Übersicht

- analog zu [[Lineare DGL mit konstanten Koeffizienten]] jedoch mit Störfunktion
- $\bullet \ \ y^{(n)} + a_{n-1} * y^{(n-1)} + \ldots + a_1 * y' + a_0 * y = s(t)$
 - -s(t) Störfunktion
 - * Linearkombination von $e^{\lambda t}$, $te^{\lambda t}$, $t^m e^{\lambda t}$, ...
- allgemeine Lösung der inhomogenen Gleichung
 - $-y(t) = y_P(t) + y_H(t)$
 - $\ast \ y_P(t)$ ist eine Lösung der inhomogenen Gleichung
 - * $y_H(t)$ ist allgemeine Lösung der homogenen Gleichung
- \bullet innere Resonanz, wenn Nullstelle λ mehrfach auftritt
- äußere Resonanz für $f_i(x)$, wenn
 - $-f_i(x)$ eine Lösung der zugehörigen homogenen Differentialgleichung

Ansatz für partikuläre Lösung

- \bullet abhängig von Resonanz und s(x)
- keine äußere

Um einen Ansatz in den nun folgenden Formen durchführen zu können, darf **keine** äußere Resonanz vorliegen.

• $f_i(x) = A \dots (const.)$

Ansatz für f_i : B (const.)

• $f_i(x) = x^m$ bzw. $f_i(x) = A_0 + A_1 x + ... + A_m x^m$

Ansatz für $f_i: B_0 + B_1x + \ldots + B_mx^m$

• $f_i(x) = Ae^{\mu x}$

Ansatz für f_i : $Be^{\mu x}$

• $f_i(x) = A\sin(kx)$, $f_i(x) = A\cos(kx)$, $f_i(x) = A\sin(kx) + B\cos(kx)$

Ansatz für f_i : $C\sin(kx) + D\cos(kx)$

• $f_i(x) = Ae^{\mu x}\sin(kx)$, $f_i(x) = Ae^{\mu x}\cos(kx)$, $f_i(x) = e^{\mu x}(A\cos(kx) + B\sin(kx))$

Ansatz für f_i : $e^{\mu x}(C\cos(kx) + D\sin(kx))$

• $f_i(x) = e^{\mu x} P(x)$ $(P(x) \dots Polynom)$

Ansatz für f_i : $e^{\mu x}Q(x)$ (Q(x)... Polynom vom selben Grad wie

P(x)

- $f_i(x) = P(x)\sin(kx)$, $f_i(x) = P(x)\cos(kx)$ (P(x)... Polynom)
- Ansatz für $f_i: Q(x)\sin(kx) + R(x)\cos(kx) \quad (Q(x), R(x)... \text{ Polynome})$
- äußere und keine innere

- Ansatz x multiplizieren
- äußere und innere
 - Ansatz mit linearem Polynom x^n multiplizieren
 - n ist Ordnung von λ
- keine äußere und keine innere
 - nicht mit Polynom multiplizieren
- Cheat-Sheet

s(x)	y_{sp}
P(x)	Q(x)
$e^{\lambda x}P(x)$	$e^{\lambda x}Q(x)$
$e^{\lambda x}\cos(\omega x)$	$e^{\lambda x}(A\cos(\omega x) + B\sin(\omega x))$
$e^{\lambda x}\sin(\omega x)$	$e^{\lambda x}(A\cos(\omega x) + B\sin(\omega x))$
$e^{\lambda x}P(x)\cos(\omega x)$	$e^{\lambda x}(Q_1(x)\cos(\omega x) + Q_2(x)\sin(\omega x))$
$e^{\lambda x}P(x)\sin(\omega x)$	$e^{\lambda x}(Q_1(x)\cos(\omega x) + Q_2(x)\sin(\omega x))$

Herleitung

Zusammenfassung

Beispiel


```
 \begin{cases} A_{1} = \frac{1}{1}AA + C + + C + C
```