

Instituto Federal de Educação, Ciência e Tecnologia – São Paulo

Disciplina: Química

Prof. Gouveia/Osmar

CINÉTICA QUÍMICA - parte 3

- Lei da Velocidade ou Lei da Ação das Massas
- > Exercícios resolvidos Lei da velocidade

Data: 16/11/2021

1876 - Lei da Ação das Massas ou Lei Cinética

Cato Guldberg

Peter Waage

1876 - Lei da Ação das Massas ou Lei Cinética

"A Velocidade de uma reação química é diretamente proporcional ao produto das concentrações molares dos reagentes elevadas a potências determinadas experimentalmente"

Guldberg e Waage

Reação genérica:

$$aA + bB \rightarrow cC + dD$$

$$V = k.[A]^{x}.[B]^{y}$$

K = constante cinética (varia com a temperatura)

x e y = ordem dos reagentes A e B (experimental)

x + y = ordem globlal da reação

[] = Concentração molar

Lei da Ação das Massas ou Lei Cinética

Exemplo 1: decomposição de N₂O₅

$$2 N_2 O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$

 $V = k [N_2 O_5]^{\times}$

experimento	[N ₂ O ₅] (mol/L)	Velocidade inicial (mol/L . h)
1º	$0,010 \times 2$	0,016 × 2
2° 3	0,020	0,032
3°	0,030	0,048

1° e 2°
$$[N_2O_5]^x = V$$
 $x = 1$

1° e 3°
$$[N_2O_5]^x = V$$
 $3^x = 3$ $x = 1$

$$V = k [N_2 O_5]^1$$

Lei da Ação das Massas ou Lei Cinética

Exemplo 2: decomposição do etanal

$$CH_3CHO(l) \rightarrow CH_4(l) + CO(l)$$

$$V = k [CH_3CHO]^{\times}$$

experimento	[CH ₃ CHO] (mol/L)	Velocidade inicial (mol/L . h)
1°	0,010 1 ≥ 2	0,085 × 4
2° 3	× 0,020 ✓	9 × 0,340
3°	0,030	0,765

$$V = k [CH3CHO]2$$

Lei da Ação das Massas ou Lei Cinética

Exemplo 3: reação entre os gases H_2 e NO

$$2 H_2(g) + 2 NO(g) \rightarrow N_2(g) + 2 H_2O(g)$$

 $V = k [H_2]^x [NO]^y$

experimento	[H ₂] (mol/L)	[NO] (mol/L)	Velocidade inicial (mol/L . h)
10 2 4	1 . 10 ⁻³	1 . 10 ⁻³	3 . 10 ⁻⁵
2° 2 X	→2 . 10 ⁻³	1 . 10 ⁻³	6. 10-5
3°	2 . 10 ⁻³	2 . 10 ⁻³	24 . 10 ⁻⁵

Reações elementares e não elementares

 $H_2 + I_2 \rightarrow complexo ativado \rightarrow 2 HI$

Reações elementares e não elementares

I - Reação elementar

A reação ocorre em uma única etapa - Nesse caso, os coeficientes estequiométricos são os próprios expoentes da expressão matemática da lei da velocidade.

Exemplo:

$$H_2 + I_2 \rightarrow 2 HI$$

$$V = k [H_2]^1 . [I_2]^1$$

Reações elementares e não elementares

II - Reação Não Elementar

As reações não elementares, ocorrem em várias etapas, sendo a etapa lenta a determinante da expressão matemática da lei da velocidade da reação.

Exemplo:

$$2 \text{ NO} \rightarrow \text{N}_2\text{O}_2$$
 (etapa lenta)
$$\frac{\text{N}_2\text{O}_2}{\text{N}_2\text{O}_2} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$
 (etapa rápida)
$$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$
 (reação global)

$$V = k [NO]^2$$

Exercícios Resolvidos

1. Dado o mecanismo para uma reação em fase gasosa:

$$1^{a}$$
 etapa: $O_3 + NO_2 \rightarrow O_2 + NO_3$ (lenta)

$$2^{\alpha}$$
 etapa: $NO_3 + NO_2 \rightarrow N_2O_5$ (rápida)

- a) Some as etapas e obtenha a equação global.
- b) Qual das duas etapas é a "etapa determinante da velocidade" do processo global?
- c) Quantas e quais são as moléculas que colidem na "etapa determinante da velocidade"?
- d) Deduza a equação de velocidade (lei cinética) da reação global.

a) Some as etapas e obtenha a equação global.

1° etapa:
$$O_3$$
 + NO_2 \rightarrow O_2 + NO_3 (lenta)

2° etapa: NO_3 + NO_2 \rightarrow N_2O_5 (rápida)

Reação global:
$$O_3 + 2NO_2 \rightarrow O_2 + N_2O_5$$

b) Qual das duas etapas é a "etapa determinante da velocidade" do processo global?

Resposta: A etapa que determine a velocidade da reação, é a etapa lenta. Portanto, a 1º etapa é a determinante da velocidade da reação.

c) Quantas e quais são as moléculas que colidem na "etapa determinante da velocidade"?

$$1^{a}$$
 etapa: $O_3 + NO_2 \rightarrow O_2 + NO_3$ (lenta)
 2^{a} etapa: $NO_3 + NO_2 \rightarrow N_2O_5$ (rápida)

Resposta:

$$1^{a}$$
 etapa: $O_3 + NO_2 \rightarrow O_2 + NO_3$ (lenta)

1 molécula de O₃

1 molécula de NO2

d) Deduza a equação de velocidade (lei cinética) da reação global.

$$1^a$$
 etapa: $O_3 + NO_2 \rightarrow O_2 + NO_3$ (lenta)
 2^a etapa: $NO_3 + NO_2 \rightarrow N_2O_5$ (rápida)

$$v = k [O_3]^{\times} . [NO_2]^{\gamma}$$

ordem dos reagentes

$$v = k [O_3]^1 . [NO_2]^1$$

 $v = k [O_3]^1 . [NO_2]^1$
 $v = k [O_3] . [NO_2]$

2. A fabricação industrial do ácido sulfúrico (H₂SO₄) é realizada a partir de enxofre, oxigênio e água, em 3 etapas, representadas pelo diagrama energético a seguir:

É correto afirmar que:

a) A reação de fabricação do ácido sulfúrico é endotérmica.

Resposta:
a) FALSO

b) A primeira etapa da reação é mais lenta que a segunda etapa da reação.

Reposta: NÃO!

A etapa mais lenta é aquela que apresenta a MAIOR energia de ativação (E_{at}).

c) A segunda etapa da reação é mais lenta que a terceira etapa da reação.

Reposta: CORRETO!

A etapa mais lenta é aquela que apresenta a MAIOR energia de ativação (E_{at}). Portanto, a 2ª etapa é a que apresenta maior energia de ativação.

d) A velocidade da reação não depende da temperatura.

Reposta: FALSO!

A TEMPERATURA INFLUÊNCIA na velocidade de reação.

3. A tabela a seguir indica valores das taxas de desenvolvimento da reação e as correspondentes concentrações em mol/L dos reagentes em idênticas condições para o processo químico representado pela equação genérica:

$$3X + 2Y \rightarrow 1Z + 5W$$

<i>Td</i> (mol • L⁻¹ • min⁻¹)	[X]	[Y]
10	5	10
40	10	10
40	10	20

Escreva a expressão da lei da velocidade para esse processo.

Reação não-elementar

$$3X + 2Y \rightarrow 1Z + 5W$$

$$V = k[X]^{x}.[Y]^{y}$$
 \Rightarrow $x = ?$ $y = ?$ Ordem dos regentes

<i>Td</i> (mol • L⁻¹ • min⁻¹)	[X]	[Y]
10	5	10
40	10	10
40	10	20

Determinar a ordem x. Para isso, devemos fixar as concentrações onde [Y] não variam.

<i>Td</i> (mol • L⁻¹ • min⁻¹)	[X]	[Y]	
10	5 × 2	10	Concentração de [Y] não
40	10	10	de [Y] não varia
40	10	20	

Determinar a ordem x. Para isso, devemos fixar as concentrações onde [Y] não variam.

Dessa forma temos que: ao dobrar a concentração do regente [X] a velocidade quadruplicou

$$[2]^{\times} = 4$$
 \Rightarrow $\times = 2$ \Rightarrow $[2]^{2} = 4$

Concentração de [X] não varia

<i>Td</i> (mol • L⁻¹ • min⁻¹)	[X]	[Y]
10	5	10
40 , 1	10	10
40	10	20 ^ _

Determinar a ordem y. Para isso, devemos fixar as concentrações onde [X] não variam.

Dessa forma temos que: ao dobrar a concentração do regente [Y] a velocidade permanece igual

$$[2]^{y} = 1$$
 $y = 0$ $[2]^{0} = 1$

$$[2]^{\circ} = 1$$

$$3X + 2Y \rightarrow 1Z + 5W$$

Ordem dos regentes X e Y

$$x = 2 e y = 0$$

$$V = k [X]^{\times} . [Y]^{y} \implies V = k [X]^{2} . [Y]^{0}$$

$$V = k [X]^2$$

A lei da velocidade é independente da concentração de [Y]

4. Para a reação $2A + B \rightarrow C + 3D$ foram obtidas as seguintes velocidades iniciais

[A] inicial (mol/L)	[B] inicial (mol/L)	- d[A]/dt inicial (molL ⁻¹ s ⁻¹)
0,127	0,346	$1,64 \times 10^{-6}$
0,254	0,346	$3,28 \times 10^{-6}$
0,254	0,692	$1,31 \times 10^{-5}$

- a) Escreva a equação de velocidade para a reação;
- b) Calcule o valor da constante de velocidade; resp. 1,08 . 10⁻⁴ mol⁻² L² s⁻¹.
- c) Calcule a velocidade de consumo de A quando [A] = 0,100 mol/L e [B] = 0,200 mol/L; resp. $4,32 \cdot 10^{-7}$ mol L^{-1} s⁻¹.
- d) Calcule a velocidade de formação de D sob as condições de c). resp. $6,48 \cdot 10^{-7}$ mol L⁻¹ s⁻¹.

Reação: $2A + B \rightarrow C + 3D$

Concentração de [B] não varia

[A] inicial (mol/L)	[B] inicial (mol/V	- d[A]/dt inicial (molL ⁻¹ s ⁻¹)
0,127	0,346	$1,64 \times 10^{-6}$
0,254 x 2	0,346	$3,28 \times 10^{-6} \times 2$
0,254	0,692	$1,31 \times 10^{-5}$

a) Escreva a equação de velocidade para a reação;

$$V = k [A]^{x} . [B]^{y}$$
 $x = ??$ $y = ??$

$$x = ??$$

Dessa forma temos que: ao dobrar a concentração do regente [A] a velocidade também dobra.

$$[2]^{\times} = 2$$
 $\times = 1$ $[2]^{1} = 2$

$$[2]^1 = 2$$

Reação: $2A + B \rightarrow C + 3D$

Concentração de [A] não varia

[A] inicial (mg/L)	[B] inicial (mol/L)	- d[A]/dt inicial (molL ⁻¹ s ⁻¹)
0,127	0,346	$1,64 \times 10^{-6}$
0,254	0,346	$3,28 \times 10^{-6}$
0,254	0,692	13,1 x 10 ⁻⁶

a) Escreva a equação de velocidade para a reação;

$$V = k [A]^{1} . [B]^{y} \times = 1 y = ??$$

Dessa forma temos que: ao dobrar concentração do regente [B] a velocidade quadruplica.

$$[2]^{y} = 4$$
 $y = 2$ $[2]^{2} = 4$

$$[2]^2 = 4$$

Reação: $2A + B \rightarrow C + 3D$

[A] inicial (mol/L)	[B] inicial (mol/L)	- d[A]/dt inicial (molL ⁻¹ s ⁻¹)
0,127	0,346	$1,64 \times 10^{-6}$
0,254	0,346	$3,28 \times 10^{-6}$
0,254	0,692	$1,31 \times 10^{-5}$

a) Escreva a equação de velocidade para a reação;

Resp.
$$V = k [A]^1 . [B]^2$$

Resolução: Reação: $2A + B \rightarrow C + 3D$

[A] inicial (mol/L)	[B] inicial (mol/L)	- d[A]/dt inicial (molL ⁻¹ s ⁻¹)
0,127	0,346	$1,64 \times 10^{-6}$
0,254	0,346	$3,28 \times 10^{-6}$
0,254	0,692	$1,31 \times 10^{-5}$

b) Calcule o valor da constante de velocidade (k); resp. 1,08. 10⁻⁴ mol⁻² L² s⁻¹.

$$V = k [A]^{1} . [B]^{2}$$

$$1,64 \times 10^{-6} \text{ mol } L^{-1} \text{ s}^{-1} = \text{k} [0,127 \text{ mol } L^{-1}]^{1} . [0,346 \text{ mol } L^{-1}]^{2}$$

$$1,64 \times 10^{-6} \text{ mol } L^{-1} \text{ s}^{-1} = \mathbf{k} [0,127 \text{ mol } L^{-1}]^{1} . [0,120 \text{ mol}^{2} L^{-2}] \implies$$

Continuação do item b):

$$\Rightarrow$$
 1,64 x 10⁻⁶ mol L⁻¹ s⁻¹ = k [0,0152 mol³ L⁻³] \Rightarrow

$$K = 1.64 \times 10^{-6} \text{ mol} L^{7} s^{-1}$$

$$0.0152 \text{ mol} L^{3}$$

$$\Rightarrow$$
 K = 1,08 × 10⁻⁴ mol⁻² L² s⁻¹

Resolução item c):

Reação: $2A + B \rightarrow C + 3D$

[A] inicial (mol/L)	[B] inicial (mol/L)	- d[A]/dt inicial (molL ⁻¹ s ⁻¹)
0,127	0,346	$1,64 \times 10^{-6}$
0,254	0,346	$3,28 \times 10^{-6}$
0,254	0,692	$1,31 \times 10^{-5}$

c) Calcule a velocidade de consumo de A quando [A] = 0,100 mol/L e [B] = 0,200 mol/L; resp. $4,32 \cdot 10^{-2}$ mol L^{-1} s⁻¹.

$$V = k [A]^{1} . [B]^{2}$$

 $K = 1.08 \cdot 10^{-4} \text{ mol}^{-2} L^2 s^{-1}$

 $[A] = 0,100 \text{ mol } L^{-1}$

[B] = $0.200 \text{ mol } L^{-1}$

Continuação do item c):

$$V = k [A]^1 . [B]^2$$

$$V = 1.08 \times 10^{-4} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1} [0.100 \text{ mol L}^{-1}]^1 . [0.200 \text{ mol L}^{-1}]^2$$

$$\lor$$
 V = 1,08 x 10⁻⁴ mol⁻² L² s⁻¹ [0,100 mol L⁻¹]. [0,04 mol² L⁻²] \Rightarrow

$$V = 1.08 \times 10^{-4} \text{ mol}^{-2} L^2 \text{ s}^{-1} [4.0 \times 10^{-4} \text{ mol}^3 L^{-3}]$$

$$\vee$$
 V = 4,32 x 10⁻⁷ mol L⁻¹s⁻¹

Resolução item d):

[A] inicial (mol/L)	[B] inicial (mol/L)	- d[A]/dt inicial (molL ⁻¹ s ⁻¹)
0,127	0,346	$1,64 \times 10^{-6}$
0,254	0,346	$3,28 \times 10^{-6}$
0,254	0,692	$1,31 \times 10^{-5}$

d) Calcule a velocidade de formação de D sob as condições de c). resp. 6,48 . 10⁻⁷ mol L⁻¹ s⁻¹.

$$X = V_D = 6.48 \times 10^{-7} \text{ mol } L^{-1} \text{ s}^{-1}$$