National University of Computer & Emerging Sciences

Lecture 02
BS(CS)
Fall 2024
The Network Edge and the Network Core

Recap

- Internet: "network of networks"
- protocols are everywhere
 - control sending, receiving of messages
 - e.g., HTTP (Web), streaming
 - video, Skype, TCP, IP, WiFi, 4G, Ethernet
 - Internet standards
 - RFC: Request for Comments
 - IETF: Internet Engineering Task Force

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

Network core:

- interconnected routers
- network of networks

Links: physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps Ethernet

Links: physical media

Coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple frequency channels on cable
 - 100's Mbps per channel

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (10's-100's Gbps)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Links: physical media

Wireless radio

- signal carried in various "bands" in electromagnetic spectrum
- no physical "wire"
- broadcast, "half-duplex" (sender to receiver)
- propagation environment effects:
 - reflection
 - obstruction by objects
 - Interference/noise

Radio link types:

- Wireless LAN (WiFi)
 - 10-100's Mbps; 10's of meters
- wide-area (e.g., 4G cellular)
 - 10's Mbps over ~10 Km
- Bluetooth: cable replacement
 - short distances, limited rates
- terrestrial microwave
 - point-to-point; 45 Mbps channels
- satellite
 - up to 45 Mbps per channel
 - 270 msec end-end delay

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - network forwards packets from one router to the next, across links on path from source to destination

Two key network-core functions

Routing:

- global action: determine sourcedestination paths taken by packets
- routing algorithms

Lecture 02: Network Edge & Core

Lecture 02: Network Edge & Core

Packet-switching: store-and-forward

- packet transmission delay: takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link

One-hop numerical example:

- L = 10 Kbits
- *R* = 100 Mbps
- one-hop transmission delay= 0.1 msec

Packet-switching: queueing

Queueing occurs when work arrives faster than it can be serviced:

Packet-switching: queueing

Packet queuing and loss: if arrival rate (in bps) to link exceeds transmission rate (bps) of link for some period of time:

- packets will queue, waiting to be transmitted on output link
- packets can be dropped (lost) if memory (buffer) in router fills up

Alternative to packet switching: circuit switching

end-end resources allocated to, reserved for "call" between source and destination

- in diagram, each link has four circuits.
 - -call gets 2nd circuit in top link and 1st circuit in right link.
- · dedicated resources: no sharing
 - –circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive

Circuit switching: FDM and TDM

Frequency Division Multiplexing (FDM)

- optical, electromagnetic frequencies divided into (narrow) frequency bands
- each call allocated its own band, can transmit at max rate of that narrow band

Time Division Multiplexing (TDM)

- time divided into slots
- each call allocated periodic slot(s), can transmit at maximum rate of (wider) frequency band (only) during its time slot(s)

Packet switching versus circuit switching

example:

- 1 Gb/s link
- each user:
 - 100 Mb/s when "active"
 - active 10% of time

Q: how many users can use this network under circuit-switching and packet switching?

- circuit-switching: 10 users
- packet switching: with 35 users, probability > 10 active at same time is less than .0004 *

Q: how did we get value 0.0004?

A: HW problem (for those with course in probability only)

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose ross/interactive

Packet switching versus circuit switching

Is packet switching a "slam dunk winner"?

- great for "bursty" data sometimes has data to send, but at other times not
 - resource sharing
 - simpler, no call setup
- excessive congestion possible: packet delay and loss due to buffer overflow
 - protocols needed for reliable data transfer, congestion control

- hosts connect to Internet via access Internet Service Providers (ISPs)
- access ISPs in turn must be interconnected
 - so that any two hosts (anywhere!) can send packets to each other
- resulting network of networks is very complex
 - evolution driven by economics, national policies

Let's take a stepwise approach to describe current Internet structure

Question: given millions of access ISPs, how to connect them together?

Question: given millions of access ISPs, how to connect them together?

Option: connect each access ISP to one global transit ISP? Customer and provider ISPs have economic agreement.

But if one global ISP is viable business, there will be competitors

But if one global ISP is viable business, there will be competitors who will want to be connected

... and regional networks may arise to connect access nets to ISPs

... and content provider networks (e.g., Google, Microsoft, Akamai) may run their own network, to bring services, content close to end users

At "center": small # of well-connected large networks

- "tier-1" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage
- content provider networks (e.g., Google, Facebook): private network that connects its data centers to Internet, often bypassing tier-1, regional ISPs

Lecture 02: Network Edge & Core

Computer Networking: A Top Down Approach

6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

A note on the origin of these ppt slides:

These slides are freely provided by the book authors and it represents a *lot* of work on their part. We would like to thank J.F Kurose and K.W. Ross.

Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any way of organizing structure of network?

.... or at least our discussion of networks?

Lecture 02: Network Edge & Core

Organization of air travel

ticket (purchase) ticket (complain)
baggage (check) baggage (claim)
gates (load) gates (unload)
runway takeoff runway landing
airplane routing airplane routing

a series of steps

Layering of airline functionality

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Why layering?

dealing with complex systems:

- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- Led to flexibility in modifying and developing network architectures.
- Accommodates incremental changes.

Lecture 02: Network Edge & Core

We use the concept of layers in our daily life. As an example, let us consider two friends who communicate through postal mail. The process of sending a letter to a friend would be complex if there were no services available from the post office.

Lecture 02: Network Edge & Core

Tasks involved in sending a letter

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802. III (WiFi), PPP
- physical: bits "on the wire"

