Devoir Surveillé n°5 - Sujet groupes B et C

Préliminaires

- 1. (Question de cours) Définition du produit matriciel, démonstration de l'associativité.
- 2. (Question de cours) Lemme de Riemann-Lebesgue (démonstration dans le cas \mathscr{C}^1).
- 3. Montrer que l'ensemble des rationnels qui peuvent s'écrire comme quotient de deux entiers impairs est un sous-groupe de \mathbb{R}^* .
- 4. Factoriser sur $\mathbb R$ et sur $\mathbb C$ le polynôme $P=X^4+3X^3+5X^2+3X.$
- 5. Le nom du groupe Imagine Dragons provient d'une anagramme de « Imagine Dragons », uniquement connue des membres du groupe ¹. Donner le nombre de possibilités (sans tenir compte des espaces ou des majuscules).

Problème - Polynômes cyclotomiques

Si n est un entier naturel non nul :

- on note comme en cours $\mathbb{U}_n = \{e^{2ik\pi/n} \mid k \in [0; n-1]\}$ l'ensemble des racines n-ièmes de l'unité, c'est-à-dire l'ensemble des complexes ω vérifiant $\omega^n = 1$.
- on dit qu'un complexe ω est une racine **primitive** n-ième de l'unité si $\omega^n = 1$ et si, pour tout $q \in [1; n-1], \omega^q \neq 1$. En d'autres termes, une racine primitive n-ième de l'unité est une racine n-ième de l'unité pour laquelle n est la plus petite puissance q (non nulle) telle que $\omega^q = 1$.
- on note P_n l'ensemble des racines primitives n-ièmes de l'unité.

Partie I - Caractérisation des racines primitives n-ièmes de l'unité

On se donne dans cette partie un entier $n \geq 1$.

- 1. Expliciter sans démonstration les ensembles P_1, P_2, P_3 et P_4 .
- 2. Donner une CNS sur $n \ge 1$ pour que (P_n, \times) soit un groupe.
- 3. (a) Soit $k \in [0; n-1]$ tel que $k \wedge n \neq 1$. Montrer que $e^{2ik\pi/n} \notin P_n$.
 - (b) Réciproquement, soit $k \in \llbracket 0 \; ; \; n-1 \rrbracket$ tel que $k \wedge n=1$. En raisonnant par l'absurde, justifier que $e^{2ik\pi/n}$ est une racine primitive n-ième de l'unité. On a donc prouvé que $P_n = \left\{e^{2ik\pi/n} \mid k \in \llbracket 0 \; ; \; n-1 \rrbracket, k \wedge n=1\right\}$. En particulier, par exemple, $e^{2i\pi/n}$ est une racine primitive n-ième de l'unité.
 - (c) Soient z_1 et z_2 deux racines primitives n-ièmes de l'unité. Montrer qu'il existe u premier avec n tel que $z_1^u = z_2$ (on pourra utiliser le théorème de Bézout).

Partie II - Définition et premières propriétés des polynômes cyclotomiques

Dans la suite de ce problème, pour tout $n \geq 1$, on définit le n-ième polynôme cyclotomique par :

$$\Phi_n = \prod_{\omega \in P_n} (X - \omega) = \prod_{\substack{k=0 \ k \neq n-1}}^n (X - e^{2ik\pi/n})$$

- 1. (Question de cours) Soit $n \ge 1$. Factoriser sur \mathbb{C} le polynôme $X^n 1$.
- 2. Écrire sous forme développée Φ_2, Φ_3, Φ_4 . Vérifier en particulier que ces polynômes sont à coefficients entiers.
- 3. (a) Justifier que $\Phi_5 = \frac{X^5 1}{X 1}$. En déduire Φ_5 sous forme développée.
 - (b) Plus généralement, si $p \ge 2$ est un nombre premier, calculer Φ_p (on exprimera Φ_p sous forme de somme).
- 4. Soit $n \geq 1$.
 - (a) Si d est un diviseur (positif) de n, on note $E_d = \{k \in [0; n-1] \mid k \wedge n = d\}$. Justifier rapidement que $[0; n-1] = \bigcup_{d|n} E_d$.

1. True story!

Page 1/3 2023/2024

MP2I Lycée Faidherbe

- (b) Soit d un diviseur de n. On note $F_d = \left\{ k \in [0; \frac{n}{d} 1] \mid k \wedge \frac{n}{d} = 1 \right\}$. Justifier que E_d et F_d sont en bijection.
- (c) Montrer que:

$$\prod_{k \in E_d} (X - e^{2ik\pi/n}) = \Phi_{n/d}$$

(d) En déduire que :

$$X^n - 1 = \prod_{d|n} \Phi_d$$

- 5. Le but de cette question est de montrer par récurrence que, pour tout $n \geq 1$, $\Phi_n \in \mathbb{Z}[X]$.
 - (a) Prouver l'initialisation. Dans la suite, on se donne un entier $n \ge 2$, on suppose le résultat vrai jusqu'au rang n-1 et on cherche à prouver qu'il est encore vrai au rang n.
 - (b) (Question de cours) Énoncer (sans démonstration) le théorème de division euclidienne (sur $\mathbb{K}[X]$).
 - (c) On admet 2 que le théorème de division euclidienne est encore valable sur $\mathbb{Z}[X]$ si B est unitaire. Comparer la division euclidienne (on justifiera bien qu'on peut appliquer ce théorème, et on précisera bien où on utilise l'hypothèse de récurrence) de $X^n 1$ par

$$B = \prod_{\substack{d \mid n \\ d \neq n}} \Phi_d$$

avec la question 4.(d), et conclure.

Partie III - Théorème de Wedderburn

Dans cette partie, nous prenons une certaine liberté avec le programme 3 et nous nous autoriserons à parler de corps non commutatif. On se donne dans cette partie un corps (pas forcément commutatif, donc) fini K (dont les lois sont notées de façon usuelle, et les neutres 4 également, c'est-à-dire 0 et 1) et le but de cette partie est de prouver que K est commutatif.

- 1. (Question de cours) Donner la définition d'un anneau.
- 2. Soit Z(K) le centre de K, c'est-à-dire : $Z(K) = \{x \in K \mid \forall y \in K, xy = yx\}$. Montrer que Z(K) est un sous-corps de K. Dans la suite, on note q le cardinal de Z(K).

On admet (nous le montrerons dans le chapitre 30) qu'il existe $n \ge 1$ tel que $card(K) = q^n$.

- 3. On raisonne par l'absurde et on suppose dans la suite de cette partie que K n'est pas commutatif. Justifier que n > 1.
- 4. On se donne dans les questions 4,5,6 un élément $a \in K \setminus Z(K)$. On note $Z_a = \{y \in K \mid ay = ya\}$. On prouverait de même qu'à la question 2 (et donc on l'admettra) que Z_a est un sous-corps de K. Justifier rapidement que Z(K) est inclus strictement dans Z_a . De même, nous admettons qu'il existe d > 1 tel que $\operatorname{card}(Z_a) = q^d$.
- 5. On note p (qui n'est pas forcément un nombre premier) le quotient de la division euclidienne de n par d et r le reste.
 - (a) Développer la quantité $q^r (q^{pd} 1) + (q^r 1)$.
 - (b) Donner la valeur de la somme $1 + q^d + q^{2d} + \cdots + q^{(p-1)d}$.
 - (c) En déduire que $q^r 1$ est le reste de la division euclidienne de $q^n 1$ par $q^d 1$.
 - (d) On rappelle le théorème de Lagrange : si G est un groupe fini et si H est un sous-groupe de G, alors le cardinal de H divise le cardinal de G. Justifier que $q^d 1$ divise $q^n 1$ et en déduire que d divise n.
- 6. (a) Justifier, à l'aide de la partie précédente, que :

$$\frac{X^n - 1}{X^d - 1} = \prod_{\substack{m \mid n \\ m \nmid d}} \Phi_m$$

- (b) En déduire que, si $d \neq n$, alors $\Phi_n(q)$ divise (on parle ici de divisibilité dans \mathbb{Z}) $\frac{q^n 1}{q^d 1}$.
- 7. (a) On définit sur K^* la relation \sim par : $x \sim y \iff \exists g \in K^*, gxg^{-1} = y$. Justifier que \sim est une relation d'équivalence.
 - (b) Comme dans le DM n° 14, si $x \in K^* \setminus Z(K)^*$, on note $\operatorname{Stab}(x) = \{g \in K^* \mid gxg^{-1} = x\}$. Justifier que $\operatorname{Stab}(x) = Z_x^*$.

Page 2/3 2023/2024

^{2.} cf. l'exercice 67 du chapitre 19 : il suffit de remplacer b_p par 1 dans la preuve du cours.

^{3.} Pour gagner en lisibilité: sinon, nous sommes obligés de parler de corps gauche ou d'algèbre à division, et de prendre des précautions oratoires extraordinaires pour éviter de parler de corps (car, par définition, un corps est commutatif), ce qui compliquerait considérablement les choses.

^{4.} Qu'on suppose distincts : on suppose que K n'est pas un singleton.

MP2I Lycée Faidherbe

8. On rappelle le résultat suivant, vu dans le DM n° 14 (c'est l'équation aux classes, couplée avec l'égalité $\operatorname{card}(K^*) = \operatorname{card}(\operatorname{cl}(x)) \times \operatorname{card}(\operatorname{Stab}(x))$:

$$\operatorname{card}(K^*) = \operatorname{card}(Z(K)^*) + \sum_{\operatorname{cl}(x) \mid x \notin Z(K)^*} \frac{\operatorname{card}(K^*)}{\operatorname{card}(\operatorname{Stab}(x))}$$

Déduire de la question 6.(b) que $\Phi_n(q)$ divise q-1 (là encore, on parle de divisibilité dans \mathbb{Z}).

9. Si ω est une racine primitive n-ième de l'unité, justifier que $|q-\omega|>q-1$ et conclure à une absurdité.

On a donc prouvé le théorème de Wedderburn 5 :

Théorème de Wedderburn : tout corps fini est commutatif.

Partie IV - Irréductibilité des polynômes cyclotomiques

On se donne dans cette partie un entier $n \geq 1$ et on souhaite prouver que Φ_n est irréductible sur \mathbb{Q} , c'est-à-dire qu'on ne peut pas écrire Φ_n comme un produit de deux polynômes non constants. On se donne dans toute cette partie une racine primitive n-ième de l'unité notée ω .

- 1. On note $I = \{ A \in \mathbb{Q}[X] \, | \, A(\omega) = 0 \}.$
 - (a) Montrer que I est un sous-groupe de $(\mathbb{Q}[X],+)$ et qu'il est absorbant pour le produit 6 , c'est-à-dire :

$$\forall P \in \mathbb{Q}[X], \forall A \in I, P \times A \in I$$

- (b) Montrer que $E = \{ \deg(A) \mid A \in I \text{ non constant} \}$ admet un plus petit élément qu'on notera d.
- (c) Justifier que I contient un polynôme unitaire de degré d qu'on notera M dans la suite.
- (d) Montrer que tous les éléments de I sont divisibles par M. On pourra utiliser le théorème de division euclidienne 7 .
- 2. On admet ⁸ le résultat suivant, que l'on appelle le lemme-clef :

Lemme-clef: Si $z \in P_n$ est racine de M et si p est un nombre premier qui ne divise pas n, alors $M(z^p) = 0$.

On souhaite prouver que Φ_n est irréductible sur \mathbb{Q} : on se donne donc deux polynômes A et $B \in \mathbb{Q}[X]$ tels que $\Phi_n = AB$ et on souhaite prouver que A ou B est constant.

- (a) Justifier que ω est racine de A ou B. Sans perte de généralité, on suppose que $A(\omega)=0$.
- (b) Justifier qu'il existe $P \in \mathbb{Q}[X]$ tel que $\Phi_n = M \times P \times B$.
- (c) À l'aide de la partie I et du lemme-clef, montrer que toutes les racines primitives n-ièmes de l'unité sont racines de M.
- (d) En déduire que B est constant.

^{5.} Prouvé par Leonard Wedderburn (de trois façons différentes) en 1905 mais la preuve donnée ici a été trouvée par Ernst Witt en 1931.

Page 3/3 2023/2024

^{6.} On dit que I est un idéal de $\mathbb{Q}[X]$, cf. exercice 64 du chapitre 18.

^{7.} \mathbb{Q} étant un corps, le théorème de division euclidienne du cours est encore valable sur $\mathbb{Q}[X]$ (sans avoir besoin de supposer B unitaire).

^{8.} Pour le prouver, il faut travailler sur $\mathbb{Z}/p\mathbb{Z}$.