Dynamic Taylor Cone Part II: Numeric Scheme

Chengzhe Zhou¹ and S. M. Troian²†

¹Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

²Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA

(Received xx; revised xx; accepted xx)

CONTENTS

1.	. Quintic spline . Numerical approximation		1
2.			4
	2.1.	Gaussian quadrature	4
	2.2.	Complete elliptic integral	5
3.	Axisy	mmetric boundary integral	5
	3.1.	Single layer integral	6
	3.2.	Double layer integral	7
	3.3.	Assembly	8
	3.4.	Benchmark	9
4.	Self-similar Taylor cone		10
	4.1.	Prepare for iteration	10
	4.2.	Newton iteration	11

Numeric scheme (Taylor 1964)

Key words: electrohydrodynamics, free surface flow, surface singularity (Authors should not enter keywords on the manuscript)

1. Quintic spline

Given N marker points $\{x_0, \ldots, x_N\}$, we first compute (N-1) chord lengths $\{h_0, \ldots, h_{N-1}\}$ by euclidean distance between adjacent marker points,

$$h_j = \|\mathbf{x}_{j+1} - \mathbf{x}_j\|_2 \text{ for } j = 0, \dots, N-1$$
 (1.1)

Then we introduce N chord coordinates $\{l_0,\ldots,l_N\}$ with $l_0=0$ and

$$l_j = \sum_{k=0}^{j-1} h_k$$
 for $j = 1, \dots, N$ (1.2)

† Email address for correspondence: stroian@caltech.edu

Global spline is a collection of local splines $\{s^{(0)}, \dots, s^{(N-1)}\}$ where each $s^{(j)}$ is a fifth degree polynomial defined on the interval $l \in [l_j, l_{j+1}]$,

$$s^{(j)}(l) = x_j + \sum_{k=1}^{5} c_k^{(j)} (l - l_j)^k, \text{ for } j = 0, \dots, N - 1$$
 (1.3)

Continuity between neighboring splines is satisfied up to the fourth derivative,

$$\frac{\mathrm{d}^{p} \boldsymbol{s}^{(j)}}{\mathrm{d} l^{p}} \bigg|_{l_{j+1}} = \frac{\mathrm{d}^{p} \boldsymbol{s}^{(j+1)}}{\mathrm{d} l^{p}} \bigg|_{l_{j+1}}, \quad \text{for} \quad p = 0, \dots, 4$$
(1.4)

The continuity conditions yield five equations

$$c_{3}^{(j-1)}h_{j-1}^{3} + c_{4}^{(j-1)}h_{j-1}^{4} + c_{5}^{(j-1)}h_{j-1}^{5} = x_{j} - x_{j-1} - c_{1}^{(j-1)}h_{j-1} - c_{2}^{(j-1)}h_{j-1}^{2}$$

$$3c_{3}^{(j-1)}h_{j-1}^{2} + 4c_{4}^{(j-1)}h_{j-1}^{3} + 5c_{5}^{(j-1)}h_{j-1}^{4} = -c_{1}^{(j-1)} - 2c_{2}^{(j-1)}h_{j-1} + c_{1}^{(j)}$$

$$6c_{3}^{(j-1)}h_{j-1} + 12c_{4}^{(j-1)}h_{j-1}^{2} + 20c_{5}^{(j-1)}h_{j-1}^{3} = -2c_{2}^{(j-1)} + 2c_{2}^{(j)}$$

$$c_{3}^{(j-1)} + 4h_{j-1}c_{4}^{(j-1)} + 10h_{j-1}^{2}c_{5}^{(j-1)} = c_{3}^{(j)}$$

$$c_{4}^{(j-1)} + 5h_{j-1}c_{5}^{(j-1)} = c_{4}^{(j)}$$

$$(1.5)$$

We first solve for $c_3^{(j-1)}$, $c_4^{(j-1)}$ and $c_5^{(j-1)}$,

$$h_{j-1}^{3}c_{3}^{(j-1)} = -6h_{j-1}c_{1}^{(j-1)} - 3h_{j-1}^{2}c_{2}^{(j-1)} - 4h_{j-1}c_{1}^{(j)} + h_{j-1}^{2}c_{2}^{(j)} + 10(\boldsymbol{x}_{j} - \boldsymbol{x}_{j-1}) h_{j-1}^{4}c_{4}^{(j-1)} = +8h_{j-1}c_{1}^{(j-1)} + 3h_{j-1}^{2}c_{2}^{(j-1)} + 7h_{j-1}c_{1}^{(j)} - 2h_{j-1}^{2}c_{2}^{(j)} - 15(\boldsymbol{x}_{j} - \boldsymbol{x}_{j-1}) h_{j-1}^{5}c_{5}^{(j-1)} = -3h_{j-1}c_{1}^{(j-1)} - h_{j-1}^{2}c_{2}^{(j-1)} - 3h_{j-1}c_{1}^{(j)} + h_{j-1}^{2}c_{2}^{(j)} + 6(\boldsymbol{x}_{j} - \boldsymbol{x}_{j-1})$$

$$(1.6)$$

Define $\lambda = h_j/h_{j-1}$. We have 2(N-1) equations for j = 1, ..., N-1,

$$10 \left[+\lambda^{3} \boldsymbol{x}_{j-1} - (1+\lambda^{3}) \boldsymbol{x}_{j} + \boldsymbol{x}_{j+1} \right] = 4h_{j} \lambda^{2} \boldsymbol{c}_{1}^{(j-1)} + 6h_{j} (\lambda^{2} - 1) \boldsymbol{c}_{1}^{(j)} - 4h_{j} \boldsymbol{c}_{1}^{(j+1)} + h_{j}^{2} \lambda \boldsymbol{c}_{2}^{(j-1)} - 3h_{j}^{2} (1+\lambda) \boldsymbol{c}_{2}^{(j)} + h_{j}^{2} \boldsymbol{c}_{2}^{(j+1)}$$

$$15 \left[-\lambda^{4} \boldsymbol{x}_{j-1} + (\lambda^{4} - 1) \boldsymbol{x}_{j} + \boldsymbol{x}_{j+1} \right] = 7h_{j} \lambda^{3} \boldsymbol{c}_{1}^{(j-1)} + 8h_{j} (1+\lambda^{3}) \boldsymbol{c}_{1}^{(j)} + 7h_{j} \boldsymbol{c}_{1}^{(j+1)} + 2h_{j}^{2} \lambda^{2} \boldsymbol{c}_{2}^{(j-1)} + 3h_{j}^{2} (1-\lambda^{2}) \boldsymbol{c}_{2}^{(j)} - 2h_{j}^{2} \boldsymbol{c}_{2}^{(j+1)}$$

$$(1.7)$$

for 2(N+1) unknowns, $\{\boldsymbol{c}_1^{(0)},\dots,\boldsymbol{c}_1^{(N)}\}$ and $\{\boldsymbol{c}_2^{(0)},\dots,\boldsymbol{c}_2^{(N)}\}$. The imposed boundary conditions at the beginning and end of the global spline produce four additional equations for $\{\boldsymbol{c}_1^{(0)},\boldsymbol{c}_2^{(0)},\boldsymbol{c}_1^{(N)},\boldsymbol{c}_2^{(N)}\}$. Note we have implicitly introduced a ghost spline $\boldsymbol{s}^{(N)}$ which satisfies all continuity conditions with $\boldsymbol{s}^{(N-1)}$. The purpose of $\boldsymbol{s}^{(N)}$ is to deal with boundary conditions at the end of spline.

In general there are three types of boundary conditions at each end. Let x, s and $c^{(j)}$ be one of the scalar components of vector x_j , spline $s^{(j)}$ and coefficient $c^{(j)}$. We first

consider boundary conditions at $l = l_0$,

Even:
$$0 = \frac{ds^{(0)}}{dl} = \frac{d^3s^{(0)}}{dl^3}$$
 at $l = l_0$ (1.8)

Odd:
$$0 = s^{(0)} = \frac{d^2 s^{(0)}}{dl^2} = \frac{d^4 s^{(0)}}{dl^4}$$
 at $l = l_0$ (1.9)

Mix:
$$\alpha = \frac{ds^{(0)}}{dl}$$
, $\beta = \frac{d^2s^{(0)}}{dl^2}$ at $l = l_0$ (1.10)

which lead to two equations,

$$c_1^{(0)} = 0 6h_0c_1^{(0)} + 3h_0^2c_2^{(0)} + 4h_0c_1^{(1)} - h_0^2c_2^{(1)} = -10x_0 + 10x_1$$
 Even (1.11a)

$$-8h_0c_1^{(0)} - 3h_0^2c_2^{(0)} - 7h_0c_1^{(1)} + 2h_0^2c_2^{(1)} = +15x_0 - 15x_1
c_2^{(0)} = 0$$

$$c_1^{(0)} = \alpha
c_2^{(0)} = \beta/2$$

$$A in the problem of the prob$$

$$c_1^{(0)} = \alpha c_2^{(0)} = \beta/2$$
 Mix (1.11c)

We then consider boundary conditions at $l = l_N$,

Even:
$$0 = \frac{ds^{(N-1)}}{dl} = \frac{d^3s^{(N-1)}}{dl^3}$$
 at $l = l_N$ (1.12)
Odd: $0 = s^{(N-1)} = \frac{d^2s^{(N-1)}}{dl^2} = \frac{d^4s^{(N-1)}}{dl^4}$ at $l = l_N$ (1.13)

Odd:
$$0 = s^{(N-1)} = \frac{d^2 s^{(N-1)}}{dl^2} = \frac{d^4 s^{(N-1)}}{dl^4}$$
 at $l = l_N$ (1.13)

Mix:
$$\alpha = \frac{ds^{(N-1)}}{dl}, \quad \beta = \frac{d^2s^{(N-1)}}{dl^2}$$
 at $l = l_N$ (1.14)

which also lead to two equations,

$$c_1^{(N)} = 0$$

$$-4h_{N-1}c_1^{(N-1)} - h_{N-1}^2c_2^{(N-1)} - 6h_{N-1}c_1^{(N)} + 3h_{N-1}^2c_2^{(N)} = 10x_{N-1} - 10x_N$$
Even
$$(1.15a)$$

$$-7h_{N-1}c_1^{(N-1)} - 2h_{N-1}^2c_2^{(N-1)} - 8h_{N-1}c_1^{(N)} + 3h_{N-1}^2c_2^{(N)} = 15x_{N-1} - 15x_N$$

$$c_2^{(N)} = 0$$

$$(1.15b)$$

$$c_1^{(N)} = \alpha$$

$$c_2^{(N)} = \beta/2$$

$$\begin{cases}
\text{Mix} \\
(1.15c)
\end{cases}$$

If we arrange the unknowns into a vector,

$$\left[c_1^{(0)}, c_2^{(0)}, \dots, c_1^{(j)}, c_2^{(j)}, \dots, c_1^{(N)}, c_2^{(N)}\right] \tag{1.16}$$

equations (1.7) with one of (1.11) and one of (1.15) result in a 2(N+1)-by-2(N+1)system of linear equations, which corresponds to a banded diagonal sparse matrix with at most 6 non-zero elements in each row. The rest coefficients $c_3^{(j)}$, $c_4^{(j)}$ and $c_5^{(j)}$ can be reconstruct using equation (1.6).

It is convenient to re-parametrize each local spline with a new variable $t \in [0, 1]$,

$$s^{(j)}(t) = x_j + \sum_{k=1}^{5} c_k^{(j)} t^k, \text{ for } j = 0, \dots, N-1$$
 (1.17)

by redefining $c_k^{(j)} \to c_k^{(j)} h_j^k$. We can construct Lagrange interpolations along the arclength of the global spline by the local arc-length L_j and its local fraction ξ ,

$$L_{j} = \int_{0}^{1} \dot{\mathbf{s}}^{(j)} \, dt', \quad \xi(t) = \frac{1}{L_{j}} \int_{0}^{t} \dot{\mathbf{s}}^{(j)} \, dt', \tag{1.18}$$

Convention for normal vector n,

$$\boldsymbol{n} = \frac{1}{\|\dot{\boldsymbol{s}}\|} (-\dot{\boldsymbol{z}}, \dot{r}) \tag{1.19}$$

In addition the total curvature 2κ of the surface of revolution obtained by rotating curve s(t) about the z-axis is given by,

$$2\kappa = \frac{\dot{r}\ddot{z} - \dot{z}\ddot{r}}{(\dot{r}^2 + \dot{z}^2)^{\frac{3}{2}}} + \frac{1}{r} \frac{\dot{z}}{\sqrt{\dot{r}^2 + \dot{z}^2}} = 2\frac{\ddot{z}}{\dot{r}^2} \text{ if on symmetry axis}$$
 (1.20)

2. Numerical approximation

2.1. Gaussian quadrature

Standard *m*-point Gauss-Legendre quadrature,

$$\int_{0}^{1} f(t) dt \approx \sum_{k=1}^{m} w_{k} f(x_{k}), \quad \int_{a}^{b} f(t) dt \approx \sum_{k=1}^{m} (b-a) w_{k} f(a+(b-a)x_{k})$$
 (2.1)

Logarithmic-weighted Gauss quadrature,

$$\int_0^1 f(t) \ln t \, dt \approx -\sum_{k=1}^m w_k^{\log} f(x_k), \quad \int_0^1 f(t) \ln(1-t) \, dt \approx -\sum_{k=1}^m w_k^{\log} f(1-x_k) \quad (2.2)$$

When logarithmic singularity $\tau \in (0, 1)$,

$$\int_{0}^{1} f(t) \ln|t - \tau| dt = \int_{0}^{\tau} f(t) \ln(\tau - t) dt + \int_{\tau}^{1} f(t) \ln(t - \tau) dt$$

$$= \tau \int_{0}^{1} f(\tau s) \ln(\tau - \tau s) ds + (1 - \tau) \int_{0}^{1} f(\tau + (1 - \tau)s) \ln((1 - \tau)s) ds$$

$$= \tau \int_{0}^{1} f(\tau s) \ln(1 - s) ds + (1 - \tau) \int_{0}^{1} f(\tau + (1 - \tau)s) \ln s ds$$

$$+ \tau \ln \tau \int_{0}^{1} f(\tau s) ds + (1 - \tau) \ln(1 - \tau) \int_{0}^{1} f(\tau + (1 - \tau)s) ds$$

Logarithmic-weighted Gauss quadrature for singularity $\tau \in (0,1)$,

$$\int_{0}^{1} f(t) \ln|t - \tau| dt \approx \begin{cases}
\tau \ln \tau \sum_{k=1}^{m} w_{k} f \left[\tau x_{k}\right] \\
+ (1 - \tau) \ln(1 - \tau) \sum_{k=1}^{m} w_{k} f \left[\tau + (1 - \tau) x_{k}\right] \\
-\tau \sum_{k=1}^{m} w_{k}^{\log} f \left[\tau (1 - x_{k}^{\log})\right] \\
- (1 - \tau) \sum_{k=1}^{m} w_{k}^{\log} f \left[\tau + (1 - \tau) x_{k}^{\log}\right]
\end{cases} (2.3)$$

2.2. Complete elliptic integral

The complete elliptic integral of the first and second kind,

$$K(m) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - m\sin^2\theta}}, \quad E(m) = \int_0^{\pi/2} \sqrt{1 - m\sin^2\theta} \,d\theta$$
 (2.4)

We can approximate K(m) and E(m) with

$$K(m) \approx P_K(m) - \ln(1-m)Q_K(m), \quad E(m) \approx P_E(m) - \ln(1-m)Q_E(m)$$
 (2.5)

where P_K , P_E , Q_K , Q_E are tenth order polynomials. Associate Legendre polynomial of 1/2 order can be conveniently expressed as,

$$P_{1/2}(x) = \frac{2}{\pi} \left\{ 2E\left(\frac{1-x}{2}\right) - K\left(\frac{1-x}{2}\right) \right\}$$
 (2.6)

From the recursion relations,

$$(1+x^{2})\frac{dP_{\ell}(x)}{dx} = (\ell+1)xP_{\ell}(x) - (\ell+1)P_{\ell+1}(x)$$

$$\frac{dK}{dm} = \frac{E(m)}{2m(1-m)} - \frac{K(m)}{2m}$$

$$\frac{dE}{dm} = \frac{1}{2m} \left[E(m) - K(m) \right]$$
(2.7)

we can bootstrap associate Legendre polynomials of higher orders, 3/2 , 5/2 , ..., The form is again

$$P_{\ell}(x) = c_{\ell} \left\{ P_{\ell,E}(x) E\left(\frac{1-x}{2}\right) + P_{\ell,K}(x) K\left(\frac{1-x}{2}\right) \right\}$$
 (2.8)

where c_{ℓ} is some constant. $P_{\ell,E}(x)$ and $P_{\ell,E}(x)$ are polynomials of $(\ell-1/2)$ order whose coefficients are computed symbolically and given in Table 1.

3. Axisymmetric boundary integral

Axisymmetric Green's function $G(\eta'; \eta)$,

$$G(\eta'; \eta) = \frac{1}{\pi \sqrt{a+b}} K(m)$$
(3.1)

$$\frac{\partial G(\boldsymbol{\eta}';\boldsymbol{\eta})}{\partial \boldsymbol{n}} = \frac{1}{\pi r \sqrt{a+b}} \left\{ \left[\frac{n_r}{2} + \frac{\boldsymbol{n} \cdot (\boldsymbol{x}' - \boldsymbol{x})}{\|\boldsymbol{x}' - \boldsymbol{x}\|^2} r \right] E(m) - \frac{n_r}{2} K(m) \right\}$$
(3.2)

Table 1. Coefficients of associate Legendre polynomials of $\ell = 1/2$ family

Auxiliary variables,

$$a = r'^2 + r^2 + (z' - z)^2, \quad b = 2r'r, \quad m = \frac{2b}{a+b}$$
 (3.3)

Note $\eta \to \eta'$ implies $m \to 1$. Axisymmetric boundary integral equation,

$$\frac{\beta(\boldsymbol{\eta}')}{2\pi}\phi(\boldsymbol{\eta}') = \int_{\gamma} \left\{ G(\boldsymbol{\eta}';\boldsymbol{\eta}) \frac{\partial \phi}{\partial \boldsymbol{n}}(\boldsymbol{\eta}) - \phi(\boldsymbol{\eta}) \frac{\partial G(\boldsymbol{\eta}';\boldsymbol{\eta})}{\partial \boldsymbol{n}}(\boldsymbol{\eta}) \right\} r \, \mathrm{d}\gamma(\boldsymbol{\eta})$$
(3.4)

Lagrange interpolation along arc-length,

$$\phi(\boldsymbol{\eta}) \approx \sum_{e} \sum_{k} p_{e_k} \mathcal{N}_k^{(e)}(\xi), \quad \frac{\partial \phi}{\partial \boldsymbol{n}}(\boldsymbol{\eta}) \approx \sum_{e} \sum_{k} q_{e_k} \mathcal{N}_k^{(e)}(\xi)$$
 (3.5)

where \mathcal{N}_k is the Lagrange basis of the local fractional arc-length variable ξ ,

$$\mathcal{N}_0 = (1 - \xi)(1 - 2\xi), \quad \mathcal{N}_1 = 4\xi(1 - \xi), \quad \mathcal{N}_2 = \xi(2\xi - 1)$$
 (3.6)

3.1. Single layer integral

Single-layer integral reduces to a summation of local integrals over local arc γ_e of element e,

$$\int_{\gamma} G(\boldsymbol{\eta}'; \boldsymbol{\eta}) \frac{\partial \phi}{\partial \boldsymbol{n}}(\boldsymbol{\eta}) r \, d\gamma(\boldsymbol{\eta}) \approx \sum_{e} \sum_{k} q_{e_{k}} \int_{\gamma_{e}} G(\boldsymbol{\eta}'; \boldsymbol{\eta}) \mathcal{N}_{k}^{(e)}(\xi) r \, d\gamma(\boldsymbol{\eta})$$

$$= \sum_{e} \sum_{k} q_{e_{k}} \int_{0}^{1} \frac{rJ}{\pi \sqrt{a+b}} \mathcal{N}_{k}^{(e)}(\xi) K(m) \, dt \qquad (3.7)$$

When singularity $\eta' \in \gamma_e$ is located at $t = \tau \in [0, 1]$,

$$\int_0^1 \frac{rJ}{\pi\sqrt{a+b}} \mathcal{N}_k^{(e)} K(m) \, dt = \int_0^1 \frac{rJ}{\pi\sqrt{a+b}} \mathcal{N}_k^{(e)} \left[P_K - Q_K \ln \frac{1-m}{(t-\tau)^2} - 2Q_K \ln |t-\tau| \right] \, dt$$

Introduce helper functions,

$$f_K^{\text{single}}(t) = \frac{rJ}{\pi\sqrt{a+b}} \tag{3.8}$$

$$R_{K/E}(m,\tau) = P_{K/E}(m) - Q_{K/E}(m) \ln \frac{1-m}{(t-\tau)^2}$$
(3.9)

If we define integrand $I^{(o)}$ for source location η' outside of γ_e and $I^{(i)}$ for η' interior to γ_e ,

$$I^{(o)}(t) = f_K^{\text{single}}(t)K(m)\mathcal{N}_k^{(e)}(\xi)$$
(3.10)

$$I^{(i)}(t,\tau) = f_K^{\text{single}}(t) R_K(m,\tau) \mathcal{N}_k^{(e)}(\xi)$$
(3.11)

$$I_{\log}^{(i)}(t) = -2f_K^{\text{single}}(t)Q_K(m)\mathcal{N}_k^{(e)}(\xi)$$
 (3.12)

then the local single-layer integral can be compactly represented with a regular part and a logarithmic-singular one,

$$\eta' \notin \gamma_e : \text{ compute } \int_0^1 I^{(o)}(t) \, \mathrm{d}t$$
(3.13)

$$\eta' \text{ at } t = 0 : \text{ compute } \int_0^1 I^{(i)}(t,0) \, dt + \int_0^1 I_{\log}^{(i)}(t) \ln t \, dt$$
(3.14)

$$\eta' \text{ at } t = \tau : \text{ compute } \int_0^1 I^{(i)}(t,\tau) \, dt + \int_0^1 I_{\log}^{(i)}(t) \ln|\tau - t| \, dt$$
(3.15)

$$\eta' \text{ at } t = 1: \text{ compute } \int_0^1 I^{(i)}(t, 1) \, dt + \int_0^1 I_{\log}^{(i)}(t) \ln(1 - t) \, dt$$
(3.16)

3.2. Double layer integral

Similar to singular-layer integral, double-layer integral reduces to a summation of local integrals over local arc γ_e of element e,

$$\int_{\gamma} \frac{\partial G(\boldsymbol{\eta}';\boldsymbol{\eta})}{\partial \boldsymbol{n}} \phi(\boldsymbol{\eta}) r \, \mathrm{d}\gamma(\boldsymbol{\eta}) \approx \sum_{e} \sum_{k} p_{e_{k}} \int_{\gamma_{e}} \frac{\partial G(\boldsymbol{\eta}';\boldsymbol{\eta})}{\partial \boldsymbol{n}} \mathcal{N}_{k}^{(e)}(\xi) r \, \mathrm{d}\gamma(\boldsymbol{\eta})$$

$$= \sum_{e} \sum_{k} p_{e_{k}} \int_{0}^{1} \mathcal{N}_{k}^{(e)}(\xi) \frac{J}{\pi \sqrt{a+b}} \left\{ \left[\frac{n_{r}}{2} + \frac{\boldsymbol{n} \cdot (\boldsymbol{x}' - \boldsymbol{x})}{\|\boldsymbol{x}' - \boldsymbol{x}\|^{2}} r \right] E(\boldsymbol{m}) - \frac{n_{r}}{2} K(\boldsymbol{m}) \right\} \mathrm{d}t$$

$$= \sum_{e} \sum_{k} p_{e_{k}} \int_{0}^{1} \frac{\mathcal{N}_{k}^{(e)}(\xi)}{\pi \sqrt{a+b}} \left\{ \left[\frac{\dot{r}(z'-z) - \dot{z}(r'-r)}{(r'-r)^{2} + (z'-z)^{2}} r - \frac{\dot{z}}{2} \right] E(\boldsymbol{m}) + \frac{\dot{z}}{2} K(\boldsymbol{m}) \right\} \mathrm{d}t \quad (3.17)$$

Technically we don't need to treat integrand involving elliptic integral of the second kind E(m). However, convergence rate of standard Gauss-Legendre quadrature depends magnitude of derivatives.

$$f_E^{\text{double}} = \frac{1}{\pi\sqrt{a+b}} \left[\frac{\dot{r}(z'-z) - \dot{z}(r'-r)}{a-b} r - \frac{\dot{z}}{2} \right], \quad f_K^{\text{double}} = \frac{1}{\pi\sqrt{a+b}} \frac{\dot{z}}{2}$$
 (3.18)

If we define integrand $I^{(o)}$ for source location η' outside of γ_e and $I^{(i)}$ for η' interior to γ_e ,

$$I^{(o)}(t) = \left[f_E^{\text{double}} E(m) + f_K^{\text{double}} K(m) \right] \mathcal{N}_k^{(e)}(\xi)$$
(3.19)

$$I^{(i)}(t,\tau) = \left[f_E^{\text{double}} R_E(m,\tau) + f_K^{\text{double}} R_K(m,\tau) \right] \mathcal{N}_k^{(e)}(\xi)$$
 (3.20)

$$I_{\text{log}}^{(i)}(t) = -2f_E^{\text{double}}Q_E(m) - 2f_K^{\text{double}}Q_K(m)$$
(3.21)

```
Element order o Number of elements n Number of nodes n \times o + 1 Nodal index of source point i Elemental index of receiving point j Local node index k 0 \leqslant k \leqslant o Indices of elements \ni i-th node if i \bmod o = 0 \lfloor i/o \rfloor - 1, \lfloor i/o \rfloor check 0 \leqslant id \leqslant n - 1 Indices of elements \ni i-th node if i \bmod o \neq 0 \lfloor i/o \rfloor - 1 check 0 \leqslant id \leqslant n - 1 Nodal indices of j-th element j \times o + k 0 \leqslant k \leqslant o
```

Table 2. Index involved

When η' is located the symmetry axis where r'=0, we can simplify the elliptic integrals,

$$\int_{\gamma} G(\boldsymbol{\eta}'; \boldsymbol{\eta}) \frac{\partial \phi}{\partial \boldsymbol{n}}(\boldsymbol{\eta}) r \, d\gamma(\boldsymbol{\eta}) \approx \sum_{e} \sum_{k} q_{e_{k}} \int_{0}^{1} \mathcal{N}_{k}^{(e)}(\xi) r \frac{J}{2\sqrt{r + (z - z')^{2}}} \, dt$$
 (3.22)

$$\int_{\gamma} \frac{\partial G(\boldsymbol{\eta}';\boldsymbol{\eta})}{\partial \boldsymbol{n}} \phi(\boldsymbol{\eta}) r \, \mathrm{d}\gamma(\boldsymbol{\eta}) \approx \sum_{e} \sum_{k} p_{e_{k}} \int_{0}^{1} \mathcal{N}_{k}^{(e)}(\xi) r \frac{\dot{z}r + \dot{r}(z-z')}{2 \left[r^{2} + (z'-z)^{2}\right]^{3/2}} \, \mathrm{d}t \qquad (3.23)$$

The above integrands have well-defined limit as $\eta \to \eta'$ assuming \ddot{z}/\dot{r} is finite at r=0.

3.3. Assembly

Algorithm 1 Counting mismatches between two packed strings

```
1: function Distance(x, e)
         for 0 \leqslant i \leqslant N_x - 1 do
                                                                             # We can parallelize this loop
2:
              if i \mod o = 0 then
3:
4:
                  I_{\text{lower}} = I_{\text{upper}}
5:
                  I_{\text{lower}} = |i/o| - 1, \quad I_{\text{upper}} = |i/o|
6:
              end if
 7:
              for 0 \leqslant i \leqslant N_x - 1 do
8:
              end for
9:
10:
         end for
11: end function
```

$$(\mathbf{B} + \mathbf{D})\mathbf{p} = \mathbf{H}\mathbf{p} = \mathbf{S}\mathbf{q} \tag{3.24}$$

Consider two adjacent boundaries γ_0 and γ_1 . We have a block matrix equation,

$$\begin{bmatrix} \mathbf{H}_{00} & \mathbf{H}_{01} \\ \mathbf{H}_{10} & \mathbf{H}_{11} \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{00} & \mathbf{S}_{01} \\ \mathbf{S}_{10} & \mathbf{S}_{11} \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \end{bmatrix} \tag{3.25}$$

We have two identical rows in \boldsymbol{H} and \boldsymbol{S} and extra equation for continuity of potential,

$$\operatorname{row}_{-1}(\boldsymbol{H}_{00}) \cdot \boldsymbol{p}_{0} + \operatorname{row}_{-1}(\boldsymbol{H}_{01}) \cdot \boldsymbol{p}_{1} = \operatorname{row}_{-1}(\boldsymbol{S}_{00}) \cdot \boldsymbol{q}_{0} + \operatorname{row}_{-1}(\boldsymbol{S}_{01}) \cdot \boldsymbol{q}_{1}
\operatorname{row}_{0}(\boldsymbol{H}_{10}) \cdot \boldsymbol{p}_{0} + \operatorname{row}_{0}(\boldsymbol{H}_{11}) \cdot \boldsymbol{p}_{1} = \operatorname{row}_{0}(\boldsymbol{S}_{10}) \cdot \boldsymbol{q}_{0} + \operatorname{row}_{0}(\boldsymbol{S}_{11}) \cdot \boldsymbol{q}_{1}
(p_{0})_{-1} - (p_{1})_{0} = 0$$
(3.26)

We simply replace one of identical rows with the continuity condition,

$$row_{-1}(\mathbf{H}_{00}) = [0, \dots, 0, 1], \quad row_{-1}(\mathbf{H}_{01}) = [-1, 0, \dots, 0]$$

$$row_{-1}(\mathbf{S}_{00}) = [0, \dots, 0, 0], \quad row_{-1}(\mathbf{S}_{01}) = [0, 0, \dots, 0]$$
(3.27)

For mixed-type boundary condition, i.e., Dirichlet and Neumann on different segments of the boundary, we simply rearrange the block matrices,

$$\begin{bmatrix} \mathbf{H}_{00} & -\mathbf{S}_{01} \\ \mathbf{H}_{10} & -\mathbf{S}_{11} \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{q}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{00} & -\mathbf{H}_{01} \\ \mathbf{S}_{10} & -\mathbf{H}_{11} \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{p}_1 \end{bmatrix}$$
(3.28)

Note the continuity between discrete potential vectors p_0 and p_1 is still implied.

3.4. Benchmark

We validate our implementation of boundary integral solver for test problems posed on a smooth boundary γ and on a piecewise smooth boundary $\gamma_0 \cup \gamma_1$. The latter contains a geometric discontinuity of a 90° corner at the transition point between γ_0 and γ_1 . Consider the following parametrisation of the boundaries,

$$\gamma_0 = \left\{ 2\left(1 + \frac{1}{4}\cos(8\theta - \pi)\right) \begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix} \mid \theta \in [0, \pi/2] \right\}$$
 (3.29)

$$\gamma_1 = \left\{ \begin{pmatrix} t \\ 0 \end{pmatrix} \middle| \theta \in [0, 3/2] \right\} \tag{3.30}$$

The general form of axisymmetric harmonic potential can be constructed from Legendre polynomial P_{ℓ} of order ℓ . We consider the interior problem for the potential ϕ ,

$$\phi = (r^2 + z^2)P_2\left(\frac{z}{\sqrt{r^2 + z^2}}\right), \quad \frac{\partial \phi}{\partial \mathbf{n}} = \mathbf{n} \cdot (-r, 2z)$$
(3.31)

If we prescribe the potential value of ϕ on γ_0 and its normal flux $\partial \phi/\partial \mathbf{n}$ on γ_1 , our solver is expected to reproduce $\partial \phi/\partial \mathbf{n}$ on γ_0 and ϕ on γ_1 ,

Test problem: given
$$\begin{cases} \phi \text{ on } \gamma_0 \\ \partial \phi / \partial \boldsymbol{n} \text{ on } \gamma_1 \end{cases}, \text{ find } \begin{cases} \partial \phi / \partial \boldsymbol{n} \text{ on } \gamma_0 \\ \phi \text{ on } \gamma_1 \end{cases}$$
(3.32)

In addition for a plane curve given parametrically as $\gamma(t) = (r(t), z(t))$, the total curvature 2κ of the surface of revolution obtained by rotating curve γ about the z-axis is given by,

$$2\kappa = \frac{\dot{r}\ddot{z} - \dot{z}\ddot{r}}{(\dot{r}^2 + \dot{z}^2)^{\frac{3}{2}}} + \frac{1}{r}\frac{\dot{z}}{\sqrt{\dot{r}^2 + \dot{z}^2}}$$
(3.33)

We verify the accuracy of quintic spline interpolation against the analytic form derived from the parametrisation (3.31). All errors between numerical and analytical solutions are measured in the l^{∞} -norm,

$$\|\operatorname{err}_{\mathbf{d}}\|_{\infty} = \max_{\boldsymbol{x}_i \in \gamma_1} |p_i^{\operatorname{num}} - \phi(\boldsymbol{x}_i)|$$
(3.34)

$$\|\operatorname{err}_{\mathbf{n}}\|_{\infty} = \max_{\boldsymbol{x}_i \in \gamma_0} |q_i^{\operatorname{num}} - \partial \phi / \partial \boldsymbol{n}(\boldsymbol{x}_i)|$$
 (3.35)

$$\|\operatorname{err}_{c}\|_{\infty} = \max_{\boldsymbol{x}_{i} \in \gamma_{0}} |2\kappa_{i}^{\operatorname{spline}} - 2\kappa(\boldsymbol{x}_{i})|$$
 (3.36)

In figure 1(a) and 1(b) we plot these errors against the total number of degree of freedom (DOF) used by the solver.

FIGURE 1. Error convergence between numerical and analytic solutions measured in l^{∞} -norm against degrees of freedom (DOF) used for the test problem (3.32): (a) Boundaries γ_0 (solid) and γ_1 (dashed) given by parametrisation (3.31). (b) Error convergence: curvature error (3.36) (∇) on γ_0 ; Neumann error (3.35) on γ_0 with linear (\blacksquare) and quadratic (\blacksquare) shape functions; Dirichlet error (3.34) on γ_1 with linear (\bigcirc) and quadratic (\square) shape functions. Inset: linear fit (dashed line) of the last five points of each error.

FIGURE 2. C^3 function $f_{guess}(r)$: increasing r_c (right) and c_1 (left)

4. Self-similar Taylor cone

4.1. Prepare for iteration

In the last section we outline the numerical procedure to solve Laplace equation subject to mixed boundary conditions. Initial guess is a C^3 continuous function f_{guess} ,

$$f_{\text{guess}}(r) = \begin{cases} f_0 r + f_2 r^2 + f_4 r^4 + f_6 r^6, & \text{if } r \leqslant r_c \\ c_0 r + \frac{c_1}{\sqrt{r}} + \frac{c_3}{r^{7/2}} + \frac{c_4}{r^5}, & \text{if } r > r_c \end{cases}$$
(4.1)

where r_c is the connection point where continuities up to the third derivative are enforced. Given a reasonable c_1 , function $f_{guess}(r)$ agrees with analytic prediction in the far-field. The effect of varying r_c and c_1 is illustrated in figure 2.

We clamp the spline function, its tangent direction and total curvature at truncation point r_*

$$\dot{z} = \dot{r} \frac{\mathrm{d}f}{\mathrm{d}r}, \quad \ddot{z} = \frac{\ddot{r}\dot{z} + 2\kappa(\dot{r}^2 + \dot{z}^2)^{3/2}}{\dot{r}} - \frac{\dot{z}(\dot{r}^2 + \dot{z}^2)}{\dot{r}r}$$
(4.2)

Forward, central and backward finite difference approximation to first derivative with

three data points $\{(x_i, f_i)\}_{i=0,1,2}$,

$$f'(x_0) \approx -f_0 \left(\frac{1}{h_0 + h_1} + \frac{1}{h_0} \right) + f_1 \left(\frac{1}{h_0} + \frac{1}{h_1} \right) - f_2 \left(\frac{1}{h_1} - \frac{1}{h_0 + h_1} \right)$$
(4.3)

$$f'(x_1) \approx +f_0 \left(\frac{1}{h_0 + h_1} - \frac{1}{h_0} \right) + f_1 \left(\frac{1}{h_0} - \frac{1}{h_1} \right) + f_2 \left(\frac{1}{h_1} - \frac{1}{h_0 + h_1} \right) \tag{4.4}$$

$$f'(x_2) \approx -f_0 \left(\frac{1}{h_0 + h_1} - \frac{1}{h_0} \right) - f_1 \left(\frac{1}{h_0} + \frac{1}{h_1} \right) + f_2 \left(\frac{1}{h_0 + h_1} + \frac{1}{h_1} \right) \tag{4.5}$$

$$f''(x_0) \approx f''(x_1) \approx f''(x_2) \approx \frac{2}{h_0(h_0 + h_1)} f_0 - \frac{2}{h_0 h_1} f_1 + \frac{2}{h_1(h_0 + h_1)} f_2$$
 (4.6)

where $h_i = x_{i+1} - x_i$. For curvature purpose, we only list the forward and backward finite difference approximation to the second derivative with four-point stencil,

$$f''(x_3) \approx -\frac{2(h_1 + 2h_2)}{h_0(h_0 + h_1)(h_0 + h_1 + h_2)} f_0 + \frac{2(h_0 + h_1 + 2h_2)}{h_0h_1(h_1 + h_2)} f_1 - \frac{2(h_0 + 2(h_1 + h_2))}{h_1h_2(h_0 + h_1)} f_2 + \frac{2(h_0 + 2h_1 + 3h_2)}{h_2(h_1 + h_2)(h_0 + h_1 + h_2)} f_3$$
(4.7)

Thus we use backward finite difference method to approximate the first and second derivatives of r-component of the spline at the truncation point r_* . With prescribed slope and curvature, we can compute the first and second derivatives of z-component.

Axisymmetric harmonic function,

$$\frac{\partial}{\partial r} R^{\ell} P_{\ell}(\cos \theta) = \frac{\ell r^2 - (\ell+1)z^2}{r} R^{\ell-2} P_{\ell} \left(\frac{z}{R}\right) + \frac{(\ell+1)z}{r} R^{\ell-1} P_{\ell+1} \left(\frac{z}{R}\right) \tag{4.8}$$

$$\frac{\partial}{\partial z} R^{\ell} P_{\ell}(\cos \theta) = (2\ell + 1) z R^{\ell - 2} P_{\ell} \left(\frac{z}{R}\right) - (\ell + 1) R^{\ell - 1} P_{\ell + 1} \left(\frac{z}{R}\right) \tag{4.9}$$

$$\frac{\partial}{\partial r} R^{-\ell-1} P_{\ell}(\cos \theta) = \frac{(\ell+1)z}{r} R^{-\ell-2} P_{\ell+1} \left(\frac{z}{R}\right) - \frac{\ell+1}{r} R^{-\ell-1} P_{\ell} \left(\frac{z}{R}\right) \tag{4.10}$$

$$\frac{\partial}{\partial z} R^{-\ell-1} P_{\ell}(\cos \theta) = -(\ell+1) R^{-\ell-2} P_{\ell+1} \left(\frac{z}{R}\right) \tag{4.11}$$

Note $\partial/\partial r$ of these axisymmetric harmonic functions at z=0 is well-defined and always zero due to symmetry.

4.2. Newton iteration

We aim to find the root

$$\mathcal{B}(\boldsymbol{\eta}) = \frac{2}{3}\boldsymbol{\eta} \cdot \nabla \phi - \frac{1}{3}\phi + \frac{1}{2}|\nabla \phi|^2 - 2\kappa \tag{4.12}$$

with

$$\frac{2}{3}\boldsymbol{n}\cdot\boldsymbol{\eta} + \frac{\partial\phi}{\partial\boldsymbol{n}} = 0\tag{4.13}$$

Rewrite \mathcal{B} ,

$$\mathcal{B}(\boldsymbol{\eta}) = \frac{2}{3} (\boldsymbol{n} \cdot \boldsymbol{\eta}) \frac{\partial \phi}{\partial \boldsymbol{n}} + \frac{2}{3} (\boldsymbol{s} \cdot \boldsymbol{\eta}) \frac{\partial \phi}{\partial \boldsymbol{s}} - \frac{1}{3} \phi + \frac{1}{2} \left(\frac{\partial \phi}{\partial \boldsymbol{n}} \right)^2 + \frac{1}{2} \left(\frac{\partial \phi}{\partial \boldsymbol{s}} \right)^2 - 2\kappa$$

$$= \frac{1}{2} \left(\frac{\partial \phi}{\partial \boldsymbol{s}} \right)^2 + \frac{2}{3} (\boldsymbol{s} \cdot \boldsymbol{\eta}) \frac{\partial \phi}{\partial \boldsymbol{s}} - \frac{1}{3} \phi - \frac{2}{9} (\boldsymbol{n} \cdot \boldsymbol{\eta})^2 - 2\kappa$$

$$(4.14)$$

Algorithm 2 Nonlinear iteration

```
1: function Newton Iteration(c_1, a_0, r_*)
                                                                                                        \triangleright truncation distance r_*
            compute c_0, \ldots, c_4
                                                                                                                                  \triangleright c_2 = 0
 2:
            initialize guess shape \gamma_0
                                                                               ⊳ fix 1st and 2nd derivatives at the end
 3:
            initialize patch \gamma_1
 4:
            while error(\mathcal{B}) < tolerance do
                                                                                                                    \triangleright l^{\infty} error norm
 5:
 6:
                  for all knots \eta_i of spline \gamma_0 do
 7:
                       perturb \eta_i \to \eta_i + \epsilon n_i
 8:
                       compute ending derivatives \dot{r}, \ddot{r}, \dot{z}, \ddot{z}
                       initialize perturbed spline \underline{\gamma}_0
 9:
                       initialize perturbed Neumann condition on \gamma_0
10:
                       compute solution \underline{\phi} on \underline{\gamma}_0 compute perturbed residue vector \underline{\mathcal{B}} on knots only
11:
12:
                       \operatorname{col}_i(\boldsymbol{J}) = (\boldsymbol{\mathcal{B}} - \boldsymbol{\mathcal{B}})/\epsilon
13:
                  end for
14:
                 solve \boldsymbol{J}\delta\boldsymbol{n}=-\boldsymbol{\mathcal{B}}
15:
                  update \eta_i \to \eta_i + \alpha \delta n_i with damping rate \alpha
16:
17:
                 compute new residue vector \mathcal{B}
            end while
18:
19: end function
```

REFERENCES

Taylor, G. I. 1964 Disintegration of water drops in an electric field. *Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences* **280** (1382), 383–397.