

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 3.7.1 Скин-эффект

Автор: Чикин Андрей Павлович Б05-304 **Цель работы:** Исследование проникновения переменного магнитного поля в медный полый цилиндр

Теоретическая часть

Скин-эффект для полупрастранства

Рассмотрим квазистационарное поле внутри проводящей среды в простейшем плоском случае. Пусть вектор *E направлен всюду вдоль оси y и зависит только от координаты x, т. е. $E_x = E_z \equiv 0$, $E_y = E_y(x,t)$. В квазистационарном приближении

$$\overrightarrow{\nabla} \times *H = \sigma *E$$

Преобразуя это уравнение, можно получить уравнение, схожее с уравнением диффузии:

$$\overrightarrow{\nabla}^2 * H = \sigma \mu \mu_0 \frac{\partial * H}{\partial t} \tag{1}$$

Точно такое же уравнение имеет место и для вектора E:

$$\overrightarrow{\nabla}^2 * E = \sigma \mu \mu_0 \frac{\partial * E}{\partial t} \tag{2}$$

Подставляем в (2) наше электрическое поле $E_y = E_y(x,t)$

$$\frac{\partial^2 E_y}{\partial x^2} = \sigma \mu \mu_0 \frac{\partial E_y}{\partial t} \tag{3}$$

Если $E_y(0,t)=E_0e^{i\omega t}$ то решением (3) будет функция вида

$$E_{y}(x,t) = E_{0}e^{-x/\delta}e^{i(\omega t - x/\delta)}$$
(4)

где

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu \mu_0}} \tag{5}$$

Скин-эффект в тонокм полом цилиндре

Рис. 1: Эл-магнитные поля в цилиндре

Рис. 2: Стенка цилиндра

Перейдем теперь к описанию теории в нашей работе. Из соображении симметрии и непрерывности соответствующих компонет векторов *E и *H можем сказать что

$$H_z = H(r)e^{i\omega t}, E_{\varphi} = E(r)e^{i\omega t}$$

и при этом функции H(r) и E(r) непрерывны.

Внутри цилиндра токов нет, следовательно $H(r) = H_1 =$ const внутри цилиндра. По теореме об электромагнитной индукции

$$E(r) = -\frac{1}{2}\mu_0 r \cdot i\omega H_1$$

откуда мы получаем граничное условие

$$E_1 = E(a) = -\frac{1}{2}\mu_0 a \cdot i\omega H_1 \tag{6}$$

В прближении $h \ll a$ можем пренебречь кривизной стенки и смоделировать его бесконечной полосой. Тогда, надо решить уравнение (1) с граничными условиями. Решая уравнение получим связь полей H_1 (поле внутри цилиндра которое мы будем измерять) и H_0 , которое колебается с частотой ω

$$H_1 = \frac{H_0}{\operatorname{ch}(\alpha h) + \frac{1}{2}\alpha a \operatorname{sh}(\alpha h)} \quad \alpha = \sqrt{i\omega\sigma\mu_0} = \frac{\sqrt{2}}{\delta}e^{i\pi/4} \quad (7)$$

из этой формулы получим сколько по фазе отстает поле H_1 от H_0 . При $\delta \ll h$ (высокачастотная область)

$$\psi \approx \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}} \tag{8}$$

При $\delta \gg h$ (низкочастотная область)

$$tg \, \psi \approx \frac{ah}{\delta^2} = \pi a h \sigma \mu \mu_0 \nu \tag{9}$$

Установка и процесс измерения

Переменное магнитное поле создается соленоидом 1, на который подается переменный ток со звукового генератора 3Γ . Внутри соленоида расположен медный экран 2. Магнитное поле внутри цилиндра измеряется катушкой 3. Напряжение на катушке пропорциональна производной $\dot{B}_1(t)$

$$U(t) \propto \dot{B_1}(t) = -i\omega H_1 e^{i\omega t}$$

Рис. 3: Установка

Поле внутри цилиндра пропорциональна току через соленоид

$$H_0(t) \propto I(t)$$

Отсюда несложно увидеть, что

$$\frac{|H_1|}{|H_0|} = c \cdot \frac{U}{\nu I} = \xi_0 \xi \tag{10}$$

где константу ξ_0 можно определить из условия $|H_1|/|H_0| \to 1$ при $\nu \to 0$.

При измерениях разности фаз нужно учесть, что первый сигнал на осциллографе пропорционален магнитному полю снаружи, а второй пропорционален производному поля внутри цилиндра по времени, поэтому измеренная на осциллографе разность фаз φ будет на $\frac{\pi}{2}$ больше реальной ψ :

$$\varphi = \psi + \frac{\pi}{2}$$

1 Ход работы

Параметры установки:

$$2a = 45 \text{MM}$$

$$h = 1.5 \text{MM}$$

Проводимость:

$$\sigma \sim 5 \cdot 10^7 C_{\rm M}/_{\rm M}$$

Получаем оценку для частоты, при которой глубина проникновения равна толщине стенок цилиндра:

$$\nu_h = 2254 \; \Gamma_{\rm Ц}$$

1.1 Измерения амплитуд в области низких частот

В области частот $\nu \ll \nu_h \ \alpha h \ll 1$, и из (7) получаем

$$\frac{1}{\xi^2} = \xi_0^2 B^2 v^2 + \xi_0^2, \quad B = \pi a h \sigma \mu_0$$

Рис. 4: График зависимости $1/\xi^2(\nu^2)$

ν, Гц	I,A	U,B
25	473.18	162.1
30	471.12	192.8
35	468.87	222.6
40	466.29	251.4
45	463.4	279.1
50	460.4	305.7
55	457.27	331.2
60	453.88	355.2
65	450.47	378.5
70	447.07	400.5
75	443.56	421.3
80	440.07	441
85	436.63	459.5
90	433.2	477.1
95	429.84	493.5
100	426.5	509
105	423.24	523.6
110	420.08	537.2
115	417	550.1

ν^2 , Γ ц ²	$\frac{1}{\xi^2}$, A
5326	625
5374	900
5435	1225
5504	1600
5582	2025
5670	2500
5766	3025
5878	3600
5984	4225
6106	4900
6235	5625
6373	6400
6524	7225
6678	8100
6847	9025
7021	10000
7204	11025
7399	12100
7599	13225

Получаем следующие значения:

$$\alpha = \frac{\partial y}{\partial x} \approx 0.18 \frac{1}{\text{Om}^2}$$
$$\beta = y(0) \approx 5200 \frac{\Gamma \text{H}^2}{\text{Om}^2}$$
$$\xi_0 \approx 72 \frac{\Gamma \text{H}}{\text{OM}}$$
$$\sigma \approx (4.51 \pm 0.01) 10^7 \frac{\text{CM}}{\text{M}}$$

1.2 Измерение проводимости через разность фаз в низкочастотном диапазоне

Согласно формуле (9), при $\delta \gg h$

$$\tan \psi = k \cdot \nu$$
, $k = \pi a h \sigma \mu_0 \ (\mu = 1)$

Из коэффициента наклона прямой находим проводимость

$$\sigma = (4.7 \pm 0.2) \cdot 10^7 \text{Cm/m} \tag{11}$$

1.3 Измерение проводимости через разность фаз в высокачастотном диапазоне

$$\psi - \frac{\pi}{4} = \alpha \sqrt{\nu}, \quad \alpha = h \sqrt{\pi \mu_0 \sigma}$$

$$\sigma = (4.4 \pm 0.3) \cdot 10^7 \text{Cm/m}$$
 (12)

1.4 Измерение проводимости через изменение индуктивности

$$\frac{L_{\text{max}} - L}{L - L_{\text{min}}} = K v^2, \quad K = \pi^2 a^2 h^2 \mu_0^2 \sigma^2$$

$$\sigma = (4.5 \pm 0.1) \cdot 10^7 \text{Cm/m}$$
 (13)

1.5 Отношение магнитных полей

Найдем $|H_1|/|H_0|$ двумя способами - через формулу (10) и (7).

2 Выводы

В данной лабораторной работе мы измеряли удельную проводимость меди 4-мя различными способами с помощью явления скин-эффекта.

$$\sigma_{\text{табл}} \approx 5.6 \cdot 10^7 \text{Cm/m}$$
 (14)

В целом, наши измерения заметно меньше истинного.

Меньше всего получилась погрешность измерения на низких частотах.

На высоких частотах, скорее всего, измерениям мешают токи Фуко.

Также посчитали отношение магнитных полей. Значения хорошо совпали с теоретическими значениями.