

Deep Neural Networks Machine Learning and Pattern Recognition

(Largely based on slides from Fei-Fei Li & Justin Johnson & Serena Yeung)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

Convolutional Neural Networks (CNNs)

Fully Connected Layer

 $32 \times 32 \times 3$ image \Rightarrow stretch to 3072×1

Fully Connected Layer

CIFAR-10

 $32 \times 32 \times 3$ image \Rightarrow stretch to 3072×1

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

 3×3 filter

 5×5 matrix

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1		
0	1	0		
1	0	1		

 3×3 filter

 5×5 matrix

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

5	×	5	matrix
$\overline{}$			

1	0	1
0	1	0
1	0	1

4	

$$1*1 + 1*0 + 1*1 + 0*0 + 1*1 + 1*0 + 0*1 + 0*0 + 1*1 = 4$$

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

5	×	5	matrix
$\overline{}$			

1	0	1
0	1	0
1	0	1

4	3	

$$1*1 + 1*0 + 0*1 + 1*0 + 1*1 + 1*0 + 1*1 + 1*0 + 1*1 = 3$$

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

5	X	5	matrix	

1	0	1
0	1	0
1	0	1

4	3	4

$$1*1 + 0*0 + 0*1 + 1*0 + 1*1 + 0*0 + 1*1 + 1*0 + 1*1 = 4$$

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

5	×	5	matrix
$\overline{}$			

1	0	1
0	1	0
1	0	1

4	3	4
2		

$$0*1 + 1*0 + 1*1 + 0*0 + 0*1 + 1*0 + 0*1 + 0*0 + 1*1 = 2$$

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

5	×	5	matrix
\sim	/ \	_	111010117

1	0	1
0	1	0
1	0	1

 3×3 filter

4	3	4
2	4	

$$1*1 + 1*0 + 1*1 + 0*0 + 1*1 + 1*0 + 0*1 + 1*0 + 1*1 = 4$$

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

5	X	5	matrix
_		_	

1	0	1
0	1	0
1	0	1

3	X	3	fi	lter

4	3	4
2	4	3

$$1*1 + 1*0 + 0*1 + 1*0 + 1*1 + 1*0 + 1*1 + 1*0 + 0*1 = 3$$

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

5	×	5	matrix
\sim	/ \	_	111010117

1	0	1
0	1	0
1	0	1

 3×3 filter

4	3	4
2	4	3
2		

$$0*1 + 0*0 + 1*1 + 0*0 + 0*1 + 1*0 + 0*1 + 1*0 + 1*1 = 2$$

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

5	×	5	matri	X
---	---	---	-------	---

1	0	1
0	1	0
1	0	1

4	3	4
2	4	3
2	3	

$$0*1 + 1*0 + 1*1 + 0*0 + 1*1 + 1*0 + 1*1 + 1*0 + 0*1 = 3$$

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

5	X	5	matrix
_		_	

1	0	1
0	1	0
1	0	1

 3×3 filter

4	3	4
2	4	3
2	3	4

$$1*1 + 1*0 + 1*1 + 1*0 + 1*1 + 0*0 + 1*1 + 0*0 + 0*1 = 4$$

0	1	0
1	-4	1
0	1	0

Edge Detection

0	1	0
1	-4	1
0	1	0

Emboss

-2	-1	0
-1	1	1
0	1	2

Convolution Layer

 $32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Filters always extend the full depth of the input volume

Convolution Layer

 $32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolve (slide) over all spatial locations

 $32 \times 32 \times 3$ image $5 \times 5 \times 3$ filter

6 activation maps

If we had $6.5 \times 5 \times 3$ filters ...

Convolutional Layer

The size of the **Activation Map** (or Feature Map or Convolved Feature) is controlled by three parameters:

Convolutional Layer

The size of the **Activation Map** (or Feature Map or Convolved Feature) is controlled by three parameters:

 Depth: corresponds to the number of filters we use for the convolution operation.

Convolutional Layers

Sequence of Convolutional Layers, interspersed with activation functions.

Convolutional Layer

The size of the **Activation Map** (or Feature Map or Convolved Feature) is controlled by three parameters:

- Depth: corresponds to the number of filters we use for the convolution operation.
- Stride: the number of pixels by which we slide our filter matrix over the input matrix.

 7×7 input (spatially) assume 3×3 filter applied with **stride 1**

 7×7 input (spatially) assume 3×3 filter applied with **stride 1**

7

 7×7 input (spatially) assume 3×3 filter applied with **stride 1**

7

 7×7 input (spatially) assume 3×3 filter applied with **stride 1**

 7×7 input (spatially) assume 3×3 filter applied with **stride 1**

7

 7×7 input (spatially) assume 3×3 filter applied with **stride 1**

7

 7×7 input (spatially) assume 3×3 filter applied with **stride 1**

 \Rightarrow 5 × 5 output

/

 7×7 input (spatially) assume 3×3 filter applied with **stride 2**

 7×7 input (spatially) assume 3×3 filter applied with **stride 2**

7

 7×7 input (spatially) assume 3×3 filter applied with **stride 2**

 7×7 input (spatially) assume 3×3 filter applied with **stride 2**

 7×7 input (spatially) assume 3×3 filter applied with **stride 2**

 \Rightarrow 3 × 3 output

/

	F		
F			

Output size:

(N - F) / stride + 1

		F		
	F			

Output size:

$$(N - F) / stride + 1$$

e.g. N = 7, F = 3:
stride 1
$$\Rightarrow$$
 (7 - 3)/1 + 1 = 5
stride 2 \Rightarrow (7 - 3)/2 + 1 = 3
stride 3 \Rightarrow (7 - 3)/3 + 1 = 2.33

N

Convolutional Layer

The size of the **Activation Map** (or Feature Map or Convolved Feature) is controlled by three parameters:

- Depth: corresponds to the number of filters we use for the convolution operation.
- Stride: the number of pixels by which we slide our filter matrix over the input matrix.
- **Zero-padding**: sometimes, it is convenient to pad the input matrix with **zeros around the border**.

Convolutional Layer: Zero-Padding

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Convolutional Layer: Zero-Padding

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

7 × 7 input,3 × 3 filter appliedwith stride 1 with pad 1

What is the output? **7** × **7** output

Convolutional Layer: Zero-Padding

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

In general, common to see CONV layers with stride 1, filters of size $F \times F$, and zero-padding with (F-1)/2 (will preserve size spatially).

e.g. $F = 3 \Rightarrow$ zero pad with 1

 $F = 5 \Rightarrow \text{zero pad with } 2$

 $F = 7 \Rightarrow$ zero pad with 3

Shrinking too fast is not good, doesn't work well.

$$32 \rightarrow 28 \rightarrow 24 \rightarrow ...$$

Number of Parameters

Input volume: 32 x 32 x 3

 10.5×5 filters with stride 1, pad 2

Number of parameters in this layer?

Number of Parameters

Input volume: $32 \times 32 \times 3$

 10.5×5 filters with stride 1, pad 2

Number of parameters in this layer?

Each filter has 5*5*3 + 1 = 76 parameters (+1 for bias)

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Max pooling with 2×2 filters and stride 2

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Pooling Layer

The function of Pooling is to progressively reduce the spatial size of the input representation. In particular, pooling

- makes the input representations (feature dimension) smaller and more manageable
- reduces the number of parameters and computations in the network, therefore, controlling overfitting
- makes the network invariant to small transformations, distortions and translations in the input image

Fully Connected Layer

 Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Credit: http://cs231n.github.io/convolutional-networks/

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Visualizing a CNN trained on Handwritten Digits

- Input image: 1024 pixels (32 x 32 image)
- CONV 1 (+ RELU): 6.5×5 (stride 1) filters
- POOL 1: 2×2 max pooling (with stride 2)
- CONV 2 (+ RELU): 16.5×5 (stride 1) filters
- POOL 2: 2×2 max pooling (with stride 2)
- 3 FC layers:
 - 120 neurons in the first FC layer
 - 100 neurons in the second FC layer
 - 10 neurons in the third FC (Output layer)

DNNs Architectures

DNNs Architectures

- LeNet by Yann LeCun, Léon Bottou & Yoshua Bengio (1998)
- AlexNet by Alex Krizhevsky, Ilya Sutskever & Geoff Hinton (2012)
- ZF Net by Matthew Zeiler & Rob Fergus (2013)
- GoogLeNet by Szegedy et al. (2014)
- VGGNet by Karen Simonyan & Andrew Zisserman (2014)
- ResNet by Kaiming He et al. (2015)

ImageNet 2012 — AlexNet, 8 layers

ImageNet 2015 — ResNet, 152 layers

DNNs Architectures

- LeNet by Yann LeCun, Léon Bottou & Yoshua Bengio (1998)
- AlexNet by Alex Krizhevsky, Ilya Sutskever & Geoff Hinton (2012)
- ZF Net by Matthew Zeiler & Rob Fergus (2013)
- GoogLeNet by Szegedy et al. (2014)
- VGGNet by Karen Simonyan & Andrew Zisserman (2014)
- ResNet by Kaiming He et al. (2015)

LeNet-5 [LeCun et al., 1998]

Convolution filters: 5x5 with stride 1

Subsampling (Pooling) layers: 2x2 with stride 2

[CONV-POOL-CONV-POOL-FC-FC]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

MAX POOL3

FC6

FC7

FC8


```
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)
```


[55x55x96] **CONV1** (55x55x48) x 2

Details:

- 60 million learned parameters
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- 7 CNN ensemble: 18.2% -> 15.4%

Dropout

- Dropout is a radically different technique for regularization.
- Dropout doesn't rely on modifying the cost function.
 Instead, in dropout we modify the network itself.

Dropout

Standard Network

After applying dropout

Dropout

- Heuristically, when we dropout different sets of neurons, it's rather like we're training different neural networks.
- The dropout procedure is like averaging the effects of a very large number of different networks.
- The different networks will overfit in different ways, and so, hopefully, the net effect of dropout will be to reduce overfitting.

Details:

- 60 million learned parameters
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- 7 CNN ensemble: 18.2% -> 15.4%

DNNs Architectures

- LeNet by Yann LeCun, Léon Bottou & Yoshua Bengio (1998)
- AlexNet by Alex Krizhevsky, Ilya Sutskever & Geoff Hinton (2012)
- ZF Net by Matthew Zeiler & Rob Fergus (2013)
- GoogLeNet by Szegedy et al. (2014)
- VGGNet by Karen Simonyan & Andrew Zisserman (2014)
- ResNet by Kaiming He et al. (2015)

ZFNet [Zeiler & Fergus, 2013]

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

DNNs Architectures

- LeNet by Yann LeCun, Léon Bottou & Yoshua Bengio (1998)
- AlexNet by Alex Krizhevsky, Ilya Sutskever & Geoff Hinton (2012)
- ZF Net by Matthew Zeiler & Rob Fergus (2013)
- GoogLeNet by Szegedy et al. (2014)
- VGGNet by Karen Simonyan & Andrew Zisserman (2014)
- ResNet by Kaiming He et al. (2015)

VGGNet [Simonyan & Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% in ILSVRC'13 (ZFNet) 7.3% in ILSVRC'14

FC 1000 FC 4096 FC 4096 Input VGG16

FC 4096 FC 4096 VGG19

AlexNet \

GG16 VGG

DNNs Architectures

- LeNet by Yann LeCun, Léon Bottou & Yoshua Bengio (1998)
- AlexNet by Alex Krizhevsky, Ilya Sutskever & Geoff Hinton (2012)
- ZF Net by Matthew Zeiler & Rob Fergus (2013)
- GoogLeNet by Szegedy et al. (2014)
- VGGNet by Karen Simonyan & Andrew Zisserman (2014)
- ResNet by Kaiming He et al. (2015)

To be continued ...

References

Machine Learning Books

Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 11 & 13

Machine Learning Courses

- https://www.coursera.org/learn/neural-networks
- "The 3 popular courses on Deep Learning":
 https://medium.com/towards-data-science/the-3-popular-courses-for-deeplearning
 -ai-ac37d4433bd