Singular integers and p-class group of cyclotomic fields

Roland Quême

2009 Oct 19

Abstract

Let p be an irregular prime. Let $K=\mathbb{Q}(\zeta)$ be the p-cyclotomic field. From Kummer and class field theory, there exist Galois extensions S/\mathbb{Q} of degree p(p-1) such that S/K is a cyclic unramified extension of degree [S:K]=p. We give an algebraic construction of the subfields M of S with degree $[M:\mathbb{Q}]=p$ and an explicit formula for the prime decomposition and ramification of the prime number p in the extensions S/K, M/\mathbb{Q} and S/M. In the last section, we examine the consequences of these results for the Vandiver's conjecture. This article is at elementary level on Classical Algebraic Number Theory.

Contents

1	Some definitions	1
2	Some preliminary results	2
3	Singular K -extensions	4
4	Singular \mathbb{Q} -fields	5
5	Algebraic properties of singular \mathbb{Q} -fields	8
6	The ramification in the singular primary O-fields	9

1 Some definitions

In this section we give some definitions and notations on cyclotomic fields, p-class group, singular numbers, primary and non-primary, used in this paper.

- 1. Let p be an odd prime. Let ζ be a root of the polynomial equation $X^{p-1} + X^{p-2} + \cdots + X + 1 = 0$. Let K be the p-cyclotomic field $K = \mathbb{Q}(\zeta)$ and O_K its ring of integers. Let K^+ be the maximal totally real subfield of K, O_{K^+} its ring of integers and $O_{K^+}^*$ the group of unit of O_{K^+} . Let v be a primitive root mod p and $\sigma: \zeta \to \zeta^v$ be a \mathbb{Q} -automorphism of K. Let G be the Galois group of the extension K/\mathbb{Q} . Let F_p be the finite field of cardinal p and F_p^* its multiplicative group. Let $\lambda = \zeta 1$. The prime ideal of K lying over p is $\pi = \lambda O_K$.
- 2. Let C_p be the p-class group of K_p (the set of classes whose order is 1 or p). Let r be the rank of C_p seen as a $\mathbf{F}_p[G]$ -module. If r > 0 then p is irregular. Let C_p^+ be the p-class group of K_p^+ . Let r^+ be the rank of K_p^+ . Then $C_p = C_p^+ \oplus C_p^-$ where C_p^- is the relative p-class group.
- 3. C_p is the direct sum of r subgroups Γ_i of order p, each Γ_i annihilated by a polynomial $\sigma \mu_i \in \mathbf{F}_p[G]$ with $\mu_i \in \mathbf{F}_p^*$,

$$(1) C_n = \bigoplus_{i=1}^r \Gamma_i.$$

Then $\mu \equiv v^n \mod p$ with a natural integer $n, \quad 1 \leq n \leq p-2$.

- 4. An integer $A \in O_K$ is said singular if $A^{1/p} \notin K$ and if there exists an ideal \mathfrak{a} of O_K such that $AO_K = \mathfrak{a}^p$. Observe that, with this definition, a unit $\eta \in O_{K^+}^*$ with $\eta^{1/p} \notin O_{K^+}^*$ is singular.
- 5. A number $A \in K$ is said semi-primary if $v_{\pi}(A) = 0$ and if there exists a natural integer a such that $A \equiv a \mod \pi^2$. A number $A \in K$ is said primary if $v_{\pi}(A) = 0$ and if there exists a natural integer a such that $A \equiv a^p \mod \pi^p$. Clearly a primary number is semi-primary. A number $A \in K$ is said hyper-primary if $v_{\pi}(A) = 0$ and if there exists a natural integer a such that $A \equiv a^p \mod \pi^{p+1}$.

2 Some preliminary results

In this section we recall some properties of singular numbers given in Quême [5] in theorems 2.4 p. 4, 2.7 p. 7 and 3.1 p. 9. Let Γ be one of the r subgroups Γ_i defined in relation (1).

1. If $r^- > 0$ and $\Gamma \subset C_p^-$: then there exist singular semi-primary integers A with $\overline{AO_K} = \mathfrak{a}^p$ where \mathfrak{a} is a non-principal ideal of O_K and verifying simultaneously

(2)
$$Cl(\mathfrak{a}) \in \Gamma, \ Cl(\mathfrak{a}^{\sigma-\mu}) = 1,$$

$$\sigma(A) = A^{\mu} \times \alpha^{p}, \quad \mu \in \mathbf{F}_{p}^{*}, \quad \alpha \in K,$$

$$\mu \equiv v^{2m+1} \mod p, \quad m \in \mathbb{N}, \quad 1 \le m \le \frac{p-3}{2},$$

$$\pi^{2m+1} \mid A - a^{p}, \quad a \in \mathbb{N}, \quad 1 \le a \le p-1.$$

In that case we say that A is a negative singular integer to point out that $Cl(\mathfrak{a}) \in C_p^-$. Moreover, this number A verifies

$$(3) A \times \overline{A} = D^p,$$

for some integer $D \in O_{K^+}^*$.

- (a) Either A is singular non-primary with $\pi^{2m+1} \parallel A a^p$.
- (b) Or A is singular primary with $\pi^p \mid A a^p$. In that case we know from class field theory that $r^+ > 0$.

(see Quême [5] theorem 2.4 p. 4). The singular primary negative numbers are interesting because they exist if and only if $h^+ \equiv 0 \mod p$ (the Vandiver conjecture is false).

2. If $r^+ > 0$ and $\Gamma \subset C_p^+$: then there exist singular semi-primary integers A with $\overline{AO_K} = \mathfrak{a}^p$ where \mathfrak{a} is a non-principal ideal of O_K and verifying simultaneously

$$Cl(\mathfrak{a}) \in \Gamma, \ Cl(\mathfrak{a}^{\sigma-\mu}) = 1,$$

$$\sigma(A) = A^{\mu} \times \alpha^{p}, \quad \mu \in \mathbf{F}_{p}^{*}, \quad \alpha \in K,$$

$$\mu \equiv v^{2m} \mod p, \quad m \in \mathbb{Z}, \quad 1 \leq m \leq \frac{p-3}{2},$$

$$\pi^{2m} \mid A - a^{p}, \quad a \in \mathbb{Z}, \quad 1 \leq a \leq p-1,$$

In that case we say that A is a positive singular integer to point out that $Cl(\mathfrak{a}) \in C_p^+$. Moreover, this integer A verifies

$$\frac{A}{\overline{A}} = D^p,$$

for some number $D \in K_p^+$. If $h^+ \equiv 0 \mod p$ then $D \neq 1$ is possible, for instance with $\mathfrak{a} = \mathfrak{q}$ where \mathfrak{q} is a prime ideal of O_K , $Cl(\mathfrak{q}) \in C_p^+$ and $q \equiv 1 \mod p$.

- (a) Either A is singular non-primary with $\pi^{2m} \parallel A a^p$.
- (b) Or A is singular primary with $\pi^p \mid A a^p$.

(see Quême, [5] theorem 2.7 p. 7).

3. If $\mu \equiv v^{2m} \mod p$ with $1 \leq m \leq \frac{p-3}{2}$: then there exist singular units $A \in O_{K^+}^*$ with

(6)
$$\sigma(A) = A^{\mu} \times \alpha^{p}, \quad \mu \in \mathbf{F}_{p}^{*}, \quad \alpha \in O_{K^{+}}^{*},$$

$$\mu \equiv v^{2m} \mod p, \quad m \in \mathbb{Z}, \quad 1 \le m \le \frac{p-3}{2},$$

$$\pi^{2m} \mid A - a^{p}, \quad a \in \mathbb{Z}, \quad 1 \le a \le p-1,$$

- (a) Either A is non-primary with $\pi^{2m} \parallel A a^p$.
- (b) Or A is primary with $\pi^p \mid A a^p$.

(see Quême, [5] theorem 3.1 p. 9).

The sections 3, 4 and 5 are, for a large part, a reformulation of Hilbert theory of *Kummer Fields*, see [1] paragraph 125 p. 225.

3 Singular K-extensions

Some Definitions

- 1. In this section, let us denote Γ one of the r subgroups of order p of C_p defined by relation (1). Let A be a singular semi-primary integer, negative or positive, verifying respectively the relations (2) or (4). We call $S = K(A^{1/p})/K$ a singular negative, respectively positive K-extension if $\Gamma \in C_p^-$, respectively $\Gamma \in C_p^+$.
- 2. Let A be a singular unit verifying the relation (6). We call $S = K(A^{1/p})/K$ a singular unit K-extension.
- 3. A singular K-extension $S=K(A^{1/p})$ is said primary or non-primary if the singular number A is primary or non-primary.
- 4. If S is primary then the extension S/K is, from Hilbert class field theory, the cyclic unramified extension of degree p corresponding to Γ .
- 5. Observe that the extensions S/\mathbb{Q} are Galois extensions of degree p(p-1).

Lemma 3.1. There is one and only one singular negative K-extension corresponding to a group $\Gamma \subset C_p^-$.

Proof. For Γ given let us consider two singular negative K-extensions S/K and S'/K. $AO_K = \mathfrak{a}^p$ and $A'O_K = \mathfrak{a}'^p$. The polynomial $\sigma - \mu$ annihilates $< Cl(\mathfrak{a} > \text{and} < Cl(\mathfrak{a}' >)$. Then $< Cl(\mathfrak{a}) > = < Cl(\mathfrak{a}') > = \Gamma$, thus there exists $n, 1 \le n \le p-1$ such that $Cl(\mathfrak{a}^n) = Cl(\mathfrak{a}')$. Therefore $A^n = A' \times \gamma^p \times \varepsilon$, $\varepsilon \in O_K^*$, $\gamma \in K$. It follows, from $A\overline{A} = D^p$ and $A'\overline{A}' = D'^p$ with $D, D' \in O_{K^+}$, that $\varepsilon \overline{\varepsilon} \in O_{K^+}^*$. Therefore $\varepsilon = \zeta^w \varepsilon_1^p$, $\varepsilon_1 \in O_{K^+}^*$. Then $A^n = A' \gamma^p \zeta^w \varepsilon_1^p \zeta^w$. A and A' are semi-primary, thus it follows that w = 0. Therefore $K(A^{1/p}) = K(A'^{1/p})$.

Remark: Observe that we consider in this article only singular semi-primary numbers. Let A be a singular semi-primary number. Then $A' = A\zeta$ is not semi-primary and $K(A^{1/p}) \neq K(A^{1/p})$.

Lemma 3.2. If $\mu \neq 1$ and $\mu^{(p-1)/2} \equiv 1 \mod p$ there is one and only one singular unit K-extension S/K depending only on μ .

Proof. The subgroup of $O_{K^+}^*/O_{K^+}^{*p}$ annihilated by $\sigma - \mu$ is of order p and the rank of $O_{K^+}^*/O_{K^+}^{*p}$ is $\frac{p-3}{2}$.

Lemma 3.3. π is the only prime which can ramify in the singular K-extension S/K and the relative discriminant of S/K is a power of π .

Proof. S/K is unramified except possibly at π , (see for instance Washington [8] exercise 9.1 (b) p. 182). The result for relative discriminant follows.

Lemma 3.4.

- 1. There are r^+ singular primary negative K-extensions S/K.
- 2. There are $r^- r^+$ singular non-primary negative K-extensions S/K.

Proof. The first part results of classical theory of p-Hilbert class field applied to the field K and of previous definition of singular K-extensions S_{μ} (see for instance the result of Furtwangler in Ribenboim [6] (6C) p. 182) and the second part is an immediate consequence of the first part.

4 Singular Q-fields

Let A be a semi-primary integer, negative (see definition (2)), positive (see definition (4)) or unit (see definition (6)). Let ω be an algebraic number defined by

(7)
$$\omega = A^{(p-1)/p}.$$

We had chosen this definition instead of $\omega = A^{1/p}$ because $A^{p-1} \equiv 1 \mod \pi$ simplifies computations. Then $S = K(\omega)$ is the corresponding singular K-extension. Observe that this definition implies that $\omega \in O_S$ ring of integers of S.

Lemma 4.1. Suppose that S/K is a singular primary K-extension. Let $\theta: \omega \to \omega \zeta$ be a K-isomorphism of the field S. Then, A is hyperprimary and there are p prime ideals of O_S lying over π . There exists a prime ideal π_0 of O_S lying over π such that the p prime ideals $\pi_n = \theta^n(\pi_0)$, $n = 0, \ldots, p-1$ of O_S lying over π verify the congruences

(8)
$$\pi_0^2 \mid \omega - 1, \\ \pi_n \parallel \omega - 1, \dots, n = 1, \dots, p - 1.$$

Proof.

- 1. From Hilbert class field theory and Principal Ideal Theorem the prime principal ideal π of K splits totally in the extension S/K. The ideal π does not correspond to the case III.c in Ribenboim [6] p. 168 because π is not ramified in S/K. The ideal π does not correspond to the case III.b in Ribenboim [6] p. 168 because π is not inert in S/K. Therefore π corresponds to the case III.a and it follows that there exists $a_1 \in O_K$ such that $A \equiv a_1^p \mod \pi^{p+1}$. Therefore there exists $a \in \mathbb{Z}$ such that $a \equiv a_1 \mod \pi$ and $A \equiv a^p \mod \pi^{p+1}$, thus A is a singular hyper-primary number and $A^{p-1} \equiv 1 \mod \pi^{p+1}$.
- 2. Then $\omega^p 1 \equiv 0 \mod \pi^{p+1}$. Let $\theta : \omega \to \omega \zeta$ be a K-automorphism of the field S. Let Π' is any of the p prime ideals of O_S lying over π . Then $\pi O_S = \prod_{n'=0}^{p-1} \pi_{n'}$ where $\pi'_n = \theta^n(\Pi')$, $n = 0, \ldots, p-1$ are the p prime ideals of O_S lying over π .
- 3. From $A^{p-1} \equiv 1 \mod \pi^{p+1}$ we see that

$$\omega^p - 1 = \prod_{n=0}^{p-1} (\omega \zeta^{-n} - 1) \equiv 0 \mod \pi_0^{\prime p+1} \pi_1^{\prime p+1} \dots \pi_{p-1}^{\prime p+1}.$$

It follows that there exists a prime ideal Π of O_S lying over π such that $\omega - 1 \equiv 0 \mod \Pi^2$ because there exists l such that $\omega \zeta^l - 1 \equiv 0 \mod \pi_0^{\prime 2}$ so $\Pi = \theta^{-l}(\pi_0', 1)$ and that $\Pi \parallel \omega \zeta^{-n} - 1$ for $n = 1, \ldots, p-1$ because $\Pi \parallel \zeta - 1$. Let us note $\pi_n = \theta^n(\Pi)$ for $n = 0, \ldots, p-1$. It follows that, for $n = 1, \ldots, p-1, \pi_n \parallel \omega \zeta^n \zeta^{-n} - 1$ and so

(9)
$$\pi_0^2 \mid \omega - 1, \\ \pi_n \parallel \omega - 1, \dots, n = 1, \dots, p - 1.$$

Lemma 4.2. Suppose that S/K is a singular non primary K-extension. Let Π be the prime of S lying over π . Then $\Pi \mid \omega - 1$.

Proof. The extension S/K is ramified therefore $\pi O_S = \Pi^p$. $A^{p-1} \equiv 1 \mod \pi^n$ for some n > 1 and so $\omega^p - 1 \equiv 1 \mod \Pi^{np}$ because $\pi O_S = \Pi^p$. Therefore $\omega \equiv 1 \mod \Pi$.

We know that there are p different automorphisms of the field S extending the \mathbb{Q} -automorphism σ of the field K.

Lemma 4.3. There exists an automorphism σ_{μ} of S/\mathbb{Q} extending σ such that

(10)
$$\omega^{\sigma_{\mu}-\mu} \equiv 1 \mod \pi^2.$$

Proof.

From $\sigma(A) = A^{\mu}\alpha^{p}$ there exist p different automorphisms $\sigma_{(w)}$, $w = 0, \ldots, p-1$, of the field S extending the \mathbb{Q} -isomorphism σ of the field K, defined by

(11)
$$\sigma_{(w)}(\omega) = \omega^{\mu} \alpha^{p-1} \zeta^{w},$$

for natural numbers $w=0,1,\ldots,p-1$. There exists one and only one w such that $\alpha^{p-1}\times\zeta^w$ is a semi-primary number (or $\alpha^{p-1}\times\zeta^w\equiv 1 \mod \pi^2$). Let us set $\sigma_\mu=\sigma_{(w)}$ to emphasize the role of μ Therefore we get

(12)
$$\sigma_{\mu}(\omega) \equiv \omega^{\mu} \bmod \pi^{2},$$

because $\omega, \sigma_{\mu}(\omega) \in O_S$.

Lemma 4.4. $\sigma_{\mu}^{p-1}(\omega) = \omega$.

Proof. We have $\sigma_{\mu}^{p-1}(A) = \sigma^{p-1}(A) = A$ therefore there exists a natural integer w_1 such that $\sigma_{\mu}^{p-1}(\omega) = \omega \times \zeta^{w_1}$. We have proved in relation (12) that

(13)
$$\sigma_{\mu}(\omega) \equiv \omega^{\mu} \bmod \pi^{2},$$

thus $\sigma_{\mu}^{p-1}(\omega) \equiv \omega^{\mu^{p-1}} \equiv \omega \times A^{(p-1)(\mu^{p-1}-1)/p} \equiv \omega \mod \pi^2$ which implies that $w_1 = 0$ and that $\sigma_{\mu}^{p-1}(\omega) = \omega$.

Let us define $\Omega \in O_S$ ring of integers of S by the relation

(14)
$$\Omega = \sum_{i=0}^{p-2} \sigma_{\mu}^{i}(\omega).$$

Theorem 4.5. $M = \mathbb{Q}(\Omega)$ is a field with $[M : \mathbb{Q}] = p$, [S : M] = p-1 and $\sigma_{\mu}(\Omega) = \Omega$. *Proof.*

- 1. Show that $\Omega \neq 0$: If S/K is unramified, then $\omega \equiv 1 \mod \pi$ implies with definition of Ω that $\Omega \equiv p-1 \mod \pi$ and so $\Omega \neq 0$. If S/K is ramified, then $\omega \equiv 1 \mod \Pi$ implies with definition of Ω that $\Omega \equiv p-1 \mod \Pi$ because $\sigma_{\mu}(\Pi) = \Pi$ and so $\Omega \neq 0$.
- 2. Show that $\Omega \notin K$: from $\sigma_{\mu}(\omega) = \omega^{\mu} \alpha^{p-1} \zeta^{w}$ we get

$$\Omega = \sum_{i=0}^{p-2} \omega^{\mu^i \mod p} \times \beta_i,$$

with $\beta_i \in K$. Putting together terms of same degree we get $\Omega = \sum_{j=1}^{p-1} \gamma_j \omega^j$ where $\gamma_j \in K$ are not all null because $\Omega \neq 0$. $\Omega \in K$ should imply the polynomial equation $\sum_{j=1}^{p-1} \omega^j \times \gamma_j - \gamma = 0$ with $\gamma \in K$, not possible because the minimal polynomial equation of ω with coefficients in K is $\omega^p - A^{p-1} = 0$.

- 3. Show that $M = \mathbb{Q}(\Omega)$ verifies $M \subset S$ with $[M : \mathbb{Q}] = p$ and [S : M] = p 1: S/\mathbb{Q} is a Galois extension with $[S : \mathbb{Q}] = (p-1)p$. Let G_S be the Galois group of S/\mathbb{Q} . Let $<\sigma_{\mu}>$ be the subgroup of G_S generated by the automorphism $\sigma_{\mu} \in G_S$. We have seen in lemma 4.4 that $\sigma_{\mu}^{p-1}(\omega) = \omega$. In the other hand $\sigma_{\mu}^{p-1}(\zeta) = \zeta$ and $\sigma_{\mu}^{n}(\zeta) \neq \zeta$ for n < p-1 and so $<\sigma_{\mu}>$ is of order p-1.
- 4. From fundamental theorem of Galois theory, there is a fixed field $M = S^{<\sigma_{\mu}>}$ with $[M:\mathbb{Q}] = [G_S:<\sigma_{\mu}>] = p$. From $\sigma_{\mu}(\Omega) = \Omega$ seen and from definition relation (14) it follows that $\Omega \in M$ and from $\Omega \notin K$ it follows that $M = \mathbb{Q}(\Omega)$. Thus $S = M(\zeta)$ and $\omega \in S$ can be written

(15)
$$\omega = 1 + \sum_{i=0}^{p-2} \omega_i \lambda^i, \ \omega_i \in M.$$

with $\lambda = \zeta - 1$ and with $\sigma_{\mu}(\omega_i) = \omega_i$ because $\sigma_{\mu}(\Omega) = \Omega$.

Some definitions: The field $M \subset S$ is called a singular \mathbb{Q} -field. In the sequel of this paper we are studying some algebraic properties and ramification of singular \mathbb{Q} -fields M. A singular \mathbb{Q} -field M is said primary (respectively non-primary) if S is a singular primary (respectively non-primary) K-extension.

5 Algebraic properties of singular Q-fields

- 1. From Galois theory there are p subfields M_i , i = 0, ..., p-1, of S of degree $[M_i : \mathbb{Q}] = p$.
- 2. The extension S/\mathbb{Q} is Galois. Let $\theta: \omega \to \omega \zeta$ be a K-automorphism of S. There are p automorphisms σ_i , $i = 0, \ldots, p-1$, of S extending the \mathbb{Q} -automorphism σ of K verifying $\sigma_i(\theta^i(\omega)) = (\theta^i(\omega))^{\mu}\beta$ for the semi-primary $\beta \in K$.
- 3. We have defined in relation (14) $\Omega = \sum_{k=0}^{p-2} \sigma_{\mu}^{k}(\omega)$. For $i = 1, \ldots, p-1$ we can define similarly $\Omega_{i} = \sum_{k=0}^{p-2} \sigma_{\mu}^{k}(\theta^{i}(\omega))$. Then we show in following result that the fields M_{i} can be explicitly defined by $M_{i} = \mathbb{Q}(\Omega_{i}), i = 0, \ldots, p-1$.

Lemma 5.1. The singular \mathbb{Q} -fields $M_i = \mathbb{Q}(\Omega_i), \dots, p-1$, are the p subfields of degree p of the singular K-extension S/K.

Proof.

1. We set here $\sigma_0 = \sigma_\mu$ and $M_0 = M$. Show that the fields M_0, M_1, \dots, M_{p-1} are pairwise different: $\sigma_i(\theta^i(\omega)) = (\theta^i(\omega))^\mu \beta$, hence $\sigma_i(\omega \zeta^i) = (\omega \zeta^i)^\mu \beta$, hence

(16)
$$\sigma_i(\omega) = \omega^{\mu} \beta \zeta^{i(\mu-\nu)}.$$

Suppose that $M_i = M_{i'}$: then the subgroups $\langle \sigma_i \rangle$ and $\langle \sigma_{i'} \rangle$ of $Gal(S/\mathbb{Q})$ corresponding to the fixed fields M_i and $M_{i'}$ are equal. Therefore there exists a natural integer l, $1 \leq l \leq p-2$ coprime with p-1 such that $\sigma_{i'} = \sigma_i^l$.

2. $\sigma_{i'}(\zeta) = \sigma_i^l(\zeta)$, hence $\zeta^v = \zeta^{v^l}$, hence $v \equiv v^l \mod p$, hence $v^{l-1} \equiv 1 \mod p$, hence $l-1 \equiv 0 \mod p-1$ and therefore $l \equiv 1 \mod p-1$. In the other hand $1 \leq l \leq p-2$, thus l=1 and $\sigma_i(\omega) = \sigma_{i'}(\omega)$. From relation (16) this implies that i=i'.

In the following theorem, we give an explicit computation of Ω_i for $i = 0, \dots, p-1$. Let us denote μ_k for $\mu^k \mod p$.

Lemma 5.2. The subfields of degree p of the singular K-extension S are the singular \mathbb{Q} -fields $M_i = \mathbb{Q}(\Omega_i), i = 0, \dots, p-1$, where

(17)
$$\Omega_{i} = \theta^{i}(\Omega) = \sum_{k=0}^{p-2} \omega^{\mu^{k}} \beta^{(\sigma^{k} - \mu^{k})/(\sigma - \mu)} \zeta^{i\mu^{k}},$$

$$\Omega_{i} = \theta^{i}(\Omega) = \sum_{k=0}^{p-2} \omega^{\mu_{k}} A^{(p-1)(\mu^{k} - \mu_{k})/p} \beta^{(\sigma^{k} - \mu^{k})/(\sigma - \mu)} \zeta^{i\mu^{k}}.$$

Proof. We start of $\Omega_i = \sum_{k=0}^{p-2} \sigma_i^k(\theta^i(\omega))$ and we compute $\sigma_i^k(\theta^i(\omega))$. Let us note $\varpi_i = \theta^i(\omega)$. $\sigma_i(\varpi_i) = \varpi_i^{\mu}\beta$, hence $\sigma_i^2(\varpi_i) = \sigma(\varpi_i)^{\mu}\sigma(\beta) = (\varpi_i^{\mu}\beta)^{\mu}\sigma(\beta) = \varpi_i^{\mu^2}\beta^{\sigma+\mu}$. Pursuing up to k, we get $\sigma_i^k(\varpi_i) = \varpi_i^{\mu^k}\beta^{(\sigma^k-\mu^k)/(\sigma-\mu)}$. But $\varpi_i^{\mu^k} = (\omega\zeta^i)^{\mu^k} = \omega^{\mu^k}\zeta^{i\mu^k}$. We can also compute at first $\Omega = \sum_{k=0}^{p-2} \omega^{\mu^k}\beta^{(\sigma^k-\mu^k)/(\sigma-\mu)}$ and then verify directly that $\theta^i(\Omega) = \Omega_i$. Then $\omega^{\mu^k} = \omega^{\mu_k}A^{(p-1)(\mu^k-\mu_k)/p}$.

6 The ramification in the singular primary \mathbb{Q} fields

1. Observe at first that the case of singular non-primary \mathbb{Q} -fields can easily be described. The extension S/K is fully ramified at π , so $pO_S = \pi_S^{p(p-1)}$. Therefore there is only one prime ideal \mathfrak{p} of M ramified with $pO_M = \mathfrak{p}^p$.

2. The end of this section deals with the ramification of singular primary \mathbb{Q} -fields M. In that case S/K is a cyclic unramified extension and there are p prime ideals in S/K over π .

Lemma 6.1. $\sigma_{\mu}(\pi_0) = \pi_0$

Proof. From relation (13) $\sigma_{\mu}(\omega) \equiv \omega^{\mu} \mod \pi^{2}$. From lemma 4.1 $\omega \equiv 1 \mod \pi_{0}^{2}$ and so $\sigma_{\mu}(\omega) \equiv \omega^{\mu} \equiv 1 \mod \pi_{0}^{2}$. Then $\omega \equiv 1 \mod \sigma_{\mu}^{-1}(\pi_{0})^{2}$. If $\sigma_{\mu}^{-1}(\pi_{0}) \neq \pi_{0}$ it follows that $\omega \equiv 1 \mod \pi_{0}^{2} \times \sigma^{-1}(\pi_{0}^{2})$, which contradicts lemma 4.1.

Lemma 6.2. Let $\pi_k = \theta^k(\pi_0)$ for any $k \in \mathbb{N}$, $1 \le k \le p-1$. Then $\sigma_\mu(\pi_k) = \pi_{n_k}$ with $n_k \in \mathbb{N}$, $n_k \equiv k \times v\mu^{-1} \mod p$.

Proof.

1. From $\pi_0^2 \mid (\omega - 1)$, it follows that $\theta^k(\pi_0^2) = \pi_k^2 \mid (\omega \zeta^k - 1)$. Then

$$\sigma_{\mu}(\pi_k)^2 \mid (\sigma_{\mu}(\omega) \times \zeta^{vk} - 1).$$

2. We have $\sigma_{\mu}(\pi_k) = \pi_{k+l_k}$ for some $l_k \in \mathbb{N}$ depending on k. From relation (13) we know that $\sigma_{\mu}(\omega) \equiv \omega^{\mu} \mod \pi^2$. Therefore

$$\pi_{k+l_k}^2 \mid (\omega^{\mu} \times \zeta_p^{vk} - 1).$$

3. In an other part by the K-automorphism θ^{k+l_k} of S we have

$$\pi_{k+l_k}^2 \mid (\omega \times \zeta^{k+l_k} - 1),$$

so

$$\pi_{k+l_k}^2 \mid (\omega^{\mu} \times \zeta^{\mu(k+l_k)} - 1)$$

4. Therefore $\pi_{k+l_k}^2 \mid \omega^{\mu}(\zeta^{vk} - \zeta^{\mu(k+l_k)})$, and so

$$\pi_{k+l_k}^2 \mid (\zeta^{vk} - \zeta^{\mu(k+l_k)}),$$

5. This implies that $\mu(k+l_k) - vk \equiv 0 \mod p$, so $\mu l_k + k(\mu - v) \equiv 0 \mod p$ and finally that

$$l_k \equiv k \times \frac{v - \mu}{\mu},$$

where we know that $v - \mu \not\equiv 0 \mod p$ from Stickelberger relation. Then $n_k \equiv k + k \times \frac{v - \mu}{\mu} = k \times \frac{v}{\mu} \mod p$, which achieves the proof.

Lemma 6.3.

- 1. If S/K is a singular primary negative extension then $\sigma_{\mu}^{(p-1)/2}(\pi_k) = \pi_k$.
- 2. If S/K is a singular primary positive or unit extension then $\sigma_{\mu}^{(p-1)/2}(\pi_k) = \pi_{n-k}$.

Proof. From lemma 6.2 we have $\sigma_{\mu}^{(p-1)/2}(\pi_k) = \pi_{k'}$ with $k' \equiv kv^{(p-1)/2}\mu^{-(p-1)/2}$. If S/K is negative then $v^{(p-1)/2}\mu^{-(p-1)/2} \equiv 1 \mod p$ and if S/K is positive or unit then $v^{(p-1)/2}\mu^{-(p-1)/2} \equiv -1 \mod p$ and the result follows.

Lemma 6.4. The length of the orbit of the action of the group $< \sigma_{\mu} > on \pi_0$ is 1 and the length of the orbit of the action of the group $< \sigma_{\mu} > on \pi_i$, i = 1, ..., p-1 is d where d is the order of $v\mu^{-1} \mod p$.

Proof. For π_0 see lemma 6.1. For π_k see lemma 6.2: $\sigma_{\mu}(\pi_k) = \sigma(\pi_{n_k})$ with $n_k \equiv v\mu^{-1} \mod p$, then $\sigma_{\mu}^2(\pi_k) = \sigma(\pi_{n_{k_2}})$ with $n_{k_2} \equiv kv^2\mu^{-2} \mod p$ and finally $n_{k_d} \equiv k \mod p$.

The only prime ideals of M/\mathbb{Q} ramified are lying over p. The prime ideal of K over p is π . To avoid cumbersome notations, the prime ideals of S over π are noted here Π or $\Pi_i = \theta^i(\Pi_0), \ i = 1, \ldots, p-1$, and the prime ideals of M over p are noted \mathfrak{p} or $\mathfrak{p}_j, \ j = 1, \ldots, \nu$ where $\nu + 1$ is the number of such ideals.

Theorem 6.5. Let d be the order of $v\mu^{-1}$ mod p. There are $\frac{p-1}{d}+1$ prime ideals in the singular primary \mathbb{Q} -field M lying over p. Their prime decomposition and ramification is:

- 1. $e(\mathfrak{p}_0/p\mathbb{Z}) = 1$.
- 2. $e(\mathfrak{p}_j/p\mathbb{Z}) = d$ for all $j = 1, \ldots, \frac{p-1}{d}$ with d > 1.

Proof.

1. preparation of the proof

- (a) The inertial degrees verifies $f(\pi/p\mathbb{Z}) = 1$ and $f(\Pi/\pi) = 1$ and so $f(\Pi/p\mathbb{Z}) = 1$. Therefore, from multiplicativity of degrees in extensions, it follows that $f(\mathfrak{p}/p\mathbb{Z}) = f(\Pi/\mathfrak{p}) = 1$ where Π is lying over \mathfrak{p} .
- (b) $e(\pi/p\mathbb{Z}) = p 1$ and $e(\Pi/\pi) = 1$ and so $e(\Pi/p\mathbb{Z}) = p 1$.
- (c) Classically, we get

(18)
$$\sum_{j=0}^{\nu} e(\mathfrak{p}_j/p\mathbb{Z}) = p,$$

where $\nu + 1$ is the number of prime ideals of M lying over p and where $e(\mathfrak{p}_j/p\mathbb{Z})$ are ramification indices dividing p-1 because, from multiplicativity of degrees in extensions, $e(\mathfrak{p}_j/p\mathbb{Z}) \times e(\Pi/\mathfrak{p}_j) = p-1$.

2. Proof

- (a) The extension S/M is Galois of degree p-1, therefore the number of prime ideals Π lying over one \mathfrak{p} is $\frac{p-1}{e(\Pi/\mathfrak{p})} = e(\mathfrak{p}/p\mathbb{Z})$.
- (b) Let $c(\Pi)$ be the orbit of Π under the action of the group $<\sigma_{\mu}>$ of cardinal p-1 seen in lemma 6.4. If $\Pi=\pi_0$ then the orbit C_{Π} is of length 1. If $\Pi \neq \pi_0$ then the orbit C_{Π} is of length d. If C_{Π} has one ideal lying over \mathfrak{p} then it has all its d ideals lying over \mathfrak{p} because $\sigma_{\mu}(\mathfrak{p})=\mathfrak{p}$. This can be extended to all Π' lying over \mathfrak{p} with $C_{\Pi'}\neq C_{\Pi}$ and it follows that when $\Pi\neq\pi_0$ then $d\mid e(\mathfrak{p}/p\mathbb{Z})$, number of ideals of S lying over \mathfrak{p} . There is one \mathfrak{p} with $e(\mathfrak{p}/p\mathbb{Z})=1$ because C_{π_0} is the only orbit with one element.
- (c) The extension S/M is cyclic of degree p-1. There exists one field N with $M \subset N \subset S$ with degree $[N:M] = \frac{p-1}{d}$. If there were at least two different prime ideals \mathfrak{p}'_1 and \mathfrak{p}'_2 of N lying over \mathfrak{p} , it should follow that $\mathfrak{p}'_2 = \sigma_\mu^{jd}(\mathfrak{p}'_1)$ for some $j, \ 1 \leq j \leq d-1$ because the Galois group of S/M is $<\sigma_\mu>$ and the Galois group of N/M is $<\sigma_\mu^d>$. But, if a prime ideal π_k of S lies over \mathfrak{p}'_1 then $\sigma_\mu^d(\pi_k)$ should lie over \mathfrak{p}'_2 . From lemma 6.4, $\sigma_\mu^d(\pi_k) = \pi_k$ should imply that $\mathfrak{p}'_2 = \mathfrak{p}'_1$, contradiction. Therefore the only possibility is that \mathfrak{p} is fully ramified in N/M and thus $\mathfrak{p}O_N = \mathfrak{p}'^{(p-1)/d}$. Therefore $e(\mathfrak{p}'/\mathfrak{p}) = \frac{p-1}{d}$ and so $e(\mathfrak{p}'/p\mathbb{Z}) = e(\mathfrak{p}/p\mathbb{Z}) \times \frac{p-1}{d} \mid p-1$ and thus $e(\mathfrak{p}/p\mathbb{Z}) \mid d$. From previous result it follows that $e(\mathfrak{p}/p\mathbb{Z}) = d$. Then d>1 because $\mu-v\not\equiv 0 \mod p$ from Stickelberger theorem. There are $\frac{p-1}{d}+1$ prime ideals \mathfrak{p}_i because, from relation (18) $p=1+\sum_{i=1}^{\nu} e(\mathfrak{p}_i/p\mathbb{Z}) = 1+\nu\times d$.

Example: let us consider the case of prime numbers p with $\frac{p-1}{2}$ prime.

1. Singular primary negative Q-fields

Here $\mu^{(p-1)/2} \equiv -1 \mod p$ and $d \in \{2, \frac{p-1}{2}, p-1\}$. Straightforwardly d=2 is not possible: $\mu^2 \equiv v^2 \mod p$, then $\mu + v \equiv 0 \mod p$ because $\mu \not\equiv v \mod p$, then $\mu^{(p-1)/2} + v^{(p-1)/2} \equiv 0 \mod p$, contradiction because $\mu^{(p-1)/2} = v^{(p-1)/2} = -1$. d=p-1 is not possible because $\mu^{(p-1)/2} - v^{(p-1)/2} \equiv 0 \mod p$. Therefore $d=\frac{p-1}{2}$, so the ramification of p in the singular \mathbb{Q} -field M is $e(\mathfrak{p}_0/p\mathbb{Z})=1$ and $e(\mathfrak{p}_1/p\mathbb{Z})=e(\mathfrak{p}_2/p\mathbb{Z})=\frac{p-1}{2}$.

2. Singular primary positive \mathbb{Q} -extensions and primary unit \mathbb{Q} -fields

Here $\mu^{(p-1)/2} \equiv 1 \mod p$ and $d \in \{2, \frac{p-1}{2}, p-1\}$. d=2 is not possible: $\mu^2 - v^2 \equiv 0 \mod p$ then $\mu + v \equiv 0 \mod p$ so $\mu \equiv v^{(p+1)/2} \mod p$, so $B_{p-(p+1)/2} \equiv B_{(p+1)/2} \equiv 0 \mod p$ where $B_{(p+1)/2}$ is a Bernoulli Number, contradiction because $B_{(p+1)/2} \not\equiv 0 \mod p$. $d=\frac{p-1}{2}$ is not possible because $\mu^{(p-1)/2} \equiv 1 \mod p$ and

 $v^{(p-1)/2} \equiv -1 \mod p$. Therefore d = p-1, so the ramification of p in the singular \mathbb{Q} -field M is $e(\mathfrak{p}_0/p\mathbb{Z}) = 1$ and $e(\mathfrak{p}_1/p\mathbb{Z}) = p-1$.

Acknowledgments: I thank Professor Preda Mihailescu for helpful frequent email dialogues and error detections in some intermediate versions of this paper.

References

- [1] D. Hilbert, The Theory of Algebraic Number Fields, Zahlbericht, Springer, 1998.
- [2] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1982.
- [3] R.A. Mollin, Algebraic Number Theory, Chapman and Hall/CRC, 1999.
- [4] W. Narkiewicz, Elementary and Analytic Theory of Numbers, Springer-verlag, 1990.
- [5] R. Quême, On π -adic expansion of singular integers of the p-cyclotomic field, arXiv.org, preprint math.NT/0610968

\protect\vrule width0pt\protect\href{http://arxiv.org/PS_cache/math/pdf/0610/0610968.p

- [6] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer-Verlag, 1979.
- [7] P. Ribenboim, Classical Theory of Algebraic Numbers, Springer, 2001.
- [8] L.C. Washington, Introduction to cyclotomic fields, second edition, Springer, 1997.

Roland Quême

13 avenue du château d'eau

31490 Brax

France

mailto: roland.queme@wanadoo.fr