Sentiment Analysis using Multinomial and Bernoulli Naïve Bayes

Multinomial Naïve Bayes

Dataset

Features

DOCUMENT	REVIEW	CLASS
1	The rooms were good and I liked the location since it was good	+
2	The hotel was very bad and the stay was unpleasant	-
3	Liked the huge play area and the food was nice	+
4	The stay was good and pleasant	+
5	The location was good but was bad overall because The staff were rude	2

Term Document Matrix

Document: Features	s D1	D2	D3	D4	D5
good	2	0	0	1	1
liked	1	0	1	0	0
bad	0	1	0	0	1
unpleasant	0	1	0	0	0
nice	0	0	1	0	0
pleasant	0	0	0	1	0
rude	0	0	0	0	1

Number of Features in '+' = 7
good: 3, liked: 2, nice: 1, pleasant: 1

Number of Features in '-' = 5
good: 1, bad: 2, unpleasant: 1, rude: 1

Probability of getting class c

• $P(Class=c|Features) = \frac{P(Features|Class=c).P(Class=c)}{P(Features)} \alpha P(Features|Class=c).P(Class=c)$

Probability of getting class '+'

 $P(Y=+|X=good, liked, bad, unpleasant, nice, pleasant, rude) \alpha$ P(X=good, liked, bad, unpleasant, nice, pleasant, rude | Y) . P(Y=+)

Probability of getting class '-'

P(Y=-|X=good, liked, bad, unpleasant, nice, pleasant, rude) α P(X=good, liked, bad, unpleasant, nice, pleasant, rude | Y) . <math>P(Y=-)

$$P(Y = +)$$

$$\frac{Number\ of\ samples\ of\ the\ class\ \prime + \prime}{total\ number\ of\ samples} = \frac{3}{5}$$

$$P(Y=-)$$

$$\frac{Number\ of\ samples\ of\ the\ class\ '-'}{total\ number\ of\ samples} = \frac{2}{5}$$

$$P(X=x_1, x_2, ..., x_n | Y) = \prod_{i=1}^n P(x_i | Y)$$

P(good, ..., pleasant, rude|Y='+'|) = P(good|Y='+') *... * P(pleasure|Y='+') * P(rude|Y='+')

P(good, ..., pleasant, rude|Y='-') = P(good|Y='-') *... * P(pleasure|Y='-') * P(rude|Y='-')

$$P(X=x_i|Y='c')$$

Frequency with which feature x_i occurs in class c'

Total number of features in class 'c'

Term Document Matrix

Documents	D1	D2	D3	D4	D5
Features	+	-	+	+	-
good	2	0	0	1	1
liked	1	0	1	0	0
bad	0	1	0	0	1
unpleasant	0	1	0	0	0
nice	0	0	1	0	0
pleasant	0	0	0	1	0
rude	0	0	0	0	1

Number of Features in '+' = 7 good: 3, liked: 2, nice: 1, pleasant: 1 Number of Features in '-' = 5 good: 1, bad: 2, unpleasant: 1, rude: 1

P(Y=+) = 3/5 P(Y=-) = ?					
good	3	1			
	$\frac{3}{7}$	5			
liked	$\frac{2}{7}$	0			
	$\overline{7}$	- 5			
bad	0	?			
	$\frac{0}{7}$ $\frac{0}{7}$				
unpleasant	0	1			
	$\overline{7}$	5			
nice	1	0			
	$\overline{7}$	- 5			
pleasant	?	0			
		$\frac{0}{5}$			
rude	0				
	7	$\frac{1}{5}$			

	P(Y=+) = 3/5				
P(Y=-) = 2/5					
Feature	P(Feature +)	P(Feature -)			
good	3	1			
	$\overline{7}$	5			
liked	$\frac{2}{7}$	0			
	$\overline{7}$	$\frac{0}{5}$			
bad	$\frac{0}{7}$	$\frac{2}{5}$			
	$\overline{7}$	5			
unpleasant	0	1			
	$\overline{7}$	5			
nice	1	0			
	$\frac{1}{7}$	$\frac{0}{5}$			
pleasant	1	0			
	7	5			
ude	0	1			
	$\overline{7}$	5			

Laplace Smoothing

Classification
Model
with
Laplace
Smoothing

	P(Y=+) = 3/5	
	P(Y=-) = 2/5	
Feature	P(Feature +)	P(Feature -)
good	$\frac{3+1}{7+7} = \frac{4}{14}$	$\frac{1+1}{5+7} = \frac{2}{12}$
liked	$\frac{2+1}{7+7} = \frac{3}{14}$	$\frac{0+1}{5+7} = \frac{1}{12}$
bad	$\frac{0+1}{7+7} = \frac{1}{14}$	$\frac{2+1}{5+7} = \frac{3}{12}$
unpleasant	$\frac{0+1}{7+7} = \frac{1}{14}$	$\frac{1+1}{5+7} = \frac{2}{12}$
nice	$\frac{1+1}{7+7} = \frac{2}{14}$	$\frac{0+1}{5+7} = \frac{1}{12}$
pleasant	$\frac{1+1}{7+7} = \frac{2}{14}$	$\frac{0+1}{5+7} = \frac{1}{12}$
rude	$\frac{0+1}{7+7} = \frac{2}{14}$	$\frac{1+1}{5+7} = \frac{2}{12}$

Classify: "The rooms were good and the staff were nice"

Bernoulli Naïve Bayes

Features

DOCUMENT	REVIEW	CLASS
1	The rooms were good and I liked the location since it was good	+
2	The hotel was very bad and the stay was unpleasant	•
3	Liked the huge play area and the food was nice	+
4	The stay was good and pleasant	+
5	The location was good but was bad overall because The staff were rude	, - ;

Term Document Matrix

Documents Features	D1	D2	D3	D4	D5
good	1	0	0	1	1
liked	1	0	1	0	0
bad	0	1	0	0	1
unpleasant	0	1	0	0	0
nice	0	0	1	0	0
pleasant	0	0	0	1	0
rude	0	0	0	0	1

 $P(X=x_1, x_2, ..., x_n | Y) = \prod_{i=1}^n P(x_i | Y)$

P(good, ..., pleasant, rude|Y='+'|) = P(good|Y='+') * ... * P(pleasure|Y='+') * P(rude|Y='+') * P(rude|Y='+'

P(good, ..., pleasant, rude|Y='-') = P(good|Y='-') *... * P(pleasure|Y='-') * P(rude|Y='-')

 $P(X=x_i|Y='c')$

Number of documents of class 'c' with feature x_i Total number of documents of class 'c'

Term Document Matrix

Documents	D1	D2	D3	D4	D5
Features	+	-1	+	+	-
good	1	0	0	1	1
liked	1	0	1	0	0
bad	0	1	0	0	1
unpleasant	0	1	0	0	0
nice	0	0	1	0	0
pleasant	0	0	0	1	0
rude	0	0	0	0	1

Number of documents in '+' = 3 D1, D3, D4
Number of documents in '-' = 2 D2, D5

P(Y=+) = 3/5 P(Y=-) = ?					
good	2	1			
	3	$\overline{2}$			
liked	2	0			
	$\frac{2}{3}$	$\frac{0}{2}$			
bad		?			
	$\frac{0}{3}$				
unpleasant	0	1			
	$\frac{0}{3}$	$\frac{1}{2}$ $\frac{0}{2}$			
nice	1	0			
	$\frac{1}{3}$	$\overline{2}$			
pleasant	?				
•		$\frac{0}{2}$			
rude	0	1			
	3	$\overline{2}$			

	P(Y=+) = 3/5				
P(Y=-) = <mark>2/5</mark>					
Feature	P(Feature +)	P(Feature -)			
good	$\frac{2}{3}$	1			
	$\overline{3}$	$\overline{2}$			
iked	2	0			
	3	$\overline{2}$			
oad	0	2			
	$\frac{0}{3}$	$\frac{2}{2}$			
inpleasant	0	1			
	3	$\overline{2}$			
nice	1	0			
	3	$\overline{2}$			
pleasant	1	0			
	$\frac{1}{3}$	$\overline{2}$			
ude	0	1			
	3	$\overline{2}$			

Laplace Smoothing

P(Feature | class=c) is calculated as $\frac{Number\ of\ documents\ of\ class\ 'c'\ with\ feature\ x_i\ +1}{Total\ number\ of\ documents\ of\ class\ 'c'\ +2}$

Classification
Model
with
Laplace
Smoothing

	P(Y=+) = 3/5	
	P(Y=-) = 2/5	
Feature	P(Feature +)	P(Feature -)
good	$\frac{2+1}{3+2} = \frac{3}{5}$	$\frac{1+1}{2+2} = \frac{2}{4}$
liked	$\frac{2+1}{3+2} = \frac{3}{5}$	$\frac{0+1}{2+2} = \frac{1}{4}$
bad	$\frac{0+1}{3+2} = \frac{1}{5}$	$\frac{2+1}{2+2} = \frac{3}{4}$
unpleasant	$\frac{0+1}{3+2} = \frac{1}{5}$	$\frac{1+1}{2+2} = \frac{2}{4}$
nice	$\frac{1+1}{3+2} = \frac{2}{5}$	$\frac{0+1}{2+2} = \frac{1}{4}$
pleasant	$\frac{1+1}{3+2} = \frac{2}{5}$	$\frac{0+1}{2+2} = \frac{1}{4}$
rude	$\frac{0+1}{3+2} = \frac{2}{5}$	$\frac{1+1}{2+2} = \frac{2}{4}$

Classify: "The rooms were good and the staff were nice"

P(+|good, liked, bad, unpleasant, nice, pleasant, rude)

P(good, liked, bad, unpleasant, nice, pleasant, rude|+)*P(+)

= P(good|+) * (1-P(liked|+)) * (1-P(bad|+)) * (1-P(unpleasant|+)) * P(nice|+) * (1-P(pleasant|+)) * (1-P(rude|+)) * P(+)

$$= \frac{3}{5} * (1 - \frac{3}{5}) * (1 - \frac{1}{5}) * (1 - \frac{1}{5}) * \frac{2}{5} * (1 - \frac{2}{5}) * (1 - \frac{2}{5}) * \frac{3}{5}$$

= 0.013271

P(-|good, liked, bad, unpleasant, nice, pleasant, rude)

P(good, liked, bad, unpleasant, nice, pleasant, rude|-)*P(-)

= P(good|-) * (1-P(liked|-)) * (1-P(bad|-)) * (1-P(unpleasant|-)) * P(nice|-) * (1-P(pleasant|-)) * (1-P(rude|-)) * P(-)

$$= \frac{2}{4} * (1 - \frac{1}{4}) * (1 - \frac{3}{4}) * (1 - \frac{2}{4}) * \frac{1}{4} * (1 - \frac{1}{4}) * (1 - \frac{2}{4}) * \frac{2}{5}$$

= 0.001758

Multinomial Naïve Bayes Classifier

Mail Content	Class
This is a promotion campaign. Promotion offers for selected customers.	Spam
Special offers for Holiday season	Spam
Have you completed the task? Can you provide the task status?	Non-Spam
Thank you for your mail. We have considered you for next steps.	Non-Spam

Distinct words in the training data become features.

All the training instances are transformed accordingly.

Calculating the Likelihood (Example)

P(promotion | Spam) = 2/15

 $P(task \mid Non-Spam) = 2/23$

provide	steps	season	next	offers	have	we	is	campaign	special	your	status	the	premotion	can	you	customers	for	3	task	thank	completed	mail	this	selected	holiday	considered	Class
0	0	0	0	1	0	0	1	1	0	0	0	0	2	0	0	1	1	1	0	0	0	0	1	1	0	0	Spam
0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	Sparn
1	0	0	0	0	1	0	0	0	0	0	1	2	0	1	2	0	0	0	2	0	1	0	0	0	0	0	Non-Spam
0	1	0	1	0	1	1	0	0	0	1	0	0	0	0	2	0	2	0	0	1	0	1	0	0	0	1	Non-Spam

Multinomial Naïve Bayes Classifier

