

医疗数据隐私

邱万勇

指导老师: 胡斌、钱昆

医学技术学院、计算机学院

医疗数据伦理问题

医疗数据权利

CONTENTS

医疗数据个人隐私

医疗数据使用

医疗大数据时代新的伦理问题

○ 数据安全

• 从医疗数据采集、存储、关联计算、共享到使用、存档,全流程中数据能不能保证不被盗、不被破解、不被篡改、不被滥用、不主动泄露?安全、可靠?

○ 身份困境

• 数字身份与社会身份,可以分离还是必须关联?

○ 隐私边界

• 当你听说"相比遭遇恐怖袭击、破产和财产被盗,美国人更担心网络在不经意间泄露了自己的隐私",你怎么理解大数据时代个人隐私? 法律该如何提供保护?

○ 数据权利

• 医疗大数据是资产吗?在"我"、医疗机构、服务公司、医疗设备、医疗APP或公众之间,拥有权、采集权、使用权、处理权、交易权、使用权,这一整套的数据权利成立吗?符合法律法规吗?符合伦理吗?

大数据公共治理

• 政府主导的公众医疗数据是否应当无条件开放共享? 基于大数据的公共治理创新如何才能避免歧视、不当得利、威胁个人自由?

大数据伦理新问题:新型数据安全

传统的数据安全: 加密、传输、存储、基本遵循法律法规等

新型的数据安全: 有意识知道的(自己提供的,如看病就医)

无意识的被记录被采取(医疗机构、服务平台、科研机构、移动基站、应用App记录信息,等等私自获取利用)

新型数据安全风险

- 个人数据 "被提取" "被记录" "被滥用" "被关联处理",其获取过程无意识,使用边界不清晰,常超出用户最初授权范围,综合信息、敏感信息安全风险
- 网络条件下,各种应用系统被"撞库"成功后的数据泄露风险
- "云端" 安全管理与审计体制安全风险

数字身份困境

• 数字身份特点

- 数据安全与隐私泄露严重
- 易被盗用,易被追溯
- 其敏感性超出一般数据隐私
- 导致个体面临歧视、标签化或健康信息的非自愿泄露
- 多样、可变、允许匿名/假名?
- 数字身份如何保障个人隐私?

辩论实名制

	辩论实名制	当 子星在线 xuetangx.com
群体	利	弊
用户	网络发表言论时更加谨慎、更加合乎法律、道德 规范;更利于青少年习得良好的社会行为	言论自由受到限制;个人数据泄露后隐 私权、名誉权、财产权受到伤害的风险 增加;接受不当个性化推送服务的频次 增加
网络服务 /运营商	更易于管理和运行,如向未成年人拦截不适合的 网络游戏、暴力内容;更利于开展精准商业服务	服务吸引力受影响(如失去用户、失去 粘度),进而减损价值;对信息和网络 安全的投入要大大增加
政府	更利于提供精准公共服务;更利于减少网络不良信息,使得言论空间更加晴朗;利于青少年和知识水平不高的网民的生存、学习和成长;侦查和惩治网络犯罪更快	便于实施类似"棱镜门"计划,而失去部分公民的信任;"寒蝉效应"使言路闭塞
他人	发生被不当"人肉"时易于找到事主并追责;被 有意无意网络侵权的风险降低	盗取、兜售或伪造公民信息的新型网络 犯罪可能更加多发
法律/伦理学者	利于发扬他律与自律共治的道德作用;维护正当 的合法性与必要性原则	以不信任作为获得信任的前提;以限制自由来保护自由;以正价值信息全面否定附加值信息;以用户个体的潜在风险换取网络空间的安全

大数据时代不再有个人隐私?

- 2013年6月6日, 前美国中情局职员斯诺登披露 PRISM计划, 引起公众极度关注
- 互联网技术创新 vs. 个人信息/隐私泄露——>社 会安全风险
- 2016年2月17日,《库克怒发公开信:苹果不会给美国政府开后门》

采集方法	案例	示例技术	用户能感知到 吗?	用户可自由选择设 出吗?
收集公开数据	用爬虫软件"扒"近期微博	新浪微博开放API	不能	不能
公开收集数据	微博关键词云图应用, 网站 问卷	Web应用, Cookie…	能,确定	不用
日志文件	电商, 搜索引擎, 地图	Cookie···	不能	不能或很难
隐藏式收集	手机手电筒App索取获取精 确定位信息权限	Android /ios等API	能,常被忽视	不能或难
攻击、破解	12306用户信息暴露	黑客攻击等	不能	不能
买卖	骚扰信息(出生、银行开户、手机开户···)	交易 (公开或私密)	不能	不能
关联、推断	洛杉矶警方统计推断出某些 小区较不安全	关联分析、聚类分析、机 器学习	可能不能	不能

隐私之辩

- 大数据预测,是采用聚类、关联分析、统计学习等方法,对多来源、多形式、多维度的海量数据进行计算,从而不仅能"复制过去",很多成功的案例见于感冒疫情预测、经济走势反转点预测、CPI指数预测等
- 有学者认为大数据预测技术存在伦理困境
 - 结果预判挑战自由
 - 隐私披露挑战尊严
 - 信息垄断挑战公平
 - 固化标签挑战正义

数据权利

- 从财务上看,自然人或法人的资产必须具备三要素:
 - 被他拥有和控制
 - 能够用货币来衡量
 - 能为他带来经济利益
- 大数据实践中,
 - 大数据在数据权属上存在模糊地带
 - 其货币价值与可用真实性、可信性、完整性、可用性等指标度量的数据质量密切相关
 - 大数据的价值多体现在关联价值上,即通过将数据不断聚合、加工后产生增值
 - 不同于一般物质性资产,数据的价值不随便使用次数的增多而减少,具有非消耗性

哪些权利?如何扶"弱"?

- 但,这些数据的权属在认识上和实践上存在多种分歧:
- 未清晰定界数据所有权和使用权, 且缺乏明确的数据授权、让渡机制
- 缺少对数据是否按照预设目的和要求来使用、共享和删除的审计权
- 未定义涉及财产性和声誉性汇报的数据分红权

哪些权利?如何扶"弱"? 日日学堂在练					
弱者	风险与威胁	保护			
"数据鸿沟" 彼岸	丧失公平机会 人财物安全受侵害	政府普惠信息设施、教育、基本社会保障 培育和发展社会组织 提供人性化公益服务			
个人一方	个人隐私被侵害 数据收益无保障	加快个人隐私、数据资产相关法治建设,尤其是司法实践 研究、试行数据权属交易规则 培育和发展坚守社会价值的社会组织			
小微创业者	数据资产被垄断	加大数据共享、开放力度 规范数据市场			

医疗数据的安全使用

• 隐私计算理论与方法

隐私加密计算:

- 是指使用密码学工具在安全协议层次构建隐私计算协议,从而实现多个数据拥有方在相互保护隐私的前提下,协同完成计算任务。代表技术:安全多方计算
- 隐私计算最初是作为隐私加密计算进行研究的。随着秘密共享、不经意传输、混淆电路和同态加密等 密码学工具的发展, 隐私加密计算仍有广泛的使用场景和发展潜力

隐私保护计算:

- 按照发展轨迹、算法基础和应用特点,隐私保护计算目前主要分为差分隐私、可信执行环境和联邦学习三种技术
- 为了在计算任务中对隐私进行更加精细的分析和控制,隐私计算的研究逐渐脱离出隐私加密计算的密码学范畴,在更加广泛的技术和应用场景下研究:计算前对数据的安全获取和管理、计算过程中对数据隐私的保护、计算完成后对生成/发布(数据/模型)的隐私保护与安全评估

中国数据保护法律概况

- 《个人信息保护法》与数据保护
- 《数据安全法》与数据保护
- 《网络安全法》与数据保护

