hank you for organizing such a unique opportunity!

- - -

Relevant background: I have extensive background in computational complexity the ory, computability theory, and logic (such as Gödel's Incompleteness Theorems). I understand basics of category theory (e.g. what is on the wikipedia page) and am interested in learning more, and am generally comfortable with learning new pure math topics.

- - -

PhD schedule: I am planning right now to defend during the Spring or Summer seme sters of 2019. I am primarily writing on the complexity of boolean functions and the relationship of various (often "atypical") complexity measures, such as sen sitivity vs decision tree complexity.

- - -

Project preference: "Complexity classes, computation, and Turing categories", de finitely is my first preference. Though, I found the project "Simplifying quantum circuits using the ZX-calculus" also intriguing, as a second choice.

- - -

Travel: I am currently planning on traveling to Europe early to mid July, so it's much easier for me to add an Oxford visit (than if I were coming from Californ ia) even without funding (intra-Europe flights are usually cheap). July 22-26 would be quite feasible, especially if I'm let know ASAP (so I can book my other travel around it).

- - -

Statement: I am currently looking for new research projects and collaborators in topics related to computational complexity theory, or more broadly any theoretical computer science topics. I believe the ACT2019 school is a good way to get exposure to new projects and researchers I otherwise wouldn't have a chance to interact with. Since I assume other participants may have more of a category-theory background, I hope that I can be a resource on complexity-theory for them, so that there is a useful bidirectional exchange of information.

Particularly if new research projects arise out of the school, I would want to c ollaborate in an interdisciplinary team, so that the projects are built on exper tise on each topic. I would likely only pursue a combined category theory/comple xity theory research project as part of a broader effort, along with researchers who have suitable category theory background as well.

My short-term career goals include publishing more frequently on a wider variety of topics, and I would be thrilled if collaborations coming out of the ACT2019 school yielded publications in the appropriate ACT or complexity theory conferences.

Joseph Bebel

CONTACT Information Department of Computer Science University of Southern California

Joseph Bebel

c/o CS Department 941 Bloom Walk Los Angeles, CA 90089-0781 USA

E-mail: bebel at usc dot edu WWW: www.joebebel.com

RESEARCH INTERESTS Theory of Computation, Classical Computational Complexity Theory, co-Nondeterministic Computational Complexity, Complexity of Boolean Functions, Sensitivity Conjecture, Complex Analysis and Applications

EDUCATION

University of Southern California, Los Angeles, California

Ph.D., Computer Science, In progress

- Advisor: Professor Leonard Adleman
- Area of Study: Theoretical Computer Science

M.S., Computer Science, May 2013

B.S., Electrical Engineering, May 2010. Graduated Magna cum Laude

AWARDS AND FELLOWSHIPS

ARCS Scholar Award, Oct. 2015 - May 2019

2014 Rockwell Dennis Hunt Scholastic Award, April 8, 2014

Best Poster for Visual Presentation, USC Computer Science Annual Research Review, March 6, 2014.

Annenberg Graduate Fellowship, Aug. 2010 - May 2014

Rose Hills Foundation Undergraduate Research Fellowships, May 2007 - Aug.

2010

Unpublished Research Leonard Adleman, Dustin Reishus, **Joseph Bebel**, Henry Yuen, Rolfe Schmidt. Strata in Complex Analysis. Complete book documenting original research. Manuscript in preparation as of Jan. 2019.

PUBLICATIONS

Joseph Bebel, Henry Yuen. Hard SAT instances based on factoring. A. Balint, A. Belov, M.J.H. Heule, and M. Järvisalo (eds) 2013, Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions. Department of Computer Science Series of Publications B, vol. B-2013-1, University of Helsinki.

Joseph Bebel, Benjamin L. Raskob, Alice C. Parker, Donald J. Bebel. Managing Complexity in an Autonomous Vehicle. IEEE Aerospace and Electronic Systems Magazine, vol. 23, no. 3, pp. 3-13, March 2008

Joseph Bebel, Benjamin L. Raskob, Alice C. Parker, Donald J. Bebel. Managing Complexity in an Autonomous Vehicle. In Proc. IEEE/ION Position Location and Navigation Symposium 2006

Joseph Bebel, Nathan Howard, Tej Patel. An Autonomous System Used in the DARPA Grand Challenge. In Proc. 7th International IEEE Conference on Intelligent Transportation Systems 2004

TEACHING EXPERIENCE

Teaching Assistant

September 2012 to Present

- CSCI 670: Advanced Analysis of Algorithms
 - Ph.D level algorithms course
- CSCI 581: Logic and its Applications (now CSCI 681)
 - Masters and Ph.D level mathematical logic, with Gödel Completeness and Incompleteness Theorems
- CSCI 570: Analysis of Algorithms
 - Graduate level introduction algorithms course for CS Masters students and Ph.D students from other engineering fields
- CSCI 303: Analysis of Algorithms
- CSCI 270: Introduction to Algorithms and Theory of Computing
 - Undergraduate algorithms classes, covering algorithm design, NP-completeness, and undecidability

Grader

August 2014 to December 2014

• CSCI 476: Cryptography: Secure Communication and Computation

PROGRAMS AND ORGANIZATIONS

Annenberg Graduate Fellowship Program

s IEEE, Upsilon Pi Epsilon, Eta Kappa Nu, Tau Beta Pi

W.V.T. Rusch Undergraduate Engineering Honors Program, Jan. 2006 - May

2010

CITIZENSHIP USA

Languages English (Native), Hungarian (A2)

Joe is a brilliant young PhD student in theoretical computer scientist with a si gnificant background in pure math. He contributed substantially to my research p roject, Strata in Complex Analysis, and co-authored a book on that topic with my self and several others.

I recommend him for the ACT school.

Leonard Adleman, USC