III. Anchor Free Methods

K. Trend

- > Anchor free net is a trend
 - Lots of hyperparameters: sizes, aspect-ratios, number of anchors,
 - Hard to generalize: different datasets have different data shape, need to redesign
 - Difficult to train: unbalanced positive / negative samples 美妇 不均分
 - Complex calculation H
 - Myriads of redundancy

K. Trend

- > Anchor free net is a trend
 - CornerNet: 244, 03/2019 | CornerNet-Lite: 18, 04/2019
 - FoveaBox: 29, 04/2019
 - <u>CenterNet</u>: Objects as Points -78, 04/2019

 <u>Keypoint Triplets for Object Detection</u>
 - FCOS: 66, 08/2019

CVPR 2019 Submission Top 25 Keywords

L. <u>CenterNet</u> [2019, Zhou]

Features:

- More accurate & faster
- Detect "objects as points"
 [only detect center points]
- Multiple functions in one structure
- No need for post-processing [NMS etc.]

III. Other Methods L. CenterNet [2019, Zhou]

> Structure: Backbone

- Hourglass: 1540, 2016, Newell
- <u>Resnet + Transpose:</u> 187, 2018, Xiao
- <u>DLA</u>: 145, 2018(2019), Yu
- Modified DLA: [This Paper]

Figure 6: Model diagrams. The numbers in the boxes represent the stride to the image. (a): Hourglass Network [30]. We use it as is in CornerNet [30]. (b): ResNet with transpose convolutions [55]. We add one 3×3 deformable convolutional layer [63] before each up-sampling layer. Specifically, we first use deformable convolution to change the channels and then use transposed convolution to upsample the feature map (such two steps are shown separately in $32 \to 16$. We show these two steps together as a dashed arrow for $16 \to 8$ and $8 \to 4$). (c): The original DLA-34 [58] for semantic segmentation. (d): Our modified DLA-34. We add more skip connections from the bottom layers and upgrade every convolutional layer in upsampling stages to deformable convolutional layer.

III. Other Methods 128x128x80 L. CenterNet [2019, Zhou] Collect 3x3 Conv, feature to **C-Backbone** modify 128x128x80 > Structure: Link Center link Heatmap Non-2 **ReLU** linearity 128x128x2 **Backbone** 4C=2 Offset link 512x512x3 Change 1x1 Conv, 128x128x2 channel C-Branch to fit (5)C=2 Size link 128x128xn C=n Other Heads 6 link

L. CenterNet [2019, Zhou]

- Depict objects using their center points
- Describe center point by heatmap

$$\begin{aligned} Y_{xyc} &= exp\left(-\frac{(x-\widetilde{p_{x}})^{2} + (y-\widetilde{p_{y}})^{2}}{2\sigma_{p}^{2}}\right) \in [0,1]^{\frac{W}{R} \times \frac{H}{R} \times C}, \\ \widetilde{p} &= \left\lfloor \frac{p = original\ center\ coord}{R = 4} \right\rfloor, \end{aligned}$$

 σ_p is determined by object size [CornerNet] [code] If overlap, take element-wise maximum

- One class one channel
- Regress focal loss: $\alpha = 2$, $\beta = 4$

$$L_k = \frac{-1}{N} \sum_{xyc} \begin{cases} \left(1 - \widehat{Y}_{xyc}\right)^{\alpha} \log(\widehat{Y}_{xyc}), Y_{xyc} = 1\\ \left(1 - Y_{xyc}\right)^{\beta} \left(\widehat{Y}_{xyc}\right)^{\alpha} \log(1 - \widehat{Y}_{xyc}), Y_{xyc} \neq 1 \end{cases}$$

Reference: +3x3 max pool → remove NMS

```
def _nms(heat, kernel=3):
    pad = (kernel - 1) // 2

hmax = nn.functional.max_pool2d(
        heat, (kernel, kernel), stride=1, padding=pad)
keep = (hmax == heat).float()
return heat * keep
```

L. CenterNet [2019, Zhou]

- Target: Compensate discretization (512→128, /4)
- Predict 2-D offset:

$$\widehat{O}_{\widehat{x}_i,\widehat{y}_i} = (\delta \widehat{x}_i, \delta \widehat{y}_i)$$

Regress L1 loss

$$L_{off} = \frac{1}{N} \sum_{p} \left| \hat{O} - (\frac{p}{R} - \tilde{p}) \right|$$

- Predict BBox width & height
- Regress L1 loss

$$L_{size} = \frac{1}{N} \sum_{k=1}^{N} |\hat{S}_{p_k} - S_k|,$$

$$S_k = \left(x_2^{(k)} - x_1^{(k)}, y_2^{(k)} - y_1^{(k)} \right),$$

$$k = id \ in \ class$$

Train:

128x128x80

Center

Heatmap

$$L_{k} = \frac{-1}{N} \sum_{xyc} \left\{ (1 - \hat{Y}_{xyc})^{\alpha} \log(\hat{Y}_{xyc}), Y_{xyc} = 1 \right\}$$

• Use Adam, 10x lead of the description of th

Offset
$$L_{off} = \frac{1}{N} \sum_{p} \left| \hat{O} - (\frac{p}{R} - \tilde{p}) \right|$$

Size
$$L_{size} = \frac{1}{N} \sum_{k=1}^{N} |\hat{S}_{p_k} - s_k|$$

$$L_{det} = L_k + \lambda_{size} L_{size} + \lambda_{off} L_{off}, (\lambda_{size} = 0.1, \lambda_{off} = 1)$$

- Use Adam, 10x learning rate dropped during training twice.
- Random flip, scaling $(0.6 \sim 1.3)$, cropping, color jittering as augmentation
- Down sampling network structures are pretrained using ImageNet
- Different net has different LR initialization

L. CenterNet [2019, Zhou]

- 3 test augmentations: x, flip, flip + multi-scale (0.5, 0.75, 1, 1.25, 1.5)
- Do NMS when multi-scale

> Test:

	AP	AP_{50}	AP_{75}	Time (ms)	FPS
	N.A. F MS	N.A. F MS	N.A. F MS	N.A. F MS	N.A. F MS
Hourglass-104	40.3 42.2 45.1	59.1 61.1 63.5	44.0 46.0 49.3	71 129 672	14 7.8 1.4
DLA-34	37.4 39.2 41.7	55.1 57.0 60.1	40.8 42.7 44.9	19 36 248	52 28 4
ResNet-101	34.6 36.2 39.3	53.0 54.8 58.5	36.9 38.7 42.0	22 40 259	45 25 4
ResNet-18	28.1 30.0 33.2	44.9 47.5 51.5	29.6 31.6 35.1	7 14 81	142 71 12

Resolution	AP	AP_{50}	AP_{75}	Time
Original	36.3	54.0	39.6	19
512	36.2	54.3	38.7	16
384	33.2	50.5	35.0	11

$\overline{\lambda_{size}}$	AP	AP_{50}	$\overline{AP_{75}}$
0.2	33.5	49.9	36.2
0.1	36.3	54.0	39.6
0.02	35.4	54.6	37.9

Loss	AP	AP_{50}	$\overline{AP_{75}}$
11	36.3	54.0	39.6
smooth 11	33.9	50.9	36.8

Epoch	AP	$\overline{AP_{50}}$	$\overline{AP_{75}}$
140	36.3	54.0	39.6
230	37.4	55.1	40.8

- (a) Testing resolution: Lager resolutions perform better but run slower.
- (b) Size regression weight. (c) Regression loss. L1 loss (d) $\lambda_{size} \le 0.1$ yields good results. works better than Smooth L1.
- Training schedule. Longer performs better.

> Features:

- Detect objects by pixels [detect all points with an object]
- · FPN as backbone
- Detect by scale
- Fully convolution one-stage detection
- Need NMS for post-processing

M. <u>FCOS</u> [2019, Tian]

7x8 /128 Head **P6** 13x16 /64 Head Classification HxWxCCenter-ness 25x32 /32 Head HxWx1Hx Wx 256 Hx Wx 256 P4 50x64 /16 Regression Head HxWx4 100x128 /8 Head Hx Wx 256 Hx Wx256 Shared Heads Between Feature Levels 800x1024 HxW /s Backbone Feature Pyramid Classification + Center-ness + Regression

> Structure: Whole

- <u>FPN</u>: [Lin, 2016]
- $Pi: m_{i-1} < max(l^*, r^*, t^*b^*) < m_i$
- (l^*, r^*, t^*b^*) , denoted by t^* , is calculated on feature map for each feature pixel which can be mapped inside the ground truth bbox by using method: $(\left\lfloor \frac{s}{2} + xs \right\rfloor, \left\lfloor \frac{s}{2} + ys \right\rfloor)$, s is the stride
- *: ground truth

M. <u>FCOS</u> [2019, Tian]

> Structure: Reg ②

- IoU loss: UnitBox [Yu, CVPR 2016]
- $L_{reg} = IoU loss(t_{x,y}, t_{x,y}^*)$

➤ Structure: Reg ② — IoU Loss Forward

```
Algorithm 1: IoU loss Forward
 Input: \tilde{x} as bounding box ground truth
 Input: x as bounding box prediction
 Output: \mathcal{L} as localization error
 for each pixel (i, j) do
      if \widetilde{x} \neq 0 then
           X = (x_t + x_b) * (x_l + x_r)
           \widetilde{X} = (\widetilde{x}_t + \widetilde{x}_b) * (\widetilde{x}_l + \widetilde{x}_r)
           I_h = min(x_t, \widetilde{x}_t) + min(x_b, \widetilde{x}_b)
           I_w = min(x_l, \widetilde{x}_l) + min(x_r, \widetilde{x}_r)
           I = I_h * I_w
           U = X + X - I
          IoU = \frac{1}{II}
           \mathcal{L} = -ln(IoU)
      else
           \mathcal{L} = 0
      end
 end
```


- $\tilde{x} \neq 0$, pixel(i,j) falls inside a valid bbox
- $IoU \in [0,1]$
- L = -ln(IoU) = -pln(IoU) (1-p)ln(1-IoU)
- Let p(IoU = 1) = 1 when IoU under Bernoulli distribution

➤ Structure: Reg ② — IoU Loss Backward

Algorithm 1: IoU loss Forward

Input:
$$\widetilde{x}$$
 as bounding box ground truth Input: x as bounding box prediction Output: \mathcal{L} as localization error for each pixel (i,j) do

if $\widetilde{x} \neq 0$ then

$$X = (x_t + x_b) * (x_l + x_r)$$

$$\widetilde{X} = (\widetilde{x}_t + \widetilde{x}_b) * (\widetilde{x}_l + \widetilde{x}_r)$$

$$I_h = min(x_t, \widetilde{x}_t) + min(x_b, \widetilde{x}_b)$$

$$I_w = min(x_l, \widetilde{x}_l) + min(x_r, \widetilde{x}_r)$$

$$I = I_h * I_w$$

$$U = X + \widetilde{X} - I$$

$$IoU = \frac{I}{U}$$

$$\mathcal{L} = -ln(IoU)$$
else
$$\mathcal{L} = 0$$
end

end

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{I(\nabla_x X - \nabla_x I) - U\nabla_x I}{U^2 I o U}$$
$$= \frac{1}{U} \nabla_x X - \frac{U + I}{U I} \nabla_x I.$$

How to make your own loss function?

$$\frac{\partial X}{\partial x_t(\mathbf{or}\ \partial x_b)} = x_l + x_r$$

$$\frac{\partial X}{\partial x_l(\mathbf{or}\ \partial x_r)} = x_t + x_b$$

$$\frac{\partial I}{\partial x_t(\mathbf{or}\ \partial x_b)} = \begin{cases} I_w, & \text{if } x_t < \widetilde{x}_t(\mathbf{or}\ x_b < \widetilde{x}_b) \\ 0, & \text{otherwise,} \end{cases}$$

$$\frac{\partial I}{\partial x_l(\mathbf{or}\ \partial x_r)} = \begin{cases} I_h, & \text{if } x_l < \widetilde{x}_l(\mathbf{or}\ x_r < \widetilde{x}_r) \\ 0, & \text{otherwise.} \end{cases}$$

M. <u>FCOS</u> [2019, Tian]

> Structure: Cls 3

- Cls loss: Focal Loss
- $L_{cls} = -\alpha_t (1 p_t)^{\gamma} \log(p_t)$ $[\gamma = 2, \alpha = 0.25]$

> Structure: Center-ness 4

- Target: fix low-quality border detection
- Set a score to each pixel

•
$$centerness^* = \sqrt{\frac{\min(l^*, r^*)}{\max(l^*, r^*)}} \times \frac{\min(t^*, b^*)}{\max(t^*, b^*)}$$

> Train:

Shared Heads Between Feature Levels