

Shadows & occlusion

- Shadow occlusion duality
- Floor shadows
- Shadow buffer
- Soft shadows

Motivation

Visibility

- Most objects in a scene are hidden from any given view point
- Rendering them wastes GPU cycles
- Need efficient techniques for rejecting what is obviously hidden
 - Rejection tests can be exact, conservative (reject more), approximate

Shadows

- Objects in the shadow do not reflect direct illumination
- Want to know which light sources illuminate an object
- Need a quick test for being in the shadow

Visibility and shadows are defined in terms of occluders

- Surfaces or objects that may block the passage of light
- When placed between the object and the viewer/light

Shadows provide depth clues

Palmer, Stephen E. Vision Science: Photons to Phenomenology. MIT Press. May 1999. ISBN: 0-262-16183-4.

4x4 matrix formulation (review)

u	0	0	0
0	V	0	0
0	0	W	0
0	0	0	1

S(u,v,w)

1	0	0	u
0	1	0	V
0	0	1	W
0	0	0	1

U_x	V_{x}	W_{x}	0
U_y	V_{y}	\mathbf{W}_{y}	0
U_z	V_z	$\mathbf{W}_{\mathbf{z}}$	0
0	0	0	1

T(u,v,w) R(U,V,W)

C	-S	0	0
S	C	0	0
0	0	1	0
0	0	0	1

 $R_{z}(a)$

M•P

Rotation matrix

- ||U||=||V||=1
- $U \cdot V = 0$
- W=U×V
- $\mathbf{R} = \{ \mathbf{U} \mathbf{V} \mathbf{W} \}, 3x3 \text{ matrix }$
- $R' = \mathbb{N}R$, inverse = transpose
- Rotation to map Z to W
 - U:=Y×W or X×W
 - U:=U/||U||
 - V:=WxU
 - $R_{ZtoW} = \{ UVW \}$
- Rotation to map W to Z axis
 - R_{ZtoW}

R'

Floor shadows

- Depth cue, realism, light position
- Draw object twice
 - Second time: projected on the ground
- Does not support self-shadows

1	0	L_x/L_z	0
0	1	L_y/L_z	0
0	0	0	0
0	0	0	1

$$\mathbf{S} = \mathbf{P} + (\mathbf{P}_{\mathbf{z}}/\mathbf{L}_{\mathbf{z}}) \; \mathbf{L}$$

Shadow map (supports self-shadows)

- Pre-render from light : store z-buffer as shadow map (texture)
- While rendering, check whether fragments are in shadow
 - Use GPU to perform the check (compare z to texture)

Shadow volumes on GPU

- Heidmann (IRIS Universe 1991), Everitt (nVidia 2002)
 - Shadow volume = triangles facing light + silhouette extrusions
- Brabec-Seidel (EUROGRAPHICS 2003)
 - Add silhouette identification in hardware

Soft shadows (area light sources)

Polygonal area light source

Polygons cast curved shadows

MAGIC lab

Polygons cast curved shadows!

