演習ミクロ経済学 I 第1回 解答*

2017年4月13日

問題 1

証明. $\mathbf{x}^1 \succ \mathbf{x}^2$ より、

$$\mathbf{x}^1 \succsim \mathbf{x}^2$$
 (1)

$$\mathbf{x}^2 \not\gtrsim \mathbf{x}^1$$
 (2)

問題 2

(a)
$$\mathbf{x}^1 \gtrsim \mathbf{x}^2 \iff x_1^1 - x_2^1 \geqslant x_1^2 - x_2^2$$

 x_2^2

完備性:満たす

証明. 任意に $\mathbf{x}^1,\,\mathbf{x}^2\in X$ を選ぶ. この二つについて $x_1^1-x_2^1\geqslant x_1^2-x_2^2$ が成り立っているな

^{*} 間違いを見つけたら orihsamuk@gmail.com まで連絡してください.

らば $\mathbf{x}^1 \succsim \mathbf{x}^2$ である. 一方 $x_1^1 - x_2^1 < x_1^2 - x_2^2$ が成り立っているならば $\mathbf{x}^2 \succsim \mathbf{x}^1$ なので,常に $\mathbf{x}^1 \succsim \mathbf{x}^2$ または $\mathbf{x}^2 \succsim \mathbf{x}^1$ が成り立つ.

推移性:満たす

(b) $\mathbf{x}^1 \succsim \mathbf{x}^2 \iff x_1^1 x_2^1 \geqslant x_1^2 x_2^2$ x_2^2

完備性:満たす

証明. 任意に \mathbf{x}^1 , $\mathbf{x}^2 \in X$ を選ぶ. この二つについて $x_1^1 x_2^1 \geqslant x_1^2 x_2^2$ が成り立っているならば $\mathbf{x}^1 \succsim \mathbf{x}^2$ である. 一方 $x_1^1 x_2^1 < x_1^2 x_2^2$ が成り立っているならば $\mathbf{x}^2 \succsim \mathbf{x}^1$ なので,常に $\mathbf{x}^1 \succsim \mathbf{x}^2$ または $\mathbf{x}^2 \succsim \mathbf{x}^1$ が成り立つ.

推移性:満たす

(c) $\mathbf{x}^1 \succsim \mathbf{x}^2 \iff x_1^1 \geqslant x_1^2 \text{ and } x_2^1 \geqslant x_2^2$

完備性:満たさない

証明. $\mathbf{x}^1=(2,1), \ \mathbf{x}^2=(1,2)$ とすると, $x_1^1=2\geqslant 1=x_1^2$ であるが $x_2^1=1\leqslant 2=x_2^2$ なので \mathbf{x}^1 $\not \succeq \mathbf{x}^2$ かつ \mathbf{x}^2 $\not \succeq \mathbf{x}^1$ となり,完備性を満たさない.

推移性:満たす

(d) $\mathbf{x}^1 \gtrsim \mathbf{x}^2 \iff \min\{x_1^1, x_2^1\} \geqslant \min\{x_1^2, x_2^2\}$

完備性:満たす

証明. 任意に \mathbf{x}^1 , $\mathbf{x}^2 \in X$ を選ぶ. この二つについて $\min\{x_1^1, x_2^1\} \geqslant \min\{x_1^2, x_2^2\}$ が成り立っているならば $\mathbf{x}^1 \succsim \mathbf{x}^2$ である. 一方 $\min\{x_1^2, x_2^2\} \geqslant \min\{x_1^1, x_2^1\}$ が成り立っているならば $\mathbf{x}^2 \succsim \mathbf{x}^1$ なので,常に $\mathbf{x}^1 \succsim \mathbf{x}^2$ または $\mathbf{x}^2 \succsim \mathbf{x}^1$ が成り立つ.

推移性:満たす

 よって $\min\{x_1^1,x_2^1\}\geqslant \min\{x_1^3,x_2^3\}$ となり、選好の定義よりこれは $\mathbf{x}^1\succsim\mathbf{x}^3$ を意味する. (e) $\mathbf{x}^1\succsim\mathbf{x}^2\iff 2(x_1^1+x_2^1)\geqslant x_1^2+x_2^2$ x_2^2

完備性:満たす

証明. 任意に \mathbf{x}^1 , $\mathbf{x}^2 \in X$ を選ぶ。この二つについて $2(x_1^1+x_2^1) \geqslant x_1^2+x_2^2$ が成り立っているならば $\mathbf{x}^1 \succsim \mathbf{x}^2$ である。一方 $2(x_1^1+x_2^1) < x_1^2+x_2^2$ が成り立っているとする。 \mathbf{x}^1 , $\mathbf{x}^2 \in \mathbb{R}^2_+$ より $x_1^1+x_2^1 \leqslant 2(x_1^1+x_2^1)$ かつ $2(x_1^2+x_2^2) \geqslant x_1^2+x_2^2$ となることに注意すると,

$$2(x_1^2 + x_2^2) \ge x_1^2 + x_2^2 > 2(x_1^1 + x_2^1) \ge x_1^1 + x_2^1$$

が成り立ち、 $\mathbf{x}^2 \succsim \mathbf{x}^1$ となる.

推移性:満たさない

証明. $\mathbf{x}^1 = (2, 2), \, \mathbf{x}^2 = (4, 4), \, \mathbf{x}^3 = (8, 8)$ とすると,

$$2(x_1^1 + x_2^1) = 8 = x_1^2 + x_2^2 \Rightarrow \mathbf{x}^1 \succsim \mathbf{x}^2$$
$$2(x_1^2 + x_2^2) = 16 = x_1^3 + x_2^3 \Rightarrow \mathbf{x}^2 \succsim \mathbf{x}^3$$

を満たす. ところが,

$$\begin{split} &2(x_1^1+x_2^1)=8<16=x_1^3+x_2^3\Rightarrow \mathbf{x}^1\not\succsim\mathbf{x}^3\\ &2(x_1^3+x_2^3)=32>4=x_1^1+x_2^1\Rightarrow \mathbf{x}^3\succsim\mathbf{x}^1 \end{split}$$

なので $\mathbf{x}^3 \succ \mathbf{x}^1$ である. したがって推移性を満たさない.

問題 3

ユークリッド距離:

最大值距離:

問題 4

(a) $\mathbb R$ における集合 $S=[0,1]\cup\{2\}$ S は開集合ではなく、閉集合である.

開集合でないことの証明. x=2 とすると, $x\in S$ である. 任意に $\varepsilon>0$ を取り, $x'=x+\frac{\varepsilon}{2}$ とすると,

$$|x' - x| = \left| x + \frac{\varepsilon}{2} - x \right| = \frac{\varepsilon}{2} < \varepsilon$$

となるので $x'\in B_{\varepsilon}(x)$ である.しかし, $x'=2+\frac{\varepsilon}{2}>2$ となるので $x'\not\in S$ である.したがって S は開集合ではない.

閉集合であることの証明. S の補集合を S^c と書くと, $S^c = (-\infty,1) \cup (1,2) \cup (2,+\infty)$ である. S^c が開集合であることを示す. 任意に $x \in S^c$ を選ぶと, $x \in (-\infty,1)$, $x \in (1,2)$, $x \in (2,+\infty)$ のいずれかが成立する. 以下では距離概念として絶対値を用いる.

(i) $x\in (-\infty,1)$ のとき $\varepsilon=\frac{1-x}{2}\ \text{とすると},\ x<1\ \text{より}\ \varepsilon>0\ \text{である}.\ 任意に\ x'\in B_\varepsilon(x)\ を選ぶと,$

$$|x' - x| < \varepsilon \iff -\varepsilon < x' - x < \varepsilon$$

$$\Rightarrow \begin{cases} x' < x + \varepsilon = \frac{1+x}{2} < 1 \\ x' > x - \varepsilon > -\infty \end{cases}$$

が成り立つ. よって $x' \in (-\infty, 1)$ である.

(ii) $x\in(1,2)$ のとき $arepsilon=rac{\min\{2-x,x-1\}}{2}$ とすると, $x\in(1,2)$ より arepsilon>0 である.任意に $x'\in B_{arepsilon}(x)$ を選ぶと,

$$|x' - x| < \varepsilon \iff -\varepsilon < x' - x < \varepsilon$$

$$\Rightarrow \begin{cases} x' < x + \varepsilon \leqslant x + \frac{2-x}{2} = \frac{2+x}{2} < 2 \\ x' > x - \varepsilon \geqslant x - \frac{x-1}{2} = \frac{x+1}{2} > 1 \end{cases}$$

が成り立つ. よって $x' \in (1,2)$ である.

(iii) $x\in(2,+\infty)$ のとき $\varepsilon=\frac{x-2}{2}$ とすると, $x\in(2,+\infty)$ より $\varepsilon>0$ である. 任意に $x'\in B_{\varepsilon}(x)$ を選ぶと,

$$\begin{aligned} |x' - x| &< \varepsilon \iff -\varepsilon < |x' - x| < \varepsilon \\ \Rightarrow \left\{ \begin{array}{l} x' < x + \varepsilon < +\infty \\ x' > x - \varepsilon > x - \frac{x-2}{2} = \frac{x+2}{2} > 2 \end{array} \right. \end{aligned}$$

が成り立つ. よって $x' \in (2, +\infty)$ である.

したがっていずれの場合もある ε に対して $B_{\varepsilon}(x) \subset S^c$ となるので, S^c は開集合である. \square

(b) $\mathbb R$ における集合 S=[0,2) S は開集合でも閉集合でもない。以下では距離概念として絶対値を用いる。

開集合でないことの証明. x=0 とすると $x\in S$ である. 任意に $\varepsilon>0$ を取り, $x'=x-\frac{\varepsilon}{2}$ とすると,

$$|x' - x| = \left|x - \frac{\varepsilon}{2} - x\right| = \frac{\varepsilon}{2} < \varepsilon$$

となるので $x' \in B_{\varepsilon}(x)$ である.しかし, $x' = 0 - \frac{\varepsilon}{2} = -\frac{\varepsilon}{2} < 0$ となるので $x' \notin S$ である.したがって S は開集合ではない.

閉集合でないことの証明. *1 数列 $\{x_k\}_{k=1}^\infty$ を, $x_k\equiv 2-\frac{1}{k}$ と定義すると,任意の $k=1,2,\ldots$ について $1\leqslant x_k<2$ となるので $x_k\in S$ である. さらに, x_k は 2 に収束する *2 . しかし $2\not\in S$ なので S は閉集合ではない.

(c) \mathbb{R}^n における集合 $S=\mathbb{R}^n_+$ 開集合ではなく、閉集合である.以下では距離概念として最大値距離を用いる.

$$\begin{split} k \geqslant \bar{k} > \frac{1}{\varepsilon} \iff \varepsilon > \frac{1}{k} \iff 2 - \varepsilon < 2 - \frac{1}{k} = x_k \iff x_k - 2 > -\varepsilon \\ 2 - \frac{1}{k} < 2 + \varepsilon \iff x_k < 2 + \varepsilon \iff x_k - 2 < \varepsilon \end{split}$$

が成り立つ. すなわち任意の $k \geqslant \bar{k}$ に対し $|x_k-2| < \varepsilon$ となるので x_k は 2 に収束する.

^{*1} 補集合を使って証明しても OK

 $^{^{*2}}$ 任意に $\varepsilon>0$ を取り、 $ar{k}$ を $ar{k}>1/\varepsilon$ を満たす自然数とする. 任意の $k\geqslant ar{k}$ について、

開集合でないことの証明. $\mathbf{x}=(0,0,\dots,0)$ とし、任意に $\varepsilon>0$ を選ぶ. 各 $i=1,2,\dots,n$ について $\mathbf{x}_i'=x_i-\frac{\varepsilon}{2}$ と定義すると、

$$|x_i' - x_i| = \left| x_i - \frac{\varepsilon}{2} - x_i \right| = \frac{\varepsilon}{2} < \varepsilon$$

なので、 $d(\mathbf{x}', \mathbf{x}) = \max_i |x' - x| < \varepsilon$ 、つまり $\mathbf{x}' \in B_{\varepsilon}(\mathbf{x})$ である.ところが、全ての i について $x_i' < 0$ なので $\mathbf{x}' \notin S$ である.したがって S は開集合ではない.

閉集合であることの証明。 全ての $k=1,2,\ldots$ について $\mathbf{x}^k \in S$ であり, $\bar{\mathbf{x}}$ に収束する点列 $\{\mathbf{x}^k\}_{k=1}^\infty$ を任意に選ぶ。 $\{x^k\}_{k=1}^\infty$ は $\bar{\mathbf{x}}$ に収束するので,任意の ε に対し十分大きな \bar{k} を取る と,任意の $k \geqslant \bar{k}$ について $d(\mathbf{x}^k,\bar{\mathbf{x}}) < \varepsilon$ となる。 すなわち,各 $i=1,2,\ldots,n$ について

$$|x_i^k - \bar{x}_i| \leq d(\mathbf{x}^k, \bar{\mathbf{x}}) < \varepsilon \iff -\varepsilon x_i^k - \bar{x}_i < \varepsilon$$

 $\Rightarrow x_i^k < \bar{x}_i + \varepsilon$

を満たす.一方,背理法の仮定として, $\mathbf{x} \not\in S$ とする.S の定義から,これは少なくとも一つ の $i=1,2,\ldots,n$ について $\bar{x}_i<0$ であることを意味する.このような i に注目する.上記の ε は任意なので $\varepsilon=-\frac{x_i}{2}$ と定義する. $x_i<0$ なので $\varepsilon>0$ である.ここで,

$$x_i^k < \bar{x}_i + \varepsilon = \bar{x}_i - \frac{x_i}{2} = \frac{x_i}{2} < 0$$

となるが、これは $\mathbf{x}^k \not\in S$ を意味し、点列の取り方に矛盾する.よって $\bar{x} \in S$ でなくてはならず、S が閉集合であることが従う.