C언어 강의자료

문정욱

C언어 기초 다지기 2 데이터의 표현

- 이진수(binary)와 비트(bit)
 - 디지털(digital)
 - 데이터를 0과 1로 표현하여 전송
 - 8bits = 1byte
 - · bit vs. byte
 - 비트(bit)는 데이터 전송 최소 단위
 - 바이트(byte)는 데이터 표현의 최소 단위
 - N bits의 표현 범위
 - 2n개의 데이터 표현
 - SI prefix

SI Prefix	Value	SI Prefix	Value
K (Kilo)	$2^{10} = 1,000^1$	P (Peta)	$2^{50} = 1,000^5$
M (Mega)	$2^{20} = 1,000^2$	E (Exa)	$2^{60} = 1,000^6$
G (Giga)	$2^{30} = 1,000^3$	Z (Zetta)	$2^{70} = 1,000^7$
T (Tera)	$2^{40} = 1,000^4$	Y (Yotta)	$2^{80} = 1,000^8$

1 bit	2 bit	3 bit	4 bit
0	00	000	0000
1	01	001	0001
	10	010	0010
	11	011	0011
		100	0100
		101	0101
		110	0110
		111	0111
			1000
			1001
			1010
			1011
			1100
			1101
			1110
			1111

$$182_{10} = 1 \times 10^{2} + 8 \times 10^{1} + 2 \times 10^{0}$$
$$= 1 \times 100 + 8 \times 10 + 2 \times 1$$
$$= 182$$

$$1101_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$
$$= 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$$
$$= 13$$

16진수(hexadecimal number)와 8진수(octal number)

$$1AF_{16} = 1 \times 16^{2} + A \times 16^{1} + F \times 16^{0}$$
$$= 1 \times 256 + 10 \times 16 + 15 \times 1$$
$$= 431$$

$$3171_8 = 3 \times 8^3 + 1 \times 8^2 + 7 \times 8^1 + 1 \times 8^0$$
$$= 3 \times 512 + 1 \times 64 + 7 \times 8 + 1 \times 1$$
$$= 1657$$

$$13_{10} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= (1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1}) + 1 \times 2^{0}$$

$$= (1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}) \times 2 + 1 \times 2^{0}$$

$$= 6 \times 2 + 1$$

$$6_{10} = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= (1 \times 2^{2} + 1 \times 2^{1}) + 0 \times 2^{0}$$

$$= (1 \times 2^{1} + 1 \times 2^{0}) \times 2 + 0 \times 2^{0}$$

$$= 3 \times 2 + 0$$

$$3_{10} = 1 \times 2^{1} + 1 \times 2^{0}$$

$$= (1 \times 2^{1}) + 1 \times 2^{0}$$

$$= (1 \times 2^{0}) \times 2 + 1 \times 2^{0}$$

$$= 1 \times 2 + 1$$

$$\begin{array}{ccc}
\mathbf{1}_{10} &= & 1 \times 2^{0} \\
&= & (0) + & 1 \times 2^{0} \\
&= & (0) \times 2 + & 1 \times 2^{0} \\
&= & 0 \times 2 + & 1
\end{array}$$

$$13_{10} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= (1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1}) + 1 \times 2^{0}$$

$$= (1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}) \times 2 + 1 \times 2^{0}$$

$$= 6 \times 2 + 1$$

$$6_{10} = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$6_{10} = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= (1 \times 2^{2} + 1 \times 2^{1}) + 0 \times 2^{0}$$

$$= (1 \times 2^{1} + 1 \times 2^{0}) \times 2 + 0 \times 2^{0}$$

$$= 3 \times 2 + 0$$

$$3_{10} = 1 \times 2^{1} + 1 \times 2^{0}$$

$$= (1 \times 2^{1}) + 1 \times 2^{0}$$

$$= (1 \times 2^{0}) \times 2 + 1 \times 2^{0}$$

$$= 1 \times 2 + 1$$

$$\begin{aligned}
 &\mathbf{1}_{10} = 1 \times 2^{0} \\
 &= (0) + 1 \times 2^{0} \\
 &= (0) \times 2 + 1 \times 2^{0} \\
 &= 0 \times 2 + 1
 \end{aligned}$$

16진수(hexadecimal number)

001010101100

0010 1010 1100

2 A C

2AC(16)

10진수	2 진수	16진수
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

8진수(octal number)

0010101100 001 010 101 100 1 2 5 4

1254(8)

10진수	2진수	8진수
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

3에 대한 10의 보수는 7이다.

이진수에서 1의 보수 계산

1의 보수 계산법

이진수에서 2의 보수 계산

2의 보수 계산법

양의 정수 표현

- 2) 120 ... 0
- 2) 60 ... 0
- 2) 30 ... 0
- 2) 15 ... 1
- 2) 7 ... 1
- 2) 3 ... 1
- 2) _____ 1 ___ ... 1

음의 정수 표현: 부호와 크기(sign and magnitude)

$$120_{10} = 1111000_2$$

부호 비트	값의 범위
0	$0 \sim (2^{n-1}-1)$
1	-(2 ⁿ⁻¹ -1) ~ -0

음의 정수 표현: 1의 보수(1's complement)

$$120_{10} = 1111000_2$$

부호 비트	값의 범위
0	0 ~ (2 ⁿ⁻¹ -1)
1	-(2 ⁿ⁻¹ -1) ~ -0

음의 정수 표현: 2의 보수(2's complement)

$$120_{10} = 1111000_2$$

부호 비트	값의 범위
0	$0 \sim (2^{n-1}-1)$
1	-(2 ⁿ⁻¹)~ -1

음의 정수 표현: 비균형(exceed n)

이진 표현	양수	Exceed 127
0000 0000	0	-127
0000 0001	1	-126
0000 0010	2	-125

0111 1111	127	0
1000 0000	128	1
1111 1111	255	128

음의 정수 표현: -2 기수법(base -2)

$$1101_2 = 1 \times (-2)^3 + 1 \times (-2)^2 + 0 \times (-2)^1 + 1 \times (-2)^0$$
$$= -1 \times 8 + 1 \times 4 - 0 \times 2 + 1 \times 1$$
$$= -3$$

정수 표현 방법 비교

Binary	Unsigned	Sign and Mag.	1's comp.	2's comp.	Exceed 127
0000 0000	0	0	0	0	-127
0000 0001	1	1	1	1	-126
0000 0010	2	2	2	2	-125
(2000)	***	***			
0111 1101	125	125	125	125	-2
0111 1110	126	126	126	126	-1
0111 1111	127	127	127	127	0
1000 0000	128	-0	-127	-128	1
1000 0001	129	-1	-126	-127	2
1000 0010	130	-2	-125	-126	3
•••	***				
1111 1101	253	-125	-2	-3	126
1111 1110	254	-126	-1	-2	127
1111 1111	255	-127	-0	-1	128

네 가지 정수 표현 방법 비교

표현 방법	값의 범위	0(zero) 표현	표현 가능 개수
부호 비트	$-2^{n-1}+1 \sim 2^{n-1}-1$	+0, -0	2 ⁿ -1
1의 보수	$-2^{n-1}+1 \sim 2^{n-1}-1$	+0, -0	2 ⁿ -1
2의 보수	-2 ⁿ⁻¹ ~ 2 ⁿ⁻¹ -1	0	2 ⁿ
Exceed 2 ⁿ⁻¹ -1	$-2^{n-1}+1 \sim 2^{n-1}$	0	2 ⁿ

- Exceed N를 사용한 음수 표현의 장점
 - 이진수의 값이 증가함에 따라 의미하는 값도 증가한다.
 - 그러므로 상대적인 비교가 쉽다.
- 2의 보수를 사용한 음수 표현의 장점
 - 임의의 두수 A, B가 있고, B의 2의 보수를 B'이라고 할 때, A-B는 A+B'과 같다.
 - 그러므로 2의 보수만 사용하면 뺄셈 연산을 덧셈 연산으로 대체할 수 있다.

고정 소수점(fixed point)

고정 소수점(fixed point) - 문제점

8bit Register

부동 소수점(floating point)

$$= 1.1_{(2)} \times 2^{-4}$$

$$= 1.1_{(2)}, -4$$

$$= 1.01_{(2)} \times 2^4$$

$$= 1.01_{(2)}, +4$$

부동 소수점(floating point) - 유효자리 확대

Floating Point (IEEE 754-1985)

$$F = (-1)^{Sign} \times (1.Fraction_{(2)}) \times 2^{Exponent-Bias}, \quad (Bias = 2^{E-1} - 1)$$

Floating Point (IEEE 754-1985)

Single Precision: float in C language

```
Exponent Fraction (8bit) (23bit)

Sign (1bit)
```

Double Precision: double in C language

```
Exponent (11bit) Fraction (52bit)

Sign (1bit)
```

Floating Point (IEEE 754-1985) – single precision

$$F = (-1)^{Sign} \times (1.Fraction_{(2)}) \times 2^{Exponent-127}$$

