Danmarks Tekniske Universitet

Skriftlig prøve, den 22/5-2018

Kursus navn: Signaler og lineære systemer i kontinuert tid Kursus nr.: 31605

Tilladte hjælpemidler: Ingen hjælpemidler. Ingen lommeregner.

Varighed: 4 timer.

Vægtning: For hvert spørgsmål angives højst et bogstav som svar. Korrekte svar giver 3 point, forkerte svar trækker 1 point fra, mens ubesvaret er neutralt.

Når opgaverne er besvaret overføres besvarelserne til skemaet på side 2. Kun side 2 afleveres.

Danmarks Tekniske Universitet Spørgsmål Svar Besvarelsesark for skriftlig eksamen Kursusnummer: 31605 Studienummer: Navn: Underskrift: 22/5-2018 Dato:

Oplysninger til brug under besvarelsen:

Impulsrespons

Et LTIC system med systemligning

$$Q(D)y(t) = P(D)x(t)$$

$$Q(D) = D^{n} + a_{n-1}D^{n-1} + \dots + a_{0}$$

$$P(D) = b_{m}D^{m} + b_{m-1}D^{m-1} + \dots + b_{0}$$

hvor $D = \frac{d}{dt}$, har impulsiesponset

$$h(t) = P(D)[y_n(t)u(t)]$$

$$= b_n \delta(t) + [P(D)y_n(t)]u(t) , m \le n$$

hvor y_n er en løsning til den homogene ligning med begyndelsesbetingelser $D^{n-1}y_n(0)=1$, $D^{n-2}y_n(0)=0$, $D^{n-3}y_n(0)=0$, ..., $y_n(0)=0$. Den samlede løsning til systemligningen kan da skrives

$$y(t) = y_{zi}(t) + y_{zs}(t)$$
$$= y_{zi}(t) + h(t) * x(t)$$

Foldning er defineret ved

$$(f * g)(t) = f(t) * g(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

Visse foldningsintegraler:

$f_1(t)$	$f_2(t)$	$(f_1 * f_2)(t)$	
$e^{\lambda_1 t} u(t)$	$e^{\lambda_2 t} u(t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} u(t)$	$\lambda_1 \neq \lambda_2$
$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$	
$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}u(t)$	

Fouriertransformation af f(t) er defineret ved

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \exp(-j\omega t) dt \qquad f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \exp(j\omega t) d\omega$$

Laplacetransformation af f(t) er defineret ved

$$F(s) = \int_{0^{-}}^{\infty} f(t) \exp(-st) dt$$

Begyndelsesværditeoremet

Hvis g(t) og dens afledede kan laplacetransformeres er

$$g(0^+) = \lim_{t \to 0^+} g(t) = \lim_{s \to \infty} sG(s)$$

forudsat at grænseværdien eksisterer.

Slutværditeoremet

$$g(\infty) = \lim_{t \to \infty} g(t) = \lim_{s \to 0} sG(s)$$

forudsat at sG(s) udelukkende har poler i venstre halvplan.

Regneregler for RLC komponenter

Kondensator	$i(t) = C\frac{dv}{dt}$	$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$
Modstand	$i(t) = \frac{v(t)}{R}$	v(t) = R i(t)
Spole	$i(t) = \frac{1}{L} \int_{-\tau}^{t} v(\tau) d\tau$	$v(t) = L \frac{di}{dt}$

Fysisk form af et 2. ordens system:

Den "fysiske" form af et 2. ordens system kan i laplacedomænet skrives

$$H(s) = (b_2 s^2 + b_1 s + b_0) \frac{1}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

hvor ζ er dæmpningsfaktoren og polerne ligger i

$$\sigma_d \pm j\omega_d = -\zeta \ \omega_n \pm j\sqrt{1-\zeta^2} \ \omega_n$$

$\label{prop:prop:constraint} \mbox{ Visse laplace- og fouriertransformerede: }$

f(t)	F(s)	$F(\omega)$
$\dot{f}(t)$	$sF(s) - f(0^-)$	$j\omegaF(\omega)$
$\ddot{f}(t)$	$s^2F(s) - sf(0^-) - \dot{f}(0^-)$	$(j\omega)^2 F(\omega)$
f(t) * g(t)	F(s)G(s)	$F(\omega)G(\omega)$
f(t)g(t)	$\frac{1}{2\pi j}F(s)*G(s)$	$\frac{1}{2\pi}F(\omega)*G(\omega)$
1		$2\pi\delta(\omega)$
$\operatorname{sgn}(t)$		$rac{2}{j\omega}$
$\delta(t)$	1	1
u(t)	$\frac{1}{s}$	$\frac{1}{j\omega} + \pi\delta(\omega)$
r(t) = tu(t)	$\frac{\frac{1}{s}}{\frac{1}{s^2}}$	eksisterer ikke
$\exp(-at)u(t)$	$\frac{1}{s+a}$	$\frac{1}{j\omega + a} , a > 0$
$t\exp(-at)u(t)$		$\frac{1}{j\omega + a} , a > 0$ $\frac{1}{(j\omega + a)^2} , a > 0$
$\cos(bt) u(t)$	$\frac{s}{s^2 + b^2}$	$\frac{j\omega}{-\omega^2 + b^2} + \frac{\pi}{2}(\delta(\omega - b) + \delta(\omega + b))$ $\frac{b}{-\omega^2 + b^2} + \frac{\pi}{2j}(\delta(\omega - b) - \delta(\omega + b))$
$\sin(bt) u(t)$	$\overline{s^2+b^2}$	$\frac{b}{-\omega^2 + b^2} + \frac{\pi}{2j} (\delta(\omega - b) - \delta(\omega + b))$
$\exp(-at)\cos(bt)u(t)$	$\frac{s+a}{(s+a)^2+b^2}$	$\frac{j\omega + a}{(j\omega + a)^2 + b^2} , \ a > 0$
$\exp(-at)\sin(bt)u(t)$	$\frac{b}{(s+a)^2 + b^2}$	$\frac{b}{(j\omega+a)^2+b^2} , \ a>0$
$\cos(\omega_0 t)$		$\pi(\delta(\omega-\omega_0)+\delta(\omega+\omega_0))$
$\operatorname{rect}\left(\frac{t}{\tau}\right) = u(\frac{\tau}{2} - t)$		$\tau \operatorname{sinc}(\frac{\omega \tau}{2})$
$\Delta(\frac{t}{\tau}) = (1 - 2 t /\tau)u(\frac{\tau}{2} - t)$		$\frac{\tau}{2}$ sinc ² $\left(\frac{\omega\tau}{4}\right)$

Lad x(t) være input og y(t) være output. Angiv hvilket af systemerne

$$\mathbf{A} \qquad \dot{y}(t) + y^2(t) = x(t)$$

$$\mathbf{B} \qquad \dot{y}(t) + y(t) = tx^2(t)$$

$$\mathbf{C} \qquad \dot{y}(t) + y(t) = \sin(t)x(t)$$

$$\mathbf{D} \qquad \dot{y}(t) + y(t) = x(t) + 1$$

der er lineært. Det korrekte svar overføres til skemaet side 2.

Opgave 2

Et LTIC system har impulsreponset

$$h(t) = \delta(t) - 2e^{-2t}u(t)$$

Angiv systemets respons på inputtet

$$x(t) = u(t)$$

$$\mathbf{A} \qquad y_{\mathrm{zs}} = u(t)e^{-2t}$$

$$\mathbf{B} \qquad y_{\mathrm{zs}} = 2u(t)e^{-t}$$

C
$$y_{zs} = u(t)(1 + e^{-2t})$$

$$\mathbf{D} \qquad y_{\mathrm{zs}} = 0$$

Opgave 3

Et LTIC system har impulsreponset

$$h(t) = \delta(t) - 2e^{-2t}u(t)$$

 $\label{lem:angiv} \mbox{Angiv systemets overf} \\ \mbox{funktion i laplacedom} \\ \mbox{enet}$

$$\mathbf{A} \qquad H(s) = \frac{s}{s+2}$$

$$\mathbf{B} \qquad H(s) = \frac{2}{s+2}$$

$$\mathbf{C} \qquad H(s) = \frac{2s}{s+2}$$

D Hverken A, B eller C.

Et 1. ordens system er beskrevet ved ligningen

$$\dot{y}(t) + 2y(t) = 2x(t)$$
 , $y(0^{-}) = 3$

Hvad er impulsresponset for systemet

- $\mathbf{A} \qquad h(t) = \delta(t) + e^t u(t)$
- $\mathbf{B} \qquad h(t) = \delta(t) e^{-t}u(t)$
- $\mathbf{C} \qquad h(t) = 2e^{-2t}u(t)$
- **D** Hverken A, B eller C.

Opgave 5

Hvad er zero-input responset for systemet i Opgave 4?

- $\mathbf{A} \qquad y_{\mathrm{zi}}(t) = 3 \, e^t u(t)$
- $\mathbf{B} \qquad y_{\mathrm{zi}}(t) = 3 \, e^{-2t} u(t)$
- C $y_{zi}(t) = 3 e^{-t/2} u(t)$
- $\mathbf{D} \qquad y_{\mathrm{zi}}(t) = \frac{1}{3} e^{-2t} \delta(t)$

Opgave 6

Et LTIC-system er beskrevet ved ligningen

$$\ddot{y}(t) = 5x(t)$$

hvor x(t) betegner input og y(t) er output. Hvilket af nedenstående udsagn er korrekt?

- A Systemet er stabilt.
- **B** Systemet har frekvenskarakteristik $H(\omega) = \frac{-5}{\omega^2}$
- C Systemets impuls
respons er h(t) = 5 t u(t) = 5 r(t)
- **D** Hverken A, B eller C.

Dekomposition af systemet beskrevet ved afbildningen

$$x(t) \to y(t)$$
 , $D^{i}y(0^{-}) = \alpha_{i}, i = 0, ..., (n-1)$

betyder, at outputtet y(t) kan opdeles som en sum

$$y(t) = y_{\rm zs}(t) + y_{\rm zi}(t)$$

hvor begyndelsesbetingelserne lige før påvirkningen x(t) starter er

$$D^{i}y_{zi}(0^{-}) = \alpha_{i}$$
 , $i = 0, ..., (n-1)$
 $D^{i}y_{zs}(0^{-}) = 0$, $i = 0, ..., (n-1)$

og $y_{\rm zi}$ ikke afhænger af den kausale påvirkning x.

Angiv tilstrækkelige betingelser for at dekompositionsprincippet gælder for afbildningen.

- A Systemet er lineært.
- B Systemet er kausalt.
- C Systemet er lineært og kausalt.
- D Systemet er tidsinvariant og kausalt.

Opgave 8

Hvis en funktion f(t) er reel, d. v. s. $f(t) = f(t)^*$, hvad opfylder den fouriertransformerede $F(\omega)$ da:

- \mathbf{A} $F(\omega) = F(-\omega)^*$, d. v. s. lige realdel og ulige imaginærdel.
- \mathbf{B} $F(\omega)$ er imaginær, d. v. s. $F(\omega) = -F(\omega)^*$.
- \mathbf{C} $F(\omega)$ er lige, d. v. s. $F(\omega) = F(-\omega)$.
- **D** Hverken A, B eller C.

Råd: Brug definitionen af fouriertransformation.

Bestem den fouriertransformerede af

$$f(t) = \delta(t - t_0)$$

Angiv den korrekte værdi

 $\mathbf{A} \qquad F(\omega) = \exp(j\omega t_0)$

 $\mathbf{B} \qquad F(\omega) = 1$

 \mathbf{C} $F(\omega) = \exp(-j\omega t_0)$

D Hverken A, B eller C.

Opgave 10

Et filter har diagrammet

hvor spændingen x(t) er input og spændingen y(t) er output. Hvilket af nedenstående er ikke korrekt?

A Overføringsfunktionen i laplacedomænet er

$$H(s) = \frac{R_2 + R_3}{R_2} \ \frac{s}{1/(R_1C) + s}$$

B Systemet er et højpasfilter.

C Systemet har forstærkningen

$$\frac{R_2 + R_3}{R_2}$$

 \mathbf{D} Knudepunktet a er i laplacedomænet beskrevet ved ligningen

$$C s (X(s) - A(s)) + C v_C(0^-) = \frac{A(s)}{R_1}$$

når spændingen $v_C(0^-)$ over kapacitoren til $t=0^-$ medtages.

Bemærk: Der spørges om hvilken af svarmulighederne, som ikke er opfyldt.

Et 1. ordens system er beskrevet ved ligningen

$$\dot{y}(t) + y(t) = 2x(t)$$
 , $y(0^{-}) = 4$

Hvad er impulsresponset for systemet

- $\mathbf{A} \qquad h(t) = 2\delta(t) + 2e^t u(t)$
- $\mathbf{B} \qquad h(t) = 2\delta(t) 2e^{-t}u(t)$
- $\mathbf{C} \qquad h(t) = 2e^{-t}u(t)$
- $\mathbf{D} \qquad h(t) = 2e^{-t}\delta(t)$

Opgave 12

Hvad er zero-input responset for systemet i Opgave 11?

- $\mathbf{A} \qquad y_{\mathrm{zi}}(t) = 2e^t u(t)$
- $\mathbf{B} \qquad y_{\mathrm{zi}}(t) = -2e^{-t}u(t)$
- $\mathbf{C} \qquad y_{\mathrm{zi}}(t) = 4e^{-t}u(t)$
- $\mathbf{D} \qquad y_{\mathrm{zi}}(t) = 8e^{-t}u(t)$

Opgave 13

Et LTIC-system er beskrevet ved ligningen

$$(D+1)y(t) = 2x(t)$$
 , $y(0^-) = 4$

Hvad er systemets samlede respons på inputtet x(t) = 2u(t)?

- $\mathbf{A} \qquad y(t) = 0$
- $\mathbf{B} \qquad y(t) = 2u(t)\exp(-t)$
- \mathbf{C} $y(t) = 4u(t) \exp(-t)$
- $\mathbf{D} \qquad y(t) = 4u(t)$

Tip: Det samlede respons er summen $y = y_{zi} + y_{zs}$.

Et 1. ordens system giver ved inputtet x(t) = u(t) outputtet vist i figuren

 $Hvad\ er\ systemets\ overføringsfunktion\ i\ laplacedomænet?$

$$\mathbf{A} \qquad H(s) = 2 - \frac{1}{s+1}$$

$$\mathbf{B} \qquad H(s) = 2 - \frac{2}{s+1}$$

$$\mathbf{C} \qquad H(s) = 1 + \frac{1}{s+1}$$

C
$$H(s) = 1 + \frac{1}{s+1}$$

D $H(s) = 1 + \frac{2}{s+1}$

Det oplyses at overføringsfunktionen H(s) for et system er

$$H(s) = \frac{s+1}{s-1}$$

Hvilket af nedenstående udsagn er korrekt?

- **A** Systemet har konvergensområdet Re(s) > 0.
- **B** Systemet har konvergensområdet Re(s) > -1.
- C Systemet er ustabilt.
- **D** Hverken A, B eller C

Opgave 16

Et filter har i laplacedomænet overføringsfunktionen

$$H(s) = \frac{s^2}{(s+1)(s+2)}$$

Hvad der værdien af impulsresponset umiddelbart efter 0.

- A $h(0^+) = -3$
- **B** $h(0^+) = 0$
- C $h(0^+) = 1$
- **D** $h(0^+) = 3$

Tip: Overvej om begyndelsesværditeoremet kan anvendes. Hvis ikke, bestem da impulsresponset i tidsdomænet og aflæs værdien til tiden $t = 0^+$.

Et 2. ordens system har Bode-plottet

hvor "sort" svarer til det fulde system og de øvrige (stiplede) kurver svarer til faktoriseringen af systemet. Angiv hvilken overføringsfunktion der svarer til det viste Bode-plot.

$$\mathbf{A} \qquad H(s) = \frac{s^2}{(s+10)^2} \qquad \qquad \mathbf{C} \qquad H(s) = \frac{s^2}{s^2 - 4s + 100}$$

$$\mathbf{B} \qquad H(s) = \frac{s^2}{s^2 + 4s + 100} \qquad \qquad \mathbf{D} \qquad H(s) = \frac{s^2}{s^2 + 16s + 100}$$

Tip: Bestem eventuelt dæmpningsfaktoren, ζ , for systemerne.

Figuren viser pol-nulpunktsdiagrammet for et LTIC system

med forstærkning 1. Røde kryds angiver poler og der er ingen nulpunkter. Hvilket af nedenstående er korrekt.

A Systemet er et all-pass filter, d.v.s. at alle frekvenser forstærkes lige meget.

B Knækfrekvensen i systemet er 3.

C Systemet har overføringsfunktion

$$H(s) = \frac{25}{s^2 + 6s + 25}$$

D Hverken A, B eller C.

Et LTIC system er beskrevet ved ligningen

$$(D^2 + 2D + 5)y(t) = D^2x(t)$$
 , $y(0^-) = 0$, $\dot{y}(0^-) = 0$, $x(t) = 5u(t)$

Hvilket af nedenstående er ikke korrekt?

A Systemet har overføringsfunktion

$$H(s) = \frac{s^2}{s^2 + 2s + 5}$$

B Det samlede output i laplacedomænet er

$$Y(s) = 5 \frac{s}{(s+1)^2 + 2^2}$$

C Det samlede output i tidsdomænet er

$$y(t) = e^{-t} (5\cos(2t) - \frac{5}{2}\sin(2t))u(t)$$

D Systemet har dæmpningsfaktor $\zeta = \frac{1}{2}$.

Bemærk: Der spørges om hvilken af svarmulighederne, som ikke er opfyldt.

Betragt kredsløbet

hvor $L=1\,\mathrm{H},\,R=2\,\Omega,\,C=\frac{1}{5}\,\mathrm{F}$ og i(t) angiver strømmen i kredsløbet. Efter at have været forbundet i lang tid afbrydes kontakten til tiden t=0. Hvilket af nedenstående udsagn er ikke korrekt?

A I laplacedomænet er strømmen givet ved

$$I(s) = \frac{i_L(0^-)s}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

B Strømmen gennem spolen lige før kontakten afbrydes er

$$i_L(0^-) = 5A$$

C Strømmen i kredsløbet lang tid efter kontakten afbrydes er

$$i(\infty) = 0A$$

D Strømmen i kredsløbet lige efter kontakten afbrydes er

$$i(0^+) = 10A$$

Bemærk: Der spørges om hvilken af svarmulighederne, som ikke er opfyldt. Tip: Husk at batteriet repræsenteres ved 10V u(t), når systemet betragtes fra t = 0.