二. 实验现象及原

实验日期 4.11 组号 31.

班号通信2批 学号_21021078 姓名 75/3 朝 教师签字 以见以 预习成绩___ン

实验名称 夫兰克-赫兹实验

-. 实验预习

- 1. 简要叙述波尔的原子能级理论;
- 2. 描述夫兰克-赫兹的实验原理。
- J. ①原子只能较长地停留在一些稳定状态。 原子只能从一个定态跃迁到另一个定态、
 - ②原子从一个定态跃迁到另一个时,辐射频率是一定的 hr= Em-En

2. 实验原理:

使具有一定能量的电子与原子相碰撞进行能量交换 在碰声O的电子在电位差U。的加速电场下,获得能量eU。. 电子与原子碰撞交换能量

eto Ez-E1. 时原子从基态跃迁第一激友态

在充意的大名兰克一赫兹管中,电子由热阴极K发出,继续增大的 在第二栅极G2的加速电压UG2K作用下被加速。 A与G之间有反向拒斥电压 Tanh, 电到甬过 KG~ 进入GA空间时,考有较举大能量,就有板极电流。 被此检出 被从检出 当Vank增大使电子获得能量增大极板电流增大 而增大到Uark大于其激发电位时增大Uark能量被吸收用于跃迁,激发极极电流减少,如此行意

电子能量效 使申流物

二. 实验现象及原始数据记录

见后表

教师	姓名	
签字	13 BC N]}

三. 数据处理

- 1. 利用计算机软件绘制 I₄-U_{GLK} 曲线;
- 2. 对曲线进行拟合,利用各峰值或波谷所对应的电压值,分别用逐差法和最小二乘法计算 氩原子的第一激发电位。

1. 见后图

2. 波峰

74 75816 28 30 42 54 66 70 75 V 16. 28 40 52 64 76 88 70 75 V 17.5 29.5 41.5 53.5 65 77 89

四. 实验结论及现象分析

随Var增大,IA逐渐增大后减小又增大后减小 や北坂夏、且波峰和波公值逐渐增大

五. 讨

1. 在 L 2. 请分

3. 为什

五. 讨论题

- 1. 在 I_{A} - U_{G2K} 曲线中,为什么随着 U_{G2K} 的增大,波谷电流逐渐增大?
- 2. 请分析拒斥电压改变对 IA-UG2K 曲线的影响。
- 3. 为什么弗兰克-赫兹实验只能测出第一激发态电位?
 - 1. 因为随着TG以的增大,到达阳极的电子战电子数比例增大,而且受到加速电压大,进度更大,被反向拒斥电压阻碍的电子数更少,所以波谷电流增大
 - 2. 把程电压增大, 曲线下移 因为把斥电压起到了阻碍电子到达极板的作用 拒斥电压增大, 电子穿越栅极所需的动能增大, 所以相同电压单位时间到达极板电子数减小, 14减少, 曲线下移 3. 电子被加速到此第一激发电位高很多的能量时, 在相遇时
 - 3、电子被加速到此第一激发电位高很多的能量时,在相遇时已经失去了大部分动能,无法转移给金原子,因此不会多次流速

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0.1
0	0
0.8	2.3
4.9	8. 1
10.4	15.5
19.1	25. 2
28.6	35. 7
37.2	44.8
43.8	52.2
50.5	60.6
54.1	67.1
57.7	72
60.8	77.2
64. 1	82.6
66.7	84.5
68. 1	86.8
70.7	88
70.9	90
69.8	91.1
67.7	91.5
64.2	90.2
60.7	87.4
58.9	82.9
55. 5	78
50.7	63.3
49.6	55. 3
43.4	52. 7
39. 1	49. 2
0.4.0	45.0

34.9

- 38.1 42.9
- 41.2 47.1
- 52.7 40.1
- 60.9 42.1
- 65.2 50.1
- 73.2 53.2
- 87.7 63.6
- 99.9 78.4
- 96.6 108.4
- 116.3 112.7
- 123 123.6
- 125.6 135.7
- 126.8
- 144.5 124.5 148.7
- 119.8 150.8
- 110.9 149
 - 99 144
- 84.3 134.6
- 71.1 121.1
- 63.2 104.4
- 55. 1 88.8
- 41.8 69.6
- 34.8 45.2
 - 34 39.9
- 31.4 35.9
- 41.7 32.2
- 40.9 54. 5
- 65.9 60.9
 - 77 88.5
- 100.7 97.1
- 120.1 111.8
- 139.4 125.3
- 157.4 139.6
- 169.3 161.5
- 179.8 177.4
 - 187 192.4
- 189.7 203.3
- 189.4 208.3
- 184.5 210.8
- 176.9 207.4
- 163.2 200.2
- 145.2 206.2
- 123.3 199.7
- 103.2 186.9

78.8	168.5
57	145.6
43.9	123.6
38.7	96. 2
46.7	69.6
63.7	51
76.9	37.7
93.4	48. 1
125.5	74. 1
149.4	89
176.8	108.2
200.4	138.8
213.8	172.6
232.8	203.4
244. 4	222.7
250.7	244. 2
254.4	259.5
252.4	265.6
245. 1	271.6
235. 1	266. 2
218. 1	257. 7
195.6	241.6
174	219.3
145.4	197.4
115.9	180.9
94.2	167. 2
76.8	149.2
73	108.5
83.4	82. 7
107.4	68. 7
138. 1	85.8
164.3	109.5
196.6	140
226.3	165.6
247.5	198
271.3	230. 2
291.1	252
306.2	279. 1
314.7	297. 2
322.2	307. 1
324.0	323
321.2	335.5
315.2	340.8
005 1	001 1

305. 1

- 301.8 321.7
- 277. 6 306. 9
- 247. 1 282. 8
- 219. 4 253. 6
- 188 225.9
- 163. 6 192. 8
- 149.6 178.2
- 163. 2 162. 8
- 182. 8 133. 2
- 211. 5 162. 3
- 242.6 172.5
- 242.0 112.0
- 267. 3 187. 5
- 297. 3 217. 4
- 327. 2 242. 4
- 355. 7 274. 8
- 374. 1 304. 8
- 395. 2 332. 8
- 411 353. 2
- 419. 7 375. 7
- 426. 9 393. 6
- 427. 4 403. 7
- _____
- 423. 3 413
- 412. 2 415. 9
- 395. 9 413. 8
- 377. 2 405. 5
- 350.4 391.1
- 323. 1 374. 3
- 300 349.3
- 276. 9 320. 9
- 257. 5 296. 4
- 276. 9 269. 9
- 297. 6 248. 5
- 231.0 240.0
- 318. 2 237. 7 345. 3 243. 9
- 373. 8 261. 1
- 396.6 307.2
- 404.0 005.1
- 424.8 335.1

451

470 387.4

- 491.5 413.9
 - 509 434.5
- 519.4 457.7
- 528 477. 2
- 532. 1 489. 7

536.2	500.7
533.8	506.6
530.1	507.2
520.4	502.6
505.9	500.9