

Neurocomputing

Optimization

Julien Vitay

Professur für Künstliche Intelligenz - Fakultät für Informatik

https://tu-chemnitz.de/informatik/KI/edu/neurocomputing

1 - Optimization

Machine learning = Optimization

- Machine learning is all about optimization:
 - Supervised learning minimizes the error between the prediction and the data.
 - Unsupervised learning maximizes the fit between the model and the data
 - Reinforcement learning maximizes the collection of rewards.
- The function to be optimized is called the objective function, cost function or loss function.
- ML searches for the value of free parameters which optimize the objective function on the data set.
- The simplest optimization method is the gradient descent (or ascent) method.

Analytical optimization

• The easiest method to find the extremum of a function f(x) is to look where its first derivative is equal to 0:

$$x^* = \min_x f(x) \Leftrightarrow f'(x^*) = 0 ext{ and } f''(x^*) > 0$$

$$x^* = \max_x f(x) \Leftrightarrow f'(x^*) = 0 ext{ and } f''(x^*) < 0$$

- The sign of the second order derivative tells us whether it is a maximum or minimum.
- There can be multiple minima or maxima (or none) depending on the function.
 - The "best" minimum (with the lowest value among all minima) is called the global minimum.
 - The others are called local minima.

Multivariate optimization

- ullet A multivariate function is a function of more than one variable, e.g. f(x,y).
- A point (x^*, y^*) is an extremum of f if all partial derivatives are zero:

$$egin{cases} rac{\partial f(x^*,y^*)}{\partial x} = 0 \ rac{\partial f(x^*,y^*)}{\partial y} = 0 \end{cases}$$

• The vector of partial derivatives is called the **gradient of the function**:

$$abla_{x,y}\,f(x,y) = egin{bmatrix} rac{\partial f(x,y)}{\partial x} \ rac{\partial f(x,y)}{\partial y} \end{bmatrix}$$

ullet Finding the extremum of f is searching for the values of (x,y) where the gradient of the function is zero:

$$abla_{x,y}\,f(x^*,y^*)=egin{bmatrix}0\0\end{bmatrix}$$

Multivariate optimization: example

• Let's consider this function:

$$f(x,y) = (x-1)^2 + y^2 + 1$$

• Its gradient is:

$$abla_{x,y}\,f(x,y)=egin{bmatrix} 2(x-1)\ 2y \end{bmatrix}$$

• The gradient is equal to 0 when:

$$egin{cases} 2\left(x-1
ight)=0 \ 2\,y=0 \end{cases}$$

• One should check the second order derivative to know whether it is a minimum or maximum...

2 - Gradient descent

Problem with analytical optimization

- In machine learning, we generally do not have access to the analytical form of the objective function.
- We can not therefore get its derivative and search where it is 0.
- However, we have access to its value (and derivative) for certain values, for example:

$$f(0,1)=2 \qquad f'(0,1)=-1.5$$

- We can "ask" the model for as many values as we want, but we never get its analytical form.
- For most useful problems, the function would be too complex to differentiate anyway.

Euler method

• Let's remember the definition of the derivative of a function. The derivative f'(x) is defined by the slope of the tangent of the function:

$$f'(x) = \lim_{h o 0} rac{f(x+h)-f(x)}{x+h-x}$$

$$=\lim_{h o 0}rac{f(x+h)-f(x)}{h}$$

ullet If we take h small enough, we have the following approximation:

$$f(x+h)-f(x)pprox h\,f'(x)$$

ullet We are making an error, but it is negligible if h is small enough (Taylor series).

Euler method

• First order approximation:

$$f(x+h)-f(x)pprox h\,f'(x)$$

• If we want x+h to be closer to the minimum than x, we want:

$$f(x+h) < f(x)$$

We therefore want that:

- The **change** in the value of x must have the opposite sign of $f^{\prime}(x)$.
 - If the function is increasing in x, the minimum is smaller than x.
 - If the function is decreasing in x, the minimum is bigger than x.

Gradient descent

• Gradient descent (GD) is a first-order method to iteratively find the minimum of a function f(x).

- ullet It creates a series of estimates $[x_0,x_1,x_2,\ldots]$ that converge to a local minimum of f .
- Each element of the series is calculated based on the previous element and the derivative of the function in that element:

$$x_{n+1}=x_n+\Delta x=x_n-\eta\,f'(x_n)$$

• η is a small parameter between 0 and 1 called the **learning rate**.

Gradient descent

Gradient descent algorithm

- ullet We start with an initially wrong estimate of x: x_0
- for $n \in [0,\infty]$:
 - We compute or estimate the derivative of the loss function in x_n : $f'(x_n)$
 - We compute a new value x_{n+1} for the estimate using the **gradient descent update rule**:

$$\Delta x = x_{n+1} - x_n = -\eta\,f'(x_n)$$

- There is theoretically no end to the GD algorithm: we iterate forever and always get closer to the minimum.
- The algorithm can be stopped when the change Δx is below a threshold.

Gradient descent

Multivariate gradient descent

Gradient descent can be applied to multivariate functions:

$$\min_{x,y,z} \qquad f(x,y,z)$$

• Each variable is updated independently using partial derivatives:

$$egin{aligned} \Delta x &= x_{n+1} - x_n = -\eta \, rac{\partial f(x_n, y_n, z_n)}{\partial x} \ \Delta y &= y_{n+1} - y_n = -\eta \, rac{\partial f(x_n, y_n, z_n)}{\partial y} \ \Delta z &= z_{n+1} - z_n = -\eta \, rac{\partial f(x_n, y_n, z_n)}{\partial z} \end{aligned}$$

Multivariate Gradient descent

We can also use the vector notation to use the gradient operator:

$$\mathbf{x}_n = egin{bmatrix} x_n \ y_n \ z_n \end{bmatrix} \quad ext{and} \quad
abla_{\mathbf{x}} f(\mathbf{x}) = egin{bmatrix} rac{\partial f(x,y,z)}{\partial x} \ rac{\partial f(x,y,z)}{\partial y} \ rac{\partial f(x,y,z)}{\partial x} \end{bmatrix} \qquad o \qquad \Delta \mathbf{x} = -\eta \,
abla_{\mathbf{x}} f(\mathbf{x}_n)$$

Multivariate gradient descent

Influence of the learning rate

- ullet The parameter η is called the learning rate (or step size) and regulates the speed of convergence.
- The choice of the learning rate η is critical:
 - If it is too small, the algorithm will need a lot of iterations to converge.
 - If it is too big, the algorithm can oscillate around the desired values without ever converging.

Optimality of gradient descent

- Gradient descent is not optimal: it always finds a local minimum, but there is no guarantee that it is the global minimum.
- The found solution depends on the initial choice of x_0 . If you initialize the parameters near to the global minimum, you are lucky. But how?
- This will be a big issue in neural networks.

Regularization

- Most of the time, there are many minima to a function, if not an infinity.
- As GD only converges to the "closest" local minimum, you are never sure that you get a good solution.
- Consider the following function:

$$f(x,y) = (x-1)^2$$

- ullet As it does not depend on y, whatever initial value y_0 will be considered as a solution.
- As we will see later, this is something we do not want.

Regularization

- ullet We may want to put the additional **constraint** that x and y should be as small as possible.
- ullet One possibility is to also minimize the **Euclidian norm** (or **L2-norm**) of the vector ${f x}=[x,y]$.

$$\min_{x,y} ||\mathbf{x}||^2 = x^2 + y^2$$

- Note that this objective is in contradiction with the original objective: (0,0) minimizes the norm, but not the function f(x,y).
- We construct a new function as the sum of f(x,y) and the norm of ${\bf x}$, weighted by the **regularization** parameter λ :

$$\mathcal{L}(x,y) = f(x,y) + \lambda \left(x^2 + y^2\right)$$

ullet For a fixed value of λ , for example 0.1, we now minimize using gradient descent the following loss function function:

$$\mathcal{L}(x,y) = f(x,y) + \lambda \left(x^2 + y^2\right)$$

• We just need to compute its gradient:

$$abla_{x,y}\,\mathcal{L}(x,y) = egin{bmatrix} rac{\partial f(x,y)}{\partial x} + 2\,\lambda\,x \ rac{\partial f(x,y)}{\partial y} + 2\,\lambda\,y \end{bmatrix}$$

and apply gradient descent iteratively:

$$\Delta egin{bmatrix} x \ y \end{bmatrix} = -\eta \,
abla_{x,y} \, \mathcal{L}(x,y) = -\eta \, \left[rac{\partial f(x,y)}{\partial x} + 2 \, \lambda \, x
ight]_{rac{\partial f(x,y)}{\partial y} + 2 \, \lambda \, y}$$

- ullet You may notice that the result of the optimization is a bit off, it is not exactly (1,0).
- This is because we do not optimize f(x,y) directly, but $\mathcal{L}(x,y)$.
- Let's look at the real landscape of the function.

$$\mathcal{L}(x,y) = f(x,y) + \lambda \left(x^2 + y^2
ight)$$

- The optimization with GD works, it is just that the function is different.
- ullet The constraint on the Euclidian norm "attracts" or "distorts" the function towards (0,0).
- This may seem counter-intuitive, but we will see with deep networks that we can live with it.
- Let's now look at what happens when we increase λ (to 5.0).

Now the result of the optimization is totally wrong: the constraint on the norm completely dominates the
optimization process.

$$\mathcal{L}(x,y) = f(x,y) + \lambda \left(x^2 + y^2\right)$$

- ullet λ controls which of the two objectives, f(x,y) or x^2+y^2 , has the priority:
 - ullet When λ is small, f(x,y) dominates and the norm of ${f x}$ can be anything.
 - ullet When λ is big, x^2+y^2 dominates, the result will be very small but f(x,y) will have any value.
- ullet The right value for λ is hard to find. We will see later methods to experimentally find its most adequate value.

Another form of regularization is L1 - regularization using the L1-norm (absolute values):

$$\mathcal{L}(x,y) = f(x,y) + \lambda \left(|x| + |y|
ight)$$

• Its gradient only depend on the sign of x and y:

$$abla_{x,y}\,\mathcal{L}(x,y) = egin{bmatrix} rac{\partial f(x,y)}{\partial x} + \lambda \operatorname{sign}(x) \ rac{\partial f(x,y)}{\partial y} + \lambda \operatorname{sign}(y) \end{bmatrix}$$

• It tends to lead to **sparser** value of (x,y), i.e. either x or y will be 0.

