25 лютого 2019 р.

Задача 1. Розв'язати задачу двох-критеріальної оптимізації

$$f_1 = 4x_1 + x_2 \to \max, \quad f_2 = x_1 + 4x_2 \to \max$$

з допустимою областю що визначається нерівностями

$$x_1^2 + 2x_2^2 \le 1$$
, $x_{1,2} \ge 0$

методом ідеальної точки з s=1.

Розв'язок. Перш за все зобразимо допустиму область:

Далі знаходимо $a_i = \max_x f_i(x), i = 1, 2$. Для цього спершу знаходимо $\tilde{x}_i = \arg\max f_i$.

З графічних міркувань, \tilde{x}_1 — точка дотику опорної прямої що перпендикулярна вектору f_1 (див. мал. вище) до допустимої області, тобто точка $\tilde{x}_1 = \left(\frac{8}{\sqrt{65}}, \frac{1}{\sqrt{2\cdot65}}\right)$, а відповідне значення

$$a_1 = f_1(\tilde{x}_1) = 4 \cdot \frac{8}{\sqrt{65}} + \frac{1}{\sqrt{2 \cdot 65}} = \frac{1 + 32\sqrt{2}}{\sqrt{2 \cdot 65}}.$$

Аналогічно знаходимо $\tilde{x}_2 = \left(\frac{1}{\sqrt{5}}, \frac{\sqrt{2}}{\sqrt{5}}\right)$, а відповідне значення

$$a_2 = f_2(\tilde{x}_2) = \frac{1}{\sqrt{5}} + 4 \cdot \frac{\sqrt{2}}{\sqrt{5}} = \frac{1 + 4\sqrt{2}}{\sqrt{5}}.$$

Далі записуємо

$$\rho_1(f(x), a) = \left(\frac{1 + 32\sqrt{2}}{\sqrt{2 \cdot 65}} - 4x_1 - x_2\right) + \left(\frac{1 + 4\sqrt{2}}{\sqrt{5}} - x_1 - 4x_2\right) \to \min.$$

Ця задача еквівалентна задачі $x_1 + x_2 \to \max$ за умови $x_1^2 + 2x_2^2 = 1$.

Записуємо функцію Лагранжа цієї задачі

$$L(x_1, x_2, \lambda) = x_1 + x_2 + \lambda(x_1^2 + 2x_2^2 - 1) \to \max.$$

Знаходимо необхідні умови екстремуму

$$\begin{cases} \frac{\partial L}{\partial x_1} = 1 + 2\lambda x_1 = 0, \\ \frac{\partial L}{\partial x_2} = 1 + 4\lambda x_2 = 0, \\ \frac{\partial L}{\partial \lambda} = x_1^2 + 2x_2^2 - 1 = 0. \end{cases}$$

3 цієї системи маємо $x_1=-\frac{1}{2\lambda},$ а $x_2=-\frac{1}{4\lambda},$ тобто $x_1=2x_2.$

Враховуючи $x_1^2 + 2x_2^2 = 1$, остаточно знаходимо $x^* = \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$.

У свою чергу $f(x^*) = \left(\frac{6}{\sqrt{6}}, \frac{9}{\sqrt{6}}\right)$.

Задача 2. Розв'язати задачу двох-критеріальної оптимізації

$$f_1 = 2x_1 + x_2 \to \max, \quad f_2 = x_1 + 3x_2 \to \max$$

з допустимою областю що визначається нерівностями

$$x_1 + x_2 \le 4$$
, $x_1 + 2x_2 \le 6$, $x_{1,2} \ge 0$

методом ідеальної точки з s=2.

Розв'язок. Перш за все зобразимо допустиму область:

Далі знаходимо $a_i = \max_x f_i(x), i = 1, 2$. Для цього спершу знаходимо $\tilde{x}_i = \arg\max f_i$.

З графічних міркувань, \tilde{x}_1 — точка дотику опорної прямої що перпендикулярна вектору f_1 (див. мал. вище) до допустимої області, тобто точка $\tilde{x}_1=(4,0)$, а відповідне значення

$$a_1 = f_1(\tilde{x}_1) = 2 \cdot 4 + 0 = 8.$$

Аналогічно знаходимо $\tilde{x}_2 = (0,3)$, а відповідне значення

$$a_2 = f_2(\tilde{x}_2) = 0 + 3 \cdot 3 = 9.$$

Далі записуємо

$$\rho_2(f(x), a) = (8 - 2x_1 - x_2)^2 + (9 - x_1 - 3x_2)^2 \to \min.$$

Записуємо функцію Лагранжа цієї задачі

$$L(x_1, x_2, \lambda_1, \lambda_2) = (8 - 2x_1 - x_2)^2 + (9 - x_1 - 3x_2)^2 + \lambda_1 \cdot (4 - x_1 - x_2) + \lambda_2 \cdot (6 - x_1 - 2x_2) \to \min.$$

Знаходимо необхідні умови екстремуму

Кодимо неоохідні умови екстремуму
$$\begin{cases} \frac{\partial L}{\partial x_1} = -4 \cdot (8 - 2x_1 - x_2) - 2 \cdot (9 - x_1 - 3x_2) - \lambda_1 - \lambda_2 = 0, \\ \frac{\partial L}{\partial x_2} = -2 \cdot (8 - 2x_1 - x_2) - 6 \cdot (9 - x_1 - 3x_2) - \lambda_1 - 2\lambda_2 = 0, \\ \frac{\partial L}{\partial \lambda_1} = 4 - x_1 - x_2 = 0, \\ \frac{\partial L}{\partial \lambda_2} = 6 - x_1 - 2x_2 = 0. \end{cases}$$

З цієї системи маємо $x^* = (2, 2)$.

У свою чергу $f(x^*) = (6, 8)$.

Задача 3. Розв'язати задачу двох-критеріальної оптимізації

$$f_1 = x_1 \to \max, \quad f_2 = x_2 \to \max$$

з допустимою областю що визначається нерівностями

$$2x_1 + x_2 \le 10$$
, $x_1 + 3x_2 \le 12$, $x_1 + x_2 \le 6$, $x_{1,2} \ge 0$

методом ідеальної точки з $s=\infty$.

Розв'язок. Перш за все зобразимо допустиму область:

Далі знаходимо $a_i = \max_x f_i(x), i = 1, 2$. Для цього спершу знаходимо $\tilde{x}_i = \arg\max f_i$.

З графічних міркувань, \tilde{x}_1 – точка дотику опорної прямої що перпендикулярна вектору f_1 (див. мал. вище) до допустимої області, тобто точка $\tilde{x}_1 = (5,0)$, а відповідне значення

$$a_1 = f_1(\tilde{x}_1) = 5.$$

ТПР::практика

Аналогічно знаходимо $\tilde{x}_2 = (0,4)$, а відповідне значення

$$a_2 = f_2(\tilde{x}_2) = 4.$$

Далі записуємо

$$\rho_2(f(x), a) = \max\{5 - x_1, 4 - x_2\} \to \min.$$

З логічних (які, щоправда, не справджуються для деяких неопуклих задача) міркувань, цей мінімум досягається на межі допустимої області де $5-x_1=4-x_2$.

Враховуючи нерівності що обмежують допустиму область маємо $x^* = (2.5, 3.5)$.

У свою чергу $f(x^*) = (2.5, 3.5)$.