Absolutua in reledious nepele

$$K = f(x_1, ..., x_n)$$

$$\Delta u = \frac{1}{4} \sum_{i} Dx_i \frac{\partial f}{\partial x_i}|_{x_i} Dx_i \qquad \text{abs. napalso}$$

$$\frac{\partial u}{\partial x_i} = \frac{1}{4} \sum_{i} Dx_i \frac{\partial f}{\partial x_i}|_{x_i} \text{ rel. napalso}$$

Optimal no Edruževavje

Medite:
$$(\bar{z}_A, \sigma_1^2)_{i}(\bar{z}_1, \sigma_1^2)$$

 $\bar{z}_A = x + r_A$ $\bar{z}_L = x + r_L^2$
 $Opt.$ Edina; ku $(\hat{x}, \hat{\sigma}^2)$
 $Variance$ σ^2
 $Vovariance$ $\sigma_{AL} = (r_A r_L)$
 $r_L = d r_A + w$ $(w^2) = \sigma_w^2$ $(w r_A) = \sigma_A^2$
 $G_{AL} = d \frac{\sigma_A}{\sigma_L}$
 $\sigma_{AL} = G_{AL} \sigma_A \sigma_L$

$$\hat{x} = \bar{z}_A + \frac{\sigma_A^2 - \sigma_{AL}}{\sigma_A^2 + \sigma_{L}^2 - 2\sigma_{AL}} (\bar{z}_L - \bar{z}_A)$$

$$\hat{\sigma}^2 = (A - 9_{AL}^2) (\frac{A}{\sigma_A^2} + \frac{A}{\sigma_L} - \frac{29_{AL}}{\sigma_A\sigma_L})^{-A}$$

Variance porpage

$$\bar{\xi} = \frac{A}{N} \sum_{i} \xi_{i} \quad \xi_{i} \sim \nu(x_{i}\sigma_{i}^{2}) \quad \theta_{ij} \neq 0$$

$$\sigma_{im}^{2} = \frac{A}{N} \left(\sum_{i} \sigma_{i}^{2} + \sum_{i \neq j} \sigma_{ij} \right)$$

halmanou filter, neodu, how. bolisine

Opt. ocena
$$(\hat{x}_n, \hat{\sigma}_n)$$
,

menites $(\hat{z}_{n,n}, \hat{\sigma}_{n,n})$

$$\hat{x}_{n+1} = \hat{x}_n + \frac{\hat{\sigma}_n}{\hat{\sigma}_n^2 + \hat{\sigma}_{n,n}^2} (\hat{z}_{n,n} - \hat{x}_n)$$

$$\hat{\sigma}_{n,n} = (\frac{\hat{\sigma}_n}{\hat{\sigma}_n} + \frac{1}{\hat{\sigma}_{n,n}})^{-1}$$

če združujemo M meniter

$$\hat{\mathbf{x}} = \sum_{i} \frac{\mathbf{t}_{i}}{\sigma_{i}^{2}} \left(\sum_{i} \sigma_{i}^{-2} \right)^{-1}$$

Gausson- porazdelite

$$\frac{dP}{d\epsilon} = \frac{1}{2\pi}\sigma e^{-(\epsilon-\mu)^2/2\sigma^2}$$

$$erf(\epsilon) = \int_{-\pi}^{x} \frac{dP}{d\epsilon} d\epsilon = F(\epsilon)$$

$$F(-x) = A - F(\epsilon) \qquad F = F\left(\frac{x-\mu}{\sigma}\right)$$

Merjenje skalarne bolisine

Sirjenje napah

Poeur mo x, Tx y, Tx , isie u, The

 $\sigma_{i} = \left(\frac{df}{dx}\right)^{2} \sigma_{x}^{2} + \left(\frac{df}{dy}\right)^{2} \sigma_{y}^{2} + 2 \frac{df}{dx} \frac{df}{dy} \sigma_{xy}$

 $f(t) = \mathcal{L}^{-1}(F(s))$ $F(s) = \mathcal{L}(f(t))$

M = f(x', A)

ū=f(z,9)

$$x_{N+1} = \Phi_{N} \times_{N} + C_{N} + \Gamma_{N} \omega_{N}$$

Poznem $(\hat{x_{N}}, \hat{\sigma_{N}}), (z_{N+1}, \sigma_{N+1})$

Napored $\bar{X}_{N+1}, \bar{\sigma}_{N+1}$

Naj be $\hat{\sigma_{N}} = P_{N}, \bar{\sigma}_{N+1} = H_{N+1}$
 $(w_{N}^{2}) = Q_{N}, \bar{\sigma}_{N+1} = P_{N+1}$

Vehtorsha kolisina

三= Hメイド

\$ = A x + c + P a

Vehtor she boli zine - Euezha slika

\$ = A\$ +6 + K(&-H*)	1.	e^{at}	$\frac{1}{s-a}$
N = PH ^T R- ⁻¹ P = AP + PA ^T + PQP ^T - PH ^T R- ⁻¹ μP	2.	1	$\frac{1}{s}$
γ _(γA) = ^γ _(γA)	3.	t^n	$\frac{1}{s^{n+1}}n!$
Seuzorji	4.	$\delta(t)$	1
x(1)	5.	$\sin \omega t$	$rac{\omega}{s^2+\omega^2}$
F(0) = K(0) = 0	6.	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
・ イ. red ベェ(+)+×(+)=を(+)	7.	koračna f. $\Theta(t-T)$	$\frac{1}{s} \mathrm{e}^{-Ts}$
$H(s) = \frac{A}{A+\pi s}$	8.	$f(t-T)\Theta(t-T)$	$F(s) e^{-Ts}$
· 2. red	9.	$f(t)\mathrm{e}^{at}$	F(s-a)
x +21ω, k +ω, x = ω, ε	10.	$\frac{d^n}{dt^n}f(t)$	$s^nF(s)$ - $f(o)$
900t = 1/PL	11.	-tf(t)	$\frac{d}{ds}F(s)$
$H(z) = \frac{2z + 5im^{2}z + m^{2}r}{m^{2}z}$			

2. Kolokvij

Seuzorii

$$\frac{4}{4} \left(\frac{1}{4} \right) + \frac{1}{4} \left(\frac{1}{4} \right) = \frac{1}{4} \left(\frac{1}{4} \right)$$

$$H(z) = \frac{2s + 51 m^2 z + m^2}{m^2}$$

$$\mathcal{Z}(1)=\mathcal{J}(1) \quad \chi(1)=\frac{\omega_0}{\sqrt{1-s^2}} = \frac{s\omega_0 t}{sin(\omega_0^2(1-s^2)t)}$$

Periodices signal

$$f(t) = \mathcal{L}^{-1}(F(s))$$
 $F(s) = \mathcal{L}(f(t))$

$$e^{at}$$

3.
$$t^n = \frac{1}{s^{n+1}} t$$

4.
$$\delta(t)$$
 1

5.
$$\sin \omega t \qquad \frac{\omega}{s^2 + \omega^2}$$

6.
$$\cos \omega t$$
 $\frac{s}{s^2 + \omega^2}$

7. koračna f.
$$\Theta(t-T)$$
 $\frac{1}{s} e^{-Ts}$

8.
$$f(t-T)\Theta(t-T)$$
 $F(s) e^{-Ts}$

9.
$$f(t) e^{at} F(s-a)$$

10.
$$\frac{d^n}{dt^n}f(t) \qquad \qquad s^nF(s)-\mathbf{f}(s)$$

1.
$$-tf(t) \qquad \qquad \frac{d}{ds}F(s)$$

$$sin \omega t e^{at} = \frac{\omega}{(s-a)^2 + \omega^2}$$

Aktivua vezja

Resonancia vezje (filtri 2. reda)

Pasovuo expust ni filter

$$\omega_{c} = \frac{1}{Rc} \quad \omega_{o}^{2} = \frac{1}{Lc}$$

Pasovni nepepustu: filhe

$$H = \frac{s^2 + \omega_0^2}{s^2 + s\omega_0 + \omega_0^2}$$

$$\omega_0^2 = \frac{4}{Lc} \quad \omega_0 = \frac{R}{L}$$

Bookjev diasran: 20103/HI in odu. od w

$$S_{1,2} = -\frac{\omega_c}{2} \pm i\omega_o$$

Statistika

$$\alpha = \frac{1}{\sqrt{2}} \sum_{i} \xi_{i} \qquad s_{i} = \frac{1}{\sqrt{2}} \sum_{i} \left(f_{i} - \xi_{i} \right)_{i}$$

$$S^{2} = \sqrt[4]{2} \left(\frac{1}{2} - \alpha \right)^{2} \quad \sigma^{2} = \langle s^{2} \rangle$$

$$\alpha = \langle s^{2} \rangle$$

$$\sigma_{2}^{2} = (N-\lambda) \frac{s^{2}}{\chi^{2}} \qquad P(\chi^{2}, \chi^{2},) = \frac{\kappa}{2}$$

$$P(\chi^{2}, \chi^{2},) = \lambda - \frac{\kappa}{2}$$

$$T = \frac{\overline{z} - \alpha}{5} \sqrt{\nu} \sim S(\nu - \lambda)$$

Primerjava dueh uzorcau

$$T = \frac{\left(\frac{D}{A} + \frac{1}{4}\right)^{2} \left(\frac{D^{2} + \frac{1}{4}}{A^{2}}\right) \left(\frac{D^{2} + D^{2} - D}{A^{2} + D^{2} - D}\right)^{2} \left(\frac{D^{2} + D^{2} - D}{A^{2} + D^{2} - D}\right)^{2}}{\left(\frac{D^{2} + \frac{1}{4}}{A^{2}}\right)^{2} \left(\frac{D^{2} + D^{2} - D}{A^{2} + D^{2} - D}\right)^{2}}$$

$$F = \frac{S_{1}^{2}/\sigma_{1}^{2}}{S_{1}^{2}/\sigma_{2}^{2}} \sim F(\nu_{1}-\nu_{1}, \nu_{2}-\nu_{1})$$