Week 9 Summary Exercises

Due Dec 1 at 11:59pm **Points** 107 **Questions** 38

Available Nov 24 at 12am - Dec 1 at 11:59pm 8 days Time Limit 360 Minutes

Allowed Attempts 2

Attempt History

	Attempt	Time	Score
KEPT	Attempt 1	144 minutes	107 out of 107
LATEST	Attempt 2	20 minutes	94.5 out of 107
	Attempt 1	144 minutes	107 out of 107

Score for this attempt: 94.5 out of 107

Submitted Dec 1 at 11:36pm This attempt took 20 minutes.

	Question 1 2 / 2 pts	
	Network address translation has ameliorated the IP address shortage problem.	
Correct!	True	
	False	

	Question 2	2 / 2 pts
	The transport-layer header is encapsulated in the first fragmented IP datagram.	
Correct!	True	
	False	

	Question 3	2 / 2 pts
	It is the responsibility of a routing algorithm to forward packets to the appropriate output link.	
	True	
Correct!	False	
,		
	Question 4	2 / 2 pts
	IP datagrams fragments can not be fragmented again.	
	True	
Correct!	False	
l		
	Question 5	2 / 2 pts
	If an IP datagram is fragmented into 1000-byte fragments, and later encounters a link with an 800-byte MTU, it is dropped.	
	True	
Correct!	False	

Question 6

2 / 2 pts

	The "Identification" header field is unchanged by IP datagram fragmentation.
Correct!	True
	False

	Question 7 2 / 2 pts
	The "time to live" field in a modern IPv4 datagram header specifies
Correct!	the number of remaining hops before the datagram is dropped.
	the seconds to wait for the remaining fragments of a datagram that has been fragmented.
	the seconds remaining before data in the datagram is considered obsolete.
	the milliseconds remaining before the datagram is dropped.

	Question 8	1.5 / 2 pts
	ICMP can carry messages from (Check all that apply)	
Correct!	Router to Sender Host	
orrect Answer	Destination Host to Source Host	
Correct!		
Correct!	Source Host to Destination Host	

	Question 9	2 / 2 pts
Correct!	The IPv6 address size is 128 bits.	
	True	
	False	

	Question 10	2 / 2 pts
Correct!	The IPv6 header does not have a checksum.	
	True	
	False	

	Question 11 2 / 2 p	ots
	Select all features explicitly available in IPv6 which were already available explicitly in IPv4.	
Correct!	Source/Destination Addressing	
	Extension Headers	
Correct!	✓ Hop Limit	
	Payload Length	
	Flow Labeling	
	128-bit Addresses	

Week 9 Summary Exercises: INTRO TO COMPUTER NETWORKS (CS_372_400_F2019)		
✓ Version		
✓ Traffic Type		

	Question 12 2 / 2	2 pts
	Select all features explicit in IPv6 which are not explicitly available in IPv4.	
Correct!	✓ Flow Labeling	
Correct!	✓ Payload Length	
Correct!		
	Source/Destination Addressing	
	Version	
	☐ Traffic Type	
Correct!		
	Hop Limit	

	Question 13	2 / 2 pts
	The transition from IPv4 to IPv6 requires that (Cheapply)	ck all that
	all IPv4 routers must have been phased out by January 1, 2015.	
Correct!	☑ IPv4 routers still in use must "tunnel" IPv6 datagrams, by fragmenting/encapsulating them in IPv4 datagrams	

all ISPs provided IPv6 functionality by January 1, 2015.

Question 14

2 / 2 pts

In IPv6, datagram fragmentation is handled at the network edge .

Answer 1:

Correct!

handled at the network edge

Question 15

3 / 3 pts

Convert the following IPv4 address to its corresponding IPv6-mapped address, with proper formatting.

114.18.222.10

Correct!

::ffff:7212:de0a

correct Answers

::ffff:114.18.222.10

::ffff:7212:de0a

Question 16

3 / 3 pts

Convert the following IPv4 address to its corresponding IPv6-mapped address, with proper formatting.

192.123.33.1

Correct!

::ffff:c07b:2101

correct Answers

::ffff:c07b:2101

::ffff:192.123.33.1

	Question 17	0 / 3 pts
	::ffff:ABCD:DBCA is a valid preferred-format IPv6 address.	
'ou Answered	True	
orrect Answer	○ False	

	Question 18	3 / 3 pts
	Select all "Taking Turns" schemes below.	
	CSMA	
	Bus Ethernet	
Correct!	Polling Multiple Access	
	Star-configured Ethernet	
Correct!	✓ Token Ring Multiple Access	
	TDMA	
	FDMA	

Question 19 3 / 3 pts

	A network with a [Select]	topology must terminate the
	endpoints, but in with a [Select] connected so there is no endpoint.	▼ topology they are
	Answer 1:	
Correct!	bus	
	Answer 2:	
Correct!	ring	

A multiple access scheme which listens to the channel to make sure it is empty, prior to transmitting, is called... random access protocol "taking turns" protocol carrier sense protocol collision detection protocol

Question 23 3 / 3 pts

The address table shown below would be maintained by a host, router, or switch by...

Hardware Address	IP Address
00-13-72-BA-C0-23	10.0.1.142
00-13-72-BA-9E-F0	10.0.2.5
00-13-72-BA-33-7A	10.0.3.213

Correct!

ARP

TCP/IP

ICMP

○ NIC

Question 24 3 / 3 pts

	To retrieve an adjacent node's MAC address, is used.
	UDP
	DHCP
Correct!	ARP
L	

Question 25 Star Ethernet uses the same multiple access control as Bus Ethernet. True False

Given the following received byte on an odd-parity machine, there is definitely at least one error.

01001101

True

False

Question 27 3 / 3 pts

Which of the following are used in a wired Ethernet network? (Check all that apply)

Correct!

Correct!

Correct!

Correct!

Exponential back-off/retry for collision resolution

Collision Avoidance (CA)

Reservation system with Request to Send (RTS) and Clear to Send (CTS)

Correct!

Correct!

Correct!

Correct!

	Question 28	3 / 3 pts
	Select all Random Access schemes below.	
Correct!	✓ ALOHA	
Correct!	✓ CSMA	
	FDMA	
	■ TDMA	
	WDMA	
	■ Token Ring Multiple Access	
	Star-configured Ethernet	

Question 29 0 / 3 pts

	Question 30	3 / 3 pts
	The link-layer device at the center of an ethernet star is a	
	orouter	
Correct!	switch	
	star hub	
	node	

Answer 2: **Forrect Answer** adjacent node 'ou Answered device

A multiple access scheme which uses a master node to poll each slave node, and control who has 'permission' to transmit at any given time is called... channel partitioning protocol random access protocol reservation protocol "taking turns" protocol

A multiple access scheme which divides the usable medium into "chunks" and allows each device sole acces to some number of "chunks" is called... Correct! channel partitioning protocol "taking turns" protocol collision avoidance protocol

Question 35 When sending a message to all devices on a link, you would send it to the broadcast MAC address: 00-00-00-00-00 True

Correct!

False

	Question 36	3 / 3 pts
	There are reserved MAC addresses unusable for devices.	
Correct!	True	
	False	

	Question 37	3 / 3 pts
	In a CSMA/CD system, when a collision is detected,	
	the sender will send a channel reservation message.	
	the sender will immediately retransmit the frame from the beginning.	
	the sender will give an error message to the upper-level protocol	
Correct!	the sender will cut off transmission and wait some time before retransmitted.	ing.

Question 38 10 / 10 pts

Select words/phrases from the dropdown menus to define the process of sending a message from host A to host D in the diagram below. Each phrase may be used zero or more times.

1. A finds that D belongs to a different subnet by checking [Select] [Select] 2. A looks up in its routing table. 3. A uses ARP to get RouterA's NIC#1 MAC address. [Select] 4. A creates frame with as destination. Frame contains [Select] IP datagram with as destination. 5. A's NIC sends frame and RouterA's NIC receives it. 6. RouterA removes IP datagram from frame, learns that its destination is [Select] [Select] 7. RouterA uses ARP to get [Select] 8. RouterA creates frame with as destination. Frame contains IP datagram with D's IP address as destination. 9. RouterA's NIC sends frame and D's NIC receives it. Answer 1: D's IP address Answer 2:

RouterA's NIC#1 IP address

Correct!

Correct!

12/1/2019	Week 9 Summary Exercises: INTRO TO COMPUTER NETWORKS (CS_372_400_F2019)
	Answer 3:
Correct!	RouterA's NIC#1 MAC address
	Answer 4:
Correct!	RouterA's NIC#1 MAC address
	Answer 5:
Correct!	D's IP address
	Answer 6:
Correct!	D's IP address
	Answer 7:
Correct!	D's MAC address
	Answer 8:
Correct!	D's MAC address
	Answer 9:
Correct!	D's IP address

Quiz Score: **94.5** out of 107