$O(\log n)$

Eksamen i fag TDT4120 Algoritmer og Datastrukturer Tirsdag 3. August 2004, kl 0900-1500

Faglig kontakt under eksamen: Magnus Lie Hetland tlf. 91851949

Hjelpemiddel: Alle kalkulatortyper tillatt. Alle trykte og håndskrevne hjelpemidler tillatt. Skriv svarene i de oppgitte rutene. Et svar uten begrunnelse teller ikke. En kan ta i bruk tilleggsark dersom dette er nødvendig. Før på "Student nr." på hvert svarark.

Oppgavene er merket #n/p, der n er oppgavenummeret og p er antall poeng som maksimalt kan oppnås når både svaret (Ja /Nei) og tilhørende begrunnelse er riktig.

Det kan maksimalt oppnås 50 poeng for besvarelsen.

#1/1: "Best case" kjøretid for INSERTION SORT ved sortering av n elementer er O(n).
Svar: Begrunnelse:
#2/3: Ved å bruke Master-teoremet finner en løsningen $T(n) = \Theta$ (nlogn)
på rekurrensen $T(n) = 3 T(n/3) + logn$
Svar: Begrunnelse:
#3/3: For et vilkårlig binært søketre med n noder kan vi skrive ut nodene i sortert rekkefølg
på O(n) tid.
Svar: Begrunnelse:
#4/1: Ethvert binært søketre med n noder har høyde O(logn).
Svar: Begrunnelse:

#5/1: Enhver haug (heap) som benyttes av HEAPSORT for å sortere n elementer har høyde

Svar:	Begrunnelse:
#6/2: Haı	ugen i HEAPSORT er tilfeldig ordnet.
Svar:	Begrunnelse:
#7/2: De	et er slik at $n \log n^2 = O(n^2)$.
Svar:	Begrunnelse:
#8/3: MI	ERGESORT bruker i worst-case O(n ²) tid
Svar:	Begrunnelse:
#9/2: En	bredde-først (bredth first) søke-algoritme gjør bruk av en stakk.
Svar:	Begrunnelse:
#10/2: Er	n dybde-først (depth-first) søke-algoritme gjør bruk av en stakk.
Svar:	Begrunnelse:
#11/3: Er	n maksimal-matching i en bipartitt graf kan finnes ved Lineær-Programmering.
Svar:	Begrunnelse:
node s til	Ivis noen kantvekter i en rettet graf $G = (V,E)$ er negative, kan den korteste veien fra node t finnes ved å bruke Dijkstra's algoritme dersom vi først legger til en stor C til alle E 's kantlengder slik at alle disse blir ikke-negative.
Svar:	Begrunnelse:
#13/1: E	nhver DAG (directed acyclic graph) kan på en entydig måte sorteres topologisk. Begrunnelse:

Side 3 av 4

Side 4 av 4		
#21/2: Grafen G er asyklisk hvis det ikke oppstår "back-edges" under dybde-først-		
traversering av G.		
Svar: Begrunnelse:		
#22/4: Vi skal flettesortere (merge) k sorterte lister, hver med n/k elementer, ved følgende		
metode:		
Flett de 2 første listene, flett så resultatet med den tredje listen, flett dette resultatet videre		
med den fjerde listen, og så videre, inntil den siste listen på n/k elementer blir flettet inn.		
Påstanden er her at denne algoritmen krever Θ (kn) tid.		
Svar: Begrunnelse:		