决赛专题

决赛	(上)	1
运	动学	1
	描述运动	1
	关联	3
	转动、转动系	9
	轨迹、包络线	13
	波动	15
静	力学	9
	图解静力学	19
	空间力矩	23
	虚功原理	25
动	力学	27
	相图、相空间	
	单自由度的运动	29
	多自由度与守恒量	33
	多自由度的振动	35
	微扰与进动	41
狭	义相对论	13
	洛伦兹变换	13
	四维时空下物理量的定义与运用4	15
静	电学	53
	叠加原理	53
	唯一性原理	55
	二维静电学:保角变换	59
	静电问题通解:拉普拉斯方程6	53
	极化与磁化	57
	能量问题	59
电	路	71
	基氏方程	7 1

	端口																. 73
	对称																. 74
	自相似性					•											. 75
	交流电				٠							٠					. 77
静	磁学				٠							٠					. 79
	静磁场																. 79
	带电粒子再磁场中	的.	运z	力.													. 81
原	子物理																. 83
	卢瑟福实验												X		<u></u>		. 83
	玻尔模型										٠,	7.				>	. 84
	量子力学初步											K					. 85
	精细结构、自旋.				٠				.<	1	X	•					. 89
	半经典光与物质相	互	作月	ᆌ.				 ,	X								. 90
	原子核液滴模型							0	Ľ								. 90
决赛	(下)					. (0										. 93
运	动学					1											. 93
	运动的图像		. ,	, (Q.	7											. 93
	叠加条件		N	Y													. 95
	运动关联	0															. 97
静	力学	7.	<i>.</i>														. 99
	力的性质																. 99
	静力学的化简				٠												107
	静不定																.109
动	力学																111
	有心运动				٠							٠		٠			.111
	一般曲线运动																115
	独立坐标达朗贝尔	源.	理.														116
	多自由度																117
	刚体运动学																.119
狭	义相对论				٠	•						٠			•		121
	洛伦兹变换																.121
	视觉形象																125

	前灯效应与亮度相	关													•				127
电	学																		129
	静场																		.129
	电磁学受力问题																		135
	电磁场能量问题																		137
	电磁学模型																		.139
	电像法							٠											143
电	路																		145
	基尔霍夫方程														•	•	<u> </u>		145
	线性叠加与化简							٠						7.	4	K	•	>	146
	交流电											<		$\langle \langle \rangle$.149
带	电粒子在磁场中的	讨论	玄	动						•	(X		١.				155
	复杂问题一般处理								٠,	X	7	1							155
	绝热不变量									7									153
电	磁感应						C	7							•				159
	感应电动势的普遍	算	法			1	Ü)										.159
	自感 互感 磁矢势				Q	7													.161
	磁路定理变压器		N.	.\		•									٠				163
热	学	0																	165
	物态与性质		Ų																165
	热力学第一定律	•						٠											167
	热力学第二定律																		.169
	相变																		173
	热统计理论																		175
光	学							٠											179
	几何光学																		.179
	波动光学																		183

▲ △楝子胺:	38
· 核心: 由乾槟水和胜进行分析	
一 对例解更强度 流层 动	1 =-iat+id#1
	113,t)=AC
HIB: - 602 = - k(2-e	14 - N-11-2-m-000 14 - 0-14) = -k46120
=> W= ±2Worin = = ±2Worin +8	(左右(右)=> Xn= Xn(t)
分析: when 有: 一个次矢对应一个城市	,周期: 丁=受
● (***), W= KI.Wo, **	速度 Vp= 华= Wol 不要
一	正果阿·m.k极然,
● TINE TYPE (1) (2) 正常的(1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	X
● 今布里湖区 由: W =>-> @xp	
1° WER. WEIO. ZWOI. > Y= +arcsin wo 展有色	协分的 一〇
2° WER. WE [240, +0) . At 054-1014+eit/2	
⇒ Y=-i Pn [=-1/1002 +] [1041002 - 4] 1/4 (27):1] → >1, 读动力医际点: Af	1
->1J+, ARMINE MIKE:	
→对了,策动力性∞处:	1 V 3
000	0-
● 及風反射波式运动。	
·····································	20)
反射: Yn= P.A. eil-h	it-npi
=> Xn=A (e) + r. e(1-M-np); 4 = : mxn=	-k(2xn-xm1-xn1), ns-1
TREXXX N=+ 大成立, 以界条件为 XOOO 有: mv	1=-K1>X-1-X-1-X01
放有: 10= A(e) + r·e = 1=0 => r= +	= 은17 —— 美波振失
西州 A 般式: m·(-h²)·A(einy + r·e-ino) = - A(ein+04+r·e-in+04) - A(ein)	-1612.418"+4.8"
$\Rightarrow \omega = f(\varphi) \Rightarrow x_n : x_n(t).$	文型·
分析: 半波振 中质为:	A: 00000
A LOINE VE LINE	44
文剧空气世界,前运动.	il-ny-ntl Listerly
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	LAM - 1 WALL
7 n=0: - N (1+21 (1+2-074-2014)	
=> P- 11 mos-1+e-14 1000 -1+000 -15-1004	o illital
= = - 1 1 1 1 1 1 1 1 1 1	- 40=2-arctin Jai ++asp
1	

女先对目前年后再代了.

分析: 西南振动: x·m= -4.6.Mo·11. x ⇒ W

●量子力学初号1831 △黑体辐射:	81
一, 点振跃恶力:	· ************************************
文例を KS. YES. TS. (1) 京正 12) 地表句一 解: (1) のTSサ. 417 KS・417 KB・0 TEサ. 417 KB・	吕黑体壳. 扩压. → TE=(Ares) ^A Ts
D) 地球平衡: 此→壳=壳→地壳+地球平衡: 太阳→壳=壳 南壳: 壳→地=壳→外	→外 => 1'=10. TE'= TE
◆例高級反所率 YH, 低频反射率 YL, 求下(1	18 (1-12) = 574(1-12)·25 = 574(1-12)5+ K[7-70]
·椒草分布细似: 单位频率能量密度:UIVITI= dE 可位频率能量密度:UIVITI= dE de de d	(= GIV)· S(U.T) (模式密度: GIV) = GMWI P = GET 模式分数.ST元米
如今便用驻设条件,使用高数的kx.ky. 中型的模式介数M.模式密度分。 一个方向上有2个 LEV(Xit)=Eo OS(ki·X-6) 至10条件:kxl=10x17 作为在空间:k²=k;	は、由最大频率16.c.2 発放! wtl c.c. 这里已设ki>0. wtl ; ky l=nyii; kel=naii x+ky+ke kmax= wmmx = 211/2 n人でからた)ないでませる

度のt-人間期内計算它: $\Delta B = \int_{0}^{\infty} (\frac{dB}{dx}) dt = \int_{0}^{2\pi} \frac{d}{dx} \frac{dx}{dx} dx^{3} d\theta = \int_{0}^{2\pi} (-\sin\theta.\cos\theta) \cdot \frac{dx}{dx} \frac{d\theta}{dx} + \frac{d\theta}{dx} \frac{d\theta}{dx} + \frac{d\theta}{dx} \frac{d\theta}{dx} + \frac{d\theta}{dx} \frac{d\theta}{dx} + \frac{d\theta}{dx$

大阪 水偏蛙角 dv = <u>Shim</u> dô 有:uo 2·05至 = <u>Shim</u> 25in至 => tan至 = <u>wib</u>

財 B= Vx2+ol=Vobmvog+(-a)x ~ Lsin 多の多り => ton 多= - mbvo = Vob AC表文指序。

世間用LRL灰号注明部号を向为一个個. 注: GMmv= vxc-序=Gmmi=Vic-1viv+Bi-2R·vxc ハ(Spm) = Ri+1P+やで)

```
有: shk= 2 > sh死: 2 > 世歌: 1 = 看·sh死
分析: 观察同方向LT: [x]= LTR, Y, JEX] = [chk, chk, J[x]
     (chk=Y. shk=YB) [ct]=[n2-hk][ct]=chke shk=][ct]
 ⇒ [x"]=[-shik+k2) -shik+ky][ct] - K=K+k2:快度.
夕用ict表达:
 [ 1ct ] = [chki - ishki][ x] | chiki = 05ki
                             → 复数意以下转动叠加.
ade = thak=ak
                                一解块的黑等问题
·憎加问题: 15) 松子多换系
          (6) 5着7距离.
解: (5)对齐点(ct,X)=(ct,0)时微: 1ct=高加登
X=高(ch空1)
      所入多xxt的交换: LCT=chk あられで-shk &(chで1)+cto
                      0 = the & she + ch. & (chet-1) + x0
      : Lcto=ct - 高 shat ATTO を発. ( to+0 Xo+=AT.
      =>L.T.: [ct']=[chk -shk][ct]+[cto]
   161.在元千中. 时间发达时找了的飞.
      处理: 罗T的世界成: Jet = 岩·sh空
            THE BON X = & 1 Char -1/12
     => # 1 cts=chas & share share (chase -1)+0]+cts - & share
       新疆 引= -sh空台sha +cha空[台(cha红+1+1)+台[cha红-1]
        > shalty-to = al shats -> 3 me <<1, al <<1
         187 = gichalty-to -gi+ lichats
     => Pr = = 1+(a) shats 1 - 2 + 1 chats
分析: 专作一者=>介:-1 —— S+双曲所原机—— 向野洲
       当120分十四日初初
       ちりつきかり
```

看不好重

●基介霍夫方程(61)

处理:节点多. 回路少: 没电风. 列回路. 节点少. 回路多: 没电压 列节点.

文例 水电流分布.

解: 支路多.节点之.汝中正. 汝中势和图.

→引基尔霍夫第一定律: 对点n:

VIN-Un + Un-2-Un - Un-Unn - Un-Untz = D

:. Un-2 + Un- - 4 Un + Un+ + Un+ =0

稿: Un=A·Лⁿ ⇒ 1+ Л - 41²+17³+17⁴=0 → 下用 ≥ ASIO. — 及理] → 也可以利用对称性: 市· 市· 4+ 17+17 = p. (0分解. 古电分解) 及理二: I=0+为解⇒ Л□分解. ハントセ分解. (足重相)

· 4@84. > (71+)=(7+31/-1)=0=>7

外理三:/シハ+ガ=a:. a+a=6=3=2 a=3⇒1.

→有7112=1. 724= 3313

1. Un = (Ar +nAz) + A3.75" + A4.74

→世界至新数:0号n→00,Un在1从最大n'→00.:(A4=0.(N从为t)/编:在in分表位有最义:全A1=0

(或 直接看 1失)(4,-40)+(4,-42)+(4,-41)+(4,-43)=0

好例中间接触点不连遍,才电流分布.

be by ba by be ...

解: $= : (a_n - a_{n+1}) + (a_n - a_{n+1}) + (a_n - b_{n-2}) + (a_n - b_{n+2}) = 0$ $=) |a_{n-1} - 4a_n + a_{n+1} + b_{n-2} + b_{n+2} = 0$ $|a_{n-2} + a_{n+2} + b_{n-1} - 4b_n + b_{n+1} = 0$ $= (a_{n-2} + a_{n+2} + b_{n-1}) + (a_{n-2} + a_{n+2} + a_{n-2}) + (a_{n-2} + a_{n-2} + a_{n-2}$

病: (am)=(a) ハーシン(デー4+ハ) A+ ハルーカルB=ロ (カンカル) A+ ハルーカルB=ロ

要前det=0=>国X=N+前接元=>N1.2...8.

>> 由站点值和对称性符名的多数

些:一般股限分析=>新只剩 nA+B.71° ≥2次.

5143

147 连续对称性: 我中恒是 消白田皮得有极势. 文图 B=Bd-2). E=-ayy. 有T Vo=Voy. 本部区动. 留: X为向丰移不英: 3×2 大20; 35×20 TA: Px = Px + ABy = mVx + GBy = 0. => =mvy2+=mvx2+=dqy2==mvo2 117=> =mvy2+= 928 y2+ =dqy2= =mvo ⇒磁线的描述: W= 1999) + an 1. Vy=Vo oswt. y= & sin(wt) 1. Vx = - 9B vo sinut . X = X0 + 9AVO (as/wt)-1 正椭圆. 对别初相距之处 静止释放 英性质接 Vecc. 市厨运动. 爾: 只看一边: \$ = 9VXB PY = AB 1-9BX 能: 2. 雪(ダナダ)- = + + 92 = - = + 142 => =mx + = 9B 1 (1-x) - 4x = - 40 →无显纲化交音等. 170: 1/2: fix) = (1-x) + (1-x) - (1-x) 9281 -M+ 3- (3-1)2) = = = mx2>0 ON-0(1/18t) 1 DEMENT DIMENERS / 一条到的时 仅一个版(字7天·)

る T =
=> 05= = ViR ln((元) (本) (本) (本) (本) (本) (本) (本) (本) (本) (本
题: 先屆热, 西抽板: AS= SdP = Value ASE= 些alle
→ 混商: 五字:= = WoCVM4/3 西树板: のA.B不同种: △52= 等产加升等产加2= WoRM2 ②A.B同种结: △52-15 — "全同松子"不然必为同种分析的之行分子。
● 対例港 氏を体: (P+ 完)(V+h)を PJ V= G·T- 分. 本発物・方理を 幅表 本式. 「簡: 15三: d Q: PdV+ at り 秋分. 「
= \frac{1}{\tau_0}\v_0\left(\frac{\text{V-B}}{\text{V-B}}-\frac{\text{V-}}{\text{V-}}\right)dV-\alpha\left(-\frac{\text{V-}}{\text{V}}\right)} = R\lin\frac{\text{V-b}}{\text{V-b}}. \$\text{SB} = \int \frac{\text{QV}}{\text{V}} = \int \frac{\text{T}}{\text{To}} \frac{\text{T}}{\text{T}} = C_V \left(\text{NT}).
$= \sum_{A} = R \ln \frac{(V-b)T^{AllR}}{(V-b)T^{CAllR}}$ $= Const.$
A: m.100%的社; B: m. D%的社,①若只能也及换(取構上)係る 190%水形列 60%? ②不解制住也可也机,可否? (新. の尽量比A的水层跨世: 大)思差. .: 19A 20分.m/N. MIN 次后: TB=Tn A B M: TMH (M+型)= サ.100+ m.Tn >> 100-TMH= 松(100-TM)
=> 100-TN=(益)N (100-TO) 1. お取た: TN=100- d. 100= b3.