研究信道利用率——一个概率的视角

应承轩

计算机科学与技术系2017级、201785071

September 27, 2019

1 引言

网络数据在信道上进行传输,然而由于现实情况的限制,信道的利用率远远无法达到理论的信道利用率——100%。在本次实验中,我将从概率的视角、使用数值模拟的手段,研究信道利用率。

2 实验描述

2.1 信道利用率的定义

我们假设数据传输使用广播信道,当不考虑数据之间的碰撞时候,我们可以为信道的利用率定义如下一个极限:

$$S_{max} = \frac{T_0}{T_0 + \tau} \tag{1}$$

其中 T_0 为数据帧本身的发送时间, τ 为一个端到端延迟时间。

如果考虑到数据之间产生的碰撞,我们必须使用一个协议去进行调度,在本文中,我们以CSMA/CD方法为例,其信道利用率具体定义如下:

$$S = \frac{T_0}{T_0 + T_1 + \tau} \tag{2}$$

其中 T_1 为CSMA/CD协议中退避方法产生的延时。

2.2 信道利用率的期望

我们实验的目的是求出信道利用率的期望,即:

$$\mathbb{E}(S) = \mathbb{E}\left(\frac{T_0}{T_0 + T_1 + \tau}\right) \tag{3}$$

我们假设实验在理想环境中完成:数据帧本身发送时间固定、端到端延迟固定,即: $\mathbb{E}(T_0) = T_0 \setminus \mathbb{E}(\tau) = \tau$,我们有:

$$\mathbb{E}(S) = \frac{T_0}{T_0 + \mathbb{E}(T_1) + \tau} \tag{4}$$

由于退避方法产生的延时 T_1 由其他节点对信道的竞争、本自身机数产生的策略、以及自己上一个时间的状态共同决定。不妨可以假设其概率分布如下:

$$T_1 \sim P(N, S, \pi, \dots) \tag{5}$$

其中N为其邻居的情况,我们可以简单的假设N=N(n),其中n为网络中节点的总数,即n越大,其邻居情况越复杂¹;S为每个节点自身的状态,为了简单,我们作出0阶马尔可夫假设; π 为单次退避时间的采样策略,为了简单,我们采用均匀采样。

显然,我们难以确定概率分布,不妨做出如下转换:

$$\mathbb{E}(T_1) = \int p \cdot T_1 = \frac{1}{M} \sum_{i=1}^{M} T_1^i$$
 (6)

其中 T_1^i 为第i次采样获得的退避延时。

3 模型

我们按照CSMA/CD的规范,仅复现其时间属性,不对协议本身进行模拟,具体代码请查看 https://github.com/chengsyuan/Channel-Efficiency-Simulator/。

4 实验

4.1 实验设置

在实验中,我们将时间片设为10us,即每10us为一步,更多实验中使用的参数如下:

 $\frac{}{3 \text{ steps}}$ 伯努利概率p 数据发送时间 T_0 节点个数n $\frac{}{3 \text{ steps}}$ 0.0001 100 steps 10 为了简化实验环境,研究主要问题,我们对模型做出以下抽象:

- IID假设:各个主机独立发包,互不了解。每个主机、每个step发包几率均相等。
- 数据包大小相等: 假定主机发送速率为10Mbps, 在100steps内, 主机相当于发送10Kbits, 即1.25Kbytes, 可以较好的模拟现实环境。
- **发送频率**:每个节点在每一个step进行一次伯努利试验,考虑到伯努利期望,这相当于每10000step或100ms发送一次数据包。

4.2 实验结果

根据之前提到的超参数,我们进行了多次实验,近似求得信道利用率的期望 $\mathbb{E}(S)$ 。

期望利用率 $\mathbb{E}(S)$
0.9100
0.9300
0.9398
0.9379
0.9393
0.9384
0.9369

可以看出,最终结果趋近于0.9369,我们可以假定此时的M足够大,并以此作为期望利用率 $\mathbb{E}(S)$ 。

expectation

4.3 参数对于信道利用率的影响

注意,我们保持其他参数不变,仅更改自变量。考虑到有限的计算资源,我们每次实验均重复十次,即M=10。

4.3.1 节点个数

我们研究了网络中不同节点个数对于信道利用率的影响,注意,所有节点均遵循IID原则,结果见下表:

节点个数n	期望利用率 $\mathbb{E}(S)$	_
1	0.9700	
2	0.9690	
3	0.9610	
5	0.9580	
10*	0.9339	
20	0.8930	
30	0.7590	表格中带*的为默认参数。
40	0.6630	
50	0.4279	
60	0.2830	
70	0.1530	
80	0.0749	
90	0.0450	
100	0.0329	

可以看出,随着节点个数n的增加,期望利用率 $\mathbb{E}(S)$ 逐渐减小。

node_counts

4.3.2 数据包大小

我们研究了网络中数据包大小对于信道利用率的影响,考虑到数据包发送时间 T_0 与数据包大小成线性关系,我们将数据包发送时间 T_0 作为自变量进行研究,结果见下表:

数据包发送时间 T_0	期望利用率 $\mathbb{E}(S)$	
10	0.7659	
50	0.9179	
60	0.9359	
80	0.9409	表格中带*的为默认参数。
100*	0.9329	农怕中中 印沙州 从参数。
200	0.9109	
300	0.8889	
500	0.6150	
1,000	0.2440	

可以看出,这个曲线为凸曲线,期望利用率 $\mathbb{E}(S)$ 最大值应该在 $T_0=80$ 的附近。

packet_size

4.3.3 端对端延迟

我们研究了端对端延迟τ对于信道利用率的影响,结果见下表:

端对端延迟τ	期望利用率 $\mathbb{E}(S)$	
0	1.000	
1	0.9590	
2	0.9419	
3*	0.9430	
5	0.9150	
7	0.9090	表格中带*的为默认参数。
10	0.8810	
15	0.8240	
20	0.7950	
30	0.7120	
50	0.6060	
100	0.4370	

可以看出,随着端对端延迟 τ 的增加,期望利用率 $\mathbb{E}(S)$ 逐渐减小。

e2e_latency

夜太美 尽管太危险 总有人黑着眼眶熬着夜

5 感触

熬夜伤身体,早睡早起身体好。

代码和报告

https://github.com/chengsyuan/Channel-Efficiency-Simulator

广告:大工计算机课程开放项目

https://github.com/chengsyuan/DLUT_CS_OPEN_COURSE

