Multivariable Calculus Day 2 Linear Algebra (cont.)

Truong-Son Van

Fulbright University Vietnam

Spring 2023

Dot product

Definition

The dot product of vectors $\mathbf{u} = \langle u_1, \dots, u_n \rangle$ and $\mathbf{v} = \langle v_1, \dots, v_n \rangle$ in \mathbb{R}^n is the scalar

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \cdots + u_n v_n$$
.

Dot product: Geometric meaning

Theorem

If θ is the angle between the vectors \mathbf{u} and \mathbf{v} , then

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$
 .

Dot product: Geometric meaning

Theorem

If θ is the angle between the vectors \mathbf{u} and \mathbf{v} , then

$$\mathbf{u}\cdot\mathbf{v}=|\mathbf{u}||\mathbf{v}|\cos\theta\,.$$

Proof in \mathbb{R}^2 .

Homework

Dot product: Geometric meaning

Theorem

If θ is the angle between the vectors \mathbf{u} and \mathbf{v} , then

$$\mathbf{u}\cdot\mathbf{v}=|\mathbf{u}||\mathbf{v}|\cos\theta.$$

Proof in \mathbb{R}^2 .

Homework

Corollary

Two vectors \mathbf{u} and \mathbf{v} are orthogonal to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

Dot product: Projection

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. The component of \mathbf{u} in the direction of \mathbf{v} is the scalar

$$\operatorname{comp}_{\mathbf{v}}\mathbf{u} =$$

and the projection of \boldsymbol{u} onto \boldsymbol{v} is the vector

$$\mathrm{proj}_{\boldsymbol{v}}\boldsymbol{u} =$$

Example

- **1** Let $\mathbf{a} = \langle 3, 0, -1 \rangle$. Find a vector \mathbf{b} such that $\text{comp}_{\mathbf{a}} \mathbf{b} = 2$.
- ② Suppose **a** and **b** are nonzero vectors. When would it be true that $comp_{\mathbf{a}}\mathbf{b} = comp_{\mathbf{b}}\mathbf{a}$?
- **3** When would it be true that $\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \operatorname{comp}_{\mathbf{b}}\mathbf{a}$?

WARNING

This concept is very specific to \mathbb{R}^3 . It will not make sense in other dimensions.

Definition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. The cross product of \mathbf{a} and \mathbf{b} is defined to be

$$\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$
.

Given a 3×3 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} ,$$

the determinant of the matrix A is

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

Question

Relate the cross product of vectors \mathbf{u} and \mathbf{v} with the determinant of a 3 \times 3 matrix.

Suppose
$$\mathbf{u} = \langle 0, 1, 3 \rangle, \mathbf{v} = \langle 2, -1, 0 \rangle$$
.

- **1** Find the cross products $\mathbf{u} \times \mathbf{v}$
- ② Find the cross products $\mathbf{v} \times \mathbf{u}$
- **3** Compute $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v})$ and $\mathbf{v} \cdot \mathbf{u} \times \mathbf{v}$.
- **4** Compute $\mathbf{u} \times \mathbf{u}$.

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^3 and $c \in \mathbb{R}$. Then

- **1** (anti-symmetry) $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$
- $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$
- $(c\mathbf{u}) \times \mathbf{w} = c(\mathbf{u} \times \mathbf{w}) = \mathbf{u} \times (c\mathbf{w})$
- $\mathbf{0} \mathbf{u} \times \mathbf{v} = \mathbf{0}$ if \mathbf{u} and \mathbf{v} are parallel
- **5 WARNING:** in general $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} \neq \mathbf{u} \times (\mathbf{v} \times \mathbf{w})$

Theorem

Let θ be the angle between **a** and **b**. Then,

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$$
.

Theorem

The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Theorem

The length, $|\mathbf{u} \times \mathbf{v}|$, of the cross product of vectors \mathbf{u} and \mathbf{v} is the area of the parallelogram determined by \mathbf{u} and \mathbf{v} .

Example

Find the area of the parallelogram created by two vectors (1,3,-2) and (3,0,1).

- Prove the above theorem.
- ② Find the area of the parallelogram in \mathbb{R}^3 whose vertices are (1,0,1),(0,0,1),(2,1,0),(1,1,0). Hint: maybe draw it out.