In [150... %run my_functions_library.ipynb # Running the entire library here because # importing the library is not working here Question 1 LU decomposition using Doolittle's condition i.e. L[i][i]=1 In [151... print("The original matrix is: ") # reading and printing the matrix given in the question A1, row, col = read_matrix('matrix_Q1.txt') print_matrix(A1, row, col) b_vector=[6, -3, -2, 0] # defining the vector b # partial pivoting to avoid division by zero at pivot place A1, b_vector = partial_pivot_LU(A1, b_vector, row) A1 = LU_doolittle(A1, row) # calling LU decomposition function print("The transformed LU matrix is ") print_matrix(A1, row, row) x = [0 for i in range(row)]x = backward_subs_doolittle(A1, row, b_vector) # calling function for backward substitution print("The solutions are : ") print() for i in range(row): print("x["+str(i+1)+"] = "+str(x[i]))# printing the solutions The original matrix is: 0.0 1.0 1.0 2.0 0.0 1.0 -2.0 0.0 2.0 -1.0 0.0 1.0 2.0 3.0 -2.0 1.0 The transformed LU matrix is 2.0 1.0 0.0 1.0 0.0 1.0 -2.0 0.0 -2.0 1.0 2.0 2.0 2.0 1.0 1.5 -3.0 The solutions are: x[1] = 1.0x[2] = -1.0x[3] = 1.0x[4] = 2.0LU decomposition using Crout's condition i.e. U[i][i]=1 In [152... print("The original matrix is: ") # reading and printing the matrix given in the question A2, row, col = read_matrix('matrix_Q1.txt') print_matrix(A2, row, col) b_vector=[6, -3, -2, 0] # defining the vector b A2, b_vector = partial_pivot_LU(A2, b_vector, row) # partial pivoting to avoid division by zero at pivot place A2=LU_crout(A2, ro) # calling LU decomposition function print("The transformed LU matrix is ") print_matrix(A2, row, row) x = [0 for i in range(row)]x= backward_subs_crout(A2, row, b_vector) # calling function for backward substitution print("The solutions are : ") print() for i in range(row): print("x["+str(i+1)+"] = "+str(x[i]))# printing the solutions The original matrix is: 1.0 0.0 1.0 2.0 0.0 1.0 -2.0 0.0 1.0 2.0 -1.0 0.0 2.0 1.0 3.0 -2.0 The transformed LU matrix is 2.0 0.0 1.0 1.0 1.0 0.0 -2.0 0.0 1.0 2.0 2.0 -1.0 2.0 1.0 3.0 -3.0 The solutions are: x[1] = 1.0x[2] = -1.0x[3] = 1.0x[4] = 2.0Question 2 In [153... print("The original matrix is : ") B, row, col=read_matrix('matrix_Q2.txt') # reading and printing the matrix given in the question print_matrix(B, row, row) C=copy.deepcopy(B) # deepcopy for unchanged matrix required for inverse I_matrix=return_identity(row) B, I_matrix = partial_pivot_LU(B, I_matrix, row) # Then partial pivoting is done for both matrix and vector. B=LU_doolittle(B, row) # calling LU decomposition function print("The transformed LU matrix is ") print_matrix(B, row, row) det=determinant(B,row) # storing the determinant **if** det **==** 0: # Checking if inverse exists print("Determinant = zero.\nInverse doesn't exist.") else: print("The inverse is:") # Then the decomposition algorithm is applied. inverse= inverse_by_LU(C, row) # Calculating and printing inverse print_matrix(inverse, row, row) print("Multiplying original matrix with the inverse for Verification: ") # Verification: mm, r, c=matrix_multiply(C, row, row, inverse, row, row) # to see if it gives indentity matrix on multiplication # of our obtained inverse matrix with original matrix print_matrix(round_matrix(mm),r,c)

The transformed LU matrix is 3.0 7.0 1.0 0.0 2.0 8.0 0.0 0.0 1.0

0.5

The original matrix is :

8.0

1.0

0.0

1.0

-4.0

6.0

2.0

1.0

0.0

0.0

6.0

2.0

6.0

1.666666666666672

-0.66666666666667

-0.333333333333333

-1.8333333333333333

-0.3333333333333333

0.1666666666666666

0.8333333333333333

0.3333333333333333

reading and printing the matrix given in the question

partial pivoting to avoid division by zero at pivot place

calling Cholesky decomposition function

calling backward substitution Cholesky function

0.0

0.0

defining the vector b

printing the solutions

0.0

2.0

0.0

1.0

7.0

0.0

0.0

0.0

3.0

0.0

1.0

0.0

0.0

0.0

In [154...

Question 3

The inverse is: -0.250000000000000006 0.0833333333333333 0.16666666666666666

-0.08333333333333333 0.66666666666666 Multiplying original matrix with the inverse for Verification: 0.0 0.0

0.0 1.0 0.0 0.0 -0.0 1.0 0.0 -0.0 -0.0 1.0

print("The original matrix is: ") C, row, col=read_matrix('matrix_Q3.txt') print_matrix(C, row, col) b_vector=[2.20, 2.85, 2.79, 2.87] C, b_vector = partial_pivot_LU(C, b_vector, row) C=LU_Cho(C, row)

Solving using Cholesky decomposition

round_matrix(C) print_matrix(C, row, row) a=backward_subs_Cholesky(C, row, b_vector) print("The solutions are : ") print()

print("The transformed Cholesky matrix is: ")

print('%.2f'%a[i]) The original matrix is: 10.0 1.0 0.0 2.2 2.5 1.0 12.0 -0.3 2.85 1.1 0.0 -0.3 9.5 0.0 2.79 6.0 2.5 1.1 0.0 2.87

The transformed Cholesky matrix is: 3.16 0.32 0.0 0.79 0.32 3.45 0.25 -0.09 0.0 -0.09 3.08 0.01 0.79 0.25 0.01 2.31 The solutions are :

for i in range(row):

0.10 0.20 0.30 0.40 In []: