MA11/MAT101

USN	1	М	S				

RAMAIAH

Institute of Technology

(Approved by AICTE, New Delhi & Govt. of Karnataka)

(Autonomous Institute, Affiliated to VTU) Accredited by NBA & NAAC with 'A' Grade

SEMESTER END EXAMINATIONS - JANUARY 2019

Course & Branch : B.E.: Common to all branches Semester : I
Subject : Engineering Mathematics - I Max. Marks : 100
Subject Code : MA11/MAT101 Duration : 3 Hrs

Instructions to the Candidates:

• Answer one full question from each unit.

UNIT- I

- 1. a) Define Jacobian of u, v, w, with respect to x,y,z. CO1 (02)
 - b) If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $xu_x + yu_y + zu_z = 0$. CO1 (04)

If $u = e^{\left(\frac{x^3y^3}{x^2+y^2}\right)}$ show that $xu_x + yu_y = 4u\log u$.

- c) $u = e^{x}$ CO1 (07)
- d) Find the angle of intersection between the following pair of curves: CO1 (07) $r = a(1 + \sin \theta)$ and $r = a(1 \sin \theta)$.
- 2. a) State Euler's theorem on homogeneous function of two independent CO1 (02) variables.
 - b) Find the Pedal equation of $r^n = a^n \cos n\theta$. CO1 (04)
 - c) If $u = e^{xy} \sin(yz)$, where $x = t^2$, y = t 1, $z = \frac{1}{t}$ then $\frac{du}{dt}$ at t=1 CO1 (07)
 - by partial differentiation. d) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ show that CO1 (07) $\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)} = r^2 \sin \theta$.

UNIT- II

- 3. a) Write the expression to find the area bounded by the cartesian CO2 (02) curve.
 - b) Evaluate $\int_{0}^{\pi} \sin^{5}\left(\frac{x}{2}\right) dx$. CO2 (04)
 - c) Find the volume of revolution of the astroid $x^{\frac{3}{4}} + y^{\frac{3}{4}} = a^{\frac{3}{4}}$, when rotated with respect to x- axis.
 - d) Trace the curve $x^3 + y^3 = 3axy, a > 0$. CO2 (07)
- 4. a) Write the expression to find the surface area of the solid for a polar CO2 (02) curve when rotated about the initial line and the line

 $\theta = \pi/2$

MA11/MAT101

Find the area of the cardioid $r = a(1 + \cos \theta)$, a > 0. CO₂ (04)Find the length of one arc of the cycloid: $x = a(\theta - \sin\theta), y = a(1 - \cos\theta), a > 0, 0 \le \theta \le 2\pi$ c) CO2 (07)CO2 (07)d) Trace the curve $y^2(2a-x)=x^3$, a>0. **UNIT-III** 5. a) Write the relation between cartesian and spherical polar coordinate (02)systems. CO3 (04)b) Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xyz \, dx \, dy \, dz$. CO3 (07)If x = 0, y = 0 and x + y = 1 then show by using the transformation x + y = u, x - y = v that $\iint \sin\left(\frac{x-y}{x+y}\right) dx \, dy = 0$ d) Using double integration, find the area enclosed by the parabolas $x^2 = CO3$ and $y^2 = x$. a) Convert the integral $\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} f(x,y) dy dx$ into polar coordinates. (02)Find the limits by changing the order of integration $\int_{0}^{2} \int_{0}^{x^{2}} (x^{2} + y^{2}) dy$ CO3 (04)Find the volume of the ellipsoid $x^2 + y^2 + z^2 = a^2$ c) CO3 (07)integration. Evaluate $\iint dxdy$ where is the region bounded by CO3 (07)the curves $y = x^2$ and y = x. Interpret the answer obtained. **UNIT-IV** a) Explain the geometrical meaning of gradient of a scalar field. CO4 (02)b) If $r = \sec t \hat{i} + \tan t \hat{j}$ is the position vector of a moving particle then CO4 (04)find the velocity and acceleration at $t = \pi/6$. the values of the constants a,b,csuch CO4 (07) $F = (x + 2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is conservative. Also find its scalar potential. d) Prove that $\nabla \times (\varphi A) = \varphi(\nabla \times A) + (\nabla \varphi \times A)$ CO4 (07)8. a) Define Laplacian operator. CO4 (02)b) Show that $f = \frac{x\hat{i} + y\hat{j}}{x^2 + y^2}$ is a solenoidal vector. CO4 (04)Find the angle between the surfaces: $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ (07)

at the point (2,-1,2).

MA11/MAT101

find the directional derivative of $\phi = y^2x + yz^3$ at the point (2,-1, 1) CO4 (07) in the direction of the normal to the surface $x \log z - y^2 = -4$ taken at the point (-1,2,1).

UNIT-V

- 9. a) Give the physical interpretation of $\int_c^F dr$, if $_c$ is force on a CO5 (02) particle moving along $_c$.
 - b) By using Green's theorem, evaluate $\int_{c}^{c} (x^2 + xy)dx + (x^2 + y^2)dy$ where CO5 (04) c is the square formed by the lines $x = \pm 1$; $y = \pm 1$.
 - c) Evaluate $\int_{s}^{F} \cdot \hat{n} ds$ where $F = yz\hat{i} + 2y^{2}\hat{j} + xz^{2}\hat{k}$ and S is the surface CO5 (07) of the cylinder $x^{2} + y^{2} = 9$ contained in the first octant between z = 0 and z = 2 using Gauss divergence theorem.
 - d) Evaluate $\int_{c}^{F \cdot dr}$ where $F = y \hat{i} + z \hat{j} + x \hat{k}$ where C is the boundary CO5 (07) of the upper half of the sphere $x^2 + y^2 + z^2 = 1$ using Stoke's theorem.
- 10 a) State Gauss divergence theorem. CO5 (02)
 - b) Find the circulation of F round the curve C where CO5 (04) $F = (x y)\hat{i} + (x + y)\hat{j} \text{ and C is the circle } x^2 + y^2 = 4, z = 0.$
 - c) State and prove Green's theorem in a plane. CO5 (07)
 - d) Evaluate Stoke's theorem for $F = -y^3 \hat{i} + x^3 \hat{j}$ where s is the CO5 (07) circular disk $x^2 + y^2 \le 1$, z = 0.
