Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

EPFAXTHPIO HAEKTPONIKHX

ΓΙΩΡΓΟΣ ΧΑΤΖΗΛΙΓΟΣ ΑΜ 4835

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ III ΤΟ MOS ΤΡΑΝΖΙΣΤΟΡ

Ο ενισχυτής κοινής πηγής: Στο περιβάλλον σχεδίασης του OrCAD, σχεδιάστε τη συνδεσμολογία του ενισχυτή κοινής πηγής του Σχήματος 3.5. Επιλέξτε: V_{DD} =10V, και R_D =15K Ω . Το μέγεθος του **nMOS** τρανζίστορ είναι: $\mathbf{W}_n/\mathbf{L}_n$ =30μm/10μm (PS=PD=4×W_n).

Σχήμα 3.5: Ενισχυτής κοινής πηγής

- Α) Πραγματοποιήστε DC ανάλυση με παράμετρο την τάση V_i , σαρώνοντάς την από 0V έως 10V και με βήμα 10mV. Κάντε χρήση της PSPICE βιβλιοθήκης "CD4007.lib". Στο γραφικό περιβάλλον του PSPICE παρουσιάστε τη χαρακτηριστική μεταφοράς του ενισχυτή $υ_0 = f(\upsilon_i)$.
 - 1) Σχεδιάστε τη χαρακτηριστική μεταφοράς στο πλαίσιο των αξόνων που ακολουθεί, ύστερα από βαθμονόμηση των αξόνων και προσδιορίστε τη γραμμική της περιοχή.
 - 2) Από τη γραφική παράσταση προσδιορίστε το κέρδος τάσης Αυ του κυκλώματος.
 - 3) Ποιο είναι το βέλτιστο σημείο πόλωσης (V_{lopt}) του ενισχυτή;
 - 4) Με αναφορά το βέλτιστο σημείο πόλωσης που υπολογίσατε, ποιο το μέγιστο πλάτος του σήματος εισόδου (V_{imax}) για λειτουργία στη γραμμική περιοχή;

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Vı	702.247m	1.3881	2.1493	2.8644	3.4489	4.2076	4.9000	5.6000	6.2985	7	7.7015	8.4030	9.1045	9.806
V_{0}	10	10	9.939	7.9849	4.5198	1.0546	726.591m	566.196m	467.315m	398.810m	348.464m	309.53m	278.646m	253.453m

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Vo										

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Πραξεις σε χαρτι

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

- Β) Εκτελέστε ανάλυση στο πεδίο του χρόνου transient analysis χρησιμοποιώντας στην είσοδο DC πηγή πόλωσης με τιμή τάσης αυτή του βέλτιστου σημείου πόλωσης V_{lopt} (υποερώτημα A), και πηγή ημιτονικού σήματος με πλάτος V_i=100mV και συχνότητα 1KHz (στις παραμέτρους της πηγής σήματος VSIN δώστε FREQ=1KHz, VAMPL=100mV και VOFF=0). Απεικονίστε στο γραφικό περιβάλλον του PSPICE τις κυματομορφές του σήματος εισόδου υ₁ και του σήματος εξόδου υ₀ για χρόνο δύο περιόδων.
 - 1) Μετρήστε την DC τιμή V_O και το πλάτος V_o του σήματος εξόδου υ_O.
 - 2) Μετρήστε τη DC τιμή Ι₀ του ρεύματος στη υποδοχή του τρανζίστορ.
 - 3) Υπολογίστε το κέρδος τάσης Αυ του κυκλώματος.
 - 4) Αυξάνοντας το πλάτος του σήματος εισόδου σε V_i =800mV καταγράψτε τι παρατηρείτε στην κυματομορφή του σήματος εξόδου. Αιτιολογήστε το αποτέλεσμα.
 - 5) Επαναλάβατε τα βήματα 1-3 για R_D = 20Κ Ω .

$R_D = 15K\Omega$		$R_D = 20K\Omega$					
V ₀ = 5.9950V	V _o =0.66V	V _O = 4.72V	V _o =0.843V				
I _D =266.999uA		I _D =224.590uA					
A _υ =Vo/Vi=5.9950/3.2	3=1.87	A _u =4.73/3.23=1.46					

Παρατήρηση/Αιτιολόγηση:

Παρατηρουμε ότι η ταση Vo για κΤ παει να σταθεροποιηθει για καποιες στιγμες σαν να γινεται ψαλιδισμος της κατω κορυφης κ ανηκει στους Z

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Γ) Για R_D = 15ΚΩ, αυξήστε την τιμή V_i του πλάτους του σήματος εισόδου μέχρι τη μέγιστη τιμή για την οποία το σήμα στην έξοδο δεν παραμορφώνει. Καταγράψτε τη μέγιστη τιμή του πλάτους εισόδου V_{imax} . Μετρήστε στην έξοδο τις τιμές της DC συνιστώσας V_0 και του πλάτους V_0 και υπολογίστε το κέρδος τάσης A_0 . Συγκρίνετε της νέες τιμές με εκείνες του σκέλους (B).

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Δ) Επαναφέρετε την τιμή του πλάτους εισόδου στην αρχική τιμή, V_i =100mV. Αυξήστε την τιμή της R_D μέχρι τη μέγιστη τιμή για την οποία το σήμα στην έξοδο δεν παραμορφώνει. Καταγράψτε τη μέγιστη τιμή της αντίστασης R_{Dmax} . Μετρήστε στην έξοδο τις τιμές της DC συνιστώσας V_O και του πλάτους V_O και υπολογίστε το κέρδος τάσης A_U . Συγκρίνετε της νέες τιμές με εκείνες του σκέλους (B).

R_{Dmax} =30.5κΩ	
V _O =2.1490V Μικρότερη	V _o =1.1272V Μικρότερη
A _U =Vo/Vin=2.1490/3.2303=0.6625	Ιικρότερη

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Ε) Για R_D = 15ΚΩ, εκτελέστε AC ανάλυση σαρώνοντας τη συχνότητα του σήματος εισόδου από τα 10Hz έως τα 100MegHz με βήμα 10 σημεία/δεκάδα (στις παραμέτρους της πηγής σήματος VSIN δώστε την τιμή AC=1V). Στο γραφικό περιβάλλον του PSPICE παρουσιάστε τα διαγράμματα Bode για το κέρδος του κυκλώματος (σε dB) και την φάση ως προς τη συχνότητα. Προσδιορίστε το εύρος ζώνης του κυκλώματος. Ποια η συχνότητα γονάτου - 3dB (f(-3dB)); Ποιο το κέρδος Aυ μέσα στο εύρος ζώνης; Ποια η συχνότητα μοναδιαίου κέρδους (f(0dB)); Ποια η κλίση της χαρακτηριστικής του κέρδους στην περιοχή των υψηλών συχνοτήτων;

Συχνότητα γονάτου f _(-3dB) = 15.827Mhz	Εύρος ζώνης =0 εως 15.827Mhz				
Κέρδος Α _{υ(dB)} = 15.952 dB	εντός του εύρους ζώνης				
Συχνότητα μοναδιαίου κέρδους f _(0dB) = 99.569M Hz					
Κλίση χαρακτηριστικής =-14.578 dB/dec					

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

