

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department of Computer Science and Engineering

SOFT COMPUTING LAB
CSE4238

Assignment - 3

Recurrent Neural Network(RNN)

Submitted to

Mr. Nibir Chandra Mandal Lecturer, CSE, AUST

> Sanzana Karim Lora Lecturer, CSE, AUST

Submitted by

Arafat Ibne Yousuf 17.01.04.140

September 25, 2021

Contents

1	Data Visualization	1
2	Data pre-processing	1
3	Results	3
4	Prediction	4
5	Git Link	4

1 Data Visualization

The dataset contains two columns and 10315 rows. The first column is the tweets and the second column is sentiment which represents which class the tweet belongs to(0/1).

Figure 1: Data Visualization

From label count of the sentiment we can see that most of the sentiments are labeled as 0 (positive).

2 Data pre-processing

For pre-processing, some steps have been taken such as removing most frequent words, removing of punctuation, removing address id.

Figure 3: Address ID Removal

Figure 4: Punctuation Mark Removal

to	3758
the	3448
а	2949
I	2839
and	2574
you	2143
depression	1807
of	1778
my	1705
is	1659
dtype: int64	

(a) Most Frequent Words

Keough	1
snakebite	1
phenomenal	1
Recovering	1
refreshment	1
Roman	1
deffo	1
waves	1
Iver	1
Aluminum	1
dtype: int64	

(b) Most Rare Words

```
0 just had real good moment i missssssssss him s...
1 reading manga
2
3 Need send em accountant tomorrow Oddly wasnt e...
4 ADD ME ON MYSPACE
Name: tweets, dtype: object
```

Figure 6: Frequent Words Removal

3 Results

Model: "sequential"		
Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 50, 32)	160000
simple_rnn (SimpleRNN)	(None, 50, 128)	20608
simple_rnn_1 (SimpleRNN)	(None, 50, 64)	12352
simple_rnn_2 (SimpleRNN)	(None, 64)	8256
dense (Dense)	(None, 1)	65
Total params: 201,281 Trainable params: 201,281 Non-trainable params: 0		

Figure 7: Model

The comparison between (accuracy and validation accuracy) and (loss and validation loss) can be visualized by plotting graph which is shown below:

The exact value of our perfomance measurement is given below:

Accuracy	98.21%
Precision	99.56%
Recall	92.86%
F1 score	96.09%

4 Prediction

```
1 test_review_neg = "so excited 2day, looking 4ward 2 my long weekend "
2 predict_sentiment(test_review_neg)
0.000864: Positive sentiment
1
```

Figure 10: Positive Sentiment Prediction

```
1 test_review_neg = "My mom died last week. I don't have any relatives. I'm alone and it is so hard. Today is the first day without anxiety and depression 2 predict_sentiment(test_review_neg)

1.0: Negative sentiment
0
```

Figure 11: Negative Sentiment Prediction

5 Git Link

Assignment 3