What is a predictive model

A black box to predict the future based on informations from the past and the present

Development and use of predictive models

Quality aspects of a Data Mining Analyse

- The success of a data mining method depends on the relevance, reliability and validity of the variables (data quality)
- The validity (generalizability) of the results depends on whether the specialist department contributes hypotheses about attributes and relationships of the data population
- If only a selection of the data population is available as data elements (partial survey), the analyst must ask how reliably he can generalise the results of the sample
- A distinction is made between the learning set and the test set if a second set of data (the test set) is to validate the result of the learning set.

Scaling of Features

nominal:

only frequencies

ordinal:

+ order

interval:

- + distances
- proportional:
- + zero point

Scale levels in comparison.

Red: The properties newly added at the respective scale level.

Data Preprocessing

Data preprocessing consists of five tasks

- 1. Reduce data objects («sampling»)
- 2. Reduce features («feature selection» or «dimensionality reduction»)
- 3. Treat defective and missing features
- 4. Normalize features
- 5. Adjust scaling

Reducing the Size (Sampling)

Why sampling?

- Counteract performance problems.
- Some methods are not applicable to too many records.

Requirement: the sample should reflect the context of the raw data

i.e., it should not be biased.

Sampling methods:

- Different selection procedures are available
- Mostly: random selection of data objects

Reducing the Dimensions

Why reducing dimensions?

- Many data mining methods work better with less features.
- Some features may be redundant, irrelevant, or disruptive (noisy).
- Resulting models are more comprehensible.
- Visualization is only possible with 2 or 3 dimensions.
- Danger of overfitting if the number of features is much larger than the number of records

Two classes of methods:

- Dimensionality Reduction
- Feature Selection

Visual attribute reduction

Scatter matrix

2.3.2 Feature reduction

- 1. Remove obviously irrelevant or redundant features. Do manually:
 - E.g., the customer ID is irrelevant to predict a target variable
 - E.g., age and age group are redundant
- 2. For the rest, define an optimal subset of features. Apply systematic approach:
 - Total set of features: $F = \{x_1, \dots, x_n\}$.
 - Evaluate features sets using a quality measure:
 - For $F' \subseteq F$ let J(F') be the quality of F'.
 - Goal: Find the subset F' with best possible quality (minimal or maximal J(F')).
 - two main approaches:
 - «Filter Method»
 - «Wrapper Method

A record x_i must be "repaired", if....

... it is not complete.

I.e., in the data object x_i , the j-th feature value x_{ij} is missing (for some j and i).

... it is erroneous.

I.e., in the data object x_i , the j-th feature value x_{ij} is erroneous (for some j and i).

- Random errors occur very often during manual recordings of data
 - E.g., spelling errors, digit errors, comma wrongly set, etc.
- Systematic errors occur
 - E.g., when a sensor does not properly work during automatic data acquisition
 - E.g., when an employee systematically makes erroneous input during data collection.
 - E.g., change of the input system
 - E.g., change of the business meaning

- Erroneous records deviate very much from the rest of the data. In this case they are called outliers.
 - Note: Not all outliers are errors! The sample data may contain correct, but exceptional feature values that can provide valuable information.
- Methods of Outlier-Detection:
 - Visualization often sufficient (outliers are very far above or below the "normal" distribution of the feature values).
 - Statistical measures.
 - Example: k-sigma rule: An attribute value is considered an outlier when it deviates by more than k times the standard deviation from the mean value of the attribute. Typical are: k = 2, 3, 4, 5

- 1. Remove records with missing or erroneous values from the sample
 - I.e., remove a row from the data set.
 - Risk: Unintentional distortion of the sample.
- 2. Remove attributes with missing or erroneous values from the sample
 - I.e., remove a column from the data set.
 - Unfavorable if the attribute contains important information for modeling.
- 3. Encode missing / erroneous values with a special feature expression
 - Numerical Features: Special "out-of-range" number
 - E.g., "-1" or NaN (Not a Number)
 - Categorical Features: Special category
 - E.g., unknown, erroneous.
 - Note: The so coded attribute values must be treated particularly in the following data analysis!
- Complete or replace missing / erroneous values with:
 - Statistical measure
 - E.g., min, max, mean, median, mode of the feature
 - Feature value of the most similar data object in the sample
 - Cf. nearest neighbor

Normalizing Features

Different attributes represent different variables.

- → Range of values can be very different.
- → May lead to problems during the data mining process.
- 1. Transform each feature so that mean = 0 and standard deviation = 1:

$$\hat{x}_{i_j} = \frac{x_{i_j} - m_j}{\sigma_i}$$
 where \hat{x}_{ij} is the value of the *j*-th feature after normalization.

2. Incorporate the features into a fixed interval, e.g., [0,1]:

$$\hat{x}_{i_j} = \frac{x_{i_j} - min}{max - min}$$
, where $min = \min\{x_{i_j} | i = 1, \dots, N\};$
 $max = \max\{x_{i_j} | i = 1, \dots, N\}.$

Notice:

- For a new data object $x_{ij} \in [\min, \max]$ need not hold!
- Therefore \hat{x}_{ij} can be outside [0,1].

Changing the scale of measurement

- Always possible from higher to lower scale level.
 - E.g., from numerical to categorical.
 - Method, e.g.: discretization.
- Usually not possible from a lower to a higher scale level.
 - E.g., no exact numerical values can be derived from categories

Discretization

- Summarizes numerical attributes.
- Result: finite number of subsets → categorical feature.

Why discretization?

- ◆ Often leads to more clarity of data structure → can simplify analysis
- Some data mining methods can only process categorical attributes.

Notice:

- Part of the original information is lost!
- Often already applied during sampling.
 - E.g. Surveys: one does not have to specify the exact income but only the income class.

Discretization Methods

- Equal Width Binning
 - Approach:
 - Specify number of categories n. Sort the feature values in ascending order. Divide the range of feature values into n intervals of same size (by defining n 1 split points). The intervals represent the categories.
 - E.g., { [0,10[,[10,20[,[20,30[}).
 - 2. Map all values within an interval to the corresponding category.
 - Disadvantage: Often unequal distribution of data objects in bins.
 - Some intervals may contain a lot of data objects, others may be almost empty.
 - This can negatively affect data mining results.

2.3.5 Adjust Scaling

Discretization Methods

- Equal Frequency Binning
 - Approach:
 - Define intervals so that each interval contains (approximately) the same number of data objects from the sample.
- Clustering based Binning
 - Approach:
 - Divide the feature values into categories using a clustering algorithm that takes into account the feature to be discretized

Binarization can be used to transform categorical features

- Approach:
 - Categorical attribute with k possible values.
 - Replace it by k artificial binary attributes.
 - Each of these k artificial attributes represents a possible occurrence of the categorial attribute, and is equal to 1 if the value of the original attribute corresponds to the corresponding category (cf. bitmap indexing).
- Binarization is important for calculating similarities, or dissimilarities of features.

•

Example 10: Binarization.

 \Rightarrow

$x_i = awful$	$x_i = poor$	$x_i = OK$	$x_i = good$	$x_i = great$
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Imbalanced distributions

- In certain cases, the classes have very different frequencies
 - Prediction of quitting in telecommunication: 97% stay, 3% quit (per month)
 - Medical diagnosis: 90% healthy, 10% sick
 - eCommerce: 99% buy nothing, 1% buy
- Similar situations with multiple classes
- A classifier that predicts the majority has an accuracy of e.g. 97%, but is worthless

Treating imbalanced data (stratification)

- Assumption: Two classes with a positive value as a minority
- Divide the raw data into a residual set (e.g. 30% of the data) and training data
 - Separate the residual set and only use it at the end
- Find the remaining positive instances (e.g. 70% of all positive instances) from the training data
- Mix them with the same number of negative instances and sort them randomly to form a balanced data set.
- Divide the resulting data set into learning and test set

Learn with imbalanced data

- Build the model with the balanced learning and test sets
- Check and determine the result with the separate raw data
- Generalization for multiple classes
 - Stratify the data
 - Ensure that all classes are equally represented in the learning and test set