Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

22 de abril de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
 - Tamanho das Fórmulas
- Semântica da LP

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Tamanho das Fórmulas
- 4 Semântica da LP

Pensamento

Pensamento

Frase

A moderação e a coragem, portanto, são destruídas pela deficiência e pelo excesso e preservadas pelo meio termo.

Quem?

Aristóteles (384 a.C. - 322 a.C.) Filósofo e lógico grego.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Tamanho das Fórmulas
- 4 Semântica da LP

Avisos

Lista de Exercícios 02

- Já está no Canvas;
- Data de entrega: 06 de maio, 17h00.

Notícias do Santa Cruz

1º RODADA

COM GOL DE DÊNIS MARQUES, ABC EMPATA COM SANTA CRUZ NO ARRUDA

Atacante marca contra ex-clube, assegura empate no Recife e é aplaudido pela torcida adversária ao ser substituído. Tricolor sai na frente com Betinho

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Tamanho das Fórmulas
- Semântica da LP

Tamanho das Fórmulas

Tamanho das Fórmulas

O tamanho ou complexidade de uma fórmula A, representado por |A|, é um numéro inteiro definido como se segue:

- Caso básico: |p| = 1 para toda fórmula atômica $p \in \mathcal{P}$;
- 2 Caso $|(\neg A)|$ $|(\neg A)| = 1 + |A|$.
- **Output** Caso $|(A \circ B)|$ $|(A \circ B)| = 1 + |A| + |B|$, para $\circ \in \{\land, \lor, →\}$.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Tamanho das Fórmulas
- Semântica da LP

Semântica

O estudo da semântica da lógica proposicional consiste em atribuir valores verdade às fórmulas da linguagem. Na lógica clássica, há apenas dois valores verdade: verdadeiro e falso. Representaremos o verdadeiro por 1 e o falso por 0.

Semântica

O estudo da semântica da lógica proposicional consiste em atribuir valores verdade às fórmulas da linguagem. Na lógica clássica, há apenas dois valores verdade: verdadeiro e falso. Representaremos o verdadeiro por 1 e o falso por 0.

Função de Valoração ${\cal V}$

$$\mathcal{V}:\mathcal{P} \rightarrow \{0,1\}$$

Valoração de uma fórmula qualquer

Valoração de uma fórmula qualquer

 $\mathcal{V}(\neg A) = 1$ se, e somente se, $\mathcal{V}(A) = 0$.

Valoração de uma fórmula qualquer

 $\mathcal{V}(A \wedge B) = 1$ se, e somente se, $\mathcal{V}(A) = 1$ e $\mathcal{V}(B) = 1$.

- $\mathbf{0} \ \mathcal{V} : \mathcal{P} \to \{ \ 0, 1 \ \} \ (Caso \ básico).$
- $\mathcal{V}(\neg A) = 1$ se, e somente se, $\mathcal{V}(A) = 0$.
- $\mathcal{V}(A \wedge B) = 1$ se, e somente se, $\mathcal{V}(A) = 1$ e $\mathcal{V}(B) = 1$.
- $\mathcal{V}(A \to B) = 1$ sse $\mathcal{V}(A) = 0$ ou $\mathcal{V}(B) = 1$.

Conectivo \neg

$$\begin{array}{c|c}
 & \neg A \\
A = 0 & 1 \\
A = 1 & 0
\end{array}$$

Conectivo \neg

	$\neg A$
A = 0	1
A = 1	0

Conectivo \wedge

$$\begin{array}{c|cccc}
A \land B & B = 0 & B = 1 \\
\hline
A = 0 & 0 & 0 \\
A = 1 & 0 & 1
\end{array}$$

Conectivo ∨

Conectivo ∨

$A \vee B$	B=0	B = 1
A=0	0	1
A = 1	1	1

${\sf Conectivo} \to$

Dada a fórmula $A = (p \lor \lnot q) \to (r \land \lnot q)$

Dada a fórmula $A = (p \lor \neg q) \to (r \land \neg q)$

$\mathcal{V}_1(A)$

Em que temos $\mathcal{V}_1(p)=1$, $\mathcal{V}_1(q)=0$ e $\mathcal{V}_1(r)=1$.

Dada a fórmula $A = (p \lor \neg q) \to (r \land \neg q)$

$\mathcal{V}_1(A)$

Em que temos $\mathcal{V}_1(p)=1$, $\mathcal{V}_1(q)=0$ e $\mathcal{V}_1(r)=1$.

$$\mathcal{V}_1(A)=1$$

Dada a fórmula $A = (p \lor \neg q) \to (r \land \neg q)$

$\mathcal{V}_1(A)$

Em que temos $\mathcal{V}_1(p)=1$, $\mathcal{V}_1(q)=0$ e $\mathcal{V}_1(r)=1$.

$$\mathcal{V}_1(A)=1$$

$\mathcal{V}_2(A)$

Em que temos $\mathcal{V}_2(p)=1$, $\mathcal{V}_2(q)=1$ e $\mathcal{V}_2(r)=1$.

Dada a fórmula $A = (p \lor \neg q) \to (r \land \neg q)$

$\mathcal{V}_1(A)$

Em que temos $\mathcal{V}_1(p)=1$, $\mathcal{V}_1(q)=0$ e $\mathcal{V}_1(r)=1$.

$$\mathcal{V}_1(A)=1$$

$\mathcal{V}_2(A)$

Em que temos $\mathcal{V}_2(p)=1$, $\mathcal{V}_2(q)=1$ e $\mathcal{V}_2(r)=1$.

$$\mathcal{V}_2(A)=0$$

Onde estudar mais...

Seção 1.3: Semântica

SILVA, F. S. C. Da; FINGER, M.; MELO, A. C. V. de. Em Lógica para Computação. São Paulo: Thomson Learning, 2006. Código Bib.: [519.687 SIL /log].

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

22 de abril de 2014

