第四章自然数和基数

- 4.1 自然数及数学归纳法
- 4.2 基数

自然数和数学归纳法

主要概念: 集合的后继

主要方法: 归纳原理、第一归纳法、第二归纳法

自然数的引进方法

① 公理化方法:皮亚诺公理 (G. Peano)

② 构造性方法: 借助集合论,具体构造出 N

自然数构造的出发点

1) 自然数的各种性质(运算、大小次序及基本定律), 都可以从 Peano 公理一一推导出来;

2) 证明构造出来的 "自然数" 满足Peano公理, 因此 具有普通自然数的一切性质。

定义1(后继) 若A为集合,则称 $A \cup \{A\}$ 为A的后继,并记为 A^+ 。

□每个集合都有唯一的一个后继。

定理1:设A为任意集合,则

$$(1) \varnothing^+ = \{ \varnothing \};$$

(2)
$$\{\emptyset\}^+ = \{\emptyset, \{\emptyset\}\};$$

$$(3) A \in A^+;$$

$$(4) A \subseteq A^+;$$

$$(5) A^+ \neq \emptyset$$
 •

v

□ 当 $A \subseteq B$ 时,不一定有 $A^+ \subseteq B^+$ 。

例: $\diamondsuit A = \emptyset$, $B = \{1\}$ 时, 显然 $A \subseteq B$ 。

但 $A^+=\{\emptyset\}$, $B^+=\{1,\{1\}\}$,

显然, A+不是B+的子集

另如: $A = \{1\}$, $B = \{1, 2\}$ 时,显然 $A \subseteq B$ 。

但 $A^+=\{1,\{1\}\}$, $B^+=\{1,2,\{1,2\}\}$,

显然,A+不是B+的子集

构造自然数系统< N,+,·>

冯·诺依曼(Von Neumann)方案:

```
0 = \emptyset
1 = 0^+ = \{\emptyset\} = \{0\}
2 = 1^+ = \{\emptyset, \{\emptyset\}\} = \{0, 1\}
3 = 2^+ = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\} = \{0, 1, 2\}
n+1 = n^+ = \cdots = \{0, 1, \dots, n\}
```

对每个自然数n∈N,皆有n∈n+及n⊆n+(n+=n∪{n})

定义2: 自然数集合N可用归纳定义法定义如下:

- (1) $0 \in \mathbb{N}$,这里 $0 = \emptyset$;
- (2) 若 $n \in N$,则 $n^+ \in N$;
- (3) 若 S⊆N, 且满足
 - (a) 0∈S
 - (b) 如果 n∈S, 则 n+∈S

则 S=N。

(极小化)

大于/小于、加法、乘法

对每个自然数 $n \in N$, 皆有 $n \in n^+$ 及 $n \subseteq n^+$, 据此有:

定义3: 若 $m, n \in \mathbb{N}$ 使 $m \in n$, 则称 $m \to T n$ (或 $n \to T m$), 记为 m < n (或 n > m)。

□ "小于"关系 <是自然数集 N上的反自反、反对称、 传递的二元关系

定义4 (归纳定义N上的加法运算"+"与乘法运算"·") 对任意的 $n, m \in N$,令 自然数系统 $< N, +, \cdot >$

- i) m + 0 = m, $m \cdot 0 = 0$;
- ii) $m + n^+ = (m + n)^+$, $m \cdot n^+ = m \cdot n + m$.

定理 2: 若 $n \in N$,则 $\cup n^+ = n$ 。

```
0 = \emptyset
1 = 0^+ = \{\emptyset\} = \{0\}
2 = 1^{+} = \{\emptyset, \{\emptyset\}\} = \{0, 1\}
3 = 2^+ = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\} = \{0, 1, 2\}
\{\emptyset, \{\emptyset\}\}\} = \{0, 1, 2, 3\}
n+1 = n^+ = \cdots = \{0, 1, \dots, n\}
```

定理 2: 若 $n \in N$,则 $\cup n^+ = n$ 。

(3) 若S⊆N, 且满足 (a) 0∈S (b)如果n∈S, 则 n+∈S 则 S=N。

证明: 令 $S = \{n \mid n \in \mathbb{N} \ \underline{L} \ Un^+ = n\}$,只需证明S=N。

- (1) 显然 $S \subseteq N$ 。
- (2) 只需 验证 S 满足自然数的归纳定义中(3)的(a)与(b):
- (a) $0 \in S$ 。 因为 $0 \in N$ 且 $\cup 0^+ = \cup \emptyset^+ = \cup \{\emptyset\} = \emptyset = 0$ 。
- (b) 若 n∈S,则 n∈N且 \cup n⁺ = n。下面证明n⁺∈ S。

显然, $n^+ \in N$,且

$$U((n^{+})^{+}) = U(n^{+}U\{n^{+}\})$$

$$= (Un^{+})U(U\{n^{+}\})$$

$$= nUn^{+} = n^{+}, (n \subseteq n^{+})$$

所以 n+∈S。

由自然数集合N的归纳定义法得 S = N。

定理3:按上述方法构造出来的自然数系统 $\langle N, +, \cdot \rangle$ 满 足以下的皮亚诺 (Peano) 公理: P1: $0 \in N$: P2: 若 $n \in N$,则有唯一的后继 $n^+ \in N$; P3: 若 $n \in N$, 则 $n^+ \neq 0$; P4: 若 n, m \in N 且 n + = m + ,则 n = m; **P5**: 若 **S**⊂*N* 满足 (归纳原理) i) 0∈S ii) 如果 n∈S,则 n+∈S

证明:P1, P2 和 P5 分别为自然数集 N 归纳定义法的 (1), (2), (3)。 P3 可以从定理1 的结论(5) 直接推导出来 (对任意集合A, $A^+ \neq \emptyset$)。 P4: 若 n, $m \in N$ 且 $n^+ = m^+$,则由 定理 2 可得: $n = Un^+ = Um^+ = m$ 。

则 S=N。

定理3:按上述方法构造出来的自然数系统 < N, +, $\cdot >$ 满足以下的皮亚诺 (Peano) 公理: P1: $0 \in N$; P2: 若 $n \in N$,则有唯一的后继 $n^+ \in N$;

P3: 若 $n \in N$,则 $n^+ \neq 0$;

P4: 若 n, m \in N 且 n + = m + , 则 n = m;

P5: 若 S⊆N 满足 i) 0∈S; ii) 如果 n∈S,则 n⁺∈S 则 S=N。

Peano公理说明:

P₁: 0 是自然数;

 P_2 : 每一个自然数 n 都有一个确定的后继数 n^+ ;

P3: 没有以 0 为后继的自然数;

 P_4 : 任意两个不同的自然数,其后继也不一样;

 P_5 : 自然数集合是 满足 P_1 、 P_2 条件的极小集合。

- 性质 (作为集合的自然数的性质):
- (1) 传递性: 若 n₁∈n₂ 且 n₂∈n₃,则 n₁∈n₃。
- (2) 三歧性:对于任何两个自然数 n_1 , n_2 , 下列三式 恰有一个成立: $n_1 \in n_2$, $n_1 = n_2$, 或 $n_2 \in n_1$ 。
- (3) 良基性:不存在一个自然数的无穷递降序列
- $n_1, n_2, n_3, ..., n_i, n_{i+1}, ...$ 使得 $n_{i+1} \in n_i$ 。 由自然数的定义可知,对于每一个自然数,比它小的自然数总是有穷个,并且
 - $0 \in 1 \in 2 \in 3 \in \dots$
 - $0 \subset 1 \subset 2 \subset 3 \subset \dots$

自然数的性质:

- (1) 若n∈N,则 n∉n
- (2) 若n, m ∈ N, 且n ∈ m, 则 $n^+ ∈ m$ 或者 $n^+=m$
- (3) 若n, m ∈ N,则n ⊂ m 当且仅当 n ∈ m。
- (4) 若n, m∈N,则n∈m 当且仅当 n+∈ m+
- (5) 若 $n \in N$,则不可能有 $m \in N$ 使 $n < m < n^+$

м

例. 试证: 若n∈N,则n∉n。

证明: 构造集合 S={n∈N|n∉n}。

只需证明 S=N。

显然 $S \subseteq N$ 。为证明 S = N,只需 验证 S 满足自然数的归纳定义中(3)的(a)与(b)。

- (a) 0∈S: 因为0 = Ø ∉ Ø。
- (b) 假设n∈S,则 n∉n。下面证明 n^+ ∈S,只需证明 n^+ ∉ n^+ 。

假设 n⁺∈n⁺,则 {n⁺} ⊆ n⁺。

故 $(\mathbf{n}^+)^+ = \mathbf{n}^+ \cup \{\mathbf{n}^+\} \subseteq \mathbf{n}^+$ 。

又由 $n^+ \subseteq (n^+)^+$, 得 $n^+ = (n^+)^+$, 从而 $n = n^+$,矛盾。

因此假设不成立,即 $\mathbf{n}^+ \notin \mathbf{n}^+$,得 $\mathbf{n}^+ \in \mathbf{S}$ 。

因此 S = N, 结论成立。

例. 试证: 若n, m∈N, 且n ∈ m, 则n+ ∈ m或者n+=m。

只需证明 S=N。

显然 $S \subseteq N$ 。为证明 S = N,只需 验证 S 满足自然数的归纳定义中(3)的(a)与(b)。

- (a) $0 \in S$: 因为对任意的自然数n, n ∈ 0不成立。
- (b) 假设 $m \in S$, 则对任意的自然数 n, 若n ∈ m, 则n+∈m或者n+=m。

下面证明 $m^+ \in S$, 即证明对任意的 $n \in m^+$, 则 $n^+ \in m^+$ 或者 $n^+ = m^+$ 。

因为m+=m∪{m},因此对任意的n∈ m+=m∪{m},有n∈ m或者n=m。

当n∈m时,由假设得n+∈m或者n+=m。

当**n**⁺∈ **m**时,由于**m**∈ **m**⁺, 由传递性得**n**⁺∈**m**⁺。

当 $\mathbf{n}^+ = \mathbf{m}$ 时,同样由于 $\mathbf{m} \in \mathbf{m}^+$, 得 $\mathbf{n}^+ \in \mathbf{m}^+$ 。

当**n=m**时,**n**+=**m**+, 此时**m**+∈**S**。

因此,S=N,结论成立。