Desenvolvimento de um Sistema de Recomendação de Candidatos à Cargos Públicos Utilizando Técnicas de Aprendizagem de Máquina e Filtragem de Informação Projeto 14786

Orientador: Prof. Dr. Fábio Santos da Silva (fssilva@uea.edu.br)

Bolsista: Lucas Pereira Reis (1prs.eng@uea.edu.br)

Engenharia de Computação

Universidade do Estado do Amazonas Escola Superior de Tecnologia

19 de abril de 2019

1 / 36

PAIC 2018-2019 19 de abril de 2019

Sumário

- Introdução
- 2 Justificativa
- Objetivos
- 4 Metodologia
- 5 Fundamentação Teórica
- 6 Desenvolvimento
- Resultados Parciais
- 8 Cronograma
- 9 Referências

PAIC 2018-2019

Figura 1: Eleições no Brasil. (https://tinyurl.com/y6knph9d)

PAIC 2018-2019 Introdução 19 de abril de 2019 3 / 36

Introdução

Brancos e Nulos nas Eleições Presidenciais

Figura 2: Gráfico de brancos e nulos nas eleições passadas. (https://tinyurl.com/y4f6pawl)

Introdução

Fontes de informação consideradas no voto

O Ibope perguntou aos eleitores: "Quais destas fontes de informação são as três principais que o(a) sr(a) leva em conta para decidir o seu voto?"

Figura 3: Gráfico de fontes de informação dos eleitores. (https://tinyurl.com/y2ycpzbc)

Problema

Sobrecarga de Informação

- Ocorre quando somos submetidos em excesso à mídia, tecnologia e informação. Dificulta à absorção e reflexão de informações, podendo levar à decisões erradas e erros. (https://tinyurl.com/y3y9toon)
- A exagerada quantidade de candidatos dificulta a escolha do eleitor, deixando-o perdido durante as eleições.
- Já existe uma solução para ajudar na escolha?

Figura 4: Trabalhos relacionados à recomendação de candidatos à cargos públicos.

Justificativa

Objetivo

- Desenvolver um sistema de recomendação de candidatos à órgãos públicos para auxiliar os eleitores durante a escolha.
- A recomendação irá mensurar o grau de relevância dos candidatos à determinados temas correlacionando com as avaliações feitas pelo eleitor/usuário em relação aos temas e candidatos.

Objetivos Específicos

- Realizar revisão bibliográfica (1).
- Investigar e pesquisar tecnologias apropriadas para o desenvolvimento do projeto; (2)
- Realizar a aquisição de dados sobre políticos através da internet; (3)
- Realizar pré-processamento dos dados, gerando o dataset; (4)
- Projetar a arquitetura do sistema e seus componentes; (5)
- Desenvolver um protótipo para web integrando-o com o sistema gerado; (6)
- Realizar testes para avaliar a qualidade das recomendações geradas pelo sistema. (7)

Metodologia

Tabela 1: Metodologia utilizada no desenvolvimento do projeto.

Objetivos	Metodologia
1	Estudo sobre sistemas de recomendação, filtragem de informação e aprendizagem de máquina.
2	Pesquisar sobre linguagens de programação, tipos de técnica de filtragem e tipos de arquitetura web que serão utilizadas.
3	Realizar a coleta ou a busca de dados relacionadas ao candidatos e usuários utilizando as técnicas definidas em 2.
4	Realizar a limpeza e pré-processamento dos dados obtidos para então definir os <i>datasets</i> .
5	Definir como o sistema será estruturado para implementar as técnicas estipuladas em conjunto com os <i>datasets</i> .
6	Desenvolver uma interface para o sistema com as ferramentas definidas em 2.
7	Utilizar métricas de desempenho para avaliar a recomendação gerada.

Materiais/Ferramentas Utilizadas

Figura 5: Ferramentas utilizadas para o desenvolvimento do projeto até agora: Python, Git/Github, Flask e SQLite.

11 / 36

Filtragem Colaborativa

Figura 6: Exemplo do processo de filtragem colaborativa. (Autor)

12 / 36

Filtragem Baseada em Conteúdo

Figura 7: Exemplo do processo de filtragem baseada em conteúdo. (Autor)

PAIC 2018-2019 Fundamentação Teórica 19 de abril de 2019 13 / 36

Filtragem Híbrida

Figura 8: Fluxograma da implementação da Filtragem Híbrida. (Autor)

Métricas de similaridade

Métricas de similaridade

São utilizadas para calcular o quão próximo o usuário é de outro usuário e vice-versa.

- Métricas mais utilizadas:
 - Distância de Manhattan.
 - Distância Euclidiana.
 - Correlação de Pearson.
 - Similaridade Cosseno.
- Em um ambiente 2D, cada pessoa é representa por um ponto (x,y).

Métricas de similaridade

Distância de Manhattan

- É o valor absoluto da diferença entre os valores x mais o valor absoluto da diferença entre os valores de y.
- Utilizada para dados densos sem grau de inflação.

$$d(x,y) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{\frac{1}{r}}$$

- r = 1 : distância de Manhattan.
- r = 2 : distância Euclidiana.

Técnica de Recuperação de Informação

TF - IDF (*Term Frequency - Inverse Document Frequency*)

- Técnica de recuperação de informação utilizada para mensurar a frequência do termo (TF) e sua frequência inversa no documento (IDF).
- Cada palavra possui seu próprio TF e IDF, o produto das técnicas é o peso TF-IDF do termo. (http://tinyurl.com/yxkmvlmt)

$$w_{i,j} = tf_{i,j} \times log\left(\frac{N}{df_i}\right)$$

- $tf_{i,j}$: número de ocorrências do termo i em j.
- df_i : número de documentos contendo i.
- N: número total de documentos.

Métricas de Desempenho

$$\mbox{Precisão} = \frac{\mbox{Candidatos relevantes recomendados}}{\mbox{Total de candidatos recomendados}}$$

$$Revocação = \frac{Candidatos \ relevantes \ recomendados}{Total \ de \ candidatos \ relevantes}$$

$$\mathsf{Medida\text{-}F} = \frac{2 \times (\mathsf{Precis\~ao} \times \mathsf{Revoca\~{c}\~ao})}{\mathsf{Precis\~ao} + \mathsf{Revoca\~{c}\~ao}}$$

Extração de Dados

Figura 9: A extração de dados dos candidatos foram obtidas a partir de suas propostas. (http://tinyurl.com/y4ay5vxu)

Figura 10: Fluxograma do processo de extração de dados da proposta. (Autor)

Dados de Usuário Reais

Figura 11: Análise das respostas dos usuários no formulário.

◆□ > ◆圖 > ◆圖 > ◆圖 >

Dados de Usuários Reais

Figura 12: Segunda análise das respostas dos usuários.

Arquitetura do Protótipo Web

Figura 13: Arquitetura utilizada para o protótipo. (Autor)

Diagrama de Banco de Dados

Figura 14: Relação entre as tabelas no banco de dados. (Autor)

Figura 15: Tela inicial do protótipo.

Figura 16: Tela de cadastro do protótipo.

Figura 17: Tela de login do protótipo.

Avalie os temas que você mais tem interesse nas propostas de um candidato.

Figura 18: Avaliação de áreas no protótipo.

Figura 19: Avaliação de candidatos no protótipo.

Figura 20: Perfil do usuário.

Figura 21: Tela de recomendação de candidatos para o usuário.

Resultados Parciais

Tabela 2: Desempenho do sistema por cada usuário,

Usuário	Precisão	Revocação	Medida-F	Nota
1	1.0	0.67	0.8	4.0
2	1.0	0.25	0.4	5.0
3	0.67	0.67	0.67	3.0
4	0.0	0.0	0.0	4.0
5	0.0	0.0	0.0	3.0
6	0.0	0.0	0.0	4.0
7	0.33	1.0	0.5	5.0
8	0.0	0.0	0.0	3.0

Continua

Resultados Parciais

Tabela 3: Desempenho do sistema por cada usuário.

Usuário	Precisão	Revocação	Medida-F	Nota
9	0.5	0.5	0.5	4.0
10	0.33	0.5	0.4	4.0
11	1.0	0.33	0.5	4.0
12	1.0	0.33	0.5	3.0
13	0.67	0.67	0.67	4.0
14	1.0	1.0	1.0	5.0
Média	53.57%	42.26%	42.38%	3.93

Cronograma

Tabela 4: Cronograma de atividades. Verde: concluído, amarelo: em andamento.

Mês	Atividades
08/18	Estudo sobre sistemas de recomendação e trabalhos relacionados
09/18 à 10/18	Estudo de técnicas de aprendizagem de máquina e filtragem de informação
11/18	Identificação dos principais requisitos do sistema, projeto da arquitetura e componentes
12/18 à 02/19	Desenvolvimento de componentes de filtragem de informação e aprendizagem de máquina
03/19 à 04/19	Desenvolvimento do Front-End e Back-End
05/19 à 06/19	Testes e Avaliação do Sistema
Todos	Elaboração de Relatórios e Artigos

Referências I

- PACIEVITCH, Thais. Eleições no Brasil, Infoescola. Disponível em: https://www.infoescola.com/direito/eleicoes-no-brasil/.
- BURGARELLI, Rodrigo. Voto inconsciente: o que o brasileiro leva em conta para decidir seu candidato a prefeito?, Estadão. Disponível em: http://alias.estadao.com.br/noticias/geral,voto-inconsciente-o-que-o-brasileiro-levaem-conta-para-decidir-seu-candidato-para-prefeito,10000077956
- ADOMAVICIUS, G.; TUZHILIN, A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. In: IEEE Transactions on Knowledge and Data Engineering, v.17, n.6, p.734-749, 2005.

Referências II

- MCCREA, N. (2015). An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples. Acesso em Dezembro de 2017, disponível em: https://www.toptal.com/machine-learning/machine-learning-theoryan-introductoryprimer/.
- MALAEB, M. Recall and Precision at k for Recommender Systems.
 Disponível em: https://medium.com/@m_n_malaeb/recall-and-precision-at-k-for-recommender-systems-618483226c54/>.
- Lim, K., Kim, C., Kim, G., & Choi, H. (2017, July). A Recommender System for Political Information Filtering. In International Conference of Design, User Experience, and Usability (pp. 129-145). Springer, Cham.

Desenvolvimento de um Sistema de Recomendação de Candidatos à Cargos Públicos Utilizando Técnicas de Aprendizagem de Máquina e Filtragem de Informação Projeto 14786

Orientador: Prof. Dr. Fábio Santos da Silva (fssilva@uea.edu.br)

Bolsista: Lucas Pereira Reis (1prs.eng@uea.edu.br)

Engenharia de Computação

Universidade do Estado do Amazonas Escola Superior de Tecnologia

19 de abril de 2019