

Usage of the D6T-44L / D6T-8L Thermal sensor

--- Connection and Getting data ---

MDMK-12-0244

I/O pin

GND	ground
VCC	5V +/-10%
SDA	I2C(5V) Data line
SCL	I2C(5V) Clock line

Connecter [JST]

Contact parts	SSHL-002T-P0.2	
Housing parts	GHR-04V-S	

Electrical Connection 1

Case1: 5V MCU (Direct)

Case2: 3V MCU (5V tolerant I2C port)
Direct connect

Pull-up Resister:
Impedance value is decided by user.
(see I2C[100kHz] specification note.)
(Most case: About 3k to 10k ohm)

Electrical Connection 2

Case3: Using I2C converter

(no 5V tolerant port) (other LV I2C device is exist)

Case4: Software I2C using Bi-directional Open Drain ports

(MCU have no inside I2C module)

Note. Wait routine for Clock-Stretching is required to prepare by user.

Repeat Start Condition

Write (Lo) / Read (Hi)

Stop Condition

"W/R"

I2C port condition setting	Device Address	7bit : 0001_010b		
		8bit (with R/W bit)		
		Read : 15h,Write : 14h		
	Data bit width	8bit (MSB-first)		
	Clock Frequency	max 100kHz		
	Control for Clock-stretching	On (Auto waiting)		
Signal chart				
SDA S				
> PTAT Low Byte[7:0] XACK\ PTAT High Byte[15:8] XACK\ P0 Low Byte[7:0] XACK\ P0 High Byte[15:8] XACK\ PTAT Low Byte[7:0] PTAT High Byte[15:8] PTAT Hig				
/ PTAT Low Byte[7:0] XACK\ / PTAT High Byte[15:8] XACK\ / P0 Low Byte[7:0] XACK\ / P0 High Byte[15:8] XACK\				
>				
"S" : Start Condition	P7 Low Byte[7:0] XACK P7 Hign Byte[7:0]	ACK PEC data[7:0] NACK P		

P15 Low Byte[7:0]

::

P15 High Byte[7:0]

Case 8ch (D6T-8L)

PEC data[7:0]

Case 16ch (D6T-44L)

Example Getting the measurement value. (1/2)

```
// I2C communication functions
extern void I2C_start(); // Send Start condition extern void I2C_repeatstart(); // Send Repeat Start condition
extern void
             12C stop();
                            // Send Stop condition
extern void I2C send1(char addr8, char cmd); // Send 1 byte
extern void 12C getx(char addr8 . char buff[] . int length ); // Get n bytes
extern int D6T_checkPEC( char buf , int pPEC );
// Global var.
extern char readbuff[35];
extern int tPTAT;
extern int tP[16];
extern int tPEC;
int D6T getvalue()
   12C start();
                                                                                   Case 16ch (D6T-44L)
   12C \text{ send1}(0x14 . 0x4C); // 14h = \{ 0Ah(Addr7) : Write(0b) \}
   12C repeatstart();
   12C_{getx}(0x15, readbuff, 35); // 15h = \{ OAh(Addr7) : Read(1b) \}, 35 = 2*(1+16)+1
   12C stop();
                                                            12C_{getx}(0x15, readbuff, 19); // 19 = 2*(1+8)+1
   If(!D6T checkPEC(readbuff, 34)) {
                                                            12C stop();
      return -1; // error
                                                            If(!D6T checkPEC(readbuff, 18)) {
                                                               return -1; // error
                                                                                      Case 8ch (D6T-8L)
   tPTAT = 256*readbuff[1] + readbuff[0];
   tP[0] = 256*readbuff[3] + readbuff[2];
   tP[1] = 256*readbuff[5] + readbuff[4];
   tP[2] = 256*readbuff[7] + readbuff[6];
   tP[3] = 256*readbuff[9] + readbuff[8];
   tP[4] = 256*readbuff[11] + readbuff[10];
   tP[5] = 256*readbuff[13] + readbuff[12];
   tP[6] = 256*readbuff[15] + readbuff[14];
```


Example Getting the measurement value. (2/2)

```
tP[7] = 256*readbuff[17] + readbuff[16];
                                                            tP[7] = 256 * readbuff[17] + readbuff[16];
  tP[8] = 256*readbuff[19] + readbuff[18];
                                                            tPEC = readbuff[18];
  tP[9] = 256*readbuff[21] + readbuff[20];
                                                            return 1;
  tP[10] = 256*readbuff[23] + readbuff[22];
                                                                                Case 8ch (D6T-8L)
  tP[11] = 256*readbuff[25] + readbuff[24];
  tP[12] = 256*readbuff[27] + readbuff[26];
  tP[13] = 256*readbuff[29] + readbuff[28];
                                                                                Case 16ch (D6T-44L)
  tP[14] = 256*readbuff[31] + readbuff[30];
  tP[15] = 256*readbuff[33] + readbuff[32];
  tPEC = readbuff[34];
   return 1:
measure()
  n = 0:
  do {
     status = D6T_getvalue();
     n++;
  }while(status < 0 && n < LOOPLIMIT);</pre>
   If (status < 0) {
     // error operation.
   tPTAT, tP[0], tP[1], tP[2], tP[3], tP[4], tP[5], tP[6], tP[7],
     tP[8], tP[9], tP[10], tP[11], tP[12], tP[13], tP[14], tP[15], tPEC);
Output Example
                                                                              Case 16ch (D6T-44L)
223 . 224. 224. 273. 335. 239. 221. 240. 297 . 264. 232. 221. 254. 299. 258. 229. 233 . 80
223 , 271, 261, 265, 304, 284, 270, 264, 274 , 302, 285, 271, 260, 319, 304, 286, 269 , 193
```

PTAT, 16 data, PEC

223 , 296, 273, 285, 311, 306, 291, 281, 301 , 311, 310, 293, 296, 312, 322, 311, 302 , 83

Example PEC check routine

Using PEC value, user can check data validity. (see SMBus specification).

```
unsigned char calc_crc(unsigned char data)
   int index:
  unsigned char temp;
   for (index=0; index<8; index++) {</pre>
      temp = data;
      data <<= 1:
      if (temp \& 0x80) data = 0x07;
   return data:
int D6T_checkPEC( char buf , int pPEC );
   unsigned char crc;
   int i:
  crc = calc crc(0x14);
   crc = calc crc( 0x4C ^ crc );
   crc = calc crc(0x15 ^ crc);
   for (i=0; i<pPEC; i++) {
      crc = calc crc( readbuff[i] ^ crc );
   return (crc == readbuff[pPEC]);
```

```
int D6T_checkPEC( char buf , int pPEC );
{
    unsigned char crc;
    int i;

    crc = calc_crc( 0x15 );
    for(i=0;i<pPEC;i++) {
        crc = calc_crc( readbuff[i] ^ crc );
    }
    return (crc == readbuff[pPEC]);
}</pre>
```

Case A: Repeat Start Condition

Case B: Start Condition (after stopped)

<u>Example</u> Detect routine of wait status (Clock-stretching) For Software-I2C using Bidirectional OpenDrain ports

Wait request from Slave(Sensor) to Master(MCU).

	VVC	
Master	Slave (Sensor)	
a) SCL drive to Lo for Ack.	Checking SCL status.(Lo) b) SCL drive to Lo for Wait.	
c) SCL output change to Hi-Z. SCL I/O mode change to Input	Wait	
d) Checking SCL status.(Hi)	Wait finish	
Checking f) Finish Detected.	e) SCL output change to Hi-Z.	
SCL I/O mode change to Output g) Next operation.	a) c) e	
g) Nont operation.		

Bi-directional OpenDrain ports

Appendix

<u>Appendix</u>

Connection to PC via USB using UM232H (Future Technology Devices International Ltd)

I2C device control TEST using UM232H(MPSSE mode)

UM232H (FTDI evaluation board product. http://www.ftdichip.com/)

Connection

For reference

Example

Source code

```
// Using ftd2xx.h , ftd2xx.lib
                FT Open, FT Close, FT SetBitMode, FT Write, FT Read, FT CreateDeviceInfoList,
FT GetDeviceInfoList
 // MPSSE commands for I2C communication.
char FT P0[] = \{0x80, 0x00, 0x03\};
char FT_P1[] = \{ 0x8A, 0x85, 0x97, 0x8D, 0x80, 0x03, 0x03, 0x86, 0x96, 0 \};
char FT ST[] = \{0x80, 0x03, 0x03, 0x80, 0x03, 0x03, 0x80, 0x03, 0x03, 0x80, 0x03, 0x80, 0x03, 0x80, 0x01, 0x03, 0x80, 0x80, 0x03, 0x80, 
                                                           0x80, 0x01, 0x03, 0x80, 0x01, 0x03, 0x80, 0x01, 0x03, 0x80, 0x01, 0x03, 0x80, 0x00, 0x03 };
char FT_ED[] = \{ 0x80, 0x01, 0x03, 0x80, 0x01, 0x03, 0x80, 0x01, 0x03, 0x80, 0x01, 0x03, 0x80, 0x80, 0x03, 0x80, 0x80,
char FT WD[] = { 0x11, 0x00, 0x00, 0x00, 0x80, 0x00, 0x01, 0x22, 0x00, 0x87, 0x80, 0x00, 0x03 };
char FT RD[] = { 0x80, 0x00, 0x01, 0x20, 0x00, 0x00, 0x80, 0x00, 0x03, 0x22, 0x00, 0x87 };
void MPSSE_init(int chMPSSE)
         FT_Open (chMPSSE, &ftHandle);
         FT SetBitMode (ftHandle, 0, 2);
         FT Write (ftHandle, FT P1, sizeof (FT P1), & Itemp);
 void D6T measure (unsigned char data, int length)
          DWORD Itemp;
          Int I;
          FT Write (ftHandle, FT ST, sizeof (FT ST), & Itemp);
          FT Write (ftHandle, FT PO, sizeof (FT PO), & Itemp);
         FT_WD[3] = 0x14;
         FT_Write(ftHandle, FT_WD, sizeof(FT_WD), & Itemp);
         FT Read(ftHandle, bufr, 1, & Itemp);
          FT Write (ftHandle, FT PO, sizeof (FT PO), & Itemp);
         FT WD[3] = 0x4C;
         FT Write (ftHandle, FT WD, sizeof (FT WD), & Itemp);
         FT_Read(ftHandle, bufr, 1, & Itemp);
          FT_Write(ftHandle, FT_PO, sizeof(FT_PO), &ltemp);
          FT Write (ftHandle, FT ST, sizeof (FT ST), & Itemp);
          FT_Write(ftHandle, FT_PO, sizeof(FT_PO), &ltemp);
          FT WD[3] = 0x15;
         FT_Write(ftHandle, FT_WD, sizeof(FT_WD), &Itemp);
         FT Read(ftHandle, bufr. 1, & Itemp);
         FT_Write(ftHandle, FT_P0, sizeof(FT_P0), & Itemp);
         for (i=0; i<length; i++) {
                    FT_Write(ftHandle, FT_RD, sizeof(FT_RD), & Itemp);
                    FT_Read(ftHandle, bufr, 2, & Itemp);
                   FT Write (ftHandle, FT PO, sizeof (FT PO), & Itemp);
                    *data++ = (char)bufr[0];
          FT Write (ftHandle, FT ED, sizeof (FT ED), & Itemp);
```

