Flood Sensor Alert Simulation

Exercise in Functions and Parameter Passing

The Problem.

The city of Manila is no stranger to flooding. With its low-lying terrain and dense population, the city is prone to flash flooding, especially during the rainy season.

The city has launched a comprehensive flood management program to mitigate the risks and ensure public safety. One key component of this program is installing a network of flood sensors along Taft Avenue, a major thoroughfare that runs through the city's heart. These sensors detect the water level and transmit the data to a central system, using the traffic lights to indicate the flood depth.

Traffic lights Visual Alert

The system uses a combination of red, yellow, and red lights to indicate the flood depth. As mentioned, a corresponding set of light combinations is based on the sensor

depth. We shall represent a light switched on with a value of one(1) and zero(0) for off.

Example:

The red light is set to 1 (ON). The Red light is set to 0 (OFF)

<u>Sensor Data and Light Combination</u>

Sensor Reading	Red	Yellow	Green	Flood Depth
0				Zero (No Flood)
	OFF	OFF	OFF	
1				1 foot
	OFF	OFF	ON	
2				2 feet
	OFF	ON	OFF	
3				3 feet
	OFF	ON	ON	

4				4 feet
	ОИ	OFF	OFF	
5				5 feet
	ОИ	OFF	ON	
6				6 feet
	ON	ON	OFF	
7				7 feet and above
	ON	ON	ON	

<u>Goal</u>

Your task is to implement three (7) functions.

- 1. getSensorValues() prompt the user for sensor values
- 2. displayHeader() Print the header portion of the output
- 3. displayDetails() Print the detail lines of the output
- 4. isGreenLightOn() determine if the Light is ON or OFF for a given sensor value

- 5. isYellowLightOn() determine if the Light is ON or OFF for a given sensor value
- 6. isRedLightOn() determine if the Light is ON or OFF for a given sensor value
- 7. displayFooter() Print the header portion of the output

Given

You are provided with the following files.

• floodSensor.h

- Should NOT be modified
- Contains function prototypes and constant definitions

floodSensorMain.c

- Should NOT be modified
- o Contains code to produce sample output.

GROUPNAME-floodSensor.c

- Contains a skeletal code that you need to complete.
- o Contains comments that serve as instructions and documentation
- Modify the filename and replace LASTNAME with your last name.
- This file will be submitted through animospace.

С

To debug and test your program using a user-defined module (.h) and with the main() in a separate file, you need to do the following:

- 1. You must have all three files above in the same folder (directory).
- 2. Then, use the following instructions to compile: **gcc -Wall -std=c99 floodSensorMain.c** This will produce a.exe. Note that there is no need to compile GROUPNAME-floodSensor.c separately.
- 3. Run in the command prompt as usual.

For example, given a exe generated from step 2, type \mathbf{a} in the command prompt.

Sample Output

```
./a.out
Enter sensor reading for Vito Cruz: 1
Enter sensor reading for Quirino Ave: 4
Enter sensor reading for U.N. Ave: 6
Enter sensor reading for Pedro Gil: 3
  Location Sensor Visual
 along Taft Value Alert
  Vito Cruz 1 001
Quirino Ave 4 100
U.N. Ave 6 110
    Pedro Gil 3 011
        Total 9.00
      Average 2.25
) ./a.out
Enter sensor reading for Vito Cruz: 2
Enter sensor reading for Quirino Ave: 5
Enter sensor reading for U.N. Ave: 0
Enter sensor reading for Pedro Gil: 7
   Location Sensor Visual
 along Taft Value Alert
  Vito Cruz 2 010
Quirino Ave 5 101
U.N. Ave 0 000
    Pedro Gil 7 111
        Total 16.00
       Average 4.00
```

Technical Constraints

The following restrictions apply when formulating the algorithm and C program implementation.

- The algorithm should only outline the general steps to simulate student crossing.
- Limit the implementation to the concepts discussed in class. These include concepts, Variables, Operators, Expressions, the Assignment Statement, Functions and Parameter Passing.
- Do not use conditional statements, loops, and string arrays

Other Requirements

- To be submitted are the following:
 - Source codes GROUPNAME-floodSensor.c
 - Screenshot of the compilation and execution of the application
 - o **DO NOT submit** the files floodSensor.h and floodSensorMain.c