Lecture notes: Memter

F(x*) = 0

Suppose we guess X(0). If N=1,

 $F(X^*) = F(X^{(o)}) + F(X^{(o)})(X^* - X^{(o)}) + \cdots$ $T_F^{1}(X^*)$

Linear problem solve [=(x*)=0

N > 1 $T_{\pm}^{\lambda}(X^{k}) = F(X^{(0)}) + J_{\pm}(X^{(0)})(X^{*} - X^{(0)})$

Solve 7 (x(0)) 8x =- F(x(0))

New itrade: $\chi(1) = \chi(1) + \delta \chi$ Repeat with gress $\chi(2) = \chi(1) + \delta \chi$

() min

SX XCO XCO

$$J_{F}(X^{(k)}) \delta X = F_{X}(k)$$

$$X^{(k+1)} = X^{(k)} + \delta X$$
(1)

Let BeRNXN If IBN<1, then I-B is ineutible

Proof: Detime S= lim It I BK

||S|| \(|| \I| | + \sum_{k=1}^{\infty} || \(\text{R}^k || \) \(|| \I| | + \sum_{k=1}^{\infty} || \(\text{R}^k || \) \(\te

(I+B)S= lim (I-B)(I+ MB+) =

10 min

(I-B)S=I => S=(I-B)-1

Pel. 2 Lemma 2

We can unite

 $F(y)-F(x) = \int J_{F}(x+t(y-x))(y-x) dt$

Prof: Define g(t) = F(x+t(y-x))

Ther F(y)-F(x) = g(1)-g(0) = fg'(:t) d t

Chain rule says:

 $\frac{dA}{dt} = \frac{d}{dt} F(x + t(y - x)) = \int_{F} (x + t(y - x)) (y - x)$

lo un

Then, $\forall x^{(0)} \in \mathcal{B}(x^*, \Gamma)$, when

the sequence defined by (1) is uniquely defined and conveyed to x^* , with $\|x^{(k+1)}-x^*\| \le CL \|x^{(k)}-x^*\|^2$.

10 overs

Step 1) We first show that $J_{\vdash}(X^{(0)})$ exists.

Denote Ao= J_ (x10), A*= J_ (x*)

Whent it we use Ax as an inverse to A.? We want I-Ax Ao ~ O

Define B = I-A* A = A* (A*-A0)

 $= \|A_*'\| \|J_F(x^*) - J_F(x^{(c)})\| \le$ 11811 < 11A* 11 11A*-A01=

By Lemma 1, I-B is inventible I-B= I- (I-A* A0) = A* A0

Since O + det (I-B) = det(Ax') det (Ao). det(A) +0 => Ao invertible

> Also, (I-B) - (A*A.) - = A. A == => A. = A. (I-8)-1

||A0"|| = ||A*||||I-B||-1 = C = 2C

(JF (x(0)) 8x=-F(x(0)) $X^{(1)} = X^{(0)} + \delta X$

 $X^{(1)} = X^{(6)} + \delta_{X} = X^{(6)} - J_{F}(X^{(6)})^{-1} F(X^{(6)})$

Look at errur:

- J_ (x(0)) (F(x(*))-F(x(0)) - J_ (x(0)) (x*-x(0))) $X^{(1)} - X^* = X^{(0)} - X^* - J_F(X^{(0)})^{-1} (F(X^{(0)}) - F(X^*)) =$

10 min

Theredure

((x(2)_X*()=||J_F(x'9)|| || F(x*)-F(x(0))-J_F(x'0)(x*-x(0))| (2)

 $F(x^*) - F(x^{(0)}) - J_F(x^{(0)})(x^* - x^{(0)}) =$

= JJ_(X(0)+t(X*-X(0)))(X*-X(0))dt - J_(X(0))(X*-X(0)) dt=

 $= \int \left(\int_{-\infty}^{\infty} (x_{(0)} x^{-1} + f(x_{(0)} x^{-1}) \right) - \int_{-\infty}^{\infty} (x_{(0)} x) dx + (x_{(0)} x^{-1} + f(x_{(0)} x) - f(x_{(0)} x) \right) dx$

Inscring this into (2) we get

1X(2)-X* 1= 11 J= (x(0))-11 (J= (x(0)++(x*-x(0)))- J= (x(0)) d+ (x*-x(0))

[]] | X*-X(0) |] | Jp(x(0)+t(x*-x(0))) - Jp(x(0)) | dt (3)

Since X (1) +t (x* X (1)) @B (X*) Yte I o 1]

<- / (x) + t(x) - x(0)) - x(0) | < L + ||x - x(0)||</p>

Hence, inserting mos (3) we got =20511Xx-x0112 = 0111X*-x0112

Step 3) Show x (1) & B(X*, r)

Since X(0) & B(x*, r) and r=min(R) och },

11x *- x(0) | = 2CL

Therefore

11X(1)-X*11 = CL . 2CL 11X*-X(0) 1 = -1/1X*-X(0)

Therefore, we can now it-write again, with X(1) as initial Backs, instead of X(0)