Duration Immunization of a 5-Year Liability

Lavan DeSilva — Date: September 07, 2025 — Tools: Excel

Executive Summary

Objective: Match the present value and interest-rate sensitivity of a \$10,000 liability due in 5 years using two coupon bonds.

Approach: Price each bond at base yield i, compute Macaulay duration, solve allocations to match PV and duration (T years), and test ± 100 bps shocks.

Key results: PV(Liability) = \$8219.27, allocations A1 = \$2634.74, A2 = \$5584.53, portfolio duration ≈ 5 , Asset-Liability @ +100 bps = \$1.60, @ -100 bps = \$1.79.

Conclusion: The two-bond mix immunizes small rate moves. Residual differences reflect convexity.

Set-up & Data

- Liability: L = \$10000, term T = 5 years, base yield i = 0.04.
- Bonds:
 - Bond 1: Face \$100, coupon rate 0.03, maturity 3 years.
 - Bond 2: Face \$100, coupon rate 0.06, maturity 7 years.
- Shocks: ± 100 bps around i.
- Assumption: Annual coupons, flat yield for discounting.

Method

Pricing:
$$P = \Sigma v^t C F_t$$

Macaulay duration:
$$D = \frac{\sum tv^t CF_t}{\sum v^t CF_t}$$

Immunization conditions:

1) PV match:
$$A_1 + A_2 = PV_L$$

2) Duration match:
$$T = \frac{(A_1 \cdot D_1 + A_2 \cdot D_2)}{(A_1 + A_2)}$$

Closed-form allocations:
$$A_1 = \frac{PV_L \cdot (T - D_2)}{(D_1 - D_2)}, A_2 = PV_L - A_1$$

Results

Table 1 — Bond measures @ i

Bond	Price	Macaulay Duration
3y, 3%	\$97.22	2.91
7y, 6%	\$112.00	5.99

Table 2 — Allocation & checks (base)

PV(Liability)	\$8219.27	
A1 (Bond 1 dollars)	\$2634.74	
A2 (Bond 2 dollars)	\$5584.53	
Portfolio PV (A1 + A2)	≈ \$8219.27	
Portfolio Duration	≈ 5.00	
Notes	Matches PV and duration. Small residuals are	
	expected due to convexity.	

Table 3 — Asset vs. Liability under \pm shock

Scenario	Asset PV	Liability PV	Asset – Liability
i + 100 bps	\$7836.86	\$7835.26	+1.60
i – 100 bps	\$8627.88	\$8626.09	+1.79

Interpretation: \sim \$1-\$2 residuals on \sim \$8.2k PV are minor and reflect convexity. Duration matching handles small parallel moves well.

Limitations & Next Steps

- Duration is a first-order (linear) measure, larger shocks or non-parallel moves will create mismatches.
- Flat curve assumption. A term structure would refine pricing.
- Next steps: add a third bond to increase convexity, test non-parallel shifts, and compare modified vs. Macaulay duration.