INM431: Machine Learning

On loss functions

Pranava Madhyastha (pranava.madhyastha@city.ac.uk)

Jumping back to linear regression

$$L(w) = \frac{1}{2} \sum_{n=1}^{N} (f(x_n, w) - t_n)^2$$

Least squares as a loss function?

Revisiting MLE

$$\log P(D \mid \theta) = \sum_{c} \log P(d_c \mid \theta)$$

Loss function:

$$-\log P(\theta \mid D) = -\log P(D \mid \theta) - \log P(\theta) + \log P(D)$$

Where, we obtain θ by optimising the log-likelihood.

Squared loss

$$L(w) = \frac{1}{2} \sum_{n=1}^{N} (f(x_n, w) - t_n)^2$$

Given a collection of input features, outputs, and a hypothesis function f (or the machine learning function of choice), we want to find the parameters w that minimises the sum of the losses.

Recipe

$$L(w) = \frac{1}{2} \sum_{n=1}^{N} (f(x_n, w) - t_n)^2$$

Minimising the loss:

$$\min_{w} \frac{1}{2} \sum_{n=1}^{N} (f(x_n, w) - t_n)^2 = 0$$

Approach 1: Gradient descent - take first order derivative

Approach 2: Analytic solution, solve for w

Visualising the losses

Linear classification

A linear classifier computes the linear score:

$$f(w) = w^{\mathsf{T}} x_i + b$$

Predict label of x_i based on linear score s_i

A few more loss functions for classification

Zero-one loss

Measure the total number of prediction errors for the classifier.

$$L_{0/1} = \begin{cases} 1, & \text{if } y_i f(w, x_i) < 0 \\ 0, & \text{otherwise} \end{cases}$$

when, $y_i = \pm 1$ (binary case, with labels +1/-1)

Log loss/cross-entropy loss/max-entropy loss

Log loss is one of the most popular loss functions for training:

$$\frac{1}{n} \sum_{i=1}^{n} L_{\log}(y_i, f(w, x_i))$$

where, L_{\log} is defined as:

$$L_{\log}(y_i, f(w, x_i)) = \log(1 + e^{-y_i, f(w, x_i)})$$

Can be used for multi-class discrete classification tasks, i.e. one-hot target vectors.

Exercise

Suppose your ML model output is the following in comparison with the respective target values as shown in the table

Calculate:

- (1) the classification error,
- (2) the mean square error,
- (3) least squares and
- (4) cross-entropy

