MACHINE LEARNING LAB

EXERCISE:: 3

NAME:: Saptarshi Datta

REG NO.:: 19BAI1041

Decision Tree Classification ::

The dataset is about adult income based on their detail. The target attribute is Income which is categorized into <=50K' & >50K'.

The dataset used is :- https://www.kaggle.com/uciml/adult-census-income (Few attributes were eliminated).

age	workclas	fnlwgt	educatio	marital.s	race	sex	capital.g	hours.pe	income
90	?	77053	9	Widowed	White	Female	0	40	<=50K
82	Private	132870	9	Widowed	White	Female	0	18	<=50K
66	?	186061	10	Widowed	Black	Female	0	40	<=50K
54	Private	140359	4	Divorced	White	Female	0	40	<=50K
41	Private	264663	10	Separate	White	Female	0	40	<=50K
34	Private	216864	9	Divorced	White	Female	0	45	<=50K
38	Private	150601	6	Separate	White	Male	0	40	<=50K
74	State-gov	88638	16	Never-ma	White	Female	0	20	>50K
68	Federal-	422013	9	Divorced	White	Female	0	40	<=50K
41	Private	70037	10	Never-ma	White	Male	0	60	>50K
45	Private	172274	16	Divorced	Black	Female	0	35	>50K
38	Self-emp	164526	15	Never-ma	White	Male	0	45	>50K
52	Private	129177	13	Widowed	White	Female	0	20	>50K
32	Private	136204	14	Separate	White	Male	0	55	>50K
51	?	172175	16	Never-ma	White	Male	0	40	>50K
46	Private	45363	15	Divorced	White	Male	0	40	>50K
45	Private	172822	7	Divorced	White	Male	0	76	>50K
57	Private	317847	14	Divorced	White	Male	0	50	>50K
22	Private	119592	12	Never-ma	Black	Male	0	40	>50K
34	Private	203034	13	Separate	White	Male	0	50	>50K
37	Private	188774	13	Never-ma	White	Male	0	40	>50K
29	Private	77009	7	Separate	White	Female	0	42	<=50K
61	Private	29059	9	Divorced	White	Female	0	25	<=50K
51	Private	153870	10	Married-	White	Male	0	40	<=50K

Code ::

import pandas as pd import numpy as np

from sklearn.tree import DecisionTreeClassifier from sklearn.tree import export_graphviz from six import StringIO

from IPython.display import Image import pydotplus

 $\label{lem:def} $$df = pd.read_csv(r"C:\Users\SAPTARSHI\Desktop\ML\Decision\ Tree\data\adult.csv");$$ df.head()$

	age	workclass	fnlwgt	education.num	marital.status	race	sex	capital.gain	hours.per.week	income
0	90	?	77053	9	Widowed	White	Female	0	40	<=50K
1	82	Private	132870	9	Widowed	White	Female	0	18	<=50K
2	66	?	186061	10	Widowed	Black	Female	0	40	<=50K
3	54	Private	140359	4	Divorced	White	Female	0	40	<=50K
4	41	Private	264663	10	Separated	White	Female	0	40	<=50K

#Replacing string to integer. All attributes with String Value is replaced with a integer value.

```
salary ={
    '<=50K': 0,
    '>50K': 1,
}
work ={
    '?': 0,
    'Private': 1,
    'State-gov': 2,
    'Federal-gov': 3,
    'Self-emp-not-inc': 4,
    'Self-emp-inc': 5,
```

```
'Local-gov': 6,
  'Federal-gov': 7,
  'Without-pay': 8,
  'Never-worked': 9
}
marry = {
  'Widowed': o,
  'Divorced': 1,
  'Separated': 2,
  'Never-married': 3,
  'Married-civ-spouse': 4,
  'Married-spouse-absent': 5,
  'Married-AF-spouse': 6
}
race = {
  'White': o,
  'Black': 1,
  'Asian-Pac-Islander': 2,
  'Other': 3,
  'Amer-Indian-Eskimo': 4
}
sex = {
  'Female': o,
  'Male': 1,
}
df = df.replace({'income':salary});
df = df.replace({'workclass':work});
df = df.replace({'education':edu});
df = df.replace({'marital.status':marry});
df = df.replace({'race':race});
df = df.replace({'sex':sex});
df.head()
```

	age	workclass	fnlwgt	education.num	marital.status	race	sex	capital.gain	hours.per.week	income
0	90	0	77053	9	0	0	0	0	40	0
1	82	1	132870	9	0	0	0	0	18	0
2	66	0	186061	10	0	1	0	0	40	0
3	54	1	140359	4	1	0	0	0	40	0
4	41	1	264663	10	2	0	0	0	40	0

x = df.iloc[:, :9]

y = df.iloc[:, 9]

x = np.array(x)

y = np.array(y)

df.shape

(59, 10)

tree = DecisionTreeClassifier(criterion = 'entropy')
tree.fit(x,y)

DecisionTreeClassifier(criterion='entropy')

dot_data = StringIO()

export_graphviz(tree, out_file=dot_data,

filled=True, rounded=True, special_characters=True)

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())

Image(graph.create_png(), width=400, height=600)

predict = tree.predict(x)

predict

,0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int64)

from sklearn import metrics
print('Accuracy:',metrics.accuracy_score(y, predict))

Accuracy: 1.0