DEDORT DO	CHMENTATION DAGE	Form Approved
	CUMENTATION PAGE	OMB No. 0704-0188
Public reporting burden for this collection of information is e maintaining the data needed, and completing and reviewing	stimated to average 1 hour per response, including the time for reviewing instructions this collection of information. Send comments regarding this burden estimate or any	s, searching existing data sources, gathering and other aspect of this collection of information.
including suggestions for reducing this burden to Departme	nt of Defense, Washington Headquarters Services, Directorate for Information Opera ents should be aware that notwithstanding any other provision of law, no person shal	tions and Reports (0704-0188), 1215 Jefferson Davis
collection of information if it does not display a currently val	d OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE	ADDRESS.
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE Technical Papers	3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
		SC. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
, ,		2362
		5e. TASK NUMBER
	·	MIG 2
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION
Air Force Descend Laboratory (AEMC	`	REPORT
AFRI MRS		
AFRL/PRS		
5 Pollux Drive Edwards AFB CA 93524-7048		
Edwards Arb CA 95324-7046		
a analysening (Manifering Agrato)	NAME(O) AND ADDRESS/ES	10.000000000000000000000000000000000000
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
		,(e)
Air Force Research Laboratory (AFMC)	1
AFRL/PRS	,	11. SPONSOR/MONITOR'S
5 Pollux Drive		NUMBER(S)
Edwards AFB CA 93524-7048		
12. DISTRIBUTION / AVAILABILITY STATE	MENT	
Approved for public release; distributio	n unlimited.	
13. SUPPLEMENTARY NOTES		
14. ABSTRACT		
14. ADSTRACT		
		,
	·	
15. SUBJECT TERMS	,	

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

19a. NAME OF RESPONSIBLE

Leilani Richardson
19b. TELEPHONE NUMBER

PERSON

(include area code) (661) 275-5015

36 seponde deus one enclosed

c. THIS PAGE

Unclassified

17. LIMITATION

OF ABSTRACT

18. NUMBER

OF PAGES

16. SECURITY CLASSIFICATION OF:

b. ABSTRACT

Unclassified

a. REPORT

Unclassified

入ろり

MEMORANDUM FOR PRR (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO)

2 June1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-0124

T.C. Miller, "Overdeterministic Fracture Analysis and Singular Value Decomposition"

SEM Conference slides/paper approved 25 Apr 99

(Public Release)

20021122 037

Overdeterministic Fracture Analysis and Singular Value Decomposition

Timothy C. Miller Air Force Research Laboratory

Ravinder Chona Texas A&M University SEM Spring Conference Cincinnati, Ohio June 1999

Outline of Presentation

Decomposition Can Be Used to Improve Results for Stress In Bimaterial Fracture Problems, Singular Value Intensity Factor Calculations

Experimental Procedures Used

Causes of Ill Conditioning

Use of Singular Value Decomposition

Comparison of Results

Conclusions

Outline of Experimental Methodology

Magnitude of Complex Stress Intensity Factors Were Arrived at By Three Different Means

Carl Reserved

Moire Interferometer Setup

Specimen Fabrication for Aluminum- Copper Specimen

Shown are Specimens used with Thermal and Displacement Field Analyses

Mechanical and Thermal Properties for the Aluminum-Copper Specimen

ion [10 ⁻ /K] ion [10 ⁻ /K] K1.7 2.770.0 K2.8	Copper	120.0	0.33	0.0088	17.0	41.6	420,0
\sqrt{N}	Aluminum	71.7	0.34	2770.0	57 .0	270.0	875.0
					fuermal expansion [10°/K]	uctivity [W/m² K]	

Steel-Thermocouple Cement Specimen Specimen Fabrication for

Highly Dissimilar Materials and Nearby Free Surface Effects are Incorporated

(A Similar Specimen was Constructed for the Specimen with Implanted Thermocouples)

Mechanical and Thermal Properties for the Steel-TCC Cement Specimen

Property	AISI 304 Steel	TC cement
Young's Modulus [GPa]	218	3.24
Poisson's ratio	0.29	0.30
density [kg/m³]	7834	3173
coefficient of thermal expansion [106/K]	17.2	19.7
thermal conductivity [W/m² K]	16.2	
specific heat [J/kg K]	200	100

Application of Thermal Loads to Specimens

Bottom Provides One-Dimensional Temperature Fields Applying Heating to Top of Specimen and Cooling to (Except Near the Crack Tip)

Distributions from Thermocouple Data Determination of Temperature

Thermal Boundary Conditions Can be Simulated Using Finite Element Methods

Thermal Loads and Numerical Modeling Gives Magnitude of |K|

Finite Element Results Give Stress Fields, J Integral, and Magnitude of Complex Stress Intensity Factor

Fringe Patterns for Subsequent Analysis Moiré Interferometry is Used to Obtain

Fringe Patterns Are Digitized and Data is Used in Overdeterministic Analysis

Aluminum-Copper Specimen

Steel-TCC Specimen

Causes of Unstable Solutions

parameters with very large magnitudes that are unstably balanced to In some cases the normal equations work adequately, but in other cancel out almost precisely when the fitted function is evaluated. cases a very ill-conditioned matrix occurs, and the result is fitted

between two or more of the basis functions provided. The result is This occurs most often because the data do not clearly distinguish large set of ambiguous solutions exist.

In difficult problems, the ambiguities may be hard to discern.

Displacement Field Equations for Homogeneous Materials

Overall Field Equation is a Combination of Arbitrary Translation/Rotation and Near Tip Deformations

$$u_y = Px + Qy + R$$

$$u_{x} = \frac{1}{E} \left[\sum_{j=0}^{\infty} C_{2j} \frac{r^{j+1/2}}{j+1/2} ((1-v)\cos(j+1/2)\theta - (1+v)(j+1/2) \sin\theta \sin(j-1/2)\theta) \right]$$

$$+ \sum_{j=0}^{\infty} C_{2j+1} \frac{r^{j+1}}{j+1} (2\cos(j+1)\theta - (1+v)(j+1) \sin\theta \sin(j\theta)) \right]$$

$$N(r,\theta) = L(r,\theta) + M(r,\theta)$$

Displacement Field Equations for Bimaterial Problems

$$L(x,y) = P_1x + R \quad y \ge 0$$
$$P_2x + R \quad y < 0$$

$$M(x,y) = \frac{1}{2\mu_1} [a_{0r}r^{1/2}(f_{0r})_1 - a_{0j}r^{1/2}(f_{0j})_1 + b_{0r}r(g_{0r})_1 - b_{0j}r(g_{0j})_1] \ y \ge 0$$

$$= \frac{1}{2\mu_2} [a_{0r}r^{1/2}(f_{0r})_2 - a_{0j}r^{1/2}(f_{0j})_2 + b_{0r}r(g_{0r})_2 - b_{0j}r(g_{0j})_2] \ y < 0$$

$$N(r,\theta) = L(r,\theta) + M(r,\theta)$$

Solution of Linear Algebra Problems Using Conventional Methods

Interferometer Displacement Data from Moire Obtain Setup

Displacmeme nt Data and Formulate Combined Algebra Problem Using Linear Field

esign Matrix nto a Square

Rectangular

Use Linear

Algebra to **Fransform**

Algebra Problem to Determine Unknown Filed

Complex Stress Intensity Expression (and Coefficients in Solve Linear

Solution of Linear Algebra Problems Using Conventional Methods

$$\{N\} = [f] \{C\}$$

 $m \times 1 \quad m \times n \quad n \times 1$

$$[f]^{T} \{N\} = [f]^{T} [f] \{C\}$$

Let $\{d\} = [f]^{T} \{N\}$, $[a] = [f]^{T} [f]$
 $\{d\} = [a] \{C\}$
 $n \times 1$ $n \times n$ $n \times 1$

The Use of the SVD Method to Solve Overdeterministic Problems

Condition of Matrix is Determined and Adjusted for, if Necessary

Obtain Displacement Data from Moire nterferometer Setup

Formulate
Linear
Algebra
Problem
Using
Displacmeme
nt Data and
Combined
Field

Decompose
Rectangular
Design Matrix
into [U], [V],
and [W]
Matrices

Check [W] Matrix for Presence of

Correct for III-Conditioning, if Necessary

Conditioning

Solve Linear
Algebra
Problem to
Determine
Unknown
Coefficients in
Filed
Expression (and
Complex Stress
Intensity
Factor)

How the SVD Method Corrects for Ill-Conditioning

adverse effects can be minimized by setting the terms I/w_j in equal to zero for all Large condition numbers indicate ill-conditioning. When the reciprocal of the ill-conditioning will significantly affect solution accuracy. If this occurs, the condition number approaches the computational precision, the presence of sufficiently small wj.

better than both direct methods and uncorrected SVD methods, as is shown by the $R = |\{N\} - [f]\{C\}|$. The result is that the SVD method with correction is often approximately solve the linear equation $\{N\} = [f]\{C\}$. Zeroing these diagonal elements selects from this set the solution the one that minimizes the residual The effect of ill-conditioning is to produce an infinite set of solutions that all experimental results below.

Use of the SVD Method to Solve Linear Algebra Problems

$$\{N\} = [f] \{C\}$$

$$m \times 1 \quad m \times n \quad n \times 1$$

$$\{N\} = [f]\{C\} = [U][w][V]^T \{C\}$$

$$mxn nxn nxn$$

$$\{C\} = [V] \cdot [diag(1/w_j)] \cdot (U^T \cdot \{N\})$$

SVD Gives Improved and More Stable Correcting for Ill-Conditioning Using Results

Shown Are Results for Aluminum-Copper Specimen (Left) and Steel-TCC

Results for Aluminum-Copper Bimaterial Specimen

Parameter	Trial 1	Trial 2	Average
$P_{\rm I}$	375.8 x 10 ⁻⁶	395.6 x 10 ⁶	385.7 x 10 ⁶
P_2	338.6 x 10 ⁻⁶	346.5 x 10 ⁶	342.6 x 10 ⁶
a _{or} [Pa m ^{1/2-iε}]	4523	4920	4721
$a_{ij} [Pa m^{1/2i\epsilon}]$	125200	118300	121700
K' [Mpa m ^{1/2}] (defined at 1 mm)	0.630	965'0	0.613
phase of K' [degrees] (defined at 1 mm)	-87.9	9.78-	-87.8
Related measurements			
Measurement	Source	Value	Related parameter
$(\epsilon_{\infty})_{l}$	Fringe pattern plots (see Fig. 37)	394.0 x 10 ⁶	Pı
(£xx)2	Fringe pattern plots (see Fig. 37)	279.0 x 10 ⁶	P_2
K' [Mpa m ^{1/2}] (defined at 1 mm)	Finite element J integral calculation	109'0	$ K' $ or $ a_0 $ (above)

Results for Steel-TCC Bimaterial Specimen

Parameter		Experimental Value	
$a_{ m or} \left[{ m Pa} { m m}^{1/2 ext{-ie}} ight]$			-526
a_{ij} [Pa $m^{1/2i\epsilon}$]			2203
K' [Mga m ^{1/2}] (defined at 1 mm)			12.1
phase of K' [degrees] (defined at 1 mm)			31.8
Related measurements			
Measurement	Source	Value	Related parameter
K' [Mpa m ^{1/2}] (defined at 1 mm)	Finite element J integral calculation	11.1	11.1 K' or a ₀ (above)

Comparison of Experimental and Numerical Results

Use of Local Collocation Method with SVD Gives Good Agreement with Numerical Computations

Material Pair	SVD-Local Collocation Method	Finite Bement Results
aluminum-copper	0.613	0.601
steel-thermocouple cement	12.1	11.1

(Units are MPa m¹²)

Conclusions

- Fracture Problems Can Cause Problems When Overdeterministic The Presence of a Nonzero Bimaterial Parameter in Interfacial Methods Are Employed.
- ■One Means to Remedy the Problem of Ill-Conditioning is to use Singular Value Decomposition to Solve the Linear Algebra Problem.