International

TOR Rectifier

IR2133(5) (J&S) IR2233(5) (J&S)

3-PHASE BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V or+1200V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10V/12V to 20V DC and up to 25V for transient
- Undervoltage lockout for all channels
- · Over-current shut down turns off all six drivers
- Independent 3 half-bridge drivers
- · Matched propagation delay for all channels
- 2.5V logic compatible
- · Outputs out of phase with inputs

Description

The IR21333(5)/IR2233(5) (J)(S) are high voltage, high speed power MOSFET and IGBT driver with three independent high side and low side referenced output channels for 3-phase applications. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. An independent operational amplifier provides an analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs can also be derived from this resistor. A

Product Summary

 VOFFSET
 600V or 1200V max.

 IO+/ 200 mA / 420 mA

 VOUT
 10 - 20V or 12 - 20V

 ton/off (typ.)
 750/700 ns

 Deadtime (typ.)
 250 ns

Packages

shutdown function is available to terminate all six outputs. An open drain FAULT signal is provided to indicate that an over-current or undervoltage shutdown has occurred. Fault conditions are cleared with the FLT-CLR lead. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 volts or 1200 volts.

International

TOR Rectifier

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V _{B1,2,3}	High side floating supply voltage (IR2133/IR2135)	-0.3	625	
	(IR2233/IR2235)	-0.3	1225	
V _{S1,2,3}	High side floating supply offset voltage	V _{B1,2,3} - 25	$V_{B1,2,3} + 0.3$	
V _{HO1,2,3}	High side floating output voltage	V _{S1,2,3} - 0.3	$V_{B1,2,3} + 0.3$	
Vcc	Fixed supply voltage	-0.3	25	
Vss	Logic ground	V _{CC} - 25	V _{CC} + 0.3	V
V _{LO1,2,3}	Low side output voltage	-0.3	V _{CC} + 0.3	
V_{IN}	Logic input voltage (HIN, LIN, ITRIP, SD & FLT-CLR)	V _{SS} - 0.3	V _{SS} + 15	
$V_{\text{IN},\text{AMP}}$	Op amp input voltage (CA+ & CA-)	V _{SS} - 0.3	$V_{CC} + 0.3$	
V _{OUT,AMP}	Op amp output voltage (CAO)	V _{SS} - 0.3	V _{CC} + 0.3	
V_{FLT}	FAULT output voltage	V _{SS} - 0.3	V _{CC} + 0.3	
dVs/dt	Allowable offset supply voltage transient	_	50	V/ns
P _D	Package power dissipation @ T _A ≤ 25°C (28 Lead PDIP) —	1.5	
	(28 Lead SOIC)	_	1.6	W
	(44 lead PLCC)	_	2.0	
Rth _{JA}	Thermal resistance, junction to ambient (28 Lead PDIP)	_	83	
	(28 Lead SOIC)	_	78	°C/W
	(44 lead PLCC)	_	63	
TJ	Junction temperature	_	125	
Ts	Storage temperature	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)	_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM. The VS offset rating is tested with all supplies biased at 15V differential.

Symbol	Parameter Definition	Min.	Max.	Units
V _{B1,2,3}	High side floating supply voltage	V _{S1,2,3} + 10/12	V _{S1,2,3} + 20	
V _{S1,2,3}	High side floating supply offset voltage (IR2133/IR2135)	Note 1	600	
	(IR2233/IR2235)	Note 1	1200	
V _{HO1,2,3}	High side floating output voltage	V _{S1,2,3}	V _{B1,2,3}	
Vcc	Fixed supply voltage	10 or 12	20	
Vss	Low side driver return	-5	5	V
V _{LO1,2,3}	Low side output voltage	0	Vcc	
V _{IN}	Logic input voltage (HIN, LIN, ITRIP, SD & FLT-CLR)	V _{SS}	V _{SS} + 5	
V _{IN,AMP}	Op amp input voltage (CA+ & CA-)	V _{SS}	V _{SS} + 5	
V _{OUT,AMP}	Op amp output voltage (CAO)	V _{SS}	V _{SS} + 5	
V _{FLT}	FAULT output voltage	V _{SS}	V _{CC}	

Note 1: Logic operational for VS of COM - 5V to COM + 600V/1200V. Logic state held for VS of COM -5V to COM -VBS. (Please refer to the Design Tip DT97-3 for more details).

Note 2: All input pins, op amp input and output pins are internally clamped with a 5.2V zener diode.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15V, $V_{S1,2,3}$ = V_{SS} , T_A = 25 o C and C_L = 1000 pF unless otherwise specified.

Symbol	Definition	Min.	Тур.	Мах.	Units	Test Conditions
ton	Turn-on propagation delay	500	750	1000		V _{IN} = 0 & 5V
toff	Turn-off propagation delay	450	700	950		
tr	Turn-on rise time	_	90	150		$V_{S1,2,3} = 0 \text{ to } 600V$
tf	Turn-off fall time	_	40	70		or 1200V
t _{sd}	SD to output shutdown propagation delay	500	750	1000		$V_{IN}, V_{SD} = 0 \& 5V$
titrip	ITRIP to output shutdown propagation delay	600	850	1100	ns	$V_{IN}, V_{ITRIP} = 0 \& 5V$
tbl	ITRIP blanking time	_	400	_		ITRIP = 1V
tflt	ITRIP to FAULT propagation delay	400	650	900		V _{IN} ,V _{ITRIP} = 0 & 5V
tfil,in	Input filter time (HIN, LIN and SD)		310	_		V _{IN} = 0 & 5V
tfltclr	FLT-CLR to FAULT clear time	600	850	1100		V _{IN} ,V _{ITRIP} = 0 & 5V
DT	Deadtime, LS turn-off to HS turn-on &	100	250	400		V _{IN} = 0 & 5V
	HS turn-off to LS turn-on					
SR+	Amplifier slew rate (positive)	5	10	_	V/µs	
SR-	Amplifier slew rate (negative)	2	2.5		V/μS	

NOTE: For high side PWM, HIN pulse width must be $\geq 1\mu$ sec

Static Electrical Characteristics

 V_{BIAS} (V_{CC}, $V_{BS1,2,3}$) = 15V unless otherwise specified and T_A = 25°C. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels ($H_{S1,2,3}$ & $L_{S1,2,3}$). The VO and IO parameters are referenced to V_{SS} and $V_{S1,2,3}$ and are applicable to the respective output leads: $H_{O1,2,3}$ or $L_{O1,2,3}$.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "0" Input Voltage (OUT = LO)	2.2	_	_		
VIL	Logic "1" Input Voltage (OUT = HI)	_	_	0.8		
V _{FCLR,IH}	Logic "0" Fault Clear Input Voltage	2.2	_	_	V	
V _{FCLR,IL}	Logic "1" Fault Clear Input Voltage	_	_	0.8]	
V _{SD,TH} +	SD Input Positive Going Threshold	1.2	1.65	2.1		
V _{SD,TH} -	SD Input Negative Going Threshold	0.9	1.35	1.8		
V _{IT,TH} +	I _{ITRIP} Input Positive Going Threshold	420	520	620		
V _{IT,TH} -	I _{ITRIP} Input Negative Going Threshold	340	440	540]	
V _{OH}	High Level Output Voltage, VBIAS - VO	_	_	100	mV	$V_{IN} = 0V$, $I_O = 0A$
V _{OL}	Low Level Output Voltage, VO	_	_	100]	$V_{IN} = 5V, I_{O} = 0A$
I _{LK}	Offset Supply Leakage Current (IR2133/IR2135)	_		50		$V_{B1,2,3}=V_{S1,2,3}=600V$
	(IR2233/IR2235)	_	-	50	μΑ	V _{B1,2,3} =V _{S1,2,3} = 1200V
I _{QBS}	Quiescent VBS Supply Current	_	50	100	1	V _{IN} = 0V or 5V
IQCC	Quiescent VCC Supply Current	_	4	8	mA	V _{IN} = 0V or 5V
I _{IN} +	Logic "1" Input Bias Current (OUT = HI)	_	200	350		$V_{IN} = 0V$
I _{IN} -	Logic "0" Input Bias Current (OUT = LO)	_	100	250	μA	V _{IN} = 5V
I _{SD} +	"High" Shutdown Bias Current	_	30	100		SD = 5V
I _{SD} -	"Low" Shutdown Bias Current		_	100	nA	SD = 0V
I _{ITRIP} +	"High" I _{ITRIP} Bias Current	_	30	100	μΑ	I _{ITRIP} = 5V
I _{ITRIP} -	"Low" I _{ITRIP} Bias Current	_	_	100	nA	I _{ITRIP} = 0V

International

TOR Rectifier

Static Electrical Characteristics — Continued

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels (HS1,2,3 & LS1,2,3). The VO and IO parameters are referenced to V_{SS} and $V_{S0,1,2,3}$ and are applicable to the respective output leads: HO or LO.

Symbol	Parameter Definition		Min.	Тур.	Max.	Units	Test Conditions
I _{FLTCLR} +	"High" Fault Clear Input Bi	as Current	_	200	350		FLT-CLR = 0V
I _{FLTCLR} -	"Low" Fault Clear Input Bia	as Current	_	100	250	μA	FLT-CLR = 5V
V _{BSUV} +	V _{BS} Supply Undervoltage P	ositive Going Threshold					
		(for IR2133/IR2233)	7.6	8.6	9.6		
		(for IR2135/IR2235)	9.2	10.4	11.6		
V _{BSUV} -	V _{BS} Supply Undervoltage N	legative Going Threshold					
		(for IR2133/IR2233)	7.2	8.2	9.2		
		(for IR2135/IR2235)	8.3	9.4	10.5		
V _{BSUVH}	V _{BS} Supply Undervoltage	Lockout Hysteresis					
		(for IR2133/IR2233)	—	0.4	—		
		(for IR2135/IR2235)	_	1	_		
V _{CCUV+}	V _{CC} Supply Undervoltage I	Positive Going Threshold				V	
		(for IR2133/IR2233)	7.6	8.6	9.6		
		(for IR2135/IR2235)	9.2	10.4	11.6		
V _{CCUV} -	V _{CC} Supply Undervoltage I	Negative Going Threshold					
		(for IR2133/IR2233)	7.2	8.2	9.2		
		(for IR2135/IR2235)	8.3	9.4	10.5		
V _{CCUVH}	V _{CC} Supply Undervoltage	Lockout Hysteresis					
		(for IR2133/IR2233)	_	0.4	_		
		(for IR2135/IR2235)	_	1	_		
R _{on,FLT}	FAULT- Low On Resistance		_	70	100	Ω	
I _{O+}	Output High Short Circuit	Pulsed Current	190	250	_		$V_{OUT} = 0V$, $V_{IN} = 0V$ $PW \le 10 \ \mu s$
I _O -	Output Low Short Circuit I	Pulsed Current	380	500	_	mA	$V_{OUT} = 15V$, $V_{IN} = 5V$ $PW \le 10 \mu s$
Vos	Amplifier Input Offset Volta	age	_	0	30	mV	CA+=0.2V, CA-=CAO
I _{IN,AMP}	Amplifier Input Bias Curre	nt	_	_	4	nA	CA+ = CA- = 2.5V
CMRR	Amplifier Common Mode I	Rejection Ratio	50	70	_		CA+ = 0.1V & 5V, CA- = CAO
PSRR	Amplifier Power Supply Ro	ejection Ratio	50	70	_	dB	CA+=0.2V, CA-=CAO V _{CC} = 10V & 20V
$V_{OH,Amp}$	Amplifier High Level Outpo	ut Voltage	5	5.2	5.4	V	CA+ = 1V, CA- = 0V
VOL,Amp	Amplifier Low Level Output Voltage		_	_	20	mV	CA+ = 0V, CA- = 1V
I _{SRC,Amp}	Amplifier Output Source Current		4	7	<u> </u>		CA+ = 1V, CA- = 0V, CAO = 4V
I _{SNK,Amp}	Amplifier Output Sink Current Amplifier Output High Short Circuit Current		0.5	1	_		CA+ = 0V, CA- = 1V, CAO = 2V
I _{O+,Amp}			<u> </u>	10	_	mA	CA+ = 5V, CA- = 0V, CAO = 0V
I _{O-,Amp}	Amplifier Output Low Sho		l	4	 	†	CA+ = 0V, CA- = 5V, CAO = 5V

Functional Block Diagram

Lead Definitions

Symbol	Lead Description
HIN1,2,3	Logic inputs for high side gate driver outputs (HO1,2,3), out of phase.
LIN1,2,3	Logic inputs for low side gate driver outputs (LO1,2,3), out of phase.
FAULT	Indicates over-current or undervoltage lockout (low side) has occurred, negative logic.
Vcc	Logic and low side fixed supply.
ITRIP	Input for over-current shut down.
FLT-CLR	Logic input for fault clear, negative logic.
SD	Logic input for shut down.
CAO	Output of current amplifier.
CA-	Negative input of current amplifier.
CA+	Positive input of current amplifier.
V _{SS}	Logic ground.
COM	Low side return.
V _{B1,2,3}	High side floating supplies.
HO1,2,3	High side gate drive outputs.
V _{S1,2,3}	High side floating supply returns.
LO1,2,3	Low side gate drive outputs

International

TOR Rectifier

Lead Assignments

Figure 2. Switching Time Waveform Definitions

International IOR Rectifier

IR2133(5)/IR2233(5) (J&S)

Figure 3. Deadtime Waveform Definitions

Figure 5. Shutdown Waveform Definitions

Figure 4. Overcurrent Shutdown Waveform

Figure 7. IR2133J Junction Temperature vs Frequency Driving (IRGPC20KD2) Rgate = 5.1Ω @ Vcc = 15V

Figure 8. IR2133J Junction Temperature vs Frequency Driving (IRGPC30KD2) Rgate = 5.1Ω @ Vcc = 15V

International TOR Rectifier

Figure 9. IR2133J Junction Temperature vs Frequency Driving (IRGPC40KD2) Rgate = 5.1Ω @ Vcc = 15V

Figure 10. IR2133J Junction Temperature vs Frequency Driving (IRGPC50KD2) Rgate = 5.1Ω @ Vcc = 15V

Figure 11. IR2233J Junction Temperature vs Frequency Driving (IRG4PH30KD) Rgate = 20Ω @ Vcc = 15V

Figure 12. IR2233J Junction Temperature vs Frequency Driving (IRG4PH40KD) Rgate = 15Ω @ Vcc = 15V

International TOR Rectifier

Figure 13. IR2233J Junction Temperature vs Frequency Driving (IRG4PH50KD) Rgate = 10Ω @ Vcc = 15V

Figure 14. IR2133J Junction Temperature vs Frequency Driving (IRG4ZH71KD) Rgate = 5Ω @ Vcc = 15V

Package Dimensions

International TOR Rectifier

8/17/2001