

Khoa Công Nghệ Thông Tin Trường Đại Học Cần Thơ

Giải thuật gom cụm Clustering algorithms

Đỗ Thanh Nghị dtnghi@cit.ctu.edu.vn

> Cần Thơ 02-12-2008

Nội dung

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Nội dung

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Clustering

gom nhóm

- nature của dữ liệu thường không có nhiều thông tin sẵn có như lớp (nhãn)
- gom nhóm: mô hình gom cụm dữ liệu (không có nhãn) sao cho các dữ liệu cùng nhóm có các tính chất tương tự nhau và dữ liệu của 2 nhóm khác nhau sẽ có các tính chất khác nhau
- có nhiều nhóm giải thuật khác nhau : hierarchical clustering, partitioning, density-based, model-based, etc.
- được sử dụng nhiều: K-Means, Dendrogram, SOM, EM
- được ứng dụng thành công trong hầu hết các lãnh vực tìm kiếm thông tin, phân tích dữ liệu, etc.

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Clustering

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Clustering

gom nhóm

- thường dựa trên cơ sở khoảng cách
- nên chuẩn hóa dữ liệu
- khoảng cách được tính theo từng kiểu của dữ liệu: số, nhị phân, loại, kiểu symbol (interval, histogram, taxonomy

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Kiểu số

khoảng cách Minkowski

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

 $i = (x_{i1}, x_{i2}, ..., x_{ip})$ và $j = (x_{j1}, x_{j2}, ..., x_{jp})$ là 2 phần tử dữ liệu trong p-dimensional, q là số nguyên dương

- nếu q = 1, d là khoảng cách Manhattan
- nếu q = 2, d là khoảng cách Euclid
- khoảng cách cosine : $d_{cos}(i, j) = i^T j/(||i|| ||j||)$

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

?				
Kiêu	1	1_ :	1	1.
K 1611	n	n 1	n	ทяท
1 X 1 U U		ГТŤ	\mathcal{L}^{J}	11411

Pilan	1	Object j				
		1	0	sum		
Object i	1	а	b	a+b		
	0	\mathcal{C}	d	c+d		
	sum	a+c	b+d	p		

- khoảng cách đối xứng : $d(i, j) = \frac{b+c}{a+b+c+d}$
- khoảng cách bất đối xứng: $d(i, j) = \frac{b+c}{a+b+c}$
- hệ số Jaccard bất đối xứng : $sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Kiểu loại (nominal type)

- ví dụ: thuộc tính color có giá trị là red, green, blue, etc.
 - phương pháp matching đơn giản, m là số lượng matches và p là tổng số biến (thuộc tính), khoảng cách được định nghĩa :

$$d(i,j) = \frac{p-m}{p}$$

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

xem trang publications của Edwin DIDAY và các cộng sự

Kiểu symbol

Nội dung

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Hierarchical clustering

- bottom up
 - bắt đầu với những clusters chỉ là 1 phần tử
 - ở mỗi bước, merge 2 clusters gần nhau thành 1
 - khoảng cách giữa 2 clusters : 2 điểm gần nhất từ 2 clusters, hoặc khoảng cách trung bình, etc.
- top down
 - bắt đầu với 1 cluster là tất cả dữ liệu
 - tim 2 clusters con
 - tiếp tục đệ quy trên 2 clusters con
- kết quả sinh ra dendrogram

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Hierarchical clustering

- nhận xét
 - 1. giải thuật đơn giản
 - 2. cho kết quả dễ hiểu
 - 3. không cần tham số
 - 4. chạy chậm
 - 5. BIRCH (Zhang et al., 1996) sử dụng cấu trúc index để xử lý dữ liệu lớn

Nội dung

- Giới thiệu về clustering
- Hierarchical clustering
- **■ K-Means**
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- giải thuật
 - 1. khởi động ngẫu nhiên K tâm (center) của K clusters
 - 2. mỗi phần tử được gán cho tâm gần nhất với phần tử dựa vào khoảng cách (e.g. khoảng cách Euclid)
 - 3. cập nhật lại các tâm của K clusters, mỗi tâm là giá trị trung bình (mean) của các phần tử trong cluster của nó
 - 4. lặp lại bước 2,3 cho đến khi hội tụ

- Giới thiệu về clustering
- Hierarchical clustering
- **■** K-Means
- Kết luận và hướng phát triển

Y khởi động ngẫu nhiên 3 tâm của 3 clusters

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Y

mỗi phần tử

tâm cluster

nó

gần nhất của

được gán cho

- Giới thiệu về clustering
- Hierarchical clustering
- **K-Means**
- Kết luận và hướng phát triển

cập nhật lại

tâm của các

các phần tử

Y k_2 cluster (giá trị trung bình của trong cluster)

- Giới thiệu về clustering
- Hierarchical clustering
- **K-Means**
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- **K-Means**
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- **K-Means**
- Kết luận và hướng phát triển

các phần tử trong cluster)

cập nhật lại

tâm của các

- Giới thiệu về clustering
- Hierarchical clustering
- **K-Means**
- Kết luận và hướng phát triển

các phần tử trong cluster)

cập nhật lại

tâm của các

- Giới thiệu về clustering
- Hierarchical clustering
- **■** K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- nhận xét
 - 1. giải thuật đơn giản
 - 2. cho kết quả dễ hiểu
 - 3. cần cho tham số K (số lượng clusters)
 - 4. kết quả phụ thuộc vào việc khởi động ngẫu nhiên K tâm (center) của K clusters: có thể khắc phục bằng cách khởi động lại nhiều lần.
 - 5. khả năng chịu đựng nhiễu không tốt (ảnh hưởng bởi các phần tử outliers): có thể khắc phục bằng K-Medoids, không sử dụng giá trị trung bình, nhưng sử dụng phần tử ngay giữa

Nội dung

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Giải thuật clustering

- còn nhiều phương pháp khác
 - density-based: DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al., 1999), DENCLUE (Hinneburg & Keim, 1998)
 - model-based : EM (Expected maximization), SOM (Kohonen, 1995)

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

Clustering với OPTICS

Clustering 12088 web articles với SOM

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Giới thiệu về clustering
- Hierarchical clustering
- K-Means
- Kết luận và hướng phát triển

- Hướng phát triển
 - các kiểu dữ liệu phức tạp
 - tăng tốc độ xử lý
 - các tham số đầu vào của giải thuật
 - diễn dịch kết quả sinh ra
 - phương pháp kiểm chứng chất lượng mô hình

