TD 7 - Vocabulaires des Applications

Entraînements

Exercice 1. On considère l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $: x \mapsto x^3 - 3x$.

- 1. Étudier les variations de f.
- 2. Déterminer $f([1,2]), f(\mathbb{R}), f([-1,+\infty[)$.

Exercice 2. Soit f l'application de \mathbb{C} dans \mathbb{R} qui, à tout complexe associe son module. Calculer l'image directe par f de :

- 1. $A = \{z \in \mathbb{C}, \exists x \in \mathbb{R}, z = x + 2i\}$
- 2. $A = \{ z \in \mathbb{C}, \exists x \in \mathbb{R}, z = (1 + \cos(x)) + i \sin(x) \}.$

Exercice 3. Étudier l'injectivité, la surjectivité et la bijectivité des applications suivantes. Lorsqu'elles sont bijectives, déterminer les applications réciproques.

$$1. \ f: \begin{vmatrix} \mathbb{R}^{+} \to \mathbb{R} \\ x \mapsto \sqrt{x} \\ 2. \ f: \begin{vmatrix} \mathbb{R}^{+} \to \mathbb{R}^{+} \\ x \mapsto \sqrt{x} \\ 3. \ f: \begin{vmatrix} \mathbb{R}^{+} \to \mathbb{R}^{+} \\ x \mapsto x + 1 \\ x \mapsto x + 1 \\ 4. \ f: \begin{vmatrix} \mathbb{R} \to \mathbb{R} \\ x \mapsto x + 1 \\ x \mapsto x + 1 \\ x \mapsto x + 1 \end{vmatrix}$$

$$13. \ f: \begin{vmatrix} \mathbb{R} \to [1] + \infty[$$

$$x \mapsto e^{-x} + 1 \\ x \mapsto x^{3} \\ x \mapsto x^{3} \\ 14. \ f: \begin{vmatrix} 1 - 1 + \infty[\to \mathbb{R}] \\ x \mapsto x^{3} \\ x \mapsto x^{4} \\ 15. \ f: \begin{vmatrix} \mathbb{R} \to [1] + \infty[\to \mathbb{R}] \\ x \mapsto x \mapsto \ln(1 + x) \\ x \mapsto x^{4} \\ 15. \ f: \begin{vmatrix} \mathbb{R} \to [1] + \infty[\to \mathbb{R}] \\ x \mapsto \ln(1 + x) \\ x \mapsto x^{4} \\ 16. \ f: \begin{vmatrix} \mathbb{R} \to [1] + \infty[\to \mathbb{R}] \\ x \mapsto \ln(1 + x) \\ x \mapsto x^{4} \\ 16. \ f: \begin{vmatrix} \mathbb{R} \to [1] + \infty[\to \mathbb{R}] \\ x \mapsto \ln(1 + x) \\ x \mapsto x^{4} \\ 16. \ f: \begin{vmatrix} \mathbb{R} \to [1] + \infty[\to \mathbb{R}] \\ x \mapsto x^{2} - 4 \\ x \mapsto x^{$$

Exercice 4. Soit $f:[1,+\infty[\to[0,+\infty[$ telle que $f(x)=x^2-1.$ f est-elle une bijection?

Exercice 5. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{2x}{1+x^2}$.

- 1. L'application f est-elle injective de \mathbb{R} dans \mathbb{R} ? Surjective de \mathbb{R} dans \mathbb{R} ?
- 2. Montrer que la restriction $g: [-1,1] \to [-1,1]$ est une bijection.

Exercice 6. Soit f une application définie par $f(x) = \frac{x-1}{1-2x}$. Montrer que f est bijective de \mathcal{D}_f sur un sous ensemble de \mathbb{R} à déterminer et déterminer f^{-1} .

Exercice 7. Étudier la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{e^x + e^{-x}}{2}$. Sur quels intervalles f est-elle une bijection? Déterminer alors la bijection réciproque sur l'intervalle contenant 1.

Exercice 8. Montrer que l'application $f: z \mapsto \frac{z+i}{z-i}$ est une bijection de $\mathbb{C} \setminus \{i\}$ sur un sous ensemble à déterminer. Donner la bijection réciproque.

Exercice 9. Soit $f: \begin{bmatrix} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x+y,x-y) \end{bmatrix}$. Montrer que f est bijective et déterminer sa réciproque.

Exercice 10. Soit $f: \mathbb{C}^{\star} \to \mathbb{U}$ avec $\mathbb{U} = \{z \in \mathbb{C}, \ |z| = 1\}$ définie par $f(z) = \frac{z}{|z|}$ pour tout $z \in \mathbb{C}^{\star}$.

- 1. Montrer que $\forall u \in \mathbb{U}$, f(u) = u et en déduire que f est surjective.
- 2. La fonction f est-elle injective?

Exercices abstraits

Exercice 11. Montrer que la composée de deux injections est une injection et que la composée de deux surjections est une surjection.

Exercice 12. Soit E, F deux ensembles et $f: E \to F$ et $g: F \to E$ deux applications.

- 1. Montrer que si $g \circ f = Id_E$, alors g est surjective et f est injective.
- 2. Montrer que si $f \circ g$ et $g \circ f$ sont bijectives, alors f et g sont bijectives.

Exercice 13. Soient E, F et G trois ensembles. Soient $f: E \to F$ et $g: F \to G$ deux applications.

- 1. Montrer que si $g \circ f$ est injective et f surjective alors g est injective.
- 2. Montrer que si $g \circ f$ est surjective et g injective alors f est surjective.

Exercice 14. Soient E, F et G trois ensembles. Soient $f: E \to F$ et $g: E \to G$ deux applications. On considère l'application h définie par

$$h: \left| \begin{array}{ccc} E & \rightarrow & F \times G \\ x & \mapsto & (f(x), g(x)). \end{array} \right|$$

- 1. Montrer que : $(f \text{ est injective ou } q \text{ est injective}) \Rightarrow (h \text{ injective de } E \text{ dans } F \times G).$
- 2. On suppose que f est surjective de E dans F et que g est surjective de E dans G. L'application h est-elle nécessairement surjective de E dans $F \times G$?

Exercice 15. Soit E un ensemble et $f: E \to E$ une application telle que $f \circ f \circ f = f$. Montrer que f est injective si et seulement si f est surjective.

Type DS

Exercice 16. Soit la fonction f définie par $f(x) = \frac{3x^2}{x+2}$.

- 1. Étudier la fonction f: domaine de définition, limites, variations.
- 2. Calculer $f(]-2,-1]), f(]-\infty,-4]), f^{-1}([0,+\infty[) \text{ et } f^{-1}([-10,-1]).$
- 3. f est-elle injective de $]-2,+\infty[$ sur \mathbb{R} ?
- 4. f est-elle surjective de $]-2,+\infty[$ sur \mathbb{R} ?
- 5. On définit la restriction de f à \mathbb{R}^+ par g: $\begin{vmatrix} \mathbb{R}^+ & \to & \mathbb{R}^+ \\ x & \mapsto & \frac{3x^2}{x+2} \end{vmatrix}$. Montrer que g est bijective de \mathbb{R}^+ sur \mathbb{R}^+ en utilisant le théorème de la bijection.
- 6. Retrouver ce résultat par la méthode d'analyse synthèse, et déterminer g^{-1} .