An introduction to Anderson localization and MBL

Author: Jan Šuntajs Mentor: prof. Janez Bonča Comentor: doc. Lev Vidmar

May 11, 2018

University of Ljubljana
Faculty of Mathematics and Physics

Anderson localization

What began in 1958 ...

PHYSICAL REVIEW

VOLUME 109, NUMBER 5

MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. Anderson

Bell Telephone Laboratories, Murray Hill, New Jersey
(Received October 10, 1957)

Anderson localization

What began in 1958 ...

PHYSICAL REVIEW

VOLUME 109, NUMBER 5

MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. Anderson

Bell Telephone Laboratories, Murray Hill, New Jersey
(Received October 10, 1957)

... still remains relevant today

PHYSICAL REVIEW B 96, 214201 (2017)

Anderson localization transitions with and without random potentials

Trithep Devakul and David A. Huse
Department of Physics, Princeton University, New Jersey 08544, USA
(Received 20 October 2017; published 6 December 2017)

MBL - the current "hot topic"

Published in 2015:

Many-Body Localization and Thermalization in Quantum Statistical Mechanics

Rahul Nandkishore¹ and David A. Huse^{1,2}

672 citations as of April 2018 acc. to Google Scholar.

3/31

¹Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544; email: rahuln@princeton.edu, huse@princeton.edu

²Department of Physics, Princeton University, Princeton, New Jersey 08544

Outline

Part 1: the Anderson localization

- The basic concepts
- The Anderson model
- Numerical simulations

Part 2: MBL

- The basics of ETH
- MBL criteria
- Numerical results the level statistics of the tJ model

What is Anderson localization all about?

 Conduction in NON-INTERACTING systems with DISORDER

Describes the role of IMPURITIES

Completely different than the **Drude** model:

 $\sigma \propto l$, l: the mean-free path

Anderson localization - the predictions

- for some disorder: $\sigma = 0$
- seminal paper by P. W. Anderson (1958) [1]
- Nobel prize in 1977

Anderson localization - the predictions

• for some disorder: $\sigma = 0$

- seminal paper by P. W. Anderson (1958) [1]
- Nobel prize in 1977

Probability density profile in ballistic and localized regimes in 1D, L=1000

The basics

 DISORDER → (eigen)states can localize

A localized state:

$$|\psi(\mathbf{r})| \sim \exp\left(|\mathbf{r} - \mathbf{r}_0|/\xi\right)$$

• explains vanishing transport

Localization:

Extended Localized

The important keynotes

• An interference phenomenon

Strong dimensionality dependence

ullet Energy dependence o the **mobility edge**

ullet scaling of the **conductance** g of a **hypercube** L^d [2]

Ohmic conductor:

$$g = \sigma L^{d-2}$$

Localized regime:

$$g \propto \exp(-L)$$

ullet scaling of the **conductance** g of a **hypercube** L^d [2]

• Ohmic conductor:

$$g = \sigma L^{d-2}$$

Localized regime:

$$g \propto \exp(-L)$$

ullet scaling of the **conductance** g of a **hypercube** L^d [2]

Ohmic conductor:

$$g = \sigma L^{d-2}$$

Localized regime:

$$g \propto \exp(-L)$$

1D, 2D

localization for any finite disorder

3D

localization for some critical disorder

The mobility edge

3D, finite disorder

Our model - the Anderson model

The Anderson Hamiltonian [1]

$$H = \sum_{j} arepsilon_{j} c_{j}^{\dagger} c_{j} - V \sum_{\mathrm{n.n.}} c_{i}^{\dagger} c_{j} + \mathrm{h.c.}$$

Probability distribution of ε_i

$$p(\varepsilon_j) = \frac{1}{2W}\Theta(W - |\varepsilon_j|)$$

The model in 2D. Taken from [4].

The Anderson model

Two mobility edges in 3D

My work - the numerical simulations

- How to extract features of the Anderson localization numerically?
 - implementation in 1D, 2D and 3D
 - calculations were run at the F-1 cluster at IJS
 - Full diagonalization and time evolution calculations
- Two localization criteria:
 - the inverse participation ratio (IPR)
 - the absence of diffusion

Localization criteria - the IPR

The definition

$$P^{-1} = \sum_{\mathbf{r}} |\psi(\mathbf{r})|^4, \quad \ \|\psi\| = 1. \label{eq:power_power}$$

sum over the lattice sites

If L large enough

$$P^{-1} \propto \left\{ egin{array}{ll} 1/L^d, & {
m extended} \\ {
m const}, & {
m localized} \end{array}
ight.$$

IPR - the results

IPR 3D

Absence of diffusion

Time evolution

$$|\psi, t + dt\rangle = \exp\left(-i\hat{H} dt\right) |\psi, t\rangle,$$

$$\beta(t) = \frac{\mathrm{d}\log R}{\mathrm{d}\log t}$$

$$R(t) = \sqrt{\langle \psi, t | \hat{R}^2 | \psi, t \rangle - \langle \psi, 0 | \hat{R}^2 | \psi, 0 \rangle}$$

Absence of diffusion, 2D

Many-body localization

What happens when **INTERACTIONS** are included?

- Localization for low T, weak interactions
- Localization for any T, any interaction

Annals of Physics 321 (2006) 1126-1205

Many-body localization

What happens when **INTERACTIONS** are included?

 Localization for low T, weak interactions

 Localization for any T, any interaction strength Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states

D.M. Basko a,b,*, I.L. Aleiner b, B.L. Altshuler a,b,c

Annals of Physics 321 (2006) 1126-1205

Many-body localization

What happens when INTERACTIONS are included?

 Localization for low T, weak interactions

 Localization for any T, any interaction strength Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states

D.M. Basko a,b,*, I.L. Aleiner b, B.L. Altshuler a,b,c

Annals of Physics 321 (2006) 1126-1205

PHYSICAL REVIEW B 75, 155111 (2007)

Localization of interacting fermions at high temperature

Vadim Oganesyan*

Department of Physics, Yale University, New Haven, Connecticut 06520, USA

David A. Huse[†]

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA (Received 28 December 2006; published 23 April 2007)

MBL - keynotes

- Occurs in closed quantum many-body systems
- MBL systems fail to thermally equilibrate
- The eigenstate thermalization hypothesis (ETH) is not valid in such systems

Thermalization in closed quantum systems

closed system → no coupling to an external reservoir

Nandkishore, Huse, 2015

 Thermalization in such systems is possible if subsystem B can act as a reservoir for the subsystem A

The eigenstate thermalization hypothesis

Thermalization in a system \iff its **EIGENSTATES** $|m\rangle$ are "THERMAL"

Eigenstate expectation values equal the ensemble averages at a given temperature:

$$\langle m|\hat{O}|m\rangle = \langle \hat{O}\rangle_T$$

Not valid for INTEGRABLE and MBL systems

 ABSENCE of ERGODICITY

Abanin, Altman, Bloch, Serbyn, 2018

- ENTANGLEMENT ENTROPY:
 - Eigenstates with area-law entanglement
 - Entanglement grows logarithmically in time

- CHARACTERISTIC ENERGY LEVEL STATISTICS
 - The subject of my current numerical investigations

 ABSENCE of ERGODICITY

Abanin, Altman, Bloch, Serbyn, 2018

- ENTANGLEMENT ENTROPY:
 - Eigenstates with area-law entanglement
 - Entanglement grows logarithmically in time

- CHARACTERISTIC ENERGY LEVEL STATISTICS
 - The subject of my current numerical investigations

 ABSENCE of ERGODICITY

Abanin, Altman, Bloch, Serbyn, 2018

- ENTANGLEMENT ENTROPY:
 - Eigenstates with area-law entanglement
 - Entanglement grows logarithmically in time

PHYSICAL REVIEW B 77, 064426 (2008)

Many-body localization in the Heisenberg XXZ magnet in a random field

Marko Žnidarič, ¹ Tomaž Prosen, ¹ and Peter Prelovšek ^{1,2}

¹Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

²Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

(Received 31 August 2007; revised manuscript received 8 November 2007; published 25 February 2008)

- CHARACTERISTIC ENERGY LEVEL STATISTICS
 - The subject of my current numerical investigations

 ABSENCE of ERGODICITY

Abanin, Altman, Bloch, Serbyn, 2018

• ENTANGLEMENT ENTROPY:

- Eigenstates with area-law entanglement
- Entanglement grows logarithmically in time

PHYSICAL REVIEW B 77, 064426 (2008)

Many-body localization in the Heisenberg XXZ magnet in a random field

Marko Žnidarič, ¹ Tomaž Prosen, ¹ and Peter Prelovšek ^{1,2}

¹Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

²Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

(Received 31 August 2007; revised manuscript received 8 November 2007; published 25 February 2008)

CHARACTERISTIC ENERGY LEVEL STATISTICS

The subject of my current numerical investigations

The tJ model

The model Hamiltonian

$$H = -t\sum_{i,\sigma} \left(\tilde{c}_{i,\sigma}^{\dagger} \tilde{c}_{i+1,\sigma} + c.c. \right) + J\sum_{i} S_{i}S_{i+1} + \sum_{i} w_{i}S_{i}^{z} + \sum_{i,\sigma} h_{i}n_{i,\sigma}$$

- The projected fermion operators: $\tilde{c}_{i,\sigma} = (1 n_{i,-\sigma})c_{i,\sigma}$
- ullet w_i, h_i : spin and hole disorder, box distributions with parameters W and H
- \bullet We consider the 1D PBC case with $S^z=0$ for a single hole and for finite doping as well

The tJ model

Studies of the hole (sub)diffusion in the tJ model

Lemut, Bonča, Mierzejewski, PRL 119 (2017)

Studies of the level statistics

- We study the spectral statistics of the adjacent energy levels of the tJ Hamiltonian
- We lean on the findings of the random matrix theory (RMT):
 - The ergodic/quantum chaotic case: spectral statistics of the Gaussian orthogonal ensemble (GOE)
 - MBL case: no level repulsion, the adjacent energy levels are distributed according to the Poisson distribution
- Further reading:
 - Oganesyan, Huse, PRB 75, 15511 (2007)
 - Y.Y. Atas et. al., PRL 110, 084101 (2013)

Studies of the level statistics

L - system size, N_h - number of holes, N_u - number of up spins.

GOE: Wigner-Dyson statistics MBL: Poisson statistics

Quantitative analysis

Gaps between adjacent many body levels:

$$\delta_n = E_{n+1} - E_n \ge 0$$

• We define the gap ratio:

$$0 \le r_n = \min\{\delta_n, \delta_{n-1}\} / \max\{\delta_n, \delta_{n-1}\} \le 1$$

• GOE and Poisson average values $\langle r \rangle$ are well known:

$$\langle r \rangle_{\text{GOE}} = 0.5307, \quad \langle r \rangle_{\text{P}} = 2 \ln 2 - 1 \approx 0.3863$$

Numerical results - single hole case

The effect of local symmetry-breaking terms

Finite size scaling analysis

Numerical results - single hole case

Varying spin (left) and hole (right) disorder:

Averaging over different realizations of disorder(s) is performed to obtain final results.

Numerical results - single hole case

Finite size scaling analysis

Hole disorder, no spin disorder.

Numerical results - finite doping case

Varying spin (left) and hole (right) disorder:

Finite hole doping: emergence of MBL for any type of disorder?

References and sources of images

- Anderson, P. (1958). *Absence of Diffusion in Certain Random Lattices*. Physical Review, **109**(5), pp.1492-1505.
- Abrahams E., Anderson P. W., Licciardello, D. and Ramakrishnan, T.V. (1979). Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. **42**(10), 673
- Kramer, B. and MacKinnon, A. (1993). Localization: theory and experiment. Reports on Progress in Physics, 56(12), pp.1469-1564.
- Lagendijk, A., Tiggelen, B. and Wiersma, D. (2009). *Fifty years of Anderson localization*. Physics Today, **62**(8), pp.24-29.