Lecture 8

Cezar Ionescu 06/07/2019

Administrative

- Homework from 29/06/2019 due now!
- Please complete and hand in the declarations of authorship.

Questions?

Solution to homework from lecture 7

```
V_1(V_{11}, V_{21}) = f(X_1 * V_{11} + X_2 * V_{21}) = -2
y_2(v_{11}, v_{21}) = f(x_1*v_{12} + x_2*v_{22}) = 2
O(W_1, W_2, y_1, y_2) = f(y_1*W_1 + y_2*W_2) = 2
E(W_1, W_2, V_{11}, ...) = (t - 0)^2
\partial E / \partial V_{11} = E'(0) * \partial O / \partial V_{11}
                 = 2*(t - 0)*(-1) * 0 0 / 0 V_{11}
                 = 2*(-2)*(-1)*f'(z)*\partial q / \partial v_{11}
                 = 4*1*\partial (y_1*w_1 + y_2*w_2) / \partial v_{11}
                 = 4 * \partial (y_1*w_1 + y_2*w_2) / \partial y_1 * \partial y_1 / \partial v_{11}
                 = 4 * W_1 * f'(z) * \partial (X_1*V_{11} + X_2*V_{21}) / \partial V_{11}
                 = 4 * x_1 = -4
```

A maze

Value map

-4	-3	-2	-1	0	-1
-5		-1	0	1	0
-6		-2			-1
-7		-3	-4	-3	-2
-8	- 9			-4	-3
-9	-8	-7	-6	- 5	-4

		-1	0	-1
	-1	0	1	0
				-1

	-2	-1	0	-1
	-1	0	1	0
	-2			-1
				-2

-3	-2	-1	0	-1
	-1	0	1	0
	-2			-1
	-3		-3	-2
				-3

-4	-3	-2	-1	0	-1
		-1	0	1	0
		-2			-1
		-3	-4	-3	-2
				-4	-3
					-4

-4	-3	-2	-1	0	-1
-5		-1	0	1	0
		-2			-1
		-3	-4	-3	-2
				-4	-3
				- 5	-4

-4	-3	-2	-1	0	-1
- 5		-1	0	1	0
-6		-2			-1
		-3	-4	-3	-2
				-4	-3
			-6	- 5	-4

-4	-3	-2	-1	0	-1
-5		-1	0	1	0
-6		-2			-1
-7		-3	-4	-3	-2
				-4	-3
		-7	-6	- 5	-4

-4	-3	-2	-1	0	-1
-5		-1	0	1	0
-6		-2			-1
-7		-3	-4	-3	-2
-8				-4	-3
	-8	-7	-6	-5	-4

-4	-3	-2	-1	0	-1
-5		-1	0	1	0
-6		-2			-1
-7		-3	-4	-3	-2
-8	- 9			-4	-3
-9	-8	-7	-6	- 5	-4

Optimal policy

If we have the optimal value map, defining the optimal policy is easy: Choose the action that results in the greatest sum of reward now and value in the next state.

Choose pol(s) that maximises

```
Reward(s, a) + Value(sys(s, a))
```

where sys: (State, Action) ~> State is the function that tells us what happens depending on the current state and chosen action.

Review

Ingredients:

```
sys : (State, Action) -> State rew : (State, Action) -> \mathbb{R} pol : State -> Action so \in State -- given Problem: Find pol that maximises \Sigma_0^n rew(si, pol(si)), where s_{i+1} = sys(s_i, a_i)
```

Value function

```
\label{eq:Valine} \begin{array}{l} \mbox{Val} : \mathbb{N} \mbox{ -> State } \mbox{->} \mathbb{R} \\ \\ \mbox{Val}_{\mathtt{i}}(\mathtt{s}) = \mbox{max}_{\mathtt{pol}} \ \Sigma_{\mathtt{i}^n} \ \mbox{rew}(\mathtt{s}_{\mathtt{i}}, \mbox{ pol}(\mathtt{s}_{\mathtt{i}})) \\ \\ \mbox{Note:} \end{array}
```

 $Val_0(s_0)$ is the maximal value for the entire problem.

Bellman equation

```
If pol(s) = a^{opt} the optimal action in state s, then Val_i(s) = Rew(s, a^{opt}) + Val_{i+1}(sys(s, a^{opt}))
Therefore Val_i(s) = max_a (Rew(s, a) + Val_{i+1}(sys(s, a)))
This is called Bellman's equation.
```

Direct adaptive optimal control

Model of the problem

If we do not know the exact map of the maze, or the location of the goal, we cannot apply dynamic programming. We need an *adaptive method*. Alternatives:

- explore the maze and make a map of it, find the goal, and then apply dynamic programming (indirect method);
- learn the optimal value map directly! (*direct* method).

Reinforcement learning is *direct adaptive optimal control*.

Value iteration

Start with a randomly generated value map

Start with a randomly generated value map

0	0	0	0	0	0
0		0	0	0	0
0		0			0
0		0	0	0	0
0	0			0	0
0	0	0	0	0	0

Alternatives

0	0	0	0	0	0
0		0	0	0	0
0		0			0
0		0	0	0	0
0	0			0	0
0	0	0	0	0	0

Alternatives

Choose an action

Make a move

0	0	0	0	0	0
0		0	0	0	0
0		0			0
0		0	0	0	0
0	0			0	0
0	0	0	0	0	0

Changing the current value function

If we had the optimal value function, then

```
Val((3,6)) = Rew((3,6), \downarrow) + Val((3,5))
```

But we have

```
Val((3, 6)) = 0, Rew((3, 6), \downarrow) = -1, Val((3, 5)) = 0
```

Update rule

Idea from supervised learning:

```
Val((3,6)) \leftarrow Val((3,6)) + \\ \delta * (Rew((3,6), \downarrow) + Val((3,5)) - Val((3,6)))
Therefore (say \delta = 0.5)
Val(3,6) \leftarrow 0 + 0.5 * (-1 + 0 - 0) = -0.5
```

The new situation

0	0	-0.5	0	0	0
0		0	0	0	0
0		0			0
0		0	0	0	0
0	0			0	0
0	0	0	0	0	0

The new situation

Pick a new direction

0	0	-0.5	0	0	0
0		6	> 0	0	0
0		0			0
0		0	0	0	0
0	0			0	0
0	0	0	0	0	0

Move and update

0	0	-0.5	0	0	0
0		-0.5	0	0	0
0		0			0
0		0	0	0	0
0	0			0	0
0	0	0	0	0	0

And so on...

A good choice

0	0	-0.5	0	0	0
0		-0.5	0	→ 0	0
0		0			0
0		0	0	0	0
0	0			0	0
0	0	0	0	0	0

A good choice

0	0	-0.5	0	0	0
0		-0.5	0.5	0	0
0		0			0
0		0	0	0	0
0	0			0	0
0	0	0	0	0	0

The game goes on

0	0	-0.5	0	0	0
0		-0.5	0.5	0	0
0		0			0
0		0	0	0	0
0	0			0	0
0	0	0	0	0	0

Discount factors

In this setting, we maximise the sum of rewards. Problem: if the number of steps is large, the values become difficult to estimate (huge absolute value). Moreover, in many situations we need to operate with *infinite horizons*.

To deal with this problem, we introduce a discount factor: $0 < \beta < 1$ Instead of maximising

```
Rew(s_0, pol(s_0)) + Rew(s_1, pol(s_1)) + Rew(s_2, pol(s_2)) + ...
we maximise
Rew(s_0, pol(s_0)) + \beta*Rew(s_1, pol(s_1)) + \beta2*Rew(s_2, pol(s_2)) + ...
where s_{t+1} = sys(s_t, pol(s_t))
```

Value function

If we have an infinite horizon, the value function is *stationary*:

$$V_i(s) = \max_{pol} \Sigma_i^{\infty} \text{ rew(st, pol(st))} \text{ where}$$

 $s_i = s$
 $s_{t+1} = \text{sys(st, pol(st))}$

This is independent of i!

Bellman's equation

We choose pol(s) that maximises

```
Rew(s, a) + \beta * Val(sys(s, a))
```

Therefore

```
Val(s) = max_a (Rew(s, a) + \beta * Val(sys(s, a)))
```

Value iteration and function approximation

```
Val(s) = max_a (Rew(s, a) + \beta * Val(sys(s, a)))
```

Bellman's equation allows us to iteratively approximate the optimal value function.

The optimal value function Val is unique (but there might be many policy functions that realise it).

Value iteration

Problem: we require knowledge of the reward function.

We could use supervised learning to approximate the reward function.

But now we have two function approximations and an optimisation at every step!

Q-learning

Watkins' idea

The reward function only enters the picture when combined with Val, e.g.:

```
Val(s) = max_a (Rew(s, a) + \beta * Val(sys(s, a)))
```

Chris Watkins (1989): maybe it's simpler to learn the combination of Rew and Val!

```
Q(s, a) = Rew(s, a) + \beta * Val(sys(s, a))
```

Q-learning and Val

```
Q(s, a) = Rew(s, a) + \beta * Val(sys(s, a))
```

We have $Val(s) = max_a Q(s, a)$ therefore, knowing Q is sufficient for determining Val.

Q-learning and the optimal policy

```
Q(s, a) = Rew(s, a) + \beta * Val(sys(s, a))
```

The optimal policy is the one that maximises

Rew(s, a) +
$$\beta$$
 * Val(sys(s, a))

Therefore, the optimal action in a state s is the one that maximises the Q function:

```
a^{opt} = arg max_a Q(s, a)
```

Recursive equation for Q-learning

```
Q(s, a) = Rew(s, a) + \beta * Val(sys(s, a))
Val(s) = max_a \ Q(s, a)
Therefore
Q(s, a) = max_a \ (Rew(s, a) + \beta * max_x \ Q(sys(s, a), x))
We have a recursive equation for the Q function.
```


$$\begin{aligned} Q(s,\leftarrow) &= -10 \\ Q(s,\downarrow) &= -8 \\ Q(s,\rightarrow) &= -9 \end{aligned}$$

$$Q(s,\downarrow) = -8$$

$$\begin{array}{l} Q(s,\downarrow) = -8 \\ Rew(s,\downarrow) = -1 \end{array}$$

$$\begin{split} Q(s,\downarrow) &= -8 \\ Rew(s,\downarrow) &= -1 \\ Q(s',\leftarrow) &= -\infty \\ Q(s',\downarrow) &= -8 \\ Q(s',\rightarrow) &= -5 \\ Q(s',\uparrow) &= -10 \end{split}$$

$$\begin{split} Q(s,\downarrow) &= -8 \\ Rew(s,\downarrow) &= -7 \\ Val(s') &= \\ max(-\infty, -8, -5, -10) \\ Rew(s,\downarrow) + \beta Val(s') &= \\ -6 \end{split}$$

$$\begin{split} Q(s,\downarrow) &= -8 \\ Rew(s,\downarrow) + \beta Val(s') &= \\ -6 \\ Q(s,\downarrow) \leftarrow \\ -8 + \delta(-6 - (-8)) &= -6 \end{split}$$

Stochastic systems

We have assumed a deterministic system, but in most cases this is unrealistic. E.g., the maze environment could take us (with a small probability) in a different direction than we chose. In that case, we need to maximise the *expected value* of the sum of rewards. *Q*-learning can be applied to these cases almost without any change!

Conclusions

Reinforcement learning applications: games, RoboCup Soccer, self-driving cars, etc. See also discussion in Week 1 (robot-catching arm, self-driving car, barriers on emissions...) Reinforcement learning seems to make the most out of very little: is it the road to Artificial General Intelligence? Chris Watkins (http://www.cs.rhul.ac.uk/~chrisw/):

I have long felt the standard model of RL is deceptively attractive, but

I have long felt the standard model of RL is deceptively attractive, but limited.