Линейная алгебра, Коллоквиум II

Бобень Вячеслав, Сиренева Ника @darkkeks, @nih3kwo, GitHub

Благодарность выражается Левину Александру (@azerty1234567890) и Милько Андрею (@andrew_milko) за видеозаписи лекций.

Дата изменения: 2025.05.18 в 21:24 2024-2025

"К коллоку можете даже не готовиться".

— Роман Сергеевич Авдеев

Содержание

L	Опр	еделения и формулировки	6
	1.1	Сумма двух подпространств векторного пространства	6
	1.2	Теорема о связи размерности суммы двух подпространств с размерностью их пересечения	6
	1.3	Сумма нескольких подпространств векторного пространства	(
	1.4	Линейная независимость нескольких подпространств векторного пространства	6
	1.5	Разложение векторного пространства в прямую сумму подпространств	(
	1.6	При каких условиях на подпространства U_1,U_2 векторного пространства V имеет место разложение	
		$V = U_1 \oplus U_2$?	(
	1.7	Проекция вектора на подпространство вдоль дополнительного подпространства	6
	1.8	Матрица перехода от одного базиса векторного пространства к другому	6
	1.9	Формула преобразования координат вектора при замене базиса	7
	1.10	Линейное отображение векторных пространств, его простейшие свойства	7
	1.11	Изоморфизм векторных пространств, изоморфные векторные пространства	7
	1.12	Какими свойствами обладает отношение изоморфности на множестве всех векторных пространств?	7
	1.13	Критерий изоморфности двух конечномерных векторных пространств	7
	1.14	Матрица линейного отображения	7
	1.15	Связь между координатами вектора и его образа при линейном отображении	8
	1.16	Формула изменения матрицы линейного отображения при замене базисов	8
	1.17	Сумма двух линейных отображений и её матрица. Произведение линейного отображения на скаляр и	
		его матрица	8
		Композиция двух линейных отображений и её матрица	8
	1.19	Ядро и образ линейного отображения. Являются ли они подпространствами в соответствующих век-	
		торных пространствах?	8
	1.20	Критерий инъективности линейного отображения в терминах его ядра	Ć
	1.21	Связь между рангом матрицы линейного отображения и размерностью его образа	Ć
	1.22	Каким свойством обладает набор векторов, дополняющих базис ядра линейного отображения до базиса	
		всего пространства?	Ć
	1.23	Теорема о связи размерностей ядра и образа линейного отображения	ć
	1.24	К какому простейшему виду можно привести матрицу линейного отображения путём замены базисов?	(
	1.25	Линейная функция на векторном пространстве	(
	1.26	Сопряжённое (двойственное) векторное пространство и его размерность	ć
	1.27	Базис сопряжённого пространства, двойственный к данному базису исходного векторного пространства	10
	1.28	Билинейная форма на векторном пространстве	10
	1.29	Матрица билинейной формы	10
	1.30	Формула для вычисления значений билинейной формы в координатах	10
	1.31	Формула изменения матрицы билинейной формы при замене базисов	10
	1.32	Симметричная билинейная форма. Критерий симметричности билинейной формы в терминах её матрицы	
	1.33	Квадратичная форма	11

1.34	i i i i i i i i i i i i i i i i i i i	11
1.35	Угловые миноры квадратной матрицы	11
1.36	Метод Якоби (формулировка теоремы)	11
1.37	Соответствие между симметричными билинейными формами и квадратичными формами	11
1.38		11
1.39		12
1.40	Матрица квадратичной формы	12
1.41	Канонический вид квадратичной формы	12
1.42	Нормальный вид квадратичной формы над $\mathbb R$	12
1.43	Индексы инерции квадратичной формы над $\mathbb R$	12
1.44	Закон инерции для квадратичной формы над $\mathbb R$	12
1.45	Положительно/неотрицательно определённая квадратичная форма над \mathbb{R}	12
1.46	Отрицательно/неположительно определённая квадратичная форма над \mathbb{R}	12
1.47	Неопределённая квадратичная форма над $\mathbb R$	12
1.48	Способ нахождения индексов инерции квадратичной формы над \mathbb{R} , вытекающий из метода Якоби	12
1.49	Критерий Сильвестра положительной определённости квадратичной формы над $\mathbb R$	13
1.50	Критерий отрицательной определённости квадратичной формы над \mathbb{R}	13
1.51	Евклидово пространство	13
1.52	Длина вектора в евклидовом пространстве	13
1.53	Неравенство Коши-Буняковского	13
1.54	Угол между ненулевыми векторами евклидова пространства	13
1.55	Матрица Грама системы векторов евклидова пространства	13
1.56	Свойства определителя матрицы Грама	14
1.57	Ортогональная система векторов евклидова пространства. Ортогональный базис	14
1.58		14
1.59	Формула для координат вектора в ортогональном и ортонормированном базисах евклидова пространства	
1.60		
	матриц перехода	14
1.61		14
1.62		15
1.63	Ортогональное дополнение подмножества евклидова пространства	15
1.64		15
1.65	Каким свойством обладают подпространство евклидова пространства и его ортогональное дополнение?	15
1.66	Ортогональная проекция вектора на подпространство	15
1.67	Ортогональная составляющая вектора относительно подпространства	15
1.68	Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального базиса	
1.69	Формула для ортогональной проекции вектора на подпространство в \mathbb{R}^n , заданное своим базисом	16
1.70		16
1.71	Расстояние между векторами евклидова пространства	16
1.72	Неравенство треугольника в евклидовом пространстве	16
1.73	Теорема о расстоянии между вектором и подпространством в терминах ортогональной составляющей .	16
1.74	Псевдорешение несовместной системы линейных уравнений	16
1.75	Формула для расстояния от вектора до подпространства в терминах матриц Грама	16
1.76	k-мерный параллелепипед и его объём	16
1.77	Формула для объёма k -мерного параллелепипеда в n -мерном евклидовом пространстве	17
1.78	Формула для объёма <i>n</i> -мерного параллеленинеда в <i>n</i> -мерном евклидовом пространстве в терминах	11
1.70	координат в ортонормированном базисе	17
1.79	В каком случае два базиса евклидова пространства называются одинаково ориентированными?	17
1.79	Ориентированный объём n -мерного параллелепипеда в n -мерном евклидовом пространстве	17
1.81	Свойства ориентированного объёма <i>п</i> -мерного парадлеленинеда в <i>п</i> -мерном евклидовом пространстве	17
1.82	Связь векторного произведения со скалярным и ориентированным объёмом	17
1.83		17
1.04	ванном ортонормированном базисе	17
1.84		17
1.85		17
1.00	ванном ортонормированном базисе	17
1.86	T7	10
4 0-		18
1.87	Критерий коллинеарности двух векторов трёхмерного евклидова пространства	18
1.88	Критерий коллинеарности двух векторов трёхмерного евклидова пространства	18 18
1.88 1.89	Критерий коллинеарности двух векторов трёхмерного евклидова пространства	18
1.88	Критерий коллинеарности двух векторов трёхмерного евклидова пространства	18 18 18
1.88 1.89	Критерий коллинеарности двух векторов трёхмерного евклидова пространства Геометрические свойства векторного произведения Линейное многообразие. Характеризация линейных многообразий как сдвигов подпространств Критерий равенства двух линейных многообразий. Направляющее подпространство и размерность линейного многообразия	18 18

1.92		18
1.93		19
1.94		19
1.95		19
1.96	Уравнения прямой в \mathbb{R}^3 , проходящей через две различные точки	19
1.97	Случаи взаимного расположения двух прямых в \mathbb{R}^3	19
1.98	Формула для расстояния от точки до прямой в \mathbb{R}^3	20
1.99	Формула для расстояния от точки до плоскости в \mathbb{R}^{3}	20
	0 Формула для расстояния между двумя скрещивающимися прямыми в \mathbb{R}^3	20
	1 Линейный оператор	21
	2 Матрица линейного оператора	21
1.10	3 Связь между координатами вектора и его образа при действии линейного оператора	21
1.10	4 Формула изменения матрицы линейного оператора при переходе к другому базису	21
1.10	5 Подобные матрицы	21
1.10	6 Подпространство, инвариантное относительно линейного оператора	21
1.10'	7 Вид матрицы линейного оператора в базисе, дополняющем базис инвариантного подпространства	21
1.10	8 Вид матрицы линейного оператора в базисе, согласованном с разложением пространства в прямую	
	сумму двух инвариантных подпространств	21
1.10	9 Собственный вектор линейного оператора	22
1.11	0 Собственное значение линейного оператора	22
1.11	1 Спектр линейного оператора	22
	2 Диагонализуемый линейный оператор	22
	В Критерий диагонализуемости линейного оператора в терминах собственных векторов	22
	4 Собственное подпространство линейного оператора	22
	5 Характеристический многочлен линейного оператора	22
	6 Связь спектра линейного оператора с его характеристическим многочленом	22
	7 Алгебраическая кратность собственного значения линейного оператора	$\frac{1}{22}$
	8 Геометрическая кратность собственного значения линейного оператора	22
	9 Связь между алгебраической и геометрической кратностями собственного значения линейного оператора	
	0 Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена и	
	кратностей его собственных значений	22
1.12	1 Линейное отображение евклидовых пространств, сопряжённое к данному	$\frac{1}{22}$
	2 Линейный оператор в евклидовом пространстве, сопряжённый к данному	23
	З Самосопряжённый линейный оператор в евклидовом пространстве	23
	4 Теорема о каноническом виде самосопряжённого линейного оператора	23
	5 Каким свойством обладают собственные подпространства самосопряжённого линейного оператора, от-	_0
1.12	вечающие попарно различным собственным значениям	23
1 12	6 Приведение квадратичной формы к главным осям	23
		23
	8 Теорема о пяти эквивалентных условиях, определяющих ортогональный линейный оператор	23
	9 Теорема о каноническом виде ортогонального линейного оператора	23
	О Классификация ортогональных линейных операторов в трёхмерном евклидовом пространстве	23
	1 Теорема о сингулярных базисах для линейного отображения евклидовых пространстве	$\frac{23}{24}$
	1 теорема о сингулярных оазисах для линеиного отооражения евклидовых пространств	$\frac{24}{24}$
	З Теорема о низкоранговом приближении	$\frac{24}{24}$
1.10	3 теорема о низкоранговом приодижении	24
Воп	росы на доказательство	25
2.1	Подпространства	25
	2.1.1 Теорема о связи размерности суммы двух подпространств с размерностью их пересечения	$\frac{25}{25}$
	2.1.2 Теорема о пяти эквивалентных условиях, определяющих линейно независимый набор подпро-	
	странств векторного пространства	25
2.2	Линейные отображения	26
2.2	2.2.1 Свойства отношения изоморфности на множестве всех векторных пространств	26
	2.2.2 Критерий изоморфности двух конечномерных векторных пространств	27
	2.2.3 Существование и единственность линейного отображения с заданными образами базисных векторов	
		28
		28
	2.2.6 Изоморфизм $\mathrm{Hom}(V,W) \xrightarrow{\sim} \mathrm{Mat}_{m \times n}(F)$ при фиксированных базисах V и W	29
	2.2.7 Изоморфизм $\text{Пош}(v,w) \to \text{Мас}_{m \times n}(F)$ при фиксированных оазисах v и w	29 29
	2.2.8 Утверждение о том, что ядро и образ — подпространства в соответствующих векторных про-	∠9
	2.2.8 Утверждение о том, что ядро и оораз — подпространства в соответствующих векторных про-	29
	2.2.9 Связь между рангом матрицы линейного отображения и размерностью его образа	30
	2.2.10 Лемма о дополнении базиса ядра линейного отображения до базиса всего пространства	30
	2.2.10 «темма о дополнении оазиса идра линеиного отооражении до оазиса всего пространства	OU

	2.2.11	Теорема о связи размерностей ядра и образа линейного отображения, приведение матрицы ли-	
		нейного отображения к диагональному виду с единицами и нулями на диагонали	30
2.3	Линей	ные, билинейные и квадратичные формы	31
	2.3.1	Свойство базиса сопряжённого векторного пространства	31
	2.3.2	Формула для вычисления значений билинейной формы в координатах	31
	2.3.3	Существование и единственность билинейной формы с заданной матрицей	31
	2.3.4	Формула изменения матрицы билинейной формы при переходе к другому базису	32
	2.3.5	Критерий симметричности билинейной формы в терминах её матрицы в каком-либо базисе	32
	2.3.6	Теорема о диагонализации симметричной билинейной формы. Симметричный алгоритм Гаусса.	33
	2.3.7	Метод Якоби для симметричных билинейных форм	34
	2.3.8	Соответствие между симметричными билинейными формами и квадратичными формами	35
	2.3.9	Существование нормального вида для квадратичной формы над $\mathbb R$	35
	2.3.10	Закон инерции	35
	2.3.11	Следствие метода Якоби о нахождении индексов инерции квадратичной формы над $\mathbb R$	36
	2.3.12	Критерий Сильвестра положительной определённости квадратичной формы, критерий отрица-	
		тельной определёности квадратичной формы	36
2.4	Евкли	довы пространства	37
	2.4.1	Неравенство Коши-Буняковского	37
	2.4.2	Свойства определителя матрицы Грама системы векторов евклидова пространства	37
	2.4.3	Свойства ортогонального дополнения к подпространству в евклидовом пространстве: размер-	
		ность, разложение в прямую сумму, ортогональное дополнение к ортогональному дополнению	37
	2.4.4	Φ ормула для ортогональной проекции вектора на подпространство в \mathbb{R}^n в терминах его произ-	
		вольного базиса	38
	2.4.5	Существование ортонормированного базиса в евклидовом пространстве, дополнение ортогональ-	
		ной (ортонормированной) системы векторов до ортогонального (ортонормированного) базиса	38
	2.4.6	Описание всех ортонормированных базисов в терминах одного и матриц перехода	38
	2.4.7	Формула для координат вектора в ортогональном (ортонормированном) базисе. Формула для	
		ортогональной проекции вектора на подпространство в терминах его ортогонального (ортонор-	
		мированного) базиса	39
	2.4.8	Теорема Пифагора и неравенство треугольника в евклидовом пространстве	39
	2.4.9	Теорема о расстоянии между вектором и подпространством в терминах ортогональной состав-	
		ляющей	39
	2.4.10	Метод наименьших квадратов для несовместных систем линейных уравнений: постановка зада-	
		чи и её решение. Единственность псевдорешения и явная формула для него в случае линейной	
		независимости столбцов матрицы коэффициентов	40
	2.4.11	Формула для расстояния между вектором и подпространством в терминах матриц Грама	40
	2.4.12	Две формулы для объёма k -мерного параллеленинеда в евклидовом пространстве	40
2.5	Элеме	нты аналитической геометрии и линейные многообразия	41
	2.5.1	Теорема о векторном произведении и формуле для него в координатах в положительно ориен-	
		тированном ортонормированном базисе	41
	2.5.2	Критерий коллинеарности двух векторов трёхмерного евклидова пространства	41
	2.5.3	Геометрические свойства векторного произведения	41
	2.5.4	Антикоммутативность и билинейность векторного произведения	42
	2.5.5	Линейные многообразия как сдвиги подпространств	42
	2.5.6	Критерий равенства двух линейных многообразий	42
	2.5.7	Теорема о плоскости, проходящей через $k+1$ точку в \mathbb{R}^n	42
2.6		ные операторы	43
	2.6.1	Критерий обратимости линейного оператора в терминах его ядра, образа и определителя	43
	2.6.2	Критерий диагонализуемости линейного оператора в терминах собственных векторов	43
	2.6.3	Связь спектра линейного оператора с его характеристическим многочленом	43
	2.6.4	Связь между алгебраической и геометрической кратностями собственного значения линейного	
	0.0	оператора	44
	2.6.5	Линейная независимость собственных подпространств линейного оператора, отвечающих попар-	
	0.0.	но различным собственным значениям	44
	2.6.6	Диагонализуемость линейного оператора, у которого число корней характеристического много-	
	0.0=	члена равно размерности пространства	45
	2.6.7	Критерий диагонализуемости линейного оператора в терминах его характеристического много-	
	0.0.	члена и кратностей собственных значений	45
	2.6.8	Существование собственного вектора у линейного оператора в векторном пространстве над $\mathbb C$.	
		Существование одномерного или двумерного инвариантного подпространства для линейного опе-	
<u> </u>		ратора в векторном пространстве над $\mathbb R$	45
2.7	Линей	ные отображения и операторы в евклидовых пространствах	46

2.7.1	Сопряжённое линейное отображение: определение, существование и единственность. Матрица	
	сопряжённого отображения в паре произвольных и паре ортонормированных базисов	46
2.7.2	Инвариантность ортогонального дополнения к подпространству, инвариантному относительно	
	самосопряжённого линейного оператора	46
2.7.3	Существование собственного вектора для самосопряжённого линейного оператора	46
2.7.4	Существование ортонормированного базиса из собственных векторов для самосопряжённого ли-	
	нейного оператора	47
2.7.5	Приведение квадратичной формы к главным осям	47
2.7.6	Теорема о пяти эквивалентных условиях, определяющих ортогональный линейный оператор	47
2.7.7	Инвариантность ортогонального дополнения к подпространству, инвариантному относительно	
	ортогонального линейного оператора	48
2.7.8		
2.7.9	Теорема о сингулярных базисах для линейного отображения евклидовых пространств	49

1 Определения и формулировки

1. Сумма двух подпространств векторного пространства

Пусть V – векторное пространство над F.

 $U,W\subseteq V$ — подпространства.

Определение. $\mathit{Суммой}$ подпространств U, W называется множество

$$U + W := \{u + w \mid v \in U, w \in W\}.$$

2. Теорема о связи размерности суммы двух подпространств с размерностью их пересечения

Теорема. $\dim(U \cap W) + \dim(U + W) = \dim U + \dim W$.

 $\Pi puмер$. Всякие две плоскости в \mathbb{R}^3 (содержащие 0) имеют общую прямую.

Здесь $V = \mathbb{R}^3$, dim U = 2, dim W = 2.

При этом $\dim(U+W) \leq 3$.

Тогда, $\dim(U \cap W) = \dim U + \dim W - \dim(U + W) \ge 2 + 2 - 3 = 1$.

3. Сумма нескольких подпространств векторного пространства

Пусть $U_1, \dots U_k \subseteq V$ – подпространства.

Определение. Суммой подпространств $U_1, \dots U_k$ называется множество

$$U_1 + \dots + U_k = \{u_1 + \dots + u_k \mid u_i \in U_i\}.$$

Замечание. $\dim(U_1 + \cdots + U_k) \leqslant \dim U_1 + \cdots + \dim U_k$.

4. Линейная независимость нескольких подпространств векторного пространства

Определение. Подпространства U_1, \ldots, U_k называются линейно независимыми, если $\forall u_1 \in U_1, \ldots, u_k \in U_k$ из условия $u_1 + \cdots + u_k = 0$ следует $u_1 = \cdots = u_k = 0$.

 Π ример. Если $\dim U_i = 1$ и $U_i = \langle u_i \rangle \, \forall i$, то U_1, \ldots, U_k линейно независимы $\iff u_1, \ldots, u_k$ линейно независимы.

5. Разложение векторного пространства в прямую сумму подпространств

Определение. Говорят, что векторное пространство V разлагается в *прямую сумму* U_1, \ldots, U_k , если

- 1. $V = U_1 + \cdots + U_k$,
- $2. U_1, \ldots, U_k$ линейно независимы.

Обозначение: $V = U_1 \oplus U_2 \oplus \cdots \oplus U_k$.

Пример. Если e_1, \ldots, e_n – базис V, то $V = \langle e_1 \rangle \oplus \langle e_2 \rangle \oplus \cdots \oplus \langle e_n \rangle$

6. При каких условиях на подпространства $U_1,\,U_2$ векторного пространства V имеет место разложение $V=U_1\oplus U_2$?

$$V = U_1 \oplus U_2 \iff \begin{cases} V = U_1 + U_2, \\ U_1 \cap U_2 = 0, \end{cases} \iff \begin{cases} \dim V = \dim U_1 + \dim U_2, \\ U_1 \cap U_2 = 0. \end{cases}$$

7. Проекция вектора на подпространство вдоль дополнительного подпространства

Замечание. $V = U_1 \oplus U_2 \implies \forall v \in V \; \exists ! u_1 \in U_1, u_2 \in U_2, \; \text{такие что } v = u_1 + u_2.$

Тогда, u_1 называется проекцией вектора v на U_1 вдоль U_2 .

Так же, u_2 называется проекцией вектора v на U_2 вдоль U_1 .

8. Матрица перехода от одного базиса векторного пространства к другому

Пусть (e_1, \ldots, e_n) и (e'_1, \ldots, e'_n) — два базиса в V,

$$(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)\cdot C,$$

при этом $\det C \neq 0$.

Определение. Матрица C называется матрицей перехода от базиса (e_1,\ldots,e_n) к базису (e'_1,\ldots,e'_n) .

Замечание. Матрица перехода от (e'_1, \ldots, e'_n) к (e_1, \ldots, e_n) — это C^{-1} .

9. Формула преобразования координат вектора при замене базиса

Пусть C — матрица перехода от базиса $e = (e_1, \dots, e_n)$ к базису $e' = (e'_1, \dots, e'_n), v \in V$, тогда

$$v = x_1 e_1 + \dots + x_n e_n$$
$$v = x'_1 e'_1 + \dots + x'_n e'_n.$$

Предложение.

$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix}.$$

10. Линейное отображение векторных пространств, его простейшие свойства

Пусть V, W — векторные пространства над F.

Определение. Отображение $\varphi \colon V \to W$ называется линейным, если

- 1. $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2)$,
- 2. $\varphi(\lambda v) = \lambda \varphi(v)$.

 $\forall v_1, v_2, v \in V, \forall \lambda \in F.$

Простейшие свойства

- 1. $\varphi(\overrightarrow{0_V}) = \overrightarrow{0_W}$.
- 2. $\varphi(-v) = -\varphi(v)$.

11. Изоморфизм векторных пространств, изоморфные векторные пространства

Определение. Отображение $\varphi \colon V \to W$ называется *изоморфизмом* если оно линейно и биективно.

Обозначение: $\varphi \colon V \xrightarrow{\sim} W$.

Определение. Два векторных пространства V,W называются *изоморфными*, если существует изоморфизм $\varphi\colon V\stackrel{\sim}{\longrightarrow} W.$

Обозначается: $V \simeq W$ (либо $V \cong W$).

12. Какими свойствами обладает отношение изоморфности на множестве всех векторных пространств?

Теорема. Отношение изоморфности является отношением эквивалентности на множестве всех векторных пространств над фиксированным полем F.

13. Критерий изоморфности двух конечномерных векторных пространств

Теорема. Пусть $V, W - \partial \epsilon a$ конечномерных векторных пространства над F.

 $Tor \partial a, \ V \simeq W \iff \dim V = \dim W.$

14. Матрица линейного отображения

Пусть V, W — векторные пространства над F.

$$e = (e_1, \ldots, e_n)$$
 — базис V ,

$$\mathbb{f} = (f_1, \dots, f_m)$$
 — базис W .

Пусть $\varphi \colon V \to W$ — линейное отображение.

$$\forall j = 1, \dots, n$$

$$\varphi(e_j) = a_{1j}f_1 + a_{2j}f_2 + \dots + a_{mj}f_m = (f_1, \dots, f_m) \begin{pmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{mj} \end{pmatrix}.$$

Тогда,
$$(\varphi(e_1), \ldots, \varphi(e_n)) = (f_1, \ldots, f_m) \cdot A$$
, где $A = (a_{ij}) \in \operatorname{Mat}_{m \times n}(F)$.

Определение. A называется матрицей линейного отображения φ в базисах $\mathfrak e$ и $\mathfrak f$.

7

Обозначение: $A = A(\varphi, e, f)$.

В j-м столбце матрицы A стоят координаты вектора $\varphi(e_i)$ в базисе \mathbb{f} .

15. Связь между координатами вектора и его образа при линейном отображении

Предложение. Пусть $\varphi \colon V \to W$ — линейное отображение,

$$e = (e_1, \ldots, e_n)$$
 — базис V ,

$$\mathbb{f} = (f_1, \dots, f_m)$$
 — базис W ,

$$A = A(\varphi, e, f).$$

$$v \in V \implies v = x_1 e_1 + \dots + x_n e_n,$$

$$\varphi(v) = y_1 f_1 + \dots + y_m f_m.$$

Тогда,

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

16. Формула изменения матрицы линейного отображения при замене базисов

Пусть \mathfrak{e}' — другой базис в V, \mathfrak{l}' — другой базис в W.

$$\mathbf{e}' = \mathbf{e} \cdot C_{\in M_n},$$

$$\mathbb{f}' = \mathbb{f} \cdot D_{\in M_m}.$$

$$A = A(\varphi, e, f),$$

$$A' = A(\varphi, e', f').$$

Предложение. $A' = D^{-1}AC$.

17. Сумма двух линейных отображений и её матрица. Произведение линейного отображения на скаляр и его матрица

Пусть $\varphi, \psi \in \text{Hom}(V, W), \lambda \in F$.

Определение.

- 1. Суммой линейных отображений φ и ψ называется линейное отображение $\varphi + \psi \in \text{Hom}(V, W)$, такое что $(\varphi + \psi)(v) := \varphi(v) + \psi(v)$.
- 2. Произведение φ на λ это линейное отображение $\lambda \varphi \in \text{Hom}(V, W)$, такое что $(\lambda \varphi)(v) := \lambda \varphi(v)$.

Зафиксируем базисы $e = (e_1, \dots, e_n)$ в V и $f = (f_1, \dots, f_m)$ в W.

Предложение.

1.
$$\varphi, \psi \in \text{Hom}(V, W), A_{\varphi} = A(\varphi, e, f)$$

$$A_{\psi} = A(\psi, \mathbf{e}, \mathbf{f})$$

$$A_{\varphi+\psi} = A(\varphi+\psi, \mathbf{e}, \mathbf{f}) \implies A_{\varphi+\psi} = A_{\varphi} + A_{\psi}$$

2.
$$\lambda \in F, \varphi \in \text{Hom}(V, W), A_{\varphi} = A(\varphi, \mathbb{e}, \mathbb{f})$$

$$A_{\lambda\varphi} = A(\lambda\varphi, \mathbb{e}, \mathbb{f}) \implies A_{\lambda\varphi} = \lambda A_{\varphi}$$

18. Композиция двух линейных отображений и её матрица

Пусть $U\xrightarrow{\psi}V\xrightarrow{\varphi}W$ — цепочка линейных отображений, а $\varphi\circ\psi:U\to W$ — их композиция,

$$e = (e_1, \ldots, e_n)$$
 — базис V ,

$$\mathbb{F} = (f_1, \dots, f_m)$$
 — базис W ,

$$g = (g_1, \ldots, g_k)$$
 — базис U .

$$A_{\varphi} = A(\varphi, e, f),$$

$$A_{\psi} = A(\psi, \mathfrak{g}, \mathfrak{e}),$$

$$A_{\varphi \circ \psi} = A(\varphi \circ \psi, \mathfrak{g}, \mathfrak{f}).$$

Тогда, $A_{\varphi \circ \psi} = A_{\varphi} \cdot A_{\psi}$.

19. Ядро и образ линейного отображения. Являются ли они подпространствами в соответствующих векторных пространствах?

Пусть $\varphi \colon V \to W$.

Определение. $\mathcal{A}\partial po$ линейного отображения φ — это $\ker \varphi := \{v \in V \mid \varphi(v) = 0\} \subseteq V$.

Образ линейного отображения φ — это $\operatorname{Im} \varphi := \varphi(V) \subseteq W$.

Предложение.

- 1. Ядро подпространство в V.
- 2. Образ подпространство в W.

20. Критерий инъективности линейного отображения в терминах его ядра

Пусть V, W — векторные пространства над F,

 $\varphi \colon V \to W$ — линейное отображение.

Предложение.

- (a) φ инъективно $\iff \ker \varphi = \{0\},\$
- (b) φ сюръективно \iff Im $\varphi = W$.

21. Связь между рангом матрицы линейного отображения и размерностью его образа

Пусть
$$\mathbf{e}=(e_1,\ldots,e_n)$$
 — базис $V,$
$$\mathbf{f}=(f_1,\ldots,f_m)$$
 — базис $W,$ $A=A(\varphi,\mathbf{e},\mathbf{f}).$

Теорема. $\operatorname{rk} A = \dim \operatorname{Im} \varphi$.

Замечание. Число $\dim \operatorname{Im} \varphi$ называется $\operatorname{\textit{paнгом}}$ линейного отображения φ , обозначается $\operatorname{rk} \varphi$.

Следствие. $\operatorname{rk} A$ не зависит от выбора пары базисов $\mathfrak e$ и $\mathfrak f$.

22. Каким свойством обладает набор векторов, дополняющих базис ядра линейного отображения до базиса всего пространства?

Предложение. Пусть e_1, \ldots, e_k — базис $\ker \varphi$ и векторы e_{k+1}, \ldots, e_n дополняют его до базиса всего V. Тогда, $\varphi(e_{k+1}), \ldots, \varphi(e_n)$ образуют базис в $\operatorname{Im} \varphi$.

23. Теорема о связи размерностей ядра и образа линейного отображения

Теорема. dim Im φ + dim ker φ = dim V.

24. К какому простейшему виду можно привести матрицу линейного отображения путём замены базисов?

Предложение. Пусть $\operatorname{rk} \varphi = r$. Тогда существует базис $\operatorname{e} \operatorname{b} V$ и базис $\operatorname{f} \operatorname{b} W$, такие что

$$A(\varphi, \mathbf{e}, \mathbf{f}) = \left(\begin{array}{c|cccc} E & 0 \\ \hline 0 & 0 \end{array} \right) = \begin{bmatrix} r & & & n-r \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \ddots & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \end{bmatrix}.$$

25. Линейная функция на векторном пространстве

Определение. Линейной функцией (или линейной формой, или линейным функционалом) на V называется всякое линейное отображение $\alpha \colon V \to F$.

Обозначение. $V^* := \text{Hom}(V, F)$ — множество всех линейных функций на V.

26. Сопряжённое (двойственное) векторное пространство и его размерность

Из общей теории линейных отображений:

- 1. V^* векторное пространство (оно называется сопряженным или двойственным).
- 2. Если $e = (e_1, \dots, e_n)$ фиксированный базис в V, то есть изоморфизм $V^* \simeq \operatorname{Mat}_{1 \times n}(F)$ (а это ни что иное, как строки длины n).

$$\alpha \to (\alpha_1, \dots, \alpha_n)$$

$$v = x_1 e_1 + \dots + x_n e_n$$

$$\alpha(v) = (\alpha_1, \dots, \alpha_n) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \alpha_1 x_1 + \dots + \alpha_n x_n.$$

 $\alpha_i = \alpha(e_i)$ — коэффициенты линейной функции α в базисе $\mathfrak e$.

Следствие. $\dim V^* = \dim V \ (\Longrightarrow V^* \simeq V)$.

27. Базис сопряжённого пространства, двойственный к данному базису исходного векторного пространства

При $i=1,\ldots,n$ рассмотрим линейную функцию $\varepsilon_i\in V^*$, соответствующую строке $(0\ldots 1\ldots 0)$. Тогда $\varepsilon_1,\ldots,\varepsilon_n$ — базис V^* , он однозначно определяется условием $\varepsilon_i(e_j) = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$. (δ_{ij} — символ Кронекера)

Определение. Базис $(\varepsilon_1, \dots, \varepsilon_n)$ пространства V^* , определенный условием выше, называется базисом, $\partial so\mathring{u}$ ственным (сопряженным) к базису е.

Удобная запись условия:

$$\begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix} (e_1, \dots, e_n) = E.$$

28. Билинейная форма на векторном пространстве

Пусть V — векторное пространство над F.

Определение. Билинейная форма на V — это отображение $\beta \colon V \times V \to F$, линейное по каждому аргументу.

Линейность по 1-му аргументу

- $\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y) \quad \forall x_1, x_2, y \in V$,
- $\beta(\lambda x, y) = \lambda \beta(x, y) \quad \forall x, y \in V, \ \lambda \in F.$

Линейность по 2-му аргументу

- $\begin{aligned} \bullet \ \ \beta(x,y_1+y_2) &= \beta(x,y_1) + \beta(x,y_2) \quad \forall x,y_1,y_2 \in V, \\ \bullet \ \ \beta(x,\lambda y) &= \lambda \beta(x,y) \quad \forall x,y \in V, \ \lambda \in F. \end{aligned}$

29. Матрица билинейной формы

Считаем, что $\dim V = n < \infty$.

Пусть $e = (e_1, \ldots, e_n)$ — базис V.

Определение. Матрицей билинейной формы β в базисе e называется такая матрица $B \in M_n$, что $b_{ij} = \beta(e_i, e_j)$. Обозначение: $B(\beta, e)$.

30. Формула для вычисления значений билинейной формы в координатах

Пусть
$$x = x_1 e_1 + \dots + x_n e_n$$
,

$$y = y_1 e_1 + \dots + y_n e_n.$$

Тогда,

$$\beta(x,y) = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}.$$

31. Формула изменения матрицы билинейной формы при замене базисов

$$B = B(\beta, e).$$

Пусть
$$e' = (e'_1, \dots e'_n)$$
 — другой базис V .

$$e' = e \cdot C$$
.

$$B' := B(\beta, e').$$

Предложение. $B' = C^T B C$.

32. Симметричная билинейная форма. Критерий симметричности билинейной формы в терминах её матрицы

Определение. Билинейная форма β называется симметричной, если $\beta(x,y) = \beta(y,x) \ \forall x,y \in V$.

Пусть e — произвольный базис V.

Предложение. β симметрична $\iff B = B^T$.

33. Квадратичная форма

Пусть $\beta: V \times V \to F$ — билинейная форма на V.

Определение. Отображение $Q_{\beta} \colon V \to F$, $Q_{\beta}(x) = \beta(x, x)$, называется *квадратичной формой*, ассоциированной с билинейной формой β .

Пусть e — базис V, $x = x_1 e_1 + \dots x_n e_n$, $B = B(\beta, e)$.

Тогда.

$$Q_{\beta}(x) = (x_1 \dots x_n) B \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \sum_{i=1}^n \sum_{j=1}^n b_{ij} x_i x_j = \sum_{i=1}^n b_{ii} x_i^2 + \sum_{1 \le i < j \le n}^n (b_{ij} + b_{ji}) x_i x_j.$$

34. Симметричные элементарные преобразования квадратной матрицы

$$B \overset{\text{одно эл.}}{\leadsto} B' = \underbrace{U}_{\text{элементарная}} \cdot B \implies (B')^T = B^T \cdot U^T = B \cdot U^T$$

То есть такое же элементарное преобразование, но уже столбцов, реализуется умножением матрицы билинейной формы на U^T справа.

Определение. $B \leadsto B' = UBU^T -$ симметричное элементарное преобразование.

Сначала выполняется элементарное преобразование строк, а затем ровно такое же элементарное преобразование столбцов, или наоборот, в силу ассоциативности.

Заметим, что согласно формуле изменения матрицы билинейной формы при переходе к другому базису, если мы применим симметричное элементарное преобразование к матрице симметричной билинейной формы, мы получим матрицу той же симметричной билинейной формы, но в другом базисе.

Обозначение. $\widehat{\Im}_i := \Im_i \ \& \ \Im_i' - \text{симметричное элементарное преобразование, где}$

 Θ_i — элементарное преобразование строк.

 \Im_i' — соответствующее элементарное преобразование столбцов.

35. Угловые миноры квадратной матрицы

 $G \in M_n, k \in \{1, \dots, n\} \leadsto G_k :=$ левый верхний $k \times k$ блок матрицы G

Определение. Величина $\delta_k(G) := \det G_k$ называется k-м угловым минором матрицы G

$$G = \begin{pmatrix} g_{11} & g_{12} & g_{13} & \dots \\ g_{21} & g_{22} & g_{23} & g_{23} \\ g_{31} & g_{32} & g_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

36. Метод Якоби (формулировка теоремы)

Пусть $\beta: V \times V \to F$ — симметричная билинейная форма, \mathfrak{E} — базис $V, B = B(\beta, \mathfrak{E}), \delta_k = \delta_k(B)$

$$C = \begin{pmatrix} 1 & \star & \dots & \star & \star \\ 0 & 1 & \ddots & \star & \star \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \star \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Такая что матрица $B' = C^T B C$ имеет вид $B' = \operatorname{diag}\left(\delta_1, \frac{\delta_2}{\delta_1}, \dots, \frac{\delta_n}{\delta_{n-1}}\right)$.

37. Соответствие между симметричными билинейными формами и квадратичными формами

Предложение. Пусть в поле F выполнено условие $1+1\neq 0$ (то есть $2\neq 0$). Тогда отображение $\beta\mapsto Q_\beta$ является биекцией между симметричными билинейными формами на V и квадратичным формами на V.

38. Симметризация билинейной формы

Билинейная форма $\sigma(x,y) = \frac{1}{2} \left(\beta(x,y) + \beta(y,x) \right)$ называется *симметризацией* билинейной формы β . Если B и S — матрицы билинейных форм β и σ в некотором базисе, то $S = \frac{1}{2} (B + B^T)$.

11

39. Поляризация квадратичной формы

Симметричная билинейная форма $\beta(x,y) = \frac{1}{2} \left[Q(x+y) - Q(x) - Q(y) \right]$ называется *поляризацией* квадратичной формы Q.

40. Матрица квадратичной формы

Определение. Матрицей квадратичной формы Q в базисе $\mathfrak e$ называется матрица соответствующей симметричной билинейной формы (поляризации) в базисе $\mathfrak e$.

Обозначение: B(Q, e).

Пример. Пусть $Q(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$.

Если е — стандартный базис, то $B(Q, \mathbf{e}) = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}$.

41. Канонический вид квадратичной формы

Определение. Квадратичная форма Q имеет в базисе $\mathfrak e$ *канонический вид*, если $B(Q,\mathfrak e)$ диагональна.

Если
$$B(Q, e) = diag(b_1, b_2, \dots, b_n)$$
, то $Q(x_1, \dots, x_n) = b_1 x_1^2 + b_2 x_2^2 + \dots + b_n x_n^2$.

42. Нормальный вид квадратичной формы над $\mathbb R$

Определение. Квадратичная форма над $\mathbb R$ имеет *нормальный вид* в базисе $\mathfrak e$, если в этом базисе

$$Q(x_1, \dots, x_n) = \varepsilon_1 x_1^2 + \dots + \varepsilon_n x_n^2,$$

где
$$\varepsilon_i \in \{-1, 0, 1\}.$$

43. Индексы инерции квадратичной формы над $\mathbb R$

Пусть $F = \mathbb{R}$.

Пусть $Q \colon V \to \mathbb{R}$ — квадратичная форма.

Можно привести к нормальному виду

$$Q(x_1, \dots, x_n) = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2$$

Здесь $i_{+} := s$ — положительный индекс инерции квадратичной формы Q,

 $i_{-} := t$ — отрицательный индекс инерции квадратичной формы Q.

44. Закон инерции для квадратичной формы над $\mathbb R$

Теорема. Числа i_+ и i_- не зависят от базиса в котором Q принимает нормальный вид.

- 45. Положительно/неотрицательно определённая квадратичная форма над ${\mathbb R}$
- 46. Отрицательно/неположительно определённая квадратичная форма над $\mathbb R$

47. Неопределённая квадратичная форма над $\mathbb R$

Определение. Квадратичная форма Q над \mathbb{R} называется

Термин	Обозначение	Условие	Нормальный вид	Индексы инерции
Положительно определённой	Q > 0	$Q(x) > 0 \ \forall x \neq 0$	$x_1^2 + \dots + x_n^2$	$i_{+} = n, i_{-} = 0$
Отрицательно определённой	Q < 0	$Q(x) < 0 \ \forall x \neq 0$	$-x_1^2 - \dots - x_n^2$	$i_{+} = 0, i_{-} = n$
Неотрицательно определённой	$Q \geqslant 0$	$Q(x) \geqslant 0 \ \forall x$	$x_1^2 + \dots + x_k^2, \ k \leqslant n$	$i_{+} = k, i_{-} = 0$
Неположительно определённой	$Q \leqslant 0$	$Q(x) \leqslant 0 \ \forall x$	$-x_1^2 - \dots - x_k^2, \ k \leqslant n$	$i_{+} = 0, i_{-} = k$
Неопределённой	_	$\exists x : Q(x) > 0$ $\exists y : Q(y) < 0$	$x_1^2 + \dots + x_s^2 - x_{s+1}^2 - x_{s+t}^2$ $s, t \ge 1$	$i_+ = s, i = t$

48. Способ нахождения индексов инерции квадратичной формы над \mathbb{R} , вытекающий из метода Якоби

Пусть $Q \colon V \to \mathbb{R}$ — квадратичная форма,

$$e = (e_1, \dots, e_n)$$
 — базис,

$$B = B(Q, e),$$

 $\delta_k - k$ -й угловой минор матрицы B.

Следствие (из метода Якоби). Пусть $\delta_k \neq 0 \ \forall k$. Тогда:

Число i_+ равно количеству сохранений знака в последовательности $1, \delta_1, \dots, \delta_n$.

Число i_- равно количеству перемен знака в последовательности $1, \delta_1, \dots, \delta_n$.

49. Критерий Сильвестра положительной определённости квадратичной формы над $\mathbb R$

Пусть V — векторное пространство над \mathbb{R} , dim V = n,

$$e = (e_1, \ldots, e_n)$$
 — базис V ,

$$B = B(Q, e),$$

 B_k — левый верхний $k \times k$ блок,

$$\delta_k = \det B_k$$
.

Теорема (Критерий Сильвестра положительной определенности).

$$Q > 0 \iff \delta_k > 0 \ \forall k = 1 \dots n.$$

50. Критерий отрицательной определённости квадратичной формы над $\mathbb R$

Следствие.

$$Q < 0 \iff \delta_k \begin{cases} > 0 & \text{при } k \vdots 2, \\ < 0 & \text{при } k \not \vdots 2. \end{cases}$$

51. Евклидово пространство

Определение. Евклидово пространство — это векторное пространство \mathbb{E} над \mathbb{R} , на котором задано *скалярное* произведение, то есть такое отображение (•,•): $\mathbb{E} \times \mathbb{E} \to \mathbb{R}$, что

- 1. (\bullet, \bullet) симметричная билинейная форма,
- 2. Квадратичная форма (x, x) положительно определённая.

52. Длина вектора в евклидовом пространстве

Определение. Длина вектора $x \in \mathbb{E}$ — это $|x| := \sqrt{(x,x)}$.

Свойство: $|x| \geqslant 0$, причем $|x| = 0 \iff x = 0$.

Пример. Если $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением, то $|x| = \sqrt{x_1^2 + \dots + x_n^2}$.

53. Неравенство Коши-Буняковского

Предложение (неравенство Коши-Буняковского). $\forall x,y \in \mathbb{E}$ верно $|(x,y)| \leq |x| \cdot |y|$, причём равенство $\iff x,y$ пропорциональны.

 Π ример. Пусть $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением, тогда

$$|x_1y_1 + \dots + x_ny_n| \le \sqrt{x_1^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + \dots + y_n^2}$$

54. Угол между ненулевыми векторами евклидова пространства

Пусть
$$x, y \in \mathbb{E} \setminus \{0\}$$
, тогда $-1 \leqslant \frac{(x,y)}{|x| \cdot |y|} \leqslant 1$.

Определение. Угол между ненулевыми векторами $x,y \in \mathbb{E}$, это такой $\alpha \in [0,\pi]$, что $\cos \alpha = \frac{(x,y)}{|x|\cdot |y|}$.

Тогда $(x, y) = |x||y|\cos \alpha$.

55. Матрица Грама системы векторов евклидова пространства

Пусть v_1, \ldots, v_k — произвольная система векторов.

Определение. Матрица Грама этой системы — это

$$G(v_1, \dots, v_k) = \begin{pmatrix} (v_1, v_1) & (v_1, v_2) & \dots & (v_1, v_k) \\ (v_2, v_1) & (v_2, v_2) & \dots & (v_2, v_k) \\ \vdots & \vdots & \ddots & \vdots \\ (v_k, v_1) & (v_k, v_2) & \dots & (v_k, v_k) \end{pmatrix}.$$

13

 Π ример. $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением.

$$a_1, \ldots, a_k \in \mathbb{R}^n \leadsto A := (a_1, \ldots, a_k) \in \operatorname{Mat}_{n \times k}(\mathbb{R}).$$

Тогда,
$$G(a_1,\ldots,a_k)=A^T\cdot A$$
.

56. Свойства определителя матрицы Грама

Предложение.
$$\forall v_1, \dots, v_k \in \mathbb{E} \implies \det G(v_1, \dots, v_k) \geqslant 0.$$

Более того,
$$\det G(v_1,\ldots,v_k)>0\iff v_1,\ldots,v_k$$
 линейно независимы.

57. Ортогональная система векторов евклидова пространства. Ортогональный базис

 \Downarrow

58. Ортонормированная система векторов евклидова пространства. Ортонормированный базис

Определение. Система ненулевых векторов v_1, \dots, v_k называется

- 1. ортогональной, если $(v_i, v_j) = 0 \ \forall i \neq j \ (\text{то есть } G(v_1, \dots, v_k) \ диагональна),$
- 2. ортонормированной, если $(v_i,v_j)=0 \ \forall i\neq j$ и $(v_i,v_i)=1 \ (\iff |v_i|=1).$ То есть $G(v_1,\ldots,v_k)=E.$

Замечание. Всякая ортогональная (и в частности ортонормированная) система векторов автоматически линейно независима.

$$\det G(v_1, \dots, v_k) = |v_1|^2 \cdot |v_2|^2 \cdots |v_k|^2 \neq 0.$$

Определение. Базис пространства называется *ортогональным* (соответственно *ортонормированным*), если он является ортогональной (ортонормированной) системой векторов.

59. Формула для координат вектора в ортогональном и ортонормированном базисах евклидова пространства

Пусть \mathbb{E} — евклидово пространство, (e_1,\ldots,e_n) — ортогональный базис.

 $v \in \mathbb{E}$

Предложение.
$$v = \frac{(v, e_1)}{(e_1, e_1)} e_1 + \frac{(v, e_2)}{(e_2, e_2)} e_2 + \dots + \frac{(v, e_n)}{(e_n, e_n)} e_n$$
.

В частности, если e_1, \dots, e_n ортонормирован, то $v = (v, e_1)e_1 + \dots + (v, e_n)e_n$.

60. Описание всех ортонормированных базисов евклидова пространства в терминах одного такого базиса и матриц перехода

Пусть $e = (e_1, \dots, e_n)$ — ортонормированный базис в E.

Пусть $e' = (e'_1, \dots, e'_n)$ — какой-то другой базис.

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C, C \in M_n^0(\mathbb{R}).$$

Предложение. e' — ортонормированный базис $\iff C^T \cdot C = E$.

61. Ортогональная матрица

Определение. Матрица $C \in M_n(\mathbb{R})$ называется ортогональной если $C^TC = E$.

Замечание.
$$C^TC = E \iff CC^T = E \iff C^{-1} = C^T$$
.

Свойства.

- 1. $C^TC = E \implies$ система столбцов $C^{(1)}, \dots, C^{(n)}$ это ортонормированный базис в \mathbb{R}^n ,
- 2. $CC^T = E \implies$ система строк $C_{(1)}, \dots, C_{(n)}$ это тоже ортонормированный базис в \mathbb{R}^n ,

В частности, $|c_{ij}| \leq 1$.

3.
$$\det C = \pm 1$$
.

 $\Pi puмер. \ n = 2.$ Ортогональный матрицы:

$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \qquad \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$$

$$\det = 1 \qquad \qquad \det = -1$$

62. Метод ортогонализации Грама-Шмидта

Как построить ортогональный (ортонормированный) базис в **E**?

Если f_1,\ldots,f_n — ортогональный базис, то $\left(\frac{f_1}{|f_1|},\ldots,\frac{f_n}{|f_n|}\right)$ — ортонормированный базис.

Тогда, достаточно построить ортогональный базис.

Пусть e_1, \ldots, e_k — линейно независимая система векторов.

i-й угловой минор в $G(e_1, \ldots, e_k)$ — это $\det G(e_1, \ldots, e_i) > 0$.

Следовательно, применим метод Якоби:

 $\exists!$ система векторов f_1,\ldots,f_k , такая что

$$f_{1} = e_{1},$$

$$f_{2} \in e_{2} + \langle e_{1} \rangle,$$

$$f_{3} \in e_{3} + \langle e_{1}, e_{2} \rangle,$$

$$\dots,$$

$$f_{k} \in e_{k} + \langle e_{1}, \dots, e_{k-1} \rangle$$

И выполнены следующие свойства $\forall i = 1, ..., k$:

- $0. f_1, \ldots, f_i$ ортогональны.
- 1. $\langle e_1, \dots, e_i \rangle = \langle f_1, \dots, f_i \rangle$. 2. $f_i = e_i \sum_{j=1}^{i-1} \frac{(e_i, f_j)}{(f_j, f_j)} f_j (\star)$. 3. $\det G(e_1, \dots, e_i) = \det G(f_1, \dots, f_i) (\heartsuit)$.

Построение базиса f_1, \ldots, f_k по формулам (\star) называется методом (процессом) ортогонализации Грамма-Шмидта.

63. Ортогональное дополнение подмножества евклидова пространства

Определение. Ортогональное дополнение множества $S \subseteq \mathbb{E}$ — это множество $S^{\perp} := \{x \in \mathbb{E} \mid (x,y) = 0 \ \forall y \in S\}.$

64. Чему равна размерность ортогонального дополнения к подпространству евклидова пространства?

Пусть $\dim \mathbb{E} = n, S \subseteq \mathbb{E}$ — подпространство.

Тогда, $\dim S^{\perp} = n - \dim S$.

65. Каким свойством обладают подпространство евклидова пространства и его ортогональное дополнение?

Считаем, что dim $\mathbb{E} = n < \infty$.

Предложение. Пусть $S \subseteq \mathbb{E}$ — подпространство. Тогда:

- 1. $\dim S^{\perp} = n \dim S$.
- 2. $\mathbb{E} = S \oplus S^{\perp}$.
- 3. $(S^{\perp})^{\perp} = S$.

66. Ортогональная проекция вектора на подпространство

67. Ортогональная составляющая вектора относительно подпространства

$$S$$
 — подпространство $\implies \mathbb{E} = S \oplus S^{\perp}$

 $\forall v \in \mathbb{E}\exists ! x \in S, y \in S^{\perp}$, такие что x + y = v.

Определение.

1. x называется ортогональной проекцией вектора v на подпространство S.

Обозначение: $x = \operatorname{pr}_S v$.

2. y называется opmoгoнальной cocmaвляющей вектора v относительно подпространства S.

Обозначение: $y = \operatorname{ort}_S v$.

68. Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального базиса

Пусть $S \subseteq \mathbb{E}$ — подпространство.

 e_1,\ldots,e_k — ортогональный базис в S.

Предложение. $\forall v \in \mathbb{E} \quad \operatorname{pr}_S v = \sum_{i=1}^k \frac{(v,e_i)}{(e_i,e_i)} e_i.$

В частности, если e_1,\dots,e_k ортонормирован, то $\operatorname{pr}_S v = \sum_{i=1}^k (v,e_i)e_i.$

69. Формула для ортогональной проекции вектора на подпространство в \mathbb{R}^n , заданное своим базисом

Пусть $\mathbb{E}=\mathbb{R}^n$ со стандартным скалярным произведением.

 $S \subseteq \mathbb{E}$ — подпространство, a_1, \ldots, a_k — базис S.

Пусть $A := (a_1, \ldots, a_k) \in \operatorname{Mat}_{n \times k}(\mathbb{R}), A^{(i)} = a_i.$

Предложение. $\forall v \in \mathbb{R}^n \quad \operatorname{pr}_S v = A(A^T A)^{-1} A^T v.$

70. Теорема Пифагора в евклидовом пространстве

Теорема. Пусть $x, y \in \mathbb{E}$, (x, y) = 0. Тогда $|x + y|^2 = |x|^2 + |y|^2$.

71. Расстояние между векторами евклидова пространства

Определение. Расстояние между векторами $x,y\in\mathbb{E}$ — это $\rho(x,y)=|x-y|$.

72. Неравенство треугольника в евклидовом пространстве

Предложение. $\forall a,b,c \in \mathbb{E} \implies \rho(a,b) + \rho(b,c) \geqslant \rho(a,c)$.

73. Теорема о расстоянии между вектором и подпространством в терминах ортогональной составляющей

Теорема. Пусть $x \in \mathbb{E}$, $S \subseteq \mathbb{E}$ — подпространство. Тогда, $\rho(x,S) = |\mathrm{ort}_S x|$, причем $\mathrm{pr}_S x$ — это ближайший κ x вектор из S.

74. Псевдорешение несовместной системы линейных уравнений

СЛУ $Ax = b, A \in \mathrm{Mat}_{m \times n}(\mathbb{R}), x \in \mathbb{R}^n, b \in \mathbb{R}^m$.

 x_0 — решение системы $\iff Ax_0 = b \iff Ax_0 - b = 0 \iff |Ax_0 - b| = 0 \iff \rho(Ax_0, b) = 0.$

Если СЛУ несовместна, то x_0 называется nceedopeuenuem, если $\rho(Ax_0, b)$ минимально.

$$\rho(Ax_0, b) = \min_{x \in R^n} \rho(Ax, b).$$

 x_0 — решение задачи оптимизации $\rho(Ax,b) \xrightarrow[x \in \mathbb{R}^n]{} \min$.

Если столбцы $A^{(1)}, \dots, A^{(n)}$ линейно независимы, то псевдорешение единственно и может быть найдено по формуле $x_0 = (A^T A)^{-1} A^T b$.

75. Формула для расстояния от вектора до подпространства в терминах матриц Грама

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E} = n < \infty$.

 $S \subseteq \mathbb{E}$ — подпространство, e_1, \ldots, e_k — базис в S.

Теорема. $\forall x \in \mathbb{E} \quad \rho(x,S)^2 = \frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)}.$

76. к-мерный параллелепипед и его объём

Определение. k-мерный парамелениеd, натянутый на векторы a_1, \ldots, a_k , это множество

$$P(a_1,\ldots,a_k) := \left\{ \sum_{i=1}^k x_i a_i \middle| 0 \leqslant x_i \leqslant 1 \right\}.$$

Основание: $P(a_1, \ldots, a_{k-1})$.

Высота: $h := \operatorname{ort}_{\langle a_1, \dots, a_{k-1} \rangle} a_k$.

Определение. k-мерный объем k-мерного параллеленинеда $P(a_1, \ldots, a_k)$ — это величина vol $P(a_1, \ldots, a_k)$, определяемая индуктивно:

$$k = 1 \implies \operatorname{vol} P(a_1) := |a_1|.$$

 $k > 1 \implies \operatorname{vol} P(a_1, \dots, a_k) := \operatorname{vol} P(a_1, \dots, a_{k-1}) \cdot |h|.$

77. Формула для объёма k-мерного параллелепипеда в n-мерном евклидовом пространстве

Теорема. vol $P(a_1, ..., a_k)^2 = \det G(a_1, ..., a_k)$.

78. Формула для объёма *n*-мерного параллелепипеда в *n*-мерном евклидовом пространстве в терминах координат в ортонормированном базисе

Пусть (e_1, \ldots, e_n) — ортонормированный базис в \mathbb{E} ,

$$(a_1,\ldots,a_n)=(e_1,\ldots,e_n)\cdot A, A\in M_n(\mathbb{R}).$$

Предложение. $\operatorname{vol} P(a_1, \ldots, a_n) = |\det A|$.

79. В каком случае два базиса евклидова пространства называются одинаково ориентированными?

Пусть
$$e=(e_1,\ldots,e_n)$$
 и $e'=(e'_1,\ldots,e'_n)$ — два базиса в $\mathbb E$.

$$(e'_1, \dots, e'_n) = (e_1, \dots, e_n) \cdot C, C \in M_n^0(\mathbb{R}).$$

Определение. Говорят, что \mathfrak{e} и \mathfrak{e}' одинаково ориентированы, если $\det C > 0$.

80. Ориентированный объём n-мерного параллелепипеда в n-мерном евклидовом пространстве Фиксируем ориентацию в \mathbb{E} .

Фиксируем положительно ориентированный ортонормированный базис $e = (e_1, \dots, e_n)$ в \mathbb{E} .

Пусть
$$a_1, \ldots, a_n \in \mathbb{E}, (a_1, \ldots, a_n) = (e_1, \ldots, e_n) \cdot A.$$

Определение. Ориентированным объемом параллелепипеда $P(a_1, \ldots, a_n)$ называется величина

$$Vol(a_1,\ldots,a_n)=\det A.$$

- 81. Свойства ориентированного объёма n-мерного параллелепипеда в n-мерном евклидовом пространстве
 - 1. $Vol(a_1, \ldots, a_n)$ линеен по каждому аргументу.
 - 2. $Vol(a_1, ..., a_n)$ кососимметрична (то есть меняет знак при перестановке любых двух аргументов).
 - 3. $\operatorname{Vol}(a_1,\ldots,a_n)>0\iff (a_1,\ldots,a_n)$ положительно ориентированный базис в $\mathbb E.$
 - 4. $\operatorname{Vol}(a_1,\ldots,a_n) < 0 \iff (a_1,\ldots,a_n)$ отрицательно ориентированный базис в $\mathbb E$.
 - 5. $Vol(a_1,\ldots,a_n)=0 \iff (a_1,\ldots,a_n)$ линейно зависимы.
- 82. Связь векторного произведения со скалярным и ориентированным объёмом

Если v = [a, b], то $(v, x) = Vol(a, b, x) \quad \forall x \in \mathbb{R}^3$.

83. Формула для вычисления векторного произведения в терминах координат в положительно ориентированном ортонормированном базисе

Если $e = (e_1, e_2, e_3)$ — положительно ориентированный базис и $a = a_1e_1 + a_2e_2 + a_3e_3$, то

$$b = b_1e_1 + b_2e_2 + b_3e_3$$

$$[a,b] = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} := \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} e_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} e_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} e_3. \tag{\star}$$

84. Смешанное произведение векторов трёхмерного евклидова пространства

Определение. $\forall a,b,c \in \mathbb{R}^3$ число (a,b,c) := ([a,b],c) называется *смешанным произведением* векторов a,b,c.

Замечание. (a, b, c) = Vol(a, b, c).

85. Формула для вычисления смешанного произведения в терминах координат в положительно ориентированном ортонормированном базисе

Если e_1, e_2, e_3 — положительно ориентированный ортонормированный базис, то

$$\begin{vmatrix} a = a_1e_1 + a_2e_2 + a_3e_3 \\ b = b_1e_1 + b_2e_2 + b_3e_3 \\ c = c_1e_1 + c_2e_2 + c_3e_3 \end{vmatrix} \implies (a, b, c) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

- 86. Критерий компланарности трёх векторов трёхмерного евклидова пространства a,b,c компланарны $\iff (a,b,c)=0.$
- 87. Критерий коллинеарности двух векторов трёхмерного евклидова пространства

Предложение. $a,b \in \mathbb{E}$ коллинеарны $\iff [a,b] = 0.$

88. Геометрические свойства векторного произведения

Предложение.

- 1. $[a,b] \perp \langle a,b \rangle$.
- 2. $|[a, b]| = \operatorname{vol} P(a, b)$.
- 3. $Vol(a, b, [a, b]) \ge 0$.
- 89. Линейное многообразие. Характеризация линейных многообразий как сдвигов подпространств

Определение. Линейное многообразие в \mathbb{R}^n — это множество решений некоторой совместной СЛУ.

Пусть Ax=b- СЛУ, $\varnothing \neq L\subseteq \mathbb{R}^n-$ множество решений, $x_z\in L-$ частное решение.

Было: Лемма: $L=x_z+S$, где S — множество решений ОСЛУ Ax=0.

Предложение. Множество $L \subseteq \mathbb{R}^n$ является линейны многообразием $\iff L = v_0 + S$ для некоторых $v_0 \in \mathbb{R}^n$ и подпространства $S \subseteq \mathbb{R}^n$.

90. Критерий равенства двух линейных многообразий. Направляющее подпространство и размерность линейного многообразия

Предложение. Пусть $L_1=v_1+S_1$ и $L_2=v_2+S_2$ — два линейных многообразия в \mathbb{R}^n . Тогда,

$$L_1 = L_2 \iff \begin{cases} S_1 = S_2 \ (=S) \\ v_1 - v_2 \in S \end{cases}.$$

Если L — линейное многообразие, то $L = v_0 + S$, где S определено однозначно.

Определение. S называется направляющим подпространством линейного многообразия L.

Определение. *Размерностью* линейного многообразия называется размерность его направляющего подпространства.

91. Теорема о плоскости, проходящей через k+1 точку в \mathbb{R}^n

Теорема.

- а) Через любые k+1 точек в \mathbb{R}^n проходит плоскость размерности $\leqslant k$.
- b) Если это точки не лежат в плоскости размерности < k, то через них проходит ровно одна плоскость размерности k.

Следствие.

- 1. Через любые две различные точки проходит ровно одна прямая.
- 2. Через любые три точки, не лежащие на одной прямой, проходит ровно одна плоскость.
- 92. Три способа задания прямой в \mathbb{R}^2 . Уравнение прямой в \mathbb{R}^2 , проходящей через две различные точки

1. Ax + By = C $(A, B) \neq (0, 0)$ — нормаль.

- 2. векторное уравнение $(v v_0, n) = 0$, где n нормаль.
- 3. параметрическое уравнение $v = v_0 + at$, где a направляющий вектор.

$$\begin{cases} x = x_0 + a_1 t, & a = (a_1, a_2) \\ y = y_0 + a_2 t, & v_0 = (x_0, y_0) \end{cases}$$

$$\begin{vmatrix} x - x_0 & y - y_0 \\ x_1 - x_0 & y_1 - y_0 \end{vmatrix} = 0 \qquad \frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} \qquad x_1 = x_0 \implies x = x_0,$$
$$y_1 = y_0 \implies y = y_0.$$

93. Три способа задания плоскости в \mathbb{R}^3

- 1. Ax + By + Cz = D $(A, B, C) \neq (0, 0, 0)$ нормаль.
- 2. векторное уравнение $(v v_0, n) = 0$.
- 3. параметрическое уравнение $v = v_0 + at + bs$, где a, b направляющие векторы (базис в направляющем подпространстве).

94. Уравнение плоскости в \mathbb{R}^3 , проходящей через три точки, не лежащие на одной прямой

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0.$$

95. Три способа задания прямой в \mathbb{R}^3

1.
$$\begin{cases} A_1x + B_1y + C_1z = D_1, \\ A_2x + B_2y + C_2z = D_2 \end{cases} \text{ rk} \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 2$$

- 2. векторное уравнение $[v-v_0,a]=0$, где $v-v_0$ точка, a направляющий вектор.
- 3. параметрическое уравнение $v = v_0$

параметрическое уравнение
$$v = v_0 + at$$
.
$$v_0 = (x_0, y_0, z_0)$$
 $a = (a_1, a_2, a_3)$ \longrightarrow
$$\begin{cases} x = x_0 + a_1 t, \\ y = y_0 + a_2 t, \\ z = z_0 + a_3 t. \end{cases} \iff \boxed{\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}}$$
 — каноническое уравнение прямой

Если, например
$$a_1=0$$
, то пишут
$$\begin{cases} \frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}\\ x=x_0 \end{cases}$$

96. Уравнения прямой в \mathbb{R}^3 , проходящей через две различные точки

Уравнение прямой, проходящей через точки (x_0, y_0, z_0) и (x_1, y_1, z_1) :

$$\frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0} = \frac{z-z_0}{z_1-z_0}$$

97. Случаи взаимного расположения двух прямых в \mathbb{R}^3

- 1. Совпадают.
- 2. Параллельны.
- 3. Пересекаются в точке.
- 4. Скрещиваются.

1) или 2)
$$\iff$$
 $[a_1,a_2] = \overrightarrow{0}$.

1), 2) или 3)
$$\iff$$
 $(a_1, a_2, v_1 - v_2) = 0.$

98. Формула для расстояния от точки до прямой в \mathbb{R}^3

Расстояние от точки v до прямой $l=v_0+at$:

$$\rho(v,l) = \frac{|[v-v_0,a]|}{|a|}$$

99. Формула для расстояния от точки до плоскости в \mathbb{R}^3

Расстояние от точки v до плоскости P с направляющей нормалью n и направляющим подпространством S $(S=n^{\perp})$:

$$\rho(v, P) = \frac{|(v - v_0, n)|}{|n|}.$$

100. Формула для расстояния между двумя скрещивающимися прямыми в \mathbb{R}^3

Расстояние между двумя скрещивающимися прямыми $l_1 = v_1 + a_1 t$ и $l_2 = v_2 + a_2 t$:

$$P_1 = v_1 + \langle a_1, a_2 \rangle$$

$$P_2 = v_2 + \langle a_1, a_2 \rangle$$

$$\rho(l_1, l_2) = \rho(p_1, p_2)$$

$$\rho(l_1, l_2) = \frac{|(a_1, a_2, v_1 - v_2)|}{|[a_1, a_2]|}$$

101. Линейный оператор

Пусть V — векторное пространство над F, $\dim V = n$.

Определение. Линейным оператором (или линейным преобразованием) на/в V называется всякое линейное отображение $\varphi \colon V \to V$ (то есть из V <u>в себя</u>).

 $L(V) := \operatorname{Hom}(V, V)$ — все линейные операторы на/в V.

102. Матрица линейного оператора

Пусть $\varphi \in L(V)$, $e = (e_1, \dots, e_n)$ — базис V.

Тогда, $(\varphi(e_1), \dots, \varphi(e_n)) = (e_1, \dots, e_n) \cdot A$, $A \in M_n(F)$.

А называется матрицей линейного оператора в базисе с.

Обозначение: $A(\varphi, \mathbb{e})$.

В столбце $A^{(j)}$ записаны координаты вектора $\varphi(e_i)$ в базисе \mathfrak{e} .

103. Связь между координатами вектора и его образа при действии линейного оператора

Пусть $\varphi \in L(V)$, $e = (e_1, \dots, e_n)$ — базис $V, A = A(\varphi, e)$,

$$\begin{cases} v = x_1 e_1 + \dots + x_n e_n \\ \varphi(v) = y_1 e_1 + \dots + y_n e_n \end{cases} \implies \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$

104. Формула изменения матрицы линейного оператора при переходе к другому базису

Пусть e' — другой базис V, $e' = e \cdot C$, $C \in M_n^0(F)$

$$A = A(\varphi, e), A' = A(\varphi, e') \implies A' = C^{-1}AC.$$

105. Подобные матрицы

Определение. Матрицы $A, A' \in M_n$ называются *подобными*, если $\exists C \in M_n^0(F)$, такая что $A' = C^{-1}AC$.

106. Подпространство, инвариантное относительно линейного оператора

Определение. Подпространство $U\subseteq V$ называется инвариантным относительно φ (или φ -инвариантным), если $\varphi(U)\subseteq U$ (то есть $\varphi(u)\in U$ $\forall u\in U$).

107. Вид матрицы линейного оператора в базисе, дополняющем базис инвариантного подпространства

Пусть $U\subseteq V-\varphi$ -инвариантное подпространство, (e_1,\ldots,e_k) — базис U, дополним его до базиса (e_1,\ldots,e_n) всего V.

Тогда $A(\varphi, e)$ имеет вид

$$\begin{pmatrix}
k & n-k \\
A & B \\
0 & C
\end{pmatrix}.$$
(1)

При этом $A\left(\varphi\big|_{U}, (e_1, \dots, e_k)\right) = A.$

Если $U = \ker \varphi \implies A = 0$,

$$U = \operatorname{Im} \varphi \implies C = 0.$$

Обратно, если для некоторого базиса $e = (e_1, \dots, e_k)$ $A(\varphi, e)$ имеет вид (1), то векторы e_1, \dots, e_k порождают φ -инвариантное подпространство.

108. Вид матрицы линейного оператора в базисе, согласованном с разложением пространства в прямую сумму двух инвариантных подпространств

Пусть $U_1, U_2 \subseteq V$ — два φ -инвариантных подпространства, такие что $V = U_1 \oplus U_2$.

Пусть (e_1, \ldots, e_k) — базис $U_1, (e_{k+1}, \ldots, e_n)$ — базис U_2 . Тогда, $\mathbf{e} = (e_1, \ldots, e_n)$ — базис V и $A(\varphi, \mathbf{e})$ имеет вид

$$\begin{pmatrix}
k & n-k \\
k & \begin{pmatrix}
\star & 0 \\
0 & \diamond
\end{pmatrix}.$$

109. Собственный вектор линейного оператора

Вектор $v \in V$ называется собственным для φ , если $v \neq 0$ и $\varphi(v) = \lambda v$ для некоторого $\lambda \in F$.

110. Собственное значение линейного оператора

Элемент $\lambda \in F$ называется собственным значением для φ , если $\exists v \in V$, такой что $v \neq 0$ и $\varphi(v) = \lambda v$.

111. Спектр линейного оператора

Множество всех собственных значений линейного оператора называется его $cne\kappa mpom$ и обозначается $\operatorname{Spec} \varphi$.

112. Диагонализуемый линейный оператор

Определение. Линейный оператор φ называется *диагонализуемым*, если существует базис в V, в котором матрица линейного оператора φ диагональна.

113. Критерий диагонализуемости линейного оператора в терминах собственных векторов

Предложение. Линейный оператор φ диагонализуем \iff в V есть базис из собственных векторов.

114. Собственное подпространство линейного оператора

Пусть $\varphi \in L(V)$, $\lambda \in F$.

$$V_{\lambda}(\varphi) := \{ v \in V \mid \varphi(v) = \lambda v \}.$$

Определение. $\lambda \in \operatorname{Spec} \varphi \implies V_{\lambda}(\varphi)$ называется собственным подпространством линейного оператора φ , отвечающим собственному значению λ .

115. Характеристический многочлен линейного оператора

Определение. Многочлен $\chi_{\varphi}(t) := (-1)^n \det(\varphi - t \cdot \mathrm{Id}) \in F[t]$ называется характеристическим многочленом линейного оператора φ .

116. Связь спектра линейного оператора с его характеристическим многочленом

Следствие. $\lambda \in \operatorname{Spec} \varphi \iff \chi_{\varphi}(\lambda) = 0$, то есть λ — корень характеристического многочлена.

Следствие. $|\operatorname{Spec} \varphi| \leq n$.

117. Алгебраическая кратность собственного значения линейного оператора

Пусть $\lambda \in \operatorname{Spec} \varphi$.

Пусть $a_{\lambda} = a_{\lambda}(\varphi) :=$ кратность λ как корня многочлена $\chi_{\varphi}(t)$. То есть $\chi_{\varphi}(t) \vdots (t-\lambda)^{a_{\lambda}}$ и $\chi_{\varphi}(t) \not : (t-\lambda)^{a_{\lambda}+1}$.

Определение. a_{λ} называется алгебраической кратностью собственного значения λ .

118. Геометрическая кратность собственного значения линейного оператора

Определение. Число $g_{\lambda}=g_{\lambda}(\varphi):=\dim V_{\lambda}(\varphi)$ называется геометрической кратностью собственного значения λ

119. Связь между алгебраической и геометрической кратностями собственного значения линейного оператора

Предложение. $g_{\lambda} \leqslant a_{\lambda} \ \forall \lambda \in \operatorname{Spec} \varphi$.

120. Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена и кратностей его собственных значений

Теорема. (критерий диагонализуемости) φ диагонализуемо \iff выполнены одновременно следующие условия:

1. $\chi_{\varphi}(t)$ разлагается на линейные множители.

2.
$$ecnu \ \chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \cdot \ldots \cdot (t - \lambda_s)^{k_s}, \ mo \ g_{\lambda_i} = a_{\lambda_i} \ \forall i. \ (mo \ ecmb \ \lambda_i \neq \lambda_j \ npu \ i \neq j)$$

121. Линейное отображение евклидовых пространств, сопряжённое к данному

Пусть \mathbb{E} — евклидово пространство со скалярным произведением (•,•), $\dim \mathbb{E} = n$,

 \mathbb{E}' — другое евклидово пространство со скалярным произведением $(\cdot, \cdot)'$, dim $\mathbb{E}' = m$,

 $\varphi \colon \mathbb{E} \to \mathbb{E}'.$

Определение. Линейное отображение $\psi \colon \mathbb{E}' \to \mathbb{E}$ называется *сопряженным* к φ , если

$$(\varphi(x), y)' = (x, \psi(y)) \quad \forall x \in \mathbb{E}, y \in \mathbb{E}'. \tag{*}$$

Обозначение: φ^* .

122. Линейный оператор в евклидовом пространстве, сопряжённый к данному

Пусть $\mathbb{E}' = \mathbb{E}$.

 $\varphi \colon \mathbb{E} \to \mathbb{E}$ — линейный оператор $\implies \exists !$ линейный оператор $\varphi^* \colon \mathbb{E} \to \mathbb{E}$, такой что $(\varphi(x), y) = (x, \varphi^*(y)) \quad \forall x, y \in \mathbb{E}$.

123. Самосопряжённый линейный оператор в евклидовом пространстве

Определение. Линейный оператор $\varphi \in L(\mathbb{E})$ называется самосопряженным (или симметричным), если $\varphi = \varphi^*$, то есть $(\varphi(x), y) = (x, \varphi(y))$ $\forall x, y \in \mathbb{E}'$.

124. Теорема о каноническом виде самосопряжённого линейного оператора

Теорема. $\varphi = \varphi^* \implies e \mathbb{E}$ существует ортонормированный базис из собственных векторов.

B частности, φ диагонализуем над $\mathbb R$ и $\chi_{\varphi}(t)$ разлагается на линейные множители над $\mathbb R$.

125. Каким свойством обладают собственные подпространства самосопряжённого линейного оператора, отвечающие попарно различным собственным значениям

Предложение. $\varphi = \varphi^*, \lambda, \mu \in \operatorname{Spec} \varphi, \lambda \neq \mu \implies \mathbb{E}_{\lambda}(\varphi) \perp \mathbb{E}_{\mu}(\varphi).$

126. Приведение квадратичной формы к главным осям

Теорема. Для любой квадратичной формы $Q: \mathbb{E} \to \mathbb{R}$ существует ортонормированный базис $e = (e_1, \dots, e_n)$, в котором Q принимает канонический вид $Q(x) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2$. Более того, набор $\lambda_1, \dots, \lambda_n$ определен однозначно, c точностью до перестановки.

127. Ортогональный линейный оператор

Определение. Линейный оператор $\varphi \in L(\mathbb{E})$ называется *ортогональным*, если $(\varphi(x), \varphi(y)) = (x, y) \quad \forall x, y \in \mathbb{E}$ (то есть φ сохраняет скалярное произведение).

128. Теорема о пяти эквивалентных условиях, определяющих ортогональный линейный оператор

Теорема. $\varphi \in L(\mathbb{E}) \implies$ следующие условия эквивалентны:

- (1) φ ортогонален.
- (2) $|\varphi(x)| = |x|$ $\forall x \in \mathbb{E}$ (то есть φ сохраняет длины векторов).
- (3) $\exists \varphi^{-1} \ u \ \varphi^{-1} = \varphi^* \ (mo \ ecmb \ \varphi^* \varphi = \varphi \varphi^* = \mathrm{Id}).$
- (4) \forall ортонормированного базиса e матрица $A(\varphi, e)$ ортогональна.
- (5) \forall ортонормированного базиса $e = (e_1, \dots, e_n)$ векторы $(\varphi(e_1), \dots, \varphi(e_n))$ образуют ортонормированный базис.

129. Теорема о каноническом виде ортогонального линейного оператора

Теорема. Eсли $\varphi \in L(\mathbb{E})$ — ортогональный оператор, то существует ортонормированный базис $e = (e_1, \dots, e_n)$, такой что

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \Pi(\alpha_1) & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \Pi(\alpha_2) & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \Pi(\alpha_k) & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & -1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & -1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & -1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 1 \end{pmatrix}, \qquad \Pi(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

130. Классификация ортогональных линейных операторов в трёхмерном евклидовом пространстве

Следствие. $\dim \mathbb{E} = 3 \implies \exists$ ортонормированный базис $\mathfrak{e} = (e_1, e_2, e_3)$, такой что $A(\varphi, \mathfrak{e}) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & 1 \end{pmatrix}$ или $\begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & -1 \end{pmatrix}$ для некоторого α .

131. Теорема о сингулярных базисах для линейного отображения евклидовых пространств

Пусть \mathbb{E} — евклидово пространство со скалярным произведением (\bullet, \bullet) , dim $\mathbb{E} = n$,

 \mathbb{E}' — другое евклидово пространство со скалярным произведением $(\bullet, \bullet)'$, dim $\mathbb{E}' = m$,

$$\varphi \colon \mathbb{E} \to \mathbb{E}'$$
 — линейное отображение, $r = \operatorname{rk} \varphi (= \dim \operatorname{Im} \varphi)$

Теорема. Существуют ортонормированные базисы е в \mathbb{E} и \mathbb{f} в \mathbb{F} , такие что

$$A(\varphi, \mathbf{e}, \mathbf{f}) = \begin{pmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_r \end{pmatrix} = \mathbf{\Sigma}$$

$$\epsilon \partial e \ \sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$$

Более того, числа $\sigma_1, \ldots, \sigma_r$ определены однозначно.

Определение. В условиях теоремы базисы е и в называются сингулярными базисами,

векторы e_i, f_j называются сингулярными векторами,

числа σ_1,\ldots,σ_r — cингулярныеми значениями линейного отображения φ

132. Утверждение о сингулярном разложении матрицы

Пусть $A \in \mathrm{Mat}_{m \times n}(\mathbb{R})$, rk $A = r \implies \exists$ ортогональные матрицы $U \in M_m(\mathbb{R})$ и $V \in M_n(\mathbb{R})$, такие что

$$A = U\Sigma V^T$$

где Σ — матрица из вида $\mathrm{diag}(\sigma_1,\ldots,\sigma_r,0,\ldots,0), \qquad \sigma_1\geqslant\ldots\geqslant\sigma_r>0$. Более того, числа σ_1,\ldots,σ_r определны однозначно.

133. Теорема о низкоранговом приближении

 ${\rm Mat}_{m\times n}(\mathbb{R})$ — евклидово пространство со скалярным произведением $(A,B)={\rm tr}(A^T,B)$. В этом пространстве длина называется нормой Фробениуса.

$$||A|| = \sqrt{\operatorname{tr}(A^T A)} = \sqrt{\operatorname{tr}(AA^T)} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$

Теорема. Пусть $A \in Mat_{m \times n}$, $\operatorname{rk} A = r$

 $A = U \cdot \Sigma \cdot V^T$ — сингулярное разложением для A.

Тогда $\forall k < r$ минимум величины $\|A - B\|$ среди всех матрии, $B \in Mat_{m \times n}(\mathbb{R})$ с условием $\operatorname{rk} B \leqslant k$ достигается при

$$B = U \cdot \Sigma_k \cdot V^T, \quad \textit{ide } \Sigma_k = egin{pmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \dots & \sigma_k & dots & \dots & 0 \ 0 & \dots & \dots & 0 & \dots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \dots & 0 & 0 & \dots & 0 \ \end{pmatrix}$$

(То есть мы обнуляем все значения Σ после k).

2 Вопросы на доказательство

2.1 Подпространства

1. Теорема о связи размерности суммы двух подпространств с размерностью их пересечения

Теорема. $\dim(U \cap W) + \dim(U + W) = \dim U + \dim W$.

Пример. Всякие две плоскости в \mathbb{R}^3 (содержащие 0) имеют общую прямую.

Здесь $V = \mathbb{R}^3$, dim U = 2, dim W = 2.

При этом $\dim(U+W) \leq 3$.

Тогда, $\dim(U \cap W) = \dim U + \dim W - \dim(U + W) \ge 2 + 2 - 3 = 1$.

Доказательство. Пусть $\dim(U \cap W) = p$, $\dim U = q$, $\dim W = r$.

Пусть $a = \{a_1, \dots, a_p\}$ – базис в $U \cap W$.

Тогда, a можно дополнить до базиса в U и в W:

 $b = \{b_1, \dots, b_{q-p}\}$ – такая система, что $a \cup b$ – базис в U.

 $c = \{c_1, \ldots, c_{r-p}\}$ – такая система, что $a \cup c$ – базис в W.

Докажем, что $a \cup b \cup c$ – базис в U + W.

1. $\langle a \cup b \cup c \rangle = U + W$:

 $v \in U + W \implies \exists u \in U, w \in W$, такие что v = u + w.

$$u \in U = \langle a \cup b \rangle \subseteq \langle a \cup b \cup c \rangle.$$

$$w \in W = \langle a \cup c \rangle \subseteq \langle a \cup b \cup c \rangle.$$

Значит, $v \in \langle a \cup b \cup c \rangle$.

 $2. \ a \cup b \cup c$ линейно независимо.

Пусть $\underbrace{\alpha_1 a_1 + \dots + \alpha_p a_p}_{x} + \underbrace{\beta_1 b_1 + \dots + \beta_{q-p} b_{q-p}}_{y} + \underbrace{\gamma_1 c_1 + \dots + \gamma_{r-p} c_{r-p}}_{z} = 0$, где $\alpha_i, \beta_j, \gamma_k \in F$.

Тогда,
$$z = -x - y \in U$$
.

Ho, $z \in W$, значит $z \in U \cap W$.

To есть $z = \lambda_1 a_1 + \cdots + \lambda_p a_p$, $\lambda_i \in F$.

Тогда,
$$\lambda_1 a_1 + \dots + \lambda_p a_p - \gamma_1 c_1 - \dots - \gamma_{r-p} c_{r-p} = 0$$

Так как $a \cup c$ линейно независимо, то $\lambda_1 = \cdots = \lambda_p = \gamma_1 = \cdots = \gamma_{r-p} = 0$ и z = 0.

Следовательно, x + y = 0, то есть $\alpha_1 a_1 + \dots + \alpha_p a_p + \beta_1 b_1 + \dots + \beta_{q-p} b_{q-p} = 0$.

Так как $a \cup b$ линейно независимо, то $\alpha_1 = \cdots = \alpha_p = \beta_1 = \cdots = \beta_{q-p} = 0$.

Получаем, что $a \cup b \cup c$ линейно независимо.

Итог: $a \cup b \cup c$ – базис в U + W.

$$\dim(U+W) = |a| + |b| + |c|$$

$$= p + q - p + r - p$$

$$= q + r - p$$

$$= \dim U + \dim W - \dim(U \cap W).$$

٠

2. Теорема о пяти эквивалентных условиях, определяющих линейно независимый набор подпространств векторного пространства

Теорема. Следующие условия эквивалентны:

- (1) U_1, \ldots, U_k линейно независимы.
- (2) всякий $u \in U_1 + \dots + U_k$ единственным образом представим в виде $u = u_1 + \dots + u_k$, где $u_i \in U_i$.
- (3) Если e_i базис в U_i $\forall i, mo$ $e_1 \sqcup e_2 \sqcup \cdots \sqcup e_k$ базис в $U_1 + \cdots + U_k$.

- (4) $\dim(U_1 + \dots + U_k) = \dim U_1 + \dots + \dim U_k.$
- (5) $\forall i = 1, ..., k$ $U_i \cap (U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k) = 0.$

Пример. Если $e_1 = \{e_1, e_2\}, e_2 = \{e_2, e_3\},$ то

- $e_1 \cup e_2 = \{e_1, e_2, e_3\} 3$ элемента,
- $e_1 \sqcup e_2 = \{e_1, e_2, e_2, e_3\} 4$ элемента.

Доказательство. Пусть $\hat{U}_i = U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k$.

(1) \Longrightarrow (2) Пусть $u_1 + \dots + u_k = u'_1 + \dots + u'_k$, где $u_i, u'_i \in U_i$. Тогда, $(u_1 - u'_1) + (u_2 - u'_2) + \dots + (u_k - u'_k) = 0 \implies u_i - u'_i = \dots = u_k - u'_k = 0$. То есть, $u_1 = u'_1, \dots, u_k = u'_k$.

 $(2) \Longrightarrow (3)$ Пусть $u \in U_1 + \cdots + U_k$ – произвольный.

u единственным образом представим в виде $u = u_1 + \cdots + u_k$, где $u_i \in U_i$,

 u_i единственным образом представим в виде линейной комбинации векторов из \mathfrak{e}_i .

Следовательно, u единственным образом представим в виде линейной комбинации векторов из $e_1 \sqcup \cdots \sqcup e_k$. То есть, $e_1 \sqcup \cdots \sqcup e_k$ — базис в $U_1 + \cdots + U_k$.

- $(3) \Longrightarrow (4)$ Очевидно.
- $(4) \Longrightarrow (5)$

$$\dim(U_i \cap \widehat{U}_i) = \dim U_i + \dim \widehat{U}_i - \dim(U_1 + \dots + U_k)$$

$$\leq \dim U_i + (\dim U_1 + \dots + \dim U_{i-1} + \dim U_{i+1} + \dots + \dim U_k) - (\dim U_1 + \dots + \dim U_k)$$

$$= 0.$$

(5) \Longrightarrow (1) $u_1 + \cdots + u_k = 0$, где $u_i \in U_i$.

Тогда,
$$u_i = \underbrace{-u_1 - \dots - u_{i-1} - u_{i+1} - \dots - u_k}_{\in \widehat{U}_i}$$

Следовательно, $u_i \in U_i \cap \widehat{U}_i = 0 \implies u_i = 0.$

Следствие. Пусть k=2, тогда

 U_1, U_2 линейно независимы $\iff U_1 \cap U_2 = 0.$

2.2 Линейные отображения

1. Свойства отношения изоморфности на множестве всех векторных пространств

Предложение. Если $\varphi: V \to W$ — изоморфизм, то φ^{-1} — тоже изоморфизм.

Доказательство. Биективность есть, так как φ^{-1} — обратное отображение. Проверим линейность:

1)
$$w_1, w_2 \in W \implies w_1 = \varphi(\varphi^{-1}(w_1)), w_2 = \varphi(\varphi^{-1}(w_2))$$

$$\varphi^{-1}(w_1 + w_2) = \varphi^{-1}\left(\underbrace{\varphi\left(\varphi^{-1}(w_1)\right)}_{w_1} + \underbrace{\varphi\left(\varphi^{-1}(w_2)\right)}_{w_2}\right)$$
$$= \underbrace{\varphi^{-1}\left(\varphi\left(\varphi^{-1}(w_1) + \varphi^{-1}(w_2)\right)\right)}_{Id}$$
$$= \varphi^{-1}(w_1) + \varphi^{-1}(w_2).$$

2)

$$\varphi^{-1}(\lambda \cdot w_1) = \varphi^{-1} \left(\lambda \cdot \varphi \left(\varphi^{-1} \left(w_1 \right) \right) \right)$$

$$= \underbrace{\varphi^{-1} \left(\varphi}_{Id} \left(\lambda \cdot \varphi^{-1} \left(w_1 \right) \right) \right)}_{= \lambda \varphi^{-1} \left(w_1 \right).}$$

Пусть $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$, тогда $\varphi \circ \psi : U \to W$ — композиция.

Предложение.

- 1. Если φ , ψ линейны, то $\varphi \circ \psi$ тоже линейна.
- 2. Если φ , ψ изоморфизмы, то $\varphi \circ \psi$ тоже изоморфизм.

Доказательство.

- 1. (1) $(\varphi \circ \psi)(u_1 + u_2) = \varphi(\psi(u_1 + u_2)) = \varphi(\psi(u_1) + \psi(u_2)) = \varphi(\psi(u_1)) + \varphi(\psi(u_2)) = (\varphi \circ \psi)(u_1) + (\varphi \circ \psi)(u_2)$. (2) $(\varphi \circ \psi)(\lambda u) = \varphi(\psi(\lambda u)) = \varphi(\lambda \psi(u)) = \lambda \varphi(\psi(u)) = \lambda (\varphi \circ \psi)(u)$.
- 2. из 1 следует, что $(\varphi \circ \psi)$ линейно, но при этом биективно как композиция двух биекций.

Теорема. Отношение изоморфности является отношением эквивалентности на множестве всех векторных пространств над фиксированным полем F.

Доказательство.

- 1. Рефлексивность: $Id: V \xrightarrow{\sim} V$.
- 2. Симметричность: $V \simeq W \implies W \simeq V$ следует из Предложения 1.
- 3. Транзитивность: $U \simeq V$, $V \simeq W \implies U \simeq W$ следует из Предложения 2.

2. Критерий изоморфности двух конечномерных векторных пространств

Теорема. Пусть $V, W - \partial \epsilon a$ конечномерных векторных пространства над F.

 $Tor \partial a, \ V \simeq W \iff \dim V = \dim W.$

Лемма. $\dim V = n \implies V \simeq F^n$.

Доказательство. Фиксируем базис $(e_1, ..., e_n)$ в V.

Тогда, отображение $\varphi \colon V \to F^n$ — изоморфизм.

$$v = x_1 e_1 + \dots + x_n e_n \implies \varphi(v) := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Лемма. Пусть $\varphi: V \xrightarrow{\sim} W$ и e_1, \ldots, e_n — базис V, тогда $\varphi(e_1), \ldots, \varphi(e_n)$ — базис W.

Доказательство. Пусть $w \in W$. Тогда $\exists x_1, \dots, x_n \in F$, такие что $\varphi^{-1}(w) = x_1 e_1 + \dots + x_n e_n$.

Тогда,
$$w = \varphi\left(\varphi^{-1}(w)\right) = \varphi(x_1e_1 + \dots + x_ne_n) = x_1\varphi(e_1) + \dots + x_n\varphi(e_n) \implies W = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle.$$

Теперь докажем линейную независимость:

Пусть $\alpha_1 \varphi(e_1) + \cdots + \alpha_n \varphi(e_n) = \overrightarrow{0}$.

Тогда, $\varphi(\alpha_1 e_1 + \dots + \alpha_n e_n) = \overrightarrow{0}$.

Применяя φ^{-1} получаем, $\alpha_1 e_1 + \dots + \alpha_n e_n = \varphi^{-1}(\overrightarrow{0}) = \overrightarrow{0}$. Значит, $\alpha_1 = \dots = \alpha_n = 0$.

Итог: $\varphi(e_1), \ldots, \varphi(e_n)$ — базис в W.

Доказательство теоремы.

- \longleftarrow Пусть dim $V=\dim W=n$. Тогда по лемме 1 $V\simeq F^n, W\simeq F^n$, значит $V\simeq W$.
- \implies Пусть $V \simeq W$. Фиксируем изоморфизм $\varphi \colon V \xrightarrow{\sim} W$.

Тогда по лемме 2 получаем, что $\varphi(e_1), \ldots, \varphi(e_n)$ — базис W, а значит $\dim V = n = \dim W$.

3. Существование и единственность линейного отображения с заданными образами базисных векторов

Пусть V, W — векторные пространства над F и (e_1, \ldots, e_n) — фиксированный базис в V.

Предложение.

- 1. Если $\varphi: V \to W$ линейное отображение, то φ однозначно определяется векторами $\varphi(e_1), \dots, \varphi(e_n)$,
- 2. $\forall w_1, \ldots, w_n \in W \exists !$ линейное отображение φ , такое что, $\varphi(e_1) = w_1, \ldots, \varphi(e_n) = w_n$.

Доказательство.

1.
$$v \in V \implies v = x_1 e_1 + \dots + x_n e_n \implies \varphi(v) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$$
.

- 2. Зададим $\varphi: V \to W$ формулой $\varphi(x_1e_1 + \dots + x_ne_n) = x_1w_1 + \dots + x_nw_n$. Тогда φ линейное отображение из V в W (упражнение). Единственность следует из 1.
- 4. Связь между координатами вектора и его образа при линейном отображении

Предложение. Пусть $\varphi \colon V \to W$ — линейное отображение,

$$\mathbf{e} = (e_1, \dots, e_n)$$
 — базис V , $\mathbf{f} = (f_1, \dots, f_m)$ — базис W ,

$$A = A(\varphi, e, f).$$

$$v \in V \implies v = x_1 e_1 + \dots + x_n e_n$$

$$\varphi(v) = y_1 f_1 + \dots + y_m f_m.$$

Тогда,

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Доказательство. $v=(e_1,\ldots,e_m)\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Значит,

$$\varphi(v) = (\varphi(e_1), \dots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \dots, f_m) \cdot A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

При этом,

$$\varphi(v) = (f_1, \dots, f_m) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Так как f_1, \ldots, f_m линейно независимы, то

$$A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

5. Формула изменения матрицы линейного отображения при замене базисов

Пусть теперь e' — другой базис в V, f' — другой базис в W.

$$e' = e \cdot C_{\in M_n}$$

$$\mathbb{f}' = \mathbb{f} \cdot D_{\in M_m}.$$

$$A = A(\varphi, e, f),$$

$$A' = A(\varphi, e', f').$$

Предложение. $A' = D^{-1}AC$.

Доказательство.

$$(e'_1, \dots e'_n) = (e_1, \dots, e_n) \cdot C.$$

Применим φ ,

$$(\varphi(e_1'), \dots, \varphi(e_n')) = (\varphi(e_1), \dots, \varphi(e_n)) \cdot C = (f_1, \dots, f_m) \cdot A \cdot C$$

При этом,

$$(\varphi(e_1'),\ldots,\varphi(e_n'))=(f_1',\ldots,f_m')\cdot A'=(f_1,\ldots,f_m)\cdot D\cdot A'.$$

Отсюда,

$$A \cdot C = D \cdot A' \implies A' = D^{-1} \cdot A \cdot C.$$

6. Изоморфизм $\operatorname{Hom}(V,W) \xrightarrow{\sim} \operatorname{Mat}_{m \times n}(F)$ при фиксированных базисах V и W

Следствие. При фиксированном $\mathfrak e$ и $\mathfrak f$ отображение $\varphi\mapsto A(\varphi,\mathfrak e,\mathfrak f)$ является изоморфизмом между $\operatorname{Hom}(V,W)$ и $\operatorname{Mat}_{m\times n}(F)$.

Зафиксируем базисы $e = (e_1, \dots, e_n)$ в V и $f = (f_1, \dots, f_m)$ в W.

Линейность.

$$\begin{split} 1. \ \ \varphi, \psi \in \mathrm{Hom}(V,W), \ A_\varphi &= A(\varphi, \mathbf{e}, \mathbf{f}) \\ A_\psi &= A(\psi, \mathbf{e}, \mathbf{f}) \\ A_{\varphi+\psi} &= A(\varphi+\psi, \mathbf{e}, \mathbf{f}) \quad \Longrightarrow \ A_{\varphi+\psi} = A_\varphi + A_\psi \end{split}$$

$$\begin{array}{ccc} 2. \ \lambda \in F, \varphi \in \operatorname{Hom}(V,W), \ A_{\varphi} = A(\varphi, \operatorname{e}, \operatorname{\mathbb{f}}) \\ & A_{\lambda \varphi} = A(\lambda \varphi, \operatorname{e}, \operatorname{\mathbb{f}}) & \Longrightarrow \ A_{\lambda \varphi} = \lambda A_{\varphi} \end{array}$$

Доказательство.

1.

$$(f_1, \dots, f_m) \cdot A_{\varphi + \psi} = ((\varphi + \psi)(e_1), \dots, (\varphi + \psi)(e_n))$$

$$= (\varphi(e_1), \dots, \varphi(e_n)) + (\psi(e_1), \dots, \psi(e_n))$$

$$= (f_1, \dots, f_m)A_{\varphi} + (f_1, \dots, f_m)A_{\psi}$$

$$= (f_1, \dots, f_m)(A_{\varphi} + A_{\psi}).$$

Следовательно, $A_{\varphi+\psi} = A_{\varphi} + A_{\psi}$.

2.

$$(f_1, \dots, f_m) \cdot A_{\lambda \varphi} = ((\lambda \varphi)(e_1), \dots, (\lambda \varphi)(e_n))$$
$$= ((\varphi)(e_1), \dots, (\varphi)(e_n))\lambda$$
$$= (f_1, \dots, f_m)A_{\varphi}\lambda.$$

Следовательно, $A_{\lambda\varphi} = \lambda A_{\varphi}$.

Биективность. По определению, в j-м столбце матрицы A стоят координаты вектора $\varphi(e_i)$ в базисе \mathbb{F} .

А значит, из пункта 2.3 следует, что при фиксированных базисах $\mathfrak e$ и $\mathfrak f$ отображение $\varphi \mapsto A(\varphi,\mathfrak e,\mathfrak f)$ является биекцией между $\operatorname{Hom}(V,W)$ и $\operatorname{Mat}_{m\times n}(F)$.

7. Матрица композиции двух линейных отображений

Пусть $U\xrightarrow{\psi}V\xrightarrow{\varphi}W$ — цепочка линейных отображений, а $\varphi\circ\psi:U\to W$ — их композиция,

$$e = (e_1, \ldots, e_n)$$
 — базис V ,

$$\mathbb{f} = (f_1, \dots, f_m)$$
 — базис W ,

$$g = (g_1, \ldots, g_k)$$
 — базис U .

$$A_{\varphi} = A(\varphi, e, f),$$

$$A_{\psi} = A(\psi, \mathfrak{g}, \mathfrak{e}),$$

$$A_{\varphi \circ \psi} = A(\varphi \circ \psi, \mathfrak{g}, \mathfrak{f}).$$

Тогда,
$$A_{\varphi \circ \psi} = A_{\varphi} \cdot A_{\psi}$$
.

Доказательство. $(\psi(g_1),\ldots,\psi(g_k))=(e_1,\ldots,e_n)A_{\psi}$. Тогда применяя φ ,

$$(\varphi(\psi(g_1)),\ldots,\varphi(\psi(g_k))) = (\varphi(e_1),\ldots,\varphi(e_n)) A_{\psi} = (f_1,\ldots,f_m) A_{\varphi} A_{\psi}.$$

С другой стороны,

$$(\varphi(\psi(q_1)), \dots, \varphi(\psi(q_k))) = (f_1, \dots, f_m) A_{\varphi \circ \psi}.$$

Значит, $A_{\varphi} \cdot A_{\psi} = A_{\varphi \circ \psi}$.

8. Утверждение о том, что ядро и образ — подпространства в соответствующих векторных пространствах

Предложение.

- 1. Ядро подпространство в V.
- 2. Образ подпространство в W.

Доказательство.

- 1. (a) $\varphi(0_V) = 0_W$,
 - (b) $v_1, v_2 \in \ker \varphi \implies \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = 0 + 0 = 0 \implies v_1 + v_2 \in \ker \varphi$
 - (c) $\lambda \in F, v \in V \implies \varphi(\lambda v) = \lambda \varphi(v) = \lambda 0 = 0 \implies \lambda v \in \ker \varphi$.
- 2. (a) $0_W = \varphi(0_V) \in \operatorname{Im} \varphi$,
 - (b) $w_1, w_2 \in \text{Im } \varphi \implies \exists v_1, v_2 : w_1 = \varphi(v_1), w_2 = \varphi(v_2) \implies w_1 + w_2 = \varphi(v_1) + \varphi(v_2) = \varphi(v_1 + v_2) \in \text{Im } \varphi$
 - (c) $\varphi \in F, w \in \operatorname{Im} \varphi \implies \exists v \in V : w = \varphi(v) \implies \lambda w = \lambda \varphi(v) = \varphi(\lambda v) \in \operatorname{Im} \varphi$.

9. Связь между рангом матрицы линейного отображения и размерностью его образа

Пусть $U \subseteq V$ — подпространство, u_1, \ldots, u_k — базис в U.

Лемма. Тогда, $\varphi(U) = \langle \varphi(u_1), \dots, \varphi(u_k) \rangle$. В частности, $\dim \varphi(U) \leqslant \dim U$ и $\dim \operatorname{Im} \varphi \leqslant \dim V$.

Доказательство. $u \in U \implies u = \alpha_1 u_1 + \dots + \alpha_k u_k, \ \alpha_i \in F$, тогда

$$\varphi(u) = \alpha_1 \varphi(u_1) + \dots + \alpha_k \varphi(u_k) \in \langle \varphi(u_1), \dots, \varphi(u_k) \rangle.$$

Пусть $e = (e_1, \dots, e_n)$ — базис V,

$$\mathbb{f} = (f_1, \dots, f_m)$$
 — базис W ,

$$A = A(\varphi, e, f).$$

Теорема. $\operatorname{rk} A = \dim \operatorname{Im} \varphi$.

Доказательство. По лемме, $\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle$. Поэтому, $\operatorname{dim} \operatorname{Im} \varphi = \operatorname{rk} \{ \varphi(e_1), \dots, \varphi(e_n) \}$.

Так как j-й столбец матрицы A составлен из координат вектора $\varphi(e_i)$ в базисе f, то

$$\alpha_1 \varphi(e_1) + \dots + \alpha_n \varphi(e_n) = 0 \iff \alpha_1 A^{(1)} + \dots + \alpha_n A^{(n)} = 0.$$

Значит, $\dim\operatorname{Im}\varphi=\operatorname{rk}\{\varphi(e_1),\ldots,\varphi(e_n)\}=\operatorname{rk}\{A^{(1)},\ldots,A^{(n)}\}=\operatorname{rk}A.$

Замечание. Число dim Im φ называется *рангом* линейного отображения φ , обозначается $\operatorname{rk} \varphi$.

10. Лемма о дополнении базиса ядра линейного отображения до базиса всего пространства

Предложение. Пусть e_1, \ldots, e_k — базис $\ker \varphi$ и векторы e_{k+1}, \ldots, e_n дополняют его до базиса всего V.

Тогда, $\varphi(e_{k+1}), \ldots, \varphi(e_n)$ образуют базис в $\operatorname{Im} \varphi$.

Доказательство. Іт $\varphi = \langle \varphi(e_1), \dots, \varphi(e_k), \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle = \langle \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle$. (так как $\varphi(e_1) = \dots = \varphi(e_k) = 0$).

Осталось показать, что $\varphi(e_{k+1}),\ldots,\varphi(e_n)$ линейно независимы.

Пусть $\alpha_{k+1}\varphi(e_{k+1}) + \cdots + \alpha_n\varphi(e_n) = 0$, где $\alpha_i \in F$.

Тогда $\varphi(\alpha_{k+1}e_{k+1}+\dots\alpha_ne_n)=0 \implies \alpha_{k+1}e_{k+1}+\dots+\alpha_ne_n\in\ker\varphi.$

Но тогда $\alpha_{k+1}e_{k+1} + \dots + \alpha_n e_n = \beta_1 e_1 + \dots + \beta_k e_k$, где $\beta_j \in F$.

Так как (e_1,\ldots,e_n) — базис V, то $\alpha_i=\beta_j=0 \ \forall i,j$.

11. Теорема о связи размерностей ядра и образа линейного отображения, приведение матрицы линейного отображения к диагональному виду с единицами и нулями на диагонали

Теорема. dim Im φ + dim ker φ = dim V.

Доказательство. Вытекает из предыдущего предложения так как в его доказательстве:

 $\dim V = n$,

 $\dim \ker \varphi = k$,

 $\dim \operatorname{Im} \varphi = n - k.$

Предложение. Пусть $\operatorname{rk} \varphi = r$. Тогда существует базис е в V и базис $\mathbb F$ в W, такие что

$$A(\varphi, \mathbf{e}, \mathbf{f}) = \left(\begin{array}{c|cccc} E & 0 \\ \hline 0 & 0 \end{array} \right) = \begin{bmatrix} r & & & n-r \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \ddots & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \end{bmatrix}.$$

Положим $f_1=\varphi(e_1),\,\ldots,\,f_r=\varphi(e_r),\,$ тогда (f_1,\ldots,f_r) — базис ${\rm Im}\, \varphi.$

Дополним f_1, \ldots, f_r до базиса f_1, \ldots, f_m всего W.

Тогда, $\mathfrak{e}=(e_1,\ldots,e_n)$ и $\mathfrak{f}=(f_1,\ldots,f_m)$ — искомые базисы.

2.3 Линейные, билинейные и квадратичные формы

1. Свойство базиса сопряжённого векторного пространства

 $\varepsilon_i(x_1e_1+\cdots+x_ne_n)=x_i$, поэтому ε_i называется i-й координатной функцией в базисе ε .

Предложение. Всякий базис пространства V^* двойствен некоторому базису пространства V.

 \mathcal{A} оказательство. Пусть $\varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}$ — базис пространства V^* . Фиксируем какой-то базис $\mathfrak{E}' = (e'_1, \dots, e'_n)$ пространства V, и пусть $\varepsilon' = \begin{pmatrix} \varepsilon'_1 \\ \dots \\ \varepsilon'_n \end{pmatrix}$ — соответствующий ему двойственный базис V^* .

Тогда,
$$\begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix} = C \cdot \begin{pmatrix} \varepsilon_1' \\ \dots \\ \varepsilon_n' \end{pmatrix}$$
 для некоторой матрицы $C \in M_n^0(F)$.

Положим $(e_1, \ldots, e_n) = (e'_1, \ldots, e'_n) \cdot C^{-1}$.

Тогда,

$$\begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix} (e_1, \dots, e_n) = C \begin{pmatrix} \varepsilon_1' \\ \dots \\ \varepsilon_n' \end{pmatrix} (e_1', \dots, e_n') C^{-1} = CEC^{-1} = E.$$

Значит, ε двойствен к e.

Упражнение. е определён однозначно.

2. Формула для вычисления значений билинейной формы в координатах

Пусть $x = x_1 e_1 + \dots + x_n e_n$,

$$y = y_1 e_1 + \dots + y_n e_n$$

Тогда,

$$\beta(x,y) = \beta \left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j \right) = \sum_{i=1}^{n} x_i \cdot \beta \left(e_i, \sum_{j=1}^{n} y_j e_j \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \underbrace{\beta(e_i, e_j)}_{\beta_{ij}} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \beta_{ij} y_j$$

$$= (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}.$$

3. Существование и единственность билинейной формы с заданной матрицей

Предложение. Пусть e — фиксированный базис V.

- 1. Всякая билинейная форма β на V однозначно определяется матрицей $B(\beta, \mathbf{e})$.
- 2. $\forall B \in M_n(F)$ $\exists !$ билинейная форма β на V, такая что $B(\beta, \mathfrak{e}) = B$.

Доказательство.

- 1. Следует из формулы выше.
- 2. Единственность следует из формулы выше. Докажем существование: Определим β по формуле выше.

Тогда β — билинейная форма на V (упражнение).

$$\beta(e_i, e_j) = \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{pmatrix} \cdot B \cdot \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} j = \beta_{ij}.$$

Действительно, $B(\beta, e) = B$.

4. Формула изменения матрицы билинейной формы при переходе к другому базису

$$B = B(\beta, e).$$

Пусть
$$e' = (e'_1, \dots e'_n)$$
 — другой базис V .

$$e' = e \cdot C$$
.

$$B' := B(\beta, e').$$

Предложение. $B' = C^T B C$.

Доказательство.

$$x = x_1 e_1 + \dots + x_n e_n = x_1' e_1' + \dots + x_n' e_n'$$

$$y = y_1 e_1 + \dots + y_n e_n = y'_1 e'_1 + \dots + y'_n e'_n$$

$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix} \quad \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = C \cdot \begin{pmatrix} y_1' \\ \dots \\ y_n' \end{pmatrix}.$$

Тогда,

$$\beta(x,y) = (x_1 \dots x_n) B \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = (x'_1 \dots x'_n) C^T B C \begin{pmatrix} y'_1 \\ \dots \\ y'_n \end{pmatrix}$$
$$\beta(x,y) = (x'_1 \dots x'_n) B' \begin{pmatrix} y'_1 \\ \dots \\ y'_n \end{pmatrix}.$$

Получаем, что $B' = C^T B C$.

5. Критерий симметричности билинейной формы в терминах её матрицы в каком-либо базисе Π усть е — произвольный базис V.

Предложение. β симметрична $\iff B = B^T$.

Доказательство.

$$\implies b_{ii} = \beta(e_i, e_i) = \beta(e_i, e_i) = b_{ii},$$

$$\longleftarrow x = x_1e_1 + \dots + x_ne_n,$$
 $y = y_1e_1 + \dots + y_ne_n,$ Тогда,

$$\beta(y,x) = (y_1 \dots y_n) B \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = (x_1 \dots x_n) B^T \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = (x_1 \dots x_n) B \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \beta(x,y).$$

6. Теорема о диагонализации симметричной билинейной формы. Симметричный алгоритм Гаусса

Пусть в поле F выполнено условие $1+1 \neq 0$ (то есть в F сложение двух единиц поля не даёт нам нулевой элемент поля).

Теорема. \forall симметричной билинейной формы $\beta \colon V \times V \to F \exists$ базис \mathfrak{E}' в V, такой что матрица $B(\beta,\mathfrak{E}')$ диагональна.

Доказательство. Фиксируем какой-нибудь базис е в V, пусть $B = B(\beta, e)$. Тогда, согласно формуле изменения матрицы билинейной формы при переходе к другому базису, достаточно показать, что $\exists C \in M_n^0(F)$, такая что матрица $B' = C^T B C$ — диагональная.

Это возможно для любой B благодаря симметричному алгоритму Гаусса, который описан ниже.

Симметричные элементарные преобразования

$$B \overset{\text{одно эл.}}{\leadsto} B' = \underbrace{U}_{\text{элементарная}} \cdot B \implies (B')^T = B^T \cdot U^T = B \cdot U^T$$

То есть такое же элементарное преобразование, но уже столбцов, реализуется умножением матрицы билинейной формы на U^T справа.

Определение. $B \leadsto B' = UBU^T - \text{симметричное}$ элементарное преобразование.

Сначала выполняется элементарное преобразование строк, а затем ровно такое же элементарное преобразование столбцов, или наоборот, в силу ассоциативности.

Заметим, что согласно формуле изменения матрицы билинейной формы при переходе к другому базису, если мы применим симметричное элементарное преобразование к матрице симметричной билинейной формы, мы получим матрицу той же симметричной билинейной формы, но в другом базисе.

Обозначение. $\widehat{\Im}_i := \Im_i \ \& \ \Im_i' -$ симметричное элементарное преобразование, где

 Θ_i — элементарное преобразование строк.

 \mathfrak{I}_i' — соответствующее элементарное преобразование столбцов.

Симметричный алгоритм Гаусса

Шаг 1: Если
$$B^{(1)}=0(\implies B_{(1)}=0),$$
 то матрица имеет вид $B=\left(\begin{array}{c|c}0&0\\\hline 0&\widetilde B\end{array}\right)\implies$ идём на шаг 2.

Иначе: Случай 1 $b_{11} \neq 0$.

Тогда выполняем
$$\widehat{\Im}_1(2,1,-\frac{b_{21}}{b_{11}}),\dots,\widehat{\Im}_1(n,1,-\frac{b_{n1}}{b_{11}}),\ B_{\text{новая}}=\left(\begin{array}{c|c}b_{11}&0\\\hline 0&\widetilde{B}\end{array}\right)$$

Случай 2 $b_{11} = 0$.

Подслучай 2.1
$$\exists b_{ii} \neq 0 \implies \begin{pmatrix} 0 & \dots & \star & \dots \\ \vdots & \ddots & \vdots & \vdots \\ \star & \dots & b_{ii} & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix}$$

Выполняем $\widehat{\Im}_2(1,i)$, получаем $b_{11} \neq 0 \implies$ случай 1.

Подслучай 2.2
$$b_{ii} = 0 \ \forall i$$
, но $\exists j \colon b_{j1} \neq 0 \Longrightarrow \begin{pmatrix} 0 & \star & \dots & b_{j1} & \dots & \star \\ \hline \star & 0 & \dots & \star & \dots & \star \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{j1} & \star & \dots & 0 & \dots & \star \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \star & \star & \dots & \star & \dots & 0 \end{pmatrix}$

Выполняем $\widehat{\Im}_1(1,j,1) \implies$ на позиции (1,1) возникает $2 \cdot b_{j1} \neq 0$ (ведь мы работаем с полем, где $2 \neq 0) \implies$ случай 1.

Шаг 2: Новая матрица имеет вид $B = \left(\begin{array}{c|c} b_{11} & 0 \\ \hline 0 & \widetilde{B} \end{array}\right)$,

повторяем всё для \widetilde{B} .

В результате получаем цепочку элементарных матриц U_1, \dots, U_k , такую что матрица $B' = U_k \dots U_1 B U_1^T \dots U_k^T$ — диагональная.

Положим $C = U_1^T \dots U_k^T \implies C^T = U_k, \dots, U_1 \implies B' = C^T \cdot B \cdot C.$

Замечание. Матрицу С можно вычислить модифицировав алгоритм. Припишем единичную матрицу Е справа от В и будем выполнять с ней только элементарные преобразования строк.

$$(B \mid E) \leadsto (B' \mid P), P = U_k \dots U_2 U_1 = C^T \implies C = P^T$$

Пример.

$$B = \left(\begin{array}{cc|c} 0 & 1 & 1 & 0 \\ 1 & -2 & 0 & 1 \end{array}\right) \leadsto \left(\begin{array}{cc|c} -2 & 0 & 0 & 1 \\ 0 & \frac{1}{2} & 1 & \frac{1}{2} \end{array}\right)$$

Итог:
$$B' = \begin{pmatrix} -2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}, C = \begin{pmatrix} 0 & 1 \\ 1 & \frac{1}{2} \end{pmatrix}$$

$$B' = C^T \cdot B \cdot C.$$

Замечание. Базис e' в котором матрица билинейного отображения β имеет диагональный вид, а также сам этот вид определены неоднозначно.

7. Метод Якоби для симметричных билинейных форм

Пусть $\beta: V \times V \to F$ — симметричная билинейная форма, \mathfrak{e} — базис $V, B = B(\beta, \mathfrak{e}), \delta_k = \delta_k(B)$

Теорема. Предположим, что $\delta_k \neq 0 \ \forall k = 1, \dots, n-1, \ mor \partial a \ \exists C \in M_n^0 \ suda$

$$C = \begin{pmatrix} 1 & \star & \dots & \star & \star \\ 0 & 1 & \ddots & \star & \star \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \star \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Такая что матрица $B' = C^T B C$ имеет вид $B' = \operatorname{diag}\left(\delta_1, \frac{\delta_2}{\delta_1}, \dots, \frac{\delta_n}{\delta_{n-1}}\right)$.

Доказательство. Анализ симметричного алгоритма Гаусса.

На каждой итерации в случае 1 все симметричные элементарные преобразования имеют вид $\Theta_1(i,j,\lambda)$, причём всегда при i>j. При этом все угловые миноры сохраняются. Благодаря условию i>j это элементарные преобразования 1 типа, не меняющие определителя для каждой G_k

Если на какой-то итерации возник не случай 1, то получаем

$$\begin{pmatrix}
b_{11} & 0 & \dots & 0 & 0 & & \dots & 0 \\
0 & b_{22} & \dots & 0 & 0 & & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \dots & \vdots \\
0 & 0 & \dots & b_{k-1,k-1} & 0 & & \dots & 0 \\
0 & 0 & \dots & 0 & 0 & & \dots & 0 \\
\hline
\vdots & \vdots & \dots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0 & 0 & \dots & \star
\end{pmatrix}$$

Но тогда $\delta_k = 0 \implies$ противоречие.

Итог: на всех итерациях возникает случай $1 \implies$ алгоритм приводит к диагональному виду $B' = \operatorname{diag}(d_1, \ldots, d_n)$.

$$\delta_k(B') = d_1 \cdot \dots \cdot d_k = \delta_k(B) \implies d_k = \frac{\delta_k}{\delta_{k-1}} \implies B' = \operatorname{diag}(\delta_1, \frac{\delta_2}{\delta_1}, \dots, \frac{\delta_n}{\delta_{n-1}})$$

Причём при $i>j,\ \widehat{\Im}_1(i,j,\lambda)\colon B\mapsto UBU^T,$ где U — единичная матрица с λ на i-ой строке в j-ом столбце.

$$C = U_1^T U_2^T \dots U_S^T$$

Очевидно, что перемножение матриц такого типа будет давать верхнюю унитреугольную матрицу C.

Замечание. Матрица вида $\begin{pmatrix} 1 & \dots & \star \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$ называется верхней унитреугольной

Замечание. В доказательстве не использовалось свойство $1+1 \neq 0$, то есть свойство работает для любого поля.

8. Соответствие между симметричными билинейными формами и квадратичными формами

Предложение. Пусть в поле F выполнено условие $1+1\neq 0$ (то есть $2\neq 0$). Тогда отображение $\beta\mapsto Q_\beta$ является биекцией между симметричными билинейными формами на V и квадратичным формами на V.

Доказательство.

Сюръективность Q — квадратичная форма $\implies Q = Q_{\beta}$ для некоторой билинейной формы на V.

To есть $Q(x) = \beta(x, x) \ \forall x \in V$.

Положим $\sigma(x,y) = \frac{1}{2} [\beta(x,y) + \beta(y,x)]$, тогда σ — симметричная билинейная форма.

$$\sigma(x,x) = \frac{1}{2} \left[\beta(x,x) + \beta(x,x) \right] = \beta(x,x).$$

Инъективность β — симметричная билинейная форма на V.

$$Q_{\beta}(x+y) = \beta(x+y,x+y) = \underbrace{\beta(x,x)}_{Q_{\beta}(x)} + \underbrace{\beta(x,y) + \beta(y,x)}_{\text{равны между собой}} + \underbrace{\beta(y,y)}_{Q_{\beta}(y)} \implies \beta(x,y) = \frac{1}{2} \left[Q_{\beta}(x+y) - Q_{\beta}(x) - Q_{\beta}(y) \right].$$

9. Существование нормального вида для квадратичной формы над $\mathbb R$

Следствие (из метода Лагранжа). Для всякой квадратичной формы Q над $\mathbb R$ существует базис, в котором Q имеет нормальный вид.

 \mathcal{L} оказательство. Из теоремы знаем, что существует базис \mathfrak{e} , в котором Q имеет канонический вид

$$Q(x_1, ..., x_n) = b_1 x_1^2 + \dots + b_n x_n^2.$$

Делаем замену

$$x_i = \begin{cases} \frac{x_i'}{\sqrt{|b_i|}}, & b_i \neq 0 \\ x_i, & b_i = 0 \end{cases}.$$

Тогда в новых координатах $Q(x_1',\dots,x_n')=\varepsilon_1x_1'^2+\dots+\varepsilon_nx_n'^2$,

$$\varepsilon_i = \operatorname{sgn} b_i = \begin{cases} 1, & b_i > 0 \\ 0, & b_i = 0 \\ -1, & b_i < 0 \end{cases}$$

10. Закон инерции

Пусть $F = \mathbb{R}$.

Пусть $Q \colon V \to \mathbb{R}$ — квадратичная форма.

Можно привести к нормальному виду

$$Q(x_1, \dots, x_n) = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2$$

Теорема. Числа i_+ и i_- не зависят от базиса в котором Q принимает нормальный вид.

 \mathcal{A} оказательство. $s+t=\mathrm{rk}\,Q$, то есть не зависит от выбора базиса. Следовательно, достаточно показать, что число s определено однозначно.

Пусть $e = (e_1, \dots, e_n)$ — базис, в котором Q принимает нормальный вид

$$Q = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2.$$

Пусть $e' = (e'_1, \dots, e'_n)$ — другой базис, в котором Q принимает нормальный вид

$$Q = x_1'^2 + \dots + x_{s'}'^2 - x_{s'+1}'^2 - \dots - x_{s'+t'}'^2.$$

Предположим, что $s \neq s'$, можно считать что s > s'.

Положим $L := \langle e_1, \ldots, e_s \rangle$, dim L = s,

$$L' := \langle e'_{s'+1}, \dots, e'_n \rangle, \operatorname{dim} L' = n - s'.$$

Так как $L + L' \subseteq V$, то dim $(L + L') \leq n$.

Тогда, dim $(L \cap L') \ge s + (n - s') - n = s - s' > 0$.

Значит, \exists вектор $v \in L \cap L'$, такой что $v \neq 0$.

Теперь:

- 1. Tak kak $v \in L$, to Q(v) > 0,
- 2. Tak kak $v \in L'$, to $Q(v) \leq 0$.

Противоречие.

11. Следствие метода Якоби о нахождении индексов инерции квадратичной формы над ${\mathbb R}$

Пусть $Q \colon V \to \mathbb{R}$ — квадратичная форма,

$$e = (e_1, \ldots, e_n)$$
 — базис,

$$B = B(Q, e),$$

 $\delta_k - k$ -й угловой минор матрицы B.

Следствие (из метода Якоби). Пусть $\delta_k \neq 0 \ \forall k$. Тогда:

Число i_+ равно количеству сохранений знака в последовательности $1, \delta_1, \dots, \delta_n$.

Число i_- равно количеству перемен знака в последовательности $1, \delta_1, \dots, \delta_n$.

Доказательство. Метод Якоби $\implies \exists$ базис, в котором Q принимает канонический вид

$$Q = \delta_1 x_1^2 + \frac{\delta_2}{\delta_1} x_2^2 + \dots + \frac{\delta_n}{\delta_{n-1}} x_n^2.$$

Здесь, знак отношения $\frac{\delta_i}{\delta_{i-1}}$ соответствует смене либо сохранению знака в рассматриваемой последовательности.

По закону инерции, количества знаков + и - не изменяются от выбора базиса.

12. Критерий Сильвестра положительной определённости квадратичной формы, критерий отрицательной определёности квадратичной формы

Пусть V — векторное пространство над \mathbb{R} , dim V = n,

$$e = (e_1, \ldots, e_n)$$
 — базис V ,

$$B = B(Q, e),$$

 B_k — левый верхний $k \times k$ блок,

$$\delta_k = \det B_k.$$

Теорема (Критерий Сильвестра положительной определенности).

$$Q > 0 \iff \delta_k > 0 \ \forall k = 1 \dots n.$$

Доказательство.

 \longleftarrow По следствию из метода Якоби, $i_{+} = n$, то есть Q > 0.

$$\implies Q > 0 \implies \exists C \in M_n^0(\mathbb{R}),$$
 такая что $C^TBC = E$

$$\Longrightarrow Q>0 \implies \exists C\in M_n^0(\mathbb{R}),$$
 такая что $C^TBC=E.$ Тогда, $\det C^T\cdot \det B\cdot \det C=1.$ Отсюда, $\delta_n=\frac{1}{(\det C)^2}>0.$

Теперь, для любого k ограничение Q на $\langle e_1, \dots, e_k \rangle$ тоже положительно определённо, а его матрица в базисе e_1, \ldots, e_k равна B_k . Следовательно, $\det B_k > 0$.

Следствие.

$$Q < 0 \iff \delta_k \begin{cases} > 0 & \text{при } k \vdots 2, \\ < 0 & \text{при } k \not \vdots 2. \end{cases}$$

Доказательство. $Q < 0 \iff -Q > 0$

$$\iff \det(-B_k) > 0 \ \forall k$$

$$\iff (-1)^k \delta_k > 0 \ \forall k$$

2.4 Евклидовы пространства

1. Неравенство Коши-Буняковского

Предложение (неравенство Коши-Буняковского). $\forall x,y \in \mathbb{E}$ верно $|(x,y)| \leq |x| \cdot |y|$, причём равенство $\iff x,y$ пропорциональны.

Доказательство. Случаи:

- 1. x, y пропорциональны. Тогда, можно считать, что $y = \lambda x, \lambda \in \mathbb{R}$. $|(x,y)| = |(x,\lambda x)| = |\lambda||(x,x)| = |\lambda||x|^2 = |x| \cdot |\lambda x| = |x| \cdot |y|$.
- 2. x, y не пропорциональны. Тогда x, y линейно независимы. Значит они образуют базис в $\langle x, y \rangle$.

Получаем

$$\begin{vmatrix} (x,x) & (x,y) \\ (y,x) & (y,y) \end{vmatrix} > 0$$
 (критерий Сильвестра).

Отсюда, $(x, x) \cdot (y, y) - (x, y)^2 > 0 \implies (x, y)^2 < |x|^2 \cdot |y|^2$.

 $\Pi pumep$. Пусть $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением, тогда

$$|x_1y_1 + \dots + x_ny_n| \le \sqrt{x_1^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + \dots + y_n^2}$$

2. Свойства определителя матрицы Грама системы векторов евклидова пространства

Предложение. $\forall v_1, \dots, v_k \in \mathbb{E} \implies \det G(v_1, \dots, v_k) \geqslant 0.$

Более того, $\det G(v_1,\ldots,v_k)>0\iff v_1,\ldots,v_k$ линейно независимы.

Доказательство. Пусть $G := G(v_1, \dots, v_k)$. Случаи:

- 1. v_1, \ldots, v_k линейно независимы. Тогда, G матрица билинейной формы $(\bullet, \bullet)\Big|_{\langle v_1, \ldots, v_k \rangle}$ в базисе v_1, \ldots, v_k подпространства $\langle v_1, \ldots, v_k \rangle$, а значит $\det G > 0$ по критерию Сильвестра.
- v_1, \dots, v_k линейно зависимы. Тогда, $\exists (\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k \setminus \{0\}$, такие что $\alpha_1 v_1 + \dots + \alpha_k v_k = 0$. А значит, $\forall i = 1, \dots, k \implies \alpha_1(v_1, v_i) + \dots + \alpha_k(v_k, v_i) = 0$. Отсюда, $a_1 G_{(1)} + \dots + \alpha_k G_{(k)} = 0 \implies$ строки в G линейно зависимы $\implies \det G = 0$.

3. Свойства ортогонального дополнения к подпространству в евклидовом пространстве: размерность, разложение в прямую сумму, ортогональное дополнение к ортогональному дополнению

Далее считаем, что dim $\mathbb{E} = n < \infty$.

Предложение. Пусть $S \subseteq \mathbb{E}$ — подпространство. Тогда:

- 1. $\dim S^{\perp} = n \dim S$.
- 2. $\mathbb{E} = S \oplus S^{\perp}$.
- 3. $(S^{\perp})^{\perp} = S$.

Доказательство.

1. Пусть $\dim S = k$ и e_1, \dots, e_k — базис S. Дополним e_1, \dots, e_k до базиса e_1, \dots, e_n всего \mathbb{E} . Тогда, $\forall x = x_1 e_1 + \dots + x_n e_n \in \mathbb{E}$.

$$x \in S^{\perp} \iff (x, e_i) = 0 \ \forall i = 1, \dots, k$$

$$\iff \begin{cases} (e_1, e_1)x_1 + \dots + (e_n, e_1)x_n = 0 \\ (e_1, e_2)x_1 + \dots + (e_n, e_2)x_n = 0 \\ \dots \\ (e_1, e_k)x_1 + \dots + (e_n, e_k)x_n = 0 \end{cases}$$

Это ОСЛУ с матрицей $G\in \mathrm{Mat}_{k\times n}(\mathbb{R})$, причём левый $k\times k$ блок в G — это $\underbrace{G(e_1,\ldots,e_k)}_{\det\neq 0}$.

Это означает, что $\operatorname{rk} G = k$.

Следовательно, пространство решений этой ОСЛУ имеет размерность n-k.

Отсюда, $\dim S^{\perp} = n - k = n - \dim S$.

2. (a)
$$\dim S + \dim S^{\perp} = k + (n - k) = n = \dim E$$
.
(b) $v \in S \cap S^{\perp} \implies (v, v) = 0 \implies v = 0 \implies S \cap S^{\perp} = \{0\}$.

A значит, $E = S \oplus S^{\perp}$.

3. Заметим, что $S\subseteq (S^{\perp})^{\perp}$ (по определению). $\dim(S^{\perp})^{\perp}=n-\dim S^{\perp}=n-(n-\dim S)=\dim S.$ Следовательно, $S=(S^{\perp})^{\perp}.$

4. Формула для ортогональной проекции вектора на подпространство в \mathbb{R}^n в терминах его произвольного базиса

Пусть $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением.

 $S \subseteq \mathbb{E}$ — подпространство, a_1, \ldots, a_k — базис S.

Пусть
$$A := (a_1, \ldots, a_k) \in \operatorname{Mat}_{n \times k}(\mathbb{R}), A^{(i)} = a_i$$
.

Предложение. $\forall v \in \mathbb{R}^n \quad \operatorname{pr}_S v = A(A^T A)^{-1} A^T v$.

Доказательство. Корректность: $A^T A = G(a_1, \ldots, a_k) \in M_k^0(\mathbb{R})$.

Положим $x := \operatorname{pr}_S v, y := \operatorname{ort}_S v.$

Так как
$$x \in S, \, x = A \cdot \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_k \end{pmatrix}, \, \alpha_i \in \mathbb{R}.$$

 $y \in S^{\perp} \implies A^T y = 0.$

$$A(A^T A)^{-1} A^T v = A(A^T A)^{-1} A^T (x + y)$$

$$= A(A^T A)^{-1} A^T A \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_k \end{pmatrix} + A(A^T A)^{-1} A^T y$$

$$= A \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_k \end{pmatrix} = x = \operatorname{pr}_S v.$$

5. Существование ортонормированного базиса в евклидовом пространстве, дополнение ортогональной (ортонормированной) системы векторов до ортогонального (ортонормированного) базиса

Теорема. Во всяком конечномерном евклидовом пространстве существует ортонормированный базис.

Доказательство. Следует из теоремы о приведении квадратичной формы (x, x) к нормальному виду (который будет E в силу положительной определённости).

Следствие. Всякую ортогональную (ортонормированную) систему векторов можно дополнить до ортогонального (ортонормированного) базиса.

Доказательство. Пусть e_1, \dots, e_k — данная система.

Пусть e_{k+1}, \ldots, e_n — это ортогональный (ортонормированный) базис в $\langle e_1, ..., e_k \rangle^{\perp}$.

Тогда e_1, \ldots, e_n — искомый базис.

6. Описание всех ортонормированных базисов в терминах одного и матриц перехода

Пусть $e = (e_1, \dots, e_n)$ — ортонормированный базис в E.

Пусть $e' = (e'_1, \dots, e'_n)$ — какой-то другой базис.

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C, C \in M_n^0(\mathbb{R}).$$

Предложение. e' — ортонормированный базис $\iff C^T \cdot C = E$.

Доказательство. $G(e_1', \dots, e_n') = C^T G(e_1, \dots, e_n) C = C^T C$.

 \mathbf{e}' ортонормированный $\iff G(e_1',\dots,e_n') = E \iff C^TC = E.$

7. Формула для координат вектора в ортогональном (ортонормированном) базисе. Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального (ортонормированного) базиса

Пусть \mathbb{E} — евклидово пространство, (e_1,\ldots,e_n) — ортогональный базис, $v\in\mathbb{E}$.

Предложение.
$$v=\dfrac{(v,e_1)}{(e_1,e_1)}e_1+\dfrac{(v,e_2)}{(e_2,e_2)}e_2+\cdots+\dfrac{(v,e_n)}{(e_n,e_n)}e_n.$$

В частности, если e_1, \dots, e_n ортонормирован, то $v = (v, e_1)e_1 + \dots + (v, e_n)e_n$.

Доказательство. $v = \lambda_1 e_1 + \lambda_2 e_2 + \dots \lambda_n e_n$.

$$\forall i = 1, \dots, n \quad (v, e_i) = \lambda_1(e_1, e_i) + \dots + \lambda_n(e_n, e_i).$$

Так как базис ортогонален, то
$$(v, e_i) = \lambda_i(e_i, e_i) \implies \lambda_i = \frac{(v, e_i)}{(e_i, e_i)}$$
.

Пусть $S \subseteq \mathbb{E}$ — подпространство.

 e_1, \ldots, e_k — ортогональный базис в S.

Предложение.
$$\forall v \in \mathbb{E} \quad \operatorname{pr}_S v = \sum_{i=1}^k \frac{(v,e_i)}{(e_i,e_i)} e_i.$$

В частности, если e_1, \ldots, e_k ортонормирован, то $\operatorname{pr}_S v = \sum_{i=1}^k (v, e_i) e_i$.

 \mathcal{A} оказательство. Пусть e_{k+1},\ldots,e_n — ортогональный базис в S^\perp . Тогда e_1,\ldots,e_n — ортогональный базис в \mathbb{E} .

$$v = \underbrace{\sum_{i=1}^{k} \frac{(v, e_i)}{(e_i, e_i)} e_i}_{\in S} + \underbrace{\sum_{i=k+1}^{n} \frac{(v, e_i)}{(e_i, e_i)} e_i}_{\in S^{\perp}}.$$

Отсюда,

$$\operatorname{pr}_{S} v = \sum_{i=1}^{k} \frac{(v, e_{i})}{(e_{i}, e_{i})}.$$

8. Теорема Пифагора и неравенство треугольника в евклидовом пространстве

Теорема. Пусть $x, y \in \mathbb{E}$, (x, y) = 0. Тогда $|x + y|^2 = |x|^2 + |y|^2$.

Доказательство.

$$|x+y|^2 = (x+y, x+y) = \underbrace{(x,x)}_{|x|^2} + \underbrace{(x,y)}_{0} + \underbrace{(y,x)}_{0} + \underbrace{(y,y)}_{|y|^2} = |x|^2 + |y|^2.$$

Предложение. $\forall a, b, c \in \mathbb{E} \implies \rho(a, b) + \rho(b, c) \geqslant \rho(a, c)$.

Доказательство. Пусть x = a - b, y = b - c. Тогда, a - c = x + y. Достаточно доказать, что $|x| + |y| \geqslant |x + y|$.

$$|x+y|^2 = |x|^2 + \underbrace{2(x,y)}_{\leq |x||y|} + |y|^2 \leq |x|^2 + 2|x||y| + |y|^2 = (|x|+|y|)^2.$$

9. Теорема о расстоянии между вектором и подпространством в терминах ортогональной составляющей

Теорема. Пусть $x \in \mathbb{E}$, $S \subseteq \mathbb{E}$ — подпространство. Тогда, $\rho(x,S) = |\mathrm{ort}_S x|$, причем $\mathrm{pr}_S x$ — это ближайший κ x вектор из S.

Доказательство. Положим $y=\operatorname{pr}_S x,\,z=\operatorname{ort}_S x.$ Тогда, x=y+z. Для любого $y'\in S,\,y'\neq 0$ имеем

$$\rho(x, y + y')^2 = |x - y - y'|^2 = |z - y'|^2 = |z|^2 + |y'|^2 > |z|^2 = |x - y|^2 = \rho(x, y)^2.$$

10. Метод наименьших квадратов для несовместных систем линейных уравнений: постановка задачи и её решение. Единственность псевдорешения и явная формула для него в случае линейной независимости столбцов матрицы коэффициентов

СЛУ
$$Ax = b, A \in \operatorname{Mat}_{m \times n}(\mathbb{R}), x \in \mathbb{R}^n, b \in \mathbb{R}^m$$
.

$$x_0$$
 — решение системы $\iff Ax_0 = b \iff Ax_0 - b = 0 \iff |Ax_0 - b| = 0 \iff \rho(Ax_0, b) = 0.$

Если СЛУ несовместна, то x_0 называется *псевдорешением*, если $\rho(Ax_0, b)$ минимально.

$$\rho(Ax_0, b) = \min_{x \in R^n} \rho(Ax, b).$$

 x_0 — решение задачи оптимизации $ho(Ax,b) \xrightarrow[x \in \mathbb{R}^n]{} \min.$

Пусть $S \subseteq \mathbb{R}^n$ — подпространство натянутое на столбцы матрицы A.

$$S = \langle A^{(1)}, \dots, A^{(n)} \rangle$$

Положим $c := \operatorname{pr}_S b$.

Предложение.

- 1. x_0 псевдорешение $Ax = b \iff x_0$ решение для Ax = c.
- 2. Если столбцы $A^{(1)}, \dots, A^{(n)}$ линейно независимы, то псевдорешение единственно и может быть найдено по формуле $x_0 = (A^T A)^{-1} A^T b$.

Доказательство.

1.

$$\forall x \in \mathbb{R}^n \quad Ax = x_1 A^{(1)} + \dots + x_n A^{(n)} \implies \{Ax \mid x \in \mathbb{R}^n\} = S \implies \min_{x \in \mathbb{R}^n} \rho(Ax, b) = \rho(S, b).$$

По теореме о расстоянии от вектора до подпространства минимум достигается при $Ax = c = \operatorname{pr}_S b$.

2. Так как $A^{(1)}, \dots, A^{(n)}$ линейно независимы, то c единственным образом представим в виде линейной комбинации этих столбцов.

Следовательно, x_0 единственно.

Знаем, что
$$A(A^TA)^{-1}A^Tb = c$$
. Значит, $x_0 = (A^TA)^{-1}A^Tb$.

11. Формула для расстояния между вектором и подпространством в терминах матриц Грама

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E} = n < \infty$.

$$S \subseteq \mathbb{E}$$
 — подпространство, e_1, \ldots, e_k — базис в S .

Теорема.
$$\forall x \in \mathbb{E} \quad \rho(x,S)^2 = \frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)}.$$

Доказательство. Пусть $z := \operatorname{ort}_S x$, тогда $\rho(x,S)^2 = |z|^2$.

1. $x \in S \implies \rho(x, S) = 0$:

так как e_1, \ldots, e_k линейно независимы, то $\det G(e_1, \ldots, e_k, x) = 0$.

 $2. \ x \notin S$

Ортогонализация Грама-Шмидта: $e_1, \ldots, e_k, x \leadsto f_1, \ldots, f_k, z$.

По свойству (♡) получаем

$$\frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)} = \frac{\det G(f_1,\ldots,f_k,z)}{\det G(f_1,\ldots,f_k)} = \frac{|f_1|^2 \ldots |f_k|^2 |z|^2}{|f_1|^2 \ldots |f_k|^2} = |z|^2 = \rho(x,S)^2.$$

12. Две формулы для объёма k-мерного параллелепипеда в евклидовом пространстве

Теорема. vol
$$P(a_1, ..., a_k)^2 = \det G(a_1, ..., a_k)$$
.

Доказательство. Индукция по k:

$$k=1: |a_1|^2=(a_1,a_1)$$
 — верно.

k > 1: vol $P(a_1, \dots, a_k)^2 = \text{vol } P(a_1, \dots, a_{k-1})^2 \cdot h^2 = \det G(a_1, \dots, a_{k-1}) \cdot h^2 = (\star)$.

 $1: \operatorname{vol} P(a_1, \ldots, a_k)^2 = \operatorname{vol} P(a_1, \ldots, a_{k-1})$ и — често (а., ..., a_k). Если a_1, \ldots, a_{k-1} линейно независимы, то $h^2 = \frac{\det G(a_1, \ldots, a_k)}{\det G(a_1, \ldots, a_{k-1})}$. Тогда, $(\star) = \det G(a_1, \ldots, a_k)$.

Если же a_1,\dots,a_{k-1} линейно зависимы, то $\det G(a_1,\dots,a_{k-1})=0 \implies (\star)=0$. Но a_1,\dots,a_k тоже линейно зависимы, а значит $\det G(a_1,\ldots,a_k)=0$.

Пусть (e_1,\ldots,e_n) — ортонормированный базис в \mathbb{E} ,

$$(a_1,\ldots,a_n)=(e_1,\ldots,e_n)\cdot A,\,A\in M_n(\mathbb{R}).$$

Предложение. $\operatorname{vol} P(a_1, \ldots, a_n) = |\det A|$.

Доказательство.

$$G(a_1,\ldots,a_n)=A^T\cdot A\implies \operatorname{vol} P(a_1,\ldots,a_n)^2=\det(A^TA)=(\det A)^2$$

2.5 Элементы аналитической геометрии и линейные многообразия

1. Теорема о векторном произведении и формуле для него в координатах в положительно ориентированном ортонормированном базисе

Лемма. Пусть $v_1, v_2 \in \mathbb{E}$. Тогда, $(v_1, x) = (v_2, x) \ \forall x \in \mathbb{E} \implies v_1 = v_2$.

Доказательство. Имеем
$$(v_1 - v_2, x) = 0 \ \forall x \in \mathbb{E}$$
. Тогда, $v_1 - v_2 \in \mathbb{E}^{\perp} = \{0\} \implies v_1 - v_2 = 0 \implies v_1 = v_2$.

Теорема. Пусть $a, b \in \mathbb{R}^3$. Тогда

- 1. $\exists ! v \in \mathbb{E}, makoŭ umo(v, x) = Vol(a, b, x) \quad \forall x \in \mathbb{R}^3.$
- 2. Если $e = (e_1, e_2, e_3) n$ оложительно ориентированный ортонормированный базис $u = a_1e_1 + a_2e_2 + a_3e_3$, $b = b_1e_1 + b_2e_2 + b_3e_3$

mo

$$v = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} := \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} e_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} e_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} e_3. \tag{*}$$

Доказательство.

Единственность если v' — другой такой вектор, то $(v,x) = (v',x) \ \forall x \in \mathbb{R}^3$, а значит v' = v по лемме.

Существование Покажем, что v, заданный формулой (\star) подойдёт.

$$x = x_1 e_1 + x_2 e_2 + x_3 e_3 \implies (v, x) = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} x_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} x_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} x_3$$

$$= \begin{vmatrix} x_1 & x_2 & x_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ x_1 & x_2 & x_3 \end{vmatrix} = \operatorname{Vol}(a, b, x).$$

2. Критерий коллинеарности двух векторов трёхмерного евклидова пространства

Предложение. $a, b \in \mathbb{E}$ коллинеарны $\iff [a, b] = 0$.

Доказательство.

$$\Longrightarrow$$

$$(a, b, x) = 0 \ \forall x \implies ([a, b], x) = 0 \ \forall x \implies [a, b] = 0.$$

$$[a,b] = 0 \implies ([a,b],x) = 0 \ \forall x \implies (a,b,x) = 0 \ \forall x \in \mathbb{R}^3.$$

Если a, b линейно независимы, то можно взять x, который дополняет их до базиса в \mathbb{R}^3 . Тогда, $(a, b, x) \neq 0$ — противоречие. Значит a, b линейно зависимы \implies коллинеарны.

3. Геометрические свойства векторного произведения

Предложение.

- 1. $[a,b] \perp \langle a,b \rangle$.
- 2. |[a, b]| = vol P(a, b).
- 3. $Vol(a, b, [a, b]) \ge 0$.

Доказательство.

- 1. ([a,b],a) = (a,b,a) = 0 = (a,b,b) = ([a,b],b).
- 2. Если a, b коллинеарны, то обе части равны 0. Пусть $[a, b] \neq 0$.

$$|[a,b]|^2 = ([a,b],[a,b]) = (a,b,[a,b]) = (\#) > 0.$$

$$[a,b] \perp \langle a,b \rangle \implies (\#) = \text{vol } P(a,b,[a,b]) = \text{Vol}(a,b,[a,b]) = \text{vol } P(a,b,) \cdot |[a,b]|.$$

Сокращая на $|[a,b]| \neq 0$, получаем требуемое.

3.
$$Vol(a, b, [a, b]) = ([a, b], [a, b]) \ge 0.$$

4. Антикоммутативность и билинейность векторного произведения

Предложение.

- 1. $[a, b] = -[b, a] \quad \forall a, b \text{ (антикоммутативность)}.$
- 2. [•,•] билинейно (то есть линейно по каждому аргументу).

Доказательство.

1.
$$([a,b],x) = (a,b,x) = -(b,a,x) = -([b,a],x) = (-[b,a],x) \quad \forall x \in \mathbb{R}^3 \implies [a,b] = -[b,a]$$

2. Пусть
$$u = [\lambda_1 a_1 + \lambda_2 a_2, b], v = \lambda_1 [a_1, b] + \lambda_2 [a_2, b].$$
 Тогда $\forall x \in \mathbb{R}^3$:

$$(u, x) = (\lambda_1 a_1 + \lambda_2 a_2, b, x)$$

$$= \lambda_1 (a_1, b, x) + \lambda_2 (a_2, b, x)$$

$$= \lambda_1 ([a_1, b], x) + \lambda_2 ([a_2, b], x)$$

$$= (\lambda_1 [a_1, b] + \lambda_2 [a_2, b], x) = (v, x).$$

Значит u = v. Аналогично линейность по второму аргументу.

5. Линейные многообразия как сдвиги подпространств

Пусть $Ax = b - \text{СЛУ}, \varnothing \neq L \subseteq \mathbb{R}^n$ — множество решений, $x_z \in L$ — частное решение.

Было: Лемма: $L = x_z + S$, где S — множество решений ОСЛУ Ax = 0.

Предложение. Множество $L \subseteq \mathbb{R}^n$ является линейным многообразием $\iff L = v_0 + S$ для некоторых $v_0 \in \mathbb{R}^n$ и подпространства $S \subseteq \mathbb{R}^n$.

Доказательство.

- ⇒ Из леммы.
- $\longleftarrow L = v_0 + S$. Значит существует ОСЛУ Ax = 0, для которой S является множеством решений. Тогда, L множество решений СЛУ $Ax = Av_0$ (по лемме).

6. Критерий равенства двух линейных многообразий

Предложение. Пусть $L_1=v_1+S_1$ и $L_2=v_2+S_2$ — два линейных многообразия в \mathbb{R}^n . Тогда,

$$L_1 = L_2 \iff \begin{cases} S_1 = S_2 \ (=S) \\ v_1 - v_2 \in S \end{cases}.$$

Доказательство.

$$\longleftarrow L_1 = v_1 + S_1 = v_1 + S_2 = v_2 + (v_1 - v_2) + S = v_2 + S = L_2.$$

$$\implies v_1 = v_1 + 0 \in L_1 = L_2 = v_2 + S_2 \implies v_1 - v_2 \in S_2,$$

$$v \in S_1 \implies v + v_1 \in L_1 = L_2 = v_2 + S_2 \implies v \in (v_2 - v_1) + S_2 = S_2 \implies S_1 \subseteq S_2.$$
Аналогично, $v_1 - v_2 \in S_1$ и $S_2 \subseteq S_1$.

7. Теорема о плоскости, проходящей через k+1 точку в \mathbb{R}^n

Теорема.

- а) Через любые k+1 точек в \mathbb{R}^n проходит плоскость размерности $\leqslant k$.
- b) Если это точки не лежат в плоскости размерности < k, то через них проходит ровно одна плоскость размерности k.

Доказательство.

- а) Пусть v_0, v_1, \ldots, v_k данные точки. Тогда через них проходит плоскость $P = v_0 + \langle v_1 v_0, \ldots, v_k v_0 \rangle$. Ясно, что dim $P \leq k$.
- b) Из условия следует, что dim $P=k \implies v_1-v_0,\dots,v_k-v_0$ линейно независимы. Если $P'=v_0+S$ другая плоскость размерности k, содержащая v_0,\dots,v_k , то $v_1-v_0,\dots,v_k-v_0\in S\implies S=\langle v_1-v_0,\dots,v_k-v_0\rangle \implies P'=P$.

2.6 Линейные операторы

1. Критерий обратимости линейного оператора в терминах его ядра, образа и определителя Π усть $\varphi \in L(V)$.

Предложение. Следующие условия эквивалентны:

- 1. $\ker \varphi = \{0\}.$
- 2. Im $\varphi = V$.
- 3. φ обратима (то есть φ изоморфизм V на себя).
- 4. $\det \varphi \neq 0$.

Доказательство.

- 1) \iff 2) так как $\dim V = \dim \ker \varphi + \dim \operatorname{Im} \varphi$.
- $1)\&2)\iff 3)$ по предложению в определении 20.
- 2) \iff 4) Im $\varphi = V \iff \operatorname{rk} \varphi = \dim V \iff \det \varphi \neq 0$.

2. Критерий диагонализуемости линейного оператора в терминах собственных векторов

Предложение. Линейный оператор φ диагонализуем \iff в V есть базис из собственных векторов.

Доказательство. Пусть $e = (e_1, \ldots, e_n)$ — базис V.

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \iff \varphi(e_i) = \lambda_i e_i \ \forall i = 1, \dots, n \iff \text{все } e_i - \text{собственные векторы для } \varphi$$

3. Связь спектра линейного оператора с его характеристическим многочленом

Пусть $\varphi \in L(V)$, $\lambda \in F$.

$$V_{\lambda}(\varphi) := \{ v \in V \mid \varphi(v) = \lambda v \}.$$

Упражнение. $V_{\lambda}(\varphi)$ — подпространство в V.

Лемма. $V_{\lambda}(\varphi) \neq \{0\} \iff \lambda \in \operatorname{Spec} \varphi$.

Доказательство. Следует из определения.

Определение. $\lambda \in \operatorname{Spec} \varphi \implies V_{\lambda}(\varphi)$ называется собственным подпространством линейного оператора φ , отвечающим собственному значению λ .

Замечание. $V_{\lambda}(\varphi)$ φ -нивариантно, $\varphi\Big|_{V_{\lambda}(\varphi)} = \lambda \cdot \operatorname{Id}\Big|_{V_{\lambda}(\varphi)}$.

Предложение. $\forall \lambda \in F \quad V_{\lambda}(\varphi) = \ker(\varphi - \lambda \cdot \mathrm{Id}).$

Доказательство. $v \in V_{\lambda}(\varphi) \iff \varphi(v) = \lambda v \iff \varphi(v) - \lambda v = 0 \iff (\varphi - \lambda \cdot \operatorname{Id})v = 0 \iff v \in \ker(\varphi - \lambda \cdot \operatorname{Id}).$

Следствие. $\lambda \in \operatorname{Spec} \varphi \iff \det(\varphi - \lambda \cdot \operatorname{Id}) = 0.$

Доказательство. $\lambda \in \operatorname{Spec} \varphi \iff V_{\lambda}(\varphi) \neq \{0\} \iff \ker(\varphi - \lambda \cdot \operatorname{Id}) \neq \{0\} \iff \det(\varphi - \lambda \cdot \operatorname{Id}) = 0.$

Если e — какой-либо базис V и $A = (a_{ij}) = A(\varphi, e)$, то

$$\chi_{\varphi}(t) = (-1)^n \det(A - tE) = (-1)^n \begin{vmatrix} a_{11} - t & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} - t & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} - t & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} - t \end{vmatrix}$$

$$\chi_{\varphi}(t) = t^n + c_{n-1}t^{n-1} + \dots + c_1t + c_0$$
, где $c_{n-1} = -\operatorname{tr} \varphi$, $c_0 = (-1)^n \det \varphi$.

Следствие. $\lambda \in \operatorname{Spec} \varphi \iff \chi_{\varphi}(\lambda) = 0$, то есть λ — корень характеристического многочлена.

Следствие. $|\operatorname{Spec} \varphi| \leq n$.

4. Связь между алгебраической и геометрической кратностями собственного значения линейного оператора

Предложение. $g_{\lambda} \leqslant a_{\lambda} \ \forall \lambda \in \operatorname{Spec} \varphi$.

Доказательство. Выберем в $V_{\lambda}(f)$ базис $e_1, \dots, e_{g_{\lambda}}$ и дополним его до базиса $(e_1, \dots, e_n) = \mathfrak{e}$ всего V. Тогда $A(\varphi, \mathfrak{e})$ имеет вид

$$\begin{pmatrix} \lambda & 0 & 0 & \dots & 0 \\ 0 & \lambda & 0 & \dots & 0 \\ 0 & 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix} \qquad B$$

$$\vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix}$$

$$C$$

$$g_{\lambda}$$

$$n - g_{\lambda}$$

Следовательно,

$$\chi_{\varphi}(t) = (-1)^n \cdot \det \begin{pmatrix} \frac{\lambda^{-t} & \cdots & 0}{\vdots & \ddots & \vdots & B} \\ \frac{\lambda^{-t} & \cdots & \lambda^{-t}}{0} & B \\ 0 & C - tE \end{pmatrix}$$
$$= (-1)^n (\lambda - t)^{g_{\lambda}} \cdot \det(C - tE) \vdots (t - \lambda)^{g_{\lambda}} \implies a_{\lambda} \geqslant g_{\lambda}.$$

5. Линейная независимость собственных подпространств линейного оператора, отвечающих попарно различным собственным значениям

Предложение. Пусть $\{\lambda_1,\ldots,\lambda_s\}\subseteq \operatorname{Spec}\varphi,\lambda_i\neq\lambda_j$ при $i\neq j$. Тогда собственные подпространства $V_{\lambda_1}(\varphi),\ldots,V_{\lambda_s}(\varphi)$ линейно независимы.

Доказательство. Индукция по s.

База s = 1 - ясно.

Шаг Пусть для < s доказано, докажем для s.

Возьмем $v_i \in V_{\lambda_i}(\varphi) \ \forall i = 1, ..., s$ и предположим, что $v_1 + \cdots + v_s = 0 \ (\star)$.

Тогда $\varphi(v_1 + \dots + v_s) = \varphi(0) = 0 \implies$

$$\varphi(v_1) + \dots + \varphi(v_s) = 0 \implies$$

$$\lambda_1 v_1 + \dots + \lambda_s v_s = 0.$$

Вычтем отсюда $(\star) \cdot \lambda_s$:

$$(\lambda_1 - \lambda_s)v_1 + \dots + (\lambda_{s-1} - \lambda_s)v_{s-1} = 0.$$

По предположению индукции получаем $v_1 = \cdots = v_{s-1} = 0$, а значит и $v_s = 0$.

6. Диагонализуемость линейного оператора, у которого число корней характеристического многочлена равно размерности пространства

Следствие. Если $\chi_{\varphi}(t)$ имеет ровно n различных корней, то φ диагонализуем.

Доказательство. Пусть $\lambda_1, \ldots, \lambda_n$ — все корни многочлена $\chi_{\varphi}(t)$.

Тогда $\forall i=1,\ldots,n \ \dim V_{\lambda_i}(\varphi)=1$. Для каждого i выберем $e_i\in V_{\lambda_i}(\varphi)\setminus\{0\}$.

Тогда e_1, \ldots, e_n линейно независимы по предложению, а значит (e_1, \ldots, e_n) — базис из собственных векторов.

Следовательно, φ диагонализуем.

7. Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена и кратностей собственных значений

Пусть V — векторное пространство над F, $\dim V = n$, $\varphi \in L(V)$ — линейный оператор.

Теорема. (критерий диагонализуемости) φ диагонализуемо \iff выполняются одновременно следующие 2 условия:

- 1. $\chi_{\varphi}(t)$ разлагается на линейные множители.
- 2. $\forall \lambda \in \operatorname{Spec} \varphi \quad g_{\lambda} = a_{\lambda}$.

Доказательство.

 $\implies \varphi$ диагонализуемо $\implies \exists$ базис $\mathbf{e} = (e_1, \dots, e_n)$, такой что $\chi_{\varphi}(t)$ разлагается на линейные множители:

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n \end{pmatrix} \implies \chi_{\varphi}(t) = (-1)^n \begin{vmatrix} \mu_1 - t & 0 & \dots & 0 \\ 0 & \mu_2 - t & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n - t \end{vmatrix} = (t - \mu_1) \cdot \dots \cdot (t - \mu_n).$$

Перепишем $\chi_{\varphi}(t)$ в виде $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \cdot \ldots \cdot (t - \lambda_s)^{k_s}$, где $\{\mu_1, \ldots, \mu_n\} = \{\lambda_1, \ldots, \lambda_s\}$, $\lambda_i \neq \lambda_j$ при $i \neq j$. $\forall i = 1, \ldots, s$ имеем $V_{\lambda_i}(\varphi) \supseteq \langle e_j \mid \mu_j = \lambda_i \rangle \implies \dim V_{\lambda_i}(\varphi) \geqslant k_i$, то есть $g_{\lambda_i} \geqslant a_{\lambda_i}$.

Но мы знаем, что $g_{\lambda_i} \leqslant a_{\lambda_i}$. Следовательно, $a_{\lambda_i} = g_{\lambda_i}$.

 \leftarrow Пусть $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \cdot \dots \cdot (t - \lambda_s)^{k_s}, \ \lambda_i \neq \lambda_i$ при $i \neq j$.

Так как подпространства $V_{\lambda_1}(\varphi), \dots, V_{\lambda_s}(\varphi)$ линейно независимы, то

$$\dim(V_{\lambda_1}(\varphi) + \dots + V_{\lambda_s}(\varphi)) = \dim V_{\lambda_1}(\varphi) + \dots + \dim V_{\lambda_s}(\varphi) = k_1 + \dots + k_s = n = \dim V.$$

Следовательно, $V = V_{\lambda_1}(\varphi) \oplus \cdots \oplus V_{\lambda_s}(\varphi)$.

Если e_i — базис в $V_{\lambda_i}(\varphi)$, то $e = e_1 \sqcup \cdots \sqcup e_s$ — базис всего V, состоящий из собственных векторов, а значит φ диагонализуем.

8. Существование собственного вектора у линейного оператора в векторном пространстве над $\mathbb C$. Существование одномерного или двумерного инвариантного подпространства для линейного оператора в векторном пространстве над $\mathbb R$

Теорема. $F = \mathbb{R} \implies \forall \varphi \in L(V) \; \exists \; \text{либо 1-мерное, либо 2-мерное } \varphi$ -инвариантное подпространство.

Доказательство. Если $\chi_{\varphi}(t)$ имеет действительные корни, то в V есть собственный вектор \implies 1-мерное φ -инвариантное подпространство.

Пусть $\chi_{\varphi}(t)$ не имеет корней в \mathbb{R} . Возьмем какой-нибудь комплексный корень $\lambda + i\mu, \, \mu \neq 0$.

Фиксируем базис \mathfrak{e} в V и положим $A = A(\varphi, \mathfrak{e})$. Для $\lambda + i\mu$ у матрицы A существует комплексный собственный вектор, то есть такое $u, v \in \mathbb{R}^n$, что

$$A(u+iv) = (\lambda + i\mu)(u+iv) \implies Au + iAv = \lambda u - \mu v + i(\lambda v + \mu u) \implies \begin{cases} Au &= \lambda u - \mu v \\ Av &= \lambda v + \mu u \end{cases}$$

Значит, векторы в V с координатами u,v порождают φ -инвариантное подпространство $U\subseteq V$ размерности $\leqslant 2.$

Упражнение. $\dim U = 2$.

2.7 Линейные отображения и операторы в евклидовых пространствах

1. Сопряжённое линейное отображение: определение, существование и единственность. Матрица сопряжённого отображения в паре произвольных и паре ортонормированных базисов

Пусть \mathbb{E} — евклидово пространство со скалярным произведением (•,•), $\dim \mathbb{E} = n$,

 \mathbb{E} — другое евклидово пространство со скалярным произведением $(\bullet, \bullet)'$, dim $\mathbb{E}' = m$, $\varphi \colon \mathbb{E} \to \mathbb{E}'$.

Определение. Линейное отображение $\psi \colon \mathbb{E}' \to \mathbb{E}$ называется *сопряженным* к φ , если

$$(\varphi(x), y)' = (x, \psi(y)) \quad \forall x \in \mathbb{E}, y \in \mathbb{E}'.$$
 (*)

Обозначение: φ^* .

Предложение.

1. ψ существует и единственно.

2. Если е — базис
$$\mathbb{E}$$
, \mathbb{F} — базис \mathbb{E}' , $G = G(e_1, \dots, e_n)$ и $A_{\varphi} = A(\varphi, \mathbb{e}, \mathbb{f})$ то $A_{\psi} = G^{-1}A_{\varphi}^TG'$. В частности, если \mathbb{e} и \mathbb{F} ортонормированы, то $A_{\psi} = A_{\varphi}^T$.

Доказательство. $x = x_1e_1 + \cdots + x_ne_n \in \mathbb{E}, y = y_1f_1 + \cdots + y_mf_m \in \mathbb{E}'.$

$$(\varphi(x), y)' = \left(A_{\varphi} \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}\right)^T \cdot G' \cdot \begin{pmatrix} y_1 \\ \dots \\ y_m \end{pmatrix} = (x_1 \dots x_n) \cdot A_{\varphi}^T \cdot G' \cdot \begin{pmatrix} y_1 \\ \dots \\ y_m \end{pmatrix}.$$

$$(x, \psi(y)) = (x_1 \dots x_n) \cdot G \cdot A_{\psi} \cdot \begin{pmatrix} y_1 \\ \dots \\ y_m \end{pmatrix}.$$

Так как $\forall B \in \operatorname{Mat}_{m \times n} \quad b_{ij} = (0 \dots 0 \ 1 \ 0 \dots 0) \cdot B \cdot (0 \dots 0 \ 1 \ 0 \dots 0)^T$, то $(\star) \iff A_{\varphi}^T G' = G A_{\psi} \iff A_{\psi} = G^{-1} A_{\varphi}^T G'$.

Отсюда следуют сразу оба утверждения.

2. Инвариантность ортогонального дополнения к подпространству, инвариантному относительно самосопряжённого линейного оператора

Предложение. $\varphi = \varphi^*, U \subseteq \mathbb{E} - \varphi$ -инвариантное подпространство, тогда U^{\perp} — тоже φ -инвариантное подпространство.

Доказательство.
$$\varphi(U) \subseteq U$$
, хотим $\varphi(U^{\perp}) \subseteq U^{\perp}$. $\forall x \in U^{\perp} \quad \forall y \in U \quad (\varphi(x), y) = (x, \varphi(y)) = 0 \implies \varphi(x) \in U^{\perp}$.

3. Существование собственного вектора для самосопряжённого линейного оператора

Если е — ортонормированный базис в
$$\mathbb{E}$$
, $A_{\varphi}=A(\varphi,\mathbf{e}),\,A_{\varphi^*}=A(\varphi^*,\mathbf{e}),\,$ то $A_{\varphi^*}=A_{\varphi}^T.$

Следовательно, $\varphi = \varphi^* \iff A_{\varphi} = A_{\varphi}^T$.

Предложение. Если $\varphi = \varphi^*$, то \exists собственный вектор для φ .

Доказательство. Было: \exists либо 1) 1-мерное φ -инвариантное подпространство, либо 2) 2-мерное φ -инвариантное подпространство.

- 1. ок.
- 2. $U \subseteq \mathbb{E} \varphi$ -инвариантное подпространство, dim U = 2.

Фиксируем ортонормированный базис $e = (e_1, e_2)$. Пусть $\psi = \varphi \big|_{U}$

Значит,
$$\psi = \psi^* \implies A(\psi, \mathbf{e}) = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
.

Отсюда,
$$\chi_{\psi}(t)=\begin{vmatrix} a-t & b \\ b & c-t \end{vmatrix}=t^2-(a+c)t+ac-b^2.$$

$$D = (a+c)^2 - 4(ac-b^2) = (a-c)^2 + 4b^2 \geqslant 0.$$

Следовательно, $\chi_{\psi}(t)$ имеет корни в \mathbb{R} , то есть в U есть собственный вектор для ψ , он же собственный вектор для φ .

4. Существование ортонормированного базиса из собственных векторов для самосопряжённого линейного оператора

Теорема. $\varphi = \varphi^* \implies e \; \mathbb{E} \; существует ортонормированный базис из собственных векторов.$

B частности, φ диагонализуем над \mathbb{R} и $\chi_{\varphi}(t)$ разлагается на линейные множители над \mathbb{R} .

Доказательство. Индукция по n:

База n = 1 -ясно.

Шаг n>1. Тогда существует собственный вектор v для φ . Положим $e_1=\frac{v}{|v|}\implies |e_1|=1$.

 $U = \langle e_1 \rangle^{\perp} - \varphi$ -инвариантное подпространство, $\dim U < n \implies$ по предположению индукции в U существует ортонормированный базис (e_2, \ldots, e_n) из собственных векторов. Тогда (e_1, e_2, \ldots, e_n) — искомый базис.

5. Приведение квадратичной формы к главным осям

Теорема. (приведение квадратичной формы к главным осям) Для любой квадратичной формы $Q: \mathbb{E} \to \mathbb{R}$ существует ортонормированный базис $e = (e_1, \dots, e_n)$, в котором Q принимает канонический вид $Q(x) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2$. Более того, набор $\lambda_1, \dots, \lambda_n$ определен однозначно, с точностью до перестановки.

Доказательство. Пусть $\mathbb{f}=(f_1,\ldots,f_n)$ — какой-то ортонормированный базис. Рассмотрим линейный оператор $\varphi\colon \mathbb{E}\to \mathbb{E}$, такой что $A(\varphi,\mathbb{f})=B(Q,\mathbb{f})$ ($\varphi=\varphi^*$, так как $B(Q,\mathbb{f})$ симметрична).

Если $\mathbb{F}'=(f_1',\ldots,f_n')$ — другой ортонормированный базис, то $\mathbb{F}'=\mathbb{F}\cdot C$, где C — ортонормированная матрица $(C^TC=\mathbb{E}\iff C^T=C^{-1})$. Тогда $A(\varphi,\mathbb{F}')=C^{-1}A(\varphi,\mathbb{F})C=C^TB(Q,\mathbb{F})C=B(Q,\mathbb{F}')$.

Значит, в любом ортонормированном базисе φ и Q имеют одинаковые матрицы.

По теореме, существует ортонормированный базис е, такой что $A(\varphi, e) = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Тогда $B(Q, e) = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Единственность для $\{\lambda_i\}$ следует из того, что набор $\lambda_1, \dots, \lambda_n$ – это спектр φ (с учетом кратностей).

6. Теорема о пяти эквивалентных условиях, определяющих ортогональный линейный оператор

Теорема. $\varphi \in L(\mathbb{E}) \implies$ следующие условия эквивалентны:

- (1) φ ортогонален.
- (2) $|\varphi(x)| = |x|$ $\forall x \in \mathbb{E}$ (то есть φ сохраняет длины векторов).
- (3) $\exists \varphi^{-1} \ u \ \varphi^{-1} = \varphi^* \ (mo \ ecmb \ \varphi^* \varphi = \varphi \varphi^* = \mathrm{Id}).$
- (4) \forall ортонормированного базиса $\mathbf e$ матрица $A(\varphi,\mathbf e)$ ортогональна.
- (5) \forall ортонормированного базиса $e = (e_1, \dots, e_n)$ векторы $(\varphi(e_1), \dots, \varphi(e_n))$ образуют ортонормированный базис.

Доказательство.

(1)
$$\Longrightarrow$$
 (2) $|\varphi(x)| = \sqrt{(\varphi(x), \varphi(x))} = \sqrt{(x, x)} = |x|.$

(2)
$$\Longrightarrow$$
 (1) $(\varphi(x), \varphi(y)) = \frac{1}{2} [(\varphi(x+y), \varphi(x+y)) - (\varphi(x), \varphi(x)) - (\varphi(y), \varphi(y))]$
= $\frac{1}{2} [|\varphi(x+y)|^2 - |\varphi(x)|^2 - |\varphi(y)|^2] = \frac{1}{2} [|x+y|^2 - |x|^2 - |y|^2] = (x,y)$

(1) & (2)
$$\Longrightarrow$$
 (3) $|\varphi(x)| = 0 \Longrightarrow |x| = 0 \Longrightarrow x = 0 \Longrightarrow \ker \varphi = \{0\} \Longrightarrow \exists \varphi^{-1}.$
 $(\varphi^{-1}(x), y) = (\varphi(\varphi^{-1}(x)), \varphi(y)) = (x, \varphi(y)) \Longrightarrow \varphi^{-1} = \varphi^*.$

(3)
$$\Longrightarrow$$
 (4) е — ортонормированный базис, $A=A(\varphi,\mathbf{e}) \implies A(\varphi^{-1},\mathbf{e})=A^{-1}$ $A(\varphi^*,\mathbf{e})=A^T$

Так как $\varphi^{-1}=\varphi^*$, то $A^{-1}=A^T \implies A$ ортогональная.

- $(4)\Longrightarrow (5)$ е = (e_1,\ldots,e_n) ортонормированный базис, $A=A(\varphi,\mathfrak{e})\implies (\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)\cdot A$. Так как A ортогональная, то $(\varphi(e_1), \dots, \varphi(e_n))$ — ортонормированный базис.
- $(5)\Longrightarrow (1) \ (e_1,\ldots,e_n)$ ортонормированный базис $\Longrightarrow (\varphi(e_1),\ldots,\varphi(e_n))$ тоже ортонормированный базис.

$$\begin{array}{ccc}
x = x_1 e_1 + \dots + x_n e_n & \varphi(x) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n) \\
y = y_1 e_1 + \dots + y_n e_n & \Rightarrow & \varphi(y) = y_1 \varphi(e_1) + \dots + y_n \varphi(e_n) & \Rightarrow \\
(\varphi(x), \varphi(y)) = (x_1, \dots, x_n) \cdot \underbrace{G(\varphi(e_1), \dots, \varphi(e_n))}_{-F} \cdot \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = (x_1, \dots, x_n) \cdot \underbrace{G(\mathfrak{E})}_{-F} \cdot \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = (x, y).$$

7. Инвариантность ортогонального дополнения к подпространству, инвариантному относительно ортогонального линейного оператора

Предложение. Если $\varphi \in L(\mathbb{E})$ — ортогональный оператор, $U \subseteq \mathbb{E}$ — φ -инвариантное подпространство, то U^{\perp} тоже φ -инвариантно.

Доказательство. Пусть $\psi:=\varphi\big|_U$. Тогда ψ — ортогональный оператор в U, в частности ψ обратим.

Хотим: $\varphi(U^{\perp}) \subset U^{\perp} \quad \forall x \in U^{\perp} \ \forall y \in U$.

$$(\varphi(x), y) = (x, \varphi^*(y) = (x, \varphi^{-1}(y)) = (\underbrace{x}_{\in U^{\perp}}, \underbrace{\psi^{-1}(y)}_{\in U}) = 0.$$

8. Теорема о каноническом виде ортогонального линейного оператора

- 1. dim $\mathbb{E} = 1$. φ ортогонально $\iff \varphi = \pm \mathrm{Id}$.
- \mathbb{Z} . dim $\mathbb{E}=2$, $\mathbb{E}=(e_1,e_2)$ ортонормированный базис $\implies \varphi(e_1), \varphi(e_2)$ тоже ортонормированный базис. Два случая:

(a)
$$\varphi$$
 — поворот на угол α .
$$A(\varphi, e) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

(b)
$$\varphi$$
 — поворот на угол α и отражение относительно $\langle \varphi(e_1) \rangle$.
$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$$

Если l — биссектриса угла $\angle(e_1, \varphi(e_1))$, то $\varphi(x) = x \quad \forall x \in l$,

$$\varphi(x) = -x \quad \forall x \in l^{\perp}.$$

$$e_1' \in l, e_2' \in l^{\perp}, |e_1'| = |e_2'| = 1, \mathfrak{E}' = (e_1', e_2') \implies A(\varphi, \mathfrak{E}') = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Значит φ — отражение относительно l.

Теорема. Если $\varphi \in L(\mathbb{E})$ — ортогональный оператор, то существует ортонормированный базис $\mathfrak{e} = (e_1, \dots, e_n)$, такой что

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \Pi(\alpha_1) & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \Pi(\alpha_2) & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \Pi(\alpha_k) & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & -1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & -1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & -1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 1 \end{pmatrix}, \qquad \Pi(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

$$n = 1, 2$$
 — было.

n>2 Существует 1-мерное или 2-мерное φ -инвариантное подпространство. В нём требуемый базис найдется. Так как U^{\perp} φ -инвариантно и dim $U^{\perp}< n$, то по предположению индукции в U^{\perp} тоже найдется такой базис. Объединяя эти базисы U и U^{\perp} , получаем ортонормированный базис, в котором матрица φ имеет требуемый вид с точностью до перестановки блоков.

9. Теорема о сингулярных базисах для линейного отображения евклидовых пространств

Пусть \mathbb{E} — евклидово пространство со скалярным произведением (\bullet, \bullet) , dim $\mathbb{E} = n$,

 \mathbb{E}' — другое евклидово пространство со скалярным произведением $(\cdot, \cdot)'$, $\dim \mathbb{E}' = m$,

 $\varphi \colon \mathbb{E} \to \mathbb{E}'$ — линейное отображение, $r = \operatorname{rk} \varphi (= \dim \operatorname{Im} \varphi)$

Теорема. Существуют ортонормированные базисы е в \mathbb{E} и \mathbb{f} в \mathbb{F} , такие что

$$A(\varphi, \mathbf{e}, \mathbf{f}) = \begin{pmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_r \end{pmatrix} \qquad \mathbf{0}$$

$$\mathbf{0}$$

 $e \partial e \ \sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$

Более того, числа $\sigma_1, \ldots, \sigma_r$ определены однозначно.

Доказательство. Существование:

Пусть $\varphi^* \colon \mathbb{E}' \to \mathbb{E}$ — линейное отображание, сопряженное к φ . Положим $\psi := \varphi^* \cdot \varphi$. Тогда ψ — линейный оператор на \mathbb{E} .

 $\forall x, y \in \mathbb{E} \quad (x, \psi(y)) = (x, \varphi^* \varphi(y)) = (\varphi(x), \varphi(y))'$

В частности, $(x, \psi(y)) = (\psi(x), y) \implies \psi = \psi^*$.

Тогда \exists ортнонормированный базис $e=(e_1,\ldots,e_n)$ в $\mathbb{E},$ такой что $A(\psi,e)=\mathrm{diag}(s_1,s_2,\ldots,s_n).$ Тогда $\forall i=1,\ldots,n$ имеем

$$\begin{vmatrix} (e_i, \psi(e_i)) = (\varphi(e_i), \varphi(e_i))' & \geqslant 0 \\ (e_i, \psi(e_i)) = (e_i, s_i e_i) = s_i (e_i, e_i) & = s_i \end{vmatrix} \implies s_i \geqslant 0$$

Переставив векторы в e, добьёмся того, что $s_1 \geqslant s_2 \geqslant \ldots \geqslant s_n \geqslant 0$.

Пусть $k \in \{1, \dots, n\}$ таково, что $s_k > 0, s_{k+1} = 0$. Тогда $\forall i \geqslant k+1$ имеем $0 = s_i = (\varphi(e_i), \varphi(e_i))' \implies \varphi(e_i) = 0 \implies e_i \in \ker \varphi$

 $\forall i=1,\ldots,k$ положим $\sigma_i=\sqrt{s_i}$ и $f_i=\frac{1}{\sigma_i}\varphi(e_i)$. Тогда $\forall i,j=1,\ldots,k$ имеем

$$(f_i, f_j)' = (\frac{1}{\sigma_i} \varphi(e_i), \frac{1}{\sigma_j} \varphi(e_j)) = \frac{1}{\sigma_i \sigma_j} (\varphi(e_i), \varphi(e_j)) = \frac{1}{\sigma_i \sigma_j} (e_i, \varphi^* \varphi(e_j)) =$$

$$= \frac{1}{\sigma_i \sigma_j} (e_i, \psi(e_j)) = \frac{1}{\sigma_i \sigma_j} (e_i, (\sigma_j)^2 e_j) = \frac{\sigma_j}{\sigma_i} (e_i, e_j) = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Итого: f_1, \ldots, f_k — ортонормированная система в \mathbb{E}' . Дополним эту систему до ортонормированного базиса $\mathbb{F} = (f_1, \ldots, f_m)$ в \mathbb{E}' .

Тогда в $A(\varphi, e, f)$:

- $i = 1, \ldots, k \colon \varphi(e_i) = \sigma_i f_i$
- $i \geqslant k+1$: $\varphi(e_i)=0$

Что и даёт нам искомый вид матрицы

Отсюда, в частности $\operatorname{rk} \varphi = k \implies k = r$.

Единственность:

Если e и f в E и E' и $A(\varphi, e, f)$ имеет вид Σ , то $A(\psi, e) = \Sigma^T \Sigma = \operatorname{diag}(\sigma_1^2, \dots, \sigma_r^2, 0, \dots, 0)$ $\Longrightarrow \sigma_1^2, \dots, \sigma_r^2$ — ненулевые собственные значения оператора $\psi \Longrightarrow$ они определены однозначно.

Определение. В условиях теоремы базисы $\mathfrak e$ и $\mathfrak l$ называются $\mathit{сингулярными}$ базисами, векторы e_i, f_j называются $\mathit{сингулярными}$ векторами, числа $\sigma_1, \dots, \sigma_r - \mathit{сингулярными}$ значениями линейного отображения φ

Замечание. 1. Базисы е и Гопределены, вообще говоря, неоднозначно.

- 2. Доказательство теоремы даёт алгоритм нахождения сингулярных значений и сингулярных базисов.
- 3. Если е и \mathbb{F} сингулярные базисы для линейного отображения φ и $A(\varphi, e, \mathbb{F}) = \Sigma$, то е и \mathbb{F} сингулярные базисы для линейного отображения $\varphi^* = A(\varphi, \mathbb{F}, e) = \Sigma^T$

50