Lecture 2: A Geometric View of Linear Algebra.

- * High dimensional vectors: $N \in \mathbb{R}^d$ (d: a longe number)
- * In ML, owr data points are represented often as such vectors. Each coordinate of v corresponds to a feature:

Example: Flu destection

* Nector Operations and their geometry is important to understand to be able to design ML algorithms.

1. Vector Addition

Let
$$x = [x_1, ..., x_d]$$

 $y = [y_1, ..., y_d]$

Then: $\chi = x + y = [x_1 + y_1, ..., x_d + y_d], \chi' = x - y$ let

Geometrically: 0 = origin.

2. Scaling Nectors Up or Down.

Let $x = [x_1, ..., x_d]$, $c = \alpha$ scalar.

let = cx

Geometrically:

0 = origin

3. Inner Products (or, Dot Products) and Norms.

* If $x = [x_1, ..., x_d]$, then the norm of x is defined as:

$$\|x\| = \int_{i=1}^{a} x_i^2$$

Geometrically, ||2| is the length of x

* For $x = [x_1, ..., x_d]$, $y = [y_1, ..., y_d]$, the inner product or dot product of x and y is defined as:

$$\langle x, y \rangle = \sum_{i=1}^{d} x_i y_i$$

- Geometrically, dot products are related to angles.

$$\cos(\text{Angle b}|\mathbf{w} \times \text{and } \mathbf{y}) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$$

1 Some Properties and Facts:

$$1. \quad ||\times||^2 = \langle \times, \times \rangle.$$

Proof:
$$||x||^2 = \sum_{i=1}^{d} x_i^2$$
 (By definition)
 $\langle x_i x \rangle = \sum_{i=1}^{d} x_i \cdot x_i = \sum_{i=1}^{d} x_i^2$ (By definition)

Nerify:
$$\cos \theta = \cos 0^{\circ} = 1$$
 (in this case)
$$\frac{\langle x, \times \rangle}{||x|| \cdot ||x||} = 1 \text{ also.}$$

2. Properties of the dot product:

Proofs follow easily from the definitions.

3. The Euclidean distance between two vectors 2 and y is detrined as:

$$\int_{i=1}^{d} (x_i - y_i)^2 = ||x - y|| \quad \text{(observe)}$$

4. Fact:
$$\|x-y\|^2 = \|x\|^2 + \|y\|^2 - 2\langle x, y \rangle$$

Proof:
$$||x-y||^2 = \langle x-y, x-y \rangle$$
 (From (1))
$$= \langle x, x \rangle + \langle y, y \rangle - 2 \langle x, y \rangle$$
(From properties of dot products)
$$= ||x||^2 + ||y||^2 - 2 \langle x, y \rangle$$

$$\langle x, y \rangle = 0$$

[Recall, $\cos \theta = \frac{\langle x, y \rangle}{\|x\| \|y\|} = \cos 90^{\circ} = 0.$]

6. If x and y are orthogonal,

$$||x-y||^2 = ||x||^2 + ||y||^2$$

Proof: From Fact (4) and Fact (5).

Geometrically, this statement is Pythagora's theorem (so this is a one-line proof)

7. Cauchy Schwartz Inequality:

For any vectors 2 and y,

$$\langle x, y \rangle \leq ||x|| \cdot ||y||$$

<u>Proof</u>: For any vectors z and z, $cos(\theta) \leq 1$, where θ is the angle between them.

Su: Also:
$$\cos \theta = \frac{\langle x, y \rangle}{||x|| ||y||}$$

So, we have: <x,y> ≤ ||x|| ||y||

(One line proof.)

Projections and Dot Products:

Look at plane containing u, 19.

Draw a perpendicular from N to u.

Projection of N along u is the vector $\frac{\langle N, u \rangle u}{\|u\|^2} = a$.

This is also called "component" of V along u.

Component of N perpendicular to u is $N - \frac{\langle N, u \rangle u}{\|u\|^2} = b$.

Fact: a, b are orthogonal.

$$\frac{\text{Proof:}}{\|u\|^2} : \langle \alpha, b \rangle = \langle \frac{\langle v, u \rangle u}{\|u\|^2}, v - \frac{\langle v, u \rangle u}{\|u\|^2} \rangle$$

$$= \frac{\langle v, u \rangle \langle u, v \rangle}{\|u\|^2} - \frac{\langle v, u \rangle^2}{\|u\|^4} \cdot \frac{\langle u, u \rangle}{\|u\|^2}$$

$$= \frac{\langle v, u \rangle^2}{\|u\|^2} - \frac{\langle v, u \rangle^2}{\|u\|^2} = 0$$
this is $\|u\|^2$

Observe: If u is a unit vector, (||u||=1) then:

- Length of projection of valong u is <v,u>
- Component of v orthogonal to u is N- <V, u>u.

Matrices and Matrix Mulliplication:

nxd matrix M is written as: A

$$M = \begin{bmatrix} M_{11} & M_{12} & \cdots & M_{1d} \\ M_{21} & M_{22} & \cdots & M_{2d} \\ \vdots & & & & \\ M_{n1} & M_{n2} & \cdots & M_{nd} \end{bmatrix}$$

n rows, a columns

Mij: entry at rowi, column j

MT: Tromspose of M: dxn matrix: Mij = Mji

Matrix Vector Multiplication:

M: nxd matrix

x: dx1 vector

$$M_N$$
: $m \times 1$ vector $Z = S.t.$

$$Z_i = \sum_{j=1}^d M_{ij} \times_j$$

Observe: Zi = (Mi, x>

Zi: Length of the projection of Mi onto x when x is a unit rector.

Matrix - Matrix Multiplication:

Mnxd matriz; Naxk

MN: nxk matrix P such that

Observe:

$$P_{ij} = \langle M_i, n_j \rangle$$

$$\downarrow \qquad \downarrow \qquad Column j$$
Row i of $O_j > N_j$

Pij: length of projection of Mi on hij when my is a unit vector.

Identity and Diagonal Matrices:

- M is diargonal if $M_{ij} = 0$ for $i \neq j$.
- M is identity if M is and diagonal and Mii = 1, for all i.

Data Matrix:

nxd matrix. A

n data points: 1 = 21, ... , 2"

Each row of A is a datar point.

This is a special motion we will use often in this class.

- * Let u be an unit dx1 vector. How com we enterpret Aug
- * Let $U = [u_1, ..., u_K]$ be a dxk matrix whose as i-th column ui is an unit vector for all i. How to interpret AU?

Some Identifies:

- 1. For α dx| vector x, $x^{T}x = \langle x, x \rangle = ||x||^{2}$ $x^{T}x = \sum_{i=1}^{d} x_{i}^{2} = ||x||^{2} = \langle x, x \rangle \quad (\text{By definition})$
- 2. For dx1 vectors 2 and y, 2Ty = (x,y>
- 3. Let A be a dxd matrix and x be a dx1 vector. Then: $\chi^T A \chi = \sum_{i=1}^d \sum_{j=1}^d A_{ij} \chi_i \chi_j$

Proof:

$$Z = Az$$
 is dxl vector s.t.
 $Z_i = \sum_{j=1}^{d} A_{ij} z_j$
 $j=1$
Now $z = \sum_{j=1}^{d} A_{ij} z_j = \sum_{j=1}^{d} A_{ij} z_j$

Now, $\chi^T A \chi = \chi^T \chi = \sum_{i=1}^d \chi_i \chi_i = \sum_{i=1}^d \sum_{j=1}^d A_{ij} \chi_i \chi_j$

Mr. WELL PHILE MEDICALLY, BY LICENTER TONDERSON

M Me

Positive Semi-Definite (PSD) Matrix:

A matrix A_{dxd} is PSD if for all dx1 vectors x, $x^TAx > 0$

Examples:

1.
$$Iaxd = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is PSD .

For any α , $\alpha^T I \alpha = \sum_{i,j} \alpha_i \alpha_j I_{ij} = \sum_i \alpha_i^2 > 0$.

a.
$$\begin{pmatrix} 2-1 \\ -1 & 1 \end{pmatrix}$$
 is PSD.

For any
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $x^T A x = 2x_1^2 + x_2^2 - 2x_1 x_2$
= $(x_1 - x_2)^2 + x_2^2 > 0$

3.
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 is NOT PSD. Why?
Take $x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $x^TAx = *2(-1)1 = -2.40$

Geometry: Symmetric PSD matrices can be represented by ellipsoids in high dimensions.

eg: Taxa represents a d-dim sphere with eqn:
$$\sum_{i=1}^{d} x_i^2 = 1$$

(2-1) represents the ellipse $(x_1 - x_2)^2 + x_2^2 = 1$.

Vector Subspaces:

Let $V_1, ..., V_k$ be k vectors. The subspace spanned by them is the set of all vectors of the form:

$$\sum_{i=1}^{K} a_i v_i \qquad (a_i = a \text{ scalor}, \text{ for all } i)$$

Geometrically:

- N_1 , $N_2 = 2N_1$. Subspace spanned: only linear combination of V_1 . (a line)
- · N1, N2 (where v2 is linearly endependent of N1)
 Subspace Spanned: plane containing N1 and V2
- Dimension of a subspace is the maximum # of linearly independent vectors in the subspace.
- Dimension of a subspace spanned by VI,.., VK is < K.

Important Relationship:

Let z!,.., zh be n data vectors.

Dimension of subspace Rank of the spanned by 21, .., 2h = data matrix A.

If your data is inherently low dimensional, then data matrix has low rank.