RESCIENCEC

Replication / Ecology

[Re] Reproductive pair correlations and the clustering of organisms

Coralie Picoche^{1,2, ID} and Frederic Barraquand^{1,2, ID}

¹Institute of Mathematics of Bordeaux, CNRS University of Bordeaux, Talence, France – ²Integrative and Theoretical Ecology, LabEx COTE, University of Bordeaux, Pessac, France

Edited by (Editor)

Received 01 November 2018

Published 19 February 2021

DOI

Introduction

This article is a reproduction of [1].

Methods

Analytical solution of G

Derivation of G(r,t) – Finding back Eq. (2) in the original paper?

$$\frac{\partial G}{\partial t} = 2Dr^{1-d}\frac{\partial}{\partial r}\left(r^{d-1}\frac{\partial G}{\partial r}\right) + 2(\lambda - \mu)G + \gamma r^{1-d}\frac{\partial}{\partial r}\left(r^{d+1}\frac{\partial G}{\partial r}\right) + 2\lambda C\delta(\boldsymbol{r}) \quad (1)$$

We will focus on the case d=2 and $\lambda=\mu$, which means Eq. (1) can be reduced to

$$\frac{\partial G}{\partial t} = \frac{2D}{r} \frac{\partial}{\partial r} \left(r \frac{\partial G}{\partial r} \right) + \frac{\gamma}{r} \frac{\partial}{\partial r} \left(r^3 \frac{\partial G}{\partial r} \right) + 2\lambda C \delta(\mathbf{r}) \tag{2}$$

Analytical solution with advection – In the presence of advection ($\gamma \neq 0$), a steady-state solution can be found.

$$\frac{2D}{r}\frac{\partial}{\partial r}\left(r\frac{\partial G}{\partial r}\right) + \frac{\gamma}{r}\frac{\partial}{\partial r}\left(r^3\frac{\partial G}{\partial r}\right) + 2\lambda C\delta(\mathbf{r}) = 0$$

$$\Leftrightarrow 2\pi r\left(\frac{2D}{r}\frac{\partial}{\partial r}\left(r\frac{\partial G}{\partial r}\right) + \frac{\gamma}{r}\frac{\partial}{\partial r}\left(r^3\frac{\partial G}{\partial r}\right) + 2\lambda C\delta(\mathbf{r})\right) = 0$$

$$\Leftrightarrow 2\pi \left(2D\frac{\partial}{\partial r}\left(r\frac{\partial G}{\partial r}\right) + \gamma\frac{\partial}{\partial r}\left(r^3\frac{\partial G}{\partial r}\right)\right) + 2\pi r 2\lambda C\delta(\mathbf{r}) = 0$$

$$(3)$$

We can then integrate Eq. (3) over a small area centered on a particle, with radius ρ . Let us first note that

Copyright © 2021 C. Picoche and F. Barraquand, released under a Creative Commons Attribution 4.0 International license. Correspondence should be addressed to Coralie Picoche (coralie.picoche@u-bordeaux.fr)
The authors have declared that no competing interests exist.
Code is available at https://github.com/Coralie/Picoche/brownian_bug_fluid/code..

code is available at https://github.com/coralier/coche/brownlan_bug_huld/code.

$$\int_{R^2} \delta(\mathbf{r}) d^2 \mathbf{r} = 1$$

$$\Leftrightarrow \int_0^{2\pi} \int_0^{\rho} \delta(\mathbf{r'}) r' dr' d\theta = 1$$

$$\Leftrightarrow 2\pi \int_0^{\rho} \delta(\mathbf{r'}) r' dr' = 1$$
(4)

Using Eq. (3) and (4), we can integrate between 0 and ρ ,

$$0 = 2\pi \left(2D\rho \frac{\partial G}{\partial r} + \gamma \rho^3 \frac{\partial G}{\partial r}\right) + 2\lambda C$$

$$\Leftrightarrow \frac{\partial G}{\partial r} = -\frac{1}{2\pi} \frac{2\lambda C}{2D\rho + \gamma \rho^3}$$
 (5)

Eq. (5) can now be integrated between ρ and ∞ , knowing that $G(\infty) = C^2$.

$$C^{2} - G(\rho) = -\frac{1}{2\pi} \int_{\rho}^{\infty} \frac{2\lambda C}{2Dr + \gamma r^{3}} dr \tag{6}$$

Using the variable change $u=2Dr+\gamma r^3$, the integral is equivalent to $\int \frac{u'}{u}du$.

$$C^{2} - G(\rho) = -\frac{\lambda C}{2\pi} \frac{1}{4D} [\log(\gamma) - \log(\frac{2D}{r^{2}} + \gamma)]$$
 (7)

$$C^{2} - G(\rho) = -\frac{\lambda C}{2\pi} \frac{1}{4D} [\log(\gamma) - \log(\frac{2D}{r^{2}} + \gamma)]$$

$$\Leftrightarrow G(\rho) = \frac{\lambda C}{8\pi D} \log\left(\frac{2D + \gamma r^{2}}{\gamma r^{2}}\right) + C^{2}$$
(8)

Finally, the pair correlation function $g = G/C^2$ is defined as

$$g = \frac{\lambda}{8\pi DC} \log\left(\frac{2D + \gamma r^2}{\gamma r^2}\right) + 1 \tag{9}$$

Analytical solution without advection – When $U=0, \gamma=0$ and there is no steady solution. We can get back to Eq. (2).

$$\frac{\partial G}{\partial t} = \frac{2D}{r} \frac{\partial}{\partial r} \left(r \frac{\partial G}{\partial r} \right) + 2\lambda C \delta(\mathbf{r}) \tag{10}$$

Assuming an isotropic environment (and switching to the polar coordinate system), this means

$$\frac{\partial G}{\partial t} - 2D\Delta G = 2\lambda C\delta(\mathbf{r}) \tag{11}$$

where $\Delta = \nabla^2$ is the Laplacian operator.

We therefore have

$$\mathcal{L}G(\mathbf{r},t) = 2\lambda C\delta(\mathbf{r}) \tag{12}$$

where \mathcal{L} is the linear differential operator $\partial_t - 2D\Delta$.

We can use the Green's function H, defined with $\mathcal{L}H = \delta(\mathbf{r}, t) = \delta(\mathbf{r})\delta(t)$.

By definition, we know that $G(y) = \int H(y,s) 2\lambda C\delta(s) ds$ (where y = (r,t)) is a solution to Eq.(12).

$$G(\mathbf{r},t) = 2\lambda C \int_{\mathbb{R}^2} \int_0^t H(\mathbf{r} - \mathbf{r'}, t') \delta(\mathbf{r'}) d^2 \mathbf{r'} dt'$$

$$\Leftrightarrow 2\lambda C \int_0^t H(\mathbf{r}, t') dt' \qquad (13)$$

Eq.(13) can be used in Eq. (10):

$$\begin{split} &\frac{\partial}{\partial t} \left(2\lambda C \int_0^t H(\boldsymbol{r},t')dt' \right) &= 2D2\lambda C\Delta \int_0^t H(\boldsymbol{r},t')dt' + 2\lambda C\delta(\boldsymbol{r}) \\ \Leftrightarrow &\int_0^t \left(\frac{\partial H(\boldsymbol{r},t')}{\partial t'} - 2D\Delta H(\boldsymbol{r},t') \right)dt' = &\delta(\boldsymbol{r}) \\ \Leftrightarrow &\int_0^t \delta(\boldsymbol{r})\delta(t')dt' &= &\delta(\boldsymbol{r}) \end{split}$$

which is true.

A solution for the Green's function using $\mathcal{L}=\partial_t-2D\Delta$ in 2 dimensions is

$$H(r,t) = \frac{1}{4\pi 2Dt} \exp(\frac{-r^2}{4\times 2Dt})$$

G(r,t) can then be computed:

$$G(r,t) = 2\lambda C \left[\frac{E1\left(\frac{r^2}{8Dt'}\right)}{8D\pi} \right]_0^t$$
 (14)

where E1 is the exponential integral. Using $G(r,0)=C^2$ and $\lim_{x\to+\infty}E1=0$ in Eq. (14),

$$G(r,t) = 2\lambda C \frac{E1\left(\frac{r^2}{8Dt}\right)}{8D\pi} + C^2 \tag{15}$$

$$\Leftrightarrow g(r,t) = \frac{2\lambda}{C} \frac{E1\left(\frac{r^2}{8Dt}\right)}{8D\pi} + 1 \tag{16}$$

Results

Discussion

References

1. W. R. Young, A. J. Roberts, and G. Stuhne. "Reproductive pair correlations and the clustering of organisms." In: **Nature** 412.6844 (2001), pp. 328–331.