1

1.1

反设 $Incon(\Phi)$,则有在有公式集 $S \subseteq \Phi \cap \Psi$ 使 $S \vdash$ 可证, 因为 $S \subseteq \Phi$ 所以 $Incon(\Phi)$ 与 $con(\Phi)$ 矛盾。

1.2

情况a, 当 $\Phi = \Psi$ 时,1.2 成立。 情况b, 当 $\Phi = \{p(a)\}$, $\Phi = \{\neg p(a)\}$ 这里P为一元谓词,a为常元,易见 $con(\Phi)$,且 $con(\Psi)$,但 $Incon(\Psi \cup \Phi)$.

$\mathbf{2}$

2.1

因为 $A, A \rightarrow B \vdash$,可证,又 $A, A \rightarrow B \in \Phi$ 所以由命题9.7知 $B \in \Phi$

2.2

因为 $\forall x.A \vdash A[\frac{t}{x}]$ 可证 所以由命题9.7克制 $A[\frac{t}{x}] \in \Phi$

3

设 Φ 为 \mathscr{L} 的公式集且 $con(\Phi)$, \mathscr{OL} 的全体公式集为 $\{\varphi_n|n\in N\}$. $\mathfrak{O}\Gamma_0=\Phi$ $\Gamma_{n+1}=\left\{egin{array}{c} \Gamma_n\cup\{\varphi_n\} & con(\Gamma\cup\{\varphi_n\}) \\ \Gamma_n & con(\neg\Gamma\cup\{\varphi_n\}) \end{array}\right.$ $\Gamma=\cup_{n\in N}\Gamma_n,$ 以下证明 (1) $\Phi\in\Gamma,$ 即 Γ 为 Φ 的扩展,易见, (2) $con(\Gamma),$ 对n 作归纳易见 $con(\Gamma_n)$ 而 $\Gamma_0\subseteq\Gamma_1\subseteq\ldots\subseteq\Gamma_n\subseteq\ldots$ 因此 $con(\Gamma).$ (3) Γ 为极大协调,即若 $con(\Gamma,\varphi_n)$,则 $\varphi\in\Gamma$ 设 $con(\Gamma,\varphi_n)$ 。 case1. $con(\Gamma_n,\varphi_n)$,从而 $\varphi_n\in\Gamma_{n+1}$,故 $\varphi_n\in\Gamma$ case2. $\neg con(\Gamma_n,\varphi_n)$ 从而与 $con(\Gamma,\varphi_n)$ 矛盾,此情况不成立。因此 Γ 为 Φ 的扩张且 Γ 是极大协调的。

4

4.1

4.2

```
令P(x) 为c \doteq u ,从而 t \doteq S, P(t) \vdash P(S) 可证,即 t \doteq S, t \doteq u \vdash s \doteq u,可证又S \doteq t, \vdash t \doteq s,可证 故S \doteq t, t \doteq u \vdash s \doteq u 可证,从而 \vdash (S \doteq t) \rightarrow ((t \doteq u) \rightarrow (s \doteq u))可证
```

5

```
因为||\mathcal{L}|| = \aleph_0

所以||\mathcal{F}erm|| = \aleph_0, ||\mathcal{F}ormula|| = \aleph_0

因为\Phi L 又model

\Rightarrow con(\Phi)

\Rightarrow FETM \leq \Phi 使||\Psi|| \leq \aleph_0, ||\Psi|| \to \mathbb{N}Henkin集。

\Rightarrow FETM \leq \Phi 使||\Psi|| \leq \aleph_0, ||\Psi|| \to \mathbb{N}Hintikka集。

\Rightarrow FETM \leq \Phi 使||\Psi|| \leq \aleph_0, ||\Psi|| \to \mathbb{N}Hintikka集。

\Rightarrow FETM \to \Phi for ||\Psi|| \to \mathbb{N}Hintikka集。

||\Psi|| \to \mathbb{N}Hintikka集。
```

6

```
因为\Gamma, A_x^c B

\Rightarrow \Gamma, A_x^c \vdash B 可证

\Rightarrow \Gamma, A_x^c \vdash B 有证明树T(c)

\Rightarrow \Gamma, A_x^y \vdash B 有证明树T(y)

这里T(y)为在T(c)中由y势c而得y为新变元。

\Rightarrow 从而\Gamma, \exists xA \vdash B可证

\Rightarrow \Gamma, \exists xA \vdash \Pi证
```

7

(1),(3),(4)反例 (2)可证