

Parameters

General retina
retina_width = 400 * UM_TO_M
retina_height = 400 * UM_TO_M
retina_grid_size = 1 * UM_TO_M
retina_timestep = 10 * MS_TO_S

Cone Layer
cone_distance = 10 * UM_TO_M
cone_density = 100.0
cone_input_size = 10 * UM_TO_M

Horizontal Layer
horizontal_input_strength = 0.25
hoirzontal_decay_rate = 0.01
horizontal_diffusion_radius = 1 * UM_TO_M

Bipolar layer
bipolar_distance = 10 * UM_TO_M
bipolar_density = 100.0

bipolar_input_radius = 10 * UM_TO_M bipolar_output_radius = 10 * UM_TO M

```
# Build the starburst layer
starburst_distance = 50 * UM_TO_M
starburst_density = 1000.0
average_wirelength = 150 * UM_TO_M
step_size = 15 * UM_TO_M
decay_rate = [0.1, 0.2, 0.3]
input_strength = 0.5
diffusion = ("Flat", [30 * UM_TO_M / retina_grid_size
'print_stop'
```

Put parameters into lists
retina_parameters = [retina_width, retina_height, retina_gr
cone_parameters = [cone_distance, cone_density, cone_in
horizontal_parameters = [horizontal_input_strength, hoirzo
bipolar_parameters = [bipolar_distance, bipolar_density, b
starburst_parameters = [starburst_distance, starburst_den
runtime_starburst_parameters = [input_strength, decay_ra

Set some default values in starburst parameters for the r for parameter in runtime_starburst_parameters: if isinstance(parameter, (list, np.ndarray)): starburst_parameters.append(parameter[0]) else: starburst_parameters.append(parameter)

'print_start'

Bar paramters framerate = 60.0 movie_width = 400

movie_height = 400
bar_width = 50.0 # Pixels (width = size in direction bar_height = 400
bar_speed = 2000.0
bar_movement_distance = 400.0
pixel_size_in_rgu = 1.0 # rgu