問2 ソフトウェア製品の品質特性に関する次の記述を読んで、設問に答えよ。

JIS X 0129-1 では、ソフトウェア製品の品質について、表 1 に示す六つの品質特性を定めている。

表1 六つの品質特性 (JIS X 0129-1)

品質特性	ソフトウェア製品の能力の概要	品質副特性 (一部)
機能性	指定された条件下で利用されるとき, 明示的及び 暗示的必要性に合致する機能を提供する。	合目的性, 正確性, セキュリティ, 相互運用性
使用性	指定された条件下で利用するとき,理解,習得, 利用でき,利用者にとって魅力的である。	運用性,習得性,魅力性, 理解性
信頼性	指定された条件下で利用するとき, 指定された達成水準を維持する。	回復性,障害許容性, 成熟性
効率性	明示的な条件下で,使用する資源の量に対比して 適切な性能を提供する。	時間効率性,資源効率性
保守性	修正のしやすさ	安定性,解析性,試験性, 変更性
移植性	ある環境から他の環境に移すことができる。	環境適応性,共存性, 設置性,置換性

これらの品質特性のうち、コーディングの段階では、信頼性、効率性、保守性、移 植性を考慮することが大切である。

あるソフトウェア開発会社では、開発するソフトウェア製品の品質向上を図るため、 品質特性を考慮したプログラム開発の社内標準を制定し、作成したプログラムのコー ドレビュー体制を確立した。

表2は、最近のコードレビューで新人のプログラム開発担当者が受けた指摘の例で ある。

表2 新人のプログラム開発担当者が受けた指摘の例

ソースコード	指摘の内容	主な品質特性 (品質副特性)
○実数型: Ave, Count, Total : ·Ave ← Total ÷ Count :	左の処理を次のように変更すること。 : ▲ Count > 0 · Ave ← Total ÷ Count · Ave ← 0	a
: r: 1, r ≤ rMax, 1 c: 1, c ≤ cMax, 1	左の処理で、関数 Sub は計算時間は長いが、 返却値は引数だけに依存する。 次のように最適化すること。 : b	効率性 (時間効率性)
: /* 主記憶の動的取得 */ ・GetMain(Addr, Len) : /* 主記憶の動的開放 */ ・FreeMain(Addr) : :	主記憶の動的取得と開放で、システム標準の関数を使用している。一般に、取得した範囲外や開放済の記憶域を誤って更新するなどの障害は、 c 。 次のように、デパッグ機能のある社内で開発した同機能の関数を使用すること。 ・ X_GetMain(Addr, Len, …) : ・ X_FreeMain(Addr, …)	保守性(試験性)
○整数型: P1, P2, Ans ○整数型関数: Fn(P1, P2) : ·Ans ← Fn(P1, P2) :	このプログラムは複数の機種で汎用的に使われる。機種の違いによって d が異なることがあるので、次のように宜言の記述形式を変更すること。 ○32ビット整数型: P1, P2, Ans ○32ビット整数型関数: Fn(P1, P2) ::	е

設問 表2中の に入れる正しい答えを、解答群の中から選べ。

a, eに関する解答群

ア 移植性 (環境適応性) イ 効率性 (資源効率性) ウ 信頼性 (成熟性)

工 保守性 (解析性) 才 保守性 (変更性)

bに関する解答群

cに関する解答群

- ア 更新した時点で障害と分かるが、ログを記録する機能のある OS は少ない
- イ 更新した時点で障害と分かるが、ログを記録する機能のあるハードウェアは少な い
- ウ 更新内容を後で参照したときに障害となることが多く、原因箇所の特定が困難で ある
- エ 取得可能な主記憶域が残っている間は、障害を検知できない

dに関する解答群

- ア 指定できる変数や関数の個数
- イ 変数や関数の型宣言で省略した場合のピット数
- ウ リンカで扱える関数のビット数
- エ ローダで扱える関数の個数