Multimodal Deep Learning

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, Andrew Y. Ng

McGurk Effect?

- a perceptual phenomenon that demonstrates an interaction between hearing and vision in speech perception
- a visual /ga/ with a voiced /ba/ is perceived as /da/

McGurk Effect?

"Ba"

- a perceptual phenomenon that demonstrates an interaction between hearing and vision in speech perception
- a visual /ga/ with a voiced /ba/ is perceived as /da/

Visueller Reiz

Auditiver Reiz

Modeling "mid-level" relationships

- In this paper, they are interested in modeling "mid-level" relationships
- "Mid-level" relationship? : **indirectly** related to each other

3-d depth scan

First-order relationship (depth discontinuities often manifest as strong edges in images)

Image pixels

HELLO

P.

Phonemes (audio)

"mid-level" relationship
(hard to relate raw pixels to
audio waveforms or
spectrograms

Visemes (video)

Modeling "mid-level" relationships

- In this paper, they are interested in modeling "mid-level" relationships
- "Mid-level" relationship? : **indirectly** related to each other

Three tasks and Three learning settings

Figure 1: Multimodal Learning settings where A+V refers to Audio and Video.

Multimodal Deep Learning

Three learning settings

Multimodal Fusion

Cross Modality

Learning

Shared Representation

Learning

Learning Setting 1) Multimodal Fusion

- Use data from all modalities at all tasks
- Typical setting

Multimodal Deep Learning

7

Three learning settings

	Feature Learning	Supervised Training	Testing
Cross Modality Learning	A + V	Video	Video
	A + V	Audio	Audio

Multimodal Fusion

Cross Modality Learning

Shared Representation Learning

Learning Setting 2) Cross Modality Learning

- Data from all modalities is available only feature learning
- Only data from a single modality in training and testing
- Purpose: Learn better single modality representations given unlabeled data from multiple modalities

Three learning settings

	Feature Learning	Supervised Training	Testing
Shared Representation	A + V	Audio	Video
Learning	A + V	Video	Audio

Multimodal Fusion

Cross Modality Learning

Shared Representation Learning

Learning Setting 3) Shared Representation Learning

- Evaluate if the feature representations can capture correlations across different modalities
- Access whether the learned representations are modality-invariant

Sparse Restricted Boltzmann machines

RBM (Restricted Boltzmann machines)

- Simple architecture
- An **undirected graphical model** with hidden variables(h) and visible variables(v)
- No connections within hidden variables or visible variables (1) express the combination of probability distributions by assuming <u>independence</u> between events (conditional probability) (2) p(h, v) is complicated to calculate, but p(v | h), p(h | v) is easier to calculate (one value is fixed)
- Unsupervised Learning Focus on which features of the input are important and how to combine them to form a pattern. (similar to autoencoder)

Sparse Restricted Boltzmann machines

RBM (Restricted Boltzmann machines)

- Simple architecture
- An **undirected graphical model** with hidden variables(h) and visible variables(v)
- No connections within hidden variables or visible variables
 - (1) express the combination of probability distributions by assuming **independence** between events (conditional probability)
 - (2) p(h, v) is complicated to calculate, but $p(v \mid h)$, $p(h \mid v)$ is easier to calculate (one value is fixed)

$$-\log P(\mathbf{v}, \mathbf{h}) \propto E(\mathbf{v}, \mathbf{h}) = \frac{1}{2\sigma^2} \mathbf{v}^T \mathbf{v} - \frac{1}{\sigma^2} \left(\mathbf{c}^T \mathbf{v} + \mathbf{b}^T \mathbf{h} + \mathbf{h}^T W \mathbf{v} \right)$$

probability over *h*, *v*

$$\frac{1}{2\sigma^2}\mathbf{v}^T\mathbf{v} - \frac{1}{\sigma^2}\left(\mathbf{c}^T\mathbf{v} + \mathbf{b}^T\mathbf{h} + \mathbf{h}^TW\mathbf{v}\right)^{\frac{1}{2}} \left[p(h_j|\mathbf{v}) = sigmoid(\frac{1}{\sigma^2}(b_j + \mathbf{w}_j^T\mathbf{v}))\right]$$

Conditional probability distribution when h, v is fixed

Sparse Restricted Boltzmann machines

RBM (Restricted Boltzmann machines)

- Simple architecture
- Boltzmann Machine (BM) Restricted BM (RBM) en variables(h) and visible variables(v)

probability over h, v

r visible variables distributions by assuming **independence** between events

 $(v \mid h), p(h \mid v)$ is easier to calculate (one value is fixed)

$$p(h_j|\mathbf{v}) = sigmoid(\frac{1}{\sigma^2}(b_j + \mathbf{w}_j^T \mathbf{v}))$$

Conditional probability distribution when h, v is fixed

Sparse Restricted Boltzmann machines

RBM (Restricted Boltzmann machines)

- Simple architecture

probability over h, v

Conditional probability distribution when h, v is fixed

Multimodal Deep Learning

(1/3) Feature Learning

Models Introduction in this paper

RBM model	Shallow Bimodal RBM	Bimodal Deep Belief Network	Video-Only Deep Autoencoder	Bimodal Deep Autoencoder
Hidden Units O O O O O O O O O O O O O O O O O O O	Shared Representation Audio Input Video Input	Deep Hidden Layer Audio Input Video Input	Audio Reconstruction Video Reconstruction Shared Representation Video Input	Audio Reconstruction Video Reconstruction Shared Representation Audio Input Video Input

(1/3) Feature Learning

(1,2/5) RBM and RBM concatenated

(1) **RBM**

- Baseline of these experiments
- The posteriors of the hidden variables given the visible variables can be used a new representation for the data.

(2) RBM concatenated

- Jointly models the distribution of the audio and video data (shallow model)
- Because of the highly non-linear correlation, it is <u>hard to learn these correlations</u> and <u>form multimodal</u>
 <u>representations</u>
 (unable to capture correlations <u>across the modalities</u>)

(1/3) Feature Learning

(3/5) RBM over the pretrained layers (Bimodal DBN)

(3) Bimodal DBN

- Represents the data though learned first layer representations
 - -> can be easier the model to learn higher-order
 correlations across modalities
- First layer: represents phonemes and visemes Second layer: relationships between them

(1/3) Feature Learning

(3/5) RBM over the pretrained layers (Bimodal DBN)

(1/3) Feature Learning

(4/5) Deep Autoencoder (Video-only)

What is the autoencoder?

- 1. Compress the input data as much as possible (Encoder)
- 2. Reconstruct the compressed data back to the original input form (Decoder)

RBM vs Deep autoencoder?

RBM	Deep autoencoder		
A Symmetrical, Bipartite, Bidirectional Graph with Shared Weights	28 28 28 28 Encoder Holden layer 2: 300 neurons Input layer 1: 300 neurons Total neurons Reconstructed image 28 28 28 Reconstruct image 28 28 28 Reconstr		

Similar to autoencoders, RBMs try to make the reconstructed input from the "hidden" layer as close to the original input as possible.

RBMs use the same matrix for "encoding" and "decoding."

Trained RBMs can be used as layers in neural networks.

Encoder matrix and decoder matrix are not same

(1/3) Feature Learning

(4/5) Deep Autoencoder (Video-only)

(a) Video-Only Deep Autoencoder

(4) Video-only Deep Autoencoder

- Both modalities during feature learning
 Single modality during supervised training & testing
- Reconstruct <u>Audio & Video representation</u> vectors given only **video as the input** (can discover <u>correlations</u> across the modalities)
- When multiple modalities are available for the task, it is **less clear** how to use this model as one would need to <u>train a deep autoencoder for each modality</u>

(1/3) Feature Learning

(4/5) Deep Autoencoder (Video-only)

```
def build model(self):
    """build (deep) autoencoder model
    input_data = Input(shape=(self.input_dim, ))
    # encoded representation of the input
    encoded = Dense(self.hidden dim[0], activation='relu')(input data)
    encoded = Dense(self.hidden_dim[1], activation='relu')(encoded)
    encoded = Dense(self.hidden_dim[2], activation='relu')(encoded)
    # decoded representation of the input
   decoded = Dense(self.hidden dim[1], activation='relu')(encoded)
    decoded = Dense(self.hidden_dim[0], activation='relu')(decoded)
    decoded = Dense(self.input_dim, activation='sigmoid')(decoded)
    # maps an input to its reconstruction
    self.autoencoder = Model(inputs=input_data, outputs=decoded)
    # maps an input to its encoded representation
    self.encoder = Model(inputs=input data, outputs=encoded)
    # an encoded input placeholder
    encoded_input = Input(shape=(self.hidden_dim[2], ))
    # retrieve layer of the autoencoder model
    decoder layer1 = self.autoencoder.layers[-3]
    decoder_layer2 = self.autoencoder.layers[-2]
    decoder_layer3 = self.autoencoder.layers[-1]
    # maps the encoded representation to the input
    self.decoder = Model(encoded input, decoder layer3(decoder layer2(decoder layer1(encoded input))))
```

```
def train model(self, X train):
    """train (deep) autoencoder model and save to external file
    self.autoencoder.fit(X train, X train,
                         epochs seli.epochs,
                        batch size=self.batch size,
                        shuffle=True)
    self.save model()
```

Compare input vector and decoded vector using dense layer

(1/3) Feature Learning

(5/5) Bimodal Deep Autoencoder

(b) Bimodal Deep Autoencoder

- Bimodal deep autoencoder in a denoising fashion
- Use an augmented but noisy dataset with additional examples that have only a single-modality as input
- Video(zero values) + audio(original values)=> reconstruct both modalities(audio and video)

(1/3) Feature Learning

(5/5) Bimodal Deep Autoencoder

```
def build_model(self):
    """build bimodal (deep) autoencoder model
   input data A = Input(shape=(self.input dim A, ), name='input A')
   ared repres')
    encoded_A = Dense(self.hidden_dim_A[0], activation='relu', name='encoded_A_1')(input_data_A)
    encoded V = Dense(self.hidden dim V[0], activation='relu', name='encoded V 1')(input data V)
    encoded A = Dense(self.hidden dim A[1], activation='relu', name='encoded A 2')(encoded A)
    encoded_V = Dense(self.hidden_dim_V[1], activation='relu', name='encoded_V_2')(encoded_V)
   shared = Concatenate(axis=1, name='concat')([encoded A, encoded V])
    encoded = Dense(self.nidden_dim_shared, activation= relu , name= shared_layer')(shared)
    decoded_A = Dense(self.hidden_dim_A[1], activation='relu', name='decoded_A_2')(encoded)
    decoded V = Dense(self.hidden dim V[1], activation='relu', name='decoded V 2')(encoded)
   decoded A = Dense(self.hidden dim A[0], activation='relu', name='decoded A 1')(decoded A)
    decoded V = Dense(self.hidden dim V[0], activation='relu', name='decoded V 1')(decoded V)
    decoded_A = Dense(self.input_dim_A, activation='sigmoid', name='decoded_A')(decoded_A)
    decoded V = Dense(self.input dim V, activation='sigmoid', name='decoded V')(decoded V)
    self.autoencoder = Model(inputs=[input_data_A, input_data_V], outputs=[decoded_A, decoded_V])
    self.encoder = Model(inputs=[input data A, input data V], outputs=encoded)
   self.autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
```

Compare input vector and decoded vector using dense layer

(b) Bimodal Deep Autoencoder

IV. Experiments and Results

1. Data Preprocessing

- Evaluate methods on audio-visual speech classification of isolated letters and digits
- ρ : parameter chosen using cross-validation

Video dataset preprocessing

IV. Experiments and Results

2. Datasets used

Datasets	Details	
CUAVE (video and audio)	 36 speakers saying 0 to 9, 5 times Odd-numbered : test set Even-numbered : training set	
AVLetters (video)	 - 10 speakers saying A to Z - 60 x 80 pixels - Visual-only lipreading task 	
AVLetters2	5 speakers saying A to Z, 7 timesNew high-definition version of AVLetters	
Stanford Dataset	- 23 volunteers saying 0 to 9, A to Z, selected sentences from TIMIT datasets	
TIMIT	- Unsupervised audio feature pre- training	

CUAVE dataset

AVLetters dataset