Problem R-10A (C₆H₈O) 75 MHz ¹³C NMR spectrum in CDCI₃ Source: Aldrich Spectra Collection/Reich g

Problem R-10A (C_6H_8O). Below are given the ¹³C NMR spectra of two stereoisomers of 3-methyl-pent-2-ene-4-yn-1-ol. Assign structures, and assign the signals by writing the δ values next to the appropriate carbons on each structure (Source: Aldrich Spectra Viewer).

Briefly explain the basis for your assignment. Be specific.

Problem R-10A (C_6H_8O). Below are given the ¹³C NMR spectra of two stereoisomers of 3-methyl-pent-2-ene-4-yn-1-ol. Assign structures, and assign the signals by writing the δ values next to the appropriate carbons on each structure (Source: Aldrich Spectra Viewer).

Briefly explain the basis for your assignment. Be specific.

γ-Interaction across double bonds causes upfield shifts (vs H at one of the positions). Thus in the E-isomer the CH₃ would be upfield ca 5 ppm compared to the Z-isomer. SImilarly, the first C≡C carbon would be upfield in the Z-isomer compared to the E

For some reason the terminal acetylene carbon also moves significantly (6.8 ppm) between isomers, but this is not a predictable γ -effect.