

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №2 по дисциплине «Математическая статистика»

Гема <u>Интервальные оценки</u>
Студент <u>Леонов В.В.</u>
Группа <u>ИУ7-66Б</u>
Оценка (баллы)
Преподаватель Власов П.А., Андреева Т.В

Постановка задачи

Цель работы

Построение доверительных интервалов для математического ожидания и дисперсии нормальной случайной величины.

Содержание работы

- 1. Для выборки объема n из нормальной генеральной совокупности X реализовать в виде программы на ЭВМ:
 - (a) вычисление точечных оценок $\hat{\mu}(\vec{X}_n)$ и $S^2(\vec{X}_n)$ математического ожидания MX и дисперсии DX соответственно;
 - (b) вычисление нижней и верхней границ $\underline{\mu}(\vec{X}_n)$, $\overline{\mu}(\vec{X}_n)$ для γ -доверительного интервала для математического ожидания MX;
 - (c) вычисление нижней и верхней границ $\underline{\sigma}^2(\vec{X}_n)$, $\overline{\sigma}^2(\vec{X}_n)$ для γ -доверительного интервала для дисперсии DX.
- 2. Вычислить $\hat{\mu}$ и S^2 для выборки из индивидуального варианта.
- 3. Для заданного пользователем уровня доверия γ (при построении графиков принять $\gamma = 0.9$) и N объёма выборки из индивидуального варианта:
 - (а) на координатной плоскости Oyn построить прямую $y = \hat{\mu}(\vec{x_N})$, также графики функций $y = \hat{\mu}(\vec{x_n}), \ y = \underline{\mu}(\vec{x_n})$ и $y = \overline{\mu}(\vec{x_n})$ как функций объема n выборки, где n изменяется от 1 до N;
 - (b) на другой координатной плоскости Ozn построить прямую $z = S^2(\vec{x_N})$, также графики функций $z = S^2(\vec{x_n}), z = \underline{\sigma}^2(\vec{x_n})$ и $z = \overline{\sigma}^2(\vec{x_n})$ как функций объема n выборки, где n изменяется от 1 до N.

Вариант 9:

```
X = (-8.47, -7.45, -7.12, -8.30, -8.15, -6.01, -5.20, -7.38, -6.76, -9.18, -6.00, -8.08, -7.96, -8.34, -6.82, -8.46, -8.07, -7.04, -7.24, -8.16, -8.20, -8.27, -7.79, -7.37, -7.02, -7.13, -6.99, -7.65, -8.18, -6.71, -8.41, -6.71, -7.04, -9.15, -7.74, -10.11, -8.20, -7.07, -7.63, -8.99, -6.62, -6.23, -7.13, -6.41, -7.06, -7.72, -8.44, -8.85, -8.02, -6.98, -6.08, -7.20, -7.48, -7.82, -9.19, -8.31, -7.95, -7.97, -6.66, -6.59, -9.10, -7.87, -9.02, -8.77, -7.62, -9.44, -8.05, -7.60, -7.33, -6.94, -8.51, -7.39, -6.44, -8.88, -8.21, -7.66, -6.91, -8.39, -7.37, -7.26, -6.04, -7.58, -7.28, -7.02, -7.10, -7.33, -8.63, -8.21, -7.12, -8.11, -9.03, -8.11, -8.79, -9.22, -7.32, -5.97, -7.26, -6.39, -7.64, -8.38, -7.67, -7.70, -7.70, -8.95, -6.25, -8.09, -7.85, -8.10, -7.73, -6.78, -7.78, -8.20, -8.88, -8.51, -7.45, -7.14, -6.63, -7.38, -7.72, -6.25)
```

Общие теоретические сведения

Дана случайная величина X, закон распределения которой известен с точностью до неизвестного параметра θ .

Интервальной оценкой с уровнем доверия γ (γ -доверительной интервальной оценкой) параметра θ называют пару статистик $\theta(\vec{X}), \bar{\theta}(\vec{X})$ таких, что

$$P\{\underline{\theta}(\vec{X}) < \theta < \overline{\theta}(\vec{X})\} = \gamma$$

Поскольку границы интервала являются случайными величинами, то для различных реализаций случайной выборки \vec{X} статистики $\theta(\vec{X}), \overline{\theta}(\vec{X})$ могут принимать различные значения.

Доверительным интервалом с уровнем доверия γ (γ -доверительным интервалом) называют интервал $(\theta(\vec{x}), \overline{\theta}(\vec{x}))$, отвечающий выборочным значениям статистик $\theta(\vec{X}), \overline{\theta}(\vec{X})$.

Напишем формулы для вычисления границ γ -доверительного интервала для математического ожидания и дисперсии нормальной случайной величины при условии, что их теоретические значения не известны.

Формулы для вычисления границ ү-доверительного интервала для математического ожидания:

$$\underline{\mu}(\vec{X}_n) = \overline{X} + \frac{S(\vec{X})t^{St(n-1)}_{\frac{1-\gamma}{2}}}{\sqrt{n}}; \overline{\mu}(\vec{X}_n) = \overline{X} + \frac{S(\vec{X})t^{St(n-1)}_{\frac{1+\gamma}{2}}}{\sqrt{n}}$$
(1)

 \overline{X} — точечная оценка математического ожидания;

 $S(\vec{X}) = \sqrt{S^2(\vec{X})}$ – квадратный корень из точечной оценки дисперсии; n – объем выборки;

 γ — уровень доверия; $t_{\alpha}^{St(n-1)}$ — квантиль уровня α распределения Стьюдента с n-1 степенями свободы.

Формулы для вычисления границ γ -доверительного интервала для дисперсии:

$$\underline{\sigma}(\vec{X}_n) = \frac{(n-1)S^2(\vec{X})}{t_{\frac{1+\gamma}{2}}^{\chi^2(n-1)}}; \overline{\sigma}(\vec{X}_n) = \frac{(n-1)S^2(\vec{X})}{t_{\frac{1-\gamma}{2}}^{\chi^2(n-1)}}$$
(2)

 $S^{2}(\vec{X})$ – точечная оценка дисперсии;

n – объем выборки;

 γ – уровень доверия;

 $\chi^{\chi^2(n-1)}_{\alpha}$ – квантиль уровня α распределения χ^2 с n-1 степенями свободы.

Ход работы

Для решения поставленной задачи была использованна программа MATLAB 2022a.

Листинг программы

```
_{1}|X = [-8.47, -7.45, -7.12, -8.30, -8.15, -6.01, -5.20, -7.38, -6.76, -9.18,
                -6.00, -8.08, -7.96, -8.34, -6.82, -8.46, -8.07, -7.04, -7.24, -8.16,
               -8.20, -8.27, -7.79, -7.37, -7.02, -7.13, -6.99, -7.65, -8.18, -6.71,
                -8.41, -6.71, -7.04, -9.15, -7.74, -10.11, -8.20, -7.07, -7.63, -8.99,
                -6.62, -6.23, -7.13, -6.41, -7.06, -7.72, -8.44, -8.85, -8.02, -6.98,
                -6.08, -7.20, -7.48, -7.82, -9.19, -8.31, -7.95, -7.97, -6.66, -6.59,
               -9.10, -7.87, -9.02, -8.77, -7.62, -9.44, -8.05, -7.60, -7.33, -6.94,
               -8.51, -7.39, -6.44, -8.88, -8.21, -7.66, -6.91, -8.39, -7.37, -7.26,
                -6.04, -7.58, -7.28, -7.02, -7.10, -7.33, -8.63, -8.21, -7.12, -8.11,
               -9.03, -8.11, -8.79, -9.22, -7.32, -5.97, -7.26, -6.39, -7.64, -8.38,
                -7.67, -7.70, -7.70, -8.95, -6.25, -8.09, -7.85, -8.10, -7.73, -6.78,
                -7.78, -8.20, -8.88, -8.51, -7.45, -7.14, -6.63, -7.38, -7.72, -6.25];
     gamma = 0.9;
 _{4} |% 1-2
      [muhat, muci] = my normfit mu(X, 1 - gamma);
      [s2hat, s2ci] = my normfit s2(X, 1 - gamma);
      fprintf("mu = \%f \mid mu = 
      fprintf("s2 = \%f \ bottom = \%f \ top = \%f \ s2ci(1), s2ci(2));
     % 3
     process mu(X, gamma, muhat);
      process s2(X, gamma, s2hat);
      function [muhat, muci] = normfit mu(X, alpha)
            [muhat, ~, muci, ~] = normfit(X, alpha);
15
      end
16
17
      function [s2hat, s2ci] = normfit s2(X, alpha)
18
            [~, sigmahat, ~, sigmaci] = normfit(X, alpha);
19
            s2hat = sigmahat ^ 2;
            s2ci = sigmaci .^ 2;
     end
22
23
^{24}
```

```
function [muhat, muci] = my normfit mu(X, alpha)
    muhat = mean(X);
26
    s = std(X);
27
    gamma = 1 - alpha;
28
    n = length(X);
29
    mu bottom = muhat + s * tinv((1 - gamma) / 2, n - 1) / sqrt(n);
    mu top = muhat + s * tinv((1 + gamma) / 2, n - 1) / sqrt(n);
31
    muci = [mu bottom, mu top];
32
  end
33
34
  function [s2hat, s2ci] = my_normfit_s2(X, alpha)
35
    s2hat = var(X);
36
    gamma = 1 - alpha;
37
    n = length(X);
38
    s2 \text{ top} = (n-1) * s2hat / chi2inv((1 - gamma) / 2, n-1);
    s2 bottom = (n-1) * s2hat / chi2inv((1 + gamma) / 2, n-1);
40
    s2ci = [s2 bottom, s2 top];
41
  end
42
43
  function process_parameter(start, X, gamma, est, fit, line_legend,
     est legend, top legend, bottom legend)
    N = length(X);
45
    figure;
46
    hold on;
47
    grid on;
48
    plot([1, N], [est, est]);
49
    ests = [];
50
    cis bottom = [];
51
    cis top = [];
52
    for n = start:N
53
      [est, cis] = fit(X(1:n), 1 - gamma);
54
      ests = [ests, est];
55
      cis bottom = [cis bottom, cis(1)];
56
      cis top = [cis top, cis(2)];
57
    end
    plot(start:N, ests);
    plot(start:N, cis bottom);
60
    plot(start:N, cis top);
61
    l = legend(line legend, est legend, top legend, bottom legend);
62
    set(I, 'Interpreter', 'latex', 'fontsize', 18);
63
    hold off;
64
  end
65
  function process mu(X, gamma, muhat)
67
    process parameter (1, X, gamma, muhat, @my normfit mu, '<math>hat \mu(\vec \times N)
68
        ', \$\hat\mu(\vec \times n)', \$\underline\mu(\vec \times n)', \$\overline\mu(\
       vec \times n) ');
  end
69
70
71
```

```
function process_s2(X, gamma, S2)

process_parameter(10, X, gamma, S2, @my_normfit_s2, '$\hat\sigma^2(\vec x_N)$', '$\hat\sigma^2(\vec x_n)$', '$\underline\sigma^2(\vec x_n)$', '$\overline\sigma^2(\vec x_n)$');

showerline\sigma^2(\vec x_n)$');

end
```

Результат работы программы

	$\hat{\mu}(\vec{x}_n)$	$S^2(\vec{x}_n)$	$\underline{\mu}(\vec{x}_n)$	$\overline{\mu}(\vec{x}_n)$	$\underline{S^2}(\vec{x}_n)$	$\overline{S^2}(\vec{x}_n)$
$\gamma = 0.95$	-7.660917	0.777892	-7.820342	-7.501492	0.612699	1.020613
$\gamma = 0.9$	-7.660917	0.777892	-7.794389	-7.527445	0.636386	0.976353
$\gamma = 0.8$	-7.660917	0.777892	-7.764675	-7.557158	0.665250	0.928415

Таким образом, при увелечении/уменьшении уровня доверия γ доверительный интервал увеличивается/уменьшается соответственно.

Рис. 1: Прямая $y(n)=\hat{\mu}(\vec{x}_N)$, а также графики функций $y(n)=\underline{\mu}(\vec{x}_n),$ $y(n)=\overline{\mu}(\vec{x}_n),$ $y(n)=\hat{\mu}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N

Рис. 2: Прямая $z(n)=\hat{S}^2(\vec{x}_N)$, а также графики функций $z(n)=\underline{S}^2(\vec{x}_n),\ z(n)=\overline{S}^2(\vec{x}_n),$ $z(n)=\hat{S}^2(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 10 до N