Child Ferrari 프로젝트

목차

- 1. 페라리 제원
- 2. 금주 진행 상황
- 3. BOM
- 4. 문제점
- 5. 해결 방안

1. 페라리 제원

- 대호 토이즈 페라리 F12 베를리네타
- 1. 공차 중량 : 11.3kg
- 2. 타이어 직경: 215mm
- 3. 이 차량의 기어비 1:80
- 4. 사람(70kg)이 탑승 했을 때 이 전동차를 구동하기위한 최소 토크 : (타이어 반경 (CM) x 차량의 중량(kgf)) / 기어비 (10.75 x 81.3) / 80 = 10.924kgf.cm

구동계의 마찰이나 효율, 타이어의 접지력, 노면의 마찰력 등을 고려하여 2배 값을 적용

- 최종 20kg-cm 필요.
- 5. Hobbywing 社 Xerun 4274-2250kV 센서드 타입 모터 + Xerun XR8 PLUS변속기 조합 시

토크: 6.49~41.12kg-cm

속도km/h : [{rpm/(기어비)} x 바퀴 직경 x 3.14] / 1000 x 60 = 최대 25km/h

2. Child Ferrari 프로젝트 진행 보고서

R	Τ
	R

아느웨	4 PARI
금주(1/21~1/25)	다음주(1/28~2/1)
※ RC카 구동계 가공 및 보드 세팅 현황 1) 조향축에 사용될 서보모터 선정 - POWER HD 社 LM-25MG(7.4v, 25kg-cm) 2) 뒷 바퀴 구동 축 가공 및 메탈기어 주문제작 신청 - 기어제작 일정 지연으로 프로젝트 지연	 ※ 무선 RC 카 구동계 가공 완료 및 보드 세팅 완료 1) 뒷 바퀴 구동 축 구현 및 오류 수정 2) 조향 모터 가공 및 동작 완료 예정
소프트워	어 PART
-	※ 기본 기능 동작 확인 - GPIO , SCI, 모터 기능 동작 확인

BOM(엑셀)

VFI	RSION	Rev1.0						
DATE 작설		2019.1.17						
		김현숙						
M/	A I N							
10	구분	Part NO	Description	Q'ty	Manufacture	단가	납기	비고
1	유마 전동차	페라리 F12 베를리네타	6V 1모터 구동	1	대호토이즈	#25,000		
2	GEAR	metal gear 1	10:38	1	신진정밀	# 60,000	3~4일	주문제작품
3	GEAR	metal gear 2	10:43	1	신진정밀	# 70,000	3~4일	주문제작품
4	MOTOR	XERUN-4274SD-2250KV-G2	2~6S,2250kV,sensored	1	hobbywing	# 168,000	2일	
5	ESC	XERUN XR8 PLUS	150A/950A	1	hobbywing	# 180,000	2일	
6	BATTERY	-	-					
7 8	BEARING	UFL200 + 지지대	우측 바퀴연결 지지대 축 베어링	1	신진정밀	#20,000	2일	주문제작품
1		볼트 M6	6mm					
2		너트	6mm	<u> </u>				
3	기타 부품 및 공구	와셔	6.2 x 12.5					
4	및 공구	드릴 비트	11x35					
5		드라이버						
6		조각 그라인더	TH2.4X7.0					

Errata...

하드웨어 PART

- 1. 유아 전동차에 대한 기본 데이터가 부족하여 대부분 같은 구조의 유형이라 생각함.
- 2. 그것으로 인하여 가격이 저렴한 제품으로만 구매 하려고 함.
- 3. 뒷바퀴 고정 축을 가공하여 연결 하려 했으나 구매한 3제품 중 2제품은 할 수 없는 구조로 되어있음.(비용 낭비 발생)
- 4. 나머지 전동차 기어박스의 기어비가 줄어들어 기존에 베어링을 삽입하여 기어를 사용하려 했으나 선정한 모터의 토크를 견디지 못할 것으로 생각하 여 스틸 재질로 변경함.
- 5. 비용을 생각하여 핵심 부품인 모터와 변속기에 대해 제품 조사 기간이 오래 걸림.

1. 벤츠

2. 헤네스

3. 페라리

4. SERVO MOTOR (LM-25MG)

$$\label{eq:continuous} \begin{split} & \text{Torque}(6,0V)\colon 23,0 \text{ kg-cm} \ (319,4 \text{ oz/n}) \\ & \text{Torque}(7,4V)\colon 25,0 \text{ kg-cm} \ (347,2 \text{ oz/n}) \\ & \text{Speed}\colon 0,16 \text{ sec} \ (6,0V) \mid 0,14 \text{ sec} \ (7,4V) \\ & \text{Operating Voltage}\colon 6,0 \sim 8,4 \text{ DC Volts} \\ & \text{Weight}\colon 72 \text{ g} \ (2,54 \text{ oz}) \\ & \text{Bearing Type}\colon \text{Ball Bearing}\times 2 \\ & \text{Motor Type}\colon \text{DC Motor} \\ & \text{Gear Type}\colon \text{Copper \& Aluminum} \\ & \text{Operating Temperature}\colon 20\text{tc} \sim 60\text{tc} \\ & \text{Size}\colon 40,7\times20,5\times38,6 \text{ mm} \ (1,60\times0,81\times1,52 \text{ in}) \\ \end{split}$$

- 1. 동작 전압 :6.0V~7.4V
- 2. Stall torque(7.4V): 25kg-cm
- 3. Stall Current: 3800mA
 - 4. 동작 범위 : 800 ~ 2200 u sec (0~161°)

문제에 대한 해결

현재 뒷바퀴와 축 간의 연결 문제 발생

1. 바퀴 축 샤프트에 홀을 뚫어 니들 핀으로 고정후 바퀴와 결합.

1. 현재 제시한 바퀴 축에 대한 다른 방안으로 연마봉 끝 쪽에 너트로 조일수 있도록 나사산을 만들어 장착하여 마무리.

2. 유격이 발생하여 결합 부품 가공후에 장착.

내구성이 약할 경우 메탈 재질로 제작

3. 또 다른 대안으로 바퀴 축 샤프트 양끝에 너트로 조일수 있도록 나사산을 만들어 너트로 조여 유격을 줄여 해결 함.