# Greedy Heuristics for Set Cover

Eirini Asteri, Jessica Hoffmann

University of Texas, Austin

### Outline

1 Set Cover & Greedy Algorithm

② Greedy Heuristics

3 Experiments & Results



• Number of distinct elements e<sub>i</sub>



- Number of distinct elements e<sub>i</sub>
- Number of sets S<sub>j</sub>



- Number of distinct elements e;
- Number of sets  $S_i$
- A weight for each set w<sub>i</sub>













- Number of distinct elements e;
- Number of sets  $S_i$
- A weight for each set w<sub>i</sub>
- Goal Find set cover with minimum weight











- Number of distinct elements ei
- Number of sets  $S_j$
- A weight for each set  $w_j$
- Goal Find set cover with minimum weight
- Greedy Choice

$$best\_set = \arg\min_{l} \frac{w_{l}}{|\hat{S}_{l}|}$$









# **Basic Preprocessing**

#### Get rid of redundant sets 🕋

If  $S_{small} \subseteq S_{big}$  and weight $(S_{small}) \ge \text{weight}(S_{big})$  then  $S_{small}$  is a redundant set.



 Elements with frequency 1 should be covered first



- Elements with frequency 1 should be covered first
- Extend idea to "infrequent" elements



- Elements with frequency 1 should be covered first
- Extend idea to "infrequent" elements
- Assign a value to each element

$$\mathsf{value}(\mathsf{element}) = \frac{1}{\mathsf{frequency-}1}$$



- 9 (0)
- <mark>3</mark>
- **10** ⑤

- Elements with frequency 1 should be covered first
- Extend idea to "infrequent" elements
- Assign a value to each element

$$\mathsf{value}(\mathsf{element}) = \frac{1}{\mathsf{frequency-}1}$$

Assign value to each set

$$\mathsf{value}(\mathsf{set}) = \sum \mathsf{value}(\mathsf{element})$$









- Elements with frequency 1 should be covered first
- Extend idea to "infrequent" elements
- Assign a value to each element

$$value(element) = \frac{1}{frequency-1}$$

Assign value to each set

$$\mathsf{value}(\mathsf{set}) = \sum \mathsf{value}(\mathsf{element})$$

Choose a set with small weight and large value!

#### Heuristics, General Framework



New Greedy Choice

$$best\_set = \arg\min_{j} \frac{w_{j}}{v_{j}} = \arg\min_{j} \frac{w_{j}}{\sum \mathsf{value}(e_{i})}$$







#### Heuristics, General Framework





New Greedy Choice

$$best\_set = \arg\min_{j} \frac{w_{j}}{v_{j}} = \arg\min_{j} \frac{w_{j}}{\sum \mathsf{value}(e_{i})}$$

Regular Greedy is a Special Case

$$\mathsf{if}\;\mathsf{value}(e_i) = 1 \to \frac{w_j}{\sum \mathsf{value}(e_i)} = \frac{w_j}{|\hat{S}_j|}$$

#### Another Heuristic Value Function..

#### Dig Deeper, Extract more Information 🚅



$$\mathsf{value}(e_i) = rac{\sum_{S_j: e_i \in S_j} \mathsf{average\_weight}(S_j)}{\mathsf{frequency}(e_i) - 1}$$

#### [Intuition]

- An element is valuable if it is contained in "expensive" sets.
- Choose a "cheap" set that contains elements that are "expensive in the market".

# Theoretical Analysis

#### Approximation result

Any greedy heuristic, caracterized by its value() function, is a  $\max_{e_i} value(e_i)$   $\frac{e_i}{\min_{e_i} value(e_i)} \cdot H_n$ -approximation.

**Remark:** This shows any greedy heuristics will have worse theoretical guarantees if our analysis is tight. The proof follows the same ideas as in our textbook [1].

### Value Functions Tested

• Greedy: 
$$v(e_i) = 1$$

• H 1: 
$$v(e_i) = \frac{1}{f_i - 1}$$

• H 2: 
$$v(e_i) = 1 + \frac{1}{f_i - 1}$$

• H 3: 
$$v(e_i) = exp(-f_i)$$

• H 4: 
$$v(e_i) = \frac{|\hat{S}_j|}{f_i - 1}$$

• H 7: 
$$v(e_i) = \frac{1}{(f_i - 1)^2}$$

• H 8: 
$$v(e_i) = \frac{1}{(f_i - 1)^3}$$

• H 9: 
$$v(e_i) = \frac{1}{\sqrt{f_i - 1}}$$

• H 10: 
$$v(e_i) = \frac{\sum w_j/|\hat{S}_j|}{f_i - 1}$$

• H 11: 
$$v(e_i) = c + \frac{\sum w_j/|\hat{S}_j|}{f_i - 1}$$

#### Data Sets

Datasets found at

people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html

**Description:** OR-Library is a collection of test data sets for a

variety of OR problems

Officious description: This is the most complete benchmark we

found for datasets for set cover, used for instance in [2]

**TL;DR:** 24 datasets, around 100 elements, around 2000 sets  $\rightarrow$ 

naive brute force won't work.

| Heuristics | 1                    | . 1                 | 1                      | 1                      | 1                | valuation-mixed | Greedy |
|------------|----------------------|---------------------|------------------------|------------------------|------------------|-----------------|--------|
|            | $\overline{f_i - 1}$ | $1+\frac{1}{f_i-1}$ | $\overline{(f_i-1)^2}$ | $\overline{(f_i-1)^3}$ | $\sqrt{f_i - 1}$ |                 |        |
| Dataset 1  | 477                  | 461                 | 477                    | 477                    | 461              | 463             | 463    |
| Dataset 2  | 566                  | 572                 | 580                    | 588                    | 572              | 580             | 582    |
| Dataset 3  | 564                  | 589                 | 552                    | 547                    | 582              | 596             | 598    |
| Dataset 4  | 540                  | 541                 | 561                    | 550                    | 541              | 547             | 548    |
| Dataset 5  | 575                  | 577                 | 573                    | 567                    | 584              | 577             | 577    |
| Dataset 6  | 596                  | 606                 | 580                    | 588                    | 606              | 606             | 615    |
| Dataset 7  | 480                  | 474                 | 461                    | 466                    | 481              | 476             | 476    |
| Dataset 8  | 542                  | 533                 | 542                    | 548                    | 538              | 537             | 533    |
| Dataset 9  | 747                  | 744                 | 732                    | 722                    | 746              | 747             | 747    |
| Dataset 10 | 290                  | 291                 | 291                    | 290                    | 291              | 292             | 289    |
| Dataset 11 | 345                  | 343                 | 339                    | 341                    | 343              | 342             | 348    |
| Dataset 12 | 246                  | 246                 | 245                    | 252                    | 246              | 246             | 246    |
| Dataset 13 | 262                  | 266                 | 265                    | 257                    | 266              | 267             | 265    |
| Dataset 14 | 234                  | 234                 | 235                    | 235                    | 234              | 233             | 236    |
| Dataset 15 | 250                  | 250                 | 244                    | 242                    | 250              | 245             | 251    |
| Dataset 16 | 317                  | 315                 | 311                    | 310                    | 315              | 320             | 326    |
| Dataset 17 | 313                  | 313                 | 314                    | 317                    | 313              | 313             | 323    |
| Dataset 18 | 304                  | 308                 | 307                    | 316                    | 308              | 304             | 312    |
| Dataset 19 | 159                  | 160                 | 164                    | 163                    | 159              | 157             | 159    |
| Dataset 20 | 171                  | 170                 | 172                    | 176                    | 171              | 170             | 170    |
| Dataset 21 | 161                  | 156                 | 159                    | 159                    | 163              | 156             | 161    |
| Dataset 22 | 149                  | 149                 | 149                    | 148                    | 149              | 145             | 149    |
| Dataset 23 | 195                  | 191                 | 194                    | 203                    | 195              | 192             | 196    |
| Dataset 24 | 545                  | 548                 | 565                    | 554                    | 557              | 550             | 556    |

| Universal  | 1                    | 1 +                         | 1             | 1             | 1                | lation mitted   | Cuandii |
|------------|----------------------|-----------------------------|---------------|---------------|------------------|-----------------|---------|
| Heuristics | $\overline{f_i - 1}$ | $\frac{1+f_{i}-1}{f_{i}-1}$ | $(f_i - 1)^2$ | $(f_i - 1)^3$ | $\sqrt{f_i - 1}$ | valuation-mixed | Greedy  |
| Dataset 1  | 477                  | 461                         | 477           | 477           | 461              | 463             | 463     |
| Dataset 2  | 566                  | 572                         | 580           | 588           | 572              | 580             | 582     |
| Dataset 3  | 564                  | 589                         | 552           | 547           | 582              | 596             | 598     |
| Dataset 4  | 540                  | 541                         | 561           | 550           | 541              | 547             | 548     |
| Dataset 5  | 575                  | 577                         | 573           | 567           | 584              | 577             | 577     |
| Dataset 6  | 596                  | 606                         | 580           | 588           | 606              | 606             | 615     |
| Dataset 7  | 480                  | 474                         | 461           | 466           | 481              | 476             | 476     |
| Dataset 8  | 542                  | 533                         | 542           | 548           | 538              | 537             | 533     |
| Dataset 9  | 747                  | 744                         | 732           | 722           | 746              | 747             | 747     |
| Dataset 10 | 290                  | 291                         | 291           | 290           | 291              | 292             | 289     |
| Dataset 11 | 345                  | 343                         | 339           | 341           | 343              | 342             | 348     |
| Dataset 12 | 246                  | 246                         | 245           | 252           | 246              | 246             | 246     |
| Dataset 13 | 262                  | 266                         | 265           | 257           | 266              | 267             | 265     |
| Dataset 14 | 234                  | 234                         | 235           | 235           | 234              | 233             | 236     |
| Dataset 15 | 250                  | 250                         | 244           | 242           | 250              | 245             | 251     |
| Dataset 16 | 317                  | 315                         | 311           | 310           | 315              | 320             | 326     |
| Dataset 17 | 313                  | 313                         | 314           | 317           | 313              | 313             | 323     |
| Dataset 18 | 304                  | 308                         | 307           | 316           | 308              | 304             | 312     |
| Dataset 19 | 159                  | 160                         | 164           | 163           | 159              | 157             | 159     |
| Dataset 20 | 171                  | 170                         | 172           | 176           | 171              | 170             | 170     |
| Dataset 21 | 161                  | 156                         | 159           | 159           | 163              | 156             | 161     |
| Dataset 22 | 149                  | 149                         | 149           | 148           | 149              | 145             | 149     |
| Dataset 23 | 195                  | 191                         | 194           | 203           | 195              | 192             | 196     |
| Dataset 24 | 545                  | 548                         | 565           | 554           | 557              | 550             | 556     |

• Most of our heuristics are better than Greedy most of the time

|                        | 1                     | 1                       | 1                         | 1                         | 1                            |                 |        |
|------------------------|-----------------------|-------------------------|---------------------------|---------------------------|------------------------------|-----------------|--------|
| Heuristics             | $\frac{1}{f_i-1}$     | $1 + \frac{1}{f_i - 1}$ |                           |                           | $\frac{1}{\sqrt{f_i-1}}$     | valuation-mixed | Greedy |
| Dataset 1              | $\frac{r_i - 1}{477}$ | $\frac{r_i - 1}{461}$   | $\frac{(f_i - 1)^2}{477}$ | $\frac{(f_i - 1)^3}{477}$ | $\frac{\sqrt{t_i - 1}}{461}$ | 463             | 463    |
| Dataset 1<br>Dataset 2 | 566                   | 572                     | 580                       | 588                       | 572                          | 580             | 582    |
|                        |                       |                         |                           |                           |                              |                 |        |
| Dataset 3              | 564                   | 589                     | 552                       | 547                       | 582                          | 596             | 598    |
| Dataset 4              | 540                   | 541                     | 561                       | 550                       | 541                          | 547             | 548    |
| Dataset 5              | 575                   | 577                     | 573                       | 567                       | 584                          | 577             | 577    |
| Dataset 6              | 596                   | 606                     | 580                       | 588                       | 606                          | 606             | 615    |
| Dataset 7              | 480                   | 474                     | 461                       | 466                       | 481                          | 476             | 476    |
| Dataset 8              | 542                   | 533                     | 542                       | 548                       | 538                          | 537             | 533    |
| Dataset 9              | 747                   | 744                     | 732                       | 722                       | 746                          | 747             | 747    |
| Dataset 10             | 290                   | 291                     | 291                       | 290                       | 291                          | 292             | 289    |
| Dataset 11             | 345                   | 343                     | 339                       | 341                       | 343                          | 342             | 348    |
| Dataset 12             | 246                   | 246                     | 245                       | 252                       | 246                          | 246             | 246    |
| Dataset 13             | 262                   | 266                     | 265                       | 257                       | 266                          | 267             | 265    |
| Dataset 14             | 234                   | 234                     | 235                       | 235                       | 234                          | 233             | 236    |
| Dataset 15             | 250                   | 250                     | 244                       | 242                       | 250                          | 245             | 251    |
| Dataset 16             | 317                   | 315                     | 311                       | 310                       | 315                          | 320             | 326    |
| Dataset 17             | 313                   | 313                     | 314                       | 317                       | 313                          | 313             | 323    |
| Dataset 18             | 304                   | 308                     | 307                       | 316                       | 308                          | 304             | 312    |
| Dataset 19             | 159                   | 160                     | 164                       | 163                       | 159                          | 157             | 159    |
| Dataset 20             | 171                   | 170                     | 172                       | 176                       | 171                          | 170             | 170    |
| Dataset 21             | 161                   | 156                     | 159                       | 159                       | 163                          | 156             | 161    |
| Dataset 22             | 149                   | 149                     | 149                       | 148                       | 149                          | 145             | 149    |
| Dataset 23             | 195                   | 191                     | 194                       | 203                       | 195                          | 192             | 196    |
| Dataset 24             | 545                   | 548                     | 565                       | 554                       | 557                          | 550             | 556    |
|                        |                       |                         |                           |                           |                              |                 |        |

- Most of our heuristics are better than Greedy most of the time
- The best heuristic varies a lot across datasets



Here are the gains in percents of the greedy objective, for the top 6 heuristics:



The best algorithm achieves a gain of -0.96 %. If we combine all the algorithms, we have an average gain of -2.88 %.

#### References



