Lab Assign: 2

Write a program using JAVA or Python or C++ to implement Feistal Cipher structure

Simplified DES

- Simplified DES (S-DES) was developed by Professor Edward Schaefer of Santa Clara University.
- >> It is an educational rather than a secure encryption algorithm.
- >> It has similar properties and structure to DES with much smaller parameters.

Simplified DES (Overview)

- The S-DES encryption algorithm takes an 8-bit block of plaintext and a 10-bit key as input and produces an 8-bit block of ciphertext as output.
- The S-DES decryption algorithm takes an 8-bit block of ciphertext and the same 10-bit key used to produce the ciphertext as input and produces the original 8-bit block of plaintext as output.

Simplified DES (STEPS)

- >> The DES encryption algorithm involves five functions:
 - 1. An initial permutation (IP);
 - 2. A complex function called f_k , which involves both permutation and substitution operations and depends on a key input,
 - 3. A simple permutation function that switches (SW) the two halves of the data;
 - 4. The function f_k again;
 - 5. A permutation function that is the inverse of the initial permutation (IP-1).

Simplified DES Scheme

Plaintext: 1 1 1 1 0 0 1 1

Key: 1 0 1 0 0 0 0 1 0

IP: 2 6 3 1 4 8 5 7

IP⁻¹ 4 1 3 5 7 2 8 6

$$S 0 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 2 & 0 & 2 & 1 & 3 \\ 3 & 3 & 1 & 3 & 2 \end{bmatrix}$$

$$S1 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 0 & 1 & 3 \\ 2 & 3 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 & 3 \end{bmatrix}$$

P-Boxes

Simplified DES (Overview)

- >>> The use of multiple stages of permutation and substitution results in a more complex algorithm, which increases the difficulty of cryptanalysis.
- "The function f_k takes as input the data and 8-bit key.
- The algorithm can work with 16-bit key, consisting of two 8-bit subkeys, one used for each occurrence of f_k , or a single 8-bit key used twice in the algorithm.
- A compromise is to use a 10-bit key from which two 8-bit subkeys are generated.

Simplified DES (Mathematical Eqn)

>> The S-DES encryption algorithm can be expressed as a composition of functions:

$$\mathsf{IP^{-1}} \circ f_{\mathit{K2}} \circ \mathsf{SW} \circ f_{\mathit{K1}} \circ \mathsf{IP}$$

>> It can also be written as

```
ciphertext = IP^{-1}(f_{K2} (SW(f_{K1}(IP(plaintext)))))
```

$$K_1 = P8(Shift(P10(key)))$$

$$K_2 = P8(Shift(Shift(P10))))$$

>>> The S-DES decryption algorithm is expressed as:

plaintext =
$$IP^{-1}(f_{K1} (SW(f_{K2}(IP(ciphertext)))))$$

S-DES Key Generation

- >> S-DES depends on the use of a 10-bit key shared between both sender and receiver.
- >>> From this key, two 8-bit subkeys are generated for use in stages of the encryption and decryption algorithms.
- » Steps for Key generation
 - > Initial permutation P10
 - > Divide in left and right parts
 - > Left shift and Merge
 - > An 8 bits permutation, resulting in a 8 bits K1
 - > Divide in left and right parts
 - > Double left shift and Merge
 - > An 8 bits permutation, resulting in a 8 bits K2

S-DES Key Generation

10 LS-1: Left-Shift 1-bit P10 LS-2: Left Shift 2-bit **P8 P8**

Key generation for simplified DES

Simplified S-DES (S-DES Key Generation)

» Example of key generation:

P10								P8									
3	5	2	7	4	10	1	9	8	6	6	3	7	4	8	5	10	9

Simplified S-DES (S-DES Key Generation)

S-DES Encryption

>> S-DES encryption involves the sequential application of the five functions mentioned earlier.

Initial and Final Permutation

$$IP^{-1}(IP(X)) = X$$

1 1 1 1 0 0 1 1

Simplified DES (S-DES Encryption)

The Function f_K

The most complex component of *S-DES encryption* is the *function* f_K , which consists of *permutation* and *substitution functions*. The function is expressed as:

$$f_{K}(L,R) = (L \oplus F(R,SK),R)$$

- L and R are the leftmost 4 bits and rightmost 4 bits of the 8-bit input of f_K .
- F is a mapping from 4-bit strings to 4-bit strings.
- SK is a subkey.
- θ is the bit-by-bit exclusive OR function.

Simplified DES (S-DES Encryption)

The Function F

- The function F is taken from S0 and S1, such as:
 - R is expanded by E
 - The expansion is xored with the subkey
 - The first 4 bits are the input for S0, the last are input to S1
 - If the input to Si is $I_1I_2I_3I_4$, then I_1I_4 is the row to consider and I_2I_3 is the column
 - The output goes then through P4

Simplified DES Scheme Encryption Detail

Add the Output of E/P to sub key (k1) use (XOR)

K1

Output of E/P

Pass the left 4 bits to S-Box SO

And the right 4 bits to S-Box S1

$$S 0 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 3 & 2 \\ 1 & 3 & 2 & 1 & 0 \\ 2 & 0 & 2 & 1 & 3 \\ 3 & 1 & 3 & 2 \end{bmatrix}$$

$$S1 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 2 & 3 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 & 3 \end{bmatrix}$$

S- Box Operation

- 1. First and fourth bits give row number
- 2. Second and third give column number
- 3. Look-up number in specified row and column
- 4. Covert to Binary

For L which is the input to SO

Row=00 (0) col=10 (2) \rightarrow the output of S0=3 (11)

For R which is the input to S1

Row=11 (3) col=11 (3) \rightarrow the output of S1=3 (11)

The output of S-Box is

1 1 1 1

Apply Permutation P4

The output of F Function

The Function f_K

$$f_K(L,R) = (L \oplus F(R,SK),R)$$

The output of F Function

1 1 1 1

L (The leftmost 4-bits of IP Output)

1 0 1 1

0 1 0 0

R (The Rightmost 4-bits of IP Output)

1 1 0 1

The Output of Function f_K

0 1 0 0 1 1 0 1

Simplified DES (S-DES Encryption)

The Switch Function

- The function f_K only *alters* the *leftmost 4 bits* of the input.
- The switch function (SW) interchanges the left and right 4 bits so that the second instance of f_K operates on a different 4 bits.
- In the second instance, the E/P, S0, S1, and P4 functions are the same.
- The *key* input is K_2 .

Simplified DES (S-DES Encryption)

```
> f_{K1} (1011 \ 1101) = (L \oplus F(R, K_1), R)
                      =(1011\oplus1111,1101)=01001101
    > SW (0100 1101)= 1101 0100 = L | | R
    > F(R, K_2)
        \triangleright E/P (0100) \oplus K<sub>2</sub>= 00101000 \oplus 01000011 = 01101011
        > S0 (0110) = 10
        >S1 (1011) = 01
        > P4 (1001) = 0101
    > f_{\kappa_2}(1101\ 0100) = (L \oplus F(R, K_2), R)
                      =(1101\oplus0101,0100)=10000100
    > IP^{-1}(10000100) = 01000001
» Ciphertext C=01000001
```

Simplified DES (S-DES Decryption)

Simplified DES (S-DES Decryption)

- » Only <u>sub-keys are fed in reverse order</u>
- » SW SW = I (identity)
- » $IP^{-1} \bullet IP = IP \bullet IP^{-1} = I$ (identity)
- $f_{K1} \bullet f_{K1} (X,Y) = f_{K1}(X \oplus F(Y, K_1), Y)$ $= (X \oplus F(Y, K_1) \oplus F(Y, K_1), Y)$ = (X, Y)
- $f_{K2} \bullet f_{K2} (X,Y) = f_{K2}(X \oplus F(Y, K_2), Y)$ $= (X \oplus F(Y, K_2) \oplus F(Y, K_2), Y)$ = (X, Y)

Simplified DES (S-DES Decryption)

- » Generate sub-keys in reverse order
- » P10(K)=k1 k2 ... k10
- » Encryption
 - > LS-1(k1 k2 k3 k4 k5) = k2 k3 k4 k5 k1
 - > LS-2 (k2 k3 k4 k5 k1) = k4 k5 k1 k2 k3
- » Decryption
 - > RS-2 (k1 k2 k3 k4 k5) = k4 k5 k1 k2 k3
 - > RS-2 (k4 k5 k1 k2 k3) = k2 k3 k4 k5 k1

Generate sub-keys in reverse order

Simplified DES (Analysis of S-DES)

- A brute-force attack on S-DES is certainly feasible, since for 10-bit key, there are only 1024 possibilities.
- Given a *ciphertext*, an attacker can try each possibility and analyse the result to determine if it is a *reasonable plaintext*.

Simplified DES (Analysis of S-DES)

- Cryptanalysis attack can be performed in two different ways:
 - 1. Derive 8 nonlinear equations with 10 unknowns. There are a number of solutions, but each of these could be calculated and then analysed.
 - 2. Each of the permutations and additions in the algorithm is a linear mapping. The *nonlinearity* comes from the *S-boxes*. Alternating linear maps with the *S-boxes* nonlinear maps results in *very complex* polynomial expressions for the ciphertext bits, making cryptanalysis very difficult.

Simplified DES (Relationship to DES)

- >> DES operates on 64-bit blocks of input.
- The *encryption scheme* can be defined as: $IP^{-1} \circ f_{\kappa_{16}} \circ SW \circ f_{\kappa_{15}} \circ SW \circ ... \circ SW \circ f_{\kappa_{1}} \circ IP$
- >> A 56-bit key is used, from which sixteen 48-bit subkeys are calculated.

Simplified DES (Relationship to DES)

- The sequence of operations are as follows:
 - Initial permutation of 56-bit followed by a sequence of shifts and permutations of 48 bits.
 - Within the *encryption algorithm*, instead of F acting on A bits (n_1, n_2, n_3, n_4) , it acts on 32 bits $(n_1, ..., n_{32})$.
 - After the initial E/P, the output of 48 bits can be diagrammed as:

n ₃₂	n ₁	n ₂	n ₃	n_4	n ₅
n ₄	n ₅	n_6	n ₇	n ₈	n_9
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
n ₂₈	n ₂₉	n ₃₀	n ₃₁	n ₃₂	n ₁

Simplified DES (Relationship to DES)

- This matrix is added (XOR) to a 48-bit subkey.
- There are 8 rows corresponding to 8 S-boxes.
- Each S-box has 4 rows and 16 columns.
- The first and the last bit of a row of the preceding matrix picks out a row of an S-box, and the middle 4 bits pick out a column.

