Auxiliar #5 - MAS/Ondas

Introducción a la Física Moderna (F1100-5)

Erik Saez A. - Javiera Toro

Departamento de Ingeniería Eléctrica Universidad de Chile

September 12, 2025

Contenidos

- 1 Resumen MAS
- 2 Resumen Ondas
- 3 Pregunta 1
- 4 Pregunta 2
- 5 Pregunta 3
- 6 Pregunta 4
- 7 Pregunta 5

M.A.S.: Ecuación y Solución

FDO del M A S

Una ecuación diferencial ordinaria (EDO) relaciona una función desconocida y sus derivadas respecto de una sola variable independiente. La forma más común que encontraremos es la EDO lineal homogénea de 2° orden:

$$m\ddot{x} + kx = 0 \iff \ddot{x} + \frac{k}{m}x = 0$$

Frecuencia angular $\omega^2 = \frac{k}{m} \Rightarrow \omega = \sqrt{\frac{k}{m}}$, que cuantifica la rapidez de la oscilación.

Posición de equilibrio

La **posición de equilibrio** $x_{\rm eq}$ es aquella en la que la fuerza neta (y por ende la aceleración) se anula: $m\ddot{x}=0$, lo que implica que:

$$\ddot{x} = \dot{x} = 0 \tag{1}$$

Derivadas útiles

Cambio de variable respecto al equilibrio:

$$y(t) = x(t) - x_{eq},$$

 $\dot{y}(t) = \dot{x}(t),$
 $\ddot{y}(t) = \ddot{x}(t).$

Solución general y derivada (conocida)

Para
$$\ddot{x} + \omega^2 x = 0$$
:

$$x(t) = A\cos(\omega t) + B\sin(\omega t),$$

$$\dot{x}(t) = -A\omega\sin(\omega t) + B\omega\cos(\omega t).$$

C.I.:
$$x(t = 0) = x_0 \Rightarrow A = x_0$$
,

$$\dot{x}(0) = v_0 \Rightarrow A = x_0$$
$$\dot{x}(0) = v_0 \Rightarrow B = v_0/\omega.$$

Ondas en cuerdas: viajeras y superposición

Ecuación de onda y velocidad

La ecuacion de la onda describe el comportamiento temporal y espacial de perturbaciones que se propagan en un medio.

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}, \qquad c = \sqrt{\frac{T}{\rho}}.$$

Soluciones de d'Alembert

La solucion de la ecuación de onda es:

$$y(x,t) = f(x-ct) + g(x+ct).$$

- **Derecha:** f(x-ct) (traslación en +x).
- **Izquierda:** g(x + ct) (traslación en -x).

Onda armónica viajera

$$y(x,t) = A\cos(kx - \omega t + \phi) \tag{2}$$

$$k = \frac{2\pi}{\lambda}, \quad c = \frac{\omega}{k} = \frac{\lambda}{T}$$
 (3)

Superposición / Interferencia (misma k, ω)

$$y_1 = A\cos\Theta, \quad y_2 = A\cos(\Theta + \Delta\phi), \qquad \Theta = kx - \omega t + \phi.$$

Suma:

$$y = y_1 + y_2 = 2A\cos\left(\frac{\Delta\phi}{2}\right)\cos\left(\Theta + \frac{\Delta\phi}{2}\right).$$

Casos clave:

- En fase ($\Delta \phi = 0$): amplitud = 2A (constructiva).
- En contrafase ($\Delta \phi = \pi$): amplitud = 0

Enunciado

Un péndulo de longitud L con una masa M está unido lateralmente a un resorte de constante elástica k, como se muestra esquemáticamente. Cuando la masa cuelga verticalmente bajo el punto de suspensión, el resorte está sin deformación.

- Obtén una expresión aproximada para el período de oscilación del sistema para pequeñas amplitudes (linealiza las ecuaciones de movimiento).
- 2 Supón $M = 1,00 \,\mathrm{kg}$ y que, en ausencia del resorte, el período del péndulo es $2,00 \,\mathrm{s}$. Determina k si el período del sistema acoplado es $1,00 \,\mathrm{s}$.

Enunciado

Bosquee la función

$$f(x) = \frac{1 \text{ cm}}{1 + (x/1 \text{ cm})^2}.$$
 (4)

Escriba $f(\bar{x})$ para $\bar{x}=x-ct$, donde c es la velocidad de propagación de la onda y t el tiempo. Si $c=1\,\mathrm{cm/s}$, bosquee la función u(x,t)=f(x-ct) para $t=0,1,2\,\mathrm{s}$, donde u(x,t) representa la amplitud de la onda en la posición x y tiempo t.

- **2** Calcule la velocidad vertical v(x,t) de la cuerda en el instante t=0. Para esto, derive la función u(x,t) con respecto al tiempo considerando x constante.
- Grafique v(x,0) en función de x. Note que esta es positiva y negativa en ciertas partes. Interprete el resultado.

Enunciado

Se tiene una masa m sostenida de dos cuerdas de largos L_1 y L_2 , con tensiones T_1 y T_2 respectivamente en presencia de gravedad, como se observa en la figura. Considere que T_2 es conocido y T_1 es tal que el sistema no se mueve verticalmente.

Si inicialmente la masa se suelta desde el reposo a una distancia x,

- 1 Calcule el valor de T_1 para que el sistema no se mueva verticalmente.
- 2 Encuentre la frecuencia angular de oscilación.
- 3 Calcule el período de oscilación.
- 4 Calcule la amplitud de oscilación de la masa.

Considere para sus cálculos y aproximaciones $x \ll L_1, L_2$, y que las tensiones se mantienen al deformarse la cuerda.

Fig.: Masa sostenida por dos cuerdas con tensiones T_1 y T_2 .

Enunciado

En la siguiente figura se muestran dos pulsos, el pulso triangular se mueve hacia la derecha con una rapidez de $1~\mathrm{m/s}$ y el pulso rectangular se mueve hacia la izquierda también con una rapidez de $1~\mathrm{m/s}$. En el tiempo t=0, ambos pulsos están separados una distancia de $2~\mathrm{m}$.

- I Considerando el sistema de referencia mostrado en la figura, escriba las funciones que representan al pulso triangular y al pulso rectangular por separado, para todo instante de tiempo.
- 2 Dibuje el pulso resultante en los instantes t = 1, 2, 3, 4 s. Considere que cuando dos ondas se encuentran, ambas ondas se suman.

Enunciado

Tres segmentos de cuerda de densidad μ están atados como muestra la figura. Suponga que se conocen las distancias L_1 y L_2 , y el ángulo α . Un pulso que parte en A tarda un tiempo T_B en llegar a B, y un tiempo T_C en llegar a C. Encuentre la longitud de la cuerda L_3 , y la tensión de la cuerda L_1 .

Fig.: Esquema del sistema de cuerdas con segmentos L_1 , L_2 y L_3 y ángulo α .

Éxito, ustedes son capaces de todo!