

IN THE CLAIMS

1. (CANCELLED).
2. (CURRENTLY AMENDED) The method of claim 1 A method for measuring conductivity (σ) of a liquid or paste electrophotographic toner comprising:

providing two parallel plane conductive plates with a uniform separation (d) between the plates to form a space between the plates;
filling the space between the plates with liquid or paste electrophotographic toner;
applying a voltage of at least 1V between the plates across the liquid or paste toner;
measuring as data [[the]] current vs. time passing through the plates;
digitizing the data;
sending digitizing data to a processor; and
determining the conductivity from the digitized data.

wherein determining conductivity and charge per mass from the digitized data includes determining toner particle current according to the relationships:

$$i = i_1 + i_2$$

where $i_1 = af'(t)$

and $i_2 = i_0 \exp(-t/\tau_2)$

$$Q = af(t)$$

$$I_1 = af'(t)$$

$$A^2 = 2\epsilon\zeta A^2 V_0$$

$$\tau = (R + R_2)(2\epsilon\zeta A^2)$$

$$F(t) = (e^{2at/\tau} - 1) / (e^{2at/\tau} + 1)$$

$$F'(t) = (a/\tau)(1 - F^2(t))$$

$$R = d / \sigma A,$$

$$i_2 = i_0 \exp(-t/\tau_2)$$

and $i_2 = i_0 \exp(-t/\tau_2)$

$$Q = af(t)$$

$$I_1 = af'(t)$$

$$A^2 = 2\epsilon\zeta A^2 V_0$$

$$\tau = (R + R_2)(2\epsilon\zeta A^2)$$

$$F(t) = (e^{2at/\tau} - 1) / (e^{2at/\tau} + 1)$$

$$F'(t) = (a/\tau)(1 - f^2(t))$$

$$R = d / \sigma A,$$

$$i_2 = i_0 \exp(-t/\tau_2)$$

Q/M (charge per mass) = $\zeta/\rho\alpha$, where ρ is [[the]] toner paste density and α is [[the]] paste concentration;

Wherein the terms in the Formulae affected are defined as	Symbol or letter	Meaning
$Q = af(t)$	q	Total toner charge accumulated on plate 6 at time t
	a	Square root of formula $a^2 = 2\epsilon\zeta A^2 V_0$ defined below
	$f(t)$	Function of time
$I_1 = af'(t)$	i_1	Toner particle current
	a	Square root of formula $a^2 = 2\epsilon\zeta A^2 V_0$
	f'	Derivative of f, above
	t	Time
$A^2 = 2\epsilon\zeta A^2 V_0$	a^2	A parameter defined by solving the adjacent formula
	2ϵ	Two times the dielectric constant of the toner ink/paste
	ζ	Toner charge density
	A^2	The area of the plate, squared
	V_0	Applied voltage

$\tau = (R + R_2)(2\epsilon \zeta A^2)$	τ	A parameter defined by solving the formula
	R	Derived from $R = d/\sigma A$, defined below
	R_2	Resistance of resistor R_2 ,
	2ϵ	Two times the dielectric constant of the toner
	ζ	Toner charge density
	A^2	The area of the plate, squared
$R = d/\Sigma a$	R	A parameter defined by solving the adjacent formula
	d	Separation between plates/distance
	σ	Conductivity of the ink/paste
	A	Area of the plate
$f(t) = e^{2at/\tau} - 1 / (e^{2at/\tau} + 1)$	$f(t)$	Definition of the function of time
	e	Natural logarithm
	$2at/\tau$	Solve using symbols defined above
$f'(t) = a/\tau(1 - f'(t))$	As defined above	
$i_2 = i_0 \exp(-t/\tau_2)$	i_0	The initial impurity current
	τ_2	The impurity migration time constant

3. (CURRENTLY AMENDED) The method of claim [[1]] 2 wherein the voltage is between 50V and 1000V.

4. (CURRENTLY AMENDED) The method of claim [[1]] 2 including calculating [[the]] charge to mass ratio of the toner (Q/m) wherein Q is charge and m is mass from ζ by assuming that [[the]] percent solids of [[the]] toner particles collected on [[the]] a ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is [[the]] associated charge density.

5. (CURRENTLY AMENDED) The method of claim 2 including calculating the charge to mass ratio of the toner (Q/m) from ζ by assuming that [[the]] percent solids of [[the]] toner particles collected on [[the]] a ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is [[the]] associated charge density.

6. (CURRENTLY AMENDED) The method of claim 3 including calculating [[the]] charge to mass ratio of the toner (Q/m , wherein Q is charge and m is mass) from ζ by assuming that [[the]] percent solids of [[the]] toner particles collected on [[the]] a ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is [[the]] associated charge density.

7. CURRENTLY AMENDED) A method for measuring [[the]] conductivity (σ) of a liquid or paste electrophotographic toner comprising:

providing two parallel plane conductive plates with a uniform separation

(d) between the plates to form a space between the plates;

filling the space between the plates with liquid or paste

electrophotographic toner;

applying a current voltage of at least 1V between the plates across the

liquid or paste toner;

measuring as data the current passing through an external component into the plates;

adjusting the data to remove current contributions attributable to impurity ions;

sending adjusted data to a processor; and

determining the conductivity from the adjusted data.

8. (ORIGINAL) The method of claim 7 wherein the voltage is between 1V and 1000V.

9. (CURRENTLY AMENDED) The method of claim 7 including calculating [[the]] charge to mass ratio of the toner (Q/m , wherein Q is charge and m is mass) from ζ by

assuming that [[the]] percent solids of the toner particles collected on [[the]] a ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is [[the]] associated charge density.

10. (CURRENTLY AMENDED) The method of claim 8 including calculating [[the]] charge to mass ratio of the toner (Q/m) from ζ by assuming that [[the]] percent solids of the toner particles collected on [[the]] a ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is [[the]] associated charge density.

11. (CURRENTLY AMENDED) An apparatus for measuring [[the]] conductivity of a liquid or paste toner comprising:

two parallel conductive plates (4, 6), an electrical switch (10) between the plates, a power supply (12) between the electrical switch(10) and one of the two conductive plates, a current sensor for measuring data relating to current (14), filter (16), a digitizer (18), data storage and processor (20) having analytic capability for adjusting the data relating to current to remove contributions to [[the]] data attributable to impurity ions.

12. (ORIGINAL) The apparatus of claim 11 wherein a data digitizer (18) is present between the sensor and the data storage and processor having analytic capability (20).

13. (ORIGINAL) The apparatus of claim 11 wherein the switch is a high speed switch.

14. (ORIGINAL) The apparatus of claim 11 wherein the switch is a bounceless switch.

15. (ORIGINAL) The method of claim 7 wherein the voltage is between 50V and 1000V.

16. (ORIGINAL) The method of claim 7 wherein the voltage is between 100V and 1000V.