

In-Host Shiny: análisis de modelos compartimentales in-host para infecciones virales en poblaciones celulares

Marcos Prunello

Universidad Nacional de Rosario @mrqtsp | github.com/mpru | marcosprunello@gmail.com

Introducción

- Una **enfermedad** es *infecciosa* si el agente causante, por ejemplo, un virus o bacteria, puede ser transmitido de un individuo a otro a través de algún medio de contagio (contacto directo, vías respiratorias, madre a recién nacido, etc.).
- El objetivo de la **modelización matemática** de una enfermedad infecciosa es describir el *proceso de transmisión* de la enfermedad, que se puede resumir como:
- 1. Se introducen individuos infectados en una población susceptible --> transmisión.
- 2. Un individuo puede ser asintomático durante una etapa temprana.
- 3. Individuos infectados pueden o no recuperarse y ganar cierto grado de inmunidad.
- 4. Según los mecanismos en juego: *brote*, *epidemia*, *pandemia*.
- · La **modelización** de procesos infecciosos ha sido capaz de proveer claridad sobre su transmisión y expansión, ayudando a estimar severidad y diseñar prevención.

Introducción

- Este mismo enfoque puede aplicarse para describir la diseminación de una infección viral en una población de células: modelos in-host.
- · En este trabajo se presenta una aplicación Shiny que permite estudiar el proceso infeccioso por el virus HTLV-I en células T CD4+, responsable de varias enfermedades como linfoma/leucemia y mielopatía.

Introducción

- · Organización:
- 1. Descripción de los modelos determinísticos compartimentales SIR.
- 2. Adaptación de los modelos para el estudio de una población de células.
- 3. Presentación de la aplicación.

Modelos determinísticos compartimentales SIR

- · El objetivo de la modelización es llevar registro de las cantidades de individuos en cada compartimento en cualquier momento t: S(t), I(t) y R(t).
- · Se establece un pequeño intervalo de tiempo $[t, t + \Delta t]$ para evaluar los cambios en dichas cantidades: $\Delta S(t)$, $\Delta I(t)$ y $\Delta R(t)$.
- $\Delta S(t)/\Delta t = S'(t)$ con $\Delta t \rightarrow 0$: podemos plantear un sistema de ecuaciones diferenciales en términos de incidencia, tasa de recuperación, tasa de remoción, etc.

Modelos determinísticos compartimentales SIR

Ejemplo 1

Ejemplo 2

Ejemplo 3

Modelo in-host para infecciones por HTLV-I en células T CD4+

- El mismo tipo de enfoque puede aplicarse para describir la diseminación de una infección viral en una población de células: modelos **in-host**
- · Aplicación: análisis de la infección de células T CD4+ por el virus HTLV-I (responsable de linfoma/leucemia, mielopatía, etc.)
- Es un **retrovirus**, fuera de la célula no genera infección, requiere contacto célula a célula, se transmite verticalmente.

Modelo in-host para infecciones por HTLV-I en células T CD4+

- Generación de células no infectadas a una tasa λ
- Mitosis: crecimiento logístico con tasas v₁ y v₂
- Transmisión horizontal: incidencia bilineal β
- Células infectadas enfrentan respuesta inmune, σ
- Tasas de remoción de células T CD4+: μ_1 y μ_2

In-Host Shiny App

- · Permite estudiar el proceso infeccioso por el virus HTLV-I en células T CD4+.
- · Interés: llega la infección en algún momento a algún nivel de estabilidad? Se extinguirá o se expanderá?
- · Para responder esto, la app estudia y clasifica los puntos de equilibrio (x, y), que son estados en los que sistema no cambia.
- · Un equilibrio es (asintóticamente) **estable** si el sistema siempre vuelve a ese punto luego de pequeñas perturbaciones o **inestable** si no vuelve.

Marcos Prunello.

@mrqtsp | github.com/mpru

mpru.shinyapps.io/inhostshiny