	ž
1	
l	
ŀ	
l	
l	
1	
l	
ĺ	

Neon (Ne)

Neon (Ne)	REFERENCE STATE	A _r = 20.179	Neon (Ne)							Ne ₁ (ref)	
	0 to 6000 K Ideal Monatomic Gas		Enthalpy R	ference Te	mperature -	Enthalpy Reference Temperature = T _r = 298.15 K		Standard State Pressure	e Pressure = p	0.1 MPa	
IP(Ne, g) = 173929.70 ± 0.1 cm ⁻¹	**	$\Delta_t H^0(0 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$	T/K	ಟ		-[G*-H*(T,)]/T	H*-H*(T,)	PH'A	Φ^{Q}	log Kr	
1011 A.C. COO.D. — 12C.OL.1 — (A. C.1.0.1.) O	ניום	1000-120 P (N C1.867) P (N	° <u>8</u>	0. 20.786	0.	INFINITE 164.808	-6.197	ÖÖ	ÓÓ	ರರ	
	ronic Levels and Quantum Weigl		88	20.786 20.786	138.028	148.229 146.670	-2.040 -1.001	ರ ರ	oo	ರರ	
			298.15	20.786	146.327	146,327	0	o'	ó	o	
	'S ₀ 0 1		9 9 9 9	20.786	146.456	146.328	0.038	ರ ರ	o o	oʻ c	
			\$ 5	20.786	152.436	147.143	2117	ide	Ö	်ဝင်	
Heat of Formation			8 8 8	20.786	157.074	148.683	4.196 4.196	್	ာ်စံ	o oʻ	
Zero by delimition.			96	20.786	160.864	150.407	6.274	o'c	o' c	o' c	
Heat Capacity and Entropy			888	20.786	166.843	153.804	10.431	် ဝ	i di	i oʻ	
Information on the electronic energy levels and qu	Information on the electronic energy levels and quantum weights is taken from Moore. All predicted levels have been observed for n-2	ave been observed for n=2	38	20.786	171.482	156.893	14589	ಶರ	್ ೦	ರ ರ	
and 5 but above that many predicted levels are missin	and a but above that many predicted levels are missing. Our calculations indicate that any reasonable method of fulling in these missing levels and a but above that many predicted levels are missing. It is not also that the terminal of the search of fulling in these missing levels and a subject to the search of the search	ing in these missing levels	85	20.786	173.463	158311	16.667	o o	o o	o' c	
of the high energy of these levels; the first excited lev	and cutting on the summation in the partition that the first arctiful it as no enert on the triple enough state of these levels; the first excited level is over 134000 cm ⁻¹ above the ground state. Therefore, we list the ground state only	his is undoubteally a result.	300	20.786	176.935	160.916	20.824	ာ်ဝ	ာ် စ	ರ ರ	
Extension to higher temperatures may require consid	Extension to higher temperatures may require consideration of excited states and utilization of different fill and cutoff procedures.	cutoff procedures.2	1.00 1.00 1.00 1.00	20.786 20.786	178.476 179.910	162.116 163.255	22.903 24.982	ರರ	ರರ	ರರ	
The thermodynamic functions at 298.15 K agree e.	The thermodynamic functions at 284.15 K agree exactly with recent CODATA recommendations' except for two minor differences. First,	o minor differences. First,	009	20.786	181.251	164,339	27.060	o'	o'	o'	
are cuitopy differs by 0.1094 J·K. • mol Decause this table uses a standard-state pressure has a difference of the order of 0.001 0.004 J.V. • 1.000 J. •		DATA recommendations	88	20.786	182.511	165.371	31.217	00	o o	o c	
different values for R; this table uses R = 8.31441	re order or o.coc.co. 1. Thou for the rare gases anse due to the use of sugnify .K-1-mol-1. Considering these minor changes, this table agrees within the estimated	ane to the tise of slightly a	<u>6</u>	20.786	184.823	167.299	33.2%	i 0 c	90	ide	_
uncertainty with those by Hultgren et al., McBrid	uncertainty with those by Hultgren et al., McBride et al., Gurvich et al., and Wagman et al. The estimated uncertainty is due to	ted uncertainty is due to	700	20.786	186.904	1690.691	37.453	် ဝံ	ံ ဝံ	ံ ငံ	
uncertainties in the relative atomic mass and fundam	uncertainties in the relative atomic mass and fundamental constants, which are based on the 1981 scales and the 1973 values,' respectively.	1973 values,7 respectively.	2200	20.786	187.871	169.902	39.532	o o	00	6	
Phase Data			550 500 500 500 500 500 500 500 500 500	20.786	189.679	171.475	43.689	óóc	do	ಶರ	
The triple point, 24.561 K, and boiling point, 27	The triple point, 24.561 K, and boiling point, 27.102 K, are a secondary reference point and a defining fixed-point, respectively, of	ed-point, respectively, of	260 260 260 260 260 260 260 260 260 260	20.786	191.343	172.941	47.846	်ဝံ	် ငံ	ံ ဝံ	
IPTS-68. "Hultgren et al." had recommended a trip	le point of 24.533 K (0.4277 atm) and a boiling point of 27.09	6 K (1 atm). These values	2700	20.786	192.127	173.637	49.925 57.004	o' c	o' c	o ' c	
are provided for the convenience of the reader and have not been evaluated by the present a state for neon is chosen to be the ideal gas at all temperatures. This may differ from the	are provided for the convenience of the reader and have not been evaluated by the present authors. As a result of these low values, the reference state for neon is chosen to be the ideal gas at all temperatures. This may differ from the choice of other authors.	low values, the reference	2808	20.786	193.613	174964	54.082	jo	300	ಶರಣ	
0			3100	20.786	194,999	176.212	58.239	o c	.	.	
References			3200	20.786	195.659	176.810	60318	i ငံ d	600	ide	
T. E. Moore, U. S. Nat. Bur. Stand., NSRUS-NBS	C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-35, Volume I, (1970) [Reprint of NBS Circular 467, Volume I, 1949] 1 R. Douney, Ir. The Daw Chemical Co. AEOSP-79, 78, Oct. Contract No. Eddenn 75, 1, 0048, (1978)	re I, 1949].	8 8 8 8 8 8	20.786	196.919	177.956	64 475	ರ ರ	် ဝ	ာ်ဝံ	
J. D. Cox, ICSU-CODATA Task Group, J. Chem.	Thermodyn. 10, 903 (1978).		3500	20.786	197.522	178.506	66.554	o c	o	o' c	
R. Hultgren, P. D. Desai et al., "Selected Values of the Thermodynamic Properties of the	the Thermodynamic Properties of the Elements," American Society for Metals, Metals	Society for Metals, Metals	378	20.786	198.677	179.566	70.711	်င် (್ ರ	್ ರ	
Park, Ohio, (1973).	VICTORY CONTRACTOR AND		3800	20.786 20.786	199.23	180.076 180.574	72.790	ರ ರ	င် င	ರ ರ	
 J. J. Prichiller, S. Inclinet, J. C. Galets and S. Octubil, INASA SF-5001, (1973). N. E. Holden and R. L. Martin, Pure Appl. Chem. 51, 405 (1979). 	51 405 (1979)		900	20.786	200.297	181.061	76.947	o 0	o o	o o	
E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref.	Data 2, 663 (1973).		420	20.786	201311	182.001	81.104	ာ်ဝံ	ಶರ	ರ ರ	
L. V. Gurvich, I. V. Veits et al., "Thermodynamic Properties of Indi	"L. V. Gurvich, I. V. Veits et al., "Thermodynamic Properties of Individual Substances," 3rd ed., Volume I, Nauka, Moscow, (1978).	suka, Moscow, (1978).	8 8 8	20.786	201.801	182.456 182.901	83.183 85.261	ರ ರ	ರ ರ	ರ ರ	
¹⁹ H. Preston - Thomas Membosis 12, 7 (1976)	-54, 6 pp. (1970).		\$ 50	20.786	202.745	183,337	87.340	o o	0 (o o	
¹¹ L. Crovini, R. E. Bedford and A. Moser, Metrologia 13, 197 (1977).	ia 13, 1 <i>97</i> (1 <i>977</i>).		902	20.786	203.202	183.764	91.497	ವರ:	o o	ರ ರ	
"D. D. Wagman, W. H. Evans et al., J. Phys. Chem. Ref. Data 11, Supp. 2, 40 (1982)	L Ref. Data 11, Supp. 2, 40 (1982).		84 4 808	20.786	204.087	184.592	95.654	င် ငံ	ರ ರ	ರ ರ	
			88	20.786	204.936	185.389	97.733	o o	o'	o'	
			2200	20.786	205.751	185.76	101.890	ာ်ဝ	ಶರ	ာ် ဝဲ	
			8 8 8 8	20.786 20.786	206.147	186.530 186.897	103.969	ರ ರ	ರ ರ	ರರ	
			2800	20.786	206.917	187.257	108.126	· o	· •	60	
			200	20.786	207.29	187.612	112.283	ರ ರ	ರ ರ	.	
			280	20.786 20.786	208.021 208.376	188.303 188.640	114,362	ಂ ರ	ರ ರ	ಧರ	
			800	20.786	208.725	188.972	118.519	oʻ	oʻ	oʻ	

Phase Data

CURRENT: March 1982 (1 bar)

Neon, Ion (Ne⁺)

PREVIOUS. March 1977 (1 atm)

$\Delta_d H^0(0 \text{ K}) = 2080.662 \pm 0.001 \text{ kJ} \cdot \text{mol}^{-1}$ Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$	J·K-'mol-'	1001 011 111 111 111 11 11 11 11 11 11 1
$\Delta_c H^{\circ}(0 \text{ K}) = 2080.662 \pm 0.001 \text{ kJ} \cdot \text{mol}^{-1}$	$\Delta_t H^0(298.15 \text{ K}) = [2086.966] \text{ kJ} \cdot \text{mol}^{-1}$	

W. = 20,17845 Neon, Ion (Ne⁻)

DEAL GAS

€, c⊞

S°(298.15 K) = 158.307 ± 0.003 J·K⁻¹·mol⁻¹

 $P(Ne^+, g) = 330391.0 \pm 0.1 \text{ cm}^{-1}$

Neon, Ion (Ne⁺)

Electronic Levels and Ouanturn Weights ²P₃₂

The ionization limit of neutral neon (173929.70 \pm 0.1 cm⁻¹) reported by Moore 1 is adopted as Δ_H (0 K) for Ne*(g). The ionization limit Heat of Formation

is converted from cm⁻¹ to kJ-mol⁻¹ using the factor, 1 cm⁻¹ = 0.01196266 kJ-mol⁻¹, which is derived from the latest CODATA fundamental constants. ² The uncertainty in the ionization limit is estimated to be ±0.1 cm⁻¹ which corresponds to an uncertainty of ±0.001 kJ-mol⁻¹ in the heat of formation. Rosenstock *et al.*² and Levin and Lias⁻¹ have summarized additional ionization potential and appearance potential data. Gurvich *et al.*¹ and Wagman *et al.*¹⁰ adopted the same ionization potential, but the use of slightly different fundamental constants by Wagman *et al.*¹⁰ resulted in a heat of formation difference of 0.017 kJ-mol⁻¹. $\Delta_t H^*(Ne^*, g, 298.15 \, K)$ is obtained from $\Delta_t H^*(Ne, g, 0 \, K)$ by using IP(Ne) with JANAF³ entralpies $H^*(0 \, K)$ – $H^*(298.15 \, K)$ for Ne^{*}(g), Ne(f), and e^{*}(f). $\Delta_t H^*(Ne \rightarrow Ne^* + e^*, 298.15 \, K)$ differs from a room temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock *et al.* 2 $\Delta_t H^*(298.15 \, K)$ should be changed by $-6.197 \, kJ$ -mol⁻¹ if it is to be used in the ion

Heat Capacity and Entropy

convention that excludes the enthalpy of the electron.

other than the ground state and the $^2P_{LL}$ level; the next lowest level is over 217000 cm⁻¹ above the ground state. Since inclusion of these upper levels has no effect on the thermodynamic functions (to 6000 K), we list only the ground state and the $^2P_{LL}$ state, with the energy of the latter state taken from a more recent study by Moore. The reported uncertainty in S° (298.15 K) is due to uncertainties in the relative ionic mass The information on electronic energy levels and quantum weights given by Moore* is incomplete because many theoretically predicted levels have not been observed. Our calculations indicate that any reasonable method of filling in these missing levels and cutting off the summation in the partition function. I has no effect on the thermodynamic functions to 6000 K. This is a result of the high energy of all levels and fundamental constants. Extension of these calculations above 6000 K may require consideration of the higher excited states and use of different fill and cutoff procedures.5

The thermodynamic functions reported here agree with those of Green et al., Hisentath et al., and Gurvich et al. except for one or two minor differences. First, the entropy differs by 0.1094 J·K⁻¹-mol⁻¹ because this table uses a standard-state pressure of 1 bar, whereas the cited references used a pressure of 1 atm. Second, smaller differences arise from the use of slightly different values for the fundamental constants, the relative ionic mass, and the position of the ²P_{1/2} electronic level.

Heferences

1. C. F. Moore, U. S. Nat. Bur Stand., NSRDS-NBS-34, 8 pp. (1970).

2. E. Moore, U. S. Nat. Bur Stand., NSRDS-NBS-34, 8 pp. (1970).

3. JANAF Thermochemical Tables: Ne(t), 3-31-82; e-(t), 3-31-82.

4. C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-35, Volume I, (1970) [Reprint of NBS Circular 467, Volume I, 1949].

5. R. Downey, Jr., The Dow Chemical Co., AFOSR-TR-78-0960, Contract No F44620-75-1-0048, (1978).

5. W. Green, D. E. Poland, and J. L. Margrave, University of Wisconsin, Report AD-275542 (avail. NTIS), (1961).

7. Hilsentrath, C. G. Messina, and W. H. Evans, U.S. Nat. Bur. Stand., Report AD-605163 (avail. NTIS), (1964).

7. H. W. Greenstock, K. Draxl et al., "Thermodynamic Properties of Individual Substances," 3rd ed., Volume I, Nauka, Moscow, (1978).

8. D. Wagman, W. H. Evans et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977)

19. D. Wagman, W. H. Evans et al., J. Phys. Chem. Ref. Data 11, Supp. 2, 40 (1982).

18. D. Levin and S. G. Lias, NSRDS-NBS-71, 634 pp. (1982).

_	
Ē	
Nicke	
58.69	
A =	

Ni₁(ref)

		- K-1					
τ/κ	ಚ	S - [C	-[G*-H'(T,)]/T	H*-H*(T,)	Δ,Η.	₽G.	log Kr
0	0		INFINITE	-4.786	ó	ó	oʻ
88	22.468	20,200	32.143	-2.389	o o	o o	ರರ
298.15	25.987		29.870	o	6	ó	ö
8	26.024	30.031	29.871	0.048	ď	0	oʻ
38	31.045	44.43	32.986	5.743	ೆ ರ	ರ	ರ ಧ
8	34.853	50.440	35.404	9.022	ő	ď	ď
631,000	39.832 39.832	\$2.263 \$2.263	36.187 36.187	10.144	C, LA	AMBDA MAXIMUM TRANSITION	MD
88	30.794	\$5.575	37.941	12344	ó		0,0
88	31,589	63.382	42.759	18.560	် င	ರ ರ	್ ರ
001	32.217	66.742	44.992	21.750	ó	o	ó
<u> </u>	32.928 33.681	69.845 72.742	47.112	28.336	o o	o o	ರ ರ
8	34.518	75.471	51.051	31.746	ó	6	Ö
<u>8</u> 8	36.317	80.534	54.649 54.649	38.827	ာ် ဝ	ರ ರ	ာ် ဝ
92.5	37.279	82,908 85,199	56.342	42.506	o c	o c	o' c
1728.000	38.535	85.827	58.419	47.361	CRYSTAL	Ų.	
000.8271	11686	45.754	58.419	04.516		IKANSITION	
8888	38.911 38.911 38.911	99.448 101.442	59.944 61.968 63.893	67.317 71.208 75.099	ರರರ	ರರರ	ರರರ
2200	38.911	103.341	65.726	78.991	o' c	o c	0 0
2300	38.911	106.881	69.153	86.773	ó	600	600
2005	38,911	110.125	72,303	94.555	öö	် ဝ	5 6
2600	38.911	111.651	73.787	98.446	o' c	o' c	o' c
2800	38.911	114.535	76.596	106.228	ó	်ပံ (öö
800	38.911	117.219	79.216	114.011	ರ ರ	ರರ	ರ ರ
3100	38.911	118.495	80.462	117.902	oʻ	ď	ö
3156.584	38.911 22.3%	119.199	81.151 81.151	120.104 497.656	E LOSS	JID <> IDEAL GAS FUGACTTY = 1 bar	GAS
3200	22.388	239.113	83.292	498.628	o c	o c	6
3400	22,368	240.469	92.498 96.735	503.103 505.339	ಶರರ	ಶರ	ಶರರ
3600	22.37	241.748	100.755	507.576	oʻ	ď	o' o
3800	27.7	242.959	108.207	512.056	ರ ರ	ರ ರ	ರ ರ
96. 90. 90. 90.	22.456 22.459	243.542	111.670	514.299 516.547	ರ ರ	ರ ರ	o o
4100	22.551	244.667	118.130	518.799	Ö	ó	6
4300	22.681	245.744	124.041	523.322 523.322	ಶರ	ಶರ	ာ်ဝံ
\$ \$4 8 85 8 85	22.761 22.850	246.779 246.779	126.813	\$25.594 \$27.875	ರ ರ	ರ ರ	ರ ರ
4600	22.949	247.282	132.029	530.164	o c	o' c	6 6
4800	23.178	248.263	136.852	534.776	်ဝံ	öö	်ငံ
8 8 8 8 8 8	23.30 23.451	248.743 249.215	139.130 141.327	537.101 539.439	ರರ	ರ ರ	ರ ರ
2700	23.769	250.141	145.495	544.160	o c	o	o' c
888	24.555	251.930	153.034	553.818	ó	် ဝ	d 0
809	25.560	253.657	159.685	563.833	j c	o c	d c
					;	3	3

REFERENCE STATE

crystal liquid ideal monatomic gas

Refer to the individual tables for details.

Nickel (Ni)