$$F_{x}(x) = \begin{cases} 0 & x < 1 \\ 0.4 & 1 \leq x < 2 \\ 0.7 & 2 \leq x < 5 \\ 1 & x \geq 5 \end{cases}$$

b)
$$R_{x} = \begin{cases} x \in \mathbb{R} / P_{x}(x) \neq 0 \end{cases}$$

 $R_{x} = \begin{cases} x \geq 1 \end{cases}$

 $P_{x}(x) = P(x = x) = F_{x}(x) - F_{x}(x).$ $P_{x}(1) = P(x = 1) = 0.4 - 0 = 0.4$ $P_{x}(2) = P(x = 2) = 0.7 - 0.4 = 0.3$ $P_{x}(3) = P(x = 3) = 0.7 - 0.4 = 0.3$ $P_{x}(4) = P(x = 4) = 0.7 - 0.4 = 0.3$ $P_{x}(5) = P(x = 5) = 1 - 0.7 = 0.3$

(1) - $P(1.54 \times 45) = P(24 \times 45)$ $P(1.54 \times 45) = P(x=2) + P(24 \times 45)$ $P(1.54 \times 45) = P(x=2) + F(5) - F(2)$

 $P(1.54 \times 4.5) = F_{x}(2/-F_{x}(2^{-}) + F(5)-F_{y}(2))$ $P(1.54 \times 4.5) = F_{x}(5) - F_{x}(2^{-})$ $P(1.5) + F(5) - F_{y}(2^{-})$ $P(1.5) + F(5) - F_{y}(2^{-})$

 $P(12 \times 25) = P(12 \times 24)$ $P(12 \times 25) = F_{x}(4) - F_{x}(1)$ $P(12 \times 25) = 0.7 - 0.4$ $P(12 \times 25) = 0.3$

 $P(X \ge 2) = P(X = 2) + P(X \ge 2)$ $P(X \ge 2) = F_{X}(2) - F_{X}(2^{-}) + (1 - F_{X}(2))$ $P(X \ge 2) = 1 - F_{X}(2^{-})$ $P(X \ge 2) = 1 - 0.4 = 0.6$