北京理工大学2015-2016学年第一学期

2015级《微积分A》期末试卷(A卷)

班级	学号	姓名
	1 2	<u>/</u>

(本试卷共6页, 十一个大题. 解答题必须有解题过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.)

题号	_	1.1	11]	四	五	六	七	八	九	+	+ -	总分
得分												
签名												

- 一、填空(每小题4分,共20分)
- 1. 极限 $\lim_{x \to 0} \frac{\int_0^x t \ln(1 + t \sin t) dt}{\sqrt{1 + x^4} 1} = \underline{\hspace{1cm}}$
- 2. 设 y = f(x) 是由方程 $y x = e^{x(1-y)}$ 确定,则 $\lim_{n \to \infty} n[f(\frac{1}{n}) 1] = \underline{\qquad}$.
- 3. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{x^3 \sin^2 x}{1 + \cos x} + |x| \right) dx = \underline{\qquad}.$
- 4. 曲线 $y = \frac{x^3}{1+x^2} + \arctan(1+x^2)$ 的斜渐近线方程为: _______.
- 5. 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续,其二阶导数 f''(x) 的

图形如右图所示,则曲线 y = f(x) 在 $(-\infty, +\infty)$ 上的拐点

个数为 ,拐点坐标为: .

二、(8分) 设函数
$$f(x) = 2\arctan x + \arcsin \frac{2x}{1+x^2}$$
,(1) 求 $f'(x)$;(2) 证明:当 $x \ge 1$ 时,
$$f(x) = 2\arctan x + \arcsin \frac{2x}{1+x^2} \equiv 常数, 并求此常数.$$

三、(8分) (1) 求不定积分
$$\int \frac{\ln(1+e^x)}{e^x} dx$$
; (2) 求广义积分 $\int_1^{+\infty} \frac{dx}{(1+x)\sqrt{x}}$.

四、(8分) 求微分方程 $xy' + y(\ln x - \ln y) = 0$ 满足 $y(1) = e^3$ 的特解.

六、(8分) 设 D 是由曲线 $y = \sqrt{1-x^2}$ ($0 \le x \le 1$) 与星形线 $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ ($0 \le t \le \frac{\pi}{2}$) 所围成的平面区域,(1) 求 D 的面积;(2) 求 D 绕 x 轴旋转一周所得旋转体的体积.

七、(8分)已知高温物体放置于低温介质中,任一时刻物体的温度T对时间t的变化率与该时刻物体与介质的温度差成正比,现将一初始温度为 $120^{\circ}C$ 的物体放在 $20^{\circ}C$ 恒温介质中冷却,30分钟后该物体的温度降至 $30^{\circ}C$,求该物体的温度T与时间t的函数关系;若要物体的温度继续降至 $21^{\circ}C$,还需要多少时间?

八、(8分) 证明方程 $4\arctan x - x + \frac{4\pi}{3} - \sqrt{3} = 0$ 有且仅有两个实根.

九、(8分) 设 $f(x) = \begin{cases} x^2, & x \in [0,1) \\ x, & x \in [1,2] \end{cases}$, 求 $F(x) = \int_0^x f(t)dt$ 在[0,2]上的表达式,并讨论 F(x)在(0,2)内的连续性和可导性.

十、(8分) 设函数 f(x) 连续,且满足方程 $\int_0^x (t-x)f(t)dt = f(x) + \cos 2x$,求 f(x) 的表达式.

- 十一、(8分)设函数 f(x)在区间[-a,a](a>0)上有二阶连续导数,且 f(0)=0,
 - (1)写出 f(x) 的带拉格朗日余项的一阶麦克劳林公式;
 - (2) 证明至少存在一点 $\eta \in [-a,a]$, 使 $a^3 f''(\eta) = 3 \int_{-a}^a f(x) dx$.