מועד קיץ

סוג הבחינה: בגרות

מועד הבחינה: קיץ תשפ"א, 2021

מספר השאלון: 035581

נספח: דפי נוסחאות ל־5 יחידות לימוד

שים לב: בבחינה זו יש הנחיות מיוחדות.

יש לענות על השאלות על פי הנחיות אלה.

מתמטיקה ז יחידות לימוד – שאלון ראשון 5

הוראות לנבחן

- א. משך הבחינה: שלוש שעות וחצי.
- ב. מבנה השאלון ומפתח ההערכה: בשאלון זה שלושה פרקים, ובהם שמונה שאלות.

פרק ראשון – אלגברה והסתברות

פרק שני – גאומטריה וטריגונומטריה במישור

פרק שלישי – חשבון דיפרנציאלי ואינטגרלי של פולינומים, של פונקציות שורש,

של פונקציות רציונליות ושל פונקציות טריגונומטריות

עליך לענות על ארבע שאלות לבחירתך -25×4 נקודות.

ג. חומר עזר מותר בשימוש:

- (1) מחשבון לא גרפי. אין להשתמש באפשרויות התכנות במחשבון שיש בו אפשרות תכנות. שימוש במחשבון גרפי או באפשרויות התכנות במחשבון עלול לגרום לפסילת הבחינה.
 - (2) דפי נוסחאות (מצורפים).

ד. הוראות מיוחדות:

- (1) אל תעתיק את השאלה; סמן את מספרה בלבד.
- (2) התחל כל שאלה בעמוד חדש. רשום במחברת את שלבי הפתרון, <u>גם</u> כאשר החישובים מתבצעים בעזרת מחשבון. הסבר את <u>כל</u> פעולותיך, כולל חישובים, בפירוט ובצורה ברורה ומסודרת. חוסר פירוט עלול לגרום לפגיעה בציון או לפסילת הבחינה.

כתוב <u>במחברת הבחינה בלבד</u>. רשוֹם "טיוטה" בראש כל עמוד המשמש טיוטה. כתיבת טיוטה בדפים שאינם במחברת הבחינה עלולה לגרום לפסילת הבחינה.

ההנחיות בשאלון זה מנוסחות בלשון זכר ומכוונות לנבחנות ולנבחנים כאחד.

בהצלחה!

השאלות

שים לב: הסבר את <u>כל</u> פעולותיך, כולל חישובים, בפירוט ובצורה ברורה. חוסר פירוט עלול לגרום לפגיעה בציון או לפסילת הבחינה.

ענה על ארבע מן השאלות 8-1 (לכל שאלה — 25 נקודות).

שים לב: אם תענה על יותר מארבע שאלות, ייבדקו רק ארבע התשובות הראשונות שבמחברתך.

פרק ראשון — אלגברה והסתברות

.1 בבית מלון יש שתי מעליות, מעלית א ומעלית ב.

שתי המעליות התחילו לעלות מקומת הקרקע (גובה 0) באותו זמן.

מעלית א עצרה בדרכה עצירת ביניים שנמשכה 14 שניות, ולאחר מכן המשיכה לעלות עד שהגיעה לקומה שגובהה

33 מטרים. מעלית ב עצרה בדרכה עצירת ביניים שנמשכה 7 שניות, ולאחר מכן המשיכה לעלות עד שהגיעה לקומה שגובהה 81 מטרים.

מעלית א הגיעה לקומה שגובהה 33 מטרים בדיוק באותו זמן שבו הגיעה מעלית ב לקומה שגובהה 81 מטרים.

לאחר מכן, התחילו שתי המעליות לרדת בדיוק באותו זמן.

מעלית א ירדה 15 מטרים, ובדרכה עצרה עצירת ביניים, שנמשכה 9 שניות.

בזמן שירדה מעלית א, ירדה מעלית ב 63 מטרים ברציפות, ללא עצירות ביניים.

ידוע כי המהירות של כל אחת מן המעליות בעלִייה שווה למהירות של כל אחת מהן בירידה. כמו כן ידוע כי המעליות נעות במהירויות קבועות.

א. חשב את המהירות של כל אחת משתי המעליות.

מעלית א הייתה בקומת הקרקע של בית המלון, ואילו מעלית ב הייתה בקומה הנמצאת <u>מעל</u> קומה שגובהה 42 מטרים. שתי המעליות התחילו לנוע באותו זמן לכיוון הקומה שגובהה 42 מטרים.

מעלית א עלתה לקומה זו מקומת הקרקע ללא עצירות ביניים.

מעלית ב ירדה לקומה זו מן הקומה שבה היא הייתה ובדרכה עצרה עצירת ביניים אחת, שנמשכה $\,6\,$ שניות.

שתי המעליות הגיעו לקומה שגובהה 42 מטרים בדיוק באותו זמן.

 \mathbf{z} . האם מעלית ב הייתה בקומה העליונה של בית המלון כאשר היא התחילה לרדת? נמק את תשובתר.

טבעי, הוא: n טבעי, הוא: מתונה סדרה a_n שסכום a_n

. הם פרמטרים
$$k > 0$$
 , $p > 0$. $S_n = k \cdot n^2 - p \cdot n$

- . $n \geq 2$ ו־ k , p ור k , p בעבור הכללי של הסדרה הבע את האיבר הכללי הבע את האיבר הכללי המדרה באמצעות
- . טבעי. הסבר מדוע n נכונה בעבור כל n טבעי. הסבר מדוע (1) נכונה בעבור כל
- k הוכח כי הסדרה היא סדרה חשבונית והבע את d החברה היא סדרה היא סדרה הוכח (3)

. c_n רו b_n ויכחות שתי סדרות הנדסיות

. ($a_{n}\,$ שווה הסדרה הסדרה (הפרש ל- dל שווה שווה ל

. $\frac{2}{d}$ - היא שווה ל- מילה שהמנה הנדסית אינסופית היא היא כ c_{n}

,
$$a_1 = b_1 = c_1$$
 :נתון

$$p = 4.5$$
, $k = 1.5$

. הסבר מדוע הסדרה $\mathbf{c}_{\mathbf{n}}$ היא סדרה מתכנסת

. $40\frac{1}{3}$ הוא c_n האינסופית הסדרה האינסום לאברי הסדרה האינסופית של הסדרה האינסופית האינסופית מתון כי היחס היו

- .m חשב את
- . האם הסדרה (מק את תשובתך נמק או סדרה או סדרה עולה, סדרה עולה, סדרה עולה (האם הסדרה כ \mathbf{c}_{n}
 - .3 בבית ספר תיכון גדול מאוד, מספר התלמידים גדול פי 9 ממספר המורים.

בבית הספר נערך סקר שהשתתפו בו כל המורים והתלמידים בבית הספר, והם בלבד.

המשתתפים בסקר נשאלו אם הם נבדקו לגילוי קורונה.

נמצא כי 80% מן המורים בבית הספר נבדקו לגילוי קורונה.

. כמו כן נמצא כי $\frac{13}{15}$ מכלל המשתתפים בסקר (מורים ותלמידים), שנבדקו לגילוי קורונה, היו תלמידים.

א. מהי ההסתברות שמבין כלל המשתתפים בסקר ייבחר באקראי תלמיד שלא נבדק לגילוי קורונה?
 בחרו באקראי בזה אחר זה 5 משתתפים מבין כלל משתתפי הסקר.

- מהי ההסתברות שלפחות 4 מהם נבדקו לגילוי קורונה?
- **ג.** ידוע כי מבין החמישה שנבחרו, לפחות משתתף אחד נבדק לגילוי קורונה.

מהי ההסתברות שלפחות 4 מן המשתתפים שנבחרו נבדקו לגילוי קורונה?

ידוע כי מבין החמישה שנבחרו, בדיוק 2 נבדקו לגילוי קורונה.

מהי ההסתברות שהאחרון שנבחר נבדק לגילוי קורונה?

• ()

פרק שני — גאומטריה וטריגונומטריה במישור

הנקודה O היא מרכז המעגל השמאלי.

מעבירים בנקודה A משיק משותף לשני המעגלים.

. ו־ C הן נקודות ההשקה של ישר נוסף שמשיק לשני המעגלים. שני המשיקים נחתכים בנקודה M .

- א. הוכח כי הזווית BAC ישרה.
- $4 \cdot AM^2 = AC^2 + AB^2$ הוכח כי

.
$$AB = 8$$
 , $AC = 6$ נתון:

- .O חשב את רדיוס המעגל שמרכזו הוא בנקודה
 - $. \, rac{S_{\Delta \, {
 m OBM}}}{S_{\Delta \, {
 m AMC}}}$ חשב את יחס השטחים **.7**

. A חותך את סC חותך את חותך BD המשך

. M הקטע בנקודה BC והמיתר OD הקטע

. AB מאונך ל־ CE הקטע

. \triangleleft ABC = α :נסמן

- . OBDC את המרובע (1)
- . MDEC את המרובע **(2)**

. MDEC הוא קוטר המעגל החוסם את המרובע d $_{\rm 2}$

. AOD הוא המשולש את החוסם המעגל החוסם $\,\mathrm{d}_3$

. d_3 את d_2 את , d_1 את R ו־ α ואת באמצעות .

. $\frac{\mathrm{d}_2}{\mathrm{d}_1} = \frac{\mathrm{d}_1}{\mathrm{d}_3}$:מצא את הערך של מ α שבעבורו מתקיים מצא ...

C

M

У≬

פרק שלישי – חשבון דיפרנציאלי ואינטגרלי של פולינומים, של פונקציות שורש, של פונקציות רציונליות ושל פונקציות טריגונומטריות

.
$$f(x) = \frac{x}{(x^2 - 2)^2}$$
 , $g(x) = \frac{x}{(x^2 - 2)^3}$.6

- f(x) ו־ f(x) בעבור כל אחת משתי הפונקציות (4)-(1) ענה על תת־סעיפים
 - (1) מצא את תחום ההגדרה של הפונקציה.
 - מצא את משוואות האסימפטוטות של הפונקציה המאונכות לצירים.
 - הראה כי אין לפונקציה נקודות קיצון. (3)
 - (4) הוכח כי הפונקציה אי־זוגית.

. סרטט סקיצה של גרף הפונקציה האחרת.

- ור החום, מוגדרות באותו תחום, h(x) ו־ f(x)
- ? h(x) מה הם תחומי העלייה והירידה של

 - . נמק את תשובתך. $\int_{-1}^{1} f(x) dx$ (1)
- x = 1, x = -1 השטח הכלוא בין גרף הפונקציה (f(x), ציר ה־ , f(x) השטח הכלוא בין גרף הפונקציה (2)

נתונה הפונקציה $b \neq 0$. k(x) = f(x) + b הוא פרמטר.

האם הפונקציה (k(x) זוגית, אי־זוגית או לא זוגית ולא אי־זוגית? נמק את תשובתך.

. מרונה הפונקציה: a>0 . $f(x)=\frac{\sqrt{3x^2-4a}}{x^3}$: הוא פרמטר.

בסעיפים א-ה, בטא את תשובותיך באמצעות a לפי הצורך.

- f(x) מהו תחום ההגדרה של הפונקציה מהו מהו
 - ב. הוכח שהפונקציה f(x) אי־זוגית.
- עם הצירים? עם הצירים (ו) מה הם שיעורי נקודות החיתוך של גרף הפונקציה (ב) מה הם שיעורי נקודות החיתוך של גרף הפונקציה
- , וקבע את סוגן, f(x) מצא את שיעורי נקודות הקיצון של הפונקציה (2)
 - f(x) סרטט סקיצה של גרף הפונקציה .au

. $g(x) = \frac{1}{f(x)}$ נתונה גם הפונקציה:

- g(x) מהו תחום ההגדרה של הפונקציה (1) מהו
- אם יש כאלה?, g(x) מה הן משוואות האסימפטוטות המאונכות לצירים של הפונקציה (2)

g(x) ולגרף של f(x), יש לגרף של הפונקציות ק(x) ו־ וארף של הפיצון הפנימיות ולגרף של הפונקציות משיק משותף.

- . פרט את שיקוליך. g(x) הוסף לסרטוט שבמחברתך סקיצה של גרף הפונקציה . פרט את שיקוליך.
 - מהו הערך של a? מק את תשובתך. (2)
 - .a אורך הצלע ABC אורך הוא **.8**

(ברדיאנים). $\sphericalangle BAC = \alpha$ נתון:

. (0 < x < π - α) \checkmark ABC = x נסמן:

- . ABC את היקף המשולש lpha ור lpha את היקף המשולש
- . הוא מקסימלי המשולש את ערך היxהי את ערך הוא הבע באמצעות α
- **ג.** הסבר מדוע מתקיים המשפט הזה: מכל המשולשים בעלי צלע נתונה וזווית מולה נתונה, המשולש בעל ההיקף המקסימלי הוא משולש שווה שוקיים.