Differential Equations with Julia

Michał Bernardelli

SGH
Warsaw School
of Economics

Preparation of this workshop has been supported by the Polish National Agency for Academic Exchange under the Strategic Partnerships programme, grant number BPI/PST/2021/1/00069/U/00001.

Differential equations

Application of differential equations*

1.Physics:

- Classical Mechanics: Describing the motion of objects using equations like Newton's second law.
- **Electrodynamics:** Maxwell's equations describe the behavior of electric and magnetic fields.
- Quantum Mechanics: Schrödinger's equation is a fundamental differential equation in quantum mechanics.

2.Engineering:

- **Electrical Engineering:** Circuits and systems analysis involve differential equations, especially in transient and frequency domain analyses.
- **Mechanical Engineering:** Vibrations, fluid dynamics, and heat transfer are often modeled using differential equations.
- Civil Engineering: Structural analysis, fluid flow in pipes, and other phenomena involve differential equations.

3. Biology and Medicine:

- Population Dynamics: Modeling the growth or decline of populations.
- **Physiology:** Modeling the behavior of biological systems, such as the spread of diseases or drug absorption in the body.

4. Economics:

- Macroeconomics: Modeling economic growth, inflation, and unemployment.
- Microeconomics: Modeling supply and demand dynamics.

* by ChatGDP

SGH

Application of differential equations*

5. Chemistry:

- Chemical Kinetics: Describing the rate of chemical reactions.
- Transport Phenomena: Diffusion and reaction processes in chemical systems.

6.Computer Science:

- Computer Graphics: Simulating physical phenomena like fluid flow, smoke, or fire.
- Machine Learning: Some models, such as neural networks, involve solving differential equations during training.

7. Environmental Science:

- Ecology: Modeling interactions between species in ecosystems.
- Climate Modeling: Describing the dynamics of the Earth's atmosphere.

8.Finance:

Option Pricing Models: Black-Scholes equation and other models in finance involve differential equations.

9. Control Systems:

Control Theory: Analyzing and designing control systems for engineering applications.

10.Telecommunications:

• Signal Processing: Analyzing and processing signals, often involving differential equations.

11.Mathematics:

Pure Mathematics: Differential equations are studied as a field in their own right.

^{*} by ChatGDP

Julia Packages

Problem type	Julia packages		
Plotting	<u>Plots</u>		
Linear system / least squares	<u>LinearSolve</u>		
Sparse matrix	<u>SparseArrays</u>		
Interpolation	<u>DataInterpolations</u> , <u>ApproxFun</u>		
Polynomial manipulations	<u>Polynomials</u>		
Rootfinding	<u>NonlinearSolve</u>		
Finite differences	FiniteDifferences, FiniteDiff		
Integration	Quadgk, HCubature		
Optimization	<u>Optimization</u>		
Ordinary Differential Equations	DifferentialEquations		

Ordinary Differential Equations	<u>DifferentialEquations</u>	
Finite Element Method	Gridap	
Automatic Differentiation	ForwardDiff, Enzyme	
Fast Fourier Transform	FFTW	

Packages needed during this course:

- DifferentialEquations
- DiffEqProblemLibrary
- Plots

DifferentialEquations Package

- Discrete equations (function maps, discrete stochastic (Gillespie/Markov) simulations)
- Ordinary differential equations (ODEs)
- Split and Partitioned ODEs (Symplectic integrators, IMEX Methods)
- Stochastic ordinary differential equations (SODEs or SDEs)
- Stochastic differential-algebraic equations (SDAEs)
- Random differential equations (RODEs or RDEs)
- Differential algebraic equations (DAEs)

DifferentialEquations Package

- Delay differential equations (DDEs)
- Neutral, retarded, and algebraic delay differential equations (NDDEs, RDDEs, and DDAEs)
- Stochastic delay differential equations (SDDEs)
- Experimental support for stochastic neutral, retarded, and algebraic delay differential equations (SNDDEs, SRDDEs, and SDDAEs)
- Mixed discrete and continuous equations (Hybrid Equations, Jump Diffusions)
- (Stochastic) partial differential equations ((S)PDEs) (with both finite difference and finite element methods)

General workflow

Define a problem

Solve the problem

Analyze the output

Ordinary Differential Equation (ODE) Defining a problem

Mathematical Specification of an ODE Problem:

$$M\frac{dt}{du} = f(u, p, t)$$

- Definition of the function f
- 2. Specification of the initial condition u_0
- 3. The timespan tspan for the problem

Ordinary Differential Equation (ODE)

Solving a problem

https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/#solver_options

Parameters:

- alg algorithm; by default, alg = nothing (solve dispatches to the DifferentialEquations.jl automated algorithm selection)
- maxiters maximum number of iterations before stopping. Defaults to 1e5.
- saveat denotes specific times to save the solution at, during the solving phase

Ordinary Differential Equation (ODE)

Solving a problem

https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/#solver_options

Parameters:

- reltol Relative tolerance in adaptive timestepping. This is the tolerance on local error estimates, not necessarily the global error (though these quantities are related). Defaults to le-3 on deterministic equations (ODEs/DDEs/DAEs) and le-2 on stochastic equations (SDEs/RODEs).
- abstol Absolute tolerance in adaptive timestepping. This is the tolerance on local error estimates, not necessarily the global error (though these quantities are related). Defaults to le-6 on deterministic equations (ODEs/DDEs/DAEs) and le-2 on stochastic equations (SDEs/RODEs).

OrdinaryDiffEq algorithms

https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve

Explicit Runge-Kutta Methods

Euler	OwrenZen4	RKO65	MSRK5
Midpoint	OwrenZen5	TanYam7	MSRK6
Heun	DP5	DP8	Stepanov5
Ralston	Tsit5	TsitPap8	SIR54
RK4	Anas5(w)	Feagin10	Alshina2
BS3	FRK65(w=0)	Feagin12	Alshina3
OwrenZen3	PFRK87($w=0$)	Feagin14	Alshina6

- Parallel Explicit Runge-Kutta Methods
- Explicit Strong-Stability Preserving Runge-Kutta Methods for Hyperbolic PDEs

OrdinaryDiffEq algorithms

- Low-Storage Methods
- Parallelized Explicit Extrapolation Methods
- Explicit Multistep Methods
- Adams-Bashforth Explicit Methods
- Adaptive step size Adams explicit Methods
- SDIRK Methods
- Fully-Implicit Runge-Kutta Methods
- Parallel Diagonally Implicit Runge-Kutta Methods
- Rosenbrock Methods

OrdinaryDiffEq algorithms

- Rosenbrock-W Methods
- Stabilized Explicit Methods
- Parallelized Implicit Extrapolation Methods
- Parallelized DIRK Methods
- Exponential Runge-Kutta Methods
- Adaptive Exponential Rosenbrock Methods
- Exponential Propagation Iterative Runge-Kutta Methods
- Multistep Methods
- Implicit Strong-Stability Preserving Runge-Kutta Methods for Hyperbolic PDEs

OrdinaryDiffEq algorithms - good "go-to" choices

- AutoTsit5(Rosenbrock23()) handles both stiff and non-stiff equations. This is a good algorithm to use if you know nothing about the equation.
- AutoVern7(Rodas5()) handles both stiff and non-stiff equations in a way that's efficient for high accuracy.
- Tsit5() for standard non-stiff. This is the first algorithm to try in most cases.
- BS3() for fast low accuracy non-stiff.
- Vern7() for high accuracy non-stiff.
- Rodas4() or Rodas5() for small stiff equations with Julia-defined types, events, etc.
- KenCarp4() or TRBDF2() for medium-sized (100-2000 ODEs) stiff equations.
- RadaullA5() for really high accuracy stiff equations.
- QNDF() for large stiff equations.

In-place functions

- Instead of writing a function which outputs its solution f(u,p,t) you write a
 function which updates a vector that is designated to hold the solution
 f(du,u,p,t). By doing this, DifferentialEquations.jl's solver packages are able
 to reduce the amount of array allocations and achieve better
 performance.
- Convention: name functions with ! at the end.
- Memory-efficient but not always possible (mutation sometimes not allowed).

Contact

dr hab. Michał Bernardelli, prof. SGH

michal.bernardelli@sgh.waw.pl

Thank you for your attention!

