# Decision tree and Random forest

JrPhy

### Introduction

- Decision tree is a method and it mimics the process of a human making decision, it's easy to interpret the criteria, but the theory is hard to prove.
- In the data structure, decision tree is a tree with the conditions.
- It's realized by linked list in C/C++



Hsuan Tien Lin, mltech/209\_handout

## Language in tree

- A node splits some branches, then it's called child. The branch are split by a node, then it's called parent.
- There are some nouns the same as family tree, like parent, child,



## A Basic Algorithm for Decision tree

- $G(x) = \sum_{i=1}^{N} q_i(x)g_i(x)$ ,  $q_i(x)$  is the condition,  $g_i(x)$  is the hypothesis.
- By the number of conditions, the tree can be binary or multi.

```
function DecisionTree (data \mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N) if termination criteria met return base hypothesis g_t(\mathbf{x}) else
```

- 1 learn branching criteria  $b(\mathbf{x})$
- ② split  $\mathcal{D}$  to  $\mathcal{C}$  parts  $\mathcal{D}_c = \{(\mathbf{x}_n, y_n) : b(\mathbf{x}_n) = c\}$
- ③ build sub-tree  $G_c$  ← DecisionTree( $\mathcal{D}_c$ )

4 return 
$$G(\mathbf{x}) = \sum_{c=1}^{C} [b(\mathbf{x}) = c] G_c(\mathbf{x})$$
  
Hsuan Tien Lin, mltech/209\_handout

## Classification And Regression Tree

- A famous algorithm of decision tree is CART, from California Statistical Software.
- It uses binary tree in the algorithm, and returns a constant
- For classification, it returns the majority of the constant.
- For regression with square error, it returns the average of the constant.
- CART uses decision stump to split into 2 parts  $D_1$  and  $D_2$ , and calculate the purity, that is, minimize the impurity.

$$b(x) = \underset{\text{decision stump } h(x)}{\operatorname{arg \, min}} \sum_{i=1}^{2} |D_c \text{ with } h(x)| \cdot impurity(D_c \text{ with } h(x))$$

## Impurity function

#### by $E_{in}$ of optimal constant

regression error:

impurity(
$$\mathcal{D}$$
) =  $\frac{1}{N} \sum_{n=1}^{N} (y_n - \bar{y})^2$ 

with  $\bar{y}$  = average of  $\{y_n\}$ 

classification error:

impurity(
$$\mathcal{D}$$
) =  $\frac{1}{N} \sum_{n=1}^{N} [[y_n \neq y^*]]$ 

with  $y^* = \text{majority of } \{y_n\}$ 

#### for classification

Gini index:

$$1 - \sum_{k=1}^{K} \left( \frac{\sum_{n=1}^{N} \llbracket y_n = k \rrbracket}{N} \right)^2$$

- —all *k* considered together
- classification error:

$$1 - \max_{1 \leq k \leq K} \frac{\sum_{n=1}^{N} \llbracket y_n = k \rrbracket}{N}$$

Hsuan Tien Lin, mltech/209 handout

—optimal  $k = y^*$  only

#### Terminate condition

- all  $y_i$  are the same: impurity =  $0 \rightarrow g_i(x) = y_i$
- all  $x_i$  are the same: no decision stumps
  - CART: fully-grown tree with constant leaves
- But a fully-grown tree means  $E_{in}(G) = 0$  if all  $x_i$  are different, so it needs to regularize.
- A method uses the NumberOfLeaves to regularize  $\Omega(G)$

$$\underset{\text{all possible } G(x)}{\operatorname{arg min}} E_{in}(G) + \lambda \Omega(G)$$

- G<sup>(0)</sup> is fully-grown tree
- $G^{(i)}$  = argmin  $E_{in}(G)$  such that G is one-leaf removed from  $G^{(i-1)}$

### The features

• Some features are numerical, like weight, height, etc.. The decision stump is

• 
$$b(x) = [x_i \le n] + 1$$
,  $n$  in  $\mathbb{R}$ 

- The others are categorical, like fever, pain, tire, etc.. The decision stump is
  - $b(x) = [x_i \le n] + 1$ , S in {fever, pain, tire.....}
- If there is no feature, it may use another feature to guess the missing feature.
- For example, if there is no weight data, then we can use the height data to guess its weight
- So CART handle the missing feature easily.

## Advantages of CART

- Human-explainable
- Multiclass easily
- Categorical features easily
- Missing features easily
- Efficient non-linear training (and testing)
- Almost no other learning model share all such specialties, except for other decision trees

#### Random forest

- In BAGging, it separates data into *n* parts, then gets a model from each part, combine the model and reduce the variance by voting or averaging.
- In decision tree, it classifies the data by the conditions, so the variance is very large.
- Now we've learned the BAGging and decision tree algorithm, we want to combine both advantages and make a new algorithm, this algorithm is called **Random forest**.
- Random forest = BAGging + fully-grown CART decision tree

#### Random forest

- First, it choose a sub-dataset from the sample space, then each dataset is thrown into the CART, so you'll get many trees, then aggregation them and get the model.
- By bootstrap, it's easy to parallel, and may get more diversity model.
- By CART, it inherit the pros of CART
- By aggregation, it eliminates the cons of CART to reduce the variance.
- So it's recommended using the random-subspace in CART.
- There is full of randomness, so it's called Random forest

## Out-of-bagging

- If the sample is chosen randomly, then some data may not be chosen
- The star mark means the data is not chosen in  $i^{th}$  choice.
- The probability is  $p = \left(1 \frac{1}{N}\right)^N$

|                                | <i>g</i> <sub>1</sub>   | <i>g</i> <sub>2</sub>    | <i>9</i> 3             | • • • | g⊤                                  |
|--------------------------------|-------------------------|--------------------------|------------------------|-------|-------------------------------------|
| $(\mathbf{x}_1, y_1)$          | $\tilde{\mathcal{D}}_1$ | *                        | $	ilde{\mathcal{D}}_3$ |       | $\tilde{\mathcal{D}}_{\mathcal{T}}$ |
| $(\mathbf{x}_2, y_2)$          | *                       | *                        | $	ilde{\mathcal{D}}_3$ |       | $	ilde{\mathcal{D}}_{\mathcal{T}}$  |
| $(\mathbf{x}_3, \mathbf{y}_3)$ | *                       | $	ilde{\mathcal{D}}_{2}$ | *                      |       | $	ilde{\mathcal{D}}_{\mathcal{T}}$  |
| • • • •                        |                         |                          |                        |       |                                     |
| $(\mathbf{x}_N, y_N)$          | $\tilde{\mathcal{D}}_1$ | $	ilde{\mathcal{D}}_{2}$ | *                      |       | *                                   |

Hsuan Tien Lin, mltech/209\_handout

• If *N* is big enough, then

$$\lim_{N \to \infty} p = \lim_{N \to \infty} \left( 1 - \frac{1}{N} \right)^N = \lim_{N \to \infty} \left( 1 + \left( \frac{-1}{N} \right) \right)^N = e^{-1} \approx 0.37$$

## Out-of-bagging and Validation

• If the data is not chosen at the *i*<sup>th</sup>, then it can be used for validation. But random forest uses aggregation, so it doesn't need to validate each model, but validate the model *G* <sup>-</sup> after aggregating.

|                       | <i>g</i> <sub>1</sub>   | <i>g</i> <sub>2</sub>    | <i>9</i> 3             | <br><b>g</b> ⊤                      |
|-----------------------|-------------------------|--------------------------|------------------------|-------------------------------------|
| $(\mathbf{x}_1, y_1)$ | $\tilde{\mathcal{D}}_1$ | *                        | $	ilde{\mathcal{D}}_3$ | $\tilde{\mathcal{D}}_{\mathcal{T}}$ |
| $(\mathbf{x}_2, y_2)$ | *                       | *                        | $	ilde{\mathcal{D}}_3$ | $\tilde{\mathcal{D}}_{\mathcal{T}}$ |
| $(\mathbf{x}_3, y_3)$ | *                       | $\mathcal{	ilde{D}}_{2}$ | *                      | $	ilde{\mathcal{D}}_{\mathcal{T}}$  |
| • • • •               |                         |                          |                        |                                     |
| $(\mathbf{x}_N, y_N)$ | $\tilde{\mathcal{D}}_1$ | $	ilde{\mathcal{D}}_{2}$ | *                      | *                                   |

Hsuan Tien Lin, mltech/209\_handout

- For example,  $(x_2, y_2)$  is not in the training data of  $g_3$ ,  $g_T$ , so if  $G^-$  is aggregate  $(g_3, g_T)$ , then  $(x_2, y_2)$  can be used for validate  $G^-$ .
- So that you can define your own error of OOB, and it will validate itself by those dataset.

### Feature selection

- The data may exist many features, but do we need all feature?
- Some features are similar that get the same information, and some are irrelevant of the prediction, we don't want those features that waste our computational source.
- The linear model can help us to choose the feature, if you train a linear model, then you will get the vector w, a method is using its norm to estimate the importance.
- For nonlinear model, decision tree is a algorithm with feature selection.

#### Feature selection

- Idea: if the data is important, then the result will be very different when the data is polluted.
- A method is using the noise follows some distributions, but it may change the distribution of original data.
- Here we use permutation test, it disorder the data. For example, the  $i^{th}$  data may be  $j^{th}$  after permutation, the importance is
  - Importance(i) = performance(D) performance(D<sup>(p)</sup>)
- It suggested by the author of random forest.

### Feature selection

• Then how to estimate performance? In the random forest, the author suggested using  $E_{oob}$  to estimate. So that the importance can be written as

• Importance(i) = 
$$E_{oob}(G) - E_{oob}^{(p)}(G)$$

- It just needs the OOB data after permutation, so if you need to nonlinear transformation, Random forest is a proper method.
- There are more examples in the Hsuan Tien Lin, mltech/210\_handout