Zillow House Price Prediction Model

import necessary libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
```

Load the Ames Housing dataset

```
In [71]: data = r"C:\Users\ssing\OneDrive\Desktop\AmesHousing.csv"
    data = pd.read_csv(data)
```

Explore the dataset

```
In [74]: # Explore the dataset
    print("Dataset Information:")
    data.info()
    print("\nMissing Values:")
    print(data.isnull().sum())
```

Dataset Information:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2930 entries, 0 to 2929
Data columns (total 82 columns):

Data		82 columns):	
#	Column	Non-Null Count	Dtype
0	Order	2930 non-null	 int64
1	PID	2930 non-null	int64
2	MS SubClass	2930 non-null	int64
3	MS Zoning	2930 non-null	object
4	Lot Frontage	2440 non-null	float64
5	Lot Area	2930 non-null	int64
6	Street	2930 non-null	object
7	Alley	198 non-null	object
8	Lot Shape	2930 non-null	object
9	Land Contour	2930 non-null	object
10	Utilities	2930 non-null	object
11	Lot Config	2930 non-null	object
12	Land Slope	2930 non-null	object
13	Neighborhood	2930 non-null	object
14	Condition 1	2930 non-null	object
15	Condition 2	2930 non-null	object
16	Bldg Type	2930 non-null	object
17	House Style	2930 non-null	object
18	Overall Qual	2930 non-null	int64
19	Overall Cond	2930 non-null	int64
20	Year Built	2930 non-null	int64
21	Year Remod/Add	2930 non-null	int64
22	Roof Style	2930 non-null	object
23	Roof Matl	2930 non-null	object
24	Exterior 1st	2930 non-null	object
25	Exterior 2nd	2930 non-null	object
26	Mas Vnr Type	1155 non-null	object
27	Mas Vnr Area	2907 non-null	float64
28	Exter Qual	2930 non-null	object
29	Exter Cond	2930 non-null	object
30	Foundation	2930 non-null	object
31	Bsmt Qual	2850 non-null	object
32	Bsmt Cond	2850 non-null	object
33	Bsmt Exposure	2847 non-null	object
34	BsmtFin Type 1	2850 non-null	object
35	BsmtFin SF 1	2929 non-null	float64

36	BsmtFin Type 2	2849 non-null	object
37	BsmtFin SF 2	2929 non-null	float64
38	Bsmt Unf SF	2929 non-null	float64
39	Total Bsmt SF	2929 non-null	float64
40	Heating	2930 non-null	object
41	Heating QC	2930 non-null	object
42	Central Air	2930 non-null	object
43	Electrical	2929 non-null	object
44	1st Flr SF	2930 non-null	int64
45	2nd Flr SF	2930 non-null	int64
46	Low Qual Fin SF	2930 non-null	int64
47	Gr Liv Area	2930 non-null	int64
48	Bsmt Full Bath	2928 non-null	float64
49	Bsmt Half Bath	2928 non-null	float64
50	Full Bath	2930 non-null	int64
51	Half Bath	2930 non-null	int64
52	Bedroom AbvGr	2930 non-null	int64
53	Kitchen AbvGr	2930 non-null	int64
54	Kitchen Qual	2930 non-null	object
55	TotRms AbvGrd	2930 non-null	int64
56	Functional	2930 non-null	object
57	Fireplaces	2930 non-null	int64
58	Fireplace Qu	1508 non-null	object
59	Garage Type	2773 non-null	object
60	Garage Yr Blt	2771 non-null	float64
61	Garage Finish	2771 non-null	object
62	Garage Cars	2929 non-null	float64
63	Garage Area	2929 non-null	float64
64	Garage Qual	2771 non-null	object
65	Garage Cond	2771 non-null	object
66	Paved Drive	2930 non-null	object
67	Wood Deck SF	2930 non-null	int64
68	Open Porch SF	2930 non-null	int64
69	Enclosed Porch	2930 non-null	int64
70	3Ssn Porch	2930 non-null	int64
71	Screen Porch	2930 non-null	int64
72	Pool Area	2930 non-null	int64
73	Pool QC	13 non-null	object
74	Fence	572 non-null	object
75	Misc Feature	106 non-null	object
76	Misc Val	2930 non-null	int64
77	Mo Sold	2930 non-null	int64

```
2930 non-null int64
2930 non-null object
78 Yr Sold
79 Sale Type
80 Sale Condition 2930 non-null object
81 SalePrice
                      2930 non-null int64
dtypes: float64(11), int64(28), object(43)
memory usage: 1.8+ MB
Missing Values:
Order
                    0
PTD
MS SubClass
MS Zoning
Lot Frontage
                  490
Mo Sold
                    0
Yr Sold
Sale Type
Sale Condition
SalePrice
Length: 82, dtype: int64
```

Handle Missing Values

Numerical columns: Fill with mean

Categorical columns: Fill with mode

Verify no missing values remain

```
In [84]: # Verify no missing values remain
          print("\nMissing Values After Imputation:")
          print(data.isnull().sum().sum())
        Missing Values After Imputation:
          Remove duplicates
In [168... data = data.drop_duplicates()
          print(f"Number of rows after removing duplicates: {data.shape[0]}")
        Number of rows after removing duplicates: 2930
          Convert categorical variables to numerical
In [94]:
          data = pd.get_dummies(data, drop_first=True)
          Define features and target
In [97]: print(data.columns)
        Index(['Order', 'PID', 'MS SubClass', 'Lot Frontage', 'Lot Area',
                'Overall Qual', 'Overall Cond', 'Year Built', 'Year Remod/Add',
                'Mas Vnr Area',
                'Sale Type_ConLw', 'Sale Type_New', 'Sale Type_Oth', 'Sale Type_VWD',
                'Sale Type WD ', 'Sale Condition_AdjLand', 'Sale Condition_Alloca',
                'Sale Condition_Family', 'Sale Condition_Normal',
                'Sale Condition Partial'],
               dtype='object', length=263)
In [170... # Define features and target
          X = data[['Lot Area']] # Example: Selecting a single feature
          y = data['SalePrice']
          Dropping less relevant columns
In [45]: # Dropping less relevant columns (if needed based on domain knowledge)
          X = data.drop('SalePrice', axis=1)
```

```
y = data['SalePrice']
```

Split data into training and testing sets

```
In [172... # Step 3: Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Build and train the linear regression model

```
In [174... # Build and train the linear regression model
model = LinearRegression()
model.fit(X_train, y_train)
```

Out[174... LinearRegression LinearRegression()

Make predictions on the set

```
In [176... predictions = model.predict(X_test)
```

Evaluate The model

```
In [178... print("\nModel Performance:")
    print("MAE:", mean_absolute_error(y_test, predictions))
    print("MSE:", mean_squared_error(y_test, predictions))
    print("R-squared:", r2_score(y_test, predictions))
```

Model Performance: MAE: 62056.86000101161 MSE: 7509189795.222837

R-squared: 0.06340568713349304

Visualize the results

```
In [180... Visualize the results
    plt.figure(figsize=(10, 6))
# Plot training data
```

```
plt.scatter(X_train, y_train, color='blue', label='Training Data', alpha=0.6)
# Plot testing data
plt.scatter(X_test, y_test, color='green', label='Testing Data', alpha=0.6)
# Plot regression Line
plt.plot(X_test, predictions, color='red', linewidth=2, label='Regression Line')
plt.title('House Price Prediction')
plt.xlabel('Size (Lot Area)')
plt.ylabel('Price ($)')
plt.legend()
plt.grid()
plt.show()
```

House Price Prediction

In []: