Лабораторная работа №4

Взаимодействие тиосульфата натрия с серной кислотой

Цель работы: определить энергию активации, предэкспоненту и долю активных соударений реакции взаимодействия тиосульфата натрия с серной кислотой.

В работе используется: пробирки, бюретки, тиосульфат натрия, серная кислота, вода, термостат. **Уравнения реакций:**

$$\begin{aligned} \text{Na}_2 \text{S}_2 \text{O}_3 + \text{H}_2 \text{SO}_4 &= \text{Na}_2 \text{SO}_4 + \text{S} + \text{H}_2 \text{O} + \text{SO}_2 \\ \text{Na}_2 \text{S}_2 \text{O}_3 + \text{H}_2 \text{SO}_4 &= \text{H}_2 \text{S}_2 \text{O}_3 + \text{Na}_2 \text{SO}_3 \\ \text{H}_2 \text{S}_2 \text{O}_3 &= \text{H}_2 \text{SO}_3 + \text{S}_{\downarrow} \\ \text{H}_2 \text{SO}_3 &= \text{H}_2 \text{O} + \text{SO}_2 \end{aligned}$$

Ход работы:

1. B пять пробирок наливаем из бюреток 0,1 M $Na_2S_2O_3$ и воду в количествах, указанных в таблице. B другие пять наливаем по 2,5 мл 1 M H_2SO_4 . Сливаем попарно приготовленные растворы $Na_2S_2O_3$ и H_2SO_4 и отсчитываем время до начала появления помутнения содержимого каждой пробирки. Результаты записываем в таблицу:

Комнатная температура

Объем, мл			$C(Na_2S_2O_3),$	Время до появления	ν – 1/σ
Na ₂ S ₂ O ₃	H_2O	H_2SO_4	0.1a моль∙л ⁻¹	помутнения $ au$, с	$v_{\text{усл.}} = 1/\tau$
0,5	2,0	2,5	0,01	178	0,0056
1,0	1,5	2,5	0,02	70	0,0143
1,5	1,0	2,5	0,03	53	0,0189
2,0	0,5	2,5	0,04	39	0,0256
2,5	-	2,5	0,05	29	0,0345

- 2. Зная, что определяющей стадией процесса является вторая реакция, построим график зависимости скорости реакции от концентрации реагентов v(C). Для этого на оси абсцисс отложим относительную концентрацию $Na_2S_2O_3$, на оси ординат соответсвующие им скорости реакции в условных единицах $(1/\tau)$. Взяв из графика значения v и C, определим величину пропорциональную константе скорости: k = v/C.
- 3. Проделаем то же самое при температуре на 10°C выше комнатной.

+10°C

	Объем, мл		C(Na ₂ S ₂ O ₃),	Время до появления помутнения $ au$, с	$v_{ m yc.r.} = 1/ au$
Na ₂ S ₂ O ₃	H ₂ O	H_2SO_4	0.1a моль∙л−1		
0,5	2,0	2,5	0,01	121	0,0083
1,0	1,5	2,5	0,02	58	0,0172
1,5	1,0	2,5	0,03	33	0,0303
2,0	0,5	2,5	0,04	20	0,0500
2,5	-	2,5	0,05	14	0,0714

4. Возьмем значения констант скорости в условных единицах при двух температурах и рассчитаем энергию активации в Дж·моль⁻¹ по формуле:

$$\ln \frac{k_2}{k_1} = \frac{E_a \left(T_2 - T_1 \right)}{R T_2 T_1}$$
, зная, что $R = 8,314$ Дж · K^{-1} · моль $^{-1}$.

Выразив E_a из формулы, получим выражение:

$$E_a = rac{RT_2T_1\lnrac{k_2}{k_1}}{T_2-T_1} = rac{8,314\cdot 297\cdot 307\lnrac{1,3827}{0,6908}}{10} = 52598,9$$
 Дж·моль $^{-1}$

5. Рассчитаем предэкспоненту A и долю активных соударений $e^{E_a/RT}$. Для комнатной температуры: $e^{E_a/RT}=5,55\cdot 10^{-10}$. Для температуры на $10^{\circ}\mathrm{C}$ выше комнатной $e^{E_a/RT}=1,1\cdot 10^{-9}$

Для комнатной температуры A = 1244399457,9

Для температуры на 10° С выше комнатной A = 1243983912,9

Вывод

Путём выполнения нескольких измерений и проведения расчётов была рассчитана энергия активации $E_a=52598,9~\rm Дж\cdot моль^{-1},$ предэкспоненты $A_1=1244399457,9~\rm is$ $A_2=1243983912,9,$ доля активных соударений для комнатной температуры, равная $5,55\cdot 10^{-10}~\rm is$ для температуры на $10~\rm ^{\circ}C$ выше комнатной, равная $1,1\cdot 10^{-9}$.