```
% Anthony Galczak - Tristin Glunt
% CS375 HW5
clc
close all
% Q1 - Find number of zeros of f(x).
% f(x) = x^3 - y looks to have 1 real root.
% This is intuitively true by just thinking about
% some sample y's.
y = 8: 8^{(1/3)} has 1 real root, 2.
y = -8: (-8)^{(1/3)} has 1 real root, -2.
% The other 2 roots are in the complex plane,
% shifted by 2pi/3 and 4pi/3 in e^(i*theta).
% y is a constant, f(x) = x^3 - y
sym x;
y = 8;
f = @(x) x.^3 - y;
num_vals = 1000;
f evals = zeros(1,num vals);
x_s = linspace(-4,4,num_vals);
for i=1:num_vals
    f_{evals(i)} = f(x_s(i));
end
plot(x_s,f_evals);
title("Q1.) f(x) for y=8");
xlabel("x-axis");
ylabel("y-axis");
legend("f(x) = x^3 - y", "Location", "Northwest");
% Q3 - Test Bisection, Newton, Secant method.
fprintf("Output starts here\n");
tol = 10^{-10};
format long
bi_arr = my_bisection(f, 1, 4, tol);
fprintf("Bisection root: %1.15f\n\n", bi_arr(end));
df = @(x) 3*x^2;
newt_arr = my_newton(f, df, 4, tol);
fprintf("Newton root: %1.15f\n\n", newt_arr(end));
sec_arr = my_secant(f, 1, 4, tol);
fprintf("Secant root: %1.15f\n\n", sec_arr(end));
% Q4 - Compute convergence rate for each method.
% Note: First real iteration on Newton method is 2 and on Secant
% method is 3.
bi_vals = bi_arr;
```

```
convergence_table("Bisection", bi_vals, 1);
newt_vals = newt_arr(1,2:end);
convergence table("Newton", newt vals, 2);
sec_vals = sec_arr(1,3:end);
convergence_table("Secant", sec_vals, 1.62);
% Function for printing tables for convergence analysis
function c = convergence_table(method_name, vals, r)
    for i=1:length(vals)
        iters(i) = i;
        errors(i) = abs(vals(i) - 2);
        if i == 1
            rates(i) = 0;
        else
            rates(i) = errors(i) / (errors(i-1) ^ r);
        end
    end
    fprintf("%s Method table, r = %1.2f\n", method_name, r);
    T = table(iters',errors',rates');
    T.Properties.VariableNames = {'i' 'Error' 'Conv Rate'};
    disp(T);
end
% Q2 - Implement Bisection, Newton's, Secant as fn's.
function[x_arr] = my_bisection(f, a, b, tol)
    for i=1:100
        x_m = a + (b-a)/2;
        x_arr(i) = x_m;
        if sign(f(x_m)) == sign(f(a))
            a = x m;
        else
            b = x_m;
        end
        % First halting criteria
        if (i >= 2)
            last_guess = x_arr(i-1);
            if abs(x_m - last_guess) < tol</pre>
                fprintf(['Bisection method hit halting criteria',...
                     ' 1 after %d iterations.\n'],i);
                return
            end
        end
        % Second halting criteria
        if abs(f(x_m)) < eps
            fprintf(['Bisection method hit halting criteria',...
```

```
' 2 after %d iterations.\n'],i);
            return
        end
    end
end
function[x_arr] = my_newton(f, df, x_0, tol)
    x arr(1) = x 0;
    for i=2:100
        last_guess = x_arr(i-1);
        x_k = last_guess - (f(last_guess)/df(last_guess));
        x_arr(i) = x_k;
        if abs(x_k - last_guess) < tol</pre>
            fprintf(['Newton method hit halting criteria',...
                ' 1 after %d iterations.\n'],(i-1));
            return
        end
        if abs(f(x_k)) < eps
            fprintf(['Newton method hit halting criteria',...
                ' 2 after %d iterations.\n'],(i-1));
        end
    end
end
function[x_arr] = my_secant(f, x_0, x_1, tol)
    x_arr(1) = x_0;
    x arr(2) = x 1;
    for i=3:100
        x_k2 = x_arr(i-2);
        x_k1 = x_arr(i-1);
        term2 = f(x_k1)*((x_k1 - x_k2)/(f(x_k1) - f(x_k2)));
        x_k = x_{1} - term2;
        x arr(i) = x k;
        if abs(x_k - x_{k1}) < tol
            fprintf(['Secant method hit halting criteria',...
                ' 1 after %d iterations.\n'],(i-2));
            return
        end
        if abs(f(x_k)) < eps
            fprintf(['Secant method hit halting criteria',...
                 ' 2 after %d iterations.\n'],(i-1));
            return
        end
    end
end
Output starts here
```

Bisection method hit halting criteria 1 after 35 iterations. Bisection root: 2.000000000029104

Newton method hit halting criteria 1 after 7 iterations.

Secant method hit halting criteria 1 after 9 iterations.

Bisection Method table, r = 1.00

i	Error	Conv_Rate
1	0.5	0
2	0.25	0.5
3	0.125	0.5
4	0.0625	0.5
5	0.03125	0.5
6	0.015625	0.5
7	0.0078125	0.5
8	0.00390625	0.5
9	0.001953125	0.5
10	0.0009765625	0.5
11	0.00048828125	0.5
12	0.000244140625	0.5
13	0.0001220703125	0.5
14	6.103515625e-05	0.5
15	3.0517578125e-05	0.5
16	1.52587890625e-05	0.5
17	7.62939453125e-06	0.5
18	3.814697265625e-06	0.5
19	1.9073486328125e-06	0.5
20	9.5367431640625e-07	0.5
21	4.76837158203125e-07	0.5
22	2.38418579101562e-07	0.5
23	1.19209289550781e-07	0.5
24	5.96046447753906e-08	0.5
25	2.98023223876953e-08	0.5
26	1.49011611938477e-08	0.5
27	7.45058059692383e-09	0.5
28	3.72529029846191e-09	0.5
29	1.86264514923096e-09	0.5
30	9.31322574615479e-10	0.5
31	4.65661287307739e-10	0.5
<i>32</i>	2.3283064365387e-10	0.5
33	1.16415321826935e-10	0.5
34	5.82076609134674e-11	0.5
35	2.91038304567337e-11	0.5
Newton M	fethod table, $r = 2.00$	
i	Error	Conv_Rate
_		

0

0.8333333333333333

2 3 4 5 6 7	0.221068819684737 0.0212735368091126 0.000223114607898367 2.48863623042439e-08 4.44089209850063e-16	0.318339100346021 0.435296037790685 0.493001916400385 0.49992563649981 0.717046602291039
Secant i	Method table, $r = 1.62$ Error	Conv Rate
_	21101	conv_nace
_		
1	0.6666666666667	0
2	0.423076923076923	0.815994397306232
3	0.217518135116297	0.876387440259626
4	0.0489173446793951	0.579055527207449
5	0.00502935344087141	0.667701420150649
6	0.00012525606529934	0.662748984006864
7	3.15494021796425e-07	0.661541563094523
8	1.97579730354391e-11	0.672011570640884
9	0	0

Published with MATLAB® R2018a