Analýza systémů založená na modelech (MBA) - 2022/2023Domácí úloha 2

Domink Nejedlý (xnejed09)

Příklad 1. Uvažujme časovaný automat A_1 na obrázku 1.

Obrázek 1: Časovaný automat A_1

• Automat A_1 neobsahuje zenoběh.

Důkaz. Využijme podmínku neexistence zeno běhů. Nalezněme a prověřme tedy všechny řídící cykly – cykly bez opakujících se hran i stavů (opakující se stav signalizuje, že cyklus v sobě obsahuje podcyklus, přičemž i ten dle podmínky neexistence zeno běhů musí obsahovat nějaké hodiny, které jsou resetovány a současně alespoň jeden krok tohoto podcyklu vyžaduje jejich běh času):

- $-A \rightarrow B \rightarrow C \rightarrow A$ hodiny x jsou resetovány a je zde podmínka 1 < x < 10 (tento cyklus může navíc proběhnout pouze jednou po návratu do A již nelze splnit podmínku na hraně a_1),
- $-B \rightarrow B$ hodiny y jsou resetovány a je zde podmínka y > 10,
- $B \rightarrow C \rightarrow B$ hodiny xjsou resetovány a je zde podmínka 1 < x < 5.

Podmínka neexistence zeno běhů je zřejmě pro časovaný automat \mathcal{A}_2 splněna – každý řídící cyklus vyžaduje alespoň v jednom kroku běh času hodin (zajišťuje vždy zmíněná podmínka např. x > 1 pro hodiny x), jež jsou v tomto cyklu resetovány. Z toho důvodu časovaný automat \mathcal{A}_2 neumožňuje zeno běhy.

• Automat A_1 obsahuje timelock.

Důkaz. Uvažujme běh:

$$(A,x=0,y=0)\xrightarrow{a_1}(B,x=0,y=0)\xrightarrow{a_4}(C,x=0,y=0)\xrightarrow{10}(C,x=10,y=10)$$

Konfigurace c = (C, x = 10, y = 10) je timelock, jelikož $Paths_{div}(c) = \emptyset$. Z této konfigurace již nelze provést žádný diskrétní krok, neboť přechod do místa B podmiňuje predikát 1 < x < 5 a přechod do místa A zase predikát 1 < x < 10. Ani jeden z těchto predikátů však nemůže být splněn, jelikož x = 10. Z konfigurace c lze tedy provádět pouze nekonečné množství časových kroků. Ty však konvergují k číslu 15, protože místo C obsahuje invariant x < 15. Z konfigurace c tedy nelze provést žádný časově divergentní běh.

Příklad 2. Uvažujme časovaný automat A_2 na obrázku 2 s množinou atomických predikátů

$$AP = \{init, error, run\}$$

a funkcí L definovanou následovně:

$$\begin{split} L(A) &= \{init, run\}, \\ L(D) &= \{error\}, \\ L(B) &= L(C) = \{run\}. \end{split}$$

Obrázek 2: Časovaný automat A_2

• Abstrakce založená na regionech (obrázek 3):

Obrázek 3: Abstrakce založená na regionech časovaného automatu \mathcal{A}_2

• Stav, ve kterém platí predikát error, je dostupný.

Důkaz. Existuje totiž např. běh:

$$(A, x=0, y=0) \xrightarrow{\text{volba_kava}} (B, x=0, y=0) \xrightarrow{0.5, \text{mince}} (C, x=0.5, y=0) \xrightarrow{1.5, \text{chyba}} (D, x=2, y=1.5),$$

kde $A \in Loc_0$ je počáteční stav a $error \in L(D)$. Dostupnost lze také vidět přímo v regionové abstrakci.

• Tvrzení $A_2 \models \exists (run \ U^{(3,4)} \ error)$ platí.

 $D\mathring{u}kaz$. Nechť $\phi \equiv run\ U^{(3,4)}\ error\ a\ \tau \in \mathbb{R}^+$. Zřejmě $Init_{\mathcal{A}_2} = \{c_0 = (A, x = 0, y = 0)\}$. Uvažujme časově divergentní cestu

$$\pi = (A, x = 0, y = 0) \xrightarrow{\text{volba_kava}} (B, x = 0, y = 0) \xrightarrow{0.4, \text{mince}} (C, x = 0.4, y = 0) \xrightarrow{3.1, \text{chyba}} (D, x = 3.5, y = 3.1)$$

$$\xrightarrow{\tau} (D, x = 3.5 + \tau, y = 3.1 + \tau) \xrightarrow{\tau} \cdots \in Paths_{div}(c_0).$$

Jistě platí, že $\pi \models \phi$, neboť existuje časový okamžik t = 0.4 + 3.1 = 3.5 z intervalu (3,4) $(t \in (3,4))$, ve kterém platí formule error $(error \in L(D))$ a pro libovolný časový okamžik menší než t platí formule $run \lor error$. Zřejmě tedy také platí, že $c_0 \models \exists \phi$ (existuje cesta $\pi \in Paths_{div}(c_0)$, pro kterou platí, že $\pi \models \phi$) a $Init_{\mathcal{A}_2} \subseteq Sat(\exists \phi)$. Z toho důvodu časovaný automat \mathcal{A}_2 splňuje formuli $\exists (run U^{(3,4)} error)$ (tj. $\mathcal{A}_2 \models \exists \phi$).

• Tvrzení $(B, x = 3, y = 0.5) \models \forall (true \, U^{<2} \, init)$ neplatí.

 $D\mathring{u}kaz$. Nechť $\phi \equiv true\ U^{<2}\ init$, $c_0 = (B, x = 3, y = 0.5)$ a $\tau \in \mathbb{R}^+$. Uvažujme časově divergentní cestu

$$\pi = (B, x = 3, y = 0.5) \xrightarrow{3} (B, x = 6, y = 3.5) \xrightarrow{\tau} (B, x = 6 + \tau, y = 3.5 + \tau) \xrightarrow{\tau} \cdots \in Paths_{div}(c_0).$$

Tvrzení $\pi \models \phi$ zřejmě neplatí, neboť neexistuje žádný časový okamžik t z intervalu (0,2), ve kterém by platila formule init. Z toho důvodu nemůže platit ani tvrzení $c_0 \models \forall \phi$ (tj. $(B, x = 3, y = 0.5) \models \forall (true \, U^{<2} \, init)$), jelikož to vyžaduje, aby pro každou cestu $\pi' \in Paths_{div}(c_0)$ tvrzení $\pi' \models \phi$ platilo.

• Tvrzení $A_2 \models \exists \diamond (error \land x = 2)$ platí.

 $D\mathring{u}kaz$. Nechť $\phi \equiv \diamond (error \land x = 2)$ a $\tau \in \mathbb{R}^+$. Zřejmě $Init_{\mathcal{A}_2} = \{c_0 = (A, x = 0, y = 0)\}$. Uvažujme časově divergentní cestu

$$\pi = (A, x = 0, y = 0) \xrightarrow{\text{volba_kava}} (B, x = 0, y = 0) \xrightarrow{0.5, \text{mince}} (C, x = 0.5, y = 0) \xrightarrow{1.5, \text{chyba}} (D, x = 2, y = 1.5)$$

$$\xrightarrow{\tau} (D, x = 2 + \tau, y = 1.5 + \tau) \xrightarrow{\tau} \dots \in Paths_{div}(c_0).$$

Jistě platí, že $\pi \models \phi$, neboť existuje časový okamžik $t = 0.5 + 1.5 = 2 \in (0, \infty)$, ve kterém platí formule $error \land x = 2$. Zřejmě tedy též platí, že $c_0 \models \exists \phi$ (existuje cesta $\pi \in Paths_{div}(c_0)$, pro kterou platí, že $\pi \models \phi$) a $Init_{\mathcal{A}_2} \subseteq Sat(\exists \phi)$. Z toho důvodu časovaný automat \mathcal{A}_2 splňuje formuli $\exists \diamond (error \land x = 2)$ (tj. $\mathcal{A}_2 \models \exists \phi$).