COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

March 1, 2023

Lecture 16: Context-Free Languages

Recap

Definition

A non-deterministic pushdown automaton (NPDA)

$$A = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$$
, where

Q: set of states Σ : input alphabet

 Γ : stack alphabet q_0 : start state

 \bot : start symbol F: set of final states

$$\delta \subseteq Q \times \Sigma \times \Gamma \times Q \times \Gamma^*.$$

Understanding δ

For $q \in Q, a \in \Sigma$ and $X \in \Gamma$, if $\delta(q, a, X) = (p, \gamma)$,

then p is the new state and γ replaces X in the stack.

if $\gamma = \epsilon$ then X is popped.

if $\gamma = X$ then X stays unchanges on the top of the stack.

if $\gamma = \gamma_1 \gamma_2 \dots \gamma_k$ then X is replaced by γ_k

and $\gamma_1 \gamma_2 \dots \gamma_{k-1}$ are pushed on top of that.

Definition (Configurations)

A configuration of an NPDA $A=(Q,\Sigma,\Gamma,\delta,q_0,\bot,F)$ is a three tuple (q,w,γ) , where $q\in Q$

Definition (Configurations)

A configuration of an NPDA $A=(Q,\Sigma,\Gamma,\delta,q_0,\bot,F)$ is a three tuple (q,w,γ) , where $q\in Q,\ w\in \Sigma^*$

Definition (Configurations)

A configuration of an NPDA $A=(Q,\Sigma,\Gamma,\delta,q_0,\bot,F)$ is a three tuple (q,w,γ) , where $q\in Q$, $w\in \Sigma^*$, and $\gamma\in \Gamma^*$.

if
$$(p, \gamma) \in \delta(q, a, X)$$
 then

Definition (Configurations)

A configuration of an NPDA $A=(Q,\Sigma,\Gamma,\delta,q_0,\bot,F)$ is a three tuple (q,w,γ) , where $q\in Q,\ w\in \Sigma^*$, and $\gamma\in \Gamma^*$.

if $(p, \gamma) \in \delta(q, a, X)$ then $\forall w \in \Sigma^*$ and $\gamma' \in \Gamma^*$

Definition (Configurations)

A configuration of an NPDA $A=(Q,\Sigma,\Gamma,\delta,q_0,\bot,F)$ is a three tuple (q,w,γ) , where $q\in Q,\ w\in \Sigma^*$, and $\gamma\in \Gamma^*$.

if
$$(p,\gamma) \in \delta(q,a,X)$$
 then $\forall w \in \Sigma^*$ and $\gamma' \in \Gamma^*$,

$$(q, a \cdot w, X\gamma') \vdash (p, w, \gamma \cdot \gamma')$$

Definition (Configurations)

A configuration of an NPDA $A=(Q,\Sigma,\Gamma,\delta,q_0,\bot,F)$ is a three tuple (q,w,γ) , where $q\in Q$, $w\in \Sigma^*$, and $\gamma\in \Gamma^*$.

if $(p,\gamma) \in \delta(q,a,X)$ then $\forall w \in \Sigma^*$ and $\gamma' \in \Gamma^*$,

$$(q, a \cdot w, X\gamma') \vdash (p, w, \gamma \cdot \gamma')$$

Let I, J are two configurations of A.

We say that $I \vdash^k J$ iff $\exists I'$ such that $I \vdash I'$

Definition (Configurations)

A configuration of an NPDA $A=(Q,\Sigma,\Gamma,\delta,q_0,\bot,F)$ is a three tuple (q,w,γ) , where $q\in Q$, $w\in \Sigma^*$, and $\gamma\in \Gamma^*$.

if $(p,\gamma) \in \delta(q,a,X)$ then $\forall w \in \Sigma^*$ and $\gamma' \in \Gamma^*$,

$$(q, a \cdot w, X\gamma') \vdash (p, w, \gamma \cdot \gamma')$$

Let I, J are two configurations of A.

We say that $I \vdash^k J$ iff $\exists I'$ such that $I \vdash I'$ and $I' \vdash^{k-1} J$.

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$.

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$. acceptance by a final state.

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$. acceptance by a final state.

A language L is said to be recognized by an NPDA A if the set $\{w \mid w \text{ is accepted by } A\}$ is the same as L.

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$. acceptance by a final state.

A language L is said to be recognized by an NPDA A if the set $\{w \mid w \text{ is accepted by } A\}$ is the same as L.

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$. acceptance by a final state.

A language L is said to be recognized by an NPDA A if the set $\{w \mid w \text{ is accepted by } A\}$ is the same as L.

The class of languages recognized by NPDAs is called Context-free languages.

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$. acceptance by a final state.

A language L is said to be recognized by an NPDA A if the set $\{w \mid w \text{ is accepted by } A\}$ is the same as L.

The class of languages recognized by NPDAs is called Context-free languages.

Another notion of acceptance of words:

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$. acceptance by a final state.

A language L is said to be recognized by an NPDA A if the set $\{w \mid w \text{ is accepted by } A\}$ is the same as L.

The class of languages recognized by NPDAs is called Context-free languages.

Another notion of acceptance of words:

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \epsilon)$

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$. acceptance by a final state.

A language L is said to be recognized by an NPDA A if the set $\{w \mid w \text{ is accepted by } A\}$ is the same as L.

The class of languages recognized by NPDAs is called Context-free languages.

Another notion of acceptance of words:

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \epsilon)$, where $q \in Q$.

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$. acceptance by a final state.

A language L is said to be recognized by an NPDA A if the set $\{w \mid w \text{ is accepted by } A\}$ is the same as L.

The class of languages recognized by NPDAs is called Context-free languages.

Another notion of acceptance of words:

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \epsilon)$, where $q \in Q$. acceptance by an empty stack.

Definition

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \gamma)$, where $q \in F$. acceptance by a final state.

A language L is said to be recognized by an NPDA A if the set $\{w \mid w \text{ is accepted by } A\}$ is the same as L.

The class of languages recognized by NPDAs is called Context-free languages.

Another notion of acceptance of words:

We say that a word is accepted by an NPDA A if $(q_0, w, \bot) \vdash^* (q, \epsilon, \epsilon)$, where $q \in Q$. acceptance by an empty stack.

Equivalence of two notions

Equivalence of two notions

Acceptance by PDA

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a PDA.

- If L is the language accepted of P by final state, there exists PDA P' such that its language accepted by empty stack is L.
 - If L is the language accepted of P by empty stack , there exists PDA P' such that its language accepted by final state is L.

Equivalence of two notions

Acceptance by PDA

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ be a PDA.

- If L is the language accepted of P by final state, there exists PDA P' such that its language accepted by empty stack is L.
- If L is the language accepted of P by empty stack , there exists PDA P' such that its language accepted by final state is L.

Proof: Exercise (Kozen Supplementary lecture E)

Deterministic PDA

Definition

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ is a DPDA if for each $q \in Q$ and $X \in \Gamma$

- $|\delta(q, a, X)| \le 1$ for each $a \in \Sigma \cup \{\epsilon\}$
- if $|\delta(q, a, X)| = 1$ for some $a \in \Sigma$, then $|\delta(q, \epsilon, X)| = 0$

Are context-free languages closed under union? intersection? complement? concatenation?

- Are context-free languages closed under union? intersection? complement? concatenation?
- ▶ Recall: for regular languages we had regular expressions to write rules.
- ▶ Are there similar rules for languages beyond regular?

- Are context-free languages closed under union? intersection? complement? concatenation?
- ▶ Recall: for regular languages we had regular expressions to write rules.
- Are there similar rules for languages beyond regular?
- Are there non-context free languages?

- Are context-free languages closed under union? intersection? complement? concatenation?
- ▶ Recall: for regular languages we had regular expressions to write rules.
- Are there similar rules for languages beyond regular?
- Are there non-context free languages?

Inductive definition of PAL.

 ϵ is in PAL.

Inductive definition of PAL.

 ϵ is in PAL.

If w is in PAL then $0 \cdot w \cdot 0 \in PAL$.

Inductive definition of PAL.

 ϵ is in PAL.

If w is in PAL then $0 \cdot w \cdot 0 \in PAL$.

If w is in PAL then $1 \cdot w \cdot 1 \in PAL$.

Inductive definition of PAL.

 ϵ is in PAL.

If w is in PAL then $0 \cdot w \cdot 0 \in PAL$.

If w is in PAL then $1 \cdot w \cdot 1 \in PAL$.

$$S \to \epsilon$$
.

Inductive definition of PAL.

 ϵ is in PAL.

If w is in PAL then $0 \cdot w \cdot 0 \in PAL$.

If w is in PAL then $1 \cdot w \cdot 1 \in PAL$.

$$S \to \epsilon$$
.

$$S \to 0$$
.

Inductive definition of PAL.

 ϵ is in PAL.

If w is in PAL then $0 \cdot w \cdot 0 \in PAL$.

If w is in PAL then $1 \cdot w \cdot 1 \in PAL$.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \rightarrow 1$$
.

Inductive definition of PAL.

 ϵ is in PAL.

If w is in PAL then $0 \cdot w \cdot 0 \in PAL$.

If w is in PAL then $1 \cdot w \cdot 1 \in PAL$.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \rightarrow 1$$
.

$$S \rightarrow 0S0$$
.

Inductive definition of PAL.

 ϵ is in PAL.

If w is in PAL then $0 \cdot w \cdot 0 \in PAL$.

If w is in PAL then $1 \cdot w \cdot 1 \in PAL$.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \to 1$$
.

$$S \rightarrow 0S0$$
.

$$S \rightarrow 1S1$$
.

Inductive definition of PAL.

 ϵ is in PAL.

If w is in PAL then $0 \cdot w \cdot 0 \in PAL$.

If w is in PAL then $1 \cdot w \cdot 1 \in PAL$.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \to 1$$
.

$$S \rightarrow 0S0$$
.

$$S \rightarrow 1S1$$
.

$$\mathsf{PAL'} = \left\{ w \cdot c \cdot w^R \mid w \in \{0,1\}^*, c \in \{0,1,\epsilon\} \right\}$$

$$\begin{split} \mathsf{PAL'} &= \left\{ w \cdot c \cdot w^R \mid w \in \{0,1\}^*, c \in \{0,1,\epsilon\} \right\} \\ \mathsf{Inductive \ definition \ of \ PAL'}. \\ &\qquad \epsilon, 0, 1 \ \mathsf{is \ in \ PAL'}. \end{split}$$

 $\label{eq:PAL'} \begin{aligned} \mathsf{PAL'} &= \left\{ w \cdot c \cdot w^R \mid w \in \{0,1\}^*, c \in \{0,1,\epsilon\} \right\} \\ \mathsf{Inductive \ definition \ of \ PAL'}. \end{aligned}$

 $\epsilon,0,1$ is in PAL'.

If w is in PAL' then $0 \cdot w \cdot 0 \in PAL'$.

 $\label{eq:PAL'} \begin{aligned} \mathsf{PAL'} &= \left\{ w \cdot c \cdot w^R \mid w \in \{0,1\}^*, c \in \{0,1,\epsilon\} \right\} \\ \mathsf{Inductive \ definition \ of \ PAL'}. \end{aligned}$

 $\epsilon,0,1$ is in PAL'.

If w is in PAL' then $0 \cdot w \cdot 0 \in PAL'$.

If w is in PAL' then $1 \cdot w \cdot 1 \in PAL'$.

$$\mathsf{PAL'} = \left\{ w \cdot c \cdot w^R \mid w \in \{0,1\}^*, c \in \{0,1,\epsilon\} \right\}$$
 Inductive definition of PAL'.

$$\epsilon, 0, 1$$
 is in PAL'.

If w is in PAL' then $0 \cdot w \cdot 0 \in PAL'$.

If w is in PAL' then $1 \cdot w \cdot 1 \in PAL'$.

$$S \to \epsilon$$
.

$$\mathsf{PAL'} = \left\{ w \cdot c \cdot w^R \mid w \in \{0,1\}^*, c \in \{0,1,\epsilon\} \right\}$$
 Inductive definition of PAL'.

$$\epsilon, 0, 1$$
 is in PAL'.

If w is in PAL' then $0 \cdot w \cdot 0 \in PAL'$.

If w is in PAL' then $1 \cdot w \cdot 1 \in PAL'$.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$\mathsf{PAL'} = \left\{ w \cdot c \cdot w^R \mid w \in \{0,1\}^*, c \in \{0,1,\epsilon\} \right\}$$
 Inductive definition of PAL'.

$$\epsilon, 0, 1$$
 is in PAL'.

If w is in PAL' then $0 \cdot w \cdot 0 \in PAL'$.

If w is in PAL' then $1 \cdot w \cdot 1 \in PAL'$.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \rightarrow 1$$
.

$$\mathsf{PAL'} = \left\{ w \cdot c \cdot w^R \mid w \in \{0,1\}^*, c \in \{0,1,\epsilon\} \right\}$$
 Inductive definition of PAL'.

$$\epsilon, 0, 1$$
 is in PAL'.

If w is in PAL' then $0 \cdot w \cdot 0 \in PAL'$.

If w is in PAL' then $1 \cdot w \cdot 1 \in PAL'$.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \rightarrow 1$$
.

$$S \rightarrow 0S0$$
.

$$\mathsf{PAL'} = \left\{ w \cdot c \cdot w^R \mid w \in \{0,1\}^*, c \in \{0,1,\epsilon\} \right\}$$
 Inductive definition of PAL'.

$$\epsilon, 0, 1$$
 is in PAL'.

If w is in PAL' then $0 \cdot w \cdot 0 \in PAL'$.

If w is in PAL' then $1 \cdot w \cdot 1 \in PAL'$.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \rightarrow 1$$
.

$$S \rightarrow 0S0$$
.

$$S \rightarrow 1S1$$
.

$$\mathsf{PAL'} = \left\{ w \cdot c \cdot w^R \mid w \in \{0,1\}^*, c \in \{0,1,\epsilon\} \right\}$$
 Inductive definition of PAL'.

$$\epsilon, 0, 1$$
 is in PAL'.

If w is in PAL' then $0 \cdot w \cdot 0 \in PAL'$.

If w is in PAL' then $1 \cdot w \cdot 1 \in PAL'$.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \rightarrow 1$$
.

$$S \rightarrow 0S0$$
.

$$S \rightarrow 1S1$$
.

A (formal) grammar consists of

- A (formal) grammar consists of
 - A finite set of rewriting rules of the form

$$\phi \to \psi$$

where ϕ and ψ are strings of symbols.

A (formal) grammar consists of

A finite set of rewriting rules of the form

$$\phi \rightarrow \psi$$

where ϕ and ψ are strings of symbols.

ullet A special "initial" symbol S (S standing for sentence)

A (formal) grammar consists of

A finite set of rewriting rules of the form

$$\phi \to \psi$$

where ϕ and ψ are strings of symbols.

- $oldsymbol{\circ}$ A special "initial" symbol S (S standing for sentence)
- A finite set of symbols stand for "words" of the language called terminal vocabulary.

A (formal) grammar consists of

A finite set of rewriting rules of the form

$$\phi \to \psi$$

where ϕ and ψ are strings of symbols.

- $oldsymbol{\circ}$ A special "initial" symbol S (S standing for sentence)
- A finite set of symbols stand for "words" of the language called terminal vocabulary.
- Other symbols stand for "phrases" and are called non-terminal vocabulary.

A (formal) grammar consists of

A finite set of rewriting rules of the form

$$\phi \to \psi$$

where ϕ and ψ are strings of symbols.

- $oldsymbol{\circ}$ A special "initial" symbol S (S standing for sentence)
- A finite set of symbols stand for "words" of the language called terminal vocabulary.
- Other symbols stand for "phrases" and are called non-terminal vocabulary.

Given such a grammar, a valid sentence can be generated by

A (formal) grammar consists of

A finite set of rewriting rules of the form

$$\phi \to \psi$$

where ϕ and ψ are strings of symbols.

- $oldsymbol{\circ}$ A special "initial" symbol S (S standing for sentence)
- A finite set of symbols stand for "words" of the language called terminal vocabulary.
- Other symbols stand for "phrases" and are called non-terminal vocabulary.

Given such a grammar, a valid sentence can be generated by

lacksquare Starting from the initial symbol S,

A (formal) grammar consists of

A finite set of rewriting rules of the form

$$\phi \to \psi$$

where ϕ and ψ are strings of symbols.

- $oldsymbol{\circ}$ A special "initial" symbol S (S standing for sentence)
- A finite set of symbols stand for "words" of the language called terminal vocabulary.
- Other symbols stand for "phrases" and are called non-terminal vocabulary.

Given such a grammar, a valid sentence can be generated by

- ② Applying one of the rewriting rules to form a new string ϕ by applying a rule $S \to \phi_1$,

A (formal) grammar consists of

A finite set of rewriting rules of the form

$$\phi \to \psi$$

where ϕ and ψ are strings of symbols.

- A finite set of symbols stand for "words" of the language called terminal vocabulary.
- Other symbols stand for "phrases" and are called non-terminal vocabulary.

Given such a grammar, a valid sentence can be generated by

- ② Applying one of the rewriting rules to form a new string ϕ by applying a rule $S \to \phi_1$,
- 3 and apply another rule to form a new string ϕ_2 and so on,
- lacktriangledown until we reach a string ϕ_n that consists only of terminal symbols.

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where V is a set of variables (non-terminals/vocabulary)

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

 ${\it T}$ is a set of terminal symbols or the alphabet

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start ("sentence") symbol.

$$S \to \epsilon$$
.

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start ("sentence") symbol.

$$S \to \epsilon$$
.

$$S \to 0$$
.

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start ("sentence") symbol.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \rightarrow 1$$
.

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start ("sentence") symbol.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \to 1.$$

$$S \rightarrow 0S0$$
.

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start ("sentence") symbol.

$$S \to \epsilon$$
.

$$S \to 0$$
.

$$S \rightarrow 1$$
.

$$S \rightarrow 0S0$$
.

$$S \rightarrow 1S1$$
.

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start ("sentence") symbol.

$$S \to \epsilon$$
.

$$G_{pal} = (V, T, P, S_0)$$
 such that

$$S \to 0$$
.

$$S \rightarrow 1$$
.

$$S \rightarrow 0S0$$
.

$$S \rightarrow 1S1$$
.

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start ("sentence") symbol.

$$S \to \epsilon$$
.

$$G_{pal} = (V, T, P, S_0)$$
 such that

$$S \to 0$$
.

$$V = \{S\}$$

$$S \rightarrow 1$$
.

$$S \rightarrow 0S0$$
.

$$S \rightarrow 1S1$$
.

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start ("sentence") symbol.

$$S \to \epsilon$$
. $G_{pal} = (V, T, P, S_0)$ such that

$$S \to 0$$
. $V = \{S\}$,

$$S \to 1. \qquad T = \{0, 1\}$$

$$S \rightarrow 0S0$$
.

$$S \rightarrow 1S1$$
.

Definition

A context-free grammar (CFG) G is given by (V, T, P, S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start ("sentence") symbol.

$$S \rightarrow \epsilon.$$
 $G_{pal} = (V, T, P, S_0)$ such that $S \rightarrow 0.$ $V = \{S\},$ $S \rightarrow 1.$ $T = \{0, 1\},$ $P = \{S \rightarrow \epsilon, S \rightarrow 0, S \rightarrow 1, S \rightarrow 0S0, S \rightarrow 1S1\}$ $S \rightarrow 1S1.$

Definition

A context-free grammar (CFG) G is given by (V,T,P,S_0) , where

V is a set of variables (non-terminals/vocabulary),

T is a set of terminal symbols or the alphabet,

P is a set of (rewriting rules) productions, $P \subseteq V \times (V \cup T)^*$,

 $S_0 \in V$, a start ("sentence") symbol.

$$S \rightarrow \epsilon.$$
 $G_{pal} = (V, T, P, S_0)$ such that $S \rightarrow 0.$ $V = \{S\},$ $S \rightarrow 1.$ $T = \{0, 1\},$ $P = \{S \rightarrow \epsilon, S \rightarrow 0, S \rightarrow 1, S \rightarrow 0S0, S \rightarrow 1S1\},$ $S \rightarrow 1S1.$ $S_0 = S.$

Example:

Example: $L_{a,b} = \{a^n b^n \mid n \ge 0\}$

Example:
$$L_{a,b} = \{a^n b^n \mid n \ge 0\}$$

 $S \to \epsilon \mid aSb$

Example:
$$L_{a,b} = \{a^n b^n \mid n \ge 0\}$$

$$S \to \epsilon \mid aSb$$

Example:

Example:
$$L_{a,b} = \{a^n b^n \mid n \ge 0\}$$

$$S \to \epsilon \mid aSb$$

Example:
$$L' = \{a^i b^j \mid i < j\}$$

Example:
$$L_{a,b} = \{a^n b^n \mid n \ge 0\}$$

 $S \to \epsilon \mid aSb$

Example:
$$L' = \{a^i b^j \mid i < j\}$$

$$S' \rightarrow b \mid aS'b \mid S'b$$

Example:

Example:
$$L_{a,b} = \{a^n b^n \mid n \ge 0\}$$

$$S \to \epsilon \mid aSb$$

Example:
$$L' = \{a^i b^j \mid i < j\}$$

$$S' \rightarrow b \mid aS'b \mid S'b$$

Example:
$$L'' = \{a^i b^j \mid i > j\}$$

Example:
$$L_{a,b} = \{a^n b^n \mid n \ge 0\}$$

 $S \to \epsilon \mid aSb$

Example:
$$L' = \{a^i b^j \mid i < j\}$$

$$S' \to b \mid aS'b \mid S'b$$

Example:
$$L'' = \{a^i b^j \mid i > j\}$$

 $S'' \to a \mid aS''b \mid aS''$

 $S \rightarrow a \mid aS \mid b \mid aS$ Example:

Example:
$$L_{a,b} = \{a^nb^n \mid n \ge 0\}$$

 $S \to \epsilon \mid aSb$
Example: $L' = \{a^ib^j \mid i < j\}$
 $S' \to b \mid aS'b \mid S'b$

Example:
$$L'' = \{a^i b^j \mid i > j\}$$

 $S'' \rightarrow a \mid aS''b \mid aS''$

Example:
$$L = \{a^i b^j \mid i \neq j\}$$

Example:
$$L_{a,b} = \{a^n b^n \mid n \ge 0\}$$

 $S \to \epsilon \mid aSb$

Example:
$$L' = \{a^i b^j \mid i < j\}$$

$$S' \rightarrow b \mid aS'b \mid S'b$$

Example:
$$L'' = \{a^i b^j \mid i > j\}$$

$$S'' \to a \mid aS''b \mid aS''$$

Example:
$$L = \{a^i b^j \mid i \neq j\}$$

$$S \to S' \mid S''$$

Example:
$$L_{a,b} = \{a^nb^n \mid n \ge 0\}$$

$$S \to \epsilon \mid aSb$$
Example: $L' = \{a^ib^j \mid i < j\}$

$$S' \to b \mid aS'b \mid S'b$$
Example: $L'' = \{a^ib^j \mid i > j\}$

$$S'' \to a \mid aS''b \mid aS''$$
Example: $L = \{a^ib^j \mid i \ne j\}$

$$S \to S' \mid S''$$

$$S' \to b \mid aS'b \mid S'b$$

Example:
$$L_{a,b} = \{a^nb^n \mid n \ge 0\}$$

$$S \to \epsilon \mid aSb$$
Example: $L' = \{a^ib^j \mid i < j\}$

$$S' \to b \mid aS'b \mid S'b$$
Example: $L'' = \{a^ib^j \mid i > j\}$

$$S'' \to a \mid aS''b \mid aS''$$
Example: $L = \{a^ib^j \mid i \ne j\}$

$$S \to S' \mid S''$$

$$S' \to b \mid aS'b \mid S'b$$

$$S'' \to a \mid aS''b \mid aS''.$$

Definition

Let G be a CFG given by (V, T, P, S_0) .

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

 $\mathsf{let}\ A \in V$

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let
$$w, w' \in (V \cup T)^*$$
,

let $A \in V$ and let $(A \rightarrow v) \in P$ be a production in the grammar

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let
$$w, w' \in (V \cup T)^*$$
,

let $A \in V$ and let $(A \to v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

let $A \in V$ and let $(A \to v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Then we say that $w \cdot A \cdot w'$ derives $w \cdot v \cdot w'$ in one step.

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

let $A \in V$ and let $(A \to v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Then we say that $w \cdot A \cdot w'$ derives $w \cdot v \cdot w'$ in one step.

We denote it as follows: $w \cdot A \cdot w' \Rightarrow w \cdot v \cdot w'$.

Definition (\Rightarrow^*)

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

let $A \in V$ and let $(A \to v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Then we say that $w \cdot A \cdot w'$ derives $w \cdot v \cdot w'$ in one step.

We denote it as follows: $w \cdot A \cdot w' \Rightarrow w \cdot v \cdot w'$.

Definition (\Rightarrow^*)

Let G be a CFG given by (V, T, P, S_0) .

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

let $A \in V$ and let $(A \to v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Then we say that $w \cdot A \cdot w'$ derives $w \cdot v \cdot w'$ in one step.

We denote it as follows: $w \cdot A \cdot w' \Rightarrow w \cdot v \cdot w'$.

Definition (\Rightarrow^*)

Let G be a CFG given by (V, T, P, S_0) .

For all $\alpha \in (V \cup T)^*$, we say that $\alpha \Rightarrow^0 \alpha$.

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

let $A \in V$ and let $(A \to v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Then we say that $w \cdot A \cdot w'$ derives $w \cdot v \cdot w'$ in one step.

We denote it as follows: $w \cdot A \cdot w' \Rightarrow w \cdot v \cdot w'$.

Definition (\Rightarrow^*)

Let G be a CFG given by (V, T, P, S_0) .

For all $\alpha \in (V \cup T)^*$, we say that $\alpha \Rightarrow^0 \alpha$.

For all $\alpha, \beta, \gamma \in (V \cup T)^*$

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

let $A \in V$ and let $(A \to v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Then we say that $w \cdot A \cdot w'$ derives $w \cdot v \cdot w'$ in one step.

We denote it as follows: $w \cdot A \cdot w' \Rightarrow w \cdot v \cdot w'$.

Definition (\Rightarrow^*)

Let G be a CFG given by (V, T, P, S_0) .

For all $\alpha \in (V \cup T)^*$, we say that $\alpha \Rightarrow^0 \alpha$.

For all $\alpha, \beta, \gamma \in (V \cup T)^*$,

if $\alpha \Rightarrow^{k-1} \beta$ and $\beta \Rightarrow \gamma$

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

let $A \in V$ and let $(A \to v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Then we say that $w \cdot A \cdot w'$ derives $w \cdot v \cdot w'$ in one step.

We denote it as follows: $w \cdot A \cdot w' \Rightarrow w \cdot v \cdot w'$.

Definition (\Rightarrow^*)

Let G be a CFG given by (V, T, P, S_0) .

For all $\alpha \in (V \cup T)^*$, we say that $\alpha \Rightarrow^0 \alpha$.

For all $\alpha, \beta, \gamma \in (V \cup T)^*$,

if
$$\alpha \Rightarrow^{k-1} \beta$$
 and $\beta \Rightarrow \gamma$ then $\alpha \Rightarrow^k \gamma$.

For all $\alpha, \beta \in (V \cup T)^*$

Definition

Let G be a CFG given by (V, T, P, S_0) .

Let $w, w' \in (V \cup T)^*$,

let $A \in V$ and let $(A \to v) \in P$ be a production in the grammar, where $v \in (V \cup T)^*$.

Then we say that $w \cdot A \cdot w'$ derives $w \cdot v \cdot w'$ in one step.

We denote it as follows: $w \cdot A \cdot w' \Rightarrow w \cdot v \cdot w'$.

Definition (\Rightarrow^*)

Let G be a CFG given by (V, T, P, S_0) .

For all $\alpha \in (V \cup T)^*$, we say that $\alpha \Rightarrow^0 \alpha$.

For all $\alpha, \beta, \gamma \in (V \cup T)^*$,

if $\alpha \Rightarrow^{k-1} \beta$ and $\beta \Rightarrow \gamma$ then $\alpha \Rightarrow^k \gamma$.

For all $\alpha, \beta \in (V \cup T)^*$, we say that $\alpha \Rightarrow^* \beta$, if $\exists k \ge 0$ s.t. $\alpha \Rightarrow^k \beta$.

Definition

Let G be a CFG given by (V, T, P, S_0) .

Definition

Let G be a CFG given by (V, T, P, S_0) . The **language of** G, L(G)

Definition

Let G be a CFG given by (V,T,P,S_0) . The **language of** G, L(G), is the set of all the strings over T which can be derived from S_0

Definition

Let G be a CFG given by (V, T, P, S_0) . The **language of** G, L(G), is the set of all the strings over T which can be derived from S_0 , i.e.

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

Lemma

 $L(G_{pal})$ is equal to PAL.

Definition

Let G be a CFG given by (V, T, P, S_0) . The **language of** G, L(G), is the set of all the strings over T which can be derived from S_0 , i.e.

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

Lemma

 $L(G_{pal})$ is equal to PAL.

 $\forall w \in \{0,1\},^* w \in L(G_{Pal}) \text{ if and only if } w = w^R.$

Definition

Let G be a CFG given by (V, T, P, S_0) . The **language of** G, L(G), is the set of all the strings over T which can be derived from S_0 , i.e.

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

Lemma

 $L(G_{pal})$ is equal to PAL.

 $\forall w \in \{0,1\},^* w \in L(G_{Pal}) \text{ if and only if } w = w^R.$

Definition

Let G be a CFG given by (V, T, P, S_0) . The **language of** G, L(G), is the set of all the strings over T which can be derived from S_0 , i.e.

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

Lemma

 $L(G_{pal})$ is equal to PAL.

 $\forall w \in \{0,1\},^* w \in L(G_{Pal}) \text{ if and only if } w = w^R.$

Proof.

$$(\Leftarrow)$$
: If $w = w^R$, $w \in L(G_{Pal})$

Definition

Let G be a CFG given by (V, T, P, S_0) . The **language of** G, L(G), is the set of all the strings over T which can be derived from S_0 , i.e.

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

Lemma

 $L(G_{pal})$ is equal to PAL.

 $\forall w \in \{0,1\},^* w \in L(G_{Pal}) \text{ if and only if } w = w^R.$

Proof.

 (\Leftarrow) : If $w = w^R$, $w \in L(G_{Pal})$

By Induction on |w|.

Definition

Let G be a CFG given by (V, T, P, S_0) . The **language of** G, L(G), is the set of all the strings over T which can be derived from S_0 , i.e.

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

Lemma

 $L(G_{pal})$ is equal to PAL.

 $\forall w \in \{0,1\},^* w \in L(G_{Pal}) \text{ if and only if } w = w^R.$

Proof.

$$(\Leftarrow)$$
: If $w = w^R$, $w \in L(G_{Pal})$

By Induction on |w|.

(⇒): If
$$w \in L(G_{Pal})$$
 then $w = w^R$.

By Induction on |w|.

Examples

Give context-free grammars for the following languages.

$$\{a^i \cdot b^j \cdot c^k \mid \text{ either } i \neq j \text{ or } j \neq k\}.$$

Examples

Give context-free grammars for the following languages.

$$\{a^i \cdot b^j \cdot c^k \mid \text{ either } i \neq j \text{ or } j \neq k\}.$$

First we give a grammar for $\{a^i \cdot b^j \cdot c^k \mid i \neq j\}$.

Examples

Give context-free grammars for the following languages.

$$\begin{split} \{a^i \cdot b^j \cdot c^k \mid & \text{ either } i \neq j \text{ or } j \neq k\}. \\ \text{First we give a grammar for } \{a^i \cdot b^j \cdot c^k \mid i \neq j\}. \\ S \rightarrow S'C \mid S''C \end{split}$$

Give context-free grammars for the following languages.

$$\begin{aligned} &\{a^i \cdot b^j \cdot c^k \mid \text{ either } i \neq j \text{ or } j \neq k\}. \\ &\text{First we give a grammar for } \{a^i \cdot b^j \cdot c^k \mid i \neq j\}. \\ &S \rightarrow S'C \mid S''C \\ &S' \rightarrow b \mid aS'b \mid S'b \end{aligned}$$

Give context-free grammars for the following languages.

$$\begin{split} & \{a^i \cdot b^j \cdot c^k \mid \text{ either } i \neq j \text{ or } j \neq k \}. \\ & \text{First we give a grammar for } \{a^i \cdot b^j \cdot c^k \mid i \neq j \}. \\ & S \rightarrow S'C \mid S''C \\ & S' \rightarrow b \mid aS'b \mid S'b \\ & S'' \rightarrow a \mid aS''b \mid aS''. \\ & C \rightarrow cC \mid \epsilon \end{split}$$

Now we give a grammar for $\{a^i \cdot b^j \cdot c^k \mid j \neq k\}$.

Give context-free grammars for the following languages.

$$\{a^i \cdot b^j \cdot c^k \mid \text{ either } i \neq j \text{ or } j \neq k\}.$$

First we give a grammar for $\{a^i \cdot b^j \cdot c^k \mid i \neq j\}$.

$$\begin{split} S &\rightarrow S'C \mid S''C \\ S' &\rightarrow b \mid aS'b \mid S'b \\ S'' &\rightarrow a \mid aS''b \mid aS''. \\ C &\rightarrow cC \mid \epsilon \end{split}$$

Now we give a grammar for $\{a^i \cdot b^j \cdot c^k \mid j \neq k\}$.

$$S \to AS' \mid AS''$$

Give context-free grammars for the following languages.

$$\{a^i \cdot b^j \cdot c^k \mid \text{ either } i \neq j \text{ or } j \neq k\}.$$

First we give a grammar for $\{a^i \cdot b^j \cdot c^k \mid i \neq j\}$.

$$\begin{split} S &\rightarrow S'C \mid S''C \\ S' &\rightarrow b \mid aS'b \mid S'b \\ S'' &\rightarrow a \mid aS''b \mid aS''. \\ C &\rightarrow cC \mid \epsilon \end{split}$$

Now we give a grammar for $\{a^i \cdot b^j \cdot c^k \mid j \neq k\}$.

$$S \to AS' \mid AS''$$

 $S' \to c \mid bS'c \mid S'c$

Give context-free grammars for the following languages.

$$\begin{split} & \{a^i \cdot b^j \cdot c^k \mid \text{ either } i \neq j \text{ or } j \neq k \}. \\ & \text{First we give a grammar for } \{a^i \cdot b^j \cdot c^k \mid i \neq j \}. \\ & S \rightarrow S'C \mid S''C \\ & S' \rightarrow b \mid aS'b \mid S'b \\ & S'' \rightarrow a \mid aS''b \mid aS''. \\ & C \rightarrow cC \mid \epsilon \end{split}$$

Now we give a grammar for $\{a^i \cdot b^j \cdot c^k \mid j \neq k\}$.

$$\begin{split} S &\to AS' \mid AS'' \\ S' &\to c \mid bS'c \mid S'c \\ S'' &\to b \mid bS''c \mid bS''. \\ C &\to aA \mid \epsilon \end{split}$$

Now simply take the union.

Exercises

- Give a grammar for the language of all valid regular expressions.
- Give a grammar for any regular language (given as a DFA).

Definition

A context-free grammar is said to be in Chomsky normal form if every rule is of the form

Definition

A context-free grammar is said to be in Chomsky normal form if every rule is of the form

$$A \to BC$$

Definition

A context-free grammar is said to be in Chomsky normal form if every rule is of the form

$$A \to BC$$

$$A \to a$$

Definition

A context-free grammar is said to be in Chomsky normal form if every rule is of the form

$$A \to BC$$

$$A \rightarrow a$$

where $a \in T$, $A, B, C \in V$, neither B nor C is the start variable, i.e. start variable does not appear on the right of any rule.

Definition

A context-free grammar is said to be in Chomsky normal form if every rule is of the form

$$A \rightarrow BC$$

$$A \rightarrow a$$

where $a \in T$, $A,B,C \in V$, neither B nor C is the start variable, i.e. start variable does not appear on the right of any rule. Moreover, epsilon does not appear on the right of any rule except as $S \to \epsilon$.

Definition

A context-free grammar is said to be in Chomsky normal form if every rule is of the form

$$A \rightarrow BC$$

$$A \rightarrow a$$

where $a \in T$, $A,B,C \in V$, neither B nor C is the start variable, i.e. start variable does not appear on the right of any rule. Moreover, epsilon does not appear on the right of any rule except as $S \to \epsilon$.

Lemma

Any context-free grammar G can be converted into another context-free grammar G'

Definition

A context-free grammar is said to be in Chomsky normal form if every rule is of the form

$$A \rightarrow BC$$

$$A \rightarrow a$$

where $a \in T$, $A,B,C \in V$, neither B nor C is the start variable, i.e. start variable does not appear on the right of any rule. Moreover, epsilon does not appear on the right of any rule except as $S \to \epsilon$.

Lemma

Any context-free grammar G can be converted into another context-free grammar G' such that L(G) = L(G') and G' is in the Chomsky normal form.