Exp	600	347	313	-
	Std	222	127	108	1
	Total	3145	1892	849	60

osCommerce and AbanteCart: Shopping for Free

OWASP Testing Guide v3: Manual Testing

- Understand the web application
 - Intended workflow and data flow
- Design tests to violate workflow and data flow
 - E.g., reorder steps, replay tokens, ...
- Run tests and observe the results

- White-box testing [BalzarottiCCS07, FelmetsgerUSENIX10, ...]
 - Source code of WA may not be available → White-box not applicable!!
- Design verification [LoweCSF97, ArmandoCSF07, ...]
 - Specification of WA may not be available → DV not applicable!
- Black-box testing, e.g., web scanners [DoupèDIMVA10, WangS&P11, WangS&P12]
 - Cannot <u>automatically</u> detect logic flaws
- → Testing for logic flaws is done manually

Workflow Patterns

Traces:

$$\pi_1 = \langle a, b, a, c, d, e, f, e \rangle$$

$$\pi_2 = \langle a, c, d, e, f, e \rangle$$

Model:

Workflow Patterns

Traces:

$$\pi_1 = \langle a, b, a, c, d, e, f, e \rangle$$

$$\pi_2 = \langle a, c, d, e, f, e \rangle$$

Model:

TrWP: Trace Waypoints

St: Singleton Nodes

: Multi-step Operations

: Repeatable Operations

MWP : Model Waypoints

Rp