2021 年全国硕士研究生入学统一考试 数学(二)试卷 (模拟1)

考生注意:本试卷共二十二题,满分150分,考试时间为3小时.

一、选择题: 1~10 小题, 每小题 5 分, 共 50 分. 在每小题给出的四个选项中, 只有一个符合 要求, 把所选项前的字母填在题后的括号里.

- 1. 函数 $f(x) = \frac{x(x+1)e^{x}}{\ln x^2}$ 的无穷间断点个数为(). **(B)** 1
- 2. 设 $\sin x^n \left(\sqrt{1+x^2} 1 \right) + 1$ 是 f(x) 的一个原函数, $g(x) = k \int_0^x (e^{ix} 1)^n dx$
- f(x) 与 g(x) 是等价无穷小,则((A) k = 6, n = 2 (B) k = 4, n = 2 (C) k = 6, n = 3

- 3. 设y = y(x)是方程 $x^2y^2 + y = 1$ (y > 0) 所确定的函数,则().

 - (A) y(x)有极小值,但无极大值 (B) y(x)有极大值,但无极小值
 - (C) y(x) 既有极大值,又有极小值 (D) y(x) 无极值
- 4. 设 $f(x) = \int_0^x (e^{\cos t} \cos t k) dt$,若积分 $\int_a^{a+2\pi} f(x) dx$ 的值与 a 无关,则 k = 0
 - (A) $\int_0^{2\pi} e^{\cos x} \cos x \, dx$
- $(B) \frac{1}{2\pi} \int_0^{2\pi} e^{\cos x} \cos x \, \mathrm{d}x$
- (C) $\int_0^{\pi} e^{\cos x} \cos x \, dx$

- (A) a=0, b=-1 (B) a=-1, b=0 (C) a=1, b=-1 (D) a=-1, b=1
- 6. 设 f 为二元可微函数, $z = yf(\frac{y}{r}, xy)$,则 $\frac{x}{v} \cdot \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = ($
 - (A) $f + 2\frac{x}{v} \cdot f_1'$
- (B) $f-2\frac{x}{v}\cdot f_1'$
- (C) $f + 2xyf_2'$

- (D) $f 2xyf_2'$
- 7. 微分方程 $y'' + 2y' + 2y = e^{-x}(\cos x + 1)$ 的特解形式为 (

 - (A) $e^{-x}(a\cos x + b\sin x + c)$ (B) $xe^{-x}(a\cos x + b\sin x + c)$
 - (C) $e^{-x}(ax\cos x + bx\sin x + c)$ (D) $e^{-x}(a\cos x + b\sin x + cx)$

8. 设 4×5 阶矩阵
$$A = \begin{pmatrix} a_1^T \\ a_2^T \\ a_3^T \\ a_4^T \end{pmatrix}$$
, 且 $\eta_1 = (1, 1, -2, 1)^T$, $\eta_2 = (0, 1, 0, 1)^T$

是齐次线性方程组 $A^{T}x=0$ 的基础解系,现有 4 个命题

- ① α_1, α_2 线性无关;
- ② α_1 可由 α_2,α_3 线性表出;
- ③向量组 α_1,α_4 为向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的一个极大无关组;
- ④向量组 $\alpha_1, \alpha_1 + \alpha_2, \alpha_3 + 2\alpha_4$ 秩为 3.

以上命题中正确的是().

- (A) (1)(3)
- (B) 24 (C) 23
- (D) (D(4)

9. 设A为n阶方阵,将A的第3行的2倍加到第1行,然后再将第1列的-2倍加到第3 列,得到矩阵为B,则A和B ().

(A) 完全相同

- (B) 相似又等价,
- (C) 等价但不一定相似
- (D) 合同但不相似
- 10. 已知 3 阶矩阵 A 与 3 维列向量 α , 若向量组 α , $A\alpha$, $A^2\alpha$ 线性无关,且

$$A^3\alpha = 3A\alpha - 2A^2\alpha$$
,则秩 $\mathbf{r}(A) = 0$

(A) 0 (B) 1

(D) 3

二、填空题:1~16 小题,每小题 5 分,共 30 分,把答案填在题中的横线上,

11.
$$\lim_{x\to 0} \frac{e^{\sin x} - e^x}{\sin x - \sin(\sin x)} = \frac{1}{1}$$

13. 设 f(x) 在 $[0,+\infty)$ 上单调可导, f(0) = -1, f^{-1} 为 f 的反函数, 若 $\int_{1}^{x^{2}+f(x)} f^{-1}(t-x^{2}) dt = x^{2} \sin x, \text{ } \iint f(x).$

14. 二次积分
$$\int_0^{\frac{\sqrt{2}}{2}} dy \int_{-y}^{\sqrt{1-y^2}} e^{-(x^2+y^2)} dx + \int_{\frac{\sqrt{2}}{2}}^1 dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} e^{-(x^2+y^2)} dx = _____.$$

15. 设三阶常系数齐次线性微分方程有一个特解为 $y = e^x(1 + \cos x)$,则该方程的表达式为

16. 设A是三阶可逆矩阵. 如果 A^{-1} 的特征值为1,2,3,则A的代数余子式之和 $A_{11} + A_{22} + A_{33} =$ ______.

2021年全国硕士研究生入学统一考试 数学(二)试卷 (模拟2)

考生注意:本试卷共二十二题,满分150分,考试时间为3小时.

一、选择题:1~10 小题, 每小题 5 分, 共 50 分. 在每小题给出的四个选项中, 只有一个符合 要求, 把所选项前的字母填在题后的括号里.

1. 曲线 $y = \frac{x^2 + 1}{x^2 + 1} e^{\frac{1}{x+1}}$ 的渐近线条数是(

- (B) 2
- (C) 3

2. 设 f(x) 是单调可导函数, f^{-1} 是 f 它的反函数,且 f(0) = f'(0) = 2, $g(x) = f^{-1} \left(\frac{3x+2}{x+1}\right)$ 则 g'(0) = ().

- (A) 2 (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) 3

3. 设函数 f(x) 在区间 $[0,+\infty)$ 上连续,在 $(0,+\infty)$ 内二阶可导,且 f(0)=0,f''(x)>0, 0 < a < b, 则当 $x \in (a,b)$ 内时,有().

(A) af(x) > xf(a) (B) xf(x) > af(a) (C) bf(x) > xf(b) (D) xf(x) > bf(b)

4. 设函数 f(x) 在 x=0 的某个邻域内可导, $\varphi(x)$ 在 x=0 的某个邻域内连续,且

 $\lim_{x\to 0}\frac{\varphi(x)}{x}=1\,,\quad \nabla f(x)=\int_0^x\varphi(x-t)\,\mathrm{d}t-x^2\,,\quad \mathrm{U} \quad (\quad).$

(A) x=0是 f(x) 的极小值点

- (B) x=0 是 f(x) 的极大值点
- (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
- (D) x=0 不是 f(x) 的极值点,点 (0, f(0)) 也不是曲线 y=f(x) 的拐点

若 $\lim_{x\to 0} (1+a\tan x)^{\frac{1}{\sqrt{1+4x-1}}} = \frac{1}{2} \int_{-\infty}^{a} xe^{\frac{1}{2}x} dx$,则 a=().

- (A) 2 (B) 3 (C) $\frac{3}{2}$ (D) $\frac{5}{2}$

6. 设 y = y(x) 是常系数微分方程 y'' + py' + qy = 0 的通解, 且 $y(x)e^{2x}$ 是以 π 为周期的周期 函数,则常数p,q的取值为(

(A)
$$p = -4, q = -8$$
 (B) $p = -4, q = 8$ (C) $p = 4, q = -8$ (D) $p = 4, q = 8$

7. 设 a > 0,则积分 $\int_{-\frac{\pi}{2}}^{0} d\theta \int_{0}^{a\cos\theta} f(r\cos\theta, r\sin\theta) r dr + \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{a} f(r\cos\theta, r\sin\theta) r dr = ()$.

(A)
$$\int_0^a dx \int_{-\sqrt{ax-x^2}}^{\sqrt{a^2-x^2}} f(x,y) dy$$

(A)
$$\int_0^a dx \int_{-\sqrt{ax-x^2}}^{\sqrt{a^2-x^2}} f(x,y) dy$$
 (B) $\int_0^a dx \int_{\sqrt{ax-x^2}}^{\sqrt{a^2-x^2}} f(x,y) dy$

(C)
$$\int_0^a dx \int_{-\sqrt{a-x^2}}^{\sqrt{ax-x^2}} f(x, y) dy$$

(C)
$$\int_0^a dx \int_{-\sqrt{a-x^2}}^{\sqrt{ax-x^2}} f(x,y) dy$$
 (D) $\int_0^a dx \int_{-\sqrt{a^2-x^2}}^{-\sqrt{ax-x^2}} f(x,y) dy$

8. 设A,B为n阶矩阵,下列结论正确的是(

(A)
$$r(A,AB) = r(A)$$

(B)
$$r \binom{A}{AB} = r(A)$$

(C)
$$r(A,B)=r(A)+r(B)$$

(C)
$$r(A,B)=r(A)+r(B)$$
 (D) $r\begin{pmatrix} A & E \\ 0 & B \end{pmatrix} > r(A)+r(B)$

- 9. 设 $A, B \in n$ 阶方阵,则下列命题不正确的是().
 - (A) 若 Ax = 0 的解均是 Bx = 0 的解,则 $r(A) \ge r(B)$
 - (B) 若r(AB) = r(B),则Ax = 0的解均是Bx = 0的解
 - (C) 方程组 $A^T Ax = A^T b$ (其中 b 为任意 n 维列向量) 恒有解
 - (D) 若r(AB)=r(B),则ABx=0与Bx=0同解
- 10. 设A是三阶对称矩阵,设 α_1 , α_2 线性无关,且 $A\alpha_1$ = $2\alpha_1$, $A\alpha_2$ = $2\alpha_2$, $A\alpha_3$ =0($\alpha_3 \neq 0$), 且 $Q=(\alpha_1+\alpha_2,2\alpha_3,\alpha_1-\alpha_2)$,则二次型 $f(x_1,x_2,x_3)=x^TA^2x$ 在可逆变换 x=Qy 下的标 准形是((A) $2y_1^2 + 4y_2^2 + y_3^2$ (B) $4y_1^2 + 4y_2^2 + y_3^2$ (C) $4y_1^2 + 4y_2^2$ (D) $4y_1^2 + 4y_3^2$

(A)
$$2y_1^2 + 4y_2^2 + y_3^2$$

(B)
$$4v_1^2 + 4v_2^2 + v_3^2$$

(C)
$$4y_1^2 + 4y_2^2$$

(D)
$$4y_1^2 + 4y_2^2$$

二、填空题:1~16小题,每小题 5分,共 30分. 把答案填在题中的横线上.

11.
$$\lim_{n\to\infty}\frac{1}{n^2}\left[\sqrt{1-\frac{1}{n^2}}+2\sqrt{1-\frac{2^2}{n^2}}+\cdots+(n-1)\sqrt{1-\frac{(n-1)^2}{n^2}}\right]=$$

- 12. 设 y = y(x) 由方程 $\sqrt{2}\sin(x^2 + y) e^x + xy^2 = 0$ 确定,且 $y \in (-\frac{\pi}{2}, \frac{\pi}{2})$,则 d $y|_{x=0} = \frac{\pi}{2}$
 - 13. 设 $f(x) = \lim_{t \to \infty} \left(1 + \frac{x}{2t} \frac{x^2}{2t^2} \right)$, 则曲线 y = f(x) 与直线 x = 0, x = 2 以及 x 轴围成的图形 绕y轴旋转一周所形成的立体体积是
 - 14. 设 (x_0, y_0) 为曲线 $y = \ln x$ 上曲率半径最小的点,则 $(x_0, y_0) =$

15. 设
$$z = \int_{x}^{y} e^{-(x^{2}+y^{2}+u^{2})} du$$
, 则 $\frac{\partial^{2}z}{\partial y \partial x}\Big|_{(0,1)} =$ ______.

16. 设
$$x_i \neq 0, i = 1, 2, 3, 4$$
,则行列式 $D = \begin{vmatrix} a + x_1 & a & a & a \\ a & a + x_2 & a & a \\ a & a & a + x_3 & a \\ a & a & a & a + x_4 \end{vmatrix} = \underline{\qquad}$

2021 年全国硕士研究生入学统一考试

数学(二)试券 (模拟3)

考生注意:本试卷共二十二题,满分 150 分,考试时间为 3 小时.

一、选择题: 1~10 小题, 每小题 5 分, 共 50 分. 在每小题给出的四个选项中, 只有一个符合 要求, 把所选项前的字母填在题后的括号里.

要求, 把所选项前的字母填在题后的括号里.

1. 设
$$f(x)$$
 在 $x = 0$ 处连续, $g(x) = \begin{cases} \frac{f(x)(e^{x^2} - 1)}{\ln(1 + |x^3|)}, & x \neq 0, \\ 3, & x = 0. \end{cases}$

().

(A)
$$f(0) = 0, f'(0)$$
不存在

(B)
$$f(0) = 0$$
, $f'(0) = 3$
(D) $f(0) = 3$, $f'(0) = 1$

(C)
$$f(0) = 3, f'(0)$$
 不存在

(D)
$$f(0) = 3, f'(0) = 1$$

2. 设 f(x) 为 [0,1] 上的可导函数,且满足 f(0)=0. 又设 f'(x) 单调增加。那么 $x \in (0,1)$

(A)
$$f(1)x < f(x) < f'(0)x$$

(B)
$$f'(0)x < f(x) < f(1)x$$

(D) $f(x) < f'(0)x < f(1)x$

(C)
$$f(x) < f(1)x < f'(0)x$$

(D)
$$f(x) < f'(0)x < f(1)$$

3. 设函数
$$f(x) = e^x$$
,若 $f(x) = 1 + x + \frac{x^2}{2} f''(\xi)$,则 $\lim_{x \to 0} \frac{\xi^3}{x^3} = ($)

(A) 1 (B) $\frac{1}{8}$ (C) $\frac{1}{27}$ (D) $\frac{1}{54}$

4. 若方程 $\ln x = a\sqrt{x}$ 无实根,则(

(A)
$$a \le 0$$

(A)
$$a \le 0$$
 (B) $0 < a < \frac{2}{e}$ (C) $a = \frac{2}{e}$ (D) $a > \frac{2}{e}$

(C)
$$a = \frac{2}{e}$$

(D)
$$a > \frac{2}{e}$$

6. 设 F(x,y) 具有二阶连续偏导数,且 $F(x_0,y_0)=0, F_x'(x_0,y_0)=0, F_y'(x_0,y_0)<0$. 若 y=y(x) 是由方程式 F(x,y)=0 确定的在点 (x_0,y_0) 的某个邻域内的隐函数,则 x_0 是函数 y = y(x)的极大值点的一个充分条件是(

(A)
$$F''_{xx}(x_0, y_0) > 0$$

(B)
$$F_{xx}''(x_0, y_0) < 0$$

(C)
$$F''_{yy}(x_0, y_0) > 0$$

(D)
$$F_{yy}''(x_0, y_0) < 0$$

7. 已知 $y = C_1 + C_2 \sin x + \cos x$ (其中 C_1 , C_2 为任意常数)是某二阶线性微分方程的通解,则 该方程是(

(A)
$$y'' + \tan x \cdot y' = \sec x$$

(B)
$$y'' + \tan x \cdot y' = -\sec x$$

(C)
$$y'' - \tan x \cdot y' = \sec x \cos 2x$$
 (D) $y'' - \tan x \cdot y' = \csc x \sin 2x$

(D)
$$v'' - \tan x \cdot v' = \csc x \sin 2x$$

8. 设
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -3 & -2 \\ 5 & -8 & -3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 1 \\ a & -2 \\ 3 & b \end{pmatrix}$$
, 已知 $\mathbf{AX} = \mathbf{B}$ 有解.则().

(A)
$$a=1$$
, $b=2$

(B)
$$a=2, b=3$$

$$a=2$$
, $b=1$ (C) $a=1$, $b=-3$ (D) $a=-1$, $b=3$

(D)
$$a = -1, b=3$$

9. 设A, B均为n阶实对称矩阵,且都可逆,则下列命题不正确的是。

(A) 存在可逆阵
$$P$$
, 使得 $P^{-1}(A+B)P = \Lambda$

(B) 存在可逆阵
$$P$$
, 使得 $P^{-1}(AB)P = \Lambda$

(C) 存在正交矩阵
$$Q$$
, 使得 $Q^{T}(A^{\bullet}+B^{\bullet})Q=\Lambda$

(D) 存在正交矩阵
$$Q$$
, 使得 $Q^{T}(A^{-1} + B^{-1})Q = \Lambda$

10. 设A 是 3 阶正定矩阵,x 是 3 维列向量,E 是 3 阶单位矩阵,记

$$P = \begin{pmatrix} E & \mathbf{0} \\ \mathbf{x}^{\mathsf{T}} A^{-1} & 1 \end{pmatrix}, W = \begin{pmatrix} -A & \mathbf{x} \\ \mathbf{x}^{\mathsf{T}} & 0 \end{pmatrix};$$

则二次型 f = |PW| 的正惯性指数 p 与负惯性指数 q 分别是 ().

(A)
$$p = 2, q = 1$$

(B)
$$p = 3, q = 0$$

(C)
$$p=1, q=1$$

(A)
$$p = 2, q = 1$$
 (B) $p = 3, q = 0$
(C) $p = 1, q = 1$ (D) $p = 0, q = 3$

二、填空题:1~16 小题,每小题 5 分,共 30 分. 把答案填在题中的横线上.

11. 设 f(x), g(x) 在 x = 0 的某个邻域内可求任意阶导数, f(0) = 2, g(0) = g'(0) = 1,且

$$f(x), g(x)$$
 满足 $f'(x) + xg(x) = e^x - 1$, 则 $\lim_{x \to 0} \frac{f(x) - 2}{\ln(1 + x^3)} = \underline{\hspace{1cm}}$.

13.
$$\int_0^{+\infty} \frac{1}{\sqrt{1+e^x}} \, \mathrm{d} x = \underline{\hspace{1cm}}$$

14. 由曲线 $y = \frac{2}{3}x^{\frac{3}{2}}, y = \frac{7}{6} - \frac{1}{2}x^2$ 及 y 轴围成的平面图形边界曲线周长是______

16. 设 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 4 & 3 & -3 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & -3 \end{pmatrix}$, 且存在矩阵 \mathbf{P} 使得 $\mathbf{PA} = \mathbf{B}$,则矩阵

$$P =$$
 .

2022 年全国硕士研究生入学统一考试

数学(二)试卷 (模拟 4)

考生注意:本试卷共二十二题,满分 150 分,考试时间为 3 小时.

—、	选择题:	1~10 小	、题, 每小题	5 分	, 共 50	分.	在每小题给	出的四	个选项中,	只有一个	符合
要求	, 把所选	项前的字	母填在题后	的括	号里.				<i>*</i> ***********************************		

- 1. 设反常积分 $\int_0^{+\infty} \frac{1}{(1+x^2)(1+x^{\alpha})} dx$ 则下列结论正确的为 (
 - (A) 对任意的 α ,此反常积分收敛
- (B) 对任意的 α ,反常积分发散敛
- (C) 当且仅当 $\alpha = 0$,该反常积分收敛 (D) 当且仅当 $\alpha \neq 0$,该反常积分收敛

2、函数
$$f(x) = \frac{x^3 + 1}{(x+1)|x|}$$
 渐近线的条数 () .

(A) 1 (B) 2 (C) 3 (D) 4

3、设
$$f(x)$$
在 $[a,b]$ 上二阶可导, $x \in [a,b]$ 时 $f(x) < 0$, $f''(x) < 0$,记 $s_1 = \int_a^b f(x) \, \mathrm{d}x$,

$$s_2 = \frac{1}{2} f(\frac{a+b}{2})(b-a), \quad s_3 = \frac{1}{2} [f(a)+f(b)](b-a), \quad \text{of } \quad .$$

- (A) $s_3 < s_1 < s_2$ (B) $s_2 < s_1 < s_3$
- (C) $s_3 < s_2 < s_1$, (D) $s_1 < s_2 < s_3$

- (A) 若 f(x) 在 $x = x_0$ 处左、右导数均存在但不相等,则 f(x) 在 $x = x_0$ 连续。
- (B) 若 $\lim_{n\to+\infty} f(n) = A$, $\lim_{x\to+\infty} f'(x) = 0$, 则 $\lim_{x\to+\infty} f(x) = A$.
- (C) $\lim_{x \to x_0} f(x) = A$, A 为有限值, $\lim_{x \to x_0} g(x)$ 不存在, 则 $\lim_{x \to x_0} f(x)g(x)$ 不存在
- (D) $\lim_{x \to x_0} [f(x) + g(x)]$ 不存在,但 $\lim_{x \to x_0} g(x)$ 存在,则 $\lim_{x \to x_0} f(x)$ 不存在

5、设
$$u=y^2F(3x+2y)$$
,若 $u(x,\frac{1}{2})=x^2$,则 $\frac{\partial u}{\partial x}=($);

- (A) $y^2F'(3x+2y)$ (B) $\frac{4}{3}F'(3x+1)$
- (C) $\frac{4}{3}y^2(3x+2y-1)$ (D) $\frac{8}{3}y^2(3x+2y-1)$

6、设
$$F(x) = \int_0^{x^2} d\nu \int_{e^{-u^2}}^1 f(\nu) d\nu$$
,则 $xF''(x) - F'(x) = ($

(A) $f(e^{-x^2})$

(B) $4x^3e^{-x^2}f(e^{-x^2})$

(C) $4x^3 f(e^{-x^2})$

(D) $-2x^2e^{-x^2}f(e^{-x^2})$

7、设函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + (x-y)^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
, 在点 $(0,0)$ 处 $(0,0)$

- (A) 不连续, 但 f'(0,0), f'(0,0) 存在
- (B) 连续但 $f'_{\nu}(0,0), f'_{\nu}(0,0)$ 至少有一个不存在
- (C) 连续且 $f'_{x}(0,0), f'_{y}(0,0)$ 存在,但不可微
- (D) 可微
- 8、设Ax=b为三元非齐次线性方程组,A至少有两行不成比例, a_1,a_2,a_3 为Ax=b的

三个线性无关解,
$$\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$$
, $\alpha_1 + \alpha_2 + \alpha_3 = \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix}$, 则方程组 $Ax = b$ 的通解为().

(A)
$$k \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix}$$
 (B) $k \begin{pmatrix} 3 \\ 6 \\ -15 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$ (C) $k \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + \begin{pmatrix} 3 \\ 6 \\ -15 \end{pmatrix}$ (D) $k \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$

- 9. 设A为n阶矩阵,n维列向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 是方程组Ax=0的基础解系,若存在 β_i , 使得 $A\beta_i = \alpha_i (i=1,2,\cdots,t)$,则下列选项正确的是($i=1,2,\cdots,t$).
 - (A)向量组 $\alpha_1,\alpha_2,\cdots,\alpha_l$ 可由向量组 $\beta_1,\beta_2,\cdots,\beta_l$ 线性表示
 - (B) 向量组 $\beta_1,\beta_2,\cdots,\beta_r$ 可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性表示
 - (C) 向量组 $\alpha_1, \alpha_2, \cdots, \alpha_l, \beta_1, \beta_2, \cdots, \beta_l$ 的秩为l
 - (D) 向量组 $\alpha_1, \alpha_2, \dots, \alpha_t, \beta_1, \beta_2, \dots, \beta_t$ 的秩为2t
- 10. 设A 是 $m \times n$ 矩阵, r(A) = n,则下列结论不正确的是().

(A)若AB=O,则B=O (B)对任意矩阵B,有r(AB)=r(B)

$$(C)$$
存在 B , 使得 $BA = E$

(D)对任意矩阵 B, 有 r(BA) = r(B)

- 二、填空题:1~16 小题, 每小题 5 分, 共 30 分. 把答案填在题中的横线上.
- 11、设函数 f(x) 可导,且 $f(0) = e^{-1}$,若极限 $\lim_{h\to 0} \left[\frac{f(x+\sinh)}{f(x)} \right]^{\frac{1}{\arctan h}} = e^{(x+1)\sin x}$,则
- 12、设函数 y = y(x) 是由参数方程 $\begin{cases} x = 3t^2 + 2t + 3 \\ y = te^y + 1 \end{cases}$ 决定,则函数在 t = 0 处的曲率为______.
- 13、设 $z = \int_0^{x^2y} x f(t,e') dt + \varphi(z)$, 其中 f 有连续的一阶偏导, φ 可导且 $1-\varphi' \neq 0$,则