10:53 AM

Problem 1

'Fun' Math In this problem we explore some of the more useful theorems (stated without proof) involving Hermite polynomials.

(a) The Rodrigues formula says that

$$H_n(\xi) = (-1)^n e^{\xi^2} \left(\frac{d}{d\xi}\right)^n e^{-\xi^2}.$$
 [2.86]

Use it to derive H_3 and H_4 .

(b) The following recursion relation gives you H_{n+1} in terms of the two preceding Hermite polynomials:

$$H_{n+1}(\xi) = 2\xi H_n(\xi) - 2n H_{n-1}(\xi).$$
 [2.87]

Use it, together with your answer in (a), to obtain H_5 and H_6 .

(a)

$$H_3(\xi) = 8\xi^3 - 12\xi$$

 $H_4(\xi) = 16\xi^4 - 48\xi^2 + 12$

(b)
$$H_5(\xi) = 32\xi^5 - 160\xi^3 + 120\xi$$

 $H_6(\xi) = 64\xi^6 - 480\xi^4 + 720\xi^2 - 120$

- (a) Write down $\psi_0(x)$, $\psi_1(x)$, and $\psi_2(x)$, and show that they are solutions to the time-independent Schödinger equation (Eq.(1)) with energies $E_0 = \frac{1}{2}\hbar\omega$, $E_1 = \frac{3}{2}\hbar\omega$, and $E_2 = \frac{5}{2}\hbar\omega$, respectively.
- (b) A particle begins at time t=0 with the (normalised) wavefunction $\Psi(x,t=0) = \frac{2}{\sqrt{3}\pi^{1/4}} \left(\frac{m\omega}{\hbar}\right)^{5/4} x^2 \exp\left(-\frac{m\omega x^2}{2\hbar}\right).$

Write this state in terms of the energy eigenfunctions $\psi_n(x)$.

- (c) What is the wavefunction of the particle at a later time t? Keep your answer in terms of the energy eigenfunctions ψ_n(x).
- (d) What is the expectation value of energy of the state $\Psi(x,t)$ as a function of time? [Hint: How does the Hamiltonian operator appear in the time-independent Schrödinger equation? There is no need to write out the explicit form of $\psi_n(x)$.]

(a)
$$v_{x}(x) = \frac{1}{\sqrt{2\pi m}} \frac{|\omega_{x}|^{3/4} H_{x}}{|\omega_{x}|^{3/4} H_{x}} \exp\left(-\frac{m\omega x^{2}}{2\hbar}\right)$$
. $n = 0.1.2...$

$$V_{0} = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2}} \left(\frac{1}{2\sqrt{\pi}} \times \frac{1}{2\pi}\right) \exp\left(-\frac{m\omega x^{2}}{2\hbar}\right)$$

$$= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2}} \left(2\sqrt{\frac{m\omega}{\pi}} \times \frac{1}{2\pi}\right) + \frac{1}{2}m\omega^{2} \times \frac{1}{2\pi}$$

$$= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right) + \frac{1}{2}m\omega^{2} \times \frac{1}{2\pi}$$

$$V_{1} = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2}} \left(2\sqrt{\frac{m\omega}{\pi}} \times \frac{1}{2\pi}\right) + \frac{1}{2}m\omega^{2} \times \frac{1}{2\pi}$$

$$V_{2} = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2}} \left(2\sqrt{\frac{m\omega}{\pi}} \times \frac{1}{2\pi}\right) + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\pi}\right)^{\frac{1}{4}} \left(\frac{1}{\pi$$

Problem 3

Find the allowed energies of the half harmonic oscillator

Half full life

$$V(x) = \begin{cases} (1/2)m\omega^2 x^2, & \text{for } x > 0. \\ \infty, & \text{for } x < 0. \end{cases}$$

(This represents, for example, a spring that can be stretched, but not compressed.) *Hint:* This requires some careful thought, but very little actual computation.

Everything about the harmonic oscillator applies to the right half. Now we have b.c. $\psi(0) = 0$ =) Only Odd Solutions are good. $E_n = \frac{3}{2} \hbar w$, $\frac{7}{2} \hbar w$, $\frac{11}{2} \hbar w$... $= (2n-1+\frac{\hbar w}{2})$ $n \in \mathbb{Z}^+$

Problem 4

"Fun" Math 2 Show that two noncommuting operators cannot have a complete set

of common eigenfunctions. Hint: Show that if \hat{P} and \hat{Q} have a complete set of common eigenfunctions, then $[\hat{P}, \hat{Q}]f = 0$ for any function in Hilbert space.

Suppose \hat{P}, \hat{Q} , have a complete set of Common eigenfunctions Ψ ; with eigenvalues q; p; respectively. Then, [P,Q]f = PQf - QPf $= \sum_{n} [C_n P_Q \Psi_n - C_n QP\Psi_n]$ $= \sum_{n} [P_{n} \Psi_n] [P_{n} \Psi_n - Q_{n} \Psi_n]$

So they Commute,

if two operators have
a common, complete set
of eigenfunctions, they commute.

= 2cn [4n Pn qn - 4n qn Pn]

Problem 5

do some quantu

Consider a three-dimensional vector space spanned by an orthonor-

mal basis $|1\rangle$, $|2\rangle$, $|3\rangle$. Kets $|\alpha\rangle$ and $|\beta\rangle$ are given by

$$|\alpha\rangle = i|1\rangle - 2|2\rangle - i|3\rangle, \quad |\beta\rangle = i|1\rangle + 2|3\rangle.$$

- (a) Construct $\langle \alpha |$ and $\langle \beta |$ (in terms of the dual basis $\langle 1 |$, $\langle 2 |$, $\langle 3 |$).
- (b) Find $(\alpha|\beta)$ and $(\beta|\alpha)$, and confirm that $(\beta|\alpha) = (\alpha|\beta)^*$.
- (c) Find all nine matrix elements of the operator $\hat{A} \equiv |\alpha\rangle\langle\beta|$, in this basis, and construct the matrix **A**. Is it hermitian?

construct the matrix
$$\mathbf{A}$$
 is it hermitian?
(a) $\langle \alpha | = -\langle 1| \mathbf{i} + \langle 2| 2 + \langle 3| \mathbf{i} \rangle$
 $\langle \beta | = -\langle 1| \mathbf{i} + \langle 3| 2 \rangle$
(b) $\langle \alpha | \beta \rangle = (-\langle 1| \mathbf{i} + \langle 2| 2 + \langle 3| \mathbf{i} \rangle)(\mathbf{i} | \mathbf{i}) + 2 | 3 \rangle$
 $= \langle 1| 1 \rangle + 2 \mathbf{i} \langle 3| 3 \rangle + \text{stuff like } \langle 1|^{2} \rangle$
 $= \langle 1| 1 \rangle + 2 \mathbf{i} \langle 3| 3 \rangle + \text{stuff like } \langle 2| 3 \rangle$...
 $= | + 2 \mathbf{i} \rangle$
 $\langle \beta | \alpha \rangle = \langle 1| 1 \rangle - 2 \mathbf{i} \langle 3| 3 \rangle$
 $= | -2 \mathbf{i} \rangle = \langle \alpha | \beta \rangle^*$
(c) $\hat{A} = | \alpha \rangle \langle \beta |$
 $= \langle 1| 1 \rangle - 2 | 2 \rangle - \mathbf{i} | 3 \rangle$ $\langle -\mathbf{i} \langle 1 \rangle + 2 \langle 3 \rangle$

 $= \frac{111}{2} - \frac{212}{2} - \frac{113}{3}$ $= \frac{113}{11} + \frac{2113}{11} + \frac{2$

-> 1 - /1 0 2i

$$= 7 A = \begin{pmatrix} 1 & 0 & 2i \\ 2i & 0 & -4 \\ 1 & 0 & -2i \end{pmatrix}$$

$$\Rightarrow A^{\dagger}$$
Theoretical p
Max Plai

