Gunen, $X = \alpha$ is a solution, $X^2 = b \pmod{p}$. Prone, by induction. emy $e \ge 1$, there exist a unique solution, X = B satisfying both, $\beta^2 \equiv b \pmod{p^2}$ and $\beta \equiv \alpha \pmod{p}$ The case e=1, given to us, we must take B= a, Now, suppose that we have a value of B work for e, we need sol. that work for e+1. Now of Ψ is a sol for e+1, then Ψ (mod p^e) is a sol. for e. $\Psi \equiv \mathcal{B}$ (mod p^e), the sol of Ψ for e+1, well have from $Y = \beta + yp^e$ for some integer y, $y^0 = \phi$. And, ϕ will make Y into , a sold $X^2 = b$ (mod $p^e + b$). β is a sol to $\chi^2 = b$ (mod p^e), mean. $\beta^2 = b + p^e B$ for $\chi = B$ Sub $Y = \beta + yp^2$ into congruency $X^2 = b$ (mod p^{l+1}) solve for y. (B+ype) = b (mod pet1) B + 2ypl + y 22l = b " $\beta^{2} + 2yp^{2} = b$ " sine $2e \ge e + 1$ b + peB + 2ype = b " sine B2 = b + peB $p^{\ell}(B+2y)\equiv 0 \pmod{p^{\ell+1}}$ or $\pmod{p^{\ell}p}$ B+ $2y \equiv 0 \pmod{p}$, $y \equiv p-1$ B (mod p) $p \geq 2$ This proves the for every $e \geq 1$ there exist a unique value of B (mod p) abolying $\beta^2 \equiv b \pmod{p}$ and $\beta \equiv \infty \pmod{p}$ & B (modp)