Analiza matematyczna dla informatyków.

Mieczysław Cichoń, ver. 3.2/2023

Mieczysław Cichoń - WMI UAM

Plan wykładów

Rachunek różniczkowy funkcji jednej zmiennej rzeczywistej.

Pochodna i jej sens geometryczny.

Zastosowania w informatyce (m.in. podstawy interpolacji, funkcje spline).

Interpretacja geometryczna pochodnej. Liniowe przybliżanie funkcji (lokalne).

Podstawowe twierdzenia rachunku różniczkowego i wnioski z nich.

Metoda Newtona.

Rola wzoru Taylora w szacowaniu błędów.

Badanie przebiegu zmienności funkcji (na ćwiczeniach: obliczanie prostych pochodnych, sprawdzanie monotoniczności funkcji.

Dla zainteresowanych - poza egzaminem...

Tak naprawdę, to plan tych wykładów jest tylko podstawą i w wielu przypadkach trzeba to uogólnić na tzw. *funkcje wielu zmiennych* - np. w nauczaniu maszynowym. Podstawowe idee z naszego wykładu pozostają bez zmian, ale może **warto** sprawdzić jak to się da poszerzyć do przypadku takich funkcji.

Zainteresowani mogą ode mnie otrzymać skrócone wersje takich materiałów z motywacjami w informatyce (będzie o nie - oczywiście - łatwiej niż dla funkcji jednej zmiennej.

Ale: podkreślam, że jednak podstawowe idee zastosowań będą widoczne już w naszym wykładzie...

Ale przecież funkcje wielu zmiennych były już w szkole np. ... na geografii. To prosty wykres funkcji wielu zmiennych...

A to już funkcje wielu zmiennych w sieciach neuronowych...

Strony do lektury na wykłady 9, 10, 11+12...

To 3 długie i ważne wykłady - naprawdę namawiam do przeczytania (w ciągu 3 tygodni!! - to 3,5 wykładu).

Czytamy najpierw motywacje:

[K]: motywacje - strony 31-32 oraz 35-36

teraz wstępne materiały

[K] : strony 219-255 - zwłaszcza paragraf 15.2 !!! Jest co czytać. Ale polecam lekturę "kolorowych" fragmentów. dla informatyków - BARDZO przydatne!!

oraz

[W]: strony 106-143 (lub alternatywnie: z tego wykładu strony 75-102).

Pochodna funkcji w punkcie.

Rozpatrzmy funkcję $f:A\longrightarrow \mathbb{R},\ A\subset \mathbb{R}.$ Niech $x_0\in A$ będzie punktem skupienia zbioru A. Niech $h\in \mathbb{R}$ będzie takie, że $x_0+h\in A$ (oraz dla dowolnego $h_1\leq h,\ x_0+h_1\in A$).

Iloraz postaci $\frac{f(x_0+h)-f(x_0)}{h}$ nazywamy ilorazem różnicowym funkcji f w punkcie x_0 .

Można zauważyć, że jest to współczynnik kierunkowy tzw. prostej siecznej czyli prostej przechodzącej przez punkty $(x_0, f(x_0))$ oraz $(x_0 + h, f(x_0 + h))$. Mogą istnieć różne przypadki, gdy obliczamy granicę

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}.$$

Mamy kilka możliwości...

(10) granica ta istnieje i jest liczbą skończoną. Np. $f(x)=x^2$, $x_0\in\mathbb{R}$

$$\lim_{h \to 0} \frac{(x_0 + h)^2 - x_0^2}{h} = \lim_{h \to 0} \frac{x_0^2 + 2x_0h + h^2 - x_0^2}{h} = \lim_{h \to 0} (2x_0 + h) = 2x_0$$

(2⁰) granica ta istnieje i jest równa $\pm \infty$ (jest granicą niewłaściwą). Np. $f(x) = \sqrt[3]{x}$, $x_0 = 0$

$$\lim_{h \to 0} \frac{\sqrt[3]{h} - \sqrt[3]{0}}{h} = \lim_{h \to 0} h^{-\frac{2}{3}} = +\infty$$

(3⁰) granica ta nie istnieje, ale istnieją granice jednostronne (oczywiście w tym przypadku różne) Np. f(x) = |x|, $x_0 = 0$

$$\lim_{h \to 0^{+}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{+}} \frac{h}{h} = 1$$

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1$$

 (4^0) nie istnieją nawet granice jednostronne ilorazu różnicowego funkcji f w punkcie x_0 . Np.

$$f(x) = \begin{cases} x \cdot \sin \frac{1}{x} & , x \neq 0 , \\ 0 & , x = 0 , \end{cases}$$

$$\lim_{h \to 0^+} \frac{h \cdot \sin \frac{1}{h}}{h} = \lim_{h \to 0^+} \sin \frac{1}{h} - \text{ nie istnieje}$$

(granica lewostronna - analogicznie).

Definicja.

Definicja. Pochodną funkcji f w punkcie x_0 nazywamy granicę (skończoną lub nieskończoną) ilorazu różnicowego funkcji f w punkcie x_0 .

Sytuacja ta dotyczy więc przykładów z (1^0) i (2^0) . W przypadku (3^0) granice jednostronne nazywa się odpowiednio pochodną prawo- i lewostronną funkcji f w punkcie x_0 .

Jak widać nawet funkcja ciągła może nie mieć pochodnej w punkcie ciągłości (nawet jednostronnej) - por. przykład (4^0) .

Przykład obliczania pochodnej z definicji.

Niech $f(x) = \cos x$ i $x_0 \in \mathbb{R}$.

$$\lim_{h \to 0} \frac{\cos(x_0 + h) - \cos(x_0)}{h} = \lim_{h \to 0} \frac{-2\sin(\frac{2x_0 + h}{2}) \cdot \sin\frac{h}{2}}{h} = \lim_{h \to 0} \left[-\sin\left(x_0 + \frac{h}{2}\right) \cdot \frac{\sin\frac{h}{2}}{\frac{h}{2}} \right] = -\sin x_0$$

gdyż $\lim_{h\to 0} \frac{\sin\frac{n}{2}}{\frac{h}{2}} = 1$, a funkcja $\sin x$ jest funkcją ciągłą.

Oczywiście można teraz obliczyć pochodne np. z funkcji $g(x) = x + \cos x$ itd, ale obliczanie z definicji nie jest najlepszą z metod...

Pochodne.

Najprostsze przykłady zastosowań:

- metoda stycznych,
- szacowanie błędów wzorów interpolacyjnych (np. Lagrange'a),
- Al i automatyka : modelowanie dynamiki bardziej złożonych układów,
- przy korzystaniu z funkcji tworzących,
- grafika komputerowa i wizualizacja (w tym metody numeryczne),
- ·

Styczna.

Prostą y = mx + n o współczynniku $m = f'(x_0)$ przechodzącą przez punkt $(x_0, f(x_0))$ nazywamy **styczną**, tak więc pochodna funkcji f w punkcie x_0 to tangens kąta α nachylenia stycznej do osi OX.

Uwaga: w tej definicji nie ma żadnego związku pomiędzy ilością punktów wspólnych stycznej i wykresu funkcji (tylko: punkt $(x_0, f(x_0))$ musi być punktem wspólnym). Proszę nie czytać "internetowych" definicji...

Sieczna.

Styczna.

A tu prezentacja: skrypt ilustracyjny w programie "Mathematica" (.CDF).

Styczne w informatyce...

Ponieważ istnienie stycznej do wykresu funkcji f w punkcie $(x_0, f(x_0))$ jest w pewnym sensie równoważne istnieniu pochodnej funkcji f w x_0 , to nie może być zaskoczeniem, że w wielu zastosowaniach pochodnej pojawi się styczna.

Klasyczny przypadek to przy obrazowaniu ruchu (np. gry, ale nie tylko) mamy skomplikowany kształt krzywej w ruchu. *W dużym uproszczeniu:* zastępujemy zamiany układu współrzędnych (co daje skomplikowane wzory na krzywą) przez skończone układy punktów na krzywej i styczne do tej krzywej. Powstaje wielokąt (wielościan). Teraz kontrolujemy w ruchu tylko skończone układy punktów (lepsze będą funkcje spline zamiast stycznych, ale to inna historia...):

Uwaga.

Po co nam obliczenia z definicji lub choćby jej znajomość? To proste: w praktyce informatycznej będziemy przecież na ogół stosować wersję dyskretną pochodnej, a ta bazuje na definicji. To tzw. schematy różnicowe. Przyjmiemy wtedy przybliżenie pochodnej jako ilorazu różnicowego i to w stałych odstępach h (niekiedy: 1), czyli $h \cdot f'(x) \approx f(x+h) - f(x)$, a przy ustalonych punktach siatki (h=1) nawet częściej $f'(x) \approx f(x+1) - f(x)$ lub lepiej jako średnia arytmetyczna pochodnych (ilorazów różnicowych) jednostronnych (można też inaczej)

$$f'(x) \approx \frac{1}{2} \left((f(x+1) - f(x)) + (f(x) - f(x-1)) \right) =$$

$$= \frac{f(x+1) - f(x-1)}{2} \quad \text{lub lepiej}$$

$$f'(x) \approx \frac{1}{2} \left((f(x+1) - f(x)) + (f(x-1) - f(x)) \right) =$$

$$= \frac{f(x+1) + f(x-1) - 2f(x)}{2}.$$

Będzie to wykorzystwane np. w **detekcji krawędzi w obrazach**. Krawędź to granica między dwoma obszarami obrazu, w których występują znaczące zmiany w intensywności pikseli. Aby wykryć krawędzie, możemy użyć pochodnej pierwszego rzędu.

Niech I(x,y) będzie intensywnością piksela w punkcie (x,y) obrazu. Zmiana intensywności w kierunku poziomym (względem x) to właśnie pochodna I przy ustalonym y, a pionowym to pochodna I przy ustalonym x: i to w sensie dyskretnym, przedstawionym powyżej.

Jak można zauważyć stosujemy właśnie wprowadzane pojęcie pochodnej również do funkcji wielu zmiennych, ale temu poświęcimy kolejny kurs "Analizy matematycznej" (analiza wielowymiarowa).

Styczne w grafice.

To będzie możliwe, gdy krzywa ma styczne (najlepiej w każdym punkcie). A co jeśli nie? To pytanie: czy są krzywe nie posiadające w **żadnym** punkcie stycznych?

Tak! To np. wykresy funkcji singularnych (ciągłych bez pochodnej w żadnym punkcie). Ogólniej to krzywe zadane parametrycznie, których funkcje parametryzujące są singularne.

No to czas na fraktale!

Każdy punkt krzywej Kocha przypomina (w pewnym sensie) w charakterze punkt 0 na wykresie f(x) = |x|...

Styczne w informatyce.

Ponieważ istnienie stycznej do wykresu funkcji f w punkcie $(x_0, f(x_0))$ jest w pewnym sensie równoważne istnieniu pochodnej funkcji f w x_0 , to nie może być zaskoczeniem, że w wielu zastosowaniach pochodnej pojawi się styczna.

Ponownie zwróćmy uwagę, że trudno ograniczać się tylko do funkcji jednej zmiennej, bo wszystkie wprowadzane pojęcia można w naturalny sposób poszerzyć dla funkcji wielu zmiennnych. Nie będziemy więc ograniczali się do przykładów sztucznie ograniczonych do pierwszego przypadku.

Pojęcie stycznej ma wiele zastosowań w informatyce, w szczególności w dziedzinie analizy numerycznej, grafiki komputerowej i uczenia maszynowego.

Kilka przykładów:

- 1. W analizie numerycznej styczna jest używana do szacowania pochodnych funkcji numerycznie. Metoda różnic skończonych wykorzystuje styczne, aby obliczyć przybliżoną wartość pochodnej funkcji w danym punkcie. Algorytmy numeryczne: Styczna jest również używana w algorytmach numerycznych, takich jak metoda Newtona-Raphsona do znajdowania pierwiastków równania. Metoda ta polega na wyznaczaniu kolejnych przybliżeń pierwiastka poprzez wyznaczanie stycznej do wykresu funkcji w punkcie, który jest aktualnym przybliżeniem pierwiastka.
- 2. W grafice komputerowej styczna jest używana do określania nachylenia powierzchni w danym punkcie. To pozwala na tworzenie realistycznych trójwymiarowych obiektów, ponieważ światło odbijające się od powierzchni musi zachowywać się zgodnie z jej nachyleniem. Grafika komputerowa: W grafice komputerowej styczna jest używana do wyznaczania kierunku, w którym powinna poruszać się np. animowana postać lub obiekt na ekranie, aby ruch wyglądał płynnie i realistycznie.

- 3. W uczeniu maszynowym styczna jest wykorzystywana do aktualizowania parametrów modelu w procesie uczenia. Algorytm spadku gradientowego wykorzystuje styczne do obliczania kierunku największego spadku funkcji kosztu, co pozwala na efektywne aktualizowanie wag modelu.
- 4. W informatyce stosowane jest także pojęcie stycznej do opisu krzywych i powierzchni, np. w modelowaniu obiektów trójwymiarowych. Styczna pozwala na określenie, jak krzywa lub powierzchnia zmienia się w danym punkcie, co jest istotne przy projektowaniu i analizie obiektów wirtualnych.
- 5. Programowanie: Styczna jest również używana w programowaniu do wyznaczania kierunku, w którym powinien zmieniać się np. kolor tła na podstawie pozycji kursora na ekranie lub ruchu użytkownika.
- 6. Analiza danych: Styczna jest również używana w analizie danych do wyznaczania trendów i prognozowania przyszłych wartości. Na przykład, styczna do krzywej trendu może pomóc w prognozowaniu przyszłych wartości danych.

Funkcje nieróżniczkowalne...

Różniczkowalność.

Odróżnimy istnienie pochodnej (skończonej lub nie) od różniczkowalności:

Definicja. Mówimy, że funkcja $f:A \longrightarrow \mathbb{R} \ (A \subset \mathbb{R})$ jest w punkcie $x_0 \in A$ (punkcie skupienia zbioru A) różniczkowalna, jeśli posiada w tym punkcie skończoną pochodną $f'(x_0)$.

Definicja. Mówimy, że funkcja $f:A \longrightarrow \mathbb{R}$ jest różniczkowalna w zbiorze A jeżeli jest różniczkowalna w każdym punkcie zbioru A.

Funkcja różniczkowalna może być lokalnie przybliżana funkcją liniową. Pokażemy, że to różniczka funkcji w punkcie jest tym odwzorowaniem liniowym.

Twierdzenie. Jeżeli f jest różniczkowalna w punkcie x_0 to dla dostatecznie małych h prawdziwy jest wzór

$$f(x_0+h)-f(x_0)=f'(x_0)\cdot h+h\cdot \varphi(h)$$

przy czym $\lim_{h\to 0} \varphi(h) = 0$. (czyli "o małe" od h) $f(x_0 + h) - f(x_0)$ nazywamy przyrostem funkcji f w punkcie x_0 o kroku h, zaś iloczyn $f'(x_0) \cdot h$ różniczką z funkcji f w punkcie x_0 na przyroście h i oznaczamy odpowiednio $\Delta f(x_0, h)$ i $df(x_0, h)$.

Teraz rozpatrzymy sytuację odwrotną.

Twierdzenie. Niech $f:A\subset\mathbb{R}\longrightarrow\mathbb{R}$, i $x_0\in A$ będzie punktem skupienia zbioru A. Jeżeli przyrost funkcji $\Delta f(x_0,h)$ daje się zapisać w postaci:

$$\Delta f(x_0, h) = I \cdot h + r(x_0, h) \tag{\Delta}$$

gdzie $l \in \mathbb{R}$, funkcja $r(x_0,h)$ jest określona dla tych $h \in \mathbb{R}$, dla których $x_0 + h \in A$ oraz $\lim_{h \to 0} \frac{r(x_0,h)}{h} = 0$ to f jest różniczkowalna w punkcie x_0 oraz

$$f'(x_0) = I.$$

Różniczki zupełne.

Przez $df(x_0,h)$ oznaczać będziemy iloczyn $f'(x_0) \cdot h$ i nazywać będziemy różniczką z funkcji f w punkcie x_0 na przyroście h. Mamy więc dla funkcji różniczkowalnej

$$f(x_0 + h) - f(x_0) = df(x_0, h) + r(x_0, h)$$

gdzie
$$\lim_{h\to 0} \frac{r(x_0,h)}{h} = 0.$$

Interpretacja geometryczna różniczki.

Zauważmy, że jeśli f jest różniczkowalna w x_0 to dla małych przyrostów h reszta $r(x_0, h)$ jest mała, a więc

$$f(x_0 + h) - f(x_0) \approx df(x_0, h)$$
.

Zazwyczaj łatwiej jest obliczyć różniczkę funkcji w punkcie, niż jej przyrost - wykorzystamy to.

Pochodna a różniczka.

Na rysunku: odcinek PM_1 reprezentuje przyrost funkcji f w punkcie x_0 : $f(x_0 + h) - f(x_0)$. Odcinek PN reprezentuje różniczkę $df(x_0, h)$, a odcinek NM_1 resztę $r(x_0, h)$.

Widoczne: $f(x_0 + h) - f(x_0) = df(x_0, h) + r(x_0, h)$ oraz szybki spadek długości odcinków pomiędzy styczną a krzywą $o(\Delta x)!$

I pierwszy symbol Landaua...

Definicia 15.2.3 Mówimy, że funkcia f iest o male od funkcii g w otoczeniu punktu x_0 i piszemy

$$f(x) = o(g(x)) \text{ przy } x \rightarrow x_0,$$

ieżeli

$$\forall \epsilon > 0 \ \exists \delta > 0 \quad |x - x_0| < \delta \ \Rightarrow \ ||f(x)|| < \epsilon |g(x)|.$$

Następującą uwagę można wywnioskować wprost z definicji granicy.

Uwaga 15.2.4 Relacja f(x) = o(q(x)) przy $x \to x_0$ zachodzi wtedy i tylko wtedy gdy

$$f(x_0) = 0$$
 $i \lim_{x \to x_0} \frac{||f(x)||}{|g(x)|} = 0.$

Wrócmy teraz do idei przyfoliżania przyrostu funkcji funkcją liniową. Wprowadźmy tradycyjne oznaczenia na przyrost wartości argumentu i przyrost wartości funkcji (różnice) w punkcie x_n:

$$\Delta x := x - x_0,$$

 $\Delta y := f(x) - f(x_0).$

Niech $L=L_{f'(x_0)}$ będzie funkcją liniową przybliżającą w loklanym układzie współrzędnych przyrost funkcji f. Wtedy

$$\Delta y \approx L(\Delta x) = f'(x_0)\Delta x,$$
 (15.5)

przy czym popełniony bądą względny jest tym mniejszy im mniejsze jest Δx . Leibniz nie dysponował precyzyjnym aparatem i mówił, że jeśli Δx jest nieskończenie male, to przybliżona równość (15.5) staje się równością. Takie nieskończenie male różnice Δx i Δy nazywał różniczkami (malusieńkimi różnicami) i oznaczał du i dz. Użwalac jego jezyka napisalibyłem, że oźniczki dz: i du spełniaja równanie

$$dy = f'(x)dx. (15.6)$$

Problem w tym, że różniczki jako wielkości nieskończenie male trudno jest precyzyjnie zdefiniować. Pojęcie różniczki odczarował A. Cauchy, traktując równanie (15.6) jako równanie odwzorowania liniowego przybiżającego przyrost funkcji, a samą różniczkę definiując jako to przybiżające odwzorowanie liniowe. I tak do dziś rozumiemy różniczkę. Natomiast termin różniczkowalność, ze względu na bezpośredni związek pomiędzy różniczką i pochodną, jest odnoszony zarówno do istnienia pochodnei laki różniczki. Do iak zobaczymu sa to fakty równoważne.

Mieczysław Cichoń, ver. 3.2/2023

Funkcja pochodna.

A teraz pojęcie funkcji pochodnej - funkcję przyporządkowującą punktom $x_0 \in A^d$ liczby $f'(x_0)$ nazywamy funkcją pochodną funkcji f. Funkcję tę oznaczać będziemy przez f'.

Na ogół dziedzina funkcji f' jest zawarta w dziedzinie funkcji f.

Można wyprowadzić wzory na najważniejsze z funkcji (m.in. elementarne).

Tabela pochodnych.

Dziedzina f	Funkcja <i>f</i>	Dziedzina f'	Funkcja f'
\mathbb{R}	x^{α}	\mathbb{R}	$\alpha \cdot x^{\alpha-1}$
\mathbb{R}	а	\mathbb{R}	0
\mathbb{R}	sin x	\mathbb{R}	cos x
\mathbb{R}	cos x	\mathbb{R}	- sin <i>x</i>
\mathbb{R}	e ^x	\mathbb{R}	e ^x
$(0,+\infty)$	ln x	$(0,+\infty)$	$\frac{1}{x}$
\mathbb{R}	$a^{\times}(a>0)$	\mathbb{R}	<i>a</i> ^x .În <i>a</i>
[-1,1]	arcsin x	(-1, 1)	$\frac{1}{\sqrt{1-x^2}}$
\mathbb{R}	arctan x	\mathbb{R}	$\frac{1}{1+x^2}$
[-1,1]	arccos x	(-1, 1)	$\frac{-1}{\sqrt{1-x^2}}$
	•••	•••	

Prezentacja: Skrypt ilustracyjny możliwości obliczeniowych pochodnych programu "Mathematica".

Przykład 1.

Obliczyć wartość wyrażenia $e^{0,03}$.

Rozpatrzmy funkcję $f(x) = e^x$, wówczas jest to wartość tej funkcji w punkcie x = 0,03 tj. f(0,03). Nie jest to łatwe, ale łatwo jest obliczyć wartość f w "bliskim" punkcie $x_0 = 0$. Mamy więc

$$f(x_0+h)\approx f(x_0)+df(x_0,h)$$

gdzie h=0,03 , $x_0=0$. Ponieważ $f'(x)=e^x$ (co pokażemy za chwilę), więc $f'(x_0)=e^0=1$, czyli

$$f(0,03) \approx 1 + 1 \cdot 0,03 = 1,03$$
.

Przykład 2.

Obliczyć wartość wyrażenia $A = \sin 40^{\circ}$.

Wykorzystamy miarę łukową kąta, a więc

$$A = \sin \frac{40 \cdot \pi}{180} = \sin \frac{2\pi}{9} .$$

Niech

$$f(x) = \sin x$$
, $x_0 = \frac{\pi}{4}$, $h = \frac{2\pi}{9} - \frac{\pi}{4} = -\frac{\pi}{36} \approx -0.09$.

Obliczamy (skorzystamy z pochodnych funkcji sinus - co można sprawdzić z definicji) :

$$f(x_0) = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \approx 0.71$$
 $f'(x) = \cos x$, $\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \approx 0.71$

a więc

$$A = f(x_0 + h) \approx f(x_0) + df(x_0, h) = 0.71 + (0.71) \cdot (-0.09) \approx 0.65.$$

(tu wszystkie obliczenia prowadzimy z dokładnością 2 miejsc po przecinku).

Różniczkowalność a ciągłość.

Twierdzenie. Jeżeli f jest różniczkowalna w punkcie x_0 , to jest w tym punkcie ciągła.

Jak już wspomnieliśmy ciągłość nie jest wystarczająca nawet do istnienia pochodnych jednostronnych...

A czy pochodna funkcji różniczkowalnej musi być funkcją ciągłą? Nie, ale - choć to zaskakujące mimo to musi posiadać własność Darboux!

Twierdzenie. Załóżmy, że a < b, zaś funkcja $f : [a,b] \to \mathbb{R}$ jest ciągła na [a,b] i różniczkowalna na (a,b). Dla każdej liczby $c \in [f'(a),f'(b)]$ istnieje punkt $x \in [a,b]$ taki, że f'(x) = c.

Dobrym przykładem jest funkcja:

$$f(x) = x^2 \cdot \left(2 + \sin\left(\frac{1}{x}\right)\right)$$

dla $x \neq 0$ oraz f(0) = 0. Dobre zadanie na ćwiczenia/laboratorium: pokazać, że ma pochodną w każdym punkcie, ale funkcja f' nie jest ciągła:

Pochodne można obliczać korzystając z bardziej ogólnych reguł niż definicja... Na początek działania na funkcjach rózniczkowalnych.

Twierdzenie. Dane są 2 funkcje $f,g:A \longrightarrow \mathbb{R}$. Załóżmy, że f i g są różniczkowalne w ustalonym punkcie $x \in A$. Wówczas w tym samym punkcie $x \in A$ różniczkowalne są funkcje f + g, f - g, $f \cdot g$, $\lambda \cdot g$ ($\lambda \in \mathbb{R}$), a jeśli ponadto $g(x) \neq 0$ to także $\frac{f}{g}$. Prawdziwe są ponadto wzory:

(a)
$$(f+g)'(x) = f'(x) + g'(x)$$
,

(b)
$$(f-g)'(x) = f'(x) - g'(x)$$
,

(c)
$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
,

(d)
$$(\lambda \cdot g)'(x) = \lambda \cdot g'(x)$$
,

(e)
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x)' - f(x) \cdot g'(x)}{g^2(x)}$$
.

Twierdzenie. (pochodna superpozycji = złożenia) Niech $f:A \longrightarrow B \subset \mathbb{R}$, $g:B \longrightarrow \mathbb{R}$. Jeżeli f jest różniczkowalna w punkcie $x \in A$, a g jest różniczkowalna w $y = f(x) \in B$ to funkcja złożona (superpozycja) $g \circ f: A \longrightarrow \mathbb{R}$ dana wzorem $(g \circ f)(x) = g(f(x))$ jest różniczkowalna w punkcie $x \in A$, oraz prawdziwy jest wzór

$$(g \circ f)'(x) = g'(y) \cdot f'(x)$$
 (gdzie $y = f(x)$).

Twierdzenie. (pochodna funkcji odwrotnej) Niech g będzie funkcją ciągłą i ściśle monotoniczną w przestrzeni P. Przez f oznaczmy funkcję odwrotną do g. Jeżeli funkcja g jest różniczkowalna w punkcie $y \in P$ oraz pochodna tej funkcji $g'(y) \neq 0$ to f jest różniczkowalna w punkcie x = g(y) oraz

$$f'(x) = \frac{1}{g'(y)}$$
 (czyli $(g^{-1})'(x) = \frac{1}{g'(y)}$).

Przykłady.

(1) Niech
$$f(x) = x^3 + e^{\sin x}$$
, $x \in \mathbb{R}$.

Wówczas $f(x) = f_1(x) + f_2(x)$, gdzie $f_1(x) = x^3$, $f_2(x) = e^{\sin x}$. Stąd $(f_1)'(x) = 3x^2$, zaś f_2 jest funkcją złożoną

$$g(u) = e^u$$
, $h(v) = \sin v$.

Z działań na pochodnych mamy $(f_2)'(x) = \cos x \cdot e^{\sin x}$. Ostatecznie $f'(x) = 3x^2 + \cos x \cdot e^{\sin x}$. (2) Weźmy teraz $f(x) = \ln x$. Jest to funkcja odwrotna do $g(y) = e^y$

$$(x = e^y) \iff (y = \ln x)$$

$$g: \mathbb{R} \xrightarrow{\mathsf{na}} (0, +\infty) \quad \mathsf{oraz} \quad f(0, +\infty) \xrightarrow{\mathsf{na}} \mathbb{R}$$

g - ściśle rosnąca na $P = (-\infty, \infty)$ (oraz ciągła), co więcej

$$g'(y) = e^y \neq 0$$
 dla dowolnych $y \in \mathbb{R}$.

Mamy więc

$$(x = e^y)$$
 $f'(x) = \frac{1}{g'(y)} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$

(kolejny wynik do tabeli pochodnych ...).