```
options = optimoptions('fmincon', "Display","iter","Algorithm","sqp");
fun = @(x)(x(1) - 10)^3 + (x(2) - 20)^3;
lb = [13, 0];
ub = [20, 4];
A = [];
b = [];
Aeq = [];
beq = [];
```

generate random number and load non linear constraint

```
x0 = randn(2,1,"double")

x0 = 2×1
    0.5377
    1.8339

nonlcon = @conQ1;
```

solve the equation

```
[x, fval] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)
```

Your initial point $x\emptyset$ is not between bounds 1b and ub; FMINCON shifted $x\emptyset$ to satisfy the bounds.

Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
0	3	-5.967958e+03	2.598e+01	1.000e+00	0.000e+00	9.900e+02
1	6	-7.347858e+03	2.982e+00	1.000e+00	1.727e+00	3.642e+02
2	9	-6.976330e+03	1.097e-01	1.000e+00	3.312e-01	4.246e+01
3	12	-6.961837e+03	1.730e-04	1.000e+00	1.315e-02	7.153e-02
4	15	-6.961814e+03	4.333e-10	1.000e+00	2.082e-05	5.179e-04

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

```
<stopping criteria details>
x = 2×1
    14.0950
    0.8430
fval = -6.9618e+03
```

conQ1(x)

```
ans = 1 \times 2

10^{-9} x

-0.4184 0.4333
```