الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2010

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 ساعات و نصف

اختبار في مادة: الرياضيات

على المترشع أن يختار أحد الموضوعين التاليين

الموضوع الأول

التمرين الأول: (05 نقاط)

نعتبر في المستوى المنسوب إلى المعلم المتعامد المتجانس (O; u, v) النقطتين A و B اللتين $z_{R} = 3i$ و $z_{A} = 1 + i$ لاحقتيهما على الترتيب:

- z_B اكتب على الشكل الأسى: z_B و z_B .
- 2) ليكن z التشابه المباشر الذي يرفق بكل نقطة M لاحقتها z النقطة M ذات اللاحقة z حيث:

$$z' = 2iz + 6 + 3i$$

- أ) عين العناصر المميزة للتشابه المباشر ك.
- . S صورة النقطة A عين C لاحقة النقطة C النقطة عين C
 - ج) استنتج طبيعة المثلث ABC.
 - $\{(A;2),(B;-2),(C;2)\}$ مرجح الجملة D مرجع الجملة (3
 - أ) عين z لاحقة النقطة D.
 - ب) عين مع التبرير طبيعة الرباعي ABCD.
- لتكن M نقطة من المستوي تختلف عن B وعن D لاحقتها z ولتكن Δ مجموعة النقط Δ ذات Δ

اللاحقة z التي يكون من أجلها $\frac{z_B-z}{z_A-z}$ عندا حقيقيا موجبا تماما.

- $z_E = 6 + 3i$ تنتمي إلى $z_E = 6 + 3i$ تنتمي الى (۵).
- ب) أعط تفسير ا هندسيا لعمدة العدد المركب $\frac{z_B-z}{z_D-z}$. عين حيننذ المجموعة (Δ).

التمرين الثاني: (05 نقاط)

A(1;1;0) النقط المنسوب إلى المعلم المتعامد المتجانس $(O;\tilde{i},\tilde{j},\tilde{k})$ ، النقط المتعامد $C(-1; 2; -1) \cdot B(2; 1; 1)$

- 1) أ) بين أن النقط A ، B و C ليست في استقامية.
- x + y z 2 = 0 هي: (ABC) هي المعادلة الديكارتية للمستوي
 - 2) نعتبر المستويين (P) و (Q) اللذين معادلتيهما على الترتيب:

(Q):
$$2x + y - z - 1 = 0$$
 $(P): x + 2y - 3z + 1 = 0$

و المستقيم $\bar{u}(-1;5;3)$ و F(0;4;3) شعاع توجيه له.

- $\cdot(D)$ اكتب تمثيلا وسيطيا للمستقيم
- (D) ب تحقق أن تقاطع المستويين (P) و (Q) هو المستقيم
 - (Q) عين تقاطع المستويات الثلاث (P)، (ABC) و (Q)

التمرين الثالث: (10 نقاط)

 $\cdot \left(O;\, ec{i}\,, ec{j}
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس وليكن ر (C_f)

- $\lim_{x \to +\infty} f(x)$ احسب (1) احسب (1)
- 2) بيّن أن الدالة f منز ايدة تماما على المجال I ثم شكل جدول تغير اتها.
- 3) عين فاصلة النقطة من (C_f) التي يكون فيها المماس موازيا للمستقيم (D_f) ذي المعادلة y=x
 - : على الشكل الثبت أنه من أجل كل x من I يمكن كتابة f(x) على الشكل f(x) اثبت أنه من أجل كل f(x) حيث $f(x) = \ln(x+a) + b$
- ا استنتج أنه يمكن رسم (C_r) انطلاقا من (C) منحنى الدالة اللوغاريتمية النيبيرية الم السنتج أنه يمكن رسم (C_r) .
 - g(x)=f(x)-x نعتبر الدالة العددية g المعرفة على المجال I بــِ: $\lim_{x\to +\infty} g(x)=-\infty$ نعتبر الدالة العددية $\lim_{x\to +\infty} g(x)=-\infty$ ثم بيّن أن $\lim_{x\to +\infty} g(x)=-\infty$ (1
 - 2) ادرس اتجاه تغير الدالة g على 1 ثم شكل جدول تغيراتها.
- - ب) ارسم $\binom{C_g}{2}$ منحنى الدالة $\binom{C_g}{2}$ على المجال المعلم السابق.
 - . (d) على المجال (C_f) بالنسبة إلى (d) على المجال (d) على المجال (d) بالنسبة الى (d)
 - لي المجال f(x) فإن: [a] فإن: [a] ينتمي إلى [a] المجال [a] إلى عدد حقيقي [a] عدد حقيقي [a] المجال [a]
 - $u_n = f\left(1 + \frac{1}{2n}\right)$ نسمي $\left(u_n\right)$ المتتالية العددية المعرفة على \mathbb{N}^* كما يأتي: (III) نسمي (u_n) المتتالية العددية المعرفة على u_n
 - . $u_n = 1 + 2\ln 3 3\ln 2$: عَيْنَ قَيْمَةَ الْعَدْدُ الطبيعي التَّى مِنْ أَجِلُهَا يكونُ (1 عَيْنَ قَيْمَةُ الْعَدْدُ الطبيعي عَلَى التَّى مِنْ أَجِلُهَا يكونُ
 - $S_n = u_1 + u_2 + ... + u_n$ حيث: S_n المجموع (2

الموضوع الثاني

التمرين الأول: (05 نقاط)

في المستوي المنسوب إلى معلم متعامد ومتجانس مثلنا المستقيمين (Δ) و (D) معادلتيهما على الترتيب:

$$y = \frac{1}{2}x + \frac{1}{3}$$
 $y = x$

ل المعرقة على مجموعة الأعداد (u_n) المعرقة على مجموعة الأعداد

 $u_{n+1} = \frac{1}{2}u_n + \frac{1}{3}$ ، n عدد طبیعی $u_0 = 6$: با الطبیعی الطبی الطب

- أ انقل الشكل ثمّ مثّل على محور الفواصل الحدود التالية: u_1 ، u_2 ، u_3 ، u_3 ، u_4 ؛ دون حسابها مبرز ا خطوط الرسم.
 - (D) و (Δ) و المستقيمين (Δ)
 - (u_n) عط تخمينا حول اتجاه تغير المتتالية
 - $u_n > \frac{2}{3}$ ، n عدد طبیعی کل عدد (2) انه من أجل کل عدد طبیعی (2) عدد (2)
 - (u_n) استنج اتجاه تغير المنتالية
 - $v_n=u_n-rac{2}{3}$: نعتبر المتتالية (v_n) المعرّفة من أجل كل عدد طبيعي $v_n=u_n$ المعرّفة (3
 - أ بين أنّ المتتالية (v_n) هندسية يطلب تحديد أساسها وحدّها الأول.
 - u_n عبارة الحد العام v_n ، واستنتج عبارة n بدلالة n
 - جـ احسب بدلالة n المجموع S_n حيث: $S_n = v_0 + v_1 + ... + v_n$ واستنتج المجموع $S_n' = u_0 + u_1 + ... + u_n$

التمرين الثاني: (04 نقاط)

- 1) حل في مجموعة الأعداد المركبة $\mathbb C$ المعادلة $z^2-6z+18=0$ ، ثمّ اكتب الحلين على الشكل الأستى.
 - D و C ، B ، A المنسوب المعلم المتعامد والمتجانس (O ; \vec{u} , \vec{v}) و (2

$$z_D = -z_B$$
 و $z_C = -z_A$ ، $z_B = \overline{z_A}$ ، $z_A = 3 + 3i$ و $z_C = -z_A$

أ - بين أنّ النقط $C \cdot B \cdot A$ و D تنتمي إلى نفس الدائرة ذات المركز O مبدأ المعلم،

B الذي النقطة A الذي مركزه O ويحوّل النقطة A المي النقطة A

 $\cdot D$ و O ، B النقط O ، O و O في استقامية وكذلك النقط O

د - استنتج طبيعة الرباعي ABCD.

صفحة 3 من 4

التمرين الثالث: (04 نقاط)

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ نعتبر المستوي (\mathcal{P}) الذي معادلته: x - 2y + z + 3 = 0

.
$$\begin{cases} y=0 \\ z=0 \end{cases}$$
 يعرف بالجملة ($O; \vec{i}$) ينكّر أنّ حامل محور الفواصل (i

- عيّن إحداثيات A نقطة تقاطع حامل $O; \overline{i}$ مع المستوي (\mathfrak{P}) .

$$C(-1; -4; 2)$$
 و $B(0; 0; -3)$ و $B(0; 0; -3)$ و $B(0; 0; -3)$

أ - تحقّق أنّ النقطة B تنتمي إلى المستوي (\mathcal{P}) .

ب - احسب الطول AB .

 (\mathscr{P}) و المسافة بين النقطة C و المستوي

3) أ - اكتب تمثيلا وسيطيا للمستقيم (Δ) المارّ بالنقطة C والعمودي على المستوي (\mathcal{P}).

 (Δ) ب - تحقّق أنّ النقطة A تنتمي إلى المستقيم

ج- احسب مساحة المثلث ABC.

التمرين الرابع: (07 نقاط)

. $f(x) = x - \frac{1}{e^x - 1}$ كما يلي: \mathbb{R}^* كما يلي الدالة العددية f المعرفة على

 $\cdot \left(O; ec{i}, ec{j}
ight)$ لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس البياني في المستوي المنسوب المعلم المتعامد المتجانس

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (۱)

ب) أحسب f(x) وفسر هندسيا النتيجة. $\lim_{x \to \infty} f(x)$ وفسر هندسيا النتيجة.

2) ادرس اتجاه تغير الدالة ﴿ أَعلى كل مَجَال من مجالي تعريفها ثم شكل جدول تغيراتها.

(3) أ) بيّن أن المنحنى (C_f) يقبل مستقيمين مقاربين مائلين Δ و Δ معادلتيهما على الترتيب: y = x + 1 و y = x

 $\cdot (\Delta')$ و Δ' بالنسبة إلى كل من Δ' و ركم بالنسبة الى كل من Δ'

 $\omega(C_f)$ هي مركز تناظر المنحنى $\omega(0; \frac{1}{2})$ هي مركز المنحنى (4).

 $-1,4 < \beta < -1,3$ و α حيث: $\alpha < \alpha < 1$ و $\alpha <$

 (C_f) أرسم (Δ)، (Δ) ثم المنحنى (Δ)

د) ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة: m-1) $e^{-x}=m$

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2010

امتحان بكالوريا التعليم الثانوي

الشعبة : علوم تجريبية

المدة: 03 ساعات و نصف

اختبار في مادة: الرياضيات (خاص بالمكفوفين)

على المترشح أن يختار أحد الموضوعين التاليين

الموضوع الأول

التمرين الأول: (05 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد المتجانس (O; u, v) النقطتين A و B اللتين لاحقتيهما على الترتيب: $z_B = 3i$ و $z_A = 1 + i$

- z_B اكتب على الشكل الأسي: z_A و z_B .
- 2) ليكن S التشابه المباشر الذي يرفق بكل نقطة M لاحقتها z النقطة M ذات اللاحقة z حيث:

$$z' = 2iz + 6 + 3i$$

- أ) عين العناصر المميزة للتشابه المباشر S.
- ب عين z_c لاحقة النقطة C صورة النقطة A بالتشابه المباشر C
 - ج) استنتج طبيعة المثلث ABC.
 - $\{(A;2),(B;-2),(C;2)\}$ مرجح الجملة D مرجع التكن النقطة D
 - اً) عين z_D لاحقة النقطة z_D
 - ب) عين مع التبرير طبيعة الرباعي ABCD.
- لتكن M نقطة من المستوي تختلف عن B وعن D لاحقتها z ولتكن (Δ) مجموعة النقط M ذات (4

اللحقة z التي يكون من أجلها $\frac{z_B-z}{z_D-z}$ عددا حقيقيا موجبا تماما.

- $z_{E}=6+3i$ ثنتمي إلى $z_{E}=6+3i$ ثنتمي الى (۵).
- ب) أعط تفسير ا هندسيا لعمدة العدد المركب $\frac{z_B-z}{z_D-z}$. عين حينتذ المجموعة (Δ).

التمرين الثاني: (05 نقاط)

نعتبر في الفضاء المنسوب إلى المعلم المتعامد المتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ ، النقط C(-1; 2; -1)، النقط C(-1; 2; -1)

- 1) ا) بين أن النقط A ، B و C ليست في استقامية.
- x + y z 2 = 0 هي: (ABC) هيا الديكارتية للمستوي (x + y z 2 = 0
 - (2) نعتبر المستويين (P) و (Q) اللذين معادلتيهما على الترتيب:

(Q):
$$2x + y - z - 1 = 0$$
 $(P): x + 2y - 3z + 1 = 0$

و المستقيم $\vec{u}(-1;5;3)$ و F(0;4;3) شعاع توجيه له.

صفحة 1 من 4

- أ) اكتب تمثيلا وسيطيا للمستقيم (D).
- $\cdot(D)$ و (Q) هو المستقيم بن المستقيم و بن المستقيم بن المستقيم بن المستقيم بن المستقيم ال
 - (Q) عين تقاطع المستويات الثلاث (ABC)، و (Q)

التمرين الثالث: (10 نقاط)

$$f(x) = 1 + \ln(2x - 1)$$
 :--- $I = \frac{1}{2}$; +\infty $\int_{-\infty}^{\infty} (1 + \ln(2x - 1)) + \ln(2x - 1)$ التكن $f(x) = 1 + \ln(2x - 1)$ التكن $f(x) = 1 + \ln(2x - 1)$

 $\cdot \left(O;\ \overline{i},\overline{j}\right)$ سنجاس البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس وليكن المعلم المتعامد المتجانس وليكن المتعامد المتجانس المستوي

- $\lim_{x \to \frac{1}{2}} f(x) = \lim_{x \to +\infty} f(x)$ | Lemma | (1)
- I بيّن أن الدالة f متزايدة تماما على المجال I
- 3) عين فاصلة النقطة من (C_f) التي يكون فيها المماس موازيا للمستقيم (d) ذي المعادلة y=x
 - : على الشكل الثبت أنه من أجل كل x من I يمكن كتابة f(x) على الشكل f(x) أثبت أنه من أجل كل f(x) حيث: $f(x) = \ln(x+a) + b$
- In با استنتج أنه يمكن رسم (C_f) انطلاقا من (C) منحنى الدالة اللوغاريتمية النيبيرية (C_f) الا يطلب رسم (C_f) و (C_f))
 - g(x)=f(x)-x نعتبر الدالة العددية g المعرفة على المجال I بــِ: $\lim_{x\to +\infty} g(x)=-\infty$ ثم بيّن أن $\lim_{x\to +\infty} g(x)=-\infty$ (1
 - 2) ادرس اتجاه تغير الدالة g على I، ثم حدّد القيمة الحدّية لها.
 - $(3 \alpha + \alpha)$ عقب g(x) = 0 عقب المجال g(x) = 0 عقب المجال g(x) = 0 عقب المجال g(x) = 0 عقب المحادلة g(x) = 0 عقب المحادلة g(x) = 0 عقب المحادلة وحيدا g(x) = 0 عبد المحادل
 - (d) على المجال الم حدد وضعية المنحنى (C_r) بالنسبة إلى g(x)
- $[1: \alpha[$ المجال المجال f(x)، $[1: \alpha[$ المجال عدد حقيقي [x] من المجال المجال [x]
 - $u_n = f\left(1 + \frac{1}{2n}\right)$ نسمي (u_n) المنتالية العددية المعرفة على \mathbb{N}^* كما يأتي:
 - - $S_n = u_1 + u_2 + ... + u_n$ خيث: S_n المجموع (2

الموضوع الثاني

التمرين الأول: (05 نقاط)

المعرّفة على مجموعة الأعداد الطبيعية $\mathbb N$ بي: التكن المتتالية (u_n) المعرّفة على مجموعة الأعداد الطبيعية

$$u_{n+1} = \frac{1}{2}u_n + \frac{1}{3}$$
 ، $u_{n+1} = \frac{1}{2}u_n + \frac{1}{3}$ ، $u_0 = 6$

 $u_4 \circ u_3 \circ u_2 \circ u_1 \circ u_1 - 1$ (1

$$(D)$$
 و (Δ) و المستوي المنسوب إلى معلم متعامد متجانس، عين إحداثيي نقطة تقاطع المستقيمين (Δ) و (D) و (D) اللذين معادلتيهما على الترتيب $x=x$ و $y=x+\frac{1}{2}$ و $y=x$

- $u_n > \frac{2}{3}$ ، n عدد طبیعی عدد التراجع، أثبت أنّه من أجل كل عدد طبیعی (2 $u_n > \frac{2}{3}$).
 - $v_n = u_n \frac{2}{3}$: نعتبر المتتالية (v_n) المعرّفة من أجل كل عدد طبيعي $v_n = u_n \frac{2}{3}$ نعتبر المتتالية (v_n)

أ - بيِّن أنَّ المتقالية (v_n) هندسية يطلب تحديد أساسها وحدّها الأول.

 u_n عبارة الحد العام v_n ، واستنتج عبارة n بدلالة n

ج - احسب بدلالة n المجموع $S_n' = u_0 + v_1 + ... + v_n$ واستنتج المجموع $S_n' = u_0 + u_1 + ... + u_n$

التمرين الثاني: (04 نقاط)

1) حل في مجموعة الأعداد المركبة $\mathbb C$ المعادلة $z^2-6z+18=0$ ، ثمّ اكتب الحلين على الشكل الأُستي.

D و C ، B ، A المنسوب المنسوب إلى المعلم المتعامد والمتجانس (O ; u , v) ، نعتبر النقط C ، B ، C ، D و D

$$z_D=-z_B$$
 و $z_C=-z_A$ ، $z_B=\overline{z_A}$ ، $z_A=3+3i$ و $z_C=-z_B$

أ - بيّن أنّ النقط C ، B ، A و D تنتمي إلى نفس الدائرة ذات المركز O مبدأ المعلم.

 $m{\mathcal{P}}$ عين زاوية للدوران R الذي مركزه O ويحول النقطة A إلى النقطة B

د - استنج طبيعة الرباعي ABCD.

التمرين الثالث: (04 نقاط)

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O; \overline{i}, \overline{j}, \overline{k})$ نعتبر المستوي (\mathcal{P}) الذي معادلته : x-2y+z+3=0

.
$$\begin{cases} y=0 \\ z=0 \end{cases}$$
 يعرف بالجملة محور الفواصل ($O; i$) يعرف بالجملة (1

(9) مع المستوي (9) مع المستوي . (9)

صفحة 3 من 4

C(-1; -4; 2) و B(0; 0; -3) و B(0; 0; -3) و B(0; 0; -3)

أ - تحقّق أنّ النقطة B تنتمى إلى المستوى (\mathcal{P}) .

ب - احسب الطول AB.

(9) والمستوى (9)

3) أ - اكتب تمثيلا وسيطيا للمستقيم (Δ) المار بالنقطة C والعمودي على المستوي (\mathcal{P}).

 Δ ب منحقق أنّ النقطة Δ تنتمي إلى المستقيم Δ

- - احسب مساحة المثلث ABC

التمرين الرابع: (07 نقاط)

. $f(x)=x-\frac{1}{x^2-1}$ كما يلي: \mathbb{R}^* كما المعرفة على \mathbb{R}^* كما يلي:

 (C_r) لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_i, j) .

ا) الحسب f(x) و $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ الحسب $\lim_{x \to 0} f(x)$ و $\lim_{x \to 0} f(x)$ و النتيجة.

2) ادرس اتجاه تغير الدالة ٢ على كل مجال من مجالي تعريفها.

(3) المنحنى (C_r) يقبل مستقيمين مقاربين مائلين (Δ) و (Δ') معادلتيهما على الترتيب y = x + 1 y = x

 (Δ') و (Δ) بالنسبة إلى كل من (Δ) و (Δ') .

 $\omega(C_f)$ هي مركز تناظر للمنحنى $\omega(0; \frac{1}{2})$ هي مركز المنحنى (4).

-1,4<eta<-1,3 و $\ln 2<lpha<1$ و α حيث: α و β حيث f(x)=0 و f(x)=0 أ) بيّن أن المعادلة و f(x)=0

 (Δ) بن اهل توجد مماسات لـ (C_r) بنوازي (Δ)

 $\frac{1}{e^{x}-1} = \frac{e^{-x}}{1-e^{-x}}$: فإن \mathbb{R}^{+} من (6)

f(x) = x + m ناقش جبريا حسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة:

المدة 3 سنا و 30د

الشعبة: علوم تجريبية

اختبار مادة : الرياضيات

الإجابة النمونجية وسلم التنقيط

العلامة			محاور
المجموع	مجزأة	عناصر الاجابة (الموضوع الأول)	الموضوع
		التمرين الأول: (5 نقاط)	
and the second	0,5×2	$z_{B} = 3e^{i\frac{\pi}{2}}$ ، $z_{A} = \sqrt{2}e^{i\frac{\pi}{4}}$ على الشكل الأسي: 1	
	0,25×3	$rac{\pi}{2}$ ا المركز B ، النسبة 2 ، الزاوية $rac{\pi}{2}$	
05	0,5	$z_c = 4 + 5i (\mathbf{y})$	الأعداد
	0,5	B ج ABC مثلث قائم في	المركبة
	0,5	$z_D = 5 + 3i \text{(i.3)}$	
	0,5	$\hat{B}=90^{\circ}$ ، $z_{\overline{AB}}=z_{\overline{DC}}$ ب $ABCD$ مستطيل لأن:	
	0,25	$\frac{z_B - z_E}{z_D - z_E} = 6 \ (1.4)$	
	0,5	$\left(\overline{MD}, \overline{MB}\right) = 0 + 2k \pi$ $\operatorname{arg}\left(\frac{z_B - z}{z_D - z}\right) = \left(\overline{MD}, \overline{MB}\right) (\downarrow)$	
	0,5	$(\Delta)\!=\!(BD)\!-\![BD]$	
		التمرين الثاني: (5 نقاط)	
	1	النقط AC ، \overline{AB} و C ليست في استقامية لأن \overline{AC} غير النقط B	الهندسة
	I	مرتبطین خطیا.	الفضائية
	1	(ABC): x + y - z - 2 = 0	
05	-	x = -t	
	1	(D) : $y=5t+4$ $(t\in\mathbb{R})$ تمثيل وسيطي للمستقيم (t	
	!	z = 3t + 3	
	1	$(D)\!\subset\!(P)$ و $(D)\!\subset\!(P)$ ب (D)	
		أو حل الجملة. (الانتقال من جملة معادلتين إلى التمثيل الوسيطي)	
	1	$(P)\cap(Q)\cap(ABC)=\{E(-1;9;6)\}.3$	

صفحة 4/1

العلامة			محاور
الجموع	مجزأة	عناصر الاجابة (تابع الموضوع الأول)	الموضوع
		التمرين الثالث: (10 نقاط)	
···	0,5	$\lim_{x \to \frac{1}{2}} f(x) = -\infty \lim_{x \to +\infty} f(x) = +\infty .1 .1$	
	0,75	I ومنه f متزایدة تماما علی $f'(x)=rac{2}{2x-1}>0$. 2	
	0,25	جدول التغيرات	
	0,5	$x = \frac{3}{2}$ تکانی $f'(x) = 1$.3	
		سلم خاص بالمكفوفين: معادلة الماس	
	0,5	$f(x) = \ln(x - \frac{1}{2}) + 1 + \ln 2 \text{ (i.4)}$	
		$ec{u}(rac{1}{2};\ 1+\ln 2)$ بالإنسحاب الذي شعاعه (C_f) بالإنسحاب الذي شعاعه (C_f	
	0,5	\ln او في المعلم $(m;ec{i},ec{j})$ حيث $\omega(1+\ln 2)$ عيث $\omega(m;ec{i},ec{j})$ هو منحني الدالة	
		رسم (C_f) و (C_f) و ر (C_f)	
i		سلم خاص بالمكفوفين: تعطى 0,5 لشرح كيفية رسم (C_f) فقط (لا يطلب الرسم)	المتتاليات
10	0,5+0,25	$\lim_{x \to +\infty} g(x) = -\infty \qquad \lim_{x \to -\frac{1}{2}} g(x) = -\infty . \mathbf{1.II}$	+
	2×0,5	$\frac{\frac{1}{2}}{\ + \frac{\frac{3}{2}}{0} - \frac{3}{2x - 1}}$ وإشارته: $g'(x) = \frac{3 - 2x}{2x - 1}$ وإشارته:	النوال اللوغاريتمية
	0,25	$\left[rac{1}{2};+\infty ight[$ متزایدة تماما علی $\left[rac{1}{2};rac{3}{2} ight]$ ومتناقصة تماما علی $rac{g}{2}$	
	0,5	- جدول التغييرات	
		$g(\frac{3}{2}) = \ln 2 - \frac{1}{2}$ سلم خاص بالمكفوفين: القيمة الحدية	
	0,25	g(1) = 0 (1.3)	
	1	$g(lpha)=0$ و $g(lpha)=0$. C_g	
	0,5	g(x) اشارة.	
	0,5 0,5	(d) بالنسبة إلى (C_f) بالنسبة المنحنى و با	
	0,5	$f(x) \in]1; \alpha[$ ، آ $\alpha[$ من الجل كل x من x من الجل كل x من الجل كل x من الجل كل x من الجل كل x	
	0,25	$u_n = 1 + \ln(1 + \frac{1}{-})$.1 .III	
	0,5	n $n=8$	
	0,5	$S_n = n + \ln(n+1) \cdot 2$	

العلامة		عناصر الاجابة	محاور
المجموع	مجزأة	الموضوع الثابي	الموضوع
		التمرين الأول: (05 نقاط)	
	1	u_{1} على محور الفواصل الحدود : u_{1} ، u_{2} ، u_{1} ، u_{3} ، u_{2} ، u_{3} ، u_{4} ، u_{5} ، u_{6} .1	
	0,25	$\left(\frac{2}{3}; \frac{2}{3}\right)$ ب ينقاطعان في النقطة ذات الإحداثيتين Δ	المتعاليات
	0,25	$-$ التخمين: يبدو أنّ المنتالية (u_n) متناقصة تماما.	
		u_4 مسلم خاص بالمكفوفين: u_3 ، u_2 ، u_1 ، u_2 ، u_3 ، u_4 . u_5	
05	0,75	$u_n > \frac{2}{3}$ استعمال الاستدلال بالتراجع لإثبات 2. أ - استعمال الاستدلال بالتراجع	
US	0,5	$u_{n+1} - u_n < 0 : u_{n+1} - u_n = -\frac{1}{2} \left(u_n - \frac{2}{3} \right) - $ ب - ب	العددية
	0,75	$v_0 = \frac{16}{3}$ وحدَها الأول $\frac{1}{2}$ مندسية أساسها وحدَها الأول $v_{n+1} = \frac{1}{2}v_n$.3	
	0,5	$v_n = \frac{16}{3} \times \left(\frac{1}{2}\right)^n$: ب - كتابة بدلالة n عبارة الحد العام $v_n = \frac{16}{3} \times \left(\frac{1}{2}\right)^n$	
	0,25	$u_n = \frac{16}{3} \times \left(\frac{1}{2}\right)^n + \frac{2}{3}$	
	0,5	$S_n = v_0 + v_1 + + v_n = \frac{32}{3} \left[1 - \left(\frac{1}{2} \right)^{n+1} \right] - \Rightarrow$	
	0,25	$S'_n = u_0 + u_1 + + u_n = n + 1 + \frac{32}{3} \left[1 - \left(\frac{1}{2} \right)^{n+1} \right]$	
		التمرين الثاني: (04 نقاط)	
	0,75	z''=3-3i و $z'=3+3i$ المعادلة: $z''=3-3i$ و $z'=3+3i$ المعادلة: $z''=3-3i$:
04	0,5	$z'' = \overline{z'} = 3\sqrt{2}e^{-i\frac{\pi}{4}}$ ؛ $z' = 3\sqrt{2}e^{i\frac{\pi}{4}}$: الشكل الأُستي للحلين	
	1	$OA = OB = OC = OD = 3\sqrt{2}$ $ z_A = z_B = z_C = z_D = 3\sqrt{2}$ - 1.2	الأعداد
	0,5	$(k \in \Box)$ مع $(\overline{OA}; \overline{OB}) = -\frac{\pi}{2} + 2k\pi$ ومنه $\frac{z_B}{z} = e^{-i\frac{\pi}{2}}: R$ مع	المركبة
	0,5	جه المجارت عدد المجارة عدد ا	
		$[BD]$ ، $[AC]$ منتصف کل من $z_B + z_D = 0$ ، $z_A + z_C = 0$ استقامیة. أو	
	0,75	د - ABCD مربع (القطران متناصفان، متعامدان ومتقابسان)	;

العلامة		عناصر الاجابة	محاور
المجموع	مجزأة	تابع للموضوع الثايي	الموضوع
04		التمرين الثالث: (04 نقاط)	
	0,5	$A(-3;0;0) \cdot 1$	
	0,25	$B \in (\mathcal{P})$ معناه $0 - 2 \times 0 + (-3) + 3 = 0$.2	
	0,5	$AB = \sqrt{9 + 0 + 9} = 3\sqrt{2}$ ومنه $\overline{AB}(3;0;-3)$ لدينا $AB = \sqrt{9 + 0 + 9} = 3\sqrt{2}$	
	0,75	$\partial(C;(\mathcal{G})) = \frac{ -1+8+2+3 }{\sqrt{1+4+1}} = \frac{12}{\sqrt{6}} = 2\sqrt{6} - \Rightarrow$	الهندسة الفضائية
	0,75	$\begin{cases} x = -1 + t \\ y = -4 - 2t ; t \in \mathbb{R} \end{cases}$ وبالنائی (Δ) وبالنائی $\vec{u}(1; -2; 1) = 1$.3 $z = 2 + t$	
	0,5	$A\in (\Delta)$ إِنْ $t=-2:(\Delta)$ بنتمي إلى المستقيم $A\in (\Delta)$	
	0,75	$\frac{1}{2}AB \times AC = \frac{1}{2} \times 3\sqrt{2} \times 2\sqrt{6} = 6\sqrt{3} \ ua : ABC$ جـ حساب مساحة المثلث	
		التمرين الرابع: (07 نقاط)	
	0,5	$\lim_{x \to +\infty} f(x) = +\infty \text{i} \lim_{x \to -\infty} f(x) = -\infty (1.1)$	
	0,5	$\lim_{x \to 0} f(x) = -\infty \lim_{x \to 0} f(x) = +\infty (\Box$	
	0,25	(C_{f}) معادلة مستقيم مقارب للمنحنى $x=0$	
	0,25+0,5	2. المشتقة + الإشارة	
	2×0,25	- جدول التغيرات + اتجاه التغير	
		سلم خاص بالمكفوفين: اتجاه التغير 0,5	
	2×0,25	$(\Delta'): y = x + 1$ $(\Delta): y = x$ 3. مستقیمان مقاربا	
07	2×0,5	تحديد الوضعية	
	0,25	مرکز تناظر $\omega(0;\ 0,5)$.4	
	2×0,5	اً) إثبات وجود وحصر كل من eta ، eta (تطبيق نظرية القيم المتوسطة) eta	
	0,5	ب $f'(x)=1$ معادلة ليس لها حل في \mathbb{R} ومنه لا توجد مماسات .	
	0,75	(C_f) ، (Δ') ، (Δ) ، (Δ) ، (Δ)	
	0,25	$f(x) = x + m$ نکافی $(m-1)e^{-x} = m$ (ع	
	0,25	المناقشة حسب قيم	
		<u>سلم خاص بالمكفوفين:</u> 6. أ) التحقق من المساواة	
		4/4 i~ i a	

صفحة 4/4