

Wydział Informatyki	Imię i nazwis 1. Kawa Mi c 2. Smyda T c	chał	Rok: II	Grupa: 5	Zespół:		
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Busola styc:	Temat: Busola stycznych					
Data wykonania: 14.11.2023	Data oddania: 15.11.2023	Zwrot do popr.:	Data oddania:	Data zaliczenia:	OCENA:		

Busola stycznych

Ćwiczenie nr 41

Kawa Michał Smyda Tomasz

Spis treści

1	Wstęp 1.1 Cel ćwiczenia	2				
2	Układ pomiarowy	2				
3	Wyniki pomiarów					
4	Opracowanie wyników pomiaru 4.1 Obliczanie wartości indukcji magnetycznej	4				
5	Wnioski	4				

1 Wstęp

1.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z budową i działaniem przyrządu zwanego busolą stycznych oraz przy jego pomocy wyznaczenie składowej poziomej ziemskiego pola magnetycznego.

2 Układ pomiarowy

W skład układu pomiarowego, który jest przedstawiony na rysunku poniżej, wchodzą:

- Busola stycznych
- Zasilacz napięcia stałego
- Amperomierz
- Opornica suwakowa
- Przełącznik kierunku prądu

3 Wyniki pomiarów

	Liczba	Prąd	Kąt wychylenia	Kąt wychylenia	Średni kąt	B_0
Lp	zwojów	I	w prawo	w lewo	wychylenia	$[\mu T]$
	$N \mid [\mathrm{mA}] \mid$		[°]	[°]	[°]	
1	40	40	23	21	22	19,1402
2	40	70	33	35	34	20,0635
3	40	90	41	41	41	20,01593
4	40	120	49	47	48	20,8888
5	40	150	55	58	$56,\!5$	19,1942
6	40	450	72	76	74	24,9462
7	36	40	21	21	21	18,1309
8	36	70	27	29	28	22,9067
9	36	90	36	38	37	20,7810
10	36	120	42	45	$43,\!5$	22,0024
11	36	150	51	52	$51,\!5$	20,7603
12	36	450	72	74	73	23,9381
13	16	150	27	29	28	21,8159
14	16	200	35	38	$36,\!5$	20,9015
15	16	250	39	42	40,5	22,6358
16	16	300	45	47	46	22,4034
17	16	350	48	51	49,5	23,1165
18	16	450	56	59	$57,\!5$	22,1695
19	12	150	20	22	21	22,6637
20	12	200	26	27	$26,\!5$	23,2654
21	12	250	33	36	$34,\!5$	21,0971
22	12	300	37	40	$38,\!5$	21,8742
23	12	400	43	46	$44,\!5$	23,6079
24	12	450	47	50	48,5	23,0907

Tabela 1: Wyniki pomiarów

Klasa amperomierza: 0,5 Średnica cewki: 260 mm

Niepewność pomiaru średnicy cewki: 3 mm

4 Opracowanie wyników pomiaru

4.1 Obliczanie wartości indukcji magnetycznej

Pomiar indukcji pola Ziemii jest pomiarem pośrednim, który jest określony równaniem:

$$B_0 = \mu_0 \frac{N \cdot I}{2R \cdot \lg \alpha}$$

Jako wartość składowej poziomu indukcji ziemskiego pola magnetycznego przyjęliśmy średnią arytmetyczną z wielkości B_0

$$B_0 = \overline{B} = 21,73 \ \mu \text{T}$$

4.2 Niepewności pomiarowe

Niepewność $u(B_0)$ najpierw traktujemy jako niepewność typu A:

$$u_A(B_0) = \sqrt{\frac{\sum_{i=1}^{24} \left(B_i - \overline{B}\right)^2}{24 \cdot 23}}$$

 $u_A(B_0) = 0.34 \ \mu\text{T}$

Niepewność amperomierza brana jest jako niepewność typu B:

$$\Delta I = \frac{750 \text{ mA} \cdot 0.5}{100} = 3,75 \text{ mA}$$

$$u_B(I) = \frac{\Delta I}{\sqrt{3}} = 2,17 \text{ mA}$$

Niepewność pomiaru średnicy cewki też jest niepewnością typu B:

$$U(d) = 3 \text{ mm} \Rightarrow u(r) = 1.5 \text{ mm}$$

Korzystając z powyższych niepewności pomiarowych możemy wyliczyć niepewność złożoną:

$$u(B_0) = B_0 \sqrt{\left[\frac{u_A(B_0)}{B_0}\right]^2 + \left[\frac{u_B(I)}{I}\right]^2 + \left[\frac{u(r)}{r}\right]^2}$$

 $u(B_0) = 0,43 \ \mu\text{T}$

4.3 Porównanie z wartościami tabelarycznymi

Wartość tablicowa dla Krakowa to $B_T=21~\mu\mathrm{T}$. Otrzymana przez nas wartość średnia to: $B_0=21{,}73~\mu\mathrm{T}$. Otrzymana wartość mieści się w zakresie niepewności pomiarowej rozszerzonej ze współczynnikiem $k_p=2$ w porównaniu z wartością tablicową.

5 Wnioski

Wyznaczona wartość składowej poziomej wektora ziemskiego pola magnetycznego mieści się w granicach przyjętej niepewności rozszerzonej dla współczynnika $k_p=1$, natomiast mieszczą się dla współczynnika $k_p=2$. W tabelce, która przedstawia wyniki pomiarów, możemy zaobserwować, że rejestrowane wychylenie igły miałą inną wartość w lewo i w prawo. Może to świadczyć o niedokładnej kalibracji busoli. Warto też mieć na uwadze, że w pracowni znajdowały się urządzenia, które wytwarzają własne pola magnetyczne: przewodniki z prądem oraz urządzenia elektryczne.