31-1-5-1 (v: 1 (V
DRINKING WATER SURVEILLANCE PROGRAM
BELLE RIVER WATER TREATMENT
PLANT
REPORT FOR 1991 AND 1992

BELLE RIVER WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

APRIL 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

BELLE RIVER WATER TREATMENT PLANT 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Belle River water treatment plant is a conventional treatment plant which treats water from Lake St. Clair. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration and disinfection. Powder activated carbon is added for taste and odour control when required. This plant has a design capacity of 18.0 x 1000 $\rm m^3/day$. The Belle River water treatment plant serves a population of approximately 13,000.

Water at the plant and at two locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Belle River water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE A
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE

A '' INDICATES THAT NO SAMPLE WAS TAKEN

	SCAN	SITE RAW TESTS	POSITIVE %P	OSITIVE	TRE, TESTS	TE SAU TREATED SOUTH ST TESTS POSITIVE "POSITIVE "POSITIVE "POSITIVE" MAD STATIVE "POSITIVE" SPOSITIVE "POSITIVE "POSITIVE" SPOSITIVE "POSITIVE "POSITI	SITIVE	SOUT TESTS	SOUTH ST STS POSITIVE %PO	DSITIVE	WES'	WEST RIVER TESTS POSITIVE %POSITIVE	DSITIVE
							1						
	BACTERIOLOGICAL	45	28	95	. 16	-	9	2		0	12	0	0
	CHEMISTRY (FIELD)	51	51	100	102	102	100	. 50	20	100	120	119	. 8
	CHEMISTRY (LABORATORY)	405	374	93	907	305	75	82	02 .	85	627	403	, 84
	METALS	407	166	07	408	119	59	92	33	35	552	185	33
	CHLOROAROMATICS	168	0	0	168	0	0 .	14	0	0	98	0	0
	CHLOROPHENOLS	59	0	0	54	0	0	:	٠	٠	٠		
	PESTICIDES AND PCB	277	1	0	277	-	0	22	0	0,	156	-	0
	PHENOLICS	17	-	5	17	٣	17		. *	٠			٠
	POLYAROMATIC HYDROCARBONS	136	0	0	102	0	0	•		٠	82	0	0
	SPECIFIC PESTICIDES	81	0	0	83	0	. 0			•	2	0	0
	VOLATILES	202	0	0	505	89	13	95	80	. 12	350	87	13
	RADIONUCLIDES	.21	9	28	21	2	33			٠	٠	:	٠
TOTAL		2,309	627		2,299	909		567	131		1,854	756	

DRINKING WATER SURVEILLANCE PROGRAM

BELLE RIVER WATER TREATMENT PLANT 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Belle River water treatment plant in May of 1990. A previous DWSP annual report was published for 1990.

PLANT DESCRIPTION

The Belle River water treatment plant is a conventional treatment plant which treats water from Lake St. Clair. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration and disinfection. Powder activated carbon is added for taste and odour control when required. This plant has a design capacity of $18.0 \times 1000 \, \text{m}^3/\text{day}$. The Belle River water treatment plant serves a population of approximately 13,000.

The sample day flows ranged from 4.9 x 1000 m^3/day to 12.8 x 1000 m^3/day .

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration.

Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant and at two locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative

sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- -THE TREATED AND DISTRIBUTED WATER;
- -ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND
- -POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 12 of 31 treated and distributed water samples with a maximum reported value of 25.0°C .

CHEMISTRY (LABORATORY)

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the European Economic Community Aesthetic Guideline Level of 400 umho/cm in 8 of 30 treated and distributed water samples with a maximum reported value of 546 umho/cm.

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80--100~mg/L in all 30 treated and distributed water samples with a maximum reported value of 249 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 13 of 31 treated and distributed water samples with a maximum reported value of 350 ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

PESTICIDES AND PCB

Hexachlorocyclopentadiene was found at positive levels in 2 of the 15 treated and distributed water samples analyzed. The maximum observed level was 74.0 ng/L. This was below the United States Environmental Protection Agency Ambient Water Quality Criteria of 206,000 ng/L.

Traces of pesticides including atrazine, desethyl atrazine, simazine, metolachlor and dicamba were detected. This is consistent with findings at other locations in the area.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs have been revised to replace the aesthetic phenolic objective with objectives for specific phenols.

Phenolics were found at positive levels in 3 of the 17 treated and distributed water samples analyzed. The maximum observed level was 1.6 ug/L.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected above trace levels.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 31 treated and distributed water samples analyzed with a maximum level of 71.0 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bq/L). No results were above the available guidelines.

CONCLUSIONS

The presence of a number of pesticides which were detected at the Belle River water treatment plant indicates that this raw water source is adversely affected by agricultural activity.

The results are similar to those found in previous years.

No known health related guidelines were exceeded.

The Belle River water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME: WORKS #:

BELLE RIVER WTP

220003412

UTM #:

173592504684575

DISTRICT: REGION:

WINDSOR SOUTHWEST

DISTRICT OFFICER:

J. DRUMMOND

SUPERINTENDENT:

ED RENAUD

ADDRESS:

497 LAKEVIEW DR. GEN. DEL.

BELLE RIVER, ONTARIO

NOR 1AO 519-728-1680

MUNICIPALITY: AUTHORITY:

BELLE RIVER MUNICIPAL

PLANT INFORMATION

RATED CAPACITY:

PLANT VOLUME: - (X 1000 M3)
DESIGN CAPACITY: 18.000 (X 1000 M3/DAY) (X 1000 M3/DAY)

MUNICIPALITY POPULATION BELLE RIVER 3,600 TWP OF MAIDSTONE 3,420 TWP OF ROCHESTER 5,980

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
FREE CHLORINE RESIDUAL	FILTERED TREATED	4 TIMES/DAY 4 TIMES/DAY
PH	RAW TREATED	DAILY READING DAILY READING
TEMPERATURE	RAW TREATED	DAILY READING DAILY READING
TURBIDITY	RAW FILTERED TREATED	DAILY READING CONTINUOUS CONTINUOUS

Page 10

DRINKING WATER SURVEILLANCE PROGRAMM BELLE RIVER WIP SAMPLE DAY CONDITIONS
AND TREATMENT CHEMICAL DOSAGES FOR 1991 AND 1992

TASTE AND ODOUR ACTIVATED CARBON POWDER .						3.50	5.05	3.85	11.00	8.83			•			•			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
POST CHLORINATION CHLORINE		2.63	2.55	3.57	3.56	2.91	2.48	2.27	2.07	1.91	1.95	2.14	1.68	2.73	2.28	2,82	2.70	3.02	
COAGULATION AID POLYELECTROLYTE		3.85	3.31	4.03	2.67	2.29	2,53	1.51	2.18	2.38	3.02	3.20	3.66	3.30	1.11		2.20	2.10	
COAGULATION POLYALUMINUM SILICATE SULPHATE												13,10							
	FLOW S) (1000M3)	5.160	072 5	7,057	7 250	7 700	7 660	12 800	8 970	8.290	6.030	. 5,300	5,390	5.640	10.750	000	5 530	200	204.0
	DELAY * TIME(HRS)	25	3 6	20.	3.0	2 4	00.	2.5	2.0	8 8	8 6	00	00		8 8	200	8 8	0.0	00.
		33	7 0	2 4		200	77	9 7	200	17	1 22	101	18	2 6	15	17	17		2 12
	DATE	144	1 1	22.	MAR	A S			105	D A C					2 2				
	DA	: 6	7 6	> 0	> 0	> 6	5 6	5 6	> 0	, 0	0	. 5	6	0,0	200	2 0	7	7	6

* THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - 2. Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! 48	No Data: Sample Age Exceeded 48 Hours
! AR	No Data: No Numeric Results
, ! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
!EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
!LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR .	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
!QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
! U _	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken
! UN	No Data: Result Unreliable

!UR No Data: Unpreserved Sample Required

A Approximate Value

A3C Approximate, Total Count Exceeded 300 Colonies

A> Approximate Value, Exceeded Normal Range

APS Additional Peak, Less Than, Not Priority Pollutant

ARO Additional Information In Laboratory Report

CRO Calculated Result Only

NAF Not All Required Tests Found

RID Ioncal Calculated on Incomplete Data Set

RMP P and M-Xylene Not Separated

RRR Result Obtained by Repeat Analysis

RRV Rerun Verification

SFA Sample Filtered: Filtrate Analyzed

SIL Sample Incorrectly Labelled

SPS Several Peaks, Small, Not Priority Pollutant

U48 Unreliable: Sample Age Exceeded 48 Hours

UAL Unreliable: Sample Age Exceeded Limit

UAU Unreliable: Sample Age Unknown

UCS Unreliable: Contamination Suspected

WSD Wrong Sample Description On Bottle

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																
DIST. SYSTEM WEST RIVER STANDING				٠	•	•	•	•	•	•		•.		•			•			•	•				•	•			•	•		•
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 0 (A1)				٠				•	•		•.				GUIDELINE = 500 (A3)	<=> 0	<=> 0	<=> 0	3 =>	<=> 0	<=> 7	<=> 2	<=> 0	<=> 0	<=> 0	÷	-	٠	٠		
DIST. SYSTEM SOUTH ST STANDING	ก่อ															N9							•	•*								•
DIST. SYSIEM SOUTH ST FREE FLOW	DET'N LIMIT = 0															DET'N LIMIT = 0		•				•									<=> 2	2 <=>
TREATED TREATED	0 0 0 0 0 0 5 1 1 1 1 1 5						•		•						٠	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<=> 9	2 <=>	2 <=>	<=> 9	<=> 7	(=> L	<=> 0	<=> 0	-	-	(=>	3 <=>	<=> <	3 <=>	27	<=> 0
TREATMENT PLANT RAW	BACTERIOLOGICAL MF (CT/100ML)	72	200	32	BDL	BOL	BDL	16	7	108	10	BOL	12	99	BDL	NT MF (CT/ML	٠	٠		٠		•		:								
	FECAL COLIFORM MF (CT/100ML)	1991 JAN									1992 FEB	1992 JUN	1992 AUG	1992 NOV	1992 DEC	STANDRD PLATE CNT MF (CT/ML	1991 JAN		1991 MAR	1991 APR	1991 MAY									1992 AUG	1992 NOV	1992 DEC

TABLE 4 ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

DIST. SYSTEM WEST RIVER STANDING	_									•,	.•						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							٠									
DIST. SYSTEM D WEST RIVER W FREE FLOW S	GUIDELINE = 5/100ML (A1)	٠				٠					,	٠					GUIDELINE = N/A				•				٠								
DIST. SYSTEM SOUTH ST STANDING	No							•	•		•						NS																٠
DIST, SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0	٠	•	٠							•						DET'N LIMIT = 0									٠							
TREATED TREATED	·													٠		٠	· · · · · · · · · · · · · · · · · · ·													. •	٠		
TREATMENT PLANT RAW	BACTÈRIOLOGICAL MF (CT/100ML)	9000 A3C	80 <=>	170 A3C.	610 A3C	50 <=>	20 <=>	<=> 07	80 <=>	108	10 <=>	. 1600 A3C	<=> 02	<=> 07	15000 >	1100 <=>	COLIFORM BCKGRD MF (CT/100ML)	00000	/UUUU ASC	680	4100 A3C	20000 A3C	11000 A3C	4300 A3C	11000 A3C	8000 A3C	2100	2900	90000 A3C	16000 A3C	4900 A3C	20000 A3C	20700
	DACTERIOLOG TOTAL COLIFORM MF (CT/100ML)	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 JUN	1991 JUL					1992 FEB	1992 JUN	1992 AUG		1992 DEC	T COLIFORM BCKG			1991 FEB					1991 AUG	1991 SEP	1991 OCT		1992 FEB	1992 JUN	1992 AUG		1992 DEC

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

DIST. SYSTEM WEST RIVER STANDING			-
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A	.300 .300 .300 .400 .400 .200 .200 .200 .200 .200 .2	
DIST. SYSTEM SOUTH ST STANDING	0	002.000	. 100
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = (.400 .200 .200	. 500
TREATMENT PLANT TREATED	٦٥)		
TREATMENT PLANT RAW	CHEMISTRY (FIELD)	REE (MG/L)	: .
	CHEMIST COMB) (MG/L	1991 FEB 1991 MAR 1991 MAY 1991 MAY 1991 JUN 1991 JUN 1991 JUN 1991 AUG 1992 APR 1992 APR 1992 APR 1992 APR 1992 APR 1992 APR 1993 MAY 1993 FEB 1991 MAR 1991 FEB 1991 MAR 1991 FEB 1991 MAR 1991 MAR 1991 SEP 1991 JUN 1991 SEP	1992 AUG 1992 NOV 1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER UTP

																			!																	
DIST. SYSTEM WEST RIVER STANDING	9 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.500	1.100	1.000	.300	1.100	1.000	1,000	1.000	1.000	1.000	1.000	006.						(A4)	7.400	7.400	7.600	. 7,800	7.400	7.600	2.600	7.500	7.600	7.300	7.500	8.100					
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A	.800	1.300	1.000	1.000	1.100	006.	1.300	1.300	1.100	006.	1.300	1.000	٠				٠	GUIDELINE = 6.5-8:5 (A4)	7.500	7.400	7.500	7,700	7.400	7.500	7.600	7.600	7.600	7.400	7.400	7.800					
DIST. SYSTEM SOUTH ST STANDING	lub Gu																.300	.200	0 0 0 0 0 0 0 0 0 0 0															٠	7.200	7.600
OIST. SYSTEM SOUTH ST FREE FLOW	DET*N LIMIT = 0								. •								006.	1.100	DET'N LIMIT = N/A								٠						,	٠	7.000	7.700
TREATED TREATED	3 3 5 7 7 8 9 9	.800	1.130	1.060	.620	026.	.590	1.250	.730	1.060	.810	1.200	.850	009.	069.	.810	1.130	1.080	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.500	7.100	7,100	7,600	7.500	7.670	7.980	7.820	2.960	7.700	7.760	7.950	7.890	7.820	7.700	7.410	8.030
TREATMENT PLANT	CHEMISTRY (FIELD)	٠							٠				٠	٠		٠			(\$8)	8,400	7.500	7,500	8,200	8,100	8,130	9.110	8.940	8.960	8.300	8.210	8.340	8.440	8.310	8,200	8.240	8.450
	FLD CHLORINE (TOTAL) (MG/L				1991 APR				1991 AUG							1992 AUG	1992 NOV	1992 DEC	FLD PH (DMNSLESS)	1991 JAN	1991 FEB			1991 MAY		1991 JUL			1991 OCT		1992 FEB		1992 JUN		1992 NOV	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

																																				,
DIST. SYSTEM WEST RIVER STANDING		13.000	11,000	000.11	18 000	19 000	21 000	23.000	23,000	16.000	13,000	11.000		•					-																	
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 15 (A3)	3.000	2.000	000.4	0.500	18.000	22 000	25.000	22 000	11 000	8 000	2 000							GUIDELINE = 1.0 (A1)	٠											•		•		•	
SOUTH ST STANDING	g.					•											14,000	000.01			•		•		•	•	•	•	•			•	•	٠	•	
DIST. SYSTEM SOUTH ST FREE FLOW	DÉT'N LIMIT = N/A							•		•		•.				• •	11.000	7.000	DET'N LIMIT = N/A																	
TREATMENT PLANT TREATED	ELD) .	3.000	3.000	2.000	10.000	18.000	24.000	24.000	25.000	24.000	12,000	2.000	3,000	000.11	21.000	. 20,000	2,000	3.000		.110	030	090.	.050	.030	070	.030	.050	0.00	.030	.030	070.	090.	.080	060.	020	050.
TREATMENT PLANT RAW	CHEMISTRY (FIELD)	1.000	2.000	000.4	000.6	17.000	24.000	24.000	24.000,	23.000	10,000	9.000	2,000	13.000	21.000	20.000	7.000	2.500	(FTU)	57.850	9.780	26.990	286.000	35.930	42.450	21,570	109,500	37.340	13.690	25.700	5.290	19.500	83.980	20.900	109.700	30.040
	CHEM FLD TEMPERATURE (DEG.C		1991 FEB	_			1991 JUN		1991 AUG	1991 SEP	1991 OCT	1991 NOV				1992 AUG		1992 DEC	ELD TURBIDITY (FTU	1001 IAN		1991 MAR						1991 SEP							1992 NOV	

TABLE.4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

																			h e																			
DIST. SYSTEM WEST RIVER STANDING	7)	103.900	104.900	129.400	170.100	141,800	84.900	72.900	70.800	77.000	81.200	79.800	97.200						0 0 5 8 0 0 0 0 0 0 0 0 0	50.200	47.100	55.300	75.400	57.800	34.200	25.900	26.400	29.400	32.200	30.300	40.700		•		•.	. •		
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 30-500 (A4)	104.700	104.300	131,900	172,300	141.800	84.500	76.300		77.200	81,300	79.300	96.800			٠		٠	GUIDELINE = 100 (F2)	51.200	47.500	55.500	74.800	57.400	33.400	26.700		30.800	31.800	30,700	41.000		٠.			٠	GUIDELINE = 0.2 (A1)	•
DIST. SYSTEM SOUTH ST STANDING	ថ	٠				٠											73.300	128.400	9														•	٠	36.450	20,400	9	
DIST. SYSTEM DI SOUTH ST SC FREE FLOW ST	DET'N LIMIT = 0.2		•									٠			•		75.100	126.200	DET'N LIMIT = 0.20			٠		٠							•			٠	36.600	76.300	DET'N LIMIT = 0.001	
TREATMENT PLANT TREATED	30RATORY)	103.600	103.500	129.500	180,500	139,900	86.700	75.700	74.100	29.000	82.100	78.300	02.400	140.800	89.000	132.500	71.900	130.500	7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50.800	47.900	54.300	73.400	27.600	34.800	27,100	29,000	31,000	31.800	29.600	41,300	64.300	32.500	56.350	36.350	50.750		BOL
TREATMENT PLANT	CHEMISTRY (LABORATORY)	119,200	115,300	138,400	153.900	145,300	93.200	75.300	26.000	84.100	89,100	88.200	98.500	131,000	92.700	132.900	97.200	129.300	^	50.600	47.200	54.200	62.400	56.800	33.600	24.600	26.000	28.800	30.600	30.100	39.400	25.600	30,700	53.000	34.200	47.000		80F
R → R	ALKALINITY (MG/L	1991 JAN	1991 FEB		1991 APR		1991 JUN		1991 AUG						1992 JUN	1992 AUG		1992 DEC	CALCIUM (MG/L	1991 JAN		_	1991 APR	_			1991 AUG				1992 FEB				1992 NOV	1992 DEC	CYANIDE (MG/L	28 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

																						<u>_</u>				<u>_</u>	,	_			<u>_</u>					
DIST. SYSTEM WEST RIVER STANDING		25.500	19.700	28.100	30.800	27.600	13.300	18.300	16.300	13.000	11.500	12.600	. 21.900	•	,			•		2.500	801		3.000	BOL					80L	80L	.500		•		•	
Σ	(A3)		_	_	_	_	_	_					_						(3)	_		<u></u> -	_			-					- -	Ċ				. :
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 250 (A3)	25.100	19.500	28.600	30.800	26.900	13.100	19.200		15.000	11.200	12.600	22.900	•		•	•		GUIDELINE = 5 (A3)	2.500	BDL	1.500	3.000	108	.500	.500		BOL	80F	108	.500			•		
E E	O																0 :	00	9		,													٠.	88	3
DIST. SYSTEM SOUTH ST. STANDING																	16.000	18.6																0	2 500	
_	0.20																		0.5															*	,	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.20		:	٠	•	•	•	•		•	•	•	٠	•	•	•	16.200	18.200	DET'N LIMIT = 0.50	•	•	٠	٠			•	•	•	•		*	•	•	.000 1	2 0000	000.2
LANT																						<u>_</u>			<u>_</u>	<u>_</u>							~			
TREATMENT PLANT TREATED	CHEMISTRY (LABORATORY)	24.300	19.900	27.300	17.400	25.900	13.900	13.900	14,100	14.600	11.200	12.300	23.500	36.700	14.800	35.800	16.100	18.800	0 0 0 0 0 0 0 0 0 0 0	2,500	BDI	2.000 <t< td=""><td>3.000</td><td>BDL</td><td>.500 <t< td=""><td>.500</td><td>BDL</td><td>2.000</td><td>BDL</td><td>BDL</td><td>.500</td><td>.500</td><td>.500</td><td>2,000</td><td>2.000</td><td>000.2</td></t<></td></t<>	3.000	BDL	.500 <t< td=""><td>.500</td><td>BDL</td><td>2.000</td><td>BDL</td><td>BDL</td><td>.500</td><td>.500</td><td>.500</td><td>2,000</td><td>2.000</td><td>000.2</td></t<>	.500	BDL	2.000	BDL	BDL	.500	.500	.500	2,000	2.000	000.2
LANT	Y CLAB																		1						<u>_</u>											1
TREATMENT PLANT RAW	CHEMISTR'	23.300	17.300	26.400	16.200	22.900	11.200	12.700	13.500	12.600	000.6	10.800	18,600	34.000	15.800	30.900	12.300	15.000		30,500	8 000	6.500	8.500	4.500	1.000	2.000	BOL	1.500	1.000	BOL	3.000	8.000	9.000	000	11,000	000*
	1/5W)	JAN	FEB	MAR	APR	MAY	NON	JUL	AUG	SEP	000	NON	FEB	PR	NOC	AUG	NOV	DEC	nz	JAN	EFB	MAR	APR	MAY	NO	JUL	AUG	EP	OCT.	٨٥	FEB	PR	N S	AUG	20.0	٦
	CHLORIDE (MG/L	1991 Ju	1991 FI													1992 AI		1992 DI	COLOUR 'CHZU	1991 J				1991 M											1000	_

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

1									•																														
DIST. SYSTEM WEST RIVER STANDING		200	35.1	100	674	523	418	598	257	241	254	547	248	321		•						1	3.000	1.800	2.800	2.900	2.200	1.300	1.300	1.300	1.200	1.200	1.200	1.400			•		٠
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 400 (F2)	200	2,0	740	4.50	529	417	592	592		255	245	247	163		•		•			GUIOELINE = 5.0 (A3)		2.900	1.800	2.700	3.100	2.000	1.200	1,300	٠	1.100	1.200	1.100	1.500					
DIST, SYSTEM O SOUTH ST W STANDING F	GUIDEL							•											289	378	GUIDEL		,									٠						1,900	2,300
DIST, SYSTEM DISOUTH ST SCOUTH ST ST ST ST SCOUTH ST ST ST ST SCOUTH ST ST SCOUTH ST S	DET 'N LIMIT = 1.0						٠		•					•					262	371	OET*N LIMIT =: 0.10									•					٠		٠	1.800	2.300
TREATMENT PLANT		101	283	551	422	246	408	274	242	236	256	245	572	330	A C C	2000	5/2	687	290	380	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2.700	1.700	2.500	3.100	1.800	1.400	1,300	1,300	1.200	1,200	1.100	1.400	2.200	1.400	3.000	1.700	2,200
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)		385	343	759	433	412	262	224	222	27.7	237	270	247	217	200	272	459	263	351	1 (MG/L)		4.500	2.700	3.600	3.600	3.200	2,100	2,600	2,800	2.500	1.800	1.600	1.800	3.300	2.200	3.800	3,200	3 000
	CONDUCTIVITY (UMHO/CM				1991 MAR													1992 AUG		1992 DEC	DISS ORG CARBON (MG/L		1991 JAN	1991 FEB		-							1991 NOV						1002 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

DISI. SYSIEM WEST RIVER STANDING		120	100	. 120	. 140	.080	.100	.100	.100	.140	.100	.080	.100			٠		٠	4)	174.800	161,100	185.800	250.000	199.000	122.000	102.200	103.000	111,000	113.000	108.900	146.000		•			
WEST RIVER FREE FLOW	GUIDELINE = 1.5 (A1)	. 120	100	.120	.140	.080	.100	. 100		.140	.080	080	.100	٠	٠				GUIDELINE = 80-100 (A4)	176.200	162.200	188.400	249.000	200.000	119.000	105.900		114.000	112.000	109.900	146,000					
DISI. SYSTEM SOUTH ST STANDING	0 0 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0																090.	.140	ਚ					.•								•		•	125.160	170.710
DISI. STSIEM SOUTH ST FREE FLOW	0ET'N LIMIT = 0.01													•			090.	.120	DET'N LIMIT = 0.5	•						•			•						125.470	229.670
TREATED	P	120	100	. 120	. 160	100	.100	.100	.080	.140	.080	.080	.100	.140	.080	.160	.080	.120	0 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174.700	163.700	185.100	247.000	198.000	125.000	102.200	108.000	115.000	112.000	107.000	146.000	228.300	118.000	203.900	125.190	171,200
RAW RAW	CHEMISTRY (LABORATORY)	140	. 100	. 120	. 140	.140	. 100	.100	.100	. 140	.100	.100	.100	. 160	.100	.140	.120	.100	^	178,200	161.200	186.400	208.000	198.000	121,000	101.000	102,000	109.000	110,000	108.800	141.000	195,000	117,000	193.540	120.470	161.680
	FLUORIDE (MG/L	1001 IAN							1991 AUG				1992 FEB		1992 JUN	1.992 AUG		1992 DEC	HARONESS (MG/L	1991 JAN	1991 FEB	1991 MAR				1991 JUL				1991 NOV	1992 FEB		1992 JUN	1992 AUG	1992 NOV	

Σ		10	5 NAF	9 NAF) NAF	_	8 NAF	60	7	7							0	0	0	0	0	0	0	0	0	0	0	0					-
DIST. SYSTEM WEST RIVER STANDING		. 785	1.22	2.559	1.91	2.543	2.333	6.060	.051	2.848	2.94	1.547	3.497							. 2.180	1.76	1.98	2.55	2.00	1,30	1.350	1.15	1.15	1.250	1.180	1.36					
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A	1.986	2.258 NAF	3.712 NAF	.277 NAF	1.586 NAF		6.056 NAF	.000 NAF	4.858 NAF	2.239	2.280	3.094						INE = 10 (F2)	2,180	1.730	1.950	2.600	2.000	1.400	1.440		1.200	1.350	1.190	1.540					•
SOUTH ST WI	GUIDEL																2.456	2.963	GUIDELINE																2,227	2.572
DIST. SYSTEM DISOUTH ST SOUTH ST SOUTH ST SOUTH ST	DET'N LIMIT = N/A																1.950	3.471	DET'N LIMIT = 0.01				. •					,			٠	,	,		2.314	2.527
TREATED TREATED		767 2	1.336 NAF	2.638 NAF			1.901 NAF	3.862 NAF	3.416	4.275 NAF	1.596	.771	3.716	2.639	3.246 NAF	776"	1.356	4.209		2.160	1.770	1.950	2.750	1.900	1,350	1.120	1.050	1.200	1.300	1,140	1.390	5.469	1.140	2.962	2.273	2.599
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	1 366	2.011 NAF						3.664	3.594 NAF	3.139	769.	4.593	7.686	2.154 NAF	.432	906*	1.634	^	2.780	1.850	2.120	2.400	2,100	1.450	1.050	1.200	1.250	1.350	1.290	1.390	2.567	1.470	2.833	3.026	2.729
E IX	IONCAL (DMNSLESS	1001 IAN										1991 NOV		-				1992 DEC	POTASSIUM (MG/L		_	_	-						1991 OCT		1992 FEB			1992 AUG		1992 DEC

TABLE 4 ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

DIST. SYSTEM WEST RIVER STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					32	177	016	054	. 134	110	095	707		•	•	•	• •	0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 0 0 0 0 0	12 000	000.31	11 600	15 100	13 ,00	000	0 100	000.6	00.00	8,000	8.100	10.700	,		٠		
DIST. SYSTĘM WEST RIVER FREE FLOW	GUIDELINE = N/A	329	309 NAF	781	896	.718	245	,000		. 155	.115	022	227						GUIDELINE = 30.0 (F2)	11 750	000000	12 100	15 100	13 800	8,700	9,550		9, 100	7,900	8,100	10,600			٠	٠	•
DIST. SYSTEM SOUTH ST STANDING		,						٠									148	.472	5	•	•	•	•								•				8.290	10.900
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = N/A	٠															107	997*	DET'N LIMIT = 0.1		•		•						•		•				8.280	10.680
TREATMENT PLANT TREATED	30RATORY)	272.	.299 NAF	.774	768.	.724	.171	960.	.028	. 197	. 109	053	075	999*	.372	.673	178	.502	1	11,600	10 700	12,000	15.500	13,100	9.200	8.350	8,700	9.200	8,000	8.050	10.500	16.380	8.880	15.360	8.370	10.800
TREATMENT PLANT	CHEMISTRY (LABORATORY) (DMNSLESS)	.481	.600 NAF	.801	.778	.804	. 292	.048 NAF	.276	267	.281	.057	.546	.791	. 156	.801	287	.667	^	12.600	10.550	12,400	12,700	13.600	000.6	8.800	000.6	9.100	8.200	8.150	10.300	13.620	9.880	14.880	8.510	10.780
TRE	CHEMISTRY LANGELIERS INDEX (DMNSLESS)				1991 APR		1991 JUN			1991 SEP				1992 APR				1992 OEC	MAGNESIUM (MG/L	1991 JAN	1991 FFB			1991 MAY			1991 AUG				1992 FEB	1992 APR	1992 JUN		1992 NOV	1992 DEC :

DIST, SYSTEM WEST RIVER STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	006.6	7.800	12,500.	14.400	12.600	000.9	8.500	8.200	8.400	5,600	6.300	10.900						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T> 900.	.002 <t< th=""><th>BOL</th><th>.004 <1</th><th>.004 <1</th><th>801</th><th>.012</th><th>BOL</th><th>108</th><th>. 801</th><th>BDL</th><th>T> 900.</th><th></th><th></th><th></th><th>٠</th><th></th></t<>	BOL	.004 <1	.004 <1	801	.012	BOL	108	. 801	BDL	T> 900.				٠	
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 200 (A4)	9.800	7.900	12,200	14.600	12.800	000.9	9.300	•	8.400	6.200	9.400	11.500						GUIDELINE = 0.05 (F2)	T> 900.	BDL	B0L	T> 000.	002 <t< td=""><td>80F</td><td>T> 900°</td><td></td><td>.004 <t< td=""><td>B0L</td><td>BOL</td><td>. 000,</td><td></td><td>٠</td><td></td><td></td><td>٠</td></t<></td></t<>	80F	T> 900°		.004 <t< td=""><td>B0L</td><td>BOL</td><td>. 000,</td><td></td><td>٠</td><td></td><td></td><td>٠</td></t<>	B0L	BOL	. 000,		٠			٠
DIST, SYSTEM SOUTH ST STANDING	Ino											•				٠	060.9	7.390	GUI		٠														T> 900.	BDL
OIST, SYSTEM DISOUTH ST SOU FREE FLOW ST	DET'N LIMIT = 0.20	٠	•						•				•				6.140	7.240	DET'N LIMIT = 0.002		٠		٠												.004 <1	BDL
TREATMENT PLANT	30RATORY)	6.400	8,000	12.300	15.000	12.000	6.200	006.9	6.800	7.800	5.800	6.100	11.700	17.390	7.270	16.860	6.130	7.400	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.002 <t< td=""><td>.002 <t< td=""><td>BDL</td><td>T> 800.</td><td>BOL</td><td>B0L</td><td>T> 800.</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>T> 800.</td><td>B0L</td><td>T> 700.</td><td>. 002 <t< td=""><td>BOL</td></t<></td></t<></td></t<>	.002 <t< td=""><td>BDL</td><td>T> 800.</td><td>BOL</td><td>B0L</td><td>T> 800.</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>T> 800.</td><td>B0L</td><td>T> 700.</td><td>. 002 <t< td=""><td>BOL</td></t<></td></t<>	BDL	T> 800.	BOL	B0L	T> 800.	BDL	BOL	BOL	BOL		T> 800.	B0L	T> 700.	. 002 <t< td=""><td>BOL</td></t<>	BOL
TREATMENT PLANT	CHEMISTRY (LABORATORY)	10.000	7.900	12.700	11.800	12.200	6.200	9.800	7.800	8,000	6.200	005*9	10.400	16.910	9.240	15,770	5.820	7.070	(MG/L)	.042	.002 <t< td=""><td>.022</td><td>T> 900.</td><td>.018</td><td>.042</td><td>.030</td><td>T> 400.</td><td>.012</td><td>T> 200.</td><td>.012</td><td>.028</td><td>.036</td><td>044</td><td>770"</td><td>BOL</td><td>*048</td></t<>	.022	T> 900.	.018	.042	.030	T> 400.	.012	T> 200.	.012	.028	.036	044	770"	BOL	*048
	SODIUM (MG/L	1991 JAN				1991 MAY	1991 JUN									1992 AUG		1992 DEC	AMMONIUM TOTAL (MG/L	1991 JAN	1991 FEB		1991 APR		1991 JUN					1991 NOV			1992 JUN			

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

						_																														1 1	
DIST. SYSTEM WEST RIVER STANDING	•	BDL	. BDL	BDL	108.	. 001 <t< td=""><td>708 ·</td><td>BOL</td><td>80</td><td>801</td><td>BUL</td><td>פטר</td><td>BUL</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.060</td><td>2.210</td><td>3.660</td><td>4.570</td><td>2.640</td><td>.780</td><td>.200</td><td>.025</td><td>.035</td><td>. 245</td><td>.370</td><td>1,550</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	70 8 ·	BOL	80	801	BUL	פטר	BUL							3.060	2.210	3.660	4.570	2.640	.780	.200	.025	.035	. 245	.370	1,550						
DIST, SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 1.0 (A1)	T> 100.	BDL	BOL	B0L	BDL	108	BDL		108	90r	108	BUL	•	•		,		GUIDELINE = 10.0 (A1)	3.060	2.210	3.800	7.800	2.620	.750	.250	٠	.030	.240	.380	1.820						
OIST. SYSTEM SOUTH ST STANDING						.*		•	•		•						. 001 <t< td=""><td>BDL</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.010</td><td>2,160</td><td></td></t<>	BDL			•							•							1.010	2,160	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.001										•	•					108	BDL	DET'N LIMIT = 0.005																1.030	2.090	
TREATMENT PLANT TREATED		.001 <t< td=""><td>BOL</td><td>108</td><td>.001 <t< td=""><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>80F</td><td>80F</td><td>108</td><td></td><td>> 100°</td><td>BOL</td><td>.001 <t< td=""><td>BDL</td><td>. B0L</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>3.000</td><td>2.190</td><td>3.680</td><td>5.060</td><td>2.530</td><td>006.</td><td>.080</td><td>.105</td><td>.050</td><td>.250</td><td>.370</td><td>1.590</td><td>4.320</td><td>.560</td><td>7.700</td><td>1.020</td><td>2.260</td><td></td></t<></td></t<></td></t<>	BOL	108	.001 <t< td=""><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>80F</td><td>80F</td><td>108</td><td></td><td>> 100°</td><td>BOL</td><td>.001 <t< td=""><td>BDL</td><td>. B0L</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>3.000</td><td>2.190</td><td>3.680</td><td>5.060</td><td>2.530</td><td>006.</td><td>.080</td><td>.105</td><td>.050</td><td>.250</td><td>.370</td><td>1.590</td><td>4.320</td><td>.560</td><td>7.700</td><td>1.020</td><td>2.260</td><td></td></t<></td></t<>	BDL	BDL	BOL	BOL	80F	80F	108		> 100°	BOL	.001 <t< td=""><td>BDL</td><td>. B0L</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>3.000</td><td>2.190</td><td>3.680</td><td>5.060</td><td>2.530</td><td>006.</td><td>.080</td><td>.105</td><td>.050</td><td>.250</td><td>.370</td><td>1.590</td><td>4.320</td><td>.560</td><td>7.700</td><td>1.020</td><td>2.260</td><td></td></t<>	BDL	. B0L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.000	2.190	3.680	5.060	2.530	006.	.080	.105	.050	.250	.370	1.590	4.320	.560	7.700	1.020	2.260	
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	.048	.011	.031	890.	.037	.023	T> 200.	500.	500.	1> 700.	.00%	600.	435	.013	.033	.037	.016	(WG/L)	2.940	2.210	3.450	3.340	2.650	.815	050.	T> 210.	.025	.230	.380	1,510	4.850	.590	7.540	506"	1.830	
	NITRITE (MG/L	1991 JAN							1991 AUG									1992 DEC	NITRATE (TOTAL) (MG/L	1991 JAN	1991 FEB			1991 MAY		1991 JUL			1991 OCT		1992 FEB	1992 APR			1992 NOV	1992 DEC	

TABLE 4 ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

			,																																				
DIST. SYSTEM WEST RIVER STANDING		. 360	220	310	0.00	1.800	.200	120	.160	T> 070.	.120	.140	.120	.210			٠				(A4)	8.070	8.060	8.380	8.210	8.270	8.140	8.130	8.090	8.200	8.110	076-2	072.8	0,740				٠	٠
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A	.380	250	230	017.	• !	. 190	. 130	.110		108	.190	.140	.170			•	•			GUIDELINE = 6.5-8.5 (A4)	8.050	8.060	8.370	8.250	8.260	8.220	8.120		8.200	8.120	8.010	8 240	097.9					
DIST. SYSTEM SOUTH ST STANDING				•														210	012.	2																		7.860	8.110
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.02							. •										000	022.	000	DET'N LIMIT = N/A											•	•					7.890	8.120
TREATMENT PLANT TREATED	BORATORY)	260	020:	002	066.	006.	. 190	.160	. 080 <t< td=""><td>.110</td><td>.100.</td><td>.140.</td><td>.210</td><td>.160</td><td>.330</td><td>. 200</td><td>700</td><td></td><td>090</td><td>007.</td><td>,</td><td>8.000</td><td>8 050</td><td>8 380</td><td>8 240</td><td>8 270</td><td>8 120</td><td>8.200</td><td>8.110</td><td>8.230</td><td>8 110</td><td>000</td><td>0000</td><td>8.290</td><td>8.170</td><td>8.340</td><td>8,260</td><td>7.840</td><td>8.130</td></t<>	.110	.100.	.140.	.210	.160	.330	. 200	700		090	007.	,	8.000	8 050	8 380	8 240	8 270	8 120	8.200	8.110	8.230	8 110	000	0000	8.290	8.170	8.340	8,260	7.840	8.130
IREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	780	000	014.	045.	2.150	.380	. 290	.280	.260	.420	. 260	.210	.340	.550	.420	630	0	000	0.44.		8 150	8 310	280	0.50	072.8	8 220	8 190	8.390	8 530	8 260	002.0	000.0	8.400	8.390	8.130	8.410	8,190	8.330
	CHEMIS CHEMIS NITROGEN TOT KJELO (MG/L	1001	NAU 1441	IVAI FEB			_	1991 JUN	1991 JUL			1991 OCT	1991 NOV	1992 FEB	1007 APR	1092 IIIN	1002 4110	1992 AUG	1992 NOV	_	PH (DMNSLESS)	1001 IAN		1001 MAD		1001 MAY			1001 ALIG		1001 OCT	1001 1001	NON 1661	1992 FEB					1992 DEC

DIST. SYSTEM WEST RIVER STANDING																																							
																				(F2)																			
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A	•		•			٠	٠	٠	•			•						٠	GUIDELINE = 0.40 (F2)	,		•			•	•	•	٠	•	•		٠	•	•			•	•
DIST. SYSTEM SOUTH ST STANDING	GUIDE														•					GUIDE																			٠
	0.0005																			0.002																			
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.0005						٠			٠					•	٠	•		٠	DET'N LIMIT = 0.002		•		•	•	•			•					•				•	
TREATMENT PLANT (TREATED	1	.001 <t< td=""><td>T/ 000</td><td>2000</td><td></td><td>.001 <t< td=""><td>BOL</td><td>T> 000:</td><td>BDL</td><td>BDL .</td><td>BOL</td><td>BDL</td><td>108</td><td>108</td><td>BDL.</td><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>Q</td><td>aui</td><td>200</td><td>BUL</td><td>1> 500.</td><td>.025</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>801</td><td>BOL</td><td>BOL</td><td>B0L</td><td>BOL</td><td>T> 700.</td><td>004 <t< td=""><td>17 700</td><td>1000</td><td></td></t<></td></t<></td></t<>	T/ 000	2000		.001 <t< td=""><td>BOL</td><td>T> 000:</td><td>BDL</td><td>BDL .</td><td>BOL</td><td>BDL</td><td>108</td><td>108</td><td>BDL.</td><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>Q</td><td>aui</td><td>200</td><td>BUL</td><td>1> 500.</td><td>.025</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>801</td><td>BOL</td><td>BOL</td><td>B0L</td><td>BOL</td><td>T> 700.</td><td>004 <t< td=""><td>17 700</td><td>1000</td><td></td></t<></td></t<>	BOL	T> 000:	BDL	BDL .	BOL	BDL	108	108	BDL.	BOL	BOL	BOL		Q	aui	200	BUL	1> 500.	.025	BOL	BOL	BDL	BDL	801	BOL	BOL	B0L	BOL	T> 700.	004 <t< td=""><td>17 700</td><td>1000</td><td></td></t<>	17 700	1000	
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY) REACT (MG/L)	-045	200	000.	.033	.052	500.	.015	700	.011	,000	T> 100.	200°	T> 200.	.001 <t< td=""><td>900.</td><td>.003 <t< td=""><td>.054</td><td>.029</td><td>r (MG/L)</td><td>UBA</td><td></td><td>020.</td><td>.087</td><td>.055</td><td>.033</td><td>.043</td><td>.024</td><td>.037</td><td>.041</td><td>.014</td><td>.014</td><td>.014</td><td>.021</td><td>.071</td><td>028</td><td>113</td><td>211.</td><td>.045</td></t<></td></t<>	900.	.003 <t< td=""><td>.054</td><td>.029</td><td>r (MG/L)</td><td>UBA</td><td></td><td>020.</td><td>.087</td><td>.055</td><td>.033</td><td>.043</td><td>.024</td><td>.037</td><td>.041</td><td>.014</td><td>.014</td><td>.014</td><td>.021</td><td>.071</td><td>028</td><td>113</td><td>211.</td><td>.045</td></t<>	.054	.029	r (MG/L)	UBA		020.	.087	.055	.033	.043	.024	.037	.041	.014	.014	.014	.021	.071	028	113	211.	.045
	CHEMISTR PHOSPHORUS FIL REACT (MG/L	1001 IAN				1991 APR													1992 DEC	PHOSPHORUS TOTAL (MG/L	1001									1991 SEP			1992 FEB					1992 NOV	1992 DEC

DIST. SYSTEM WEST RIVER STANDING			228.000 CRO	276.000 CRO	340.000 CRO	272.000 CRO	173.000 CRO	167.000 CRO				209.000 CRO						1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	44.820	35.950	37.300	47.750	43.260	26.040	29.110	27.150	27.500	24,390	22.460	30.370					
DIST, SYSTEM DI WEST RIVER WE FREE FLOW ST	GUIDELINE = 500 (A3)			280.000 CRO	344,000 CRO	271,000 CRO		172,000 CRO		159.000 CRO		106.000 CRO						GU10ELINE = 500 (A3)	43.540	36.170	37.990	48.280	43.220	26.010	30.240		28.260	25.290	23.210	30.850					
DIST. SYSTEM SOUTH ST STANDING	100											٠				188,000 CRO	246.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				٠	٠					٠						43.410	31.980
DISI. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = N/A		•													190,000 CRO	241.000	DET'N LIMIT = 0.20					٠	•			•				٠			41.190	31.790
TREATMENT PLANT TREATED				274.000 CRO	355.000 CRO		178.000 CRO		166.000 CRO	159.000 CRO	159.000 CRO	220,000 CRO	325.000 CRO	179,000 CRO	318,000 CRO		247,000		42.590	74.480	37.080	48.530	42,150	26.680	26.330	24.800	27.310	24.750	22.880	31.740	51.860	26.290	086.44	43.300	32.140
TREATMENT PLANT	CHEMISTRY (LABORATORY) (MG/L)		223.000 CRO		281.000 CRO		170.000 CRO				158.000 CRO	206.000 CRO	330,000 CRO		298,000 CRO		228.000		36.770	28.410	37.940	32.570	34.690	20.270	20.250	20.180	20.970	18.120	17.890	26.670	47.730	24,310	38.270	19.540	25.580
	CHEM RESIDUE FILTRATE (MG/L	1991 JAN	1991 FEB		1991 APR		1991 JUN		1991 SEP	1991 0CT	1991 NOV	1992 FEB	1992 APR.		1992 AUG			SULPHATE (MG/L					1991 MAY	1991 JUN			1991 SEP		1991 NOV		1992 APR	1992 JUN	1992 AUG		1992 DEC

Page 30

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

DIST. SYSTEM WEST RIVER STANDING		0.470	.100	. 180	.320	1> 041.	170	001.	. 140	.200	108	.230 <1	T> 090.					
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 1.0 (A1)	.700	.050	.110	.160 <t< td=""><td>.170 <t< td=""><td>100</td><td>.070</td><td>• !</td><td>. 180</td><td>108</td><td>.240 <t< td=""><td>.100 <</td><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	.170 <t< td=""><td>100</td><td>.070</td><td>• !</td><td>. 180</td><td>108</td><td>.240 <t< td=""><td>.100 <</td><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	100	.070	• !	. 180	108	.240 <t< td=""><td>.100 <</td><td></td><td></td><td></td><td></td><td></td></t<>	.100 <					
DIST. SYSTEM SOUTH ST STANDING	GUIDE										,						.400	1> 071.
DIST, SYSTEM COUTH ST FREE FLOW	DET'N LIMIT = 0.05		٠.														.230 <1	.200 <t< td=""></t<>
TREATMENT PLANT TREATED		.300	.100	.120	.260	T> 080.	. 190	, 160	350	094.	1> 070.	1> 077	108	.370	.290	.480	.220· <t< td=""><td>T> 012.</td></t<>	T> 012.
TREATMENT PLANT	CHEMISTRY (LABORATORY)	.310	5.800 RRV	53,000	160,000	22.000	17.000	9.200	35,000	26.000	3,900	10,600	3.800	14.200	58,000	11,000	95,000	22,100
	TURBIDITY (FTU	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 001	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 NOV	1992 DEC

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

DIST. SYSTEM WEST RIVER

DIST. SYSTEM WEST RIVER

DIST. SYSTEM SOUTH ST

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW SOUTH ST

		METALS						
BOL BOL BOL BOL BOL BOL BOL	SILVER (UG/L	^		DET'N LIMIT = 0.05		GUIDELINE = N/A		
390.000 22.000 25.000 27.000 2	62 SAMPLES	BOL	BOL	BOL	BDL	BOL	108	
390,000	ALUMINUM (UG/L	^		DET'N LIMIT = 0.10		GUIDELINE = 100 (A4)		
79,000 31,000 5,000 29,000 82,000 82,000 120,000 120,000 120,000 82,000 120,00		390.000	22.000	٠		22.000	23.000	. *
\$80.000		79,000	31.000			29.000	29,000	
880.000 170.000 180.000 110.000 110.000 110.000 150.000 350.000 150.00		430.000	51.000			57.000	47.000	
250,000 120,000 110,000 110,000 110,000 150,00		880.000	74.000			92.000	82,000	
150.000 150.	MAY	250.000	120,000			110.000	110,000	
150,000 350,000 350,000 350,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 250,000 250,000 250,000 18,000 18,000 290,000 210,000 18,000 18,000 17,000 18,000 250,000 250,000 18,000 35,000 35,000 250,000 18,000 18,000 17,000 18,000 18,000 17,000 18,000 18,000 17,000 18,000 18,000 17,000 18,000 18,000 17,000 18,000 18,000 18,000 17,000 18,000 18,000 17,000 18,000 18,000 18,000 17,000 18,000 18,000 18,000 17,000 18,000 1	NOC	300.000	160.000		•	150.000	130,000	
280,000 220,000 330,000 560,000 550,00	JUL	150,000	350,000	,	•	340.000	330,000	
220,000 30,000 35,000 55,000 55,000 55,000 55,000 55,000 55,000 55,000 55,000 56,000 55,000 56,000 5	I AUG	280.000	220,000		•	300.000	260.000	
95,000 58,000 56,000 48,000 57,000 57,000 55	SEP	220.000	300,000			330,000	260.000	
120.000 38.000 49.000 69.000 120.000 1	1 OCT	95.000	58,000			53.000	54.000	
55.000 56.000 120.000 18.000 18.000 10.000 210.000 210.000 18.000 18.000 17.000 18.000 18.000 17.000 18.000 17.000 18.000 17.000 18.000 17.000 18.000 18.000 17.000 18.000 17.000 18.000 17.000 18.000 17.000 18.000 17.000 18.000 17.000 17.000 18.000 17.000	NOV	120,000	38,000			39.000	49.000	
APR 160.000 120.000 18.000 18.000 18.000 18.000 17.000 17.000 18.000 18.000 17.000 17.000 17.000 18.000 18.000 17.	FFR	55.000	26.000			78.000	50.000	
290.000 210.000 18.000 18.000 18.000 18.000 17.000 18.000 18.000 18.000 17.000 19.000	APP	160 000	120 000		•			
18,000	11111	200 000	210 000	•	•			
760.000 17.000 18.000 18.000 18.000 17.000 17.000 18.000 32.000 32.000 17.000 19.000 1		140 000	350 000		•	•	•	
10.000 1		100.000	12 000	, 000	. 000	٠		
Second S5.000 S2.000 S		000.007	000.71	10.000	18,000			
) 560 <t 80l<="" td=""><td></td><td>210.000</td><td>70.000</td><td>35.000</td><td>32.000</td><td></td><td></td><td></td></t>		210.000	70.000	35.000	32.000			
JAN 560 <t 180="" 180<="" 190="" 801="" 802="" <t="" th=""><th>1/90)</th><th>^</th><th></th><th>DET'N LIMIT = 0.10</th><th></th><th>GUIDELINE = 25 (A1)</th><th></th><th></th></t>	1/90)	^		DET'N LIMIT = 0.10		GUIDELINE = 25 (A1)		
FEB 3590 <t< th=""> BDL .200 <t< th=""> .160 MAR .560 <t< td=""> BDL .380 <t< td=""> .160 APR .680 <t< td=""> BDL .380 <t< td=""> .801 .801 MAY .430 <t< td=""> .270 <t< td=""> .350 .350 .350 .350 .350 .350 .400 .350 .400</t<></t<></t<></t<></t<></t<></t<></t<>			B0L	,	•	T> 091.	801	
MAR S60 < BDL			BOL		•	.200 <t< td=""><td></td><td></td></t<>		
AAPR680 <† 80L			B0L		•	.380 <t< td=""><td>BOL</td><td></td></t<>	BOL	
MAY .430 <t .80<="" .80l="" bdl="" td=""><td></td><td></td><td>BOL</td><td>٠</td><td>٠</td><td>BDL</td><td>BOL</td><td></td></t>			BOL	٠	٠	BDL	BOL	
JUN 950 <t 180="" 270="" 350="" 440="" 580="" 590="" 5<="" <t="" jul="" td=""><td></td><td></td><td>BOL</td><td></td><td></td><td>B0L</td><td>BOL</td><td></td></t>			BOL			B0L	BOL	
Jul. 890 ct 360 ct				٠		.300 <t< td=""><td></td><td></td></t<>		
AUG 1.300 5.30 c1 5.10 5.50 c7 5.10 c7 5.20 c7 5				٠	٠	BDL		
SEP .580 <t .130="" .190="" .1<="" <t="" td=""><td></td><td>1,300</td><td>.530 <t< td=""><td></td><td></td><td>1> 067.</td><td></td><td></td></t<></td></t>		1,300	.530 <t< td=""><td></td><td></td><td>1> 067.</td><td></td><td></td></t<>			1> 067.		
0CT 510 <t 360="" <<="" <t="" td=""><td></td><td></td><td>.130 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t>			.130 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
NOV 530 <t 290="" <<="" <t="" td=""><td></td><td></td><td>.360 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t>			.360 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
FEB .330 <t .280="" .350<br="" <t="">APR .320 <t .380="" .800="" <t="" <t<="" td=""><td></td><td></td><td>7> 062</td><td></td><td></td><td></td><td></td><td></td></t></t>			7> 062					
APR .320 <t .190="" .280="" .300="" .380="" .700="" .760="" .950="" <t="" <t<="" b01.="" jun="" td=""><td></td><td>.330 <1</td><td>.280 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t>		.330 <1	.280 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
AUG . 380 <t .="" 380="" <t="" td="" ×t="" ×t<=""><td>APR</td><td>.320 <t< td=""><td>BOL</td><td></td><td></td><td></td><td></td><td></td></t<></td></t>	APR	.320 <t< td=""><td>BOL</td><td></td><td></td><td></td><td></td><td></td></t<>	BOL					
MOV 7.66 cT 7.950 cT 2.00 cT 7.00 cT 7	2				•			
NOV 7.60 <t 200="" 200<="" 3190="" <t="" td=""><td>ALIG</td><td></td><td></td><td></td><td></td><td>•</td><td>٠</td><td></td></t>	ALIG					•	٠	
T 002 T 010				280 <t< td=""><td>076</td><td></td><td></td><td></td></t<>	076			
				1000				

RAW	TREATED	SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING
-METALS		DET'N LIMIT = 0.05		GUIDELINE = 1000 (A2)	
23.000	17.000			18,000	18,000
17.000	16.000			15.000	16.000
25,000	18,000	٠		19.000	18,000
45.000	28.000			27.000	26.000
26.000	26.000			23.000	. 24,000
20.000	17.000			18.000	18.000
15,000	18.000			17,000	18,000
19.000	18.000			20,000	19.000
17 000	19.000			19.000	19,000
16 000	14.000			14.000	14.000
16.000	14,000			14.000	15.000
000.01	10 000	•		18 000	18.000
34,000	22 000				
000.02	23.000				•
20.000	17.000				
.32.000	32,000		•		
25.000	22.000	23.000	24.000		
23.000	20.000	20.000	21.000		
	1	DET'N LIMIT = 2.00		GUIDELINE = 5000 (A1)	•
27.000	21,000		٠	28,000	27.000
16,000 <t< td=""><td>19,000 <t< td=""><td>•</td><td></td><td>19.000 <t< td=""><td></td></t<></td></t<></td></t<>	19,000 <t< td=""><td>•</td><td></td><td>19.000 <t< td=""><td></td></t<></td></t<>	•		19.000 <t< td=""><td></td></t<>	
22,000	20.000 <t< td=""><td></td><td></td><td>21.000</td><td>19.000 <t< td=""></t<></td></t<>			21.000	19.000 <t< td=""></t<>
19.000 <t< td=""><td>23,000</td><td>٠.</td><td></td><td>29.000</td><td>27.000</td></t<>	23,000	٠.		29.000	27.000
26.000	27.000			29,000	29,000
21.000	17,000 <t< td=""><td></td><td>•</td><td>19.000 <t< td=""><td>18,000 <t< td=""></t<></td></t<></td></t<>		•	19.000 <t< td=""><td>18,000 <t< td=""></t<></td></t<>	18,000 <t< td=""></t<>
23,000	25,000			23.000	25,000
21.000	20,000 <t< td=""><td>٠</td><td>•</td><td>29,000</td><td>28.000</td></t<>	٠	•	29,000	28.000
18.000 <t< td=""><td>21,000</td><td></td><td></td><td>27.000</td><td>32.000</td></t<>	21,000			27.000	32.000
19.000 <t< td=""><td>18,000 <t< td=""><td>. •</td><td></td><td>19,000 <t< td=""><td>19.000 <t< td=""></t<></td></t<></td></t<></td></t<>	18,000 <t< td=""><td>. •</td><td></td><td>19,000 <t< td=""><td>19.000 <t< td=""></t<></td></t<></td></t<>	. •		19,000 <t< td=""><td>19.000 <t< td=""></t<></td></t<>	19.000 <t< td=""></t<>
	15.000 <t< td=""><td></td><td></td><td>15.000 <t< td=""><td>15,000 <t< td=""></t<></td></t<></td></t<>			15.000 <t< td=""><td>15,000 <t< td=""></t<></td></t<>	15,000 <t< td=""></t<>
17.000 <t< td=""><td>19.000 <t< td=""><td></td><td></td><td></td><td></td></t<></td></t<>	19.000 <t< td=""><td></td><td></td><td></td><td></td></t<>				
30.000	33.000				•
19,000 <t< td=""><td>17,000 <t< td=""><td></td><td></td><td></td><td></td></t<></td></t<>	17,000 <t< td=""><td></td><td></td><td></td><td></td></t<>				
45.000	92.000				
23,000		27.000	28.000		
22 000	7, 000 00	000 20	000 /6		

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

																		-																		
WEST RIVER STANDING		BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	. BDL	BDL	BUL	.•	•	•	•			BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	. BDL	BOL	BDL	BOL				•	•
WEST RIVER FREE FLOW	GUIDELINE = 6800 (04)	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BDL 070 it	1> 0/0.						GUIDELINE = 5.0 (A1)	BOL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BOL	BOL	BOL			•		
SOUTH ST STANDING																. [08	RO I			٠			•		٠			. •	,						BDL	BOL
SOUTH ST FREE FLOW	DET'N 'LIMIT = 0.05										•					· IUB	1 G		DET'N LIMIT = 0.05	٠		٠.					٠.		•					• ,	BOL	BDI
TREATED		BDL	BDL	BDL	BDL	BDL	BDL	T> 001.	BDL	BDL	BOL	801	BOL	801	80L	1001.	. E			BDL	BOL	BDL	BOL	BDL	BDL	BDL	BDL	BDL	8DL	BDL	BDL	BDL	T> 070.	BOL	BDL	RDI
RAW	METALS)	1> 070.	BDL	. 110 <t< td=""><td>. 100 <t< td=""><td>BDL</td><td>. BDL</td><td>110 <t< td=""><td>.070 <1</td><td>BDL</td><td>BDL</td><td>80r</td><td>BDL</td><td>80L</td><td>BDL BB:</td><td>BDL Non <t< td=""><td>1> 070</td><td></td><td>^</td><td>BDL</td><td>T> 070.</td><td>BOL</td><td>.140 <t< td=""><td>.070 <t< td=""><td>B0L</td><td>BOL</td><td>B0L</td><td>BDL</td><td>BDL</td><td>BDL</td><td>.120 <⊺</td><td>80L</td><td>. 180 <t< td=""><td>BDL</td><td>.080 ×T</td><td>RDI</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>BDL</td><td>. BDL</td><td>110 <t< td=""><td>.070 <1</td><td>BDL</td><td>BDL</td><td>80r</td><td>BDL</td><td>80L</td><td>BDL BB:</td><td>BDL Non <t< td=""><td>1> 070</td><td></td><td>^</td><td>BDL</td><td>T> 070.</td><td>BOL</td><td>.140 <t< td=""><td>.070 <t< td=""><td>B0L</td><td>BOL</td><td>B0L</td><td>BDL</td><td>BDL</td><td>BDL</td><td>.120 <⊺</td><td>80L</td><td>. 180 <t< td=""><td>BDL</td><td>.080 ×T</td><td>RDI</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	. BDL	110 <t< td=""><td>.070 <1</td><td>BDL</td><td>BDL</td><td>80r</td><td>BDL</td><td>80L</td><td>BDL BB:</td><td>BDL Non <t< td=""><td>1> 070</td><td></td><td>^</td><td>BDL</td><td>T> 070.</td><td>BOL</td><td>.140 <t< td=""><td>.070 <t< td=""><td>B0L</td><td>BOL</td><td>B0L</td><td>BDL</td><td>BDL</td><td>BDL</td><td>.120 <⊺</td><td>80L</td><td>. 180 <t< td=""><td>BDL</td><td>.080 ×T</td><td>RDI</td></t<></td></t<></td></t<></td></t<></td></t<>	.070 <1	BDL	BDL	80r	BDL	80L	BDL BB:	BDL Non <t< td=""><td>1> 070</td><td></td><td>^</td><td>BDL</td><td>T> 070.</td><td>BOL</td><td>.140 <t< td=""><td>.070 <t< td=""><td>B0L</td><td>BOL</td><td>B0L</td><td>BDL</td><td>BDL</td><td>BDL</td><td>.120 <⊺</td><td>80L</td><td>. 180 <t< td=""><td>BDL</td><td>.080 ×T</td><td>RDI</td></t<></td></t<></td></t<></td></t<>	1> 070		^	BDL	T> 070.	BOL	.140 <t< td=""><td>.070 <t< td=""><td>B0L</td><td>BOL</td><td>B0L</td><td>BDL</td><td>BDL</td><td>BDL</td><td>.120 <⊺</td><td>80L</td><td>. 180 <t< td=""><td>BDL</td><td>.080 ×T</td><td>RDI</td></t<></td></t<></td></t<>	.070 <t< td=""><td>B0L</td><td>BOL</td><td>B0L</td><td>BDL</td><td>BDL</td><td>BDL</td><td>.120 <⊺</td><td>80L</td><td>. 180 <t< td=""><td>BDL</td><td>.080 ×T</td><td>RDI</td></t<></td></t<>	B0L	BOL	B0L	BDL	BDL	BDL	.120 <⊺	80L	. 180 <t< td=""><td>BDL</td><td>.080 ×T</td><td>RDI</td></t<>	BDL	.080 ×T	RDI
8	BERYLLIUM (UG/L	1991 JAN	1991 FEB		1991 APR		1991 JUN			1991 SEP				1992 APR		1992 AUG	1002 DEC		CADMIUM (UG/L		1991 FEB		1991 APR	1991 MAY		1991 JUL	1991 AUG		1991 OCT					1992 AUG	1992 NOV	

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

STEM DIST. SYSTEM DIST. SYSTEM WEST RIVER FREE FLOW STANDING:	GUIDELINE = N/A	130 <1	<t .="" 130<="" th=""><th>×T - 110</th><th>80L 80L</th><th>. 1></th><th><t>.080</t></th><th> ∨</th><th><t> .080</t></th><th>ott. T></th><th></th><th><t .070<="" th=""><th></th><th></th><th></th><th></th><th>. 140 <1</th><th>.070</th><th>GUIDELINE = 50.0 (A1)</th><th>3.000 <t 2.800="" <t<="" th=""><th>-1</th><th>. 2.400 <t 1.900="" <t<="" th=""><th></th><th>-1></th><th>069° 1></th><th>.820</th><th><t 1.300<="" th=""><th><t 2.400<="" th=""><th>△ 1.</th><th>108 108 · ·</th><th></th><th></th><th></th><th></th><th>2.100 <t< th=""></t<></th></t></th></t></th></t></th></t></th></t></th></t>	×T - 110	80L 80L	. 1>	<t>.080</t>	∨	<t> .080</t>	ott. T>		<t .070<="" th=""><th></th><th></th><th></th><th></th><th>. 140 <1</th><th>.070</th><th>GUIDELINE = 50.0 (A1)</th><th>3.000 <t 2.800="" <t<="" th=""><th>-1</th><th>. 2.400 <t 1.900="" <t<="" th=""><th></th><th>-1></th><th>069° 1></th><th>.820</th><th><t 1.300<="" th=""><th><t 2.400<="" th=""><th>△ 1.</th><th>108 108 · ·</th><th></th><th></th><th></th><th></th><th>2.100 <t< th=""></t<></th></t></th></t></th></t></th></t></th></t>					. 140 <1	.070	GUIDELINE = 50.0 (A1)	3.000 <t 2.800="" <t<="" th=""><th>-1</th><th>. 2.400 <t 1.900="" <t<="" th=""><th></th><th>-1></th><th>069° 1></th><th>.820</th><th><t 1.300<="" th=""><th><t 2.400<="" th=""><th>△ 1.</th><th>108 108 · ·</th><th></th><th></th><th></th><th></th><th>2.100 <t< th=""></t<></th></t></th></t></th></t></th></t>	-1	. 2.400 <t 1.900="" <t<="" th=""><th></th><th>-1></th><th>069° 1></th><th>.820</th><th><t 1.300<="" th=""><th><t 2.400<="" th=""><th>△ 1.</th><th>108 108 · ·</th><th></th><th></th><th></th><th></th><th>2.100 <t< th=""></t<></th></t></th></t></th></t>		-1>	069° 1>	.820	<t 1.300<="" th=""><th><t 2.400<="" th=""><th>△ 1.</th><th>108 108 · ·</th><th></th><th></th><th></th><th></th><th>2.100 <t< th=""></t<></th></t></th></t>	<t 2.400<="" th=""><th>△ 1.</th><th>108 108 · ·</th><th></th><th></th><th></th><th></th><th>2.100 <t< th=""></t<></th></t>	△ 1.	108 108 · ·					2.100 <t< th=""></t<>
DIST. SYSTEM DIST. SYSTEM SOUTH ST FREE FLOW STANDING	DET'N LIMIT = 0.02						,												DET'N LIMIT = 0.50											•					2.200 <t 2.<="" td=""></t>
TREATMENT PLANT TREATED	1	100 <1		190 <1	BDL	.200 <t< td=""><td>T> 080</td><td>.420 <t< td=""><td>.110 <t< td=""><td>. 120 .<t< td=""><td>T> 080.</td><td>T> 021.</td><td>T> 071.</td><td>.260 <</td><td>.270 <t< td=""><td>.290 <t< td=""><td></td><td>T> 090.</td><td></td><td>1.200 <1</td><td>1,600 <t< td=""><td>2,400 <7</td><td>B0L</td><td>2.100 <t< td=""><td>BOL</td><td>1,700 <1</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>.580 <t< td=""><td>BOL</td><td>1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 080	.420 <t< td=""><td>.110 <t< td=""><td>. 120 .<t< td=""><td>T> 080.</td><td>T> 021.</td><td>T> 071.</td><td>.260 <</td><td>.270 <t< td=""><td>.290 <t< td=""><td></td><td>T> 090.</td><td></td><td>1.200 <1</td><td>1,600 <t< td=""><td>2,400 <7</td><td>B0L</td><td>2.100 <t< td=""><td>BOL</td><td>1,700 <1</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>.580 <t< td=""><td>BOL</td><td>1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.110 <t< td=""><td>. 120 .<t< td=""><td>T> 080.</td><td>T> 021.</td><td>T> 071.</td><td>.260 <</td><td>.270 <t< td=""><td>.290 <t< td=""><td></td><td>T> 090.</td><td></td><td>1.200 <1</td><td>1,600 <t< td=""><td>2,400 <7</td><td>B0L</td><td>2.100 <t< td=""><td>BOL</td><td>1,700 <1</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>.580 <t< td=""><td>BOL</td><td>1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 120 . <t< td=""><td>T> 080.</td><td>T> 021.</td><td>T> 071.</td><td>.260 <</td><td>.270 <t< td=""><td>.290 <t< td=""><td></td><td>T> 090.</td><td></td><td>1.200 <1</td><td>1,600 <t< td=""><td>2,400 <7</td><td>B0L</td><td>2.100 <t< td=""><td>BOL</td><td>1,700 <1</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>.580 <t< td=""><td>BOL</td><td>1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 080.	T> 021.	T> 071.	.260 <	.270 <t< td=""><td>.290 <t< td=""><td></td><td>T> 090.</td><td></td><td>1.200 <1</td><td>1,600 <t< td=""><td>2,400 <7</td><td>B0L</td><td>2.100 <t< td=""><td>BOL</td><td>1,700 <1</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>.580 <t< td=""><td>BOL</td><td>1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.290 <t< td=""><td></td><td>T> 090.</td><td></td><td>1.200 <1</td><td>1,600 <t< td=""><td>2,400 <7</td><td>B0L</td><td>2.100 <t< td=""><td>BOL</td><td>1,700 <1</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>.580 <t< td=""><td>BOL</td><td>1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		T> 090.		1.200 <1	1,600 <t< td=""><td>2,400 <7</td><td>B0L</td><td>2.100 <t< td=""><td>BOL</td><td>1,700 <1</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>.580 <t< td=""><td>BOL</td><td>1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2,400 <7	B0L	2.100 <t< td=""><td>BOL</td><td>1,700 <1</td><td>BOL</td><td>BOL</td><td>1,700 <t< td=""><td>.580 <t< td=""><td>BOL</td><td>1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BOL	1,700 <1	BOL	BOL	1,700 <t< td=""><td>.580 <t< td=""><td>BOL</td><td>1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.580 <t< td=""><td>BOL</td><td>1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<></td></t<>	BOL	1.300 <t< td=""><td>BOL</td><td>2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<></td></t<>	BOL	2.600 <t< td=""><td>2.000 <t< td=""></t<></td></t<>	2.000 <t< td=""></t<>
TREATMENT PLANT	METALS	270 <1		L> 055	T> 000°.	T> 097°	.340 <t< td=""><td>.510 <t< td=""><td>T> 025.</td><td>.330 <↑</td><td>T> 091.</td><td>.190 <t< td=""><td>.180 <t< td=""><td></td><td>T> 099.</td><td>. L> 055°</td><td></td><td>.230 <7</td><td>(</td><td>3,400 <1</td><td>.810 <t< td=""><td>2,900 <t< td=""><td>1,300 <t< td=""><td>3,100 <t< td=""><td>2.500 <1</td><td>. 2.400 <t< td=""><td>1,500 <t< td=""><td>. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.510 <t< td=""><td>T> 025.</td><td>.330 <↑</td><td>T> 091.</td><td>.190 <t< td=""><td>.180 <t< td=""><td></td><td>T> 099.</td><td>. L> 055°</td><td></td><td>.230 <7</td><td>(</td><td>3,400 <1</td><td>.810 <t< td=""><td>2,900 <t< td=""><td>1,300 <t< td=""><td>3,100 <t< td=""><td>2.500 <1</td><td>. 2.400 <t< td=""><td>1,500 <t< td=""><td>. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 025.	.330 <↑	T> 091.	.190 <t< td=""><td>.180 <t< td=""><td></td><td>T> 099.</td><td>. L> 055°</td><td></td><td>.230 <7</td><td>(</td><td>3,400 <1</td><td>.810 <t< td=""><td>2,900 <t< td=""><td>1,300 <t< td=""><td>3,100 <t< td=""><td>2.500 <1</td><td>. 2.400 <t< td=""><td>1,500 <t< td=""><td>. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.180 <t< td=""><td></td><td>T> 099.</td><td>. L> 055°</td><td></td><td>.230 <7</td><td>(</td><td>3,400 <1</td><td>.810 <t< td=""><td>2,900 <t< td=""><td>1,300 <t< td=""><td>3,100 <t< td=""><td>2.500 <1</td><td>. 2.400 <t< td=""><td>1,500 <t< td=""><td>. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		T> 099.	. L> 055°		.230 <7	(3,400 <1	.810 <t< td=""><td>2,900 <t< td=""><td>1,300 <t< td=""><td>3,100 <t< td=""><td>2.500 <1</td><td>. 2.400 <t< td=""><td>1,500 <t< td=""><td>. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2,900 <t< td=""><td>1,300 <t< td=""><td>3,100 <t< td=""><td>2.500 <1</td><td>. 2.400 <t< td=""><td>1,500 <t< td=""><td>. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1,300 <t< td=""><td>3,100 <t< td=""><td>2.500 <1</td><td>. 2.400 <t< td=""><td>1,500 <t< td=""><td>. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	3,100 <t< td=""><td>2.500 <1</td><td>. 2.400 <t< td=""><td>1,500 <t< td=""><td>. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.500 <1	. 2.400 <t< td=""><td>1,500 <t< td=""><td>. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	1,500 <t< td=""><td>. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<></td></t<>	. 780 <t< td=""><td></td><td>T> 096.</td><td>BOL</td><td></td><td>1> 057.</td><td>550 <t< td=""><td>2.300 <t< td=""></t<></td></t<></td></t<>		T> 096.	BOL		1> 057.	550 <t< td=""><td>2.300 <t< td=""></t<></td></t<>	2.300 <t< td=""></t<>
	.COBALT (UG/L	1001															1992 NOV		CHROMIUM (UG/L	1991 JAN	1991 FEB		1991,APR	1991 MAY			1991 AUG				1992 FEB		1992 JUN		1992 NOV

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

DIST. SYSTEM WEST RIVER STANDING		006.6	2.400 <1	7,900	15,000	7.100	7.500	2.900	2 700 <t< th=""><th>3 300 cT</th><th>002</th><th>2.500</th><th>22.000</th><th>7.100</th><th></th><th>•</th><th></th><th>,</th><th></th><th></th><th></th><th>108</th><th>BOL</th><th>000.66</th><th>801</th><th>8,000 <t< th=""><th>BOL</th><th>BOL</th><th>80r</th><th>108</th><th>BOL</th><th>B0L</th><th>6.800 <t< th=""><th></th><th></th><th></th><th></th><th>٠</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th></t<></th></t<></th></t<>	3 300 cT	002	2.500	22.000	7.100		•		,				108	BOL	000.66	801	8,000 <t< th=""><th>BOL</th><th>BOL</th><th>80r</th><th>108</th><th>BOL</th><th>B0L</th><th>6.800 <t< th=""><th></th><th></th><th></th><th></th><th>٠</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th></t<></th></t<>	BOL	BOL	80r	108	BOL	B0L	6.800 <t< th=""><th></th><th></th><th></th><th></th><th>٠</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th></t<>					٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 1000 (A3)	3,100 <t< th=""><th></th><th>2,000 <t< th=""><th>2,900 <t< th=""><th>3,800 <t< th=""><th>2, 700 <t< th=""><th>1> 007.2</th><th>1 800 cT</th><th>1 100 / 1</th><th>1,000 4</th><th>1.800 <1</th><th>2.400 <t< th=""><th>2.200 <1</th><th>٠</th><th></th><th></th><th>٠</th><th></th><th>GUIDELINE = 300 (A3)</th><th></th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>BOL</th><th>108</th><th>BDL</th><th>1> 006.9</th><th>BDL</th><th>108</th><th>108</th><th>BDL</th><th></th><th></th><th></th><th></th><th></th><th>GUIDELINE = 1.0 (A1)</th><th>1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>		2,000 <t< th=""><th>2,900 <t< th=""><th>3,800 <t< th=""><th>2, 700 <t< th=""><th>1> 007.2</th><th>1 800 cT</th><th>1 100 / 1</th><th>1,000 4</th><th>1.800 <1</th><th>2.400 <t< th=""><th>2.200 <1</th><th>٠</th><th></th><th></th><th>٠</th><th></th><th>GUIDELINE = 300 (A3)</th><th></th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>BOL</th><th>108</th><th>BDL</th><th>1> 006.9</th><th>BDL</th><th>108</th><th>108</th><th>BDL</th><th></th><th></th><th></th><th></th><th></th><th>GUIDELINE = 1.0 (A1)</th><th>1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th></t<></th></t<></th></t<></th></t<></th></t<>	2,900 <t< th=""><th>3,800 <t< th=""><th>2, 700 <t< th=""><th>1> 007.2</th><th>1 800 cT</th><th>1 100 / 1</th><th>1,000 4</th><th>1.800 <1</th><th>2.400 <t< th=""><th>2.200 <1</th><th>٠</th><th></th><th></th><th>٠</th><th></th><th>GUIDELINE = 300 (A3)</th><th></th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>BOL</th><th>108</th><th>BDL</th><th>1> 006.9</th><th>BDL</th><th>108</th><th>108</th><th>BDL</th><th></th><th></th><th></th><th></th><th></th><th>GUIDELINE = 1.0 (A1)</th><th>1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th></t<></th></t<></th></t<></th></t<>	3,800 <t< th=""><th>2, 700 <t< th=""><th>1> 007.2</th><th>1 800 cT</th><th>1 100 / 1</th><th>1,000 4</th><th>1.800 <1</th><th>2.400 <t< th=""><th>2.200 <1</th><th>٠</th><th></th><th></th><th>٠</th><th></th><th>GUIDELINE = 300 (A3)</th><th></th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>BOL</th><th>108</th><th>BDL</th><th>1> 006.9</th><th>BDL</th><th>108</th><th>108</th><th>BDL</th><th></th><th></th><th></th><th></th><th></th><th>GUIDELINE = 1.0 (A1)</th><th>1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th></t<></th></t<></th></t<>	2, 700 <t< th=""><th>1> 007.2</th><th>1 800 cT</th><th>1 100 / 1</th><th>1,000 4</th><th>1.800 <1</th><th>2.400 <t< th=""><th>2.200 <1</th><th>٠</th><th></th><th></th><th>٠</th><th></th><th>GUIDELINE = 300 (A3)</th><th></th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>BOL</th><th>108</th><th>BDL</th><th>1> 006.9</th><th>BDL</th><th>108</th><th>108</th><th>BDL</th><th></th><th></th><th></th><th></th><th></th><th>GUIDELINE = 1.0 (A1)</th><th>1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th></t<></th></t<>	1> 007.2	1 800 cT	1 100 / 1	1,000 4	1.800 <1	2.400 <t< th=""><th>2.200 <1</th><th>٠</th><th></th><th></th><th>٠</th><th></th><th>GUIDELINE = 300 (A3)</th><th></th><th>BOL</th><th>BOL</th><th>BOL</th><th>108</th><th>BOL</th><th>108</th><th>BDL</th><th>1> 006.9</th><th>BDL</th><th>108</th><th>108</th><th>BDL</th><th></th><th></th><th></th><th></th><th></th><th>GUIDELINE = 1.0 (A1)</th><th>1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th></t<>	2.200 <1	٠			٠		GUIDELINE = 300 (A3)		BOL	BOL	BOL	108	BOL	108	BDL	1> 006.9	BDL	108	108	BDL						GUIDELINE = 1.0 (A1)	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DIST. SYSTEM SOUTH ST STANDING														. •				15.000	Z 800 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٠</td><td></td><td></td><td></td><td></td><td>٠</td><td>٠</td><td></td><td>26,000 <1</td><td>BDL</td><td>9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td></t<>										٠					٠	٠		26,000 <1	BDL	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.50						•	•		•	٠					٠		3,500 <1	1 800 <t< td=""><th>DET*N 1 1M1T = 6.00</th><td></td><td></td><td>٠</td><td>٠</td><td>٠</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>13,000 <t< td=""><td>1> 007.9</td><td>DET'N LIMIT = 0.02</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<></td></t<>	DET*N 1 1M1T = 6.00			٠	٠	٠												13,000 <t< td=""><td>1> 007.9</td><td>DET'N LIMIT = 0.02</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<>	1> 007.9	DET'N LIMIT = 0.02	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TREATMENT PLANT TREATED		1× 0×8	T> 029	1> 0/0	1 200 < T	550 <1	T> 055.	, 10g.	108	POL	BUL	BDL	BOL	.720 <t< th=""><th>1.900 <1</th><th>T> 058.</th><th>1,300 <t< th=""><th>790 <t< th=""><th>1> 022</th><th></th><th></th><th>BOL</th><th>108</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>801</th><th>6.800 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>8,300 <t< th=""><th>BOL</th><th>80F</th><th>BOL</th><th>801</th><th>. 801</th><th>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>BDL</th></t<></th></t<></th></t<></th></t<></th></t<>	1.900 <1	T> 058.	1,300 <t< th=""><th>790 <t< th=""><th>1> 022</th><th></th><th></th><th>BOL</th><th>108</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>801</th><th>6.800 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>8,300 <t< th=""><th>BOL</th><th>80F</th><th>BOL</th><th>801</th><th>. 801</th><th>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>BDL</th></t<></th></t<></th></t<></th></t<>	790 <t< th=""><th>1> 022</th><th></th><th></th><th>BOL</th><th>108</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>801</th><th>6.800 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>8,300 <t< th=""><th>BOL</th><th>80F</th><th>BOL</th><th>801</th><th>. 801</th><th>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>BDL</th></t<></th></t<></th></t<>	1> 022			BOL	108	BOL	BOL	BOL	BOL	801	6.800 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>8,300 <t< th=""><th>BOL</th><th>80F</th><th>BOL</th><th>801</th><th>. 801</th><th>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>BDL</th></t<></th></t<>	BOL	BOL	BOL	8,300 <t< th=""><th>BOL</th><th>80F</th><th>BOL</th><th>801</th><th>. 801</th><th>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>BDL</th></t<>	BOL	80F	BOL	801	. 801	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL
TREATMENT PLANT RAW	METALS	2 100 cT	1 200 cT	1 2002.1	2 000 2	7 100 2	1, 500 c	1,000		1,000			1,000 <t< th=""><th>1,700 <t< th=""><th>1,400 <t< th=""><th>2,300 <1</th><th>2.400 <t< th=""><th>2 600 <t< th=""><th>1, 2007</th><th></th><th></th><th>380,000</th><th>93.000</th><th>000.067</th><th>1100,000</th><th>310,000</th><th>440.000</th><th>210.000</th><th>590.000</th><th>350.000</th><th>150.000</th><th>200.000</th><th>61.000</th><th>220.000</th><th>240,000</th><th>200,000</th><th>520,000</th><th>290,000</th><th>(</th><th>BDL</th></t<></th></t<></th></t<></th></t<></th></t<>	1,700 <t< th=""><th>1,400 <t< th=""><th>2,300 <1</th><th>2.400 <t< th=""><th>2 600 <t< th=""><th>1, 2007</th><th></th><th></th><th>380,000</th><th>93.000</th><th>000.067</th><th>1100,000</th><th>310,000</th><th>440.000</th><th>210.000</th><th>590.000</th><th>350.000</th><th>150.000</th><th>200.000</th><th>61.000</th><th>220.000</th><th>240,000</th><th>200,000</th><th>520,000</th><th>290,000</th><th>(</th><th>BDL</th></t<></th></t<></th></t<></th></t<>	1,400 <t< th=""><th>2,300 <1</th><th>2.400 <t< th=""><th>2 600 <t< th=""><th>1, 2007</th><th></th><th></th><th>380,000</th><th>93.000</th><th>000.067</th><th>1100,000</th><th>310,000</th><th>440.000</th><th>210.000</th><th>590.000</th><th>350.000</th><th>150.000</th><th>200.000</th><th>61.000</th><th>220.000</th><th>240,000</th><th>200,000</th><th>520,000</th><th>290,000</th><th>(</th><th>BDL</th></t<></th></t<></th></t<>	2,300 <1	2.400 <t< th=""><th>2 600 <t< th=""><th>1, 2007</th><th></th><th></th><th>380,000</th><th>93.000</th><th>000.067</th><th>1100,000</th><th>310,000</th><th>440.000</th><th>210.000</th><th>590.000</th><th>350.000</th><th>150.000</th><th>200.000</th><th>61.000</th><th>220.000</th><th>240,000</th><th>200,000</th><th>520,000</th><th>290,000</th><th>(</th><th>BDL</th></t<></th></t<>	2 600 <t< th=""><th>1, 2007</th><th></th><th></th><th>380,000</th><th>93.000</th><th>000.067</th><th>1100,000</th><th>310,000</th><th>440.000</th><th>210.000</th><th>590.000</th><th>350.000</th><th>150.000</th><th>200.000</th><th>61.000</th><th>220.000</th><th>240,000</th><th>200,000</th><th>520,000</th><th>290,000</th><th>(</th><th>BDL</th></t<>	1, 2007			380,000	93.000	000.067	1100,000	310,000	440.000	210.000	590.000	350.000	150.000	200.000	61.000	220.000	240,000	200,000	520,000	290,000	(BDL
	COPPER (UG/L	1001											1991 NOV	1992 FEB	1992 APR	1992 JUN		1002 MON			TANA TORY	1991 JAN	1991 FEB																MERCURY (UG/L	33 SAMPLES

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE, RIVER WIP

DIST. SYSTEM WEST RIVER STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.700	0880	006	.270 <	.210 <t< th=""><th>. 140 <t< th=""><th>110 <1</th><th>T> 074.</th><th>.160 <₹</th><th>.630</th><th></th><th></th><th>•</th><th></th><th></th><th></th><th>1.600</th><th>066.</th><th>1.000</th><th>1.500</th><th>005.1</th><th>.920</th><th>1,500</th><th>050</th><th>069</th><th>.700</th><th>.610</th><th></th><th>•</th><th>•</th><th></th></t<></th></t<>	. 140 <t< th=""><th>110 <1</th><th>T> 074.</th><th>.160 <₹</th><th>.630</th><th></th><th></th><th>•</th><th></th><th></th><th></th><th>1.600</th><th>066.</th><th>1.000</th><th>1.500</th><th>005.1</th><th>.920</th><th>1,500</th><th>050</th><th>069</th><th>.700</th><th>.610</th><th></th><th>•</th><th>•</th><th></th></t<>	110 <1	T> 074.	.160 <₹	.630			•				1.600	066.	1.000	1.500	005.1	.920	1,500	050	069	.700	.610		•	•	
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 50.0 (A3)	3.000	068.	1,500	.320 <7	.320 <1	1, 160 <1			.540	1.100					٠	GUIDELINE = N/A	1.400	066*	1,100	1.700	1.400	.950	1,300	020	099.	.680	1> 067.	•	•		
DIST. SYSTEM SOUTH ST STANDING	1 1 1 1 1 1 1 1 1		•											•	3.600	.800								•			٠				. 100	. 910
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.05													•	2.600	1.500	DET'N LIMIT = 0.05							•							, 00	.970
TREATMENT PLANT TREATED	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.700	0830	1.100	.340 <t< td=""><td>.390 <t< td=""><td>.190 <t< td=""><td>. 220 <t< td=""><td>. 680</td><td>.610</td><td>.950</td><td>. 790</td><td>1.000</td><td>1.000</td><td>3.900</td><td>1.100</td><td></td><td>1,400</td><td>1.000</td><td>.930</td><td>1.600</td><td>005.1</td><td>.920</td><td>000</td><td>050</td><td>.630</td><td>.680</td><td>.570</td><td>1.500</td><td>1.000</td><td>000</td><td>068.</td></t<></td></t<></td></t<></td></t<>	.390 <t< td=""><td>.190 <t< td=""><td>. 220 <t< td=""><td>. 680</td><td>.610</td><td>.950</td><td>. 790</td><td>1.000</td><td>1.000</td><td>3.900</td><td>1.100</td><td></td><td>1,400</td><td>1.000</td><td>.930</td><td>1.600</td><td>005.1</td><td>.920</td><td>000</td><td>050</td><td>.630</td><td>.680</td><td>.570</td><td>1.500</td><td>1.000</td><td>000</td><td>068.</td></t<></td></t<></td></t<>	.190 <t< td=""><td>. 220 <t< td=""><td>. 680</td><td>.610</td><td>.950</td><td>. 790</td><td>1.000</td><td>1.000</td><td>3.900</td><td>1.100</td><td></td><td>1,400</td><td>1.000</td><td>.930</td><td>1.600</td><td>005.1</td><td>.920</td><td>000</td><td>050</td><td>.630</td><td>.680</td><td>.570</td><td>1.500</td><td>1.000</td><td>000</td><td>068.</td></t<></td></t<>	. 220 <t< td=""><td>. 680</td><td>.610</td><td>.950</td><td>. 790</td><td>1.000</td><td>1.000</td><td>3.900</td><td>1.100</td><td></td><td>1,400</td><td>1.000</td><td>.930</td><td>1.600</td><td>005.1</td><td>.920</td><td>000</td><td>050</td><td>.630</td><td>.680</td><td>.570</td><td>1.500</td><td>1.000</td><td>000</td><td>068.</td></t<>	. 680	.610	.950	. 790	1.000	1.000	3.900	1.100		1,400	1.000	.930	1.600	005.1	.920	000	050	.630	.680	.570	1.500	1.000	000	068.
TREATMENT PLANT RAW	METALS	12.000	3.500	000.99	12,000	16.000	11.000	19 000	5,700	8.500	2.500	2.400	27.000	10.000	12.000	6.500	۱)	.500 <t< td=""><td>.730</td><td>,320 <t< td=""><td>.160 <1</td><td>001.1</td><td>.430 <1</td><td>0.00</td><td>1> 065.</td><td>1> 024</td><td>T> 084.</td><td>.500 <t< td=""><td>1.300</td><td>.590</td><td>1. / UU</td><td>. 650</td></t<></td></t<></td></t<>	.730	,320 <t< td=""><td>.160 <1</td><td>001.1</td><td>.430 <1</td><td>0.00</td><td>1> 065.</td><td>1> 024</td><td>T> 084.</td><td>.500 <t< td=""><td>1.300</td><td>.590</td><td>1. / UU</td><td>. 650</td></t<></td></t<>	.160 <1	001.1	.430 <1	0.00	1> 065.	1> 024	T> 084.	.500 <t< td=""><td>1.300</td><td>.590</td><td>1. / UU</td><td>. 650</td></t<>	1.300	.590	1. / UU	. 650
	MANGANESE (UG/L		1991 FEB				1991 JUL	1001 SEP								1992 DEC	MOLYBDENUM (UG/L	1991 JAN					1991 1001		1991 AUG	1991 OCT						1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

																			:																		
WEST RIVER STANDING	-	1,100 <t< th=""><th>1.000 <t< th=""><th>BOL</th><th>.420 <7</th><th>. 801</th><th>T> 067.</th><th>1,700 <1</th><th>BOL</th><th>BDL</th><th>.820 <t< th=""><th>. 801</th><th>1,200 <7</th><th></th><th></th><th></th><th>٠</th><th>٠</th><th>, d , d , d , d , d , d , d , d , d , d</th><th>Cac</th><th>2006</th><th>> 000.</th><th></th><th>004.2</th><th>1.800</th><th>1.500</th><th>1.200</th><th>.570</th><th>.650</th><th>.850</th><th>1.800</th><th>1,400</th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<>	1.000 <t< th=""><th>BOL</th><th>.420 <7</th><th>. 801</th><th>T> 067.</th><th>1,700 <1</th><th>BOL</th><th>BDL</th><th>.820 <t< th=""><th>. 801</th><th>1,200 <7</th><th></th><th></th><th></th><th>٠</th><th>٠</th><th>, d , d , d , d , d , d , d , d , d , d</th><th>Cac</th><th>2006</th><th>> 000.</th><th></th><th>004.2</th><th>1.800</th><th>1.500</th><th>1.200</th><th>.570</th><th>.650</th><th>.850</th><th>1.800</th><th>1,400</th><th></th><th></th><th></th><th></th><th></th></t<></th></t<>	BOL	.420 <7	. 801	T> 067.	1,700 <1	BOL	BDL	.820 <t< th=""><th>. 801</th><th>1,200 <7</th><th></th><th></th><th></th><th>٠</th><th>٠</th><th>, d , d , d , d , d , d , d , d , d , d</th><th>Cac</th><th>2006</th><th>> 000.</th><th></th><th>004.2</th><th>1.800</th><th>1.500</th><th>1.200</th><th>.570</th><th>.650</th><th>.850</th><th>1.800</th><th>1,400</th><th></th><th></th><th></th><th></th><th></th></t<>	. 801	1,200 <7				٠	٠	, d , d , d , d , d , d , d , d , d , d	Cac	2006	> 000.		004.2	1.800	1.500	1.200	.570	.650	.850	1.800	1,400					
WEST RIVER FREE FLOW	GUIDELINE = 350 (D3)	T> 040.		.350 <t< td=""><td>.300 <t< td=""><td>B0L</td><td>T> 009.</td><td>2.200</td><td>BDL</td><td>108</td><td>.510 <t< td=""><td>BDL</td><td>1,200 <t< td=""><td></td><td>٠</td><td></td><td>٠</td><td></td><td>GUIDELINE = 10 (A1)</td><td>T/ 080</td><td>1, 002.</td><td></td><td>1> 007.</td><td></td><td>.480 <t< td=""><td></td><td>1> 055.</td><td>.510</td><td>.260 <t< td=""><td>.280 <t< td=""><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td></td><td>٠.</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.300 <t< td=""><td>B0L</td><td>T> 009.</td><td>2.200</td><td>BDL</td><td>108</td><td>.510 <t< td=""><td>BDL</td><td>1,200 <t< td=""><td></td><td>٠</td><td></td><td>٠</td><td></td><td>GUIDELINE = 10 (A1)</td><td>T/ 080</td><td>1, 002.</td><td></td><td>1> 007.</td><td></td><td>.480 <t< td=""><td></td><td>1> 055.</td><td>.510</td><td>.260 <t< td=""><td>.280 <t< td=""><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td></td><td>٠.</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	B0L	T> 009.	2.200	BDL	108	.510 <t< td=""><td>BDL</td><td>1,200 <t< td=""><td></td><td>٠</td><td></td><td>٠</td><td></td><td>GUIDELINE = 10 (A1)</td><td>T/ 080</td><td>1, 002.</td><td></td><td>1> 007.</td><td></td><td>.480 <t< td=""><td></td><td>1> 055.</td><td>.510</td><td>.260 <t< td=""><td>.280 <t< td=""><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td></td><td>٠.</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	1,200 <t< td=""><td></td><td>٠</td><td></td><td>٠</td><td></td><td>GUIDELINE = 10 (A1)</td><td>T/ 080</td><td>1, 002.</td><td></td><td>1> 007.</td><td></td><td>.480 <t< td=""><td></td><td>1> 055.</td><td>.510</td><td>.260 <t< td=""><td>.280 <t< td=""><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td></td><td>٠.</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		٠		٠		GUIDELINE = 10 (A1)	T/ 080	1, 002.		1> 007.		.480 <t< td=""><td></td><td>1> 055.</td><td>.510</td><td>.260 <t< td=""><td>.280 <t< td=""><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td></td><td>٠.</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<>		1> 055.	.510	.260 <t< td=""><td>.280 <t< td=""><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td></td><td>٠.</td><td></td><td></td></t<></td></t<></td></t<></td></t<>	.280 <t< td=""><td>.360 <t< td=""><td>.420 <t< td=""><td></td><td></td><td>٠.</td><td></td><td></td></t<></td></t<></td></t<>	.360 <t< td=""><td>.420 <t< td=""><td></td><td></td><td>٠.</td><td></td><td></td></t<></td></t<>	.420 <t< td=""><td></td><td></td><td>٠.</td><td></td><td></td></t<>			٠.		
SOUTH ST STANDING	0100												٠				T> 077.	1.100 <t< td=""><td>GUID</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٠.</td><td></td><td></td><td>.360 <1</td><td>1> 071.</td></t<>	GUID					•									٠.			.360 <1	1> 071.
SOUTH ST FREE FLOW	DET'N LIMIT = 0.20													٠			.550 <t< td=""><td>1.200 <7</td><td>DET'N LIMIT = 0.05</td><td></td><td>•</td><td></td><td></td><td>٠</td><td></td><td></td><td></td><td></td><td></td><td>••</td><td></td><td>٠</td><td></td><td></td><td></td><td>. 190 <t< td=""><td>. 100 <t< td=""></t<></td></t<></td></t<>	1.200 <7	DET'N LIMIT = 0.05		•			٠						••		٠				. 190 <t< td=""><td>. 100 <t< td=""></t<></td></t<>	. 100 <t< td=""></t<>
TREATED		.710 <t< td=""><td>7× 088</td><td>801</td><td>BOL</td><td>BDL</td><td>.250 <t< td=""><td>2,300</td><td>BDL</td><td>BOL</td><td>.730 <1</td><td>BOL</td><td>1.300 <t< td=""><td>2.700</td><td>1.200 <t< td=""><td>1.600 <t< td=""><td>T> 089.</td><td>1.300 <t< td=""><td>) t t ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</td><td>ica</td><td>370 1</td><td>1> 051.</td><td>BUL</td><td>1> 060.</td><td>BDL</td><td>BOL</td><td>80F</td><td>BOL</td><td>BDL</td><td>80F</td><td>BOL</td><td>T> 090.</td><td>BDL</td><td>BDL</td><td>T> 091.</td><td>T> 070.</td><td>B0L</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	7× 088	801	BOL	BDL	.250 <t< td=""><td>2,300</td><td>BDL</td><td>BOL</td><td>.730 <1</td><td>BOL</td><td>1.300 <t< td=""><td>2.700</td><td>1.200 <t< td=""><td>1.600 <t< td=""><td>T> 089.</td><td>1.300 <t< td=""><td>) t t ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</td><td>ica</td><td>370 1</td><td>1> 051.</td><td>BUL</td><td>1> 060.</td><td>BDL</td><td>BOL</td><td>80F</td><td>BOL</td><td>BDL</td><td>80F</td><td>BOL</td><td>T> 090.</td><td>BDL</td><td>BDL</td><td>T> 091.</td><td>T> 070.</td><td>B0L</td></t<></td></t<></td></t<></td></t<></td></t<>	2,300	BDL	BOL	.730 <1	BOL	1.300 <t< td=""><td>2.700</td><td>1.200 <t< td=""><td>1.600 <t< td=""><td>T> 089.</td><td>1.300 <t< td=""><td>) t t ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</td><td>ica</td><td>370 1</td><td>1> 051.</td><td>BUL</td><td>1> 060.</td><td>BDL</td><td>BOL</td><td>80F</td><td>BOL</td><td>BDL</td><td>80F</td><td>BOL</td><td>T> 090.</td><td>BDL</td><td>BDL</td><td>T> 091.</td><td>T> 070.</td><td>B0L</td></t<></td></t<></td></t<></td></t<>	2.700	1.200 <t< td=""><td>1.600 <t< td=""><td>T> 089.</td><td>1.300 <t< td=""><td>) t t ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</td><td>ica</td><td>370 1</td><td>1> 051.</td><td>BUL</td><td>1> 060.</td><td>BDL</td><td>BOL</td><td>80F</td><td>BOL</td><td>BDL</td><td>80F</td><td>BOL</td><td>T> 090.</td><td>BDL</td><td>BDL</td><td>T> 091.</td><td>T> 070.</td><td>B0L</td></t<></td></t<></td></t<>	1.600 <t< td=""><td>T> 089.</td><td>1.300 <t< td=""><td>) t t ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</td><td>ica</td><td>370 1</td><td>1> 051.</td><td>BUL</td><td>1> 060.</td><td>BDL</td><td>BOL</td><td>80F</td><td>BOL</td><td>BDL</td><td>80F</td><td>BOL</td><td>T> 090.</td><td>BDL</td><td>BDL</td><td>T> 091.</td><td>T> 070.</td><td>B0L</td></t<></td></t<>	T> 089.	1.300 <t< td=""><td>) t t ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</td><td>ica</td><td>370 1</td><td>1> 051.</td><td>BUL</td><td>1> 060.</td><td>BDL</td><td>BOL</td><td>80F</td><td>BOL</td><td>BDL</td><td>80F</td><td>BOL</td><td>T> 090.</td><td>BDL</td><td>BDL</td><td>T> 091.</td><td>T> 070.</td><td>B0L</td></t<>) t t ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	ica	370 1	1> 051.	BUL	1> 060.	BDL	BOL	80F	BOL	BDL	80F	BOL	T> 090.	BDL	BDL	T> 091.	T> 070.	B0L
RAW	METALS)	1.400 <t< td=""><td>1.200 <t< td=""><td>T> 050.</td><td>2.200</td><td>T> 098.</td><td>1.600 <t< td=""><td>2.500</td><td>1.400 <t< td=""><td>.450 <t< td=""><td>1.000 <t< td=""><td>. 590 <t< td=""><td>1,600 <t< td=""><td>3.700</td><td>2.700</td><td>2.300</td><td>2.000 <t< td=""><td>1.900 <t< td=""><td>(</td><td>1000</td><td>000.1</td><td>1> 005.</td><td>1.500</td><td>3.300</td><td>.810</td><td>087.</td><td>7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.200 <t< td=""><td>T> 050.</td><td>2.200</td><td>T> 098.</td><td>1.600 <t< td=""><td>2.500</td><td>1.400 <t< td=""><td>.450 <t< td=""><td>1.000 <t< td=""><td>. 590 <t< td=""><td>1,600 <t< td=""><td>3.700</td><td>2.700</td><td>2.300</td><td>2.000 <t< td=""><td>1.900 <t< td=""><td>(</td><td>1000</td><td>000.1</td><td>1> 005.</td><td>1.500</td><td>3.300</td><td>.810</td><td>087.</td><td>7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 050.	2.200	T> 098.	1.600 <t< td=""><td>2.500</td><td>1.400 <t< td=""><td>.450 <t< td=""><td>1.000 <t< td=""><td>. 590 <t< td=""><td>1,600 <t< td=""><td>3.700</td><td>2.700</td><td>2.300</td><td>2.000 <t< td=""><td>1.900 <t< td=""><td>(</td><td>1000</td><td>000.1</td><td>1> 005.</td><td>1.500</td><td>3.300</td><td>.810</td><td>087.</td><td>7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.500	1.400 <t< td=""><td>.450 <t< td=""><td>1.000 <t< td=""><td>. 590 <t< td=""><td>1,600 <t< td=""><td>3.700</td><td>2.700</td><td>2.300</td><td>2.000 <t< td=""><td>1.900 <t< td=""><td>(</td><td>1000</td><td>000.1</td><td>1> 005.</td><td>1.500</td><td>3.300</td><td>.810</td><td>087.</td><td>7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.450 <t< td=""><td>1.000 <t< td=""><td>. 590 <t< td=""><td>1,600 <t< td=""><td>3.700</td><td>2.700</td><td>2.300</td><td>2.000 <t< td=""><td>1.900 <t< td=""><td>(</td><td>1000</td><td>000.1</td><td>1> 005.</td><td>1.500</td><td>3.300</td><td>.810</td><td>087.</td><td>7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.000 <t< td=""><td>. 590 <t< td=""><td>1,600 <t< td=""><td>3.700</td><td>2.700</td><td>2.300</td><td>2.000 <t< td=""><td>1.900 <t< td=""><td>(</td><td>1000</td><td>000.1</td><td>1> 005.</td><td>1.500</td><td>3.300</td><td>.810</td><td>087.</td><td>7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 590 <t< td=""><td>1,600 <t< td=""><td>3.700</td><td>2.700</td><td>2.300</td><td>2.000 <t< td=""><td>1.900 <t< td=""><td>(</td><td>1000</td><td>000.1</td><td>1> 005.</td><td>1.500</td><td>3.300</td><td>.810</td><td>087.</td><td>7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1,600 <t< td=""><td>3.700</td><td>2.700</td><td>2.300</td><td>2.000 <t< td=""><td>1.900 <t< td=""><td>(</td><td>1000</td><td>000.1</td><td>1> 005.</td><td>1.500</td><td>3.300</td><td>.810</td><td>087.</td><td>7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	3.700	2.700	2.300	2.000 <t< td=""><td>1.900 <t< td=""><td>(</td><td>1000</td><td>000.1</td><td>1> 005.</td><td>1.500</td><td>3.300</td><td>.810</td><td>087.</td><td>7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.900 <t< td=""><td>(</td><td>1000</td><td>000.1</td><td>1> 005.</td><td>1.500</td><td>3.300</td><td>.810</td><td>087.</td><td>7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	(1000	000.1	1> 005.	1.500	3.300	.810	087.	7> 240 <t< td=""><td>.850</td><td>.530</td><td>.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<></td></t<>	.850	.530	.230 <t< td=""><td>.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<></td></t<>	.320 <t< td=""><td>T> 004.</td><td>.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<></td></t<>	T> 004.	.340 <t< td=""><td>1.200</td><td>.330 <t< td=""><td>1.700</td><td>0.49</td></t<></td></t<>	1.200	.330 <t< td=""><td>1.700</td><td>0.49</td></t<>	1.700	0.49
	NICKEL (UG/L	1991 JAN							1991 AUG				1992 FEB	1992 APR	1992 JUN	1992 AUG			LEAD (UG/L	1001			1991 MAK						1991 SEP	1991 OCT		1992 FEB					1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

DIST. SYSTEM WEST RIVER STANDING		283	1,00%	044.	. 029.		1 0 0 5 5	099	.530	.340 <1		1> 087	.290 <						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	801	1.400 <1	. 2.700 <1	BDL		1.500 <t< td=""><td>3,200 <7</td><td>BOL</td><td>2.000 <7</td><td>1.300 <t< td=""><td>BDL</td><td>1,600 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	3,200 <7	BOL	2.000 <7	1.300 <t< td=""><td>BDL</td><td>1,600 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	BDL	1,600 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 146 (D4)	670	T. 04.	12 004.	. 610	1, 00,	400 st	630	089.	.360 <1	T> 004.	T> 044.	.340 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>GUIDELINE = 10 (A1)</td><td>BDL</td><td>BOL</td><td>2.400 <t< td=""><td>BDL</td><td>BDL</td><td>BOL</td><td>1.200 <t< td=""><td>BDL</td><td>1,900 <1</td><td>80F</td><td>BOL</td><td>3.400 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<></td></t<>						GUIDELINE = 10 (A1)	BDL	BOL	2.400 <t< td=""><td>BDL</td><td>BDL</td><td>BOL</td><td>1.200 <t< td=""><td>BDL</td><td>1,900 <1</td><td>80F</td><td>BOL</td><td>3.400 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	BDL	BDL	BOL	1.200 <t< td=""><td>BDL</td><td>1,900 <1</td><td>80F</td><td>BOL</td><td>3.400 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	BDL	1,900 <1	80F	BOL	3.400 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
DIST. SYSTEM SOUTH ST STANDING			•			•		•									.650	.420 <t< td=""><td></td><td>•</td><td></td><td>•</td><td></td><td>•</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td></td><td>1.500 <1</td><td>RDI</td></t<>		•		•		•		•						•	•		1.500 <1	RDI
DISI. SYSIEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.05					:											.580	.380 <1	DET'N LIMIT = 1.00								.•								1.500 <t< td=""><td>ica</td></t<>	ica
IRRAIMENI. PLANI IREAIMENI PLANI RAW TREATED		U25	T / 04./	004.	. 560	1, 01,	270	530	079.	.420 <1	.380 <t< td=""><td>T> 044.</td><td>.410 <t< td=""><td>.450 <t< td=""><td>.330 <1</td><td>.370 <t< td=""><td>.540</td><td>.390 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>1.500 <t< td=""><td>BDL</td><td>1,100 <t< td=""><td></td><td>1,400 <t< td=""><td>BDL</td><td>1.500 <t< td=""><td>.1.500 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 044.	.410 <t< td=""><td>.450 <t< td=""><td>.330 <1</td><td>.370 <t< td=""><td>.540</td><td>.390 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>1.500 <t< td=""><td>BDL</td><td>1,100 <t< td=""><td></td><td>1,400 <t< td=""><td>BDL</td><td>1.500 <t< td=""><td>.1.500 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.450 <t< td=""><td>.330 <1</td><td>.370 <t< td=""><td>.540</td><td>.390 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>1.500 <t< td=""><td>BDL</td><td>1,100 <t< td=""><td></td><td>1,400 <t< td=""><td>BDL</td><td>1.500 <t< td=""><td>.1.500 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.330 <1	.370 <t< td=""><td>.540</td><td>.390 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>1.500 <t< td=""><td>BDL</td><td>1,100 <t< td=""><td></td><td>1,400 <t< td=""><td>BDL</td><td>1.500 <t< td=""><td>.1.500 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.540	.390 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>1.500 <t< td=""><td>BDL</td><td>1,100 <t< td=""><td></td><td>1,400 <t< td=""><td>BDL</td><td>1.500 <t< td=""><td>.1.500 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		BDL	BDL	1.500 <t< td=""><td>BDL</td><td>1,100 <t< td=""><td></td><td>1,400 <t< td=""><td>BDL</td><td>1.500 <t< td=""><td>.1.500 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	1,100 <t< td=""><td></td><td>1,400 <t< td=""><td>BDL</td><td>1.500 <t< td=""><td>.1.500 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		1,400 <t< td=""><td>BDL</td><td>1.500 <t< td=""><td>.1.500 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	1.500 <t< td=""><td>.1.500 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<></td></t<></td></t<>	.1.500 <t< td=""><td>BOL</td><td>1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<></td></t<>	BOL	1.600 <t< td=""><td>B0L</td><td>. BDL</td><td>B0L</td><td>1,400 <t< td=""><td>ICO</td></t<></td></t<>	B0L	. BDL	B0L	1,400 <t< td=""><td>ICO</td></t<>	ICO
RAW	METALS)	T> 055	1, 000,		2200 4.	/10 /1		570		T> 004.	T> 084.	T> 067.	.520	1> 029	.220 <7	.350 <7	.330 <7	.390 <t< td=""><td>•</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>- 108</td><td>BDL</td><td>BDL</td><td>108</td><td>1.300 <t< td=""><td>B0L</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>2.900 <1</td><td>100</td></t<></td></t<>	•	BDL	BDL	BDL	BDL	BDL	- 108	BDL	BDL	108	1.300 <t< td=""><td>B0L</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>2.900 <1</td><td>100</td></t<>	B0L	BDL	BOL	BOL	BDL	2.900 <1	100
	ANTIMONY (UG/L	1001						1001					1992 FEB		1992 JUN			1992 DEC	SELENIUM (UG/L	1991 JAN	1991 FEB	1991 MAR		1991 MAY	1991 JUN					1991 NOV				1992 AUG	1992 NOV	1992 NEC

TABLE 4 DRINKING WATER SURVEILLANCE, PROGRAM 1991 AND 1992 BELLE RIVER WTP

																																		•						
DIST. SYSTEM WEST RIVER STANDING		100 000	130,000	120.000	170.000	260.000	270.000	120.000	150.000	140.000	140.000	110.000	120,000	150,000								5.700	3.800 <t< th=""><th>8,200</th><th>8.900</th><th>1,700 <1</th><th></th><th>2.500 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>٠</th><th>1 1 6 0 0 0 0 0 0 0 1 1 1 1</th><th>BOL</th></t<></th></t<>	8,200	8.900	1,700 <1		2.500 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>٠</th><th>1 1 6 0 0 0 0 0 0 0 1 1 1 1</th><th>BOL</th></t<>										٠	1 1 6 0 0 0 0 0 0 0 1 1 1 1	BOL
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A	000	180.000	130.000	170.000	280.000	240.000	120.000	160.000	140.000	150.000	110.000	120.000	150,000	•		•				GUIDELINE = N/A	2.400	t> 000° +	8,600	000.6	1 900 <t< td=""><td>1,500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td><⊺ .</td><td>GUIDELINE = 13 (D4)</td><td>BOL</td></t<></td></t<>	1,500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td><⊺ .</td><td>GUIDELINE = 13 (D4)</td><td>BOL</td></t<>							,				<⊺ .	GUIDELINE = 13 (D4)	BOL
DIST. SYSTEM SOUTH ST STANDING											٠	٠					•	. 000	150.000	180.000		,					•		•		•	•	•				2.200 <t< td=""><td>1.900</td><td>5</td><td>BDL</td></t<>	1.900	5	BDL
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.10																•	• (150.000	170.000	DET'N LIMIT = 0.50	٠					•	•		•		•	٠	•			2.000 <t< td=""><td>1,900 <t< td=""><td>DET*N LIMIT = 0.05</td><td>BOL</td></t<></td></t<>	1,900 <t< td=""><td>DET*N LIMIT = 0.05</td><td>BOL</td></t<>	DET*N LIMIT = 0.05	BOL
TREATMENT PLANT TREATED			170.000	130,000	170.000	270.000	250.000	130,000	130.000	120.000	130.000	110 000	120 000	160.000	220 000	130 000	130,000	390,000	150.000	170.000	9 E E E E E E E E E E E E E E E E E E E	5.600	3 800 ×T		0 300	1 400 < 1							1> 088.	2.400	1.700 <t< td=""><td>8.300</td><td></td><td>1.900 <t< td=""><td></td><td>BDL</td></t<></td></t<>	8.300		1.900 <t< td=""><td></td><td>BDL</td></t<>		BDL
TREATMENT PLANT	METALS		190.000	130.000	190.000	220.000	260.000	130,000	120.000	130 000	130 000	110 000	120.000	150 000	000.072	200,000	160.000	360.000	130.000	170.000	(8.400	2002	13 000	17.000	7,007 5	2 200 7		000.0		1 00/ c		1.500 <t< td=""><td>8.300</td><td>4.000 <t< td=""><td>12,000</td><td>3.900 <t< td=""><td>3,300 <t< td=""><td></td><td>BDL</td></t<></td></t<></td></t<></td></t<>	8.300	4.000 <t< td=""><td>12,000</td><td>3.900 <t< td=""><td>3,300 <t< td=""><td></td><td>BDL</td></t<></td></t<></td></t<>	12,000	3.900 <t< td=""><td>3,300 <t< td=""><td></td><td>BDL</td></t<></td></t<>	3,300 <t< td=""><td></td><td>BDL</td></t<>		BDL
,	STRONTIUM (UG/L			1991 FEB	1991 MAR	1991 APR	1991 MAY												1992 NOV	1992 DEC	TITANIUM (UG/L	1001 JAN		_	_	-					1991 SEP				1992 JUN	1992 AUG			THALL TURK CUG/L	62 SAMPLES

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

																			,																	
DIST. SYSTEM WEST RIVER STANDING		T> .07.2	.240 <t< th=""><th>.820</th><th>078.</th><th>1> 071.</th><th>T> 080.</th><th>BDL</th><th>BDL</th><th>B0L</th><th>T> 090.</th><th>80L</th><th>.230 <7</th><th></th><th></th><th></th><th></th><th>•</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>. 160 <t< th=""><th>.180 <</th><th>180 <1</th><th>.390 <</th><th>T> 044.</th><th>.350 <t< th=""><th>.200 <t< th=""><th>.230 <t< th=""><th>.290 <</th><th>. 100 <t< th=""><th>T> 090.</th><th>BOL</th><th>٠</th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.820	078.	1> 071.	T> 080.	BDL	BDL	B0L	T> 090.	80L	.230 <7					•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 160 <t< th=""><th>.180 <</th><th>180 <1</th><th>.390 <</th><th>T> 044.</th><th>.350 <t< th=""><th>.200 <t< th=""><th>.230 <t< th=""><th>.290 <</th><th>. 100 <t< th=""><th>T> 090.</th><th>BOL</th><th>٠</th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	.180 <	180 <1	.390 <	T> 044.	.350 <t< th=""><th>.200 <t< th=""><th>.230 <t< th=""><th>.290 <</th><th>. 100 <t< th=""><th>T> 090.</th><th>BOL</th><th>٠</th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<>	.200 <t< th=""><th>.230 <t< th=""><th>.290 <</th><th>. 100 <t< th=""><th>T> 090.</th><th>BOL</th><th>٠</th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<>	.230 <t< th=""><th>.290 <</th><th>. 100 <t< th=""><th>T> 090.</th><th>BOL</th><th>٠</th><th></th><th></th><th></th><th></th></t<></th></t<>	.290 <	. 100 <t< th=""><th>T> 090.</th><th>BOL</th><th>٠</th><th></th><th></th><th></th><th></th></t<>	T> 090.	BOL	٠				
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 100 (A1)	.530	.230 <1	.850	1.200	T> 001.	T> 060.	BOĹ	30F	. 108	. 108	BOL	T> 091.				•	.*	GUIDELINE = N/A	. 200 <t< td=""><td>.200 <t< td=""><td>.210 <t< td=""><td></td><td></td><td></td><td></td><td>.210 <t< td=""><td></td><td>.180 <t< td=""><td>BOL</td><td>BOL</td><td></td><td></td><td></td><td>•</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>.210 <t< td=""><td></td><td></td><td></td><td></td><td>.210 <t< td=""><td></td><td>.180 <t< td=""><td>BOL</td><td>BOL</td><td></td><td></td><td></td><td>•</td><td></td></t<></td></t<></td></t<></td></t<>	.210 <t< td=""><td></td><td></td><td></td><td></td><td>.210 <t< td=""><td></td><td>.180 <t< td=""><td>BOL</td><td>BOL</td><td></td><td></td><td></td><td>•</td><td></td></t<></td></t<></td></t<>					.210 <t< td=""><td></td><td>.180 <t< td=""><td>BOL</td><td>BOL</td><td></td><td></td><td></td><td>•</td><td></td></t<></td></t<>		.180 <t< td=""><td>BOL</td><td>BOL</td><td></td><td></td><td></td><td>•</td><td></td></t<>	BOL	BOL				•	
DIST. SYSTEM SOUTH ST STANDING																	T> 001.				. •	••													. 120 <t.< td=""><td></td></t.<>	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.05			. •	٠												T> 080.	.570	DET'N LIMIT = 0.05			•			٠	•									T> 011.	T> 055.
TREATMENT PLANT TREATED		I> 09E.	.240 <t< td=""><td>.890</td><td>. 840</td><td>.200 <1</td><td>T> 090.</td><td>BDL</td><td>301</td><td>BOL</td><td>T> 070.</td><td>BOL</td><td>.250 <1</td><td>. 580</td><td>BDL</td><td>.980</td><td>T> 070.</td><td>.650</td><td></td><td>1,140 <7</td><td>170 <t< td=""><td>.250 <1</td><td>.300 <t< td=""><td>1> 077°</td><td>.310 <</td><td> 180 <t< td=""><td>.210 <t< td=""><td>.160 <t< td=""><td>T> 080.</td><td>BDL .</td><td>108</td><td>.210 <t< td=""><td>.080 <t< td=""><td>.860</td><td>T> 080.</td><td>.370 <1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.890	. 840	.200 <1	T> 090.	BDL	301	BOL	T> 070.	BOL	.250 <1	. 580	BDL	.980	T> 070.	.650		1,140 <7	170 <t< td=""><td>.250 <1</td><td>.300 <t< td=""><td>1> 077°</td><td>.310 <</td><td> 180 <t< td=""><td>.210 <t< td=""><td>.160 <t< td=""><td>T> 080.</td><td>BDL .</td><td>108</td><td>.210 <t< td=""><td>.080 <t< td=""><td>.860</td><td>T> 080.</td><td>.370 <1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.250 <1	.300 <t< td=""><td>1> 077°</td><td>.310 <</td><td> 180 <t< td=""><td>.210 <t< td=""><td>.160 <t< td=""><td>T> 080.</td><td>BDL .</td><td>108</td><td>.210 <t< td=""><td>.080 <t< td=""><td>.860</td><td>T> 080.</td><td>.370 <1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1> 077°	.310 <	180 <t< td=""><td>.210 <t< td=""><td>.160 <t< td=""><td>T> 080.</td><td>BDL .</td><td>108</td><td>.210 <t< td=""><td>.080 <t< td=""><td>.860</td><td>T> 080.</td><td>.370 <1</td></t<></td></t<></td></t<></td></t<></td></t<>	.210 <t< td=""><td>.160 <t< td=""><td>T> 080.</td><td>BDL .</td><td>108</td><td>.210 <t< td=""><td>.080 <t< td=""><td>.860</td><td>T> 080.</td><td>.370 <1</td></t<></td></t<></td></t<></td></t<>	.160 <t< td=""><td>T> 080.</td><td>BDL .</td><td>108</td><td>.210 <t< td=""><td>.080 <t< td=""><td>.860</td><td>T> 080.</td><td>.370 <1</td></t<></td></t<></td></t<>	T> 080.	BDL .	108	.210 <t< td=""><td>.080 <t< td=""><td>.860</td><td>T> 080.</td><td>.370 <1</td></t<></td></t<>	.080 <t< td=""><td>.860</td><td>T> 080.</td><td>.370 <1</td></t<>	.860	T> 080.	.370 <1
TREATMENT PLANT RAW	METALS)	1,300	.750	1.400	1.000	.950	.520	.380 <t< td=""><td></td><td>.260 <t< td=""><td></td><td>T> 042.</td><td>T> 062.</td><td>1.400</td><td>.530</td><td>1.100</td><td>.590</td><td>1.100</td><td>^</td><td>066.</td><td>.370 <t< td=""><td>1.000</td><td>2.300</td><td>.840</td><td>1.100</td><td>.670</td><td>1.200</td><td>.750</td><td></td><td>. 140 <t< td=""><td>80L</td><td>.420 <t< td=""><td>. 830</td><td>1.100</td><td>1.300</td><td>.820</td></t<></td></t<></td></t<></td></t<></td></t<>		.260 <t< td=""><td></td><td>T> 042.</td><td>T> 062.</td><td>1.400</td><td>.530</td><td>1.100</td><td>.590</td><td>1.100</td><td>^</td><td>066.</td><td>.370 <t< td=""><td>1.000</td><td>2.300</td><td>.840</td><td>1.100</td><td>.670</td><td>1.200</td><td>.750</td><td></td><td>. 140 <t< td=""><td>80L</td><td>.420 <t< td=""><td>. 830</td><td>1.100</td><td>1.300</td><td>.820</td></t<></td></t<></td></t<></td></t<>		T> 042.	T> 062.	1.400	.530	1.100	.590	1.100	^	066.	.370 <t< td=""><td>1.000</td><td>2.300</td><td>.840</td><td>1.100</td><td>.670</td><td>1.200</td><td>.750</td><td></td><td>. 140 <t< td=""><td>80L</td><td>.420 <t< td=""><td>. 830</td><td>1.100</td><td>1.300</td><td>.820</td></t<></td></t<></td></t<>	1.000	2.300	.840	1.100	.670	1.200	.750		. 140 <t< td=""><td>80L</td><td>.420 <t< td=""><td>. 830</td><td>1.100</td><td>1.300</td><td>.820</td></t<></td></t<>	80L	.420 <t< td=""><td>. 830</td><td>1.100</td><td>1.300</td><td>.820</td></t<>	. 830	1.100	1.300	.820
	URANIUM (UG/L	1001		1991 MAR		1991 MAY	1991 JUN	1991 JUL		1991 SEP			1992 FEB					1992 DEC	VANADIUM (UG/L	1991 JAN	1991 FEB		1991 APR			1991 JUL			1991 OCT		1992 FEB				1992 NOV	1992 DEC

LEM ~		00	00	00	00	00	00	00	00	00 <t< th=""><th>00</th><th>00</th><th>00</th><th></th><th></th><th></th><th></th><th></th></t<>	00	00	00					
DIST. SYSTEM WEST RIVER STANDING		3.000	2.5(4.10	5.4(2.2	5.3(7.9	5.6	1.8	2.2	4.2	3.7					
DIST, SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 5000 (A3)	2,200	2.500	3,300	3.600	2.300	5.900	9.400	2.300	T> 007.	T> 098.	1.800 <t< td=""><td>1.200 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	1.200 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
DIST. SYSTEM SOUTH ST STANDING				٠													27.000	0 0 0
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.20																009.9	
TREATMENT PLANT TREATED	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.600 <t< td=""><td>2.800</td><td>3.000</td><td>3.300</td><td>1,300 <t< td=""><td>2,700</td><td>3.500</td><td>2.300</td><td>.350 <t< td=""><td>T> 057.</td><td>2.300</td><td>2.000 <t< td=""><td>1.400 <t< td=""><td>2.100</td><td>2.600</td><td>.950 <t< td=""><td>444</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.800	3.000	3.300	1,300 <t< td=""><td>2,700</td><td>3.500</td><td>2.300</td><td>.350 <t< td=""><td>T> 057.</td><td>2.300</td><td>2.000 <t< td=""><td>1.400 <t< td=""><td>2.100</td><td>2.600</td><td>.950 <t< td=""><td>444</td></t<></td></t<></td></t<></td></t<></td></t<>	2,700	3.500	2.300	.350 <t< td=""><td>T> 057.</td><td>2.300</td><td>2.000 <t< td=""><td>1.400 <t< td=""><td>2.100</td><td>2.600</td><td>.950 <t< td=""><td>444</td></t<></td></t<></td></t<></td></t<>	T> 057.	2.300	2.000 <t< td=""><td>1.400 <t< td=""><td>2.100</td><td>2.600</td><td>.950 <t< td=""><td>444</td></t<></td></t<></td></t<>	1.400 <t< td=""><td>2.100</td><td>2.600</td><td>.950 <t< td=""><td>444</td></t<></td></t<>	2.100	2.600	.950 <t< td=""><td>444</td></t<>	444
TREATMENT PLANT RAW	METALS)	5.800	2.800	8.200	16,000	8.400	5.900	3.900	2.400	3.200	1,800 <t< td=""><td>3,000</td><td>4.300</td><td>2.700</td><td>8.400</td><td>4.500</td><td>7.300</td><td></td></t<>	3,000	4.300	2.700	8.400	4.500	7.300	
	ZINC (UG/L	1991 JAN		1991 MAR		1991 MAY		1991 JUL	1991 AUG	1991 SEP	1991 DCT	1991 NOV	1992 FEB	1992 APR	1992 JUN	4992 AUG	1992 NOV	

				:		:				:		. ;		:		;
DIST. SYSTEM WEST RIVER STANDING				. 1					•	, 1 , 1 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3	7)	•		•		
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 450 (D4)	108	GUIDELINE = N/A	BOL	GUIDELINE = N/A	BDL	GUIDELIÑE = N/A	BDL	GUIDELINE = 10000 (1)	BDL	GUIDELINE = 38000 (D4)	BDL	GUIDELINE = N/A	BDL	GUIDELINE = 10 (C1)	BDL
DIST. SYSTEM SOUTH ST STANDING	ਰ ,		ਰ		ថ	•	<u>.</u>	•	G	٠	9			٠	9	
	= 1.000		= 5.000		= 1.000		= 1.000		= 5.000		= 1.000	_	= 5.000	_	= 1.000	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 1.000	BDL	DET'N LIMIT =	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	108	DET'N LIMIT = 1.000	BDL
TREATMENT PLANT TREATMENT PLANT RAW		BDL		BOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	1	. 108	6 6 7 1 1 1 1 2 4 6	BDL	! ! ! ! ! ! !	BDL		BDL		BDL
T TREATME	1108		^		^		<u>^</u>		^		^		~			
ENT PLAN	CHLOROAROMATICS E (NG/L)	BDL	(NG/L	BDL	(NG/L	BDL	(NG/L	BDL	CNG/L	BOL	(NG/L	BDL	CNG/L	BDL	1/2	BDL
TREATME	CHLC CHLC		SENZENE		SENZENE		3ENZENE		BENZENE		BENZENE		BENZENE		ZENE (NG	
	CHLOROBUTADIENE (NG/L	32 SAMPLES	123-TRICHLOROBENZENE (NG/L	32 SAMPLES	1234-TETCLOROBENZENE (NG/L	32 SAMPLES	1235-TETCLOROBENZENE (NG/L	32 SAMPLES	124-TRICHLOROBENZENE (NG/L	32 SAMPLES	1245-TETCLOROBENZENE (NG/L	32 SAMPLES	135-TRICHLOROBENZENE (NG/L	32 SAMPLES	HEXACHLOROBENZENE (NG/L	32 SAMPLES
	HEXAC	32	123-1	32	1234-	32	1235-	32	124-1	32	1245-	32	135-1	32	HEXAC	32

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

DIST. SYSTEM WEST RIVER STANDING																												,
DIST. SYSTEM DIST WEST RIVER WEST FREE FLOW STAN	GUIDELINE = 1900 (04)	108	- IR	BDL	5.000 <t< th=""><th>no;</th><th>80F</th><th>i AW</th><th>AM</th><th>i AW</th><th>2.000 <1</th><th>BDL</th><th>1,000 <t< th=""><th></th><th></th><th></th><th></th><th>•</th><th>GUIDELINE = N/A</th><th>BDL</th><th>GUIOELINE = 74000 (D4)</th><th>BOL</th><th>GUIOELINE = N/A</th><th>901</th><th>GUIDELINE = N/A</th><th>BDL</th><th>GUIDELINE = N/A</th><th>BDI</th></t<></th></t<>	no;	80F	i AW	AM	i AW	2.000 <1	BDL	1,000 <t< th=""><th></th><th></th><th></th><th></th><th>•</th><th>GUIDELINE = N/A</th><th>BDL</th><th>GUIOELINE = 74000 (D4)</th><th>BOL</th><th>GUIOELINE = N/A</th><th>901</th><th>GUIDELINE = N/A</th><th>BDL</th><th>GUIDELINE = N/A</th><th>BDI</th></t<>					•	GUIDELINE = N/A	BDL	GUIOELINE = 74000 (D4)	BOL	GUIOELINE = N/A	901	GUIDELINE = N/A	BDL	GUIDELINE = N/A	BDI
DIST. SYSTEM DIST. SYSTEM SOUTH ST SOUTH ST FREE FLOW STANDING	DET'N LIMIT = 1.000 G	٠															. I DE	2.000 <t< td=""><td>DETAN LIMIT = 1.000</td><td>. 108</td><td>DET'N LIMIT ≈ 1,000</td><td>. 801</td><td>DET'N LIMIT = 5.000</td><td>. BDL .</td><td>DET'N LIMIT = 5.000</td><td>. 108</td><td>DET*N LIMIT = 5.000</td><td>IUR</td></t<>	DETAN LIMIT = 1.000	. 108	DET'N LIMIT ≈ 1,000	. 801	DET'N LIMIT = 5.000	. BDL .	DET'N LIMIT = 5.000	. 108	DET*N LIMIT = 5.000	IUR
TREATMENT PLANT D TREATED . FI	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	801	5,000 <t< td=""><td>BDL</td><td>2.000 <t< td=""><td>no i</td><td>BDL</td><td>i AW</td><td>i AW</td><td>IAW</td><td>BDL</td><td>3.000 <t< td=""><td>2.000 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>ibE</td><td>3.000 <t< td=""><td>DE</td><td>108</td><td>30 BE</td><td>. 80L</td><td>30 (</td><td>. 108</td><td>) 0E</td><td>BOL</td><td>) 0E</td><td>ā</td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	2.000 <t< td=""><td>no i</td><td>BDL</td><td>i AW</td><td>i AW</td><td>IAW</td><td>BDL</td><td>3.000 <t< td=""><td>2.000 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>ibE</td><td>3.000 <t< td=""><td>DE</td><td>108</td><td>30 BE</td><td>. 80L</td><td>30 (</td><td>. 108</td><td>) 0E</td><td>BOL</td><td>) 0E</td><td>ā</td></t<></td></t<></td></t<></td></t<>	no i	BDL	i AW	i AW	IAW	BDL	3.000 <t< td=""><td>2.000 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>ibE</td><td>3.000 <t< td=""><td>DE</td><td>108</td><td>30 BE</td><td>. 80L</td><td>30 (</td><td>. 108</td><td>) 0E</td><td>BOL</td><td>) 0E</td><td>ā</td></t<></td></t<></td></t<>	2.000 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>ibE</td><td>3.000 <t< td=""><td>DE</td><td>108</td><td>30 BE</td><td>. 80L</td><td>30 (</td><td>. 108</td><td>) 0E</td><td>BOL</td><td>) 0E</td><td>ā</td></t<></td></t<>	BDL	BOL	BDL	ibE	3.000 <t< td=""><td>DE</td><td>108</td><td>30 BE</td><td>. 80L</td><td>30 (</td><td>. 108</td><td>) 0E</td><td>BOL</td><td>) 0E</td><td>ā</td></t<>	DE	108	30 BE	. 80L	30 (. 108) 0E	BOL) 0E	ā
TREATMENT PLANT	CHLOROAROMATICS	BOI	BDL	BDL	80L	IRE	BOL	i AW	1 AW	i AW	BDL	BDL	BOL	BOL	108	BDL	i PE	108	ENE (NG/L)	BDL	ZENE (NG/L)	BOL	OLUENE (NG/L	B0L	OLUENE (NG/L	B0L	OLUENE (NG/L	2
	CHLO CHLOROETHANE (NG/L	1001		_	1991 APR		1991 JUN					1991 NOV		1992 APR		1992 AUG	1992 NOV	1992 DEC	OCTACHLOROSTYRENE (NG/L	32 SAMPLES	PENTACHLOROBENZENE (NG/L	32 SAMPLES	236-TRICHLOROTOLUENE (NG/L	32 SAMPLES	245-TRICHLOROTOLUENE (NG/L	32 SAMPLES	26A-TRICHLOROTOLUENE (NG/L	22 CAMDIES

0		:		1		1						1
DIST. SYSTEM WEST RIVER STANDING				*			(07)		t)		(A1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A	* 1	GUIDELINE = N/A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GUIDELINE = N/A		GUIDELINE = 2600000 (D4)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GUIDELINE = 5000 (A1)		GUIDELINE = 60000 (A1)	
DIST. SYSTEM SOUTH ST STANDING		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								•.		
DIST. SYSTEM SOUTH ST FREE FLOW	.DET'N LIMIT = 100.0		0ET'N LIMIT = 20.0	٠	DET'N LIMIT = 10.0	٠	DET'N LIMIT = 100.0	٠	DET'N LIMIT = 20.0	٠	DET'N LIMIT = 10.00	1
TREATMENT PLANT TREATED		BDL		BOL		BDL		BOL		BDL	1	108
TREATMENT PLANT RAW	CHLOROPHENOLS NOL (NG/L)	BDL	ENOL (NG/L	BDL	ENOL (NG/L	BOL	NOL (NG/L)	108	NOL (NG/L	108) (NG/L)	BOL
<i>⊢</i>	CHLOROPHENOL (NG/L	9 SAMPLES	2345-TETCHLOROPHENOL (NG/L	9 SAMPLES	2356-TETCHLOROPHENOL (NG/L	9 SAMPLES	245-TRICHLOROPHENOL (NG/L	9 SAMPLES	246-TRICHLOROPHENOL (NG/L	9 SAMPLES	PENTACHLOROPHENOL (NG/L	8 SAMPLES

																													•										,
DIST. SYSTEM WEST RIVER STANDING		٠			•															1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		. 0																	
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 700 (A1)	BDL	GUIDELINE = 700 (G)	T 000 t	000	BDI .	BDI	3 3 3	BOL	MY	iAW	IAW	B01	2.000 <1	BOL		•	•			GUIDELINE = 300 (G)	BOL	GUIDELINE = 4000 (A1)	BOL	IR	108	101	108	i AW	iAW	i AW	BOL	108 108	BUL	•				
DIST. SYSTEM DIST. SYSTEM SOUTH ST SOUTH ST FREE FLOW STANDING	DET'N LIMIT = 1.000	BOL	DET'N LIMIT = 1.000															• 1	1,000 <t< td=""><td></td><td>DET'N LIMIT = 1.00</td><td>. 801</td><td>DET'N LIMIT = 1.000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>101</td><td>80L</td><td></td></t<>		DET'N LIMIT = 1.00	. 801	DET'N LIMIT = 1.000														101	80L	
TREATMENT PLANT TREATED	\$ 9 0 1 1 1 5 5 6 6 6 6 7	BOL	0		1,000	2 000 <	. 000.3	יסו	. BOL	i AW	IAW	IAW	BOL	1.000 <t< td=""><td>BOL</td><td>BOL</td><td>B0L</td><td>80L</td><td>1,000 <t< td=""><td></td><td></td><td>BOL</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>BOL</td><td>BOL</td><td>1,000 <t< td=""><td>BOL</td><td>00.00</td><td>IAU</td><td>I AW</td><td>i AW</td><td>BOL</td><td>BOL</td><td>BDL</td><td>801</td><td>BOL</td><td>10g -</td><td>108</td><td></td></t<></td></t<></td></t<>	BOL	BOL	B0L	80L	1,000 <t< td=""><td></td><td></td><td>BOL</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>BOL</td><td>BOL</td><td>1,000 <t< td=""><td>BOL</td><td>00.00</td><td>IAU</td><td>I AW</td><td>i AW</td><td>BOL</td><td>BOL</td><td>BDL</td><td>801</td><td>BOL</td><td>10g -</td><td>108</td><td></td></t<></td></t<>			BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	BOL	1,000 <t< td=""><td>BOL</td><td>00.00</td><td>IAU</td><td>I AW</td><td>i AW</td><td>BOL</td><td>BOL</td><td>BDL</td><td>801</td><td>BOL</td><td>10g -</td><td>108</td><td></td></t<>	BOL	00.00	IAU	I AW	i AW	BOL	BOL	BDL	801	BOL	10g -	108	
TREATMENT PLANT	PESTICIDES AND PCB	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2,000 <1	1,000 4	1, 000.1	FRF	801	IAW	iAW	i AW	1.000 <t< td=""><td>1,000 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>1-000 <t< td=""><td></td><td>^</td><td>BDL</td><td>BHC) (NG/L)</td><td>BDL</td><td>BOL</td><td>1.000 <t< td=""><td>108</td><td>RNI</td><td>- AU</td><td>IAW</td><td>IAW</td><td>BOL</td><td>BOL</td><td>BDL .</td><td>1,000 <1</td><td>108 108</td><td>100</td><td>ROLL</td><td></td></t<></td></t<></td></t<></td></t<>	1,000 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>1-000 <t< td=""><td></td><td>^</td><td>BDL</td><td>BHC) (NG/L)</td><td>BDL</td><td>BOL</td><td>1.000 <t< td=""><td>108</td><td>RNI</td><td>- AU</td><td>IAW</td><td>IAW</td><td>BOL</td><td>BOL</td><td>BDL .</td><td>1,000 <1</td><td>108 108</td><td>100</td><td>ROLL</td><td></td></t<></td></t<></td></t<>	BOL	BOL	BOL	BOL	1-000 <t< td=""><td></td><td>^</td><td>BDL</td><td>BHC) (NG/L)</td><td>BDL</td><td>BOL</td><td>1.000 <t< td=""><td>108</td><td>RNI</td><td>- AU</td><td>IAW</td><td>IAW</td><td>BOL</td><td>BOL</td><td>BDL .</td><td>1,000 <1</td><td>108 108</td><td>100</td><td>ROLL</td><td></td></t<></td></t<>		^	BDL	BHC) (NG/L)	BDL	BOL	1.000 <t< td=""><td>108</td><td>RNI</td><td>- AU</td><td>IAW</td><td>IAW</td><td>BOL</td><td>BOL</td><td>BDL .</td><td>1,000 <1</td><td>108 108</td><td>100</td><td>ROLL</td><td></td></t<>	108	RNI	- AU	IAW	IAW	BOL	BOL	BDL .	1,000 <1	108 108	100	ROLL	
	ALDRIN (NG/L	32 SAMPLES	ALPHA BHC (NG/L			1991 FEB	1991 MAK	1991 APK											1992 NOV 1002 DEC		BETA BHC (NG/L	32 SAMPLES	LINDANE (GAMMA BHC) (NG/L	1991 JAN				1991 MAY								1992 JUN	1992 AUG		

			:						:		:				:		:		•						
DIST. SYSTEM WEST RIVER STANDING	. (1)		1)	٠	^		(A1)		04)		04)		3)				1)		.1)		0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			٠	
SYSTEM RIVER FLOW	GUIDELINE = 7000 (AÍ)	BOL	7000 (A1)	BDL	700 (A1)	BOL	= 900000 (A1)	108	= 74000 (04)	BOL	74000 (04)	BOL	1600 (03)	BOL	= N/A	BDL	= 3000 (A1)	BOL	= 3000 (A1)	BOL	N/A	BDL	= N/A	BDL .	
DIST. SYSTE WEST RIVER FREE FLOW	INE =		. 11		ш.						"		11												
	GUIDEL		GUIDEL INÈ		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDEL INE		GUIDEL INE		GUIDEL INE		GUIDEL INE		
SYSTEM ST NG		٠		٠		•		٠))))	•		•	_	٠		٠		•		٠.					
DIST. SYSOUTH ST STANDING	. 8						, , ,				0.		0				0		0		00		00		
	= 2.00		= 2.00		= 2.00		= 5.0		= 2.00		> 5.00		= 5.00		= 5.00		1.00		1.00		= 5.00		= 2.00		
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 2.000	BDL	DET'N LIMIT	BDL	DET 'N LIMIT =	108	DET'N LIMIT =	BOL	DET'N LIMIT = 2.00	BDL	DET'N LIMIT = 5.000	B0L	DET'N LIMIT = 5.000	BOL	DET'N LIMIT = 5.00	BOL	DET'N LIMIT = 1.000	TOB	DET'N LIMIT = 1.000	BDL	DET'N LIMIT' = 5.000	108	DET'N LIMIT = 2.000	BDL	
DIST. SOUTH FREE F	DET'N		DET'N		DET '-N		DET'N		DET'N		DET 'N		DET'N		DET 'N		DET 'N		DET'N		DET 'N		DET 'N		
PLANT		BDL		BoĽ		BDL		30F		BDL) 	BDL		BDL	1	BDL		BDL		BDL		BDL		BOL	
TREATMENT PLANT TREATED		8		8		8		æ	1	Δ.) 	8		8		ā		8		æ		80		80	
	PESTICIDES AND PCB G/L)								1		! ! !				^		^					٠			
TREATMENT PLANT	ICIDES	BDL	^	BDL		TOB	_	BDL	^	BDL	-	BDL		BDL	3/1	BOL	7	BDL		BDL		BOL	^	BDL	
REATME	PEST (NG/L		(NG/L		^		-		7		3/L		^		ATE (NO		DE (NG,		^		_		7		
⊢ ∝		LES	RDANE	LES	NG/L	LES	METHOXYCHLOR (NG/L	LES	ENDOSULFAN 1 (NG/L	LES	ENDOSULFAN II (NG/L	LES	7	LES	ENDOSULFAN SULPHATE (NG/L	LES	HEPTACHLOR EPOXIDE (NG/L	LES	CNG/L	LES		LES	OXYCHLORDANE (NG/L	LES	
	ALPHA CHLORDANE	32 SAMPLES	GAMMA CHLORDANE	32 SAMPLES	DIELDRIN (NG/L	32 SAMPLES	ОХУСИГ	32 SAMPLES	SULFAN	32 SAMPLES	SULFAN	32 SAMPLES	ENDRIN (NG/L	32 SAMPLES	SULFAN	32 SAMPLES	ACHLOR	21 SAMPLES	HEPTACHLOR (NG/L	32 SAMPLES	MIREX (NG/L	32 SAMPLES	HLORDAI	32 SAMPLES	
	ALPH	8	GAMM	2	DIEL	M	METH	М	ENDO	M	ENDO	М	ENDR	M	ENDO	23	HEPT	2	HEPT	33	MIRE	Σ.	OXYC	3	

DIST. SYSTEM WEST RIVER STANDING		٠					_	٠				٠	3)	٠								•						
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 30000 (A1)	108	GUIDELINE = 3000 (A2)	. 108	GUIDELINE = 30000 (A1)	BDL	GUIDELINE = 30000 (A1)	BDL	GUIDELINE = 30000 (A1)	B0L	GUIDELINE = 5000 (A1)	BOL	GUIDELINE = 300000 (D3)	٠	GUIDELINE = 60000 (A2)													
DIST. SYSTEM SOUTH ST STANDING	0 1 3 3 5 6 6 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9	٠	20.00 GUI	٠	5.000 GUI		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	٠	6 6 7 6 6 6 6 6 7 7 7 7 7		9 8 8 8 8 9 9 9 9 9	٠		٠				•										•
I DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 2	BDL	DET'N LIMIT = 5	BDL	DET'N LIMIT = 1,000	TOB .	DET'N LIMIT = 5.000	108	DET'N LIMIT = 500.0	BOL	DET'N LIMIT = 50.0		DET'N LIMIT = 50.0			. ,								٠		
TREATMENT PLANT TREATED	ID PCB	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	5 p p p p q q q q q q q q q q q q q q q	B0L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	2	7> 000°097	920 000 vT	240.000 <t< td=""><td>108</td><td>i AW</td><td>i Au</td><td>108</td><td>801</td><td>B0L</td><td>, BDL</td><td>. 70,000 <t< td=""><td>. 000</td><td>120.000 <1</td></t<></td></t<>	108	i AW	i Au	108	801	B0L	, BDL	. 70,000 <t< td=""><td>. 000</td><td>120.000 <1</td></t<>	. 000	120.000 <1
TREATMENT PLANT RAW	PESTICIDES AND PCB	BDL	0 1 1 1 1 1 2 3 4 4 4 4 4 4 7	BDL		BOL		BDL	(B01	(BOL		BDL		410.000 <t< td=""><td>100 001</td><td>200.000 ×1</td><td>118</td><td></td><td>IAU</td><td>260.000 <t< td=""><td>12 000 A</td><td>BOL</td><td>BDL</td><td>130.000 <t< td=""><td>1090,000</td><td>150,000 00,000 150,000</td></t<></td></t<></td></t<>	100 001	200.000 ×1	118		IAU	260.000 <t< td=""><td>12 000 A</td><td>BOL</td><td>BDL</td><td>130.000 <t< td=""><td>1090,000</td><td>150,000 00,000 150,000</td></t<></td></t<>	12 000 A	BOL	BDL	130.000 <t< td=""><td>1090,000</td><td>150,000 00,000 150,000</td></t<>	1090,000	150,000 00,000 150,000
	O,P-DOT (NG/L	32 SAMPLES	PCB (NG/L)	32 SAMPLES	P, P-DOD (NG/L	32 SAMPLES	P,P-00E (NG/L	32 SAMPLES	P,P-00T (NG/L	32 SAMPLES	TOXAPHENE (NG/L	24 SAMPLES	AMETRINE (NG/L	28 SAMPLES	ATRAZINE (NG/L			1991 MAK					1991 SEP					1992 NOV

DIST. SYSTEM WEST RIVER STANDING			2)		5)															2)	.•	2	•	33)						2
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A		GUIDELINE = 10000 (A2)	٠	GUIDELINE = 60000 (A2)		•									•				GUIDELINE = 10000 (A2)	•	GUIDELINE = 52500 (03)	٠	GUIDELINE = 700000 (D3)		GUIDELINE = 1000 (A2)		GUIDELINE = 80000 (A1)		
DIST. SYSTEM DIST. SYSTEM SOUTH ST SOUTH ST FREE FLOW STANDING	DET'N LIMIT = 50.0		DET'N LIMIT = 100.0		DET'N LIMIT = 200.0			• 1			•									DET'N LIMIT = 200.0		DET'N LIMIT = 50.000		DET'N LIMIT = 50.000		DET'N LIMIT = 50.000 G		DET'N LIMIT = 100.0		5
TREATMENT PLANT DI TREATED SO		BDL	DET	BDL	DET	BDL	BDL	260.000 <t< td=""><td>BOL</td><td>iAW</td><td>AV.</td><td>80L</td><td>BOL</td><td>108</td><td>B0L</td><td>B0L</td><td>BDL</td><td></td><td>BDL BDL</td><td>DET</td><td>BDL</td><td>DET</td><td>BDL</td><td>DET</td><td>108</td><td>DET</td><td>. 108</td><td>DET</td><td>BoL</td><td></td></t<>	BOL	iAW	AV.	80L	BOL	108	B0L	B0L	BDL		BDL BDL	DET	BDL	DET	BDL	DET	108	DET	. 108	DET	BoL	
TREATMENT PLANT	PESTICIDES AND PCB	BDi	IDEX) (NG/L)	BDL	TINE (NG/L)	BDL	108	801	SII	• !	HA!	BDI	80L	3DF	B0L	B0L	BDL	4 10.000	108 108	INE (NG/L)	BDL	١)	BOL	١)	BOL	٦)	BOL	NCOR) (NG/L)	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	ATRATONE (NG/L	28 SAMPLES	CYANAZINE (BLADEX) (NG/L	28 SAMPLES	DESETHYL ATRAZINE (NG/L		1991 FEB				1991 JUL	1991 AUG					1992 JUN		1992 NOV 1992 DEC	DESETHYL SIMAZINE (NG/L	28 SAMPLES	PROMETONE (NG/L	28 SAMPLES	PROPAZINE (NG/L	28 SAMPLES	PROMETRYNE (NG/L	28 SAMPLES	METRIBUZIN (SENCOR) (NG/L	28 SAMPLES	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

																				:	:																			1
DIST. SYSTEM WEST RIVER STANDING	42)						٠						•	•						2)		A2)		٠											•					
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 10000 (A2)		٠						,					•				•		GUIDELINE = 5000 (A2)		GUIDELINE = 50000 (A2)																		
DIST, SYSTEM SOUTH ST STANDING		•													•					8 6 8 8 8 8	٠									٠	•		•				•			
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 50.00																			DET'N LIMIT = 500.0	٠	DET'N LIMIT = 500.0						٠												
TREATMENT PLANT TREATED) PC8	BOL	BDL	BDL	BDL	BDL	UAI	UAI	ida	100	90L	BOL	BOL	BDL	BDL	BOL		BDL	108 .	0 0 0 5 5 0 0 0 0 0	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	BDL	BDL	BOL	108	i AW	IAU	BDL	BOL	108	BDL	BDL	BDL	80 F		BDL	BDL	
TREATMENT PLANT RAW	PESTICIDES AND PCB	BDL	BDL	BDL	8DI	115		. 100		907	BUL	BUL	BDL	BOL	BOL	BDL	50.000 <t< td=""><td>108</td><td>. B0L</td><td>() (NG/L)</td><td>BDL</td><td>3/1)</td><td>I GBD .</td><td>BDI</td><td>. 108</td><td>801</td><td>. 118</td><td></td><td>IAW</td><td>BDL.</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>920.000 <t< td=""><td>BDL</td><td>108</td><td></td></t<></td></t<>	108	. B0L	() (NG/L)	BDL	3/1)	I GBD .	BDI	. 108	801	. 118		IAW	BDL.	BDL	BDL	BDL	BOL	BDL	BDL	920.000 <t< td=""><td>BDL</td><td>108</td><td></td></t<>	BDL	108	
	SIMAZINE (NG/L	1991 JAN	1991 FFB								1991 SEP		1991 NOV	1992 FEB			1992 AUG	1992 NOV		ALACHLOR (LASSO) (NG/L	28 SAMPLES	METOLACHLOR (NG/L	1001							1991 AUG		1991 OCT		1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 NOV	1992 DEC	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

STEM DIST. SYSTEM ER WEST RIVER A STANDING	06000 (D4)	. 108	IR		99.000		46.000 <t< th=""><th>- Aw</th><th>. Aw</th><th>I AW</th><th>18.000 <1</th><th>13.000 <t< th=""><th>24.000 <t< th=""><th></th><th></th><th></th><th>•</th><th></th></t<></th></t<></th></t<>	- Aw	. Aw	I AW	18.000 <1	13.000 <t< th=""><th>24.000 <t< th=""><th></th><th></th><th></th><th>•</th><th></th></t<></th></t<>	24.000 <t< th=""><th></th><th></th><th></th><th>•</th><th></th></t<>				•	
EM DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 206000 (04)			. 50.0			. 46.0	•			. 18.	. 13.0	. 24.1					
DIST. SYSTEM SOUTH ST STANDING	5.00																	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 5.00			•				•	•		٠.		•			•	i PE	8
RREATMENT PLANT TREATMENT PLANT RAW	ND PCB	BDL	. 20.000 <t< td=""><td>. BDL</td><td>24.000</td><td>001</td><td>t> 000°27</td><td>i AW</td><td>i AW</td><td>i AW</td><td>12.000 <t< td=""><td>17.000 <t< td=""><td>10.000 <t< td=""><td>no i</td><td>9</td><td><u>8</u></td><td>3d i</td><td>00</td></t<></td></t<></td></t<></td></t<>	. BDL	24.000	001	t> 000°27	i AW	i AW	i AW	12.000 <t< td=""><td>17.000 <t< td=""><td>10.000 <t< td=""><td>no i</td><td>9</td><td><u>8</u></td><td>3d i</td><td>00</td></t<></td></t<></td></t<>	17.000 <t< td=""><td>10.000 <t< td=""><td>no i</td><td>9</td><td><u>8</u></td><td>3d i</td><td>00</td></t<></td></t<>	10.000 <t< td=""><td>no i</td><td>9</td><td><u>8</u></td><td>3d i</td><td>00</td></t<>	no i	9	<u>8</u>	3d i	00
TREATMENT PLANT RAW	PESTICIDES AND PCB NTADIEN (NG/L)	BDL	BDL	BDL	108 .	i RE	BDL	IAW	iAW	i AW	108	BDL	BDL	Do.	<u> </u>	Do.	i PE	· Flat
	PESTICIDE HEXACLCYCLOPENTADIEN (NG/L	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 001	VON 1991	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 NOV	1002 DEF

. :																		
DIST, SYSTEM WEST RIVER 'STANDING		٠																•
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A																	•
DIST. SYSTEM SOUTH ST STANDING	0.2											*						•
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT =					•		٠					•					
TREATMENT PLANT TREATED		1.000	80F	T> 008.	T> 009.	BOL	1,400	B0L	T> 004.	BOL	108	T> 008.	T> 009.	1.600	T> 009.	1> 009.	B0L	. 100
TREATMENT PLANT RAW	PHENOLICS	T> 000.	T>, 000.	T> 009.	T> 004.	801	T> 008.	BOL	T> 004.	108	BOL	T> 004.	T> 004.	1.800	BOL	BOL	T> 009.	T/ 00/
	PHENOLICS (UG/L	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 NOV	270 000

	-				4																			
DIST. SYSTEM WEST RIVER STÄNDING	1			:	34)		, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,		* 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	5 1 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	•	. d e e e e e e e e e e e e e e e e e e					•	, , , , , , , , , , , , , , , , , , ,	
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A	BDL	GUIDELINE = N/A	80f.	GUIDELINE = 42000 (D4)	. Boi	GUIDELINE = N/A	108 .	GUIDELINE = N/A	108	GUIDELINE = N/A	108	GUIDELINE = N/A	108	GUIDELINE = N/A	108	GUIDELINE = N/A	BOĹ	GUIDELINE = N/A	108	GUIDELINE = N/A	108 .	GUIDELINE = 10 (A1)	BOL
DIST. SYSTEM SOUTH ST SOUTH ST FREE FLOW STANDING	DET*N LIMIT = 10.0	-	DET'N LIMIT = 1.0		DET'N LIMIT = 20.0 G		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 50.0		DET'N LIMIT = 5.0 G		DET'N LIMIT = 50.0 ° G		DET'N LIMIT = 10.0		DET'N LIMIT = 10.0		DET'N LIMIT = 1.0 . G		DET'N LIMIT = 5.0 G	
TREATMENT PLANT D TREATED S		BDL	90	BDL	DE	BDL	30 E	, BDL	30	108	DE	BDL) · DE	BDL	Độ.	BDL	90	BDL.	DE	BDL	DE	BDL	DE	BDL
TREATMENT PLANT RAW	POLYAROMATIC HYDROCARBONS PHENANTHRENE (NG/L)	19 SAMPLES BDL	ANTHRACENE (NG/L)	19 SAMPLES . BDL	FLUORANTHENE (NG/L)	19 SAMPLES BDL	PYRENE (NG/L)	19 SAMPLES BDL	BENZO(A)ANTHRACENE (NG/L)	19 SAMPLES BDL	CHRYSENE (NG/L)	19 SAMPLES BDL	DIMETH, BENZ(A)ANTHR (NG/L)	19 SAMPLES BDL	BENZO(E) PYRENE (NG/L)	19 SAMPLES BDL	BENZO(B) FLUORANTHEN (NG/L)	19 SAMPLES BDL	PERYLENE (NG/L)	19 SAMPLES BDL	BENZO(K) FLUORANTHEN (NG/L)	19 SAMPLES BDL	BENZO(A) PYRENE (NG/L)	19 SAMPLES BDL

DIST. SYSTEM WEST RIVER STANDING					
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A BDL	GUIDELINE = N/A	GUIDELINE = N/A	GUIDELINĘ = N/A BDL	GUIDELINE = N/A BOL
DIST. SYSTEM SOUTH ST STANDING	•		* * * * * * * * * * * * * * * * * * *	9 9 1 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 20,0	DET'N LIMIT = 10.0	DET'N LIMIT = 20.0	DET'N' LIMIT = 2.0	DET'N LIMIT = 10.0
REATMENT PLANT TREATMENT PLANT RAW TREATED		108	801	BDL	108
TREATMENT PLANT RAW	POLYAROMATIC HYDROCARBONS ERYLEN (NG/L) 80L 80L	NTHRAC (NG/L	,0) PY (NG/L	ENE (NG/L)	BDL
	BENZO(G, H, I) PERYLEN (NG/L 19 SAMPLES BDL	DIBENZO(A,H) ANTHRAC (NG/L 19 SAMPLES BDL	INDENO(1,2,3-C,D) PY (NG/L 19 SAMPLES BDL	BENZO(B) CHRYSENE (NG/L	CORONENE (NG/L

									٠																
M DIST, SYSTEM DIST, SYSTEM WEST RIVER HEEF FLOW STANDING	GUIDELINE = 5000 (A1)	. 800	GUIDELINE = 280000 (A1)		GUIDELINE = 100000 (A1)		GUIDELINE = N/A	•	GUIDELINE = N/A		GUIDELINE = 120000 (A1)					GUIDELINE = 10000 (A1)		GUIDELINE = 20000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 35000 (G)	
DIST. SYSTEM DIST. SYSTEM SOUTH ST SOUTH ST FREE FLOW STANDING	DET'N LIMIT = 500.0		DET'N LIMIT = 50.0	•	DET'N LIMIT = 100.0		DET'N LIMIT = 200,0	٠	DET'N LIMIT = 100.0		DET*N LIMIT = 50.0					DET'N LIMIT = 20.00		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		0ET'N LIMIT = 20.0	* 1
TREATMENT PLANT TREATED	ICIDES	108		BDL		BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	^	BDL	0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120.000 <t< td=""><td>t L A BDI</td><td>80F</td><td>BOL</td><td></td><td>BOL</td><td></td><td>. BDL</td><td></td><td>BOL</td><td></td><td>BDL</td><td></td><td>BDL</td></t<>	t L A BDI	80F	BOL		BOL		. BDL		BOL		BDL		BDL
IREATMENT PLANT RAW	SPECIFIC PESTICIDES	BDL	^	BDL	_	108	(. TOB	ACID (NG/L	108	^	130.000 <t< td=""><td>BDL</td><td>80F</td><td>801</td><td>() (NG/L)</td><td>BDL</td><td>^</td><td>BOL</td><td>(۷</td><td>BDL</td><td>IG/L)</td><td>108</td><td>^</td><td>BDL</td></t<>	BDL	80F	801	() (NG/L)	BDL	^	BOL	(۷	BDL	IG/L)	108	^	BDL
	TOXAPHENE (NG/L	8 SAMPLES	2,4,5-T (NG/L	9 SAMPLES	2,4.D (NG/L	9 SAMPLES	2,4-DB (NG/L	9 SAMPLES	2,4 D PROPIONIC ACID (NG/L	9 SAMPLES	DICAMBA (NG/L		1991 AUG	1992 JUN	7992 NOV	2,4,5-TP (SILVEX) (NG/L	9 SAMPLES	DIAZINON (NG/L	4 SAMPLES	DICHLOROVOS (NG/L	4 SAMPLES	CHLORPYRIFOS (NG/L	4 SAMPLES	ETHION (NG/L	4 SAMPLES

DISI. SYSTEM WEST RIVER STANDING	5 3 0 4 9 0 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6 6 6 0 0 0 0 0 0 0		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				G G G G G G G G G G G G G G G G G G G		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 9 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
DIST. SYSTEM DIST. WEST RIVER WEST R FREE FLOW STANDI	GUIDELINE = 190000 (A1)		GUIDELINE = N/A		GUIDELINE = 9000 (D3)	•	GUIDELINE = N/A	•	GUIDELINE = 50000 (A1)		GUIDELINE = 2000 (A2)		GUIDELINE = N/A	•	GUIDELINE = N/A		GUIDELINE = 90000 (A1)		GUIDELINE = 350000 (G)		GUIDELINE = N/A		GUIDELINE = N/A	
DIST, SYSTEM DIST, SYSTEM SOUTH ST SOUTH ST FREE FLOW STANDING	DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 50.0		DET'N LIMIT = 20.0		DET*N LIMIT = 20.0		DET*N LIMIT = 20.0		DET'N LIMIT = 20.0	٠	DET*N LIMIT = 20.0		DET*N LIMIT = 2000.0		DET'N LIMIT = 2000.0		DET'N LIMIT = 2000.0		DET'N LIMIT = 2000.0	
TREATMENT PLANT TREATED	CIDES	BDL	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BDL	0 0 0 0 0 0 0 0 0 0 0 0	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL		BDL	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL		BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL.	9 9 9 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	7 7 0 1 1 2 2 0 6 5 7 7 8 9 9	BDL		108		ä
TREATMENT PLANT	G/L)	BOL	6/L)	BDL	HION (NG/L)	BDL	ON (NG/L)	BDL	(1/9	, BDL	۲)	. BDL	^	108		108	NG/L)	BDL	CHLORPROPHAM (CIPC) (NG/L)	BDL	/L)	BDL	^	2
	MALATHION (NG/L	4 SAMPLES	MEVINPHOS (NG/L	4 SAMPLES	METHYL PARATHION (NG/L	4 SAMPLES	METHYLTRITHION (NG/L	4 SAMPLES	PARATHION (NG/L	4 SAMPLES	PHORATE (NG/L	4 SAMPLES	RELDAN CNG/L	4 SAMPLES	RONNEL (NG/L	4 SAMPLES	CARBOFURAN (NG/L	7 SAMPLES	CHLORPROPHAM	7 SAMPLES	DIALLATE (NG/L	7 SAMPLES	EPTAM (NG/L	7 SAMPLES

		DRINKING WATER	DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP	1992 BELLE RIVER WTP	
	TREATMENT PLAN RAW	NT TREATMENT PLANT TREATED	TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW FREE FLOW SOUTH ST FREE FLOW STANDING	M DIST. SYSTEM DIST. SYSTEM WEST RIVER FREE FLOW STANDING	YSTEM VER IG
IPC (NG/L	SPECIFIC PESTICIDES	STICIDES	DET'N LIMIT = 2000.0	GUIDELINE = N/A	
7 SAMPLES	JOB	108			1
PROPOXUR (NG/L	^	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 2000.0	GUIDELINE = 140000 (D3)	
7 SAMPLES	108	BDL	٠		
CARBARYL (NG/L	^	1	DET'N LIMIT = 200.0	GUIDELINE = 90000 (A1)	
7 SAMPLES	108	BOL	•		
BUTYLATE (NG/L	^		DET'N LIMIT = 2000.0	GUIDELINE = 245000 (D3)	
7 SAMPLES	BOL	BDL			

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

DIST. SYSTEM WEST RIVER STANDING																			•																		
WEST RIVER FREE FLOW	GIIDELINE = 5 (A1)		BOL	. JOB	BDL	B01	BOL	BOL	BDL	BDL	BDL	80L		1> 0<0.						GUIDELINE = 24 (A3)	. 100 <t< td=""><td>. 150 <t< td=""><td>, 100 <t< td=""><td>BDL</td><td>108</td><td>B0L</td><td>BDL</td><td>B01</td><td>B0L</td><td>. 050 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 150 <t< td=""><td>, 100 <t< td=""><td>BDL</td><td>108</td><td>B0L</td><td>BDL</td><td>B01</td><td>B0L</td><td>. 050 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	, 100 <t< td=""><td>BDL</td><td>108</td><td>B0L</td><td>BDL</td><td>B01</td><td>B0L</td><td>. 050 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<></td></t<>	BDL	108	B0L	BDL	B01	B0L	. 050 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>. 100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	. 100 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
SOUTH ST STANDING														•						6 6 6 6 6 6 7 7 9 9										•	•					٠	
SOUTH ST FREE FLOW	TIMIT WITH USE	DEL N LIMIT - C.		٠.				٠										BOL	BOL	0ET'N LIMIT = 0.05														٠		T> 050.	1> 050.
IREAIMENI PLANI TREATED	5 6 7 8 9 9 9 9 9 9 9		BOL	. BDL	BDL	BDL	BOL	108	BOL	BOL	BDL	BDL	BOL	T> 050°	BDL	BOL	BDL	BOL	BOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T> 050.	- 150 <t< td=""><td>T> 001.</td><td>BDL</td><td>T> 050.</td><td>T> 050.</td><td>BOL</td><td>T> 050.</td><td>BOL</td><td>. 050 <t< td=""><td>1> 051.</td><td>.100 <1</td><td>T> 050.</td><td>T> 050.</td><td>BDL</td><td>.050 <1</td><td>T> 050.</td></t<></td></t<>	T> 001.	BDL	T> 050.	T> 050.	BOL	T> 050.	BOL	. 050 <t< td=""><td>1> 051.</td><td>.100 <1</td><td>T> 050.</td><td>T> 050.</td><td>BDL</td><td>.050 <1</td><td>T> 050.</td></t<>	1> 051.	.100 <1	T> 050.	T> 050.	BDL	.050 <1	T> 050.
TREATMENT PLANT	VOLATILES		BDL	BDL	BDL	BDL	BOL	BOL	BDL	108	BOL	BDL	BDL	.050 <t< td=""><td>· BDL</td><td>BOL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>(</td><td>BDL</td><td>.100 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>301</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>T> 050.</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>B01</td></t<></td></t<>	· BDL	BOL	BDL	BOL	BDL	(BDL	.100 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>301</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>T> 050.</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>B01</td></t<>	BDL	BDL	BDL	BOL	301	BDL	BDL	BDL	BOL	T> 050.	BDL	BDL	BDL	BOL	B01
	Water of the state	BENZENE (DG/L	1991 JAN	1991 FEB		1991 APR		1991 JUN		1991 AUG					1992 APR			1992 NOV	1992 DEC	TOLUENE (UG/L	1991 JAN	1991 FEB		1991 APR			1991 JUL			1991 OCT				1992 JUN	1992 AUG	1992 NOV	1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER UTP

DIST. SYSTEM WEST RIVER STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				٠			٠			"				•					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					, (. •		٠					٠		٠	
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 2.4 (A3)		BDL		T> 001.	T> 050	BDL	T> 050.	T> 050.	T> 001.	.100 <t< td=""><td>T> 050.</td><td>.100 <t< td=""><td></td><td></td><td></td><td>. ,</td><td></td><td></td><td>GUIDELINE = 300 (A3*)</td><td>. B0L</td><td>GUIDELINE = 300 (A3*)</td><td>.100 <1</td><td>100 <1</td><td>Z00 <t< td=""><td>807</td><td>108</td><td>800</td><td>BOL</td><td>80¢</td><td>BDL</td><td>B0L</td><td>BDL</td><td>801</td><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	T> 050.	.100 <t< td=""><td></td><td></td><td></td><td>. ,</td><td></td><td></td><td>GUIDELINE = 300 (A3*)</td><td>. B0L</td><td>GUIDELINE = 300 (A3*)</td><td>.100 <1</td><td>100 <1</td><td>Z00 <t< td=""><td>807</td><td>108</td><td>800</td><td>BOL</td><td>80¢</td><td>BDL</td><td>B0L</td><td>BDL</td><td>801</td><td></td><td></td><td></td><td></td><td></td></t<></td></t<>				. ,			GUIDELINE = 300 (A3*)	. B0L	GUIDELINE = 300 (A3*)	.100 <1	100 <1	Z00 <t< td=""><td>807</td><td>108</td><td>800</td><td>BOL</td><td>80¢</td><td>BDL</td><td>B0L</td><td>BDL</td><td>801</td><td></td><td></td><td></td><td></td><td></td></t<>	807	108	800	BOL	80¢	BDL	B0L	BDL	801					
DIST. SYSTEM SOUTH ST STANDING	0 0 0 0 0 0 0 0 0			•																	٠									,							٠		٠
DIST, SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.05			•	٠											٠		BDL	T> 050.	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.10																BDL	BDL
TREATMENT PLANT TREATED		()	1> 051.	. 100 <t< td=""><td>.100 <t< td=""><td>T> 050</td><td>.200 <t< td=""><td>T> 002.</td><td>. 2000 <t< td=""><td>.200 <t< td=""><td>.100 <7</td><td>BOL</td><td>.050 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>T> 050</td><td>.200 <t< td=""><td>T> 002.</td><td>. 2000 <t< td=""><td>.200 <t< td=""><td>.100 <7</td><td>BOL</td><td>.050 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 050	.200 <t< td=""><td>T> 002.</td><td>. 2000 <t< td=""><td>.200 <t< td=""><td>.100 <7</td><td>BOL</td><td>.050 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 002.	. 2000 <t< td=""><td>.200 <t< td=""><td>.100 <7</td><td>BOL</td><td>.050 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>.100 <7</td><td>BOL</td><td>.050 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.100 <7	BOL	.050 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>. 100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td></td><td>.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	BOL		BDL		.100 <t< td=""><td>.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>T> 007.</td><td>.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<>	T> 007.	.300 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<></td></t<>	BOL	.200 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<>	.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOŁ</td><td>BOL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<></td></t<>	BOL	BOL	BOŁ	BOL	.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td></t<>	BOL	BOL	BOL
TREATMENT PLANT RAW	VOLATILE\$	i	BUL	.050 ×T	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BOL	BOL	BDL	BDL	BDL	BDL	BDL	BOL	,	BOL	^	. BOL	BOL	BDL	BDL	BDL	BDL	108	BOL	BOL	30F	108	BOL	BOL	BOL	BDL	BOL	BDL
	ETHYLBENZENE (UG/L												1991 NOV	1992 FEB						P-XYLENE (UG/L	48 SAMPLES	M-XYLENE (UG/L	1991 JAN	1991 FEB	1991 MAR		1991 MAY			. 1991 AUG				1992 FEB		1992 JUN		1992 NOV	1992 DEC

Σ																			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																		9	0 0 0 0 0				
DIST. SYSTEM WEST RIVER STANDING		•		•	•	•	٠	٠	•		•	•	•	•	•	•		•	B B B B B B B B B B B B B B B B B B B	•				•	•		•	•	•													
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 300 (A3*)	 1> 050,	BDL	. 050 <t< td=""><td>BDL</td><td>.050 <t< td=""><td>T> 001.</td><td>. BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td></td><td></td><td></td><td></td><td>GUIDELINE = 100 (D1)</td><td>BDL</td><td>15 Off.</td><td>15 021.</td><td>1001</td><td>1, 050</td><td>7 200</td><td>150 /1</td><td>15 021.</td><td>1, 000</td><td>1× 050</td><td>200°</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td>GUIDELINE = 7 (D1)</td><td>BDL</td><td>CHINELINE = 50 (A1)</td><td>UIDELINE - 30 (AI)</td><td>BDL</td></t<></td></t<>	BDL	.050 <t< td=""><td>T> 001.</td><td>. BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td></td><td></td><td></td><td></td><td>GUIDELINE = 100 (D1)</td><td>BDL</td><td>15 Off.</td><td>15 021.</td><td>1001</td><td>1, 050</td><td>7 200</td><td>150 /1</td><td>15 021.</td><td>1, 000</td><td>1× 050</td><td>200°</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td>GUIDELINE = 7 (D1)</td><td>BDL</td><td>CHINELINE = 50 (A1)</td><td>UIDELINE - 30 (AI)</td><td>BDL</td></t<>	T> 001.	. BDL	BDL	BDL	BDL	BDL	BOL						GUIDELINE = 100 (D1)	BDL	15 Off.	15 021.	1001	1, 050	7 200	150 /1	15 021.	1, 000	1× 050	200°			•					GUIDELINE = 7 (D1)	BDL	CHINELINE = 50 (A1)	UIDELINE - 30 (AI)	BDL
SOUTH ST STANDING			٠				٠.										•	•	0.05 GU	,	•	•				•		•					•		٠			* * * * * * * * * * * * * * * * * * *				,
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.05				٠	٠	٠										BDL	BDL	DET'N LIMIT = 0		•		•					•				•		•		BDL	. 100 <t< td=""><td>DET'N LIMIT = 0.100</td><td>BDL</td><td></td><td>DEL'N LIMIT</td><td>BOL</td></t<>	DET'N LIMIT = 0.100	BDL		DEL'N LIMIT	BOL
TREATMENT PLANT TREATED	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	1> 050.	T> 050.	BDL	.100 <t< td=""><td>. 100 <t< td=""><td>BDL</td><td>100 cT</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>T> 050.</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td>15.0 <t< td=""><td>170</td><td>100 vT</td><td>1,001.</td><td>1> 050.</td><td>BUL</td><td>RDL Sp.</td><td>BDL BDL</td><td>80F</td><td>BOL BOL</td><td>108 108</td><td>BDL BDI</td><td>100</td><td>, 001.</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>^</td><td>. BDL</td><td></td><td></td><td>BDL</td></t<></td></t<></td></t<>	. 100 <t< td=""><td>BDL</td><td>100 cT</td><td>108</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>T> 050.</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td>15.0 <t< td=""><td>170</td><td>100 vT</td><td>1,001.</td><td>1> 050.</td><td>BUL</td><td>RDL Sp.</td><td>BDL BDL</td><td>80F</td><td>BOL BOL</td><td>108 108</td><td>BDL BDI</td><td>100</td><td>, 001.</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>^</td><td>. BDL</td><td></td><td></td><td>BDL</td></t<></td></t<>	BDL	100 cT	108	BDL	BDL	BDL	BDL	T> 050.	BDL	BDL	BDL		15.0 <t< td=""><td>170</td><td>100 vT</td><td>1,001.</td><td>1> 050.</td><td>BUL</td><td>RDL Sp.</td><td>BDL BDL</td><td>80F</td><td>BOL BOL</td><td>108 108</td><td>BDL BDI</td><td>100</td><td>, 001.</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>^</td><td>. BDL</td><td></td><td></td><td>BDL</td></t<>	170	100 vT	1,001.	1> 050.	BUL	RDL Sp.	BDL BDL	80F	BOL BOL	108 108	BDL BDI	100	, 001.	BDL	BOL	BDL	BDL	^	. BDL			BDL
TREATMENT PLANT	VOLATILES	. BDL	BDL	BDL	BDL	BDL	I GB	BD.	i Qa	BD E	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BDL		100	1000	1> 000.	BOL	BDL	. BDL	BOL 301	108 801	BDL	BDL	B01	BOL	> 001.	108	BDL	BDL	BDL	BDL	HYLENE (UG/L	BDL	2	RIDE (UG/L)	BDL
	O-XYLENE (UG/L		1991 FEB					1001		1001 SED				1992 APR	1992 JUN				STYRENE (UG/L	000												1992 FEB				1992 NOV	1992 DEC	1,1-DICHLOROETHYLENE (UG/L	48 SAMPLES		METHYLENE CHLORIDE (UG/L	48 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

DIST. SYSTEM WEST RIVER STANDING		٠								٠.									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠						.•						:		
DIST, SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 70 (D1)	BDL	GUIDELINE = N/A	BDL	GÜIDELINE = 350. (A1+)	19,700	13.200	39.600	20.200	16.700	10,700	009.6	10.400	8.900	-				GUIDELINE = 200 (D1)	BOL		T> 090°	200.	B01	BOL	BOL	BDL 060 <t< td=""><td>BOL</td><td>BDL</td><td></td><td></td><td></td><td></td><td>•</td></t<>	BOL	BDL					•
STEM DIST. SYSTEM SOUTH ST STANDING	DET'N LIMIT = 0.10 G	BDL	DET'N LIMIT = 0,100 GI	BDL	DET'N LIMIT = 0.10 G													26.200	DET'N LIMIT = 0,02														BDL.	, and a
NT DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIM		DET'N LIM		DET'N LIM									٠				28.	DET'N LIM	_	-	∵ ;	, t					_						
TREATMENT PLANT TREATED		BDL		BDL	0 0 0 0 0 0 0 0 0 0 0	23.700	27.000	48,300	34,000	24.900	22.300	17.100	16.200	11.700	29,200	20,600	42.400	000*27		.040 <t< td=""><td>T> 090.</td><td>> 090.</td><td>090</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL BDL</td><td>T> 040.</td><td>. 108</td><td>108</td><td>108</td><td>BUL</td><td>BDL</td><td>2</td></t<>	T> 090.	> 090.	090	BDL	BDL	BDL	BDL BDL	T> 040.	. 108	108	108	BUL	BDL	2
TREATMENT PLANT	VOLATILES ENE (UG/L	BDL	√E (UG/L)	BDL	^	BDL	BDL	BOL	BDL	BDL	BDL	BOL	BOL	BDL	BDL	BDL	80L	BOL	ANE (UG/L)	BDL	801	. 060 ×T	<u> </u>	BOL	BDL	BOL	BDI	BOL	BDL	BDL	108 108	BDL	BDI	7
7. 22	VOLATILE T12-DICHLOROETHYLENE (UG/L	48 SAMPLES	1,1-DICHLOROETHANE (UG/L	48 SAMPLES	CHLOROFORM (UG/L		1991 FEB			1991 JUN				1992 FEB			1992 AUG	1992 DEC	111, TRICHLOROETHANE (UG/L		1991 FEB	1991 MAR	1001 MAY				1991 SEP		1992 FEB		1992 JUN	1992 AUG	1992 NOV	

_									:																		
DIST. SYSTEM WEST RIVER STANDING		٠		٠		٠				٠	٠	•	٠			•	•	•	•	•					•	1	٠
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 5 (A1)	. BDL	GUIDELINE = 5 (A1)	108	GUIDELINE = 5 (D1)	BDL	GUIDELINE = 50 (A1)	BDL	GUIDELINE = 350 (A1+)	5.950	000°9	7.800	11.050	11.400	10.100	8.750	7.800	7.800	001.5	055.4						GUIDELINE = 0.6 (D4)	BDL
DIST. SYSTEM SOUTH ST STANDING		-				٠			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠		.*		•	•		•	٠			• •		•		٠	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.20	BDL	DET'N LIMIT = 0.05	. 80L	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.05								٠.							5.800	8.150	DET'N LIMIT = 0.05	BDL
TREATMENT PLANT TREATED		BDL		BDL		BDL		BDL	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10,150	14.700	13.700	15.700	17.400	13.200	13.250	13.300	11.700	000.	10.900	15.300	14,150	21,400	8.150	16.250	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL
	, ,		^		^		~ .		^																	^	
TREATMENT PLANT	VOLATILES HANE (UG/L	BDL	ORIDE (UG/I	BDL	DPANE (UG/L	BDL	NE (UG/L	BDL	THANE (UG/I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BOL	108	BOL	BDI	BDL	BDL	BDL	BDL	BDL	THANE (UG/L	BDL
	VOLATI	48 SAMPLES	CARBON TETRACHLORIDE (UG/L	48 SAMPLES	1,2-DICHLOROPROPANE (UG/L	48 SAMPLES	TRICHLOROETHYLENE (UG/L	48 SAMPLES	DICHLOROBROMOMETHANE (UG/L	1991 JAN	1991 FEB	1991 MAR						1991 SEP						1992 NOV	1992 DEC	112-TRICHLOROETHANE (UG/L	48 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

																																				1		
DIST. SYSTEM WEST RIVER STANDING	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•					•		٠										٠		•	٠	•		.0	•			•	٠	٠					
M. DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 350 (A1+)	1.500	2.500	2,000	2.200	7.000	7.400	7.600	4.100	4.700	1.900	1.800	2,900	٠			•		GUIDELINE = 65 (A5)	Bni	100	901	BUL 050 -1	12 050.	90 E	1080	1> 050	I GB	BOL	BOL	BDL			•				
DIST. SYSTEM DIST, SYSTEM SOUTH ST SOUTH ST FREE FLOW STANDING	,DET'N LIMIT = 0.10						•	•									1,100	1.700	DE1'N LIMIT = 0.05													. •			BDL	BDL	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TREATMENT PLANT TREATMENT PLANT DIS SOU TAW FREI	, DET	2.000	006.7	3,000	3.400	5.700	5.600	6.200	6.700	009.9	3.800	3.300	5.800	5,300	7,300	7.200	1,300	2.900) DET	ION	7, 080	1, 050	12 000	1001.	900	7,000	1> 050	RDI	80F	B01.	BDL	BDL	.050 <t< td=""><td>. BDL</td><td>BDL</td><td>BDL</td><td>9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td></td></t<>	. BDL	BDL	BDL	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
TREATMENT PLANT RAW	VOLATILES CHLORODIBROMOMETHANE (UG/L	JAN BDL		MAR BDL		MAY BDL				SEP BOL				APR BDL				DEC BOL	TETRACHLOROETHYLENE (UG/L	NA.								SEP BDI	OCT 80L				JUN BDL	AUG BDL	NOV BDL	DEC 801	1 1	
	CHLORODIB	1991	1991 F							1991 S									TETRACHLO	1001													1992		1992 NC			

DIST. SYSTEM WEST RIVER STANDING				٠			• .											* 1		• 1		٠	0 0 0 0 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0							0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 350 (A1+)	BDI	.200 <t< td=""><td>BOL</td><td>108</td><td>BDL</td><td></td><td></td><td>T> 009.</td><td>T> 008.</td><td>BOL</td><td>BOL</td><td>NO8</td><td></td><td></td><td></td><td></td><td></td><td>GUIDELINE = 0.17 (04)</td><td>108</td><td>GUIDELINE = 2 (D1)</td><td>BOL</td><td>GUIDELINE = 70 (01)</td><td></td><td>BDL</td><td>GUIDELINE = 1510 (03)</td><td>B0L</td><td>GUIDELINE = 5 (A1)</td><td>108</td><td>GUIDELINE = 3750 (D3)</td><td>BDL</td><td>GUIDELINE = 200 (A1)</td><td>T08 .</td><td>1 1 1 1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3</td></t<>	BOL	108	BDL			T> 009.	T> 008.	BOL	BOL	NO8						GUIDELINE = 0.17 (04)	108	GUIDELINE = 2 (D1)	BOL	GUIDELINE = 70 (01)		BDL	GUIDELINE = 1510 (03)	B0L	GUIDELINE = 5 (A1)	108	GUIDELINE = 3750 (D3)	BDL	GUIDELINE = 200 (A1)	T08 .	1 1 1 1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3
DIST. SYSTEM SOUTH ST STANDING		,		٠														٠							0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•		٠		٠		٠	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.20											٠					BOL	BDL	DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.100	BDL	DET*N LIMIT = 0.100		BOL	DET'N LIMIT = 0.10	108	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.10	BOL	DET'N LIMIT = 0.05	BOL)
TREATMENT PLANT TREATED		- Ca	400 <t< td=""><td>BDL</td><td>7> 002.</td><td>1> 007.</td><td>108</td><td></td><td>T> 008.</td><td>1,000 <t< td=""><td>108</td><td>BOL</td><td>108</td><td>108</td><td>T> 009.</td><td>108</td><td>BDL</td><td>HDI.</td><td></td><td>TOB</td><td>P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>BDL</td><td></td><td></td><td>BDL</td><td></td><td>BOL</td><td>^</td><td>BDL</td><td></td><td>BDL</td><td></td><td>BDL</td><td></td></t<></td></t<>	BDL	7> 002.	1> 007.	108		T> 008.	1,000 <t< td=""><td>108</td><td>BOL</td><td>108</td><td>108</td><td>T> 009.</td><td>108</td><td>BDL</td><td>HDI.</td><td></td><td>TOB</td><td>P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>BDL</td><td></td><td></td><td>BDL</td><td></td><td>BOL</td><td>^</td><td>BDL</td><td></td><td>BDL</td><td></td><td>BDL</td><td></td></t<>	108	BOL	108	108	T> 009.	108	BDL	HDI.		TOB	P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL			BDL		BOL	^	BDL		BDL		BDL	
TREATMENT PLANT RAW	VOLATILES	č	BNI	RDI	801	108	BDL	BOL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BOL	BDL	BDL .	DETHANE (UG/L	108	((()	BDL	THYLENE CHOZI	HILENE (OU) E	BDL	(ng/L)	108	ENZENE (UG/L	B0L	ENZENE (UG/L	BDL	ENZENE (UG/L	BDL.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	BROMOFORM (UG/L		1001 FED										1992 FEB						1122-TETCHLOROETHANE (UG/L	48 SAMPLES	VINYL CHLORIDE (UG/L	15 SAMPLES	C12.10 ODDETHYLENE (110.1)	CIZ-VICHLOROE	15 SAMPLES	CHLOROBENZENE (UG/L	48 SAMPLES	1,4-01CHLOROBENZENE (UG/L	48 SAMPLES	1,3-01CHLOROBENZENE (UG/L	48 SAMPLES	1,2-DICHLOROBENZENE (UG/L	48 SAMPLES	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

			·																	
DIST. SYSTEM WEST RIVER STANDING								•	•											
DIST. SYSTEM. WEST RIVER FREE FLOW	GUIDELINE = 50 (01)	801	GUIDELINE = 350 (A1)	27.150	22.050	35.650	52.800	35.600	31.200	25.150	23.200	22.800	17.400	14.450	17.250				:	
DIST. SYSTEM SOUTH ST STANDING		٠		٠						•				•						٠
OIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.50																27.500	36.050
TREATMENT PLANT TREATED	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL		35.900	47.050	58,050	67.550	57.500	43.700	44.750	43,100	36.300	29.300	25.700	. 58,400	49.800	45.650	.71,000	30.650	66.150
TREATMENT PLANT RAW	VOLATILES VOEATILES	BDL	THANES (UG/L	BOL	BDL	BDL	108	BDL	BDL	BOL	BOL	BDL	BDL	BOL	BDL	BDL	BOL	BDL.	BDL	801
	VOLATIL ETHYLENE DIBROMIDE (UG/L	48 SAMPLES	TOTL TRIHALOMETHANES (UG/L	1991 JAN	1991. FEB	1991 MAR	1991 APR		1991 JUN		1991 AUG					1992 APR				

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

:										4		;		:
DIST. SYSTEM WEST RIVER STANDING				2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		٠	^				4)			9
DIST. SYSTEM WEST RIVER FREE FLOW	N/A		N/A		50 (A1)		0.55 (01		N/A		40000 (4		: 10 (A1)	
	GUIDELINE = N/A		GUIDELINE = N/A	- 1	GUIDELINE = 50 (A1)		GUIDELINE = 0.55 (D1)		GUIDELINE = N/A		GUIDELINE = 40000 (A1)		GUIDELINE = 10 (A1)	
DIST. SYSTEM SOUTH ST STANDING		٠		٠		٠								
	= 0.70		= 0.70		= 0.70		= 0.04		= 0.04		= 7.00		= 0.70	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.70		DET'N LIMIT = 0,70		DET'N LIMIT = 0.70		DET'N LIMIT = 0.04		DET'N LIMIT = 0.04		DET'N LIMIT = 7.00		DET'N LIMIT = 0.70	1 1 1 0 0
	DE		DE		OE		DE		30		30		DE	
TREATED TREATED		BOL	0 0 0 0 0 0 0 0	BOL	0 0 0 1 1 1 1 1	BDL	0 0 0 0 0 0 0 0 0	80L .040 .060	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.100	0 0 0 0 0 0 0 1 1	9.000 8.000		108
	RADIONUCLIDES	BDL.	1	BDL	5 6 7 8 9	BDL .	^	.040 .040	^	.120	! ! ! ?	8DL 8DL 000	1	BDL
TREATMENT PLANT	RADION	ш	^	ш	^	ω	1/08) 1	299	1/08)	1.1.9	^	8DL 8DL 55.000	^	
R,	COBALT 60 (80/L	6 SAMPLES	CESIUM 134 (BQ/L	6 SAMPLES	CESIUM 137 (BQ/L	6 SAMPLES	GROSS ALPHA COUNT (BQ/L	1991 FEB 1991 SEP 1992 APR	GROSS BETA COUNT (BQ/L	1991 FEB 1991 SEP 1992 APR	(B0/L	1991 FEB 1991 SEP 1992 APR	TODINE 131 (BQ/L	6 SAMPLES
	COBALT	6 SA	CESIUM	6 SA	CESIUM	6 SA	GROSS A	1991 1991 1992	GROSS B	1991 1991 1992	TRITIUM (BQ/L	1991 1991 1992	TODINE	6 SA

SCAN/PARAMETER	4	UNIT	DETECTION	GUIDELINE		
BACTERIOLOGICAL				•		
FECAL COLIFORM MEMBRANE STANDARD PLATE COUNT ME		CT/100ML CT/ML	0	0 500/ML	(A1) (A3)	
TOTAL COLIFORM BACKGROU		CT/100ML	. 0	N/A	(,,,,,	
TOTAL COLIFORM MEMBRANE		CT/100ML	0.	5/100ML	(A1)	
CHEMISTRY (FLD)						
FIELD COMBINED CHLORINE	RESIDUAL	MG/L	0	N/A		
FIELD TOTAL CHLORINE RE		MG/L	0	N/A		
FIELD FREE CHLORINE RES	SIDUAL .	MG/L	0	N/A	44/5	
FIELD PH		DMNSLESS	N/A.	6.5-8.5 15.0	(A4) (A3)	
FIELD TEMPERATURE		DEG.C	N/A	1.0	(A3)	
FIELD TURBIDITY		FTU	N/A	1.0	(41)	
CHEMISTRY (LAB)						
ALKALINITY		MG/L	0.20	30-500	(A4)	
AMMONIUM TOTAL		MG/L	0.002		(F2)	
CALCIUM		MG/L	0.20	100.0	(F2)	
CHLORIDE		MG/L	0.20	250.0	(A3)	
COLOUR		TCU	0.50	5.0	(A3)	
CONDUCTIVITY		UMHO/CM	1.00	400.0	(F2)	
CYANIDE		MG/L	0.001	0.2 5.0	(A1) (A3)	
DISSOLVED ORGANIC CARBO	ON	MG/L	0.10 0.01		(A1)	
FLUORIDE HARDNESS		MG/L MG/L	0.50	80-100	(A4)	
IONCAL		DMNSLESS	N/A	N/A	(,,,,	
LANGELIERS INDEX		DMNSLESS	N/A	N/A		
MAGNESIUM ·		MG/L ·	0.10	30.0	(F2)	
NITRATES (TOTAL)		MG/L	0.005	10.0	(A1)	
NITRITE		MG/L	0.001	1.0	(A1)	
NITROGEN TOTAL KJELDAHI	L :	MG/L	0.02	N/A		
PH		DMNSLESS	N/A	6.5-8.5	(A4)	
PHOSPHORUS FIL REACT		MG/L	0.0005	N/A		
PHOSPHORUS TOTAL		MG/L	0.002	0.4	(F2)	
POTASSIUM		MG/L	0.010	10.0	(F2)	
RESIDUE FILTRATE (CALCI	ULATED TDS)	MG/L	N/A	500.0	(A3)	
SODIUM		MG/L	0.20	200.0	(A4)	
SULPHATE	•	MG/L	0.20	500.0	(A4) (A1)	
TURBIDITY		FTU	0.05	1.0	(AI)	

^{*} The Maximum Acceptable Concentration (MAC) for <u>naturally occurring fluoride</u> in drinking water is 2.4 mg/L.

CHLOROAROMATICS

1,2,3-TR1CHLOROBENZENE	NG/L	5.0	N/A	
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRICHLOROBENZENE	NG/L	. 5.0	10000	(1)
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.0	38000	(D4)
1,3,5-TRICHLOROBENZENE	NG/L	5.0	N/A	
2,3,6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2.4.5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2.6A-TRICHLOROTOLUENE	NG/L	5.0	· N/A	
HEXACHLOROBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLOROBUTAD I ENE	NG/L	1.0	450	(D4)
HEXACHLOROETHANE	NG/L	1.0	1900	(D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)
CHLOROPHENOLS				
2,3,4-TRICHLOROPHENOL	NG/L	100.0	N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2.3.5.6-TETRACHLOROPHENOL	NG/L	10.0	N/A	

	· ·			
SCAN/PARAMETER .	TINU	DETECTION LIMIT	GUIDELINE	
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(D4)
2,4,6-TRICHLOROPHENOL	NG/L	20.0	5000	(A1)
PENTACHLOROPHENOL	NG/L	10.0	60000	
METALS				
ALUMINUM	UG/L	0.10	100	(A4)
ANTIMONY	UG/L	0.05	146	(D4)
ARSENIC .	UG/L	0.10	25	(A1)
BARIUM	UG/L	0.05	1000	(A2)
BERYLLIUM BORON	UG/L	0.05	6800	(D4)
CADMIUM	UG/L UG/L	2.00 0.05	5000 5	(A1)
CHROMIUM	UG/L	0.50	50	(A1)
COBALT	UG/L	0.02	N/A	(///
COPPER	UG/L	0.50	1000	(A3)
IRON	UG/L	6.00	300	(A3)
LEAD	UG/L	0.05	10	(A1)
MANGANESE	UG/L	0.05	50	(A3)
MERCURY	UG/L	0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	
NICKEL SELENIUM	UG/L UG/L	0.20 1.00	350 10	(D3)
SILVER	UG/L	0.05	N/A	(A1)
STRONTIUM	UG/L	0.10	N/A	
THALLIUM	UG/L	0.05	13	(D4)
TITANIUM	UG/L	0.50	N/A	10.7
URANIUM	UG/L	0.05	100	(A1)
VANADIUM	UG/L	0.05	N/A	
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A	
BENZO(A) PYRENE BENZO(B) CHRYSENE	NG/L	5.0	10	(A1)
BENZO(B) FLUORANTHENE	NG/L NG/L	2.0 10.0	N/A	
BENZO(E) PYRENE	NG/L	50.0	N/A N/A	
BENZO(G,H,I) PERYLENE	NG/L	20.0	N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A, H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE FLUORANTHENE	NG/L	5.0	N/A	10/1
INDENO(1,2,3-C,D) PYRENE	NG/L NG/L	20.0 20.0	42000 N/A	(D4)
PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE	NG/L	10.0	N/A	
PYRENE .	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(42)
ALDRIN	NG/L	1.0	700	(A2) (A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700	(G)
ALPHA CHLORDANE	NG/L	2.0	7000	(A1)
AMETRINE	NG/L	50.0	300000	(03)
ATRATONE	NG/L	50.0	N/A	
ATRAZINE	NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	200.0	60000	(A2)
CYANAZINE (BLADEX)	NG/L NG/L	1.0 100.0	300 10000	(G) (A2)
DIELDRIN	NG/L NG/L	2.0	700	(A2)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000	(D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000	(D4)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A	

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
ENDRIN .	NG/L	5.0	1600 (D3)
GAMMA CHLORDANE	NG/L	2.0	7000 (A1)
HEPTACHLOR .	NG/L	1.0	3000 (A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000 (A1)
HEXACHLOROCYCLOPENTADIENE	NG/L	5.0	206000 (D4)
LINDANE (GAMMA BHC)	NG/L	1.0	4000 (A1)
METHOXYCHLOR	NG/L	5.0	900000 (A1)
METOLACHLOR	NG/L	500.0	50000 (A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000 (A1)
MIREX	NG/L	5.0	·N/A
P,P-DDD	NG/L	5.0	30000 (A1)
O,P-DDT	NG/L	5.0	30000 (A1)
P,P-DDT	NG/L	5.0	30000 (A1)
P,P-DDE	NG/L	1.0 2.0	30000 (A1)
OXYCHLORDANE PCB	NG/L NG/L	20.0	N/A 3000 (A2)
PROMETONE	NG/L	50.0	52500 (D3)
PROMETRYNE	NG/L	50.0	1000 (A2)
PROPAZINE	NG/L	50.0	700000 (03)
SIMAZINE	NG/L .	50.0	10000 (A2)
DESETHYL SIMAZINE	NG/L	200.0	10000 (A2)
TOXAPHENE	NG/L	500.0	5000 (A1)
DUENOL TOO			
PHENOLICS			
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A
SPECIFIC PESTICIDES			• .
2,4 D PROPIONIC ACID	NG/L	100.0	N/A
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000 (A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000 (A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)		200.0	N/A
2,4,5-TP (SILVEX)	NG/L	20.0	10000 (A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000 (D3)
CARBARYL (SEVIN)	NG/L	200.0	90000 (A1)
CARBOFURAN	NG/L	2000.0	90000 (A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000 (G)
CHLORPYRIFOS (DURSBAN) DIALLATE	NG/L	20.0	N/A
DIAZINON	NG/L	2000.0	N/A 20000 (A1)
DICAMBA	NG/L NG/L	20.0 50.0	20000 (A1) 120000 (A1)
DICHLOROVOS	NG/L	20.0	N/A
EPTAM	NG/L	2000.0	N/A
ETHION	NG/L	20.0	35000 (G)
IPC	NG/L	2000.0	N/A
MALATHION	NG/L	20.0	190000 · (A1)
METHYL PARATHION	NG/L	50.0	9000 (D3)
METHYLTRITHION	NG/L	20.0	N/A
MEV1NPHOS	NG/L	20.0	N/A
PARATHION	NG/L	20.0	50000 (A1)
PHORATE (THIMET)	NG/L	20.0	2000 (A2)
PICHLORAM	NG/L	100.0	190000 (A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000 (D3)
RELDAN RONNEL	NG/L	20.0	N/A
	NG/L	20.0	N/A
VOLATILES			
1,1-DICHLOROETHANE	UG/L	0.10	N/A
1,1-DICHLOROETHYLENE	UG/L	0.10	7 (D1)
1,2-DICHLOROBENZENE	UG/L	0.05	200 (A1)
1,2-DICHLOROETHANE	UG/L	0.05	5 (A1)
1,2-DICHLOROPROPANE	UG/L	0.05	5 (D1)
1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	UG/L	0.10	3750 (D3)
1,1,1-TRICHLOROETHANE	UG/L UG/L	0.10 0.02	5 (A1) 200 (D1)
1,1,2-TRICHLOROETHANE	UG/L	0.02	200 (D1) 0.6 (D4)
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	0.6 (D4) 0.17 (D4)
.,.,=,= .cimonconocinane	00/1	0.05	0.17 (04)

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

		DETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
2502505		-,		
BENZENE	UG/L	0.05	5	
BROMOFORM	UG/L	0.20	350	(A1+)
CARBON TETRACHLORIDE	UG/L	0.20	5	(A1)
CHLOROBENZENE	UG/L	0.10	1510	
CHLOROD I BROMOMETHANE	UG/L	0.10	350	
CHLOROFORM	UG/L	0.10	350	
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(D1)
DICHLOROBROMOMETHANE	UG/L	0.05	350	
ETHYLENE DIBROMIDE	UG/L.	0.05	50	(D1)
ETHYLBENZENE	UG/L	0.05		.4 (A3)
M-XYLENE	UG/L	0.10		(A3*)
METHYLENE CHLORIDE	UG/L	0.50	50	(A1)
O-XYLENE	UG/L	0.05	300	(A3*)
P-XYLENE	UG/L	0.10	300	(A3*)
STYRENE	UG/L	0.05	100	(D1)
TETRACHLOROETHYLENE	UG/L	0.05	65	(A5)
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(D1)
TOLUENE	UG/L	0.05	24	(A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350	(A1)
TRICHLOROETHYLENE	UG/L	0.10	50	(A1)
VINYL CHLORIDE	UG/L	0.10	2	(D1)
RADIONUCLIDES				
TRITIUM	BQ/L	7.0	40000	(A1)
GROSS ALPHA COUNT	BQ/L	0.04	0.	.55# (D1)
GROSS BETA COUNT	BQ/L	0.04	N/A	
COBALT 60	BQ/L	0.70	N/A	
CESIUM 134	BQ/L	0.70	N/A	
CESIUM 137	BQ/L	0.70	50	(A1)
IODINE 131	BQ/L	0.70	10	(A1)

[#] Equal to 15.0 Picocuries/litre

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- ${\rm i}/{\rm the}$ sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

PARAMETER REFERENCE INFORMATION

NAME:

BENZENE

CAS#:

71-43-2

MOLECULAR FORMULAE:

C'AHA

DETECTION LIMIT:

(FOR METHOD POCODO) 0.05 μ g/L

SYNONYMS;

BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS:

COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES:

SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES:

COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL:

THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12 MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃)
 (Caution: HNO₃ is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

(OWOC),(OWTRI)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

Specific Pesticides

(OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500)
-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃)
and potassium dichromate (K₂Cr₂O₇)
(Caution: HNO₃&K₂Cr₂O₇ are corrosive)

Phenols

-250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides (as scheduled)

-4 L plastic jug

-do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization (GC/MS - once per year) (PBVOL),(PBEXT) -1 L amber glass bottle; instructions as per organic

-250 mL glass bottle -do not rinse bottle

-fill completely without bubbles

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry

-500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

- 1. Record time of day on submission sheet.
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- 6. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

-250 mL plastic bottle with white seal on cap Bacteriological

-do not rinse bottle, preservative has been added -avoid touching bottle neck or inside of cap

-fill to top of red label as marked

-500 mL plastic bottle (PET 500) Metals

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNOz (Caution: HNO3 is corrosive)

Volatiles (duplicate)

(OPOPUP)

-45 mL glass vial with septum (teflon side must be in contact with sample)

-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

-1 L amber glass bottle per scan Organics

(OWOC)

-do not rinse bottle -fill to 2 cm from top

· Polyaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- 5. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

