Task-driven dictionary learning

Presented by Brian McFee for CSE254, W2012

Julien Mairal, Francis Bach, and Jean Ponce

A typical machine learning pipeline

A deep learning pipeline

Background: sparse coding

Given data $X \in \mathbb{R}^{d \times n}$

$$X = egin{bmatrix} |&&&|\x^1 & x^2 & \cdots & x^n\ |&&&&| \end{bmatrix}$$

Learn a dictionary $D \in \mathbb{R}^{d \times k}$ encoding $A \in \mathbb{R}^{k \times n}$ (k > d)

$$X \approx DA$$

Sparse $A = \text{each } x^i \text{ explained by few codewords}$

Sparse coding vs PCA

(dense, low-dimensional)

Sparse coding vs PCA

Why code sparsely?

Biologically:

Neurons don't all fire at once (conserve energy)

Practically:

Works well for classification

How to code sparsely

Given *x* and *D*, define energy function

$$E(a;x,D) := \ \frac{1}{2} \| \overset{\text{Accuracy}}{x} - Da \|^2 + \lambda \|a\|_1$$

How to code sparsely

Given x and D, define energy function

$$E(a;x,D) := \ \frac{1}{2} \| \overset{\text{Accuracy}}{x} - Da \|^2 + \lambda \|a\|_1$$

Learning the dictionary

Given n samples $x^i \in \mathbb{R}^d$ minimize total energy:

$$\min_{D,A} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} ||x^{i} - Da^{i}||^{2} + \lambda ||a^{i}||_{1}$$

s.t.
$$\forall j: \|d^j\|^2 \le 1$$

Problem: not jointly convex in D,A

Learning by alternating minimization

But it is convex in D and A individually

Fix D, optimize A (Lasso * n)

Learning by alternating minimization

But it is convex in D and A individually

Fix D, optimize A (Lasso * n)

Fix A, optimize D (QCQP)

Learning by alternating minimization

But it is convex in D and A individually

Supervised learning

Idea: use encodings *a* as input to a predictor

Ex: linear regression, $y \in \mathbb{R}^m$ $W \in \mathbb{R}^{m \times k}$

$$E(y; W, a) := \frac{1}{2} ||y - Wa||^2$$

A disconnected architecture

The usual plan:

- 1. Learn dictionary *D*
- 2. Learn predictor *W*
- 3. Fame and glory

But these are tasks not independent!

Unified architecture

Jointly learn codebook D and predictor W

Joint optimization: round 1

Given n samples (x^i, y^i) , minimize energy:

$$\min_{D,A,W} \left(\sum_{i=1}^{n} \frac{\text{Prediction cost}}{E(y^i;W,a^i) + \lambda_0 E(a^i;x^i,D)} \right) + \frac{\nu}{2} \|W\|_{\text{F}}^2$$

Alternating minimization

At prediction time...

For fixed W, D and test input x, compute

$$\arg\min_{y,a} E(y;W,a) + \lambda_0 E(a;x,D)$$

Easy for linear regression:

$$E(y; W, a) := \frac{1}{2} ||y - Wa||^2$$

$$y = Wa \implies E(y; W, a) = 0$$

At prediction time...

What about categorical output? (e.g. $y \in \{0,1\}$)

Encoding a depends on input AND output

Seems unnatural, complicates prediction

Code first, predict later

Old learning problem (sum of energies):

$$\min_{D,A,W} \left(\sum_{i=1}^{n} E(y^{i}; W, a^{i}) + \lambda_{0} E(a^{i}; x^{i}, D) \right) + \frac{\nu}{2} \|W\|_{F}^{2}$$

Code first, predict later

Old learning problem (sum of energies):

$$\min_{D,A,W} \left(\sum_{i=1}^{n} E(y^i; W, a^i) + \lambda_0 E(a^i; x^i, D) \right) + \frac{\nu}{2} ||W||_{\mathbf{F}}^2$$

New formulation (optimal encoding):

$$\min_{D,W} \sum_{i=1}^{n} E(y^{i}; W, a^{*}(x^{i}, D)) + \frac{\nu}{2} ||W||_{F}^{2}$$

$$a^{*}(x, D) = \arg\min_{a} E(a; x, D)$$

Optimal encoding

Output is now a function of optimal encoding

$$\min_{D,W} \sum_{i=1}^{n} E\left(y^{i}; W, a^{*}(x^{i}, D)\right) + \frac{\nu}{2} \|W\|_{F}^{2}$$

Prediction is feed-forward:

- a. Encode x as a^*
- b. Predict *y*
- c. Done.

But how to learn parameters W, D?

Stochastic gradient descent

Minimize objective in expectation:

$$\begin{split} & \min_{D,W} \ f(D,W) \\ f(D,W) := \ \mathbb{E}_{(x,y)} \left[E(y;W,a^*(x,D)) \right] + \frac{\nu}{2} \|W\|_{\mathrm{F}}^2 \end{split}$$

Stochastic gradient descent

Minimize objective in expectation:

$$\min_{D,W} f(D,W)
f(D,W) := \mathbb{E}_{(x,y)} \left[E(y; W, a^*(x,D)) \right] + \frac{\nu}{2} ||W||_{\mathcal{F}}^2$$

Algorithm: repeat

- a. Pick a random (x,y) from training data
- b. Update D, W

Stochastic gradient descent

Minimize objective in expectation:

$$\begin{split} & \min_{D,W} \ f(D,W) \\ f(D,W) := \ \mathbb{E}_{(x,y)} \left[E(y;W,a^*(x,D)) \right] + \frac{\nu}{2} \|W\|_{\mathrm{F}}^2 \end{split}$$

Algorithm: repeat

- a. Pick a random (x,y) from training data
- b. Update D, W

Need two quantities:
$$\nabla_W f(D, W)$$

 $\nabla_D f(D, W)$

W update

Easy for differentiable *E*:

$$W \leftarrow W - \eta \nabla_W \left[E(y; W, a^*) + \frac{\nu}{2} ||W||_F^2 \right]$$

for learning rate η

D update?

a*(x,D) is not differentiable

$$a^*(x, D) = \arg\min_{a} \frac{1}{2} ||x - Da||^2 + \lambda ||a||_1$$

$$\nabla_D a^*(x,D) = ???$$

Key observation

Small change in a*(x,D)

Differentiable region

$$a^*(x, D') \approx a^*(x, D)$$

Deeper?

Add a compression layer: a*(Zx, D)

y: output

a: coding

z: compression

x: input

Experiments

Exp. 1: Hand-written digit recognition

1-vs-all logistic regression (10 classes)

MNIST: 60K train, 10K test, 28x28

USPS: 7.3K train, 2K test, 16x16

D	Unsupervised				Supervised			
<i>k</i> *	50	100	200	300	50	100	200	300
MNIST	5.27	3.92	2.95	2.36	0.96	0.73	0.57	0.54
USPS	8.02	6.03	5.13	4.58	3.64	3.09	2.88	2.84

Exp. 2: Inverse half-tone

Original (8bpp)

(1bpp)

Reconstructed (8bpp)

Predict grayscale image from black&white input

Linear regression

10x10 image patches

k=500 codewords

36 images, 9M patches

Exp. 2: Inverse half-tone results

Conclusion

Supervision can help learn good features