Lec10 Note of Algebra

Xuxuayame

日期: 2024年10月14日

命题 1.33. $I \triangleleft R$, 则 $R/I \otimes_R M \simeq M/IM$, 这里 $IM = \{\sum_{f \mid R} r_i m_i \mid r_i \in I\}$. 特别地 I = 0 则 $R \otimes_R M \simeq M$.

证明. 考虑

$$R/I \times M \to M/IM, \ (\overline{r}, m) \mapsto \overline{rm}$$

为双线性映射,则其诱导同态:

$$\phi: R/I \otimes_R M \to M/IM, \ \overline{r} \otimes m \mapsto \overline{rm}.$$

反之取 ϕ^{-1} : $M/IM \to R/I \otimes_R M$, $\overline{m} \mapsto \overline{1} \otimes m$.

习题: 验证 ϕ^{-1} 良定义.

命题 1.34. $N \otimes_R -: R - \mathsf{Mod} \to R - \mathsf{Mod}$ 是右正合的. 即

$$M' \stackrel{i}{\rightarrow} M \stackrel{\phi}{\rightarrow} M'' \rightarrow 0$$
 正合

 $\Rightarrow N \otimes_R M' \stackrel{\mathrm{Id}_N \otimes_R i}{\to} N \otimes_R M \stackrel{\mathrm{Id}_N \otimes_R \phi}{\to} N \otimes_R M'' \to 0$ 正合.

例 1.38. 注意 $\operatorname{Id}_N \otimes_R i$ 未必是单同态. 取 $R = \mathbb{Z}$, 那么对 $\mathbb{Z} \stackrel{i}{\hookrightarrow} \mathbb{Q}$. 取 $N = \mathbb{Z}_2$, 则对 $\mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z} \stackrel{i_*}{\to} \mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Q}$, $\overline{1} \otimes 1 \mapsto \overline{1} \otimes 1$, 但前者在 $\mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}$ 中不为零, 而后者在 $\mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Q}$ 中为零.

证明. 先证 $\phi_* = \operatorname{Id}_N \otimes_R \phi$ 满. 因为 $n \otimes m'' = n \otimes \phi(m) = \phi_*(n \otimes m)$.

然后 $\phi_* \circ i_* = 0$, 这是显然的. 于是 $\operatorname{Im} i_* \subset \operatorname{Ker} \phi_*$.

要证 $\operatorname{Im} i_* = \operatorname{Ker} \phi_*$, 只需证 $N \otimes_R M / \operatorname{Im} i_* \simeq N \otimes_R M''$. 我们设 $\forall z \in N \otimes_R M$, $\overline{z} \mapsto \phi_*(z)$. 只需

$$N \times M'' \to M \otimes_R M/\mathrm{Im}i_*, \ (n, m'') \mapsto \overline{n \otimes m}.$$

成为双线性映射. 为了证明映射良定义, 取 $m \in M$, $y \in M$ s.t. $\phi(m) = m'' = \phi(y)$, 则 $m - y \in \text{Im}i$, $n \otimes m - n \otimes y = n \otimes (m - y) \in \text{Im}i_*$. 则其诱导的延拓与前者复合得到 Id, 从而为同构.

1.4.2 平坦模 Flat Module

定义 1.36. 称 $_RF$ 平坦, 若 $\forall i: M' \hookrightarrow M$ 单, 都有 $\mathrm{Id}_F \otimes_R i: F \otimes_R M' \to F \otimes_R M$ 单.

例 1.39. $_RR$ 平坦, 因为对 $\forall i: M' \hookrightarrow M$ 单, 可以验证 $\mathrm{Id}_R \otimes R: R \otimes_R M' \to R \otimes_R M$ 单.

命题 1.35. 考虑 $_RF$, 则 $_RF$ 平坦 \Leftrightarrow $_{R}F \otimes_{R} - : R - \mathsf{Mod} \to R - \mathsf{Mod}$ 正合.

证明. ⇒: 成立.

$$\Leftarrow$$
: 设 $0 \to M' \stackrel{i}{\hookrightarrow} M \twoheadrightarrow M/\mathrm{Im}i \to 0$ 为短正合列, 由 $F \otimes_R -$ 正合即得.

例 1.40. R 整环, $0 \neq I \triangleleft R$, $I \neq R$, 则 R/I 不平坦. 因为 $i: R \hookrightarrow K$, i_* 不单.

K = Frac R 是R的商域

命题 1.36. (1) $\{F_i\}_{i\in\Lambda}$, F_i 平坦 $\Rightarrow \coprod_{i\in\Lambda} F_i$ 平坦.

- (2) F 平坦, F' 为 F 的直和项则 F' 平坦.
- (3) 投射模是平坦模.

证明. (1) $\forall a: M' \hookrightarrow M$ 单.

$$\left(\coprod_{i\in\Lambda} F_i\right) \otimes_R M' \xrightarrow{a_*} \left(\coprod_{i\in\Lambda} F_i\right) \otimes_R M$$

$$\downarrow \simeq \qquad \qquad \downarrow \simeq$$

$$\coprod_{i\in\Lambda} (F_i \otimes_R M') \xrightarrow{\coprod_{i\in\Lambda} (a_*)} \coprod_{i\in\Lambda} (F_i \otimes_R M)$$

习题: 验证图表交换.

(2) $F = F' \oplus F''$, 对 $i: M' \hookrightarrow M$ 单,

$$F \otimes_R M' \xrightarrow{\operatorname{Id}_F \otimes_R i} F \otimes_R M$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$(F' \otimes_R M') \oplus (F'' \otimes_R M') \xrightarrow{i'} (F' \otimes_R M) \oplus (F'' \otimes_R M)$$
这里 $i' = \begin{pmatrix} \operatorname{Id}_F \otimes_R i & 0 \\ 0 & \operatorname{Id}_{F''} \otimes i \end{pmatrix}$

命题 1.37. $_RF$ 平坦 $\Leftrightarrow \forall I \triangleleft R, \ I \otimes_R F \hookrightarrow R \otimes_R F$ 单, 此时 $R \otimes F \simeq F, \ I \otimes_R F \simeq IF$.

例 1.41. ZQ 平坦. (**习题**: ZQ 不是投射模).

固定 d > 2, 验证 $\mathbb{Q} \otimes_{\mathbb{Z}} d\mathbb{Z} \to \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}$ 单.

证明. \Leftarrow : 取 $\mathcal{S} = \{_R M \mid \forall M' \leq M, F \otimes_R M' \to F \otimes_R M, f \otimes m' \mapsto f \otimes m' \mathfrak{P} \}$. 则

- (1) \mathcal{S} 对商封闭, 即 $M \in \mathcal{S}$, K < M 则 $M/K \in \mathcal{S}$.
- (2) S 对 \coprod 封闭, 即 $M_i \in S \Rightarrow \coprod_{i \in \Lambda} M_i \in S$.

于是 $(1) + (2) \Rightarrow S = R - \mathsf{Mod}$.

对 (1), $K \le M' \le M$, $M'/K \le M/K$. 有

对一二行使用蛇引理即可.

对 (2), 设 $M_1, M_2 \in \mathcal{S}, E \leq M_1 \oplus M_2 = M, 则$

$$0 \longrightarrow M_1 \cap E \longrightarrow E \longrightarrow E/(M_1 \cap E) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \stackrel{\text{iff}}{\downarrow}?$$

$$0 \longrightarrow M_1 \longrightarrow M \longrightarrow M_2$$

这里单因为 $E/(M_1 \cap E) \simeq (M_1 + E)/M_1 \leq M/M_1 \simeq M_2$. 于是对于

$$0 \longrightarrow F \otimes_R (M_1 \cap E) \longrightarrow F \otimes_R E \longrightarrow F \otimes_R (E/(M_1 \cap E)) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow^? \qquad \qquad \downarrow$$

$$0 \longrightarrow F \otimes_R M_1 \longrightarrow F \otimes_R M \longrightarrow F \otimes_R M_2 \longrightarrow 0$$

 $0 \longrightarrow F \otimes_R M_1 \longrightarrow F \otimes_R M \longrightarrow F \otimes_R M_2 \longrightarrow$ 由蛇引理可得中间单.

于是对于一般的直和, 设 $M_i \in \mathcal{S}$, 与 $E \leq \coprod_{i \in \Lambda} M_i$, 我们想要证明 $F \otimes_R E$ 中非零元打到 $F \otimes_R (\coprod M_i)$ 中非零, 那么对任意 $0 \neq z \in F \otimes_R E$, z 可写成 $\sum_{f \in R} e_j \otimes (m_i)_{i \in \Lambda}$, 这里 m_i 也是有限个, 因此整体是有限的, 所以存在 $\Lambda' \subset \Lambda$ 以及 $E' = E \cap \coprod_{i \in \Lambda'} M_i$ 使得 $0 \neq z' = \sum_{f \in R} e_j \otimes (m_i)_{i \in \Lambda'} \in F \otimes E'$ 被打到 $F \otimes_R E$ 中恰好为 z. 而 z' 最后的像自然也不为零.

$$F \otimes_R E \longrightarrow F \otimes_R (\coprod M_i)$$

$$\uparrow \qquad \qquad \uparrow$$

$$F \otimes_R E' \longrightarrow F \otimes_R (\coprod_{i \in \Lambda'} M_i)$$

引理 1.38. 设有短正合列 $0 \to N \hookrightarrow M \to F \to 0$, F 平坦. 则对 $\forall_R E, 0 \to N \otimes_R E \hookrightarrow M \otimes_R E \to F \otimes_R E \to 0$ 正合.

命题 1.39. $0 \to F' \to F \to F'' \to 0$ 正合, F'' 平坦, 则 F 平坦 $\Leftrightarrow F'$ 平坦. 特别地 $0 \to K \to F' \to \cdots \to F^n \to 0$ 正合, F^i 平坦, 则 K 平坦.

1.4.3 基变换

设有环同态 $R \xrightarrow{f} S$, 那么一个 SM 可以变为 RM, 这就给出了 $S-\mathsf{Mod} \to R-\mathsf{Mod}$ 的一个正合函子.