1 Combinatoria e probabilità

1.1 Introduzione

Definizione 1:

L'analisi combinatoria è la branca della matematica applicata per risolvere problemi nel quale è necessario saper "contare" efficacemente esiti e probabilità di determinate situazioni.

Essa è infatti la disciplina che ci permette di contare senza contare

1.2 Combinatoria

Definizione 2 (Principio di moltiplicazione):

Un insieme X soddisfa le ipotesi del principio di moltiplicazione se:

- è possibile ottenere ciascuno dei suoi elementi come risultato di una procedura composta da n fasi successive.
- se ad una fase interemedia si sono ottenuti due esisti distinti allora la procedura conduce ad elementi distinti di X

Nella prima fase avremo m_1 possibili esiti nella seconda fase avremo m_2 esiti sino alla n-esima fase avremo m_n esiti

$$|X| = m_1 \times m_2 \times \dots \times m_k \tag{1}$$

Esercizio 1.

Calcoliamo il numero di coppie ordinate (a,b) contenenti un numero primo ed uno non primo compresi tra 1 ed 8

DIMOSTRAZIONE 1.

I numeri primi tra 1 e 8 sono $\{2,3,5,7\}$ mentre i numeri non primi tra 1 e 8 sono $\{1,4,6,8\}$

- I. Scegliamo un qualsiasi elemento di I_8 : abbiamo 8 possibilità.
- II. Se il primo elemento era primo il secondo non lo sarà, e viceversa se il numero non era primo. In ogni caso avremo 4 distinte possiblità

Il numero di coppie è: $8 \times 4 = 32$

Esercizio 2.

Consideriamo un'estrazione in successione di 3 numeri della tombola **tenendo** conto dell'ordine. Quanti sono i possibili esiti?

DIMOSTRAZIONE 2.

I numeri della tombola sono 90. Gli scenari possibili sono 2:

Nel primo caso **senza rimpiazzo** se ogni numero può essere scelto una volta sola, mentre sarà **con rimpiazzo** se un numero può essere scelto più di una volta.

Nel primo caso $(a_1, a_2, a_3) :\rightarrow (a_1 \neq a_2 \neq a_3)$:

I fase: $a_1 = 90$

II FASE: $a_2 = 90 - 1 = 89$

III FASE: $a_3 = 90 - 2 = 88$

Quindi il numero di possibili esiti è:

$$90 \times 89 \times 88 = 704880$$
 (2)

Nel secondo caso $(a_1, a_2, a_3) :\rightarrow (a_1 = a_2 = a_3)$:

I fase: $a_1 = 90$

II fase: $a_2 = 90$

III fase: $a_3 = 90$

Quindi il numero di possibili esiti è:

$$90 \times 90 \times 90 = 90^3 = 729000 \tag{3}$$

Definizione 3:

Definiamo una regola general per k-sequenze di I_n . Siano $k, n \in \mathbb{N}$ definiamo k-sequenza di I_n una k-upla **ordinata** (a_1, \ldots, a_k) di elementi **non** necessariamente distinti di I_n Ovvero:

$$(a_1, \dots, a_k) \in \underbrace{I_n \times \dots \times I_n} \tag{4}$$

Nella definzione di sequenze l'ordine degli elementi della k-upla è importante: le 3-sequenze $(2,\,1\,,3\,)$ e $(3,\,1,\,2)$ sono diverse anceh se composte dagli stessi numeri. Vengono comunemente dette **disposizioni** di **n** oggetti a k a k

Esempio 1.

Sia $I_4 = 1, 2, 3, 4$. Allora

$$(1, 2, 3, 3, 4), \qquad (1, 1, 1, 1, 1), \qquad (2, 2, 1, 3, 4)$$
 (5)

sono 5-sequenze di I_4 . Invece

$$(1,2,3), \qquad (1,1,1), \qquad (2,3,4)$$

sono 3-sequenze di I_4

1.3 Fattoriale

$$5! = 5 \times 4 \times 3 \times 2 \times 1 \tag{7}$$

$$n! = \begin{cases} n \times (n-1) \times (n-2) \times \dots & 3 \times 2 \times 1 & \text{se } n \ge 1 \\ 1 & \text{se } n = 0 \end{cases}$$
 (8)

Definizione 4:

Il **fattoriale** di un numero equivale al prodotto di quel numero per tutti i numeri che lo precedono. I valori dei fattoriale crescono esponenzialmente

$$0! = 1$$
 $5! = 120$ $6! = 720$ $7! = 5040$ $10! = 3628800$ (9)

1.4 Numero di Insiemi

Definizione 5:

Il numero di sottoinsiemi di k elementi di I_n si distinguono esclusivamente dagli elementi di cui fanno parte: l'ordine non conta.

Spesso un sottoinsieme di k elementi di un insieme di n elementi viene chiamato **combinazione** (semplice, senza ripetizioni) di n elementi a k a k

Definizione 6:

Siano $k, n \in \mathbb{N}$ il **binomiale** di n su k è:

Il numero di sottoinsiemi di k elementi di I_n è

$${n \brace k}.$$
 (11)

Esempio 2.

Calcola i sotttoinsiemi con 3 elementi di I_6

DIMOSTRAZIONE 3.

La soluzione è data da una semplice applicazione della formula prima vista:

$$\begin{cases} 6 \\ 3 \end{cases} = \frac{6!}{3!3!} = 20 \tag{12}$$

Esempio 3.

Calcola il numero di partite giocate nella fase a gironi dei Mondiali di calcio. Ci sono 32 squadre divise in 8 gironi da 4 squadre ed in ogni girone una squadra deve giocare contro le altre una volta sola.

DIMOSTRAZIONE 4.

Il numero di partite totale è 8 volte le partite giocate in un singolo girone. L'insieme delle 4 squadre in un girone possiamo identificarlo con I_4 , e una partita tra 2 squadre con un sottoinsieme di 2 elementi di I_4 . Il numero di partite giocate in un girone**è il numero di sottoinsiemi** di 2 elementi di I_4 ovvero:

$${4 \brace 2} = \frac{4!}{2!(4-2)!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 2} = \frac{24}{4} = 6$$
 (13)

Infine il risultato equivale a: $6 \times 8 = 48$