Chapitre. 5

Circuits combinatoires aiguilleurs

I. <u>Multiplexeur</u>

1.1. Définition :

Un multiplexeur est un sélecteur de données, appelé aussi aiguilleur convergent, il transforme une information se présentant sous forme de n bit en parallèle en une information sous forme de n bits en série. La voie d'entrée sélectionnée par son adresse est reliée à la sortie.

Schéma de principe d'un multiplexeur

1.2. Exemple:

Soit un multiplexeur possédant 4 entrées et 1 sortie (4 vers 1), le circuit d'adressage est composé de deux bits : a_0 et a_1 . Le nombre de bit d'adressage est lié au nombre d'entrées par la relation $2^n = N$, n étant le nombre de bits, N : le nombre des variables d'entrée.

Principe de fonctionnement : dans ce cas N=4, implique n=2 ; le circuit d'adressage est donc composé de deux bits : a_0 et a_1 .

Table de vérité:

	a_1	a_0	e(t)	S
0	0	0	e_0	e_0
1	0	1	e_1	e_1
2	1	0	e_2	e_2
3	1	1	e_3	e_3

Equation de sortie :

$$S = e_0 \bar{a}_0 \bar{a}_1 + e_1 a_0 \bar{a}_1 + e_2 \bar{a}_0 a_1 + e_3 a_0 a_1$$

Circuit logique:

1.3. Généralisation:

Pour sélectionner 8 entrées de données, trois entrées de sélection sont nécessaires : 2^3 = 8, de façon générale, un multiplexeur possédant n entrées de sélection permet de entrée parmi 2^n .

II. <u>Démultiplexeur</u>

2.1. Définition

Un démultiplexeur est circuit qui aiguille une entrée vers une sortie dont on défini son adresse sous forme d'un nombre codé en binaire.

Schéma de principe d'un démultiplexeur

2.1.Exemple:

Soit un démultiplexeur possédant une entrée et 4 sortie (1 vers 4), comme pour le multiplexeur, le circuit d'adressage est composé de deux bits : a_0 et a_1 . Le nombre de bit d'adressage est lié au nombre d'entrées par la relation $2^n = N$, n étant le nombre de bits, N : le nombre des variables d'entrée.

Table de vérité:

N	a_1	a_0	$y_0 = \bar{a}_0 \bar{a}_1 G$	$y_1 = a_0 \bar{a}_1 G$	$y_2 = \bar{a}_0 a_1 G$	$y_3 = a_0 a_1 G$
0	0	0	G	0	0	0
1	0	1	0	G	0	0
2	1	0	0	0	G	0
3	1	1	0	0	0	G

Logigramme:

