NLLR

Toteutusdokumentti

Leo Leppänen

17. helmikuuta 2014

1 Algoritmit

1.1 Argmax.single

1.1.1 Tilavaativuus

Tilavaativuus on $\mathcal{O}(1)$, sillä algoritmit käyttää vakiomäärää muuttujia ja tulostaa aina yhden Result-olion.

1.1.2 Aikavaativuus

Argmax suorittaa syötteenään saamansa algoritmin kerran per syötteenä saadun argumenttilistan argumentti, joten aikavaativuus on $\mathcal{O}(A \times n)$, missä n on maksimoitavan argumentin kandidaattien määrä ja A on suoritettavan algoritmin aikavaativuus..

1.2 Argmax.multiple

1.2.1 Tilavaativuus

Tilavaativuus on $\mathcal{O}(n)$, sillä kerrallaan muistissa pidetään korkeintaan n+1Result-oliota sekä vakiomäärää muita muuttujia.

1.2.2 Aikavaativuus

Algoritmi suorittaa syötteenä saadun A aikavaativuuksisen algoritmin n kertaa, jolloin tältä osin aikavaativuus on $\mathcal{O}(A \times n)$. Lisäksi pahimmillaan n kertaa kutsutaan metodia sort(), joka järjestää tuloslistan.

Järjestysalgoritmina toimii InsertionSort. Järjestysalgoritmin valintaan vaikutti uniikki konteksti: jokaisella järjestyskerralla kaikki paitsi yksi alkio ovat valmiina oikeilla paikoillaan. Lisäksi järjestettävät taulukot erittäin pienikokoisia. Näissä tapauksissa InsertionSort on nopein ja tehokkain 1 . Tässä erityistapauksessamme aikavaativuus on lähempänä $\mathcal{O}(n)$ kuin $\mathcal{O}(n^2)$ ja tilavaativuus on $\mathcal{O}(1)$.

1.3 NLLR

1.3.1 Tilavaativuus

 $\mathcal{O}(1)$, sillä algoritmi käyttää syötteensä lisäksi vain vakiomäärän tilaa bestTokens-taulukon sekä välitulokset tallentavien muuttujien muodossa.

1.3.2 Aikavaativuus

Algoritmi määrittää aluksi Argmax:lla vakiomäärän parhaan TF-IDF arvon saavia sanoja, joille sen jälkeen kullekin suoritetaan useita $\mathcal{O}(1)$ aikavaativuuksisia calculateTokenPropability-komentoja. Täten aikavaativuus on sama kuin

¹http://dl.acm.org/citation.cfm?doid=359024.359026

- 1.4 TFIDF
- 1.4.1 Tilavaativuus
- 1.4.2 Aikavaativuus

2 Tietorakenteet

- 2.1 ArrayList
- 2.1.1 Tilavaativuus
- 2.1.2 Aikavaativuus
- 2.2 HashMap
- 2.2.1 Tilavaativuus
- 2.2.2 Aikavaativuus
- 2.3 HashSet
- 2.3.1 Tilavaativuus
- 2.3.2 Aikavaativuus