${\tt HiOp-User~Guide}$

version 0.6

by

Cosmin G. Petra, Nai-Yuan Chiang, and Jingyi Wang

Center for Applied Scientific Computing Lawrence Livermore National Laboratory

> 7000 East Avenue, Livermore, CA 94550, USA.

> > Oct 15, 2017 Updated Sep 01, 2022

Technical report LLNL-SM-743591

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Contents

1	Intr	oduction
2	Inst	alling/building HiOp
	2.1	Prerequisites
	2.2	Building, testing, and installing HiOp
	2.3	Support of host-device computations using (generic)CPU-(NVIDIA/AMD)GPU
		hardware
	2.4	Building extra features
3	Inte	erfacing with HiOp
	3.1	The NLP with dense constraints formulation requiring up to first-order derivative
		information
		3.1.1 The C++ interface
		3.1.2 Specifying the optimization problem
		3.1.3 Specifying the inter-process/memory distribution of the problem
		3.1.4 Calling HiOp for a hiopInterfaceDenseConstraints formulation
	3.2	General sparse NLPs requiring up to second-order derivative information
		3.2.1 C++ interface to solve sparse NLPs
		3.2.2 Specifying the optimization problem
		3.2.3 Calling HiOp for a hiopInterfaceSparse formulation
		3.2.4 Solvers options for hiopInterfaceSparse NLP formulations
	3.3	NLPs in the mixed dense-sparse (MDS) form
		3.3.1 The C++ interface
		3.3.2 Calling HiOp for a hiopInterfaceMDS formulation
	3.4	Structured NLPs suitable to primal decomposition (PriDec) schemes
	3.5	Specifying a starting point for the optimization process
	3.6	Obtain information from HiOp
	3.7	Compiling and linking your project with the HiOp library
4	Solv	ver options
	4.1	Options for NLP solvers
		4.1.1 Termination criteria and output
		4.1.2 Filter-IPM algorithm selection and parameters
		4.1.3 Line search and step computation
		4.1.4 Feasibility restoration
		4.1.5 Elastic mode
		4.1.6 Regularization
		4.1.7 Solving internal linear systems
		4.1.8 Linear algebra computational kernels
		4.1.9 Problem preprocessing
		4.1.10 Miscellaneous options
	4.2	Options for PriDec solver
	-· -	4.2.1 Termination criteria and output
		4.2.2 Algorithm selection and parameters
		4.2.3 Miscellaneous options

5	Licensing and copyright	38
6	Acknowledgments	39
\mathbf{A}	Appendix	40
	A.0.1 Condensed Linear System	40
	A.0.2 Normal Equation	41

1 Introduction

This document describes the HiOp suite of HPC optimization solvers for some large-scale nonconvex nonlinear programming problems (NLPs). Four main classes of optimization problems are supported by HiOp.

- HiOp-Dense supports NLPs with billions of variables with or without bounds but only limited number of constraints. This solver is a memory-distributed, MPI-based quasi-Newton interior-point solver using limited-memory approximations for the Hessians.
- HiOp-Sparse supports general sparse and large-scale NLPs sparse second-order derivatives. This functionality is similar to that of the state-of-the-art Ipopt [7], but with additional features such as the inertia-free approach [2]. The solver offers GPU acceleration via Nvidia CUDA Toolkit or AMD HIP Toolkit, and requires RAJA portability abstraction layer when GPU acceleration is enabled.
- HiOp-MDS supports NLPs that have dense and sparse blocks, for which a "Newton" interiorpoint solver is available together with a specialized, so-called mixed dense-sparse (MDS) linear algebra capable of achieving good performance on GPUs via Magma dense linear solver.
- HiOp-PriDec is an asynchronous memory-distributed optimization solver for two-stage stochastic programming problems. It implements a master-worker asynchronous scheduler based on MPI to improve load balancing. GPU acceleration can be achieved in solving each subproblem by HiOp-MDS or HiOp-Sparse.

This document includes instructions on how to obtain and build HiOp and a description of its interface, user options, and use as an optimization library. Guidelines on how is best to use the solver for parallel computations are also provided. The document generally targets users of HiOp, but also contains information relevant to potential developers or advanced users; these are strongly encouraged to also read the paper on the computational approach implemented in HiOp [3].

While the MPI quasi-Newton solver of Hiop targets DAE- and PDE-constrained optimization problems formulated in a "reduced-space" approach, it can be used for general nonconvex non-linear optimization as well. For efficiency considerations, it is recommended to use quasi-Newton Hiop for NLPs that have a relatively small number of general constraints, say less than 100; note that there are no restrictions on the number of bounds constraints, e.g., one can specify simple bounds on any, and potentially all the decision variables without affecting the computational efficiency. The minimizers computed by HiOp satisfies local first-order optimality conditions.

The goal of quasi-Newton solver of HiOp is to remove the parallelization limitations of existing state-of-the-art solvers for nonlinear programming (NLP) and match/surpass the parallel scalability of the underlying PDE or DAE solver. Such limitation occurs whenever the dimensionality of the optimization space is as large as the dimensionality of the discretization of the differential systems of equations governing the optimization. In these cases, the use of existing NLP solvers results in i. considerable long time spent in optimization, which affects the parallel scalability, and/or ii. memory requirements beyond the memory capacity of the computational node that runs the optimization. HiOp removes these scalability/parallelization bottlenecks (for certain optimization problems described above) by offering interface for a memory-distributed specification of the problem and parallelizing the optimization search using specialized parallel

linear algebra technique. z The general computational approach in HiOp is to use existing state-of-the-art NLP algorithms and develop linear algebra kernels tailored to the specific of this class of problems. HiOp is based on an interior-point line search filter method [5, 6] and follows the implementation details from [7], which is the implementation paper for IPOPT open-source NLP solver. The quasi-Newton approach is based on limited-memory secant approximations of the Hessian [1], which is generalized as required by the specific of interior-point methods for constrained optimization problems [3]. The specialized linear algebra decomposition is obtained by using a Schur-complement reduction that leverages the fact that the quasi-Newton Hessian matrix has a small number of dense blocks that border a low-rank update of a diagonal matrix. The technique is described in [3]. The Newton interior-point solver of HiOp uses linear algebra specialized to the particular form of the MDS NLPs supported by this solver, for more details consult Section 3.3.

The C++ parallel implementation in HiOp is lightweight and portable since it is expressed and implemented only in terms of parallel (multi-)vector operations (implemented internally using BLAS level 1 and level 2 operations and MPI for communication) and BLAS level 3 and LAPACK operations for small dense matrices.

By using multithreadead BLAS and LAPACK libraries, e.g., INTEL MKL, GotoBlas, Atlas, etc, additional, intra-node parallelism can be achieved. These libraries are usually machine/hard-ware specific and available for a variety of computer architectures. A list of BLAS/LAPACK implementations can be found at https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Implementations.

2 Installing/building HiOp

HiOp is available on Lawrence Livermore National Laboratory (LLNL) github's page at https://github.com/LLNL/hiop. HiOp can be obtained by cloning the repository or by downloading the release archive(s). To clone from the repository, one needs to simply run

> git clone https://github.com/LLNL/hiop.git

2.1 Prerequisites

HiOp is written in C++11. At minimum, HiOp requires BLAS and LAPACK, however, the more advanced solvers require additional dependencies (MPI, RAJA and Umpire, CUDA, HIP, MAGMA, CoinHSL, PARDISO, STRUMPACK, etc.). The CMake-based build system of HiOp generally detects these prerequisites automatically and warns the user when such prerequisites are missing.

At this point the build system only supports macOS and Linux operating systems. On the other hand, other than the build system, HiOp's code is platform independent and should run fine on Windows as well.

2.2 Building, testing, and installing HiOp

The build system is based on CMake. Up-to-date detailed information about HiOp custom builds and installs are kept at https://github.com/LLNL/hiop.

A quick way to build and code is run the following commands in the 'build/' directory in the root HiOp directory:

> cmake ..

- > make all
- > make test
- > make install

This will compile, build the static library and example executables, perform a couple of tests to detect potential issues during the installation, and will install HiOp's header and the static library in the root directory under '_build_defaultDist/'

2.3 Support of host-device computations using (generic)CPU-(NVIDIA/AMD)GPU hardware

Starting version 0.3, HiOp offers support for offloading computations to NVIDIA GPU accelerators when solving NLPs in the mixed dense-sparse (MDS) form. Support for CUDA should be enabled during the build by using cmake options -DHIOP_USE_GPU and -DHIOP_USE_CUDA, which will result in using the CUDA accelerators for the internal linear solves; in addition, the options -DHIOP_USE_RAJA will employ RAJA portability abstraction to perform the remaining linear algebra computations on the GPU device or on the host (with OpenMP acceleration). When RAJA is enabled, HiOp can be instructed to use Umpire as memory manager (see option mem_space). As of v0.5, the combination of RAJA and Umpire enables HiOp to perform iterations of the Newton IPM solver solely on the device by setting option mem_space to device and option compute_mode to gpu.

Starting version 0.6, HiOp offers support for offloading computations to AMD GPU accelerators when solving NLPs in the mixed dense-sparse (MDS) form. Support for HIP should be enabled during the build by using cmake options -DHIOP_USE_GPU and -DHIOP_USE_HIP, which will result in using the HIP accelerators for the internal linear solves.

HiOp's cmake build system is quite versatile to find the dependencies required to offload computations to the device GPUs since was developed and tested on a few GPU-enabled HPC platforms at Oak Ridge, Lawrence Livermore, and Pacific Northwest National Laboratories. These dependencies consist of CUDA library version 10.1 or later, rocm library version 4.5.0 or later and a recent Magma linear solver library (as well as a physical NVIDIA/AMD GPU device). HiOp offers an extensive build support for using customized NVIDIA libraries, AMD libraries and/or Magma solver as well as for advanced troubleshooting. The user is referred to cmake/FindHiopCudaLibraries.cmake, cmake/FindHiopHipLibraries.cmake and cmake/FindHiOpMagma.cmakescripts.

Note: Installing NVIDIA CUDA, AMD HIP, and/or building Magma can be quite challenging. The user is encouraged to rely on preinstalled versions of these, as they are available via module utility on virtually all high-performance computing machines. An example of how to satisfy all the GPU dependencies on Summit supercomputer at Oak Ridge National Lab with a one commands are available at https://github.com/LLNL/hiop/blob/master/README_summit.md.

2.4 Building extra features

To build the documentation for HiOp, enable the HIOP_BUILD_DOCUMENTATION option when configuring. This option can only be enabled if a doxygen executable is available in the path. This option adds the make targets doc and install_doc which build and install the documentation respectively. When installed, html and IATEX/pdf documentation may be found under <install prefix>/doc/html and <install prefix>/doc/html, respectively.

To build every configuration of HiOp for testing purposes, the build script has an option ./BUILD.sh --full-build-matrix. See the testing section of README_developers.md for more information.

Additional HiOp features not yet mentioned may be found in the top of the top-level CMakeLists.txt file with a brief description.

Interfacing with HiOp 3

Once HiOp is built, it can be used as the optimization solver in your application through the HiOp's C++ interfaces and by linking with the static library. A shared dynamic load library can be also built using HIOP_BUILD_SHARED option with cmake. There are three types of nonlinear optimization or NLP formulations currently supported by HiOp. They are described and discussed by the subsequent sections.

3.1 The NLP with dense constraints formulation requiring up to first-order derivative information

A first class of problems supported by HiOp consists of nonlinear nonconvex NLP with dense constraints of the form

$$\min_{x \in \mathbb{R}^n} \quad f(x) \tag{1}$$

s.t.
$$c(x) = c_E$$
 $[y_c]$ (2)

s.t.
$$c(x) = c_E$$
 $[y_c]$ (2) $[v_l]$ $(d_l \le d(x) \le d_u$ $[v_u]$

s.t.
$$c(x) = c_E$$
 $[y_c]$ (2)
 $[v_l]$ $d_l \le d(x) \le d_u$ $[v_u]$ (3)
 $[z_u]$ $x_l \le x \le x_u$ $[z_u]$

Here $f: \mathbb{R}^n \to \mathbb{R}$, $c: \mathbb{R}^n \to \mathbb{R}^{m_E}$, $d: \mathbb{R}^n \to \mathbb{R}^{m_I}$. The bounds appearing in the inequality constraints (3) are assumed to be $d^l \in \mathbb{R}^{m_I} \cup \{-\infty\}$, $d^u \in \mathbb{R}^{m_I} \cup \{+\infty\}$, $d^l \in \mathbb{R}^{m_I}$, and at least of one of d_i^l and d_i^u are finite for all $i \in \{1, ..., m_I\}$. The bounds in (4) are such that $x^l \in \mathbb{R}^n \cup \{-\infty\}$, $x^u \in \mathbb{R}^n \cup \{+\infty\}$, and $x_i^l < x_i^u$, $i \in \{1, \dots, n\}$. The quantities insides brackets are the Lagrange multipliers of the constraints. Whenever a bound is infinite, the corresponding multiplier is by convention zero.

The following quantities are required by HiOp:

- D1 objective and constraint functions f(x), c(x), d(x);
- D2 the first-order derivatives of the above: $\nabla f(x)$, Jc(x), Jd(x);
- D3 the simple bounds x_l and x_u , the inequalities bounds: d_l and d_u , and the right-hand size of the equality constraints c_E .

3.1.1 The C++ interface

The above optimization problem (1)-(4) can be specified by using the C++ interface, namely by deriving and providing an implementation for the hiop::hiopInterfaceDenseConstraints abstract class.

We present next the methods of this abstract class that needs to be implemented in order to specify the parts D1-D3 of the optimization problem.

⚠ **Note:** All the functions that return bool should return false when an error occurs, otherwise should return true.

⚠ Note: The C++ interface uses the integer types size_type and index_type. The type hiop::size_type is used for container (e.g., NLPs, vectors, matrices, etc.) sizes and generally holds a nonnegative integer. The hiop::index_type type should be used for indexes within containers and is generally holding a nonnegative integer. These two types are defined within HiOp namespace (see hiop_defs.h) and currently set to int. This choice allows a streamlined integration (that is, type conversions are not needed and arrays of indexes can be reused) with the low level linear algebra libraries, such as sparse and dense linear solver libraries, which generally use int.

3.1.2 Specifying the optimization problem

All the methods of this section are "pure" virtual in hiop::hiopInterfaceDenseConstraints abstract class and need to be provided by the user implementation.

```
bool get_prob_sizes(size_type& n, size_type& m);
```

Provides the number of decision variables and the number of constraints $(m = m_E + m_I)$.

```
bool get_vars_info(const size_type& n, double *xlow, double* xupp,
NonlinearityType* type);
```

Provides the lower and upper bounds x_l and x_u on the decision variables. When a variable (let us say the i^{th}) has no lower or/and upper bounds, the i^{th} entry of xlow and/or xupp should be less than -1^{20} or/and larger than 1^{20} , respectively. The last argument is not used and can set to any value of the enum hiop::hiopInterfaceDenseConstraints::NonlinearityType.

Similar to the above, but for the inequality bounds d_l and d_u . For equalities, set the corresponding entries in clow and cupp equal to the desired value (from c_E).

```
bool eval_f(const size_type& n,
const double* x, bool new_x,
double& obj_value);
```

Implement this method to compute the function value f(x) in obj_value for the provided decision variables x. The input argument new_x specifies whether the variables x have been changed since the previous call of one of the eval_ methods. Use this argument to "buffer" the objective and gradients function and derivative evaluations when this is possible.

```
bool eval_grad_f(const size_type& n,
const double* x, bool new_x,
double* gradf);
```

Same as above but for $\nabla f(x)$.

```
bool eval_cons(const size_type& n, const size_type& m,

const size_type& num_cons,

const index_type* idx_cons, const double* x,

bool new_x, double* cons);
```

Implement this method to provide the value of the constraints c(x) and/or d(x). The input parameter num_cons specifies how many constraints (out of m) needs to evaluated; idx_cons array specifies the indexes, which are zero-based, of the constraints and is of size num_cons. These values should be provided in cons, which is also an array of size num_cons.

```
bool
vert b
```

Implement this method to provide the Jacobian of a subset of the constraints c(x) and/or d(x) in Jac; as for eval_cons, this subset is specified by the array of row indexes idx_cons. The array Jac should contain the Jacobian row-wise, meaning that the each row of the Jacobian is contiguous in memory and starts right after the previous row.

3.1.3 Specifying the inter-process/memory distribution of the problem

HiOp uses data parallelism, meaning that the data [D1]-[D3] of the optimization problem is distributed across processes (MPI ranks). It is **crucial** to understand the data distribution scheme in order to use HiOp's interface properly.

The general rule of thumb is to distribute any data of the problem with storage depending on n, namely the decision variables x and their bounds x_l and x_u , the gradient $\nabla f(x)$, and the Jacobians Jc(x) and Jd(x). The Jacobians, which are assumed to be dense matrices with n columns, are distributed column-wise.

Figure 1: Depiction of the distribution of the data of the optimization problem (1)-(4) across MPI ranks. The vectors and matrices with storage dependent on the number of optimization variables are distributed. Other data, *i.e.*, scalar function values or vectors of small size (shown in dashed dark grey boxes), are replicated on each rank.

⚠ Note: All the eval_ functions of the C++ interface provides local array slices of the above mentioned distributed data to the application code that implements HiOp's C++ interface. The size of these local slices is the "local size" (specified by the application code through

the $get_vecdistrib_info$ method explained below) and is different from the "global size" n and parameter n of methods.

⚠ **Note:** Since the Jacobians are distributed column-wise, the implementer should populate the Jac argument of eval_Jac_cons with the "local" columns.

On the other hand, the problem's data that does not have storage depending on n, is not distributed; instead, it is replicated on all ranks. Such data consist of c_E , d_l , d_u and the evaluations of c(x) and d(x).

```
bool get_MPI_comm(MPI_Comm& comm_out) ;
```

Use this method to specify the MPI communicator to be used by HiOp. It has a default implementation that will provide MPI_COMM_WORLD.

```
bool get_vecdistrib_info(size_type global_n, size_type* cols);
```

Use this method to specify the data distribution of the data of the problem that has storage depending on n. HiOp will call the implementation of this method to obtain the partitioning/distribution of an hypothetical vector of size global_n across the MPI ranks. The array cols is of dimension number of ranks plus one and should be populated such that cols[r] and cols[r+1]-1 specify the start and end indexes of the slice stored on rank r in the hypothetical vector. It has a default implementation that will returns false, indicating that HiOp should run in serial.

⚠ Note: HiOp also uses get_vecdistrib_info to obtain the information about the Jacobians' distribution across MPI ranks (this is possible since they are column-wise distributed).

Examples of how to use these functions can be found in the standalone drivers in **src/Drivers/** under the HiOp's root directory.

3.1.4 Calling HiOp for a hiopInterfaceDenseConstraints formulation

Once an implementation of the hiop::hiopInterfaceDenseConstraints abstract interface class containing the user's NLP representation is available, the user code needs to create a HiOp problem formulation that encapsulate the NLP representation, instantiate an optimization algorithm class, and start the numerical optimization process. Assuming that the NLP representation is implemented in a class named DenseConsEx1 (deriving hiop::hiopInterfaceDenseConstraints), the aforementioned sequence of steps can be performed by:

```
//the NLP represes

#include "hiopAlgFilterIPM.hpp" //solver class

using namespace him
1 #include "NlpDenseConsEx1.hpp"
                                                  //the NLP representation class
4 using namespace hiop;
5 ...
6 DenseConsEx1 nlp_interface();
                                                        //instantiate your NLP ↔
      representation class
7 hiopNlpDenseConstraints nlp(nlp_interface); //create HiOP encapsulation
 nlp.options.SetNumericValue("mu0", 0.01); //set initial value for barrier \leftarrow
      parameter
9 hiopAlgFilterIPM solver(&nlp);
                                                //create a solver object
10 hiopSolveStatus status = solver.run();
                                                //numerical optimization
11 double obj_value = solver.getObjective(); //get objective
```

Various output quantities of the numerical optimization phase (e.q., the optimal objective value)and (primal) solution, status of the numerical optimization process, and solve statistics) can be retrieved from HiOp's hiopAlgFilterIPM solver object. Most commonly used such methods are:

```
double getObjective() const;
 void getSolution(double* x) const;
3 hiopSolveStatus getSolveStatus() const;
4 int getNumIterations() const;
```

The standalone drivers NlpDenseConsEx1, NlpDenseConsEx2, and NlpDenseConsEx3 inside directory src/Drivers/ under the HiOp's root directory contain more detailed examples of the use of HiOp.

3.2 General sparse NLPs requiring up to second-order derivative information

The sparse NLP formulation supports sparse optimization problems and requires Hessians of the objective and constraints in addition to gradients/Jacobian of the objective/constraints.

$$\min_{x \in \mathbb{R}^n} f(x) \tag{5}$$
s.t. $c(x) = c_E \qquad [y_c] \qquad (6)$

$$d_l \le d(x) \le d_u \qquad [v_u] \qquad (7)$$

$$x_l \le x \le x_u \qquad [z_u] \qquad (8)$$

$$s.t. \quad c(x) = c_E \qquad [y_c] \qquad (6)$$

$$[v_l] d_l \le d(x) \le d_u [v_u] (7)$$

$$[z_l] x_l \le x \le x. [z_l] (8)$$

$$[z_l] x_l \le x \le x_u [z_u] (8)$$

Here $f: \mathbb{R}^n \to \mathbb{R}$, $c: \mathbb{R}^n \to \mathbb{R}^{m_E}$, $d: \mathbb{R}^n \to \mathbb{R}^{m_I}$. The bounds appearing in the inequality constraints (7) are assumed to be $d^l \in \mathbb{R}^{m_I} \cup \{-\infty\}$, $d^u \in \mathbb{R}^{m_I} \cup \{+\infty\}$, $d^l_i < d^u_i$, and at least of one of d_i^l and d_i^u are finite for all $i \in \{1, ..., m_I\}$. The bounds in (8) are such that $x^l \in \mathbb{R}^n \cup \{-\infty\}$, $x^u \in \mathbb{R}^n \cup \{+\infty\}$, and $x_i^l < x_i^u$, $i \in \{1, ..., n\}$. The quantities insides brackets are the Lagrange multipliers of the constraints. Whenever a bound is infinite, the corresponding multiplier is by convention zero. Internally, a slack variable s is introduced and the inequality constraints (7) are replaced by additional equality constraints and boundary constraints:

$$d(x) = s [y_d] (9)$$

$$[v_l] d_l \le s \le d_u [v_u] (10)$$

As a result, HiOp requires the user to provide the following quantities:

D1 objective and constraint functions f(x), c(x), d(x);

D2 the first-order derivatives of the above: $\nabla f(x)$, Jc(x), Jd(x);

D3 The Hessian of the Lagrangian

$$\nabla^2 L(x) = \nabla^2 f(x) + \sum_{i=1}^{m_E} y_{c,i} \nabla^2 c_i(x) + \sum_{i=1}^{m_I} y_{d,i} \nabla^2 d_i(x). \tag{11}$$

D4 the simple bounds x_l and x_u , the inequalities bounds: d_l and d_u , and the right-hand size of the equality constraints c_E .

3.2.1 C++ interface to solve sparse NLPs

The above optimization problem (5)-(8) can be specified by using the C++ interface, namely by deriving and providing an implementation for the hiop::hiopInterfaceSparse abstract class.

We present next the methods of this abstract class that needs to be implemented in order to specify the parts D1-D4 required to solve a sparse NLP problem.

<u>∧</u> **Note:** All the functions that have a bool return type should return false when an error occurs, otherwise should return true.

<u>Note:</u> hiop::hiopInterfaceSparse runs only in non-distributed/non-MPI mode. Intraprocess acceleration can be obtained using OpenMP or CUDA.

3.2.2 Specifying the optimization problem

All the methods of this section are "pure" virtual in hiop::hiopInterfaceSparse abstract class and need to be provided by the user implementation.

```
bool get_prob_sizes(size_type& n, size_type& m);
```

Provides the number of decision variables and the number of constraints $(m = m_E + m_I)$.

```
bool get_vars_info(const size_type& n, double *xlow, double* xupp,
NonlinearityType* type);
```

Provides the lower and upper bounds x_l and x_u on the decision variables. When a variable (let us say the i^{th}) has no lower or/and upper bounds, the i^{th} entry of xlow and/or xupp should be less than -1^{20} or/and larger than 1^{20} , respectively. The last argument is not used and can set to any value of the enum hiop::hiopInterface::NonlinearityType.

Similar to the above, but for the inequality bounds d_l and d_u . For equalities, set the corresponding entries in clow and cupp equal to the desired value (from c_E).

```
bool eval_f(const size_type& n,

const double* x, bool new_x,

double& obj_value);
```

Implement this method to compute the function value f(x) in obj_value for the provided decision variables x. The input argument new_x specifies whether the variables x have been changed since the previous call of one of the eval_ methods. Use this argument to "buffer" the objective and gradients function and derivative evaluations when this is possible.

```
bool eval_grad_f(const size_type& n,

const double* x, bool new_x,

double* gradf);
```

Same as above but for $\nabla f(x)$.

```
bool eval_cons(const size_type& n, const size_type& m,

const size_type& num_cons,

const index_type* idx_cons, const double* x,

bool new_x, double* cons);
```

Implement this method to provide the value of the constraints c(x) and/or d(x). The input parameter num_cons specifies how many constraints (out of m) needs to evaluated; idx_cons array specifies the indexes, which are zero-based, of the constraints and is of size num_cons. These values should be provided in cons, which is also an array of size num_cons.

```
bool
veval_Jac_cons(const size_type& n, const size_type& m,
const size_type& num_cons, const index_type* idx_cons,
const double* x, bool new_x,
const size_type& nnzJacS, index_type* iJacS, index_type* jJacS,
double* MJacS);
```

Implement this method to provide the Jacobian of a subset of the constraints c(x) and/or d(x) in Jac; this subset is specified by the array idx_cons. The last three arguments should be used to specify the Jacobian information in sparse triplet format. iJacS and jJacS needs to be jointly sorted: by indexes in iJacS and, for equal (row) indexes in iJacS, by indexes in jJacS.

Notes for implementer of this method:

- 2. When iJacS and jJacS are non-null, the implementer should provide the (i, j) indexes in these arrays.
- 3. When MJacS is non-null, the implementer should provide the values corresponding to entries specified by iJacS and jJacS.
- 4. iJacS and jJacS are both either non-null or null during the same call.
- 5. The pair (iJacS, jJacS) and MJacS can be both non-null during the same call or only one of them non-null; but they will not be both null.

Evaluates the Jacobian of equality and inequality constraints in one call.

⚠ Note: HiOp will call this method whenever the implementer/user returns false from the previous, "two-calls" eval_Jac_cons. We remark that the two-calls method should return false during both calls (for equalities and inequalities) made to it by HiOp in order to let HiOp know that the Jacobian should be evaluated using the one-call callback listed above.

The main difference from the above eval_Jac_cons is that the implementer/user of this method does not have to split the constraints into equalities and inequalities; instead, HiOp does this internally.

Parameters:

- first four: number of variables, number of constraints, (primal) variables at which the Jacobian should be evaluated, and boolean flag indicating whether the variables **x** have changed since a previous call to any of the function and derivative evaluations.
- nnzJacS, iJacS, jJacS, MJacS: number of nonzeros, (i, j) indexes, and nonzero values of the sparse Jacobian matrix. iJacS and jJacS needs to be jointly sorted: by indexes in iJacS and, for equal (row) indexes in iJacS, by indexes in jJacS.

⚠ Note: Notes 1-5 from the previous, two-call eval_Jac_cons applies here as well.

```
bool
veval_Hess_Lagr(const size_type& n, const size_type& m,
const double* x, bool new_x, const double& obj_factor,
const double* lambda, bool new_lambda,
const size_type& nsparse, const size_type& ndense,
const size_type& nnzHSS, index_type* iHSS, index_type* jHSS,
double* MHSS)
```

Evaluates the Hessian of the Lagrangian function as a sparse matrix in triplet format.

⚠ Note: Notes 1-5 from eval_Jac_cons apply to arrays iHSS, jHSS, and MHSS that stores the sparse part of the Hessian.

<u>∧</u> Note: The array lambda contains first the multipliers of the equality constraints followed by the multipliers of the inequalities.

3.2.3 Calling HiOp for a hiopInterfaceSparse formulation

Once the sparse NLP is coded, the user code needs to create a HiOp problem formulation that encapsulate the NLP representation, instantiate an optimization algorithm class, and start the numerical optimization process. Assuming that the NLP representation is implemented in a class named NlpEx6 (that derives from hiop::hiopInterfaceSparse), the aforementioned sequence of steps can be performed by:

```
1 #include "NlpSparseEx1.hpp"
                                     //the NLP representation class
2 #include "hiopInterface.hpp"
                                     //HiOP encapsulation of the NLP
3 #include "hiopAlgFilterIPM.hpp"
                                     //solver class
4 using namespace hiop;
5 . . .
6 NlpSparseEx1 nlp_interface();
                                               //instantiate your NLP representation ←
7 hiopNlpDenseConstraints nlp(nlp_interface); //create HiOP encapsulation
8 nlp.options.SetNumericValue("mu0", 0.01);
                                               //set a non-default initial value for←
        barrier parameter
9 hiopAlgFilterIPM solver(&nlp);
                                               //create a solver object
10 hiopSolveStatus status = solver.run();
                                               //numerical optimization
11 double obj_value = solver.getObjective();
                                               //get objective
```

Various output quantities of the numerical optimization phase (e.g., the optimal objective value and (primal) solution, status of the numerical optimization process, and solve statistics) can be retrieved from HiOp's hiopAlgFilterIPM solver object. Most commonly used such methods are:

```
1 double getObjective() const;
2 void getSolution(double* x) const;
3 hiopSolveStatus getSolveStatus() const;
4 int getNumIterations() const;
```

The standalone drivers NlpSparseEx1 and NlpSparseEx2 inside directory src/Drivers/ under the HiOp's root directory contain more detailed examples of the use of the sparse NLP interface of HiOp.

3.2.4 Solvers options for hiopInterfaceSparse NLP formulations

The optimization solver and linear algebra strategy within is controlled via the option **KKTLinsys**. For sparse NLPs, the default value (under "auto") is "xdycyd". Individual linear solvers can be selected via the option **linear_solver_sparse**. GPU-capable linear solvers are available, namely, cuSOLVER sparse LU and Ginkgo, when option "compute_mode" is set to "hybrid". We recommend setting "KKTLinsys" to "auto", "linear_solver_sparse" to "auto", and choosing CPU or GPU linear algebra backend by setting "compute_mode" to "cpu" or "hybrid", respectively.

A so-called condensed sparse optimization solver is currently under development with the goal of increasing adoption of GPUs. It uses a so-called condensed linear algebra KKT formulation (see Section A.0.1), specialized sparse matrix device and host kernels, Cholesky-based linear solves on the device, and a variation of the filter line-search interior-point algorithm currently implemented by HiOp. The variation of the algorithm is choosen to improve the numerical conditioning of the linear systems. As a result, the following options need to be used with the condensed sparse optimization solver:

```
KKTLinsys condensed

compute_mode hybrid

linsol_mode speculative

fixed_var relax

tau_min 0.9

theta_mu 1.1

kappa_mu 0.8

elastic_mode correct_it_adjust_bound

elastic_mode_bound_relax_final 1e-10

elastic_mode_bound_relax_initial 0.01

elastic_bound_strategy mu_projected

fact_acceptor inertia_free
```

3.3 NLPs in the mixed dense-sparse (MDS) form

A second class of optimization problems supported by HiOp consists of nonlinear, possibly nonconvex optimization problems that explicitly partition the optimization variables into so-called "dense" and "sparse" variables, x_d and x_s , respectively; this problem can be expressed compactly

$$\min_{x_d \in \mathbb{R}^{n_d}, x_s \in \mathbb{R}^{n_s}} f(x_d, x_s) \tag{12}$$

$$s.t. \quad c(x_d, x_s) = c_E, \tag{13}$$

$$d^{l} \le d(x_d, x_s) \le d^{u},\tag{14}$$

$$x_d^l \le x_d \le x_d^u, \ x_s^l \le x_s \le x_s^u. \tag{15}$$

Here $f: \mathbb{R}^n \to \mathbb{R}$, $c: \mathbb{R}^n \to \mathbb{R}^{m_E}$, and $d: \mathbb{R}^n \to \mathbb{R}^{m_I}$, where n denotes the total number of variables, $n = n_d + n_s$. The bounds appearing in the inequality constraints (14) are assumed to be $d^l \in \mathbb{R}^{m_I} \cup \{-\infty\}$, $d^u \in \mathbb{R}^{m_I} \cup \{+\infty\}$, $d^l_i < d^u_i$, and at least of one of d^l_i and d^u_i are finite for each $i \in \{1, \ldots, m_I\}$. The vector bounds x^l_d , x^u_d , x^l_s , and x^u_s in (15) need to satisfy identical requirements. For the rest of the paper m will denote $m_E + m_I$, i.e., the total number of constraints excepting the simple bounds constraints (15).

The salient idea behind mixed dense-sparse problems of the form (12)-(15) is that the explicit partitioning of the optimization variables and a couple of (block) structural properties of the functions $f(\cdot)$, $c(\cdot)$, and $d(\cdot)$, which are elaborated below, allow orchestrating the computations of the optimization algorithm to heavily rely on matrix and vector *dense* kernels and to reduce the reliance on sparse linear algebra kernels.

As mentioned above we make a couple of assumptions on the block structure of the derivatives:

- A1. The "cross-term" Hessian matrices $\nabla^2_{x_d x_s} f$, $\nabla^2_{x_s x_d} f$, $\nabla^2_{x_d x_s} c$, $\nabla^2_{x_s x_d} c$, $\nabla^2_{x_d x_s} d$, and $\nabla^2_{x_s x_d} d$ are zero;
- A2. The Hessian matrix $\nabla^2_{x_s x_s} L$ has a sparsity pattern that allows computationally efficient inversion of (or solving with) the matrix $\nabla^2_{x_s x_s} L + D_{x_s}$ where D_{x_s} is a diagonal matrix with positive diagonal entries; in our target applications, namely, optimal power flow problems, $\nabla^2_{x_s x_s} L$ is a diagonal matrix with nonnegative entries.

The optimization problem (12)–(15) is transformed internally by HiOp to an equivalent form that is more amenable to the use of interior-point methods as described on [4, Section 3]. Furthermore, HiOp implements the filter line-search interior-point algorithm of Wächter and Biegler [6, 5] (also implemented by IPOPT [7]) and makes explicit use of second-order derivatives/Hessians.

HiOp offers support for NVIDIA GPU acceleration. This feature is available only when solving NLPs in the mixed dense-sparse (MDS) form and should be enabled during the build by using -DHIOP_USE_GPU option with cmake. HiOp's cmake build system is quite versatile to find the dependencies required to offload computations to the device GPUs since was developed and tested on a few GPU-enabled HPC platforms at Oak Ridge, Lawrence Livermore, and Pacific Northwestern National Laboratories. These dependencies consist of CUDA library and Magma linear solver library. The Newton interior-point solver for MDS problems offers the possibility to perform the linear algebra and the great majority of the optimization computations on the device; this can be achieved by setting option compute_mode to gpu and the option mem_space to device. This combination of the two options will require the problem evaluation functions implemented by the user (see Section 3.3.1 below) to run on the device. If the user code does not support this, then HiOp should be used with compute_mode set to hybrid and the option mem_space set to default; this combination will offload the majority of linear algebra and optimization computations to the device. The HiOp's RAJA version of Example 1 (see src/Drivers/NlpMdsEx1RajaDriver.cpp) provides an example of implementing a MDS NLP so that it that can be solved by running HiOp's Newton solver on the device (i.e., compute_mode set to gpu and with mem_space set to device).

We note that MDS NLPs have no support for coarse grain (interprocess/internode) parallelism. The following quantities are required by HiOp:

D1 objective and constraint functions $f(x_d, x_s)$, $c(x_d, x_s)$, $d(x_d, x_s)$;

D2 the first-order derivatives: $\nabla f(x_d, x_s)$, $Jc(x_d, x_s)$, $Jd(x_d, x_s)$; the two Jacobians will have a MDS structure in the sense that the left blocks will be dense while the right blocks will be sparse in their expressions

$$Jc(x_d, x_s) = \begin{bmatrix} J_{x_d}c(x_d, x_s) & J_{x_s}c(x_d, x_s) \end{bmatrix}$$
(16)

and

$$Jd(x_d, x_s) = \begin{bmatrix} J_{x_d} d(x_d, x_s) & J_{x_s} d(x_d, x_s) \end{bmatrix}.$$

$$(17)$$

HiOp does not track MDS structure within the gradient $\nabla f(x_d, x_s)$ and treats it as an unstructured vector.

D3 the second-order derivatives in the form of the Hessian of the Lagrangian

$$\nabla^{2}L(x_{d}, x_{s}) = \lambda_{0}\nabla^{2}f(x_{d}, x_{s}) + \sum_{i=1}^{m_{E}} \lambda_{i}^{E}\nabla^{2}c_{i}(x_{d}, x_{s}) + \sum_{i=1}^{m_{I}} \lambda_{i}^{I}\nabla^{2}d_{i}(x_{d}, x_{s}).$$
(18)

We remark that $\nabla^2 L(x_d, x_s)$ has a so-called MDS structure in the sense that $\nabla^2_{x_d^2} L(x_d, x_s)$ is dense, $\nabla^2_{x_s^2} L(x_d, x_s)$ is sparse, and $\nabla^2_{x_d x_s} L(x_d, x_s)$ and $\nabla^2_{x_s x_d} L(x_d, x_s)$ are zero; this is a consequence of the assumptions A1 and A2 above,

D4 the simple bounds x_l and x_u , the inequalities bounds: d_l and d_u , and the right-hand size of the equality constraints c_E .

3.3.1 The C++ interface

The above optimization problem (12)–(15) can be specified by using the C++ interface, namely by deriving and providing an implementation for the hiop::hiopInterfaceMDS abstract class.

We present next the methods of this abstract class that needs to be implemented in order to specify the parts D1-D4 of the optimization problem. All the methods of this section are "pure" virtual in hiop::hiopInterfaceMDS abstract class and need to be provided by the user implementation.

⚠ Note: Unless stated otherwise, all the functions that return bool should return false when an error occurs, otherwise should return true.

⚠ Note: Regarding the implementation of hiop::hiopInterfaceMDS on the device, all pointers marked as "managed by Umpire" are allocated by HiOp using the Umpire's API. They all are addressed in the same memory space; however, the memory space can be host (typically CPU), device (typically GPU), or unified memory (um) spaces as per Umpire specification. The selection of the memory space is done via the option "mem_space" of HiOp. It is the responsibility of the implementers of the HiOp's interfaces to work with the "managed by Umpire" pointers in the same memory space as the one specified by the "mem_space" option.

```
bool get_prob_sizes(size_type& n, size_type& m);
```

Provides the number of decision variables and the number of constraints $(m = m_E + m_I)$.

```
bool get_vars_info(const size_type& n, double *xlow, double* xupp,
NonlinearityType* type);
```

Provides the lower and upper bounds x_l and x_u on the decision variables. When a variable (let us say the i^{th}) has no lower or/and upper bounds, the i^{th} entry of xlow and/or xupp should be less than -1^{20} or/and larger than 1^{20} , respectively. The last argument is not used and can set to any value of the enum hiop::hiopInterfaceDenseConstraints::NonlinearityType. While array type is allocated on host, arrays xlow and xupp are managed by Umpire.

```
bool get_cons_info(const size_type& m, double* clow, double* cupp,
NonlinearityType* type);
```

Similar to the above, but for the inequality bounds d_l and d_u . For equalities, set the corresponding entries in clow and cupp equal to the desired value (from c_E). While array type is allocated on host, arrays clow and cupp are managed by Umpire.

```
bool get_sparse_dense_blocks_info(int& nx_sparse, int& nx_dense,

int& nnz_sparse_Jaceq,

int& nnz_sparse_Jacineq,

int& nnz_sparse_Hess_Lagr_SS,

int& nnz_sparse_Hess_Lagr_SD);
```

Specifies the number of nonzero elements in the *sparse blocks* of the Jacobians of the constraints and of the Hessian of the Lagrangian, see (17) and (18), respectively. The last parameter nnz_sparse_Hess_Lagr_SD is not used momentarily and should be set to zero.

```
bool eval_f(const size_type& n,
const double* x, bool new_x,
double& obj_value);
```

Implement this method to compute the function value f(x) in obj_value for the provided decision variables x. The input argument new_x specifies whether the variables x have been changed since the previous call of one of the eval_ methods. Use this argument to "buffer" the objective and gradients function and derivative evaluations when this is possible. Array x is managed by Umpire.

```
bool eval_grad_f(const size_type& n,

const double* x, bool new_x,

double* gradf);
```

Same as above but for $\nabla f(x)$. Arrays x and gradf are managed by Umpire.

```
bool eval_cons(const size_type& n, const size_type& m,

const size_type& num_cons,

const index_type* idx_cons, const double* x,

bool new_x, double* cons);
```

Implement this method to provide the value of the constraints c(x) and/or d(x). The input parameter num_cons specifies how many constraints (out of m) needs to evaluated; idx_cons array

specifies the indexes, which are zero-based, of the constraints and is of size num_cons. These values should be provided in cons, which is also an array of size num_cons. Arrays idx_cons, x and cons are managed by Umpire.

```
eval_Jac_cons(const size_type& n, const size_type& m,

const size_type& num_cons, const index_type* idx_cons,

const double* x, bool new_x,

const size_type& nsparse, const size_type& ndense,

const size_type& nnzJacS,

index_type* iJacS, index_type* jJacS, double* MJacS,

double* JacD);
```

Evaluates the Jacobian of constraints split in the sparse (triplet format) and dense submatrices (row-wise contiguous memory storage). The methods is called by HiOp twice once for equalities and once for inequalities and passes during each of these calls the idx_cons array of the indexes of equalities and inequalities in the whole body of constraints.

It is advantageous to provide this method when the underlying NLP's constraints come naturally split in equalities and inequalities. When this is not convenient to do so, use eval_Jac_cons below.

Parameters:

- first six: see eval_cons.
- nnzJacS, iJacS, jJacS, MJacS are for number of nonzeros, (i, j) indexes, and nonzero values of the sparse Jacobian.
- JacD should contain the Jacobian with respect to the dense variables of the MDS problem. The array should store this Jacobian submatrix row-wise, meaning that the each row of the Jacobian is contiguous in memory and starts right after the previous row.
- ⚠ Note: Arrays idx_cons, x, iJacS, jJacS, MJacS and JacD are managed by Umpire.
- **⚠ Note:** When implementing this method one should be aware that:
 - 1. JacD parameter will be always non-null
 - 2. When iJacS and jJacS are non-null, the implementer should provide the (i, j) indexes in these arrays.
 - 3. When MJacS is non-null, the implementer should provide the values corresponding to entries specified by iJacS and jJacS.
 - 4. iJacS and jJacS are both either non-null or null during a call.
 - 5. The pair (iJacS, jJacS) and MJacS can be both non-null during the same call or only one of them non-null; but they will not be both null.

```
bool eval_Jac_cons(const size_type& n, const size_type& m,

const double* x, bool new_x,

const size_type& nsparse, const size_type& ndense,

const size_type& nnzJacS,

index_type* iJacS, index_type* jJacS, double* MJacS,

double* JacD);
```

Evaluates the Jacobian of equality and inequality constraints in one call. This Jacobian is mixed dense-sparse (MDS), which means is structurally split in the sparse (triplet format) and dense matrices (contiguous rows storage)

⚠ Note: HiOp will call this method whenever the implementer/user returns false from the previous, two-calls eval_Jac_cons; we remark that this method should return false during both calls (for equalities and inequalities) made to it by HiOp.

The main difference from the above eval_Jac_cons is that the implementer/user of this method does not have to split the constraints into equalities and inequalities; instead, HiOp does this internally.

Parameters:

- first four: number of variables, number of constraints, (primal) variables at which the Jacobian should be evaluated, and boolean flag indicating whether the variables **x** have changed since a previous call to any of the function and derivative evaluations.
- nsparse and ndense: number of sparse and dense variables, respectively, adding up to n.
- nnzJacS, iJacS, jJacS, MJacS: number of nonzeros, (i, j) indexes, and nonzero values of the sparse Jacobian block; these indexes are within the sparse Jacobian block (not within the entire Jacobian).
- JacD: dense Jacobian block as a contiguous array storing the matrix by rows.

⚠ Note: Arrays x, iJacS, jJacS, MJacS and JacD are managed by Umpire.

⚠ Note: Notes 1-5 from the previous, two-call eval_Jac_cons applies here as well.

```
bool eval_Hess_Lagr(const size_type& n, const size_type& m,

const double* x, bool new_x, const double& obj_factor,

const double* lambda, bool new_lambda,

const size_type& nsparse, const size_type& ndense,

const size_type& nnzHSS,

index_type* iHSS, index_type* jHSS, double* MHSS,

double* HDD,

size_type& nnzHSD, index_type* iHSD, index_type* jHSD,

double* MHSD);
```

Evaluates the Hessian of the Lagrangian function in three structural blocks given by the MDS structure of the problem. The arguments nnzHSS, iHSS, jHSS, and MHSS hold $\nabla^2 L(x_s, x_s)$ from (18). The argument HDD stores $\nabla^2 L(x_d, x_d)$ from (18).

⚠ Note: The last four arguments, which are supposed to store the cross-Hessian $\nabla^2 L(x_s, x_d)$ from (18), are for now assumed to hold a zero matrix. The implementer should return nnzHSD=0 during the first call to eval_Hess_Lagr. On subsequent calls, HiOp will pass the sparse triplet HSD arrays set to NULL and the implementer (obviously) should not use them.

⚠ Note: Notes 1-5 from eval_Jac_cons apply to arrays iHSS, jHSS, and MHSS storing the sparse part of the Hessian as well as to the HDD array storing the dense block of the Hessian.

⚠ Note: The rule of thumb is that when specifying *symmetric* matrices to HiOp, only the *upper triangle elements* should be specified by the user. The rule applies both to sparse and dense matrices. More info on HiOp's conventions on matrices storage can be found at https://github.com/LLNL/hiop/tree/develop/src/LinAlg.

⚠ Note: The array lambda contains the multipliers of constraints. These multipliers come have the same order as the constraints in eval_cons (this is a new behavior introduced in HiOp v0.4).

<u>^</u>Note: Arrays x, lambda, iHSS, jHSS, MHSS, HDD, iHSD, jHSD and MHSD are managed by Umpire.

⚠ Device computations: HiOp supports full device/GPU acceleration for MDS NLPs. To achieve this, the user can use option compute_mode set to gpu and option mem_space set to device. However, the user needs to be able to evaluate the model on the device. The rule of thumb is that all the *pointer* arguments of the callback methods of this section will be on the device (with a few exceptions) so that the user can populate the arrays on the device. This is illustrated and discussed in detail in src/Drivers/NlpMdsRajaEx1.hpp, which is part of the RAJA Example 1 (see src/Drivers/NlpMdsEx1RajaDriver.cpp) that is capable of running completely in the device memory space with minimal host-device transfer.

3.3.2 Calling HiOp for a hiopInterfaceMDS formulation

Once an implementation of the hiop::hiopInterfaceMDS abstract interface class containing the user's NLP representation is available, the user code needs to create a HiOp problem formulation that encapsulate the NLP representation, instantiate an optimization algorithm class, and start the numerical optimization process.

A detailed, self-contained example can be found in src/Drivers/directory in NlpMdsEx1Driver.cpp files for an illustration of aforementioned sequence of steps. A synposis of HiOp code that solves and MDS NLP implemented presumably in a class MdsEx1 (implemented in NlpMdsFormEx1.hpp) derived from hiop::hiopInterfaceMDS is as follows:

```
//the NLP representation class
1 #include "NlpMdsFormEx1.hpp"
                                 //HiOP encapsulation of the NLP
2 #include "hiopInterface.hpp"
3 #include "hiopAlgFilterIPM.hpp"
                                      //solver class
4 using namespace hiop;
6 MdsEx1* my_nlp = new MdsEx1(n_sp, n_de); //instantiate your NLP representation <math>\leftarrow
7 hiopNlpMDS nlp(*my_nlp); //create HiOP encapsulation
8 nlp.options->SetStringValue("Hessian", "analytical_exact");
9 nlp.options->SetNumericValue("mu0", 0.01); //set initial value for barrier \leftrightarrow
      parameter
10 hiopAlgFilterIPMNewton solver(&nlp);
                                                 //create a solver object
hiopSolveStatus status = solver.run();
                                               //numerical optimization
                                             //get objective
double obj_value = solver.getObjective();
13 ...
```

3.4 Structured NLPs suitable to primal decomposition (PriDec) schemes

Starting v0.5, HiOp also offers parallel computing capabilities via the PriDec solver for NLPs with separable objective terms in the form of:

$$\min_{x \in \mathbb{R}^n} \quad f(x) + \sum_{i=1}^K r_i(x) \tag{19}$$

s.t.
$$c(x) = c_E,$$
 $[y_c]$ (20)

$$[v_l] d_l \le d(x) \le d_u, [v_u] (21)$$

$$[z_u] x_l \le x \le x_u. [z_u] (22)$$

Mathematically, the above problem is identical (and has the same specification) to the NLP (1)-(4), with the exception of the so-called "recourse" terms $r_i(x)$ appearing in the objective. Each of these functions are real-valued, $r_i: \mathbb{R}^n \to \mathbb{R}$, for all $i \in \{1, 2, \dots, K\}$, and can be of various order of differentiability. As of now, the recourse functions $r_i(x)$ need to be Lipschitz continuous and continuously differentiable. It is also possible for $r_i(x)$ to be Lipschitz and only weakly concave (with convergence guarantees). The users are encouraged to contact HiOp developers for the latest developements in this area. A compact description of the algorithm implemented by PriDec can be found in [8] (the technical report version is available doc/ directory).

The input in which HiOp expects for this class of problems is a bit different than for NLPs of the form (1)-(4) and MDS NLPs introduced in the previous sections. This is mainly caused by the specifics of the primal decomposition algorithm/solver that was purposedly developed to solve (19)-(22) for large K (e.g., $K = O(10^6)$) efficiently on a massively parallel computing platform. Nevertheless, for smaller K, problems of form (19)-(22) can be solved with HiOp using the sparse and MDS input interfaces.

The primal decomposition algorithm requires a separation or breakdown of the evaluation of (19)-(22) into the following computational "units".

1. solving the so-called "master problem" of the form

$$\min_{x \in \mathbb{P}^n} \quad f(x) + q(x) \tag{23}$$

s.t.
$$c(x) = c_E$$
 $[y_c]$ (24)

$$[v_l] d_l \le d(x) \le d_u [v_u] (25)$$

$$[z_u] x_l \le x \le x_u [z_u] (26)$$

for a real function q(x) constructed by HiOp PriDec solver, which serves as an approximation to $\sum_{i=1}^K r_i(x)$. The evaluation of q(x), its gradient and sparse Hessian are provided by HiOp PriDec solver based on the function values and graidents of $r_i(x)$; The master problem is implemented based on the basecase problem

$$\min_{x \in \mathbb{R}^n} \quad f(x) \tag{27}$$

s.t.
$$c(x) = c_E$$
 [y_c] (28)

$$[v_l] d_l \le d(x) \le d_u [v_u] (29)$$

$$[z_u] x_l \le x \le x_u [z_u] (30)$$

where no recourse functions exist. To determine whether q(x) is included in the objective, a boolean variable is used. The basecase problem class also contains a hippInterfacePriDecProblem::RecourseApproxEvaluator object, that stores and updates the function

- q(x). The PriDec solver constructs q(x) at each iteration and then passes it on to the base-case problem so that the full problem (23)-(26) can be solved. In other words, the user does not need to provide q(x) in their objective, but needs to write the basecase problem (27)-(30) such that its objective (or potentially constraint in the future) can be extended.
- 2. evaluating the recourse functions $r_i(x)$ and their (sub)gradients $\nabla r_i(x)$, for all $i \in \{1, 2, ..., K\}$. If there is no analytical form for $r_i(x)$, as in the case of two-stage problems, the user might need to implement and solve a second-stage optimization problem. Nevertheless, HiOp PriDec solver expects to be returned a function value and a (sub)gradient at a given x.

To streamline steps 1 and 2 above, the master problem is implemented with the class hippInter-facePriDecProblem, which has methods for solving the master problem and evaluating recourse functions. We stress that it is the user's responsibility to implement steps 1 and 2 above. In regards to 1, the function q(x) is an approximation to the recourse $R(x) := \sum_{i=1}^{K} r_i(x)$ from (23)-(26), which is built based on the function and gradient evaluations of $r_i(x)$, computed at step 2.

The user can safely assume that q(x) is a strictly convex quadratic function (however the function may be only convex and nonquadratic in a future version of HiOp). HiOp assumes that the user can solve the master problem (23)-(26) in some efficient way and that the user can return the optimal solution vector. In the examples given, the master problem is setup and solved with HiOp.

Self-contained examples of the use of HiOp's PriDec solver are present in NlpPriDecEx1 and NlpPriDecEx2 examples under the Drivers directory.

3.5 Specifying a starting point for the optimization process

The user can provide an initial primal or primal-dual point implementing the method get_starting_point of the NLP specification interfaces hiopInterfaceDenseConstraints or hiopInterfaceMDS.

```
bool get_starting_point(const size_type& n, const size_type& m,

double* x0,

bool& duals_avail,

double* z_bndL0, double* z_bndU0,

double* lambda0,

bool& slacks_avail,

double* ineq\_slack);
```

A second method is offered to user to provide an initial primal starting point. This method will be soon deprecated as its functionality is a subset of the method above and should be avoided.

```
bool get_starting_point(const size_type& n, double* x0);
```

Parameters:

- n and m are the number of variables and the number of constraints.
- x0 array of values for the initial primal variables/starting point.
- duals_avail boolean flag expressing whether the user wishes to specify the a starting point for dual variables.

- z_bndL0 and z_bndU0 starting points for the duals of the lower and upper bounds.
- lambda0 is an array containing the starting point for the duals of the constraints. It is allocated to have the dimension of the constraints body and the entries in lambda0 should have the same order as the constraints body (that is equalities may be mixed with inequalities), see eval_cons methods; HiOp keeps track internally whether each value in lambda0 is a multiplier for an equality or for an inequlity constraint.
- slacks_avail boolean flag expressing whether the initial values for the inequality slacks (added by HiOp internally) are given by the user.
- ineq_slack is an array containing the starting point for the slacks added by HiOp to transfer inequalities to equalities internally.

These methods should return true if the user successfully provided starting values for the primal or for the primal and dual variables. If the first method above returns false, then HiOp will attempt calling the second method above. This behavior is for backward compatibility. If a starting point cannot be set by the user, both methods should return false. Also, we remark that the methods do not need to be implemented since default implementations returning false are provided by the base class; in this case, HiOp will use a starting point of all zeros (which is subjected to internal adjustments, see below).

⚠ Note: Arrays x0, z_bndL0, z_bndU0, lambda0 and ineq_slack are managed by Umpire.

⚠ Note: The starting point returned by the user in x0 using the methods above is subject to internal adjustments in HiOp and may differ from x0 with which the methods of the previous section are first called.

A third method to initialize the point is offered to advanced users, as it will skip all the safeguards in HiOp, e.g., checking if it is 'nullptr' or project x into variable bounds.

```
bool get_warmstart_point(const size_type& n, const size_type& m,

double* x0,

double* z_bndL0, double* z_bndU0,

double* lambda0,

double* ineq\_slack,

double* v10, double* vu0);
```

Parameters:

- n and m are the number of variables and the number of constraints.
- x0 array of values for the initial primal variables/starting point.
- z_bndL0 and z_bndU0 starting points for the duals of the lower and upper bounds.
- lambda0 is an array containing the starting point for the duals of the constraints. It is allocated to have the dimension of the constraints body and the entries in lambda0 should have the same order as the constraints body (that is equalities may be mixed with inequalities), see eval_cons methods; HiOp keeps track internally whether each value in lambda0 is a multiplier for an equality or for an inequlity constraint.
- ineq_slack is an array containing the starting point for the slacks added by HiOp to transfer inequalities to equalities internally.

• v10 and vu0 starting points for the duals of the (inequality) constraints lower and upper bounds.

This method should only be implemented when user wants to use a warmstart point and should be used with caution.

⚠ Note: Arrays x0, z_bndL0, z_bndU0, lambda0, ineq_slack, v10 and vu0 are managed by Umpire.

3.6 Obtain information from HiOp

HiOp provides two callback functions for the user to obtain information about the optimization status.

```
void solution_callback(hiopSolveStatus status,
size_type n,
const double* x,
const double* z_L,
const double* z_U,
size_type m,
const double* g,
const double* g,
const double* lambda,
double obj_value);
```

Callback method called by HiOp when the optimal solution is reached. User can use it to retrieve primal-dual optimal solution.

Parameters:

- status status of the solution process.
- n global number of variables.
- x array of (local) entries of the primal variables at solution.
- z.L array of (local) entries of the dual variables for lower bounds at solution.
- z_U array of (local) entries of the dual variables for upper bounds at solution.
- g array of the values of the constraints body at solution.
- lambda array of (local) entries of the dual variables for constraints at solution.
- obj_value objective value at solution

⚠ Note: Arrays x, z_L, z_U, g and lambda are managed by Umpire.

```
bool iterate_callback(int iter,

double obj_value,

double logbar_obj_value,

int n,

const double* x,

const double* z_L,

const double* z_U,

int m_ineq,
```

```
const double * s,
9
10
                              int m,
                              const double * g,
11
                              const double * lambda,
12
                              double inf_pr ,
13
                              double inf_du,
14
                              double onenorm_pr,
                              double mu,
16
                              double alpha_du,
17
                              double alpha_pr,
18
                              int ls_trials);
19
```

Intermediate callback method called by HiOp at the end of each iteration. User can obtain information about the optimization status while HiOp solves the problem. If the user (implementer) of this methods returns false, HiOp will stop the optimization with hiop::hiopSolveStatus::User_Stopped return code. Parameters:

- iter the current iteration number
- obj_value objective value
- logbar_obj_value log barrier objective value
- n global number of variables
- x array of (local) entries of the primal variables (managed by Umpire, see note below)
- z_L array of (local) entries of the dual variables for lower bounds (managed by Umpire, see note below)
- z_U array of (local) entries of the dual variables for upper bounds (managed by Umpire, see note below)
- m_ineq the number of inequality constraints
- s array of the slacks added to transfer inequalities to equalities (managed by Umpire, see note below)
- m the number of constraints
- g array of the values of the constraints body (managed by Umpire, see note below)
- lambda array of (local) entries of the dual variables for constraints (managed by Umpire, see note below)
- inf_pr inf norm of the primal infeasibilities
- inf_du inf norm of the dual infeasibilities
- onenorm_pr one norm of the primal infeasibilities
- mu the log barrier parameter
- alpha_du dual step size
- alpha_pr primal step size

• ls_trials the number of line search iterations

⚠ Note: Arrays x, z_L, z_U, s, g and lambda are managed by Umpire.

⚠ Note: HiOp's option callback_mem_space can be used to change the memory location of array parameters managaged by Umpire. More specifically, when callback_mem_space is set to 'host' (and mem_space is 'device'), HiOp transfers the arrays from device to host first, and then returns pointers on host whose data is managed by Umpire. These pointers can be then used in host memory space (without the need to rely on or use Umpire).

3.7 Compiling and linking your project with the HiOp library

HiOp's build system offers HiOp as a static library. For a straightforward integration of HiOp in the user's project, one needs to

- append to the compiler's include path the location of the HiOP's headers:
 - -Ihiop-dir/include
- specify libhiop.a to the linker, possibly adding the HiOP's library directory to the linker's libraries paths:

```
-Lhiop-dir/lib -lhiop
```

Here, hiop-dir is the HiOp's distribution directory (created using HiOp's build system, in particular by using make install command).

In addition, a shared dynamic load library can be also built by using <code>HIOP_BUILD_SHARED</code> option with cmake.

4 Solver options

The user can control HiOp's options in two ways:

- via the options file(s) that should be placed in the same directory where the application driver using HiOp is executed. The format of an option file is very basic, each of its lines should contain a single pair option_name option_value. Lines that begin with '#' or consist of only white characters are discarded. The option value is checked to have the correct type (numeric, integer, or string) and to be in the expected range. If the checks fail, then the option is set to the default value and a warning message is displayed.
- at runtime via the HiOp's API using the options member of the various NLP formulation and PriDec solver classes. The options object has three methods that allows the user to set options based on their types:

```
bool SetNumericValue(const char* name, const double& value);
bool SetIntegerValue(const char* name, const int& value);
bool SetStringValue (const char* name, const char* value);
```

⚠ Each option i. should be of one of types numeric/double, integer, and string; ii. has a value associated; iii. may have a range of values; and, iv. has a default value.

The NLP solvers load options from the file hiop.options. The PriDec solver will look for and load options from up to three files:

- hiop_pridec.options specifies options for the PriDec algorithm/solver
- hiop_pridec_master.options specifies options for the NLP solver used to solve the master problem. This master NLP solver does not necessarily have to be one of HiOp's NLP solvers. The name of this file can be controlled via the string option options_file_master_prob of the PriDec solver, in hiop_pridec.options.
- hiop.options specifies the options for the worker NLP solver. This applies only when the worker NLP solver is one of the HiOp's solvers. This file will not be used by worker solvers other than HiOp; they will use their default option files.

For example, when the PriDec solver is used with HiOp's NLP solvers for both the master and the worker subproblems, the user should create the three options files above to customize the PriDec, master, and worker solvers. As another example, when Ipopt is used for both master and worker subproblems, the user should use the default "ipopt.opt" file for the worker and use "hiop_pridec_master.options" for Ipopt options for the master subproblem (or, if another file needs to be used, change the name of the master options file via options_file_master_prob in PriDec's hiop_pridec.options option file).

If HiOp needs to solve a feasibility problem internally, it treats the feasibility problem as a new optimization problem and launchs a standalone internal process to solve the problem. The file, hiop_fr.options, can be used to control the options for solving the feasibility problem by HiOp. The name of this option file can be tuned by parameter 'options_file_fr_prob'.

<u>∧</u> **Note:** If an option file is not present, HiOp will use default values (unless the user changes the options at runtime via the API).

⚠ Note: Options set in the options files overwrite options set at runtime via the above API.

4.1 Options for NLP solvers

4.1.1 Termination criteria and output

acceptable_iterations: number of iterations passing the acceptable tolerance (see acceptable_tolerance) after which HiOp terminates. Integer values between 1 and 10⁶. Default value: 10.

acceptable_tolerance: HiOp will terminate if the inf-norm of the NLP optimality residuals is below this value for acceptable_iterations many consecutive iterations. Double values in $[10^{-14}, 0.1]$. Default value: 10^{-6} .

max_iter: maximum number of iterations. Integer values between 1 to 10⁶. Default value: 3000.

rel_tolerance: error tolerance for the NLP relative to errors at the initial point. A null value disables this option. Double values in [0,0.1]. Default value: 0.

tolerance: maximum (absolute) NLP optimality error allowed at the optimal solution. Double values in $[10^{-14}, 0.1]$. Default value: 10^{-8} .

 max_soc_iter : maximum number of iterations in second order correction. Integer values between 1 to 10^6 . Default value: 4.

4.1.2 Filter-IPM algorithm selection and parameters

mu0: initial log-barrier parameter mu. Double values in $[10^{-16}, 10^3]$. Default value: 1.0.

kappa_eps: μ is reduced when when log-barrier error is below kappa_eps $\times \mu$. Double values in [10⁻⁶, 1000]. Default value: 10.

kappa_mu: linear reduction coefficient for μ (eqn. (7) in [7]). Double values in [10⁻⁸, 0.999]. Default value: 0.2.

kappa1: sufficiently-away-from-the-boundary projection parameter used in the shift of the user-provided initial point. Double values in $[10^{-16}, 0.1]$. Default value: 0.01.

kappa2: shift projection parameter used in initialization for doubly bounded variables. Double values in $[10^{-15}, 0.49999]$. Default value: 0.01.

theta_mu: exponential reduction coefficient for μ (eqn. (7) in [7]). Double values in [1,2]. Default value: 1.5.

eta_phi: parameter of (suff. decrease) in Armijo Rule. Double values in [0, 0.01]. Default value: 10^{-8} .

smax: the primal-dual IPM equations are rescaled when the average value of the is larger than this threshold value. Double values in $[1, 10^7]$. Default value: 100.

Hessian: type of Hessian used with the filter IPM.

- "quasinewton_approx" (default) HiOp will build secant BFGS approximation for the Hessian and use a quasi-Newton filter IPM;
- "analytical_exact" Hessian provided by the user and a Newton filter IPM algorithm will be used.

sigma0: initial value of the initial multiplier of the identity in the secant approximation. Numeric values in $[0, 10^7]$. Default value: 1.

sigma_update_strategy: string option specifying the updating strategy for the multiplier of the identity in the secant approximation. Possible values are "sigma0", "sty", "sty_inv", "snrm_ynrm" and "sty_srnm_ynrm". Default value: is "sty".

secant_memory_len: size of the memory (number of (s, y) pairs) of the Hessian secant approximation. Integer values between 0 and 256. Default value: 6.

kappa_soc: factor to decrease the constraint violation in second order correction. Double values in $[0, 10^{20}]$. Default value: 0.99.

warm_start: string option with "yes" or "no" values deciding whether HiOp uses warm start from the user provided primal-dual point. Note that all the primal, dual and slack variables must be provided. Default value: "no".

4.1.3 Line search and step computation

fact_acceptor: the criteria used to accept a factorization:

- "inertia_correction" (default): the most stable approach which requires inertia information provided by the given linear solvers (see parameter linear_solver_sparse);
- "inertia_free": apply inertia free method. This approach is typically used when the given linear solver cannot provide inertia information.

neg_curv_test_fact: apply curvature test to check if a factorization is acceptable. This is the scaling factor used to determines if a direction is considered to have sufficiently positive curvature. Only valid when parameter fact_acceptor is set to inertia_free. Double values in $[0, 10^{20}]$. Default value: 10^{-11} .

min_step_size: minimum step size allowed in line-search. If step size is less than this number, feasibility restoration problem is activated. Double values in $[0, 10^6]$. Default value: 10^{-16} .

theta_max_fact: maximum constraint violation (θ_{max}) is scaled by this fact before using in the fileter line-search algorithm. (eqn (21) in [7]). Double values in $[0, 10^7]$. Default value: 10^4 .

theta_min_fact: minimum constraint violation (θ_{min}) is scaled by this fact before using in the fileter line-search algorithm. (eqn (21) in [7]). Double values in $[0, 10^7]$. Default value: 10^{-4} .

tau_min: fraction-to-the-boundary parameter used in the line-search to back-off from the boundary (eqn. (8) in [7]). Double values in [0.9, 0.99999]. Default value: 0.99.

accept_every_trial_stepduals: disable the line-search and take the close-to-boundary step. String values: "no" (default) and "yes".

duals_init: type of the update for the initialization of Lagrange multipliers corresponding to the equality constraints. Possible values one of the strings "lsq" (least-square (LSQ) solve initialization) and "zero" (multipliers are set identically to zero). Default value: is "lsq".

duals_lsq_ini_max: max inf-norm allowed for initial duals when computed with LSQ (see duals_init); if norm is greater, the duals for the equality constraints will be set to zero. Double values between 10^{-16} and 10^{10} . Default value: 1000.

duals_update_type: string option specifying the type of update of the multipliers of the eq. constraints after each iteration. Possible values are "lsq" (update based on a LSQ solve) and "linear" (Newton update based on the dual steplength. When Hessian is "quasinewton_approx" the default value for this options is "lsq". When "Hessian" is "analytical_exact" the default value is "linear".

recalc_lsq_duals_tol: threshold for inf-norm under which the LSQ computation of duals is used. If the inf-norm of the duals of the equality constraints is larger than the value of this options, these duals are set to zero. This options requires duals_update_type to be "lsq" (the option is ignored otherwise). Double values in $[0, 10^{10}]$. Default value: 10^{-6} .

duals_update_type: string option specifying the type of update of the multipliers of the eq. constraints after each iteration. Possible values are "lsq" (update based on a LSQ solve) and "linear" (Newton update based on the dual steplength. When Hessian is "quasinewton_approx" the default value for this options is "lsq". When Hessian is "analytical_exact" the default value is "linear".

4.1.4 Feasibility restoration

force_resto: string option with "yes" or "no" values deciding whether HiOp forces applying feasibility restoration. Default value: "no".

options_file_fr_prob: string option indicates the name of the option file for the feasibility restoration problem. Default value: "hiop_fr_ci.options".

kappa_resto: factor to decrease the constraint violation in feasibility restoration. Double values in [0, 1]. Default value: 0.9.

4.1.5 Elastic mode

elastic_mode: type of elastic mode used within HiOp:

- "none" (default): does not apply elastic mode;
- "tighten_bound": tightens the bounds when μ changes.
- "correct_it": tightens the bounds, and corrects the slacks and slack duals when μ changes.
- "correct_it_adjust_bound": tightens the bounds, corrects the slacks and slack duals, and adjusts the bounds again from the modified iterate when μ changes.

elastic_bound_strategy: Strategy used to tighen the bounds, when μ changes:

- "mu_projected" (default): sets the new bound relax factor to $(\mu \mu_{target})/(\mu_{init} \mu_{target}) * (bound_relax_perturb_initial bound_relax_perturb_final) + bound_relax_perturb_final$
- "mu_scaled": sets the new bound relax factor to $0.995 * \mu$

elastic_mode_bound_relax_final: the final/minimum bound relaxation factor in the elastic mode. This value must be less or equal to elastic_mode_bound_relax_initial. If user provides elastic_mode_bound_relax_final > elastic_mode_bound_relax_initial, HiOp will use the default values for both parameters. Double values in $[10^{-16}, 0.1]$. Default value: 10^{-12} .

elastic_mode_bound_relax_initial: the initial bound relaxation factor in the elastic mode. This value must be greater or equal to elastic_mode_bound_relax_final. If user provides elastic_mode_bound_relax_final > elastic_mode_bound_relax_initial, HiOp will use the default values for both parameters. Double values in $[10^{-16}, 0.1]$. Default value: 10^{-2} .

4.1.6 Regularization

delta_0_bar: first perturbation of the Hessian block for inertia correction. Double values in $[0, 10^{40}]$. Default value: 10^{-4} .

delta_c_bar: factor for regularization for potentially rank-deficient Jacobian ($\delta_c = \text{delta_c_bar} * \mu_c^{\kappa}$). Double values in [10⁻²⁰, 10⁴⁰]. Default value: 10⁻⁸.

delta_w_max_bar: largest perturbation of the Hessian block for inertia correction. Double values in $[10^{-40}, 10^{40}]$. Default value: 10^{20} .

delta_w_min_bar: smallest perturbation of the Hessian block for inertia correction. Double values in [0, 1000]. Default value: 10^{-20} .

kappa_c: exponent of μ when computing regularization for potentially rank-deficient Jacobian $(\delta_c = \text{delta_c_bar} * \mu_c^{\kappa})$. Double values in $[0, 10^{40}]$. Default value: 0.25.

kappa_w_minus: factor to decrease the most recent successful perturbation for inertia correction. Double values in $[10^{-20}, 1]$. Default value: 0.3333.

kappa_w_plus: factor to increase perturbation when it did not provide correct inertia correction (not first iteration). Double values in $[1, 10^{40}]$. Default value: 8.

kappa_w_plus_bar: factor to increase perturbation when it did not provide correct inertia correction (first iteration when scale not known). Double values in $[1, 10^{40}]$. Default value: 100.

delta_w_min_bar: smallest perturbation of the Hessian block for inertia correction. Double values in [0, 1000]. Default value: 10^{-20} .

delta_w_min_bar: smallest perturbation of the Hessian block for inertia correction. Double values in [0, 1000]. Default value: 10^{-20} .

regularization_method: whether randomized method is used to compute regularizations.

- "standard" (default) no randomized method is used. Regularization is computed as a scala times an identity matrix, i.e., δI .
- "randomized" use randomized regularizations.

normaleqn_regularization_priority: when normal equation is used and the iterate matrix is not p.d., updating dual regularization is more efficient than updating the primal ones. Only valid when option KKTLinsys is set to normaleqn

- "primal_first" update primal regularizations to correct positive definiteness. If primal regularization is larger than the value provided by option **delta_w_max_bar**, HiOp will try to increase dual regularitions.
- "dual_first" (default) update dual regularizations to correct positive definiteness. If dual regularization is larger than the value provided by option **delta_w_max_bar**, HiOp will try to increase primal regularitions.

4.1.7 Solving internal linear systems

duals_init_linear_solver_sparse: string option specifying the sparse linear solver used to solve the least-square problem in dual initialization (see duals_init). Possible values are 'auto", "ma57", "pardiso", "cusolver-lu", "strumpack" or "ginkgo". Default value: is "auto".

linear_solver_sparse: string option specifying the sparse linear solver used to solve the sparse KKT system. Possible values are "auto", "ma57", "pardiso", "cusolver-lu", "strumpack" or "ginkgo". Default value: is "auto".

ir_inner_cusolver_maxit: FGMRES maximum number of iterations. Integer values in [0, 1000]. Default value: 50.

ir_inner_cusolver_restart: FGMRES restart value. Integer values in [0, 100]. Default value: 20.

ir_inner_cusolver_tol: FGMRES tolerance. Double values in $[10^{-16}, 0.1]$. Default value: 10^{-12} .

ir_outer_maxit: max number of outer iterative refinement iterations. Setting this to 0 deactivates the outer iterative refinement. Integer values in [0, 100]. Default value: 8.

ir_outer_tol_factor: iterative refinement (IR) is applied if the inf-norm of the full KKT residual is larger than $\min(\mu * ir_outer_tol_factor, ir_outer_tol_min)$. Double values in [10⁻²⁰, 1]. Default value: 0.01.

ir_outer_tol_min: iterative refinement (IR) is applied if the inf-norm of the full KKT residual is larger than $\min(\mu * ir_outer_tol_factor, ir_outer_tol_min)$. Double values in $[10^{-20}, 10^{20}]$. Default value: 10^{-6} .

ir_inner_cusolver_gs_scheme: Gram-Schmidt orthogonalization version for FMGRES:

- "mgs" (default): modified Gram-Schmidt
- "cgs2": reorthogonalized classical Gram-Schmidt (three synchs)
- "mgs_two_synch": two synch (stable) MGS
- "mgs_pm": post-modern MGS, two synchs

ginkgo_exec: string option with "cuda", "hip" or "reference" values selecting the hardware architecture to run the Ginkgo linear solver on. Only valid when parameter linear_solver_sparse is set to ginkgo. Default value: "reference".

cusolver_lu_factorization : so far, only 'klu' option is available.

cusolver_lu_refactorization: numerical refactorization function after sparsity pattern of factors is computed. 'glu' is and 'rf' is

- "glu" (default): experimental approach
- "rf": NVIDIA's stable refactorization

linear_solver_sparse_ordering: permutation to promote sparsity in the (Chol) factorization:

- "metis": based on a wrapper of METIS_NodeND
- "symamd-eigen" (default): based on EIGEN implementation of approx. min. degree (AMD) orderings in its symmetric form
- "symamd-cuda": based on CUDA implementation of AMD orderings in its symmetric form
- "symrcm": based on CUDA implementation of reverse Cuthill-McKee orderings in its symmetric form
- "amd-ssparse": based on AMD from Suite Sparse library
- "colamd-ssparse": based on column AMD from Suite Sparse library

4.1.8 Linear algebra computational kernels

KKTLinsys: type of KKT linear system *formulation* used internally:

- "auto" (default): decided by HiOp based on the type of interface/NLP solved and "compute_mode" and "Hessian" options;
- "xycyd": symmetric indefinite (less stable but smaller size);
- "xdycyd": symmetric indefinite (more stable but larger size);
- "full": unsymmetric suitable for LU solvers (experimental).
- "condensed": symmetric condensed linear system that is suitable for sparse Cholesky solvers (available when no eq. constraints are present). See Section A.0.1 for more information
- "normaleqn": symmetric normal equation system that is suitable for sparse Cholesky solvers (available when problem is LP or separable convex QP). See Section A.0.2 for more information

The last five options are available only with option Hessian setting to analyticalExact.

linsol_mode: for some problem classes and KKT linearizations, one can instruct HiOp to switch between strategies for solving the IPM linear systems:

- "stable" (default): the most stable factorization is used;
- "speculative": switch to faster linear solvers when is detected to be safe to do so. This is available for MDS problems and can offer considerable speed-up for these problems. The option is experimental and should be used only by advanced users:
- "forcequick" rely on fast solvers (experimental, avoid).

compute_mode: offloading of computations to GPUs:

- "auto" (default): identical to "hybrid";
- "cpu": run everything on the CPU;
- "hybrid": HiOp will decide internally based on the type of NLP problem solved and other options which computational kernels will be offloaded to GPU. It usually runs the expensive linear solves on GPU but the remaining computations on the host/CPU;
- "gpu": run the all the computational kernels on the device; some computations (e.g., logic and control loop) will run on CPU. It is fully tested with MDS NLPs; for other NLPs this option is experimental, should be used only by advanced users (as of v0.5). This option requires Umpire to be used as the memory manager with mem_space option being set to device or um.

mem_space: determines the memory space in which future internal linear algebra objects will be created. When HiOp is built with RAJA/Umpire, user can set this option to either 'default', 'host', 'device' or 'um', and internally the data of HiOp vectors/matrices will be managed by Umpire. If HiOp was built without RAJA/Umpire support, only 'default' is available for this option.:

- "default" (default): allocations are done by HiOp in the cpu's memory space;
- "host": allocations via Umpire in Umpire's "HOST" memory space, typically CPU memory;
- "device": allocations via Umpire in Umpire's "DEVICE" device memory space; the option is supported only for MDS NLPs and requires the user's model evaluation on the device;
- "um": allocations via Umpire's unified memory model, known as "UM".

callback_mem_space: determines the memory space to which HiOp will return the solutions. When HiOp is built with RAJA/Umpire and option mem_space is set to 'device', user can set this option to either 'default', 'host' or 'device'. If HiOp was built without RAJA/Umpire support, only 'default' is available for this option.:

- "default" (default): returns the solutions pointers on the cpu's memory space;
- "host": returns the solutions pointers allocated by Umpire in Umpire's "HOST" memory space, typically CPU memory;
- "device": returns the solutions pointers allocated by Umpire in Umpire's "DEVICE" device memory space;
- "um": returns the solutions pointers allocated by Umpire's unified memory, known as "UM". Only available when **mem_space** is set to 'um'.

4.1.9 Problem preprocessing

fixed_var: treatment of variables that are detected to be fixed (according to the tolerance specified by "fixed_var_tolerance"):

- "none" (default): will not handle fixed variable and will exit with an error message if such variable is encountered;
- "relax": relax the fixed variables accordingly to "fixed_var_perturb" option below;
- "'remove": remove variables from the (internal) NLP formulation.

fixed_var_tolerance: a variable (say the *i*th) is considered fixed if

$$|(x_u)_i - (x_l)_i| < \text{fixed_var_tolerance} \times \max(|(x_u)_i|, 1).$$

This option takes double values in $[10^{-30}, 10^{-2}]$ and has a default value 10^{-15} .

fixed_var_perturb: fixed variable perturbation of the lower and upper bounds for fixed variables relative their magnitude. A variable (say the *i*th) (that is detected to be fixed) is "relaxed" accordingly to

$$(x_l)_i = (x_l)_i - \max(|(x_u)_i|, 1) \times \text{fixed_var_perturb},$$

 $(x_u)_i = (x_u)_i + \max(|(x_u)_i|, 1) \times \text{fixed_var_perturb}.$

This option takes double values in $[10^{-14}, 0.1]$ and has a default value 10^{-8} .

bound_relax_perturb: perturbation of the lower and upper bounds for all variables and all constraints relative to their magnitude. A variable or constraint (say the *i*th) with lower and upper bounds $(x_l)_i$ and $(x_u)_i$, respectively, is "relaxed" accordingly to

$$(x_l)_i = (x_l)_i - \max(|(x_l)_i|, 1) \times \text{bound_relax_perturb},$$

 $(x_u)_i = (x_u)_i + \max(|(x_u)_i|, 1) \times \text{bound_relax_perturb}.$

This option takes double values in $[0, 10^{20}]$ and has a default value 10^{-8} .

scaling_type: scaling method for the user's NLP

- "none" (default): perform no problem scaling;
- "gradient": will scale the problem such that the inf-norm of gradient at the initial point is less or equal to the value of "scaling_max_grad" option.

scaling_max_grad: the user's NLP will be rescaled if the inf-norm of the gradient at the starting point is larger than the value of this option. Double values in $[10^{-20}, 10^{20}]$. Default value: 100.

eq_relax_factor: perturbation of the equalities to allow posing them as inequalities. This factor is relative to the maximum between the magnitude of the equalities rhs and 1.0. Used only by 'hiopNlpSparseIneq' formulation class. Double values in $[10^{-15}, 1]$. Default value: 10^{-8} .

4.1.10 Miscellaneous options

verbosity_level: integer between 0 and 12 specifying the verbosity of HiOp's output. A value of 0 disables any output (but still outputs fatal errors). A value of 1 also outputs warnings. The value of 2 is reserved for future use. A value of 3 will also output a table with HiOp's convergence metrics at each iteration. A value of 4 and higher will display additional info related to the internals of the algorithm and is generally used only for debugging/development purposes. Those larger values are explained in hiopLogger.hpp. The higher the value the more verbose the output will be.

print_options: string option with "yes", "no" or "short" values deciding whether the options should be printed on the output before solver (re)starts. Setting this option to 'yes' prints all the parameter names, values and descriptions, while 'short' only prints the parameter names and values. Default value: "no".

write_kkt: string option with "yes" or "no" values deciding whether HiOp writes internal KKT linear system (matrix, rhs, sol) to external files. Default value: "no".

time_kkt: string option with "on" or "off" values deciding whether HiOp turns on/off performance timers and reporting of the computational constituents of the KKT solve process. Default value: "off".

4.2 Options for PriDec solver

Here we list the options that are recognized by the HiOp's PriDec solver.

4.2.1 Termination criteria and output

tolerance: maximum (absolute) error allowed. This value is compared against the decrease of the objective predicted by the solution to the subproblem with the approximation model (q(x) in (23)). Double values in $[10^{-14}, 0.1]$. Default value: 10^{-5} .

max_iter: maximum number of iterations. Integer values between 1 to 10⁶. Default value: 3000.

acceptable_tolerance: PriDec solver will terminate if the inf-norm of the decrease in objective value is below this value for acceptable_iterations many consecutive iterations. Double values in $[10^{-14}, 0.1]$. Default value: 10^{-3} .

acceptable_iterations: number of iterations passing the acceptable tolerance (see acceptable_tolerance) after which PriDec solver terminates. Integer values between 1 and 10⁶. Default value: 25.

verbosity_level: integer between 0 and 12 specifying the verbosity of HiOp's output. A value of 0 disables any output (but still outputs fatal errors). A value of 1 outputs warnings. The value of 2 is reserved for future use. A value of 3 will also output a table with PriDec solver's convergence metrics and trust-region type of measure of the quality of the approximation model at each iteration. A value of 4 and higher will display additional info related to the internals of the algorithm and is generally used only for debugging/development purposes. The higher the value the more verbose the output will be.

4.2.2 Algorithm selection and parameters

alpha_min: lower bound for the scalar quadratic coefficient in the approximation model of the objective. It is a global value and has higher priority than the update rule of alpha. Double values in $[10^{-8}, 10^3]$. Default value: 10^{-5} .

alpha_max: upper bound for the scalar quadratic coefficient in the approximation model of the objective. It is a global value and has higher priority than the update rule of alpha. Double values in $[1, 10^{14}]$. Default value: 10^6 . An assert error will be reported if alpha_min is bigger than alpha_max.

4.2.3 Miscellaneous options

mem_space: specifies the primary memory space in which PriDec solver's internal linear algebra objects will be created:

- "default" (default): allocations are done by HiOp in the cpu's memory space;
- "host": allocations via Umpire in Umpire's "HOST" memory space, typically CPU memory;
- "device": allocations via Umpire in Umpire's "DEVICE" device memory space;
- "um": allocations via Umpire's unified memory model, know as "UM".

The memory space for PriDec solver must match the memory space used by the master NLP solver, otherwise undefined behaviour will occur. This consistency is not checked by HiOp since it is impossible to do so when black-box NLP solvers are used for the master problem. It is the user's responsibility to ensure that the memory spaces match. When HiOp is used a master solver,

the PriDec solver's mem_space option must match the master HiOp's option mem_space. When a CPU master solver is used with PriDec solver, the PriDec's mem_space option must be set to "default".

print_options: string option with "yes" or "no" values deciding whether the options should be printed on the output before solver (re)starts. Default value: "no".

5 Licensing and copyright

HiOp is free software; you can modify it and/or redistribute it under the terms of the following modified BSD 3-clause license:

Copyright (c) 2017-2021, Lawrence Livermore National Security, LLC. Produced at the Lawrence Livermore National Laboratory (LLNL). Written by Cosmin G. Petra, petra1@llnl.gov. LLNL-CODE-742473. All rights reserved.

HiOp is released under the BSD 3-clause license (https://github.com/LLNL/hiop/blob/master/LICENSE). Please also read "Additional BSD Notice" below.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- i. Redistributions of source code must retain the above copyright notice, this list of conditions and the disclaimer below.
- ii. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the disclaimer (as noted below) in the documentation and/or other materials provided with the distribution.
- iii. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

- This notice is required to be provided under our contract with the U.S. Department of Energy (DOE). This work was produced at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with the DOE.
- 2. Neither the United States Government nor Lawrence Livermore National Security, LLC nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights.
- 3. Also, reference herein to any specific commercial products, process, or services by trade name, trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

6 Acknowledgments

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The author also acknowledges the support from the LDRD Program of Lawrence Livermore National Laboratory under the projects 16-ERD-025 and 17-SI-005.

References

- [1] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-newton matrices and their use in limited memory methods. *Mathematical Programming*, 63(1):129–156, 1994.
- [2] N.-Y. Chiang and V. M. Zavala. An inertia-free filter line-search algorithm for large-scale nonlinear programming. *Computational Optimization and Applications*, 64(2):327–354, 2016.
- [3] C. G. Petra. A memory-distributed quasi-Newton solver for nonlinear programming problems with a small number of general constraints. Technical Report LLNL-JRNL-739001, Lawrence Livermore National Laboratory, October 2017.
- [4] C. G. Petra. A memory-distributed quasi-newton solver for nonlinear programming problems with a small number of general constraints. *Journal of Parallel and Distributed Computing*, 133:337–348, 2019.
- [5] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear programming: Local convergence. SIAM Journal on Optimization, 16(1):32–48, 2005.
- [6] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear programming: Motivation and global convergence. SIAM Journal on Optimization, 16(1):1–31, 2005.
- [7] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. *Mathematical Programming*, 106(1):25–57, 2006.
- [8] J. Wang, N. Chiang, and C. G. Petra. An asynchronous distributed-memory optimization solver for two-stage stochastic programming problems. Technical report, LLNL-CONF-821097, Lawrence Livermore National Laboratory, 2021.

Appendix \mathbf{A}

Condensed Linear System

The condensed approach supports sparse NLPs with no equality constraints of the form

$$\min_{x \in \mathbb{R}^n} \quad f(x) \tag{31}$$

$$\begin{bmatrix} v_l \end{bmatrix} \qquad d_l \le d(x) \le d_u \qquad \begin{bmatrix} v_u \end{bmatrix} \tag{32}$$

$$\begin{bmatrix} v_l \end{bmatrix} \qquad v_l \le x \le x \qquad \begin{bmatrix} z_l \end{bmatrix} \tag{33}$$

$$[z_l] x_l \le x \le x_u [z_u] (33)$$

Here $f: \mathbb{R}^n \to \mathbb{R}$, $d: \mathbb{R}^n \to \mathbb{R}^{m_I}$. The bounds appearing in the inequality constraints (32) are assumed to be $d^l \in \mathbb{R}^{m_I} \cup \{-\infty\}$, $d^u \in \mathbb{R}^{m_I} \cup \{+\infty\}$, $d^l_i < d^u_i$, and at least of one of d^l_i and d^u_i are finite for all $i \in \{1, ..., m_I\}$. The bounds in (33) are such that $x^l \in \mathbb{R}^n \cup \{-\infty\}, x^u \in \mathbb{R}^n \cup \{+\infty\},$ and $x_i^l < x_i^u$, $i \in \{1, \ldots, n\}$. The quantities insides brackets are the Lagrange multipliers of the constraints. Whenever a bound is infinite, the corresponding multiplier is by convention zero. Internally, a slack variable s is introduced and the inequality constraints (32) are replaced by additional equality constraints and bound constraints:

$$d(x) = s [y_d] (34)$$

$$[v_l] d_l \le s \le d_u [v_u] (35)$$

 \triangle Note: If equality constraints $c(x) = c_E$ are present, they will be slightly relaxed to inequalities $c_E - C_1 \le c(x) \le c_E + C_1$, where C_1 is a small positive perturbation that will be updated by HiOp internally. Consequently, with the condensed linear algebra, HiOp solves problems with equality constraints as inequality-only problems in the form of (31)-(33).

Using the notations from [3], the condensed linear system solves the most stable "xdycyd" KKT linear system

$$\begin{bmatrix} H + D_x + \delta_w I & 0 & J_d^T \\ 0 & D_d + \delta_w I & -I \\ J_d & -I & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta d \\ \Delta y_d \end{bmatrix} = \begin{bmatrix} r_x \\ r_d \\ r_{y_d} \end{bmatrix}$$
(36)

by solving the following sequence of linear systems

$$Q := H + D_x + \delta_w I + J_d^T (D_d + \delta_w I) J_d \tag{37}$$

$$Q\Delta x = r_x + J_d^T (D_d + \delta_w I) r_{y_d} + J_d^T r_d$$
(38)

$$\Delta d = J_d \Delta x - r_{y_d} \tag{39}$$

$$\Delta y_d = D_d \Delta d - r_d \tag{40}$$

Equation (38) is referred to as the condensed linear system. HiOp ensures that the matrix Q is positive definite by using a combination of dual and primal regularizations. Using the condensed linear algebra is therefore capable of using sparse Cholesky solvers. This is particularly relevant for GPU computations efficient and robust Cholesky solvers are currently more mature than an indefinite linear solvers (required by the "xdycyd" linear system). Currently, HiOp has GPU acceleration using cuSolverSP "cusolverSpDcsrlsvchol" from the NVIDIA's CUDA Toolkit.

A.0.2 Normal Equation

The normal equation approach supports sparse LPs or QPs in the form of (5)-(8), where $f: \mathbb{R}^n \to \mathbb{R}$ is a linear or a convex quadratic function with diagonal Hessian and $c: \mathbb{R}^n \to \mathbb{R}^{m_E}$ and $d: \mathbb{R}^n \to \mathbb{R}^{m_I}$ are affine functions.

⚠ **Note:** If equality constraints $c(x) = c_E$ are presented, they will be slightly relaxed to inequalities $c_E - C_1 \le c(x) \le c_E + C_1$, where C_1 is a small positive perturbation that will be updated by HiOp internally. Consequently, with the condensed linear algebra, HiOp solves problems with equality constraints as inequality-only problems in the form of (31)-(33).

Internally, normal equation solves the most stable 'xdycyd' KKT linear system

$$\begin{bmatrix} H + D_x + \delta_w I & 0 & J_c^T & J_d^T \\ 0 & D_d + \delta_w I & 0 & -I \\ J_c & 0 & 0 & 0 \\ J_d & -I & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta d \\ \Delta y_c \\ \Delta y_d \end{bmatrix} = \begin{bmatrix} r_x \\ r_d \\ r_{y_c} \\ r_{y_d} \end{bmatrix}$$
(41)

by solving the following linear system:

$$K \begin{bmatrix} \Delta y_c \\ \Delta y_d \end{bmatrix} = \begin{bmatrix} \tilde{r}_{y_c} \\ \tilde{r}_{y_d} \end{bmatrix}. \tag{42}$$

Above

$$K = \begin{bmatrix} J_c & 0 \\ J_d & -I \end{bmatrix} \begin{bmatrix} H + D_x + \delta_w I & 0 \\ 0 & D_d + \delta_w I \end{bmatrix}^{-1} \begin{bmatrix} J_c & 0 \\ J_d & -I \end{bmatrix}^T$$
(43)

and

$$\begin{bmatrix} \tilde{r}_{y_c} \\ \tilde{r}_{y_d} \end{bmatrix} = \begin{bmatrix} J_c & 0 \\ J_d & -I \end{bmatrix} \begin{bmatrix} H + D_x + \delta_w I & 0 \\ 0 & D_d + \delta_w I \end{bmatrix}^{-1} \begin{bmatrix} r_x \\ r_d \end{bmatrix} - \begin{bmatrix} r_{y_c} \\ r_{y_d} \end{bmatrix}. \tag{44}$$

Since matrix K (43) is forced to be positive definite by the algorithmic mechanism, the normal equation system (42) can be solved using Cholesky solvers. In particular, GPU acceleration is achieved by using cuSolverSP "cusolverSpDcsrlsvchol" solver from the NVIDIA's CUDA Toolkit.

Once Δy_c and Δy_d have been calculated, HiOp computes Δx and Δd from

$$\begin{bmatrix} \Delta x \\ \Delta d \end{bmatrix} = \begin{bmatrix} H + D_x + \delta_w I & 0 \\ 0 & D_d + \delta_w I \end{bmatrix}^{-1} \left(\begin{bmatrix} r_x \\ r_d \end{bmatrix} - \begin{bmatrix} J_c^T & J_d T \\ 0 & -I \end{bmatrix} \begin{bmatrix} \Delta y_c \\ \Delta y_d \end{bmatrix} \right). \tag{45}$$