EECS 16A Designing Information Devices and Systems I Summer 2023 Discussion 5C

1. Series And Parallel Capacitors

Derive C_{eq} for the following circuits.

(a)

(b)

2. Current Sources And Capacitors

Given the circuit below, find an expression for $v_{\text{out}}(t)$ in terms of I_s , C, V_0 , and t, where V_0 is the initial voltage across the capacitor at t = 0.

Then plot the function $v_{\text{out}}(t)$ over time on the graph below for the following conditions detailed below. Use the values $I_s = 1 \text{mA}$ and $C = 2 \mu \text{F}$.

- (a) Capacitor is initially uncharged, with $V_0 = 0$ at t = 0.
- (b) Capacitor has been charged with $V_0 = +1.5V$ at t = 0.
- (c) **Practice:** Swap this capacitor for one with half the capacitance $C = 1 \,\mu\text{F}$, which is initially uncharged, with $V_0 = 0$ at t = 0.

HINT: Recall the calculus identity $\int_a^b f'(x)dx = f(b) - f(a)$, where $f'(x) = \frac{df}{dx}$.

3. Series And Parallel Capacitors

(a) Consider the following circuit with $C_1 = 1$ F, $C_2 = 3$ F and $C_3 = 4$ F Assume that both capacitors are initially uncharged before voltage is applied.

What are the voltages across each capacitor? Assume that we are in steady state.