Best Available Copy

=> d his

=> s 19 and rayleigh

```
(FILE 'USPAT' ENTERED AT 10:05:41 (IN 24 MAR 93)
L1
          25190 S 430/1-350/CCLST
L2
          36547 S TWO DIMENSIONAL OR TWO-DIMENSIONAL OR TWO(P)DIMENSIONAL
L3
            515 S L1 AND L2
            277 S L3 AND RADIATION
L4
            277 S L4 AND (METHOD? OR PROCESS?)
L5
            849 S HORSERADISH AND (PARTICLE# OR POWDER#)
L6
L7
              4 S L6 AND SPRAY AND TOPICALLY
=> s 15 and mask
         49929 MASK
           110 L5 AND MASK
L8
=> s 18 and substrate
        151865 SUBSTRATE
            93 L8 AND SUBSTRATE
L9
=> s 19 and mask image
         49929 MASK
        155587 IMAGE
           471 MASK IMAGE
                  (MASK(W)IMAGE)
L10
             6 L9 AND MASK IMAGE
=> d cit 1-6
    5,178,976, Jan. 12, 1993, Technique for preparing a photo- mask
for imaging three-dimensional objects; James W. Rose, et al.,
264/220, 247; <u>430/318</u>, <u>322</u> [IMAGE AVAILABLE]
    5,153,084, Oct. 6, 1992, Process for preparing a photo- mask
for imaging three-dimensional objects; Donald Franklin Foust, et al.,
 <u>430/5</u>; 264/271.1, 279; <u>430/270</u> [IMAGE AVAILABLE]
    5, 141, 829, Aug. 25, 1992,
                                <u>Method</u> of preparing a photo- <u>mask</u>
for imaging three-dimensional objects; William V. Dumas, et al.,
 <u>430/5</u>; 427/96, 99; <u>430/313</u>, <u>315</u> [IMAGE AVAILABLE]
   5,043,251, Aug. 27, 1991,
                               Process of three dimensional
Withography in amorphous polymers; Mark F. Sonnenschein, et al.,
 _430/297 , _321 , 396, 944, 945 [IMAGE AVAILABLE]
    4,898,804, Feb. 6, 1990, Self-aligned, high resolution resonant
dielectric lithography; Kurt Rauschenbach, et al., 430/311 ,
          <u>322</u> , <u>325</u> , <u>327</u> ; 437/180, 229
    4,356,254, Oct. 26, 1982, Image-forming method using o-quinone
diazide and basic carbonium dye; Yohnosuke Takahashi, et al.,
  <u>430/296</u> , <u>5</u> , <u>165</u> , <u>166</u> , <u>190</u> , <u>191</u> , <u>294</u> ,
          320 , 323 , 325 , 326 , 330 , 945
  309_,
=> s 110 and rayleigh
          1620 RAYLEIGH
             0 L10 AND RAYLEIGH
L11
```

```
1620 RAYLEIGH
             1 L9 AND RAYLEIGH
L12
=> d cit
    4,659,429, Apr. 21, 1987,
                                <u>Method</u> and apparatus for production and
use of nanometer scale light beams; Michael Isaacson, et al., 156/644,
643, 652, 655, 659.1; 355/78; 430/5 , 311 [IMAGE AVAILABLE]
=> s l1 and rayleigh
          1620 RAYLEIGH
            12 L1 AND RAYLEIGH
L13
=> s 113 and 12
             2 L13 AND L2
L14
=> d cit 1-2
   4,659,429, Apr. 21, 1987, Method and apparatus for production and use
of nanometer scale light beams; Michael Isaacson, et al., 156/644, 643,
652, 655, 659.1; 355/78;
                          430/5 , 311 [IMAGE AVAILABLE]
    4,272,186, Jun. 9, 1981, Camera method and apparatus for recording
with selected contrast; William T. Plummer, 355/34, 38, 68, 71, 77;
 430/236 , 391, 396 [IMAGE AVAILABLE]
= s 14 and 114
L15
             1 L4 AND L14
=> d cit
   4,659,429, Apr. 21, 1987, Method and apparatus for production and use
of nanometer scale light beams; Michael Isaacson, et al., 156/644, 643,
652, 655, 659.1; 355/78; <u>430/5</u>, <u>311</u> [IMAGE AVAILABLE]
= s 4379831/pn
             1 4379831/PN
L16
=> s 116 and 11
L17
             1 L16 AND L1
=> d kwic
                             [IMAGE AVAILABLE]
                                                        L17: 1 of 1
US PAT NO:
                 4,379,831
                <u>430/311</u>; 355/27, 30; <u>430/273</u>, <u>325</u>,
US-CL-CURRENT:
                  <u>327</u> , 396, 950
=> s 116 and 12
             @ L16 AND L2
L18
=> s 116 and two(p)dimensional
       1280178 TWO
         98007 DIMENSIONAL
         36547 TWO(P)DIMENSIONAL
L19
             Ø L16 AND TWO(P)DIMENSIONAL
=> s 12 and semiconductor
         88300 SEMICONDUCTOR
L20
          4830 L2 AND SEMICONDUCTOR
=> s 120 and 11
L21
           110 L20 AND L1
=> s transfer? pattern?
        380166 TRANSFER?
```

234836 PATTERN?

```
=>
=> s transfer? pattern?
        380166 TRANSFER?
        234836 PATTERN?
L23
            396 TRANSFER? PATTERN?
                  (TRANSFER?(W)PATTERN?)
= > s 123 and 13
L24
              5 L23 AND L3
= d cit 1-5
    4,883,359, Nov. 28, 1989, Alignment method and pattern forming method
using the same; Hideki Ina, et al., 356/401; 355/77; <u>430/22</u> [IMAGE
AVAILABLE]
    4,855,197, Aug. 8, 1989, Mask for ion, electron or X-ray lithography
and method of making it; Werner Zapka, et al., 430/5; 156/643, 662;
250/492.2, 505.1; 378/35; <u>430/313</u> , <u>323</u> , 966
    4,788,127, Nov. 29, 1988, Photoresist composition comprising an
interpolymer of a silicon-containing monomer and an hydroxystyrene; David
B. Bailey, et al., <u>430/192</u> , <u>165</u> , <u>166</u> , <u>167</u> , <u>197</u> ,
                    <u>272</u> , <u>312</u> , <u>313</u> , <u>323</u>
 <u> 270 , 271 , </u>
   4,719,161, Jan. 12, 1988, Mask for X-ray lithography and process for
producing the same; Takeshi Kimura, et al., <u>430/5</u>; 378/35;
 <u>430/296</u> , <u>325</u> , <u>327</u> , <u>330</u> , 942, 947, 966
    4,591,540, May 27, 1986, Method of transferring a pattern into a 🗻
radiation-sensitive layer; Harald Bohlen, et al., <u>430/22</u>, <u>296</u>,
 <u>311</u> , 394, 396
=> s 123 and radiation
        118186 RADIATION
            113 L23 AND RADIATION
L25
=> s 124 and radiation
        118186 RADIATION
              4 L24 AND RADIATION
L26
```

=> s 126 and rayleigh

=> s 126 and mask

L27

L28

L29

L30

L31

=>

1620 RAYLEIGH

49929 MASK

=> s 126 and semiconductor

=> s 126 and substrate

=> s 130 and mask image

49929 MASK 155587 IMAGE

0 L26 AND RAYLEIGH

4 L26 AND SEMICONDUCTOR

4 L26 AND SUBSTRATE

(MASK(W)IMAGE) 0 L30 AND MASK IMAGE

4 L26 AND MASK

88300 SEMICONDUCTOR

471 MASK IMAGE

151865 SUBSTRATE

```
WELCOME
                                   TO
                                         THE
                    PATENT
                                   TEXT
                                               ILE
              * * * * * * * * *
=> s two edges
       1280178 TWO
        319742 EDGES
          6002 TWO EDGES
L1
                  (TWU (W) EDGES)
=> s two images
       1280178 TWO
         71212 IMAGES
LE
          3190 TWO IMAGES
                  (TWO(W) IMAGES)
\Rightarrow s 11 and 12
L3
            18 L1 AND L2
=> s 13 and (ultraviolet or uv)
         47484 ULTRAVIOLET
         28734 UV
L4
             2 L3 AND (ULTRAVIOLET OR UV)
=> d cit 1
    5,051,585, Sep. 24, 1991, Apparatus and method of pattern detection
based on a scanning transmission electron microscope; Hiroya Koshishiba,
et al., 250/306, 310, 311 [IMAGE AVAILABLE]
   1-2
11-21 IS NOT A RECOGNIZED COMMAND
=> d cit 14 1-2
    5,051,585, Sep. 24, 1991, Apparatus and method of pattern detection
based on a scanning transmission electron microscope; Hiroya Koshishiba,
et al., 250/306, 310, 311 [IMAGE AVAILABLE]
    4,534,288, Aug. 13, 1985, Method and apparatus for registering
overlapping printed images; Yakov Z. Brovman, 101/211, 181
= s 430/1-350/cclst
         25207 430/1-350/CCLST
                                 (351 TERMS)
                  (430/1+NEXT350/CCLST)
\Rightarrow s 12 and 15
           129 L2 AND L5
L6
=> s 16 and (ultraviolet or uv)
         47484 ULTRAVIOLET
         28734 UV
L7
            32 L6 AND (ULTRAVIOLET OR UV)
```

=> s l/ and (photolithograph? or lithograph?)

= d cit 1-7

- 1. 5,130,213, Jul. 14, 1992, Device manufacture involving 1ithographic processing; Steven D. Berger, et al., 430/4, 5, 296, 311, 395, 396 [IMAGE AVAILABLE]
- 2 4,835,088, May 30, 1989, Method and apparatus for generating high-resolution images; Greyson Gilson, 430/323; 156/643; 250/492.3; 359/29, 558; 427/555; 430/1, 269, 311 322; 437/20, 229
- 3. 4,347,479, Aug. 31, 1982, Test methods and structures for semiconductor integrated circuits for electrically determining certain tolerances during the photolithographic steps; Rene Cullet, 324/716, 158R, 706, 719; 430/30
- 4. 4,144,067, Mar. 13, 1979, Light-sensitive copying material and method for the production of colored relief images; Hans Ruckert, et al., $\frac{430/324}{175}$
- 5. 4,097,279, Jun. 27, 1978, Process for preparing an identification card; Edwin Nelson Whitehead, <u>430/39</u>; 156/233, 234, 240, 277; 283/77, 109, 112; 355/40; 359/2, 3, 900; 427/145, 146, 180, 197; <u>430/252</u> [IMAGE AVAILABLE]
- 6. 3,752,072, Aug. 14, 1973, PRUCESS FOR REPRODUCING A FULL-COLOR PICTURE IN ONE IMPRESSION; Leslie H. Lorber, 101/211, 401.1, 450.1; 430/6 , 301
- 7. 3,650,746, Mar. 21, 1972, DUAL IMAGE FORMATION ON SEPARATE SUPPORTS OF PHOTOCURABLE COMPOSITION; Robert J. Bailey, <u>430/252</u>; 257/680; <u>430/288</u>, <u>322</u>
- => s 18 and two dimensional
 1280178 TWO
 98007 DIMENSIONAL
 23279 TWO DIMENSIONAL
 (TWO(W)DIMENSIONAL)
 L9 0 L8 AND TWO DIMENSIONAL
- =) s 18 and integrated circuit
 138023 INTEGRATED
 421344 CIRCUIT
 55153 INTEGRATED CIRCUIT
 (INTEGRATED(W)CIRCUIT)
 L10 1 L8 AND INTEGRATED CIRCUIT
- => d cit
- 1. 4,835,088, May 30, 1989, Method and apparatus for generating high-resolution images; Greyson Gilson, <u>430/323</u>; 156/643; 250/492.3; 359/29, 558; 427/555; <u>430/1</u>, <u>269</u>, <u>311</u>, <u>322</u>; 437/20, 229
- => s 110 and substrate 151865 SUBSTRATE L11 1 L10 AND SUBSTRATE
- => s 4835088/pn L12 1 4835088/PN
- => s 112 and two images 1280178 TWO 71212 IMAGES

```
3170 IMU IMP6+.
                  (TWO(W) IMAGES)
L13
             1 L12 AND TWO IMAGES
=> =
                                                          L14: 1 of 1
US PAT NO:
               4,835,088
SUMMARY:
BSUM (5)
 Still, it is possible to reduce the wavelength by employing
shorter-wavelength photons, such as those associated with <u>ultraviolet</u>
light or X-rays, or by employing beams of massive particles, such as
electrons or ions, that have energies associated with. . .
=> s two images
       1280178 TWO
         71212 IMAGES
          3190 TWO IMAGES
L15
                  (TWO(W) IMAGES)
=> s photolithograph? or lithograph?
         11965 PHOTOLITHOGRAPH?
         10031 LITHOGRAPH?
L16
         20055 PHOTOLITHOGRAPH? OR LITHOGRAPH?
=> s 115 and 116
L17
            96 L15 AND L16
=> s 117 and edges
        319742 EDGES
L18
            45 L17 AND EDGES
\Rightarrow s 15 and 118
L19
             8 L5 AND L18
=> s 119 asnd ultaviolet
MISSING OPERATOR 'L19 ASND'
=> s 119 and ultraviolet
         47484 ULTRAVIOLET
L20
             3 L19 AND ULTRAVIOLET
= d cit 1-3

    5,130,213, Jul. 14, 1992, Device manufacture involving

11thographic processing; Steven D. Berger, et al., 430/4 , 5 , 296 , 311 , 395, 396 [IMAGE AVAILABLE]
    4,097,279, Jun. 27, 1978, Process for preparing an identification
card; Edwin Nelson Whitehead, 430/39; 156/233, 234, 240, 277; 283/77,
109, 112; 355/40; 359/2, 3, 900; 427/145, 146, 180, 197; 430/252
LIMAGE AVAILABLES
    3,650,746, Mar. 21, 1972, DUAL IMAGE FORMATION ON SEPARATE SUPPORTS
UF PHOTOCURABLE COMPOSITION; Robert J. Bailey, 430/252; 257/680;
<u>430/288</u>, <u>322</u>
=> s 5130213/pm
LZI
             1 5130213/PN
=> s 121 and two images
```

1280178 TWO

71212 IMAGES

3190 TWO IMAGES

(TWO(W) IMAGES) 1 L21 AND TWO IMAGES

=> d kwic US PAT NO:

5,130,213 [IMAGE AVAILABLE]

L22: 1 of 1

DETDESC:

L22

DETD (67)

Uptimal . . . number of factors may play a significant role. Desired image brightness, perhaps with a view to equality as between the _two_ _images__, perhaps with a view to some prescribed ratio, perhaps with a view to specific exposure needs for the particular fabrication. . .

=> s 121 and edges 319742 EDGES

1 L21 AND EDGES L23

=> d kwic US PAT NO:

5,130,213 [IMAGE AVAILABLE]

L23: 1 of 1

DETDESC:

DETD (37)

The . . . simplify device fabrication. A recognized problem in processing a stepped surface is in maintaining thickness uniformity of resist on vertical <u>edges</u> . The problem may be avoided for properly selected electron acceleration voltages. Use of excess resist material, usually resulting in increasing thickness with depth but assuring reliable coating of vertical <u>edges</u> -presents little problem.

=> s 121 and ultraviolet 47484 ULTRAVIOLET

LE4 1 L21 AND ULTRAVIOLET

=> d kwic

5,130,213 [IMAGE AVAILABLE] L24: 1 of 1 US PAT NO:

SUMMARY:

BSUM(41)

A . . built to minimum feature size of .about.1 .mu.m depends upon exposing and developing a resist layer by illumination with near ultraviolet radiation e.g. by means of an absorbing type mask. Both proximity printing and projection printing find use. Considerable thought and. . . feature size of .about.0.5 .mu.m) is expected to depend upon similar systems based on shorter wavelength illumination in the near <u>ultraviolet</u> spectrum. Requisites such as optics design and resist formulation, are at an advanced stage.

SUMMARY:

BSUM (42)

A mu.m, is not so well advanced. Some believe that lithographic delineation will depend upon shorter wavelength radiation in the deep <u>ultraviolet</u> spectrum.

SUMMARY:

BSUM(44)

· in this category will rely upon further advances in mask

raprication of devices. It is clear that wavelength limitations of <u>ultraviolet</u> radiation now in use make it unsuitable for imaging. While use of mask-to-image reduction permits passage of such radiation through. . .

DETDESC:

DETD(47)

The . . . the stated range. As an example, the facility for step coverage, or for expedient planarization processing may dictate preference to <u>ultraviolet</u> radiation, e.g. at 0.4 .mu.m design rules.

DETDESC:

DETD (56)

The . . of proximity printing, is under extensive study for use in projection systems. Again, x-ray resists, registration techniques, etc. are known. <u>Ultraviolet</u> projection systems, both in the near UV and the vacuum UV spectra, are in use or under development.

≕}

=> s 121 and micron

46541 MICRON

L25 1 L21 AND MICRON

=> d kwic

US PAT NO: 5,130,213 [IMAGE AVAILABLE] L25: 1 of 1

ABSTRACT:

fabrication of devices of $\underline{\text{micron}}$ and submicron minimum feature size is accomplished by lithographic processing involving a back focal plane filter. A particularly important fabrication. . .

SUMMARY:

BSUM (58)

Appropriate . . . energy forms are suitable from this standpoint. Inventive significance is primarily in terms of energy of properties inherently suited to <u>micron</u> and submicron feature size definition. A preferred system relies upon electrons sufficiently accelerated for appropriate fine feature resolution. Specific discussion. . .

DETDESC:

DETD(89)

Manufacturers . . . determine thickness of affected areas. In general, measurement equipment requires such an area. Experience dictates that fabrication based on the <u>micron</u> or submicron features of the invention requires about twice the specified dose (due to lessened proximity effect).

=> 3

```
WELCOME
                                   TO
                                         THE
                                   T E X T
                                           FILE
                    PATENT
= s 430/1-975/cc1st
1430/975 IS NOT A RECOGNIZED CLASS/SUBCLASS VALUE FOR RANGE SEARCHING.
= s 430/1-950/cclst
*WARNING* - NUMBER OF UNIQUE TERMS TO BE ADDED MAY EXCEED LIMITS;
    '430/1-950/CCLST' INTERPRETED AS: '430/1+NEXT499/CCLST OR 430/950+PREV
195/CCLST'.
         30007 430/1+NEXT499/CCLST
                                     (500 TERMS)
         15170 430/950+PREV195/CCLST (196 TERMS)
         36630 430/1-950/CCLST
                 (430/1+NEXT499/CCLST OR 430/950+PREV195/CCLST)
=> s ultaviolet or uv
            83 ULTAVIOLET
         28734 UV
L2
         28792 ULTAVIOLET OR UV
=> s transfer? pattern
        380166 TRANSFER?
        208030 PATTERN
           286 TRANSFER? PATTERN
                 (TRANSFER? (W) PATTERN)
\Rightarrow s 11 and 12
        3541 L1 AND L2
\Rightarrow s 13 and 14
L5
            12 L3 AND L4
=> s 15 and two image
       1280178 TWO
        155587 IMAGE
          1538 TWO IMAGE
                 (TWO(W) IMAGE)
             @ L5 AND TWO IMAGE
L6
=> s two(p)image?
       1280178 TWO
        168381 IMAGE?
         64673 TWO(P) IMAGE?
=> s 17 and two images
       1280178 TWO
         71212 IMAGES
          3190 TWO IMAGES
                 (TWO(W) IMAGES)
L8
          3190 L7 AND TWO IMAGES
=> s 11 and 18
```

L9

143 L1 AND L8

```
=> s two(p)edges
1280178 TWO
        319742 EDGES
L10
        114756 TWO(P)EDGES
=> s 110 and two edges
       1280178 TWO
        319742 EDGES
          6002 TWO EDGES
                  (TWO(W) EDGES)
L11
          6002 L10 AND TWO EDGES
=> s 19 and 111
             2 L9 AND L11
L12
=> d cit 1-2
1. 5,077,154, Dec. 31, 1991, Soft edge mask; Ferrand D. E. Corley,
 <u>430/4</u> ; 353/29, 30; 354/120; 355/70, 125; <u>430/333</u> , <u>394</u> ,
 396 , 397 , 494 [IMAGE AVAILABLE]
2. 4,526,862, Jul. 2, 1985, Film-based dual energy radiography; Norbert
J. Pelc, <u>430/496</u>; 250/475.2, 482.1; <u>430/139</u>, <u>502</u>, <u>503</u>,
 507 , 509 , 966, 967; 976/DIG. 439 [IMAGE AVAILABLE]
=> s 112 and 12
            0 L12 AND L2
L13
==} ♦
=> s li2 and l2
L13
            0 L12 AND L2
=> s 17 and 110
     7256 L7 AND L10
=> s 114 and 11
          372 L14 AND L1
=> s 115 and 12
L16
        65 L15 AND L2
=> s 116 and two(p)dimensional
       1280178 TWO
         98007 DIMENSIONAL
         36547 TWO(P)DIMENSIONAL
L17
             8 L16 AND TWO(P) DIMENSIONAL
=> s 117 and substrate
        151865 SUBSTRATE
L18
            6 L17 AND SUBSTRATE
=> s l18 and (photolithograph? or lithograph?)
         11965 PHOTULITHOGRAPH?
         10031 LITHOGRAPH?
L19
             4 L18 AND (PHOTOLITHOGRAPH? OR LITHOGRAPH?)
=> d cit 1-4
1. 4,898,804, Feb. 6, 1990, Self-aligned, high resolution resonant
dielectric <u>lithography</u>; Kurt Rauschenbach, et al., <u>430/311</u>,
 <u>'30 , 314 , 322 , 325 , 327 ; 437/180, 229</u>
```

2. 4,587,203, May 6, 1986, Wet process for developing styrene polymer

ليحيده ويدا استريف المالا الأح

A IS NOT A RECOGNIZED COMMAND

- <u>430/325</u>; 427/372.2, 387, 510, 515, 555, 558; <u>430/270</u>, <u>272</u>, <u>311</u>, <u>327</u>, <u>330</u>, <u>331</u>, 954
- 3. 4,535,054, Aug. 13, 1985, Wet process for developing styrene polymer resists for submicron <u>lithography</u>; Robert G. Brault, et al., 430/325 , 270 , 331
- 4. 3,871,885, Mar. 18, 1975, CRYSTALLINE PHOTO-POLYMERIZABLE COMPUSITION; Walter Raymond Hertler, <u>430/281</u>, <u>271</u>, <u>283</u>, <u>916</u>, <u>923</u>; 522/6, 9, 37, 39, 40, 43, 46, 63
- =) s 11 and transfer?(p)pattern?
 380166 TRANSFER?
 234836 PATTERN?
 20861 TRANSFER?(P)PATTERN?
 L20 2430 L1 AND TRANSFER?(P)PATTERN?
- =>
- => s 120 and 114 L21 49 L20 AND L14
- => s 121 and 12 L22 5 L21 AND L2
- =) s 122 and substrate 151865 SUBSTRATE L23 5 L22 AND SUBSTRATE
- => d cit i-5

=> è

- 1. 5,051,329, Sep. 24, 1991, Reversal development of latent electrostatic images on xeroprinting masters; Edward B. Caruthers, et al., 430/100, 119 [IMAGE AVAILABLE]
- 2. 5,043,244, Aug. 27, 1991, Process for defined etching of substrates; Allan Cairneross, et al., $\underline{430/247}$, $\underline{205}$, $\underline{248}$, $\underline{314}$, $\underline{317}$ [IMAGE AVAILABLE]
- 3. 4,898,804, Feb. 6, 1990, Self-aligned, high resolution resonant dielectric lithography; Kurt Rauschenbach, et al., $\underline{430/311}$, $\underline{30}$, $\underline{314}$, $\underline{322}$, $\underline{325}$, $\underline{327}$; $\underline{437/180}$, $\underline{229}$
- 4. 4,647,524, Mar. 3, 1987, <u>Transferring</u> polymer from thin plastic films to photodevelop insulation <u>patterns</u> on printed wiring boards; Donald F. Sullivan, <u>430/312</u>, <u>258</u>, <u>260</u>, <u>319</u>, <u>935</u>
- 5. 4,556,627, Dec. 3, 1985, Transferring polymer from thin plastic films to photodevelop insulation patterns on printed wiring boards; Donald F. Sullivan, 430/312; 156/212, 230, 241, 574; 430/257, 311, 319, 327, 394

E L C => s lithograph? or lithograph?(p)pattern? 9941 LITHOGRAPH? 9941 LITHOGRAPH? 233101 PATTERN? 3035 LITHOGRAPH? (P) PATTERN? 9941 LITHOGRAPH? OR LITHOGRAPH? (P) PATTERN? L1 => s l1 and rayleigh? 1611 RAYLEIGH? L2 32 L1 AND RAYLEIGH? => s 12 and image(p)mask? 154159 IMAGE 71699 MASK? 10409 IMAGE(P)MASK? 8 L2 AND IMAGE(P) MASK? L3 => s 13 and (two-dimensional or two(p)dimensional) 1272434 TWO 97150 DIMENSIONAL 23040 TWO-DIMENSIONAL (TWO(W)DIMENSIONAL) 1272434 TWO 97150 DIMENSIONAL 36218 TWO(P)DIMENSIONAL **L4** 2 L3 AND (TWO-DIMENSIONAL OR TWO(P)DIMENSIONAL) => d cit 1-2

- 4,662,747, May 5, 1987, Method and apparatus for production and use of nanometer scale light beams; Michael Isaacson, et al., 356/317; 359/368, 894 [IMAGE AVAILABLE]
- 4,659,429, Apr. 21, 1987, Method and apparatus for production and use of nanometer scale light beams; Michael Isaacson, et al., 156/644, 643, 652, 655, 659.1; 355/78; 430/5, 311 [IMAGE AVAILABLE]
- => d 13 cit 1-8
- 5,079,600, Jan. 7, 1992, High resolution patterning on solid substrates; Joel M. Schnur, et al., 257/750, 629; 427/98, 553, 558 [IMAGE **AVAILABLE**
- 5,077,085, Dec. 31, 1991, High resolution metal patterning of ultra-thin films on solid substrates; Joel M. Schnur, et al., 427/98, 58, 510 [IMAGE AVAILABLE]
- 5,022,061, Jun. 4, 1991, An image focusing means by using an opaque object to diffract x-rays; Gary E. Sommargren, et al., 378/84, 43 [IMAGE AVAILABLE]
- 4,820,927, Apr. 11, 1989, Electron beam source employing a

- 5. 4,662,747, May 5, 1987, Method and apparatus for production and use of nanometer scale light beams; Michael Isaacson, et al., 356/317; 359/368, 894 [IMAGE AVAILABLE]
- 6. 4,659,429, Apr. 21, 1987, Method and apparatus for production and use of nanometer scale light beams; Michael Isaacson, et al., 156/644, 643, 652, 655, 659.1; 355/78; 430/5, 311 [IMAGE AVAILABLE]
- 7. 4,379,831, Apr. 12, 1983, Process for transferring a pattern onto a semiconductor disk; Ernst Lobach, 430/311; 355/27, 30; 430/273, 325, 326, 327, 396, 950 [IMAGE AVAILABLE]
- 8. 4,348,105, Sep. 7, 1982, Radiation shadow projection exposure system; Fausto Caprari, 355/67; 353/102 [IMAGE AVAILABLE]
- => s 14 and semiconductor? 90541 SEMICONDUCTOR? L5 2 L4 AND SEMICONDUCTOR?
- => d cit 1-2
- 1. 4,662,747, May 5, 1987, Method and apparatus for production and use of nanometer scale light beams; Michael Isaacson, et al., 356/317; 359/368, 894 [IMAGE AVAILABLE]
- 2. 4,659,429, Apr. 21, 1987, Method and apparatus for production and use of nanometer scale light beams; Michael Isaacson, et al., 156/644, 643, 652, 655, 659.1; 355/78; 430/5, 311 [IMAGE AVAILABLE]
- =) s 13 and semiconductor?
 90541 SEMICONDUCTOR?
 L6 8 L3 AND SEMICONDUCTOR?
- => s 13 and substrate? 160503 SUBSTRATE? L7 7 L3 AND SUBSTRATE?
- => d cit 1-7
- 1. 5,079,600, Jan. 7, 1992, High resolution patterning on solid <u>substrates</u>; Joel M. Schnur, et al., 257/750, 629; 427/98, 553, 558 IMAGE AVAILABLE)
- 2. 5,077,085, Dec. 31, 1991, High resolution metal patterning of ultra-thin films on solid <u>substrates</u>; Joel M. Schnur, et al., 427/98, 58, 510 [IMAGE AVAILABLE]
- 3. 5,022,061, Jun. 4, 1991, An image focusing means by using an opaque object to diffract x-rays; Gary E. Sommargren, et al., 378/84, 43 [IMAGE AVAILABLE]
- 4. 4,662,747, May 5, 1987, Method and apparatus for production and use of nanometer scale light beams; Michael Isaacson, et al., 356/317; 359/368, 894 [IMAGE AVAILABLE]
- 5. 4,659,429, Apr. 21, 1987, Method and apparatus for production and use of nanometer scale light beams; Michael Isaacson, et al., 156/644, 643, 652, 655, 659.1; 355/78; 430/5, 311 [IMAGE AVAILABLE]
- 6. <u>/</u>/4,379,831) Apr. 12, 1983, Process for transferring a pattern onto a sericonductor disk; Ernst Lobach, 430/311; 355/27, 30; 430/273, 325, 326, 327, 396, 950 [IMAGE AVAILABLE]
- 7. 4,348,105, Sep. 7, 1982, Radiation shadow-projection-exposure system, Fausto Caprari, 355/67; 353/102 [IMAGE AVAILABLE]

```
=> s method? or process?
827975 METHOD?
         806935 PROCESS?
L23
        1062861 METHOD? OR PROCESS?
=> s two-dimensional? or two(p)dimensional?
        1272434 TWO
         107686 DIMENSIONAL?
          24246 TWO-DIMENSIONAL?
                  (TWO(W)DIMENSIONAL?)
        1272434 TWO
         107686 DIMENSIONAL?
          39332 TWO(P)DIMENSIONAL?
L24
          39332 TWO-DIMENSIONAL? OR TWO(P)DIMENSIONAL?
=> s radiation? or radiation(p)sensitive?
         118446 RADIATION?
        117413 RADIATION
         161524 SENSITIVE?
          14157 RADIATION(P) SENSITIVE?
L25
         118446 RADIATION? OR RADIATION(P) SENSITIVE?
= s 123 and 124
L26
         33592 L23 AND L24
= > s 125 and 126
          6984 L25 AND L26
=> s mask?
L28
        71699 MASK?
== }
=> s mask? or mask(p)image?
         71699 MASK?
         49527 MASK
        166841 IMAGE?
          8961 MASK (P) IMAGE?
L29
         71699 MASK? OR MASK(P) IMAGE?
 75% OF LIMIT FOR TOTAL ANSWERS REACHED
\Rightarrow s 127 and 129
          1591 L27 AND L29
=> s rayleigh?
          1611 RAYLEIGH?
=> s 130 and 131
             20 L30 AND L31
Lse
=> s 132 and pattern?
        233101 PATTERN?
=>
=> s 132 and pattern?
        233101 PATTERN?
L34
             13 L32 AND PATTERN?
=> s 134 and substate?
```

```
=> s 130 and substrate?
        160503 SUBSTRATE?
           894 L30 AND SUBSTRATE?
L36
=> s 136 and 131
             6 L36 AND L31
L37
=> d cit 1-6
1. 4,887,885, Dec. 19, 1989, Diffraction free arrangement; James E.
Durnin, et al., 359/559; 250/493.1; 359/738; 372/66, 103 [IMAGE
AVAILABLEI
2. 4,783,788, Nov. 8, 1988, High power semiconductor lasers; Eugene I.
Gordon, 372/45, 46, 49, 50, 102
    4,662,747, May 5, 1987, Method and apparatus for production and
use of nanometer scale light beams; Michael Isaacson, et al., 356/317;
359/368, 894 [IMAGE AVAILABLE]
    4,659,429, Apr. 21, 1987, Method and apparatus for production and
use of nanometer scale light beams; Michael Isaacson, et al., 156/644,
643, 652, 655, 659.1; 355/78; 430/5, 311 [IMAGE AVAILABLE]
    4,001,840, Jan. 4, 1977, Non-photographic, digital laser image
recording; Carl H. Becker, et al., 346/76L; 219/121.61, 121.68, 121.75,
121.8, 121.82; 346/108; 358/297; 359/210 [IMAGE AVAILABLE]
    3,963,997, Jun. 15, 1976, Device for the directive transmission of
elastic surface waves and <u>process</u> for making the same; Pierre
Hartemann, 333/150; 310/313D, 313R [IMAGE AVAILABLE]
=> s 430/20-330/cclst
        23072 430/20-330/CCLST (312 TERMS)
L.38
                 (430/20+NEXT311/CCLST)
=> s 138 and 123
L39
        15381 L38 AND L23
=> s 139 and 125
          6800 L39 AND L25
= > s 140 and 129
          2659 L40 AND L29
=> s 124 and 141
          170 L24 AND L41
L42
=> s 142 and pattern?
        233101 PATTERN?
L43
           147 L42 AND PATTERN?
=> s 143 and substrate?
        160503 SUBSTRATE?
1.44
            90 L43 AND SUBSTRATE?
=> s 144 and 131
L45
            1 L44 AND L31
=> d cit 1
```

1. 4,659,429, Apr. 21, 1987, Hethod and apparatus for production and

use of nanometer scale light beams; Michael Isaacson, et al., 156/644,

643, 652, 655, 659.1; 355/78; 430/5, <u>311</u> [IMAGE AVAILABLE]

=> s 145 and photoresist?

L46

17768 PHOTORESIST?

1 L45 AND PHOTORESIST?

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

M BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	••
FADED TEXT OR DRAWING	
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE PO	OOR QUALITY
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.