DIIT Departamento de Ingenieria in vestigaciones Tecnológica:

Cuerpo rígido | Distribuciones continuas de masa

1. Cubo con arista b [Marion (e) ex. 11-3]

- a) Calcule el tensor de inercia desde el sistema de ejes x_i con origen en el centro de masa O.
- b) Use la forma general del teorema de ejes paralelos de Steiner para calcularlo en el sistema X_i con origen en el vértice Q

2. Planchuela calada

En una planchuela de densidad homogénea se calaron dos aberturas en forma simétrica. Suspendida desde el punto A pendulea en el plano x, y. Por eso es relevante conocer su momento de inercia I_{zz} desde ese punto. Cuente con los datos disponibles en un taller: espesor e del material, dimensiones del plano y una m de pesada. Se sugiere seguir esta secuencia:

- a) Calcular la densidad del metal de la planchuela contemplando el área faltante por los calados.
- b) Idém. I_{zz} de uno de los calados circulares como si fuera de este metal.
- c) ídem. I_{zz} de una planchuela sin calado desde su centro de masa.
- d) Trasladar con el teorema de Steiner los I_{zz} de ambos calados circulares al centro de la planchuela.
- e) Restando al I_{zz} de la planchuela sin calado el de los círculos obtenga el de la planchuela calada.
- f) Nuevamente con Steiner traslade el I_{zz} de la planchuela calada al punto de penduleo A.

Resultado:
$$I_{zz} = \frac{m\left(-12\pi R^4 - 6\pi R^2 a^2 - 24\pi R^2 d^2 + 4a^3b + ab^3\right)}{12(-2\pi R^2 + ab)}$$

3. Cilindro rodando en semi-cilindro [Landau §32 6]

Hallar la energía cinética de un cilindro homogéneo de radio a que rueda en el interior de una superficie cilíndrica de radio R.

Resultado: $T = \frac{3m(R-a)^2\dot{\phi}^2}{4}$

4. Cono circular de altura h ${\bf y}$ radio de la base R $[{\rm Landau}~\S32~2e]$

- a) Calcule la posición del centro de masa O desde el vértice O'. Recuerde elegir límites de integración en función de la geometría. Resultado: $|\overline{OO'}| = \frac{3}{4}h$.
- b) Calcule los momentos de inercia desde O'.

Resultado: $I_{x_3'x_3'} = \frac{3}{10}mR^2$ $I_{x_1'x_1'} = I_{x_2'x_2'} = \frac{3m(R^2 + 4h^2)}{20}$

Mecánica Analítica Computacional

- 5. Cono rodante sobre un plano [Landau §32 7] El contacto instantáneo con el plano XY, \overline{OA} , forma los ángulo de θ con X y α con el eje del cono. El otro dato conocido es la distancia hasta el cento de masa a.
 - a) Asumiendo conocidos los momentos de inercia desde el vértice en la dirección del eje I_3 y en las perpendiculares $I_1=I_2$, calcule la energía cinética. Resultado: $T=\frac{1}{2}\cos^2(\alpha)I_1\dot{\theta}^2+\frac{1}{2}\frac{\cos^4(\alpha)}{\sin^2(\alpha)}I_3\dot{\theta}^2+\frac{1}{2}\cos^2(\alpha)ma^2\dot{\theta}^2$
 - b) Exprese en la energía cinética a $I_{1,2,3}$, α y a en función del radio de la base del cono R y su altura h.

