Lista 1

Zadanie 1. Pokaż, że \mathbb{Z}_p istnieje element odwrotny, tj. dla każdego $a \in \mathbb{Z}_p$ różnego od 0 istnieje a^{-1} takie że $a \cdot a^{-1} = 1$. Możesz to zrobić według następującego schematu:

- dla ustalonego $a \neq 0$ rozważ $a, 2a, 3a, \ldots, (p-1)a$;
- pokaż, że elementy w tym ciągu są niezerowe i różne;
- wywnioskuj z tego, że a ma element odwrotny w \mathbb{Z}_p .

Zadanie 2. Sprawdź, czy następujące podzbiory \mathbb{R}^n są podprzestrzeniami liniowymi:

- 1. $\{(a,b) \in \mathbb{R}^2 : 5a + 2b = 0\}$
- 2. $\{(a, b, c) \in \mathbb{R}^3 : 2a c = 0\}$
- 3. $\{(a,b,c) \in \mathbb{R}^3 : 5a + 2b = 2a c = 0\}$
- 4. $\{(a,b) \in \mathbb{R}^2 : |2a| + |b| = 0\}$
- 5. $\{(a,b) \in \mathbb{R}^2 : |2a| + |b| = 1\}$
- 6. $\{(a,b) \in \mathbb{R}^2 : |2a| |b| = 0\}$
- 7. $\{(a,b) \in \mathbb{R}^2 : |2a| |b| = 1\}$
- 8. $\{(a,b) \in \mathbb{R}^2 : |ab| = 1\}$
- 9. $\{(a,b) \in \mathbb{R}^2 : ab = a\}$

Zadanie 3. Rozważmy zbiór wszystkich (nieskończonych) ciągów o elementach w \mathbb{R} . Definiujemy dodawanie takich ciągów po współrzędnych, tak samo mnożenie przez skalar, tj.:

$$(a_1, a_2, \ldots) + (b_1, b_2, \ldots) = (a_1 + b_1, a_2 + b_2, \ldots), \quad \alpha(a_1, a_2, \ldots) = (\alpha a_1, \alpha a_2, \ldots)$$

Jest to przestrzeń liniowa, gdzie $\vec{0}$ to ciąg złożony z samych 0. Dla podanych poniżej podzbiorów tej przestrzeni liniowej określ, które z nich są podprzestrzeniami liniowymi, a które nie. Odpowiedzi uzasadnij.

- (a) Zbiór ciągów $(a_1, a_2, ...)$ takich, że dla każdego $n \ge 3$ mamy $a_n = n \cdot a_{n-1} + n^2 \cdot a_{n-2}$.
- (b) Zbiór ciągów $(b_1, b_2, ...)$ takich, że dla każdego $n \ge 2$ mamy $b_n = 3 \cdot b_{n-1} + 2^n 1$.
- (c) Zbiór ciągów $(c_1, c_2, ...)$ takich, że dla każdego $n \ge 3$ mamy $c_n = c_{n-1} \cdot c_{n-2}$.
- (d) Zbiór ciągów (d_1, d_2, \ldots) takich, że skończenie wiele liczb spośród d_1, d_2, \ldots jest dodatnia.

Zadanie 4. Niech \mathbb{V} — przestrzeń liniowa nad \mathbb{F} oraz \mathbb{W} , $\mathbb{W}' \leq \mathbb{V}$ będą jej podprzestrzeniami. Pokaż, że $\mathbb{W} + \mathbb{W}'$ jest najmniejszą przestrzenią liniową zawierającą \mathbb{W} i \mathbb{W}' .

Zadanie 5. Niech \mathbb{V} — przestrzeń liniowa nad \mathbb{F} oraz $\mathbb{W}_i \leq \mathbb{V}$ dla $i \in I$ będą jej podprzestrzeniami. Pokaż, że $\bigcap_{i \in I} \mathbb{W}_i$ jest największą przestrzenią liniową zawartą w każdej z \mathbb{W}_i .

Pokaż też, że dla przestrzeni liniowych $\mathbb{V}_1, \ldots, \mathbb{V}_k$ nad tym samym ciałem \mathbb{F} , iloczyn kartezjański $\prod_{i=1}^k \mathbb{V}_i$ z dodawaniem i mnożeniem po współrzędnych, jest przestrzenią liniową nad \mathbb{F} .

Zadanie 6. Pokaż (nie używając pojęcia wymiaru ani niezależności liniowej), że każda podprzestrzeń liniowa \mathbb{R}^2 jest jednej z postaci:

- jedynie wektor zerowy: $\{\vec{0}\}$
- wielokrotności ustalonego wektora z \mathbb{R}^2 (czyli wektory stanowiace prostą przechodzącą przez (0,0))
- całe \mathbb{R}^2 .

Zadanie 7. Niech \mathbb{V} , przestrzeń liniowa nad ciałem \mathbb{F} , $U=(\vec{v}_1,\ldots,\vec{v}_k)$ będzie układem wektorów z \mathbb{V} , zaś $\alpha_1,\ldots,\alpha_k\in\mathbb{F}$ ciąg skalarów, takich że $\alpha_1\neq 0$. Pokaż, że

$$\operatorname{LIN}\left(\left\{\sum_{i=1}^{k} \alpha_{i} v_{i}, v_{2} \dots, v_{k}\right\}\right) = \operatorname{LIN}\left(\left\{v_{1}, v_{2} \dots, v_{k}\right\}\right).$$

Zadanie 8. Przedstaw wektor \vec{W} jako kombinację podanych wektorów $\vec{V}_1, \dots, \vec{V}_k$ (lub uzasadnij, że to niemożliwe), nad ciałem \mathbb{R} :

1.
$$\vec{W} = (1,5), \vec{V_1} = (1,1), \vec{V_2} = (2,0).$$

- 2. $\vec{W} = (5, 10, 11), \vec{V_1} = (1, 2, 3), \vec{V_2} = (0, 3, 2), \vec{V_3} = (1, 1, 1).$
- 3. $\vec{W} = (5, 10, 11), \vec{V_1} = (1, 2, 3), \vec{V_2} = (0, 3, 2), \vec{V_3} = (1, 8, 7).$
- 4. $\vec{W} = (4, 17, 18), \vec{V_1} = (1, 2, 3), \vec{V_2} = (0, 3, 2), \vec{V_3} = (3, 9, 11).$

Zadanie 9. Rozważmy przestrzeń \mathbb{Z}_3^3 (zbiór trzyelementowych ciągów elementów z \mathbb{Z}_3 , nad ciałem \mathbb{Z}_3). Ile wektorów należy do LIN((1,2,1),(2,1,1))? A ile do LIN((1,2,1),(2,1,2))?

Zadanie 10. Pokaż następujące fakty wprost z definicji, tj. rozpisując odpowiednie kombinacje liniowe:

• Niech $\mathbb V$ będzie przestrzenią liniową, $U\subseteq \mathbb V$ układam wektorów. Wtedy:

$$LIN(U) = LIN(LIN(U))$$
.

• Niech $\mathbb V$ będzie przestrzenią liniową nad ciałem $\mathbb F$, zaś $\vec v_1,\dots,\vec v_k\in\mathbb V$ wektorami z tego ciała. Jeśli skalary $\alpha_1,\dots,\alpha_k\in\mathbb F$ są niezerowe to

$$LIN(\vec{v}_1, \dots, \vec{v}_k) = LIN(\alpha_1 \vec{v}_1, \dots, \alpha_k \vec{v}_k).$$

• Dla $i \neq j$ oraz skalara $\alpha \in \mathbb{F}$

$$LIN(\vec{v}_1, ..., \vec{v}_k) = LIN(\vec{v}_1, ..., \vec{v}_{i-1}, \vec{v}_i + \alpha \vec{v}_i, \vec{v}_{i+1}, ..., \vec{v}_k).$$

Zadanie 11 (* nie liczy się do podstawy). Kombinacją wypuklą wektorów $\vec{v}_1, \ldots, \vec{v}_k$ jest kombinacja liniowa $\sum_{i=1}^k \alpha_i \vec{v}_i$ przy czym $\sum_{i=1}^k \alpha_i = 1$ i $0 \le \alpha_i \le 1$ dla każdego $1 \le i \le k$.

Pokaż, że w \mathbb{R} kombinacja wypukła wektorów $\vec{v}_1, \ldots, \vec{v}_k$ to najmniejszy wielokąt wypukły zawierający je wszystkie. (Wielokąt jest wypukły, jeśli nie ma kąta większego niż 180°.)