Homework 2 – The First Law

Name:	
Exercise 2A.4(a	a) (5 points)
(i) revers	consisting of $1.00mol$ Ar is expanded isothermally at $20^{\circ}C$ from $10.0dm^3$ to $30.0dm^3$ sibly, (ii) against a constant external pressure equal to the final pressure of the gas, and y (against zero external pressure). For the three processes calculate q,w , and ΔU .
Exercise 2A.5(a	a) (5 points)
1.00 atm	e consisting of $1.00\ mol$ of perfect gas atoms, for with $C_{V,m}=\frac{3}{2}R$, initially at $p_1=n$ and $p_1=n$ and $p_2=n$ and $p_3=n$ and $p_4=n$ and $p_5=n$ and $p_6=n$ and $p_7=n$ a
Exercise 2B.3(a	a) (5 points)
	$0\ mol\ O_2$ is heated at a constant pressure of $3.25\ atm$, its temperature increases from $0.285\ K$. Given that the molar heat capacity of O_2 at constant pressure is $29.4\frac{J}{mol\ K}$,

calculate q, ΔH , and ΔU .

Exercise 2C.3(b) (10 points)

From the following data, determine $\Delta_f H^{\oplus}$ for diborane, $\mathrm{B_2H_6(g)}$, at 298~K:

$$(3) \quad H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g)$$

$$\Delta_{rxn}H^{\Theta} = -241.8^{kJ/mol}$$

Exercise 2D.1(a) (10 points)

Estimate the internal pressure, π_T , of water vapor at 1.00 bar and 400.0 K, treating it as a van der Waals gas. *Hint*: Simplify the approach by estimating the molar volume by treating the gas as perfect.

Exercise 2D.4(a) (5 points)

The isothermal compressibility of water at 293~K is $2.21\times10^{-6}atm^{-1}$. Calculate the pressure that must be applied in order to increase its density by 0.10~%.

Discussion Question 2E.1 (5 points)

Why are adiabats steeper than isotherms?

Exercise 2E.3(a) (5 points)

A sample consisting of $1.0\,mol$ of perfect gas molecules with $C_V=20.8\frac{J}{K}$ is initially at $4.25\,atm$ and $300.0\,K$. It undergoes reversible adiabatic expansion until its pressure reaches $2.50\,atm$. Calculate the final volume and temperature and the work done.