Arithemeric Instruction

Multiplication

Division

• In terms of Memory

• Basically division is just the opposite of multiplication

32 bit division

- dividend is composed of DX and AX
- divisor is 16bit , (can be in any reg)
- quotient will be in ax registor
- remained in dx register

Sighned Multiplication

- $\bullet\,$ sighn is stored by the MSB
- -ve * +ve
- -ve * -ve

- all kinds of sighned number is available
- Named: IMUL IDIV

Arithmetic Adjust Instructions

- You can take the instruction
 - in hexadecimal (0 to F)
 - in ascii (coded form of number (0-9))
 - or in decimal data (0-9)
- Depends on the programmer to interpret the data
- If you are taking the data in the decimal, then result in the same format of representation
- If the register stores the data in binary , then it might interpret it wrong
- For eg.

- basically multiplication is in binary

Solution

- Hence we have adjustment instruction to covert from one form to another
 - Look in the book
 - DAA
 - DAS
 - Similarly we have for ascii
 - AAM (ascci adjust after mul)
 - AAS (" subtraction)
 - AAD (" division)
- Diff b/w Decimal and Ascii
- \bullet In ascii simply does the unpacking of the packed number so that you can add seperately the base value of ASCII ie 30

Logical Instruction

- 2 imp instruction
- Shift
 - Like mul by 2Div by 2
- Rotate