Métodos iterativos para ecuaciones no lineales

Problem 1: Escribe un programa para calcular la constante matemática e, considerando la definición

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n,$$

es decir, calcula $(1+1/n)^n$ para $n=10^k$, $k=1,2,\ldots,20$. Determina el error relativo y absoluto de las aproximaciones comparándolas con $\exp(1)$. (1 punto)

Solution.

 \Diamond

Problem 2: La ecuación $x^3 + x = 6$ tiene una raíz en el intervalo [1.55, 1.75], ¿cuántas iteracions se necesitan para obtner una aproximación de la raiz con error menor a 0.0001 con el método de bisección? Verifica con el método de bisección tu predicción de la raíz. (2 puntos)

Solution.

 \Diamond

Problem 3: Hallar una raíz de $f(x) = x^4 + 3x^2 - 2$ por medio de las siguientes 4 formulaciones de punto fijo utilizando $p_0 = 1$:

a)
$$x = \sqrt{\frac{2 - x^4}{3}}$$
, b) $x = (2 - 3x^2)^{\frac{1}{4}}$, c) $x = \frac{2 - x^4}{3x}$, d) $x = \left(\frac{2 - 3x^2}{x}\right)^{\frac{1}{3}}$

- 1. Las raíces de f(x) deben de coincidir con las raíces de x g(x). Grafica f(x) y x g(x). Comenta lo observado. (1 punto)
- 2. Crea una talba comparativa para comparar el resultado de las raices de f(x) con la raiz alcanzada con cada una de las formulaciones. Usa maximo 20 iteraciones y tol = 0.0001. Explica lo sucedido. (2 puntos)

Solution.

 \Diamond

Problem 4: Utiliza el método de bisección, método de Newton, método de la secante y método de al falsa posición para comparar los resultados de los siguientes problemas: Encontrar λ con una presición de 10^{-4} y $N_{iter,max}=100$, para a ecuación de la población en términos de la tasa de natalidad λ ,

$$P(\lambda) = 1,000,000e^{\lambda} + \frac{435,000}{\lambda}(e^{\lambda} - 1)$$

para $P(\lambda)=1,564,000$ individuos por años. Usa $\lambda_0=0.01$. (Sugerencia: graficar $P(\lambda)-N$) (4 puntos)