Distributions and the Amice transform

Daniel Miller

August 7, 2016

All topological spaces are tacitly assumed to be Hausdorff. Let X be a topological space, \mathcal{O} a topological ring.

1 Topological preliminaries

Definition 1.1. We write $\mathscr{C}^0(X,\mathcal{O})$ for the set of continuous functions $f\colon X\to\mathcal{O}$. We give $\mathscr{C}^0(X,\mathcal{O})$ the compact-open topology, i.e. the topology generated by sets of of the form

$$B_{C,I} = \{ f \in \mathscr{C}(X, \mathcal{O}) \colon f(U) \subset I \},$$

for any compact $C \subset X$, $I \subset \mathcal{O}$.

Note that a *basis* of open sets for $\mathscr{C}^0(X,\mathcal{O})$ is given by finite intersections of the $B_{C,I}$. By definition of "topology generated by," to show a map $\phi\colon Y\to \mathscr{C}^0(X,\mathcal{O})$ is continuous, it suffices to show that $\phi^{-1}B_{C,I}$ is open for all C,I.

Lemma 1.2. The natural map $\mathcal{O} \times \mathscr{C}^0(X, \mathcal{O}) \to \mathscr{C}^0(X, \mathcal{O})$ is continuous.

Proof. Let $a \in \mathcal{O}$, $f \in \mathscr{C}^0(X,\mathcal{O})$ such that $af \in B_{C,I}$. Since multiplication $\mathcal{O} \times \mathcal{O} \to \mathcal{O}$ is continuous, for each $c \in C$, there exists open neighborhoods $J_c \ni a, J'_c \ni f(c)$ such that $J_c \cdot J'_c \subset I$. By compactness of C, we get open $J \ni a, J' \supset f(C)$ such that $J \cdot J' \subset I$. It follows that

$$J \cdot B_{C,J'} \subset I$$
,

and since $f \in B_{C,J'}$, we are done.

Thus for any space X, the module $\mathscr{C}^0(X,\mathcal{O})$ is a topological \mathcal{O} -module.

 \Box

Lemma 1.3. Let $\phi: X \to Y$ be a continuous map of topological spaces. Then $\phi^*: \mathscr{C}^0(Y, \mathcal{O}) \to \mathscr{C}^0(X, \mathcal{O}), f \mapsto f \circ \phi$, is continuous.

Proof. Note that for compact $C \subset X$ and open $I \subset \mathcal{O}$, we have

$$(\phi^*)^{-1}B_{C,I} = \{ f \in \mathscr{C}(Y,\mathcal{O}) \colon f(\phi(C)) \subset I \} = B_{\phi(C),I}.$$

Since $\phi(C)$ is compact, we are done.

To sum things up: $\mathscr{C}^0(-,\mathcal{O})$ is a contravariant functor from (Hausdorff) topological spaces to topological \mathcal{O} -modules. If \mathcal{O} is linearly topologized, then $\mathscr{C}^0(-,\mathcal{O})$ takes values in linearly topologized \mathcal{O} -modules. Clearly the same proofs work for $\mathscr{C}^0(-,M)$ and any topological \mathcal{O} -module M.

Definition 1.4. Write $\mathcal{D}_0(X,\mathcal{O})$ for the continuous dual of $\mathscr{C}^0(X,\mathcal{O})$. That is, an element $\mu \in \mathcal{D}_0(X,\mathcal{O})$ is a continuous linear functional $\mathscr{C}^0(X,\mathcal{O}) \to \mathcal{O}$. One often writes

$$\int_{Y} f(x) \, \mathrm{d}\mu(x) = \mu(f),$$

for $f \in \mathscr{C}^0(X, \mathcal{O})$.

Lemma 1.5. Let $\phi: X \to Y$ be a proper map. Then $\phi_*: \mathcal{D}_0(X, \mathcal{O}) \to \mathcal{D}_0(Y, \mathcal{O})$, given by $(\phi_*\mu)f = \mu(\phi^*f)$, is well-defined.

Proof. Clearly the expression $(\phi_*\mu)f = \mu(\phi^*f)$ is well-defined. What we need to check is that $\phi_*\mu$ is also a distribution. Let $I \subset \mathcal{O}$ be open. Since μ is a continuous, there exists compact $C_i \subset X$ and open $J_i \subset \mathcal{O}$ such that $\mu(\bigcap B_{C_i,J_i}) \subset I$. Note that

$$(\phi_*\mu)\left(\bigcap B_{\phi(C_i),J_i}\right) = \mu\left(\phi^*\left(\bigcap B_{\phi(C_i),J_i}\right)\right)$$

$$\subset \mu\left(\bigcap B_{\phi^{-1}(\phi(C_i)),J_i}\right)$$

$$\subset \mu\left(\bigcap B_{C_i,J_i}\right).$$

We used the properness of ϕ in that $\phi^{-1}(\phi(C_i))$ is continuous.

We give $\mathcal{D}_0(X,\mathcal{O})$ the open-open topology, namely that generated by sets of the form

$$B_{C,I,J} = \{ \mu \colon \mu(B_{C,I}) \subset J \}.$$

Theorem 1.6. The rule $\mathcal{D}_0(-,\mathcal{O})$ is a (covariant) functor from the category of topological spaces with proper maps to topological \mathcal{O} -modules.

Proof. All we need to do is check that if $\phi: X \to Y$ is proper, then $\phi_*: \mathscr{D}_0(X, \mathcal{O}) \to \mathscr{D}_0(Y, \mathcal{O})$ is continuous. Fix an open $B_{C,I,J} \subset \mathscr{D}_0(Y, \mathcal{O})$. It is easy to check that $\phi_*(B_{\phi^{-1}(C),I,J}) \subset B_{C,I,J}$, so we are done.

Often we will have interesting dense subspaces of $\mathscr{C}^0(X,\mathcal{O})$. For example, if X is totally disconnected, write $\mathscr{C}^{\infty}(X,\mathcal{O})$ for the subspace of locally constant functions. If X has some kind of analytic structure, we write $\mathscr{C}^{\dagger}(X,\mathcal{O})$ for the space of locally analytic functions. In general, if $\mathscr{C}^*(X,\mathcal{O}) \supset \mathscr{C}^{\infty}(X,\mathcal{O})$, then write $\mathscr{D}_*(X,\mathcal{O})$ for the topological dual of $\mathscr{C}^*(X,\mathcal{O})$. The inclusions $\mathscr{C}^{\infty} \hookrightarrow \mathscr{C}^* \hookrightarrow \mathscr{C}^0$ induce embeddings $\mathscr{D}_0 \hookrightarrow \mathscr{D}_* \hookrightarrow \mathscr{D}_{\infty}$. So an, e.g. locally analytic distribution is just a functional on \mathscr{C}^{∞} that admits a continuous extension to \mathscr{C}^{\dagger} .

2 Convolution

Henceforth, all (abstract) topological spaces are assumed compact. Moreover, we assume \mathcal{O} has a linear topology—that is, it has a basis of neighborhoods of zero given by additive subgroups. Let X,Y be two (compact) topological spaces. Let $\operatorname{pr}_X,\operatorname{pr}_Y$ be the obvious projection maps. We have an induced map

$$\operatorname{pr}_X^* \otimes \operatorname{pr}_Y^* \colon \mathscr{C}^0(X, \mathcal{O}) \otimes \mathscr{C}^0(Y, \mathcal{O}) \to \mathscr{C}^0(X \times Y, \mathcal{O}).$$

Namely, it sends $f \otimes g$ to the map $(x,y) \mapsto f(x)g(y)$. We make the following assumption:

The map
$$\operatorname{pr}_X^* \otimes \operatorname{pr}_Y^*$$
 has dense image. (dense)

This is satisfied for example if X and Y are profinite, or if X and Y are smooth manifolds.

Theorem 2.1. Let X, Y satisfy (dense). Then there is a unique map $\times : \mathscr{D}_0(X, \mathcal{O}) \otimes \mathscr{D}_0(Y, \mathcal{O}) \to \mathscr{D}_0(X \times Y, \mathcal{O})$ such that for all $\lambda \in \mathscr{D}_0(X, \mathcal{O})$, $\mu \in \mathscr{D}_0(Y, \mathcal{O})$, $f \in \mathscr{C}^0(X, \mathcal{O})$ and $g \in \mathscr{C}^0(Y, \mathcal{O})$, we have

$$\int_{X\times Y} f(x)g(y) \,\mathrm{d}(\lambda\times\mu)(x,y) = \left(\int_X f(x) \,\mathrm{d}\lambda(x)\right) \left(\int_Y g(y) \,\mathrm{d}\mu(y)\right).$$

Moreover, we have the Fubini-Tonelli theorem:

$$\int_{X \times Y} h(x, y) \, \mathrm{d}(\lambda \times \mu)(x, y) = \int_{X} \int_{Y} h(x, y) \, \mathrm{d}\mu(y) \, \mathrm{d}\lambda(x)$$
$$= \int_{Y} \int_{Y} h(x, y) \, \mathrm{d}\lambda(x) \, \mathrm{d}\mu(y),$$

for any $h \in \mathscr{C}^0(X \times Y, \mathcal{O})$.

Proof. Uniqueness of convolution follows trivially from (dense). By continuity, it suffices to show that $\lambda \times \mu$ is continuous on $\mathscr{C}^0(X, \mathcal{O}) \otimes \mathscr{C}^0(Y, \mathcal{O})$ with respect to the subspace topology. Given a neighborhood of zero $J \subset \mathcal{O}$, we know there exists C_X, J_X such that $\mu(B_{C_X, J_X})$...

[finish later...technicalities.]
$$\Box$$

We are especially interested in the case where G is a profinite group. We take $m:G\times G\to G$ to be the multiplication map. We often write * for the composite

$$\mathscr{D}_0(G,\mathcal{O})\otimes\mathscr{D}_0(G,\mathcal{O})\xrightarrow{\times}\mathscr{D}_0(G\times G,\mathcal{O})\xrightarrow{m_*}\mathscr{D}_0(G,\mathcal{O}).$$

That is,

$$\int_{G} f d(\lambda * \mu) = \int_{G} \int_{G} f(xy) d\lambda(x) d\mu(y).$$

Theorem 2.2. Let G be profinite. Then convolution makes $\mathcal{D}_0(G, \mathcal{O})$ into an associative algebra (possibly without unit).

Proof. This is purely formal.

3 The Amice transform

Let X be a profinite space. For the remainder of this section, we assume that \mathcal{O} is a profinite ring. Let M be a profinite \mathcal{O} -module.

Definition 3.1. Fix a continuous map $\psi: X \to M$. Symbolically, the *Amice transform* induced by ψ is the map ${}^{\psi}A: \mathscr{D}_0(X, \mathcal{O}) \to M$ given by

$${}^{\psi}\mathbf{A}_{\mu} = \int_{X} \psi(x) \,\mathrm{d}\mu(x). \tag{1}$$

Theorem 3.2. The equation (1) induces a well-defined continuous \mathcal{O} -linear map.

Proof. Since $M = \varprojlim M/I$ for $I \subset \mathcal{O}$ open, we may assume M itself is finite, hence discrete. Thus $\mathscr{C}^0(X, M) = \mathscr{C}^0(X, \mathcal{O}) \otimes M$; the theorem essentially follows. Explicitly, ψ is locally constant, so put

$${}^{\psi}\mathbf{A}_{\mu} = \sum_{m \in M} \mu(\chi_{\psi^{-1}(m)}) \cdot m.$$

Note that

$${}^{\psi}\mathbf{A}^{-1}(m) = \{ \mu \in \mathcal{D}_0(X, \mathcal{O}) \colon {}^{\psi}\mathbf{A}_{\mu} = m \}$$
$$\supset \bigcap_{n \in M} B_{\psi^{-1}(n), M, \delta_{m,n} m}.$$

It follows that ${}^{\psi}A$ is continuous. Linearity is trivial.

Given the isomorphism $\mathscr{C}^0(X, M) = \mathscr{C}^0(X, \mathcal{O}) \otimes M$ (one has to be careful when M is not finite) we see that the Amice transform is essentially $\mu \mapsto \mu(\psi)$. The following is a "non-commutative Fubini-Tonelli."

Lemma 3.3. Let $\langle \cdot, \cdot \rangle \colon M \times M \to M$ be a bilinear pairing. Then

$$\langle \varphi, \psi \rangle \mathbf{A}_{\lambda \times \mu} = \langle \varphi \mathbf{A}_{\lambda}, \psi \mathbf{A}_{\mu} \rangle.$$

Proof. To be precise, we are showing that

$$\int_X \int_X \langle \varphi(x), \psi(y) \rangle \, \mathrm{d} \lambda(x) \, \mathrm{d} \mu(y) = \left\langle \int_X \varphi(x) \, \mathrm{d} \lambda(x), \int_X \psi(x) \, \mathrm{d} \mu(y) \right\rangle.$$

It suffices to prove the result when M is finite and $\varphi = m\chi_E$, $\psi = n\chi_F$. This is a computation:

$$\langle \varphi, \psi \rangle \mathbf{A}_{\lambda * \mu} = \iint \langle m, n \rangle \chi_{E \times F} \, \mathrm{d}(\lambda \times \mu)(x, y)$$
$$= \langle m, n \rangle (\lambda \times \mu)(\chi_E \otimes \chi_F)$$
$$= \langle \lambda(m\chi_E), \mu(n\chi_F) \rangle,$$

which is exactly $\langle {}^{\varphi}A_{\lambda}, {}^{\psi}A_{\mu} \rangle$.

We are particularly interested in the case where X=G is a profinite group, M=A is an associative (but possibly non-commutative) \mathcal{O} -algebra, and $\langle a,b\rangle=ab$.

Theorem 3.4. Let $\psi \colon G \to A^{\times}$ be a continuous homomorphism. Then ${}^{\psi}A$ respects multiplication.

Proof. This is purely formal:

$$\psi \mathbf{A}_{\lambda*\mu} = \int_{G} \psi(x) \, \mathrm{d}(\lambda*\mu)(x)
= \int_{G} \int_{G} \psi(xy) \, \mathrm{d}\lambda(x) \, \mathrm{d}\mu(y)
= \int_{G} \int_{G} \psi(x)\psi(y) \, \mathrm{d}\lambda(x) \, \mathrm{d}\mu(y)
= \int_{G} \psi(x) \, \mathrm{d}\lambda(x) \int_{G} \psi(y) \, \mathrm{d}\mu(y)
= \psi \mathbf{A}_{\lambda} \psi \mathbf{A}_{\mu}.$$

For any profinite group G, we have the profinite group algebra $\mathcal{O}[\![G]\!]$. There is an obvious (continuous) injection $G \hookrightarrow \mathcal{O}[\![G]\!]$. It is for this map that the Amice transform becomes really interesting.

Theorem 3.5. Let $\iota: G \hookrightarrow \mathcal{O}\llbracket G \rrbracket$ the natural map. The Amice transform induces an isomorphism ${}^{\iota}A: \mathcal{D}_{\infty}(G,\mathcal{O}) \xrightarrow{\sim} \mathcal{O}\llbracket G \rrbracket$.

Proof. This is well-known. \Box

As a corollary, we see that $\mathscr{D}_0(G,\mathcal{O})$ and $\mathscr{D}_{\dagger}(G,\mathcal{O})$ are naturally subalgebras of $\mathscr{O}[\![G]\!]$. One generally applies this machinery to the simplest case—namely $G = \mathbf{Z}_p$. For that group there is a well-known isomorphism $\mathscr{O}[\![G]\!] \simeq \mathscr{O}[\![t]\!]$,

given by $x \mapsto (1+t)^x = \sum_{n\geqslant 0} \binom{x}{n} t^n$. In light of this, the Amice transform is generally written

$$A_{\mu} = \int_{\mathbf{Z}_p} (1+t)^x d\mu(x) = \sum_{n \geqslant 0} \left(\int_{\mathbf{Z}_p} {x \choose n} d\mu(x) \right) t^n.$$

It realizes various (now commutative) algebras of distributions on \mathbf{Z}_p as moreor-less explicit subalgebras of $\mathcal{O}[\![t]\!]$, generally defined by conditions on the growth rate of coefficients.