Adding new words into a language model using parameters of known words with similar behavior

Luiza Orosanu, Denis Jouvet

INRIA-Loria, Nancy, France Multispeech Team

Summary

- Context
- 2 Approach
- 3 Experiments
- 4 Conclusions and future work

Context

Context

- * language models in automatic speech recognition systems
- * trained on large text data sets
- * having closed vocabulary generating OOV problems

Our study

- * add new words that are specific to a certain domain
- avoid recognition errors of words that are frequently pronounced (yet unknown by the system)

Context

Our approach

- without retraining or adapting the model (which requires a lot of new data relative to the new words)
- * approach based on the similarity with in-vocabulary words two words are **similar** if they appear in similar contexts \iff they have similar neighbor distributions

Summary

- Context
- 2 Approach
- 3 Experiments
- 4 Conclusions and future work

- use a few examples of sentences for each new word
- find similar known words (similar neighbor distributions)
- transpose LM probabilities from similar words to new words

- 1. Acquire a few examples of sentences with the new word
 - ightarrow compute the neighbor distributions of the new word nW

$$P_k(w|\mathbf{nW})$$
 for $k \in \{..., -2, -1, +1, +2, ...\}$

- 1. Acquire a few examples of sentences with the new word
 - \rightarrow compute the neighbor distributions of the new word nW

$$P_k(w|nW)$$
 for $k \in \{..., -2, -1, +1, +2, ...\}$

- example of new word : soir
- examples of sentences

```
on ignorait <u>encore lundi</u> <u>soir les conditions</u> de sa survie
devine qui vient <u>dîner</u> <u>ce</u> <u>soir</u>
pas de consigne de <u>vote</u> <u>au</u> <u>soir</u> <u>du</u> premier tour
```

preceeding and following neighbors

```
\begin{array}{lll} \mathsf{k} = -2 \\ \mathsf{k} = -1 \\ \mathsf{k} = +1 \\ \mathsf{k} = +1 \\ \mathsf{k} = +2 \end{array} \quad \begin{array}{ll} \mathsf{encore}, \ \mathsf{d} \ \mathsf{iner}, \ \mathsf{vote}, \ \ldots \\ \mathsf{lundi}, \ \mathsf{ce}, \ \mathsf{au}, \ \ldots \\ \mathsf{les}, \ \mathsf{du}, \ \ldots \\ \mathsf{conditions}, \ \mathsf{premier}, \ \ldots \end{array}
```

- 2. Search for similar words in a reference corpus
 - \rightarrow compute the neighbor distributions of each known word kW

$$P_k(w'|kW)$$
 for $k \in \{..., -2, -1, +1, +2, ...\}$

- 2. Search for similar words in a reference corpus
 - \rightarrow compute the neighbor distributions of each known word kW

$$P_k(w'|\mathbf{kW})$$
 for $k \in \{..., -2, -1, +1, +2, ...\}$

use directly the counts file of n-gram sequences

```
* 2g \Rightarrow \text{maximum 2 neighbors } k \in \{-1, +1\}

* 3g \Rightarrow \text{maximum 4 neighbors } k \in \{-2, -1, +1, +2\}
```

examples of 3-gram entries with the known word 'matin'

```
* "beau matin de 9" \rightarrow k=-1 neighbor "beau"; k=+1 neighbor "de" 

* "matin a été 10" \rightarrow k=+1 neighbor "a"; k=+2 neighbor "été" 

* "jusqu' au matin 28" \rightarrow k=-2 neighbor "jusqu"; k=-1 neighbor "au"
```

3. Compute the KL divergence of neighbor distributions \rightarrow between each known word (kW) and a new word (nW)

$$D_{KL}(P_k(\bullet|kW) || P_k(\bullet|nW)) = \sum_{w} P_k(w|kW) \log \left(\frac{P_k(w|kW)}{P_k(w|nW)}\right)$$
$$D(kW,nW) = \sum_{k} D_k(kW,nW)$$

Compute the KL divergence of neighbor distributions
 → between each known word (kW) and a new word (nW)

$$D_{KL}(P_k(\bullet|kW) || P_k(\bullet|nW)) = \sum_{w} P_k(w|kW) \log \left(\frac{P_k(w|kW)}{P_k(w|nW)}\right)$$
$$D(kW, nW) = \sum_{k} D_k(kW, nW)$$

- 4. Select the most similar words to a new word
 - ightarrow those having minimal divergences

⇒ examples of similar words

```
soir
                → matin, midi, dimanche, samedi, vendredi
         soirs
                → temps, joueurs, matchs, pays, matches
                → époque, opération, expérience, épreuve, édition
        année
                → décennies, saisons, épisodes, heures, opérations
        années
                → parti, président, peuple, roi, mouvement
gouvernement
                → ministres, partis, syndicats, services, pays
gouvernements
       guerre
                → campagne, crise, paix, position, ville
                → combats, opérations, missions, campagnes, séries
       guerres
```

5. Transpose the probabilities of similar words onto new words

- → look for n-grams containing the similar words
- → replace the 'similar words' by the 'new word'
- ightarrow add the new n-grams into the new language model

5. Transpose the probabilities of similar words onto new words

- ightarrow look for n-grams containing the similar words
- → replace the 'similar words' by the 'new word'
- ightarrow add the new n-grams into the new language model

- new word "soir" similar to the known word "matin"
- known n-grams (in the language model)

```
"-1.48214 possible ce matin"
```

```
"-1.404164 matin ajoute que"
```

new n-grams (to add in the new LM)

```
"-1.48214 possible ce soir"
"-1.404164 soir ajoute que"
```

Summary

- Context
- 2 Approach
- 3 Experiments
 - Setup for experiments
 - Results
- 4 Conclusions and future work

Summary

- Context
- 2 Approach
- 3 Experiments
 - Setup for experiments
 - Results
- 4 Conclusions and future work

- Select a list of new words to add to a language model
 - ⇒ 44 new words
- Search for similar words
 - * configuration
 - sentences based on "word|part-of-speech" units
 - 4 neighbor positions for each word: $k \in \{-2, -1, +1, +2\}$
 - choose the 10 most similar words for each new word
 - evaluate the impact of using {5, 10, 20 or 50} examples of sentences for each new word

	Sentences based on "word part-of-speech" units							
	qui	vient	dîner	ce	soir			
F	PRO:REL qui	VER:pres vient	VER:infi dîner	PRO:DEM ce	NOM soir			

- The BASELINE language model
 - * large vocabulary language model
 - * trained by interpolation on various textual data
 - * does not know the 44 new words
- The ORACLE language model
 - * large vocabulary language model
 - * trained by interpolation on various textual data
 - * knows the 44 new words

LM	1-grams	2-grams	3-grams
BASELINE	97 305	42.9M	79.2M
ORACLE	97 349	43.3M	80.1M

- The new language models created
 - * by using {5, 10, 20, 50} examples of sentences for each new word
 - by adding 1-grams or 1-,2-,3-grams of new words into the BASELINE LM

	baseline	new language models				ORACLE
	baseiiiie	5ex	10ex	20ex	50ex	OKACLL
# 2-grams	42.9	44.7	44.6	44.8	44.8	43.3
# 3-grams	79.2	89.8	89.3	90.5	90.8	80.1

Table: Number [in millions] of 2-grams and 3-grams in the new 'baseline+1-,2-,3-grams' LMs

- \Rightarrow The new 'baseline+1-,2-,3-grams' adds:
 - * between 1.7M and 1.9M new 2-grams
 - * between 10.6M and 11.6M new 3-grams

- Setup for evaluations
 - the LMs are evaluated over the ESTER2 development set
 - the 44 new words have an occurrence frequency of 1.33%
- Compare the performance of new LMs with baseline LM
 - regarding the WER
 - regarding the percentage of new words correctly recognized

Summary

- Context
- 2 Approach
- 3 Experiments
 - Setup for experiments
 - Results
- Conclusions and future work

Results: the WER performances

BASELINE 26.79% ORACLE 24.79%

	# examples of sentences			
	5ex	10ex	20ex	50ex
baseline+1-grams	26.45	26.44	26.40	26.42
baseline+1-,2-,3-grams	25.68	25.51	25.51	25.57

Table: WER of new 'baseline+1-grams' and 'baseline+1-,2-,3-grams' LMs

Results: the WER performances

BASELINE 26.79% ORACLE 24.79%

	# examples of sentences			
	5ex	10ex	20ex	50ex
baseline+1-grams	26.45	26.44	26.40	26.42
baseline+1-,2-,3-grams	25.68	25.51	25.51	25.57

Table: WER of new 'baseline+1-grams' and 'baseline+1-,2-,3-grams' LMs

- ⇒ adding only 1-grams for new words hardly improves the performance
- ⇒ adding 1-,2-,3-grams for new words provides results closer to the ORACLE's performance
- \Rightarrow between 1.1% and 1.3% WER absolute reduction (compared to the baseline LM)
- ⇒ 0.7% WER difference with the ORACLE model

Results: percentage of new words correctly recognized

BASELINE **0.00%**ORACLE **85.45%**

	# examples of sentences				
	5ex	10ex	20ex	50ex	
baseline+1-grams	29.81	20.00	22.18	20.36	
baseline+1-,2-,3-grams	60.54	61.81	64.90	62.76	

Table : Correct recognition of new words of new 'baseline+1-grams' and 'baseline+1-,2-,3-grams' LMs

Results: percentage of new words correctly recognized

BASELINE **0.00%**ORACLE **85.45%**

	# examples of sentences			
	5ex	10ex	20ex	50ex
baseline+1-grams	29.81	20.00	22.18	20.36
baseline+1-,2-,3-grams	60.54	61.81	64.90	62.76

Table : Correct recognition of new words of new 'baseline+1-grams' and 'baseline+1-,2-,3-grams' LMs

⇒ up to 65% of the new words correctly recognized

Summary

- Context
- 2 Approach
- 3 Experiments
- 4 Conclusions and future work

Conclusions and future work

Conclusions

- * adding only 1-grams for new words hardly improves the performance
- adding 1-,2-,3-grams for new words provides results closer to the ORACLE's performance
- the similarity approach and the proposed method to add new n-grams into a language model are efficient

Investigate further

- * the setups for finding similar words
- filter the n-grams of new words (diminish the size of new LMs)
- * consider a different number of similar words for each new word

Thank you for your attention!

- 1. aquire a few examples of sentences with the new word
 - \rightarrow compute the neighbor distributions of the new word nW

$$P_k(w|nW)$$
 for $k = \{..., -3, -2, -1, +1, +2, +3, ...\}$

- example of new word : tournevis
- examples of sentences
 - * <u>le tournevis motorisé</u> s' appelle une visseuse
 - * un tournevis suffit pour le démontage
 - * I' embout du tournevis peut vriller si on serre trop fort
 - * la $\underline{\text{tête}}$ $\underline{\text{du}}$ tournevis $\underline{\text{peut}}$ $\underline{\text{être}}$ plate cruciforme ou autre
 - * ...
- preceeding and following neighbors

• the [p-1] neighbor distribution of new word "tournevis"

	[p-1]	le	un	du	de
nW=tournevis	#18	0.333	0.333	0.167	0.167

- 2. use reference corpus to search for similar words
 - \rightarrow compute the neighbor distributions of each known word kW

$$P_k(w'|kW)$$
 for $k = \{..., -3, -2, -1, +1, +2, +3, ...\}$

- use directly the counts file of n-gram sequences
 - * $2g \Rightarrow maximum 2 neighbors [p-1], [p+1]$
 - * $3g \Rightarrow maximum 4 neighbors [p-2], [p-1], [p+1], [p+2]$
- an exemple of a 3-gram entry: "du monde numérique 3"
 - * the known word "monde"
 - ightarrow previous neighbor [p-1] : du
 - → following neighbor [p+1] : numérique
- preceeding and following neighbors of word "monde"

• the [p-1] neighbor distribution of known word "monde"

	[p-1]	le	un	du	de	
kW=monde	#1724	0.308	0.063	0.349	0.031	

3. compute the KL divergence between the neighbor distributions of all known word (kW) and a new word (nW)

$$D_{KL}\left(\ P_k(\bullet|\mathbf{kW})\ ||\ P_k(\bullet|\mathbf{nW})\ \right) = \sum_{w}\ P_k(w|\mathbf{kW})\ log\left(\frac{P_k(w|\mathbf{kW})}{P_k(w|\mathbf{nW})}\right)$$

[p-1]	le	un	du	de
nW=tournevis	0.333	0.333	0.167	0.167
kW=monde	0.308	0.063	0.349	0.031

3. compute the KL divergence between the neighbor distributions of all known word (kW) and a new word (nW)

$$D_{\mathit{KL}}\left(\ P_{\mathit{k}}(\bullet|\mathsf{kW})\ ||\ P_{\mathit{k}}(\bullet|\mathsf{nW})\ \right) = \sum_{\mathit{w}}\ P_{\mathit{k}}(\mathit{w}|\mathsf{kW})\ \log\left(\frac{P_{\mathit{k}}(\mathit{w}|\mathsf{kW})}{P_{\mathit{k}}(\mathit{w}|\mathsf{nW})}\right)$$

[p-1]	le	un	du	de
nW=tournevis	0.333	0.333	0.167	0.167
kW=monde	0.308	0.063	0.349	0.031

$$\begin{array}{|c|c|c|c|c|}\hline [p-1] & D(\textit{le}) \\ \hline \textbf{kW=monde,nW=tournevis} & -0.035 \\ \hline \end{array}$$

$$\begin{aligned} \mathbf{w} &= \mathbf{le} \\ D(w) &= P\left(w|kW\right)log_2\left(\frac{P(w|kW)}{P(w|nW)}\right) \\ D(w) &= 0.308log_2\left(\frac{0.308}{0.333}\right) \\ D(w) &= -0.035 \end{aligned}$$

3. compute the KL divergence between the neighbor distributions of all known word (kW) and a new word (nW)

$$D_{\mathit{KL}}\left(\ P_{\mathit{k}}(\bullet|\mathsf{kW})\ ||\ P_{\mathit{k}}(\bullet|\mathsf{nW})\ \right) = \sum_{\mathit{w}}\ P_{\mathit{k}}(\mathit{w}|\mathsf{kW})\ \log\left(\frac{P_{\mathit{k}}(\mathit{w}|\mathsf{kW})}{P_{\mathit{k}}(\mathit{w}|\mathsf{nW})}\right)$$

[p-1]	le	un	du	de
nW=tournevis	0.333	0.333	0.167	0.167
kW=monde	0.308	0.063	0.349	0.031

$$\begin{aligned} \mathbf{w} &= \mathbf{un} \\ D(w) &= P\left(w|kW\right)log_2\left(\frac{P(w|kW)}{P(w|nW)}\right) \\ D(w) &= 0.063log_2\left(\frac{0.063}{0.333}\right) \\ D(w) &= -0.151 \end{aligned}$$

3. compute the KL divergence between the neighbor distributions of all known word (kW) and a new word (nW)

$$D_{KL}\left(\ P_k(\bullet|\mathbf{kW})\ ||\ P_k(\bullet|\mathbf{nW})\ \right) = \sum_{w}\ P_k(w|\mathbf{kW})\ log\left(\frac{P_k(w|\mathbf{kW})}{P_k(w|\mathbf{nW})}\right)$$

[p-1]	le	un	du	de
nW=tournevis	0.333	0.333	0.167	0.167
kW=monde	0.308	0.063	0.349	0.031

$$\begin{array}{c|cccc} [p\text{-}1] & D(le) & D(un) & D(du) \\ \hline \textbf{kW=monde,nW=tournevis} & -0.035 & -0.151 & \textbf{0.371} \\ \end{array}$$

$$\begin{aligned} \mathbf{w} &= \mathbf{du} \\ D(w) &= P\left(w|kW\right)log_2\left(\frac{P(w|kW)}{P(w|nW)}\right) \\ D(w) &= 0.349log_2\left(\frac{0.349}{0.167}\right) \\ D(w) &= 0.371 \end{aligned}$$

3. compute the KL divergence between the neighbor distributions of all known word (kW) and a new word (nW)

$$D_{\mathit{KL}}\left(\ P_{\mathit{k}}(\bullet|\mathsf{kW})\ ||\ P_{\mathit{k}}(\bullet|\mathsf{nW})\ \right) = \sum_{\mathit{w}}\ P_{\mathit{k}}(\mathit{w}|\mathsf{kW})\ \log\left(\frac{P_{\mathit{k}}(\mathit{w}|\mathsf{kW})}{P_{\mathit{k}}(\mathit{w}|\mathsf{nW})}\right)$$

[p-1]	le	un	du	de
nW=tournevis	0.333	0.333	0.167	0.167
kW=monde	0.308	0.063	0.349	0.031

$$\begin{aligned} \mathbf{w} &= \mathbf{de} \\ D(w) &= P\left(w|kW\right) log_2\left(\frac{P(w|kW)}{P(w|nW)}\right) \\ D(w) &= 0.031 log_2\left(\frac{0.031}{0.167}\right) \\ D(w) &= -0.075 \end{aligned}$$

3. compute the KL divergence between the neighbor distributions of all known word (kW) and a new word (nW)

$$D_{KL}\left(\ P_k(\bullet|\mathbf{kW})\ ||\ P_k(\bullet|\mathbf{nW})\ \right) = \sum_{w}\ P_k(w|\mathbf{kW})\ log\left(\frac{P_k(w|\mathbf{kW})}{P_k(w|\mathbf{nW})}\right)$$

[p-1]	le	un	du	de
nW=tournevis	0.333	0.333	0.167	0.167
kW=monde	0.308	0.063	0.349	0.031

[p-1]	D(le)	D(un)	D(du)	D(de)	$D_{KL}(p q)$
kW=monde,nW=tournevis	-0.035	-0.151	0.371	-0.075	0.110

4. select the most similar words to a new word with respect to the KL divergences

$$D(kW, nW) = \sum_{k} D_{k}(kW, nW)$$

Example: Wikipedia corpus, 3-grams

new word - known word	Total	[p-2]	[p-1]	[p+1]	[p+2]
tournevis-système	26.8459	10.6792	0.7044	7.9961	7.4662
tournevis-jeu	27.6926	10.6276	0.4276	9.0107	7.6267
tournevis-modèle	28.3001	11.5795	0.7768	8.0591	7.8847
tournevis-véhicule	28.482	12.411	0.706	8.2637	7.1013
tournevis-traitement	29.0743	11.7698	0.5091	8.8681	7.9273
tournevis-courant	29.3598	10.9703	1.2209	9.1505	8.0181
tournevis-type	29.499	11.1394	1.445	8.6027	8.3119
tournevis-poisson	29.5627	11.9312	0.5941	9.6137	7.4237
tournevis-style	29.6316	11.3593	0.6154	9.5178	8.1391
tournevis-dispositif	29.6418	12.0949	0.8052	9.2124	7.5293

Annexe: Add a new word nW into a language model

```
1: newLM \leftarrow LM
2: newNgrams \leftarrow \emptyset
3: # process the reference ngrams
4: for each ngram ∈ LM do
5:
       for each kW ∈ similarWords(nW) do
6:
          if contains(ngram, kW) then
7:
             ngram' ← replace(ngram, kW, nW)
8:
             push(newNgrams, ngram')
9:
          end if
10:
       end for
11: end for
12: # choose the new ngrams to add to the newLM
13: S \leftarrow getUniqueSequences(newNgrams)
14: for each seg \in S do
15:
       if frequency(seq) = 1 then
16:
           prob \leftarrow getProbability(seq)
17:
       else
18:
           P \leftarrow getProbabilities(seq)
19:
           prob \leftarrow medianProbability(P)
20:
       end if
21:
       push(newLM, "prob seq")
22: end for
```