Pokok Bahasan III Decision tree

Kode Pokok Bahasan: TIK.RPL03.001.003.01

Deskripsi Pokok Bahasan:

Membahas bagaimana pembuatan Decision Tree pada dataset yang diberikan.

No	Elemen Kompetensi	Indikator Kinerja	Jml Jam	Hal
1	Menerapkan Decision Tree pada dataset Car Evaluation.	1.1 Membuat Decision Tree menggunakan Library Rpart dan Rpart Plot menggunakan dataset Car Evaluation	1	12
2	Menerapkan prediksi dan class pada Decision Tree data Weather Nominal dataset 2 dan dataset Weather Nominal 1.	 1.1 Membuat Decision Tree menggunakan Library Rpart dan Rpart Plot menggunakan data Weather Nominal 1.2 Membuat prediksi dari Decision Tree 1.3 Membuat class dari prediksi 	2	15

TUGAS PENDAHULUAN

Hal yang harus dilakukan dan acuan yang harus dibaca sebelum praktikum :

- 1. Menginstal R pada PC masing-masing praktikan.
- 2. Menginstal R Studio pada PC masing-masing praktikan.

DAFTAR PERTANYAAN

- 1. Apa itu decision tree?
- 2. Apa kegunaan Decision tree?
- 3. Berikan salah satu contoh dari decision tree suatu data!
- 1. Decision tree adalah algoritma machine learning yang menggunakan seperangkat aturan untuk membuat keputusan dengan struktur seperti pohon yang memodelkan kemungkinan hasil, biaya sumber daya, utilitas dan kemungkinan konsekuensi atau resiko.
- 2. Manfaat utama dari penggunaan decision tree adalah kemampuannya untuk mem-break down proses pengambilan keputusan yang kompleks menjadi lebih simple, sehingga pengambil keputusan akan lebih menginterpretasikan solusi dari permasalahan.

3. Decision tree digunakan untuk menangani kumpulan data non-linier secara efektif. Decision tree digunakan dalam kehidupan nyata di banyak bidang, seperti teknik, perencanaan sipil, hukum, dan bisnis. Decision tree dapat dibagi menjadi dua jenis; variabel kategori dan pohon keputusan variabel kontinu.

TEORI SINGKAT

RStudio adalah lingkungan pengembangan terintegrasi sumber terbuka dan gratis untuk R, bahasa pemrograman untuk komputasi statistik dan grafik. RStudio didirikan oleh J.J.Allaire, pencipta bahasa pemrograman ColdFusion. Hadley Wickham adalah Kepala Ilmuwan di RStudio.

Data preprocessing adalah proses yang mengubah data mentah ke dalam bentuk yang lebih mudah dipahami. Proses ini penting dilakukan karena data mentah sering kali tidak memiliki format yang teratur.

Preprocessing data merupakan teknik awal data mining untuk mengubah data mentah atau biasa dikenal dengan raw data yang dikumpulkan dari berbagai sumber menjadi informasi yang lebih bersih dan bisa digunakan untuk pengolahan selanjutnya.

LAB SETUP

Hal yang harus disiapkan dan dilakukan oleh praktikan untuk menjalankan praktikum modul ini.

- 1. Menginstall library yang dibutuhkan untuk mengerjakan modul.
- 2. Menjalankan R Studio.

ELEMEN KOMPETENSI I

Deskripsi:

Menerapkan Decision Tree pada data Car Evaluation.

Kompetensi Dasar:

Membuat Decision Tree menggunakan Library Rpart dan Rpart Plot menggunakan data Car Evaluation.

Latihan 1.1.1

Penjelasan Singkat:

Pada latihan ini anda akan diminta untuk membangun decision tree menggunakan library yang disediakan oleh R.

Langkah-Langkah Praktikum:

1. Disediakan data sebagai berikut :

Link Dataset:

https://www.kaggle.com/code/prashant111/decision-tree-classifier-tutorial/data

2. Input data ke R studio

- > library(rpart)
- > dataku_namapraktikan <-read.csv("C:/Users/Sectio/Downloads/car_evaluation.csv")
- > View(dataku_namapraktikan)

•	buying [‡]	maint [‡]	doors	persons [‡]	lug_boot	safety [‡]	class
1	vhigh	vhigh	2.0	2.0	small	med	unacc
2	vhigh	vhigh	2.0	2.0	small	high	unacc
3	vhigh	vhigh	2.0	2.0	med	low	unacc
4	vhigh	vhigh	2.0	2.0	med	med	unacc
5	vhigh	vhigh	2.0	2.0	med	high	unacc
6	vhigh	vhigh	2.0	2.0	big	low	unacc
7	vhigh	vhigh	2.0	2.0	big	med	unacc
8	vhigh	vhigh	2.0	2.0	big	high	unacc
9	vhigh	vhigh	2.0	4.0	small	low	unacc
10	vhigh	vhigh	2.0	4.0	small	med	unacc
11	vhigh	vhigh	2.0	4.0	small	high	unacc
12	vhigh	vhigh	2.0	4.0	med	low	unacc
13	vhigh	vhigh	2.0	4.0	med	med	unacc
14	vhigh	vhigh	2.0	4.0	med	high	unacc
15	vhigh	vhigh	2.0	4.0	big	low	unacc

3.Lakukan Preprocessing untuk mengganti nama kolom pada dataset #preprocessing dataset

> colnames(thedata) <- c('buying', 'maint', 'doors', 'persons', 'lug_boot',
'safety', 'class')</pre>

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□							
^	buying [‡]	maint [‡]	doors	persons [‡]	lug_boot [‡]	safety [‡]	class [‡]
1	vhigh	vhigh	2.0	2.0	small	med	unacc
2	vhigh	vhigh	2.0	2.0	small	high	unacc
3	vhigh	vhigh	2.0	2.0	med	low	unacc
4	vhigh	vhigh	2.0	2.0	med	med	unacc
5	vhigh	vhigh	2.0	2.0	med	high	unacc
6	vhigh	vhigh	2.0	2.0	big	low	unacc
7	vhigh	vhigh	2.0	2.0	big	med	unacc
8	vhigh	vhigh	2.0	2.0	big	high	unacc
9	vhigh	vhigh	2.0	4.0	small	low	unacc
10	vhigh	vhigh	2.0	4.0	small	med	unacc
11	vhigh	vhigh	2.0	4.0	small	high	unacc
12	vhigh	vhigh	2.0	4.0	med	low	unacc
13	vhigh	vhigh	2.0	4.0	med	med	unacc
14	vhigh	vhigh	2.0	4.0	med	high	unacc
15	vhigh	vhigh	2.0	4.0	big	low	unacc

3. Buatlah decision tree dari data input.

```
> pohon <- rpart(class~.,data = dataku_namapraktikan, method = "class", control=rpart.control(minsplit = 2, cp= 0))
```

- > library(rpart.plot)
- > prp(pohon,extra = 1)

Output:

4. Berikan penjelasan tentang output yang muncul!

Interpretasi output decision tree:

Dari hasil yang kita dapatkan karna data yang mungkin terlalu banyak jadi tidak terlalu bisa dilihat data yang ditampilkan, tetapi penjelasan yang umum bisa diambil dari gambar tersebut adalah bagaimana ketika kita mempunyai suatu data dan kemudian kita membutuhkan mapping yang lebih mudah untuk dibaca ketika dibutuhkan, maka decision tree ini lah salah satu opsinya, untuk menentukan pilihan-pilihan yang kita inginkan.

ELEMEN KOMPETENSI II

Deskripsi:

Menerapkan prediksi menggunakan Decision Tree pada data Weather Nominal dataset 2.

Kompetensi Dasar:

Membuat prediksi pada Tree menggunakan data Weather Nominal dataset 2.

Latihan 1.2.1

Penjelasan Singkat:

Pada latihan ini anda akan diminta untuk membangun decision tree dan melakukan prediksi menggunakan library yang disediakan oleh R.

Langkah-Langkah Praktikum:

1. Disediakan data sebagai berikut:

Dataset 1:

cuaca	suhu	kelembaban	berangin	bermain
cerah	panas	Tinggi	salah	tidak
cerah	panas	Tinggi	benar	tidak
berawan	panas	Tinggi	salah	ya
hujan	sejuk	Tinggi	salah	ya
hujan	dingin	Normal	salah	ya
hujan	dingin	Normal	benar	ya
berawan	dingin	Normal	benar	ya

cerah	sejuk	Tinggi salah		tidak
cerah	dingin	Normal salah		ya
hujan	sejuk	Normal	salah	ya
cerah	sejuk	Normal	benar	ya
berawan	sejuk	Tinggi	benar	ya
berawan	panas	Normal	salah	ya
hujan	sejuk	Tinggi	benar	tidak

Data set 2:

cuaca	suhu	kelembaban	angin	bermain
cerah	69	70	biasa	ya
cerah	72	95	biasa	tidak
cerah	75	70	kencang	ya
cerah	80	90	kencang	tidak
cerah	85	85	biasa	tidak
hujan	65	70	kencang	tidak
hujan	68	80	biasa	ya
hujan	70	96	biasa	ya
hujan	71	80	kencang	tidak
hujan	75	80	biasa	ya
mendung	64	65	kencang	ya
mendung	72	90	kencang	ya
mendung	81	75	biasa	ya
mendung	83	78	biasa	ya

2. Input data ke R studio

> dataku2_namapraktikan = read.delim('clipboard')

> library(tree)

> dataku2 namapraktikan\$bermain = as.factor(dataku2 namapraktikan\$bermain)

Latihan 1.2.2

3. Buatlah decision tree dari data input.

```
sample=read.csv('dataset1.csv', header=TRUE, sep=";")
samplegolf<-sample(1:nrow(sample),0.80*nrow(sample))
traininggolf<-data.frame(sample)[samplegolf,]
testinggolf<-data.frame(sample)[-samplegolf,]
pohongolf <- rpart(bermain ~ cuaca + suhu + kelembaban +
berangin,data=traininggolf, method = "class", control = rpart.control(minsplit = 5, cp = 0))
prp(pohongolf,extra=4,box.col=c("pink","red","blue"))</pre>
```

Output:

Output yang bisa didapat dari tree diatas adalah seberapa banyak warga yang bermain golf tergantung dari cuaca yang sedang terjadi, ada lebih banyak yang memilih untuk bermain ketika cuaca lembab dan sejuk disbanding cerah dan panas.

Latihan 1.2.3

4. Buat prediksi dengan fungsi predict

prediksi=predict(pohongolf,testinggolf)
pred.respon<- colnames(prediksi)[max.col(prediksi, ties.method = c("random"))]
pred.respon</pre>

5. Buat class table.

class=table(pred.respon,testinggolf\$bermain) class

6. Berikan penjelasan tentang output yang muncul!

Interpretasi output decision tree:

```
> pred.respon<- coinames(prediksi)[max.coi(prediksi, ties.metnod = c("random"))]
> pred.respon
[1] "tidak" "ya" "ya"
> class=table(pred.respon,testinggolf$bermain)
> class

pred.respon tidak ya
    tidak   1  0
    ya   0  2
```

CEK LIST

Elemen	No Latihan	Penyelesaian		
Kompetensi	No Lauman	Selesai	Tidak selesai	
1	1.1.1	✓		
2	1.2.1	✓		
	1.2.2	✓		
	1.2.3	✓		

FORM UMPAN BALIK

Elemen Kompetensi	Tingkat Kesulitan	Tingkat Ketertarikan	Waktu Penyelesaian dalam menit
Memahami data preprocessing.	Sangat Mudah	Tidak Tertarik	
	Mudah	Cukup Tertarik	
	☐ ✓ Biasa	Tertarik	
	Sulit	✓ Sangat Tertarik	
	Sangat Sulit		
Mengimplementasika n pre-processing data.	Sangat Mudah	Tidak Tertarik	
	Mudah	Cukup Tertarik	
	☐ ✓ Biasa	Tertarik	

Ibnu Fajar Setiawan	– 065002000006 – D	edy Sugiarto
---------------------	--------------------	--------------

Modul Praktikum Data Mining

Sulit	✓ Sangat Tertarik	
Sangat Sulit		