

Simulation & QGIS

On simulation and GIS, coupling and hydrology

Vincent Picavet / Vincent Mora

Simulation

Different worlds

Who runs simulations?

Simulation scientists can be hard to understand

Technology gap

- ⇒ Bridge the gap
 - ⇒ enable simulation visualisation

(Disclaimer: I was into simulation before GIS)

Simulation 101

- You have some « dynamic » model of a physical law
 - Usually modeled by differential equations
 - And depending on time
- You want to « solve » it on a particular domain
 - Analytical solutions cannot be used (do not exist or too hard)
- Cut down the problem into smaller problems
 - Into smaller subdomains
 - => Finite elements

Simulation 101

Example : magnetic field problem

Vector field

Open source simulation

- Lots engines, models and formats!
 - MM5 (weather forecast)
 - Polyphemus (air quality)
 - SWMM (stormwater)
 - EPANET (drinking water)
 - WASP (wind speed)
 - MESO-NH (air quality)
 - OpenSees (earthquake)
 - open TELEMAC-MASCARET (tidal flow)
 - ...

Open source simulation

- Lots engines, models and formats!
 - MM5 (weather forecast)
 - Polyphemus (air quality)
 - SWMM (stormwater)
 - EPANET (drinking water)
 - WASP (wind speed)
 - MESO-NH (air quality)
 - OpenSees (earthquake)
 - open TELEMAC-MASCARET (tidal flow)

• ...

All can be geo-referenced

First try: use features

- Mesh cell = feature
- Value = attribute
- PostGIS / Spatialite classic geometry table
 - Spaghetti model problem!
 - Repeat features for temporal data
 - Huge volumes ⇒ not efficient

Mesh is a really different type of data....

A new friend for Vector, PointCloud and Rasta?

Meet «Mesh»

SIM & GIS

Our focus

- GIS Data
 - Meshes with georeferences
- Representation: suitable for both simulation and GIS
 - Arbitrary values on nodes
 - 1D, 2D or 3D
 - Topological constraints (!= polygon soup)
 - Interpolation functions
 - Simple and efficient format
 - Seen as GIS layers when needed (spatial analysis)
 - Seen as a simulation mesh when needed

Data model

Generic

- A layer of « nodes »
 - A POINT layer with arbitrary attributes
- A layer of connectivity
 - 3 or 4 columns (node lds) for triangles or quads + attributes
- A layer of results for each node
 - Node_id, Time, Value

Demo

- Geo-hydrological demo for Nuclear pollutant dissemination
 - « please do not show this »
- Wind data simulation
 - Simple ASCII file format
 - Temporal data
- A PluginLayer that draws the result
- A control GUI

https://vimeo.com/139449072

QGIS Mesh implementation

- Custom color scale support
- Min/max & log scale support
- OTF reprojection & map rotation support
- Performances
 - Rendering 70k triangles < 8ms
 - Data fetching can be bottleneck
 - → load data in memory in provider
- Not yet in QGIS master

QGIS Mesh implementation

- QgsPluginLayer MeshLayer MeshDataProvider
- Specific Registry for MeshDataProvider
- Various MeshDataProvider
 - Simple ASCII sample
 - SpatiaLite-based provider
 - ... to be extended ...
- GIMesh class for colored mesh rendering

Result visualization

We use OpenGL

- Linear interpolation of values = natural with OpenGL
- Great performances

QGIS as simulation platform

The global picture

Towards a generic simulation platform

QGIS as simulation platform

- Separate simulation and GUI
 - Quick GUI generation for parameters with QGIS
- Use QGIS Processing as simulation wrapper
 - Integrate simulation into QGIS Processing workflows
- Get data and parameters from DB
 - PostGIS, SpatiaLite

Hydrology

Application: Hydrogeology

- Non-disclosed user
- We converted simulation data input to GIS data
 - Small changes to simulation code
 - Much better user interface & capabilities
- Output : temporal meshes
 - Opened directly as QGIS mesh layers
- Output: 1D dissemination columns (table)
 - Display with specific Matplotlib widget

Application: FREEWAT

- FREEWAT H2020 project (www.freewat.eu)
- QGIS as a Hydrology platform
 - Pre-processing
 - Post-processing
 - Simulation control
 - Data visualization
- MODFLOW simulation code interface
- Run to see Massimiliano's talk at 14:40 Room 12

Future

Future

- **3**D
 - Finite elements ⇒ 3D representation
 - OpenGL in QGIS plugin
- Custom composer widget API
 - Your own object types in composer
 - e.g.: 2D slice of 3D data
 - or MatplotLib graph
- New formats support for Mesh Layers
 - HDF? NetCDF?

감사합니다 Merci Thank you

Questions?

@vpicavet

