Merge sort:

- Divide input into two parts X and Y
- Sort each part separately (recursion)
- Merge the two sorted parts into one sorted part

Base case: $n \le 1$ (already sorted, do nothing)

Merge sort:

- Divide input into two parts X and Y
- Sort each part separately (recursion)
- Merge the two sorted parts into one sorted part

Base case: $n \le 1$ (already sorted, do nothing)

Quicksort:

- Divide input into two parts X and Y so X ≤ Y
- Sort each part separately (recursion)
- Return X followed by Y

Base case: $n \le 1$ (already sorted, do nothing)

[Hoare, 1960]

As pseudo-code:

As pseudo-code:

(array, starting index, ending index)

```
QUICKSORT(A, p, r)

1 if p < r

2  // Partition the subarray around the pivot, which ends up in A[q].

3  q = \text{PARTITION}(A, p, r)

4  QUICKSORT(A, p, q - 1) // recursively sort the low side

5  QUICKSORT(A, q + 1, r) // recursively sort the high side
```

A call to **Quicksort(A, p, r)** is responsible for arranging the elements in **A[p ... r]** in sorted order.

The first call is **Quicksort(A, 1, n)**, which is responsible for sorting the entire array **A**. A call to **Partition(A, p, r)** selects an element $x \in A$ and partitions A[p ... r] such that:

$$A[q] = x$$
 $A[p \dots q - 1] \le x$ $A[q + 1 \dots r] > x$

How to implement Partition?

Idea: Choose an element \mathbf{x} from the input to partition around (here, the last element in the array segment). Build the two parts during a single pass through the array based on the following.

Principle:

How to implement Partition?

Idea: Choose an element \mathbf{x} from the input to partition around (here, the last element in the array segment). Build the two parts during a single pass through the array based on the following.

Principle:

^{*}Choose a pivot element.

^{*}Rearrange the subarray so that elements smaller than or equal to the pivot are on one side, and elements greater are on the other side.

^{*}Place the pivot in its correct sorted position and return its index.

Principle:

How to take a step during the iteration?

An example of iteration:

An example of iteration:

Time: O(n) where n is the number of elements in A[p . . . r].

As pseudo-code:

p start index, r end index

```
PARTITION (A, p, r)
   x = A[r]
                                  // the pivot last element is the pivot
  i = p - 1
                                  // highest index into the low side
   for j = p to r - 1
                                  // process each element other than the pivot
       if A[j] \leq x
                              // does this element belong on the low side?
            i = i + 1
                                       // index of a new slot in the low side
                                                                 swap, the blue part i moved one to
            exchange A[i] with A[j] // put this element there
   exchange A[i + 1] with A[r] // pivot goes just to the right of the low side
                                  // new index of the pivot
   return i + 1
```

Depends on how partitioning divides the input during recursion.

Depends on how partitioning divides the input during recursion.

Two extremes of recursive call sizes:

- Completely unbalanced: 0 and n 1
- Perfectly balanced: Γ(n − 1)/21 and L(n − 1)/2J

Depends on how partitioning divides the input during recursion.

Two extremes of recursive call sizes:

- ► Completely unbalanced: 0 and n 1 if we are "unlucky" and all ways choose the biggest or smallest number as our pivot point
- ▶ Perfectly balanced: $\lceil (n-1)/2 \rceil$ and $\lfloor (n-1)/2 \rfloor$ divides the array roughly in the middel
- ► If all partitions are perfectly balanced: O(n log n) (approximately the same analysis as for Mergesort).
- ► If all partitions are completely unbalanced: $O(n+(n-1)+(n-2)+\cdots+2+1)=O(n^2)$.

This represents the **best-case** and **worst-case** scenarios for Quicksort.

- ▶ In practice, **O(n log n)** for almost all inputs.
- However, sorted input leads to Θ(n²) complexity with the above choice of pivot element x (so this choice should not be used in practice).
- Suggestions for more robust choice of partition element x: either as the middle element, as the median of several elements, as a random element, or as the median of several randomly chosen elements.
 - Quicksort is in place: does not use more space than the input array.
- Code is very efficient in practice. A well-implemented Quicksort is often the best all-round sorting algorithm (and chosen in many libraries, e.g. Java and C++/STL).