

AON7430 30V N-Channel MOSFET

General Description

The AON7430 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. This device is suitable for high side switch in SMPS and general purpose applications.

Features

 $V_{DS}(V) = 30V$

 $I_D = 34A$ $(V_{GS} = 10V)$

 $R_{DS(ON)} < 12m\Omega$ (V_{GS} = 10V)

 $R_{DS(ON)} < 16m\Omega$ (V_{GS} = 4.5V)

100% UIS Tested 100% R_g Tested

Absolute Maximum Ratings T_A=25℃ unless otherwise noted **Parameter** Symbol Maximum Units Drain-Source Voltage V_{DS} 30 V_{GS} ±20 V Gate-Source Voltage T_C=25℃ 34 Continuous Drain T_C=100℃ Current 21 Α I_D Pulsed Drain Current C 80 I_{DM} Continuous Drain T_A=25℃ 13 Α Current A T_A=70℃ 10.2 I_{DSM} Avalanche Current C 22 Α I_{AR} Repetitive avalanche energy L=0.1mH ^C $\mathsf{E}_{\mathsf{A}_{\mathsf{R}}}$ 24 mJ T_C=25℃ 23 P_D W Power Dissipation B T_C=100℃ 9 T_A=25℃ 3.1 P_{DSM} W Power Dissipation A T_△=70℃ 2 Junction and Storage Temperature Range -55 to 150 ${\mathfrak C}$ T_J , T_{STG}

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	Р	30	40	℃/W			
Maximum Junction-to-Ambient A	Steady-State	$R_{\theta JA}$	60	75	℃/W			
Maximum Junction-to-Case B	Steady-State	$R_{ heta JC}$	4.5	5.4	℃/W			

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Тур	Max	Units				
STATIC PARAMETERS										
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V				
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V T_{J} =55 $^{\circ}$ C			1 5	μΑ				
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V, V_{GS}=\pm 20V$			100	nA				
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} I _D =250μA	1.5	1.9	2.5	V				
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V	80			Α				
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =20A		10	12					
		T,=125℃		16	19	mΩ				
		V _{GS} =4.5V, I _D =20A		13	16	mΩ				
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =20A		45		S				
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V				
Is	Maximum Body-Diode Continuous Current				25	Α				
DYNAMIC	PARAMETERS			-	-					
C _{iss}	Input Capacitance		610	760	910	pF				
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz	88	125	160	pF				
C_{rss}	Reverse Transfer Capacitance		40	70	100	pF				
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	0.8	1.6	2.4	Ω				
SWITCHII	NG PARAMETERS									
Q _g (10V)	Total Gate Charge		11	14	17	nC				
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =20A	5	6.6	8	nC				
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -13V, I _D -20A	1.9	2.4	2.9	nC				
Q_{gd}	Gate Drain Charge		1.8	3	4.2	nC				
t _{D(on)}	Turn-On DelayTime			4.4		ns				
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =0.75 Ω ,		9		ns				
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		17		ns				
t _f	Turn-Off Fall Time]		6		ns				
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs	5.6	7	8	ns				
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs	6.4	8	9.6	nC				

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on R $_{\theta JA}$ t \leq 10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be u sed if the PCB allows it.

- C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C.
- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C.
- G. The maximum current rating is limited by bond-wires.
- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25℃. The SOA curve provides a single pulse rating.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

30 V_{DS}=5V 25 20 **€**15 10 125℃ 5 25℃ 0 1.5 2 2.5 3 3.5 4 1 V_{GS}(Volts)

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction
Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 13: Power De-rating (Note F)

Figure 14: Current De-rating (Note F)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

