Nightout

Matt Zoufaly, Stephen Beard, Deep Ghosh, Joey Dodds

The Problem

- "What do I do when I'm bored?"
- We want to recommend things to do from previous user ratings
- We will provide useful recommendations for a user with only a few ratings
- Tell users why they will like a business
 - "We recommend Hoagie Haven because you liked George's"

NMF

- We will give ratings by Nonnegative Matrix Factorization (NMF)
- NMF discovers latent factors that affect ratings
- It relates both users and businesses to these factors
- If user x likes "burgers" and restaurant y is a "burgers" restaurant user x will like restaurant y

Businesses

rs S		
Se	Bob	
\supset	lane	

	Pizza Palace	Sushi Store	Wrap Hut	Beer Bar
Bob			5	
Jane	2	5		3

+ K (number of latent factors)

Input

Output

Latent Factors

		F1 (italian)	F2 (japanese)
S L	Bob	.8	.2
Use	Jane	.1	.5
	:	:	:

Businesses

ors		Piz.	Sush.	Wrap	Beer	•••
act	F1	.9	.2	.3	.5	•••
nt F	F2	.1	.9	.2	.4	•••
ten	•	•	:	:	•	

	F1 (italian)	F2 (japanese)	
Bob	.8	.2	•••
Jane	.1	.5	•••
•	:	:	

	Piz.	Sush.	Wrap	Beer	•••
F1	.9	.2	.3	.5	•••
F2	.1	.9	.2	.4	•••
:	:	:	:	•	

Dot Product!

Predicted Ratings

Businesses

	Pizza Pal	ace	Sushi S	tore	Wrap H	lut	Beer B	ar
	Actual	Predicted	Act.	Pred.	Act.	Pred.	Act.	Pred.
Bob		5		4	5	4		2
Jane	2	1	5	4		5	3	2

Algorithm

- We use an iterative EM algorithm to factorize
- Inputs are ratings, K, α , and β
- K is the number of latent factors we wish to find
- α scales the amount we change relationships each iteration
- β scales the regularization factor to avoid over-fitting

The Algorithm

We calculate the new Latent Factor Matrices P and Q by

$$p'_{ik} = p_{ik} + \alpha \left(2e_{ij}q_{kj} - \beta p_{ik} \right)$$
$$q'_{ik} = q_{kj} + \alpha \left(2e_{ij}p_{ik} - \beta q_{kj} \right)$$

Where e is predicted by P and Q

Then we get predicted ratings:

$$R \approx P \times Q^T = \hat{R}$$

Dataset

- Yelp academic datasets
- 30k Users with 25 ratings or more each
- 1400 Businesses with 25 ratings or more each
- Many other users and business have fewer ratings
- We are using 2 datasets
 - Michigan dataset: For testing and building our model
 - Princeton dataset: Unused for now, we will test the quality of our model on this when it is complete

Challenges

- The NMF algorithm takes a while to run on large datasets
- Switched to a sparse matrix representation
- Ported python code to C and parallelized
- Played with the α input to approach convergence quickly without overshooting
- Dealing with inconsistencies in user voting (future work)

Distance Vs. K

- Graphs "Mean RSS Vs. K" and "Distance Vs. K" show results of cross-validation on the Michigan data
- Around 30 seems like the best value for K
- We hope to find a relationship so we can discover an approximate good K from the data
- We would expect a good value of K to be related to the number of "Tags" that are often applied to businesses
 - We might want to modify tags to include things like pricing and quality of service

Distance Per Rating

- We are interested in building a recommendation engine
- This means that we wish to predict high ratings correctly, and are less concerned about low
- We compare distance from each rating from 1 to
- These results will be especially interesting when we attempt to normalize global effects (correct for rater inconsistency)

Mean Distance and RSS for each Rating

Actual Rating	# Records	Mean Distance	Mean RSS
1	3870	2.319897	6.403101
2	8322	1.370704	2.714852
3	18756	0.576989	0.801663
4	29944	0.339701	0.411234
5	19182	0.823115	1.371546

k = 30 (best detected in terms of average RSS)

Thresholds = 25

steps = 1000

Percentage of Businesses with Correct Predicted Ratings

Actual Rating	# Samples	# Correct	% Correct
1	3870	40	1.03
2	8322	608	7.31
3	18756	5311	28.32
4	29944	11737	39.20
5	19182	4438	23.14

k = 30 (best detected in terms of average RSS)

Thresholds = 25

steps = 1000

Normalization of Global Effects

- Users and businesses tend to develop a bias. By normalizing, you are able to find the true interaction between a user and a business.
- The idea is to break a rating into different effects
 - Global effect: This is the average of all ratings
 - Business effect: The bias in the businesses ratings
 - User effect: The bias in the user's ratings
 - Interaction: The specific interaction between the user and the business.
 - Other effects could make the users rating depend upon the businesses average, time, number of ratings, etc

Example of Normalization

- For example, imagine user HarvardHippie rates Hoagie Haven 1 star
 - We break this up into four effects
 - Global: The sites average rating is 3.2 stars
 - Hoagie Haven: Average rating is 4.5 stars, thus Hoagie
 Haven has a +1.3 effect
 - HarvardHippie: Average rating is 2.1 stars, thus has a
 -1.1 effect
 - Specific Interaction: This 1 star rating is thus broken into
 - 1 = 3.2 (global) + 1.3 (Hoagie Haven) 1.1 (HarvardHippie)
 2.4 (Hoagie Haven to HarvardHippie specific)
 - Thus the specific interaction between Hoagie Haven and HarvardHippie is -2.4

Goal is Recommendation

- Our end goal is to recommend businesses to users, not necessarily predict a users specific rating.
- Final evaluation will be to see if we can accurately guess what someone will really like