

University of Colorado Boulder

Lecture 12: The Normal Distribution

Spring 2019 Tony Wong

CSCI 3022: Intro to Data Science

Announcements and reminders

Practicum 1 due Monday, 11:59 PM

Previously, on CSCI 3022...

Definition: A random variable X is **continuous** if for some function $f: \mathbb{R} \to \mathbb{R}$ and for any numbers a and b with $a \le b$,

$$P(a \le X \le b) = \int_{a}^{b} f(x) \ dx$$

The function *f* must satisfy:

1)
$$f(x) \ge 0$$
 for all x , and 2) $\int_{-\infty}^{\infty} f(x) dx = 1$

Definition: The <u>cumulative distribution</u> (or density) <u>function</u> of X is defined such that

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

The Normal distribution

The <u>normal distribution</u> (AKA, Gaussian distribution) is probably the most important and widely used distribution in probability and statistics.

Many populations have distributions well-approximated by a normal distribution.

It's very important to check that Normal is a good approximation though! And justify.

Examples:

- Height, Weight, Other physical attributes
- Scores on a test
- Time it takes to travel

Consider: Why might Normal be an issue?

The Normal distribution

Definition: A continuous random variable X has a normal (or Gaussian) distribution with parameters μ and σ^2 if its probability density function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} = \frac{1}{5\sqrt{2\pi}}\left[e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}\right]$$
We say $X \sim N(\mu, \sigma^2)$

Standard deviations

The we distribution: https://academo.org/demos/gaussian distribution/

Let's play around with this distribution: https://academo.org/demos/gaussian-distribution/

Definition: The normal distribution with parameter values $\mu = 0$ and $\sigma^2 = 1$ is called the **standard normal distribution**.

Question: What is the pdf of the standard normal distribution? $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$

cdf:
$$f(xe) = \int_{-3}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}xe^2} dx$$

 $\int_{-3}^{\infty} e^{-\frac{1}{2}xe^2} dx = vo \text{ closed form!}$

Definition: The normal distribution with parameter values $\mu = 0$ and $\sigma^2 = 1$ is called the **standard normal distribution**.

Question: What is the pdf of the standard normal distribution?

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

Definition: The normal distribution with parameter values $\mu = 0$ and $\sigma^2 = 1$ is called the **standard normal distribution**.

Question: What is the pdf of the standard normal distribution?

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

A standard normal random variable is usually denoted Z

Recall: The normal distribution does not have a closed form cumulative distribution function

→ We use special notation to denote the cdf of the **standard** normal distribution:

$$\Phi(z) = P(Z \le z)$$
 = F(Z) = $\int_{-\infty}^{2} f(x) dx$

 \rightarrow And usually we just look up values for $\Phi(z)$ in a table

The Standard Normal distribution \$\overline{7}(2) = \script. stats.morm.cdf(2)\$

The standard normal dist. rarely occurs in real life. \(\) Timport \(\script \) stats as \(\stats \)

Instead, we take non-standard normal distributions, and **standardize** them using a simple transformation.

Recall: For computing probabilities, having a cdf is just as good (or better!) as having a pdf

Back in MY day you had to look up values of the standard normal cdf in **tables** in the back of textbooks.

NEGATIVE z Scores

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.50	461 -40									
and										
lower	.0001									
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.2	0007	0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007

 $\Phi(z)$ = shaded area

Example: What is $P(Z \le 1.25)$? = Stats. norm.cd((1.25)) slab.norm.pdf(2) (2, f(2))

1.25

The Standard Normal distribution
$$\begin{cases}
(2 \le x \le 4) = \frac{2}{2} \cdot P(x = a_i) \\
a_{i} = 2
\end{cases}$$
Example: What is $P(Z \ge 1.25)$?

$$\begin{cases}
2 + 64 & P(-0.38 \le Z \le 1.25) \\
2 + 64 & P(-0.38 \le Z \le 1.25)
\end{cases}$$

Example: What is
$$P(Z \ge 1.25)$$
?

Example: What is
$$P(Z \le -1.25)$$
?

Example: How can we calculate
$$P(-0.38 \le Z \le 1.25)$$
?

$$\frac{1}{4}\left(1.27\right) = \int_{-2.5}^{1.25} \int dx dx \int_{-2.5}^{1.25} \left[-0.38 \le Z \le 1.25\right] = \frac{1}{4}\left(1.25\right) - \frac{1}{4}\left(-0.38\right)$$

$$\frac{1}{4}\left(0.38\right) = \int_{-2.38}^{1.25} \int dx dx \int_{-2.5}^{1.25} \int dx dx \int_{-2.5}$$

Flip it and Reverse it

Example: What is the 99th percentile of
$$N(0, 1)$$
?

We have tables that tell us **area**... but we were given the area.

This is the **inverse** problem to
$$P(Z \le \cancel{z}) = 0.99 = \cancel{f}(z)$$

What about in Python?

- scipy.stats.norm.pdf (()
- scipy.stats.norm.ppf F⁻¹(κ)

'> Percent point function

· scipy stuts. rvs (- -) random samples

Flip it and Reverse it

Example: What is the 99th percentile of N(0, 1)?

We have tables that tell us area... but we were given the area.

This is the **inverse** problem to $P(Z \le z) = 0.99$

What about in Python?

- scipy.stats.norm.cdf
- scipy.stats.norm.pdf
- scipy.stats.norm.ppf

The Critical Value

Notation: We say z_{α} is the <u>critical value</u> of Z under the standard normal distribution that gives a certain **tail area**. In particular, it is the Z value such that exactly α of the area under the curve lies to the **right** of z_{α} = 1 - 2 = 2 - 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2 = 2 = 1 - 2

Note that other books/resources might use different conventions.

Be careful and use sanity checks!

The Critical Value

Notation: We say z_{α} is the <u>critical value</u> of Z under the standard normal distribution that gives a certain **tail area**. In particular, it is the Z value such that exactly α of the area under the curve lies to the **right** of z_x

Question: What is the relationship between z_{α} and the cdf?

Question: What is the relationship between
$$z_{\alpha}$$
 and percentiles?

 Z_{α} is the $100(1-1)^{th}$ percentity

 $E_{\alpha} = 0.5 - 100 \times (1-0.5) = 50^{th}$ perc. (medium) $Z_{\alpha} = 0.5 \times 100 \times 10^{-10}$

The Critical Value

Notation: We say z_{α} is the <u>critical value</u> of Z under the standard normal distribution that gives a certain **tail area**. In particular, it is the Z value such that exactly α of the area under the curve lies to the **right** of z_{α}

Question: What is the relationship between z_{α} and the cdf?

$$P(Z \ge z_{\alpha}) = \alpha = 1 - P(Z \le z_{\alpha}) = 1 - \Phi(z_{\alpha})$$

Question: What is the relationship between z_{α} and percentiles?

 z_{α} is the $100(1-\alpha)^{th}$ percentile

Non-standard Normal Distributions

$$\times \sim N(M, \sigma^2)$$

Non-standard normal distributions can be turned into standard normals really easily

Proposition: If X is a normally distributed random variable with mean µ and standard deviation σ, then Z follows a standard normal distribution if we define:

$$Z=rac{X-\mu}{\sigma}$$
 and

$$X = \sigma Z + \mu$$
 power transforms

Brake lights!

Example: The time it takes a driver to react to brake lights on a decelerating vehicle is important for not getting into rear-end collisions.

The article "Fast-Rise Brake Lamp as a Collision Prevention Device" (<u>linked here</u>) suggests that reaction time for an in-traffic response to a brake signal from standard brake lights can be modeled as a normal distribution having mean value 1.25 s and standard deviation 0.46 s.

Question: What is the probability that a reaction time is between 1.0 s and 1.75 s? standards 2e! Box. Molter = $2 \le \frac{x-1.25}{0.46}$ P(1.0 \le x \le 1.75) = $p(1.0-1.25 \le 2 \le 1.7 \le -1.25$ = $p(-0.25 \le 2 \le 0.45) = \sqrt{(1.09)} = \sqrt{(1.$

Brake lights!

Example: The time it takes a driver to react to brake lights on a decelerating vehicle is important for not getting into rear-end collisions.

The article "Fast-Rise Brake Lamp as a Collision Prevention Device" (<u>linked here</u>) suggests that reaction time for an in-traffic response to a brake signal from standard brake lights can be modeled as a normal distribution having mean value 1.25 s and standard deviation 0.46 s.

Question: What is the probability that a reaction time is between 1.0 s and 1.75 s?

Follow-up question: What might be a potential problem with using a normal distribution? How can we check if it is much of an issue?

What just happened?

We learned about the normal distribution!

And the standard normal distribution

 And how to take any ol' normal random variable and standardize it

