מתמטיקה דיסקרטית - תרגיל בית 3 עם פתרון

הגשה ליום חמישי, 15/8 בשעה 23:57, לפי ההנחיות במודל סמסטר קיץ תשפ"ד

ישאלה 1. תהיינו A,B,C קבוצות. הוכיחו או הפריכו A,B,C

$$A^2 \setminus (B \times C) = (A \setminus B) \times (A \setminus C)$$
 .

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
 .ב.

$$\mathcal{P}(A \setminus B) \subseteq \mathcal{P}(A) \setminus (\mathcal{P}(B) \setminus \{\emptyset\})$$
 .

$$A=B$$
 אז $A\triangle C=B\triangle C$ ד. אם

$$A=B$$
 אז $\mathcal{P}\left(A\right) \triangle C=\mathcal{P}\left(B\right) \cup C$ וגם $A,B,C\subseteq\mathbb{Z}$ ה. אם

מתקיים
$$A = \{1\}\,, B = \{1\}\,, C = \emptyset$$
 מתקיים א. הפרכה: עבור $A = \{1\}\,$

$$A^{2} \setminus (B \times C) = \{(1,1)\} \setminus \emptyset = \{(1,1)\},$$
$$(A \setminus B) \times (A \setminus C) = \emptyset \times A = \emptyset$$

ולכן לא מתקיים שוויון.

מתקיים עבור האוניברסלית עבור עבור (x,y) בור לכל לכל הוכחה: ב.

$$(x,y) \in A \times (B \cup C) \iff x \in A \land y \in B \cup C$$

$$\iff x \in A \land (y \in B \lor y \in C)$$

$$\iff (x \in A \land y \in B) \lor (x \in A \land y \in C)$$

$$\iff (x,y) \in A \times B \lor (x,y) \in A \times C$$

$$\iff (x,y) \in (A \times B) \cup (A \times C),$$

ולכן הקבוצות שוות.

- ג. הוכחה: תהיינה A,B קבוצות ותהי $S\in\mathcal{P}(A\setminus B)$. אזי $S\subseteq A\setminus B$ לכן לכל $S\subseteq A\setminus B$ מכאן ($S\in\mathcal{P}(A)$ מתקיים $S\subseteq A\setminus B$ איז $S\subseteq A\setminus B$ אוי $S\in S$ מתקיים $S\in S$ מתקיים $S\notin\mathcal{P}(B)\setminus\{\emptyset\}$ ומתקיים $S\notin\mathcal{P}(B)\setminus\{\emptyset\}$. בסך $S\in\mathcal{P}(A)\setminus\{\mathcal{P}(B)\setminus\{\emptyset\}\}$
 - לכן, לכן. $C\triangle C=\emptyset$ כיתן להוכיח ניתן ניתן ד.

$$A\triangle C=B\triangle C\iff (A\triangle C)\triangle C=(B\triangle C)\triangle C$$
 (\triangle אסוציאטיביות של $A\triangle$ ($C\triangle C$) $=B\triangle$ ($C\triangle C$) $\iff A\triangle\emptyset=B\triangle\emptyset$ $\iff A=B.$

ה. הוכחה: מכיוון ש- $B\subseteq\mathbb{Z}$ מכילה מכילה קבוצות של שלמים ו-C מכילה מספרים ה. הוכחה: מכיוון ש-C (B) $\triangle C=(\mathcal{P}\,(B)\cup C)\setminus(\mathcal{P}\,(B)\cap C)=\emptyset$, ולכן פרע מכילה עלמים - לכן דוע כי $\mathcal{P}\,(B)\cup C$

$$\mathcal{P}(A) \triangle C = \mathcal{P}(B) \cup C = \mathcal{P}(B) \triangle C$$

ומהסעיף הקודם נקבל ש-P(B)ש. נניח בשלילה ש- $A \neq B$, לכן בה"כ קיים ... נניח בשלילה אזי $P(A) = \mathcal{P}(B)$ הכל, אזי $P(A) \neq \mathcal{P}(B)$ ו- $P(A) \neq \mathcal{P}(B)$ סתירה. בסך הכל, ... בסך הכל, הוכחנו כיA = B

שאלה 2. הוכיחו או הפריכו את הטענות הבאות:

, אזי, קבוצות. אזי $\mathcal{F}\subset\mathcal{P}\left(A
ight)$ משפחת קבוצות. אזי

$$A \cup \bigcap_{S \in \mathcal{F}} S \subseteq \bigcap_{S \in \mathcal{F}} (A \cup S)$$
.

ב. תהי A קבוצה, A תת-קבוצה שלה ותהי שלה תת-קבוצה את נגדיר משפחה ב. תהי להיות \mathcal{F}

$$\mathcal{G} = \{ S \triangle K \mid S \in \mathcal{F} \},\,$$

A אזי G חלוקה של

- פתרון 2. א. הוכחה: יהי $x\in A\cup \bigcap_{S\in\mathcal{F}}S$ או $x\in A$ או $x\in A\cup \bigcap_{S\in\mathcal{F}}S$ נפריד למקרים:
- אם $A \cup S$ מתקיים $S \in \mathcal{F}$ שלכל שלכל , $x \in A$ מתקיים $x \in A$ אם א $x \in A$ אם א הגדרת היתוך נקבל ש- $x \in \bigcap_{S \in \mathcal{F}} (A \cup S)$

- $S\in\mathcal{F}$ אחרת, $x\in S$ מתקיים $S\in\mathcal{F}$ לכן לכל $x\in\bigcap_{S\in\mathcal{F}}S$ אחרת, אחרת, $x\in\bigcap_{S\in\mathcal{F}}(A\cup S)$ מתקיים $x\in A\cup S$ לכן מהגדרת חיתוך נקבל ש
 - "ב עבור $\mathcal{F} = \{\{1\}\}$ ו- $A = \{1\}$, $K = \{1\}$ נקבל ש- ב. הפרכה: עבור עבור

$$\mathcal{G} = \{\{1\} \triangle \{1\}\} = \{\emptyset\},\$$

 $\emptyset \in \mathcal{G}$ אינה חלוקה (למשל \mathcal{G} -שינה ברור

- שאלה 3. תהי או הפריכו את יחסים מעל $R,S\subseteq A\times A$ ויהיו קבוצה, תהי A קבוצה. הראוח:
 - . רפלקסיבי $R \setminus S$ אז רפלקסיביי Sו-S ו-
 - . סימטרי $R\setminus S$ אם סימטריים או S-ו ו-S
 - . טרנזיטיביי אז א טרנזיטיביי $R\setminus S$ טרנזיטיביי אם S-ו אם ג.
 - רפלקסיבי. $R \cup S$ הם רפלקסיביS ו-S
 - . אם $R \cup S$ סימטריים או S-ו חימטרי.
 - . טרנזיטיביי או טרנזיטיביי או טרנזיטיבי. Sו. אם וו. אם א
 - . אם $R \cap S$ רפלקסיביים אז S רפלקסיבי.
 - . אם $R\cap S$ סימטריים אז Sו-2 סימטרי.
 - ט. אם $R\cap S$ טרנזיטיביים או Sו-8 טרנזיטיביי.
- פתרון 3. א. הפרכה: עבור R,Sיש נקבל א $A=\{1\}$, $R=S=\{(1,1)\}$ רפלקסיביים א. הפרכה: א. הפרכה: עבור $R\setminus S=\emptyset$ אינו רפלקסיבי. (1,1) $\notin R\setminus S=\emptyset$ אבל (1 R 1 \wedge 1 S 1)
- ב. הוכחה: יהיו $(a,b)\notin S$ כך ש $(a,b)\in R$. אזי $(a,b)\in R$ אזי מכיוון מכיוון ב. מכיוון ש $(b,a)\notin S$ סימטרי נקבל ש $(b,a)\in R$ בנוסף, $(b,a)\notin S$ בנוסף, ונגיע לסתירה). לכן $(b,a)\in R\setminus S$ והיחס סימטרי.
 - -ו $R = \left\{ \left(1,2\right), \left(2,3\right), \left(3,1\right) \right\}$, $A = \left\{1,2,3,4\right\}$ ג. הפרכה: נבחר

$$S = \{(1,4), (4,3), (3,1)\}.$$

, את, עם אחרנזיטיביים. עם אחרR,S ברור

$$R \setminus S = \{(1,2), (2,3)\},\$$

. $(3,1) \notin R \setminus S$ אבל ($2,3) \in R \setminus S$ וגם ($1,2) \in R \setminus S$) אבל טרנזיטיבי

- ד. הוכחה: יהי $a \in A$, ומהגדרת חיתוך נקבל "ה. $a \in A$, מכיוון ש-a רפלקסיבי נקבל הוכחה: יהי $a \in A$, מכיוון היהי $a \in A$
- ה. הוכחה: יהיו $a,b\in R$ כך ש $a,b\in R$ כך ש $a,b\in A$ נניח בה"כ כי $a,b\in A$ ה. ומהגדרת איחוד $(b,a)\in R\cup S$ ומהגדרת איחוד
- R,S ברור כי $S=\{(2,3)\}$ ו. הפרכה: נבחר $S=\{(2,3)\}$, ו $A=\{1,2,3\}$ הפרכה: נבחר כי $S=\{(2,3)\}$, אבל $R\cup S$ אבל $R\cup S$, אינו טרנזיטיביים. עם זאת, $R\cup S$ אינו טרנזיטיביי.
- $.(a,a)\in S$ וגם $(a,a)\in R$ ש-
 נקבל ה-R, רפלקסיביים מכיוון ש $.a\in A$ יהי הוכחה: ה
 וגם $(a,a)\in R\cap S$ אזי אזי אזי אוי
- $.(a,b)\in S$ וגם $(a,b)\in R$ אזי ($a,b)\in R$ כך ש- $a,b\in A$ יהי הוכחה: ח. הוכחה: יהיו $a,b\in R$ כך מכיוון ש- $a,b\in R\cap S$ סימטריים נקבל ש- $(b,a)\in R\cap S$ וגם מכיוון ש-R,S סימטריים נקבל ש-
- ט. הוכחה: יהיו $(b,c)\in R\cap S$ כך ש-2 מ. הוכחה: יהיו $(a,b)\in R\cap S$ כך ש-2 מ. $(a,b)\in R\cap S$ נקבל ומטרנזטיביות $(b,c)\in R$ נקבל וגם $(a,b)\in R$ ש-2 (a,c) ולכן $(a,c)\in R\cap S$ ולכן $(a,c)\in S$