

Programming Models for Big Data Processing

Hong-Linh Truong
Department of Computer Science
<u>linh.truong@aalto.fi</u>, <u>https://rdsea.github.io</u>

Learning objectives

- Be familiar with key processing models and common techniques using multiple nodes/clusters for data processing
- Understand programming models and supports in Dask and Spark for data processing
- Able to perform practical programming features for data ingestion, transformation and analysis

Understanding common aspects

Analytics with cluster systems

Parallel processing of data in distributed file systems/storage

- Distributed data with different data formats
 - multiple types of data transformation/analytics with high concurrent/parallel data writes/reads
- Explore parallel processing at different levels
 - o data organization: different data access/analytics frequencies, e.g., data organized into hot, warm and cold data
 - o individual data collection: items in a collection, e.g., a set of data files/tables, can be processed in parallel
 - o parts of individual data file/table can be processed in parallel
- Leverage multiprocessing features from modern compute resources speeduping data processing

Parallel processing of data for Data Lake/Lakehouse

Modern lake data: cloud or on-premise

- multiple types of data from different sources (databases, files, sensors, etc)
- different forms in storage: raw data, enriched/processed/cleansing, application-/business curated data, sandbox data (for testing, collaboration)
- o common, standard, cost optimal storage: object storage (S3, Azure), (distributed) file storage (Hadoop FS), ...

Data Lake/Lakehouse core

- o data tables, metadata and catalogs
- o open standards: Parquet, ORC, Iceberg tables, Delta Lake formats
- many processing and governance tasks

Parallel and distributed data processing models

Figure source: https://docs.dask.org/en/stable/graphs.html

DataFrame/Table view of data

Example taxi records: named columns

0.3	0.0	0.0	0.5	0.0	10.0	2	236	238	N	1	1.34	1
0.3	0.0	0.0	0.5	0.0	10.0	2 j	236	238	N	1	1.34	1
0.3	0.0	0.0	0.5	0.0	4.0	2	238	238	N	1	0.32	1
0.3	0.0	0.0	0.5	0.0	4.0	2	238	238	N I	1	0.32	1
0.3	0.0	0.0	0.5	0.0	10.0	2	238	236	N	1	1.85	1
0.3	0.0	0.0	0.5	0.0	10.0	2	238	236	N I	1	1.85	1
0.3	0.0	0.0	0.5	0.0	12.5	2	237	68	N I	1	1.65	1
0.3	0.0	0.0	0.5	0.0	12.5	2	237	68	N	1	1.65	1
0.3	0.0	0.0	0.5	0.0	9.0	2	68	170	N	1	1.07	1
0.3	0.0	0.0	0.5	0.0	9.0	2	68	170	N	1	1.07	1
0.3	0.0	0.0	0.5	0.0	7.5	2	170	107	N	1	1.3	1
0.3	0.0	0.0	0.5	0.0	7.5	2	170	107	N	1	1.3	1
0.3	0.0	0.0	0.5	0.0	10.0	2	137	113	N	1	1.85	1
0.3	0.0	0.0	0.5	0.0	10.0	2	137	113	N	1	1.85	1
0.3	0.0	0.0	0.5	0.0	4.5	2	231	231	N	1	0.62	1
0.3	0.0	0.0	0.5	0.0	4.5	2	231	231	N	1	0.62	1
0.0	0.0	0.0	0.0	0.0	0.0	2	264	264	N	1	0.0	1
0.3	0.0	0.0	0.5	0.0	4.0	2	162	162	N	1	0.29	1
0.3	0.0	0.0	0.5	0.0	4.0	2	162	162	N	1	0.29	1
0.3	0.0	0.0	0.5	0.5	7.0	2	151	239	N	1	1.34	1

- Very common we analyze big data files based on this view
- Streaming data can be also represented as unbounded tables

https://pandas.pydata.org/docs/

General purpose programming languages +SQL for Data Lake/Lakehouse

Example

Spark program with Spark Delta for processing data and store the processed data into a cloud data lake storage

```
## hadoop inputFile="hdfs://"
spark_df =spark.read.csv(inputFile,header=True,inferSchema=True)
print(spark_df.head(10))
#do many things, before producing data for datalake
spark df.write.format("delta").mode("append").save(lake table path)
```

E.g., Data lake storage based on Google Cloud Storage (https://delta.io/)

Data lake storage with Iceberg tables,
Pyarrow an Pylceberg

(https://py.iceberg.apache.org/)

```
catalog = SqlCatalog(
    catalog name,
    **catalog config["catalog"][catalog name],
if data type == ".parquet":
    df = pg.read table(input data)
else:
    df = csv.read csv(input data)
catalog.create namespace if not exists(namespace)
logger.info(f'Existing namespaces: {catalog.list namespaces()}')
full tablename=f'{namespace}.{table name}'
if not catalog.list namespaces((namespace)):
    catalog.create namespace(namespace)
table = catalog.create table if not exists(
    full tablename,
    schema=df.schema,
table.append(df)
```

37 38

43

44

45

46

47

48

49

50

51

52

53

54 55

Enabling SQL-style with parallel/distributed data processing

Where is distributed/parallel data processing needed?

- Data Ingestion:
 - Spark Streaming
 - Kafka Connect
 - Apache Nifi
 - etc.

- Storage
 - HDFS, AWS S3, Google Storage,
 Azure Data Lake Storage,
 Iceberg tables, etc., as storage
- Computing/Data Processing Frameworks
 - Apache Spark
 - Hadoop MapReduce
 - Dask, Ray, etc.

Common aspects

- Data input/output connectors
 - o for reading data from sources and loading data into data sinks
- Data collections as abstract (big/distributed) data structures
 - o for modeling/representing data in suitable views for processing
- Data operations
 - operations applied to data in data collections
- Execution models
 - tasks, jobs, workflows
 - scheduling; lazy vs eager execution; delayed and future execution
- Task fault-tolerance and data exchange among tasks in distributed processes/machines

Exchange data possibilities

Try to analyze and identify this problem with a framework of

Programing frameworks in our focus

Programming models

- OS-based multi-threads/processes
- embarrassingly parallel programming
- MapReduce/Spark
- workflows
- (distributed) SQL processing with MPP (Massive Parallel Processing)

Programming frameworks

 Apache Hadoop/Spark, Dask, Polars, Apache Airflow

Not in our focus:

HPC MPI (Message Passing Interface)

Unified APIs

Frameworks

Programming Models

e.g., IBIS https://ibis-project.org/

Embarrassingly parallel processing workload and task graph dependencies with Dask

https://www.dask.org/

Key features

Data input/output connectors

- file types: CSV, Parquet, HDF, ORC, Json
- source: Cloud storage (S3, Google), HDFS, Snowflake, BigQuery, Delta Lake

Data Collections

 Array (like numpy array), Bag/Multiset (suitable for unstructured data, like text), DataFrame

Operations:

- o joins, concatenation, aggregation (first, sum, ...)
- o grouping/resampling, SQL-alike support
- functions/computation suitable for arrays

Execution modes

lazy by default; and support specific delayed and future tasks

Key features

Data can be splitted and processed in parallel tasks

- many operations on dataframes/tables can be parallelized, with little/without dependency among tasks
- using directed acyclic graph (DAG) to represent tasks
- o little communication among them, little data shuffle between tasks

Single and multiple nodes as computing resources

- multiprocessing in single node vs distributed nodes
- scheduling graphs using OS threads and processes to execute tasks
- data exchange among tasks using shared memory, direct communication or disk
- using different resource management systems: Kubernetes, SLURM, PBS, etc.

Parallelizing dataframe → embarrassingly Dataframe

- A big dataset can be presented as a Dask dataframe
 - a Dask dataframe can be partitioned into different partitions
- Perform operations on data partitions with lazy principles
 - explicitly call compute()
 method → computation

Dataframe in partitions

Dask Dataframe

135%	VendorID	total amount
0	1.0	11.80
1	1.0	4.30
2	1.0	51.95
3	1.0	36.35
4	2.0	24.36
95	2.0	21.96
96	2.0	17.30
 97	2.0	15.36
98	2.0	24.80
99	2.0	13.30

Data records: 1369765 Data has 4 partitions Partition 0 has 342441 Partition 1 has 342441 Partition 2 has 342441 Partition 3 has 342442

Example from dask.distributed import Client 34 # make sure that dask scheduler and worker running 35 client = Client(f'{dask scheduler host}:{dask scheduler port}') 36 taxi df = dd.read csv(input file, dtype = dtype, 37 38 assume missing=True, 39 low memory=False) print(f'Total records: {len(taxi df)}') 40 p taxi df = taxi df.repartition(npartitions=num partitions) 41 func total amount = p taxi df.get partition(0)["total amount"].sum() 42 for i in range(0, num partitions): 43 func total amount = func total amount \ 44 + p taxi df.get partition(i)["total amount"].sum() 45 if vis file is not None: 46 Add(Add, Sum) func total amount.visualize(filename=vis file) 47 total amount =func total amount.compute() 48 Add(Add, Sum) 49 print(f'The total amount calculated from this file is {total amount}') Sum(Projection) Sum(Projection) Add(Sum, Sum) Sum(Projection) Sum(Projection) Projection(Partitions, total_amount) Projection(Partitions, total_amount) Projection(Partitions, total amount) Projection(Partitions, total amount) Partitions(Repartition, [3]) Partitions(Repartition, [2]) Partitions(Repartition, [1]) Partitions(Repartition, [0]) Repartition(ArrowStringConversion) ArrowStringConversion(FromMapProjectable) FromMapProjectable

Task dependency based on DAG

- Flexible to define task graphs
 - o as a directed acyclic graph
- Explicitly lazy, deferred execution
 - using dask.delayed()/@dask.delayed to declare delayed tasks
- Concurrent, asynchronous eager execution
 - using future tasks
- Suitable for problems cannot be solved with Dask Dataframe

Task dependency based on DAG

```
if delayed mode:
60
             # delayed tasks
61
             task11 = dask.delayed(high room temperature)(bts alarm df)
62
             task12 = dask.delayed(average outdoor temperature)(bts parameter df)
63
             final task = dask.delayed(merge data)(task11,task12)
64
             if vis file is not None:
65
                 final task.visualize(filename=vis file)
66
             final result = final task.compute()
67
             print(f'First 100 elements\n: {final result.head(100)}')
68
```


Apache Spark

https://spark.apache.org/

Apache Spark

- Cluster-based high-level computing framework
- "unified engine" for different types of big data processing
 - SQL/structured data processing
 - Machine learning
 - Graph processing
 - Streaming processing
- It is a powerful computing framework and system ⇒ an important service for a big data platform
 - o public cloud: Google DataProc, Azure HDInsight, Amazon EMR
 - o data lake systems: e.g., Hudi and Delta Lake

Apache Spark

Can be run a top

- Hadoop (using HDFS and YARN)
- Kubernetes
- Standalone machines

(Hadoop/YARN, Kubernetes, Standalone...)

Source: http://spark.apache.org/

Computing resources Execution model in a in a cluster node cluster system Worker Node **Driver** manages Executor Cache operations and tasks in nodes Task Task Driver Program SparkContext Cluster Manager Worker Node Executor Cache Common concepts: Driver, Task Task Nodes, Tasks Workload styles: OLAP/batch Figure source: jobs with a lot of data http://spark.apache.org/docs/latest/cluster-overview.html

Spark application management: high-level view

Submission/Request

- submit the Spark application for running
- resource is provided for running the Driver

Launch

- the Driver requests resources for executors (through SparkContext)
- establish executors across worker nodes

Execution

the Driver starts to execute code and move data

Finish/Completion:

finish, release executors

Key features

- Input data is distributed in different nodes for processing
 - \circ support partitions for data processing: a node keeps one or n partitions, a partition resides only in a node \Rightarrow for computing
- Key operations: transformations and actions on data
- Leverage parallel computing concepts to run multiple tasks
 - data operation -> task executed by executor
 - o parallel tasks, task pipeline, DAG of processing stages
- Persistent data in memory/disk for operations

Transformation operations

- Transformation
 - \circ instructions about how to transform a data in a form to another form \Rightarrow it will not change the original data (immutability)
- Only tell what to do: to build a DAG (direct acyclic graph) → a lineage of what to do
- lazy approach ⇒ real transformation will be done at action operators

Narrow transformation, no data shuffle

Wide transformation, cross data partitions, requires a shuffle

Action operations

- Compute the results for a set of transformations
 - examples: count or average
- Actions: view, collect, write, calculation

Lazy approach: an action triggers execution of transformation operations ⇒ enable various types of optimization

Spark program: programming elements

SparkSession

- acts as a program driver to manage the execution of tasks
- SparkContext: manages connection to a cluster and internal services

Data APIs

- o low-level Resilient Distributed Dataset (RDD) & shared variables
- high-level DataFrames/DataSets
- load and hold distributed data
- transformation and action functions
- ML, graph and streaming functions and pipelines

Spark program logic: typical steps

Load data and distribute data

- data is immutable after created
- data partition in Spark: a partition is allocated in a node

Perform transformations and actions operations

- o transformations: build plans for transforming data models
- o actions: perform computation on data

Resilient distributed dataset (RDD)

Low-level data structure

- collection of data elements partitioned across nodes in the cluster
- with data sharing, parallel operations, fault-tolerant features

Create RDD

 created by loading data from files (text, sequence file) including local file systems, HDFS, Cassandra, HBase, Amazon S3, etc.

Persist RDD

in memory or to files

Example with RDD

```
VendorID,tpep_pickup_datetime,tpep_dropoff_datetime,passenger_count,trip_distance,RatecodeID,store_and_fwd_flag,PULocationID,DOLocationID,payment_type,fare_amount,extra,mta_tax,tip_amount,tolls_amount,improvement_surcharge,total_amount
2,11/04/2084 12:32:24 PM,11/04/2084 12:47:41 PM,1,1.34,1,N,238,236,2,10,0,0.5,0,0,0.3,10.8
2,11/04/2084 12:32:24 PM,11/04/2084 12:47:41 PM,1,1.34,1,N,238,236,2,10,0,0.5,0,0,0.3,10.8
2,11/04/2084 12:25:53 PM,11/04/2084 12:29:00 PM,1,0.32,1,N,238,238,2,4,0,0.5,0,0,0.3,4.8
```

as a text file

```
conf = SparkConf().setAppName("cse4640-rddshow").setMaster(args.master)
sc = SparkContext(conf=conf)
##modify the input data
rdd=sc.textFile(args.input_file)
## if there is a header we can filter it otherwise comment two lines
csvheader = rdd.first()
rdd = rdd.filter(lambda csventry: csventry != csvheader)
## using map to parse csv text entry
rdd=rdd.map(lambda csventry: csventry.split(","))
rdd.repartition(1)
rdd.saveAsTextFile(args.output_dir)
```


Shared variables

A function is executed a remote and various tasks running in parallel

 how do tasks share variables? common patterns in parallel computing: broadcast and global variable/counter

Variables used in parallel operations

- variables are copied among parallel tasks
- shared among tasks or between tasks and the driver

Types of variables

- o broadcast variables: cache a value in all nodes
- accumulators: a global counter shared across processes

Examples

```
sc = SparkContext(conf=conf)
bVar = sc.broadcast([5,10])
print("The value of the broadcast",bVar.value,sep=" ")
counter = sc.accumulator(0)
sc.parallelize([1, 2, 3, 4]).foreach(lambda x: counter.add(bVar.value[0]))
print("The value of the counter is ",counter.value,sep=" ")
```

Use cases:

- Broadcast variables: lookup tables
- Accumulators: monitoring/checkpoint counters

Spark SQL and DataFrames

High-level APIs

 design with common programming patterns in data analysis, multi-language support

SparkSQL: enable dealing with structured data

SQL query execution, Hive, JDBC/ODBC

DataFrame

- distributed data organized into named columns, similar to a table in relational database
- Pandas and Spark DataFrames have similar design concepts

DataFrame

```
inputFile =args.input_file
df =spark.read.csv(inputFile,header=True,inferSchema=True)
print("Number of partition",df.rdd.getNumPartitions())
df.show()
```

++	+-	+	+	+	+-			+	+	+
PROVINCECODE	DEVICEID	IFINDEX FF	RAME S	SLOT	PORT	ONUINDEX	ONUID	TIME S	SPEEDIN	SPEEDOUT
+	+-	+	+-	+	+-			+	+	+
YN 1	3023	528	1	2	7	39 10	07039 01/08/2019	00:04:07	148163	49018
YN 1	3023	528	1	2	7	38 10	07038 01/08/2019	00:04:07	1658	1362
YN 1	3023	528	1	2	7	9 10	07009 01/08/2019	00:04:07	6693	5185
YN 1	3023	528	1	2	7	8 10	07008 01/08/2019	00:04:07	640	544
YN 1	3023	528	1	2	7	11 10	07011 01/08/2019	00:04:07	118	114
YN 1	3023	528	1	2	7	10 10	07010 01/08/2019	00:04:07	28514	12495
YN 1	3023	528	1	2	7	13 10	07013 01/08/2019	00:04:07	868699	23400
YN 1	3023	528	1	2	7	15 10	07015 01/08/2019	00:04:07	1822	1120
YN 1	3023	528	1	2	7	17 10	07017 01/08/2019	00:04:07	998069	117345
YN 1	3023	528	1	2	7	16 10	07016 01/08/2019	00:04:07	22402	1804
YN 1	3023	528	1	2	7	19 10	07019 01/08/2019	00:04:07	640	791
YN 1	3023	760	1	1	10	49 10	10049 01/08/2019	00:04:07	662	494
YN 1	3023	760	1	1	10	48 10	10048 01/08/2019	00:04:07	2158	759
YN 1	3023	528	1	2	7	21 10	07021 01/08/2019	00:04:07	0	0
YN 1	3023	760	1	1	10	51 10	10051 01/08/2019	00:04:07 2	2600890	54153
YN 1	3023	528	1	2	7	20 10	07020 01/08/2019	00:04:07	330	184

Create DataFrame

DataFrames can be created from a Hive table, from Spark data sources, or another DataFrame

Load and save

- From Hive, JSON, CSV
- HDFS, cloud object storage (AWS S3, Google Cloud Storage, Azure Blob Storage), Delta Lake, local files, etc.

and more

Formats and Sources supported by DataFrames

Figure source:

https://databricks.com/blog/2015/02/17/introducing-dataframe s-in-spark-for-large-scale-data-science.html

DataFrame Transformations & Actions

- Several transformations can be done
 - Think transformation for relational database or matrix
- Select
 - df.select
- Filter
 - df.filter
- Groupby
 - *df.groupBy*
- Handle missing data
 - Drop duplicate rows, drop rows with NA/null data
 - Fill NA/null data

Actions

 return values calculated from DataFrame

Examples

- reduce, max, min, sum, variance and stdev
- ⇒ Distributed and parallel processing but it is done by the framework

Example of a Spark

```
#!/usr/bin/env python2
#encoding: UTF-8
# CS-E4640
import csv
import sys
from datetime import datetime
from pyspark.sql import SparkSession
import numpy as np
from pyspark.sql import functions as F
import argparse
                                                                   Session/Driver
parser = argparse.ArgumentParser()
parser.add argument('--input file', help='input data file')
parser.add argument('--output dir',help='output dir')
args = parser.parse args()
##define a context
spark = SparkSession.builder.appName("cse4640-onu").getOrCreate()
#NOTE: using hdfs:///.... for HDFS file or file:///
inputFile =args.input file
                                                                  Read data
df =spark.read.csv(inputFile,header=True,inferSchema=True)
#df.show()
print("Number of records", df.count())
exprs = {"SPEEDIN": "avg"}
                                                                      Apply operations
df2 = df.groupBy('ONUID').agg(exprs)
df2.repartition(1).write.csv(args.output file,header=True)
```


Spark application runtime view

Tasks:

o a unit of work executed in an executor: e.g., performing transformations of a data partition

Stage: Shuffle Map Stage & Result Stage

- a set of tasks executed in many nodes for performing the same operation
- move to a new stage: through a shuffle to produce output partitions or an action to produce results

Job

 runtime view of an action operation (actual computation produces a result), includes many stages of tasks

Data Distribution

One task works on a partition at a time

⇒ Parallelism and performance are strongly dependent on number of partitions, tasks, CPU cores

Data Distribution: load balance

Imbalance more data shuffle

 It is important to have well-balanced data distribution across nodes

Detection:

 look at runtime execution time to see problems or check your data

Examples of solution:

- repartition
- change group keys

Pipelining, Shuffle and DAG

- Operations work in a pipeline without moving data across nodes
 - o e.g., map->filter, select->filter
- Shuffle persistent
 - shuffle needs move data across nodes
 - source tasks save shuffle files into local disks for data shuffle, then the target tasks will read data from source nodes
 - Save time, recovery, fault tolerance

Other important support of Spark

- MLlib Machine learning
 - Distributed and parallel machine learning algorithms with big data and clusters
- Streaming: data processing in near real-time
 - Related to our topic: stream data processing
- Graph Processing: Spark GraphX
 - Parallel computation for graphs
- Many third-party frameworks, e.g.,
 - SparkOCR (<u>https://www.johnsnowlabs.com/spark-ocr/</u>), SparkNLP (<u>https://nlp.johnsnowlabs.com/</u>)
 - o PyDeequ (https://pydeequ.readthedocs.io/en/latest/README.html#) Data quality
 - check our example: https://github.com/rdsea/bigdataplatforms/tree/master/tutorials/dataquality

Massive parallel processing for distributed query engines

Massive parallel processing employed by distributed query engine

Key concepts

- o using SQL as a way to query different types of data sources like data lake, warehouse, and databases
- the query engine is decoupled from data sources/storage
- using massive parallel processing (MPP) to support parallel tasks accessing different data sources at a large-scale with many compute nodes
- Complex fault tolerance and optimization:
 - failure management, query and data movement costs, ...
- Mostly for analytics: interactive analytics, seconds minutes

Example distributed SQL engine: Presto/Trino Small exercise

Figure source: Presto: SQL on Everything https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=87315 47&tag=1

Small exercise (see course git)

Trino (https://trino.io/): from a fork of Presto

Summary

Different programming models for data processing

- models and tools selected based on data workload and ecosystems, including underlying compute resource management
- o both developers and platform operator/provider must carefully decide the programming models for data processing

Effects of modernization and composability in data platforms:

• Spark is powerful but many emerging ones, e.g., Polars and DuckDB, which may be suitable due to learning curves, management, data load

Thoughts

- think about the success of Apache Spark: rich ecosystems!
- think if you combine data, different distributed programming supports for your big data platform

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

Monitoring Spark: executors and tasks

csv at NativeMethodAccessorImpl.java:0