Дано:

• уравнение в области $(x,y,t) \in (0,\pi) \times (-\pi,\pi) \times (0,1]$, начальное и граничные условия, а также набор точек (x,y,1) со значениями u(x,y,1) в них (замеры функции в некоторых точках области в самый последний момент времени).

Требуется:

- Найти неизвестную константу λ .
- Прислать значение λ и Jupyter notebook с кодом обучения и графиками обучения для как минимум <mark>3 разных</mark> начальных приближений параметра λ , которые сходятся к одному значению. Telegram: @yakefu

Советы:

- Можно взять 1D-пример
 https://deepxde.readthedocs.io/en/latest/demos/pinn inverse/diffusion.1d.inverse.h
 tml и модифицировать его код.
- Загружать данные надо через numpy.load(). Ключи параметров: 'xyt' и 'u'.
- Обучение простой модели идёт долго. Можно начать с $lr=5\cdot 10^{-4}$ и 20 тыс. итераций, потом уменьшить lr и сделать ещё итерации. Можно попробовать в конце взять $lr=10^{-5}$ и поставить на ~100 тыс. итераций. Можно попробовать сначала сделать около 3 тыс. итераций с $lr=10^{-3}$, потом 50 тыс. итераций с $lr=10^{-4}$, потом 100 тыс. итераций с $lr=10^{-5}$. Но нужно следить за графиком функции потерь на тестовой выборке, потому что $lr=10^{-3}$
- Пробуйте разные начальные приближения: больше нуля, меньше нуля.

может оказаться слишком большим и повести обучение не в ту сторону.

- В граничных условиях указаны значения обычных производных, но условия Неймана используют производную по направлению внешней нормали. Поэтому учитывайте знак производной по направлению при создании граничных условий в коде своей программы.
- Возможно, стоит начать с обучающей выборки в 5000-20000 точек.
- Если есть проблемы со сходимостью, то ресэмплирование точек обучающей выборки может помочь (например, каждые 100-1000 итераций): https://deepxde.readthedocs.io/en/latest/demos/pinn_forward/heat.resample.html.
- Можно взять раз в 10 меньше точек для обучающей выборки, для условий PointSetBC задать batch_size сравнимого размера и задействовать ресемплирование точек, например, каждые 100 итераций для ускорения сходимости.
- Ищите значения параметров, к которым более-менее сходятся несколько запусков с достаточно разных начальных приближений. Например, ±0.5.
 Финальное значение λ можно вычислить усреднением значений, полученных с помощью разных начальных приближений.

- $\lambda \in [-30,30]$.
- Если будут проблемы, изучайте примеры на сайте и код на GitHub (следите, чтобы версия была как та, которую вы используете):
 - o https://deepxde.readthedocs.io/en/latest/demos/pinn forward.html
 - o https://deepxde.readthedocs.io/en/latest/demos/pinn inverse.html
 - o https://github.com/lululxvi/deepxde/tree/v1.13.2
- Если документация, код в репозитории и issues на GitHub и ваши товарищи не смогли вам помочь, то пишите мне, будем разбираться вместе.