

Freescale Semiconductor, Inc.

Data Sheet: Technical Data

# Kinetis K22F Sub-Family Data Sheet

#### 120 MHz ARM® Cortex®-M4-based Microcontroller with FPU

The K22 product family members are optimized for cost-sensitive applications requiring low-power, USB connectivity, processing efficiency with floating point unit. It shares the comprehensive enablement and scalability of the Kinetis family. This product offers:

- Up to 1 MB of flash memory with up to 128 KB of SRAM
- · Small package with high memory density
- Run power consumption down to 279 μA/MHz. Static power consumption down to 5.1 μA with full state retention and 5 μs wakeup. Lowest Static mode down to 268 nA
- USB LS/FS OTG 2.0 with embedded 3.3 V, 120 mA LDO voltage regulator

#### MK22FX512AVLH12 MK22FN1M0AVLH12



#### **Performance**

 Up to 120 MHz ARM Cortex-M4-based core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz

#### Memories and memory interfaces

- Up to 1 MB program flash memory and 128 KB RAM
- 4 KB FlexRAM and 128 KB FlexNVM on FlexMemory devices
- · FlexBus external bus interface

#### System peripherals

- Multiple low-power modes; low leakage wakeup unit
- Memory protection unit with multi-master protection
- 16-channel DMA controller
- · External watchdog monitor and software watchdog

#### Security and integrity modules

- · Hardware CRC module
- 128-bit unique identification (ID) number per chip

#### Analog modules

- Two 16-bit SAR ADCs
- One 12-bit DAC
- Three analog comparators (CMP)
- · Voltage reference

#### Communication interfaces

- USB full-/low-speed On-the-Go controller
- · USB Device Charger detect
- Controller Area Network (CAN) module
- Three SPI modules
- Three I2C modules
- Six UART modules
- · Secure Digital host controller (SDHC)
- I2S module

#### **Timers**

- Two 8-channel Flex-Timers (PWM/Motor Control)
- Two 2-channel Flex-Timers (PWM/Quad Decoder)
- · Periodic interrupt timers and 16-bit low-power timer
- · Carrier modulator transmitter
- · Real-time clock
- · Programmable delay block

#### Clocks

- 3 to 32 MHz and 32 kHz crystal oscillator
- · PLL, FLL, and multiple internal oscillators

#### **Operating Characteristics**

- Voltage range: 1.71 to 3.6 V
- Flash write voltage range: 1.71 to 3.6 V
- Temperature range (ambient): -40 to 105°C





### Ordering Information <sup>1</sup>

| Part Number     | Mer        | Maximum number of I\O's |    |
|-----------------|------------|-------------------------|----|
|                 | Flash (KB) | SRAM (KB)               |    |
| MK22FX512AVLH12 | 512 KB     | 128                     | 40 |
| MK22FN1M0AVLH12 | 1 MB       | 128                     | 40 |

1. To confirm current availability of ordererable part numbers, go to <a href="http://www.freescale.com">http://www.freescale.com</a> and perform a part number search.

#### **Related Resources**

| Туре                | Description                                                                                                                      | Resource                                   |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Selector<br>Guide   | The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. | Solution Advisor                           |
| Product Brief       | The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.   | K20PB <sup>1</sup>                         |
| Reference<br>Manual | The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.                 | K22P64M50SF5V2RM <sup>1</sup>              |
| Data Sheet          | The Data Sheet includes electrical characteristics and signal connections.                                                       | K22P64M50SF5V2 <sup>1</sup>                |
| Package<br>drawing  | Package dimensions are provided in package drawings.                                                                             | • LQFP 64-pin:<br>98ASS23234W <sup>1</sup> |

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.



### Kinetis K21/22F Family



Figure 1. K20 block diagram



# **Table of Contents**

6

| 1 | Rati | ngs     |                                              | 5  |
|---|------|---------|----------------------------------------------|----|
|   | 1.1  | Therm   | al handling ratings                          | 5  |
|   | 1.2  | Moistu  | re handling ratings                          | 5  |
|   | 1.3  | ESD h   | andling ratings                              | 5  |
|   | 1.4  | Voltage | e and current operating ratings              | 5  |
| 2 | Ger  | neral   |                                              | 6  |
|   | 2.1  | AC ele  | ctrical characteristics                      | 6  |
|   | 2.2  | Nonsw   | ritching electrical specifications           | 7  |
|   |      | 2.2.1   | Voltage and current operating requirements   | 7  |
|   |      | 2.2.2   | LVD and POR operating requirements           | 8  |
|   |      | 2.2.3   | Voltage and current operating behaviors      | 8  |
|   |      | 2.2.4   | Power mode transition operating behaviors    | 10 |
|   |      | 2.2.5   | Power consumption operating behaviors        | 10 |
|   |      | 2.2.6   | EMC radiated emissions operating behaviors.  | 14 |
|   |      | 2.2.7   | Designing with radiated emissions in mind    | 15 |
|   |      | 2.2.8   | Capacitance attributes                       | 15 |
|   | 2.3  | Switch  | ing specifications                           | 15 |
|   |      | 2.3.1   | Device clock specifications                  | 15 |
|   |      | 2.3.2   | General switching specifications             |    |
|   | 2.4  | Therm   | al specifications                            | 17 |
|   |      | 2.4.1   | Thermal operating requirements               | 17 |
|   |      | 2.4.2   | Thermal attributes                           | 17 |
| 3 | Peri | •       | operating requirements and behaviors         |    |
|   | 3.1  | Core n  | nodules                                      | 18 |
|   |      | 3.1.1   | Debug trace timing specifications            | 19 |
|   |      | 3.1.2   | JTAG electricals                             | 19 |
|   | 3.2  | Systen  | n modules                                    | 22 |
|   | 3.3  | Clock   | modules                                      | 22 |
|   |      | 3.3.1   | MCG specifications                           | 22 |
|   |      | 3.3.2   | Oscillator electrical specifications         | 25 |
|   |      | 3.3.3   | 32 kHz oscillator electrical characteristics | 27 |

| 3.4  | Memor    | les and memory interfaces27                    |   |
|------|----------|------------------------------------------------|---|
|      | 3.4.1    | Flash (FTFE) electrical specifications27       |   |
|      | 3.4.2    | EzPort switching specifications32              |   |
|      | 3.4.3    | Flexbus switching specifications33             | , |
| 3.5  | Securit  | y and integrity modules36                      | i |
| 3.6  | Analog   | 36                                             | i |
|      | 3.6.1    | ADC electrical specifications37                | , |
|      | 3.6.2    | CMP and 6-bit DAC electrical specifications 41 |   |
|      | 3.6.3    | 12-bit DAC electrical characteristics43        | 6 |
|      | 3.6.4    | Voltage reference electrical specifications 46 | i |
| 3.7  | Timers   | 47                                             | , |
| 3.8  | Comm     | unication interfaces47                         | , |
|      | 3.8.1    | USB electrical specifications                  |   |
|      | 3.8.2    | USB DCD electrical specifications48            | 6 |
|      | 3.8.3    | USB VREG electrical specifications             | 6 |
|      | 3.8.4    | CAN switching specifications49                 | , |
|      | 3.8.5    | DSPI switching specifications (limited voltage |   |
|      |          | range)49                                       | , |
|      | 3.8.6    | DSPI switching specifications (full voltage    |   |
|      |          | range)51                                       |   |
|      | 3.8.7    | I2C switching specifications52                 | , |
|      | 3.8.8    | UART switching specifications 53               | 6 |
|      | 3.8.9    | I2S switching specifications53                 | 6 |
| Dim  | ensions  | 65                                             | , |
| 4.1  | Obtain   | ing package dimensions65                       | , |
| Pind | out      | 66                                             | i |
| 5.1  | K22 Si   | gnal Multiplexing and Pin Assignments66        | i |
| 5.2  | K22 Pi   | nouts                                          | , |
| Rev  | ision Hi | story70                                        | , |
| Cop  | yright   | 0                                              |   |
|      |          |                                                |   |



# 1 Ratings

# 1.1 Thermal handling ratings

| Symbol           | Description                   | Min.        | Max. | Unit | Notes |
|------------------|-------------------------------|-------------|------|------|-------|
| T <sub>STG</sub> | Storage temperature           | <b>–</b> 55 | 150  | °C   | 1     |
| T <sub>SDR</sub> | Solder temperature, lead-free | _           | 260  | °C   | 2     |

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

### 1.2 Moisture handling ratings

| Symbol | Description                | Min. | Max. | Unit | Notes |
|--------|----------------------------|------|------|------|-------|
| MSL    | Moisture sensitivity level | _    | 3    | _    | 1     |

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

## 1.3 ESD handling ratings

| Symbol           | Description                                           | Min.  | Max.  | Unit | Notes |
|------------------|-------------------------------------------------------|-------|-------|------|-------|
| $V_{HBM}$        | Electrostatic discharge voltage, human body model     | -2000 | +2000 | V    | 1     |
| V <sub>CDM</sub> | Electrostatic discharge voltage, charged-device model | -500  | +500  | V    | 2     |
| I <sub>LAT</sub> | Latch-up current at ambient temperature of 105°C      | -100  | +100  | mA   | 3     |

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

# 1.4 Voltage and current operating ratings



#### General

| Symbol               | Description                                                    | Min.                  | Max.                  | Unit |
|----------------------|----------------------------------------------------------------|-----------------------|-----------------------|------|
| $V_{DD}$             | Digital supply voltage                                         | -0.3                  | 3.8                   | V    |
| I <sub>DD</sub>      | Digital supply current                                         | _                     | 185                   | mA   |
| V <sub>DIO</sub>     | Digital input voltage (except RESET, EXTAL, and XTAL)          | -0.3                  | 5.5                   | V    |
| V <sub>AIO</sub>     | Analog <sup>1</sup> , RESET, EXTAL, and XTAL input voltage     | -0.3                  | V <sub>DD</sub> + 0.3 | V    |
| I <sub>D</sub>       | Maximum current single pin limit (applies to all digital pins) | -25                   | 25                    | mA   |
| $V_{DDA}$            | Analog supply voltage                                          | V <sub>DD</sub> – 0.3 | V <sub>DD</sub> + 0.3 | V    |
| V <sub>USB0_DP</sub> | USB0_DP input voltage                                          | -0.3                  | 3.63                  | V    |
| V <sub>USB0_DM</sub> | USB0_DM input voltage                                          | -0.3                  | 3.63                  | V    |
| $V_{BAT}$            | RTC battery supply voltage                                     | -0.3                  | 3.8                   | V    |

<sup>1.</sup> Analog pins are defined as pins that do not have an associated general purpose I/O port function.

### 2 General

### 2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.



Figure 2. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
  - have  $C_L = 30pF$  loads,
  - are configured for fast slew rate (PORTx\_PCRn[SRE]=0), and
  - are configured for high drive strength (PORTx\_PCRn[DSE]=1)
- 2. input pins
  - have their passive filter disabled (PORTx\_PCRn[PFE]=0)



# 2.2 Nonswitching electrical specifications

### 2.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

| Symbol                             | Description                                                                                                                                                  | Min.                   | Max.                 | Unit | Notes |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|------|-------|
| $V_{DD}$                           | Supply voltage                                                                                                                                               | 1.71                   | 3.6                  | V    |       |
| $V_{DDA}$                          | Analog supply voltage                                                                                                                                        | 1.71                   | 3.6                  | V    |       |
| $V_{DD} - V_{DDA}$                 | V <sub>DD</sub> -to-V <sub>DDA</sub> differential voltage                                                                                                    | -0.1                   | 0.1                  | V    |       |
| V <sub>SS</sub> – V <sub>SSA</sub> | V <sub>SS</sub> -to-V <sub>SSA</sub> differential voltage                                                                                                    | -0.1                   | 0.1                  | V    |       |
| $V_{BAT}$                          | RTC battery supply voltage                                                                                                                                   | 1.71                   | 3.6                  | V    |       |
| V <sub>IH</sub>                    | Input high voltage                                                                                                                                           |                        |                      |      |       |
|                                    | • 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                                                                                                                            | $0.7 \times V_{DD}$    | _                    | V    |       |
|                                    | • 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                                                                                                                           | $0.75 \times V_{DD}$   | _                    | V    |       |
| V <sub>IL</sub>                    | Input low voltage                                                                                                                                            |                        |                      |      |       |
|                                    | • 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V                                                                                                                            | _                      | $0.35 \times V_{DD}$ | ٧    |       |
|                                    | • 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V                                                                                                                           | _                      | $0.3 \times V_{DD}$  | V    |       |
| V <sub>HYS</sub>                   | Input hysteresis                                                                                                                                             | 0.06 × V <sub>DD</sub> | _                    | V    |       |
| I <sub>ICDIO</sub>                 | Digital pin negative DC injection current — single pin  • V <sub>IN</sub> < V <sub>SS</sub> -0.3V                                                            | -5                     | _                    | mA   | 1     |
| I <sub>ICAIO</sub>                 | Analog <sup>2</sup> , EXTAL, and XTAL pin DC injection current                                                                                               |                        |                      |      | 3     |
|                                    | <ul> <li>single pin</li> <li>V<sub>IN</sub> &lt; V<sub>SS</sub>-0.3V (Negative current injection)</li> </ul>                                                 | -5                     | _                    | mA   |       |
|                                    | • V <sub>IN</sub> > V <sub>DD</sub> +0.3V (Positive current injection)                                                                                       | _                      | +5                   |      |       |
| I <sub>ICcont</sub>                | Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins |                        |                      |      |       |
|                                    | Negative current injection                                                                                                                                   | -25                    | _                    | mA   |       |
|                                    | Positive current injection                                                                                                                                   | _                      | +25                  |      |       |
| V <sub>ODPU</sub>                  | Open drain pullup voltage level                                                                                                                              | V <sub>DD</sub>        | V <sub>DD</sub>      | V    | 4     |
| $V_{RAM}$                          | V <sub>DD</sub> voltage required to retain RAM                                                                                                               | 1.2                    | _                    | V    |       |
| V <sub>RFVBAT</sub>                | V <sub>BAT</sub> voltage required to retain the VBAT register file                                                                                           | V <sub>POR_VBAT</sub>  | _                    | V    |       |

All 5 V tolerant digital I/O pins are internally clamped to V<sub>SS</sub> through an ESD protection diode. There is no diode connection to V<sub>DD</sub>. If V<sub>IN</sub> is less than V<sub>DIO\_MIN</sub>, a current limiting resistor is required. If V<sub>IN</sub> greater than V<sub>DIO\_MIN</sub> (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection current limiting resistor is calculated as R=(V<sub>DIO\_MIN</sub>-V<sub>IN</sub>)/II<sub>ICDIO</sub>I.

<sup>2.</sup> Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins.



#### General

- 3. All analog pins are internally clamped to V<sub>SS</sub> and V<sub>DD</sub> through ESD protection diodes. If V<sub>IN</sub> is less than V<sub>AIO\_MIN</sub> or greater than V<sub>AIO\_MAX</sub>, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V<sub>AIO\_MIN</sub>-V<sub>IN</sub>)/II<sub>ICAIO</sub>I. The positive injection current limiting resistor is calculated as R=(V<sub>IN</sub>-V<sub>AIO\_MAX</sub>)/I I<sub>ICAIO</sub>I. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.
- 4. Open drain outputs must be pulled to VDD.

### 2.2.2 LVD and POR operating requirements

Table 2. V<sub>DD</sub> supply LVD and POR operating requirements

| Symbol             | Description                                                 | Min. | Тур. | Max. | Unit | Notes |
|--------------------|-------------------------------------------------------------|------|------|------|------|-------|
| V <sub>POR</sub>   | Falling VDD POR detect voltage                              | 0.8  | 1.1  | 1.5  | V    |       |
| $V_{LVDH}$         | Falling low-voltage detect threshold — high range (LVDV=01) | 2.48 | 2.56 | 2.64 | V    |       |
|                    | Low-voltage warning thresholds — high range                 |      |      |      |      | 1     |
| $V_{LVW1H}$        | Level 1 falling (LVWV=00)                                   | 2.62 | 2.70 | 2.78 | V    |       |
| $V_{LVW2H}$        | Level 2 falling (LVWV=01)                                   | 2.72 | 2.80 | 2.88 | V    |       |
| $V_{LVW3H}$        | Level 3 falling (LVWV=10)                                   | 2.82 | 2.90 | 2.98 | V    |       |
| $V_{\text{LVW4H}}$ | Level 4 falling (LVWV=11)                                   | 2.92 | 3.00 | 3.08 | V    |       |
| V <sub>HYSH</sub>  | Low-voltage inhibit reset/recover hysteresis — high range   | _    | 80   | _    | mV   |       |
| V <sub>LVDL</sub>  | Falling low-voltage detect threshold — low range (LVDV=00)  | 1.54 | 1.60 | 1.66 | V    |       |
|                    | Low-voltage warning thresholds — low range                  |      |      |      |      | 1     |
| $V_{LVW1L}$        | Level 1 falling (LVWV=00)                                   | 1.74 | 1.80 | 1.86 | V    |       |
| $V_{LVW2L}$        | Level 2 falling (LVWV=01)                                   | 1.84 | 1.90 | 1.96 | V    |       |
| $V_{LVW3L}$        | Level 3 falling (LVWV=10)                                   | 1.94 | 2.00 | 2.06 | V    |       |
| $V_{LVW4L}$        | Level 4 falling (LVWV=11)                                   | 2.04 | 2.10 | 2.16 | V    |       |
| V <sub>HYSL</sub>  | Low-voltage inhibit reset/recover hysteresis — low range    | _    | 60   | _    | mV   |       |
| $V_{BG}$           | Bandgap voltage reference                                   | 0.97 | 1.00 | 1.03 | V    |       |
| t <sub>LPO</sub>   | Internal low power oscillator period — factory trimmed      | 900  | 1000 | 1100 | μs   |       |

1. Rising threshold is the sum of falling threshold and hysteresis voltage

### Table 3. VBAT power operating requirements

| Symbol Descr                  | iption                         | Min. | Тур. | Max. | Unit | Notes |
|-------------------------------|--------------------------------|------|------|------|------|-------|
| V <sub>POR_VBAT</sub> Falling | VBAT supply POR detect voltage | 0.8  | 1.1  | 1.5  | V    |       |



# 2.2.3 Voltage and current operating behaviors

### Table 4. Voltage and current operating behaviors

| Symbol           | Description                                                                                | Min.                  | Тур   | Max.    | Unit | Notes            |
|------------------|--------------------------------------------------------------------------------------------|-----------------------|-------|---------|------|------------------|
| V <sub>OH</sub>  | Output high voltage — high drive strength                                                  |                       | - 776 | 1116221 | 0    | 110100           |
| - 011            | • 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 V, I <sub>OH</sub> = -8mA                                  | V <sub>DD</sub> – 0.5 | _     | _       | V    |                  |
|                  | • 1.71 V ≤ V <sub>DD</sub> ≤ 2.7 V, I <sub>OH</sub> = -3mA                                 | V <sub>DD</sub> - 0.5 | _     | _       | V    |                  |
|                  | -                                                                                          | 100 0.0               |       |         | -    |                  |
|                  | Output high voltage — low drive strength                                                   |                       |       |         |      |                  |
|                  | • $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -2\text{mA}$         | $V_{DD} - 0.5$        | _     | _       | V    |                  |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OH</sub> = -0.6mA                     | V <sub>DD</sub> – 0.5 | _     | _       | V    |                  |
| I <sub>OHT</sub> | Output high current total for all ports                                                    | _                     | _     | 100     | mA   |                  |
| $V_{OL}$         | Output low voltage — high drive strength                                                   |                       |       |         |      | 1                |
|                  | • $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 9\text{mA}$          | _                     | _     | 0.5     | V    |                  |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OL</sub> = 3mA                        | _                     | _     | 0.5     | V    |                  |
|                  | Output low voltage — low drive strength                                                    |                       |       |         |      |                  |
|                  | • $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 2\text{mA}$          | _                     | _     | 0.5     | V    |                  |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OL</sub> = 0.6mA                      | _                     | _     | 0.5     | V    |                  |
| I <sub>OLT</sub> | Output low current total for all ports                                                     | _                     | _     | 100     | mA   |                  |
| I <sub>IND</sub> | Input leakage current, digital pins • $V_{SS} \le V_{IN} \le V_{IL}$                       |                       |       |         |      | <sup>2</sup> , 3 |
|                  | All digital pins                                                                           | _                     | 0.002 | 0.5     | μA   |                  |
|                  | • V <sub>IN</sub> = V <sub>DD</sub>                                                        |                       |       |         |      |                  |
|                  | All digital pins except PTD7                                                               | _                     | 0.002 | 0.5     | μA   |                  |
|                  | • PTD7                                                                                     | _                     | 0.004 | 1       | μA   |                  |
| I <sub>IND</sub> | Input leakage current, digital pins  • V <sub>IL</sub> < V <sub>IN</sub> < V <sub>DD</sub> |                       |       |         |      | 2                |
|                  | • V <sub>DD</sub> = 3.6 V                                                                  | _                     | 18    | 26      | μA   |                  |
|                  | • V <sub>DD</sub> = 3.0 V                                                                  | _                     | 12    | 19      | μA   |                  |
|                  | • V <sub>DD</sub> = 2.5 V                                                                  | _                     | 8     | 13      | μΑ   |                  |
|                  | • V <sub>DD</sub> = 1.7 V                                                                  | _                     | 3     | 6       | μΑ   |                  |
| I <sub>IND</sub> | Input leakage current, digital pins                                                        |                       |       |         |      |                  |
|                  | • V <sub>DD</sub> < V <sub>IN</sub> < 5.5 V                                                | _                     | 1     | 50      | μA   |                  |
| I <sub>OZ</sub>  | Hi-Z (off-state) leakage current (per pin)                                                 | _                     | _     | 0.25    | μA   |                  |
| R <sub>PU</sub>  | Internal pullup resistors                                                                  | 20                    | 35    | 50      | kΩ   | 4                |
| R <sub>PD</sub>  | Internal pulldown resistors                                                                | 20                    | 35    | 50      | kΩ   | 5                |
|                  |                                                                                            |                       |       |         |      |                  |

<sup>1.</sup> Open drain outputs must be pulled to  $V_{DD}$ .

<sup>2.</sup> Measured at VDD=3.6V

<sup>3.</sup> Internal pull-up/pull-down resistors disabled.

<sup>4.</sup> Measured at  $V_{DD}$  supply voltage =  $V_{DD}$  min and Vinput =  $V_{SS}$ 



#### General

5. Measured at  $V_{DD}$  supply voltage =  $V_{DD}$  min and  $V_{DD}$  in a voltage =  $V_{DD}$ 

# 2.2.4 Power mode transition operating behaviors

All specifications except  $t_{POR}$ , and VLLSx $\rightarrow$ RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- FlexBus clock = 50 MHz
- Flash clock = 25 MHz

Table 5. Power mode transition operating behaviors

| Symbol           | Description                                                                                                                                                               | Min. | Max. | Unit | Notes |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| t <sub>POR</sub> | After a POR event, amount of time from the point V <sub>DD</sub> reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. | _    | 300  | μs   |       |
|                  | • VLLS0 → RUN                                                                                                                                                             | _    | 183  | μs   |       |
|                  | • VLLS1 → RUN                                                                                                                                                             | _    | 183  | μs   |       |
|                  | VLLS2 → RUN                                                                                                                                                               | _    | 105  | μs   |       |
|                  | VLLS3 → RUN                                                                                                                                                               | _    | 105  | μs   |       |
|                  | • LLS → RUN                                                                                                                                                               | _    | 5.0  | μs   |       |
|                  | • VLPS → RUN                                                                                                                                                              | _    | 4.4  | μs   |       |
|                  | • STOP → RUN                                                                                                                                                              | _    | 4.4  | μs   |       |

# 2.2.5 Power consumption operating behaviors

Table 6. Power consumption operating behaviors

| Symbol              | Description                                                                  | Min. | Тур.  | Max.     | Unit | Notes |
|---------------------|------------------------------------------------------------------------------|------|-------|----------|------|-------|
| I <sub>DDA</sub>    | Analog supply current                                                        | _    | _     | See note | mA   | 1     |
| I <sub>DD_RUN</sub> | Run mode current — all peripheral clocks disabled, code executing from flash |      |       |          |      | 2     |
|                     |                                                                              | _    | 33.57 | 36.2     | mA   |       |
|                     |                                                                              | _    | 33.51 | 36.1     | mA   |       |



Table 6. Power consumption operating behaviors (continued)

| Symbol                | Description                                                                   | Min. | Тур.  | Max. | Unit  | Notes |
|-----------------------|-------------------------------------------------------------------------------|------|-------|------|-------|-------|
|                       | • @ 1.8V                                                                      |      |       |      |       |       |
|                       | • @ 3.0V                                                                      |      |       |      |       |       |
| I <sub>DD_RUN</sub>   | Run mode current — all peripheral clocks enabled, code executing from flash   |      |       |      |       | 3, 4  |
|                       | • @ 1.8V                                                                      | _    | 46.36 | 50.1 | mA    |       |
|                       | • @ 3.0V                                                                      | _    | 46.31 | 49.9 | mA    |       |
|                       | • @ 25°C                                                                      | _    | 57.4  |      | mA    |       |
|                       | • @ 125°C                                                                     |      | 07.1  |      | 110 ( |       |
| I <sub>DD_WAIT</sub>  | Wait mode high frequency current at 3.0 V — all peripheral clocks disabled    | _    | 18.2  | _    | mA    | 2     |
| I <sub>DD_WAIT</sub>  | Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled | _    | 7.2   | _    | mA    | 5     |
| I <sub>DD_VLPR</sub>  | Very-low-power run mode current at 3.0 V — all peripheral clocks disabled     | _    | 1.21  | _    | mA    | 6     |
| I <sub>DD_VLPR</sub>  | Very-low-power run mode current at 3.0 V — all peripheral clocks enabled      | _    | 1.88  | _    | mA    | 7     |
| I <sub>DD_VLPW</sub>  | Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled    | _    | 0.80  | _    | mA    | 8     |
| I <sub>DD_STOP</sub>  | Stop mode current at 3.0 V                                                    |      |       |      |       |       |
|                       | • @ -40 to 25°C                                                               | _    | 0.528 | 2.25 | mA    |       |
|                       | • @ 70°C                                                                      | _    | 1.6   | 8    | mA    |       |
|                       | • @ 105°C                                                                     | _    | 5.2   | 20   | mA    |       |
| I <sub>DD_VLPS</sub>  | Very-low-power stop mode current at 3.0 V                                     |      |       |      |       |       |
|                       | • @ -40 to 25°C                                                               | _    | 78    | 700  | μΑ    |       |
|                       | • @ 70°C                                                                      | _    | 498   | 2400 | μΑ    |       |
|                       | • @ 105°C                                                                     | _    | 1300  | 3600 | μΑ    |       |
| I <sub>DD_LLS</sub>   | Low leakage stop mode current at 3.0 V                                        |      |       |      |       |       |
|                       | • @ -40 to 25°C                                                               | _    | 5.1   | 15   | μΑ    |       |
|                       | • @ 70°C                                                                      | _    | 28    | 80   | μΑ    |       |
|                       | • @ 105°C                                                                     | _    | 124   | 300  | μΑ    |       |
| I <sub>DD_VLLS3</sub> | Very low-leakage stop mode 3 current at 3.0 V                                 |      |       |      |       |       |
|                       | • @ -40 to 25°C                                                               | _    | 3.1   | 7.5  | μΑ    |       |
|                       | • @ 70°C                                                                      | _    | 14.5  | 45   | μΑ    |       |
|                       | • @ 105°C                                                                     | _    | 63.5  | 195  | μΑ    |       |
| I <sub>DD_VLLS2</sub> | Very low-leakage stop mode 2 current at 3.0 V                                 |      |       |      |       |       |
|                       | • @ -40 to 25°C                                                               | _    | 2.0   | 5    | μΑ    |       |
|                       |                                                                               | _    | 6.9   | 32   | μA    |       |



Table 6. Power consumption operating behaviors (continued)

| Symbol                | Description                                                                    | Min. | Тур.  | Max. | Unit     | Notes |
|-----------------------|--------------------------------------------------------------------------------|------|-------|------|----------|-------|
|                       | • @ 70°C                                                                       | _    | 30    | 112  | μΑ       |       |
|                       | • @ 105°C                                                                      |      |       |      |          |       |
| I <sub>DD_VLLS1</sub> | Very low-leakage stop mode 1 current at 3.0 V                                  |      |       |      |          |       |
|                       | • @ -40 to 25°C                                                                | _    | 1.25  | 2.1  | μA       |       |
|                       | • @ 70°C                                                                       | _    | 6.5   | 18.5 | μΑ       |       |
|                       | • @ 105°C                                                                      | _    | 37    | 108  | μΑ       |       |
| I <sub>DD_VLLS0</sub> | Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled  |      |       |      |          |       |
|                       | • @ –40 to 25°C                                                                | _    | 0.745 | 1.65 | μA       |       |
|                       | • @ 70°C                                                                       | _    | 6.03  | 18   | μΑ       |       |
|                       | • @ 105°C                                                                      | _    | 37    | 108  | μA       |       |
| I <sub>DD_VLLS0</sub> | Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled |      |       |      |          |       |
|                       | • @ –40 to 25°C                                                                | _    | 0.268 | 1.25 | μΑ       |       |
|                       | • @ 70°C                                                                       | _    | 3.7   | 15   | μΑ       |       |
|                       | • @ 105°C                                                                      | _    | 22.9  | 95   | μΑ       |       |
| I <sub>DD_VBAT</sub>  | Average current with RTC and 32kHz disabled at 3.0 V                           |      |       |      |          |       |
|                       | • @ -40 to 25°C                                                                | _    | 0.19  | 0.22 | μA       |       |
|                       | • @ 70°C                                                                       | _    | 0.49  | 0.64 | μA       |       |
|                       | • @ 105°C                                                                      | _    | 2.2   | 3.2  | μA       |       |
| I <sub>DD_VBAT</sub>  | Average current when CPU is not accessing RTC registers                        |      |       |      |          | 9     |
|                       | • @ 1.8V                                                                       |      |       |      |          |       |
|                       | • @ -40 to 25°C                                                                | _    | 0.68  | 0.8  | μA       |       |
|                       | • @ 70°C                                                                       | _    | 1.2   | 1.56 | μA       |       |
|                       | • @ 105°C                                                                      | _    | 3.6   | 5.3  | μA       |       |
|                       | • @ 3.0V                                                                       |      | 0.0   | 0.0  | μ, ,     |       |
|                       | • @ -40 to 25°C                                                                |      | 0.81  | 0.96 | μA       |       |
|                       | • @ 70°C                                                                       | _    | 1.45  | 1.89 | μA       |       |
|                       | • @ 105°C                                                                      |      | 4.3   | 6.33 | μA<br>μA |       |

<sup>1.</sup> The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

<sup>2. 120</sup> MHz core and system clock, 60 MHz bus 40 Mhz and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled.

<sup>3. 120</sup> MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled.

<sup>4.</sup> Max values are measured with CPU executing DSP instructions.



- 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode.
- 6. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 9. Includes 32kHz oscillator current and RTC operation.

### 2.2.5.1 Diagram: Typical IDD\_RUN operating behavior

The following data was measured under these conditions:

- MCG in PEE mode at greater than 100 MHz frequencies
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFE



Figure 3. Run mode supply current vs. core frequency





Figure 4. VLPR mode supply current vs. core frequency

### 2.2.6 EMC radiated emissions operating behaviors

Table 7. EMC radiated emissions operating behaviors

| Symbol              | Description                        | Frequency<br>band<br>(MHz) | Тур. | Unit | Notes |
|---------------------|------------------------------------|----------------------------|------|------|-------|
| V <sub>RE1</sub>    | Radiated emissions voltage, band 1 | 0.15–50                    | 23   | dΒμV | 1, 2  |
| V <sub>RE2</sub>    | Radiated emissions voltage, band 2 | 50–150                     | 27   | dΒμV |       |
| V <sub>RE3</sub>    | Radiated emissions voltage, band 3 | 150–500                    | 28   | dΒμV |       |
| V <sub>RE4</sub>    | Radiated emissions voltage, band 4 | 500-1000                   | 14   | dΒμV |       |
| V <sub>RE_IEC</sub> | IEC level                          | 0.15-1000                  | K    | _    | 2, 3  |

<sup>1.</sup> Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.



The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2.  $V_{DD} = 3.3 \text{ V}$ ,  $T_A = 25 \,^{\circ}\text{C}$ ,  $f_{OSC} = 12 \,^{\circ}\text{MHz}$  (crystal),  $f_{SYS} = 96 \,^{\circ}\text{MHz}$ ,  $f_{BUS} = 48 \,^{\circ}\text{MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

## 2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

### 2.2.8 Capacitance attributes

**Table 8. Capacitance attributes** 

| Symbol            | Description                     | Min. | Max. | Unit |
|-------------------|---------------------------------|------|------|------|
| C <sub>IN_A</sub> | Input capacitance: analog pins  | _    | 7    | pF   |
| C <sub>IN_D</sub> | Input capacitance: digital pins |      | 7    | pF   |

### 2.3 Switching specifications

## 2.3.1 Device clock specifications

Table 9. Device clock specifications

| Symbol               | Description                                            | Min. | Max. | Unit | Notes |  |  |
|----------------------|--------------------------------------------------------|------|------|------|-------|--|--|
|                      | Normal run mode                                        |      |      |      |       |  |  |
| f <sub>SYS</sub>     | System and core clock                                  | _    | 120  | MHz  |       |  |  |
| f <sub>SYS_USB</sub> | System and core clock when Full Speed USB in operation | 20   | _    | MHz  |       |  |  |
| f <sub>BUS</sub>     | Bus clock                                              | _    | 60   | MHz  |       |  |  |
| FB_CLK               | FlexBus clock                                          | _    | 50   | MHz  |       |  |  |
| f <sub>FLASH</sub>   | Flash clock                                            | _    | 25   | MHz  |       |  |  |
| f <sub>LPTMR</sub>   | LPTMR clock                                            | _    | 25   | MHz  |       |  |  |
|                      | VLPR mode <sup>1</sup>                                 |      |      | •    |       |  |  |
| f <sub>SYS</sub>     | System and core clock                                  | _    | 4    | MHz  |       |  |  |
| f <sub>BUS</sub>     | Bus clock                                              | _    | 4    | MHz  |       |  |  |



Table 9. Device clock specifications (continued)

| Symbol                     | Description                      | Min. | Max. | Unit | Notes |
|----------------------------|----------------------------------|------|------|------|-------|
| FB_CLK                     | FlexBus clock                    | _    | 4    | MHz  |       |
| f <sub>FLASH</sub>         | Flash clock                      | _    | 0.8  | MHz  |       |
| f <sub>ERCLK</sub>         | External reference clock         | _    | 16   | MHz  |       |
| f <sub>LPTMR_pin</sub>     | LPTMR clock                      | _    | 25   | MHz  |       |
| f <sub>LPTMR_ERCLK</sub>   | LPTMR external reference clock   | _    | 16   | MHz  |       |
| f <sub>FlexCAN_ERCLK</sub> | FlexCAN external reference clock | _    | 8    | MHz  |       |
| f <sub>I2S_MCLK</sub>      | I2S master clock                 | _    | 12.5 | MHz  |       |
| f <sub>I2S_BCLK</sub>      | I2S bit clock                    | _    | 4    | MHz  |       |

<sup>1.</sup> The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

# 2.3.2 General switching specifications

These general purpose specifications apply to all pins configured for:

- GPIO signaling
- Other peripheral module signaling not explicitly stated elsewhere

Table 10. General switching specifications

| Symbol | Description                                                                                                 | Min. | Max. | Unit             | Notes |
|--------|-------------------------------------------------------------------------------------------------------------|------|------|------------------|-------|
|        | GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path                          | 1.5  | _    | Bus clock cycles | 1, 2  |
|        | GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path  | 100  | _    | ns               | 3     |
|        | GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path | 16   | _    | ns               | 3     |
|        | External reset pulse width (digital glitch filter disabled)                                                 | 100  | _    | ns               | 3     |
|        | Mode select (EZP_CS) hold time after reset deassertion                                                      | 2    | _    | Bus clock cycles |       |
|        | Port rise and fall time (high drive strength)                                                               |      |      |                  | 4     |
|        | Slew disabled                                                                                               |      |      |                  |       |
|        | • 1.71 ≤ V <sub>DD</sub> ≤ 2.7V                                                                             | _    | 12   | ns               |       |
|        | • 2.7 ≤ V <sub>DD</sub> ≤ 3.6V                                                                              | _    | 6    | ns               |       |
|        | Slew enabled                                                                                                |      |      |                  |       |
|        | • 1.71 ≤ V <sub>DD</sub> ≤ 2.7V                                                                             | _    | 36   | ns               |       |
|        | • 2.7 ≤ V <sub>DD</sub> ≤ 3.6V                                                                              | _    | 24   | ns               |       |
|        | Port rise and fall time (low drive strength)                                                                |      |      |                  | 5     |
|        | Slew disabled                                                                                               |      |      |                  |       |



| Symbol | Description                     | Min. | Max. | Unit | Notes |
|--------|---------------------------------|------|------|------|-------|
|        | • 1.71 ≤ V <sub>DD</sub> ≤ 2.7V | _    | 12   | ns   |       |
|        | • 2.7 ≤ V <sub>DD</sub> ≤ 3.6V  | _    | 6    | ns   |       |
|        | Slew enabled                    |      |      |      |       |
|        | • 1.71 ≤ V <sub>DD</sub> ≤ 2.7V | _    | 36   | ns   |       |
|        | • 2.7 ≤ V <sub>DD</sub> ≤ 3.6V  | _    | 24   | ns   |       |

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75 pF load
- 5. 15 pF load

# 2.4 Thermal specifications

# 2.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

| Symbol         | Description              | Min. | Max. | Unit |
|----------------|--------------------------|------|------|------|
| T <sub>J</sub> | Die junction temperature | -40  | 125  | °C   |
| T <sub>A</sub> | Ambient temperature      | -40  | 105  | °C   |

### 2.4.2 Thermal attributes

| Board type        | Symbol           | Description                                                  | 64 LQFP | Unit | Notes |
|-------------------|------------------|--------------------------------------------------------------|---------|------|-------|
| Single-layer (1s) | R <sub>eJA</sub> | Thermal resistance, junction to ambient (natural convection) | 59      | °C/W | 1     |
| Four-layer (2s2p) | R <sub>eJA</sub> | Thermal resistance, junction to ambient (natural convection) | 41      | °C/W | 1     |



#### Peripheral operating requirements and behaviors

| Board type        | Symbol            | Description                                                                                     | 64 LQFP | Unit | Notes |
|-------------------|-------------------|-------------------------------------------------------------------------------------------------|---------|------|-------|
| Single-layer (1s) | R <sub>eJMA</sub> | Thermal<br>resistance,<br>junction to<br>ambient (200 ft./<br>min. air speed)                   | 48      | °C/W | 1     |
| Four-layer (2s2p) | R <sub>ӨЈМА</sub> | Thermal<br>resistance,<br>junction to<br>ambient (200 ft./<br>min. air speed)                   | 35      | °C/W | 1     |
| _                 | $R_{\theta JB}$   | Thermal resistance, junction to board                                                           | 23      | °C/W | 2     |
| _                 | R <sub>eJC</sub>  | Thermal resistance, junction to case                                                            | 11      | °C/W | 3     |
| _                 | $\Psi_{ m JT}$    | Thermal characterization parameter, junction to package top outside center (natural convection) | 3       | °C/W | 4     |

#### **Notes**

- 1. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)*, or EIA/ JEDEC Standard JESD51-6, *Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air)*.
- 2. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)*.

# 3 Peripheral operating requirements and behaviors



### 3.1 Core modules

# 3.1.1 Debug trace timing specifications

Table 12. Debug trace operating behaviors

| Symbol           | Description              | Min.                     | Max. | Unit |
|------------------|--------------------------|--------------------------|------|------|
| T <sub>cyc</sub> | Clock period             | Frequency<br>(limited to | MHz  |      |
| T <sub>wl</sub>  | Low pulse width          | 2                        | _    | ns   |
| T <sub>wh</sub>  | High pulse width         | 2                        | _    | ns   |
| T <sub>r</sub>   | Clock and data rise time | _                        | 3    | ns   |
| T <sub>f</sub>   | Clock and data fall time | _                        | 3    | ns   |
| Ts               | Data setup               | 3                        | _    | ns   |
| T <sub>h</sub>   | Data hold                | 2                        | _    | ns   |



Figure 5. TRACE\_CLKOUT specifications



Figure 6. Trace data specifications

# 3.1.2 JTAG electricals

Table 13. JTAG limited voltage range electricals

| Symbol | Description                 | Min. | Max. | Unit |
|--------|-----------------------------|------|------|------|
|        | Operating voltage           | 2.7  | 3.6  | V    |
| J1     | TCLK frequency of operation |      |      | MHz  |



Table 13. JTAG limited voltage range electricals (continued)

| Symbol | Description                                        | Min. | Max. | Unit |
|--------|----------------------------------------------------|------|------|------|
|        | Boundary Scan                                      | 0    | 10   |      |
|        | JTAG and CJTAG                                     | 0    | 25   |      |
|        | Serial Wire Debug                                  | 0    | 50   |      |
| J2     | TCLK cycle period                                  | 1/J1 | _    | ns   |
| J3     | TCLK clock pulse width                             |      |      |      |
|        | Boundary Scan                                      | 50   | _    | ns   |
|        | JTAG and CJTAG                                     | 20   | _    | ns   |
|        | Serial Wire Debug                                  | 10   | _    | ns   |
| J4     | TCLK rise and fall times                           | _    | 3    | ns   |
| J5     | Boundary scan input data setup time to TCLK rise   | 20   | _    | ns   |
| J6     | Boundary scan input data hold time after TCLK rise | 2.6  | _    | ns   |
| J7     | TCLK low to boundary scan output data valid        | _    | 25   | ns   |
| J8     | TCLK low to boundary scan output high-Z            | _    | 25   | ns   |
| J9     | TMS, TDI input data setup time to TCLK rise        | 8    | _    | ns   |
| J10    | TMS, TDI input data hold time after TCLK rise      | 1    | _    | ns   |
| J11    | TCLK low to TDO data valid                         | _    | 17   | ns   |
| J12    | TCLK low to TDO high-Z                             | _    | 17   | ns   |
| J13    | TRST assert time                                   | 100  | _    | ns   |
| J14    | TRST setup time (negation) to TCLK high            | 8    | _    | ns   |

Table 14. JTAG full voltage range electricals

| Symbol | Description                                        | Min. | Max. | Unit |
|--------|----------------------------------------------------|------|------|------|
|        | Operating voltage                                  | 1.71 | 3.6  | V    |
| J1     | TCLK frequency of operation                        |      |      | MHz  |
|        | Boundary Scan                                      | 0    | 10   |      |
|        | JTAG and CJTAG                                     | 0    | 20   |      |
|        | Serial Wire Debug                                  | 0    | 40   |      |
| J2     | TCLK cycle period                                  | 1/J1 | _    | ns   |
| J3     | TCLK clock pulse width                             |      |      |      |
|        | Boundary Scan                                      | 50   | _    | ns   |
|        | JTAG and CJTAG                                     | 25   | _    | ns   |
|        | Serial Wire Debug                                  | 12.5 | _    | ns   |
| J4     | TCLK rise and fall times                           | _    | 3    | ns   |
| J5     | Boundary scan input data setup time to TCLK rise   | 20   | _    | ns   |
| J6     | Boundary scan input data hold time after TCLK rise | 0    | _    | ns   |



| Table 14. | JTAG full voltage range | electricals ( | (continued) | ) |
|-----------|-------------------------|---------------|-------------|---|
|-----------|-------------------------|---------------|-------------|---|

| Symbol | Description                                   | Min. | Max. | Unit |
|--------|-----------------------------------------------|------|------|------|
| J7     | TCLK low to boundary scan output data valid   | _    | 25   | ns   |
| J8     | TCLK low to boundary scan output high-Z       | _    | 25   | ns   |
| J9     | TMS, TDI input data setup time to TCLK rise   | 8    | _    | ns   |
| J10    | TMS, TDI input data hold time after TCLK rise | 1.4  | _    | ns   |
| J11    | TCLK low to TDO data valid                    | _    | 22.1 | ns   |
| J12    | TCLK low to TDO high-Z                        | _    | 22.1 | ns   |
| J13    | TRST assert time                              | 100  | _    | ns   |
| J14    | TRST setup time (negation) to TCLK high       | 8    | _    | ns   |



Figure 7. Test clock input timing



Figure 8. Boundary scan (JTAG) timing





**Figure 9. Test Access Port timing** 



Figure 10. TRST timing

# 3.2 System modules

There are no specifications necessary for the device's system modules.

### 3.3 Clock modules



# 3.3.1 MCG specifications

Table 15. MCG specifications

| Symbol                        | Description                             |                                                                  | Min.                            | Тур.   | Max.    | Unit              | Notes           |
|-------------------------------|-----------------------------------------|------------------------------------------------------------------|---------------------------------|--------|---------|-------------------|-----------------|
| f <sub>ints_ft</sub>          |                                         | frequency (slow clock) —<br>t nominal VDD and 25 °C              | _                               | 32.768 | _       | kHz               |                 |
| f <sub>ints_t</sub>           | Internal reference user trimmed         | frequency (slow clock) —                                         | 31.25                           | _      | 39.0625 | kHz               |                 |
| I <sub>ints</sub>             | Internal reference                      | (slow clock) current                                             | _                               | 20     | _       | μΑ                |                 |
| $\Delta_{	ext{fdco\_res\_t}}$ |                                         | med average DCO output<br>voltage and temperature —<br>d SCFTRIM | _                               | ± 0.3  | ± 0.6   | %f <sub>dco</sub> | 1               |
| $\Delta f_{dco\_res\_t}$      |                                         | med average DCO output voltage and temperature — ly              | _                               | ± 0.2  | ± 0.5   | %f <sub>dco</sub> | 1               |
| $\Delta f_{dco\_t}$           |                                         | trimmed average DCO output<br>Itage and temperature              | _                               | ± 0.5  | ± 2     | %f <sub>dco</sub> | 1,2             |
| $\Delta f_{dco\_t}$           |                                         | trimmed average DCO output ed voltage and temperature            | _                               | ± 0.3  | ± 1     | %f <sub>dco</sub> | 1               |
| f <sub>intf_ft</sub>          |                                         | frequency (fast clock) —<br>t nominal VDD and 25°C               | _                               | 4      | _       | MHz               |                 |
| f <sub>intf_t</sub>           |                                         | frequency (fast clock) —<br>ominal VDD and 25 °C                 | 3                               | _      | 5       | MHz               |                 |
| I <sub>intf</sub>             | Internal reference (fast clock) current |                                                                  | _                               | 25     | _       | μΑ                |                 |
| f <sub>loc_low</sub>          | Loss of external c<br>RANGE = 00        | lock minimum frequency —                                         | (3/5) x<br>f <sub>ints_t</sub>  | _      | _       | kHz               |                 |
| f <sub>loc_high</sub>         | Loss of external c<br>RANGE = 01, 10,   | lock minimum frequency —<br>or 11                                | (16/5) x<br>f <sub>ints_t</sub> | _      | _       | kHz               |                 |
|                               |                                         | FL                                                               | L                               |        |         |                   |                 |
| f <sub>fII_ref</sub>          | FLL reference free                      | quency range                                                     | 31.25                           | _      | 39.0625 | kHz               |                 |
| f <sub>dco</sub>              | DCO output frequency range              | Low range (DRS=00) $640 \times f_{fll\_ref}$                     | 20                              | 20.97  | 25      | MHz               | 3, 4            |
|                               |                                         | Mid range (DRS=01) $1280 \times f_{fll\_ref}$                    | 40                              | 41.94  | 50      | MHz               |                 |
|                               |                                         | Mid-high range (DRS=10)                                          | 60                              | 62.91  | 75      | MHz               | -               |
|                               |                                         | $1920 \times f_{fll ref}$                                        |                                 |        |         |                   |                 |
|                               |                                         | High range (DRS=11)                                              | 80                              | 83.89  | 100     | MHz               | -               |
|                               |                                         | $2560 \times f_{fll\_ref}$                                       |                                 |        |         |                   |                 |
| dco_t_DMX3                    | DCO output frequency                    | Low range (DRS=00) $732 \times f_{\text{fll\_ref}}$              | _                               | 23.99  | _       | MHz               | 5, <sup>6</sup> |
|                               |                                         | Mid range (DRS=01)                                               | _                               | 47.97  | _       | MHz               | _               |
|                               |                                         | 1464 × f <sub>fll_ref</sub>                                      |                                 |        |         | 12                |                 |
|                               |                                         | Mid-high range (DRS=10)                                          | _                               | 71.99  | _       | MHz               | 1               |





Table 15. MCG specifications (continued)

| Symbol                   | Description                                                                                                               |                                                                                           | Min.   | Тур.  | Max.                                                          | Unit | Notes |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------|-------|---------------------------------------------------------------|------|-------|
|                          |                                                                                                                           | 2197 × f <sub>fll_ref</sub>                                                               |        |       |                                                               |      |       |
|                          |                                                                                                                           | High range (DRS=11)                                                                       | _      | 95.98 | _                                                             | MHz  |       |
|                          |                                                                                                                           | $2929 \times f_{fll\_ref}$                                                                |        |       |                                                               |      |       |
| J <sub>cyc_fll</sub>     | FLL period jitter                                                                                                         |                                                                                           | _      | 180   | _                                                             | ps   |       |
|                          | <ul> <li>f<sub>DCO</sub> = 48 M</li> <li>f<sub>DCO</sub> = 98 M</li> </ul>                                                |                                                                                           | _      | 150   | _                                                             |      |       |
| t <sub>fll_acquire</sub> | FLL target freque                                                                                                         | ncy acquisition time                                                                      | _      | _     | 1                                                             | ms   | 7     |
|                          |                                                                                                                           | Р                                                                                         | LL     |       |                                                               |      | •     |
| f <sub>vco</sub>         | VCO operating fro                                                                                                         | equency                                                                                   | 48.0   | _     | 120                                                           | MHz  |       |
| I <sub>pll</sub>         | PLL operating cur<br>• PLL @ 96 N<br>= 2 MHz, V                                                                           | rrent<br>MHz (f <sub>osc_hi_1</sub> = 8 MHz, f <sub>pll_ref</sub><br>DIV multiplier = 48) | _      | 1060  | _                                                             | μА   | 8     |
| I <sub>pll</sub>         | PLL operating current  • PLL @ 48 MHz (f <sub>osc_hi_1</sub> = 8 MHz, f <sub>pll_ref</sub> = 2 MHz, VDIV multiplier = 24) |                                                                                           | _      | 600   | _                                                             | μА   | 8     |
| f <sub>pll_ref</sub>     | PLL reference fre                                                                                                         | quency range                                                                              | 2.0    | _     | 4.0                                                           | MHz  |       |
| J <sub>cyc_pll</sub>     | PLL period jitter (                                                                                                       | RMS)                                                                                      |        |       |                                                               |      | 9     |
|                          | • f <sub>vco</sub> = 48 MI                                                                                                | Hz                                                                                        | _      | 120   | _                                                             | ps   |       |
|                          | • f <sub>vco</sub> = 120 N                                                                                                | 1Hz                                                                                       | _      | 75    | _                                                             | ps   |       |
| J <sub>acc_pll</sub>     | PLL accumulated                                                                                                           | jitter over 1µs (RMS)                                                                     |        |       |                                                               |      | 9     |
|                          | • f <sub>vco</sub> = 48 Mi                                                                                                | Hz                                                                                        | _      | 1350  | _                                                             | ps   |       |
|                          | • f <sub>vco</sub> = 120 N                                                                                                | 1Hz                                                                                       | _      | 600   | _                                                             | ps   |       |
| D <sub>lock</sub>        | Lock entry freque                                                                                                         | ncy tolerance                                                                             | ± 1.49 | _     | ± 2.98                                                        | %    |       |
| D <sub>unl</sub>         | Lock exit frequen                                                                                                         | cy tolerance                                                                              | ± 4.47 | _     | ± 5.97                                                        | %    |       |
| t <sub>pll_lock</sub>    | Lock detector det                                                                                                         | ection time                                                                               | _      | _     | 150 × 10 <sup>-6</sup><br>+ 1075(1/<br>f <sub>pll_ref</sub> ) | S    | 10    |

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. 2 V <= VDD <= 3.6 V.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- 4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf<sub>dco\_t</sub>) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.



# 3.3.2 Oscillator electrical specifications

# 3.3.2.1 Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications

| Symbol             | Description                                                | Min. | Тур. | Max. | Unit | Notes |
|--------------------|------------------------------------------------------------|------|------|------|------|-------|
| $V_{DD}$           | Supply voltage                                             | 1.71 | _    | 3.6  | V    |       |
| I <sub>DDOSC</sub> | Supply current — low-power mode (HGO=0)                    |      |      |      |      | 1     |
|                    | • 32 kHz                                                   | _    | 600  | _    | nA   |       |
|                    | • 4 MHz                                                    | _    | 200  | _    | μA   |       |
|                    | • 8 MHz (RANGE=01)                                         | _    | 300  | _    | μA   |       |
|                    | • 16 MHz                                                   | _    | 950  | _    | μΑ   |       |
|                    | • 24 MHz                                                   | _    | 1.2  | _    | mA   |       |
|                    | • 32 MHz                                                   | _    | 1.5  | _    | mA   |       |
| I <sub>DDOSC</sub> | Supply current — high gain mode (HGO=1)                    |      |      |      |      | 1     |
|                    | • 32 kHz                                                   | _    | 7.5  | _    | μA   |       |
|                    | • 4 MHz                                                    | _    | 500  | _    | μA   |       |
|                    | • 8 MHz (RANGE=01)                                         | _    | 650  | _    | μA   |       |
|                    | • 16 MHz                                                   | _    | 2.5  | _    | mA   |       |
|                    | • 24 MHz                                                   | _    | 3.25 | _    | mA   |       |
|                    | • 32 MHz                                                   | _    | 4    | _    | mA   |       |
| C <sub>x</sub>     | EXTAL load capacitance                                     | _    | _    | _    |      | 2, 3  |
| Су                 | XTAL load capacitance                                      | _    | _    | _    |      | 2, 3  |
| R <sub>F</sub>     | Feedback resistor — low-frequency, low-power mode (HGO=0)  | _    | _    | _    | ΜΩ   | 2, 4  |
|                    | Feedback resistor — low-frequency, high-gain mode (HGO=1)  | _    | 10   | _    | ΜΩ   |       |
|                    | Feedback resistor — high-frequency, low-power mode (HGO=0) | _    | _    | _    | ΜΩ   |       |
|                    | Feedback resistor — high-frequency, high-gain mode (HGO=1) | _    | 1    | _    | ΜΩ   |       |
| R <sub>S</sub>     | Series resistor — low-frequency, low-power mode (HGO=0)    | _    | _    | _    | kΩ   |       |
|                    | Series resistor — low-frequency, high-gain mode (HGO=1)    | _    | 200  | _    | kΩ   |       |
|                    | Series resistor — high-frequency, low-power mode (HGO=0)   | _    | _    | _    | kΩ   |       |
|                    | Series resistor — high-frequency, high-gain mode (HGO=1)   |      |      |      |      |       |



Table 16. Oscillator DC electrical specifications (continued)

| Symbol                       | Description                                                                                      | Min. | Тур.            | Max. | Unit | Notes |
|------------------------------|--------------------------------------------------------------------------------------------------|------|-----------------|------|------|-------|
|                              |                                                                                                  | _    | 0               | _    | kΩ   |       |
| V <sub>pp</sub> <sup>5</sup> | Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)  | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)  | _    | V <sub>DD</sub> | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) | _    | V <sub>DD</sub> | _    | V    |       |

- 1.  $V_{DD}$ =3.3 V, Temperature =25 °C, Internal capacitance = 20 pf
- 2. See crystal or resonator manufacturer's recommendation
- 3.  $C_x, C_y$  can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R<sub>F</sub> is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

# 3.3.2.2 Oscillator frequency specifications Table 17. Oscillator frequency specifications

| Symbol                | Description                                                                                     | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| f <sub>osc_lo</sub>   | Oscillator crystal or resonator frequency — low-frequency mode (MCG_C2[RANGE]=00)               | 32   | _    | 40   | kHz  |       |
| f <sub>osc_hi_1</sub> | Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)  | 3    | _    | 8    | MHz  |       |
| f <sub>osc_hi_2</sub> | Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) | 8    | _    | 32   | MHz  |       |
| f <sub>ec_extal</sub> | Input clock frequency (external clock mode)                                                     | _    | _    | 50   | MHz  | 1, 2  |
| t <sub>dc_extal</sub> | Input clock duty cycle (external clock mode)                                                    | 40   | 50   | 60   | %    |       |
| t <sub>cst</sub>      | Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)                             | _    | 750  | _    | ms   | 3, 4  |
|                       | Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)                             | _    | 250  | _    | ms   |       |
|                       | Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)          | _    | 0.6  | _    | ms   |       |
|                       | Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)          | _    | 1    | _    | ms   |       |

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.



- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG\_S register being set.

#### NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

### 3.3.3 32 kHz oscillator electrical characteristics

# 3.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications

| Symbol                       | Description                                   | Min. | Тур. | Max. | Unit |
|------------------------------|-----------------------------------------------|------|------|------|------|
| V <sub>BAT</sub>             | Supply voltage                                | 1.71 | _    | 3.6  | V    |
| R <sub>F</sub>               | Internal feedback resistor                    | _    | 100  |      | ΜΩ   |
| C <sub>para</sub>            | Parasitical capacitance of EXTAL32 and XTAL32 | _    | 5    | 7    | pF   |
| V <sub>pp</sub> <sup>1</sup> | Peak-to-peak amplitude of oscillation         | _    | 0.6  |      | V    |

<sup>1.</sup> When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

# 3.3.3.2 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications

| Symbol                  | Description                               | Min. | Тур.   | Max.             | Unit | Notes |
|-------------------------|-------------------------------------------|------|--------|------------------|------|-------|
| f <sub>osc_lo</sub>     | Oscillator crystal                        | _    | 32.768 | _                | kHz  |       |
| t <sub>start</sub>      | Crystal start-up time                     | _    | 1000   | _                | ms   | 1     |
| V <sub>ec_extal32</sub> | Externally provided input clock amplitude | 700  | 1      | V <sub>BAT</sub> | mV   | 2, 3  |

- 1. Proper PC board layout procedures must be followed to achieve specifications.
- 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.
- The parameter specified is a peak-to-peak value and V<sub>IH</sub> and V<sub>IL</sub> specifications do not apply. The voltage of the applied clock must be within the range of V<sub>SS</sub> to V<sub>BAT</sub>.

# 3.4 Memories and memory interfaces



## 3.4.1 Flash (FTFE) electrical specifications

This section describes the electrical characteristics of the FTFE module.

### 3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 20. NVM program/erase timing specifications

| Symbol                    | Description                                    | Min. | Тур. | Max. | Unit | Notes |
|---------------------------|------------------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm8</sub>       | Program Phrase high-voltage time               | _    | 7.5  | 18   | μs   |       |
| t <sub>hversscr</sub>     | Erase Flash Sector high-voltage time           | _    | 13   | 113  | ms   | 1     |
| t <sub>hversblk128k</sub> | Erase Flash Block high-voltage time for 128 KB | _    | 104  | 904  | ms   | 1     |
| t <sub>hversblk512k</sub> | Erase Flash Block high-voltage time for 512 KB | _    | 416  | 3616 | ms   | 1     |

<sup>1.</sup> Maximum time based on expectations at cycling end-of-life.

# 3.4.1.2 Flash timing specifications — commands Table 21. Flash command timing specifications

| Symbol                  | Description                                 | Min. | Тур. | Max. | Unit | Notes |
|-------------------------|---------------------------------------------|------|------|------|------|-------|
|                         | Read 1s Block execution time                |      |      |      |      |       |
| t <sub>rd1blk128k</sub> | 128 KB data flash                           | _    | _    | 0.5  | ms   |       |
| t <sub>rd1blk512k</sub> | 512 KB program flash                        | _    | _    | 1.8  | ms   |       |
| t <sub>rd1sec4k</sub>   | Read 1s Section execution time (4 KB flash) | _    | _    | 100  | μs   | 1     |
| t <sub>pgmchk</sub>     | Program Check execution time                |      | _    | 95   | μs   | 1     |
| t <sub>rdrsrc</sub>     | Read Resource execution time                |      | _    | 40   | μs   | 1     |
| t <sub>pgm8</sub>       | Program Phrase execution time               |      | 90   | 150  | μs   |       |
|                         | Erase Flash Block execution time            |      |      |      |      | 2     |
| t <sub>ersblk128k</sub> | 128 KB data flash                           | _    | 110  | 925  | ms   |       |
| t <sub>ersblk512k</sub> | 512 KB program flash                        | _    | 435  | 3700 | ms   |       |
| t <sub>ersscr</sub>     | Erase Flash Sector execution time           | _    | 15   | 115  | ms   | 2     |
| t <sub>pgmsec1k</sub>   | Program Section execution time (1KB flash)  | _    | 5    | _    | ms   |       |
|                         | Read 1s All Blocks execution time           |      |      |      |      |       |
| t <sub>rd1allx</sub>    | FlexNVM devices                             | _    | _    | 2.2  | ms   |       |
| t <sub>rdonce</sub>     | Read Once execution time                    | _    | _    | 30   | μs   | 1     |
| t <sub>pgmonce</sub>    | Program Once execution time                 | _    | 90   | _    | μs   |       |
| t <sub>ersall</sub>     | Erase All Blocks execution time             | _    | 870  | 7400 | ms   | 2     |
| t <sub>vfykey</sub>     | Verify Backdoor Access Key execution time   | _    | _    | 30   | μs   | 1     |



Table 21. Flash command timing specifications (continued)

| Symbol                   | Description                                            | Min. | Тур. | Max. | Unit | Notes |
|--------------------------|--------------------------------------------------------|------|------|------|------|-------|
|                          | Swap Control execution time                            |      |      |      |      |       |
| t <sub>swapx01</sub>     | control code 0x01                                      | _    | 200  | _    | μs   |       |
| t <sub>swapx02</sub>     | control code 0x02                                      | _    | 90   | 150  | μs   |       |
| t <sub>swapx04</sub>     | control code 0x04                                      | _    | 90   | 150  | μs   |       |
| t <sub>swapx08</sub>     | control code 0x08                                      | _    | _    | 30   | μs   |       |
|                          | Program Partition for EEPROM execution time            |      |      |      |      |       |
| t <sub>pgmpart32k</sub>  | 32 KB EEPROM backup                                    | _    | 70   | _    | ms   |       |
| t <sub>pgmpart128k</sub> | 128 KB EEPROM backup                                   | _    | 75   | _    | ms   |       |
|                          | Set FlexRAM Function execution time:                   |      |      |      |      |       |
| t <sub>setramff</sub>    | Control Code 0xFF                                      | _    | 70   | _    | μs   |       |
| t <sub>setram32k</sub>   | 32 KB EEPROM backup                                    | _    | 0.8  | 1.2  | ms   |       |
| t <sub>setram64k</sub>   | 64 KB EEPROM backup                                    | _    | 1.3  | 1.9  | ms   |       |
| t <sub>setram128k</sub>  | 128 KB EEPROM backup                                   | _    | 2.4  | 3.1  | ms   |       |
| t <sub>eewr8bers</sub>   | Byte-write to erased FlexRAM location execution time   | _    | 175  | 275  | μs   | 3     |
|                          | Byte-write to FlexRAM execution time:                  |      |      |      |      |       |
| t <sub>eewr8b32k</sub>   | 32 KB EEPROM backup                                    | _    | 385  | 1700 | μs   |       |
| t <sub>eewr8b64k</sub>   | 64 KB EEPROM backup                                    | _    | 475  | 2000 | μs   |       |
| t <sub>eewr8b128k</sub>  | 128 KB EEPROM backup                                   | _    | 650  | 2350 | μs   |       |
| t <sub>eewr16bers</sub>  | 16-bit write to erased FlexRAM location execution time | _    | 175  | 275  | μs   |       |
|                          | 16-bit write to FlexRAM execution time:                |      |      |      |      |       |
| t <sub>eewr16b32k</sub>  | 32 KB EEPROM backup                                    | _    | 385  | 1700 | μs   |       |
| t <sub>eewr16b64k</sub>  | 64 KB EEPROM backup                                    | _    | 475  | 2000 | μs   |       |
| t <sub>eewr16b128k</sub> | 128 KB EEPROM backup                                   | _    | 650  | 2350 | μs   |       |
| t <sub>eewr32bers</sub>  | 32-bit write to erased FlexRAM location execution time | _    | 360  | 550  | μs   |       |
|                          | 32-bit write to FlexRAM execution time:                |      |      |      |      |       |
| t <sub>eewr32b32k</sub>  | 32 KB EEPROM backup                                    | _    | 630  | 2000 | μs   |       |
| t <sub>eewr32b64k</sub>  | 64 KB EEPROM backup                                    | _    | 810  | 2250 | μs   |       |
| t <sub>eewr32b128k</sub> | 128 KB EEPROM backup                                   | _    | 1200 | 2650 | μs   |       |
|                          | 1                                                      | 1    | 1    | 1    | 1    |       |

<sup>1.</sup> Assumes 25MHz or greater flash clock frequency.

<sup>2.</sup> Maximum times for erase parameters based on expectations at cycling end-of-life.

<sup>3.</sup> For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.



# 3.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors

| Symbol              | Description                                                                       | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------------------------------------------------------|------|------|------|------|
| I <sub>DD_PGM</sub> | Average current<br>adder during high<br>voltage flash<br>programming<br>operation | _    | 3.5  | 7.5  | mA   |
| I <sub>DD_ERS</sub> | Average current<br>adder during high<br>voltage flash erase<br>operation          | _    | 1.5  | 4.0  | mA   |

## 3.4.1.4 Reliability specifications

### Table 23. NVM reliability specifications

| Symbol                   | Description                                  | Min.  | Typ. <sup>1</sup> | Max. | Unit   | Notes |
|--------------------------|----------------------------------------------|-------|-------------------|------|--------|-------|
|                          | Program F                                    | lash  |                   |      |        |       |
| t <sub>nvmretp10k</sub>  | Data retention after up to 10 K cycles       | 5     | 50                | _    | years  |       |
| t <sub>nvmretp1k</sub>   | Data retention after up to 1 K cycles        | 20    | 100               | _    | years  |       |
| n <sub>nvmcycp</sub>     | Cycling endurance                            | 10 K  | 50 K              | _    | cycles | 2     |
|                          | Data Flas                                    | sh    |                   |      | •      |       |
| t <sub>nvmretd10k</sub>  | Data retention after up to 10 K cycles       | 5     | 50                | _    | years  |       |
| t <sub>nvmretd1k</sub>   | Data retention after up to 1 K cycles        | 20    | 100               | _    | years  |       |
| n <sub>nvmcycd</sub>     | Cycling endurance                            | 10 K  | 50 K              | _    | cycles | 2     |
|                          | FlexRAM as El                                | EPROM |                   |      |        |       |
| t <sub>nvmretee100</sub> | Data retention up to 100% of write endurance | 5     | 50                | _    | years  |       |
| t <sub>nvmretee10</sub>  | Data retention up to 10% of write endurance  | 20    | 100               | _    | years  |       |
| n <sub>nvmcycee</sub>    | Cycling endurance for EEPROM backup          | 20 K  | 50 K              | _    | cycles | 2     |
|                          | Write endurance                              |       |                   |      |        | 3     |
| n <sub>nvmwree16</sub>   | EEPROM backup to FlexRAM ratio = 16          | 70 K  | 175 K             | _    | writes |       |
| n <sub>nvmwree128</sub>  | EEPROM backup to FlexRAM ratio = 128         | 630 K | 1.6 M             | _    | writes |       |
| n <sub>nvmwree512</sub>  | EEPROM backup to FlexRAM ratio = 512         | 2.5 M | 6.4 M             | _    | writes |       |
| n <sub>nvmwree2k</sub>   | EEPROM backup to FlexRAM ratio = 2,048       | 10 M  | 25 M              | _    | writes |       |
| n <sub>nvmwree4k</sub>   | EEPROM backup to FlexRAM ratio = 4,096       | 20 M  | 50 M              | _    | writes |       |

Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

<sup>2.</sup> Cycling endurance represents number of program/erase cycles at -40°C  $\leq$  T<sub>i</sub>  $\leq$  125°C.

<sup>3.</sup> Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.



### 3.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFE to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes\_subsystem = 
$$\frac{\text{EEPROM} - 2 \times \text{EEESPLIT} \times \text{EEESIZE}}{\text{EEESPLIT} \times \text{EEESIZE}} \times \text{Write\_efficiency} \times n_{\text{nvmcycee}}$$

#### where

- Writes\_subsystem minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)
- EEPROM allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command
- EEESPLIT FlexRAM split factor for subsystem; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write\_efficiency
  - 0.25 for 8-bit writes to FlexRAM
  - 0.50 for 16-bit or 32-bit writes to FlexRAM
- n<sub>nvmcycee</sub> EEPROM-backup cycling endurance

#### Peripheral operating requirements and behaviors



Figure 11. EEPROM backup writes to FlexRAM

# 3.4.2 EzPort switching specifications

Table 24. EzPort switching specifications

| Num  | Description                                              | Min.                    | Max.                | Unit |
|------|----------------------------------------------------------|-------------------------|---------------------|------|
|      | Operating voltage                                        | 1.71                    | 3.6                 | V    |
| EP1  | EZP_CK frequency of operation (all commands except READ) | _                       | f <sub>SYS</sub> /2 | MHz  |
| EP1a | EZP_CK frequency of operation (READ command)             | _                       | f <sub>SYS</sub> /8 | MHz  |
| EP2  | EZP_CS negation to next EZP_CS assertion                 | 2 x t <sub>EZP_CK</sub> | _                   | ns   |
| EP3  | EZP_CS input valid to EZP_CK high (setup)                | 5                       | _                   | ns   |
| EP4  | EZP_CK high to EZP_CS input invalid (hold)               | 5                       | _                   | ns   |
| EP5  | EZP_D input valid to EZP_CK high (setup)                 | 2                       | _                   | ns   |
| EP6  | EZP_CK high to EZP_D input invalid (hold)                | 5                       | _                   | ns   |
| EP7  | EZP_CK low to EZP_Q output valid                         | _                       | 18                  | ns   |
| EP8  | EZP_CK low to EZP_Q output invalid (hold)                | 0                       | _                   | ns   |
| EP9  | EZP_CS negation to EZP_Q tri-state                       | _                       | 12                  | ns   |





Figure 12. EzPort Timing Diagram

## 3.4.3 Flexbus switching specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB\_CLK. The FB\_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB\_CLK). All other timing relationships can be derived from these values.

| Num | Description                             | Min. | Max.   | Unit | Notes |
|-----|-----------------------------------------|------|--------|------|-------|
|     | Operating voltage                       | 2.7  | 3.6    | V    |       |
|     | Frequency of operation                  | _    | FB_CLK | MHz  |       |
| FB1 | Clock period                            | 20   | _      | ns   |       |
| FB2 | Address, data, and control output valid | _    | 11.5   | ns   | 1     |
| FB3 | Address, data, and control output hold  | 0.5  | _      | ns   | 1     |
| FB4 | Data and FB_TA input setup              | 8.5  | _      | ns   | 2     |
| FB5 | Data and FB_TA input hold               | 0.5  | _      | ns   | 2     |

Table 25. Flexbus limited voltage range switching specifications

<sup>1.</sup> Specification is valid for all FB\_AD[31:0], FB\_BE/BWEn, FB\_CSn, FB\_OE, FB\_R/W,FB\_TBST, FB\_TSIZ[1:0], FB\_ALE, and FB\_TS.



#### Peripheral operating requirements and behaviors

2. Specification is valid for all FB\_AD[31:0] and  $\overline{\text{FB}_{\text{TA}}}$ .

Table 26. Flexbus full voltage range switching specifications

| Num | Description                             | Min.     | Max.   | Unit | Notes |
|-----|-----------------------------------------|----------|--------|------|-------|
|     | Operating voltage                       | 1.71     | 3.6    | V    |       |
|     | Frequency of operation                  | _        | FB_CLK | MHz  |       |
| FB1 | Clock period                            | 1/FB_CLK | _      | ns   |       |
| FB2 | Address, data, and control output valid | _        | 13.5   | ns   | 1     |
| FB3 | Address, data, and control output hold  | 0        | _      | ns   | 1     |
| FB4 | Data and FB_TA input setup              | 13.7     | _      | ns   | 2     |
| FB5 | Data and FB_TA input hold               | 0.5      | _      | ns   | 2     |

<sup>1.</sup> Specification is valid for all FB\_AD[31:0], FB\_BE/BWEn, FB\_CSn, FB\_OE, FB\_R/W,FB\_TBST, FB\_TSIZ[1:0], FB\_ALE, and FB\_TS.

<sup>2.</sup> Specification is valid for all FB\_AD[31:0] and  $\overline{\text{FB}}$ TA.





Figure 13. FlexBus read timing diagram





Figure 14. FlexBus write timing diagram

# 3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

# 3.6 Analog



# 3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the differential pins ADCx\_DP0, ADCx\_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

# 3.6.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

| Symbol            | Description                               | Conditions                                                     | Min.      | Typ. <sup>1</sup> | Max.             | Unit | Notes |
|-------------------|-------------------------------------------|----------------------------------------------------------------|-----------|-------------------|------------------|------|-------|
| $V_{DDA}$         | Supply voltage                            | Absolute                                                       | 1.71      | _                 | 3.6              | V    | _     |
| $\Delta V_{DDA}$  | Supply voltage                            | Delta to V <sub>DD</sub> (V <sub>DD</sub> – V <sub>DDA</sub> ) | -100      | 0                 | +100             | mV   | 2     |
| $\Delta V_{SSA}$  | Ground voltage                            | Delta to V <sub>SS</sub> (V <sub>SS</sub> – V <sub>SSA</sub> ) | -100      | 0                 | +100             | mV   | 2     |
| $V_{REFH}$        | ADC reference voltage high                |                                                                | 1.13      | $V_{DDA}$         | $V_{DDA}$        | V    |       |
| V <sub>REFL</sub> | ADC reference voltage low                 |                                                                | $V_{SSA}$ | V <sub>SSA</sub>  | V <sub>SSA</sub> | V    |       |
| V <sub>ADIN</sub> | Input voltage                             | 16-bit differential mode                                       | VREFL     | _                 | 31/32 *<br>VREFH | V    | _     |
|                   |                                           | All other modes                                                | VREFL     | _                 | VREFH            |      |       |
| C <sub>ADIN</sub> | Input                                     | 16-bit mode                                                    | _         | 8                 | 10               | pF   | _     |
|                   | capacitance                               | 8-bit / 10-bit / 12-bit<br>modes                               | _         | 4                 | 5                |      |       |
| R <sub>ADIN</sub> | Input series resistance                   |                                                                | _         | 2                 | 5                | kΩ   | _     |
| R <sub>AS</sub>   | Analog source<br>resistance<br>(external) | 13-bit / 12-bit modes<br>f <sub>ADCK</sub> < 4 MHz             | _         | _                 | 5                | kΩ   | 3     |
| f <sub>ADCK</sub> | ADC conversion clock frequency            | ≤ 13-bit mode                                                  | 1.0       | _                 | 18.0             | MHz  | 4     |
| f <sub>ADCK</sub> | ADC conversion clock frequency            | 16-bit mode                                                    | 2.0       | _                 | 12.0             | MHz  | 4     |
| C <sub>rate</sub> | ADC conversion                            | ≤ 13-bit modes                                                 |           |                   |                  |      | 5     |
|                   | rate                                      | No ADC hardware averaging                                      | 20.000    | _                 | 818.330          | Ksps |       |
|                   |                                           | Continuous conversions enabled, subsequent conversion time     |           |                   |                  |      |       |
| C <sub>rate</sub> | ADC conversion                            | 16-bit mode                                                    |           |                   |                  |      | 5     |
|                   | rate                                      | No ADC hardware averaging                                      | 37.037    | _                 | 461.467          | Ksps |       |



Table 27. 16-bit ADC operating conditions

| Symbol | Description | Conditions                                                 | Min. | Typ. <sup>1</sup> | Max. | Unit | Notes |
|--------|-------------|------------------------------------------------------------|------|-------------------|------|------|-------|
|        |             | Continuous conversions enabled, subsequent conversion time |      |                   |      |      |       |

- 1. Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25 °C, f<sub>ADCK</sub> = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had  $< 8 \Omega$  analog source resistance. The  $R_{AS}/C_{AS}$  time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.



Figure 15. ADC input impedance equivalency diagram

### 3.6.1.2 16-bit ADC electrical characteristics

Table 28. 16-bit ADC characteristics ( $V_{REFH} = V_{DDA}$ ,  $V_{REFL} = V_{SSA}$ )

| Symbol               | Description    | Conditions <sup>1</sup> | Min.  | Typ. <sup>2</sup> | Max. | Unit | Notes |
|----------------------|----------------|-------------------------|-------|-------------------|------|------|-------|
| I <sub>DDA_ADC</sub> | Supply current |                         | 0.215 | _                 | 1.7  | mA   | 3     |

Table continues on the next page...



Table 28. 16-bit ADC characteristics ( $V_{REFH} = V_{DDA}$ ,  $V_{REFL} = V_{SSA}$ ) (continued)

| Symbol             | Description                     | Conditions <sup>1</sup>            | Min.        | Typ. <sup>2</sup> | Max.            | Unit             | Notes                         |
|--------------------|---------------------------------|------------------------------------|-------------|-------------------|-----------------|------------------|-------------------------------|
|                    | ADC .                           | • ADLPC = 1, ADHSC = 0             | 1.2         | 2.4               | 3.9             | MHz              | t <sub>ADACK</sub> =          |
|                    | asynchronous clock source       | • ADLPC = 1, ADHSC = 1             | 2.4         | 4.0               | 6.1             | MHz              | 1/f <sub>ADACK</sub>          |
| f <sub>ADACK</sub> |                                 | • ADLPC = 0, ADHSC = 0             | 3.0         | 5.2               | 7.3             | MHz              |                               |
|                    |                                 | • ADLPC = 0, ADHSC = 1             | 4.4         | 6.2               | 9.5             | MHz              |                               |
|                    | Sample Time                     | See Reference Manual chapter for   | sample time | es                |                 |                  |                               |
| TUE                | Total                           | 12-bit modes                       | _           | ±4                | ±6.8            | LSB <sup>4</sup> | 5                             |
|                    | unadjusted error                | <ul><li>&lt;12-bit modes</li></ul> | _           | ±1.4              | ±2.1            |                  |                               |
| DNL                | Differential non-<br>linearity  | 12-bit modes                       | _           | ±0.7              | -1.1 to<br>+1.9 | LSB <sup>4</sup> | 5                             |
|                    |                                 | <ul><li>&lt;12-bit modes</li></ul> | _           | ±0.2              | -0.3 to 0.5     |                  |                               |
| INL                | Integral non-<br>linearity      | 12-bit modes                       | _           | ±1.0              | -2.7 to<br>+1.9 | LSB <sup>4</sup> | 5                             |
|                    |                                 | <ul><li>&lt;12-bit modes</li></ul> | _           | ±0.5              | -0.7 to<br>+0.5 |                  |                               |
| E <sub>FS</sub>    | Full-scale error                | 12-bit modes                       | _           | -4                | -5.4            | LSB <sup>4</sup> | V <sub>ADIN</sub> =           |
|                    |                                 | <ul><li>&lt;12-bit modes</li></ul> | _           | -1.4              | -1.8            |                  | V <sub>DDA</sub> <sup>5</sup> |
| EQ                 | Quantization                    | 16-bit modes                       | _           | -1 to 0           | _               | LSB <sup>4</sup> |                               |
|                    | error                           | <ul> <li>≤13-bit modes</li> </ul>  | _           | _                 | ±0.5            |                  |                               |
| ENOB               | Effective                       | 16-bit differential mode           |             |                   |                 | bits             | 6                             |
|                    | number of bits                  | • Avg = 32                         | 12.8        | 14.5              |                 | bits             |                               |
|                    |                                 | • Avg = 4                          | 11.9        | 13.8              | _               |                  |                               |
|                    |                                 | 40 his singular anadad maada       |             |                   | _               | bits             |                               |
|                    |                                 | 16-bit single-ended mode           |             |                   |                 | bits             |                               |
|                    |                                 | • Avg = 32                         | 12.2        | 13.9              | _               |                  |                               |
|                    |                                 | • Avg = 4                          | 11.4        | 13.1              | _               |                  |                               |
| SINAD              | Signal-to-noise plus distortion | See ENOB                           | 6.02        | 2 × ENOB +        | 1.76            | dB               |                               |
| THD                | Total harmonic                  | 16-bit differential mode           |             |                   |                 | dB               | 7                             |
|                    | distortion                      | • Avg = 32                         | _           | -94               | _               |                  |                               |
|                    |                                 | 16-bit single-ended mode           |             | 0.5               |                 | dB               |                               |
|                    |                                 | • Avg = 32                         | _           | -85               | _               |                  |                               |
| SFDR               | Spurious free                   | 16-bit differential mode           |             |                   | _               | dB               | 7                             |
|                    | dynamic range                   | • Avg = 32                         | 82          | 95                |                 | dB               |                               |
|                    |                                 | 16-bit single-ended mode           | 78          | 90                | _               | uБ               |                               |
|                    |                                 | • Avg = 32                         |             |                   |                 |                  |                               |

Table continues on the next page...



Table 28. 16-bit ADC characteristics ( $V_{REFH} = V_{DDA}$ ,  $V_{REFL} = V_{SSA}$ ) (continued)

| Symbol              | Description            | Conditions <sup>1</sup>                         | Min. | Typ. <sup>2</sup>      | Max. | Unit  | Notes                                                                        |
|---------------------|------------------------|-------------------------------------------------|------|------------------------|------|-------|------------------------------------------------------------------------------|
| E <sub>IL</sub>     | Input leakage<br>error |                                                 |      | $I_{ln} \times R_{AS}$ |      | mV    | I <sub>In</sub> = leakage current                                            |
|                     |                        |                                                 |      |                        |      |       | (refer to<br>the MCU's<br>voltage<br>and<br>current<br>operating<br>ratings) |
|                     | Temp sensor slope      | Across the full temperature range of the device | 1.55 | 1.62                   | 1.69 | mV/°C | 8                                                                            |
| V <sub>TEMP25</sub> | Temp sensor voltage    | 25 °C                                           | 706  | 716                    | 726  | mV    | 8                                                                            |

- 1. All accuracy numbers assume the ADC is calibrated with  $V_{REFH} = V_{DDA}$
- 2. Typical values assume  $V_{DDA} = 3.0 \text{ V}$ , Temp = 25 °C,  $f_{ADCK} = 2.0 \text{ MHz}$  unless otherwise stated. Typical values are for reference only and are not tested in production.
- 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC\_CFG1[ADLPC] (low power). For lowest power operation, ADC\_CFG1[ADLPC] must be set, the ADC\_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4.  $1 LSB = (V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input



Figure 16. Typical ENOB vs. ADC\_CLK for 16-bit differential mode





Figure 17. Typical ENOB vs. ADC\_CLK for 16-bit single-ended mode

## 3.6.2 CMP and 6-bit DAC electrical specifications

Table 29. Comparator and 6-bit DAC electrical specifications

| Symbol             | Description                                         | Min.                  | Тур. | Max.            | Unit             |
|--------------------|-----------------------------------------------------|-----------------------|------|-----------------|------------------|
| V <sub>DD</sub>    | Supply voltage                                      | 1.71                  | _    | 3.6             | V                |
| I <sub>DDHS</sub>  | Supply current, High-speed mode (EN=1, PMODE=1)     | _                     | _    | 200             | μA               |
| I <sub>DDLS</sub>  | Supply current, low-speed mode (EN=1, PMODE=0)      | _                     | _    | 20              | μA               |
| V <sub>AIN</sub>   | Analog input voltage                                | V <sub>SS</sub> - 0.3 | _    | V <sub>DD</sub> | V                |
| V <sub>AIO</sub>   | Analog input offset voltage                         | _                     | _    | 20              | mV               |
| V <sub>H</sub>     | Analog comparator hysteresis <sup>1</sup>           |                       |      |                 |                  |
|                    | • CR0[HYSTCTR] = 00                                 | _                     | 5    | _               | mV               |
|                    | • CR0[HYSTCTR] = 01                                 | _                     | 10   | _               | mV               |
|                    | • CR0[HYSTCTR] = 10                                 | _                     | 20   | _               | mV               |
|                    | • CR0[HYSTCTR] = 11                                 | _                     | 30   | _               | mV               |
| V <sub>CMPOh</sub> | Output high                                         | V <sub>DD</sub> – 0.5 | _    | _               | V                |
| V <sub>CMPOI</sub> | Output low                                          | _                     | _    | 0.5             | V                |
| t <sub>DHS</sub>   | Propagation delay, high-speed mode (EN=1, PMODE=1)  | 20                    | 50   | 200             | ns               |
| t <sub>DLS</sub>   | Propagation delay, low-speed mode (EN=1, PMODE=0)   | 80                    | 250  | 600             | ns               |
|                    | Analog comparator initialization delay <sup>2</sup> | _                     | _    | 40              | μs               |
| I <sub>DAC6b</sub> | 6-bit DAC current adder (enabled)                   | _                     | 7    | _               | μΑ               |
| INL                | 6-bit DAC integral non-linearity                    | -0.5                  | _    | 0.5             | LSB <sup>3</sup> |
| DNL                | 6-bit DAC differential non-linearity                | -0.3                  | _    | 0.3             | LSB              |



- 1. Typical hysteresis is measured with input voltage range limited to 0.6 to  $V_{DD}$ -0.6 V.
- 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP\_DACCR[DACEN], CMP\_DACCR[VRSEL], CMP\_DACCR[VOSEL], CMP\_MUXCR[PSEL], and CMP\_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 3.  $1 LSB = V_{reference}/64$



Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)





Figure 19. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

## 3.6.3 12-bit DAC electrical characteristics

# 3.6.3.1 12-bit DAC operating requirements Table 30. 12-bit DAC operating requirements

| Symbol            | Desciption              | Min. | Max. | Unit | Notes |
|-------------------|-------------------------|------|------|------|-------|
| $V_{DDA}$         | Supply voltage          | 1.71 | 3.6  | V    |       |
| V <sub>DACR</sub> | Reference voltage       | 1.13 | 3.6  | V    | 1     |
| C <sub>L</sub>    | Output load capacitance | _    | 100  | pF   | 2     |
| Ι <sub>L</sub>    | Output load current     | 1    | 1    | mA   |       |

- 1. The DAC reference can be selected to be  $V_{\text{DDA}}$  or  $V_{\text{REFH}}$ .
- 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.



## 3.6.3.2 12-bit DAC operating behaviors Table 31. 12-bit DAC operating behaviors

| Symbol                | Description                                                                      | Min.                      | Тур.     | Max.              | Unit   | Notes |
|-----------------------|----------------------------------------------------------------------------------|---------------------------|----------|-------------------|--------|-------|
| I <sub>DDA_DACL</sub> | Supply current — low-power mode                                                  | _                         | _        | 150               | μΑ     |       |
| I <sub>DDA_DACH</sub> | Supply current — high-speed mode                                                 | _                         | _        | 700               | μΑ     |       |
| t <sub>DACLP</sub>    | Full-scale settling time (0x080 to 0xF7F) — low-power mode                       | _                         | 100      | 200               | μs     | 1     |
| t <sub>DACHP</sub>    | Full-scale settling time (0x080 to 0xF7F) — high-power mode                      | _                         | 15       | 30                | μs     | 1     |
| t <sub>CCDACLP</sub>  | Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode | _                         | 0.7      | 1                 | μs     | 1     |
| V <sub>dacoutl</sub>  | DAC output voltage range low — high-<br>speed mode, no load, DAC set to 0x000    | 1                         | _        | 100               | mV     |       |
| $V_{\rm dacouth}$     | DAC output voltage range high — high-<br>speed mode, no load, DAC set to 0xFFF   | V <sub>DACR</sub><br>-100 | _        | V <sub>DACR</sub> | mV     |       |
| INL                   | Integral non-linearity error — high speed mode                                   |                           | _        | ±8                | LSB    | 2     |
| DNL                   | Differential non-linearity error — $V_{DACR} > 2$ $V$                            | _                         | _        | ±1                | LSB    | 3     |
| DNL                   | Differential non-linearity error — V <sub>DACR</sub> = VREF_OUT                  |                           | _        | ±1                | LSB    | 4     |
| V <sub>OFFSET</sub>   | Offset error                                                                     | _                         | ±0.4     | ±0.8              | %FSR   | 5     |
| E <sub>G</sub>        | Gain error                                                                       | _                         | ±0.1     | ±0.6              | %FSR   | 5     |
| PSRR                  | Power supply rejection ratio, V <sub>DDA</sub> ≥ 2.4 V                           | 60                        | _        | 90                | dB     |       |
| T <sub>CO</sub>       | Temperature coefficient offset voltage                                           | _                         | 3.7      | _                 | μV/C   | 6     |
| T <sub>GE</sub>       | Temperature coefficient gain error                                               | _                         | 0.000421 | _                 | %FSR/C |       |
| A <sub>C</sub>        | Offset aging coefficient                                                         | _                         | _        | 100               | μV/yr  |       |
| Rop                   | Output resistance (load = 3 kΩ)                                                  | _                         | _        | 250               | Ω      |       |
| SR                    | Slew rate -80h→ F7Fh→ 80h                                                        |                           |          |                   | V/µs   |       |
|                       | High power (SP <sub>HP</sub> )                                                   | 1.2                       | 1.7      | _                 |        |       |
|                       | Low power (SP <sub>LP</sub> )                                                    | 0.05                      | 0.12     | _                 |        |       |
| СТ                    | Channel to channel cross talk                                                    | _                         | _        | -80               | dB     |       |
| BW                    | 3dB bandwidth                                                                    |                           |          |                   | kHz    |       |
|                       | <ul> <li>High power (SP<sub>HP</sub>)</li> </ul>                                 | 550                       | _        | _                 |        |       |
|                       | Low power (SP <sub>LP</sub> )                                                    | 40                        | _        | _                 |        |       |

<sup>1.</sup> Settling within ±1 LSB

<sup>2.</sup> The INL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV

<sup>3.</sup> The DNL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV

<sup>4.</sup> The DNL is measured for 0 + 100 mV to  $V_{DACR}$  -100 mV with  $V_{DDA}$  > 2.4 V 5. Calculated by a best fit curve from  $V_{SS}$  + 100 mV to  $V_{DACR}$  - 100 mV



6.  $V_{DDA} = 3.0 \text{ V}$ , reference select set for  $V_{DDA}$  (DACx\_CO:DACRFS = 1), high power mode (DACx\_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device



Figure 20. Typical INL error vs. digital code





Figure 21. Offset at half scale vs. temperature

# 3.6.4 Voltage reference electrical specifications

Table 32. VREF full-range operating requirements

| Symbol         | Description             | Min.                                      | Min. Max. |    | Notes |
|----------------|-------------------------|-------------------------------------------|-----------|----|-------|
| $V_{DDA}$      | Supply voltage          | 1.71 3.6                                  |           | V  | _     |
| T <sub>A</sub> | Temperature             | Operating temperature range of the device |           | °C | _     |
| $C_L$          | Output load capacitance | 100                                       |           | nF | 1, 2  |

- 1. C<sub>L</sub> must be connected to VREF\_OUT if the VREF\_OUT functionality is being used for either an internal or external reference
- 2. The load capacitance should not exceed  $\pm$ -25% of the nominal specified  $C_L$  value over the operating temperature range of the device.



Table 33. VREF full-range operating behaviors

| Symbol              | Description                                                                                | Min.   | Тур.  | Max.   | Unit | Notes |
|---------------------|--------------------------------------------------------------------------------------------|--------|-------|--------|------|-------|
| V <sub>out</sub>    | Voltage reference output with factory trim at nominal V <sub>DDA</sub> and temperature=25C | 1.1915 | 1.195 | 1.1977 | V    | 1     |
| V <sub>out</sub>    | Voltage reference output — factory trim                                                    | 1.1584 | _     | 1.2376 | V    | 1     |
| V <sub>out</sub>    | Voltage reference output — user trim                                                       | 1.193  | _     | 1.197  | V    | 1     |
| V <sub>step</sub>   | Voltage reference trim step                                                                | _      | 0.5   | _      | mV   | 1     |
| V <sub>tdrift</sub> | Temperature drift (Vmax -Vmin across the full temperature range)                           | _      | _     | 80     | mV   | 1     |
| I <sub>bg</sub>     | Bandgap only current                                                                       | _      | _     | 80     | μA   | 1     |
| $\Delta V_{LOAD}$   | Load regulation  • current = ± 1.0 mA                                                      |        | 200   |        | μV   | 1, 2  |
|                     | Current = ± 1.0 mA                                                                         |        | 200   |        |      |       |
| T <sub>stup</sub>   | Buffer startup time                                                                        | _      | _     | 100    | μs   | _     |
| $V_{vdrift}$        | Voltage drift (Vmax -Vmin across the full voltage range)                                   | _      | 2     | _      | mV   | 1     |

- 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
- 2. Load regulation voltage is the difference between the VREF\_OUT voltage with no load vs. voltage with defined load

Table 34. VREF limited-range operating requirements

|   | Symbol         | Description | Min. | Max. | Unit | Notes |
|---|----------------|-------------|------|------|------|-------|
| Ī | T <sub>A</sub> | Temperature | 0    | 50   | °C   | _     |

Table 35. VREF limited-range operating behaviors

| Symbol    | Description                                | Min.  | Max.  | Unit | Notes |
|-----------|--------------------------------------------|-------|-------|------|-------|
| $V_{out}$ | Voltage reference output with factory trim | 1.173 | 1.225 | V    |       |

#### 3.7 Timers

See General switching specifications.

# 3.8 Communication interfaces



## 3.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit **usb.org**.

#### **NOTE**

The MCGFLLCLK does not meet the USB jitter specifications for certification.

# 3.8.2 USB DCD electrical specifications

Table 36. USB0 DCD electrical specifications

| Symbol               | Description                                        | Min.  | Тур. | Max. | Unit |
|----------------------|----------------------------------------------------|-------|------|------|------|
| V <sub>DP_SRC</sub>  | USB_DP source voltage (up to 250 μA)               | 0.5   | _    | 0.7  | V    |
| V <sub>LGC</sub>     | Threshold voltage for logic high                   | 0.8   | _    | 2.0  | V    |
| I <sub>DP_SRC</sub>  | USB_DP source current                              | 7     | 10   | 13   | μΑ   |
| I <sub>DM_SINK</sub> | USB_DM sink current                                | 50    | 100  | 150  | μA   |
| R <sub>DM_DWN</sub>  | D- pulldown resistance for data pin contact detect | 14.25 | _    | 24.8 | kΩ   |
| V <sub>DAT_REF</sub> | Data detect voltage                                | 0.25  | 0.33 | 0.4  | V    |

## 3.8.3 USB VREG electrical specifications

Table 37. USB VREG electrical specifications

| Symbol                | Description                                                                                                           | Min.   | Typ. <sup>1</sup> | Max.   | Unit     | Notes |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|--------|-------------------|--------|----------|-------|
| VREGIN                | Input supply voltage                                                                                                  | 2.7    | _                 | 5.5    | V        |       |
| I <sub>DDon</sub>     | Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V                                  | _      | 125               | 186    | μA       |       |
| I <sub>DDstby</sub>   | Quiescent current — Standby mode, load current equal zero                                                             | _      | 1.1               | 10     | μA       |       |
| I <sub>DDoff</sub>    | Quiescent current — Shutdown mode  • VREGIN = 5.0 V and temperature=25 °C  • Across operating voltage and temperature | _<br>_ | 650<br>—          | _<br>4 | nA<br>μA |       |
| I <sub>LOADrun</sub>  | Maximum load current — Run mode                                                                                       | _      | _                 | 120    | mA       |       |
| I <sub>LOADstby</sub> | Maximum load current — Standby mode                                                                                   | _      | _                 | 1      | mA       |       |
| V <sub>Reg33out</sub> | Regulator output voltage — Input supply (VREGIN) > 3.6 V                                                              |        |                   |        |          |       |
|                       |                                                                                                                       | 3      | 3.3               | 3.6    | V        |       |

Table continues on the next page...



| Table 37. | <b>USB VREG electrical specifications</b> |
|-----------|-------------------------------------------|
|           | (continued)                               |

| Symbol                | Description                                                                 | Min. | Typ. <sup>1</sup> | Max. | Unit | Notes |
|-----------------------|-----------------------------------------------------------------------------|------|-------------------|------|------|-------|
|                       | Run mode                                                                    | 2.1  | 2.8               | 3.6  | V    |       |
|                       | Standby mode                                                                |      |                   |      |      |       |
| V <sub>Reg33out</sub> | Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode | 2.1  | _                 | 3.6  | V    | 2     |
| C <sub>OUT</sub>      | External output capacitor                                                   | 1.76 | 2.2               | 8.16 | μF   |       |
| ESR                   | External output capacitor equivalent series resistance                      | 1    | _                 | 100  | mΩ   |       |
| I <sub>LIM</sub>      | Short circuit current                                                       | _    | 290               | _    | mA   |       |

- 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
- 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I<sub>Load</sub>.

## 3.8.4 CAN switching specifications

See General switching specifications.

## 3.8.5 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Table 38. Master mode DSPI timing (limited voltage range)

| Num | Description                         | Min.                      | Max.              | Unit | Notes |
|-----|-------------------------------------|---------------------------|-------------------|------|-------|
|     | Operating voltage                   | 2.7                       | 3.6               | V    |       |
|     | Frequency of operation              | _                         | 30                | MHz  |       |
| DS1 | DSPI_SCK output cycle time          | 2 x t <sub>BUS</sub>      | _                 | ns   |       |
| DS2 | DSPI_SCK output high/low time       | (t <sub>SCK</sub> /2) - 2 | $(t_{SCK}/2) + 2$ | ns   |       |
| DS3 | DSPI_PCSn valid to DSPI_SCK delay   | (t <sub>BUS</sub> x 2) –  | _                 | ns   | 1     |
| DS4 | DSPI_SCK to DSPI_PCSn invalid delay | (t <sub>BUS</sub> x 2) –  | _                 | ns   | 2     |
| DS5 | DSPI_SCK to DSPI_SOUT valid         | _                         | 8.5               | ns   |       |
| DS6 | DSPI_SCK to DSPI_SOUT invalid       | -2                        | _                 | ns   |       |

Table continues on the next page...



Table 38. Master mode DSPI timing (limited voltage range) (continued)

| Num | Description                      | Min. | Max. | Unit | Notes |
|-----|----------------------------------|------|------|------|-------|
| DS7 | DSPI_SIN to DSPI_SCK input setup | 15   | _    | ns   |       |
| DS8 | DSPI_SCK to DSPI_SIN input hold  | 0    | _    | ns   |       |

- 1. The delay is programmable in SPIx\_CTARn[PSSCK] and SPIx\_CTARn[CSSCK].
- 2. The delay is programmable in SPIx\_CTARn[PASC] and SPIx\_CTARn[ASC].



Figure 22. DSPI classic SPI timing — master mode

Table 39. Slave mode DSPI timing (limited voltage range)

| Num  | Description                              | Min.                      | Max.                      | Unit |
|------|------------------------------------------|---------------------------|---------------------------|------|
|      | Operating voltage                        | 2.7                       | 3.6                       | V    |
|      | Frequency of operation                   |                           | 15                        | MHz  |
| DS9  | DSPI_SCK input cycle time                | 4 x t <sub>BUS</sub>      | _                         | ns   |
| DS10 | DSPI_SCK input high/low time             | (t <sub>SCK</sub> /2) - 2 | (t <sub>SCK</sub> /2) + 2 | ns   |
| DS11 | DSPI_SCK to DSPI_SOUT valid              | _                         | 17.4                      | ns   |
| DS12 | DSPI_SCK to DSPI_SOUT invalid            | 0                         | _                         | ns   |
| DS13 | DSPI_SIN to DSPI_SCK input setup         | 2                         | _                         | ns   |
| DS14 | DSPI_SCK to DSPI_SIN input hold          | 7                         | _                         | ns   |
| DS15 | DSPI_SS active to DSPI_SOUT driven       | _                         | 16                        | ns   |
| DS16 | DSPI_SS inactive to DSPI_SOUT not driven | _                         | 16                        | ns   |





Figure 23. DSPI classic SPI timing — slave mode

## 3.8.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

| Num | Description                         | Min.                      | Max.                     | Unit | Notes |
|-----|-------------------------------------|---------------------------|--------------------------|------|-------|
|     | Operating voltage                   | 1.71                      | 3.6                      | V    | 1     |
|     | Frequency of operation              | _                         | 15                       | MHz  |       |
| DS1 | DSPI_SCK output cycle time          | 4 x t <sub>BUS</sub>      | _                        | ns   |       |
| DS2 | DSPI_SCK output high/low time       | (t <sub>SCK</sub> /2) - 4 | (t <sub>SCK/2)</sub> + 4 | ns   |       |
| DS3 | DSPI_PCSn valid to DSPI_SCK delay   | (t <sub>BUS</sub> x 2) –  | _                        | ns   | 2     |
| DS4 | DSPI_SCK to DSPI_PCSn invalid delay | (t <sub>BUS</sub> x 2) –  | _                        | ns   | 3     |
| DS5 | DSPI_SCK to DSPI_SOUT valid         | _                         | 10                       | ns   |       |
| DS6 | DSPI_SCK to DSPI_SOUT invalid       | -4.5                      | _                        | ns   |       |
| DS7 | DSPI_SIN to DSPI_SCK input setup    | 20.5                      | _                        | ns   |       |
| DS8 | DSPI_SCK to DSPI_SIN input hold     | 0                         | _                        | ns   |       |

Table 40. Master mode DSPI timing (full voltage range)

<sup>1.</sup> The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

<sup>2.</sup> The delay is programmable in SPIx\_CTARn[PSSCK] and SPIx\_CTARn[CSSCK].

<sup>3.</sup> The delay is programmable in SPIx\_CTARn[PASC] and SPIx\_CTARn[ASC].





Figure 24. DSPI classic SPI timing — master mode

Table 41. Slave mode DSPI timing (full voltage range)

| Num  | Description                              | Min.                      | Max.                     | Unit |
|------|------------------------------------------|---------------------------|--------------------------|------|
|      | Operating voltage                        | 1.71                      | 3.6                      | V    |
|      | Frequency of operation                   | _                         | 7.5                      | MHz  |
| DS9  | DSPI_SCK input cycle time                | 8 x t <sub>BUS</sub>      | _                        | ns   |
| DS10 | DSPI_SCK input high/low time             | (t <sub>SCK</sub> /2) - 4 | (t <sub>SCK/2)</sub> + 4 | ns   |
| DS11 | DSPI_SCK to DSPI_SOUT valid              | _                         | 20                       | ns   |
| DS12 | DSPI_SCK to DSPI_SOUT invalid            | 0                         | _                        | ns   |
| DS13 | DSPI_SIN to DSPI_SCK input setup         | 2                         | _                        | ns   |
| DS14 | DSPI_SCK to DSPI_SIN input hold          | 7                         | _                        | ns   |
| DS15 | DSPI_SS active to DSPI_SOUT driven       | _                         | 19                       | ns   |
| DS16 | DSPI_SS inactive to DSPI_SOUT not driven | _                         | 19                       | ns   |



Figure 25. DSPI classic SPI timing — slave mode



# 3.8.7 I<sup>2</sup>C switching specifications

See General switching specifications.

## 3.8.8 UART switching specifications

See General switching specifications.

# 3.8.9 I<sup>2</sup>S switching specifications

This section provides the AC timings for the I<sup>2</sup>S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S\_BCLK) and/or the frame sync (I2S\_FS) shown in the figures below.

Table 42. I<sup>2</sup>S master mode timing

| Num | Description                                | Min. | Max. | Unit        |
|-----|--------------------------------------------|------|------|-------------|
|     | Operating voltage                          | 2.7  | 3.6  | V           |
| S1  | I2S_MCLK cycle time                        | 40   | _    | ns          |
| S2  | I2S_MCLK pulse width high/low              | 45%  | 55%  | MCLK period |
| S3  | I2S_BCLK cycle time                        | 80   | _    | ns          |
| S4  | I2S_BCLK pulse width high/low              | 45%  | 55%  | BCLK period |
| S5  | I2S_BCLK to I2S_FS output valid            | _    | 15   | ns          |
| S6  | I2S_BCLK to I2S_FS output invalid          | 0    | _    | ns          |
| S7  | I2S_BCLK to I2S_TXD valid                  | _    | 15   | ns          |
| S8  | I2S_BCLK to I2S_TXD invalid                | 0    | _    | ns          |
| S9  | I2S_RXD/I2S_FS input setup before I2S_BCLK | 15   | _    | ns          |
| S10 | I2S_RXD/I2S_FS input hold after I2S_BCLK   | 0    | _    | ns          |





Figure 26. I<sup>2</sup>S timing — master mode

Table 43. I<sup>2</sup>S slave mode timing

| Num | Description                                                    | Min. | Max. | Unit        |
|-----|----------------------------------------------------------------|------|------|-------------|
|     | Operating voltage                                              | 2.7  | 3.6  | V           |
| S11 | I2S_BCLK cycle time (input)                                    | 80   | _    | ns          |
| S12 | I2S_BCLK pulse width high/low (input)                          | 45%  | 55%  | MCLK period |
| S13 | I2S_FS input setup before I2S_BCLK                             | 4.5  | _    | ns          |
| S14 | I2S_FS input hold after I2S_BCLK                               | 2    | _    | ns          |
| S15 | I2S_BCLK to I2S_TXD/I2S_FS output valid                        | _    | 18   | ns          |
| S16 | I2S_BCLK to I2S_TXD/I2S_FS output invalid                      | 0    | _    | ns          |
| S17 | I2S_RXD setup before I2S_BCLK                                  | 4.5  | _    | ns          |
| S18 | I2S_RXD hold after I2S_BCLK                                    | 2    | _    | ns          |
| S19 | I2S_TX_FS input assertion to I2S_TXD output valid <sup>1</sup> |      | 21   | ns          |

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear





Figure 27. I<sup>2</sup>S timing — slave modes

# 3.8.9.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S1   | I2S_MCLK cycle time                                               | 40   | _    | ns          |
| S2   | I2S_MCLK (as an input) pulse width high/low                       | 45%  | 55%  | MCLK period |
| S3   | I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)                       | 80   | _    | ns          |
| S4   | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low                      | 45%  | 55%  | BCLK period |
| S5   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output valid   | _    | 15   | ns          |
| S6   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output invalid | -1   | _    | ns          |
| S7   | I2S_TX_BCLK to I2S_TXD valid                                      | _    | 15   | ns          |
| S8   | I2S_TX_BCLK to I2S_TXD invalid                                    | 0    | _    | ns          |
| S9   | I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK                  | 20.5 | _    | ns          |
| S10  | I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK                    | 0    | _    | ns          |

Table 44. I2S/SAI master mode timing





Figure 28. I2S/SAI timing — master modes

Table 45. I2S/SAI slave mode timing

| Num. | Characteristic                                                 | Min. | Max. | Unit        |
|------|----------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                              | 1.71 | 3.6  | V           |
| S11  | I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)                     | 80   | _    | ns          |
| S12  | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)           | 45%  | 55%  | MCLK period |
| S13  | I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK | 5.8  | _    | ns          |
| S14  | I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK   | 2    | _    | ns          |
| S15  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid                  | _    | 23.5 | ns          |
| S16  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid                | 0    | _    | ns          |
| S17  | I2S_RXD setup before I2S_RX_BCLK                               | 5.8  | _    | ns          |
| S18  | I2S_RXD hold after I2S_RX_BCLK                                 | 2    | _    | ns          |
| S19  | I2S_TX_FS input assertion to I2S_TXD output valid <sup>1</sup> | _    | 25   | ns          |

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear





Figure 29. I2S/SAI timing — slave modes

# 3.8.9.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 46. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S1   | I2S_MCLK cycle time                                               | 62.5 | _    | ns          |
| S2   | I2S_MCLK pulse width high/low                                     | 45%  | 55%  | MCLK period |
| S3   | I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)                       | 250  | _    | ns          |
| S4   | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low                      | 45%  | 55%  | BCLK period |
| S5   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output valid   | _    | 45   | ns          |
| S6   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output invalid | -1   | _    | ns          |
| S7   | I2S_TX_BCLK to I2S_TXD valid                                      | _    | 45   | ns          |
| S8   | I2S_TX_BCLK to I2S_TXD invalid                                    | 0    | _    | ns          |
| S9   | I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK                  | 45   | _    | ns          |
| S10  | I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK                    | 0    | _    | ns          |





Figure 30. I2S/SAI timing — master modes

Table 47. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

| Num. | Characteristic                                                 | Min. | Max. | Unit        |
|------|----------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                              | 1.71 | 3.6  | V           |
| S11  | I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)                     | 250  | _    | ns          |
| S12  | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)           | 45%  | 55%  | MCLK period |
| S13  | I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK | 30   | _    | ns          |
| S14  | I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK   | 3    | _    | ns          |
| S15  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid                  | _    | 63   | ns          |
| S16  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid                | 0    | _    | ns          |
| S17  | I2S_RXD setup before I2S_RX_BCLK                               | 30   | _    | ns          |
| S18  | I2S_RXD hold after I2S_RX_BCLK                                 | 2    | _    | ns          |
| S19  | I2S_TX_FS input assertion to I2S_TXD output valid <sup>1</sup> | _    | 72   | ns          |

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear





Figure 31. I2S/SAI timing — slave modes

## 3.8.9.3 Ordering parts

### 3.8.9.3.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK22 and MK22

#### 3.8.9.4 Part identification

### 3.8.9.4.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

#### 3.8.9.4.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

#### 3.8.9.4.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):



| Field | Description                 | Values                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q     | Qualification status        | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Prequalification</li> </ul>                                                                                                                                                                                                                                                                                                                                                          |
| K##   | Kinetis family              | • K22                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A     | Key attribute               | <ul> <li>D = Cortex-M4 w/ DSP</li> <li>F = Cortex-M4 w/ DSP and FPU</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      |
| М     | Flash memory type           | <ul><li>N = Program flash only</li><li>X = Program flash and FlexMemory</li></ul>                                                                                                                                                                                                                                                                                                                                                                   |
| FFF   | Program flash memory size   | <ul> <li>32 = 32 KB</li> <li>64 = 64 KB</li> <li>128 = 128 KB</li> <li>256 = 256 KB</li> <li>512 = 512 KB</li> <li>1M0 = 1 MB</li> <li>2M0 = 2 MB</li> </ul>                                                                                                                                                                                                                                                                                        |
| R     | Silicon revision            | <ul> <li>Z = Initial</li> <li>(Blank) = Main</li> <li>A = Revision after main</li> </ul>                                                                                                                                                                                                                                                                                                                                                            |
| Т     | Temperature range (°C)      | <ul> <li>V = -40 to 105</li> <li>C = -40 to 85</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                           |
| PP    | Package identifier          | <ul> <li>FM = 32 QFN (5 mm x 5 mm)</li> <li>FT = 48 QFN (7 mm x 7 mm)</li> <li>LF = 48 LQFP (7 mm x 7 mm)</li> <li>LH = 64 LQFP (10 mm x 10 mm)</li> <li>MP = 64 MAPBGA (5 mm x 5 mm)</li> <li>LK = 80 LQFP (12 mm x 12 mm)</li> <li>LL = 100 LQFP (14 mm x 14 mm)</li> <li>MC = 121 MAPBGA (8 mm x 8 mm)</li> <li>DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm)</li> <li>LQ = 144 LQFP (20 mm x 20 mm)</li> <li>MD = 144 MAPBGA (13 mm x 13 mm)</li> </ul> |
| CC    | Maximum CPU frequency (MHz) | <ul> <li>5 = 50 MHz</li> <li>7 = 72 MHz</li> <li>10 = 100 MHz</li> <li>12 = 120 MHz</li> <li>15 = 150 MHz</li> <li>16 = 168 MHz</li> <li>18 = 180 MHz</li> </ul>                                                                                                                                                                                                                                                                                    |
| N     | Packaging type              | <ul><li>R = Tape and reel</li><li>(Blank) = Trays</li></ul>                                                                                                                                                                                                                                                                                                                                                                                         |

## 3.8.9.4.4 Example

This is an example part number:

MK22FN1M0VLH10



### 3.8.9.4.5 Small package marking

In an effort to save space, small package devices use special marking on the chip. These markings have the following format:

### Q##CFTPP

This table lists the possible values for each field in the part number for small packages (not all combinations are valid):

| Field | Description                | Values                                                                                                                             |
|-------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Q     | Qualification status       | M = Fully qualified, general market flow     P = Prequalification                                                                  |
| ##    | Kinetis family             | • 2# = K21/K22                                                                                                                     |
| С     | Speed                      | • H = 120 MHz                                                                                                                      |
| F     | Flash memory configuration | <ul><li>K = 512 KB + Flex</li><li>1 = 1 MB</li></ul>                                                                               |
| Т     | Temperature range (°C)     | • V = -40 to 105                                                                                                                   |
| PP    | Package identifier         | <ul> <li>LL = 100 LQFP</li> <li>MC = 121 MAPBGA</li> <li>LQ = 144 LQFP</li> <li>MD = 144 MAPBGA</li> <li>DC = 121 XFBGA</li> </ul> |

This tables lists some examples of small package marking along with the original part numbers:

| Original part number | Alternate part number |
|----------------------|-----------------------|
| MK22FX512VLH12       | M22HKVLH              |

## 3.8.9.5 Terminology and guidelines

## 3.8.9.5.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

#### 3.8.9.5.1.1 Example

This is an example of an operating requirement:



| Symbol   | Description               | Min. | Max. | Unit |
|----------|---------------------------|------|------|------|
| $V_{DD}$ | 1.0 V core supply voltage | 0.9  | 1.1  | V    |

#### 3.8.9.5.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

#### 3.8.9.5.2.1 Example

This is an example of an operating behavior:

| Symbol          | Description                                  | Min. | Max. | Unit |
|-----------------|----------------------------------------------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak pullup/<br>pulldown current | 10   | 130  | μΑ   |

#### 3.8.9.5.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

#### 3.8.9.5.3.1 Example

This is an example of an attribute:

| Symbol | Description                     | Min. | Max. | Unit |
|--------|---------------------------------|------|------|------|
| _      | Input capacitance: digital pins | _    | 7    | pF   |

## 3.8.9.5.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- *Operating ratings* apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.



#### 3.8.9.5.4.1 Example

This is an example of an operating rating:

| Symbol   | Description               | Min. | Max. | Unit |
|----------|---------------------------|------|------|------|
| $V_{DD}$ | 1.0 V core supply voltage | -0.3 | 1.2  | V    |

## 3.8.9.5.5 Result of exceeding a rating



### 3.8.9.5.6 Relationship between ratings and operating requirements



## 3.8.9.5.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

• Never exceed any of the chip's ratings.



- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

#### 3.8.9.5.8 Definition: Typical value

A typical value is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

#### 3.8.9.5.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

| Symbol          | Description                              | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------------------|------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak pullup/pulldown current | 10   | 70   | 130  | μΑ   |

#### 3.8.9.5.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:





## 3.8.9.5.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

| Symbol         | Description          | Value | Unit |
|----------------|----------------------|-------|------|
| T <sub>A</sub> | Ambient temperature  | 25    | °C   |
| $V_{DD}$       | 3.3 V supply voltage | 3.3   | V    |

# 4 Dimensions

# 4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

| If you want the drawing for this package | Then use this document number |  |  |  |  |
|------------------------------------------|-------------------------------|--|--|--|--|
| 64-pin LQFP                              | 98ASS23234W                   |  |  |  |  |

Table continues on the next page...



#### **Pinout**

| If you want the drawing for this package | Then use this document number |
|------------------------------------------|-------------------------------|
| 64-pin MAPBGA                            | 98ASA00420D                   |
| 169-pin MAPBGA                           | 98ASA00628D                   |

### 5 Pinout

## 5.1 K22 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

#### NOTE

- The analog input signals ADC0\_DP2 and ADC0\_DM2 on PTE2 and PTE3 are available only for K21 and K22 devices and are not present on K10 and K20 devices.
- The TRACE signals on PTE0, PTE1, PTE2, PTE3, and PTE4 are available only for K11, K12, K21, and K22 devices and are not present on K10 and K20 devices.
- If the VBAT pin is not used, the VBAT pin should be left floating. Do not connect VBAT pin to VSS.
- The FTM\_CLKIN signals on PTB16 and PTB17 are available only for K11, K12, K21, and K22 devices and is not present on K10 and K20 devices. For K22D devices this signal is on ALT7, and for K22F devices, this signal is on ALT4.
- The FTM0\_CH2 signal on PTC5/LLWU\_P9 is available only for K11, K12, K21, and K22 devices and is not present on K10 and K20 devices.
- The I2C0\_SCL signal on PTD2/LLWU\_P13 and I2C0\_SDA signal on PTD3 are available only for K11, K12, K21, and K22 devices and are not present on K10 and K20 devices.

| 64<br>LQFP | Pin Name | Default   | ALT0      | ALT1 | ALT2 | ALT3     | ALT4 | ALT5             | ALT6     | ALT7           | EzPort |
|------------|----------|-----------|-----------|------|------|----------|------|------------------|----------|----------------|--------|
| 1          | PTE0     | ADC1_SE4a | ADC1_SE4a | PTE0 |      | UART1_TX |      | TRACE_<br>CLKOUT | I2C1_SDA | RTC_<br>CLKOUT |        |



| 64<br>LQFP | Pin Name                                         | Default                                          | ALT0                                             | ALT1             | ALT2            | ALT3     | ALT4 | ALT5     | ALT6             | ALT7                   | EzPort   |
|------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------|-----------------|----------|------|----------|------------------|------------------------|----------|
| 2          | PTE1/<br>LLWU_P0                                 | ADC1_SE5a                                        | ADC1_SE5a                                        | PTE1/<br>LLWU_P0 |                 | UART1_RX |      | TRACE_D3 | I2C1_SCL         |                        |          |
| 3          | VDD                                              | VDD                                              | VDD                                              |                  |                 |          |      |          |                  |                        |          |
| 4          | VSS                                              | VSS                                              | VSS                                              |                  |                 |          |      |          |                  |                        |          |
| 5          | USB0_DP                                          | USB0_DP                                          | USB0_DP                                          |                  |                 |          |      |          |                  |                        |          |
| 6          | USB0_DM                                          | USB0_DM                                          | USB0_DM                                          |                  |                 |          |      |          |                  |                        |          |
| 7          | VOUT33                                           | VOUT33                                           | VOUT33                                           |                  |                 |          |      |          |                  |                        |          |
| 8          | VREGIN                                           | VREGIN                                           | VREGIN                                           |                  |                 |          |      |          |                  |                        |          |
| 9          | ADC0_DP0/<br>ADC1_DP3                            | ADC0_DP0/<br>ADC1_DP3                            | ADC0_DP0/<br>ADC1_DP3                            |                  |                 |          |      |          |                  |                        |          |
| 10         | ADC0_DM0/<br>ADC1_DM3                            | ADC0_DM0/<br>ADC1_DM3                            | ADC0_DM0/<br>ADC1_DM3                            |                  |                 |          |      |          |                  |                        |          |
| 11         | ADC1_DP0/<br>ADC0_DP3                            | ADC1_DP0/<br>ADC0_DP3                            | ADC1_DP0/<br>ADC0_DP3                            |                  |                 |          |      |          |                  |                        |          |
| 12         | ADC1_DM0/<br>ADC0_DM3                            | ADC1_DM0/<br>ADC0_DM3                            | ADC1_DM0/<br>ADC0_DM3                            |                  |                 |          |      |          |                  |                        |          |
| 13         | VDDA                                             | VDDA                                             | VDDA                                             |                  |                 |          |      |          |                  |                        |          |
| 14         | VREFH                                            | VREFH                                            | VREFH                                            |                  |                 |          |      |          |                  |                        |          |
| 15         | VREFL                                            | VREFL                                            | VREFL                                            |                  |                 |          |      |          |                  |                        |          |
| 16         | VSSA                                             | VSSA                                             | VSSA                                             |                  |                 |          |      |          |                  |                        |          |
| 17         | VREF_OUT/<br>CMP1_IN5/<br>CMP0_IN5/<br>ADC1_SE18 | VREF_OUT/<br>CMP1_IN5/<br>CMP0_IN5/<br>ADC1_SE18 | VREF_OUT/<br>CMP1_IN5/<br>CMP0_IN5/<br>ADC1_SE18 |                  |                 |          |      |          |                  |                        |          |
| 18         | DAC0_OUT/<br>CMP1_IN3/<br>ADC0_SE23              | DAC0_OUT/<br>CMP1_IN3/<br>ADC0_SE23              | DAC0_OUT/<br>CMP1_IN3/<br>ADC0_SE23              |                  |                 |          |      |          |                  |                        |          |
| 19         | XTAL32                                           | XTAL32                                           | XTAL32                                           |                  |                 |          |      |          |                  |                        |          |
| 20         | EXTAL32                                          | EXTAL32                                          | EXTAL32                                          |                  |                 |          |      |          |                  |                        |          |
| 21         | VBAT                                             | VBAT                                             | VBAT                                             |                  |                 |          |      |          |                  |                        |          |
| 22         | PTA0                                             | JTAG_TCLK/<br>SWD_CLK/<br>EZP_CLK                |                                                  | PTA0             | UARTO_CTS_<br>b | FTM0_CH5 |      |          |                  | JTAG_TCLK/<br>SWD_CLK  | EZP_CLK  |
| 23         | PTA1                                             | JTAG_TDI/<br>EZP_DI                              |                                                  | PTA1             | UARTO_RX        | FTM0_CH6 |      |          |                  | JTAG_TDI               | EZP_DI   |
| 24         | PTA2                                             | JTAG_TDO/<br>TRACE_<br>SWO/<br>EZP_DO            |                                                  | PTA2             | UARTO_TX        | FTM0_CH7 |      |          |                  | JTAG_TDO/<br>TRACE_SWO | EZP_DO   |
| 25         | PTA3                                             | JTAG_TMS/<br>SWD_DIO                             |                                                  | PTA3             | UARTO_RTS_      | FTM0_CH0 |      |          |                  | JTAG_TMS/<br>SWD_DIO   |          |
| 26         | PTA4/<br>LLWU_P3                                 | NMI_b/<br>EZP_CS_b                               |                                                  | PTA4/<br>LLWU_P3 |                 | FTM0_CH1 |      |          |                  | NMI_b                  | EZP_CS_b |
| 27         | PTA5                                             | DISABLED                                         |                                                  | PTA5             | USB_CLKIN       | FTM0_CH2 |      | CMP2_OUT | I2S0_TX_<br>BCLK | JTAG_TRST_<br>b        |          |



#### **Pinout**

| 64<br>LQFP | Pin Name          | Default                | ALT0                   | ALT1              | ALT2      | ALT3            | ALT4             | ALT5     | ALT6             | ALT7            | EzPort |
|------------|-------------------|------------------------|------------------------|-------------------|-----------|-----------------|------------------|----------|------------------|-----------------|--------|
| 28         | PTA12             | CMP2_IN0               | CMP2_IN0               | PTA12             | CAN0_TX   | FTM1_CH0        |                  | I2C2_SCL | 12S0_TXD0        | FTM1_QD_<br>PHA |        |
| 29         | PTA13/<br>LLWU_P4 | CMP2_IN1               | CMP2_IN1               | PTA13/<br>LLWU_P4 | CAN0_RX   | FTM1_CH1        |                  | I2C2_SDA | 12S0_TX_FS       | FTM1_QD_<br>PHB |        |
| 30         | VDD               | VDD                    | VDD                    |                   |           |                 |                  |          |                  |                 |        |
| 31         | VSS               | VSS                    | VSS                    |                   |           |                 |                  |          |                  |                 |        |
| 32         | PTA18             | EXTAL0                 | EXTAL0                 | PTA18             |           | FTM0_FLT2       | FTM_CLKIN0       |          |                  |                 |        |
| 33         | PTA19             | XTAL0                  | XTAL0                  | PTA19             |           | FTM1_FLT0       | FTM_CLKIN1       |          | LPTMR0_<br>ALT1  |                 |        |
| 34         | RESET_b           | RESET_b                | RESET_b                |                   |           |                 |                  |          |                  |                 |        |
| 35         | PTB0/<br>LLWU_P5  | ADC0_SE8/<br>ADC1_SE8  | ADC0_SE8/<br>ADC1_SE8  | PTB0/<br>LLWU_P5  | I2C0_SCL  | FTM1_CH0        |                  |          | FTM1_QD_<br>PHA  |                 |        |
| 36         | PTB1              | ADC0_SE9/<br>ADC1_SE9  | ADC0_SE9/<br>ADC1_SE9  | PTB1              | I2C0_SDA  | FTM1_CH1        |                  |          | FTM1_QD_<br>PHB  |                 |        |
| 37         | PTB2              | ADC0_SE12              | ADC0_SE12              | PTB2              | I2C0_SCL  | UARTO_RTS_      |                  |          | FTM0_FLT3        |                 |        |
| 38         | PTB3              | ADC0_SE13              | ADC0_SE13              | PTB3              | I2C0_SDA  | UARTO_CTS_      |                  |          | FTM0_FLT0        |                 |        |
| 39         | PTB16             | DISABLED               |                        | PTB16             |           | UARTO_RX        | FTM_CLKIN0       | FB_AD17  | EWM_IN           |                 |        |
| 40         | PTB17             | DISABLED               |                        | PTB17             |           | UARTO_TX        | FTM_CLKIN1       | FB_AD16  | EWM_OUT_b        |                 |        |
| 41         | PTB18             | DISABLED               |                        | PTB18             | CAN0_TX   | FTM2_CH0        | I2S0_TX_<br>BCLK | FB_AD15  | FTM2_QD_<br>PHA  |                 |        |
| 42         | PTB19             | DISABLED               |                        | PTB19             | CAN0_RX   | FTM2_CH1        | I2S0_TX_FS       | FB_OE_b  | FTM2_QD_<br>PHB  |                 |        |
| 43         | PTC0              | ADC0_SE14              | ADC0_SE14              | PTC0              | SPI0_PCS4 | PDB0_<br>EXTRG  |                  | FB_AD14  | I2S0_TXD1        |                 |        |
| 44         | PTC1/<br>LLWU_P6  | ADC0_SE15              | ADC0_SE15              | PTC1/<br>LLWU_P6  | SPI0_PCS3 | UART1_RTS_      | FTM0_CH0         | FB_AD13  | I2S0_TXD0        |                 |        |
| 45         | PTC2              | ADC0_SE4b/<br>CMP1_IN0 | ADC0_SE4b/<br>CMP1_IN0 | PTC2              | SPI0_PCS2 | UART1_CTS_      | FTM0_CH1         | FB_AD12  | I2S0_TX_FS       |                 |        |
| 46         | PTC3/<br>LLWU_P7  | CMP1_IN1               | CMP1_IN1               | PTC3/<br>LLWU_P7  | SPI0_PCS1 | UART1_RX        | FTM0_CH2         | CLKOUT   | I2S0_TX_<br>BCLK |                 |        |
| 47         | VSS               | VSS                    | VSS                    |                   |           |                 |                  |          |                  |                 |        |
| 48         | VDD               | VDD                    | VDD                    |                   |           |                 |                  |          |                  |                 |        |
| 49         | PTC4/<br>LLWU_P8  | DISABLED               |                        | PTC4/<br>LLWU_P8  | SPI0_PCS0 | UART1_TX        | FTM0_CH3         | FB_AD11  | CMP1_OUT         |                 |        |
| 50         | PTC5/<br>LLWU_P9  | DISABLED               |                        | PTC5/<br>LLWU_P9  | SPI0_SCK  | LPTMR0_<br>ALT2 | I2S0_RXD0        | FB_AD10  | CMP0_OUT         | FTM0_CH2        |        |
| 51         | PTC6/<br>LLWU_P10 | CMP0_IN0               | CMP0_IN0               | PTC6/<br>LLWU_P10 | SPI0_SOUT | PDB0_<br>EXTRG  | I2S0_RX_<br>BCLK | FB_AD9   | I2S0_MCLK        |                 |        |
| 52         | PTC7              | CMP0_IN1               | CMP0_IN1               | PTC7              | SPI0_SIN  | USB_SOF_<br>OUT | I2S0_RX_FS       | FB_AD8   |                  |                 |        |
| 53         | PTC8              | ADC1_SE4b/<br>CMP0_IN2 | ADC1_SE4b/<br>CMP0_IN2 | PTC8              |           | FTM3_CH4        | I2SO_MCLK        | FB_AD7   |                  |                 |        |



| 64<br>LQFP | Pin Name           | Default                | ALT0                   | ALT1               | ALT2      | ALT3            | ALT4             | ALT5                            | ALT6      | ALT7     | EzPort |
|------------|--------------------|------------------------|------------------------|--------------------|-----------|-----------------|------------------|---------------------------------|-----------|----------|--------|
| 54         | PTC9               | ADC1_SE5b/<br>CMP0_IN3 | ADC1_SE5b/<br>CMP0_IN3 | PTC9               |           | FTM3_CH5        | I2S0_RX_<br>BCLK | FB_AD6                          | FTM2_FLT0 |          |        |
| 55         | PTC10              | ADC1_SE6b              | ADC1_SE6b              | PTC10              | I2C1_SCL  | FTM3_CH6        | I2S0_RX_FS       | FB_AD5                          |           |          |        |
| 56         | PTC11/<br>LLWU_P11 | ADC1_SE7b              | ADC1_SE7b              | PTC11/<br>LLWU_P11 | I2C1_SDA  | FTM3_CH7        | I2S0_RXD1        | FB_RW_b                         |           |          |        |
| 57         | PTD0/<br>LLWU_P12  | DISABLED               |                        | PTD0/<br>LLWU_P12  | SPI0_PCS0 | UART2_RTS_<br>b | FTM3_CH0         | FB_ALE/<br>FB_CS1_b/<br>FB_TS_b |           |          |        |
| 58         | PTD1               | ADC0_SE5b              | ADC0_SE5b              | PTD1               | SPI0_SCK  | UART2_CTS_<br>b | FTM3_CH1         | FB_CS0_b                        |           |          |        |
| 59         | PTD2/<br>LLWU_P13  | DISABLED               |                        | PTD2/<br>LLWU_P13  | SPI0_SOUT | UART2_RX        | FTM3_CH2         | FB_AD4                          |           | I2C0_SCL |        |
| 60         | PTD3               | DISABLED               |                        | PTD3               | SPI0_SIN  | UART2_TX        | FTM3_CH3         | FB_AD3                          |           | I2C0_SDA |        |
| 61         | PTD4/<br>LLWU_P14  | DISABLED               |                        | PTD4/<br>LLWU_P14  | SPI0_PCS1 | UARTO_RTS_<br>b | FTM0_CH4         | FB_AD2                          | EWM_IN    |          |        |
| 62         | PTD5               | ADC0_SE6b              | ADC0_SE6b              | PTD5               | SPI0_PCS2 | UARTO_CTS_<br>b | FTM0_CH5         | FB_AD1                          | EWM_OUT_b |          |        |
| 63         | PTD6/<br>LLWU_P15  | ADC0_SE7b              | ADC0_SE7b              | PTD6/<br>LLWU_P15  | SPI0_PCS3 | UARTO_RX        | FTM0_CH6         | FB_AD0                          | FTM0_FLT0 |          |        |
| 64         | PTD7               | DISABLED               |                        | PTD7               | CMT_IRO   | UART0_TX        | FTM0_CH7         |                                 | FTM0_FLT1 |          |        |

## 5.2 K22 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.





Figure 32. K22 64 LQFP Pinout Diagram

# 6 Revision History

The following table provides a revision history for this document.



# **Table 48. Revision History**

| Rev. No. | Date    | Substantial Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 11/2012 | Alpha customer release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2        | 5/2013  | <ul> <li>Updated supported part numbers and document number</li> <li>Updated section "Voltage and current operating behaviors"</li> <li>Added the following figures: <ul> <li>Run mode supply current vs. core frequency</li> <li>VLPR mode supply current vs. core frequency</li> </ul> </li> <li>Updated section "Device clock specifications"</li> <li>Updated section "Power consumption operating behaviors"</li> <li>Updated section "Power mode transition operating behaviors"</li> <li>Updated section "JTAG limited voltage range electricals"</li> <li>Updated section "MCG specifications"</li> <li>Updated section "Oscillator DC electrical specifications"</li> <li>Updated section "16-bit ADC operating conditions"</li> <li>Updated the pinouts</li> <li>Added section "Alternate part numbers for small packages"</li> </ul> |
| 3        | 8/2013  | <ul> <li>Updated section "Power consumption operating behaviors"</li> <li>Updated the "Run mode supply current vs. core frequency" figure in section "Diagram: Typical IDD_RUN operating behavior</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4        | 11/2014 | <ul> <li>Updated the table "Voltage and current operating behavior"</li> <li>Format changes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5        | 03/2015 | <ul> <li>Updated supported part numbers</li> <li>Updated document number</li> <li>Updated the table "I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)</li> <li>Updated the table "I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)"</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2013-2015 Freescale Semiconductor, Inc.





Document Number K22P64M120SF5V2 Revision 5, 03/2015