Literature Analysis

Repository:IBM-Project-37380-1660306542

With the recent arrival of internet portals, buyers and sellers may obtain an appropriate status of the factors that ascertain the market price of a used automobile. Lasso Regression, Multiple Regression, and Regression Trees are examples of machine learning algorithms. We will try to develop a statistical model that can forecast the value of a pre-owned automobilebased on prior customer details and different parameters of the vehicle. This paper aims to compare the efficiency of different models' predictions to find the appropriate one.

- On the subject of used automobile price prediction, several previous studies have been conducted. To anticipate the value of pre-owned automobiles in Mauritius, Pudaruth employed naive Bayes, k-nearestneighbours, multiple linear regression, and decision trees. However, because there werefewer cars observed, their results were not good for prediction. Inhis article, Pudaruth concluded that decision trees and naive Bayes are ineffective for continuous-valued variables.
- To anticipate the price of a vehicle, Noor and Jan employed multiple linear regression. They used avariable selection methodology to determine the variables that had the highest influence and then eliminated the remainder. Only a few variables are included in the data, which were utilised to createthe linear regression model. With an R-square of 98 percent, the outcome was outstanding.
- Peerun et al. conducted study to assess the neural network's performance in predicting
 used automobile prices. However, especially on higher-priced cars, theestimated value
 is not very closeto the real price. In forecasting the price of a used car, they found that
 support vector machine regression outperformed neural networks and linear regression
 by a little margin.
- To accurately anticipate the price of a car, many different approaches have been used in the digitalworld, ranging from machine learning approaches like multiple linear regression, k-nearest neighbor, andnaive bayes to random forest and decision tree to the SAS enterprise miner.

SN O	TITLE OF THE PAPER	NAME OF	AUTHOR	YEAR OF	ACHIEVEMENTS	DRAWBACKS
		THE JOURNA L		PUBLISHING		
1.	Used Car Price Prediction	IRJET	Praful Rane, Deep Pandya, Dhawal Kotak.	2021	The system which is been proposed helps in determining the accurate price of used cars.It combines three different Machine Learning algorithms,whic h are Lasso regression,Linea r regression and Ridge regression.	For better performance deep learning network structures must be designed. Rather than training on whole dataset, clusters of data can be used for training. Also large historical data can be used for improving the accuracy.
2.	Vehicle Resale Price prediction using Machine Learning	Juni Khyat	B.Lavanya , Sk.Reshma , N.Nikitha , M.Namitha, L.Kanya Kumari,S.Kishor e Babu	2021	Four distinctive Al procedures have been utilised which helps in figuring the cost of pre owned vehicles. This model gives the anticipated cost of a pre owned vehicle on the basis of past shopper information.	Model should be trained on more datasets to improve the accuracy. Also the information cleaning cycle needs improvement.
3	Predicting the Price of Used Cars using Machine	Researc h Gate	Sameerchand Pudaruth	2014	The mean error with linear regression was about Rs51, 000 while	The main weakness of decision trees and naïve bayes is their inability to

	Learning Technique s				for kNN it was about Rs27, 000 for Nissan cars and about Rs45, 000 for Toyota cars. J48 and NaiveBayes accuracy dangled between 60-70% for different combinations of parameters	handle output classes with numeric values. Hence, the price attribute had to be classified into classes which contained a range of prices but this evidently introduced further grounds for inaccuracies.
4	Car Resale Value Prediction System	IRJET	Dhwani Nimbark, Akshat Patel, Sejal Thakkar	2021	This project focuses on building a system that can accurately predict a resale value of the car based on minimal features like kms driven, year of purchase etc. without manual or human interference and hence it remains unbiased.	Once more data is collected and various different cars are included in the system,the system not [performs well. deep learning-based ANN or LSTM would perform better.
5	Predicting Used Car Prices with Heuristic Algorithms and Creating a New Dataset.	ISSN	Mehmet BILEN	2021	A new predictable dataset was created that can be used in training heuristic algorithms. The most important headings that affect secondhand car prices are included in	It was seen that the data set could be predicted successfully. But, changes in car prices in short periods under volatile market conditions will cause these data to become outdated.

					this dataset,	
					which is formed	
					by the	
					compilation of	
					used vehicle	
					sales	
					advertisements	
					on the Internet,	
					in line with	
					expert opinions.	
6	Predicting	IJRASET	G. Kalpana , Dr.	2022	This project is	More attributes
	the Price of		A. Kanaka		more helpful	are missing like
	Pre-Owned		Durga, T.		for all e-	Resale history, Lic
	Cars Using		Anoop Reddy ,		commerce	,Accidents
	Machine		Dr. G. Karuna		companies who	history,image etc
	Learning				act as	in the data set
	and Data				mediators for	which makes clear
	Science				selling and	and ccurate
					buying pre-	analysis.
					owned cars.	
					The customer	
					can easily be	
					convinced in	
					taking a	
					decision to buy	
					a pre-owned	
					car out of	
					various car	
					models with	
					various features	
7	Used Cars	LJEAT	2019	Pattabiraman	The prediction	Even though for
	Price			Venkatasubb	error rate of all	some seeds the
	Prediction			u, Mukkesh	the models was	regression tree
	using			Ganesh	well under the	has better
	Supervised				accepted 5% of	accuracy, its error
	Learning				error.They will	rates are higher
	Techniques				also be	for the rest. To
	,				comparing the	get even more
					prediction	accurate models,
					accuracy of	we can also
					these models to	choose more
					determine the	advanced
					optimal one	machine learning
						algorithms such as
						random forests,
						an ensemble
						learning algorithm
						which creates
	İ	1	I	I	I	

	multiple decision/regressio n trees, which brings down overfitting
	massively or
	Boosting.

- Doan Van Thai, "Prediction car prices using quantify qualitative data and knowledge-based system."
- Pattabiraman Venkatasubbu, "Used Cars Price Prediction using Supervised LearningTechniques."
- Nitis Monburinon, "Prediction of Prices for Used Car by Using Regression Models"
- https://towardsdatascience.com/used-car-price-%20prediction-using-machin-learninge3be02d977b2
- https://www.semanticscholar.org/paper/vehicle-Price-Prediction-System-using-Machine-Noor-Jan/fc87ead6754b188b1b8629db77badf361fd24
- https://www.docsity.com/en/research-project-proposal-online-car-rental-system/5232831/
- Comparative Analysis of Used Car Price Evaluation Models, Tongji University, Shanghai 200000, China.
- Nitis Monburinon, "Prediction of Prices for Used Car by Using Regression Models", 5thInternational Conference on Business and Industrial Research, (ICBIR), Bangkok, Thailand, 2018.
- Jaideep A Muley, "Prediction of Used Cars' Prices by Using SAS EM", Oklahoma StateUniversity.
- Nabarun Pal, "A methodology for predicting used cars prices using Random Forest",
 Future of Information and Communications Conference, 2018
- Kuiper, Shonda, "Introduction to Multiple Regression: How Much Is Your Car Worth?"-Journal Of Statistics Education, 2008.