Support Vector Machines - extra materials (S.S.)

Dr. Huiping Cao

Extra materials (just for fun)

- The following several slides explain the Lagrange formulation.
- I include them in case any of you is interested in understanding the details of solving this optimization problem.

Lagrange formulation

• Lagrangian for the optimization problem (take into account the constraints by rewriting the objective function).

•
$$\mathcal{L}_P(\mathbf{w}, b, \lambda) = \frac{\|\mathbf{w}\|^2}{2} - \sum_{i=1}^N \lambda_i (y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b) - 1)$$

minimize w.r.t. **w** and b and maximize w.r.t. each $\lambda_i \ge 0$ where λ_i s are Lagrange multiplier

• To minimize the Lagrangian, take the derivative of $\mathcal{L}_P(\mathbf{w}, b, \lambda)$ w.r.t. \mathbf{w} and b and set them to 0:

$$\frac{\partial \mathcal{L}_P}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_{i=1}^N \lambda_i y^{(i)} \mathbf{x}^{(i)}$$

$$\frac{\partial \mathcal{L}_P}{\partial b} = 0 \implies \sum_{i=1}^N \lambda_i y^{(i)} = 0$$
(\$\frac{487}{519} \text{ Applied Machine Learning}

Substituting: $\mathcal{L}_P(\mathbf{w}, b, \lambda)$ to $\mathcal{L}_D(\lambda)$

- Solving $\mathcal{L}_P(\mathbf{w}, b, \lambda)$ is still difficult because it solves a large number of parameters \mathbf{w} , b, and λ_i .
- Idea: Transform Lagrangian into a function of the Lagrange multipliers only by substituting **w** and b in $\mathcal{L}_P(\mathbf{w}, b, \lambda)$, we get (the dual problem)
 - $\mathcal{L}_D(\lambda) = \sum_{i=1}^N \lambda_i \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y^{(i)} y^{(j)} (\mathbf{x}^{(i)})^{\mathsf{T}} \mathbf{x}^{(j)}$
 - See next slide to see the details of getting $\mathcal{L}_D(\lambda)$.
- It is very nice to have $\mathcal{L}_D(\lambda)$ because it is a simple quadratic form in the vector λ_i .

Substituting details, get the dual problem $\mathcal{L}_D(\lambda)$

$$\frac{\|\mathbf{w}\|^{2}}{2} = \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} = \frac{1}{2}\left(\sum_{i=1}^{N} \lambda_{i} y^{(i)} (\mathbf{x}^{(i)})^{\mathsf{T}}\right) \cdot \left(\sum_{j=1}^{N} \lambda_{j} y^{(j)} \mathbf{x}^{(j)}\right) = \frac{1}{2}\sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y^{(i)} y^{(j)} (\mathbf{x}^{(i)})^{\mathsf{T}} \mathbf{x}^{(j)}
- \sum_{i}^{N} \lambda_{i} (y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b) - 1) = -\sum_{i=1}^{N} \lambda_{i} y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} - \sum_{i=1}^{N} \lambda_{i} y^{(i)} b + \sum_{i=1}^{N} \lambda_{i}
= -\sum_{i=1}^{N} \lambda_{i} y^{(i)} \left(\sum_{j=1}^{N} \lambda_{j} y^{(j)} (\mathbf{x}^{(j)})^{\mathsf{T}}\right) \mathbf{x}^{(i)} + \sum_{i=1}^{N} \lambda_{i}
= \sum_{i=1}^{N} \lambda_{i} - \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y^{(i)} y^{(j)} (\mathbf{x}^{(i)})^{\mathsf{T}} \mathbf{x}^{(j)}
\mathcal{L}_{D}(\lambda) = \sum_{i=1}^{N} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y^{(i)} y^{(j)} (\mathbf{x}^{(i)})^{\mathsf{T}} \mathbf{x}^{(j)}$$

Finalized $\mathcal{L}_D(\lambda)$

$$\mathcal{L}_D(\lambda) = \sum_{i=1}^N \lambda_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y^{(i)} y^{(j)} (\mathbf{x}^{(i)})^{\mathsf{T}} \mathbf{x}^{(j)}$$

Maximize w.r.t. λ

Subject to

$$\lambda_i \ge 0 \text{ for } i = 1, 2, \dots, N$$

and
$$\sum_{i=1}^{N} \lambda_i y^{(i)} = 0$$

Solve $\mathcal{L}_D(\lambda)$ using quadratic programming (QP). We get all the λ_i .

Solve $\mathcal{L}_D(\lambda)$ – QP

• We are maximizing $\mathcal{L}_D(\lambda)$

$$max_{\lambda} \left(\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y^{(i)} y^{(j)} (\mathbf{x}^{(i)})^{\mathsf{T}} \mathbf{x}^{(j)} \right)$$

- Subject to constraints
 - $\lambda_i \ge 0$ for i = 1, 2, ..., N
 - and $\sum_{i=1}^{N} \lambda_i y^{(i)} = 0$
- Translate the objective to minimization because QP packages generally come with minimization.

$$\min_{\lambda} \left(\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y^{(i)} y^{(j)} (\mathbf{x}^{(i)})^{\mathsf{T}} \mathbf{x}^{(j)} - \sum_{i=1}^{N} \lambda_i \right)$$

Solve $\mathcal{L}_D(\lambda)$ – QP

$$min_{\lambda} \left(\frac{1}{2} \lambda^{\mathsf{T}} \begin{bmatrix} y_{1} y_{1} \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{1} & y_{1} y_{2} \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{2} & \dots & y_{1} y_{N} \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{N} \\ y_{2} y_{1} \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{1} & y_{2} y_{2} \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{2} & \dots & y_{2} y_{N} \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{N} \\ \dots & \dots & \dots & \dots \\ y_{N} y_{1} \mathbf{x}_{N}^{\mathsf{T}} \mathbf{x}_{1} & y_{N} y_{2} \mathbf{x}_{N}^{\mathsf{T}} \mathbf{x}_{2} & \dots & y_{N} y_{N} \mathbf{x}_{N}^{\mathsf{T}} \mathbf{x}_{N} \end{bmatrix} \lambda + (-1)^{\mathsf{T}} \lambda \right)$$

Subject to

$$\mathbf{y}^{\mathsf{T}}\lambda = 0$$
$$0 < \lambda < \infty$$

Let Q represent the matrix with the quadratic coefficients $\min_{\lambda} \left(\frac{1}{2} \lambda^{\mathsf{T}} Q \lambda + (-1)^{\mathsf{T}} \lambda \right)$ subject to $\mathbf{y}^{\mathsf{T}} \lambda = 0$ and $\lambda \geq 0$.

Lagrange multiplier

- QP solves $\lambda = \lambda_1, \lambda_2, ..., \lambda_N$ where most of them are zeros.
- Karush-Kuhn-Tucker (KKT) conditions
 - $\lambda_i \geq 0$
 - The constraint (zero form with extreme value)
 - $\lambda_i (y^{(i)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} + b) 1) = 0$
 - Either λ_i is zero
 - or $(y^{(i)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}+b)-1)=0$
- Support vector $\mathbf{x}^{(i)}$: $y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b) 1 = 0$ and $\lambda_i > 0$
- Training instances that do not reside along these hyperplanes have $\lambda_i = 0$.

Quadratic programming packages – Octave

Solve the quadratic program

$$min_{\mathbf{x}}(0.5\mathbf{x}^{\mathsf{T}}*H*\mathbf{x}+\mathbf{x}^{\mathsf{T}}*q)$$

Subject to

$$\begin{cases} A * \mathbf{x} = b \\ lb \le \mathbf{x} \le ub \\ A_{lb} \le A_{in} * \mathbf{x} \le A_{ub} \end{cases}$$

Quadratic programming packages - MATLAB

Optimization toolbox in MATLAB

$$min_{\mathbf{x}}(\frac{1}{2}\mathbf{x}^{\mathsf{T}}H\mathbf{x} + \mathbf{f}^{\mathsf{T}}\mathbf{x})$$

Such that

$$\begin{cases} A \cdot \mathbf{x} & \leq b, \\ Aeq \cdot \mathbf{x} & = beq, \\ lb & \leq \mathbf{x} \leq ub. \end{cases}$$

Get w and b

- **w** and b depend on support vectors $\mathbf{x}^{(i)}$ and its class label $y^{(i)}$.
- w value: $\mathbf{w} = \sum_{i=1}^{N} \lambda_i y^{(i)} \mathbf{x}^{(i)}$
- b value: $b = y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}$
- Idea:
 - Given a support vector $(\mathbf{x}^{(i)}, y^{(i)})$, we have $y^{(i)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} + b) 1 = 0$
 - Multiply $y^{(i)}$ on both sides, we get $(y^{(i)})^2(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}+b)-y^{(i)}=0$
 - $(y^{(i)})^2 = 1$ because $y^{(i)} = 1$ or $y^{(i)} = -1$
 - Then, $(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} + b) \mathbf{y}^{(i)} = 0$

Get w and b – Example

- Solve λ using quadratic programming packages
- $\mathbf{w}^{\mathsf{T}} = (w_1, w_2)$

$$w_1 = \sum_{i=1}^{2} \lambda_i y^{(i)} x_1^{(i)} = 100 * 1 * 0.4 + 100 * (-1) * 0.5 = -10$$

$$w_2 = \sum_{i=1}^{2} \lambda_i y^{(i)} x_2^{(i)} = 100 * 1 * 0.5 + 100 * (-1) * 0.6 = -10$$

$$b = 1 - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(1)} = 1 - ((-10) * 0.4 + (-10) * (0.5)) = 10$$

$x_1^{(i)}$	$x_2^{(i)}$	$y^{(i)}$	λ_i
0.4	0.5	1	100
0.5	0.6	-1	100
0.9	0.4	-1	0
0.7	0.9	-1	0
0.17	0.05	1	0
0.4	0.35	1	0
0.9	0.8	-1	0
0.2	0	1	0

Prediction

• Given a test data point **z**, we can calculate

•
$$y_z = sign(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b) = sign((\sum_{i=1}^{N} \lambda_i y^{(i)}(\mathbf{x}^{(i)})^{\mathsf{T}})\mathbf{z} + b)$$

- If $y_z = 1$, the test instance is classified as positive class
- If $y_z = -1$, the test instance is classified as negative class

Kernel SVM

- In particular, in the quadratic programming (QP) task, the SVM model replaces the dot product $(\mathbf{x}^{(i)})^{\mathsf{T}}\mathbf{x}^{(j)}$ with $\phi(\mathbf{x}^{(i)})^{\mathsf{T}}\phi(\mathbf{x}^{(j)})$.
- Thus,

$$\mathcal{L}_D(\lambda) = \sum_{i=1}^N \lambda_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y^{(i)} y^{(j)} (\mathbf{x}^{(i)})^{\mathsf{T}} \mathbf{x}^{(j)}$$

$$\mathcal{L}_D(\lambda) = \sum_{i=1}^N \lambda_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y^{(i)} y^{(j)} (\mathbf{z}^{(i)})^{\mathsf{T}} \mathbf{z}^{(j)}$$