the probability of customer churn, additional logic may be needed to identify the scoring threshold to determine which customer accounts to flag as being at risk of churn. In addition, some provision should be made for adjusting this threshold and training the algorithm, either in an automated learning fashion or with human intervention.

Although the team must create technical documentation, many times engineers and other technical staff receive the code and may try to use it without reading through all the documentation. Therefore, it is important to add extensive comments in the code. This directs the people implementing the code on how to use it, explains what pieces of the logic are supposed to do, and guides other people through the code until they're familiar with it. If the team can do a thorough job adding comments in the code, it is much easier for someone else to maintain the code and tune it in the runtime environment. In addition, it helps the engineers edit the code when their environment changes or they need to modify processes that may be providing inputs to the code or receiving its outputs.

12.3 Data Visualization Basics

As the volume of data continues to increase, more vendors and communities are developing tools to create clear and impactful graphics for use in presentations and applications. Although not exhaustive, Table 12-2 lists some popular tools.

TABLE 12-2 Common Tools for Data Visualization

Open Source	Commercial Tools
R (Base package, lattice, ggplot2)	Tableau
GGobi/Rggobi	Spotfire (TIBCO)
Gnuplot	QlikView
Inkscape	Adobe Illustrator
Modest Maps	
OpenLayers	
Processing	
D3.js	
Weave	

As the volume and complexity of data has grown, users have become more reliant on using crisp visuals to illustrate key ideas and portray rich data in a simple way. Over time, the open source community has developed many libraries to offer more options for portraying graphics data visually. Although this book showed examples primarily using the base package of R, ggplot2 provides additional options for creating professional-looking data visualization, as does the lattice library for R.

Gnuplot and GGobi have a command-line-driven approach to generating data visualization. The genesis of these tools mainly grew out of scientific computing and the need to express complex data visually. GGobi

also has a variant called Rggobi that enables users to access the GGobi functionality with the R software and programming language. There are many open source mapping tools available, including Modest Maps and OpenLayers, both designed for developers who would like to create interactive maps and embed them within their own development projects or on the web. The software programming language development environment, Processing, employs a Java-like language for developers to create professional-looking data visualization. Because it is based on a programming language rather than a GUI, Processing enables developers to create robust visualization and have precise control over the output. D3.js is a JavaScript library for manipulating data and creating web-based visualization with standards, such as Hypertext Markup Language (HTML), Scalable Vector Graphics (SVG), and Cascading Style Sheets (CSS). For more examples of using open source visualization tools, refer to Nathan Yau's website, flowingdata.com [1], or his book *Visualize This* [2], which discusses additional methods for creating data representations with open source tools.

Regarding the commercial tools shown in Table 12-2, Tableau, Spotfire (by TIBCO), and QlikView function as data visualization tools and as interactive business intelligence (BI) tools. Due to the growth of data in the past few years, organizations for the first time are beginning to place more emphasis on ease of use and visualization in BI over more traditional BI tools and databases. These tools make visualization easy and have user interfaces that are cleaner and simpler to navigate than their predecessors. Although not traditionally considered a data visualization tool, Adobe Illustrator is listed in Table 12-2 because some professionals use it to enhance visualization made in other tools. For example, some users develop a simple data visualization in R, save the image as a PDF or JPEG, and then use a tool such as Illustrator to enhance the quality of the graphic or stitch multiple visualization work into an infographic. Inkscape is an open source tool used for similar use cases, with much of Illustrator's functionality.

12.3.1 Key Points Supported with Data

It is more difficult to observe key insights when data is in tables instead of in charts. To underscore this point, in *Say it with Charts*, Gene Zelazny [3] mentions that to highlight data, it is best to create a visual representation out of it, such as a chart, graph, or other data visualization. The opposite is also true. Suppose an analyst chooses to downplay the data. Sharing it in a table draws less attention to it and makes it more difficult for people to digest.

The way one chooses to organize the visual in terms of the color scheme, labels, and sequence of information also influences how the viewer processes the information and what he perceives as the key message from the chart. The table shown in Figure 12-16 contains many data points. Given the layout of the information, it is difficult to identify the key points at a glance. Looking at 45 years of store opening data can be challenging, as shown in Figure 12-16.

Year	1962	1963	1961	1985	13861	11967	1948	1969	1970	1001	1972	1973	1974	1975	1976	1077	1978	1979	1080	1981	286	1	1086	, Section 1			1987	1988	1983	1990	1981	1,992	1001	I		50	961	1997	1,998	1999	2000	į		2002	2003	1000	2000	2006	Total
SuperBox	1		1	1		1	5	4	4	14	13	14	20	14	17	29	24	37	33	117	7 4	6	5 7	8	1 9	10	92	82	86	106	72	62	6	2 4	0	49	22	26	33	47	7	8 7	1	67	64	91	91	37	1980
BigBox						1		- 1	1	1	4	5	. 5	5	10	10	10	6	21	33	2	2	2 2	25	9 3	11	50	43	45	72	91	76	9	4 6	7	80	31	34	33	33	2	7 3	5	47	32	39	27	-	4 1196
Total	1		1	1																																													7 3176

FIGURE 12-16 Forty-five years of store opening data

Even showing somewhat less data is still difficult to read through for most people. Figure 12-17 hides the first 10 years, leaving 35 years of data in the table.

Year	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	Total
SuperBox	13	14	20	14	17	29	24	37	33	117	42	65	79	81	90	92	82	86	106	72	62	62	40	49	22	26	33	47	78	71	67	64	91	91	33	1980
BigBox	4	5	5	5	10	10	10	6	21	33	21	22	20	29	31	50	43	45	72	91	76	94	67	80	31	34	33	33	27	35	47	32	39	27	4	1196
Total	17	19	25	19	27	39	34	43	54	150	63	87	99	110	121	142	125	131	178	163	138	156	107	129	53	60	66	80	105	106	114	96	130	118	37	3176

FIGURE 12-17 Thirty-five years of store opening data

As most readers will observe, it is challenging to make sense of data, even at relatively small scales. There are several observations in the data that one may notice, if one looks closely at the data tables:

- BigBox experienced strong growth in the 1980s and 1990s.
- By the 1980s, BigBox began adding more SuperBox stores to its mix of chain stores.
- SuperBox stores outnumber BigBox stores nearly 2 to 1 in aggregate.

Depending on the point trying to be made, the analyst must take care to organize the information in a way that intuitively enables the viewer to take away the same main point that the author intended. If the analyst fails to do this effectively, the person consuming the data must guess at the main point and may interpret something different from what was intended.

Figure 12-18 shows a map of the United States, with the points representing the geographic locations of the stores. This map is a more powerful way to depict data than a small table would be. The approach is well suited to a sponsor audience. This map shows where the BigBox store has market saturation, where the company has grown, and where it has SuperBox stores and other BigBox stores, based on the color and shading. The visualization in Figure 12-18 clearly communicates more effectively than the dense tables in Figure 12-16 and Figure 12-17. For a sponsor audience, the analytics team can also use other simple visualization techniques to portray data, such as bar charts or line charts.

FIGURE 12-18 Forty-five years of store opening data, shown as map

12.3.2 Evolution of a Graph

Visualization allows people to portray data in a more compelling way than tables of data and in a way that can be understood on an intuitive, precognitive level. In addition, analysts and data scientists can use visualization to interact with and explore data. Following is an example of the steps a data scientist may go through in exploring pricing data to understand the data better, model it, and assess whether a current pricing model is working effectively. Figure 12-19 shows a distribution of pricing data as a user score reflecting price sensitivity.

FIGURE 12-19 Frequency distribution of user scores

A data scientist's first step may be to view the data as a raw distribution of the pricing levels of users. Because the values have a long tail to the right, in Figure 12-19, it may be difficult to get a sense of how tightly clustered the data is between user scores of zero and five.

To understand this better, a data scientist may rerun this distribution showing a log distribution (Chapter 3) of the user score, as demonstrated in Figure 12-20.

This shows a less skewed distribution that may be easier for a data scientist to understand. Figure 12-21 illustrates a rescaled view of Figure 12-20, with the median of the distribution around 2.0. This plot provides the distribution of a new user score, or index, that may gauge the level of price sensitivity of a user when expressed in log form.

FIGURE 12-20 Frequency distribution with log of user score

FIGURE 12-21 Frequency distribution of new user scores

Another idea may be to analyze the stability of price distributions over time to see if the prices offered to customers are stable or volatile. As shown in a graphic such as Figure 12-22, the prices appear to be stable. In this example, the user score of pricing remains within a tight band between two and three regardless of the time in days. In other words, the time in which a customer purchases a given product does not significantly influence the price she is willing to pay, as expressed by the user score, shown on the y-axis.

FIGURE 12-22 Graph of stability analysis for pricing

By this point the data scientist has learned the following about this example and made several observations about the data:

- Most user scores are between two and three in terms of their price sensitivity.
- After taking the log value of the user scores, a new user scoring index was created, which recentered
 the data values around the center of the distribution.
- The pricing scores appear to be stable over time, as the duration of the customer does not seem to
 have significant influence on the user pricing score. Instead, it appears to be relatively constant over
 time, within a small band of user scores.

At this point, the analysts may want to explore the range of price tiers offered to customers. Figures 12-22 and 12-23 demonstrate examples of the price tiering currently in place within the customer base.

Figure 12-23 shows the price distribution for a customer base. In this example, loyalty score and price are positively correlated; as the loyalty score increases, so do the prices that the customers are willing to pay. It may seem like a strange phenomenon that the most loyal customers in this example are willing to pay higher prices, but the reality is that customers who are very loyal tend to be less sensitive to price fluctuations or increases. The key, however, is to understand which customers are highly loyal so that appropriate pricing can be charged to the right groups of people.

Figure 12-24 shows a variation on 12-23. In this case, the new graphic portrays the same customer price tiers, but this time a rug representation (Chapter 3) has been added at the bottom to reflect the distribution of the data points.

FIGURE 12-23 Graph comparing the price in U.S. dollars with a customer loyalty score

FIGURE 12-24 Graph comparing the price in U.S. dollars with a customer loyalty score (with rug representation)

This rug indicates that the majority of customers in this example are in a tight band of loyalty scores, between about 1 and 3 on the x-axis, all of which offered the same set of prices, which are high (between 0.9 and 1.0 on the y-axis). The y-axis in this example may represent a pricing score, or the raw value of a customer in millions of dollars. The important aspect is to recognize that the pricing is high and is offered consistently to most of the customers in this example.

Based on what was shown in Figure 12-25, the team may decide to develop a new pricing model. Rather than offering static prices to customers regardless of their level of loyalty, a new pricing model might offer more dynamic price points to customers. In this visualization, the data shows the price increases as more of a curvilinear slope relative to the customer loyalty score. The rug at the bottom of the graph indicates that most customers remain between 1 and 3 on the x-axis, but now rather than offering all these customers the same price, the proposal suggests offering progressively higher prices as customer loyalty increases. In one sense, this may seem counterintuitive. It could be argued that the best prices should be offered to the most loyal customers. However, in reality, the opposite is often the case, with the most attractive prices being offered to the least loyal customers. The rationale is that loyal customers are less price sensitive and may enjoy the product and stay with it regardless of small fluctuations in price. Conversely, customers who are not very loyal may defect unless they are offered more attractive prices to stay. In other words, less loyal customers are more price sensitive. To address this issue, a new pricing model that accounts for this may enable an organization to maximize revenue and minimize attrition by offering higher prices to more loyal customers and lower prices to less loyal customers. Creating an iterative depicting the data visually allows the viewer to see these changes in a more concrete way than by looking at tables of numbers or raw values.

Proposed Pricing Model with Score Distribution

FIGURE 12-25 New proposed pricing model compared to prices in U.S. dollars with rug

Data scientists typically iterate and view data in many different ways, framing hypotheses, testing them, and exploring the implications of a given model. This case explores visual examples of pricing distributions, fluctuations in pricing, and the differences in price tiers before and after implementing a new model to optimize price. The visualization work illustrates how the data may look as the result of the model, and helps a data scientist understand the relationships within the data at a glance.

The resulting graph in the pricing scenario appears to be technical regarding the distribution of prices throughout a customer base and would be suitable for a technical audience composed of other data scientists. Figure 12-26 shows an example of how one may present this graphic to an audience of other data scientists or data analysts. This demonstrates a curvilinear relationship between price tiers and customer loyalty when expressed as an index. Note that the comments to the right of the graph relate to the precision of the price targeting, the amount of variability in robustness of the model, and the expectations of model speed when run in a production environment.

FIGURE 12-26 Evolution of a graph, analyst example with supporting points

Figure 12-27 portrays another example of the output from the price optimization project scenario, showing how one may present this to an audience of project sponsors. This demonstrates a simple bar chart depicting the average price per customer or user segment. Figure 12-27 shows a much simpler-looking visual than Figure 12-26. It clearly portrays that customers with lower loyalty scores tend to get lower prices due to targeting from price promotions. Note that the right side of the image focuses on the business impact and cost savings rather than the detailed characteristics of the model.

FIGURE 12-27 Evolution of a graph, sponsor example

The comments to the right side of the graphic in Figure 12-27 explain the impact of the model at a high level and the cost savings of implementing this approach to price optimization.

12.3.3 Common Representation Methods

Although there are many types of data visualizations, several fundamental types of charts portray data and information. It is important to know when to use a particular type of chart or graph to express a given kind of data. Table 12-3 shows some basic chart types to guide the reader in understanding that different types of charts are more suited to a situation depending on specific kinds of data and the message the team is attempting to portray. Using a type of chart for data it is not designed for may look interesting or unusual, but it generally confuses the viewer. The objective for the author is to find the best chart for expressing the data clearly so the visual does not impede the message, but rather supports the reader in taking away the intended message.

TABLE 12-3	Common F	Representation	Methods	for Data and Charts
-------------------	----------	----------------	---------	---------------------

Data for Visualization	Type of Chart	
Components (parts of whole)	Pie chart	
Item	Barchart	
Time series	Line chart	
Frequency	Line chart or histogram	
Correlation	Scatterplot, side-by-side bar charts	

Table 12-3 shows the most fundamental and common data representations, which can be combined, embellished, and made more sophisticated depending on the situation and the audience. It is recommended

that the team consider the message it is trying to communicate and then select the appropriate type of visual to support the point. Misusing charts tends to confuse an audience, so it is important to take into account the data type and desired message when choosing a chart.

Pie charts are designed to show the components, or parts relative to a whole set of things. A pie chart is also the most commonly misused kind of chart. If the situation calls for using a pie chart, employ it only when showing only 2–3 items in a chart, and only for sponsor audiences.

Bar charts and line charts are used much more often and are useful for showing comparisons and trends over time. Even though people use vertical bar charts more often, horizontal bar charts allow an author more room to fit the text labels. Vertical bar charts tend to work well when the labels are small, such as when showing comparisons over time using years.

For frequency, histograms are useful for demonstrating the distribution of data to an analyst audience or to data scientists. As shown in the pricing example earlier in this chapter, data distributions are typically one of the first steps when visualizing data to prepare for model planning. To qualitatively evaluate correlations, scatterplots can be useful to compare relationships among variables.

As with any presentation, consider the audience and level of sophistication when selecting the chart to convey the intended message. These charts are simple examples but can easily become more complex when adding data variables, combining charts, or adding animation where appropriate.

12.3.4 How to Clean Up a Graphic

Many times software packages generate a graphic for a dataset, but the software adds too many things to the graphic. These added visual distractions can make the visual appear busy or otherwise obscure the main points that are to be made with the graphic. In general, it is a best practice to strive for simplicity when creating graphics and data visualization graphs. Knowing how to simplify graphics or clean up a messy chart is helpful for conveying the key message as clearly as possible. Figure 12-28 portrays a line chart with several design problems.

FIGURE 12-28 How to clean up a graphic, example 1 (before)

How to Clean Up a Graphic

The line chart shown in Figure 12-28 compares two trends over time. The chart looks busy and contains a lot of chart junk that distracts the viewer from the main message. *Chart junk* refers to elements of data visualization that provide additional materials but do not contribute to the data portion of the graphic. If chart junk were removed, the meaning and understanding of the graphic would not be diminished; it would instead be made clearer. There are five main kinds of "chart junk" in Figure 12-28:

- Horizontal grid lines: These serve no purpose in this graphic. They do not provide additional information for the chart.
- Chunky data points: These data points represented as large square blocks draw the viewer's attention to them but do not represent any specific meaning aside from the data points themselves.
- Overuse of emphasis colors in the lines and border: The border of the graphic is a thick, bold line.
 This forces the viewer's attention to the perimeter of the graphic, which contains no information value. In addition, the lines showing the trends are relatively thick.
- No context or labels: The chart contains no legend to provide context as to what is being shown. The
 lines also lack labels to explain what they represent.
- Crowded axis labels: There are too many axis labels, so they appear crowded. There is no need for
 labels on the y-axis to appear every five units or for values on the x-axis to appear every two units.
 Shown in this way, the axis labels distract the viewer from the actual data that is represented by the
 trend lines in the chart.

The five forms of chart junk in Figure 12-28 are easily corrected, as shown in Figure 12-29. Note that there is no clear message associated with the chart and no legend to provide context for what is shown in Figure 12-28.

FIGURE 12-29 How to clean up a graphic, example 1 (after)

FIGURE 12-30 How to clean up a graphic, example 1 (alternate "after" view)

Figures 12-29 and 12-30 portray two examples of cleaned-up versions of the chart shown in Figure 12-28. Note that the problems with chart junk have been addressed. There is a clear label and title for each chart to reinforce the message, and color has been used in ways to highlight the point the author is trying to make. In Figure 12-29, a strong, green color is shown to represent the count of SuperBox stores, because this is where the viewer's focus should be drawn, whereas the count of BigBox stores is shown in a light gray color.

In addition, note the amount of white space being used in each of the two charts shown in Figures 12-29 and 12-30. Removing grid lines, excessive axes, and the visual noise within the chart allows clear contrast between the emphasis colors (the green line charts) and the standard colors (the lighter gray of the BigBox stores). When creating charts, it is best to draw most of the main visuals in standard colors, light tones, or color shades so that stronger emphasis colors can highlight the main points. In this case, the trend of BigBox stores in light gray fades into the background but does not disappear, while making the SuperBox stores trend in a darker gray (bright green in the online chart) makes it prominent to support the message the author is making about the growth of the SuperBox stores.

An alternative to Figure 12-29 is shown in Figure 12-30. If the main message is to show the difference in the growth of new stores, Figure 12-30 can be created to further simplify Figure 12-28 and graph only the difference between SuperBox stores compared to regular BigBox stores. Two examples are shown to illustrate different ways to convey the message, depending on what it is the author of these charts would like to emphasize.

How to Clean Up a Graphic, Second Example

Another example of cleaning up a chart is portrayed in Figure 12-31. This vertical bar chart suffers from more of the typical problems related to chart junk, including misuse of color schemes and lack of context.

FIGURE 12-31 How to clean up a graphic, example 2 (before)

There are five main kinds of chart junk in Figure 12-31:

- Vertical grid lines: These vertical grid lines are not needed in this graphic. They provide no additional
 information to help the viewer understand the message in the data. Instead, these vertical grid lines
 only distract the viewer from looking at the data.
- Too much emphasis color: This bar chart uses strong colors and too much high-contrast dark grayscale. In general, it is best to use subtle tones, with a low contrast gray as neutral color, and then emphasize the data underscoring the key message in a dark tone or strong color.
- No chart title: Because the graphic lacks a chart title, the viewer is not oriented to what he is viewing
 and does not have proper context.
- Legend at right restricting chart space: Although there is a legend for the chart, it is shown on the
 right side, which causes the vertical bar chart to be compressed horizontally. The legend would make
 more sense placed across the top, above the chart, where it would not interfere with the data being
 expressed.
- Small labels: The horizontal and vertical axis labels have appropriate spacing, but the font size is
 too small to be easily read. These should be slightly larger to be easily read, while not appearing too
 prominent.

Figures 12-32 and 12-33 portray two examples of cleaned-up versions of the chart shown in Figure 12-31. The problems with chart junk have been addressed. There is a clear label and title for each chart to reinforce the message, and appropriate colors have been used in ways to highlight the point the author is trying to make. Figures 12-32 and 12-33 show two options for modifying the graphic, depending on the main point the presenter is trying to make.

Figure 12-32 shows strong emphasis color (dark blue) representing the SuperBox stores to support the chart title: Growth of SuperBox Stores.

FIGURE 12-32 How to clean up a graphic, example 2 (after)

Suppose the presenter wanted to talk about the total growth of BigBox stores instead. A line chart showing the trends over time would be a better choice, as shown in Figure 12-33.

FIGURE 12-33 How to clean up a graphic, example 2 (alternate view of "after")

In both cases, the noise and distractions within the chart have been removed. As a result, the data in the bar chart for providing context has been deemphasized, while other data has been made more prominent because it reinforces the key point as stated in the chart's title.

12.3.5 Additional Considerations

As stated in the previous examples, the emphasis should be on simplicity when creating charts and graphs. Create graphics that are free of chart junk and utilize the simplest method for portraying graphics clearly. The goal of data visualization should be to support the key messages being made as clearly as possible and with few distractions.

Similar to the idea of removing chart junk is being cognizant of the data-ink ratio. *Data-ink* refers to the actual portion of a graphic that portrays the data, while *non-data ink* refers to labels, edges, colors, and other decoration. If one imagined the ink required to print a data visualization on paper, the data-ink ratio could be thought of as (data-ink)/(total ink used to print the graphic). In other words, the greater the ratio of data-ink in the visual, the more data rich it is and the fewer distractions it has [4].

Avoid Using Three-Dimensions in Most Graphics

One more example where people typically err is in adding unnecessary shading, depth, or dimensions to graphics. Figure 12-34 shows a vertical bar chart with two visible dimensions. This example is simple and easy to understand, and the focus is on the data, not the graphics. The author of the chart has chosen to highlight the SuperBox stores in a dark blue color, while the BigBox bars in the chart are in a lighter blue. The title is about the growth of SuperBox stores, and the SuperBox bars in the chart are in a dark, high-contrast shade that draws the viewer's attention to them.

FIGURE 12-34 Simple bar chart, with two dimensions

Compare Figure 12-34 to Figure 12-35, which shows a three-dimensional chart. Figure 12-35 shows the original bar chart at an angle, with some attempt at showing depth. This kind of three-dimensional perspective makes it more difficult for the viewer to gauge the actual data and the scaling becomes deceptive.

Three-dimensional charts often distort scales and axes, and impede viewer cognition. Adding a third dimension for depth in Figure 12-35, does not make it fancier, just more difficult to understand.

FIGURE 12-35 Misleading bar chart, with three dimensions

The charts in Figures 12-34 and 12-35 portray the same data, but it is more difficult to judge the actual height of the bars in Figure 12-35. Moreover, the shadowing and shape of the chart cause most viewers to spend time looking at the perspective of the chart rather than the height of the bars, which is the key message and purpose of this data visualization.

Summary

Communicating the value of analytical projects is critical for sustaining the momentum of a project and building support within organizations. This support is instrumental in turning a successful project into a system or integrating it properly into an existing production environment. Because an analytics project may need to be communicated to audiences with mixed backgrounds, this chapter recommends creating four deliverables to satisfy most of the needs of various stakeholders.

- A presentation for a project sponsor
- A presentation for an analytical audience
- Technical specification documents
- Well-annotated production code

Creating these deliverables enables the analytics project team to communicate and evangelize the work that it did, whereas the code and technical documentation assists the team that wants to implement the models within the production environment.

This chapter illustrates the importance of selecting clear and simple visual representations to support the key points in the final presentations or for portraying data. Most data representations and graphs can be improved by simply removing the visual distractions. This means minimizing or removing chart junk, which distracts the viewer from the main purpose of a chart or graph and does not add information value.