$dim({0}) = 0$	
V1={av a∈R} for some v ∈ R ⁿ V1은 v에 평행하여 원점을 지나는 vector space이다. dim(V1) = 1	
Range Range of a matrix $A \in \mathbb{R}^{m+n}$, denoted by R(A) is defined $\mathcal{R}(A) = \{Ax x \in \mathbb{R}^n\}$	as
R(A)는 span(a1, a2,, an)과 같은 의미이다.	
Ax - y = 0 → y가 range 안에 있어야 solution이 존재한다는 의미이	다 <u>.</u>
Range: interpretation let $v \in R(A)$ and $w \not\in R(A)$	
R(A)은 취할 수 있는 output들이다.	
R(A) is subspace	
Number of base variables of A = dim(R(A))	
m ≥ n이 가정되어 있다.	
Nullspace Nullspace of a matrix $A \in \mathbb{R}^{m \times n}$, denoted by N(A) is define	ed as
$\mathcal{N}(A) = \{x \in \mathbb{R}^n Ax = 0\}$ N(A)는 A를 통과하여 0이 되는 x들을 모아 놓은 것이다 Null space에 들어 있는 모든 벡터들은 A의 row에 대해	수직이다.
N(A) gives the ambiguity of system A for any v ∈ N(A), we have A(x +v) = Ax → x가 무엇이었는지는 알아채기가 힘들다.	
conversely, if we have $Ax = Ay$ then $y = x + v$ for some v	$\gamma \in N(A)$
Nullspace: Interpretation if z ∈N(A), then z is undetectable from sensor A → z는 A로는 발견되지 않는다 → Ax = A(x + z) → A라는 시스템에서 x와 x + z는 같은 것으로 보일 수 박	박에 없다.
→ N(A)가 작을수록 모호성이 줄어드는 것이다.	
N(A) = {0}인 경우, 가장 작은 모호성을 가진다.	
Rank $rank(A) = dim(R(A))$ $rank(A) = number of independent rows/columns$ $\rightarrow rank(A) = rank(A^{T})$	
Rank은 A의 자유도를 말해준다. Rank가 클수록 output 정보가 더 잘 보존된다.	
rank(A) ≤ min(m, n)	