# **Econometrics I**

Lecture 5: Extended Example: The Wage Equation

Chris Conlon

Fall 2025

## Mincerian Regression

► Recall the Mincerian regression (wage equation):

$$\label{eq:mage_i} \\ \ln \textit{wage}_i = \beta_0 + \beta_\textit{ed} \textit{Education}_i + \beta_\textit{exp} \textit{Experience}_i + \beta_\textit{Fem} \textit{Female}_i + \dots + \varepsilon_i \\$$

► Let's revisit estimating this with the Cornwell and Rupert (NLSY) data.

1

#### Process the data

```
suppressMessages(library(tidyverse))
suppressMessages(library(fixest))
# first, the Cornwell and Rupert regression
data <- read.csv('./cornwell-rupert.csv') %>% mutate(EXP2 = EXP^2)
# see counts of each education level
data2 < -data \% > \% mutate(ED_LEVEL = cut(ED, c(0, 8, 11, 12, 15, 16, 17),
                       labels = c("NOHS", "SOMEHS", "HS", "SOMECOL", "COL", "POST"),
                       riaht=TRUE))
# check that we did it correctly
table(data$ED.data2$ED_LEVEL)
```

#### **Baseline Results**

```
reg_1 <- feols(LWAGE ~ ED + EXP + EXP2 + WKS + OCC + SOUTH + SMSA + MS + UNION + FEM, data = data)

# dropping the constant
reg_2 <- feols(LWAGE ~ -1 + i(ED_LEVEL) + EXP + EXP2 + WKS + OCC + SOUTH + SMSA + MS + UNION + FEM, data = data2)

# not dropping the constant -- which category is omitted?
reg_3 <- feols(LWAGE ~ 1+ i(ED_LEVEL) + EXP + EXP2 + WKS + OCC + SOUTH + SMSA + MS + UNION + FEM, data = data2)

# change the omitted category -- how do coefficients change?
reg_4 <- feols(LWAGE ~ 1+ i(ED_LEVEL, ref="COL") + EXP + EXP2 + WKS + OCC + SOUTH + SMSA + MS + UNION + FEM, data = data2)
etable(list(reg_1, reg_2, reg_4, reg_4))
```

Note on interpreting effects with log dependent variable: Interpreting coefficients for  $log(v_i) \approx 1 + \beta$ :

- ightharpoonup exp (-.3892) = .6826
- ightharpoonup exp (.05654) = 1.057

| Dependent Variable: | LWAGE                   |                        |                        |                         |
|---------------------|-------------------------|------------------------|------------------------|-------------------------|
| Model:              | (1)                     | (2)                    | (3)                    | (4)                     |
| Variables           |                         |                        |                        |                         |
| Constant            | 5.245***                |                        | 5.655***               | 6.161***                |
|                     | (0.0717)                |                        | (0.0634)               | (0.0597)                |
| ED                  | 0.0565***               |                        |                        |                         |
|                     | (0.0026)                |                        |                        |                         |
| EXP                 | 0.0404***               | 0.0410***              | 0.0410***              | 0.0410***               |
|                     | (0.0022)                | (0.0022)               | (0.0022)               | (0.0022)                |
| EXP2                | -0.0007***              | -0.0007***             | -0.0007***             | -0.0007***              |
|                     | $(4.78 \times 10^{-5})$ | $(4.8 \times 10^{-5})$ | $(4.8 \times 10^{-5})$ | $-(4.8 \times 10^{-3})$ |
| WKS                 | 0.0045***               | 0.0046***              | 0.0046***              | 0.0046***               |
|                     | (0.0011)                | (0.0011)               | (0.0011)               | (0.0011)                |
| occ                 | -0.1405***              | -0.1386***             | -0.1386***             | -0.1386***              |
|                     | (0.0147)                | (0.0151)               | (0.0151)               | (0.0151)                |
| SOUTH               | -0.0721***              | -0.0762***             | -0.0762***             | -0.0762***              |
|                     | (0.0125)                | (0.0126)               | (0.0126)               | (0.0126)                |
| SMSA                | 0.1390***               | 0.1436***              | 0.1436***              | 0.1436***               |
|                     | (0.0121)                | (0.0121)               | (0.0121)               | (0.0121)                |
| MS                  | 0.0674***               | 0.0692***              | 0.0692***              | 0.0692***               |
|                     | (0.0206)                | (0.0207)               | (0.0207)               | (0.0207)                |
| UNION               | 0.0901***               | 0.0940***              | 0.0940***              | 0.0940***               |
|                     | (0.0129)                | (0.0130)               | (0.0130)               | (0.0130)                |
| FEM                 | -0.3892***              | -0.3819***             | -0.3819***             | -0.3819***              |
|                     | (0.0252)                | (0.0253)               | (0.0253)               | (0.0253)                |
| ED.LEVEL = NOHS     |                         | 5.655***               |                        | -0.5066***              |
|                     |                         | (0.0634)               |                        | (0.0284)                |
| ED.LEVEL = SOMEHS   |                         | 5.795***               | 0.1400***              | -0.3666***              |
|                     |                         | (0.0624)               | (0.0249)               | (0.0236)                |
| ED.LEVEL = HS       |                         | 5.903***               | 0.2482***              | -0.2584***              |
|                     |                         | (0.0609)               | (0.0229)               | (0.0194)                |
| ED_LEVEL = SOMECOL  |                         | 5.991***               | 0.3364***              | -0.1702***              |
|                     |                         | (0.0610)               | (0.0268)               | (0.0206)                |
| ED.LEVEL = COL      |                         | 6.161***               | 0.5066***              |                         |
|                     |                         | (0.0597)               | (0.0284)               |                         |
| ED.LEVEL = POST     |                         | 6.188***               | 0.5337***              | 0.0271                  |
|                     |                         | (0.0589)               | (0.0295)               | (0.0213)                |
| Fit statistics      |                         |                        |                        |                         |
| Observations        | 4,165                   | 4,165                  | 4,165                  | 4,165                   |

0.41826

0.41724

0.41738

0.41738

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- There exist a number of such policies for bandit problems.
- ► Greedy policy:
  - choose arm with greatest expected reward
  - ignores variability in prior distribution
  - quite good for Bernoulli bandits, but less effective for normal bandits



Figure 1: \*



Figure 2:

4

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- There exist a number of such policies for bandit problems.
- ► Greedy policy:
  - choose arm with greatest expected reward
  - ignores variability in prior distribution
  - quite good for Bernoulli bandits, but less effective for normal bandits



Figure 1: \*



Figure 2:

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- There exist a number of such policies for bandit problems.
- ► Greedy policy:
  - choose arm with greatest expected reward
  - ignores variability in prior distribution
  - quite good for Bernoulli bandits, but less effective for normal bandits



Figure 1: \*



Figure 2:

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- There exist a number of such policies for bandit problems.
- ► Greedy policy:
  - choose arm with greatest expected reward
  - ignores variability in prior distribution
  - quite good for Bernoulli bandits, but less effective for normal bandits



Figure 1: 3



Figure 2: '

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- There exist a number of such policies for bandit problems.
- ► Greedy policy:
  - choose arm with greatest expected reward
  - ignores variability in prior distribution
  - quite good for Bernoulli bandits, but less effective for normal bandits



Figure 1: 3



Figure 2:

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- There exist a number of such policies for bandit problems.
- ► Greedy policy:
  - choose arm with greatest expected reward
  - ignores variability in prior distribution
  - quite good for Bernoulli bandits, but less effective for normal bandits



Figure 1: 3



Figure 2:

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- ► There exist a number of such policies for bandit problems.
- ► Greedy policy:
  - choose arm with greatest expected reward
  - ignores variability in prior distribution
  - quite good for Bernoulli bandits, but less effective for normal bandits



Figure 1: \*



Figure 2:

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- ► There exist a number of such policies for bandit problems.
- ► Greedy policy:
  - choose arm with greatest expected reward
  - ignores variability in prior distribution
  - quite good for Bernoulli bandits, but less effective for normal bandits



Figure 1: \*



Figure 2: \*

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- ► There exist a number of such policies for bandit problems.
- ► Greedy policy:
  - choose arm with greatest expected reward
  - ignores variability in prior distribution
  - quite good for Bernoulli bandits, but less effective for normal bandits



Figure 1: \*



 $\Rightarrow$  play this arm



 $(\alpha \beta) = (6.5)$ 

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- ► There exist a number of such policies for bandit problems.
- ► Next policy:
  - comment 1
  - comment 2
  - comment 3



Figure 1: \*



Figure 2: \*

 $(\alpha \ \beta) = (6.5)$ 

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- ► There exist a number of such policies for bandit problems.
- ► Next policy:
  - comment 1
  - comment 2
  - comment 3



Figure 1: \*



Figure 2: \*

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- ► There exist a number of such policies for bandit problems.
- ► Next policy:
  - comment 1
  - comment 2
  - comment 3



Figure 1: \*



Figure 2: \*

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- ► There exist a number of such policies for bandit problems.
- ► Next policy:
  - comment 1
  - comment 2
  - comment 3



Figure 1: \*



 $\Rightarrow$  play this arm with probability  $\varepsilon$ 

Figure 2: \*

$$(\alpha \beta) = (6.5)$$

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- ► There exist a number of such policies for bandit problems.
- ► Next policy:
  - comment 1
  - comment 2
  - comment 3



Figure 1: \*



play this arm with probability  $1-\varepsilon$ 

⇒ play this arm

with probability  $\varepsilon \Rightarrow$ 

Figure 2: \*

$$(\alpha, \beta) = (6, 5)$$

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- There exist a number of such policies for bandit problems.
- ► Another policy:
  - Another comment 1
  - Another comment 2
  - Another comment 3



Figure 1: \*



Figure 2: \*

$$(\alpha, \beta) = (6, 5)$$

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- ► There exist a number of such policies for bandit problems.
- ► Another policy:
  - Another comment 1
  - Another comment 2
  - Another comment 3



Figure 1: \*



Figure 2: \*

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- There exist a number of such policies for bandit problems.
- ► Another policy:
  - Another comment 1
  - Another comment 2
  - Another comment 3



Figure 1: \*



Figure 2: \*

- ► These are methods aiming to give a good but not necessarily optimal solution to a problem.
- ► There exist a number of such policies for bandit problems.
- ► Another policy:
  - Another comment 1
  - Another comment 2
  - Another comment 3



Figure 1: \*



Figure 2: \*