

MITx: 14.310x Data Analysis for Social Scientists

Heli

- Module 1: The Basics of R and Introduction to the Course
- Entrance Survey
- Module 2: Fundamentals of Probability, Random Variables, Distributions, and Joint Distributions
- Module 3: Gathering and Collecting Data,
 Ethics, and Kernel
 Density Estimates
- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable

Module 11: Intro to Machine Learning and Data Visualization > Machine Learning I > An Example: Dimensionality of Face Recognition - Quiz

An Example: Dimensionality of Face Recognition - Quiz

☐ Bookmark this page

Question 1

1/1 point (graded)

True or False: In regards to high dimensional prediction, the term "high dimensional" refers to when a dataset has more raw variables than observations.

- a. True
- 🎐 b. False 🗸

Submit You have

You have used 1 of 1 attempt

✓ Correct (1/1 point)

Question 2

0/1 point (graded)

- Module 5: Moments of a Random Variable,
 Applications to Auctions,
 Intro to Regression
- Module 6: Special
 Distributions, the
 Sample Mean, the
 Central Limit Theorem,
 and Estimation
- Module 7: Assessing and Deriving Estimators -Confidence Intervals, and Hypothesis Testing
- Module 8: Causality,
 Analyzing Randomized
 Experiments, &
 Nonparametric
 Regression
- Module 9: Single and Multivariate Linear Models
- Module 10: Practical Issues in Running

True or False: Machine learning techniques are always better to use than traditional estimation techniques.

a. True X

b. False

Explanation

As mentioned at the end of lecture, this is false. In the next few segments, Prof. Mullainathan will discuss what is the trade-off between using standard estimation tools versus machine learning techniques.

Submit

You have used 1 of 1 attempt

★ Incorrect (0/1 point)

Discussion

Topic: Module 11 / An Example: Dimensionality of Face Recognition - Quiz

Show Discussion

Regressions, and Omitted Variable Bias

Module 11: Intro to
 Machine Learning and
 Data Visualization

Machine Learning I

due Dec 12, 2016 05:00 IST

Machine Learning II

due Dec 12, 2016 05:00 IST

B

Visualizing Data

due Dec 12, 2016 05:00 IST

Module 12:
Endogeneity,
Instrumental Variables,
and Experimental
Design

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

