Seminarul 2 Electrotehnică, C2

Aplicații rezolvarea retele de condensatoare

Breviar teoretic:

- Gruparea serie a condensatoarelor, $\frac{1}{C_{es}} = \sum_{k=1}^{n} \frac{1}{C_k}$, sau $C_{es} = \frac{1}{\sum_{k=1}^{n} \frac{1}{C_k}}$
- Gruparea paralel a condensatoarelor, $C_{ep} = \sum_{k=1}^{n} C_k$

Teoremele lui Kirchhoff pentru rețelele de condensatoare

Teorema I (T1K) – se aplică în noduri și se referă la sarcinile electrice, $\sum \pm q_k = const.$

Enunt: Suma algebrică a sarcinilor electrice dintr-un nod de rețea este constantă. Valoarea constantei rezultă din condițiile de generare a rețelei.

Teorema a II-a (T2K) – se aplică pe ochiuri și se referă la tensiuni,
$$\sum_{k \in o} \pm E_k = \sum_{k \in o} \pm \frac{q_k}{C_k}$$

Enunt: Suma algebrică a tensiunilor electromotoare dintr-un ochi de retea este egală cu suma algebrică a tensiunilor de la bornele condensatoarelor din acel ochi.

Algoritmul de calcul al retelelor de condensatoare

- 1. Se stabilește numărul de noduri "n" al rețelei de condensatoare, numărul de laturi "l" și rezultă numărul de ochiuri independente ale rețelei cu relația lui Euler: o = l - n + 1.
- 2. Se atribuie semne arbitrare ale sarcinii pe armăturile condensatoarelor.
- 3. Se aleg sensuri arbitrare de parcurgere a ochiurilor independente.
- 4. Se aplică teoremele lui Kirchhoff:
- T1K în cel mult "n-1" noduri;
- T2K pe cele "o" ochiuri independente.
- 5. Se rezolvă sistemul obținut și se determină necunoscutele (sarcini, tensiuni de pe condensatoare).

Verificare:

Se aplică T1K în al "n-lea" nod (dacă este posibil), n>2 și T2K pe ochiurile neutilizate.

Interpretare:

Pentru sarcinile negative se precizează că polarizarea reală a acelor condensatoare este inversă față de cum s-a considerat inițial, în mod arbitrar.

Probleme propuse:

P1. Să se calculeze capacitatea echivalentă în raport cu bornele marcate pentru grupările de condensatoare din figurile de mai jos.

 $C_e=$? Aplicație numerică: $C_1=10~\mu F$, $C_2=8~\mu F$, $C_3=12~\mu F$, $C_4=4\mu F$, $C_5=6~\mu F$.

P2. Pentru circuitul din fig. se cunosc:

 $E_1 = 15 \, V$, $E_2 = 25 \, V$, $C_1 = C_2 = 2 \, \mu F$, $C_3 = C_4 = 8 \, \mu F$, iar condensatorul C_3 este inițial încărcat cu sarcina $q_{30} = 2 \cdot 10^{-5} \, C$, ca în fig. Să se determine sarcinile de pe armăturile condensatoarelor: q_1, q_2, q_3, q_4 , precum și tensiunile la bornele lor.

P3. Pentru rețeaua de condensatoare din fig. se cunosc:

$$E = 25 V$$
, $C_1 = 25 \mu F$, $C_2 = 15 \mu F$, $C_3 = 40 \mu F$, $C_4 = 20 \mu F$.

Se cer

- a). capacitatea echivalentă la bornele sursei te tensiune, când întrerupătoarele K1 și K2 sunt închise:
- b). sarcinile electrice de pe armăturile condensatoarelor, q_1, q_2, q_3, q_4 , pentru K_1 închis și K_2 deschis;
- c). sarcinile electrice de pe armăturile condensatoarelor, $q_1^{'}, q_2^{'}, q_3^{'}, q_4^{'}$, dacă se deschide K_1 și se închide K_2 .

P4. Să se calculeze distribuția sarcinilor electrice și tensiunea la bornele fiecărui condensator din schemă, dacă comutatorul K trece din poziția (1) în poziția (2).

Se cunosc: $E_1 = 40V$, $E_2 = 15V$, $E_3 = 20V$, $C_1 = C_2 = C_3 = 15\mu F$, iar condensatoarele sunt inițial neîncărcate.

