Tercera ayudantía Inducción sobre palíndromos

Teresa Becerril Torres terebece1508@ciencias.unam.mx

9 de febrero de 2023

Lenguaje:

Sea
$$\Sigma = \{0, 1\}$$
 y $L = \{w \in \Sigma^* | w = w^R\}$

Gramática:

Sea $G=(\Sigma,\Delta,S,R)$ una gramática, donde $\Sigma=\{0,\,1\}$, $\Delta=\{S\}$, S es el inicial, y las reglas R están dadas por:

$$S \to 0S0 \mid 1s1$$
$$S \to \epsilon \mid 0 \mid 1$$

Por demostrar que la gramática G deriva palíndromos utilizando inducción sobre la estructura de las cadenas $(L \subseteq L(G))$.

Base:

- Sea $w=\epsilon$, tenemos que $\epsilon\in\Sigma^*$ y $\epsilon=\epsilon^R$ por definición del inverso, la gramática G tiene una regla de producción $S\to\epsilon$ por lo tanto $S\Rightarrow_G\epsilon$.
- Sea w=0, tenemos que $0\in \Sigma$ y $0=0^R$ por definición del *inverso*, la gramática G tiene una regla de producción $S\to 0$ por lo tanto $S\Rightarrow_G 0$.
- Sea w=1, tenemos que $1\in \Sigma$ y $1=1^R$ por definición del *inverso*, la gramática G tiene una regla de producción $S\to 1$ por lo tanto $S\Rightarrow_G 1$.

Hipótesis de inducción:

Supongamos que $w=w^R, w\in \Sigma^*$ y que $S\Rightarrow_G^* w.$

Paso inductivo:

Por demostrar que se cumple para w=axa con $x\in \Sigma^*$ y $a\in \Sigma$

$$S \Rightarrow_G^* axa$$

Por hipótesis de inducción y por las reglas de producción de G:

- $S \Rightarrow_G 0S0 \Rightarrow_G^* 0x0$ por lo tanto $S \Rightarrow_G^* 0x0$
- $S \Rightarrow_G 1S1 \Rightarrow_G^* 1x1$ por lo tanto $S \Rightarrow_G^* 1x1$

Por lo tanto la gramática G puede derivar cualquier palíndromo sobre Σ^* . Por lo tanto $L \subseteq L(G)$.

Por demostrar que el lenguaje de la gramática está contenido en el lenguaje de palíndromos utilizando inducción sobre las derivaciones de la gramática.

Base:

Sea $S\Rightarrow w$, es decir, la derivación es en un paso. La gramática G tiene tres producciones que derivan en un sólo paso:

- Sea $S \to \epsilon$ por lo que $w = \epsilon$ y $\epsilon = \epsilon^R$ por definición del *inverso*, por lo tanto w es palíndromo.
- Sea $S \to 0$ por lo que w = 0 y $0 = 0^R$ por definición del *inverso*, por lo tanto w es palíndromo.
- Sea $S \to 1$ por lo que w = 1 y $1 = 1^R$ por definición del *inverso*, por lo tanto w es palíndromo.

Hipótesis de inducción:

Supongamos que $S\Rightarrow_G^* x$ en n pasos y que $x=x^R, x\in \Sigma^*.$

Paso inductivo

Por demostrar que $S \Rightarrow_G^* w$ en n+1 pasos.

La gramática G tiene dos producciones que derivan en más de un paso: $S \to 0S0$ y $S \to 1S1$.

Como $S \Rightarrow_G^* w$ tenemos dos casos:

• Sea w=0x0 entonces $S\Rightarrow_G 0S0\Rightarrow_G^* 0x0$, por H.I. sabemos que la derivación $S\Rightarrow_G^* x$ sucede en n pasos y que x es palíndromo, por lo que $S\Rightarrow_G 0x0$ se produce en n+1 pasos y $w^R=(0x0)^R=0(0x)^R=0x^R0=0x0$. Por lo tanto w es palíndromo.

• Sea w=1x1 entonces $S\Rightarrow_G 1S1\Rightarrow_G^* 1x1$, por H.I. sabemos que la derivación $S\Rightarrow_G^* x$ sucede en n pasos y que x es palíndromo, por lo que $S\Rightarrow_G 1x1$ se produce en n+1 pasos y $w^R=(1x1)^R=1(1x)^R=1x^R1=1x1$. Por lo tanto w es palíndromo.

Por lo tanto el lenguaje de la gramática está contenido en el lenguaje de palíndromos. Por lo tanto $L(G)\subseteq L$.

$$\therefore L = L(G)$$

