Logique des Prédicats

Corrigé Série N°7

Etude Sémantique

USTHB Faculté Informatique L. KADDOURI

Logique des Prédicats

Corrigé Série N°7 Exo 1

Soit L le langage de 1er ordre contenant deux symboles de constante a et b, un symbole de fonction f monaire (arité 1) et un symbole de prédicat P binaire (arité 2).

On définit l'Interprétation de domaine

$$D=\{1, 2, 4, 5\}$$
 suivante:

$$I(a)=1$$

$$I(b)=5$$

$$I(f)=\phi / \phi(1)=2, \phi(2)=4, \phi(4)=5 \text{ et } \phi(5)=1$$

$$I(P)=\{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4,2), (5,1)\}$$

Interprétation I : **Domaine** D={1, 2, 4, 5} Constantes: I(a)=1 et I(b)=5 deux éléments de D **Fonction**: I(f)=fonction monaire ϕ : D -> D / $\phi(1)=2$, $\phi(2)=4$, $\phi(4)=5$ et $\phi(5)=1$ **Prédicat**: I(P)= relation R / $R = \{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4$ (4,2), (5,1)Autrement dit: 1R1, 1R2, 2R1, 2R2, 2R4, 2R5,

4R1, 4R2, 5R1

Etudier la satisfaisabilité des formules suivantes pour I

$$\alpha 1: P(a, f(a)) \land P(b, f(b))$$
 Formule Fermée $I(\alpha 1): I(P(a, f(a)) \land P(b, f(b)))$ $I(\alpha 1): 1 R \varphi(1) ET 5 R \varphi(5)$ $I(\alpha 1): (1, 2) \in R$ ET $(5, 1) \in R$ C'est VRAI

Donc, puisque $\alpha 1$ est fermée alors : $\alpha 1$ est valide pour \emph{I}

Etudier la satisfaisabilité des formules suivantes pour I

 $\alpha 2 : \forall x P(x, a)$

Formule Fermée

 $I(\alpha 2) : I(\forall x P(x, a))$

 $I(\alpha 2)$: Qqsoit $e \in D$ on a: $(e, 1) \in R$

C'est VRAI

1 $(1, 1) \in \mathbb{R}$ Vraie $\alpha 2$ est fermée 2 $(2, 1) \in \mathbb{R}$ Vraie alors: $\alpha 2$ est valide $\alpha 2$ est valide	е	(e, 1) ∈ R	Ι(α2)	Donc, puisque
4 $(4, 1) \in \mathbb{R}$ Vraie $\alpha 2$ est valide	1	$(1, 1) \in R$	Vraie	α2 est fermée
Γ /Γ 1) Γ D \/reie	2	$(2,1) \in R$	Vraie	alors:
5 $(5.1) \in \mathbb{R}$ Vraie	4	(4, 1) ∈ R	Vraie	α2 est valide
yraic bour	5	$(5, 1) \in R$	Vraie	pour /

Etudier la satisfaisabilité des formules suivantes pour I

 $\alpha 3 : \exists x P(b, x)$ Formule Fermée

 $I(\alpha 3) : I(\exists x P(b, x))$

 $I(\alpha 3)$: Il existe $e \in D$ /: $(5, e) \in R$

C'est VRAI, il suffit de prendre e = 1 on a : $(5, 1) \in \mathbb{R}$

Donc, puisque $\alpha 3$ est fermée alors : $\alpha 3$ est valide pour \emph{I}

Etudier la satisfaisabilité des formules suivantes pour I

$$\alpha 6: \forall x \forall y (P(x, y) \rightarrow P(f(x), f(y))$$
 Formule Fermée

$$I(\alpha 6) : I(\forall x \forall y (P(x, y) \rightarrow P(f(x), f(y)))$$

 $I(\alpha 6)$: Qqsoit (e1, e2) $\in D^2$ on a:

Si (e1, e2) $\in R$ Alors (φ (e1), φ (e1)) $\in R$

 $I(\alpha 6)$: Qqsoit (e1, e2) $\in D^2$ on a:

Si (e1, e2) \in R Alors (φ (e1), φ (e1)) \in R

Fonction : φ(1)=2, φ(2)=4, φ(4)=5 et φ(5)=1

Relation:	Ι(α6)	(φ(e1), φ(e1)) ∈ R	(e1, e2) ∈ R
R ={(1,1), (1,2), (2,1),	Vrai	$(2,2) \in R = V$	$(1, 1) \in R = V$
(2,2), (2,4), (2, 5),	Vrai	$(2,4) \in R = V$	$(1,2) \in R = V$
(4,1), (4,2), (5,1) }	Vrai	$(4, 2) \in R = V$	$(2, 1) \in R = V$
C'est FAUX	Faux	(4, 4) ∈ R = F	(2, 2) ∈ R = V
(contre exemple)	Faux	(4, 5) ∈ R = F	$(2,4) \in \mathbb{R} = V$
Donc, puisque	Vrai	$(4, 1) \in R = V$	$(2,5) \in \mathbb{R} = V$
α6 est fermée	Faux	$(5, 2) \in R = F$	$(4, 1) \in R = V$
alors:	Faux	$(5, 4) \in R = F$	$(4, 2) \in R = V$
α6 est NON	Vrai	$(1, 2) \in R = V$	$(5,1) \in R = V$
valide nour I	Vrai	-	Les autres ∈ R = F

Etudier la satisfaisabilité des formules suivantes pour I

```
\alpha 5 : \exists x P(x, y)
                                          Formule Non Fermée
I(\alpha 5)[V] : I(\exists x P(x, y))[V]
I(\alpha 5) [V]: Il existe e \in D / (e, V(y)) \in R
Relation:
R = \{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4,2), (5,1)\}
Soit la valuation V1/V1(y)=1
Il existe e \in D / (e, V1(y)) \in R
R = \{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4,2), (5,1)\}
Il existe e \in D / (e, 1) \in R ....C'est Vrai e=4, (4, 1) \in R
Donc: α5 est Satisfaite par V1 pour I
```

Etudier la satisfaisabilité des formules suivantes pour I

```
\alpha 5 : \exists x P(x, y)
                                          Formule Non Fermée
I(\alpha 5)[V] : I(\exists x P(x, y))[V]
I(\alpha 5) [V]: Il existe e \in D / (e, V(y)) \in R
Relation:
R = \{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4,2), (5,1)\}
Soit la valuation V2/V2(y)=2
Il existe e \in D / (e, V1(y)) \in R
R = \{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4,2), (5,1)\}
Il existe e \in D / (e, 2) \in R ....C'est Vrai e=2, (2, 2) \in R
Donc: α5 est Satisfaite par V2 pour I
```

Etudier la satisfaisabilité des formules suivantes pour I

 $\alpha 5 : \exists x P(x, y)$

```
Formule Non Fermée
I(\alpha 5)[V] : I(\exists x P(x, y))[V]
I(\alpha 5) [V]: Il existe e \in D / (e, V(y)) \in R
Relation:
R = \{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4,2), (5,1)\}
Soit la valuation V3/V3(y)=4
Il existe e \in D / (e, V1(y)) \in R
R = \{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4,2), (5,1)\}
Il existe e \in D / (e, 4) \in R ....C'est Vrai e=2, (2, 4) \in R
Donc: α5 est Satisfaite par V3 pour I
```

Etudier la satisfaisabilité des formules suivantes pour I

```
\alpha 5 : \exists x P(x, y)
                                          Formule Non Fermée
I(\alpha 5)[V] : I(\exists x P(x, y))[V]
I(\alpha 5) [V]: Il existe e \in D / (e, V(y)) \in R
Relation:
R = \{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4,2), (5,1)\}
Soit la valuation V4/V4(y)=5
Il existe e \in D / (e, V1(y)) \in R
R = \{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4,2), (5,1)\}
Il existe e \in D / (e, 5) \in R ....C'est Vrai e=2, (2, 5) \in R
Donc: α5 est Satisfaite par V4 pour I
```

Etudier la satisfaisabilité des formules suivantes pour I

```
\alpha 5 : \exists x P(x, y) Formule Non Fermée
```

```
I(\alpha 5) [V] : I(\exists x P(x, y)) [V]
```

 $I(\alpha 5)$ [V]: If existe $e \in D / (e, V(y)) \in R$

CONCLUSION

α5 est Satisfaite par toutes les valuations pour l'interpretation I.

Donc: a5 est VALIDE pour I

Etudier la satisfaisabilité des formules suivantes pour I

$$\alpha 4 : \forall x P(x, f(y))$$
 Formule Non Fermée $I(\alpha 4) [V] : I(\forall x P(x, f(y))) [V]$

 $I(\alpha 4)$ [V]: Qqsoit \in D on a: $(e, \phi(V(y))) \in R$

Relation: Fonction:
$$R = \{(1,1), (1,2), (2,1), (2,2), (2,4), \phi(1) = 2, \phi(1)$$

R ={(1,1), (1,2), (2,1), (2,2), (2,4),
$$\phi(1)=2, \phi(2)=4,$$
 (2, 5), (4,1), (4,2), (5,1) } $\phi(4)=5 \text{ et } \phi(5)=1$

Soit la valuation V1/V1(y)=5
Qqsoit
$$e \in D$$
 / $(e, \phi(V1(y))) \in R$

Qqsoit $e \in D / (e, \phi(5)) \in R$ Qqsoit $e \in D / (e, 1) \in R$ C'est VRAI

Donc: α4 est Satisfaite par V1 pour I

Etudier la satisfaisabilité des formules suivantes pour I

$$\alpha 4 : \forall x P(x, f(y))$$
 Formule Non Fermée $I(\alpha 4)[V] : I(\forall x P(x, f(y)))[V]$

$$I(\alpha 4)$$
 [V]: Qqsoit \in D on a: $(e, \phi(V(y))) \in R$

Relation: Fonction:
$$R = \{(1,1), (1,2), (2,1), (2,2), (2,4), (2,5), (4,1), (4,2), (5,1)\}$$
 $\phi(4)=5 \text{ et } \phi(5)=1$

Soit la valuation V2/V2(y)=2Qqsoit $e \in D / (e, \phi(V2(y))) \in R$

Qqsoit
$$e \in D / (e, \varphi(2)) \in R$$

Qqsoit
$$e \in D / (e, 4) \in R$$
 C'est FAUX on a $(5,4) \notin R$

Donc: **\alpha 4 est NON Satisfaite par V2 pour I**

Conclusion: α_{Δ} est Satisfiable mais non valide pour I

Logique des Prédicats

Corrigé Série N°7 Exo 4

1- Soit deux formules

$$\alpha: \forall x P(x) \rightarrow \forall x Q(x)$$

$$\beta: \forall x (P(x) \rightarrow Q(x))$$

Donner une interprétation pour la quelle α est vraie et β est fausse

```
\alpha: \forall x P(x) \rightarrow \forall x Q(x) \dots VRAIE
```

$$\beta: \forall x (P(x) \rightarrow Q(x))$$
FAUSSE

Soit I1 interprétation:

Domaine D=N

I1(
$$\alpha$$
): SiQqsoit $e \in N$, e multiple de 10
Alors Qqsoit $e \in N$, e multiple de 2

I1(β) : Qqsoit e ∈ N, Si e multiple de 10Alors e multiple de 2

 $\alpha: \forall x P(x) \rightarrow \forall x Q(x) \dots VRAIE$

 $\beta: \forall x (P(x) \rightarrow Q(x))$ FAUSSE

Soit 12 interprétation :

Domaine D=N

I2(P) = « Multiple de 2 » et I2(Q) = « Multiple de 10 »

I2(
$$\alpha$$
): SiQqsoit $e \in N$, e multiple de 2

Alors Qqsoit $e \in N$, e multiple de 10

Alors e multiple de 10

FAUSSE

<u>Contre exemple</u>: e = 18 est multiple de 2 mais n'est pas multiple de 10

I2(β): Qqsoit e ∈ N, Si e multiple de 2

2- Montrer que la formule suivante n'est pas un théorème du calcul des prédicats :

$$\forall x \ \forall y \ ((x=y) \lor P(x,y) \lor P(y,x))$$

δ N'est pas un théorème

δ N'est pas Universellement valide

Il existe une interprétation I telle que δ N'est pas valide pour I (δ est FAUSSE)

$$\delta: \forall x \forall y ((x=y) \lor P(x,y) \lor P(y,x))$$

Soit I1 interprétation :

Domaine D=N

$$11 (P) = <<>>>$$

I1 (δ) = Qqsoit (e1, e2)
$$\in$$
 N² : e1=e2 OU e1>e2 OU e2>e1

C'est VRAI (ordre des entiers naturels)

Donc, puisque δ est fermée alors :

δ est valide pour *I1*

Cherchons une autre Interprétation!

 $\delta: \forall x \ \forall y \ ((x=y) \lor P(x,y) \lor P(y,x))$

Soit 12 interprétation :

Domaine D=Humains

12 (P) = « Frère de »

I1 (δ) = Qqsoit (h1, h2) \in N² : h1=h2 (même personne) OU h1 frère de h2 OU h2 frère de h1_

AUSSE

C'est FAUX (contre exemple)

Donc, puisque δ est fermée alors :

 δ est Non valide pour 12

Conclusion: **8 Non Universellement Valide**