Real-Time MBTI Detection based on Speech Data

전지훈

Background

- Widely used personality classification system
 - $E(\text{Extrovert}) \ VS \ I(\text{Introvert}) \ / \ S(\text{Sensing}) \ VS \ N(\text{iNtuition}) \ / \ T(\text{Thinking}) \ VS \ F(\text{Feeling}) \ / \ J(\text{Judgement}) \ VS \ P(\text{Perception})$
- Based on manually-taken test
 - Highly demanding
 - Prone to self-deception
 - Vague questions

Previous works

- **Text-based** automatic MBTI Detection
 - Several works (mostly based on simple classification ML models)
 - Public dataset (e.g., Kaggle, Twitter) exists
 - Web API also available
- Limitations
 - Need to prepare one's text data in advance
 - Unimodal & Outdated (No use of SOTA LMs)
 - Poor performance¹

Key Idea & How to Implement

- Step 1: Speech recognition version
 - Basic step for integration of "speech" modality into MBTI detection task
 - Flow
 - Input audio → Text → Model (LM Pretrained on MBTI text data) Output
 - Base Model
 - Speech Recognition: Wav2Vec 2.0 (Available on Pytorch Mobile) or better model
 - Further finetuning is not in my plan as of now
 - Language Model: Llama-2 (Preferred; Server / MLC-LLM) or at least GPT-2 (Available on TFLite)
 - Further finetuning for MBTI classification task (In-batch Contrastive learning)

Key Idea & How to Implement

- Step 2: Recognized Text + Audio Features (May or may not proceed)
 - Experimental step (Does Audio Features can really help? → Needs verification)
 - Flow
 - MBTI-labelled audio file → Text + Audio Feature → LM Model Output
 - MBTI-labelled audio data
 - App Functionality: Can Record voice data & Label MBTI on user's demand
 - Further data collection on YouTube: youtube → .wav converter for MBTI-known youtube videos
 - Language + Speech Multimodal model (TBD) to be used for this step
 - Further finetuning based on MBTI-labelled audio data

Key Idea & How to Implement

- Data Collection
 - For Step 1:
 - Publicly available MBTI text datasets from Kaggle (100K+ data available)
 - If insufficient, manually collect web texts written by ppl whose MBTIs are known (using Crawler)
 - For Step 2:
 - App Functionality: Can Record voice data & Label MBTI on user's demand
 - → Continual Learning
 - Further data collection on YouTube: youtube → .wav converter for MBTI-known youtube videos

Key Functionalities (Not inclusive)

- Audio(Voice) Capture
 - START / END button
 - After END, Detection Result is rendered on TextView
 - Along with minimal graphical visualization of the classification
 - If the result is incorrect or if the user just wants to label:
 - Choose correct MBTI and Save data
 - Gives an error if the chosen MBTI coincides with the inference result
 - Labelled data are used for future further training of the model

Goal & Usage Scenario

- Instantaneous MBTI detection
 - Without laborious test-taking or providing texts written in the past
 - Less effort for figuring out others' MBTI
- Personalized MBTI tracker
 - MBTI is subject to change depending on one's experience & circumstances
 - "Change" if one's MBTI result deviates from previous dominant one, and persists
- (Advanced, May or may not proceed) Inter-MBTI Translation
 - Sufficient Data & Model Train → Implement Translation based on Generation

Project Timeline

- Step 1
 - 1st Week (~11/5): Implement Speech Recognition on App
 - 2nd Week (~11/12): Implement LM-based MBTI classification
 - 3rd Week (~11/19): Implement Model Fine-tuning based on user-provided data
- Step 2 [If Step 1 is completed on time]
 - 4th Week (~11/26): MBTI-labelled audio data collection
 - 5th Week (~12/3): Implement Speech + Language Multimodal Model on APP
 - 6th Week (~12/10): Inter-MBTI Translator [If above all are completed on time]

Q & A

