# 5. PWM pin

# 1. Learning objectives

- 1. Learn to control LED lights with the Raspberry Pi Pico 2.
- 2. Understand the PWM output of the Raspberry Pi Pico 2.

## 2. Hardware construction

This course.

LED light\*1

220Ω resistor\*1



# 3. Program analysis

### **Thonny programming**

For the use of ThonnyIDE, please refer to the previous environment construction related courses.

```
import machine
import utime

led = machine.PwM(machine.Pin(15))
led.freq(1000)

while True:
    for i in range(65535):
        led.duty_u16(i)
        utime.sleep(0.0005)
```

#### import machine

The machine library contains all the instructions MicroPython needs to communicate with Pico and other MicroPython-compatible devices, extending the language of physical computing.

#### import utime

The "utime" library. This library handles everything to do with time, from measuring it to inserting delays into your program. The units are in seconds.

### led = machine.PWM(machine.Pin(15))

Set IO15 to PWM output, that is, use the B output of PWM slice 7.

### led.freq(1000)

Set the frequency to 1000 Hz - 1000 cycles per second.

### led.duty\_u16(i)

Set the duty cycle.

Through the While loop, modify the PWM duty cycle value through the for loop.

# 4. Experimental phenomenon

After the program is downloaded, we can see the process of the LED light slowly turning on from off.