

42101 Introduction to Operations Research

- What is Operations Research?
- Overview of the course
- Introduction to Linear Programming (Chapter 3)

Stefan Røpke Richard Lusby

DTU Management Engineering

Department of Management Engineering

What is Operations Research (OR)?

- Very short definition:
 Application of mathematical techniques to decision making
- Examples of applications
 - Planning of production: which products should be produced at what time?
 - Work planning: Which employee should be on duty at what time?
- ... it becomes clear as we go on!

What is Operations Research?

- Useful skills when studying Operations Research
 - Mathematics
 - Computer Science
 - Machine learning/Artificial intellingece
 - Ability to understand new application areas
 - Common sense

Very short history of operations research

- Debatable when and where operations research started.
- However, a mile stone is the use of operations research in UK during World War 2 in order to improve war efforts.
- After the second world war the techniques were used for peaceful purposes and accelerated due to the arrival of computers
- Now OR techniques are used in many places. Everyday we are in contact with products and serviced that in one way or the other have been influenced by OR.

The traveling salesman problem (TSP)

The traveling salesman problem (TSP)

Our task: supply super markets, gas stations, corner stores etc. with dairy (milk) products. Each truck can at most serve 4 shops.

Our task: supply super markets, gas stations, corner stores etc. with dairy (milk) products. Each truck can at most serve 4 shops.

Operations research is everywhere

- Products are often brought to the end customer using trucks, ships or planes. OR may have been involved in planning the transport.
- The production of products you buy may have been planned using OR
- When you ride on the bus, metro or the S-train OR may have been used in the planning processes
- OR methods may have been used to design the electronics in your smartphone, computer, etc. Used to optimize signal path, for example.

Work cycle in OR

Solution process

Course overview

#	Date	Topic	Reading material	Teacher	Project
1	02-sep	Introduction to Operations	3.1-3.4.	SR	
		Research and Linear	(1.1-1.4)		
		Programming	(2.1-2.7)		
2	09-sep	Modeling with linear	3.1-3.4.	SR	
		programming	4.1-4.4.		
		The Simplex algorithm	(Appendix 6)		
3	16-sep	Basic graph theory.	4.5-4.7.	SR	
		Handling non-standard LPs	10.1-10.2.		
4	23-sep	Simplex using matrix	5.1-5.5.	SR	Project 1 start.
		computations	(Appendix 4)		Hand in: 13th
					of October
5	30-sep	Duality and sensitivity	6.1-6.6	SR	
		analysis	7.1-7.2		
6	07-okt	Modeling with integer	12.1-12.4.	SR	
		variables			
	14-okt	Autumn holiday			

Course overview

7 21	1-okt	Modeling with integer variables	12.1-12.4.	RL	
8 28	8-okt	Modeling with integer	12.1-12.4.	RL	Project 2 start
		variables. Greedy algorithm			(preliminary)
9 04	4-nov	Modeling with integer	12.1-12.4.	RL	
		variables.			
		Solving a model iteratively			
10 11	1-nov	Total unimodularity:	9.3,9.4, 10.6	RL	
		Assignment problem	Lecture notes on the		
		Min cost flow	assignment problem.		
11 18	8-nov	Linear relaxation,	12.5-12.7	RL	
		Branch and bound			
12 25	5-nov	Dual simplex	8.1, 9.1	RL	
		transport problem	Lecture notes on the		
			network simplex		
			algorithm		
13 02	2-dec	Solve old exam		RL/SR	
??	??	Question hour. Date is to be d	lecided.	RL / SR	
11	1-dec	Exam.			
		See www.eksamensplan.	.dtu.dk		

13 Introduktion til Operationsanalyse

Practical info

Main book

- Hillier, Lieberman: Introduction to Operations Research, 10th edition.
 [earlier version are similar, but page and chapter references in class may be "off"]
- Material on DTU inside.
- **Prerequisites** (Simultaneous Linear Equations, Matrix operations)
 - Read appendix 4 and 6
 - Appendix 6 you can get from the book web-page or from DTU inside.

DTU inside

- Course overview, slides, projects, additional reading material
- "Final" version of slides ready around noon Sunday.

• Language: English

- You can hand in projects in Danish or English
- You can answer exam in Danish or English

Lectures

- Monday from 13 to 15 building 341, room 21

Exercises

- Monday from 15 to 17
- Building 324, room 040, 050 and 060.

• Preparation:

- Read the text and look at slides before lecture.
- If you do not finish exercises, then complete them before next lecture.

Teachers

- Stefan Røpke, <u>ropke@dtu.dk</u> (first part)
- Richard Lusby, <u>rmlu@dtu.dk</u> (second part)

Teaching assistants

Kristine	Morten Bondorf	Elisabeth Marie
Børsting	Gerdes	Heegaard

- You have to make an effort to meet the learning objectives!
 - Be active from the start we keep building on material from past lectures.
 - Read the book. It's not enough to be present at the lectures.
 - Solve all exercises
 - Exercises from 15 to 17 are more important compared to the lectures.

- Show what you can do with OR.
- Go a little further with some topics.
- Preparation for the exam.
- Projects start on the 23th of September and 28th of October (Preliminary plan)
- Content is the material covered until (and including) the project start day
- Do projects in groups of two to three
- You need to pass both projects in order to attend the exam. We make an overall assessment of the two projects.
 - Perfect project: 100 point
 - Passed: 50-100 point

Exam

- 4 hours written exam
- "All aids allowed".
- Combination of multiple choice and text questions. Mainly multiple-choice (could be multiple-choice only).

- Contact:
 - Email: <u>ropke@dtu.dk</u>
 - Office 224, building 424.
- Background
 - Been employed at DTU since 2008
 - Professor since 2012.
 - Education in Computer Science (University of Copenhagen)
 - I do research in operations research.
 - Is especially interested in applications within tranport and solution methods.

- World class research in a few specific areas

Introduction to Linear programming (LP)

Programming = make a program = planning

Content of chapter 3

- 3. Introduction to LP
- 3.1 Prototype example: Wyndor
- 3.2 LP-model
- 3.3 Assumptions for LP
- 3.4 More examples

3.1 Wyndor: problem

- 2 products (glass doors, windows)
- Requires time on 3 plants

	1	2	Capacity (hours/week)
1	1	0	4
2	0	2	12
3	3	2	18
profit	3	5	

- Profit is per unit and should be multiplied by 1000\$
- We want to plan the production so that our profit is maximized

 $x_1 = \text{production of product 1 (units/week)}$

 $x_2 = \text{production af product 2 (units/week)}$

	1	2	Capacity (Hours/week)
1	1	0	4
2	0	2	12
3	3	2	18
profit	3	5	

 $x_1 = \text{production of product 1 (units/week)}$

 $x_2 = \text{production af product 2 (units/week)}$

Symbolic model (LP)

$$\max Z = 3x_1 + 5x_2$$

subject to

$$x_1 \leq 4$$

$$2x_2 \leq 12$$

$$3x_1 + 2x_2 \leq 18$$

and

$$x_1 \ge 0, \ x_2 \ge 0$$

	1	2	Capacity (Hours/week)
1	1	0	4
2	0	2	12
3	3	2	18
profit	3	5	

 $x_1 = \text{production of product 1 (units/week)}$

 $x_2 = \text{production af product 2 (units/week)}$

Symbolic model (LP)

$$\max Z = 3x_1 + 5x_2$$

subject to

$$x_1 \leq 4$$

$$2x_2 \leq 12$$

$$3x_1 + 2x_2 \leq 18$$

	1	2	Capacity (Hours/week)
1	1	0	4
2	0	2	12
3	3	2	18
profit	3	5	

and

$$x_1 \ge 0, \ x_2 \ge 0$$

Components of the model:

- Decision variables (what we can decide)
- Objective function (what we wish to optimize)
- Constraints (that we have to respect)

 $x_1 = \text{production of product 1 (units/week)}$

 $x_2 = \text{production af product 2 (units/week)}$

Symbolic model (LP)

$$\max Z = 3x_1 + 5x_2$$

subject to

$$x_1 \leq 4$$

$$2x_2 \leq 12$$

$$3x_1 + 2x_2 \leq 18$$

	1	2	Capacity (Hours/week)
1	1	0	4
2	0	2	12
3	3	2	18
profit	3	5	

and

$$x_1 \ge 0, \ x_2 \ge 0$$

Is it ok if decision variable is non-integer? E.g. $x_1 = 2.76$?

Wyndor solution

$$x_1^* = 2$$
 units per week
 $x_2^* = 6$ units per week
 $Z^* = 36$ k\$ per week
 $= 36,000$ \$ per week

27 Introduktion til Operationsanalyse

$$\max Z = 3x_1 + 5x_2$$
 subject to
$$x_1 \leq 4 \quad \bullet$$

$$2x_2 \leq 12 \quad \bullet$$

$$3x_1 + 2x_2 \leq 18 \quad \bullet$$
 and
$$x_1 \geq 0, \ x_2 \geq 0$$

The graphical method

- 1. Draw the line for the objective function for a fixed Z value. Make sure that the line intersects the feasible area.
- 2. While keeping the slope fixed, "move" this line toward increasing values for Z.
- 3. The point (or the line) that the line touch just before leaving the feasible area is the optimal solution(s).

3.2 LP-model in general

- Allocating m resources to n activities
- Decision variables: x_j : level of activity j
- Parameters (input)
 - \circ c_j : How useful is activity j
 - \circ b_i : How many units of resource i are available
 - \circ a_{ij} : units of resource i consumed by each unit of activity j
- Z: measure of performance

$$\max Z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

subject to

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

3.2 LP-model in general

- \bullet Allocating m resources to n activities
- Decision variables: x_j : level of activity j
- Parameters (input)
 - \circ c_i : How useful is activity j
 - \circ b_i : How many units of resource i are available
 - \circ a_{ij} : units of resource i consumed by each unit of activity j
- Z: measure of performance

Not always useful or possible to interpret an LP model this way

"Our" standard form

$$\max Z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

subject to

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

LP's as above are said to be on the *standard form*.

Deviation from the standard form:

- Minimization
- $\bullet \geq constraints$
- \bullet = constraints
- Decision variables that can take negative values.

Terminology

Terminology

- Feasible solution
- Infeasible solution
- Feasible region
- Optimal solution
- Objective function
- Objective value
- Unbounded solution
- Corner-point feasible solution CPF

Assumptions for linear programming

$$\max Z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

subject to

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

- Linear objective function and constraints.
- c_j and a_{ij} are constants, only x_j are variables. Objective function and constraints are **always** on this form.
- Variables are real numbers. We cannot force them to be integers, for example.

3.4 Examples

- p. 45 Design of Radiation Therapy
- p. 47 Regional Planning
- p. 51 Controlling Air Pollution
- p. 53 Reclaiming Solid Wastes
- p. 57 Personnel Scheduling
- p. 60 Distributing Goods Through a Distribution Network

p. 45 Design of Radiation Therapy

- A tumor is treated with radiation therapy.
- Doctors are considering two different entry points for the radiation beams

	Beam 1	Beam 2	Restrictions
Healthy anatomy	0.4	0.5	
Critical tissues	0.3	0.1	≤ 2.7
Tumor region	0.5	0.5	=6
Center of tumor	0.6	0.4	≥ 6

- All numbers in the table are in kilorads
- Numbers for beam 1 and 2 are for a normal dose. We can give higher and lower doses as necessary.
- How to model this? Think of
 - Decision variables
 - Constraints
 - Objective function

- x_j : intensity of beam j (j = 1, 2)
- Z: radiation dose to healthy anatomy (kilorads)

$$\min Z = 0.4x_1 + 0.5x_2$$

subject to

$$0.3x_1 + 0.1x_2 \le 2.7$$
$$0.5x_1 + 0.5x_2 = 6$$

$$0.6x_1 + 0.4x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

p. 45 Radiation Therapy: solution

$$\min Z = 0.4x_1 + 0.5x_2$$
subject to
$$0.3x_1 + 0.1x_2 \le 2.7$$

$$0.5x_1 + 0.5x_2 = 6$$

$$0.6x_1 + 0.4x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

$$x_1^* = 7.5$$
 times standard dose $x_2^* = 4.5$ times standard dose $Z^* = 5.25$ kilorads

Modelbuilding – how to?

- First of all: Understand what the model has to decide.
- Figure out what decision variables are needed
- How do you interpret the variables? Write down the interpretation of the variables and consider the unit attached to the variable.
- Examples
 - Wyndor: x_1 : Production of doors (number of door batches per week)
 - Radiation therapy: x_1 : Intensity of beam 1 (relative to a standard beam)
- Write up objective function and constraints

Personnel Scheduling

			Shift			Agents
Time	1	2	3	4	5	needed
6-8	Ø					48
8-10	\square	abla				79
10-12	\square					65
12-14	\square		abla			87
14-16			abla			64
16-18			abla	abla		73
18-20			abla	abla		82
20-22						43
22-24						52
24-6						15
Cost (\$ per day per agent)	170	160	175	180	195	

- How to model this? Think of
 - Decision variables
 - Constraints
 - Objective function

Personnel Scheduling: model

 x_j : number of agents used on shift j (j = 1, 2, ..., 5)

$$\min 170x_1 + 160x_2 + 175x_3 + 180x_4 + 195x_5$$

subject to

$$x_1$$
 $+x_2$ ≥ 48
 x_1 $+x_2$ ≥ 65
 x_1 $+x_2$ $+x_3$ ≥ 64
 x_2 $+x_3$ ≥ 64
 x_3 $+x_4$ ≥ 73
 x_3 $+x_4$ ≥ 82
 x_4 $+x_5$ ≥ 52
 x_1 x_2 x_3 x_4 x_5 ≥ 15
 x_1 , x_2 , x_3 , x_4 , x_5 ≥ 0 and integer

Personnel Scheduling - solution

						_
			Shift			Agents
Time	1	2	3	4	5	needed
6-8	Ø					48
8-10	\square	abla				79
10-12	Ø	abla				65
12-14	Ø	abla	abla			87
14-16		abla				64
16-18				abla		73
18-20				abla		82
20-22						43
22-24						52
24-6						15
Cost (\$ per day per agent)	170	160	175	180	195	

$$Z^* = 30610$$
\$ per day

$$x_1^* = 48, x_2^* = 31, x_3^* = 39, x_4^* = 43, x_5^* = 15$$

Very short history of Linear Programming

- First used in general form: Kantorovich (1939)
- Dantzig proposed the simplex algorithm (1947)
 - We learn about this method next week
- Numerous application since then

• See Julia slides

Exercises

- See tasks on DTU inside
- Let's move to the exercise rooms:
- Building 324, room 040, 050 and 060