Binary Adders and Subtractors

Overview

- Addition and subtraction of binary data is fundamental
 - Need to determine hardware implementation
- Represent inputs and outputs
 - Inputs: single bit values, carry in
 - Outputs: Sum, Carry
- Hardware features
 - Create a single-bit adder and chain together
- Same hardware can be used for addition and subtraction with minor changes
- Dealing with overflow
 - What happens if numbers are too big?

Half Adder

Add two binary numbers

- A₀, B₀ -> single bit inputs
- S₀ -> single bit sum
- C_1 -> carry out

A ₀	В0	So	C ₁
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Dec Binary

$$\begin{array}{r}
 1 & 1 \\
 +1 & +1 \\
 \hline
 2 & 10
 \end{array}$$

Multiple-bit Addition

Consider single-bit adder for each bit position.

$$A_3 A_2 A_1 A_0$$
 $A 0 1 0 1$

$$B_3 B_2 B_1 B_0$$
 $B 0 1 1 1$

$$C_{i+1} C_{i}$$

$$A_{i}$$

$$+B_{\underline{i}}$$

$$-S_{i}$$

Each bit position creates a sum and carry

- Full adder includes carry in C_i
- Notice interesting pattern in Karnaugh map.

C_{i}	A_{i}	B_{i}	Si	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

C_{i}	B _i 00	01	11	10	
0		1		1	
1	1		1		
S_{i}					

- Full adder includes carry in C_i
- Alternative to XOR implementation

C_{i}	A_{i}	B _i	S _i	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_{i} = !C_{i} & !A_{i} & B_{i}$$

$$# !C_{i} & A_{i} & !B_{i}$$

$$# C_{i} & !A_{i} & !B_{i}$$

$$# C_{i} & A_{i} & B_{i}$$

Reduce and/or representations into XORs

$$S_{i} = !C_{i} & !A_{i} & B_{i} \\
!C_{i} & A_{i} & !B_{i} \\
C_{i} & !A_{i} & !B_{i} \\
C_{i} & A_{i} & B_{i}$$

$$S_{i} = !C_{i} & (!A_{i} & B_{i} # A_{i} & !B_{i}) \\
C_{i} & (!A_{i} & !B_{i} # A_{i} & B_{i})$$

$$S_{i} = !C_{i} & (A_{i} & B_{i}) \\
C_{i} & (A_{i} & B_{i})$$

$$S_{i} = C_{i} & (A_{i} & B_{i}) \\
S_{i} = C_{i} & (A_{i} & B_{i})$$

- Now consider implementation of carry out
- ° Two outputs per full adder bit (C_{i+1}, S_i)

C_{i}	A_{i}	B_{i}	Si	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

C_{i}	B _i 00	01	11	10	
0			1		
1		1	1	1	
	C_{i+1}				

Note: 3 inputs

- Now consider implementation of carry out
- Minimize circuit for carry out C_{i+1}

C_{i}	A_{i}	B _i	S _i	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$C_{i+1} = A_{i} & B_{i}$$

$$\# C_{i} & A_{i} & B_{i}$$

$$\# C_{i} & A_{i} & B_{i}$$

$$C_{i+1} = A_{i} & B_{i}$$

$$\# C_{i} & (!A_{i} & B_{i} \# A_{i} & !B_{i})$$

$$C_{i+1} = A_{i} & B_{i} \# C_{i} & (A_{i} & B_{i})$$

$$C_{i+1} = A_{i} & B_{i} \# C_{i} & (A_{i} & B_{i})$$

Recall:

$$S_{i} = C_{i} \ \$ \ (A_{i} \ \$ \ B_{i})$$
 $C_{i+1} = A_{i} \ \& \ B_{i} \ \# \ C_{i} \ \& \ (A_{i} \ \$ \ B_{i})$

Full adder made of several half adders

Hardware repetition simplifies hardware design

A full adder can be made from two half adders (plus an OR gate).

- Putting it all together
 - Single-bit full adder
 - Common piece of computer hardware

Block Diagram

4-Bit Adder

- Chain single-bit adders together.
- ° What does this do to delay?

Negative Numbers – 2's Complement.

- ° Subtracting a number is the same as:
 - 1. Perform 2's complement
 - 2. Perform addition
- o If we can augment adder with 2's complement hardware?

$$1_{10} = 01_{16} = 00000001$$

 $-1_{10} = FF_{16} = 11111111$

$$128_{10} = 80_{16} = 10000000$$

 $-128_{10} = 80_{16} = 10000000$

4-bit Subtractor: E = 1

Add **A** to **B'** (one's complement) plus 1
That is, add **A** to two's complement of **B** D = A - B

Adder- Subtractor Circuit

Overflow in two's complement addition

- Definition: When two values of the same signs are added:
 - Result won't fit in the number of bits provided
 - Result has the opposite sign.

Assumes an N-bit adder, with bit N-1 the MSB

Addition cases and overflow

00	01	11	10	00	11
0010	0011	1110	1101	0010	1110
0011	0110	1101	1010	1100	0100
0101	1001	1011	0111	1110	0010
2	3	-2	-3	2	-2
3	6	-3	-6	-4	4
5	-7	-5	7	-2	2
	OFL		OFL		

Summary

- Addition and subtraction are fundamental to computer systems
- ° Key create a single bit adder/subtractor
 - Chain the single-bit hardware together to create bigger designs
- ° The approach is call ripple-carry addition
 - Can be slow for large designs
- ° Overflow is an important issue for computers
 - Processors often have hardware to detect overflow
- ° Next time: encoders/decoder.