Théorie des langages : THL CM 6

Uli Fahrenberg

EPITA Rennes

S5 2024

Aperçu

Programme du cours

- Langages rationnels, automates finis
- Langages algébriques, grammaires hors-contexte, automates à pile
 - TP 1: flex
 - QCM 1 : langages rationnels
- Parsage LL
 - TP 2 : parsage LL
- Parsage LR, partie 1
 - QCM 2 : parsage LL
- Parsage LR, partie 2
- Introduction flex & bison
- TP 3, 4: flex & bison

Parsage

Re: parsage LL(1)

- **o** entrée : une grammaire hors contexte $G = (N, \Sigma, P, S)$
 - si-dessous, $V = N \cup \Sigma$
 - éliminer récursion à gauche dans G; factoriser G à gauche
- calculer NULL
 - NULL = $\{A \in N \mid A \Rightarrow^* \varepsilon\}$
- construire la table FIRST
 - FIRST(A) = { $a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw$ }
- construire la table FOLLOW
 - FOLLOW(A) = $\{a \in \Sigma \mid \exists B \in N, \alpha, \beta \in V^* : B \Rightarrow^* \alpha A a \beta\}$
- onstruire la TABLE de parsage :
 - pour chaque production $X \to w$ (n):
 - pour chaque $a \in FIRST(w)$: TABLE $(X, a) += \{n\}$
 - $oldsymbol{0}$ si $w \in \mathsf{NULL}$ ou $w = \varepsilon$:
 - pour chaque a ∈ FOLLOW(X) : TABLE(X, a) += {n}

$$Z \rightarrow XYZ$$
 (1)

$$X \rightarrow a$$
 (3)

$$Y \rightarrow b$$
 (5)

$$\varepsilon$$
 (6)

NULL =

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a \tag{3}$$
$$\mid Y \tag{4}$$

$$Y \rightarrow b$$
 (5)

$$\rightarrow \mathcal{B}$$
 (5) $\mid \varepsilon$ (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a$$
 (3)

$$|Y \qquad (4)$$

$$Y \to b \qquad (5)$$

$$Y \rightarrow b$$
 (5)
 $\mid \varepsilon$ (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a \tag{3}$$
$$\mid Y \tag{4}$$

$$Y \rightarrow b$$
 (5)

$$\mid \varepsilon$$
 (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$\begin{array}{c|c}
A & FOLLOW(A) \\
\hline
X & a, b, c \\
Y & a, b, c \\
Z & (rien)
\end{array}$$

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a \tag{3}$$
$$\mid Y \tag{4}$$

$$Y \rightarrow b$$
 (5)

$$\mid \varepsilon$$
 (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$\begin{array}{c|c}
A & FOLLOW(A) \\
\hline
X & a, b, c \\
Y & a, b, c \\
Z & (rien)
\end{array}$$

Re : approches parsage

Plus précisement

Plus précisement

Approches parsage

Approche descendante :

- trouver chemin de S à a * a
- difficile ici!

Approche ascendante :

- trouver chemin de a * a à S
- ici, facile!
 - l'inverse de l'arbre est (presque) déterministe
 - (pas toujours le cas . . .)

Parsage ascendant: the basics

```
function \operatorname{BULRP}(\alpha) if \alpha = S then return True for i \leftarrow 1 to |\alpha| do for j \leftarrow i to |\alpha| do for A \in N do if A \to \alpha_i \dots \alpha_j then if \operatorname{BULRP}(\alpha_1 \dots \alpha_{i-1} A \alpha_{j+1} \dots \alpha_n) then return True
```

- très simple ¨
- plein de retours en arrière
- inutilisable?

Parsage ascendant: the basics

```
function \operatorname{BULRP}(\alpha)

if \alpha = S then

return True

for i \leftarrow 1 to |\alpha| do

for j \leftarrow i to |\alpha| do

for A \in \mathbb{N} do

if A \to \alpha_i \dots \alpha_j then

return True

return True
```

- très simple ¨
- plein de retours en arrière
- inutilisable?

Exemple

$$S \to (S) \tag{1}$$
$$\mid n \tag{2}$$

 utiliser une pile pour stocker les entrées décalés

entrée	pile	action
((n))\$	上	décaler
(n))\$	⊥(décaler
n))\$	⊥((décaler
))\$	\perp ((n	réduire 2
))\$	⊥ ((S	décaler
)\$	⊥((S)	réduire 1
)\$	⊥ (S	décaler
\$	⊥(S)	réduire 1
\$		PROFIT

Automate de parsage

$$S \to (S) \qquad (1)$$
$$\mid n \qquad (2)$$

• reconnaissance de motifs par automate fini déterministe

• (en fait un transducteur fini)

Optimisations

$$S \to (S) \qquad (1)$$

$$\mid n \qquad (2)$$

entrée	pile	action
((n))\$		décaler
(n))\$	⊥(décaler
n))\$	⊥((décaler
))\$	\perp ((n	réduire 2
))\$	⊥ ((S	décaler
)\$	⊥((S)	réduire 1
)\$	⊥(S	décaler
\$	⊥ (S)	réduire 1
\$		PROFIT

Optimisations

$$S \to (S) \qquad (1)$$
$$\mid n \qquad (2)$$

• stocker l'état actuel dans la pile

entrée	pile	action
((n))\$	上	décaler
(n))\$	⊥ (1	décaler
n))\$	\perp (1(1	décaler
))\$	$\perp (_{1}(_{1}n_{4})$	réduire 2
))\$	$\perp (_{1}(_{1}S_{2}$	décaler
)\$	$\perp (_1(_1S_2)_3$	réduire 1
)\$	\perp (1 S_2	décaler
\$	$\perp (_1S_2)_3$	réduire 1
\$		PROFIT

21/29

Optimisations

$$S \to (S) \tag{1}$$

$$\mid n \tag{2}$$

- stocker l'état actuel dans la pile
- en fait, plus besoin d'empiler des symboles!

entrée	pile	action
((n))\$		décaler
(n)	⊥1	décaler
n))\$	\perp 11	décaler
))\$	⊥114	réduire 2
))\$	⊥112	décaler
)\$	⊥1123	réduire 1
)\$	⊥12	décaler
\$	⊥123	réduire 1
\$		PROFIT

Uli Fahrenberg Théorie des langages : THL

Parsage LR

Construire l'automate de parsage

 $S \rightarrow (S)$ (1)

• états : productions partiellement achevées

 $\mid n \mid (2)$

Construire l'automate de parsage

$$S \rightarrow (S)$$
 (1)

• états : productions partiellement achevées

$$| n$$
 (2)

Définition (8.8)

Soit G une grammaire hors-contexte. Une production pointée de G est une paire $(A, \alpha \bullet \beta)$ telle que $A \to \alpha \beta$ est une production de G.

- ullet α : partie achevée, eta : ce qui reste à trouver
- états : productions pointées
- ullet transitions étiquetées dans V
- états finaux : productions de type $A \rightarrow w$ •

But Wait!

plus compliqué que ça :

$$X \rightarrow aYc$$
 (1)

$$Y \rightarrow b$$
 (2)

But Wait!

plus compliqué que ça :

$$X \rightarrow aYc$$
 (1)

$$Y \rightarrow b$$
 (2)

Clôture

Définition (8.10)

Soit G une grammaire hc et \mathcal{I} un ensemble de productions pointées de G. La clôture de \mathcal{I} est le plus petit ensemble cl (\mathcal{I}) t.g. $\mathcal{I} \subseteq \text{cl}(\mathcal{I})$ et

• si $(A, \alpha \bullet B\beta) \in cl(\mathcal{I})$ et $B \to \gamma$ est une production de G, alors $(B, \bullet \gamma) \in cl(\mathcal{I})$.

Définition

L'automate de parsage LR(0) d'une grammaire hors-contexte G est l'automate fini déterministe (Q, q_0, F, δ) avec

- $Q = \{ \operatorname{cl}(\mathcal{I}) \mid \mathcal{I} \text{ ensemble de productions pointées de } G \}$;
- $q_0 = cl(\{(Z, \bullet S\$)\});$
- $F = \{ q \in Q \mid \exists \text{ production } X \to w \text{ de } G \text{ t.q. } (X, w \bullet) \in q \}$
- ullet et $\delta: Q imes V
 ightarrow Q$ donnée par

$$\delta(q,\beta) = \operatorname{cl}(\{(X,\alpha\beta\bullet\gamma) \mid (X,\alpha\bullet\beta\gamma) \in q\}).$$

