Unit 7:

Number Theoretic Algorithms

- 7.1. Number Theoretic Notations, Euclid's algorithm and Extended Euclid's Algorithm and Analysis.
- 7.2. Solving Modular Linear Equations, Chinese Remainder Theorem, Miller-Rabin Randomized Primality Test Analysis

Introduction:

- Number theory was once viewed as a beautiful but largely useless subject in pure mathematics.
- But today algorithms related to number theory are used widely e.g. in cryptography, the theory of prime numbers is used.

Number Theoretic concepts and Notations

Divisibility and Divisors: The notation $a \mid b$, read as "a divides b", means that b = ka for some integer k. we say that b is multiple of a.

Every integer divides 0. If $a \mid b$ and $a \ge 0$, we say that a is divisor of b. A divisor of non-zero integer b is at least 1 but not greater than $\mid a \mid$.

Prime and composite numbers:

The division theorem: For any integer a and any positive integer n, there exist unique integers q and r such that

$$a = qn + r$$
 , $0 \le r < n$

The value $q = \left| \frac{a}{n} \right|$ is the quotient.

The value $r = a \mod n$ is the remainder. We have $n \mid a$ iff $a \mod n = 0$

Common divisors and GCD:

Relatively prime integers: Two integers a and b are relatively prime if their only common divisor is 1. i.e. if gcd(a, b) = 1 e.g. 8 and 15 are relatively prime.

Unique factorization: For all primes p and all integers a and b, if $p \mid ab$, then $p \mid a$ or $p \mid b$ (or both).

Euclid's algorithm

 Believed to be one of the world's oldest algorithms (300 B.C), Euclid's algorithm is an efficient algorithm for computing the GCD of two integers.

Algorithm

```
Euclid(a, b)
{
   if (b == 0)
      return a
   else
      return Euclid(b, a mod b)
}

Example: compute gcd(30,21)
euclid(30,21) = euclid(21,9)
      = euclid(9,3)
      = euclid(3,0)
      = 3
}
```

Analysis:

- The overall running time of the algorithm is proportional to the recursive calls it makes.
- It has been shown that Euclid's algorithm makes maximum recursive calls when a and b are consecutive Fibonacci numbers.
- Let $a > b \ge 1$ and F_k be the k^{th} Fibonacci number. Then, Euclid(F_{k+1} , F_k) makes exactly k-1 recursive calls.

Lame's theorem: "For any integer $k \ge 1$, if $a > b \ge 1$ and $b < F_{k+1}$, then the Euclid's algorithm makes fewer than k recursive calls."

• Thus there can be at most k recursive calls when $b \leq F_k$

Now, kth Fibonacci number is approximately

$$F_k \approx \frac{\Phi^k}{\sqrt{5}}$$
 Where, Φ is the golden ratio

$$\Rightarrow b \leq \frac{\Phi^k}{\sqrt{5}} \Rightarrow k = 0(\log b)$$

$$\Phi = \frac{1+\sqrt{5}}{2}$$

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b) //returns values(d,x,y)
{
  if b=0
    return (a,1,0)
  else
  {
    (d', x', y') = Ext-Euclid(b, a mod b)
    (d, x, y) = (d', y', x'-\left\lfloor \frac{a}{b} \right\rfloor y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

а	b	$\left\lfloor \frac{a}{b} \right\rfloor$	d	x	y
99	78				

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
     (d', x', y') = Ext-Euclid(b, a mod b)
     (d, x, y) = (d', y', x'-\left|\frac{a}{b}\right|y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

а	b	$\left \frac{a}{b}\right $	d	x	y
99	78				
78	21				

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
     (d', x', y') = Ext-Euclid(b, a mod b)
     (d, x, y) = (d', y', x'-\left|\frac{a}{b}\right|y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

а	b	$\left\lfloor \frac{a}{b} \right\rfloor$	d	x	y
99	78				
78	21				
21	15				

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
     (d', x', y') = Ext-Euclid(b, a mod b)
     (d, x, y) = (d', y', x'-\left\lfloor \frac{a}{b} \right\rfloor y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

а	b	$\left \frac{a}{b}\right $	d	x	y
99	78				
78	21				
21	15				
15	6				

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
     (d', x', y') = Ext-Euclid(b, a mod b)
     (d, x, y) = (d', y', x'-\left|\frac{a}{b}\right|y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

а	b	$\left\lfloor \frac{a}{b} \right\rfloor$	d	x	y
99	78				
78	21				
21	15				
15	6				
6	3				

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
     (d', x', y') = Ext-Euclid(b, a mod b)
     (d, x, y) = (d', y', x'-\left|\frac{a}{b}\right|y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

a	b	$\left\lfloor \frac{a}{b} \right\rfloor$	d	x	y
99	78				
78	21				
21	15				
15	6				
6	3				
3	0				

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
     (d', x', y') = Ext-Euclid(b, a mod b)
     (d, x, y) = (d', y', x'-\left\lfloor \frac{a}{b} \right\rfloor y')
    return (d, x, y)
  }
}
10
```

Example: gcd(99,78)

а	b	$\left\lfloor \frac{a}{b} \right\rfloor$	d	x	y
99	78				
78	21				
21	15				
15	6				
6	3				
3	0		3	1	0

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
     (d', x', y') = Ext-Euclid(b, a mod b)
     (d, x, y) = (d', y', x'-\left\lfloor \frac{a}{b} \right\rfloor y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

а	b	$\left\lfloor \frac{a}{b} \right\rfloor$	d	x	y
99	78				
78	21				
21	15				
15	6				
6	3	2	3	0	1
3	0		3	1	0

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
     (d', x', y') = Ext-Euclid(b, a mod b)
     (d, x, y) = (d', y', x'-\left\lfloor \frac{a}{b} \right\rfloor y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

а	b	$\left\lfloor \frac{a}{b} \right\rfloor$	d	x	y
99	78				
78	21				
21	15				
15	6	2	3	1	-2
6	3	2	3	0	1
3	0		3	1	0

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
     (d', x', y') = Ext-Euclid(b, a mod b)
     (d, x, y) = (d', y', x'-\left\lfloor \frac{a}{b} \right\rfloor y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

а	b	$\left\lfloor \frac{a}{b} \right\rfloor$	d	x	y
99	78				
78	21				
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0		3	1	0

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
     (d', x', y') = Ext-Euclid(b, a mod b)
     (d, x, y) = (d', y', x'-\left\lfloor \frac{a}{b} \right\rfloor y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

а	b	$\left\lfloor \frac{a}{b} \right\rfloor$	d	x	y
99	78				
78	21	3	3	3	11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0		3	1	0

- Euclid's algorithm can be extended to compute additional useful information.
- Specifically, we use an extended form of Euclid's algorithm to compute integer coefficients x and y such that

$$d = \gcd(a, b) = ax + by$$

• The coefficients x and y are very useful in several places (e.g. for computing modular multiplicative inverse).

Algorithm

```
Ext-Euclid(a, b)
{
  if b=0
    return (a,1,0)
  else
  {
    (d', x', y') = Ext-Euclid(b, a mod b)
    (d, x, y) = (d', y', x'-\left\lfloor \frac{a}{b} \right\rfloor y')
    return (d, x, y)
  }
}
```

Example: gcd(99,78)

		a			
а	b	$\lfloor \overline{m{b}} \rfloor$	d	x	y
99	78	1	3	-11	14
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0		3	1	0

Hence,
$$d = 3$$
, $x = -11$, $y = 14$
 $3 = \gcd(99,78) = 99*(-11) + (78*14)$

Analysis:

The running time is same as Euclid's algorithm

Solving modular linear equation

The expression,

```
a \equiv b \pmod{n}
```

read as "a is congruent to b modulo n",

means: the a and b have the same remainder when divided by n (or equivalently a-b is divisible by n). Here, n>0 and it is called the modulus.

The equation -

```
ax \equiv b \pmod{n}
```

is called modular linear equation.

• The problem of solving MLE is to find all values of x, modulo n, that satisfy the above relation.

Algorithm

```
Modular-Linear-Eqn-Solver(a, b, n)
{
  (d, x', y') = Ext-Euclid(a, n)
  if d \mid b
  {
    x_o = x'(b/d) \mod n
    for i = 0 to d-1
      print (x_0+i(n/d)) \mod n
  }
  else
    print "no solution"
}
```

```
Algorithm
```

```
Modular-Linear-Eqn-Solver (a, b, n)
 (d, x', y') = \text{Ext-Euclid}(a, n)
 if d \mid b
     x_0 = x'(b/d) \mod n
     for i = 0 to d-1
       print (x_0+i(n/d)) \mod n
  else
   print "no solution"
```

Example:

$$14x \equiv 30 \pmod{100}$$

Solution:

Here a = 14, b = 30, n = 100 First the algorithm computes (d, x', y')

а	n	$\left\lfloor \frac{a}{n} \right\rfloor$	d	x'	$oldsymbol{y}'$
14	100				
100	14				
14	2				
2	0		2	1	0

So,
$$(d, x', y') = (2, -7, 1)$$

Now $2 \mid 30$
 $x_o = x'(b/d) \mod n = -7*(30/2) \mod n = 95$
 $i=0$, First solution = $(x_0+i(n/d)) \mod n = 95$
 $i=1$, Second sol = $(x_0+i(n/d)) \mod n = 45$

Chinese Remainder theorem

- Around 100 A.D., Chinese mathematician Sun-Tsu solved the problem of finding those integers x that leave remainders 2,3 and 2 when divided by 3,5 and 7 respectively.
- One such solution is x = 23. All solutions are of the form 23+105k for any k.
- The CRT provides a correspondence between a system of equations modulo a set of pairwise relatively prime moduli(e.g. 3,5,7) and an equation modulo their product(e.g. 105)

If m_1 , m_2 , m_3 , ... m_k are pairwise relatively prime positive integers and if a_1 , a_2 , ... a_k are any integers then, the simultaneous congruences-

```
x \equiv a_1 \pmod{m_1} x \equiv a_2 \pmod{m_2} \cdots x \equiv a_k \pmod{m_k} have a solution and the solution is unique, modulo <math>m, where m = m_1 m_2 m_3 \dots m_k
```

```
Example:
   x \equiv 2 \pmod{5}
   x \equiv 3 \pmod{13}
Here, a_1 = 2, m_1 = 5, a_2 = 3, m_2 = 13, m = 65
Step 1: Compute:
   z_1 = m/m_1 = m_2 = 13
   z_2 = m/m_2 = m_1 = 5
Step 2: compute:
  y_1 = z_1^{-1} \pmod{m_1}
      = 13^{-1} \pmod{5} | a^{-1}=b \text{ means: ab} \equiv 1 \pmod{n}
       = 2
                          Step 4:
  y_2 = z_2^{-1} \pmod{m_2}
                          The solution is
      = 5^{-1} \pmod{13}
                          x = a_1 w_1 + a_2 w_2
                            = (2*26 + 3*40) \pmod{65}
       = 8
                            = 42 (mod 65)
Step 3:
  w_1 = y_1 z_1 \pmod{m} = 26 \pmod{65}
  w_2 = y_2 z_2 \pmod{m} = 40 \pmod{65}
```

```
Algorithm
chineseRemainder (a, m) // a, m are arrays
  int z[],y[],w[]
  m = 1
  x = 0
  for (i=0; i < n; i++)
    M = m * m_i
  for (i=0; i < n; i++)
    z_i = M/m_i
  for (i=0; i < n; i++)
    y_i = z_i^{-1} \pmod{m_i}
  for (i=0; i < n; i++)
    w_i = y_i z_i \pmod{M}
  for (i=0; i < n; i++)
    x = x + a_i w_i
  return x
   19
```


Primality testing

- Primality testing is the problem of finding whether a given number is prime or not.
- This problem arises in several applications
 e.g. In RSA cryptography, we need to find two
 large prime numbers during the key generation.

Naive approach: Trial division

- Try dividing n by each integer 2,3,.. \sqrt{n}
- ullet n is prime if none of above numbers divide n.

```
testPrime (n)
{
  for i = 2 to \sqrt{n}
    if (i divides n)
      return "composite"
  return "prime"
}
```

This approach is accurate but inefficient.

Miller-Rabin approach

- Gary L. Miller discovered in 1976. Later, Michael O. Rabin modified it in 1980.
- It is a randomized algorithm.
- The basic idea behind MR approach is:
 - 1. Choose some random numbers between 1 and n-1
 - 2. Perform the "witness" check to decide the primality of n with each of the random numbers chosen in step 1.
- Since the algorithm is randomized and chooses only a few numbers to check the primality, it does not guarantee correctness.

```
Miller-Rabin(n,s)
  for j=1 to s
      a = RANDOM(1, n-1)
      if (witness (a, n))
          return "composite" //guaranteed
   return "prime" //not 100% sure, but almost sure
witness (a, n)
 Let t \ge 1, u is odd and n-1 = 2^t u
 x_0 = a^u \mod n
 for i = 1 to t
    x_i = x_{i-1}^2 \mod n
    if (x_i = 1, \text{ and } x_{i-1} \neq 1 \text{ and } x_{i-1} \neq n-1)
      return TRUE
 if (x_t \neq 1)
    return TRUE
 return FALSE
} 21
```

```
Example: Determine whether n = 561 is prime.
```

```
Here, n = 561

n-1 = 560 = 2^4 * 35

So t = 4 and u = 35

Let us choose a = 7 (randomly)

Then x_0 \equiv a^u \mod n \equiv 241 (mod 561)

x_1 = 298

x_2 = 166

x_3 = 67

x_4 = 1
```

The "witness" returns TRUE.

Finally, the algorithm returns "Composite".

End of unit 7

Thank You!