AS.180.633: Econometrics

Spring 2020

Homework 2: Suggested Solutions

Instructor: Yingyao Hu By: Tong Zhou

β

3.3

Using matrix algebra, show $X'\hat{e} = 0$

Proof. By $\hat{e} = My$,

$$X'\hat{e} = X'My$$

$$= (\underbrace{MX}_{=0})'y$$

$$= 0,$$

where M is the annihilator matrix associated with X.

3.5

Let \hat{e} be the OLS residual from a regression of y on X. Find the OLS coefficient from a regression of \hat{e} on X.

Proof. Suppose the population regression function is $\hat{e} = X\gamma + \eta$. The OLS coefficient from a regression of \hat{e} on X is

$$\widehat{\gamma}_{\text{OLS}} = \left(X'X \right)^{-1} \underbrace{X'\widehat{e}}_{=0} = 0.$$

The intuition is that \hat{e} is the "leftover" effect on y after X "absorbs" relevant information in y. So, it is not surprising that X has no (linear) effect on \hat{e} .

Or you can argue that the orthogonality between X and \hat{e} indicated in Problem 3.3 implies the projection of \hat{e} onto the column space of X is a zero vector.

HW 2 Solution 2

3.7

Show that if $X = [X_1 \ X_2]$ then $PX_1 = X_1$ and $MX_1 = 0$.

Proof. It is apparent that

$$[X_1 \ X_2] = X$$

= PX
= $P[X_1 \ X_2]$
= $[PX_1 \ PX_2]$.

Since X_1 and PX_1 have the same dimensions, it must be the case that $PX_1 = X_1$ and $PX_2 = X_2$. Also, $\mathbf{0} = MX = [MX_1 \ MX_2]$ implies $MX_1 = \mathbf{0}$ and $MX_2 = \mathbf{0}$.

The intuition is that PX_1 is the projection of X_1 onto the column space of X. Since X_1 already lives in the space, the projection matrix P does not act on it, implying $PX_1 = X_1$.

A similar argument applies to M.

Remark. See Fig. 1 below for an illustration.

Figure 1: The Orthogonal Projection of y onto span (X_1, X_2) .

HW_2_Solution 3

Frisch-Waugh-Lovell Theorem

