

Walks, trails and paths

A walk in a graph G consists of an alternating (non empty) sequence of vertices and edges. $P = v_0 e_1 v_1 e_2 v_2 \dots e_k v_k$, such that $v_0, v_1, \dots, v_k \in V$, $e_1, e_2, \dots, e_k \in E$ and vertices v_{i-1} and v_i are endpoints for edge e_i , with $i = 1, \dots, k$. The vertex v_0 is called **inicial vertex**, the vertex v_k is called **end vertex** and the other v_1, \dots, v_{k-1} are intermediate vertices of the walk P.

The **lenght** of the walk P is the number of edges in the sequence, eventually repeated and it is denoted by comp(P).

A **trail** is a walk in which all edges are distinct; a **path** is a walk in which all vertices are distinct.

A closed trail is called a **circuit**. A circuit in which the first vertex appears exactly twice (at the beginning and the end) and in which no other vertex appears more than once is a *cycle*.

Example 1. $v_1v_3v_4v_2v_3$ is a walk with length four in the following graph.

Because the graph is simple its enough to refer the vertices. The walk is also a trail because don't repeat edges but is not a path because the vertex v_3 appear twice.

Exercise 1. Considering the connected Petersen graph pictured, give an example of:

a. a walk that is not a path starting at vertex v_3 ;

b. a walk that is not a trail;

c. a cycle with length five.

Solution

- a. To be a walk that is not a pat,h starting at vertex 3 it must have repeated vertices, for example, $v_3v_8v_6v_9v_7v_2v_3v_8v_{10}$.
- b. To be a walk but not a trail, the previous example works, because the edge v3v8 is repeated.
- c. An example of a cycle with length five, could be, $v_6v_8v_{10}v_7v_9v_6$ and also, the more evident, $v_1v_2v_3v_4v_5v_1$.

Connectivity

Let G be a graph. Two vertices v and w of G are connected if, and only if, there is a walk from v to w. The graph G is **connected** if, and only if, given any two vertices v and w in G, there is a walk from v to w.

Example 2. The graph G_1 is connected because there is a walk between all pairs of vertices.

Example 3. The graph pictured is not connected, because there is no walk, for example, between the vertex a and the vertex b.

A graph H is a **connected component** of a graph G if, and only if,

- H is subgraph of G;
- \bullet *H* is connected; and
- no connected subgraph of G has H as a subgraph and contains vertices or edges that are not in H.

A **bridge** is an edge that when deleted from the graph is obtained two connected component of the original graphs.

Example 4. The graph pictured is a connected graph with a bright, the edge v_3v_4 .

If we delete the edge v_3v_4 we obtain the following subgraph with two connected components.

References

- [1] Edgar Goodair and Michael Parmenter. Discrete Mathematics with Graph Theory. (3rd Ed.) Pearson, 2006.
- [2] Kenneth H. Rosen. Discrete Mathematics and its Application. (7th Ed.) McGraw Hill, 2012.
 Exercises in MathE platform