Integral Bases for P-Recursive Sequences

Shaoshi Chen

Chinese Academy of Sciences

Center for Combinatorics, Nankai University July 24, 2020, Tianjin, China

Integral Bases for P-Recursive Sequences

Shaoshi Chen

Chinese Academy of Sciences

Center for Combinatorics, Nankai University July 24, 2020, Tianjin, China

joint work with Lixin Du, Manuel Kauers, and Thibaut Verron

Notation.

- ▶ A: an integral domain (e.g. \mathbb{Z} , $\mathbb{C}[x]$);
- K: the quotient field of A (e.g. \mathbb{Q} , $\mathbb{C}(x)$);
- ▶ *L*: a separable extension of *K* with $[L:K] = r \le +\infty$;
- **B**: a ring extension of A with $B \subseteq L$.

Notation.

- ▶ A: an integral domain (e.g. \mathbb{Z} , $\mathbb{C}[x]$);
- **K**: the quotient field of A (e.g. \mathbb{Q} , $\mathbb{C}(x)$);
- ▶ L: a separable extension of K with $[L:K] = r \le +\infty$;
- **B**: a ring extension of A with $B \subseteq L$.

Definition. An element $\beta \in B$ is integral over A if

$$\beta^n + a_{n-1}\beta^{n-1} + \dots + a_0 = 0$$
 with $a_i \in A$.

Theorem. The set

$$\mathcal{O}_{B/A} := \{ \beta \in B \mid \beta \text{ is integral over } A \}$$

forms an A-module which is called the integral closure of A in B.

Problem. When is the A-module $\mathcal{O}_{B/A}$ free?

Notation.

- ▶ A: an integral domain (e.g. \mathbb{Z} , $\mathbb{C}[x]$);
- **K**: the quotient field of A (e.g. \mathbb{Q} , $\mathbb{C}(x)$);
- ▶ *L*: a separable extension of *K* with $[L:K] = r \le +\infty$;
- **B**: a ring extension of A with $B \subseteq L$.

Definition. Let $\{\beta_1, \ldots, \beta_r\}$ be a basis of L over K. The trace map $\operatorname{Tr}_{L/K}: L \to K$ is defined by for any $\alpha \in L$,

$$\operatorname{Tr}_{L/K}(\alpha) \triangleq \operatorname{Tr}(M_{\alpha}) = a_{1,1} + a_{2,2} + \ldots + a_{r,r},$$

where $M_{\alpha} = (a_{i,j}) \in K^{r \times r}$ with

$$\alpha \cdot \beta_i = \sum_{i=1}^r a_{i,j} \beta_j$$
 for $i = 1, 2, \dots, r$.

Remark. The $Tr_{L/K}$ is independent of the choice of bases.

Notation.

- ▶ A: an integral domain (e.g. \mathbb{Z} , $\mathbb{C}[x]$);
- **K**: the quotient field of A (e.g. \mathbb{Q} , $\mathbb{C}(x)$);
- ▶ *L*: a separable extension of *K* with $[L:K] = r \le +\infty$;
- **B**: a ring extension of A with $B \subseteq L$.

Definition. The discriminant of $\alpha_1, \ldots, \alpha_r \in L$ is

$$\mathsf{Disc}_{L/K}(\alpha_1,\ldots,\alpha_r) \triangleq \mathsf{det}((\mathsf{Tr}_{L/K}(\alpha_i\alpha_j))) \in K.$$

Proposition.

- **1** $\{\alpha_1, \ldots, \alpha_r\}$ is a basis of L over $K \Leftrightarrow \mathsf{Disc}_{L/K}(\alpha_1, \ldots, \alpha_r) \neq 0$;
- **2** If $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_{L/A}$, then $\mathsf{Disc}_{L/K}(\alpha_1, \ldots, \alpha_r) \in \mathcal{O}_{K/A}$;
- **3** If $\beta_i = \sum_{j=1}^r b_{i,j} \alpha_j$ for $i = 1, \dots, r$, then

$$\mathsf{Disc}_{L/K}(\beta_1,\ldots,\beta_r) = \mathsf{Disc}_{L/K}(\alpha_1,\ldots,\alpha_r) \cdot \mathsf{det}((b_{i,j}))^2$$
.

Definition. If $\mathcal{O}_{L/A}$ is free, any basis of $\mathcal{O}_{L/A}$ is called an integral basis of L over K.

Theorem. If A is PID, then $\mathcal{O}_{L/A}$ is a free A-module of rank [L:K].

Definition. If $\mathcal{O}_{L/A}$ is free, any basis of $\mathcal{O}_{L/A}$ is called an integral basis of L over K.

Theorem. If A is PID, then $\mathcal{O}_{L/A}$ is a free A-module of rank [L:K].

Proof.

- 1. (A, \preceq) is a partially ordered set, where $a \preceq b$ if $a \mid b$ for $a, b \in A$. Since A is PID, any nonempty set of A has a minimum.
- 2. Since L is separable, $L = K(\theta)$ for some $\theta \in \mathcal{O}_{L/A}$. Then $\{1, \theta, \dots, \theta^{r-1}\} \subseteq \mathcal{O}_{L/A}$ is a basis of L over K and so

$$\Lambda := \{ \mathsf{Disc}_{L/K}(\alpha_1, \dots, \alpha_r) \mid \alpha_1, \dots, \alpha_r \in \mathcal{O}_{L/A} \} \subseteq A$$

is nonempty. Let $\beta_1, \dots, \beta_r \in \mathcal{O}_{L/A}$ be such that their discriminant is minimal in Λ .

Definition. If $\mathcal{O}_{L/A}$ is free, any basis of $\mathcal{O}_{L/A}$ is called an integral basis of L over K.

Theorem. If A is PID, then $\mathcal{O}_{L/A}$ is a free A-module of rank [L:K].

Proof.

3. Claim. $\{\beta_1,\ldots,\beta_r\}$ is an integral basis. If not, then $\exists \beta \in \mathcal{O}_{L/A} \setminus \{0\}$ such that

$$\beta = \frac{b_1\beta_1 + \cdots b_r\beta_r}{d},$$

where $b_1, \dots, b_r, d \in A$ and d is not a unit in A. W.L.O.G, we may assume that $b_1 = 1$. Then

$$\operatorname{\mathsf{Disc}}_{L/K}(\boldsymbol{\beta}, \boldsymbol{\beta}_2 \dots, \boldsymbol{\beta}_r) = \frac{1}{d^2} \cdot \operatorname{\mathsf{Disc}}_{L/K}(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_r) \in A,$$

which contradicts with the minimality of $\mathsf{Disc}_{L/K}(\beta_1,\ldots,\beta_r)$.

Definition. If $\mathcal{O}_{L/A}$ is free, any basis of $\mathcal{O}_{L/A}$ is called an integral basis of L over K.

Theorem. If A is PID, then $\mathcal{O}_{L/A}$ is a free A-module of rank [L:K].

Examples.

- **1** Let $A=\mathbb{Z}$ and $K=\mathbb{Q}$. Then any algebraic number field has an integral basis. Let $L=\mathbb{Q}(\sqrt{m})$ with $m\in\mathbb{Z}$. Then an integral basis of L over \mathbb{Q} is $\{1,\sqrt{m}\}$ if $m\equiv 2$ or $3\mod 4$ and $\{1,(1+\sqrt{m})/2\}$ if $m\equiv 1\mod 4$.
- **2** Let $A = \mathbb{C}[x]$ and $K = \mathbb{C}(x)$. Then any finite algebraic extension of K has an integral basis. Let $L = K(\beta)$ with β being a root of $P = (\frac{25}{16}x^3 + 2x^4) x^3y (2x+1)y^2 + y^3$. Then an integral basis of L over $\mathbb{C}(x)$ is $\{1, \beta, (-\beta + \beta^2)/x\}$.

Problem. How to construct integral bases?

Input. $M \in C[x,y]$ monic irreducible over C(x) with $r = \deg_y(M)$; output. an integral basis $\{B_0, \dots, B_{r-1}\}$.

- 1. Start with $(B_0, \ldots, B_{r-1}) := (1, \beta, \ldots, \beta^{r-1}).$
- 2. For $d \in \{0, 1, \dots, r-1\}$
- 3. While there exist $a_0, \ldots, a_{d-1} \in C[x]$ such that

$$A = \frac{a_0 B_0 + \dots + a_{d-1} B_{d-1} + B_d}{p(x)}$$

is integral and $p(x) \in C[x] \setminus C$; replace B_d by A.

4. Return $B_0, ..., B_{r-1}$.

Example. $M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$ and $M(\beta) = 0$.

Example.
$$M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$$
 and $M(\beta) = 0$.

integral closure	$\mathfrak{O}_{C(x)(\boldsymbol{\beta})/C[x]}$

Example.
$$M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$$
 and $M(\beta) = 0$.

Example.
$$M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$$
 and $M(\beta) = 0$.

integral closure
$$\cent{O}_{C(x)(eta)/C[x]}$$

$$\alpha=0, \quad B_2:=\frac{-eta+eta^2}{x} \qquad \end{O}_0$$

$$C[x]+C[x]eta+C[x]eta^2$$

Example.
$$M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$$
 and $M(\beta) = 0$.

integral closure
$$\mathcal{O}_{C(x)(\beta)/C[x]}$$

$$\alpha \in C, \quad B_d := \frac{a_0 B_0 + \cdots a_{d-1} B_{d-1} + B_d}{x - \alpha} \qquad \mathcal{O}_n$$

$$\cdots$$

$$\alpha = 0, \quad B_2 := \frac{-\beta + \beta^2}{x} \qquad \mathcal{O}_1$$

$$\mathcal{O}_0$$

$$C[x] + C[x]\beta + C[x]\beta^2$$

Example.
$$M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$$
 and $M(\beta) = 0$.

$$\alpha \in C, \quad B_d := \frac{a_0B_0 + \cdots a_{d-1}B_{d-1} + B_d}{x - \alpha} \qquad \bigcirc 0_n$$

$$\cdots$$

$$\alpha = 0, \quad B_2 := \frac{-\beta + \beta^2}{x} \qquad \bigcirc 0_1$$

$$C[x] + C[x]\beta + C[x]\beta^2$$

 $\{1, \beta, \frac{1}{x}(-\beta + \beta^2)\}$ is an integral basis of $C(x)(\beta)$.

Definition. Let k be a field. The map $v: k \to \mathbb{Z} \cup \{\infty\}$ is called a valuation if for all $a, b \in k$

- $v(a) = \infty$ iff a = 0;
- v(ab) = v(a) + v(b);
- $v(a+b) \ge \min\{v(a), v(b)\}.$

Definition. Let k be a field. The map $v: k \to \mathbb{Z} \cup \{\infty\}$ is called a valuation if for all $a, b \in k$

- $v(a) = \infty$ iff a = 0;
- v(ab) = v(a) + v(b);
- $v(a+b) \ge \min\{v(a), v(b)\}.$

The pair (k, v) is called a valued field.

Definition. Let k be a field. The map $v: k \to \mathbb{Z} \cup \{\infty\}$ is called a valuation if for all $a, b \in k$

- $v(a) = \infty$ iff a = 0:
- v(ab) = v(a) + v(b);
- $v(a+b) > \min\{v(a), v(b)\}.$

The pair (k, v) is called a valued field.

The valuation ring $O_{(k,v)}$ of k is defined as

$$\mathcal{O}_{(k,\nu)} = \{ a \in k \mid \nu(a) \ge 0 \}.$$

Definition. Let k be a field. The map $v: k \to \mathbb{Z} \cup \{\infty\}$ is called a valuation if for all $a, b \in k$

- $v(a) = \infty$ iff a = 0;
- v(ab) = v(a) + v(b);
- $v(a+b) \ge \min\{v(a), v(b)\}.$

The pair (k, v) is called a valued field.

The valuation ring $O_{(k,v)}$ of k is defined as

$$\mathcal{O}_{(k,v)} = \{ a \in k \mid v(a) \ge 0 \}.$$

Example. For a nonzero $f \in C(x)$, define $v_z(f) = m$ if

$$f = (x-z)^m \frac{a}{b}$$
 where $(x-z) \nmid a, b$.

Definition. Let k be a field. The map $v: k \to \mathbb{Z} \cup \{\infty\}$ is called a valuation if for all $a, b \in k$

- $v(a) = \infty$ iff a = 0;
- v(ab) = v(a) + v(b);
- $v(a+b) \ge \min\{v(a), v(b)\}.$

The pair (k, v) is called a valued field.

The valuation ring $O_{(k,v)}$ of k is defined as

$$\mathcal{O}_{(k,v)} = \{ a \in k \mid v(a) \ge 0 \}.$$

Example. $(C(x), v_z)$ is a valued field.

Definition. Let k be a field. The map $v: k \to \mathbb{Z} \cup \{\infty\}$ is called a valuation if for all $a, b \in k$

- $v(a) = \infty$ iff a = 0;
- v(ab) = v(a) + v(b);
- $v(a+b) > \min\{v(a), v(b)\}.$

The pair (k, v) is called a valued field.

The valuation ring $O_{(k,v)}$ of k is defined as

$$\mathcal{O}_{(k,v)} = \{ a \in k \mid v(a) \ge 0 \}.$$

Example. $(C(x), v_z)$ is a valued field.

The corresponding valuation ring is

$$C[x]_{x-z} = \left\{ \frac{a}{b} \in C(x) \middle| (x-z) \nmid b \right\}.$$

Definition. Let k be a field. The map $v: k \to \mathbb{Z} \cup \{\infty\}$ is called a valuation if for all $a, b \in k$

- $v(a) = \infty$ iff a = 0;
- v(ab) = v(a) + v(b);
- $v(a+b) \ge \min\{v(a), v(b)\}.$

The pair (k, v) is called a valued field.

The valuation ring $O_{(k,v)}$ of k is defined as

$$\mathcal{O}_{(k,v)} = \{ a \in k \mid v(a) \ge 0 \}.$$

Example. $(C(x), v_z)$ is a valued field.

Fact. The valuation ring is integrally closed.

Definition. Let V be a vector space over (k, v). The map $val: V \to \mathbb{Z} \cup \{\infty\}$ is called a value function if for all $B, B_1, B_2 \in V$ and $u \in k$

- \triangleright val $(B) = \infty$ iff B = 0;
- $val(u \cdot B) = v(u) + val(B);$
- $val(B_1+B_2) \geq \min\{val(B_1), val(B_2)\}.$

Definition. Let V be a vector space over (k, v). The map $val: V \to \mathbb{Z} \cup \{\infty\}$ is called a value function if for all $B, B_1, B_2 \in V$ and $u \in k$

- \triangleright val $(B) = \infty$ iff B = 0;
- \triangleright val $(u \cdot B) = v(u) + val(B)$;
- $\operatorname{val}(B_1 + B_2) \ge \min\{\operatorname{val}(B_1), \operatorname{val}(B_2)\}.$

The pair (V, val) is called a valued vector space.

Definition. Let V be a vector space over (k, v). The map $val: V \to \mathbb{Z} \cup \{\infty\}$ is called a value function if for all $B, B_1, B_2 \in V$ and $u \in k$

- $\operatorname{val}(B) = \infty \text{ iff } B = 0;$
- $val(u \cdot B) = v(u) + val(B);$
- $\operatorname{val}(B_1 + B_2) \ge \min\{\operatorname{val}(B_1), \operatorname{val}(B_2)\}.$

The pair (V, val) is called a valued vector space.

An element B of V is called integral if $val(B) \ge 0$.

Definition. Let V be a vector space over (k, v). The map $\operatorname{val}: V \to \mathbb{Z} \cup \{\infty\}$ is called a value function if for all $B, B_1, B_2 \in V$ and $u \in k$

- \triangleright val $(B) = \infty$ iff B = 0;
- \triangleright val $(u \cdot B) = v(u) + val(B)$;
- $\operatorname{val}(B_1 + B_2) \ge \min\{\operatorname{val}(B_1), \operatorname{val}(B_2)\}.$

The pair (V, val) is called a valued vector space.

An element B of V is called integral if $val(B) \ge 0$.

Fact. The integral elements of V form a $\mathcal{O}_{(k,v)}$ -module.

Definition. Let V be a vector space over (k, v). The map $\operatorname{val}: V \to \mathbb{Z} \cup \{\infty\}$ is called a value function if for all $B, B_1, B_2 \in V$ and $u \in k$

- \triangleright val $(B) = \infty$ iff B = 0;
- $val(u \cdot B) = v(u) + val(B);$
- $\operatorname{val}(B_1 + B_2) \ge \min\{\operatorname{val}(B_1), \operatorname{val}(B_2)\}.$

The pair (V, val) is called a valued vector space.

An element B of V is called integral if $val(B) \ge 0$.

Fact. The integral elements of V form a $\mathcal{O}_{(k,v)}$ -module.

Problem 1. When is this module free, i.e., when does there exist an integral basis?

Definition. Let V be a vector space over (k, v). The map $\operatorname{val}: V \to \mathbb{Z} \cup \{\infty\}$ is called a value function if for all $B, B_1, B_2 \in V$ and $u \in k$

- \triangleright val $(B) = \infty$ iff B = 0;
- $val(u \cdot B) = v(u) + val(B);$
- $\operatorname{val}(B_1 + B_2) \ge \min\{\operatorname{val}(B_1), \operatorname{val}(B_2)\}.$

The pair (V, val) is called a valued vector space.

An element B of V is called integral if $val(B) \ge 0$.

Fact. The integral elements of V form a $\mathcal{O}_{(k,v)}$ -module.

Problem 1. When is this module free, i.e., when does there exist an integral basis?

Problem 2. How to compute a basis if it exists?

Discriminant functions

Notation.

- (k, v): a valued field with value group \mathbb{Z} ;
- (V, val): a valued vector space over (k, V) of dimension r.

Definition. Let $x \in k$ with v(x) = 1 and \mathbb{B}_V denote the set of all bases of V. A map $\mathrm{Disc}: \mathbb{B}_V \to \mathbb{Z}$ is a discriminant function on V if for a basis B_1, \ldots, B_r of V,

- (i) $\gamma := \operatorname{Disc}(\{B_1, \dots, B_r\}) \ge 0$ if all B_i are integral;
- (ii) for all $\alpha_1, \ldots, \alpha_{d-1} \in k$ with $d \leq r$,

$$Disc(B_1,...,B_{d-1},\alpha_1B_1+\cdots+\alpha_{d-1}B_{d-1}+B_d,B_{d+1},...,B_r)=\gamma$$

(iii) $Disc(B_1,...,B_{d-1},x^{-1}B_d,B_{d+1},...,B_r) < \gamma$.

Discriminant functions

Notation.

- (k, v): a valued field with value group \mathbb{Z} ;
- (V, val): a valued vector space over (k, v) of dimension r.

Definition. Let $x \in k$ with v(x) = 1 and \mathbb{B}_V denote the set of all bases of V. A map $\mathrm{Disc}: \mathbb{B}_V \to \mathbb{Z}$ is a discriminant function on V if for a basis B_1, \ldots, B_r of V,

- (i) $\gamma := \operatorname{Disc}(\{B_1, \dots, B_r\}) \ge 0$ if all B_i are integral;
- (ii) for all $\alpha_1, \ldots, \alpha_{d-1} \in k$ with $d \leq r$,

$$Disc(B_1,...,B_{d-1},\alpha_1B_1+\cdots+\alpha_{d-1}B_{d-1}+B_d,B_{d+1},...,B_r)=\gamma$$

(iii)
$$Disc(B_1,...,B_{d-1},x^{-1}B_d,B_{d+1},...,B_r) < \gamma$$
.

Theorem.

(V, val) has a discriminant function

(V, val) has an integral basis

Computation of integral bases: general case

Input. a vector space basis $\{B_1, \ldots, B_r\}$ of (V, val) over (k, v). output. an integral basis.

- 1. For $d \in \{1, ..., r\}$ do:
- 2. Replace B_d by $(x)^{-\operatorname{val}(B_d)}B_d$, where v(x)=1.
- 3. While there exist $a_1, \ldots, a_{d-1} \in \mathcal{O}_k$ such that

$$A = \frac{a_1 B_1 + \dots + a_{d-1} B_{d-1} + B_d}{x}$$

is integral; replace B_d by A.

4. Return B_1, \ldots, B_r .

Theorem. Let (V, val) be a valued vector space over (k, v). TFAE.

- (a) There is an integral basis of (V, val).
- (b) There is a discriminant function $\operatorname{Disc}: \mathbb{B}_V \to \mathbb{Z}$, where \mathbb{B}_V is the set of all bases of V.
- (c) The algorithm terminates.
- (d) The completion of V w.r.t v is of dimension $r = \dim_k(V)$.

Theorem. Let (V, val) be a valued vector space over (k, v). TFAE.

- (a) There is an integral basis of (V, val).
- (b) There is a discriminant function $\operatorname{Disc}: \mathbb{B}_V \to \mathbb{Z}$, where \mathbb{B}_V is the set of all bases of V.
- (c) The algorithm terminates.
- (d) The completion of V w.r.t v is of dimension $r = \dim_k(V)$.

integral bases

Theorem. Let (V, val) be a valued vector space over (k, v). TFAE.

- (a) There is an integral basis of (V, val).
- (b) There is a discriminant function $\operatorname{Disc}: \mathbb{B}_V \to \mathbb{Z}$, where \mathbb{B}_V is the set of all bases of V.
- (c) The algorithm terminates.
- (d) The completion of V w.r.t v is of dimension $r = \dim_k(V)$.

Integral Bases: three cases

Algebraic case

- ▶ $K = C(x)[y]/\langle M \rangle$, where $M \in C(x)[y]$ irreducible
- The integral elements of K form a free C[x]-module.
- ▶ Computation: van Hoeij's algorithm 1994, etc.

Integral Bases: three cases

Algebraic case

- $K = C(x)[y]/\langle M \rangle$, where $M \in C(x)[y]$ irreducible
- The integral elements of K form a free C[x]-module.
- Computation: van Hoeij's algorithm 1994, etc.

D-finite case

- ▶ $V = C(x)[D]/\langle L \rangle$, Dx = xD + 1, where $L \in C(x)[D]$ admits a fundamental system of solutions in $\bar{C}[[[x \alpha]]]]$.
- ▶ The integral elements of V form a free C[x]-left module.
- ▶ Computation: Kauers-Koutschan's algorithm 2015.

Integral Bases: three cases

Algebraic case

- ▶ $K = C(x)[y]/\langle M \rangle$, where $M \in C(x)[y]$ irreducible
- ▶ The integral elements of K form a free C[x]-module.
- ▶ Computation: van Hoeij's algorithm 1994, etc.

D-finite case

- ▶ $V = C(x)[D]/\langle L \rangle$, Dx = xD + 1, where $L \in C(x)[D]$ admits a fundamental system of solutions in $\bar{C}[[[x \alpha]]]]$.
- ▶ The integral elements of V form a free C[x]-left module.
- ▶ Computation: Kauers-Koutschan's algorithm 2015.

P-recursive case

Question. What are integral elements?

D-finite functions

Definition. A function f(x) is called D-finite over C if

$$p_0(x) f(x) + p_1(x)f'(x) + \dots + p_r(x)f^{(r)}(x) = 0$$
 for $p_i \in C[x]$.

D-finite functions

Definition. A function f(x) is called D-finite over C if

$$p_0(x) f(x) + p_1(x)f'(x) + \dots + p_r(x)f^{(r)}(x) = 0$$
 for $p_i \in C[x]$.

Examples.

$$\frac{1}{x^2 + 2x}$$
, $\frac{1}{\sqrt{x+1}}$, $\exp(x)$, $\log(x)$, $J_{\alpha}(x)$, ${}_{2}F_{1}(a,b;c;z)$, ...

Setting.

- ▶ $L = p_0(x) + p_1(x)D + \dots + p_r(x)D^r \in C[x][D]$ with $p_r \neq 0$.
- $V = C(x)[D]/\langle L \rangle, \ D \cdot x = x \cdot D + 1.$

Setting.

- ▶ $L = p_0(x) + p_1(x)D + \dots + p_r(x)D^r \in C[x][D]$ with $p_r \neq 0$.
- $V = C(x)[D]/\langle L \rangle, D \cdot x = x \cdot D + 1.$

Let $\alpha \in \bar{C}$. For any function f(x)

Operator action:

$$L \cdot f = p_0(x)f(x) + p_1(x)f'(x) + \dots + p_r(x)f^{(r)}(x).$$

Setting.

- ▶ $L = p_0(x) + p_1(x)D + \dots + p_r(x)D^r \in C[x][D]$ with $p_r \neq 0$.
- $V = C(x)[D]/\langle L \rangle, D \cdot x = x \cdot D + 1.$

Let $\alpha \in \bar{C}$. For any function f(x)

Operator action:

$$L \cdot f = p_0(x)f(x) + p_1(x)f'(x) + \dots + p_r(x)f^{(r)}(x).$$

Solution space:

$$L \cdot f = 0$$

Setting.

- ▶ $L = p_0(x) + p_1(x)D + \dots + p_r(x)D^r \in C[x][D]$ with $p_r \neq 0$.
- $V = C(x)[D]/\langle L \rangle, D \cdot x = x \cdot D + 1.$

Let $\alpha \in \bar{C}$. For any function f(x)

Operator action:

$$L \cdot f = p_0(x)f(x) + p_1(x)f'(x) + \dots + p_r(x)f^{(r)}(x).$$

Solution space:

$$L \cdot f = 0$$

Fact. If $x - \alpha \nmid p_r(x)$, then L admits r linearly independent solution in

$$C[[x-\alpha]].$$

Setting.

- ▶ $L = p_0(x) + p_1(x)D + \dots + p_r(x)D^r \in C[x][D]$ with $p_r \neq 0$.
- $V = C(x)[D]/\langle L \rangle, D \cdot x = x \cdot D + 1.$

Let $\alpha \in \bar{C}$. For any function f(x)

Operator action:

$$L \cdot f = p_0(x)f(x) + p_1(x)f'(x) + \dots + p_r(x)f^{(r)}(x).$$

Solution space:

$$L \cdot f = 0$$

Question. Does there always exist r linearly independent solutions?

Theorem. Let $L \in C(x)[D]$. Then L admits a fundamental system of generalized series solutions of the form

$$\exp(P((x-\alpha)^{\frac{1}{s}}))(x-\alpha)^{\mathbf{v}}Q((x-\alpha)^{\frac{1}{s}},\log(x-\alpha))$$

for some $s \in \mathbb{N}$, $P \in \bar{C}[x]$, $\mathbf{v} \in \bar{C}$ and $Q \in \bar{C}[[x]][y]$.

Theorem. Let $L \in C(x)[D]$. Then L admits a fundamental system of generalized series solutions of the form

$$\exp(P((x-\alpha)^{\frac{1}{8}}))(x-\alpha)^{\mathbf{v}}Q((x-\alpha)^{\frac{1}{8}},\log(x-\alpha))$$

for some $s \in \mathbb{N}$, $P \in \bar{C}[x]$, $\mathbf{v} \in \bar{C}$ and $Q \in \bar{C}[[x]][y]$.

Remark. We restrict the attention to operators L where P=0, s=1 and $v \in C$ for all its solutions.

Theorem. Let $L \in C(x)[D]$. Then L admits a fundamental system of generalized series solutions of the form

$$\exp(P((x-\alpha)^{\frac{1}{8}}))(x-\alpha)^{\mathbf{v}}Q((x-\alpha)^{\frac{1}{8}},\log(x-\alpha))$$

for some $s \in \mathbb{N}$, $P \in \bar{C}[x]$, $\mathbf{v} \in \bar{C}$ and $Q \in \bar{C}[[x]][y]$.

Remark. We restrict the attention to operators L where P=0, s=1 and $v \in C$ for all its solutions.

Notation.

$$\overline{C}[[[x-\alpha]]] := \bigcup_{v \in C} (x-\alpha)^v \overline{C}[[x-\alpha]][\log(x-\alpha)]$$

Theorem. Let $L \in C(x)[D]$. Then L admits a fundamental system of generalized series solutions of the form

$$\exp(P((x-\alpha)^{\frac{1}{s}}))(x-\alpha)^{\mathbf{v}}Q((x-\alpha)^{\frac{1}{s}},\log(x-\alpha))$$

for some $s \in \mathbb{N}$, $P \in \bar{C}[x]$, $\mathbf{v} \in \bar{C}$ and $Q \in \bar{C}[[x]][y]$.

Remark. We restrict the attention to operators L where P = 0, s = 1 and $v \in C$ for all its solutions.

Notation.

$$\bar{C}[[[x-\alpha]]] := \bigcup_{v \in C} (x-\alpha)^v \bar{C}[[x-\alpha]][\log(x-\alpha)]$$

Definition. Such a series is called integral at α if $\nu \geq 0$.

Definition. An operator $B \in V = C(x)[D]/\langle L \rangle$ is called integral if

 $B \cdot f$ is integral

for every series solution f of L at any $\alpha \in \overline{C}$.

Definition. An operator $B\in V=C(x)[D]/\langle L\rangle$ is called integral if $B\cdot f\quad \text{is integral}$

for every series solution f of L at any $\alpha \in \bar{C}$.

Remark. Let $\{b_1, \dots, b_r\}$ be a fundamental system of L at α . Then

B is integral \iff $B \cdot b_j$ is integral for $j = 1, \cdots, r$

Definition. An operator $B \in V = C(x)[D]/\langle L \rangle$ is called integral if

$$B \cdot f$$
 is integral

for every series solution f of L at any $\alpha \in \bar{C}$.

Remark. Let $\{b_1, \dots, b_r\}$ be a fundamental system of L at α . Then

B is integral
$$\Leftrightarrow$$
 $B \cdot b_j$ is integral for $j = 1, \dots, r$

Theorem. The integral elements of V form a free C[x]-module.

$$\operatorname{wr}_{L,\alpha}(B) := \det(((B_i \cdot b_j))_{i,j=1}^r) \in \bar{C}[[[x - \alpha]]].$$

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$

. 16/26

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$

x = 0	1	
1st sol	$1+x+\tfrac{1}{2}x^2+\cdots$	
2nd sol	$x^{1/2} + \cdots$	

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$

x = 0	1	D	
1st sol	$1+x+\tfrac{1}{2}x^2+\cdots$	$1+x+\cdots$	
2nd sol	$x^{1/2} + \cdots$	$\frac{1}{2}x^{-1/2}+\cdots$	

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$

x = 0	1	D	хD
1st sol	$1+x+\tfrac{1}{2}x^2+\cdots$	$1+x+\cdots$	$x+x^2+\cdots$
2nd sol	$x^{1/2}+\cdots$	$\frac{1}{2}x^{-1/2}+\cdots$	$\frac{1}{2}x^{1/2}+\cdots$

. 16/26

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$

x = 0	1	D	xD
1st sol	$1+x+\tfrac{1}{2}x^2+\cdots$	$1+x+\cdots$	$x+x^2+\cdots$
2nd sol	$x^{1/2}+\cdots$	$\frac{1}{2}x^{-1/2}+\cdots$	$\frac{1}{2}x^{1/2}+\cdots$

1 and xD are integral elements of $C(x)[D]/\langle L \rangle$, but D is not.

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$

x = 1/2	1	хD	
1st sol	$\frac{1}{2} + (x - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \frac{3}{4}(x - \frac{1}{2}) + \cdots$ $\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	
2nd sol	$1+(x-\tfrac{1}{2})+\cdots$	$\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	

.

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$

x = 1/2	1	хD	2xD-1
1st sol	$\frac{1}{2} + (x - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \frac{3}{4}(x - \frac{1}{2}) + \cdots$ $\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	$\frac{1}{2}(x-\frac{1}{2})+\cdots$
2nd sol	$1+(x-\tfrac{1}{2})+\cdots$	$\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	$2(x-\tfrac{1}{2})+\cdots$

, 16/

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$

x = 1/2	1	xD	$\frac{1}{2x-1}(2xD-1)$
1st sol	$\frac{1}{2} + (x - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \frac{3}{4}(x - \frac{1}{2}) + \cdots$ $\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \cdots$
2nd sol	$1+(x-\tfrac{1}{2})+\cdots$	$\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	1+…

, 16/26

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$

x = 1/2	1	xD	$\frac{1}{2x-1}(2xD-1)$
1st sol	$\frac{1}{2} + (x - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \frac{3}{4}(x - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \cdots$
2nd sol	$1+(x-\tfrac{1}{2})+\cdots$	$\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	1+…

 $\frac{1}{2x-1}(2xD-1)$ is an integral element of $C(x)[D]/\langle L \rangle$, but D does not belong to C[x]+C[x]xD.

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$

x = 1/2	1	xD	$\frac{1}{2x-1}(2xD-1)$
1st sol	$\frac{1}{2} + (x - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \frac{3}{4}(x - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \cdots$
2nd sol	$1+(x-\tfrac{1}{2})+\cdots$	$\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	1+…

 $\frac{1}{2x-1}(2xD-1)$ is an integral element of $C(x)[D]/\langle L \rangle$, but D does not belong to C[x]+C[x]xD.

In fact, $\left\{1, \frac{1}{2x-1}(2xD-1)\right\}$ is an integral basis.

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$
.

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$
.

Let y be a solution of L and set

$$\omega_0 := y, \quad \omega_1 := \frac{1}{2x-1}(2xD-1) \cdot y.$$

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$
.

Let y be a solution of L and set

$$\omega_0 := y$$
, $\omega_1 := \frac{1}{2x-1}(2xD-1) \cdot y$.

Consider

$$f = \frac{a_0 \omega_0 + a_1 \omega_1}{u v^m}$$

where

$$a_0 = 4x^2 + 37x - 11$$
, $a_1 = -28x^3 + 40x^2 - x - 1$,
 $u = 4$, $v = (x - 1)x$, $m = 2$.

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$
.

Let y be a solution of L and set

$$\omega_0 := y, \quad \omega_1 := \frac{1}{2x-1}(2xD-1) \cdot y.$$

Consider

$$f = \frac{a_0 \omega_0 + a_1 \omega_1}{u v^m}$$

where

$$a_0 = 4x^2 + 37x - 11$$
, $a_1 = -28x^3 + 40x^2 - x - 1$,
 $u = 4$, $v = (x - 1)x$, $m = 2$.

Question. How to calculate $\int f dx$?

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$
.

Hermite reduction. Find $b_0, b_1, c_0, c_1 \in \mathbb{C}[x]$ such that

$$\frac{a_0\omega_0+a_1\omega_1}{uv^m}=\left(\frac{b_0\omega_0+b_1\omega_1}{v^{m-1}}\right)'+\frac{c_0\omega_0+c_1\omega_1}{uv^{m-1}}.$$

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$
.

Hermite reduction. Find $b_0, b_1, c_0, c_1 \in \mathbb{C}[x]$ such that

$$\frac{a_0\omega_0 + a_1\omega_1}{uv^m} = \left(\frac{b_0\omega_0 + b_1\omega_1}{v^{m-1}}\right)' + \frac{c_0\omega_0 + c_1\omega_1}{uv^{m-1}}.$$

It follows that

$$a_0 \omega_0 + a_1 \omega_1 \equiv \frac{b_0 u v^m \left(\frac{\omega_0}{v^{m-1}}\right)' + \frac{b_1 u v^m \left(\frac{\omega_1}{v^{m-1}}\right)' \mod v}{}$$

Example. $L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$.

Hermite reduction. Find $b_0, b_1, c_0, c_1 \in \mathbb{C}[x]$ such that

$$\frac{a_0\omega_0 + a_1\omega_1}{uv^m} = \left(\frac{b_0\omega_0 + b_1\omega_1}{v^{m-1}}\right)' + \frac{c_0\omega_0 + c_1\omega_1}{uv^{m-1}}.$$

It follows that

$$a_0 \omega_0 + a_1 \omega_1 \equiv \frac{b_0}{u} v^m \left(\frac{\omega_0}{v^{m-1}}\right)' + \frac{b_1}{u} v^m \left(\frac{\omega_1}{v^{m-1}}\right)' \bmod v$$

where

$$\omega_0' = \frac{1}{2x}\omega_0 - \frac{1-2x}{2x}\omega_1, \quad \omega_1' = \omega_1.$$

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$
.

Hermite reduction. Find $b_0, b_1, c_0, c_1 \in \mathbb{C}[x]$ such that

$$\frac{a_0\omega_0+a_1\omega_1}{uv^m}=\left(\frac{b_0\omega_0+b_1\omega_1}{v^{m-1}}\right)'+\frac{c_0\omega_0+c_1\omega_1}{uv^{m-1}}.$$

Then

$$a_0\omega_0 + a_1\omega_1 \equiv -\frac{1}{2}b_0u(3\omega_0 + \omega_1) - 2b_1u\omega_1 \mod v.$$

Example. $L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$.

Hermite reduction. Find $b_0, b_1, c_0, c_1 \in \mathbb{C}[x]$ such that

$$\frac{a_0\omega_0+a_1\omega_1}{uv^m}=\left(\frac{b_0\omega_0+b_1\omega_1}{v^{m-1}}\right)'+\frac{c_0\omega_0+c_1\omega_1}{uv^{m-1}}.$$

Then

$$a_0\omega_0 + a_1\omega_1 \equiv -\frac{1}{2}b_0u(3\omega_0 + \omega_1) - 2b_1u\omega_1 \mod v.$$

Since $\{\omega_0, \omega_1\}$ is an integral basis of $C(x)[D]/\langle L \rangle$, we have

$$\begin{pmatrix} 41x - 11 \\ 11x - 1 \end{pmatrix} = \begin{pmatrix} 2 - 6x & 2 - 2x \\ 0 & 4 - 8x \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} \bmod v$$

Applications of integral bases: D-finite case

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$
.

Hermite reduction. Find $b_0, b_1, c_0, c_1 \in \mathbb{C}[x]$ such that

$$\frac{a_0\omega_0 + a_1\omega_1}{uv^m} = \left(\frac{b_0\omega_0 + b_1\omega_1}{v^{m-1}}\right)' + \frac{c_0\omega_0 + c_1\omega_1}{uv^{m-1}}.$$

Then

$$a_0\omega_0 + a_1\omega_1 \equiv -\frac{1}{2}b_0u(3\omega_0 + \omega_1) - 2b_1u\omega_1 \mod v.$$

So
$$b_0 = \frac{1}{2}(4x+11)$$
, $b_1 = \frac{5}{2}(2x-1)$.

Applications of integral bases: D-finite case

Example.
$$L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$$
.

Hermite reduction. Find $b_0, b_1, c_0, c_1 \in \mathbb{C}[x]$ such that

$$\frac{a_0\omega_0+a_1\omega_1}{uv^m}=\left(\frac{b_0\omega_0+b_1\omega_1}{v^{m-1}}\right)'+\frac{c_0\omega_0+c_1\omega_1}{uv^{m-1}}.$$

Then

$$a_0\omega_0 + a_1\omega_1 \equiv -\frac{1}{2}\frac{b_0}{b_0}u(3\omega_0 + \omega_1) - 2\frac{b_1}{b_1}u\omega_1 \mod v.$$

So
$$b_0 = \frac{1}{2}(4x+11)$$
, $b_1 = \frac{5}{2}(2x-1)$. Consequently $c_0 = c_1 = 0$.

Applications of integral bases: D-finite case

Example. $L = (2x+1) - (4x^2)D + 2x(2x-1)D^2$.

Hermite reduction. Find $b_0, b_1, c_0, c_1 \in \mathbb{C}[x]$ such that

$$\frac{a_0\omega_0+a_1\omega_1}{uv^m}=\left(\frac{b_0\omega_0+b_1\omega_1}{v^{m-1}}\right)'+\frac{c_0\omega_0+c_1\omega_1}{uv^{m-1}}.$$

Then

$$a_0\omega_0 + a_1\omega_1 \equiv -\frac{1}{2}b_0u(3\omega_0 + \omega_1) - 2b_1u\omega_1 \mod v.$$

So
$$b_0 = \frac{1}{2}(4x+11)$$
, $b_1 = \frac{5}{2}(2x-1)$. Consequently $c_0 = c_1 = 0$.

Therefore

$$\int f dx = \frac{(11+4x)\omega_0 + 5(2x-1)\omega_1}{8(1-x)^2 x^2} = \frac{5}{x-1}y' - \frac{2x+3}{(x-1)x}y.$$

P-recursive sequences

Definition. A sequence $f: \mathbb{N} \to C$ is called P-recursive if

$$p_0(n)f(n) + p_1(n)f(n+1) + \dots + p_r(n)f(n+r) = 0$$
 for $p_i \in C[x]$.

P-recursive sequences

Definition. A sequence $f: \mathbb{N} \to C$ is called P-recursive if

$$p_0(n)f(n) + p_1(n)f(n+1) + \dots + p_r(n)f(n+r) = 0$$
 for $p_i \in C[x]$.

Example. The Harmonic sequence $f(n) = \sum_{k=1}^{n} \frac{1}{k}$ satisfies

$$(n+1)f(n) - (2n+3)f(n+1) + (n+2)f(n+2) = 0.$$

Setting.

- ▶ $L = p_0(n) + p_1(n)S + \cdots + p_r(n)S^r \in C[n][S]$ with $p_0, p_r \neq 0$.
- $V = C(n)[S]/\langle L \rangle$, $S \cdot n = (n+1) \cdot S$

Setting.

- ▶ $L = p_0(n) + p_1(n)S + \cdots + p_r(n)S^r \in C[n][S]$ with $p_0, p_r \neq 0$.
- $V = C(n)[S]/\langle L \rangle, S \cdot n = (n+1) \cdot S$

Let $\alpha \in C$. For a sequence $f \in C^{\alpha + \mathbb{Z}} := \{ u : \alpha + \mathbb{Z} \to C \}$,

Operator action:

$$L \cdot f = p_0(n)f(n) + p_1(n)f(n+1) + \dots + p_r(n)f(n+r).$$

Setting.

- ▶ $L = p_0(n) + p_1(n)S + \cdots + p_r(n)S^r \in C[n][S]$ with $p_0, p_r \neq 0$.
- $V = C(n)[S]/\langle L \rangle, S \cdot n = (n+1) \cdot S$

Let $\alpha \in C$. For a sequence $f \in C^{\alpha + \mathbb{Z}} := \{ u : \alpha + \mathbb{Z} \to \mathbb{C} \}$,

Operator action:

$$L \cdot f = p_0(n)f(n) + p_1(n)f(n+1) + \dots + p_r(n)f(n+r).$$

Solution space:

$$Sol(L) := \{ f : \alpha + \mathbb{Z} \to C \mid L \cdot f = 0 \}.$$

Setting.

- ▶ $L = p_0(n) + p_1(n)S + \cdots + p_r(n)S^r \in C[n][S]$ with $p_0, p_r \neq 0$.
- $V = C(n)[S]/\langle L \rangle, S \cdot n = (n+1) \cdot S$

Let $\alpha \in C$. For a sequence $f \in C^{\alpha + \mathbb{Z}} := \{ u : \alpha + \mathbb{Z} \to \mathbb{C} \}$,

Operator action:

$$L \cdot f = p_0(n)f(n) + p_1(n)f(n+1) + \dots + p_r(n)f(n+r).$$

Solution space:

$$Sol(L) := \{ f : \alpha + \mathbb{Z} \to C \mid L \cdot f = 0 \}.$$

Question. How to decide the solution space Sol(L)?

Example 1.
$$f(n+1)+f(n)-f(n+2) = 0$$

Example 1.
$$f(n+1)+f(n)-f(n+2)=0$$

	$\alpha = 0$	 -2	-1			
_	1st sol	 1	0			
	2nd sol	 0	1			

. 21/26

Example 1.
$$f(n+1)+f(n)-f(n+2)=0$$

	$\alpha = 0$	 -2	-1	0	1	2	3	
	1st sol	 1	0	1	1	2	3	
2	2nd sol	 0	1	1	2	3	5	

. 21/26

Example 1.
$$f(n+1)+f(n)-f(n+2) = 0$$

Example 2.
$$nf(n) + 2n^2f(n+1) + (n+1)^2f(n+3) = 0$$

Example 1.
$$f(n+1)+f(n)-f(n+2) = 0$$

Example 2.
$$nf(n) + 2n^2f(n+1) + (n+1)^2f(n+3) = 0$$

Example 1.
$$f(n+1)+f(n)-f(n+2)=0$$

Example 2.
$$nf(n) + 2n^2f(n+1) + (n+1)^2f(n+3) = 0$$

Example 1.
$$f(n+1)+f(n)-f(n+2)=0$$

Example 2.
$$nf(n) + 2n^2f(n+1) + (n+1)^2f(n+3) = 0$$

$$\frac{\alpha = 0 \mid \cdots \mid -2 \mid -1 \mid 0 \mid 1 \mid 2 \mid \cdots}{\text{sol} \mid \cdots \mid 0 \mid 1 \mid 0 \mid 0 \mid ? \mid \cdots}$$

$$f(-1) + 2 \cdot f(0) + 0 \cdot f(2) = 0$$

Example 1.
$$f(n+1)+f(n)-f(n+2)=0$$

Example 2.
$$nf(n) + 2n^2f(n+1) + (n+1)^2f(n+3) = 0$$

$$\frac{\alpha = 0 \quad \cdots \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad \cdots}{\text{sol} \quad \cdots \quad 0 \quad 1 \quad 0 \quad 0 \quad ? \quad \cdots}$$

$$f(-1) + 2 \cdot f(0) + 0 \cdot f(2) = 0$$

Contradiction!

Deformed P-recursive sequences

Setting [van Hoeij1999].

▶
$$L = p_0(n) + p_1(n)S + \dots + p_r(n)S^r \in C[n][S]$$
 with $p_0, p_r \neq 0$.

Let q be a new parameter. For a sequence

$$f \in C^{\alpha+\mathbb{Z}} := \{u : \alpha + \mathbb{Z} \to C((q))\},$$

Deformed P-recursive sequences

Setting [van Hoeij1999].

▶ $L = p_0(n) + p_1(n)S + \cdots + p_r(n)S^r \in C[n][S]$ with $p_0, p_r \neq 0$.

Let q be a new parameter. For a sequence

$$f \in C^{\alpha + \mathbb{Z}} := \{u : \alpha + \mathbb{Z} \to C((q))\},$$

Operator action:

$$\underline{L} \cdot \underline{f} = p_0(n+\underline{q})f(n) + p_1(n+\underline{q})f(n+1) + \dots + p_r(n+\underline{q})f(n+r).$$

Deformed P-recursive sequences

Setting [van Hoeij1999].

▶ $L = p_0(n) + p_1(n)S + \cdots + p_r(n)S^r \in C[n][S]$ with $p_0, p_r \neq 0$.

Let q be a new parameter. For a sequence

$$f \in C^{\alpha + \mathbb{Z}} := \{u : \alpha + \mathbb{Z} \to C((q))\},$$

Operator action:

$$\underline{L} \cdot \underline{f} = p_0(n + \underline{q})f(n) + p_1(n + \underline{q})f(n + 1) + \dots + p_r(n + \underline{q})f(n + r).$$

Solution space:

$$Sol(L) := \{ f : \alpha + \mathbb{Z} \to C((q)) \mid L \cdot f = 0 \}.$$

Example.
$$L = n + 2n^2S + (n+1)^2S^3$$
.

Example. $L = n + 2n^2S + (n+1)^2S^3$.

α	=0	 -2	-1	0		
1st	sol	 1	0	0		
2nd	l sol	 0	1	0		
3rc	l sol	 0	0	1		

, 23

Example. $L = n + 2n^2S + (n+1)^2S^3$.

$\alpha = 0$	 -2	-1	0	1	2	3	
1st sol	 1	0	0	$\frac{-q+2}{(q-1)^2}$	$\frac{2q-4}{q^2}$	$\frac{-4q+8}{(q+1)^2}$	
2nd sol	 0	1	0	0	$\frac{-q+1}{q^2}$	$\frac{2q-2}{(q+1)^2}$	
3rd sol	 0	0	1	$\frac{-2q^2+8q-8}{(q-1)^2}$	$\frac{4q^2-16q+16}{q^2}$	$\frac{-8q^2+31q-32}{(q+1)^2}$	

Fact. Sol(L) is a C((q))-vector space of dimension $r = \operatorname{ord}(L)$.

Example. $L = n + 2n^2S + (n+1)^2S^3$.

$\alpha = 0$	 -2	-1	0	1	2	3	
					$-4q^{-2}+2q^{-1}$	$8+20q+\cdots$	
2nd sol	 0	1	0	0	$q^{-2} - q^{-1}$	$-1+6q+\cdots$	
3rd sol	 0	0	1	−8+···	$16q^{-2} - 16q^{-1} + \cdots$	$-32+95q+\cdots$	

Question. How to define a value function on $V = C(x)[S]/\langle L \rangle$?

Definition. For an operator $B \in V = C(n)[S]/\langle L \rangle$, we define $\operatorname{val}_z \colon V \to \mathbb{Z} \cup \{\infty\}$ by

$$\operatorname{val}_{\boldsymbol{z}}(\boldsymbol{B}) := \min_{\boldsymbol{b} \in \operatorname{Sol}(L)} \left(\boldsymbol{v}_q((\boldsymbol{B} \cdot \boldsymbol{b})(\boldsymbol{z})) - \liminf_{\boldsymbol{n} \to \infty} \boldsymbol{v}_q(\boldsymbol{b}(\boldsymbol{z} - \boldsymbol{n})) \right)$$

for any $z \in \alpha + \mathbb{Z}$.

Definition. For an operator $B \in V = C(n)[S]/\langle L \rangle$, we define $\operatorname{val}_z \colon V \to \mathbb{Z} \cup \{\infty\}$ by

$$\operatorname{val}_{\boldsymbol{z}}(\boldsymbol{B}) := \min_{\boldsymbol{b} \in \operatorname{Sol}(L)} \left(\boldsymbol{v}_q((\boldsymbol{B} \cdot \boldsymbol{b})(\boldsymbol{z})) - \liminf_{\boldsymbol{n} \to \infty} \boldsymbol{v}_q(\boldsymbol{b}(\boldsymbol{z} - \boldsymbol{n})) \right)$$

for any $z \in \alpha + \mathbb{Z}$.

Remark. For a normalized basis $\{b_1, \dots, b_r\}$ of Sol(L), we have

$$\operatorname{val}_z(B) = \min_{j=1}^r \Big(v_q \big((B \cdot b_j)(z) \big) \Big).$$

Definition. For an operator $B \in V = C(n)[S]/\langle L \rangle$, we define $\operatorname{val}_z \colon V \to \mathbb{Z} \cup \{\infty\}$ by

$$\operatorname{val}_{\boldsymbol{z}}(\boldsymbol{B}) := \min_{\boldsymbol{b} \in \operatorname{Sol}(L)} \left(\boldsymbol{v}_q((\boldsymbol{B} \cdot \boldsymbol{b})(\boldsymbol{z})) - \liminf_{\boldsymbol{n} \to \infty} \boldsymbol{v}_q(\boldsymbol{b}(\boldsymbol{z} - \boldsymbol{n})) \right)$$

for any $z \in \alpha + \mathbb{Z}$.

Theorem. val_z is indeed a value function on V.

Definition. For an operator $B \in V = C(n)[S]/\langle L \rangle$, we define $\operatorname{val}_z \colon V \to \mathbb{Z} \cup \{\infty\}$ by

$$\operatorname{val}_{\boldsymbol{z}}(\boldsymbol{B}) := \min_{\boldsymbol{b} \in \operatorname{Sol}(L)} \left(\boldsymbol{v}_q((\boldsymbol{B} \cdot \boldsymbol{b})(\boldsymbol{z})) - \liminf_{\boldsymbol{n} \to \infty} \boldsymbol{v}_q(\boldsymbol{b}(\boldsymbol{z} - \boldsymbol{n})) \right)$$

for any $z \in \alpha + \mathbb{Z}$.

Theorem. val_7 is indeed a value function on V.

Definition. An operator B of V is called integral at z if $val_z(B) \ge 0$.

Definition. For an operator $B \in V = C(n)[S]/\langle L \rangle$, we define $\operatorname{val}_z \colon V \to \mathbb{Z} \cup \{\infty\}$ by

$$\operatorname{val}_{\boldsymbol{z}}(\boldsymbol{B}) := \min_{\boldsymbol{b} \in \operatorname{Sol}(L)} \left(\boldsymbol{v}_q((\boldsymbol{B} \cdot \boldsymbol{b})(\boldsymbol{z})) - \liminf_{\boldsymbol{n} \to \infty} \boldsymbol{v}_q(\boldsymbol{b}(\boldsymbol{z} - \boldsymbol{n})) \right)$$

for any $z \in \alpha + \mathbb{Z}$.

Theorem. val_z is indeed a value function on V.

Definition. An operator B of V is called integral at z if $val_z(B) \ge 0$.

Theorem. The integral elements of V form a free $C[n]_{n-z}$ -module.

$$\operatorname{Disc}_{z}(B_{1},\cdots,B_{r}):=\nu_{q}\left(\operatorname{det}(((B_{i}\cdot b_{j})(z))_{i,j=1}^{r})\right)$$

Example.
$$L = n + 2n^2S + (n+1)^2S^3$$

Example. $L = n + 2n^2S + (n+1)^2S^3$

$\alpha = 0$	 -2	-1	0	1	2	3	
1st sol	 1	0	0	$2+\cdots$	$-4q^{-2}+2q^{-1}$	$8+20q+\cdots$	
2nd sol	 0	1	0	0		$-1+6q+\cdots$	
3rd sol	 0	0	1	−8+···	$16q^{-2} - 16q^{-1} + \cdots$	$-32+95q+\cdots$	

Example.
$$L=n+2n^2S+(n+1)^2S^3$$

$$\begin{array}{c|cccc} n=1 & 1 & & & \\ \hline 1st \ sol & 2+\cdots & & & \\ 2nd \ sol & 0 & & & \\ 3rd \ sol & -8+\cdots & & & \\ \end{array}$$

1 is an integral element of $C(n)[S]/\langle L \rangle$, but S not.

Example. $L = n + 2n^2S + (n+1)^2S^3$											
n = 1	1	$(n-1)^2 S$	S^2	$S^2 - 2(n-1)^2 S$							
1st sol	2+	-4 + 2q	$8+20q+\cdots$	$24q+\cdots$							
2nd sol	0	1-q	$-2+6q+\cdots$	$4q+\cdots$							
3rd sol	$-8+\cdots$	$16-16q+\cdots$	$-32+95q+\cdots$	$63q+\cdots$							

integral closure

$$B_2 := \frac{1}{n-1}((n-1)^2S + S^2)$$

$$C[n]_{n-1} + C[n]_{n-1}(n-1)^2S + C[n]_{n-1}S^2$$

$$\left\{\begin{array}{ll} 1,\;(n-1)^2S,\;-2(n-1)S+\frac{1}{n-1}S^2\end{array}\right\}$$
 is an integral basis of $C(n)[S]/\langle L\rangle$ at $z=1$.

Summary

Main results.

- Extend van Hoeij's algorithm to valued vector spaces.
- ▶ Construct integral bases for P-recursive sequences.

Summary

Main results.

- Extend van Hoeij's algorithm to valued vector spaces.
- ▶ Construct integral bases for P-recursive sequences.

Future work.

▶ Applications to symbolic summation.

Summary

Main results.

- Extend van Hoeij's algorithm to valued vector spaces.
- ▶ Construct integral bases for P-recursive sequences.

Future work.

Applications to symbolic summation.

Thank you!