THE CHINESE UNIVERSITY OF HONG KONG STAT2005 Programming Languages for Statistics Take Home Test

Answer ALL questions.

Use R programming language to answer Question 1-2 and save your answers in a script file named "[Your_Student_ID].r", where [Your_Student_ID] is your 10-digit student ID.

Question 1 (14 marks)

The use of det() function is prohibited in this question.

Let A be a n-by-n matrix and |A| be its determinant, |A| could be computed using the following algorithm.

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11} |A_{11}| - a_{12} |A_{12}| + a_{13} |A_{13}| - a_{14} |A_{14}| + \dots + (-1)^{n+1} a_{1n} |A_{1n}|,$$

where A_{ij} is a (n-1)-by-(n-1) matrix that results from deleting row i and column j of A. Write a function named $my_det()$ which takes a square matrix and returns the value of its determinant. Your function should check if the input matrix is a square matrix and return the error message "Input matrix is not a square matrix." when necessary.

Question 2 (14 marks)

Secant method is an alternative root-finding algorithm in numerical analysis to solve f(x) = 0. Given two initial values x_0 and x_1 , the successive terms are defined recursively as follows.

$$x_n = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}, n = 2, 3, \dots$$

Implement the Secant method as a R function in the following form

secant <- function(f,x0,x1,n,err)
$$\{...\}$$

where f is a function to evaluate f(x), x_0 and x_1 are the values of x_0 and x_1 respectively, and err is the error tolerance in absolute value of f(x). Try to solve

$$3e^{-y\times0.5} + 3e^{-y\times1.0} + 3e^{-y\times1.5} + 103e^{-y\times2.0} = 98.39$$

using your function and compare the number of iterations of the Secant method with the bisection method as discussed in the lecture notes.

Use SAS programming language to answer Question 3-4 and save your answers in a script file named "[Your_Student_ID].sas", where [Your_Student_ID] is your 10-digit student ID.

Question 3 (36 marks)

We have a data set of four variables on the murder rates (per 100,000 inhabitants) for cities from South, North, and West in USA in 1980 as follows:

city	state	coast	rate
Denver	 CO	 West	 9
Los Angeles	CA	West	23
San Diego	CA	West	10
Atlanta	GA	South	14
Dallas	TX	South	18
Washington	DC	South	11
Chicago	IL	North	14
Cleveland	OH	North	16
Detroit	MI	North	16
Madison	WI	North	2

Write SAS programs to read the murder rates data in (a) - (c) as in-stream data. Store the data in a temporary file, called Q3.

You can copy and paste the data lines from Q3.txt. '#' in the data lines are not part of the data.

The order of the variables in the file must be CITY, STATE, COAST, and RATE.

(a) (12 marks)

Denver CO		West		9	###	#
Los Angele	es	CA	V	Jest	<u> </u>	23
San Diego	CA	7	West		10	
Atlanta		GA	S	Sout	th	14
Dallas TX		South	18			
Washingto	on	DC	Sout	:h	11	
Chicago	IL	North	n 1	4		
Clevela	nd	OH	N	Jort	th 10	б
Detroit	MΙ	1	North	1	16	
Madison		WI	N	Jort	th	2

(b) (12 marks)

9 Los Angeles Denver CO West 23 West San Diego CA West 10 Atlanta GA 14 Dallas TXSouth South 18 Washington DC South 11 Chicago ILNorth 14 Cleveland OH 16 MΙ North 16 Madison Detroit WΙ North 2

(c) (12 marks)

Denver CO ## West 9 #### Los Angeles West CA23 ### 10 San Diego CA West Atlanta South 14 GΑ # # South 18 Dallas TX Washington DC # South Chicago IL ## North OH # North 16 Cleveland Detroit 16 MΙ North Madison 2 ### North WΙ

Hint: For part (a), you can use the following template.

data Q3; * Your input and/or length statements here; cards; Denver CO #### West 23 Los Angeles CA West San Diego CA West 10 Atlanta South GΑ South 18 Dallas TXWashington DC South 11 Chicago ILNorth 14 Cleveland ОН North 16 Detroit 16 MΙ North North Madison WI run;

Part (b) and (c) are similar by replacing the in-stream data between the cards; and run; statements.

Question 4 (36 marks)

Write a SAS program to read the following information about Tom's Tuesday appointments as in-stream data.

Time	With	Place	Subject	Length_Meeting (Confirmed?
11:00	Li Lan	Room 30	Personnel review	45 minutes	Yes
13:00	Leung Mei Fai	Leung's office	Marketing	30 minutes	No
15:00	Mak David	Lab	Test results	20 minutes	Yes

The SAS data set should be a permanent one locating in D:\ with filename Q4. The data set should contain seven variables: TIME, LAST_NAME, FULL_NAME, PLACE, SUBJECT, LENGTH_MEETING, CONFIRM.

TIME and LENGTH_MEETING are numeric and all other variables are character.

The data are listed below in (a - (c).

You can copy and paste the data lines from Q4.txt. '#' in the data lines are not part of the data.

(a) (12 marks)

11:00 Li Lan	Room 30	Personnel review	45 minutes	Yes
13:00 Leung Mei Fai	Leung's office	Marketing	30 minutes	No
15:00 Mak David	Lah	Test results	20 minutes	Veg

(b) (12 marks)

11:00 Li	Lan R	oom 30	Personne	l review 4	5 Yes#
13:00 Le	ung Mei Fai	Leung's of	ffice Market	ing 30	No No
15:00 Mal	k David	Lab	Test res	ults	20 Yes

(c) (12 marks)

11:00 Li Lan	Room 30	Personnel review	45 minsYes	
13:00Leung Mei	Fai Leung's	office Marketing	30 mins No	
15:00 Mak David	Lab	Test results	20 mins	Yes

End of Questions