Introductory Applied Machine Learning Fall 2022 Syllabus

Time and place: Mon 2:20-4:10pm & Fri 10:20-11:10pm at Rm. 201, Tseng-Jiang Hall South

Prerequisites: Calculus, Linear Algebra, and Programming (C++, Matlab, or Python)

Instructor: Yan-Fu Kuo (ykuo@ntu.edu.tw)

Office: Rm. 206, Main Farm Machinery Hall

Phone: 3366-5329

Teaching assistant: Dino Lin (R10631025@ntu.edu.tw)

Office: Rm. 203, Tseng-Jiang Hall South

Course description:

This course covers the theory and practical algorithms for machine learning from a variety of perspectives. Typical tasks for machine learning are the classification of data, automatic regression, and unsupervised model fitting. Topics covered in this course include: statistical learning methods, shrinkage regression, principle component analysis, decision tree learning, support vector machines, artificial neural network, k-means, k-nearest neighbor, and etc. Short theoretical and programming assignments will be given. Students will also work on final projects of their choice.

Tentative schedule:

Week	Date		Event
1	9/05	9/09	Introduction / Basic statistics and math review
2	9/12	9/16	Linear regression
3	9/19	9/23	Overfitting
4	9/26	9/30	PCA, PCR, and PLSR
5	10/03	10/07	Ridge regression and LASSO
6	10/10	10/14	LDA
7	10/17	10/21	Support vector machine
8	10/24	10/28	Decision tree
9	10/31	11/04	Midterm exam
10	11/07	11/11	Project midterm check
11	11/14	11/18	Artificial neural network
12	11/21	12/25	K-nearest neighbor and naïve Bayesian
13	11/28	12/02	k-means and hierarchal clustering
14	12/05	12/09	Sparse coding
15	12/12	12/16	Project presentation
16	12/19	12/23	Final exam

Evaluation:

- Homework assignments (written and programming): 60%
- Midterm exam: 10% (2 hrs, in-class, open or closed book)
- Final exam: 10% (2 hrs, in-class, open or closed book)
- Final project: 20% (presentation and report)
 - Level of challenge and performance: 10%
 - Midterm presentation: 3%
 - Final presentation + report: 7%
- No makeup exams shall be made except for those who have valid reasons of absences, and can present official documents that prove the reasons of absences

Course policies:

Academic dishonesty:

- First time a student is found guilty of academic dishonesty, the penalty is a zero on the assignment, exam or report
- o All other academic dishonesty cases will be reported to the university

Late assignments:

- o All homework assignments are due two weeks after release and before class
- A 20% per day penalty will be applied to LATE homework, mid-term report, and final report
- Homework collaboration: Copying from any outside sources (e.g., fellow students, Internet, etc.) on any material to be graded is not permitted, and will be considered cheating
- Attendance: There is no official attendance requirement
- Cell Phones: Please turn off the ringer on your cell phone before coming to class

Textbooks and reference books:

- 1. James, Witten, Hastie, and Tibshirani. 2013. *An introduction to statistical learning*. Springer.
- 2. Hastie, Tibshirani, and Friedman. 2009. *Elements of Statistical Learning*, 2nd Ed. Springer.
- 3. Tan, Steinbach, and Kumar. 2005. Introduction to Data Mining. Addison Wesley.
- 4. Bishop. 2007. *Pattern Recognition and Machine Learning*. Springer.
- 5. Mitchell. 1997. Machine Learning. McGraw-Hill.