Zusatzaufgaben 13

Aufgabe 1: Grammatiken und reguläre Ausdrücke

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\}$, die regulären Sprachen

$$A_1 \triangleq \{ w \in \Sigma^* \mid |w| \leqslant 3 \}$$

$$A_2 \triangleq \{ wab \mid w \in \Sigma^* \wedge |w|_b \mod 2 = 0 \}$$

$$A_3 \triangleq \{ a^n b^m \mid n, m \in \mathbb{N} \land (n+m) \mod 3 = 0 \}$$

$$A_4 \triangleq \{ a^n b^m \mid n, m \in \mathbb{N} \land n \mod 3 < m \mod 3 \}$$

und die Grammatiken $G_5 = (\{ S, T, U \}, \Sigma, P_5, S)$ und $G_6 = (\{ S, T, U \}, \{ \alpha, b, c \}, P_6, S)$ mit

$$\begin{array}{ccc} P_5: & S & \rightarrow & \alpha S \mid \alpha T \\ & T & \rightarrow & \alpha T \mid bT \mid bU \end{array}$$

$$\begin{array}{ccc} P_6: & S & \rightarrow & \epsilon \mid \alpha T \mid bS \\ & T & \rightarrow & \alpha T \mid bS \mid cU \end{array}$$

$$U \rightarrow a \mid aU \mid bU$$

$$U \rightarrow \alpha S \mid \alpha U$$

1.a) Gib einen regulären Ausdruck e_1 so an, dass $L(e_1) = A_1$. ------(Lösung)-----

 $= (\epsilon + a + b) \cdot (\epsilon + a + b) \cdot (\epsilon + a + b)$

$$e_1 = \epsilon + a + b + aa + ab + ba + bb + aaa + aab + aba + abb + baa + bab + bba$$

1.b) Gib eine Grammatik G_1 so an, dass $L(G_1) = A_1$.

-----------(Lösung)-

$$G_1 = (\{ S, T, U \}, \Sigma, P_1, S) \text{ mit } P_1:$$

$$S \rightarrow T \mid aT \mid bT$$

$$T \rightarrow U \mid aU \mid bU$$

$$U \rightarrow \epsilon \mid \alpha \mid b$$

/Lösung

1.c) Gib einen regulären Ausdruck e_2 so an, dass $L(e_2) = A_2$.

-------Lösung)------

$$e_2 = (a + ba^*b)^* ab$$

/Lösung

1.d) Gib Eine Grammatik G_2 an, sodass $L(G_2) = A_2$.

------(Lösung)-----

$$G_2 = (\{ S, T \}, \Sigma, P_2, S) \text{ mit } P_2:$$

$$S \rightarrow aS \mid bT \mid ab$$

$$T \rightarrow aT \mid bS$$

/Lösung

1.e) Gib einen regulären Ausdruck e_3 so an, dass $L(e_3) = A_3$.

------(Lösung)----- $e_3 = ((aaa)^* (bbb)^*) + ((aaa)^* a (bbb)^* bb) + ((aaa)^* aa (bbb)^* b)$ /Lösung

1.f)	Gib eine Grammatik G_3 so an, dass $L(G_3) = A_3$.
	$G_3 = (\{ S, T, U, V \}, \Sigma, P_3, S) \text{ mit } P_3:$
	$S \rightarrow \varepsilon \mid \alpha \alpha \alpha S \mid T \mid \alpha U \mid \alpha \alpha V$
	$ extstyle T ightarrow \epsilon \mid bbbT$
	$U \rightarrow bb \mid bbbU$
	$V ightarrow b \mid bbbV$
	/Lösung
1 ~)	Gib einen regulären Ausdruck e_4 so an, dass $L(e_4) = A_4$.
1.g)	C_{ii} einen regularen Ausuruck e $_{4}$ so un , C_{ii} cass C_{i} C_{ij}
	$e_4 = ((aaa)^* (bbb)^* b (\epsilon + b)) + ((aaa)^* a (bbb)^* bb)$
	/Lösung
1.h)	Gib eine Grammatik G_4 an, sodass $L(G_4) = A_4$.
	$G_4 = (\{ S, T, U, V \}, \Sigma, P_4, S) \text{ mit } P_4:$
	$S \rightarrow aaaS \mid aT \mid U \mid V$
	$T \rightarrow aaaT \mid V$
	•
	$U \rightarrow b \mid bbbU$
	$V ightarrow bb \mid bbbV$
1.i)	Gib einen regulären Ausdruck e_5 so an, dass $L(e_5) = L(G_5)$.
,	
	$e_5 = a (a + b)^* b (a + b)^* a$
	$-\frac{L\ddot{o}sung}{L\ddot{o}sung}$
<i>a</i> .\	
1.j)	Gib eine reguläre Sprache A_5 so an, dass $A_5 = L(G_5)$.
	Lösung
	$A_5 = \{ axbya \mid x, y \in \Sigma^* \}$
	/Lösung
1.k)	Gib einen regulären Ausdruck e_6 so an, dass $L(e_6) = L(G_6)$.
	Lösung
	$e_6 = ((a+b)^* acaa^*)^* (\epsilon + (a+b)^* b)$
1.1\	
1.l)	Gib eine reguläre Sprache A_6 so an, dass $A_6 = L(G_6)$.
	Lösung
	$A_6 = \{ xy \mid x \in \{ uaca^n \mid u \in \{ a, b \}^* \land n \in \mathbb{N}^+ \}^* \land y \in \{ \epsilon, \nu b \mid \nu \in \{ a, b \}^* \} \}$
	/Lösung
1.m)	<i>Gib</i> einen regulären Ausdruck e so <i>an</i> , dass $L(e) = \{ \lozenge^m \square^n \square^n \mid n, m \in \mathbb{N}^+ \} \cup \{ \square \square \lozenge, \epsilon \}.$
	Lösung
	$e = \diamond \diamond^* \Box \Box (\Box \Box)^* + \Box \Box \diamond + \epsilon$
	/Lösung
1 \	
1.n)	Gib die Sprache $L(((\diamondsuit\diamondsuit^*) + \epsilon) \square \square \square^* \diamondsuit)$ explizit an.
	Lösung
	$\{ \lozenge^{\mathfrak{n}} \square \square^{\mathfrak{m}} \lozenge \mid \mathfrak{n}, \mathfrak{m} \in \mathbb{N} \}$

1.0) Gib die Sprache $L(\varepsilon + ((\Diamond \Diamond)^* \Box)^*)$ explizit an. $(\{ \Diamond \Diamond \}^* \cdot \{ \Box \})^*$ (Lösung)

Aufgabe 2: Pumping-Lemma

Sei $n \in \mathbb{N}$ beliebig und fest. Wir wählen das Wort $w = a^n b^{n+1} c^{n+2}$ mit $w \in A$, denn $n \leqslant n+1 \leqslant n+2$, und $|w| \geqslant n$. Sei w = xyz eine beliebige Zerlegung mit $y \neq \varepsilon$ und $|xy| \leqslant n$. Dann ist $x = a^i$, $y = a^j$ und $z = a^{n-i-j} b^{n+1} c^{n+2}$ für ein $j \neq 0$ und $i+j \leqslant n$. Wir wählen k = 3. Dann ist $xy^3z = a^{n+2j}b^{n+1}c^{n+2}$. $xy^3z \notin A_4$, denn n+2j > n+1 für $j \neq 0$. Da \neg **PUMP-REG** (A), ist A nach dem Pumping-Lemma nicht regulär.

Hinweis: Man hätte hier zum Beispiel auch das Wort $w = b^n c^n$ mit k = 2 oder das Wort $w = b^n c^{n+1}$ mit k = 3 oder das Wort $w = a^n b^n c^n$ mit k = 2 und jeweils den entsprechenden Zerlegungen wählen können. Die Variante $w = b^n c^n$ mit k = 2 ist wahrscheinlich die einfachste Möglichkeit.

/Lösung

Aufgabe 3: DFA und NFA

3.a) Gegeben sei die Sprache A_2 aus Aufgabe 1 Gib einen NFA M_2 so an, dass $L(M_2) = A_2$.

Lösung

 $M_2=(\{\ q_0,\ q_1,\ q_2,\ q_3\ \},\{\ a,\ b\ \},\Delta_2,\{\ q_0\ \},\{\ q_3\ \}),$ wobei Δ_2 durch den folgenden Graph gegeben ist:

3.b) Gegeben sei die Sprache A_3 aus Aufgabe $\boxed{1}$ *Gib* einen NFA M_3 so an, dass $L(M_3) = A_3$.

 $M_3 = (\{ q_0, q_1, q_2, q_3, q_4, q_5, q_6 \}, \{ a, b \}, \Delta_3, \{ q_0 \}, \{ q_0, q_4 \}),$ wobei Δ_3 durch den folgenden Graph gegeben ist:

3.c) Gegeben sei der NFA $M=(\{q_0, q_1, q_2, q_3\}, \{a, b\}, \Delta, \{q_0\}, \{q_3\})$, wobei Δ durch den folgenden Graph gegeben ist:

Berechne mit Hilfe der Untermengenkonstruktion einen DFA M' mit L(M') = L(M).

----- (Lösung)-----

		a	ь	
S	$\{ q_0 \}$	$\{ q_0, q_1 \}$	$\{ q_0, q_2 \}$	s_0
	$\{ q_0, q_1 \}$	$\{ q_0, q_1 \}$	$\{ q_0, q_2, q_3 \}$	s_1
	$\{ q_0, q_2 \}$	$\{ q_0, q_1, q_3 \}$	$\{ q_0, q_2 \}$	s_2
F	$\{ q_0, q_2, q_3 \}$	$\{ q_0, q_1, q_3 \}$	$\{ q_0, q_2 \}$	s ₃
F	$\{ q_0, q_1, q_3 \}$	$\{q_0, q_1, q_3\}$	$\{ q_0, q_2, q_3 \}$	s_4

Damit ergibt sich der DFA $M' = (\{ q_0, q_{01}, q_{023}, q_{02}, q_{013} \}, \{ a, b \}, \delta', q_0, \{ q_{023}, q_{013} \})$ mit δ' :

3.d) Gegeben sei der DFA $M=(\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \delta, q_0, \{q_4\})$, wobei δ durch den folgenden Graph gegeben ist:

Berechne: Benutze den Table-Filling Algorithmus, um einen minimalen DFA M' zu erstellen, so dass L(M') = L(M).

------Lösung

Schritt 1 (eliminiere nicht erreichbare Zustände): alle Zustände sind erreichbar Schritt 2 (Table-Filling):

Schritt 3 (gib alle Äquivalenzklassen von Zuständen und eine Umbenennung an):

Schritt 4 (gib den minimierten DFA an): $M' = (\{s_0, s_1, s_2, s_3\}, \Sigma, \delta', s_0, \{s_3\})$, wobei δ' durch den folgenden Graphen gegeben ist:

Aufgabe 4: Myhill-Nerode

4.a) Gegeben sei die Sprache A \triangleq { $w01 \mid w \in \{0, 1\}^*$ }. *Gib* die Äquivalenzklassen der Myhill-Nerode Relation bezüglich A und den A-Äquivalenzklassenautomaten M_A *an*.

 $\frac{1}{\text{L\"osung}}$

$$[\epsilon] = \{ \epsilon, 1, w11 \mid w \in \{ 0, 1 \}^* \}$$
$$[0] = \{ w0 \mid w \in \{ 0, 1 \}^* \}$$
$$[01] = A$$

 $M_A = (\{ [\epsilon], [0], [01] \}, \{0, 1\}, \delta_A, [\epsilon], \{[01] \}) \text{ mit } \delta_A$:

/Lösung

4.b) Gegeben seien das Alphabet $\Sigma \triangleq \{ a, b, c \}$ und die Sprache $B \triangleq \{ a^n b^n c^n \mid n \in \mathbb{N} \}$. Gib die Äquivalenzklassen der Myhill-Nerode Relation bezüglich B an und beweise, dass B nicht regulär ist.

-----(Lösung)-----

$$\begin{split} [\,a^i\,] &= \{\,a^i\,\} \quad \text{für } i \in \mathbb{N} \\ [\,a^jb^k\,] &= \{\,a^jb^k\,\} \quad \text{für } j,k \in \mathbb{N}^+ \text{ und } k < j \\ [\,a^lb^l\,] &= \left\{\,a^{l+n}b^{l+n}c^n \mid n \in \mathbb{N}\,\right\} \quad \text{für } l \in \mathbb{N}^+ \\ [\,abc\,] &= B \setminus \{\,\epsilon\,\} \\ [\,b\,] &= \{\,xbay,xcay,xcby \mid x,y \in \Sigma^*\,\} \\ &\qquad \cup \{\,a^nb^m,a^ob^pc^q \mid n,m,o,p,q \in \mathbb{N} \land n < m \land ((o \neq p \land q \neq 0) \lor p < q)\,\} \\ &= \Sigma^* \setminus \left(\left(\bigcup_{i \in \mathbb{N}}\,[\,a^i\,]\right) \cup \left(\bigcup_{j,k \in \mathbb{N}^+,k < j}\,[\,a^jb^k\,]\right) \cup \left(\bigcup_{l \in \mathbb{N}^+}\,[\,a^lb^l\,]\right) \cup [\,abc\,]\right) \end{split}$$

Zu den Äquivalenzklassen von \equiv_{B} gehören u.A. die Klassen:

$$[a^n] = \{a^n\}$$
 für $n \in \mathbb{N}$

Annahme: $n \neq m$.

Zu Zeigen: $\mathfrak{a}^n \not\equiv_B \mathfrak{a}^m$

Betrachte $z = b^n c^n$. Dann ist $a^n z \in B$ und $a^m z \notin B$, weil $n \neq m$.

Mit der Definition von \equiv_B gilt damit $\mathfrak{a}^n \not\equiv_B \mathfrak{a}^m$ (und damit $[\mathfrak{a}^n] \not= [\mathfrak{a}^m]$).

Damit ist der Index von \equiv_B unendlich. Nach Theorem 2.4.1 ist B damit nicht regulär.

/Lösung

Aufgabe 5: CYK-Algorithmus

Gegeben sei eine Menge Nicht-Terminale $V \triangleq \{ A, B, C \}$, ein Alphabet $\Sigma \triangleq \{ a, b \}$, sowie eine CNF-Grammatik $G \triangleq (V, \{ a, b \}, P, S)$ mit

 $\begin{array}{cccc} P: & S & \rightarrow & AB \mid AC \\ & A & \rightarrow & \alpha \\ & B & \rightarrow & b \\ & C & \rightarrow & SB \end{array}$

5.a) Berechne: Gegeben sei ein Wort $w_1 \triangleq aaabbb$. Löse mit dem CYK-Algorithmus das Wortproblem: $w_1 \in L(G)$ oder $w_1 \notin L(G)$?

 		- Lösı	ung)				 	
$CYK_{w}(i,j)$	1	2	3	4	5	6		
1: a	{ A }	Ø	Ø	Ø	Ø	{ S }		
2: a	{ A }		Ø	{ S }	{ C }			
2: a 3: a	{ A }	{ S }	{ C }	Ø				
4: b	{ B }	Ø	Ø					
5: b	{ B }	Ø						
6: b	{ B }							

Es gilt also $w_1 \in L(G)$, da $S \in CYK_w1, 6$.

(/Lösung

5.b) Berechne: Gegeben sei ein Wort $w_2 \triangleq aab$. Löse mit dem CYK-Algorithmus das Wortproblem: $w_2 \in L(G)$ oder $w_2 \notin L(G)$?

Es gilt also $w_2 \notin L(G)$, da $S \notin CYK_w1,3$.

/Lösung

Aufgabe 6: Kellerautomaten

Gegeben seien das Alphabet $\Sigma = \{0, 1\}$, die kontextfreie Sprache $A_1 \triangleq \{0w1w^R0 \mid w \in \Sigma^*\}$, die Grammatik $G_2 \triangleq (\{S, T\}, \Sigma, P_2, S)$ und der PDA $M_3 \triangleq (\{q_0\}, \Sigma, \{\Box, \bullet\}, \Box, \Delta_3, q_0, \{q_0\})$, wobei P_2 und Δ_3 wie folgt gegeben sind:

6.a) *Gib* eine kontextfreie Grammatik G_1 so *an*, dass $L(G_1) = A_1$.

 $G_1 = (\{\ S,\ T\ \}, \Sigma, P_1, S)\ mit\ P_1 \colon$

$$S \to 0 \text{T} 0$$

 $\mathsf{T} \to \mathsf{1} \mid \mathsf{0}\mathsf{T}\mathsf{0} \mid \mathsf{1}\mathsf{T}\mathsf{1}$

/Lösung

6.b) Gib einen PDA M_1 so an, dass $L_{End}(M_1) = L_{Kel}(M_1) = A_1$.

 $M_1 = \{\{\ q_0,\ q_1,\ q_2,\ q_3\ \}, \Sigma, \{\ 0,\ 1,\ \square\ \}, \square, \Delta_1, q_0, \{\ q_3\ \}\},\ wobei\ \Delta_1\ für\ X \in \{\ 0,\ 1,\ \square\ \}\ durch\ den\ folgenden\ Graph\ gegeben\ ist:$

/Lösung

6.c) Gib an: Welchen Typ hat die Grammatik G₂?

------Lösung

 G_2 ist nicht regulär (Typ-3), aber kontextfrei (Typ-2) und damit auch kontext-sensitiv (Typ-1) und allgemein (Typ-0).

Hinweis: Die beiden Regeln T \rightarrow 0T0 | 1T1 verhindern hier, dass G_2 regulär ist.

[/Lösung]

6.d) Gib alle Ableitungen für das Wort 01010 in G₂ an.

------Lösung

Es gibt nur die Ableitung:

$$S \Rightarrow \mathsf{T} \Rightarrow \mathsf{0T0} \Rightarrow \mathsf{01T10} \Rightarrow \mathsf{01010}$$

Hinweis: Damit gilt $01010 \in L(G_2)$.

/Lösung

6.e) *Gib an*: L(G₂)

L(C) (w.c. 5* | w. c. 8)

 $L(G_2) = \left\{ w \in \Sigma^* \mid w = w^R \right\}$

- /Lösung

6.f) Gib an: Welchen Typ hat $L(G_2)$?

_____Lösung

 $L(G_2)$ ist nicht regulär (Typ-3), aber kontextfrei (Typ-2, minimaler Typ) und damit auch kontextsensitiv (Typ-1) und allgemein (Typ-0).

/Lösung

6.g)	Gib an: Ist M ₃ deterministisch, also ein DPDA?
	(Lösung)
	Nein.
	Hinweis: Die beiden Übergänge ϵ , \square/ϵ und 0 , $\square/\bullet\square$ erlauben es hier einen Weg zu wählen, wenn der Keller nur das Symbol \square enthält, deshalb ist M_3 nicht deterministisch.
6.h)	Gib alle Ableitungen in M_3 für das Wort 1 an. Lösung
	Es gibt nur die Ableitung:
	$(q_0,1,\square) \nvdash$
	<i>Hinweis: Damit gilt</i> $1 \notin L_{End}(M_3)$ <i>und</i> $1 \notin L_{Kel}(M_3)$. /Lösung
6.i)	Gib alle Ableitungen in M ₃ für das Wort 010 an.
	Losung
	$(q_0,010,\square) \vdash (q_0,010,\epsilon) \nvdash$
	$(q_0,010,\square) \vdash (q_0,10,\bullet\square) \vdash (q_0,0,\square) \vdash (q_0,0,\varepsilon) \nvdash$
	$(q_0,010,\square) \vdash (q_0,10,\bullet\square) \vdash (q_0,0,\square) \vdash (q_0,\varepsilon,\bullet\square) \nvdash$
	<i>Hinweis: Damit gilt</i> $010 \notin L_{Kel}(M_3)$ <i>aber die</i> 3. <i>Ableitung zeigt, dass</i> $010 \in L_{End}(M_3)$.
6.j)	Gib die Sprachen $L_{\text{End}}(M_3)$ und $L_{\text{Kel}}(M_3)$ an.
0.j/	
	$L_{End}(M_3) = \{ w \in \Sigma^* \mid \text{ für jedes Päfix } v \text{ von } w \text{ gilt: } v _0 \geqslant v _1 \}$
	$L_{Kel}(M_3) = \{ \ w \in \Sigma^* \mid w _0 = w _1 \ \text{und für jedes P\"afix } \nu \ \text{von } w \ \text{gilt: } \nu _0 \geqslant \nu _1 \ \}$
	Hinweis: Beide Sprachen sind nicht regulär aber kontextfrei.
6.k)	Gib an: Gibt es einen DPDA für die Sprache $L_{End}(M_3)$?
	Lösung
	 Ja.
	Hinweis: Es genügt, den Übergang ϵ , \square/ϵ zu entfernen, um einen solchen DPDA mit der Sprache $L_{End}(M_3)$ zu erhalten.
6.l)	Gib an: Gibt es einen DPDA für die Sprache L _{Kel} (M ₃)?
	Nein.
	Hinweis: Die beiden Wörter 0 und 01 sind beide Element der Sprache $L_{Kel}(M_3)$. Da die Sprache also Wörter enthält, bei denen ein Wort ein echtes Präfix eines anderen Wortes ist, kann diese Sprache nicht deterministisch über einen leeren Keller akzeptiert werden.
	Lösung