Homework 26 - MATH 791

Will Thomas

Problem 1:

Construct a field K with 16 elements, and identify explicitly a subfield with 4 elements. Hint: start by finding an irreducible polynomial of degree four over \mathbb{Z}_2 .

Solution:

Admitted

Problem 2:

For K as in problem 1, is there a subfield of K with 8 elements? Solution:

Admitted

Problem 3:

Let K be a field with p^m elements, with p prime and $m \ge 1$. Let $\sigma : K \to K$ be given by $\sigma(\alpha) = \alpha^p$, for all $\alpha \in K$. Show that σ is an automorphism of K fixing \mathbb{Z}_p . We call σ the Frobenius automorphism of K.

Solution:

Admitted

Problem 4:

For K and σ as in problem 3, what is $\sigma^{j}(\alpha)$, for $j \geq 1$ and $\alpha \in K$? What is σ^{m} ? Solution:

Admitted

Problem 5:

Let K and σ be as in problem 3. Supposed $n \mid m$. Show that $F := \{\alpha \in K \mid \sigma^n(\alpha) = \alpha\}$ is the unique subfield of K containing p^n elements.

Solution:

Admitted