Entrega 3: Documentación, Despliegue y Monitoreo

Herramienta de Benchmarking, Riesgo y Desempeño

Rodrigo García Hoffmann

27 de julio de 2025

Índice

1	Documentación del Proyecto	1
	1.1 Ficha de Modelo	1
	1.2 Diagrama de Flujo del Proceso	2
2	Estrategia de Despliegue	3
3	Estrategia de Monitoreo	3

1 Documentación del Proyecto

A continuación, se presenta la documentación del proyecto, incluyendo una ficha de modelo y un diagrama de flujo del proceso, según los requerimientos de la entrega.

1.1 Ficha de Modelo

Esta ficha resume las características clave de la solución desarrollada.

• Información del Modelo

- Nombre: Herramienta de Benchmarking de Riesgo para Fondos.
- **Versión:** 0.0.1a
- **Propietario:** Rodrigo García Hoffmann.
- **Fecha:** 27 de julio de 2025.

• Propósito y Usuarios

- Propósito: Automatizar el cálculo y la comparación de métricas de riesgo de mercado (VaR, CVaR, Tracking Error) para fondos mutuos o de inversión frente a su benchmark.
- Usuarios Principales: Portfolio Managers, Gerencia de Riesgo de Mercado.

• Datos Utilizados

- Datos de Entrada: Valores cuota diarios del fondo (archivo fm_acciones_usa.xlsx en el MVP, sacados de la CMF) y precios de cierre del S&P 500 (archivo snp.xlsx en el MVP, generado desde Yahoo Finance a través de la librería yahoofinancer).

- Periodo de Datos: 02 de enero de 2022 a 31 de diciembre de 2024.

• Proceso de Limpieza y Transformación de Datos

- 1. Lectura: Se leen los datos inicialmente desde archivos .xlsx y de Yahoo Finance, para posteriomente avanzar a fuentes de datos internas (valores cuota calculados por la misma administradora e índices desde terminal Bloomberg, por ejemplo).
- Selección y Renombrado: Se estandarizan los nombres y se seleccionan las columnas de fecha y precio.
- 3. Unión (Join): Se realiza un inner_join usando la fecha como llave, para así garantizar que no se generen problemas inhábiles tanto locales como internacionales.
- 4. Cálculo de Retornos: Se calculan los retornos logarítmicos diarios.
- 5. Manejo de Nulos: Se elimina la primera fila de retornos (NA).

• Limitaciones y Consideraciones

- El Tracking Error está afectado por el tipo de cambio (CLP/USD), por lo que no refleja únicamente el riesgo de la gestión activa.
- El VaR paramétrico asume que los retornos siguen una distribución normal, lo cual es una simplificación de la realidad de los mercados financieros.
- La estimación del Tracking Error a períodos más largos (en este caso un año) puede no ser tan precisa en la práctica.

1.2 Diagrama de Flujo del Proceso

El siguiente diagrama ilustra el flujo de trabajo orquestado por el script main.R.

Figura 1: Diagrama de flujo del proceso automatizado.

2 Estrategia de Despliegue

El objetivo es automatizar la ejecución del script main. R para generar un reporte de riesgo actualizado de forma periódica. Se propone un despliegue en dos fases:

• Fase 1: Automatización del Proceso en un Entorno Controlado

El primer paso para llevar este proyecto a la práctica es asegurar que el análisis se ejecute de forma automática y regular. Para esto, se propone lo siguiente:

- Preparación del Entorno: Se habilitaría un espacio de trabajo en un servidor de la compañía.
 En este lugar se instalaría R y se replicaría el entorno del proyecto para garantizar que el código funcione siempre de la misma manera.
- 2. **Programación de la Tarea:** Se programaría la ejecución automática del script main. R para que se active al comienzo de cada semana a primera hora de la mañana. Esto asegura que los Portfolio Managers dispongan de la información actualizada al comenzar su semana.
- 3. Distribución de Resultados: El script se ajustaría para que, en vez de solo mostrar los resultados en una pantalla, genere un reporte sencillo (por ejemplo, un dashboard o un correo con los datos clave) y lo distribuya automáticamente a los involucrados.

• Fase 2: Contenerización con Docker (Enfoque avanzado y portable)

Para asegurar una portabilidad y reproducibilidad perfectas, el siguiente paso sería "contenerizar" la aplicación usando **Docker**. Se crearía un **Dockerfile** que empaquete el sistema operativo base, R, las dependencias del sistema y el código del proyecto en una imagen. Esta imagen podría ejecutarse en cualquier entorno que soporte Docker (local, on-premise, nube), garantizando que siempre funcione de la misma manera.

3 Estrategia de Monitoreo

Una vez desplegado, el sistema debe ser monitoreado para asegurar su correcto funcionamiento y la validez de sus resultados.

• Monitoreo Operacional (¿Está funcionando?)

- Logs de Ejecución: El script main. R registrará en un archivo de texto cada ejecución, indicando hora de inicio, fin y si hubo errores. Ejemplo: 2025-07-28 08:00:15 INFO Inicio del script. 2025-07-28 08:00:45 ERROR Falla al descargar datos..
- Alertas de Falla: Se implementará un bloque tryCatch en main.R. Si el script falla por cualquier motivo, el bloque catch enviará un correo electrónico de alerta al área responsable con el mensaje de error.

• Monitoreo de Métricas y Datos (¿Es coherente?)

- 1. Validación de Datos de Entrada: Antes de correr los cálculos, el script verificará que los datos descargados son válidos (ej., que no vengan vacíos o con formatos extraños).
- 2. Seguimiento de Métricas Clave: Se guardaría un historial de las métricas calculadas. Cambios bruscos o inesperados (ej., un VaR que se dispara sin motivo aparente) generarían una alerta para revisión manual.
- 3. Establecimiento de Límites y Alertas: Se definirán distintas categorías de riesgo para los fondos administrados. Estas categorías de riesgo tendrán niveles de alerta y límite. En caso de superar estos niveles, las áreas de riesgo tendrán que exigir a los Portfolio Managers que se definan acciones correctivas en caso de que los límites sean superados por gestión activa de parte de las áreas tomadoras de riesgo.