MTH 342 Homework 6

Philip Warton

February 28, 2020

1

Let V be an inner-product space and $||\cdot||$ be the norm where $||v|| = \sqrt{(v,v)}$.

a

Show that $||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$.

Proof. Let $u,v\in V$ arbitrarily. Then $||u+v||=\sqrt{(u+v,u+v)}$. Similarly $||u-v||=\sqrt{(u-v,u-v)}$. Taking the square of eache we get

$$||u+v||^2 = (u+v, u+v)$$
 $||u-v||^2 = (u-v, u-v)$

Then we have $||u+v||^2 + ||u-v||^2 = (u+v,u+v) + (u-v,u-v)$. By the linearity on the first argument and conjugate semi-linearity on the second argument we have

$$\begin{aligned} ||u+v||^2 + ||u-v||^2 &= (u,u+v) + (v,u+v) + (u,u-v) + (-v,u-v) \\ &= (u,u) + (u,v) + (v,u) + (v,v) + (u,u) + (u,-v) + (-v,u) + (-v,-v) \\ &= (u,u) + (u,v) + (v,u) + (v,v) + (u,u) - (u,v) - (v,u) + (v,v) \\ &= 2(u,u) + (u,v) - (u,v) + (v,u) - (v,u) + 2(v,v) \\ &= 2((u,u) + (v,v)) \\ &= 2(||u||^2 + ||v||^2) \end{aligned}$$

b

Show that $|(u, v)| \leq ||u|| \, ||v||$.

Proof. Let $u,v\in V$ be arbitrary. Then $||u||\ ||v||=\sqrt{(u,u)}\sqrt{(v,v)}$. We can write this as $\sqrt{(u,u)(v,v)}$. By our properties of linearity, we can write

$$\begin{split} ||u|| \; ||v|| &= \sqrt{\overline{vu}(u,1)(v,1)} \\ &= \sqrt{(u,v)(v,u)} \\ &= \sqrt{(u,v)\overline{(u,v)}} \quad \text{ Let our field } F \text{ not be complex, then} \\ &= \sqrt{(u,v)^2} \\ &= |(u,v)| \end{split}$$

2

Show that the taxicab norm given by $||x|| = |x_1| + |x_2| + \cdots + |x_n|$ is a norm on \mathbb{R}^2 .

Proof. We want to show the three norm space axioms

- (i) Triangle Inequality
- (ii) ||cx|| = |c| ||x||
- (iii) Positive definiteness

Let $x,y \in \mathbb{R}^2$ denoted $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Then $||x+y|| = |x_1+y_1| + |x_2+y_2|$, and $||x|| + ||y|| = |x_1| + |x_2| + |y_1| + |y_2|$. By the triangle inequality in the reals, we get $|x_1+y_1| + |x_2+y_2| \leq |x_1| + |x_2| + |y_1| + |y_2|$, and thus $||x+y|| \leq ||x|| + ||y||$. Therefore (i) holds.

For (ii), let $c \in \mathbb{R}$. Then

$$||cx|| = |cx_1| + |cx_2|$$

$$= |c||x_1| + |c||x_2|$$

$$= |c|(|x_1| + |x_2|)$$

$$= |c||x||$$

Now suppose ||x|| = 0. Then $|x_1| + |x_2| = 0$, and it follows trivially that $x_1 = x_2 = 0$, thus x = 0, and we have shown (iii). This shows that all three axioms of normed space hold, and therefore the taxicab norm is a norm.

3

Let V be an inner product space. Let U be a subspace of V.

a

Show that U^{\perp} is a subspace of V.

Proof. To show a vector $v \in U^{\perp}$, we must show that (v, u) = 0 for all $u \in U$.

Since the inner product of $(\mathbf{0}, v) = 0$ for all $v \in V$, we know that $(\mathbf{0}, u) = 0$ for all $u \in U$ and therefore $\mathbf{0} \in U^{\perp}$.

We want to show that we have closure under vector addition. Let $u \in U$ be arbitrary and $v_1, v_2 \in U^{\perp}$ aribitrarily. Since $(v_1, u) = 0$ and $(v_2, u) = 0$, it follows that $(v_1 + v_2, u) = 0 + 0 = 0$, and therefore $v_1 + v_2 \in U^{\perp}$ and we have closure under vector addition.

To show closure under scaling, let $c \in F$ where F is a field, and let $u \in U$ and $v \in U^{\perp}$. Since (v, u) = 0, it follows that (cv, u) = c(v, u) = 0. Therefore U^{\perp} is closed under scaling. Since we have shown the existence of the additive identity, closure under vector addition, and closure under scaling, U^{\perp} is a vector subspace.

b

Proof. First we must show this sum to be a direct sum. Let $v \in U \cap U^{\perp}$. We want to show that $v = \mathbf{0}$. Since $v \in U^{\perp}$, it follows that (u,v)=0 for all $u \in U$. Since $v \in U$, then it must true when u=v, and therefore (v,v)=0, which means that $v=\mathbf{0}$. Hence, $U \cap U^{\perp}=\{\mathbf{0}\}$ and thus this is a direct sum.

Since $U \subset V$ and $U^{\perp} \subset V$, we know $U \oplus U^{\perp} \subset V$. To show $U \oplus U^{\perp} = V$, we want to show that $V \subset U \oplus U^{\perp}$. Let $v \in V$.

We claim there exists $u \in U$ and $u' \in U^{\perp}$ such that u + u' = v. Let $T : V \to U$ where $T(x) = proj_{(U)}(x)$ for all $x \in V$. Then v = (v - T(v)) + T(v). We can show that $v - T(v) \in U^{\perp}$ and that $T(v) \in U$. Therefore, let u = T(v) and u' = v - T(v), and it follows that $V \subset U \oplus U^{\perp}$.

c

Proof. We want to show $(U^{\perp})^{\perp} = U$.

Let $x \in (U^{\perp})^{\perp}$, and let $y \in U^{\perp}$. From [b], we have x = u + v for some $u \in U$ and for some $v \in U^{\perp}$. Then, since (x,y) = 0, we have (u+v,y) = 0. This can be rewritten (u,y) + (v,y) = 0.

Then since $u \in U$ and $y \in U^{\perp}$, we know that (u, y) = 0. Therefore we have 0 + (v, y) = 0, and since $v, y \in U^{\perp}$, they cannot be perpendicular. This means that v = 0. Thus we have $x = u \in U$.

4

Proof. We know that

$$(x,y) = \left\langle \sum_{k=1}^{n} \alpha_k v_k, \sum_{k=1}^{n} \beta_k v_k \right\rangle$$

We can then write this out as

$$\langle \alpha_1 v_1 + \dots + \alpha_n v_n, \beta_1 v_1 + \dots + \beta_n v_n \rangle$$

If we use the properties of linearity and split this into all of its different parts, we get the sum of the inner product of each combination, i.e.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \langle \alpha_i v_i, \beta_j v_j \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \overline{\beta_j} \langle v_i, v_j \rangle$$

However, since $v_i \perp v_j$ if $i \neq j$, this is equivalent to

$$\sum_{k=1}^{n} \alpha_k \overline{\beta_k} \langle v_k, v_k \rangle = \sum_{k=1}^{n} \alpha_k \overline{\beta_k}$$

5

To find p, we must compute $proj_x x^2$. Taking this projection we get

$$p = proj_x x^2 = \frac{\langle x^2, x \rangle}{\langle x, x \rangle} x$$
$$= \frac{\int_0^1 x^3 dx}{\int_0^1 x^2 dx} x$$
$$= \frac{3}{4} x$$

Therefore we can write

$$||x^{2} - p|| = \int_{0}^{1} \left(x^{2} - \frac{3}{4}x\right)^{2} dx$$

$$= \int_{0}^{1} x^{4} - \frac{3}{2}x^{3} + \frac{9}{16}x^{2} dx$$

$$= \frac{1}{5}x^{5} - \frac{3}{8}x^{4} + \frac{9}{48}x^{3}\Big|_{0}^{1}$$

$$= \frac{1}{5} - \frac{3}{8} + \frac{9}{48}$$

$$= \frac{1}{80}$$

$$= \frac{1}{80}$$