ALGORITHM: By Anustup Mukherjee Medmain Assignment

- **Step 1 :** First I dealt with the carcinoma data set , first 5 images is visualized and coordinates are extracted
- **Step 2 :** Next the annotated paths for each image is analyzed and maximum and minimum X , Y values are extracted
- **Step 3:** On the basis of maximum and minimum X and Y, the annotations are plotted over the image, Hence the cancer signing part is recognized from the carcinoma image.
- **Step 4:** Next the annotated section is cropped out and saved in the data set.
- **Step 5 :** Now we did Data analysis by a pixel cross comparison between the annotated cancer image and the neo plastic images , hence pixel feature is extracted from there
- **Step 6 :** Next the annotated image is visualized in 3D plot to understand the area of its spread and data orientation , hence spread feature is extracted from here for the neural network

Step 7: Next we trained our CNN VGG 16 Neural network, here are the results

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)		224, 224, 64)	1792
conv2d_2 (Conv2D)	(None,	224, 224, 64)	36928
max_pooling2d_1 (MaxPooling2	(None,	112, 112, 64)	0
conv2d_3 (Conv2D)	(None,	112, 112, 128)	73856
conv2d_4 (Conv2D)	(None,	112, 112, 128)	147584
max_pooling2d_2 (MaxPooling2	(None,	56, 56, 128)	θ
conv2d_5 (Conv2D)	(None,	56, 56, 256)	295168
conv2d_6 (Conv2D)	(None,	56, 56, 256)	590080
conv2d_7 (Conv2D)	(None,	56, 56, 256)	590080
max_pooling2d_3 (MaxPooling2	(None,	28, 28, 256)	0
conv2d_8 (Conv2D)	(None,	28, 28, 512)	1180160
conv2d_9 (Conv2D)	(None,	28, 28, 512)	2359808
conv2d_10 (Conv2D)	(None,	28, 28, 512)	2359808
max_pooling2d_4 (MaxPooling2	(None,	14, 14, 512)	Θ
conv2d_11 (Conv2D)	(None,	14, 14, 512)	2359808
conv2d_12 (Conv2D)	(None,	14, 14, 512)	2359808
conv2d_13 (Conv2D)	(None,	14, 14, 512)	2359808
max_pooling2d_5 (MaxPooling2	(None,	7, 7, 512)	Θ
flatten_1 (Flatten)	(None,	25088)	Θ
dense_1 (Dense)	(None,	4096)	102764544
dropout_1 (Dropout)	(None,	4096)	θ
dense_2 (Dense)	(None,	4096)	16781312
dropout_2 (Dropout)	(None,	4096)	Θ
dense 3 (Dense)	(None,	2)	8194

Total params: 134,268,738 Trainable params: 134,268,738 Non-trainable params: 0

```
Epoch 1/100
         =========] - 54s 27s/step - loss: 0.9895 - acc: 0.5625 - val_loss: 0.5468 - val_acc: 0.7
2/2 [=====
Epoch 00001: val_acc improved from -inf to 0.75000, saving model to vgg16_1.h5
             062
Epoch 00002: val_acc improved from 0.75000 to 0.90625, saving model to vgg16_1.h5
Epoch 3/100
2/2 [=====
          =========] - 16s 8s/step - loss: 0.3318 - acc: 0.8750 - val loss: 0.0474 - val acc: 1.00
Epoch 00003: val_acc improved from 0.90625 to 1.00000, saving model to vgg16_1.h5
2/2 [=======] - 14s 7s/step - loss: 0.2716 - acc: 0.9062 - val_loss: 0.2542 - val_acc: 0.84
38
Epoch 00004: val_acc did not improve from 1.00000
Epoch 5/100
         62
Epoch 00005: val_acc did not improve from 1.00000
Epoch 6/100
              2/2 [===
Epoch 00006: val_acc did not improve from 1.00000
```


Architecture of VGG16

Step 8: Finally Classification and detection is carried out .