

PATIENT Chen, Yen-Hsuan

TUMOR TYPE Soft tissue osteosarcoma (extraskeletal) COUNTRY CODE TW

REPORT DATE 15 Sep 2021

ORDERED TEST # ORD-1177651-01

ABOUT THE TEST FoundationOne® Heme is a comprehensive genomic profiling test designed to identify genomic alterations within hundreds of cancer-related genes in hematologic malignancies and sarcomas.

PATIENT

DISEASE Soft tissue osteosarcoma (extraskeletal)

NAME Chen, Yen-Hsuan

DATE OF BIRTH 04 December 2007

SEX Female

MEDICAL RECORD # 46179560

PHYSICIAN

ORDERING PHYSICIAN Hung, Giun-Yi

MEDICAL FACILITY Taipei Veterans General Hospital

ADDITIONAL RECIPIENT None

MEDICAL FACILITY ID 205872

PATHOLOGIST Not Provided

SPECIMEN

SPECIMEN SITE Heart

SPECIMEN ID S110-16133 B (PF21008)

SPECIMEN TYPE Slide Deck

DATE OF COLLECTION 10 May 2021

SPECIMEN RECEIVED 01 September 2021

Biomarker Findings

Microsatellite status - MS-Stable Tumor Mutational Burden - 7 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

MYC amplification C17orf39 amplification CDKN2A/B CDKN2B loss, CDKN2A loss

O Therapies with Clinical Benefit

5 Clinical Trials

O Therapies with Resistance

BIOMARKER FINDINGS

Microsatellite status - MS-Stable

Tumor Mutational Burden - 7 Muts/Mb

GENOMIC FINDINGS

MYC - amplification

5 Trials see p. 5

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. see Biomarker Findings section

No therapies or clinical trials. see Biomarker Findings section

THERAPIES WITH CLINICAL RELEVANCE THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)

(IN OTHER TUMOR TYPE)

none

none

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

C17orf39 - amplification

p. 3 CDKN2A/B - CDKN2B loss, CDKN2A loss.

p. 4

NOTE Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type.

Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

BIOMARKER FINDINGS

BIOMARKER

Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and

experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)⁵.

FREQUENCY & PROGNOSIS

In osteosarcoma, MSI at any level has been reported in 14% (3/21) to 44% (8/18) of cases with high MSI observed in 11% (2/18) of cases $^{6-7}$. However, other studies have reported an absence of MSI in osteosarcoma (o/7 and o/68) $^{8-9}$ and bone sarcoma (o/29) 10 . Reports of MSI in sarcomas in the literature are conflicting and varied due to substantial heterogeneity, lack of consensus on the markers and methods used for MSI assessment, and small sample size in most studies 11 . The prognostic significance of MSI in osteosarcoma or other bone mesenchymal tumors is unknown (PubMed, Sep 2021).

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹². Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH2, MSH6, or PMS2¹²⁻¹⁴. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers¹⁵⁻¹⁷. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins12,14,16-17.

BIOMARKER

Tumor Mutational Burden

RESULT 7 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1¹⁸⁻²⁰, anti-PD-1 therapies¹⁸⁻²¹, and combination nivolumab and ipilimumab²²⁻²⁷. In multiple pan-tumor studies, higher TMB has been reported to be associated with increased ORR and OS from treatment with immune checkpoint inhibitors^{18-21,28}. Higher TMB was found to be significantly associated with improved OS upon immune checkpoint inhibitor treatment for patients with 9 types of advanced tumors¹⁸. Analyses across several solid tumor types reported that patients with higher TMB (defined as \geq 16-20

Muts/Mb) achieved greater clinical benefit from PD-1 or PD-L1-targeting monotherapy, compared with patients with higher TMB treated with chemotherapy²⁹ or those with lower TMB treated with PD-1 or PD-L1-targeting agents¹⁹. However, the KEYNOTE 158 trial of pembrolizumab monotherapy for patients with solid tumors found significant improvement in ORR for patients with TMB ≥10 Muts/Mb (based on this assay or others) compared to those with TMB <10 Muts/Mb, in a large cohort that included multiple tumor types; similar findings were observed in the KEYNOTE 028 and 012 trials^{21,28}. Together, these studies suggest that patients with TMB ≥10 Muts/Mb may derive clinical benefit from PD-1 or PD-L1 inhibitors.

FREQUENCY & PROGNOSIS

Osteosarcoma harbors a median TMB of 2.5 mutations per megabase (muts/Mb), and 0.4% of cases have high TMB (>20 muts/Mb)³⁰. Undifferentiated pleomorphic sarcomas reportedly have an increased mutation burden compared to Ewing sarcomas or rhabdomyosarcomas³¹⁻³³. The association of mutation burden with prognosis of bone sarcoma has not been studied extensively

(PubMed, Sep 2021); however, one study of 31 patients with high-grade osteosarcoma reported a significant association of high TMB and improved median OS by multivariate analysis (HR=0.05, p=0.03)³⁴.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma³⁵⁻³⁶ and cigarette smoke in lung cancer37-38, treatment with temozolomide-based chemotherapy in glioma³⁹⁻⁴⁰, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes⁴¹⁻⁴⁵, and microsatellite instability (MSI)^{41,44-45}. This sample harbors a TMB level associated with lower rates of clinical benefit from treatment with PD-1- or PD-L1-targeting immune checkpoint inhibitors compared with patients with tumors harboring higher TMB levels, based on several studies in multiple solid tumor types^{19-20,28}.

GENOMIC FINDINGS

MYC

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no available therapies that directly target MYC. However, preclinical data indicate that MYC overexpression may predict sensitivity to investigational agents targeting CDK1⁴⁶⁻⁴⁷, CDK2⁴⁸, Aurora kinase A⁴⁹⁻⁵⁶, Aurora kinase B⁵⁷⁻⁶⁰, glutaminase⁶¹⁻⁶⁴, or BET bromodomain-containing proteins⁶⁵⁻⁶⁸, as well as agents targeting both HDAC and PI₃K⁶⁹⁻⁷¹. A Phase 2 study reported a PFS benefit associated with a combination of the Aurora A kinase inhibitor alisertib and paclitaxel as second-line therapy for patients with MYC-overexpressed small cell lung

cancer but not for patients without MYC overexpression⁷². A patient with MYC-amplified invasive ductal breast carcinoma experienced a PR to an Aurora kinase inhibitor⁷³. The glutaminase inhibitor CB-839, in combination with either everolimus or cabozantinib, has demonstrated encouraging efficacy in Phase 1 and 2 studies enrolling patients with pretreated advanced renal cell carcinoma⁷⁴⁻⁷⁵.

Nontargeted Approaches

MYC amplification has also been suggested to predict response to chemotherapy in patients with breast cancer in some studies⁷⁶⁻⁷⁷. Preclinical evidence suggests that colon cancer cells with MYC amplification may be more sensitive to 5-fluorouracil and paclitaxel⁷⁸⁻⁷⁹.

FREQUENCY & PROGNOSIS

MYC amplification has been reported in 16% of osteosarcoma cases⁸⁰. In osteosarcoma, MYC

amplification has been observed frequently with alterations of RB1⁸⁰. c-MYC expression has been observed in up to 86% (48/56) of osteosarcomas⁸¹. MYC amplification has been significantly associated with poor prognosis in osteosarcoma⁸⁰. c-MYC expression has also been correlated with a poor prognosis⁸¹.

FINDING SUMMARY

MYC (c-MYC) encodes a transcription factor that regulates many genes related to cell cycle regulation and cell growth. It is an oncogene and may be activated in as many as 20% of cancers⁸². MYC dysregulation (amplification, overexpression, translocation) has been identified in a number of different cancer types⁸³. MYC amplification has been significantly linked with increased mRNA and protein levels and results in the dysregulation of a large number of target genes^{82,84-85}.

GENE

C17orf39

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

— Targeted Therapies —

There are no targeted therapies available to address

alterations in C17orf39.

FREQUENCY & PROGNOSIS

C170rf39 lies in a region of human chromosome 17p11 that is frequently amplified in osteosarcoma⁸⁶⁻⁸⁷, and observed to be amplified occasionally in other tumor types including gliomas, bladder, esophageal, stomach, prostate and uterine carcinomas (cBioPortal, 2021)⁸⁸⁻⁹⁰. C170rf39 loss has also been reported, with the highest rates in tumors of the pancreas, prostate,

bladder, liver, lung, and ovary (cBioPortal, 2021)⁸⁹⁻⁹⁰.

FINDING SUMMARY

C17orf39, also known as GID4, encodes a regulatory subunit of the Mediator complex, the human homolog of the yeast Gid E3 ubiquitin ligase complex⁹¹. The yeast Gid complex plays a key role in regulation of carbohydrate metabolism⁹².

GENOMIC FINDINGS

CDKN2A/B

ALTERATIONCDKN2B loss, CDKN2A loss

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

Preclinical data suggest that tumors with loss of p16INK4a function may be sensitive to CDK4/6 inhibitors, such as abemaciclib, ribociclib, and palbociclib93-96. Although case studies have reported that patients with breast cancer or uterine leiomyosarcoma harboring CDKN2A loss responded to palbociclib treatment⁹⁷⁻⁹⁸, multiple other clinical studies have shown no significant correlation between p16INK4a loss or inactivation and therapeutic benefit of these agents 99-105; it is not known whether CDK4/6 inhibitors would be beneficial in this case. Although preclinical studies have suggested that loss of p14ARF function may be associated with reduced sensitivity to MDM2 inhibitors $^{106-107}$, the clinical relevance of p14ARF as a predictive biomarker is not clear. There are no drugs that directly target the mutation or loss of CDKN2B in cancer. Because the p15INK4b protein encoded by CDKN2B is known to inhibit CDK4, tumors with CDKN2B mutation or loss may

predict sensitivity to CDK4/6 inhibitors, such as ribociclib, abemaciclib, and palbociclib^{100,102-103,108-110}.

FREQUENCY & PROGNOSIS

CDKN2A mutations are found in fewer than 1% osteosarcoma samples in the COSMIC database (Nov 2020)¹¹¹. Chromosomal loss at 9p21, the region that includes CDKN2A, has been reported in 5-21% of osteosarcomas examined¹¹². CDKN2B mutation was not reported in any of the 175 osteosarcoma cases in COSMIC (Nov 2020)¹¹¹. Loss of CDKN2A expression has been reported to be associated with decreased survival rates in pediatric osteosarcoma patients, and p16INK4a protein levels have been reported to be a sensitive prognostic marker in osteosarcoma¹¹²⁻¹¹³.

FINDING SUMMARY

CDKN2A encodes two different, unrelated tumor suppressor proteins, p16INK4a and p14ARF, whereas CDKN2B encodes the tumor suppressor p15INK4b¹¹⁴⁻¹¹⁵. Both p15INK4b and p16INK4a bind to and inhibit CDK4 and CDK6, thereby maintaining the growth-suppressive activity of the Rb tumor suppressor; loss or inactivation of either p15INK4b or p16INK4a contributes to dysregulation of the CDK4/6-cyclin-Rb pathway and loss of cell cycle control¹¹⁶⁻¹¹⁷. The tumor

suppressive functions of p14ARF involve stabilization and activation of p53, via a mechanism of MDM2 inhibition¹¹⁸⁻¹¹⁹. One or more alterations observed here are predicted to result in p16INK4a loss of function¹²⁰⁻¹⁴¹. One or more alterations seen here are predicted to result in p14ARF loss of function^{124,141-144}. CDKN2B alterations such as seen here are predicted to inactivate p15INK4b¹⁴⁵.

POTENTIAL GERMLINE IMPLICATIONS

Germline CDKN2A mutation is associated with melanoma-pancreatic cancer syndrome, a condition marked by increased risk of developing malignant melanoma and/or pancreatic cancer¹⁴⁶. Mutation carriers within families may develop either or both types of cancer, and melanoma cases may be referred to as familial or hereditary melanoma¹⁴⁷⁻¹⁴⁸. CDKN₂A is the most implicated gene in familial melanoma, with germline mutations present in 16% to 20% of familial melanoma cases¹⁴⁹⁻¹⁵¹. CDKN₂A alteration has also been implicated in familial melanomaastrocytoma syndrome, an extremely rare tumor association characterized by dual predisposition to melanoma and nervous system tumors¹⁵²⁻¹⁵⁴. In the appropriate clinical context, germline testing of CDKN2A is recommended.

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial → Geographical proximity → Later trial phase. Clinical trials listed here may have additional enrollment criteria

that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomictesting#support-services.

MYC MYC

ALTERATION amplification

RATIONALE

MYC overexpression may predict sensitivity to inhibition of CDKs, especially CDK1 and CDK2, of Aurora kinases, including Aurora kinase A and B,

and of BET domain proteins, which are reported to downregulate MYC expression and MYC-dependent transcriptional programs.

NCT03936465	PHASE 1
Study of the Bromodomain (BRD) and Extra-Terminal Domain (BET) Inhibitor BMS-986158 in Pediatric Cancer	TARGETS BRD2, BRD3, BRD4, BRDT
LOCATIONS: Toronto (Canada), Michigan, Ohio, Massachusetts, North Carolina	

NCT03220347	PHASE 1
A Study to Assess the Safety, Tolerability, Pharmacokinetics and Preliminary Efficacy of CC-90010 in Subjects With Advanced Solid Tumors and Relapsed/Refractory Non-Hodgkin's Lymphomas	TARGETS BRD2, BRD3, BRD4, BRDT

LOCATIONS: Kashiwa (Japan), Meldola (Italy), Napoli, Campania (Italy), Rozzano (MI) (Italy), Villejuif (France), Bordeaux (France), Barcelona (Spain), Madrid (Spain)

NCT03297424	PHASE 1/2
A Study of PLX2853 in Advanced Malignancies.	TARGETS BRD4
LOCATIONS: Arizona, New York, Texas, Virginia, Florida	

NCT01434316	PHASE 1
Veliparib and Dinaciclib in Treating Patients With Advanced Solid Tumors	TARGETS PARP, CDK1, CDK2, CDK5, CDK9
LOCATIONS: Massachusetts	

NCT04555837	PHASE 1/2
Alisertib and Pembrolizumab for the Treatment of Patients With Rb-deficient Head and Neck Squamous Cell Cancer	TARGETS Aurora kinase A, PD-1
LOCATIONS: Texas	

TUMOR TYPE
Soft tissue osteosarcoma
(extraskeletal)

REPORT DATE 15 Sep 2021

ORDERED TEST # ORD-1177651-01

amplification

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

ACTB ARAF amplification E578D

CRLF2 ERBB3 D202N H1165R

GNA12 GPR124 amplification C1196Y

SPEN STAT4

L307F

FOUNDATIONONE®HEME

BCOR T3661 **FANCG** A516T **KDM2B** G669R CARD11
amplification
FLCN
amplification
MSH3

P619H

APPENDIX

Genes Assayed in FoundationOne®Heme

FoundationOne Heme is designed to include genes known to be somatically altered in human hematologic malignancies and sarcomas that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay utilizes DNA sequencing to interrogate 406 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

HEMATOLOGICAL MALIGNANCY DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ACTB	AKT1	AKT2	AKT3	ALK	AMER1 (FAM123B o	or WTX)	APC
APH1A	AR	ARAF	ARFRP1	ARHGAP26 (GRAF))	ARID1A	ARID2	ASMTL
ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXL	B2M
BAP1	BARD1	BCL10	BCL11B	BCL2	BCL2L2	BCL6	BCL7A	BCOR
BCORL1	BIRC3	BLM	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BRSK1
BTG2	BTK	BTLA	C11orf30 (EMSY)	CAD	CALR*	CARD11	CBFB	CBL
CCND1	CCND2	CCND3	CCNE1	ССТ6В	CD22	CD274 (PD-L1)	CD36	CD58
CD70	CD79A	CD79B	CDC73	CDH1	CDK12	CDK4	CDK6	CDK8
CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHD2	CHEK1	CHEK2	CIC
CIITA	CKS1B	CPS1	CREBBP	CRKL	CRLF2	CSF1R	CSF3R	CTCF
CTNNA1	CTNNB1	CUX1	CXCR4	DAXX	DDR2	DDX3X	DNM2	DNMT3A
DOT1L	DTX1	DUSP2	DUSP9	EBF1	ECT2L	EED	EGFR	ELP2
EP300	ЕРНАЗ	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERG
ESR1	ETS1	ETV6	EXOSC6	EZH2	FAF1	FAM46C	FANCA	FANCC
FANCD2	FANCE	FANCF	FANCG	FANCL	FAS (TNFRSF6)	FBXO11	FBXO31	FBXW7
FGF10	FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2
FGFR3	FGFR4	FHIT	FLCN	FLT1	FLT3	FLT4	FLYWCH1	FOXL2
FOXO1	FOXO3	FOXP1	FRS2	GADD45B	GATA1	GATA2	GATA3	GID4 (C17orf39)
GNA11	GNA12	GNA13	GNAQ	GNAS	GPR124	GRIN2A	GSK3B	GTSE1
HDAC1	HDAC4	HDAC7	HGF	HIST1H1C	HIST1H1D	HIST1H1E	HIST1H2AC	HIST1H2AG
HIST1H2AL	HIST1H2AM	HIST1H2BC	HIST1H2BJ	HIST1H2BK	HIST1H2BO	HIST1H3B	HNF1A	HRAS
HSP90AA1	ICK	ID3	IDH1	IDH2	IGF1R	IKBKE	IKZF1	IKZF2
IKZF3	IL7R	INHBA	INPP4B	INPP5D (SHIP)	IRF1	IRF4	IRF8	IRS2
JAK1	JAK2	JAK3	JARID2	JUN	KAT6A (MYST3)	KDM2B	KDM4C	KDM5A
KDM5C	KDM6A	KDR	KEAP1	KIT	KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)
KRAS	LEF1	LRP1B	LRRK2	MAF	MAFB	MAGED1	MALT1	MAP2K1
MAP2K2	MAP2K4	MAP3K1	MAP3K14	MAP3K6	MAP3K7	MAPK1	MCL1	MDM2
MDM4	MED12	MEF2B	MEF2C	MEN1	MET	MIB1	MITF	MKI67
MLH1	MPL	MRE11A	MSH2	MSH3	MSH6	MTOR	MUTYH	MYC
MYCL (MYCL1)	MYCN	MYD88	MYO18A	NCOR2	NCSTN	NF1	NF2	NFE2L2
NFKBIA	NKX2-1	NOD1	NOTCH1	NOTCH2	NPM1	NRAS	NT5C2	NTRK1
NTRK2	NTRK3	NUP93	NUP98	P2RY8	PAG1	PAK3	PALB2	PASK
PAX5	PBRM1	PC	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2 (PD-L2)	PDGFRA
PDGFRB	PDK1	PHF6	PIK3CA	PIK3CG	PIK3R1	PIK3R2	PIM1	PLCG2
POT1	PPP2R1A	PRDM1	PRKAR1A	PRKDC	PRSS8	PTCH1	PTEN	PTPN11
PTPN2	PTPN6 (SHP-1)	PTPRO	RAD21	RAD50	RAD51	RAF1	RARA	RASGEF1A
RB1	RELN	RET	RHOA	RICTOR	RNF43	ROS1	RPTOR	RUNX1
S1PR2	SDHA	SDHB	SDHC	SDHD	SERP2	SETBP1	SETD2	SF3B1
SGK1	SMAD2	SMAD4	SMARCA1	SMARCA4	SMARCB1	SMC1A	SMC3	SMO
SOCS1	SOCS2	SOCS3	SOX10	SOX2	SPEN	SPOP	SRC	SRSF2
STAG2	STAT3	STAT4	STAT5A	STAT5B	STAT6	STK11	SUFU	SUZ12
TAF1	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TET2	TGFBR2	TLL2	TMEM30A	
TMSB4XP8 (TMSL		TNFAIP3	TNFRSF11A	TNFRSF14	TNFRSF17	TOP1	TP53	TP63
TRAF2	TRAF3	TRAF5	TSC1	TSC2	TSHR	TUSC3	TYK2	U2AF1
U2AF2	VHL	WDR90	WHSC1 (MMSET or	NSD2)	WISP3	WT1	XBP1	XPO1
YY1AP1	ZMYM3	ZNF217	ZNF24 (ZSCAN3)	ZNF703	ZRSR2			

APPENDIX

Genes Assayed in FoundationOne®Heme

*Note: the assay was updated on 11/8/2016 to include the detection of alterations in CALR								
HEMATOLOGICAL MALIGNANCY DNA GENE LIST: FOR THE DETECTION OF SELECT REARRANGEMENTS								
ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	EGFR	EPOR
ETV1	ETV4	ETV5	ETV6	EWSR1	FGFR2	IGH	IGK	IGL
JAK1	JAK2	KMT2A (MLL)	MYC	NTRK1	PDGFRA	PDGFRB	RAF1	RARA
RET	ROS1	TMPRSS2	TRG					
HEMATOLOGICAL MALIGNANCY RNA GENE LIST: FOR THE DETECTION OF SELECT REARRANGEMENTS								
ABI1	ABL1	ABL2	ACSL6	AFF1	AFF4	ALK	ARHGAP26 (GRAF)	1
ARHGEF12	ARID1A	ARNT	ASXL1	ATF1	ATG5	ATIC	BCL10	BCL11A
BCL11B	BCL2	BCL3	BCL6	BCL7A	BCL9	BCOR	BCR	BIRC3
BRAF	BTG1	CAMTA1	CARS	CBFA2T3	CBFB	CBL	CCND1	CCND2
CCND3	CD274 (PD-L1)	CDK6	CDX2	CHIC2	CHN1	CIC	CIITA	CLP1
CLTC	CLTCL1	CNTRL (CEP110)	COL1A1	CREB3L1	CREB3L2	CREBBP	CRLF2	CSF1
CTNNB1	DDIT3	DDX10	DDX6	DEK	DUSP22	EGFR	EIF4A2	ELF4
ELL	ELN	EML4	EP300	EPOR	EPS15	ERBB2	ERG	ETS1
ETV1	ETV4	ETV5	ETV6	EWSR1	FCGR2B	FCRL4	FEV	FGFR1
FGFR1OP	FGFR2	FGFR3	FLI1	FNBP1	FOXO1	FOXO3	FOXO4	FOXP1
FSTL3	FUS	GAS7	GLI1	GMPS	GPHN	HERPUD1	HEY1	HIP1
HIST1H4I	HLF	HMGA1	HMGA2	HOXA11	HOXA13	HOXA3	HOXA9	HOXC11
HOXC13	HOXD11	HOXD13	HSP90AA1	HSP90AB1	IGH	IGK	IGL	IKZF1
IL21R	IL3	IRF4	ITK	JAK1	JAK2	JAK3	JAZF1	KAT6A (MYST3)
KDSR	KIF5B	KMT2A (MLL)	LASP1	LCP1	LMO1	LMO2	LPP	LYL1
MAF	MAFB	MALT1	MDS2	MECOM	MKL1	MLF1	MLLT1 (ENL)	MLLT10 (AF10)
MLLT3	MLLT4 (AF6)	MLLT6	MN1	MNX1	MSI2	MSN	MUC1	MYB
MYC	MYH11	МҮН9	NACA	NBEAP1 (BCL8)	NCOA2	NDRG1	NF1	NF2
NFKB2	NIN	NOTCH1	NPM1	NR4A3	NSD1	NTRK1	NTRK2	NTRK3
NUMA1	NUP214	NUP98	NUTM2A	OMD	P2RY8	PAFAH1B2	PAX3	PAX5
PAX7	PBX1	PCM1	PCSK7	PDCD1LG2 (PD-L2)	PDE4DIP	PDGFB	PDGFRA	PDGFRB
PER1	PHF1	PICALM	PIM1	PLAG1	PML	POU2AF1	PPP1CB	PRDM1
PRDM16	PRRX1	PSIP1	PTCH1	PTK7	RABEP1	RAF1	RALGDS	RAP1GDS1
RARA	RBM15	RET	RHOH	RNF213	ROS1	RPL22	RPN1	RUNX1
RUNX1T1 (ETO)	RUNX2	SEC31A	SEPT5	SEPT6	SEPT9	SET	SH3GL1	SLC1A2
SNX29 (RUNDC2A) SRSF3	SS18	SSX1	SSX2	SSX4	STAT6	STL	SYK
TAF15	TAL1	TAL2	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TEC	TET1	TFE3
TFG	TFPT	TFRC	TLX1	TLX3	TMPRSS2	TNFRSF11A	TOP1	TP63

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

TRIP11

ZMYM2

TTL

ZNF384

TYK2

ZNF521

USP6

TRIM24

ZBTB16

Microsatellite (MS) status
Tumor Mutational Burden (TMB)

TPM4

YPEL5

TPM3

WHSC1L1

WHSC1 (MMSET or NSD2)

APPENDIX

Performance Specifications

The median exon coverage for this sample is 811x

ACCURACY				
Sensitivity: Base Substitutions	At ≥5% Minor Allele Frequency	>99.0%		
Sensitivity: Insertions/Deletions (1-40bp)	At ≥10% Minor Allele Frequency	98.0%		
Sensitivity: Focal Copy Number Alterations (Homozygous Deletions or Amplifications)	At ≥8 copies	>95.0%		
Sensitivity: Microsatellite status	At ≥20% tumor nuclei	97.0%		
Sensitivity: Known Gene Fusions	>95.0%			
Specificity: Base Substitutions, Insertions/Deletions, and Focal Copy Number Alterations	Positive Predictive Value (PPV)	>99.0%		
Specificity: Known Gene Fusions	Positive Predictive Value (PPV)	>95.0%		
Specificity: Microsatellite status	Positive Predictive Value (PPV)	>95.0%		
Accuracy: Tumor Mutation Burden	At ≥20% tumor nuclei	>90.0%		
Reproducibility (average concordance between replicates)	97.0% inter-batch precision 97.0% intra-batch precision 95.0% microsatellite status precision 96.0% tumor mutation burden precision			

Assay specifications were determined for pical median exon coverage of approximately 500 X. For additional information regarding the validation of FoundationOne, please refer to the article, Frampton, GM. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing, Nat Biotechnol (2013 Oct. 20).

Microsatellite status, which is a measure of microsatellite instability (MSI), is determined by assessing indel characteristics at 114 homopolymer repeat loci in or near the targeted gene regions of the FoundationOne Heme test. For MSI results, confirmatory testing using a validated orthogonal method should be considered.

Tumor Mutational Burden (TMB) is determined by measuring the number of somatic mutations in sequenced genes on the FoundationOne Heme test and extrapolating to the genome as a whole. TMB is assayed for all FoundationOne Heme samples and is reported as the number of mutations per megabase (Muts/Mb). Tumor Mutational Burden is reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine Tumor Mutational Burden.

APPENDIX

About FoundationOne®Heme

ABOUT FOUNDATIONONE HEME

FoundationOne®Heme is a comprehensive genomic profiling test for hematologic malignancies and sarcomas. The test is designed to provide physicians with clinically actionable information to help with diagnostic sub-classification, prognosis assessment, and targeted therapeutic selection. Test results provide information about clinically significant alterations, potential targeted therapies, available clinical trials, and quantitative markers that may support immunotherapy clinical trial enrollment. FoundationOne Heme is analytically validated to detect all classes of genomic alterations in more than 400 cancer-related genes. In addition to DNA sequencing, FoundationOne Heme employs RNA sequencing across more than 250 genes to capture a broad range of gene fusions, common drivers of hematologic malignancies and sarcomas.

FoundationOne Heme was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Heme has not been cleared or approved by the United States Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. FoundationOne Heme may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance
FoundationOne Heme identifies alterations to select
cancer-associated genes or portions of genes
(biomarkers). In some cases, the Report also
highlights selected negative test results regarding
biomarkers of clinical significance.

Qualified Alteration Calls

(Equivocal and Subclonal)

An alteration denoted as "amplification - equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne Heme for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that FoundationOne Heme analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials Ranking of Therapies in Summary Table
Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials
Pediatric trial qualification → Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK* (NCCN*) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2021. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source

or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Heme.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low sample quality or with homozygous losses of <3 exons; and deletions and insertions >40bp, or in repetitive/high homology sequences. FoundationOne Heme is performed using DNA and RNA derived from tumor, and as such germline events may not be reported.

The following targets typically have low coverage resulting in a reduction in sensitivity: SDHD exon 4, TNFRSF11A exon1, and TP53 exon 1.

FoundationOne Heme fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

APPENDIX

About FoundationOne®Heme

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
TKI	Tyrosine kinase inhibitor

MR Suite Version 5.0.0

APPENDIX References

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- 6. Heinsohn S, et al. Int. J. Oncol. (2007) pmid: 17390023
- 7. Belchis DA, et al. Diagn. Mol. Pathol. (1996) pmid: 8866236
- 8. Suwa K, et al. J Orthop Sci (1999) pmid: 10370164
- 9. Entz-Werlé N, et al. J. Clin. Oncol. (2005) pmid: 15800315
- 10. Tarkkanen M, et al. Br. J. Cancer (1996) pmid: 8695363
- 11. Monument MJ, et al. ISRN Oncol (2012) pmid: 23401795
- 12. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- 13. You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 14. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid: 24623249
- 15. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 16. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- 17. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 18. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- 19. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid:
- 20. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 21. Cristescu R, et al. Science (2018) pmid: 30309915
- 22. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 23. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 24. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 25. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 26. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 27. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- 28. Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- 29. Legrand et al., 2018; ASCO Abstract 12000
- 30. Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 31. Lim J, et al. Clin. Cancer Res. (2015) pmid: 26330427
- 32. Brohl AS, et al. PLoS Genet. (2014) pmid: 25010205
- 33. Chen X, et al. Cancer Cell (2013) pmid: 24332040
- 34. Xie L, et al. Front Oncol (2020) pmid: 33898301
- 35. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 36. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 37. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 38. Rizvi NA, et al. Science (2015) pmid: 25765070
- 39. Johnson BE, et al. Science (2014) pmid: 24336570
- 40. Choi S, et al. Neuro-oncology (2018) pmid: 29452419 41. Cancer Genome Atlas Research Network, et al. Nature
- (2013) pmid: 23636398 42. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 24583393
- 43. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid:
- 44. Nature (2012) pmid: 22810696
- 45. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid:
- 46. Horiuchi D, et al. J. Exp. Med. (2012) pmid: 22430491
- 47. Goga A, et al. Nat. Med. (2007) pmid: 17589519
- 48. Molenaar JJ, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid: 19525400
- 49. Dammert MA, et al. Nat Commun (2019) pmid: 31375684

- 50. Mollaoglu G, et al. Cancer Cell (2017) pmid: 28089889
- 51. Cardnell RJ, et al. Oncotarget (2017) pmid: 29088717
- 52. Wang L, et al. Mol Oncol (2017) pmid: 28417568
- 53. Takahashi Y, et al. Ann. Oncol. (2015) pmid: 25632068
- 54. Li Y, et al. Thyroid (2018) pmid: 30226440 55. Mahadevan D, et al. PLoS ONE (2014) pmid: 24893165
- 56. Park SI, et al. Target Oncol (2019) pmid: 31429028
- 57. Helfrich BA, et al. Mol. Cancer Ther. (2016) pmid:
- 58. Hook KE, et al. Mol. Cancer Ther. (2012) pmid: 22222631
- 59. Yang D, et al. Proc. Natl. Acad. Sci. U.S.A. (2010) pmid: 20643922
- 60. He J, et al. Anticancer Drugs (2019) pmid: 30540594
- 61. Shroff EH, et al. Proc. Natl. Acad. Sci. U.S.A. (2015) pmid: 25964345
- **62.** Effenberger M, et al. Oncotarget (2017) pmid: 29156762
- 63. Qu X, et al. Biochem. Biophys. Res. Commun. (2018) pmid: 30103944
- 64. Xiang Y, et al. J. Clin. Invest. (2015) pmid: 25915584
- 65. Delmore JE, et al. Cell (2011) pmid: 21889194
- 66. Bandopadhayay P, et al. Clin. Cancer Res. (2014) pmid:
- 67. Lovén J, et al. Cell (2013) pmid: 23582323
- 68. Otto C, et al. Neoplasia (2019) pmid: 31734632
- 69. Dong LH, et al. J Hematol Oncol (2013) pmid: 23866964
- 70. Pei Y, et al. Cancer Cell (2016) pmid: 26977882
- 71. Fu XH, et al. Acta Pharmacol. Sin. (2019) pmid:
- 30224636 72. Owonikoko TK, et al. J Thorac Oncol (2020) pmid:
- 31655296 73. Ganesan P, et al. Mol. Cancer Ther. (2014) pmid:
- 25253784 74. Tannir et al., 2018; ASCO GU Abstract 603
- 75. Motzer et al., 2019; ESMO Abstract LBA54
- 76. Pereira CB, et al. PLoS ONE (2013) pmid: 23555992
- 77. Yasojima H, et al. Eur. J. Cancer (2011) pmid: 21741827
- 78. Arango D, et al. Cancer Res. (2001) pmid: 11406570
- 79. Bottone MG, et al. Exp. Cell Res. (2003) pmid: 14516787
- 80. Smida J, et al. Clin. Cancer Res. (2010) pmid: 20610556
- 81. Wu X, et al. Cancer Epidemiol (2012) pmid: 21890444
- 82. Dang CV, et al. Semin. Cancer Biol. (2006) pmid: 16904903
- 83. Nesbit CE, et al. Oncogene (1999) pmid: 10378696
- 84. Blancato J, et al. Br. J. Cancer (2004) pmid: 15083194 85. Fromont G, et al. Hum. Pathol. (2013) pmid: 23574779
- 86. van Dartel M, et al. Cancer Genet. Cytogenet. (2004) pmid: 15193436
- 87. Both J, et al. PLoS ONE (2012) pmid: 22292074
- 88. van Dartel M, et al. Cancer Genet. Cytogenet. (2003) pmid: 12645656
- 89. Cerami E, et al. Cancer Discov (2012) pmid: 22588877
- 90. Gao J, et al. Sci Signal (2013) pmid: 23550210
- 91. Menssen R, et al. J. Biol. Chem. (2012) pmid: 22645139
- 92. Santt O, et al. Mol. Biol. Cell (2008) pmid: 18508925 93. Konecny GE, et al. Clin. Cancer Res. (2011) pmid: 21278246
- Katsumi Y, et al. Biochem. Biophys. Res. Commun.
- (2011) pmid: 21871868 95. Cen L, et al. Neuro-oncology (2012) pmid: 22711607
- Logan JE, et al. Anticancer Res. (2013) pmid: 23898052
- 97. Elvin JA, et al. Oncologist (2017) pmid: 28283584
- 98. Gao J. et al. Curr Oncol (2015) pmid: 26715889
- 99. Gopalan et al., 2014; ASCO Abstract 8077 Peguero et al., 2016: ASCO Abstract 2528
- 101. Konecny et al., 2016; ASCO Abstract 5557
- 102. DeMichele A. et al. Clin. Cancer Res. (2015) pmid:

- 25501126
- 103. Finn RS, et al. Lancet Oncol. (2015) pmid: 25524798
- 104. Infante JR, et al. Clin. Cancer Res. (2016) pmid: 27542767
- 105. Johnson DB, et al. Oncologist (2014) pmid: 24797823
- 106. Van Maerken T, et al. Mol. Cancer Ther. (2011) pmid:
- 107. Gamble LD, et al. Oncogene (2012) pmid: 21725357
- 108. Shapiro et al., 2013; ASCO Abstract 2500
- Flaherty KT, et al. Clin. Cancer Res. (2012) pmid: 22090362
- 110. Dickson MA, et al. J. Clin. Oncol. (2013) pmid: 23569312
- 111. Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 112. Martin JW, et al. Sarcoma (2012) pmid: 22685381
- 113. Mohseny AB, et al. J. Pathol. (2009) pmid: 19718709
- 114. Quelle DE, et al. Cell (1995) pmid: 8521522
- 115. Mutat. Res. (2005) pmid: 15878778
- 116. Gazzeri S, et al. Oncogene (1998) pmid: 9484839
- 117. Oncogene (1999) pmid: 10498883
- Sherr CJ, et al. Cold Spring Harb. Symp. Quant. Biol.
- (2005) pmid: 16869746 119. Ozenne P, et al. Int. J. Cancer (2010) pmid: 20549699
- 120. Ruas M, et al. Oncogene (1999) pmid: 10498896
- 121. Jones R, et al. Cancer Res. (2007) pmid: 17909018
- 122. Haferkamp S, et al. Aging Cell (2008) pmid: 18843795
- 123. Huot TJ, et al. Mol. Cell. Biol. (2002) pmid: 12417717
- 124. Rizos H. et al. J. Biol. Chem. (2001) pmid: 11518711
- 125. Gombart AF, et al. Leukemia (1997) pmid: 9324288
- 126. Yang R, et al. Cancer Res. (1995) pmid: 7780957
- 127. Parry D, et al. Mol. Cell. Biol. (1996) pmid: 8668202 128. Greenblatt MS, et al. Oncogene (2003) pmid: 12606942
- 129. Yarbrough WG, et al. J. Natl. Cancer Inst. (1999) pmid: 10491434
- 130. Poi MJ, et al. Mol. Carcinog. (2001) pmid: 11255261
- 131. Byeon IJ, et al. Mol. Cell (1998) pmid: 9660926
- 132. Kannengiesser C, et al. Hum. Mutat. (2009) pmid: 19260062
- 133. Lal G, et al. Genes Chromosomes Cancer (2000) pmid:
- 134. Koh J. et al. Nature (1995) pmid: 7777061
- 135. McKenzie HA, et al. Hum. Mutat. (2010) pmid: 20340136
- 136. Miller PJ, et al. Hum. Mutat. (2011) pmid: 21462282
- 137. Kutscher CL, et al. Physiol. Behav. (1977) pmid: 905385
- 138. Scaini MC, et al. Hum. Mutat. (2014) pmid: 24659262
- 139. Jenkins NC, et al. J. Invest. Dermatol. (2013) pmid: 23190892
- 140. Walker GJ, et al. Int. J. Cancer (1999) pmid: 10389768
- 141. Rutter JL, et al. Oncogene (2003) pmid: 12853981
- 142. Itahana K, et al. Cancer Cell (2008) pmid: 18538737 143. Zhang Y, et al. Mol. Cell (1999) pmid: 10360174
- 144. Zhang Y, et al. Cell (1998) pmid: 9529249 145. Jafri M, et al. Cancer Discov (2015) pmid: 25873077
- 146. Whelan AJ, et al. N Engl J Med (1995) pmid: 7666917
- 147. Adv Exp Med Biol (2010) pmid: 20687502
- 148. Hogg D, et al. J Cutan Med Surg (1998) pmid: 9479083 149. De Unamuno B, et al. Melanoma Res (2018) pmid:
- 150. Soura E, et al. J Am Acad Dermatol (2016) pmid: 26892650
- 151. Huerta C, et al. Acta Derm Venereol (2018) pmid:
- 152. Kaufman DK, et al. Neurology (1993) pmid: 8414022
- 153. Bahuau M, et al. Cancer Res (1998) pmid: 9622062 154. Chan AK, et al. Clin Neuropathol () pmid: 28699883