

Bases de numeração

Números são símbolos que representam quantidades

= uma unidade mesopotâmica (cuneiforme)

= sete unidades mesopotâmicas (cuneiforme)

= cem unidades egípcias (hieróglifo)

= cem mil unidades egípcias (hieróglifo)

5 = cinco unidades arábicas

Bases de numeração

Sistemas de numeração são conjuntos destes símbolo

9	8	7	6	5	4	3	2	1	Value
™ Tet	∏ Het	T ayen	Vav	∏ He	7 Dalet	Gimel	Bet	N Alef	Value x 1
2 Tzadi	≥ Pe	y Ayin	D Samekh	Nun	☆ Mem	5 Lamed	Kaf	vod	Value x 10
					Tav	W Shin	Resh	P	Value x 100
P Final Tzadi	Final Pe	Final Nun	Final Mem	Final Kaf	Tav	w Shin	Resh	P	Value (later) ¹ x 100

Conjunto de símbolos hebraicos para representar quantidades

Bases de numeração

Vamos definir um sistema de numeração!

Este nosso sistema tem quatro símbolos:

"Ka" equivalendo ao nulo
"Ke" equivalendo à unidade

Tal que: Ke + Ke = Ki

e:

Ki + Ke = Ko

Bases de numeração

Primeiramente, vamos construir a "taboada de mais" deste nosso sistema:

```
Ka+Ka=Ka Ke+Ka=Ke Ki+Ka=Ki Ko+Ka=Ko
Ka+Ke=Ke Ke+Ke=Ki Ki+Ke=Ko Ko+Ke=KeKa
Ka+Ki=Ki Ke+Ki=Ko Ki+Ki=KeKa Ko+Ki=KeKe
Ka+Ko=Ko Ke+Ko=KeKa Ki+Ko=KeKe Ko+Ko=KeKi
```


Bases de numeração

Vamos, agora, construir a "taboada de vezes" deste nosso sistema:

```
Ka*Ka=Ka Ke*Ka=Ka Ki*Ka=Ka Ko*Ka=Ka
Ka*Ke=Ka Ke*Ke=Ke Ki*Ke=Ki Ko*Ke=Ko
Ka*Ki=Ka Ke*Ki=Ki Ki*Ki=KeKa Ko*Ki=KeKi
Ka*Ko=Ka Ke*Ko=Ko Ki*Ko=KiKa Ko*Ko=KiKe
```


Bases de numeração

Neste nosso sistema, qualquer quantidade pode ser representada.

Por exemplo se eu quiser representar uma dúzia de ovos, posso representá-la como (Ke+Ko) \times Ko, ou seja: KeKa \times Ko = KoKa.

Bases de numeração

Qual é a taboada de KeKa?

Como representar meia quantidade neste nosso sistema?

Bases de numeração

Na realidade este sistema proposto é um sistema de base 4. Ou seja, ele pode ser representado por algarismos arábicos da mesma forma que osistema decimal a que estamos acostumados:

0 = Ka	O numero KeKoKaKi pode, então ser
1 = Ke	representado por 1302, o que não significa
2 = Ki	mil trezentos e duas quantidades, mas sim
3 = Ko	114 quantidades no sistema decimal.

Desta forma podemos compreender que, independentemente do sistema de numeração, as quantidades podem ser representadas por diferentes bases de numeração.

Bases de numeração

Na realidade este sistema proposto é um sistema de base 4. Ou seja, ele pode ser representado por algarismos arábicos da mesma forma que osistema decimal a que estamos acostumados:

Ou seja:

$$64+48+0+2=114$$

Desta forma podemos compreender que, independentemente do sistema de numeração, as quantidades podem ser representadas por bases de numeração.

Bases de numeração

A operação é chamada de conversão de base.

Por exemplo, tomemos o número 91 na base decimal e vamos convertê-lo para uma base octal (0-7):

$$8^3 = 512 e 8^2 = 64$$

Portanto 91 pode ser representado por:

$$1\times8^2+n\times8^1+m\times8^0$$

91 - 64 = 27, logo, se:

$$4 \times 8^{1} = 32 \ e \ 3 \times 8^{1} = 24$$

Então, 91 será representado por:

$$1\times8^2+3\times8^1+m\times8^0$$

27 – 24 = 3 então, 91 na base 10 será representado pelo número 133 na base 8.

Bases de numeração

Conversão de 91 na base decimal para base 2 (binária)

$$2^{7}=128 e 2^{6}=64$$

$$91=1\times 2^{6}+27$$

$$27=2^{4}+11$$

$$91=1\times 2^{6}+0\times 2^{5}+1\times 2^{4}+11$$

$$11=2^{3}+3$$

$$91=1\times 2^{6}+0\times 2^{5}+1\times 2^{4}+1\times 2^{3}+3$$

$$3=2^{1}+1$$

$$91=1\times 2^{6}+0\times 2^{5}+1\times 2^{4}+1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1$$

$$1=2^{0}$$

$$91=1\times 2^{6}+0\times 2^{5}+1\times 2^{4}+1\times 2^{3}+0\times 2^{2}+1\times 2^{1}+1\times 2^{0}$$

$$1 0 1 1 0 1 1$$

Bases de numeração

Conversão de 10011011 na base 2 para base 10

$$128 + 16 + 8 + 2 + 1 = 155$$

Bases de numeração

Conversão de base hexadecimal em decimal

Por exemplo: conversão de A1B2h para decimal

```
2 na pos. 0 \rightarrow 2 \times 16^{0} = 2
```

B na pos.
$$1 \rightarrow B \times 16^1 = 11 \times 16^1 = 176$$

1 *na pos.*
$$2 \rightarrow 1 \times 16^2 = 256$$

A napos.
$$3 \rightarrow A \times 16^3 = 10 \times 16^3 = 40960$$

$$40960 + 256 + 176 + 2 = 41394$$

Bases de numeração

Conversão de base decimal em hexadecimal

Por exemplo: conversão de 5432 para hexadecimal

$$5432=1\times16^{3}+1336=4096+1336$$

 $1336=5\times16^{2}+56=1280+56$
 $56=3\times16^{1}+8=48+8$
 $8=8\times16^{0}$

$$1 \times 16^{3} = 1000h$$

 $5 \times 16^{2} = 500h$
 $3 \times 16^{1} = 30h$
 $8 \times 16^{0} = 8h$

resultado=1538h

Bases de numeração

Representação com ponto decimal:

3682,462

Três mil seicentos e oitenta e dois inteiros e quatro décimos e sessenta centésimos e 2 milésimos.

Bases de numeração

Representação com ponto decimal:

