# Lecture 4

Recall, Last time we introduced interpolation Polynomial

Given distinct points  $n_0, n_1, ..., n_n$ and function values  $f(x_0), f(x_1), ..., f(x_n)$ there exists a unique polynomial  $f_n(x)$  of degree  $\leq n$  such that  $f_n(x_i) = f(x_i)$  for i = 0, 1, ..., n.

2 forms to write Pn(x)

- 1) Lagranges form
- 2) Newton's divided différence form

### Lagrange' form

$$l_{k}(x) = \frac{1}{|x-x_{i}|} \frac{x-x_{i}}{\chi_{k}-\chi_{i}}$$

$$i=0$$

$$i \neq k$$

$$k=0,1,-,n$$

$$l_k(n_i) = 0$$
 for  $i \neq k$ 

$$P_n(x) = \sum_{k=0}^n f(x_k) \ell(x_k)$$

$$P_n(x_k) = f(x_k)$$
 for  $k=0,1,\ldots,n$ .

### Newton's divided difference form

 $P_{n}(x) = q_{0} + q_{1}(x-x_{0}) + q_{2}(x-x_{0})(x-x_{1})$   $+ q_{1}(x-x_{0})(x-x_{1}) - --(x-x_{n-1})$ 

(note any polynomial of degree < n can be written as above for switable a0,-, an)

 $P_{n-1}(x)$  polynomial which interpolates f(x) at  $\chi_{0,2-1}\chi_{n-1}$  (dy  $P_{n-1}(x) \leq n-p$ ,

 $P_{n}(x) = P_{n-1}(x) + f[x_{0,-}, x_{n}](x-x_{0}) - (x-x_{n-1})$ 

 $f[x_{0}, x_{n}] = \text{Coefficient of } x^{n} \text{ in } P_{n}(x)$ 

 $f(x_0, -, x_i) = a_i$  in x

$$P_{M}(x) = f[x_{0}] + f[x_{0}, x_{1}] (x - x_{0})$$

$$+ f[x_{0}, x_{1}, x_{2}] (x - x_{0}) (x - x_{1})$$

$$+ f[x_{0}, x_{1}] (x - x_{0}) (x - x_{1}) - (x - x_{1})$$

$$+ f[x_{0}, x_{1}] = f(x_{0})$$

$$+ f[x_{0}, x_{1}] = f(x_{0})$$

$$+ f[x_{0}, x_{1}] = f[x_{1}, x_{0}] - f[x_{0}, x_{1}]$$

$$+ f[x_{0}, x_{1}] = f[x_{1}, x_{1}] - f[x_{0}, x_{1}]$$

$$f[x_{n-1}, x_{k}] = f[x_{n-1}, x_{k}] - f[x_{n-1}, x_{k-1}]$$

$$\frac{\chi_{k} - \chi_{0}}{\chi_{k} - \chi_{0}}$$

Always remember  $p_{n}(x) = p_{n-1}(x) + f[x_0, x_1, x_n](x-x_0) - (x-x_n)$ i.e.,  $f[x_0, -, x_n] = coeff of x^n in <math>g_n(x)$ .

Example 2 
$$f(x) = \int_{0}^{x} \sin(t^{2}) dt$$
 $f(x) = \int_{0}^{x} \sin(t^{2}) dt$ 
 $f(x) = \int_{0}^{x} \cos(t^{2}) dt$ 
 $f(x) = \int_{0}^{x} \cos$ 

f(0.85) = 1.974 E-1

$$P_{3}(x) = P_{2}(x) + f[0.8,0.9,1.8,1.1](x-0.8)(x-0.9)(x-1)$$

$$P_{3}(0.85) = P_{2}(0.85) - 2.5 = 1 (0.05)(-0.05)$$

$$= 1-973 = -1$$

Remark: It is possible that interpolation error to increase if we increase number of pts  $e_n(x) = f(x) - P_n(x) \quad error$ It is possible that  $max \mid e_{n+1}(x) \mid > max \mid e_n(x) \mid$   $x \in [a,b]$ (See example 2-4 pg 44 of your text book

|   | The error of the interpolating                                                                          |
|---|---------------------------------------------------------------------------------------------------------|
|   | function.                                                                                               |
|   | •                                                                                                       |
|   | $N_0, \chi_1, \dots, \chi_n$ $n+1$ distinct pto $f(\chi_1), f(\chi_1), \dots, f(\chi_n)$ function value |
|   |                                                                                                         |
|   | f: [ab] → 1R.                                                                                           |
|   | Pn(n) = polyn which interpolates - (x) at No, Nx, -, Nx                                                 |
|   | at No, Ny, -, No                                                                                        |
| ( | Povol: $ln(x) = f(x) - ln(x)$                                                                           |
|   | Let i be distinct from 20, 22, -, 2n                                                                    |
|   |                                                                                                         |
|   | Need en(x).                                                                                             |
|   | Let Pn+1(x) be the polynomial which                                                                     |
|   | let Pn+1(x) be the polynomial which interpolates of at 26, 24, 2, 2m, 72 (n+2 pts)                      |
|   |                                                                                                         |
|   |                                                                                                         |

$$f_{n+1}(x) = f_n(x) + f(x_0, x_1, ..., x_n, x_1) \frac{\eta}{j=0} (x-x_1)$$

$$f(\bar{x}) = P_{n+1}(\bar{x})$$
 by def

So 
$$l_n(\bar{x}) = f(\bar{x}) - l_n(\bar{x})$$
  
=  $l_{n+1}(\bar{x}) - l_n(\bar{x})$ 

$$C_n(\hat{n}) = f[x_0, x_1, -, x_n, \bar{x}] | (\bar{x} - x_j)$$

$$j = 0$$

To estimate every we need to approximate 
$$f(x_0, x_k, -, x_n, \bar{x})$$
  
and  $\tilde{\pi}(\bar{x}-x_j)$ 

Theorem Let f(x) be a continuous function on [a, b] and k times differentiable in (a, b). If  $X_6, X_1, ---- X_k$  are k+1 distinct pts in [a, b], then there exists  $\xi \in (a, b)$  such that  $f(x_6, x_4, ---, x_k) = \frac{f(k)}{k!}$ 

Proof k=1  $f[x_0,x_1] = f(x_1) - f(x_0) = f(\xi)$   $x_1 - x_0 \quad \text{by MVT}$   $e_k(x) = f(x) - P_k(x)$   $\text{has at least } k+1 \text{ zeros'} (x_0,x_1,...,x_k)$  by Rolle's theorem  $e_k(x) \quad \text{has } k \text{ zeros'}$ 

$$e_{k}^{(k)}(x)$$
 has at least one zero in  $(a_{j})$ 

Let  $\xi$  be a zero of  $e_{k}^{(k)}(x)$ 
 $0 = e_{k}^{(k)}(\xi) = f(\xi) - p_{k}^{(k)}(\xi)$ 
 $p_{k}^{(k)}(\xi) = f(\xi) - p_{k}^{(k)}(\xi)$ 
 $p_{k}^{(k)}(\xi) = f(\xi) - p_{k}^{(k)}(\xi)$ 

So  $p_{k}^{(k)}(\xi) = f(\xi)$ 
 $f(\xi) = f(\xi)$ 

estimating n

$$Y_{n+1}(x) = \prod_{j=0}^{n} (x-x_j)$$

It is possible to choose 20,24,-,2, in [a, 6] such that

1 4nfx1 is as small as possible

This choice of pt are called Chebysher pts of [a,b]

(Unfortunately it is not in syllabus)

|     | Osculatory interpolation                                                                            |
|-----|-----------------------------------------------------------------------------------------------------|
| SY  | Sometime we have the following                                                                      |
|     | 3 17 vac s                                                                                          |
|     | we have $X_0, X_1, \dots, X_n$                                                                      |
|     | $f(x_0), f(x_1), \dots, f(x_n)$                                                                     |
|     | $f'(x_0), f'(x_1), -, f'(x_n)$                                                                      |
|     | We need a polynomial P(x) such<br>that                                                              |
| dep | $\frac{f(x_i)}{f(x_i)} = f(x_i)  i = 0, 1, -, n$ $\frac{f(x_i)}{f(x_i)} = f'(x_i)  i = 0, 1, -, n.$ |
|     | , M ~ I / '                                                                                         |
|     |                                                                                                     |

## Example where this happens

$$\frac{dy}{dx} = g(x,y)$$

$$x_0$$
  $y(x_0)$   $y'(x_0) = g(x_0, y_0)$   
 $x_1$   $y(x_1)$   $y'(x_1) = g(x_1, y_1)$   
 $x_2$   $y(x_2)$  find using some  
numerical method  
 $x_1$   $y(x_1)$   $y'(x_1) = g(x_1, y_1)$ 

So for  $y(\bar{z})$  we have 2n+2 data pts.

$$f[x_0, x_1] = f(x_1) - f(x_0)$$

$$x_1 - x_0$$

$$\lim_{x_1 \to x_0} f[x_0, x_1] = f'(x_0)$$

$$\frac{def''}{f[x_0,x_0]} = f'(x_0)$$

$$f(1) = 0$$
  $f(1) = 1$   
 $f(2) = 6.931$ 

ned cubic polynomial f'(2) = 0.5

such that
$$P_3(1) = f(1), \quad P_3'(1) = f(1P_3(x))$$

$$P_3(2) = f(2), \quad P_3'(2) = f'(2)$$

#### Solution

$$y_2 = y_3 = 2$$

$$f[y_1, y_2] = f(y_2) - f(1) = 0.6931$$

$$f[y_2,y_3] = f'(y_2) = 0.5$$

$$f[y_0,y_1,y_2] = f[y_1,y_2] - f[y_0,y_1] = -0.3069$$

$$f[y_1, y_2, y_3] = f[y_2, y_3] - f[y_1, y_2] = -0.1931$$

$$f[y_0,y_1,y_2,y_3] = f[y_0,y_2,y_3] - f[y_0,y_1,y_2]_ - 0-1137$$

```
93(x) = 0 + 1 (x-1) + (-0.3069) (x-1)2
                  + 0.1137 (x-1)2(x-2)
   n_0, n_1, - n_0

f(x_0), f(x_1), - \cdot f(x_n) f(x_0), f(x_0), - \cdot f(x_n)
Vou f[a,b] = f'(a) if b=a.
       f[yo,y,]
f[y1,y2]
        £ 5/2, 43
 f_{2n+1}^{(n)} = f[y_0] + f[y_0, y_1] (x-y_0)
         + f[y,y,y,] (x-4)/x-y,)+
          + f[yay,,y,,y3] (x-y0) (x-y,)(x-y)
          +- - + f[y,y,... y2n+2
                              ] // (x-y.)
```

