CSE 2428 Assignment 3 Names Alex Salman ID : 1851405

NOV 5, 2021

Question 1

1.1 A linearly separable training data is what makes the perceptron algorithm converge. So as long as the data can be separated by a hyperplane, then the algorithm converges.

1.2

	χ,	X2	Xz	7
	l	Õ	\	41
2	0	-\	\	-1
[3]	1	\	l	+
4	_ \	2	\bigcirc	-1

Initially $\omega = (0, 0, 0)$. $\omega_{+}\Delta\omega_{1}, \omega_{2}\Delta\omega_{2}, \omega_{3}\Delta\omega_{4}$ After the first example. $\omega = (1, 0, 1)$; After the second example, w = (1, 1, 0); After the third example, w = (1, 1, 0); After the fourth example, w = (2, -1, 0). Explaination s

 $\begin{array}{lll}
\Box & \alpha = W_1 X_1 + W_2 X_2 + W_3 X_3 \\
&= 0.1 + 0.0 + 0.1 \\
&\forall \alpha = +1.0 = \boxed{0} \quad \text{update needed} \\
&\triangle W_1 = Y \cdot X_1 \\
&= +1.1
\end{array}$

 $\triangle Wz = Y . Xz$ = +(. 0)

DW2=0

= + (') $\nabla M3 = \lambda ' \chi 3$

DW3=1

$$\triangle U_{2} = \frac{1}{2}$$
 $= -1.2$
 $\Delta U_{2} = -2$
 $\Delta U_{3} = \frac{1}{2}$
 $= -1.0$
 $\Delta U_{3} = 0$

Question 2

Support vectors

The support vertors Xx and X_ lie on the lines W.Xxb=1 and W.Xxb=-1 respectively

- Using the corresponding values to the equation w.x+b=1 Son positive labels and corresponding when to the equation w.x+b=-1 Sor negative labels, I chose the values that lie on the support sectors.
- W,X, + W2 X2 + b = 1

 point (1,1) for w. X + b= 1

 point (1,0) and (0,1) for W. X+ b=-1
 - $0 W_1(1) + U_2(1) + b = 1$ $0 W_1(1) + W_2(0) + b = -1$ $0 W_1(0) + W_2(1) + b = -1$

$$0 \text{ W}_1 + \text{W}_2 + \text{b} = 1$$
 $0 \text{ W}_1 + \text{b} = -1 \Rightarrow \text{W}_1 = -\text{b} - 1$
 $0 \text{ W}_2 + \text{b} = -1 \Rightarrow \text{W}_2 = -\text{b} - 1$
 $0 \text{ W}_2 + \text{b} = -1 \Rightarrow \text{W}_2 = -\text{b} - 1$
 $0 \text{ W}_2 + \text{b} = -1 \Rightarrow \text{W}_2 = -\text{b} - 1$
 $0 \text{ W}_1 = -1 \Rightarrow \text{W}_2 = -\text{b} - 1$
 $0 \text{ W}_1 = -1 \Rightarrow \text{W}_2 = -\text{b} - 1$
 $0 \text{ W}_1 = -1 \Rightarrow \text{W}_2 = -1$
 $0 \text{ W}_1 = -1 \Rightarrow \text{W}_2 = -1$
 $0 \text{ W}_1 = -1 \Rightarrow \text{W}_2 = -1$
Finding the norm of $0 \text{ W}_1 = -1 \Rightarrow \text{W}_2 = -1$

Finding the norm of w using the norm equation

 $||\omega|| = \sqrt{\omega_1^2 + \omega_2^2}$ $||\omega|| = \sqrt{(z)^2 + (z)^2} = \sqrt{4 + 4}$ $||\omega|| = \sqrt{8}$ And since the geometric mangin is

My geometric margin is 1