Abi 2014 III	4b)	(w in Speicherzelle 100, r in Speicherzelle 101) loadi 1		
4a)		beginnwiederhole: store 100		
r=11		mul 100		
w=1		sub 101		
1<11: w=2		jmpnn endewiederhole		
4<11: w=3		load 100		
9<11: w=4		addi 1		
16<11 (f)		jmp beginnwiederhole endewiederhole: sub 100		
4*4-11>4 (w)		jmpnp fertig		
w=3		load 100		
		subi 1		
Also: w=3, r=11		store 100 fertig: hold		

Abi 2014 IV

1a) Wenn a gerade ist, wird in Speicherzelle 99 die Zahl 0 abgelegt, sonst 1.

1b) 1: load 100

2: sub 103

3: jle 18

4: load 100

5: div 102

6: mult 102

7: sub 100

8: jne 13 //a ungerade

9: load 100

10:div 102

11: store 100

12: jump 1

13: load 100

14: add 103

15: div 102

16: store 100

17: jump 1

18: hold

Abi 2018 III

4a) Befehlszyklus

Fetch-Phase I
 Befehl holen (entsprechend der Adresse im Befehlszähler, hier Zahl die sub entspricht)

BZ = BZ + 1

- Decode-Phase
 Opcode des Befehls bestimmen: sub
- Fetch-Phase II
 Operand laden: hier 100
 BZ um die Anzahl der gelesenen Speicherzellen weiter schalten (hier 1)
- Execute-Phase vom Wert im Akkumulator den Speicherinhalt von 100 subtrahieren, Ergebnis in Akkumulator schreiben;
- 4b) Programm und Daten sind in einem Speicher.

4c)

Befehl	BZ	Α	SR	100	101	102
	0			4	5	
load 100	2	4		4	5	
cmp 101	4	4	N	4	5	
jmpnn 12	6	4	N	4	5	
load 101	8	5	N	4	5	
store 102	10	5	N	4	5	5
jmp 14	14	5	N	4	5	5
hold	16	5	Ν	4	5	5

Es wird die größere der beiden Zahlen aus 100 und 101 in 102 kopiert.

4d) n in Speicherzelle 100

falsch1:	load 100 cmpi 3 jmpn ende modi 4 (cmpi 0) jmpnz falsch1 load 100 divi 4 store 100 jmp schleife load 100 modi 2 (cmpi 0) jmpnz falsch2 load 100 divi 2	falsch2: ende:	addi 1 store 100 jmp schleife load 100 addi 1 divi 2 store 100 jmp schleife load 100 hold
----------	---	----------------	---

4e)

Dann könnte es zu einer Endlosschleife kommen, denn wenn n=2 ist, dann wird 2/2+1 berechnet und in n gespeichert. Dies ist wieder 2, d.h. der Algorithmus terminiert nicht.