1 point
1. Select the option that correctly completes the sentence:
Training a model using labeled data and using this model to predict the labels for new data is known as
Supervised Learning
Oensity Estimation
Clustering
Unsupervised Learning
1 point
2. Select the option that correctly completes the sentence:
Modeling the features of an unlabeled dataset to find hidden structure is known as
Supervised Learning
Regression
Unsupervised Learning

Module 1 Quiz

Select the option that correctly completes the sentence:				
Training a model using categorically labelled data to predict labels for new data is known as				
Regression				
Clustering				
Classification				
Feature Extraction				
1 point				
4. Select the option that correctly completes the sentence:				
Training a model using labelled data where the labels are continuous quantities to predict labels for new data is known as				
Feature Extraction				
Regression				
Classification				
Clustering				
1 point				

5.

Using the data for classes 0, 1, and 2 plotted below, what class $Module\ 1\ Quit Zd$ a KNeighborsClassifier classify the new point as for k = 1 and k = 3?

- k=1: Class 2
 - k=3: Class 1
- k=1: Class 1
 - k=3: Class 0
- k=1: Class 0
 - k=3: Class 1
- k=1: Class 1

Module 1 (• k=3: Class 2)uiz
	• k=1: Class 0
	• k=3: Class 2
	1 point
	6.
	Which of the following is true for the nearest neighbor classifier (Select all that apply):
	A higher value of k leads to a more complex decision boundary
	Partitions observations into k clusters where each observation belongs to the cluster with the nearest mean
	✓ Memorizes the entire training set
	Given a data instance to classify, computes the probability of each possible class using a statistical model of the input features
	1 point
	7。 Why is it important to examine your dataset as a first step in applying machine learning? (Select all that apply):
	See what type of cleaning or preprocessing still needs to be done
	✓ You might notice missing data
	Gain insight on what machine learning model might be appropriate, if any
	Get a sense for how difficult the problem might be

Module 1 (Quiz	It is not important
	1 point 8. The key is:	y purpose of splitting the dataset into training and test sets
	•	To estimate how well the learned model will generalize to new data
		To reduce the amount of labelled data needed for evaluating classifier accuracy
		To reduce the number of features we need to consider as input to the learning algorithm
		To speed up the training process
	1 point	
	•	rpose of setting the random_state parameter in est_split is: (Select all that apply)
		To avoid predictable splitting of the data
	~	To make experiments easily reproducible by always using the same partitioning of the data
		To avoid bias in data splitting
		To split the data into similar subsets so that bias is not introduced into the final results

1 point Module 1 Quiz a dataset with 10,000 observations and 50 features plus one label, what would be the dimensions of X_train, y_train, X_test, and y_test? Assume a train/test split of 75%/25%.

- X_train: (2500,)
 - y_train: (2500, 50)
 - X_test: (7500,)
 - y_test: (7500, 50)
- X_train: (10000, 28)
 - y_train: (10000,)
 - X_test: (10000, 12)
 - y_test: (10000,)
- X_train: (2500, 50)
 - y_train: (2500,)
 - X_test: (7500, 50)
 - y_test: (7500,)
- X_train: (7500, 50)
 - y_train: (7500,)
 - X_test: (2500, 50)
 - y_test: (2500,)
- X_train: (10000, 50)
 - y_train: (10000,)
 - X_test: (10000, 50)
 - y_test: (10000,)

Thank You!! Happy Learning Vaibhav

