STA 522, Spring 2022 Introduction to Theoretical Statistics II

Lecture 2

Department of Biostatistics University at Buffalo

AGENDA

- ▶ almost sure convergence & SLLN
- convergence in distribution
- central limit theorem
- sufficiency

Review: Convergence in Probability

A sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X (written as $X_n \xrightarrow{P} X$) if, for every $\varepsilon > 0$, $\lim_{n \to \infty} P(|X_n - X| \ge \varepsilon) = 0$ or, equivalently, $\lim_{n \to \infty} P(|X_n - X| < \varepsilon) = 1$.

Almost Sure Convergence (or Strong Convergence)

Definition (5.5.6): A sequence of random variables X_1, X_2, \ldots **converges almost surely** to a random variable X if, for every $\varepsilon > 0$,

$$P\left(\lim_{n\to\infty}|X_n-X|<\varepsilon\right)=1.$$

To indicate this, we write $X_n \xrightarrow{a.s.} X$.

Notes:

- Contrast this with the definition of convergence in probability.
- ▶ Recall that a random variable is a function from a sample space S into the real numbers: $X_n : S \longrightarrow \mathbb{R}$. For each $s \in S$, $X_n(s) = r \in \mathbb{R}$.
- ▶ Definition 5.5.6 states that $X_n \xrightarrow{a.s.} X$ if the functions $X_n(s) \longrightarrow X(s)$ for all $s \in S$, except perhaps for $s \in N$, where $N \subseteq S$ and P(N) = 0 (point-wise convergence on all but a few "null" points).

Example: Let the sample space S be the closed interval [0,1] with the uniform probability distribution. Let $X_n(s) = s + s^n$ and X(s) = s. Show that $X_n \xrightarrow{a.s.} X$. Does this sequence converge in probability?

a.s. convergence: For every $s \in [0,1)$, $n \to \infty \implies s^n \to 0 \implies X_n(s) \to s = X(s)$.

For
$$s = 1$$
, $n \to \infty \implies s^n \to 1 \implies X_n(s) \to 2 \neq 1 = X(s)$.

But the convergence occurs on the set [0,1) and P([0,1))=1.

So X_n converges to X almost surely.

convergence in probability: Fix $\varepsilon > 0$. we have

$$\begin{split} P(|X_n - X| \geq \varepsilon) &= P(\{s \in [0, 1] : |s^n| \geq \varepsilon\}) \\ &= P(\{s \in [0, 1] : s \geq \varepsilon^{1/n}\}) \\ &= \int_{1/s}^1 ds = 1 - \varepsilon^{1/n} \to 1 - 1 = 0 \text{ as } n \to \infty \end{split}$$

So, yes, X_n does converge to X in probability.

Example: Same S = [0,1] with the uniform probability distribution as before. Define the sequence X_1, X_2, \ldots as follows:

$$X_1(s) = s + I_{[0,1]}(s)$$
 $X_2(s) = s + I_{[0,1/2]}(s)$
 $X_3(s) = s + I_{[1/2,1]}(s)$ $X_4(s) = s + I_{[0,1/3]}(s)$
 $X_5(s) = s + I_{[1/3,2/3]}(s)$ $X_6(s) = s + I_{[2/3,1]}(s)$,

and so on, and let X(s)=s. Show that this sequence converges in probability, but not almost surely. For any $\varepsilon>0$

$$P(|X_n - X| \ge \varepsilon) = P(\text{interval whose length is going to zero}) \to 0.$$

For every s the value $X_n(s)$ alternates between s and s+1 infinitely often. For example, if s=3/8, $X_1(s)=11/8$, $X_2(s)=11/8$, $X_3(s)=3/8$, $X_4(s)=3/8$, $X_5(s)=11/8$, $X_6(s)=3/8$ etc. So no point-wise convergence occurs for this sequence. So X_n does not converge almost surely.

Relationship between convergence in probability and convergence almost surely

- convergence almost surely *implies* convergence in probability, but the converse is not true in general
- ► However, a sequence that converges in probability has a *sub-sequence* that converges almost surely.

Strong Law of Large Numbers (SLLN)

Let X_1, X_2, \ldots be iid random variables with $\mathsf{E}(X_i) = \mu$ and $\mathsf{Var}(X_i) = \sigma^2 < \infty$. Define $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then for every $\varepsilon > 0$,

$$P\left(\lim_{n\to\infty}|\overline{X}_n-\mu|<\varepsilon\right)=1,$$

so that

$$\overline{X}_n \xrightarrow{a.s.} \mu.$$

Remarks

- 1. "Stronger" analog of WLLN. SLLN \implies WLLN.
- 2. For both the WLLN and SLLN the assumption of a finite variance is sufficient but not necessary. The only moment condition needed is that $\operatorname{E}|X_i|<\infty$.
- SLLN and WLLN may hold for non-iid random variables under certain regularity conditions. We can also create examples with non-iid random variables where WLLN holds but not SLLN.

Frequentist Definition of Probability

Given an event $A\subseteq \mathcal{S}$, consider an infinite sequence of independent random experiments/trials, and in each trial check whether or not A occurs. Let $f_n(A)$ be the frequency of the event A in the first n trials. Then the frequentist probability of A is defined as $P_n(A)=\lim_{n\to\infty}\frac{f_n(A)}{n}$ ("long-run relative frequency of A").

Justification via SLLN

Let $X_i = I(A \text{ occurs in trial-}i)$, $i = 1, \ldots, n$. Then $X_1, X_2, \ldots, X_n \sim \text{iid Bernoulli}(p = P(A))$ with $E(X_i) = P(A)$ and $Var(X_i) = P(A)[1 - P(A)] < \infty$. Also, $\sum_{i=1}^n X_i = \text{frequency of } A \text{ in first } n \text{ trials} = f_n(A) \implies \overline{X}_n = \frac{f_n(A)}{n}$. Hence, by SLLN,

$$P_n(A) = \frac{f_n(A)}{n} = \overline{X}_n \xrightarrow{a.s.} E(X_1) = P(A)$$

Convergence in Distribution (or in Law)

Definition: A sequence of random variables X_1, X_2, \ldots converges in distribution to a random variable X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

at all points x where $F_X(x)$ is continuous. In this case, we write

$$X_n \xrightarrow{d} X$$
.

Note

The definition is actually about the cdfs of the random variables and not the random variables themselves.

Example: Let X_1, X_2, \ldots be a sequence of continuous random variables with cdf given by

$$F_{X_n}(x) = 1 - \left(1 - \frac{x}{n}\right)^n \text{ for } 0 < x \le n.$$

Then For x > 0, $F_{X_n}(x) = 1 - \left(1 - \frac{x}{n}\right)^n \to 1 - e^{-x} =: F(x)$ as $n \to \infty$. Note that F(x) is the cdf of Exponential(1) distribution, i.e., $X_n \xrightarrow{d} \text{Exponential}(\lambda = 1)$.

Example: Let $X_1, X_2,...$ be a sequence of continuous random variables with cdf given by

$$F_{X_n}(x) = \left(\frac{x}{1+x}\right)^n \text{ for } x > 0.$$

Then $F_{X_n}(x) \to 0$ for all x. But a function equal to 0 everywhere is not a cdf (if F is a cdf then $\lim_{x\to\infty} F(x)$ must be 1), so X_n does not converge in distribution.

Example (contd.) Consider $V_n = \frac{X_n}{n}$ in previous example. Does V_n converge in distribution?

$$F_{V_n}(v) = F_{X_n}(nv)$$

$$= \left(\frac{nv}{1+nv}\right)^n$$

$$= \left[\left(1 - \frac{1}{1+nv}\right)^{nv}\right]^{1/v} \to e^{-1/v} \text{ for } v > 0$$

Since $F(v) = e^{-1/v}I(v > 0)$ is a cdf (verify), so V_n converges in distribution to $V \sim F$.

NOTE: F is the cdf of the inverse-Gamma($\alpha=1,\ \beta=1$) distribution (verify)

Example: Suppose X_1, X_2, \ldots are iid Uniform(0, 1), and let $X_{(n)} = \max_{1 \le i \le n} X_i$. Does $X_{(n)}$ converge in probability? Can we say anything about the convergence of $n(1 - X_{(n)})$?

Heuristically, $X_{(n)}$ will get closer and closer to 1 as $n\to\infty$. To prove this formally, fix $\varepsilon>0$. We have

$$P(|X_{(n)} - 1| \ge \varepsilon) = P(X_{(n)} \ge 1 + \varepsilon) + P(X_{(n)} \le 1 - \varepsilon)$$

$$= 0 + P(X_{(n)} \le 1 - \varepsilon)$$

$$= P(X_i \le 1 - \varepsilon, \quad i = 1, \dots, n) = (1 - \varepsilon)^n \to 0$$

as $n \to \infty$. This means $X_{(n)} \stackrel{P}{\to} 1$.

Let
$$Y_n = n(1 - X_{(n)})$$
. Then for $t > 0$

$$F_{Y_n}(t) = P\left(n(1 - X_{(n)}) \le t\right)$$

= $P\left(X_{(n)} \ge 1 - t/n\right) = 1 - (1 - t/n)^n \to 1 - e^{-t}$

as $n \to \infty$. This means that $Y_n = n(1 - X_{(n)}) \xrightarrow{d} \text{Exponential}(1)$.

Relationship between convergence in probability & convergence in distribution

Theorem 5.5.12

If the sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X, the sequence also converges in distribution to X.

Proof See exercise 5.40 (homework).

Remark

almost sure convergence \implies convergence in probability \implies convergence in distribution. Reverse implications may not hold in general.

Theorem 5.5.13

The sequence of random variables X_1, X_2, \ldots converges in probability to a constant μ if and only if the sequence also converges in distribution to μ . That is, the statement

$$P(|X_n - \mu| > \varepsilon) \longrightarrow 0$$
 for every $\varepsilon > 0$

is equivalent to

$$P(X_n \le x) \longrightarrow \begin{cases} 0 & \text{if } x < \mu \\ 1 & \text{if } x \ge \mu. \end{cases}$$

Central Limit Theorem (CLT)

Theorem 5.5.14

Let X_1, X_2, \ldots be a sequence of iid random variables whose mgfs exist in a neighborhood of 0 (that is, $M_{X_i}(t)$ exists for |t| < h, for some positive h). Let $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 > 0$ (both μ and σ^2 must be finite since the mgf exists).

Define
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$.

Let $G_n(x)$ denote the cdf of Z_n . Then for any x,

$$\lim_{n\to\infty} G_n(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.$$

In other words,

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} Z \sim \mathsf{N}(0,1) \ \ (\text{or simply } Z_n \xrightarrow{d} \mathsf{N}(0,1)).$$

Remarks

- ► The CLT is often expressed as $\overline{X}_n \stackrel{a}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right)$, where $\stackrel{a}{\sim}$ means "approximately distributed as."
- Note that no assumption on the distribution of X_i is being made, only requirement is that they are iid and the mgf exists. Existence of mgf can be relaxed by just assuming $Var(X_1) = \sigma^2 < \infty$ (next theorem).
- ► Heuristic idea: normality comes from sums of "small" (finite variance), independent disturbances.
- ▶ DOES NOT hold in general if the regularity conditions are not satisfied. Example: $X_1, X_2, \dots \sim$ iid Cauchy(0, 1). Then $\sum_{i=1}^n X_i \sim \text{Cauchy}(0, n)$ (see Example 5.2.10 in CB 2E; discussed last semester) and $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim \text{Cauchy}(0, 1)$.
- Even if holds, how good the approximation is for a given *n* must be checked case by case basis.
- ▶ The CLT specifies an asymptotic distribution of \overline{X}_n ; it does NOT say anything about asymptotic distribution of a single random variable X_n .
- Proof using Taylor's expansion and MGF; ommited.

Example: de Moivre-Laplace CLT Let $S_n \sim \text{Binomial}(n, p)$ for some

0 . (In practice this means p is neither too small nor too large.)

Then as $n \to \infty$, $\frac{S_n - np}{\sqrt{np(1-p)}} \xrightarrow{d} N(0,1)$, or written alternatively, $S_n \stackrel{a}{\sim} N(np, np(1-p)).$

To prove this, write $S_n = \sum_{i=1}^n X_i$ where $X_i \sim \text{iid Bernoulli}(p)$. $E(X_i) = p$,

 $Var(X_i) = p(1-p)$. Then use CLT on $\overline{X}_p = S_p/n$.

Slutsky's Theorem and Applications

Theorem 5.5.17 (Slutsky's Theorem)

If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{P} a$, where a is a constant, then

- $ightharpoonup X_n Y_n \stackrel{d}{\to} aX$; and
- $X_n + Y_n \xrightarrow{d} X + a$.

Proof: Omitted.

Normal Approximation with estimated variance

Suppose that $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} N(0,1)$, with σ unknown. Define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$
. Then $\frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \xrightarrow{d} N(0, 1)$.

Proof. Relies on two facts: (a) $S_n^2 \xrightarrow{P} \sigma^2$ as long as $Var(S_n^2) \to 0$ (Lecture 1); and

(b)
$$\frac{\sigma}{S_n} \stackrel{P}{\to} 1$$
 (Exercise 5.32; homework)

Principles of Data Reduction

Data reduction involves the use of statistics to summarize information (data) on a parameter θ . We study methods that retain important information about θ , and/or discard information that is irrelevant to θ .

- \triangleright sufficiency principle, in which no information about θ is discarded while achieving some summarization of the data (section 6.2);
- likelihood methods, in which we study functions that contain all information about θ available from a sample (section 6.3); and
- the equivariance principle (will not be covered).

Notation: We will use \underline{X} and \underline{x} to denote the entire sample, i.e., $\underline{X} = (X_1, \dots, X_n)$, $\underline{x} = (x_1, \dots, x_n)$, $T(\underline{X}) = T(X_1, \dots, X_n)$, $T(\underline{x}) = T(x_1, \dots, x_n)$, etc.

Sufficiency

- A sufficient statistic for a parameter θ is a statistic that in a sense captures all information about θ contained in the sample.
- If $T(\underline{X})$ is a sufficient statistic for θ , then any inference about θ should depend on the sample \underline{X} only through the value $T(\underline{X})$. That is, if \underline{x} and \underline{y} are two sample points such that $T(\underline{x}) = T(\underline{y})$, then the inference about θ should be the same whether $\underline{X} = \underline{x}$ or $\underline{X} = \underline{y}$ is observed.

Definition: A statistic $T(\underline{X})$ is a **sufficient statistic** for θ if the conditional distribution of the sample \underline{X} given that $T(\underline{X}) = t$ does not depend on θ .

To use this definition we must show (in the discrete sense) that

$$P_{\theta}(\underline{X} = \underline{x} \mid T(\underline{X}) = t) = P(\underline{X} = \underline{x} \mid T(\underline{X}) = t),$$

i.e., no dependence on θ (need discrete assumptions here).

Checking for Sufficiency

Theorem 6.2.2

If $p(\underline{x} \mid \theta)$ is the joint pdf or pmf of \underline{X} and $q(t \mid \theta)$ is the pdf or pmf of $T(\underline{X})$, then $T(\underline{X})$ is a sufficient statistic for θ if, for every \underline{x} in the sample space, the ratio

$$\frac{p(\underline{x} \mid \theta)}{q(T(\underline{x}) \mid \theta)}$$

is constant as a function of θ .

Proof: Let \underline{X} be discrete. We'll show that $P_{\theta}(\underline{X} = \underline{x} \mid T(\underline{X}) = t)$ does not depend on θ .

$$\begin{split} P_{\theta}(\underline{X} = \underline{x} \mid T(\underline{X}) = t) &= \frac{P_{\theta}(\underline{X} = \underline{x} \text{ and } T(\underline{X}) = t)}{P_{\theta}(T(\underline{X}) = t)} \\ &= \frac{P_{\theta}(\underline{X} = \underline{x})}{P_{\theta}(T(\underline{X}) = t)} = \frac{p(\underline{x} \mid \theta)}{q(T(\underline{x}) \mid \theta)}. \end{split}$$

The RHS is constant as a function of θ by assumption.

Example Let $X_1, X_2, ..., X_n$ be iid Bernoulli random variables with parameter θ , $0 < \theta < 1$. Show that $T(\underline{X}) = \sum_{i=1}^{n} X_i$ is sufficient for θ .

We'll verify that the previous theorem holds. Note on the outset that $T(\underline{X}) = \sum_{i=1}^{n} X_i \sim \text{Binomial}(n,\theta)$ (verify using mgf). Write $T(\underline{X}) = \sum_{i=1}^{n} x_i = t$. Then

$$egin{aligned} rac{p(\underline{x}\mid heta)}{q(t\mid heta)} &= rac{\prod_{i=1}^n heta^{x_i} \ (1- heta)^{1-x_i}}{inom{n}{t} \ heta^t \ (1- heta)^{n-t}} \ &= rac{ heta^t \ (1- heta)^{n-t}}{inom{n}{t} \ heta^t \ (1- heta)^{n-t}} &= rac{1}{inom{n}{t}} \end{aligned}$$

and the RHS is free of θ .

Homework

- ► Convergence: Read p. 235 240 Exercises 5.33, 5.34, 5.39b, 5.41.
- ► Sufficiency: Read p. 271 274.