

# UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA

Programa de Pós-Graduação em Ciência da Computação

#### **CMP196 – Ontology Engineering**

**Professora**: Mara Abel **Aluno**: Givanildo Santana

### 1 - Description of the student domain

### O que é um SPA?

No contexto de Exploração e Produção de campos de petróleo marítimos, um Sistema de Produção Antecipada (SPA), *Early Production System* (EPS) em inglês, é uma forma de redução de riscos do projeto do Sistema de Produção Definitiva (SPD). Comparativamente, o SPA requer menos investimento do que um SPD e reduz o tempo até o primeiro óleo, enquanto adquire dados dinâmicos do reservatório e de sua produtividade, em um período curto e experimental de produção [Valenchon et al. 2000].

O conceito de SPA foi empregado primeiramente no Mar do Norte em 1975, no campo de Argyll. O SPA consistia de uma embarcação de perfuração adaptada para ser utilizada como plataforma de produção, equipamentos submarinos no fundo do mar para o controle da extração, *risers* para a condução do petróleo e gás dos poços até a plataforma, e navio perto da plataforma de produção para o processamento primário e estocagem da produção. O SPA foi concebido para funcionar provisoriamente enquanto se organizava um sistema de produção definitivo, por meio de plataformas fixas, mas com as descobertas de reservas em águas mais profundas, o sistema flutuante passou a ser adotado de forma definitiva. O Brasil foi o segundo país a fazer uso desse tipo de sistema de produção, no Campo de Enchova, em 1977, e em diversas outras áreas, durante o desenvolvimento da produção da Bacia de Campos, no sudeste brasileiro [Morais 2013].

A técnica de realização de SPA foi aperfeiçoada ao longo da Exploração e do Desenvolvimento da Produção de diversos campos de petróleo no mundo e mais recentemente foi aplicada no Pólo Pré-Sal da Bacia de Santos, em águas ultra profundas brasileiras. Os SPA, juntamente com os Testes de Longa Duração (TLD), compõem o programa de otimização e aceleração do desenvolvimento dos sistemas de produção do Bloco de Libra, para redução dos riscos de projeto e antecipação do início da produção, enquanto o SPD é projetado, contratado, construído e implantado [Costa et al. 2019; Moczydlower et al. 2019]. Os componentes de um SPA são apresentados na Figura 1 e representados como um Mapa Conceitual na Figura 2.



Figura 1. Componentes de um SPA. Fonte: [Costa et al. 2019]



Figura 2. Mapa conceitual de um SPA.

## 2 - Ontology specification for the student domain

Neste exercício é construída uma ontologia O, consistindo de um conjunto de formulações lógicas, relacionadas aos conceitos de Poços, no contexto do SPA.

Vamos começar a formalização especificando que Produtor, Injetor, Observador e Observado são subconceitos de Poço, depois vamos definir os demais conceitos logicamente relacionados ao SPA, incluindo relações de simetria e disjunção:

```
O_1 = \{ Produtor(x) \rightarrow Poço(x), Injetor(x) \rightarrow Poço(x) \}
O_2 = \{ Observador(x) \rightarrow Poco(x), Observado(x) \rightarrow Poco(x) \}
O_3 = O_1 \cup \{ produz-injeta-fluidos(x, y) \rightarrow Poço(x) \land SPA(y) \}
O_4 = \{ \text{ Oleo(a)} \rightarrow \text{Fluido(z)}, \text{ Gás(b)} \rightarrow \text{Fluido(z)}, \text{ Água(c)} \rightarrow \text{Fluido(z)} \}
O_5 = O_4 \cup \{ \text{ amostra}(z, y) \rightarrow \text{Fluido}(z) \land \text{SPA}(y) \}
O_6 = SPA(y) \cup \{ \text{ \'e-operado}(y, d) \rightarrow SPA(y) \land UEP(d) \}
O_7 = SPA(y) \cup \{ fornece-dados(y, e) \rightarrow SPA(y) \land EVTE(e) \}
O_8 = SPA(y) \cup \{ dimensiona(y, f) \rightarrow SPA(y) \land SPD(f) \}
O_9 = SPA(y) \cup \{ est\'a-conectado(y, g) \rightarrow SPA(y) \land ArranjoSubmarino(g) \}
O_{10} = O_9 \cup \{ est\'a-conectado(y, g) \leftrightarrow est\'a-conectado(g, y) \}
O_{10} = O_1 \cup \{Produtor(x) \rightarrow \neg Injetor(x)\}\
O_{11} = O_2 \cup \{ Observador(x) \rightarrow \neg Observado(x) \}
O_{12} = SPA(y) \cup \{ avalia(y, h) \rightarrow SPA(y) \land Reservatório(h) \}
O_{13} = SPA(y) \cup \{ adquire-dados(y, i) \rightarrow SPA(y) \land Sensor(i) \}
```

|    | Concept                | Supply<br>identity<br>(O) | Carry<br>identity<br>(I) | Rigid (R) | Unicity<br>(U) | Relacion<br>al<br>Depende<br>nce (DR) | Existenti<br>al<br>Depende<br>nce (DE1) | Existenti<br>al<br>Depende<br>nce (DE2) | Insepara<br>ble Part<br>(IP) | Meta-type             |
|----|------------------------|---------------------------|--------------------------|-----------|----------------|---------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------|-----------------------|
| 1  | SPA                    | -                         | +                        | +         | +              | +                                     | +                                       | +                                       | +                            | Kind                  |
| 2  | SDP                    | -                         | +                        | +         | +              | +                                     | +                                       | +                                       | +                            | Kind                  |
| 3  | Sistema de<br>Produção | +                         | +                        | +         | -              | -                                     | -                                       | -                                       | -                            | Functional<br>Complex |
| 4  | Arranjo<br>Submarino   | +                         | +                        | +         | +              | -                                     | -                                       | -                                       | -                            | Functional<br>Complex |
| 5  | Reservatório           | +                         | +                        | +         | +              | -                                     | -                                       | -                                       | -                            | Quantity              |
| 6  | Sensor                 | +                         | +                        | +         | -              | -                                     | -                                       | -                                       | -                            | Functional<br>Complex |
| 7  | Sensor P&T             | -                         | +                        | +         | +              | +                                     | +                                       | -                                       | -                            | Kind                  |
| 8  | Poço                   | +                         | +                        | +         | +              | -                                     | -                                       | -                                       | -                            | Kind                  |
| 9  | Fluido                 | +                         | +                        | +         | ~              | -                                     | -                                       | -                                       | -                            | Quantity              |
| 10 | UEP                    | +                         | +                        | +         | +              | -                                     | -                                       | -                                       | -                            | Functional<br>Complex |

| 11 | EVTE | - | + | + | + | + | + | - | - | Kind |
|----|------|---|---|---|---|---|---|---|---|------|
|    |      |   |   |   |   |   |   |   |   |      |



Fuido is component-of Reservatório Poço is subquantity-of SPA UEP is element-of SPA



#### Referências

Costa, F. F., Caloba, G. M., Botsman, E., Kaercher, A. L. and Lia, L. S. (26 apr 2019). EWT Program - Enabling Optimization and Speed Up for Libra Block Production Systems Development in Ultra-Deepwater. In *Day 1 Mon, May 06, 2019*. OTC. https://onepetro.org/OTCONF/proceedings/19OTC/1-19OTC/Houston, Texas/181356.

Moczydlower, B., Figueiredo Junior, F. P. and Pizarro, J. O. S. (26 apr 2019). Libra Extended Well Test - An Innovative Approach to De-Risk a Complex Field Development. In *Day 1 Mon, May 06, 2019*. OTC. https://onepetro.org/OTCONF/proceedings/19OTC/1-19OTC/Houston, Texas/181538.

Morais, J. M. De (2013). Uma história tecnológica da PETROBRAS.

Valenchon, C. P., Anrès, S. J., Baudouin, B. F. and Biolley, F. M. (24 oct 2000). Early Production Systems (EPS) in Ultra Deep Water, a Way to Improve Reservoir Management and Field Economics. In *All Days*. SPE. https://onepetro.org/SPEEURO/proceedings/00EUROPEC/All-00EUROPEC/Paris, France/132630.