Linealidad en circuitos eléctricos

Un elemento es lineal si cumple con dos principios fundamentales:

- ☐ Proporcionalidad
- ☐ Superposición

Principio de proporcionalidad

Si la entrada se modifica por un factor K, la salida se modifica por el mismo factor K. En un circuito eléctrico, se puede considerar como entrada o como salida el voltaje y la corriente.

Para un resistor

$$v = R \cdot i$$

Ejemplo:

$$v = 2i$$
 $(R = 2\Omega)$
 $si \ i = 2A \Rightarrow v = 4v$
 $si \ i = 4A \Rightarrow v = 8v$

El voltaje y la corriente cambiaron por un factor de 2.

Para un inductor

$$v(t) = L \frac{di(t)}{dt}$$

Para un capacitor

Ejemplo:

$$v(t) = 5\frac{di(t)}{dt} \qquad (L = 5H)$$

$$si\ i(t) = 2\sin(4t)A \Rightarrow v(t) = 40\cos(4t)v$$

$$si\ i(t) = \sin(4t)A \quad \Rightarrow v(t) = 20\cos(4t)v$$

El voltaje y la corriente cambiaron por un factor de 0,5.

Ejemplo:

$$i(t) = 0.1 \frac{dv(t)}{dt} \qquad (C = 0.1F)$$

$$si \ v(t) = 10e^{-2t}V \implies i(t) = -2e^{-2t}A$$

$$si \ v(t) = 30e^{-2t}V \implies i(t) = -6e^{-2t}A$$

El voltaje y la corriente cambiaron por un factor de 3.

Principio de superposición

La respuesta a varias entradas se puede calcular analizando una entrada a la vez y sumando los resultados.

Dado un circuito lineal con fuentes independientes $F_1, F_2, ..., F_N$, sea G la respuesta (voltaje o corriente) de este circuito. Si G_j es la respuesta del circuito a la Fuente F_j con todas las otras fuentes independientes iguales a cero (las fuentes dependientes se dejan tal como están), entonces:

$$G = \sum_{j=1}^{N} G_j$$

Las fuentes dependientes NO se desconectan

Desconexión de fuentes independientes

Use the superposition principle to find the voltage Vx in the circuit below.

Consider the circuit shown in the figure. Determinte the voltage V using the superposition principle.

Teorema de Thévenin

El teorema de Thévenin establece que cualquier red lineal puede ser reemplazada por un circuito equivalente que consiste en una fuente independiente de voltaje (V_{th}) en serie con un resistor R_{th} , donde el voltaje V_{th} es el voltaje de circuito abierto de la red lineal y R_{th} es la resistencia equivalente que se ve en los terminales de la red lineal cuando todas las fuentes independientes son desconectadas.

Parámetros del circuito equivalente de Thévenin

 $V_{cab} = R_{th} \cdot I_{coc}$

Procedimiento

- 1) Identificar los terminales a y b.
- 2) Desconectar el (los) elemento (s) que no harán parte del circuito equivalente de Thévenin.
- 3) Hallar el voltaje de circuito abierto entre los terminales a y b.
- 4) Encontrar la resistencia equivalente de Thévenin usando el método apropiado (ver tabla).
- 5) Dibujar el circuitor equivalente de Thévenin con los elementos que se habían desconectado previamente.

Elementos del circuito	Método I	Método 2	Método 3
Fuentes independientes y resistores			
Fuentes independientes, fuentes dependientes y resistores	X		
Fuentes dependientes y resistores	X	X	

Resistencia Thévenin

<u>Método I</u>

Desconectar las fuentes independientes y calcular la resistencia equivalente entre los puntos a y b.

Método 2

Hallar la corriente de corto circuito y luego hallar la resistencia Thévenin como:

$$R_{TH} = \frac{V_{cab}}{I_{coc}}$$

Método 3

Desconectar las fuentes independientes (si hay) y conectar una fuente de prueba de IV o IA entre los terminales a y b. Calcular la corriente (I_f) o el voltaje (V_f) de la fuente de prueba y hallar la resistencia Thévenin como:

$$R_{TH} = \frac{V_f}{1A}$$
 ó $R_{TH} = \frac{1V}{I_f}$

Find the Thevenin equivalent between terminals a and b for the following circuit.

Determine the open circuit voltage, the short circuit current and the Thevenin resistance for the circuit below.

Find the value of R to make the current i_b equal to 2mA.

