Lecture 17 Signals and Systems (ELL205)

By Dr. Abhishek Dixit

Dept. of Electrical Engineering

IIT Delhi

Analysis and Synthesis equation

$$x(t) = x(t+T) = \sum_{k} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

List of Properties

1.
$$x(t) \leftrightarrow a_k$$

2.
$$x(-t) \leftrightarrow a_{-k}$$

3.
$$\overline{x(t)} \leftrightarrow \overline{a_{-k}}$$

4.
$$x(t-t_o) \leftrightarrow e^{-jk\omega_o t_o} a_k$$

Signal	Coefficients
Real & Even	Real & Even
Real & Odd	Imaginary & Odd
Imaginary & Even	Imaginary & Even
Imaginary & Odd	Real & Odd
Shifted signal	Only phase changes

$$x_N(t) \triangleq \sum_{k=-N}^N a_k e^{jk\omega_o t}$$

$$e_N(t) \triangleq x(t) - x_N(t)$$

Does $e_N(t)$ decrease as N increases?

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=0}^{0} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-1}^{1} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-3}^{3} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-5}^{5} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-7}^{7} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-9}^{9} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-19}^{19} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-29}^{29} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-49}^{49} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-79}^{79} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-199}^{199} \frac{1}{j\pi k} e^{jk2\pi t}$$

Albert Michelson horror

Albert Michelson horror

Partial sums of Fourier series of discontinuous functions "ring" near discontinuities: Gibb's phenomenon. 1

Energy in Error

• $x(\tau)$ square integrable,

If
$$\int_T |x(\tau)|^2 d\tau < \infty$$
 Then $\int_T |e_N(t)|^2 dt \to 0$ as $N \to \infty$

Dirichlet conditions

If
$$\int_T |x(\tau)| d\tau < \infty$$
 and $x(t)$ is "well-behaved"
Then $e_N(t) \to 0$ as $N \to \infty$ except at discontinuities

• $x(\tau)$ square integrable,

If
$$\int_T |x(\tau)|^2 d\tau < \infty$$
 Then $\int_T |e_N(t)|^2 dt \to 0$ as $N \to \infty$

$$\lim_{N \to \infty} \left(\int_{T} \left| x(t) - \sum_{k=-N}^{N} a_{k} e^{jk\omega_{o}t} \right|^{2} dt \right) \to 0$$

$$x(t) \triangleq l.i.m \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

1. Linearity

If
$$x(t) \leftrightarrow a_k \& y(t) \leftrightarrow b_k$$
 then

$$\alpha x(t) + \beta y(t) \leftrightarrow \alpha a_k + \beta b_k$$

1. Linearity

If
$$x(t) \leftrightarrow a_k \& y(t) \leftrightarrow b_k$$
 then

$$\alpha x(t) + \beta y(t) \leftrightarrow \alpha a_k + \beta b_k$$

Proof:

$$c_k = \frac{1}{T} \int_T (\alpha x(t) + \beta y(t)) e^{-jk\omega_0 t} dt$$

$$c_k = \frac{\alpha}{T} \int_T x(t) e^{-jk\omega_o t} dt + \frac{\beta}{T} \int_T y(t) e^{-jk\omega_o t} dt \qquad c_k = \alpha a_k + \beta b_k$$

2. Time-scaling

If
$$x(t) \leftrightarrow a_k$$
 then $x(\alpha t) \leftrightarrow a_k$

2. Time-scaling

If
$$x(t) \leftrightarrow a_k$$
 then $x(\alpha t) \leftrightarrow a_k$

Proof:

Starting with def.
$$b_k = \frac{\alpha}{T} \int_{T/\alpha} x(\alpha t) e^{-jk\alpha\omega_o t} dt$$

Substituting,
$$\alpha t = \lambda$$

we get,
$$b_k = \frac{1}{T} \int_T x(\lambda) e^{-jk\omega_o \lambda} d\lambda$$

3. Flipping

4. Differentiation

If
$$x(t) \leftrightarrow a_k$$
 then $\frac{dx(t)}{dt} \leftrightarrow jk\omega_o a_k$

4. Differentiation

If
$$x(t) \leftrightarrow a_k$$
 then $\frac{dx(t)}{dt} \leftrightarrow jk\omega_o a_k$

Proof:

$$x(t) = \sum_{k} a_k e^{jk\omega_0 t}$$

$$\frac{dx(t)}{dt} = \sum_{k} jk\omega_{o} a_{k} e^{jk\omega_{o}t}$$

 a_k

 $b_k = ?$

 a_k

$$b_k = ?$$

$$b_k = a_k$$
 for $k \neq 0$

$$b_o = 0$$

$$x(t) = m + \widetilde{x(t)}$$

 $\widetilde{x(t)}$ has mean value 0

$$a_0 = \frac{1}{T} \int_T x(t)dt = \frac{1}{T} \int_T mdt + \frac{1}{T} \int_T \widetilde{x(t)}dt = m$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{m}{T} \int_T e^{-jk\omega_0 t} dt + \frac{1}{T} \int_T \widetilde{x(t)} e^{-jk\omega_0 t} dt = 0 + b_k \quad \text{For } k \neq 0$$

How many of the following terms are correct?

1) Odd harmonics decreases as k^2	2) Even harmonics are zero
	4) It requires a fewer terms for signal construction

Step 1

$$a_k = \frac{\sin(\frac{k\pi}{2})}{k\pi}$$

$$a_k = \frac{\sin\left(\frac{k\pi}{2}\right)}{k\pi} \qquad \text{for } k \neq 0$$

$$a_o = 0$$

Step 2

$$a_k = \frac{\sin\left(\frac{k\pi}{2}\right)}{k\pi}$$

$$a_o = 0$$

$$a_k = \frac{\sin\left(\frac{k\pi}{2}\right)e^{-jk\pi/2}}{k\pi} \quad a_0 = 0$$

$$a_k = \begin{cases} \frac{1}{jk\pi} & k \text{ odd} \\ 0 & k \text{ even} \end{cases}$$

Step 3

$$a_k = \begin{cases} \frac{1}{jk\pi} & k \text{ odd} \\ 0 & k \text{ even} \end{cases}$$

$$b_k = \begin{cases} \frac{-1}{2\pi^2 k^2} & k \text{ odd} \\ 0 & k \text{ even} \end{cases}$$

How many of the following terms are correct?

1) Odd harmonics decreases as k^2	2) Even harmonics are zero
, 0	4) It requires a fewer terms for signal construction

5. Integration

If
$$x(t) \leftrightarrow a_k$$
 then
$$\int_{-\infty}^{\tau} x(\tau) d\tau \leftrightarrow \frac{a_k}{jk\omega_o}$$

Caution: $\int_{-\infty}^{\iota} x(\tau) d\tau$ is periodic & finite only if $x(\tau)$ has zero DC value

6. Multiplication

If
$$x(t) \leftrightarrow a_k \& y(t) \leftrightarrow b_k$$
 then
$$x(t)y(t) \leftrightarrow \sum_{\lambda} a_{\lambda}b_{k-\lambda} = a_k * b_k$$

6. Multiplication

If
$$x(t) \leftrightarrow a_k \& y(t) \leftrightarrow b_k$$
 then
$$x(t)y(t) \leftrightarrow \sum_{\lambda} a_{\lambda}b_{k-\lambda} = a_k * b_k$$

Proof:

$$x(t)y(t) = \sum_{\lambda} a_{\lambda}e^{j\lambda\omega_{o}t} \sum_{l} b_{l}e^{jl\omega_{o}t} = \sum_{k} c_{k}e^{jk\omega_{o}t}$$

$$\lambda\omega_{o} + (k - \lambda)\omega_{o} = k\omega_{o}$$

$$a_{\lambda} \times b_{k-\lambda} + \cdots = c_{k}$$

$$a_{\lambda} \times b_{k-\lambda} + a_{\lambda-1} \times b_{k-\lambda+1} + \cdots = c_{k}$$

$$\sum_{\lambda} a_{\lambda} \times b_{k-\lambda} = c_{k}$$

6. Multiplication

If
$$x(t) \leftrightarrow a_k \& y(t) \leftrightarrow b_k$$
 then
$$x(t)y(t) \leftrightarrow \sum_{\lambda} a_{\lambda}b_{k-\lambda} = a_k * b_k$$

Multiplication in time domain leads to convolution in frequency domain

7. Parseval's theorem

$$x(t) \leftrightarrow a_k$$

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k} |a_{k}|^{2}$$

One more issue

$$x(t) \leftrightarrow a_k$$
 $x(-t) \leftrightarrow a_{-k}$ If $x(t) = x(-t)$

$$\sum_{k} a_{k} e^{jk\omega_{o}t} = \sum_{k} a_{-k} e^{jk\omega_{o}t}$$

Can $\sum_k a_k e^{jk\omega_0 t} = \sum_k a_{-k} e^{jk\omega_0 t}$ without $a_k = a_{-k}$?