

Recearch & Tachnology

Benefits Assessment for Tailored Arrivals

A Year at San Francisco (Dec 3rd 2007 – Dec 31st 2008)

2009 Environmental Working Group Operations Standing Committee

July 28 – 29, 2009

Kevin Elmer

Tailored Arrival Environmental Criterion

Engineering, Operations & Technology | Boeing Research & Technology

- 1. Data analysis included Tailored Arrivals flight candidates
 - ANA8, ANZ8, JAL2, JAL880, QFA73, SIA16, UAL (1404, 34, 72, 74, 76, 78, 830, 838, 852, 856, 856D, 858, 862, 870, 872, 886, 888, 892, 9816, 9822)
 - Flights that arrived via Woodside (OSI) or Point Reyes (PYE)
- 2. Primary data source: radar data from the SFO ANOMS8 system
 - 6 days (1/03/08, 1/24/08-1/26/08, 2/23/08 and 11/01/08) were missing due to ANOMS8 outages
- 3. Flights sorted by
 - Tailored Arrivals sort criteria using ATS clearances and ADS-C reports
 - Analysis of ANOMS8 radar data to verify and refine the initial sorting
- 4. Fuel consumption calculations:
 - For low speed performance below 10,000 ft altitude, using the Boeing Climbout Program (BCOP)
 - Above 10,000 ft altitude, using the Boeing INFLT tool for cruise & descent.
 - Vertical profile generated from BCOP and INFLT was matched to the mean descent paths of the collective ANOMS8 radar data
 - Common start point at cruise

Tailored Arrival Environmental Criterion, Cont.

Engineering, Operations & Technology | Boeing Research & Technology

- Tailored Arrivals (TA) sort criteria, using ATS clearances and ADS-C data
 - Non participating Opted out of procedure or were ineligible
 Note: As ineligible flights are included in the above statistics, numbers
 should not be interpreted as pilot participation in Tailored Arrivals
 - Partial Tailored Arrival Met SOME of the TA criteria
 - Full Tailored Arrival Met ALL of the TA criteria
- 6. Environmental Criterion: Radar data shows no more than ONE Level Flight Segment and that is no more than ½ Nmi.
- 7. Evaluated all the ANOMS8 data to check if met Environmental Criterion including Non-Tailored Arrivals.

SFO Tailored Arrival Environmental Statistics

Engineering, Operations & Technology | Boeing Research & Technology

Data Collected	Total Flights*	% of Total Eligible Flights
Non-TA**	3027	70%
Partial TA	675	16%
Tailored Arrival	391	9%
Bad-Holding or Wrong Runway	223	5%
Not Eligible (Routed through PYE)	1235	N/A

^{*} ANOMS8 Data collected for **5551** Total Flights from December 4, 2007 to December 31, 2008

^{**} Non-TA included non-participating flights and data collected prior to TA start date

Airline Tailored Arrival Environmental Statistics

Engineering, Operations & Technology | Boeing Research & Technology

Acoustic Technology

Airline	Airplane	# Tailored Arrivals	# Requested TA**	% ENV*
Air New Zealand	777-200ER	80	246	33%
United Airlines	777-200ER	182	376	48%
United Airlines	747-400	104	345	30%
Japan Airlines	747-400	9	33	27%
Qantas	747-400	16	67	24%

^{*} Env - Met Criterion for Environmental Performance

^{**} Total of Full TA and Partial TA – These are the total flights that requested the TA

SFO Airport Noise Monitoring System (ANOMS 8) Data

Engineering, Operations & Technology | Boeing Research & Technology

SFO Airport Noise Monitoring System (ANOMS 8) Data, Cont.

Engineering, Operations & Technology | Boeing Research & Technology

Low Altitude Level Flight (Mean & Std Dev)

Engineering, Operations & Technology | Boeing Research & Technology

Fuel Consumption (Cruise to Top of Descent to Landing)

Engineering, Operations & Technology | Boeing Research & Technology

Acoustic Technology

	777-200	747-400
Non-TA	3,410 lbs	6,470 lbs
Partial TA	2,900 lbs	5,650 lbs
Full TA	1,980 lbs	3,670 lbs

Fuel Saving from Tailored Arrival per Flight

	777-200	747-400
Full TA	1,430 lbs	2,800 lbs
Partial TA	510 lbs	820 lbs

- Fuel consumption was calculated using the Boeing Climbout Program (BCOP) for low speed performance below 10,000 ft altitude.
- Fuel consumption above 10,000 ft altitude was calculated using the Boeing INFLT tool for cruise and descent.
- The vertical profile generated from BCOP and INFLT was matched to the mean descent paths of the collective ANOMS8 radar data.

^{*} Estimates derived from GE90-85B and PW4056 engine data

Fuel Consumption (Cruise to Top of Descent to Landing), Cont

Engineering, Operations & Technology | Boeing Research & Technology

Acoustic Technology

Estimated Actual Fuel & CO2 Savings from SFO Tailored Arrivals

Airline	Airplane	Fuel / CO ₂ Saved (lbs)	Fuel / CO ₂ Saved (kgs)
Air New Zealand	777- 200ER	Fuel: 328,900 CO ₂ : 1,037,680	Fuel: 162,785 CO ₂ : 513,585
United Airlines	777- 200ER	Fuel: 509,080 CO ₂ : 1,606,147	Fuel: 251,962 CO ₂ : 794,941
United Airlines	747-400	Fuel: 915,600 CO ₂ : 2,888,718	Fuel: 453,164 CO ₂ : 1,429,731
Japan Airlines	747-400	Fuel: 86,800 CO ₂ : 273,854	Fuel: 42,960 CO ₂ : 135,540
Qantas	747-400	Fuel: 159,600 CO ₂ : 503,538	Fuel: 78,992 CO ₂ : 249,219

Trajectory Comparison from Boeing Performance Software

Engineering, Operations & Technology | Boeing Research & Technology

Emissions Analysis - CREAN to the Runway

Engineering, Operations & Technology | Boeing Research & Technology

Acoustic Technology

Copyright © 2009 Boeing. All rights reserved.

EOT_RT_Sub_Template.ppt | 12

Emissions Analysis - (10,000' to Landing)

Engineering, Operations & Technology | Boeing Research & Technology

Noise Measurement Comparison- SEL (As Measured)

Engineering, Operations & Technology | Boeing Research & Technology

Acoustic Technology

Sample Size (2124)

Noise Contour Comparison- 20 Flights per Scenario

Engineering, Operations & Technology | Boeing Research & Technology

Acoustic Technology

Arrival

Tailored Arrival

Arrival

Full TA Scenario

Engineering, Operations & Technology | Boeing Research & Technology

Acoustic Technology

Full TA Scenario with Non TA Track Overlay

Engineering, Operations & Technology | Boeing Research & Technology

Acoustic Technology

Non TA Scenario

Full TA / Non TA Comparison

Engineering, Operations & Technology | Boeing Research & Technology

Acoustic Technology

Summary

First Year of Tailored Arrivals Operations at San Francisco

Engineering, Operations & Technology | Boeing Research & Technology

Acoustic Technology

- Fuel Saved
 1,999,980 lbs (989,863 kgs)
- CO2 Emissions Saved
 6,309,937 lbs (3,123,016 kgs) Fuel Saved
- Noise Impact
 No Significant Change at a few temporary measurement sites

 Reduction in noise exposure area can be significant
- Air Quality
 - Overall reduction CO, HC, and NOx (From TOD or 10,000')

