

Varianta068

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la MATEMATICĂ PROBA D

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- a) Să se determine distanța dintre punctele A(-1,2) și B(2,-1)(4p)
- **b)** Să se determine aria triunghiului ABC dacă $AB = AC = 4\sqrt{2}$ şi BC = 10. (4p)
- c) Să se calculeze produsul scalar al vectorilor $\vec{v} = 3\vec{i} 4\vec{j}$ și $\vec{u} = 4\vec{i} + 3\vec{j}$. (4p)
- **d**) Să se calculeze modulul numărului complex $\frac{3-i}{1+2i}$. (4p)
- e) Să se calculeze cosinusul unghiului determinat de diagonala unui cub cu o față laterală a sa. (2p)
- f) Să se calculeze $\cos x$, dacă $x \in \left(0, \frac{\pi}{2}\right)$ și $\sin x = \frac{3}{5}$. (2p)

SUBIECTUL II (30p)

- 1. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 6x + 10$.
- a) Să se calculeze $(f \circ f)(2)$. (3p)
- **b)** Să se arate că $f(x) \ge 1$, $\forall x \in \mathbf{R}$. (3p)
- c) Să se calculeze probabilitatea ca un element $x \in \{0, 1, 2, 3\}$ să verifice relația $f(x) \le 5$. (3p)
- **d**) Să se calculeze suma f(1) + f(2) + ... + f(20). (3p)
- e) Să se rezolve ecuația $f(\log_2 x) = 1$, $x \in (0, \infty)$. (3p)
 - **2.** Se consideră funcția $f:(0,\infty)\to \mathbb{R}$, $f(x)=4x^2+\frac{1}{x}$.
- a) Să se calculeze f'(x), x > 0. (3p)
- **b)** Să se arate că funcția f este strict crescătoare pe intrvalul $(1, \infty)$. (3p)
- $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}.$ c) Să se calculeze (3p)
- d) Să se determine numărul punctelor de inflexiune ale graficului funcției f. (3p)
- e) Să se calculeze $\int f(x)dx$.

SUBIECTUL III (20p)

Notăm cu [a] partea întreagă a numărului real a și cu $\{a\}$ partea fracționară a numărului real a. Se consideră $n \in \mathbb{N}$, $n \ge 2$, și funcția $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \left[x\right] + \left[x + \frac{1}{n}\right] + \left[x + \frac{2}{n}\right] + \dots + \left[x + \frac{n-1}{n}\right] - \left[nx\right].$$

- (4p) a) Să se calculeze f(0)
- (4p) b) Să se verifice că $f\left(x + \frac{1}{n}\right) = f(x), \ \forall x \in \mathbf{R}$.
- (4p) c) Să se arate că $\forall x \in \mathbf{R}$, există $k \in \mathbf{Z}$, astfel încât $0 \le x \frac{k}{n} < \frac{1}{n}$.
- (2p) d) Să se arate că f(x) = 0, $\forall x \in \left[0, \frac{1}{n}\right]$.
- (2p) e) Să se arate că f(x) = 0, $\forall x \in \mathbb{R}$.
- (2p) g) Să se arate că dacă $0 \le a_1 < a_2 < ... < a_s < 1$ și $[x + a_1] + [x + a_2] + ... + [x + a_s] = [sx]$, $\forall x \in \mathbf{R}$, unde $s \in \mathbf{N}^*$, atunci $\{a_1, a_2, ..., a_s\} = \left\{0, \frac{1}{s}, ..., \frac{s-1}{s}\right\}$.

SUBIECTUL IV (20p)

Se consideră funcțiile $f_n: \mathbf{R} \to \mathbf{R}$, $f_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$, $\forall n \in \mathbf{N}^*$, $\forall x \in \mathbf{R}$.

- (4p) a) Să se verifice că $f'_n(x) = f_{n-1}(x)$, $\forall n \in \mathbb{N}$, $n \ge 2$, $\forall x \in \mathbb{R}$.
- (4p) b) Să se verifice că $f_{n+1}(x) = \frac{x^{n+1}}{(n+1)!} + f_n(x), \forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}$.
- (4p) c) Să se arate că $f_2(x) \ge \frac{1}{2}$, $\forall x \in \mathbf{R}$.
- (2p) d) Să se verifice că $1 + \int_{0}^{x} f_{n}(t)dt = f_{n+1}(x), \forall n \in \mathbb{N}^{*}, \forall x \in \mathbb{R}$.
- (2p) e) Utilizând metoda inducției matematice, să se arate că $f_{2n}(x) > 0$, $\forall x \in \mathbf{R}$ și că ecuația $f_{2n-1}(x) = 0$ are soluție unică în \mathbf{R} , $\forall n \in \mathbf{N}^*$.
- (2p) $| \mathbf{f} |$ Să se arate că funcția f_{2007} este bijectivă.
- (2p) g) Să se arate că funcția f_{2008} este convexă pe ${\bf R}$.