Міністерство освіти і науки, молоді та спорту України Національний технічний університет України «КПІ ім. Ігоря Сікорського» Фізико-технічний інститут

ЛАБОРАТОРНА РОБОТА №1. ОБЧИСЛЕННЯ ЗНАЧЕНЬ ФУНКЦІЇ

Група ФФ-83

Виконав: Попівчак Б.П.

Перевірив (ла): Гордійко Н.О.

1 Хід роботи

1.1 Задача 13.а

Заданий многочлен $P(x)=0.22x^5-3.27x^4-2.74x^3+2.81x^2-3.36x+2$. Визначити значення P(x) де x=0.8+0.05k, (k=16,17,...,20).

Теоретичне підгрунтя для вирішення задачі

Нехай є многочлен n-ого степеня $P(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$ з дійсними коефіцієнтами $a_k(k=0,1,...,n)$, і нехай потрібно визначити значення цього многочлена при $x=\xi$:

$$P(x) = a_0 \xi^n + a_1 \xi^{n-1} + \dots + \xi_n \tag{1}$$

Обчислення $P(\xi)$ найзручніше проводити наступним чином. Представимо вираз (1) у вигляді вкладених множень $P(\xi) = (...(((a_0\xi + a_1)\xi + a_2)\xi + a_3)\xi + ... + a_n).$

Якщо ввести числа

$$b_{0} = a_{0},$$

$$c_{1} = b_{0}\xi, \ b_{1} = a_{1} + c_{1},$$

$$c_{2} = b_{1}\xi, \ b_{2} = a_{2} + c_{2},$$

$$...$$

$$c_{n} = b_{n-1}\xi, \ b_{n} = a_{n} + c_{n},$$

$$(2)$$

TO $b_n = P(\xi)$

Отже, обчислення значення многочлена P(x) при $x = \xi$ зводиться до повторення таких елементарних операцій: $c_k = b_{k-1}\xi, b_k = a_k + c_k, (k = 0, 1, 2, ..., n)$.

```
1 \text{ koefs} = [0.22, -3.27, -2.74, 2.81, -3.36, 2]
g first_dodanok =0.8
3 \text{ koef_pry_k} = 0.05
4 znach_k = [i for i in range(16,21)]
6 def Gorner_scheme(k): #Realizaciya sxemy Gornera dlya pevnogo znachennya k
          b = koefs[0] #Pochatkove znachennya sxemy Gornera dorivnyuye koefu pry x
      z najbilshym stepenem
          for koef in range(1,len(koefs)):
8
              b = (b*(first_dodanok + koef_pry_k * k)) + koefs[koef]#
9
     first_dodanok + koef_pry_k * ka - ce znachennya x
          return (b)
10
11
12 def Gorner_scheme_cycle() :#zapusayemo cykl sxemy Gornera dlya vsix znachen k
      znach_poly_pry_k = []#Spysok v yakyj budemo dodavaty znachennya polinoma
     pry riznyx k
     for ka in znach_k:
14
          p = Gorner_scheme(ka)
15
          znach_poly_pry_k.append(p)#pry kozhnomu novomu k dodayemo znachennya
     polinoma v spysok
      return (znach_poly_pry_k)
17
18
19 #Adding to csv table for printing in document
20 \text{ znach_x} = []
21 for i in znach_k:
      m = round(first_dodanok + koef_pry_k*i , 2)
22
    znach_x.append(m)
```

```
table=[['x', 'znach']]
for i in range(0,len(znach_x)):
    l = Gorner_scheme_cycle()
    print(str(znach_x[i])+' : '+str(1[i]))
    s = [znach_x[i], 1[i]]
    table.append(s)
    outfile = open('znach_1.csv', 'w', newline="")
    import csv
    writer = csv.writer(outfile)
    for row in table:
        writer.writerow(row)
    outfile.close()
```

В таблиці 1 наведено результат роботи програми.

x	P(x)
1.60	-26.5288448
1.65	-29.748899668750013
1.70	-33.24040160000001
1.75	-37.017207031249995
1.80	-41.0933824

Табл. 1: Значення полінома P(x) при заданих значення х.

1.2 Задача 7.б

Користуючись розкладом функції $\cos x$ в степеневий ряд, скласти таблицю її значень з точністю до 10^{-15} для вказаного значення x, якщо: x = 1.75 + 0.01k, (k = 0, 1, 2, ..., 15).

Теоретичне підгрунтя для вирішення задачі

Для обчислення функції *cosx* користуємося користуємось степеневим розкладом:

$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}, \qquad (-\infty < x < \infty).$$
 (3)

Данний ряд при великих x збігається повільно, але, враховуючи періодичність функції cosx і формули зведення тригонометричних функцій, легко зробити висновок, що достатньо вміти обчислювати cosx для проміжку $0 \le x \le \frac{\pi}{4}$. При цьому можна використовувати такі рекурентні формули :

$$\cos x = \sum_{k=1}^{n} \nu_k + R_n(x),$$

$$\nu_1 = 1, \quad \nu_{k+1} = -\frac{x^2}{(2k-1)2k} \nu_k, \quad (k = 1, 2, ..., n-1)$$
(4)

```
"""zadayemo znachennya iz umovy'"""
_{2} a = 1.75
3 b = 0.01
4 znach_k = [i for i in range(0,16)]
6 #Funkciya dlya obrahunku sumy v_i ,
7 #yaki zaneseni v spysok znach_v
8 def listsum(numList):
      theSum = 0
      for i in numList:
10
          theSum = theSum + i
11
      return round (the Sum, 15) #Okruglyayemo otrymane znachennya do 15 znaku
12
14 #Vyznachaye znachennya vsih v_i ta zanosyt yix u spysok
def cosx(k):
      # Ve pershe za umovoyu dorivnyuye 1
      v = 1
      znach_v = [1]
18
      for i in range(1,100): #diapazon znachennya i mozhna braty dovilnyj,
19
     golovne, shhob vykonalos dostatnye chyslo iteracij
          if abs(v) < pow(10,-15): #umova pry yakij nastupne ve ite menshe
     dopustymoyi poxybky
              # Oskilky odne znachennya v_i ,yake menshe za dopustymu poxybku
21
     zanosytsya v spysok , treba jogo vydalyty
              del znach_v[len(znach_v)-1]
               return (listsum(znach_v))
23
              break
24
          else :
              v = -v*pow((a+(b*k)),2)/(((2*i)-1)*2*i)
27
              znach_v.append(v) #Dodayemo vsi v_i v spysok
28
30 #Obchyslyuye znachennya kosynusu dlya riznyx k
31 def znach_cos():
     znach_cos = []
32
      for k in znach_k:
          t = cosx(k)
34
          znach_cos.append(t)
35
      return (znach_cos)
36
37
39 #Adding to csv table for printing in document
40 \text{ znach_x} = []
41 for i in znach_k:
     m = round(a + b*i, 2)
42
      znach_x.append(m)
44 table=[['x', 'znach']]
45 for i in range(0,len(znach_x)):
     1 = znach_cos()
46
     print(str(znach_x[i])+' : '+str(l[i]))
47
     s = [znach_x[i], 1[i]]
      table.append(s)
outfile = open('znach_2.csv', 'w', newline="")
51 import csv
52 writer = csv.writer(outfile)
53 for row in table:
      writer.writerow(row)
55 outfile.close()
```

В таблиці 2 наведено результат роботи програми.

x	cosx
1.75	-0.178246055649492
1.76	-0.188076838892880
1.77	-0.197888814609109
1.78	-0.207681001608783
1.79	-0.217452420681364
1.80	-0.227202094693087
1.81	-0.236929048684674
1.82	-0.246632309968834
1.83	-0.256310908227522
1.84	-0.265963875608980
1.85	-0.275590246824512
1.86	-0.285189059245020
1.87	-0.294759352997260
1.88	-0.304300171059832
1.89	-0.313810559358882
1.90	-0.323289566863503

Табл. 2: Значення функції cosx при заданих значення х.

1.3 Задача 7.в

Користуючись многочленним наближенням та схемою Горнера, скласти таблицю значень функції з точністю до ε для вказаного значення, якщо:

функції з точністю до
$$\varepsilon$$
 для вказаного значення , якщо:
$$y=\frac{1}{2\sqrt{\pi}}e^{-\frac{x^2}{2}}, \qquad x=1.75+0.01k \; (k=0,1,2,...,15), \qquad \varepsilon=10^{-4}.$$

Теоретичне підгрунтя для вирішення задачі

Обчислення за допомогою рядів Тейлора дає досить швидку збіжність, взагалі-то, лише при малих значеннях $|x-x_0|$. Однак часто буває потрібно за допомогою многочлена порівняно невисокого степеня підібрати наближення, яке давало б достатню точність для всіх точок заданого відрізка. У цих випадках застосовуються розклади функцій, отримані за допомогою поліномів Чебишева на заданому відрізку. Для обчислення значень многочлена можна використовувати схему Горнера.

Для обчислення значень показникової функції на відрізку [-1,1]. Користуємося такими многочленним наближенням:

$$e^x \approx \sum_{k=0}^{7} a_k x^{7-k} \qquad (|x| \le 1), \qquad \varepsilon = 2 \cdot 10^{-7}$$
 (5)

 $a_7 = 0.9999998$, $a_6 = 1.0000000$, $a_5 = 0.5000063$, $a_4 = 0.1666674$, $a_3 = 0.0416350$, $a_2 = 0.0083298$, $a_1 = 0.0014393$, $a_0 = 0.0002040$.

```
1 import math
2 znach_a = [ 0.0002040 , 0.0014393, 0.0083298,
             0.0416350, 0.1666674, 0.5000063, 1.0 ,0.9999998]
a = 0.4
s \text{ koef\_pry\_k} = 0.002
6 alpha = 1/(2*math.sqrt(math.pi))
7 znach_k = [k for k in range(0,16)]
9 def Gorner_scheme_exp(k):#Realizaciya sxemy Gornera dlya pevnogo znachennya k
      b = znach_a[0] #Pochatkove znachennya sxemy Gornera dorivnyuye koefu pry x z
10
      najbilshym stepenem
      for koef in range(1, len(znach_a)):
11
          # -pow((a + koef_pry_k * k),2)/2) - ce znachennya stepeniu exponenty
12
          b = (b * (-pow((a + koef_pry_k * k),2)/2)) + znach_a[koef]
13
      return round(b*alpha,4)
14
15
17
18 def Gorner_scheme_cycle():#zapusayemo cykl sxemy Gornera dlya vsix znachen k
      znach_poly_pry_k = []#Spysok v yakyj budemo dodavaty znachennya polinoma
     pry riznyx k
     for ka in znach_k:
20
          p = Gorner_scheme_exp(ka)
21
          znach_poly_pry_k.append(p)#pry kozhnomu novomu k dodayemo znachennya
     polinoma v spysok
     return (znach_poly_pry_k)
23
24
25 #Adding to csv table for printing in document
26 \text{ znach}_x = []
27 for i in znach_k:
      m = round(a + koef_pry_k*i , 3)
     znach_x.append(m)
30 table=[['x', 'znach']]
for i in range(0,len(znach_x)):
    l = Gorner_scheme_cycle()
     print(str(znach_x[i])+' : '+str(l[i]))
     s = [znach_x[i], 1[i]]
     table.append(s)
35
36 outfile = open('znach_3.csv', 'w', newline="")
37 import csv
38 writer = csv.writer(outfile)
39 for row in table:
      writer.writerow(row)
41 outfile.close()
```

В таблиці 3 наведено результат роботи програми.

x	$\frac{1}{2\sqrt{\pi}}e^{-\frac{x^2}{2}}$
0.400	0.2604
0.402	0.2602
0.404	0.2600
0.406	0.2598
0.408	0.2596
0.410	0.2594
0.412	0.2591
0.414	0.2589
0.416	0.2587
0.418	0.2585
0.420	0.2583
0.422	0.2581
0.424	0.2578
0.426	0.2576
0.428	0.2574
0.430	0.2572

Табл. 3: Значення функції $y = \frac{1}{2\sqrt{\pi}}e^{-\frac{x^2}{2}}$ при заданих значення х.

1.4 Задача 7.г

Користуючись методом ітерацій, скласти таблицю значень функції у з точністю до 10^{-15} , якщо: $y = \sqrt[3]{x}$, x = 3 + k, (k = 0, 1, 2, ..., 15).

Теоретичне підгрунтя для вирішення задачі

Будь-яку функцію y = f(x) можна різними способами задавати неявно, тобто деяким рівнянням

$$F(x,y) = 0 (6)$$

Чисельний метод, в якому відбувається послідовне, крок за кроком, уточнення початкового наближення, називається *ітераційним методом*.

Часто буває, що розв'язання рівняння (5) відносно y якимось ітераційним методом зводиться до однотипних операцій, які легко реалізувати на комп'ютері. Тоді, вочевидь, доцільно застосувати **метод ітерацій**.

Один з можливих ітераційних процесів для обчислення y(x) можна побудувати таким чином. Нехай y_n наближене значення y. Застосувавши формулу Лагранжа, отримаємо $F(x,y_n)=(y_n-y)F_y'(x,\overline{y_n})$, де $\overline{y_n}$ деяке проміжне значення між y_n та y. Звідси $y=y_n-\frac{F(x,y_n)}{F_y'(x,\overline{y_n})}$, при чому значення $\overline{y_n}$ нам не відоме.

Вважаючи наближено, що $\overline{y_n} \approx y_n$, отримаємо наступну формулу дл обчислення $y \approx y_{n+1}$:

$$y_{n+1} = y_n - \frac{F(x, y_n)}{F'(x, y_n)} \qquad (n = 0, 1, 2, ...)$$
(7)

Якщо $F'_y(x,y)$ та $F''_y(x,y)$ існують і зберігають постійні знаки в розглянутому інтервалі, що містить корінь y(x), то ітераційний процес збігається до y(x).

Процес ітераційний продовжується доти, поки в границях заданої точності два послідовних значення y_n та y_{n+1} не співпадужть між собою, після чого наближено вважають, що $y(x) \approx y_{n+1}$.

Обчислення кубічного кореня.

Нехай маємо $y = \sqrt[3]{x}$. Застосувавши формулу 7 до рівняння $F(x,y) \equiv y^3 - x = 0$, отрмаємо ітераційну формулу для обчислення кубічного кореня у вигляді

$$y_{n+1} = \frac{1}{3} \left(\frac{2y_n^3 + x}{y_n^2} \right)$$

Початкове наближення $y_0 = 2^{E\left(\frac{2}{3}\right)}$, де $x = 2^m x_1$, де m - це ціле число і $\frac{1}{2} \le x_1 < 1$.

```
_{1} a = 3
znach_k = [i for i in range(0,16)]
4 znach_x = [] #stvoryuyemo spysok iz znachennyamy iksiv dlya podalshogo
     drukuvannya
5 for i in znach_k:
      iks = a + i
6
      znach_x.append(iks)
10 def pochatkove_nabl(x): #Obraxovuye pochatkovi nablyzhennya dlya iksiv
      m = 0
      for i in range(1,12):
          if 1/2 \le (x/pow(2, i)) \le 1:
13
              m = m+1
14
              return pow(2, int(m/3))
15
17
              m = i
18
19
20 znach_y_0=[]
21 for i in znach_x: #Zanosymo pochatkovi nablyzhennya dlya vsix x u spysok
      y_0 = pochatkove_nabl(i)
      znach_y_0.append(y_0)
24
25
27 #obchyslyuye korin kubichnyj dlya kozhnogo okremogo x
28 # k - poryadkovyj nomer elementa zi spysku iksiv , x - jogo znachennya
def kub_korin(k,x):
      znach_y = []
30
      y = znach_y_0[k]
31
      for i in range(0,100):
32
          y = (1/3)*(((2*pow(y,3))+x)/pow(y,2))
33
          znach_y.append(y)
34
          if i>1 and abs(znach_y[i]-znach_y[i-1]) <= pow(10,-15): #umova</pre>
     prypynennya iteracij
               return round(znach_y[len(znach_y)-1],15)
36
              break
37
```

```
39 #Vyznachayemo korin dlya kozhnogo iksa ta zanosymo v spysok
40 def all_kub_korin():
      all_znach_y = []
     for i in range(0,len(znach_x)) :
42
          r = kub_korin(i, znach_x[i])
43
          all_znach_y.append(r)
44
     return all_znach_y
45
46
48 #Adding to csv table for printing in document
49 table=[['x', 'znach']]
50 for i in range(0,len(znach_x)):
      1 = all_kub_korin()
      print(str(znach_x[i])+' : '+str(l[i]))
52
     s = [znach_x[i], l[i]]
     table.append(s)
outfile = open('znach_4.csv', 'w', newline="")
56 import csv
57 writer = csv.writer(outfile)
58 for row in table:
      writer.writerow(row)
60 outfile.close()
```

В таблиці 4 наведено результат роботи програми.

x	$\sqrt[3]{x}$
3	1.442249570307408
4	1.587401051968199
5	1.709975946676697
6	1.817120592832140
7	1.912931182772389
8	2.00000000000000000
9	2.080083823051904
10	2.154434690031883
11	2.223980090569315
12	2.289428485106664
13	2.351334687720757
14	2.410142264175230
15	2.466212074330470
16	2.519842099789746
17	2.571281590658235
18	2.620741394208896

Табл. 4: Значення функції $y = \sqrt[3]{x}$ при заданих значеннях х.

Дякую за увагу!