Система массового обслуживания (СМО) — это случайный процесс с дискретными состояниями и непрерывным временем

Система массового обслуживания (СМО) — это случайный процесс с дискретными состояниями и непрерывным временем

Основные элементы:

- -Входящий поток заявок;
- Очередь;
- -Каналы обслуживания;
- Выходящий поток заявок.

Система массового обслуживания (СМО) — это случайный процесс с дискретными состояниями и непрерывным временем

Основные элементы:

- -Входящий поток заявок;
- Очередь;
- -Каналы обслуживания;
- Выходящий поток заявок.

Типы СМО

системы с отказами - при занятости всех каналов обслуживания заявка покидает систему необслуженной;

Система массового обслуживания (СМО) — это случайный процесс с дискретными состояниями и непрерывным временем

Основные элементы:

- -Входящий поток заявок;
- Очередь;
- -Каналы обслуживания;
- Выходящий поток заявок.

Входящий поток заявок Вход Поток необслуженных (покинувших очередь) заявок

Типы СМО

системы с отказами - при занятости всех каналов обслуживания заявка покидает систему необслуженной;

системы с неограниченной очередью - заявка встает в очередь, если в момент ее поступления все каналы обслуживания были заняты;

Система массового обслуживания (СМО) — это случайный процесс с дискретными состояниями и непрерывным временем

Основные элементы:

- -Входящий поток заявок;
- Очередь;
- -Каналы обслуживания;
- Выходящий поток заявок.

Входящий поток заявок Вход Поток необслуженных (покинувших очередь) заявок

Типы СМО

системы с отказами - при занятости всех каналов обслуживания заявка покидает систему необслуженной;

системы с неограниченной очередью - заявка встает в очередь, если в момент ее поступления все каналы обслуживания были заняты; **системы с ожиданием и ограниченной очередью** - ограниченно время ожидания или длина очереди.

Граф состояний

Схема возможных состояний и возможных переходов из состояние в состояние.

Граф состояний

Схема возможных состояний и возможных переходов из состояние в состояние.

Пример.

n самолетов \longleftrightarrow ПВО противника

```
X_0 — не уничтожено ни одного самолета, X_1 — уничтожен ровно один самолет, .....
```

 X_n — уничтожены все n самолетов.

Граф состояний

Схема возможных состояний и возможных переходов из состояние в состояние.

Пример.

n самолетов \longleftrightarrow ПВО противника

 X_0 — не уничтожено ни одного самолета,

 X_1 — уничтожен ровно один самолет,

.....

 X_n — уничтожены все n самолетов.

Граф состояний:

Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Интенсивность потока событий λ – это среднее число событий, приходящееся на единицу времени.

Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Интенсивность потока событий λ – это среднее число событий, приходящееся на единицу времени.

 $\lambda = 1/\tau$, где τ — средний промежуток времени между событиями.

1. Стационарный поток событий - если его вероятностные характеристики не зависят от

- **1. Стационарный поток событий -** если его вероятностные характеристики не зависят от времени.
- 2. Поток событий без последствий если для любых двух непересекающихся участков времени число событий, попадающих на один из них, не зависит от

- **1. Стационарный поток событий -** если его вероятностные характеристики не зависят от времени.
- 2. Поток событий без последствий если для любых двух непересекающихся участков времени число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой.
- **3. Ординарный поток событий -** если события в нем появляются по одному, а не группами по нескольку

- **1. Стационарный поток событий -** если его вероятностные характеристики не зависят от времени.
- 2. Поток событий без последствий если для любых двух непересекающихся участков времени число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой.
- **3. Ординарный поток событий -** если события в нем появляются по одному, а не группами по нескольку событий сразу.
- **4.** Простейший (стационарный пуассоновский) поток событий если он обладает тремя свойствами:
 - 1) стационарен, 2) не имеет последствий, 3) ординарен.

Доказательство.

Разобьем интервал длины τ на n равных частей длины $\Delta t = \tau / n$.

Доказательство.

Разобьем интервал длины τ на n равных частей длины $\Delta t = \tau / n$.

Пусть Y - число точек, попавших на некоторый интервал Δt , $Y \in \{0,1\}$ при малом Δt (в силу ординарности потока).

Доказательство.

Разобьем интервал длины τ на n равных частей длины $\Delta t = \tau / n$.

Пусть Y - число точек, попавших на некоторый интервал Δt , $Y \in \{0,1\}$ при малом Δt (в силу ординарности потока).

Тогда
$$EY = 1 \cdot p + 0 \cdot (1 - p) = \lambda \Delta t = \lambda \tau / n \Rightarrow$$

вероятность попадания в Δt равна $p = \lambda \tau / n \Rightarrow$

Доказательство.

Разобьем интервал длины τ на n равных частей длины $\Delta t = \tau / n$.

Пусть Y - число точек, попавших на некоторый интервал Δt , $Y \in \{0,1\}$ при малом Δt (в силу ординарности потока).

Тогда
$$EY = 1 \cdot p + 0 \cdot (1 - p) = \lambda \Delta t = \lambda \tau / n \Rightarrow$$

вероятность попадания в Δt равна $p = \lambda \tau / n \Rightarrow$ по формуле Бернулли

$$P(X = m) = C_n^m p^m (1 - p)^{n - m}$$
.

Доказательство.

Разобьем интервал длины τ на n равных частей длины $\Delta t = \tau / n$.

Пусть Y - число точек, попавших на некоторый интервал Δt , $Y \in \{0,1\}$ при малом Δt (в силу ординарности потока).

Тогда
$$EY = 1 \cdot p + 0 \cdot (1 - p) = \lambda \Delta t = \lambda \tau / n \Rightarrow$$

вероятность попадания в Δt равна $p = \lambda \tau / n \Rightarrow$ по формуле Бернулли

$$P(X = m) = C_n^m p^m (1-p)^{n-m}$$
.

При $n \to \infty, p \to 0$ и $np = \lambda \tau = const$ по формуле Пуассона

$$P(X=m) \approx P_m(\tau) = \frac{(\lambda \tau)^m}{m!} e^{-\lambda \tau}.$$

Следствие 2. Величина интервала времени T между соседними событиями простейшего потока подчиняется экспоненциальному распределению.

Следствие 2. Величина интервала времени *T* между соседними событиями простейшего потока подчиняется экспоненциальному распределению.

Доказательство. Вероятность того, что на участке длины t не появится ни одного события $P(T \ge t) = e^{-\lambda t}$

Следствие 2. Величина интервала времени *T* между соседними событиями простейшего потока подчиняется экспоненциальному распределению.

Доказательство. Вероятность того, что на участке длины t не появится ни одного события $P(\underline{T} \ge t) = e^{-\lambda t} \Rightarrow$ вероятность противоположного события $P(T < t) = 1 - e^{-\lambda t} \Rightarrow$ $T \sim Exp(\lambda)$.

Вероятность события $P(T < t) = 1 - e^{-\lambda t}$

Вероятность события $P(T < t) = 1 - e^{-\lambda t}$

Разлагая экспоненту в ряд Тейлора получим

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

5

Вероятность события $P(T < t) = 1 - e^{-\lambda t}$

Разлагая экспоненту в ряд Тейлора получим

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P(T < \Delta t) = 1 - e^{-\lambda \Delta t} = 1 - 1 - (-\lambda \Delta t) - \dots \approx \lambda \Delta t$$

Аналогично, за небольшой период t не появится ни одно событие

Вероятность события $P(T < t) = 1 - e^{-\lambda t}$

Разлагая экспоненту в ряд Тейлора получим

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P(T < \Delta t) = 1 - e^{-\lambda \Delta t} = 1 - 1 - (-\lambda \Delta t) - \dots \approx \lambda \Delta t$$

Аналогично, за небольшой период t не появится ни одно событие

$$P(T \ge \Delta t) = e^{-\lambda \Delta t} = 1 + (-\lambda \Delta t) + \dots \approx 1 - \lambda \Delta t$$

Классификация СМО (Кендалл)

A|B|C|D

А - входной поток

В - время обслуживания (выходной поток)

Например: M - марковский, G - произвольный, D - регулярный

С - число приборов

D - размер очереди

Имеется один канал, на который поступает поток заявок с интенсивностью λ . Поток обслуженных заявок имеет интенсивность μ . Два состояния: S_0

Имеется один канал, на который поступает поток заявок с интенсивностью λ . Поток обслуженных заявок имеет интенсивность μ . Два состояния: S_0

- канал свободен; S_1 - канал занят.

Рассмотрим марковскую цепь с переходами в моменты времени $t_0, t_0 + \Delta t, t_0 + 2\Delta t, ..., t_0 + n\Delta t, ...$

Имеется один канал, на который поступает поток заявок с интенсивностью λ . Поток обслуженных заявок имеет интенсивность μ . Два состояния: S_0

- канал свободен; S_1 - канал занят.

Рассмотрим марковскую цепь с переходами в моменты времени $t_0, t_0 + \Delta t, t_0 + 2\Delta t, ..., t_0 + n\Delta t, ...$

Обозначим $\pi_0(t), \pi_1(t)$ - вероятности состояний S_0, S_1 в момент t, $\pi_0(t) + \pi_1(t) = 1.$

Одноканальная СМО с отказами (М|М|1|0)

Имеется один канал, на который поступает поток заявок с интенсивностью λ . Поток обслуженных заявок имеет интенсивность μ . Два состояния: S_0

- канал свободен; S_1 - канал занят.

Рассмотрим марковскую цепь с переходами в моменты времени $t_0, t_0 + \Delta t, t_0 + 2\Delta t, ..., t_0 + n\Delta t, ...$

Обозначим $\pi_0(t), \pi_1(t)$ - вероятности состояний S_0, S_1 в момент t, $\pi_0(t) + \pi_1(t) = 1.$

$$\pi_0(t + \Delta t) = \underbrace{\pi_0(t)(1 - \lambda \Delta t)}_{S_0 \to S_0} + \underbrace{\pi_1(t)\mu \Delta t}_{S_1 \to S_0} \implies$$

Одноканальная СМО с отказами (М|М|1|0)

Имеется один канал, на который поступает поток заявок с интенсивностью λ . Поток обслуженных заявок имеет интенсивность μ . Два состояния: S_0

- канал свободен; S_1 - канал занят.

Рассмотрим марковскую цепь с переходами в моменты времени $t_0, t_0 + \Delta t, t_0 + 2\Delta t, ..., t_0 + n\Delta t, ...$

Обозначим $\pi_0(t), \pi_1(t)$ - вероятности состояний S_0, S_1 в момент t,

$$\pi_0(t) + \pi_1(t) = 1$$
.

$$\pi_0(t + \Delta t) = \underbrace{\pi_0(t)(1 - \lambda \Delta t)}_{S_0 \to S_0} + \underbrace{\pi_1(t)\mu \Delta t}_{S_1 \to S_0} \implies$$

$$\frac{\pi_0(t + \Delta t) - \pi_0(t)}{\Delta t} = -\lambda \pi_0(t) + \mu \pi_1(t) \implies \pi_0'(t) = -\lambda \pi_0(t) + \mu \pi_1(t).$$

$$\pi_0 = \frac{\mu}{\lambda + \mu}, \quad \pi_1 = \frac{\lambda}{\lambda + \mu}$$

$$\boxed{\pi_0 = \frac{\mu}{\lambda + \mu}, \quad \pi_1 = \frac{\lambda}{\lambda + \mu}} \Rightarrow \text{ Вероятность отказа заявки } P_{om\kappa} = \pi_1 = \frac{\lambda}{\lambda + \mu}.$$

- -

$$\boxed{\pi_0 = \frac{\mu}{\lambda + \mu}, \quad \pi_1 = \frac{\lambda}{\lambda + \mu}} \Rightarrow \text{ Вероятность отказа заявки } P_{om\kappa} = \pi_1 = \frac{\lambda}{\lambda + \mu}.$$

Относительная пропускная способность $Q = 1 - P_{om\kappa} = \frac{\mu}{\lambda + \mu}$.

$$\boxed{\pi_0 = \frac{\mu}{\lambda + \mu}, \quad \pi_1 = \frac{\lambda}{\lambda + \mu}} \Rightarrow \text{ Вероятность отказа заявки } P_{om\kappa} = \pi_1 = \frac{\lambda}{\lambda + \mu}.$$

Относительная пропускная способность $Q = 1 - P_{om\kappa} = \frac{\mu}{\lambda + \mu}$. Абсолютная

пропускная способность (среднее число заявок, обслуживаемых СМО в единицу времени) $A = \lambda Q = \frac{\lambda \mu}{\lambda + \mu}$.

$$\boxed{\pi_0 = \frac{\mu}{\lambda + \mu}, \quad \pi_1 = \frac{\lambda}{\lambda + \mu}} \Rightarrow \text{ Вероятность отказа заявки } P_{om\kappa} = \pi_1 = \frac{\lambda}{\lambda + \mu}.$$

Относительная пропускная способность $Q = 1 - P_{om\kappa} = \frac{\mu}{\lambda + \mu}$. Абсолютная

пропускная способность (среднее число заявок, обслуживаемых СМО в единицу времени) $A = \lambda Q = \frac{\lambda \mu}{\lambda + \mu}$.

Пример. В систему поступает простейший поток заявок на телефонные переговоры с интенсивностью $\lambda = 90$ вызовов в час. Средняя продолжительность разговора - 2 мин. Определить показатели эффективности работы СМО при наличии одного телефонного номера.

$$\boxed{\pi_0 = \frac{\mu}{\lambda + \mu}, \quad \pi_1 = \frac{\lambda}{\lambda + \mu}} \Rightarrow \text{ Вероятность отказа заявки } P_{om\kappa} = \pi_1 = \frac{\lambda}{\lambda + \mu}.$$

Относительная пропускная способность $Q = 1 - P_{om\kappa} = \frac{\mu}{\lambda + \mu}$. Абсолютная

пропускная способность (среднее число заявок, обслуживаемых СМО в единицу времени) $A = \lambda Q = \frac{\lambda \mu}{\lambda + \mu}$.

Пример. В систему поступает простейший поток заявок на телефонные переговоры с интенсивностью $\lambda=90$ вызовов в час. Средняя продолжительность разговора - 2 мин. Определить показатели эффективности работы СМО при наличии одного телефонного номера. **Решение.** Интенсивность потока обслуживаний $\mu=30$ вызовов в час. Вероятность отказа $P_{omk}=90/120=0.75$. Относительная пропускная способность $Q=\frac{30}{120}=0.25$, т.е. в среднем только 25% поступающих заявок осуществят переговоры. Абсолютная пропускная способность $A=90\cdot0.25=22.5$, т.е. в среднем в час будут обслужены 22,5 заявки.

wi

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, S_2 - канал занят и 1 заявка в очереди,...

wv

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, S_2 - канал занят и 1 заявка в очереди,...

•

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, S_2 - канал занят и 1 заявка в очереди,...

Найдем $\pi_{_n}(t+\Delta t)$ - вероятность того, что в момент времени $t+\Delta t$ система находится в состоянии $S_{_n}$.

 $\omega \nu$

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, S_2 - канал занят и 1 заявка в очереди,...

Найдем $\pi_{_n}(t+\Delta t)$ - вероятность того, что в момент времени $t+\Delta t$ система находится в состоянии $S_{_n}$.

В силу ординарности потоков и малой величины Δt можно считать, что система находится в момент $t+\Delta t$ в S_n , если в момент t она находилась в S_{n-1} , S_n или S_{n+1} .

 ωv

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, S_2 - канал занят и 1 заявка в очереди,...

Найдем $\pi_{_n}(t+\Delta t)$ - вероятность того, что в момент времени $t+\Delta t$ система находится в состоянии $S_{_n}$.

В силу ординарности потоков и малой величины Δt можно считать, что система находится в момент $t+\Delta t$ в $S_{_n}$, если в момент t она находилась в

$$S_{\scriptscriptstyle n-1}$$
, $S_{\scriptscriptstyle n}$ или $S_{\scriptscriptstyle n+1}$.

$$\begin{split} \pi_{_{n}}(t+\Delta t) &\approx \pi_{_{n}}(t) \Big((1-\lambda \Delta t)(1-\mu \Delta t) + \mu \Delta t \lambda \Delta t \Big) + \\ &+ \pi_{_{n-1}}(t) \Big(\lambda \Delta t (1-\mu \Delta t) \Big) + \pi_{_{n+1}}(t) \Big((1-\lambda \Delta t) \mu \Delta t) \Big) \approx \\ &\approx \left(1 - (\lambda + \mu) \Delta t \right) \, \pi_{_{n}}(t) + \lambda \Delta t \pi_{_{n-1}}(t) + \mu \Delta t \pi_{_{n+1}}(t) \end{split}$$

 ωv

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, S_2 - канал занят и 1 заявка в очереди,...

Найдем $\pi_{_n}(t+\Delta t)$ - вероятность того, что в момент времени $t+\Delta t$ система находится в состоянии $S_{_n}$.

В силу ординарности потоков и малой величины Δt можно считать, что система находится в момент $t+\Delta t$ в $S_{_n}$, если в момент t она находилась в

$$S_{\scriptscriptstyle n-1}$$
, $S_{\scriptscriptstyle n}$ или $S_{\scriptscriptstyle n+1}$.

$$\begin{split} \pi_{_{n}}(t+\Delta t) &\approx \pi_{_{n}}(t) \Big((1-\lambda \Delta t)(1-\mu \Delta t) + \mu \Delta t \lambda \Delta t \Big) + \\ &+ \pi_{_{n-1}}(t) \Big(\lambda \Delta t (1-\mu \Delta t) \Big) + \pi_{_{n+1}}(t) \Big((1-\lambda \Delta t) \mu \Delta t) \Big) \approx \\ &\approx (1-(\lambda+\mu)\Delta t) \; \pi_{_{n}}(t) + \lambda \Delta t \pi_{_{n-1}}(t) + \mu \Delta t \pi_{_{n+1}}(t) \end{split}$$

Отсюда

$$\frac{d\pi_{n}(t)}{dt} = -(\lambda + \mu)\pi_{n}(t) + \lambda\pi_{n-1}(t) + \mu\pi_{n+1}(t)$$

$$\frac{dP_n(t)}{dt} = 0$$

$$\frac{dP_{n}(t)}{dt} = 0$$

Тогда

$$0 = -(\lambda + \mu)\pi_{n} + \lambda\pi_{n-1} + \mu\pi_{n+1} \Rightarrow$$

$$\frac{dP_{n}(t)}{dt} = 0$$

Тогда

$$0 = -(\lambda + \mu)\pi_n + \lambda \pi_{n-1} + \mu \pi_{n+1} \implies$$
$$(\lambda + \mu)\pi_n = \lambda \pi_{n-1} + \mu \pi_{n+1}$$

$$\frac{dP_n(t)}{dt} = 0$$

Тогда

$$0 = -(\lambda + \mu)\pi_n + \lambda \pi_{n-1} + \mu \pi_{n+1} \Rightarrow$$
$$(\lambda + \mu)\pi_n = \lambda \pi_{n-1} + \mu \pi_{n+1}$$

Получили уравнение равновесия: левая часть описывает уходы из состояния $S_{\scriptscriptstyle n}$, а правая - приходы в состояние $S_{\scriptscriptstyle n}$.

$$\frac{dP_n(t)}{dt} = 0$$

Тогда

$$0 = -(\lambda + \mu)\pi_n + \lambda \pi_{n-1} + \mu \pi_{n+1} \Rightarrow$$
$$(\lambda + \mu)\pi_n = \lambda \pi_{n-1} + \mu \pi_{n+1}$$

Получили уравнение равновесия: левая часть описывает уходы из состояния $\boldsymbol{S}_{\scriptscriptstyle n}$, а правая - приходы в состояние $\boldsymbol{S}_{\scriptscriptstyle n}$.

$$S_0$$
 $\xrightarrow{\lambda}$ S_1 $\xrightarrow{\lambda}$ S_2 $\xrightarrow{\mu}$ \cdots

Из $S_{_0}$ можно попасть только в $S_{_1}$, поэтому $\ \lambda\pi_{_0}=\ \mu\pi_{_1}$

$$\frac{dP_n(t)}{dt} = 0$$

Тогда

$$0 = -(\lambda + \mu)\pi_n + \lambda \pi_{n-1} + \mu \pi_{n+1} \Rightarrow$$
$$(\lambda + \mu)\pi_n = \lambda \pi_{n-1} + \mu \pi_{n+1}$$

Получили уравнение равновесия: левая часть описывает уходы из состояния $S_{\scriptscriptstyle n}$, а правая - приходы в состояние $S_{\scriptscriptstyle n}$.

Из $S_{_0}$ можно попасть только в $S_{_1}$, поэтому $\ \lambda\pi_{_0}=\,\mu\pi_{_1}$ Тогда

$$(\lambda + \mu)\pi_1 = \lambda \pi_0 + \mu \pi_2 = \mu \pi_1 + \mu \pi_2 \implies \lambda \pi_1 = \mu \pi_2$$

$$\frac{dP_n(t)}{dt} = 0$$

Тогда

$$0 = -(\lambda + \mu)\pi_n + \lambda \pi_{n-1} + \mu \pi_{n+1} \Rightarrow$$
$$(\lambda + \mu)\pi_n = \lambda \pi_{n-1} + \mu \pi_{n+1}$$

Получили уравнение равновесия: левая часть описывает уходы из состояния $\boldsymbol{S}_{\scriptscriptstyle n}$, а правая - приходы в состояние $\boldsymbol{S}_{\scriptscriptstyle n}$.

Из $S_{_0}$ можно попасть только в $S_{_1}$, поэтому $\ \lambda\pi_{_0}=\ \mu\pi_{_1}$ Тогда

$$(\lambda + \mu)\pi_1 = \lambda \pi_0 + \mu \pi_2 = \mu \pi_1 + \mu \pi_2 \implies \lambda \pi_1 = \mu \pi_2$$

В результате получаем

$$\pi_n = \frac{\lambda}{\mu} \pi_{n-1} = \left(\frac{\lambda}{\mu}\right)^2 \pi_{n-2} = \dots = \left(\frac{\lambda}{\mu}\right)^n \pi_0$$

$$\sum_{n=0}^{\infty} \pi_n = \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n \pi_0 = \pi_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1$$

1

$$\sum_{n=0}^{\infty} \pi_n = \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n \pi_0 = \pi_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1$$

Пусть $\rho=\frac{\lambda}{\mu}<1$. Тогда сумма равна сумме бесконечной геометрической

$$\sum_{n=0}^{\infty} \pi_n = \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n \pi_0 = \pi_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1$$

Пусть $\rho=\frac{\lambda}{\mu}<1.$ Тогда сумма равна сумме бесконечной геометрической прогрессии:

$$\pi_0 \sum_{n=1}^{\infty} \rho^n = \frac{\pi_0}{1-\rho} = 1 \quad \Rightarrow \quad \pi_0 = 1-\rho = \frac{\mu-\lambda}{\mu} \Rightarrow$$

$$\sum_{n=0}^{\infty} \pi_n = \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n \pi_0 = \pi_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1$$

Пусть $\rho=\frac{\lambda}{\mu}<1.$ Тогда сумма равна сумме бесконечной геометрической прогрессии:

$$\pi_0 \sum_{n=1}^{\infty} \rho^n = \frac{\pi_0}{1 - \rho} = 1 \implies \pi_0 = 1 - \rho = \frac{\mu - \lambda}{\mu} \Rightarrow$$

$$\pi_n = \rho^n \pi_0 = \rho^n (1 - \rho) = \frac{\lambda^n (\mu - \lambda)}{\mu^n}$$

$$\sum_{n=0}^{\infty} \pi_n = \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n \pi_0 = \pi_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1$$

Пусть $\rho=\frac{\lambda}{\mu}<1.$ Тогда сумма равна сумме бесконечной геометрической прогрессии:

$$\pi_0 \sum_{n=1}^{\infty} \rho^n = \frac{\pi_0}{1 - \rho} = 1 \implies \pi_0 = 1 - \rho = \frac{\mu - \lambda}{\mu} \Rightarrow$$

$$\pi_n = \rho^n \pi_0 = \rho^n (1 - \rho) = \frac{\lambda^n (\mu - \lambda)}{\mu^n}$$

Распределение π_n называется геометрическим.

Пусть m - максимальная длина очереди.

Пусть m - максимальная длина очереди.

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, ... S_{m+1} - канал занят и в очереди m заявок.

Пусть m - максимальная длина очереди.

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, ... S_{m+1} - канал занят и в очереди m заявок.

Можно показать, что предельные вероятности равны:

$$\pi_0 = (1 + \rho + \rho^2 + ... + \rho^{m+1})^{-1}, \quad \pi_k = \pi_0 \rho^k, \quad k = 1, ..., m+1$$

Пусть m - максимальная длина очереди.

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, ... S_{m+1} - канал занят и в очереди m заявок.

Можно показать, что предельные вероятности равны:

$$\pi_0 = (1 + \rho + \rho^2 + ... + \rho^{m+1})^{-1}, \quad \pi_k = \pi_0 \rho^k, \quad k = 1, ..., m+1$$

Если $\lambda = \mu$, то $\pi_k = 1/(m+2)$, k = 0,...,m+1.

1 ~

Пусть m - максимальная длина очереди.

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, ... S_{m+1} - канал занят и в очереди m заявок.

Можно показать, что предельные вероятности равны:

$$\pi_0 = (1 + \rho + \rho^2 + ... + \rho^{m+1})^{-1}, \quad \pi_k = \pi_0 \rho^k, \quad k = 1, ..., m+1$$

Если $\lambda = \mu$, то $\pi_k = 1/(m+2)$, k = 0,...,m+1.

Если $\lambda \neq \mu$, то по формуле геометрической прогрессии $\pi_0 = \frac{1-\rho}{1-\rho^{m+2}}$.

Пусть m - максимальная длина очереди.

Состояния: S_0 - канал свободен; S_1 - канал занят и нет очереди, ... S_{m+1} - канал занят и в очереди m заявок.

Можно показать, что предельные вероятности равны:

$$\pi_0 = (1 + \rho + \rho^2 + ... + \rho^{m+1})^{-1}, \quad \pi_k = \pi_0 \rho^k, \quad k = 1, ..., m+1$$

Если $\lambda = \mu$, то $\pi_k = 1/(m+2)$, k = 0,...,m+1.

Если $\lambda \neq \mu$, то по формуле геометрической прогрессии $\pi_0 = \frac{1-\rho}{1-\rho^{m+2}}$.

Вероятность отказа $P_{om\kappa} = \pi_{m+1}$. Q, A - аналогично предыдущему.

Пусть $k \in \{0,1,...,m\}$ - число заявок в очереди. Математическое ожидание

длины очереди
$$L_{\scriptscriptstyle oq} = E(k) = 0 \cdot (\pi_{\scriptscriptstyle 0} + \pi_{\scriptscriptstyle 1}) + 1 \cdot \pi_{\scriptscriptstyle 2} + \ldots + m \cdot \pi_{\scriptscriptstyle m+1} = \sum_{\scriptscriptstyle j=1}^m j \rho^{\scriptscriptstyle j-1} \pi_{\scriptscriptstyle 0}.$$

Можно показать, что

$$L_{ou} = \begin{cases} \frac{\rho^{2}(1 - \rho^{m}(m+1-m\rho))}{(1-\rho)(1-\rho^{m+2})}, & \rho \neq 1\\ \frac{m(m+1)}{2(m+2)}, & \rho = 1. \end{cases}$$

Можно показать, что

$$L_{ou} = \begin{cases} \frac{\rho^{2}(1-\rho^{m}(m+1-m\rho))}{(1-\rho)(1-\rho^{m+2})}, & \rho \neq 1\\ \frac{m(m+1)}{2(m+2)}, & \rho = 1. \end{cases}$$

Среднее время пребывания в очереди (формула Литтла): $T_{oq} = L_{oq} / \lambda$.

$$L_{ou} = \begin{cases} \frac{\rho^{2}(1-\rho^{m}(m+1-m\rho))}{(1-\rho)(1-\rho^{m+2})}, & \rho \neq 1\\ \frac{m(m+1)}{2(m+2)}, & \rho = 1. \end{cases}$$

Среднее время пребывания в очереди (формула Литтла): $T_{oq} = L_{oq} / \lambda$.

Пример. На АЗС имеется одна колонка, а площадка вмещает не более трех машин. В среднем машины прибывают каждые 2 минуты. Заправка одной машины продолжается в среднем 2.5 минуты. Определить основные характеристики системы.

$$L_{ou} = \begin{cases} \frac{\rho^{2}(1-\rho^{m}(m+1-m\rho))}{(1-\rho)(1-\rho^{m+2})}, & \rho \neq 1\\ \frac{m(m+1)}{2(m+2)}, & \rho = 1. \end{cases}$$

Среднее время пребывания в очереди (формула Литтла): $T_{oq} = L_{oq} / \lambda$.

Пример. На АЗС имеется одна колонка, а площадка вмещает не более трех машин. В среднем машины прибывают каждые 2 минуты. Заправка одной машины продолжается в среднем 2.5 минуты. Определить основные характеристики системы.

Решение. Интенсивность входящего потока $\lambda = 1/2 = 0.5$ машины в минуту. Интенсивность потока обслуживаний $\mu = 1/2.5 = 0.4$ машины в минуту. Интенсивность нагрузки $\rho = 0.5/0.4 = 1.25$.

$$L_{ou} = \begin{cases} \frac{\rho^{2}(1-\rho^{m}(m+1-m\rho))}{(1-\rho)(1-\rho^{m+2})}, & \rho \neq 1\\ \frac{m(m+1)}{2(m+2)}, & \rho = 1. \end{cases}$$

Среднее время пребывания в очереди (формула Литтла): $T_{oq} = L_{oq} / \lambda$.

Пример. На АЗС имеется одна колонка, а площадка вмещает не более трех машин. В среднем машины прибывают каждые 2 минуты. Заправка одной машины продолжается в среднем 2.5 минуты. Определить основные характеристики системы.

Решение. Интенсивность входящего потока $\lambda=1/2=0.5$ машины в минуту. Интенсивность потока обслуживаний $\mu=1/2.5=0.4$ машины в минуту. Интенсивность нагрузки $\rho=0.5/0.4=1.25$. Вероятность отказа $P_{omk}=\frac{(1-\rho)}{1-\rho^5}\rho^4\approx 0.297$. Относительная пропускная способность Q=0.703.

$$L_{ou} = \begin{cases} \frac{\rho^{2}(1-\rho^{m}(m+1-m\rho))}{(1-\rho)(1-\rho^{m+2})}, & \rho \neq 1\\ \frac{m(m+1)}{2(m+2)}, & \rho = 1. \end{cases}$$

Среднее время пребывания в очереди (формула Литтла): $T_{oq} = L_{oq} / \lambda$.

Пример. На АЗС имеется одна колонка, а площадка вмещает не более трех машин. В среднем машины прибывают каждые 2 минуты. Заправка одной машины продолжается в среднем 2.5 минуты. Определить основные характеристики системы.

Решение. Интенсивность входящего потока $\lambda = 1/2 = 0.5$ машины в минуту. Интенсивность потока обслуживаний $\mu = 1/2.5 = 0.4$ машины в минуту. Интенсивность нагрузки $\rho = 0.5/0.4 = 1.25$. Вероятность отказа $P_{omk} = \frac{(1-\rho)}{1-\rho^5} \rho^4 \approx 0.297$. Относительная пропускная способность

Q = 0.703. Абсолютная пропускная способность $A = 0.5 \cdot Q = 0.352$.

$$L_{ou} = \begin{cases} \frac{\rho^{2}(1-\rho^{m}(m+1-m\rho))}{(1-\rho)(1-\rho^{m+2})}, & \rho \neq 1\\ \frac{m(m+1)}{2(m+2)}, & \rho = 1. \end{cases}$$

Среднее время пребывания в очереди (формула Литтла): $T_{oq} = L_{oq} / \lambda$.

Пример. На АЗС имеется одна колонка, а площадка вмещает не более трех машин. В среднем машины прибывают каждые 2 минуты. Заправка одной машины продолжается в среднем 2.5 минуты. Определить основные характеристики системы.

Решение. Интенсивность входящего потока $\lambda = 1/2 = 0.5$ машины в минуту. Интенсивность потока обслуживаний $\mu = 1/2.5 = 0.4$ машины в минуту. Интенсивность нагрузки $\rho = 0.5/0.4 = 1.25$. Вероятность отказа $P_{omk} = \frac{(1-\rho)}{1-\rho^5} \rho^4 \approx 0.297$. Относительная пропускная способность

Q = 0.703. Абсолютная пропускная способность A = 0.5 · Q = 0.352. Среднее число машин, ожидающих в очереди на заправку: L_{ou} = 1.559.

$$L_{ou} = \begin{cases} \frac{\rho^{2}(1 - \rho^{m}(m+1-m\rho))}{(1-\rho)(1-\rho^{m+2})}, & \rho \neq 1\\ \frac{m(m+1)}{2(m+2)}, & \rho = 1. \end{cases}$$

Среднее время пребывания в очереди (формула Литтла): $T_{oq} = L_{oq} / \lambda$.

Пример. На АЗС имеется одна колонка, а площадка вмещает не более трех машин. В среднем машины прибывают каждые 2 минуты. Заправка одной машины продолжается в среднем 2.5 минуты. Определить основные характеристики системы.

Решение. Интенсивность входящего потока $\lambda=1/2=0.5$ машины в минуту. Интенсивность потока обслуживаний $\mu=1/2.5=0.4$ машины в минуту. Интенсивность нагрузки $\rho=0.5/0.4=1.25$. Вероятность отказа $P_{om\kappa}=\frac{(1-\rho)}{1-\rho^5}\rho^4\approx 0.297$. Относительная пропускная способность

Q = 0.703. Абсолютная пропускная способность A = 0.5 · Q = 0.352. Среднее число машин, ожидающих в очереди на заправку: L_{oy} = 1.559. Среднее время ожидания T_{oy} = 3.118 минут.

n – канальная СМО с отказами (задача Эрланга)

Граф состояний для n — канальной СМО с отказами

Аналогично предыдущей задаче, можно получить предельные вероятности (формулы Эрланга):

$$\pi_0 = \left(1 + \rho + \frac{\rho^2}{2!} + \dots + \frac{\rho^n}{n!}\right)^{-1}, \quad \pi_1 = \pi_0 \rho, \ \pi_2 = \pi_0 \frac{\rho^2}{2!}, \dots, \pi_n = \pi_0 \frac{\rho^n}{n!}$$

Аналогично предыдущей задаче, можно получить предельные вероятности (формулы Эрланга):

$$\pi_0 = \left(1 + \rho + \frac{\rho^2}{2!} + \dots + \frac{\rho^n}{n!}\right)^{-1}, \quad \pi_1 = \pi_0 \rho, \ \pi_2 = \pi_0 \frac{\rho^2}{2!}, \dots, \pi_n = \pi_0 \frac{\rho^n}{n!}$$

Вероятность отказа $P_{om\kappa}=\pi_n$.

Аналогично предыдущей задаче, можно получить предельные вероятности (формулы Эрланга):

$$\pi_0 = \left(1 + \rho + \frac{\rho^2}{2!} + \dots + \frac{\rho^n}{n!}\right)^{-1}, \quad \pi_1 = \pi_0 \rho, \ \pi_2 = \pi_0 \frac{\rho^2}{2!}, \dots, \pi_n = \pi_0 \frac{\rho^n}{n!}$$

Вероятность отказа $P_{om\kappa}=\pi_n$.

Относительная пропускная способность $Q = 1 - P_{om\kappa} = 1 - \pi_0 \frac{\rho^n}{n!}$.

Аналогично предыдущей задаче, можно получить предельные вероятности (формулы Эрланга):

$$\pi_0 = \left(1 + \rho + \frac{\rho^2}{2!} + \dots + \frac{\rho^n}{n!}\right)^{-1}, \quad \pi_1 = \pi_0 \rho, \ \pi_2 = \pi_0 \frac{\rho^2}{2!}, \dots, \pi_n = \pi_0 \frac{\rho^n}{n!}$$

Вероятность отказа $P_{om\kappa}=\pi_n$.

Относительная пропускная способность $Q = 1 - P_{om\kappa} = 1 - \pi_0 \frac{\rho^n}{n!}$.

Абсолютная пропускная способность $A = \lambda Q = \lambda \left(1 - \pi_0 \frac{\rho^n}{n!}\right)$.

Решение. Интенсивность нагрузки канала $\rho = 3$, т.е. за время среднего (по продолжительности) телефонного разговора поступает в среднем 3 заявки. Рассмотрим n = 2, 3, 4, ...

Решение. Интенсивность нагрузки канала $\rho = 3$, т.е. за время среднего (по продолжительности) телефонного разговора поступает в среднем 3 заявки. Рассмотрим n = 2, 3, 4, ...

Показатели эффективности	Обозначение	Число каналов (телефонных номеров)						
		1	2	3	4	5	6	
Относительная пропускная способность	Q	0,25	0,47	0,65	0,79	0,90	0,95	
Абсолютная пропускная способность	A	22,5	42,3	58,8	71,5	80,1	85,3	

Решение. Интенсивность нагрузки канала $\rho = 3$, т.е. за время среднего (по продолжительности) телефонного разговора поступает в среднем 3 заявки. Рассмотрим n = 2, 3, 4, ...

Показатели эффективности	Обозначение	Число каналов (телефонных номеров)						
		1	2	3	4	5	6	
Относительная пропускная способность	Q	0,25	0,47	0,65	0,79	0,90	0,95	
Абсолютная пропускная способность	\boldsymbol{A}	22,5	42,3	58,8	71,5	80,1	85,3	

То есть необходимо иметь 5 каналов.