Artificial Neural Networks

CMSC 173 - Machine Learning

Course Lecture

Outline

Introduction & Motivation

The Perceptron

Activation Functions

Multi-Layer Networks & Architecture

Forward Propagation

Backpropagation Algorithm

Regularization Techniques

Training Best Practices

Summary & Applications

Introduction & Motivation

Artificial Neural Networks: Computing systems inspired by biological neural networks

Biological Inspiration

• Neurons: Basic processing units

• Synapses: Weighted connections

• Learning: Adapting connection strengths

• Parallel processing: Massive connectivity

Artificial Counterpart

• Perceptrons: Mathematical neurons

• Weights: Learnable parameters

• Training: Gradient-based optimization

• Layers: Organized processing units

Key Insight

Neural networks can learn complex non-linear mappings from data by adjusting weights through training.

Why Neural Networks?

Motivation: Limitations of Linear Models

Linear Models

- Limited to linear decision boundaries
- Cannot solve XOR problem
- Restricted representational power
- Simple but insufficient for complex data

Example: XOR Problem

x_1	<i>x</i> ₂	XOR
0	0	0
0	1	1
1	0	1
1	1	0

No linear classifier can solve this!

Neural Networks

- Non-linear decision boundaries
- · Universal approximation capability
- · Hierarchical feature learning
- Scalable to complex problems

Universal Approximation Theorem: A neural network with a single hidden layer can approximate any continuous function to arbitrary accuracy (given sufficient neurons).

Key Advantages:

- Automatic feature extraction
- End-to-end learning
- Flexible architectures

4

The Perceptron

The Perceptron: Building Block of Neural Networks

Mathematical Model

Linear Combination: $z = \sum_{i=1}^{n} w_i x_i + b = \mathbf{w}^T \mathbf{x} + b$

Activation: $y = \sigma(z)$ where σ is an activation function

5

Neural Network Components and Architecture

Single Processing Unit

Single processing unit with inputs x_1,\ldots,x_D , weights w_1,\ldots,w_D , bias w_0 , and activation function σ .

Multi-Layer Perceptron

Multi-layer perceptron with fully connected layers. Each connection represents a learnable weight parameter.

Key Concepts

Processing Unit: $z = \sum_{i=1}^{D} w_i x_i + w_0$, then $y = \sigma(z)$

Network: Multiple units arranged in layers with feedforward connections

Perceptron: Mathematical Formulation

Complete Mathematical Description:

$$z = \sum_{i=1}^{n} w_i x_i + b = \mathbf{w}^T \mathbf{x} + b \tag{1}$$

$$y = \sigma(z) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b) \tag{2}$$

where:

- $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$: input vector
- $\mathbf{w} = [w_1, w_2, \dots, w_n]^T$: weight vector
- b: bias term
- $\sigma(\cdot)$: activation function

Step Function (Original)

$$\sigma(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

Problem: Not differentiable

Sigmoid Function (Modern)

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Advantage: Smooth and differentiable

7

Perceptron Learning Algorithm

Goal: Learn weights \mathbf{w} and bias b to minimize prediction error

Original Perceptron Rule

For misclassified point (x_i, y_i) :

$$w_j := w_j + \alpha (y_i - \hat{y}_i) x_{ij}$$

$$b := b + \alpha(y_i - \hat{y}_i)$$

where α is the learning rate.

Convergence: Guaranteed for linearly separable data

Gradient Descent (Modern)

Define loss function: $L = \frac{1}{2}(y - \hat{y})^2$

Weight updates:

$$w_j := w_j - \alpha \frac{\partial L}{\partial w_i} \tag{3}$$

$$= w_j - \alpha(y - \hat{y})\sigma'(z)x_j \tag{4}$$

$$b := b - \alpha \frac{\partial L}{\partial b} \tag{5}$$

$$= b - \alpha(y - \hat{y})\sigma'(z) \tag{6}$$

Limitation

Single perceptron can only learn linearly separable functions. Solution: Multi-layer networks!

8

Activation Functions

Activation Functions: The Heart of Non-linearity

Activation functions introduce non-linearity into the network, enabling it to learn complex patterns.

Sigmoid Function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Properties:

- Range: (0,1)
- Smooth and differentiable
- Output interpretable as probability

Derivative:

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Issues: Vanishing gradients for large |x|

Hyperbolic Tangent

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Properties:

- Range: (-1,1)
- Zero-centered output
- Steeper gradients than sigmoid

Derivative:

$$\tanh'(x) = 1 - \tanh^2(x)$$

Advantage: Better than sigmoid

Activation Functions: ReLU Family

ReLU (Rectified Linear Unit)

$$ReLU(x) = max(0, x)$$

Advantages:

- Computationally efficient
- No vanishing gradient for x > 0
- Sparse activation
- Most popular choice

Derivative:

$$ReLU'(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

Leaky ReLU

LeakyReLU(x) =
$$\begin{cases} x & \text{if } x > 0 \\ \alpha x & \text{if } x \le 0 \end{cases}$$

Advantages:

- · Avoids "dying ReLU" problem
- Small gradient for negative inputs
- Typically $\alpha = 0.01$

Derivative:

LeakyReLU'(x) =
$$\begin{cases} 1 & \text{if } x > 0 \\ \alpha & \text{if } x \le 0 \end{cases}$$

11

Activation Function Derivatives

Choosing Activation Functions

Guidelines

Hidden Layers:

• ReLU: Default choice (fast, effective)

• Leaky ReLU: If dying ReLU is a problem

• Tanh: For zero-centered data

• Sigmoid: Avoid (vanishing gradients)

Output Layer:

• Sigmoid: Binary classification

• Softmax: Multi-class classification

• Linear: Regression

• Tanh: Regression (bounded output)

Common Issues

Vanishing Gradients:

- \bullet Sigmoid/Tanh derivatives $\to 0$ for large inputs
- Deep networks suffer from this
- Solution: ReLU activations

Dying ReLU:

- Neurons get stuck at zero output
- No gradient flows through
- Solution: Leaky ReLU, initialization

Best Practice

Start with ReLU for hidden layers and choose output activation based on your task.

Multi-Layer Networks & Architecture

Multi-Layer Neural Network Architecture

Key Components

 $\textbf{Layers:} \ \mathsf{Input} \to \mathsf{Hidden} \to \mathsf{Hidden} \to \dots \to \mathsf{Output}$

Connections: Each neuron connects to all neurons in the next layer (fully connected)

Network Architecture: Mathematical Representation

For a network with L layers:

$$\mathbf{a}^{(0)} = \mathbf{x} \quad \text{(input layer)} \tag{7}$$

$$\mathbf{z}^{(l)} = \mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$$
 for $l = 1, 2, \dots, L$ (8)

$$\mathbf{a}^{(I)} = \sigma^{(I)}(\mathbf{z}^{(I)})$$
 for $I = 1, 2, \dots, L$ (9)

$$\hat{\mathbf{y}} = \mathbf{a}^{(L)}$$
 (output layer) (10)

where:

- $\mathbf{W}^{(I)} \in \mathbb{R}^{n_I \times n_{I-1}}$: weight matrix for layer I
- $\mathbf{b}^{(I)} \in \mathbb{R}^{n_I}$: bias vector for layer I
- n_l : number of neurons in layer l
- $\sigma^{(I)}$: activation function for layer I

Network Dimensions and Parameters

Matrix Dimensions

For layer 1:

- Input: $\mathbf{a}^{(l-1)}$ has shape $(n_{l-1},1)$
- Weights: $\mathbf{W}^{(l)}$ has shape (n_l, n_{l-1})
- Output: $\mathbf{a}^{(l)}$ has shape $(n_l, 1)$

Batch Processing:

- Input batch: $\mathbf{A}^{(l-1)}$ has shape (n_{l-1}, m)
- Output batch: $\mathbf{A}^{(I)}$ has shape (n_I, m)
- where *m* is the batch size

Parameter Count

Total parameters:

$$\sum_{l=1}^{L}(n_l\times n_{l-1}+n_l)$$

Example: $784 \rightarrow 128 \rightarrow 64 \rightarrow 10$

$$784 \times 128 + 128$$
 (11)

$$+128 \times 64 + 64$$
 (12)

$$+64 \times 10 + 10$$
 (13)

$$= 109,386$$
 parameters (14)

Memory scales with:

- Network depth
- Layer width
- Batch size

16

Network Design Considerations

Depth vs Width

Deeper Networks:

- More layers, fewer neurons per layer
- Better feature hierarchies
- Can represent more complex functions
- Risk: vanishing gradients

Wider Networks:

- · Fewer layers, more neurons per layer
- More parameters at each level
- Easier to train
- Risk: overfitting

Architecture Guidelines

Hidden Layer Size:

- Start with 1-2 hidden layers
- Size between input and output dimensions
- Rule of thumb: $\sqrt{n_{input} \times n_{output}}$

Number of Layers:

- Simple problems: 1-2 hidden layers
- Complex problems: 3+ layers
- Very deep: Requires special techniques

Rule of Thumb

Start simple and gradually increase complexity. Use validation performance to guide architecture choices.

Forward Propagation: Information Flow

Forward Pass

Information flows from $input\ to\ output$, layer by layer, to compute predictions.

Forward Propagation Algorithm

Step-by-step Process:

Algorithm 1 Forward Propagation

- 1: Input: x, weights $\{W^{(l)}\}$, biases $\{b^{(l)}\}$
- 2: Set $a^{(0)} = x$
- 3: **for** l = 1 to L **do**
- 4: Compute pre-activation: $\mathbf{z}^{(l)} = \mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$
- 5: Apply activation: $\mathbf{a}^{(l)} = \sigma^{(l)}(\mathbf{z}^{(l)})$
- 6. end for
- 7: Output: $\hat{\mathbf{y}} = \mathbf{a}^{(L)}$

Vectorized Implementation

For batch processing:

$$\mathbf{Z}^{(l)} = \mathbf{A}^{(l-1)} \mathbf{W}^{(l)T} + \mathbf{b}^{(l)}$$
 (15)

$$\mathbf{A}^{(I)} = \sigma^{(I)}(\mathbf{Z}^{(I)}) \tag{16}$$

where $\mathbf{A}^{(l)}$ has shape (m, n_l) for m examples.

Computational Complexity: $O(L \cdot N \cdot M)$ where L = layers, N = max neurons/layer, M = batch size

Example Calculation

Network: $2 \rightarrow 3 \rightarrow 1$ Input: $\mathbf{x} = [0.5, 0.8]^T$

Layer 1:
$$\mathbf{z}^{(1)} = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)} \ \mathbf{a}^{(1)} = \sigma(\mathbf{z}^{(1)})$$

Layer 2:
$$z^{(2)} = \mathbf{w}^{(2)T} \mathbf{a}^{(1)} + b^{(2)} \hat{y} = \sigma(z^{(2)})$$

All intermediate values $\mathbf{z}^{(\mathit{l})}, \mathbf{a}^{(\mathit{l})}$ are stored for backpropagation.

Forward Propagation: Implementation Details

Memory Considerations

Storage Requirements:

- Store all activations a⁽¹⁾
- Store all pre-activations **z**^(/)
- Needed for backpropagation

Memory Usage:

Memory
$$\propto \sum_{I=0}^{L} n_I \times \mathsf{batch_size}$$

Trade-offs:

- Larger batches: More memory, better GPU utilization
- Smaller batches: Less memory, more gradient noise

Numerical Stability

Common Issues:

- Overflow: Large intermediate values
- Underflow: Very small values → 0
- NaN propagation: Invalid operations

Solutions:

- Proper weight initialization
- Batch normalization
- Gradient clipping
- Use stable activation functions (ReLU)

Key Insight

Forward propagation is computationally straightforward, but proper implementation requires attention to memory usage and numerical stability.

Forward Pass: Handworked Example

 $\textbf{Network:} \ \ 2 \ \mathsf{inputs} \rightarrow 2 \ \mathsf{hidden} \rightarrow 1 \ \mathsf{output} \ (\mathsf{sigmoid} \ \mathsf{activation})$

Given

Input:
$$\mathbf{x} = \begin{bmatrix} 0.5 \\ 0.8 \end{bmatrix}$$

Weights & Biases:

$$\mathbf{W}^{(1)} = \begin{bmatrix} 0.2 & 0.4 \\ 0.3 & 0.1 \end{bmatrix}, \quad \mathbf{b}^{(1)} = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$$

$$\mathbf{W}^{(2)} = \begin{bmatrix} 0.6 & 0.5 \end{bmatrix}, \quad b^{(2)} = 0.3$$

Activation:
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

Step 1: Hidden Layer

$$\mathbf{z}^{(1)} = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}$$

$$= \begin{bmatrix} 0.2 & 0.4 \\ 0.3 & 0.1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.8 \end{bmatrix} + \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$$

$$= \begin{bmatrix} 0.2(0.5) + 0.4(0.8) \\ 0.3(0.5) + 0.1(0.8) \end{bmatrix} + \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$$

$$= \begin{bmatrix} 0.1 + 0.32 \\ 0.15 + 0.08 \end{bmatrix} + \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 0.52 \\ 0.43 \end{bmatrix}$$

Forward Pass: Handworked Example (continued)

Step 2: Hidden Activations

$$\mathbf{a}^{(1)} = \sigma(\mathbf{z}^{(1)}) = \sigma\left(\begin{bmatrix} 0.52\\ 0.43 \end{bmatrix}\right)$$

$$a_1^{(1)} = \sigma(0.52) = \frac{1}{1 + e^{-0.52}} = \frac{1}{1 + 0.595} = 0.627$$

$$a_2^{(1)} = \sigma(0.43) = \frac{1}{1 + e^{-0.43}} = \frac{1}{1 + 0.651} = 0.606$$

$$\mathbf{a}^{(1)} = \begin{bmatrix} 0.627 \\ 0.606 \end{bmatrix}$$

Step 3: Output Layer

$$z^{(2)} = \mathbf{W}^{(2)} \mathbf{a}^{(1)} + b^{(2)}$$

$$=\begin{bmatrix}0.6 & 0.5\end{bmatrix}\begin{bmatrix}0.627\\0.606\end{bmatrix}+0.3$$

$$= 0.6(0.627) + 0.5(0.606) + 0.3$$

$$= 0.376 + 0.303 + 0.3 = 0.979$$

Final Output:

$$\hat{y} = \sigma(0.979) = \frac{1}{1 + e^{-0.979}} = 0.727$$

Summary

 $\mathsf{Input}\ [0.5, 0.8] \to \mathsf{Hidden}\ [0.627, 0.606] \to \mathsf{Output}\ 0.727$

Backpropagation: Error Flow

Backpropagation

Efficient algorithm to compute gradients by propagating errors **backward** through the network using the **chain** rule.

Mathematical Foundation: Chain Rule

Goal: Compute $\frac{\partial L}{\partial \mathbf{W}^{(l)}}$ and $\frac{\partial L}{\partial \mathbf{b}^{(l)}}$ for all layers

Chain Rule Application:

$$\frac{\partial L}{\partial \mathbf{W}^{(l)}} = \frac{\partial L}{\partial \mathbf{z}^{(l)}} \frac{\partial \mathbf{z}^{(l)}}{\partial \mathbf{W}^{(l)}}$$
(17)

$$\frac{\partial L}{\partial \mathbf{b}^{(l)}} = \frac{\partial L}{\partial \mathbf{z}^{(l)}} \frac{\partial \mathbf{z}^{(l)}}{\partial \mathbf{b}^{(l)}} \tag{18}$$

$$\frac{\partial L}{\partial \mathbf{a}^{(l-1)}} = \frac{\partial L}{\partial \mathbf{z}^{(l)}} \frac{\partial \mathbf{z}^{(l)}}{\partial \mathbf{a}^{(l-1)}}$$
(19)

Key Insight: Define error terms $\delta^{(l)} = \frac{\partial L}{\partial \mathbf{z}^{(l)}}$

Gradient Computations

$$\frac{\partial L}{\partial \mathbf{W}^{(l)}} = \boldsymbol{\delta}^{(l)} (\mathbf{a}^{(l-1)})^T \tag{20}$$

$$\frac{\partial L}{\partial \mathbf{b}^{(l)}} = \boldsymbol{\delta}^{(l)} \tag{21}$$

$$\boldsymbol{\delta}^{(l-1)} = (\mathbf{W}^{(l)})^T \boldsymbol{\delta}^{(l)} \odot \sigma'(\mathbf{z}^{(l-1)})$$
 (22)

Output Layer

For output layer *L*:

$$\boldsymbol{\delta}^{(L)} = rac{\partial L}{\partial \mathbf{a}^{(L)}} \odot \sigma'(\mathbf{z}^{(L)})$$

Common case (MSE + sigmoid):

$$\boldsymbol{\delta}^{(L)} = (\mathbf{a}^{(L)} - \mathbf{y}) \odot \mathbf{a}^{(L)} \odot (1 - \mathbf{a}^{(L)})$$

where \odot denotes element-wise multiplication.

Backpropagation Algorithm

Algorithm 2 Backpropagation

- 1: Input: Training example (x, y), network weights
- 2: Forward Pass: Compute all $a^{(l)}$ and $z^{(l)}$ (store them!)
- 3: Compute Output Error: $\delta^{(L)} = \frac{\partial L}{\partial \mathbf{a}^{(L)}} \odot \sigma'(\mathbf{z}^{(L)})$
- 4: for I = L 1 down to 1 do
- 5: Propagate Error: $\delta^{(l)} = (\mathbf{W}^{(l+1)})^T \delta^{(l+1)} \odot \sigma'(\mathbf{z}^{(l)})$
- 6: end for
- 7: **for** l = 1 to L **do**
- 8: Compute Gradients:
- 9: $\frac{\partial L}{\partial \mathbf{W}^{(l)}} = \boldsymbol{\delta}^{(l)} (\mathbf{a}^{(l-1)})^T$
- 10: $\frac{\partial L}{\partial \mathbf{b}^{(l)}} = \boldsymbol{\delta}^{(l)}$

Computational Complexity

Time: O(number of weights)

- Same order as forward pass
- Very efficient vs numerical gradients

Space: O(network size)

Must store all activations

Why Backpropagation Works

- Efficiency: Reuses computations via chain rule
- Automatic: No manual gradient derivation
- Exact: Computes exact gradients
- General: Works for any differentiable network

Historical Impact:

• Pumolhart Hinton Williams (1086)

Computational Graph Perspective

Modern View

Backpropagation is **automatic differentiation** applied to computational graphs. Modern frameworks (TensorFlow, PyTorch) build these graphs automatically.

4-Layer Neural Network: Differential Equation Derivation

 $\textbf{Network Structure:} \ \, \mathsf{Input} \, \rightarrow \, \mathsf{Hidden1} \, \rightarrow \, \mathsf{Hidden2} \, \rightarrow \, \mathsf{Hidden3} \, \rightarrow \, \mathsf{Output}$

Forward Pass Equations:

$$\mathbf{a}^{(0)} = \mathbf{x} \quad (\mathsf{input}) \tag{23}$$

$$\mathbf{z}^{(1)} = \mathbf{W}^{(1)} \mathbf{a}^{(0)} + \mathbf{b}^{(1)}, \quad \mathbf{a}^{(1)} = \sigma(\mathbf{z}^{(1)})$$
 (24)

$$\mathbf{z}^{(2)} = \mathbf{W}^{(2)} \mathbf{a}^{(1)} + \mathbf{b}^{(2)}, \quad \mathbf{a}^{(2)} = \sigma(\mathbf{z}^{(2)})$$
 (25)

$$\mathbf{z}^{(3)} = \mathbf{W}^{(3)} \mathbf{a}^{(2)} + \mathbf{b}^{(3)}, \quad \mathbf{a}^{(3)} = \sigma(\mathbf{z}^{(3)})$$
 (26)

$$\mathbf{z}^{(4)} = \mathbf{W}^{(4)} \mathbf{a}^{(3)} + \mathbf{b}^{(4)}, \quad \mathbf{a}^{(4)} = \sigma(\mathbf{z}^{(4)}) \quad \text{(output)}$$
 (27)

Loss Function: $L = \frac{1}{2}||{\bf a}^{(4)} - {\bf y}||^2$

Output Layer Error

Starting from the output layer:

$$\boldsymbol{\delta}^{(4)} = \frac{\partial L}{\partial \mathbf{z}^{(4)}} \tag{28}$$

$$= \frac{\partial L}{\partial \mathbf{a}^{(4)}} \odot \frac{\partial \mathbf{a}^{(4)}}{\partial \mathbf{z}^{(4)}} \tag{29}$$

$$= (\mathbf{a}^{(4)} - \mathbf{y}) \odot \sigma'(\mathbf{z}^{(4)}) \tag{30}$$

Chain Rule Application

For hidden layers (I = 3, 2, 1):

$$\boldsymbol{\delta}^{(l)} = \frac{\partial L}{\partial \mathbf{z}^{(l)}} \tag{31}$$

$$= \frac{\partial L}{\partial \mathbf{z}^{(l+1)}} \frac{\partial \mathbf{z}^{(l+1)}}{\partial \mathbf{a}^{(l)}} \frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{z}^{(l)}}$$
(32)

$$= (\mathbf{W}^{(l+1)})^T \boldsymbol{\delta}^{(l+1)} \odot \sigma'(\mathbf{z}^{(l)})$$
 (33)

4-Layer Network: Complete Backpropagation Derivation

Step-by-Step Gradient Computation:

Error Propagation

Layer 4 (Output):

$$\boldsymbol{\delta}^{(4)} = (\mathbf{a}^{(4)} - \mathbf{y}) \odot \sigma'(\mathbf{z}^{(4)})$$

Layer 3:

$$\boldsymbol{\delta}^{(3)} = (\mathbf{W}^{(4)})^{\mathsf{T}} \boldsymbol{\delta}^{(4)} \odot \sigma'(\mathbf{z}^{(3)})$$

Layer 2:

$$\boldsymbol{\delta}^{(2)} = (\mathbf{W}^{(3)})^T \boldsymbol{\delta}^{(3)} \odot \sigma'(\mathbf{z}^{(2)})$$

Layer 1:

$$\boldsymbol{\delta}^{(1)} = (\mathbf{W}^{(2)})^{\mathsf{T}} \boldsymbol{\delta}^{(2)} \odot \sigma'(\mathbf{z}^{(1)})$$

Weight and Bias Gradients

For each layer l = 1, 2, 3, 4:

Weight Gradients:

$$\frac{\partial L}{\partial \mathbf{W}^{(l)}} = \boldsymbol{\delta}^{(l)} (\mathbf{a}^{(l-1)})^T$$

Bias Gradients:

$$\frac{\partial L}{\partial \mathbf{b}^{(l)}} = \boldsymbol{\delta}^{(l)}$$

Update Rules:

$$\mathbf{W}^{(l)} := \mathbf{W}^{(l)} - \alpha \frac{\partial L}{\partial \mathbf{W}^{(l)}}$$
 (34)

$$\mathbf{b}^{(l)} := \mathbf{b}^{(l)} - \alpha \frac{\partial L}{\partial \mathbf{b}^{(l)}} \tag{35}$$

Key Insight

The error **flows backward** through the network, with each layer's error depending on the next layer's error multiplied by the transpose of the connecting weights.

Gradient Descent Optimization

Weight Update Rule

$$\mathbf{W}^{(l)} := \mathbf{W}^{(l)} - \alpha \frac{\partial L}{\partial \mathbf{W}^{(l)}}$$
$$\mathbf{b}^{(l)} := \mathbf{b}^{(l)} - \alpha \frac{\partial L}{\partial \mathbf{b}^{(l)}}$$

$$\mathbf{b}^{(l)} := \mathbf{b}^{(l)} - \alpha \frac{\partial L}{\partial \mathbf{b}^{(l)}}$$

where α is the learning rate.

The Overfitting Problem

Overfitting

Model learns training data too well, memorizing noise instead of generalizable patterns.

L1 and L2 Regularization

Add penalty terms to the loss function to control model complexity

L2 Regularization (Ridge)

$$L_{total} = L_{data} + \lambda \sum_{l} ||\mathbf{W}^{(l)}||_2^2$$

where
$$||\mathbf{W}^{(I)}||_2^2 = \sum_i \sum_j (W_{ij}^{(I)})^2$$

Effect:

- Shrinks weights towards zero
- Uniform penalty on all weights
- Smooth weight distributions
- Preferred for most applications

Gradient Modification:

$$\frac{\partial L_{total}}{\partial \mathbf{W}^{(l)}} = \frac{\partial L_{data}}{\partial \mathbf{W}^{(l)}} + 2\lambda \mathbf{W}^{(l)}$$

L1 Regularization (Lasso)

$$L_{total} = L_{data} + \lambda \sum_{l} ||\mathbf{W}^{(l)}||_1$$

where
$$||\mathbf{W}^{(I)}||_1 = \sum_i \sum_j |W_{ij}^{(I)}|$$

Effect:

- Promotes sparsity (many weights \rightarrow 0)
- Automatic feature selection
- Creates sparse networks
- Useful for interpretability

Gradient Modification:

$$\frac{\partial L_{total}}{\partial \mathbf{W}^{(l)}} = \frac{\partial L_{data}}{\partial \mathbf{W}^{(l)}} + \lambda \text{sign}(\mathbf{W}^{(l)})$$

Hyperparameter λ

Controls regularization strength: larger $\lambda \to \text{more regularization} \to \text{simpler model}$

L1 vs L2 Regularization Comparison

When to Use L2

- General-purpose regularization
- All features potentially relevant
- Want smooth weight shrinkage
- Most common choice

When to Use L1

- Feature selection needed
- Many irrelevant features
- Want sparse models
- Interpretability important

Dropout: A Different Approach

Dropout Techniqu

Randomly set neurons to zero during training to prevent co-adaptation and improve generalization.

Dropout: Mathematical Formulation

Training Phase:

$$\mathbf{r}^{(l)} \sim \mathsf{Bernoulli}(p) \quad (\mathsf{dropout\ mask})$$
 (36)

$$\tilde{\mathbf{a}}^{(l)} = \mathbf{r}^{(l)} \odot \mathbf{a}^{(l)} \quad \text{(apply mask)} \tag{37}$$

$$\mathbf{z}^{(l+1)} = \mathbf{W}^{(l+1)}\tilde{\mathbf{a}}^{(l)} + \mathbf{b}^{(l+1)} \tag{38}$$

Testing Phase:

$$\mathbf{z}^{(l+1)} = p \cdot \mathbf{W}^{(l+1)} \mathbf{a}^{(l)} + \mathbf{b}^{(l+1)} \quad \text{(scale weights)}$$

Dropout Benefits

- Prevents overfitting: Reduces complex co-adaptations
- Model averaging: Approximates ensemble of networks
- Robust features: Forces redundant representations
- Easy to implement: Simple modification to forward pass

Typical rates: 0.2-0.5 for hidden layers, 0.1-0.2 for input

Implementation Notes

Training vs Testing:

- Training: Randomly drop neurons
- Testing: Use all neurons but scale outputs
- Modern frameworks handle this automatically

Why Scaling Works:

- Training: Each neuron is "on" with probability p
- Testing: All neurons are "on"
- Scaling by p maintains expected activation levels

34

Regularization Comparison

Choosing Regularization

Start with:

- L2 regularization ($\lambda = 0.01$)
- Dropout (rate = 0.5)
- Early stopping

If still overfitting:

- Increase regularization strength
- Add more dropout
- Reduce model complexity

Other Techniques

Early Stopping:

- Monitor validation loss
- Stop when it starts increasing
- Simple and effective

Data Augmentation:

- Artificially increase training data
- Add noise, rotations, etc.
- Domain-specific techniques

Training Curves with Regularization

Monitoring Training

Use validation curves to detect overfitting and choose regularization strength.

Weight Initialization

Proper initialization is crucial for successful training

Poor Initialization

All zeros: No learning (symmetry)

$$W_{ij}=0\Rightarrow$$
 no gradient flow

Too large: Exploding gradients

$$W_{ij} \sim \mathcal{N}(0,1) \Rightarrow \mathsf{saturation}$$

Too small: Vanishing gradients

$$W_{ij} \sim \mathcal{N}(0, 0.01) \Rightarrow \mathsf{weak} \mathsf{ signals}$$

Good Initialization

Xavier/Glorot (Sigmoid/Tanh):

$$W_{ij} \sim \mathcal{N}\left(0, \sqrt{rac{2}{n_{in} + n_{out}}}
ight)$$

He initialization (ReLU):

$$W_{ij} \sim \mathcal{N}\left(0, \sqrt{rac{2}{n_{in}}}
ight)$$

Bias initialization:

$$b_i = 0$$
 (usually sufficient)

Why These Work

Maintain activation variance and gradient variance across layers during initialization.

Learning Rate and Optimization

Learning Rate Selection

Too high: Overshooting, instability

- Loss explodes or oscillates
- Network doesn't converge
- Weights become very large

Too low: Slow convergence

- Training takes forever
- · Gets stuck in local minima
- Poor final performance

Good range: Typically 10^{-4} to 10^{-1}

Advanced Optimizers

SGD with Momentum:

$$\mathbf{v}_t = \beta \mathbf{v}_{t-1} + (1 - \beta) \nabla L$$

$$\mathbf{W} := \mathbf{W} - \alpha \mathbf{v}_t$$

Adam (Adaptive Moments):

$$\mathbf{m}_t = \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) \nabla L \tag{40}$$

$$\mathbf{v}_t = \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2)(\nabla L)^2$$
 (41)

$$\mathbf{W} := \mathbf{W} - \alpha \frac{\mathbf{m}_t}{\sqrt{\mathbf{v}_t} + \epsilon} \tag{42}$$

Default choice: Adam with $\alpha = 0.001$

Learning Rate Scheduling

Decay strategies: Step decay, exponential decay, cosine annealing. Start high, reduce during training.

Training Diagnostics

Monitor these metrics during training:

Loss Monitoring

- Training loss: Should decrease monotonically
- Validation loss: Should decrease, then stabilize
- Gap: Indicates overfitting if too large

Warning Signs:

- Loss increases: Learning rate too high
- Loss plateaus early: Learning rate too low
- Validation loss increases: Overfitting

Gradient Monitoring

- Gradient norms: Should be reasonable (10^{-6} to 10^{-1})
- \bullet Vanishing: Gradients \to 0 in early layers
- Exploding: Gradients become very large

Activation Monitoring

- Activation statistics: Mean, std, sparsity
- Dead neurons: Always output zero
- Saturated neurons: Always in saturation region

Healthy activations:

- Reasonable variance (not too small/large)
- Some sparsity (for ReLU)
- No layers completely dead

Weight Monitoring

THE PROPERTY OF THE PROPERTY O

- Weight distributions: Should be reasonable
- Weight updates: $|\Delta W|/|W| \approx 10^{-3}$
- Layer-wise learning rates: May need adjustment

Common Problems and Solutions

Problem: Vanishing Gradients

Symptoms:

- Early layers don't learn
- Gradients approach zero

Solutions:

- Use ReLU activations
- Proper weight initialization
- Batch normalization

Problem: Overfitting

Symptoms:

- Training accuracy ¿¿ validation accuracy
- Validation loss increases

Solutions:

- Add regularization (L2, dropout)
- Reduce model complexity
- More training data

Problem: Exploding Gradients

Symptoms:

- Loss becomes NaN
- Weights blow up

Solutions:

- Gradient clipping
- Lower learning rate
- Better initialization

Problem: Slow Convergence

Symptoms:

- Loss decreases slowly
- Gets stuck in plateaus

Solutions:

- Increase learning rate
- Use adaptive optimizers

Summary & Applications

Neural Networks: Key Takeaways

Core Concepts

• Perceptron: Basic building block

• Multi-layer: Enable complex mappings

• Activation functions: Provide non-linearity

Forward propagation: Compute predictions

• Backpropagation: Compute gradients efficiently

• Regularization: Prevent overfitting

Mathematical Foundation

- Matrix operations for efficiency
- Chain rule for gradient computation
- Optimization theory for training
- Probability theory for interpretation

Best Practices

- Architecture: Start simple, add complexity gradually
- Initialization: Xavier/He for proper gradient flow
- **Optimization**: Adam optimizer with proper learning rate
- Regularization: L2 + Dropout for generalization
- Monitoring: Track loss, gradients, activations
- Debugging: Systematic approach to problems

When to Use Neural Networks

- Large datasets available
- Complex non-linear patterns
- End-to-end learning desired
- Feature engineering is difficult

Modern Deep Learning

These fundamentals scale to modern architectures: CNNs, RNNs, Transformers, ResNets, etc.

Applications & Real-World Impact

Computer Vision

- Image classification: ResNet, EfficientNet
- Object detection: YOLO, R-CNN
- Segmentation: U-Net, Mask R-CNN
- Face recognition: DeepFace, FaceNet
- Medical imaging: Cancer detection, radiology

Natural Language Processing

- Language models: GPT, BERT, T5
- Translation: Google Translate, DeepL
- Chatbots: ChatGPT, virtual assistants
- Text analysis: Sentiment, summarization

Other Domains

- Speech: Recognition, synthesis, processing
- Recommendation: Netflix, Amazon, Spotify
- Games: AlphaGo, OpenAl Five, StarCraft
- Robotics: Control, perception, planning
- Finance: Trading, fraud detection, risk
- Science: Drug discovery, climate modeling

Emerging Areas

- Generative AI: DALL-E, Midjourney, Stable Diffusion
- Multimodal: CLIP, GPT-4V
- Reinforcement Learning: Autonomous systems
- **Scientific Computing**: Physics, chemistry, biology

Impact

Neural networks have **revolutionized AI** and are now fundamental to most modern machine learning applications.

Looking Forward: Advanced Topics

What's Next After This Foundation?

Specialized Architectures

- Convolutional Neural Networks (CNNs)
 - Spatial structure exploitation
 - Translation invariance
 - Computer vision applications
- Recurrent Neural Networks (RNNs)
 - Sequential data processing
 - · Memory and temporal dynamics
 - . LSTM, GRU variants
- Transformer Networks
 - Attention mechanisms
 - · Parallel processing
 - Modern NLP backbone

Advanced Techniques

- Batch Normalization
 - Internal covariate shift
 - Training acceleration
- Residual Connections
 - · Very deep networks
 - · Gradient flow improvement
- Attention Mechanisms
 - Selective focus
 - · Long-range dependencies
- Generative Models
 - · VAEs, GANs, Diffusion
 - Creative AI applications

Next Steps

Practice implementation, experiment with **real datasets**, and explore **specialized architectures** for your domain of interest.

Questions?