Recall: A vector equation

$$x_1\mathbf{v}_1 + \ldots + x_n\mathbf{v}_n = \mathbf{b}$$

has a solution if and only if $\mathbf{b} \in \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$.

Equivalently: If A = [v, ... vn] then the matrix equation

has a solution if and only if be Span (v,,..., vn).

Definition

If A is a matrix with columns $v_1, ..., v_n$:

$$A = [\mathbf{v}_1 \dots \mathbf{v}_n]$$

then the set $Span(v_1, ..., v_n)$ is called the *column space* of A and it is denoted Col(A).

Example:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$Col(A) = Span \left(\begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \end{bmatrix} \right)$$

Upshot. A matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if $\mathbf{b} \in \text{Col}(A)$.

Recall: A vector equation

$$x_1\mathbf{v}_1 + \ldots + x_n\mathbf{v}_n = \mathbf{b}$$

has only one solution for each $\mathbf{b} \in \mathsf{Span}(v_1, \ldots, v_n)$ if and only if the homogenous equation

$$x_1\mathbf{v}_1 + \ldots + x_n\mathbf{v}_n = \mathbf{0}$$

has only the trivial solution $x_1 = 0, ..., x_n = 0$.

Reformulation for matrix equations:

A matrix equation

$$Ax = b$$

has only one solution for each $b \in Col(A)$ if and only if the homogenous equation

has only the trivial solution x = Q.

the zero vector

Definition

If A is a matrix then the set of solution of the homogenous equation

$$A\mathbf{x} = \mathbf{0}$$

is called the *null space* of A and it is denoted Nul(A).

Upshot. A matrix equation $A\mathbf{x} = \mathbf{b}$ has only one solution for each $\mathbf{b} \in \operatorname{Col}(A)$ if and only if $\operatorname{Nul}(A) = \{\mathbf{0}\}$.

Example. Find the null space of the matrix

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

augmented matrix:

$$\begin{bmatrix}
1 & 4 & 0 \\
2 & 5 & 0 \\
3 & 6 & 0
\end{bmatrix}$$
reduction
$$\begin{bmatrix}
x_1 & x_2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

solutions: in vector form:
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \qquad x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\underline{So}$$
: Nul(A) = $\{\begin{bmatrix} 0 \\ 0 \end{bmatrix}\}$ = Span $(\begin{bmatrix} 0 \\ 0 \end{bmatrix})$

Proposition

 $Nul(A) = \{0\}$ if and only if the matrix A has a pivot position in every column.

Example. Find the null space of the matrix

$$A = \left[\begin{array}{rrrr} 1 & 1 & 0 & 2 \\ -2 & -2 & 1 & -5 \\ 1 & 1 & -1 & 3 \end{array} \right]$$

Solution: We need to solve Ax = 0.

augmented matrix

$$\begin{bmatrix} 1 & 1 & 0 & 2 & 0 \\ -2 & -2 & 1 & -5 & 0 \\ 1 & 1 & -1 & 3 & 0 \end{bmatrix} \xrightarrow{\text{row}} \begin{bmatrix} 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
free free

Solutions:

$$\begin{cases} x_1 = -x_2 - 2x_4 \\ x_2 = x_2 \\ x_3 = x_4 \\ x_4 = x_4 \end{cases}$$

$$\begin{cases} x_{1} = -x_{2} - 2x_{4} \\ x_{2} = x_{2} \\ x_{3} = x_{4} \\ x_{4} = x_{4} \end{cases} \times = \begin{bmatrix} -x_{2} - 2x_{4} \\ x_{2} \\ x_{4} \\ x_{4} \end{bmatrix} = \begin{bmatrix} -x_{2} \\ x_{2} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -2x_{4} \\ 0 \\ x_{4} \\ x_{4} \end{bmatrix} = x_{2} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_{4} \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

This gives:

$$\operatorname{Nul}(A) = \operatorname{Span}\left(\begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}\right)$$

Note

If A is an $m \times n$ matrix then Nul(A) can be always described as a span of some vectors in \mathbb{R}^n .

Example. Solve the matrix equation $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ -2 & -2 & 1 & -5 \\ 1 & 1 & -1 & 3 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Solution:

augmented matrix

$$\begin{bmatrix} 1 & 1 & 0 & 2 & | & 1 \\ -2 & -2 & | & -5 & | & 0 \\ | & | & -1 & 3 & | & -1 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 0 & 1 & 0 & 2 & | & 1 \\ | & 0 & 0 & 0 & | & -1 & 2 \\ | & 0 & 0 & 0 & | & 0 \end{bmatrix}$$
free free

Solutions:

$$\begin{cases} x_1 = 1 - x_2 - 2x_4 \\ x_2 = x_2 \\ x_3 = 2 + x_4 \\ x_4 = x_4 \end{cases}$$

$$\begin{cases} x_1 = 1 - x_2 - 2x_4 \\ x_2 = x_2 \\ x_3 = 2 + x_4 \\ x_4 = x_4 \end{cases} \times = \begin{bmatrix} 1 - x_2 - 2x_4 \\ x_2 \\ 2 + x_4 \\ x_4 = x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
a particular solution of Ax=b Nul (A)

Proposition

Let \mathbf{v}_0 be some chosen solution of a matrix equation $A\mathbf{x}=\mathbf{b}$. Then any other solution \mathbf{v} of this equation is of the form

$$\mathbf{v}=\mathbf{v}_0+\mathbf{n}$$

where $n \in Nul(A)$.

Question: What conditions on the matrix A guarantee that the equation $A\mathbf{x} = \mathbf{b}$ has a solution for an arbitrary vector \mathbf{b} ?

Example.

augmented matrix of Ax=b:

no place for a leading one in this column, so Ax = b will always have a solution

Example.

$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 5 & 7 \end{bmatrix} \qquad \begin{array}{c} row \\ reduction \end{array} \qquad \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

augmented matrix of Ax=b:

By choosing an appropriate vector b we will get a leading one in this column. Thus Ax = b will have no solution for some b.

Proposition

A matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution for any \mathbf{b} if and only if A has a pivot position in every row.

In such case $Col(A) = \mathbb{R}^m$, where m is the number of rows of A.