

Компьютерные сети

#### Основы компьютерных сетей Технология Ethernet. Часть 1

Основные концепции сетей передачи данных. Эталонная модель OSI/ISO и стек протоколов TCP/IP. Введение в технологию Ethernet. Диагностика физического уровня

#### Вопросы к аудитории

- 1. Разрабатывали ли вы раньше сетевые приложения?
- 2. С какой целью вы пришли на курс?
- 3. Какая у вас конечная цель?







#### Цели курса



- Изучение основных концепций сетевых технологий.
- Настройка сетевых протоколов.
- Разработка архитектуры небольших сетей.
- Диагностика сети.
- Изучение работы протоколов верхних уровней.





#### План курса (часть 1)

|        | Часть 1 (Теория)                                               | Часть 2 (Практика)           |
|--------|----------------------------------------------------------------|------------------------------|
| Урок 1 | Основы компьютерных сетей.<br>Технология Ethernet. Часть 1     | Настройка физического уровня |
| Урок 2 | Физический и канальный уровни.<br>Технология Ethernet. Часть 2 | Настройка канального уровня  |
| Урок 3 | Сетевой уровень. Часть 1                                       | Настройка сетевого уровня    |
| Урок 4 | Сетевой уровень. Часть 2                                       | Настройка сетевого уровня    |



#### План курса (часть 2)

|        | Часть 1 (Теория)                                     | Часть 2 (Практика)             |
|--------|------------------------------------------------------|--------------------------------|
| Урок 5 | Транспортный уровень                                 | Настройка транспортного уровня |
| Урок 6 | Углубленное изучение сетевых технологий. Часть 1     | Настройка сетевых служб        |
| Урок 7 | Углубленное изучение сетевых технологий. Часть 2     | Настройка сетевых служб        |
| Урок 8 | Прикладной уровень. Перспективные сетевые технологии | Анализ НТТР-трафика            |



## Назначение компьютерных сетей







#### Интернет



объединённых Интернет - всемирная система компьютерных сетей для хранения передачи информации.

Сеть построена на базе стека протоколов ТСР/ІР.

Предоставляет сервисы.

- World Wide Web или WWW.
- Социальные сети.
- Почта.





































# Зачем программисту знать, как работают сетевые технологии?



- Масштабирование приложения.



- Безопасность приложения.















### Виды связи. Simplex

Simplex – односторонняя связь.

#### Примеры:

- Теле- и радиовещание.
- Передача сигнала от спутников GPS.





### Виды связи. Half-duplex

Half-duplex – двусторонняя связь, но в один момент времени может передавать только одно устройство.

Пример: общение по рации, когда можно либо слушать канал, либо, нажав кнопку, передавать в него.





### Виды связи. Full-duplex

Full-duplex или просто duplex – двусторонняя передача, оба устройства могут одновременно вести передачу.

Пример: разговор по телефону.





### Методы передачи данных

Unicast – передача данных единственному адресату.





#### Методы передачи данных

Broadcast – широковещательная передача данных всем

устройствам.





#### Методы передачи данных

Multicast – передача данных группе устройств.





# Виды коммутации. Коммутация каналов

В сети с коммутацией каналов между двумя конечными устройствами устанавливается физический канал. Пример: телефонная сеть.





# Виды коммутации. Коммутация пакетов

В сети с коммутацией пакетов информация от каждого устройства делится на небольшие пакеты, и данные передаются по одним и тем же физическим каналам. Пример:











#### Виды топологий

**Сетевая топология** — это структура графа, на вершинах которого находятся конечные узлы сети (компьютеры/телефоны/принтеры) и сетевое оборудование (коммутаторы, роутеры), а рёбра — физические линии связи между узлами.

Сетевые топологии могут быть.

- **Физическими** определяет как физически соединены устройства в сети.
- **Логическими** определяет направления потоков данных между узлами сети и способы передачи данных







## Абстракции для описания сетевого взаимодействия

Существуют две основные сетевые модели стеков протоколов, описывающие работу сетей передачи данных:

- 1. **Модель OSI** (Open Systems Interconnection), она же **эталонная модель взаимодействия открытых систем** (ЭМВОС) это семиуровневая абстрактная модель, разработанная *Международной Организацией по Стандартам* (International Organization for Standardization ISO).
- 2. Стек протоколов ТСР/ІР четырёхуровневая модель, разработанная по инициативе Министерства обороны США. Используется сейчас как основной стек протоколов в сетях.



#### Стек ТСР/ІР

| 4. Application layer (прикладной уровень)    | потоки данных | HTTP, SSH, DNS |
|----------------------------------------------|---------------|----------------|
| 3. Transport layer<br>(Транспортный уровень) | сегменты      | TCP, UDP       |
| 2. Internet layer<br>(сетевой уровень)       | пакеты        | IP             |
| 1. Link layer<br>(канальный уровень)         | фреймы        | Ethernet       |



#### Стек ТСР/ІР. Инкапсуляция





#### Cooтветствие уровней модели OSI и стека TCP/IP







#### Сетевая технология Ethernet

Ethernet – семейство технологий пакетной передачи данных в компьютерных сетях, использующих метод множественного доступа с контролем несущей и обнаружением коллизий – CSMA/CD.

Название «Ethernet» (буквально «эфирная сеть» или «среда сети») связано с тем что первоначально принцип работы этой технологии был заимствован из радио технологии ALOHAnet.

Ethernet описывается стандартами группы IEEE 802.3

Ethernet сейчас является одной из самых распространённых технологий ЛВС. В середине 90-х, он вытеснил такие сетевые технологии, как ARCNET и Token Ring.



#### Основы Ethernet

Первой физической схемой подключения (физической топологией) Ethernet была **«шина»**. Все устройства **конфликтуют** за среду передачи данных. Передача ведётся в режиме **half-duplex** на скорости до 10Мбит/сек. Технологии имели название 10BASE5 и 10BASE2





#### Коаксиальный кабель

Имеет всего одну пару проводников для передачи данных.





#### Проблемы ранних Ethernet.

- •**Режим half-duplex.** Устройство не может одновременно вести прием и передачу.
- •Обрыв кабеля выводил из строя всю сеть.
- •Неудобства при работе с коаксиальным кабелем.





## Переход на витую пару со сменой топологии на звезду

Hub (концентратор) – сетевое устройство, работающее на первом уровне модели OSI.

Любой фрейм, пришедший на порт хаба, дублируется на все его порты кроме того, с которого он этот фрейм получил.

10BASE-T





### Hub





#### Hub





### 8Р8С («RJ-45») коннектор





# 8P8C («RJ-45») коннектор на витой паре









## Обжимка витой пары





### Обжимка витой пары





#### Основные протоколы семейства Ethernet, работающие по витой паре

- •10BASE-Т или просто Ethernet. Скорость 10Мбит/с, half/full duplex. Используется 2 пары.
- •100BASE-Т или Fast Ethernet. Скорость 100Мбит/с, duplex. Используется 2 пары.
- •1000BASE-Т или Gigabit Ethernet. Скорость 1000Мбит/с, только full duplex, используются 4 пары.
- •Для всех стандартов можно применять витую пару UTP(unshielded twisted pair неэкранированная витая пара) категории **5e**. У всех стандартов ограничение по длине кабеля **100м**.
- •Все эти протоколы поддерживают обратную совместимость
- •Большинство устройств поддерживает авто-согласование скорости.





#### Практическое задание





- 1. Скачать и установить cisco packet tracer 7.0.
- 2. Диагностика физического уровня. Скачать файл packet tracer, в котором собрана сеть с несколькими хостами (в центре хаб, а также пара компьютер компьютер), в каждом из которых проблема с линком по той или иной причине, задача поднять все линки и проверить связь командой ping.
- 3. Скачать и установить putty. <a href="http://www.putty.org/">http://www.putty.org/</a> (понадобится в дальшнейшем).
- 4. Скачать и установить wireshark <a href="https://www.wireshark.org/download.html">https://www.wireshark.org/download.html</a> (при установке будет предложено установить драйвер рсар, это необходимо сделать, иначе wireshark не получит доступ к канальному уровню ОС).

Подробности домашнего задания смотрите на страницах урока.



#### Вопросы?





#### На следующем занятии...

## Физический и канальный уровни Технология Ethernet. Часть 2

Основные концепции технологии Ethernet. CSMA/CD. MAC - адресация. Формат Ethernet фрейма. Коммутация. Микросегментация. Диагностика канального уровня.



