BATTERIES

Content

- Fundamentals of Batteries
- Types of Batteries
- Grouping of Cells
- Battery Charging
- Precautions for battery charging
- Care and maintenance
- Types of efficiency of a cell
- Characteristics of a good cell
- Numericals

Fundamentals of a Battery

- Battery is one of the essential components of any electrical system
 - Electrical Stations
 - Electrical Vehicles
 - Aircrafts
 - Domestic and commercial Uninterruptible Power Supply (UPS)
 - Mobile phones
 - Toys...etc

Fundamentals of a Battery (contd.....)

Electric Vehicles (EV, HEV, PHEV)

Defence /Military Applications

Marines and Submarines

Telecom Towers

Fundamentals of a Battery (contd.....)

- Batteries are used to
 - Start Engines and auxiliary power units
 - provide emergency backup power
 - assure no break power for essential equipments
 - Provide power capability for maintenance

Note: All these functions are of considerable importance for performance and reliability

Fundamentals of a Battery (contd.....)

- Batteries operate by converting chemical energy to electrical energy
 - Electrochemical discharge reactions
- A typical Battery is composed of one or more cells
 - Positive electrode
 - Negative electrode
 - Separator
 - electrolyte

Types of Batteries

Lead acid Batteries

Types of Batteries

Lithium Ion batteries

- Cells may be grouped in three ways:
 - Series combination: For "Higher Voltage"

- "n" number of cells are connected in series
- e.m.f. is " E volts "
- Internal resistance of " $r\Omega$ "
- Load resistance " $R\Omega$ "

For Series combination

- Total internal resistance of the battery = " $nr\Omega$ "
- Total e.m.f. = n E volts
- Total Resistance = $(R+nr\Omega)$

- "n" number of cells are connected in parallel
- e.m.f. is " E volts
- Load resistance " $R\Omega$ "
- Total internal resistance of the battery =

For Parallel Combination:

Total Resistance

$$= R + \frac{r}{n} \Omega$$

Current in load

$$= \frac{E}{R + \frac{r}{n}} = \frac{nE}{nR + r} Amperes$$

3. Series-parallel combination (SPC):

- "m" sets of cells in SPC
- Each set with "n" no. Cells in series
- E.m.f. is " n E volts "
- Load resistance " $R\Omega$ "

- Total internal resistance of "n" cells in series = " $n r \Omega$ "
- Total internal resistance of "m" set of battery = " $\frac{nr}{\Omega}$
- Total resistance = " $R + \frac{nr}{m}\Omega$

Series-parallel combination (SPC) :

- Current in load resistance R

$$= \frac{nE}{R + \frac{nr}{m}} = \frac{mnE}{mR + nr} Amperes$$

Three systems of battery charging

KLE TECH.

- 1. Constant current charging system:
 - Charging current is controlled by
 - Carbon filament lamps or
 - Rheostat in series with battery

(Note: It helps in varying supply voltage to over come increased back emf of batteries)

- Many batteries are connected in series
- Total Voltage of the battery should not increase supply voltage
 - Or else the battery would discharge

KLE TECH.

- Charging current is given by
 - Where,

$$I = \frac{V - E_b}{R + r} Amperes$$

- V = Charging applied voltage
- $-E_b$ = Total counter emf of the battery
- R = external resistance of lamp or rheostat
- r = Internal resistance of the battery
- I = charging current
- Advantage: this system increases the life of battery
- Disadvantage:
 - It takes longer time to charge
 - Needs constant observation for charging current

KLE TECH.

2. Constant potential charging:

- The voltage to be kept constant at 10 % higher than the battery
- Charging current is varied by controlling the field regulator
- Initially
 - Charging current will be very high but back emf will be very low
 - After some time the process is reversed
 - Charging current decreases to a very small value
 - Back emf of the battery increases on being charged

2. Constant potential charging:

Advantage:

 Time required to charge a battery is less than constant current charging method but this reduces efficiency

Disadvantage:

- This system reduces the life of battery upto some extent

3. Trickle charging method:

- Continuous charging of a battery at a low rate and
- Keeping the battery ready in good working condition
- Value of charging current is approx. 2% of full charging current of the battery

Precautions for battery charging

- These precautions must be observed while charging
 - Topping up : Distilled water
 - DC voltage: 10% higher than the full charged battery
 - Ventilation: Gases liberated are flammable (Well ventilated room)
 - Charging rate: charged at a low rate 0.75A per plate (5%)

Care and maintenance

- Terminals and electrodes should be kept thoroughly cleaned and deposit some petroleum jell
- Strength of the depolarizer should be maintained
- Distilled water should be observed and put once in three months

(if it is less than 10 mm or 15 mm)

Positive and negative terminals should be

Types of efficiency of Cell

- Two types of efficinety
 - 1. Quantity efficiency or ampere hour (Ah) efficiency

A h efficiency(
$$\eta_{Ah}$$
)% = $\frac{Amperehours on discharging}{Amperehours on charging} \times 100$

2. Energy efficiency

Energy efficiency
$$(\eta_E)\% = \frac{Energy during discharging}{Energy during charging} \times 100$$

Energy efficiency
$$(\eta_E)\% = \frac{Watt hours on discharging}{Watt hours on charging} \times 100$$

Characteristics of a good cell

- A good cell should have
 - High and constant emf
 - Very small internal resistance
 - Completely inactive when circuit is opened
 - Able to give constant current for a long time
 - Free from polarization
 - No emission of corrosive fumes during chemical action
 - Inexpensive and of durable materials
 - Good mechanical strength

Thank You