#linear_algebra

EXAMPLE 1 The matrix

$$A = \begin{bmatrix} 3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 & 4 & 0 & -3 & 1 \\ -8 & -6 & 3 & 1 & 7 & -4 \end{bmatrix}$$

can also be written as the 2×3 partitioned (or block) matrix

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix}$$

whose entries are the blocks (or submatrices)

$$A_{11} = \begin{bmatrix} 3 & 0 & -1 \\ -5 & 2 & 4 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 5 & 9 \\ 0 & -3 \end{bmatrix}, \quad A_{13} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$A_{21} = [-8 \ -6 \ 3], \quad A_{22} = [1 \ 7], \quad A_{23} = [-4]$$

Addition and Scalar Multiplication

if matrices A and B are the same size and are partitioned in exactly the same way, then it is natural to make the same partition of the ordinary matrix sum A + B. in this case, each block of A + B is the (matrix) sum of the corresponding blocks of A and B.

Multiplication of a partitioned matrix by a scalar is also computed block by block.

Multiplication of partitoned matrices

Partitioned matrices can be multipled by the usual-row column rule as if the block entries were scalalrs, provided that for a product AB, the column partition of A matches teh row partition of B.

EXAMPLE 3 Let

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ \hline 0 & -4 & -2 & 7 & -1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ \hline -3 & 7 \\ \hline -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

The 5 columns of A are partitioned into a set of 3 columns and then a set of 2 columns. The 5 rows of B are partitioned in the same way—into a set of 3 rows and then a set of 2 rows. We say that the partitions of A and B are **conformable** for **block multiplication**. It can be shown that the ordinary product AB can be written as

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} A_{11}B_1 + A_{12}B_2 \\ A_{21}B_1 + A_{22}B_2 \end{bmatrix} = \begin{bmatrix} -5 & 4 \\ -6 & 2 \\ \hline 2 & 1 \end{bmatrix}$$

THEOREM 10

Column-Row Expansion of AB

If A is $m \times n$ and B is $n \times p$, then

$$AB = [\operatorname{col}_{1}(A) \quad \operatorname{col}_{2}(A) \quad \cdots \quad \operatorname{col}_{n}(A)] \begin{bmatrix} \operatorname{row}_{1}(B) \\ \operatorname{row}_{2}(B) \\ \vdots \\ \operatorname{row}_{n}(B) \end{bmatrix}$$

$$= \operatorname{col}_{1}(A) \operatorname{row}_{1}(B) + \cdots + \operatorname{col}_{n}(A) \operatorname{row}_{n}(B)$$

$$(1)$$

inverses of Partitioned Matrices

A **block diagonal matrix** us a partitioned matrix with zero block off the main diagonal (of blocks). Such a matrix is invertible if and only if each block on the diagonal is invertible.

NUMERICAL NOTES -

- 1. When matrices are too large to fit in a computer's high-speed memory, partitioning permits the computer to work with only two or three submatrices at a time. For instance, one linear programming research team simplified a problem by partitioning the matrix into 837 rows and 51 columns. The problem's solution took about 4 minutes on a Cray supercomputer.¹
- 2. Some high-speed computers, particularly those with vector pipeline architecture, perform matrix calculations more efficiently when the algorithms use partitioned matrices.²
- **3.** Professional software for high-performance numerical linear algebra, such as LAPACK, makes intensive use of partitioned matrix calculations.

¹The solution time doesn't sound too impressive until you learn that each of the 51 block columns contained about 250,000 individual columns. The original problem had 837 equations and over 12,750,000 variables! Nearly 100 million of the more than 10 billion entries in the matrix were nonzero. See Robert E. Bixby et al., "Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods," *Operations Research*, 40, no. 5 (1992): 885–897.

²The importance of block matrix algorithms for computer calculations is described in *Matrix Computations*, 3rd ed., by Gene H. Golub and Charles F. van Loan (Baltimore: Johns Hopkins University Press, 1996).