Chapter 1. Introduction

Introduction

Why digital image processing?

- Motivation
 - Improvement of pictorial information for human interpretation
 - Processing of image data for storage, transmission, and representation for autonomous machine perception

- An image may be defined as a two-dimensional function f(x, y), where (x, y) is a spatial coordinate,
 - $\bullet I = f(x, y)$
 - ◆ I: intensity (or color, digital count, gray level)
 - If (x, y) and I are finite and discrete quantities, I is called digital image
 - ◆ The element I(i, j) in images is called pixel, picture element, and image element

Pixels

Note: pixel is not a square!

Side story of Lena

1972 playboy: Miss Nov.

1997 Lena

Digital Image Representation

Matrix form

```
f(0,0) f(0,1) ... f(0,N-1) f(1,0) f(0,1) ... f(1,N-1)
f(M-1,0) f(M-1,1) \dots f(M-1,N-1)
```

MxN

bits to store the image = $M \times N \times k$ gray level = 2^k

1.2 Origins of Digital Image Processing

- One of the first applications of digital images was in newspaper industry, when pictures were sent by submarine cable between London and New York in early 1920s
- The figure was transmitted in this way and reproduced by Telegraph printer in 5 gray levels (halftone)

figure 1.1 A digital picture produced in 1921 from a coded tape by a telegraph printer with special type faces. (McFarlane.†)

1.2 Origins of Digital Image Processing

■ 15 gray levels in 1929

FIGURE 1.3
Unretouched cable picture of Generals Pershing and Foch, transmitted in 1929 from London to New York by 15-tone equipment. (McFarlane.)

1.2 Origins of Digital Image Processing

- The first computers powerful enough to carry out image processing tasks appeared in the early 1960s
- The birth of what we call digital image processing today can be traced to the availability of those machines and to the begin of the space program during this period.
- The first picture of the moon by a U.S. spacecraft in 1964

FIGURE 1.4 The first picture of the moon by a U.S. spacecraft.

Ranger 7 took this image on July 31, 1964 at 9:09 A.M.

EDT, about 17 minutes before impacting the lunar surface. (Courtesy of NASA.)

1.3 Examples of Fields that Use Digital Image Processing

- Digital image processing has impact in some way on almost every area.
- One of the simplest ways to develop a basic understanding of the extent of IP applications is to categorize images according to their sources.
- Main sources of digital images
 - Electromagnetic (EM) energy spectrum
 - Ultrasound imaging
 - Synthetic (computer-generated) imaging

Electromagnetic (EM) Spectrum

■ The light theorem was proposed by Newton (牛頓) in 1966, which said that white light consists of a continuous spectrum of colors ranging from violet to red.

Color spectrum seen by passing white light through a prim

Electromagnetic (EM) Spectrum

- Images based on radiation from the EM spectrum are the most familiar, especially images in visual bands of the spectral.
- EM waves can be conceptualized as propagating sin waves of varying wavelengths, or they can be though of as a steam of massless particles, each traveling in a wave-like pattern and moving at the speed of light.

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

1.3.1 Gamma-Ray Imaging

- Major uses of imaging based on gamma rays include nuclear medicine and astronomical observations (天文觀測).
- In nuclear medicine, inject a patient with radioactive isotope (放射性同位素) that emits gamma rays as it decays.
- Images, called positron
 emission tomography (PET,正
 子放射斷層攝影術), are
 produced from the emissions
 collected by gamma ray
 detectors.

1.3.2 X-Ray Imaging

FIGURE 1.7 Examples of X-ray imaging. (a) Chest X-ray. (b) Aortic angiogram. (c) Head CT. (d) Circuit boards. (e) Cygnus Loop. (Images courtesy of (a) and (c) Dr. David R. Pickens, Dept. of Radiology & Radiological Sciences, Vanderbilt University Medical Center. (b) Dr. Thomas R. Gest, Division of Anatomical Sciences, University of Michigan Medical School. (d) Mr. Joseph E. Passente, Lixi, Inc., and (e) NASA.)

- X-rays are the oldest sources of EM radiation used for imaging.
- The best known use of X-rays is medical diagnostics, but they also are used extensively in industry and other areas, such as astronomy.

1.3.4 Visible & Infrared Band: Remote Sensing Landsat 7 ETM+ senor

Band No.	Name	Wavelength (μm)	Characteristics	
1	Blue	0.44-0.51	Maximum water penetration	
2	Green	0.52-0.60	Good for measuring plant vigor	
3	Red	0.63-0.69	Vegetation discrimination	
4	Infrared	0.77-0.90	Biomass and shoreline mapping	
5	Shortwave infrared I	1.55-1.75	Moisture content of soil and vegetation	
6	Thermal infrared	10.4-12.36	Soil moisture; thermal mapping	
7	Shortwave infrared II	2.06-2.35	Mineral mapping	

Applications of multispectral image: Land-cover classification, air quality monitoring (pm 10, pm 2.5), population prediction..etc

Remote Sensing: Multispectral Imaging

FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic bands in Table 1.1. (Images courtesy of NASA.)

1.3.4 Visible & Infrared Band:

Remote Sensing

http://landsat.usgs.gov/best_spectr al_bands_to_use.php

Landsat-7 ETM+ Bands (μm)			Landsat-8 OLI and TIRS Bands (µm)		
			30 m Coastal/Aerosol	0.435 - 0.451	Band 1
Band 1	30 m Blue	0.441 - 0.514	30 m Blue	0.452 - 0.512	Band 2
Band 2	30 m Green	0.519 - 0.601	30 m Green	0.533 - 0.590	Band 3
Band 3	30 m Red	0.631 - 0.692	30 m Red	0.636 - 0.673	Band 4
Band 4	30 m NIR	0.772 - 0.898	30 m NIR	0.851 - 0.879	Band 5
Band 5	30 m SWIR-1	1.547 - 1.749	30 m SWIR-1	1.566 - 1.651	Band 6
Band 6	60 m TIR	10.31 - 12.36	100 m TIR-1	10.60 – 11.19	Band 10
			100 m TIR-2	11.50 – 12.51	Band 11
Band 7	30 m SWIR-2	2.064 - 2.345	30 m SWIR-2	2.107 - 2.294	Band 7
Band 8	15 m Pan	0.515 - 0.896	15 m Pan	0.503 - 0.676	Band 8
			30 m Cirrus	1.363 - 1.384	Band 9 21

Characteristic features of Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)

Band	Wavelength	Useful for mapping	
Band 1 – coastal aerosol	0.43 - 0.45	coastal and aerosol studies	
Band 2 – blue	0.45 - 0.51	Bathymetric mapping, distinguishing soil from vegetation and deciduous from coniferous vegetation	
Band 3 - green	0.53 - 0.59	Emphasizes peak vegetation, which is useful for assessing plant vigor	
Band 4 - red	0.64 - 0.67	Discriminates vegetation slopes	
Band 5 - Near Infrared (NIR)	0.85-0.88	Emphasizes biomass content and shorelines	
Band 6 - Short-wave Infrared (SWIR) 1	1.57 - 1.65	Discriminates moisture content of soil and vegetation; penetrates thin clouds	
Band 7 - Short-wave Infrared (SWIR) 2	2.11 - 2.29	Improved moisture content of soil and vegetation and thin cloud penetration	
Band 8 - Panchromatic	0.50 - 0.68	15 meter resolution, sharper image definition	
Band 9 – Cirrus	1.36 - 1.38	Improved detection of cirrus cloud contamination	
Band 10 – TIRS 1	10.60 – 11.19	100 meter resolution, thermal mapping and estimated soil moisture	
Band 11 – TIRS 2	11.5 - 12.51	100 meter resolution, Improved thermal mapping and estimated soil moisture	

Multispectral Imaging

- Weather observation and prediction also are major applications. For instance, this is an image of Katrina hurricane, one of most devastating storms in recent memory in USA.
- This image was taken by a National Oceanographic and Atmospheric Administration (NOAA) satellite using sensors in the visual and infrared bands. The eye of the hurricane is clearly visible.

- The thermal band has the capability to observe faint sources of visible-near infrared emissions present on the Earth's surface, including cities, towns, gas flares, and fires
- Images from 10~13.4 um wavelength band (thermal band)
- These images are parts of the Nighttime Lights of the World data sets, which provides a global inventory of human settlements.

Visual Spectrum: Automated Visual Inspection

 (c) shows a batch of cereal during inspection for color and the presence of anomalies such as burned flakes.

Visual Spectrum: Automated Visual Inspection

 (a) is an imaged pill container. The objective here is to have a machine look for missing pills.

 (b) shows a clear-plastic part with an unacceptable number of air pockets in it.

 (c) shows an image of an intraocular implant (replacement lens for the human eye). A "structured light" illumination technique was used to highlight for easier detection of lens (c) deformation.

Visual Spectrum: Automated Visual Inspection

- (a)-1: Image of fingerprints.
 Enhance them or find features for searching for potential matches in the database.
- (a)-2": Image of paper currency. Automated counting and reading the serial number for the purpose of tracking and identifying bills.
- (b), (c): Automatic license plate reading. The black rectangles show the results of reading

1.3.5 Imaging in Microwave Band: Radar

- Synthetic Aperture
 Radar (SAR) is a form
 of radar which is used to
 create images of 2D/3D
 objects, such as
 landscapes.
- Differential
 interferometry SAR(D InSAR) requires taking
 at least two images.
 D-InSAR has the
 ability to generate
 and detect

1.3.6 Imaging in Radio Band

In medicine, radio waves are used in magnetic resonance imaging (MRI). This technique places a patient in a powerful magnet and passes radio waves through his/her body in short pulses. Each pulse causes a responding pulse of radio waves to be emitted by the patient's tissues.

Human knee

Human spine

1.3.6 Imaging in Radio Band

■ The images of the same region and object but taken in most of the bands discussed earlier. Each image gives a totally different "view" of the Crab Pulsar (蟹狀星雲).

1.3 Ultrasound Imaging

■ The best known applications of this technique are in medicine, especially in obstetrics (醫學產科), where unborn babies are imaged to determine the health of their development.

1.3 Ultrasound Imaging

- The basic procedure:
 - The ultrasound system transmit high-frequency sound pulses into the body.
 - The sound waves travel into the body and hit a boundary between tissues. Some of the sound waves are reflected back to the probe, while some sound waves travel on further places until they reach another boundary and get reflected.
 - The reflected waves are picked up by the probe, and the signals are relayed to the computer.
 - ◆ The machine calculates the distance from the probe to the tissues or organ boundaries using the speed of sound in tissue (1540 m/s) and the time of each echo's return.
 - The system displays the distances and intensities of the echoes on the screen, forming a 2D image.

1.3 Synthetic imaging

a b c d

FIGURE 1.22

(a) and (b) Fractal images. (c) and (d) Images generated from 3-D computer models of the objects shown. (Figures (a) and (b) courtesy of Ms. Melissa D. Binde, Swarthmore College, (c) and (d) courtesy of NASA.)

1.3 Synthetic imaging

- Image acquisition (Chap. 2)
 - Could be as simple as being given an image that is already in digital form
 - Generally, this stage involves preprocessing
- Image enhancement (Chaps. 3 and 4)
 - Bring out detail that is obscured, or simply to highlight certain features of interest in an image
 - Based on human subjective preferences regarding what constitutes a "good" enhancement

- Image restoration (Chap. 5)
 - Improve the appearance of an image
 - Objective: tend to be based on mathematical or probabilistic models of image degradation
- Color image processing (Chap. 6)
 - Color models
 - Color processing in a digital domain
- Wavelets (Chap. 7)
 - Represent images in various degrees of resolution
 - in this book: image compression & pyramidal representation
 - Skip this chapter.

- Compression (Chap. 8)
 - Reduce the storage required to save an image
 - Reduce the bandwidth required to transmit it
- Morphological processing (Chap. 9)
 - Extract image components that are useful in the representation and description of shape
 - Output: image attributes
- Segmentation (Chap. 10)
 - Partition an image into several components/objects
 - Automatic segmentation is one of the most difficult tasks in digital image processing

- Representation & Description (Chap. 11)
 - Always follow the segmentation stage
 - Determine boundary representation or regional representation
 - Description (feature selection)
 - Extracting attributes that result in some quantitative information of interest or are basic for differentiating one class of objects from another
- Recognition/Classification (Chap. 12)
 - Assigns a label to an object based on its descriptors

Image Processing Level

- Low-level processing
 - Inputs and outputs are images
 - Primitive operations: de-noise, enhancement, sharpening, ···
- Mid-level processing
 - Inputs are images, outputs are attributes extracted from images
 - Segmentation, classification, ···
- High-level processing
 - "Make sense" of an ensemble of recognized objects by machines

