Lineare Algebra 2 — Lösung zu Übungsblatt 11

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 16.07.2020 um 9:15 Uhr

40. Aufgabe: (1,5+1,5+1,5+1,5 *Punkte, Quotientenkörper*) In dieser Aufgabe sollen Teile der Beweise von Satz 11.1 und Satz 11.3 ausgearbeitet werden. Seien dazu *R* ein nullteilerfreier Ring und *M* ein *R*-Modul.

- (a) Man zeige, dass auf der Menge $R \times (R \setminus \{0\})$ durch $(r_1, s_1) \sim (r_2, s_2) :\Leftrightarrow r_1 s_2 = r_2 s_1$ eine Äquivalenzrelation definiert wird.
- (b) Sei $Q(R) := (R \times (R \setminus \{0\})) / \sim$ mit der Äquivalenzrelation \sim aus (a). Wir schreiben $\frac{r}{s}$ für die Äquivalenzklasse von (r, s) in Q(R). Man zeige, dass die Operationen

$$\frac{r_1}{s_1} + \frac{r_2}{s_2} := \frac{r_1 s_2 + r_2 s_1}{s_1 s_2}$$
 und $\frac{r_1}{s_1} \cdot \frac{r_2}{s_2} := \frac{r_1 r_2}{s_1 s_2}$

auf Q(R) wohldefiniert sind.

(c) Man zeige, dass auf der Menge $M \times (R \setminus \{0\})$ durch

$$(x_1, r_1) \sim (x_2, r_2) :\Leftrightarrow$$
 es existiert $s \in R \setminus \{0\}$ mit $sr_1x_2 = sr_2x_1$

eine Äquivalenzrelation definiert wird.

(d) Man zeige anhand eines Gegenbeispiels, dass auf der Menge $M \times (R \setminus \{0\})$ durch

$$(x_1, r_1) \sim (x_2, r_2) :\Leftrightarrow r_1 x_2 = r_2 x_1$$

im Allgemeinen keine Äquivalenzrelation definiert wird.

Lösung:

(a) Die Relation \sim ist offenbar reflexiv und symmetrisch, es bleibt somit nur noch die Transitivität zu zeigen. Seien dazu $(r_1, s_1), (r_2, s_2), (r_3, s_3) \in R \times (R \setminus \{0\})$ mit $(r_1, s_1) \sim (r_2, s_2)$ (1) und $(r_2, s_2) \sim (r_3, s_3)$ (2). Wir erhalten zusammen mit der Kommutativität von R

$$r_1s_3s_2 \stackrel{R \text{ komm}}{=} s_3r_1s_2 \stackrel{\text{(1)}}{=} s_3r_2s_1 \stackrel{R \text{ komm}}{=} r_2s_3s_1 \stackrel{\text{(2)}}{=} r_3s_2s_1 \stackrel{R \text{ komm}}{=} r_3s_1s_2.$$

Da $s_2 \neq 0$ sowie R nullteilerfrei ist folgt daraus $r_1s_3 = r_3s_1$ und damit $(r_1, s_1) \sim (r_3, s_3)$.

(b) Seien $\frac{r_1}{s_1}$, $\frac{r_2}{s_2} \in Q(R)$. Da R nullteilerfrei ist gilt $s_1s_2 \neq 0$, offensichtlich liegen also $\frac{r_1}{s_1} + \frac{r_2}{s_2}$ und $\frac{r_1}{s_1} \cdot \frac{r_2}{s_2}$ wieder in Q(R). Um die Wohldefiniertheit zu zeigen müssen wir die Vertreterunabhängigkeit dieser Operationen nachweisen. Seien dazu $\frac{r_1'}{s_1'}$, $\frac{r_2'}{s_2'} \in Q(R)$ weitere Vertreter der obigen Elemente, dh. es gilt

$$r_1s_1' = r_1's_1$$
 und $r_2s_2' = r_2's_2$.

Wir erhalten die Gleichungen

$$(r_1's_2' + r_2's_1')s_1s_2 = \underbrace{r_1's_1}_{=r_1s_1'} s_2's_2 + \underbrace{r_2's_2}_{=r_2s_2'} s_1's_1 = r_1s_1's_2's_2 + r_2s_2's_1's_1 = (r_1s_2 + r_2s_1)s_1's_2', \tag{1}$$

$$r'_1 r'_2 s_1 s_2 = \underbrace{r'_1 s_1}_{=r_1 s'_1} \underbrace{r'_2 s_2}_{=r_2 s'_2} = r_1 r_2 s'_1 s'_2. \tag{2}$$

Dies liefert direkt die Vertreterunabhängigkeit:

$$\frac{r_1'}{s_1'} + \frac{r_2'}{s_2'} = \frac{r_1's_2' + r_2's_1'}{s_1's_2'} \stackrel{\text{(1)}}{=} \frac{r_1s_2 + r_2s_1}{s_1s_2} = \frac{r_1}{s_1} + \frac{r_2}{s_2},$$

$$\frac{r_1'}{s_1'} \cdot \frac{r_2'}{s_2'} = \frac{r_1'r_2'}{s_1's_2'} \stackrel{(2)}{=} \frac{r_1r_2}{s_1s_2} = \frac{r_1}{s_1} \cdot \frac{r_2}{s_2}.$$

(c) Auch diese Relation ist offenbar reflexiv und symmetrisch, wir zeigen im folgenden noch die Transitivität. Seien dazu $(x_1, r_1), (x_2, r_2), (x_3, r_3) \in M \times (R \setminus \{0\})$ mit $(x_1, r_1) \sim (x_2, r_2)$ und $(x_2, r_2) \sim (x_3, r_3)$, dh. es existieren $s, s' \in R \setminus \{0\}$ sodass

$$sr_1x_2 = sr_2x_1$$
 und $s'r_2x_3 = s'r_3x_2$.

Damit gilt unter Ausnutzung der Kommutativität von R

$$\underbrace{ss'r_2}_{\in R\setminus\{0\}} r_1x_3 = sr_1\underbrace{s'r_2x_3}_{=s'r_3x_2} = s'r_3\underbrace{sr_1x_2}_{=sr_2x_1} = ss'r_2r_3x_1,$$

es ist also auch $(x_1, r_1) \sim (x_3, r_3)$.

(d) Betrachte $M = \mathbb{Z}/2\mathbb{Z}$ als $R = \mathbb{Z}$ -Modul. Es gilt $(\bar{1}, 2) \sim (\bar{0}, 2)$ und $(\bar{0}, 2) \sim (\bar{1}, 1)$, aber wegen

$$1 \cdot \overline{1} = \overline{1} \neq \overline{0} = 2 \cdot \overline{1}$$

ist $(\bar{1}, 2) \neq (\bar{1}, 1)$ und daher \sim nicht transitiv.

- **41. Aufgabe:** (3+3 Punkte, Torsionsmoduln und der Annulator)
 - (a) Seien *R* ein nullteilerfreier Ring und *M* ein endlich erzeugter *R*-Modul. Man zeige, dass die folgenden Aussagen äquivalent sind:
 - (i) *M* ist ein Torsions-*R*-Modul.
 - (ii) Es gilt Ann(M) \neq (0).
 - (b) Seien nun $R = \mathbb{Z}$ und $M = \bigoplus_{n \in \mathbb{N}} \mathbb{Z}/2^n \mathbb{Z}$. Man zeige, dass M ein Torsions-R-Modul ist, und dass Ann(M) = (0) gilt.

Lösung:

- (a) Sei $(x_i)_{i=1,\dots n}$ ein ES von M.
- (i) \Rightarrow (ii): Da M ein Torsions-R-Modul ist, existieren $a_1, \ldots, a_n \in R \setminus \{0\}$ sodass $a_i x_i = 0$ für alle $i = 1, \ldots, n$ gilt. Für ein beliebiges Element $x = \sum \lambda_i x_i \in M$ gilt daher

$$\left(\prod_{j=1}^{n} a_j\right) x = \sum \left(\prod_{j=1, j \neq i} a_j\right) \lambda_i \underbrace{a_i x_i}_{=0} = 0.$$

Da *R* nullteilerfrei ist daher $0 \neq \prod_{i=1}^{n} a_i \in \text{Ann}(M) \neq (0)$.

(ii) \Rightarrow (i): Sei $0 \neq a \in \text{Ann}(M) = \{r \in R \mid rm = 0 \text{ für alle } m \in M\}$. Dann ist jedes Element $x \in M$ wegen ax = 0 ein Torsionselement und deshalb T(M) = M.

(b) Sei $(x_n)_{n\in\mathbb{N}}\in M$ und $r\in\mathbb{N}$, so dass $x_n=0$ für alle n>r. Dann ist offenbar

$$2^r \cdot (x_n)_{n \in \mathbb{N}} = (2^r \cdot x_n)_{n \in \mathbb{N}} = 0,$$

also $(x_n)_{n\in\mathbb{N}}$ ein Torsionselement und damit M ein Torsions- \mathbb{Z} -Modul. Wir betrachten für $i\in\mathbb{N}$ die Elemente $e_i\in M$, mit $(e_i)_n\equiv 0\ (\text{mod }2^n)$ für $n\neq i$ und $(e_i)_i\equiv 1\ (\text{mod }2^i)$. Für ein $a\in \text{Ann}(M)$ gilt dann insbesondere

$$a \cdot e_i = 0 \quad \forall i \in \mathbb{N} \implies a \cdot 1 \pmod{2^i} \equiv 0 \pmod{2^i} \quad \forall i \in \mathbb{N}.$$

Wir erhalten also

$$2^i \mid a \quad \forall i \in \mathbb{N}$$
.

es muss also bereits a = 0 sein.

- **42. Aufgabe:** (2+2+2 Punkte, Länge, Rang und Torsion) Sei M der $\mathbb{R}[t]$ -Modul $\mathbb{R}[t]/(t^2)$.
 - (a) Man bestimme alle Torsionselemente in *M* sowie den Rang von *M*.
 - (b) Via der natürlichen Inklusion $\mathbb{R} \hookrightarrow \mathbb{R}[t]$ (als konstante Polynome) betrachten wir M als \mathbb{R} -Modul. Man bestimme alle Torsionselemente von M als \mathbb{R} -Modul sowie den Rang von M als \mathbb{R} -Modul.
 - (c) Man bestimme die Länge $\ell(M)$ von M sowie alle Kompositionsfaktoren von M (als $\mathbb{R}[t]$ -Modul).

Hinweis: Man erinnere sich an Bemerkung 6.7.

Lösung:

(a) 1. Behauptung: T(M) = M.

Ist nämlich $x \in M = \mathbb{R}[t]/(t^2)$ ein beliebiges Element, etwa $x = \overline{f}$ für einen Vertreter $f \in \mathbb{R}[t]$, so hat man

$$t^2 \cdot x = \overline{t^2 \cdot f} = 0$$

in M. Folglich sind alle Elemente von M Torsionselemente.

2. Behauptung: Rang_{$\mathbb{R}[t]$}(M) = 0.

Denn: Nach Definition 11.8 ist $\operatorname{Rang}_{\mathbb{R}[t]}M = \dim_{\mathbb{R}(t)}(\mathbb{R}(t) \otimes_{\mathbb{R}[t]} M)$, wobei $\mathbb{R}(t)$ den Körper der rationalen Funktionen über \mathbb{R} bezeichnet.

Wir müssen also $\mathbb{R}(t) \otimes_{\mathbb{R}[t]} M = 0$ zeigen. Seien dazu $f \in \mathbb{R}(t)$ und $x \in M = \mathbb{R}[t]/(t^2)$. Dann folgt

$$f \otimes x = (\frac{1}{t^2} \cdot f) \otimes (t^2 \cdot x) = (\frac{1}{t^2} \cdot f) \otimes 0 = 0.$$

Da die reinen Tensoren ein ES des Tensorproduktes bilden, folgt damit die Behauptung. (Vgl. auch Aufgabe 29(a).)

Alternativer Beweis: Die Inklusion $(t^2) \subseteq \mathbb{R}[t]$ und die Restklassenabbildung $\mathbb{R}[t] \longrightarrow \mathbb{R}[t]/(t^2)$ liefern eine exakte Sequenz

$$0 \longrightarrow (t^2) \longrightarrow \mathbb{R}[t] \longrightarrow M \longrightarrow 0.$$

Nach Folgerung 11.13 gilt daher

$$\operatorname{Rang}_{\mathbb{R}[t]}\mathbb{R}[t] = \operatorname{Rang}_{\mathbb{R}[t]}(t^2) + \operatorname{Rang}_{\mathbb{R}[t]}M.$$

Es ist $\operatorname{Rang}_{\mathbb{R}[t]}\mathbb{R}[t]=1$, und da das Ideal (t^2) frei mit Basis t^2 ist (s. auch Aufgabe 25(a)), gilt auch $\operatorname{Rang}_{\mathbb{R}[t]}(t^2)=1$. Damit folgt $\operatorname{Rang}_{\mathbb{R}[t]}M=0$.

- (b) 1. Behauptung: Als \mathbb{R} -Modul gilt $T(M) = \{0\}$. Denn: Als R-Vektorraum ist M frei, und nach Bem. 11.16(b) ist M somit torsionsfrei, d.h. die 0 ist das einzige Torsionselement.

2. Behauptung: $\operatorname{Rang}_{\mathbb{R}} M = \dim_{\mathbb{R}} M = 2$.

Denn: Zunächst ist das System $(1, t, t^2, \ldots)$ eine Basis des \mathbb{R} -Vektorraumes $\mathbb{R}[t]$, und das Ideal (t^2) ist der von dem Teilsystem (t^2, t^3, \ldots) erzeugte Untervektorraum, denn seine Elemente sind genau die Polynome der Form $\sum_{i=2}^{d} a_i t^j$ mit $d \ge 2$, $a_i \in \mathbb{R}$.

Folglich hat der Faktorring $M = \mathbb{R}[t]/(t^2)$, aufgefasst als Quotientenvektorraum über \mathbb{R} , die Basis $(\overline{1}, \overline{t})$.

(c) Wir betrachten M wieder als $\mathbb{R}[t]$ -Modul.

Die Untermoduln von $M = \mathbb{R}[t]/(t^2)$ korrespondieren nach Bem. 6.7 genau zu den Idealen von $\mathbb{R}[t]$, welche (t^2) umfassen. Letztere korrespondieren zu den normierten Teilern von t^2 in dem Hauptidealring $\mathbb{R}[t]$, also zu den Elementen t^2 , t und 1. Folglich sind die Untermoduln von M genau

$$0 = (\overline{t^2}) \subsetneq (\overline{t}) \subsetneq (\overline{1}) = M, \tag{*}$$

welche eine Kette mit zwei echten Inklusionen bilden, also erhalten wir für die Länge

$$\ell(M) = 2.$$

Wegen Bem. 12.8 ist (*) eine Kompositionsreihe von M, und offensichtlich die einzige. Die Kompositionsfaktoren von M sind also genau

$$(\overline{t})/(\overline{t^2}) = (\overline{t})$$
 und $M/(\overline{t})$.

Beide sind isomorph zu \mathbb{R} als $\mathbb{R}[t]$ -Moduln, denn es gilt

$$M/(\bar{t}) = (\mathbb{R}[t]/(t^2))/(\bar{t}) \cong \mathbb{R}[t]/(t) \cong \mathbb{R},$$

sowie wegen $(t) \cong \mathbb{R}[t]$

$$(\bar{t}) \cong (t)/(t^2) \stackrel{\text{Bem. 8.8}}{\cong} \mathbb{R}[t]/(t) \otimes_{\mathbb{R}[t]} (t) \cong \mathbb{R} \otimes_{\mathbb{R}[t]} \mathbb{R}[t] \cong \mathbb{R}.$$

- 43. Aufgabe: (2+2+2 Punkte, Länge von Moduln) Seien R ein Ring, M und N zwei R-Moduln und $\varphi: M \to N$ ein *R*-Modulhomomorphismus. Man zeige:
 - (a) Es gilt $\ell(\ker(\varphi)) + \ell(\operatorname{im}(\varphi)) = \ell(M)$.

Hinweis: Man verwende Folgerung 12.15.

- (b) Ist $\ell(M)$ < ∞, so gilt $\ell(L)$ < $\ell(M)$ für jeden echten R-Untermodul $L \subseteq M$.
- (c) Ist $\ell(M) < \infty$ und N = M, so gilt

 φ ist injektiv $\Leftrightarrow \varphi$ ist surjektiv $\Leftrightarrow \varphi$ ist bijektiv.

Lösung:

(a) Indem wir φ als surjektiven Homomorphismus $M \longrightarrow \operatorname{im}(\varphi)$ auf sein Bild betrachten, erhalten wir die exakte Sequenz

$$0 \longrightarrow \ker(\varphi) \longrightarrow M \longrightarrow \operatorname{im}(\varphi) \longrightarrow 0.$$

Folgerung 12.15 liefert damit $\ell(M) = \ell(\ker(\varphi)) + \ell(\operatorname{im}(\varphi))$.

(b) Sei $\ell(M)$ < ∞ und $L \subseteq M$ ein echter Untermodul. Für jede Kette

$$0 = L_0 \subsetneq L_1 \subsetneq \ldots \subsetneq L_n = L$$

von Untermoduln von L der Länge $n \ge 0$ ist

$$0 = L_0 \subseteq L_1 \subseteq \ldots \subseteq L_n = L \subseteq L_{n+1} := M$$

eine Kette von Untermoduln von M der Länge n+1. Für jede Kette von Untermoduln in L existiert also eine längere Kette von Untermoduln in M. Daraus folgt

$$\ell(L) \leq \ell(M)$$
.

Wegen $\ell(M) < \infty$ erhalten wir insbesondere $\ell(L) < \infty$. Damit schließen wir

$$\ell(L) = \sup\{n \mid n \ge 0 \text{ und } \exists \text{ Kette } 0 = L_0 \subsetneq \ldots \subsetneq L_n = L\}$$

 $< \ell(L) + 1 = \sup\{n + 1 \mid n \ge 0 \text{ und } \exists \text{ Kette } 0 = L_0 \subsetneq \ldots \subsetneq L_n = L \subsetneq L_{n+1} = M\}$
 $\le \ell(M).$

Alternativ: Wir wenden (a) an auf die kanonische Projektion $\varphi: M \to M/L$. Es ist $\ker(\varphi) = L$, also folgt

$$\ell(M) = \ell(L) + \ell(M/L).$$

Da $\ell(M) < \infty$ folgt $\ell(L) < \infty$ und $\ell(M/L) < \infty$. Da $L \subsetneq M$ ist $M/L \neq 0$ und somit $\ell(M/L) \geq 1$. Also erhalten wir $\ell(L) < \ell(L) + 1 \leq \ell(L) + \ell(M/L) = \ell(M)$.

(c) Sei $\ell(M) < \infty$ und $\varphi \in \operatorname{End}_R(M)$. Nach (a) gilt

$$\ell(M) = \ell(\ker(\varphi)) + \ell(\operatorname{im}(\varphi)). \tag{*}$$

Wir zeigen:

- (i) φ injektiv $\Longrightarrow \varphi$ bijektiv.
- (ii) φ surjektiv $\Longrightarrow \varphi$ bijektiv.

Zu (i). Ist φ injektiv, so gilt $\ell(\ker(\varphi)) = 0$ und damit $\ell(\operatorname{im}(\varphi)) = \ell(M)$ wegen (*). Nach (b) kann $\operatorname{im}(\varphi)$ dann kein echter Untermodul von M sein, d.h. es folgt $\operatorname{im}(\varphi) = M$, es ist φ also auch surjektiv und damit bijektiv.

Zu (ii). Ist φ surjektiv, d.h. im(φ) = M, so folgt aus (*) direkt $\ell(\ker(\varphi))$ = 0 und damit $\ker(\varphi)$ = 0. Also ist φ auch injektiv und damit bijektiv.

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.