Total No. of Page: 02 FIRST SEMESTER

Roll No.

B. Tech.

END SEM EXAMINATION

NOVEMBER-2018

MA - 101 Mathematics I

Time: 3:00 Hours

Max Marks: 50

Note: Answer any five questions. All questions carry equal marks,

Assume suitable missing data, if any.

1.

a) Test the convergence of the following series

$$\frac{1}{2} + \frac{2}{3}x + \left(\frac{3}{4}\right)^2x^2 + \left(\frac{4}{5}\right)^3x^3 + \cdots$$

b) Expand $\sin x$ in powers of $\left(x - \frac{\pi}{2}\right)$ and determine the value of $\sin 91^{\circ}$ correct upto four decimal places.

2.

a) Examine the function sin x + sin y + sin(x + y) for extreme points and also find the value of the function at those points.

b) If
$$u = cosec^{-1} \left[\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}} \right]^{1/2}$$
, show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{144} (13 + \tan^2 u)$.

3

a) Change the order of integration in the integral and hence

$$\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dx dy$$
 and hence evaluate.

b) Evaluate $I = \iiint \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2}} dx dy dz$ over the region

$$V = \left\{ (x, y, z); x \ge 0, y \ge 0, \ z \ge 0, \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}.$$

PTO

4.

- a) Find the area lying inside the curve $r = a \sin\theta$ and outside the curve $r = a (1 \cos\theta)$.
- b) Find the area of the surface formed by the revolution of $y^2 = 4ax$ about the x- axis, by an arc from the vertex to one end of the latus rectum.

5.

- a) Find the directional derivative of the function $f = x^2 y^2 + 2z^2$ at the point P(1, 2, 3) in the direction of the line PQ where Q is the point (5, 0, 4). In what direction it will be maximum? Find also the magnitude of this maximum.
- b) Verify Green's theorem in the plane for $\oint_C \{(3x^2 8y^2)dx + (4y 6xy)dy\}$ where C is the boundary of the region defined by y = x and $y = x^2$.

6:

- a) Find the total work done in moving a particle in a force field $\vec{f} = 3xy \,\hat{\imath} 5z\hat{\jmath} + 10x \,\hat{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.
- b) Prove that Curl(Curl \vec{V}) = grad div \vec{V} $\nabla^2 \vec{V}$
