Root Finding: Newton-Raphson Method

ME 2004

Outline

• 1.1: Newton-Raphson Method

- Newton-Raphson/Newton's Method: another root finding technique
- Premise: combine an initial starting point with the derivative of the function to iteratively trace the root
 - WARNING: May diverge!!! (unable to locate root)
- Called an open method because the user must supply the algorithm with a singular starting point
 - Contrast: Bisection is a bracketing method because it needs two initial guesses which bracket the root
- Converges quadratically: (current error) \propto (previous error) ²
 - Contrast: Bisection Method exhibits linear convergence (slower)

- Brief algorithm overview:
 - 1) Input initial guess x_i and compute $f'(x_i)$
 - 2) From the starting point x_i , extend the tangent $f'(x_i)$ until it hits the x-axis
 - 3) This new location is the new estimate of the root, x_{i+1}
 - 4) Compute error* and iterate until the stopping criterion e_s is met

*error can be a tolerance in
$$x$$
: $err = 100\% * \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \le e_s$ or a tolerance in y : $err = |f(x_{i+1})| \le e_s$

- Start with an initial guess x_i
- Draw the tangent (f'(x)) to the curve at that point and "follow" it until it hits the x-axis
- This point is x_{i+1} (new root estimate)
- Evaluate $|f(x_{i+1})|$. Assume it doesn't meet our stopping criterion $(e_s) \rightarrow$ must iterate.

- We draw the tangent at x_{i+1} and extend it until it crosses the x-axis
- This point is x_{i+2} (new root estimate)
- Assume $|f(x_{i+2})| \le e_s \to \text{we've located the root!}$

• Definition of slope:

$$f'(x) = \frac{f(x_i) - f(x_{i+1})}{x_i - x_{i+1}}$$

• Rearranged:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

NR may diverge!

 A pitfall of Newton-Raphson is the possibility of division-by-zero

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

 Or, NR could cycle around a point (occurs when an inflection point is in the vicinity of a root)

Consider Picking Bisection If...

- You MUST converge on x_r
- You don't care about convergence speed
- You don't know the behavior of f'(x)
- f'(x) is hard to compute

Consider Picking NR If...

- You accept the possibility of divergence
- You want to quickly find x_r
- You know f'(x) won't return a division-by-0 error
- f'(x) is relatively easy to compute

Summary

- Newton-Raphson only requires 1 initial guess, but it requires you to compute f'(x)
- Newton-Raphson is not guaranteed to converge, but generally converges faster than Bisection (quadratic vs. linear convergence)
- Newton-Raphson is prone to division-by-zero errors and may not be suitable if f'(x) is difficult to compute