Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 21

Esercizi svolti

Es. 1. Sia dato il seguente automa di stato iniziale S0:

Lo si minimizzi. Dall'automa minimo, si ricavi la rete sequenziale corrispondente dove la parte combinatoria è realizzata usando un PLA e la parte sequenziale con FF di tipo JK.

SOLUZIONE:

La tabella della minimizzazione è:

	SO	S1	S2	S 3	S4	S5
S 6	3,4	X	X	1,5	1,5 3,4	X
S5	X		X	X	X	
S4	1,5	X	X	4,6		
S 3	1,5 4,6	X	X			
S2	X	X		_		
S1	X					

Si noti che S7 è irraggiungibile da S0 e pertanto può essere automaticamente eliminato. Gli altri stati sono raggruppabili nella maniera seguente $T0 = \{S0, S3, S4, S6\}$, $T1 = \{S1, S5\}$, $T2 = \{S2\}$, dando vita all'automa

	0	1
T0	T1 / 0	T0 / 0
T1	T1 / 0	T2 / 1
T2	T0 / 1	T0 / 0

L'automa origina la seguente tabella degli stati futuri (con la codifica Q1Q0 = 00 corrispondente a T0, Q1Q0 = 01 corrisponde a T1 e Q1Q0 = 10 corrisponde a T2):

X	Q1	Q0	Q1	Q0 (t+1)	Z	J1	K1	J0	K0
0	0	0	0	1	0	0	-	1	-
0	0	1	0	1	0	0	-	-	0
0	1	0	0	0	1	-	1	0	-
0	1	1	-	-	-	-	-	-	-
1	0	0	0	0	0	0	-	0	-
1	0	1	1	0	1	1	-	-	1
1	1	0	0	0	0	-	1	0	-
1	1	1	-	-	-	-	-	-	-

Con la mappe di Karnaugh si ottengono le espressioni minime:

$$Z = \underline{x} Q1 + x Q0$$

$$J1 = x Q0$$

$$K1 = 1$$

$$J0 = \underline{x} \, \underline{Q1}$$

$$K0 = x$$

da cui il circuito richiesto:

Es.2. Si progetti un circuito che, presi in input due stringhe binarie, dà in output 1 se e solo se la somma dei valori binari associati alle due stringhe ricevuti fino a quel momento è un multiplo di 4. Si assuma che la prima cifra ricevuta sia la cifra più significativa del valore binario associato alla stringa stessa. Per esempio

Input: 100100... 100010... **Ouput:** 011000...

Si segua lo schema di sintesi visto a lezione, inclusa la minimizzazione dell'automa e la semplificazione delle espressioni booleane ottenute dalle mappe di Karnaugh tramite porte NAND, NOR, XOR e NXOR (se possibile). Si usino flip-flop di tipo JK e non si utilizzi alcun modulo di somma predefinito.

SOLUZIONE:

Vale la pena realizzare l'automa associando agli stati gli ultimi due bit della rappresentazione binaria della somma dei due valori di input ricevuti fino a quel momento. Pertanto si avrà

In rappresentazione tabellare l'automa è

	00	01	10	11
S0	S0/1	S1/0	S1/0	S2/0
S1	S2/0	S3/0	S3/0	S0/1
S2	S0/1	S1/0	S1/0	S2/0
S 3	S2/0	S3/0	S3/0	S0/1

Chiaramente l'automa è minimizzabile in

	00	01	10	11
T0	T0/1	T1/0	T1/0	T0/0
T1	T0/0	T1/0	T1/0	T0/1

La tabella degli stati futuri è

X	y	Q(t)	Q(t+1)	Z	J K
0	0	0	0	1	0 -
0	0	1	0	0	- 1
0	1	0	1	0	1 -
0	1	1	1	0	- 0
1	0	0	1	0	1 -
1	0	1	1	0	- 0
1	1	0	0	0	0 -
1	1	1	0	1	- 1

Usando le mappe di Karnaugh si ottiene

$$z = xyQ + xyQ$$

$$J = \underline{x}y + \underline{x}\underline{y}$$

$$K = xy + xy$$

Le ultime due espressioni possono essere scritte come

$$J = x \oplus y$$

$$K = x \otimes y$$

Da esse si ricava facilmente il circuito risultante.

Es. 3. Si progetti un automa che, presa in input una stringa di bit, dà in output 1 se e solo se il numero di uni ricevuti fino a quel momento è un multiplo di 3. Si sintetizzi il circuito modellante tale comportamento secondo lo schema formale visto a lezione, usando flip flop di tipo T. Modificare infine il circuito ottenuto dando vita ad un circuito che usi solo flip flop di tipo JK (N.B.: non è richiesta una nuova procedura di sintesi!!)

SOLUZIONE:

Anzitutto un numero è multiplo di 3 se è del tipo $3 \cdot k$ dove k è un numero intero. Quindi i multipli di 3 sono: 0, 3, 6, 9, 12, ...

L'automa richiesto deve vedere se, detto *n* il numero di 1 ricevuti fino a quel momento, si ha:

- $n = 3 \cdot k$
- $n = 3 \cdot k + 1$
- $n = 3 \cdot k + 2$

e solo nel primo caso deve dare in output 1. Associamo quindi la prima condizione allo stato S0, la seconda allo stato S1 e la terza allo stato S2. L'automa risultante è quindi

Si noti che l'automa è minimo e che poteva essere modellato bene anche con un automa di Moore (l'unico stato con output 1 è S0). Associamo lo stato S0 con la configurazione Q1 Q0 = S1 con S2 con S3 con S4 con

x Q1 Q0 (t)	Q1 Q0 (t+1)	z (t)	T1 T0 (t)
0 0 0	0 0	1	0 0
0 0 1	0 1	0	0 0
0 1 0	1 0	0	0 0
0 1 1		-	
1 0 0	0 1	0	0 1
1 0 1	1 0	0	1 1
1 1 0	0 0	1	1 0
1 1 1		-	

Usando le mappe di Karnaugh si ottiene:

$$z = x \overline{Q1} \overline{Q0} + x Q1$$
 $T0 = x \overline{Q1}$ $T1 = x (Q0 + Q1)$

Osservazione (non richiesta all'esame): si può ottenere la più compatta espressione Q0 ($x \oplus Q1$) per z mettendone entrambi i don't care a 0

Dalle EB si ottiene il seguente circuito

Per sostituire FF di tipo T con FF di tipo JK, basta notare che

Esercizi da svolgere

Es.1. Seguendo lo schema di sintesi, progettare e disegnare la rete sequenziale con flip-flop di tipo D in grado di riconoscere le sequenze 100 e 111

- a) con eventuali sovrapposizioni,
- b) senza sovrapposizioni.

Es. 2. Si progetti il circuito di controllo di un semaforo. Il funzionamento richiesto è il seguente:

- il semaforo deve tenere accesa per 10 secondi la luce verde
- poi deve spegnere la luce verde e tenere accesa per 6 secondi la luce gialla
- poi deve spegnere la luce gialla e tenere accesa per 16 secondi la luce rossa
- infine deve spegnere la luce rossa e ricominciare

Si assuma di avere a disposizione un clock con una frequenza di 1 Herz (cioè un impulso ogni secondo). Si utilizzino FF di tipo JK e non si dia per scontato l'utilizzo di alcun modulo predefinito (cioè, se si usa un qualche modulo visto a lezione è necessario mostrarne in dettaglio l'architettura, fino a porte logiche e FF).

Es. 3. Si minimizzi il seguente circuito

(Suggerimento: si minimizzi l'automa associato al circuito dato – ricavabile tramite un procedimento di analisi sequenziale – e dall'automa minimo si ricavi il circuito minimo).