

Kommunikation mit der Außenwelt (comm ext)

Comm ext - Motivation

- In diesem Kapitel wollen wir diskutieren, wie man die Außenwelt an die Ein und Ausgänge der digitalen Schaltungen anschließen kann
- Dies ist von hoher praktischer Relevanz, da jede praktische digitale Schaltung irgendwie mit der Außenwelt kommuniziert

Comm ext - Pushbuttons - Motivation und Problemstellung MOSFET Eingangspegel

- Zunächst wollen wir uns zunächst den Anschluss von Tastern (pushbuttons) und Schaltern (switches) anschauen
- Wie wir im Kapitel physikalisches Verhalten gesehen haben, werden digitale MOSFET Schaltungen durch Spannung kontrolliert und nicht durch den Strom
- Durch das isolierte gate ist der Eingangswiderstand (input resistance) extrem hoch, so dass [selbst wenn der Schalter geschlossen ist] kaum ein Eingangsstrom (input current) fließt
- Ein Schalter kann zwar ein Lämpchen anschalten aber keine MOSFET Schaltung anschalten, da dort kein Strom fließt
- Durch den hohen Eingangswiderstand ist die Schaltung guasi nicht angeschlossen
- Dadurch ergibt sich eine zufällige und nicht vorhersagbare Spannung (von der kleinsten Störung/ kleinsten Rauschen oder Unsymmetrie verursacht)

Comm ext - Pushbuttons - MOSFET Eingangspegel - Prinzip pull-down Widerstand

- Wenn wir also einen MOSFET Transistor bzw. CMOS-Transistor ansteuern wollen, müssen wir dafür sorgen, dass eine definierte Spannung anliegt [geschlossenen wie offenen Zustand des Schalters]
- Dies gelingt durch einen Stromfluss durch einen Widerstand
- Wenn der Widerstand dabei an Gnd (Ground; Masse) angeschlossen wird, so spricht man vom "pull down" Widerstand
- Schalter offen -> MOSFET Input auf 0V gezogen (L)
- Schalter geschlossen -> Strom fließt durch den Widerstand -> Spannung fällt ab -> Vdd liegt an Input(H)

Comm ext - Pushbuttons - MOSFET Eingangspegel - Prinzip pull-up Widerstand

- Der Stromfluss durch einen Widerstand kann auch durch einen Widerstand erfolgen, der an die Betriebsspannung angeschlossen ist (V+, Vdd, etc)
- In diesem Fall spricht man vom pull-up Wiederstand
- Schalter offen -> Widerstand mit Vdd verbunden -> da Rin_MOSFET >> R -> alle Spannung fällt an MOSFET ab (H)
- Schalter geschlossen -> Strom fließt durch Widerstand -> Vdd an R-> 0V an MOSFET Input (L)
- -->Im Gegensatz zum pull-down Widerstand setzt der pull-up Wiederstand negative Logik um

Comm ext - Pushbuttons - Debouncing - Motivation und Problemdarstellung I/II

- Ein gedrückter Taster/Schalter erzeugt "Rauschen" wenn er gedrückt oder losgelassen wird
- Wenn man sich die Eingangsspannung an dem pull-down Widerstand mit einem Oszilloskop anschaut, ist dies deutlich zu erkennen:

- Dieses "Rauschen" wird verursacht durch mechanische Vibrationen im Schalter (vgl. "Klickgeräusch" beim Betätigen des Schalters)
- Das Signal geht viele Mal hoch und runter während wenigen ms beim Drücken oder loslassen (neuer Schalter wenige ms, alter Taster 20-50ms)
- Dieses "Rauschen" von Tastern/Schaltern wird als key bounce (dt. (Schalter-)prellen) bezeichnet (kommt auch bei anderen mechanischen Geräten wie Relais vor)

Comm ext - Pushbuttons - Debouncing - Motivation und Problemdarstellung II/II

- Schalterprellen ist insbesondere ein Problem wenn der Eingang an einen flankengetriggerten Eingang oder irgendwas angeschlossen wird, was ein sauberes Signal braucht
- Beispiel: Taster an Zähler, der Zählt wie oft ein Taster gedrückt wird ... (man kann beobachten, dass pro Tasterdrücken 20 oder sogar mehr Male "fälschlicherweise erkannt" werden
- Das Entfernen des Schalterprellens wird als debouncing bezeichnet
- Dazu gibt es mehrere Methoden und eine Methode benutzt dafür einen Schmitt-Trigger
- Dafür müssen wir kurz klären, was ein Schmitt-Trigger ist

Comm ext - Pushbuttons - Debouncing - Einschub Schmitt-Trigger - Prinzip

- Am Eingang einer digitalen Schaltung kann es vorkommen, dass der verbotene Übergangsbereich der Spannungspegel langsamer durchlaufen und durch Rauschen gestört wird
- Dieses Problem kann durch einen Schmitt-Trigger behoben werden
- Ein Schmitt-Trigger hat eine Hysterese und behält einen Ausgangswert so lange bei, bis sich der Eingangswert deutlich ändert

- Beispiel:
 - A=L -> Y=0; A=Übergangsbereich ->Y=0;
 - A=H->Y=1; A=Übergangsbereich ->Y=1;
 - A=L->Y=0;

Comm ext - Pushbuttons - Debouncing - Prinzip Low-Pass-Filter und Schmitt-Trigger I/II

- Der Schmitt-Trigger ist schon eine gute Hilfe bei Signalregeneration, aber er löst unser Problem mit dem Prellen noch immer nicht ganz
- Aber zusammen mit einem Tiefpassfilter können wir das Problem lösen:

- Das Rauschen hat eine hohe Frequenz, also können wir es mit einem Tiefpass-Filter(lowpass filter für niedrige Frequenzen rausfiltern
- Leider hat das Tiefpass-Filter den Nachteil, dass es die Signaländerungen langsam macht
- Unsere FFs brauchen aber schnell ansteigende und fallende Flanken ...
- Dafür Verwenden wir dann den Schmitt-Trigger
- Da der Schmitt-Trigger hier Invertiert nehmen wir noch einen zweiten, der die Invertierung wieder neutralisiert

Comm ext - Pushbuttons - Debouncing - Prinzip Low-Pass-Filter und Schmitt-Trigger II/II

 Die Kurve zeigt das key-bounce Signal in schwarz, das gefilterte Signal in rot und das (regenerierte) Ausgangsignal des Schmitt-Triggers in grün

- Wie wir wissen hat der Schmitt-Trigger zwei Schwellwerte
- Der Ausgang geht erst auf H, wenn der Eingang die obere Schwelle erreicht hat (wenn er aber auf H geht dann aber schnell)
- Der Ausgang bleibt dann H bis der Eingang die untere Schwellspannung erreicht hat und geht dann schnell auf L
- Das Tiefpass-Filter hat eine Verzögerung (delay) von T=R2*C1*ln2=47ns, was für die meisten Fälle ok ist

Comm ext - Pushbuttons - Debouncing - Double-throw switch und latch

 Eine weitere debouncing-Methode nutzt einen 2-poligen Umschalter mit einem RS-Latch

- Das Latch wird gesetzt wenn der Schalter sich oben befindet und Zurückgesetzt, wenn sich der Schalter unten befindet
- Das Latch bleibt (aus Trägheit eine Weile) in seinem Zustand während der Prellzeit

Comm ext - Pushbuttons - Debouncing - Shift register

• Eine weitere Möglichkeit zu Entprellen ist das Anschließen des verrauschten Signal D an den Eingang eines Schieberegisters mit 2 oder mehr Stufen

- Ein Takt mit 100Hz "sampled" das Eingangssignal alle 10ms
- Das Latch wird gesetzt, wenn alle Samples H sind;
 Das Latch wird zurückgesetzt, wenn alle Samples L sind

Comm ext - Pushbuttons - Debouncing - Software (B)

 Die Software sampled das Signal zwei oder mehrere Male mit etwa 10ms und akzeptiert eine Änderung nur, wenn das Signal stabil ist (Mehrheitsentscheid oder einstimmig wie bei debouncing shift regiter)

Comm ext - Automatic Power on Reset

- Ein System mit FFs muss beim Anschalten in einen definierten Zustand gebracht werden
- Dies wird durch ein Reset Puls an allen FFs realisiert

 Der Schmitt-trigger sorgt dafür, dass die Flanken steil genug sind

Comm ext - LED output I/II

- LEDs (light emitting diode) werden gerne als einfach Statusanzeige verwendet
- Da die LED wie jede Diode eine exponentielle Spannungs-/Strom Charakteristik hat muss bei der Beschaltung angepasst werden

- Die LED braucht eine Schwellspannung bis Sie anfügt zu leuchten (Energie der Photonen, die Sie aussendet)
 - Rote, gelbe und grüne LEDs brauchen ca. 2V
 - Blaue und weiße LEDs brauchen etwa 3-4V
- Aufgrund des exponentiellen Zusammenhangs kann eine kleine Spannungsänderung ab der Schwellspannung bereits eine sehr große Stromänderung bewirken, die die LED zerstören kann
- Um dies zu vermeiden, wird ein Widerstand mit der LED in Reihe geschalten der den Strom begrenzt

Comm ext - LED output II/II

- Als Statusanzeige genügt für eine LED in der Regel ein Strom von 10mA
- Der Widerstand lässt sich berechnen durch die Spannung, die am Widerstand abfallen muss geteilt durch den gewünschten Strom

- Welcher Anschluss ist Was?
 - Kurzes Bein -> Kathode -> Minus;
 - Langes Bein -> Annode -> Plus;

Comm ext - LED output - Übung

■ Gegeben: U=5V, I=10mA und rote LED

Gesucht: Vorwiderstand

....

Comm ext - Relay output

- Relais (relays) werden gerne verwendet, um größere Lasten zu schalten
- Heutige Digitalschaltungen benötigen einen Relaistreiber(Verstärker) um die Relaisspule anzusteuern
- Der Transistor dient dabei als Schaltverstärker
- Die Diode ist in umgekehrter Durchlassrichtung parallel zur Relaisspule eingebaut (Freilaufdiode)
 - Sie dient als Schutz gegen die hohe Induktionsspannung, die auftritt, wenn das Relais ausgeschalten wird (schließt Spannung kurz)
- Diese Treiberschaltung kann nicht nur für Relais verwendet werden, sondern auch für Motoren, Lampen oder andere Geräte
 - Die Diode dient dabei immer als Schutz vor dem angeschlossenen Gerät (vor der Selbstinduktionsspannung, die Geräte erzeugen die über eine bestimmte Induktivität verfügen (Spulen, lange Anschlussleitungen etc.)

Comm ext - Optocouplers - Prinzip

 Ein Optokoppler (optocoupler) besteht aus einer LED und einem Phototransistor in einem gemeinsamen nichttransparenten Gehäuse

- Es gibt keine Verbindung zwischen den beiden Komponenten
- Der Phototransistor leitet nur, wenn die LED Licht drauf wirft

Comm ext - Optocouplers - Anwendung und Verwendung

- Anwendungen von Optokopplern:
 - Übertragung von Signalen zwischen zwei Schaltungen die nicht die gleichen Spannungspegel haben (getrennte Netzteile, getrennte Spannungspegel und getrennte Massen)
 - Bewusste gewünschte Trennung zwischen Schaltungsteilen aus Sicherheitsgründen (Hochspannungsteil und Schaltungsteil der In Kontakt mit Menschen ist (Steuerungsteil))

 Der Photransistor wird angeschlossen wie ein Schalter