

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : G21G 1/06		A1	(11) International Publication Number: WO 90/06583 (43) International Publication Date: 14 June 1990 (14.06.90)
<p>(21) International Application Number: PCT/HU89/00054</p> <p>(22) International Filing Date: 20 November 1989 (20.11.89)</p> <p>(30) Priority data: 6077/88 28 November 1988 (28.11.88) HU</p> <p>(71)(72) Applicant and Inventor: TELEKI, Péter [HU/HU]; Bocskai u. 30, H-2400 Dunaújváros (HU).</p> <p>(74) Agent: DANUBIA; P.O. Box 198, H-1368 Budapest (HU).</p> <p>(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), LU (European patent), NL (European patent), SE (European patent), SU, US.</p>		<p>Published <i>With international search report.</i></p>	

(54) Title: METHOD OF UTILIZING THE (n, gamma) REACTION OF THERMAL NEUTRONS

(57) Abstract

The invention refers to a method of utilizing the (n, gamma) reaction of thermal neutrons, comprising the steps of arranging a target (2) before a source (1) of thermal neutrons, the target (2) having a front surface directed to the source (1) of the thermal neutrons and a rear surface lying behind the front surface, preparing the target (2) with a basic metal body (4) made of ^{70}Yb and/or ^{74}W , producing by the means of the thermal neutrons a metallic mixture including the basic metal(s) and at least one of the pairs of metals $^{71}\text{Lu} + ^{72}\text{Hf}$ and $^{75}\text{Re} + ^{76}\text{Os}$ and storing the metallic mixture for reducing its nuclear activity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MR	Mauritania
BE	Belgium	GA	Gabon	MW	Malawi
BF	Burkina Faso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
BJ	Benin	IT	Italy	RO	Romania
BR	Brazil	JP	Japan	SD	Sudan
CA	Canada	KP	Democratic People's Republic of Korea	SE	Sweden
CF	Central African Republic	KR	Republic of Korea	SN	Senegal
CG	Congo	L	Liechtenstein	SU	Soviet Union
CH	Switzerland	LK	Sri Lanka	TD	Chad
CM	Cameroon	LW	Luxembourg	TG	Togo
DE	Germany, Federal Republic of Denmark	MC	Monaco	US	United States of America

- 1 -

METHOD OF UTILIZING THE (n, gamma) REACTION OF THERMAL NEUTRONS

5

FIELD OF THE INVENTION

The present invention refers to a method of utilizing the (n, gamma) reaction of thermal neutrons, wherein a target is arranged before a source of thermal neutrons.
10 The method of the invention results in possibility of making use of the thermal neutron flux of a nuclear reactor, with disregard to the kind of the reactor, whereby the economy of operating of the different reactors can be highly improved. The proposed method can be realised with reactors of diverse kinds, e.g. with experimental reactors, energetic or boiler reactors etc.
15

BACKGROUND OF THE INVENTION

20

It is known from the literature that the (n, gamma) reaction can be applied for producing some isotopes. For example, the reaction

25

is the basis of generating the very important isotope of cobalt having mass number 60 which is widely used in the medicine and industry. In this process the end product is a substance showing high level of radioactivity (gamma-activity). This process may not be realised without special security measures.
30

35

The theory of atomic nuclei recites lots of theoretical and practical reactions for transforming chemical elements, i.e. atomic nuclei. In the handbooks e.g. the process

1 can be found for producing gold, wherein the half-period
of decay of the intermediate platinum isotope is relative-
ly short, about 20 hours. This way of producing gold is
very expensive and inconvenient: the substance at the be-
5 ginning of the process is twice so expensive than the gold
received. Another disadvantage of this process is that the
platinum isotope with mass number 196 amounts about 25.3 %
of the whole platinum mass and therefore a separate pro-
cess is necessary for yielding the gold.

10

SUMMARY OF THE INVENTION

15 The object of the present invention is to make use
of the thermal neutron flux of a reactor for producing non
radioactive materials, wherein no special security meas-
ures are to be taken.

20 The invention is based on the recognition that
ytterbium and tungsten can be transformed into a mixture of
different elements showing no or very low level radioacti-
vity by means of the thermal neutrons generated in each
radioactive reactor.

25 Hence, the invention proposes a method of utilizing
the (n , gamma) reaction of thermal neutrons of a reactor,
the method comprising the step of arranging a target di-
rected with its front surface to a source of thermal neut-
rons, especially a reactor, wherein according to the inven-
tion the target is consisted of ^{70}Yb and/or ^{74}W . It is
especially advantageous to apply before the target a plate
shaped body for slowing down the quick and/or the reactor
30 neutrons, consisted of ^{41}Nb for slowing down the reactor
neutrons and/or ^{59}Pr for slowing down the quick neutrons.
Of course, this moderator of neutrons can be made also of
beryllium. A beryllium plated can be applied also for cov-
ering the rear side of the target - this ensures reflec-
35 tion of the neutrons back to the target.

1 By the means of the method proposed by the invention about 30 % of the amount of ytterbium can be transformed into lutetium and the same amount of tungsten into rhenium. Above that about 20 % of tungsten transform into
5 osmium. The metals received, i.e. lutetium, rhenium and osmium are much more expensive than the input metal of the process and can be separated therefrom by simple thermal processing because of considerable differences in the respective melting points.

10

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be further disclosed in more detail by way of example and with reference to the attached
15 drawings. In the drawings

FIG. 1 shows the cross-section of a target applied in realising the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

20

In the vicinity of a reactor 1 limited by a wall 7 a target 2 is arranged in an appropriate place. The target 2 consists of a front layer 3 forming a moderating body, a metal plate 4 including ytterbium and/or tungsten to be
25 transformed and a rear reflecting layer 5. The front layer 3 is made of $_{41}^{Nb}$ and/or $_{59}^{Pr}$. If necessary, $_{4}^{Be}$ can be applied to. The mentioned metals slow down the flux of the neutrons leaving the interior of the reactor 2. The reflecting layer 5 covering the rear surface of the metal
30 plate 4 reflects the neutrons back to the metal plate 4. The target 2 is arranged to be irradiated by a thermal neutron flux 6 and the front layer 3 receives the neutrons before entering the metal plate 4.

The neutron flux 6 can be directed to the target 2 through the wall 7 of the reactor 1 in a known way, e.g.

- 4 -

1 by the means of a window prepared in the wall 7.

As mentioned, the metal plate 4 is made of ytterbium and/or tungsten. The irradiation of this plate carried out by the thermal neutrons generated by the reactor 1 or produced by the front layer in a ($n, 2n$) reaction should result in an alloy like mixture consisting of the following metals (the composition is given with approximate data):

a) on the basis of ytterbium:

10	37	112	101.4	127
	^{70}Yb	^{71}Lu	^{72}Hf	(+ ^{69}Tm)
	60 %	30 %	10 %	0.1 %

b) on the basis of tungsten:

15	19.2	86	15.3	21
	^{74}W	^{75}Re	^{76}Os	(+ ^{73}Ta)
	50 %	30 %	20 %	0.1 %

The line over the signs of the elements give the value of the cross-section for the process expressed in barns.

20 When taking ytterbium, the metal includes the following isotopes:

	Mass number of ^{70}Yb	Proportion	Half-period of decay	Kind of decay
25	167		19 minutes	gamma, K
	168	0.135 %		
	169		31.8 days	
	170	3.03 %		
	171	14.31 %		
	172	21.82 %		
	173	16.13 %		
	174	31.84 %		
	175		101 hours	e^- , K
	176	12.73 %		
35	177		1.9 hours	e^- , K

- 5 -

1 From this table it follows that about 55.3 % of all
 (n, gamma) reactions do not result in any change of the
 atomic number. These reactions are:

10 The following reactions result in transformation
 of elements:

The percentage values means the proportion of the given stable isotope in the metal mentioned.

The process of stabilization of $^{177}_{71}\text{Lu}$ is characterized by the half-period 6.75 days.

20 When taking tungsten, the metal includes the following isotopes:

Mass number of ^{74}W	Proportion, %	Half-period of decay	Kind of decay
179		40 minutes	gamma, K
180	0.135		
181		145 days	gamma, K
182	26.41		
183	14.40		
184	30.645		
185		73.2 days	e^- , gamma
186	28.41		
187		24.0 hours	e^- , gamma

35 From this table it follows that about 40.8 % of all (n, gamma) reactions do not result in any change of the atomic number. These reactions are:

- 6 -

5 The following reactions result in transformation of
elements:

In normal circumstances, $^{187}_{75}\text{Re}$ is transformed into $^{187}_{76}\text{Os}$ characterised by half-period about $5 \cdot 10^{10}$ years by weak e^- radiation. In a (n, gamma) reaction, however another process dominates:

The half-period of rhenium is 18 hours, the isomeric osmium nucleus shows half-period 26 days. In these conditions the rhenium $^{185}_{75}\text{Re}$ can be also activated and in decay processes (e^- , gamma, K) it can be transformed partly into tungsten, partly into osmium: a dominate part, however, remains unchanged in form of rhenium.

25 In both series of reactions the gamma radiation coming into being is a low energy, low intensity weak radiation.

30 The metallic mixtures prepared by the invention require at least 1/2 year storage before further processing. During this time the radiation level of the mixture falls under a maximum level allowed by the rules.

35 When considering the basic metal and the metallic components produced by the method of the invention it can be stated that they are capable of bearing high thermal load and the alloy received in the process is stable. The melting points of the metals in the mixtures mentioned are the following:

In realising the method of the invention it is advantageous to arrange the target 2 in the proximity of the active zone of the reactor, but under the condition that the target can not be the object of radiation comprising charged particles and fission products. If these factors are excluded the only disturbing effects follow from the gamma radiation of the reactor and the flux of quick neutrons emitted from the reactor. In both cases the loss of neutrons by the nucleus can follow in (γ , n) and (n, 2n) reactions, however, these are low probability processes. Therefore the only requirement is to moderate the quick neutrons, because the reactions with loss of neutron constitute a part of the reactions which hardly play important rule.

The reactor neutrons show a wide spectrum with average energy 0.72 MeV (the flux may contain also neutrons with energy 20 MeV), therefore it is advantageous to slow down (moderate) the reactor neutrons and the quick neutrons by the means of (n, 2n) reactions whereby the yield of neutrons can be increased. The beryllium moderator is in this case a further element after that applied for slowing down the reactor and quick neutrons.

The reactions of the reactor neutrons are characterized by small cross-section. Hence, they can be slowed down by means of the reaction $^{93}_{41}\text{Nb}$ (n, 2n) $^{92}_{41}\text{Nb}$. A very effective reaction for slowing down the quick neutrons having energy in the range about 14 to 15 MeV is based on praesodymium: $^{141}_{59}\text{Pr}$ (n, 2n) $^{140}_{59}\text{Pr}$. The processes mentioned result in increased yield of neutrons. The advantageous character of these reaction can be seen from the following

1 scheme of reactions:

5

10

Other reaction scheme are possible with low probability, because of the short half-period.

The target 2 includes advantageously a rear reflecting layer 5 for reflecting back the neutrons. This layer can be made of beryllium (${}_4\text{Be}$).

The plate 4 of the target 2 is arranged preferably so that the neutron flux of the reactor falls under right angle (90°) on its surface.

Summarizing, the method of the invention should be realised with a target 2 including after the reactor a layer made of $^{141}_{59}\text{Pr}$ and/or $^{41}_{93}\text{Nb}$, a moderator (of ${}_4\text{Be}$), the metal plate 4 made of ^{74}W and/or ^{70}Yb and a mirror layer (rear reflecting layer 5, made of ${}_4\text{Be}$). The beryllium can be preferred because it is a neutron source under influence of the gamma radiation emitted by the reactor, with the following reactions:

wherein the neutrons at the output have energy 110 keV.

The process of the invention can be applied for preparing catalyst substances – this improves the economy of operating a reactor. No specific security means or expenses are necessary. The metal mixtures can be separated into components according to the known thermal techniques or applied as alloys.

1

CLAIMS:

1. Method of utilizing the (n, gamma) reaction of
5 thermal neutrons, comprising the step of arranging a target before a source of thermal neutrons, the target having a front surface directed to the source of the thermal neutrons and a rear surface behind the front surface,
characterized in the further steps of
10 - preparing the target with a basic metal body made of at least one metal selected from the group including ^{70}Yb and ^{74}W ,
- producing by the means of thermal neutrons a metallic mixture including the basic metal(s) and at least one pair of metals selected from the group including $^{71}\text{Lu} +$
15 $+ 72\text{Hf}$ and $^{75}\text{Re} + 76\text{Os}$ and
- storing the metallic mixture for reducing its activity.
2. The method as set forth in claim 1, characterized in preparing the basic metal body in the form
20 of a plate and arranging it perpendicularly to the flux of the thermal neutrons.
3. The method as set forth in claim 1 or 2, characterized in the step of arranging on the front surface of the basic metal body a layer for slowing down fast
25 and reactor neutrons by the means of (n, 2n) reactions, the layer consisting of at least one metal selected from the group including ^{41}Nb and ^{59}Pr .
4. The method as set forth in any of claims 1 to 3, characterized in the step of arranging at least
30 one beryllium moderating layer on at least one of the front and rear surfaces of the target.
5. The method as set forth in any of claims 1 to 4, characterized in the further step of carrying out
35 thermal decomposition of the metallic mixture after the storing period.

111

Fig. 1

INTERNATIONAL SEARCH REPORT

International Application No PCT/HU 89/00054

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC⁵: G 21 G 1/06

II. FIELDS SEARCHED

Minimum Documentation Searched *

Classification System	Classification Symbols
Int.Cl. ⁵ :	G 21 G 1/06, 1/08, 4/02; H 05 H 6/00, G 21 K 5/08, G 01 T 1/29

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category *	Citation of Document, ** with indication, where appropriate, of the relevant passages †	Relevant to Claim No. †
A	GB, A, 1 075 411 (NRA) 12 July 1967 (12.07.67), see claims 7,9.	(1-3)
A	US, A, 4 055 686 (STEINBERG) 25 October 1977 (25.10.77), see claims 2,12; column 6, line 49.	(1-3)
A	GB, A, 974 622 (UNITED KINGDOM ATOMIC ENRGY) 11 November 1964 (11.11.64).	(1-3)
A	DE, A, 1 908 144 (STARK) 11 September 1969 (11.09.69), see claims 2,3.	(1,2,4)
A	DE, A1, 2 941 096 (PHILIPS) 30 April 1980 (30.04.80), see fig. 1b; claims 1,3.	(1-3)
A	GB, A, 440 023 (SZILARD) 12 December 1935 (12.12.35), see page 6, lines 110-130; page 9, line 113 - page 10, line 16.	(1,4,5)
A	GB, A, 1 243 262 (NATIONAL RESEARCH DEVELOPEMENT) 18 August 1971 (18.08.71), see page 2, lines 86, 89; claims 3,8.	(1,2,4)

* Special categories of cited documents: **

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document relating to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

06 February 1990 (06.02.90)

Date of Mailing of this International Search Report

07 February 1990 (07.02.90)

International Searching Authority

AUSTRIAN PATENT OFFICE

Signature of Authorized Officer

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
A	W.EPPRECHT, "Werkstoffkunde der Kerntechnik", published 1961, Birkhäuser Verlag, Basel und Stuttgart, see pages 221,323.	(1)
A	K.H.HOCKER, K.WEIMER, "Lexikon der Kern- und Reaktortechnik.", published 1959, Franckh'sche Verlagshandlung W.Keller, Stuttgart, see page 635. -----	(1)

Anhang zum internatio-
nalen Recherchenbericht
über die internationale
Patentanmeldung
Nr.

In diesem Anhang sind
die Mitglieder der
Patentfamilien der im
obengenannten interna-
tionalen Recherchenbe-
richt angeführten
Patentdokumente ange-
geben. Diese Angaben
dienen nur zur Unterrich-
tung und erfolgen ohne
Gewähr.

Annex to the International
Search Report on Interna-
tional Patent Application
No. PCT/HU 89/00054

This Annex lists the patent
family members relating to
the patent documents cited
in the above-mentioned Inter-
national search report. The
Austrian Patent Office is in
no way liable for these par-
ticulars which are merely
given for the purpose of in-
formation.

Annexe au rapport de
recherche internationale
relatif à la demande de
brevet international
n°.

La présente annexe indique
les membres de la famille de
brevets relatifs aux docu-
ments de brevets cités dans
le rapport de recherche inter-
national visé ci-dessus. Les
renseignements fournis sont
donnés à titre indicatif et
n'engagent pas la responsa-
bilité de l'Office autrichien
des brevets.

Im Recherchenbericht
angeführtes Patent-
dokument
Patent document cited
in search report
Document de brevet cité
dans le rapport
de recherche

Datum der
Veröffentlichung
Publication
date
Date de
publication

Mitglied(er) der
Patentfamilie
Patent family
member(s)
Membre(s) de la
famille de
brevets

Datum der
Veröffentlichung
Publication
date
Date de
publication

GB-A - 1075411

None

US-A - 4055686

25-10-77

None

GB-A - 974622

None

DE-A - 1908144

11-09-69

DE-B2-	1908144	11-08-77
DE-C3-	1908144	13-04-78
FR-A5-	2002247	17-10-69
GB-A -	1243262	18-08-71
NL-A -	6902545	22-08-69
NL-B -	162241	15-11-79
NL-C -	162241	15-04-80
US-A -	3683190	08-08-72

DE-A1- 2941096

30-04-80

FR-A1-	2438953	09-05-80
FR-B1-	2438953	30-12-83
GB-A1-	2033651	21-05-80
GB-B2-	2033651	18-08-82
JP-A2-55053899		19-04-80
NL-A -	7810299	15-04-80
US-A -	4298804	03-11-81

GB-A - 440023

None

zu PCT/HU 89/00054

GB-A - 1243262	18-08-71	DE-A - 1908144	11-09-69
		DE-B2- 1908144	11-08-77
		DE-C3- 1908144	13-04-78
		FR-A5- 2002247	17-10-69
		NL-A - 6902545	22-08-69
		NL-B - 162241	15-11-79
		NL-C - 162241	15-04-80
		US-A - 3683190	08-08-72

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.