CS 4720/5720 Design and Analysis of Algorithms Homework #4 Daniel Frey

Answers to homework problems:

1. Edit Distance Problem

(a) Algorithm:

Loop through each character in the first string while looping through each character in the second string. If either of the strings are empty, then set the value to the opposite loop counter to indicate the number of operations up to that point. If the previous characters were the same, then use previously generated result. If previous characters were different, then determine if change, insert, or delete.

Pseudocode:

```
\begin{split} &\text{EditDistanceDP(string1, string2)} \\ &\text{m = size string1, n = size string2} \\ &\text{results[m+1, n+1]} \\ &\text{for i = 0 to m} \\ &\text{for j = 0 to n} \\ &\text{if i == 0} \\ &\text{results[i, j] = j} \\ &\text{else if j == 0} \\ &\text{results[i, j] = i} \\ &\text{else if string1[i-1] == string2[j-1]} \\ &\text{results[i, j] = results[i-1, j-1]} \\ &\text{else} \\ &\text{results[i, j] = 1 + min(results[i-1, j-1], results[i, j-1], results[i-1, j])} \\ &\text{return results[m, n]} \end{split}
```

(b) Time Complexity:

```
Worst-case: (Two for loops) \sum_{i=0}^{m} \sum_{j=0}^{n} 1 = (m+1)(n+1) \in \Theta(mn)
```

Best-case = Worst-case $\in \Theta(mn)$: must iterate through entirety of each for loop.

(c) *Code*

```
Compute, Commute: 1
Saturday, Sunday: 3
Cat, Hat: 1
Dark, Moon: 4
Greedy, Dynamic: 7
```

2. Coin Change Problem

- (a) **DP** Code
- (b) Greedy Coin Change
 (Assumption: Denominations D[1...m] in ascending order.)

(i) Algorithm:

Loop through each coin denomination from largest to smallest. Figure out how many of current largest coin can be used for current value n, and subtract that from the current value n.

Pseudocode:

```
\begin{split} & CoinChangeGreedy(D[1...m], \, n) \\ & numCoins = 0 \\ & for \, i = m \, to \, 1 \\ & \quad if \, n/D[i] \geq 1 \\ & \quad n = n \, \cdot \, \left[ (n/D[i]) \, * \, D[i] \right] \\ & \quad numCoins = numCoins + \, (n/D[i]) \\ & return \, numCoins \end{split}
```

(ii) Time complexity:

```
Worst-case: (For loop dependent on m.) \sum_{m=0}^{\infty} 1 \in \Theta(m)
```

Best-case: = Worst-case $\in \Theta(m)$: must iterate through entirety of for loop.

(iii) Code

(c) Comparison:

(i) Non-optimal Greedy Denominations:

Minimum Number Coins			
Denomination	n	DP	Greedy
{1, 5, 6}	10	2	5
{1, 10, 15}	20	2	6
{1, 30, 50}	60	2	11

(ii) Sample Comparisons:

Denomination $\{1, 5, 6\}$			
n	DP	Greedy	
250	42	45	
500	84	85	
750	125	125	
1000	167	170	

Denomination $\{1, 10, 15\}$			
n	DP	Greedy	
250	17	17	
500	34	38	
750	50	50	
1000	67	67	

Denomination $\{1, 30, 50\}$			
n	DP	Greedy	
250	5	5	
500	10	10	
750	15	15	
1000	20	20	

(iii) Plot:

{156}

DP vs. Greedy {1 10 15}

· {1 10 15}

DP vs. Greedy {1 30 50}

· {1 30 50}

(d) (i) Optimal Greedy Proof for US Coin Denominations: {1, 5, 10, 25, 50}

For $1 \le k \le m$ prove that $D_k + D_{k-1} - 1$ yields the fewest coins for $\{1...D_k\}$ and $\{1..., D_{k-2}, D_{k-1}\}$. If $\{1..., D_{k-2}, D_{k-1}\}$ yields fewer number of coins, then greedy fails.

Using $\{1, 5, 10, 25, 50\}$:

Highest value = $50 + 25 - 1 = 74 \rightarrow 7$ coins

Removing highest denomination: $\{1, 5, 10, 25\}$

 $74 \rightarrow 8 \text{ coins}$

Highest value = $25 + 10 - 1 = 34 \rightarrow 6$ coins

Removing highest denomination: {1, 5, 10}

 $34 \rightarrow 7 \text{ coins}$

Highest value = $10 + 5 - 1 = 14 \rightarrow 5$ coins

Remove highest denomination: $\{1, 5\}$

 $14 \rightarrow 6$ coins

Highest value = $5 + 1 - 1 = 5 \rightarrow 1$

Remove highest denomination: {1}

 $5 \rightarrow 6$ coins

 \therefore Greedy minimizes number of coins for $\{1, 5, 10, 25, 50\}$ since greedy picks the fewest number of coins for the denominations.

(ii) Greedy 2x, 10x vs. DP

Minimum Number Coins				
Denomination	n	DP	Greedy	Greedy/DP
$\{1, 10, 25\}$	30	3	6	$\frac{6}{3} = 2$
$\{1, 43, 100\}$	129	3	30	$\frac{30}{3} = 10$