Logistics

- The deadline of group presentation video and report has been changed to April 25@23:59pm.
- 2. We will release kaggle ranking marks next week.

#	∆pub	Team Name	Notebook	Team Members	Score @	Entries	Last
1	-	A0049228B		9	0.65324	50	5d
2	_	A0218820 J		9	0.64448	22	5d
3	 3	A0218834Y		4	0.63033	23	6d
4	_	A0218824B		9	0.62693	13	5d
5		A0218906Y			0.62605	17	17d

Frontiers in NLP II

Pre-trained NLP Model: BERT

Embeddings generated from BERT

BERT in Google Search

With the latest advancements from our research team in the science of language understanding—made possible by machine learning—we're making a significant improvement to how we understand queries, representing the biggest leap forward in the past five years, and one of the biggest leaps forward in the history of Search.

https://blog.google/products/search/search-language-understanding-bert/

BERT vs Somebody

Try:

https://huggingface.co/bert-base-uncased?text=if+you+don%27t+want+to+inhale+virus+is%2C+you+should+wear+a+%5BMASK%5D

Extraction-based QA using BERT

```
↑ ↓ ⊖ 目 ‡ ♬ ⅰ ∶
     question = "What can we learn in NUS?"
     answer text = "The National University of Singapore (NUS) is the national research university of Singapore. \
                    Founded in 1905 as the Straits Settlements and Federated Malay States Government Medical School, NUS is the oldest higher education institution in Singapore.
                   It is consistently ranked within the top 20 universities in the world and is considered to be the best university in the Asia-Pacific. \
                   NUS is a comprehensive research university, \
                    offering a wide range of disciplines, including the sciences, medicine and dentistry, design and environment, law, arts and social sciences, engineering, business, computing and music \
                    at both the undergraduate and postgraduate levels."
                                                                      BERT
 print('Answer: "' + answer + '"')
 Answer: "sciences , medicine and dentistry , design and environment , law , arts and social sciences , engineering , business , computing and music"
guestion = "What does NUS mean?"
answer text = "The National University of Singapore (NUS) is the national research university of Singapore. \
              Founded in 1905 as the Straits Settlements and Federated Malay States Government Medical School, NUS is the oldest higher education institution in Singapore.
              It is consistently ranked within the top 20 universities in the world and is considered to be the best university in the Asia-Pacific. \
              NUS is a comprehensive research university, \
              offering a wide range of disciplines, including the sciences, medicine and dentistry, design and environment, law, arts and social sciences, engineering, business, computing and music \
              at both the undergraduate and postgraduate levels."
                                                                    BERT
```

Answer: "national university of singapore"

print('Answer: "' + answer

What is BERT

Bidirectional Encoder Representations from Transformers (BERT)

Given a sequence of words, generate a sequence of vectors and then can be used for various NLP tasks

BERT

Solve Seq2Seq Task

Agenda

- 1. Seq2Seq
- 2. Transformers
- 3. BERT Model:
 - a. How to pre-train BERT
 - b. How to use BERT

Seq2Seq

Seq2Seq Task

One Sequences of Words

General Sequences of Words

Sequence Generation: Inference

- Sentences are sequences of words/characters
- Generate a word/character each time by RNN

Sequence Generation: Training

- Training (Language Model):
 - Training data/corpus: This is deep learning

Seq2Seq

Source: http://jalammar.github.io/illustrated-transformer/

Encoder and Decoder:

Take a sequence as input, generate a sequence as output

RNN is slow, which can not be parallelized.

Transformer

What is Transformer

Transformer is a sequence to sequence model (Encoder and Decoder), but it replace Recurrent Neural Networks with self-attentional modules.

Seq2Seq

bi can be computed **parallelly** based on **the whole input sequence.**

Transformer

- Transformer Block: Key component in Transformer (Like layer computation in neural network)
- 2. Encoder:
 - a. Stack 6 transformer blocks
 - b. Learn representations for the input sequence
- 3. Decoder:
 - a. Stack another 6 transformer blocks.
 - Generate output sequences conditioned on the learned representations from encoder.

Here, we only focus on ENCODER parts.

Transformer Block in Encoder

- 1. Input: A sequence of vectors
- 2. Output: A sequence of vectors
- 3. Key Components:
 - a. Self-attention Layer
 - b. Positional Embeddings
 - c. Residual and Normalization Layer
 - d. Fully-connected Layer

The target is to map all input sequences into an abstract continuous representation that holds the learned information for that entire sequence.

Attention Mechanism

Attention in deep learning:

 Attention vectors: a vector of importance weights (how strongly the output variable is correlated with other elements)

The target is approximated by the sum of their input values weighted by the attention scores.

$$Vec_{deep} = 0.5*Vec_{\cancel{\mathbb{R}}} + 0.5*Vec_{\cancel{\mathbb{R}}} + 0*Vec_{\cancel{\mathbb{R}}} + 0*Vec_{\cancel{\mathbb{R}}}$$

Basic Self-Attention

Self-attention (intra-attention):

- A sequence-to-sequence operation taking a sequence of vectors in and generate a sequence of vectors out
- 2. Relating different positions of the input sequence in order to compute the representation.

Why Self-Attention Works

Toy Example:

- 1. "the" is not relevant to the interpretation of the other words.
- To interpret what "sat" means in this sentence, it is very helpful to know "who" was sitting? Therefore, we hope "cat" and "sat" can have a high attention value.

Self-Attention:

- 1. The dot product express how related two vectors in the input sequence are, with "related" defined by the learning task
- 2. The output vectors are weighted sums over the whole input sequence, with the weights determined by these dot products.

To fully understand language, it is not sufficient to understand the individual words that make up a sentence, the model must capture how the words relate to each other in the context of the sentence.

Basic Self-Attention

1. There are no model parameters. It is totally determined by the embedding layer.

Self attention is permutation equivariant. It ignores the order information.

Step 1: Generate query, key, and value vector for the input vector at each time step.

q Query (to match others): qⁱ=W^qxⁱ

Key (to be matched): $k^i = W^k x^i$

Model parameters are introduced here.

Value (representation): vⁱ=W^vxⁱ

Word embeddings

Step 2: Compute attention scores using query vectors and key vectors

To encode the i-th word in the sequence, we need to compute the attention scores between this i-th word and all the words in the sequence.

- 1. Pick the query vector from the i-th word: qi
- 2. Attention score computation between qⁱ and all key vectors

$$a_{i,j} = rac{q^i \cdot k^j}{\sqrt{d_k}}$$
 Dim of key vectors

Word vectors

Step 3: Fed unscaled attention scores into softmax layers $\,\hat{a}_{1i} = rac{e^{a_{1i}}}{\sum_{i} e^{a_{1j}}}$

Word vectors

Step 4: Take the sum of all the value vectors weighted by the attention scores.

Step 5: All elements in input sequence xi will be encoded into new vectors bi

Encoded vector for the second element

$$z^2 = \sum_i \hat{a}_{2i} v^i$$

Word vectors

Matrix Formulation

Matrix Multiplication

Multi-head Self-Attention

- 1. Model parameters: W^k, W^q, W^v specific one kind of attention
- 2. Multi-head means separate W^k, W^q, W^v matrices
 - a. Expands the model's ability to focus on different positions
 - b. Gives the attention layer multiple "representation subspaces"

Multi-head Self-Attention

1) Concatenate all the attention heads

 Multiply with a weight matrix W^o that was trained jointly with the model

X

3) The result would be the $\mathbb Z$ matrix that captures information from all the attention heads. We can send this forward to the FFNN

That's pretty much all there is to multi-headed self-attention. It's quite a handful of matrices, I realize. Let me try to put them all in one visual so we can look at them in one place

Positional Embeddings

- 1. No position information in self-attention
- Positional Embeddings: each position has a unique positional vector PE(pos)
 - a. Add this vector to each input embeddings
 - b. Expands the model's ability to focus on different positions.

Positional Embeddings

The equation in the original paper:

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

More details: https://kazemnejad.com/blog/transformer architecture positional encoding/

Better Feature Extractor for Text

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Attention Visualization

The encoder self-attention distribution for the word "it" from the 5th to the 6th layer of a Transformer trained on English to French translation (one of eight attention heads).

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Resources for Transformer

- 1. https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
- 2. http://jalammar.github.io/illustrated-transformer/
- 3. https://nlp.seas.harvard.edu/2018/04/03/attention.html
- 4. https://github.com/jessevig/bertviz#attention-head-view
- 5. https://arxiv.org/abs/1706.03762

Seq2Seq

bi can be computed **parallelly** based on **the whole input sequence.**

BERT

Neural Networks for NLP

Can not address multi-sense problem!

Multiple Senses of Words

- It is safest to deposit your money in the **bank**.
- All the animals lined up along the river bank.
- Today, blood banks collect blood.

Contextualized Word Embeddings

Embeddings generated from BERT

BERT

How does BERT compute

How to use BERT

How to Pre-Train

The answer is **self-supervised learning**.

I now call it "self-supervised learning", because "unsupervised" is both a loaded and confusing term.

In self-supervised learning, the system learns to predict part of its input from other parts of it input. In other words a portion of the input is used as a supervisory signal to a predictor fed with the remaining portion of the input.

Automatically generate some kind of

Self-Supervised

Pretraing Task I: MLM

Pretraing Task II: NSP

- Next sentence prediction
 - Given two sentences A and B, is B likely to be the sentence followed by A?
 - Make bert good at handling relationships between multiple sentences

Huge Model Size

12 attention heads
110 million model parameters

Training of BERT_{BASE} was performed on 4 Cloud TPUs in Pod configuration (16 TPU chips total). ¹³ Training of BERT_{LARGE} was performed on 16 Cloud TPUs (64 TPU chips total). Each pretraining took 4 days to complete.

16 attention heads
345 million model parameters

Smaller Model

Published as a conference paper at ICLR 2020

ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS

Zhenzhong Lan¹ Mingda Chen²* Sebastian Goodman¹ Kevin Gimpel²
Pivush Sharma¹ Radu Soricut¹

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter

Victor SANH, Lysandre DEBUT, Julien CHAUMOND, Thomas WOLF Hugging Face. {victor,lysandre,julien,thomas}@huggingface.co

Abstract

Good summary:

http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html

BERT Usage I

- Input: Single Sentence Output: Class
 - Sentiment Analysis
 - Document Classification

BERT Usage II

- Input: Single Sentence Output: Class per each token
 - NER, POS Tagging

BERT Usage III

Input: Two Sentences Output: Class

BERT Usage IV

- Extraction-based Question Answering (SQuAD):
 - Input: two "sentences" (Question and Reference Text)
 - Output: start and end positions in Reference (Answer)

Question:

How many parameters does BERT-large have?

Reference Text:

BERT-large is really big... it has 24 layers and an embedding size of 1,024, for a total of 340M parameters! Altogether it is 1.34GB, so expect it to take a couple minutes to download to your Colab instance.

BERT Usage IV

- Extraction-based Question Answering (SQuAD):
 - Question {q1,q2,q3,q4,q5} Reference Text{w1,w2,w3,w4,w5,w6}

The starting position for answer in reference is 4

BERT Usage IV

- Extraction-based Question Answering (SQuAD):
 - Question {q1,q2,q3,q4,q5} Reference Text{w1,w2,w3,w4,w5,w6}

The starting position for answer in reference is 4

The ending position for answer in reference is 5

The answer is w4w5

Superior Performance of BERT

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph

Rank	Model	EM	F1
	Human Performance	86.831	89.45
	Stanford University		
	(Rajpurkar & Jia et al. '18)		
1	BERT + DAE + AoA (ensemble)	87.147	89.47
Mar 20, 2019	Joint Laboratory of HIT and iFLYTEK Research		
2	BERT + ConvLSTM + MTL + Verifier (ensemble)	86.730	89.28
Mar 15, 2019	Layer 6 Al		
3	BERT + N-Gram Masking + Synthetic Self-	86.673	89.14
Mar 05, 2019	Training (ensemble)		
	Google Al Language		
	https://github.com/google-research/bert		
4	XLNet (single model)	86.346	89.13
May 21, 2019	XLNet Team		
5	SemBERT(ensemble)	86.166	88.88
Apr 13, 2019	Shanghai Jiao Tong University		

1	SA-Net on Albert (ensemble)	90.724	93.01
Apr 06, 2020	QIANXIN		
2	SA-Net-V2 (ensemble)	90.679	92.948
May 05, 2020	QIANXIN		
2	Retro-Reader (ensemble)	90.578	92.978
Apr 05, 2020	Shanghai Jiao Tong University		
	http://arxiv.org/abs/2001.09694		
3	ATRLP+PV (ensemble)	90.442	92.877
Jul 31, 2020	Hithink RoyalFlush		
3	ELECTRA+ALBERT+EntitySpanFocus (ensemble)	90.442	92.839
May 04, 2020	SRCB_DML		
4	ELECTRA+ALBERT+EntitySpanFocus (ensemble)	90.420	92.799
Jun 21, 2020	SRCB_DML		

Superior Performance of BERT

System	MNLI-(m/mm) 392k		QNLI 108k		CoLA 8.5k	STS-B 5.7k	MRPC 3.5k		
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

System	Dev F1	Test F	
ELMo+BiLSTM+CRF	95.7	92.2	
CVT+Multi (Clark et al., 2018)		92.6	
BERTBASE	96.4	92.4	
BERTLARGE	96.6	92.8	

Table 3: CoNLL-2003 Named Entity Recognition results. The hyperparameters were selected using the Dev set, and the reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.

System	Dev	Test
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2
BERTBASE	81.6	
BERTLARGE	86.6	86.3
Human (expert)†		85.0
Human (5 annotations)†	-	88.0

Table 4: SWAG Dev and Test accuracies. Test results were scored against the hidden labels by the SWAG authors. †Human performance is measure with 100 samples, as reported in the SWAG paper.

System	D	Test		
	EM	FI	EM	FI
Leaderboard (Oct	8th, 2	(018)		
Human		-	82.3	91.2
#1 Ensemble - nlnet			86.0	91.7
#2 Ensemble - QANet			84.5	90.5
#1 Single - nlnet			83.5	90.1
#2 Single - QANet		-	82.5	89.3
Publishe	ed			
BiDAF+ELMo (Single)		85.8		-
R.M. Reader (Single)	78.9	86.3	79.5	86.6
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5		
BERT _{LARGE} (Single)	84.1	90.9	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

BERT, GPT and Transformers

Transformer

BERT vs Other Pre-trained Models

https://lilianweng.github.io/lil-log/2019/01/31/generalized-language-models.html

Where Next

What can we learn from BERT?

- Fully utilize the large-scale unannotated NLP data
- Embrace transformers (self-attention) instead of RNN and CNN
- Two stages in the NLP model development:
 - Large-scale pretraining

Specific-task fine-tuning

In the Future

- In the next few years, BERT will be used in almost all NLP applications (GPT2/3 may be more suitable for generative NLP tasks)
 - Build the specific NLP applications on pre-trained NLP models.
- Can we find a better feature extraction model than transformers?
- Can we find a better pre-training task than MLM and NSP?