## Representação de Objetos Tridimensionais

# Malhas Poligonais

Maria Cristina F. de Oliveira Rosane Minghim 2007

## Modelo

- Representação construída artificialmente para tornar mais fácil a observação/análise de um objeto/fenômeno
  - Nível de detalhe definido pelas aplicações que o utilizam
  - Problemas práticos em CG: modelos geométricos

## Modelagem Geométrica

- Início dos anos 70
- Coleção de métodos usados para descrever a forma e outras características geométricas de um objeto, bem como para simular processos dinâmicos
- Sistema de modelagem geométrica: sistema computacional que permite a criação, modificação e acesso à representação de objetos por meio de modelos geométricos

## Modelos Geométricos

- Cenas gráficas podem conter muitos tipos diferentes de objetos e materiais
  - Não existe uma maneira única capaz de descrever e representar todos os tipos de objetos
- Descrição vs. Representação
  - Descrição do objeto pelo usuário: processo de modelagem
  - Representação do objeto no sistema gráfico: como manter as informações necessárias para renderizar o objeto (e aplicar simulações, por ex.)







# Modelagem de Sólidos

- Ramo da M.G. que estuda técnicas para criar, manter e comunicar informação sobre a forma de objetos sólidos
  - envolve a criação e a manutenção de um modelo para futuro acesso e análise
  - permite formular e responder questões sobre propriedades volumétricas (volume, peso, momento de inércia, ...) e topológicas (conectividade, pertinência, ...)

# Volume vs. Superfícies

- Objetos sólidos tridimensionais
  - Representados apenas pela sua fronteira
    - representações por fronteira: objeto 3D descrito como um conjunto de superfícies que separa o seu interior do meio externo (geralmente quadriláteros ou triângulos, ou alternativamente superfícies paramétricas)
  - Superfície e conteúdo interno representados explicitamente
    - Representações por particionamento espacial descrevem propriedade interiores, particionando a região do espaço que contém o objeto em um conjunto de pequenos sólidos adjacentes não sobrepostos (geralmente cubos ou tetraedros)

## Malhas Poligonais

- Atualmente: enorme diversidade de técnicas e modelos em CG
- Vamos estudar inicialmente uma forma representação por fronteira muito simples, adotada em muitos sistemas gráficos
  - objetos descritos por malhas poligonais que representam a sua superfície (fronteira)
  - Conjunto de vértices, arestas e faces planares (triângulos)
  - Representação adequada para 'rendering' por placas gráficas: objetos gráficos padrão

# Malhas Poligonais

- Poliedros
  - Representação poligonal é exata
- Objetos em geral
  - descritos por superfícies curvas
  - decompostos (tesselated) para produzir uma representação poligonal aproximada







# Malhas Poligonais – Exemplos

## Estruturas de Dados

- Problema
  - como armazenar a descrição de um objeto em termos das faces que descrevem sua superfície?
  - Diversas soluções possíveis...
- Sugestões??





#### Estruturas de Dados Outra alternativa $(x_3, y_3, z_3)$ $(x_4, y_4, z_4)$ tabelas de faces, de aresta e de vértices cada face lista referências às arestas que a compõem $(x_1, y_1, z_1)$ cada aresta lista referência $(x_2, y_2, z_2)$ $(x_5, y_5, z_5)$ aos vértices Todos os 'elementos VERTEX TABLE topológicos' (faces, arestas V1 X1 Y1 Z1 V<sub>2</sub> X<sub>2</sub> Y<sub>2</sub> Z<sub>2</sub> V<sub>3</sub> X<sub>3</sub> Y<sub>3</sub> Z<sub>3</sub> V<sub>4</sub> X<sub>4</sub> Y<sub>4</sub> Z<sub>4</sub> e vértices) armazenados explicitamente... Informação topológica V5 X5 Y5 Z5 (adjacência) implícita





## Estruturas de Dados

- Winged-edge
  - Associa informações de adjacência às arestas
    - Todas as adjacências entre elementos topológicos recuperadas em tempo O(1)
    - Custo extra de armazenagem pequeno (registros de tamanho fixo)
    - Consegue representar polígonos arbitrários







| Aresta<br>ID | Vert. |     | Faces |      | Esquerda |     | Direita |     |
|--------------|-------|-----|-------|------|----------|-----|---------|-----|
|              | Inic. | Fim | Esq.  | Dir. | Pred     | Suc | Pred    | Suc |
| a            | A     | D   | 3     | 1    | e        | f   | b       | c   |
| b            | Α     | В   | 1     | 4    | c        | a   | f       | d   |
| c            | В     | D   | 1     | 2    | a        | b   | d       | e   |
| d            | В     | С   | 2     | 4    | e        | С   | b       | f   |
| e            | С     | D   | 2     | 3    | С        | d   | f       | a   |
| f            | A     | С   | 4     | 3    | d        | b   | a       | e   |

## Estruturas de Dados

- Observação
  - Em muitas E.D. inconsistências podem ocorrer se o processo de geração da malha não for cuidadoso para evitá-las
  - a malha pode descrever objetos não 'factíveis'
    - Ex. vértices e arestas isolados, polígonos não fechados, polígonos isolados, etc.
- Certas estruturas, como a winged-edge, não admitem tais ocorrências: modelo descreve objeto consistente

## Malhas de Triângulos

- Propriedades
  - Cada face tem exatamente 3 vértices
  - Cada vértice compartilha um número arbitrário de faces
- Estrutura de Adjacência simples
  - Faces armazenam referências a vértices e faces vizinhas
  - Maioria das relações de adjacência recuperada em tempo constante



# Malhas de Triângulos

- Um problema bastante atual é o da simplificação de malhas (decimação)
  - Redução do número de polígonos/triângulos necessários para descrever um modelo
  - Veja, por exemplo http://amber.rc.arizona.edu/lw/decimate.html
  - Porquê?
    - Rendering mais rápido
    - Menor custo de armazenagem
    - Manipulação mais simples

## Informações Geométricas

- As coordenadas dos vértices contém a informação geométrica necessária para o rendering do modelo
  - A partir das coord's dos vértices, pode-se computar a inclinação das arestas, o retângulo envoltório (bounding box) de cada face, a equação do plano que contém cada face, etc.
  - Informações necessárias para algoritmos de recorte, remoção de superfícies ocultas e de rendering...

# Informações Geométricas

Equação do plano:

$$Ax + By + Cz + D = 0$$

em que (x,y,z) é um ponto qqr no plano, A, B, C e D são ctes. que descrevem as propriedades espaciais do plano.

Como obter a equação do plano, dados 3 pontos que estão no plano?

v. Hearn & Baker, Seção 3.15

## Informações Geométricas

- Equação do plano
- Coefs. A, B, C e D podem ser armazenados na tabela de faces
- Orientação do plano no espaço dada pela sua normal: N = (A, B, C)
- Importante distinguir os 2 lados: 'dentro' e 'fora': especificar os vértices sempre na direção anti-horária de alguém observando o plano do lado 'de fora'

## Exercício

Desenvolver um programa para preencher uma winged-edge a partir da descrição simples do modelo, lida de um arquivo, contendo vértices, arestas, e faces

=> Qual é a menor quantidade de informação necessária para fazer isso?

# Bibliografia

- Seção 3.15 Hearn & Baker Computer Graphics in OpenGL
- Lecture Notes by Thomas Funkhouser at Princeton University: http://www.cs.princeton.edu/courses/ar chive/fall02/cs526/lectures/meshes.pdf