

ARE YOU READY?

SCENARIO

 Gandalf the Grey lives in Gondor, Middle Earth. He is responsible for the communities in Gondor, Isengard, Rivendell, Lothlórien, Rohan and Mordor. Each Yule, he visits each of these communities. The distance between each community (called cities in the problem, in miles) is shown in the tables.

 What order of visiting the communities will minimise the total distance travelled?

SCENARIO

Distance between cities						
Gondor	Isengard	264				
	Rivendell	434				
	Lothlorien	328				
	Rohan	116				
	Mordor	174				
Isengard	Gondor	132				
	Rivendell	290				
	Lothlorien	201				
	Rohan	79				
	Mordor	119				

Distance between cities					
Rivendell	Gondor	217			
	Isengard	580			
	Lothlorien	226			
	Rohan	606			
	Mordor	909			
Lothlorien	Gondor	164			
	Isengard	402			
	Rivendell	113			
	Rohan	196			
	Mordor	294			

Distance between cities					
Rohan	Gondor	58			
	Isengard	158			
	Rivendell	303			
	Lothlorien	392			
	Mordor	441			
Mordor	Gondor	87			
	Isengard	237			
	Rivendell	455			
	Lothlorien	588			
	Rohan	662			

SCENARIO

Distance between cities					
1.Gondor	2.Isengard	264			
	3.Rivendell	434			
	4.Lothlorien	328			
	5.Rohan	116			
	6.Mordor	174			
2.Isengard	1.Gondor	132			
	3.Rivendell	290			
	4.Lothlorien	201			
	5.Rohan	79			
	6.Mordor	119			

Distance between cities					
3.Rivendell	1.Gondor	217			
	2.Isengard	580			
	4.Lothlorien	226			
	5.Rohan	606			
	6.Mordor	909			
4.Lothlorien	1.Gondor	164			
	2.Isengard	402			
	3.Rivendell	113			
	5.Rohan	196			
	6.Mordor	294			

Distance between cities						
5.Rohan	1.Gondor	58				
	2.Isengard	158				
	3.Rivendell	303				
	4.Lothlorien	392				
	6.Mordor	441				
6.Mordor	1.Gondor	87				
	2.Isengard	237				
	3.Rivendell	455				
	4.Lothlorien	588				
	5.Rohan	662				

Formulating the IP

Decision variables:

 $x_{ij} = if$ Gandalf leaves city i and travels next to city j (1) or not (0) where i=j=1=G ondor, 2=I sengard, 3=R ivendell, 4=L othlorien, 5=R ohan, 6=M ordor $U_i = dummy$ variable

Objective function:

$$\min z = 264x_{12} + 434x_{13} + 328x_{14} + 116x_{15} + 174x_{16} + \\ 132x_{21} + 290x_{23} + 201x_{24} + 79x_{25} + 119x_{26} + \\ 217x_{31} + 580x_{32} + 226x_{34} + 606x_{35} + 909x_{36} + \\ 164x_{41} + 402x_{42} + 113x_{43} + 196x_{45} + 294x_{46} + \\ 58x_{51} + 158x_{52} + 303x_{53} + 392x_{54} + 441x_{56} + \\ 87x_{61} + 237x_{62} + 455x_{63} + 588x_{64} + 662x_{65}$$

Arriving once in a city constraints:

$$x_{21} + x_{31} + x_{41} + x_{51} + x_{61} = 1$$

 $x_{12} + x_{32} + x_{42} + x_{52} + x_{62} = 1$

$$x_{13} + x_{23} + x_{43} + x_{53} + x_{63} = 1$$

 $x_{14} + x_{24} + x_{34} + x_{54} + x_{64} = 1$
 $x_{15} + x_{25} + x_{35} + x_{45} + x_{65} = 1$
 $x_{16} + x_{26} + x_{36} + x_{46} + x_{56} = 1$

Leaving a city once constraints:

$$x_{12} + x_{13} + x_{14} + x_{15} + x_{16} = 1$$

$$x_{21} + x_{23} + x_{24} + x_{25} + x_{26} = 1$$

$$x_{31} + x_{32} + x_{34} + x_{35} + x_{36} = 1$$

$$x_{41} + x_{42} + x_{43} + x_{45} + x_{46} = 1$$

$$x_{51} + x_{52} + x_{53} + x_{54} + x_{56} = 1$$

$$x_{61} + x_{62} + x_{63} + x_{64} + x_{65} = 1$$

Sub-tour constraints:

$U_5 - U_2 + 6x_{52} \le 5$ $U_5 - U_3 + 6x_{53} \le 5$ $U_5 - U_4 + 6x_{54} \le 5$ $U_5 - U_6 + 6x_{56} \le 5$ $U_6 - U_2 + 6x_{62} \le 5$ $U_6 - U_3 + 6x_{63} \le 5$ $U_6 - U_4 + 6x_{64} \le 5$ $U_6 - U_5 + 6x_{65} \le 5$

• Sign restrictions:

$$x_{ij} = 0 \text{ or } 1$$

 $U_i \ge 0 \text{ and integers}$

Using Solver in the next slides is just to help you understand how to find any sub tours, but you will not set up the IP with Solver so you need to include all sub tours in your IP.

Distance between cities					
1.Gondor	2.Isengard	264			
	3.Rivendell	434			
	4.Lothlorien	328			
	5.Rohan	116			
	6.Mordor	174			
2.Isengard	1.Gondor	132			
	3.Rivendell	290			
	4.Lothlorien	201			
	5.Rohan	79			
	6.Mordor	119			

Distance between cities					
3.Rivendell	1.Gondor	217			
	2.Isengard	580			
	4.Lothlorien	226			
	5.Rohan	606			
	6.Mordor	909			
4.Lothlorien	1.Gondor	164			
	2.Isengard	402			
	3.Rivendell	113			
	5.Rohan	196			
	6.Mordor	294			

Distance between cities					
5.Rohan	1.Gondor	58			
	2.Isengard	158			
	3.Rivendell	303			
	4.Lothlorien	392			
	6.Mordor	441			
6.Mordor	1.Gondor	87			
	2.Isengard	237			
	3.Rivendell	455			
	4.Lothlorien	588			
	5.Rohan	662			

			R	outes Availa	able	
Initial Route	x_{1i}	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	<i>x</i> ₁₆
Route 1	x_{15}	<i>x</i> ₅₂	<i>x</i> ₅₃	x_{54}	<i>x</i> ₅₆	
Route 2	$x_{15} \rightarrow x_{52}$	<i>x</i> ₂₃	x_{24}	<i>x</i> ₂₆		
Route 3	$x_{15} \rightarrow x_{52} \rightarrow x_{26}$	<i>x</i> ₆₃	<i>x</i> ₆₄			
Route 4	$x_{15} \rightarrow x_{52} \rightarrow x_{26} \rightarrow x_{63}$	<i>x</i> ₃₄				
Route 5	$x_{15} \to x_{52} \to x_{26} \to x_{63} \to x_{34}$	none				
Return	$x_{15} \to x_{52} \to x_{26} \to x_{63} \to x_{34} \to x_{41}$					
Z=	$x_{15} \rightarrow x_{52} \rightarrow x_{26} \rightarrow x_{63} \rightarrow x_{34} \rightarrow x_{41}$	1	16 + 158 +	+ 119 + 45	5 + 226 + 3	164
Z=	1238					

Rou	te		Detour			Detour Length
<i>x</i> ₁₅	116	x_{12}	x_{25}	264	79	= (264 + 79) - 116 = 227
<i>x</i> ₁₅	116	<i>x</i> ₁₃	<i>x</i> ₃₅	434	606	= (434 + 606) - 116 = 924
<i>x</i> ₁₅	116	<i>x</i> ₁₄	<i>x</i> ₄₅	328	196	= (328 + 196) - 116 = 408
<i>x</i> ₁₅	116	<i>x</i> ₁₆	<i>x</i> ₆₅	174	662	= (174 + 662) - 116 = 720
<i>x</i> ₅₁	58	x_{52}	x_{21}	158	132	= (158 + 132) - 58 = 232
<i>x</i> ₅₁	58	x_{53}	<i>x</i> ₃₁	303	217	= (303 + 217) - 58 = 462
<i>x</i> ₅₁	58	x_{54}	x_{41}	392	164	= (392 + 164) - 58 = 498
<i>x</i> ₅₁	58	<i>x</i> ₅₆	<i>x</i> ₆₁	441	87	= (441 + 87) - 58 = 470

Due to the table being asymmetrical, x15 could be the shortest from the origin, but x21 could be the shortest back to the origin, you will need to compare the two, pick the shortest and complete the route. E.g. if x15 is 116 and x21 is 100 instead of 132 (it is just an example and the actual value was 132 so x51 was chosen), we would pick x21 and our initial start will be adding detours for x12 + x21 (completing the route back to or from the origin).

Rou	te		Detour			Detour Length
<i>x</i> ₁₅	116	<i>x</i> ₁₂	<i>x</i> ₂₅	264	79	= (264 + 79) - 116 = 227
<i>x</i> ₁₅	116	<i>x</i> ₁₃	x_{35}	434	606	= (434 + 606) - 116 = 924
<i>x</i> ₁₅	116	<i>x</i> ₁₄	<i>x</i> ₄₅	328	196	= (328 + 196) - 116 = 408
<i>x</i> ₁₅	116	<i>x</i> ₁₆	<i>x</i> ₆₅	174	662	= (174 + 662) - 116 = 720
<i>x</i> ₅₁	58	<i>x</i> ₅₂	<i>x</i> ₂₁	158	132	= (158 + 132) - 58 = 232
<i>x</i> ₅₁	58	<i>x</i> ₅₃	x_{31}	303	217	= (303 + 217) - 58 = 462
<i>x</i> ₅₁	58	<i>x</i> ₅₄	x_{41}	392	164	= (392 + 164) - 58 = 498
<i>x</i> ₅₁	58	<i>x</i> ₅₆	<i>x</i> ₆₁	441	87	= (441 + 87) - 58 = 470
	$x_{12} \rightarrow x_{25} \rightarrow x_{51}$					

Due to the table being asymmetrical, x15 and x51 will not necessarily be the same amounts, like above (we need to check from the origin as well as to the origin if the to is maybe better). We pick the smallest and then complete the route like above. If x51 with a detour of x54 + x41 was smaller (e.g. 200 instead of 498 which was not the case and why it was NOT chosen), you will pick that one and complete the route with what was not replaced $x_{15} \rightarrow x_{54} \rightarrow x_{41}$

Route		Detour			Detour Length	
<i>x</i> ₁₂	264	<i>x</i> ₁₃	x_{32}	434	580	= (434 + 580) - 264 = 750
x_{12}	264	x_{14}	x_{42}	328	402	= (328 + 402) - 264 = 466
<i>x</i> ₁₂	264	<i>x</i> ₁₆	<i>x</i> ₆₂	174	237	= (174 + 237) - 264 = 147
<i>x</i> ₂₅	79	x_{23}	x_{35}	290	606	= (290 + 606) - 79 = 817
<i>x</i> ₂₅	79	x_{24}	x_{45}	201	196	= (201 + 196) - 79 = 318
<i>x</i> ₂₅	79	x_{26}	<i>x</i> ₆₅	119	662	= (119 + 662) - 79 = 702
<i>x</i> ₅₁	58	<i>x</i> ₅₃	x_{31}	303	217	= (303 + 217) - 58 = 462
<i>x</i> ₅₁	58	x_{54}	x_{41}	392	164	= (392 + 164) - 58 = 498
<i>x</i> ₅₁	58	<i>x</i> ₅₆	<i>x</i> ₆₁	441	87	= (441 + 87) - 58 = 470

$$\chi_{16} \rightarrow \chi_{62} \rightarrow \chi_{25} \rightarrow \chi_{51}$$

Route			Detour			Detour Length	
<i>x</i> ₁₆	174	<i>x</i> ₁₃	<i>x</i> ₃₆	434	909	= (434 + 909) - 174 = 1169	
<i>x</i> ₁₆	174	x_{14}	x_{46}	328	294	= (328 + 294) - 174 = 448	
<i>x</i> ₆₂	237	<i>x</i> ₆₃	x_{32}	455	580	= (455 + 580) - 237 = 798	
<i>x</i> ₆₂	237	x_{64}	x_{42}	588	402	= (588 + 402) - 237 = 753	
x_{25}	79	x_{23}	<i>x</i> ₃₅	290	606	= (290 + 606) - 79 = 817	
x_{25}	79	x_{24}	x_{45}	201	196	= (201 + 196) - 79 = 318	
<i>x</i> ₅₁	58	<i>x</i> ₅₃	x_{31}	303	217	= (303 + 217) - 58 = 462	
<i>x</i> ₅₁	58	x_{54}	x_{41}	392	164	= (392 + 164) - 58 = 498	

$$x_{16} \to x_{62} \to x_{24} \to x_{45} \to x_{51}$$

$$x_{16} \to x_{62} \to x_{24} \to x_{45} \to x_{51}$$

Route		Detour				Detour Length	
<i>x</i> ₁₆	174	<i>x</i> ₁₃	<i>x</i> ₃₆	434	909	= (434 + 909) - 174 = 1169	
<i>x</i> ₆₂	237	x_{63}	x_{32}	455	580	= (455 + 580) - 237 = 798	
x_{24}	201	x_{23}	x_{34}	290	226	= (290 + 226) - 201 = 315	
x_{45}	196	x_{43}	x_{35}	113	606	= (113 + 606) - 196 = 523	
<i>x</i> ₅₁	58	x_{53}	<i>x</i> ₃₁	303	217	= (303 + 217) - 58 = 462	

$$x_{16} \to x_{62} \to x_{23} \to x_{34} \to x_{45} \to x_{51}$$

$$z = 174 + 237 + 290 + 226 + 196 + 58$$

 $z = 1181$

Exercises

2. Each day, African Petroleum manufactures four types of petrol: lead-free premium (LFP), lead-free regular (LFR), leaded premium (LP), and leaded regular (LR). Because of cleaning and resetting of machinery, the time required to produce a batch of petrol depends on the type of petrol last produced. For example, it takes longer to switch between a lead-free petrol and a leaded petrol than it does to switch between two lead-free types of petrol. The time (in minutes) required to manufacture each day's petrol requirements are shown in the Asymmetrical table. Assume that you need to start with the LFR petrol.

Last-produced	Petrol to be produced next					
petrol	LFR	LFP	LR	LP		
LFR	-	50	120	140		
LFP	60	-	140	110		
FR	90	130	-	60		
FP	130	120	80	-		

Exercises

- Formulate an Integer Programming Model that will solve the given problem.
- Solve the formulated Integer Programming Model using Solver.
- Solve the formulated Integer Programming Model using the NNH and CIH.

Last-produced	Petrol to be produced next					
petrol	LFR	LFP	LR	LP		
LFR	-	50	120	140		
LFP	60	-	140	110		
LR	90	130	-	60		
LP	130	120	80	-		

END

info@belgiumcampus.ac.za

+27 10 593 5368

+27 (0) 12 543-1617

PO Box 60327, Karenpark 0118, South Africa

@BelgiumCampusSA

@BelgiumCampus

/Belgium Campus

- Tshwane Campus
 138 Berg Avenue
 Heatherdale, Pretoria
- Ekurhuleni Campus 45A Long Street Kempton Park
- Nelson Mandela Bay Campus 6 Uitenhage Road North End, Port Elizabeth,