ARIMA ssf

We consider that the auto-regressive polynomial contains some unit roots. It can be factorized in a stationary polynomial (defined by the roots outside the unit circle) and in a non-stationary polynomial (defined by the roots on the unit circle), which is notated:

 $\$ \Delta\left(B)\right) = 1 + \delta_1 B + \cdots + \delta_d B^d \$\$

The state space form of an ARIMA model is similar to the state space form of an [ARMA model(arma_ssf.md)] except for its initialization.

Initialization

The initial conditions can be written as follows:

 $\ \Phi_{-1} = \bigoplus_{p \in \mathbb{N}} 0 \rightarrow 0 \$ \$\$ P_{*} = \Sigma_{0} \Omega \\$ B = \Delta \$\$ P_{\infty} \ \ P_{\infty} = \Delta \

 $\$ \Omega \\$ is the unconditional covariance of the state array of the stationary model. \\$ \Sigma = \begin{pmatrix} 1 & 0 & \cdots & 0 \ \ambda_1 & \cdots & \vdots & \vdots & \vdots & \dots & \lambda_{r-1} & \ambda_{r-2} & \ambda_{1} \end{pmatrix} \$

where $\$ \lambda_{i} $\$ are generated by $\$ \frac{1}{\Delta\left(B\right)} \$\$

 $\$ \ Lambda \\$ is a r x d matrix; its first d rows form an identity matrix; other cells are defined by the recursive relationship: $\$ \ Lambda \\eft(i,j\right) = -\sum_{k=1}^d {\delta_k \Lambda \\eft(i-k,j\right)}