Homework 3: Report

Dante Buhl

Feb. 12^{th} 2024

1. The Schur decomposition theorem states that if $A \in C^{m \times m}$, then there exist a unitary matrix Q and an upper triangular matrix U such that $A = QUQ^{-1}$. Use the Schur decomposition theorem to show that a real symmetric matrix A is diagonalizable by an orthogonal matrix, i.e., \exists an orthogonal matrix Q such that $Q^TAQ = D$, where D is a diagonal matrix with its eigenvalues in the diagonal.

Proof. We begin with the Schur Decomposition Theorm for real symmetric matrix A. We have,

$$A = QUQ^{-1} = QUQ^*$$

By the property that A is real and symmetric, we have that $A^* = A$.

$$A^* = A = QUQ^*$$

$$Q^*A^*Q = U^* = Q^*AQ = U$$

So we have, $U = U^*$. Since we have that U is upper triangular, that means that U^* is lower triangular. However, since they are equal to one another, we must have that they are both diagonal. Thereby we have that A is diagonalizable by an othorgonal matrix Q (a property of unitary matrices).

$$A = QUQ^* \implies Q^{-1}AQ = U = D$$

Since we have this property, we have that Q contains the eigenvectors of A and U is a diagonal matrix containing its eigenvalues.