DES

José Galaviz

Horst Feistel

- Inmigrante alemán llegado a EEUU en 1932
- Después de muchos intentos losgra trabajar en criptografía.
- IBM TJ Watson Research Lab, 1967.
- Lucifer

Lucifer

- Red de Feistel:
 - Cifrado de bloque.
 - El bloque se divide en 2 partes que sontratadas de manera diferente.
 - Funciona por rondas.
- 128 bits de clave (aunque sólo se usan 112 porque el octavo bit de cada bytes es de verificación de paridad) y de tamaño de bloque de cifrado.
- Basado en un concepto llamado Caja-S (caja de substitución).

Convocatoria del NBS

National Bureau of Standards hoy National Institute of Standards and Technology (NIST) lanza una convocatoria en 1973 (segunda en 1974) para propuestas de algoritmo criptográfico..

- Alto nivel de seguridad.
- Completamente especificado y fácil de entender.
- La seguridad debe residir en la clave, no en mantener el algoritmo en secreto.
- Debe poder ponerse a disposición del pblico sin restricciones.

En la segunda convocatoria se presentó Lucifer

NSA

La National Security Agency evalúa a los candidatos y emite recomendaciones.

- Se reduce el tamaño de clave y de bloque a 64 bits.
- Se cambia la función alambrada en las Cajas-S
- Se convierte en estándar para cifrado de datos que no comprometan la seguridad nacional en 1976 y se mantiene hasta 2002.

DES

DES Permutación inicial

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Ecuaciones de DES

En el diagrama es claro que:

$$L_{i+1} = R_i$$

$$R_{i+1} = L_I \oplus f(R_i, k_i)$$

La función criptográfica

La función f recibe dos argumentos: la llave de ronda (48 bits) y la parte derecha de la ronda previa (32 bits)

Permutación expansiva

La permutación expansiva no es, formalmente hablando, una permutación, pero sí altera el orden de los bits y duplica algunos.

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Substitución

A la salida de la permutación expansiva se le hace un XOR con los 48 bits de la clave de ronda y el resultado de eso se pasa a la etapa de substitución. Cada Caja-S de esta etapa recibe 6 bits y entrega 4.

Cajas-S

- El primero y el último bit de entrada son el índice de un reglón (r) en una matriz.
- Los 4 de enmedio son el índice de una columna (c) de esa misma matriz.
- La Caja-S entrega el valor que tiene en la entrada (r,c).

							Caja	$\mathbf{a} S_1$							
14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

						(Caja	S_2							
15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

							Caj	\mathbf{a} S_3	3						
10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

EV.						(Caja	S_4							
7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

						(Caja	S_5							
2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

							Caj	$\mathbf{a} S_{0}$	3						
12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

						(Caja	S_7							
4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

							Caj	$\mathbf{a} S_8$	3						
13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Permutación

A la salida de la etapa de substitución se le aplica, ahora sí, una permutación de verdad.

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

Planificación de clave (key schedule)

El el algoritmo que genera las claves de ronda a partir de la clave general de entrada.

Desplazamientos

La mitad izquierda y derecha se rotan un cierto número de bits a la izquierda en función del número de ronda.

Ronda	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Desp.	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Permutación de compresión

La salida de los desplazamientos se pasa a una permutación de compresión que, formalmente hablando, nuevamente no es una permutación.

14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

Descifrado

Si se introduce a DES un texto cifrado con él, pero invirtiendo las claves de ronda (la 15 entra como la 0, la 14 como la 1, etc.) se obtiene el texto claro.

3DES

Una variante de uso de DES que aún se utiliza es "triple DES" o 3DES:

$$E_{K_3}\Big(E_{K_2}^{-1}(E_{K_1}(P))\Big)$$

Nótese que la aplicación de enmedio es un descifrado ¿por qué?

Efectos

De acuerdo con la clasificación de Shannon:

- Confusión: Cajas-S
- Difusión: Permutaciones y cambios derecha-izquierda.

Cada bit de salida del texto cifrado es función de TODOS los bits del texto de entrada y de TODOS los bits de la clave.

Un cambio en un bit de entrada, genera cambios en el 50% de los bits de salida.

Análisis

De acuerdo con eso para fortalecer un esquema de cifrado podríamos hacer:

- Más confusión.
- Más difusión.

Es decir componer las funciones que hacen esas operaciones.

¿Es igual de efectivo?

Llaves

Piensen en la llave completa y en cómo se generan las llaves de ronda....

¿Pueden construir una llave global para la que sepan en toda ronda, cuál será la llave de esa ronda sin pensar mucho?

Llaves débiles

En cada ronda siempre entra la misma llave

Llave con bits de paridad	Llave		
0101 0101 0101	0000000 0000000		
1F1F 1F1F OEOE OEOE	0000000 FFFFFFF		
EOEO EOEO F1F1 F1F1	FFFFFFF 0000000		
FEFE FEFE FEFE	FFFFFFF FFFFFF		

Y otras menos débiles

- Las débiles son tales que en cada ronda siempre entra la misma llave de ronda en vez de las 16 esperadas.
- Pero el problema se generaliza:
 - Hay llaves que sólo generan dos posibles llaves de ronda.
 - Hay otras que sólo generan 4.
 - Hay otras que sólo generan 8.
- DES tiene problemas con 64 llaves débiles o con algún grado de debilidad, de un total de aprox 72X10¹⁵ llaves.

Propiedades algebraicas

Un algoritmo de cifrado E es cerrado si y sólo si, para todo mensaje M y llaves K1 y K2, existe K3 tal que:

$$E(K2, E(K1,M)) = E(K3, M)$$

Por ejemplo la sustitución monoalfabética es cerrada.

¿DES es un grupo?

En el caso de DES, tenemos la propiedad de que el mismo algoritmo se usa para cifrar y descifrar, así que si fuera cerrado cumpliría todos los requisitos para ser grupo algebraico.

Si lo fuera sería vulnerable a cierto tipo de ataques y no serviría de nada componerlo consigo mismo.

DES no es un grupo

En 1992 Campbell y Wiener demostraron que DES no es un grupo.