OPERÁCIE

- 1. Na množine $A = \{a, b, c\}$ definujte (tabuľkou) operáciu, ktorá je
 - (a) komutatívna a asociatívna,
 - (b) komutatívna, ale nie je asociatívna,
 - (c) asociatívna, ale nie je komutatívna,
 - (d) nie je ani komutatívna, ani asociatívna.

Výsledky: Napr.:

	*	a	b	c		*	a	b	c		*	a	b	c		*	a	b	c
-)	a	c	c	c	L)	a	a	b	c	-)	a	a	b	c	٦١.	a	a	c	c
a_j	b	c	c	c	0)	b	b	a	a	c)	b	a	b	c	a_j	b	b	a	c
	c	c	c	c		c	c	a	a		c	a	b	c c		c	c	b	c

- 2. Na množine Z sú definované operácie
 - (a) $a \circ b = a + b + 1$,

uzavřetost asociativní

komunativní

(b) $a \star b = 2a + b$,

neutrální prvek inverzní prvek

- (c) $a\Delta b = a^3 + b^3$.

(d) a*b=a+b-a:b pozor na úpravy u neutrálního prvku

Určte ich vlastnosti.

Výsledky: a)
o je komutatívna, asociatívna, má neutrálny prvok e=-1, ku každému prv
ku z $\mathbb Z$ existuje inverzný prvok -2-a, b) \star nie je komutatívna, nie je asociatívna, nemá neutrálny prvok, teda ani inverzné prvky, c) Δ je komutatívna, nie je asociatívna, nemá neutrálny prvok, teda ani inverzné prvky, d) * je komutatívna, asociatívna, má neutrálny prvok a 🖘 🚨 inverzný prvok existuje len pre tie $a \in \mathbb{Z}$, pre ktoré je zlomok $\frac{a}{a-1}$ celé číslo.

3. Nájdite asociatívne operácie na množine reálnych čísel $\star_1, \star_2, \star_3$ (rôzne!), tak, aby platilo:

$$a \star_3 b = \frac{a \star_1 b + a \star_2 b}{2}.$$

Výsledky: napr.: $a \star_1 b = 6$, $a \star_2 b = 4 \Rightarrow a \star_3 b = 5$.

- 4. Na množine $A = \{a, b, c, d\}$ definujte operáciu \star tak, aby grupoid (A, \star) mal
 - (a) práve jeden podgrupoid, musíme pokazit vše (jednoprvkové a*a a dvojprvkové a*b)
 - (b) práve dva podgrupoidy, ať funguje jeden a*a
 - (c) práve tri podgrupoidy, ať fungují 2 a*a, b*b
 - (d) práve päť podgrupoidov. ať fungují 4 a*a, b*b, c*c, d*d

Výsledky: napr.:

	*	a	b	c	d		*	a	b	c	d
	a	b	c	c	d		a	a	c	c	d
a)	b	b	c	c	d	b)	b	d	a	c	d
	c	c	b	d	d		c	a	b	b	d
	d	d	d	d	a	b)	d	a	b	c	c
	*	a	b	c	d		*	a	b	c	d
	a	a	c	c	d	-	a	a	c	c	ь
c)	b	ь	b	d	b	d)	b	b	b	d	a
	c	c	a	b	b		c	d	d	c	a
	d	d	b	b	c	d)	d	d	a	b	d

a) Podgrupoid je len (A, \star) , b) podgrupoidy sú (A, \star) , $(\{a\}, \star)$, c) podgrupoidy sú (A, \star) , $(\{a\}, \star)$, $(\{b\}, \star)$, d) podgrupoidy sú $(A,\star), (\{a\},\star), (\{b\},\star), (\{c\},\star), (\{d\},\star).$

1

- 5. Na množine $A = \{a, b, c, d\}$ definujte operáciu \star tak, aby (A, \star)
 - (a) bol grupoid, ale nie asociatívny grupoid,
 - (b) bol asociatívny grupoid bez neutrálneho prvku,
 - (c) bol asociatívny grupoid s neutrálnym prvkom,
 - (d) bola grupa.

Výsledky: napr.

	*	a	b	c	d		*	a	b	c	d
	a	a	c	c	d		a	a	b	c	d
a)	b	b	a	c	d	b)	b	a	b	c	d
	c	c	b	c	d		c	a	b	c	d
	d	d	d	d	d	b)	d	a	b	c	d
	*	a	b	c	d		*	a	b	c	d
	a	a	ь	c	\overline{d}	_	a	a	b	c	d
c)	b	b	b	b	b	d)	b	b	c	d	a
	c	c	b	b	b		c	c	d	a	b
	d	d	b	b	b	<i>d</i>)	d	d	a	b	c

6. Na množine $M = \{a, b, c, d\}$ je daná operácia o nasledovne:

- (a) Je (M, \circ) pologrupa?
- (b) Vypíšte všetky dvojprvkové podgrupoidy (M,\circ) . ${\sf 2}$ věci vynásobené mezi sebou musí mít výsledek pouze z těch dvou

Výsledky: a) Nejedná sa o pologrupu, je porušená asociativita, napr. $c \circ (c \circ d) \neq (c \circ c) \circ d$. Dvojprvkové podgrupoidy sú: $(\{b,c\},\circ), (\{b,d\},\circ)$.

- 7. Na množine Z sú definované operácie
 - (a) $a \circ b = a + b 1$,
 - (b) $a \star b = a \cdot b$,
 - (c) $a\Delta b = a \cdot b 1$.

Zistite, v ktorých prípadoch sa jedná o grupu.

Výsledky: a) je grupa, b) nie je grupa, napr. 2 nemá inverzný prvok, c) nie je grupa, je porušená asociativita.

8. Nech $A = \{a, b, c, d, e, f\}$. Nájdite operáciu \circ tak, aby (A, \circ) bol neasociatívny grupoid s neutrálnym prvkom a každý jeho prvok mal práve jeden inverzný prvok.

Výsledky: Inšpiráciu hľadajte v učebnom texte algebra.pdf.

9. Na množine $A=\{a,b,c,d\}$ nájdite nekomutatívnu grupu, ak sa to dá. Svoju odpoveď zdôvodnite.

Výsledky: Taká grupa neexistuje. Dôkaz skúste urobiť sporom.

na 4 prvkové je vždy komutativní

10. Na množine $A = \{a, b, c, d, e, f\}$ nájdite nekomutatívnu grupu, ak sa to dá. Svoju odpoveď zdôvodnite.

Výsledky: Taká grupa existuje, je izomorfná s grupou z príkladu ??.

11. Na množine $M = \{0, a, b, c, d, 1\}$ je daná operácia o nasledovne:

0	0	a	b	c	d	1
0	0	0	0	0	$ \begin{array}{c} d \\ d \\ d \\ d \\ 1 \end{array} $	1
a	0	0	0	a	d	1
b	0	0	0	b	d	1
c	0	a	b	c	d	1
d	d	d	d	d	1	1
1	1	1	1	1	1	1

neutrální prvek nemá a,b,c,d,0,1 neutrální prvek má c^-1 = c je tedy asociativní

Je (M, \circ) pologrupa? Svoju odpoveď zdôvodnite.

Výsledky: Operácia je na M uzavretá, aj asociatívna, teda (M, \circ) je pologrupa. Nezabudnite na zdôvodnenie asociativity.

12. Na množine $A = \{a, b, c, d\}$ je tabuľkou daná operácia \circ a na množine $B = \{1, 2, 3, 4\}$ operácia \star . Zistite, či existuje izomorfizmus medzi grupoidmi (A, \circ) a (B, \star) . V prípadě kladnej odpovede izomorfizmus nájdite, v opačnom prípade zdôvodnite jeho neexistenciu.

0	a	b	c	d	*	1	2	3	4	první si určíme neutrální prvek
			<u>a</u>		1	3	1	4	1	poté z toho všechny inverzní prvky v obou tabulkách
b	b	d	\underline{b}	c	2	1	2	4	2	pattern matchnu je
			<u>c</u>			4	4	2	3	tipnu si výsledek, zkontroluju tím, že pomocí těch
			\underline{d}							nových funkcí zkusím vytvořit tabulků pokud je stejná - win
Výsle	dky: I	zomo	rfizmu	ıs exis	tuje: $f(a) = 2$,	$\dot{f}(b) =$	1, f(c) = 4	f(d)	

13. Na množine $A = \{a, b, c, d\}$ je tabuľkou daná operácia \circ a na množine $B = \{1, 2, 3, 4\}$ operácia \star . Zistite, či existuje izomorfizmus medzi grupoidmi (A, \circ) a (B, \star) . V prípadě kladnej odpovede izomorfizmus nájdite, v opačnom prípade zdôvodnite jeho neexistenciu.

0	a	b	c	d	*	1	2	3	4	obě musí mít stejné vlastnosti
\overline{a}	<u>a</u>	\underline{b}	<u>c</u>	\underline{d}	1	3	1	4	1	levé má neutrální prvek, pravé nemá
b	<u>b</u>	d	b	c	2	1	2	4	3	
c	<u>c</u>	b	c	d	3	4	4	2	3	
d	<u>d</u>	c	d	a	4	1	3	3	4	

 $\text{V\'{y}sledky: Izomorfizmus neexistuje, napr. grupoid } (A, \circ) \text{ m\'{a} neutr\'alny prvok, ale grupoid } (B, \star) \text{ nem\'{a} neutr\'alny prvok. }$

14. Nájdite epimorfizmus algebier (\mathbb{Z}_6, \oplus_6) na (\mathbb{Z}_2, \oplus_2) , (\mathbb{Z}_6, \oplus_6) na (\mathbb{Z}_3, \oplus_3) , (\mathbb{Z}_6, \oplus_6) na (\mathbb{Z}_5, \oplus_5) .

Výsledky: Epimorfizmus (\mathbb{Z}_6, \oplus_6) na (\mathbb{Z}_2, \oplus_2) je f(0) = f(2) = f(4) = 0, f(1) = f(3) = f(5) = 1, epimorfizmus (\mathbb{Z}_6, \oplus_6) na (\mathbb{Z}_3, \oplus_3) je f(0) = f(3) = 0, f(1) = f(4) = 1, f(2) = f(4) = 2, epimorfizmus (\mathbb{Z}_6, \oplus_6) na (\mathbb{Z}_5, \oplus_5) neexistuje. Pozor, nestačí epimorfizmy nájsť, treba ukázať, že to epimorfizmy sú.

15. Na množine $A = \{a, b, c, d\}$ je daná relácia R takto

$$R = \{[a,a], [a,b], [b,a], [b,b], [c,c], [c,d], [d,c], [d,d]\}.$$

Ďalej je na množine A tabuľkou daná operácia \circ takto

Dokážte, že relácia R je kongruencia na množine A vzhľadom na operáciu \circ .

16. Na množine $A = \{a,b,c,d,e,f\}$ je daný rozklad ${\mathcal S}$ nasledovne:

$$S = \{\{a, e\}, \{b, d\}, \{c\}, \{f\}\}.$$

- Určte reláciu ekvivalencie R, ktorá je daná rozkladom \mathcal{S} .
- $\bullet\,$ Na množine Aurčte operáciu \circ tak, aby Rbola reláciou kongruencie na Avzhľadom k operácii $\circ.$

 $\text{V\'{y}sledky: } R = \{[a,a],[b,b],[c,c],[d,d],[e,e],[f,f],[a,e],[e,a],[b,d],[d,b]\}, \text{ oper\'acia m\'{o}\'ze by\'t napr. } \forall a,b \in A; a \circ b = a. \}$