Architettura degli Elaboratori

Esercitazioni su circuiti sequenziali

slide a cura di S. Orlando, M. Simeoni e A. Torsello

Progettare una rete sequenziale per il controllo di un motore elettrico.

- (1) Macchina a stati finiti
- (2) Tabella di verità e forme SP minime
- (3) Disegno circuito

Gli input sono due segnali relativi ai pulsanti A e S

- A=1 ⇒ accendi
- S=1 ⇒ spegni
- In caso di pressione simultanea, S prevale.

Se il motore è acceso (o spento) e arriva un altro segnale di accensione (o spegnimento), la rete deve ignorare il segnale. Idem se entrambi sono zero.

La rete deve dare in output il segnale O:

- $O = 0 \Rightarrow motore spento$
- \bullet O = 1 \Rightarrow motore acceso

Macchina a stati finiti di Moore

2 stati

■ F=0 : motore spento

■ F=1: motore acceso

F	A	S	F*
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Mimimizzazione

F	A	S	F*	F	0
0	0	0	0	0	0
0	0	1	0	1	1
	1	0	1		l
0	1	1	0		
1		0			
1			0		
1		0	1		
1	1	1	0		

Circuito

$$O = F$$

$$F^* = A \sim S + F \sim S$$

Si vuole progettare un circuito sequenziale per controllare l'apertura del diaframma di una macchina fotografica.

Il diaframma ha tre posizioni: chiuso (C), aperto (A) e idle (I).

Il sensore della luce ha due posizioni: molta luce (L) e poca luce (I).

Una condizione di molta luce implica (C), mentre una condizione di poca luce implica (A).

Il circuito sequenziale decide il nuovo output (C o A) ogni tre cicli, calcolando la maggioranza tra i tre campionamenti precedenti dell'input (I o L). Nei cicli intermedi l'output è sempre I.

Definire l'automa che modella il circuito.

