

Trabalho 1 de Métodos Numéricos para Equações Diferenciais II

Ariel Nogueira Kovaljski

Nova Friburgo, XX de setembro de 2020

Conteúdo

1	Introdução	2
	1.1 A Equação de Advecção-Difusão	2
	1.2 Método dos Volumes Finitos	2
2	Desenvolvimento	3
	2.1 Seção 1	3
	2.2 Seção 2	3
	2.3 Seção 3	3
3	Resultados	4
	3.1 Seção 1	4
	3.2 Seção 2	4
	3.3 Seção 3	4
4	Conclusão	5
5	Código Computacional	6

1. Introdução

Neste trabalho foi implementado um método computacional de maneira a resolver a equação de Advecção-Difusão de forma numérica.

Para melhor entender o desenvolvimento, é necessária introdução de alguns conceitos-chave utilizados.

1.1 A Equação de Advecção-Difusão

A equação de advecção-difusão possibilita a solução de problemas envolvendo variações espaciais e temporais da concentração de uma substância escoando em um fluído. Um exemplo bastante didático consiste no despejo de esgoto em um afluente: o contaminante sofrerá efeitos difusivos — concentrando-se ao redor da saída — e efeitos advectivos — sendo carregado no sentido da correnteza.

Para um problema unidimensional tem-se a seguinte forma,

$$\frac{\partial c}{\partial t} + \frac{\partial}{\partial x}(uc) - \frac{\partial}{\partial x}\left(D\frac{\partial c}{\partial x}\right) = 0 \tag{1.1}$$

onde c indica a concentração, u a velocidade e D o coeficiente de difusão.

Considerando que para u e D constantes, tem-se \bar{u} e α , respectivamente, é possível reescrever 1.1 como,

$$\frac{\partial c}{\partial t} + \bar{u}\frac{\partial c}{\partial x} - \alpha \frac{\partial^2 c}{\partial x^2} = 0 \tag{1.2}$$

1.2 Método dos Volumes Finitos

A partir da Eq. 1.1, é possível reescrevê-la como

$$\frac{\partial \phi}{\partial t} + \frac{\partial f}{\partial x} = 0 \tag{1.3}$$

onde,

$$\phi = c$$
 (1.4) $f = f(c) = uc - D\frac{\partial c}{\partial x}$ (1.5)

2. Desenvolvimento

O desenvolvimento entra aqui.

2.1 Seção 1

 ${\bf A}$ seção 1 entra aqui.

2.2 Seção 2

 ${\bf A}$ seção 2 entra aqui.

2.3 Seção 3

 \mathbf{A} seção 3 entra aqui.

3. Resultados

Os resultados entram aqui.

3.1 Seção 1

 ${\bf A}$ seção 1 entra aqui.

3.2 Seção 2

 \mathbf{A} seção 2 entra aqui.

3.3 Seção 3

 ${\bf A}$ seção 3 entra aqui.

4. Conclusão

As conclusões entram aqui.

5. Código Computacional

O código computacional entra aqui.