Ficha	TER170: Hibridación en modo paralelo de caldera/s de combustión con bomba de calor de accionamiento eléctrico en edificios no residenciales ubicados en la zona climática A3 o A4
Código	TER170
Versión	V1.0
Sector	Terciario

1. ÁMBITO DE APLICACIÓN

Hibridación en modo paralelo de una o varias calderas/s de combustión existente/s de una instalación térmica (calefacción y/o agua caliente sanitaria y piscina) de un edificio del sector terciario con bomba de calor de accionamiento eléctrico tipo aire-aire, aire-agua, salmuera-agua, agua-agua o combinadas.

Los edificios no residenciales del sector terciario (hoteles, restaurantes, hospitales, centros educativos, bibliotecas, centros culturales, oficinas, centros comerciales, etc.) estarán ubicados en la zona climática A3 o A4.

En esta ficha no es aplicable las bombas de calor cuyo compresor esté accionado térmicamente.

2. REQUISITOS

La instalación térmica debe disponer de depósito de inercia o acumulador para el suministro de ACS y/o calefacción y/o piscina.

Para poder asignar ahorros a cualquiera de los servicios previstos en las fórmulas del apartado 3, éste debe operar en funcionamiento bivalente paralelo¹.

¹ Es decir, la instalación hidráulica y el sistema de control deben haberse ejecutado especialmente para cada uno de los servicios para los que se consignen ahorros, buscando el aprovechamiento de los generadores con la máxima eficiencia para la/s bomba/s de calor, de tal modo que ésta/s trabaje/n de manera constante contra el punto más frío de la instalación y aportando la/s caldera/s sólo la energía necesaria para alcanzar la temperatura de consigna de impulsión, cuando sea requerida.

3. CÁLCULO DEL AHORRO DE ENERGÍA

2.1 En calefacción

El ahorro de energía se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la siguiente fórmula:

$$AE_C = \left(\frac{1}{n_i} - \frac{1}{SCOP}\right) \cdot D_C \cdot S \cdot F_P$$

Donde:

η_i Rendimiento de la caldera a hibridar según ficha técnica (tanto por referido² a PCS³ uno)

SCOP Coeficiente de rendimiento estacional⁴ de la bomba de calor en calefacción

Dc Demanda de energía en calefacción del edificio según kWh/año·m² certificado de eficiencia energética antes de la

actuación5

S Superficie útil habitable del edificio m²

F_p Factor de ponderación⁶ 1

AEc Ahorro anual de energía final en calefacción kWh/año

η_{i}	SCOP	Dc	S	F_p	AEc

2.2 En agua caliente sanitaria (ACS)

En ahorro de energía en ACS se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la siguiente fórmula:

$$AE_{ACS} = \left(\frac{1}{n_i} - \frac{1}{SCOP_{dhw}}\right) \cdot D_{ACS} \cdot F_P$$

 $^{^2}$ Para la conversión de PCI a PCS se usará la formula (PCS = PCI x F_{conv}). Para gas natural se utilizará el factor de conversión de F_{conv} = 1,106), para gasóleo (F_{conv} = 1,059) y para propano (F_{conv} = 1,086). Ver Tabla CB-01 Poderes caloríficos de los combustibles:

 $https://www.idae.es/uploads/documentos/documentos_11_Guia_tecnica_de_diseno_de_centrales_de_calor_eficientes_e\\ 53f312e.pdf$

³ O alternativamente el valor de la última inspección.

⁴ Utilizar el SCOP de la ficha ténica de la bomba de calor o alternativamente utilizar la metodología del Anexo II.

⁵ Demanda de proyecto o alternativamente el certificado de eficiencia energética del edificio.

⁶ Factor de ponderación para ajustar el valor de la demanda de energía estimado por métodos reconocidos al valor del consumo real de energía final.

Donde:

η_i Rendimiento de la caldera a hibridar según ficha técnica (tanto por referido⁷ a PCS⁸ uno)

SCOP_{dhw} Coeficiente de rendimiento estacional⁹ de la bomba de

calor en agua caliente sanitaria (ACS)

Dacs Demanda anual de energía térmica en agua caliente kWh/año

sanitaria (ACS) conforme al anexo F del DB HE1 CTE

F_p Factor de ponderación¹⁰

AEACS Ahorro anual de energía final en agua caliente sanitaria kWh/año

ACS

ηi	SCOP _{dhw}	Dacs	Fp	AEacs

2.3 En calentamiento de piscina (CAP)

El ahorro de energía en el calentamiento de agua de piscina se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la siguiente fórmula:

$$AE_{CAP} = \left(\frac{1}{\eta_{i}} - \frac{1}{SCOP_{pwh}}\right) \cdot D_{CAP} \cdot F_{P}$$

Donde:

η_i Rendimiento de la caldera a hibridar según ficha técnica(tanto por referido¹¹ a PCS uno)

SCOP_{pwh} Coeficiente de rendimiento estacional¹² de la bomba de

calor para el calentamiento de piscinas (CAP)

D_{CAP} Demanda anual de energía térmica para el kWh/año

⁷ Para la conversión de PCI a PCS se usará la formula (PCS = PCI x F_{conv}). Para gas natural se utilizará el factor de conversión de F_{conv} = 1,106), para gasóleo (F_{conv} = 1,059) y para propano (F_{conv} = 1,086). Ver Tabla CB-01 Poderes caloríficos de los combustibles:

 $https://www.idae.es/uploads/documentos/documentos_11_Guia_tecnica_de_diseno_de_centrales_de_calor_eficientes_e53f312e.pdf$

⁹ Ver Anexo II de condiciones generales para cálculo del coeficiente de eficiencia estacional sobre energía final, en lo relativo al calentamiento de ACS.

 $https://www.idae.es/uploads/documentos/documentos_11_Guia_tecnica_de_diseno_de_centrales_de_calor_eficientes_e\\ 53f312e.pdf$

⁸ O alternativamente el valor de la última inspección.

¹⁰ Factor de ponderación para ajustar el valor de la demanda de energía estimado por métodos reconocidos al valor del consumo real de energía final.

 $^{^{11}}$ Para la conversión de PCI a PCS se usará la fórmula (PCS = PCI x F_{conv}). Para gas natural se utilizará el factor de conversión de F_{conv} = 1,106), para gasóleo (F_{conv} = 1,059) y para propano (F_{conv} = 1,086). Ver Tabla CB-01 Poderes caloríficos de los combustibles:

¹² Ver Anexo III de condiciones generales para cálculo del coeficiente de eficiencia estacional en lo relativo al calentamiento de agua de piscinas (CAP).

calentamiento de agua de piscinas (CAP)¹³

F_P Factor de ponderación¹⁴

AE_{CAP} Ahorro anual de energía final en el calentamiento de kWh/año

agua caliente de piscina (CAP)

FP	ηi	SCOP _{pwh}	DCAP	AECAP

4. RESULTADO DEL CÁLCULO

1

El ahorro anual de energía total será la suma de los ahorros de energía final en calefacción, agua caliente sanitaria y/o calentamiento de piscina. Los ahorros del servicio que no sea hibridado no deberán figurar en la fórmula:

$$AE_{TOTAL} = (AE_C + AE_{ACS} + AE_{CAP}) \cdot C_b$$

AEc	Ahorro anual de energía final en calefacción por sustitución total	kWh/año
AE _{ACS}	Ahorro anual de energía final en calentamiento de agua sanitaria (ACS)	kWh/año
AECAP	Ahorro anual de energía final en calentamiento de agua de piscina (CAP)	kWh/año
Cb	Coeficiente de cobertura por bivalencia ¹⁵ en paralelo	(tanto por uno)
AE TOTAL	Ahorro anual de energía final total	kWh/año

AEc	AE _{ACS}	AECAP	AETOTAL	Di

¹³ Según datos de la instalación existente o según la metodología de cálculo indicada en el Pliego de Condiciones Técnicas de Instalaciones de Baja Temperatura, de IDAE:

https://www.idae.es/uploads/documentos/documentos 5654 ST Pliego de Condiciones Tecnicas Baja Temperatura 0 9 082ee24a.pdf

¹⁴ Factor de ponderación para ajustar el valor de la demanda de energía estimado por métodos reconocidos al valor del consumo real de energía final.

¹⁵ El coeficiente de cobertura por bivalencia es el porcentaje de la demanda de energía térmica anual cubierta por bombas de calor cuando está combinada con generadores auxiliares (calderas) formando un sistema híbrido. Ver Anexo IV. El valor se expresará en tanto por uno con tres decimales.

5. DOCUMENTOS PARA JUSTIFICAR LOS AHORROS DE LA ACTUACIÓN Y SU REALIZACIÓN

- 1. Ficha cumplimentada y firmada por el responsable de la solicitud de emisión de CAE.
- 2. Declaración responsable formalizada por el propietario inicial del ahorro de energía final referida a la solicitud y/u obtención de ayudas públicas para la misma actuación de ahorro de energía según el modelo del Anexo I de esta ficha.
- 3. Facturas justificativas de la inversión realizada¹⁷ que incluyan una descripción detallada de los elementos principales (por ejemplo, aquellos de cuya ficha técnica se toman datos para calcular el ahorro).
- 4. Informe fotográfico del conjunto caldera/s y la/s bomba/s de calor antes y después de la actuación con identificación de los equipos afectados.
- 5. Copia de la comunicación de la puesta en servicio presentada en el registro habilitado por el órgano competente de la comunidad autónoma.

¹⁶ Según Recomendación (UE) 2019/1658, de la Comisión, de 25 de septiembre, relativa a la transposición de la obligación de ahorro de energía en virtud de la Directiva de eficiencia energética, o en su defecto a criterio de la persona técnica responsable.

¹⁷ Todas las facturas deben contener, como mínimo, los datos y requisitos exigidos por la Agencia Tributaria.