Nov. 22, 2011 Lecture 19 6.006TODAY: Dynamic Programming I (of 4)

- memoization & subproblems: bottom up - Fibonacci
- shortest paths } examples - guessing & DAG view Dynamic programming: (DP) - big idea, hard yet simple powerful algorithmic design technique - large class of seemingly exponential problems have a polynomial solution ("only") via DP - particularly for optimization problems (min/max) (e.g. shortest paths) *DP ≈ careful brute force *DP ≈ recursion + 're-use'

> JEEE Medal of Honor, History: Richard E. Bellman (1920-1984) "Bellman ... explained that he invented the name dynamic programming to hide the fact that he was doing mathematical research at RAND under a Secretary of Defense who 'had a pathelogical fear and hatred of the term, research! He settled on the term dynamic programming because it would be difficult to give a 'pejorative meaning' and because 'It was something not even a Congressman could object to.' "
[John Rust 2006]

```
Fibonacci numbers: F1=F2=1: Fn=Fn-1+Fn-2
- goal: compute Fn
   Naïve algorithm: follow recursive definition
           Cif n \le 2: f=1
Lelse: f=fib(n-1)+fib(n-2)
return f
Fn-2Fn-3Fn-4
   \Rightarrow T(n) = T(n-1) + T(n-2) + O(1) > F_n \approx \varphi^n
\geq 2T(n-2) + O(1) > 2^{N/2} EXPONENTIAL - BAD!
  Memoized DP algorithm: remember remember
        fib(n):
            if n in memo: return memo[n]
           if n \le 2: f = 1
           else: f = fib(n-1) + fib(n-2)
           memo[n] = f
            return f
```


5	101	test paths:	
	_	recursive formulation:	
		$S(s,v) = \min \{ S(s,u) + w(u,v) (u,v) \in E \}$	
		takes infinite time it cycles! (s)	
		memoized DP algorithm: takes infinite time if cycles! (3) for (7) (kinda necessary to handle neg cycles) works for directed acyclic graphs in (XV+E)	
	_	works for directed acyclic graphs in O(V+E)	
		~ effectively DFS/topological sort + Bellmon-tord	
		works for directed acyclic graphs in O(V+E) ~ effectively DFS/topological sort + Bellmon-Ford vound volled into a single recursion	
V4	_		
*\	ے -	bproblem dependency should be acyclic	
		10 - 10 - 1 0 - 1 0 0 10 - 1 - 10 0 0 0	-
		more subproblems remove cyclic dependence $S_k(s,v) = shortest s \Rightarrow v$ path using $\leq k$ edges	, •
		Sk (S,V) = Shoriest S >V pain using Sk eages	
		Su(c)) - min & Su (c) 1) + u(i)) (E)	
		$S_{K}(S_{\lambda}V) = min \left\{ S_{K-1}(S_{\lambda}u) \mid w(u_{\lambda}V) \mid (u_{\lambda}V) \in L \right\}$	
		$5 \cdot (c \cdot c) = 0 \cdot (01 \cdot 37) \cdot 2005e \cdot case$	
	<u> </u>	recurrence: $S_{K}(s,v) = \min_{s \in S_{K-1}(s,u)+w(u,v)} \{u,v\} \in E\}$ $S_{\emptyset}(s,v) = \infty \text{ for } s \neq v s \text{ base } case$ $S_{K}(s,s) = \emptyset \text{ for any } k s s f \text{ no } neg. cycles}$ $S_{\emptyset}(s,v) = S_{ V -1}(s,v) s s f f $	
	•	Jean O(310) O[V[-1(310)	
		memoize	
	_	time: # subproblems . time/subproblem	
		-actually $\Theta(\text{indegree}(V))$ for $S_{K}(S,V)$ $\Rightarrow \text{time} = O(V S)$	
		Time = $O(V \leq indegree(V)) = O(VE)$ BELLMAN-FORD!	
		RELIANAL-ERDI	
		שניטועקיי ז טייש:	

