MATH 135: Final Review - Polynomial problems

- 1. Let $f(x) = 3x^3 8x + 5 \in \mathbb{C}[x]$.
 - a. Find all rational roots of f(x)
 - b. Factor f(x) completely in $\mathbb{C}[x]$.
- 2. Factor $f(x) = 10x^3 39x^2 + 29x 6$ as product of linear terms in $\mathbb{Q}[x]$.
- 3. Let $f(x) = x^6 27 \in \mathbb{R}[x]$. Find all complex roots of f(x).
- 4. Factor $x^4 + 2x^3 + 4x 4$ in $\mathbb{Q}[x]$.
- 5. Factor $x^2 + 5x 3$ in $\mathbb{Z}_{11}[x]$.
- 6. Show that $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$.
- 7. Let *n* be any positive integer which is not a multiple of 5. Prove that $x^4 + x^3 + x^2 + x + 1$ divides $x^{4n} + x^{3n} + x^{2n} + x^n + 1$ in $\mathbb{Q}[x]$.

Bonus: Find the sixth root of -8i. Express your answer in polar form (i.e. $\pi e^{i\theta}$ where $0 \le \theta < 2\pi$).

Math 135: Final Review – GCD

Part 1: Basics GCD

- 1. Suppose that $a, b, c, d \in \mathbb{Z}$ satisfy gcd(a, b) = 1, c|a and d|b. Prove that gcd(c, d) = 1.
- 2. Suppose that $a, b \in \mathbb{Z}$ are coprime. Prove that $gcd(a + b, a b) \in \{1, 2\}$.
- 3. Let $a, b, c, d \in \mathbb{Z}$. Suppose that d|ab, d|ac and gcd(b, c) = 1. Prove that d|a.
- 4. Prove that for any $h \in \mathbb{Z}$, $gcd(21h 5, 6h 2) \in \{1, 2, 4\}$, more precisely gcd(21h 5, 6h 2) = gcd(h 1, 4).
- 5. Let $a, b, c \in \mathbb{Z}$. Prove that if gcd(a, b) = 1, then $gcd(a, bc) = \gcd(a, c)$. Deduce that if $\gcd(a, b) = \gcd(a, c) = 1$, then $\gcd(a, bc) = 1$.
- 6. Let $u, v \in \mathbb{Z}$. Prove that if u and v are coprime, then gcd(u + v, uv) = 1.

Part 2: Linear Diophantine Equations

- 7. Find a general solution to the following LDEs:
 - a. 6x + 4y = 60
 - b. 27x + 72y = 12
 - c. 81x 24y = 6
- 8. When Laurie cashed a cheque for x dollars and y cents, she received instead y dollars and x cents.

 They found that they had two cents more than twice the proper amount. How much was the cheque written?
- 9. Roosters cost \$5 each, hens cost \$3 each, and chicks cost \$1 for three. If \$100 fowls are brought for \$100. How many roosters, hens, and chickens are there? Find all positive solutions.

10. Express 100 as a sum of two positive integers such that one is divisible by 11 and the other is divisible by 7. 11. Find the smallest positive integer which leaves a remainder of x when divided by 13 and a remainder of 2 when divided by 8.

Math 135: Final Review - Modular

- 1. Show that $|a^2 10b^2| = 2$ has no integer solutions for a, b.
- 2. Solve the following system of linear congruences:

$$4x \equiv 7 \pmod{9}$$

$$3x \equiv 2 \pmod{11}$$

3. Solve the following system of congruences:

$$x^3 \equiv 5 \pmod{8}$$

$$3x^2 \equiv 3 \pmod{9}$$

$$2x \equiv 0 \pmod{10}$$

4. Define a sequence as follows: $a_0 = 3$, $a_1 = 7$, $a_n = 5(a_{n-1} + a_{n-2}) + 4a_{n-1}^2 + 1$ for $n \ge 2$.

Prove that $a_n \equiv 3 \pmod{4} \ \forall n \ge 0$.

5. Prove that for any integer $n \ge 25$, there exists non-negative integers a, b such that

$$5a + 7b = n.$$

- 6. Prove that $n^3 n$ is divisible by $3, \forall n \in \mathbb{Z}$.
- 7. Prove that $n^7 n$ is is divisible by 42, $\forall n \in \mathbb{Z}$.
- 8. Prove that if $a \equiv b \pmod{n}$ then for all positive integers c that divide a and b,

$$\frac{a}{c} \equiv \frac{b}{c} \left(mod \frac{n}{\gcd(a,c)} \right)$$

9. Let $n \in \mathbb{Z}$. Prove that $(a+b)^n \equiv a^n + b^n \pmod{n}$, $\forall a, b \in \mathbb{Z}$.

Math 135: Final Review – Primes

- 1. Prove that there are infinitely many primes of the form 6n + 5.
- 2. Let p be a prime. Prove that \sqrt{p} is irrational.
- 3. Prove that if $2^n 1$ is prime, then n is prime.
- 4. Let p be a prime, such that $p \equiv 3 \pmod{4}$. Prove that $b \equiv a^{\frac{p+1}{4}} \pmod{p}$ satisfies

$$b^2 \equiv a \pmod{p}$$

5. Let p be a prime number and let $q \in \mathbb{N}$. Prove that if $q \neq p$, then $(\gcd(q^2, p) = 1)$.

Prove that for distinct primes p, q that $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

- 6. Let $a, b \in \mathbb{Z}$. Prove that $\gcd(a, b)^n \equiv \gcd(a^n, b^n), \forall n \in \mathbb{N}$.
- 7. If $k \in \mathbb{N}$ and 2^{k-1} is prime, then $2^{k-1}(2^k 1)$ is perfect. i.e. the sum of its positive divisors is $2(2^{k-1}(2^k 1))$.
- 8. Prove that $\forall k \in \mathbb{N}, \exists n \in \mathbb{N} \text{ such that } 2^k \mid (3^n + 5).$
- 9. Let $b \in \mathbb{Z}$. Prove that $\forall n \in \mathbb{N}$ that if $\{a_1, ..., a_n\}$ is a set of n integers such that

$$gcd(b, a_i) = 1$$
, $1 \le i \le n$, then $gcd(b, \prod_{i=1}^n a_i) = 1$.