Numerical Analysis homework # 2

Wang Hengning 3230104148 *

Computational mathematics 2301, Zhejiang University

Due time: October 20, 2025

I. Analysis of the Linear Interpolation for $\frac{1}{x}$

i) Determining $\xi(x)$ Explicitly

The function values at the nodes are $f(x_0) = f(1) = 1$ and $f(x_1) = f(2) = \frac{1}{2}$.

$$p_1(f;x) = f(x_0)\frac{x - x_1}{x_0 - x_1} + f(x_1)\frac{x - x_0}{x_1 - x_0}$$

$$p_1(f;x) = -(x-2) + \frac{1}{2}(x-1) = -\frac{1}{2}x + \frac{3}{2}$$

$$R_1(x) = \frac{1}{x} - \left(-\frac{1}{2}x + \frac{3}{2}\right) = \frac{(x-1)(x-2)}{2x}$$

$$f''(x) = 2x^{-3} = \frac{2}{x^3}$$

$$\frac{(x-1)(x-2)}{2x} = \frac{f''(\xi(x))}{2}(x-1)(x-2)$$

Since $x \in (1,2)$, the term (x-1)(x-2) is non-zero, allowing us to simplify the equation:

$$\frac{1}{2x} = \frac{f''(\xi(x))}{2} \implies f''(\xi(x)) = \frac{1}{x}$$

Substituting the expression for the second derivative, $f''(\xi(x)) = \frac{2}{(\xi(x))^3}$:

$$\frac{2}{(\xi(x))^3} = \frac{1}{x} \implies (\xi(x))^3 = 2x$$

Thus:

$$\xi(x) = \sqrt[3]{2x}, \quad x \in (1,2)$$

ii) Extension and Calculation of Extrema

Since $\xi(x)$ is a **monotonically** increasing function on [1, 2], its minimum and maximum values occur at the endpoints, its maximum value occurs at the left endpoint x = 1:

$$\min_{x \in [1,2]} \xi(x) = \xi(1) = \sqrt[3]{2 \cdot 1} = \sqrt[3]{2}$$

$$\max_{x \in [1,2]} \xi(x) = \xi(2) = \sqrt[3]{2 \cdot 2} = \sqrt[3]{4}$$

$$\max_{x \in [1,2]} f''(\xi(x)) = \max_{x \in [1,2]} \left(\frac{1}{x}\right) = \frac{1}{1} = 1$$

^{*}Electronic address: whning@zju.edu.cn

II. Construction of a Non-negative Interpolating Polynomial

To find a polynomial $p \in \mathbb{P}_{2n}^+$ such that it interpolates the given data points (x_i, f_i) for i = 0, 1, ..., n, where $f_i \geq 0$. Let $l_k(x)$ for k = 0, 1, ..., n be the **Lagrange basis polynomials** corresponding to the distinct nodes $\{x_j\}_{j=0}^n$. These polynomials satisfy the property $l_k(x_j) = \delta_{kj}$.

Construction A

Consider the polynomial defined as a sum of squares:

$$p(x) = \sum_{k=0}^{n} f_k l_k^2(x)$$

The degree of each basis polynomial $l_k(x)$ is n, which implies the degree of $l_k^2(x)$ is 2n. Consequently, the degree of p(x) is at most 2n.

Given that $f_k \geq 0$ and $l_k^2(x) \geq 0$ for any real x, the sum p(x) is non-negative for all $x \in \mathbb{R}$. Thus, $p(x) \in \mathbb{P}_{2n}^+$. Verifying the interpolation conditions at the nodes x_i :

$$p(x_i) = \sum_{k=0}^{n} f_k l_k^2(x_i) = f_i l_i^2(x_i) + \sum_{k \neq i} f_k l_k^2(x_i) = f_i(1)^2 + \sum_{k \neq i} f_k(0)^2 = f_i$$

This construction satisfies all requirements.

Construction B

Alternatively, consider the polynomial formed by squaring a sum:

$$p(x) = \left(\sum_{k=0}^{n} \sqrt{f_k} \times l_k(x)\right)^2$$

Let $S(x) = \sum_{k=0}^{n} \sqrt{f_k} l_k(x)$. Since each $l_k(x)$ is of degree n, the degree of S(x) is at most n. Therefore, the degree of $p(x) = [S(x)]^2$ is at most 2n.

The squared form inherently ensures that $p(x) \geq 0$ for all real x, so $p(x) \in \mathbb{P}_{2n}^+$.

Evaluating at the interpolation nodes x_i :

$$p(x_i) = \left(\sum_{k=0}^{n} \sqrt{f_k} l_k(x_i)\right)^2 = \left(\sqrt{f_i} l_i(x_i)\right)^2 = \left(\sqrt{f_i} \cdot 1\right)^2 = f_i$$

This alternative also fulfills all the problem's conditions.

III. Analysis of Divided Differences for $f(x) = e^x$

Proof by Induction

Let the statement be $P(n): f[t,t+1,\ldots,t+n] = \frac{(e-1)^n}{n!}e^t$. The base case n=0 is trivial, as $f[t] = e^t = \frac{(e-1)^0}{0!}e^t$. Assume P(n) holds for some $n \ge 0$. For n+1, the recursive definition of divided differences is:

$$f[t, \dots, t+n+1] = \frac{f[t+1, \dots, t+n+1] - f[t, \dots, t+n]}{n+1}$$

By the inductive hypothesis, the numerator is:

$$\frac{(e-1)^n}{n!}e^{t+1} - \frac{(e-1)^n}{n!}e^t = \frac{(e-1)^n}{n!}e^t(e-1) = \frac{(e-1)^{n+1}}{n!}e^t$$

Substituting this back confirms P(n+1):

$$f[t, \dots, t+n+1] = \frac{1}{n+1} \left(\frac{(e-1)^{n+1}}{n!} e^t \right) = \frac{(e-1)^{n+1}}{(n+1)!} e^t$$

Thus, the formula holds for all integers n > 0.

Determination of ξ

From the result above, setting t = 0 yields:

$$f[0, 1, \dots, n] = \frac{(e-1)^n}{n!}$$

Corollary 2.22 provides an alternative expression for some $\xi \in (0, n)$:

$$f[0,1,\ldots,n] = \frac{f^{(n)}(\xi)}{n!}$$

For $f(x) = e^x$, the *n*-th derivative is $f^{(n)}(x) = e^x$. Equating the two expressions gives:

$$\frac{(e-1)^n}{n!} = \frac{e^{\xi}}{n!}$$

Solving for ξ directly gives:

$$\xi = n \ln(e - 1) > n \ln(1.7) = \frac{n}{2} \ln(2.89) > \frac{n}{2} \ln(e) = \frac{n}{2}$$

The point ξ is located to the right of the midpoint of the interval (0, n).

IV. Newton Interpolation and Minimum Approximation

Newton Form of the Interpolating Polynomial

The given data points are (0,5), (1,3), (3,5), and (4,12). The divided differences are computed and organized in the following table:

The Newton form of the interpolating polynomial $p_3(x)$ is constructed using the top diagonal of the table.

$$p_3(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2)$$

Substituting the coefficients and nodes gives:

$$p_3(x) = 5 - 2x + 1 \cdot x(x-1) + \frac{1}{4}x(x-1)(x-3)$$

Approximation of the Minimum

To find the minimum, we first find the derivative of the polynomial $p_3(x)$. Expanding the polynomial simplifies differentiation:

$$p_3(x) = 5 - 2x + (x^2 - x) + \frac{1}{4}(x^3 - 4x^2 + 3x) = \frac{1}{4}x^3 - \frac{9}{4}x + 5$$

The derivative is:

$$p_3'(x) = \frac{3}{4}x^2 - \frac{9}{4} = \frac{3}{4}(x^2 - 3)$$

Setting the derivative to zero, $p'_3(x) = 0$, yields the critical points.

$$x^2 - 3 = 0 \implies x = \pm \sqrt{3}$$

To confirm it is a minimum, we check the second derivative:

$$p_3''(x) = \frac{3}{2}x$$

At $x = \sqrt{3}$, we have $p_3''(\sqrt{3}) = \frac{3\sqrt{3}}{2} > 0$, which confirms a local minimum. Thus, the approximate location of the minimum is:

$$x_{\rm min} \approx \sqrt{3}$$

V. Divided Differences with Repeated Nodes for $f(x) = x^7$

Computation of the Divided Difference

To handle the repeated nodes, we require the derivatives of $f(x) = x^7$.

$$f'(x) = 7x^6, \quad f''(x) = 42x^5$$

The values needed for the divided difference table are:

$$f'(1) = 7$$
, $f''(1) = 42$, $f'(2) = 448$

We construct the divided difference table for the nodes $z = \{0, 1, 1, 1, 2, 2\}$. For repeated nodes $z_i = z_{i+k}$, the higher-order differences are defined using derivatives, such as $f[z_i, \ldots, z_{i+k}] = f^{(k)}(z_i)/k!$.

i	$ z_i $	$f[z_i]$	1st	2nd	3rd	$4 \mathrm{th}$	5th
0	0	0					
1	1	1	1				
2	1	1	7	6			
3	1	1	7	21	15		
4	2	128	127	120	99	42	
5	2	0 1 1 1 128 128	448	321	201	102	30

The final entry in the table gives the desired value.

$$f[0, 1, 1, 1, 2, 2] = 30$$

Determination of ξ

The Mean Value Theorem for divided differences relates the divided difference to a derivative.

$$f[z_0,\ldots,z_n] = \frac{f^{(n)}(\xi)}{n!}$$
 for some $\xi \in (\min(z_i),\max(z_i))$

For this problem, we have n = 5 and the nodes are within the interval (0, 2). The 5th derivative of f(x) is calculated as:

$$f^{(5)}(x) = 2520x^2$$

By substituting the computed divided difference and n=5 into the theorem, we get an equation for ξ .

$$30 = \frac{f^{(5)}(\xi)}{5!} = \frac{2520\xi^2}{120}$$

We solve this equation for ξ :

$$\xi^2 = \frac{30 \cdot 120}{2520} = \frac{3600}{2520} = \frac{10}{7}$$

Since ξ must be in (0,2), we take the positive square root.

$$\xi = \sqrt{\frac{10}{7}} = \frac{\sqrt{70}}{7}$$

VI. Hermite Interpolation and Error Analysis

Estimate of f(2)

The Hermite interpolation problem is defined by the nodes $z = \{0, 1, 1, 3, 3\}$. We use the divided difference method to find the interpolating polynomial $H_4(x)$. The required derivative values are f'(1) = -1 and f'(3) = 0. The divided difference table is constructed as follows:

The coefficients from the top diagonal are 1, 1, -2, 2/3, -5/36. The Newton form of the polynomial is:

$$H_4(x) = 1 + x - 2x(x-1) + \frac{2}{3}x(x-1)^2 - \frac{5}{36}x(x-1)^2(x-3)$$

$$H_4(2) = -1 + \frac{4}{3} + \frac{10}{36} = -1 + \frac{24}{18} + \frac{5}{18} = \frac{-18 + 24 + 5}{18} = \frac{11}{18}$$

Maximum Possible Error

The error in Hermite interpolation for a function $f \in C^5[0,3]$ is given by the formula:

$$E_4(x) = f(x) - H_4(x) = \frac{f^{(5)}(\xi)}{5!} \prod_{i=0}^4 (x - z_i)$$

where ξ is in the interval spanned by the nodes, (0,3). We want to bound the error at x=2. The node product at this point is:

$$\Psi(2) = (2-0)(2-1)(2-1)(2-3)(2-3) = (2)(1)(1)(-1)(-1) = 2$$

The error at x=2 is therefore:

$$|E_4(2)| = \left| \frac{f^{(5)}(\xi)}{5!} \cdot \Psi(2) \right| = \left| \frac{f^{(5)}(\xi)}{120} \cdot 2 \right| = \frac{|f^{(5)}(\xi)|}{60}$$

Given that $|f^{(5)}(x)| \leq M$ on [0,3], we can bound the error.

$$|E_4(2)| \le \frac{M}{60}$$

The maximum possible error for the estimate $f(2) \approx 11/18$ is M/60.

VII. Relation Between Finite and Divided Differences

Forward Difference

We prove the identity $\Delta^k f(x) = k! h^k f[x_0, x_1, \dots, x_k]$ by induction on k, where $x_j = x + jh$. For the base case k = 1, we use the definitions of the operators.

$$\Delta f(x) = f(x+h) - f(x) = f(x_1) - f(x_0)$$

The right-hand side is:

$$1!h^{1}f[x_{0}, x_{1}] = h\frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} = h\frac{f(x_{1}) - f(x_{0})}{h} = f(x_{1}) - f(x_{0})$$

The identity holds for k = 1. Now, assume the proposition is true for an integer $k \ge 1$. We examine the case for k + 1.

$$\Delta^{k+1} f(x) = \Delta^k f(x+h) - \Delta^k f(x)$$

Applying the inductive hypothesis to both terms on the right-hand side yields:

$$\Delta^{k+1} f(x) = k! h^k f[x_1, \dots, x_{k+1}] - k! h^k f[x_0, \dots, x_k] = k! h^k \left(f[x_1, \dots, x_{k+1}] - f[x_0, \dots, x_k] \right)$$

$$f[x_0, \dots, x_{k+1}] = \frac{f[x_1, \dots, x_{k+1}] - f[x_0, \dots, x_k]}{x_{k+1} - x_0}$$

$$\Delta^{k+1} f(x) = k! h^k \left((x_{k+1} - x_0) f[x_0, \dots, x_{k+1}] \right) = k! h^k (k+1) h f[x_0, \dots, x_{k+1}]$$

This simplifies to the desired result for k + 1.

$$\Delta^{k+1} f(x) = (k+1)! h^{k+1} f[x_0, \dots, x_{k+1}]$$

By the principle of induction, the formula is proven for all $k \geq 1$.

Backward Difference

A similar proof by induction can be constructed. Alternatively, we can use the established relationship between the backward and forward difference operators, $\nabla f(x) = \Delta f(x-h)$. By repeated application, this leads to the identity $\nabla^k f(x) = \Delta^k f(x-kh)$. We apply the proven forward difference formula to the function evaluated at the point z = x - kh:

$$\Delta^k f(z) = k! h^k f[z, z + h, \dots, z + kh]$$

$$\{x - kh, (x - kh) + h, \dots, (x - kh) + kh\} = \{x - kh, x - (k - 1)h, \dots, x\}$$

This set of nodes is precisely $\{x_{-k}, x_{-k+1}, \dots, x_0\}$. Therefore, we have:

$$\nabla^k f(x) = \Delta^k f(x - kh) = k! h^k f[x_{-k}, x_{-k+1}, \dots, x_0]$$
$$\nabla^k f(x) = k! h^k f[x_0, x_{-1}, \dots, x_{-k}]$$

This completes the proof.

VIII. Derivative of Divided Differences

Partial Derivative with respect to x_0

By the definition of the partial derivative, we have:

$$\frac{\partial}{\partial x_0} f[x_0, x_1, \dots, x_n] = \lim_{h \to 0} \frac{f[x_0 + h, x_1, \dots, x_n] - f[x_0, x_1, \dots, x_n]}{h}$$
$$f[x_0 + h, x_1, \dots, x_n] = f[x_1, \dots, x_n, x_0 + h]$$
$$\frac{f[x_1, \dots, x_n, x_0 + h] - f[x_0, x_1, \dots, x_n]}{(x_0 + h) - x_0}$$

This is precisely the recursive definition for a higher-order divided difference over the nodes $\{x_0, x_1, \dots, x_n, x_0 + h\}$.

$$\frac{\partial}{\partial x_0} f[x_0, \dots, x_n] = \lim_{h \to 0} f[x_0, x_1, \dots, x_n, x_0 + h]$$

$$\lim_{h \to 0} f[x_0, x_1, \dots, x_n, x_0 + h] = f[x_0, x_1, \dots, x_n, x_0]$$

$$\frac{\partial}{\partial x_0} f[x_0, \dots, x_n] = f[x_0, x_0, x_1, \dots, x_n]$$

For other variables

The divided difference $f[x_0, \ldots, x_n]$ is a symmetric function of its arguments. This allows the result to be generalized to the partial derivative with respect to any other variable x_i .

$$f[x_0, \dots, x_i, \dots, x_n] = f[x_i, x_0, \dots, x_{i-1}, x_{i+1}, \dots, x_n]$$

Let Z be the set of all other variables $\{x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n\}$.

$$\frac{\partial}{\partial x_i} f[x_i, Z] = f[x_i, x_i, Z]$$

Substituting the set Z back gives the general formula for any $i \in \{0, 1, \dots, n\}$.

$$\frac{\partial}{\partial x_i} f[x_0, \dots, x_n] = f[x_i, x_i, x_0, \dots, x_{i-1}, x_{i+1}, \dots, x_n]$$

This result represents the divided difference over the original set of nodes with the node x_i repeated.

IX. A Min-Max Polynomial Problem

Let $P_n(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$. The problem is to determine the value of $\min_{a_1,\dots,a_n} \max_{x \in [a,b]} |P_n(x)|$. We can factor out the fixed leading coefficient $|a_0|$:

$$\max_{x \in [a,b]} |P_n(x)| = |a_0| \max_{x \in [a,b]} |x^n + \frac{a_1}{a_0} x^{n-1} + \dots + \frac{a_n}{a_0}|$$

Minimizing over a_1, \ldots, a_n is equivalent to minimizing over the coefficients of the resulting monic polynomial. Let \mathcal{P}_n^M be the set of all monic polynomials of degree n. The problem is transformed into:

$$|a_0| \min_{p \in \mathcal{P}_n^M} \max_{x \in [a,b]} |p(x)|$$

We use the linear transformation $x = \frac{b-a}{2}t + \frac{a+b}{2}$ to map the interval $t \in [-1,1]$ onto $x \in [a,b]$. A monic polynomial $p(x) \in \mathcal{P}_n^M$ can be expressed in terms of t:

$$p(x) = \left(\frac{b-a}{2}t + \frac{a+b}{2}\right)^n + \dots = \left(\frac{b-a}{2}\right)^n t^n + \text{lower degree terms in } t$$

This implies that p(x) can be written as $(\frac{b-a}{2})^n q(t)$, where q(t) is a monic polynomial in t of degree n. The min-max problem over [a,b] becomes a corresponding problem over [-1,1].

$$\min_{p \in \mathcal{P}_n^M} \max_{x \in [a,b]} |p(x)| = \min_{q \in \mathcal{P}_n^M} \max_{t \in [-1,1]} \left| \left(\frac{b-a}{2}\right)^n q(t) \right| = \left(\frac{b-a}{2}\right)^n \min_{q \in \mathcal{P}_n^M} \max_{t \in [-1,1]} |q(t)|$$

A fundamental theorem of approximation theory states that the minimum value of the maximum absolute value for a monic polynomial of degree n on [-1,1] is achieved by the monic Chebyshev polynomial $\tilde{T}_n(t) = T_n(t)/2^{n-1}$.

$$\min_{q \in \mathcal{P}_n^M} \max_{t \in [-1,1]} |q(t)| = \max_{t \in [-1,1]} |\tilde{T}_n(t)| = \frac{1}{2^{n-1}}$$

$$\min_{a_1,\dots,a_n} \max_{x \in [a,b]} |P_n(x)| = |a_0| \left(\frac{b-a}{2}\right)^n \frac{1}{2^{n-1}} = |a_0| \frac{(b-a)^n}{2^{2n-1}}$$

X. A Minimization Property of Scaled Chebyshev Polynomials

We proofed by contradiction. Assume there exists a polynomial $p(x) \in \mathbb{P}_n^a$ such that $||p||_{\infty} < ||\hat{p}_n||_{\infty}$. Define a new polynomial $Q(x) = \hat{p}_n(x) - p(x)$. Since \hat{p}_n and p are both polynomials of degree n, Q(x) is a polynomial of degree at most n.

The Chebyshev polynomial $T_n(x)$ attains its extrema on [-1,1] at the n+1 points $x_k = \cos(k\pi/n)$ for $k = 0, 1, \ldots, n$, where $T_n(x_k) = (-1)^k$. The polynomial $\hat{p}_n(x) = T_n(x)/T_n(a)$ therefore satisfies:

$$\hat{p}_n(x_k) = \frac{(-1)^k}{T_n(a)}, \quad \forall k = 0, 1, ..., n, x_l = \cos(\frac{k}{n}\pi).$$

Since a > 1, $T_n(a) > 0$. The maximum absolute value of $\hat{p}_n(x)$ on [-1,1] is thus $\|\hat{p}_n\|_{\infty} = 1/T_n(a)$. At these points x_k , we evaluate $Q(x_k)$:

$$Q(x_k) = \hat{p}_n(x_k) - p(x_k)$$

From our initial assumption, $|p(x_k)| \le ||p||_{\infty} < ||\hat{p}_n||_{\infty} = |\hat{p}_n(x_k)|$. This implies that $p(x_k)$ cannot change the sign of $\hat{p}_n(x_k)$. Thus, for $k = 0, \ldots, n$:

$$\operatorname{sign}(Q(x_k)) = \operatorname{sign}(\hat{p}_n(x_k)) = \operatorname{sign}((-1)^k)$$

Since Q(x) alternates in sign across the n+1 points x_k , by the Intermediate Value Theorem, Q(x) must have at least n distinct roots in the interval (-1,1).

Furthermore, both $\hat{p}_n(x)$ and p(x) are in \mathbb{P}_n^a , which means $\hat{p}_n(a) = 1$ and p(a) = 1. Therefore, Q(x) has an additional root at x = a:

$$Q(a) = \hat{p}_n(a) - p(a) = 1 - 1 = 0$$

Since a>1, this root is distinct from the n roots found within (-1,1). This gives Q(x) at least n+1 distinct roots. We have established that Q(x) is a polynomial of degree at most n with at least n+1 roots. This is only possible if Q(x) is identically zero. If $Q(x)\equiv 0$, then $p(x)\equiv \hat{p}_n(x)$, which implies $\|p\|_{\infty}=\|\hat{p}_n\|_{\infty}$. This contradicts our initial assumption that $\|p\|_{\infty}<\|\hat{p}_n\|_{\infty}$. The assumption must be false, and therefore, for any $p\in\mathbb{P}_n^a$, we must have $\|\hat{p}_n\|_{\infty}\leq \|p\|_{\infty}$.

XI. Proof of the Degree Elevation Property for Bernstein Polynomials

The proof begins by expanding the right-hand side (RHS) of the identity using the definition of a Bernstein basis polynomial, $b_{n,k}(t) = \binom{n}{k} t^k (1-t)^{n-k}$.

$$RHS = \frac{n-k}{n} b_{n,k}(t) + \frac{k+1}{n} b_{n,k+1}(t)$$

$$RHS = \frac{n-k}{n} \binom{n}{k} t^k (1-t)^{n-k} + \frac{k+1}{n} \binom{n}{k+1} t^{k+1} (1-t)^{n-k-1}$$

For the first term's coefficient:

$$\frac{n-k}{n}\binom{n}{k} = \frac{n-k}{n} \frac{n!}{k!(n-k)!} = \frac{n-k}{n} \frac{n(n-1)!}{k!(n-k)(n-k-1)!} = \frac{(n-1)!}{k!(n-k-1)!} = \binom{n-1}{k}$$

For the second term's coefficient:

$$\frac{k+1}{n} \binom{n}{k+1} = \frac{k+1}{n} \frac{n!}{(k+1)!(n-k-1)!} = \frac{k+1}{n} \frac{n(n-1)!}{(k+1)k!(n-k-1)!} = \frac{(n-1)!}{k!(n-k-1)!} = \binom{n-1}{k}$$

$$RHS = \binom{n-1}{k} t^k (1-t)^{n-k} + \binom{n-1}{k} t^{k+1} (1-t)^{n-k-1}$$

$$RHS = \binom{n-1}{k} t^k (1-t)^{n-k-1} \left[(1-t) + t \right]$$

$$RHS = \binom{n-1}{k} t^k (1-t)^{(n-1)-k} = b_{n-1,k}(t) = LHS$$

The final expression is the definition of $b_{n-1,k}(t)$, which is the left-hand side (LHS) of the identity. This completes the proof.

XII. Proof of the Integral Property of Bernstein Basis Polynomials

Let $I_{n,k}$ denote the integral of the Bernstein basis polynomial $b_{n,k}(t)$ over the interval [0, 1].

$$I_{n,k} = \int_0^1 b_{n,k}(t)dt = \binom{n}{k} \int_0^1 t^k (1-t)^{n-k} dt$$

We apply integration by parts to the integral, with $u = (1-t)^{n-k}$ and $dv = t^k dt$. This gives $du = -(n-k)(1-t)^{n-k-1} dt$ and $v = t^{k+1}/(k+1)$.

$$I_{n,k} = \binom{n}{k} \left[\frac{t^{k+1}(1-t)^{n-k}}{k+1} \right]_0^1 + \frac{n-k}{k+1} \int_0^1 t^{k+1} (1-t)^{n-k-1} dt$$

The boundary term evaluates to zero for k < n. Thus, the expression simplifies to:

$$I_{n,k} = \frac{n-k}{k+1} \binom{n}{k} \int_0^1 t^{k+1} (1-t)^{n-(k+1)} dt$$

$$\frac{n-k}{k+1} \binom{n}{k} = \frac{n-k}{k+1} \frac{n!}{k!(n-k)!} = \frac{n!}{(k+1)!(n-k-1)!} = \binom{n}{k+1}$$

$$I_{n,k} = \binom{n}{k+1} \int_0^1 t^{k+1} (1-t)^{n-(k+1)} dt = I_{n,k+1}$$

This relation holds for k = 0, 1, ..., n - 1, implying that the value of the integral $I_{n,k}$ is constant for all k. To find this constant value, we use the partition of unity property of Bernstein basis polynomials:

$$\sum_{k=0}^{n} b_{n,k}(t) = 1$$

Integrating this identity over [0,1] yields:

$$\int_0^1 \sum_{k=0}^n b_{n,k}(t)dt = \sum_{k=0}^n \int_0^1 b_{n,k}(t)dt = \int_0^1 1dt = 1$$

Since all n+1 integrals in the sum are equal, we have:

$$(n+1)I_{n,k} = 1$$

This leads to the final result, which is independent of k.

$$\int_{0}^{1} b_{n,k}(t)dt = \frac{1}{n+1}$$

Acknowledgement

Honestly, the **translation** was done using LLM tools, but the answers and solutions were written by myself. This version is edited out on 19th Oct.