- **60.** Donats $A = \{3,4,9\}$, $B = \{2,4,6\}$, $C = \{1,2,3,4\}$ i $D = \{3,4,5\}$, comprova si es compleixen les següents igualtats.
 - (a) $(C \setminus D) \times (A \setminus B) = (C \times A) \setminus (D \times B)$.
 - **(b)** $(C \cup D) \times A = (C \times A) \cup (D \times A)$.
 - (c) $C \times (D \setminus A) = (C \setminus A) \times (D \setminus A)$.
- **61.** Digues si és o no veritat que, per a conjunts A i B qualssevol, si $B \subsetneq A$ aleshores $B \times A \subsetneq A \times A$, justificant la teva resposta.
- **62.** Demostra (per inducció sobre k) que si el conjunt S té k elements, i el conjunt T en té m, aleshores el conjunt $S \times T$ té $k \cdot m$ elements.
- **63.** D'entre els següents grups de relacions, digues quines són reflexives, quines simètriques, quines transitives, quines antisimètriques, quines totals:
 - (i) En el conjunt dels nombres naturals:
 - (a) És estrictament més petit que.
 - (b) És més petit o igual que.
 - (c) És divisor de.
 - (d) Són diferents.

- (ii) En el conjunt de les rectes del pla:
 - (e) És perpendicular a.
 - (f) És paral·lela a.
 - (g) Es tallen.
- **64.** Considera la relació \otimes en $\mathcal{P}(A)$, essent A un conjunt qualsevol, definida per a $X,Y\in\mathcal{P}(A)$ així: $X\otimes Y$ si i només si $X\cap Y\neq\emptyset$. Digues justificadament si és reflexiva, simètrica, antisimètrica, transitiva, d'equivalència, d'ordre, d'ordre total.
- **65.** Considera les següents relacions en \mathbb{Q}^+ , el conjunts dels nombres racionals estrictament positius:
 - (a) La relació S definida per aSb si i només si p+q < r+s o $(p+q=r+s \text{ i } p \leqslant r)$, on $\frac{p}{q}$ és l'expressió irreduïble d'a i $\frac{r}{s}$ és l'expressió irreduïble de b.
 - **(b)** La relació T definida per aTb si i només si q < s o $(q = s \text{ i } p \le r)$, on $\frac{p}{q}$ és l'expressió irreduïble d'a i $\frac{r}{s}$ és l'expressió irreduïble de b.

Investiga les propietats de cadascuna d'elles (reflexiva, simètrica, etc.) i digues si són relacions d'equivalència, d'ordre o d'ordre total. Si alguna és d'ordre, digues si amb ella \mathbb{Q}^+ té element mínim o element màxim.

- **66.** Sigui R una relació en un conjunt $A \neq \emptyset$. Definim la relació S en el mateix conjunt A de la següent manera: Per a $a,b \in A$, aSb si i només si no és cert que bRa. Investiga i respon de forma raonada les següents preguntes:
 - (a) Si *R* és reflexiva, aleshores *S* ha de ser reflexiva? Ha de ser no reflexiva?
 - **(b)** Si *R* és simètrica, necessàriament *S* ha de ser simètrica, necessàriament ha de ser no simètrica, o cap de les dues?
 - **(c)** Si *R* és transitiva, necessàriament *S* ha de ser transitiva, necessàriament ha de ser no transitiva, o cap de les dues ?
 - **(d)** Si *R* és antisimètrica, necessàriament *S* ha de ser antisimètrica, necessàriament ha de ser no antisimètrica, o cap de les dues?
- **67.** Considera *X*, *Y*, *Z* conjunts arbitraris. Demostra les següents igualtats:
 - (a) $X \times (Y \cup Z) = (X \times Y) \cup (X \times Z)$.
 - **(b)** $X \times (Y \cap Z) = (X \times Y) \cap (X \times Z)$.
- **68.** Digues si és cert o no que, per a conjunts A, B, C, D qualssevol, si $A \times B = C \times D$ aleshores A = C i B = D. Justifica la teva resposta.
- **69.** Sigui X un conjunt arbitrari no buit. Considera la següent relació en $\mathcal{P}(X)$: Si $A, B \subseteq X$, $A \oplus B$ si i només si $A \nsubseteq B$. Mostra justificadament si té o no les següents propietats: reflexiva, simètrica, antisimètrica, transitiva, total.
- 70. En el conjunt de totes les successions convergents de nombres reals definim una relació \square de la següent manera: $\{a_n\}_{n\in\mathbb{N}}$ \square $\{b_n\}_{n\in\mathbb{N}}$ si i només si existeix un $k\in\mathbb{N}$ tal que per tot $m\geqslant k$, $a_m-b_m\leqslant 0$. Es demana si la relació \square és reflexiva, simètrica, antisimètrica, transitiva, d'equivalència, d'ordre, d'ordre total. Justifica les respostes.
- 71. En $\mathbb{R} \times \mathbb{R}$ considerem la següent relació:

$$(r,s) \ll (r',s')$$
 si i només si $\left\{ egin{array}{ll} r < r', & ext{o b\'e} \\ r = r' & ext{i } s \leqslant s'. \end{array}
ight.$

Demostra que \ll és una relació d'ordre total sobre $\mathbb{R} \times \mathbb{R}$.