The mandi Package

Paul J. Heafner (heafnerj@gmail.com)

February 23, 2021

Version v3.0.0d dated 2021-02-23 **PLEASE DO NOT DISTRIBUTE THIS VERSION.**

Contents

A	knowledgements	3
\mathbf{C}	nange History	4
Li	st of GlowScript Programs	5
Li	st of VPython Programs	5
Li	st of Figures	5
1	Introduction1.1 Loading the Package1.2 The Package Version1.3 Package Options1.4 The mandisetup Command	6 6 6 6
2	2.1.5 Setting Global Units 2.1.6 Setting Units for a Single Instance 2.1.7 Setting Units in an Environment 2.2 Physical Constants 2.2.1 Typesetting Physical Constants 2.2.2 Checking Physical Constants 2.2.3 Commands For Predefined Physical Constants 2.2.4 Defining and Redefining Your Own Physical Constants 2.2.5 Setting Global Precision 2.2.6 Setting Precision for a Single Instance	7 7 7 7 16 17 17 18 18 19 24 24 24 24
3	3.1 The glowscriptblock Environment	25 25 28 30
4	4.1 Introductory Needs	30 30 32 32 36 37
5	5.1 The Momentum Principle	41 41 41 42 43
6	Source Code	46
7	Index	67

Acknowledgements

TO BE COMPLETED

Change History

v3.0.0d											
General: Initial release.											6

List of GlowScript Programs	
GlowScript Program 1: A short GlowScript program	27
List of VPython Programs	
VPython Program 1: A VPython program	29
List of Figures	
1 Image shown 20 percent actual size	

1 Introduction

This is the documentation for the mandi,¹ which is designed primarily for students in introductory physics courses. This document serves to document what commands mandi provides and does not necessarily fully demonstrate how students would use them. There is a separate document that serves that purpose.

1.1 Loading the Package

Load mandi as you would any package in your preamble.

\usepackage[options]{mandi}

1.2 The Package Version

\mandiversion

Typesets the current version and build date.

The version is \mandiversion\ and is a stable build.

The version is v3.0.0d dated 2021-02-23 and is a stable build.

1.3 Package Options

N 2021-01-30 N 2021-01-30 units=\langle type of unit\rangle
preciseconstants=\langle boolean\rangle

(initially unspecified, set to alternate) (initially unspecified, set to false)

Now mandi uses a key-value interface for options. The units key can be set to base, derived, or alternate. The preciseconstants key is always either true or false.

1.4 The mandisetup Command

N 2021-02-17

\mandisetup{\langle options \rangle}

Command to set package options on the fly after loadtime. This can be done in the preamble or inside the \begin{document}...\end{document} environment.

\mandisetup{units=base}

 $^{^{1}}$ The package name can be pronounced either with two syllables, to rhyme with candy, or with three syllables, as M and I.

2 Intelligent Commands for Physical Quantities and Constants

2.1 Physical Quantities

2.1.1 Typesetting Physical Quantities

Typesetting physical quantities and constants using semantically appropriate names, along with the correct SI units, is the core function of mandi. Take momentum as the prototypical physical quantity in an introductory physics course.

```
\label{local_momentum} $$\operatorname{magnitude}$ $$\operatorname{commontum}_{(c_1,\ldots,c_n)}$
```

Command for momentum and its vector variant. The default units will depend on the options passed to mandi at load time. Alternate units are the default. Other units can be forced as demonstrated. The vector variant can take more than three components. Note the other variants for the quantity's value and units.

```
5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
\momentum{5}
\momentumvalue{5}
                                                                                            5 \,\mathrm{m\cdot kg\cdot s^{-1}}
\momentumbaseunits{5}
                                                                                            5\,\mathrm{N}\cdot\mathrm{s}
\momentumderivedunits{5}
                                                                                            5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
\momentumalternateunits{5}
\momentumonlybaseunits
                                                                                            m \cdot kg \cdot s^{-1}
\momentumonlyderivedunits
                                                                                            N \cdot s
\momentumonlyalternateunits \\
                                                                                            kg \cdot m / s
\vectormomentum{2,3,4}
                                                                                             \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
\momentum{\mivector{2,3,4}}
                                                                                             \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
```

Commands that include the name of a physical quantity typeset units, so they shouldn't be used for algebraic or symbolic values of components. For example, one shouldn't use \vectormomentum{mv_x,mv_y,mv_z} but instead the generic \mivector{mv_x,mv_y,mv_z} instead.

2.1.2 Checking Physical Quantities

N 2021-02-16

$\checkquantity{\langle name \rangle}$

Command to check and typeset the command, base units, derived units, and alternate units of a defined physical quantity.

2.1.3 Commands For Predefined Physical Quantities

Every other defined physical quantity can be treated similarly. Just replace momentum with the quantity's name. Obviously, the variants that begin with $\ensuremath{\mbox{vector}}$ will not be defined for scalar quantities. Here are all the physical quantities, with all their units, defined in mandi. Remember that units are not present with symbolic (algebraic) quantities, so do not use the $\ensuremath{\mbox{vector}}$ variants of these commands for symbolic components. Use $\ensuremath{\mbox{mivector}}^{\rightarrow P.31}$ instead.

```
\label{eq:local_continuous} $$\operatorname{celeration}((acceleration \{(c_1, \dots, c_n)\})$$
```

name	$\begin{array}{c} {\rm base} \\ {\rm m\cdot s^{-2}} \end{array}$	derived N/kg						
$\adjustlength{\mbox{\mbox{\backslash}}}$								
name \amount	base mol	derived mol	alternate mol					
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:								
name	base $rad \cdot s^{-2}$	derived rad/s²	$\frac{\text{alternate}}{\text{rad}/\text{s}^2}$					
\angularfrequency{\language}	$nitude$ }}							
name \angularfrequency	base $rad \cdot s^{-1}$	derived rad/s	alternate rad/s					
$\label{lambda} $$ \agnitude \$ $\vectorangularimpulse \{ \langle c_1, \dots, c_n \rangle \}$								
name \angularimpulse	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-1} \end{array}$	derived kg·m²/s	alternate $kg \cdot m^2 / s$					
(magni\vectorangularmomentum{								
name	$\begin{array}{c} {\rm base} \\ {\rm m^2 \cdot kg \cdot s^{-1}} \end{array}$	$\frac{\mathrm{derived}}{\mathrm{kg}\cdot\mathrm{m}^2}/\mathrm{s}$	alternate $kg \cdot m^2 / s$					
(magni\vectorangularvelocity{								
name \angularvelocity	base $rad \cdot s^{-1}$	derived rad/s	alternate rad/s					
$\area{\langle magnitude \rangle}$								
name \area	base m ²							
\areachargedensity{(magnitude)}								
name \areachargedensity	$\begin{array}{c} base \\ m^{-2} \cdot s \cdot A \end{array}$	derived C/m ²	alternate C/m ²					

(magn	itude}}					
name \areamassdensity	base m ⁻² ·kg	derived kg/m²				
\(magnitude \))}					
name \capacitance	$\begin{array}{c} base \\ m^{-2} \cdot kg^{-1} \cdot s^4 \cdot A^2 \end{array}$	derived F	alternate C/V			
$\c \c \$						
name \charge	base A·s	derived C	alternate C			
\cmagneticfield{\(\text{magnit}\)						
name	base $m \cdot kg \cdot s^{-3} \cdot A^{-1}$	derived V/m	alternate N/C			
\(magnitude \)) }					
name \conductance	$\begin{array}{c} base \\ m^{-2} \cdot kg^{-1} \cdot s^3 \cdot A^2 \end{array}$	derived S	alternate A/V			
$\conductivity{\conductivity}$	(e)}					
name \conductivity	$\begin{array}{c} base \\ m^{-3} \cdot kg^{-1} \cdot s^3 \cdot A^2 \end{array}$	derived S/m	alternate $(A/m^2)/(V/m)$			
</td <td>nagnitude angle brace</td> <td></td> <td></td>	nagnitude angle brace					
name	base A	derived C/s	alternate A			
\current{\(magnitude\)}						
name \current	base A	derived A	alternate A			
$\c vector current density \{\langle magnitude \rangle\} \\ \c vector current density \{\langle c_1, \dots, c_n \rangle\} \\$						
name \currentdensity	$\begin{array}{c} base \\ m^{-2} \cdot A \end{array}$	derived C·s/m²	alternate A/m²			

\dielectricconstant{\max}	$ignitude$ }						
name \dielectricconstant	base	derived	alternate				
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:							
name \displacement	base m	derived m	alternate m				
\duration{\((magnitude\))}							
name \duration	base s	derived s	alternate s				
(\partial vectorelectricdipolemoment)							
name	$\begin{array}{c} \text{base} \\ \text{m} \cdot \text{s} \cdot \text{A} \end{array}$		$\begin{array}{c} \text{alternate} \\ \text{C} \cdot \text{m} \end{array}$				
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:							
name \electricfield	$\begin{array}{c} {\rm base} \\ {m \cdot kg \cdot s^{-3} \cdot A^{-1}} \end{array}$	derived V/m	alternate N/C				
(magnitude	2)}						
name \electricflux	$\begin{array}{c} base \\ m^3 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$		alternate $N \cdot m^2 / C$				
<mag< td=""><td>$nitude$}}</td><td></td><td></td></mag<>	$nitude$ }}						
name	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$	derived V	alternate J/C				
\electroncurrent{(magnitude)}							
name	base s ⁻¹	derived e/s	alternate e/s				
$\ensuremath{\mbox{emf}\{\mbox{\it (}magnitude\mbox{\it)}\}}$							
name \emf	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$	derived V	alternate J/C				

\energy{\(\partial magnitude\)\}			
50 - 1 5			
name	base	derived	alternate
\energy	$m^2 \cdot kg \cdot s^{-2}$	J	J
$\verb \energydensity \{ (magnitude) learning learning$) }		
name	base	derived	alternate
\energydensity	$m^{-1} \cdot kg \cdot s^{-2}$	J/m ³	J/m ³
	-		
\energyflux{\langle magnitude \rangle} \langle c_1,, \langle a_1	: _~)}		
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A(1)		
name	base	derived	alternate
\energyflux	$kg \cdot s^{-3}$	W/m^2	W / m^2
$\ensuremath{\mbox{entropy}} \ensuremath{\mbox{(}magnitude\ensuremath{\mbox{)}}}$			
			_
name	base m ² ·kg·s ⁻² ·K ⁻¹	derived J/K	alternate J/K
\entropy	III · kg·s · k	J / K	J / K
\force{(magnitude)}			
$\verb \vectorforce{ \langle c_1, \dots, c_n \rangle } $			
name	base	derived	alternate
\force	$m \cdot kg \cdot s^{-2}$	N	N
\frequency{\((magnitude\)\)}			
(== o question and)			
name	base	derived	alternate
\frequency	s^{-1}	Hz	Hz
$\gravitationalfield{\magnetic}$	$nitude$ }}		
\vectorgravitationalfield	$\mathbf{i}\{\langle c_1,\dots,c_n\rangle\}$		
name	base	derived	alternate
\gravitationalfield	$m \cdot s^{-2}$	N / kg	N / kg
((magnituda) }		
/gravitationalpotential(таунниае;;		
name	base	derived	alternate
\gravitationalpotential	$m^2 \cdot s^{-2}$	J/kg	J/kg
\impulse{\langle magnitude \rangle}			
$\verb \vectorimpulse \{\langle c_1, \dots, c_n \rangle\} $			

name \impulse	$\begin{array}{c} base \\ m \cdot kg \cdot s^{-1} \end{array}$	$\begin{array}{c} \text{derived} \\ \textbf{N} \cdot \textbf{s} \end{array}$						
\indexofrefraction{\(magnitude \) \}								
${\rm name} \\ {\tt \ \ \ \ \ }$	base	derived	alternate					
\inductance{\langer(magnitude)}								
name \inductance	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \cdot A^{-2} \end{array}$	derived H	$\begin{array}{c} \text{alternate} \\ \text{V} \cdot \text{s} / \text{A} \end{array}$					
\(mag	$gnitude$ }}							
name \linearchargedensity \linearmassdensity \{\(\frac{magni}{magni} \)	base m ⁻¹ ⋅s⋅A	derived C/m	alternate C/m					
\TIMEdIMassdensity\(\magni	taae)s							
${\rm name} \\ {\tt linearmassdensity}$	$\begin{array}{c} base \\ m^{-1} \cdot kg \end{array}$	derived kg/m	$\frac{\text{alternate}}{\text{kg/m}}$					
$\label{luminous} {\mbox{\mbox{\mbox{\langle magnitude}\rangle$}}}$								
name \luminous	base cd	derived cd	alternate cd					
$\verb \magneticcharge \{ (magnitudent and an anticharge) (magnitudent and an anticharge) (magnitudent and an anticharge) (magnitudent and an anticharge) (magnitudent an anticharge)$	ε⟩}							
name \magneticcharge	$\begin{array}{c} \text{base} \\ \text{m} \cdot \text{A} \end{array}$	$\det^{\mathrm{derived}}_{m \cdot A}$						
$\label{local_magneticdipolemoment} $$\operatorname{cdipolemoment}(\langle magnitude \rangle)$$ $$\operatorname{cdipolemoment}(\langle c_1, \dots, c_n \rangle)$$$								
name \magneticdipolemoment	$\begin{array}{c} base \\ m^2 \cdot A \end{array}$		alternate J/T					
$\label{local_magneticfield} $$\operatorname{cont}(c_1,\ldots,c_n)$$$								
name \magneticfield	base $kg \cdot s^{-2} \cdot A^{-1}$	derived T	$\begin{array}{c} {\rm alternate} \\ {N / C \cdot (m / s)} \end{array}$					
<pre>\magneticflux{\(magnitude\)}</pre>								

name	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \cdot A^{-1} \end{array}$							
$\mbox{\mbox{$\mbox{mass}$}} \langle magnitude \rangle \}$								
name \mass	base kg	derived kg	$_{\rm kg}^{\rm alternate}$					
$\mbox{\mbox{$\mbox{mobility}{($magnitude)}}}$								
name \mobility	$\begin{array}{c} {\rm base} \\ {\rm m^2 \cdot kg \cdot s^{-4} \cdot A^{-1}} \end{array}$	$\begin{array}{c} \operatorname{derived} \\ m^2 / V \cdot s \end{array}$	$\begin{array}{c} \mathrm{alternate} \\ (m / s) / (N / C) \end{array}$					
\langle magni	$[tude \rangle \}$							
name \momentofinertia	base m²·kg	$\begin{array}{c} \text{derived} \\ J \cdot s^2 \end{array}$	$\begin{array}{c} \text{alternate} \\ \text{kg} \cdot \text{m}^2 \end{array}$					
$\label{local_magnitude} $$\operatorname{magnitude}$ \\ \operatorname{constant}(c_1,\dots,c_n) $$$	$\{n_n\}$							
name \momentum	$\begin{array}{c} {\rm base} \\ {\rm m\cdot kg\cdot s^{-1}} \end{array}$	derived N·s	$\begin{array}{c} alternate \\ kg \cdot m / s \end{array}$					
$\label{local_momentumflux} $$\operatorname{momentumflux}(\dot{magnitude}) $$ \operatorname{momentumflux}(\dot{c}_1,\dot{magnitude}) $$$								
name \momentumflux	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived N/m²	alternate N/m²					
(magnitue	de }}							
${\rm name} \\ {\rm numberdensity}$	$\begin{array}{c} \text{base} \\ \text{m}^{-3} \end{array}$	derived / m ³	alternate / m³					
\permeability{(magnitude)}								
$\begin{array}{c} \text{name} \\ \text{\ensuremath} \end{array}$	$\begin{array}{c} base \\ m \cdot kg \cdot s^{-2} \cdot A^{-2} \end{array}$	derived T·m/A	alternate H/m					
<pre>\permittivity{(magnitude)}</pre>								
name \permittivity	$\begin{array}{c} \text{base} \\ \text{m}^{-3} \cdot \text{kg}^{-1} \cdot \text{s}^{-4} \cdot \text{A}^2 \end{array}$	derived F/m	$\begin{array}{c} {\rm alternate} \\ {\rm C^2 / N \cdot m^2} \end{array}$					
\planeangle{\(magnitude \) \}								

name \planeangle	$\begin{array}{c} \text{base} \\ \text{m} \cdot \text{m}^{-1} \end{array}$	derived rad	alternate rad					
\polarizability{\(magnitude\)}								
name \polarizability	base $kg^{-1} \cdot s^4 \cdot A^2$	$\begin{array}{c} \operatorname{derived} \\ C \cdot m^2 / V \end{array}$	$\begin{array}{c} \text{alternate} \\ \text{C} \cdot \text{m} / (\text{N} / \text{C}) \end{array}$					
$\power{{\mbox{$\langle$ magnitude}\rangle$}}$								
name \power	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \end{array}$	derived W	alternate J/s					
$\begin{tabular}{ll} $$ \operatorname{poynting}((magnitude)) \\ $$ \operatorname{corpoynting}((c_1,\dots,c_r)) \\ $$ \end{tabular}$	_u)}							
name \poynting	base $kg \cdot s^{-3}$	derived W/m²	alternate W/m²					
\pressure{\((magnitude\)\)}								
name \pressure	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived Pa	alternate N/m²					
</td <td>nagnitude)}</td> <td></td> <td></td>	nagnitude)}							
${\rm name} \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	base	derived	alternate					
</td <td>$nagnitude$}</td> <td></td> <td></td>	$nagnitude$ }							
name	base	derived	alternate					
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $								
name \resistance	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-2} \end{array}$	derived V/A	$\begin{array}{c} \text{alternate} \\ \Omega \end{array}$					
\resistivity{(magnitude)}	}							
name \resistivity	$\begin{array}{c} base \\ m^3 \cdot kg \cdot s^{-3} \cdot A^{-2} \end{array}$	$\frac{\mathrm{derived}}{\Omega \cdot \mathtt{m}}$	$\begin{array}{c} \text{alternate} \\ \text{(V/m)/(A/m^2)} \end{array}$					
\solidangle{(magnitude)}								
name \solidangle	$\begin{array}{c} base \\ m^2 \cdot m^{-2} \end{array}$	derived sr	alternate sr					

(maga	nitude angle brace		
name \specificheatcapacity	$\begin{array}{c} \text{base} \\ m^2 \cdot s^{-2} \cdot K^{-1} \end{array}$	derived J/K·kg	alternate J/K·kg
\(magnitude\)) }		
name \springstiffness	base $kg \cdot s^{-2}$	derived N/m	alternate N/m
\springstretch{(magnitude)}			
name \springstretch	base m	derived m	alternate m
\stress{(magnitude)}			
name \stress	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived Pa	$\begin{array}{c} {\rm alternate} \\ {\rm N/m^2} \end{array}$
$\operatorname{\mathtt{\colored}}_{(magnitude)}$			
name \strain	base	derived	alternate
\temperature{\langle magnitude \range \}			
name \temperature	base K	derived K	alternate K
$\label{eq:local_torque} $$ \operatorname{cond}(magnitude) $$ \operatorname{cond}(c_1,\dots,c_n) $$$			
name \torque	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \end{array}$	$\begin{array}{c} \operatorname{derived} \\ \mathbf{N} \cdot \mathbf{m} \end{array}$	$\begin{array}{c} {\rm alternate} \\ {\rm N\cdot m} \end{array}$
$\label{eq:continuity} $$ \operatorname{coity}(\langle magnitude \rangle) $$ \operatorname{coity}(\langle c_1, \dots, c_n \rangle) $$ \operatorname{coity}(\langle c_1, \dots, c_n \rangle) $$$			
name \velocity	$\begin{array}{c} {\rm base} \\ {\rm m\cdot s^{-1}} \end{array}$	derived m/s	alternate m/s
name \velocityc	base c	derived	$_{\rm c}^{\rm alternate}$

$\volume{\langle magnitude \rangle}$								
name \volume	base m ³	$_{m^{3}}^{\mathrm{derived}}$						
$\verb \volumechargedensity \{ \langle meanity \} \{ \langle $	$agnitude$ }							
name \volumechargedensity \\volumemassdensity \{\magnetagan}	base m ⁻³ ·s·A	derived C/m³	alternate C/m ³					
(Volumemassdensity (Vinagi	iiiuuejj							
$\begin{array}{c} \text{name} \\ \text{\ensuremassdensity} \end{array}$	base m ⁻³ ⋅kg	derived kg/m³	$\begin{array}{c} \text{alternate} \\ \text{kg/m}^3 \end{array}$					
$\wedge \mbox{\wavelength} \mbox{\wavelength} \mbox{\wedge} \wedg$								
${ m name}$	base m	derived m	alternate m					
$\label{local_problem} $$ \arrowvenumber{(magnitude)} $$ \color{wavenumber}{(c_1, \dots, c_n)} $$$	$\wedge \{ \langle magnitude \rangle \} $ $\vectorwavenumber \{ \langle c_1, \dots, c_n \rangle \}$							
name \wavenumber	$\begin{array}{c} base \\ m^{-1} \end{array}$	derived / m	alternate /m					
$\work{(magnitude)}$								
name \work	base m ² ·kg·s ⁻²	derived J	alternate N·m					
\(magnitude)	e)}							
name \youngsmodulus	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived Pa	alternate N/m²					

2.1.4 Defining and Redefining Your Own Physical Quantities

N 2021-02-16 N 2021-02-21 \newscalarquantity{(name)}{(base units)} [(derived units)] [(alternate units)]
\renewscalarquantity{(name)}{(base units)} [(derived units)] [(alternate units)]

Command to define/redefine a new/existing scalar quantity. If the derived or alternate units are omitted, they are defined to be the same as the base units. Do not use both this command and \newvectorquantity or \renewvectorquantity to define/redefine a quantity.

N 2021-02-16 N 2021-02-21 Command to define/redefine a new/existing vector quantity. If the derived or alternate units are omitted, they are defined to be the same as the base units. Do not use both this command and \newscalarquantity or \renewscalarquantity to define/redefine a quantity.

2.1.5 Setting Global Units

```
\alwaysusebaseunits
\alwaysusederivedunits
\alwaysusealternateunits
```

Modal commands (switches) for setting the default unit form for the entire document. When mandi is loaded, one of these three commands is executed depending on whether the optional units key is provided. See the section on loading the package for details. Alternate units are the default because they are the most likely ones to be seen in introductory physics textbooks.

2.1.6 Setting Units for a Single Instance

```
\hereusebaseunits{(content)}
\hereusederivedunits{(content)}
\hereusedalternateunits{(content)}
```

Commands for setting the unit form on the fly for a single instance. The example uses momentum and the Coulomb constant, but they work for any defined quantity and constant.

```
5\,\mathrm{m}\cdot\mathrm{kg}\cdot\mathrm{s}^{-1}
\hereusebaseunits{\momentum{5}}
                                                                    11
                                                                                                 5 \, \text{N} \cdot \text{s}
\hereusederivedunits{\momentum{5}}
                                                                                                 5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
\hereusealternateunits{\momentum{5}}
                                                                   11
\hereusebaseunits{\oofpez}
                                                                    //
                                                                                                 9 \times 10^9 \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^{-4} \cdot \mathrm{A}^{-2}
\hereusederivedunits{\oofpez}
                                                                    //
                                                                                                 9 \times 10^9 \, \text{m} \, / \, \text{F}
\hereusealternateunits{\oofpez}
                                                                                                 9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
```

2.1.7 Setting Units in an Environment

Inside these environments units are changed for the duration of the environment regardless of the global default setting.

```
\momentum{5}
\oofpez
                           //
\begin{usebaseunits}
                                                                                                  5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
   \momentum{5} \\
                                                                                                  9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
   \oofpez
                                                                                                  5 \,\mathrm{m \cdot kg \cdot s^{-1}}
9 \times 10^9 \,\mathrm{m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}}
\end{usebaseunits}
\begin{usederivedunits}
   \momentum{5} \\
   \oofpez
                                                                                                  9 \times 10^9 \, \text{m} \, / \, \text{F}
\end{usederivedunits}
                                                                                                  5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
\begin{usealternateunits}
                                                                                                  9 \times 10^9 \,\mathrm{N}\cdot\mathrm{m}^2 / \mathrm{C}^2
   \mbox{momentum{5} }
   \oofpez
\end{usealternateunits}
```

2.2 Physical Constants

2.2.1 Typesetting Physical Constants

Take the quantity $\frac{1}{4\pi\epsilon_o}$, sometimes called the Coulomb constant, as the prototypical physical constant in an introductory physics course. Here are all the ways to access this quantity in mandi. As you can see, these commands are almost identical to the corresponding commands for physical quantities.

\oofpez

Command for the Coulomb constant. The constant's numerical precision and default units will depend on the options passed to mandi at load time. Alternate units and approximate numerical values are the defaults. Other units can be forced as demonstrated.

```
9 \times 10^9 \,\mathrm{N}\cdot\mathrm{m}^2 / \mathrm{C}^2
                                                                                            9 \times 10^{9}
\oofpezapproximatevalue
                                                                                            8.987551787 \times 10^9
\oofpezprecisevalue
\oofpezmathsymbol
                                                                                            9 \times 10^9 \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^{-4} \cdot \mathrm{A}^{-2}
\oofpezbaseunits
                                                                                            9 \times 10^9 \,\mathrm{m}\,/\,\mathrm{F}

9 \times 10^9 \,\mathrm{N}\cdot\mathrm{m}^2\,/\,\mathrm{C}^2
\oofpezderivedunits
\oofpezalternateunits
\oofpezonlybaseunits
                                                                                            m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}
\oofpezonlyderivedunits
\oofpezonlyalternateunits
                                                                                            N \cdot m^2 / C^2
```

2.2.2 Checking Physical Constants

N 2021-02-16

Command to check and typeset the constant's name, base units, derived units, alternate units, mathematical symbol, approximate value, and precise value.

2.2.3 Commands For Predefined Physical Constants

Every other defined physical constant can be treated similarly. Just replace oofpez with the constant's name. Unfortunately, there is no universal agreement on the names of every constant so consult the next section for the names that have been used. Here are all the physical constants, with all their units, defined in mandi. The constants \coulombconstant $^{\rightarrow P.19}$ and \biotsavartconstant $^{\rightarrow P.19}$ are defined as semantic aliases for, respectively, \oofpez $^{\rightarrow P.22}$ and \mzofp $^{\rightarrow P.21}$.

	\avogadro			
	$\begin{array}{c} \text{name} \\ \texttt{\avogadro} \\ \text{symbol} \\ N_A \end{array}$	base mol^{-1} approximate 6×10^{23}	derived / mol precise $6.022140857 \times 10^{23}$	alternate / mol
N 2021-02-02	\biotsavartconstant			
	name \\delta iotsavartconstant \\delta journal book \frac{\mu_o}{4\pi}	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	derived H/m precise 10 ⁻⁷	alternate T·m/A
	\bohrradius			
	$\begin{array}{c} \text{name} \\ \texttt{\bohrradius} \\ \text{symbol} \\ a_0 \end{array}$	base m approximate 5.3×10^{-11}	derived m precise $5.2917721067 \times 10^{-11}$	alternate m
	\boltzmann			
	$\begin{array}{c} \text{name} \\ \texttt{\boltzmann} \\ \text{symbol} \\ k_B \end{array}$	base $m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}$ approximate 1.4×10^{-23}	derived J/K precise $1.38064852 \times 10^{-23}$	alternate J/K
N 2021-02-02	\coulombconstant			
	$\begin{array}{c} \text{name} \\ \texttt{\coulombconstant} \\ \text{symbol} \\ \frac{1}{4\pi\epsilon_o} \end{array}$	base $m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}$ approximate 9×10^9	$\begin{array}{c} \text{derived} \\ \text{m/F} \\ \text{precise} \\ 8.9875517873681764 \times 10^9 \end{array}$	alternate $N \cdot m^2 / C^2$
	\earthmass			
	$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ \\ M_{\texttt{Earth}} \end{array}$	base kg approximate 6.0×10^{24}	derived kg precise 5.97237×10^{24}	alternate kg

\earthmoondistance			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ \ } \\ \text{symbol} \\ \\ d_{\text{EM}} \end{array}$	base m approximate 3.8×10^8	derived m precise 3.81550 × 10 ⁸	alternate m
\earthradius			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \text{symbol} \\ R_{\text{Earth}} \end{array}$	base m approximate 6.4×10^6	derived m precise 6.371×10^6	alternate m
\earthsundistance			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ \ } \\ \text{symbol} \\ \\ d_{\texttt{ES}} \end{array}$	base m approximate 1.5×10^{11}	derived m precise 1.496×10^{11}	alternate m
\electroncharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \texttt{\ } \\ \texttt{\ } \\ q_e \end{array}$	base A·s approximate -1.6×10^{-19}	derived C precise $-1.6021766208 \times 10^{-19}$	alternate C
\electronCharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \texttt{\ } \\ \texttt{\ } \\ Q_e \end{array}$	base $A \cdot s$ approximate -1.6×10^{-19}	derived C precise $-1.6021766208 \times 10^{-19}$	alternate C
\electronmass			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \text{symbol} \\ m_e \end{array}$	base kg approximate 9.1×10^{-31}	derived kg precise $9.10938356 \times 10^{-31}$	alternate kg
\elementarycharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ e \end{array}$	base A·s approximate 1.6×10^{-19}	derived C precise $1.6021766208 \times 10^{-19}$	alternate C

\finestructure			
$\begin{array}{c} \text{name} \\ \texttt{\finestructure} \\ \text{symbol} \\ \alpha \end{array}$	base approximate $\frac{1}{137}$	derived precise $7.2973525664 \times 10^{-3}$	alternate
\hydrogenmass			
$\begin{array}{c} \text{name} \\ \texttt{\hydrogenmass} \\ \text{symbol} \\ m_H \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.6737236 \times 10^{-27}$	alternate kg
\moonearthdistance			
$\begin{array}{c} \text{name} \\ \texttt{\mbox{\backslash}} \\ \text{symbol} \\ d_{\text{ME}} \end{array}$	base m approximate 3.8×10^8	derived m precise 3.81550 × 10 ⁸	alternate m
\moonmass			
$\begin{array}{c} \text{name} \\ \texttt{\sc} \\ \text{symbol} \\ M_{\texttt{Moon}} \end{array}$	base kg approximate 7.3×10^{22}	derived kg precise 7.342×10^{22}	alternate kg
\moonradius			
$\begin{array}{c} \text{name} \\ \texttt{\sc}_{\texttt{moon}} \\ \text{symbol} \\ R_{\texttt{Moon}} \end{array}$	base m approximate 1.7×10^6	derived m precise 1.7371 × 10 ⁶	alternate m
\mzofp			
name \mzofp symbol	base approximate	derived precise	alternate
\neutronmass			
$\begin{array}{c} \text{name} \\ \texttt{\neutronmass} \\ \text{symbol} \\ m_n \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.674927471 \times 10^{-27}$	alternate kg

\oofpez			
name \oofpez symbol $\frac{1}{4\pi\epsilon_o}$	base $m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}$ approximate 9×10^9	derived m/F precise 8.987551787×10^9	alternate $N \cdot m^2$ / C^2
\oofpezcs			
name \oofpezcs symbol $\frac{1}{4\pi\epsilon_o c^2}$	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	derived $T \cdot m^2$ precise 10^{-7}	alternate $N \cdot s^2 / C^2$
\planck			
name \planck symbol h	base $m^2 \cdot kg \cdot s^{-1}$ approximate 6.6×10^{-34}	derived	$\begin{array}{c} \text{alternate} \\ \text{J} \cdot \text{s} \end{array}$
\planckbar			
name \planckbar symbol ħ	base $m^2 \cdot kg \cdot s^{-1}$ approximate 1.1×10^{-34}	derived $J \cdot s$ precise $1.054571800 \times 10^{-34}$	
\planckc			
$\begin{array}{c} \text{name} \\ \texttt{\planckc} \\ \text{symbol} \\ hc \end{array}$	base $m^3 \cdot kg \cdot s^{-2}$ approximate 2.0×10^{-25}	derived $ \begin{array}{c} \text{J} \cdot \text{m} \\ \text{precise} \\ 1.98644568 \times 10^{-25} \end{array} $	alternate J·m
\protoncharge			
$\begin{array}{c} \text{name} \\ \texttt{\protoncharge} \\ \text{symbol} \\ q_p \end{array}$	base A·s approximate $+1.6 \times 10^{-19}$	derived C precise $+1.6021766208 \times 10^{-19}$	alternate C
\protonCharge			
$\begin{array}{c} \text{name} \\ \texttt{\protonCharge} \\ \text{symbol} \\ Q_p \end{array}$	base A·s approximate $+1.6 \times 10^{-19}$	derived C precise $+1.6021766208 \times 10^{-19}$	alternate C

\protonmass			
$\begin{array}{c} \text{name} \\ \texttt{\protonmass} \\ \text{symbol} \\ m_p \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.672621898 \times 10^{-27}$	alternate kg
\rydberg			
$\begin{array}{c} \text{name} \\ \texttt{\t rydberg} \\ \text{symbol} \\ R_{\scriptscriptstyle \infty} \end{array}$	base m^{-1} approximate 1.1×10^7	derived m^{-1} precise 1.0973731568508 × 10^7	
\speedoflight			
$\begin{array}{c} \text{name} \\ \texttt{\symbol} \\ c \end{array}$	base $m \cdot s^{-1}$ approximate 3×10^{8}	derived m/s precise 2.99792458×10^8	alternate m/s
\stefanboltzmann			
$\begin{array}{c} \text{name} \\ \texttt{\stefanboltzmann} \\ \text{symbol} \\ \sigma \end{array}$	base $kg \cdot s^{-3} \cdot K^{-4}$ approximate 5.7×10^{-8}	derived $W/m^2 \cdot K^4$ precise 5.670367×10^{-8}	$\begin{array}{c} \text{alternate} \\ \text{W/m}^2 \cdot \text{K}^4 \end{array}$
\sunearthdistance			
$\begin{array}{c} \text{name} \\ \texttt{\sunearthdistance} \\ \text{symbol} \\ d_{\texttt{SE}} \end{array}$	base m approximate 1.5×10^{11}	derived m precise 1.496×10^{11}	alternate m
\sunradius			
$\begin{array}{c} \text{name} \\ \texttt{\setminus sunradius} \\ \text{symbol} \\ R_{\texttt{Sun}} \end{array}$	base m approximate 7.0×10^8	derived m precise 6.957 × 10 ⁸	alternate m
\surfacegravfield			
$\begin{array}{c} \text{name} \\ \texttt{\surfacegravfield} \\ \text{symbol} \\ g \end{array}$	base $m \cdot s^{-2}$ approximate 9.8	derived N/kg precise 9.807	alternate N/kg

\vacuumpermeability name base derived alternate \vacuumpermeability $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ H/m $T \cdot m / A$ symbol approximate precise $4\pi \times 10^{-7}$ $4\pi\,\times\,10^{-7}$ μ_o \vacuumpermittivity base derived alternate name $m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$ C^2 / $N \cdot m^2$ \vacuumpermittivity F/m symbol approximate precise 9×10^{-12} $8.854187817 \times 10^{-12}$ ϵ_o

2.2.4 Defining and Redefining Your Own Physical Constants

N 2021-02-16

\newphysicalconstant{\(name\)}{\(symbol\)}{\(approximate value\)}{\(precise value\)}{\(derived units\)} \[\((derived units\)) \]

N 2021-02-21

\renewphysicalconstant{\(\(\angle\)\}{\(\ang

Command to define/redefine a new/existing physical constant. If the derived or alternate units are omitted, they are defined to be the same as the base units.

2.2.5 Setting Global Precision

N 2021-02-16 N 2021-02-16 \alwaysuseapproximateconstants \alwaysusepreciseconstants

Modal commands (switches) for setting the default precision for the entire document. The default with the package is loaded is set by the presence or absence of the preciseconstants P.6 key.

2.2.6 Setting Precision for a Single Instance

N 2021-02-16 N 2021-02-16 \hereuseapproximateconstants{\content\} \hereusepreciseconstants{\content\}

Commands for setting the precision on the fly for a single instance.

2.2.7 Setting Precision in an Environment

N 2021-02-16

N 2021-02-16

Inside these environments precision is changed for the duration of the environment regardless of the global default setting.

3 GlowScript and VPython Program Listings

3.1 The glowscriptblock Environment

U 2021-02-11

```
\begin{glowscriptblock} [\langle options \rangle] (\langle link \rangle) \{\langle caption \rangle\} \\ \langle GlowScript\ code \rangle \\ \\ \begin{glowscriptblock} \\ \beg
```

Code placed here is nicely formatted and optionally linked to its source on GlowScript.org. Clicking anywhere in the code window will open the link in the default browser. A caption is mandatory, and a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly. For convenience, https:// is automatically prepended to the URL and can thus be omitted.

```
\begin{glowscriptblock}(tinyurl.com/y3lnqyn3){A short \texttt{GlowScript} Program}
GlowScript 3.0 vpython
scene.width = 400
scene.height = 760
# constants and data
g = 9.8  # m/s^2
mball = 0.03 # kg
Lo = 0.26 # m
ks = 1.8 # N/m
deltat = 0.01 # s
# objects (origin is at ceiling)
ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,
              width=0.2)
ball = sphere(pos=vector(0,-0.3,0),radius=0.025,
              color=color.orange)
spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos,
               color=color.cyan,thickness=0.003,coils=40,
               radius=0.010)
# initial values
pball = mball * vector(0,0,0)
                                # kg m/s
Fgrav = mball * g * vector(0,-1,0) # N
t = 0
# improve the display
scene.autoscale = False
                              # turn off automatic camera zoom
scene.center = vector(0,-Lo,0) # move camera down
scene.waitfor('click')
                             # wait for a mouse click
# initial calculation loop
# calculation loop
while t < 10:
   rate(100)
    # we need the stretch
    s = mag(ball.pos) - Lo
    # we need the spring force
    Fspring = ks * s * -norm(spring.axis)
    Fnet = Fgrav + Fspring
    pball = pball + Fnet * deltat
    ball.pos = ball.pos + (pball / mball) * deltat
    spring.axis = ball.pos - ceiling.pos
    t = t + deltat
\end{glowscriptblock}
```

GlowScript Program 1: A short GlowScript program 1 GlowScript 3.0 vpython scene.width = 4003 scene.height = 7604 # constants and data g = 9.8# m/s^2 mball = 0.03 # kgLo = 0.26 # m ks = 1.8# N/m **deltat = 0.01** # s 10 11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0), radius=0.025, color=color.orange) 16 17 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, color=color.cyan,thickness=0.003,coils=40, 18 radius=**0.010**) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 scene.autoscale = False # turn off automatic camera zoom 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 # calculation loop 32 while t < 10: 33 rate(100) 34 # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 Fnet = Fgrav + Fspring 39 pball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\GlowScript\ program \ref{gs:1} is nice. It's called \nameref{gs:1} and is on page \pageref{gs:1}.

GlowScript program 1 is nice. It's called A short GlowScript program and is on page 27.
```

3.2 The vpythonfile Command

U 2021-02-11

\vpythonfile[\langle options \rangle] \{\langle file \rangle \} \{\langle caption \rangle \}

Command to load and typeset a VPython program. The file is read from $\{\langle file \rangle\}$. Clicking anywhere in the code window can optionally open a link, passed as an option, in the default browser. A caption is mandatory, and a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly. For convenience, https:// is automatically prepended to the URL and can thus be omitted.

VPython Program 1: A VPython program from vpython import * scene.width = 4003 scene.height = 7604 # constants and data 6 g = 9.8# m/s^2 mball = 0.03 # kgLo = 0.26 # m ks = 1.8# N/m deltat = 0.01 # s11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0), radius=0.025, color=color.orange) 16 17 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, color=color.cyan,thickness=0.003,coils=40, 18 radius=0.010) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 # turn off automatic camera zoom scene.autoscale = False 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 # calculation loop 32 while t < 10: 33 rate(100) 34 # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 39 Fnet = Fgrav + Fspringpball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\text{VPython\ program \ref{vp:1} is nice. It's called \nameref{vp:1} and is on page \pageref{vp:1}.}

VPython program 1 is nice. It's called A VPython program and is on page 29.
```

3.3 The glowscriptinline and vpythoninline Commands

```
U 2021-02-15
U 2021-02-15
```

```
\glowscriptinline{\langle GlowScript code \rangle}
\vpythoninline{\langle VPython code \rangle}
```

Typesets a small, in-line snippet of code. The snippet should be less than one line long.

```
\GlowScript\ programs begin with \glowscriptinline{GlowScript 3.0 VPython} and \VPython\ programs begin with \vpythoninline{from vpython import *}.

GlowScript programs begin with GlowScript 3.0 VPython and VPython programs begin with from vpython import *.
```

4 Commands for Writing Physics Problem Solutions

4.1 Introductory Needs

mandi provides a collection of commands physics students can use for writing problem solutions. This new version focuses on the most frequently needed tools. These commands should always be used in math mode.

4.1.1 Traditional Vector Notation

```
\ensuremath{\vec{\langle symbol\rangle}[\langle labels\rangle]} (use this variant for boldface notation) 
\ensuremath{\vec*{\langle symbol\rangle}[\langle labels\rangle]} (use this variant for arrow notation)
```

Powerful and intelligent command for symbolic vector notation. The mandatory argument is the symbol for the vector quantity. The optional label(s) consists of superscripts and/or subscripts and can be mathematical or textual in nature. If textual, be sure to wrap them in \symup{...} for proper typesetting. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels can be arbitrarily mixed, and order doesn't matter.

```
\zerovec (use this variant for boldface notation)
\zerovec* (use this variant for arrow notation)
```

Command for typesetting the zero vector. The starred version gives arrow notation whereas without the star you get boldface notation.

```
\(\zerovec \)\\\\(\zerovec*\)
```

```
\Dvec{\(symbol\)} \( \text{use this variant for boldface notation} \)
\( \text{\(symbol\)} \)
\( \text{use this variant for arrow notation} \)
```

Command for typesetting the change in a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported so if you need the symbol for the change in a subscripted or superscripted vector, just put \changein in front of it. This command must be used in math mode.

```
\(\Dvec{r}\\)\\\\\(\Dvec*{r}\\)
```

```
\dirvec{\langle symbol\rangle} \( \text{use this variant for boldface notation} \\ \dirvec*{\langle symbol\rangle} \( \text{use this variant for arrow notation} \)
```

Command for typesetting the direction of a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported.

```
\( \dirvec{r} \) \\ \( \dirvec*{r} \) \widehat{r}
```

```
\magvec{(symbol)} (use this variant for boldface notation)
\magvec*{(symbol)} (use this variant for arrow notation)
```

Command for type setting the magnitude of a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported.

```
\(\magvec{r}\)\\\\(\magvec*{r}\)
```

Typesets a vector as either numeric or symbolic components with an optional unit (for numerical components only). There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma. The notation mirrors that of $Matter\ \mathcal{E}$ Interactions.

```
N 2021-02-21
N 2021-02-21
```

```
 \begin{array}{l} \texttt{\direction}[\langle delimiter \rangle] \{\langle c_1, \dots, c_n \rangle\} \\ \texttt{\dunitvector}[\langle delimiter \rangle] \{\langle c_1, \dots, c_n \rangle\} \end{array}
```

Semantic aliases for \mivector → P. 31.

4.1.2 Coordinate-Free and Index Notation

Beyond the current level of introductory physics, we need intelligent commands for typesetting vector and tensor symbols and components suitable for both coordinate-free and index notations.

```
      \veccomp{(symbol)}
      (use this variant for coordinate-free vector notation)

      \veccomp*{(symbol)}
      (use this variant for index vector notation)

      \tencomp*{(symbol)}
      (use this variant for coordinate-free tensor notation)

      \tencomp*{(symbol)}
      (use this variant for index tensor notation)
```

Conforms to ISO 80000-2 notation.

```
\(\veccomp{r}\)\\
\(\veccomp*{r}\)\\
r\\(\tencomp*{r}\)\\
r\\(\tencomp*{r}\)\\
r
```

4.1.3 Problems and Annoted Problem Solutions

```
N 2021-02-03
```

.....

N 2021-02-03

Provides an environment for stating physics problems. Each problem will begin on a new page. See the examples for how to handle single and multiple part problems.

```
\begin{physicsproblem}{Problem 1}
This is a physics problem with no parts.
\end{physicsproblem}

Problem 1
This is a physics problem with no parts.
```

```
\begin{physicsproblem}{Problem 2}
This is a physics problem with multiple parts.
The list is vertical.
\begin{parts}
  \problempart This is the first part.
  \problempart This is the second part.
  \problempart This is the third part.
  \end{parts}
\end{parts}
\end{physicsproblem}
```

Problem 2

This is a physics problem with multiple parts. The list is vertical.

- (a) This is the first part.
- (b) This is the second part.
- (c) This is the third part.

```
\begin{physicsproblem*}{Problem 3}
  This is a physics problem with multiple parts.
  The list is in-line.
  \begin{parts}
    \problempart This is the first part.
    \problempart This is the second part.
    \problempart This is the third part.
  \end{parts}
\end{parts}
\end{physicsproblem*}
```

Problem 3

This is a physics problem with multiple parts. The list is in-line. (a) This is the first part. (b) This is the second part. (c) This is the third part.

U 2021-02-02

U 2021-02-02

This environment is only for mathematical solutions. The starred variant omits numbering of steps. See the examples.

```
(1)
                                                                          x = y + z
\begin{physicssolution}
 x &= y + z \\
                                                                                                    (2)
                                                                          z = x - y
 z &= x - y \\
                                                                          y = x - z
                                                                                                    (3)
 y &= x - z
\end{physicssolution}
\begin{physicssolution*}
 x &= y + z \\
 z &= x - y \\
                                                                          x = y + z
 y &= x - z
\end{physicssolution*}
                                                                          z = x - y
                                                                          y = x - z
```

U 2012-02-02

\reason{\(\text{reason}\)}

Provides an annotation in a step-by-step solution. Keep reasons short and to the point. Wrap mathematical content in math mode.

```
(4)
                                                                x = y + z
                                                                              This is a reason.
\begin{physicssolution}
  x \&= y + z \geq \{This is a reason.\}
                                                                                                                 (5)
                                                                z = x - y
                                                                              This is a reason too.
  z &= x - y \cdot (This is a reason too.) \ y &= x - z \reason{final answer}
                                                                                                                 (6)
                                                                y = x - z
                                                                              final answer
\end{physicssolution}
\begin{physicssolution*}
  x &= y + z \reason{This is a reason.}
  z &= x - y \reason{This is a reason too.} \\
y &= x - z \reason{final answer}
                                                                 x = y + z
                                                                                This is a reason.
\end{physicssolution*}
                                                                 z = x - y
                                                                                 This is a reason too.
                                                                 y = x - z
                                                                                 final answer
```

When writing solutions, remember that the physics solution $^{\rightarrow P.33}$ environment is *only* for mathematical content, not textual content or explanations.

```
\begin{physicsproblem}{Combined Problem and Solution}

This is an interesting physics problem.
\begin{physicssolution}

The solution goes here.
\end{physicssolution}

\end{physicsproblem}
```

```
\begin{physicsproblem}{Combined Multipart Problem with Solutions}
 This is a physics problem with multiple parts.
 \begin{parts}
   \problempart This is the first part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
    \problempart This is the second part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
    \problempart This is the third part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
 \end{parts}
\end{physicsproblem}
```

N 2021-02-06

Hilites the desired target, which can be an entire mathematical expression or a part thereof. The default color is magenta and the default shape is a rectangle.

```
(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}
(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}
(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}
(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}
(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}
```

```
\begin{align*}
  \Dvec{p} &= \vec{F}_{\sumup{net}}\,\Delta t \\
  \hilite[orange]{\Dvec{p}}[circle] &= \vec{F}_{\symup{net}}\,\Delta t \\
  \Delta\vec{p} &= \hilite[yellow!50]{\vec{F}_{\symup{net}}}[rounded rectangle]\,\Delta t \\
  \Delta\vec{p} &= \vec{F}_{\symup{net}}\,\hilite[olive!50]{\Delta t}[rectangle] \\
  \Delta\vec{p} &= \hilite[cyan!50]{\vec{F}_{\symup{net}}\,\Delta t}[ellipse] \\
  \hilite{\Delta\vec{p}}[rectangle] &= \vec{F}_{\symup{net}}\,\Delta t\\
  \end{align*}
```

$$\Delta \mathbf{p} = \mathbf{F}_{\text{net}} \Delta t$$

U 2021-02-04

$\label{limited} $$ \sum_{(aption)} {\langle aption \rangle} {\langle label \rangle} {\langle image \rangle} $$$

Simplified interface for importing an image. The images are treated as floats, so they may not appear at the most logically intuitive place.

\image[scale=0.20]{example-image-1x1}{Image shown 20 percent actual size.}{reffig1}

1 imes 1(Grighad dam 2001-2000 kgs)

Figure 1: Image shown 20 percent actual size.

\image[scale=0.20,angle=45]{example-image-1x1}{Image shown 20 percent actual size and } \cdot\reffig1}

Figure 2: Image shown 20 percent actual size and rotated.

4.2 Intermediate and Advanced Needs

Typesets column vectors and row vectors as numeric or symbolic components. There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma.

```
\valence{\langle index\rangle} {\langle index\rangle} \valence*{\langle index\rangle} {\langle index\rangle}
```

Typesets tensor valence. The starred variant typesets it horizontally.

```
\contraction{\langle slot, slot \rangle} \contraction*{\langle slot, slot \rangle}
```

Typesets tensor contraction in coordinate-free notation. There is no standard on this so we assert one here.

```
\slot[\langle vector \rangle]
\slot*[\langle vector \rangle]
```

An intelligent slot command for coordinate-free vector and tensor notation. The starred variants suppress the underscore.

```
\( (\slot) \) \\
\( (\slot[\vec{a}]) \) \\
\( (\slot*) \) \\
\( (\slot*[\vec{a}]) \) \\
( a)
```

4.3 Useful Math Commands

```
\tento{(number)}
\timestento{(number)}
\xtento{(number)}
```

Commands for powers of ten and scientific notation.

```
\tento{-4} \\
3\timestento{8} \\
3\xtento{8} \\
3 \times 10^8
3 \times 10^8
```

\changein

Semantic alias for \Delta.

```
(double bars)
N 2021-02-21
                        \doublebars[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                        \doublebars*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                        (double bars for fractions)
N 2021-02-21
                        \singlebars[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                            (single bars)
                        \singlebars*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                          (single bars for fractions)
N 2021-02-21
N 2021-02-21
                        \anglebrackets[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                       (angle brackets)
                                                                                                                                    (angle brackets for fractions)
N 2021-02-21
                        \anglebrackets*[(size)] {(quantity)}
N 2021-02-21
                        \parentheses [\langle size \rangle] {\langle quantity\rangle}
                                                                                                                                                           (parentheses)
N 2021-02-21
                        \parentheses*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                        (parentheses for fractions)
N 2021-02-21
                        \squarebrackets[\langle size \rangle] \{\langle quantity \rangle \}
                                                                                                                                                     (square brackets)
                        \squarebrackets*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                   (square brackets for fractions)
N 2021-02-21
                        \curlybraces[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                          (curly braces)
N 2021-02-21
                                                                                                                                        (curly braces for fractions)
N 2021-02-21
                        \curlybraces*[\langle size \rangle] \{\langle quantity \rangle\}
```

If no argument is given, a placeholder is provided. Sizers like \big,\Big,\bigg, and \Bigg can be optionally specified. Beginners are encouraged not to use them. See the mathtools package documentation for details.

```
<·>
                                                                                        \langle a \rangle
  \[ \anglebrackets{} \]
  \[ \anglebrackets{\vec{a}} \]
  \[ \anglebrackets[\Bigg]{\frac{\vec{a}}{3}} \]
                                                                                        (·)
                                                                                        (x)
  \[ \parentheses{} \]
 \[\parentheses{x} \]
\[\parentheses*{\frac{x}{3}} \]
  \[\parentheses[\Bigg]{\frac{x}{3}} \]
                                                                                        [\cdot]
  \[ \squarebrackets{} \]
                                                                                        [x]
 \[\squarebrackets{x} \]
\[\squarebrackets*{\frac{x}{3}} \]
  \[ \qquad \] \[ \qquad \] \]
                                                                                       { · }
                                                                                        {x}
  \[ \curlybraces{} \]
  \[ \curlybraces{x} \]
  \[\curlybraces[\Bigg]{\frac{x}{3}}\]
\mbox{\mbox{\mbox{$\backslash$}}} (quantity)
                                                                                                (alias for double bars)
                                                                                (alias for double bars for fractions)
\mbox{\mbox{magnitude*}[\langle size \rangle] {\langle quantity \rangle}}
                                                                                               (alias for double bars)
\norm[\langle size \rangle] \{\langle quantity \rangle\}
\norm*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                (alias for double bars for fractions)
```

```
N 2021-02-21
N 2021-02-21
```

N 2021-02-21

N 2021-02-21

N 2021-02-21

N 2021-02-21

```
\absolutevalue[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                           (alias for single bars)
\absolutevalue*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                        (alias for single bars for fractions)
```

Semantic aliases.

<pre>\[\magnitude{\vec{a}} \] \[\magnitude*{\frac{\vec{a}}{3}} \] \[\norm*{\vec{a}} \] \[\norm*{\frac{\vec{a}}{3}} \] \[\absolutevalue{-a} \] \[\absolutevalue*{-\frac{a}{3}} \]</pre>	$\ \mathbf{a}\ $ $\ \frac{\mathbf{a}}{3}\ $ $\ \mathbf{a}\ $ $\ \frac{\mathbf{a}}{3}\ $ $ -a $ $ -\frac{a}{3} $
--	---

5 Commands Specific to Matter & Interactions

mandi comes with an accessory package mandiexp which includes commands specific to *Matter & Interactions*². The commands are primarily for typesetting mathematical expressions used in the text. Use of mandiexp is optional and so must be manually loaded by including the line \usepackage{mandiexp} in your document's preamble.

5.1 The Momentum Principle

```
\lhsmomentumprinciple
                                                                 (LHS of delta form, bold vectors)
                                                                 (RHS of delta form, bold vectors)
\rhsmomentumprinciple
\lhsmomentumprincipleupdate
                                                                (LHS of update form, bold vectors)
\rhsmomentumprincipleupdate
                                                               (RHS of update form, bold vectors)
\momentumprinciple
                                                                         (delta form, bold vectors)
\momentumprincipleupdate
                                                                       (update form, bold vectors)
                                                                (LHS of delta form, arrow vectors)
\lhsmomentumprinciple*
\rhsmomentumprinciple*
                                                                (RHS of delta form, arrow vectors)
\lhsmomentumprincipleupdate*
                                                              (LHS of update form, arrow vectors)
\rhsmomentumprincipleupdate*
                                                              (RHS of update form, arrow vectors)
\momentumprinciple*
                                                                       (delta form, arrow vectors)
\momentumprincipleupdate*
                                                                      (update form, arrow vectors)
```

Variants of command for typesetting the momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta oldsymbol{p}_{	ext{svs}}
                                                                                                \mathbf{F}_{\text{sys,net}} \Delta t
\(\lhsmomentumprinciple\)
                                                               11
                                                                                                \boldsymbol{p}_{\mathrm{sys,final}}
\(\rhsmomentumprinciple\)
                                                               //
                                                                                               \mathbf{p}_{\mathrm{sys,initial}} + \mathbf{F}_{\mathrm{sys,net}} \Delta t

\Delta \mathbf{p}_{\mathrm{sys}} = \mathbf{F}_{\mathrm{sys,net}} \Delta t
\(\lhsmomentumprincipleupdate\)
\(\rhsmomentumprincipleupdate\)
\(\momentumprinciple\)
                                                                                               p_{\text{sys,final}} = p_{\text{sys,initial}} + F_{\text{sys,net}} \Delta t
                                                               //
\(\momentumprincipleupdate\)
                                                                                                \Delta \overline{p}_{\mathrm{sys}}
\(\lhsmomentumprinciple*\)
\(\rhsmomentumprinciple*\)
                                                                                               \vec{F}_{\rm sys,net} \Delta t
\( \lhsmomentumprincipleupdate* \)
                                                                                                \vec{p}_{\text{sys,final}}
\(\rhsmomentumprincipleupdate*\)\\
                                                                                               \vec{p}_{\text{sys,initial}} + \vec{F}_{\text{sys,net}} \Delta t
\( \momentumprinciple* \)
                                                               11
\(\momentumprincipleupdate* \)
                                                                                               \Delta \vec{p}_{\text{sys}} = \vec{F}_{\text{sys,net}} \Delta t
                                                                                               \overrightarrow{p}_{\text{sys,final}} = \overrightarrow{p}_{\text{sys,initial}} + \overrightarrow{F}_{\text{sys,net}} \Delta t
```

5.2 The Energy Principle

```
\lhsenergyprinciple (LHS of delta form) \rhsenergyprinciple[\((\rho\) process...\)] (RHS of delta form) \lhsenergyprincipleupdate (LHS of update form)
```

²See Matter & Interactions and https://matterandinteractions.org/ for details

```
\label{lem:continuous} $$ \energyprincipleupdate [ (+process...) ] $$ (RHS of update form) $$ (delta form) $$ (energyprincipleupdate [ (+process...) ] $$ (update form) $$ (update form) $$ (energyprincipleupdate [ (+process...) ] $$ (update form) $$ (update fo
```

Variants of command for typesetting the energy principle.

```
\Delta E_{\rm sys}
                                                                                       W_{\rm ext}
\( \lhsenergyprinciple \)
\(\rhsenergyprinciple\)
                                                                                        W_{\text{ext}} + Q
\(\rhsenergyprinciple[+Q]\)
                                                                                       \Delta E_{\rm sys} = W_{\rm ext}
\Delta E_{\rm sys} = W_{\rm ext} + Q
\( \energyprinciple \)
\( \energyprinciple[+Q] \)
\(\lhsenergyprincipleupdate\)
                                                                                        E_{\rm sys,final}
                                                                                       E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext}
E_{\rm sys,initial} + W_{\rm ext} + Q
E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext}
E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext} + Q
\(\rhsenergyprincipleupdate\)
\(\rhsenergyprincipleupdate[+Q]\)
\(\energyprincipleupdate\)
\(\energyprincipleupdate[+Q]\)
```

5.3 The Angular Momentum Principle

```
(LHS of delta form, bold vectors)
\lhsangularmomentumprinciple
\rhsangularmomentumprinciple
                                                                (RHS of delta form, bold vectors)
\lhsangularmomentumprincipleupdate
                                                              (LHS of update form, bold vectors)
\rhsangularmomentumprincipleupdate
                                                              (RHS of update form, bold vectors)
\angularmomentumprinciple
                                                                       (delta form, bold vectors)
                                                                      (update form, bold vectors)
\angularmomentumprincipleupdate
\lhsangularmomentumprinciple*
                                                               (LHS of delta form, arrow vectors)
\rhsangularmomentumprinciple*
                                                               (RHS of delta form, arrow vectors)
\lhsangularmomentumprincipleupdate*
                                                             (LHS of update form, arrow vectors)
\rhsangularmomentumprincipleupdate*
                                                             (RHS of update form, arrow vectors)
\angularmomentumprinciple*
                                                                      (delta form, arrow vectors)
\angularmomentumprincipleupdate*
                                                                    (update form, arrow vectors)
```

Variants of command for typesetting the angular momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta \mathbf{L}_{A, \mathrm{sys, net}}
                                                                                                          	au_{A, 	ext{sys,net}} \Delta t
                                                                                                          \mathbf{L}_{A, \mathrm{sys, final}}^{I, I, I}
\(\lhsangularmomentumprinciple\)
                                                                                    //
\(\rhsangularmomentumprinciple\)
                                                                                                          \boldsymbol{L}_{A, \mathrm{sys,initial}} + \boldsymbol{\tau}_{A, \mathrm{sys,net}} \Delta t
\(\lhsangularmomentumprincipleupdate\)
                                                                                    //
                                                                                                          \Delta \mathbf{L}_{A, \mathrm{sys, net}} = \boldsymbol{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\rhsangularmomentumprincipleupdate\)
                                                                                                          \mathbf{L}_{A, \mathrm{sys, final}} = \mathbf{L}_{A, \mathrm{sys, initial}} + \boldsymbol{\tau}_{A, \mathrm{sys, net}} \Delta t
\( \angularmomentumprinciple \)
                                                                                     //
\( \angularmomentumprincipleupdate \)
\( \lhsangularmomentumprinciple* \)
                                                                                     //
                                                                                                          \Delta \overline{L}_{A, \mathrm{sys, net}}
\(\rhsangularmomentumprinciple*\)
                                                                                                           \overrightarrow{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\lhsangularmomentumprincipleupdate*\)\\
                                                                                                          \overrightarrow{L}_{A, \rm sys, final}
\(\rhsangularmomentumprincipleupdate* \) \\
                                                                                                          \vec{L}_{A, \text{sys, final}}^{A, \text{sys, final}} + \vec{\tau}_{A, \text{sys, net}} \Delta t
\Delta \vec{L}_{A, \text{sys, net}} = \vec{\tau}_{A, \text{sys, net}} \Delta t
\vec{L}_{A, \text{sys, final}} = \vec{L}_{A, \text{sys, initial}} + \vec{\tau}_{A, \text{sys, net}} \Delta t
\( \angularmomentumprinciple* \)
\(\angularmomentumprincipleupdate* \)
```

5.4 Other Expressions

N 2021-02-13

$\ensuremath{\mbox{energyof}} \{\langle label \rangle\} [\langle label \rangle]$

Generic symbol for the energy of some entity.

<pre>\(\energyof{\symup{electron}} \) \\ \(\energyof{\symup{electron}}[\symup{final}] \)</pre>	$E_{ m electron} \ E_{ m electron,final}$
--	---

N 2021-02-13

\systemenergy $[\langle label \rangle]$

Symbol for system energy.

<pre>\(\systemenergy \) \\ \(\systemenergy[\symup{final}] \)</pre>	$E_{ m sys} \ E_{ m sys,final}$
--	---------------------------------

N 2021-02-13

$\protect\$ \protect $\protect\$ \prot

Symbol for particle energy.

<pre>\(\particleenergy \) \\ \(\particleenergy[\symup{final}] \)</pre>	$E_{ m particle} \ E_{ m particle,final}$
--	---

N 2021-02-13

$\rule (label)$

Symbol for rest energy.

```
\(\restenergy\)\\ \(\restenergy[\symup{final}]\) E_{\rm rest} = E_{\rm rest,final}
```

N 2021-02-13

$\time lenergy [\langle label \rangle]$

Symbol for internal energy.

<pre>\(\internalenergy \) \\ \(\internalenergy[\symup{final}] \)</pre>	$E_{ m internal} \ E_{ m internal, final}$
--	--

N 2021-02-13

\chemicalenergy $[\langle label \rangle]$

Symbol for chemical energy.

<pre>\(\chemicalenergy \) \\ \(\chemicalenergy[\symup{final}] \)</pre>	$E_{ m chem} \ E_{ m chem,final}$
--	-----------------------------------

N 2021-02-13

$\text{ \text{thermalenergy} [($label)$]}$

Symbol for thermal energy.

N 2021-02-13

\photonenergy [$\langle label \rangle$]

Symbol for photon energy.

<pre>\(\photonenergy \) \\ \(\photonenergy[\symup{final}] \)</pre>	$E_{ m photon} \ E_{ m photon,final}$
--	---------------------------------------

N 2021-02-13

N 2021-02-13

Symbol for translational kinetic energy. The starred variant gives ${\cal E}$ notation.

<pre>\(\translationalkineticenergy \) \\ \(\translationalkineticenergy[\symup{initial}] \) \\ \(\translationalkineticenergy* \) \\ \(\translationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m trans}$ $K_{ m trans,initial}$ $E_{ m K}$ $E_{ m K,initial}$
---	---

N 2021-02-13 N 2021-02-13

$\triangledown \triangledown \triangledown$

$\triangle \triangle \tri$

Symbol for rotational kinetic energy. The starred variant gives E notation.

<pre>\(\rotationalkineticenergy \) \\ \(\rotationalkineticenergy[\symup{initial}] \) \\ \(\rotationalkineticenergy* \) \\ \(\rotationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m rot} \ K_{ m rot,initial} \ E_{ m rot} \ E_{ m rot,initial}$
---	---

N 2021-02-13

N 2021-02-13

Symbol for vibrational kinetic energy. The starred variant gives E notation.

<pre>\(\vibrationalkineticenergy \) \\ \(\vibrationalkineticenergy[\symup{initial}] \) \\ \(\vibrationalkineticenergy* \) \\ \(\vibrationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m vib}$ $K_{ m vib,initial}$ $E_{ m vib}$ $E_{ m vib,initial}$
---	---

N 2021-02-13

$\gravitationalpotentialenergy[\langle label\rangle]$

Symbol for gravitational potential energy.

<pre>\(\gravitationalpotentialenergy \) \\ \(\gravitationalpotentialenergy[\symup{final}] \)</pre>	$U_{f g}$ $U_{f g, final}$	
--	----------------------------	--

N 2021-02-13

$\ensuremath{\mbox{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\sim}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\sim}}\e$

Symbol for electric potential energy.

```
\( \electricpotentialenergy \) \\ \( \electricpotentialenergy[\symup{final}] \) U_{\rm e} = U_{\rm e,final}
```

N 2021-02-13

\springpotentialenergy [$\langle label \rangle$]

Symbol for spring potential energy.

```
\(\springpotentialenergy \) \\ \(\springpotentialenergy[\symup{final}] \) U_{\rm S} = U_{\rm S,final}
```

6 Source Code

31 \RequirePackage{nicematrix}

33 \RequirePackage{tensor}

36 \RequirePackage{hyperref}

34 \RequirePackage{tikz}

37 \RequireLuaTeX

32 \RequirePackage[most]{tcolorbox}

35 \usetikzlibrary{shapes,fit,tikzmark}

Definine the package version and date for global use, exploiting the fact that in a .sty file there is now no need for \makeatletter and \makeatother. This simplifies defining internal commands, with @ in the name, that are not for the user to know about.

```
1 \def\mandi@Version{3.0.0d}
2 \def\mandi@Date{2021-02-23}
3 \NeedsTeXFormat{LaTeX2e}[1999/12/01]
4 \providecommand\DeclareRelease[3]{}
5 \providecommand\DeclareCurrentRelease[2]{}
6 \DeclareRelease{v3.0.0d}{2021-02-23}{mandi.sty}
7 \DeclareCurrentRelease{v\mandi@Version}{\mandi@Date}
8 \ProvidesPackage{mandi}[\mandi@Date\space v\mandi@Version\space Macros for introductory physics]
   Define a convenient package version command.
9 \newcommand*{\mandiversion}{v\mandi@Version\space dated \mandi@Date}
   Set up the fonts to be consistent with ISO 80000-2 notation. The unicode-math package loads the fontspec and xparse
packages. Note that xparse is now part of the IATFX kernel. Because unicode-math is required, all documents using mandi
must be compiled with an engine that supports Unicode. We recommend LuaLATEX.
10 \RequirePackage{unicode-math}
11 \unimathsetup{math-style=ISO}
12 \unimathsetup{warnings-off={mathtools-colon,mathtools-overbracket}}
13 \setmathfont[Scale=MatchLowercase] {TeX Gyre DejaVu Math} % single-storey g everywhere. Based on Arev.
   Use normal math letters from Latin Modern Math for familiarity with textbooks.
14 \setmathfont[Scale=MatchLowercase,range=it/]{Latin Modern Math}
   Borrow mathscr and mathbfscr from XITS Math.
See https://tex.stackexchange.com/a/120073/218142.
15 \setmathfont[Scale=MatchLowercase, range={\mathscr, \mathbfscr}]{XITS Math}
   Get original and bold mathcal fonts.
See https://tex.stackexchange.com/a/21742/218142.
16 \setmathfont[Scale=MatchLowercase,range={\mathcal,\mathbfcal},StylisticSet=1]{XITS Math}
   Borrow Greek letters from Latin Modern Math.
17 \setmathfont[Scale=MatchLowercase,range=
                                               it/{greek,Greek}]{Latin Modern Math}
18 \setmathfont[Scale=MatchLowercase, range bfit/{greek,Greek}]{Latin Modern Math}
19 \setmathfont[Scale=MatchLowercase,range=
                                               up/{greek,Greek}]{Latin Modern Math}
20 \setmathfont[Scale=MatchLowercase,range= bfup/{greek,Greek}]{Latin Modern Math}
21 \setmathfont[Scale=MatchLowercase, range=bfsfup/{greek, Greek}] {Latin Modern Math}
   Load third party packages, documenting why each one is needed.
                                              % AMS goodness (don't load amssymb or amsfonts)
22 \RequirePackage{amsmath}
23 \RequirePackage[inline] {enumitem}
                                              % needed for physicsproblem environment
24 \RequirePackage{eso-pic}
                                              % needed for \hilite
25 \RequirePackage[g]{esvect}
                                              % needed for nice vector arrow, style g
26 \RequirePackage{pgfopts}
                                              % needed for key-value interface
27 \RequirePackage{array}
                                              % needed for \checkquantity and \checkconstant
28 \RequirePackage{iftex}
                                              % needed for requiring LuaLaTeX
29 \RequirePackage{makebox}
                                              % needed for consistent \dirvect; \makebox
30 \RequirePackage{mathtools}
                                              % needed for paired delimiters; extends amsmath
```

% needed for column and row vectors

% needed for program listings

% needed for index notation

% needed for \hilite

% needed for \hilite

% require this engine

% load last

Need to tweak the esvect package fonts to get the correct font size. Code provided by @egreg. See https://tex.stackexchange.com/a/566676.

```
38 \DeclareFontFamily{U}{esvect}{}
39 \DeclareFontShape{U}{esvect}{m}{n}{%
   <-5.5> vect5
    <5.5-6.5> vect6
41
   <6.5-7.5> vect7
42
   <7.5-8.5> vect8
43
    <8.5-9.5> vect9
44
    <9.5-> vect10
45
46 }{}%
47 \directlua{%
  luaotfload.add_colorscheme("colordigits",
     {["8000FF"] = {"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "zero"}})
49
50 }%
51 \newfontfamily\colordigits{DejaVuSansMono} [RawFeature={color=colordigits}]
```

Set up a color scheme and a new code environment for listings. The new colors are more restful on the eye. All listing commands now use tcolorbox.

See https://tex.stackexchange.com/a/529421/218142.

```
52 \newfontfamily{\gsfontfamily}{DejaVuSansMono}
                                                     % new font for listings
53 \definecolor{gsbggray}
                              {rgb}{0.90,0.90,0.90} % background gray
54 \definecolor{gsgray}
                              {rgb}{0.30,0.30,0.30} % gray
55 \definecolor{gsgreen}
                              {rgb}{0.00,0.60,0.00} % green
56 \definecolor{gsorange}
                              {rgb}{0.80,0.45,0.12} % orange
57 \definecolor{gspeach}
                              \{rgb\}\{1.00,0.90,0.71\} % peach
58 \definecolor{gspearl}
                              {rgb}{0.94,0.92,0.84} % pearl
59 \definecolor{gsplum}
                              \{rgb\}\{0.74,0.46,0.70\} % plum
60 \lstdefinestyle{vpython}{%
                                                     % style for listings
    backgroundcolor=\color{gsbggray},%
                                                     % background color
    basicstyle=\colordigits\footnotesize,%
                                                     % default style
62
                                                     % break at whitespace
63
    breakatwhitespace=true%
64
    breaklines=true,%
                                                     % break long lines
    captionpos=b,%
                                                     % position caption
65
                                                     % STILL DON'T UNDERSTAND THIS
    classoffset=1,%
66
    commentstyle=\color{gsgray},%
                                                     % font for comments
67
    deletekeywords={print},%
                                                     % delete keywords from the given language
68
    emph={self,cls,@classmethod,@property},%
                                                     % words to emphasize
69
    emphstyle=\color{gsorange}\itshape,%
70
                                                     % font for emphasis
    escapeinside={(*0}{0*)},%
                                                     % add LaTeX within your code
    frame=tb,%
                                                     % frame style
72
    framerule=2.0pt,%
                                                     % frame thickness
73
    framexleftmargin=5pt,%
                                                     % extra frame left margin
74
                                                      % style for identifiers
    %identifierstyle=\sffamily,%
75
    keywordstyle=\gsfontfamily\color{gsplum},%
                                                     % color for keywords
76
    language=Python,%
                                                     % select language
77
    linewidth=\linewidth,%
                                                     % width of listings
78
                                                     % VPython/GlowScript specific keywords
79
    morekeywords={%
      __future__,abs,acos,align,ambient,angle,append,append_to_caption,%
80
      append_to_title,arange,arrow,asin,astuple,atan,atan2,attach_arrow,%
81
      attach_trail,autoscale,axis,background,billboard,bind,black,blue,border,%
82
      bounding_box,box,bumpaxis,bumpmap,bumpmaps,camera,canvas,caption,capture,%
83
84
      ceil,center,clear,clear_trail,click,clone,CoffeeScript,coils,color,combin,%
      comp, compound, cone, convex, cos, cross, curve, cyan, cylinder, data, degrees, del, %
85
      delete,depth,descender,diff_angle,digits,division,dot,draw_complete,%
86
      ellipsoid, emissive, end_face_color, equals, explog, extrusion, faces, factorial, %
87
      False, floor, follow, font, format, forward, fov, frame, gcurve, gdisplay, gdots, %
88
      get_library,get_selected,ghbars,global,GlowScript,graph,graphs,green,gvbars,%
89
```

```
hat, headlength, headwidth, height, helix, hsv to rgb, index, interval, keydown, %
90
       kevup.label.length.lights.line.linecolor.linewidth.logx.logv.lower left.%
91
       lower_right, mag, mag2, magenta, make_trail, marker_color, markers, material, %
92
       max,min,mouse,mousedown,mousemove,mouseup,newball,norm,normal,objects,%
93
       offset, one, opacity, orange, origin, path, pause, pi, pixel_to_world, pixels, plot, %
94
       points, pos, pow, pps, print, print_function, print_options, proj, purple, pyramid, %
95
96
       quad, radians, radius, random, rate, ray, read_local_file, readonly, red, redraw, %
       retain, rgb to hsv, ring, rotate, round, scene, scroll, shaftwidth, shape, shapes, %
97
       shininess, show_end_face, show_start_face, sign, sin, size, size_units, sleep, %
98
       smooth, space, sphere, sqrt, start, start face_color, stop, tan, text, textpos, %
99
       texture, textures, thickness, title, trail_color, trail_object, trail_radius, %
100
       trail_type,triangle,trigger,True,twist,unbind,up,upper_left,upper_right,%
101
       userpan, userspin, userzoom, vec, vector, vertex, vertical_spacing, visible, %
102
       visual, vpython, VPython, waitfor, white, width, world, xtitle, yellow, yoffset, %
103
       ytitle%
104
     },%
105
106
     morekeywords={print,None,TypeError},%
                                                       % additional keywords
     morestring=[b]{"""},%
                                                       % treat triple quotes as strings
107
     numbers=left,%
                                                       % where to put line numbers
     numbersep=10pt,%
                                                       % how far line numbers are from code
     numberstyle=\bfseries\tiny,%
                                                       % set to 'none' for no line numbers
110
     showstringspaces=false,%
                                                       % show spaces in strings
111
     showtabs=false,%
                                                       % show tabs within strings
112
     stringstyle=\gsfontfamily\color{gsgreen},%
                                                       % color for strings
113
                                                       % how to typeset quotes
     upquote=true,%
114
115 }%
    Introduce a new, more intelligent glowscriptblock P. 25 environment.
116 \NewTCBListing[auto counter,list inside=gsprogs]{glowscriptblock}{ O{} D(){glowscript.org} m }{%
     breakable.%
117
     center,%
118
     code = \newpage,%
119
    %derivpeach,%
     enhanced, %
121
     hyperurl interior = https://#2,%
122
     label = {gs:\thetcbcounter},%
123
     left = 8mm, %
124
     list entry = \texttt{GlowScript} Program \thetcbcounter: #3,%
125
126
     listing only,%
     listing style = vpython,%
127
     nameref = #3,%
128
     title = \texttt{GlowScript} Program \thetcbcounter: #3,%
130
    width = 0.9\textwidth,%
131
    #1.
132 }%
    A new command for generating a list of GlowScript programs.
133 \NewDocumentCommand{\listofglowscriptprograms}{}{\tcblistof[\section*]{gsprogs}
     {List of \texttt{GlowScript} Programs}}%
    Introduce a new, more intelligent \vpythonfile \cdot P. 28 command.
135 \NewTCBInputListing[auto counter,list inside=vpprogs]{\vpythonfile}{ 0{} m m }{%
136
    breakable,%
     center,%
137
138
     code = \newpage,%
139
     %derivgray,%
140
     enhanced, %
     hyperurl interior = https://,%
141
     label = {vp:\thetcbcounter},%
```

```
left = 8mm, %
143
     list entry = \texttt{VPython} Program \thetcbcounter: #3,%
144
     listing file = \{\#2\},%
145
     listing only,%
146
     listing style = vpython,%
147
     nameref = #3,%
148
     title = \texttt{VPython} Program \thetcbcounter: #3,%
     width = 0.9\textwidth,%
     #1,%
151
152 }%
    A new command for generating a list of VPython programs.
153 \NewDocumentCommand{\listofvpythonprograms}{}{\tcblistof[\section*]{vpprogs}
     {List of \texttt{VPython} Programs}}%
    Introduce a new \glowscriptinline \, P. 30 command.
155 \DeclareTotalTCBox{\glowscriptinline}{ m }{%
     bottom = Opt,%
     bottomrule = 0.0mm,%
158
     boxsep = 1.0mm,%
     colback = gsbggray,%
159
     colframe = gsbggray,%
160
     left = Opt,%
161
     leftrule = 0.0mm,%
162
     nobeforeafter,%
163
     right = Opt,%
164
     rightrule = 0.0mm,%
165
166
     sharp corners,%
     tcbox raise base,%
167
     top = Opt,%
168
     toprule = 0.0mm,%
169
170 }{\lstinline[style = vpython]{#1}}%
    Define \vpythoninline \frac{1}{2}P. 30, a semantic alias for VPython in-line listings.
```

171 \NewDocumentCommand{\vpythoninline}{}{\glowscriptinline}%

Define units to be used with the unit engine. All single letter macros are now gone. We basically absorbed and adapted the now outdated Slunits package. We make use of \symup{...} from the unicode-math package.

```
172 \NewDocumentCommand{\per}{}{\nsuremath{\,/\,}}
173 \NewDocumentCommand{\usk}{}{\ensuremath{\,\cdot\,}}
174 \NewDocumentCommand{\unit}{ m m }{\ensuremath{{#1}\;{#2}}}
175 \NewDocumentCommand{\ampere}{}{\ensuremath{\symup{A}}}}
176 \NewDocumentCommand{\atomicmassunit}{}{\ensuremath{\symup{u}}}}
177 \NewDocumentCommand{\candela}{}{\ensuremath{\symup{cd}}}}
178 \NewDocumentCommand{\coulomb}{}{\ensuremath{\symup{C}}}}
179 \NewDocumentCommand{\degree}{}{\ensuremath{^{\circ}}}
180 \NewDocumentCommand{\electronvolt}{}{\ensuremath{\symup{eV}}}}
181 \NewDocumentCommand{\farad}{}{\ensuremath{\symup{F}}}
182 \NewDocumentCommand{\henry}{}{\ensuremath{\symup{H}}}}
183 \NewDocumentCommand{\hertz}{}{\ensuremath{\symup{Hz}}}}
184 \NewDocumentCommand{\joule}{}{\ensuremath{\symup{J}}}}
185 \NewDocumentCommand{\kelvin}{}{\ensuremath{\symup{K}}}}
186 \NewDocumentCommand{\kilogram}{}{\ensuremath{\symup{kg}}}
187 \NewDocumentCommand{\lightspeed}{}{\ensuremath{\symup{c}}}
188 \MewDocumentCommand{\meter}{}{\nsuremath{\symup{m}}}
189 \NewDocumentCommand{\metre}{}{\meter}
190 \NewDocumentCommand{\mole}{}{\ensuremath{\symup{mol}}}
191 \NewDocumentCommand{\newton}{}{\ensuremath{\symup{N}}}}
192 \NewDocumentCommand{\ohm}{}{\ensuremath{\symup\Omega}}
```

```
193 \NewDocumentCommand{\pascal}{}{\ensuremath{\symup{Pa}}}
194 \NewDocumentCommand{\radian}{}{\ensuremath{\symup{rad}}}}
195 \NewDocumentCommand{\second}{}{\ensuremath{\symup{s}}}
196 \NewDocumentCommand{\siemens}{}{\ensuremath{\symup{S}}}}
197 \NewDocumentCommand{\steradian}{}{\ensuremath{\symup{sr}}}
198 \NewDocumentCommand{\tesla}{}\ensuremath{\symup{T}}}
199 \NewDocumentCommand{\volt}{}{\ensuremath{\symup{V}}}}
200 \NewDocumentCommand{\watt}{}{\ensuremath{\symup{W}}}}
201 \NewDocumentCommand{\weber}{}{\ensuremath{\symup{Wb}}}
202 \NewDocumentCommand{\square}{ m }{\ensuremath{{#1}^2}}
                                                                     % prefix
203 \NewDocumentCommand{\cubic}{ m }{\ensuremath{{#1}^3}}
                                                                     % prefix
204 \NewDocumentCommand{\quartic}{ m }{\ensuremath{{#1}^4}}
                                                                     % prefix
205 \NewDocumentCommand{\reciprocal}{ m }{\ensuremath{{#1}^{-1}}}
                                                                     % prefix
                                                                               -1
206 \NewDocumentCommand{\reciprocalsquare}{ m }{\censuremath{{#1}^{-2}}}
                                                                     % prefix
                                                                     % prefix
207 \NewDocumentCommand{\reciprocalcubic}{ m }{\ensuremath{{#1}^{-3}}}
208 \NewDocumentCommand{\reciprocalquartic}{ m }{\ensuremath{{#1}^{-4}}} % prefix -4
209 \NewDocumentCommand{\squared}{}{\ensuremath{^2}}
                                                                     % postfix 2
210 \NewDocumentCommand{\cubed}{}{\ensuremath{^3}}
                                                                     % postfix 3
% postfix 4
212 \NewDocumentCommand{\reciprocaled}{}{\ensuremath{^{-1}}}
                                                                     % postfix -1
213 \ensuremath{^{-2}}
                                                                     % postfix -2
214 \ensuremath{^{-3}}
                                                                     % postfix -3
215 \MewDocumentCommand{\reciprocalquarted}{}{\newDocumenth{^{-}\{-4\}}}
                                                                     % postfix -4
216 \NewDocumentCommand{\emptyunit}{}{\ensuremath{\mdlgwhtsquare}}
    The core unit engine has been completely rewritten in expl3 for both clarity and power.
    Generic internal selectors.
217 \newcommand*{\mandi@selectunits}{}
218 \newcommand*{\mandi@selectprecision}{}
    Specific internal selectors.
219 \newcommand*{\mandi@selectapproximate}[2]{#1}
                                                  % really \@firstoftwo
220 \newcommand*{\mandi@selectprecise}[2]{#2}
                                                  % really \@secondoftwo
221 \newcommand*{\mandi@selectbaseunits}[3]{#1}
                                                  % really \Offirstofthree
222 \newcommand*{\mandi@selectderivedunits}[3]{#2}
                                                  % really \@secondofthree
223 \newcommand*{\mandi@selectalternateunits}[3]{#3} % really \@thirdofthree
    Document level global switches.
224 \NewDocumentCommand{\alwaysusebaseunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectbaseunits}}%
226 \NewDocumentCommand{\alwaysusederivedunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectderivedunits}}%
228 \NewDocumentCommand{\alwaysusealternateunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectalternateunits}}%
230 \NewDocumentCommand{\alwaysuseapproximateconstants}{}
     {\renewcommand*{\mandi@selectprecision}{\mandi@selectapproximate}}%
232 \NewDocumentCommand{\alwaysusepreciseconstants}{}
    {\renewcommand*{\mandi@selectprecision}{\mandi@selectprecise}}%
233
    Document level localized variants.
235 \NewDocumentCommand{\hereusederivedunits}{ m }{\begingroup\alwaysusederivedunits#1\endgroup}%
236 \NewDocumentCommand{\hereusealternateunits}{ m }{\begingroup\alwaysusealternateunits#1\endgroup}%
237 \NewDocumentCommand{\hereuseapproximateconstants}{ m }{\begingroup\alwaysuseapproximateconstants#1\endgroup}%
238 \NewDocumentCommand{\hereusepreciseconstants}{ m }{\begingroup\alwaysusepreciseconstants#1\endgroup}%
    Document level environments.
239 \NewDocumentEnvironment{usebaseunits}{}{\alwaysusebaseunits}{}%
240 \NewDocumentEnvironment{usederivedunits}{}{\alwaysusederivedunits}{}%
```

```
241 \NewDocumentEnvironment{usealternateunits}{}{\alwaysusealternateunits}{}}
243 \NewDocumentEnvironment{usepreciseconstants}{}{\alwaysusepreciseconstants}{}}
    Defining a new scalar quantity:
244 \NewDocumentCommand{\newscalarquantity}{ m m O{#2} O{#2} }{%
     \expandafter\newcommand\csname #1\endcsname[1]{##1\,\mandi@selectunits{#2}{#3}{#4}}%
     \expandafter\newcommand\csname #1value\endcsname[1]{##1}%
246
     \expandafter\newcommand\csname #1baseunits\endcsname[1]{##1\,\mandi@selectbaseunits{#2}{#3}{#4}}%
247
     \expandafter\newcommand\csname #1derivedunits\endcsname[1]{##1\,\mandi@selectderivedunits{#2}{#3}{#4}}%
248
     \expandafter\newcommand\csname #1alternateunits\endcsname[1]{##1\,\mandi@selectalternateunits{#2}{#3}{#4}}%
249
250
     \expandafter\newcommand\csname #1onlybaseunits\endcsname{\mandi@selectbaseunits{#2}{#3}{#4}}%
     \expandafter\newcommand\csname #1onlyderivedunits\endcsname{\mandi@selectderivedunits{#2}{#3}{#4}}%
251
     \expandafter\newcommand\csname #1onlyalternateunits\endcsname{\mandi@selectalternateunits{#2}{#3}{#4}}%
252
253 }%
    Redefining a new scalar quantity:
254 \NewDocumentCommand{\renewscalarquantity}{ m m 0{#2} 0{#2} }{%
     \expandafter\renewcommand\csname #1\endcsname[1]{##1\,\mandi@selectunits{#2}{#3}{#4}}%
256
     \expandafter\renewcommand\csname #1value\endcsname[1]{##1}%
257
     \expandafter\renewcommand\csname #1baseunits\endcsname[1]{##1\,\mandi@selectbaseunits{#2}{#3}{#4}}%
258
     \expandafter\renewcommand\csname #1derivedunits\endcsname[1]{##1\,\mandi@selectderivedunits{#2}{#3}{#4}}%
     \expandafter\renewcommand\csname #1alternateunits\endcsname[1]{##1\,\mandi@selectalternateunits{#2}{#3}{#4}}%
     \expandafter\renewcommand\csname #1onlybaseunits\endcsname{\mandi@selectbaseunits{#2}{#3}{#4}}%
260
     \expandafter\renewcommand\csname #1onlyderivedunits\endcsname{\mandi@selectderivedunits{#2}{#3}{#4}}%
261
     \expandafter\renewcommand\csname #1onlyalternateunits\endcsname{\mandi@selectalternateunits{#2}{#3}{#4}}%
262
263 }%
    Defining a new vector quantity. Note that a corresponding scalar is also defined.
264 \NewDocumentCommand{\newvectorquantity}{ m m 0{#2} 0{#2} }{%
     \newscalarquantity{#1}{#2}[#3][#4]
265
     \expandafter\newcommand\csname vector#1\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
266
267 }%
    Redefining a new vector quantity. Note that a corresponding scalar is also redefined.
268 \NewDocumentCommand{\renewvectorquantity}{ m m O{#2} O{#2} }{%
     \renewscalarquantity{#1}{#2}[#3][#4]
     \expandafter\renewcommand\csname vector#1\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
270
271 }%
    Defining a new physical constant:
272 \NewDocumentCommand{\newphysicalconstant}{ m m m m 0{#5} 0{#5} }{%
     \expandafter\newcommand\csname #1\endcsname
273
274
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectunits{#5}{#6}{#7}}%
     \expandafter\newcommand\csname #1mathsymbol\endcsname{\ensuremath{#2}}%
275
     \expandafter\newcommand\csname #1approximatevalue\endcsname{\ensuremath{#3}}%
276
     \expandafter\newcommand\csname #1precisevalue\endcsname{\ensuremath{#4}}%
277
278
     \expandafter\newcommand\csname #1baseunits\endcsname
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectbaseunits{#5}{#6}{#7}}%
279
     \expandafter\newcommand\csname #1derivedunits\endcsname
280
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectderivedunits{#5}{#6}{#7}}%
281
     \expandafter\newcommand\csname #1alternateunits\endcsname
282
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectalternateunits{#5}{#6}{#7}}%
283
     \expandafter\newcommand\csname #1onlybaseunits\endcsname
284
285
       {\mandi@selectbaseunits{#5}{#6}{#7}}%
     \expandafter\newcommand\csname #1onlyderivedunits\endcsname
286
       {\mandi@selectderivedunits{#5}{#6}{#7}}%
287
     \expandafter\newcommand\csname #1onlyalternateunits\endcsname
288
       {\mandi@selectalternateunits{#5}{#6}{#7}}%
289
290 }%
```

Redefining a new physical constant:

```
291 \NewDocumentCommand{\renewphysicalconstant}{ m m m m 0{#5} 0{#5} }{%
     \expandafter\renewcommand\csname #1\endcsname
292
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectunits{#5}{#6}{#7}}%
293
     \expandafter\renewcommand\csname #1mathsymbol\endcsname{\ensuremath{#2}}%
294
     \expandafter\renewcommand\csname #1approximatevalue\endcsname{\ensuremath{#3}}%
295
     \expandafter\renewcommand\csname #1precisevalue\endcsname{\ensuremath{#4}}%
296
     \expandafter\renewcommand\csname #1baseunits\endcsname
297
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectbaseunits{#5}{#6}{#7}}%
298
     \expandafter\renewcommand\csname #1derivedunits\endcsname
299
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectderivedunits{#5}{#6}{#7}}%
300
     \expandafter\renewcommand\csname #1alternateunits\endcsname
301
       302
     \expandafter\renewcommand\csname #1onlybaseunits\endcsname
303
       {\mandi@selectbaseunits{#5}{#6}{#7}}%
304
     \expandafter\renewcommand\csname #1onlyderivedunits\endcsname
305
       {\modelectderivedunits{#5}{#6}{#7}}%
306
     \expandafter\renewcommand\csname #1onlyalternateunits\endcsname
307
       {\mandi@selectalternateunits{#5}{#6}{#7}}%
308
309 }%
```

mandi now has a key-value interface, implemented with pgfopts and pgfkeys. There are two options: units $^{P.6}$, with values base, derived, or alternate selects the default form of units preciseconstants $^{P.6}$, with values true and false, selects precise numerical values for constants rather than approximate values.

First, define the keys. The key handlers require certain commands defined by the unit engine, and thus must be defined and processed after the unit engine code.

```
310 \newif\ifusingpreciseconstants
311 \pgfkeys{%
     /mandi/options/.cd,
312
     initial@setup/.style={%
313
       /mandi/options/buffered@units/.initial=alternate,%
314
315
     },%
     initial@setup,%
316
     preciseconstants/.is if=usingpreciseconstants,%
317
     units/.is choice,%
318
     units/.default=derived,%
319
     units/alternate/.style={/mandi/options/buffered@units=alternate},%
320
     units/base/.style={/mandi/options/buffered@units=base},%
322
     units/derived/.style={/mandi/options/buffered@units=derived},%
323 }%
```

Process the options.

324 \ProcessPgfPackageOptions{/mandi/options}

Write a banner to the console showing the options in use. The value of the units $^{\rightarrow P.6}$ key is used in situ to set the default units.

```
325 \newcommand*{\mandi@linetwo}{\typeout{mandi: Loadtime options...}}
326 \newcommand*{\mandi@do@setup}{%
     \typeout{}%
327
     \typeout{mandi: You are using mandi \mandiversion.}%
328
329
     \csname alwaysuse\pgfkeysvalueof{/mandi/options/buffered@units}units\endcsname%
330
     \typeout{mandi: You will get \pgfkeysvalueof{/mandi/options/buffered@units}\space units.}%
331
     \ifusingpreciseconstants
332
       \alwaysusepreciseconstants
333
334
       \typeout{mandi: You will get precise constants.}%
335
     \else
```

```
336 \alwaysuseapproximateconstants
337 \typeout{mandi: You will get approximate constants.}%
338 \fi
339 \typeout{}%
340 }%
341 \mandi@do@setup
```

Define a setup command that overrides the loadtime options when called with new options. A new banner is written to the console.

```
342 \NewDocumentCommand{\mandisetup}{ m }{%

343 \IfValueT{#1}{%

344 \pgfqkeys{/mandi/options}{#1}

345 \renewcommand*{\mandi@linetwo}{\typeout{mandi: mandisetup options...}}

346 \mandi@do@setup

347 }%

348 }%
```

Define every quantity we need in introductory physics, alphabetically for convenience. This is really the core feature of mandi that no other package offers. There are commands for quantities that have no dimensions or units, and these quantities are defined for semantic completeness.

```
349 \newvectorquantity{acceleration}%
350
              {\meter\usk\second\reciprocalsquared}%
351
               [\newton\per\kilogram]%
               [\mbox{\ensuremath{$\backslash$}} \mbox{\ensuremath{$\backslash$}} \mbox{\ensuremath{\\backslash$}} \mbox{\ensuremath{$\backslash$}} \mbox{\ensuremath{\\backslash$}} \mb
352
353 \newscalarquantity{amount}%
              {\mole}%
355 \newvectorquantity{angularacceleration}%
356
              {\radian\usk\second\reciprocalsquared}%
357
               [\radian\per\second\squared]%
               [\radian\per\second\squared]%
359 \newscalarquantity{angularfrequency}%
              {\radian\usk\reciprocal\second}%
               [\radian\per\second]%
               [\radian\per\second]%
363 %\ifmandi@rotradians
                \newphysicalquantity{angularimpulse}%
364 %
                       {\meter\squared\usk\kilogram\usk\reciprocal\second\usk\reciprocal\radian}%
365 %
                       [\joule\usk\second\per\radian]%
366 %
367 %
                        [\newton\usk\meter\usk\second\per\radian]%
368 %
                 \newphysicalquantity{angularmomentum}%
369 %
                       {\meter\squared\usk\kilogram\usk\reciprocal\second\usk\reciprocal\radian}%
                        [\kilogram\usk\meter\squared\per(\second\usk\radian)]%
370 %
                        [\newton\usk\meter\usk\second\per\radian]%
371 %
372 %\else
              \newvectorquantity{angularimpulse}%
373
                    {\meter\squared\usk\kilogram\usk\reciprocal\second}%
374
                     [\kilogram\usk\meter\squared\per\second]% % also \joule\usk\second
375
                     [\kilogram\usk\meter\squared\per\second]% % also \newton\usk\meter\usk\second
376
               \newvectorquantity{angularmomentum}%
377
                    {\meter\squared\usk\kilogram\usk\reciprocal\second}%
378
                     [\kilogram\usk\meter\squared\per\second]% % also \joule\usk\second
379
                     [\kilogram\usk\meter\squared\per\second]% % also \newton\usk\meter\usk\second
380
381 %\fi
382 \newvectorquantity{angularvelocity}%
              {\radian\usk\reciprocal\second}%
383
               [\radian\per\second]%
384
               [\radian\per\second]%
386 \newscalarquantity{area}%
              {\meter\squared}%
```

```
388 \newscalarquantity{areamassdensity}%
     {\meter\reciprocalsquared\usk\kilogram}%
389
     [\kilogram\per\meter\squared]%
390
     [\kilogram\per\meter\squared]%
391
392 \newscalarquantity{areachargedensity}%
     {\reciprocalsquare\meter\usk\second\usk\ampere}%
     [\coulomb\per\square\meter]%
     [\coulomb\per\square\meter]%
395
396 \newscalarquantity{capacitance}%
     {\reciprocalsquare\meter\usk\reciprocal\kilogram\usk\quartic\second\usk\square\ampere}}
     [\farad]%
398
     [\coulomb\per\volt]% % also \coulomb\squared\per\newton\usk\meter, \second\per\ohm
399
400 \newscalarquantity{charge}%
     {\ampere\usk\second}%
     [\coulomb]%
402
     [\coulomb]% % also \farad\usk\volt
403
404 \newvectorquantity{cmagneticfield}%
     {\meter\usk\kilogram\usk\second\reciprocalcubed\usk\reciprocal\ampere}%
     [\volt\per\meter]%
406
     [\newton\per\coulomb]%
408 \newscalarquantity{conductance}%
     {\reciprocalsquare\meter\usk\reciprocal\kilogram\usk\cubic\second\usk\square\ampere}}
409
     [\siemens]%
410
     [\ampere\per\volt]%
411
412 \newscalarquantity{conductivity}%
     {\reciprocalcubic\meter\usk\reciprocal\kilogram\usk\cubic\second\usk\square\ampere}}
413
     [\siemens\per\meter]%
414
     [(\ampere\per\square\meter)\per(\volt\per\meter)]%
415
416 \newscalarquantity{conventionalcurrent}%
     {\ampere}%
417
     [\coulomb\per\second]%
418
     [\ampere]%
419
420 \newscalarquantity{current}%
     {\ampere}%
422 \newscalarquantity{currentdensity}%
     {\reciprocalsquare\meter\usk\ampere}%
423
     [\coulomb\usk\second\per\square\meter]%
424
     [\ampere\per\square\meter]%
425
426 \newscalarquantity{dielectricconstant}%
427
428 \newvectorquantity{displacement}%
     {\meter}
429
430 \newscalarquantity{duration}%
     {\second}%
432 \newvectorquantity{electricdipolemoment}%
     {\meter\usk\second\usk\ampere}%
     [\coulomb\usk\meter]%
434
     [\coulomb\usk\meter]%
435
436 \newvectorquantity{electricfield}%
     {\meter\usk\kilogram\usk\second\reciprocalcubed\usk\reciprocal\ampere}%
437
     [\volt\per\meter]%
438
     [\newton\per\coulomb]%
439
440 \newscalarquantity{electricflux}%
     {\meter\cubed\usk\kilogram\usk\second\reciprocalcubed\usk\reciprocal\ampere}%
441
     [\volt\usk\meter]%
442
     [\newton\usk\meter\squared\per\coulomb]%
443
444 \newscalarquantity{electricpotential}%
445
     {\square\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocal\ampere}%
446
     [\volt]%
```

```
[\joule\per\coulomb]%
447
448 \newscalarquantity{electroncurrent}%
     {\reciprocal\second}%
449
     [\ensuremath{\symup{e}}\per\second]%
450
     [\ensuremath{\symup{e}}\per\second]%
451
452 \newscalarquantity{emf}%
453
     {\square\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocal\ampere}%
454
     [\volt]%
     [\joule\per\coulomb]%
455
456 \newscalarquantity{energy}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalsquared}%
457
     [\joule]% % also \newton\usk\meter
458
     [\joule]%
460 \newscalarquantity{energydensity}%
     {\meter\reciprocaled\usk\kilogram\usk\reciprocalsquare\second}%
461
     [\joule\per\cubic\meter]%
462
     [\joule\per\cubic\meter]%
463
464 \newscalarquantity{energyflux}%
     {\kilogram\usk\second\reciprocalcubed}%
466
     [\watt\per\meter\squared]%
     [\watt\per\meter\squared]%
467
468 \newscalarquantity{entropy}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalsquared\usk\reciprocal\kelvin}%
469
     [\joule\per\kelvin]%
470
     [\joule\per\kelvin]%
471
472 \newvectorquantity{force}%
     {\meter\usk\kilogram\usk\second\reciprocalsquared}%
474
     [\newton]% % also \kilogram\usk\meter\per\second\squared
475
476 \newscalarquantity{frequency}%
     {\reciprocal\second}%
477
     [\hertz]%
478
     [\hertz]%
480 \newvectorquantity{gravitationalfield}%
     {\meter\usk\second\reciprocalsquared}%
481
     [\newton\per\kilogram]%
482
     [\newton\per\kilogram]%
483
484 \newscalarquantity{gravitationalpotential}%
     {\square\meter\usk\reciprocalsquare\second}%
     [\joule\per\kilogram]%
     [\joule\per\kilogram]%
487
488 \newvectorquantity{impulse}%
     {\meter\usk\kilogram\usk\reciprocal\second}%
489
     [\newton\usk\second]%
490
491
     [\newton\usk\second]%
492 \newscalarquantity{indexofrefraction}%
493
494 \newscalarquantity{inductance}%
     {\square\meter\usk\kilogram\usk\reciprocalsquare\second\usk\reciprocalsquare\ampere}%
495
     [\henry]%
496
     [\volt\usk\second\per\ampere]% % also \square\meter\usk\kilogram\per\coulomb\squared, \Wb\per\ampere
497
498 \newscalarquantity{linearchargedensity}%
     {\reciprocal\meter\usk\second\usk\ampere}%
499
     [\coulomb\per\meter]%
500
     [\coulomb\per\meter]%
501
502 \newscalarquantity{linearmassdensity}%
     {\reciprocal\meter\usk\kilogram}%
503
504
     [\kilogram\per\meter]%
505
     [\kilogram\per\meter]%
```

```
506 \newscalarquantity{luminous}%
           {\candela}%
507
508 \newscalarquantity{magneticcharge}%
           {\meter\usk\ampere}%
510 \newvectorquantity{magneticdipolemoment}%
          {\square\meter\usk\ampere}%
512
           [\ampere\usk\square\meter]%
513
           [\joule\per\tesla]%
514 \newvectorquantity{magneticfield}%
          {\bf x} \ {\bf x
           [\tesla]%
516
           [\newton\per\coulomb\usk(\meter\per\second)]% % also \Wb\per\meter\squared
517
518 \newscalarquantity{magneticflux}%
           {\meter\squared\usk\kilogram\usk\second\reciprocalsquared\usk\reciprocal\ampere}%
           [\tesla\usk\meter\squared]%
520
           [\volt\usk\second]% % also \Wb and \joule\per\ampere
521
522 \newscalarquantity{mass}%
          {\kilogram}%
524 \newscalarquantity{mobility}%
525
          {\meter\squared\usk\kilogram\usk\second\reciprocalquarted\usk\reciprocal\ampere}%
           [\meter\squared\per\volt\usk\second]%
526
           [(\meter\per\second)\per(\newton\per\coulomb)]%
527
528 \newscalarquantity{momentofinertia}%
          {\meter\squared\usk\kilogram}%
529
           [\joule\usk\second\squared]%
530
           [\kilogram\usk\meter\squared]%
531
532 \newvectorquantity{momentum}%
          {\meter\usk\kilogram\usk\reciprocal\second}%
533
           [\newton\usk\second]%
534
           [\kilogram\usk\meter\per\second]%
535
536 \newvectorquantity{momentumflux}%
          {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
538
           [\newton\per\meter\squared]%
           [\newton\per\meter\squared]%
539
540 \newscalarquantity{numberdensity}%
          {\reciprocalcubic\meter}%
541
           [\per\cubic\meter]%
542
           [\per\cubic\meter]%
544 \newscalarquantity{permeability}%
           {\meter\usk\kilogram\usk\second\reciprocalsquared\usk\ampere\reciprocalsquared}%
546
           [\tesla\usk\meter\per\ampere]%
           [\henry\per\meter]%
547
548 \newscalarquantity{permittivity}%
          {\meter\reciprocalcubed\usk\reciprocal\kilogram\usk\second\reciprocalquarted\usk\ampere\squared}%
549
550
           [\farad\per\meter]%
           [\coulomb\squared\per\newton\usk\meter\squared]%
552 \newscalarquantity{planeangle}%
          {\meter\usk\reciprocal\meter}%
553
           [\radian]%
554
           [\radian]%
555
556 \newscalarquantity{polarizability}%
           {\reciprocal\kilogram\usk\second\quarted\usk\square\ampere}%
557
           [\coulomb\usk\square\meter\per\volt]%
558
559
           [\coulomb\usk\meter\per(\newton\per\coulomb)]%
560 \newscalarquantity{power}%
561
          {\meter\squared\usk\kilogram\usk\second\reciprocalcubed}%
562
           [\watt]%
563
           [\joule\per\second]%
564 \newvectorquantity{poynting}%
```

```
{\kilogram\usk\second\reciprocalcubed}%
565
566
     [\watt\per\meter\squared]%
     [\watt\per\meter\squared]%
567
568 \newscalarquantity{pressure}%
     {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
569
570
     [\pascal]%
     [\newton\per\meter\squared]%
572 \newscalarquantity{relativepermeability}
574 \newscalarquantity{relativepermittivity}%
575
576 \newscalarquantity{resistance}%
     {\square\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocalsquare\ampere}}
     [\volt\per\ampere]%
578
     [\ohm]%
579
580 \newscalarquantity{resistivity}%
     {\cubic\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocalsquare\ampere}}
581
     [\ohm\usk\meter]%
582
     [(\volt\per\meter)\per(\ampere\per\square\meter)]%
584 \newscalarquantity{solidangle}%
     {\meter\squared\usk\reciprocalsquare\meter}%
     [\steradian]%
586
     [\steradian]%
587
588 \newscalarquantity{specificheatcapacity}%
     {\meter\squared\usk\second\reciprocalsquared\usk\reciprocal\kelvin}%
589
     [\joule\per\kelvin\usk\kilogram]%
590
     [\joule\per\kelvin\usk\kilogram]
592 \newscalarquantity{springstiffness}%
     {\kilogram\usk\second\reciprocalsquared}%
593
     [\newton\per\meter]%
594
     [\newton\per\meter]%
595
596 \newscalarquantity{springstretch}% % This is really just a displacement.
     {\meter}%
598 \newscalarquantity{stress}%
     {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
     [\pascal]%
600
     [\newton\per\meter\squared]%
601
602 \newscalarquantity{strain}%
604 \newscalarquantity{temperature}%
    {\kelvin}%
606 %\ifmandi@rotradians
607 % \newphysicalquantity{torque}%
        {\meter\squared\usk\kilogram\usk\second\reciprocalsquared\usk\reciprocal\radian}%
608 %
609 %
        [\newton\usk\meter\per\radian]%
610 %
        [\newton\usk\meter\per\radian]%
611 %\else
     \newvectorquantity{torque}%
       {\meter\squared\usk\kilogram\usk\second\reciprocalsquared}%
613
       [\newton\usk\meter]%
614
       [\newton\usk\meter]%
615
616 %\fi
617 \newvectorquantity{velocity}%
     {\meter\usk\reciprocal\second}%
     [\meter\per\second]%
619
620
     [\meter\per\second]%
621 \newvectorquantity{velocityc}%
     {\lightspeed}%
622
623
     []%
```

```
[\lightspeed]%
624
625 \newscalarquantity{volume}%
     {\cubic\meter}%
627 \newscalarquantity{volumechargedensity}%
    {\reciprocalcubic\meter\usk\second\usk\ampere}%
628
629
     [\coulomb\per\cubic\meter]%
     [\coulomb\per\cubic\meter]%
631 \newscalarquantity{volumemassdensity}%
     {\meter\reciprocalcubed\usk\kilogram}%
     [\kilogram\per\meter\cubed]%
633
     [\kilogram\per\meter\cubed]%
635 \newscalarquantity{wavelength}% % This is really just a displacement.
    {\meter}%
637 \newvectorquantity{wavenumber}%
     {\reciprocal\meter}%
638
     [\per\meter]%
639
     [\per\meter]%
640
641 \newscalarquantity{work}%
642
     {\meter\squared\usk\kilogram\usk\second\reciprocalsquared}%
     [\newton\usk\meter]%
645 \newscalarquantity{youngsmodulus}% % This is really just a stress.
     {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
646
     [\pascal]%
647
     [\newton\per\meter\squared]%
648
    Define physical constants for introductory physics, again alphabetically for convenience.
649 \newphysicalconstant{avogadro}%
650
    {N_A}
651
     {6\timestento{23}}{6.022140857\timestento{23}}%
     {\reciprocal\mole}%
652
653
     [\per\mole]%
     [\per\mole]%
655 \newphysicalconstant{biotsavartconstant}% % alias for \mzofp
     {\frac{\mu_o}{4\pi}}%
     {\tento{-7}}{\tento{-7}}%
657
     {\meter\usk\kilogram\usk\second\reciprocalsquared\usk\ampere\reciprocalsquared}%
658
     [\henry\per\meter]%
659
     [\tesla\usk\meter\per\ampere]%
661 \newphysicalconstant{bohrradius}%
    {a_0}%
662
663
    \{5.3\timestento\{-11\}\}\{5.2917721067\timestento\{-11\}\}\%
     {\meter}%
664
665 \newphysicalconstant{boltzmann}%
    \{k_B\}\%
666
     {1.4\times -23}}{1.38064852\times -23}}%
     {\meter\squared\usk\reciprocal\kelvin}%
668
     [\joule\per\kelvin]%
669
     [\joule\per\kelvin]%
670
671 \newphysicalconstant{coulombconstant}% % alias for \oofpez
    {\frac{1}{4\pi\epsilon_o}}%
672
     {9}\times {9}\times {9}
673
     {\meter\cubed\usk\kilogram\usk\reciprocalquartic\second\usk\ampere\reciprocalsquared}%
674
     [\meter\per\farad]%
675
     [\newton\usk\meter\squared\per\coulomb\squared]%
677 \newphysicalconstant{earthmass}%
678
    {M_{\symup{Earth}}}%
    \{6.0 \times \{24\}\} \{5.97237 \times \{24\}\} \%
679
680
    {\kilogram}%
```

```
681 \newphysicalconstant{earthmoondistance}%
     {d_{\symup{EM}}}%
682
     {3.8\timestento{8}}{3.81550\timestento{8}}%
683
     {\meter}%
684
685 \newphysicalconstant{earthradius}%
     {R_{\symup{Earth}}}%
     \{6.4 \times \{6.4 \}\} \{6.371 \times \{6\}\} \%
    {\meter}%
688
689 \newphysicalconstant{earthsundistance}%
     {d_{\symup{ES}}}%
     \{1.5\timestento\{11\}\}\{1.496\timestento\{11\}\}\%
691
     {\meter}%
692
693 \newphysicalconstant{electroncharge}%
     {q_e}%
     {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
695
     {\ampere\usk\second}%
696
     [\coulomb]%
697
     [\coulomb]%
698
699 \newphysicalconstant{electronCharge}%
     {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
701
     {\ampere\usk\second}%
702
     [\coulomb]%
703
     [\coulomb]%
704
705 \newphysicalconstant{electronmass}%
706
     {m_e}%
     {9.1\times -31}
707
     {\kilogram}%
708
709 \newphysicalconstant{elementarycharge}%
    {e}%
710
     {1.6\times \{1.6\times \{-19\}\}}{1.6021766208\times \{-19\}\}}%
711
712
     {\ampere\usk\second}%
     [\coulomb]%
713
     [\coulomb]%
715 \newphysicalconstant{finestructure}%
     {\alpha}%
716
     {\frac{1}{137}}{7.2973525664\times{-3}}%
717
718
719 \newphysicalconstant{hydrogenmass}%
    {m_H}%
720
     {1.7}\times{-27}}{1.6737236}\times{-27}}%
721
     {\kilogram}%
723 \newphysicalconstant{moonearthdistance}%
     \{d_{\scriptstyle ME}\}\
724
     {3.8\times 1550\times 8}
725
     {\meter}%
727 \newphysicalconstant{moonmass}%
     {M_{\symup{Moon}}}%
     {7.3} \times {22} {7.342} \times {22} %
729
     {\kilogram}%
730
731 \newphysicalconstant{moonradius}%
     {R_{\{ \symup\{Moon\}\}\}}} %
732
     {1.7\times 6}}{1.7371\times 6}}
733
     {\meter}%
735 \newphysicalconstant{neutronmass}%
736
     {m_n}%
     {1.7}\times{-27}}{1.674927471}\times{-27}}%
737
     {\kilogram}%
739 \newphysicalconstant{oofpez}%
```

```
{\frac{1}{4\pi\epsilon o}}%
740
     {9\timestento{9}}{8.987551787\timestento{9}}%
741
     {\meter\cubed\usk\kilogram\usk\reciprocalquartic\second\usk\ampere\reciprocalsquared}%
742
     [\meter\per\farad]%
743
     [\newton\usk\meter\squared\per\coulomb\squared]%
744
745 \newphysicalconstant{oofpezcs}%
    {\frac{1}{4\pi\epsilon_o c^2}}%
     {\tento{-7}}{\tento{-7}}%
747
     {\meter\usk\kilogram\usk\second\reciprocalsquared\usk\ampere\reciprocalsquared}}
748
     [\tesla\usk\meter\squared]%
749
     [\newton\usk\second\squared\per\coulomb\squared]%
751 \newphysicalconstant{planck}%
    {h}%
     \{6.6\timestento\{-34\}\}\{6.626070040\timestento\{-34\}\}\%
753
     {\meter\squared\usk\kilogram\usk\reciprocal\second}%
754
     [\joule\usk\second]%
755
     [\joule\usk\second]%
756
757 \newphysicalconstant{planckbar}%
    {\hslash}%
     \{1.1\timestento\{-34\}\}\{1.054571800\timestento\{-34\}\}\%
759
     {\meter\squared\usk\kilogram\usk\reciprocal\second}%
760
     [\joule\usk\second]%
761
     [\joule\usk\second]
762
763 \newphysicalconstant{planckc}%
    {hc}%
764
     {2.0\times {-25}}{1.98644568\times {-25}}%
765
     {\meter\cubed\usk\kilogram\usk\reciprocalsquare\second}%
767
     [\joule\usk\meter]%
     [\joule\usk\meter]%
768
769 \newphysicalconstant{protoncharge}%
    {q_p}%
770
    {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
771
    {\ampere\usk\second}%
    [\coulomb]%
773
    [\coulomb]%
774
775 \newphysicalconstant{protonCharge}%
    {Q_p}%
776
     {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
777
778
     {\ampere\usk\second}%
     [\coulomb]%
779
     [\coulomb]%
780
781 \newphysicalconstant{protonmass}%
782 {m_p}%
    \{1.7\timestento\{-27\}\}\{1.672621898\timestento\{-27\}\}\%
783
784
    {\kilogram}%
785 \newphysicalconstant{rydberg}%
     {R_{\left( \right)}}%
     {1.1\timestento{7}}{1.0973731568508\timestento{7}}%
787
     {\reciprocal\meter}%
788
789 \newphysicalconstant{speedoflight}%
    {c}%
790
     {3\neq 0}
791
     {\meter\usk\reciprocal\second}%
792
     [\meter\per\second]%
793
     [\meter\per\second]
794
795 \newphysicalconstant{stefanboltzmann}%
796
    {\sigma}%
     \{5.7\timestento\{-8\}\}\{5.670367\timestento\{-8\}\}\%
797
```

{\kilogram\usk\second\reciprocalcubed\usk\kelvin\reciprocalquarted}%

```
[\watt\per\meter\squared\usk\kelvin\quarted]%
799
     [\watt\per\meter\squared\usk\kelvin\quarted]
800
801 \newphysicalconstant{sunearthdistance}%
     \{d_{\text{symup}}(SE)\}\
802
     \{1.5\timestento\{11\}\}\{1.496\timestento\{11\}\}\%
803
     {\meter}%
804
805 \newphysicalconstant{sunmass}%
     {M {\symup{Sun}}}%
     {2.0\times {30}}{1.98855\times {30}}
807
     {\kilogram}%
808
809 \newphysicalconstant{sunradius}%
     {R_{symup{Sun}}}
     {7.0\times \{8\}}{6.957\times \{6.957\}}
     {\meter}%
813 \newphysicalconstant{surfacegravfield}%
     {g}%
814
     {9.8}{9.807}%
815
     {\meter\usk\second\reciprocalsquared}%
816
     [\newton\per\kilogram]%
     [\newton\per\kilogram]%
819 \newphysicalconstant{universalgrav}%
820
     \{6.7\timestento\{-11\}\}\{6.67408\timestento\{-11\}\}\%
821
     {\meter\cubed\usk\reciprocal\kilogram\usk\second\reciprocalsquared}%
822
     [\newton\usk\meter\squared\per\kilogram\squared]% % also \joule\usk\meter\per\kilogram\squared
823
     [\newton\usk\meter\squared\per\kilogram\squared]%
824
825 \newphysicalconstant{vacuumpermeability}%
826
     {\mu_o}%
     {4\pi}{4\pi}{timestento}{-7}}{4\pi}{timestento}{-7}}%
827
     {\meter\usk\kilogram\usk\second\reciprocalsquared\\uk\ampere\reciprocalsquared\\%
828
     [\henry\per\meter]%
829
     [\tesla\usk\meter\per\ampere]%
831 \newphysicalconstant{vacuumpermittivity}%
     {\epsilon_o}%
     {9 \times {-12}}{8.854187817 \times {-12}}%
833
     {\meter\reciprocalcubed\usk\reciprocal\kilogram\usk\second\quarted\usk\ampere\squared}%
834
     [\farad\per\meter]%
835
     [\coulomb\squared\per\newton\usk\meter\squared]%
836
```

A better, intelligent coordinate-free \vec^\partial^P.30 command. Note the use of the e{_^} type of optional argument. This accounts for much of the flexibility and power of this command. Also note the use of the TEX primitives \sb{} and \sp{}. Why doesn't it work when I put spaces around #3 or #4? Because outside of \ExplSyntaxOn...\ExplSyntaxOff, the _ character has a different catcode and is treated as a mathematical entity.

See https://tex.stackexchange.com/q/554706/218142.

See also https://tex.stackexchange.com/a/531037/218142.

```
837 \RenewDocumentCommand{\vec}{ s m e{_^} }{%
     \ensuremath{%
838
       % Note the \, used to make superscript look better.
839
       \IfBooleanTF {#1}
                                 % check for *
840
         {\vv{#2}% % * gives an arrow
841
            % Use \sp{} primitive for superscript.
842
            % Adjust superscript for the arrow.
843
            \fill T{\#4}{\,\#4}\vphantom{\smash[t]{\big|}}}
844
845
         }%
         {\symbfit{#2} % no * gives us bold
846
            % Use \sp{} primitive for superscript.
847
            % No superscript adjustment needed.
848
            \sp{\IfValueT{#4}{#4}\vphantom{\smash[t]{\big|}}}
849
         }%
850
```

```
% Use \sb{} primitive for subscript.
851
       \style T{#3}{#3}\vphantom{\smash[b]{|}}}
852
     }%
853
854 }%
    The zero vector.
855 \NewDocumentCommand{\zerovec}{ s }{%
     \IfBooleanTF {#1}
       {\vv{0}}%
857
       {\sup\{0}}%
858
859 }%
    A command for the change in a vector.
860 \NewDocumentCommand{\Dvec}{ s m }{%
861
     \Delta
     \IfBooleanTF{#1}
862
       {\vec*}%
863
       {\vec}%
864
865
     {#2}
866 }%
```

A command for the direction of a vector. We use a slight tweak is needed to get uniform hats that requires the makebox package.

See https://tex.stackexchange.com/a/391204/218142.

```
867 \NewDocumentCommand{\dirvec}{ s m }{%
     \widetilde{\mbox{(w\)}}{\%}
868
869
       \ensuremath{%
          \IfBooleanTF{#1}%
870
            {#2}%
871
            {\symbfit{#2}}%
872
         }%
873
       }%
874
     }%
875
876 }%
```

A command for the magnitude of a vector.

```
877 \NewDocumentCommand{\magvec}{ s m }{%

878 \doublebars{%

879 \IfBooleanTF{#1}

880 {\vec*}%

881 {\vec}%

882 {#2}

883 }%
```

Intelligent commands for typesetting vector and tensor symbols and components suitable for use with both coordinate-free and index notations. Use starred form for index notation, unstarred form for coordinate-free.

```
885 \NewDocumentCommand{\veccomp}{ s m }{%
     % Consider renaming this to \vectorsym.
886
     \IfBooleanTF{#1}
887
     {\%} We have a *.
888
       \ensuremath{\symnormal{#2}}%
889
     }%
890
891
     {% We don't have a *.
       \ensuremath{\symbfit{#2}}%
892
     }%
893
894 }%
895 \NewDocumentCommand{\tencomp}{ s m }{%
     % Consider renaming this to \tensororsym.
```

```
\IfBooleanTF{#1}
897
     \{\%\ We have a *.
898
       \ensuremath{\symsfit{#2}}%
899
     }%
900
     {\%} We don't have a *.
901
       \ensuremath{\symbfsfit{#2}}%
902
903
     }%
904 }%
    An environment for problem statements. The starred version allows for in-line lists.
905 \NewDocumentEnvironment{physicsproblem}{ m }{%
     \newpage%
906
     \strut_{\#1}%
907
     \newlist{parts}{enumerate}{2}%
908
     \setlist[parts]{label=\bfseries(\alph*)}}%
909
910
911 \NewDocumentEnvironment{physicsproblem*}{ m }{%
     \newpage%
912
     \section*{#1}%
914
     \newlist{parts}{enumerate*}{2}%
     \setlist[parts]{label=\bfseries(\alph*)}}%
915
916
917 \NewDocumentCommand{\problempart}{}{\item}%
    An environment for problem solutions.
918 \NewDocumentEnvironment{physicssolution}{ +b }{%
     % Make equation numbering consecutive through the document.
920
     \begin{align}
       #1
921
     \end{align}
922
923 }{}%
924 \NewDocumentEnvironment{physicssolution*}{ +b }{%
     % Make equation numbering consecutive through the document.
     \begin{align*}
926
       #1
927
     \end{align*}
928
929 }{}%
    A simplified command for importing images.
930 \NewDocumentCommand{\image}{ O{scale=1} m m m }{%
     \begin{figure}[ht!]
931
       \begin{center}%
932
         \includegraphics[#1]{#2}%
933
       \end{center}%
934
       \caption{#3}%
935
936
       \label{#4}%
     \end{figure}%
937
938 }%
    See https://tex.stackexchange.com/q/570223/218142.
939 \NewDocumentCommand{\reason}{ O{4cm} m }{&&\begin{minipage}{#1}\raggedright\small #2\end{minipage}}
    Notation for column and row vectors. \mivector→P.31 is a workhorse command.
 Orginal code provided by @egreg.
 See https://tex.stackexchange.com/a/39054/218142.
940 \ExplSyntaxOn
941 \NewDocumentCommand{\mivector}{ O{,} m o }%
942 {%
```

\mi_vector:nn { #1 } { #2 }

943

```
\IfValueT{#3}{\;{#3}}
944
945 }%
946 \seq_new:N \l__mi_list_seq
947 \cs_new_protected:Npn \mi_vector:nn #1 #2
948 {%
949
     \ensuremath{%
950
       \seq_set_split:Nnn \l_mi_list_seq { , } { #2 }
       \int compare:nF { \seq count:N \l mi list seq = 1 } { \left\langle }
951
       \seq_use: Nnnn \l__mi_list_seq { #1 } { #1 } { #1 }
952
       \int_compare:nF { \seq_count:N \l__mi_list_seq = 1 } { \right\rangle }
953
     }%
954
955 }%
956 \NewDocumentCommand{\colvec}{ O{,} m }{%
     \vector_main:nnnn { p } { \\ } { #1 } { #2 }
958 }%
959 \NewDocumentCommand{\rowvec}{ O{,} m }{%
     \vector_main:nnnn { p } { & } { #1 } { #2 }
960
961 }%
962 \seq_new:N \l__vector_arg_seq
963 \cs_new_protected:Npn \vector_main:nnnn #1 #2 #3 #4 {%
     \seq_set_split:Nnn \l__vector_arg_seq { #3 } { #4 }
     \begin{#1NiceMatrix}[r]
965
       \seq_use:Nnnn \l__vector_arg_seq { #2 } { #2 } { #2 }
966
     \end{#1NiceMatrix}
967
968 }%
969 \ExplSyntaxOff
    Commands for scientific notation.
970 \ensuremath{10^{\#1}}
971 \NewDocumentCommand{\timestento}{ m }{\ensuremath{\;\times\;\tento{#1}}}
972 \NewDocumentCommand{\xtento}{ m }{\ensuremath{\;\times\;\tento{#1}}}
973 \NewDocumentCommand{\changein}{}{\Delta}
    Intelligent delimiters provided via the mathtools package. Use the starred versions for fractions. You can supply optional
sizes. Note that default placeholders are used when the argument is empty.
974 \DeclarePairedDelimiterX{\doublebars}[1]{\\IVert}{\\rVert}{\\ifblank{#1}}\\:\cdot\\:\}#1}}
975 \DeclarePairedDelimiterX{\singlebars}[1]{\lvert}{\rvert}{\ifblank{#1}}{\:\cdot\:}{#1}}
976 \DeclarePairedDelimiterX{\anglebrackets}[1]{\langle}{\rangle}{\ifblank{#1}{\:\cdot\:}{#1}}
977 \DeclarePairedDelimiterX{\parentheses}[1]{()}{\}ifblank{#1}{\:\cdot\:}{#1}}
978 \DeclarePairedDelimiterX{\squarebrackets}[1]{\lbrack}{\rbrack}{\lifblank{#1}{\:\cdot\:}{#1}}
979 \DeclarePairedDelimiterX{\curlybraces}[1]{\lbrace}{\rbrace}{\ifblank{#1}}{\:\cdot\:}{#1}}
    Some semantic aliases.
980 \NewDocumentCommand{\magnitude}{}{\doublebars}
981 \NewDocumentCommand{\norm}{}{\doublebars}
982 \NewDocumentCommand{\absolutevalue}{}{\singlebars}
983 \NewDocumentCommand{\direction}{}{\mivector}
984 \NewDocumentCommand{\unitvector}{}{\mivector}
    Command for highlighting parts of, or entire, mathematical expressions.
Original code by anonymous user Cabcdefg, modified by me.
See https://texample.net/tikz/examples/beamer-arrows/.
See also https://tex.stackexchange.com/a/406084/218142.
See also https://tex.stackexchange.com/a/570858/218142.
See also https://tex.stackexchange.com/a/570789/218142.
See also https://tex.stackexchange.com/a/79659/218142.
See also https://tex.stackexchange.com/q/375032/218142.
See also https://tex.stackexchange.com/a/571744/218142.
```

```
985 \newcounter{tikzhighlightnode}
986 \NewDocumentCommand{\hilite}{ O{magenta!60} m O{rectangle} }{%
      \stepcounter{tikzhighlightnode}%
987
      \tikzmarknode{highlighted-node-\number\value{tikzhighlightnode}}{#2}%
988
      \left\langle \right\rangle \
989
        \noexpand\AddToShipoutPictureBG{%
990
991
          \noexpand\begin{tikzpicture}[overlay,remember picture]%
          \noexpand\iftikzmarkoncurrentpage{highlighted-node-\number\value{tikzhighlightnode}}%
992
           \noexpand\node[inner sep=1.0pt,fill=#1,#3,fit=(highlighted-node-\number\value{tikzhighlightnode})]{};%
993
          \noexpand\fi
994
          \noexpand\end{tikzpicture}%
995
        }%
 996
      }%
 997
      \temp%
998
999 }%
     Intelligent slot command for coordinate-free tensor notation.
1000 \NewDocumentCommand{\slot}{ s d[] }{%
      % d[] must be used because of the way consecutive optional
      % arguments are handled. See xparse docs for details.
      \IfBooleanTF{#1}
1003
      {\%} We have a *.
1004
        \IfValueTF{#2}
1005
        {% Insert a vector, but don't show the slot.
1006
          \smash{\makebox[1.5em]{\ensuremath{#2}}}
1007
1008
        {% No vector, no slot.
1009
          \smash{\makebox[1.5em]{\ensuremath{}}}
1010
        }%
1011
      }%
1012
      {% We don't have a *.
1013
1014
        \IfValueTF{#2}
1015
        {% Insert a vector and show the slot.
          \underline{\smash{\makebox[1.5em]{\ensuremath{#2}}}}
1016
1017
        {% No vector; just show the slot.
1018
          \underline{\smash{\makebox[1.5em]{\ensuremath{}}}}
1019
        }%
1020
1021
      }%
1022 }%
     Intelligent notation for contraction on pairs of slots.
1023 \NewDocumentCommand{\contraction}{ s m }{%
      \IfBooleanTF{#1}
1024
      {\bf C}} We have a *.
1025
      {\symbb{C}}% We don't have a *.
1027
     _{#2}
1028 }%
     Intelligent differential (exterior derivative) operator.
1029 \NewDocumentCommand{\dd}{ s }{\%}
      \mathop{}\!
1030
1031
      \IfBooleanTF{#1}
      {\symbfsfup{d}}% We have a *.
1032
1033
      {\simeq d} We don't have a *.
1034 }%
     Command to typeset tensor valence.
1035 \NewDocumentCommand{\valence}{ s m m }{\%}
```

```
1036 \IfBooleanTF{#1}
1037 {(#2,#3)}
1038 {\binom{#2}{#3}}
1039 }%
```

Diagnostic commands to provide sanity checks on commands that represent physical quantities and constants.

```
1040 \NewDocumentCommand{\checkquantity}{ m }{%
     % Works for both scalar and vector quantities.
      \begin{center}
1042
        \begin{tabular}{>{\centering}p{4cm} >{\centering}p{3cm}} >{\centering}p{4cm} >{\centering}p{3cm}}
1043
          name & base & derived & alternate \tabularnewline
1044
          \ttfamily\small{\expandafter\string\csname #1\endcsname} &
1045
          \small{\csname #1onlybaseunits\endcsname} &
1046
          \small{\csname #1onlyderivedunits\endcsname} &
1047
          \small{\csname #1onlyalternateunits\endcsname}
1048
        \end{tabular}
1049
     \end{center}
1050
1051 }%
1052 \NewDocumentCommand{\checkconstant}{ m }{%
1053
     \begin{center}
        \begin{tabular}{>(centering}p{4cm} >{\centering}p{3cm} >{\centering}p{4cm} >{\centering}p{3cm}}
1054
          name & base & derived & alternate \tabularnewline
1055
          \ttfamily\small{\expandafter\string\csname #1\endcsname} &
1056
          \small{\csname #1onlybaseunits\endcsname} &
1057
          \small{\csname #1onlyderivedunits\endcsname} &
1058
          \small{\csname #1onlyalternateunits\endcsname} \tabularnewline
1059
          symbol & approximate & precise \tabularnewline
1060
          \small{\csname #1mathsymbol\endcsname} &
1061
          \small{\csname #1approximatevalue\endcsname} &
1062
          \small{\csname #1precisevalue\endcsname} \tabularnewline
1063
        \end{tabular}
1064
     \end{center}
1065
1066 }%
```

7 Index

Page numbers refer to page where the corresponding entry is documented and/or referenced.

i age numbers refer to page where the corresponding e	,
A	\conventionalcurrent 9
\absolutevalue 39	\coulombconstant 19
\absolutevalue* 39	\curlybraces
\acceleration 7	\curlybraces* 38
alternate value $\dots \dots \dots$	\current 9
\alwaysusealternateunits 17	\currentdensity 9
$\aligned \aligned \$	
\alwaysusebaseunits 17	D
\alwaysusederivedunits 17	derived value
\alwaysusepreciseconstants 24	\dielectricconstant 10
\amount 8	\direction 32
\anglebrackets 38	\dirvec 31
\anglebrackets* 38	\dirvec* 31
\angularacceleration 8	\displacement 10
\angularfrequency 8	\doublebars 38
\angularimpulse 8	\doublebars* 38
\angularmomentum 8	\duration 10
\angularmomentumprinciple 42	\Dvec 31
\angularmomentumprinciple* 42	\Dvec* 31
\angularmomentumprincipleupdate 42	
\angularmomentumprincipleupdate* 42	${f E}$
\angularvelocity 8	\earthmass 19
\area 8	\earthmoondistance 20
\areachargedensity 8	\earthradius 20
\areamassdensity 9	\earthsundistance 20
\avogadro 19	$\verb \electricdipolemoment \dots \dots$
	\electricfield 10
В	\electricflux 10
base value 6, 52	\electricpotential 10
\biotsavartconstant 19	$\verb \electric potential energy$
\bohrradius 19	\electronCharge 20
\boltzmann 19	\electroncharge 20
	\electroncurrent 10
\mathbf{C}	\electronmass 20
\capacitance 9	\elementarycharge 20
\changein 38	\emf 10
\charge 9	\energy 11
\checkconstant 18	\energydensity 11
\checkquantity	\energyflux 11
\chemicalenergy 44	\energyof 43
\cmagneticfield 9	$\verb \energyprinciple $
\colvec 36	$\verb \energyprincipleupdate 42 $
\conductance 9	\entropy 11
\conductivity 9	Environments
\contraction 37	${\tt glowscriptblock} \dots \qquad \qquad 25$
\contraction* 37	physicsproblem 32

physicsproblem* 32	\lhsmomentumprinciple* 41
physicssolution 33	\lhsmomentumprincipleupdate 41
physicssolution*	\lhsmomentumprincipleupdate* 41
usealternateunits	\linearchargedensity 12
useapproximateconstants $\dots 24$	\linearmassdensity 12
usebaseunits	\luminous 12
usederivedunits 17	
usepreciseconstants	\mathbf{M}
	\magneticcharge 12
${f F}$	\magneticdipolemoment 12
false value 6, 52	\magneticfield 12
\finestructure 21	\magneticflux 12
\force 11	\magnitude 39
\frequency 11	\magnitude* 39
~	\magvec 31
G	\magvec* 31
glowscriptblock environment	\mandisetup6
\glowscriptinline 30	\mandiversion 6
\gravitationalfield 11	\mass 13
\gravitationalpotential 11	\mivector 31
$\verb \gravitational potential energy$	\mobility 13
	\momentofinertia 13
H	\momentum 7, 13
\hereuseapproximateconstants	\momentumflux 13
\hereusebaseunits	\momentumprinciple 41
\hereusedalternateunits	\momentumprinciple* 41
\hereusederivedunits	\momentumprincipleupdate 41
\hereusepreciseconstants 24	\momentumprincipleupdate* 41
\hilite	\moonearthdistance 21
\hydrogenmass 21	\moonmass 21
T	\moonradius 21
I	\mzofp 21
\image	
\impulse	N
\indexofrefraction	\neutronmass 21
\inductance	\newphysicalconstant 24
\internalenergy 44	\newscalarquantity 16
\mathbf{V}	\newvectorquantity
K Vora	\norm 39
Keys	\norm* 39
preciseconstants 6	\numberdensity 13
units 6	
L	0
_	\oofpez 18, 22
\lhsangularmomentumprinciple	\oofpezcs 22
\lhsangularmomentumprinciple*	D
\lhsangularmomentumprincipleupdate 42	P
\lhsangularmomentumprincipleupdate* 42 \lhsenergyprinciple 41	\parentheses
	\parentheses* 38
\lhsenergyprincipleupdate	\particleenergy
\lhsmomentumprinciple 41	\permeability 13

\permittivity 13	\specificheatcapacity
\photonenergy 44	\speedoflight 23
physicsproblem environment	\springpotentialenergy 45
physicsproblem* environment	\springstiffness 15
physicssolution environment	\springstretch 15
physicssolution* environment	\squarebrackets 38
\planck 22	\squarebrackets* 38
\planckbar 22	\stefanboltzmann 23
\planckc 22	\strain 15
\planeangle 13	\stress 15
\polarizability 14	\sunearthdistance 23
\power 14	\sunradius 23
\poynting 14	\surfacegravfield
preciseconstants key 6	\systemenergy
\pressure 14	, 3,
\protonCharge 22	${f T}$
\protoncharge 22	\temperature 15
\protonmass 23	\tencomp 32
•	\tencomp* 32
${f R}$	\tento 37
\reason 34	\thermalenergy 44
\relativepermeability 14	\timestento 37
\relativepermittivity 14	\torque 15
\renewphysicalconstant 24	\translationalkineticenergy 44
\renewscalarquantity 16	\translationalkineticenergy* 44
\renewvectorquantity 16	true value 6, 52
\resistance 14	
\resistivity 14	${f U}$
\restenergy 43	units key 6
\rhsangularmomentumprinciple 42	\unitvector 32
\rhsangularmomentumprinciple* 42	usealternateunits environment
\rhsangularmomentumprincipleupdate 42	useapproximateconstants environment 24
\rhsangularmomentumprincipleupdate* 42	usebaseunits environment
\rhsenergyprinciple 41	usederivedunits environment
\rhsenergyprincipleupdate 42	usepreciseconstants environment 25
\rhsmomentumprinciple 41	-
\rhsmomentumprinciple* 41	V
\rhsmomentumprincipleupdate 41	\vacuumpermeability 24
\rhsmomentumprincipleupdate* 41	\vacuumpermittivity 24
\rotationalkineticenergy 44	\valence 37
\rotationalkineticenergy* 44	\valence* 37
\rowvec	Values
\rydberg	
	alternate $\dots 6, 52$
(Tydbeig	alternate 6, 52 base 6, 52
S S	,
${f s}$	base 6, 52
S \singlebars 38	base
S \singlebars 38	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
S \singlebars	base 6, 52 derived 6, 52 false 6, 52 true 6, 52
S \singlebars	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

\vectoracceleration	7
\vectorangularacceleration	8
\vectorangularimpulse	
\vectorangularmomentum	
\vectorangularvelocity	
\vectorcmagneticfield	9
\vectorcurrentdensity	
\vectordisplacement	
\vectorelectricdipolemoment	
\vectorelectricfield	
\vectorenergyflux	
\vectorforce	
\vectorgravitationalfield	
\vectorimpulse	
\vectormagneticdipolemoment	
\vectormagneticfield	
\vectormomentum\vectormomentumflux	,
\vectorpoynting	
\vectortorque	
\vectorvelocity	
\vectorvelociyc	
\vectorwavenumber	
\velocity	
\velocityc	
\vibrationalkineticenergy	
\vibrationalkineticenergy*	. 45
\volume	
\volumechargedensity	. 16
$\verb \volumemassdensity $	
\vpythonfile	
\vpythoninline	. 30
\mathbf{W}	
\wavelength	. 16
\wavenumber	
\work	. 16
X	
\xtento	. 37
37	
Y	4.0
\youngsmodulus	. 16
77	
Z	. 30
\zerovec	. პს