PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-077505

(43)Date of publication of application: 14.03.2003

(51)Int.Cl.

H01M 8/04

H01M 8/10

(21)Application number: 2001-268569

(71)Applicant: YUASA CORP

(22)Date of filing:

05.09.2001

(72)Inventor: OKUYAMA RYOICHI

FUJITA YUKIO

(54) LIQUID FUEL DIRECT SUPPLY TYPE FUEL CELL

PROBLEM TO BE SOLVED: To obtain a liquid fuel direct supply type fuel cell suitable for a portable small electronic apparatus. SOLUTION: Liquid fuel 1 to be supplied to the negative electrode of a fuel cell is stored in a container 2 filled with a porous material 7, and the inside of the container 2 is connected to a generating part by a fuel supply passage 8 comprising of a capillary tube body, so that the liquid fuel 1 in the container 2 can be uniformly retained. Thereby, the liquid fuel 1 does not vibrate in the container 2 when carrying the fuel cell, and fuel can be stably supplied, even if it is used sideways or upside down, or if a residual quantity of the liquid fuel 1 is reduced.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-77505 (P2003-77505A)

(43)公開日 平成15年3月14日(2003.3.14)

(51) Int.Cl.⁷ H 0 1 M 8/04

8/10

識別記号

FI H01M 8/04 8/10 デーマコート*(参考) L 5 H O 2 6

5H027

審査請求 未請求 請求項の数4 OL (全 4 頁)

(21)出顧番号 特額2001-268569(P2001-268569)

(22)出顧日 平成13年9月5日(2001.9.5)

(71)出願人 000006688

株式会社ユアサコーポレーション 大阪府高槻市古曽部町二丁目3番21号

(72)発明者 臭山 良一

大阪府高槻市古曽部町二丁目3番21号 株

式会社ユアサコーポレーション内

(72)発明者 藤田 幸雄

大阪府高槻市古曽部町二丁目3番21号 株

式会社ユアサコーポレーション内

Fターム(参考) 5H026 AA08

5H027 AA08 BA13

(54) 【発明の名称】 液体燃料直接供給形燃料電池

(57)【要約】

(修正有)

【課題】 携帯形小型電子機器に適した液体燃料直接供 給形燃料電池を得る。

【解決手段】 燃料電池の負極に供給するための液体燃料1が多孔質材料7を充填した容器2内に収納され、かつ前記容器2の内部と発電部とが毛細管体からなる燃料供給路8によって接続され、容器2内に液体燃料1が均一に保持できるようにし、携帯時に容器2内で液体燃料1が振動することがなく、横向きで使用したり、倒立状態で使用したり、液体燃料1の残量が少なくなっても、安定した燃料供給を可能にする。

【特許請求の範囲】

【請求項1】 プロトン導電性の髙分子電解質または水 酸化物イオン導電性の高分子電解質よりなる電解質を介 して負極と正極とを配し、前記負極に液体燃料が供給さ れ、前記正極に酸化剤ガスが供給されるように構成され たセルスタックを発電部として備えた液体燃料直接供給 形燃料電池において、前記負極に供給するための液体燃 料が多孔質材料を充填した容器に収納され、かつ前記容 器の内部と発電部とが毛細管体からなる燃料供給路によ って接続されていることを特徴とする液体燃料直接供給 10 形燃料電池。

【請求項2】 請求項1記載の液体燃料直接供給形燃料 電池において、多孔質材料が炭素繊維、ガラス繊維、ブ ラスチック繊維からなる繊維質材料であることを特徴と する液体燃料直接供給形燃料電池。

【請求項3】 請求項1記載の液体燃料直接供給形燃料 電池において、多孔質材料が無機材料粉末または発泡 材、炭素材料粉末または発泡材、ガラス材料粉末または 発泡材、ブラスチック材料粉末または発泡材からなる粉 末状または発泡状材料であることを特徴とする液体燃料 20 直接供給形燃料電池。

【請求項4】 請求項3記載の液体燃料直接供給形燃料 電池において、無機材料粉末または発泡材はシリカ、ア ルミナ、マグネシア、ジルコニアから選択された一種以 上の材料であることを特徴とする液体燃料直接供給形燃 料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は液体燃料直接供給形 燃料電池に関するもので、さらに詳しく言えば、携帯電 話等の携帯形小型電子機器に適した液体燃料直接供給形 燃料電池に使用する液体燃料を収納した容器に関するも のである。

[0002]

【従来の技術】従来、携帯電話、携帯形のコンピュータ ー等の電源にはニッケルーカドミウム電池、ニッケルー 水素電池、リチウムイオン電池等の二次電池が用いられ てきたが、これらの機器は常に電源を入れた状態で使用 することが多く、上記した二次電池を用いて連続使用時 間を延ばすことには限界があった。

【0003】これに対して、燃料電池をこのような機器 の電源に用いる試みが開始されており、メタノールなど の液体燃料と水を直接供給することによって発電ができ る液体燃料直接供給形燃料電池が、電解質膜の水分管理 等が複雑な、水素を燃料とした固体高分子型燃料電池に 代わって注目されている。

【0004】すなわち、メタノールと水を直接供給して 発電ができる直接メタノール形燃料電池のような液体燃 料直接供給形燃料電池には、固体高分子型燃料電池で必 要であったような電解質膜の水分管理等が不要で、構造 50 【0008】また、請求項4記載の発明は、請求項3記

もシンプルという特徴があるからであった。 [0005]

【発明が解決しようとする課題】ところが、このような 液体燃料直接供給形燃料電池は、燃料を液体で容器内に 収納しているため、携帯時に容器内で燃料が振動した り、液体燃料の残量が少なくなると、安定した燃料供給 が困難になって機器の動作が不安定になるという問題が あった。また、携帯形の小型電子機器は携帯時に容器内 で液体燃料が振動するだけでなく、機器とともに電池自 体を横向きで使用したり、倒立状態で使用することがあ り、容器も横向きや倒立状態になることがある。そのた め、液体燃料を加圧状態にして容器内に収納する方式が 検討されている。しかしながら、この方式のものは、図 2 に示したように、倒立状態で使用する場合は、液体燃 料1の残量が少なくなると、容器2内の上部に形成され るガス室3の占める割合が大きくなり、液体燃料1に混 じってガスが供給されてしまうことがあり、機器の動作 に支障を来すことがあった。なお、図2は、容器2にバ ルブ5を有する燃料供給管6が取り付けられ、この燃料 供給管6と燃料電池の発電部とがコネクター4によって 接続できる構成を示している。

[0006]

【課題を解決するための手段】本発明は上記課題を解決 するためになされたもので、請求項1記載の発明は、ブ ロトン導電性の髙分子電解質または水酸化物イオン導電 性の高分子電解質よりなる電解質を介して負極と正極と を配し、前記負極に液体燃料が供給され、前記正極に酸 化剤ガスが供給されるように構成されたセルスタックを 発電部として備えた液体燃料直接供給形燃料電池におい て、前記負極に供給するための液体燃料が多孔質材料を 充填した容器に収納され、かつ前記容器の内部と発電部 とが毛細管体からなる燃料供給路によって接続されてい ることを特徴とするものであり、これにより、容器内の 多孔質材料に液体燃料を均一に保持することができ、携 帯時に容器内で液体燃料が振動することがなく、電池自 体を横向きで使用したり、倒立状態で使用したり、液体 燃料の残量が少なくなっても、安定した燃料供給が可能 な液体燃料直接供給形燃料電池を得ることができる。

【0007】また、請求項2記載の発明は、請求項1記 40 載の液体燃料直接供給形燃料電池において、多孔質材料 が炭素繊維、ガラス繊維、プラスチック繊維からなる繊 維質材料であることを特徴とし、請求項3記載の発明 は、多孔質材料が無機材料粉末または発泡材、炭素材料 粉末または発泡材、ガラス材料粉末または発泡材、ブラ スチック材料粉末または発泡材からなる粉末状または発 泡状材料であることを特徴とするものであり、これによ り、容器内に多孔質材料を充填しても、容器の重量の増 加を最小限にした液体燃料直接供給形燃料電池を得ると とができる。

載の液体燃料直接供給形燃料電池において、無機材料粉 末または発泡材はシリカ、アルミナ、マグネシア、ジル コニアから選択された一種以上の材料であることを特徴 とするものであり、これにより、表面積を大きくでき、 液体燃料の保持量を多くできるとともに、それを変質さ せることのない多孔質材料に液体燃料を保持することが できる液体燃料直接供給形燃料電池を得ることができ る。

[0009]

【発明の実施の形態】以下、本発明を、その実施の形態 に基づいて説明する。

【0010】本発明の実施の形態に係る液体燃料直接供 給形燃料電池は、図1に示したように、プロトン導電性 の高分子電解質または水酸化物イオン導電性の高分子電 解質よりなる電解質を介して負極と正極とを配し、前記 負極に液体燃料が供給され、前記正極に酸化剤ガスが供 給されるように構成されたセルスタックを発電部として 備えたものにおいて、前記負極に供給するための液体燃 料1が多孔質材料7を充填したステンレス製の容器2に からなる燃料供給路8によって接続されていることを特 徴とする。

【0011】前記毛細管体からなる燃料供給路8として は、多孔質材料7と同様の多数の気孔を有する繊維状物 質を充填した管状体や多孔質材料からなる紐状体などが よく、この燃料供給路8と発電部とをコネクター4によ って着脱できる構成にしておくのがよい。このようにす れば、コネクター4を発電部に接続すると、多孔質材料 7に保持された液体燃料1が燃料供給路8の多数の気孔 による毛細管力によって前記発電部に供給して発電する ことができ、容器2内の液体燃料1がなくなると、コネ クター4を外して容器2を交換するようにできる。

【0012】上記した実施の形態に係る液体燃料直接供 給形燃料電池では、負極に液体燃料を供給する構造とし ては、液体燃料を供給するための流路溝を有する負極側 セパレータと酸化剤ガスを供給するための流路溝を有す る正極側セパレータをセルスタックやセルスタックを構 成する単セルに設けたもの、負極側セバレータと正極側 セパレータを一体にして両面に流路溝を有するセパレー タユニットを前記セルスタックや単セルに設けたものが 40 6 燃料供給管 あるが、これ以外の構造のものであってもよい。

【0013】また、上記した実施の形態に係る液体燃料 直接供給形燃料電池では、多孔質材料7を充填した容器

2に空気取入口9を設けておけば、液体燃料1が消費さ れても、容器2内を大気圧下に開放して、安定して液体 燃料1の供給ができる。

【0014】上記した多孔質材料7として、炭素繊維、 ガラス繊維、ブラスチック繊維からなる繊維質材料、ま たは無機材料粉末または発泡材、炭素材料粉末または発 泡材、ガラス材料粉末または発泡材、プラスチック材料 粉末または発泡材からなる粉末状または発泡状材料を選 択すれば、それを容器2内に充填しても、容器2の重量 の増加を最小限にすることができ、前記無機材料粉末ま たは発泡材として、シリカ、アルミナ、マグネシア、ジ ルコニアから選択された一種以上の材料を選択すれば、 液体燃料1を、表面積を大きくでき、その保持量を多く できるとともに、それを変質させないものに保持すると

【0015】上記した実施の形態では、容器2を倒立状 態にし、その下方から液体燃料1を供給する構成によっ て説明したが、本発明の要旨はこの構成に限定されるも のではない。すなわち、容器2を横向きにしたり、倒立 収納され、かつ前記容器2の内部と発電部とが毛細管体 20 状態にして上方から液体燃料1を供給する構成なども本 発明に含まれる。

[0016]

【発明の効果】上記した如く、本発明は、液体燃料を収 納した容器を改良して、携帯電話や携帯形コンピュータ 一等といった携帯形小型電子機器に適した液体燃料直接 供給形燃料電池を得るのに寄与することができ、特に液 体燃料としてメタノールを用いた直接メタノール形燃料 電池の用途の拡大に寄与するところが大である。

【図面の簡単な説明】

【図1】本発明の液体燃料直接供給形燃料電池に使用す 30 る容器の断面図である。

【図2】従来の液体燃料直接供給形燃料電池に使用する 容器の断面図である。

【符号の説明】

- 1 液体燃料
- 2 容器
- 3 ガス室
- 4 コネクター
- 5 バルブ
- - 7 多孔質材料
 - 8 燃料供給路
 - 9 空気取入口

【図2】

