PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
A61B 5/117

A1

(11) International Publication Number:

WO 96/32061

(43) International Publication Date:

17 October 1996 (17.10.96)

(21) International Application Number:

PCT/NO96/00082

(22) International Filing Date:

10 April 1996 (10.04.96)

(30) Priority Data:

951427

11 April 1995 (11.04.95)

NO

(71)(72) Applicant and Inventor: DINH, Ngoc, Minh [NO/NO]; Anders Søysethsvei 8, H 14, N-7053 Ranheim (NO).

(74) Agent: LARSEN, Rolf, Chr., B.; ABC-Patent, Siviling. Rolf Chr. B. Larsen a.s, Brynsveien 5, N-0667 Oslo (NO).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

In English translation (filed in Norwegian).

(54) Title: FINGERPRINT SENSOR

(57) Abstract

Method and apparatus for measuring of patterns in an at least partially heat conducting surface (10), preferably a fingerprint, characterized in the heating of a plurality of sensor elements (15) being in thermal contact with a substantial part of the surface to be examined, the measuring of temperature or change in temperature in each of the sensor elements to provide a signal corresponding to the heat loss in relation to the supplied energy in each sensor element, and collocating said signal at each sensor element to provide a segmented picture based upon the difference in heat loss at the sensor elements.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN.	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP ·	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	. Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	· Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

10

15

20

25

30

FINGERPRINT SENSOR

The invention relates to a method and an apparatus for measuring patterns in a partially heat conducting surface, preferrably a fingerprint.

Identification by the use of fingerprints has lately come to the fore as a result of the increasing danger of the forging of credit cards, as well as the greatly increased availability of pattern recognition algorithms. Some systems for recognition of fingerprints have already been made available on the market. The technique used to register the fingerprint varies.

Some of the previously known solutions are based upon optical technology using light with one or more wavelengths. These are sensitive to dirt and contamination, both in the fingerprint and on the sensor surface, and thus cleaning is necessary for both.

Another alternative is pressure measurements. This, however, has the disadvantage that the sensor surface becomes sensitive to mechanical wear and damage, as the sensor has to have an at least partially compliant surface.

Since this kind of sensors may be exposed to long term use in varying and sometimes demanding conditions the sensor needs to have a robust surface, to be as insensitive to pollution in the fingerprint and on the sensor as possible, and to be able to be screened electrically in order to avoid interference from outside and electromagnetic discharges that can harm the electronic circuits in the sensor. It must be capable of reading most fingerprints without being disturbed by latent prints from earlier use. It must also be capable of reading worn fingerprints in which the pattern is no longer visible. In some cases, e.g. in credit cards, it would also be advantageous if the sensor could be made compact.

In the view of costs there is also a demand for simp-35 licity and minimizing of the number of parts.

An interesting alternative is to measure the pattern in the fingerprint using the difference in temperature between

15

20

25

30

35

the "valleys" and the "ridges". This, however, demands very sensitive detectors, and is also sensitive regarding variations in temperature due to different circumstances. This kind of sensors is known from Norwegian patent 153,193 and US patent 4,429,413.

It is an object of the present invention to provide a sensor being easy to produce, making them cheap in production, and also having such small dimensions that they may be integrated in identification cards and credit cards or the like. It is an additional object to make a sensor being as insensitive to pollution in the fingerprint and on the sensor as possible, and which may be used without maintenance for long periodes of time.

According to the present invention the problems related to the known solutions are solved using a method as being characterized in claim 1, and a sensor device as defined in claim 7.

The invention is related to detection of thermal structures by measuring differences in heat conductivity at the surface, preferrably a fingerprint, touching the sensor. This makes the measurements independent of the temperature of the surroundings.

Dirt and contamination will be less critical for the measurements of the sensor than in other, corresponding methods. If a relatively smooth, thin layer of contamination is present on the sensor it will, to a certain degree, affect the contrast in the picture, but the print may still be read. Larger quantities of dirt affecting the measured heat conduction may give measuring errors.

The heat conductivity is measured by heating the sensor being touched by the object to be measured, and by measuring the resulting change in temperature (relative temperature) in relation to the provided energy. The better heat conductivity the measured object has, the less the local change in temperature will be. The heat conductivity can be measured as a function of time, integrated over a period of time or at a chosen time after the heating is started or stopped. A plurality of measurements, or a continuous

30

temperature control at each measuring element, provides a possibility for calculating the heat capacity as well as providing a measurement of the heat conductivity in the measured object.

The heating in itself may be performed in different ways. Joint heating of the whole sensor is one possibility. To obtain a joint heating, the heat generated in other electronic circuits coupled to the sensor may be used.

In a preferred embodiment of the invention a separate

10 heat source is used at each separate temperature sensor,
which provides a controlled and accurate measurement in each
point, so that the method and apparatus is less sensitive to
local variations in temperature. This is also advantageous
since the provided energy may be controlled at each

temperature sensor, which gives an improved control of the temperature, and since the energy sources may be positioned close to the surface and the object to be measured, and thus gives less use of energy and faster respons since the mass to be heated is closer.

The invention will be described in detail referring to the disclosed drawings.

- Figure 1 shows a schematic cross section of the position of the sensor system.
- Figure 2 shows a detail of the contact surface between the fingerprint and the sensor.
 - Figure 3 shows the same situation as figure 2, but with a worn fingerprint.
 - Figure 4 shows essentially the same as figure 2, but with a sketch of the electronic circuits connected to the sensor.
 - Figure 5 shows a schematic view of the temperature sensor circuit.

In figure 1 a schematic view of the position of the sensor in relation to the other circuits is shown. The sensor 1 is directly in contact with the fingerprint. The system circuits 4 are provided, among other things, to control and manage the collection of data from the sensor 1. Underneath the sensor 1 a layer may be provided of a thermally

15

25

30

insulating, or partially insulating, material 2 in order to limit the heat conduction to and from the other electronic system circuits 4. To enhance the insulation the layer may be provided with a cavity under each sensor element. If the heat from the system circuits 4 is to be used in the measurements of the heat conduction this layer may be made thinner.

Between the system circuits 4 and the insulation layer 2 a heat conducting layer 3 is shown that provides a uniform distribution of heat from the different system circuits 5 on the sensor. This way smooth and accurate measurements are secured.

The physical thickness of the sensors will vary, but when used in relation to, or mounted on, identification cards the thickness will preferrably be as small as possible, preferrably less than 0.5 mm comprising the system circuits 5.

The most interesting materials for use in the sensor are the following. The electronic circuits are made from semiconducting materials, preferrably with well known silicon, or gallium arsenide (GaAs) technology, and electric and thermal insulation is provided by using SiO₂ or other materials permitting direct mounting of semiconducting materials. The electric conductors are preferrably made from aluminum, or from gold or other materials common in relation to semiconductors. An alternative may be using polymer based semiconductors, conductors and insulating materials, which would be advantageous in relation to credit and identification cards, as they provide a large degree of pliancy and elasticity.

Figure 2 shows a detail of the contact surface between the sensor and the fingerprint in which the sensor is heated by means of a uniform heat supply indicated by arrows in the sensor. The fingerprint comprises ridges 13 with valleys 14 between them. The skin is comprised by an outer skin 10 (epidermis) with an area 11 behind it with circulation of blood (indicated by circular arrows). Underneath the ridges 13 there are papilla 12 which, among other things have blood

circulation. The ridges 13 come in contact with the sensor and are heated, and the blood circulation in the finger transports the heat away. In the valleys the surface of the sensor is cooled essentially by two mechanisms, radiation and heat conduction in the air comprised in the valley 14. These cooling mechanisms are not as efficint as the heat conduction in the ridges 13, which results in a difference between the relative temperature T_{S,r} measured in the ridges 13 and the relative temperature T_{S,v}, which is not. These temperatures may be measured using the temperature sensors 15. Measurements from all the temperature sensors 15 are collected and, using information regarding supplied energy, a pattern is made showing the fingerprint.

The temperature at the temperature sensors 15 may be

measured at one or more points of time, or continuously.

Using a plurality of, or continuous, measurements a picture
may be obtained showing the effective heat capacity at the
different measuring points, in addition to the heat
conductivity. Since the sweat ducts 8 and the surrounding

skin cells 9 (sweat diffusion), which due to a high content
of water have a high heat capacity, is comprised in the
ridges of a fingerprint, the difference in heat capacity
will enhance the ability of the sensor to distinguish the
ridges from the valleys.

Because the sensors measure the temperature the output signal from one sensor is essentially inversly proportional to the heat conduction at the measured point in the finger-print. A collocation of these signals will therefore provide a pattern indicating the distribution of heat conductivity, and thus the fingerprint.

To begin with the temperature sensor 15 will be a conventional electronic component, but it is clear that other measuring techniques, e.g. optical or acoustic, may be utilized.

The contrast in the measured fingerprint may be enhanced by increasing the supplied heat. Because of the difference in heat conductivity the areas that do not have the heat transported away will increase their temperature

25

30

faster than the other areas. This provides a direct method for increasing the contrast in the signal without the use of picture manipulation or other extensive calculations.

Figure 3 shows a corresponding situation where the ridges in the fingerprint are worn off, and thus the fingerprint is not actually visible. The difference in heat conductivity is here given by the thickness of the outer By the previous ridges 13 an increase in heat conductivity compared to the previous valleys 14 may still 10 be measured. This is because the distance from the sensor to the area with blood circulation, because of the papilla, is less than the distance d_v in the valley areas 14. supplied heat in the ridge areas is thus transported more efficiently away than the supplied heat in the valley areas. Therefore this kind of fingerprints may also be registered 15 by difference in heat conductivity, in addition to the difference in effective heat capacity.

Figure 4 shows a schematic sketch of a possible layout of the electronic circuits of the sensor. Closest to the fingerprint an electrically conducting, earthed layer 20 is drawn, made e.g. from aluminum or other conducting or semiconducting materials, to avoid electric disturbances from the surroundings and to prevent discharges from harming the sensor. This layer 20 may also comprise a layer made from a mechanically resistant material 25, e.g. SiO_2 , $\mathrm{Si}_3\mathrm{N}_4$ or $\alpha\text{-Al}_2\mathrm{O}_3$, to protect the sensor from mechanical stress and chemical corrosion. These layers 20,25 should preferrably be sufficiently thin as not to hinder the heat transportation to the fingerprint and affect the measurements.

Between the sensor elements 15 there is an insulating area 23 limiting the heat conduction between the elements. In practice the sensor elements 15 will be surrounded by insulating areas in order to thermally insulate them from each other. There is, however, an interesting embodiment within the scope of the invention in which a certain degree of heat conduction is permitted between the sensor elements 15. This may provide a filtering effect which, among other

30

things, suppresses the effect of unwanted local variations in temperature, i.e. reducing noise in the picture, without the use of extensive calculations.

Heat conduction between the elements may be chosen in many ways, e.g. by the physical dimensions and the shape of the insulating area, in choosing materials or by regulating the thickness of the electrically conducting layer 20 to let the heat be transported in it.

By the combination of an increase in the supplied heat 10 and an allowed, controlled heat conduction between the sensor elements, the contrast may be maintained while smoothing the signal.

The insulating area may for example be made from SiO₂ or similar materials. A preferred embodiment from a production point of view would be that the insulating material is the same as, or compatible with, and is connected to, the thermal insulating layer 2 in figure 1. Choosing a material permitting an integrated production of the electronic circuits would also be beneficial in the manufacturing process.

Each sensor element 15 in the shown example has a corresponding heating element 21 producing a known amount of heat. In the shown example the heating elements 21 are controlled centrally by V_k and by using an electronic contact switch 24. It is, however, possible to provide the circuit with a separate control of each heating element to give a local control of the heat supply. A possible technique in achieving this is described below. The signal from the temperature sensor is adressed and controlled using an electronic contact switch 22, e.g. a double gate MosfET transistor.

In figure 5 a schematic sketch of the circuit of temperature sensors is shown. In the shown example the sensor is comprised by 512x512 sensor units 30 corresponding to one pixel in previously mentioned segmented picture, and which may be read separately or simultaneously in groups in a conventional manner. The physical size of the sensor may vary according to the fingerprint to be measured, but

15

20

25

30

Š

starting at approximatly 13x13 mm². The pixel size must be sufficiently small to provide a picture of the structure of the fingerprint. Using the above mentioned dimensions the pixels will have the size of approximately 25.4x25.4 μ m². The sensor is integrally made with common semiconductor technology, or possibly with polymer technology.

The row and column registers 31,32 may be provided as a part of the sensor or as a part of the system circuits, and may be used for collecting data from, and addressing of, the separate pixels.

The row and column registers 33,34 may be comprised by the sensor or by the system circuits and may be used in adressing and controlling each of the heating elements.

To achieve a controlled, local heating of each sensor element the pixel of interest may be adressed repeatedly, possibly with a regulation of the access time. Thus a current is repeatedly sent through the electronic circuit of the sensor element. This will result in an accumulated heating of the sensor element which may be used in a partial control of the heat supply in the chosen pixel.

The sensor is described above in relation to the measuring of fingerprints. It is, however, clear that it also may be used on other surfaces with a varying heat conductivity, heat capacity and/or thermic structures in the surface. An example might for instans be measuring of structures in bank notes or similar structured surfaces. The sensor may also be used in inspecting inhomogeneities close to a surface, such as cracks and irregularities in materials as long as they affect the heat conduction of the measured object.

Claims

1. Method for measuring of patterns in an at least partially heat conducting surface, preferrably a fingerprint, in which a number of sensor elements are brought in thermal contact with a substantial part of the surface (10) to be examined, and in which the temperature of each sensor element is measured,

c h a r a c t e r i z e d in that the sensor elements (15) are heated by a heat source,

that the temperature at each sensor element is measured one or more times, or continuously,

that the measured temperature(s) or changes in temperature in each sensor element (15) is/are compared with the supplied heat to provide a measure for the loss of heat from the sensor element (15) to the surface (10),

and that the loss of heat at each single sensor element (15) is collocated to provide a segmented picture of the surface based upon the variation in the loss of heat from the sensor elements to the surface (10).

- 2. Method according to claim 1, c h a r a c t e r i z e d in that the measurement at each single sensor element (15) is controlled and read separately.
- 3. Method according to claim 1 or 2, c h a r a c t e r i z e d in that the heating of each single sensor element (15) is controlled separately, e.g. by addressing the local temperature sensor in the element of interest, so that this behaves as a heat source.

7.

- 4. Method according to one of the claims 1-3, c h a r a c t e r i z e d in that the sensor element (15) are partially thermally insulated using an insulating material (23), and that the heat conductivity of the insulating material (23) contributes in smoothing the differences in temperature between the sensor elements (15) to provide a filtering effect in the segmented picture.
- 5. Method according to one of the claims 1-4, c h a r a c t e r i z e d in that the contrast in the segmented picture is enhanced by increasing the heat supplied to the sensor in general or to each of the sensor elements (15) individually.
- 6. Method according to claim 5, in which the sensor elements are heated individually, c h a r a c t e r i z e d in that the heat supplied to each element is adjusted according to the temperature, or change in temperature, of the element.

Apparatus for measuring patterns in an at least part-

- ially heat conducting surface, preferrably a fingerprint, comprising a plurality of sensor elements (15) adapted to thermal contact with a substantial part of said surface (10), and temperature sensors (15) adapted for measuring the temperature of each of the sensors, c h a r a c t e r i z e d in that it comprises one or more devices (21) adapted for heating said sensor elements and means for generating a signal corresponding to the heat conductivity at each of the sensor elements based upon the known supplied heat and the measured temperature(s) or change(s) in temperature, to establish an overall, segmented picture of the surface based upon the difference in heat
- 8. Apparatus according to claim 7, c h a r a c t e r i z e d in that it comprises a partially insulating material (23) between the sensor elements.

loss at the sensor elements.

- 9. Apparatus according to one of the preceding claims 7-8, c h a r a c t e r i z e d in that each sensor element (15) is provided with a separate heat source (21).
- 10. Apparatus according to one of the preceding claims 7-9, c h a r a c t e r i z e d in that each sensor element is adapted to at least partially control the heat supply.

THIS PAGE BLANK (USPTO)

Fig.2 SUBSTITUTE SHEET (RULE 26)

THIS PAGE BLANK (USPTÓ)

fig.3

Fig.4
SUBSTITUTE SHEET (RULE 26)

THIS PAGE BLANK (USPTO)

Fig.5

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

International application No. PCT/NO 96/00082

A. CLASSIFICATION OF SUBJECT MATTER IPC6: A61B 5/117 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI, CLAIMS C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 4429413 A (D.G. EDWARDS), 31 January 1984 A 1-10 (31.01.84), column 3, line 44 - column 4, line 17, figures 1-3 A WO 8203286 A1 (LÖFBERG, BO), 30 Sept 1982 1-10 (30.09.82), page 9, line 14 - page 10, line 7 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document defining the general state of the art which is not considered to be of particular relevance ertier document but published on or after the international filing date "X" document of particular relevance: the claimed invention cannot be document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other document published prior to the international filing date but later than the priority date claimed being obvious to a person skilled in the art "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 0 2 -08- 1996 <u> 2 August 1996</u> Name and mailing address of the ISA/ Authorized officer Swedish Patent Office Box 5055, S-102 42 STOCKHOLM . Thomas Skagersten Facsimile No. +46 8 666 02 86 Telephone No. +46 8 782 25 00 Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. - PCT/NO 96/00082

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
JS-À-	4429413	31/01/84	EP-A,A,A 0071269 SE-T3- 0071269	09/02/83
			JP-A- 58027277	17/02/83
WO-A1-	8203286	30/09/82	AU-A- 8273682	06/10/82
			EP-A,A,B 0085680	17/08/83
			SE-B,C- 425704	25/10/82
			SE-A- 8101707	19/09/82
			US-A- 4582985	15/04/86

01/07/96