MAT137 Lecture 7 — Absolute Values

Before next class:

Watch videos 2.1, 2.2, 2.3

Properties of absolute value

Let $a, b \in \mathbb{R}$. Are the following conclusions correct?

(A)
$$|ab| = |a||b|$$

(B) $|a+b| = |a|+|b|$

If any of the conclusions is wrong, fix it.

Properties of inequalities

Let $a, b, c \in \mathbb{R}$.

Assume a < b. Are the following conclusions correct?

(A)
$$a + c < b + c$$
 (D) $a^2 < b^2$

(B)
$$a-c < b-c$$

(C) $ac < bc$

(F) $\sin a < \sin b$

If any of the conclusions is wrong, fix it.

Sets described by distance

Let $a \in \mathbb{R}$. Let $\delta > 0$.

Describe the following sets using interval notation.

- (A) $A = \{x \in \mathbb{R} : |x| < \delta\}$
- (B) $B = \{x \in \mathbb{R} : |x| > \delta\}$
- (C) $C = \{x \in \mathbb{R} : |x a| < \delta\}$
- (D) $D = \{x \in \mathbb{R} : 0 < |x a| < \delta\}$

Implications

Find all positive values of X, Y, and Z which make the following implications true.

(A)
$$|t-3| < 1 \implies |2t-6| < X$$

(B)
$$|t-3| < Y \implies |2t-6| < 1$$

(C)
$$|t-3| < 1 \implies |t+5| < Z$$

Limits from a graph

Find the value of

- (A) $\lim_{x\to 2} f(x)$
- (B) $\lim_{x\to 0} f(f(x))$

Limits from a graph

Find the value of

- (A) $\lim_{x\to 2} f(x)$
- (B) $\lim_{x\to 0} f(f(x))$
- (C) $\lim_{x\to 2} [f(x)]^2$
- (D) $\lim_{x\to 0} f(2\cos x)$

Floor

Given a real number x, we defined the *floor of* x, denoted by $\lfloor x \rfloor$, as the largest integer smaller than or equal to x. For example:

$$\lfloor \pi \rfloor = 3, \qquad \lfloor 7 \rfloor = 7, \qquad \lfloor -0.5 \rfloor = -1.$$

Sketch the graph of $y = \lfloor x \rfloor$. Then compute:

(A)
$$\lim_{x \to 0^+} \lfloor x \rfloor$$
 (C) $\lim_{x \to 0} \lfloor x \rfloor$

(B)
$$\lim_{x\to 0^-} \lfloor x \rfloor$$
 (D) $\lim_{x\to 0} \lfloor x^2 \rfloor$

More limits from a graph

Find the value of

(A)
$$\lim_{x\to 0^+} g(x)$$

(B)
$$\lim_{x\to 0^+} \lfloor g(x) \rfloor$$

(C)
$$\lim_{x\to 0^+} g(\lfloor x \rfloor)$$

(D)
$$\lim_{x\to 0^-} g(x)$$

(E)
$$\lim_{x\to 0^-} \lfloor g(x) \rfloor$$

(F)
$$\lim_{x\to 0^-} \lfloor \frac{g(x)}{2} \rfloor$$

(G)
$$\lim_{x\to 0^-} g(\lfloor x \rfloor)$$

Limit at a point

If a function f is not defined at x = a, then

- (A) $\lim_{x\to a} f(x)$ cannot exist
- (B) $\lim_{x\to a} f(x)$ could be 0
- (C) $\lim_{x\to a} f(x)$ must approach ∞
- (D) none of the above.

Evaluating Limits

- You're trying to guess $\lim_{x\to 0} f(x)$.
- You plug in $x = 0.1, 0.01, 0.001, \ldots$ and get f(x) = 0 for all these values.
- In fact, you're told that for all $n=1,2,\ldots$, $f\left(\frac{1}{10^n}\right)=0.$
- Can you conclude that $\lim_{x\to 0} f(x) = 0$?

Exponential limits

Compute:

$$\lim_{t \to 0^+} e^{1/t}, \qquad \lim_{t \to 0^-} e^{1/t}.$$

Suggestion: Sketch the graph of $y = e^x$ first.

Rational limits

Consider the function

$$h(x) = \frac{(x-1)(2+x)}{x^2(x-1)(2-x)}.$$

- Find all real values a for which h(a) is undefined.
- For each such value of a, compute $\lim_{x \to a^+} h(x)$ and $\lim_{x \to a^-} h(x)$.
- Based on your answer, and nothing else, try to sketch the graph of h.

δ from a graph

- (A) Find one value of $\delta > 0$ s.t. $0 < |x-2| < \delta \implies |f(x)-2| < 0.5$
- (B) Find all values of $\delta > 0$ s.t. $0 < |x 2| < \delta \implies |f(x) 2| < 0.5$

Warm-up

Write down the formal definition of

$$\lim_{x\to a} f(x) = L.$$

Side limits

Recall

Let $L, a \in \mathbb{R}$.

Let f be a function defined at least on an interval around a, except possibly at a.

$$\lim_{x\to a} f(x) = L$$

means

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.} \quad 0 < |x-a| < \delta \implies |f(x)-L| < \varepsilon.$$

Write, instead, the formal definition of

$$\lim_{x\to a^+} f(x) = L, \quad \text{and} \quad \lim_{x\to a^-} f(x) = L.$$

Infinite limits

Definition

Let $a \in \mathbb{R}$.

Let f be a function defined at least on an interval around a, except possibly at a.

Write a formal definition for

$$\lim_{x\to a} f(x) = \infty.$$

Infinite limits - 2

Which one(s) is the definition of $\lim_{x\to a} f(x) = \infty$?

(A)
$$\forall M \in \mathbb{R}, \ \exists \delta > 0 \ \text{ s.t. } 0 < |x - a| < \delta \implies f(x) > I$$

$$\forall M \in \mathbb{R}, \ \exists \delta > 0 \ \text{s.t.} \ 0 < |x - a| < \delta \implies$$

(B) $\forall M \in \mathbb{Z}, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \implies f(x) > M$

(C) $\forall M > 0, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \implies f(x) > M$

(D) $\forall M > 5, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \implies f(x) > N$

$$A)$$

$$\forall M \in \mathbb{D} \ \exists \delta > 0 \ c + 0 < |\gamma| \ a | < \delta \longrightarrow$$

Which one(s) is the definition of
$$\lim_{x\to \infty}$$

Related implications

Let $a \in \mathbb{R}$. Let f be a function. Assume we know

$$0<|x-a|<0.1 \implies f(x)>100$$

(A) Which values of $M \in \mathbb{R}$ satisfy ... ?

$$0 < |x - a| < 0.1 \implies f(x) > M$$

Related implications

Let $a \in \mathbb{R}$. Let f be a function. Assume we know

$$0<|x-a|<0.1 \implies f(x)>100$$

(A) Which values of $M \in \mathbb{R}$ satisfy ... ?

$$0 < |x - a| < 0.1 \implies f(x) > M$$

(B) Which values of $\delta > 0$ satisfy ... ?

$$0 < |x - a| < \delta \implies f(x) > 100$$

Strict or non-strict inequality?

Let f be a function with domain \mathbb{R} . One of these statements implies the other. Which one?

(A)
$$\forall M \in \mathbb{R}, \exists N \in \mathbb{R} \text{ s.t. } x > N \implies f(x) > M$$

(B)
$$\forall M \in \mathbb{R}, \exists N \in \mathbb{R} \text{ s.t. } x > N \implies f(x) \geq M$$

Negation of conditionals

Write the negation of these statements:

- (A) If Justin Trudeau has a brother, then he also has a sister.
- (B) If a student in this class has a brother, then they also have a sister.

More negation

Let f be a function with domain \mathbb{R} . Write the negation of the statement:

IF
$$2 < x < 4$$
, THEN $1 < f(x) < 3$.

Existence

Write down the formal definition of the following statements:

(A)
$$\lim_{x\to a} f(x) = L$$

(B)
$$\lim_{x\to a} f(x)$$
 exists

(C) $\lim_{x\to a} f(x)$ does not exist

Preparation: choosing deltas

(A) Find one value of $\delta > 0$ such that

$$|x-3| < \delta \implies |5x-15| < 1.$$

(B) Find *all* values of $\delta > 0$ such that

$$|x-3|<\delta \implies |5x-15|<1.$$

(C) Find *all* values of $\delta > 0$ such that

$$|x - 3| < \delta \implies |5x - 15| < 0.1.$$

(D) Let us fix $\varepsilon > 0$. Find *all* values of $\delta > 0$ such that

$$|x-3|<\delta \implies |5x-15|<\varepsilon.$$

What is wrong with this "proof"?

Prove that

$$\lim_{x\to 3}(5x+1)=16$$

"Proof:"

Let $\varepsilon > 0$.

WTS
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ s.t.

$$0<|x-3|<\delta \implies |(5x+1)-(16)|<\varepsilon$$

$$|(5x+1)-(16)| < \varepsilon \iff |5x+15| < \varepsilon$$

 $\iff 5|x+3| < \varepsilon \implies \delta = \frac{\varepsilon}{3}$

Your first $\varepsilon-\delta$ proof

Goal

We want to prove that

$$\lim_{x\to 3} (5x+1) = 16$$

(1)

Your first $\varepsilon-\delta$ proof

Goal

We want to prove that

$$\lim_{x \to 3} (5x + 1) = 16 \tag{1}$$

directly from the definition.

(A) Write down the formal definition of the statement (??).

Your first $\varepsilon - \delta$ proof

Goal

We want to prove that

$$\lim_{x \to 3} (5x + 1) = 16 \tag{1}$$

- (A) Write down the formal definition of the statement (??).
- (B) Write down what the structure of the formal proof should be, without filling the details.

Your first $\varepsilon - \delta$ proof

Goal

We want to prove that

$$\lim_{x \to 3} (5x + 1) = 16 \tag{1}$$

- (A) Write down the formal definition of the statement (??).
- (B) Write down what the structure of the formal proof should be, without filling the details.
- (C) Write down a complete formal proof.

Goal

We want to prove that

$$\lim_{x \to 0} \left(x^3 + x^2 \right) = 0 \tag{2}$$

Goal

We want to prove that

$$\lim_{x \to 0} \left(x^3 + x^2 \right) = 0 \tag{2}$$

directly from the definition.

(A) Write down the formal definition of the statement (??).

Goal

We want to prove that

$$\lim_{x \to 0} (x^3 + x^2) = 0 \tag{2}$$

- (A) Write down the formal definition of the statement (??).
- (B) Write down what the structure of the formal proof should be, without filling the details.

Goal

We want to prove that

$$\lim_{x \to 0} \left(x^3 + x^2 \right) = 0 \tag{2}$$

- (A) Write down the formal definition of the statement (??).
- (B) Write down what the structure of the formal proof should be, without filling the details.
- (C) Rough work: What is δ ?

Goal

We want to prove that

$$\lim_{x \to 0} \left(x^3 + x^2 \right) = 0 \tag{2}$$

- (A) Write down the formal definition of the statement (??).
- (B) Write down what the structure of the formal proof should be, without filling the details.
- (C) Rough work: What is δ ?
- (D) Write down a complete formal proof.

Is this proof correct?

Claim:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.} \quad 0 < |x| < \delta \implies |x^3 + x^2| < \varepsilon.$$

Proof:

- Let $\varepsilon > 0$.
- Take $\delta = \sqrt{\frac{\varepsilon}{|x+1|}}$.
- Let $x \in \mathbb{R}$. Assume $0 < |x| < \delta$. Then

$$|x^3 + x^2| = x^2|x+1| < \delta^2|x+1| = \frac{\varepsilon}{|x+1|}|x+1| = \varepsilon.$$

• I have proven that $|x^3 + x^2| < \varepsilon$.

(A) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(A) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(B) all values of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(A) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(B) all values of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(C) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |x+1| < 10$

(A) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(B) all values of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(C) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |x+1| < 10$

(D) all values of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |x+1| < 10$

(A) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(B) all values of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(C) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |x+1| < 10$

(D) all values of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |x+1| < 10$

(E) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies \left\{ \begin{array}{l} |Ax^2| < \varepsilon \\ |x+1| < 10 \end{array} \right.$

(A) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(B) all values of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |Ax^2| < \varepsilon$

(C) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |x+1| < 10$

(D) all values of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |x+1| < 10$

(E) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies \begin{cases} |Ax^2| < \varepsilon \\ |x+1| < 10 \end{cases}$

(F) a value of
$$\delta > 0$$
 s.t. $|x| < \delta \implies |(x+1)x^2| < \varepsilon$

Indeterminate form

Let $a \in \mathbb{R}$. Let f and g be positive functions defined near a, except maybe at a.

Assume
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
.

What can we conclude about $\lim_{x\to a} \frac{f(x)}{g(x)}$?

- (A) The limit is 1.
- (B) The limit is 0.
- (C) The limit is ∞ .
- (D) The limit does not

exist.

(E) We do not have enough information to decide.

Let f be a function with domain \mathbb{R} such that

$$\lim_{x\to 0} f(x) = 3$$

Prove that

$$\lim_{x\to 0} \left[5f(2x)\right] = 15$$

Let f be a function with domain \mathbb{R} such that

$$\lim_{x\to 0} f(x) = 3$$

Prove that

$$\lim_{x\to 0} \left[5f(2x)\right] = 15$$

directly from the definition of limit. Do not use any of the limit laws.

(A) Write down the formal definition of the statement you want to prove.

Let f be a function with domain \mathbb{R} such that

$$\lim_{x\to 0} f(x) = 3$$

Prove that

$$\lim_{x\to 0}\left[5f(2x)\right]=15$$

- (A) Write down the formal definition of the statement you want to prove.
- (B) Write down what the structure of the formal proof should be, without filling the details.

Let f be a function with domain \mathbb{R} such that

$$\lim_{x\to 0} f(x) = 3$$

Prove that

$$\lim_{x\to 0}\left[5f(2x)\right]=15$$

- (A) Write down the formal definition of the statement you want to prove.
- (B) Write down what the structure of the formal proof should be, without filling the details.
 - (C) Rough work.

Let f be a function with domain $\mathbb R$ such that

$$\lim_{x\to 0} f(x) = 3$$

Prove that

$$\lim_{x\to 0}\left[5f(2x)\right]=15$$

- (A) Write down the formal definition of the statement you want to prove.
- (B) Write down what the structure of the formal proof should be, without filling the details.
- (C) Rough work.
- (D) Write down a complete proof.

Proof feedback

- (A) Is the structure of the proof correct? (First fix ε , then choose δ , then ...)
- (B) Did you say exactly what δ is?
- (C) Is the proof self-contained?(I do not need to read the rough work)
- (D) Are all variables defined? In the right order?
- (E) Do all steps follow logically from what comes before?Do you start from what you know and prove what you have to prove?
- (F) Are you proving your conclusion or assuming it?

This is the Squeeze Theorem, as you know it:

The (classical) Squeeze Theorem

Let $a, L \in \mathbb{R}$.

Let f, g, and h be functions defined near a, except possibly at a.

- For x close to a but not a, $h(x) \le g(x) \le f(x)$
 - $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} h(x) = L$

THEN •
$$\lim_{x \to a} g(x) = L$$

This is the Squeeze Theorem, as you know it:

The (classical) Squeeze Theorem

Let $a, L \in \mathbb{R}$.

Let f, g, and h be functions defined near a, except possibly at a.

- For x close to a but not a, $h(x) \le g(x) \le f(x)$
 - $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} h(x) = L$

THEN •
$$\lim_{x \to a} g(x) = L$$

Come up with a new version of the theorem about limits being infinity. (The conclusion should be $\lim_{x\to 2} g(x) = \infty$.)

Hint: Draw a picture for the classical Squeeze Theorem. Then draw a picture for the new theorem.

The (new) Squeeze Theorem

Let $a \in \mathbb{R}$.

Let g and h be functions defined near a, except possibly at a.

• For x close to a but not a, h(x) < g(x)

$$\frac{1}{2}$$

•
$$\lim_{x\to a} h(x) = \infty$$

THEN •
$$\lim_{x \to a} g(x) = \infty$$

The (new) Squeeze Theorem

Let $a \in \mathbb{R}$.

Let g and h be functions defined near a, except possibly at a.

For x close to a but not a, $h(x) \le g(x)$

•
$$\lim_{x\to a} h(x) = \infty$$

THEN
$$\bullet \lim_{x \to a} g(x) = \infty$$

(A) Replace the first hypothesis with a more precise mathematical statement.

The (new) Squeeze Theorem

Let $a \in \mathbb{R}$.

Let g and h be functions defined near a, except possibly at a.

IF

- For x close to a but not a, h(x) < g(x)
 - $\lim_{x \to a} h(x) = \infty$

THEN •
$$\lim_{x \to a} g(x) = \infty$$

- Replace the first hypothesis with a more precise mathematical statement
- (B) Write down the definition of what you want to prove.

The (new) Squeeze Theorem

Let $a \in \mathbb{R}$.

Let g and h be functions defined near a, except possibly at a.

• For x close to a but not a, $h(x) \le g(x)$

•
$$\lim_{x\to a} h(x) = \infty$$

THEN •
$$\lim_{x \to a} g(x) = \infty$$

- (A) Replace the first hypothesis with a more precise mathematical statement.
- (B) Write down the definition of what you want to prove.
- (C) Write down the structure of the formal proof.

The (new) Squeeze Theorem

Let $a \in \mathbb{R}$.

Let g and h be functions defined near a, except possibly at a.

IF • For x close to a but not a, $h(x) \le g(x)$

•
$$\lim_{x\to a} h(x) = \infty$$

THEN •
$$\lim_{x \to a} g(x) = \infty$$

- (A) Replace the first hypothesis with a more precise mathematical statement.
- (B) Write down the definition of what you want to prove.
- (C) Write down the structure of the formal proof.
- (D) Rough work

The (new) Squeeze Theorem

Let $a \in \mathbb{R}$

Let g and h be functions defined near a, except possibly at a.

IF

- For x close to a but not a, $h(x) \le g(x)$
 - $\lim_{x\to a} h(x) = \infty$

THEN • $\lim_{x \to a} g(x) = \infty$

- (A) Replace the first hypothesis with a more precise mathematical statement
- (B) Write down the definition of what you want to prove.
- Write down the structure of the formal proof.
- Rough work
 - Write down a complete, formal proof.

True or False?

Is this theorem true?

Claim

Let $a \in \mathbb{R}$.

Let f and g be functions defined near a.

- $\bullet \ \mathsf{IF} \ \lim_{x \to a} f(x) = 0,$
- THEN $\lim_{x\to a} [f(x)g(x)] = 0$.

Theorem

- $\bullet \lim_{x\to a} f(x) = 0, \text{ and }$
- g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x \to 2} [f(x)g(x)] = 0$$

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a. Assume

- $\bullet \lim_{x\to a} f(x) = 0, \text{ and }$
- ullet g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x\to a} [f(x)g(x)] = 0$$

(A) Write down the formal definition of what you want to prove.

Theorem

- $\bullet \lim_{x\to a} f(x) = 0, \text{ and }$
- g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x \to a} [f(x)g(x)] = 0$$

- (A) Write down the formal definition of what you want to prove.
- (B) Write down what the structure of the formal proof.

Theorem

- g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x \to a} [f(x)g(x)] = 0$$

- (A) Write down the formal definition of what you want to prove.
- (B) Write down what the structure of the formal proof.
- (C) Rough work.

Theorem

- g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN
$$\lim_{x \to 3} [f(x)g(x)] = 0$$

- (A) Write down the formal definition of what you want to prove.
- (B) Write down what the structure of the formal proof.
- (C) Rough work.
- D) Write down a complete formal proof.

Critique this "proof" - #1

• WTS $\lim_{x \to a} [f(x)g(x)] = 0$: $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $0 < |x - a| < \delta \implies |f(x)g(x)| < \varepsilon$.

• We know
$$\lim_{x \to a} f(x) = 0$$

 $\forall \varepsilon_1 > 0, \exists \delta_1 > 0$ s.t. $0 < |x - a| < \delta_1 \implies |f(x)| < \varepsilon_1$.

• We know
$$\exists M > 0$$
 s.t. $\forall x \neq 0, |g(x)| \leq M$.

$$|f(x)g(x)| = |f(x)||g(x)| < \varepsilon_1 M$$

•
$$\varepsilon = \varepsilon_1 M \implies \varepsilon_1 = \frac{\varepsilon}{M}$$

• Take
$$\delta = \delta_1$$

Critique this "proof" – #2

- WTS $\lim_{x \to a} [f(x)g(x)] = 0$. By definition, WTS: $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies |f(x)g(x)| < \varepsilon$
- Let $\varepsilon > 0$.
- Use the value $\frac{\varepsilon}{M}$ as "epsilon" in the definition of $\lim_{x\to a} f(x) = 0$

$$\exists \delta_1 \in \mathbb{R} \text{ s.t. } 0 < |x - a| < \delta_1 \implies |f(x)| < \frac{\varepsilon}{M}.$$

- Take $\delta = \delta_1$.
- Let $x \in \mathbb{R}$. Assume $0 < |x a| < \delta$
- Since $\exists M > 0$ s.t. $\forall x \neq 0, |g(x)| \leq M$ $|f(x)g(x)| < \frac{\varepsilon}{M} \cdot M = \varepsilon.$

Critique this "proof" - #3

- Since g is bounded, $\exists M > 0$ s.t. $\forall x \neq 0, |g(x)| \leq M$
- Since $\lim_{x \to a} f(x) = 0$, there exists $\delta_1 > 0$ s.t. if $0 < |x a| < \delta_1$, then $|f(x) 0| = |f(x)| < \varepsilon_1 = \frac{\varepsilon}{M}$.
- $|f(x)g(x)| = |f(x)| \cdot |g(x)| \le |f(x)| \cdot M < \varepsilon_1 \cdot M = \frac{\varepsilon}{M} \cdot M = \varepsilon$
- In summary, by setting $\delta = \min\{\delta_1\}$, we find that if $0 < |x-a| < \delta$, then $|f(x) \cdot g(x)| < \varepsilon$.

Limits involving sin(1/x) Part I

The reason that $\lim_{x\to 0} \sin(1/x)$ does not exist is:

- (A) because the function values oscillate around 0
- (B) because 1/0 is undefined
- (C) because no matter how close x gets to 0, there are x's near 0 for which $\sin(1/x) = 1$, and some for which $\sin(1/x) = -1$
- (D) all of the above

Limits involving sin(1/x) Part II

The limit $\lim_{x\to 0} x^2 \sin(1/x)$

- (A) does not exist because the function values oscillate around 0
- (B) does not exist because 1/0 is undefined
- (C) does not exist because no matter how close x gets to 0, there are x's near 0 for which $\sin(1/x) = 1$, and some for which $\sin(1/x) = -1$
- (D) equals 0
- (E) equals 1

Absolute value and the Squeeze Theorem

Use the Squeeze Theorem to prove:

Theorem

$$IF \lim_{x \to a} |f(x)| = 0, \ THEN \lim_{x \to a} f(x) = 0.$$

Hint: Recall that $-|c| \le c \le |c|$ for every $c \in \mathbb{R}$.

Undefined function

Let $a \in \mathbb{R}$ and let f be a function. Assume f(a) is undefined.

What can we conclude?

- (A) $\lim_{x \to a} f(x)$ exist
- (B) $\lim_{x\to a} f(x)$ doesn't exist.
- (C) No conclusion. $\lim_{x\to a} f(x)$ may or may not exist.

What else can we conclude?

- (D) f is continuous at a.
 - (E) f is not continuous at a.
- (F) No conclusion. f may or may not be continuous at a.

A new function

• Let $x, y \in \mathbb{R}$. What does the following expression calculate? Prove it.

$$f(x,y) = \frac{x+y+|x-y|}{2}$$

Suggestion: If you don't know how to start, try some sample values of x and y.

A new function

• Let $x, y \in \mathbb{R}$. What does the following expression calculate? Prove it.

$$f(x,y) = \frac{x+y+|x-y|}{2}$$

Suggestion: If you don't know how to start, try some sample values of x and y.

• Write a similar expression to compute $min\{x, y\}$.

More continuous functions

We want to prove the following theorem

Theorem

IF f and g are continuous functions THEN $h(x) = \max\{f(x), g(x)\}$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: There is a way to prove this quickly without writing any epsilons.

True or False? – Discontinuities

- (A) IF f and g have removable discontinuities at a THEN f+g has a removable discontinuity at a
- (B) IF f and g have non-removable discontinuities at a THEN f+g has a non-removable discontinuity at a

Which one is the correct claim?

Claim 1?

(Assuming these limits exist)

$$\lim_{x\to a} g(f(x)) = g\left(\lim_{x\to a} f(x)\right)$$

Claim 2?

IF (A)
$$\lim_{x \to a} f(x) = L$$
, and (B) $\lim_{t \to L} g(t) = M$

THEN (C)
$$\lim_{x \to a} g(f(x)) = M$$

A difficult example

Construct a pair of functions f and g such that

$$\lim_{x \to 0} f(x) = 1$$

$$\lim_{t \to 1} g(t) = 2$$

$$\lim_{x \to 0} g(f(x)) = 42$$

Transforming limits

The only thing we know about the function g is that

$$\lim_{x\to 0}\frac{g(x)}{x^2}=2.$$

Use it to compute the following limits:

(A)
$$\lim_{x\to 0} \frac{g(x)}{x}$$
 (C) $\lim_{x\to 0} \frac{g(3x)}{x^2}$ (B) $\lim_{x\to 0} \frac{g(x)}{x^4}$

(B)
$$\lim_{x\to 0} \frac{g(x)}{x^4}$$

Limits at infinity

Compute:

(A)
$$\lim_{x \to \infty} (x^7 - 2x^5 + 11)$$
 (D) $\lim_{x \to \infty} \frac{x^2 + 2x + 3}{3x^2 + 4x + 5}$ (B) $\lim_{x \to \infty} (x^2 - \sqrt{x^5 + 1})$ (E) $\lim_{x \to \infty} \frac{x^3 + \sqrt{2x^6 + 1}}{2x^3 + \sqrt{x^5 + 1}}$

Trig computations

Using that $\lim_{x \to 0} \frac{\sin x}{x} = 1$, compute the following limits:

(A)
$$\lim_{x \to 2} \frac{\sin x}{x}$$

(B)
$$\lim_{x\to 0} \frac{\sin(5x)}{x}$$

(C)
$$\lim_{x\to 0} \frac{\tan^2(2x^2)}{x^4}$$

(D)
$$\lim_{x\to 0} \frac{\sin e^x}{e^x}$$

(E)
$$\lim_{x \to 0} \frac{1 - \cos x}{x}$$

(F)
$$\lim_{x\to 0} \frac{\tan^{10}(2x^{20})}{\sin^{200}(3x)}$$

Trig computations

Using that $\lim_{x\to 0}\frac{\sin x}{x}=1$, compute the following limits:

(A)
$$\lim_{x \to 2} \frac{\sin x}{x}$$
 (D) $\lim_{x \to 0} \frac{\sin e^{x}}{e^{x}}$ (B) $\lim_{x \to 0} \frac{\sin(5x)}{x}$ (E) $\lim_{x \to 0} \frac{1 - \cos x}{x}$ (C) $\lim_{x \to 0} \frac{\tan^{2}(2x^{2})}{x^{4}}$ (F) $\lim_{x \to 0} \frac{\tan^{10}(2x^{20})}{\sin^{200}(3x)}$

(G)
$$\lim_{x\to 0} [(\sin x) (\cos(2x)) (\tan(3x)) (\sec(4x)) (\csc(5x)) (\cot(6x))]$$

Plus or minus infinity?

Compute:

(A)
$$\lim_{x \to -3^+} \frac{x^2 - 9}{3 - 2x - x^2}$$
 (B) $\lim_{x \to 1^+} \frac{x^2 - 9}{3 - 2x - x^2}$

A harder limit

Calculate

$$\lim_{x \to 2} \frac{\left[\sqrt{2+x}-2\right]\left[\sqrt{3+x}-3\right]}{\sqrt{x-1}-1}$$

Which solution is right?

Compute
$$L = \lim_{x \to -\infty} \left[x - \sqrt{x^2 + x} \right]$$
.

Solution 1

$$L = \lim_{x \to -\infty} \frac{\left[x - \sqrt{x^2 + x}\right] \left[x + \sqrt{x^2 + x}\right]}{\left[x + \sqrt{x^2 + x}\right]} = \lim_{x \to -\infty} \frac{x^2 - (x^2 + x)}{\left[x + \sqrt{x^2 + x}\right]}$$
$$= \lim_{x \to -\infty} \frac{-x}{x \left[1 + \sqrt{1 + \frac{1}{x}}\right]} = \lim_{x \to -\infty} \frac{-1}{\left[1 + \sqrt{1 + \frac{1}{x}}\right]} = \frac{-1}{2}$$

Solution 2

$$L = \lim_{x \to -\infty} \left[x - \sqrt{x^2 + x} \right] = (-\infty) - \infty = -\infty$$

Can we conclude this?

- Consider the function $(x) = \frac{4}{x}$.
- We have f(-1) = -4 < 0 and f(1) = 4 > 0.
- Use IVT. Can we conclude f(c) = 0 for some $c \in (-1, 1)$?

Existence of solutions

Prove that the equation

$$x^4-2x=100$$

has at least two solutions.

Can this be proven? (Use IVT)

(A) Prove that there exists a time of the day when the hour hand and the minute hand of a clock form an angle of exactly 23 degrees.

Can this be proven? (Use IVT)

- (A) Prove that there exists a time of the day when the hour hand and the minute hand of a clock form an angle of exactly 23 degrees.
- (B) During a Raptors basketball game, at half time the Raptors have 52 points. Prove that at some point they had exactly 26 points.

Can this be proven? (Use IVT)

- (A) Prove that there exists a time of the day when the hour hand and the minute hand of a clock form an angle of exactly 23 degrees.
- (B) During a Raptors basketball game, at half time the Raptors have 52 points. Prove that at some point they had exactly 26 points.
- (C) Prove that at some point during Alfonso's life, his height in centimetres was exactly equal to 10 times his weight in kilograms. Some data:
 - His height at birth: 47 cm
 - His weight at birth: 3.2 kg
 - His height today: 172 cm

Temperature

- On June 09, 2016, the outside temperature in Toronto at 6 AM was 10° . At 4 PM, the temperature was 20° .
- (A) Must there have been a time between 6 AM and 4 PM when the temperature was 15°? Explain how you know. Which assumption about temperature allows you to reach your conclusion?
- (B) Must there have been a time between 6 AM and 4 PM when the temperature was 22°? Explain how you know.
- (C) Could there have been a time between 6 AM and 4 PM when the temperature was 22°? Explain how you know.

Extrema

In each of the following cases, does the function f have a maximum and a minimum on the interval I?

(A)
$$f(x) = x^2$$
, $I = (-1, 1)$.
(B) $f(x) = \frac{(e^x + 2)\sin x}{x} - \cos x + 3$, $I = [2, 6]$
(C) $f(x) = \frac{(e^x + 2)\sin x}{x} - \cos x + 3$, $I = (0, 5]$

Definition of maximum

Let f be a function with domain I. Which one (or ones) of the following is (or are) a definition of "f has a maximum on I"?

- (A) $\forall x \in I$, $\exists C \in \mathbb{R}$ s.t. $f(x) \leq C$
- (B) $\exists C \in I \text{ s.t. } \forall x \in I, f(x) \leq C$
- (C) $\exists C \in \mathbb{R} \text{ s.t. } \forall x \in I, f(x) \leq C$
- (D) $\exists C \in \mathbb{R} \text{ s.t. } \forall x \in I, f(x) < C$

More on the definition of maximum

Let f be a function with domain I. What does each of the following mean?

(A)
$$\exists C \in \mathbb{R} \text{ s.t. } \forall x \in I, f(x) \leq C$$

(B)
$$\exists C \in \mathbb{R} \text{ s.t. } \forall x \in I, f(x) < C$$

(C)
$$\exists a \in I \text{ s.t. } \forall x \in I, \ f(x) \leq f(a)$$

(D)
$$\exists a \in I \text{ s.t. } \forall x \in I, \ f(x) < f(a)$$