Bài giảng Giải tích 1

Vũ Hữu Nhự

27th September 2023

Chương 1: Tập số và giới hạn của dãy số

1.1. Tập số thực và số phức

- 1.1.1 Tập số thực và các tính chất cơ bản của tập số thực
- 1.1.2 Dạng đại số của số phức
- 1.1.3 Dạng lượng giác và dạng mũ của số phức
- 1.1.4 Lũy thừa, công thức Moivre
- 1.1.5 Phép khai căn của một số phức

(1) Các khái niệm.

(1) Các khái niệm.

Tập số phức

$$\mathbb{C} := \{ z = a + bi \mid a, b \in \mathbb{R}, i^2 = -1 \}.$$

(1) Các khái niệm.

Tập số phức

$$\mathbb{C} := \{ z = a + bi \mid a, b \in \mathbb{R}, i^2 = -1 \}.$$

Dạng chính tắc:

$$z = a + bi$$
, $a, b \in \mathbb{R}$.

- Phần thực Rez = a.
- Phần ảo: Imz = b.
- Mô đun: $|z| = \sqrt{a^2 + b^2}$.
- Số phức liên hợp: $\bar{z} = a bi$.
- Số phức bằng nhau:

$$z_1 = z_2 \Leftrightarrow Rez_1 = Rez_2 \text{ và } Imz_1 = Imz_2.$$

(2) Các phép toán.

(2) Các phép toán.

Cho
$$z_1=a_1+b_1i, z_2=a_2+b_2i$$

$$z_1\pm z_2=(a_1\pm a_2)+(b_1\pm b_2)i$$

$$z_1z_2=(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i$$

$$\frac{1}{a+ib}=\frac{a-ib}{a^2+b^2}$$

$$\frac{z_1}{z_2}=\frac{z_1\bar{z}_2}{|z_2|^2}$$

Tính chất.

$$\overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2$$

$$\overline{z_1 \overline{z}_2} = \overline{z}_1 \overline{z}_2$$

$$\overline{\left(\frac{\overline{z}_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}$$

$$z\overline{z} = |z|^2 = |\overline{z}|^2$$

 $|z_1 z_2| = |z_1||z_2|, \quad |\frac{z_1}{z_2}| = \frac{|z_1|}{|z_2|}$
 $|z_1 + z_2| \le |z_1| + |z_2|.$

Example

Bất đẳng thức Cauchy-Schwarz Cho

$$a_i,b_i\in\mathbb{C},i=1,2,...,n$$
. Khi đó

$$|\sum_{i=1}^n a_i b_i|^2 \le \sum_{i=1}^n |a_i|^2 \sum_{i=1}^n |b_i|^2.$$

Song ánh

$$f: \mathbb{C} \to (Oxy)$$
$$z = a + bi \mapsto M(a, b)$$

Song ánh

$$f: \mathbb{C} \to (Oxy)$$
$$z = a + bi \mapsto M(a, b)$$

Ta gọi (Oxy) là mặt phẳng phức.

Song ánh

$$f: \mathbb{C} \to (Oxy)$$
$$z = a + bi \mapsto M(a, b)$$

Ta gọi (Oxy) là mặt phẳng phức.

Example

Cho $z\in\mathbb{C}$ sao cho $\frac{z^2}{z+i}$ là số thuần ảo. Tìm biểu diễn hình học của z.

(4) Biểu diễn lượng giác.

(4) Biểu diễn lượng giác.

Số phức $z=a+bi, a,b\in\mathbb{R}$ có biểu diễn lượng giác sau

$$z = |z| (\cos \varphi + i \sin \varphi)$$

với

$$\begin{cases} \cos \varphi = \frac{a}{\sqrt{a^2 + b^2}} \\ \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}} \end{cases} \tag{1}$$

Hàm $Arg(z):=\{\varphi\in\mathbb{R}\mid \varphi \text{ thỏa mãn (1)}\}$ được gọi là Acgument của z.

• Nếu φ là một Acgument của z, thì $\varphi + k2\pi (k \in \mathbb{Z})$ cũng là một Acgument của z.

- Nếu φ là một Acgument của z, thì $\varphi + k2\pi(k \in \mathbb{Z})$ cũng là một Acgument của z.
- $Arg(\bar{z}) = -Arg(z)$

- Nếu φ là một Acgument của z, thì $\varphi + k2\pi(k \in \mathbb{Z})$ cũng là một Acgument của z.
- $Arg(\bar{z}) = -Arg(z)$
- $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$, $Arg(z^n) = nArg(z)$.

- Nếu φ là một Acgument của z, thì $\varphi + k2\pi(k \in \mathbb{Z})$ cũng là một Acgument của z.
- $Arg(\bar{z}) = -Arg(z)$
- $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$, $Arg(z^n) = nArg(z)$.
- $Arg(\frac{1}{z}) = -Arg(z)$

- Nếu φ là một Acgument của z, thì $\varphi + k2\pi(k \in \mathbb{Z})$ cũng là một Acgument của z.
- $Arg(\bar{z}) = -Arg(z)$
- $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$, $Arg(z^n) = nArg(z)$.
- $Arg(\frac{1}{z}) = -Arg(z)$
- $\bullet Arg(\frac{z_1}{z_2}) = Arg(z_1) Arg(z_2).$

Một số công thức liên quan tới biểu diễn lượng giác

Một số công thức liên quan tới biểu diễn lượng giác

Cho
$$z_1 = |z_1| (\cos \varphi_1 + i \sin \varphi_1), \quad z_2 = |z_2| (\cos \varphi_2 + i \sin \varphi_2)$$

- $z_1z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$
- $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \left(\cos(\varphi_1 \varphi_2) + i \sin(\varphi_1 \varphi_2) \right)$
- $z_1^n = |z_1|^n (\cos n\varphi_1 + i \sin n\varphi_1)$ (Moive)

Một số công thức liên quan tới biểu diễn lượng giác

Cho
$$z_1 = |z_1| (\cos \varphi_1 + i \sin \varphi_1), \quad z_2 = |z_2| (\cos \varphi_2 + i \sin \varphi_2)$$

- $z_1z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$
- $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \left(\cos(\varphi_1 \varphi_2) + i \sin(\varphi_1 \varphi_2) \right)$
- $z_1^n = |z_1|^n (\cos n\varphi_1 + i \sin n\varphi_1)$ (Moive)

Example

Biểu diễn $\sin 8x$ và $\cos 8x$ theo $\sin x$ và $\cos x$.

(5) Căn bậc n của số phức

(5) Căn bậc *n* của số phức

Cho số phức $z=|z|\left(\cos\varphi+i\sin\varphi\right)$. Khi đó căn bậc n của z là các số phức

$$w_i = \sqrt[n]{|z|} \left(\cos \frac{\varphi + k2\pi}{n} + i \sin \frac{\varphi + k2\pi}{n} \right), \quad k = 0, 1, 2, ..., n-1.$$

(5) Căn bậc *n* của số phức

Cho số phức $z=|z|\left(\cos\varphi+i\sin\varphi\right)$. Khi đó căn bậc n của z là các số phức

$$w_i = \sqrt[n]{|z|} \left(\cos \frac{\varphi + k2\pi}{n} + i \sin \frac{\varphi + k2\pi}{n} \right), \quad k = 0, 1, 2, ..., n-1.$$

Example

Tính các căn bậc 3, 4 của z=-1.

(6) Công thức Ơle (Euler)-dạng mũ của số phức

(6) Công thức Ơle (Euler)-dạng mũ của số phức

$$e^{\alpha i} = \cos \alpha + i \sin \alpha, \quad \alpha \in \mathbb{R}.$$

(6) Công thức Ơle (Euler)-dạng mũ của số phức

$$e^{\alpha i} = \cos \alpha + i \sin \alpha, \quad \alpha \in \mathbb{R}.$$

Example

- 1. Tính tổng $A = \sum_{n=0}^{100} \sin(\frac{\pi}{3} + n\frac{\pi}{4})$.
- 2. Cho $z \in \mathbb{C}$ sao cho

$$z + z^{-1} = 2\cos t.$$

CMR

$$z^n + z^{-n} = 2\cos nt.$$

1.2. Dãy số thực

1.2. Dãy số thực

- 1.2.1 Khái niệm về dãy số hội tụ
- 1.2.2 Các tính chất của dãy số hội tụ
- 1.2.3 Dãy số đơn điệu
- 1.2.4 Dãy con
- 1.2.5 Dãy Cauchy

(1) Dãy số.

Definition (Dãy số)

Ánh xạ $n \ni \mathbb{N} \to u_n \in \mathbb{R}$ là một dãy số. Ký hiệu: $(u_n), \{u_n\}$ hoặc $(u_n)_{n=0}^{\infty}, \{u_n\}_{n\geq 0}$.

(1) Dãy số.

Definition (Dãy số)

Ánh xạ $n \ni \mathbb{N} \to u_n \in \mathbb{R}$ là một dãy số.

Ký hiệu: $(u_n),\{u_n\}$ hoặc $(u_n)_{n=0}^\infty,\{u_n\}_{n\geq 0}$.

(2) Giới hạn dãy số.

Definition (Giới hạn dãy số)

Dãy (x_n) được gọi là **hội tụ** nếu tồn tại $a \in \mathbb{R}$ sao cho với mọi số $\epsilon > 0$, tồn tại số $n_0 = n_0(\epsilon) \in \mathbb{N}$ sao cho

$$|x_n-a|<\epsilon\quad\forall n\geq n_0.$$

Ký hiệu: $\lim_{n\to\infty} x_n = a$.

(1) Dãy số.

Definition (Dãy số)

Ánh xạ $n \ni \mathbb{N} \to u_n \in \mathbb{R}$ là một dãy số.

Ký hiệu: (u_n) , $\{u_n\}$ hoặc $(u_n)_{n=0}^{\infty}$, $\{u_n\}_{n\geq 0}$.

(2) Giới hạn dãy số.

Definition (Giới hạn dãy số)

Dãy (x_n) được gọi là **hội tụ** nếu tồn tại $a \in \mathbb{R}$ sao cho với mọi số $\epsilon > 0$, tồn tại số $n_0 = n_0(\epsilon) \in \mathbb{N}$ sao cho

$$|x_n-a|<\epsilon\quad\forall n\geq n_0.$$

Ký hiệu: $\lim_{n\to\infty} x_n = a$.

Dãy (x_n) được gọi là **phân kỳ** nếu nó không hội tụ.

(1) Dãy số.

Definition (Dãy số)

Ánh xạ $n \ni \mathbb{N} \to u_n \in \mathbb{R}$ là một dãy số.

Ký hiệu: (u_n) , $\{u_n\}$ hoặc $(u_n)_{n=0}^{\infty}$, $\{u_n\}_{n\geq 0}$.

(2) Giới hạn dãy số.

Definition (Giới hạn dãy số)

Dãy (x_n) được gọi là **hội tụ** nếu tồn tại $a \in \mathbb{R}$ sao cho với mọi số $\epsilon > 0$, tồn tại số $n_0 = n_0(\epsilon) \in \mathbb{N}$ sao cho

$$|x_n-a|<\epsilon\quad\forall n\geq n_0.$$

Ký hiệu: $\lim_{n\to\infty} x_n = a$.

Dãy (x_n) được gọi là **phân kỳ** nếu nó không hội tụ.

(1) Dãy số.

Definition (Dãy số)

Ánh xạ $n \ni \mathbb{N} \to u_n \in \mathbb{R}$ là một dãy số.

Ký hiệu: (u_n) , $\{u_n\}$ hoặc $(u_n)_{n=0}^{\infty}$, $\{u_n\}_{n\geq 0}$.

(2) Giới hạn dãy số.

Definition (Giới hạn dãy số)

Dãy (x_n) được gọi là **hội tụ** nếu tồn tại $a \in \mathbb{R}$ sao cho với mọi số $\epsilon > 0$, tồn tại số $n_0 = n_0(\epsilon) \in \mathbb{N}$ sao cho

$$|x_n-a|<\epsilon\quad\forall n\geq n_0.$$

Ký hiệu: $\lim_{n\to\infty} x_n = a$.

Dãy (x_n) được gọi là **phân kỳ** nếu nó không hội tụ.

(3) Tính chất của giới hạn.

Theorem (Tính duy nhất)

Giới hạn của dãy (nếu có) là duy nhất.

(3) Tính chất của giới hạn.

Theorem (Tính duy nhất)

Giới hạn của dãy (nếu có) là duy nhất.

Theorem

Giả sử
$$\lim_{n\to\infty} x_n = x$$
, $\lim_{n\to\infty} y_n = y$. Khi đó $\lim_{n\to\infty} (x_n + y_n) = x + y$. $\lim_{n\to\infty} (kx_n) = kx$, $\lim_{n\to\infty} (x_ny_n) = xy$. $\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{x}{y}$, $(y \neq 0)$.

Theorem (Tính thứ tự)

Nếu $\lim_{n \to \infty} x_n = x < y$, thì tồn tại số $n_0 \in \mathbb{N}$ sao cho $x_n < y$ với mọi $n > n_0$.

Nếu $\lim_{n\to\infty} x_n = x > y$, thì tồn tại số $n_0 \in \mathbb{N}$ sao cho $x_n > y$ với mọi $n > n_0$.

Nếu $x_n \leq y_n$ với mọi $n \geq n_0$, và $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$, thì x < y.

Theorem (Nguyên lý kẹp)

Giả sử
$$x_n \le y_n \le z_n$$
 với mọi $n \ge n_0$ và $\lim_{n \to \infty} x_n = \lim z_n = a$.
Khi đó

$$\lim_{n\to\infty}y_n=a.$$

Theorem (Nguyên lý kẹp)

Giả sử
$$x_n \le y_n \le z_n$$
 với mọi $n \ge n_0$ và $\lim_{n \to \infty} x_n = \lim z_n = a$.
Khi đó

$$\lim_{n\to\infty}y_n=a.$$

Ví dụ. CMR

$$\lim_{n\to\infty}\frac{2n-\sin^2 n+3\cos(2n)}{n}=2.$$

Definition (Dãy đơn điệu và dãy bị chặn)

Definition (Dãy đơn điệu và dãy bị chặn)

Dãy $\{x_n\}$ được gọi là:

(i) tăng nếu $x_n \le x_{n+1}$ với mọi $n \ge 1$.

Definition (Dãy đơn điệu và dãy bị chặn)

- (i) tăng nếu $x_n \le x_{n+1}$ với mọi $n \ge 1$.
- (ii) giảm nếu $x_n \ge x_{n+1}$ với mọi $n \ge 1$.

Definition (Dãy đơn điệu và dãy bị chặn)

- (i) tăng nếu $x_n \le x_{n+1}$ với mọi $n \ge 1$.
- (ii) giảm nếu $x_n \ge x_{n+1}$ với mọi $n \ge 1$.
- (iii) bị chặn trên nếu tồn tại số M sao cho $x_n \leq M$ với mọi n > 1.

Definition (Dãy đơn điệu và dãy bị chặn)

- (i) tăng nếu $x_n \le x_{n+1}$ với mọi $n \ge 1$.
- (ii) giảm nếu $x_n \ge x_{n+1}$ với mọi $n \ge 1$.
- (iii) bị chặn trên nếu tồn tại số M sao cho $x_n \leq M$ với mọi n > 1.
- (iv) bị chặn dưới nếu tồn tại số m sao cho $x_n \ge m$ với mọi $n \ge 1$.

Definition (Dãy đơn điệu và dãy bị chặn)

- (i) tăng nếu $x_n \le x_{n+1}$ với mọi $n \ge 1$.
- (ii) giảm nếu $x_n \ge x_{n+1}$ với mọi $n \ge 1$.
- (iii) bị chặn trên nếu tồn tại số M sao cho $x_n \leq M$ với mọi n > 1.
- (iv) bị chặn dưới nếu tồn tại số m sao cho $x_n \ge m$ với mọi n > 1.
- (v) bị chặn nếu nó vừa bị chặn trên và vừa bị chặn dưới.

Xét tính đơn điệu và bị chặn của các dãy sau:

- $x_n = \frac{1}{n}$.
- $x_n = (-1)^n$.
- $x_n = 2n 1$.

• Nếu dãy $\{x_n\}$ đơn điệu tăng và bị chặn trên thì nó hội tụ.

- Nếu dãy $\{x_n\}$ đơn điệu tăng và bị chặn trên thì nó hội tụ.
- Nếu dãy {x_n} đơn điệu giảm và bị chặn dưới thì nó hội tụ.

- Nếu dãy $\{x_n\}$ đơn điệu tăng và bị chặn trên thì nó hội tụ.
- Nếu dãy $\{x_n\}$ đơn điệu giảm và bị chặn dưới thì nó hội tụ.

Example

Cho dãy $x_n = \sqrt{2 + x_{n-1}}, n \ge 1, x_1 = 1$. Chứng minh rằng dãy $\{x_n\}$ hội tụ và tính giới hạn đó.

(5) Hai dãy kề nhau

(5) Hai dãy kề nhau

Definition (Hai dãy kề nhau)

Dãy $\{x_n\}$ và $\{y_n\}$ gọi là kề nhau nếu $\{x_n\}$ tăng và $\{y_n\}$ giảm và

$$\lim_{n\to\infty}(x_n-y_n)=0.$$

(5) Hai dãy kề nhau

Definition (Hai dãy kề nhau)

Dãy $\{x_n\}$ và $\{y_n\}$ gọi là kề nhau nếu $\{x_n\}$ tăng và $\{y_n\}$ giảm và

$$\lim_{n\to\infty}(x_n-y_n)=0.$$

Theorem

Nếu $\{x_n\}$ và $\{y_n\}$ kề nhau, thì tồn tại $a \in \mathbb{R}$ sao cho

$$\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=a.$$

Corollary (Định lý Cantor)

Cho hai dãy số $\{x_n\}, \{y_n\}$ sao cho

$$\begin{cases} x_n \leq y_n, [x_n, y_n] \subset [x_{n-1}, y_{n-1}] & \forall n \geq 1. \\ \lim_{n \to \infty} (x_n - y_n) = 0. \end{cases}$$
 (2)

Khi đó tồn tại duy nhất số thực $c \in [x_n, y_n]$ với mọi $n \ge 1$.

Corollary (Định lý Cantor)

Cho hai dãy số $\{x_n\}, \{y_n\}$ sao cho

$$\begin{cases} x_n \leq y_n, [x_n, y_n] \subset [x_{n-1}, y_{n-1}] & \forall n \geq 1. \\ \lim_{n \to \infty} (x_n - y_n) = 0. \end{cases}$$
 (2)

Khi đó tồn tại duy nhất số thực $c \in [x_n, y_n]$ với mọi $n \ge 1$.

Definition

Dãy các đoạn $[x_n, y_n]$ thỏa mãn điều kiện (2) được gọi là *dãy* các đoạn lồng nhau .

Chứng minh rằng hai dãy sau là kề nhau

$$x_n = \sum_{k=2}^n \frac{1}{1+k^2}, \quad y_n = x_n + \frac{1}{n} - \frac{1}{2n^2} \quad n \ge 3$$

(6) Dãy con.

Definition (Day con)

Cho dãy số $\{x_n\}$. Dãy số con $\{x_{n_k}\}$ trích ra từ dãy $\{x_n\}$ gồm các phần tử

$$X_{n_1}, X_{n_2}, \ldots,$$

với
$$n_1 < n_2 < \cdots$$
 .

(6) Dãy con.

Definition (Day con)

Cho dãy số $\{x_n\}$. Dãy số con $\{x_{n_k}\}$ trích ra từ dãy $\{x_n\}$ gồm các phần tử

$$X_{n_1}, X_{n_2}, \ldots,$$

với $n_1 < n_2 < \cdots$.

Example

Dãy $x_{2n}=1$ và $x_{2n+1}=-1$ là hai con của dãy $x_n=(-1)^n$.

- Nếu dãy $\{x_n\}$ có giới hạn là a khi $n \to \infty$, thì mọi dãy con của nó cũng có giới hạn là a.
- Dãy $\{x_n\}$ có giới hạn là a khi $n \to \infty$ nếu và chỉ nếu hai dãy con (x_{2n}) và (x_{2n+1}) cùng hội tụ tới a.

- Nếu dãy $\{x_n\}$ có giới hạn là a khi $n \to \infty$, thì mọi dãy con của nó cũng có giới hạn là a.
- Dãy $\{x_n\}$ có giới hạn là a khi $n \to \infty$ nếu và chỉ nếu hai dãy con (x_{2n}) và (x_{2n+1}) cùng hội tụ tới a.

Nhận xét. Nếu tồn tại hai dãy con $\{x_{n_k}\}$ và $\{x_{n_p}\}$ của $\{x_n\}$ sao cho

$$\lim_{k\to\infty} x_{n_k} \neq \lim_{p\to\infty} x_{n_p}$$

thì dãy $\{x_n\}$ phân kỳ.

Chứng minh rằng dãy sau phân kỳ

$$x_n = (-1)^n \frac{n}{n+1}, \quad x_n = \sin \frac{n\pi}{3}$$

Chứng minh rằng dãy sau phân kỳ

$$x_n = (-1)^n \frac{n}{n+1}, \quad x_n = \sin \frac{n\pi}{3}$$

Theorem (Bolzano-Weierstrass)

. Một dãy bị chặn đều trích ra một dãy con hội tụ.

Chứng minh dãy sau là hội tụ

$$x_n = \frac{3}{x_{n-1}} + 2$$
, $n \ge 1, x_0 = 1$.

(7) Tiểu chuẩn hội tụ Cauchy.

(7) Tiểu chuẩn hội tụ Cauchy.

Definition (Day Cauchy)

Dãy số $\{x_n\}$ được gọi là dãy Cauchy (dãy cơ bản) nếu với mọi $\epsilon>0$ tồn tại số $n_0>0$ sao cho

$$|x_n - x_{n+p}| < \epsilon \quad \forall n \ge n_0, p \ge 1.$$

(7) Tiểu chuẩn hội tụ Cauchy.

Definition (Day Cauchy)

Dãy số $\{x_n\}$ được gọi là dãy Cauchy (dãy cơ bản) nếu với mọi $\epsilon>0$ tồn tại số $n_0>0$ sao cho

$$|x_n - x_{n+p}| < \epsilon \quad \forall n \ge n_0, p \ge 1.$$

Theorem (Tiểu chuẩn hội tụ Cauchy)

Dãy $\{x_n\}$ hội tụ nếu và chỉ nếu nó là dãy Cauchy.

Dùng tiêu chuẩn hội tụ Cauchy để xét sự hội tụ của các dãy sau:

1.
$$x_n = \frac{1}{1.2} + \cdots + \frac{1}{(n-1)n}$$
.

2.
$$x_n = 1 + \frac{1}{2^2} + \cdots + \frac{1}{n^2}$$
.

3.
$$x_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$$
.