SP_N Update

Stuart R. Slattery Engineering Physics Department University of Wisconsin - Madison

March 20, 2013

Neutron Transport Solution Methods

$$\hat{\Omega} \cdot \vec{\nabla} \psi(\vec{r}, \hat{\Omega}, E) + \sigma(\vec{r}, E) \psi(\vec{r}, \hat{\Omega}, E) =
\int \int \sigma_{s}(\vec{r}, E' \to E, \hat{\Omega}' \to \hat{\Omega}) \psi(\vec{r}, \hat{\Omega}', E') d\Omega' dE' + q(\vec{r}, \hat{\Omega}, E) \quad (1)$$

- S_N transport is expensive
 - Difficult to parallelize: sweeps in space, pipelining in angle, energy decoupling
 - · Large storage requirements
 - Ray effects
- P_N equations still expensive
 - Complicated system: $(N+1)^2$ equations in 3D
 - Coupling of equations through both angular moments and spatial derivatives

SP_N Approximation

- Ad-hoc generalization of planar P_N equations by Gelbard in the 1960's
- Rigorous formulation through asymptotic and variational analysis in 1990's and 2000's
- Simpler system (N+1)/2 equations in 3D
- Yields elliptic, diffusion-like equations
- Applicable when diffusion theory is applicable: reasonable flux gradients, full-core transport
- ullet Typically does not converge to transport solution as $N o\infty$
- Can build the full linear operator
- Parallelism through the linear solver

SP_N Approximation

SP_N Equations

$$-\nabla \cdot \left[\frac{n}{2n+1} \frac{1}{\Sigma_{n-1}} \nabla \left(\frac{n-1}{2n-1} \phi_{n-2} + \frac{n}{2n-1} \phi_n \right) + \frac{n+1}{2n+1} \frac{1}{\Sigma_{n+1}} \nabla \left(\frac{n+1}{2n+3} \phi_n + \frac{n+2}{2n+3} \phi_{n+2} \right) \right] + \Sigma_n \phi_n = q \delta_{n0} \qquad n = 0, 2, 4, \dots, N, \quad (2)$$

SP_N Numerical Spectral Analysis

- Monte Carlo methods for have strong restrictions on the eigenvalues of the operator for convergence
- MCSA has the same restrictions on the outer stationary iteration
- We need to compute these eigenvalues for various forms of the SP_N equations to verify convergence of these methods.

We need eigenvalues for A, H_J, and H_{GS} with:

$$\mathbf{H}_{\mathsf{J}} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A} \tag{3}$$

where $\mathbf{D} = diag(\mathbf{A})$ and

$$\mathbf{H}_{\mathsf{GS}} = (\mathbf{L} + \mathbf{D})^{-1} \mathbf{U} \tag{4}$$

SP_7 , P_3 , 3 groups, reflecting boundaries

3×10⁻¹⁵
2-0
11
12:001529
1-1
-2
0
2
4
6
8
10
12
14

Figure: Linear operator sparsity pattern

Figure: Linear operator eigenvalues

SP_7 , P_3 , 3 groups, reflecting boundaries

Figure: Jacobi iteration matrix eigenvalues

Figure: Gauss-Seidel iteration matrix eigenvalues

Oh No!

 The Jacobi method won't converge - all that stuff I said in my prelim won't work

Solution

- Bug fix in Denovo SP_N implementation
- ullet A new kind of preconditioning \cdots

Multigroup Matrix Pattern

Figure: Linear operator sparsity pattern

Block Jacobi Preconditioning

Figure: Block Jacobi Preconditioner

Point Jacobi Results

Base Parameters	:	Source	1.00
Delta	1.00	Sigma_t	5.00
Mesh elements	4×4×4	Sigma ig	0.25
Num Materials	1	Sigma_down	1.00
Reflecting boundaries		Sigma_up	0.10

POINT JACOBI SPECTRAL RADIUS							
1 Energy Group)						
		SPN Order	3	5	7		
	0	0.0635	0.6722	1.3144	1.976		
	1	0.0666	0.6728	1.3141	1.9755		
PN Order	3	0.0666	0.6822	1.3198	1.9762		
rit Oldel	5	0.0666	0.6822	1.3278	1.9847		
	7	0.0666	0.6822	1.3278	1.9914		
		0.0000	0.0022	1.3270	1.5514		
10 Energy Grou	ıps without	Upscatter					
		SPN Order					
		1	3	5	7		
	0	0.0655	0.677	1.32	1.983		
	1	0.071	0.6777	1.319	1.982		
PN Order	3	0.071	0.687	1.327	1.9872		
	5	0.071	0.687	1.336	1.997		
	7	0.071	0.687	1.336	1.9995		
10 Energy Grou	ıps with Up	scatter					
		SPN Order					
		SEN Order	3	5	7		
	0	0.7283	0.81	1.47	2.1446		
	1	0.7317	0.8	1.46	2.1368		
PN Order	3	0.7317	0.91	1.526	2.1366		
i ii oluel	5	0.7317	0.91	1.5344	2.2562		
	5 7	0.7317	0.91	1.5345	2.2842		

Block Jacobi Results

BLOCK JACOBI SPECTRAL RADIUS: B = N_g * (N+1)/2							
1 Energy Grou	ıp						
		SPN Order					
		1	3	5	7		
	0	0.0635	0.1269	0.1444	0.1513		
	1	0.0666	0.1315	0.1474	0.1534		
PN Order	3	0.0666	0.1365	0.154	0.1592		
	5	0.0666	0.1365	0.1562	0.163		
	7	0.0666	0.1365	0.1562	0.164		
10 Energy Gro	ups witho	ut Upscatter					
		SPN Order					
		1	3	5	7		
	0	0.0647	0.1275	0.1449	0.1514		
	1	0.0686	0.1338	0.1484	0.1547		
PN Order	3	0.0687	0.1399	0.1582	0.1625		
	5	0.0692	0.1402	0.1626	0.1657		
	7	0.0678	0.1393	0.1624	0.166		
10 Energy Gro	ups with U	<i>lpscatter</i>					
		SPN Order					
		1	3	5	7		
	0	0.1887	0.2267	0.2285	0.2286		
	1	0.4535	0.5044	0.5045	0.5045		
PN Order	3	0.4535	0.6453	0.6506	0.6506		
	5	0.4535	0.6453	0.6802	0.6818		
	7	0.4535	0.6453	0.6802	0.6927		

Conclusions

- Block Jacobi preconditioning is a simple and appropriate solution for preconditioning the SP_N equations
- Implementation is general slides right into ANA framework
- Implementation is scalable local operations only, fast LAPACK operations
- Implementation works can move on with research