LOGICA I LLENGUATGES

PROBLEMES

Llenguatges incontextuals

Exercici 14. Considerem la següent gramàtica incontextual:

- 1. $S \rightarrow A$
- 2. $A \rightarrow aBb$
- 3. $A \rightarrow cBd$
- 4. $B \rightarrow XY$
- 5. $X \rightarrow eX$
- 6. $X \to \lambda$
- 7. $Y \rightarrow fY$
- 8. $Y \rightarrow \lambda$
- (a) Calculeu els conjunts de Primers i Següents de les variables de la gramàtica.
- (b) Construir la taula d'anàlisi de la gramàtica.

Solució: (a) Tenim:

 $Primers(S) = Primers(A) = \{a, c\},\$

 $\widehat{\text{Primers}(B)} = \{e, f, \lambda\},\$

 $Primers(X) = \{e, \lambda\},\$

 $Primers(Y) = \{f, \lambda\},\$

 $Següents(S) = \emptyset,$

Següents $(A) = \emptyset$,

Següents $(B) = \{b, d\},\$

Següents $(X) = \{b, d, f\},\$

Següents $(Y) = \{b, d\}.$

De l'apartat (a), obtenim directament la següent taula d'anàlisi :

TAULA	a	b	c	d	е	f
S	1		1			
A	2		3			
В		4		4	4	4
X		6		6	5	6
Y		8		8		7

Com la taula d'anàlisi de la gramàtica no té conflictes, la gramàtica és LL(1).

Exercici 19. Considerem la següent gramàtica incontextual:

$$S \rightarrow \underline{id} = C \mid if \ (C) \ S \mid \underline{while} \ (C) \ S \mid \{L\}.$$

$$L \to S \mid L ; S.$$

$$C \to \underline{id} \ == \ \underline{id} \mid \underline{id} \,! = \ \underline{id} \mid C \,\&\&\,\,\underline{id}.$$

Llavors, es demana:

- (a) Demostrar que la gramàtica no és LL(1).
- (b) Obtenir una gramàtica equivalent LL(1).
- (c) Construir la taula d'anàlisi de la gramàtica obtinguda en (b).

Solució: (a) S'observa que hi ha conflictes en construir la taula d'anàlisi de la gramàtica. Per exemple, les produccions $C \to \underline{id} == \underline{id}$ i $C \to \underline{id} != \underline{id}$ pertanyen a TABLA (C,\underline{id}) . Per tant, la gramàtica no és LL(1).

(b) Per a transformar la gramàtica G en LL(1), hem d'aplicar les regles de factorizació i recursión que hem vist en teoria. En primer lloc, aplicant la regla de recursió, reemplacem les produccions

$$L \to S \mid L \; ; \; S$$

$$L \to SL', L' \to ; SL' \mid \lambda.$$

A continuació, aplicant la regla de factorizació, reemplacem les produccions

$$C \rightarrow \underline{id} == \underline{id} \mid \underline{id} \mid = \underline{id}$$

per

$$C \to \underline{id} C', C' \to == \underline{id} \mid ! = \underline{id}.$$

Finalment, aplicant la regla de recursió, reemplacem les produccions

$$C \rightarrow id C' \mid C \&\& id$$

per

$$C \rightarrow id C'C'', C'' \rightarrow \&\& id C'' \mid \lambda.$$

Llavors, obtenim la següent gramàtica LL(1) G' equivalent a G:

$$1. S \rightarrow \underline{id} = C$$

$$2. S \rightarrow if(C) S$$

$$3. S \rightarrow \underline{while}(C) S$$

$$4. S \rightarrow \{L\}$$

$$5.L \rightarrow SL'$$

$$6.L' \rightarrow ; SL'$$

$$7.L' \rightarrow \lambda$$

$$8. C \rightarrow id C' C''$$

$$9.C' \rightarrow == id$$

$$10. C' \rightarrow ! = \underline{id}$$

$$11. C'' \rightarrow \&\& id C''$$

$$12. C'' \rightarrow \lambda$$

(c) Tenim que el conjunt $\operatorname{Primers}(S)$ està compost per $\underline{id}, \underline{if}, \underline{while}$ i {. Tenim que } es l'únic símbol que està en $\operatorname{Següents}(L')$, i que el conjunt $\operatorname{Següents}(C'')$ està compost per els símbols), } i ;. Per a això, obsérvem que de la derivació

$$S \Rightarrow^4 \{L\} \Rightarrow^5 \{SL'\}$$

es dedueix que $\{ \in \text{Següents}(L').$

De la derivació

$$S \Rightarrow^2 if(C)S \Rightarrow^8 if(\underline{id}\,C'\,C'')S$$

es dedueix que (\in Següents(C'').

De la derivació

$$S \Rightarrow^4 \{L\} \Rightarrow^5 \{SL'\} \Rightarrow^7 \{S\} \Rightarrow^1 \{\underline{id} = C\} \Rightarrow^8 \{\underline{id} = \underline{id} \, C' \, C''\}$$

es dedueix que $\{ \in \text{Següents}(C'').$

I de la derivació

Por tant, la taula d'análisi que s'obté per a G' es la següent:

TAULA	$\underline{\mathrm{id}}$	<u>if</u>	<u>while</u>	{	}	()	;	&&	=	==	! =
S	1	2	3	4								
L	5	5	5	5								
L'					7			6				
С	8											
C'											9	10
C"					12		12	12	11			

Com la taula d'anàlisi de G^\prime no té conflictes, G^\prime és LL(1).