Линейные уравнения

Линейным уравнением относительно переменной x называется уравнение первой степени

$$kx + b = 0, (1)$$

где k и b – произвольные вещественные числа.

В случае $k \neq 0$ уравнение (1) имеет **единственное решение** при любом значении b:

$$x = -\frac{b}{k}$$
.

В случае, когда k = 0, $b \neq 0$, уравнение (1) **решений не имеет**.

В случае, когда $k=0,\ b=0,$ **решением** уравнения (1) **является любое число**

$$x \in (-\infty; +\infty).$$

Линейные неравенства

Пинейным неравенством относительно переменной x называется неравенство, принадлежащее к одному из следующих типов:

$$kx + b \ge 0$$
,
 $kx + b > 0$,
 $kx + b \le 0$,
 $kx + b \le 0$,

где k и b – произвольные вещественные числа.

Решая линейные, да и не только линейные, неравенства, следует помнить, что

при умножении или делении неравенства на **положительное** число знак неравенства **сохраняется**,

при умножении или делении неравенства на отрицательное число знак неравенства меняется на противоположный.

В соответствии с этим решение линейных неравенств, в зависимости от значений коэффициентов k и b, представлено в следующей Таблице 1.

Таблица 1. – Решение неравенств первой степени (линейных неравенств)

	$kx + b \ge 0$	kx + b > 0	$kx + b \le 0$	kx + b < 0	
k > 0	Знак неравенства сохраняется				
	$x \ge -\frac{b}{k}$	$x > -\frac{b}{k}$	$x \le -\frac{b}{k}$	$x < -\frac{b}{k}$	
k = 0, $b < 0$	Ø	Ø	$x \in (-\infty; +\infty).$	$x \in (-\infty; +\infty).$	
k = 0, $b = 0$	$x \in (-\infty; +\infty).$	Ø	$x \in (-\infty; +\infty).$	Ø	
k = 0, $b > 0$	$x \in (-\infty; +\infty).$	$x \in (-\infty; +\infty).$	Ø	Ø	
k < 0	Знак неравенства меняется на противоположный				
	$x \le -\frac{b}{k}$	$x < -\frac{b}{k}$	$x \ge -\frac{b}{k}$	$x > -\frac{b}{k}$	

$kx + b \ge 0$	kx + b > 0	$kx + b \le 0$	kx + b < 0			
$k \geq 0$ Знак неравенства сохраняется						
$x \ge -\frac{b}{k}$	$x > -\frac{b}{k}$	$x \le -\frac{b}{k}$	$x < -\frac{b}{k}$			
k=0, b<0						
Ø	Ø	$x \in (-\infty; +\infty).$	$x \in (-\infty; +\infty).$			
k=0, b=0						
$x \in (-\infty; +\infty).$	Ø	$x \in (-\infty; +\infty).$	Ø			
k=0, b>0						
$x \in (-\infty; +\infty).$	$x \in (-\infty; +\infty).$	Ø	Ø			
k < 0 Знак неравенства меняется на противоположный						

$$x \leq -\frac{b}{k}$$

$$x < -\frac{b}{k}$$

$$x \ge -\frac{b}{k}$$

$$x > -\frac{b}{k}$$

Знак неравенства сохраняется

Неравенство:

$$kx + b \ge 0$$

Решение неравенства:

$$x \ge -\frac{b}{k}$$

Неравенство:

$$kx + b > 0$$

Решение неравенства:

$$x > -\frac{b}{k}$$

Неравенство:

$$kx + b \le 0$$

Решение неравенства:

$$x \leq -\frac{b}{k}$$

Неравенство:

$$kx + b < 0$$

Решение неравенства:

$$x < -\frac{b}{k}$$

$$k = 0, b < 0$$

Неравенство:

$$kx + b \ge 0$$

Решение неравенства:

Неравенство:

$$kx + b > 0$$

Решение неравенства:

Неравенство:

$$kx + b \le 0$$

Решение неравенства:

$$x \in (-\infty; +\infty).$$

Неравенство:

$$kx + b < 0$$

Решение неравенства:

$$x \in (-\infty; +\infty).$$

$$k = 0, b = 0$$

Неравенство:

$$kx + b \ge 0$$

Решение неравенства:

$$x \in (-\infty; +\infty).$$

Неравенство:

$$kx + b > 0$$

Решение неравенства:

Неравенство:

$$kx + b \le 0$$

Решение неравенства:

$$x \in (-\infty; +\infty).$$

Неравенство:

$$kx + b < 0$$

Решение неравенства:

$$k = 0, b > 0$$

Неравенство:

$$kx + b \ge 0$$

Решение неравенства:

$$x \in (-\infty; +\infty).$$

Неравенство:

$$kx + b > 0$$

Решение неравенства:

$$x \in (-\infty; +\infty).$$

Неравенство:

$$kx + b \le 0$$

Решение неравенства:

$$kx + b < 0$$

Решение неравенства:

Ø

Знак неравенства меняется на противоположный

Неравенство:

$$kx + b \ge 0$$

Решение неравенства:

$$x \leq -\frac{b}{k}$$

Неравенство:

$$kx + b > 0$$

Решение неравенства:

$$x < -\frac{b}{k}$$

Неравенство:

$$kx + b \le 0$$

Решение неравенства:

$$x \ge -\frac{b}{b}$$

Неравенство:

$$kx + b < 0$$

Решение неравенства:

$$x > -\frac{b}{k}$$

Системы линейных неравенств

Рассмотрим решение систем линейных неравенств на примерах.

Пример 1. Решить систему неравенств

$$\begin{cases}
2x-3\geq0, \\
-3x+11>0
\end{cases}$$

Решение. Решим каждое из неравенств системы:

$$\begin{cases} 2x-3\geq0,\\ -3x+11>0, \end{cases} \Leftrightarrow \begin{cases} 2x\geq3,\\ -3x>-11, \end{cases} \Leftrightarrow \begin{cases} x\geq\frac{3}{2},\\ x<\frac{11}{3}. \end{cases}$$

$$\begin{cases} 2x-3\geq0,\\ -3x+11>0, \end{cases}$$

$$\begin{cases} 2x\geq3,\\ -3x>-11, \end{cases}$$

$$\begin{cases} x\geq\frac{3}{2},\\ x<\frac{11}{3}. \end{cases}$$

Изобразив на одной координатной прямой (рис. 1) оба точечных множества, составляющих последнюю систему, получаем ответ примера.

Рис.1

Omeem:
$$x \in \left[\frac{3}{2}, \frac{11}{3}\right]$$

Пример 2. Решить систему неравенств

$$\begin{cases} 5x + 4 < 0, \\ -2x - 7 \ge 0. \end{cases}$$

Решение. Решим каждое из неравенств системы:

$$\begin{cases} 5x+4<0, \\ -2x-7 \ge 0. \end{cases} \Leftrightarrow \begin{cases} 5x<-4, \\ -2x \ge 7, \end{cases} \Leftrightarrow \begin{cases} x<-\frac{4}{5}, \\ x \le -\frac{7}{2}. \end{cases}$$

$$\begin{cases} 5x+4<0, \\ -2x-7 \ge 0, \end{cases}$$

$$\begin{cases} 5x<-4, \\ -2x \ge 7, \end{cases}$$

$$\begin{cases} x<-\frac{4}{5}, \\ x \le -\frac{7}{2}. \end{cases}$$

Изобразив на одной координатной прямой (рис. 2) оба точечных множества, составляющих последнюю систему, получаем ответ примера.

Рис.2

Omeem:
$$x \in \left(-\infty; -\frac{7}{2}\right]$$

Пример 3. Решить систему неравенств

$$\begin{cases} 6x - 7 > 0, \\ 4x + 13 < 0. \end{cases}$$

Решение. Решим каждое из неравенств системы:

$$\begin{cases} 6x-7>0, & \Leftrightarrow \begin{cases} 6x>7, \\ 4x+13<0, \end{cases} \Leftrightarrow \begin{cases} 6x>7, \\ 4x<-13, \end{cases} \Leftrightarrow \begin{cases} x>\frac{7}{6}, \\ x<-\frac{13}{4}. \end{cases} \end{cases}$$

$$\begin{cases} 6x-7>0, \\ 4x+13<0, \\ 6x>7, \\ 4x<-13, \end{cases}$$

$$\begin{cases} x>\frac{7}{6}, \\ x<-\frac{13}{4}. \end{cases}$$

Изобразив на одной координатной прямой (рис. 3) оба точечных множества, составляющих последнюю систему, получаем ответ примера

Рис.3

Omвет: Ø