SC223 - Linear Algebra

Aditya Tatu

Lecture 10

August 31, 2022

Computing Matrix Inverses

- A^{-1} is the unique matrix such that $A^{-1}A = AA^{-1} = I$.
- Simultaneously solve *n* linear equations:

$$\begin{bmatrix} a_{*1} & \dots & a_{*n} \end{bmatrix} \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} = I, x_i \in \mathbb{R}^n, i = 1, \dots, n$$

$$\underbrace{\begin{bmatrix} a_{*1} & \dots & a_{*n} \mid I \end{bmatrix}}_{AM}$$

$$\begin{bmatrix} LU \mid I \end{bmatrix} \Rightarrow LUx_1 = I_{*1}, \dots, LUx_n = I_{*n}.$$

ullet Gauss-Jordan Method: Let R_1,\ldots,R_k represent row transformation matrices, not necessarily lower triangular, such that $R_k\cdot R_{k-1}\cdot\ldots R_1A=I$, then $A^{-1}=R_k\cdot R_{k-1}\cdot\ldots R_1$.

Thus,

$$R_k \cdot R_{k-1} \cdot \dots R_1 \left[A \mid I \right] =$$

Computing Matrix Inverses

- A^{-1} is the unique matrix such that $A^{-1}A = AA^{-1} = I$.
- Simultaneously solve *n* linear equations:

$$\begin{bmatrix} a_{*1} & \dots & a_{*n} \end{bmatrix} \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} = I, x_i \in \mathbb{R}^n, i = 1, \dots, n$$

$$\underbrace{\begin{bmatrix} a_{*1} & \dots & a_{*n} \mid I \end{bmatrix}}_{AM}$$

$$\begin{bmatrix} LU \mid I \end{bmatrix} \Rightarrow LUx_1 = I_{*1}, \dots, LUx_n = I_{*n}.$$

• Gauss-Jordan Method: Let R_1, \ldots, R_k represent row transformation matrices, not necessarily lower triangular, such that $R_k \cdot R_{k-1} \cdot \ldots \cdot R_1 A = I$, then $A^{-1} = R_k \cdot R_{k-1} \cdot \ldots \cdot R_1$.

Thus,

$$R_k \cdot R_{k-1} \cdot \dots R_1 \begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

ullet Additions and multiplications in worst case in computing the LU decomposition?

- Additions and multiplications in worst case in computing the *LU* decomposition?
- \bullet $\mathcal{O}(n^3)$

- Additions and multiplications in worst case in computing the LU decomposition?
- \bullet $\mathcal{O}(n^3)$
- Cost involved in Back-substitution?

- ullet Additions and multiplications in worst case in computing the LU decomposition?
- \bullet $\mathcal{O}(n^3)$
- Cost involved in Back-substitution?
- \bullet $\mathcal{O}(n^2)$

- Additions and multiplications in worst case in computing the LU decomposition?
- \bullet $\mathcal{O}(n^3)$
- Cost involved in Back-substitution?
- \bullet $\mathcal{O}(n^2)$
- ullet Cost for computing A^{-1} using Gauss-Jordan method?

- Additions and multiplications in worst case in computing the *LU* decomposition?
- \bullet $\mathcal{O}(n^3)$
- Cost involved in Back-substitution?
- \bullet $\mathcal{O}(n^2)$
- Cost for computing A^{-1} using Gauss-Jordan method?
- \bullet $\mathcal{O}(n^3)$

- Additions and multiplications in worst case in computing the LU decomposition?
- \bullet $\mathcal{O}(n^3)$
- Cost involved in Back-substitution?
- \bullet $\mathcal{O}(n^2)$
- Cost for computing A^{-1} using Gauss-Jordan method?
- \bullet $\mathcal{O}(n^3)$
- Why should one use *LU* decomposition?

• We have seen linear combinations of elements from

- We have seen linear combinations of elements from
- $\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$

• We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

• We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^{\mathbb{Z}}, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := (\dots, ax_{-1} + by_{-1}, ax_0 + by_0, ax_1 + by_1, \dots)$$

We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

•

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^{\mathbb{Z}}, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := (\dots, ax_{-1} + by_{-1}, ax_0 + by_0, ax_1 + by_1, \dots)$$

$$\blacktriangleright \forall f, g \in \{h : \mathbb{R} \to \mathbb{R}\}, \forall a, b \in \mathbb{R}, a \cdot f + b \cdot g, (a \cdot f + b \cdot g)(x) = a \cdot f(x) + b \cdot g(x), \forall x \in \mathbb{R}.$$

Definition: A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V, +) is an **Abelian group**:
 - $\blacktriangleright \ \forall x,y \in V, x+y \in V$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $\blacktriangleright \ \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta.$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $\blacktriangleright \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $ightharpoonup \forall x \in V, \exists y \in V, x + y = y + x = \theta.$ We will denote y by

-x.

 $\forall x, y, z \in V, (x+y) + z = x + (y+z).$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $\blacktriangleright \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - ▶ $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by

- $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
- $\forall x, y \in V, x + y = y + x.$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - ▶ $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by

- ► $\forall x, y, z \in V, (x + y) + z = x + (y + z).$
- $\blacktriangleright \forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $ightharpoonup \forall x \in V, \exists y \in V, x + y = y + x = \theta.$ We will denote y by

- $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
- $\blacktriangleright \forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that

$$1 \cdot v = v, \forall v \in V.$$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - ▶ $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by

- $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
- $\forall x, y \in V, x + y = y + x.$
- ► Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that
- $1 \cdot v = v, \forall v \in V.$
- ▶ Distributivity: $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u + v) = a \cdot u + a \cdot v$, and $\forall a, b \in \mathbb{F}, \forall u \in V, (a +_F b) \cdot u = a \cdot u + b \cdot u$.

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - ▶ $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by

-x.

- $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
- $\forall x, y \in V, x + y = y + x.$
- ► Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that
- $1 \cdot v = v, \forall v \in V.$
- ▶ **Distributivity:** $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u + v) = a \cdot u + a \cdot v$, and $\forall a, b \in \mathbb{F}, \forall u \in V, (a +_F b) \cdot u = a \cdot u + b \cdot u$.
- ► Compatibility of field and scalar multiplication:

 $\forall a, b \in \mathbb{F}, \forall u \in V, (a \times b) \cdot u = a \cdot (b \cdot u).$

Definition:(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ▶ $(\mathbb{F}, +_F)$ is an **Abelian group**. The additive identity will be denoted by 0.

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- \blacktriangleright (\mathbb{F} , $+_F$) is an **Abelian group**. The additive identity will be denoted by 0.
- ▶ $(\mathbb{F} \{0\}, \times)$ is an **Abelian group**. The mutiplicative identity will be denoted by 1.

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- \blacktriangleright (\mathbb{F} , $+_F$) is an **Abelian group**. The additive identity will be denoted by 0.
- ▶ ($\mathbb{F} \{0\}, \times$) is an **Abelian group**. The mutiplicative identity will be denoted by 1.
- **▶** Distributivity:

$$\forall a, b, c \in \mathbb{F}, (a+_F b) \times c = a \times c +_F b \times c, a \times (b+_F c) = a \times b +_F a \times c$$

 \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$

- ightharpoonup $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+, imes)$

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- \blacktriangleright ($\mathbb{R}, +, \times$)
- \blacktriangleright ($\mathbb{C}, +, \times$)

- $ightharpoonup (\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$
- \blacktriangleright ($\mathbb{C}, +, \times$)
- ightharpoonup ($\mathbb{Q},+,\times$)

- $ightharpoonup (\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$
- \blacktriangleright ($\mathbb{C}, +, \times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- \blacktriangleright ($\mathbb{R}, +, \times$)
- \blacktriangleright ($\mathbb{C}, +, \times$)
- ightharpoonup ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.
- ▶ If the 3-tuple $(V, +, \cdot)$ with field $(\mathbb{F}, +_F, \times)$ satisfies all vector space axioms, we say that $(V, +, \cdot)$ forms a vector space over \mathbb{F} .

- $ightharpoonup (\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$
- \blacktriangleright ($\mathbb{C}, +, \times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.
- ▶ If the 3-tuple $(V, +, \cdot)$ with field $(\mathbb{F}, +_F, \times)$ satisfies all vector space axioms, we say that $(V, +, \cdot)$ forms a vector space over \mathbb{F} .
- Any element of the vector space $(V, +, \cdot)$ will be referred to as a **vector**, and any element $a \in \mathbb{F}$ will be referred to as a **scalar**.

 \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .

- \bullet ($\mathbb{R},+,\cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- $(\mathbb{C}^n, +, \cdot)$ over \mathbb{C} .

- \bullet ($\mathbb{R},+,\cdot$) over \mathbb{R} .
- \bullet ($\mathbb{R}^n, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{C}^n, +, \cdot$) over \mathbb{C} .
- \bullet $(\mathbb{R}^\mathbb{Z},+,\cdot)$ over $\mathbb{R},$ where $\mathbb{R}^\mathbb{Z}$ is the set of all doubly-infinite sequences.

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{R}^n, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{C}^n,+,\cdot$) over \mathbb{C} .
- \bullet $(\mathbb{R}^\mathbb{Z},+,\cdot)$ over $\mathbb{R},$ where $\mathbb{R}^\mathbb{Z}$ is the set of all doubly-infinite sequences.
- \bullet $(\mathcal{P}(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathcal{P}(\mathbb{R})$ is the set of all polynomials of one variable with real coefficients.

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- \bullet ($\mathbb{C}^n, +, \cdot$) over \mathbb{C} .
- \bullet $(\mathbb{R}^\mathbb{Z},+,\cdot)$ over $\mathbb{R},$ where $\mathbb{R}^\mathbb{Z}$ is the set of all doubly-infinite sequences.
- ullet $(\mathcal{P}(\mathbb{R}),+,\cdot)$ over \mathbb{R} , where $\mathcal{P}(\mathbb{R})$ is the set of all polynomials of one variable with real coefficients.
- $(\mathbb{L}_2(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathbb{L}_2(\mathbb{R})$ denotes the set of all square-integrable functions $f : \mathbb{R} \to \mathbb{R}$.