MOMENTUM

Engr Ghulam Raza

MOMENTUM

Quantity of motion present in moving bodies

P=mv
• Unit: Nm

Vector

04-02 CONSERVATION OF MOMENTUM

In this lesson you will...

- Describe the principle of conservation of momentum.
- Derive an expression for the conservation of momentum.
 - Explain conservation of momentum with examples.

04-02 CONSERVATION OF MOMENTUM

- System
 - Usually only two objects

• Internal Forces – Forces that the objects exert on each other

• External Forces – Forces exerted by things outside of the system

04-02 CONSERVATION OF MOMENTUM

Two balls hit in the air

- During the collision
 - Internal Forces = F_{12} and F_{21}
 - External Forces = Weight (W_1 and W_2)

04-02 CONSERVATION OF MOMENTUM = mv_f - mv_o

$$\cdot F\Delta t = mv_f - mv_0$$

• Object 1:
$$(W_1 + F_{12})\Delta t = m_1 v_{f1} - m_1 v_{01}$$

• Object 2:
$$(W_2 + F_{21})\Delta t = m_2 v_{f2} - m_2 v_{02}$$

$$(W_1 + W_2 + F_{12} + F_{21})\Delta t = (m_1 v_{f1} + m_2 v_{f2}) - (m_1 v_{01} + m_2 v_{02})$$

•
$$(Ext F + Int F)\Delta t = p_f - p_0$$

04-02 CONSERVATION OF MOMENTUM $= mv_f - mv_0$

- Since F_{12} and F_{21} are equal and opposite
 - Sum of internal forces = 0

• (External Forces)
$$\Delta t = p_f - p_0$$

• If Isolated system:

$$\bullet 0 = p_f - p_0 \quad \text{OR} \qquad p_0 = p_f$$

04-02 CONSERVATION OF MOMENTUM Fat = mv_f - mv_o

- In an isolated system total momentum remains constant.
- · Formula:
- · Mathematically it is given by,
- -m1u1 + m2u2 = m1v1 + m2v2
- Note:m1u1≠m1v1
- · Where,
- m₁ is mass of the A ball
- m₂ is the mass of B ball
- u_1 and u_2 are the initial velocities and v_1 and v_2 are the final velocities.

04-02 CONSERVATION OF MOMENTUM FAt = mv_f - mv_o

- Two billiard balls are colliding on a table. In order to apply the law of conservation of momentum, what should the system be? One ball or both billiard balls?
 - Two billiard balls.

- External Forces: Weight and Normal Force
 - If the table is horizontal these cancel.

04-02 CONSERVATION OF MOMENTUM $= mv_f - mv_0$

• A hockey puck of mass 0.17 kg and velocity 5 m/s is caught by a 0.5 kg mitten laying on the ice. What is the combined velocity after the puck is in the mitten? (ignore friction)

$$v = 1.27 \text{ m/s}$$

04-02 CONSERVATION OF MOMENTUM $= mv_f - mv_0$

• A 5 kg baseball pitching machine is placed on some frictionless ice. It shoots a 0.15 kg baseball horizontally at 35 m/s. How fast is the pitching machine moving after it shoots the ball?

-- 1.05 m/s

 This is why you feel recoil when you shoot a gun

04-03 ELASTIC AND INELASTIC COLLISIONS — mvo

Elastic – kinetic energy conserved

Inelastic – kinetic energy not conserved

Completely inelastic – the objects stick together

In this lesson you will...

- Understand the analogy between angular momentum and linear momentum.
- Observe the relationship between torque and angular momentum.
 - Apply the law of conservation of angular momentum.

Unit:

 When you rotate something you exert a torque.

More torque = faster change in angular momentum

- Linear momentum of a system is conserved if $F_{net} = 0$
 - $p_0 = p_f$

- Angular momentum of a system is also conserved if $\tau_{net}=0$
- $L_0 = L_f$

- Angular Momentum conserved if net external torque is zero
- Linear Momentum conserved if net external force is zero
- Kinetic Energy conserved if elastic collision

- Direction of angular quantities
 - Right-hand Rule
 - Hold hand out with thumb out along axis
 - Curl your fingers in direction of motion (you may have to turn your hand upside down)
 - vector in direction of thumb

