Teorema de la base de Hilbert

17 de febrero de 2017

Teorema 1. (Teorema de la base de Hilbert) Todo ideal de $k[x_1, \ldots, x_n]$ está finitamente generado.

Demostración.

Observemos que $k[x_1, \ldots, x_n] = k[x_1][x_2] \cdots [x_n]$. Sabemos que k es Noetheriano (todos sus ideales son finitamente generados), porque los únicos ideales de k son $\{0\} = <0 > y$ k = <1 >.

Nota 1. Si K es cuerpo, < 0 > y < 1 > son sus únicos ideales.

Vamos a demostrar que si R es un anillo Noetheriano, entonces R[x] es un anillo Noetheriano (y esto termina la demostración por inducción en n).

Sea I un ideal de R[x]. Vamos a demostrar que está finitamente generado.

Nota 2. Dado un polinomio: $p(x) = a_m x^m + \cdots + a_1 x + a_0$ el elemento $a_m \in R$ se llama coeficiente lider.

Definimos el ideal $I_L = \{a \in R : a \text{ es coeficiente lider de algún } p(x) \in I\}$. I_L es un ideal de R por la proposición 3 tel tema 2. Por hipótesis, I_L está finitamente generado, es decir, $I_L = \langle c_1, \ldots, c_m \rangle \subset R$ para ciertos $c_i, i = 1, \ldots, m$.

Tomemos polinomios g_1, \ldots, g_m que tengan como coeficientes líderes aquellos c_i . Sea N el máximo grado de g_1, \ldots, g_m .

Fijado un grado d, definimos el ideal

$$I_d = \{a \in R : a \text{ es coeficiente lider de un } f(x) \in R \text{ de grado } d\} \cup \{0\}.$$

 I_d es un ideal de R, por lo tanto, $I_d = \langle c_{d,1}, \ldots, c_{d,m_d} \rangle$. Tomamos $g_{d,1}, \ldots, g_{d,m_d}$ polinomios de I, de grado d que los tengan como coeficientes líderes.

Veamos que

$$I = \langle g_1, \dots, g_m, g_{N-1,1}, \dots, g_{N-1,m_{N-1}}, \dots, g_{1,1}, \dots, g_{1,m_1}, \dots, g_{0,1}, \dots, g_{0,m_0} \rangle$$

Para ello, tomemos un polinomio cualquiera $f \in I$, y vamos a escribirlo como suma de múltiplos de los $g_i, g_{d,j}$. Iremos bajando el grado de f, sumándole múltiplos de los $g_i, g_{d,j}$, hasta llegar al polinomio nulo.

Si
$$deg(f) \ge N \Rightarrow f = a_r x^r + \dots + a_1 x + a_0 \Rightarrow a_r \in I_L = \langle c_1, \dots, c_m \rangle$$
.

Entonces, $\exists \alpha_1, \ldots, \alpha_n \in R$ tales que $a_r = \alpha_1 c_1 + \cdots + \alpha_m c_m$. Consideramos $f - \alpha_1 x^{r - deg(g_1)} g_1 - \cdots - \alpha_m x^{r - deg(g_m)} g_m$, así el término de grado r tiene coeficiente 0. Y así hemos bajado el grado de f.

Se itera el razonamiento hasta que $deg(f) < N$. Ahora, se procede a cancelar el tén	rmino
lider restando múltiplos de $g_{d,1},\ldots,g_{d,m_d}$, iterando hasta tener el grado 0, es decir, hast	a que
el polinomio sea constante, y sea una suma de múltiplos de $g_{0,1}, \ldots, g_{0,m}$.	
Por lo tanto, el polinomio f es suma de múltiplos de los g_i y los $g_{d,j}$.	