Domande fondamenti

1) Si consideri un arco a un static q, con alfabeto dello stack S e la funzione di transizione definita da:

```
\sigma(q, F, S) = \{ (q, Sb), (q, aSb), (q, abb) \}

\sigma(q, 0, 0) = \{ (q, \varepsilon) \}

\sigma(q, b, b) = \{ (q, \varepsilon) \}
```

Si dica quale linguaggio viene generato da tale automa per più volte Risposta corretta: $\{a^n b^m \mid 0 < n < m \}$

- Cardinalità dei linguaggi NON acontestuali su di un alfabeto di n > 0 simboli?
 Risposta corretta: |p(n) |
- 3) Quante sono le sottostringhe di una stringa di lunghezza n di un alfabeto con n > 0 simboli? Risposta corretta: 1 + n(n+1)/2
- 4) La cardinalità dell'insieme dei linguaggi che si possono definire su di un alfabeto di n > 0 simboli

Risposta corretta: |p(n)|

- 5) Quale dei seguenti automi può dar luogo a sequenze infinite di transizioni? Risposta corretta: APND (Automi a Pila Non Deterministici)
- 6) La chiusura di Kleene di un linguaggio finito è? Risposta corretta: Regolare
- 7) Sottoinsieme di un linguaggio ACONTESTUALE è?
 Risposta corretta: Nessuno (Acontestuale = non decidibile)
- 8) Quale delle seguenti espressioni regolari non denota il linguaggio L su $\varepsilon = \{0, 1\}$ delle stringhe in cui ogni occorrenza di <u>00</u> precede tutte le occorrenze di n? Risposta corretta: $(10 + 0) * (1 + \varepsilon)(01 + 1) * 0$
- 9) La chiusura di Kleene di un linguaggio MONOTONO è? Risposta corretta: Nessuna (Monotona se possibile)
- 10) Quale tra le seguenti entità tra espressioni regolari non è valida?
 - a. $\varepsilon^n = \phi^n$
 - b. $(r^* + s^*) = (r^*s^*)^*$
 - c. nessuno → CORRETTA
 - d. (rs)*r = r(sr)*
 - e. $(\epsilon + r*r) = r*$
- 11) Gli insiemi ricorsivamente enumerabili non sono chiusi rispetto a:

Risposta corretta: Differenza

- 12) Quale dei seguenti linguaggi sull'alfabeto $\varepsilon = \{0, 1, 2\}$ è REGOLARE?
 - a. NESSUNO → CORRETTA

```
b. \{0^m 1^n 2^{n+m} \in \epsilon^n \mid n \ge 1, m > 1\}
```

c.
$$\{0^m 1^n 2^{n+m} \in \epsilon^n \mid n > 1, m \ge 1\}$$

d.
$$\{0^{n+m} \in \epsilon^n \mid n \ge 1\}$$

e.
$$\{0^n \in \varepsilon^n \mid n > 1 \text{ è primo}\}$$

13) Chiusura di Kleene di un linguaggio ACONTESTUALE è?

Risposta corretta: Acontestuale

14) Cardinalità dell'insieme delle Tolt (macchine di turing)

Risposta corretta: |N|

15) Cardinalità della macchina di Turing è?

Risposta corretta: |N|

16) La differenza insiemistica di due linguaggi regolari?

Risposta corretta: Regolare

17) Cardinalità delle funzioni totali

Risposta corretta: |p(N)|

18) Quale delle seguenti identità tra espressioni regolari NON è valida?

Risposta corretta: $(rs \cdot r)^* rs = (rr^*s^*)$

19) Cardinalità dell'insieme dei linguaggi acontestuali su di un alfabeto di n > 0 simboli?

Risposta corretta: |N|

20) Cardinalità delle funzioni parziali ricorsive?

Risposta corretta: |N|

21) Quale tra le seguenti identità tra espressioni regolari NON è valida?

a.
$$(\epsilon + \phi)^* = 0^*$$

b.
$$(rs)*r = r(rs)*$$

c.
$$r^* r^* = rr + \epsilon$$

d.
$$(s*r)*s* = (r*s*)*r*$$

e.
$$s(rs + s)* r = rr* s(rr* s)* \rightarrow CORRETTA$$

22) Il complemento di un linguaggio finito è?

Risposta corretta: Regolare

23) Quale di queste grammatiche è ambigua?

- a. $S \rightarrow SS \mid a$ CORRETTA
- b. $S \rightarrow aS \mid a$
- c. Nessuna
- d. $S \rightarrow SaS \mid \varepsilon$
- e. S \rightarrow aSa | ε

24) Cardinalità delle funzioni ricorsive?

Risposta corretta: |N|

25) Si supponga che la MdT (Macchina di Turing) cominci la computazione nello stato q_0 avendo per input sul nastro la stringa "111010" con la testina posizionata sul primo simbolo alla sinistra della stringa. Allora la computazione termina dopo:

Risposta corretta: 5 passi

26) Un sottoinsieme di linguaggio regolare è?

Risposta corretta: Non decidibile

27) Si considerino le espressioni regolari su {0, 1}

$$r_1 = (0 + 1)^* (0011 + 1010)(0 + 1)^*$$

 $r_2 = \varepsilon + (010 + 110)^* (\varepsilon + 1 + 11)$

- a. $[r_1] \supset [r_2]$
- b. Nessuna → Corretta
- c. $[r_1] = [r_2]$
- d. $[r_1] \cap [r_2]$
- e. $[r_1] \subset [r_2]$
- 28) L'affermazione "se I ⊆ N è un insieme X e I(negato) = N/I allora anche I(negato) è X" è vera se al posto di X scrivo:

Risposta corretta: Ricorsivo

29) Scriviamo un DFA(x) e APND(y) che significa che x è un DFA e y è APND. Scriviamo $x \equiv y$ per dire che x e y sono equivalenti. Quali delle seguenti formule logiche rappresenta il fatto che dato un DFA esiste un APND equivalente?

Risposta corretta: $\forall x$: DFA(x) \rightarrow ($\exists y$: APND (y) $\land x \equiv y$)

30) $\{x \in \{0, 1\}^* \mid x(x) \dots \} con w_0(\epsilon) = 0$

Risposta corretta: APND

31) Quale delle seguenti coppie hanno diverso potere espressivo?

Risposta corretta: APD e APND

- 32) Un sottoinsieme di un linguaggio contestuale?
 - a. Decidibile
 - b. Nessuna → CORRETTA
 - c. È monotona
 - d. È regolare
 - e. È acontestuale
- 33) Cardinalità dell'insieme delle stringhe lunghe n su un alfabeto ε ?

Risposta corretta: |ε|ⁿ

34) Quale delle seguenti espressioni regolari dentro il linguaggio L = {0, 1} delle stringhe che contengono e di '0' dividibile per 3?

Risposta corretta: (1* 01* 01* 01*)* + 1

35) Quanti stati ha un DFA minimo che accetta il linguaggio sull'alfabeto $\{a, b, c\}$ denotato dall'espressione regolare: $\varepsilon + (a + b)(a + b) \dots (a + b)$

n

Risposta corretta: n + 2

36) Quale delle seguenti espressioni regolari su ε = {a, b, c} dentro il linguaggio {w \in {a,b,c}* | di occorrenze di a in w è dispari?

Risposta corretta: $((b + c)^* a(b + c)^* a)^*((b+c)^*a(b + c)^*)$

37) Quale dei seguenti automi si arresta sempre dopo aver effettuato un numero finito di transazioni e ricevere in input una sequenza finita di simboli

Risposta corretta: DFA

38) Quale dei seguenti linguaggi sull'alfabeto $\varepsilon = \{a, b\}$ sono regolari?

Risposta corretta: $\{a^n a^{(n+1)^n 2 - n^n 2} \in \varepsilon^* \mid n > 0\}$

39) Quale fra i seguenti sono problemi deducibili?

Risposta corretta: Se l'intersezione di 2 linguaggi è finita; se una data grammatica è acontestuale (1 e 4).

40) Quale dei seguenti linguaggi è regolare?

 $L_1 = \{a^n b^n b^n | n \ge 1, n \ge 1\}$

 $L_2 = \{a^n a^n a^{n+m} \mid n \ge 3, m \ge 4\}$

 $L_3 = \{a^n b^m c^n \mid n^2 + m^2 \le 10n \}$

 $L_4 = \{a^n b^n c^n \mid 1 \le n \le q, n \ge 2n + 1\}$

Risposta corretta: L₂, L₃, L₄

- 41) Se C_{L0}^{-L2} L1 è un compilatore da L_0 a L_2 scritto con L_2 e scriviamo $L_x < L_y$ a significare "Lx è più semplice di Ly" allora:
 - a. L1 < L0
 - b. L0 < L2
 - c. L0 < L1
 - d. NESSUNA → CORRETTA
 - e. L1 < L2
- 42) Complemento di un linguaggio INFINITO è?

Risposta corretta: NESSUNO (VUOTO)

43) Si considerino i linguaggi regolari su {0, 1}

$$r_1 = \varepsilon (010)^* (\varepsilon + 1), (\varepsilon + (0 + 10)^*)(\varepsilon^* (0 + 01)^*)$$

 $r_2 = (0 + 10)^* (\varepsilon + 1 + 11)(0 + 11)^*$

- a. $r_1 = r_2$
- b. Nessuna → CORRETTA
- c. $r_1 \supset r_2$
- d. $r_1 \subset r_2$
- e. $r_1 \cap r_2 = \emptyset$