# CALCULUS, GEOMETRY, AND PROBABILITY IN N DIMENSIONS

SCHOLARS: JUDY CHIANG, WEI WANG, YIFAN ZHANG FACULTY MENTOR: A.J. HILDEBRAND UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN



### THE INTERSECTING CYLINDER PROBLEM IN 3D



Graphics created by 2013 IGL group [1]

Consider three cylinders of radius 1 each, centered at the coordinate axes. Let  $C_{3,2}$  be the region of intersection of these cylinders, i.e., the region given by

$$x^{2} + y^{2} \le 1,$$
  
 $x^{2} + z^{2} \le 1,$   
 $y^{2} + z^{2} \le 1.$ 

The volume of  $C_{3,2}$  is  $16-8\sqrt{2}$ . This result is due to **Charles Proteus Steinmetz** (1865 - 1923), a German-born American mathematician and electrical engineer. The region  $C_{3,2}$  is called the **Steinmetz Solid** [2].

## Intersecting Cylinders in n dimensions

The n-dimensional intersecting cylinder  $C_{n,n-1}$  is defined as the intersection of the n cylinders

(1) 
$$X_1^2 + \dots + X_{n-1}^2 \le 1, \dots, X_2^2 + \dots + X_n^2 \le 1.$$

The volume of  $C_{n,n-1}$  for n=4,5 was determined in a 2013 IGL project [1] as, respectively,

$$48\left(\frac{\pi}{4} - \frac{1}{\sqrt{2}}\arctan\sqrt{2}\right), \quad 256\left(\frac{\pi}{12} - \frac{1}{\sqrt{2}}\arctan\frac{1}{2\sqrt{2}}\right).$$

### A SIMPLER PROBLEM

If we replace  $X_i^2$  by  $u_i$  in (1), we get

(2) 
$$u_1 + \dots + u_{n-1} \le 1, \dots, u_2 + \dots + u_n \le 1.$$

Let  $T_{n,n-1}$  denote the region of n-tuples  $(u_1, \dots u_n) \in [0,1]^n$  satisfying (2).

#### Problem T

What is the volume of  $T_{n,n-1}$  for general n?

Problem T is equivalent to the following problem.

#### **Problem T\***

Given n independent random numbers  $X_1, \ldots, X_n$  in [0,1], what is the probability,  $P_{n,n-1}$ , that all subsums of length n-1 are  $\leq 1$ ?

### SUMS OF RANDOM NUMBERS: MAIN PROBLEM A

#### Problem A

Given n independent random numbers  $X_1, \ldots, X_n$  in [0,1], and  $k \in \{1,\ldots,n\}$ , what is the probability,  $P_{n,k}$ , that all subsums of length k are  $\leq 1$ ?

#### Theorem A

For general n and k, the probability  $P_{n,k}$  is

$$P_{n,k} = \frac{1}{k^{n-k+1}(k-1)!} = \frac{1}{k^{n-k}k!}.$$

### **Special Cases**

- $P_{n,2} = \frac{1}{2^{n-1}}$
- $P_{n,3} = \frac{1}{3^{n-3}3!}$
- $P_{n,n-1} = \frac{1}{(n-1)!(n-1)}$  (Solution to Problem T\*)
- $\bullet \ P_{n,n} = \frac{1}{n!}$

### SUMS OF RANDOM NUMBERS: MAIN PROBLEM B

#### Problem B

Given n independent random numbers  $X_1, \ldots, X_n$  in [0,1], and  $k \in \{1,\ldots,n\}$ , what is the probability,  $P_{n,k}^*$ , that **at least one** subsum of length k are  $\leq 1$ ?

#### Theorem B

For general n and k, the probability  $P_{n,k}^*$  is

$$P_{n,k}^* = \frac{(k-1)! + \sum_{i=1}^{k-1} (-1)^{k-i} \cdot {k-1 \choose i} \cdot i^n \cdot (i+1)^{-n+k-1}}{(k-1)!}.$$

### **Special Cases**

- $P_{n,2}^* = 1 1 \cdot 2^{-n+1}$
- $P_{n,3}^* = \frac{1 \cdot 2 + 2 \cdot 2^{-n+2} 1 \cdot 2^n 3^{-n+2}}{2}$
- $P_{n,4}^* = \frac{1 \cdot 6 3 \cdot 2^{-n+3} + 3 \cdot 2^n 3^{-n+3} 1 \cdot 3^n 4^{-n+3}}{6}$
- $P_{n,n-1}^* = \frac{n!-|s(n,2)|}{((n-1)!)^2}$  where s(n,2) is the signed Stirling number of the first kind [3].
- $\bullet \ P_{n,n}^* = \frac{1}{n!}$

### NUMERICAL VALUES

| k | 2   | 3   | 4    | 5     | 6     |
|---|-----|-----|------|-------|-------|
| 2 | 1/2 | 1/4 | 1/8  | 1/16  | 1/32  |
| 3 | /   | 1/6 | 1/18 | 1/54  | 1/162 |
| 4 | /   | /   | 1/24 | 1/96  | 1/384 |
| 5 | /   | /   | /    | 1/120 | 1/600 |
| 6 | /   | /   | /    | /     | 1/720 |

Table of values of  $P_{n,k}$  for  $k, n \leq 6$ 

| $n \atop k$ | 2   | 3   | 4     | 5       | 6        |
|-------------|-----|-----|-------|---------|----------|
| 2           | 1/2 | 3/4 | 7/8   | 15/16   | 31/32    |
| 3           | /   | 1/6 | 13/36 | 115/216 | 865/1296 |
| 4           | /   | /   | 1/24  | 35/288  | 775/3456 |
| 5           | /   | /   | /     | 1/120   | 223/7200 |
| 6           | /   | /   | /     | /       | 1/720    |

Table of values of  $P_{n,k}^*$  for  $k, n \leq 6$ 

### FUTURE DIRECTIONS

- Given n independent random numbers  $X_1, \ldots, X_n$  in [0,1], and  $k \in \{1,\ldots,n\}$ , what is the probability that **exactly** m subsums of length k are  $\leq 1$ ?
- Given n independent random numbers  $X_1, \dots, X_n$  in [0, 1], calculate the probability that all subsums (or at least one subsum) of length k are  $\leq \alpha$ , for general  $\alpha$ .
- $\bullet$  Solve the original n-dimensional intersecting cylinder problem.
- Extend the results to subsums of  $X_i^p$  with  $p \ge 2$ .

## REFERENCES

- [1] Kong, L., Lkhamsuren, L., Turner, A., Uppal, A., Hildebrand, A. J. (2013). *Intersecting Cylinders: From Archimedes and Zu Chongzhi to Steinmetz and Beyond*. IGL Project Report.
- [2] Weisstein, Eric W. Steinmetz Solid. From MathWorld—A Wolfram Web Resource. Retrieved December 10, 2020, from https://mathworld.wolfram.com/SteinmetzSolid.html.
- [3] Weisstein, Eric W. Stirling Number of the First Kind. From MathWorld—A Wolfram Web Resource. Retrieved December 10, 2020, from https://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html.