DATA STRUCTURE AND ALGORITHM

CLASS 8

Seongjin Lee

Updated: 2017-03-06 DSA_2017_08

insight@gnu.ac.kr http://resourceful.github.io Systems Research Lab. GNU

Table of contents

1. Graph

2. Graph Representation

GRAPH

First use of Graph

- Euler used graph to solve the Köenigsberg bridge problem in 1736
- "Starting at some land area, is it possible to return to the starting point after walking across each of the bridges exactly once?"

Definitions and Notations

- \bigcirc **Notation**: G = (V, E)
- *V* is the vertex set. Ex. $V = \{0, 1, 2, 3\}$
 - Vertices are also called nodes and points
- \bigcirc *E* is the edge set. Ex. *E* = {(0,1), (1,3), (2,3), (0,2)}
 - Each edge connects two different vertices
 - Edges are also called arcs and lines

Directed and Undirected Graphs

- \bigcirc Directed Edge has an *Orientation* < u, v >
 - Directed graph (Digraph) = Every Edge has an orientation

- \bigcirc Undirected edge has no *Orientation* (u, v)
 - Undirected graph = No oriented edge

Undirected Graph

$$V = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$

$$E = \{(1,2), (1,4), (2,5), (4,6), (3,5), (5,7), (6,7), (8,9), (8,11), (10,11)\}$$

Data Structure and Algorithm

Directed Graph

Directed Graph

- $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$
- $E = \{ <1,2>, <1,4>, <2,5>, <4,6>, <5,3>, <6,7>, <7,5> \\ , <8,9>, <8,11>, <11,10> \}$

Applications

Communication Network

- Vertex = University
- Edge = Communication link

Applications

Driving Distance/Time Map

- Vertex = City
- Edge Weight = driving distance or time

Applications

Some streets are one way

Complete Undirected Graph

- A graph that has the maximum number of edges
- A graph that has all possible edges

Number of Edges in Undirected Graph

- Each edge is of the form (u, v), and $u \neq v$
- O Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u, v) is the same as edge (v, u), the number of edges in a complete undirected graph is $\frac{n(n-1)}{2}$.
- O Number of edges in an undirected graph is $\leq \frac{n(n-1)}{2}$.

Number of Edges in Directed Graph

- Each edge is of the form $\langle u, v \rangle$, $u \neq v$.
- O Number of such pairs in an n vertex graph is n(n-1).
- Since edge < u, v > is not the same as edge < v, u >, the number of edges in a complete directed graph is n(n-1).
- \bigcirc Number of edges in a directed graph is $\leq n(n-1)$.

Vertex Degree

- Vertex Degree is the number of edges incident to that vertex
- \bigcirc Degree(2) = 2, Degree(5) = 3, Degree(3) = 1,

Sum of Vertex Degrees

○ **Sum of Vertex Degrees** is $2 \times e$, where e is number of edges

In-Degree of a Vertex

- In-degree of a vertex is the number of incoming edges
- \bigcirc In-degree(2) = 1, in=degree(8) = 0

Out-Degree of a Vertex

- Out-degree of a vertex is the number of outbound edges
- \bigcirc Out-degree(2) = 1, out=degree(8) = 2

Sum of In- and Out-Degrees

- Each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex
- \bigcirc Sum of in-degree = sum of out-degree = e, where e is the number of edges in the directed graph

Other Definitions

- \bigcirc **Graph**: G = (V, E)
- \bigcirc If *G* is undirected graph and (u, v) is an edge of *G*, then
 - \circ *u* and *v* are **adjacent**
 - \circ (u,v) is **incident**(부속/교차) on vertices u and v
- \bigcirc If *G* is directed graph and < u, v > is an edge of *G*, then
 - *u* is **adjacent** to *v*
 - *v* is **adjacent** from *u*
 - the edge < u, v > is incident to u and v
- O Path from *u* to *v*
- Simple path: a path in which all vertices, except possibly the first and the last, are distinct (repeats no vertices)
- Cycle: a simple path in which the first and the last vertices are the same

Graph Representation

- Adjacency Matrix
- Adjacency Lists
 - o Linked Adjacency Lists
 - Array Adjacency Lists

Adjacency Matrix

- $n \times n$ matrix with 0 and 1 representing the incidents ,where n = # of vertices
- \bigcirc A(i, j) = 1 iff (i, j) is an edge

	1	2	3	4	5
1	0	1	О	1	О
2	1	0	0	0	1
3	0	0	0	0	1
4	1	0	0	0	1
5	0 1 0 1 0	1	1	1	О

Properties of Adjacency Matrix

- Diagonal entries are zero
- O Adjacency matrix of an undirected graph is symmetric A(i, j) = A(j, i) for all i and j

	1	2	3	4	5
1	0	1		1	0
2	1	0	0	0	1
3	0	0	0	0	1
4	1	0	0	0	1
5	0	1	1	1	О

Adjacency Matrix for Directed Graph

- Diagonal entries are zero
- Adjacency matrix of a directed graph need not be symmetric

	1	2	3	4	5
1	0	0	0	1	0
2	1	0	0	O	O
3	0	0	O	0	0
4	0	О		0	1
5	0	1	1	O	O

Properties of Adjacency Matrix

- \circ n^2 bits of space is required
- For an undirected graph, may store only lower or upper triangle (exclude the diagonal)
 - \circ $\frac{n(n-1)}{2}$ bits
- \bigcirc O(n) time to find vertex degree and/or vertices adjacent to a give vertex

Adjacency Lists

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.
- \bigcirc An array of *n* adjacency lists.

Linked Adjacency Lists

- Each adjacency list is a chain
 - Array length = n
 - # of chain nodes = 2e (undirected graph)
 - # of chain nodes = e (directed graph)

Linked Adjacency Lists

- Each adjacency list is an array list
 - Array length = n
 - # of chain nodes = 2e (undirected graph)
 - # of chain nodes = e (directed graph)

Weighted Graphs

- Cost Adjacency Matrix
 - C(i, j) = cost of edge (i, j)
- Each list element of adjacency lists is a pair (Adjacent vertex, Edge weight)