Cálculo Numérico I

Curso 2020-2021

Hoja de Problemas 6

 1° de Mat./ 2° de D.G.

- 1. Sea A una matriz $n \times m$ de rango r, y sea $A = U\Sigma V^*$ su Singular Value Decomposition.
 - a) Demostrar que las columnas $\{V^{(r+1)}, \dots, V^{(m)}\}$ de V son una base ortonormal de Ker(A), el núcleo de A.
 - b) Demostrar que las columnas $\{U^{(1)}, \ldots, U^{(r)}\}$ de U son una base ortonormal de $\operatorname{Ran}(A)$, la imagen de A.
 - c) Si A es invertible, demostrar que $|||A^{-1}|||_2 = \frac{1}{\sigma_n}$.
 - d) Sea $r = m \le n$, y sea A^+ la pseudoinversa de A. Demostrar que $A^+ = VSU^*$, donde S es una matriz diagonal $m \times n$ cuyos valores diagonales son $1/\sigma_k$, siendo $\{\sigma_k\}_{k=1}^m$ los valores singulares de A.
- 2. Se consideran las siguientes matrices

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 2 & 3 & 0 \\ 2 & -3 & 0 \end{pmatrix}$$

- a) Calcular la Singular Value Decomposition de A_1 y de A_2
- b) Calcular $\mathbb{P}_{\text{Ran}(A_1)}$ y $\mathbb{P}_{\text{Ker}(A_2)}$
- 3. Denotemos por $\epsilon=2^{-52}$ el epsilon-máquina, y sea

$$A = \begin{pmatrix} \sqrt{2} & \sqrt{2} & 0\\ 0 & 0 & 1\\ -\frac{\epsilon}{\sqrt{2}} & \frac{\epsilon}{\sqrt{2}} & 0 \end{pmatrix}$$

a) Comprobar que A es invertible y que una SVD de A es dada por las matrices

$$U = I \,, \; \Sigma = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \epsilon \end{array} \right) \,, \; V = \left(\begin{array}{ccc} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \end{array} \right)$$

- b) Usando esta SVD, escribir la solución al sistema Ax = b para un $b \in \mathbb{R}^3$ cualquiera.
- c) Sea $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, sea $\widehat{x(b)}$ la representación en floating point de la solución al sistema

Ax = b calculada como en el apartado anterior, y sea \widehat{b} la representación en floating point de $\widehat{Ax(b)}$. Comprobar que $\|\widehat{b} - b\|_2 = \frac{1}{2}$.

- d) Para el mismo vector b del apartado anterior, y para $\alpha > 0$, sea $x_{\alpha}(b)$ la solución regularizada de Tikhonov al sistema Ax = b, y sea $b_{\alpha} = Ax_{\alpha}(b)$.
 - Calcular el número de condición de A y el número de condición del problema regularizado con $\alpha>0$.
 - Comprobar que la representación en floating point de $x_{\alpha}(b)$ concide con $\widehat{x(b)}$ para todo $\alpha < \epsilon^3$.
 - Comprobar que, para todo $\alpha > \epsilon$, tenemos $||b_{\alpha} b||_2 > 1$.

- 4. Sea $B \in \mathbb{C}^{n \times m}$. Demostrar que
 - $|||QB|||_F = |||B|||_F$ y $|||QB|||_2 = |||B|||_2$ para toda matriz $Q \in \mathbb{C}^{n \times n}$ unitaria
 - $|||BP|||_F = |||B|||_F$ y $|||BP|||_2 = |||B|||_2$ para toda matriz $P \in \mathbb{C}^{m \times m}$ unitaria

donde denotamos con $|||B|||_F = \left(\sum_{i=1}^n \sum_{j=1}^m |B_{ij}|^2\right)^{\frac{1}{2}}$ la norma de Frobenius.

Sea $A \in \mathbb{C}^{n \times m}$ una matriz de rango r, y sea $A = U\Sigma V^*$ su SVD. Usando las identidades anteriores, comprobar que $|||A|||_2 = \sigma_1$, y demostrar que

$$|||A|||_F = \left(\sum_{k=1}^r \sigma_k^2\right)^{\frac{1}{2}}$$

- 5. Sea $A \in \mathbb{C}^{n \times m}$ una matriz de rango r, y sea $A = U \Sigma V^*$ su SVD.
 - a) Denotemos por $\{A^{(j)}\}_{j=1}^m$ los vectores columna de A. Demostrar que

$$\langle A^{(j)}, U^{(k)} \rangle = \sigma_k \overline{V_{ik}}.$$

b) Sea $\nu < r$ y sea $A_{\nu} \in \mathbb{C}^{n \times m}$ la matriz tal que, para todo $x \in \mathbb{C}^m$,

$$A_{\nu}x = \sum_{k=1}^{\nu} \sigma_k \langle x, V^{(k)} \rangle U^{(k)}.$$

Demostrar que, para toda matriz $B \in \mathbb{C}^{n \times m}$ de rango $\leq \nu$,

$$|||A - B|||_2 \le |||A - A_{\nu}|||_2 = \sigma_{\nu+1}.$$

(Pista: verificar que la misma demostración dada para la norma de Frobenius, con peqeños cambios, permite demostrar esta afirmación.)

6. Sea $A \in \mathbb{R}^{2\times 2}$ una matriz invertible y sea $A = U\Sigma V^t$ su SVD. Sea $\mathcal{C} = \{x = \binom{x_1}{x_2}\} \in \mathbb{R}^2$: $x_1^2 + x_2^2 = 1\}$ la circunferencia de radio 1, y sea $\mathcal{E} = \{y = \binom{y_1}{y_2}\} \in \mathbb{R}^2$: $y = Ax, x \in \mathcal{C}\} = A\mathcal{C}$ la imagen de los puntos de \mathcal{C} bajo la aplicación A. Demostrar que \mathcal{E} es una elipse cuyo semieje mayor tiene longitud σ_1 y su dirección es dada por $U^{(1)}$.

(Pista: usar la expresión dada por la SVD de $A^{-1}y$, y encontrar así los $y \in \mathbb{R}^2$ tales que $\|A^{-1}y\|_2 = 1$.)