Department of Mathematics Indian Institute of Technology Jammu

CSD001P5M Linear Algebra Tutorial: 01

- 1) Given $A = (a_{ij})$ we define the transpose matrix $A^T := (b_{ij})$, where $b_{ij} = a_{ji}$. Show that $(AB)^T = B^T A^T$ if AB is defined.
- 2) Let A and B be invertible matrices with same size, then show that $(AB)^{-1} = B^{-1}A^{-1}$.
- 3) Let A be a square matrix, then show that A is invertible if and only if A^T is.
- 4) Show that every square matrix can be written as a sum of a symmetric and a skew symmetric matrices. Further, show that if A and B are symmetric, then AB is also symmetric if and only if AB = BA.
- 5) Show that product of two upper triangular matrices is upper triangular.
- 6) Let $A_1, ..., A_r$ be matrices and $c_1, ..., c_r \in \mathbb{R}$. Then an expression of the form $c_1A_1 + \cdots + c_rA_r$ is called a \mathbb{R} -linear combination of $A_1, ..., A_r$. Let A and B be matrices such that AB is defined.
 - (a) Show that rows of **AB** can be written as linear combination of rows of **B**.
 - (b) Show that columns of **AB** can be written as linear combination of columns of **A**.
- 7) Find nonzero matrices **A** and **B** such that AB = 0, where **0** is a zero matrix.
- 8) Convert the following matrices into REF and RREF.

a)
$$\begin{bmatrix} 1 & 4 & -1 \\ -2 & -8 & 2 \\ 3 & 12 & -3 \\ 2 & 5 & 3 \end{bmatrix}$$

b)
$$\begin{bmatrix} 5 & 6 & -7 & 2 \\ -1 & -2 & 3 & 0 \\ 0 & 4 & 1 & 3 \end{bmatrix}$$

c)
$$\begin{bmatrix} 2 & -4 & 1 & 6 \\ -4 & 0 & 3 & -1 \\ 0 & 1 & -1 & 3 \end{bmatrix}$$

9) Find two different row echelon forms of $\begin{bmatrix} 1 & 4 \\ 3 & 11 \end{bmatrix}$. Is it possible to find reduced row echelon forms of the given matrix?