Fuck Logic ICPC Team Notebook

1 Intro

1.1 Template

#include <bits/stdc++.h>

2 Data Structures

2.1 Template

#include <bits/stdc++.h>

3 Dynamic Programming

3.1 Template

#include <bits/stdc++.h>

4 Graphs

4.1 Template

#include <bits/stdc++.h>

5 Strings

5.1 Template

#include <bits/stdc++.h>

6 Mathematics

6.1 Template

#include <bits/stdc++.h>

7 Geometry

7.1 Template

#include <bits/stdc++.h>

8 Miscellaneous

8.1 Template

#include <bits/stdc++.h>

9 Math Extra

9.1 Seldom used combinatorics

• Fibonacci in $O(\log(N))$ with memoization is:

$$f(0) = f(1) = 1$$

$$f(2k) = f(k)^{2} + f(k-1)^{2}$$

$$f(2k+1) = f(k) \times (f(k) + 2 * f(k-1))$$

• Wilson's Theorem Extension:

 $B = b_1 b_2 \dots b_m \pmod{n} = \pm 1$, all $b_i \le n$ such that $\gcd(b_i, n) = 1$. If $n \le 4$ or $n = (\text{odd prime})^k$ or $n = 2(\text{odd prime})^k$) then B = -1 for any k.

Else B = 1.

• Stirling numbers of the second kind, denoted by S(n, k) = number of ways to split n numbers into k non-empty sets.

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = kS(n-1,k) + S(n-1,k-1)$$

S(n-d+1,k-d+1) = S(n,k) where if indexes i,j belong to the same set, then $|i-j| \ge d$.

- Burnside's Lemma: $|\text{classes}| = \frac{1}{|G|} \sum_{\forall g \in G} (K^{C(g)})$, where: G = different permutations possible, C(g) = number of cycles on the permutation g, and K = Number of states for each element
- Different ways to paint a necklace with N beads and K colors:

$$G = (1, 2, \dots, N), (2, 3, \dots, N, 1), \dots (N, 1, \dots, N-1)$$

 $g_i = (i, i+1, \dots i+N)$, (taking mod N to get it right) $i=1\dots N$ with i per step, that is, $i \to 2i \to 3i\dots$

Cycles in g_i all have size $n/\gcd(i,n)$, so

$$C(g_i) = \gcd(i, n)$$

$$ans = \frac{1}{N} \sum_{i=1...N} (K^{\gcd(i,n)})$$

$$ans = \frac{1}{N} \sum_{\forall d \mid N} (\phi(\frac{N}{d})K^d)$$

9.2 Combinatorial formulas

$$\sum_{k=0}^{n} k^2 = n(n+1)(2n+1)/6$$

$$\sum_{k=0}^{n} k^3 = n^2(n+1)^2/4$$

$$\sum_{k=0}^{n} k^{4} = (6n^{5} + 15n^{4} + 10n^{3} - n)/30$$

$$\sum_{k=0}^{n} k^{5} = (2n^{6} + 6n^{5} + 5n^{4} - n^{2})/12$$

$$\sum_{k=0}^{n} x^{k} = (x^{n+1} - 1)/(x - 1)$$

$$\sum_{k=0}^{n} kx^{k} = (x - (n+1)x^{n+1} + nx^{n+2})/(x - 1)^{2}$$

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

$$\binom{n}{k} = \frac{n}{n-k} \binom{n-1}{k}$$

$$\binom{n}{k} = \frac{n-k+1}{k} \binom{n}{k-1}$$

$$\binom{n+1}{k} = \frac{n+1}{n-k+1} \binom{n}{k}$$

$$\binom{n}{k+1} = \frac{n-k}{k+1} \binom{n}{k}$$

$$\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$$

$$\sum_{k=1}^{n} k^{2} \binom{n}{k} = (n+n^{2})2^{n-2}$$

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$$

$$\binom{n}{k} = \prod_{i=1}^{k} \frac{n-k+i}{i}$$

9.3 Number theory identities

Lucas' Theorem: For non-negative integers m and n and a prime p,

$$\binom{m}{n} \equiv \prod_{i=0}^{k} \binom{m_i}{n_i} \pmod{p},$$

where

$$m = m_k p^k + m_{k-1} p^{k-1} + \dots + m_1 p + m_0$$

is the base p representation of m, and similarly for n.

9.4 Stirling Numbers of the second kind

Number of ways to partition a set of n numbers into k non-empty subsets.

$${n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{(k-j)} {k \choose j} j^n$$

Recurrence relation:

$${n+1 \brace k} = k {n \brace k} + {n \brace k-1}$$

9.5 Burnside's Lemma

Let G be a finite group that acts on a set X. For each g in G let X^g denote the set of elements in X that are fixed by g, which means $X^g = \{x \in X | g(x) = x\}$. Burnside's lemma assers the following formula for the number of orbits, denoted |X/G|:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

9.6 Numerical integration

RK4: to integrate $\dot{y} = f(t, y)$ with $y_0 = y(t_0)$, compute

$$k_1 = f(t_n, y_n)$$

$$k_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1)$$

$$k_3 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_2)$$

$$k_4 = f(t_n + h, y_n + hk_3)$$

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$