1 Convergence

- 1. Convergence a.s. implies convergence i.p.
- 2. (a) Convergence i.p. iff Cauchy i.p.
 - (b) $X_n \stackrel{P}{\to} X$ iff each subsequence X_{n_k} contains a further subsequence $X_{n_{k(i)}} \stackrel{a.s.}{\to} X$.
- 3. Let $EX_n < \infty$. Then X_n is ui iff
 - (a) $\sup_n \int_A |X_n| dP \to 0$ for $P(A) \to 0$ with $A \in \mathcal{B}$.
 - (b) $\sup_n E|X_n| < \infty$
- 4. $\{|X_n|^p\}$ is ui if $\sup_n E(|X_n|^{p+\delta}) < \infty$ for some $\delta > 0$.
- 5. Let $p \ge 1$ and $X_n \in L_p$. The following are equivalent:
 - (a) X_n is L_p convergent.
 - (b) X_n is L_p Cauchy ($||X_n X_m||_p \to 0$).
 - (c) $|X_n|^p$ is ui and X_n converges ip.

2 Law of Large Numbers

1. General weak law of large numbers: If $\{X_n\}$ are independent,

$$\sum_{j=1}^{n} P[|X_j| > n] \to 0,$$

and

$$\frac{1}{n^2} \sum_{j=1}^n EX_j^2 1_{[|X_j| \le n]} \to 0,$$

then

$$\frac{S_n - a_n}{n} \stackrel{P}{\to} 0,$$

where

$$a_n = \sum_{j=1}^n E(X_j 1_{[|X_j| \le n]}).$$

- 2. If $\{X_n\}$ is independent, then TFAE:
 - (a) S_n converges i.p.
 - (b) S_n is Cauchy i.p.
 - (c) S_n converges a.s.
 - (d) S_n is Cauchy a.s.

- 3. If $\{X_n\}$ is independent and $\sum_n Var(X_n) < \infty$, then $\sum_n (X_n \mu_n)$ converges a.s. and L_2 .
- 4. If X_n is iid, then

$$E|X_1| < \infty \Rightarrow \bar{X}_n \stackrel{a.s.}{\to} \mu$$

 $EX_1^2 < \infty \Rightarrow S_n^2 \stackrel{a.s.}{\to} \sigma^2$

- 5. Let X_n be independent. Then $\sum_n X_n$ converges a.s. if and only if there exists c>0 such that
 - (a) $\sum_{n} P[|X_n| > c] < \infty$
 - (b) $\sum_{n} Var(X_n 1_{\lceil |X_n| \le c \rceil}) < \infty$
 - (c) $\sum_n E(X_n 1_{[|X_n| < c]})$ converges

3 Convergence in Distribution

- 1. Thm: If F is proper, then all four convergence are equivalent. (Write $F_n \Rightarrow F$.)
- 2. Thm (Scheffe):

$$\sup_{B \in \mathcal{B}(\mathbb{R})} |F_n(B) - F(B)| = \frac{1}{2} \int |f_n(x) - f(x)| dx$$

- 3. Thm (Baby Shorohod): If $X_n \Rightarrow X_0$, then there exist $X_n^{\#}$ on $([0,1], \mathcal{B}([0,1]), \lambda)$ such that $X_n \stackrel{d}{=} X_n^{\#}$ and $X_n^{\#} \stackrel{a.s.}{\to} X_0^{\#}$.
- 4. Thm (Continuous mapping): If $X_n \Rightarrow X_0$ and $h : \mathbb{R} \to \mathbb{R}$ satisfies $P[X_0 \in (\mathcal{C}(h))^c] = 0$, then $h(X_n) \Rightarrow h(X_0)$. Moreover, if h is bounded, then $Eh(X_n) \to Eh(X_0)$.
- 5. Thm (Delta method):

$$\sqrt{n}\left(\frac{g(\bar{X}) - g(\mu)}{\sigma g'(\mu)}\right) \Rightarrow N(0, 1)$$

- 6. Thm (Portmanteau): Let F_n be proper. TFAE:
 - (a) $F_n \Rightarrow F_0$
 - (b) $Eg(X_n) \to Eg(X_0)$ for any bounded continuous $g: \mathbb{R} \to \mathbb{R}$.
 - (c) $F_n(A) \to F(A)$ for any $A \in \mathcal{B}(\mathbb{R})$ with $F_0(\partial(A)) = 0$ (boundary has zero probability).
- 7. Thm (Slutsky): If $X_n \Rightarrow X$ and $X_n Y_n \stackrel{P}{\rightarrow} 0$, then

- 8. Thm (Convergence to type):
 - (a) If

$$\frac{X_n - b_n}{a_n} \Rightarrow U, \quad \frac{X_n - \beta_n}{\alpha_n} \Rightarrow V, \tag{1}$$

then

$$\frac{\alpha_n}{a_n} \to A > 0, \quad \frac{\beta_n - b_n}{a_n} \to B \in \mathbb{R}$$
 (2)

and

$$V \stackrel{d}{=} \frac{U - B}{A}.$$
 (3)

(b) If eq. (2) holds, then either of eq. (1) implies the other and eq. (3) holds.

4 Central Limit Theorem