Reading: Ng's course: cs229-prob.pdf

Probability Review

- Based on experiment: outcome space Ω containing all possible atomic outcomes
- Each outcome (atom) has probability density or mass (discrete vs. continuous spaces)
- Event is a subset of Ω
- P(event) is sum (or integral) over event's atoms
- Random variable V maps Ω to (usually) R
- V=value is an event, P(V) is a distribution

Example

- Roll a fair 6-sided die and then flip that many fair coins.
- What is Ω ?

Example

- Roll a fair 6-sided die and then flip that many fair coins.
- What is Ω?
- Ω={(1,H), (1,T), (2, HH), (2, HT), ..., (6,TTTTTT)}
- Number of heads is a random variable
- What is expected number of heads? Expectation of V is $\sum P(a)V(a)$

Events A and B <u>independent</u> iff:

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

- Probability of A given B, (cond. probability)
 P(A | B) = P(A and B)/P(B)
- So,

$$P(A \text{ and } B) = P(A \mid B) \cdot P(B)$$

 $P(B \text{ and } A) = P(B \mid A) \cdot P(A)$

Bayes Rule:

$$P(A \mid B) = P(B \mid A) P(A)/P(B)$$

Example

- What is expected number of heads? def. expectation: $E(V) = \sum_{\text{atoms } a} P(a)V(a)$
- Expectations add: $E(V_1 + V_2) = E(V_1) + E(V_2)$
- Rule of conditioning: (sum rule)

if events $e_1, e_2, ..., e_k$ partition Ω then:

P(event) =
$$\sum P(e_i)$$
 P(event $|e_i)$ = $\sum P(e_i)$ and event)
E(randVar) = $\sum P(e_i)$ E(randVar $|e_i|$)

Expected number of heads

• E(# heads) =
$$\sum_{r=1}^{6} P(\text{roll} = r) E(\text{# heads | roll} = r)$$

= $\frac{1}{6} \left(\frac{1+2+3+4+5+6}{2} \right)$
= $\frac{21}{12} = 1.75$

Joint Distributions factor:

If
$$\Omega$$
 = (S x T x U) then P(S=s, T=t, U=u) is P(S=s) P(T=t | S=s) P(U=u | S=s, T=t) (can draw one at a time with conditioning)

Conditional distributions are distributions:

$$P(A | B) = P(A \text{ and } B) / P(B), \text{ so also:}$$

 $P(A | B, C) = P(A \text{ and } B | C) / P(B | C)$

Bayes Rule for Learning

- RVs
- Assume joint distribution P(X=x, Y=y)
- Want P(Y=y | X=x) for each label y on a new instance x (here (x,y) is an atom)
- $P(y \mid x) = P(x \mid y) \cdot P(y) / P(x)$ Bayes rule
- $P(y \mid x)$ proportional to $P(x \mid y)$ P(y)
- From data, learn P(x | y) and P(y)
- Predict label y with largest product

How to learn probabilities

- Street hustler takes bets on coin flips
- You see HTH, what is probability that next flip is H? What is θ=P(H) for coin?

(don't be shy)

How to learn probabilities

- Street hustler takes bets on coin flips
- You see HTH, what is probability that next flip is H? What is h=P(H) for coin?

What is the experiment?

Frequentist

- Street hustler takes bets on coin
- You see event HTH, what is probability that next flip is H?
- Frequentist: 2/3 maximizes likelihood, the θ =P(H) value maximizing $\theta^2(1-\theta)$ solve "derivative = 0" for θ .
- Likelihood function L(θ) = P(HTH | θ)
 vs. the probability P(HTH | θ=2/3)

Bayesian Parameter Estimation

- Have <u>prior</u> distribution P(θ) on θ = P(H);
 two phase experiment, pick θ then flip 3 times
- Posterior on θ is distribution $P(\theta \mid HTH)$ or

$$P(HTH \mid \theta) \cdot P(\theta) / P(HTH)$$

• In this case,

 $\theta^2(1-\theta)P(\theta)$ / normalization

Bayesian examples

- Prior: $P(\theta=0) = P(\theta=1/2) = P(\theta=1) = 1/3$: $\theta^2(1-\theta) P(\theta)$ is 0, 1/24, and 0 for these three cases, posterior $P(\theta=1/2 \mid HTH) = 1$
- Prior density: $P(\theta) = 1$ for $0 \le \theta \le 1$: $\theta^2(1-\theta) P(\theta)$ is $\theta^2(1-\theta)$ for $0 \le \theta \le 1$ posterior $P(\theta \mid HTH)$ is $12 \theta^2(1-\theta)$

Posterior plot

- Max at 2/3
- Average is 3/5
- 3/5 = (2+1)/(3+2)
- Not a coincidence!
 Laplace's rule of succession add one fictitious observation of each class

Bayes' Estimation

- Treat parameter θ as a random var with the prior distribution $P(\theta)$, use fixed sample \mathcal{X} (RVS)
- Maximum Likelihood (ML):
 - $\theta_{ML} = \operatorname{argmax}_{\theta'} P(S = X \mid \theta = \theta')$
- Maximum a Posteriori (MAP):
 - $\theta_{MAP} = \operatorname{argmax}_{\theta'} P(\theta = \theta' \mid S = X)$ $= \operatorname{argmax}_{\theta'} P(S = X \mid \theta = \theta') P(\theta = \theta') / P(S = X)$
- Predictive distribution (full Bayes): $P(Y=y|S=X) = \int P(Y=y|\theta=\theta') P(\theta=\theta'|S=X) d\theta'$

Mean a'Post.: $\theta_{\text{mean}} = E[\theta|S=X] = \int \theta' P(\theta=\theta'|S=X) d\theta'_{15}$

Use for learning

- **RVs**
- Draw enough data so that P(Y=y | X=x)
 estimated for every possible (x,y) pair
- This takes lots of data curse of dimensionality ...rote learning
- Another approach: a class of models
- Think of each model as a way of generating the training set \$\mathcal{X}\$ of \$(\mathbf{x}, y)\$ pairs

Compound Experiment

- Prior P(M=m) on model space
- Models gives $P(X=x \mid M=m)$

(here data \mathcal{X} is both y's and x's)

Joint experiment (if data i.i.d. given m)

• $P(\{(x_i, y_i)\}, m) = P(m) \prod_i (P(x_i|m) P(y_i | x_i, m))$

This is a generative model – has $P((x,y) \mid m)$

- Prior P(m) over models
- Model gives $P(x \mid m)$
- Posterior $P(m \mid x) = P(x \mid m) P(m) / P(x)$
- Max. likelihood: m having max P(x | m)
- Max. a posteriori: m having max P(m | x)
- <u>Predictive distribution (full Bayes)</u>: predict with average of m's weighted by posteriors $P(m \mid x)$

Discriminative and Generative models

- Generative model: $P((x, y) \mid m)$
 - Tells how to generate examples (both instances and labels)
- Discriminative model: P(y | h, x)
 - Tells how to create labels from instances, (like linear regression)
- Discriminate function: predict f(x), often $f(x) = \operatorname{argmax}_t f_t(x)$.

More on Generative approach

- Generative approach models P(x,y | m)
- Learn $P(\mathbf{x} \mid y, m)$ and use Bayes' rule $P(y \mid \mathbf{x}, m) = P(\mathbf{x} \mid y, m) P(y \mid m) / P(\mathbf{x} \mid m)$
- Need model for P(x | y, m)
- One common assumption:
 - $P(x \mid y,m)$ Gaussian
 - $P(y \mid m)$ Bernoulli (biased coin flip)
- How to learn (fit) Gaussian from data?

1 dimensional Gausians

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

 Maximum likelihood estimate has sample mean μ and sample

variance
$$\sigma^2 = (1/n) \sum_i (x_i - \mu)^2$$

= $E[(x - \mu)^2]$
= $E[x^2] - \mu^2$

What gaussian best fits -1, 1, 1, 7?

Multivariate Gaussians

$$P(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp(-\frac{1}{2} [x - \mu]^T \Sigma^{-1} [x - \mu])$$

• Mean vector μ , covariance matrix Σ , entries of covariance matrix are variances (or covariances), $\sigma^2_{i,j}$ =E[(x_i - μ_i) (x_j - μ_j)] (subscripts are indices into vectors)

Estimating Gaussians

(maximum likelihood)

- Estimate $\mu = (\sum_i x_i) / n$
- Estimate $\sigma^2_{i,j} = (\sum_k (x_{k,i} \mu_i) (x_{k,j} \mu_j)) / n$
- (above covariance estimate is <u>biased</u>: can use "n-1")
- If domain *d*-dimensional:
 - -d parameters for μ
 - d(d+1)/2 parameters for $\sigma_{i,j}^2$'s
 - For each class!
 - Many parameters "requires" lots of data

Common tricks

- Share same Σ for all classes
 - Gaussian Discriminant Analysis in NG
- Assume diagonal Σ's for each class
- Assume shared $\Sigma = cI$ (spherical)
 - This leads to the simple mean-based linear classifier if data balanced

Gaussian Conditionals and Marginals

• If p(x,y) is Gaussian, then:

-Conditional $p(x \mid Y=y)$ is Gaussian,

-Marginal
$$p(x) = \int p(x,y)dy$$
 is Gaussian

BAYES DECISION THEORY—THE DISCRETE CASE FIGURE 2.10. Forms for decision boundaries for the general bivariate normal case.

General decision boundaries for Gaussian generative model Duda and Hart' 73

Also: same covar. Matrix implies linear boundary

Main Points/terms:

- Features, instances, labels, examples
- Batch learning, inductive bias
- Classification, regression, loss function
- Training set, training error, test error
- Noise, over-fitting
- Probability: events and RV's, independence, sum rule, product rule, Bayes rule

Main points/terms (cont.)

- Bayesian parameter estimation: priors and posteriors, max.likelihood, max a'posteriori, mean a'posteriori, full Bayesian prediction (predictive distribution)
- Generative models and discriminative models
- Class-conditional gaussians and estimating Gaussians