Index

I Basic Probability. II. Conditional Probability. III. Bayes Theorem

Basic probability

1. Two dies are rolled at once. Find out the probability for sum of numbers being even and one of the die shows 6.

Analysis: It is single event, the total no of possible combinations are : 36 (as there are two dice) Total no of favourable outcomes = (sum is even and one of the die should show 6) possible combinations are : (6,2) (6,4), (6,6),(2,6),(4,6)

Answer: probability = (No of favourable outcomes / Total no of possible outcomes) = (5/36)

2. Two dies are rolled at once. Find out the probability for sum of numbers being less than 7.

Analysis: No of favourable outcomes are : (1,5)(1,4),(1,3),(1,2),(1,1),(2,4),(2,3),(2,2),(2,1),(3,3),(3,2),(3,1),(4,2),(4,1),(5,1)

Answer: probability = (No of favourable outcomes / Total no of possible outcomes) = (15/36)

3. You toss a fair coin three times :Given that you have observed atleast one heads, what is the probability that you observe atleast two heads?

Analysis: Total possible outcomes = 7, as it was observed that, ateast one head No of favouraable outcomes = 4,(which had atleast two heads)(THH)(HTH)(HHH)

Answer: p(atleastTwoHeads) = 4/7

4. A and B are a married couple with two kids. One of them is a girl. What is the probability that their other kid is also a girl?

Analysis: The second kid probability is not dependent on first kid, so it is normal probability

Answer: p(girl) = 1/2

Top^

Conditional, Joint and Marginal Probability

5. In my town, it's rainy for one third of the days. Given that it is rainy, there will be heavy traffic with

probability 1/2, and given that it is not rainy, there will be heavy traffic with probability 1/4. If it's rainy and there is heavy traffic, I arrive late for work with probability 1/2. On the other hand, the probability of being late is 1/8 if it is not rainy and there is no heavy traffic. In other situations (rainy and no traffic, not rainy and traffic) the probability of being late is 0.25, 0.25. You pick a random day.

a) What is the probability that it's not raining and there is heavy traffic and I am not late?

Analysis:

 $p(NotRaining ^ HeavyTraffic ^ Not Late) = p(NotLate|(HeavyTraffic & Not rainy)) X p(HeavyTraffic|not rainy) X p(not rainy)$

Answer: $p(NotRaining ^ HeavyTraffic ^ Not Late) = (3/4) X (1/4) X (2/3) = (1/8)$

b) What is the probability that I am late?

Analysis:

p(Late) = p(Late| (HT & Rainy)) + p(Late| (NHT & Rainy) + p(Late| (HT & Not Rainy)) + p(NHT & Not Rainy)

Answer: p(Late) = (1/2 X 1/2 X 1/3) + (1/4 X 1/2 X 1/3) + (1/4 X 1/4 X 2/3) + (1/8 X 3/4 X 2/3) = 11/48

c) Given that I arrived late at work, what is the probability that it rained that day?

Analysis: p(rainy|Late) =p(Late|rainy) X p(Late) / p(rainy)

= [p(Late|(HT&rainy)) + p(Late|(NHT & rainy))] X p(Late) / p(rainy)

Answer: $p(rainy|Late) = [(1/2 \times 1/2) + (1/4 \times 1/2)] \times 11/48 / (1/3) = 33/128$

6. A box contains three coins: two regular coins and one fake two-headed coin (P(Heads)=1), You pick a coin at random and toss it.

6a) What is the probability that it lands heads up?

Analysis: and Answer:

p(Heads) = p(H|fake)X p(fake) + p(H|regular) X p(regular) = (1 X 1/3) + (1/2 X 2/3) = 2/3

6b) You pick a coin at random and toss it and get heads. What is the probability that it is the two-headed coin?

Analysis: and Answer:

p(Heads) = 2/3 (from previous question)

p(fake|Heads) = p(Heads|fake) X p(fake) / p(Heads) = (1 X 1/3) / (2/3)= 1/2

7. Suppose that, of all the customers at a coffee shop

- 70% purchase a cup of coffee
- 40% purchase a piece of cake
- 20% purchase both a cup of coffee and a piece of cake.

Given that a randomly chosen customer has purchased a piece of cake, what is the probability that he/she also purchased a cup of coffee.

P(coffee | cake) = (No of favourable outcomes / Total no of possible outcomes) = P(coffee and cake) / p(cake)

Analysis: and Answer:

p(coffee) = 0.7, p(cake) = 0.4, p(coffe and cake) = 0.2

p(coffee|cake) = p(coffe and cake) / p(cake) = 0.2 / 0.4 = 0.5

8. A is known to tell the truth in 5 cases out of 6 and he states that a white ball was drawn from a bag containing 8 blacks and 1 white ball. Find the probability that the white ball was drawn.

p(black) = 8/9 p(white) = 1/9

Analysis: and Answer:

p(Truth|white) = p(white|Truth) X p(Truth) / p(white)
p(white) = p(white|Truth) X p(Truth) + p(white|False) X p(False)

$$= (1/9 X 5/6) + (8/9 X 1/6) = 13 /54$$

 $p(Truth|white) = (1/9 \times 5/6) / (13/54) = 5/13$

9 A speaks the truth 4 out of 5 times. A die is tossed. A report that it is a 6. What are the chances that there actually was a 6?

$$p(truth|6) = p(6|truth) \times p(truth) / p(6)$$

$$p(truth | 6) = (1/6) \times 4/5 / (9/30)$$

= 4/9

Analysis: and Answer:

$$p(truth) = 4/5$$
, $p(false) = 1/5$,

$$p(truth|6) = p(6|truth) \times p(truth) / p(6) = 4/9$$

10. In a class, 40% of the student's study math and science. 60% of the student's study math. What is the probability of a student studying science given he/she is already studying math?

Analysis: and Answer:

P(science|Maths) = p(Maths and Science) / p(Maths)

$$= 0.4/0.6 = 2/3$$

11. Below is a table of graduates and post graduates

	Graduate	Post Graduate	Total
Male	19	41	60
Female	12	28	40
Total	31	69	100

a)What is the probability that a randomly selected individual is a male and a graduate? What kind of probability is it (Marginal / Joint / Conditional)

p(male and graduate) = 19/100 = 0.19

It is Joint Probability

b)What is the probability that a randomly selected individual is a male?

p(male) = 60/100 = 0.6

c) What is the probability of a randomly selected individual being a graduate? What kind of probability is this?

p(graduate) = 31/100 = 0.31

It is marginal probability

d) What is the probability that a randomly selected person is a female given that the selected person is a post graduate? What kind of probability is this?

p(female|PG) = 28/69 (out of 69 PG, 28 are female)

It is conditional probability

Top^

Bayes Theorem

12. You need to figure out whether a company is fraud based on the legal charges they filed. We have the knowledge that, the chances a company submitting fraudulent fillings is 0.1. There exists an algorithm that can predict fraud. This algorithm returns a correct positive result in 92% of the cases in which the fraud is present and correct negative results in 90% of the cases where the fraud is not present. Suppose we observe a company for whom the algorithm test returns a fraud result. Calculate the posterior probability that this company truly did fraud in their filings.

$$p(Fraud) = 0.1,$$

 $p(Genuine) = 0.9$

$$p(Fraud | ReportFraud) = p(ReportFraud | Fraud) * p(Fraud) / (P(Report Fraud) = 0.92*0.1/(0.92*0.1+0.1*0.9)$$

 $p(Fraud|ReportFraud) - 0.092/(0.182)=0.5054 \sim = 0.51$

14. You go to see the doctor about an ingrowing toe nail. The doctor selects you at random to have a blood test for swine flu, which for the purposes of this exercise we will say is currently suspected to affect 1 in 10,000 people in Australia. The test is 99% accurate, in the sense that the probability of a false positive is 1%. The probability of a false negative is zero. What is the new probability that you have swine flu?

 $p(flu) = p(ReportFlu|Flu) \times p(Flu) + p(reportsFlu|No flu) \times p(No flu) = 1 * 0.0001 + 0.01 * 0.9999 = 0.01$

T	г		-
ın		- 1	•
T11		- 1	•