Domáca úloha 1

Dôkaz rovnice pre refrakciu lúča

Marek Kružliak

March 16, 2014

1 Použité vzťahy a vlastnosti

- (1) Snellov zákon: $\eta_1 \sin \theta_1 = \eta_2 \sin \theta_2$
- (2) Veta pre sínus a cosínus: $\cos^2 \theta + \sin^2 \theta = 1$
- (3) Uhol medzi dvoma vektormi: $\cos \theta = \frac{\bar{u} \cdot \bar{v}}{|\bar{u}| \cdot |\bar{v}|}$
- (4) Vektory vystupujúce v rovnici sú jednotkové: $|\bar{n}| = |\bar{\omega}| = |\bar{\omega}_r| = 1$
- (5) Uhly θ_1 a θ_2 sú v intervale $<0,90>^\circ$

Na tieto vzťahy sa budeme odkazovať neskôr v texte. Lom lúča je znázornený na obrázku 1 na strane 3.

2 Dôkaz

Výsledný vektor $\bar{\omega}_r$ sa pokúsime získať skladaním dvoch vektorov \bar{u} a \bar{v} :

$$\bar{\omega}_r = \bar{u} + \bar{v} \tag{6}$$

Vektor \bar{u} môžeme získať aj takto:

$$\bar{u} = -\cos\theta_2 \bar{n} \tag{7}$$

Kde $\cos \theta_2 = \frac{|\bar{u}|}{|\bar{\omega}_r|} = |\bar{u}|$, keďže platí (4) a $-\bar{n}$ nám určuje smer vektora \bar{u} . Vektor \bar{n} už poznáme a preto nám stačí dopočítať už len $\cos \theta_2$.

Z (2) a (5) vieme, že:

$$\cos \theta_2 = \sqrt{1 - \sin^2 \theta_2} \tag{8}$$

Dalej nám teda stačí vypočítať $\sin \theta_2$, na čo nám poslúži Snellov zákon.

$$\sin \theta_2 = \frac{\eta_1}{\eta_2} \cdot \sin \theta_1$$

Na základe (2) a (5):

$$\sin \theta_2 = \frac{\eta_1}{\eta_2} \cdot \sqrt{1 - \cos^2 \theta_1} \tag{9}$$

Z (3) vieme vypoočítať $\cos \theta_1$:

$$\cos \theta_1 = \frac{\bar{\omega} \cdot \bar{n}}{|\bar{\omega}| \cdot |\bar{n}|}$$

A keďže platí (4):

$$\cos \theta_1 = \bar{\omega} \cdot \bar{n} \tag{10}$$

Po doplnení $\cos \theta_1$ do (9), $\sin \theta_2$ do (8) a $\cos \theta_2$ do (7) získame vektor \bar{u} takto:

$$\bar{u} = -\left(\sqrt{1 - \left(\frac{\eta_1}{\eta_2}\right)^2 (1 - (\bar{\omega} \cdot \bar{n})^2)}\right) \bar{n}$$
(11)

Teraz nám už en stačí získať vektor \bar{v} .

Vďaka (4) vieme, že $\sin \theta_1 = |\bar{q}|$ a $\sin \theta_2 = |\bar{v}|$. Po doplnení do (1) získame rovnicu:

$$|\bar{v}| = \frac{\eta_1}{\eta_2} |\bar{q}|$$

Kedže $\bar{v} \parallel \bar{q}$ a majú opačný smer, tak platí:

$$\bar{v} = -\frac{\eta_1}{\eta_2}\bar{q} \tag{12}$$

Vektor \bar{q} možno získať ako rozdiel vektorov $\bar{\omega}$ a \bar{p} :

$$\bar{q} = \bar{\omega} - \bar{p} \tag{13}$$

Kde vektor \bar{p} má smer rovnaký ako \bar{n} a jeho velkosť je $\cos \theta_1$. Vďaka týmto faktom a rovnici (10) získavame, že:

$$\bar{p} = (\bar{\omega} \cdot \bar{n})\bar{n} \tag{14}$$

Po doplnení \bar{p} do (13) a následne \bar{q} do (12) získame vektor \bar{v} takto:

$$\bar{v} = -\frac{\eta_1}{\eta_2} (\bar{\omega} - (\bar{\omega} \cdot \bar{n})\bar{n}) \tag{15}$$

Po dosadení (15) a (11) do (6) získame výsledný vektor:

$$\bar{\omega}_r = -\frac{\eta_1}{\eta_2} (\bar{\omega} - (\bar{\omega} \cdot \bar{n})\bar{n}) - \left(\sqrt{1 - \left(\frac{\eta_1}{\eta_2}\right)^2 (1 - (\bar{\omega} \cdot \bar{n})^2)}\right) \bar{n}$$
 (16)

A to je to, čo sme chceli dokázať.

Figure 1: Refrakcia lúča. (Pomocný obrázok k dôkazu)