Normas rectoriales.

Repasemos el concepto de morma sobre vectores de m coorde madas. Ja conocen la morma enclídea como medida de distancia entre rectores en el especio enclídeo. En el la boratorio vimos que mo es conveniente companar valves (o rectore) por igualdad ("=") de bido a los errores de representación y operación. Las mormas también mos servinán cuando analicemos convegencia en recuencias de rectores.

La morma en el de a como ei da mos dice que la distancia al origen de em rector $x = (x_1, x_2) \in \mathbb{R}^2$ pue de cal en larse como $||x||_2 = |x_1^2 + x_2^2$

Podemos extender esta medide a n coordenadas: XEIRM, IIXII2 = VX,2+x2+ ... + xm

 $\left\{ \begin{array}{l} OSS : \text{ on } \mathbb{C} \text{ consideration los modulos de las coordena dan } \right. \\ \times \mathbb{C} : \left[\left| \left| \left| \left| \left| \left| \left| \right| \right| \right| + \left| \left| \left| \left| \left| \right| \right| \right| \right| \right| \right] \right] \right. \end{array}$

Esta norma enclidea es em caso particular de función sobre em IK-e.v. V que asigna a cada x e V em real no negativo. De finamos que propie dades debe complis esta función.

Def. Una norma de un K-e.v. V es ema función II·II: V -> R₂. que Cumple las siguientes propiedodes:

- 1) 11x11>0 (y 11x11=0 (>> x=0) x = V
- 1 (1 × 11 = (x) (x) , x ∈ K, x ∈ V
- ② ||x+y|| ≤ ||x||+||y|| paro walquier x,y ∈ V

Le puede ver que la norma encli dea (8 norma-2) ample
las propiedode D y D. Para demostion la 3 reasur primero
una designal dad que nos serve util.
Designaldad de Couchy-Schwarz: [xtg = 11x11211y/12
cou x, y ∈ 1k m
New: Veanus primero en R. Li x=00 y=0 se comple claramente.
Jupongamos x + 0 e y + 0 y consideremos la función QA), lell.
$\phi(\lambda) = 11 \times -\lambda y _{2}^{2}$. Le observa que $\phi(\lambda) > 0$ por propie ded
oll noma.
=> $0 \le x - \lambda y _2^2 = (x - \lambda y)^t (x - \lambda y) = x^t x - 2\lambda x^t y + \lambda^2 y^t y =$
$= \ x\ _2^2 - 2x^{ty} + h^2 \ y\ _2^2$
Verus que PAJ es una enadrática y >0, por lo tanto tiene una
O mingena rait en la-
$\phi(\lambda) = \ y\ _{2}^{2} \lambda^{2} - 2x^{4}y \lambda + \ x\ _{2}^{2} = \alpha \lambda^{2} + y \lambda + c$
→ las rai cos seron - b ± √b² - 4 e c
Para que 6(d) tenga una o ningura raizen ih dell'amplisse
que el discriminante sea 60 => 62-4ac 60
-8 4 (xty)2-411 x 112 119112 60
$\Rightarrow \lambda (x + y)^2 \leq 4(1 \times 1)^2$
$= \frac{1}{ x ^2 y ^2} $
de significant de sig
2u = C, og ser ve mos que
$ \overline{x}^{t}y = \sum_{i=1}^{n} \overline{x}_{i}^{i} y_{i}^{i} \leq \overline{x}_{i}^{i} y_{i} = \sum_{i=1}^{n} x_{i}^{i} y_{i}^{i} \leq (x_{i}^{i} x_{i}^{i} x_{i}$
$= \ \times \ _2 \ \cdot \ _2 $

Alora de mostremos la prop. 3 sobre la norma, 2 para conosorar que es una norma: ||x+y||2 \le ||x||2+ ||y||2 como la noma es positiva probemos (x+y 1/2 6 (11x112+114)/2 2 $= \underbrace{\sum_{i} |x_{i}|^{2}}_{|i| \times |i|^{2}} + \underbrace{\sum_{i} |y_{i}|^{2}}_{|i| \times |i|^{2}}}_{|i| \times |i|^{2}}}_{|i| \times |i|^{2}} + \underbrace{\sum_{i} |y_{i}|^{2}}_{|i| \times |i|^{2}}}_{|i| \times |i|^{2}}_{|i| \times |i|^{2}}}_{|i| \times |i|^{2}}}_{|i| \times |i|^{2}}}_{|i| \times |i|^{2}}_{|i| \times |i|^{2}}}_{|i| \times |i|^{2}}}_{|i| \times |i|^{2}}}_{|i| \times |i|^{2}}_$ ∠ 2 1×(12 | 1 y | 12 = ||x||_1|y||_2 = ||y||_2 ||x||_2 |des. c.s. | des. c.s. La noma-2 es un caso particular de la norma-p: woung - 1 11 x 111 = 1 x1 + 1 x21 + ... + 1 xu) [(X / 2 = \ (X | 12 + | X 2 | 2 + ... + | X M | 2 Morma - 2 11 × 11 p = \$ | X11 P + (x21 P + ... + 1xM) P worma - P: (1x10 = max (xi) Notrea - 00 Ejemple en 122 de pantos con norma = 1 pars diferentes normas -p rectoriales. $\left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\|_{2} = \sqrt{x^{2} + y^{2}} = 1$ $\|\binom{x}{y}\|_{\infty} = \max_{x \in X} \{(x), (y)\} = 1$ $\|\begin{pmatrix} x \\ y \end{pmatrix}\|_{1} = \{x \mid + \{y\} = 1$

Equivalencis entre normas.

Jecums que les normes $\|\cdot\|$ y $\|\cdot\|_{*}$ son equivalentes si $\exists c_{1}, c_{2} > 0$ tal que $\forall x \in V$: $c_{1} \|x\|_{*} \subseteq \|x\| \subseteq c_{2} \|x\|_{*}$

Es más, en un le-e.v. se puede prosar que todas las normos son equivalentes. Ejemplo de equivalencias (protarlo!).

 $||X||_{2} \leq ||X||_{1} \leq \sqrt{m} ||X||_{2}$

11×1100 = 11×112 = JM 11×1100

11x1100 = 11x111 & m 11x1100

A partir de estas equivalencias podemos usas alguna norma de conveniencia para calculas distancia entre rectores x e y : d(x,y) = ||x-y||

Ils Uma su cerión de vectores $4 \times {}^{(m)} f_{m \in \mathbb{N}}$ converge a \times bajo una norma ||·|| si $\| \times {}^{(m)} - \times \| \rightarrow 0$ en ando $n \rightarrow \infty$

Normas matriciales.

Al iguel que con ve etves podemos definis normos sobre matrices.
Una función II: IK "> R>o es norma si cumple paro cualquier A E K n xm

- @ ||A|| = = = A=0
- ② VXA N = 1x \ VA II , paro todo d∈ IK
- 3 (A+B) (= (A)(+1)B) por cuolgines BEKMAN

Ademas direrus que la norme es sub-multiplicativa ni cumple, cuando m=n, la propiedad ((ABI) = NAII IIBII Ja sta formo tenenso de fini do una distancia entre la matriz Ay B como 11 A-BIL.

Ejemplos para Aelkmam:

norma de Frobenius (AUF = / Zijay)?

Esta noma cumple la prop. submultiplicativa (prosanusando desig. C.s.!)

Cemplo los propiedo des de norma pero no es submultiplicativa

Contro ejemple:
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $AB = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$

Otra posibilidad es definir normas matriciales a portir de mormas rectoriales. Damaremos a estos normas "subordinadas" o "inducidas" por una norma rectorial.

De esta forme tenemos automáticamente definide la norma-p matricial inducida por la norma-p vectorial: $\|A\|_p = \max_{x \neq 0} \frac{\|A \times \|_p}{\|x\|_p} = \max_{\|X\|_p = 1} \frac{\|A \times \|_p}{\|X\|_p = 1}$

065: motar que si A E IK mxm no es curodro da entonces

Ax E IK m - 11.11p calculodo sobre Ax es una morma-p sobre IK m

X E K m - 11.11p calculoda sobre x es una morma-p sobre IK m

Algunas propiedo des de les normas matricises inducides.

$$||II|| = 1$$

$$||II|| = 1$$

$$||I|| = ||Max|| = ||Max|| = 1$$

$$||X|| = ||Max|| = ||X|| = 1$$

$$||X|| = ||X|| = ||X|| = 1$$

•
$$||A|| = max ||Ax||$$
 $\Rightarrow ||A|| > ||Ax||$ para cualgnier $x \neq 0$

$$\Rightarrow ||A \times || \leq ||A|| ||X||$$

055: notar que «Al es ena norma matricial pero los otros normas son rectoriales.

A est a propiedod se la suell llamar "consistencie" (es decir, los mornos matricioles y ratoriales son consistentes entre 81)

• Submutiplicationidad: reau A,B matrices en adrodes

: 1(AB1 = 1(A1) 1(B1)

faro algenas mom as inducides tenenus formalo, A \(\)

Proservo la formula paro la norma-1 matricial. Pademo hocerlo a trover de la doble designal dod. (AEIK MXM) podemn a cotar 11 AxIII pore un x genérico de noma 1 igual a 1 (tilo acotomos poro cualquies X, en particulos el máximo de l'AxII, también la estara) $= D \|A \times \|_{1} = \left| \left\langle z^{a_{ij} \times j} \right\rangle \right| = \left| z^{a_{ij} \times j} \right\rangle = \left| z^{a_{ij} \times j} \right\rangle$ Sea x e K tol que lixII,=1 $= \sum_{j=1}^{m} |x_j| \sum_{i=1}^{n} |a_{ij}| \leq \sum_{j=1}^{m} |x_j| \max_{i=1}^{n} \sum_{j=1}^{n} |a_{in}| = (\max_{i=1}^{n} \sum_{j=1}^{n} |a_{in}|) \sum_{j=1}^{n} |a_{in}|$ $= \sum_{j=1}^{n} |a_{in}| = (\max_{i=1}^{n} \sum_{j=1}^{n} |a_{in}|) \sum_{j=1}^{n} |a_{in}| = (\max_{i=1}^{n} \sum_{j=1}^{n} |a_{in}|) \sum_{j=1}^{n} |a_{in}|$ = max 2 (airl luego, como 1/4×1/4 = max & laix/ paro cualquies x: 1×1/,=1 $= 8 \max_{\|x\|_{l=1}} \|Ax\|_{l} \leq \max_{k} \frac{\sum_{i=1}^{m} (Q_{ik})}{k}$ >) q.v.p. || A ||, > max \(\frac{1}{2} \) (Q:j) Jado que 11 All, = nuox 11 AxII, => 11 AII, > 11 AxII, para todo x: 11xII,=1 Quijanno entonces algun x de normo 1 tol que 11 A x* 11, = max Z [a ij] Sea j* la columna que mas suma en modulo, es de cir, j*=max{j: 2 [ai]} Luego, tomando x=ej => ||Ax*|| = ||Aej || = ||(azja | = Ziacji = max

= max Žajl

Número de condición

Dea AERMXM una matriz inversible y 11:11:1KMXM > 12 una norma matricial. Definiones el numero de condición « (A) como: le (A) = (| A | | | | A - | | |

Ve amos con un ejemplo por qué importe este número al resolver lun sistema.

Con si dere mus $\begin{pmatrix}
0,8566 & 0,6183 \\
0,8415 & 0,6077
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = \begin{pmatrix}
1,4489 \\
1,4489
\end{pmatrix}$

25te sistema tiene a x = (1) como jourción exacta

Con Si deremos ahora un sistema perturbado Ax = b b = b + 8b con 8b = (0,0001)

 $= 3 \quad = \begin{pmatrix} 1,4749 \\ 1,4489 \end{pmatrix} + \begin{pmatrix} 0,0001 \\ -0,0001 \end{pmatrix} = \begin{pmatrix} 1,4750 \\ 1,4488 \end{pmatrix}$

Error absoluto: 116-611 Error relativo: 116-611 11615

En nuestro caso la perturbación es pequeña 11611 ~ 0,00067827.10-4

Erremos 2 sistemos:

Sistems Original
$$4x = b$$

 $\begin{pmatrix} 0.8566 & 0.6183 \\ 0.8915 & 0.6079 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1.4949 \\ 1.4989 \end{pmatrix}$

Sistema perturbado
$$A \times = \hat{b}$$

$$\begin{pmatrix} 0.8566 & 0.6183 \\ 0.8415 & 0.6077 \end{pmatrix} \begin{pmatrix} \times_1 \\ \times_2 \end{pmatrix} = \begin{pmatrix} 1.4488 \\ 1.4488 \end{pmatrix}$$

Solución exacta $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

j como esperanus que sea la solución x de sistema perturbado?

$$A \times = b$$
 con $X = \begin{pmatrix} -199,934 \\ 279,377 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -200,93 \\ 278,37 \end{pmatrix} = x + 8x$

Ell Ste sistema, trobajando con máxima precisión, no podemos aseguros que una pequeña perturbación ou b repercuta en una pequeño perturbación en la solución del sistema modificado.

Propiedod:
$$|| x - \hat{x} || \leq |x - \hat{x}||$$
 | $|| b - \hat{b} ||$ | $|| k ||$ | $|| k ||$ | $|| (7.10^{-4})||$

_ En muestro ejemplo, la matrit esta "mal condicionada" (número de condición grande)

K(A) 24105783

solución cercana a la del sistema original.

```
Demostrerur le propieded anterior
   Ax=6 - x sol. old sistema original
 suponiondo Ainversible - x = A-16
  Por otro lado teremos el sistema perturbodo
  y su solución: A(x+8x) = b+8b
   \Rightarrow A S \times = S b \Rightarrow S \times = A \uparrow S b \Rightarrow 0 11 S \times 11 = 11 A \uparrow S b 11
    => 118×11 4 11A-1 11 118611 @
   Por etro Lodo MAX (1 = 11611 => 11611 4 (1A11 11X1)
       => 1 = 1(A 11 2)
  Uniendo O y 3 : 18x1 4 11A-1 118611
11XV K(A) 1161
                            4 18611 = 116-611 llegamos a la
    Aiendo ||Sx|| = ||x - \hat{x}||
    de si qualdad buscada
                           11X-X11 <u>L</u> K(A) 116-611
    OLS: el mismo desarrollo puede realizarse paro
         el sixtema A'b=x y ostever la cota
                         \frac{115-811}{11611} \leq 2e(A) \frac{11x-211}{11x}
```

Algunas propieda des de le (A)

- y a mens que se especifique lo contrario, reservo normas inducidos
- K(I) 1 para toda norma inducida.

Numero de condición y singuloridad-

El número de condición nos permite me der la distancia relative a matrices singulares

teorems Pana A E 12 "x" no singulos, se cumple:

1 = inf | | A-B|| | K(A) = B singular | | A||

da de signal dod L \(\(\frac{11A-B)1}{11A(1)} \) es un éjorcicio

de la proctica.

Sugerencia paro probanto: Proban que si B no es inversible entonces $\pm x \pm 0$ to l'que $(A-B) \times = A \times$ Est a de signal dod nos de una ceta inferior poro KA)
in tener que calculor la inverse de A:

L(A) > 11 A 11 (1 A - B)(

probando con diferentes matrices singulares B.

Otro cota inferior posible:

Le porganets que he mos resuelto el sistema $A \times = b$ por el iminación gaussiana y que emos estimas k(A).

Li eloginus II. II., podemos eal enter fócilmente II.A II., ¿ Como estimanos II.A II., ? Ve anos que:

 $||A^{-1}||_{1} = \max \times ||A^{-1}||_{1} \times ||_{1} = ||A^{-1}||_{1} \text{ para curlquier } y \neq 0$ $||X^{+0}||_{1} \times ||X^{-1}||_{1} = ||X^{-1}||_{1} =$

Observenur tam Sien que le (A) no guardo reloción con el determinante con si derando la signiente matriz $A = \begin{pmatrix} A & D \\ O & A \end{pmatrix}$

||A|| = x y ||A'|| = 1 pora eurlquier norma inducide | => k(A) = 1 (está Sien condicionada)

Pero det (A) = x2 y para valores muy pequeros es "easi" singules.