

Lesson Overview

- Human-Computer Interaction
- Reading
 - Case Study: <u>American Airlines Flight 965</u>
- Objectives
 - Revisit Human-Computer Interaction (HCI)
 - Examine design approaches for supporting minimal protocols
 - Define situational awareness (SA) as a measure of the effectiveness of HCI design
 - Analyze design requirements which pose significant challenges to SA

Participation – P8

- Quantify your awareness of the various levels supporting your use of an application – the point of your interaction (HCI) down to low level (automated / CCI) memory fetches, CPU execution cycles, etc.
- How is an alarm clock aware that you have an important appointment? How is it aware of your awareness?
- Chicago has a vast array of automated red-light cameras to catch violators. Discuss the extent to which the red-light camera is aware of a violator's situation. Discuss the extent to which a self-driving car is aware of the rules of the road.
- Explain the risk associated with a decision-maker who has a lot of confidence, but low awareness.
- Discuss SA as a metric for removing ambiguity from a user experience non-functional requirement.

Lecture 9 Human-Computer Interaction

HCI and **UCD**

- Human-computer interface
 - The means of interaction for human users
 - Automation would in effect repurpose the HCI as a computer-computer interface
- User-centered design
 - A design methodology which both
 - involves the user in the design process and
 - emphasizes user performance in the evaluation of design

The Point of Interaction

- Screen design
 - Both layout of information and
 - solicitation for input
 - Design considerations include layout, labels and icons, color schemes, navigation, etc.
- Extensions of self
 - The keyboard, mouse, touch screen, etc. give the user tactile interactivity
- Pretty please
 - Verbal commands allow for hands-free operation and greater expressiveness

Situational Awareness Defined

- Being aware of your environment
 - Current state
 - What's coming next
- Able to extract relevant information
 - The flow of information
 - Prioritization
- SA is assessed with respect to the specific goals of a particular job

SA Examples

- A driver operating a vehicle
 - Presence of other vehicles and obstacles
 - Speed and direction
 - Rules and condition of the road
- A doctor treating a patient
 - Vital signs and symptoms
 - Relevant patient history
 - "Best practices"
- An air traffic controller managing flights
 - Speed, direction and altitude of all planes
 - Weather conditions

Responsibilities of the Designer

- Users of your product should enjoy the experience
- The product should undeniably ease / improve the user's life
 - Increased productivity
 - Reduced anxiety / minimal frustration
 - Better performance / results
 - Consistency, integrity, reliability, etc.
- The product should exceed all competing products in these areas
 - Customers will be willing to pay more
 - Customers will buy variant products
 - Customers will tell their friends good things

SA's Importance

- SA improves decision making
 - Faster
 - Better
- SA facilitates appropriate automation
 - "normal" is predictable and can therefore be automated safely
- SA better prepares the user for "exceptional"
 - The universe of exceptions is smaller and narrower and is therefore more manageable

SA Levels

- Level 1 Perception
 - Status, attributes, and dynamics of relevant elements
- Level 2 Comprehension
 - What does the data mean in the context of relevant goals and objectives
- Level 3 Projection
 - Predicting future state

Assessment Elements

- Time
 - How long does it take to become situational-ly aware
- A product of the process
 - Users become situational-ly aware through a process of investigation and analysis
- Perception and attention
 - Users have limited capacities for both conscious and sub-conscious processing
 - Context, previous experiences, time, etc.
- Working memory
 - Have I seen / experienced this before?
 - 7 +/- 2 chunks of information in "working" memory
- Mental models
 - Users organize experiences and analyze situations methodically using models proven to be effective
- User goals
 - "Did I get my job done?"

Dashboards

- Information of all kinds can be consolidated into dashboard imagery
- Dashboards have become quite popular
 - Does that mean they are effective?
 - Will popularity help make them effective?
- Historical precedence
 - Car dashboards
 - Industrial control panels
- Business intelligence so simple a CEO can use it
- Enron fallout liability of not conveying knowledge to shareholders

Sources of Uncertainty

- SA uncertainty
 - Perception of elements (level 1)
 - Missing (e.g., hidden) information
 - Reliability/credibility of data
 - Conflicting data
 - Timeliness
 - Noisy data
 - Comprehension confidence (level 2)
 - Challenging abstraction
 - Will decisions lead to desired outcomes? (level 3)
- Decision uncertainty is a factor of the uncertainty the user has across the 3 levels of SA

Managing Uncertainty

- Users naturally work to remove uncertainty
 - Rely on defaults
 - Perfection may not be necessary
 - Process of elimination
- Good design helps by
 - Providing supplemental information
 - Representing critical information in multiple ways
 - Provide multiple sources to help resolve conflicts
 - Supporting "bet-hedging"

Support Uncertainty Management

- Make it easy for users to assess reliability
 - Deciding among several close alternatives takes time
 - Fewer, more distinct choices means more rapid decision making
- Cues to assist should be prominently presented proximally to the display information
 - Confirming or negating information
 - Contextual information

Complexity and SA

- Complexity inherently impedes SA
- However complexity is dynamic
 - The more we learn about a complex environment, the simpler it becomes
 - Of course, the demand for more features increases the complexity again
- Designers' goals
 - Balance features and complexity
 - Help users learn and get comfortable
 - Expand the feature set judiciously

System Complexity

- System complexity is relatively objective
 - System complexity can be measured
 - And therefore reduced in a measurable fashion
- Metrics
 - Number of items
 - Objects, functions, etc.
 - Degree of interaction among items
 - System dynamics
 - Frequency of status change
 - Predictability of changes

Operational Complexity

- How difficult is the system to use?
- System complexity does not imply operational complexity (e.g., cars)
 - Reducing operational complexity can offset and even override system complexity
- Each user category will have its own rating of operation complexity
- Automation can reduce operational complexity, but not necessarily

Apparent Complexity

- Apparent complexity is relatively subjective
 - Does the system "look" complex?
 - Basically an assessment of the UI
 - A bad UI can make a simple system complex
- A function of
 - Cognitive complexity
 - Ease of accurately mapping interface to operation
 - Transparency or surfacing system status
 - Display complexity (density, grouping, etc.)
 - Task or response complexity
 - Challenge in accomplishing goals

Complexity Design Principles

- Resist feature creep
- Manage feature group (prioritize)
- Be consistent
- Simplify flow (minimize branching)
- Analogies and metaphors
- Transparency and observability
- Group information logically
- Balance display density with coherence
- Establish and respect standards
- Minimize task complexity

The Role of Alarms

- Sometimes it's really, really important to get the user's attention
 - Something has gone wrong
 - An automated system is no longer "comfortable" being in charge
 - It's time to change course, check the latest readings, etc.
- When it's one of those times, the alarm needs to effectively grab the user's attention
 - Flashing lights
 - Annoying sounds
 - Changing colors, shapes, etc.
 - Multiple approaches may be required

Failure to Alarm

- Too many alarms
 - Information overload / confusion
 - Hard to process => easy to ignore
- False alarms
 - Users react with complacency or even ignore the alarms (crying wolf)
- Intentional disarming
 - Users sometimes disable alarms
 - Often due to #1 and #2 above
 - Responding to "unnecessary" alarms can cost valuable time
- We need better designed alarm systems!
 - Thresholds, triggers, sensitivity, etc.

Alarm Realities

- Studies show that in practice user's often fail to respond immediately
- Reliability
 - User's perception of past correlation between the alarm and its value
 - Designers must avoid creating "wolf-crying" systems
 - Be sensitive to environmental specifics
- Users look for confirmation
 - Supporting data, a second alarm, visual cues, etc.
- Expectations and perceptions
 - User's can become trained to expect alarms under certain circumstances
 - However, the "expected" alarm may have a different cause (than what the user perceives)

Alarm Realities (cont.)

- Disruptions and diversions
 - Clearing an alarm may take the user away from "more important" tasks
- Workload
 - Underload vs. overload, real vs. false alarms
- Alarm characteristics
 - Volume, brightness, frequency, color, melodic structure, etc.
- Diagnosis of alarms
 - Causal analysis vs. preconceived notions
- Alarm reduction schemes
 - E.g., don't alarm during start-up

Building Better Automation

- Adaptive automation
 - Periodically pulls the user in
 - When to engage the user
 - When the user seems dis-engaged
 - During critical events
- Levels of automation
 - A more appropriate mix of system and user control

Design Principles for Automation

- Only if necessary
- Routine actions, not high-level tasks
- SA support, not decisions
- Keep the user in-the-loop
- Minimize modes of automation
- Make state obvious
- Enforce consistency
- Avoid advanced queuing of tasks
- Avoid information cueing
- Human/system symbiosis
- Provide transparency

Benefits of Uninhabited Vehicles

- Boldly go where no one can go
 - Distance
 - Time
 - Oxygen
 - Pressure
- Challenging, even dangerous environments
 - Unstable terrain/buildings
 - Combat areas
- Maintaining secrecy and safety
 - Distance from the enemy
- Automation

Challenges

- Somebody still has to drive the thing
 - Start/stop, left/right, up/down, etc.
 - Commands transmitted via specified medium
- The operator is acting without true sensory feedback and simulated feedback has many shortcomings
 - Sluggish response to commands
 - Delays in receiving feedback
 - Missing or misinformation
 - Lack of "big picture"
 - Lack of subtle cues (or at least delay)
- Relatively immature technology
- Absence of risk can lead to carelessness