

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                             | racollativo, rappresenta | ie rand              | Jamento delle teris, tangenziali. |                          | _                         |
|---------------------------------------------|--------------------------|----------------------|-----------------------------------|--------------------------|---------------------------|
| Ν                                           | = 40500 N                | $M_{\star}$          | = 969000 Nmm                      | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_{y}$                                     | = 3900 N                 | $\sigma_{a}$         | $= 240 \text{ N/mm}^2$            | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                       | =                        | α                    | =                                 | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                       | =                        | $J_t$                | =                                 | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                       | =                        | σ(N)                 |                                   | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                     | =                        | $\sigma(M_x)$        |                                   | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                              | =                        | $\tau(T_{yc})$       | =                                 | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                       | =                        | $\tau(T_{yb})$       |                                   | $\sigma_{\text{st.ven}}$ | =                         |
| $egin{array}{c} A_{u} \\ C_{w} \end{array}$ | =                        | $\tau(T_y)_s$        | =                                 | $\Theta_{t}$             | =                         |
| $J_xx$                                      | =                        | $\tau(T_y)_d$        | =                                 | $r_u$                    | =                         |
| $J_{yy}$                                    | =                        | σ                    | =                                 | $r_{v}$                  | =                         |
| $J_{xy}$                                    | =                        | $	au_{s}$            | =                                 | $r_o$                    | =                         |
| $J_{u}$                                     | =                        | $	au_{d}$            | =                                 | $J_p$                    | =                         |
| $J_v$                                       | =                        | $\sigma_{\text{ls}}$ | =                                 | •                        |                           |
|                                             |                          |                      |                                   |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                             | racollativo, rappresenta | ie i aii             | uarriento delle teris, tarigeriziali. |                          | _                         |
|---------------------------------------------|--------------------------|----------------------|---------------------------------------|--------------------------|---------------------------|
| Ν                                           | = 42200 N                | $M_{\star}$          | = 926000 Nmm                          | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                       | = 2860 N                 | $\sigma_a$           | $= 240 \text{ N/mm}^2$                | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                       | =                        | α                    | =                                     | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                       | =                        | $J_t$                | =                                     | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                       | =                        | σ(N)                 |                                       | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                     | =                        | $\sigma(M_x)$        |                                       | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                              | =                        | $\tau(T_{yc})$       | =                                     | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                       | =                        | $\tau(T_{yb})$       |                                       | $\sigma_{\text{st.ven}}$ | =                         |
| $egin{array}{c} A_{u} \\ C_{w} \end{array}$ | =                        | $\tau(T_y)_s$        | =                                     | $\Theta_{t}$             | =                         |
| $J_xx$                                      | =                        | $\tau(T_y)_d$        | =                                     | $r_u$                    | =                         |
| $J_{yy}$                                    | =                        | σ                    | =                                     | $r_v$                    | =                         |
| $J_{xy}$                                    | =                        | $	au_{s}$            | =                                     | $r_{o}$                  | =                         |
| $J_{u}$                                     | =                        | $	au_{d}$            | =                                     | $J_p$                    | =                         |
| $J_{v}$                                     | =                        | $\sigma_{\text{ls}}$ | =                                     | •                        |                           |
|                                             |                          |                      |                                       |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                              | racollalivo, rappresenta | ie i aiii      | Jamento delle tens. tangenziali. |                          | _                         |
|----------------------------------------------|--------------------------|----------------|----------------------------------|--------------------------|---------------------------|
| Ν                                            | = 32500 N                | $M_{\star}$    | = 864000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_v$                                        | = 2820 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                                    | =                        | α              | =                                | $\sigma_{\text{lls}}$    | =                         |
| $y_G$                                        | =                        | $J_t$          | =                                | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                        | =                        | σ(N)           | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                      | =                        | $\sigma(M_x)$  |                                  | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                               | =                        | $\tau(T_{yc})$ | =                                | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                        | =                        | $\tau(T_{yb})$ | <sub>d</sub> =                   | $\sigma_{\text{st.ven}}$ | =                         |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                        | $\tau(T_y)_s$  | =                                | $\theta_{t}$             | =                         |
| $J_{xx}$                                     | =                        | $\tau(T_y)_d$  | =                                | $r_u$                    | =                         |
| $J_{yy}$                                     | =                        | σ              | =                                | $r_v$                    | =                         |
| $J_{xy}$                                     | =                        | $	au_{s}$      | =                                | $r_{o}$                  | =                         |
| $J_{u}$                                      | =                        | $	au_{d}$      | =                                | $J_p$                    | =                         |
| $J_{v}$                                      | =                        | $\sigma_{ls}$  | =                                | •                        |                           |
|                                              |                          |                |                                  |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                              | racollalivo, rappresenta | ie i aiii      | uarrierito delle teris, tarigeriziali. |                          | _                         |
|----------------------------------------------|--------------------------|----------------|----------------------------------------|--------------------------|---------------------------|
| Ν                                            | = 33900 N                | $M_{\star}$    | = 591000 Nmm                           | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_v$                                        | = 2740 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$                 | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                                    | =                        | α              | =                                      | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                        | =                        | $J_t$          | =                                      | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                        | =                        | - ()           | =                                      | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                      | =                        | $\sigma(M_x)$  |                                        | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                        | $\tau(T_{yc})$ | =                                      | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                        | =                        | $\tau(T_{yb})$ | d=                                     | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                      | =                        | $\tau(T_y)_s$  | =                                      | $\Theta_{t}$             | =                         |
| $J_xx$                                       | =                        | $\tau(T_y)_d$  | =                                      | $r_u$                    | =                         |
| $J_{yy}$                                     | =                        | σ              | =                                      | $r_v$                    | =                         |
| $J_{xy}$                                     | =                        | $	au_{s}$      | =                                      | $r_{o}$                  | =                         |
| $J_{u}$                                      | =                        | $	au_d$        | =                                      | $J_p$                    | =                         |
| $J_{v}$                                      | =                        | $\sigma_{ls}$  | =                                      | •                        |                           |
|                                              |                          |                |                                        |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                       | racollalivo, rappresenta | ie i aiii      | Jamento delle tens. tangenziali. |                          | _                         |
|---------------------------------------|--------------------------|----------------|----------------------------------|--------------------------|---------------------------|
| Ν                                     | = 43400 N                | $M_{\star}$    | = 1070000 Nmm                    | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                 | = 3760 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                 | =                        | α              | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                 | =                        | $J_t$          | =                                | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                 | =                        | - ()           | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                               | =                        | $\sigma(M_x)$  |                                  | $\sigma_{\text{tresca}}$ | =                         |
| A<br>S <sub>u</sub><br>C <sub>w</sub> | =                        | $\tau(T_{yc})$ | =                                | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                 | =                        | $\tau(T_{yb})$ |                                  | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                               | =                        | $\tau(T_y)_s$  | =                                | $\Theta_{t}$             | =                         |
| $J_xx$                                | =                        | $\tau(T_y)_d$  | =                                | $r_u$                    | =                         |
| $J_{yy}$                              | =                        | σ              | =                                | $r_{v}$                  | =                         |
| $J_{xy}$                              | =                        | $	au_{s}$      | =                                | $r_{o}$                  | =                         |
| $J_{u}$                               | =                        | $	au_{d}$      | =                                | $J_p$                    | =                         |
| $J_{v}$                               | =                        | $\sigma_{ls}$  | =                                |                          |                           |
|                                       |                          | 1. 8 4.1       | 00.05.40                         |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                             | racollativo, rappresenta | ie i aiii            | uarriento delle teris, tarigeriziali. |                          | _                         |
|---------------------------------------------|--------------------------|----------------------|---------------------------------------|--------------------------|---------------------------|
| Ν                                           | = 33500 N                | $M_{\star}$          | = 1010000 Nmm                         | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                       | = 3730 N                 | $\sigma_a$           | $= 240 \text{ N/mm}^2$                | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                       | =                        | α                    | =                                     | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                       | =                        | $J_t$                | =                                     | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                       | =                        | σ(N)                 |                                       | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                     | =                        | $\sigma(M_x)$        |                                       | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                              | =                        | $\tau(T_{yc})$       | =                                     | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                       | =                        | $\tau(T_{yb})$       |                                       | $\sigma_{\text{st.ven}}$ | =                         |
| $egin{array}{c} A_{u} \\ C_{w} \end{array}$ | =                        | $\tau(T_y)_s$        | =                                     | $\Theta_{t}$             | =                         |
| $J_xx$                                      | =                        | $\tau(T_y)_d$        | =                                     | $r_u$                    | =                         |
| $J_{yy}$                                    | =                        | σ                    | =                                     | $r_v$                    | =                         |
| $J_{xy}$                                    | =                        | $	au_{s}$            | =                                     | $r_{o}$                  | =                         |
| $J_{u}$                                     | =                        | $	au_{d}$            | =                                     | $J_p$                    | =                         |
| $J_{v}$                                     | =                        | $\sigma_{\text{ls}}$ | =                                     | •                        |                           |
|                                             |                          |                      |                                       |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                                    | racollalivo, rappresenta | ie i aii       | damento delle tens. tangenziali. |                          | _                         |
|----------------------------------------------------|--------------------------|----------------|----------------------------------|--------------------------|---------------------------|
| Ν                                                  | = 34900 N                | $M_{\star}$    | = 701000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                              | = 3640 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                              | =                        | α              | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                              | =                        | $J_t$          | =                                | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                              | =                        | σ(N)           |                                  | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                            | =                        | $\sigma(M_x)$  |                                  | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                                     | =                        | $\tau(T_{yc})$ | =                                | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                              | =                        | $\tau(T_{yb})$ |                                  | $\sigma_{\text{st.ven}}$ | =                         |
| $egin{array}{c} A \\ S_u^\star \\ C_w \end{array}$ | =                        | $\tau(T_y)_s$  | =                                | $\Theta_{t}$             | =                         |
| $J_xx$                                             | =                        | $\tau(T_y)_d$  | =                                | $r_u$                    | =                         |
| $J_{yy}$                                           | =                        | σ              | =                                | $r_v$                    | =                         |
| $J_{xy}$                                           | =                        | $	au_{s}$      | =                                | $r_{o}$                  | =                         |
| $J_{u}$                                            | =                        | $	au_{d}$      | =                                | $J_p$                    | =                         |
| $J_{v}$                                            | =                        | $\sigma_{ls}$  | =                                | •                        |                           |
|                                                    |                          |                |                                  |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                             | racollativo, rappresenta | ie rand              | Jamento delle teris, tangenziali. |                          | _                         |
|---------------------------------------------|--------------------------|----------------------|-----------------------------------|--------------------------|---------------------------|
| Ν                                           | = 36000 N                | $M_{\star}$          | = 651000 Nmm                      | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_{y}$                                     | = 2610 N                 | $\sigma_{a}$         | $= 240 \text{ N/mm}^2$            | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                       | =                        | α                    | =                                 | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                       | =                        | $J_t$                | =                                 | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                       | =                        | σ(N)                 | =                                 | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                     | =                        | $\sigma(M_x)$        |                                   | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>.</sub>                              | =                        | $\tau(T_{yc})$       | =                                 | $\sigma_{\text{mises}}$  |                           |
| $S_{u}^{n}$                                 | =                        | $\tau(T_{yb})$       |                                   | $\sigma_{\text{st.ven}}$ | =                         |
| $egin{array}{c} A_{u} \\ C_{w} \end{array}$ | =                        | $\tau(T_y)_s$        | =                                 | $\theta_{t}$             | =                         |
| $J_{xx}$                                    | =                        | $\tau(T_y)_d$        | =                                 | $r_u$                    | =                         |
| $J_{yy}$                                    | =                        | σ                    | =                                 | $r_{v}$                  | =                         |
| $J_{xy}$                                    | =                        | $	au_{s}$            | =                                 | $r_{o}$                  | =                         |
| $J_{u}$                                     | =                        | $	au_{d}$            | =                                 | $J_p$                    | =                         |
| $J_{v}$                                     | =                        | $\sigma_{\text{ls}}$ | =                                 | •                        |                           |
|                                             |                          |                      |                                   |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                                     | racollalivo, rappresenta | ie i ali             | damento delle tens. tangenziali. |                          | _                         |
|-----------------------------------------------------|--------------------------|----------------------|----------------------------------|--------------------------|---------------------------|
| Ν                                                   | = 34600 N                | $M_{x}$              | = 1170000 Nmm                    | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                               | = 5060 N                 | $\sigma_a$           | = 240 N/mm <sup>2</sup>          | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                               | =                        | α                    | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                               | =                        | $J_t$                | =                                | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                               | =                        | σ(N)                 | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                             | =                        | $\sigma(M_x)$        |                                  | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>.</sub>                                      | =                        | $\tau(T_{yc})$       | =                                | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                               | =                        | $\tau(T_{yb})$       |                                  | $\sigma_{\text{st.ven}}$ | =                         |
| $egin{array}{c} A \ S_u^{^\star} \ C_w \end{array}$ | =                        | $\tau(T_y)_s$        | , =                              | $\Theta_{t}$             | =                         |
| $J_xx$                                              | =                        | $\tau(T_y)_d$        | <sub>i</sub> =                   | $r_u$                    | =                         |
| $J_{yy}$                                            | =                        | σ                    | =                                | $r_{v}$                  | =                         |
| $J_{xy}$                                            | =                        | $	au_{s}$            | =                                | $r_{o}$                  | =                         |
| $J_{u}$                                             | =                        | $\tau_{d}$           | =                                | $J_p$                    | =                         |
| $J_{v}$                                             | =                        | $\sigma_{\text{ls}}$ | =                                | ·                        |                           |
|                                                     |                          |                      |                                  |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                              | racollativo, rappresenta | ie i aii       | damento delle tens. tangenziali. |                          |                           |
|----------------------------------------------|--------------------------|----------------|----------------------------------|--------------------------|---------------------------|
| Ν                                            | = 36200 N                | $M_{\star}$    | = 824000 Nmm                     | Ε                        | $= 200000 \text{ N/mm}^2$ |
| $T_v$                                        | = 4950 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                                    | =                        | α              | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                        | =                        | $J_t$          | =                                | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                        | =                        | - ()           | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                      | =                        | $\sigma(M_x)$  |                                  | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                        | $\tau(T_{yc})$ | =                                | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                        | =                        | $\tau(T_{yb})$ |                                  | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                      | =                        | $\tau(T_y)_s$  | =                                | $\Theta_{t}$             | =                         |
| $J_xx$                                       | =                        | $\tau(T_y)_d$  | =                                | $r_u$                    | =                         |
| $J_{yy}$                                     | =                        | σ              | =                                | $r_{v}$                  | =                         |
| $J_{xy}$                                     | =                        | $	au_{s}$      | =                                | $r_{o}$                  | =                         |
| $J_{u}$                                      | =                        | $	au_{d}$      | =                                | $J_p$                    | =                         |
| $J_{v}$                                      | =                        | $\sigma_{ls}$  | =                                |                          |                           |
|                                              |                          |                |                                  |                          |                           |



Calcolo degli sforzi in \* con forze baricentriche essendo \* il punto C di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                       | racollalivo, rappresenta | ie rain           | Jamento delle tens. tangenziali. |                          | _                         |
|---------------------------------------|--------------------------|-------------------|----------------------------------|--------------------------|---------------------------|
| Ν                                     | = 37300 N                | $M_{\star}$       | = 775000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                 | = 3580 N                 | $\sigma_{a}$      | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                 | =                        | α                 | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                 | =                        | $J_t$             | =                                | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                 | =                        | - ( )             | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                               | =                        | $\sigma(M_x)$     |                                  | $\sigma_{\text{tresca}}$ | =                         |
| A<br>S <sub>u</sub><br>C <sub>w</sub> | =                        | $\tau(T_{yc})$    |                                  | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                 | =                        | $\tau(T_{yb})$    |                                  | $\sigma_{\text{st.ven}}$ |                           |
| $C_{w}$                               | =                        | $\tau(T_y)_s$     |                                  | $\Theta_{t}$             | =                         |
| $J_xx$                                | =                        | $\tau(T_y)_d$     | =                                | $r_u$                    | =                         |
| $J_{yy}$                              | =                        | σ                 | =                                | $r_v$                    | =                         |
| $J_{xy}$                              | =                        | $	au_{s}$         | =                                | $r_{o}$                  | =                         |
| $J_{u}$                               | =                        | $\tau_{\text{d}}$ | =                                | $J_p$                    | =                         |
| $J_{v}$                               | =                        | $\sigma_{ls}$     | =                                |                          |                           |
|                                       |                          | 1: B 4:1          | 00.05.40                         |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                              | racollativo, rappresenta | ie i aii       | damento delle tens. tangenziali. |                          |                           |
|----------------------------------------------|--------------------------|----------------|----------------------------------|--------------------------|---------------------------|
| Ν                                            | = 28400 N                | $M_{\star}$    | = 711000 Nmm                     | Е                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                        | = 3480 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                                    | =                        | α              | =                                | $\sigma_{\text{lls}}$    | =                         |
| $y_G$                                        | =                        | $J_t$          | =                                | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                        | =                        | - ()           | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                      | =                        | $\sigma(M_x)$  |                                  | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                        | $\tau(T_{yc})$ | =                                | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                        | =                        | $\tau(T_{yb})$ |                                  | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                      | =                        | $\tau(T_y)_s$  | =                                | $\Theta_{t}$             | =                         |
| $J_xx$                                       | =                        | $\tau(T_y)_d$  | =                                | $r_u$                    | =                         |
| $J_{yy}$                                     | =                        | σ              | =                                | $r_v$                    | =                         |
| $J_{xy}$                                     | =                        | $	au_{s}$      | =                                | $r_{o}$                  | =                         |
| $J_{u}$                                      | =                        | $	au_{d}$      | =                                | $J_p$                    | =                         |
| $J_{v}$                                      | =                        | $\sigma_{ls}$  | =                                |                          |                           |
|                                              |                          |                |                                  |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | <u> </u>               |                          | 0                         |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|--------------------------|---------------------------|
| N                                                | = 37700 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $M_x$           | = 963000 Nmm           | Ε                        | $= 200000 \text{ N/mm}^2$ |
| $T_v$                                            | = 6950 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sigma_{a}^{}$ | $= 240 \text{ N/mm}^2$ | G                        | $= 73000 \text{ N/mm}^2$  |
| $x_G^{'}$                                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | α               | =                      | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $J_t$           | =                      | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma(N)$     | =                      | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                          | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma(M_x)$   | =                      | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>.</sub>                                   | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tau(T_{yc})$  | =                      | $\sigma_{\text{mises}}$  | =                         |
| $oldsymbol{S}_{u}^{^{\star}}$ $oldsymbol{C}_{w}$ | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tau(T_{yb})$  | d=                     | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                          | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tau(T_y)_s$   | =                      | $\theta_{t}$             | =                         |
| $J_{xx}$                                         | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tau(T_y)_d$   | =                      | $r_u$                    | =                         |
| $J_{yy}$                                         | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | σ               | =                      | $r_{v}$                  | =                         |
| $J_{xy}$                                         | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $	au_{s}$       | =                      | $r_{o}$                  | =                         |
| $J_{u}$                                          | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $	au_{d}$       | =                      | $J_p$                    | =                         |
| $J_v$                                            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma_{ls}$   | =                      | •                        |                           |
| ∧                                                | W 7   L 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1 | 1: B 4:1        | 20.05.40               |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                       | racollativo, rappresenta | ie i aiii      | uarriento delle teris, tarigeriziali. |                          | _                         |
|---------------------------------------|--------------------------|----------------|---------------------------------------|--------------------------|---------------------------|
| Ν                                     | = 38800 N                | $M_{\star}$    | = 916000 Nmm                          | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                 | = 5050 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$                | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                             | =                        | α              | =                                     | $\sigma_{\text{lls}}$    | =                         |
| $y_G$                                 | =                        | $J_t$          | =                                     | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                 | =                        | - ()           | =                                     | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                               | =                        | $\sigma(M_x)$  |                                       | $\sigma_{\text{tresca}}$ | =                         |
| A<br>S <sub>u</sub><br>C <sub>w</sub> | =                        | $\tau(T_{yc})$ | =                                     | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                 | =                        | $\tau(T_{yb})$ |                                       | $\sigma_{\text{st.ven}}$ |                           |
| $C_{w}$                               | =                        | $\tau(T_y)_s$  |                                       | $\theta_{t}$             | =                         |
| $J_xx$                                | =                        | $\tau(T_y)_d$  | =                                     | $r_u$                    | =                         |
| $J_{yy}$                              | =                        | σ              | =                                     | $r_{v}$                  | =                         |
| $J_{xy}$                              | =                        | $	au_{s}$      | =                                     | $r_{o}$                  | =                         |
| $J_{u}$                               | =                        | $	au_{d}$      | =                                     | $J_p$                    | =                         |
| $J_{v}$                               | =                        | $\sigma_{ls}$  | =                                     |                          |                           |
|                                       |                          | 1. 8 4.1       | 00.05.40                              |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                             | racollativo, rappresenta | ie rand              | Jamento delle teris, tangenziali. |                          | _                         |
|---------------------------------------------|--------------------------|----------------------|-----------------------------------|--------------------------|---------------------------|
| Ν                                           | = 29600 N                | $M_{\star}$          | = 851000 Nmm                      | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_{y}$                                     | = 4940 N                 | $\sigma_{a}$         | $= 240 \text{ N/mm}^2$            | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                       | =                        | α                    | =                                 | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                       | =                        | $J_t$                | =                                 | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                       | =                        | σ(N)                 |                                   | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                     | =                        | $\sigma(M_x)$        |                                   | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A_{u} \\ C_{w} \end{array}$ | =                        | $\tau(T_{yc})$       | =                                 | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                       | =                        | $\tau(T_{yb})$       |                                   | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                     | =                        | $\tau(T_y)_s$        | =                                 | $\Theta_{t}$             | =                         |
| $J_{xx}$                                    | =                        | $\tau(T_y)_d$        | =                                 | $r_u$                    | =                         |
| $J_{yy}$                                    | =                        | σ                    | =                                 | $r_v$                    | =                         |
| $J_{xy}$                                    | =                        | $	au_{s}$            | =                                 | $r_o$                    | =                         |
| $J_{u}$                                     | =                        | $	au_{d}$            | =                                 | $J_p$                    | =                         |
| $J_{v}$                                     | =                        | $\sigma_{\text{ls}}$ | =                                 | •                        |                           |
|                                             |                          |                      |                                   |                          |                           |



Calcolo degli sforzi in \* con forze baricentriche essendo \* il punto C di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                       | racollativo, rappresenta          | ie i aii       | uarriento delle teris, tarigeriziali. |                          |                           |
|---------------------------------------|-----------------------------------|----------------|---------------------------------------|--------------------------|---------------------------|
| N                                     | = 30600 N                         | $M_{\star}$    | = 579000 Nmm                          | Е                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                 | = 4740 N                          | $\sigma_{a}$   | $= 240 \text{ N/mm}^2$                | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                 | =                                 | α              | =                                     | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                 | =                                 | $J_t$          | =                                     | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                 | =                                 | - ( )          | =                                     | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                               | =                                 | $\sigma(M_x)$  |                                       | $\sigma_{\text{tresca}}$ | =                         |
| A<br>S <sub>u</sub><br>C <sub>w</sub> | =                                 | $\tau(T_{yc})$ | =                                     | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                 | =                                 | $\tau(T_{yb})$ |                                       | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                               | =                                 | $\tau(T_y)_s$  |                                       | $\Theta_{t}$             | =                         |
| $J_{xx}$                              | =                                 | $\tau(T_y)_d$  | =                                     | $r_u$                    | =                         |
| $J_{yy}$                              | =                                 | σ              | =                                     | $r_v$                    | =                         |
| $J_{xy}$                              | =                                 | $	au_{s}$      | =                                     | $r_{o}$                  | =                         |
| $J_{u}$                               | =                                 | $	au_{d}$      | =                                     | $J_p$                    | =                         |
| $J_v$                                 | =                                 | $\sigma_{ls}$  | =                                     |                          |                           |
|                                       | lalfa Zarralani Danai Dalita misa | -1: N 4:1-     | 00 0F 40                              |                          |                           |



Calcolo degli sforzi in \* con forze baricentriche essendo \* il punto C di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                              | racollativo, rappresenta | ie i aii       | uarrierito delle teris, tarigeriziali. |                          |                           |
|----------------------------------------------|--------------------------|----------------|----------------------------------------|--------------------------|---------------------------|
| Ν                                            | = 50400 N                | $M_{\star}$    | = 928000 Nmm                           | Ε                        | $= 200000 \text{ N/mm}^2$ |
| $T_v$                                        | = 2360 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$                 | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                                    | =                        | α              | =                                      | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                        | =                        | $J_t$          | =                                      | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                        | =                        | σ(N)           | =                                      | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                      | =                        | $\sigma(M_x)$  |                                        | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                        | $\tau(T_{yc})$ | =                                      | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                        | =                        | $\tau(T_{yb})$ |                                        | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                      | =                        | $\tau(T_y)_s$  | =                                      | $\Theta_{t}$             | =                         |
| $J_xx$                                       | =                        | $\tau(T_y)_d$  | =                                      | $r_u$                    | =                         |
| $J_{yy}$                                     | =                        | σ              | =                                      | $r_{v}$                  | =                         |
| $J_{xy}$                                     | =                        | $	au_{s}$      | =                                      | $r_{o}$                  | =                         |
| $J_{u}$                                      | =                        | $	au_{d}$      | =                                      | $J_p$                    | =                         |
| $J_v$                                        | =                        | $\sigma_{ls}$  | =                                      |                          |                           |
|                                              |                          |                |                                        |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                              | racollativo, rappresenta | ie i aii       | Jamento delle tens. tangenziali. |                          |                           |
|----------------------------------------------|--------------------------|----------------|----------------------------------|--------------------------|---------------------------|
| Ν                                            | = 39000 N                | $M_{\star}$    | = 855000 Nmm                     | Ε                        | $= 200000 \text{ N/mm}^2$ |
| $T_v$                                        | = 2340 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                                    | =                        | α              | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                        | =                        | $J_t$          | =                                | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                        | =                        | σ(N)           | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                      | =                        | $\sigma(M_x)$  |                                  | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                        | $\tau(T_{yc})$ | =                                | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                        | =                        | $\tau(T_{yb})$ |                                  | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                      | =                        | $\tau(T_y)_s$  | =                                | $\Theta_{t}$             | =                         |
| $J_xx$                                       | =                        | $\tau(T_y)_d$  | =                                | $r_u$                    | =                         |
| $J_{yy}$                                     | =                        | σ              | =                                | $r_{v}$                  | =                         |
| $J_{xy}$                                     | =                        | $	au_{s}$      | =                                | $r_{o}$                  | =                         |
| $J_{u}$                                      | =                        | $	au_{d}$      | =                                | $J_p$                    | =                         |
| $J_v$                                        | =                        | $\sigma_{ls}$  | =                                |                          |                           |
|                                              |                          |                |                                  |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                | i acollalivo, lappieselliai | i e i aii            | Jamento delle tens. tangenziali. |                          |                           |
|----------------|-----------------------------|----------------------|----------------------------------|--------------------------|---------------------------|
| N              | = 40900 N                   | $M_{x}$              | = 576000 Nmm                     | Е                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$          | = 2280 N                    | $\sigma_a$           | = 240 N/mm <sup>2</sup>          | G                        | = 73000 N/mm <sup>2</sup> |
| $X_G$          | =                           | α                    | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$          | =                           | $J_t$                | =                                | $\sigma_{\text{ld}}$     | =                         |
| $u_o$          | =                           | σ(N)                 | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$        | =                           | $\sigma(M_x)$        | =                                | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub> | =                           | $\tau(T_{yc})$       | =                                | $\sigma_{\text{mises}}$  | =                         |
| $S_u^*$        | =                           | $\tau(T_{yb})$       |                                  | $\sigma_{\text{st.ven}}$ |                           |
| $C_{w}$        | =                           | $\tau(T_y)_s$        | =                                | $\Theta_{t}$             | =                         |
| $J_{xx}$       | =                           | $\tau(T_y)_d$        | =                                | $r_u$                    | =                         |
| $J_{yy}$       | =                           | σ                    | =                                | $r_v$                    | =                         |
| $J_{xy}$       | =                           | $	au_{s}$            | =                                | $r_{o}$                  | =                         |
| $J_{u}^{'}$    | =                           | $	au_{d}$            | =                                | $J_p$                    | =                         |
| $J_{v}$        | =                           | $\sigma_{\text{ls}}$ | =                                | •                        |                           |
|                |                             |                      |                                  |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| _ |                   | · · · · · · · · · · · · · · · · · · · |                      |                        | _                        |                           |
|---|-------------------|---------------------------------------|----------------------|------------------------|--------------------------|---------------------------|
| ١ | : ۱               | = 42200 N                             | $M_x$                | = 515000 Nmm           | E                        | $= 200000 \text{ N/mm}^2$ |
| T | Γ <sub>y</sub> :  | = 1640 N                              | $\sigma_{a}$         | $= 240 \text{ N/mm}^2$ | G                        | = 73000 N/mm <sup>2</sup> |
|   |                   | =                                     | α                    | =                      | $\sigma_{\text{IIs}}$    | =                         |
| У | ′ <sub>G</sub> :  | =                                     | $J_t$                | =                      | $\sigma_{\text{Id}}$     | =                         |
|   |                   | =                                     | $\sigma(N)$          | =                      | $\sigma_{\text{IId}}$    | =                         |
| ٧ | / <sub>0</sub> :  | =                                     | $\sigma(M_x)$        | =                      | $\sigma_{\text{tresca}}$ | =                         |
| P | ١ :               | =                                     | $\tau(T_{vc})$       | =                      | $\sigma_{\text{mises}}$  | =                         |
| 5 | S <sub>u</sub> :  | =                                     | $\tau(T_{yb})_{c}$   | d=                     | $\sigma_{\text{st.ven}}$ | =                         |
| ( | շ <sub>w</sub> ։  | =                                     | $\tau(T_y)_s$        | =                      | $\theta_{t}$             | =                         |
|   |                   | =                                     | $\tau(T_y)_d$        | =                      | $r_u$                    | =                         |
| J | l <sub>yy</sub> : | =                                     | σ                    | =                      | $r_v$                    | =                         |
| J |                   | =                                     | $	au_{s}$            | =                      | $r_o$                    | =                         |
| J |                   | =                                     | $	au_d$              | =                      | $J_p$                    | =                         |
| J | J <sub>v</sub> :  | =                                     | $\sigma_{\text{ls}}$ | =                      | -                        |                           |
| , | - A I             | W 7 1 1D 1D 11 1                      | 1: B 4:1             | 00.05.40               |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                                     | racollalivo, rappresenta | ie i aiii      | damento delle tens. tangenziali. |                          | _                         |
|-----------------------------------------------------|--------------------------|----------------|----------------------------------|--------------------------|---------------------------|
| Ν                                                   | = 39600 N                | $M_{\star}$    | = 1000000 Nmm                    | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_v$                                               | = 3010 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                                           | =                        | α              | =                                | $\sigma_{\text{lls}}$    | =                         |
| $y_G$                                               | =                        | $J_t$          | =                                | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                               | =                        | - ()           | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                             | =                        | $\sigma(M_x)$  |                                  | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A \ S_u^{^\star} \ C_w \end{array}$ | =                        | $\tau(T_{yc})$ | =                                | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                               | =                        | $\tau(T_{yb})$ | d=                               | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                             | =                        | $\tau(T_y)_s$  | =                                | $\Theta_{t}$             | =                         |
| $J_xx$                                              | =                        | $\tau(T_y)_d$  | =                                | $r_u$                    | =                         |
| $J_{yy}$                                            | =                        | σ              | =                                | $r_v$                    | =                         |
| $J_{xy}$                                            | =                        | $	au_{s}$      | =                                | $r_{o}$                  | =                         |
| $J_{u}$                                             | =                        | $	au_{d}$      | =                                | $J_p$                    | =                         |
| $J_{v}$                                             | =                        | $\sigma_{ls}$  | =                                |                          |                           |
|                                                     |                          |                |                                  |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                | racollativo, rappresenta | ie i aii             | uarriento delle teris, tarigeriziali. |                          | _                         |
|------------------------------------------------------|----------------|--------------------------|----------------------|---------------------------------------|--------------------------|---------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Ν              | = 41500 N                | $M_{\star}$          | = 691000 Nmm                          | E                        | $= 200000 \text{ N/mm}^2$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $T_y$          | = 2940 N                 | $\sigma_a$           | $= 240 \text{ N/mm}^2$                | G                        | = 73000 N/mm <sup>2</sup> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $x_G$          | =                        | α                    | =                                     | $\sigma_{\text{IIs}}$    | =                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $y_G$          | =                        | $J_t$                |                                       | $\sigma_{\text{ld}}$     | =                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $u_o$          | =                        | σ(N)                 | =                                     | $\sigma_{\text{IId}}$    | =                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $V_{o}$        |                          |                      |                                       | $\sigma_{\text{tresca}}$ | =                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | A <sub>*</sub> | =                        | $\tau(T_{yc})$       | =                                     |                          |                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $S_u$          |                          |                      |                                       | $\sigma_{\text{st.ven}}$ | =                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $C_{w}$        | =                        | $\tau(T_y)_s$        | =                                     | $\Theta_{t}$             | =                         |
| $J_{xy} =                                   $        |                | =                        | $\tau(T_y)_d$        | =                                     | $r_u$                    | =                         |
| $J_{xy} =                                   $        | $J_{yy}$       | =                        | σ                    | =                                     | $r_v$                    | =                         |
| $J_u = T_d = J_p = T_d$                              | $J_{xy}$       | =                        | $	au_{s}$            | =                                     | $r_o$                    | =                         |
|                                                      |                | =                        | $	au_{d}$            | =                                     | $J_p$                    | =                         |
|                                                      | $J_{v}$        | =                        | $\sigma_{\text{ls}}$ | =                                     | •                        |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                              | racollativo, rappresenta | ie i aii       | uarrierito delle teris, tarigeriziali. |                          |                           |
|----------------------------------------------|--------------------------|----------------|----------------------------------------|--------------------------|---------------------------|
| Ν                                            | = 42900 N                | $M_{\star}$    | = 631000 Nmm                           | Ε                        | $= 200000 \text{ N/mm}^2$ |
| $T_{y}$                                      | = 2120 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$                 | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                                    | =                        | α              | =                                      | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                        | =                        | $J_t$          | =                                      | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                        | =                        | - ()           | =                                      | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                      | =                        | $\sigma(M_x)$  |                                        | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                        | $\tau(T_{yc})$ | =                                      | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                        | =                        | $\tau(T_{yb})$ | d=                                     | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                      | =                        | $\tau(T_y)_s$  | =                                      | $\Theta_{t}$             | =                         |
| $J_xx$                                       | =                        | $\tau(T_y)_d$  | =                                      | $r_u$                    | =                         |
| $J_{yy}$                                     | =                        | σ              | =                                      | $r_{v}$                  | =                         |
| $J_{xy}$                                     | =                        | $	au_{s}$      | =                                      | $r_{o}$                  | =                         |
| $J_{u}$                                      | =                        | $	au_{d}$      | =                                      | $J_p$                    | =                         |
| $J_{v}$                                      | =                        | $\sigma_{ls}$  | =                                      |                          |                           |
|                                              |                          |                |                                        |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                             | racollativo, rappresenta | ie rand              | Jamento delle teris, tangenziali. |                          | _                         |
|---------------------------------------------|--------------------------|----------------------|-----------------------------------|--------------------------|---------------------------|
| Ν                                           | = 32800 N                | $M_{\star}$          | = 559000 Nmm                      | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_v$                                       | = 2060 N                 | $\sigma_a$           | $= 240 \text{ N/mm}^2$            | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                       | =                        | α                    | =                                 | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                       | =                        | $J_t$                | =                                 | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                       | =                        | σ(N)                 |                                   | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                     | =                        | $\sigma(M_x)$        |                                   | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A_{u} \\ C_{w} \end{array}$ | =                        | $\tau(T_{yc})$       | =                                 | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                       | =                        | $\tau(T_{yb})$       |                                   | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                     | =                        | $\tau(T_y)_s$        | =                                 | $\theta_{t}$             | =                         |
| $J_xx$                                      | =                        | $\tau(T_y)_d$        | =                                 | $r_u$                    | =                         |
| $J_{yy}$                                    | =                        | σ                    | =                                 | $r_v$                    | =                         |
| $J_{xy}$                                    | =                        | $	au_{s}$            | =                                 | $r_{o}$                  | =                         |
| $J_{u}$                                     | =                        | $	au_{d}$            | =                                 | $J_p$                    | =                         |
| $J_{v}$                                     | =                        | $\sigma_{\text{ls}}$ | =                                 | •                        |                           |
|                                             |                          |                      |                                   |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| N/mm <sup>2</sup><br>l/mm <sup>2</sup> |
|----------------------------------------|
| l/mm <sup>2</sup>                      |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                       | racollalivo, rappresenta | ie i aiii      | uarriento delle teris, tarigeriziali. |                          | _                         |
|---------------------------------------|--------------------------|----------------|---------------------------------------|--------------------------|---------------------------|
| Ν                                     | = 43600 N                | $M_{\star}$    | = 759000 Nmm                          | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                 | = 2810 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$                | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                             | =                        | α              | =                                     | $\sigma_{\text{lls}}$    | =                         |
| $y_G$                                 | =                        | $J_t$          | =                                     | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                 | =                        | - ()           | =                                     | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                               | =                        | $\sigma(M_x)$  |                                       | $\sigma_{\text{tresca}}$ | =                         |
| A<br>S <sub>u</sub><br>C <sub>w</sub> | =                        | $\tau(T_{yc})$ | =                                     | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                 | =                        | $\tau(T_{yb})$ |                                       | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                               | =                        | $\tau(T_y)_s$  |                                       | $\Theta_{t}$             | =                         |
| $J_xx$                                | =                        | $\tau(T_y)_d$  | =                                     | $r_u$                    | =                         |
| $J_{yy}$                              | =                        | σ              | =                                     | $r_{v}$                  | =                         |
| $J_{xy}$                              | =                        | $	au_{s}$      | =                                     | $r_{o}$                  | =                         |
| $J_{u}$                               | =                        | $	au_{d}$      | =                                     | $J_p$                    | =                         |
| $J_{v}$                               | =                        | $\sigma_{ls}$  | =                                     |                          |                           |
|                                       |                          | 1. 8 4.1       | 00.05.40                              |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                       | racollalivo, rappresenta | ie rain        | uarriento delle teris, tarigeriziali. |                          | _                         |
|---------------------------------------|--------------------------|----------------|---------------------------------------|--------------------------|---------------------------|
| Ν                                     | = 33400 N                | $M_{\star}$    | = 686000 Nmm                          | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                 | = 2740 N                 | $\sigma_{a}$   | $= 240 \text{ N/mm}^2$                | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                             | =                        | α              | =                                     | $\sigma_{\text{lls}}$    | =                         |
| $y_G$                                 | =                        | $J_t$          | =                                     | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                 | =                        | - ( )          | =                                     | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                               | =                        | $\sigma(M_x)$  |                                       | $\sigma_{\text{tresca}}$ | =                         |
| A<br>S <sub>u</sub><br>C <sub>w</sub> | =                        | $\tau(T_{yc})$ | =                                     | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                 | =                        | $\tau(T_{yb})$ |                                       | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                               | =                        | $\tau(T_y)_s$  |                                       | $\Theta_{t}$             | =                         |
| $J_xx$                                | =                        | $\tau(T_y)_d$  | =                                     | $r_u$                    | =                         |
| $J_{yy}$                              | =                        | σ              | =                                     | $r_{v}$                  | =                         |
| $J_{xy}$                              | =                        | $	au_{s}$      | =                                     | $r_{o}$                  | =                         |
| $J_{u}$                               | =                        | $	au_{d}$      | =                                     | $J_p$                    | =                         |
| $J_{v}$                               | =                        | $\sigma_{ls}$  | =                                     |                          |                           |
|                                       |                          | 1: B 4:1       | 00.05.40                              |                          |                           |



Calcolo degli sforzi in \* con forze baricentriche essendo \* il punto C di BC

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   |                | racollativo, rappresenta | ie rand              | Jamento delle teris, tangenziali. |                          | _                         |
|--------------------------------------------------------|----------------|--------------------------|----------------------|-----------------------------------|--------------------------|---------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | Ν              | = 34600 N                | $M_{\star}$          | = 451000 Nmm                      | E                        | $= 200000 \text{ N/mm}^2$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $T_{y}$        | = 2610 N                 | $\sigma_{a}$         | $= 240 \text{ N/mm}^2$            | G                        | = 73000 N/mm <sup>2</sup> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $x_G$          | =                        | α                    | =                                 | $\sigma_{\text{IIs}}$    | =                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $y_G$          | =                        | $J_t$                |                                   | $\sigma_{\text{ld}}$     | =                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $u_o$          | =                        | σ(N)                 | =                                 | $\sigma_{\text{IId}}$    | =                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $V_{o}$        |                          |                      |                                   | $\sigma_{\text{tresca}}$ | =                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | A <sub>*</sub> | =                        | $\tau(T_{yc})$       | =                                 |                          |                           |
| $     \begin{array}{ccccccccccccccccccccccccccccccccc$ | $S_u$          |                          |                      |                                   | $\sigma_{\text{st.ven}}$ | =                         |
| $     \begin{array}{ccccccccccccccccccccccccccccccccc$ | $C_{w}$        | =                        | $\tau(T_y)_s$        | =                                 | $\Theta_{t}$             | =                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  |                | =                        | $\tau(T_y)_d$        | =                                 | $r_u$                    | =                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $J_{yy}$       | =                        | σ                    | =                                 | $r_v$                    | =                         |
| $J_u = T_d = J_p = T_d$                                | $J_{xy}$       | =                        | $	au_{s}$            | =                                 | $r_o$                    | =                         |
|                                                        |                | =                        | $	au_{d}$            | =                                 | $J_p$                    | =                         |
|                                                        | $J_{v}$        | =                        | $\sigma_{\text{ls}}$ | =                                 | ·                        |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                                    | racollalivo, rappresenta | ie i aii             | damento delle tens. tangenziali. |                          | _                         |
|----------------------------------------------------|--------------------------|----------------------|----------------------------------|--------------------------|---------------------------|
| Ν                                                  | = 44600 N                | $M_{\star}$          | = 900000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                              | = 3840 N                 | $\sigma_a$           | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                              | =                        | α                    | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                              | =                        | $J_t$                | =                                | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                              | =                        | σ(N)                 |                                  | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                            | =                        | $\sigma(M_x)$        |                                  | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                                     | =                        | $\tau(T_{yc})$       | =                                | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                              | =                        | $\tau(T_{yb})$       |                                  | $\sigma_{\text{st.ven}}$ | =                         |
| $egin{array}{c} A \\ S_u^\star \\ C_w \end{array}$ | =                        | $\tau(T_y)_s$        | =                                | $\Theta_{t}$             | =                         |
| $J_xx$                                             | =                        | $\tau(T_y)_d$        | =                                | $r_u$                    | =                         |
| $J_{yy}$                                           | =                        | σ                    | =                                | $r_v$                    | =                         |
| $J_{xy}$                                           | =                        | $	au_{s}$            | =                                | $r_o$                    | =                         |
| $J_{u}$                                            | =                        | $	au_{d}$            | =                                | $J_p$                    | =                         |
| $J_v$                                              | =                        | $\sigma_{\text{ls}}$ | =                                | •                        |                           |
|                                                    |                          |                      |                                  |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                    | i acollalivo, rappieseillai | Clan                 | Jamenio delle lens. langenziali. |                          |                           |
|--------------------|-----------------------------|----------------------|----------------------------------|--------------------------|---------------------------|
| N                  | = 34100 N                   | $M_{\star}$          | = 827000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$              | = 3760 N                    | $\sigma_a$           | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $X_G$              | =                           | α                    | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$              | =                           | $J_t$                | =                                | $\sigma_{\text{ld}}$     | =                         |
| $u_o$              | =                           | σ(N)                 | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$            | =                           | $\sigma(M_x)$        | =                                | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>     | =                           | $\tau(T_{yc})$       | =                                | $\sigma_{\text{mises}}$  |                           |
| $S_{u}^{^{\star}}$ | =                           | $\tau(T_{yb})$       | <sub>d</sub> =                   | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$            | =                           | $\tau(T_y)_s$        | =                                | $\Theta_{t}$             | =                         |
| $J_{xx}$           | =                           | $\tau(T_y)_d$        | =                                | $r_u$                    | =                         |
| $J_{yy}$           | =                           | σ                    | =                                | $r_v$                    | =                         |
| $J_{xy}$           | =                           | $	au_{s}$            | =                                | $r_o$                    | =                         |
| $J_{u}^{'}$        | =                           | $\tau_{d}$           | =                                | $J_p$                    | =                         |
| $J_v$              | =                           | $\sigma_{\text{ls}}$ | =                                | ·                        |                           |
|                    |                             |                      |                                  |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                              | racollalivo, rappresenta | ie i aiii      | uarrierito delle teris, tarigeriziali. |                          | _                         |
|----------------------------------------------|--------------------------|----------------|----------------------------------------|--------------------------|---------------------------|
| Ν                                            | = 35300 N                | $M_{\star}$    | = 554000 Nmm                           | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_{y}$                                      | = 3600 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$                 | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                                    | =                        | α              | =                                      | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                        | =                        | $J_t$          | =                                      | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                        | =                        | - ()           | =                                      | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                      | =                        | $\sigma(M_x)$  |                                        | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                        | $\tau(T_{yc})$ | =                                      | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                        | =                        | $\tau(T_{yb})$ |                                        | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                      | =                        | $\tau(T_y)_s$  | =                                      | $\Theta_{t}$             | =                         |
| $J_xx$                                       | =                        | $\tau(T_y)_d$  | =                                      | $r_{u}$                  | =                         |
| $J_{yy}$                                     | =                        | σ              | =                                      | $r_v$                    | =                         |
| $J_{xy}$                                     | =                        | $	au_{s}$      | =                                      | $r_{o}$                  | =                         |
| $J_{u}$                                      | =                        | $	au_{d}$      | =                                      | $J_p$                    | =                         |
| $J_{v}$                                      | =                        | $\sigma_{ls}$  | =                                      |                          |                           |
|                                              | ,                        |                |                                        |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                       | racollativo, rappresenta | ie rain        | damento delle tens. tangenziali. |                          | _                         |
|---------------------------------------|--------------------------|----------------|----------------------------------|--------------------------|---------------------------|
| Ν                                     | = 36100 N                | $M_{\star}$    | = 494000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                 | = 2540 N                 | $\sigma_{a}$   | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                 | =                        | α              | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                 | =                        | $J_t$          | =                                | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                 | =                        | σ(N)           | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                               | =                        | $\sigma(M_x)$  |                                  | $\sigma_{\text{tresca}}$ | =                         |
| A<br>S <sub>u</sub><br>C <sub>w</sub> | =                        | $\tau(T_{yc})$ | =                                | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                 | =                        | $\tau(T_{yb})$ |                                  | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                               | =                        | $\tau(T_y)_s$  |                                  | $\Theta_{t}$             | =                         |
| $J_{xx}$                              | =                        | $\tau(T_y)_d$  | =                                | $r_u$                    | =                         |
| $J_{yy}$                              | =                        | σ              | =                                | $r_v$                    | =                         |
| $J_{xy}$                              | =                        | $	au_{s}$      | =                                | $r_{o}$                  | =                         |
| $J_{u}$                               | =                        | $	au_{d}$      | =                                | $J_p$                    | =                         |
| $J_{v}$                               | =                        | $\sigma_{ls}$  | =                                |                          |                           |
|                                       |                          | 1: B 4:1       | 00.05.40                         |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                            | i acollalivo, iappieseilla | i C i a        | nuamento delle teris, tangenziali. |                          |                           |
|--------------------------------------------|----------------------------|----------------|------------------------------------|--------------------------|---------------------------|
| Ν                                          | = 42300 N                  | $M_{x}$        | = 686000 Nmm                       | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                      | = 1670 N                   | $\sigma_a$     | = 240 N/mm <sup>2</sup>            | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                      | =                          | α              | =                                  | $\sigma_{IIs}$           | =                         |
| $y_G$                                      | =                          | $J_t$          | =                                  | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                      | =                          | σ(N)           |                                    | $\sigma_{IId}$           | =                         |
| $V_{o}$                                    | =                          | σ(M            |                                    | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                             | =                          | $\tau(T_{yo})$ | c) =                               | $\sigma_{\text{mises}}$  |                           |
| $S_{u}^{n}$                                | =                          |                | <sub>b</sub> ) <sub>d</sub> =      | $\sigma_{\text{st.ven}}$ |                           |
| $egin{array}{c} A_{u} \ C_{w} \end{array}$ | =                          | $\tau(T_y)$    | ) <sub>s</sub> =                   | $\theta_{t}$             | =                         |
| $J_xx$                                     | =                          | $\tau(T_y)$    | ) <sub>d</sub> =                   | $r_u$                    | =                         |
| $J_{yy}$                                   | =                          | σ              | =                                  | $r_{v}$                  | =                         |
| $J_{xy}$                                   | =                          | $	au_{s}$      | =                                  | $r_{o}$                  | =                         |
| $J_{u}$                                    | =                          | $\tau_{\sf d}$ | =                                  | $J_p$                    | =                         |
| $J_v$                                      | =                          | $\sigma_{ls}$  | =                                  | •                        |                           |
|                                            |                            |                |                                    |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                            | i acollalivo, iappieseilla | ie i aii             | damento delle teris, tarigeriziali. |                          | _                         |
|--------------------------------------------|----------------------------|----------------------|-------------------------------------|--------------------------|---------------------------|
| Ν                                          | = 44900 N                  | $M_{x}$              | = 453000 Nmm                        | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_{y}$                                    | = 1680 N                   | $\sigma_a$           | = 240 N/mm <sup>2</sup>             | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                      | =                          | α                    | =                                   | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                      | =                          | $J_t$                | =                                   | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                      | =                          | σ(N)                 |                                     | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                    | =                          | $\sigma(M_x)$        |                                     | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A_{u} \ C_{w} \end{array}$ | =                          | $\tau(T_{yc})$       | ) =                                 | $\sigma_{\text{mises}}$  |                           |
| $S_{u}$                                    | =                          | $\tau(T_{yb})$       |                                     | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                    | =                          | $\tau(T_y)_s$        | ; =                                 | $\Theta_{t}$             | =                         |
| $J_xx$                                     | =                          | $\tau(T_y)_d$        | <sub>i</sub> =                      | $r_u$                    | =                         |
| $J_{yy}$                                   | =                          | σ                    | =                                   | $r_v$                    | =                         |
| $J_{xy}$                                   | =                          | $	au_{s}$            | =                                   | $r_{o}$                  | =                         |
| $J_{u}$                                    | =                          | $	au_{d}$            | =                                   | $J_p$                    | =                         |
| $J_v$                                      | =                          | $\sigma_{\text{ls}}$ | =                                   | •                        |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                              | i acollativo, rapproscrit | arc rai           | idamento dene terio, tangenzian. |                          |                           |
|----------------------------------------------|---------------------------|-------------------|----------------------------------|--------------------------|---------------------------|
| Ν                                            | = 47100 N                 | $M_{x}$           | = 395000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                        | = 1250 N                  | $\sigma_a$        | $= 240 \text{ N/mm}^2$           | G                        | $= 73000 \text{ N/mm}^2$  |
| $x_G$                                        | =                         | α                 | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_{G}$                                      | =                         | $J_t$             | =                                | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                        | =                         | σ(N)              | =                                | $\sigma_{IId}$           | =                         |
| $V_{o}$                                      | =                         | $\sigma(M_x)$     |                                  | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                               | =                         | $\tau(T_{yc})$    | ) =                              | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                        | =                         |                   | ) <sub>d</sub> =                 | $\sigma_{\text{st.ven}}$ | =                         |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                         | $\tau(T_{y})$     | <sub>s</sub> =                   | $\theta_{t}$             | =                         |
| $J_{xx}$                                     | =                         | $\tau(T_y)$       | <sub>d</sub> =                   | $r_u$                    | =                         |
| $J_{yy}$                                     | =                         | σ                 | =                                | $r_v$                    | =                         |
| $J_{xy}$                                     | =                         | $	au_{s}$         | =                                | $r_{o}$                  | =                         |
| $J_{u}$                                      | =                         | $	au_{\sf d}$     | =                                | $J_p$                    | =                         |
| $J_v$                                        | =                         | $\sigma_{\sf ls}$ | =                                | •                        |                           |
|                                              |                           |                   |                                  |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                            | i acollalivo, iappieseilla | i e i a          | יו וג               | damento delle teris, tangenziali. |                          |                           |
|--------------------------------------------|----------------------------|------------------|---------------------|-----------------------------------|--------------------------|---------------------------|
| Ν                                          | = 36600 N                  | $M_{x}$          |                     | = 328000 Nmm                      | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                      | = 1250 N                   | $\hat{\sigma_a}$ |                     | = 240 N/mm <sup>2</sup>           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                      | =                          | α                |                     | =                                 | $\sigma_{IIs}$           | =                         |
| $y_G$                                      | =                          | $J_t$            |                     | =                                 | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                      | =                          | σ(N)             | ,                   | =                                 | $\sigma_{IId}$           | =                         |
| $V_{o}$                                    | =                          | σ(M              |                     |                                   | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                             | =                          | $\tau(T_y)$      | <sub>yc</sub> )     | =                                 | $\sigma_{\text{mises}}$  |                           |
| $S_{u}^{n}$                                | =                          |                  |                     | d=                                | $\sigma_{\text{st.ven}}$ |                           |
| $egin{array}{c} A_{u} \ C_{w} \end{array}$ | =                          | $\tau(T_y)$      | ,) <sub>s</sub>     | , =                               | $\theta_{t}$             | =                         |
| $J_xx$                                     | =                          | $\tau(T_y)$      | $_{\rm y})_{\rm d}$ | <sub>1</sub> =                    | $r_u$                    | =                         |
| $J_{yy}$                                   | =                          | σ                |                     | =                                 | $r_{v}$                  | =                         |
| $J_{xy}$                                   | =                          | $	au_{s}$        |                     | =                                 | $r_o$                    | =                         |
| $J_{u}$                                    | =                          | $\tau_{\sf d}$   |                     | =                                 | $J_p$                    | =                         |
| $J_v$                                      | =                          | $\sigma_{ls}$    |                     | =                                 | •                        |                           |
|                                            |                            |                  |                     |                                   |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|   |                                                  |                                         |                 | <u> </u>               |                          |                           |
|---|--------------------------------------------------|-----------------------------------------|-----------------|------------------------|--------------------------|---------------------------|
|   | N                                                | = 44600 N                               | $M_x$           | = 552000 Nmm           | E                        | $= 200000 \text{ N/mm}^2$ |
|   | $T_y$                                            | = 1980 N                                | $\sigma_{a}^{}$ | $= 240 \text{ N/mm}^2$ | G                        | $= 73000 \text{ N/mm}^2$  |
|   | $x_G^{'}$                                        | =                                       | α               | =                      | $\sigma_{\text{IIs}}$    | =                         |
| , | $y_G$                                            | =                                       | $J_t$           | =                      | $\sigma_{\text{ld}}$     | =                         |
|   | $u_o$                                            | =                                       | σ(N)            |                        | $\sigma_{\text{IId}}$    | =                         |
|   | $V_{o}$                                          | =                                       | $\sigma(M_x)$   | =                      | $\sigma_{\text{tresca}}$ | =                         |
|   | A <sub>*</sub>                                   | =                                       | $\tau(T_{yc})$  | =                      | $\sigma_{\text{mises}}$  | =                         |
|   | $S_u$                                            | =                                       | $\tau(T_{yb})$  | e <sub>d</sub> =       | $\sigma_{\text{st.ven}}$ | =                         |
|   | $oldsymbol{S}_{u}^{^{\star}}$ $oldsymbol{C}_{w}$ | =                                       | $\tau(T_y)_s$   | =                      | $\theta_{t}$             | =                         |
|   | $J_{xx}$                                         | =                                       | $\tau(T_y)_d$   | =                      | $\mathbf{r}_{u}$         | =                         |
|   | $J_{yy}$                                         | =                                       | σ               | =                      | $r_{v}$                  | =                         |
| , | $J_{xy}$                                         | =                                       | $	au_{s}$       | =                      | $r_{o}$                  | =                         |
|   | $J_{u}$                                          | =                                       | $	au_{d}$       | =                      | $J_p$                    | =                         |
| , | $J_{v}$                                          | =                                       | $\sigma_{ls}$   | =                      | •                        |                           |
|   | ~ · ·                                            | V 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 | 00.05.40               |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
Ε
                                                                                                                                                                = 200000 \text{ N/mm}^2
Ν
            = 46700 N
                                                                          M_{\star}
                                                                                      = 495000 Nmm
                                                                                      = 240 \text{ N/mm}^2
                                                                                                                                                                = 73000 \text{ N/mm}^2
            = 1470 N
                                                                                                                                                    G
                                                                          α
                                                                                                                                                    \sigma_{\text{lls}}
y_{\mathsf{G}}
                                                                                                                                                    \sigma_{\mathsf{Id}}
                                                                                                                                                                =
                                                                          \sigma(N) =
                                                                                                                                                    \sigma_{\text{IId}}
                                                                          \sigma(M_x) =
                                                                                                                                                    \sigma_{tresca} =
                                                                          \tau(T_{yc}) =
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                          \tau(T_{vb})_d =
                                                                                                                                                    \sigma_{\text{st.ven}} =
                                                                          \tau(T_{v})_{s} =
                                                                          \tau(T_y)_d =
            =
                                                                          \sigma_{\text{ls}}
```



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

|                                            | i acollalivo, iappieseilla | icia             | anc                         | annenio delle teris, tangenziali. |                          |                           |
|--------------------------------------------|----------------------------|------------------|-----------------------------|-----------------------------------|--------------------------|---------------------------|
| Ν                                          | = 36300 N                  | $M_{x}$          |                             | = 428000 Nmm                      | Е                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                      | = 1480 N                   | $\hat{\sigma_a}$ |                             | $= 240 \text{ N/mm}^2$            | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                      | =                          | α                |                             | =                                 | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                      | =                          | $J_t$            |                             | =                                 | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                      | =                          | σ(N)             | ,                           | =                                 | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                    | =                          | σ(M              |                             |                                   | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                             | =                          | $\tau(T_y)$      | yc)                         | =                                 | $\sigma_{\text{mises}}$  |                           |
| $S_{u}^{n}$                                | =                          |                  | - \                         |                                   | $\sigma_{\text{st.ven}}$ |                           |
| $egin{array}{c} A_{u} \ C_{w} \end{array}$ | =                          | $\tau(T_y)$      | <sub>y</sub> ) <sub>s</sub> | =                                 | $\theta_{t}$             | =                         |
| $J_xx$                                     | =                          | $\tau(T_y)$      | y) <sub>d</sub>             | =                                 | $r_u$                    | =                         |
| $J_{yy}$                                   | =                          | σ                | -                           | =                                 | $r_{v}$                  | =                         |
| $J_{xy}$                                   | =                          | $	au_{s}$        |                             | =                                 | $r_{o}$                  | =                         |
| $J_{u}$                                    | =                          | $\tau_{\sf d}$   |                             | =                                 | $J_p$                    | =                         |
| $J_v$                                      | =                          | $\sigma_{ls}$    |                             | =                                 | •                        |                           |
|                                            |                            |                  |                             |                                   |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                             | racollativo, rappresenta | ie i aii             | uarriento delle teris, tarigeriziali. |                          | _                         |
|---------------------------------------------|--------------------------|----------------------|---------------------------------------|--------------------------|---------------------------|
| Ν                                           | = 38200 N                | $M_{\star}$          | = 264000 Nmm                          | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                       | = 1460 N                 | $\sigma_a$           | $= 240 \text{ N/mm}^2$                | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                       | =                        | α                    | =                                     | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                       | =                        | $J_t$                | =                                     | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                       | =                        | σ(N)                 |                                       | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                     | =                        | $\sigma(M_x)$        |                                       | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A_{u} \\ C_{w} \end{array}$ | =                        | $\tau(T_{yc})$       | =                                     | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                       | =                        | $\tau(T_{yb})$       |                                       | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                     | =                        | $\tau(T_y)_s$        | =                                     | $\Theta_{t}$             | =                         |
| $J_xx$                                      | =                        | $\tau(T_y)_d$        | =                                     | $r_u$                    | =                         |
| $J_{yy}$                                    | =                        | σ                    | =                                     | $r_{v}$                  | =                         |
| $J_{xy}$                                    | =                        | $	au_{s}$            | =                                     | $r_o$                    | =                         |
| $J_{u}$                                     | =                        | $	au_{d}$            | =                                     | $J_p$                    | =                         |
| $J_{v}$                                     | =                        | $\sigma_{\text{ls}}$ | =                                     | •                        |                           |
|                                             |                          |                      |                                       |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                              | racollativo, rappresenta | ie i aii       | uarrierito delle teris, tarigeriziali. |                          |                           |
|----------------------------------------------|--------------------------|----------------|----------------------------------------|--------------------------|---------------------------|
| Ν                                            | = 46300 N                | $M_{\star}$    | = 603000 Nmm                           | Ε                        | $= 200000 \text{ N/mm}^2$ |
| $T_v$                                        | = 1770 N                 | $\sigma_a$     | $= 240 \text{ N/mm}^2$                 | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                                    | =                        | α              | =                                      | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                        | =                        | $J_t$          | =                                      | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                        | =                        | - ()           | =                                      | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                      | =                        | $\sigma(M_x)$  |                                        | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                        | $\tau(T_{yc})$ | =                                      | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                        | =                        | $\tau(T_{yb})$ | d=                                     | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                      | =                        | $\tau(T_y)_s$  | =                                      | $\Theta_{t}$             | =                         |
| $J_xx$                                       | =                        | $\tau(T_y)_d$  | =                                      | $r_u$                    | =                         |
| $J_{yy}$                                     | =                        | σ              | =                                      | $r_v$                    | =                         |
| $J_{xy}$                                     | =                        | $	au_{s}$      | =                                      | $r_{o}$                  | =                         |
| $J_{u}$                                      | =                        | $	au_{d}$      | =                                      | $J_p$                    | =                         |
| $J_{v}$                                      | =                        | $\sigma_{ls}$  | =                                      |                          |                           |
|                                              |                          |                |                                        |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                        | _                        |                           |
|---|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|--------------------------|---------------------------|
| 1 | ۱ :                                   | = 36000 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $M_{x}$              | = 536000 Nmm           | E                        | $= 200000 \text{ N/mm}^2$ |
| ٦ | Γ <sub>y</sub> :                      | = 1770 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sigma_{a}$         | $= 240 \text{ N/mm}^2$ | G                        | = 73000 N/mm <sup>2</sup> |
|   |                                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | α                    | =                      | $\sigma_{IIs}$           | =                         |
| ) | / <sub>G</sub>                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $J_t$                | =                      | $\sigma_{\sf Id}$        | =                         |
|   |                                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma(N)$          | =                      | $\sigma_{IId}$           | =                         |
| ١ | 0                                     | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma(M_x)$        | =                      | $\sigma_{\text{tresca}}$ | =                         |
| ŀ | ۹ .                                   | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tau(T_{yc})$       | =                      | $\sigma_{\text{mises}}$  | =                         |
| 5 | S <sub>u</sub> :                      | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tau(T_{yb})$       | d=                     | $\sigma_{\text{st.ven}}$ | =                         |
| ( | Α<br>S <sub>u</sub><br>C <sub>w</sub> | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tau(T_{v})_{s}$    | =                      | $\theta_{t}$             | =                         |
|   |                                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tau(T_y)_d$        | =                      | $r_u$                    | =                         |
|   | J <sub>yy</sub> :                     | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | σ                    | =                      | $r_{v}$                  | =                         |
|   |                                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $	au_{s}$            | =                      | $r_{o}$                  | =                         |
|   |                                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $	au_{d}$            | =                      | $J_p$                    | =                         |
|   | J <sub>v</sub> :                      | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma_{\text{ls}}$ | =                      |                          |                           |
|   | ο A I                                 | W 7   L 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1   D 1 | 11. 8 411            | 00.05.40               |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                     | i aconanyo, rappicacina | iic i aii              | idamento dene teno, tangenzian. |                          |                           |
|---------------------|-------------------------|------------------------|---------------------------------|--------------------------|---------------------------|
| Ν                   | = 37900 N               | $M_x$                  | = 344000 Nmm                    | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$               | = 1750 N                | $\sigma_{a}^{\hat{a}}$ | $= 240 \text{ N/mm}^2$          | G                        | = 73000 N/mm <sup>2</sup> |
| $X_G$               | =                       | α                      | =                               | $\sigma_{IIs}$           | =                         |
| $y_{G}$             | =                       | $J_t$                  | =                               | $\sigma_{\text{Id}}$     | =                         |
| $u_o$               | =                       | σ(N)                   | =                               | $\sigma_{IId}$           | =                         |
| $V_{o}$             | =                       | $\sigma(M_x)$          |                                 | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>      | =                       | $\tau(T_{yc})$         | ) =                             | $\sigma_{\text{mises}}$  |                           |
| $S_u$               | =                       |                        | $)_{d}=$                        | $\sigma_{\text{st.ven}}$ | =                         |
| $ A_{v} $ $ C_{w} $ | =                       | $\tau(T_y)_s$          | <sub>s</sub> =                  | $\theta_{t}$             | =                         |
| $J_{xx}$            | =                       | $\tau(T_y)_c$          |                                 | $r_u$                    | =                         |
| $J_{yy}$            | =                       | σ                      | =                               | $r_v$                    | =                         |
| $J_{xy}$            | =                       | $	au_{s}$              | =                               | $r_{o}$                  | =                         |
| $J_{u}$             | =                       | $	au_{\sf d}$          | =                               | $J_p$                    | =                         |
| $J_v$               | =                       | $\sigma_{\sf ls}$      | =                               | •                        |                           |
|                     |                         |                        |                                 |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                             | racollalivo. Tappieseilla | ie rand              | Jamento delle tens. tangenziali. |                          | _                         |
|---------------------------------------------|---------------------------|----------------------|----------------------------------|--------------------------|---------------------------|
| Ν                                           | = 39300 N                 | $M_{\star}$          | = 289000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_{y}$                                     | = 1280 N                  | $\sigma_{a}$         | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                       | =                         | α                    | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                       | =                         | $J_t$                | =                                | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                       | =                         | σ(N)                 |                                  | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                     | =                         | $\sigma(M_x)$        |                                  | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A_{u} \\ C_{w} \end{array}$ | =                         | $\tau(T_{yc})$       | =                                | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                       | =                         | $\tau(T_{yb})$       |                                  | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                     | =                         | $\tau(T_y)_s$        | =                                | $\Theta_{t}$             | =                         |
| $J_xx$                                      | =                         | $\tau(T_y)_d$        | =                                | $r_u$                    | =                         |
| $J_{yy}$                                    | =                         | σ                    | =                                | $r_v$                    | =                         |
| $J_{xy}$                                    | =                         | $	au_{s}$            | =                                | $r_o$                    | =                         |
| $J_{u}$                                     | =                         | $	au_{d}$            | =                                | $J_p$                    | =                         |
| $J_v$                                       | =                         | $\sigma_{\text{ls}}$ | =                                | •                        |                           |
|                                             |                           |                      |                                  |                          |                           |



Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                            | i acollalivo, iappieseilla | i e i aii            | damento delle tens. tangenziali. |                          | _                         |
|--------------------------------------------|----------------------------|----------------------|----------------------------------|--------------------------|---------------------------|
| Ν                                          | = 35700 N                  | $M_{x}$              | = 651000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_{y}$                                    | = 2180 N                   | $\sigma_a$           | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                      | =                          | α                    | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                      | =                          | $J_t$                | =                                | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                      | =                          | σ(N)                 |                                  | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                    | =                          | $\sigma(M_x)$        |                                  | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A_{u} \ C_{w} \end{array}$ | =                          | $\tau(T_{yc})$       | =                                | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                      | =                          | $\tau(T_{yb})$       |                                  | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                    | =                          | $\tau(T_y)_s$        | , =                              | $\Theta_{t}$             | =                         |
| $J_xx$                                     | =                          | $\tau(T_y)_d$        | <sub>i</sub> =                   | $r_u$                    | =                         |
| $J_{yy}$                                   | =                          | σ                    | =                                | $r_v$                    | =                         |
| $J_{xy}$                                   | =                          | $	au_{s}$            | =                                | $r_{o}$                  | =                         |
| $J_{u}$                                    | =                          | $	au_{d}$            | =                                | $J_p$                    | =                         |
| $J_v$                                      | =                          | $\sigma_{\text{ls}}$ | =                                | •                        |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                             | racollativo, rappresenta | ie rand                        | Jamento delle teris, tangenziali. |                          | _                         |
|---------------------------------------------|--------------------------|--------------------------------|-----------------------------------|--------------------------|---------------------------|
| Ν                                           | = 37500 N                | $M_{\star}$                    | = 430000 Nmm                      | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                       | = 2150 N                 | $\sigma_{a}$                   | $= 240 \text{ N/mm}^2$            | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                       | =                        | α                              | =                                 | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                       | =                        | $J_t$                          | =                                 | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                       | =                        | σ(N)                           |                                   | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                     | =                        | $\sigma(M_x)$                  |                                   | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A_{u} \\ C_{w} \end{array}$ | =                        | $\tau(T_{yc})$                 | =                                 | $\sigma_{\text{mises}}$  | =                         |
| $S_u$                                       | =                        | $\tau(T_{yb})$                 |                                   | $\sigma_{\text{st.ven}}$ | =                         |
| $C_{w}$                                     | =                        | $\tau(T_y)_s$                  | =                                 | $\theta_{t}$             | =                         |
| $J_xx$                                      | =                        | $\tau(T_y)_d$                  | =                                 | $r_u$                    | =                         |
| $J_{yy}$                                    | =                        | σ                              | =                                 | $r_v$                    | =                         |
| $J_{xy}$                                    | =                        | $	au_{s}$                      | =                                 | $r_{o}$                  | =                         |
| $J_{u}$                                     | =                        | $\boldsymbol{\tau}_{\text{d}}$ | =                                 | $J_p$                    | =                         |
| $J_{v}$                                     | =                        | $\sigma_{\text{ls}}$           | =                                 | •                        |                           |
|                                             |                          |                                |                                   |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                  |                                  |                 | 3                      |    |                  |                           |
|----------------------------------|----------------------------------|-----------------|------------------------|----|------------------|---------------------------|
| N                                | = 38900 N                        | $M_{x}$         | = 375000 Nmm           | Е  | Ē                | $= 200000 \text{ N/mm}^2$ |
| $T_v$                            | = 1570 N                         | $\sigma_{a}^{}$ | $= 240 \text{ N/mm}^2$ | C  | 3                | = 73000 N/mm <sup>2</sup> |
| $x_G^{'}$                        | =                                | α               | =                      | ď  | Σ <sub>IIs</sub> | =                         |
| $y_G$                            | =                                | $J_t$           | =                      | ď  | Σ <sub>Id</sub>  | =                         |
| $u_o$                            | =                                | σ(N)            | =                      | ď  | Σ <sub>IId</sub> | =                         |
| $V_{o}$                          | =                                | $\sigma(M_x)$   | =                      | ď  | tresca           | =                         |
| A <sub>.</sub>                   | =                                | $\tau(T_{yc})$  | =                      | ď  | mises            | =                         |
| $S_u$                            | =                                | $\tau(T_{yb})$  | d=                     | ď  | st.ven           | =                         |
| S <sub>u</sub><br>C <sub>w</sub> |                                  | $\tau(T_y)_s$   |                        | θ  | ) <sub>t</sub>   | =                         |
| $J_{xx}$                         | =                                | $\tau(T_y)_d$   | =                      | r, | u                | =                         |
| $J_{yy}$                         | =                                | σ               | =                      | r, | V                | =                         |
| $J_{xy}$                         | =                                | $	au_{s}$       | =                      | r, | 0                | =                         |
| $J_{u}^{'}$                      | =                                | $	au_{d}$       | =                      | J  | l <sub>p</sub>   | =                         |
| $J_v$                            | =                                | $\sigma_{ls}$   | =                      |    | •                |                           |
| @ A -I                           | lalfa Zavalani Danai Dalifannian |                 | 00 05 40               |    |                  |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|                                                    | i aconanyo, rappicacina | ic ran               | idamento dene teno, tangenzian. |                          | _                         |
|----------------------------------------------------|-------------------------|----------------------|---------------------------------|--------------------------|---------------------------|
| Ν                                                  | = 29900 N               | $M_{x}$              | = 312000 Nmm                    | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                              | = 1540 N                | $\sigma_a$           | $= 240 \text{ N/mm}^2$          | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                              | =                       | α                    | =                               | $\sigma_{IIs}$           | =                         |
| $y_{G}$                                            | =                       | $J_t$                | =                               | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                              | =                       | σ(N)                 | =                               | $\sigma_{IId}$           | =                         |
| $V_{o}$                                            | =                       | $\sigma(M_x)$        |                                 | $\sigma_{\text{tresca}}$ | =                         |
| A <sub>*</sub>                                     | =                       | $\tau(T_{yc})$       | ) =                             | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                              | =                       |                      | ) <sub>d</sub> =                | $\sigma_{\text{st.ven}}$ | =                         |
| $egin{array}{c} A \\ S_u^\star \\ C_w \end{array}$ | =                       | $\tau(T_{y})_{\xi}$  | <sub>s</sub> =                  | $\theta_{t}$             | =                         |
| $J_xx$                                             | =                       | $\tau(T_y)_{\alpha}$ | <sub>d</sub> =                  | $r_u$                    | =                         |
| $J_{yy}$                                           | =                       | σ                    | =                               | $r_v$                    | =                         |
| $J_{xy}$                                           | =                       | $	au_{s}$            | =                               | $r_{o}$                  | =                         |
| $\mathbf{J}_{\mathbf{u}}^{'}$                      | =                       | $	au_{d}$            | =                               | $J_p$                    | =                         |
| $J_{v}$                                            | =                       | $\sigma_{\text{ls}}$ | =                               | •                        |                           |
|                                                    |                         |                      |                                 |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

|                                                        | i acollalivo. iap | presentare rain    | uarriento delle teris, tai | igeriziali.        |                           |
|--------------------------------------------------------|-------------------|--------------------|----------------------------|--------------------|---------------------------|
| Ν                                                      | = 41300 N         | $M_{x}$            | = 299000 Nmm               | E                  | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                                  | = 1020 N          | $\hat{\sigma_{a}}$ | $= 240 \text{ N/mm}^2$     | G                  | $= 73000 \text{ N/mm}^2$  |
| $x_G$                                                  | =                 | α                  | =                          | $\sigma_{\sf IIs}$ | =                         |
| $y_G$                                                  | =                 | $J_t$              | =                          | $\sigma_{\sf Id}$  | =                         |
| $u_o$                                                  | =                 | - ( /              | =                          | $\sigma_{\sf IId}$ | =                         |
| $V_{o}$                                                | =                 | $\sigma(M_x)$      |                            | $\sigma_{tres}$    | <sub>ca</sub> =           |
| A                                                      | =                 | $\tau(T_{yc})$     | =                          | $\sigma_{mise}$    |                           |
| $S_u$                                                  | =                 | $\tau(T_{yb})$     |                            | $\sigma_{st.ve}$   | en =                      |
| $\begin{array}{c} A \\ S_u^{\star} \\ C_w \end{array}$ | =                 | $\tau(T_y)_s$      | =                          | $\Theta_{t}$       | =                         |
| $J_{xx}$                                               | =                 | $\tau(T_y)_d$      | =                          | r <sub>u</sub>     | =                         |
| $J_{yy}$                                               | =                 | σ                  | =                          | $r_{v}$            | =                         |
| $J_{xy}$                                               | =                 | $	au_{s}$          | =                          | $r_{o}$            | =                         |
| $J_{u}$                                                | =                 | $	au_{\sf d}$      | =                          | $J_{p}$            | =                         |
| $J_{v}$                                                | =                 | $\sigma_{ls}$      | =                          |                    |                           |
|                                                        |                   |                    |                            |                    |                           |



Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

|                                       | i acoitative | J. Tappieseniaie | ranu                    | annemo dene ter         | is. lariyeriziali. |                          | _                         |
|---------------------------------------|--------------|------------------|-------------------------|-------------------------|--------------------|--------------------------|---------------------------|
| Ν                                     | = 43900 N    | N                | / <sub>x</sub> =        | = 264000 Nmm            |                    | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                 | = 785 N      |                  |                         | = 240 N/mm <sup>2</sup> |                    | G                        | = 73000 N/mm <sup>2</sup> |
| $X_G$                                 | =            | 0                | ι =                     | =                       |                    | $\sigma_{\text{IIs}}$    | =                         |
| $y_{G}$                               | =            | J                | t =                     | =                       |                    | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                 | =            |                  | 5(N) =                  |                         |                    | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                               | =            |                  | $_{\rm x}({\rm M_x}) =$ |                         |                    | $\sigma_{\text{tresca}}$ | =                         |
| A                                     | =            | τ                | $(T_{yc}) =$            | =                       |                    | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                 | =            |                  | $(T_{yb})_{d}$          |                         |                    | $\sigma_{\text{st.ven}}$ | =                         |
| $\mathbf{S}_{u}^{x}$ $\mathbf{C}_{w}$ | =            | τ                | $(T_y)_s =$             | =                       |                    | $\theta_{t}$             | =                         |
| $J_{xx}$                              | =            | τ                | $(T_y)_d =$             | =                       |                    | $r_u$                    | =                         |
| $J_{yy}$                              | =            | σ                |                         | =                       |                    | $r_{v}$                  | =                         |
| $J_{xy}$                              | =            | τ                | s =                     | =                       |                    | $r_{o}$                  | =                         |
| $J_{u}$                               | =            | τ                | d =                     | =                       |                    | $J_p$                    | =                         |
| $J_{v}$                               | =            | σ                | is =                    | =                       |                    | •                        |                           |
|                                       |              |                  |                         |                         |                    |                          |                           |



Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

|                                       | i acollative | J. Tappieseniaie | lallu                   | annemio delle ten       | s. langenzian. |                          | _                         |
|---------------------------------------|--------------|------------------|-------------------------|-------------------------|----------------|--------------------------|---------------------------|
| Ν                                     | = 34600 N    | N                | / <sub>x</sub> =        | = 224000 Nmm            |                | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_y$                                 | = 810 N      |                  |                         | = 240 N/mm <sup>2</sup> |                | G                        | = 73000 N/mm <sup>2</sup> |
| $X_G$                                 | =            | O                | ι =                     | =                       |                | $\sigma_{\text{IIs}}$    | =                         |
| $y_{G}$                               | =            | J                | t =                     | =                       |                | $\sigma_{\text{ld}}$     | =                         |
| $u_o$                                 | =            |                  | 5(N) =                  |                         |                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                               | =            |                  | $_{\rm s}({\rm M_x}) =$ |                         |                | $\sigma_{\text{tresca}}$ | =                         |
| A                                     | =            | τ                | $(T_{yc}) =$            | =                       |                | $\sigma_{\text{mises}}$  |                           |
| $S_u$                                 | =            |                  | $(T_{yb})_{d}$ =        |                         |                | $\sigma_{\text{st.ven}}$ | =                         |
| $\mathbf{S}_{u}^{x}$ $\mathbf{C}_{w}$ | =            | τ                | $(T_y)_s =$             | =                       |                | $\theta_{t}$             | =                         |
| $J_{xx}$                              | =            | τ                | $(T_y)_d =$             | =                       |                | $r_u$                    | =                         |
| $J_{yy}$                              | =            | σ                |                         |                         |                | $r_v$                    | =                         |
| $J_{xy}$                              |              | $	au_{\cdot}$    | s =                     | =                       |                | $r_{o}$                  | =                         |
| $J_{u}$                               | =            | τ                | d =                     | =                       |                | $J_p$                    | =                         |
| $J_{v}$                               | =            | σ                | s <sub>ls</sub> =       | =                       |                | •                        |                           |
|                                       |              |                  |                         |                         |                |                          |                           |



Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν                                            | = 37100 N                         | M <sub>x</sub> | = 134000 Nmm            | Е                        | $= 200000 \text{ N/mm}^2$ |
|----------------------------------------------|-----------------------------------|----------------|-------------------------|--------------------------|---------------------------|
| T <sub>y</sub>                               | = 824 N                           | $\sigma_{a}$   | = 240 N/mm <sup>2</sup> | G                        | = 73000 N/mm <sup>2</sup> |
| $x_{G}^{'}$                                  | =                                 | α              | =                       | $\sigma_{\text{lls}}$    | =                         |
| $y_G$                                        | =                                 | $J_t$          | =                       | $\sigma_{ld}$            | =                         |
| $u_o$                                        | =                                 | σ(N)           | =                       | $\sigma_{IId}$           | =                         |
| V <sub>o</sub>                               | =                                 | $\sigma(M_x)$  | =                       | $\sigma_{tresca}$        | =                         |
| A.                                           | =                                 | $\tau(T_{vc})$ | =                       | $\sigma_{\text{mises}}$  |                           |
| $S_{u}^{}$                                   | =                                 | $\tau(T_{yb})$ | d=                      | $\sigma_{\text{st.ven}}$ |                           |
| $egin{array}{c} A \ S_u^* \ C_w \end{array}$ | =                                 | $\tau(T_y)_s$  |                         | $\theta_{t}$             | =                         |
| $J_{xx}$                                     | =                                 | $\tau(T_y)_d$  | =                       | $r_u$                    | =                         |
| $J_{yy}$                                     | =                                 | σ΄             | =                       | $r_v$                    | =                         |
| $J_{xy}$                                     | =                                 | $	au_{s}$      | =                       | $r_{o}$                  | =                         |
| $J_{u}^{'}$                                  | =                                 | $	au_{\sf d}$  | =                       | $J_p$                    | =                         |
| $J_{v}^{-}$                                  | =                                 | $\sigma_{ls}$  | =                       |                          |                           |
|                                              | lalfa Zavalani Dassi, Dalitasnias |                | no voro 02 05 12        |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Ε
                                                                                                                                                                 = 200000 \text{ N/mm}^2
Ν
           = 43100 N
                                                                          M_{\star}
                                                                                      = 328000 Nmm
                                                                                      = 240 \text{ N/mm}^2
                                                                                                                                                                 = 73000 \text{ N/mm}^2
           = 881 N
                                                                                                                                                     G
                                                                          α
                                                                                                                                                     \sigma_{\text{lls}}
y_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{ld}}
                                                                                                                                                                 =
                                                                          \sigma(N) =
                                                                                                                                                     \sigma_{\text{IId}}
                                                                          \sigma(M_x) =
                                                                                                                                                     \sigma_{tresca} =
                                                                          \tau(T_{yc}) =
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                          \tau(T_{vb})_d =
                                                                                                                                                     \sigma_{\text{st.ven}} =
                                                                          \tau(T_{v})_{s} =
                                                                          \tau(T_y)_d =
            =
                                                                          \sigma_{\text{ls}}
```



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|   |                                             |                               |                    | 0                      |                          | _                         |
|---|---------------------------------------------|-------------------------------|--------------------|------------------------|--------------------------|---------------------------|
| 1 | <b>V</b> =                                  | = 33900 N                     | $M_x$              | = 287000 Nmm           | Ε                        | $= 200000 \text{ N/mm}^2$ |
| 7 | Γ <sub>y</sub> =                            | = 909 N                       | $\sigma_a$         | $= 240 \text{ N/mm}^2$ | G                        | $= 73000 \text{ N/mm}^2$  |
|   | -                                           | =                             | α                  | =                      | $\sigma_{\sf IIs}$       | =                         |
|   |                                             | =                             | $J_t$              | =                      | $\sigma_{\text{Id}}$     | =                         |
|   |                                             | =                             | σ(N)               | =                      | $\sigma_{IId}$           | =                         |
| ١ | / <sub>o</sub> =                            | =                             | $\sigma(M_x)$      | =                      | $\sigma_{ m tresca}$     | <sub>a</sub> =            |
| l | ۹ =                                         | =                             | $\tau(T_{vc})$     | =                      | $\sigma_{mises}$         |                           |
| 5 | S <sub>u</sub> =                            | =                             | $\tau(T_{yb})_{c}$ | d=                     | $\sigma_{\text{st.ver}}$ | , =                       |
| ( | A =<br>S <sub>u</sub> =<br>C <sub>w</sub> = | =                             | $\tau(T_y)_s$      | =                      | $\theta_{t}$             | =                         |
|   |                                             | =                             | $\tau(T_y)_d$      | =                      | $r_u$                    | =                         |
|   | 1                                           | =                             | σ                  | =                      | $r_v$                    | =                         |
|   |                                             | =                             | $	au_{s}$          | =                      | $r_{o}$                  | =                         |
|   |                                             |                               | $\tau_{\sf d}$     | =                      | $J_p$                    | =                         |
|   | 1                                           | =                             | $\sigma_{ls}$      | =                      | r                        |                           |
| , |                                             | Ka Zavalani Danai Dalitannian |                    | 00 05 40               |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Ε
                                                                                                                                                           = 200000 \text{ N/mm}^2
Ν
           = 36300 N
                                                                       M_{\star}
                                                                                   = 181000 Nmm
                                                                                   = 240 \text{ N/mm}^2
                                                                                                                                                           = 73000 \text{ N/mm}^2
           = 925 N
                                                                                                                                               G
                                                                       α
                                                                                                                                               \sigma_{\text{lls}}
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{ld}}
                                                                                                                                                           =
                                                                       \sigma(N) =
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \sigma(M_x) =
                                                                                                                                               \sigma_{tresca} =
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                       \tau(T_{yb})_d =
                                                                                                                                               \sigma_{\text{st.ven}} =
                                                                       \tau(T_{v})_{s} =
                                                                        \tau(T_y)_d =
           =
```



Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν                                     | = 38400 N           | $M_x = 148000 \text{ Nmm}$             | Е                        | $= 200000 \text{ N/mm}^2$ |
|---------------------------------------|---------------------|----------------------------------------|--------------------------|---------------------------|
| T <sub>y</sub>                        | = 697 N             | Х 2                                    |                          | = 73000 N/mm <sup>2</sup> |
| $x_{G}^{'}$                           | =                   |                                        | $\sigma_{\sf lls}$       | =                         |
| $y_{G}$                               | =                   |                                        | $\sigma_{\sf ld}$        | =                         |
| $u_{o}$                               | =                   | (* *)                                  | $\sigma_{IId}$           | =                         |
| Vo                                    | =                   | (* * )                                 | $\sigma_{tresca}$        | =                         |
| A.                                    | =                   | ·— `                                   | $\sigma_{\text{mises}}$  |                           |
| Su                                    | =                   |                                        | $\sigma_{\text{st.ven}}$ |                           |
| A<br>S <sub>u</sub><br>C <sub>w</sub> | , =                 |                                        | $\theta_{t}$             | =                         |
| $J_{xx}$                              |                     | <b></b> `.                             | r <sub>u</sub>           | =                         |
| $J_{yy}$                              |                     | σ =                                    | $r_{v}$                  | =                         |
| $J_{xy}$                              |                     | $\tau_s$ =                             | $r_{o}$                  | =                         |
| $J_{u}$                               | =                   | $\tau_{d}$ =                           | $J_p$                    | =                         |
| $J_v$                                 | =                   | $\sigma_{ls}$ =                        | •                        |                           |
| <b>@</b>                              | Adolfo Zavoloni Doo | oi Dalitagnica di Milana yera 00 05 10 |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

|             |                  | 20000 N |                    | 05000          | 0 N              | J | _                        | 2                         |
|-------------|------------------|---------|--------------------|----------------|------------------|---|--------------------------|---------------------------|
| Ν           | = 3              | 33300 N | $M_{x}$            | = 35600        | 0 Nmm            |   | E                        | $= 200000 \text{ N/mm}^2$ |
| Т           | , = 1            |         | $\sigma_{a}$       | = 240  N/      | /mm <sup>2</sup> |   | G                        | = 73000 N/mm <sup>2</sup> |
| X           |                  |         | α                  | =              |                  |   | $\sigma_{IIs}$           | =                         |
| У           | <sub>G</sub> =   |         | $J_t$              | =              |                  |   | $\sigma_{Id}$            | =                         |
| u           | o =              |         | σ(N)               | =              |                  |   | $\sigma_{IId}$           | =                         |
| V           | o =              |         | $\sigma(M_{x})$    | =              |                  |   | $\sigma_{\text{tresca}}$ | =                         |
| Α           | . =              |         | $\tau(T_{yc})$     | =              |                  |   | $\sigma_{\text{mises}}$  | =                         |
| S           | _ =              |         | $\tau(T_{yb})_{c}$ | <sub>d</sub> = |                  |   | $\sigma_{\text{st.ven}}$ |                           |
| A<br>S<br>C | ; <sub>w</sub> = |         | $\tau(T_{v})_{s}$  | =              |                  |   | $\theta_{t}$             | =                         |
| J           |                  |         | $\tau(T_y)_d$      | =              |                  |   | $r_u$                    | =                         |
| J           | <sub>yy</sub> =  |         | σ                  | =              |                  |   | $r_{v}$                  | =                         |
| J           |                  |         | $	au_{s}$          | =              |                  |   | $r_o$                    | =                         |
| J           |                  |         | $	au_{d}$          | =              |                  |   | $J_p$                    | =                         |
| J,          | , =              |         | $\sigma_{ls}$      | =              |                  |   |                          |                           |
| -           |                  |         | 11 8 411           |                | 00.05.40         |   |                          |                           |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

|   |                         |                                |                    |                        | _ |                          | _                         |
|---|-------------------------|--------------------------------|--------------------|------------------------|---|--------------------------|---------------------------|
| 1 | =  ا                    |                                | $M_x$              | = 232000 Nmm           |   | E                        | $= 200000 \text{ N/mm}^2$ |
| 7 | Γ <sub>y</sub> =        |                                | $\sigma_a$         | $= 240 \text{ N/mm}^2$ |   | G                        | = 73000 N/mm <sup>2</sup> |
|   |                         | =                              | α                  | =                      |   | $\sigma_{IIs}$           | =                         |
|   |                         | =                              | $J_t$              | =                      |   | $\sigma_{\text{ld}}$     | =                         |
|   |                         |                                | σ(N)               | =                      |   | $\sigma_{\text{IId}}$    | =                         |
| ١ | / <sub>o</sub> =        | =                              | $\sigma(M_{x})$    | =                      |   | $\sigma_{\text{tresca}}$ | =                         |
| l | $A = S_u^* = C_w = C_w$ | =                              | $\tau(T_{vc})$     | =                      |   | $\sigma_{\text{mises}}$  |                           |
| 5 | S <sub>u</sub> =        | =                              | $\tau(T_{yb})_{c}$ | d=                     |   | $\sigma_{\text{st.ven}}$ | =                         |
| ( | C <sub>w</sub> =        | =                              | $\tau(T_y)_s$      | =                      |   | $\theta_{t}$             | =                         |
|   | J <sub>xx</sub> =       | =                              | $\tau(T_y)_d$      | =                      |   | $r_u$                    | =                         |
|   | 1                       |                                | σ΄                 | =                      |   | $r_v$                    | =                         |
|   |                         | =                              | $\tau_{s}$         | =                      |   | $r_{o}$                  | =                         |
|   | J <sub>u</sub> =        | =                              | $\tau_{\text{d}}$  | =                      |   | $J_p$                    | =                         |
|   | J <sub>v</sub> =        |                                | $\sigma_{ls}$      | =                      |   | •                        |                           |
| , | ∧ -1 - 1                | Ifa Zavalani Danai Dalitannian |                    | 00 05 40               |   |                          |                           |



Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

|                                                             | racollalivo, rappresenta | ieran                | damento delle tens. tangenziali. |                          |                           |
|-------------------------------------------------------------|--------------------------|----------------------|----------------------------------|--------------------------|---------------------------|
| Ν                                                           | = 37500 N                | $M_x$                | = 198000 Nmm                     | E                        | $= 200000 \text{ N/mm}^2$ |
| $T_{y}$                                                     | = 790 N                  | $\sigma_a$           | $= 240 \text{ N/mm}^2$           | G                        | = 73000 N/mm <sup>2</sup> |
| $x_G$                                                       | =                        | α                    | =                                | $\sigma_{\text{IIs}}$    | =                         |
| $y_G$                                                       | =                        | $J_t$                | =                                | $\sigma_{\text{Id}}$     | =                         |
| $u_o$                                                       | =                        | - ( /                | =                                | $\sigma_{\text{IId}}$    | =                         |
| $V_{o}$                                                     | =                        | $\sigma(M_x)$        |                                  | $\sigma_{\text{tresca}}$ | =                         |
| $egin{array}{c} A \\ S_{u}^{^{\star}} \\ C_{w} \end{array}$ | =                        | $\tau(T_{yc})$       |                                  | $\sigma_{\text{mises}}$  |                           |
| $S_{u}^{n}$                                                 | =                        | <i>(</i>             |                                  | $\sigma_{\text{st.ven}}$ |                           |
| $C_{w}$                                                     | =                        | $\tau(T_y)_s$        |                                  | $\theta_{t}$             | =                         |
| $J_xx$                                                      | =                        | $\tau(T_y)_c$        | <sub>i</sub> =                   | $r_u$                    | =                         |
| $J_{yy}$                                                    | =                        | σ                    | =                                | $r_v$                    | =                         |
| $J_{xy}$                                                    | =                        | $	au_{s}$            | =                                | $r_{o}$                  | =                         |
| $J_{u}$                                                     | =                        | $\tau_{\text{d}}$    | =                                | $J_p$                    | =                         |
| $J_{v}$                                                     | =                        | $\sigma_{\text{ls}}$ | =                                | •                        |                           |
|                                                             |                          |                      |                                  |                          |                           |



Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| 1 | <b>V</b> :                                  | = 29400 N                       | $M_{x}$                | = 161000 Nmm           | E                        | $= 200000 \text{ N/mm}^2$ |
|---|---------------------------------------------|---------------------------------|------------------------|------------------------|--------------------------|---------------------------|
| 7 | Γ <sub>y</sub> :                            | = 804 N                         | $\sigma_{a}^{\hat{a}}$ | $= 240 \text{ N/mm}^2$ | G                        | = 73000 N/mm <sup>2</sup> |
|   |                                             | =                               | α                      | =                      | $\sigma_{IIs}$           | =                         |
|   |                                             | =                               | $J_t$                  | =                      | $\sigma_{\text{ld}}$     | =                         |
|   |                                             | =                               | σ(N)                   | =                      | $\sigma_{IId}$           | =                         |
| ١ | / <sub>o</sub> :                            | =                               | $\sigma(M_x)$          | =                      | $\sigma_{\text{tresca}}$ | =                         |
| l | ٠ :                                         | =                               | $\tau(T_{vc})$         | =                      | $\sigma_{\text{mises}}$  | =                         |
| 5 | S <sub>u</sub> :                            | =                               | $\tau(T_{yb})_{c}$     | d=                     | $\sigma_{\text{st.ven}}$ | =                         |
| ( | Α :<br>S <sub>u</sub> :<br>C <sub>w</sub> : | =                               | $\tau(T_y)_s$          | =                      | $\theta_{t}$             | =                         |
|   |                                             | =                               | $\tau(T_y)_d$          | =                      | $r_u$                    | =                         |
|   | 1                                           | =                               | σ΄                     | =                      | $r_v$                    | =                         |
|   |                                             | =                               | $	au_{s}$              | =                      | $r_{o}$                  | =                         |
|   |                                             |                                 | $\tau_{\sf d}$         | =                      | $J_p$                    | =                         |
|   | ı İ                                         | =                               | $\sigma_{ls}$          | =                      |                          |                           |
| , |                                             | olfo Zavolovi Donoi Dolitovnica |                        | 00 05 40               |                          |                           |