Macroeconomía I

La Macroeconomía Moderna

Mauricio M. Tejada

Magister en Economía Universidad Alberto Hurtado

Contenidos

Introducción

La Macro al Estilo Antiguo

La Macro Moderna

Un Modelo Estático con Dos Bienes

Introducimos el Tiempo

Introducción

Introducción

La macroeconomía moderna está construida alrededor de un grupo modelos caballo de batalla.

- El Modelo de Ramsey (modelo neoclásico de crecimiento).
- El Modelo Ramsey bajo Incertidumbre (modelo neoclásico estocástico).
- Modelo de Generaciones Traslapadas
- Modelos de Búsqueda.

Estos modelos tienen un común denominador: microfundamentos.

Clásico ejemplo: el modelo IS-LM

- La función consumo: $C = \bar{C} + c(Y T)$
- La función inversión: $I = \overline{I} br$
- Identidad macro: Y = C + I + G
- La curva IS

$$Y = \frac{\bar{C} - cT + \bar{I} + G - br}{1 - c}$$

- La demanda de dinero: L = kY hr
- La oferta de dinero: M/P
- La curva LM:

$$r = \frac{kY - M/P}{h}$$

• Equilibrio macro: intersección IS-LM.

Implicaciones del modelo IS-LM:

- El gasto del gobierno siempre incrementa el producto y el empleo. No existen restricciones de oferta.
- El multiplicador fiscal depende de los parámetros c, k, b, h. ¿Son estos parámetros estables?.
- La expectativas no son relevantes. La expectativas afectan la inversión y el consumo.
- Consumir más / ahorrar menos aumenta el producto. No existe dinámica en el modelo.

Esto no puede ser correcto!!

¿Qué falta en el modelo IS-LM?

- 1. Capital: Menores ahorro no incrementa el producto (futuro). Un buen modelo debe ser dinámico.
- 2. **Restricciones Presupuestarias:** Fuentes y usos de ingreso tienen que estar estrechamente relacionados. *Un buen modelo debe mostrar consistencia interna*.
- Expectativas: Los parámetros no son estables. Un buen modelo debe tener parámetros primitivos estables.
- 4. **Elecciones:** Los impuestos pueden llevar a los individuos a trabajar más. *Un buen modelo debe capturar como los individuos responden a cambios en precios y expectativas*
- 5. Bienestar: ¿Un aumento en el producto es bueno o malo?

La Macro Moderna

La Macro Moderna

- La macro moderna construye los modelos de abajo arriba (usando microfundamentos).
- Los modelos son **economía artificiales**: Están descritos por una lista de **agentes** con sus características **demográficas**, sus **preferencias**, y la **tecnología** a la que tienen acceso.
- El comportamiento y las decisiones individuales son el resultado de un proceso de optimización.
- Los agentes tiene **expectativas racionales**, estos es entienden como funciona la economía y sus expectativas son su mejor predicción posible.
- Los agentes interactúan en mercados, esto es precios y cantidades se determinan por clareo de mercado.

En este curso vamos a aprender a mapear la descripción de una economía en un conjunto de ecuaciones que caracterizan un **equilibrio competitivo**.

Definición (Equilibrio Competitivo)

Un equilibrio competitivo es una asignación (una lista de cantidades) y un sistema de precios (una lista de precios) tales que:

- 1. las cantidades resuelven los problemas de optimización de todos los agentes, dados los precios.
- 2. los mercados se clarean determinando así los precios.

Pasos para construir un modelo:

- 1. Describir la economía
- 2. Resolver los problemas de optimización de los agentes.
- 3. Agregar las decisiones individuales y definir las condiciones de clareo de mercado.
- 4. Definir equilibrio competitivo.

Paso 1: Describir la economía.

- 1. Lista de agentes (familias, empresas, gobierno, etc.)
- 2. Para cada agente se debe definir:
 - Demografía (ej. la población crece a tasa n).
 - Preferencias (ej. la función de utilidad de las familias es u(c)).
 - Dotaciones (ej. cada familia cuenta con una unidad de tiempo en cada periodo).
 - Tecnología (ej. las empresas producen utilizando la tecnología f(y)).
- 3. Definir lo mercados en los cuales los agentes interactúan.
 - La familia ofrecen su trabajo a las empresas.
 - Las empresas venden sus productos a las familias.

Paso 2: Resolver los problemas de optimización de los agentes.

- Escribir los problemas de optimización para cada agente (ej. las familias eligen *c* y *s* maximizando su utilidad sujeto a su restricción presupuestaria).
- Derivar el conjunto de ecuaciones que determinan las decisiones de los agentes (ej. la función consumo, la función ahorro, etc.)

Paso 3: Agregar las decisiones individuales y definir las condiciones de clareo de mercado.

- Para cada mercado, calcular la oferta y/o demanda de cada agente.
- Agregar ofertas y demanda (\sum demandas y \sum ofertas individuales).
- ullet Clareo de mercado Oferta Agregada = Demanda Agregada.

Paso 4: Definir equilibrio competitivo.

- De los pasos 2-3 determinar todos las variables endógenas (ej. consumo, producto, salarios, etc.).
- De los pasos 2-3 determinar todas las ecuaciones (condiciones de primer orden o reglas de decisión y condiciones de clareo de mercado).
- Deberíamos tener N ecuaciones que se podrían (en principio) resolver por N variables endógenas (precios y cantidades).

¿Qué ganamos con este enfoque?

Consistencia:

- Por construcción, las relaciones agregadas satisfacen satisfacen las restricciones individuales.
- Por ejemplo, la función consumo no pude violar ninguna restricción presupuestaria individual.

Transparencia:

• Los supuestos sobre los fundamentos están claramente y explícitamente establecidos.

¿Qué ganamos con este enfoque?

Comportamientos no arbitrarios:

- En el estilo antiguo de la macro, los resultados dependen fundamentalmente de los supuestos sobre el comportamiento.
- En la macro moderna, el comportamiento está derivado dentro el modelo.

Expectativas:

- Las expectativas son endógenas.
- Por tanto, éstas son automáticamente consistentes con la forma en que la economía se comporta.

¿Qué ganamos con este enfoque?

Análisis de Bienestar:

• Es posible analizar y medir el efecto de cualquier medida de política sobre el bienestar (utilidad) de cada agente.

Contraste Empírico:

• Los modelo puede ser contrastados empíricamente no solo con datos agregados, sino que también con micro datos. Así, la *macro y la micro convergen a lo mismo*.

Un Modelo Estático con Dos Bienes

Un Modelo Estático

- Estudiamos una economía simple de un sólo período.
- Existen muchas familias idénticas.
- Cada familia recibe una dotación de bienes que es consumida en el periodo.
- Este sencillo ejemplo nos permite (1) ilustrar le método para construir modelo y (2) dar una intuición de como trataremos el tiempo en los modelo macro.

Un Modelo Estático: Describir la economía

- Características Demográficas:
 - Existen N familias idénticas.
 - Todas las familias viven por 1 periodo.
 - No existen otros agentes (como por ej. firmas, gobierno, etc.)
- Preferencias:
 - Las familias valoran el consumo de 2 bienes de acuerdo con la función de utilidad $u(c_1,c_2)$

Un Modelo Estático: Describir la economía

• Tecnología:

- Cada agente recibe dotaciones de los dos bienes: (e₁, e₂)
- No existe producción y las dotaciones no pueden ser guardadas.

Mercados:

- Los agentes intercambian los bienes que tienen en el mercado y cada agente se comporta como tomador de precios.
- No existen activos financieros.
- Los precios de los dos bienes son p₁ y p₂.

Un Modelo Estático: El problema de optimización de la familia

- Existe un único tipo de agente: la familia.
- La familia maximiza su utilidad sujeto a su restricción presupuestaria.
- Variables de Estados: La familia toma como dados los precios (p_1, p_2) y las dotaciones (e_1, e_2) .
- Variables de Elección: La familia decide cuanto consumir (c_1, c_2) .
- El precio relativo entre los bienes es $p = p_2/p_1$ y podemos normalizar $p_1 = 1$ para tener un numerario.

Un Modelo Estático: El problema de optimización de la familia

• La familia resuelve:

$$\max u(c_1, c_2)$$

sujeto a

$$p_1c_1 + p_2c_2 = p_1e_1 + p_2e_2$$

• El lagrangiano es:

$$L = u(c_1, c_2) + \lambda \left[p_1 e_1 + p_2 e_2 - p_1 c_1 - p_2 c_2 \right]$$

• Condiciones de primer orden:

$$\frac{\partial L}{\partial c_i} = u_i(c_1, c_2) - \lambda p_i = 0, \quad i = 1, 2$$

$$\frac{\partial L}{\partial \lambda} = p_1 e_1 + p_2 e_2 - p_1 c_1 - p_2 c_2 = 0$$

Un Modelo Estático: El problema de optimización de la familia

• La solución del problema de optimización de la familia es un vector (c_1, c_2, λ) que resuelve (usamos ahora $p = p_1/p_2$ y $p_1 = 1$):

$$u_1(c_1, c_2) - \lambda = 0$$

 $u_2(c_1, c_2) - \lambda p = 0$
 $e_1 + pe_2 - c_1 - c_2 = 0$

- En el sistema de ecuaciones que determinan la solución debemos tener una condición de primer orden por cada variable de elección y todas las restricciones.
- La solución está dada por las funciones $c_1(e_1, e_2, p)$, $c_2(e_1, e_2, p)$ y $\lambda(e_1, e_2, p)$

Un Modelo Estático: Clareo de Mercado

- Existen dos mercados (para los bienes 1 y 2).
- Cada agente ofrece su dotación e_i y demanda bienes para consumo c_i en los dos mercados.
- Los bienes se intercambian usando una *unidad de cuenta*. No estamos usando la palabra *dinero* porque en esta economía no existe el dinero.
- La condición de clareo de mercado es Oferta Agregada = Demanda Agregada.

Un Modelo Estático: Clareo de Mercado

• Oferta Agregada: Suma de dotaciones individuales:

$$\mathbf{S}_i = \sum_{j=1}^N e_i = Ne_i \quad i = 1, 2$$

• Demanda Agregada: Suma de consumos individuales:

$$D_i(p, e_1, e_2) = \sum_{j=1}^N c_i(p, e_1, e_2) = Nc_i(p, e_1, e_2) \quad i = 1, 2$$

• Clareo de Mercado:

$$S_i = D_i \Rightarrow e_i = c_i(p, e_1, e_2)$$
 $i = 1, 2$

Cada individuo consume exactamente su dotación.

Un Modelo Estático: Definir Equilibrio Competitivo

Definición

Un equilibrio competitivo en esta economía es una asignación (c_1, c_2) y un precio p que satisfacen:

- 1. 2 condiciones de optimalidad de las familias (CPO y restricción presupuestaria).
- 2. 2 condiciones de clareo de mercado.

Contemos ahora ecuaciones y variables:

- Tenemos 2N + 1 variable endógenas.
- Tenemos 2N + 2 ecuaciones.

Introducimos el Tiempo

Introducimos el Tiempo: Ejemplo en dos Periodos

- Demografía: N familias idénticas que viven dos periodos t = 1, 2.
- Comodities: Existe un único tipo de bien en cada período.
- Preferencias: La utilidad a lo largo de la vida de la familia es $u(c_1, c_2)$.
- Dotaciones: e_t con t = 1, 2.
- Mercados: Tenemos dos opciones equivalentes:
 - 1. Intercambio Arrow-Debrew: Todo el intercambio ocurre en t = 1.
 - 2. Intercambio Secuencial: Los mercados se abren en cada periodo.

Introducimos el Tiempo: Intercambio Arrow-Debrew

Estructura:

- Todo el intercambio ocurre en t = 1.
- Los agentes pueden comprar y vender bienes en t para ser entregados en cualqueir momento t.
- Los precios son p_t .

El problema de optimización

 $máx u(c_1, c_2)$

sujeto a

$$p_1c_1 + p_2c_2 = p_1e_1 + p_2e_2$$

Como antes, podemos usar $p_1 = 1$ como numerario.

Introducimos el Tiempo: Intercambio Arrow-Debrew

Proposición

Un modelo con T bienes es equivalente a un modelo con T periodos. Esto se cumple sólo si los mercados son completos, esto es existen mercados que permiten a los agentes intercambiar bienes para todos los periodos y para todos los estados de la naturalza.

Estructura:

- Los mercados se abren en cada periodo.
- Los agentes pueden comprar y vender bienes en t solo en el mercado que abre en t.
- Ahora podemos tener un numerario para cada periodo $p_t = 1$ para todo t.
- Ahora necesitamos tranferir recursos de un periodo a otro.

En cada periodo tenemos un mercado de bienes ($p_t = 1$) y un mercado de bonos a 1 perioso (cuyo precio es q_t). Los bonos pagan una unidad del bien de consumo en t + 1.

El problema de optimización

$$\mathsf{m\acute{a}x}\, \mathit{u}(\mathit{c}_{1},\mathit{c}_{2})$$

sujeto a

$$(e_t + b_{t-1}) = c_t + b_t q_t$$

con $b_0 = 0$. La Familia elige c_1 , c_2 y b_1 .

El Lagrangiano es:

$$L = u(c_1, c_2) + \lambda_1(e_1 - c_1 - b_1q_1) + \lambda_2(e_2 + b_1 - c_2)$$

Note que q_1 es el precio relativo del bien de consumo en el periodo 2. Si dejo de consumir una unidad de c_1 obtengo $1/q_1$ unidades de c_2 .

Condiciones de primer orden:

$$\frac{\partial L}{\partial c_1} = u_1(c_1, c_2) - \lambda_1 = 0$$

$$\frac{\partial L}{\partial c_2} = u_2(c_1, c_2) - \lambda_2 = 0$$

$$\frac{\partial L}{\partial b_1} = -q_1\lambda_1 + \lambda_2 = 0$$

$$\frac{\partial L}{\partial \lambda_1} = e_1 - c_1 - b_1q_1 = 0$$

$$\frac{\partial L}{\partial \lambda_2} = e_2 + b_1 - c_2 = 0$$

Usando las tres primera ecuaciones: $u_1(c_1, c_2)q_1 = u_2(c_1, c_2)$. Interpretación? La Solución es (c_1, c_2, b_1) .

Clareo de Mercado:

- La oferta agregada en t es $S_t = Ne_t$.
- La demanda agregada en t es $D_t = Nc_t(q_1, e_1, e_2)$.
- Clareo de mercado entonces implica que $c_t = e_t$ para todo t.
- Dado lo anterior, $b_1 = 0$.

Proposición

Cuando los mercados son completos, el equilibrio bajo intercambio Arrow-Debrew y el equilibrio bajo intercambio secuencial son idénticos.

