TD2 STRUCTURES ALGÉBRIQUES POUR L'INFORMATIQUE

Exercice 1

Soit $E = \mathbb{Z} \times \mathbb{N}^*$. On définit \mathcal{R} par : $(p,q)\mathcal{R}(p',q') \iff pq' = p'q$. Montrer que \mathcal{R} est une relation d'équivalence. Identifier E/\mathcal{R} .

Exercice 2

- 1. On considère la partition de \mathbb{Z}^2 en la réunion de droites verticales. Déterminer la relation d'équivalence définie sur \mathbb{Z}^2 associée à cette partition.
- 2. On considère la partition de \mathbb{Z}^2 en la réunion de droites horizontales. Déterminer la relation d'équivalence définie sur \mathbb{Z}^2 associée à cette partition.

Exercice 3

Dans \mathbb{C} , on définit la relation \mathcal{R} par : $z\mathcal{R}z'\iff |z|=|z'|$. Montrer que \mathcal{R} est une relation d'équivalence et déterminer la classe d'équivalence de $z\in\mathbb{C}$.

Exercice 4

On définit sur \mathbb{R} la relation $x\mathcal{R}y$ si et seulement si $x^2 - y^2 = x - y$.

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Calculer la classe d'équivalence d'un élément x de \mathbb{R} . Combien y-a-t-il d'éléments dans cette classe?

Exercice 5

On munit l'ensemble $E = \mathbb{R}^2$ de la relation \mathcal{R} définie par

$$(x,y) \mathcal{R}(x',y') \iff \exists a > 0, \ \exists b > 0 \mid x' = ax \text{ et } y' = by.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Donner la classe d'équivalence des éléments A = (1,0), B = (0,-1) et C = (1,1).
- 3. Déterminer les classes d'équivalence de \mathcal{R} .

Exercice 6

Soit E un ensemble. On définit sur $\mathcal{P}(E)$, l'ensemble des parties de E, la relation suivante :

$$A \mathcal{R} B \text{ si } A = B \text{ ou } A = \bar{B}.$$

où \bar{B} est le complémentaire de B (dans E). Démontrer que R est une relation d'équivalence.

Exercice 7

On définit sur \mathbb{Z} la relation $x\mathcal{R}y$ si et seulement si x+y est pair. Montrer qu'on définit ainsi une relation d'équivalence. Quelles sont les classes d'équivalence de cette relation?

Exercice 8

Soit E et F deux ensembles et $f: E \to F$ une application. On définit sur E la relation $x\mathcal{R}y$ si et seulement si f(x) = f(y).

- 1. Montrer que \mathcal{R} est une relation d'équivalence. Pour $x \in E$, on note [x] la classe de x.
- 2. Montrer que $\psi : E/\mathcal{R} \to F$ définie par $\psi([x]) = f(x)$ est une application injective. A quelle condition ψ est surjective?
- 3. En déduire que l'application $\phi: E/\mathcal{R} \to Im\ f$ définie par $\phi([x]) = f(x)$ est bijective.

Exercice 9

On rappelle que deux ensembles sont de même cardinal (on dit encore qu'ils sont équipotents) si et seulement si il existe une bijection de l'un dans l'autre. Pour $a,b \in \mathbb{R}$, [a,b] désigne l'intervalle réel défini par $\{x \in \mathbb{R} : a \leq x \leq b\}$.

- 1. Montrer que les ensembles $\left[-\frac{1}{2},\frac{1}{2}\right]$ et $\left[0,1\right]$ sont de même cardinal.
- 2. Soit k un réel strictement positif. Montrer que les ensembles [0,1] et [0,k] sont de même cardinal.

Exercice 10

Un ensemble est $d\acute{e}nombrable$ si il a le même cardinal que \mathbb{N} . Un ensemble est au plus $d\acute{e}nombrable$, si il est fini ou dénombrable.

- 1. Montrer que \mathbb{N}^* est dénombrable.
- 2. On rappelle que l'application $f: \mathbb{N}^2 \to \mathbb{N}^*$, définie par $f(n,p) = 2^n(2p+1)$ est bijective. Montrer que la composée de deux bijections est une bijection. En déduire que \mathbb{N}^2 est dénombrable.
- 3. Soit l'ensemble des mots finis sur l'alphabet $\{0,1\}$, noté $\{0,1\}^*$. On considère l'application $f:\{0,1\}^* \to \mathbb{N}^2$ définie de la manière suivante. Si ε est le mot vide $f(\varepsilon)=(0,0)$ et $\omega \in \{0,1\}^*$, $\omega \neq \varepsilon$, $f(\omega)=(p,q)$ où p est le nombre de zéros consécutifs à gauche de ω et q est l'entier dont l'écriture en base deux est ω .
 - (a) Quelle est l'image du mot 00101? l'image du mot 00001? l'image du mot 00000? l'image du mot 000?
 - (b) Calculer $f^{-1}(\{(2,3)\})$, $f^{-1}(\{(0,5)\})$ et $f^{-1}(\{(5,0)\})$.
 - (c) Montrer que f est bijective. En déduire que $\{0,1\}^*$ est dénombrable.

Exercice 11

- 1. Montrer que l'ensemble des entiers naturels impairs est dénombrable.
- 2. Soit $p \in \mathbb{N}^*$. Montrer que l'ensemble des entiers positifs multiples de p, est dénombrable.
- 3. Soit l'application $f: \mathbb{Z} \to \mathbb{N}$ définie par f(x) = 2x, si x est pair et f(x) = -2x 1, si x est impair. Montrer que f est bijective. En déduire que \mathbb{Z} est dénombrable.

Exercice 12

Soit E et F deux ensembles. On admet que si il existe une injection de E dans F, alors $|E| \leq |F|$.

- 1. Montrer que si $A \subset B$, alors $|A| \leq |B|$.
- 2. Sur $\mathbb{N} \times \mathbb{N}^*$, on définit la relation \mathcal{R} définie par

$$(x,y) \mathcal{R} (x',y') \iff xy' - x'y = 0$$

Montrer que \mathcal{R} est une relation d'équivalence sur $\mathbb{N} \times \mathbb{N}^*$. Quelles sont les classes d'équivalence de cette relation?

- 3. Montrer que $|\mathbb{N}| \leq |\mathbb{Q}_+|$.
- 4. Montrer que $|\mathbb{Q}_+| \leq |\mathbb{N} \times \mathbb{N}|$.
- 5. En déduire que $|\mathbb{Q}_+|$ est dénombrable.