Laboratory Work 9: Projection Method for the Navier-Stokes + Temperature (2D)

Solve the boundary problem of given PDE. Write a code for the approximation and compare different iteration results of numerical solutions.

Your goal is to learn how to visualize two dimensional equations.

The deadline of given Lab9 is the W13. No delays, no mercy.

YOU SHOULD SUBMIT YOUR COMPLETED REPORD IN PDF ON TEAMS' ASSIGNMENT SECTION! ONLY IN PDF!

Max – 4 POINTS.

Example of a correctly completed laboratory work 8

- 1. Your mathematical model (eq + BC + IG)
- 2. Numerical approximation by using any methods to solve Navier-Stokes
- 3. Python/Matlab code
- 4. !!! At least three different iterations!!! for u and v components, P and T
- 5. Final iterations, and how number of iterations changes with the change of epsilon.
- 6. Conclusion.

The system of Navier	$\partial u \partial u \partial u 1 \partial P 1 (\partial^2 u \partial^2 u)$
– Stokes equation	$\frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} = -\frac{\partial}{\partial x} + \frac{\partial}{\partial x} + \frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2},$
	$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial P}{\partial y} + \frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right),$
	$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha^2 \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right),$
	$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$
Initial condition:	u(t=0,x,y)=0,
	v(t=0,x,y)=0
	$P(t = 0, x, y) = 0, i guess \dots$
	For Temperature $T(t = 0, x, y) = 0$ or also you can say $T(t = 0, x, y) = 0$
	(0,x,y)=16

Boundary condition	
	arrows -> Dirichlet = 1
	outlet (empty space, hole)-> Neumann = 0
	Red line is Boundary condition Dirichlet for the Temperature, it can be
	equal to 1 or to 25, for example
	Don't forget about the P
Reynolds number	Consider any value
Density	It also can be any value, for our convenience let's do 1
Diffusion coef	It also can be any value, for our convenience let's do 1
Projection method	$\frac{\partial u}{\partial x} = -\frac{1}{2}\frac{\partial P}{\partial x} + L_{x}$
	$\frac{\partial u}{\partial t} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + L_x$ $\frac{\partial v}{\partial t} = -\frac{1}{\rho} \frac{\partial P}{\partial y} + L_y$
	$\frac{\partial v}{\partial t} = -\frac{1}{2}\frac{\partial P}{\partial t} + L_{xy}$
	Where L_x and L_y are operators that consider remaining
	convection and diffusion part
	$L_{x} = -u\frac{\partial u}{\partial x} - v\frac{\partial u}{\partial y} + \frac{1}{Re}\left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}\right)$
	$L_{y} = -u\frac{\partial v}{\partial x} - v\frac{\partial v}{\partial y} + \frac{1}{Re}\left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}}\right)$
	Now we should add our splitting parameter (параметр
	расщепления) to get accurate results
	$\frac{\partial u}{\partial t} = \frac{u^{n+1} - u^n + u^* - u^*}{dt}$
	$\partial v v^{n+1} - v^n + v^* - v^*$
	$\frac{\partial v}{\partial t} = \frac{v^{n+1} - v^n + v^* - v^*}{dt}$
	ot ut

	Since we added splitting parameter u_star and v_star, we will
	SPLIT our equation into two: for parameter and for
	convection and diffusion. Let's do it, brothers:
	$\begin{cases} \frac{u^* - u^n}{dt} = L_x \\ \frac{u^{n+1} - u^*}{dt} = -\frac{1}{\rho} \frac{\partial P}{\partial x} \end{cases}$
	and the same for v
	$\begin{cases} \frac{v^* - v^n}{dt} = L_y \\ \frac{v^{n+1} - v^*}{dt} = -\frac{1}{\rho} \frac{\partial P}{\partial y} \end{cases}$ $\frac{u^* - u^n}{dt} = -u \frac{\partial u}{\partial x} - v \frac{\partial u}{\partial y} + \frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$
Firstly, we will find	$u^* - u^n$ ∂u ∂u 1 $(\partial^2 u \partial^2 u)$
u_star and v_star. You	$\frac{-dt}{dt} = -u\frac{\partial}{\partial x} - v\frac{\partial}{\partial y} + \frac{\partial}{\partial t}\left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2}\right)$
can use any preferable numerical method,	u^* is uknown, we should find it.
that you would like to	By rewriting given equation
use.	
	$\frac{u^* - u^n}{dt} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$
	What do we see? Exactly! Burger's equation, that you already
	know how to solve by using different methods. I assume,
	easiest will be Simple Iteration Method.
	_
	$\frac{v^* - v^n}{dt} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = \frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$
	v* is uknown, we should find it.
C	n+1 * 4.2P
Secondly, we will edit our Pressure field by	$\frac{u^{n+1} - u^*}{dt} = -\frac{1}{\rho} \frac{\partial P}{\partial x} \to u^{n+1} = u^* - \frac{dt}{\rho} \frac{\partial P}{\partial x}$ $\frac{v^{n+1} - v^*}{dt} = -\frac{1}{\rho} \frac{\partial P}{\partial y} \to v^{n+1} = v^* - \frac{dt}{\rho} \frac{\partial P}{\partial y}$
expressing $u^{(n+1)}$	$dt \qquad \rho \partial x \qquad \qquad \rho \partial x$
and plugging it into	$\frac{v^{n+1}-v^*}{v^n} = \frac{1}{v^n} \frac{\partial P}{\partial r^n} \Rightarrow \frac{\partial P}{\partial r^n} = \frac{\partial P}{\partial r^n}$
Continuity equation	$dt = \rho \partial y - \rho \partial y$
Poisson's equation ->	$\partial^2 P \partial^2 P \rho \ (\partial u^* \partial v^*)$
You can solve it by	$\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} = \frac{\rho}{dt} \left(\frac{\partial u^*}{\partial x} + \frac{\partial v^*}{\partial y} \right)$
using any method	
Last step, to solve $u^{(n+1)}$ and $v^{(n+1)}$	$u_{ij}^{n+1} = u_{ij}^* - \frac{dt}{\rho} \left(\frac{P_{ij}^n - P_{i-1j}^n}{\Delta x} \right)$
	$v_{ij}^{n+1} = v_{ij}^* - \frac{dt}{\rho} \left(\frac{P_{ij}^n - P_{ij-1}^n}{\Delta y} \right)$

Transport equation for the temperature, you can apply any methods $\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha^2 \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$ Simple Iteration Method: $\frac{T_{ij}^{n+1} - T_{ij}^n}{dt} + u_{ij}^n \frac{T_{ij}^n - T_{i-1j}^n}{dx} + v_{ij}^n \frac{T_{ij}^n - T_{ij-1}^n}{dy}$ $= \alpha^2 \left(\frac{T_{i+1j}^n - 2T_{ij}^n + T_{i-1j}^n}{dx^2} + \frac{T_{ij+1}^n - 2T_{ij}^n + T_{ij-1}^n}{dy^2} \right)$

Pseudo-Code (It's your work to complete given code) + add to this code Temperature transport equation

```
phys_proc_25 > 🏓 proj_method_sample.py
      import matplotlib.pyplot as plt
       import numpy as np
      import copy
      def burgers_star(u, v, dy, dt, dx, Re, n):
          while True:
             diff = 0
             un = copy.deepcopy(u)
vn = copy.deepcopy(v)
  10
  11
12
                for \underline{j} in range(1, n):
  13
                   u_star and v_star = _
  14
  16
17
             u, v = un, vn
  18
19
             if diff <= 0.001:
               break
  20
21
          print("Burgers", iter, diff)
  22
23
  24
25
      def poisson_p(P, u, v, p, dx, dy, dt, n):
  26
  27
             diff = 0
  28
             Pn = copy.deepcopy(P)
             for i in range(1, n):
    for j in range(1, n):
  29
30
                    if i == 1 and j == 1:

| Pn[i][j] = 1 / 2 * (P[i + 1][j] + P[i][j + 1] - p * ((u[i][j] - u[i - 1][j]) / dx + (v[i][j] - v[i][j - 1]) / dy))
  31
32
  33
                       34
                    36
                       Pn[i][j] = 1 / 4 * (P[i + 1][j] + Pn[i - 1][j] + P[i][j + 1] + Pn[i][j - 1] - p * ((u[i][j] - u[i - 1][j]) / dx + (v[i][j] - v[i][j - 1]) / dy))
  38
```

```
24
        def poisson_p(P, u, v, p, dx, dy, dt, n):
  41
                for i in range(n + 1):
  42
                    Pn[i][0] = Pn[i][1]
                    Pn[i][n] = Pn[i][n - 1]
Pn[n][i] = Pn[n - 1][i]
Pn[0][i] = Pn[1][i]
  43
  44
  45
  46
  47
                Pn[0][0] = P[1][1]
                Pn[0] [n] = Pn[1] [n - 1]
Pn[n] [0] = Pn[n - 1] [1]
Pn[n] [n] = Pn[n - 1] [n - 1]
  48
  49
  50
  51
  52
                for i in range(int(0.4 * n), int(0.6 * n) + 1):
                   Pn[i][0] = 0
Pn[i][n] = 1
  53
  54
                    Pn[0][i] = 0
  55
  56
                P = Pn
  57
  58
                iter += 1
  59
  60
                if diff <= 0.001:</pre>
  61
                    break
            print("Gauss_seidel", iter, diff)
  62
  63
            return P
  64
  65
  66
       n = 100
  67
       dx = dy = 1 / n

dt = dx ** 2
  68
       Re, p = 2, 4
  69
       iter = 0
  71
       xlist = [i * dx for i in range(n + 1)]
  72
       ylist = [j * dy for j in range(n + 1)]
  73
  75
       u = np.zeros((n + 1, n + 1))
       v = np.zeros((n + 1, n + 1))
P = np.zeros((n + 1, n + 1))
  76
  77
phys_proc_25 > Proj_method_sample.py > ..
       for i in range(n + 1):
 79
            if int(0.4 * n) \le i \le int(0.6 * n):
 80
 81
                P[i][n] = 1
 82
                 u[i][n] = -1
 83
 84
       plt.contourf(xlist, ylist, P)
 85
       plt.show()
       plt.contourf(xlist, ylist, u)
 87
       plt.show()
 89
 90
       plt.contourf(xlist, ylist, v)
 91
       plt.show()
 92
       while True:
 93
 94
            diff = 0
 95
 96
            un = copy.deepcopy(u)
 97
            vn = copy.deepcopy(v)
 98
 99
            us, vs = burgers_star(u, v, dy, dt, dx, Re, n)
100
101
            P = poisson_p(P, us, vs, p, dx, dy, dt, n)
102
103
            for i in range(1, n):
104
                 for j in range(1, n):
105
                     un[i][j] = us[i][j] - dt / (p * dx) * (P[i][j] - P[i - 1][j])
106
                     diff = max(diff, abs(un[i][j] - u[i][j]))
107
                     vn[i][j] = vs[i][j] - dt / (p * dy) * (P[i][j] - P[i][j - 1])
108
                     diff = max(diff, abs(vn[i][j] - v[i][j]))
109
110
            for i in range(n + 1):
111
                if int(0.4 * n) \le i \le int(0.6 * n):
112
                     un[i][0] = un[i][1]
113
114
                     vn[0][i] = vn[1][i]
115
116
            u, v = un, vn
117
118
            iter += 1
```

```
118
           iter += 1
119
           print("the end", iter, diff)
120
121
           if diff <= 0.0001:</pre>
122
123
               break
124
       print(iter)
125
126
127
       plt.contourf(xlist, ylist, u)
128
       plt.show()
129
       plt.contourf(xlist, ylist, v)
130
       plt.show()
131
132
       plt.contourf(xlist, ylist, P)
133
       plt.show()
134
```

Graphs should be printed for different iterations for u and v components, for P and T.

Conclusion: I understand that time is a valuable thing, watch it fly by as the pendulum swings.

You can find your boundary condition in attached lab9.pdf