Test ideals, Cohen-Macaulay modules, and singularities of commutative rings

Rebecca R.G.

George Mason University

CAZoom April 2020

Summarize previous work using big Cohen-Macaulay modules and algebras to study singularities of commutative rings

- Summarize previous work using big Cohen-Macaulay modules and algebras to study singularities of commutative rings
- Describe new perspectives on how to do this

- Summarize previous work using big Cohen-Macaulay modules and algebras to study singularities of commutative rings
- Describe new perspectives on how to do this
- Give some theoretical extensions of this perspective to closure operations, interior operations, test ideals, cores, and hulls

- Summarize previous work using big Cohen-Macaulay modules and algebras to study singularities of commutative rings
- Describe new perspectives on how to do this
- Give some theoretical extensions of this perspective to closure operations, interior operations, test ideals, cores, and hulls
- Give examples of computations of test ideals of maximal Cohen-Macaulay modules.

Definition (Hochster 1975)

Let (R, m) be a Noetherian local ring. An R-module B (not necessarily finitely-generated, is a (balanced) big Cohen-Macaulay module if $mB \neq B$ and every system of parameters on R is a regular sequence on B.

Definition (Hochster 1975)

Let (R, m) be a Noetherian local ring. An R-module B (not necessarily finitely-generated, is a (balanced) big Cohen-Macaulay module if $mB \neq B$ and every system of parameters on R is a regular sequence on B. If B is a big Cohen-Macaulay module and an R-algebra, we say that B is a big Cohen-Macaulay algebra.

Definition (Hochster 1975)

Let (R, m) be a Noetherian local ring. An R-module B (not necessarily finitely-generated, is a (balanced) big Cohen-Macaulay module if $mB \neq B$ and every system of parameters on R is a regular sequence on B. If B is a big Cohen-Macaulay module and an R-algebra, we say that B is a big Cohen-Macaulay algebra.

They were first studied by Hochster in the context of proving the homological conjectures, a family of related conjectures many of which were proved in the last case in the last year or two, following André's proof of the existence of big Cohen-Macaulay algebras in the mixed characteristic case.

In the study of big Cohen-Macaulay modules and algebras, they have often been tied to singularities of the ring. In particular, their relationship to tight closure has been used to gain a better understanding of both.

In the study of big Cohen-Macaulay modules and algebras, they have often been tied to singularities of the ring. In particular, their relationship to tight closure has been used to gain a better understanding of both.

Hochster 1994: Proved that tight closure agrees with big Cohen-Macaulay algebra closure in characteristic p > 0 and showed containment in equal characteristic 0.

In the study of big Cohen-Macaulay modules and algebras, they have often been tied to singularities of the ring. In particular, their relationship to tight closure has been used to gain a better understanding of both.

Hochster 1994: Proved that tight closure agrees with big Cohen-Macaulay algebra closure in characteristic p > 0 and showed containment in equal characteristic 0.

Hochster-Huneke 1995: Defined a weakly CM-regular ring (and variants on it), and compared it to a weakly F-regular ring in equal characteristic. Also compared tight closure to a closure coming from a big Cohen-Macaulay algebra.

In the study of big Cohen-Macaulay modules and algebras, they have often been tied to singularities of the ring. In particular, their relationship to tight closure has been used to gain a better understanding of both.

Hochster 1994: Proved that tight closure agrees with big Cohen-Macaulay algebra closure in characteristic p > 0 and showed containment in equal characteristic 0.

Hochster-Huneke 1995: Defined a weakly CM-regular ring (and variants on it), and compared it to a weakly F-regular ring in equal characteristic. Also compared tight closure to a closure coming from a big Cohen-Macaulay algebra.

Ma-Schwede 2018: Used big Cohen-Macaulay algebras to define analogues of F-regular and F-rational singularities, using a big Cohen-Macaulay version of a test ideal for pairs.

In my thesis, I studied a mechanism for using big Cohen-Macaulay module and algebra closures to study singularities, and gave many of its properties.

In my thesis, I studied a mechanism for using big Cohen-Macaulay module and algebra closures to study singularities, and gave many of its properties.

Definition

Let R be a local ring and B a big Cohen-Macaulay module. For any R-modules $N \subseteq M$, we say that $x \in N_M^{cl_B}$ if for all $b \in B$,

$$b \otimes x \in im(B \otimes_R N \to B \otimes_R M).$$

In my thesis, I studied a mechanism for using big Cohen-Macaulay module and algebra closures to study singularities, and gave many of its properties.

Definition

Let R be a local ring and B a big Cohen-Macaulay module. For any R-modules $N \subseteq M$, we say that $x \in N_M^{cl_B}$ if for all $b \in B$,

$$b \otimes x \in im(B \otimes_R N \to B \otimes_R M).$$

If B is a big Cohen-Macaulay algebra, it is sufficient to show that $1 \otimes x \in im(B \otimes_R N \to B \otimes_R M).$

5/30

In my thesis, I studied a mechanism for using big Cohen-Macaulay module and algebra closures to study singularities, and gave many of its properties.

Definition

Let R be a local ring and B a big Cohen-Macaulay module. For any R-modules $N \subseteq M$, we say that $x \in N_M^{cl_B}$ if for all $b \in B$,

$$b \otimes x \in im(B \otimes_R N \to B \otimes_R M).$$

If B is a big Cohen-Macaulay algebra, it is sufficient to show that $1 \otimes x \in im(B \otimes_R N \to B \otimes_R M).$

This is based on ideas used by Hochster and Huneke.

In my thesis, I studied a mechanism for using big Cohen-Macaulay module and algebra closures to study singularities, and gave many of its properties.

Definition

Let R be a local ring and B a big Cohen-Macaulay module. For any R-modules $N \subseteq M$, we say that $x \in N_M^{cl_B}$ if for all $b \in B$,

$$b\otimes x\in im(B\otimes_R N\to B\otimes_R M).$$

If B is a big Cohen-Macaulay algebra, it is sufficient to show that $1 \otimes x \in im(B \otimes_R N \to B \otimes_R M).$

This is based on ideas used by Hochster and Huneke. What's new is that in my thesis I studied this as an example of a closure operation, a more general object that includes examples like tight closure, integral closure, Frobenius closure, plus closure, solid closure, and others.

Closure operations

Definition

A closure operation on a class of R-modules \mathcal{M} is a map that takes each pair $N \subseteq M$ of modules in \mathcal{M} to a new submodule N_M^{cl} of M such that:

- \bullet $N \subseteq N_M^{cl}$,
- $(N_M^{\rm cl})_M^{\rm cl} = N_M^{\rm cl},$
- 3 and if $N \subseteq L \subseteq M$, then $N_M^{cl} \subseteq L_M^{cl}$.

Closure operations

Definition

A closure operation on a class of R-modules \mathcal{M} is a map that takes each pair $N \subseteq M$ of modules in \mathcal{M} to a new submodule N_M^{cl} of M such that:

- $0 N \subseteq N_M^{cl}$
- $(N_M^{\rm cl})_M^{\rm cl} = N_M^{\rm cl},$
- 3 and if $N \subseteq L \subseteq M$, then $N_M^{cl} \subseteq L_M^{cl}$.

Basic example:

Trivial closure: $N_M^{\text{cl}} = N$ for all $N \subseteq M \in \mathcal{M}$

Many of the closure operations we study, are variants on a particular type of closure operation, a module closure.

Many of the closure operations we study, are variants on a particular type of closure operation, a module closure.

Definition

Let R be a local ring and B an R-module. For any R-modules $N \subseteq M$, we say that $x \in N_M^{cl_B}$ if for all $b \in B$,

$$b \otimes x \in im(B \otimes_R N \to B \otimes_R M).$$

Many of the closure operations we study, are variants on a particular type of closure operation, a module closure.

Definition

Let R be a local ring and B an R-module. For any R-modules $N \subseteq M$, we say that $x \in N_M^{cl_B}$ if for all $b \in B$,

$$b \otimes x \in im(B \otimes_R N \to B \otimes_R M).$$

Notice that if B is Cohen-Macaulay, this is exactly the definition of the big Cohen-Macaulay module closure cl_B.

Many of the closure operations we study, are variants on a particular type of closure operation, a module closure.

Definition

Let R be a local ring and B an R-module. For any R-modules $N \subseteq M$, we say that $x \in N_M^{cl_B}$ if for all $b \in B$,

$$b \otimes x \in im(B \otimes_R N \to B \otimes_R M).$$

Notice that if B is Cohen-Macaulay, this is exactly the definition of the big Cohen-Macaulay module closure cl_B.

Plus closure is cl_{R^+} , where R^+ is the absolute integral closure of R.

Many of the closure operations we study, are variants on a particular type of closure operation, a module closure.

Definition

Let R be a local ring and B an R-module. For any R-modules $N \subseteq M$, we say that $x \in N_M^{cl_B}$ if for all $b \in B$,

$$b \otimes x \in im(B \otimes_R N \to B \otimes_R M).$$

Notice that if B is Cohen-Macaulay, this is exactly the definition of the big Cohen-Macaulay module closure cl_B.

Plus closure is cl_{R^+} , where R^+ is the absolute integral closure of R.

Tight closure, integral closure, Frobenius closure, and solid closure are all variants on module closures. They all use a family of modules or algebras instead of one, or an extra multiplier.

Properties of big Cohen-Macaulay module closures

While module closures in general are useful, big Cohen-Macaulay module closures have a number of special properties.

Properties of big Cohen-Macaulay module closures

While module closures in general are useful, big Cohen-Macaulay module closures have a number of special properties.

Theorem (RG 2016, 2019)

Let R be a complete local domain.

- \bullet R is regular if and only if cl_B is trivial for all big Cohen-Macaulay modules B.
- 2 If R has characteristic p > 0, R is weakly F-regular if and only if cl_B is trivial for all big Cohen-Macaulay algebras B.

Properties of big Cohen-Macaulay module closures

While module closures in general are useful, big Cohen-Macaulay module closures have a number of special properties.

Theorem (RG 2016, 2019)

Let R be a complete local domain.

- \bullet R is regular if and only if cl_B is trivial for all big Cohen-Macaulay modules B.
- 2 If R has characteristic p > 0, R is weakly F-regular if and only if cl_B is trivial for all big Cohen-Macaulay algebras B.

These results establish the connection between big Cohen-Macaulay modules and algebras and singularities of the ring. But closure operations are only one of the tools used to study singularities.

Test ideals

One way to combine the information of a closure operation into a more compact form is via its test ideal. Test ideals were originally defined for tight closure, but we can extend the definition to any closure operation:

Test ideals

One way to combine the information of a closure operation into a more compact form is via its test ideal. Test ideals were originally defined for tight closure, but we can extend the definition to any closure operation:

Definition

Let cl be a closure operation on a class of R-modules \mathcal{M} . The cl-test ideal of R is

$$au_{\mathsf{cl}}(R) = \bigcap_{\mathsf{N} \subseteq M \in \mathcal{M}} \mathsf{N} :_{\mathsf{R}} \mathsf{N}^{\mathsf{cl}}_{M}.$$

Test ideals

One way to combine the information of a closure operation into a more compact form is via its test ideal. Test ideals were originally defined for tight closure, but we can extend the definition to any closure operation:

Definition

Let cl be a closure operation on a class of R-modules \mathcal{M} . The cl-test ideal of R is

$$au_{\mathsf{cl}}(R) = \bigcap_{N \subseteq M \in \mathcal{M}} N :_R N_M^{\mathsf{cl}}.$$

This is technically a single invariant of the ring, but is definitely still too complicated to compute. For tight closure, we have a number of different ways to represent the test ideal, some of which make it more possible to compute.

Test ideals of module closures

The following result turns the test ideal of a module closure into a much more manageable form:

Test ideals of module closures

The following result turns the test ideal of a module closure into a much more manageable form:

Theorem (Pérez-RG 2019)

Let R be a Noetherian local ring B an R-module. If R is complete or B is finitely-generated, then the cl_B-test ideal of R agrees with the trace ideal $tr_{B}(R)$, which is defined as:

$$tr_B(R) := \sum_{f \in Hom_R(B,R)} f(B).$$

Test ideals of module closures

The following result turns the test ideal of a module closure into a much more manageable form:

Theorem (Pérez-RG 2019)

Let R be a Noetherian local ring B an R-module. If R is complete or B is finitely-generated, then the cl_B-test ideal of R agrees with the trace ideal $tr_{B}(R)$, which is defined as:

$$tr_B(R) := \sum_{f \in Hom_R(B,R)} f(B).$$

When B is finitely-generated, we can compute $tr_B(R)$ using Macaulay2 (for specific examples). In particular, we can do this for finitely-generated Cohen-Macaulay modules, known as maximal Cohen-Macaulay modules.

Trace ideals

Trace ideals have separately been studied in connection with singularities.

Trace ideals

Trace ideals have separately been studied in connection with singularities.

Herzog-Hibi-Stamate 2019: Studies trace of canonical module to classify nearly Gorenstein Hibi rings.

Trace ideals

Trace ideals have separately been studied in connection with singularities.

Herzog-Hibi-Stamate 2019: Studies trace of canonical module to classify nearly Gorenstein Hibi rings.

Faber 2019: Studies trace ideals of finitely-generated Cohen-Macaulay modules over rings of finite Cohen-Macaulay type.

Trace ideals

Trace ideals have separately been studied in connection with singularities.

Herzog-Hibi-Stamate 2019: Studies trace of canonical module to classify nearly Gorenstein Hibi rings.

Faber 2019: Studies trace ideals of finitely-generated Cohen-Macaulay modules over rings of finite Cohen-Macaulay type.

Lindo-Pande 2018: Every ideal is a trace ideal if and only if the ring is Artinian Gorenstein.

The main result of Pérez-RG 2019 is the following:

The main result of Pérez-RG 2019 is the following:

Theorem (Part 1)

The main result of Pérez-RG 2019 is the following:

Theorem (Part 1)

Let R be a complete local domain.

1 R is regular if and only if $\tau_{cl_R}(R) = R$ for all big Cohen-Macaulay R-modules B

The main result of Pérez-RG 2019 is the following:

Theorem (Part 1)

- **1** R is regular if and only if $\tau_{cl_R}(R) = R$ for all big Cohen-Macaulay R-modules B.
- \bigcirc If R has characteristic p > 0, then R is weakly F-regular if and only if the finitistic test ideal $\tau_{clp}^{fg}(R) = R$ for all big Cohen-Macaulay algebras B.

The main result of Pérez-RG 2019 is the following:

Theorem (Part 1)

- **1** R is regular if and only if $\tau_{cl_R}(R) = R$ for all big Cohen-Macaulay R-modules B
- \bigcirc If R has characteristic p > 0, then R is weakly F-regular if and only if the finitistic test ideal $\tau_{cl}^{fg}(R) = R$ for all big Cohen-Macaulay algebras B.
- **3** If $\tau_{cl_R}(R) = R$ for some big Cohen-Macaulay module B, then R is Cohen-Macaulay.

The main result of Pérez-RG 2019 is the following:

Theorem (Part 1)

- **1** R is regular if and only if $\tau_{cl_R}(R) = R$ for all big Cohen-Macaulay R-modules B
- \bigcirc If R has characteristic p > 0, then R is weakly F-regular if and only if the finitistic test ideal $\tau_{cl}^{fg}(R) = R$ for all big Cohen-Macaulay algebras B.
- **3** If $\tau_{cl_R}(R) = R$ for some big Cohen-Macaulay module B, then R is Cohen-Macaulay.
- If B is a finitely-generated Cohen-Macaulay module, then $V(\tau_{cl_R}(R))$ is contained in the singular locus of R.

Main result continued:

Theorem (Part 2)

1 If R is a Cohen-Macaulay ring with canonical module ω , then R is Gorenstein if and only if $\tau_{cl.}(R) = R$.

Main result continued:

Theorem (Part 2)

- If R is a Cohen-Macaulay ring with canonical module ω , then R is Gorenstein if and only if $\tau_{cl_{cl}}(R) = R$.
- 2 If R has only finitely many indecomposable finitely-generated Cohen-Macaulay modules, then τ_{ClR} is m-primary for all finitely-generated Cohen-Macaulay modules B.

Main result continued:

Theorem (Part 2)

- If R is a Cohen-Macaulay ring with canonical module ω , then R is Gorenstein if and only if $\tau_{cl_{cl}}(R) = R$.
- 2 If R has only finitely many indecomposable finitely-generated Cohen-Macaulay modules, then τ_{ClR} is m-primary for all finitely-generated Cohen-Macaulay modules B.
- If R has countably many indecomposable finitely-generated Cohen-Macaulay modules, then $\tau_{cl_R}(R)$ may not be m-primary for all finitely-generated Cohen-Macaulay modules B.

Two directions

Study properties of test/trace ideals to get a better grasp on how they work and what results using tight closure, etc. we can prove in more generality

Two directions

- Study properties of test/trace ideals to get a better grasp on how they work and what results using tight closure, etc. we can prove in more generality
- Compute examples of finitely-generated Cohen-Macaulay test ideals—now doable in Macaulay2—to study their connection to singularities

Definition

An interior operation int on \mathcal{M} is a map that takes each R-module $M \in \mathcal{M}$ to a submodule $int(M) \subseteq M$ such that

- \bullet int(int(M)) = int(M)
- ② If $L \subseteq M$, then $int(L) \subseteq int(M)$.

Definition

An interior operation int on \mathcal{M} is a map that takes each R-module $M \in \mathcal{M}$ to a submodule $int(M) \subseteq M$ such that

- \bullet int(int(M)) = int(M)
- ② If $L \subseteq M$, then $int(L) \subseteq int(M)$.

Examples:

• Trivial interior: int(M) = M for all R-modules M.

Definition

An interior operation int on M is a map that takes each R-module $M \in \mathcal{M}$ to a submodule $int(M) \subseteq M$ such that

- \bigcirc int(int(M)) = int(M)
- ② If $L \subseteq M$, then $int(L) \subseteq int(M)$.

Examples:

- Trivial interior: int(M) = M for all R-modules M.
- Tight interior (Epstein-Schwede 2014)

Definition

An interior operation int on M is a map that takes each R-module $M \in \mathcal{M}$ to a submodule $int(M) \subseteq M$ such that

- \bigcirc int(int(M)) = int(M)
- ② If $L \subseteq M$, then $int(L) \subseteq int(M)$.

Examples:

- Trivial interior: int(M) = M for all R-modules M.
- Tight interior (Epstein-Schwede 2014)
- Module trace:

$$\operatorname{tr}_B(M) = \sum_{f \in \operatorname{\mathsf{Hom}}_R(B,M)} f(B).$$

<u>Dual of a closure operation</u>

Let R be a complete local Noetherian ring. Let cl be a closure operation on \mathcal{M} . Let $\alpha(M)$ denote 0_M^{cl} . We define a dual to α on all modules $M \in \mathcal{M}^{\vee}$ as follows:

$$\alpha^{\smile}(M) = \left(\frac{M^{\lor}}{\alpha(M^{\lor})}\right)^{\lor}.$$

Dual of a closure operation

Let R be a complete local Noetherian ring.

Let cl be a closure operation on \mathcal{M} . Let $\alpha(M)$ denote 0_M^{cl} . We define a dual to α on all modules $M \in \mathcal{M}^{\vee}$ as follows:

$$\alpha^{\smile}(M) = \left(\frac{M^{\lor}}{\alpha(M^{\lor})}\right)^{\lor}.$$

Given an interior operation int on \mathcal{M}^{\vee} , we define the dual of int on all modules $M \in \mathcal{M}$ to be

$$\mathsf{int}^{\smallsmile}(M) = \left(\frac{M^{\lor}}{\mathsf{int}(M^{\lor})}\right)^{\lor}.$$

Closure-interior duality

Definition

A closure operation is residual if for all surjective maps $\pi: M \to M/N$, $N_M^{\rm cl} = \pi^{-1}(0_{M/N}^{\rm cl}).$

Closure-interior duality

Definition

A closure operation is residual if for all surjective maps $\pi: M \to M/N$, $N_M^{\rm cl} = \pi^{-1}(0_{M/N}^{\rm cl}).$

Proposition

Let R be a complete Noetherian local ring. If cl is a residual closure operation on \mathcal{M} and $\alpha(M) := 0^{\mathsf{cl}}_{\mathsf{M}}$, then $\alpha^{\smile}(M)$ is an interior operation on \mathcal{M}^{\vee}

If int is an interior operation on \mathcal{M}^{\vee} , then int $(M) = 0_M^{\text{cl}}$ for a unique residual closure operation cl on \mathcal{M} .

Closure-interior duality

Definition

A closure operation is residual if for all surjective maps $\pi: M \to M/N$, $N_M^{\rm cl} = \pi^{-1}(0_{M/N}^{\rm cl}).$

Proposition

Let R be a complete Noetherian local ring. If cl is a residual closure operation on \mathcal{M} and $\alpha(M) := 0_M^{cl}$, then $\alpha^{\smile}(M)$ is an interior operation on \mathcal{M}^{\vee}

If int is an interior operation on \mathcal{M}^{\vee} , then int $(M) = 0_M^{\text{cl}}$ for a unique residual closure operation cl on \mathcal{M} .

Further, $\alpha \subset (M) = \alpha(M)$ for all $M \in \mathcal{M}$, and $\operatorname{int} \subset (M) = \operatorname{int}(M)$ for all $M \in \mathcal{M}^{\vee}$.

Closures are dual to their test ideals

Theorem (Epstein-RG 2019)

Let R be a complete Noetherian local ring, let cl be a closure operation on the set of Artinian R-modules \mathcal{A} , and let $\alpha(M) = 0_M^{cl}$ for all $M \in \mathcal{A}$. Then

$$\alpha^{\smile}(R) = Ann_R(\alpha(E)) = \bigcap_{M \in \mathcal{A}^{\lor}} Ann(\alpha(M)).$$

Closures are dual to their test ideals

Theorem (Epstein-RG 2019)

Let R be a complete Noetherian local ring, let cl be a closure operation on the set of Artinian R-modules A, and let $\alpha(M) = 0_M^{cl}$ for all $M \in A$. Then

$$\alpha^{\smile}(R) = Ann_R(\alpha(E)) = \bigcap_{M \in \mathcal{A}^{\lor}} Ann(\alpha(M)).$$

In the case that cl is residual, this implies the dual of cl, when applied to R, is actually the cl-test ideal of R.

Module closures are dual to trace modules

Another consequence of the theorem is the following:

Corollary (Epstein-RG 2019)

Let R be a complete Noetherian local ring. Let B be an R-module and set $\alpha(M) := 0_M^{\mathsf{cl}_B}$. Then $\alpha^{\smile}(M) = \mathsf{tr}_B(M)$.

Module closures are dual to trace modules

Another consequence of the theorem is the following:

Corollary (Epstein-RG 2019)

Let R be a complete Noetherian local ring. Let B be an R-module and set $\alpha(M) := 0_M^{\mathsf{cl}_B}$. Then $\alpha^{\smile}(M) = \mathsf{tr}_B(M)$.

This is similar to the result stated earlier that the test ideal of a module closure equals the trace ideal. Here, we require the ring to be complete, but in Epstein-RG 2019 this result is a product of the general closure-interior duality, rather than something specific to module closures.

Discussion of what exactness properties are preserved by the duality.

- Discussion of what exactness properties are preserved by the duality.
- Examples that fit into the framework that we don't usually think of as closures or interior operations (e.g. divisible submodules)

- Discussion of what exactness properties are preserved by the duality.
- Examples that fit into the framework that we don't usually think of as closures or interior operations (e.g. divisible submodules)
- Ouals of direct and inverse limits, with applications to local cohomology

- Discussion of what exactness properties are preserved by the duality.
- Examples that fit into the framework that we don't usually think of as closures or interior operations (e.g. divisible submodules)
- Ouals of direct and inverse limits, with applications to local cohomology
- Applications to tight and integral closure

- Discussion of what exactness properties are preserved by the duality.
- Examples that fit into the framework that we don't usually think of as closures or interior operations (e.g. divisible submodules)
- Ouals of direct and inverse limits, with applications to local cohomology
- Applications to tight and integral closure
- Dual of localization. (Surprise: it's colocalization!)

- Discussion of what exactness properties are preserved by the duality.
- Examples that fit into the framework that we don't usually think of as closures or interior operations (e.g. divisible submodules)
- Ouals of direct and inverse limits, with applications to local cohomology
- Applications to tight and integral closure
- Dual of localization. (Surprise: it's colocalization!)
- Dual of core

Core-Hull Duality: Definition of core

We use this framework to generalize the study of the core of an ideal and to prove that its dual, the hull of an ideal, exists.

Core-Hull Duality: Definition of core

We use this framework to generalize the study of the core of an ideal and to prove that its dual, the hull of an ideal, exists.

Definition

Let R be a ring and cl a closure operation on a class of R-modules \mathcal{M} that is closed under submodules, quotient modules, and extensions. If $M \subseteq N \in \mathcal{M}$, the cl-core of M with respect to N is

$$\operatorname{cl}\operatorname{core}_N(M) := \bigcap_{L \subseteq M \subseteq L_N^{\operatorname{cl}}} L.$$

Core-Hull Duality: Definition of core

We use this framework to generalize the study of the core of an ideal and to prove that its dual, the hull of an ideal, exists.

Definition

Let R be a ring and cl a closure operation on a class of R-modules \mathcal{M} that is closed under submodules, quotient modules, and extensions. If $M \subseteq N \in \mathcal{M}$, the cl-core of M with respect to N is

$$\operatorname{cl}\operatorname{core}_N(M) := \bigcap_{L \subseteq M \subseteq L_N^{\operatorname{cl}}} L.$$

This was originally defined for integral closure, then for tight closure.

Nakayama closures

If cl is any closure operation satisfying the Nakayama property, then the cl core will exist.

Nakayama closures

If cl is any closure operation satisfying the Nakayama property, then the cl core will exist.

Definition

Let (R,) be a Noetherian local ring and cl a closure operation on the class of finitely-generated R-modules . We say that cl is a Nakayama closure if for $L \subseteq M \subseteq N \in satisfying L \subseteq M \subseteq (L+M)^{cl}_N$ implies that $L_N^{cl} = M_N^{cl}$.

Nakayama closures

If cl is any closure operation satisfying the Nakayama property, then the cl core will exist.

Definition

Let (R,) be a Noetherian local ring and cl a closure operation on the class of finitely-generated R-modules . We say that cl is a Nakayama closure if for $L \subseteq M \subseteq N \in satisfying L \subseteq M \subseteq (L+M)^{cl}_N$ implies that $L_N^{cl} = M_N^{cl}$.

Examples of Nakayama closures: tight closure, integral closure, Frobenius closure

Definition (Epstein-RG-Vassilev 2020)

Let int be an interior operation on the class of Artinian R-modules \mathcal{M} , where (R, m) is a Noetherian local ring. We say that int is Nakayama if whenever $A \subseteq B$ are Artinian modules such that

$$int(A:_B m) \subseteq A$$
,

we have int(A) = int(B).

Definition (Epstein-RG-Vassilev 2020)

Let int be an interior operation on the class of Artinian R-modules \mathcal{M} , where (R, m) is a Noetherian local ring. We say that int is Nakayama if whenever $A \subseteq B$ are Artinian modules such that

$$int(A:_B m) \subseteq A$$
,

we have int(A) = int(B).

Examples of Nakayama interiors: trivial interior, more to follow.

Definition (Epstein-RG-Vassilev 2020)

Let int be an interior operation on the class of Artinian R-modules \mathcal{M} , where (R, m) is a Noetherian local ring. We say that int is Nakayama if whenever $A \subseteq B$ are Artinian modules such that

$$int(A :_B m) \subseteq A$$
,

we have int(A) = int(B).

Examples of Nakayama interiors: trivial interior, more to follow.

Proposition

Let int be the dual of cl. Then cl is a Nakayama closure if and only if int is a Nakayama interior.

Definition (Epstein-RG-Vassilev 2020)

Let int be an interior operation on the class of Artinian R-modules \mathcal{M} , where (R, m) is a Noetherian local ring. We say that int is Nakayama if whenever $A \subseteq B$ are Artinian modules such that

$$int(A :_B m) \subseteq A$$
,

we have int(A) = int(B).

Examples of Nakayama interiors: trivial interior, more to follow.

Proposition

Let int be the dual of cl. Then cl is a Nakayama closure if and only if int is a Nakayama interior.

More examples: Duals of all Nakayama closures, such as tight interior, integral interior, Frobenius interior.

Core-Hull duality

Definition (Vassilev 2020)

Let int be an interior operation defined on the class of artinian R-modules \mathcal{M} . If $M \supseteq N$ are elements of \mathcal{M} , the int-hull of a submodule M with respect to N is

$$\operatorname{int}\operatorname{hull}(M) := \sum_{L\supseteq M\supseteq\operatorname{int}_N(L)} L.$$

Core-Hull duality

Definition (Vassilev 2020)

Let int be an interior operation defined on the class of artinian R-modules \mathcal{M} . If $M \supseteq N$ are elements of \mathcal{M} , the int-hull of a submodule M with respect to N is

$$\operatorname{int}\operatorname{hull}(M) := \sum_{L\supseteq M\supseteq\operatorname{int}_N(L)} L.$$

Theorem (Epstein-RG-Vassilev 2020)

Let R be a complete Noetherian local ring, $A \subseteq B$ Artinian R-modules, and int a Nakayama interior defined on Artinian R-modules. Then the int-hull of A in B exists, and is dual to the cl-core of $(B/A)^{\vee}$ in B^{\vee} , where cl is the closure operation dual to int.

And now for something completely different: Examples

Recall the following result from earlier:

Theorem (Pérez-RG 2019)

Let R be a Noetherian local ring.

- If R is a Cohen-Macaulay ring with canonical module ω , then R is Gorenstein if and only if $\tau_{clos}(R) = R$.
- If R has only finitely many indecomposable finitely-generated Cohen-Macaulay modules, then τ_{ClR} is m-primary for all finitely-generated Cohen-Macaulay modules B.
- If R has countably many indecomposable finitely-generated Cohen-Macaulay modules, then $\tau_{clp}(R)$ may not be m-primary for all finitely-generated Cohen-Macaulay modules B.
- Let B be an R-module. If R is complete or B is finitely-generated, then the cl_B -test ideal of R agrees with the trace ideal $tr_B(R)$.

And now for something completely different: Examples

Recall the following result from earlier:

Theorem (Pérez-RG 2019)

Let R be a Noetherian local ring.

- If R is a Cohen-Macaulay ring with canonical module ω , then R is Gorenstein if and only if $\tau_{clos}(R) = R$.
- If R has only finitely many indecomposable finitely-generated Cohen-Macaulay modules, then τ_{ClR} is m-primary for all finitely-generated Cohen-Macaulay modules B.
- If R has countably many indecomposable finitely-generated Cohen-Macaulay modules, then $\tau_{clp}(R)$ may not be m-primary for all finitely-generated Cohen-Macaulay modules B.
- Let B be an R-module. If R is complete or B is finitely-generated, then the cl_B -test ideal of R agrees with the trace ideal $tr_B(R)$.

MCM-test ideal

Our goal is to compute the following test ideal:

Definition

Let MCM(R) denote the set of all maximal Cohen-Macaulay module R-modules, i.e. the finitely-generated Cohen-Macaulay R-modules. The maximal Cohen-Macaulay module module test ideal of R is

$$\tau_{MCM}(R) := \bigcap_{M \in MCM(R)} \tau_M(R).$$

MCM-test ideal

Our goal is to compute the following test ideal:

Definition

Let MCM(R) denote the set of all maximal Cohen-Macaulay module R-modules, i.e. the finitely-generated Cohen-Macaulay R-modules. The maximal Cohen-Macaulay module module test ideal of R is

$$au_{MCM}(R) := \bigcap_{M \in MCM(R)} au_M(R).$$

Why? We would really like to compute the test ideal where we intersect over all Cohen-Macaulay modules $(\tau_{sing}(R))$, but we don't really know how, except in the cases given as results earlier.

MCM-test ideal

Our goal is to compute the following test ideal:

Definition

Let MCM(R) denote the set of all maximal Cohen-Macaulay module R-modules, i.e. the finitely-generated Cohen-Macaulay R-modules. The maximal Cohen-Macaulay module module test ideal of R is

$$\tau_{MCM}(R) := \bigcap_{M \in MCM(R)} \tau_M(R).$$

Why? We would really like to compute the test ideal where we intersect over all Cohen-Macaulay modules $(\tau_{sing}(R))$, but we don't really know how, except in the cases given as results earlier.

Plus, for nice enough rings, it turns out that every big Cohen-Macaulay module has a direct summand that is a finitely-generated Cohen-Macaulay module, and that is enough to imply that $\tau_{sing}(R) = \tau_{MCM}(R)$.

Example (Benali-Pothagoni-RG 2020)

If $R = k[[x^d, x^{d-1}y, ..., xy^{d-1}, y^d]]$ where k is a field, then $\tau_{MCM}(R) = m$. Furthermore, $\tau_M(R) = m$ for all non-free indecomposable maximal Cohen-Macaulay modules M.

Example (Benali-Pothagoni-RG 2020)

If $R = k[[x^d, x^{d-1}y, ..., xy^{d-1}, y^d]]$ where k is a field, then $\tau_{MCM}(R) = m$. Furthermore, $\tau_M(R) = m$ for all non-free indecomposable maximal Cohen-Macaulay modules M.

Here, $\tau_{sing}(R) = \tau_{MCM}(R)$ [Hochster-Leuschke-RG].

Example (Benali-Pothagoni-RG 2020)

If $R = k[[x^d, x^{d-1}y, ..., xy^{d-1}, y^d]]$ where k is a field, then $\tau_{MCM}(R) = m$. Furthermore, $\tau_M(R) = m$ for all non-free indecomposable maximal Cohen-Macaulay modules M.

Here, $\tau_{sing}(R) = \tau_{MCM}(R)$ [Hochster-Leuschke-RG]. Maximal Cohen-Macaulay modules (viewed as submodules of S = k[[x, y]]:

$$xR + yR, x^2R + xyR + y^2R, \dots, x^{d-1}R + x^{d-2}yR + \dots + xy^{d-2}R + y^{d-1}R$$

Example (Benali-Pothagoni-RG 2020)

If $R = k[[x^d, x^{d-1}y, ..., xy^{d-1}, y^d]]$ where k is a field, then $\tau_{MCM}(R) = m$. Furthermore, $\tau_M(R) = m$ for all non-free indecomposable maximal Cohen-Macaulay modules M.

Here, $\tau_{sing}(R) = \tau_{MCM}(R)$ [Hochster-Leuschke-RG]. Maximal Cohen-Macaulay modules (viewed as submodules of S = k[[x, y]]):

$$xR + yR, x^2R + xyR + y^2R, \dots, x^{d-1}R + x^{d-2}yR + \dots + xy^{d-2}R + y^{d-1}R$$

In fact, setting $M_i = x^i R + x^{i-1} y R + ... + y^i R$, $\operatorname{Hom}_R(M_i, R)$ is generated by the following maps:

$$f_j(u) = x^{d-i-j}y^ju, \ 0 \le j \le d-i.$$

Example (Benali-Pothagoni-RG 2020)

Let k be an algebraically closed field of characteristic not equal to 2, 3, or 5.

Example (Benali-Pothagoni-RG 2020)

Let k be an algebraically closed field of characteristic not equal to 2, 3, or 5.

①
$$(A_n)$$
 Let $R = k[[x, y, z]]/(xz - y^{n+1})$. Then $\tau_{MCM}(R) = (x, y^{\lfloor \frac{n+1}{2} \rfloor}, z)$.

Example (Benali-Pothagoni-RG 2020)

Let k be an algebraically closed field of characteristic not equal to 2, 3, or 5.

- (A_n) Let $R = k[[x, y, z]]/(xz y^{n+1})$. Then $\tau_{MCM}(R) = (x, y^{\lfloor \frac{n+1}{2} \rfloor}, z)$.
- ② (D_n) Assume -1 has a square root i. Let $R = k[[x,y,z]]/(z^2 + x^2y + y^{n-1})$ for some $n \ge 4$. Then $\tau_{MCM}(R) = (x^2, y^{\lfloor n/2 \rfloor}, z)$.

Example (Benali-Pothagoni-RG 2020)

Let k be an algebraically closed field of characteristic not equal to 2, 3, or 5.

- **1** (A_n) Let $R = k[[x, y, z]]/(xz y^{n+1})$. Then $\tau_{MCM}(R) = (x, y^{\lfloor \frac{n+1}{2} \rfloor}, z).$
- (D_n) Assume -1 has a square root i. Let $R = k[[x, y, z]]/(z^2 + x^2y + y^{n-1})$ for some n > 4. Then $\tau_{MCM}(R) = (x^2, y^{\lfloor n/2 \rfloor}, z).$
- (E_6) Assume -1 has a square root i. Let $R = k[[x, y, z]]/(z^2 + x^3 + y^3)$. Then $\tau_{MCM}(R) = (x, y^2, z)$.

Example (Benali-Pothagoni-RG 2020)

Let k be an algebraically closed field of characteristic not equal to 2, 3, or 5.

- (A_n) Let $R = k[[x, y, z]]/(xz y^{n+1})$. Then $\tau_{MCM}(R) = (x, y^{\lfloor \frac{n+1}{2} \rfloor}, z)$.
- ② (D_n) Assume -1 has a square root i. Let $R = k[[x,y,z]]/(z^2 + x^2y + y^{n-1})$ for some $n \ge 4$. Then $\tau_{MCM}(R) = (x^2, y^{\lfloor n/2 \rfloor}, z)$.
- **3** (E₆) Assume -1 has a square root i. Let $R = k[[x, y, z]]/(z^2 + x^3 + y^3)$. Then $\tau_{MCM}(R) = (x, y^2, z)$.
- **1** (E₇) Let $R = k[[x, y, z]]/(z^2 + x^3 + xy^3)$. Then $\tau_{MCM}(R) = (x, y^3, z)$.

Example (Benali-Pothagoni-RG 2020)

Let k be an algebraically closed field of characteristic not equal to 2, 3, or 5.

- **1** (A_n) Let $R = k[[x, y, z]]/(xz y^{n+1})$. Then $\tau_{MCM}(R) = (x, y^{\lfloor \frac{n+1}{2} \rfloor}, z).$
- (D_n) Assume -1 has a square root i. Let $R = k[[x, y, z]]/(z^2 + x^2y + y^{n-1})$ for some n > 4. Then $\tau_{MCM}(R) = (x^2, y^{\lfloor n/2 \rfloor}, z).$
- (E_6) Assume -1 has a square root i. Let $R = k[[x, y, z]]/(z^2 + x^3 + y^3)$. Then $\tau_{MCM}(R) = (x, y^2, z)$.
- **1** (E₇) Let $R = k[[x, y, z]]/(z^2 + x^3 + xv^3)$. Then $\tau_{MCM}(R) = (x, y^3, z).$
- **5** (E₈) Let $R = [[x, y, z]]/(z^2 + x^3 + y^5)$. Then $\tau_{MCM}(R) = (x, y^2, z)$.

Example (Benali-Pothagoni-RG 2020)

Let k be a field of characteristic not equal to 2, 3, or 5.

• (Whitney umbrella) Let $R = k[[x, y, z]]/(x^2y + z^2)$, where k is a field of some arbitrary characteristic. Then $\tau_{MCM}(R) = (x^2, z)$.

Example (Benali-Pothagoni-RG 2020)

Let k be a field of characteristic not equal to 2, 3, or 5.

- (Whitney umbrella) Let $R = k[[x, y, z]]/(x^2y + z^2)$, where k is a field of some arbitrary characteristic. Then $\tau_{MCM}(R) = (x^2, z)$.
- 2 Let $R = k[[x, y, z]]/(x^2 + z^2)$ where k is an algebraically closed field of characteristic not equal to 2. Then $\tau_{MCM}(R) = (0)$.

Example (Benali-Pothagoni-RG 2020)

Let k be a field of characteristic not equal to 2, 3, or 5.

- ① (Whitney umbrella) Let $R = k[[x, y, z]]/(x^2y + z^2)$, where k is a field of some arbitrary characteristic. Then $\tau_{MCM}(R) = (x^2, z)$.
- 2 Let $R = k[[x, y, z]]/(x^2 + z^2)$ where k is an algebraically closed field of characteristic not equal to 2. Then $\tau_{MCM}(R) = (0)$.
- **3** Let $R = k[[x, y]]/(x^2y)$ where k is some field. Then $\tau_{MCM}(R) = (0)$.

Example (Benali-Pothagoni-RG 2020)

Let k be a field of characteristic not equal to 2, 3, or 5.

- ① (Whitney umbrella) Let $R = k[[x, y, z]]/(x^2y + z^2)$, where k is a field of some arbitrary characteristic. Then $\tau_{MCM}(R) = (x^2, z)$.
- 2 Let $R = k[[x, y, z]]/(x^2 + z^2)$ where k is an algebraically closed field of characteristic not equal to 2. Then $\tau_{MCM}(R) = (0)$.
- **3** Let $R = k[[x, y]]/(x^2y)$ where k is some field. Then $\tau_{MCM}(R) = (0)$.
- Let R be the ring $R = k[[x,y]]/(x^2)$. Then $\tau_{MCM}(R) = (x)$.

Example (Benali-Pothagoni-RG 2020)

Let k be a field of characteristic not equal to 2, 3, or 5.

- ① (Whitney umbrella) Let $R = k[[x, y, z]]/(x^2y + z^2)$, where k is a field of some arbitrary characteristic. Then $\tau_{MCM}(R) = (x^2, z)$.
- 2 Let $R = k[[x, y, z]]/(x^2 + z^2)$ where k is an algebraically closed field of characteristic not equal to 2. Then $\tau_{MCM}(R) = (0)$.
- **3** Let $R = k[[x, y]]/(x^2y)$ where k is some field. Then $\tau_{MCM}(R) = (0)$.
- Let R be the ring $R = k[[x, y]]/(x^2)$. Then $\tau_{MCM}(R) = (x)$.

Notice in some of the non-domain examples, $\tau_{MCM}(R) = 0$, confirming that the domain hypothesis is needed for the results from Pérez-RG.

Main computational tool

Theorem (Benali-Pothagoni-RG 2020)

Suppose $R = k[[x, y, z]]/(z^2 + g(x, y))$ and φ is a matrix over k[[x, y]]such that $(zid_n - \varphi, zid_n + \varphi)$ is a matrix factorization of $z^2 + g(x, y)$. If $M = \operatorname{coker}(\overline{zid_n - \varphi})$, then the trace ideal of M is generated by the entries of $\overline{zid_n + \varphi}$.