

Processamento de Linguagem Natural

Distância Mínima de Edição

Prof.: Hansenclever Bassani (Hans) hfb@cin.ufpe.br

Site da disciplina: www.cin.ufpe.br/~hfb/pln/

Baseado nos slides do <u>curso de Stanford no Coursera</u> por Daniel Jurafsky e Christopher Manning.

Tradução: Ygor César Sousa Revisão: Hansenclever Bassani

Definição de Distância Mínima de Edição

O quão similar duas coisas são?

- - O usuário digitou "graffe" Qual é o mais próximo?
 - graf
 - graft
 - grail
 - giraffe

- Correção Ortográfica Computação Biológica
 - Alinhar duas sequências de nucleotídeos

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

• Alinhamento resultante:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

Também para Tradução Automática, Extração de Informação, Reconhecimento de Discurso

Distância de Edição

- Distância mínima de edição entre duas cadeias de caracteres
- É o número mínimo de operações de edição
 - Inserção (i)
 - Deleção (d)
 - Substituição (s)
- Necessário para transformar um no outro

Duas cadeias de caracteres e seu alinhamento:

- Se cada operação tem o custo de 1
 - A distância entre eles é 5
- Se substituições custam 2 (Levenshtein)
 - A distância entre eles é 8

Alinhamento em Computação Biológica

Dadas duas sequencias de bases:

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

• Alinhar cada letra a uma letra ou lacuna:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCCGAC

Outros Usos de Distância de Edição em PLN

Avaliar Tradução Automática e Reconhecimento de Discurso

R Spokesman confirms senior government adviser was shot

H Spokesman said the senior adviser was shot dead

S I D I

- Extração de Entidade Nomeada e Correferência de Entidade
 - IBM Inc. announced today
 - IBM profits
 - Stanford President John Hennessy announced yesterday
 - for Stanford University President John Hennessy

Como Encontrar Distância Mínima de Edição?

- Procurar por um caminho (sequência de edição) da cadeia de caracteres inicial até a final:
 - Estado Inicial: a sequência que está sendo transformada
 - Operadores: inserção deleção ou substituição
 - Estado Objetivo: a sequência que estamos tentando obter
 - Custo do caminho: o que nós queremos minimizar: o número de edições

Edição Mínima como Busca

- Mas o espaço de todas as sequências de edição é enorme!
 - Nós não podemos nos dar o luxo de navegar ingenuamente
 - Muitos caminhos distintos acabam no mesmo estado.
 - Nós não precisamos manter todos os caminhos
 - Apenas o caminho mais curto para cada um dos estados visitados.

Cln.ufpe.br

Definição de Distância Mínima de Edição

- Para duas cadeias de caractere
 - X de tamanho n
 - Y de tamanho m
- Nós definimos D(i,j)
 - A distância de edição entre X[1..i] e Y[1..j]
 - i.e., os primeiros *i* caracteres de X e os primeiros *j* caracteres de Y
 - A distância de edição entre X e Y é, portanto: D(n,m)

Definição de Distância Mínima de Edição

Computando Distância Mínima de Edição

Programação Dinâmica para Distância Mínima de Edição

- Programação Dinâmica: Um cálculo tabular de D(n,m)
- Resolver problemas combinando soluções para subproblemas.
- Bottom-up
 - Calculamos D(i,j) para i,j pequenos
 - E calculamos D(i,j) maiores baseados nos valores menores computados anteriormente
 - i.e., calcular D(i,j) para todo i (0 < i < n) e j (0 < j < m)

De onde veio o nome Programação Dinâmica?

...Os anos 50 não foram bons anos para pesquisa matemática. O Secretário de Defesa ...tinha um medo patológico e odiava a palavra pesquisa...

Eu portanto decidi utilizar a palavra, "Programação".

Eu queria passar a ideia de que era dinâmico, multiestágio... eu pensei, vamos ... escolher uma palavra que tem um significado absolutamente preciso, ou seja, dinâmico... é impossível usar a palavra, dinâmico, em um sentido pejorativo. Tente pensar em alguma combinação que vai dar um sentido pejorativo. É impossível.

Assim, eu pensei que programação dinâmica era um bom nome. Era algo que nem mesmo um congressista poderia opor-se."

Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.

Definindo Distância Mínima de Edição (Levenshtein)

Inicialização

$$D(i,0) = i$$

 $D(0,j) = j$

Relação de Recorrência:

```
For each i = 1..M
             For each j = 1...N
                     D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2 \end{cases} \text{ if } X(i) \neq Y(j) \\ 0; \text{ if } X(i) = Y(j) \end{cases}
```

Término:

D(N,M) é a distância mínima de edição

Tabela de Distância de Edição

N	9									
0	8									
Ι	7									
Т	6									
Ν	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	Ι	0	N

Tabela de Distância de Edição

N	9															
0	8															
Ι	7	D(i	$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \end{cases}$													
Т	6	D(1).														
N	5		$D(i-1,j-1) + \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$													
Е	4															
Т	3															
N	2															
I	1															
#	0	1	2	3	4	5	6	7	8	9						
i/j	#	Е	X	Е	С	U	Т	Ι	0	N						

Tabela de Distância de Edição

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
i/j	#	Е	X	Е	С	J	T	Ι	0	N

Computando Distância Mínima de Edição

Backtrace para Cálculo de Alinhamentos

Calculo de Alinhamentos

- Distância de Edição não é suficiente
 - Nós frequentemente precisamos alinhar cada caractere das duas cadeias, um com o outro
- Nós fazemos isso mantendo um "backtrace"
- Toda vez que entramos em uma célula, lembramos de onde viemos
- Quando chegarmos ao fim,
 - Seguimos o caminho de volta a partir do canto superior direito para ler o alinhamento

Distância de Edição

N O I	9 8 7			D(<i>i,j</i>) = mi	n D(i,		2; if	⁻ S ₁ (i) ≠	 S₂(j)
Т	6				I		1	0; if	$S_1(i) =$	S₂(j)—
N	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	J	Т	I	0	N

MinEdit com Backtrace

n	9	↓ 8	<u>√</u>	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓9	/8	
0	8	↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	∠←↓ 11	↓ 10	↓ 9	/ 8	← 9	
i	7	↓ 6	∠ ←↓ 7	∠ ←↓ 8	∠ ←↓9	∠ ←↓ 10	↓9	/ 8	← 9	← 10	
t	6	↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	∠←↓ 9		← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	√ ←↓ 8	<u>/</u> ←↓9	∠ ←↓ 10	∠ ←↓ 11	∠ ↓ 10	
e	4	∠ 3	← 4	∠ ← 5	← 6	← 7	<i>←</i> ↓ 8	∠ ←↓9	∠ ←↓ 10	↓9	
t	3	∠ ←↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓ 8	∠ 7	←↓ 8	∠←↓ 9	↓ 8	
n	2	∠ ←↓ 3	∠ ←↓4	∠←↓ 5	∠<↓ 6	∠←↓ 7	<u> </u>	↓ 7	∠←↓ 8	∠7	
i	1	<u> </u>	∠ ←↓ 3	∠←↓ 4	∠←↓ 5	∠<-↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Adicionando Backtrace à Distância Mínima de Edição

Condições iniciais:

$$D(i,0) = i$$

Relação de Recorrência:

$$D(0,i) = i$$

Término:

D(i,0) = i D(0,j) = j D(N,M) is distance

```
For each i = 1...M
            For each j = 1...N
                   D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deleção} \\ D(i,j-1) + 1 & \text{inserção} \\ D(i-1,j-1) + \begin{cases} 2; & \text{if } X(i) \neq Y(j) \text{ substituição} \\ 0; & \text{if } X(i) = Y(j) \text{ casamento} \end{cases}
```


Matriz de Distância

Todo caminho não-decrescente

de (0,0) para (M, N)

corresponde a um alinhamento de duas sequencias

Um alinhamento ótimo é composto de subalinhamentos ótimos

Resultado do Backtrace

• Duas cadeias de caracteres e seu alinhamento:

• Time:

O(nm)

• Space:

O(nm)

Backtrace

O(n+m)

Backtrace para Cálculo de Alinhamentos

Distância Mínima de Edição com Pesos

Distância de Edição com Pesos

- Por que adicionaríamos pesos ao cálculo?
 - Correção Ortográfica: algumas letras são mais prováveis de serem digitadas incorretamente do que outras
 - Biologia: certos tipos de remoção e inserção são mais prováveis que outros

Matriz de Confusão para Erros de Ortografia

					Sì	ub[2	X, Y] =	Sub	stitı	ıtio	n of	X	(inc	orre	ct) 1	or	Y ((orr	ect)						
X												Y	(co	rrect)	}											
	a	b	С	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	v	w	х	У	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
С	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
c	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
S	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
х	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Distância Mínima de Edição com Pesos

• Inicialização:

$$D(0,0) = 0$$

 $D(i,0) = D(i-1,0) + del[x(i)];$ $1 < i \le N$
 $D(0,j) = D(0,j-1) + ins[y(j)];$ $1 < j \le M$

• Recorrência:

$$D(i-1,j) + del[x(i)]$$

$$D(i,j) = min D(i,j-1) + ins[y(j)]$$

$$D(i-1,j-1) + sub[x(i),y(j)]$$

• Término:

D(N,M) é a distância

Distância Mínima de Edição com Pesos

Distância Mínima de Edição em Computação Biológica

Alinhamento de Sequências

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```


Por que alinhamento de sequências?

- Comparar genes ou regiões de diferentes espécies
 - Para encontrar regiões importantes
 - Determinar função
 - Encontrar forças evolucionárias
- Montar fragmentos para sequenciar DNA
- Comparar indivíduos à procura de mutações

Alinhamento em Dois Campos

- Em Processamento de Linguagem Natural
 - Nós geralmente falamos de distância (minimizada)
 - E pesos
- Em Computação Biológica
 - Nós geralmente falamos de similaridade (maximizada)
 - E scores

The Needleman-Wunsch Algorithm

A matriz contem scores (match, mismatch, gap)

Needleman-Wunsch

• Inicialização:

$$D(i,0) = -i * d (d: penalização)$$

$$D(0,j) = -j * d$$

Relação de Recorrência:

$$D(i,j) = \max \begin{cases} D(i-1,j) & -d \\ D(i,j-1) & -d \\ D(i-1,j-1) & +s[x(i),y(j)] \end{cases}$$
 (s: score)

Término:

A Matriz Needleman-Wunsch

(Note que a origem é no canto superior esquerdo.)

Uma Variante do Algoritmo Básico:

Talvez esteja correto ter um número ilimitado de lacunas # no começo e no fim:

-----CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC GCGAGTTCATCTATCAC--GACCGC--GGTCG------

Sendo assim, nós não queremos penalizar lacunas nas extremidades

Diferentes tipos de Sobreposições (Overlap)

Variante de Detecção de Sobreposição

Mudanças:

1. Inicialização

For all i, j,

$$F(i, 0) = 0$$

 $F(0, j) = 0$

2. Término

$$F_{OPT} = \max \begin{cases} \max_{i} F(i, N) \\ \max_{j} F(M, j) \end{cases}$$

Slide de Serafim Batzoglou

O Problema de Alinhamento Local

Dadas duas strings

$$x = x_1....x_M$$
, $y = y_1....y_N$

$$y = y_1 \dots y_N$$

Encontrar substrings x', y' as quais similaridade (valor ótimo alinhamento global) é máxima

O Algoritmo Smith-Waterman

Ideia: Ignorar regiões de mal alinhamento

Modificações ao Needleman-Wunsch:

Inicialização:
$$F(0, j) = 0$$

$$F(i, 0) = 0$$

$$F(i, j) = \max \begin{cases} 0 \\ F(i - 1, j) - d \\ F(i, j - 1) - d \\ F(i - 1, j - 1) + s(x_i, y_j) \end{cases}$$

O Algoritmo Smith-Waterman

Término:

1. Se nós queremos o melhor alinhamento local...

$$F_{OPT} = max_{i,j} F(i, j)$$

Encontrar F_{OPT} e fazer caminho de volta (trace back)

2. Se nós queremos todos os alinhamentos locais com score > t

Para todo i, j encontrar F(i, j) > t, e trace back?

Complicada pela sobreposição de alinhamentos locais

X = ATCAT

Y = ATTATC

Seja:

m = 1 (1 ponto para combinações)
d = 1 (-1 ponto para del/ins/sub)

		Α	Т	Т	Α	Т	С
	0	0	0	0	0	0	0
Α	0						
Т	0						
С	0						
Α	0						
Т	0						

48

X = ATCAT

Y = ATTATC

		Α	Т	Т	Α	Т	C
	0	0	0	0	0	0	0
Α	0	1	0	0	1	0	0
Т	0	0	2	1	0	2	0
С	0	0	1	1	0	1	3
Α	0	1	0	0	2	1	2
Т	0	0	2	0	1	3	2

49

X = ATCAT

Y = ATTATC

50

X = ATCATY = ATTATC

51

Distância Mínima de Edição

Distância Mínima de Edição em Computação Biológica

