

Esame di Fondamenti di Automatica Ingegneria Elettronica 13 Settembre 2013

Cognome:	Nome	Matricola:	E-mail:

1. Dato il sistema di controllo raffigurato, con

$$C(s) = \frac{K_c}{s}; P_1(s) = \frac{s+1}{s+10}; P_2(s) = \frac{1}{s}; H(s) = 0.2$$

determinare:

- a. Per quali valori di **Kc** il sistema risulta stabile a ciclo chiuso
- b. Il tipo di sistema di controllo
- c. Astatismo rispetto al disturbo costante z
- d. L'uscita permanente **yp(t)** con
 - $u(t) = -3 \delta_{-1}(t) e z(t) = 0$
- e. L'uscita permanente yz(t) con u(t)=0 e z(t)=4 $\delta_{-2}(t)$

2. Sia dato un processo **P(s)** descrivibile mediante la funzione di trasferimento

$$P(s) = \frac{10(s/10+1)(s/100+1)}{(s/50+1)(s/900+1)^2}$$

Sintetizzare il sistema di controllo in figura determinando

- h
- K_c

con **Kd** uguale a **2** in modo tale che l'errore per ingresso a rampa **u(t)=5t** sia minore o uguale a **0.08**.

Scelto il valore minimo di $\textbf{K}_{\textbf{c}}$ compatibile con le specifiche, tracciare i diagrammi di

- BODE
- NYQUIST

della funzione a ciclo aperto, e determinare su questi la

- pulsazione di attraversamento ω_t
- e, in caso di sistema stabile a ciclo chiuso, i
 - margini di stabilità (m_φ e m_q)

3. Dato il diagramma di BODE della funzione di trasferimento a ciclo aperto F(s) sotto riportata (non ci sono poli a parte reale positiva) determinare la rete compensatrice R(s) tale da assicurare ωt<=100 rad/sec, m_φ>=50° e il rispetto della finestra proibita indicata in figura. Tracciare quindi il diagramma di NICHOLS della funzione compensata F'(s)=F(s)R(s) e determinare su di esso il modulo alla risonanza Mr e la banda passante a −3 Decibel ω-3.

