Applied Statistical Analysis I/
Quantitative Methods I
POP77003/77051
Fall 2024

Week 11

Yao (Sara) HAN

Many3@tcd.ie

Department of Political Science

Trinity College Dublin

20 November, 2024

Today's Agenda

- (1) Lecture recap
- (2) Tutorial exercises

Discrepancy, Leverage and Influence

What are influential cases/outliers?

Discrepancy, Leverage and Influence

Not all outliers are concerning, because leverage \neq influence, and discrepancy \neq influence. \longrightarrow Influence = leverage \times discrepancy

^{*}These are fictional data.

Leverage

Observation is unusual in its value on X, has high leverage, but low discrepancy. \longrightarrow Low influence

 \rightarrow Hat values (h_i) , distance of each observation from the data center

■ Hat value:

$$h_i = \frac{1}{n} + \frac{(X_i - \bar{X})^2}{\sum_{j=1}^n (X_j - \bar{X})^2}$$

 h_i measures distance from center of cloud of points in X space

- Outcome, Y, values are not involved in determining leverage
- ► Leverage is a statement about the *X* space
- ightharpoonup A high hat value h_i equates to high leverage

Discrepancy

Observation is unusual in its value on Y, given its value on X, has high discrepancy, but low leverage. \longrightarrow Low influence

 \rightarrow Standardized $(\hat{\epsilon_i}')$ and studentized residuals $(\hat{\epsilon_i}^*)$, because ϵ_i is scale-dependent and high leverage leads to low ϵ_i

■ We can form a **standardized residual** $\hat{\varepsilon}_i'$ which all have equal variance as

$$\hat{\varepsilon}_i' = \frac{\hat{\varepsilon}_i}{se(\hat{\varepsilon}_i)}$$
 where $se(\hat{\varepsilon}_i) = \hat{\sigma}\sqrt{1-h_i} = \sqrt{\frac{RSS}{n-k-1}}\sqrt{1-h_i}$

■ However, the distribution of $\hat{\varepsilon}_i'$ is not a *t*-distribution because the numerator and denominator are not independent

WHAT TO DO? STUDENTIZED RESIDUALS

- Estimate the standard deviation of $se(\hat{\epsilon}_i)$ with a sum of squares that does not include the *i*th residual
- Delete the *i*th observation, and refit the model based on n-1 observations, and get

$$\hat{\sigma}_{(-i)} = \sqrt{\frac{RSS}{n-1-k-1}}$$

■ This gives us the **studentized residual**

$$\hat{arepsilon}_{i}^{*} = rac{\hat{arepsilon}_{i}}{\mathsf{se}(\hat{arepsilon}_{i})_{(-i)}}$$

■ Now, the $\hat{\sigma}$ in the denominator is not correlated with the numerator

$$\hat{\varepsilon}_i^* \sim t_{n-1-k-1}$$

- We also can look at adjusted p-value
 - ► Bonferroni correction is multiplying the p-values by the number of residuals

Influence

Observation has high leverage and discrepancy, an unusual value on X and Y. \longrightarrow High influence

Influence

Validate through

- 1. Cook's Distance, difference in predicted values when observation *i* is included and not included
- 2. Difference in betas (DFBeta), difference in coefficients when observation *i* is included and not included
- 3. Leverage versus residual plot

Remedies

- 1. Check for coding errors
- 2. Think carefully about omitted variables

■ Cook's D =
$$\frac{\sum_{j}(\hat{Y}_{j}-\hat{Y}_{j(-i)})^{2}}{(k+1)se^{2}} = \frac{(\hat{\varepsilon}_{i}^{*})^{2}}{k+1} \frac{h_{i}}{1-h_{i}}$$

- Cook's distance is the effect of ith observation on all fitted values
- Cook's distance can be high if h_i is very large (close to 1) and $(\hat{\varepsilon}_i^*)^2$ is moderate
 - ▶ Or if $(\hat{\varepsilon}_i^*)^2$ is very large and h_i is moderate, or if they are both extreme
- COOKSD $> \frac{4}{n-k-1}$ is unusually influential case

We can use leave-one-out deletion diagnostics, delete an observation, and see how much the fitted regression coefficients change

- ▶ Difference = $\hat{\beta}_j \hat{\beta}_{j(-i)}$
- ► A large change suggests high influence

- Check influence: Difference in betas $=\frac{\beta_j-\beta_{j(-i)}}{se(\hat{\beta}_{j(-i)})}$
- Difference in betats is the effect of *i*th observation on a single estimated coefficient
- |DFBETAS| > 1 is considered large in a small or medium sized sample
- $|DFBETAS| > 2n^{-1/2}$ is considered large in a big sample

OLS assumptions

What are the assumptions of linear regression?

Assumptions of linear regression

Assumptions about the error (ϵ_i) :

$$\epsilon_i \sim N(0, \sigma^2)$$

- * ϵ_i is normally distributed
- * $E(\epsilon_i) = 0$, no bias
- * ϵ_i has constant variance σ^2 (Homoscedasticity)
- * No autocorrelation
- * X values are measured without error

(Kellstedt and Whitten 2018, 190-194)

Assumptions of linear regression

Assumptions about the model specification:

- * No causal variables left out and no noncausal variables included
- * Parametric linearity

(Kellstedt and Whitten 2018, 190–194)

Assumptions of linear regression

Minimal mathematical requirements:

- * X must vary
- * Number of observations must be larger than the number of predictors
- * In multiple regression: No perfect multicollinearity

(Kellstedt and Whitten 2018, 190–194)

ϵ_i is normally distributed

Validate through

- 1. Histogram for ϵ_i
- 2. QQ (Quantile-quantile) plot
- \rightarrow If violated, standard errors are unreliable

Remedies

1. Gather more data

ϵ_i has constant variance σ^2

ϵ_i has constant variance σ^2

Validate through

- 1. Residual versus fitted plot
- ightarrow If violated, standard errors are unreliable

Remedies

- 1. Log-transform Y
- 2. Robust standard errors

Parametric linearity

Validate through

- 1. Scatter plot
- 2. Residual plot
- ightarrow If violated, slope coefficients are unreliable

Remedies

1. Transform X

No perfect multicollinearity

Figure 9.1. Venn diagram in which *X*, *Y*, and *Z* are correlated.

(Kellstedt and Whitten 2018, 212).

Multicollinearity

Figure 11.6 Venn diagram with multicollinearity

(Kellstedt and Whitten 2018, 212).

No perfect multicollinearity

Validate through

- 1. Correlation matrix
- 2. Variance Inflation Factor (VIF), indicates how much variation in X is explained by other independent variables
- → Mathematical requirement, slope cannot be estimated

Remedies

- 1. Gather more data
- 2. Combine variables in index

References I

Kellstedt, Paul M., and Guy D. Whitten. 2018. The fundamentals of political science research. Cambridge: Cambridge University Press.