(The Partial English translation of Japanese Laid-open Patent Publication No. 7-300529)

- (19) Japanese Patent Office (JP)
- (11) Laid-open patent publication No. 7-300529
- (43) Laid-open publication date: November 14, 1995
- (54) Title of the Invention: A POLYSILANE AND MANUFACTUREING METHOD THEREOF
- (21) Japanese Patent Application No. 06-335885
- (22) Filing date: December 22, 1994
- (31) Priority number: 6-67978
- (32) Priority date: March 11, 1994
- (33) Priority country: JP
- (72) Inventors: HAMADA YOSHITAKA, et al
- (71) Applicant: SHIN ETSU CHEMICAL CO., LTD.

(page 2, left column, lines 2 to right column, lines 10)

[Claim 1] A polysilane represented by the following general formula (1):

[formula 1]

wherein X is a halogen atom, alkyl group, fluoroalkyl group, alkoxy group, substituted or nonsubstituted amino group, acyl group or aldehyde group, Y is a hydrogen atom, halogen atom, alkyl group, fluoroalkyl group, substituted or nonsubstituted amino group, acyl group or aldehyde group, otherwise X and Y form a divalent alkylene group or heteroalkylene group together, with the proviso that when Y is a hydrogen atom, X is neither an alkyl group nor a fluoroalkyl group, m is an integer of 1 to 5, k is an integer of 0 to 4, k + m = 1 to 5, and n is an integer of 3 or more.

(page 3, right column, lines 49 to page 5, light column, lines 3)

[0020] [Example 1] When 2.626 g (17.35 mmol) of p-(N,N-dimethylanilino)silane was reacted in THF in a sealed tube in the presence of 3 mg of a zirconocene catalyst represented by the following formula at $105\,^{\circ}\text{C}$ for 72 hours, a polymer having an M_w of 1,330 and an M_n of 1,260 was obtained at a yield of 94.3 %.

[0021]

[formula 6]

$Cp: (CH)_5$, $Cp': (CMe)_5$, $Me: CH_3$

[0022] It was confirmed by the IR spectrum shown in Fig. 1 that this polymer had basic structures such as an aromatic tertiary amine, para-substituted phenyl and Si-H and that it was a polysilane represented by the following formula.

IR spectrum:

2973 C-H

2078 Si-H

1593, 1508 p-substituted aromatic C-C

1352 aromatic tertiary amine C-N

[0023]

[formula 7]

[0024] [Example 2] When 2.022 g (14.62 mmol) of p-anisylsilane

was reacted in THF in a sealed tube in the presence of 2 mg of the zirconocene catalyst at $105\,^{\circ}\text{C}$ for 72 hours in accordance with Example 1, a polysilane having an M_w of 950 and an M_n of 890 represented by the following formula was obtained at a yield of 87.3 %.

IR spectrum:

3059 aromatic C-H

2956, 2835 C-H

2104 Si-H

1591, 1498 p-substituted aromatic C-C

1030 C-O-C

[0025]

[formula 8]

[0026] [Example 3] When 1.225 g (7.74 mmol) of

 $\beta\text{-silylnaphthalene}$ was reacted in THF in a sealed tube in the presence of 4 mg of the zirconocene catalyst at 105°C for 72 hours in accordance with Example 1, a polysilane having an M_w of 1,170 and an M_n of 1,140 represented by the following formula was obtained at a yield of 90.8 %.

IR spectrum:

2080 Si-H

850, 814, 740 $\,\beta\!$ -substituted naphthalene C-H

[0027]

[formula 9]

[0028] [Example 4] When $4.595 \ g$ (36.4 mmol) of

p-fluorophenylsilane was reacted in a mixed solvent of THF and xylene in a weight ratio of 1:1 in a sealed tube in the presence of 3 mg of the zirconocene catalyst at $105\,^{\circ}\text{C}$ for 72 hours in accordance with Example 1, a polysilane having an M_w of 940 and an M_n of 900 represented by the following formula was obtained at a yield of 88.46 %.

IR spectrum:

2960, 2974 C-H

2127 Si-H

1588, 1496 p-substituted aromatic C-C

1235 aromatic C-F

[0029]

[formula 10]

[0030] [Example 5] When 3.789 g (24.9 mmol) of

3,4-methylenedioxyphenylsilane was reacted in a mixed solvent of THF and xylene in a weight ratio of 1:1 in a sealed tube in the presence of 4 mg of the zirconocene catalyst at 105°C for 72 hours in accordance with Example 1, a polysilane having an

 M_{w} of 840 and an M_{n} of 810 represented by the following formula was obtained at a yield of 72 %.

[0031]

[formula 11]

IR spectrum:

2963, 2900 C-H

2157 Si-H

1502, 1480 substituted aromatic C-C

1262, 1235 C-O-C

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-300529

(43)公開日 平成7年(1995)11月14日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 8 G 77/60

NUM

審査請求 未請求 請求項の数2 FD (全 5 頁)

(21)出願番号 特願平6-335885

(22)出願日

平成6年(1994)12月22日

(31)優先権主張番号 特顯平6-67978 平6 (1994) 3月11日 (32)優先日

(33)優先権主張国 日本(JP) (71)出顧人 000002060

信越化学工業株式会社

東京都千代田区大手町二丁目6番1号

(72)発明者 濱田 吉隆

神奈川県川崎市高津区坂戸3丁目2番1号 信越化学工業株式会社コーポレートリサ

ーチセンター内

(72)発明者 荒又 幹夫

神奈川県川崎市高津区坂戸3丁目2番1号 信館化学工業株式会社コーポレートリサ

ーチセンター内

(74)代理人 弁理士 小島 隆司

最終頁に続く

(54) 【発明の名称】 ポリシラン及びその製造方法

(57)【要約】

*【化1】

【構成】 下記一般式(1)で示されるポリシラン。

... (1)

(式中Xは、ハロゲン原子、アルキル基、フロロアルキ ル基、アルコキシ基、置換もしくは非置換のアミノ基、 アシル基又はアルデヒド基を示し、また、Yは水素原 子、ハロゲン原子、アルキル基、フロロアルキル基、置 換もしくは非置換のアミノ基、アシル基又はアルデヒド 基を示す。又は、XとYとは合わせて2価のアルキレン 基又はヘテロアルキレン基を形成する。但し、Yが水素

原子のときはXはアルキル基及びフロロアルキル基では ない。 $mは1\sim5$ 、 $kは0\sim4$ の整数を示し、k+m=1~5であり、nは3以上の整数を示す。)

【効果】 本発明のポリシランは、ドーピングにより高 導電性を示し、光電変換材料、導電性材料等として好適 に用いられる。

【特許請求の範囲】

【化1】

【請求項1】 下記一般式(1)で示されるポリシラ

1

... (1)

(式中Xは、パロゲン原子、アルキル基、プロロアルキ ル基、アルコキシ基、置換もしくは非置換のアミノ基、 アシル基又はアルデヒド基を示し、また、Yは水素原 子、ハロゲン原子、アルキル基、フロロアルキル基、置 換もしくは非置換のアミノ基、アシル基又はアルデヒド 基を示す。又は、XとYとは合わせて2価のアルキレン 基又はヘテロアルキレン基を形成する。但し、Yが水素※

※原子のときはXはアルキル基及びフロロアルキル基では ない。mは1~5、kは0~4の整数を示し、k+m 10 1~5であり、nは3以上の整数を示す。)

【請求項2】 下記一般式(2)で示されるトリヒドロ シランを脱水素縮合することを特徴とする請求項1記載 のポリシランの製造方法。

【化2】

... (2)

(但し、式中X及びY並びにm及びkは上記と同様の意 味を示す。)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光電変換材料、導電性 材料、或いはセラミック前駆体等として有用な新規ポリ シラン及びその製造方法に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】従来、 ポリシランの合成にはウルツ反応がよく用いられている が、反応条件が厳しいために官能基含有のポリシランを 得るには多くの困難があった。また、早瀬ら((a) R. Horiguchi, Y. Onishi, S. Ha yase, Macromolecules, (199 2), <u>25</u>, 3825. (b) S. Hayase, R. Horiguchi, Y. Onishi, Macrom olecules, (1989), <u>22</u>, 2933. (c) C. H. Yuan, R. West, Macrom olecules, (1993), <u>26</u>, 2654.) はトリアルキルシリル保護基を用い、アルコール、ある いはフェノール官能性のポリシランを報告しているが、 保護基の種類や反応条件を工夫する必要があり、また保 40 護基の脱離にも繊細な反応条件の調節が必要であり、こ れらの合成は簡単ではない。更に、関ら(T.Sek i, T. Tamaki, K. Ueno, Macromo lecules, (1992), 25, 3825.) は、ポリシランを合成した後、アンモニウム官能基の導 入を報告しているが、ポリマーに対して2段階に及ぶ変 性を行うことは、安定性及び反応率の点で問題があり、 これらの化合物を高収率、高純度で得ることが困難であ った。

成は、従来では重合度の向上が問題であるとされてお 20 り、研究の主眼はもっぱら触媒の活性を上げ、高重合物 を得ることに向けられ、置換基導入への応用はメチル基 やトリフロロメチル基などの官能性の低いもの(). P. Banovetz, H. Suzuki, R. M. W aymouth, Organometallics, (1993), 12, 4700.) についての研究例し か報告されていなかった。

[0004]

【課題を解決するための手段及び作用】本発明者は、光 変換材料、導電性材料として有用なポリシランにつき鋭 意検討を行った結果、下記一般式(2)で示される官能 基置換フェニルトリヒドロシランを脱水素縮合反応させ ることにより、下記一般式(1)で示される官能基置換 フェニル基と側鎖水素基とを有するポリシランが比較的 温和な条件で得られることを見い出すと共に、この式 (1) のポリシランがヨウ素等の酸化性物質のドーピン グにより高い導電性を示し、光変換材料、導電性材料と して有用であり、更にセラミック前駆体としても有用で あることを知見し、本発明をなすに至った。

[0005]

【化3】

(式中Xは、ハロゲン原子、アルキル基、フロロアルキ ル基、アルコキシ基、置換もしくは非置換のアミノ基、 アシル基又はアルデヒド基を示し、また、Yは水素原 【0003】一方、脱水素縮合法によるポリシランの合 50 子、ハロゲン原子、アルキル基、フロロアルキル基、置

換もしくは非置換のアミノ基、アシル基又はアルデヒド 基を示す。又は、XとYとは合わせて2価のアルキレン 基又はヘテロアルキレン基を形成する。但し、Yが水素 原子のときはXはアルキル基及びフロロアルキル基では ない。 $mは1\sim5$ 、 $kは0\sim4$ の整数を示し、k+m=1~5であり、nは3以上の整数を示す。)

【0006】従って、本発明は、上記一般式(1)で示 されるポリシラン、及び、上記一般式(2)のトリヒド*

【0009】ここで、Xは、C1, Br等のハロゲン原 子、メチル基、エチル基等の好ましくは炭素数1~2 0、特に1~6のアルキル基、トリフロロプロピル基等 の $C_{\bullet}F_{2m}$ (mは好ましくは $1\sim20$ 、特に $1\sim3$) で示されるフロロアルキル基、メトキシ基、エトキシ基 等の好ましくは炭素数1~20、特に1~6のアルコキ シ基、置換もしくは非置換のアミノ基、アシル基、又は 20 アルデヒド基を示す。また、Yは、水素原子、上記と同 様のハロゲン原子、アルキル基、フロロアルキル基、置 換もしくは非置換のアミノ基、アシル基、又はアルデヒ ド基を示す。この場合、Yが水素原子であるときはXは アルキル基及びフロロアルキル基となることはない。な お、置換アミノ基としては、アミノ基の水素原子の1個 又は2個が炭素数1~20、特に1~4のアルキル基で 置換されたアルキルアミノ基などが挙げられる。又は、 XとYとは合わせて2価のアルキレン基又はヘテロアル キレン基を形成し、例えばフェニル基等の芳香環や複素※30

(但し、X, Y, m, kは上記と同様の意味を示す。) 【0014】ここで、式(2)のトリヒドロシランとし ては、例えば、p-ジメチルアミノフェニルシラン、β ーシリルナフタレン、p-アニシルシラン、3, 4-メ チレンジオキシフェニルシランなどが挙げられる。

【0015】上記トリヒドロシランの脱水素縮合反応 は、脱水素縮合反応用触媒を用い、室温又は加熱条件下 で行うことができる。触媒としては、一般の脱水素縮合 反応に用いられるいかなる触媒も用いることもできる が、特にジルコノセン又はチタノセン系触媒が好まし い。触媒の使用量は、通常の触媒量であり、シランに対 して0.001~20重量%、特に0.01~1重量% とすることが好ましい。

【0016】この反応には溶媒は必須ではないが、ヒド ロシラン類と反応するおそれのない非プロトン性の溶 媒、例えばテトラヒドロフラン(THF)、トルエン、 50 リノ)シラン2.626g(17.35mmol)をT

*ロシランを脱水素縮合することを特徴とする上記一般式 (1) のポリシランの製造方法を提供する。

【0007】以下、本発明につき更に詳しく説明する と、本発明のポリシランは下記一般式(1)で示される ものである。

[0008]

【化4】

... (1)

※環を形成する。従って上記X- (C₆ H₈) - Yは例えば ナフチル基等の多核芳香環や複素環類を包含する。ま た、mは1~5、kは0~4の整数を示し、k+m=1~5である。

【0010】また、式(1)において、nは3以上、好 ましくは6以上、より好ましくは10以上の整数であ り、その上限は特に制限はないが、通常溶媒に可溶であ る範囲で大きいことが好ましい。

【0011】上記式(1)のポリシランの重量平均分子 量は400以上、特に600以上であることが、成膜性 の点から好ましい。

【0012】式(1)のポリシランは、下記一般式 (2) で示されるトリヒドロシランを脱水素縮合するこ

[0013]

【化5】

... (2)

とによって得ることができる。

ヘキサン等を用いることが好ましい。反応温度は0℃~ 200℃、特に室温~110℃が好ましく、反応時間は 通常3~240時間、特に12~70時間である。

【0017】本発明の式(1)のポリシランは、セラミ ック前駆体として使用されるほか、ヨウ素、塩化第二鉄 40 等の酸化性物質でドーピングすることにより10~~1 0°S/cm程度の高導電性を示すので、光電変換材 料、導電性材料として好適に用いられる。

[0018]

【実施例】以下、実施例及び比較例を示し、本発明を具 体的に説明するが、本発明は下記の実施例に制限される ものではない。

【0019】なお、以下のポリマーの平均分子量はGP Cによるポリスチレン換算の重量平均分子量を示す。

【0020】〔実施例1〕 p-(N, N-ジメチルアニ

HF中、下式に示すジルコノセン触媒 3 mgの存在下、 封管中で105℃、72時間反応させたところ、収率9 4. 3%でM。 1330, M。 1260の重合物が得 られた。

[0021] 【化6】

Cp: (CH), Cp': (CMe), Me: CH,

【0022】このポリマーは芳香族第3アミン、バラ置 換フェニル及びSi 日等の基本構造を保持しているこ とが図1に示す1Rスペクトルにより確かめられ、下記 式のポリシランであることが確認された。

IRスペクトル:

2973 C=H

2078 Si H

1593, 1508 p 置換芳香族C C

1 3 5 2 - 芳香族第 3 アミンC-N

[0023]

【化7】

【0024】 [実施例2] 実施例1に準じて、p-アニ シルシラン2. 022g (14.62mmol) をTH F中、ジルコノセン触媒2mgの存在下、封管中で10 30 5℃、72時間反応させたところ、収率87.3%でM .=950, M_.=890の下記式で示されるポリシラン が得られた。

IRスペクトル:

3059 芳香族C-H

2956, 2835 C-H

2104 Si-H

1591, 1498 p-置換芳香族C-C

1030 C-O-C

[0025]

【化8】

【0026】〔実施例3〕実施例1に準じて、β-シリ ルナフタレン1. 225g (7. 74mmol) をTH F中、ジルコノセン触媒4mgの存在下、封管中で10 50 2963, 2900 C-H

5 C、7 2時間反応させたところ、収率9 0.8%でM 1170、M。 1140の下記式で示されるポリシ ランが得られた。

TRスペクトル士

2080 Si II

850, 814, 740 β 置換ナフタレンC II

[0027]

【化9】

(4)

10

【0028】 [実施例4] 実施例1に準じて、p フロ ロフェニルシラン4. 595g (36.4mmol)を THF/キシレンの1:1の混合溶媒中、ジルコノセン 触媒 3 mgの存在下、封管中で105℃、72時間反応 させたところ、収率88.46%でM_{*} = 940, M_{*} = 2 20 900の下記式で示されるポリシランが得られた。

TRスペクトル:

2960, 2874 C-H

2 1 2 7 S i -H

1588, 1496 p-置換芳香族C-C

1235 芳香族C-F

[0029]

【化10】

【0030】〔実施例5〕実施例1に準じて、3,4-メチレンジオキシフェニルシラン3. 789g(24. 9 m m o 1) を T H F / キシレンの 1:1 の混合溶媒 中、ジルコノセン触媒4mgの存在下、封管中で105 °C、72時間反応させたところ、収率72%でM_{*}=8 40、M₁ = 810の下記式で示されるポリシランが得 40 られた。

[0031]

【化11】

IRスペクトル:

7

2157 Si-H 1502, 1480 置換芳香族C-C 1262, 1235 C-O-C

*【0034】なお、電気伝導度の測定は、スピンコート したフィルムを気相ドーピングをしながら4端子法にて 直流抵抗の測定を行い、安定値を得たところで導電率の 算出に用いて行った。

[0035]

【発明の効果】本発明のポリシランは、ドーピングにより高導電性を示し、光電変換材料、導電性材料等として好適に用いられる。また、本発明の製造方法によれば、比較的温和な条件で上記ポリシランを高収率において製造し得る。

【図面の簡単な説明】

【図1】実施例1のポリシランの赤外線吸収スペクトルである。

【図1】

フロントページの続き

(72) 発明者 福島 基夫

神奈川県川崎市高津区坂戸3丁目2番1号 信越化学工業株式会社コーポレートリサ ーチセンター内