

Geometrical network of granular materials under isochoric cyclic shearing

 $\mathsf{Ming}\;\mathsf{Yang}^{1,*}\;\;\mathsf{Mahdi}\;\mathsf{Taiebat}^{1,**}\;\;\mathsf{Patrick}\;\mathsf{Mutabaruka}^{2,***}\;\;\mathsf{Farhang}\;\mathsf{Radjai}^{3,****}$

¹University of British Columbia, Vancouver, Canada ²IFREMER, DYNECO/DHYSED, Plouzané, France ³University of Montpellier, Montpellier, France

Introduction

- Cyclic liquefaction of granular materials
- Long-term evolution of contact network
- Jamming transition between solid-like and fluid-like

Protocols

- Bi-periodic boundary
- Isotropic compression with $p_0 = 100 \text{ kPa}$
- Constant-volume cyclic shear with a constant shear strain rate

Figure 1: Particle arrangements and boundary conditions for a sample composed of 8000 spheres: (a) at the end of sample preparation; (b) during constant height cyclic shearing. Gray particles are glued to the top and bottom walls of the bi-periodic cell.

Contact info:

*yangm15@civil.ubc.ca

***mtaiebat@civil.ubc.ca

***patrick.mutabaruka@ifremer.fr

**** franck.radjai@umontpellier.fr

Macro

Figure 2: Macroscopic response of isochoric cyclic shear test: (a) stress path; (b) stress-strain curve; (c) normalized mean stress evolution; (d) shear strain development. Initial liquefaction (N_{IL}) refers to the first time that p/p_0 drops below 0.01. A post-liquefaction cycle C is highlighted in cyan. Points C_0 (or C_2), C_0 (or C_2), and C_1 (or C_3) correspond to selected states of $\tau \simeq 0$, $p/p_0 \ge 0.01$ (exiting liquefaction), and $|\tau| \simeq \tau^{amp}$ (shear stress amplitude), respectively.

Micro

Figure 3: Evolution of coordination number z_g during cyclic shearing. $z_g = 2N_c/(N_p - N_p^0)$ where N_p is the number of particles, N_p^0 is the number of particles without contacts, and N_c is the number of contacts. The zoomed-up window is to present details of z_g evolution in cycle C. $z_g \simeq 3.6$ coincides with the exit of liquefaction ($C_{0'}$ or $C_{2'}$).

Micro

Figure 4: The connectivity P_c of the contact network in the post-liquefaction cycle C. P_c is defined as the proportion of particles with exactly c contacts.

Figure 5: Evolution of the fabric anisotropy a_c versus coordination number z_g during cyclic shearing. $a_c = \text{sign}(S_c)\sqrt{(3/2)\mathbf{a}_c : \mathbf{a}_c}$ where $S_c = \mathbf{a}_c : \mathbf{s}/(\sqrt{\mathbf{a}_c : \mathbf{a}_c}\sqrt{\mathbf{s} : \mathbf{s}})$, \mathbf{s} is the deviatoric stress tensor, and \mathbf{a}_c is fabric anisotropy tensor related to contact normals.

Conclusion

- Contact network collapses with unloading to liquefaction and isotropic loss of contacts: high proportion of floaters
- Rebuilding contact network in liquefaction occurs with large deformation and anisotropic gain of contacts, the exit quantified by $z_{\rm g} \simeq 3.6$
- M. Yang, M. Taiebat, P. Mutabaruka, F. Radjaï, EPJ Web Conf. 249, 11004 (2021)
- M. Yang, M. Taiebat, P. Mutabaruka, F. Radjaï, Physical Review E 103, 032904 (2021)
- M. Yang, M. Taiebat, P. Mutabaruka, F. Radjaï, Acta Geotechnica (2021) doi: 10.1007/s11440-021-01239-0