

Problema D Figuras

nombre clave: figuras

Cuenta la leyenda que el templo sagrado de Cumpeo alberga una cámara secreta llena de tesoros. En su última expedición, Sofía, una intrépida exploradora oriunda de Pelotillehue, encontró un pergamino que podría contener la clave para acceder a la cámara. Lamentablemente, sus fuentes le han confirmado que su archirrival de Buenas Peras también tuvo acceso al pergamino. Sofía no puede soportar la idea de perder contra alguien de Buenas Peras así que debe apresurarse para ser la primera en entrar a la cámara.

En la sala principal del templo, una de las paredes contiene un mural formado por una grilla de n filas y m columnas. Las filas son numeradas de arriba hacia abajo entre 1 y n, mientras que las columnas de izquierda a derecha entre 1 y m. La casilla en la fila i y columna j es identificada con el par (i, j).

Algunas de las casillas en la grilla tienen azulejos dispuestos de manera que forman una figura conexa. Es decir, todos los azulejos son adyacentes a al menos un azulejo. Dos azulejos se consideran adyacentes si comparten un borde vertical u horizontal. La siguiente imagen muestra un ejemplo para una grilla de 3×5 con azulejos en las posiciones (3,3), (3,4) y (3,5).

En el centro de la sala hay además un tablero formado también por una grilla de $n \times m$. Sobre el tablero, hay fichas que pueden moverse entre sus casillas. La cantidad de fichas es la misma que la de azulejos, pero están dispuestas sobre el tablero en posiciones distintas. La siguiente imagen muestra un ejemplo del tablero con fichas en las posiciones (1,2), (1,3) y (2,3).

	1	2	3	4	5
1					
2					
3					

De acuerdo a las instrucciones en el pergamino, para abrir la puerta mágica a la cámara secreta, hay que resolver el acertijo del tablero. El acertijo consiste en mover las fichas del tablero hasta que coincidan con los azulejos en el mural. Esto pareciera ser sencillo, pero para activar el mecanismo mágico, las fichas deben moverse siguiendo una regla especial. Específicamente, el único movimiento válido es tomar una ficha y colocarla adyacente a otra ficha de manera que en todo momento se forme una figura conexa.

Dado el mural y el tablero en las imágenes anteriores, la siguiente imagen muestra una posible secuencia de movimientos que pueden usarse para que las fichas en el tablero coincidan con los azulejos.

En el primer movimiento la ficha en la posición (1,2) se mueve a la posición (3,3). Posteriormente, la ficha en la posición (1,3) se mueve a la posición (3,4). Finalmente, la ficha en la posición (2,3) se mueve a la posición (3,5).

Sofía quiere resolver el acertijo lo más rápido posible, pero está teniendo problemas. En particular, le gustaría saber la mínima cantidad de movimientos en que es posible hacer coincidir las fichas con los azulejos. ¿Podrías ayudarla?

Entrada

La primera línea de la entrada contiene dos enteros n y m $(n \times m \le 2 \times 10^5)$ correspondientes a las dimensiones del tablero y el mural. Luego vienen $2 \times n$ líneas describiendo el tablero y el mural.

Las primeras n líneas describen el tablero. Cada línea contiene m enteros iguales a 0 o 1. El j-ésimo entero en la línea i describe la casilla (i,j) del tablero. Un 1 indica que la casilla contiene una ficha y un 0 indica que está vacía.

Las últimas n líneas describen las casillas del mural con azulejos usando el mismo formato.

Se garantiza que la entrada cumple las siguientes condiciones:

- La cantidad de unos en el tablero y en el mural es la misma.
- La cantidad de unos en el tablero y en el mural es mayor o igual que 2.
- Los unos en el tablero y en el mural forman ambos una figura conexa.

Salida

La salida debe contener un entero igual al número mínimo de movimientos requeridos para mover las casillas de forma que coincidan con los azulejos.

Subtareas y puntaje

Subtarea 1 (20 puntos)

Se probarán varios casos donde n=1 y $m \le 2 \times 10^3$.

Subtarea 2 (30 puntos)

Se probarán varios casos donde $n \times m \le 2 \times 10^3$.

Subtarea 3 (50 puntos)

Se probarán varios casos sin restricciones adicionales.

Ejemplos de entrada y salida

Entrada de ejemplo	Salida de ejemplo
1 4 1 1 0 0 0 0 1 1	2

Entrada de ejemplo	Salida de ejemplo	
3 5	3	
0 1 1 0 0		
0 0 1 0 0		
0 0 0 0 0		
0 0 0 0 0		
0 0 0 0 0		
0 0 1 1 1		