Aula 15: Sumário

- Matriz Hessiana.
- Menores principais.
- Extremos Teste da segunda derivada.
- ullet Extremos Teste da 2^a derivada Caso particular: n=2.
- Exercícios.

Aula 15: Matriz Hessiana

Seja $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ com derivadas de primeira e segunda ordem em $p_0\in\mathrm{int}(D)$. A matriz

$$Hf(p_0) = \begin{bmatrix} \frac{\partial}{\partial x} \nabla(f)(p_0) \\ \frac{\partial}{\partial y} \nabla(f)(p_0) \\ \frac{\partial}{\partial z} \nabla(f)(p_0) \\ \dots \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(p_0) & \frac{\partial^2 f}{\partial x \partial y}(p_0) & \frac{\partial^2 f}{\partial x \partial z}(p_0) & \dots \\ \frac{\partial^2 f}{\partial y \partial x}(p_0) & \frac{\partial^2 f}{\partial y^2}(p_0) & \frac{\partial^2 f}{\partial y \partial z}(p_0) & \dots \\ \frac{\partial^2 f}{\partial z \partial x}(p_0) & \frac{\partial^2 f}{\partial z \partial y}(p_0) & \frac{\partial^2 f}{\partial z \partial y}(p_0) & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

chama-se matriz Hessiana de f em $p_{\scriptscriptstyle 0}$. Ao determinante de $Hf(p_{\scriptscriptstyle 0})$ chamamos Hessiano de f em $p_{\scriptscriptstyle 0}$. A matriz Hessiana é uma matriz simétrica (ver Critério seguinte).

Teorema de Schwarz (Critério da igualdade das derivadas mistas) Sejam $f:D\subset\mathbb{R}^n\to\mathbb{R}$ e x,y duas variáveis da função f. Se existem as derivadas parciais $\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial^2 f}{\partial x\partial y}$ numa bola aberta centrada em $p_0\in\mathrm{int}(D)$ e $\frac{\partial^2 f}{\partial x\partial y}$ é contínua em p_0 , então existe $\frac{\partial^2 f}{\partial y\partial x}$ em p_0 e $\frac{\partial^2 f}{\partial y\partial x}(p_0)=\frac{\partial^2 f}{\partial x\partial y}(p_0)$.

Aula 15: Menores principais

Chama-se menor principal de ordem k de uma matriz de ordem n ao determinante da submatriz de ordem k que se obtém eliminando as últimas n-k linhas e as últimas n-k colunas. Designamos por Δ_k ao menor principal de ordem k e por $\Delta=(\Delta_1,\Delta_2,\Delta_3,\ldots,\Delta_n)$.

Exemplo:
$$M = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
 então $\Delta_1 = a_1$, $\Delta_2 = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$ e $\Delta_3 = \det M$.

Explo:
$$M = \begin{bmatrix} -1 & 1 & 2 & 1 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$
. Então $\Delta_1 = -1$, $\Delta_2 = 1$, $\Delta_3 = -3$, $\Delta_4 = 6$.

Logo $\Delta = (-1, 1, -3, 6)$ e Sinal $(\Delta) = (-, +, -, +)$, isto é, Sinal $(\Delta) = (\text{negativo,positivo,negativo,positivo})$.

Aula 15: Extremos - Teste da segunda derivada

Um ponto crítico que não seja extremante diz-se um ponto de sela.

Teorema 3: Seja $f:D\subset\mathbb{R}^n\to\mathbb{R}$ com derivadas de primeira e de segunda ordem contínuas numa bola aberta centrada em $p_0\in\mathrm{int}(D)$. Se p_0 é um ponto crítico de f (i.e. $\nabla f(p_0)=\vec{0}$), então

- 1) Se $\det Hf(p_{\scriptscriptstyle 0}) \neq 0$, então
 - (a) Se Sinal $(\Delta)=(+,+,+,\dots,+)$, então $f(p_0)$ é um mínimo local estrito de f.
 - (b) Se Sinal $(\Delta)=(-,+,-,+,-,\dots)$, então $f(p_0)$ é um máximo local estrito de f.
 - (c) Se nenhuma das situações anteriores ocorrer, $p_{\scriptscriptstyle 0}$ é ponto de sela de f .
- 2) Se $\det Hf(p_0)=0$ nada se pode concluir.

Exercício 1:

- (1) Classifica os p $^{\mathrm{tos}}$ críticos da função $f(x,y,z)=xy+yz+z^2+x^3+y^2+5$, $(x,y,z)\in\mathbb{R}^3$.
- (2) Classifica os p^{tos}críticos da função $f(x,y)=3xy^2+x^3-3x, \ (x,y)\in\mathbb{R}^2$. Elimagem

Aula 15: Exercícios 3

- (1) Considera a função real de duas variáveis reais definida pela expressão $f(x,y):=2x^3+\frac{y^2}{2}-y.$
 - (a) Determina e classifica os pontos críticos de f.
 - (b) Justifica a existência de extremos absolutos de f restrita ao conjunto definido pelas desigualdades $y-x^2 \geq -1$ e $y+x^2 \leq 1$. Calcula-os, assim como os respetivos extremantes absolutos, indicando também quais são maximizantes e quais são minimizantes.

Aula 15: Exercícios 4 (folha 1.5)

- 1. Determine e classifique os pontos críticos das seguintes funções:
 - (a) $f(x,y) = 3xy^2 + x^3 3x$;
 - (j) $f(x,y,z) = x^2 + 5y^2 + 2z^2 + 4xy 2x 4y 8z + 2$.
- 2. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = x^3 - 3xy + y^3.$$

- (a) Determine os extremos locais da função f.
- (b) O que pode afirmar sobre os extremos absolutos de f? Justifique.
- 3. Mostre que (1,1) é minimizante local de $f(x,y)=x^2+xy+y^2+\frac{3}{x}+\frac{3}{y}+5$.
- 5. Mostre que $(\frac{1}{4}, \frac{1}{4})$ é maximizante local de $f(x, y) = x + 2y 2xy x^2 3y^2$.
- 6. Mostre que a função $f(x,y)=2(y^3+x^2+xy)$ tem um mínimo local em $\left(-\frac{1}{12},\frac{1}{6}\right)$.

Formulário Derivadas

$$(u^{p})' = p u^{p-1} u' \qquad (\arcsin(u))' = \frac{u'}{\sqrt{1 - u^{2}}}$$

$$(\ln u)' = \frac{u'}{u} \qquad (\arctan(u))' = \frac{u'}{1 + u^{2}}$$

$$(\cos u)' = -u' \sin u \qquad (\sec u)' = u' \sec(u) \operatorname{tg}(u)$$

$$(\sin u)' = u' \cos u \qquad (\csc u)' = -u' \csc(u) \cot(u)$$

$$(\operatorname{tg} u)' = u' \sec^{2} u \qquad (e^{u})' = u' e^{u}$$

$$(\cot u)' = -u' \csc^{2} u \qquad (a^{u})' = \frac{u' a^{u}}{\ln a}, \ a \in \mathbb{R}^{+} \setminus \{1\}$$