INSTITUTE OF ENGINEERING

Examination Control Division

2067 Ashadh

I-62-	BE	Full Marks	SO
Programme	All (Excépt B.Arch.)	Pass Marks	32
Year / Part	I / I	Time	3 hrs.

Subject: - Engineering Mathematics I

- ✓ Candidates are required to give their answers in their own words as far as practicable
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

If
$$y = e^{a \tan^{-1} x}$$
, prove that $(1 + x^2)y_{n+2} + (2nx + 2x - a)y_{n+1} + n(n+1)y_n = 0$.

2. State and prove Lagrange's mean value theorem.

$$\underbrace{\begin{array}{c} 3 \\ \text{Evaluate} \end{array}}_{x \to 0} \text{Evaluate} \underbrace{\begin{array}{c} \lim \\ x \to 0 \end{array}}_{x} \underbrace{\begin{array}{c} \frac{1}{x} \\ x \end{array}}_{x}$$

- 4. Find the asymptotes of the curve $(x + y)^2(x + 2y + z) = x + 9y 2$.
 - 5. Find the radius of curvature of the curve $r = a(1 \cos\theta)$.
- Apply the method of differentiation under integral sign to evaluate $\int_0^\infty \frac{\tan^{-1}(ax)}{x(1+x^2)} dx$.
- ---7. Prove that $\int_0^{\pi/2} \frac{\sin^2 x dx}{\sin x + \cos x} = \frac{1}{\sqrt{2}} \log(\sqrt{2} + 1)$.
 - 8. Use Gamma function to prove $\int_0^{\pi/6} \cos^4 3\theta \cdot \sin^2 6\theta = \frac{5\pi}{192}$.
 - 9. Find, by method of integration, the area of the loop of the curve $ay^2 = x^2 (a x)$.
 - Solve the differential equation $(1 + x^2) \frac{dy}{dx} + y = e^{\tan^{-1} x}$.
 - Solve $y = yp^2 + 2px$, where p = dy/dx
 - 12. Solve $(D^2 3D + 2)y = x^2 + x$
 - Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference of temperature between the object and its surroundings. Supposing water at 100°C cools to 80°C in 10 minutes, in a room temperature of 30°C, find when the temperature of water will become 40°C?

QR

Solve the differential equation $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \log x$.

- 14. Find the condition that the line $\ell x + my + n = 0$ may be the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 15. Derive the equation of a hyperbola in standard form.
- 16. Find the centre, length of axes and eccentricity of the conic $2x^2 + 3y^2 4x 12y \div 13 = 0$.

OI

Identify and sketch the conic $r = \frac{10}{3 \div 2 \cos \theta}$