Potencia

Javier Pacheco Brito

21 de octubre 2020

Potencia CMOS

- CMOS
 - Eficiencia CMOS

Potencia CMOS 2 / 17

Outline

- CMOS
 - Eficiencia CMOS

- Área (Librerías)
- Velocidad (retardos)
- Potencia

Figura: Lógica CMOS [1]

- No están siendo usadas
- # de transistores
- Frecuecias de los relojes
- Potencia

Figura: Lógica CMOS [3]

- No están siendo usadas.
- # de transistores
- Frecuecias de los relojes
- Potencia

Figura: Lógica CMOS [3]

- No están siendo usadas.
- # de transistores
- Frecuecias de los relojes
- Potencia

Figura: Lógica CMOS [3]

- No están siendo usadas.
- # de transistores
- Frecuecias de los relojes
- Potencia

Figura: Lógica CMOS [3]

Disipación CMOS

$$P_{total} = P_{est\'{a}tica} + P_{din\'{a}mica} \tag{1}$$

- Fuga de corriente a través de transisores OFF
- Fuga de corriente a través del dialéctrico
- Fugas en la unión de difusiones fuente/drenaje
- Leakage

$$P_{estática} = I_{estática} V_{DD}$$
 (2)

- Fuga de corriente a través de transisores OFF
- Fuga de corriente a través del dialéctrico
- Fugas en la unión de difusiones fuente/drenaje
- Leakage

$$P_{estática} = I_{estática} V_{DD}$$
 (2)

- Fuga de corriente a través de transisores OFF
- Fuga de corriente a través del dialéctrico
- Fugas en la unión de difusiones fuente/drenaje
- Leakage

$$P_{estática} = I_{estática} V_{DD}$$
 (2)

- Fuga de corriente a través de transisores OFF
- Fuga de corriente a través del dialéctrico
- Fugas en la unión de difusiones fuente/drenaje
- Leakage

$$P_{estática} = I_{estática} V_{DD}$$
 (2)

- Carga y descarga de las capacitancias de carga
- Corto-circuito
- Red P y N parcialmente encedidas
- Dinámica conmutación de la carga
- αf

$$P_{dinámica} = \alpha C V_{DD}^2 f \qquad (3)$$

- Carga y descarga de las capacitancias de carga
- Corto-circuito
- Red P y N parcialmente encedidas
- Dinámica conmutación de la carga
- αf

$$P_{dinámica} = \alpha C V_{DD}^2 f \qquad (3)$$

- Carga y descarga de las capacitancias de carga
- Corto-circuito
- Red P y N parcialmente encedidas
- Dinámica conmutación de la carga
- αf

$$P_{dinámica} = \alpha C V_{DD}^2 f \qquad (3)$$

- Carga y descarga de las capacitancias de carga
- Corto-circuito
- Red P y N parcialmente encedidas
- Dinámica conmutación de la carga
- af

$$P_{dinámica} = \alpha C V_{DD}^2 f \qquad (3)$$

- Carga y descarga de las capacitancias de carga
- Corto-circuito
- Red P y N parcialmente encedidas
- Dinámica conmutación de la carga
- αf

$$P_{dinámica} = \alpha C V_{DD}^2 f \qquad (3)$$

α

- Probabilidad de transicionar de 0 a 1
- Consumo de energía

$$P_{din\acute{a}mica} = \alpha C V_{DD}^2 f \qquad (4)$$

- Probabilidad de transicionar de 0 a 1
- Consumo de energía

$$P_{din\acute{a}mica} = \alpha C V_{DD}^2 f \qquad (4)$$

Esfuerzo lógico

Termino	Expresión de Etapa	Espresión por Path		
Número de etapas	1	N		
Esfuerzo lógico	g	$G = \prod g_i$		
Esfuerzo eléctrico	$h = rac{C_{out}}{C_{in}}$	$H = rac{C_{out(path)}}{C_{in(path)}}$		
Esfuerzo de rama	$b = \frac{C_{on(path)} + C_{off(path)}}{C_{on(path)}}$	$B = \prod b_i$		
Esfuerzo	f = gh	F = GBH		
Retardo de esfuerzo	f	$D_F = \sum f_i$		
Retardo parasitos	р	$P = \sum p$		
Retardo	d = f + p	$D = \sum d_i = D_F + P$		

Esfuerzo lógico

$$f = g_i h_i = F^{\frac{1}{N}} \tag{5}$$

$$D = NF^{\frac{1}{N}} + P \tag{6}$$

$$C_i n = \frac{C_o ut \cdot g_i}{f} \tag{7}$$

- N = número de estapas
- D = retardo mínimo

Potencia CMOS

Esfuerzo lógico

	1	2	3	4	n
Inversor	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n + 1)/3

Cuadro: Esfuerzo lógico

	1	2	3	4	n
Inversor	1				
NAND		2	3	4	n
NOR		2	3	4	n

Cuadro: Retardo P

Ejemplo

$$G = \frac{4}{3} \cdot \frac{5}{3} \cdot \frac{5}{3} = \frac{100}{27} \quad (8)$$

$$H = \frac{45}{8} \tag{9}$$

$$B = 3 \cdot 2 = 6 \tag{10}$$

$$F = GBH = 125 \qquad (11)$$

$$P = 2 + 3 + 2 = 7 \tag{12}$$

Figura: Circuito [6]

Ejemplo

$$f = \sqrt[3]{125} = 5 \tag{13}$$

$$D = 3 \cdot 5 + 7 = 22 \tag{14}$$

$$y = \frac{45 \cdot \frac{5}{3}}{5} = 15 \qquad (15)$$

$$x = \frac{(15+15) \cdot \frac{5}{3}}{5} = 10 \quad (16)$$

Figura: Circuito [6]

Implicaciones del modelo

- Transistores en serie : suma de resistencias
 - pMOS $k = 2 \cdot n$
 - nMOS k = n
- Transistores en paralelo:
 - ullet Todos los transitores ON ightarrow menor resistencia
 - ullet Solo un transistor ON o mayor resistencia
- Queremos tener una resistencia R para comparar el modelo con un inversor.

Implicaciones del modelo

Bibliografía

- [1] N.H.L. Weste y D. Harris. CMOS VLSI Design. 2011. 4ta Ed. Pag 8.
- [2] N.H.L. Weste y D. Harris. CMOS VLSI Design. 2011. 4ta Ed. Pag 13.
- [3] N.H.L. Weste y D. Harris. CMOS VLSI Design. 2011. 4ta Ed. Pag 10.
- [4] N.H.L. Weste y D. Harris. CMOS VLSI Design. 2011. 4ta Ed. Pag 147.
- [5] N.H.L. Weste y D. Harris. CMOS VLSI Design. 2011. 4ta Ed. Pag 152.
- [6] N.H.L. Weste y D. Harris. CMOS VLSI Design. 2011. 4ta Ed. Pag 165.

Potencia CMOS 17 / 17