Mobility Investigation for City of Toronto

Model Prediction for Collisions Numbers at Intersections, Based on Traffic Volume Factors

Christen (Yuchen) Ye

Introduction & Research Question

Client: City of Toronto

Case Description: analyze available data from 2014 to 2021 so that they can understand the mobility in the metropolitan area.

Research Question:

Which traffic-volume-related factors exert a significant effect on collision number in the intersections?

We expect that the expected collision number in each intersection will depend linearly on traffic-volume factors. The predictive model includes six variables of interest: total volumes observed at specific intersections of cars, trucks, buses, pedestrians, cyclists, and others.

^{*}https://www.tariolaw.com/determining-fault-in-intersection-car-accidents/

Data Analysis & Data Visualization

Pre-Analysis Data Cleaning:

- Traffic Collisions 4326. csv (Collision Table):
- 1) Split 'geometry' (offset to nearest intersection) and create new columns 'lng' and 'lag'
- 2) Round 'Ing' and 'lat' to 4 digits then drop missing or 0 value observations
- 3) Create 'location id column', by joining Collision Table with Reference Table

Dataset Size after Cleaning: 188194 unique observed collisions at intersections from 2014 to 2021

- raw-data-2010-2019.csv, raw-data-2020-2029.csv (Traffic Volume Table):
- 1) Concatenate the Traffic Volume table for 2010-2019 and 2020-2029, drop data from 2010 to 2013 and 2022
- 2) Keep rows that 'centreline_type' =2, this corresponds with an intersection
- 3) Round 'Ing' and 'lat' to 4 digits

Dataset Size after Cleaning: 202508 unique observations for traffic volume at intersections from 2014 to 2021

- location.csv (Reference Table):
- 1) Keep rows that 'centreline_type' =2, this corresponds with an intersection
- 2) Round 'Ing' and 'lat' to 4 digits

Dataset Size after Cleaning: 5570 unique location_id for intersections

Data Analysis & Data Visualization

Exploring the distribution of traffic-volume-related factors:

Conclusion: Car and Pedestrian are main resources of traffic volume at intersections, taking about 93% in total. Other is the least important resource of traffic volume at intersections.

Data Analysis & Data Visualization

Exploring if there exists a linear relationship between the number of collisions and traffic volume factors at intersections:

Conclusion: There seems to exist a linear relationship between the response variable of collision number and the selected variables, namely car, truck, bus and cyclist volumes at intersections. In addition, we can tell that a log transformation on pedestrian and other volume might be helpful in building a predictive model.

Predictive Model & Model Adjustment

Full Model:

Table 1: Main Results

	$Dependent\ variable:$
	Collisions
car_total	0.003***
	(0.0002)
truck_total	-0.009***
	(0.003)
bus_total	0.008
	(0.007)
pedestrian_total	0.00001
	(0.0002)
cyclist_total	-0.020***
	(0.002)
other_total	-0.012
	(0.168)
Constant	27.658***
	(3.057)
Observations	1,877
\mathbb{R}^2	0.328
Adjusted R ²	0.326
Residual Std. Error	105.003 (df = 1870)
F Statistic	$152.338^{***} (df = 6; 1870)$
Note:	*p<0.1; **p<0.05; ***p<0.0

Predictive Model & Model Adjustment

Adjusted Model (Drop other_total, take log 10 of pedestrian_total and bus_total):

 $Collision_Number = -114.1 + 0.002644 * car_total - 0.00679 * truck_total + 8.79 * log(bus_total) + 48.02 * log(pedestrian_total) - 0.026 * cyclist_total + 8.79 * log(bus_total) + 48.02 * log(pedestrian_total) - 0.026 * cyclist_total + 8.79 * log(bus_total) + 48.02 * log(pedestrian_total) - 0.026 * cyclist_total + 8.79 * log(bus_total) + 48.02 * log(pedestrian_total) - 0.026 * cyclist_total + 8.79 * log(bus_total) + 48.02 * log(pedestrian_total) - 0.026 * cyclist_total + 8.79 * log(bus_total) + 48.02 * log(pedestrian_total) - 0.026 * cyclist_total + 8.79 * log(bus_total) + 48.02 * log(pedestrian_total) - 0.026 * cyclist_total + 8.79 * log(bus_total) + 48.02 * log(pedestrian_total) - 0.026 * cyclist_total + 8.79 * log(bus_total) + 48.02 * log(pedestrian_total) - 0.026 * cyclist_total + 8.79 * log(bus_total) + 48.02 * log(bus_total) +$

Table 1:	
	Dependent variable:
	Collision_Number_at_Each_Intersection
car_total	0.003***
	(0.0002)
truck_total	-0.007**
	(0.003)
log_bus_total	8.790**
	(4.010)
log_pedestrian_total	48.018***
	(3.787)
cyclist_total	-0.026***
	(0.002)
Constant	-114.075***
	(11.286)
Observations	1,877
\mathbb{R}^2	0.390
Adjusted R ²	0.388
Residual Std. Error	100.074 (df = 1871)
F Statistic	$238.803^{***} (df = 5; 1871)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Conclusion & Discussion

Suggestions for Limitations:

- Include more characteristics for the intersections to avoid omitted variables, like road width
- Assign location id to the Collisions table, making future data analysis easier
- Add the type of vehicle involved in collisions into the Collisions data, for future conditional analysis
- Split the 'geometry' column in Collision table and create new columns 'lng' and 'lag', increasing readability

Appendix & References

Dataset link:

Traffic Volumes at Intersections for All Modes:

https://open.toronto.ca/dataset/traffic-volumes-at-intersections-for-all-modes/

Police Annual Statistical Report - Traffic Collisions:

https://open.toronto.ca/dataset/police-annual-statistical-report-traffic-collisions/

Code (Python):

https://drive.google.com/file/d/18SkvNvUtpjBMfInhYxqYLYYHfFq6TT4t/view?usp=sharing

Code (R):

https://drive.google.com/file/d/1cuWKQdzQOYkd4WpimoAgxQd8AljC1wyz/view?usp=sharing

