Varianzanalyse

Cooler Untertitel, den wir uns noch ausdenken

Henri Neumann & Robert Feldhans

15. Dezember 2016

Experimentelle Psychologie für Nichtpsychologen

Inhalt

- 1. Einführung
- 2. Prinzip der Varianzanalyse
- 3. Interaktion

Einführung

Einführung

Definition

Verfahren, welches die Wirkung einer (oder mehrerer) UV auf eine (oder mehrerer) AV untersucht.

- testet Unterschiede zw. Mittelwerten auf Signifikanz
- Einsatz bei mehr als 2 Stichproben
- Häufig auch als Globaltest bezeichnet

Grundbegriffe

- Zielvariable: abhängige Variable(AV)
- Faktor: unabhängige Variable(UV)
- Faktorstufen: Ausprägungen/Kategorien eines Faktors
- Effekt: Wirkung eines Faktors auf die AV
- Interaktionseffekt: kombinierte Wirkung zweier Faktoren auf die AV

Unterteilung

Abgrenzung anhand von Anzahl abhängige Variablen und Faktoren

Zahl der AVn	Zahl der UVn	Bezeichnung				
1	1	Einfaktorielle VA				
1	2	Zweifaktorielle VA				
1	3	Dreifaktorielle VA				
	usw.					
≥ 2	≥ 1	Multivariante VA				

Vorraussetzungen

- Fehlerkomponenten sind normalverteilt
- Fehlervarianzen homogen in den Faktorstufen
- Messwerte bzw. Faktorstufen sind unabhängig voneinander

Prinzip der Varianzanalyse

Die gesamte Varianz der AV wird aufgeteilt in:

- Varianz zwischen Gruppen:
 Abweichung der Gruppenmittelwerte vom Gesamtmittelwert
 = systematische Varianz
- Varianz innerhalb von Gruppen:
 Abweichung einzelner Messwerte vom Gruppenmittelwert
 unsystematische Varianz, Fehlervarianz
- ⇒ anschließend Vergleich der Varianzschätzungen

Beispiel

Mathematisches Modell

Allgemeines Modell der einfaktoriellen Varianzanalyse

Mathematisches Modell

Allgemeines Modell der zweifaktoriellen Varianzanalyse

Hypothesen

einfaktoriell

• Nullhypothese:

Alle Mittelwerte sind gleich oder alle Effekte α_k sind 0.

Formal: $H_0: \mu_1 = \mu_2 = \cdots = \mu_k \text{ oder } \sum \alpha_k^2 = 0$

• Alternativhypothese:

Nicht alle Mittelwerte sind gleich oder mindestens ein Effekt α_i ist ungleich Null.

Formal: $H_1: \sum (\mu_k - \mu)^2 > 0$ oder $\sum \alpha_k^2 > 0$

Hypothesen

zweifaktoriell

Für jeden Faktor wird eine Nullhypothese überprüft

• Faktor A:

Alle Zeilenmittelwerte sind gleich oder alle Effekte α_j sind 0.

Formal:
$$H_0: \mu_{1\cdot} = \mu_{2\cdot} = \cdots = \mu_{J\cdot}$$
 oder $\sum \alpha_j^2 = 0$

• Faktor B:

Alle Spaltenmittelwerte sind gleich oder alle Effekte β_k sind 0.

Formal:
$$H_0: \mu_{\cdot 1} = \mu_{\cdot 2} = \cdots = \mu_{\cdot K}$$
 oder $\sum \beta_k^2 = 0$

• Interaktion AB:

Die Wirkung der einzelnen UVn auf die AV ist voneinander abhängig.

Formal:
$$H_0: \bar{y}_{jk} = \mu_{\cdot k} + \mu_{j\cdot} - \mu + \varepsilon$$

Zweifaktorielle Varianzanalyse

			Zeilenmittel				
		B_1	B_2		B_K	HE A	
UV A	A_1	μ_{11}	μ_{12}		μ_{1K}	$= \mu_1.$ $= \mu + \alpha_1$	
	A_2	μ_{21}				$\mu_2.$ $= \mu + \alpha_2$	
						$= \mu_j.$ $= \mu + \alpha_j$	
	A_J	μ_{J1}			μ JK	$\mu_{J.} = \mu + \alpha_{J}$	
Spalten- mittel	НЕ В	$\mu \cdot 1 = \mu + \beta_1$	$\mu \cdot 2 = \mu + \beta_2$	$\mu \cdot k = \mu + \beta_k$	$\mu \cdot \kappa = \mu + \beta_K$	μ	

Prinzip der Varianzanalyse

Prinzip der Varianzanalyse

Die gesamte Varianz der AV wird aufgeteilt in:

- Varianz zwischen Gruppen:
 Abweichung der Gruppenmittelwerte vom Gesamtmittelwert
 = systematische Varianz
- Varianz innerhalb von Gruppen:
 Abweichung einzelner Messwerte vom Gruppenmittelwert
 unsystematische Varianz, Fehlervarianz
- ⇒ anschließend Vergleich der Varianzschätzungen

Summe der Abweichungsquadrate

Repräsentiert die Unterschiedlichkeit der Werte der AV. Drei relevante Formen:

- SAQ_{Gesamt} : Die Gesamtvariabilität. Formal: $SAQ_{Gesamt} = \sum (y - \bar{y})^2$
- SAQ_{Effekt}: auch SAQ_{zwischen}; Variabilität zwischen Bedingungen.

Formal:
$$SAQ_{Effekt} = n_k \sum_{k=1}^{K} (\bar{y}_k - \bar{y})^2$$

 SAQ_{Fehler}: auch SAQ_{innerhalb}; Variabilität innerhalb einer Bedingung.

Formal:
$$SAQ_{Fehler} = \sum (y - \bar{y}_k)^2$$

$$\mathsf{Es}\;\mathsf{gilt}\;\mathsf{SAQ}_\mathsf{Gesamt} = \mathsf{SAQ}_\mathsf{Effekt} + \mathsf{SAQ}_\mathsf{Fehler}$$

Beispiel

Freiheitsgrade (FG)

Anzahl der frei variierbaren Werte oder auch Anzahl der in die SAQ eingehenden Werte

- *SAQ_{Gesamt}*: *N* − 1
- SAQ_{Effekt} : K-1 K: Anzahl Faktorstufen
- SAQ_{Effekt} : $K \cdot (n-1)$

 $\textbf{Es gilt } \textbf{FG}_{\textbf{Gesamt}} = \textbf{FG}_{\textbf{Effekt}} + \textbf{FG}_{\textbf{Fehler}}$

Mittlere Quadratsumme (MQ)

- Die mittlere Quadratsumme entspricht der Varianz
- MQ_{Fehler}: Schätzung der Populationsvarianz
- MQ_{Effekt}: Schätzung der Populationsvarianz wenn H₀ gilt
- Mittlere Quadratsummen sind nicht additiv

$$MQ = \frac{SAQ}{FG}$$

Bedeutung der MQ

- $MQ_{Effekt} = MQ_{Fehler}$: H_0 ist gültig
- MQ_{Effekt} » MQ_{Fehler}: H₀ ist ungültig, MQ_{Effekt} enthält systematische Varianz

Aber: Wann ist MQ_{Effekt} überzufällig größer als MQ_{Fehler} ?

Bedeutung der MQ

- $MQ_{Effekt} = MQ_{Fehler}$: H_0 ist gültig
- $MQ_{Effekt} \gg MQ_{Fehler}$: H_0 ist ungültig, MQ_{Effekt} enthält systematische Varianz

Aber: Wann ist MQ_{Effekt} überzufällig größer als MQ_{Fehler} ?

⇒ Prüfen mit F-Verteilung

$$F = \frac{MQ_{Effekt}}{MQ_{Fehler}}, FG = K - 1, K(n - 1)$$

F-Verteilung

Wenn $F_{empirisch} > F_{kritisch} \Rightarrow$ Ablehnung von H_0

n m	1	2	3	4	5	6	7	8	9	10	12	15	20	30	40	50
1	161	200	216	225	230	234	237	239	241	242	244	246	248	250	251	252
2	18,5	19,0	19,2	19,3	19,3	19,3	19,4	19,4	19,4	19,4	19,4	19,4	19,5	19,5	19,5	19,5
3	10,1	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,74	8,70	8,66	8,62	8,59	8,58
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,91	5,86	5,80	5,75	5,72	5,70
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,68	4,62	4,56	4,50	4,46	4,44
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,00	3,94	3,87	3,81	3,77	3,75
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,58	3,51	3,44	3,38	3,34	3,32
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,28	3,22	3,15	3,08	3,04	3,02
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,07	3,01	2,94	2,86	2,83	2,80
10	4,96	4,10	3,71	3,48	3,33	3,22	3,13	3,07	3,02	2,98	2,91	2,85	2,77	2,70	2,66	2,64
11	4,84	3,98	3,59	3,36	3,20	3,10	3,01	2,95	2,90	2,85	2,79	2,72	2,65	2,57	2,53	2,51
12	4,75	3,88	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,69	2,62	2,54	2,47	2,43	2,40
13	4,67	3,81	3,41	3,18	3,02	2,92	2,83	2,77	2,71	2,67	2,60	2,53	2,46	2,38	2,34	2,31
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,53	2,46	2,39	2,31	2,27	2,24
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,48	2,40	2,33	2,25	2,20	2,18
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,42	2,35	2,28	2,19	2,15	2,12
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,38	2,31	2,23	2,15	2,10	2,08
18	4,41	3,56	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,34	2,27	2,19	2,11	2,06	2,04
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,31	2,23	2,15	2,07	2,03	2,00
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,28	2,20	2,12	2,04	1,99	1,97
21	4,33	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32	2,25	2,18	2,10	2,01	1,97	1,94
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30	2,23	2,15	2,07	1,98	1,94	1,91
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,38	2,32	2,27	2,20	2,13	2,05	1,96	1,91	1,88
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,35	2,30	2,25	2,18	2,11	2,03	1,94	1,89	1,86
25	4,24	3,38	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24	2,16	2,09	2,01	1,92	1,87	1,84

Interaktion

Was ist Interaktion?

• blablalba

Verschiedene Arten der Interaktion

- Nullinteraktion
- ordinale Interaktion
- disordinale Interaktion
- semidisordinale Interaktion

Nullinteraktion

- keine Interaktion
- Auswirkungen einer UV sind auf allen Stufen der anderen UV gleich
- Beispiel
- UVs wirken unabhängig voneinander auf die AV
- Die Kenntniss der wirkung beider UVs reicht aus, um den Mittelwert jeder Zelle voraussagen zu können
- Liniendiagramm: parallel

Nullinteraktion - Diagramm

• blablabla

Nullinteraktion - Interpretation

• blablabla

ordinale Interaktion

- liegt vor, wenn sich eine UV auf verschiedenen Stufen der anderen UV unterschiedlich stark auswirkt
- Beispiel
- Liniendiagramm: Linien nicht parallel, kreuzen sich aber auch nicht (irrelevant, welche UV wie aufgetragen wird)

ordinale Interaktion - Diagramm

• blablabla

ordinale Interaktion - Interpretation

• blablabla

disordinale Interaktion

- liegt vor, wenn sich die Rangfolge der Werte einer UV auf den verschiedenen Stufen der anderen UV umkehrt
- d.h.?
- Beispiel
- Liniendiagramm: Kreuzen der Linien (irrelevant, welche UV wie aufgetragen wird)

disordinale Interaktion - Diagramm

• blablabla

disordinale Interaktion - Interpretation

• blablabla

semidisordinale Interaktion

- auch bekannt als hybride Interaktion
- liegt vor, wenn für eine UV eine ordinale Interaktion vorliegt, für die andere jedoch eine disordinale Interaktion
- Beispiel
- Liniendiagramm: Sowohl Kreuzen als auch nicht Kreuzen, je nachdem, welche UV wie aufgetragen wird

semidisordinale Interaktion - Diagramm

blablabla

semidisordinale Interaktion - Interpretation

blablabla