Determining the parameters of healthy ageing using automated neuron-level analysis of the laminar structure of the human brain

Andrija Štajduhar¹, Goran Sedmak², Miloš Judaš ²

¹Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia ² Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia

andrija.stajduhar@mef.hr

Smart Technologies for Age Friendly Ecosystems

IT Technologies in the Service of Healthy Ageing

Ageing of the brain

- Characterized by the loss of neuronal elements
- Function defined by structure
- Normal changes or an indication of a disease?
- Subtle histological, cellular and molecular changes
- Dementia: loss of neurons, loss of function
- Many mechanisms not understood
- Can only be detected by quantification

Smart Technologies for Age Friendly **Ecosystems**

IT Technologies in the Service of Healthy Ageing

Andrija Štajduhar

De Strooper, Bart, and Eric Karran. "The cellular phase of Alzheimer's disease." Cell 164.4 (2016): 603-615.

Quantitative characterization

- Precise measurements difficult to make - still in manual domain
- Stereology
 - Subjective
 - Limited capacity
 - ► ~20% error in estimation
- Need for automation and objective characterization of ageing processes
- Ultra-high resolution imaging
- Framework for fast an objective analysis of histological images of human brain

Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M. É., ... & Shah, N. J. (2013). BigBrain: an ultrahighresolution 3D human brain model. *Science*, *340*(6139), 1472-1475.

Smart Technologies for Age Friendly Ecosystems

IT Technologies in the Service of Healthy Ageing

Neuron detection

- NeuN nuclei antibody, higher dye uptake in cell nucleus
- Local minimum of image intensity nucleus
- Remove noise, keep local minima

Smart Technologies for Age Friendly **Ecosystems**

IT Technologies in the Service of Healthy Ageing

Neuron detection

- NeuN nuclei antibody, higher dye uptake in cell nucleus
- Local minimum of image intensity nucleus
- Remove noise, keep local minima

Smart Technologies for Age Friendly **Ecosystems**

IT Technologies in the Service of Healthy Ageing

PDE-based image processing

- ► Partial differential equations (PDEs) introduced a new approach in digital image processing with strong theoretical background and development of new filters
- ► Initial (Cauchy) problem on image doimain

$$\begin{cases} u_t = \Delta u & \Omega \times \langle 0, \infty \rangle \\ u = Im & \Omega \times \{t = 0\} \end{cases}$$

Perona-Malik model

$$\begin{cases} u_t = \operatorname{div} (f(|\nabla u|^2) |\nabla u) & \Omega \times \langle 0, \infty \rangle \\ u = Im & \Omega \times \{t = 0\} \end{cases}$$

$$f(|\nabla u|^2) = e^{-\frac{|\nabla u|^2}{\kappa}}$$

Perona, P., Malik, J., "Scale-space and edge detection using anisotropic diffusion", IEEE Transactions on pattern analysis and machine intelligence, Vol. 12, No. 7, 1990, str. 629–639.

IT Technologies in the Service of Healthy Ageing

Smart Technologies for Age Friendly **Ecosystems**

IT Technologies in the Service of Healthy Ageing

3D localization and segmentation

Smart Technologies for Age Friendly Ecosystems

IT Technologies in the Service of Healthy Ageing

3D localization and segmentation

- Scanning in multiple focal planes, measuring variation of Laplacian
- Spline interpolation for more realistic 3D visualization

Štajduhar, A., Lepage, C., Judaš, M., Lončarić, S., Evans, A. C., "3D Localization of Neurons in Bright-Field Histological Images", ELMAR, September 2018., Zadar, Croatia

Smart Technologies for Age Friendly **Ecosystems**

IT Technologies in the Service of Healthy Ageing

Analysis of laminar structure of the cortex

- Analyze neuron distribution across layers of the cortex
- Include neighborhood
- Develop new neuron descriptors
- Automatically segment cortical layers
- Learn from manual segmentations

Smart Technologies for Age Friendly Ecosystems

IT Technologies in the Service of Healthy Ageing

Neuron-level layer segmentation

Smart Technologies for Age Friendly Ecosystems

IT Technologies in the Service of Healthy Ageing

Feature engineering

- Hundreds of features developed for each neuron
- Area, gray value statistics, circularity, perimeter, roundness, solidity, ...
- Measures of neighboring neurons
- Convex hull of neighborhoods
- Nearest neighbor index

$$NNI_{i} = \frac{\frac{1}{n}\sum_{j=1}^{n}d(i,j)}{0.5\sqrt{HullArea(i)/n}}$$

Smart Technologies for Age Friendly **Ecosystems**

IT Technologies in the Service of Healthy Ageing

Relating neuron features with cortical layers

- No single feature provides clear segmentation of layers
- Goal: learn mapping from manual segmentations!
- Strong interrater variability underlines the necessity for objective analysis

IT Technologies in the Service of Healthy Ageing

Machine learning models

- Ensembles of tree classifiers
 - ▶ No data preprocessing
 - Good performance without large dataset
 - Small computational cost
 - Simple to understand and interpret
 - Statistical, computational, representational reasons
- **CATBoost Classfier**

Štajduhar, A., Lipić, T., Sedmak, G., Lončarić, S., & Judaš, M. (2019). Computational analysis of laminar structure of the human cortex based on local neuron features. arXiv preprint arXiv:1905.01173.

Smart Technologies for Age Friendly **Ecosystems**

IT Technologies in the Service of Healthy Ageing

Analysis of feature distribution

- SHAP analysis
 - ▶ Model-agnostic
 - Accurate and interpretable
 - ► Feature interaction effects
 - ► Model- and instance-level analysis

Smart Technologies for Age Friendly Ecosystems

IT Technologies in the Service of Healthy Ageing

Future work

- ► End-to-end learning
- Graph convolutional neural networks

Smart Technologies for Age Friendly Ecosystems

IT Technologies in the Service of Healthy Ageing

Summary

- Framework for automatic detection of neurons yields precise neuron locations and segmentations
- ► First bottom-up methodology based on tissue features provides capacity for automatic segmentation of cortical layers and interpretation of cortical tissue features
- Introduction of computational methods to the field of histology sets path to biasfree, objective and explainable quantitative investigations
- This research helps shed light on following questions:
 - ► How are neurons rearranging with age?
 - ▶ Which changes are specific for normal ageing?
 - ▶ How does loss of neuronal elements affect neuronal populations in different brain areas?
 - ▶ Which changes in cytoarchitecture occur in different aging-related neurodegenerative diseases

Smart Technologies for Age Friendly Ecosystems

IT Technologies in the Service of Healthy Ageing

Thank you

Thank you for your attention.

andrija.stajduhar@mef.hr

presentation slides github.com/astajd/BFHA

Smart Technologies for Age Friendly Ecosystems

IT Technologies in the Service of Healthy Ageing

