Chapitre 2

Espaces des applications linéaires continues

2.1 Définitions et propriétés

Définition 2.1. Une application linéaire $T: X \to Y$ est continue en un point $x_0 \in X$ si

$$\forall \varepsilon > 0, \exists \delta > 0 / \forall x \in X : (\|x - x_0\|_X < \delta) \Rightarrow (\|Tx - Tx_0\|_Y < \varepsilon)$$

. $T: X \to Y$ est dite continue si elle est continue en tout point $x_0 \in X$.

Définition 2.2. *Une application linéaire* $T: X \rightarrow Y$ *est dite bornée si*

$$\sup_{x \in X} \|Tx\| < +\infty$$

Proposition 2.1. [2] Soit $T: X \to Y$ une application linéaire. Les assertions suivantes sont équivalentes

- 1. T est continu.
- 2. T est continu en un point quelconque de X.
- 3. T est borné.

4. $\exists c > 0 / \forall x \in X : ||Tx|| \le c ||x||$

Définition 2.3. Soient X et Y des espace vectoriels normés. On note $\mathcal{L}(X,Y)$ à l'espace des applications linéaires continues de X dans Y.

Théorème 2.1. L'ensemble $\mathcal{L}(X,Y)$ est un espace vectoriel normé, avec la norme

$$||u|| = \sup_{x \neq 0} \frac{||u(x)||}{||x||} = \sup_{||x|| = 1} ||u(x)||$$
(2.1)

pour tout $u \in \mathcal{L}(X,Y)$, et l'on a dans ce cas

$$||u(x)|| \le ||u|||x|| \tag{2.2}$$

Soit $(A_n)_n$ une suite d'éléments de $\mathcal{L}(X,Y)$, et soit $A \in \mathcal{L}(X,Y)$.

Définition 2.4. La suite $(A_n)_n$ est dite simplement convergente vers A, si

$$\forall x \in X : \lim_{n \to +\infty} A_n x = Ax$$

Définition 2.5. $(A_n)_n$ est dite uniformément convergente vers A si :

$$\lim_{n \to +\infty} ||A_n - A|| = 0$$

La norme étant définie au sens de celle de $\mathcal{L}(X,Y)$.

Proposition 2.2. Si $(A_n)_n$ converge uniformément vers A dans $\mathcal{L}(X,Y)$, alors $(A_n)_n$ converge simplement vers A.

Proposition 2.3. Soient $(X, \|.\|_1)$ et $(Y, \|.\|_2)$ des espaces vectoriels normés. Si Y est de Banach, alors $\mathcal{L}(X, Y)$ l'est également.

2.2 Suite bornée d'applications linéaires continues

Rappel. Soit X un espace vectoriel normé. Une partie A de X est dite bornée si A est contenue dans une boule, i.e., l'ensemble

$$\{\|x\|, x \in X\}$$

est majoré. On a donc le résultat suivant

Théorème 2.2. Soit $(X, \|.\|_1)$ un espace vectoriel normé, et soit E une partie dense dans X. Soit $(Y, \|.\|_2)$ un espace de Banach. Si $(A_n)_n$ est une suite bornée dans $\mathcal{L}(X, Y)$, convergeant simplement sur E, alors $(A_n)_n$ converge simplement sur X vers un unique opérateur $A \in \mathcal{L}(X, Y)$.

2.3 Dual topologique

Définition 2.6. Soit X un espace vectoriel normé. On appelle dual de X, et on le note X', l'espace des formes linéaires continues sur X, i.e., l'espace des applications linéaires continues de X dans \mathbb{C} .

On a donc

$$X' = \mathcal{L}(X, \mathbb{C}) = \{f : X \to \mathbb{C}, f \text{ lin\'eaire et continue } \}$$

D'après les résultats précédents, X' est un espace vectoriel normé sur $\mathbb C$, avec la norme

$$||u|| = \sup_{x \neq 0} \frac{|u(x)|}{||x||} = \sup_{||x|| = 1} |u(x)|$$

De plus, et par la Proposition (2.3), X' est un espace de Banach.

Exemples Le résultat suivant discutera les duals des espaces ℓ_p , $(1 \le p \le \infty)$ définis dans le paragraphe précédent. On a donc

Théorème 2.3. Soit $f \in \ell'_p$, $(1 \le p < \infty)$. Alors, il existe un vecteur unique $\eta = (\eta_1, \eta_2, ..., \eta_k, ...)$ dans ℓ_q avec $\frac{1}{p} + \frac{1}{q} = 1$, $(q = \infty \text{ quand } p = 1)$ tel que pour tout $x = (x_1, x_2, ..., x_k, ...) \in \ell_p$, on a:

$$f(x) = \sum_{k=0}^{+\infty} x_k \eta_k \tag{2.3}$$

De plus, $||f|| = ||\eta||$ et $\eta = (f(e_k))_{k=1}^{+\infty}$ où $(e_k)_{k=1}^{+\infty}$ est la base standard de ℓ_p . Inversement, pour tout $\eta = (\eta_k)_{k=1}^{+\infty} \in \ell_q$, la relation (2.3) définit une fonctionnelle linéaire $f \in \ell_p'$.

Autrement dit, $\ell_p' = \ell_q$ pour $1 \le p < \infty$ et $\frac{1}{p} + \frac{1}{q} = 1$.

Preuve. D'abord, on fait la preuve pour p = 1.

Soit donc $f \in \ell'_1$, et soit $\eta_k = f(e_k), k \ge 1$. Donc, $\eta_k \in \mathbb{C}, k \ge 1$. Pour $x = (x_1, x_2, ..., x_k, ...) \in \ell_1$, on obtient :

$$f(x) = f(\sum_{k=0}^{+\infty} x_k e_k) = \sum_{k=0}^{+\infty} x_k f(e_k) = \sum_{k=0}^{+\infty} x_k \eta_k$$

et $\eta = (\eta_k)_{k=1}^{+\infty} \in \ell_\infty$ car

$$\|\eta\|_{\infty} = \sup_{k>1} |x_k \eta_k| \le \|f\|$$
 (2.4)

De même, on a

$$|f(x)| \le \sum_{k=0}^{+\infty} |x_k \eta_k| \le ||\eta||_{\infty} \sum_{k=0}^{+\infty} |x_k| = ||\eta||_{\infty} ||x||_1$$
 (2.5)

D'où,

$$||f|| \le ||\eta||_{\infty} \tag{2.6}$$

De (2.4)et (2.6), on obtient que $||f|| = ||\eta||_{\infty}$

L'unicité. S'il existe $\beta = (\beta_k)_{k=1}^{\infty} \in \ell_{\infty}$ tel que

$$f(x) = \sum_{k=0}^{+\infty} |x_k \beta_k|$$

pour tout $x = (x_k)_{k=1}^{+\infty} \in \ell_1$, alors $f(e_i) = \beta_i, j \ge 1$. D'où, $\eta = \beta$.

L'inverse. L'inégalité (2.5) implique que la forme linéaire f définie par (2.3) est un élément de ℓ_1' .

Remarque Le Théorème 2.3 montre que l'espace ℓ_p' est identifié à l'espace ℓ_q dans le sens qu'il existe un isomorphisme isométrique $I:\ell_p'\to\ell_q$ défini par $I(f)=(f(e_k))_{k=1}^{+\infty}$ pour tout $f\in\ell_p'$.

Pour
$$\eta = (\eta_k)_{k=1}^{+\infty} \in \ell_q : I^{-1}\eta = g \in \ell_p'$$
 où $g(x) = \sum_{k=0}^{+\infty} x_k \eta_k$.

Pour p > 1, on a besoin aux Lemmes suivants :

Lemme 2.1. (*Inégalité de Young*) Soient $p, q \in [1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1$, et soient a, b > 0. Alors :

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$$

On adopte les règles de calcul dans $\overline{\mathbb{R}}_+$ où

$$x \times (+\infty) = (+\infty) \times x = (+\infty), (0 < x \le +\infty) \tag{2.7}$$

et

$$0 \times (+\infty) = (+\infty) \times 0 = 0 \tag{2.8}$$

on a alors:

Corollaire 2.1. (*Inégalité de Hölder*) Soient $(a_i)_{i=1}^n$ et $(b_i)_{i=1}^n$ des familles de nombres réels positifs. Alors, pour tous p, q avec $\frac{1}{p} + \frac{1}{q} = 1$ et $1 \le p \le +\infty$:

$$\sum_{k=1}^{n} a_k b_k \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}}$$

Corollaire 2.2. (*Inégalité de Minkowski*) Pour toutes familles $(a_i)_{i=1}^n$ et $(b_i)_{i=1}^n$ dans \mathbb{R}_+ , et tout $p \geq 1$, on a:

$$\left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{p}}$$

Remarques 1. Pour p=q=2, l'inégalité de Hölder coïncide avec l'inégalité de Cauchy-Schwartz

$$\sum_{k=1}^{n} a_k b_k \le \left(\sum_{k=1}^{n} a_k^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} b_k^2\right)^{\frac{1}{2}}$$

2. Vu les règles de calcul(2.7) et (2.8), et par le principe de prolongement des identités, les résultats précédents demeurent vraies pour $k \in I$ avec I un ensemble dénombrable et infini.

3. Si $x=(x_k)_{k\in I}$ et $y=(y_k)_{k\in I}$ sont deux vecteurs dans ℓ_p , alors l'inégalité de Minkowski s'écrit :

$$||x+y||_p \le ||x||_p + ||y||_p$$

et comme $\|\lambda x\|_p = |\lambda| \|x\|_p$, $\lambda \in \mathbb{C}$, alors, les espaces ℓ_p sont des sous-espaces vectoriels de $\mathbb{F}(I,\mathbb{C})$, et que $\|.\|$ définit une norme sur ℓ_p , $1 \le p < +\infty$.

4. De même, l'inégalité de Hölder s'écrit pour p,q avec $\frac{1}{p}+\frac{1}{q}=1$

$$||xy||_1 \le ||x||_p ||y||_q$$

Corollaire 2.3. Les espaces ℓ_p , $(1 \le p \le +\infty)$ sont complets.

Remarque (Très importante) Le Théorème 2.3 n'est pas valable pour $p=\infty$, sinon ça va contredire le résultat suivant que l'on démontrera ultérieurement

Théorème 2.4. Soit X un espace vectoriel normé. Si X' est séparable, alors X est aussi séparable.

En effet, l'espace ℓ_{∞} n'est pas séparable, (Paragraphe 1.3, Exemple 2). Autrement dit, $\ell_1' = \ell_{\infty}$ et $\ell_{\infty}' \neq \ell_1$.

2.4 Espaces $L_p(\Omega)$

Définition 2.7. Soit Ω un ensemble mesurable de \mathbb{R}^n , et soit $1 \leq p < +\infty$. On pose

$$L_p(\Omega) = \{ f : \Omega \to \mathbb{R} \text{ mesurable telle que } \int_{\Omega} |f(x)|^p dx < +\infty \}$$

De même,

$$L_{\infty}(\Omega) = \{f : \Omega \to \mathbb{R} \mid mesurable \ telle \ que \sup_{x \in \Omega} |f(x)|^p < +\infty \}$$

On munit ces espaces des normes $\|.\|_p$ et $\|.\|_\infty$ où

$$||f||_p = \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}}, f \in \ell_p$$
 (2.9)

et

$$||f||_{\infty} = \sup_{x \in \Omega} |f(x)|, f \in \ell_{\infty}$$
(2.10)

Proposition 2.4. $L_p(\Omega)$ est espace vectoriel pour tout $p, 1 \le p \le +\infty$.

Proposition 2.5. L'espace $L_p(\Omega)$, $1 \le p \le \infty$ est normé avec les normes (2.9) et (2.10) citées ci-dessus.

Pour la preuve, on utilise directement les inégalités de Hölder et de Minkowski dans $L_p(\Omega)$ comme suit

Lemme 2.2. Soient $p, q \in [1, +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1$, et soient $f \in L_p(\Omega)$, $g \in L_q(\Omega)$. Alors, $fg \in L_1(\Omega)$, et l'on a

$$||fg||_1 \le ||f||_p ||g||_q$$

Lemme 2.3. Soient $p, q \in [1, +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1$, et soient $f, g \in L_p(\Omega)$. Alors, $f + g \in L_p(\Omega)$, et l'on a

$$||f + g||_p \le ||f||_p + ||g||_p$$

On a donc le résultat suivant

Théorème 2.5. Pour tout $F \in (L_p(\Omega))'$, $1 \le p < +\infty$, il correspond $g \in L_q(\Omega)$ unique avec $\frac{1}{p} + \frac{1}{q} = 1$, et $q = +\infty$ si p = 1, tel que

$$F(f) = F_g(f) = \int_{\Omega} f(t)g(t)dt \tag{2.11}$$

pour tout $f \in L_p(\Omega)$. De plus, $||F|| = ||g||_q$.

Inversement, si $g \in L_q(\Omega)$, la forme linéaire F définie par (2.11) est un élément de $(L_p(\Omega))'$.