# 双臂电桥

李霄奕 PB21511897

#### 1 摘要

电阻按照阻值大小可分为高电阻(100K $\Omega$  以上)、中电阻( $1\Omega\sim100$ K $\Omega$ )和低电阻( $1\Omega$  以下)三种。低电阻测量有其特殊性:一般来说导线本身以及接点处接触状况引起的电路中附加电阻大约> $0.1\Omega$ ,在测量低电阻时就不能将其忽略掉。双臂电桥(又称开尔文电桥) 考虑低电阻测量特点,消除了附加电阻的影响,可用于 $10^{-5}\sim10^2\Omega$  电阻的准确测量。

#### 2 Abstract

According to the resistance value, the resistance can be divided into three types: high resistance (more than  $100\text{K}\Omega$ ), medium resistance ( $1\Omega\sim100\text{K}\Omega$ ) and low resistance (less than  $1\Omega$ ). Low resistance measurement has its particularity: generally speaking, the additional resistance in the circuit caused by the wire itself and contact conditions at the contact point is about  $0.1\Omega$ , which cannot be ignored when measuring low resistance. Double-arm bridge (also known as Kelvin bridge) considers the characteristics of low resistance measurement, eliminates the influence of additional resistance, and can be used for accurate measurement of  $10^{-5}\sim10^{2}\Omega$  resistance.

### 3 关键词

双臂电桥; 小电阻

#### 4 简介

#### 4.1 低电阻测量简介

导线电阻和接触电阻是怎样对低电阻测量结果产生影响的?以伏安法测电阻为例,我们分析问题出在哪里。图 7-1 所示,用安培表和毫伏表按欧姆定律测量电阻 R<sub>x</sub>,考虑到连接电流表、毫伏表与待测电阻的导线电阻及各接点处的接触电阻后,等效电路图如图 7-2 所示,其中,R<sub>i1</sub>、R<sub>i2</sub>、R<sub>x1</sub>、R<sub>x2</sub>、R 和 R<sub>ix2</sub>分别为各支路等效的附加电阻。由于电压表内阻较大,当待测电阻 R<sub>x</sub> 较小时,

毫伏表上的分流忽略不计,电流表流过的电流近似等于流过待测电阻的电流。由于等效附加电阻  $R_{x1}$  和  $R_{x2}$  远小于毫伏表内阻  $R_g$ ,因此它们对于毫伏表的测量影响也可忽略不计。此时毫伏表测量的电压为( $R_x+R_{ix1}+R_{ix2}$ )上的压降。如果  $R_x$  低至  $1\Omega$ ,就不能忽略接触电阻  $R_{ix1}$  和  $R_{ix2}$  对测量的影响了。按照欧姆定律 R=V/I 得到的电阻是  $R_x$  与附加电阻  $R_{ix1}$  和  $R_{ix2}$  电阻总和  $R_x+R_{ix1}+R_{ix2}$ 。





图 7-1 伏安法测量电阻电路原理图

图 7-2 伏安法测量电阻等效电路图

#### 4.2 四端接法思想

显然,如果  $R_{ix1}$  和  $R_{ix2}$  不存在,即等效电路如图 7-5 所示,那么此时毫伏表上测得电压就仅为  $R_x$  的压降,由  $R_x = V/I$  即可准确测量出  $R_x$ 。因此,为了消除接触电阻对于测量结果的影响,需要改变图 7-3 中电阻两端接法,将低电阻  $R_x$  以四端接法接入测量电路,如图 7-4 所示,获得图 7-5 所示的等效电路。电流由电流头 A 端流入从 D 端流出,待测低电阻为电压头 B、C 间的电阻,B、C 间压降即为待测电阻两端的压降。许多低电阻的标准电阻都做成四端钮方式,接于电流测量回路中的电流头两端(A、D),与接于电压测量回路中的电压接头两端(B、C)是各自分开的。



图 7-3 两端接法电路图



图 7-4 四端接法电路图



图 7-5 四端接法等效电路图

#### 4.3 双臂电桥原理

将低电阻的四端接法应用于电桥法测电阻,就发展成双臂电桥,电路如图 7-6 所示,其等效电路如图 7-7 所示。标准电阻  $R_n$  电流头接触电阻为  $R_{in1}$ 、 $R_{in2}$ ,待测电阻  $R_x$  的电流头接触电阻为  $R_{ix1}$ 、 $R_{ix2}$ ,都在双臂电桥测量回路的电流回路内。标准电阻电压头接触电阻为  $R_{n1}$ 、 $R_{n2}$ ,待测电阻  $R_x$  电压头接触电阻为  $R_{x1}$ 、 $R_{x2}$ ,连接到双臂电桥电压测量回路中,因为它们与较大电阻  $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$  相串连,故其影响可忽略。



图 7-6 双臂电桥电路图



图 7-7 双臂电桥等效电路图

对图 7-6 和图 7-7 进行分析。当电桥平衡时,通过检流计 G 的电流 IG= 0, C、D 两点电位相等,根据基尔霍夫定律,可得:

$$R_{x} = \frac{R}{R_{1}}R_{n}$$

# 5 实验仪器简介

# 5.1 实验仪器

QJ36型双臂电桥(0.02级); JWY型直流稳压电源(5A15V); 直流复射式检流计(AC15/4或/6型); 低电阻四端测试架; 待测铜、铝棒各一根; 电流表(5A); 千分尺等。

### 5.2 电路元件

限流电阻;双刀双掷换向开关;标准电阻  $(0.001\Omega, 0.01\ \%)$ ;超低电阻 (小于  $0.001\Omega)$  连接线;导线等。

## 6测量数据获取

#### 6.1 基本数据

千分尺起始读数: +0.05mm; 精度 $\Delta_b=\pm0.04$ mm;

电阻精度等级:  $R_1=R_2=1000\Omega$  (0.02 级);  $R_n=0.001\Omega$  (0.01 级);

电阻箱的相对误差:  $\Delta = \pm \left(0.02\% + \frac{nb}{R}\right)$ ; b=0.02Ω; 其中 n 为旋钮个数;

有效电阻长度 $\Delta_L$ =±2mm;  $\Delta_{\emptyset}$ =±1.2mm;

铜棒、铝棒的长度 L=30cm;

#### 6.2 铜棒、铝棒直径(单位: mm; 未进行起始读数修正)

|    | 1     | 2     | 3     | 4     | 5     | 6     |
|----|-------|-------|-------|-------|-------|-------|
| 铜棒 | 5.015 | 5.015 | 5.010 | 5.010 | 5.017 | 5.008 |
| 铝棒 | 5.035 | 5.025 | 5.025 | 5.020 | 5.035 | 5.030 |

#### 6.3 铜棒、铝棒电阻(单位:Ω)

|   | 1       | 2       | 3       |
|---|---------|---------|---------|
| 正 | 1207.70 | 1210.08 | 1210.18 |
| 反 | 1207.72 | 1203.18 | 1202.18 |
| 正 | 553.00  | 552.30  | 552.20  |
| 反 | 548.10  | 548.00  | 548.40  |

7 分析与讨论

## 7.1 理论值计算

根据前文推导可得:

$$R_{x} = \frac{R}{R_{1}} R_{n}$$

且有:

$$R_{x} = \frac{R}{R_{1}}R_{n}$$

$$R_{x} = \rho \frac{L}{S}$$

且:

$$s = \pi \left(\frac{D}{2}\right)^2$$

可得电阻率ρ的理论公式为:

$$\rho = \frac{\pi R R_n D^2}{4R_1 L}$$

因此通过数据可得

D <sub>铜棒</sub>=4.9625mm; D <sub>铝棒</sub>=4.9783mm; R <sub>铜棒</sub>=1206.84Ω; R <sub>铝棒</sub>=550.33Ω; 求得:

$$\rho_{\text{flak}} = 7.78 \times 10^{-8} \ (\text{m*}\Omega)$$

$$\rho_{\text{H}}=3.57*10^{-8} \text{ (m*}\Omega)$$

#### 7.2 不确定度计算

以下计算铜棒电阻率的不确定度:

测量值 R 的不确定度有: 
$$\sigma_R = \sqrt{\frac{\sum (R-\bar{R})^2}{n-1}} = 3.41\Omega$$

电阻箱的不确定度有: 
$$\Delta = \pm \left(a\% + \frac{nb}{R}\right) = 2.1*10^{-4}\Omega$$

取置信概率 p=0.95; 由 n=6 可知  $t_p=2.57$ ;  $k_p=1.96$ ,R 的合成不确定度有:

$$u_R = \sqrt{(t_P \frac{\sigma_R}{\sqrt{n}})^2 + (k_p \Delta R)^2} = 3.61\Omega$$

 $R_n$ 的不确定度有:  $u_{R_n} = k_P \Delta R_n = 1.96*10^{-7} \Omega$ 

R<sub>1</sub>的不确定度有: 
$$u_{R_1} = \pm \left(a\% + \frac{nb}{R}\right) = 0.392\Omega$$

测量 D 的不确定度有: 
$$\sigma_D = \sqrt{\frac{\sum (D-\bar{D})^2}{n-1}} = 3.619*10^{-3} \text{mm}$$

千分尺的不确定度有:  $\Delta_B=0.004$ mm

取置信概率 p=0.95; 由 n=6 可知  $t_p$ =2.57;  $k_p$ =1.96, D 的合成不确定度有:

$$u_D = \sqrt{\left(t_P \frac{\sigma_D}{\sqrt{n}}\right)^2 + \left(k_p \frac{\Delta_B}{c}\right)^2} = 4.61 * 10^{-3} \text{mm}$$

L 的不确定度有: 
$$u_L = k_p \frac{\sqrt{\Delta_{\ell\ell}^2 + \Delta_{\ell\ell}^2}}{c} = 0.152 \text{cm}$$

最终,求得铜棒电阻率的不确定度 $u_o$ 有:

$$u_{\rho} = \rho \sqrt{\left(\frac{u_{R_n}}{R_n}\right)^2 + \left(\frac{u_R}{R}\right)^2 + \left(\frac{u_{R_1}}{R_1}\right)^2 + \left(\frac{u_D}{D}\right)^2 + \left(\frac{u_L}{L}\right)^2} = 4.65*10^{-10} \text{ (m*$\Omega$)}$$

#### 8 结论

铝棒的电阻率 $\rho_{\text{H}*}=3.57*10^{-8}$ ( $m*\Omega$ )

铜棒的电阻率 $\rho_{\text{HM}}$ =  $(7.78*10^{-8}\pm4.65*10^{-10})$   $(m*\Omega)$ 

主要的不确定度贡献来自铜棒长度L的测量

#### 9 思考题

 如果将标准电阻和待测电阻电流头和电压头互换,等效电路有何变化, 有什么不好?

答: 互换电流头与电压头之后, 电流表与待测电阻并联, 电压表串联, 从而使得电流表的内阻带来新的误差。

2. 在测量时,如果被测低电阻的电压头接线电阻较大(例如被测电阻远离电桥,所用引线过细过长等),对测量准确度有无影响?

答:可能有影响。若不忽略电压头的接线电阻 R<sub>i</sub>,则有:

$$R_{x} = \frac{R}{R_{1}} \cdot R_{n} + \frac{R \cdot R_{i}}{R_{3} + R_{2} + R_{i}} \left( \frac{R_{2}}{R_{1}} - \frac{R_{3}}{R} \right)$$

实际实验中不能严格做到 $\frac{R_2}{R_1} - \frac{R_3}{R} = 0$ ,则  $R_i$  对于测量准确度可能存在影响

## 10 参考文献

[1] 吴永华,霍剑青,浦其荣等。大学物理实验 第一册 第二版. 北京: 高等教育出版社,2005: 96-106.