

Politécnico de Coimbra

DEPARTAMENTO DE INFORMÁTICA E SISTEMAS

Métodos Numéricos para Resolução de Sistemas de ED

Relatório de Licenciatura

Autores

Ana Rita Conceição Pessoa – 2023112690 João Francisco de Matos Claro – 2017010293

1 ÍNDICE

1.1 Índice de texto

1	Í	ndice.		2
	1.1	Índ	lice de texto	
	1.2	Índ	lice de figuras	
	1.3	Índ	lice de tabelas4	
2	Ι	ista d	e siglas, acrónimos e símbolos	6
	2.1	Lis	ta de siglas e acrónimos	
	2.2	Lis	ta de símbolos6	
	2	2.2.1	Exemplos de listas de símbolos	
3	I	ntrodi	ıção	7
	3.1	En	unciado da Atividade Proposta e Interpretação do mesmo7	
	3.2	De	finição de SED8	
4	N	<i>M</i> étodo	os Numéricos para Resolução de Sistemas de ED	9
	4.1	Mé	todo de Euler9	
	4	.1.1	Fórmulas e Resolução	
	4	.1.2	Algoritmo e Função	
	4.2	Mé	todo de Euler Melhorado ou Modificado	
	4	.2.1	Fórmulas 12	
	4	2.2	Algoritmo e Função	
	4.3	Mé	todo de Runge-Kutta de Segunda Ordem16	
	4	.3.1	Fórmulas	
	4	3.2	Algoritmo e Função	
	4.4	Mé	todo de Runge-Kutta de Quarta Ordem20	
	4	.4.1	Fórmulas 20	
	4	.4.2	Algoritmo e Função	
5	Ε	Exemp	olos de aplicação e teste dos métodos2	26
	5.1	Alg	goritmo de Resolução	
	5.2	Pro	oblema do Pêndulo	
	5	.2.1	Modelação matemática do problema	

	5.2.2	Resolução através da App desenvolvida	31
S	istema l	Dinâmico Mola-Massa com Amortecimento	34
	5.2.3	Modelação matemática do problema	34
	5.2.4	Resolução através da App desenvolvida	37
	_	- App: Problema do Sistema Dinâmico Mola-Massa com imento com todos os Métodos Numéricos	37
5	.3 Mo	odelo Vibratório Mecânico	39
	5.3.1	Modelação matemática do problema	39
	5.3.2	Resolução através da App desenvolvida	
5		ovimento Mola-Massa sem Amortecimento	
	5.4.1	Modelação matemática do problema	44
	5.4.2	Resolução através da App desenvolvida	46
5	.5 Cir	cuito Elétrico	49
	5.5.1	Modelação matemática do problema	49
	5.5.2	Resolução através da App desenvolvida	52
5	.6 Pro	oblema do Crescimento Económico Sob Restrições	55
	5.6.1	Modelação matemática do problema	55
	5.6.2	Resolução através da App desenvolvida	58
6	Conclu	1são	61
7	Bibliog	grafia	62
8	Autoa	valiação e heteroavaliação do trabalho submetido	63
1.2	Índic	e de figuras	
Fig	ura 1 – 1	Problema do Pêndulo	28
Fig	ura 2 - 1	App: Problema do Pêndulo com Método de Euler	31
Fig	ura 3 - 1	App: Problema do Pêndulo com todos os Métodos Numérico	s32
Fig	ura 4 –	Enunciado: Problema do Movimento Livre Amortecido	34
_		App: Problema do Sistema Dinâmico Mola-Massa com Amo os Métodos Numéricos	
Fig	ura 6 –	Enunciado: Problema Vibratório Mecânico	39

Ana Pessoa (DEIS) | João Claro (DEIS)

Figura 7 - App: Problema do Modelo Vibratório Mecânico com todos os Métodos Numéricos
Figura 8 - Problema do Movimento Harmónico Simples Mecânico44
Figura 9 - App: Movimento Mola-Massa sem Amortecimento com o Método de Euler
Figura 10 - App: Movimento Mola-Massa sem Amortecimento com todos os Métodos Numéricos
Figura 11 - Circuito Elétrico
Figura 12 - App: Problema do Circuito Elétrico com Método de Euler52
Figura 13 - App: Problema do Circuito Elétrico com RK2
Figura 14 - App: Problema do Crescimento Económico Sob Restrições com Método de Euler
Figura 15 - App: Problema do Crescimento Económico Sob Restrições com RK2
1.3 Índice de tabelas
Tabela 1 - Soluções do SED do Pêndulo32
Tabela 1 - Soluções do SED do Pêndulo
Tabela 1 - Soluções do SED do Pêndulo32
Tabela 1 - Soluções do SED do Pêndulo
Tabela 1 - Soluções do SED do Pêndulo
Tabela 1 - Soluções do SED do Pêndulo
Tabela 1 - Soluções do SED do Pêndulo
Tabela 1 - Soluções do SED do Pêndulo
Tabela 1 - Soluções do SED do Pêndulo
Tabela 1 - Soluções do SED do Pêndulo

Instituto	Superior	de Enge	nharia d	le Coimbra

Tabela	12 -	Valores	dos	Erros	do	Problema	do	Crescimento	Económico	Sob
Restriç	ões									60

2 LISTA DE SIGLAS, ACRÓNIMOS E SÍMBOLOS

2.1 Lista de siglas e acrónimos

SED	Sistemas de Equações Diferenciais
GUI	Graphical User Interface
RK2	Runge-Kutta de Segunda Ordem
RK4	Runge-Kutta de Quarta Ordem
ED	Equação Diferencial
PVI	Problema de Valor Inicial
PBI	Produto Interno Bruto

2.2 Lista de símbolos

2.2.1 Exemplos de listas de símbolos

As tabelas seguintes exemplificam as recomendações anteriormente descritas.

Alfabeto latino

- g Constante gravitacional ou à aceleração devida à gravidade na superfície da Terra (aproximadamente 9,8 m/s²)
- m Massa do objeto
- lb Pound; Peso do objeto
- ft Feet
- H Henry
- s Segundos
- m Massa
- F Farad

Alfabeto grego

heta Ângulo entre pêndulo e o centro

3 INTRODUÇÃO

3.1 Enunciado da Atividade Proposta e Interpretação do mesmo

Este estudo faz parte da unidade curricular de Análise Matemática II - Matemática Computacional, onde o objetivo é redefinir e ajustar funções anteriormente desenvolvidas para resolver Sistemas de Equações Diferenciais (SED) com determinadas condições iniciais. O objetivo da aplicação destes métodos, que é realizada por meio da GUI do MATLAB, é resolver problemas como o pêndulo, o movimento livre amortecido, entre outros, permitindo assim o teste das funções implementadas. Além disso, é discutida a possibilidade de encontrar soluções precisas para os problemas escolhidos.

O objetivo é adaptar as funções MATLAB para resolver esses sistemas, usando os métodos numéricos de Euler, Euler Melhorado e Runge-Kutta de ordens 2 e 4, seguindo as aulas teórico-práticas sobre sistemas de equações diferenciais.

3.2 Definição de SED

Um SED pode ser geralmente definido como um conjunto de equações diferenciais, onde cada equação envolve uma ou mais funções desconhecidas e as respetivas derivadas em relação a uma variável independente comum. Estes sistemas podem surgir em várias áreas da ciência e da engenharia, como física, biologia, química, economia, entre outros.

A solução de sistemas de equações diferenciais é uma tarefa complexa, que requer o uso de técnicas avançadas de álgebra linear, cálculo e teoria dos sistemas dinâmicos. O estudo destes sistemas é importante, pois permite obter informações valiosas sobre os processos físicos e fenómenos complexos que descrevem.

Simplificando, um sistema de equações diferenciais é a transformação de uma equação com ordem superior a 1 num sistema de equações diferenciais com ordem 1, seguida da aplicação de um dos métodos numéricos.

4 MÉTODOS NUMÉRICOS PARA RESOLUÇÃO DE SISTEMAS DE ED

4.1 Método de Euler

4.1.1 Fórmulas e Resolução

O Método de Euler para resolver um Sistema de Equações é dado pelas seguintes equações:

$$u_{i+1} = u_i + h \times f(t_i, u_i, v_i), \quad i = 0, 1, 2, ..., n-1$$

 $v_{i+1} = v_i + h \times g(t_i, u_i, v_i)$

- $u_{i+1} \rightarrow \text{Pr}$ óxima ordenada da solução aproximada y(t);
- $v_{i+1} \rightarrow \text{Pr}$ óxima ordenada da solução aproximada y'(t);
- $u_i \rightarrow \text{Ordenada}$ atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i);$
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i).$

4.1.2 Algoritmo e Função

Algoritmo:

1. Definir o Valor do Passo (b):

Determinação do valor do passo de integração h. Este valor determina o tamanho dos incrementos ao longo do tempo ou da variável independente.

2. Inicializar os Vetores de Solução:

Definição de dois vetores, u e v, um para armazenar as soluções das variáveis do sistema e outro para as suas derivadas. Além disso, atribuímos os valores iniciais das variáveis do sistema aos elementos desses vetores.

3. Atribuir o Primeiro Valor:

Atribuição dos primeiros valores das variáveis do sistema aos elementos dos vetores u e v, sendo estes o vetor u_1 e o vetor v_1 , respetivamente.

4. Iteração do Método de Euler:

Iteração sobre o Método de Euler para avançar de um ponto para o próximo. Para cada iteração i de 1 a n, onde n é o número total de iterações:

- Cálculo das derivadas das variáveis no tempo atual usando as equações diferenciais do sistema.
- Atualização das variáveis para o próximo passo de tempo utilizando a fórmula de Euler indicada acima.

5. Conclusão:

Repetição do passo 4 até alcançar o tempo final desejado ou até chegar a algum critério de paragem pré-definido.

Função (MatLab):

```
% NEuler - Método de Euler para um Sistema de SED/PVI
%INPUT:
   f - 1ª Função do sistema de equações diferenciais em v, u e t
    g - 2ª Função do sistema de equações diferenciais em v, u e t
   [a, b] - Extremos do intervalo da variável independente t
  n - Número de subintervalos ou iterações do método
  u0 - Condição inicial da 1ª variável dependente
  v0 - Condição inicial da 2ª variável dependente
%OUTPUT:
  t - vetor de x, dos passos de "a" a "b"
   u - vetor das soluções aproximadas dos deslocamentos
  v - vetor das soluções aproximadas das velocidades
% Autores: Arménio Correia | armenioc@isec.pt
           Ana Rita Conceição Pessoa .: a2023112690@isec.pt
%
           João Francisco de Matos Claro .: a21270422@isec.pt
%
   28/04/2024
function [t,u,v] = NEuler(f,g,a,b,n,u0,v0)
    h = (b-a)/n; % Valor de cada subintervalo
    % Alocação de memória
    t = a:h:b;
    % Armazena as soluções das variáveis
    u = zeros(1,n+1);
    v = zeros(1,n+1);
    u(1) = u0; % Atribuição do valor inicial de u
    v(1) = v0; % Atribuição do valor inicial de v
    % O número de iterações vai ser igual a n
    for i = 1:n
        % Aproximação do Método de Euler para a i-ésima iteração
        u(i+1) = u(i)+h*f(t(i),u(i),v(i));
        v(i+1) = v(i)+h*g(t(i),u(i),v(i));
    end
end
```

4.2 Método de Euler Melhorado ou Modificado

4.2.1 Fórmulas

O Método de Euler Melhorado ou Modificado para resolver um SED é dado pelas seguintes equações:

$$u_{i+1} = u_i + h \times u_k$$

$$v_{i+1} = v_i + h \times v_k$$

Onde:

- $u_{i+1} \rightarrow$ Aproximação do Método de Euler Melhorado para \boldsymbol{n} iterações;
- $v_{i+1} \rightarrow$ Aproximação do Método de Euler Melhorado para \boldsymbol{n} iterações;
- $u_i \rightarrow \text{Ordenada}$ atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- u_k , $v_k o$ Cálculo da média das inclinações;

Cálculo de u_k e v_k :

$$u_k = \frac{1}{2} \times (u_{k1} + u_{k2})$$
 $v_k = \frac{1}{2} \times (v_{k1} + v_{k2})$

Onde:

- u_k , $v_k o$ Cálculo da média das inclinações;
- u_{k1} , v_{k1} \rightarrow Inclinação no início do intervalo;
- u_{k2} , v_{k2} \rightarrow Inclinação no fim do intervalo.

Cálculo de u_{k1} e v_{k1} :

$$u_{k1} = f(t_i, u_i, v_i)$$
$$v_{k1} = g(t_i, u_i, v_i)$$

Onde:

- u_{k1} , v_{k1} \rightarrow Inclinação no início do intervalo;
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i);$
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de u_{k2} e v_{k2} :

$$u_{k2} = f(t_{i+1}, u_i + u_{k1} \times h, v_i + v_{k1} \times h)$$

$$v_{k2} = g(t_{i+1}, u_i + u_{k1} \times h, v_i + v_{k1} \times h)$$

- u_{k2} , v_{k2} \rightarrow Inclinação no fim do intervalo;
- $t_{i+1} \rightarrow \text{Pr\'oxima}$ abcissa do intervalo escolhido;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- u_{k1} , v_{k1} \rightarrow Inclinação no início do intervalo;
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);

4.2.2 Algoritmo e Função

Algoritmo

1. Definir o Valor do Passo (b):

Este valor determina o tamanho dos incrementos ao longo do tempo ou da variável independente.

2. Criar um vetor u e um vetor v para guardar as soluções:

Os vetores são utilizados para armazenar as soluções das variáveis do sistema e as suas derivadas, respetivamente. Estes são atualizados a cada iteração.

3. Atribuir o primeiro valor de u e de v:

Os valores das condições iniciais do problema são atribuídos aos primeiros elementos dos vetores.

4. Cálculo da inclinação no início do intervalo:

Para cada iteração, é calculada a inclinação inicial usando as equações diferenciais do sistema e os valores das variáveis do sistema no início do intervalo.

5. Cálculo da inclinação no fim do intervalo:

É calculado uma estimativa utilizando o Método de Euler padrão para avançar as variáveis do sistema até ao final do intervalo, usando a inclinação inicial.

6. Cálculo da média das inclinações:

A média ponderada é calculada entre as inclinações inicial e final. Daqui é obtida uma melhor estimativa da inclinação média ao longo do intervalo.

7. Cálculo do valor aproximado para \boldsymbol{n} iterações:

Utilizando a inclinação média calculada, são atualizadas as variáveis do sistema para o próximo passo. Repetimos este processo para o número desejado de iterações *n*.

Função (MatLab):

```
% NEuler - Método de Euler Melhorado para um Sistema de SED/PVI
%INPUT:
  f - 1º Função do sistema de equações diferenciais em v, u e t
    g - 2ª Função do sistema de equações diferenciais em v, u e t
   [a, b] - Extremos do intervalo da variável independente t
   n - Número de subintervalos ou iterações do método
   u0 - Condição inicial da 1ª variável dependente
% v0 - Condição inicial da 2ª variável dependente
%OUTPUT:
% t - vetor de x, dos passos de "a" a "b"
% u - vetor das soluções aproximadas dos deslocamentos
  v - vetor das soluções aproximadas das velocidades
% Autores: Arménio Correia | armenioc@isec.pt
           Ana Rita Conceição Pessoa .: a2023112690@isec.pt
%
           João Francisco de Matos Claro .: a21270422@isec.pt
%
   28/04/2024
function [t, u, v] = NEulerMelhorado(f, g, a, b, n, u0, v0)
    h = (b-a)/n;
    t = a:h:b; % Alocação de memória
    u = zeros(1,n+1);
    v = zeros(1,n+1);
    u(1) = u0; % Atribuição do valor inicial de u
    v(1) = v0; % Atribuição do valor inicial de v
    % O número de iterações vai ser igual a n
    for i=1:n
        % Inclinação no início do intervalo
        uk1 = f(t(i),u(i),v(i));
        vk1 = g(t(i),u(i),v(i));
        % Inclinação no fim do intervalo
        uk2 = f(t(i+1), u(i) + h*uk1, v(i) + h*vk1);
        vk2 = g(t(i+1), u(i) + h*uk1, v(i) + h*vk1);
       % Cálculo da média das inclinações e aproximação do Método de Euler
      Melhorado para a i-ésima iteração
        u(i+1) = u(i) + h/2*(uk1+uk2);
        v(i+1) = v(i) + h/2*(vk1+vk2);
    end
end
```

4.3 Método de Runge-Kutta de Segunda Ordem

4.3.1 Fórmulas

O Método de Runge-Kutta de Segunda Ordem (RK2) para resolver um SED é dado pelas seguintes equações:

$$u_{i+1} = u_i + u_k$$

$$v_{i+1} = v_i + v_k$$

Onde:

- $u_{i+1} \rightarrow$ Aproximação do Método de RK2 para \boldsymbol{n} iterações;
- $v_{i+1} \rightarrow$ Aproximação do Método de RK2 para n iterações;
- $u_i \rightarrow \text{Ordenada}$ atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);
- $u_k \rightarrow$ Cálculo da média das inclinações;
- $v_k \rightarrow$ Cálculo da média das inclinações.

Cálculo de u_k e v_k :

$$u_k = \frac{1}{2} \times (u_{k1} + u_{k2})$$

$$v_k = \frac{1}{2} \times (v_{k1} + v_{k2})$$

- u_k , $v_k o$ Cálculo da média das inclinações;
- u_{k1} , v_{k1} \rightarrow Inclinação no início do intervalo;
- u_{k2} , v_{k2} \rightarrow Inclinação no fim do intervalo.

Cálculo de u_{k1} e v_{k1} :

$$u_{k1} = h \times f(t_i, u_i, v_i)$$

$$v_{k1} = h \times g(t_i, u_i, v_i)$$

Onde:

- u_{k1} , v_{k1} \rightarrow Inclinação no início do intervalo;
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i);$
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de u_{k2} e v_{k2} :

$$u_{k2} = h \times f(t_{i+1}, u_i + u_{k1}, v_i + v_{k1})$$

$$v_{k2} = h \times g(t_{i+1}, u_i + u_{k1}, v_i + v_{k1})$$

- u_{k2} , $v_{k2} \rightarrow$ Inclinação no fim do intervalo;
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $t_{i+1} \rightarrow \text{Pr}$ óxima abcissa do intervalo escolhido;
- $u_i \rightarrow \text{Ordenada}$ atual da solução aproximada y(t);
- u_{k1} , v_{k1} \rightarrow Inclinação no início do intervalo;
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);

4.3.2 Algoritmo e Função

Algoritmo:

1. Definir o Valor do Passo (b):

Este valor determina o tamanho dos incrementos ao longo do tempo ou da variável independente.

2. Criar um vetor u e um vetor v para guardar as soluções:

Os vetores são utilizados para armazenar as soluções das variáveis do sistema e as suas derivadas, respetivamente. Estes são atualizados a cada iteração.

3. Atribuir o primeiro valor de u e de v:

Os valores das condições iniciais do problema são atribuídos aos primeiros elementos dos vetores.

4. Cálculo da inclinação no início do intervalo:

Para cada iteração, é calculada a inclinação inicial usando as equações diferenciais do sistema e os valores das variáveis do sistema no início do intervalo.

5. Cálculo da inclinação no fim do intervalo:

É calculado uma estimativa utilizando o Método de Euler padrão para avançar as variáveis do sistema até ao final do intervalo, usando a inclinação inicial.

6. Cálculo da média das inclinações:

A média ponderada é calculada entre as inclinações inicial e final. Daqui é obtida uma melhor estimativa da inclinação média ao longo do intervalo.

7. Cálculo do valor aproximado para iterações:

Utilizando a inclinação média calculada, são atualizadas as variáveis do sistema para o próximo passo. Repetimos este processo para o número desejado de iterações n.

Função (MatLab):

```
% RK2 - Método de Runge-Kutta de 2ª Ordem para um Sistema de SED/PVI
%INPUT:
   f - 1ª Função do sistema de equações diferenciais em v, u e t
    g - 2ª Função do sistema de equações diferenciais em v, u e t
   [a, b] - Extremos do intervalo da variável independente t
  n - Número de subintervalos ou iterações do método
  u0 - Condição inicial da 1ª variável dependente
  v0 - Condição inicial da 2ª variável dependente
%OUTPUT:
  t - vetor de x, dos passos de "a" a "b"
   u - vetor das soluções aproximadas dos deslocamentos
  v - vetor das soluções aproximadas das velocidades
% Autores: Arménio Correia | armenioc@isec.pt
           Ana Rita Conceição Pessoa .: a2023112690@isec.pt
%
           João Francisco de Matos Claro .: a21270422@isec.pt
%
%
    28/04/2024
function [t, u, v] = RK2(f, g, a, b, n, u0, v0)
    h = (b-a)/n;
    % Alocação de memória
    t = a:h:b;
    u = zeros(1,n+1);
    v = zeros(1,n+1);
    u(1) = u0; % Atribuição do valor inicial de u
    v(1) = v0; % Atribuição do valor inicial de v
    % O número de iterações vai ser igual a n
    for i=1:n
      % Inclinação no início do intervalo
         uk1 = h*f(t(i),u(i),v(i));
         vk1 = h*g(t(i),u(i),v(i));
      % Inclinação no fim do intervalo
         uk2 = h*f(t(i+1),u(i)+uk1,v(i)+vk1);
         vk2 = h*g(t(i+1),u(i)+uk1,v(i)+vk1);
      % Cálculo da média das inclinações e aproximação do RK2 para a i-ésima
iteração
         u(i+1) = u(i)+(uk1+uk2)/2;
         v(i+1) = v(i)+(vk1+vk2)/2;
    end
end
```

4.4 Método de Runge-Kutta de Quarta Ordem

4.4.1 Fórmulas

O Método de Runge-Kutta de Quarta Ordem (RK4) para resolver um SED é dado pelas seguintes equações:

$$u_{i+1} = u_i + u_k$$
$$v_{i+1} = v_i + v_k$$

Onde:

- $u_{i+1} \rightarrow$ Aproximação do Método de RK4 para n iterações;
- $v_{i+1} \rightarrow$ Aproximação do Método de RK4 para n iterações;
- $u_i \rightarrow \text{Ordenada}$ atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);
- $u_k \rightarrow$ Cálculo da média das inclinações;
- $v_k \rightarrow$ Cálculo da média das inclinações.

Cálculo de u_k e v_k :

$$u_k = \frac{1}{6} \times (u_{k1} + 2 \times u_{k2} + 2 \times u_{k3} + u_{k4})$$

 $v_k = \frac{1}{6} \times (v_{k1} + 2 \times v_{k2} + 2 \times v_{k3} + v_{k4})$

- u_k , $v_k o$ Cálculo da média das inclinações;
- u_{k1} , v_{k1} \rightarrow Inclinação no início do intervalo;
- u_{k2} , v_{k2} Inclinação no ponto médio do intervalo;
- u_{k3} , v_{k3} \rightarrow Inclinação no ponto médio do intervalo;
- u_{k4} , v_{k4} \rightarrow Inclinação no fim do intervalo.

Cálculo de u_{k1} e v_{k1} :

$$u_{k1} = h \times f(t_i, u_i, v_i)$$

$$v_{k1} = h \times g(t_i, u_i, v_i)$$

Onde:

- u_{k1} , v_{k1} \rightarrow Inclinação no início do intervalo;
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $f(t_i, u_i, v_i) \rightarrow \text{Valor de } f \text{ no ponto } (t_i, u_i, v_i);$
- $g(t_i, u_i, v_i) \rightarrow \text{Valor de } g \text{ no ponto } (t_i, u_i, v_i).$

Cálculo de u_{k2} e v_{k2} :

$$u_{k2} = h \times f\left(t_i + \frac{1}{2} \times h, u_i + \frac{1}{2} \times u_{k1}, \frac{1}{2} \times v_{k1}\right)$$

$$v_{k2} = h \times g\left(t_i + \frac{1}{2} \times h, u_i + \frac{1}{2} \times u_{k1}, \frac{1}{2} \times v_{k1}\right)$$

- u_{k2} , v_{k2} Inclinação no ponto médio do intervalo;
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $t_i \rightarrow$ Abcissa atual do intervalo escolhido;
- $u_i \rightarrow \text{Ordenada}$ atual da solução aproximada y(t);
- u_{k1} , v_{k1} \rightarrow Inclinação no início do intervalo;
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);

Cálculo de u_{k3} e v_{k3} :

$$u_{k2} = h \times f\left(t_i + \frac{1}{2} \times h, u_i + \frac{1}{2} \times u_{k2}, \frac{1}{2} \times v_{k2}\right)$$

$$v_{k2} = h \times g\left(t_i + \frac{1}{2} \times h, u_i + \frac{1}{2} \times u_{k2}, \frac{1}{2} \times v_{k2}\right)$$

Onde:

- u_{k3} , v_{k3} \rightarrow Inclinação no fim do intervalo;
- $h \rightarrow \text{Valor de cada subintervalo (passo)};$
- $t_i \rightarrow$ Abcissa atual do intervalo escolhido;
- $u_i \rightarrow \text{Ordenada}$ atual da solução aproximada y(t);
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);

Cálculo de u_{k4} e v_{k4} :

$$u_{k4} = h \times f(t_{i+1}, u_i + u_{k3}, v_i + v_{k3})$$

$$u_{k4} = h \times g(t_{i+1}, u_i + u_{k3}, v_i + v_{k3})$$

- u_{k4} , v_{k4} \rightarrow Inclinação no fim do intervalo;
- $h \rightarrow \text{Valor de cada subintervalo (passo)}$;
- $t_{i+1} \rightarrow \text{Pr\'oxima}$ abcissa do intervalo escolhido;
- $u_i \rightarrow$ Ordenada atual da solução aproximada y(t);
- u_{k3} , v_{k3} \rightarrow Inclinação no ponto médio do intervalo;
- $v_i \rightarrow$ Ordenada atual da solução aproximada y'(t);

4.4.2 Algoritmo e Função

Algoritmo:

1. Definir o Valor do Passo (b):

Determinação do valor do passo de integração h. Este valor determina o tamanho dos incrementos ao longo do tempo ou da variável independente.

2. Criar um vetor u e um vetor v para guardar as soluções:

Os vetores u e v são usados para armazenar as soluções das variáveis do sistema e as suas derivadas, respetivamente. Estes vetores são atualizados a cada iteração do método.

3. Atribuir o primeiro valor de u e de v:

Os primeiros valores das variáveis do sistema devem ser atribuídos aos primeiros elementos dos vetores u e v, respetivamente. Estes valores são geralmente fornecidos pelas condições iniciais do problema.

4. Cálculo da inclinação no início do intervalo:

Para cada iteração, é calculada a inclinação inicial usando as equações diferenciais do sistema e os valores das variáveis do sistema no início do intervalo.

- 5. Cálculo da inclinação no ponto médio do intervalo (1ª aproximação):
- É calculada uma primeira estimativa da inclinação no ponto médio do intervalo utilizando uma média ponderada entre a inclinação inicial e a inclinação calculada a partir de uma estimativa preliminar das variáveis.
 - 6. Cálculo da inclinação no ponto médio do intervalo (2ª aproximação):

Em seguida, é recalculada a inclinação no ponto médio do intervalo usando a mesma técnica utilizada no passo anterior, mas utilizando a inclinação calculada na primeira aproximação.

7. Cálculo da inclinação no fim do intervalo:

Determinação da inclinação no final do intervalo usando as equações diferenciais do sistema e os valores das variáveis do sistema no ponto médio do intervalo.

8. Cálculo da média ponderada das inclinações:

Determinação da média ponderada entre as inclinações inicial e final, bem como as inclinações nos pontos médios do intervalo calculadas nas duas aproximações anteriores.

9. Cálculo do valor aproximado para n iterações:

Ana Pessoa (DEIS) | João Claro (DEIS)

Usando a média ponderada das inclinações, há a atualização das variáveis do sistema para o próximo passo de tempo. Repetimos este processo para o número desejado de iterações n, avançando assim a solução do sistema ao longo do domínio da variável independente.

10. Cálculo final utilizando o método RK4:

Uma vez que os passos anteriores envolvem aproximações, o método de RK4 realiza o cálculo final da solução utilizando as inclinações calculadas ao longo do intervalo. Este passo garante uma solução mais precisa para o sistema de equações diferenciais.

Função (MatLab):

```
% RK4 - Método de Runge-Kutta de 4ª Ordem para um Sistema de SED/PVI
%INPUT:
   f - 1ª Função do sistema de equações diferenciais em v, u e t
    g - 2ª Função do sistema de equações diferenciais em v, u e t
   [a, b] - Extremos do intervalo da variável independente t
  n - Número de subintervalos ou iterações do método
  u0 - Condição inicial da 1ª variável dependente
  v0 - Condição inicial da 2ª variável dependente
%OUTPUT:
  t - vetor de x, dos passos de "a" a "b"
   u - vetor das soluções aproximadas dos deslocamentos
  v - vetor das soluções aproximadas das velocidades
% Autores: Arménio Correia | armenioc@isec.pt
           Ana Rita Conceição Pessoa .: a2023112690@isec.pt
%
           João Francisco de Matos Claro .: a21270422@isec.pt
%
%
    28/04/2024
function [t, u, v] = RK4(f, g, a, b, n, u0, v0)
    h = (b-a)/n;
    % Alocação de memória
    t = a:h:b;
    u = zeros(1,n+1);
    v = zeros(1,n+1);
    u(1) = u0; % Atribuição do valor inicial de u
    v(1) = v0; % Atribuição do valor inicial de v
    for i=1:n % O número de iterações vai ser igual a n
        % Inclinação no início do intervalo
        uk1 = h*f(t(i),u(i),v(i));
        vk1 = h*g(t(i),u(i),v(i));
       % Inclinação no ponto médio do intervalo
        uk2 = f(t(i)+(h/2),u(i)+h*uk1/2,v(i)+h*vk1/2);
        vk2 = g(t(i)+(h/2),u(i)+h*uk1/2,v(i)+h*vk1/2);
       % Inclinação no ponto médio do intervalo
        uk3 = f(t(i)+(h/2),u(i)+h*uk2/2,v(i)+h*vk2/2);
        vk3 = g(t(i)+(h/2),u(i)+h*uk2/2,v(i)+h*vk2/2);
       % Inclinação no fim do intervalo
        uk4 = f(t(i)+(h/2),u(i)+h*uk3,v(i)+h*vk3);
        vk4 = g(t(i)+(h/2),u(i)+h*uk3,v(i)+h*vk3);
       % Cálculo da média das inclinações e aproximação do Método RK4
        u(i+1) = u(i)+(h/6)*(uk1+2*uk2+2*uk3+uk4);
        v(i+1) = v(i)+(h/6)*(vk1+2*vk2+2*vk3+vk4);
           end
        end
    end
```

5 EXEMPLOS DE APLICAÇÃO E TESTE DOS MÉTODOS

5.1 Algoritmo de Resolução

De modo a resolver e aplicar a GUI desenvolvida são processadas, de forma constante, os seguintes passos após a apresentação de uma Equação Diferencial (ED) de 2ª ordem, como por exemplo:

$$Ay'' + By' + Cy + D = 0$$

Sendo y uma função e A, B, C e D constantes em t.

Temos como objetivo obter, numericamente, y(t), solução da Equação Diferencial.

 1° **Passo:** Resolver em ordem a $\mathbf{y''}$ a equação dada:

$$y'' = -\frac{B}{A}y' - \frac{C}{A}y' - \frac{D}{A}$$

2º Passo: Mudança de variável:

$$\begin{cases} u = y \\ v = y' \end{cases}$$

 3° Passo: Derivar \boldsymbol{u} e \boldsymbol{v} e efetuar as devidas substituições:

$$\begin{cases} u' = y' \\ v' = y'' \end{cases}$$

$$\Leftrightarrow \begin{cases} u' = v \\ v' = -\frac{B}{A}y' - \frac{C}{A}y - \frac{D}{A} \end{cases}$$

$$\Leftrightarrow \begin{cases} u' = v \\ v' = -\frac{B}{A}v - \frac{C}{A}u - \frac{D}{A} \end{cases}$$

4º Passo: Definir os Problemas de Valores Iniciais (PVI's) e o SED:

$$\begin{cases} \begin{cases} u' = v \\ v' = -\frac{B}{A}v - \frac{C}{A}u - \frac{D}{A} \end{cases} \\ t \in [a, b] \\ \begin{cases} u(0) = u_0 \\ v(0) = v_0 \end{cases} \end{cases}$$

5º Passo: Aplicar Métodos Numéricos na GUI, com f(t, u, v) = u' e g(t, u, v) = v', de modo a obter uma aproximação de y(t).

5.2 Problema do Pêndulo

5.2.1 Modelação matemática do problema

Example 13-A Motion of a Nonlinear Pendulum

The motion of a pendulum of length L subject to damping can be described by the angular displacement of the pendulum from the vertical, θ , as a function of time. (See Fig. 13.1.) If we let m be the mass of the pendulum, g the gravitational constant, and c the damping coefficient (i.e., the damping force is $F = -c\theta'$), then the ODE initial-value problem describing this motion is

$$\theta'' + \frac{c}{mL}\theta' + \frac{g}{L}\sin\theta = 0.$$

The initial conditions give the angular displacement and velocity at time zero; for example, if $\theta(0) = a$ and $\theta'(0) = 0$, the pendulum has an initial displacement, but is released with 0 initial velocity.

Analytic (closed-form) solutions rely on approximating $\sin \theta$; the exact solutions to this approximated system do not have the characteristics of the physical pendulum, namely, a decreasing amplitude and a decreasing period. (See Greenspan, 1974, for further discussion.)

FIGURE 13.1a Simple pendulum.

Figura 1 – Problema do Pêndulo

A resolução seguinte foi feita na aula:

Pelo enunciado, sabemos que a equação que traduz o movimento é:

$$\theta^{\prime\prime} + \frac{c}{m \cdot L} \theta^{\prime} + \frac{g}{L} \sin(\theta) = 0$$

Assume-se que:

$$\frac{c}{m \cdot L} = 0.3$$

$$\frac{g}{L} = 1$$

$$\theta \equiv y$$

Assume-se que:

Ângulo que o pêndulo faz com a base antes de ser largado	$\theta(0) = \frac{\pi}{2} \Leftrightarrow y(0) = \frac{\pi}{2}$
Velocidade antes do pêndulo ser	$\theta'(0) = 0 \Leftrightarrow y'(0) = 0$
largado	

Obtém-se:

$$y'' + 0.3y' + \sin(y) = 0$$

Problema:

$$\begin{cases} y'' + 0.3y' + \sin(y) = 0 \\ y(0) = \frac{\pi}{2} \\ y'(0) = 0 \end{cases}$$

Temos uma equação diferencial de n=2 homogénea , então vamos transformar a ED de ordem n=2 num SED de ordem n=1 (transformar o problema) e depois é aplicado um método numérico ao sistema.

Substituição:

$$\begin{cases} u = y \\ v = y' \end{cases}$$

$$\begin{cases} u' = y' \\ v' = y'' \end{cases} \rightarrow \begin{cases} u' = y' \\ v' = y'' \end{cases} \Leftrightarrow \begin{cases} u' = y' \\ v' = -\sin(y) - 0.3y \end{cases}$$

$$\Leftrightarrow \begin{cases} u' = v \\ v' = -\sin(y) - 0.3y' \end{cases}$$

$$\therefore f(t, u, v) = v e g(t, u, v) = -\sin(u) - 0.3v$$

Aplicando as condições iniciais que sabemos e as equações diferenciais obtidas após a transformação é obtido o seguinte problema equivalente:

$$\begin{cases} u' = v \\ v' = -sin(u) - 0.3v \\ \vdots \vdots \vdots \\ t \in [0, 15] \\ u(0) = \frac{\pi}{2} \\ v(0) = 0 \end{cases}$$

5.2.2 Resolução através da App desenvolvida

Após a modelação matemática do problema iremos introduzir os dados obtidos na app desenvolvida primeiramente aplicando apenas o Método de Euler seguido da aplicação de todos os métodos numéricos:

Figura 2 - App: Problema do Pêndulo com Método de Euler

Observação: Uma vez que a equação diferencial deste problema não é linear, não é possível calcular uma solução exata através do MATLAB, no entanto, recorrendo à função ODE45, é possível obter uma solução bastante próxima da exata.

Ana Pessoa (DEIS) | João Claro (DEIS)

Figura 3 - App: Problema do Pêndulo com todos os Métodos Numéricos

Tabela 1 - Soluções do SED do Pêndulo

t	uExata	vExata	uEuler	uEulerM	uRK2	uRK4	vEuler	vEulerM	vRK2	vRK4
1.9800	1.1372	-0.8317	1.1875	1.1365	1.1365	1.1374	-0.8560	-0.8307	-0.8307	-0.8310
2.1200	1.0145	-0.9185	1.0677	1.0137	1.0137	1.0149	-0.9499	-0.9171	-0.9171	-0.9175
2.2600	0.8806	-0.9919	0.9347	0.8797	0.8797	0.8811	-1.0327	-0.9905	-0.9905	-0.9911
2.4000	0.7376	-1.0498	0.7901	0.7364	0.7364	0.7381	-1.1019	-1.0487	-1.0487	-1.0495
2.5400	0.5876	-1.0905	0.6359	0.5861	0.5861	0.5881	-1.1551	-1.0895	-1.0895	-1.0907
2.6800	0.4333	-1.1124	0.4742	0.4313	0.4313	0.4336	-1.1897	-1.1112	-1.1112	-1.1127
2.8200	0.2772	-1.1143	0.3076	0.2749	0.2749	0.2775	-1.2037	-1.1126	-1.1126	-1.1146
2.9600	0.1222	-1.0956	0.1391	0.1198	0.1198	0.1225	-1.1955	-1.0934	-1.0934	-1.0958
3.1000	-0.0288	-1.0568	-0.0283	-0.0313	-0.0313	-0.0284	-1.1647	-1.0541	-1.0541	-1.0571
3.2400	-0.1729	-0.9995	-0.1913	-0.1754	-0.1754	-0.1726	-1.1118	-0.9962	-0.9962	-0.9997
3.3800	-0.3078	-0.9256	-0.3470	-0.3103	-0.3103	-0.3076	-1.0385	-0.9219	-0.9219	-0.9258

Instituto Superior de Engenharia de Coimbra

Tabela 2 - Valores dos Erros dos Métodos Numéricos no Problema do Pêndulo

erroUEuler	erroUEulerM	erroURK2	erroURK4	erroVEuler	erroVEulerM	erroVRK2	erroVRK4
0.0503	0.0008	0.0008	2.0331e-04	0.0243	0.0009	0.0009	6.2254e-04
0.0532	0.0008	0.0008	4.2759e-04	0.0314	0.0014	0.0014	9.6541e-04
0.0541	0.0009	0.0009	5.6193e-04	0.0408	0.0014	0.0014	8.1943e-04
0.0526	0.0012	0.0012	5.5952e-04	0.0521	0.0012	0.0012	3.2328e-04
0.0482	0.0016	0.0016	4.5813e-04	0.0646	0.0010	0.0010	1.7259e-04
0.0409	0.0020	0.0020	3.4646e-04	0.0774	0.0011	0.0011	3.6778e-04
0.0304	0.0023	0.0023	2.9420e-04	0.0894	0.0017	0.0017	2.6167e-04
0.0169	0.0025	0.0025	2.9112e-04	0.0999	0.0022	0.0022	2.4583e-04
0.0005	0.0025	0.0025	3.4725e-04	0.1079	0.0027	0.0027	2.4774e-04
0.0184	0.0025	0.0025	3.4477e-04	0.1123	0.0033	0.0033	1.9904e-04
0.0392	0.0024	0.0024	2.6643e-04	0.1129	0.0037	0.0037	2.3777e-04

Sistema Dinâmico Mola-Massa com Amortecimento

c) Um peso de 6.4 lb provoca, numa mola, um alongamento de 1.28 ft. O sistema está sujeito à acção duma força amortecedora, numericamente igual ao dobro da sua velocidade instantânea. Determine a equação do movimento do peso, supondo que ele parte da posição de equilíbrio com uma velocidade dirigida para cima de 4 ft/s.

Resolução:

Sabe-se, pela lei de Hooke, que W = ks

No caso em estudo
$$k=\frac{6.4}{1.28}\Leftrightarrow k=5$$
 lb/ft . Como $W=mg$, tem-se $m=\frac{6.4}{32}\Leftrightarrow m=0.2$

A equação que descreve o movimento livre amortecido é

$$m\frac{d^2x}{dt^2} = -Kx - b\frac{dx}{dt}$$

onde b é uma constante positiva e o sinal "-" indica que as forças amortecedoras actuam na direcção oposta ao movimento.

Então a equação diferencial de movimento de peso é 0.2x''=-5x-2x'

$$\Leftrightarrow x'' + 10x' + 25x = 0 \text{ com } x(0) = 0 \text{ } e \text{ } x'(0) = -4$$

Figura 4 – Enunciado: Problema do Movimento Livre Amortecido

5.2.3 Modelação matemática do problema

Pelo enunciado, sabemos que a equação que traduz o movimento é:

$$m + \frac{d^2x}{dt^2} = -Kx - b\frac{dx}{dt}$$

Assume-se que:

$$k = 5 lb/ft$$

$$m = 0.2$$

b é uma constante positiva

$$x \equiv y$$

Assume-se que:

Ângulo que o objeto faz com a base	$x(0) = 0 \iff y(0) = 0$
antes de ser largado	
Velocidade antes do objeto ser largado	$x'(0) = -4 \Leftrightarrow y'(0) = -4$

Obtém-se:

$$y'' + 10y' + 25y = 0$$

Problema:

$$\begin{cases} y'' + 10y' + 25y = 0 \\ y(0) = 0 \\ y'(0) = -4 \end{cases}$$

Temos uma equação diferencial de n=2 homogénea, então vamos transformar a ED de ordem n=2 num SED de ordem n=1 (transformar o problema) e depois é aplicado um método numérico ao sistema.

Substituição:

$$\begin{cases} u = y \\ v = y' \end{cases}$$

$$\begin{cases} u' = y' \\ v' = y'' \end{cases} \Rightarrow \begin{cases} u' = y' \\ v' = y'' \end{cases} \Leftrightarrow \begin{cases} u' = y' \\ v' = -10y' - 25y \end{cases}$$

$$\Leftrightarrow \begin{cases} u' = v \\ v' = -25u - 10v \end{cases}$$

$$\therefore f(t,u,v) = v e g(t,u,v) = -25u - 10v$$

Aplicando as condições iniciais que sabemos e as equações diferenciais obtidas após a transformação é obtido o seguinte problema equivalente:

$$\begin{cases} u' = v \\ v' = -25u - 10v \\ \vdots \vdots \vdots \\ t \in [0, 2.5] \\ \vdots \vdots \vdots \\ u(0) = 0 \\ v(0) = -4 \end{cases}$$

5.2.4 Resolução através da App desenvolvida

Após a modelação matemática do problema iremos introduzir os dados obtidos na app desenvolvida aplicando de todos os métodos numéricos:

Figura 5 - App: Problema do Sistema Dinâmico Mola-Massa com Amortecimento com todos os Métodos Numéricos

Observação: Tendo em conta que o objeto parte da posição de equilíbrio com uma velocidade dirigida para cima e que as forças opostas atuam na direção oposta ao movimento é natural que a velocidade do objeto comece com uma velocidade negativa no gráfico.

Tabela 3 - Soluções do SED do Sistema Dinâmico Mola-Massa com Amortecimento

t	uExata	vExata	uEuler	uEulerM	uRK2	uRK4	vEuler	vEulerM	vRK2	vRK4	erroUEuler	erroUEulerM	erroURK2
0	0	-4.0000	0	0	0	0	-4.0000	-4.0000	-4.0000	-4.0000	0	0	0
0.0250	-0.0882	-3.0887	-0.1000	-0.0875	-0.0875	-0.0882	-3.0000	-3.0938	-3.0938	-3.0887	0.0118	0.0007	0.0007
0.0500	-0.1558	-2.3364	-0.1750	-0.1545	-0.1545	-0.1558	-2.1875	-2.3450	-2.3450	-2.3364	0.0192	0.0013	0.0013
0.0750	-0.2062	-1.7182	-0.2297	-0.2046	-0.2046	-0.2062	-1.5312	-1.7292	-1.7292	-1.7182	0.0235	0.0016	0.0016
0.1000	-0.2426	-1.2131	-0.2680	-0.2408	-0.2408	-0.2426	-1.0049	-1.2255	-1.2255	-1.2131	0.0254	0.0018	0.0018
0.1250	-0.2676	-0.8029	-0.2931	-0.2657	-0.2657	-0.2676	-0.5862	-0.8162	-0.8162	-0.8029	0.0255	0.0019	0.0019
0.1500	-0.2834	-0.4724	-0.3077	-0.2815	-0.2815	-0.2834	-0.2565	-0.4859	-0.4859	-0.4724	0.0243	0.0019	0.0019
0.1750	-0.2918	-0.2084	-0.3142	-0.2899	-0.2899	-0.2918		-0.2219	-0.2219	-0.2084	0.0224	0.0019	0.0019
0.2000	-0.2943	0	-0.3142	-0.2925	-0.2925	-0.2943	0.1963	-0.0131	-0.0131	-0.0000	0.0199	0.0018	0.0018
0.2250	-0.2922	0.1623	-0.3092	-0.2905	-0.2905	-0.2922							
0.2500	-0.2865	0.2865	-0.3007	-0.2850	-0.2850	-0.2865	0.3436	0.1499	0.1499	0.1623	0.0171	0.0017	0.0017
0.2750	-0.2781	0.3793	-0.2894	-0.2767	-0.2767	-0.2781	0.4510	0.2748	0.2748	0.2865	0.0142	0.0015	0.0015
0.3000	-0.2678	0.4463	-0.2762	-0.2665	-0.2665	-0.2678	0.5262	0.3684	0.3684	0.3792	0.0113	0.0014	0.0014
0.3250	-0.2560	0.4923	-0.2618	-0.2549	-0.2549	-0.2560	0.5755	0.4363	0.4363	0.4462	0.0085	0.0012	0.0012
0.3500	-0.2433	0.5213	-0.2467	-0.2423	-0.2423	-0.2433	0.6043	0.4832	0.4832	0.4923	0.0059	0.0011	0.0011

Tabela 4 - Valores dos Erros dos Métodos Numéricos no Sistema Dinâmico Mola-Massa com Amortecimento

erroURK4	erroVEuler	erroVEulerM	erroVRK2	erroVRK4
0	0	0	0	0
9.9234e-07	0.0887	0.0050	0.0050	5.9581e-06
1.7075e-06	0.1489	0.0086	0.0086	1.0296e-05
2.2021e-06	0.1870	0.0110	0.0110	1.3339e-05
2.5227e-06	0.2082	0.0125	0.0125	1.5353e-05
2.7072e-06	0.2167	0.0133	0.0133	1.6558e-05
2.7870e-06	0.2159	0.0136	0.0136	1.7135e-05
2.7870e-06	0.2084	0.0135	0.0135	1.7230e-05
2.7278e-06	0.1963	0.0131	0.0131	1.6962e-05
2.6257e-06	0.1813	0.0124	0.0124	1.6428e-05
2.4938e-06	0.1645	0.0117	0.0117	1.5704e-05
2.3423e-06	0.1469	0.0109	0.0109	1.4852e-05
2.1795e-06	0.1292	0.0100	0.0100	1.3921e-05
2.0114e-06	0.1120	0.0091	0.0091	1.2947e-05

5.3 Modelo Vibratório Mecânico

5.3.1 Modelação matemática do problema

Nestes sistemas, o deslocamento x obedece à equação diferencial linear de 2ª ordem

$$mx'' + bx' + k(x) = f(t)$$

onde:

m = massa; x = deslocamento; b = factor de amortecimento;

k = constante da mola e f(t) = força aplicada

a)
$$x'' + 2x' + 2x = 4\cos t + 2\sin t$$
, $x(0) = 0$ $x'(0) = 3$
 $\Rightarrow x(t) = e^{-t}\sin t + 2\sin t$

Figura 6 – Enunciado: Problema Vibratório Mecânico

Pelo enunciado, sabemos que a equação que traduz o movimento é:

$$mx'' + bx' + k(x) = f(t)$$

Pela alínea a) assume-se que:

$$b = 2$$

$$k = 2$$

$$f(t) = 4\cos(t) + 2\sin(t)$$

$$x \equiv y$$

Assume-se que:

Ângulo que o objeto faz com a base antes de ser largado	$x(0) = 0 \Leftrightarrow y(0) = 0$
Velocidade antes do objeto ser largado	$x'(0) = 3 \Leftrightarrow y'(0) = 3$

Obtém-se:

$$y'' + 2y' + 2y = 4\cos(t) + 2\sin(t)$$

$$\Leftrightarrow y'' + 2y' + 2y - 4\cos(t) - 2\sin(t) = 0$$

Problema:

$$\begin{cases} y'' + 2y' + 2y - 4\cos(t) - 2\sin(t) = 0\\ y(0) = 0\\ y'(0) = 3 \end{cases}$$

Temos uma equação diferencial de n=2 homogénea , então vamos transformar a ED de ordem n=2 num SED de ordem n=1 (transformar o problema) e depois é aplicado um método numérico ao sistema.

Substituição:

$$\begin{cases} u = y \\ v = y' \end{cases}$$

$$\begin{cases} u' = y' \\ v' = y'' \end{cases} \Rightarrow \begin{cases} u' = y' \\ v' = y'' \end{cases} \Leftrightarrow \begin{cases} u' = y' \\ v' = -2y' - 2y + 4\cos(t) + 2\sin(t) \end{cases}$$

$$\Leftrightarrow \begin{cases} u' = v \\ v' = -2v - 2u + 4\cos(t) + 2\sin(t) \end{cases}$$

$$f(t, u, v) = v e g(t, u, v) = -2v - 2u + 4 cos(t) + 2 sin(t)$$

Aplicando as condições iniciais que sabemos e as equações diferenciais obtidas após a transformação é obtido o seguinte problema equivalente:

$$\begin{cases} u' = v \\ v' = -2v - 2u + 4\cos(t) + 2\sin(t) \\ t \in [0, 15] \\ u(0) = 0 \\ v(0) = 3 \end{cases}$$

5.3.2 Resolução através da App desenvolvida

Após a modelação matemática do problema iremos introduzir os dados obtidos na app desenvolvida.

Figura 7 - App: Problema do Modelo Vibratório Mecânico com todos os Métodos Numéricos

Observação: Tendo em conta que o objeto é sujeito a um fator de amortecimento o gráfico deste problema deveria mostrar a diminuição da velocidade do mesmo ao longo do tempo, porém isso não acontece pois mostra um movimento característico de objetos quando não estão sujeitos a essa condição.

Tabe	la 5 - 1	So	lucões o	do S	SED	do	Mod	lelo	o Vi	brató	rio	Mecânico

t	uExata	vExata	uEuler	uEulerM	uRK2	uRK4	vEuler	vEulerM	vRK2	vRK4
1.0000	0.0000	3.0000	0	0	0	0	3.0000	3.0000	3.0000	3.0000
1.1400	0.4242	3.0306	0.4200	0.4283	0.4283	0.4242	3.1182	3.0262	3.0262	3.0350
1.2800	0.8408	2.8957	0.8565	0.8481	0.8481	0.8414	3.0523	2.8857	2.8857	2.9046
1.4200	1.2281	2.6134	1.2839	1.2372	1.2372	1.2298	2.8140	2.5974	2.5974	2.6267
1.5600	1.5668	2.2061	1.6778	1.5764	1.5764	1.5701	2.4215	2.1844	2.1844	2.2234
1.7000	1.8411	1.6992	2.0168	1.8499	1.8499	1.8467	1.8987	1.6724	1.6724	1.7198
1.8400	2.0391	1.1195	2.2826	2.0458	2.0458	2.0473	1.2737	1.0890	1.0890	1.1428
1.9800	2.1525	0.4949	2.4610	2.1559	2.1559	2.1635	0.5772	0.4622	0.4622	0.5199
2.1200	2.1769	-0.1474	2.5418	2.1763	2.1763	2.1909	-0.1586	-0.1805	-0.1805	-0.1217
2.2600	2.1116	-0.7815	2.5196	2.1064	2.1064	2.1287	-0.9016	-0.8132	-0.8132	-0.7561
2.4000	1.9596	-1.3836	2.3933	1.9494	1.9494	1.9797	-1.6209	-1.4120	-1.4120	-1.3595
2.5400	1.7267	-1.9326	2.1664	1.7117	1.7117	1.7496	-2.2879	-1.9559	-1.9559	-1.9107
2.6800	1.4218	-2.4105	1.8461	1.4022	1.4022	1.4470	-2.8774	-2.4274	-2.4274	-2.3919
2.8200	1.0558	-2.8030	1.4433	1.0323	1.0323	1.0830	-3.3682	-2.8123	-2.8123	-2.7884
2.9600	0.6414	-3.0995	0.9717	0.6150	0.6150	0.6700	-3.7435	-3.1003	-3.1003	-3.0895
3.1000	0.1927	-3.2931	0.4476	0.1642	0.1642	0.2221	-3.9917	-3.2851	-3.2851	-3.2883

Tabela 6 - Valores dos Erros dos Métodos Numéricos do Modelo Vibratório Mecânico

erroUEuler	erroUEulerM	erroURK2	erroURK4	erroVEuler	erroVEulerM	erroVRK2	erroVRK4
0.0000	0.0000	0.0000	0.0000	0	0	0	0
0.0042	0.0041	0.0041	0.0000	0.0876	0.0045	0.0045	0.0044
0.0157	0.0072	0.0072	0.0006	0.1566	0.0100	0.0100	0.0089
0.0558	0.0091	0.0091	0.0017	0.2005	0.0160	0.0160	0.0133
0.1111	0.0096	0.0096	0.0034	0.2153	0.0217	0.0217	0.0172
0.1757	0.0088	0.0088	0.0056	0.1995	0.0267	0.0267	0.0206
0.2435	0.0067	0.0067	0.0081	0.1541	0.0305	0.0305	0.0232
0.3085	0.0034	0.0034	0.0110	0.0823	0.0327	0.0327	0.0249
0.3649	0.0006	0.0006	0.0140	0.0112	0.0331	0.0331	0.0257
0.4079	0.0053	0.0053	0.0171	0.1201	0.0317	0.0317	0.0254
0.4338	0.0102	0.0102	0.0201	0.2373	0.0284	0.0284	0.0241
0.4397	0.0150	0.0150	0.0229	0.3553	0.0234	0.0234	0.0218
0.4243	0.0195	0.0195	0.0253	0.4669	0.0169	0.0169	0.0186
0.3875	0.0234	0.0234	0.0272	0.5652	0.0093	0.0093	0.0146
0.3303	0.0265	0.0265	0.0286	0.6440	0.0008	0.0008	0.0100
0.2549	0.0285	0.0285	0.0294	0.6986	0.0081	0.0081	0.0048

5.4 Movimento Mola-Massa sem Amortecimento

b) A equação mx'' + kx = 0 descreve o movimento harmónico simples, ou movimento livre não amortecido, e está sujeita às condições iniciais x(0) = a e x'(0) = b representando, respectivamente, a medida do deslocamento inicial e a velocidade inicial.

Use este conhecimento para dar uma interpretação física do problema de Cauchy x'' + 16x = 0 x(0) = 9 x'(0) = 0

e resolva-o

Figura 8 - Problema do Movimento Harmónico Simples Mecânico

5.4.1 Modelação matemática do problema

Pelo enunciado, sabemos que a equação que traduz o movimento é:

$$mx'' + kx = 0$$

Assume-se que:

m = 1

k = 16

 $x \equiv y$

Assume-se que:

Ângulo que o objeto faz com a base	$x(0) = 9 \Leftrightarrow y(0) = 9$
antes de ser largado	
Velocidade antes do objeto ser largado	$x'(0) = 0 \Leftrightarrow y'(0) = 0$

Obtém-se:

$$y^{\prime\prime} + 16y = 0$$

Problema:

Instituto Superior de Engenharia de Coimbra

$$\begin{cases} y'' + 16y = 0 \\ y(0) = 9 \\ y'(0) = 0 \end{cases}$$

Temos uma equação diferencial de n=2 homogénea, então vamos transformar a ED de ordem n=2 num SED de ordem n=1 (transformar o problema) e depois é aplicado um método numérico ao sistema.

Substituição:

$$\begin{cases} u = y \\ v = y' \end{cases}$$

$$\begin{cases} u' = y' \\ v' = y'' \end{cases} \rightarrow \begin{cases} u' = y' \\ v' = y'' \end{cases} \Leftrightarrow \begin{cases} u' = y' \\ v' = -16y \end{cases}$$

$$\Leftrightarrow \begin{cases} u' = v \\ v' = -16u \end{cases}$$

$$f(t, u, v) = v e g(t, u, v) = -16u$$

Aplicando as condições iniciais que sabemos e as equações diferenciais obtidas após a transformação é obtido o seguinte problema equivalente:

$$\begin{cases} u' = v \\ v' = -16u \\ \vdots \vdots \vdots \\ t \in [0, 8] \\ \vdots \vdots \vdots \\ u(0) = 9 \\ v(0) = 0 \end{cases}$$

5.4.2 Resolução através da App desenvolvida

Após a modelação matemática do problema iremos introduzir os dados obtidos na app desenvolvida primeiramente aplicando apenas o Método de Euler seguido da aplicação de todos os métodos numéricos

Figura 9 - App: Movimento Mola-Massa sem Amortecimento com o Método de Euler

Observação: Ao diminuirmos o intervalo de tempo, é mais visível a discrepância entre o Método de Euler e os restantes métodos numéricos, pois nestes últimos é evidente o comportamento de típico de um objeto quando não está sujeito a forças de amortecimento, ou seja, um movimento contínuo ao longo do tempo, enquanto que no Método de Euler o erro cometido é cada vez maior com o aumento do número de iterações feitas.

Figura 10 - App: Movimento Mola-Massa sem Amortecimento com todos os Métodos Numéricos

Tabela 7 - Soluções do SED do Movimento Mola-Massa sem Amortecimento

t	uExata	vExata	uEuler	uEulerM	uRK2	uRK4	vEuler	vEulerM	vRK2	vRK4
0	9.0000	0	9.0000	9.0000	9.0000	9.0000	0	0	0	0
0.0800	8.5431	-11.3244	9.0000	8.5392	8.5392	8.5431	-11.5200	-11.5200	-11.5200	-11.3234
0.1600	7.2189	-21.4990	8.0784	7.1804	7.1804	7.2190	-23.0400	-21.8604	-21.8604	-21.4972
0.2400	5.1617	-29.4909	6.2352	5.0639	5.0639	5.1622	-33.3804	-29.9320	-29.9320	-29.4886
0.3200	2.5804	-34.4886	3.5648	2.4101	2.4101	2.5813	-41.3614	-34.8813	-34.8813	-34.4864
0.4000	-0.2628	-35.9846	0.2559	-0.5038	-0.5038	-0.2616	-45.9243	-36.1803	-36.1803	-35.9835
0.4800	-3.0793	-33.8272	-3.4181	-3.3724	-3.3724	-3.0778	-46.2518	-33.6830	-33.6830	-33.8277
0.5600	-5.5833	-28.2354	-7.1182	-5.8944	-5.8944	-5.5816	-41.8767	-27.6417	-27.6417	-28.2381
0.6400	-7.5203	-19.7768	-10.4684	-7.8040	-7.8040	-7.5188	-32.7653	-18.6816	-18.6816	-19.7821
0.7200	-8.6938	-9.3103	-13.0896	-8.8989	-8.8989	-8.6927	-19.3658	-7.7361	-7.7361	-9.3181
0.8000	-8.9847	2.1015	-14.6389	-9.0622	-9.0622	-8.9841	-2.6111	4.0506	4.0506	2.0916
0.8800	-8.3633	13.2999	-14.8477	-8.2741	-8.2741	-8.3636	16.1266	15.4428	15.4428	13.2889
0.9600	-6.8928	23.1480	-13.5576	-6.6151	-6.6151	-6.8941	35.1317	25.2431	25.2431	23.1370
1.0400	-4.7225	30.6458	-10.7471	-4.2569	-4.2569	-4.7247	52.4855	32.4179	32.4179	30.6363
1.1200	-2.0727	35.0323	-6.5482	-1.4456	-1.4456	-2.0758	66.2417	36.2070	36.2070	35.0255
1.2000	0.7875	35.8619	-1.2489	1.5250	1.5250	0.7838	74.6235	36.2035	36.2035	35.8592

Tabela 8 - Valores dos Erros dos Métodos Numéricos do Movimento Mola-Massa sem Amortecimento

erroUEuler	erroUEulerM	erroURK2	erroURK4	erroVEuler	erroVEulerM	erroVRK2	erroVRK4
0	0	0	0	0	0	0	0
0.4569	0.0039	0.0039	0.0000	0.1956	0.1956	0.1956	0.0010
0.8595	0.0385	0.0385	0.0002	1.5410	0.3613	0.3613	0.0019
1.0735	0.0978	0.0978	0.0005	3.8895	0.4411	0.4411	0.0023
0.9843	0.1703	0.1703	0.0009	6.8728	0.3927	0.3927	0.0021
0.5187	0.2410	0.2410	0.0012	9.9397	0.1957	0.1957	0.0012
0.3387	0.2931	0.2931	0.0015	12.4246	0.1442	0.1442	0.0005
1.5350	0.3112	0.3112	0.0016	13.6413	0.5937	0.5937	0.0028
2.9481	0.2837	0.2837	0.0015	12.9885	1.0952	1.0952	0.0053
4.3958	0.2051	0.2051	0.0011	10.0555	1.5742	1.5742	0.0078
5.6542	0.0775	0.0775	0.0005	4.7126	1.9492	1.9492	0.0098
6.4845	0.0891	0.0891	0.0003	2.8267	2.1430	2.1430	0.0110
6.6648	0.2777	0.2777	0.0013	11.9838	2.0951	2.0951	0.0110
6.0246	0.4656	0.4656	0.0022	21.8396	1.7721	1.7721	0.0096
4.4755	0.6272	0.6272	0.0031	31.2094	1.1747	1.1747	0.0067
2.0364	0.7375	0.7375	0.0037	38.7616	0.3416	0.3416	0.0027

5.5 Circuito Elétrico

5.5.1 Modelação matemática do problema

Neste caso, o circuito elétrico é composto apenas por uma bobina (L) e um condensador (C) em paralelo, sem resistência (R). O comportamento deste circuito é governado pela lei de Kirchhoff para correntes e tensões.

Resumidamente, o comportamento deste circuito ao longo do tempo seria caracterizado por oscilações periódicas na carga elétrica do condensador. Inicialmente, o condensador estaria carregado com uma certa quantidade de carga elétrica. Em seguida, essa carga seria transferida para a bobina e vice-versa, resultando em oscilações sinusoidais da carga no condensador.

A equação diferencial que descreve o comportamento do circuito é dada por:

$$\frac{d^2q}{dt^2} + \frac{1}{LC}q = 0$$

Assumem-se os seguintes valores significativos para L e C:

L = 1H

 $C = 1\mu F$

 $q \equiv y (carga \ el \'etrica \ armazenada \ no \ condensador)$

Figura 11 - Circuito Elétrico

Assume-se que:

Carga inicial no Capacitador	$q(0) = 5C \iff y(0) = 5$
Velocidade incial	$q'(0) = 0 \Leftrightarrow y'(0) = 0$

Obtém-se:

$$y^{\prime\prime}+y=0$$

Problema:

$$\begin{cases} y'' + y = 0 \\ y(0) = 5 \\ y'(0) = 0 \end{cases}$$

Temos uma equação diferencial de n=2 homogénea, então vamos transformar a ED de ordem n=2 num SED de ordem n=1 (transformar o problema) e depois é aplicado um método numérico ao sistema.

Substituição:

$$\begin{cases} u = y \\ v = y' \end{cases}$$

$$\begin{cases} u' = y' \\ v' = y'' \end{cases} \rightarrow \begin{cases} u' = y' \\ v' = y'' \end{cases} \Leftrightarrow \begin{cases} u' = y' \\ v' = -y \end{cases}$$

$$\Leftrightarrow \begin{cases} u' = v \\ v' = -u \end{cases}$$

$$\therefore f(t, u, v) = v e g(t, u, v) = -u$$

Aplicando as condições iniciais que sabemos e as equações diferenciais obtidas após a transformação é obtido o seguinte problema equivalente:

$$\begin{cases} u' = v \\ v' = -u \\ \vdots \vdots \vdots \\ t \in [0, 20] \\ \vdots \vdots \vdots \\ u(0) = 5 \\ v(0) = 0 \end{cases}$$

5.5.2 Resolução através da App desenvolvida

Após a modelação matemática do problema iremos introduzir os dados obtidos na app desenvolvida primeiramente aplicando apenas o Método de Euler seguido da aplicação de todos os métodos numéricos.

Figura 12 - App: Problema do Circuito Elétrico com Método de Euler

Observação: Neste problema também é visível a disparidade do Método de Euler em relação aos restantes, que irão ser vistos de seguida.

Figura 13 - App: Problema do Circuito Elétrico com RK2

Tabela 9 - Soluções do SED do Circuito Elétrico

t	uExata	vExata	uEuler	uEulerM	uRK2	uRK4	vEuler	vEulerM	vRK2	vRK4
0	5.0000	0	5.0000	5.0000	5.0000	5.0000	0	0	0	0
0.2000	4.9003	-0.9933	5.0000	4.9000	4.9000	4.9003	-1.0000	-1.0000	-1.0000	-0.9933
0.4000	4.6053	-1.9471	4.8000	4.6020	4.6020	4.6053	-2.0000	-1.9600	-1.9600	-1.9471
0.6000	4.1267	-2.8232	4.4000	4.1180	4.1180	4.1267	-2.9600	-2.8412	-2.8412	-2.8232
0.8000	3.4835	-3.5868	3.8080	3.4674	3.4674	3.4836	-3.8400	-3.6080	-3.6080	-3.5867
1.0000	2.7015	-4.2074	3.0400	2.6764	2.6764	2.7016	-4.6016	-4.2293	-4.2293	-4.2073
1.2000	1.8118	-4.6602	2.1197	1.7770	1.7770	1.8119	-5.2096	-4.6800	-4.6800	-4.6602
1.4000	0.8498	-4.9272	1.0778	0.8055	0.8055	0.8499	-5.6335	-4.9418	-4.9418	-4.9272
1.6000	-0.1460	-4.9979	-0.0489	-0.1990	-0.1990	-0.1459	-5.8491	-5.0041	-5.0041	-4.9979
1.8000	-1.1360	-4.8692	-1.2188	-1.1958	-1.1958	-1.1359	-5.8393	-4.8642	-4.8642	-4.8692
2.0000	-2.0807	-4.5465	-2.3866	-2.1447	-2.1447	-2.0806	-5.5955	-4.5277	-4.5277	-4.5465
2.2000	-2.9425	-4.0425	-3.5057	-3.0074	-3.0074	-2.9424	-5.1182	-4.0082	-4.0082	-4.0425
2.4000	-3.6870	-3.3773	-4.5294	-3.7489	-3.7489	-3.6868	-4.4171	-3.3266	-3.3266	-3.3774
2.6000	-4.2844	-2.5775	-5.4128	-4.3392	-4.3392	-4.2843	-3.5112	-2.5103	-2.5103	-2.5776
2.8000	-4.7111	-1.6749	-6.1150	-4.7545	-4.7545	-4.7110	-2.4286	-1.5922	-1.5922	-1.6751
3.0000	-4.9500	-0.7056	-6.6008	-4.9778	-4.9778	-4.9499	-1.2056	-0.6095	-0.6095	-0.7058

Tabela 10 - Valores dos Erros dos Métodos Numéricos do Movimento Mola-Massa sem Amortecimento

erroUEuler	erroUEulerM	erroURK2	erroURK4	erroVEuler	erroVEulerM	erroVRK2	erroVRK4
0	0	0	0	0	0	0	0
0.0997	0.0003	0.0003	4.4413e-07	0.0067	0.0067	0.0067	1.3321e-05
0.1947	0.0033	0.0033	6.1633e-06	0.0529	0.0129	0.0129	2.5934e-05
0.2733	0.0087	0.0087	1.6789e-05	0.1368	0.0180	0.0180	3.6289e-05
0.3245	0.0162	0.0162	3.1552e-05	0.2532	0.0212	0.0212	4.2973e-05
0.3385	0.0251	0.0251	4.9325e-05	0.3942	0.0219	0.0219	4.4810e-05
0.3079	0.0348	0.0348	6.8693e-05	0.5494	0.0198	0.0198	4.0941e-05
0.2279	0.0443	0.0443	8.8034e-05	0.7063	0.0145	0.0145	3.0891e-05
0.0971	0.0530	0.0530	1.0562e-04	0.8512	0.0062	0.0062	1.4612e-05
0.0828	0.0598	0.0598	1.1972e-04	0.9701	0.0051	0.0051	7.4948e-06
0.3059	0.0640	0.0640	1.2871e-04	1.0491	0.0188	0.0188	3.4588e-05
0.5632	0.0649	0.0649	1.3120e-04	1.0757	0.0342	0.0342	6.5417e-05
0.8424	0.0619	0.0619	1.2610e-04	1.0398	0.0507	0.0507	9.8377e-05
1.1283	0.0548	0.0548	1.1271e-04	0.9337	0.0672	0.0672	1.3159e-04
1.4039	0.0434	0.0434	9.0810e-05	0.7537	0.0827	0.0827	1.6300e-04
1.6508	0.0279	0.0279	6.0660e-05	0.5000	0.0961	0.0961	1.9050e-04

5.6 Problema do Crescimento Económico Sob Restrições

5.6.1 Modelação matemática do problema

Supondo que estamos a analisar o crescimento económico de uma região que depende de recursos naturais, mas está sujeita a restrições ambientais, como limitações de recursos naturais, poluição ou degradação ambiental. Podemos modelar a dinâmica deste sistema usando uma equação diferencial homogénea de segunda ordem.

Uma equação diferencial que descreve este problema pode ser uma versão modificada do modelo de crescimento económico de Solow-Swan, que leva em consideração as restrições ambientais. Uma possível forma da equação diferencial é:

$$\frac{d^2Y}{dt^2} + 2\alpha \frac{dY}{dt} + \beta Y = f(t)$$

Onde:

- $Y(t) \rightarrow$ Produto interno bruto (PIB) ou a produção económica da região no tempo t;
- $\frac{d^2Y}{dt^2}$ Taxa de variação da produção em relação ao tempo;
- $\alpha \rightarrow$ Coeficiente de amortecimento, que representa os efeitos das restrições ambientais na taxa de crescimento económico;
- $\beta \rightarrow \text{Taxa}$ de crescimento económico, que representa a contribuição do investimento e da tecnologia para o crescimento económico;
- $f(t) \rightarrow$ Função que representa choques externos, políticas económicas ou mudanças no ambiente.

Esta equação descreve como o crescimento económico da região é influenciado não apenas pelos investimentos e avanços tecnológicos, mas também pelas restrições ambientais. A presença do termo "amortecimento" (α) reflete como estas restrições podem diminuir a taxa de crescimento económico ao longo do tempo.

Resolver esta equação diferencial permite entender como o crescimento económico é afetado pelas restrições ambientais e como políticas económicas e ambientais podem ser formuladas para promover um desenvolvimento sustentável.

Assumem-se os seguintes valores significativos:

- $\alpha \rightarrow$ Um valor significativo poderia ser $\alpha = 0.05$, indicando que as restrições ambientais reduzem a taxa de crescimento económico em 5% ao longo do tempo.
- $\beta \rightarrow$ Um valor significativo poderia ser $\beta = 0.1$, indicando uma taxa de crescimento económico de 10% por ano devido ao investimento e avanços tecnológicos.

Uma expressão significativa para f(t) poderia ser:

$$f(t) = Asin(\omega t)$$

Onde:

- $A \rightarrow$ Amplitude do choque ou da política económica
- ω → Frequência do choque ou da política económica que ocorre ao longo do tempo. Pode ser interpretada como o número de ciclos completos que ocorrem em uma unidade de tempo

Considerando os seguintes valores hipotéticos para \mathbf{A} e $\boldsymbol{\omega}$:

- $A \rightarrow$ Um valor significativo poderia ser A = 2, indicando um choque relativamente forte ou uma política com um impacto substancial.
- $\omega \to \text{Um}$ valor significativo poderia ser $\omega = 0.1$, indicando que o choque ou a política ocorre aproximadamente uma vez a cada 10 unidades de tempo.

$$Y \equiv y$$

Assume-se que:

PIB inicial	$Y\left(0\right) = 100 \iff y(0) = 100$
Taxa de variação inicial do PIB	$Y'(0) = 5 \Leftrightarrow y'(0) = 5$

Obtém-se:

$$y'' + 0.05y' + 0.1y = 2sin(0.1t)$$

Problema:

$$\begin{cases} y'' + 0.05y' + 0.1y - 2sin(0.1t) = 0 \\ y(0) = 100 \\ y'(0) = 5 \end{cases}$$

Temos uma equação diferencial de n=2 homogénea, então vamos transformar a ED de ordem n=2 num SED de ordem n=1 (transformar o problema) e depois é aplicado um método numérico ao sistema.

Substituição:

$$\begin{cases} \boldsymbol{u} = \boldsymbol{y} \\ \boldsymbol{v} = \boldsymbol{y}' \end{cases}$$

$$\begin{cases} u' = y' \\ v' = y'' \end{cases} \rightarrow \begin{cases} u' = y' \\ v' = y'' \end{cases} \Leftrightarrow \begin{cases} u' = y' \\ v' = -0.05y' - 0.1y + 2\sin(0.1t) \end{cases}$$

$$\Leftrightarrow \begin{cases} \boldsymbol{u}' = \boldsymbol{v} \\ v' = -\mathbf{0}.\mathbf{05}v - \mathbf{0}.\mathbf{1}u + 2\sin(\mathbf{0}.\mathbf{1}t) \end{cases}$$

$$f(t, u, v) = v e g(t, u, v) = -0.05v - 0.1u + 2sin(0.1t)$$

Aplicando as condições iniciais que sabemos e as equações diferenciais obtidas após a transformação é obtido o seguinte problema equivalente:

$$\begin{cases} u' = v \\ v' = -0.05v - 0.1u + 2sin(0.1t) \\ t \in [0, 250] \\ u(0) = 100 \\ v(0) = 5 \end{cases}$$

5.6.2 Resolução através da App desenvolvida

Após a modelação matemática do problema iremos introduzir os dados obtidos na app desenvolvida primeiramente aplicando apenas o Método de Euler seguido da aplicação de todos os métodos numéricos.

Figura 14 - App: Problema do Crescimento Económico Sob Restrições com Método de Euler

Observação: No Método de Euler, foi reduzido o intervalo de [0,250] para [0,50] de modo a cofirmar os desvios de Euler a curto prazo.

Figura 15 - App: Problema do Crescimento Económico Sob Restrições com RK2

Tabela 11 - Soluções do SED do Problema do Crescimento Económico Sob Restrições

t	uExata	vExata	uEuler	uEulerM	uRK2	uRK4	vEuler	vEulerM	vRK2	vRK4	erroUEuler
0	100.0000	5.0000	100.0000	100.0000	100.0000	100.0000	5.0000	5.0000	5.0000	5.0000	0.0000
1.2500	98.4122	-7.3262	106.2500	98.2422	98.2422	98.4145	-7.8125	-7.6469	-7.6469	-7.3497	7.8378
2.5000	82.5816	-17.5141	96.4844	81.5019	81.5019	82.5611	-20.2938	-18.0276	-18.0276	-17.5583	13.9028
3.7500	56.1045	-24.1769	71.1171	53.6908	53.6908	56.0401	-30.4675	-24.6493	-24.6493	-24.2363	15.0127
5.0000	23.9392	-26.5437	33.0328	20.2197	20.2197	23.8169	-36.5372	-26.7043	-26.7043	-26.6107	9.0937
6.2500	-8.4230	-24.5367	-12.6387	-12.9480	-12.9480	-8.6082	-37.1842	-24.1564	-24.1564	-24.6026	4.2157
7.5000	-35.8164	-18.7409	-59.1189	-40.2742	-40.2742	-36.0600	-31.8176	-17.7010	-17.7010	-18.7972	23.3025
8.7500	-54.1584	-10.2760	-98.8909	-57.4974	-57.4974	-54.4469	-20.7350	-8.6112	-8.6112	-10.3152	44.7325
10.0000	-60.9988	-0.5964	-124.8096	-62.2338	-62.2338	-61.3113	-5.1589	1.4968	1.4968	-0.6130	63.8108
11.2500	-55.7913	8.7471	-131.2582	-54.2444	-54.2444	-56.1018	12.8684	10.9393	10.9393	8.7558	75.4669
12.5000	-39.8631	16.3454	-115.1727	-35.3499	-35.3499	-40.1438	30.7271	18.2346	18.2346	16.3792	75.3096
13.7500	-16.1056	21.1335	-76.7638	-9.0244	-9.0244	-16.3305	45.5757	22.3248	22.3248	21.1894	60.6582
15.0000	11.5498	22.5299	-19.7941	20.2472	20.2472	11.4021	54.7749	22.7181	22.7181	22.6022	31.3440
16.2500	38.7818	20.4942	48.6745	47.7342	47.7342	38.7253	56.3195	19.5331	19.5331	20.5756	9.8927
17.5000	61.5475	15.5015	119.0739	69.2185	69.2185	61.5871	49.2115	13.4442	13.4442	15.5838	57.5265
18.7500	76.6702	8.4404	180.5884	81.6284	81.6284	76.8015	33.7116	5.5437	5.5437	8.5155	103.9182

Observação: Com base na análise dos gráficos e em conjunto com o modelo de *Solow-Swan*, conseguimos concluir que eventualmente a população e os recursos disponíveis entram em equilíbrio.

Tabela 12 - Valores dos Erros do Problema do Crescimento Económico Sob Restrições

erroUEuler	erroUEulerM	erroURK2	erroURK4	erroVEuler	erroVEulerM	erroVRK2	erroVRK4
0.0000	0.0000	0.0000	0.0000	0	0	0	0
7.8378	0.1700	0.1700	0.0023	0.4863	0.3207	0.3207	0.0235
13.9028	1.0797	1.0797	0.0206	2.7797	0.5136	0.5136	0.0442
15.0127	2.4137	2.4137	0.0644	6.2905	0.4724	0.4724	0.0594
9.0937	3.7194	3.7194	0.1222	9.9935	0.1606	0.1606	0.0670
4.2157	4.5250	4.5250	0.1851	12.6475	0.3803	0.3803	0.0659
23.3025	4.4578	4.4578	0.2436	13.0767	1.0399	1.0399	0.0563
44.7325	3.3391	3.3391	0.2885	10.4590	1.6648	1.6648	0.0392
63.8108	1.2349	1.2349	0.3124	4.5625	2.0932	2.0932	0.0167
75.4669	1.5470	1.5470	0.3104	4.1213	2.1922	2.1922	0.0087
75.3096	4.5132	4.5132	0.2807	14.3817	1.8892	1.8892	0.0339
60.6582	7.0812	7.0812	0.2249	24.4422	1.1913	1.1913	0.0559
31.3440	8.6974	8.6974	0.1477	32.2451	0.1883	0.1883	0.0723
9.8927	8.9524	8.9524	0.0565	35.8253	0.9612	0.9612	0.0814
57.5265	7.6710	7.6710	0.0397	33.7100	2.0573	2.0573	0.0822
103.9182	4.9582	4.9582	0.1314	25.2712	2.8967	2.8967	0.0751

6 CONCLUSÃO

Este trabalho demonstrou a aplicação de métodos numéricos, como Euler, Euler Melhorado, RK2 e RK4, na resolução de sistemas de equações diferenciais de segunda ordem com condições iniciais. 2

Estes métodos foram adaptados para resolver uma variedade de problemas aplicados à vida real onde foi possível observar, que o aumento do número de subintervalos melhora a precisão dos métodos.

Métodos mais avançados, como o RK4, geralmente fornecem maior precisão, enquanto o método de Euler tende a ter erros maiores (notável no Sistema Mola-Massa sem amortecimento por exemplo).

Além disso, lidámos com equações diferenciais não lineares, adaptando o nosso código para situações em que não há solução exata.

Este trabalho destaca a importância prática dos conceitos aprendidos.

7 BIBLIOGRAFIA

- [1] Zill, D. (2017). First Course in Differential Equations with Modeling Applications. Blue Kingfisher.
- [2] Correia, A. (s.d.). Equações Diferenciais de ordem 2 _ Problemas de aplicação. Moodle. https://moodle.isec.pt/moodle/mod/forum/discuss.php?d=3784 2
- [3] Contribuidores dos projetos da Wikimedia. (2006, 7 de novembro). *Modelo de Solow Wikipédia, a enciclopédia livre*. Wikipédia, a enciclopédia livre. https://pt.wikipedia.org/wiki/Modelo_de_Solow

8 AUTOAVALIAÇÃO E HETEROAVALIAÇÃO DO TRABALHO SUBMETIDO

Tendo em conta o que foi feito ao longo do trabalho e que o mesmo vale 5 valores, concluímos assim as seguintes auto e hétero avaliações:

Autoavaliação:

Ana Rita Conceição Pessoa – 4 valores

João Francisco de Matos Claro – 5 valores

Heteroavaliação:

Ana Rita Conceição Pessoa – 4 valores

João Francisco de Matos Claro – 5 valores

