Wintersemester 2020/2021

Lösungshinweise zur 9. Übung

Logik für Informatiker

GRUPPENÜBUNGEN:

(G 1)

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{f/1, g/2, c/0\}$ und $\Pi = \{p/1, q/3, = /2\}$. Ferner sei X eine Menge von Variablen und $x, y \in X$. Markiere durch Ankreuzen, welcher der folgenden Ausdrücke über Σ und X zu welchem der genannten Konzepten gehört.

Hinweis: Es können mehre Spalten zutreffen, d.h. es ist erlaubt mehr als nur 1 Kreuz pro Zeile zu setzen.

Ausdruck	Term	Atom	Literal	Klausel	Formel	Nichts
$\exists x \forall y q(c, y, x)$					X	
$\exists xc = x = y$						X
$\exists x p (p(x))$						X
$\forall x g(c, x)$						X
$\forall x \forall y (p(x,y) \vee q(x,y,c))$						X
$\neg \exists xc = c$					X	
$\neg f(x)$						X
$\neg (g(x, f(x)))$						X
$c = cf(x) \land q(c, c, x)$						X
c	X					
f(c) = c		X	X	X	X	
f(c) = p(f(c))						X
g(g(c, f(x)), f((f(y)))	X					
$p(x) \land \neg x = a$					X	
q(c, f(c), x)		X	X	X	X	
$x = f(x) \lor q(x, x, x)$				X	X	

Bilde selbst Terme, Atome, Literale und Formeln über diese Signatur. Begründe die Konstruktion in jedem einzelnen Fall.

(G 2)

Sei $\sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{vater/1, mutter/1\}$ und $\Pi = \{detektiv/1, verbrecher/1, schlau/1, frustriert/1, traurig/1, verfolgt/2, stolzAuf/2, fängt/2\}.$ Ferner sei X eine Menge von Variablen und $x, y \in X$.

Die Bedeutung der Prädikate entspricht dem normalen Sprachgebrauch. Formalisieren Sie mithilfe der Prädikatenlogik:

- a) Jeder Detektiv verfolgt einen Verbrecher.
- b) Es gibt schlaue Verbrecher.

- c) Jeder Detektiv ist schlau.
- d) Kein Detektiv kann einen schlauen Verbrecher fangen.
- e) Jeder Detektiv, der einen Verbrecher verfolgt, aber nicht fängt, ist frustriert.
- f) Wenn alle Verbrecher schlau sind, dann sind alle Detektive frustriert.
- g) Jeder Verbrecher hat eine traurige Mutter und einen traurigen Vater.
- h) Jeder Detektiv, der einen Verbrecher fängt, erfüllt seinen Vater mit Stolz.

LÖSUNG:

- a) $\forall x (detektiv(x) \land \exists y (verbrecher(y) \land (verflogt(x, y)))).$
- b) $\exists y(verbrecher(y) \land schlau(y)).$
- c) $\forall x (detektiv(x) \land schlau(x))$.
- d) $\neg \forall x (detektiv(x) \land \exists y (verbrecher(y) \land f\ddot{a}ngt(x,y))).$
- e) $\forall x (detektiv(x) \land \exists y (verbrecher(y) \land \neg f \ddot{a} ngt(x,y)) \rightarrow frustriet(x)).$
- f) $\forall yverbrecher(y) \rightarrow (\forall x(detektiv(x) \land frustriert(x)).$
- g) $\forall y (verbrecher(y) \land traurig(mutter(y)) \land traurig(vater(y)))$.
- h) $\forall x (detektiv(x) \land \exists y (verbrecher(y) \land f\ddot{a}ngt(x,y) \rightarrow stolzAuf(vater(x),x))).$

(G 3)Freie Variablen

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \emptyset$ und $\Pi = \{p/1, q/2, r/3\}$. Sei X eine Menge von Variablen und $x, y, z \in X$. Gegeben sind die folgenden Prädikatenlogischen Formeln:

- a) $F_1 = (\forall x (r(y, z, x))) \land (\exists y (p(y) \lor \forall z (\neg q(z, y) \lor p(x)))).$
- b) $F_2 = (\exists x (q(y,x) \lor \forall y \neg (p(x) \lor r(y,x,z)) \lor \neg (\forall z (p(z) \lor p(x)))) \lor r(y,z,x)).$

Gib für jedes Vorkommen einer Variablen in F_1 und F_2 an, ob die Variable dort frei oder gebunden ist.

LÖSUNG:

- a) Die Variable x ist in $(\forall x (r(y, z, x)))$ gebunden, gier sind die Variablen y, z frei. Die Variable y ist in $(\exists y (p(y) \lor \forall z (\neg q(z, y) \lor p(x))))$ gebunden, x ist hier frei und z ist gebunden in $\forall z (\neg q(z, y) \lor p(x))$.
- b) Analog.

(G 4)Freie Variablen

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{a/0, f/1\}$ und $\Pi = \{p/1, q/3\}$. Sei X eine Menge von Variablen und $x, y, z \in X$. Gegeben sind die folgenden Prädikatenlogischen Formeln:

- a) $F_1 = (\exists x (q(z, a, z \lor \forall z (\neg q(x, z, y)) \lor \neg (\exists y (p(f(y)) \lor p(x)))))) \lor q(y, z, x).$
- b) $F_2 = (\forall x ((\exists x q(x, y, f(a))) \land (\exists y q(f(z), x, y)))) \land \exists z (q(y, f(z), x) \land q(f(z), a, z))$.

Gib für jedes Vorkommen einer Variablen in F_1 und F_2 an, ob die Variable dort frei oder gebunden ist.

(G 5)Substitution

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei

- $\Omega = \{a/0, b/0, f/1, g/2\}$, und
- $\Pi = \{p/1, q/2, = /2\}.$

Sei X eine Menge von Variablen und $x, y, z \in X$.

Berechnen Sie die Ergebnisse der folgenden Substitutionen:

- a) g(g(x,b), g(a,x))[f(a)/x]
- b) g(x, g(z, y)) = g(g(a, y), x)[y/x, x/y]
- c) $\exists x (q (g(x, a), g(b, y))) [x/y]$
- d) $\exists x (g(f(x), f(y)) = g(g(y, x), g(z, x))) [f(y)/x, a/y]$
- e) $((\forall x (q(z, f(a)) \lor (x = g(y, b))) \lor \exists z (p(z)) [x/y, f(a)/z]$
- f) $((\exists x g(y, z) = g(a, x)) \lor \forall y (q (q(z, y), f(x)))) [a/x, x/b, b/z]$

LÖSUNG:

- a) g(g(f(a), b), g(a, f(a))).
- b) g(x, g(z, x)) = g(g(a, x), x).
- c) $\exists x (q (g(x, a), g(b, z))).$
- d) $\exists t (g(f(t), f(a)) = g(g(a, t), g(z, t))).$
- e) $((\forall t (q(f(a), f(a)) \lor (t = g(x, b))) \lor \exists u (p(u)).$
- $\mathrm{f)} \ \left(\left(\exists t g(y,b) = g(a,t) \right) \vee \forall u \left(q \left(q(b,u), f(a) \right) \right) \right).$