Arrays and Pointers

Department of CSE Amrita Vishwa VidyaPeetham

Arrays and pointers

When one dimensional arrays are declared, they get **contiguous memory locations** assigned to their elements. From below diagram we can understand how a array is created in memory when it is declared.

		, int intArray[6] ;		char charArray[6];
22FC60	intArray[0]	22FC60	charArray[0]	
22FC64	intArray[1]	22FC61	charArray[1]	
22FC68	intArray[2]	22FC62	charArray[2]	
22FC6C	intArray[3]	22FC63	charArray[3]	
22FC70	intArray[4]	22FC64	charArray[4]	
22FC74	intArray[5]	22FC65	charArray[5]	
		•		1

First element of the array occupies 4 bytes of space as the element is of integer type which requires 4 bytes to store the data. Next element in the array gets the memory allocated after 4 bytes i.e.; memory address 22FC60, plus4 and so on. In case of charArray it is 1 byte each

This means contiguous memory is allocated to its elements.

Arrays and pointers(cont.)

Array name A will give base address printf("%p\n",A) output 22FC60

Array program

```
int x[100];
   //Read the array
    for (int i=0; i<5; i++)
scanf("%d",x+i);
//print the array
printf("Updated Array\n");
for (int i=0; i<5; i++)
printf("%d ",*(x+i));
```


Namah Shivaya!

