definition convergence example x^n , 1/2 lines, $sqrt(x^2 + 1/n)$, rationals definition uniform convergence example x/n with restriction

Theorem 0.1. f_n are uniformly convergent and continuous then f is continuous

Theorem 0.2. $f_n:[a,b]\to\mathbb{R}$ uniformly convergent if f_n is Riemann integrable then f is Riemann integrable

$$\int_{a}^{b} \underbrace{\lim f_{n}}_{f} = \lim \int_{a}^{b} f_{n}$$

Lemma 1. metric spaces and $f_n: X \to X'$ are uniformly convergent if f_n is bounded then f is bounded.

Definition: $\mathcal{B}(X,\mathbb{R})$: all bounded function from X to \mathbb{R} . $d(f,g) = \sup\{|f(x) - g(x)| : x \in X\}$

Definition: $||f|| = \sup\{|f(x)| : x \in X\}$ therefore d(f,g) = ||f - g||

Proposition 0.3. (\mathcal{B}, d) is a complete metric space.

Definition: $C_b(X, \mathbb{R})$ and $C_b(X, \mathbb{R})$ closed subset of $\mathcal{B}(X, \mathbb{R})$

exampele: any compact metric space

Theorem 0.4. f_n are differentiable functions

- 1. f'_n are uniformly convergent to g
- 2. f_n are point convergent

Proposition 0.5. $f_n:[a,b]\to\mathbb{R}$ consider $\sum f_n$

1. f_n are riemann integrable and the series uniformly convergent then the $\sum f_n$ is riemann integrable and

$$\int_{a}^{b} \sum f_n = \sum \int_{a}^{b} f_n$$

2. Similarly for derivative

Definition (Wierstrass M test): This is super cool

power series and convergence radius of convergence of integral/derivative of power series is equal to the radius of convergence of the originalo series.

Theorem 0.6. in the convergence cirle the power series is inifinitely integrable and differentiable, and coefficients are taylor coefficients

analytical definition proof of analytical means analytical in interval using a pair sequence