

CS396: Security, Privacy & Society

Fall 2022

Lecture 10: MACs & Hashing

Instructor: Abrar Alrumayh

October 3, 2022

Outline

- Hash functions
 - Collision resistance (CR)
 - Design framework
 - Generic attacks
 - Applications of hashing to cryptography

Hash functions

Recall from algorithms/data-structures

- store a small number of elements coming from a large set.
- example: store m = n² values where each value is a string of length n.
- total strings to be stored are few in comparison to the full set of 2 n elements
- deterministic method to quickly store and "look-up" elements
- Want: low collisions (otherwise, useless)

Cryptographic hash functions

Basic cryptographic primitive

- maps "objects" to a fixed-length binary strings
- core security property: mapping avoids collisions

input arbitrarily long string

output short digest, fingerprint, "secure" description

- collision: distinct objects $(x \neq y)$ are mapped to the same hash value (H(x) = H(y))
- although collisions <u>necessarily exist</u>, they are <u>infeasible to find</u>

Important role in modern cryptography

- lie between symmetric- and asymmetric-key cryptography
- capture different security properties of "idealized random functions"
- qualitative stronger assumption than PRF

Hash & compression functions

Map messages to short digests

- a general hash function H() maps
 - a message of an <u>arbitrary length</u> to a <u>n-bit</u> string

- a compression (hash) function h() maps
 - a <u>long</u> binary string to a <u>shorter</u> binary string
 - an <u>l(n)-bit string</u> to a <u>n-bit</u> string, with <u>l(n) > n</u>

Collision resistance (CR)

Attacker wins the game if $x \neq x' \& H(x) = H(x')$

H is collision-resistant if any PPT ${\mathcal A}$ wins the game only negligibly often.

Weaker security notions

Given a hash function H: $X \rightarrow Y$, then we say that H is

- preimage resistant (or one-way)
 - if given $y \in Y$, finding a value $x \in X$ s.t. H(x) = y happens negligibly often

- ◆ 2-nd preimage resistant (or weak collision resistant)
 - if given a <u>uniform</u> $x \in X$, finding a value $x' \in X$, s.t. $x' \neq x$ and H(x') = H(x) happens negligibly often
- collision resistant (or strong collision resistant)
 - if finding two distinct values x', $x \in X$, s.t. H(x') = H(x) happens negligibly often

Design framework

Domain extension via the Merkle-Damgård transform

General design pattern for cryptographic hash functions

reduces CR of general hash functions to CR of compression functions

- thus, in practice, it suffices to realize a collision-resistant compression function h
- compressing by 1 single bit is a least as hard as compressing by any number of bits!

Merkle-Damgård transform: Design

Suppose that h: $\{0,1\}^{2n} \rightarrow \{0,1\}^n$ is a collision-resistant compression function

Consider the general hash function H: $\mathcal{M} = \{x : |x| < 2^n\} \rightarrow \{0,1\}^n$, defined as

Merkle-Damgård design

 H(x) is computed by applying h() in a "chained" manner over n-bit message blocks

- pad x to define a number, say B, message blocks $x_1, ..., x_B$, with $|x_i| = n$
- set extra, final, message block x_{B+1} as an n-bit encoding L of |x|
- starting by initial digest $z_0 = IV = 0^n$, output $H(x) = z_{B+1}$, where $z_i = h^s(z_{i-1} | x_i)$

Merkle-Damgård transform: Security

If the compression function h is CR, then the derived hash function H is also CR!

Compression function design: The Davies-Meyer scheme

Employs PRF w/ key length m & block length n

• define h: $\{0,1\}^{n+m} \to \{0,1\}^n$ as

$$h(x||k) = F_k(x) XOR x$$

Security

h is CR, if F is an ideal cipher

Well known hash functions

- MD5 (designed in 1991)
 - output 128 bits, collision resistance completely broken by researchers in 2004
 - today (controlled) collisions can be found in less than a minute on a desktop PC
- SHA1 the Secure Hash Algorithm (series of algorithms standardized by NIST)
 - output 160 bits, considered insecure for collision resistance
 - broken in 2017 by researchers at CWI
- SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)
 - outputs 224, 256, 384, and 512 bits, respectively, no real security concerns yet
 - based on Merkle-Damgård + Davies-Meyer generic transforms
- SHA3 (Kessac)
 - completely new philosophy (sponge construction + unkeyed permutations)

SHA-2-512 overview

Current hash standards

Algorithm	Maximum Message Size (bits)	Block Size (bits)	Rounds	Message Digest Size (bits)		
MD5	2^{64}	512	64	128		
SHA-1	2^{64}	512	80	160		
SHA-2-224	2^{64}	512	64	224		
SHA-2-256	2^{64}	512	64	256		
SHA-2-384	2^{128}	1024	80	384		
SHA-2-512	2^{128}	1024	80	512		
SHA-3-256	unlimited	1088	24	256		
SHA-3-512	unlimited	576	24	512		

Generic attacks

Generic attacks against cryptographic hashing

Assume a CR compression function h: $\{0,1\}^{l'(n)} \rightarrow \{0,1\}^{l(n)}$

- brute-force attack
 - for each string x in the domain
 - compute and record hash value h(x)
 - if h(x) equals a previously recorded hash h(y) (i.e., x ≠ y but h(x)=h(y)),
 halt and output collision on x ≠ y
- birthday attack
 - surprisingly, a more efficient generic attack exists!

Birthday paradox

"In any group of <u>23 people</u> (or more), it is **more likely** (than not) that **at least two** individuals have their <u>birthday</u> on the **same** day"

- based on probabilistic analysis of a random "balls-into-bins" experiment:
 "k balls are each, independently and randomly, thrown into one out of m bins"
- captures likelihood that event E = "two balls land into the same bin" occurs
- analysis shows: $Pr[E] \approx 1 e^{-k(k-1)/2m}$ (1)
 - if Pr[E] = 1/2, Eq. (1) gives $k \approx 1.17 \text{ m}^{\frac{1}{2}}$
 - thus, for <u>m = 365</u>, <u>k is around 23</u> (!)
 - assuming a <u>uniform</u> birth distribution

Birthday attack

Applies "birthday paradox" against cryptographic hashing

- exploits the likelihood of finding collisions for hash function h
 using a randomized search, rather than an exhausting search
- analogy
 - k balls: distinct messages chosen to hash
 - m bins: number of possible hash values
 - independent & random throwing
 - how is this achieved?
 - message selection, hash mapping

Probabilistic analysis

Experiment

k balls are each, independently and randomly, thrown into one out of m bins

Analysis

- the probability that the i-th ball lands in an empty bin is:
 1 (i 1)/m
- the probability F_k that after k throws, no balls land in the same bin is:

$$F_k = (1 - 1/m) (1 - 2/m) (1 - 3/m) ... (1 - (k - 1)/m)$$

- by the standard approximation 1 $x \approx e^{-x}$: $F_k \approx e^{-(1/m + 2/m + 3/m + ... + (k-1)/m)} = e^{-k(k-1)/2m}$
- thus, two balls land in same bin with probability $Pr[E] = 1 F_k = 1 e^{-k(k-1)/2m}$
- lower bound Pr[E] increases if the bin-selection distribution is not uniform

What birthday attacks mean in practice...

hash evaluations for finding collisions on n-bit digests with probability p

Bits N	Possible outputs (2 s.f.) (H)	Desired probability of random collision (2 s.f.) (p)									
		10 ⁻¹⁸	10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10 ^{−6}	0.1%	1%	25%	50%	75%
16	65,536	<2	<2	<2	<2	<2	11	36	190	300	430
32	4.3 × 10 ⁹	<2	<2	<2	3	93	2900	9300	50,000	77,000	110,000
64	1.8 × 10 ¹⁹	6	190	6100	190,000	6,100,000	1.9 × 10 ⁸	6.1 × 10 ⁸	3.3 × 10 ⁹	5.1 × 10 ⁹	7.2×10^9
128	3.4 × 10 ³⁸	2.6 × 10 ¹⁰	8.2 × 10 ¹¹	2.6×10^{13}	8.2 × 10 ¹⁴	2.6×10^{16}	8.3×10^{17}	2.6×10^{18}	1.4 × 10 ¹⁹	2.2×10^{19}	3.1 × 10 ¹⁹
256	1.2 × 10 ⁷⁷	4.8 × 10 ²⁹	1.5 × 10 ³¹	4.8×10^{32}	1.5 × 10 ³⁴	4.8×10^{35}	1.5 × 10 ³⁷	4.8×10^{37}	2.6×10^{38}	4.0×10^{38}	5.7 × 10 ³⁸
384	3.9 × 10 ¹¹⁵	8.9 × 10 ⁴⁸	2.8×10^{50}	8.9 × 10 ⁵¹	2.8×10^{53}	8.9 × 10 ⁵⁴	2.8×10^{56}	8.9 × 10 ⁵⁶	4.8×10^{57}	7.4×10^{57}	1.0 × 10 ⁵⁸
512	1.3 × 10 ¹⁵⁴	1.6 × 10 ⁶⁸	5.2 × 10 ⁶⁹	1.6 × 10 ⁷¹	5.2 × 10 ⁷²	1.6 × 10 ⁷⁴	5.2 × 10 ⁷⁵	1.6 × 10 ⁷⁶	8.8 × 10 ⁷⁶	1.4 × 10 ⁷⁷	1.9 × 10 ⁷⁷

for large m = 2ⁿ, average # hash evaluations before finding the first collision is
 1.25(m)^{1/2}

Overall

Assume a CR function h producing hash values of size n

- brute-force attack
 - evaluate h on 2ⁿ + 1 distinct inputs
 - by the "pigeon hole" principle, at least 1 collision will be found
- birthday attack
 - evaluate h on (much) fewer distinct inputs that hash to random values
 - by "balls-into-bins" probabilistic analysis, at least 1 collision will likely be found
 - when hashing only half distinct inputs, it's more likely to find a collision!
 - thus, in order to get n-bit security, we (<u>at least</u>) need hash values of length 2n

Applications of hashing to cryptography

Hash functions enable efficient MAC design!

Back to problem of designing secure MAC for messages of arbitrary lengths

- so far, we have seen two solutions
 - block-based "tagging"
 - based on PRFs
 - inefficient

- CBC-MAC
 - also based on PRFs
 - more efficient

[1] Hash-and-MAC: Design

Generic method for designing secure MAC for messages of arbitrary lengths

based on CR hashing and any fix-length secure MAC

- new MAC (Gen', Mac', Vrf') as the name suggests
 - Gen': <u>instantiate</u> H and Mac_k with key k
 - Mac': <u>hash</u> message m into h = H(m), output <u>Mac</u>_k-tag t on h
 - Vrf': canonical verification

[1] Hash-and-MAC: Security

The Hash-and-MAC construction is a secure as long as

- H is collision resistant; and
- the underlying MAC is secure

Intuition

 since <u>H is CR</u>: authenticating <u>digest H(m)</u> is <u>a good as</u> authenticating <u>m itself</u>!

[2] Hash-based MAC

- so far, MACs are based on block ciphers
- can we construct a MAC based on CR hashing?

[2] A naïve, insecure, approach

Set tag t as:

$$Mac_k(m) = H(k | | m)$$

intuition: given H(k||m) it should be infeasible to compute H(k||m'), m' ≠ m

Insecure construction

- practical CR hash functions employ the Merkle-Damgård design
- length-extension attack
 - knowledge of H(m₁) makes it feasible to compute H(m₁ | | m₂)
 - by knowing the length of m₁, one can learn internal state z_B even without knowing m₁!

[2] HMAC: Secure design

Set tag t as:

```
HMAC_k[m] = H[(k \oplus opad) || H[(k \oplus ipad) || m]]
```

- intuition: instantiation of hash & sign paradigm
- two layers of hashing H
 - upper layer
 - y = H((k ⊕ ipad) | | m)
 - y = H'(m), i.e., "hash"
 - lower layer
 - t = H ((k ⊕ opad) | | y')
 - t = Mac'(k_{out}, y'), i.e., "sign"

[2] HMAC: Security

If used with a secure hash function and according to specs, HMAC is secure

no practical attacks are known against HMAC