Examen de Topología

NOTA IMPORTANTE: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros. (Tiempo 2 horas)

- 1.- En el conjunto $\mathbb R$ de los números reales se define la familia T de $\mathbb R$ como: $T = \{\mathbb R\} \cup P(\mathbb R M)$ (donde $P(\mathbb R M)$ es el conjunto de partes de $\mathbb R M$) y M = (1,3).
- a) Probar que (\mathbb{R}, T) es un espacio topológíco.
- b) Describir una base de entornos de 2 y una base de entornos de 0 en (\mathbb{R}, T) .
- c) Estudiar si alguno de los dos puntos 0 y 2 tienen una base de entornos cerrados.
- (3,5 puntos)

Solución

Problema 1.4 del libro Problemas de Topología

2.- Sea (X,T) un espacio topológico T_2 y A un subconjunto compacto de X. Probar que el conjunto de puntos de acumulación A de A es también compacto. (3 puntos)

Solución

Se tiene que $A \cup A' = \overline{A} = A$, puesto que A es es un conjunto compacto en un espacio T_2 , luego es un conjunto cerrado. Por lo tanto $A' \subset A$.

Veamos ahora que A' es cerrado, ya que entonces al estar contenido en un compacto sería compacto. Para ello veremos que si suponemos que A' no es cerrado llegaremos a una contradicción.

Supongamos que existe un $x \in \overline{A'}$ que no pertenece a $A' \Rightarrow$ que para todo entorno de x, V^x se tiene que $V^x \cap A' \neq \emptyset$, como $x \notin A'$ se tiene que $V^x - \{x\} \cap A' \neq \emptyset$, y como $V^x - \{x\} \cap A' \subset V^x - \{x\} \cap A \Rightarrow V^x - \{x\} \cap A \neq \emptyset$, luego $x \in A'$, lo que contradice las hipótesis.

3.- Sean A y B dos conjuntos cerrados de un espacio (X,T) tales que $A \cup B = X$. Si $f:(X,T) \to (Y,S)$ es una aplicación tal que las restricciones $f\mid_A$, $f\mid_B$ a los subespacios (A,T_A) y (B,T_B) son continuas, demostrar que la aplicación f es continua. (3,5 puntos)

Solución

Ejercicio 5 de autocomprobacíon de la unidad didáctica 2 del libro de teoría.