PROPERTIES OF COMPLEX DIFFERENTIATION

LUQING YE

• The uniqueness of derivative: If f is differentiable at z_0 , then $f'(z_0)$ is well defined, i.e., $f'(z_0)$ is a unique complex number.

Proof. Suppose

$$f(x) = f(z_0) + c_1(x - z_0) + o_1(x - z_0),$$

$$f(x) = f(z_0) + c_2(x - z_0) + o_2(x - z_0),$$

where $c_1 \neq c_2$, and $\lim_{x \to z_0; x \neq z_0} \frac{o(x-z_0)}{x-z_0} = 0$, then

$$0 = (c_1 - c_2)(x - z_0) + o_3(x - z_0) \iff c_1 - c_2 = 0.$$

So $f'(z_0)$ is unique.

• If f is differentiable at z_0 then f is continuous at z_0 .

Proof. f is differentiable at z_0 means that there exists a complex number $f'(z_0)$ such that

$$f(x) = f(z_0) + f'(z_0)(x - z_0) + o(x - z_0),$$

so $\lim_{x \to z_0} f(x) = f(z_0)$.

• If f and g are differentiable at z_0 , then f + g and fg also are, and

$$(f+g)'(z_0) = f'(z_0) + g'(z_0).$$

Proof. f is differentiable at z_0 , this means that

$$f(x) = f(z_0) + f'(z_0)(x - z_0) + o_1(x - z_0),$$

$$g(x) = g(z_0) + g'(z_0)(x - z_0) + o_2(x - z_0).$$

So

$$f(x) + g(x) = [f(z_0) + g(z_0)] + [f'(z_0) + g'(z_0)](x - z_0) + o_3(x - z_0).$$

$$f(x)g(x) = f(z_0)g(z_0) + [f(z_0)g'(z_0) + g(z_0)f'(z_0)](x - z_0) + o_4(x - z_0).$$

• If $g(z_0) \neq 0$, and g is differentiable at z_0 , then 1/g is differentiable at z_0 , and

$$\left(\frac{1}{g}\right)'(z_0) = \frac{-g'(z_0)}{g(z_0)^2}.$$

1

Proof.

$$\frac{1}{g(x)} - \frac{1}{g(z_0)} = \frac{g(z_0) - g(x)}{g(x)g(z_0)}$$
$$= \frac{-g'(z_0)(x - z_0) - o(x - z_0)}{g(x)g(z_0)}.$$

Done. \Box

• If f is differentiable at z_0 and g is differentiable at $f(z_0)$, then the composite function $g \circ f$ is differentiable at z_0 and

$$(g \circ f)'(z_0) = g'(f(z_0))f'(z_0).$$

Proof. g is differentiable at $f(z_0)$, this means that

$$g(f(x)) = g(f(z_0)) + g'(f(z_0))(f(x) - f(z_0)) + o(f(x) - f(z_0)).$$

f is differentiable at z_0 , so

$$f(x) - f(z_0) = f'(z_0)(x - z_0) + o(x - z_0),$$

So

$$g(f(x)) = g(f(z_0)) + g'(f(z_0))(f'(z_0)(x - z_0) + o(x - z_0)) + o(f(x) - f(z_0))$$

$$= g(f(z_0)) + g'(f(z_0))f'(z_0)(x - z_0) + o(x - z_0)g'(f(z_0)) + o(f(x) - f(z_0)).$$
Done.

COLLEGE OF SCIENCE, HANGZHOU NORMAL UNIVERSITY, HANGZHOU CITY, ZHEJIANG PROVINCE, CHINA

 $E\text{-}mail\ address: \verb| yeluqingmathematics@gmail.com||$