Computing for Medicine

Google Classroom Code: dnd5qkt5

Monsoon 2025 Lecture 6 Word Vectors

Training with CBOW

word2Vec: Skip Gram Variant

Predicts the context given the middle word

Training with Skip Gram

Two Papers that changed the field:

Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov

Google Inc., Mountain View, CA tmikolov@google.com

Greg Corrado

Google Inc., Mountain View, CA gcorrado@google.com

Kai Chen

Google Inc., Mountain View, CA kaichen@google.com

Jeffrey Dean

Google Inc., Mountain View, CA jeff@google.com

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov
Google Inc.
Mountain View
mikolov@google.com

Hya Sutskever Google Inc. Mountain View ilyasu@google.com Kai Chen Google Inc. Mountain View kai@google.com

Greg Corrado Google Inc. Mountain View gcorrado@google.com Jeffrey Dean Google Inc. Mountain View jeff@google.com

Open Source Code, Multiple Implementations

Words in Vector Space

covid [0.3 0.7]
pandemic [0.3 0.8]
hospital [0.4 0.5]
football [0.9 0.1]

Summary of Embeddings

- Embeddings capture distributional similarities between words
- Allow efficient word algebra and analogies
- Word2Vec Pre-trained Neural Network based low dimensional word embedding from Google (Atomic Unit = Word)
- GloVe- Pretrained word embedding from Stanford (Atomic Unit = Word)
- Fasttext- Pretrained word embedding from Facebook (Atomic Unit = Character)

Before Making your own Embedding

Available embeddings for clinical data and concepts. Since ELMo models use character information and BERT models use sub-word information, they can generate a representation for any concept.

Name	Model	Data/Concepts	Terms	Dim.
PubMed-w2v.bin*	word2vec	PubMed	2.4 M	200
PMC-w2v.bin ^b	word2vec	PubMed Central	2.5 M	200
PubMed-and-PMC-w2v.bin	word2vec	PubMed, PubMed Central	4.1 M	200
wikipedia-pubmed-and-PMC-w2v.bin ^d	word2vec	PubMed, PubMed Central, Wikipedia	5.5 M	200
drug word embeddings"	word2vec	PubMed, DrugBank	553,195	420
AWE-CM [49]	word2vec	UMLS CUI (concepts)	265 M	300
claims_codes_hs_300 [55]	word2vec	ICD-9 codes (concepts)	51,327	300
claims_cuis_hs_300 [55]	word2vec	UMLS CUI (concepts)	14,852	300
cui2vec [56]	word2vec/GloVe	UMLS CUI (concepts)	108,477	500
concept embeddings [58]	AiTextML	MeSH ID (concepts)	26,103	100
word embeddings [58]	AiTextML	PubMed	513,196	100
ELMo (PubMed model) [11]	ELMo	PubMed	NA	1024
BioBERT [15]	BERT	PubMed	NA	768/1024
ClinicalBERT [16,17]	BERT	MIMIC III	NA	768

^{*} http://evexdb.org/pmresources/ngrams/PubMed/.

b http://evexdb.org/pmresources/ngrams/PMC/.

http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin.

d http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin.

https://github.com/chop-dbhi/drug_word_embeddings.

Evaluation Tasks

	Word embeddings		Evaluation		
Paper	Corpora	Model	Interiosic	Ketrinele	
De Vine et al., 2015 [30]		word2vec		clinical information extraction	
Chiu et al., 2016 [72]	PMC, Pubmed, PMC + Pubmed	word2vec	relatedness, similarity	NEK	
Dubois et al., 2017 [32]	text notes, OHSUMED	GloVe	-	disease prediction, mortality prediction	
Wang et al., 2018 [29]	Mirro Clinic test notes, Pubbled, Wikipedia, Google News	GloVe	similarity (qualitative),	clinical information extraction, reaction extraction	
Huang et al., 2016 [46]	MedHelp online forum, PubMed, Wikipedia		cluster quality evaluation		
Choi et al., 2016 [55]	OHSUMED; medical claims	word2vec	conceptual similarity, medical relatedness		
Yu et al., 2016 (101)	LMLS and McSH terms	LDA	UMES-Similarity		
Mencia et al., 2016 [58]	BioASQ, PultMed	All-in-tent	MiniMayoSRS, UMNSRS similarity/relatedness		
Bong et al., 2017 [49]	MINOC-ES	word2vec	similarity		
Patel et al., 2017 [30]	PubMed, mudical claims	word2yec	medical term similarity	medical coding review	
Beam et al., 2018 [D4]	PubMed, medical claims, UMLS semantic types	word2vec, Gime	conorbidity, causative, and drug-conditions relations and UMNSRS similarity/relatedness		
Zhao et al., 2018 [43]	PubMed, Drugffank	word2vec	UMNSRS similarity/relatedness	drug ramie recognition/dassification	
Craig et al., 2017 [37]	discharge notes	word2vec (Skipgram)	-	30-day unplanned prediction	
Nguyen et al., 2017 [38]	hospital patient records	random init, word2vec	cluster evaluation	implained readmission within 6 months prediction	
Phom et al., 2016 (3%)	hospital patient records	random init + advanced techniques	_	unplanned readmission prediction, high-ris patient prediction	
Escudic et al., 2018 [33]	electronic health records from hospital	three-layer stack of denoising autoencoders	-	disease prediction	
Gehrmann et al., 2018 [35]	discharge nummaries from MIMIC-III	word2vec	word similarity	planotype charification	
Wang et al., 2016 [29]	clinical notes from hospital, PMC, Neses, Wikipedia + Gigaword	word2vec (Skip-green)	word/semantic similarity	information extraction, smoking status prediction, fracture detection,	
Sholgi et al., 2016 [34]	(2h2/VA 2010 (R1), ShARe/CLO 2012 eHealth Evaluation Lab (82)	word2vec (Skip-gram)	-	disease prodiction, term extraction	

Attention and Transformer

Sequence to Sequence Modeling

Sequence to Sequence Modeling

Sequence to Sequence Modeling

How do we model a whole sentence?

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* !
illia.polosukhin@gmail.com

https://papers.nips.cc > paper > 7181-attention-is-all-yo...

Attention is All you Need - NIPS papers

by A Vaswani · 2017 · Cited by 52845 — Authors. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin ...

Transformer

Let's break it down

Input Embeddings

https://becominghuman.ai/attention-is-all-you-need-16bf481d8b5c

Attention Mechanism

$$c_i = \sum_j \alpha_{ij} h_j$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k} \exp(e_{ik})}$$

$$e_{ij} = a(g_{i-1}, h_j)$$

Self Attention

Self Attention

Self-Attention Attention calculation is O(n²)

https://jalammar.github.io/illustrated-transformer/ https://www.topbots.com/transformers-timesformers-and-attention/

Query, Key and Value

Then we use the Q, K and V matrices to calculate the attention scores. The scores measure how much focus to place on other places or words of the input sequence w.r.t a word at a certain position. That is, the dot product of the query vector with the key vector of the respective word we're scoring. So, for position 1 we calculate the dot product (.) of q1 and k1, then q1. k2, q1. k3 and so on,...

Scaled Dot Product (Similarity with Context)

Mechanics of Attention

Masked Attention

Look ahead mask

http://peterbloem.nl/blog/transformers

Thanks for attending the class!