Corso di Laurea in Informatica — Corso di Algebra (I gruppo) Esercizi — Polinomi e Strutture Algebriche

- 1. Determinare il massimo comun divisore monico in $\mathbb{Q}[x]$ per ciascuna della seguenti coppie di polinomi:
- a. $x^{10} + 1$ e $x^7 + 1$;
- b. $x^{10} 1$ e $x^7 1$:
- c. $x^4 x 2$ e $3x^3 + 6x^2 3$;
- d. $2x^4 + 3x^3 2x 3$ e $2x^6 + 3x^5 + 2x^3 + 3x^2 2x 3$;
- **2.** Determinare, se esistono, polinomi $u \in v$ in $\mathbb{Q}[x]$ tali che:
- a. $(x^{10} + 1)u + (x^7 + 1)v = 1;$
- b. $(x^{10} + 1)u + (x^7 + 1)v = x;$
- c. $(x^{10}-1)u + (x^7-1)v = 1$;
- d. $(x^{10} 1)u + (x^7 1)v = 2x 2;$
- e. $(x^5 + 2)u + (x^4 1)v = 3$.
- **3.** [Da affrontare dopo aver completato lo studio dei polinomi] Sia $f = x^3 x^2 2x + 2 \in \mathbb{Q}[x]$. Dopo aver verificato che 1 è radice di f, scrivere f...
- a. ... come prodotto di polinomi monici irriducibili in $\mathbb{Q}[x]$;
- b. ... come prodotto di polinomi monici irriducibili in $\mathbb{R}[x]$.
- 4. Studiare le seguenti operazioni, stabilendo per ciascuna di esse se è un'operazione associativa, commutativa, se ammette elemento neutro.
- a. $(n,m) \in \mathbb{Z} \times \mathbb{Z} \longmapsto n m \in \mathbb{Z};$
- b. $(x,y) \in \mathbb{N} \times \mathbb{N} \longmapsto y \in \mathbb{N};$
- c. $(A, B) \in \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \longmapsto \mathbb{N} \setminus (A \cup B) \in \mathcal{P}(\mathbb{N});$
- d. $(X,Y) \in \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \longmapsto X \cup \{1\} \cup Y \in \mathcal{P}(\mathbb{N}).$
- **5.** Considerare le operazioni binarie \oplus e \odot definite in $\mathbb Z$ da: $\forall u,v\in\mathbb Z$

$$u \oplus v := u + v + 1;$$
 $u \odot v := uv + u + v.$

Decidere se \mathbb{Z} munito di queste due operazioni è un anello. Nel caso, stabilire se si tratta di un anello commutativo, di un anello unitario, di un anello booleano, di un campo e calcolarne la caratteristica.

6. Tra i seguenti anelli dire quali sono unitari, quali commutativi, quali integri, quali campi:

$$\mathbb{Z}_{13}$$
, \mathbb{Z}_{14} , \mathbb{Z}_{15} , $3\mathbb{Z}$, \mathbb{Z} , $\mathbb{Z}[x]$, $\mathbb{Z}_3[x]$, $\mathbb{Z}_4[x]$, $M_2(\mathbb{R})$.

- 7. Per ciascuno dei seguenti anelli elencare gli elementi invertibili, i divisori dello zero, gli elementi nilpotenti, gli elementi idempotenti: \mathbb{Z}_9 , \mathbb{Z}_{18} , \mathbb{Z}_{17} , \mathbb{Z}_8 , \mathbb{Z} , $\mathbb{M}_2(\mathbb{Z}_2)$.
- 8. [Da affrontare dopo aver completato lo studio dei polinomi] Determinare tutte le radici in \mathbb{Z}_{12} del polinomio $x^2 1 \in \mathbb{Z}_{12}[x]$. Se il loro numero non sembra sorprendente o si è studiato troppo poco oppure piuttosto bene. Rifletterci sopra.
- 9. Date comunque quattro parti A, B, C, D di \mathbb{R} si ponga

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a \in A, b \in B, c \in C, d \in D \right\}.$$

Si ponga anche $\mathbf{0} := \{0\}$ e $\mathbf{1} := \{1\}$. Per ciascuna delle seguenti parti dell'anello $M_2(\mathbb{R})$ delle matrici 2×2 su \mathbb{R} stabilire se si tratta o meno di un sottoanello, di un sottoanello unitario, di un ideale destro, di un ideale sinistro di $M_2(\mathbb{R})$, di un sottogruppo del gruppo additivo di $M_2(\mathbb{R})$.

$$\begin{pmatrix} \mathbb{Q} & \mathbb{Q} \\ \mathbf{0} & \mathbb{Q} \end{pmatrix}, \quad \begin{pmatrix} \mathbb{Z} & \mathbb{R} \\ \mathbf{0} & \mathbb{Z} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbb{Q} & \mathbf{0} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbb{R} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbb{R} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{0} & \mathbb{Q} \\ \mathbf{0} & \mathbb{R} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbb{R} \end{pmatrix}.$$

Ripetere lo stesso esercizio per l'anello $M_2(\mathbb{Z})$ e le sue parti

$$\begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ \mathbf{0} & \mathbb{Z} \end{pmatrix}, \quad \begin{pmatrix} 2\mathbb{Z} & \mathbb{Z} \\ \mathbf{0} & \mathbb{Z} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ 1+3\mathbb{Z} & \mathbf{0} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ 3\mathbb{Z} & 5\mathbb{Z} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ 3\mathbb{Z} & 3\mathbb{Z} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{0} & \mathbb{N} \\ \mathbf{0} & \mathbb{N} \end{pmatrix}.$$

10. Con notazioni analoghe a quelle dell'esercizio precedente stabilre se, munito del prodotto righe per colonne, l'insieme $\begin{pmatrix} 1 & \mathbb{Q} \\ 0 & 1 \end{pmatrix}$ costituisce un gruppo e quali tra $\begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2\mathbb{Z} \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & \mathbb{N}^{\#} \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1+3\mathbb{Z} \\ 0 & 1 \end{pmatrix}$ ne sono sottogruppi. Quali tra i precedenti sono parti stabili (quindi semigruppi) e quali monoidi?