## **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 00/00506 C07K **A2** (43) International Publication Date: 6 January 2000 (06.01.00) (21) International Application Number: PCT/JP99/03242 (81) Designated States: AU, CA, JP, MX, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT. (22) International Filing Date: 18 June 1999 (18.06.99) LU, MC, NL, PT, SE). (30) Priority Data: **Published** 10/180008 26 June 1998 (26.06.98) JP Without international search report and to be republished upon receipt of that report. (71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho,, Meguro-ku, Tokyo 153-0065 (JP). (72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50. Wakamatsu, Sagamihara-shi, Kanagawa 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302, 4-1-28, Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa 214-0037 (74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP). (54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

#### (57) Abstract

A human protein having a hydrophobic domain and comprising any of the amino acid sequences represented by Sequence Nos. 1 to 10, a cDNA coding for said protein, and an expression vector comprising the cDNA as well as an eucaryotic cell comprising the cDNA. The protein can be provided by expression of the cDNA coding for such protein.

# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL AM AT AU AZ BA BB BE BF BG BJ BR BY CA CF CG CH CI CM CN CU CZ DE DK EE | Albania Armenia Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia | ES FI FR GA GB GE GH GN GR HU IE IL IS IT JP KE KG KP  KR LC LLI LK LR | Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberia | LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG | Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore | SI SK SN SZ TD TG TJ TM TR TT UA UG US UZ VN YU ZW | Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### DESCRIPTION

# HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

5

10

15

20

#### TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors of these DNAs as well as eucaryotic cells expressing these DNAs. The proteins of the present invention can be employed as pharmaceuticals antigens for preparing antibodies against these proteins. The human cDNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by these cDNAs. Cells, wherein these membrane protein genes are introduced to express secretory proteins and membrane proteins in large amounts, can be utilized for detection of the corresponding receptors and ligands, screening of novel low-molecular pharmaceuticals, and so on.

#### BACKGROUND ART

25 Cells secrete many proteins outside the cells. These secretory proteins play important roles for the proliferation control, the differentiation induction, the material transportation, the biological protection, etc. in the cells. Different from intracellular proteins, the secretory proteins exert their actions outside the cells, whereby they can be administered in the intracorporeal manner such as the injection or the drip, so that there

are hidden potentialities as medicines. In fact, a number as interferons, secretory proteins such erythropoietin, thrombolytic agents, interleukins, have been currently employed as medicines. In addition, secretory proteins other than those described above have develop as clinical trials to undergoing pharmaceuticals. Because it has been conceived that the human cells still produce many unknown secretory proteins, availability of these secretory proteins as well as genes coding for them is expected to lead to development of novel pharmaceuticals utilizing these proteins.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters, etc. in the material transportation and the information transmission which are mediated by the cell membrane. for a variety of include receptors Examples thereof cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on, where the genes of many of them have been cloned already. It has been clarified that abnormalities of these membrane proteins are associated with a number of hitherto-cryptogenic diseases. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many diseases, so that isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification, these secretory proteins and membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises transfection of a cDNA library in eucaryotic cells to express cDNAs and then screening of the cells expressing

5

10

15

20

25

the target active protein by secretion or on the surface of membrane. However, this method is applicable only to cloning of a gene of a protein with a known function.

In general, secretory proteins and membrane proteins possess at least one hydrophobic domain inside the proteins, wherein, after synthesis thereof in the ribosome, this domain works as a secretory signal or remains in the phospholipid membrane to be trapped in the membrane. Accordingly, the evidence of this cDNA for encoding the secretory proteins and the membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic domains in the amino acid sequence of the protein encoded by this cDNA.

15

20

25

30

10

5

#### DISCLOSURE OF INVENTION

The object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors of these DNAs as well as transformation eucaryotic cells that are capable of expressing these DNAs.

As the result of intensive studies, the present inventors have been successful in cloning of cDNAs coding for proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. In other words, the present invention provides human proteins having hydrophobic domains, namely proteins containing any of the amino acid sequences represented by Sequence Nos. 1 to 10. Moreover, the present invention provides DNAs coding for the above-mentioned proteins, exemplified by cDNAs containing any of the base sequences represented by Sequence Nos. 11 to 21, 23, 25, 27, 29, 31,

10

15

20

25

33, 35, 37 and 39, as well as expression vectors that are capable of expressing any of these DNAs by in vitro translation or in eucaryotic cells and transformation eucaryotic cells that are capable of expressing these DNAs and of producing the above-mentioned proteins.

# BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP00631.

Fig. 2 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02403.

Fig. 3 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02420.

Fig. 4 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10349.

Fig. 5 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10508.

Fig. 6 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10524.

Fig. 7 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10529.

Fig. 8 A figure depicting the 30 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10537.

Fig. 9 A figure depicting the

10

15

20

25

30

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10549.

Fig. 10 A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10551.

#### BEST MODE FOR CARRYING OUT THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis, or a method for production with the recombinant DNA technology using the DNAs coding for the hydrophobic domains of the present invention, wherein obtainment for by the recombinant method technology is employed preferably. For instance, in vitro expression of the proteins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of cDNAs of the present invention, followed by in vitro translation using this RNA as a template. Also, recombination of the translation region into a suitable expression vector by the method known in the art leads to expression of a large amount of the encoded protein by using prokaryotic cells such as Escherichia coli, Bacillus subtilis, etc., and eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

In the case in which one of the proteins of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro, when the translation region of this cDNA is subjected to recombination to a vector having an RNA polymerase promoter, followed by addition to an in vitro translation system such as a rabbit riticulocyte

10

15

20

25

30

wheat germ extract, containing or a polymerase corresponding to the promoter. RNA polymerase inhibitors are exemplified by T7, T3, SP6, and the like. The vectors containing these RNA polymerase inhibitors are pKA1, pCDM8, pT3/T7 18, pT7/3 exemplified by pBluescript II, and so on. Furthermore, a membrane protein of the present invention can be expressed as the form incorporated in the microsome membrane, when a canine pancreas microsome or the like is added into the reaction system.

In the case in which a protein of the present invention is produced by expressing the DNA using a microorganism such as Escherichia coli etc., a recombinant expression vector bearing the translation region in the cDNA of the present invention is constructed expression vector having an origin, a promoter, ribosome-binding site, a cDNA-cloning site, a terminator etc., which can be replicated in the microorganism, and, transformation of the host cells after the thus-obtained transformant expression vector, incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the microorganism. In this case, a protein fragment containing an optional region can be obtained by carrying out the expression with inserting an initiation codon and a termination codon in front of and behind an optional translation region. Alternatively, a fusion protein with another protein can be expressed. a protein portion coding for this cDNA can be obtained by cleavage of this fusion protein suitable protease. The expression vector for Escherichia coli is exemplified by the pUC system, pBluescript II, the pET expression system, the pGEX expression system, and so on.

5

10

15

20

25

30

In the case in which one of the proteins of the present invention is produced by expressing the DNA in eucaryotic cells, the protein of the present invention can be obtained by secretory production or produced as a membrane protein on the cell-membrane surface, when the translation region of this CDNA is subjected to recombination to an expression vector for eucaryotic cells that has a promoter, a splicing region, a poly(A) insertion site, etc., followed by introduction into the eucaryotic cells. The expression vector is exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucarvotic cells to be used in general include mammalian culture cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, etc., budding yeasts, fission yeasts, silkworm cells, Xenopus laevis egg cells, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the present proteins. The expression vector can be introduced in the eucaryotic cells by methods known in the art such as the electroporation the potassium phosphate method, the method, liposome method, the DEAE-dextran method, and so on.

After one of the proteins of the present invention is expressed in prokaryotic cells or eucaryotic cells, the objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a surface-active agent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-

exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

The proteins of the present invention include peptide fragments (more than 5 amino acid residues) containing any partial amino acid sequence in the amino acid sequences represented by Sequence Nos. 1. to 10. These peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequence are secreted in the form of maturation proteins on the surface of the cells, after the signal sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japanese Patent Kokai Publication No. 1996-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the peptides in the proteins Such orforms. secretory secretory forms shall come within the scope of the present invention. In the case where sugar chain-binding sites are sequences, expression acid amino the present in proteins appropriate eucaryotic cells affords sugar chains are added. Accordingly, such proteins peptides wherein sugar chains are added shall come within the scope of the present invention.

The DNAs of the present invention include all DNAs coding for the above-mentioned proteins. These DNAs can be obtained by using a method by chemical synthesis, a method by cDNA cloning, and so on.

The cDNAs of the present invention can be cloned, for

5

10

15

20

25

10

15

20

25

30

example, from cDNA libraries of the human cell origin. These cDNA are synthesized by using as templates poly(A) RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available, human cDNA libraries can be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of an optional portion in the cDNA base sequences of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of an oligonucleotide to be hybridized at both termini of the objective cDNA fragment, followed by the usage of this oligonucleotide as the primer for the RT-PCR method from an mRNA isolated from human cells.

The cDNAs of the present invention are characterized by containing either of the base sequences represented by Sequence Nos. 11 to 20 or the base sequences represented by Sequence Nos. 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39. Table 1 summarizes the clone number (HP number), the cells affording the cDNA, the total base number of the cDNA, and the number of the amino acid residues of the encoded

protein, for each of the cDNAs.

Table 1

| Sequence<br>No. | HP<br>number | Cells          | Base<br>number | Number of amino acid residues |
|-----------------|--------------|----------------|----------------|-------------------------------|
| 1, 11, 21       | HP00631      | Saos-2         | 1085           | 238                           |
| 2, 12, 23       | HP02403      | Stomach cancer | 1168           | 194                           |
| 3, 13, 25       | HP02420      | Stomach cancer | 624            | 139                           |
| 4, 14, 27       | HP10349      | Stomach cancer | 1121           | 323                           |
| 5, 15, 29       | HP10508      | Stomach cancer | 827            | 231                           |
| 6, 16, 31       | HP10524      | Stomach cancer | 1189           | 97                            |
| 7, 17, 33       | HP10529      | Saos-2         | 1500           | 198                           |
| 8, 18, 35       | HP10537      | Saos-2         | 806            | 140                           |
| 9, 19, 37       | HP10549      | Stomach cancer | 1718           | 201                           |
| 10, 20, 39      | HP10551      | Stomach cancer | 995            | 249                           |

5

Hereupon, the same clones as the cDNAs of the present invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines and human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of the cDNA base sequence described in any of Sequence Nos. 11 to 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39.

15

10

In general, the polymorphism due to the individual difference is frequently observed in human genes. Accordingly, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides in Sequence Nos. 11 to 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39 shall come within the scope of the present invention.

10

15

20

25

30

In a similar manner, any protein that is formed by these modifications comprising insertion or deletion of one or plural amino acids and/or substitution with other amino acids shall come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by Sequence Nos. 1 to 10.

The cDNAs of the present invention include cDNA fragments (more than 10 bp) containing any partial base sequence in the base sequences represented by Sequence Nos. 11 to 20 or in the base sequences represented by Sequence Nos. 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be utilized as the probes for the gene diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

## Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a

particular stage of tissue differentiation or development or in disease states); as molecular weight markers on chromosome markers or tags as aels: labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences identify potential genetic disorders; patients to probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR fingerprinting; as probe to genetic for primers of in the process sequences "subtract-out" known discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies the Where another immune response. elicit which binds or encodes a protein polynucleotide potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791 803 (1993)) to identify polynucleotides encoding the other identify occurs or to binding with which protein inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the

5

10

15

20

25

10

15

20

25

30

corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

#### Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation,

10

15

20

25

30

such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

# Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit (either inducing cell proliferation cytokine, inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. activity of a protein of the present invention evidenced by any one of a number of routine factor dependent cell proliferation assays for cell including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular

10

Immunology 133:327-341, 1991; Bertagnolli, et al., J.
Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol.
152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation 15 hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, 20 John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols 25 Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 30 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C.

PCT/JP99/03242

and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Sci. Takai et al., J. 11:405-411, 1981; 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

# Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit 20 activity, suppressing immune orstimulating immune including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., 25 in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or 30 may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or

5

10

10

15

20

25

30

other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses. herpesviruses, mycobacteria, Leishmania malaria spp. and various fungal infections Of course, in this regard, a protein of the candidiasis. present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune insulin thyroiditis, dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory Other conditions, in which immune suppression problems. is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. regulation may be in the form of inhibiting or blocking an response immune already in progress or may preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigenspecific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen lymphocyte functions (including without limitation В antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease For example, blockage of T cell function should (GVHD). destruction in reduced tissue in result transplants, tissue in transplantation. Typically, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune 20 reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with **25** monomeric form of a peptide having an activity of another B7-3) or blocking B7-1, antigen (e.g., lymphocyte antibody), prior to transplantation can lead to binding of the molecule to the natural ligand(s) on the corresponding without transmitting the cells 30 lymphocyte antigen costimulatory signal. Blocking B function in this matter prevents cytokine synthesis by

5

10

10

15

20

25

30

immune cells, such as T cells, and thus acts as immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD assessed using animal models that are predictive efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate

disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be activation and prevent production T cell autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking tolerance antigen-specific induce may reagents autoreactive T cells which could lead to long-term relief The efficacy of blocking reagents in from the disease. preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal Examples include models of human autoimmune diseases. systemic encephalitis, autoimmune experimental lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating in therapy. useful be may also responses, immune Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from

5

10

15

20

25

10

the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

15 In another application, up regulation or enhancement function (preferably B antigen lymphocyte function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can 20 be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. example, tumor cells obtained from a patient can transfected ex vivo with an expression vector directing 25 the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. 30 Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the provides the necessary cell tumor of the to  ${f T}$ cells to induce costimulation signal mediated immune response against the transfected tumor 5 In addition, tumor cells which lack MHC class I or to reexpress or which fail molecules, class II MHC MHC class II amounts of MHC class I or sufficient molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated 10 I  $\alpha$  chain protein MHC class portion) of an microglobulin protein or an MHC class  $II\alpha$  chain protein and an MHC class II $\beta$  chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in 15 conjunction with a peptide having the activity of a lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T immune response against the transfected cell mediated Optionally, a gene encoding an antisense tumor cell. construct which blocks expression of an MHC class II 20 associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune 25 response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

30 Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan,

A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 5 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. 10 Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. 15 Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses 20 and that affect Th1/Th2 profiles) include, limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. 25 Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994. Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, limitation, those described in: Current Protocols 30 Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro

assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal 67:4062-4069, 1993; Huang et al., Virology Journal al., 1994; Macatonia et 264:961-965, Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood

5

10

15

20

84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

# Hematopoiesis Regulating Activity

A protein of the present invention may be useful in 5 regulation of hematopoiesis and, consequently, treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming or of factor-dependent cell lines indicates 10 involvement in regulating hematopoiesis, supporting the growth and proliferation of progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of 15 erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional activity) useful, for example, in conjunction with 20 chemotherapy to prevent or treat consequent suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; 25 and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell 30 disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well

as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those 20 Methylcellulose colony forming assays, described in: Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. 1992; Primitive hematopoietic colony USA 89:5907-5911, 25 forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. pp. 23-39, Wiley-Liss, R.I. Freshney, et al. eds. Vol Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell 30 assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc.,

5

10

10

15

20

25

30

New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

### Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of

10

15

20

25

30

bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that attributable to the protein of the present be invention is tendon/ligament formation. A protein of the invention, which induces tendon/ligament-like present tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament novo tendon/ligament-like tissue formation tissue. present composition of the invention induced by a contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of environment invention may provide an the present attract tendon or ligament-forming cells, stimulate growth tendonor ligament-forming cells, differentiation of progenitors of tendon- or ligamentforming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue The compositions of the invention may also be repair.

10

15

20

25

30

useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for treatment of central and peripheral nervous diseases and neuropathies, as well as mechanical traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or

10

15

20

25

30

regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

activity include, tissue generation for Assavs those described in: International limitation, without (bone, cartilage, No. WO95/16035 Publication Patent tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

10

15

20

A protein of the present invention may also exhibit activininhibin-related activities. or Inhibins characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin  $\alpha$  family, may be useful as contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis Administration of sufficient amounts of in male mammals. other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, homodimer or as a heterodimer with other protein subunits of the inhibin- $\beta$  group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

10

15

20

25

30

invention the present may protein of chemotactic or chemokinetic activity (e.g., act chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, epithelial and/or endothelial cells. eosinophils, Chemotactic and chemokinetic proteins can be used mobilize or attract a desired cell population to a desired Chemotactic or chemokinetic proteins site of action. provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment infections. For example, attraction localized lymphocytes, monocytes or neutrophils to tumors or sites infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those

10

15

20

25

described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

# Hemostatic and Thrombolytic Activity

protein of the invention may also hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such or to enhance coagulation hemophilias) hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.q., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

hemostatic Assav for and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

## 30 Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or

PCT/JP99/03242

inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and (including without limitation, cellular ligands adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen antigen recognition and development presentation, cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide relevant of the inhibitors molecule or small receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments may themselves be useful as ligands) receptors and 15 inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, Pub. Greene W.Strober, E.M. Shevach, Margulies, Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA Exp. Med. 84:6864-6868, 1987; Bierer et al., J. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. Stoltenborg et al., J. 1989; 169:149-160 Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

## Anti-Inflammatory Activity

5

10

20

25

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting promoting extravasation, cell orby stimulating suppressing production of other factors which more directly inhibit or promote an inflammatory response. exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemiareperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

# Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by

5

10

15

10

15

20

25

30

inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

## Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or fertility of male or female subjects; effecting the effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or component(s); effecting or nutritional factors behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth in lineages other than cells stem embryonic hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment example, hyperproliferative disorders (such for as,

psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

## Examples

5

The present invention is embodied in more detail by 10 following examples, but this embodiment is intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring 15 Harbor Laboratory, 19891. Unless otherwise restrictive enzymes and a variety of modification enzymes to be used were those available from TAKARA SHUZO. manufacturer's instructions were used for the compositions as well as for the reaction conditions, 20 each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having Hydrophobic Domains

cDNA libraries (W097/33993) of osteosarcoma cell line Saos-2 and cDNA libraries (W097/15596) of tissues of stomach cancer delivered by the operation were used for the cDNA libraries. Full-length cDNA clones were selected from respective libraries and the whole base sequences thereof were determined to construct a homo/protein cDNA bank consisting of the full-length cDNA clones. The

15

20

25

30

hydrophobicity/hydrophilicity profiles were obtained for proteins encoded by the full-length cDNA clones registered in the homo/protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 of (1982)] to examine the presence or absence hydrophobic region. Any clone that has a hydrophobic signal putative secretory as a being region transmembrane domain in the amino acid sequence of encoded protein was selected as a clone candidate.

10 (2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a  $T_NT$  rabbit reticulocyte lysate kit (Promega). [35S]methionine label the added to was case, expression product with a radioisotope. Each reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was reacted at 30°C for 90 minutes in a total 25  $\mu$ l volume of the reaction solution containing 12.5  $\mu l$  of  $T_N T$  rabbit reticulocyte lysate, 0.5  $\mu$ l of a buffer solution (attached to kit), 2  $\mu$ l of an amino acid mixture (methionine-free), 2  $\mu$ l of [ $^{35}$ S]methionine (Amersham) (0.37 MBq/ $\mu$ l), 0.5  $\mu$ l of T7RNA polymerase, and 20 U of RNasin. Also, an experiment in the presence of a membrane system was carried out by adding to this reaction system 2.5  $\mu l$  of a canine pancreas microsome fraction (Promega). To 3  $\mu l$  of the resulting reaction solution was added 2  $\mu l$  of the SDS sampling buffer (125 mM Tris-hydrochloric acid buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDSpolyacrylamide gel electrophoresis. The molecular weight

10

15

20

25

30

of the translation product was determined by carrying out the autoradiography.

## (3) Expression by COS7

Escherichia coli bearing the expression vector of the protein of the present invention was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100  $\mu$ g/ml of ampicillin, the helper phage M13K07 (50  $\mu$  1) was added, and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100  $\mu$ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The culture cells originating from the simian kidney, COS7, were incubated at 37°C in the presence of 5%  $CO_2$  in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well diameter) were inoculated 1 imes105 COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5%  ${\rm CO_2}$ . After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Tris-hydrochloric acid (pH 7.5) (TDMEM). To the resulting cells was added a suspension of 1  $\mu$ l of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3  $\mu$ l of TRANSFECTAM<sup>TM</sup> (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5%  $CO_2$ . After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf albumin was added, and the incubation was carried out at 37°C for 2 days in the presence of 5%  $CO_2$ . After the culture medium was replaced by a culture medium containing [35]cystine or

10

15

20

25

30

[35S]methionine, the incubation was carried out for one hour. After the culture medium and the cells were separated by centrifugation, proteins in the culture fraction and the cell-membrane fraction were subjected to SDS-PAGE.

(4) Clone Examples
<HP00631> (Sequence Nos. 1, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP00631 obtained from cDNA libraries of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 25-bp 5'-nontranslation region, a 717-bp ORF, and a 343-bp 3'-nontranslation region. The ORF codes for a protein consisting of 238 amino acid residues and there existed five putative transmembrane domains. Figure 1 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight. When expressed in COS7 cells, an expression product of about 25 kDa was observed in the membrane fraction.

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the golden hamster androgen-regulated protein FAR-17 (PIR Accession No. A54313). Table 2 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the golden hamster androgen-regulated protein FAR-17 (GH). Therein, the marks of -, \*, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 38.0% in the entire

region.

### Table 2

5 HP M----ALVPCQVLRMAILLSYCSILCNYKAIEMPSHQTYGGSWKFLTFIDLVIQAVFFG GH MTRTTTCVYHFLVWNWYIFLNY-YIPLIGKDDEKLKEFHDGGRSKYLTLLNLLLQAIFFG HP ICVLTDLSSLLTRGSGNQEQERQLKKLI-SLRDWMLAVLAFPVGVFVVAVFWIIYAYDRE \* \* \* \*\* GH VACLDD---VLKRIIG----RKDIKFITSTRDLLFSTLVFPISTFIFLVFWTLFYYDRS 10 HP MIYPKLLDNFIPGWLNHGMHTTVLPFILIEMRTSHHQYPSRSSGLTAICTFSVGYILWVC \* \*\*\* \*\*\* \* \* \* \* GH LIYPKGLDDYFPAWLNHAMHTYILLFVLVETILRPHHYPSKKLGLALIGACNLAYITRVL HP WVHHVTGMWVYPFLEHIGPGARIIFFGSTTILMNFLYLLGEVLNNYIW-DTQKSMEEEKE 15 GH WRYSQTGNWVYPVFASLNPLGIIIFFLVCYILNASIYLVGEKINHWKWGATVK---PLMK HP KPKLE \* \* GH KKK--20

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. R22829) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02403> (Sequence Nos. 2, 12, and 23)

Determination of the whole base sequence of the cDNA insert of clone HP02403 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 6-bp 5'-nontranslation region, a 585-bp ORF, and a 577-

25

bp 3'-nontranslation region. The ORF codes for a protein consisting of 194 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 22 kDa that was almost identical with the molecular weight of 21,959 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 kDa was observed in the membrane fraction.

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the Japanese quail apoptosis regulator NR-13 (SWISS-PROT Accession No. Q90343). Table 3 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the Japanese quail apoptosis regulator NR-13 (CC). Therein, the marks of -, \*, and . represent a gap, an amino acid identical with the protein of the present residue invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 31.5% in the entire region.

5

10

15

### Table 3

|    | HP | MAD  | PLF  | REF | RTI  | III. | ADY | (LGY | CAR | EPGI | PEPA | PST  | PE <i>l</i> | AVI  | RS  | AAAF | LRÇ | ZIHF | RSF | F5   | SAYI | <br>_ |
|----|----|------|------|-----|------|------|-----|------|-----|------|------|------|-------------|------|-----|------|-----|------|-----|------|------|-------|
|    |    | *    | *    | *   | *    | ***  | **  | r    | *   | *    |      | **   |             | **   | **  | ***  | *   |      | *   | **   | *    | *     |
| 5  | CC | MPG  | SLI  | ŒE  | T)   | TII  | EDY | TQH  | RA- | GG   | AALP | PS-Z | ATA         | AEI  | RR  | AAAE | LEF | RER  | (PF | FRSC | API  |       |
|    | HP | GYP  | SNF  | Œ   | ΞĮ   | /AL- | -MA | DSV  | LSD | SPGF | TWGR | VVTI | ניעם        | rFAC | TL  | ERG  | PLV | /TAR | wĸ  | KWGF | 'QPI | ₹     |
|    |    |      | *    | * * | •    | **   |     |      | *   | *    | ***  | 7    | **          | ***  | **  |      |     |      |     |      |      |       |
|    | CC | ARAI | ΞPF  | \-E | lA.P | ALL  | RKV | 'AAQ | LET | DGGI | NWGR | LLAI | LVV         | FAC  | TL- |      |     |      |     |      | ;    | A     |
|    | ΗP | LKE  | QE C | DV  | ΆF   | DCQ: | RLV | ALL  | SSR | LMGQ | HRAW | LQAÇ | QGG         | WDG  | FCF | IFF- | RTE | PPL  | AF  | WRKÇ | LVÇ  | ρ     |
| 10 |    |      | *    |     |      |      | **  | * *  |     | *    | *    |      | **          | ***  | **  | **   | *   |      | *   |      | *    |       |
|    | CC | AALA | ÆS   | AC  | EE   | GPS  | RLA | AAL  | TAY | LAEE | QGEW | MEEH | -IGC        | WDG  | FCF | vFFG | RHG | SQP  | AD  | QNST | LSN  | Į     |
|    | ΗP | A-FI | SC   | LL  | TI   | AFI  | YLW | TRL  | L   |      |      |      |             |      |     |      |     |      | •   |      |      |       |
|    |    | *    |      |     |      | *    |     |      |     |      |      |      |             |      |     |      |     |      |     |      |      |       |
|    | CC | AIMA | LΑΑ  | GF  | GI   | AGL  | AFL | LVV  | R   |      |      |      |             |      |     |      |     |      |     |      |      |       |
| 15 |    |      |      |     |      |      |     |      |     |      |      |      |             |      |     |      |     |      |     |      |      |       |

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA098865) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02420> (Sequence Nos. 3, 13, and 25)

Determination of the whole base sequence of the cDNA insert of clone HP02420 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 35-bp 5'-nontranslation region, a 420-bp ORF, and a 169-bp 3'-nontranslation region. The ORF codes for a protein consisting of 139 amino acid residues and there existed three putative transmembrane domains. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

20

25

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 17 kDa that was almost identical with the molecular weight of 16,082 predicted from the ORF. When expressed in CO7 cells, an expression product of about 16 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed the presence of sequences that were analogous to a yeast hypothetical protein of 15.9 kDa (SWISS-PROT Accession No. P53173). Table 4 shows the comparison of the amino acid sequence between the human invention (HP) and the present the protein of hypothetical protein of 15.9 kDa (SC). Therein, the marks of -, \*, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 43.2% in the entire region.

20

15

5

10

Table 4

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA044799) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10349> (Sequence Nos. 4, 14, and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10349 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 16-bp 5'-nontranslation region, a 972-bp ORF, and a 133-bp 3'-nontranslation region. The ORF codes for a protein consisting of 323 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 36,200 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. F13066) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10508> (Sequence Nos. 5, 15, and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10508 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of

a 33-bp 5'-nontranslation region, a 696-bp ORF, and a 98bp 3'-nontranslation region. The ORF codes for a protein consisting of 231 amino acid residues and there existed 5 depicts the Figure domains. transmembrane hydrophobicity/hydrophilicity profile, obtained Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight. When expressed in CO7 cells, an expression product of about 22 kDa was observed in the supernatant fraction and the membrane fraction.

Furthermore, the search of the GenBank using the base revealed has present CDNA the sequences of registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA484181) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10524> (Sequence Nos. 6, 16, and 31)

Determination of the whole base sequence of the cDNA insert of clone HP10524 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 308-bp 5'-nontranslation region, a 294-bp ORF, and a 587-bp 3'-nontranslation region. The ORF codes protein consisting of 97 amino acid residues and possessed Figure depicts 6 domain. transmembrane the hydrophobicity/hydrophilicity obtained profile, Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product 21 kDa that was larger than the molecular weight of 10,673 predicted from the ORF. When expressed in COS 30 cells, an expression product of about 26 kDa was observed in the membrane fraction.

5

10

15

20

10

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to the human glycophorin C (SWISS-PROT Accession No. P04921). Table 5 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the human glycophorin C (GP). Therein, the marks of - and \* represent a gap and an amino acid residue identical with the protein of the present invention, respectively. The both proteins possessed a homology of 30.5% in the entire region.

## Table 5

Furthermore, the search of the GenBank using the base 25 sequences of the present CDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. R21992) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same 30 protein as the protein of the present invention. <HP10529> (Sequence Nos. 7, 17, and 33)

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP10529 obtained from cDNA libraries of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 93-bp 5'-nontranslation region, a 597-bp ORF, and an 810-bp 3'-nontranslation region. The ORF codes for a protein consisting of 198 amino acid residues and possessed two transmembrane domains. Figure 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to the fugu rubripes putative protein 2 (GenBank Accession No. AF026198). Table 6 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the fugu rubripes putative protein 2 (FR). Therein, the marks of -, \*, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 56.1% in the entire region.

### Table 6

HP MATLWGGLLRLGSILSLSCLAL-SVLLLAQLS-DAAKNFEDVRCKCICPPYKENSGHIYN \* \* \* \*\* \*\* \*\* \*\* \*\* \*\* \*\* \*\*\*\*\* 5 FR MPSDREGLWMLAAFALMTLFLLDNVGVTQAKSFDDVRCKCICPPYRNISGHIYN HP KNISQKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLY FR RNFTQKDCNCLHVVDPMPVPGNDVEAYCLLCECKYEERSTNTIRVTIIIFLSVVGALLLY HP MVYLTLVEPILKRRLFGHAQLIQSDDDIGDHQPFANAHDVLARSRSRANVLNKVEYAQOR 10 \*..\* \*\*.\*.... \*\* ....\* .\* \*\* .. . . . . .\*\* \*\*\* FR MLFLLLVDPLIRKPD-PLAQTLHNEEDSEDIQP----QMSGDPARGNTVLERVEGAQQR HP WKLQVQEQRKSVFDRHVVLS \*\* \*\*\*\*\*\* .\*\*\*\* FR WKKQVQEQRKTVFDRHKML 15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. N33899) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10537> (Sequence Nos. 8, 18, and 35)

Determination of the whole base sequence of the cDNA insert of clone HP10537 obtained from cDNA libraries of the human osteosarcoma cell line Saos-2 revealed the structure consisting of a 94-bp 5'-nontranslation region, a 423-bp ORF, and a 289-bp 3'-nontranslation region. The ORF codes for a protein consisting of 140 amino acid residues and possessed four putative transmembrane domains. Figure 8 depicts the hydrophobicity/hydrophilicity profile,

20

25

10

15

20

25

30

obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight. When expressed in COS cells, an expression product of about 14 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. R36207) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10549> (Sequence Nos. 9, 19, and 37)

Determination of the whole base sequence of the cDNA insert of clone HP10549 obtained from cDNA libraries of the human stomach cancer revealed the structure consisting of an 11-bp 5'-nontranslation region, a 606-bp ORF, and a 1101-bp 3'-nontranslation region. The ORF codes for acid residues consisting of 201 amino protein possessed three putative transmembrane domains. Figure 9 hydrophobicity/hydrophilicity profile, the depicts obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 31 kDa that was larger than the molecular weight of 23,346 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. N28687) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

10

15

20

<HP10551> (Sequence Nos. 10, 20, and 39)

Determination of the whole base sequence of the cDNA insert of clone HP10551 obtained from cDNA libraries of the human stomach cancer revealed the structure consisting of a 152-bp 5'-nontranslation region, a 750-bp ORF, and a 93-bp 3'-nontranslation region. The ORF codes for protein consisting of 249 amino acid residues and possessed four putative transmembrane domains. Figure 10 depicts hydrophobicity/hydrophilicity the profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to the nematode imaginary protein T15B7 (GenBank Accession No. F022985). Table 7 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the nematode imaginary protein T15B7 (CE). Therein, the marks of -, \*, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 41.3% in the entire region.

### Table 7

HP MASSDEDGTNGGASEAGEDREAPGKRRLGFLATAWLTFYDIAMTAGWLVLAIAMVRFYM ..\*. \*.. . \*\* .. . \* MSVQTYLVAYNVLQILGWSAILVKTVLGLA SC 5 HP EKGTHRGLYKSIQKTLKFFQTFALLEIVHCLIGIVPTSVIVTGVQVSSRIFMVWLITHSI SC NGLTWPQLYESVEFELKIFQTAAILEVIHAIVGLVRSPVGTTAMQVTSRVVLVWPILHLC HP KPIQNEESVVLFLVAWIVTEITRYSFYTFSLLDH-LPYFIKWARYNFFIILYPVGVAGEL 10 SC STARFSIGVPLLLVAWSVTEVIRYSFYALSVLKQPIPYFLLYLRYTLFYVLYPMGVSGEL HP LTIYAALPHVKKTGMFSIRLPNKYNVSFDYYYFLLITMASYIPLFPQLYFHMLRQRRKVL \*\*..\*.\* .\*... .\*\*. \*.... \*.\*. \*.\*. \*\*\*\* \*\*\*\*\*.\*. \*\*.\*. SC LTLFASLNEVDEKKILTLEMPNRLNMGISFWWVLIIAALSYIPGFPQLYFYMIGQRKKIL 15 HP HGEVIVEKDD SC GGGSKKKQLIATNQNSTLFINYSPKTKRQWKCFSAEFVDILCSPFGIFVIVIREESWKSN

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. N67509) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

# INDUSTRIAL APPLICABILITY

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors of these DNAs as well as eucaryotic cells expressing these DNAs. All of the proteins of the present invention are secreted or exist in the cell

20

25

10

15

20

25

30

membrane, so that they are considered to be proteins controlling the proliferation and the differentiation of cells. Accordingly, the proteins of the invention can employed as pharmaceuticals be such agents relating to the control carcinostatic proliferation and the differentiation of the cells or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for large-scale expression of these proteins. Cells, wherein these genes are introduced to express these proteins, can be utilized for detection of the corresponding receptors screening and ligands, of novel low-molecular pharmaceuticals, and so on.

The present invention also provides corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is

a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified gene(s) corresponding to expression of the 5 polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 10 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences 15 disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, Transgenic animals that have modified genetic provided. control regions that increase or reduce gene expression 20 levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed 25 herein have been partially or completely inactivated, extraneous sequences through insertion of corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene accomplished through inactivation can be 30 preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal

10

15

20

25

30

et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein,

where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As "species homologue" is a protein or herein, a polynucleotide with a different species of origin from that of a given protein or polynucleotide, significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions,

5

10

15

20

25

more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

10

Table

| Stringency<br>Condition | Polynucleotide<br>Hybrid | Hybrid<br>Length<br>(bp)‡ | Hybridization Temperature and Buffer <sup>†</sup> | Wash<br>Temperature<br>and Buffer <sup>†</sup> |  |  |
|-------------------------|--------------------------|---------------------------|---------------------------------------------------|------------------------------------------------|--|--|
| A                       | DNA : DNA                | ≥50                       | 65°C; 1×SSC -or-                                  | 65°C; 0.3×SSC                                  |  |  |
|                         |                          |                           | 42°C; 1×SSC,50% formamide                         |                                                |  |  |
| В                       | DNA: DNA                 | < 50                      | T <sub>B</sub> *; 1×SSC                           | T <sub>B</sub> *; 1×SSC                        |  |  |
| C                       | DNA : RNA                | ≥50                       | 67°C; 1×SSC -or-                                  | 67°C; 0.3×SSC                                  |  |  |
|                         |                          |                           | 45°C; 1×SSC,50% formamide                         |                                                |  |  |
| D                       | DNA : RNA                | < 50                      | T <sub>D</sub> *; 1×SSC                           | T <sub>D</sub> *; 1×SSC                        |  |  |
| E                       | RNA : RNA                | ≥50                       | 70°C; 1×SSC -or-                                  | 70°C; 0.3×SSC                                  |  |  |
| •                       |                          |                           | 50°C; 1×SSC,50% formamide                         |                                                |  |  |
| F                       | RNA : RNA                | <50                       | $T_F^*$ ; 1×SSC                                   | T <sub>F</sub> *; 1×SSC                        |  |  |
| G                       | DNA : DNA                | ≥50                       | 65°C; 4×SSC -or-                                  | 65°C; 1×SSC                                    |  |  |
|                         |                          |                           | 42°C; 4×SSC,50% formamide                         |                                                |  |  |
| H                       | DNA: DNA                 | <50                       | T <sub>H</sub> *; 4×SSC                           | T <sub>H</sub> *; 4×SSC                        |  |  |
| I                       | DNA: RNA                 | ≥50                       | 67°C; 4×SSC -or-                                  | 67°C; 1×SSC                                    |  |  |
|                         |                          |                           | 45°C; 4×SSC,50% formamide                         |                                                |  |  |
| J                       | DNA: RNA                 | <50                       | T <sub>J</sub> *; 4×SSC                           | T <sub>J</sub> *; 4×SSC                        |  |  |
| K                       | RNA: RNA                 | ≥50                       | 70°C; 4×SSC -or-                                  | 67°C; 1×SSC                                    |  |  |
|                         |                          |                           | 50°C; 4×SSC,50% formamide                         |                                                |  |  |
| L                       | RNA : RNA                | <50                       | T <sub>L</sub> *; 2×SSC                           | T <sub>L</sub> *; 2×SSC                        |  |  |
| M                       | DNA : DNA                | ≥50                       | 50°C; 4×SSC -or-                                  | 50°C; 2×SSC                                    |  |  |
|                         |                          |                           | 40°C; 6×SSC,50% formamide                         |                                                |  |  |
| N                       | DNA: DNA                 | < 50                      | T <sub>N</sub> *; 6×SSC                           | T <sub>N</sub> *; 6×SSC                        |  |  |
| 0                       | DNA: RNA                 | ≥50                       | 55°C; 4×SSC -or-                                  | 55°C; 2×SSC                                    |  |  |
|                         |                          |                           | 42°C; 6×SSC,50% formamide                         |                                                |  |  |
| P                       | DNA: RNA                 | <50                       | T <sub>P</sub> *; 6×SSC                           | T <sub>P</sub> *; 6×SSC                        |  |  |
| Q                       | RNA : RNA                | ≥50                       | 60°C; 4×SSC -or-                                  | 60°C; 2×SSC                                    |  |  |
|                         |                          |                           | 45°C; 6×SSC,50% formamide                         |                                                |  |  |
| R                       | RNA : RNA                | <50                       | T <sub>R</sub> *; 4×SSC                           | T <sub>R</sub> *; 4×SSC                        |  |  |

‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

†: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH<sub>2</sub>PO<sub>4</sub>, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

\* $T_B$  ·  $T_R$ : The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5·10°C less than the melting temperature ( $T_m$ ) of the hybrid, where  $T_m$  is determined according to the following equations. For hybrids less than 18 base pairs in length,  $T_m$ (°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length,  $T_m$ (°C)=81.5 + 16.6(log<sub>10</sub>[Na<sup>+</sup>]) + 0.41 (%G+C) · (600/N), where N is the number of bases in the hybrid, and [Na<sup>+</sup>] is the concentration of sodium ions in the hybridization buffer ([Na<sup>+</sup>] for 1×SSC=0.165M).

20

25

30

35

5

10

15

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the which present invention to polynucleotide of the hybridizes, and has at least 60% sequence identity (more least 75% identity; most preferably at preferably, at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

### CLAIMS

- 1. A protein comprising any of the amino acid sequences represented by Sequence Nos. 1 to 10.
- 5 2. A DNA coding for the protein according to Claim
  1.
  - 3. A cDNA comprising any of the base sequences represented by Sequence Nos. 11 to 20.
- 4. The cDNA according to Claim 3 comprising any of the base sequences represented by Sequence Nos. 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39.
  - 5. An expression vector capable of expressing the DNA according to any of Claims 2 to 4 by in vitro translation or in eucaryotic cells.
- 6. A transformation eucaryotic cell capable of expressing the DNA according to any of Claims 2 to 4 to produce the protein according to Claim 1.



Fig. 1



Fig. 2



Fig. 3



Fig. 4



Fig. 5



Fig. 6



Fig. 7



Fig. 8



Fig. 9



Fig. 10

```
Sequence listing
```

<110> Sagami Chemical Research Center et al.

5 <120> Human Proteins Having Hydrophobic Domains And DNAs Encoding These Proteins

<130> 661101

10 <141> 1999-06-18

<150> JP 10-180008

<151> 1998-06-26

15 <160> 40

<170> Windows 95 (Word 98)

<210> 1

20 <211> 238

<212> PRT

<213> Homo sapiens

<400> 1

25 Met Ala Leu Val Pro Cys Gln Val Leu Arg Met Ala Ile Leu Leu Ser

5 10 1

Tyr Cys Ser Ile Leu Cys Asn Tyr Lys Ala Ile Glu Met Pro Ser His

25 30

Gln Thr Tyr Gly Gly Ser Trp Lys Phe Leu Thr Phe Ile Asp Leu Val

30 35 40 45

Ile Gln Ala Val Phe Phe Gly Ile Cys Val Leu Thr Asp Leu Ser Ser

50 55 60

|    | Leu | Leu   | Thr   | Arg  | Gly  | Ser  | Gly  | Asn  | Gln   | Glu  | Gln  | Glu  | Arg  | Gin   | Leu   | гÀг  |
|----|-----|-------|-------|------|------|------|------|------|-------|------|------|------|------|-------|-------|------|
|    | 65  |       |       |      |      | 70   |      |      |       |      | 75   |      |      |       |       | 80   |
|    | Lys | Leu   | Ile   | Ser  | Leu  | Arg  | Asp  | Trp  | Met   | Leu  | Ala  | Val  | Leu  | Ala   | Phe   | Pro  |
|    |     |       |       |      | 85   |      |      |      |       | 90   |      |      |      |       | 95    |      |
| 5  | Val | Gly   | Val   | Phe  | Val  | Val  | Ala  | Val  | Phe   | Trp  | Ile  | Ile  | Tyr  | Ala   | Tyr   | Asp  |
|    |     |       |       | 100  |      |      |      |      | 105   |      |      |      |      | 110   |       |      |
|    | Arg | Glu   | Met   | Ile  | Tyr  | Pro  | Lys  | Leu  | Leu   | Asp  | Asn  | Phe  | Ile  | Pro   | Gly   | Trp  |
|    |     |       | 115   |      |      |      |      | 120  |       |      |      |      | 125  |       |       |      |
|    | Leu | Asn   | His   | Gly  | Met  | His  | Thr  | Thr  | Val   | Leu  | Pro  | Phe  | Ile  | Leu   | Ile   | Glu  |
| 10 |     | 130   |       |      |      |      | 135  |      |       |      |      | 140  |      |       |       |      |
|    | Met | Arg   | Thr   | Ser  | His  | His  | Gln  | Tyr  | Pro   | Ser  | Arg  | Ser  | Ser  | Gly   | Leu   | Thr  |
|    | 145 |       |       |      |      | 150  |      |      |       |      | 155  |      |      |       |       | 160  |
|    | Ala | Ile   | Cys   | Thr  | Phe  | Ser  | Val  | Gly  | Tyr   | Ile  | Leu  | Trp  | Val  | Суз   | Trp   | Val  |
|    |     |       |       |      | 165  |      |      |      |       | 170  |      |      |      |       | 175   |      |
| 15 | His | His   | Val   | Thr  | Gly  | Met  | Trp  | Val  | Tyr   | Pro  | Phe  | Leu  | Glu  | His   | Ile   | Gly  |
|    |     |       |       | 180  |      |      |      |      | 185   |      |      |      |      | 190   |       |      |
|    | Pro | Gly   | Ala   | Arg  | Ile  | Ile  | Phe  | Phe  | Gly   | Ser  | Thr  | Thr  | Ile  | Leu   | Met   | Asn  |
|    |     |       | 195   |      |      |      |      | 200  |       |      |      |      | 205  | ,     |       |      |
|    | Phe | Lev   | Tyr   | Lev  | Leu  | Gly  | Glu  | Val  | Leu   | Asn  | Asn  | Туг  | Ile  | Trp   | Asp   | Thr  |
| 20 |     | 210   |       |      |      |      | 215  |      |       |      |      | 220  |      |       |       |      |
|    | Glr | ı Lys | s Ser | Met  | Glu  | Glu  | Glu  | Lys  | Glu   | Lys  | Pro  | Lys  | Let  | Glu   | L     |      |
|    | 225 | 5     |       |      |      | 230  | )    |      |       |      | 235  | •    |      |       |       |      |
|    |     |       |       |      |      |      |      |      |       |      |      |      |      |       |       |      |
|    | <2  | 10> 3 | 2     |      |      |      |      |      |       |      |      |      |      |       |       |      |
| 25 | <2  | 11> : | 194   |      |      |      |      |      |       |      |      |      |      |       |       |      |
|    | <2  | 12> 1 | PRT   |      |      |      |      |      |       |      |      |      |      |       |       |      |
|    | <2  | 13> 1 | Homo  | sap  | iens |      |      |      |       |      |      |      |      |       |       |      |
|    |     |       |       |      |      |      |      |      |       |      |      |      |      |       |       |      |
|    |     | 00>   |       |      |      |      |      |      |       |      |      |      |      |       |       |      |
| 30 | Me  | t Al  | a As  | p Pr | o Le | u Ar | g Gl | u Ar | g Thi | r Gl | u Le | u Le | u Le | u Ala | a Asj | р Ту |
|    |     | 1     |       |      |      | 5    |      |      |       | 1    |      |      |      |       | 1     |      |
|    | Le  | u Gl  | у Ту  | r Cy | s Al | a Ar | g Ġl | u Pr | o Gl  | y Th | r Pr | o Gl | u Pr | o Al  | a Pr  | o Se |

|           |      |      |      | 20    |     |      |     |     | 25  |     |     |             |      | 30    |       |      |
|-----------|------|------|------|-------|-----|------|-----|-----|-----|-----|-----|-------------|------|-------|-------|------|
|           | Thr  | Pro  | Glu  | Ala   | Ala | Val  | Leu | Arg | Ser | Ala | Ala | Ala         | Arg  | Leu   | Arg   | Gln  |
|           |      |      | 35   |       |     |      |     | 40  |     |     |     |             | 45   |       |       |      |
|           | Ile  | His  | Arg  | Ser   | Phe | Phe  | Ser | Ala | Tyr | Leu | Gly | Tyr         | Pro  | Gly   | Asn   | Arg  |
| 5         |      | 50   |      |       |     |      | 55  |     |     |     |     | 60          |      |       |       |      |
|           | Phe  | Glu  | Leu  | Val   | Ala | Leu  | Met | Ala | Asp | Ser | Val | Leu         | Ser  | Asp   | Ser   | Pro  |
|           | 65   |      |      |       |     | 70   |     |     |     |     | 75  |             |      |       |       | 80   |
|           | Gly  | Pro  | Thr  | Trp   | Gly | Arg  | Val | Val | Thr | Leu | Val | Thr         | Phe  | Ala   | Gly   | Thr  |
|           |      |      |      |       | 85  |      |     |     |     | 90  |     |             |      |       | 95    |      |
| 10        | Leu  | Leu  | Glu  | Arg   | Gly | Pro  | Leu | Val | Thr | Ala | Arg | Trp         | Lys  | Lys   | Trp   | Gly  |
|           |      |      |      | 100   |     |      |     |     | 105 |     |     |             |      | 110   |       |      |
|           | Phe  | Gln  | Pro  | Arg   | Leu | Lys  | Glu | Gln | Glu | Gly | Asp | Val         | Ala  | Arg   | Asp   | Суз  |
|           |      |      | 115  |       |     |      |     | 120 |     |     |     |             | 125  |       |       |      |
|           | Gln  | Arg  | Leu  | Val   | Ala | Leu  | Leu | Ser | Ser | Arg | Leu | Met         | Gly  | Gln   | His   | Arg  |
| 15        |      | 130  |      |       |     |      | 135 |     |     |     |     | 140         |      |       |       |      |
|           | Ala  | Trp  | Leu  | Gln   | Ala | Gln  | Gly | Gly | Trp | Asp | Gly | Phe         | Cys  | His   | Phe   | Phe  |
|           | 145  |      |      |       |     | 150  |     |     |     |     | 155 |             |      |       |       | 160  |
|           | Arg  | Thr  | Pro  | Phe   | Pro | Leu  | Ala | Phe | Trp | Arg | Lys | Gln         | Leu  | Val   | Gln   | Ala  |
|           |      |      |      |       | 165 |      |     |     |     | 170 |     |             |      |       | 175   |      |
| 20        | Phe  | Leu  | Ser  | Cys   | Leu | Leu  | Thr | Thr | Ala | Phe | Ile | Tyr         | Leu  | Trp   | Thr   | Arg  |
|           |      |      |      | 180   |     |      |     |     | 185 |     |     |             |      | 190   |       |      |
|           | Leu  | Leu  |      |       |     |      |     |     |     |     | -   |             |      |       |       |      |
|           |      |      |      |       |     |      |     |     |     |     |     |             |      |       |       |      |
|           | <210 | > 3  |      |       |     |      |     |     |     |     |     |             |      |       |       |      |
| <b>25</b> | <211 | > 13 | 9    |       |     |      |     |     |     |     |     |             |      |       |       |      |
|           | <212 | > PR | T    |       |     |      |     |     |     |     |     |             |      |       |       |      |
|           | <213 | > Ho | mo s | sapie | ns  |      |     |     |     |     |     |             |      |       |       |      |
|           |      |      |      |       |     |      |     |     |     |     |     |             |      |       |       |      |
|           | <400 | > 3  |      |       |     |      |     |     |     |     |     |             |      |       |       |      |
| 30        | Met  | Glu  | Ala  | Val   | Val | Phe  | Val | Phe | Ser | Leu | Leu | Asp         | Суз  | Cys   | Ala   | Leu  |
|           | 1    |      |      |       | 5   |      |     |     |     | 10  |     |             |      |       | 15    |      |
|           | Tle  | Phe  | Leu  | Ser   | Val | ጥነንጉ | Phe | Tle | Tla | ጥኮሎ | Len | 50 <b>~</b> | ) an | T 013 | C3.11 | Crea |

|           |             | 20        |          | 25       |           |            | 30            |
|-----------|-------------|-----------|----------|----------|-----------|------------|---------------|
|           | Asp Tyr Ile | Asn Ala   | Arg Ser  | Cys Cys  | Ser Lys   | Leu Asn    | Lys Trp Val   |
|           | 35          | ı         |          | 40       |           | 45         |               |
|           | Ile Pro Glu | Leu Ile   | Gly His  | Thr Ile  | Val Thr   | Val Leu    | Leu Leu Met   |
| 5         | 50          |           | 55       |          |           | 60         |               |
|           | Ser Leu His | Trp Phe   | Ile Phe  | Leu Leu  | Asn Lev   | Pro Val    | Ala Thr Trp   |
|           | 65          |           | 70       |          | 75        | 5          | 80            |
|           | Asn Ile Tyr | Arg Tyr   | Ile Met  | Val Pro  | Ser Gly   | Asn Met    | Gly Val Phe   |
|           |             | 85        |          |          | 90        |            | 95            |
| 10        | Asp Pro Th  | c Glu Ile | His Asn  | Arg Gly  | Gln Le    | ı Lys Ser  | His Met Lys   |
|           |             | 100       |          | 10       | 5         |            | 110           |
|           | Glu Ala Me  | t Ile Lys | Leu Gly  | Phe Hi   | s Leu Lei | u Cys Phe  | Phe Met Tyr   |
|           | 11          | 5         |          | 120      |           | 125        |               |
|           | Leu Tyr Se  | r Met Ile | Leu Ala  | Leu Il   | e Asn As  | P          |               |
| 15        | 130         |           | 135      | 5        |           |            |               |
|           |             |           |          |          |           |            |               |
|           | <210> 4     |           |          |          |           |            |               |
|           | <211> 323   |           |          |          |           |            |               |
|           | <212> PRT   |           |          |          |           |            |               |
| 20        | <213> Homo  | sapiens   |          |          |           |            |               |
|           |             |           |          |          |           |            |               |
|           | <400> 4     |           |          |          |           |            |               |
|           | Met Ala Al  | a Pro Ly: | s Gly Se | r Leu Tr | p Val Ar  | g Thr Glr  | Leu Gly Leu   |
|           | 1           |           | 5        |          | 10        |            | 15            |
| <b>25</b> | Pro Pro Le  | eu Leu Le | u Leu Th |          |           | la Gly Gly | y Ser Gly Thr |
|           |             | 20        |          |          | 25        |            | 30            |
|           | Ala Ser A   | la Glu Al | a Phe As |          | al Leu Gi |            | r Ala Ser Cys |
|           |             | 35        |          | 40       |           | 4!         |               |
|           | His Arg A   | la Cys Gl |          |          | ro Leu H  |            | r Pro Lys Glu |
| 30        | 50          |           |          | i5<br>   |           | 60         |               |
|           | Glu Glu L   | eu Tyr Al |          | n Arg G  |           |            | e Ser Ile Cys |
|           | 65          |           | 70       |          |           | 75         | 80            |

|    | Gln | Phe | Val | Asp | Asp | Gly | Ile | Asp | Leu | Asn | Arg | Thr | Lys | Leu | Glu | Су  |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    |     |     |     |     | 85  |     |     |     |     | 90  |     |     |     |     | 95  |     |
|    | Glu | Ser | Ala | Cys | Thr | Glu | Ala | Tyr | Ser | Gln | Ser | Asp | Glu | Gln | Tyr | Ala |
|    |     |     |     | 100 |     |     |     |     | 105 |     |     |     |     | 110 |     |     |
| 5  | Cys | His | Leu | Gly | Cys | Gln | Asn | Gln | Leu | Pro | Phe | Ala | Glu | Leu | Arg | Glr |
|    |     |     | 115 |     |     |     |     | 120 |     |     |     |     | 125 |     |     |     |
|    | Glu | Gln | Leu | Met | Ser | Leu | Met | Pro | Lys | Met | His | Leu | Leu | Phe | Pro | Let |
|    |     | 130 |     |     |     |     | 135 |     |     |     |     | 140 |     |     |     |     |
|    | Thr | Leu | Val | Arg | Ser | Phe | Trp | Ser | Asp | Met | Met | Asp | Ser | Ala | Gln | Sei |
| 10 | 145 |     |     |     |     | 150 |     |     |     |     | 155 |     |     |     |     | 160 |
|    | Phe | Ile | Thr | Ser | Ser | Trp | Thr | Phe | Tyr | Leu | Gln | Ala | Asp | Asp | Gly | Lys |
|    |     |     |     |     | 165 |     |     |     |     | 170 |     |     |     |     | 175 |     |
|    | Ile | Val | Ile | Phe | Gln | Ser | Lys | Pro | Glu | Ile | Gln | Tyr | Ala | Pro | His | Let |
|    |     |     |     | 180 |     |     |     |     | 185 |     |     |     |     | 190 |     |     |
| 15 | Glu | Gln | Glu | Pro | Thr | Asn | Leu | Arg | Glu | Ser | Ser | Leu | Ser | Lys | Met | Ser |
|    |     |     | 195 |     |     |     |     | 200 |     |     |     |     | 205 |     |     |     |
|    | Tyr | Leu | Gln | Met | Arg | Asn | Ser | Gln | Ala | His | Arg | Asn | Phe | Leu | Glu | Asp |
|    |     | 210 |     |     |     |     | 215 |     |     |     |     | 220 |     |     |     |     |
|    | Gly | Glu | Ser | Asp | Gly | Phe | Leu | Arg | Суз | Leu | Ser | Leu | Asn | Ser | Gly | Tr  |
| 20 | 225 |     |     |     |     | 230 |     |     |     |     | 235 |     |     |     |     | 240 |
|    | Ile | Leu | Thr | Thr | Thr | Leu | Val | Leu | Ser | Val | Met | Val | Leu | Leu | Trp | Ile |
|    |     |     |     |     | 245 |     |     |     |     | 250 |     |     |     |     | 255 |     |
|    | Cys | Cys | Ala | Thr | Val | Ala | Thr | Ala | Val | Glu | Gln | Tyr | Val | Pro | Ser | Gli |
|    |     |     |     | 260 |     |     |     |     | 265 |     |     |     |     | 270 |     |     |
| 25 | Lys | Leu | Ser | Ile | Tyr | Gly | Asp | Leu | Glu | Phe | Met | Asn | Glu | Gln | Lys | Let |
|    |     |     | 275 |     |     |     |     | 280 |     |     |     |     | 285 |     |     |     |
|    | Asn | Arg | Tyr | Pro | Ala | Ser | Ser | Leu | Val | Val | Val | Arg | Ser | Lys | Thr | Glı |
|    |     | 290 |     |     |     |     | 295 |     |     |     |     | 300 |     |     |     |     |
|    | Asp | His | Glu | Glu | Ala | Gly | Pro | Leu | Pro | Thr | Lys | Val | Asn | Leu | Ala | His |
| 30 | 305 |     |     |     |     | 310 |     |     |     |     | 315 |     |     |     |     | 320 |
|    | Ser | Glu | Tle |     |     |     |     |     |     |     |     |     |     |     |     |     |

|    | <210  | > 5  |      |      |     |     |       |     |     |     |     |     |     |     |     |     |
|----|-------|------|------|------|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | <2112 | > 23 | 1    |      |     |     |       |     |     |     |     |     |     |     |     |     |
|    | <212  | > PR | T    |      |     |     |       |     |     |     |     |     |     |     |     |     |
|    | <213  | > Ho | mo s | apie | ns  |     |       |     |     |     |     |     |     |     |     |     |
| 5  |       |      |      |      |     |     |       |     |     |     |     |     |     |     |     |     |
|    | <400  | > 5  |      |      |     |     |       |     |     |     |     |     |     |     |     |     |
|    | Met 2 | Arg  | Arg  | Cys  | Ser | Leu | Cys   | Ala | Phe | Asp | Ala | Ala | Arg | Gly | Pro | Arg |
|    | 1     |      |      |      | 5   |     |       |     |     | 10  |     |     |     |     | 15  |     |
|    | Arg : | Leu  | Met  | Arg  | Val | Gly | Leu   | Ala | Leu | Ile | Leu | Val | Gly | His | Val | Asn |
| 10 |       |      |      | 20   |     |     |       |     | 25  |     |     |     |     | 30  |     |     |
|    | Leu   | Leu  | Leu  | Gly  | Ala | Val | Leu   | His | Gly | Thr | Val | Leu | Arg | His | Val | Ala |
|    |       |      | 35   |      |     |     |       | 40  |     |     |     |     | 45  |     |     |     |
|    | Asn   | Pro  | Arg  | Gly  | Ala | Val | Thr   | Pro | Glu | Tyr | Thr | Val | Ala | Asn | Val | Ile |
|    |       | 50   |      |      |     |     | 55    |     |     |     |     | 60  |     |     | -   |     |
| 15 | Ser   | Val  | Gly  | Ser  | Gly | Leu | Leu   | Ser | Val | Ser | Val | Gly | Leu | Val | Ala | Leu |
|    | 65    |      |      |      |     | 70  |       |     |     |     | 75  |     |     |     |     | 80  |
|    | Leu   | Ala  | Ser  | Arg  | Asn | Leu | Leu   | Arg | Pro | Pro | Leu | His | Trp | Val | Leu | Leu |
|    |       |      |      |      | 85  |     |       |     |     | 90  |     |     |     |     | 95  |     |
|    | Ala   | Leu  | Ala  | Leu  | Val | Asn | Leu   | Leu | Leu | Ser | Val | Ala | Cys | Ser | Leu | Gly |
| 20 |       |      |      | 100  |     |     |       |     | 105 |     |     |     |     | 110 |     |     |
|    | Leu   | Leu  | Leu  | Ala  | Val | Ser | Leu   | Thr | Val | Ala | Asn | Gly | Gly | Arg | Arg | Leu |
|    |       |      | 115  |      |     |     |       | 120 |     |     |     | _   | 125 |     |     |     |
|    | Ile   | Ala  | Asp  | Cys  | His | Pro | Gly   | Leu | Leu | Asp | Pro | Leu | Val | Pro | Leu | Asp |
|    |       | 130  |      |      |     |     | 135   |     |     |     |     | 140 |     |     |     |     |
| 25 | Glu   | Gly  | Pro  | Gly  | His | Thr | Asp   | Cys | Pro | Phe | Asp | Pro | Thr | Arg | Ile | Tyr |
|    | 145   |      |      |      |     | 150 |       |     |     |     | 155 |     |     |     |     | 160 |
|    | Asp   | Thr  | Ala  | Leu  | Ala | Leu | Trp   | Ile | Pro | Ser | Leu | Leu | Met | Ser | Ala | Gly |
|    |       |      |      |      | 165 | 1   |       |     |     | 170 | )   |     |     |     | 175 |     |
|    | Glu   | Ala  | Ala  | Leu  | Ser | Gly | Tyr   | Cys | Cys | Val | Ala | Ala | Leu | Thr | Leu | Arg |
| 30 | •     |      |      | 180  | )   |     |       |     | 185 | i   |     |     |     | 190 | ı   |     |
|    | Gly   | Val  | Gly  | Pro  | Cys | Arg | l Lys | Asp | Gly | Leu | Gln | Gly | Glr | Val | Val | Ala |
|    |       |      | 195  | i    |     |     |       | 200 | )   |     |     |     | 205 | •   |     |     |

```
Gly Cys Asp Ala Arg Val Lys Gln Lys Ala Trp Gln Pro Arg Phe Pro
           210
                                215
                                                     220
       Gly Ile Lys Val Lys Ala Leu
       225
                            230
 5
       <210> 6
       <211> 97
       <212> PRT
       <213> Homo sapiens
10
       <400> 6
       Met Thr Ser Leu Leu Thr Thr Pro Ser Pro Arg Glu Glu Leu Met Thr
                                             10
                                                                  15
       Thr Pro Ile Leu Gln Pro Thr Glu Ala Leu Ser Pro Glu Asp Gly Ala
15
                                         25
       Ser Thr Ala Leu Ile Ala Val Val Ile Thr Val Val Phe Leu Thr Leu
                                     40
                                                          45
       Leu Ser Val Val Ile Leu Ile Phe Phe Tyr Leu Tyr Lys Asn Lys Gly
            50
                                 55
                                                      60
20
       Ser Tyr Val Thr Tyr Glu Pro Thr Glu Gly Glu Pro Ser Ala Ile Val
        65
                             70
                                                 75
                                                                      80
       Gln Met Glu Ser Asp Leu Ala Lys Gly Ser Glu Lys Glu Glu Tyr Phe
                         85
                                             90
                                                                  95
       Ile
25
       <210> 7
       <211> 198
       <212> PRT
       <213> Homo sapiens
30
       <400> 7
       Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu Ser
```

WO 00/00506

PCT/JP99/03242

|    | 1   |       |       |       | 5    |       |     |     |     | 10  |     |       |     |          | 15  |     |
|----|-----|-------|-------|-------|------|-------|-----|-----|-----|-----|-----|-------|-----|----------|-----|-----|
|    | Leu | Ser   | Cys   | Leu   | Ala  | Leu   | Ser | Val | Leu | Leu | Leu | Ala   | Gln | Leu      | Ser | Asp |
|    |     |       |       | 20    |      |       |     |     | 25  |     |     |       |     | 30       |     |     |
|    | Ala | Ala   | Lys   | Asn   | Phe  | Glu   | Asp | Val | Arg | Cys | Lys | Cys   | Ile | Сув      | Pro | Pro |
| 5  |     |       | 35    |       |      |       |     | 40  |     |     |     |       | 45  |          |     |     |
|    | Tyr | Lys   | Glu   | Asn   | Ser  | Gly   | His | Ile | Tyr | Asn | Lys | Asn   | Ile | Ser      | Gln | Lys |
|    |     | 50    |       |       |      |       | 55  |     |     |     |     | 60    |     |          |     |     |
|    | Asp | Суз   | Asp   | Cys   | Leu  | His   | Val | Val | Glu | Pro | Met | Pro   | Val | Arg      | Gly | Pro |
|    | 65  |       |       |       |      | 70    |     |     |     |     | 75  |       |     |          |     | 80  |
| 10 | Asp | Val   | Glu   | Ala   | Tyr  | Cys   | Leu | Arg | Cys | Glu | Cys | Lys   | Tyr | Glu      | Glu | Arg |
|    |     |       |       |       | 85   |       |     |     |     | 90  |     |       |     |          | 95  | -   |
|    | Ser | Ser   | Val   | Thr   | Ile  | Lys   | Val | Thr | Ile | Ile | Ile | Tyr   | Leu | Ser      | Ile | Leu |
|    |     |       |       | 100   |      |       |     |     | 105 |     |     |       |     | 110      |     |     |
|    | Gly | Leu   | Leu   | Leu   | Leu  | Tyr   | Met | Val | Tyr | Leu | Thr | Leu   | Val | Glu      | Pro | Ile |
| 15 |     |       | 115   |       |      |       |     | 120 |     |     |     |       | 125 |          |     |     |
|    | Let | Lys   | Arg   | Arg   | Leu  | Phe   | Gly | His | Ala | Gln | Leu |       |     | Ser      | Asp | Asp |
|    |     | 130   |       |       |      |       | 135 |     |     |     |     | 140   |     |          |     |     |
|    | Asp | ıle   | e Gly | Asp   | His  | Gln   | Pro | Phe | Ala | Asn |     |       | Asp | Val      | Leu | Ala |
|    | 145 |       |       |       |      | 150   |     |     |     |     | 155 |       | _   |          |     | 160 |
| 20 | Arg | g Ser | Arg   | Ser   | Arg  | , Ala | Asr | Val | Leu |     |     | Val   | Glu | Туг      |     | Gln |
|    |     |       |       |       | 165  |       |     |     |     | 170 |     |       |     | <b>-</b> | 175 |     |
|    | Glı | n Ar  | g Trp | Lys   | Let  | ı Glr | val | Glr |     |     | Arg | l Lys | Ser |          |     | Asp |
|    |     |       |       | 180   | )    |       |     |     | 185 | •   |     |       |     | 190      | )   |     |
|    | Ar  | g His | s Val | . Val | Let  | ı Sei | :   |     |     |     |     |       |     |          |     |     |
| 25 |     |       | 195   | 5     |      |       |     |     |     |     |     |       |     |          |     |     |
|    |     |       |       |       |      |       |     |     |     |     |     |       |     |          |     |     |
|    |     | 10>   |       |       |      |       |     |     |     |     |     |       |     |          |     |     |
|    |     | 11>   |       |       |      |       |     |     |     |     |     |       |     |          |     |     |
|    |     | 12>   |       |       |      |       |     |     |     |     |     |       |     |          |     |     |
| 30 | <2  | 13>   | Homo  | sap   | iens |       |     |     |     |     |     |       |     |          |     |     |
|    |     |       |       |       |      |       |     |     |     |     |     |       |     |          |     |     |
|    | -1  | 00>   | Ω     |       |      |       |     |     |     |     |     |       |     |          |     |     |

|            | Met  | Gly   | Arg   | Val   | Ser | Gly | Leu | Val | Pro | Ser | Arg | Phe | Leu | Thr | Leu | Leu |
|------------|------|-------|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|            | 1    |       |       |       | 5   |     |     |     |     | 10  |     |     |     |     | 15  |     |
|            | Ala  | His   | Leu   | Val   | Val | Val | Ile | Thr | Leu | Phe | Trp | Ser | Arg | Asp | Ser | Asn |
|            |      |       |       | 20    |     |     |     |     | 25  |     |     |     |     | 30  |     |     |
| 5          | Ile  | Gln   | Ala   | Cys   | Leu | Pro | Leu | Thr | Phe | Thr | Pro | Glu | Glu | Tyr | Asp | Lys |
|            |      |       | 35    |       |     |     |     | 40  |     |     |     |     | 45  |     |     |     |
|            | Gln  | Asp   | Ile   | Gln   | Leu | Val | Ala | Ala | Leu | Ser | Val | Thr | Leu | Gly | Leu | Phe |
|            |      | 50    |       |       |     |     | 55  |     |     |     |     | 60  |     |     |     |     |
|            | Ala  | Val   | Glu   | Leu   | Ala | Gly | Phe | Leu | Ser | Gly | Val | Ser | Met | Phe | Asn | Ser |
| 10         | 65   |       |       |       |     | 70  |     |     |     |     | 75  |     |     |     |     | 80  |
|            | Thr  | Gln   | Ser   | Leu   | Ile | Ser | Ile | Gly | Ala | His | Cys | Ser | Ala | Ser | Val | Ala |
|            |      |       |       |       | 85  |     |     |     |     | 90  |     |     |     |     | 95  |     |
|            | Leu  | Ser   | Phe   | Phe   | Ile | Phe | Glu | Arg | Trp | Glu | Cys | Thr | Thr | Tyr | Trp | Tyr |
|            |      |       |       | 100   |     |     |     |     | 105 |     |     |     |     | 110 |     |     |
| 15         | Ile  | Phe   | Val   | Phe   | Суз | Ser | Ala | Leu | Pro | Ala | Val | Thr | Glu | Met | Ala | Leu |
|            |      |       | 115   |       |     |     |     | 120 |     |     |     |     | 125 |     |     |     |
|            | Phe  | Val   | Thr   | Val   | Phe | Gly | Leu | Lys | Lys | Lys | Pro | Phe |     |     |     |     |
|            |      | 130   |       |       |     |     | 135 |     |     |     |     | 140 |     |     |     |     |
|            |      |       |       |       |     |     |     |     |     |     |     |     |     |     |     |     |
| 20         |      | 0> 9  |       |       |     |     |     |     |     |     |     |     |     |     |     |     |
|            | <21  | 1> 20 | 01    |       |     |     |     |     |     |     |     |     |     |     |     |     |
|            | <212 | 2> PI | RT    |       |     |     |     |     |     |     |     |     |     |     |     |     |
|            | <213 | 3> Ho | omo s | sapie | ens |     |     |     |     |     |     |     |     |     |     |     |
| ~ <b>=</b> |      |       |       |       |     |     |     |     |     |     |     |     |     |     |     |     |
| 25         | <400 |       |       |       |     |     |     |     |     |     |     |     |     |     |     |     |
|            | Met  | Asn   | Arg   | Thr   | Asn | Val | Asn | Val | Phe | Ser | Glu | Leu | Ser | Ala | Pro | Arg |
|            | 1    |       |       |       | 5   |     |     |     |     | 10  |     |     |     |     | 15  |     |
|            | Arg  | Asn   | Glu   | Asp   | Phe | Val | Leu | Leu | Leu | Thr | Tyr | Val | Leu | Phe | Leu | Met |
| •          |      |       |       | 20    |     |     |     |     | 25  |     |     |     |     | 30  |     |     |
| 30         | Ala  | Leu   | Thr   | Phe   | Leu | Met | Ser | Ser | Phe | Thr | Phe | Сув | Gly | Ser | Phe | Thr |
|            |      |       | 35    |       |     |     |     | 40  |     |     |     |     | 45  |     |     |     |
|            | Gly  | Trp   | Lys   | Arg   | His | Gly | Alà | His | Ile | Tyr | Leu | Thr | Met | Leu | Leu | Ser |

Ile Ala Ile Trp Val Ala Trp Ile Thr Leu Leu Met Leu Pro Asp Phe Asp Arg Arg Trp Asp Asp Thr Ile Leu Ser Ser Ala Leu Ala Ala Asn Gly Trp Val Phe Leu Leu Ala Tyr Val Ser Pro Glu Phe Trp Leu Leu Thr Lys Gln Arg Asn Pro Met Asp Tyr Pro Val Glu Asp Ala Phe Cys Lys Pro Gln Leu Val Lys Lys Ser Tyr Gly Val Glu Asn Arg Ala Tyr Ser Gln Glu Glu Ile Thr Gln Gly Phe Glu Glu Thr Gly Asp Thr Leu Tyr Ala Pro Tyr Ser Thr His Phe Gln Leu Gln Asn Gln Pro Pro Gln Lys Glu Phe Ser Ile Pro Arg Ala His Ala Trp Pro Ser Pro Tyr Lys Asp Tyr Glu Val Lys Lys Glu Gly Ser <210> 10 <211> 249 <212> PRT <213> Homo sapiens <400> 10 Met Ala Ser Ser Asp Glu Asp Gly Thr Asn Gly Gly Ala Ser Glu Ala Gly Glu Asp Arg Glu Ala Pro Gly Lys Arg Arg Arg Leu Gly Phe Leu Ala Thr Ala Trp Leu Thr Phe Tyr Asp Ile Ala Met Thr Ala Gly Trp 

|     | Leu      | Val        | Leu   | Ala   | Ile        | Ala    | Met | Val | Arg | Phe | Tyr | Met | Glu | Lys | Gly | Thr |
|-----|----------|------------|-------|-------|------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |          | 50         |       |       |            |        | 55  |     |     |     |     | 60  |     |     |     |     |
|     | His      | Arg        | Gly   | Leu   | Tyr        | Lys    | Ser | Ile | Gln | Lys | Thr | Leu | Lys | Phe | Phe | Gln |
|     | 65       |            |       |       |            | 70     |     |     |     |     | 75  |     |     |     |     | 80  |
| 5   | Thr      | Phe        | Ala   | Leu   | Leu        | Glu    | Ile | Val | His | Cys | Leu | Ile | Gly | Ile | Val | Pro |
|     |          |            |       |       | 85         |        |     |     |     | 90  |     |     |     |     | 95  |     |
|     | Thr      | Ser        | Val   | Ile   | Val        | Thr    | Gly | Val | Gln | Val | Ser | Ser | Arg | Ile | Phe | Met |
|     |          |            |       | 100   |            |        |     |     | 105 |     |     |     |     | 110 |     |     |
|     | Val      | Trp        | Leu   | Ile   | Thr        | His    | Ser | Ile | Lys | Pro | Ile | Gln | Asn | Glu | Glu | Ser |
| 10  |          |            | 115   |       |            |        |     | 120 |     |     |     |     | 125 |     |     |     |
|     | Val      | Val        | Leu   | Phe   | Leu        | Val    | Ala | Trp | Thr | Val | Thr | Glu | Ile | Thr | Arg | Tyr |
|     |          | 130        |       |       |            |        | 135 |     |     |     |     | 140 |     |     |     |     |
|     | Ser      | Phe        | Tyr   | Thr   | Phe        | Ser    | Leu | Leu | Asp | His | Leu | Pro | Tyr | Phe | Ile | Lys |
|     | 145      |            |       |       |            | 150    |     |     |     |     | 155 |     |     |     |     | 160 |
| 15  | Trp      | Ala        | Arg   | Tyr   |            | Phe    | Phe | Ile | Ile | Leu | Tyr | Pro | Val | Gly | Val | Ala |
|     |          |            |       |       | 165        |        |     |     |     | 170 |     |     |     |     | 175 |     |
|     | Gly      | Glu        | Leu   |       | Thr        | Ile    | Tyr | Ala |     | Leu | Pro | His | Val | Lys | Lys | Thr |
|     |          |            |       | 180   |            |        |     |     | 185 |     |     |     |     | 190 |     |     |
| 00  | Gly      | Met        |       | Ser   | Ile        | Arg    | Leu |     | Asn | Lys | Tyr | Asn |     | Ser | Phe | Asp |
| 20  | _        | _          | 195   |       | _          | _      |     | 200 |     | _   |     |     | 205 |     |     |     |
|     | Tyr      |            | Tyr   | Phe   | Leu        | Leu    |     | Thr | Met | Ala | Ser |     | Ile | Pro | Leu | Phe |
|     | <b>5</b> | 210        |       |       | <b>5</b> 7 | ·· ! _ | 215 | _   | _   |     | _   | 220 |     | _   |     |     |
|     |          | GIN        | Leu   | ıyr   | Pne        |        | Met | Leu | Arg | GIn |     | Arg | Lys | Val | Leu |     |
| 25  | 225      | <b>C</b> 1 | **-1  | T1-   | ***        | 230    | T   | 3   | 3   |     | 235 |     |     |     |     | 240 |
| 20  | GTĀ      | GIU        | vai   | Tie   |            | Glu    | гåз | Asp | Asp |     |     |     |     |     |     |     |
|     |          |            |       |       | 245        |        |     |     |     |     |     |     |     |     |     |     |
|     | <210     | )> 11      | 1     |       |            |        |     |     |     |     |     |     |     |     |     |     |
|     |          | l> 71      |       |       |            |        |     |     |     |     |     |     |     |     |     |     |
| 30  |          | 2> DN      |       |       |            |        |     |     |     |     |     |     |     |     |     |     |
| - • |          |            | omo s | sapie | ens        |        |     |     |     |     |     |     |     |     |     |     |

|    | <b>&lt;400&gt;</b> 11           |                       |              |              |       |
|----|---------------------------------|-----------------------|--------------|--------------|-------|
|    | atggegettg teceetgeea ggtgetgeg | g atggcaatcc          | tgctgtctta   | ctgctctatc   | 60    |
|    | ctgtgtaact acaaggccat cgaaatgcc | c tcacaccaga          | cctacggagg   | gagctggaaa   | 120   |
|    | ttcctgacgt tcattgatct ggttatcca | g gctgtctttt          | ttggcatctg   | tgtgctgact   | 180   |
| 5  | gatettteca gtettetgae tegaggaag | t gggaaccagg          | agcaagagag   | gcagctcaag   | 240   |
|    | aageteatet eteteeggga etggatgtt | a gctgtgttgg          | cctttcctgt   | tggggttttt   | 300   |
|    | gttgtagcag tgttctggat catttatgc | c tatgacagag          | agatgatata   | cccgaagctg   | 360   |
|    | ctggataatt ttatcccagg gtggctgaa | t cacggaatgc          | acacgacggt   | tetgecettt   | 420   |
|    | atattaatcg agatgaggac atcgcacca | t cagtatecea          | gcaggagcag   | cggacttacc   | 480   |
| 10 | gecatatgta eettetetgt tggetatat | a ttatgggtgt          | gctgggtgca   | tcatgtaact   | 540   |
|    | ggcatgtggg tgtacccttt cctggaaca | c attggcccag          | gagccagaat   | catcttcttt   | - 600 |
|    | gggtctacaa ccatcttaat gaacttcct | g tacctgctgg          | gagaagttct   | gaacaactat   | 660   |
|    | atctgggata cacagaaaag tatggaaga | a gagaaagaaa          | agcctaaatt   | ggaa         | 714   |
|    |                                 |                       |              |              |       |
| 15 | <210> 12                        |                       |              |              |       |
|    | <211> 582                       |                       |              |              |       |
|    | <212> DNA                       |                       |              |              |       |
|    | <213> Homo sapiens              |                       |              |              |       |
|    |                                 |                       |              |              |       |
| 20 | <400> 12                        |                       |              |              |       |
|    | atggccgacc cgctgcggga gcgcaccg  | ag ctgttgctgg         | ccgactacct   | ggggtactgc   | 60    |
|    | geeegggaac eeggeaceee egageegg  | eg ccatecaege         | ccgaggccgc   | e egtgetgege | 120   |
|    | teegeggeeg eeaggttaeg geagatte  | ac eggteetttt         | tctccgccta   | a cctcggctac | 180   |
|    | ecegggaace gettegaget ggtggege  | tg atggcggatt         | cegtgetete   | cgacageeee   | 240   |
| 25 | ggccccacct ggggcagagt ggtgacgc  | te gtgacetteg         | r cagggacgct | gctggagaga   | 300   |
|    | gggccgctgg tgaccgcccg gtggaaga  | ag tggggcttcc         | agccgcggct   | aaaggagcag   | 360   |
|    | gagggegaeg tegeceggga etgecage  | gc ctggtggcct         | tgctgagcto   | e geggeteatg | 420   |
|    | gggcagcacc gcgcctggct gcaggctc  | ag ggcggctggg         | g atggetttt  | g teacttette | 480   |
|    | aggacccct ttccactggc tttttgga   | ga <b>aaa</b> cagctgg | g tecaggetti | t tetgteatge | 540   |
| 30 | ttgttaacaa cagcetteat ttatetet  | gg acacgattat         | ta           |              | 582   |

|    | <211> 417  |            |            |            |            |            |     |
|----|------------|------------|------------|------------|------------|------------|-----|
|    | <212> DNA  |            |            |            |            |            |     |
|    | <213> Homo | sapiens    |            |            |            |            |     |
|    |            |            |            |            |            |            |     |
| 5  | <400> 13   |            |            |            |            |            |     |
|    | atggaggcgg | tggtgttcgt | cttctctctc | ctcgattgtt | gcgcgctcat | cttcctctcg | 60  |
|    | gtctacttca | taattacatt | gtctgattta | gaatgtgatt | acattaatgc | tagatcatgt | 120 |
|    | tgctcaaaat | taaacaagtg | ggtaattcca | gaattgattg | gccataccat | tgtcactgta | 180 |
|    | ttactgctca | tgtcattgca | ctggttcatc | ttccttctca | acttacctgt | tgccacttgg | 240 |
| 10 | aatatatatc | gatacattat | ggtgccgagt | ggtaacatgg | gagtgtttga | tccaacagaa | 300 |
|    | atacacaatc | gagggcagct | gaagtcacac | atgaaagaag | ccatgatcaa | gettggttte | 360 |
|    | cacttgctct | gcttcttcat | gtatctttat | agtatgatct | tagctttgat | aaatgac    | 417 |
|    |            |            |            |            |            |            |     |
|    | <210> 14   |            |            |            |            |            |     |
| 15 | <211> 969  |            |            |            |            |            |     |
|    | <212> DNA  |            |            |            |            |            |     |
|    | <213> Homo | sapiens    |            |            |            |            |     |
|    |            |            |            |            |            |            |     |
|    | <400> 14   |            |            |            |            |            |     |
| 20 | atggcggcgc | cgaaggggag | cctctgggtg | aggacccaac | tggggctccc | geegetgetg | 60  |
|    | ctgctgacca | tggccttggc | cggaggttcg | gggaccgctt | cggctgaagc | atttgactcg | 120 |
|    | gtcttgggtg | atacggcgtc | ttgccaccgg | gcctgtcagt | tgacctaccc | cttgcacacc | 180 |
|    | taccctaagg | aagaggagtt | gtacgcatgt | cagagaggtt | gcaggctgtt | ttcaatttgt | 240 |
|    | cagtttgtgg | atgatggaat | tgacttaaat | cgaactaaat | tggaatgtga | atctgcatgt | 300 |
| 25 | acagaagcat | attcccaatc | tgatgagcaa | tatgettgee | atcttggttg | ccagaatcag | 360 |
|    | ctgccattcg | ctgaactgag | acaagaacaa | cttatgtccc | tgatgccaaa | aatgcaccta | 420 |
|    | ctctttcctc | taactctggt | gaggtcattc | tggagtgaca | tgatggactc | cgcacagagc | 480 |
|    | ttcataacct | cttcatggac | tttttatctt | caagccgatg | acggaaaaat | agttatattc | 540 |
|    | cagtctaagc | cagaaatcca | gtacgcacca | catttggagc | aggagcctac | aaatttgaga | 600 |
| 30 | gaatcatctc | taagcaaaat | gtcctatctg | caaatgagaa | attcacaagc | gcacaggaat | 660 |
|    | tttcttgaag | atggagaaag | tgatggcttt | ttaagatgcc | tctctcttaa | ctctgggtgg | 720 |
|    | attttaacta | caactcttgt | cctctcggtg | atggtattgc | tttggatttg | ttgtgcaact | 780 |

|           |                                                                   | - 4 - |
|-----------|-------------------------------------------------------------------|-------|
|           | gttgctacag ctgtggagca gtatgttccc tctgagaagc tgagtatcta tggtgacttg | 840   |
|           | gagtttatga atgaacaaaa gctaaacaga tatccagctt cttctcttgt ggttgttaga | 900   |
|           | tctaaaactg aagatcatga agaagcaggg cctctaccta caaaagtgaa tcttgctcat | 960   |
|           | tctgaaatt                                                         | 969   |
| 5         |                                                                   |       |
|           | <210> 15                                                          |       |
|           | <211> 693                                                         |       |
|           | <212> DNA                                                         |       |
|           | <213> Homo sapiens                                                |       |
| 10        |                                                                   |       |
|           | <400> 15                                                          |       |
|           | atgaggeget geagtetetg egetttegae geegeeeggg ggeeeaggeg getgatgegt | 60    |
|           | gtgggcctcg cgctgatett ggtgggccac gtgaacctgc tgctgggggc cgtgctgcat | 120   |
|           | ggcaccgtcc tgcggcacgt ggccaatccc cgcggcgctg tcacgccgga gtacaccgta | 180   |
| 15        | gecaatgtea tetetgtegg eteggggetg etgagegttt eegtgggaet tgtggeeete | 240   |
|           | ctggcgtcca ggaacettet tegeceteea etgeaetggg teetgetgge actagetetg | 300   |
|           | gtgaacetge tettgteegt tgeetgetee etgggeetee ttettgetgt gteacteaet | 360   |
|           | gtggccaacg gtggccgccg cettattgct gactgccace caggactgct ggatcctctg | 420   |
|           | gtaccactgg atgaggggcc gggacatact gactgcccct ttgaccccac aagaatctat | 480   |
| 20        | gatacageet tggetetetg gatecettet ttgeteatgt etgeagggga ggetgeteta | 540   |
|           | tetggttact getgtgtgge tgeaeteaet etaegtggag ttgggeeetg eaggaaggae | 600   |
|           | ggacttcagg ggcaggtagt agctgggtgt gacgcaagag tgaaacagaa agcctggcag | 660   |
|           | ccacggtttc ctgggattaa agtcaaagca tta                              | 693   |
|           |                                                                   |       |
| <b>25</b> | <210> 16                                                          |       |
|           | <211> 291                                                         |       |
|           | <212> DNA                                                         |       |
|           | <213> Homo sapiens                                                |       |
|           |                                                                   |       |
| 30        | <400> 16                                                          |       |
|           | atgaccagee teetgactae teetteteea agagaagaae tgatgaccae eecaatttta | 60    |
|           | cageceaetg aggeeetgte eecagaagat ggageeagea eageaeteat tgeagttgtt | 120   |

|     | atcaccgttg | tetteeteae | cctgctctcg | gtcgtgatct | tgatcttctt | ttacctgtac | 180 |
|-----|------------|------------|------------|------------|------------|------------|-----|
|     | aagaacaaag | gcagctacgt | cacctatgaa | cctacagaag | gtgagcccag | tgccatcgtc | 240 |
|     | cagatggaga | gtgacttggc | caagggcagc | gagaaagagg | aatatttcat | c          | 291 |
|     |            |            |            |            |            |            |     |
| 5   | <210> 17   |            |            |            |            |            |     |
|     | <211> 594  |            |            |            |            |            |     |
|     | <212> DNA  |            |            |            |            |            |     |
|     | <213> Homo | sapiens    |            |            |            |            |     |
|     |            |            |            |            |            |            |     |
| 10  | <400> 17   |            |            |            |            |            |     |
|     | atggcgaccc | tgtggggagg | ccttcttcgg | cttggctcct | tgctcagcct | gtegtgeetg | 60  |
|     | gegettteeg | tgetgetget | ggegeagetg | tcagacgccg | ccaagaattt | cgaggatgtc | 120 |
|     | agatgtaaat | gtatctgccc | tccctataaa | gaaaattctg | ggcatattta | taataagaac | 180 |
|     | atatctcaga | aagattgtga | ttgccttcat | gttgtggagc | ccatgcctgt | gegggggeet | 240 |
| 15  | gatgtagaag | catactgtct | acgctgtgaa | tgcaaatatg | aagaaagaag | ctctgtcaca | 300 |
|     |            |            | ttatctctcc |            |            |            | 360 |
|     | tatettaete | tggttgagcc | catactgaag | aggegeetet | ttggacatgc | acagttgata | 420 |
|     |            |            | ggatcaccag |            |            |            | 480 |
|     | cgctcccgca | gtcgagccaa | cgtgctgaac | aaggtagaat | atgcacagca | gcgctggaag | 540 |
| 20  | cttcaagtcc | aagagcagcg | aaagtctgtc | tttgaccggc | atgttgtcct | cagc       | 594 |
|     |            |            |            |            |            |            |     |
|     | <210> 18   |            |            |            |            |            |     |
|     | <211> 420  |            |            |            |            |            |     |
| 0.5 | <212> DNA  |            |            |            |            |            |     |
| 25  | <213> Homo | sapiens    |            |            |            |            |     |
|     | 4400- 10   |            |            |            |            |            |     |
|     | <400> 18   |            |            |            |            |            |     |
|     |            |            | tgtgccctct |            |            |            | 60  |
| 20  |            |            | gtcccgggac |            |            |            | 120 |
| 30  |            |            | caagcaggac |            |            |            | 180 |
|     |            |            | gctggccggt |            |            |            | 240 |
|     | acccagagcc | tcatctccat | tagaactcac | tataatacat | coatageest | atcattatta | 300 |

|           | atattcgagc gttgggagtg cactacgtat tggtacattt ttgtcttctg cagtgccctt | 360 |
|-----------|-------------------------------------------------------------------|-----|
|           | ccagetgtca ctgaaatggc tttattcgtc accgtctttg ggctgaaaaa gaaacccttc | 420 |
|           |                                                                   |     |
|           | <210> 19                                                          |     |
| 5         | <211> 603                                                         |     |
|           | <212> DNA                                                         |     |
|           | <213> Homo sapiens                                                |     |
|           |                                                                   |     |
|           | <400> 19                                                          |     |
| 10        | atgaatagga ccaacgtcaa tgtcttttct gagctttccg ctcctcgtcg caatgaagac | 60  |
|           | tttgtcctcc tgctcaccta cgtcctcttc ttgatggcgc tgaccttcct catgtcctcc | 120 |
|           | ttcaccttct gtggttcctt cacgggctgg aagagacatg gggcccacat ctacctcacg | 180 |
|           | atgetectet ceattgecat etgggtggee tggateacee tgeteatget teetgaettt | 240 |
|           | gaccgcaggt gggatgacac catcctcagc tecgeettgg etgecaatgg etgggtgtte | 300 |
| 15        | ctgttggett atgttagtee egagttttgg etgeteacaa ageaaegaaa eeceatggat | 360 |
|           | tatectgttg aggatgettt etgtaaaeet caaetegtga agaagageta tggtgtggag | 420 |
|           | aacagageet acteteaaga ggaaateaet eaaggttttg aagagaeagg ggaeaegete | 480 |
|           | tatgccccct attccacaca ttttcagctg cagaaccagc ctccccaaaa ggaattctcc | 540 |
|           | atcccacggg cccacgcttg gccgagccct tacaaagact atgaagtaaa gaaagagggc | 600 |
| 20        | agc                                                               | 603 |
|           |                                                                   |     |
|           | <210> 20                                                          |     |
|           | <211> 747                                                         |     |
|           | <212> DNA                                                         |     |
| <b>25</b> | <213> Homo sapiens                                                |     |
|           |                                                                   |     |
|           | <400> 20                                                          |     |
|           | atggegteca gegaegagga eggeaeeaae ggeggegeet eggaggeegg egaggaeegg | 60  |
|           | gaggeteeeg geaageggag gegeetgggg ttettggeea eegeetgget cacettetae | 120 |
| 30        | gacategeea tgacegeggg gtggttggtt etagetattg ecatggtaeg tttttatatg | 180 |
|           | gaaaaaggaa cacacagagg tttatataaa agtattcaga agacacttaa atttttccag | 240 |
|           | acatttgeet tgettgagat agtteactgt ttaattggaa ttgtacetae ttetgtgatt | 300 |

|     | 9-9             | acty        | 999   | ccca | ageg     | ag c | ccaa | gaat | כ ננ | cacy | grac         | gge | ccat | Lac | Leac       | agtat | .a | 360 |
|-----|-----------------|-------------|-------|------|----------|------|------|------|------|------|--------------|-----|------|-----|------------|-------|----|-----|
|     | aaa             | ccaa        | tcc   | agaa | tgaa     | ga g | agtg | tggt | g ct | tttt | ctgg         | tcg | cgtg | gac | tgtg       | acaga | ıg | 420 |
|     | atc             | actc        | gct   | attc | cttc     | ta c | acat | tcag | c ct | tctt | gacc         | act | tgcc | ata | cttc       | attaa | ıa | 480 |
|     | tgg             | gcca        | gat   | ataa | tttt     | tt t | atca | tctt | a ta | tcct | gttg         | gag | ttgc | tgg | tgaa       | cttct | t  | 540 |
| 5   | aca             | atat        | acg   | ctgc | cttg     | cc g | catg | tgaa | g aa | aaca | ggaa         | tgt | tttc | aat | aaga       | cttcc | :t | 600 |
|     | aac             | aaat        | aca   | atgt | ctct     | tt t | gact | acta | t ta | tttt | cttc         | tta | taac | cat | ggca       | tcata | it | 660 |
|     | ata             | cctt        | tgt   | ttcc | acaa     | ct c | tatt | ttca | t at | gtta | cgtc         | aaa | gaag | aaa | ggtg       | cttca | it | 720 |
|     | gga             | gagg        | tga   | ttgt | agaa     | aa g | gatg | at   |      |      |              |     |      |     |            |       |    | 747 |
|     |                 |             |       |      |          |      |      |      |      |      |              |     |      |     |            |       |    |     |
| 10  | <21             | 0> 2        | 1     |      |          |      |      |      |      |      |              |     |      |     |            |       |    |     |
|     | <21             | 1> 1        | 085   |      |          |      |      |      |      |      |              |     |      |     |            |       |    |     |
|     | <21             | 2> DI       | NA    |      |          |      |      |      |      |      |              |     |      |     |            |       |    |     |
|     | <21             | 3> H        | omo   | sapi | ens      |      |      |      |      |      |              |     |      |     |            |       |    |     |
|     |                 |             |       |      |          |      |      |      |      |      |              |     |      |     |            |       |    |     |
| 15  |                 | 0> 2:       |       |      |          |      |      |      |      |      |              |     |      |     |            |       |    |     |
|     | cag             | ccggi       | tee i | aggc | ctct     | gg c | gaac | atg  | gcg  | ctt  | gtc          | ccc | tgc  | cag | gtg        | ctg   |    | 52  |
|     |                 |             |       |      |          |      |      | Met  | Ala  | Leu  | Val          | Pro | Cys  | Gln | Val        | Leu   |    |     |
|     |                 |             |       |      |          |      |      | 1    |      |      |              | 5   |      |     |            |       |    |     |
| 00  |                 |             |       |      |          |      |      |      |      |      |              |     |      |     | tac        | -     |    | 100 |
| 20  |                 | Met         | Ala   | Ile  | Leu      |      | Ser  | Tyr  | Cys  | Ser  | Ile          | Leu | Cys  | Asn | Tyr        | Lys   |    |     |
|     | 10              |             |       |      |          | 15   |      |      |      |      | 20           |     |      |     |            | 25    |    |     |
|     |                 |             |       |      |          |      |      |      |      |      |              |     |      |     | aaa        |       |    | 148 |
|     | Ala             | Ile         | Glu   | Met  |          | Ser  | His  | Gln  | Thr  |      | Gly          | Gly | Ser  | Trp | Lys        | Phe   |    |     |
| or. |                 |             |       |      | 30       |      |      |      |      | 35   |              |     |      |     | 40         |       |    |     |
| 25  |                 |             |       |      |          |      |      |      |      |      |              |     |      |     | atc        | _     |    | 196 |
|     | ren             | Thr         | Phe   |      | Asp      | Leu  | Val  | Ile  |      | Ala  | Val          | Phe | Phe  | -   | Ile        | Cys   |    |     |
|     |                 |             |       | 45   |          | _    |      |      | 50   |      |              |     |      | 55  |            |       |    |     |
|     |                 |             |       |      |          |      |      |      |      |      |              |     |      |     | aac        | _     |    | 244 |
| 30  | vai             | Leu         |       | Asp  | ьeu      | ser  | ser  |      | Leu  | Thr  | Arg          | GIY |      | Gly | Asn        | Gln   |    |     |
| JU  | <b>~</b> =~     | <b>a</b> n- | 60    |      | <b>a</b> | a+-  |      | 65   |      |      | <b>.</b> - • |     | 70   |     |            |       |    | 200 |
|     |                 |             |       |      |          |      |      |      |      |      |              |     |      | _   | tgg<br>Tro | _     |    | 292 |
|     | <del>G</del> IU | GILL        | GIU   | wrd  | CILL     | TICH | LγS  | μys  | ⊥eu  | тте  | ser          | Leu | Ara  | ASD | TTO        | Met   |    |     |

|           |     | 75    |       |       |       |             | 80    |       |       |       |       | 85    |       |       |       |       |    |     |
|-----------|-----|-------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|-----|
|           | tta | gct   | gtg   | ttg   | gcc   | ttt         | cct   | gtt   | ggg   | gtt   | ttt   | gtt   | gta   | gca   | gtg   | ttc   |    | 340 |
|           | Leu | Ala   | Val   | Leu   | Ala   | Phe         | Pro   | Val   | Gly   | Val   | Phe   | Val   | Val   | Ala   | Val   | Phe   |    |     |
|           | 90  |       |       |       |       | 95          |       |       |       |       | 100   |       |       |       |       | 105.  |    |     |
| 5         | tgg | atc   | att   | tat   | gcc   | tat         | gac   | aga   | gag   | atg   | ata   | tac   | ccg   | aag   | ctg   | ctg   |    | 388 |
|           | Trp | Ile   | Ile   | Tyr   | Ala   | Tyr         | Asp   | Arg   | Glu   | Met   | Ile   | Tyr   | Pro   | Lys   | Leu   | Leu   |    | ,   |
|           |     |       |       |       | 110   |             |       |       |       | 115   |       |       |       |       | 120   |       |    |     |
|           | gat | aat   | ttt   | atc   | cca   | <b>9</b> 99 | tgg   | ctg   | aat   | cac   | gga   | atg   | cac   | acg   | acg   | gtt   |    | 436 |
|           | Asp | Asn   | Phe   | Ile   | Pro   | Gly         | Trp   | Leu   | Asn   | His   | Gly   | Met   | His   | Thr   | Thr   | Val   |    |     |
| 10        |     |       |       | 125   |       |             |       |       | 130   |       |       |       |       | 135   |       |       |    |     |
|           | ctg | ccc   | ttt   | ata   | tta   | atc         | gag   | atg   | agg   | aca   | tcg   | cac   | cat   | cag   | tat   | ccc   |    | 484 |
|           | Leu | Pro   | Phe   | Ile   | Leu   | Ile         | Glu   | Met   | Arg   | Thr   | Ser   | His   | His   | Gln   | Tyr   | Pro   |    |     |
|           |     |       | 140   |       |       |             |       | 145   |       |       |       |       | 150   |       |       |       |    |     |
|           | agc | agg   | agc   | agc   | gga   | ctt         | acc   | gcc   | ata   | tgt   | acc   | ttc   | tct   | gtt   | ggc   | tat   |    | 532 |
| 15        | Ser | Arg   | Ser   | Ser   | Gly   | Leu         | Thr   | Ala   | Ile   | Cys   | Thr   | Phe   | Ser   | Val   | Gly   | Tyr   |    |     |
|           |     | 155   |       |       |       |             | 160   |       |       |       |       | 165   |       |       |       |       |    |     |
|           | ata | tta   | tgg   | gtg   | tgc   | tgg         | gtg   | cat   | cat   | gta   | act   | ggc   | atg   | tgg   | gtg   | tac   |    | 580 |
|           | Ile | Leu   | Trp   | Val   | Cys   | Trp         | Val   | . His | His   | Val   | Thr   | Gly   | Met   | Trp   | Val   | Tyr   |    |     |
|           | 170 |       |       |       |       | 175         |       |       |       |       | 180   |       |       |       |       | 185   |    |     |
| 20        | cct | tto   | ctg   | gaa   | cac   | att         | ggc   | cca   | gga   | gcc   | aga   | ato   | atc   | tto   | ttt   | ggg   |    | 628 |
|           | Pro | Phe   | e Leu | Glu   | His   | Ile         | Gly   | Pro   | Gly   | Ala   | Arg   | Ile   | : Ile | Ph∈   | Phe   | Gly   |    |     |
|           |     |       |       |       | 190   | )           |       |       |       | 195   |       |       |       |       | 200   | )     |    |     |
|           | tct | aca   | a acc | ato   | : tta | ato         | aac   | tto   | ctg   | tac   | ctg   | cto   | g gga | gaa   | gtt   | ctg   |    | 676 |
|           | Ser | Thi   | Thr   | : Ile | e Leu | Met         | : Asr | n Phe | Lev   | Туг   | Let   | Let   | ı Gly | Glu   | ı Val | Leu   |    |     |
| <b>25</b> |     |       |       | 205   | 5     |             |       |       | 210   | )     |       |       |       | 215   | 5     |       |    |     |
|           | aac | aad   | e tat | ato   | t tg  | g gat       | aca   | a caç | g aas | a agt | ato   | g gaa | a gaa | gag   | g aaa | a gaa |    | 724 |
|           | Asr | n Ası | а Туі | r Ile | TI    | Asp         | Thu   | r Glr | Lys   | s Ser | Met   | Glu   | ı Glu | ı Glu | ı Lys | s Glu |    |     |
|           |     |       | 220   | 0     |       |             |       | 225   | 5     |       |       |       | 230   | )     |       |       |    |     |
|           | aaq | g act | t aaa | a tt  | g gaa | a tga       | agato | ccaa  | gtct  | caaac | ege 8 | aaga  | gcta  | ga ti | tgago | eegee | a  | 780 |
| 30        | Lys | s Pro | o Ly: | s Le  | u Gli | ı           |       |       |       |       |       |       |       |       |       |       |    |     |
|           |     | 23    | 5     |       |       |             |       |       |       |       |       |       |       |       |       |       |    |     |
|           | tte | gaag  | actc  | ctt   | eccc  | teg (       | ggca  | ttgg  | ea gi | tggg  | ggaga | a aa  | aggc  | ttca  | aag   | gaact | tg | 840 |

|    | gtg  | gcat  | cag | cacc | cccc | tc c | ccca | atga  | g ga | cacc | tttt | ata | tata | aat | atgt | ataaac | 900  |
|----|------|-------|-----|------|------|------|------|-------|------|------|------|-----|------|-----|------|--------|------|
|    | ata  | gaat  | aca | gttg | tttc | ca a | aaga | .actc | a cc | ctca | ctgt | gtg | ttaa | aga | atto | ttccca | 960  |
|    | aag  | tcat  | tac | tgat | aata | ac a | tttt | tttc  | c tt | ttct | agtt | tta | aaac | cag | aatt | ggacct | 1020 |
|    | tgga | attt  | tta | tttt | ggca | at t | gtaa | ctcc  | a tc | taat | caag | aaa | gaat | aaa | agtt | tattgc | 1080 |
| 5  | acti | tc    |     |      |      |      |      |       |      |      |      |     |      |     |      |        | 1085 |
|    |      |       |     |      |      |      |      |       |      |      |      |     |      |     |      |        |      |
|    | <210 | 0> 2  | 2   |      |      |      |      |       |      |      |      |     |      |     |      |        |      |
|    | <21  | 1> 2  | 38  |      |      |      |      |       |      |      |      |     |      |     |      |        |      |
|    | <212 | 2> P  | RT  |      |      |      |      |       |      |      |      |     |      |     |      |        |      |
| 10 | <213 | 3> H  |     | sapi | ens  |      |      |       |      |      |      |     |      |     |      |        |      |
|    |      |       |     |      |      |      |      |       |      |      |      |     |      |     |      |        |      |
|    | <400 | )> 2: | 2   |      |      |      |      |       |      |      |      |     |      |     |      |        |      |
|    |      |       |     |      |      |      |      | Met   | Ala  | Leu  | Val  | Pro | Cys  | Gln | Val  | Leu    |      |
|    |      |       |     |      |      |      |      | 1     |      |      |      | 5   |      |     |      |        |      |
| 15 | Arg  | Met   | Ala | Ile  | Leu  | Leu  | Ser  | Tyr   | Cys  | Ser  | Ile  | Leu | Cys  | Asn | Tyr  | Lys    |      |
|    | 10   |       |     |      |      | 15   |      |       |      |      | 20   |     |      |     |      | 25     |      |
|    | Ala  | Ile   | Glu | Met  | Pro  | Ser  | His  | Gln   | Thr  | Tyr  | Gly  | Gly | Ser  | Trp | Lys  | Phe    |      |
|    |      |       |     |      | 30   |      |      |       |      | 35   |      |     |      |     | 40   |        |      |
|    | Leu  | Thr   | Phe | Ile  | Asp  | Leu  | Val  | Ile   | Gln  | Ala  | Val  | Phe | Phe  | Gly | Ile  | Cys    |      |
| 20 |      |       |     | 45   |      |      |      |       | 50   |      |      |     |      | 55  |      |        |      |
|    | Val  | Leu   | Thr | Asp  | Leu  | Ser  | Ser  | Leu   | Leu  | Thr  | Arg  | Gly | Ser  | Gly | Asn  | Gln    |      |
|    |      |       | 60  |      |      |      |      | 65    |      |      |      |     | 70   |     |      |        |      |
|    | Glu  | Gln   | Glu | Arg  | Gln  | Leu  | Lys  | Lys   | Leu  | Ile  | Ser  | Leu | Arg  | Asp | Trp  | Met    |      |
|    |      | 75    |     |      |      |      | 80   |       |      |      |      | 85  |      |     |      |        |      |
| 25 | Leu  | Ala   | Val | Leu  | Ala  | Phe  | Pro  | Val   | Gly  | Val  | Phe  | Val | Val  | Ala | Val  | Phe    |      |
|    | 90   |       |     |      |      | 95   |      |       |      |      | 100  |     |      |     |      | 105    |      |
|    | Trp  | Ile   | Ile | Tyr  | Ala  | Tyr  | Asp  | Arg   | Glu  | Met  | Ile  | Tyr | Pro  | Lys | Leu  | Leu    |      |
|    |      |       |     |      | 110  |      |      |       |      | 115  |      |     |      |     | 120  |        |      |
|    | Asp  | Asn   | Phe | Ile  | Pro  | Gly  | Trp  | Leu   | Asn  | His  | Gly  | Met | His  | Thr | Thr  | Val    |      |
| 30 |      |       |     | 125  |      |      |      |       | 130  |      |      |     |      | 135 |      |        |      |
|    | Leu  | Pro   | Phe | Ile  | Leu  | Ile  | Glu  | Met   | Arg  | Thr  | Ser  | His | His  | Gln | Tyr  | Pro    |      |
|    |      |       | 140 |      |      |      |      | 145   |      |      |      |     | 150  |     |      |        |      |

|           | Ser Arg Ser Ser Gly Leu Thr Ala Ile Cys Thr Phe Ser Val Gly Tyr |     |
|-----------|-----------------------------------------------------------------|-----|
|           | 155 160 165                                                     |     |
|           | Ile Leu Trp Val Cys Trp Val His His Val Thr Gly Met Trp Val Tyr |     |
|           | 170 175 180 185                                                 |     |
| 5         | Pro Phe Leu Glu His Ile Gly Pro Gly Ala Arg Ile Ile Phe Phe Gly |     |
|           | 190 195 200                                                     |     |
|           | Ser Thr Thr Ile Leu Met Asn Phe Leu Tyr Leu Leu Gly Glu Val Leu |     |
|           | 205 210 215                                                     |     |
|           | Asn Asn Tyr Ile Trp Asp Thr Gln Lys Ser Met Glu Glu Glu Lys Glu |     |
| 10        | 220 225 230                                                     |     |
|           | Lys Pro Lys Leu Glu                                             |     |
|           | 235                                                             |     |
|           |                                                                 |     |
|           | <210> 23                                                        |     |
| 15        | <211> 1168                                                      |     |
|           | <212> DNA                                                       |     |
|           | <213> Homo sapiens                                              |     |
|           |                                                                 |     |
|           | <400> 23                                                        |     |
| 20        | accace atg gee gae eeg etg egg gag ege ace gag etg ttg etg gee  | 48  |
|           | Met Ala Asp Pro Leu Arg Glu Arg Thr Glu Leu Leu Ala             |     |
|           | 1 5 10                                                          |     |
|           | gac tac ctg ggg tac tgc gcc cgg gaa ccc ggc acc ccc gag ccg gcg | 96  |
|           | Asp Tyr Leu Gly Tyr Cys Ala Arg Glu Pro Gly Thr Pro Glu Pro Ala |     |
| <b>25</b> | 15 20 25 30                                                     |     |
|           | cca tee aeg eee gag gee gee gtg etg ege tee geg gee gee agg tta | 144 |
|           | Pro Ser Thr Pro Glu Ala Ala Val Leu Arg Ser Ala Ala Ala Arg Leu |     |
|           | 35 40 45                                                        |     |
|           | egg eag att eac egg tec ttt tte tee gee tae ete gge tae eec ggg | 192 |
| 30        | Arg Gln Ile His Arg Ser Phe Phe Ser Ala Tyr Leu Gly Tyr Pro Gly |     |
|           | 50 55 60                                                        |     |
|           | aac ege tte gag etg gtg geg etg atg geg gat tee gtg ete tee gae | 240 |

|    | Asn  | Arg  | Phe  | Glu  | Leu  | Val  | Ala   | Leu   | Met  | Ala   | Asp  | Ser  | Val   | Leu   | Ser  | Asp    |     |
|----|------|------|------|------|------|------|-------|-------|------|-------|------|------|-------|-------|------|--------|-----|
|    |      |      | 65   |      |      |      |       | 70    |      |       |      |      | 75    |       |      |        |     |
|    | agc  | ccc  | ggc  | ccc  | acc  | tgg  | ggc   | aga   | gtg  | gtg   | acg  | ctc  | gtg   | acc   | ttc  | gca    | 288 |
|    | Ser  | Pro  | Gly  | Pro  | Thr  | Trp  | Gly   | Arg   | Val  | Val   | Thr  | Leu  | Val   | Thr   | Phe  | Ala    |     |
| 5  |      | 80   |      |      |      |      | 85    |       |      |       |      | 90   |       |       |      |        |     |
|    | ggg  | acg  | ctg  | ctg  | gag  | aga  | ggg   | ccg   | ctg  | gtg   | acc  | gcc  | cgg   | tgg   | aag  | aag    | 336 |
|    | Gly  | Thr  | Leu  | Leu  | Glu  | Arg  | Gly   | Pro   | Leu  | Val   | Thr  | Ala  | Arg   | Trp   | Lys  | Lys    |     |
|    | 95   |      |      |      |      | 100  |       |       |      |       | 105  |      |       |       |      | 110    |     |
|    | tgg  | ggc  | ttc  | cag  | ccg  | cgg  | cta   | aag   | gag  | cag   | gag  | ggc  | gac   | gtc   | gcc  | cgg    | 384 |
| 10 |      |      |      |      |      |      |       |       |      |       | Glu  |      |       |       |      |        |     |
|    |      |      |      |      | 115  |      |       |       |      | 120   |      |      |       |       | 125  | -      |     |
|    | gac  | tgc  | cag  | cgc  | ctg  | gtg  | gcc   | ttg   | ctg  | agc   | tcg  | cgg  | ctc   | atg   | ggg  | cag    | 432 |
|    |      |      |      |      |      |      |       |       |      |       | Ser  |      |       |       |      | _      |     |
|    |      |      |      | 130  |      |      |       |       | 135  |       |      |      |       | 140   | -    |        |     |
| 15 | cac  | cgc  | gcc  | tgg  | ctg  | cag  | gct   | cag   | ggc  | ggc   | tgg  | gat  | ggc   | ttt   | tgt  | cac    | 480 |
|    |      |      |      |      |      |      |       |       |      |       | Trp  |      |       |       |      |        |     |
|    |      |      | 145  |      |      |      |       | 150   |      |       |      |      | 155   |       | -    |        |     |
|    | ttc  | ttc  | agg  | acc  | ccc  | ttt  | cca   | ctg   | gct  | ttt   | tgg  | aga  | aaa   | cag   | ctg  | gte    | 528 |
|    | Phe  | Phe  | Arg  | Thr  | Pro  | Phe  | Pro   | Leu   | Ala  | Phe   | Trp  | Arg  | Lys   | Gln   | Leu  | Val    |     |
| 20 |      | 160  |      |      |      |      | 165   |       |      |       |      | 170  |       |       |      |        |     |
|    | cag  | gct  | ttt  | ctg  | tca  | tgc  | ttg   | tta   | aca  | aca   | gcc  | ttc  | att   | tat   | ctc  | tgg    | 576 |
|    |      |      |      |      |      |      |       |       |      |       | Ala  |      |       |       |      |        |     |
|    | 175  |      |      |      |      | 180  |       |       |      |       | 185  |      |       | _     |      | 190    |     |
|    | aca  | cga  | tta  | tta  | tgag | ıttt | aa a  | actt  | ttaa | ic co | gett | ctac | cto   | jccca | act  | qt     | 630 |
| 25 | Thr  |      |      |      |      |      |       |       |      |       |      |      | •     |       |      | _      |     |
|    |      |      |      |      |      |      |       |       |      |       |      |      |       |       |      |        |     |
|    | gacc | aact | aa a | tgac | agat | g tg | rtgag | gaaca | aga  | acto  | agg  | gaaa | ıgcac | ct t  | cccc | caccc  | 690 |
|    |      |      |      |      |      |      |       |       |      |       |      |      |       |       |      | gtttt  | 750 |
|    |      |      |      |      |      |      |       |       |      |       |      |      |       |       |      | igtgaa | 810 |
| 30 |      |      |      |      |      |      |       |       |      |       |      |      |       |       |      | tccat  | 870 |
|    |      |      |      |      |      |      |       |       |      |       |      |      |       |       |      | atctc  | 930 |
|    |      |      |      |      |      |      |       |       |      |       |      |      |       |       |      | ataat  | 990 |

|    | ccccaaagta gaaaaagtcc cagtttaaca aagaatgta | a tgttaaaatc acttataagg 1050 |
|----|--------------------------------------------|------------------------------|
|    | aattetttga aaccaaatee tttgaaatet aatteetgg | g acttctaggt ttttatagtt 1110 |
|    | aacatactaa tttcttcaat aattgttaac tgcaaagtt | t taataaattt gtaccttt 1168   |
|    |                                            |                              |
| 5  | <210> 24                                   |                              |
|    | <211> 194                                  |                              |
|    | <212> PRT                                  |                              |
|    | <213> Homo sapiens                         |                              |
|    |                                            |                              |
| 10 | <400> 24                                   |                              |
|    | Met Ala Asp Pro Leu Arg Glu Arg Th         | nr Glu Leu Leu Ala           |
|    | 1 5                                        | 10                           |
|    | Asp Tyr Leu Gly Tyr Cys Ala Arg Glu Pro Gl |                              |
|    | 13                                         | 25 30                        |
| 15 | Pro Ser Thr Pro Glu Ala Ala Val Leu Arg Se | er Ala Ala Arg Leu           |
|    | 35 40                                      | 45                           |
|    | Arg Gln Ile His Arg Ser Phe Phe Ser Ala T  |                              |
|    | 50 55                                      | 60                           |
|    | Asn Arg Phe Glu Leu Val Ala Leu Met Ala A  |                              |
| 20 | 65 70                                      | 75                           |
|    | Ser Pro Gly Pro Thr Trp Gly Arg Val Val T  |                              |
|    | 80 85                                      | 90                           |
|    | Gly Thr Leu Leu Glu Arg Gly Pro Leu Val T  |                              |
|    |                                            | .05 110                      |
| 25 | Trp Gly Phe Gln Pro Arg Leu Lys Glu Gln G  |                              |
|    | 115 120                                    | 125                          |
|    | Asp Cys Gln Arg Leu Val Ala Leu Leu Ser S  |                              |
|    | 130 135                                    | 140                          |
| 22 | His Arg Ala Trp Leu Gln Ala Gln Gly Gly T  |                              |
| 30 | 145 150                                    | 155                          |
|    | Phe Phe Arg Thr Pro Phe Pro Leu Ala Phe T  |                              |
|    | 160 165                                    | 170                          |

|    | GIN | AI   | Pue | Leu  | Ser  | Cys  | Leu  | Leu  | Thr  | Thr | Ala   | Phe   | · Ile | Tyr | Leu | ıTrp |      |
|----|-----|------|-----|------|------|------|------|------|------|-----|-------|-------|-------|-----|-----|------|------|
|    | 175 |      |     |      |      | 180  |      |      |      |     | 185   | +     |       |     |     | 190  |      |
|    | Thr | Arg  | Leu | Leu  | l    |      |      |      |      |     |       |       |       |     |     |      |      |
|    |     |      |     |      |      |      |      |      |      |     |       |       |       |     |     |      |      |
| 5  | <21 | 0> 2 | :5  |      |      |      |      |      |      |     |       |       |       |     |     |      |      |
|    | <21 | 1> 6 | 24  |      |      |      |      |      |      |     |       |       |       |     |     |      |      |
|    | <21 | 2> D | NA  |      |      |      |      |      |      |     |       |       |       |     |     |      |      |
|    | <21 | 3> н | omo | sapi | ens  |      |      |      |      |     |       |       |       |     |     |      |      |
| 10 | <40 | 0> 2 | 5   |      |      |      |      |      |      |     |       |       |       |     |     |      |      |
|    | ttt | gacg | gaa | ggag | cggc | gg c | gacg | gagg | a gg | agg | atg   | gag   | geg · | gtg | gtg | ttc  | 53   |
|    |     |      |     |      |      |      |      |      |      | :   | Met ( | Glu . | Ala ' | Val | Val | Phe  |      |
|    |     |      |     |      |      |      |      |      |      |     | 1     |       |       |     | 5   |      |      |
|    | gtc | ttc  | tct | ctc  | ctc  | gat  | tgt  | tgc  | gcg  | ctc | atc   | ttc   | ctc   | tcg | gtc | tac  | 101  |
| 15 | Val | Phe  | Ser | Leu  | Leu  | Asp  | Cys  | Суз  | Ala  | Leu | Ile   | Phe   | Leu   | Ser | Val | Tyr  |      |
|    |     |      |     | 10   |      |      |      |      | 15   |     |       |       |       | 20  |     |      |      |
|    | ttc | ata  | att | aca  | ttg  | tct  | gat  | tta  | gaa  | tgt | gat   | tac   | att   | aat | gct | aga  | 149  |
|    | Phe | Ile  | Ile | Thr  | Leu  | Ser  | Asp  | Leu  | Glu  | Cys | Asp   | Tyr   | Ile   | Asn | Ala | Arg  |      |
|    |     |      | 25  |      |      |      |      | 30   |      |     |       |       | 35    |     |     |      |      |
| 20 | tca | tgt  | tgc | tca  | aaa  | tta  | aac  | aag  | tgg  | gta | att   | cca   | gaa   | ttg | att | ggc  | 197  |
|    | Ser | Суз  | Суз | Ser  | Lys  | Leu  | Asn  | Lys  | Trp  | Val | Ile   | Pro   | Glu   | Leu | Ile | Gly  |      |
|    |     | 40   |     |      |      |      | 45   |      |      |     |       | 50    |       |     |     |      |      |
|    | cat | acc  | att | gtc  | act  | gta  | tta  | ctg  | ctc  | atg | tca   | ttg   | cac   | tgg | ttc | atc  | 245  |
|    | His | Thr  | Ile | Val  | Thr  | Val  | Leu  | Leu  | Leu  | Met | Ser   | Leu   | His   | Trp | Phe | Ile  |      |
| 25 | 55  |      |     |      |      | 60   |      |      |      |     | 65    |       |       |     |     | 70   |      |
|    | ttc | ctt  | ctc | aac  | tta  | cct  | gtt  | gcc  | act  | tgg | aat   | ata   | tat   | cga | tac | att  | 293  |
|    | Phe | Leu  | Leu | Asn  | Leu  | Pro  | Val  | Ala  | Thr  | Trp | Asn   | Ile   | Tyr   | Arg | Tyr | Ile  |      |
|    |     |      |     |      | 75   |      |      |      |      | 80  |       |       |       |     | 85  |      |      |
|    | atg | gtg  | ccg | agt  | ggt  | aac  | atg  | gga  | gtg  | ttt | gat   | cca   | aca   | gaa | ata | cac  | 341  |
| 30 | Met | Val  | Pro | Ser  | Gly  | Asn  | Met  | Gly  | Val  | Phe | Asp   | Pro   | Thr   | Glu | Ile | His  |      |
|    |     |      |     | 90   |      |      | -    |      | 95   |     |       |       |       | 100 |     |      |      |
|    | aat | cga  | ggg | cag  | ctg  | aag  | tca  | cac  | atg  | aaa | gaa   | gcc   | atg   | atc | aag | ctt  | 3,89 |

|    | Asn Arg Gly Gln Leu Lys Ser His Met Lys Glu Ala Met Ile Lys Leu   |     |
|----|-------------------------------------------------------------------|-----|
|    | 105 110 115                                                       |     |
|    | ggt ttc cac ttg ctc tgc ttc ttc atg tat ctt tat agt atg atc tta   | 437 |
|    | Gly Phe His Leu Cys Phe Phe Met Tyr Leu Tyr Ser Met Ile Leu       |     |
| 5  | 120 125 130                                                       |     |
|    | gct ttg ata aat gac tgaagctgga gaagccgtgg ttgaagtcag cctacact     | 490 |
|    | Ala Leu Ile Asn Asp                                               |     |
|    | 135                                                               |     |
|    | acagtgcaca gttgaggagc cagagacttc ttaaatcatc cttagaaccg tgaccatagc | 550 |
| 10 | agtatatatt ttcctcttgg aacaaaaaac tatttttgct gtatttttac catataaagt | 610 |
|    | atttaaaaaa catg                                                   | 624 |
|    |                                                                   |     |
|    | <210> 26                                                          |     |
|    | <211> 139                                                         |     |
| 15 | <212> PRT                                                         |     |
|    | <213> Homo sapiens                                                |     |
|    |                                                                   |     |
|    | <400> 26                                                          |     |
|    | Met Glu Ala Val Phe                                               |     |
| 20 | 1 5                                                               |     |
|    | Val Phe Ser Leu Leu Asp Cys Cys Ala Leu Ile Phe Leu Ser Val Tyr   |     |
|    | 10 15 20                                                          |     |
|    | Phe Ile Ile Thr Leu Ser Asp Leu Glu Cys Asp Tyr Ile Asn Ala Arg   |     |
|    | 25 30 35                                                          |     |
| 25 | Ser Cys Cys Ser Lys Leu Asn Lys Trp Val Ile Pro Glu Leu Ile Gly   |     |
|    | 40 45 50                                                          |     |
|    | His Thr Ile Val Thr Val Leu Leu Met Ser Leu His Trp Phe Ile       |     |
|    | 55 60 65 70                                                       |     |
|    | Phe Leu Leu Asn Leu Pro Val Ala Thr Trp Asn Ile Tyr Arg Tyr Ile   |     |
| 30 | 75 80 85                                                          |     |
|    | Met Val Pro Ser Gly Asn Met Gly Val Phe Asp Pro Thr Glu Ile His   |     |
|    | 90 95 100                                                         |     |

|           | Asn Arg   | Gly Gln I | Leu Lys Ser  | His Met I  | Lys Glu Ala M | Met Ile Lys Leu |     |
|-----------|-----------|-----------|--------------|------------|---------------|-----------------|-----|
|           |           | 105       |              | 110        | 1             | .15             |     |
|           | Gly Phe   | His Leu I | Leu Cys Phe  | Phe Met 1  | Tyr Leu Tyr S | er Met Ile Leu  |     |
|           | 120       |           | 125          |            | 130           |                 |     |
| 5         | Ala Leu   | Ile Asn A | Asp          |            |               |                 |     |
|           | 135       |           |              |            |               |                 |     |
|           |           |           |              |            |               |                 |     |
|           | <210> 27  |           |              |            |               |                 |     |
|           | <211> 11: | 21        |              |            |               |                 |     |
| 10        | <212> DN  | A         |              |            |               |                 |     |
|           | <213> Hor | mo sapien | ns           |            |               |                 |     |
|           |           |           |              |            |               |                 |     |
|           | <400> 24  |           |              |            |               |                 |     |
|           | gacagagg  | gg aacaag | g atg gcg go | eg eeg aag | ggg agc ctc   | tgg gtg agg acc | 52  |
| 15        |           |           | Met Ala A    | la Pro Lys | Gly Ser Leu   | Trp Val Arg Thr |     |
|           |           |           | 1            | 5          | •             | 10              |     |
|           | caa ctg   | ggg ctc c | ccg ccg ctg  | ctg ctg c  | tg acc atg g  | cc ttg gcc gga  | 100 |
|           | Gln Leu   | Gly Leu P | Pro Pro Leu  | Leu Leu I  | eu Thr Met A  | la Leu Ala Gly  |     |
|           |           | 15        |              | 20         |               | 25              |     |
| 20        | ggt tcg   | ggg acc g | get teg get  | gaa gca t  | tt gac tcg g  | tc ttg ggt gat  | 148 |
|           | Gly Ser   | Gly Thr A | Ala Ser Ala  | Glu Ala P  | he Asp Ser V  | al Leu Gly Asp  |     |
|           | 30        |           | 35           |            | 40            |                 |     |
|           | acg gcg   | tet tge e | eac cgg gcc  | tgt cag t  | tg acc tac c  | cc ttg cac acc  | 196 |
|           | Thr Ala   | Ser Cys H | His Arg Ala  | Cys Gln I  | eu Thr Tyr P  | ro Leu His Thr  |     |
| <b>25</b> | 45        |           | 50           |            | 55            | 60              |     |
|           | tac cct   | aag gaa g | gag gag ttg  | tac gca t  | gt cag aga g  | gt tgc agg ctg  | 244 |
|           | Tyr Pro 1 | Lys Glu G | Slu Glu Leu  | Tyr Ala C  | ys Gln Arg G  | ly Cys Arg Leu  |     |
|           |           |           | 65           |            | 70            | 75              |     |
|           | ttt tca a | att tgt c | ag ttt gtg   | gat gat g  | ga att gac t  | ta aat cga act  | 292 |
| 30        | Phe Ser   | Ile Cys G | Sln Phe Val  | Asp Asp G  | ly Ile Asp L  | eu Asn Arg Thr  |     |
|           |           | 80        |              | 85         |               | 90              |     |
|           | aaa ttg   | gaa tgt g | gaa tot goa  | tgt aca g  | aa gca tat t  | cc caa tct gat  | 340 |

|    | Lys | Leu | Glu | Cys   | Glu   | Ser | Ala | Суз   | Thr   | Glu | Ala   | Tyr | Ser   | Gln   | Ser   | Asp   |     |
|----|-----|-----|-----|-------|-------|-----|-----|-------|-------|-----|-------|-----|-------|-------|-------|-------|-----|
|    |     |     | 95  |       |       |     |     | 100   |       |     |       |     | 105   |       |       |       |     |
|    | gag | caa | tat | gct   | tgc   | cat | ctt | ggt   | tgc   | cag | aat   | cag | ctg   | cca   | ttc   | gct   | 388 |
|    | Glu | Gln | Tyr | Ala   | Cys   | His | Leu | Gly   | Cys   | Gln | Asn   | Gln | Leu   | Pro   | Phe   | Ala   |     |
| 5  |     | 110 |     |       |       |     | 115 |       |       |     |       | 120 |       |       |       |       |     |
|    | gaa | ctg | aga | caa   | gaa   | caa | ctt | atg   | tcc   | ctg | atg   | cca | aaa   | atg   | cac   | cta   | 436 |
|    | Glu | Leu | Arg | Gln   | Glu   | Gln | Leu | Met   | Ser   | Leu | Met   | Pro | Lys   | Met   | His   | Leu   |     |
|    | 125 |     |     |       |       | 130 |     |       |       |     | 135   |     |       |       |       | 140   |     |
|    | ctc | ttt | cct | cta   | act   | ctg | gtg | agg   | tca   | ttc | tgg   | agt | gac   | atg   | atg   | gac   | 484 |
| 10 | Leu | Phe | Pro | Leu   | Thr   | Leu | Val | Arg   | Ser   | Phe | Trp   | Ser | Asp   | Met   | Met   | Asp   |     |
|    |     |     |     |       | 145   |     |     |       |       | 150 |       |     |       |       | 155   |       |     |
|    | tcc | gca | cag | agc   | ttc   | ata | acc | tct   | tca   | tgg | act   | ttt | tat   | ctt   | caa   | gcc   | 532 |
|    | Ser | Ala | Gln | Ser   | Phe   | Ile | Thr | Ser   | Ser   | Trp | Thr   | Phe | Tyr   | Leu   | Gln   | Ala   |     |
|    |     |     |     | 160   |       |     |     |       | 165   |     |       |     |       | 170   |       |       |     |
| 15 | •   | _   |     |       |       |     |     |       | cag   |     |       |     |       |       |       |       | 580 |
|    | Asp | Asp | Gly | Lys   | Ile   | Val | Ile | Phe   | Gln   | Ser | Lys   | Pro | Glu   | Ile   | Gln   | Tyr   |     |
|    |     |     | 175 |       |       |     |     | 180   |       |     |       |     | 185   |       |       |       |     |
|    | -   |     |     | _     |       |     |     |       |       |     |       |     |       |       |       | cta   | 628 |
|    | Ala | Pro | His | Leu   | Glu   | Gln | Glu | Pro   | Thr   | Asn | Leu   | Arg | Glu   | Ser   | Ser   | Leu   |     |
| 20 |     | 190 |     |       |       |     | 195 |       | •     |     |       | 200 |       | -• .  |       |       |     |
|    | -   |     | _   |       |       |     |     |       |       |     |       |     |       |       |       | aat   | 676 |
|    | Ser | Lys | Met | Ser   | Tyr   | Leu | Gln | Met   | Arg   | Asn | Ser   | Gln | Ala   | His   | Arg   | Asn   |     |
|    | 205 |     |     |       |       | 210 |     |       |       |     | 215   |     |       |       |       | 220   |     |
|    |     |     |     |       |       |     |     |       |       |     |       |     |       |       |       | ctt   | 724 |
| 25 | Phe | Leu | Glu | Asp   | Gly   | Glu | Ser | Asp   | Gly   | Phe | Leu   | Arg | Cys   | Leu   | Ser   | Leu   |     |
|    |     |     |     |       | 225   |     |     |       |       | 230 |       |     |       |       | 235   |       |     |
|    |     |     |     |       |       |     |     |       |       |     |       |     |       |       |       | gta   | 772 |
|    | Asn | Ser | Gly | Trp   | Il∈   | Let | Thr | Thr   | Thr   | Leu | ı Val | Lev | ı Ser | · Val | . Met | . Val |     |
|    |     |     |     | 240   | )     |     |     |       | 245   | •   |       |     |       | 250   | )     |       |     |
| 30 | _   |     |     |       | _     |     |     |       |       |     |       |     |       |       |       | , tat | 820 |
|    | Leu | Let | Trp | ) Ile | c Cys | суз | Ala | a Thi | r Val | Ala | Thr   | Ala | a Val | Gli   | ı Glr | Tyr   |     |
|    |     |     | 255 | ,     |       |     |     | 260   | 0     |     |       |     | 265   | 5     |       |       |     |

|           | gtt eee tet gag aag etg agt ate tat ggt gae ttg gag ttt atg aat   | 868  |
|-----------|-------------------------------------------------------------------|------|
|           | Val Pro Ser Glu Lys Leu Ser Ile Tyr Gly Asp Leu Glu Phe Met Asn   |      |
|           | 270 275 280                                                       |      |
|           | gaa caa aag cta aac aga tat cca gct tct tct ctt gtg gtt gtt aga   | 916  |
| 5         | Glu Gln Lys Leu Asn Arg Tyr Pro Ala Ser Ser Leu Val Val Arg       |      |
|           | 285 290 295 300                                                   |      |
|           | tet aaa aet gaa gat eat gaa gaa gea ggg eet eta eet aea aaa gtg   | 964  |
|           | Ser Lys Thr Glu Asp His Glu Glu Ala Gly Pro Leu Pro Thr Lys Val   |      |
|           | 305 310 315                                                       |      |
| 10        | aat ctt gct cat tct gaa att taagcatttt tcttttaaaa gacaa           | 1010 |
|           | Asn Leu Ala His Ser Glu Ile                                       |      |
|           | 320                                                               |      |
|           | gtgtaataga catctaaaat tccactcctc atagagcttt taaaatggtt tcattggata | 1070 |
|           | taggeettaa gaaateaeta taaaatgeaa ataaagttae teaaatetgt g          | 1121 |
| 15        |                                                                   |      |
|           | <210> 28                                                          |      |
|           | <211> 323                                                         |      |
|           | <212> PRT                                                         |      |
|           | <213> Homo sapiens                                                |      |
| 20        |                                                                   |      |
|           | <400> 28                                                          |      |
|           | Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr                   |      |
|           | 1 5 10                                                            |      |
|           | Gln Leu Gly Leu Pro Pro Leu Leu Leu Thr Met Ala Leu Ala Gly       |      |
| <b>25</b> | 15 20 25                                                          |      |
|           | Gly Ser Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp   |      |
|           | 30 35 40                                                          |      |
|           | Thr Ala Ser Cys His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr   |      |
|           | 45 50 55 60                                                       |      |
| 30        | Tyr Pro Lys Glu Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg Leu   |      |
|           | 65 70 75                                                          |      |
|           | Phe Ser Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn Arg Thr   |      |

|           |         |       | 80    |       |       |      |       | 85    |       |       |       |       | 90    |                                       |          |
|-----------|---------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|---------------------------------------|----------|
|           | Lys Leu | Glu ( | Cys ( | Glu a | Ser . | Ala  | Cys   | Thr   | Glu   | Ala   | Tyr   | Ser   | Gln   | Ser                                   | Asp      |
|           |         | 95    |       |       |       |      | 100   |       |       |       |       | 105   |       |                                       |          |
|           | Glu Gln | Tyr . | Ala ( | Суз   | His   | Leu  | Gly   | Суз   | Gln   | Asn   | Gln   | Leu   | Pro   | Phe                                   | Ala      |
| 5         | 110     |       |       |       |       | 115  |       |       |       |       | 120   |       |       |                                       |          |
|           | Glu Leu | Arg   | Gln   | Glu   | Gln   | Leu  | Met   | Ser   | Leu   | Met   | Pro   | Lys   | Met   | His                                   | Leu      |
|           | 125     |       |       |       | 130   |      |       |       |       | 135   |       |       |       |                                       | 140      |
|           | Leu Phe | Pro   | Leu   | Thr   | Leu   | Val  | Arg   | Ser   | Phe   | Trp   | Ser   | Asp   | Met   | Met                                   | Asp      |
|           |         |       |       | 145   |       |      |       |       | 150   |       |       |       |       | 155                                   |          |
| 10        | Ser Ala | Gln   | Ser   | Phe   | Ile   | Thr  | Ser   | Ser   | Trp   | Thr   | Phe   | Tyr   | Leu   | Gln                                   | Ala      |
|           |         |       | 160   |       |       |      |       | 165   |       |       |       |       | 170   |                                       |          |
|           | Asp Asp | Gly   | Lys   | Ile   | Val   | Ile  | Phe   | Gln   | Ser   | Lys   | Pro   | Glu   | Ile   | Gln                                   | Tyr      |
|           |         | 175   |       |       |       |      | 180   |       |       |       |       | 185   |       |                                       |          |
|           | Ala Pro | His   | Leu   | Glu   | Gln   | Glu  | Pro   | Thr   | Asn   | Leu   | Arg   | Glu   | Ser   | Ser                                   | Leu      |
| 15        | 190     |       |       |       |       | 195  |       |       |       |       | 200   |       |       |                                       |          |
|           | Ser Lys | Met   | Ser   | Tyr   | Leu   | Gln  | Met   | Arg   | Asn   | Ser   | Gln   | Ala   | His   | Arg                                   |          |
|           | 205     |       |       |       | 210   |      |       |       |       | 215   |       |       |       |                                       | 220      |
|           | Phe Leu | Glu   | Asp   | Gly   | Glu   | Ser  | Asp   | Gly   | Phe   | Leu   | Arg   | СУЗ   | Leu   |                                       |          |
|           |         |       |       | 225   |       |      |       |       | 230   |       |       |       | _     | 235                                   |          |
| 20        | Asn Ser | Gly   | Trp   | Ile   | Leu   | Thr  | Thr   | Thi   | Lev   | ı Val | . Lev | ı Sei |       |                                       | . Val    |
|           |         |       | 240   |       |       |      |       | 245   |       |       |       | _     | 250   |                                       |          |
|           | Leu Leu | ı Trp | Ile   | Cys   | Суз   | Ala  |       |       | l Ala | a Thi | : Ala |       |       | ı Gli                                 | n 'I'yi  |
|           |         | 255   |       |       |       |      | 260   |       | _     |       |       | 26    |       |                                       | <b>.</b> |
|           | Val Pro | o Ser | Glu   | Lys   | Lev   |      |       | э Ту: | r Gly | y Asj |       |       | a Phe | e Me                                  | t Asi    |
| <b>25</b> | 27      |       |       |       |       | 275  |       | _     |       | _     | 28    |       | • ••- | • • • • • • • • • • • • • • • • • • • | 7 2      |
|           | Glu Gl  | n Lys | Lev   | ı Ası |       |      | r Pro | o Al  | a Se  |       |       | u Va  | ı va  | ı va                                  | 30       |
|           | 285     |       |       |       | 29    |      |       |       |       | 29    |       |       | - mb  | T-                                    |          |
|           | Ser Ly  | s Thi | r Glu |       |       | s Gl | u Gl  | u Al  |       |       | o Le  | u Pr  | o Tn  |                                       |          |
|           |         |       |       | 30!   |       |      |       |       | 31    | U     |       |       |       | 31                                    | د.       |
| 30        | Asn Le  | u Ala | a Hi  | s Se  | r Gl  | u Il | е     |       |       |       |       |       |       |                                       |          |
|           |         |       | 32    | 0     |       |      |       |       |       |       |       |       |       |                                       |          |

|    | <21 | 0> 2 | 9     |      |      |           |      |      |      |      |      |      |            |      |      |       |     |
|----|-----|------|-------|------|------|-----------|------|------|------|------|------|------|------------|------|------|-------|-----|
|    | <21 | 1> 8 | 27    |      |      |           |      |      |      |      |      |      |            |      |      |       |     |
|    | <21 | 2> D | NA    |      |      |           |      |      |      |      |      |      |            |      |      |       |     |
| 5  | <21 | 3> H | omo   | sapi | ens  |           |      |      |      |      |      |      |            |      |      |       |     |
|    |     |      |       |      |      |           |      |      |      |      |      |      |            |      |      |       |     |
|    | <40 | 0> 2 | 9     |      |      |           |      |      |      |      |      |      |            |      |      |       |     |
|    | aac | agcg | gcc ( | ctgc | ggct | gg c      | gegg | cgga | c gg | g at | g ag | g cg | c tg       | c ag | t ct | c tgc | 54  |
|    |     |      |       |      |      |           |      |      |      | Me   | t Ar | g Ar | д Су       | s Se | r Le | u Cys |     |
| 10 |     |      |       |      |      |           |      |      |      |      | 1    |      |            |      | 5    |       |     |
|    |     |      |       |      |      |           |      |      |      |      |      |      | cgt        |      |      |       | 102 |
|    | Ala | Phe  |       | Ala  | Ala  | Arg       | Gly  | Pro  | Arg  | Arg  | Leu  | Met  | Arg        | Val  | Gly  | Leu   |     |
|    |     |      | 10    |      |      |           |      | 15   |      |      |      |      | 20         |      |      |       |     |
| 15 |     |      |       |      |      |           |      |      |      |      |      |      | ggg        |      |      |       | 150 |
| 15 | Ala |      | Ile   | Leu  | Val  | Gly       |      |      | Asn  | Leu  | Leu  |      | Gly        | Ala  | Val  | Leu   |     |
|    |     | 25   |       |      |      |           | 30   |      |      |      |      | 35   |            |      |      |       |     |
|    |     |      |       |      |      |           |      |      |      |      |      |      | ggc        |      |      |       | 198 |
|    | 40  | GTÀ  | THE   | vai  | Leu  | Arg<br>45 | HIS  | vaı  | Ala  | Asn  |      | Arg  | Gly        | Ala  | Val  |       |     |
| 20 |     | aaa  | tac   | 200  | at a |           | aat  | ata  | a+a  | +-+  | 50   |      | <b>.</b>   |      |      | 55    | 244 |
| 20 |     |      |       |      |      |           |      |      |      |      |      |      | tcg<br>Ser |      |      |       | 246 |
|    | 110 | OLU  | -7-   | **** | 60   | mu        | non  | Val  | 116  | 65   | vai  | GTĀ  | ser        | GTÅ  | 70   | Leu   |     |
|    | agc | gtt  | tee   | ata  |      | ctt       | ata  | acc  | ctc  |      | aca  | tee  | agg        | aac  |      | ctt   | 294 |
|    |     |      |       |      |      |           |      |      |      |      |      |      | Arg        |      |      |       | 23. |
| 25 |     |      |       | 75   | _    |           |      |      | 80   |      |      |      |            | 85   |      |       |     |
|    | cgc | cct  | cca   | ctg  | cac  | tgg       | gtc  | ctg  | ctg  | gca  | cta  | gct  | ctg        | gtg  | aac  | ctg   | 342 |
|    |     |      |       |      |      |           |      |      |      |      |      |      | Leu        |      |      |       |     |
|    |     |      | 90    |      |      |           |      | 95   |      |      |      |      | 100        |      |      |       |     |
|    | ctc | ttg  | tcc   | gtt  | gcc  | tgc       | tcc  | ctg  | ggc  | ctc  | ctt  | ctt  | gct        | gtg  | tca  | ctc   | 390 |
| 30 | Leu | Leu  | Ser   | Val  | Ala  | Cys       | Ser  | Leu  | Gly  | Leu  | Leu  | Leu  | Ala        | Val  | Ser  | Leu   |     |
|    |     | 105  |       |      |      |           | 110  |      |      |      |      | 115  |            |      |      |       |     |
|    | act | gtg  | gcc   | aac  | ggt  | ggc       | cgc  | cgc  | ctt  | att  | gct  | gac  | tgc        | cac  | cca  | gga   | 438 |
|    |     |      |       |      |      |           |      |      |      |      |      |      |            |      |      |       |     |

|    | Thr V | al i | Ala  | Asn  | Gly   | Gly  | Arg  | Arg   | Leu   | Ile  | Ala   | Asp   | Cys  | His  | Pro   | Gly   |     |
|----|-------|------|------|------|-------|------|------|-------|-------|------|-------|-------|------|------|-------|-------|-----|
|    | 120   |      |      |      |       | 125  |      |       |       |      | 130   |       |      |      |       | 135   |     |
|    | ctg c | tg   | gat  | cct  | ctg   | gta  | cca  | ctg   | gat   | gag  | ggg   | ccg   | gga  | cat  | act   | gac   | 486 |
|    | Leu L | .eu  | Asp  | Pro  | Leu   | Val  | Pro  | Leu   | Asp   | Glu  | Gly   | Pro   | Gly  | His  | Thr   | Asp   |     |
| 5  |       |      |      |      | 140   | ٠    |      |       |       | 145  |       |       |      |      | 150   |       |     |
|    | tgc c | cc   | ttt  | gac  | ccc   | aca  | aga  | atc   | tat   | gat  | aca   | gcc   | ttg  | gct  | ctc   | tgg   | 534 |
|    | Cys P | ro   | Phe  | Asp  | Pro   | Thr  | Arg  | Ile   | Tyr   | Ąsp  | Thr   | Ala   | Leu  | Ala  | Leu   | Trp   |     |
|    |       |      |      | 155  |       |      |      |       | 160   |      |       |       |      | 165  |       |       |     |
|    | atc c | ect  | tct  | ttg  | ctc   | atg  | tct  | gca   | ggg   | gag  | gct   | gct   | cta  | tct  | ggt   | tac   | 582 |
| 10 | Ile P | Pro  | Ser  | Leu  | Leu   | Met  | Ser  | Ala   | Gly   | Glu  | Ala   | Ala   | Leu  | Ser  | Gly   | Tyr   |     |
|    |       |      | 170  |      |       |      |      | 175   |       |      |       |       | 180  |      |       |       |     |
|    | tgc t | :gt  | gtg  | gct  | gca   | ctc  | act  | cta   | cgt   | gga  | gtt   | ggg   | ccc  | tgc  | agg   | aag   | 630 |
|    | Cys ( | Cys  | Val  | Ala  | Ala   | Leu  | Thr  | Leu   | Arg   | Gly  | Val   | Gly   | Pro  | Cys  | Arg   | Lys   |     |
|    | 1     | 185  |      |      |       |      | 190  |       |       |      |       | 195   |      |      |       |       |     |
| 15 | gac g | gga  | ctt  | cag  | ggg   | cag  | gta  | gta   | gct   | ggg  | tgt   | gac   | gca  | aga  | gtg   | aaa   | 678 |
|    | Asp ( | Gly  | Leu  | Gln  | Gly   | Gln  | Val  | Val   | Ala   | Gly  | Cys   | Asp   | Ala  | Arg  | Val   | Lys   |     |
|    | 200   |      |      |      |       | 205  |      |       |       |      | 210   |       |      |      |       | 215   |     |
|    | cag a | aaa  | gcc  | tgg  | cag   | cca  | cgg  | ttt   | cct   | ggg  | att   | aaa   | gtc  | aaa  | gca   | tta   | 726 |
|    | Gln 1 | Lys  | Ala  | Trp  | Gln   | Pro  | Arg  | Phe   | Pro   | Gly  | Ile   | Lys   | Val  | Lys  | Ala   | Leu   |     |
| 20 |       |      |      |      | 220   |      |      |       |       | 225  |       |       |      |      | 230   |       |     |
|    | tgaa  | tat  | tggc | acta | aag   | tgac | tga  | gcta  | ccag  | ac c | aatg  | atco  | t gt | aagg | cago  | !     | 780 |
|    | caca  | gaad | cta  | aaaa | acaa  | ca a | ttat | tatt  | a aa  | ctgc | tctg  | gat   | tctc | :    |       |       | 827 |
|    |       |      |      |      |       |      |      |       |       |      |       |       |      |      |       |       |     |
|    | <210  | > 3  | 0    |      |       |      |      |       |       |      |       |       |      |      |       |       |     |
| 25 | <211  | > 2  | 31   |      |       |      |      |       |       |      |       |       |      |      |       |       |     |
|    | <212  | > P  | RT   |      |       |      |      |       |       |      |       |       |      |      |       |       |     |
|    | <213  | > H  | omo  | sapi | ens   |      |      |       |       |      |       |       |      |      |       |       |     |
|    |       |      |      |      |       |      |      |       |       |      |       |       |      |      |       |       |     |
|    | <400  | > 3  | 0    |      |       |      |      |       |       |      |       |       |      |      |       |       |     |
| 30 |       |      |      |      |       |      |      |       |       | Met  | Arg   | J Ar  | Cys  | s Se | r Lei | ı Cys |     |
|    |       |      |      |      |       |      |      |       |       | 1    | L     |       |      | !    | 5     |       |     |
|    | Ala   | Phe  | Asp  | Ala  | a Ala | Arg  | Gly  | y Pro | o Arg | Arq  | J Lei | ı Met | Ar   | y Va | l Gl  | y Leu |     |

|    |      |       | 10    |       |     |     |     | 15  |     |     |     |     | 20  |     |     |     |
|----|------|-------|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | Ala  | Leu   | Ile   | Leu   | Val | Gly | His | Val | Asn | Leu | Leu | Leu | Gly | Ala | Val | Leu |
|    |      | 25    |       |       |     |     | 30  |     |     |     |     | 35  |     |     |     |     |
|    | His  | Gly   | Thr   | Val   | Leu | Arg | His | Val | Ala | Asn | Pro | Arg | Gly | Ala | Val | Thr |
| 5  | 40   |       |       |       |     | 45  |     |     |     |     | 50  |     |     |     |     | 55  |
|    | Pro  | Glu   | Tyr   | Thr   | Val | Ala | Asn | Val | Ile | Ser | Val | Gly | Ser | Gly | Leu | Leu |
|    |      |       |       |       | 60  |     |     |     |     | 65  |     |     |     |     | 70  |     |
|    | Ser  | Val   | Ser   | Val   | Gly | Leu | Val | Ala | Leu | Leu | Ala | Ser | Arg | Asn | Leu | Leu |
|    |      |       |       | 75    |     |     |     |     | 80  |     |     |     |     | 85  |     |     |
| 10 | Arg  | Pro   | Pro   | Leu   | His | Trp | Val | Leu | Leu | Ala | Leu | Ala | Leu | Val | Asn | Leu |
|    |      |       | 90    |       |     |     |     | 95  |     |     |     |     | 100 |     |     |     |
|    | Leu  | Leu   | Ser   | Val   | Ala | Суз | Ser | Leu | Gly | Leu | Leu | Leu | Ala | Val | Ser | Leu |
|    |      | 105   |       |       |     |     | 110 |     |     |     |     | 115 |     |     |     |     |
|    | Thr  | Val   | Ala   | Asn   | Gly | Gly | Arg | Arg | Leu | Ile | Ala | Asp | Cys | His | Pro | Gly |
| 15 | 120  |       |       |       |     | 125 |     |     |     |     | 130 |     |     |     |     | 135 |
|    | Leu  | Leu   | Asp   | Pro   | Leu | Val | Pro | Leu | Asp | Glu | Gly | Pro | Gly | His | Thr | Asp |
|    |      |       |       |       | 140 |     |     |     |     | 145 |     |     |     |     | 150 |     |
|    | Суз  | Pro   | Phe   | Asp   | Pro | Thr | Arg | Ile | Tyr | Asp | Thr | Ala | Leu | Ala | Leu | Trp |
|    |      |       |       | 155   |     |     |     |     | 160 |     |     |     |     | 165 |     |     |
| 20 | Ile  | Pro   | Ser   | Leu   | Leu | Met | Ser | Ala | Gly | Glu | Ala | Ala | Leu | Ser | Gly | Tyr |
|    |      |       | 170   |       |     |     |     | 175 |     |     |     |     | 180 |     |     |     |
|    | Сув  | Суз   | Val   | Ala   | Ala | Leu | Thr | Leu | Arg | Gly | Val | Gly | Pro | Cys | Arg | Lys |
|    |      | 185   |       |       |     |     | 190 |     |     |     |     | 195 |     |     |     |     |
|    | Asp  | Gly   | Leu   | Gln   | Gly | Gln | Val | Val | Ala | Gly | Cys | Asp | Ala | Arg | Val | Lys |
| 25 | 200  |       |       |       |     | 205 |     |     |     |     | 210 |     |     |     |     | 215 |
|    | Gln  | Lys   | Ala   | Trp   | Gln | Pro | Arg | Phe | Pro | Gly | Ile | Lys | Val | Lys | Ala | Leu |
|    |      |       |       |       | 220 |     |     |     |     | 225 |     |     |     |     | 230 |     |
|    |      |       |       |       |     |     |     |     |     |     |     |     |     |     |     |     |
|    | <210 | 0> 31 | l     |       |     |     |     |     |     |     |     |     |     |     |     |     |
| 30 | <211 | 1> 11 | 189   |       |     |     |     |     |     |     |     |     |     |     |     |     |
|    | <212 | 2> DN | AJ.   |       |     |     |     |     |     |     |     |     |     |     |     |     |
|    | <213 | 3> Hc | omo s | sapie | ens |     |     |     |     |     |     |     |     |     |     |     |

|    | <400> 31                                                          |     |
|----|-------------------------------------------------------------------|-----|
|    | gtegeeteee ggteeeggee eggetaetge getgegeeea eteegetetg gageetggge | 60  |
|    | gegggteetg acetteeegg eceteteetg acacetggtg gatggegtea ecagaactee | 120 |
| 5  | tagetgtgga accetagggt acctgttace gegetttgge gaaactgggt tegetgetga | 180 |
|    | tttgcgaacc tttgcctgac tttctcaggc cttgagagat ctaagtaaat ttggtggccc | 240 |
|    | attgaaagga cctggagaga gcgtatgaag atctgcctct tctccaagaa actcaaccac | 300 |
|    | tagtgaca atg acc agc ctc ctg act act cct tct cca aga gaa gaa ctg  | 350 |
|    | Met Thr Ser Leu Leu Thr Thr Pro Ser Pro Arg Glu Glu Leu           |     |
| 10 | 1 5 10                                                            |     |
|    | atg acc acc cca att tta cag ccc act gag gcc ctg tcc cca gaa gat   | 398 |
|    | Met Thr Thr Pro Ile Leu Gln Pro Thr Glu Ala Leu Ser Pro Glu Asp   |     |
|    | 15 20 25 30                                                       |     |
|    | gga gee age aca gea ete att gea gtt gtt ate ace gtt gte tte ete   | 446 |
| 15 | Gly Ala Ser Thr Ala Leu Ile Ala Val Val Ile Thr Val Val Phe Leu   |     |
|    | 35 40 45                                                          |     |
|    | ace etg ete teg gte gtg ate ttg ate tte ttt tae etg tae aag aac   | 494 |
|    | Thr Leu Leu Ser Val Val Ile Leu Ile Phe Phe Tyr Leu Tyr Lys Asn   |     |
|    | 50 55 60                                                          |     |
| 20 | aaa ggc agc tac gtc acc tat gaa cct aca gaa ggt gag ccc agt gcc   | 542 |
|    | Lys Gly Ser Tyr Val Thr Tyr Glu Pro Thr Glu Gly Glu Pro Ser Ala   |     |
|    | 65 70 75                                                          |     |
|    | atc gtc cag atg gag agt gac ttg gcc aag ggc agc gag aaa gag gaa   | 590 |
|    | Ile Val Gln Met Glu Ser Asp Leu Ala Lys Gly Ser Glu Lys Glu Glu   |     |
| 25 | 80 85 90                                                          |     |
|    | tat ttc atc taatgactcc caggccccaa ggagcttatt cctggctcca t         | 640 |
|    | Tyr Phe Ile                                                       |     |
|    | 95                                                                |     |
|    | cgctaacacg ttgactgctt attatgggaa agttttctct gaagccaggg agaagcattg | 700 |
| 30 | attgatgtgg gcaaatccaa gctccagcca ggtcgcagtc ccaaatgccg acatcactga | 760 |
|    | ctccagggac cagggacatg gagaaagctg tttatgatat ctttaaccag gecetettac | 820 |
|    | tagagetggt gtttgtgaet ggeeaacaag atgtggetat geeaggggae atetgagtat | 880 |

|    | gtgccca  | gtc      | atct | tttt | tc a | cagg           | ttga     | a gg       | gaga | gaaa      | aga        | tttt       | gag      | ttaa | ggtcat     | t : | 940 |
|----|----------|----------|------|------|------|----------------|----------|------------|------|-----------|------------|------------|----------|------|------------|-----|-----|
|    | tggctgc  | tct      | actc | tgtc | cc c | tacc           | tggt     | c ac       | ctag | tgat      | agc        | ccca       | gtg      | gaga | tactg      | t 1 | 000 |
|    | ccataca  | agg      | tett | ccca | ga g | gctg           | gata     | c ca       | cagt | aaaa      | ggc        | cagg       | cca      | ggag | gggta      | g 1 | 060 |
|    | gagactat | tgg      | agat | ctta | cc t | cctg           | ataa     | a tg       | tgct | acac      | ccc        | ctaa       | tct      | gage | ccttc      | = 1 | 120 |
| 5  | tttccgt  | gtt      | cccc | aaca | ac c | tcat           | gctt     | a cg       | tgat | tttt      | att        | caaa       | tta      | aaaa | ttttca     | a 1 | 180 |
|    | ttgctaca | ag       |      |      |      |                |          |            |      |           |            |            |          |      |            | 1   | 189 |
|    |          |          |      |      |      |                |          |            |      |           |            |            |          |      |            |     |     |
|    | <210> 32 |          |      |      |      |                |          |            |      |           |            |            |          |      |            |     |     |
| 10 | <211> 97 |          |      |      |      |                |          |            |      |           |            |            |          |      |            |     |     |
| 10 | <212> PF |          |      |      |      |                |          |            |      |           |            |            |          |      |            |     |     |
|    | <213> Ho | omo :    | sapi | ens  |      |                |          |            |      |           |            |            |          |      |            |     |     |
|    |          | _        |      |      |      |                |          |            |      |           |            |            |          |      |            |     |     |
|    | <400> 32 |          |      |      | _    |                |          |            |      |           |            |            |          |      |            |     |     |
| 15 |          |          | Thr  | Ser  | Leu  |                | Thr      | Thr        | Pro  | Ser       |            | Arg        | Glu      | Glu  | Leu        |     |     |
| 15 | 14-4- ml | 1        | _    | 1    | _    | 5              | _        |            | _    |           | 10         |            |          |      |            |     |     |
|    | Met Thr  | Thr      | Pro  | He   |      | Gin            | Pro      | Thr        | Glu  |           | Leu        | Ser        | Pro      | Glu  | _          |     |     |
|    | 15       | _        | -1   |      | 20   |                |          | <b>_</b>   |      | 25        |            |            |          |      | 30         |     |     |
|    | Gly Ala  | Ser      | Thr  |      | Leu  | Ile            | Ala      | Val        |      | Ile       | Thr        | Val        | Val      |      | Leu        |     |     |
| 20 | Mbs: Tou | T        | C    | 35   | 17   | 71.            | <b>.</b> |            | 40   |           |            |            |          | 45   |            |     |     |
| 20 | Thr Leu  | теп      | 50   | vai  | vaı  | 116            | Leu      |            | Pne  | Pne       | Tyr        | Leu        |          | Lys  | Asn        |     |     |
|    | Ive Cly  | Sor      |      | tral |      | <b>Пт эз</b> - | C1       | 55<br>Desc | m\   | <b>63</b> | <b>0</b> 1 | <b>~</b> 3 | 60       | _    |            |     |     |
|    | Lys Gly  | 65       | ıyı  | vai  | 1111 | ıyı            | 70       | PIO        | Thr  | GLU       | GIY        |            | Pro      | Ser  | Ala        |     |     |
|    | Tle Val  |          | Mot  | Glu  | Ser  | V e D          |          | חות        | T    | <b>61</b> | 0          | 75         | <b>-</b> |      | <b>6</b> 1 |     |     |
| 25 | Ile Val  | 0111     | 1100 | GIG  | Der  | 85             | neu      | ALG        | гЛя  | СТУ       | 90         | GIU        | ьys      | GIU  | GIU        |     |     |
|    | Tyr Phe  | Ile      |      |      |      | U.J            |          |            |      |           | 90         |            |          |      |            |     |     |
|    | 95       |          |      |      |      |                |          |            |      |           |            |            |          |      |            |     |     |
|    |          |          |      |      |      |                |          |            |      |           |            |            |          |      |            |     |     |
|    | <210> 33 | <b>,</b> |      |      |      |                |          |            |      |           |            |            |          |      |            |     |     |
| 30 | <211> 15 |          |      |      |      |                |          |            |      |           |            |            |          |      |            |     |     |
|    | <212> DN |          |      |      |      |                |          |            |      |           |            |            |          |      |            |     |     |
|    | <213> но |          | apie | ens  |      |                |          |            |      |           |            |            |          |      |            |     |     |

|    | <400> 33                                                                                           |     |
|----|----------------------------------------------------------------------------------------------------|-----|
|    | ctgtgcctga gcctgagcct gagcctgagc ctgagcccga gccgggagcc ggtcgcgggg                                  | 60  |
|    | geteeggget gtgggaeege tgggeeeeea geg atg geg ace etg tgg gga gge                                   | 114 |
| 5  | Met Ala Thr Leu Trp Gly Gly                                                                        |     |
|    | 1 5                                                                                                |     |
|    | ctt ctt egg ctt gge tee ttg ete age etg teg tge etg geg ett tee                                    | 162 |
|    | Leu Leu Arg Leu Gly Ser Leu Leu Ser Leu Ser Cys Leu Ala Leu Ser                                    |     |
|    | 10 15 20                                                                                           |     |
| 10 | gtg ctg ctg ctg gcg cag ctg tca gac gcc gcc aag aat ttc gag gat                                    | 210 |
|    | Val Leu Leu Ala Gln Leu Ser Asp Ala Ala Lys Asn Phe Glu Asp                                        |     |
|    | 25 30 35                                                                                           |     |
|    | gtc aga tgt aaa tgt atc tgc cct ccc tat aaa gaa aat tct ggg cat                                    | 258 |
|    | Val Arg Cys Lys Cys Ile Cys Pro Pro Tyr Lys Glu Asn Ser Gly His                                    |     |
| 15 | 40 45 50 55                                                                                        |     |
|    | att tat aat aag aac ata tct cag aaa gat tgt gat tgc ctt cat gtt                                    | 306 |
|    | Ile Tyr Asn Lys Asn Ile Ser Gln Lys Asp Cys Asp Cys Leu His Val                                    | а   |
|    | 60 65 70                                                                                           | 354 |
|    | gtg gag ccc atg cct gtg cgg ggg cct gat gta gaa gca tac tgt cta                                    | 354 |
| 20 | Val Glu Pro Met Pro Val Arg Gly Pro Asp Val Glu Ala Tyr Cys Leu                                    |     |
|    | 75 80 85                                                                                           | 402 |
|    | cgc tgt gaa tgc aaa tat gaa gaa aga agc tct gtc aca atc aag gtt                                    | 402 |
|    | Arg Cys Glu Cys Lys Tyr Glu Glu Arg Ser Ser Val Thr Ile Lys Val                                    |     |
| o= | 90 95 100                                                                                          | 450 |
| 25 | acc att ata att tat ete tee att ttg gge ett eta ett etg tac atg                                    | 150 |
|    | Thr Ile Ile Ile Tyr Leu Ser Ile Leu Gly Leu Leu Leu Tyr Met  105 110 115                           |     |
|    | 103                                                                                                | 498 |
|    | gta tat ctt act ctg gtt gag ccc ata ctg aag agg cgc ctc ttt gga                                    |     |
| 00 | Val Tyr Leu Thr Leu Val Glu Pro Ile Leu Lys Arg Arg Leu Phe Gly 120 125 130 135                    |     |
| 30 | cat gca cag ttg ata cag agt gat gat gat att ggg gat cac cag cct                                    | 546 |
|    | His Ala Gin Leu Tie Gin Ser Asp Asp Ile Gly Asp His Gin Pro                                        |     |
|    | MIN MIN WILL UND THE CITT DET UND UND UND TYP ATL THE TOPE AND |     |

35/45

|    | 140 145 150                                                       |      |
|----|-------------------------------------------------------------------|------|
|    | ttt gea aat gea eae gat gtg eta gee ege tee ege agt ega gee aac   | 594  |
|    | Phe Ala Asn Ala His Asp Val Leu Ala Arg Ser Arg Ser Arg Ala Asn   |      |
|    | 155 160 165                                                       |      |
| 5  | gtg ctg aac aag gta gaa tat gca cag cag cgc tgg aag ctt caa gtc   | 642  |
|    | Val Leu Asn Lys Val Glu Tyr Ala Gln Gln Arg Trp Lys Leu Gln Val   |      |
|    | 170 175 180                                                       |      |
|    | caa gag cag cga aag tot gto ttt gac cgg cat gtt gtc ctc agc       | 687  |
|    | Gln Glu Gln Arg Lys Ser Val Phe Asp Arg His Val Val Leu Ser       |      |
| 10 | 185 190 195                                                       |      |
|    | taattgggaa ttgaattcaa ggtgactaga aagaaacagg cagacaactg gaa        | 740  |
|    | agaactgact gggttttgct gggtttcatt ttaatacctt gttgatttca ccaactgttg | 800  |
|    | ctggaagatt caaaactgga agcaaaaact tgcttgattt ttttttcttg ttaacgtaat | 860  |
|    | aatagagaca tttttaaaag cacacagctc aaagtcagcc aataagtctt ttcctatttg | 920  |
| 15 | tgacttttac taataaaaat aaatetgeet gtaaattate ttgaagteet ttaeetggaa | 980  |
|    | caagcactet ettttteace acatagtttt aacttgactt teaagataat ttteagggtt | 1040 |
|    | tttgttgttg ttgtttttg tttgtttgtt ttggtgggag aggggaggga             | 1100 |
|    | gtggttaaca actttttca agtcacttta ctaaacaaac ttttgtaaat agaccttacc  | 1160 |
|    | ttctattttc gagtttcatt tatattttgc agtgtagcca gcctcatcaa agagctgact | 1220 |
| 20 | tactcatttg acttttgcac tgactgtatt atctgggtat ctgctgtgtc tgcacttcat | 1280 |
|    | ggtaaacggg atctaaaatg cctggtggct tttcacaaaa agcagatttt cttcatgtac | 1340 |
|    | tgtgatgtet gatgeaatge ateetagaae aaactggeea tttgetagtt taetetaaag | 1400 |
|    | actaeacata gtcttggtgt gtgtggtctt actcatcttc tagtaccttt aaggacaaat | 1460 |
|    | cctaaggact tggacacttg caataaagaa attttatttt                       | 1500 |
| 25 |                                                                   |      |
|    | <210> 34                                                          |      |
|    | <211> 198                                                         |      |
|    | <212> PRT                                                         |      |
|    | <213> Homo sapiens                                                |      |
| 30 |                                                                   |      |

<400> 34

36/45

Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu Ser Leu Ser Cys Leu Ala Leu Ser Val Leu Leu Leu Ala Gln Leu Ser Asp Ala Ala Lys Asn Phe Glu Asp Val Arg Cys Lys Cys Ile Cys Pro Pro Tyr Lys Glu Asn Ser Gly His Ile Tyr Asn Lys Asn Ile Ser Gln Lys Asp Cys Asp Cys Leu His Val Val Glu Pro Met Pro Val Arg Gly Pro Asp Val Glu Ala Tyr Cys Leu Arg Cys Glu Cys Lys Tyr Glu Glu Arg Ser Ser Val Thr Ile Lys Val Thr Ile Ile Tyr Leu Ser Ile Leu Gly Leu Leu Leu Tyr Met Val Tyr Leu Thr Leu Val Glu Pro Ile Leu Lys Arg Arg Leu Phe Gly His Ala Gln Leu Ile Gln Ser Asp Asp Ile Gly Asp His Gln Pro Phe Ala Asn Ala His Asp Val Leu Ala Arg Ser Arg Ser Arg Ala Asn Val Leu Asn Lys Val Glu Tyr Ala Gln Gln Arg Trp Lys Leu Gln Val Gln Glu Gln Arg Lys Ser Val Phe Asp Arg His Val Val Leu Ser <210> 35 <211> 806 <212> DNA <213> Homo sapiens

|    | <40 | 0> 3 | 5   |      |      |      |      |      |      |      |       |      |       |      |      |        |   |     |
|----|-----|------|-----|------|------|------|------|------|------|------|-------|------|-------|------|------|--------|---|-----|
|    | gtt | cgtc | tag | attt | gtcg | gc t | tgcg | ggga | g ac | ttca | ggag  | tcg  | ctgt  | ctc  | tgaa | cttcca |   | 60  |
|    | gcc | tcag | aga | ccgc | cgcc | ct t | gtcc | ccga | g gg | cc a | tg g  | gc c | gg g  | tc t | ca g | gg ctt |   | 115 |
|    |     |      |     |      |      |      |      |      |      | M    | et G  | ly A | rg V  | al S | er G | ly Leu |   |     |
| 5  |     |      |     |      |      |      |      |      |      |      | 1     |      |       |      | 5    |        |   |     |
|    | gtg | ccc  | tct | cgc  | ttc  | ctg  | acg  | ctc  | ctg  | gcg  | cat   | ctg  | gtg   | gtc  | gtc  | atc    |   | 163 |
|    | Val | Pro  | Ser | Arg  | Phe  | Leu  | Thr  | Leu  | Leu  | Ala  | His   | Leu  | Val   | Val  | Val  | Ile    |   |     |
|    |     |      | 10  |      |      |      |      | 15   |      |      |       |      | 20    |      |      |        |   |     |
|    | acc | tta  | ttc | tgg  | tcc  | cgg  | gac  | agc  | aac  | ata  | cag   | gcc  | tgc   | ctg  | cct  | ctc    | : | 211 |
| 10 | Thr | Leu  | Phe | Trp  | Ser  | Arg  | Asp  | Ser  | Asn  | Ile  | Gln   | Ala  | Cys   | Leu  | Pro  | Leu    |   |     |
|    |     | 25   |     |      |      |      | 30   |      |      |      |       | 35   |       |      |      |        |   |     |
|    | acg | ttc  | acc | ccc  | gag  | gag  | tat  | gac  | aag  | cag  | gac   | att  | cag   | ctg  | gtg  | gee    | : | 259 |
|    | Thr | Phe  | Thr | Pro  | Glu  | Glu  | Tyr  | Asp  | Lys  | Gln  | Asp   | Ile  | Gln   | Leu  | Val  | Ala    |   |     |
|    | 40  |      |     |      |      | 45   |      |      |      |      | 50    |      |       |      |      | 55     |   |     |
| 15 | gcg | ctc  | tct | gtc  | acc  | ctg  | ggc  | ctc  | ttt  | gca  | gtg   | gag  | ctg   | gcc  | ggt  | ttc    | 3 | 307 |
|    | Ala | Leu  | Ser | Val  | Thr  | Leu  | Gly  | Leu  | Phe  | Ala  | Val   | Glu  | Leu   | Ala  | Gly  | Phe    |   |     |
|    |     |      |     |      | 60   |      |      |      |      | 65   |       |      |       |      | 70   |        |   |     |
|    | ctc | tca  | gga | gtc  | tcc  | atg  | ttc  | aac  | agc  | acc  | cag   | agc  | ctc   | atc  | tcc  | att    | 3 | 355 |
|    | Leu | Ser  | Gly | Val  | Ser  | Met  | Phe  | Asn  | Ser  | Thr  | Gln   | Ser  | Leu   | Ile  | Ser  | Ile    |   |     |
| 20 |     |      |     | 75   |      |      |      |      | 80   |      |       |      |       | 85   |      |        |   |     |
|    | ggg | gct  | cac | tgt  | agt  | gca  | tcc  | gtg  | gcc  | ctg  | tcc   | ttc  | ttc   | ata  | ttc  | gag    | 4 | 103 |
|    | Gly | Ala  | His | Cys  | Ser  | Ala  | Ser  | Val  | Ala  | Leu  | Ser   | Phe  | Phe   | Ile  | Phe  | Glu    |   |     |
|    |     |      | 90  |      |      |      |      | 95   |      |      |       |      | 100   |      |      |        |   |     |
|    | cgt | tgg  | gag | tgc  | act  | acg  | tat  | tgg  | tac  | att  | ttt   | gtc  | ttc   | tgc  | agt  | gcc    | 4 | 51  |
| 25 | Arg | Trp  | Glu | Cys  | Thr  | Thr  | Tyr  | Trp  | Tyr  | Ile  | Phe   | Val  | Phe   | Cys  | Ser  | Ala    |   |     |
|    |     | 105  |     |      |      |      | 110  |      |      |      |       | 115  |       |      |      |        |   |     |
|    | ctt | cca  | gct | gtc  | act  | gaa  | atg  | gct  | tta  | ttc  | gtc   | acc  | gtc   | ttt  | ggg  | ctg    | 4 | 99  |
|    | Leu | Pro  | Ala | Val  | Thr  | Glu  | Met  | Ala  | Leu  | Phe  | Val   | Thr  | Val   | Phe  | Gly  | Leu    |   |     |
|    | 120 |      |     |      |      | 125  |      |      |      |      | 130   |      |       |      |      | 135    |   |     |
| 30 | aaa | aag  | aaa | ccc  | ttc  | tgat | tacc | tt c | atga | cggg | ja ac | ctaa | ıggac | gaa  | ıgcc |        | 5 | 50  |
|    | Lys | Lys  | Lys | Pro  | Phe  |      |      |      |      |      |       |      |       |      |      |        |   |     |
|    |     |      |     |      | 140  |      |      |      |      |      |       |      |       |      |      |        |   |     |

WO 00/00506 PCT/JP99/03242

38/45

|    | tacaggggca agggccgctt cgtattcctg gaagaaggaa ggcataggct tcggttttcc | 610 |
|----|-------------------------------------------------------------------|-----|
|    | cctcggaaac tgcttctgct ggaggatatg tgttggaata attacgtctt gagtctggga | 670 |
|    | ttatccgcat tgtatttagt gctttgtaat aaaatatgtt ttgtagtaac attaagactt | 730 |
|    | atatacagtt ttaggggaca attgagatgg ctgaactact gaataaaaaa aaaacaacgc | 790 |
| 5  | tgttttctag tcctgc                                                 | 806 |
|    |                                                                   |     |
|    | <210> 36                                                          |     |
|    | <211> 140                                                         |     |
|    | <212> PRT                                                         |     |
| 10 | <213> Homo sapiens                                                |     |
|    |                                                                   |     |
|    | <400> 36                                                          |     |
|    | Met Gly Arg Val Ser Gly Leu                                       |     |
|    | 1 5                                                               |     |
| 15 | Val Pro Ser Arg Phe Leu Thr Leu Leu Ala His Leu Val Val Val Ile   |     |
|    | 10 15 20                                                          |     |
|    | Thr Leu Phe Trp Ser Arg Asp Ser Asn Ile Gln Ala Cys Leu Pro Leu   |     |
|    | 25 30 35                                                          |     |
|    | Thr Phe Thr Pro Glu Glu Tyr Asp Lys Gln Asp Ile Gln Leu Val Ala   |     |
| 20 | 40 45 50 55                                                       |     |
|    | Ala Leu Ser Val Thr Leu Gly Leu Phe Ala Val Glu Leu Ala Gly Phe   |     |
|    | 60 65 70                                                          |     |
|    | Leu Ser Gly Val Ser Met Phe Asn Ser Thr Gln Ser Leu Ile Ser Ile   |     |
|    | 75 80 85                                                          |     |
| 25 | Gly Ala His Cys Ser Ala Ser Val Ala Leu Ser Phe Phe Ile Phe Glu   |     |
|    | 90 95 100                                                         |     |
|    | Arg Trp Glu Cys Thr Thr Tyr Trp Tyr Ile Phe Val Phe Cys Ser Ala   |     |
|    | 105 110 115                                                       |     |
| 00 | Leu Pro Ala Val Thr Glu Met Ala Leu Phe Val Thr Val Phe Gly Leu   |     |
| 30 | 120 125 130 135                                                   |     |
|    | Lys Lys Pro Phe                                                   |     |

|    | <210 | )> 3  | 7     |      |       |      |       |       |       |       |       |       |      |      |       |       |     |
|----|------|-------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|------|------|-------|-------|-----|
|    | <211 | l> 1  | 718   |      |       |      |       |       |       |       |       |       |      |      |       |       |     |
|    | <212 | 2> DI | NA.   |      |       |      |       |       |       |       |       |       |      |      |       |       |     |
| 5  | <213 | 3> H  | omo : | sapi | ens   |      |       |       |       |       |       |       |      |      |       | ·     |     |
|    |      |       |       |      |       |      |       |       |       |       |       |       |      |      |       |       |     |
|    | <400 | )> 3  | 7     |      |       |      |       |       |       |       |       |       |      |      |       |       |     |
|    | ttgt | cct   | gac d | ate  | g aat | t ag | g aco | c aac | e gto | c aai | t gto | e tti | t te | t ga | g cti | t tee | 50  |
|    |      |       |       | Met  | . Ası | n Ar | g Thi | r Ası | n Vai | l Ası | n Val | l Phe | e Se | r Gl | u Lei | ı Ser |     |
| 10 |      |       |       | :    | l     |      |       | ļ     | 5     |       |       |       | 10   | 0    |       |       |     |
|    | gct  | cct   | cgt   | cgc  | aat   | gaa  | gac   | ttt   | gtc   | ctc   | ctg   | ctc   | acc  | tac  | gtc   | ctc   | 98  |
|    | Ala  | Pro   | Arg   | Arg  | Asn   | Glu  | Asp   | Phe   | Val   | Leu   | Leu   | Leu   | Thr  | Tyr  | Val   | Leu   |     |
|    |      | 15    |       |      |       |      | 20    |       |       |       |       | 25    |      |      |       |       |     |
|    | ttc  | ttg   | atg   | gcg  | ctg   | acc  | ttc   | ctc   | atg   | tcc   | tcc   | ttc   | acc  | ttc  | tgt   | ggt   | 146 |
| 15 | Phe  | Leu   | Met   | Ala  | Leu   | Thr  | Phe   | Leu   | Met   | Ser   | Ser   | Phe   | Thr  | Phe  | Cys   | Gly   |     |
|    | 30   |       |       |      |       | 35   |       |       |       |       | 40    |       |      |      |       | 45    |     |
|    | tee  | ttc   | acg   | ggc  | tgg   | aag  | aga   | cat   | ggg   | gcc   | cac   | atc   | tac  | ctc  | acg   | atg   | 194 |
|    | Ser  | Phe   | Thr   | Gly  | Trp   | Lys  | Arg   | His   | Gly   | Ala   | His   | Ile   | Tyr  | Leu  | Thr   | Met   |     |
|    |      |       |       |      | 50    |      |       |       |       | 55    |       |       |      |      | 60    |       |     |
| 20 | ctc  | ctc   | tcc   | att  | gcc   | atc  | tgg   | gtg   | gcc   | tgg   | atc   | acc   | ctg  | ctc  | atg   | ctt   | 242 |
|    | Leu  | Leu   | Ser   | Ile  | Ala   | Ile  | Trp   | Val   | Ala   | Trp   | Ile   | Thr   | Leu  | Leu  | Met   | Leu   |     |
|    |      |       |       | 65   |       |      |       |       | 70    |       |       |       |      | 75   |       |       |     |
|    | cct  | gac   | ttt   | gac  | cgc   | agg  | tgg   | gat   | gac   | acc   | atc   | ctc   | agc  | tcc  | gcc   | ttg   | 290 |
|    | Pro  | Asp   | Phe   | Asp  | Arg   | Arg  | Trp   | Asp   | Asp   | Thr   | Ile   | Leu   | Ser  | Ser  | Ala   | Leu   |     |
| 25 |      |       | 80    |      |       |      |       | 85    |       |       |       |       | 90   |      |       |       |     |
|    | gct  | gcc   | aat   | ggc  | tgg   | gtg  | ttc   | ctg   | ttg   | gct   | tat   | gtt   | agt  | CCC  | gag   | ttt   | 338 |
|    | Ala  | Ala   | Asn   | Gly  | Trp   | Val  | Phe   | Leu   | Leu   | Ala   | Tyr   | Val   | Ser  | Pro  | Glu   | Phe   |     |
|    |      | 95    |       |      |       |      | 100   |       |       |       |       | 105   |      |      |       |       |     |
|    | tgg  | ctg   | ctc   | aca  | aag   | caa  | cga   | aac   | ccc   | atg   | gat   | tat   | cct  | gtt  | gag   | gat   | 386 |
| 30 | Trp  | Leu   | Leu   | Thr  | Lys   | Gln  | Arg   | Asn   | Pro   | Met   | Asp   | Tyr   | Pro  | Val  | Glu   | Asp   |     |
|    | 110  |       |       |      |       | 115  | _     |       |       |       | 120   |       |      |      |       | 125   |     |
|    | gct  | ttc   | tgt   | aaa  | cct   | caa  | ctc   | gtg   | aag   | aag   | agc   | tat   | ggt  | gtg  | gag   | aac   | 434 |

|           | Ala P | he (  | Cys | Lys | Pro | Gln | Leu | Val | ГÀа | Lys | Ser | Tyr  | Gly | Val  | Glu   | Asn  |    |             |
|-----------|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|------|-------|------|----|-------------|
|           |       |       |     |     | 130 |     |     |     |     | 135 |     |      |     |      | 140   |      |    |             |
|           | aga g | rcc 1 | tac | tct | caa | gag | gaa | atc | act | caa | ggt | ttt  | gaa | gag  | aca   | ggg  |    | 482         |
|           | Arg A | la :  | Tyr | Ser | Gln | Glu | Glu | Ile | Thr | Gln | Gly | Phe  | Glu | Glu  | Thr   | Gly  |    |             |
| 5         |       |       |     | 145 |     |     |     |     | 150 |     |     |      |     | 155  |       |      |    |             |
|           | gac a | icg ( | ctc | tat | gcc | ccc | tat | tcc | aca | cat | ttt | cag  | ctg | cag  | aac   | cag  |    | 530         |
|           | Asp T | hr :  | Leu | Tyr | Ala | Pro | Tyr | Ser | Thr | His | Phe | Gln  | Leu | Gln  | Asn   | Gln  |    |             |
|           |       |       | 160 |     |     |     |     | 165 |     |     |     |      | 170 |      |       |      |    |             |
|           | cct c | cc    | caa | aag | gaa | ttc | tcc | atc | cca | cgg | gcc | cac  | gct | tgg  | ccg   | agc  |    | 578         |
| 10        | Pro P | Pro   | Gln | Lys | Glu | Phe | Ser | Ile | Pro | Arg | Ala | His  | Ala | Trp  | Pro   | Ser  |    |             |
|           | 1     | 175   |     |     |     |     | 180 |     |     |     |     | 185  |     |      |       |      |    |             |
|           | cct t |       |     |     |     |     |     |     |     |     |     |      | taa | ctct | gtc ( | ctga | ag | 630         |
|           | Pro 1 | ŗyr   | Lys | Asp | Tyr | Glu | Val | Lys | Lys | Glu | Gly | Ser  |     |      |       |      |    |             |
|           | 190   |       |     |     |     | 195 |     |     |     |     | 200 |      |     |      |       |      |    |             |
| 15        | agtg  |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 690         |
|           | tette |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 750         |
|           | cctca |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 810         |
|           | aggc  |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 870         |
|           | gtete |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 930         |
| 20        | tgete | _     |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 990<br>1050 |
|           | cctg  | -     |     | -   |     |     |     |     |     |     |     |      |     |      |       |      |    | 1110        |
|           | CCAC  | _     |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 1170        |
|           | tcat  |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 1230        |
| 0.5       | gttt  |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 1290        |
| <b>25</b> | ctct  |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 1350        |
|           | ccaa  |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 1410        |
|           | agtg  |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 1470        |
|           | cttc  |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 1530        |
| 20        | gcca  | -     |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 1590        |
| 30        | gtac  |       |     |     |     |     |     |     |     |     |     |      |     |      |       |      |    | 1650        |
|           | tetg  |       |     | _   |     |     | -   |     |     |     |     |      |     |      |       |      |    | 1710        |
|           | uuda  | uau   |     |     |     |     |     | ,   |     |     | ,   | _ ~~ |     |      |       | - 22 |    |             |

|    | cactettt                                                        | 1718 |
|----|-----------------------------------------------------------------|------|
|    | <210> 38                                                        |      |
|    | <211> 201                                                       |      |
| 5  | <212> PRT                                                       |      |
|    | <213> Homo sapiens                                              |      |
|    | <400> 38                                                        |      |
|    | Met Asn Arg Thr Asn Val Asn Val Phe Ser Glu Leu Ser             |      |
| 10 | 1 5 10                                                          |      |
|    | Ala Pro Arg Arg Asn Glu Asp Phe Val Leu Leu Leu Thr Tyr Val Leu |      |
|    | 15 20 25                                                        |      |
|    | Phe Leu Met Ala Leu Thr Phe Leu Met Ser Ser Phe Thr Phe Cys Gly |      |
|    | 30 35 40 45                                                     |      |
| 15 | Ser Phe Thr Gly Trp Lys Arg His Gly Ala His Ile Tyr Leu Thr Met |      |
|    | 50 55 60                                                        |      |
|    | Leu Leu Ser Ile Ala Ile Trp Val Ala Trp Ile Thr Leu Leu Met Leu |      |
|    | 65 70 <del>7</del> 5                                            |      |
|    | Pro Asp Phe Asp Arg Arg Trp Asp Asp Thr Ile Leu Ser Ser Ala Leu |      |
| 20 | 80 85 90                                                        |      |
|    | Ala Ala Asn Gly Trp Val Phe Leu Leu Ala Tyr Val Ser Pro Glu Phe |      |
|    | 95 100 105                                                      |      |
|    | Trp Leu Leu Thr Lys Gln Arg Asn Pro Met Asp Tyr Pro Val Glu Asp |      |
|    | 110 115 120 125                                                 |      |
| 25 | Ala Phe Cys Lys Pro Gln Leu Val Lys Lys Ser Tyr Gly Val Glu Asn |      |
|    | 130 135 140                                                     |      |
|    | Arg Ala Tyr Ser Gln Glu Glu Ile Thr Gln Gly Phe Glu Glu Thr Gly |      |
|    | 145 150 155                                                     |      |
|    | Asp Thr Leu Tyr Ala Pro Tyr Ser Thr His Phe Gln Leu Gln Asn Gln |      |
| 30 | 160 165 170                                                     |      |
|    | Pro Pro Gln Lys Glu Phe Ser Ile Pro Arg Ala His Ala Trp Pro Ser |      |
|    | 175 180 195                                                     |      |

WO 00/00506 PCT/JP99/03242

|    | Pro Ty | yr I  | lys i | Asp ' | Tyr  | Glu   | Val  | Lys        | Lys  | Glu  | Gly | Ser  |      |       |       |      |   |     |
|----|--------|-------|-------|-------|------|-------|------|------------|------|------|-----|------|------|-------|-------|------|---|-----|
|    | 190    |       |       |       |      | 195   |      |            |      |      | 200 |      |      |       |       |      |   |     |
|    |        |       |       |       |      |       |      |            |      |      |     |      |      |       |       |      |   |     |
|    | <210>  | 39    |       |       |      |       |      |            |      |      |     |      |      |       |       |      |   |     |
| 5  | <211>  | 995   | 5     |       |      |       |      |            |      |      |     |      |      |       |       |      |   |     |
|    | <212>  | DNZ   | A     |       |      |       |      |            |      |      |     |      |      |       |       |      |   |     |
|    | <213>  | Hon   | no s  | apie  | ns   |       |      |            |      |      |     |      |      |       |       |      |   |     |
|    |        |       |       |       |      |       |      |            |      |      |     |      |      |       |       |      |   |     |
|    | <400>  | 39    |       |       |      |       |      |            |      |      |     |      |      |       |       |      |   |     |
| 10 | agagc  | tgg   | et g  | cgcc  | gago | :c cc | ctgo | gege       | tgo  | acat | ggg | gege | ctga | icg g | gaago | ggcg | ġ | 60  |
|    | cagcg  | ggca  | ag c  | ggct  | ctcg | id do | tgca | igget      | ggg  | cago | gtc | ccct | ccce | icg o | etect | geeg | C | 120 |
|    | tgtct  | CCC   | ac g  | rtccc | ccag | g to  | gege | ggcca      | a cc | atg  | gcg | tcc  | agc  | gac.  | gag   | gac  | • | 173 |
|    |        |       |       |       |      |       |      |            |      | Met  | Ala | Ser  | Ser  | Asp   | Glu   | Asp  |   |     |
|    |        |       |       |       |      |       |      |            |      | 1    |     |      |      | 5     |       |      |   |     |
| 15 | ggc a  | icc i | aac   | ggc   | ggc  | gcc   | tcg  | gag        | gcc  | ggc  | gag | gac  | cgg  | gag   | gct   | CCC  |   | 221 |
|    | Gly T  | hr i  | Asn   | Gly   | Gly  | Ala   | Ser  | Glu        | Ala  | Gly  | Glu | Asp  | Arg  | Glu   | Ala   | Pro  |   |     |
|    |        |       | 10    |       |      |       |      | 15         |      |      |     |      | 20   |       |       |      |   |     |
|    | ggc a  | ag    | cgg   | agg   | cgc  | ctg   | ggg  | ttc        | ttg  | gcc  | acc | gcc  | tgg  | ctc   | acc   | ttc  |   | 269 |
|    | Gly I  | ys .  | Arg   | Arg   | Arg  | Leu   | Gly  | Phe        | Leu  | Ala  | Thr | Ala  | Trp  | Leu   | Thr   | Phe  |   |     |
| 20 |        | 25    |       |       |      |       | 30   |            |      |      |     | 35   |      |       |       |      |   |     |
|    | tac g  | jac   | atc   | gcc   | atg  | acc   | gcg  | <b>999</b> | tgg  | ttg  | gtt | cta  | gct  | att   | gcc   | atg  |   | 317 |
|    | Tyr A  | Asp   | Ile   | Ala   | Met  | Thr   | Ala  | Gly        | Trp  | Leu  | Val | Leu  | Ala  | Ile   | Ala   | Met  |   |     |
|    | 40     |       |       |       |      | 45    |      |            |      |      | 50  |      |      |       |       | 55   |   |     |
|    | gta c  | egt   | ttt   | tat   | atg  | gaa   | aaa  | gga        | aca  | cac  | aga | ggt  | tta  | tat   | aaa   | agt  |   | 365 |
| 25 | Val A  | Arg   | Phe   | Tyr   | Met  | Glu   | Lys  | Gly        | Thr  | His  | Arg | Gly  | Leu  | Tyr   | Lys   | Ser  |   |     |
|    |        |       |       |       | 60   |       |      |            |      | 65   |     |      |      |       | 70    |      |   |     |
|    | att d  | cag   | aag   | aca   | ctt  | aaa   | ttt  | ttc        | cag  | aca  | ttt | gcc  | ttg  | ctt   | gag   | ata  |   | 413 |
|    | Ile (  | Gln   | Lys   | Thr   | Leu  | Lys   | Phe  | Phe        | Gln  | Thr  | Phe | Ala  | Leu  | Leu   | Glu   | Ile  |   |     |
|    |        |       |       | 75    |      |       |      |            | 80   |      |     |      |      | 85    |       |      |   |     |
| 30 | gtt    |       | _     |       |      |       |      |            |      |      |     |      |      |       |       |      |   | 461 |
|    | Val I  | His   | Cys   | Leu   | Ile  | Gly   | Ile  | Val        | Pro  | Thr  | Ser | Val  | Ile  | Val   | Thr   | Gly  |   |     |
|    |        |       | 90    |       |      |       |      | 95         | ,    |      |     |      | 100  |       |       |      |   |     |

|    | gto  | caa  | gtg   | agt  | tca  | aga   | atc   | ttt  | atg   | gtg  | tgg | ctc   | att | act  | cac   | agt   | 509 |
|----|------|------|-------|------|------|-------|-------|------|-------|------|-----|-------|-----|------|-------|-------|-----|
|    | Val  | Gln  | Val   | Ser  | Ser  | Arg   | Ile   | Phe  | Met   | Val  | Trp | Leu   | Ile | Thr  | His   | Ser   |     |
|    |      | 105  |       |      |      |       | 110   |      |       |      |     | 115   |     |      |       |       |     |
|    | ata  | aaa  | cca   | atc  | cag  | aat   | gaa   | gag  | agt   | gtg  | gtg | ctt   | ttt | ctg  | gtc   | gcg   | 557 |
| 5  | Ile  | Lys  | Pro   | Ile  | Gln  | Asn   | Glu   | Glu  | Ser   | Val  | Val | Leu   | Phe | Leu  | Val   | Ala   |     |
|    | 120  |      |       |      |      | 125   |       |      |       |      | 130 |       |     |      |       | 135   |     |
|    | tgg  | act  | gtg   | aca  | gag  | atc   | act   | cgc  | tat   | tcc  | ttc | tac   | aca | ttc  | agc   | ctt   | 605 |
|    | Trp  | Thr  | Val   | Thr  | Glu  | Ile   | Thr   | Arg  | Tyr   | Ser  | Phe | Tyr   | Thr | Phe  | Ser   | Leu   |     |
|    |      |      |       |      | 140  |       |       |      |       | 145  |     |       |     |      | 150   |       |     |
| 10 | ctt  | gac  | cac   | ttg  | cca  | tac   | ttc   | att  | aaa   | tgg  | gcc | aga   | tat | aat  | ttt   | ttt   | 653 |
|    | Leu  | Asp  | His   | Leu  | Pro  | Tyr   | Phe   | Ile  | Lys   | Trp  | Ala | Arg   | Tyr | Asn  | Phe   | Phe   |     |
|    |      |      |       | 155  |      |       |       |      | 160   |      |     |       |     | 165  |       |       |     |
|    | atc  | atc  | tta   | tat  | cct  | gtt   | gga   | gtt  | gct   | ggt  | gaa | ctt   | ctt | aca  | ata   | tac   | 701 |
|    | Ile  | Ile  | Leu   | Tyr  | Pro  | Val   | Gly   | Val  | Ala   | Gly  | Glu | Leu   | Leu | Thr  | Ile   | Tyr   |     |
| 15 |      |      | 170   |      |      |       |       | 175  |       |      |     |       | 180 |      |       |       |     |
|    | gct  | gcc  | ttg   | ccg  | cat  | gtg   | aag   | aaa  | aca   | gga  | atg | ttt   | tca | ata  | aga   | ctt   | 749 |
|    | Ala  | Ala  | Leu   | Pro  | His  | Val   | Lys   | Lys  | Thr   | Gly  | Met | Phe   | Ser | Ile  | Arg   | Leu   |     |
|    |      | 185  |       |      |      |       | 190   |      |       |      |     | 195   |     |      |       |       |     |
|    | cct  | aac  | aaa   | tac  | aat  | gtc   | tct   | ttt  | gac   | tac  | tat | tat   | ttt | ctt  | ctt   | ata   | 797 |
| 20 | Pro  | Asn  | Lys   | Tyr  | Asn  | Val   | Ser   | Phe  | Asp   | Tyr  | Tyr | Tyr   | Phe | Leu  | Leu   | Ile   |     |
|    | 200  |      |       |      |      | 205   |       |      |       |      | 210 |       |     |      |       | 215   |     |
|    | acc  | atg  | gca   | tca  | tat  | ata   | cct   | ttg  | ttt   | cca  | caa | ctc   | tat | ttt  | cat   | atg   | 845 |
|    | Thr  | Met  | Ala   | Ser  | Tyr  | Ile   | Pro   | Leu  | Phe   | Pro  | Gln | Leu   | Tyr | Phe  | His   | Met   |     |
|    |      |      |       |      | 220  |       |       |      |       | 225  |     |       |     |      | 230   |       |     |
| 25 | tta  | cgt  | caa   | aga  | aga  | aag   | gtg   | ctt  | cat   | gga  | gag | gtg   | att | gta  | gaa   | aag   | 893 |
|    | Leu  | Arg  | Gln   | Arg  | Arg  | Lys   | Val   | Leu  | His   | Gly  | Glu | Val   | Ile | Val  | Glu   | Lys   |     |
|    |      |      |       | 235  |      |       |       |      | 240   |      |     |       |     | 245  |       |       |     |
|    | gat  | gat  | taaa  | tgat | ct c | etgea | aaca  | aa g | gtgct | tttt | CCE | ıgaat | aac | caag | gatta | acc t | 950 |
|    | qeA  | Asp  |       |      |      |       |       |      |       |      |     |       |     |      |       |       |     |
| 30 |      |      |       |      |      |       |       |      |       |      |     |       |     |      |       |       |     |
|    | gagt | ccaa | igt t | ttaa | taac | a ag  | raata | aaca | act   | ttgt | gaa | atat  | .c  |      |       |       | 995 |

<210> 40 <211> 249 <212> PRT <213> Homo sapiens <400> 40 Met Ala Ser Ser Asp Glu Asp Gly Thr Asn Gly Gly Ala Ser Glu Ala Gly Glu Asp Arg Glu Ala Pro Gly Lys Arg Arg Arg Leu Gly Phe Leu Ala Thr Ala Trp Leu Thr Phe Tyr Asp Ile Ala Met Thr Ala Gly Trp Leu Val Leu Ala Ile Ala Met Val Arg Phe Tyr Met Glu Lys Gly Thr His Arg Gly Leu Tyr Lys Ser Ile Gln Lys Thr Leu Lys Phe Phe Gln Thr Phe Ala Leu Leu Glu Ile Val His Cys Leu Ile Gly Ile Val Pro Thr Ser Val Ile Val Thr Gly Val Gln Val Ser Ser Arg Ile Phe Met Val Trp Leu Ile Thr His Ser Ile Lys Pro Ile Gln Asn Glu Glu Ser Val Val Leu Phe Leu Val Ala Trp Thr Val Thr Glu Ile Thr Arg Tyr Ser Phe Tyr Thr Phe Ser Leu Leu Asp His Leu Pro Tyr Phe Ile Lys Trp Ala Arg Tyr Asn Phe Phe Ile Ile Leu Tyr Pro Val Gly Val Ala Gly Glu Leu Leu Thr Ile Tyr Ala Ala Leu Pro His Val Lys Lys Thr Gly Met Phe Ser Ile Arg Leu 

WO 00/00506 PCT/JP99/03242

45/45

#### **PCT**

## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



| (51) International Patent Classification <sup>6</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             | (11) International Publication Number:                                                     | WO 00/00506               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------|
| C12N 15/12, C07K 14/705, C12N 5/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A3                                                          | (43) International Publication Date:                                                       | 6 January 2000 (06.01.00) |
| (21) International Application Number: PCT/JPS (22) International Filing Date: 18 June 1999 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             | (AT, BE, CH, CY, DE, DK, ES,                                                               |                           |
| (30) Priority Data:<br>10/180008 26 June 1998 (26.06.98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | Published With international search report.                                                |                           |
| <ul> <li>(71) Applicants (for all designated States except US): S CHEMICAL RESEARCH CENTER [JP/JP Nishi-Ohnuma 4-chome, Sagamihara-shi, K 229-0012 (JP). PROTEGENE INC. [JP/JP]; Naka-cho., Meguro-ku, Tokyo 153-0065 (JP).</li> <li>(72) Inventors; and</li> <li>(75) Inventors/Applicants (for US only): KATO, Seishi 3-46-50, Wakamatsu, Sagamihara-shi, K 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302, Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa 2 (JP).</li> <li>(74) Agents: AOYAMA, Tamotsu et al.; Aoyama &amp; IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Os Osaka 540-0001 (JP).</li> </ul> | ]; 4—anagav<br>2–20—<br>[JP/JF<br>anagav<br>4–1–2<br>14–003 |                                                                                            | 20 April 2000 (20.04.00   |
| (54) Title: HUMAN PROTEINS HAVING HYDROPHOI (57) Abstract  A human protein having a hydrophobic domain and c 10, a cDNA coding for said protein, and an expression vec The protein can be provided by expression of the cDNA co                                                                                                                                                                                                                                                                                                                                                                          | compris                                                     | ng any of the amino acid sequences represente prising the cDNA as well as an eucaryotic co | ed by Sequence Nos. 1 to  |

#### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL AM AT AU AZ BA BB BE BF BG BJ BR CA CF CG CH CI CM CN CN CZ DE | Albania Armenia Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany | ES FI FR GA GB GE GN GR HU IE IL IS IT JP KE KG KP  KR LC LI | Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iccland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein | LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD | Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan | SI SK SN SZ TD TG TJ TM TR TT UA UG US VN YU ZW | Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda Unined States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CZ                                                                | -                                                                                                                                                                                                                                          |                                                              |                                                                                                                                                                                                                               |                                                                   |                                                                                                                                                                                                                                                  |                                                 |                                                                                                                                                                                  |

Internal I Application No PCT/JP 99/03242

A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C12N15/12 C07K14/705 C12N5/10 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ° Citation of document, with indication, where appropriate, of the relevant passages WO 98 21328 A (KATO SEISHI ; PROTEGENE INC 1-6 Χ (JP); SEKINE SHINGO (JP); SAGAMI CHEM R) 22 May 1998 see abstract see page 17, last paragraph - page 18, paragraph 1 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Χ Special categories of cited documents : T later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention \*E\* earlier document but published on or after the international \*X\* document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means \*P\* document published prior to the international filing date but later than the priority date claimed \*&\* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18. 02 2000 20 October 1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Lejeune, R Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

Intern al Application No
PCT/JP 99/03242

|           | ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                            | Relevant to claim No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| ategory ° | Citation of document, with indication, where appropriate                                                                                                                                                                                                                                                                  |                       |
| <         | DATABASE EMBL Accession Number N94214, 19 April 1996 HILLIER L ET AL: "za27c03.r1 Homo sapiens cDNA clone 293764 5' similar to PIR:A54313 androgen-regulated protein FAR-17 - golden hamster" XP002119529 cited in the application 97.8% identity in 357 BP overlap with SEQ ID 11 see page 17, last paragraph - page 18, | 1-6                   |
| Ą         | paragraph 1 DIANDER ET AL: "Molecular Cloning of                                                                                                                                                                                                                                                                          | 1-6                   |
|           | NKB1. A Natural Killer Cell Receptor for HLA -B Allotypes" JOURNAL OF IMMUNOLOGY, vol. 155, no. 5, 1 September 1995, pages 2306-2310 2310, XP002111500 see abstract paragraph 1 see page 2307, right-hand column, line 16 - paragraph 1                                                                                   |                       |
| A         | GILLEN C M ET AL: "Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human."  JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 271, no. 27, 5 July 1996, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD., US, pages 16237-16244, XP002119528 see abstract paragraph 1             | 1-6                   |
| А         | KYTE J ET AL: "A SIMPLE METHOD FOR DISPLAYING THE HYDROPATHIC CHARACTER OF A PROTEIN"  JOURNAL OF MOLECULAR BIOLOGY, vol. 157, no. 1, 5 May 1982, pages 105-132, XP000609692 cited in the application see the whole document paragraph 1                                                                                  | 1-6                   |
| P,X       | DATABASE EMBL Accession Number AF151861, 1 June 1999 LIN C W: "Homo sapiens CGI-103 protein mRNA, complete cds." XP002119530 99.4% identity in 699 BP overlap with SEQ ID 11 see the whole document paragraph 1                                                                                                           | 1-6                   |
|           | -/                                                                                                                                                                                                                                                                                                                        |                       |

Interns at Application No
PCT/JP 99/03242

| Category* Catalon of document, with indication, where appropriate, of the relevant beasages  T DATABASE EMBL Accession Number AF153605, 30 June 1999 KIM M K ET At: "Homo sapiens androgen induced protein (AIG-1) mRNA, complete cds." XP002119531 99.7% identity in 714 BP overlap with SEQ ID No 11 See the whole document paragraph 1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T DATABASE EMBL Accession Number AF153605, 30 June 1999 KIM M K ET AL: "Homo sapiens androgen induced protein (AIG-1) mRNA, complete cds." XP002119531 99.7% identity in 714 BP overlap with SEQ ID NO 11                                                                                                                                 |
| Accession Number AF153605, 30 June 1999 KIM M K ET AL: "Homo sapiens androgen induced protein (AIG-1) mRNA, complete cds." XP002119531 99.7% identity in 714 BP overlap with SEQ ID NO 11                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                           |

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

tei .ional application No. PCT/JP 99/03242

| Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                                                             |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                                                            |  |  |  |  |
| This International Search Report has not been established in 1999                                                                                                                                                                                                   |  |  |  |  |
| Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                                                           |  |  |  |  |
| Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:                                          |  |  |  |  |
| Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                                                                |  |  |  |  |
| Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                                                     |  |  |  |  |
| This International Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                                     |  |  |  |  |
| see additional sheet                                                                                                                                                                                                                                                |  |  |  |  |
| As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.                                                                                                                            |  |  |  |  |
| 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                                                             |  |  |  |  |
| 3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:                                                             |  |  |  |  |
| No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:  1-6 (partially), see additional sheet, subject 1. |  |  |  |  |
| Remark on Protest  The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.                                                                                                           |  |  |  |  |

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

#### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1-6 partially

A protein comprising the amino acid sequence SEQ ID NO 1, a DNA SEQ ID NO 11 or 21, encoding this protein, as well as an expression vector capable of expressing this sequence and a eukaryotic cell expressing the DNA

2. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 2 and DNA SEQ ID 12 and 23  $\,$ 

3. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 3 and DNA SEQ ID 13 and 25  $\,$ 

4. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 4 and DNA SEQ ID 14 and 27  $\,$ 

5. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 5 and DNA SEQ ID 15 and 29

6. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 6 and DNA SEQ ID 16 and 31

7. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 7 and DNA SEQ ID 17 and 33  $\,$ 

8. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 8 and DNA SEO ID 18 and 35  $\,$ 

9. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 9 and DNA SEQ ID 19 and 37

# FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

10. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 10 and DNA SEQ ID 20 and 39  $\,$ 

page 2 of 2

li.... mation on patent family members

Interna al Application No
PCT/JP 99/03242

| Patent document cited in search report | Publication date | Patent family<br>member(s)   | Publication<br>date      |
|----------------------------------------|------------------|------------------------------|--------------------------|
| WO 9821328 A                           | 22-05-1998       | AU 4885297 A<br>EP 0941320 A | 03-06-1998<br>15-09-1999 |

Form PCT/ISA/210 (patent family annex) (July 1992)

