Statistical learning theory

Joris LIMONIER

February 25, 2022

Contents

1	Inclass exercise January 12, 2022	1
-	1.1 Exercise 1	1
	1.2 Exercise 2	2
2	Inclass exercise January 21, 2022 2.1 Exercise 1	2 2
0		
3	Inclass exercise January 28, 2022	4
	3.1 Exercise 1	4
	3.1.1 Question 1	4
	3.1.2 Question 2	4
	3.1.3 Question 3	5
4	In-class exercise February 4, 2022	6
	4.1 Question 1	6
	4.2 Question 2	6
5	In-class exercise February 22, 2022	6
	5.1 Question 1	6
	5.2 Question 2	8
6	In class exercises February 25, 2022	9
	6.1 Question 1	9
	6.2 Question 2	9
	6.3 Question 3	10
	6.4 Exercise	11
1	Inclass exercise January 12, 2022	

Exercise 1 1.1

Show that

$$\mathbb{E}\left[\hat{\mathcal{R}}_S(h)\right] = \mathcal{R}_{D,f}(h) \tag{1}$$

$$\mathbb{E}\left[\hat{\mathcal{R}}_{S}(h)\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{h(x_{i})\neq y_{i}}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[\mathbf{1}_{h(x_{i})\neq y_{i}}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{P}\left(h(x_{i})\neq y_{i}\right)$$

$$= \frac{1}{n}n\mathbb{P}\left(h(x_{i})\neq y_{i}\right)$$

$$= \mathbb{P}\left(h(x_{i})\neq y_{i}\right)$$

$$= \mathbb{P}\left(h(x_{i})\neq f(x)\right)$$

$$= \mathcal{R}_{D,f}(h)$$

1.2 Exercise 2

We must prove that the variance of $\hat{\mathcal{R}}_S(h) \to 0$

$$Var\left[\hat{\mathcal{R}}_{S}(h)\right] = Var\left[\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{h(x_{i})\neq y_{i}}\right]$$
$$= Var\frac{1}{n^{2}}\left[\sum_{i=1}^{n}\mathbf{1}_{h(x_{i})\neq y_{i}}\right]$$

Let the Z_i be defined as follows:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{h(x_i) \neq f(x_i)} =: \frac{1}{n} \sum_{i=1}^{n} Z_i$$

(not finished, see lecture 1 slides)

2 Inclass exercise January 21, 2022

2.1 Exercise 1

Set $g(x) = \mathbb{P}(Y = 1 \mid X = x)$. We define the Bayes optimal predictor as:

$$f_{\mathcal{D}}(x) = \begin{cases} 1 & g(x) \ge 1/2\\ 0 & \text{otherwise} \end{cases}$$

Question 1. Let $h: \mathcal{X} \to \{0,1\}$ be a classifier. Show that

$$\mathbb{P}(h(X) \neq Y \mid X = x) = g(x) \cdot \mathbb{P}(h(X) = 0 \mid X = x)) + (1 - g(x)) \cdot \mathbb{P}(h(X) = 1 \mid X = x)$$

$$\begin{split} g(x) \cdot \mathbb{P}(h(X) &= 0 \mid X = x)) + (1 - g(x)) \cdot \mathbb{P}(h(X) = 1 \mid X = x) \\ &= \mathbb{P}(Y = 1 \mid X = x) \cdot \mathbb{P}(h(X) = 0 \mid X = x)) \\ &+ (1 - \mathbb{P}(Y = 1 \mid X = x)) \cdot \mathbb{P}(h(X) = 1 \mid X = x) \\ &= \mathbb{P}(Y = 1 \cap h(X) = 0 \mid X = x)) \\ &+ \mathbb{P}(h(X) = 1 \mid X = x) - \mathbb{P}(Y = 1 \cap h(X) = 1 \mid X = x) \\ &= \mathbb{P}(Y = 1 \cap h(X) = 0 \mid X = x)) + \mathbb{P}(Y = 0 \cap h(X) = 1 \mid X = x) \\ &= \mathbb{P}(h(X) \neq Y \mid X = x) \end{split}$$

Question 2. Deduce that

$$\mathbb{P}(f_D(X) \neq Y \mid X = x) = \min(g(x), 1 - g(x))$$

$$\mathbb{P}(f_D(X) \neq Y \mid X = x)$$

$$= \begin{cases} \mathbb{P}(1 \neq Y \mid X = x), & g(x) \ge 1/2 \\ \mathbb{P}(0 \neq Y \mid X = x), & g(x) < 1/2 \end{cases}$$

$$= \begin{cases} 1 - g(x), & g(x) \ge 1 - g(x) \\ g(x), & g(x) < 1 - g(x) \end{cases}$$

$$= \min(g(x), 1 - g(x))$$

Question 3. Show that

$$\mathbb{P}(h(X) \neq Y \mid X = x) \ge \mathbb{P}(f_D(x) \neq Y \mid X = x)$$

$$\mathbb{P}(f_D(x) \neq Y \mid X = x) = \min(g(x), 1 - g(x))
= \min(g(x), 1 - g(x))
\cdot (\mathbb{P}(h(X) = 0 \mid X = x) + \mathbb{P}(h(X) = 1 \mid X = x))
\leq g(x) \cdot (\mathbb{P}(h(X) = 0 \mid X = x)
+ (1 - g(x)) \cdot \mathbb{P}(h(X) = 1 \mid X = x))
= \mathbb{P}(h(X) \neq Y \mid X = x)$$

Question 4. Prove that

$$\mathcal{R}_{\mathcal{D}}(f_{\mathcal{D}}) \leq \mathcal{R}_{\mathcal{D}}(h)$$

$$\mathbb{P}(f_D(x) \neq Y \mid X = x) \leq \mathbb{P}(h(X) \neq Y \mid X = x)$$

$$\Longrightarrow \mathbb{E}\left[\mathbb{P}(f_D(x) \neq Y \mid X = x)\right] \leq \mathbb{E}\left[\mathbb{P}(h(X) \neq Y \mid X = x)\right]$$

$$\Longrightarrow \mathcal{R}_D(f_D) \leq \mathcal{R}_D(h)$$

3 Inclass exercise January 28, 2022

3.1 Exercise 1

Let Z be a random variable with a second moment such that $\mathbb{E}[Z] = \mu$ and $\mathrm{Var}(Z) = \sigma^2$.

3.1.1 Question 1

Let $g: t \mapsto \mathbb{E}[(Z-t)^2]$. Show that g is minimum at $t = \mu$.

$$\begin{split} g(t) &= \mathbb{E} \left[(Z-t)^2 \right] \\ &= \mathbb{E} \left[Z^2 + t^2 - 2tZ \right] \\ &= \mathbb{E} \left[Z^2 \right] + \mathbb{E} \left[t^2 \right] - \mathbb{E} \left[2tZ \right] \\ &= \mathbb{E} \left[Z^2 \right] + t^2 - 2t\mathbb{E} \left[Z \right] \\ &= \sigma^2 - \mu^2 + t^2 - 2t\mu \\ &= \sigma^2 - \mu^2 + t^2 - 2t\mu \end{split}$$

We differentiate with respect to t:

$$\begin{split} \frac{\partial}{\partial t}g(t) &= 0\\ \Longrightarrow \frac{\partial}{\partial t}\left[\sigma^2 - \mu^2 + t^2 - 2t\mu\right] &= 0\\ \Longrightarrow 2t - 2\mu &= 0\\ \Longrightarrow t &= \mu \end{split}$$

3.1.2 Question 2

Assume $Z \in [a, b]$ almost surely. Use the previous question to show that

$$\operatorname{Var}(Z) \le \frac{(b-a)^2}{4}$$

$$g(\mu) \leq g(t)$$

$$\Rightarrow \operatorname{Var}(Z) \leq \mathbb{E}\left[(Z-t)^2\right]$$

$$\Rightarrow \operatorname{Var}(Z) \leq \frac{1}{4}\mathbb{E}\left[(2Z-a-b)^2\right]$$

$$\Rightarrow \operatorname{Var}(Z) \leq \frac{1}{4}\mathbb{E}\left[((Z-a)+(Z-b))^2\right]$$

$$\Rightarrow \operatorname{Var}(Z) \leq \frac{1}{4}\mathbb{E}\left[((Z-a)-(b-Z))^2\right]$$

$$\Rightarrow \operatorname{Var}(Z) \leq \frac{1}{4}\mathbb{E}\left[(|Z-a|-|b-Z|)^2\right]$$

$$\Rightarrow \operatorname{Var}(Z) \leq \frac{1}{4}\mathbb{E}\left[|(Z-a)-(Z-b)|^2\right]$$

$$\Rightarrow \operatorname{Var}(Z) \leq \frac{1}{4}\mathbb{E}\left[|(D-a)^2\right]$$

$$\Rightarrow \operatorname{Var}(Z) \leq \frac{1}{4}\mathbb{E}\left[|(D-a)^2\right]$$

$$\Rightarrow \operatorname{Var}(Z) \leq \frac{1}{4}\mathbb{E}\left[|(D-a)^2\right]$$

3.1.3 Question 3

Let $Z_1, \ldots, Z_n \sim Z$ be i.i.d. Use Chebyshev inequality to obtain a concentration inequality for

$$Z := \frac{1}{n} \sum_{i=1}^{n} Z_i$$

Chebyshev inequality:

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge a) \le \frac{\operatorname{Var} Z}{a^2} \tag{2}$$

$$\operatorname{Var}(Z) = \operatorname{Var}\left(\frac{1}{n^2} \sum_{i=1}^n Z_i\right)$$

$$= \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(Z_i) \qquad (Z_i \text{'s independent})$$

$$\leq \frac{1}{n^2} \sum_{i=1}^n \frac{(b-a)^2}{4}$$

$$\leq \frac{(b-a)^2}{4n}$$

Then we apply (2):

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge \varepsilon) \le \frac{\operatorname{Var} Z}{\varepsilon^2}$$

$$\Longrightarrow \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^n Z_i - \mu\right| \ge \varepsilon\right) \le \frac{(b-a)^2}{4n\varepsilon^2}$$

4 In-class exercise February 4, 2022

4.1 Question 1

We define our loss as:

$$\ell(y, y') = |y - y'|$$

Show:

$$\forall c \in \mathbb{R}, \begin{cases} |c| = \min_{a \ge 0} a \\ s.t. & a \ge c \\ a \ge -c \end{cases}$$

A function study of $x \mapsto |x|$ gives the result.

4.2 Question 2

ERM consists in finding the following quantity:

$$\min_{w \in \mathbb{R}} \mathcal{R}_S(w) = \min_{w \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n |\langle w_i x_i \rangle - y_i|$$

5 In-class exercise February 22, 2022

5.1 Question 1

Show that ERM with the logistic loss is equivalent to minimizing

$$F(w) = \sum_{i=1}^{n} \log \left(1 + \exp\left(-\tilde{y}_i \langle w, x_i \rangle\right)\right)$$

with $\tilde{y}_i = \text{sign}(y_i - 0.5)$. Deduce that $\hat{\mathcal{R}}$ is a convex function of w. We have:

$$\ell(y, y_i) = \begin{cases} -\log(1 - \hat{y}) & y = 0 \\ -\log(\hat{y}) & y = 1 \end{cases}$$

$$= \begin{cases} -\log\left(1 - \frac{1}{1 + e^{-w^T x_i}}\right) & y = 0 \\ -\log\left(\frac{1}{1 + e^{-w^T x_i}}\right) & y = 1 \end{cases}$$

$$= \begin{cases} -\log\left(\frac{e^{-w^T x_i}}{1 + e^{-w^T x_i}}\right) & y = 0 \\ -\log\left(\frac{1}{1 + e^{-w^T x_i}}\right) & y = 1 \end{cases}$$

$$= \begin{cases} \log\left(\frac{1 + e^{-w^T x_i}}{e^{-w^T x_i}}\right) & y = 0 \\ \log\left(1 + e^{-w^T x_i}\right) & y = 1 \end{cases}$$

$$= \begin{cases} \log\left(1 + \frac{1}{e^{-w^T x_i}}\right) & y = 0 \\ \log\left(1 + e^{-w^T x_i}\right) & y = 1 \end{cases}$$

$$= \begin{cases} \log\left(1 + e^{w^T x_i}\right) & y = 0 \\ \log\left(1 + e^{-w^T x_i}\right) & y = 1 \end{cases}$$

$$= \log\left(1 + e^{-y_i^T w^T x_i}\right)$$

$$= \log\left(1 + e^{-y_i^T w^T x_i}\right)$$

$$= \log\left(1 + e^{-y_i^T w^T x_i}\right)$$

$$\frac{\partial^{2}}{\partial w^{2}} \log \left(1 + e^{(-1)^{y_{i}} w^{T} x_{i}} \right) \\
= \frac{\partial}{\partial w} \frac{-y_{i} x_{i} e^{-\tilde{y_{i}} w^{T} x_{i}}}{1 + e^{-\tilde{y_{i}} w^{T} x_{i}}} \\
= \frac{(y_{i} x_{i})^{2} e^{-\tilde{y_{i}} w^{T} x_{i}} (1 + e^{-\tilde{y_{i}} w^{T} x_{i}}) - (-y_{i} x_{i} e^{-\tilde{y_{i}} w^{T} x_{i}})^{2}}{(1 + e^{-\tilde{y_{i}} w^{T} x_{i}})^{2}} \\
= \frac{x_{i}^{2} e^{-\tilde{y_{i}} w^{T} x_{i}} (1 + e^{-\tilde{y_{i}} w^{T} x_{i}}) - x_{i}^{2} e^{-2\tilde{y_{i}} w^{T} x_{i}}}{(1 + e^{-\tilde{y_{i}} w^{T} x_{i}})^{2}} \\
= \frac{x_{i}^{2} e^{-\tilde{y_{i}} w^{T} x_{i}}}{(1 + e^{-\tilde{y_{i}} w^{T} x_{i}})^{2}} \\
\geq 0$$

5.2 Question 2

Compute the gradient of $\hat{\mathcal{R}}$ with respect to w. Hint: show that $\phi'(z) = \phi(z)(1 - \phi(z))$

$$\frac{d}{dz}\phi(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= -\frac{-e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1 - 1 + e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} \frac{-1 + e^{-z}}{1 + e^{-z}}$$

$$= \frac{1}{1 + e^{-z}} \frac{e^{-z}}{1 + e^{-z}}$$

$$= \frac{1}{1 + e^{-z}} \frac{1 + e^{-z} - 1}{1 + e^{-z}}$$

$$= \phi(z)(1 - \phi(z))$$

$$\hat{\mathcal{R}}(w) = \sum_{i=1}^{n} \ell(y_i, \hat{y}_i)$$

$$= \sum_{i=1}^{n} -(1 - y) \log (1 - \hat{y}_i) - y_i \log \hat{y}_i$$

$$= \sum_{i=1}^{n} -(1 - y) \log (1 - \phi(w^T x_i)) - y_i \log \phi(w^T x_i)$$

For some $1 \le j \le n$:

$$\frac{\partial}{\partial w_i} \ell\left(y, \hat{y}\right) = \frac{\partial}{\partial w_i} - (1 - y) \log\left(1 - \phi(w^T x_i)\right) - y_i \log\phi(w^T x_i)$$

Final result:

$$\hat{\mathcal{R}} = \sum_{i=1}^{n} \left(\phi(w^T x_i) - y_i \right) x_{ij}$$

6 In class exercises February 25, 2022

6.1 Question 1

Prove that the following function is a kernel:

$$k(x,y) = 2^{x+y}$$

Symmetry Trivial

Positive definiteness

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j 2^{x_i + x_j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j 2^{x_i} 2^{x_j}$$

$$= \sum_{i=1}^{n} c_i 2^{x_i} \sum_{j=1}^{n} c_j 2^{x_j}$$

$$= \left[\sum_{i=1}^{n} c_i 2^{x_i} \right]^2$$

$$> 0$$

6.2 Question 2

Prove that the following function is a kernel:

$$k(x,y) = (x^T y)^2$$

Symmetry Trivial

Positive definiteness

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}k(x_{i}, x_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}(x_{i}^{T}x_{j})^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}(x_{i}^{T}x_{j})(x_{i}^{T}x_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}(x_{j}^{T}x_{i})(x_{i}^{T}x_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j} \operatorname{tr}(x_{j}^{T}x_{i}x_{i}^{T}x_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j} \operatorname{tr}(x_{i}x_{i}^{T}x_{j}x_{j}^{T})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}\langle x_{i}x_{i}^{T}, x_{j}x_{j}^{T}\rangle$$

$$= \sum_{i=1}^{n} c_{i}x_{i}x_{i}^{T} \sum_{j=1}^{n} c_{j}x_{j}x_{j}^{T}$$

$$= \left[\sum_{i=1}^{n} c_{i}x_{i}x_{i}^{T}\right]^{2}$$

$$\geq 0$$

6.3 Question 3

Prove that the following function is a kernel:

$$k(x,y) = \cos(x-y)$$

Symmetry Trivial

Positive definiteness

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \cos(x_i - x_j)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \left[\cos(x_i)\cos(x_j) + \sin(x_i)\sin(x_j)\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \cos(x_i)\cos(x_j) + \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \sin(x_i)\sin(x_j)$$

$$= \left[\sum_{i=1}^{n} c_i \cos(x_i)\right]^2 + \left[\sum_{i=1}^{n} c_i \sin(x_i)\right]^2$$

$$> 0$$

6.4 Exercise

Show that the Gaussian kernel, which is given by:

$$k(x,y) := \exp\left(-\frac{\|x-y\|^2}{2\nu^2}\right)$$

is actually a kernel.

We have that:

$$\exp\left(-\frac{\|x-y\|^2}{2\nu^2}\right) = \lim_{n \to \infty} \sum_{p=1}^n \frac{1}{p!} \left(\frac{-\|x-y\|^2}{2\nu^2}\right)^p$$

$$\|x-y\|^2 = (x-y)^T (x-y)$$

$$\implies \|x-y\|^2 = x^T x - x^T y - y^T x + y^T y$$

$$\implies \|x-y\|^2 = \|x\|^2 - 2x^T y + \|y\|^2$$

$$\implies -\|x-y\|^2 = \underbrace{2x^T y}_{\text{kernel}} - \|x\|^2 - \|y\|^2$$

Let us show that $\exp\left(-\|x\|^2 - \|y\|^2\right)$ is a kernel:

$$\exp(-\|x\|^2 - \|y\|^2) = \exp(-\|x\|^2) \exp(-\|y\|^2)$$
$$= \langle \exp(-\|x\|^2), \exp(-\|y\|^2) \rangle$$