

Seeking an Optimal Approach for Computer-aided Pulmonary Embolism Detection

Nahid Ul Islam¹, Shiv Gehlot¹, Zongwei Zhou¹,

Michael B Gotway², and Jianming Liang¹

¹Arizona State University

²Mayo Clinic

Pulmonary Embolism

RSNA Pulmonary Embolism Dataset

Exams: 7,279 (with 1,790,624 slices)

What deep learning architectures, model initialization, and learning paradigms should be used for computer-aided pulmonary embolism detection?

Fist Stage

Convolutional Neural Networks

- 1. ResNet18
- 2. ResNet50
- 3. ResNext50
- 4. SeResNet50
- 5. SeResNext50
- 6. DRN-A-50
- 7. Xception
- 8. SeXception
- 9. DenseNet121
- 10. SeNet154

Vision Transformer

- 1. ViT-B_16
- 2. ViT-B_32

- Training from scratch
- Fine-tuning
 - Supervised pretrained models
 - Self-supervised pretrained models

Self-supervised Methods

- 1. InsDis
- 2. InfoMin
- 3. MoCo-v1
- 4. BYOL
- 5. MoCo-v2
- 6. DeepCluster-v2
- 7. PCL-v1
- 8. SwAV
- 9. PCL-v2
- 10. SimCLR-v1
- 11. PIRL
- 12. SimCLR-v2
- 13. SeLa-v2
- 14. Barlow Twins

Transfer learning significantly improves slice-level classification

Squeeze and excitation (SE) blocks enhance CNN performance

Self-supervised pre-training overtakes (fully) supervised pre-training

Vision transformer (ViT) performs inferiorly compared with CNN

Second Stage

Conventional classification (CC) marginally outperforms Multiple instance learning (MIL)

Conclusion

Compared with the state-of-the-art, our optimal approach provides an AUC gain of 0.2% and 1.05% for slice-level and examination-level, respectively.

We have analyzed

- Deep learning architectures
- Model initialization
- Learning paradigms

We have benchmarked:

- Supervised learning
- Self-supervised learning
- Vision transformers
- Bidirectional GRU
- Multiple instance learning

Seeking an Optimal Approach for Computer-aided Pulmonary Embolism Detection

Poster Session, MLMI2021-P-46

Monday, 27th September 2021, 15:50 - 16:40

https://github.com/Nahid1992/CAD_PE