

Check that the average position vanishes

a Heatboth was resed and in some ases it was compared with Hetropolis.

Average value of the position square as a function of M compared with the analytical continuum value.

Wrong estimator for Kinetic energy $\langle W \rangle = \frac{1}{2\eta^2} \langle (y_1 - y_0)^2 \rangle$

Armoge value of the energy

$$(H) = \frac{1}{2} \langle y_0^2 \rangle + \frac{1}{2\eta} - \frac{1}{2} \langle (y_1 - y_0)^2 \rangle$$

Values of (y²) and (H) extracted by using a fit ortby² as a function of the maximum of used in the fit compored with the analytical continuum value

Simulations have been performed usin lattices with $N_{\rm L}$ from 4 to 50, using $5\cdot10^{8}$ (hostboth + 5 microcommical) upolates of the value lattice Simulation times go from x 3 minutes to x 30 minutes for the different lattice sizes.

A= y3-3 y = "exact" interpolating operator for the state 13) in the continuum

408 updates (1 heatbooth + 5 microcompnical) updates of the vehole lattice value performed for $N_t = 60,80,100$ and 200, with execution times ranging from 43 min to 60 min.

Scoling of the deviotions from the exact continuum values as a function of M2

Particle on a circumference: topology

 5×10^8 Hetzopolis apolates ($\Delta=0.5$) of the whole lattice for N_E from 25 to 325 Simulation times go from 2.12 min to 2.120 min.

Scon of the quantity

(eroson of $\langle a^2 \rangle$) × $\sqrt{N_R}$ for two values of N_R as a function

of the maximum value of $\frac{bt^2}{m(2\pi r_R)^2}$ to be used in parallel tempering

(5×106 updates, time × 1 h for $N_R = 5$)

(Q) for N_t = 400 computed without and with posselled temponing

Volues of (Q2)

Volues of $b_2 = -\frac{(Q^4) - 3(Q^2)^2}{12(Q^2)}$

Without porolle temporing 5×10^8 updates $N_R = 5$ 10^8 upolates $N_R = 10$ 5×10^8 upolates

S in all cases simulation times 22h.

\(\mathref{y} = \left(\mathref{y}_{(1)} + \mathref{y}_{(2)} \right) \)

 \(\text{where } \mathref{y}_{(i)} = \text{position of the } \)

 \(i - \text{th position of the } \)

 \(\text{composition with continuum } \)

 \(\text{composition with continuum } \)

 \(\text{exact results (solid lines)} \)

Some as before bout normalized with the theoretical value:

\(\frac{\lambda \range floory}{\text{theory}} \)

Avvoge volve of (-1) twist computed on configurations somb hol with the bosonic weight (solid line = continuum result)

< (-1) theory - theory

the relative error explodes when theory -00.

20 volus of tope where simulated. In each case 5.10^8 impolates (1 heatboth + 1 smicrocononical on the value battile + 1 exchange) where performed. Simulation times: 20 min and 240 min for $N_t=20$ and 40, respectively.