CS201: Discrete Math for Computer Science 2025 Spring Semester Written Assignment #1 Due: 23:55 on Mar. 17th, 2025, please submit through Blackboard

Please answer questions in English. Using any other language will lead to a zero point.

Q. 1. Let p, q be the propositions

- p: You get 100 marks on the final.
- q: You get an A in this course.

Write these propositions using p and q and logical connectives (including negations).

- (a) You do not get 100 marks on the final.
- (b) You get 100 marks on the final, but you do not get an A in this course.
- (c) You will get an A in this course if you get 100 marks on the final.
- (d) If you do not get 100 marks on the final, then you will not get an A in this course.
- (e) Getting 100 marks on the final is sufficient for getting an A in this course.
- (f) You get an A in this course, but you do not get 100 marks on the final.
- (g) Whenever you get an A in this course, you got 100 marks on the final.

Solution:

- (a) $\neg p$
- (b) $p \wedge \neg q$
- (c) $p \to q$
- (d) $\neg p \rightarrow \neg q$
- (e) $p \to q$
- (f) $q \wedge \neg p$

(g)
$$q \to p$$

Q. 2. Construct a truth table for each of these compound propositions.

(a)
$$(p \oplus q) \to (p \land q)$$

(b)
$$(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$$

Solution: The details are omitted. The final results are given as follows:

	p	q	$(p \oplus q) \to (p \land q)$		
(a)	Τ	Τ	T		
	Τ	F	F		
	F	Τ	F		
	F	F	Τ		
	p	q	$(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$		
	σ	_	T		
	Τ	T	Γ		
(b)	T	T F	$egin{array}{ccc} T & & & & & & & & & & & & & & & & & & $		
(b)					

- Q. 3. "Logic is difficult or not many students like logic."

 "If mathematics is easy, then logic is not difficult."

 Which of the following are valid conclusions?
 - (a) That mathematics is not easy, if many students like logic.
 - (b) That not many students like logic, if mathematics is not easy.
 - (c) That mathematics is not easy or logic is difficult.
 - (d) That logic is not difficult or mathematics is not easy.
 - (e) That if not many students like logic, then either mathematics is not easy or logic is not difficult.

Solution:

"Logic is difficult or not many students like logic." That is $p \vee \neg q$, where p = "Logic is difficult", q = "many students like logic"

"If mathematics is easy, then logic is not difficult." That is $r \to \neg p$, where r = "mathematics is easy"

Then express the conclusions:

- (a) $q \to \neg r$. That is $\neg q \vee \neg r$. When p is true, r must be false according to $r \to \neg p$. When p is false, then q must be false according to $p \vee \neg q$. Thus $q \to \neg r$ is true.
- (b) $\neg r \rightarrow \neg q$. When p, q are true and r is false, both prerequisites are satisfied, while $\neg r \rightarrow \neg q$ is false.
- (c) $r \to \neg p$. When p is false, q is false and r is true, $p \vee \neg q$ and $r \to \neg p$, however $r \to \neg p$ is false.
- (d) $\neg p \lor \neg r$. $\neg p \lor \neg r \leftrightarrow r \rightarrow \neg p$.
- (e) $\neg q \rightarrow (\neg p \vee \neg r)$. Since $\neg p \vee \neg r$ is true, $\neg q \rightarrow (\neg p \vee \neg r) = q \vee T = T$.
- **Q. 4.** Determine whether the following statements are correct or incorrect. Explain your answer. Assume that p, q and r are logical propositions, x and y are real numbers, and m and n are integers.
 - (1) $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a tautology.
 - (2) $(p \lor q) \to r$ and $(p \to r) \land (q \to r)$ are equivalent.
 - (3) Under the domain of all real numbers, the truth value of $\exists x \forall y (y \neq 0 \rightarrow xy = 1)$ is T.
 - (4) Under the domain of all integers, the truth value of $\exists n \exists m(n^2 + m^2 = 5)$ is T.

Solution:

(1) Incorrect. This can be proven using truth table.

Since the truth value of $(\neg p \land (p \to q)) \to \neg q$ is not always T, it is not a tautology. (Any proof is acceptable, as long as it explains that under some p and q, the truth value of $(\neg p \land (p \to q)) \to \neg q$ is false.)

\overline{p}	\overline{q}	$\neg p$	$p \rightarrow q$	$\neg p \land (p \to q)$	$\neg q$	$(\neg p \land (p \to q)) \to \neg q$
T	Τ	F	Τ	F	F	T
Τ	\mathbf{F}	F	\mathbf{F}	F	\mathbf{T}	T
F	T	${\rm T}$	Τ	${ m T}$	F	F
F	F	Τ	Τ	${ m T}$	Τ	T

(2) Correct. This can be proven as follows:

$$\begin{array}{ll} (p \vee q) \to r & \equiv \neg (p \vee q) \vee r & \text{(Useful Law)} \\ & \equiv (\neg p \wedge \neg q) \vee r & \text{(De Moegan's Law)} \\ & \equiv (\neg p \vee r) \wedge (\neg q \vee r) & \text{(Distributive Law)} \\ & \equiv (p \to r) \wedge (q \to r) & \text{(Useful Law)} \end{array}$$

Any proof that shows the equivalence is acceptable.

- (3) Incorrect. This proposition means that there is a real number x for which $y \neq 0 \rightarrow xy = 1$ for every real number y. Consider an arbitrary x. Suppose $y_1 \neq 0$ and $xy_1 = 1$. Let $y_2 = 2y_1$. Then, $xy_2 = 2$, i.e., $y \neq 0 \rightarrow xy = 1$ does not hold for every y.
- (4) Correct. When n = 1 and m = 2, $n^2 + m^2 = 5$.
- **Q. 5.** For each of the following argument, determine whether it is valid or invalid. Explain using the validity of its argument form.
 - (1) Premise 1: If you did not finish your homework, then you cannot answer this question.

Premise 2: You finished your homework.

Conclusion: You can answer this question.

(2) Premise 1: If all students in this class has submitted their homework, then all students can get 100 in the final exam.

Premise 2: There is a student who did not submit his or her homework.

Conclusion: It is not the case that all student can get 100 in the final exam.

Solution:

- (1) Invalid. Let p denote "you finished your homework". Let q denote "you can answer this question". Thus, premises 1 and 2 can be represented as $\neg p \to \neg q$ and p, respectively. Conclusion can be represented as q. This argument form is not valid, since $((\neg p \to \neg q) \land p) \to q$ is not a tautology. This is because when p is T and q is F, the truth value of $((\neg p \to \neg q) \land p) \to q$ is F.
- (2) Invalid. Consider the domain of this class. Let P(x) denote "student x has submitted his or her homework". Let Q(x) denote "student x can get 100 in the final exam". Premises 1 and 2 can be represented as $\forall x P(x) \to \forall x Q(x)$ and $\exists x (\neg P(x))$, respectively. The conclusion can be represented as $\neg \forall x Q(x)$. This argument form is not valid, since $((\forall x P(x) \to \forall x Q(x)) \land \exists x (\neg P(x)) \to \neg \forall x Q(x)$ is not a tautology. Consider the case where both $\exists x (\neg P(x))$ and $\forall x Q(x)$ are T. Thus, $\forall x P(x)$ is F, since $\neg \forall x P(x) \equiv \exists x (\neg P(x))$ is T. Hence, $((\forall x P(x) \to \forall x Q(x)) \land \exists x (\neg P(x))$ is T. However, since $\neg \forall x Q(x)$ is F, the entire proposition is F.
- **Q. 6.** Suppose that p, q, r, s are all logical propositions. You are given the following statement

$$(\neg r \lor (p \land \neg q)) \to (r \land p \land \neg q)$$

Prove that this implies $r \vee s$ using logical equivalences and rules of inference.

Solution:

$$\begin{array}{c} (\neg r \lor (p \land \neg q)) \to (r \land p \land \neg q) \\ \equiv \neg (\neg r \lor (p \land \neg q)) \lor (r \land p \land \neg q) & \text{Useful} \\ \equiv (r \land \neg (p \land \neg q)) \lor (r \land p \land \neg q) & \text{De Morgan's} \\ \equiv (r \land (\neg p \lor q)) \lor (r \land p \land \neg q) & \text{De Morgan's} \\ \equiv (r \land (\neg p \lor q)) \lor (r \land (p \land \neg q)) & \text{Associative} \\ \equiv r \land ((\neg p \lor q) \lor (p \land \neg q)) & \text{Distributive} \\ \equiv r \land ((\neg p \lor q) \lor \neg (\neg (p \land \neg q))) & \text{Double negation} \\ \equiv r \land ((\neg p \lor q) \lor \neg (\neg p \lor q))) & \text{De Morgan's} \\ \equiv r \land T & \text{Negation} \\ \equiv r & \text{Identity} \\ \to r \lor s & \text{Addition} \end{array}$$

Q. 7. Use logical equivalences to prove the following statements.

- (a) $\neg (p \oplus q)$ and $p \leftrightarrow q$ are equivalent.
- (b) $\neg (p \rightarrow q) \rightarrow \neg q$ is a tautology.
- (c) $(p \to q) \to ((r \to p) \to (r \to q))$ is a tautology.

Solution:

(a) We have

$$\neg(p \oplus q)$$

$$\equiv \neg((p \land \neg q) \lor (\neg p \land q)) \quad \text{Definition}$$

$$\equiv \neg(p \land \neg q) \land \neg(\neg p \land q) \quad \text{De Morgan}$$

$$\equiv (\neg p \lor q) \land (p \lor \neg q) \quad \text{De Morgan}$$

$$\equiv (p \to q) \land (q \to p) \quad \text{Useful}$$

$$\equiv p \leftrightarrow q \quad \text{Definition}$$

Thus, they are equivalent.

(b) We have

$$\neg(p \to q) \to \neg q
\equiv \neg \neg(p \to q) \lor \neg q \quad \text{Useful}
\equiv (p \to q) \lor \neg q \quad \text{Double negation}
\equiv (\neg p \lor q) \lor \neg q \quad \text{Useful}
\equiv \neg p \lor (q \lor \neg q) \quad \text{Associative}
\equiv T \quad \text{Domination}$$

Therefore, it is a tautology.

(c) We have

$$(p \to q) \to ((r \to p) \to (r \to q))$$

$$\equiv \neg(\neg p \lor q) \lor (\neg(\neg r \lor p) \lor (\neg r \lor q)) \quad \text{Useful}$$

$$\equiv \neg(\neg p \lor q) \lor ((r \land \neg p) \lor (\neg r \lor q)) \quad \text{De Morgan}$$

$$\equiv \neg(\neg p \lor q) \lor ((r \lor (\neg r \lor q)) \land (\neg p \lor (\neg r \lor q))) \quad \text{Distributive}$$

$$\equiv \neg(\neg p \lor q) \lor (((r \lor \neg r) \lor q) \land (\neg p \lor (\neg r \lor q))) \quad \text{Associative}$$

$$\equiv \neg(\neg p \lor q) \lor ((T \lor q) \land (\neg p \lor (\neg r \lor q))) \quad \text{Complement}$$

$$\equiv \neg(\neg p \lor q) \lor (T \land (\neg p \lor (\neg r \lor q))) \quad \text{Identity}$$

$$\equiv \neg(\neg p \lor q) \lor (\neg p \lor (\neg r \lor q)) \quad \text{Identity}$$

$$\equiv \neg(\neg p \lor q) \lor ((\neg p \lor q) \lor \neg r) \quad \text{Associative}$$

$$\equiv (\neg(\neg p \lor q) \lor (\neg p \lor q)) \lor \neg r \quad \text{Associative}$$

$$\equiv T \lor \neg r \quad \text{Complement}$$

$$\equiv T \quad \text{Identity}.$$

Thus, it is a tautology.

Q. 8. Let C(x) be the statement "x has a cat", let D(x) be the statement "x has a dog" and let F(x) be the statement "x has a ferret." Express each of these sentences in terms of C(x), D(x), F(x), quantifiers, and logical connectives. Let the domain consist of all students in your class.

- (a) A student in your class has a cat, a dog, and a ferret.
- (b) All students in your class have a cat, a dog, or a ferret.
- (c) Some student in your class has a cat and a ferret, but not a dog.
- (d) No student in your class has a cat, a dog, and a ferret.
- (e) For each of the three animals, cats, dogs, and ferrets, there is a student in your class who has this animal as a pet.

Solution:

(a)
$$\exists x (C(x) \land D(x) \land F(x))$$

- (b) $\forall x (C(x) \lor D(x) \lor F(x))$
- (c) $\exists x (C(x) \land F(x) \land \neg D(x))$
- (d) $\neg \exists x (C(x) \land D(x) \land F(x))$
- (e) $(\exists x C(x)) \wedge (\exists x D(x)) \wedge (\exists x F(x))$

Q. 9. Prove that if $p \wedge q$, $p \to \neg(q \wedge r)$, $s \to r$, then $\neg s$.

Solution:

- (1) $p \wedge q$ Premise
- (2) p Simplication of (1)
- (3) $p \to \neg (q \land r)$ Premise
- (4) $\neg (q \land r)$ Modens ponens (2) (3)
- (5) $\neg q \vee \neg r$ De Morgan
- (6) q Simplication of (1)
- (7) $\neg r$ Disjunctive syllogism (6) (7)

- (8) $s \to r$ Premise
- (9) $\neg s$ Modus tollens (7) (8)

Q. 10. (a) Give the negation of the statement

$$\forall n \in \mathbb{N} \ (n^3 + 6n + 5 \text{ is odd} \Rightarrow n \text{ is even}).$$

(b) Either the original statement in (a) or its negation is true. Which one is it and explain why?

Solution:

(a) The negation is

$$\exists x \in \mathbb{N} \ (n^3 + 6n + 5 \text{ is odd} \land n \text{ is odd}).$$

(b) If n is odd then $n^3 + 6n + 5$ is even because n^3 is then odd and 6n is then even. Therefore, the original statement is true.

Q. 11. Give a direct proof that: Let a and b be integers. If $a^2 + b^2$ is even, then a + b is even.

Solution: Observe that $a^2 + b^2 = (a+b)^2 - 2ab$. Thus, $(a+b)^2$ has the same parity as $a^2 + b^2$. So $(a+b)^2$ is even. Then a+b is also even.

Q. 12. Prove that $\sqrt[3]{2}$ is irrational.

Solution: Suppose that $\sqrt[3]{2}$ is the rational number p/q, where p and q are positive integers with no common factors. Cubing both sides, we have $2 = p^3/q^3$, or $p^3 = 2q^3$. Thus p^3 is even. Since the product of odd number is odd, this means that p is even, so we can write p = 2k for some integer k. We then have $q^3 = 4k^3$. Since q^3 is even, q must be even. We have now seen that both p and q are even, a contradiction.