skfda.preprocessing.registration.warping_mean

skfda.preprocessing.registration.warping_mean(warping, *, iter=20, tol=1e-05, step_size=1.0, eval_points=None, return_shooting=False) [source]

Compute the karcher mean of a set of warpings.

Let $\gamma_i i = 1...n$ be a set of warping functions $\gamma_i : [a,b] \to [a,b]$ in Γ , i.e., monotone increasing and with the restriction $\gamma_i(a) = a \gamma_i(b) = b$.

The karcher mean $\bar{\gamma}$ is defined as the warping that minimises locally the sum of Fisher-Rao squared distances. [SK16-8-3-2].

$$\bar{\gamma} = argmin_{\gamma \in \Gamma} \sum_{i=1}^{n} d_{FR}^{2}(\gamma, \gamma_{i})$$

The computation is performed using the structure of Hilbert Sphere obtained after a transformation of the warpings, see [S11-3-3].

Parameters:

- warping (FDataGrid) Set of warpings.
- iter (int) Maximun number of interations. Defaults to 20.
- tol (float) Convergence criterion, if the norm of the mean of the shooting vectors, $|\bar{v}| < tol$, the algorithm will stop. Defaults to 1e-5.
- **step_size** (*float*) Step size ϵ used to update the mean. Default to 1.
- eval_points (array_like) Discretisation points of the warpings.
- **shooting** (*boolean*) If true it is returned a tuple with the mean and the shooting vectors, otherwise only the mean is returned.

Returns:

(FDataGrid) Fdatagrid with the mean of the warpings. If shooting is True the shooting vectors will be returned in a tuple with the mean.

References

- [SK16- Srivastava, Anuj & Klassen, Eric P. (2016). Functional and shape data analysis. In
- 8-3-2] Template: Center of the Mean Orbit (pp. 274-277). Springer.
- [S11- Srivastava, Anuj et. al. Registration of Functional Data Using Fisher-Rao Metric (2011). In
- 3-3] Center of an Orbit (pp. 9-10). arXiv:1103.3817v2.