

信息系统分析与设计 Part II Clustering

>>> What is Cluster Analysis

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

>>> Applications of Cluster Analysis

Understanding

- Related documents
- genes and proteins that have similar functionality
- □ group stocks with similar price fluctuations
- □ Speech/video clustering

Summarization

□ Reduce the size of large data sets

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP, Dresser-Inds-UP, Halliburton-HLD-UP, Louisiana-Land-UP, Phillips-Petro-UP, Unocal-UP, Schlumberger-UP	Oil-UP

>>> What is not Cluster Analysis?

- Simple segmentation
 - □ Dividing students into different registration groups alphabetically, by last name
- Results of a query
 - ☐ Groupings are a result of an external specification
 - Clustering is a grouping of objects based on the data
- Supervised classification
 - □ Have class label information
- Association Analysis
 - □ Local vs. global connections

>>> Notion of a Cluster can be Ambiguous

>>> Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - □ A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - □ A set of nested clusters organized as a hierarchical tree

>>> Partitional Clustering

Original Points

A Partitional Clustering

>>> Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

>>> Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive

- □ In non-exclusive clusterings, points may belong to multiple clusters.
- □ Can represent multiple classes or 'border' points

Fuzzy versus non-fuzzy

- □ In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
- □ Weights must sum to 1
- Probabilistic clustering has similar characteristics

Partial versus complete

- □ In some cases, we only want to cluster some of the data
- Heterogeneous versus homogeneous
 - □ Clusters of widely different sizes, shapes, and densities

>>> Types of Clusters

- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or Conceptual
- Described by an Objective Function

>>> Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - □ A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

>>> Types of Clusters: Center-Based

Center-based

- □ A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- □ The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

>>> Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - □ A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.
 - □ 在同一类中,至少有一个离得比其他的都更近

8 contiguous clusters

>>> Types of Clusters: Density-Based

Density-based

- □ A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

>>> Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - □ This is a derived measure, but central to clustering
- Sparseness
 - Dictates type of similarity
 - Adds to efficiency
- Attribute type
 - Dictates type of similarity

- Type of Data
 - Dictates type of similarity
 - □ Other characteristics, e.g., autocorrelation
- Dimensionality
- Noise and Outliers
- Type of Distribution

>>> Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

>>> K-means Clustering

- Partitional clustering approach
- Number of clusters, K, must be specified
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

>>> Example of K-means Clustering

>>> K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - □ Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- Closeness is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - □ n = number of points, K = number of clusters, I = number of iterations, d = number of attributes

>>> Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - ☐ For each point, the error is the distance to the nearest cluster
 - □ To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- \square x is a data point in cluster Ci and mi is the representative point for cluster Ci
 - can show that m_i corresponds to the center (mean) of the cluster
- ☐ Given two sets of clusters, we prefer the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
 - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

>>> K-means as an Optimization Problem

Objective: Minimize the Sum of Squared Error (SSE)

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$
 parameters

We fix the center, if SSE is not optimal,

$$c_i = \operatorname{argmin}_{i \in \{1, 2, \dots, k\}} \operatorname{dist}(m_i, j)$$

Then, we fix the cluster assignment, derive the new center

$$m_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$
 Try partial derivative?

>>> K-means Clusterings with Different SSE

>>> Limitations of K-means

- K-means has problems when clusters are different in:
 - □ Sizes
 - Densities
 - □ Non-globular shapes
- K-means has problems when the data contains outliers.

>>> Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

>>> Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

>>> Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

>>> Overcoming K-means Limitations

One solution is to use many clusters. Find parts of clusters, but need to put together.

>>> Overcoming K-means Limitations

X

Original Points

K-means Clusters

>>> Overcoming K-means Limitations

Original Points

K-means Clusters

>>> Importance of Choosing Initial Centroids

>>> Importance of Choosing Initial Centroids ...

>>> 10 Clusters Example: initial centroid

Starting with two initial centroids in one cluster of each pair of clusters

>>> 10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters

>>> 10 Clusters Example: initial centroid

Starting with some pairs of clusters having three initial centroids, while other have only one.

>>> 10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

>>> Solutions to Initial Centroids Problem

- Multiple runs
 - □ Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- Postprocessing
- Bisecting K-means
 - □ Not as susceptible to initialization issues

>>> Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
 - Each assignment updates zero or two centroids
 - More expensive
 - □ Introduces an order dependency
 - □ Never get an empty cluster
 - □ Can use "weights" to change the impact

>>> Bisecting K-means

- Bisecting K-means algorithm
 - □ Variant of K-means that can produce a partitional or a hierarchical clustering
 - 1: Initialize the list of clusters to contain the cluster containing all points.
 - 2: repeat
 - 3: Select a cluster from the list of clusters
 - 4: for i = 1 to $number_of_iterations$ do
 - 5: Bisect the selected cluster using basic K-means
 - 6: end for
 - 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
 - 8: until Until the list of clusters contains K clusters

>>> Bisecting K-means Example

