

Modulhandbuch Medizintechnik Bachelor 20221 (Bachelor of Science, B.Sc.)

SPO 20221 Wintersemester 2023/24 Stand 11.09.2023

KIT-FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK

Inhaltsverzeichnis

1.	. Einführung in das Modulhandbuch	
	1.1. Allgemeines	
	1.2. Hinweise zu Modulen und Teilleistungen	
	1.3. Anmeldung und Zulassung zu Modulprüfungen	8
2.	. Qualifikationsziele	9
3.	S. Struktur des Studiengangs	10
4.	. Empfohlener Studienplan	11
	5. Medizinisch-technischer Profilierungsbereich	
	i. Anmeldung Bachelorarbeit	
	Anerkennung von Studien- und Prüfungsleistungen	
/.	7.1. Grundsätzliche Regelungen	
	7.2. Benotung	
	7.3. Vorgehensweise	
Ω	B. Ansprechpartner*innen und Beratung	
). Herausgeber	
	•	
10	0. Aufbau des Studiengangs	
	10.1. Orientierungsprüfung	
	10.2. Bachelorarbeit	
	10.3. Mathematisch-physikalische Grundlagen	
	10.5. Informationstechnik	
	10.6. Medizinisch-technische Grundlagen	
	10.7. Medizinisch-technischer Profilierungsbereich	
	10.8. Industrie-, Forschungs- oder Klinikpraktikum	
	10.9. Überfachliche Qualifikationen	
	10.10. Zusatzleistungen	
11	1. Module	
''	11.1. Molekularbiologie und Genetik - M-CHEMBIO-106204	
	11.2. Angewandte Medizintechnik - M-ETIT-106446	
	11.3. Antennen und Mehrantennensysteme - M-ETIT-100565	
	11.4. Bachelorarbeit - M-ETIT-106260	
	11.5. Basispraktikum Mobile Roboter - M-INFO-101184	
	11.6. Batteriemodellierung mit MATLAB - M-ETIT-103271	
	11.7. Bauelemente der Elektrotechnik - M-ETIT-104538	
	11.8. Begleitstudium - Angewandte Kulturwissenschaft - M-ZAK-106235	
	11.9. Begleitstudium - Nachhaltige Entwicklung - M-ZAK-106099	
	11.10. Bildverarbeitung - M-ETIT-102651	44
	11.11. Bioanalytik - M-CHEMBIO-106306	
	11.12. Biochemie - M-CHEMBIO-100149	48
	11.13. Biochemie - M-CHEMBIO-106304	
	11.14. Computational Intelligence - M-MACH-105296	
	11.15. Datenanalyse für Ingenieure - M-MACH-105307	
	11.16. Einführung in die Finite-Elemente-Methode - M-MACH-106209	
	11.17. Einführung in die Hochspannungstechnik - M-ETIT-105276	
	11.18. Einführung in die Medizintechnik - M-ETIT-106492	
	11.19. Einführung in die Technische Mechanik II - M-MACH-101603	
	11.20. Electrochemical Energy Technologies - M-ETIT-105690	
	11.21. Elektrische Maschinen und Stromrichter - M-ETIT-102124	
	11.22. Elektroenergiesysteme - M-ETIT-102156	
	11.23. Elektromagnetische Felder und Wellen - M-ETIT-106346	
	11.24. Elektronische Schaltungen - M-ETIT-104465	
	11.25. Elektrotechnisches Grundlagenpraktikum - M-ETIT-102113	
	11.26. Erzeugung elektrischer Energie - M-ETIT-100407	
	11.27. Experimentalphysik - M-PHYS-105008 11.28. Experimentalphysik - M-PHYS-101684	
	11.20. Experimentallyingsik - M-F1113-101004	/0

11.29. Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung - M-MACH-106051	
11.30. Fertigungsmesstechnik - M-ETIT-103043	
11.31. Forschungspraktikum in der Medizintechnik - M-ETIT-106000	
11.32. Genetik - M-CIWVT-106108	
11.33. Grundlagen der Datenübertragung - M-ETIT-106338	
11.34. Grundlagen der Digitaltechnik und Systemmodellierung - M-ETIT-106350	
11.35. Grundlagen der Hochfrequenztechnik - M-ETIT-102129	
11.36. Grundlagen der Künstlichen Intelligenz - M-INFO-106014	
11.37. Grundtechniken der Biologie - M-CHEMBIO-101843	
11.38. Höhere Mathematik I - M-MATH-101731	
11.39. Höhere Mathematik II - M-MATH-101732	
11.40. Höhere Mathematik III - M-MATH-101738	
11.41. Hybride und elektrische Fahrzeuge - M-ETIT-100514	
11.42. Industriepraktikum in der Medizintechnik - M-ETIT-105998	
11.43. Informations- und Automatisierungstechnik - M-ETIT-106336	
11.44. Informationstechnik II und Automatisierungstechnik - M-ETIT-104547	
11.45. Introduction to Quantum Information Processing - M-ETIT-106264	
11.46. Klinikpraktikum in der Medizintechnik - M-ETIT-106001	
11.47. Kontinuumsmechanik - M-MACH-105180	
11.48. Labor für angewandte Machine Learning Algorithmen - M-ETIT-104823	
11.49. Labor Schaltungsdesign - M-ETIT-100518	
11.50. Lineare Elektrische Netze - M-ETIT-106417	
11.51. Machine Vision - M-MACH-101923	
11.52. Maschinenkonstruktionslehre - M-MACH-101299	
11.53. Maschinenkonstruktionslehre A - M-MACH-106527	117
11.54. Maschinenkonstruktionslehre III und IV - M-MACH-102829	
11.55. Mathematische Methoden der Kontinuumsmechanik - M-MACH-106210	
11.56. Mensch-Maschine-Interaktion - M-INFO-100729	122
11.57. Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen - M-INFO-100824	123
11.58. Mess- und Regelungstechnik - M-ETIT-106339	
11.59. Mikrobiologie - M-CHEMBIO-106205	126
11.60. Nachrichtentechnik I - M-ETIT-102103	127
11.61. Nachrichtentechnik II / Communications Engineering II - M-ETIT-105274	
11.62. Optical Networks and Systems - M-ETIT-103270	
11.63. Optik und Festkörperelektronik - M-ETIT-105005	133
11.64. Optoelectronic Components - M-ETIT-100509	135
11.65. Optoelektronik - M-ETIT-100480	137
11.66. Orientierungsprüfung - M-ETIT-106426	138
11.67. Photovoltaische Systemtechnik - M-ETIT-100411	139
11.68. Physikalisches Anfängerpraktikum - M-PHYS-103435	140
11.69. Physiologie und Anatomie für die Medizintechnik - M-ETIT-105874	14 ²
11.70. Praktikum Design und Entwurf von Quantenschaltkreisen - M-ETIT-106262	144
11.71. Praktikum Elektrochemische Energietechnologien - M-ETIT-105703	145
11.72. Praktikum Hard- und Software in leistungselektronischen Systemen - M-ETIT-103263	147
11.73. Praktikum Matlab zur Modellierung im Bereich Optoelektronik - M-ETIT-105867	148
11.74. Product Lifecycle Management - M-MACH-106195	149
11.75. Radiation Protection - M-ETIT-100562	150
11.76. Radio-Frequency Electronics - M-ETIT-105124	152
11.77. Robotik I - Einführung in die Robotik - M-INFO-100893	
11.78. Seminar Batterien I - M-ETIT-105319	154
11.79. Seminar Brennstoffzellen I - M-ETIT-105320	155
11.80. Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung - M-ETIT-100397	156
11.81. Seminar über ausgewählte Kapitel der Biomedizinischen Technik - M-ETIT-100383	
11.82. Seminar: Grundlagen Eingebetteter Systeme - M-ETIT-105356	
11.83. Signale und Systeme - M-ETIT-106372	
11.84. Spezielle Themen der Medizintechnik - M-ETIT-105878	
11.85. Statistische Methoden der Informationsverarbeitung - M-ETIT-105960	
11.86. Strömungslehre - M-MACH-102565	
11.87. Superconductors for Energy Applications - M-ETIT-105299	
11.88. Systematische Werkstoffauswahl - M-MACH-106054	

	11.89. Systemdynamik und Regelungstechnik - M-ETIT-102181	
	11.90. Technische Mechanik - M-MACH-101259	
	11.91. Überfachliche Qualifikationen - M-ETIT-105804	
	11.92. Virtual Reality Praktikum - M-MACH-106249	
	11.93. Vorlesung Grundtechniken der Biologie - M-CHEMBIO-106203	
	11.94. Wahrscheinlichkeitstheorie - M-ETIT-102104	
	11.95. Werkstoffkunde - M-MACH-102567	
	11.96. Windkraft - M-MACH-105732	
	11.97. Workshop angewandte Hochfrequenztechnik - M-ETIT-105301	
	11.98. Zellbiologie - M-CIWVT-106107	
12.	Teilleistungen	
	12.1. Angewandte Medizintechnik - T-ETIT-113043	
	12.2. Antennen und Mehrantennensysteme - T-ETIT-106491	
	12.3. Bachelorarbeit - T-ETIT-112708	
	12.4. Bachelorarbeit Präsentation - T-ETIT-112709	
	12.5. Basispraktikum Mobile Roboter - T-INFO-101992	
	12.6. Batteriemodellierung mit MATLAB - T-ETIT-106507	
	12.7. Bauelemente der Elektrotechnik - T-ETIT-109292	
	12.8. Bildverarbeitung - T-ETIT-105566	
	12.9. Bioanalytik - T-CHEMBIO-112779	
	12.10. Biochemie - T-CHEMBIO-100214	
	12.11. Biochemie - T-CHEMBIO-112776	
	12.13. Computational Intelligence - T-MACH-105314	
	12.13. Computational intelligence - 1-MACH-105314	
	12.14. Date Harlatyse für Higerheure - 1-MACH-103094	
	12.16. Einführung in die Hochspannungstechnik - T-ETIT-110702	
	12.17. Einführung in die Technische Mechanik I: Statik und Festigkeitslehre - T-MACH-102208	
	12.18. Einführung in die Technische Mechanik II: Dynamik - T-MACH-102210	
	12.19. Einführung in die wissenschaftliche Methode (Seminar) - T-ETIT-111316	
	12.20. Electrochemical Energy Technologies - T-ETIT-111352	
	12.21. Elektrische Maschinen und Stromrichter - T-ETIT-101954	
	12.22. Elektroenergiesysteme - T-ETIT-101923	
	12.23. Elektromagnetische Felder und Wellen - T-ETIT-112864	
	12.24. Elektronische Schaltungen - T-ETIT-109318	
	12.25. Elektronische Schaltungen - Workshop - T-ETIT-109138	
	12.26. Elektrotechnisches Grundlagenpraktikum - T-ETIT-101943	
	12.27. Erzeugung elektrischer Energie - T-ETIT-101924	
	12.28. Experimentalphysik A - T-PHYS-103240	209
	12.29. Experimentalphysik A - T-PHYS-110163	
	12.30. Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung - T-MACH-105535	211
	12.31. Fertigungsmesstechnik - T-ETIT-106057	212
	12.32. Forschungspraktikum in der Medizintechnik - T-ETIT-112178	213
	12.33. Genetik - T-CIWVT-111063	
	12.34. Grundlagen der Datenübertragung - T-ETIT-112851	215
	12.35. Grundlagen der Digitaltechnik - T-ETIT-112872	216
	12.36. Grundlagen der Hochfrequenztechnik - T-ETIT-101955	217
	12.37. Grundlagen der Künstlichen Intelligenz - T-INFO-112194	218
	12.38. Grundlagenmodul - Selbstverbuchung BAK - T-ZAK-112653	
	12.39. Grundlagenmodul - Selbstverbuchung BeNe - T-ZAK-112345	
	12.40. Höhere Mathematik I - Klausur - T-MATH-103353	
	12.41. Höhere Mathematik II - Klausur - T-MATH-103354	
	12.42. Höhere Mathematik III - Klausur - T-MATH-103357	
	12.43. Hybride und elektrische Fahrzeuge - T-ETIT-100784	
	12.44. Industriebetriebswirtschaftslehre - T-WIWI-100796	
	12.45. Industriepraktikum in der Medizintechnik - T-ETIT-112176	
	12.46. Informations- und Automatisierungstechnik - T-ETIT-112878	
	12.47. Informations- und Automatisierungstechnik - Praktikum - T-ETIT-112879	
	12.48. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319	229229 230
	17 AU INTRODUCTION TO CHIANTIM INTORMATION PROCECING = 1-111-117/15	.,,,,,

12.50. Introduction to the Scientific Method (Seminar) - T-ETIT-111317	
12.51. Klinikpraktikum in der Medizintechnik - T-ETIT-112179	
12.52. Kontinuumsmechanik der Festkörper und Fluide - T-MACH-110377	
12.53. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839	
12.54. Labor Schaltungsdesign - T-ETIT-100788	
12.55. Lineare Elektrische Netze - T-ETIT-113001	
12.56. Lineare Elektrische Netze - Workshop A - T-ETIT-109317	
12.57. Lineare Elektrische Netze - Workshop B - T-ETIT-109811	
12.58. Machine Vision - T-MACH-105223	
12.59. Maschinenkonstruktionslehre A - T-MACH-112984	
12.60. Maschinenkonstruktionslehre I und II - T-MACH-112225	
12.61. Maschinenkonstruktionslehre I, Vorleistung - T-MACH-112226	
12.62. Maschinenkonstruktionslehre II, Vorleistung - T-MACH-112227	
12.64. Maschinenkonstruktionslehre III, Vorleistung - T-MACH-110955	
12.65. Maschinenkonstruktionslehre IV, Vorleistung - T-MACH-110956	
12.66. Mathematische Methoden der Kontinuumsmechanik - T-MACH-110375	
12.67. Medical Imaging Technology I - T-ETIT-113048	
12.68. Mensch-Maschine-Interaktion - T-INFO-101266	
12.69. Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen - T-INFO-101361	
12.70. Mess- und Regelungstechnik - T-ETIT-112852	
12.71. Methodenpraktikum - T-CHEMBIO-100201	
12.72. Mikrobiologie - T-CHEMBIO-112607	
12.73. Moderne Methoden der Biologie - T-CHEMBIO-107577	
12.74. Molekularbiologie und Genetik - T-CHEMBIO-103675	
12.75. Mündliche Prüfung - Begleitstudium Angewandte Kulturwissenschaft - T-ZAK-112659	
12.76. Mündliche Prüfung - Begleitstudium Nachhaltige Entwicklung - T-ZAK-112351	
12.77. Nachrichtentechnik I - T-ETIT-101936	
12.78. Nachrichtentechnik II / Communications Engineering II - T-ETIT-110697	259
12.79. Optical Networks and Systems - T-ETIT-106506	
12.80. Optik und Festkörperelektronik - T-ETIT-110275	
12.81. Optoelectronic Components - T-ETIT-101907	262
12.82. Optoelektronik - T-ETIT-100767	
12.83. Patente und Patentstrategien in innovativen Unternehmen - T-MACH-105442	
12.84. Photovoltaische Systemtechnik - T-ETIT-100724	
12.85. Physikalisches Anfängerpraktikum - T-PHYS-100609	
12.86. Physiologie und Anatomie für die Medizintechnik - T-ETIT-111815	
12.87. Praktikum Design und Entwurf von Quantenschaltkreisen - T-ETIT-112713	
12.88. Praktikum Elektrochemische Energietechnologien - T-ETIT-111376	
12.89. Praktikum Hard- und Software in leistungselektronischen Systemen - T-ETIT-106498	
12.90. Praktikum Matlab zur Modellierung im Bereich Optoelektronik - T-ETIT-111800	
12.91. Praxismodul - T-ZAK-112660	
12.92. Product Lifecycle Management - T-MACH-105147	
12.93. Radiation Protection - T-ETIT-100825	
12.94. Radio-Frequency Electronics - T-ETIT-110359	
12.96. Selbstverbuchung-HOC-SPZ-ZAK-benotet - T-ETIT-111528	
12.97. Selbstverbuchung-HOC-SPZ-ZAK-benotet - T-ETIT-111527	
12.98. Selbstverbuchung-HOC-SPZ-ZAK-benotet - T-ETIT-111526	
12.99. Selbstverbuchung-HOC-SPZ-ZAK-benotet - T-ETIT-111530	
12.100. Selbstverbuchung-HOC-SPZ-ZAK-unbenotet - T-ETIT-111532	
12.101. Selbstverbuchung-HOC-SPZ-ZAK-unbenotet - T-ETIT-111531	
12.102. Seminar Batterien I - T-ETIT-110800	
12.103. Seminar Brennstoffzellen I - T-ETIT-110798	
12.104. Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung - T-ETIT-100714	
12.105. Seminar Project Management for Engineers - T-ETIT-100814	
12.106. Seminar Projekt Management für Ingenieure - T-ETIT-108820	
12.107. Seminar über ausgewählte Kapitel der Biomedizinischen Technik - T-ETIT-100710	
12.108. Seminar Wir machen ein Patent - T-ETIT-100754	
12.109. Seminar: Grundlagen Eingebetteter Systeme - T-ETIT-110832	290

12.110. Signale und Systeme - T-ETIT-112860	291
12.111. Signale und Systeme - Workshop - T-ETIT-112861	
12.112. Spezielle Themen der Medizintechnik - T-ETIT-111819	293
12.113. Statistische Methoden der Informationsverarbeitung - T-ETIT-112108	294
12.114. Strömungslehre 1&2 - T-MACH-105207	295
12.115. Superconductors for Energy Applications - T-ETIT-110788	296
12.116. Systematische Werkstoffauswahl - T-MACH-100531	297
12.117. Systemdynamik und Regelungstechnik - T-ETIT-101921	298
12.118. Systemmodellierung - T-ETIT-112989	299
12.119. Technikethik - ARs ReflecTlonis - T-ETIT-111923	300
12.120. TutorInnenprogramm - Start in die Lehre - T-ETIT-100797	301
12.121. Übungen zu Einführung in die Finite-Elemente-Methode - T-MACH-110330	
12.122. Übungen zu Kontinuumsmechanik der Festkörper und Fluide - T-MACH-110333	303
12.123. Übungen zu Mathematische Methoden der Kontinuumsmechanik - T-MACH-110376	304
12.124. Übungsschein Mensch-Maschine-Interaktion - T-INFO-106257	305
12.125. Vertiefungsmodul - Doing Culture - Selbstverbuchung BAK - T-ZAK-112655	306
12.126. Vertiefungsmodul - Global Cultures - Selbstverbuchung - T-ZAK-112658	307
12.127. Vertiefungsmodul - Lebenswelten - Selbstverbuchung BAK - T-ZAK-112657	308
12.128. Vertiefungsmodul - Medien & Ästhetik - Selbstverbuchung BAK - T-ZAK-112656	309
12.129. Vertiefungsmodul - Selbstverbuchung BeNe - T-ZAK-112346	310
12.130. Vertiefungsmodul - Technik & Verantwortung - Selbstverbuchung BAK - T-ZAK-112654	311
12.131. Virtual Reality Praktikum - T-MACH-102149	312
12.132. Wahlmodul - Nachhaltige Stadt- und Quartiersentwicklung - Selbstverbuchung BeNe - T-ZAK-112347	313
12.133. Wahlmodul - Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft - Selbstverbuchung BeNe - T-ZAK-112350	314
12.134. Wahlmodul - Nachhaltigkeitsbewertung von Technik - Selbstverbuchung BeNe - T-ZAK-112348	315
12.135. Wahlmodul - Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit - Selbstverbuchung BeNe - T- ZAK-112349	316
12.136. Wahrscheinlichkeitstheorie - T-ETIT-101952	
12.137. Werkstoffkunde I & II - T-MACH-105148	
12.138. Windkraft - T-MACH-105234	
12.139. Workshop angewandte Hochfrequenztechnik - T-ETIT-110790	
12.140. Workshop zu Maschinenkonstruktionslehre A - T-MACH-112981	
12.141. Zellbiologie - T-CIWVT-111062	322

1 Einführung in das Modulhandbuch

1.1 Allgemeines

Rechtsgrundlage für den Studiengang und die Durchführung von Prüfungen ist die jeweils gültige Studien- und Prüfungsordnung (SPO) für Ihren Studiengang:

- Bachelor of Science, Elektrotechnik und Informationstechnik
- · Master of Science, Elektrotechnik und Informationstechnik
- Bachelor of Science, Medizintechnik

Das Studium gliedert sich in Fächer. Jedes Fach wiederum ist in Module aufgeteilt. Jedes Modul besteht aus einer oder mehreren aufeinander bezogenen Teilleistungen, die durch eine Erfolgskontrolle abgeschlossen werden. Der Umfang jedes Moduls ist durch Leistungspunkte (LP) gekennzeichnet, die nach erfolgreichem Absolvieren des Moduls im Studienablaufplan verbucht werden.

Die SPO definiert die Fächer, die dem Pflicht -und/oder dem Wahlpflichtbereich im Studiengang zugeordnet werden, und ihren Umfang.

Der Pflichtbereich umfasst den Teil des Studiengangs, der das studiengangspezifische Fachprofil ausmacht.

Der **Wahlpflichtbereich** dient der Profilschärfung oder -erweiterung und ermöglicht interdisziplinäre Kombinationen oder anwendungsorientierte Ergänzungen.

Überfachliche Qualifikationen sind Module mit einem überwiegend nicht-technischen Inhalt; diese müssen mit bewerteten Leistungspunkte-Nachweis erbracht werden. Die Module sind aus dem Lehrangebot des HOC und ZAK, Sprachenzentrum sowie aus Veranstaltungen der KIT-Fakultät für Elektrotechnik und Informationstechnik oder anderer KIT-Fakultäten zu wählen.

Leistungen können im Modul "Überfachliche Qualifikationen" durch die Studierenden selbst verbucht werden. Der Einstieg erfolgt für Studierende über den Menüpunkt "Prüfungsanmeldung und -abmeldung", über welchen auch der Studienablaufplan erreichbar ist. Hier befindet sich ein neuer Reiter "ÜQ/SQ-Leistungen", welcher die Liste der nicht zugeordneten eigenen Leistungen anzeigt.

Im Folgenden sind diese den Teilleistungen mit dem Titel "Selbstverbuchung-HOC-SPZ-ZAK-..." passend zur Notenskala, benotet oder unbenotet, zuzuordnen. Titel und LP der Leistung werden automatisch übernommen.

Das Modulhandbuch beschreibt die zum Studiengang gehörigen Module. Dabei geht es ein auf:

- · die Zusammensetzung der Module
- die Größe der Module (in LP)
- · die Abhängigkeiten der Module untereinander
- · die Qualifikationsziele der Module
- · die Art der Erfolgskontrolle
- die Bildung der Note eines Modules

Das Modulhandbuch gibt somit die notwendige Orientierung im Studium. Über die Lehrveranstaltungen im Semester informiert Sie das Vorlesungsverzeichnis.

Alle Informationen rund um die Rahmenbedingungen des Studiums finden Sie auf der Webseite der KIT-Fakultät für Elektrotechnik und Informationstechnik und in der jeweiligen Studien- und Prüfungsordnung Ihres Studiengangs (s. oben).

1.2 Hinweise zu Modulen und Teilleistungen

Level-Angabe bei den Modulen

Level 1 = 1. + 2. Semester Bachelor

Level 2 = 3. + 4. Semester Bachelor

Level 3 = 5. + 6. Semester Bachelor

Level 4 = Master

Arbeitsaufwand und Leistungspunkte

Jeder Leistungspunkt entspricht einem durchschnittlichen Arbeitsaufwand von ca. 30 h. Dieser Aufwand ist für die Studierenden notwendig, um eine durchschnittliche Leistung zu erreichen.

Modul- und Teilleistungsversion

Die Angabe gibt Auskunft über die aktuell gültige Version des Moduls oder der Teilleistung. Eine neue Version wird z.B. erzeugt, wenn im Modul oder der Teilleistung eine Anpassung der LP durchgeführt wurde. Sie erhalten jeweils automatisch die gültige Version in ihrem Studienablaufplan. Wenn Sie ein Modul bereits begonnen haben, können Sie das Modul in der begonnenen Version abschließen (Bestandsschutz).

Teilleistungsart

Beschreibt die Art der Erfolgskontrolle gemäß § 4 SPO. Erfolgskontrollen gliedern sich in Studien- oder Prüfungsleistungen.

Prüfungsleistungen sind benotete

- 1. schriftliche Prüfungen,
- 2. mündliche Prüfungen oder
- 3. Prüfungsleistungen anderer Art

Studienleistungen sind unbenotete schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden.

Lehrveranstaltungen

Im Kapitel "Teilleistungen" werden die zugehörigen Lehrveranstaltungen aus dem aktuellen Semester und aus dem vorhergehenden Semester tabellarisch dargestellt. Für Module die nicht jedes Semester angeboten werden, erhalten Sie somit vollständige Angaben zu den zugehörigen Lehrveranstaltungen.

1.3 Anmeldung und Zulassung zu Modulprüfungen

Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu der jeweiligen Prüfung anmelden.

In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden.

Sofern Wahlmöglichkeiten bestehen, geben Studierende mit der Anmeldung zur Prüfung eine bindende Erklärung über die Modulwahl ab. Auf Antrag des/der Studierenden an den Prüfungsausschuss kann die Wahl oder die Zuordnung nachträglich geändert werden.

Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

Eine Prüfungsleistung ist bestanden, wenn die Note mindestens "ausreichend" (4,0) ist. Ein Modul ist bestanden, wenn alle erforderlichen Teilleistungen bestanden sind.

2 Qualifikationsziele

Durch eine forschungsorientierte und praxisbezogene Ausrichtung des sechssemestrigen Bachelorstudiengangs werden die Absolventinnen und Absolventen des KIT-Studiengangs Medizintechnik auf die aktuellen Herausforderungen im Bereich der industriellen und klinischen Entwicklung und Fertigung von Medizinprodukten zur Prävention, Diagnose und Therapie von Krankheiten vorbereitet. Die Absolventinnen und Absolventen erwerben die wissenschaftliche Qualifikation für einen Masterstudiengang in Medizintechnik oder verwandter Studienrichtungen.

Im grundlagenorientierten Bereich des Studiums haben die Absolventinnen und Absolventen ein breites und integriertes Wissen und Verständnis über die wissenschaftlichen Grundlagen in den Bereichen Medizin, Elektrotechnik und Mathematik erworben und nachgewiesen. Durch die besondere Schwerpunktsetzung auf ein fundiertes Basiswissen im Bereich der Elektro- und Informationstechnik im KIT Studiengang Medizintechnik werden sie optimal auf die für die zunehmende Informationalisierung der Medizintechnik vorbereitet.

Dieses Wissen wird ergänzt durch spezielles medizintechnisches Basiswissen in den Bereichen: Medizintechnik in der Klinik, medizinische Messtechnik mit dazugehörigen praktischen Experimenten und Übungen, einer Ringvorlesung über aktuelle Entwicklungen in der Medizintechnik und einer Vorlesung über spezielle Anforderungen an die Medizintechnik wie z.B. Regulatorien, Produktzulassung und weitere wichtige Aspekte aus der industriellen Praxis.

Die Absolventinnen und Absolventen sind in der Lage medizintechnische Fragestellungen unter Anwendung der Methoden des Faches zu analysieren. Sie kennen sich in der medizinischen Fachterminologie aus und sind damit befähigt, in interdisziplinären Teams mit ärztlichem Personal zusammenzuarbeiten.

Im Vertiefungsfach und der Bachelorarbeit wird fachdisziplinübergreifende Problemlösungs- und Synthese-kompetenz für technische Systeme entwickelt. Die Absolventinnen und Absolventen können in den von ihnen gewählten Bereichen neue Lösungen generieren.

Personen mit erfolgreichem Abschluss im Bachelorstudiengang Medizintechnik am KIT verfügen über die Kompetenz, medizinische Problemstellungen in ingenieurwissenschaftliche Aufgabestellungen zu übersetzen und verantwortungsvoll unter technischen, regulatorischen, ökonomischen und sozialen Randbedingungen Lösungen zu erarbeiten. Sie sind in der Lage, vorgegebene Probleme und die sich daraus ergebenden Aufgaben in arbeitsteilig organisierten Teams zu übernehmen, selbstständig zu bearbeiten, die Ergebnisse anderer zu integrieren und die eigenen Ergebnisse schriftlich darzulegen sowie zu interpretieren. Sie können Systeme, Prozesse und Mechanismen identifizieren, zergliedern, weiterentwickeln und vorgegebene Bewertungsmaßstäbe anlegen.

3 Struktur des Studiengangs

Fächer

Das Studium beinhalten eine Reihe von Modulprüfungen, die für alle Studierenden verbindlich sind. Die verbindlichen Prüfungen sind den folgenden übergeordneten Fächern zugeordnet:

- Mathematisch-physikalische Grundlagen (28 Leistungspunkte, im Folgenden LP)
- Elektrotechnik (22 LP)
- Informationstechnik (33 LP)
- Medizinisch-technische Grundlagen (24 LP)
- Im Medizinisch-technischer Profilierungsbereich (40 LP) haben Sie die Auswahl aus einer festen Liste von Modulen. Praktika und Workshops dürfen dabei maximal im Wert von 6 LP belegt werden.
- Für das Berufspraktikum (15 LP) haben Sie die Wahl zwischen einem Industrie-, Klinik- oder Forschungspraktikum (forschungsprientierte Projektarbeit am KIT)
- Überfachliche Qualifikationen (3 LP)

Für die Bachelorprüfung muss außerdem das Modul Bachelorarbeit (15 LP) absolviert werden. Bei der Gesamtnote der Bachelorprüfung wird die Note des Moduls Bachelorarbeit doppelt gewichtet.

Studienablauf

Eine Empfehlung, in welcher Reihenfolge Sie Ihre Prüfungen ablegen sollten, finden Sie im empfohlenen Studienplan auf der folgenden Seite.

Sobald Sie 120 LP erreicht haben, können Sie zur Bachelorarbeit (15 LP) zugelassen werden. Weiterführende Informationen finden Sie im Kapitel "Anmeldung Bachelorarbeit".

Studienplan Bachelor Medizintechnik (Studienbeginn ab WiSe23/24)

Leistungs- punkte	1. Semester	2. Semester	3. Semester	4. Semester	5. Semester	6. Semester	
	Höhere	Höhere Mathematik II (8 LP, 4+2 SWS)	Wahrscheinlichkeits- theorie (5 LP, 2+1 SWS)	Grundlagen der Datenübertragung (6 LP, 2+2 SWS)			
	Mathematik I (11 LP, 6+2 SWS)			Elektromagnetische Felder und Wellen (7 LP, 3+2 SWS) Medizinisch-technischer Profilierungsbereich (Wahlpflichtbereich) (15 LP) (15 LP)		Medizinisch-technischer	
10 LP		Höhere Mathematik III (4 LP, 2+1 SWS)	Felder und Wellen		(Wahlpflichtbereich)	Mess- und (Wahlpflichtbereich) ('Begelungstechnik (15 LP)	Profilierungsbereich (Wahlpflichtbereich) (15 LP)
				SuS Workshop (1 LP, 1 SWS)			
	Netze* inkl. Workshop in	Elektronische Schaltungen Inkl. Workshop (7 LP, 3+1+1 SWS)	Signale und Systeme (SuS) (7 LP, 3+2 SWS)	Spezielle Themen der Medizintechnik Inkl. Seminar (8 LP, 2+2+2 SWS)			
20 LP							
	Grundlagen der Digitaltechnik und Systemmodellierung (6 LP, 3+1 SWS)	Informations- und Automatisierungstechnik inkl. Praktikum (7 LP, 3+1+1 SWS)	technik Medizintechnik m (6 LP, 2+2+1 SWS)		Industrie-, Forschungs- oder Klinikpraktikum (15 LP)	Bachelorarbeit inkl. Vortrag (15 LP)	
	Physiologie und Anatomie für die Medizintechnik* (3 LP, 2 SWS)	Physiologie und Anatomie für die Medizintechnik*	Angewandte Medizintechnik (Exkursion und Praktikum) (4 LP, 3 SWS)	Medizinisch-technischer Profilierungsbereich (Wahlpflichtbereich) (10 LP)			
30 LP	Überfachl. Qualifikationen (2 LP)	Überfachl. Qualifikationen (3 LP, 2 SWS)					

^{*} Orientierungsprüfung: Abzulegen bis zum Ende des zweiten Fachsemesters

Die Angabe der SWS erfolgt getrennt nach Vorlesung, Übung und Workshop/Seminar

Fachgebiete

Mathematisch-physikalische Grundlagen	28 LP
Elektrotechnik	22 LP
Informationstechnik	33 LP
Medizinisch-technische Grundlagen	24 LP
Medizinisch-technischer Profilierungsbereich	40 LP
Überfachliche Qualifikationen	3 LP
Berufspraktikum	15 LP
Bachelorarbeit	15 LP

P

Medizinisch-technischer Profilierungsbereich

Im Folgenden werden mögliche Wahlmodule in Profilierungsthemen gruppiert, um die individuelle Auswahl zu erleichtern. Betrachten Sie diese Einteilung als Hilfestellung – generell sind Sie frei eine beliebige Kombination zu wählen. Beachten Sie, dass einige Module Empfehlungen oder formelle Voraussetzungen beinhalten, die vor der Belegung erfüllt sein müssen (*).

Die Liste der unten genannten Module ist nicht abschließend und wird insbesondere mit Lehrveranstaltungen der Informatik ergänzt werden.

Bitte beachten Sie, dass Praktika und Workshops maximal im Umfang von 6 Leistungspunkten (LP) gewählt werden dürfen. Dazu zählen:

- Basispraktikum Mobile Roboter
- Elektrotechnisches Grundlagenpraktikum
- Labor für angewandte Machine Learning Algorithmen
- Labor Schaltungsdesign
- Praktikum Design und Entwurf von Quantenschaltkreisen
- Praktikum Elektrochemische Energietechnologien
- Praktikum Hard- und Software in leistungselektronischen Systemen
- Workshop angewandte Hochfrequenztechnik

	W	WiSe		Se
Profilierungsmodule Bildverarbeitung	SWS	LP	SWS	LP
Bildverarbeitung*			2+0	3
Datenanalyse für Ingenieure			2+1	5
Labor für angewandte Machine Learning Algorithmen*	4	6		
Machine Vision	4	8		
Praktikum Matlab zur Modellierung im Bereich Optoelektronik	2	3		
Radiation Protection			2+0	3

	W	iSe	So	Se
Profilierungsmodule Assistenzsysteme	sws	LP	SWS	LP
Basispraktikum Mobile Roboter			4	4
Bildverarbeitung*			2+0	3
Elektrotechnisches Grundlagenpraktikum			4	6
Fertigungsmesstechnik			2	3
Grundlagen der Künstlichen Intelligenz	2+1	5		
Labor für angewandte Machine Learning Algorithmen	6	4		
Machine Vision	4	8		
Mensch-Maschine-Interaktion			2+1	6
Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen	2	3		
Product Lifecycle Management	2	4		
Robotik I - Einführung in die Robotik	3+1	6		
Virtual Reality Praktikum	3	4		

Profilierungsmodule Elektronik	SWS	LP	SWS	LP
Basispraktikum Mobile Roboter			4	4
Bauelemente der Elektrotechnik	3+1	6		
Elektrotechnisches Grundlagenpraktikum			4	6
Grundlagen der Hochfrequenztechnik			2+2	6
Labor Schaltungsdesign	4	6		
Optik und Festkörperelektronik			3+2	6
Optoelektronik	2+1	4		
Praktikum Hard- und Software in leistungselektronischen Systemen (WiSe oder SoSe)	4	6	4	6
Radio-Frequency Electronics	2	5		
Seminar Batterien I (WiSe oder SoSe)	2	3	2	3
Seminar: Grundlagen Eingebetteter Systeme (WiSe oder SoSe)	2	4	2	4
Statistische Methoden der Informationsverarbeitung	2+1	4		

	W	WiSe		Se
Profilierungsmodule Biochemie	SWS	LP	SWS	LP
Bioanalytik	2+0	3		
Biochemie (M-CHEMBIO-100149)	2	4		
Biochemie (<i>M-CHEMBIO-106304</i> – 2 Semester)	2+0	6	2+0	-
Genetik	2	2		
Grundtechniken der Biologie			4+6	8
Mikrobiologie	3	3		
Molekularbiologie und Genetik	2+2	5		
Vorlesung Grundtechniken der Biologie			4	4
Zellbiologie	2	3		

	WiSe		SoSe	
Profilierungsmodule Prothetik	SWS	LP	sws	LP
Basispraktikum Mobile Roboter			4	4
Einführung in die Technische Mechanik II	2+1	5		
Elektrotechnisches Grundlagenpraktikum			4	6
Experimentalphysik	4+1	6		
Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung			2	4
Fertigungsmesstechnik			2	3
Maschinenkonstruktionslehre A	2+1	8		
Maschinenkonstruktionslehre B und C (2 Semester)	2+1	-	2+1	12
Mensch-Maschine-Interaktion			2+1	6
Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen	2	3		
Physikalisches Anfängerpraktikum (WiSe oder SoSe)	6	6	6	6
Robotik I - Einführung in die Robotik	3+1	6		
Systematische Werkstoffauswahl			3+1	4
ystemdynamik und Regelungstechnik 2+1 6				
Technische Mechanik			2+1	5
Werkstoffkunde (2 Semester)	4	-	4	9

WiSe	SoSe
vvise	3036

Profilierungsmodule Machine Learning/ Artifical Intelligence		LP	SWS	LP
Bildverarbeitung*			2+0	3
Computational Intelligence		4		
Datenanalyse für Ingenieure			2+1	5
Informationstechnik II und Automatisierungstechnik			2+1	4
Labor für angewandte Machine Learning Algorithmen*	6	4		
Machine Vision	4	8		

	WiSe SoSo		Se	
Profilierungsmodule Simulation	SWS LP SWS		LP	
Einführung in die Finite-Elemente-Methode*			2+1	4
Kontinuumsmechanik	5	5 2+1		
Mathematische Methoden der Kontinuumsmechanik	6 2+2			
Praktikum Matlab zur Modellierung im Bereich Optoelektronik	2 3			
Strömungslehre (2 Semester)	3 8 3		-	

	WiSe SoSe		Se	
Profilierungsmodule Biomedizin	SWS LP		SWS	LP
Seminar über ausgewählte Kapitel der Biomedizinischen Technik	2	3		

	WiSe/SoSe
Sonstige Profilierungsmodule	LP
Antennen und Mehrantennensysteme	5
Batteriemodellierung mit MATLAB	3
Einführung in die Hochspannungstechnik	3
Electrochemical Energy Technologies	5
Elektrische Maschinen und Stromrichter	6
Elektroenergiesysteme	5
Erzeugung elektrischer Energie	3
Hybride und elektrische Fahrzeuge	4
Introduction to Quantum Information Processing	6
Nachrichtentechnik I	6
Nachrichtentechnik II / Communications Engineering II	4
Optical Networks and Systems	4
Optoelectronic Components	4
Photovoltaische Systemtechnik	3
Praktikum Design und Entwurf von Quantenschaltkreisen	6
Praktikum Elektrochemische Energietechnologien	5
Product Lifecycle Management	4
Seminar Brennstoffzellen I	3
Seminar Leistungselektronik in Systemen der regenerativen Ener-	4
Superconductors for Energy Applications	5
Windkraft	4
Workshop angewandte Hochfrequenztechnik	3

^{*} Bitte beachten Sie die Voraussetzungen und/oder Empfehlungen zur Belegung des Moduls in der Modulbeschreibung.

6 Anmeldung Bachelorarbeit

Voraussetzung für eine Zulassung zur Bachelorarbeit sind erfolgreich abgelegte Modulprüfungen im Umfang von 120 LP. Die Anmeldung zur Bachelorarbeit läuft wie folgt ab:

- Thema finden: Sie suchen sich zunächst ein Thema, das Sie interessiert. Die ETIT-Institute bieten über ihre Homepage und/oder Aushänge Themen für Abschlussarbeiten an.
- Kontakt zu Institut und Anmeldung: Nehmen Sie dann Kontakt mit der zuständigen Ansprechperson auf und klären Sie im Gespräch, ob das Thema sich für Sie eignet. Falls ja, wird die Arbeit für Sie im Campussystem angelegt. Sie erhalten daraufhin eine Mail mit der Aufforderung, sich für die Arbeit anzumelden. Bitte melden Sie sich zur Bachelorarbeit so bald wie möglich an!
- Sonderfall externe Bachelorarbeit: Falls Sie Ihre Arbeit bei einer Firma oder bei einer anderen KIT-Fakultät schreiben, müssen Sie außerdem die "Anlage externe Bachelorarbeit"* beim Studiengangservice Bachelor (BPA) einreichen.
- Zulassung und Start: Sobald die Zulassung erteilt wurde, bekommen Sie diese Info per Mail und können beginnen.
- Bearbeitungszeit: Die maximale Bearbeitungszeit beträgt 6 Monate. Die Präsentation muss innerhalb dieser Zeit stattfinden.
- Noteneintrag: Sobald nach Abgabe und nach der Präsentation die Note eingetragen wurde, werden Sie per Mail darüber informiert.

Achtung:

Für die Benotung hat Ihr/e Prüfer/in acht Wochen Zeit. Sollte die Arbeit Ihre letzte Prüfungsleistung gewesen sein, empfehlen wir Ihnen, sich eine sog. 4.0-Bescheinigung (die Arbeit gilt dann als mindestens "bestanden") ausstellen zu lassen, mit deren Hilfe Sie eine Bescheinigung über den erfolgreichen Abschluss Ihres Studiums erhalten können.

Falls Sie weitere Fragen haben, wenden Sie sich gerne an das Studiengangservice Bachelor-Team!

* Sie finden das Formular auf der ETIT-Homepage

7 Anerkennung von Studien- und Prüfungsleistungen

7.1 Grundsätzliche Regelungen

Die grundsätzlichen Regelungen zur Anerkennung von Studien- und Prüfungsleistungen finden sich in den Studien- und Prüfungsordnungen:

- Bachelor ETIT SPO 2015 vom 31.05.2015, §19
- Bachelor ETIT SPO 2018 vom 28.09.2018, §19
- Bachelor ETIT SPO 2023 vom 27.04.2023, §19
- Bachelor Medizintechnik SPO vom 12.07.2022, §19
- Bachelor Medizintechnik Änderungssatzung vom 28.04.2023
- Master ETIT SPO 2015 vom 31.05.2015, §18
- Master ETIT SPO 2018 vom 28.09.2018, §18

Danach können die im Studienplan jeweils geforderten Leistungen auch durch Anerkennung externer Leistungen erbracht werden.

Externe Leistungen können dabei wie folgt erworben sein:

- 1. innerhalb des Hochschulsystems (weltweit)
- 2. außerhalb des Hochschulsystems (an Institutionen mit genormtem Qualitätssicherungssystemen; die Anerkennung kann versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden sollen)

Die Anerkennung erfolgt auf Antrag der Studierenden, unter der Voraussetzung, dass hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Der Antrag muss innerhalb des ersten Semesters nach Immatrikulation am KIT gestellt werden.

Zuständig für Anerkennung und Anrechnung ist der Prüfungsausschuss, der unter Einbeziehung der fachlichen Prüfung durch den zuständigen Fachvertreter über die Anerkennung entscheidet. Anerkannte Leistungen, die nicht am KIT erbracht wurden, werden im Notenauszug als "anerkannt" ausgewiesen.

7.2 Benotung

Wenn es sich um ein vergleichbares Notensystem handelt, wird die Note der anzuerkennenden Leistung übernommen. Bei nicht vergleichbaren Notensystemen wird die Note umgerechnet.

Prüfungsleistungen, die anstelle einer benoteten Prüfungsleistung anerkannt werden sollen, müssen ebenfalls benotet sein.

7.3 Vorgehensweise

- 1. **Gehen Sie zunächst zu einer Fachprüferin oder einem Fachprüfer*** und legen Sie dort das **Antragsformular** zusammen mit den erforderlichen Unterlagen vor.**
 - **Wichtig**: Anerkennungen müssen innerhalb des ersten Semesters nach Immatrikulation beim Prüfungsausschuss beantragt werden.
- 2. Besteht Gleichwertigkeit im Hinblick auf die erworbenen Kompetenzen (Qualifikationsziele), wird dies mit **Stempel** und Unterschrift durch die Fachprüferin oder den Fachprüfer bestätigt.
- 3. Geben Sie dann den fertig ausgefüllten und unterschriebenen Antrag zusammen mit dem entsprechenden Notenauszug im Büro des Prüfungsausschusses ab.

Hinweis zu Auslandsprüfungsleistungen

Bei Anerkennung von Prüfungsleistungen aus einem Auslandssemester ist es empfehlenswert, vor dem Auslandsaufenthalt die geplanten Auslandsprüfungsleistungen im Hinblick auf die spätere Anerkennung mit einem Fachstudienberater zu besprechen.

*Wenn Sie eine Leistung anstelle eines KIT-Moduls anerkennen lassen möchten, wenden Sie sich für die Fachprüfung an die/den Modulverantwortliche/n des KIT-Moduls. Für Anerkennungen im Wahlbereich/Interdisziplinären Fach/Profilierungsfach wenden Sie sich an eine/n der Fachstudienberater*innen der Fakultät ETIT.

**Für die Anerkennung erforderlich sind Unterlagen, auf denen die der Anerkennung zugrundeliegenden Prüfungsleistungen dokumentiert sind. (Zeugnisse, Transcript of Records, Auszüge aus dem Modulhandbuch, Skripte o.ä.). Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden.

Falls Sie weitere Fragen haben, wenden Sie sich gerne an den Studiengangservice Bachelor und Master:

Studiengangservice Bachelor:

bachelor-info@etit.kit.edu, Tel.: 0721/608-42636 oder -42746, Geb. 30.36, 1. OG, Raum 117

Studiengangservice Master

master-info@etit.kit.edu, Tel.: 0721/608-42469, Geb. 30.36, 1. OG, Raum 115

8 Ansprechpartner*innen und Beratung

Fachliche Beratung:

Fachstudienberater*innen der Fakultät

Allgemeine Beratung:

Referentinnen des Studiengangservice Bachelor (BPA),

Gebäude 30.36, 1. OG, Raum 117, Mail: bachelor-info@etit.kit.edu

(Beratung z.B. zu Studienablaufplanung, Prüfungsordnung, Einzelfallproblemen, Anträgen etc. sowie zu Abläufen an der Fakultät für Elektrotechnik und Informationstechnik)

Fragen zum Industrie- oder Forschungspraktikum:

Praktikantenamt der Fakultät ETIT, Gebäude 11.10 (ETI), Raum 204, Mail: praktikantenamt@etit.kit.edu. Bitte bei allen Fragen zunächst die FAQs auf der Homepage des Praktikantenamts lesen!

9 Herausgeber

KIT-Fakultät für Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie (KIT)

76131 Karlsruhe

www.etit.kit.edu

Studiendekan:

Prof. Dr. rer. nat. Werner Nahm

Modulkoordination (modulkoordination@etit.kit.edu):

Dr. Andreas Barth

10 Aufbau des Studiengangs

Pflichtbestandteile		
Orientierungsprüfung Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.		
Bachelorarbeit	15 LP	
Mathematisch-physikalische Grundlagen	28 LP	
Elektrotechnik	22 LP	
Informationstechnik	33 LP	
Medizinisch-technische Grundlagen	24 LP	
Medizinisch-technischer Profilierungsbereich	40 LP	
Industrie-, Forschungs- oder Klinikpraktikum	15 LP	
Überfachliche Qualifikationen Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.	3 LP	
Freiwillige Bestandteile		
Zusatzleistungen Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.		

10.1 Orientierungsprüfung

Pflichtbestandteile		
M-ETIT-106426	Orientierungsprüfung	0 LP

10.2 Bachelorarbeit Leistungspunkte 15

Pflichtbestandteil	е	
M-ETIT-106260	Bachelorarbeit	15 LP

10.3 Mathematisch-physikalische Grundlagen Leistungspunkte 28

Pflichtbestandteile		
M-MATH-101731	Höhere Mathematik I	11 LP
M-MATH-101732	Höhere Mathematik II	8 LP
M-MATH-101738	Höhere Mathematik III	4 LP
M-ETIT-102104	Wahrscheinlichkeitstheorie	5 LP

10.4 Elektrotechnik Leistungspunkte 22

Pflichtbestandteile		
M-ETIT-106417	Lineare Elektrische Netze	8 LP
M-ETIT-104465	Elektronische Schaltungen	7 LP
M-ETIT-106346	Elektromagnetische Felder und Wellen	7 LP

10.5 Informationstechnik Leistungspunkte 33

Pflichtbestandteile		
M-ETIT-106350	Grundlagen der Digitaltechnik und Systemmodellierung	6 LP
M-ETIT-106336	Informations- und Automatisierungstechnik	7 LP
M-ETIT-106372	Signale und Systeme	8 LP
M-ETIT-106338	Grundlagen der Datenübertragung	6 LP
M-ETIT-106339	Mess- und Regelungstechnik	6 LP

10.6 Medizinisch-technische Grundlagen Leistungspunkte 24

Pflichtbestandteil	Pflichtbestandteile			
M-ETIT-105874	Physiologie und Anatomie für die Medizintechnik	6 LP		
M-ETIT-106492	Einführung in die Medizintechnik	6 LP		
M-ETIT-106446	Angewandte Medizintechnik	4 LP		
M-ETIT-105878	Spezielle Themen der Medizintechnik	8 LP		

10.7 Medizinisch-technischer Profilierungsbereich

Leistungspunkte

40

Wahlbereich Medizir	nisch-technischer Profilierungsbereich (Wahl: mind. 40 LP)	
M-ETIT-100565	Antennen und Mehrantennensysteme	5 LP
M-ETIT-103271	Batteriemodellierung mit MATLAB	3 LP
M-INFO-101184	Basispraktikum Mobile Roboter	4 LP
M-ETIT-104538	Bauelemente der Elektrotechnik	6 LP
M-ETIT-102651	Bildverarbeitung	3 LP
M-CHEMBIO-106306	Bioanalytik	3 LP
M-CHEMBIO-100149	Biochemie	4 LP
M-CHEMBIO-106304	Biochemie	6 LP
M-MACH-105296	Computational Intelligence	4 LP
M-MACH-105307	Datenanalyse für Ingenieure	5 LP
M-MACH-106209	Einführung in die Finite-Elemente-Methode	4 LP
M-ETIT-105276	Einführung in die Hochspannungstechnik	3 LP
M-MACH-101603	Einführung in die Technische Mechanik II	5 LP
M-ETIT-105690	Electrochemical Energy Technologies	5 LP
M-ETIT-102156	Elektroenergiesysteme	5 LP
M-ETIT-102133	Elektrotechnisches Grundlagenpraktikum	6 LP
M-ETIT-102113	Elektrische Maschinen und Stromrichter	6 LP
M-FTIT-100407	Erzeugung elektrischer Energie	3 LP
M-PHYS-105008	Experimentalphysik	6 LP
M-MACH-106051	Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung	4 LP
M-ETIT-103043	Fertigungsmesstechnik	3 LP
M-CIWVT-106108	Genetik	2 LP
M-ETIT-102129	Grundlagen der Hochfrequenztechnik	6 LP
M-INFO-106014	Grundlagen der Künstlichen Intelligenz	5 LP
M-CHEMBIO-101843	Grundtechniken der Biologie	8 LP
M-ETIT-100514	Hybride und elektrische Fahrzeuge	4 LP
M-ETIT-100514	Informationstechnik II und Automatisierungstechnik	4 LP
M-ETIT-104347	Introduction to Quantum Information Processing	6 LP
M-MACH-105180	Kontinuumsmechanik	5 LP
M-ETIT-104823	Labor für angewandte Machine Learning Algorithmen	6 LP
M-ETIT-104823	Labor Schaltungsdesign	6 LP
M-MACH-101923	Machine Vision	8 LP
M-MACH-101923 M-MACH-106527	Maschinenkonstruktionslehre A	8 LP
M-MACH-100327 M-MACH-102829	Maschinenkonstruktionslehre III und IV	13 LP
M-MACH-102829	Mathematische Methoden der Kontinuumsmechanik	6 LP
M-INFO-100729	Mensch-Maschine-Interaktion	6 LP
M-INFO-100729 M-INFO-100824	Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen	3 LP
M-INFO-100824 M-CHEMBIO-106205	Mikrobiologie	3 LP
M-CHEMBIO-106204	Molekularbiologie und Genetik	5 LP
M-ETIT-102103	Nachrichtentechnik I	6 LP
M-ETIT-102103	Nachrichtentechnik II / Communications Engineering II	4 LP
	Optoelectronic Components	4 LP
M-ETIT-100509 M-ETIT-100480	Optoelektronik	4 LP
	•	
M-ETIT-103270	Optical Networks and Systems	4 LP
M-ETIT-105005	Optik und Festkörperelektronik	6 LP
M-ETIT-100411	Photovoltaische Systemtechnik	3 LP
M-ETIT-106262	Praktikum Design und Entwurf von Quantenschaltkreisen	6 LP
M-ETIT-105703	Praktikum Elektrochemische Energietechnologien	5 LP
M-ETIT-103263	Praktikum Hard- und Software in leistungselektronischen Systemen	6 LP

M-ETIT-105867	Praktikum Matlab zur Modellierung im Bereich Optoelektronik	3 LP
M-MACH-106195	Product Lifecycle Management	4 LP
M-PHYS-103435	Physikalisches Anfängerpraktikum	6 LP
M-ETIT-100562	Radiation Protection	3 LP
M-ETIT-105124	Radio-Frequency Electronics	5 LP
M-INFO-100893	Robotik I - Einführung in die Robotik	6 LP
M-ETIT-105319	Seminar Batterien I	3 LP
M-ETIT-105320	Seminar Brennstoffzellen I	3 LP
M-ETIT-105356	Seminar: Grundlagen Eingebetteter Systeme	4 LP
M-ETIT-100397	Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung	4 LP
M-ETIT-100383	Seminar über ausgewählte Kapitel der Biomedizinischen Technik	3 LP
M-ETIT-105960	Statistische Methoden der Informationsverarbeitung	4 LP
M-MACH-102565	Strömungslehre	8 LP
M-ETIT-105299	Superconductors for Energy Applications	5 LP
M-MACH-106054	Systematische Werkstoffauswahl	4 LP
M-ETIT-102181	Systemdynamik und Regelungstechnik	6 LP
M-MACH-101259	Technische Mechanik	5 LP
M-MACH-106249	Virtual Reality Praktikum	4 LP
M-CHEMBIO-106203	Vorlesung Grundtechniken der Biologie	4 LP
M-MACH-102567	Werkstoffkunde	9 LP
M-MACH-105732	Windkraft	4 LP
M-ETIT-105301	Workshop angewandte Hochfrequenztechnik	3 LP
M-CIWVT-106107	Zellbiologie	3 LP

10.8 Industrie-, Forschungs- oder Klinikpraktikum

Leistungspunkte

15

Industrie-, Forschungs- oder Klinikpraktikum (Wahl: 1 Bestandteil)		
M-ETIT-105998	Industriepraktikum in der Medizintechnik	15 LP
M-ETIT-106000	Forschungspraktikum in der Medizintechnik	15 LP
M-ETIT-106001	Klinikpraktikum in der Medizintechnik	15 LP

10.9 Überfachliche Qualifikationen

Leistungspunkte

3

Pflichtbestandteil	e	
M-ETIT-105804	Überfachliche Qualifikationen	3 LP

10.10 Zusatzleistungen

Zusatzleistungen (W	/ahl: max. 30 LP)	
M-ETIT-100565	Antennen und Mehrantennensysteme	5 LP
M-ETIT-103271	Batteriemodellierung mit MATLAB	3 LP
M-INFO-101184	Basispraktikum Mobile Roboter	4 LP
M-ETIT-104538	Bauelemente der Elektrotechnik	6 LP
M-ZAK-106235	Begleitstudium - Angewandte Kulturwissenschaft	22 LP
M-ZAK-106099	Begleitstudium - Nachhaltige Entwicklung	19 LP
M-ETIT-102651	Bildverarbeitung	3 LP
M-CHEMBIO-100149	Biochemie	4 LP
M-MACH-105296	Computational Intelligence	4 LP
M-MACH-105307	Datenanalyse für Ingenieure	5 LP
M-ETIT-105276	Einführung in die Hochspannungstechnik	3 LP
M-MACH-101603	Einführung in die Technische Mechanik II	5 LP
M-ETIT-105690	Electrochemical Energy Technologies	5 LP
M-ETIT-102156	Elektroenergiesysteme	5 LP
M-ETIT-102113	Elektrotechnisches Grundlagenpraktikum	6 LP
M-ETIT-102124	Elektrische Maschinen und Stromrichter	6 LP
M-ETIT-100407	Erzeugung elektrischer Energie	3 LP
M-PHYS-101684	Experimentalphysik	5 LP
M-MACH-106051	Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung	4 LP
M-ETIT-103043	Fertigungsmesstechnik	3 LP
M-CIWVT-106108	Genetik	2 LP
M-ETIT-102129	Grundlagen der Hochfrequenztechnik	6 LP
M-INFO-106014	Grundlagen der Künstlichen Intelligenz	5 LP
M-ETIT-100514	Hybride und elektrische Fahrzeuge	4 LP
M-ETIT-104547	Informationstechnik II und Automatisierungstechnik	4 LP
M-ETIT-104823	Labor für angewandte Machine Learning Algorithmen	6 LP
M-ETIT-100518	Labor Schaltungsdesign	6 LP
M-MACH-101923	Machine Vision	8 LP
M-MACH-101299	Maschinenkonstruktionslehre	8 LP
M-MACH-102829	Maschinenkonstruktionslehre III und IV	13 LP
M-INFO-100729	Mensch-Maschine-Interaktion	6 LP
M-INFO-100824	Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen	3 LP
M-ETIT-102103	Nachrichtentechnik I	6 LP
M-ETIT-105274	Nachrichtentechnik II / Communications Engineering II	4 LP
M-ETIT-100509	Optoelectronic Components	4 LP
M-ETIT-100480	Optoelektronik	4 LP
M-ETIT-103270	Optical Networks and Systems	4 LP
M-ETIT-105005	Optik und Festkörperelektronik	6 LP
M-ETIT-100411	Photovoltaische Systemtechnik	3 LP
M-ETIT-105703	Praktikum Elektrochemische Energietechnologien	5 LP
M-ETIT-103263	Praktikum Hard- und Software in leistungselektronischen Systemen	6 LP
M-ETIT-105867	Praktikum Matlab zur Modellierung im Bereich Optoelektronik	3 LP
M-PHYS-103435	Physikalisches Anfängerpraktikum	6 LP
M-ETIT-100562	Radiation Protection	3 LP
M-ETIT-105124	Radio-Frequency Electronics	5 LP
M-INFO-100893	Robotik I - Einführung in die Robotik	6 LP
M-ETIT-105319	Seminar Batterien I	3 LP
M-ETIT-105320	Seminar Brennstoffzellen I	3 LP
M-ETIT-105356	Seminar: Grundlagen Eingebetteter Systeme	4 LP

M-ETIT-100397	Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung	4 LP
M-ETIT-100383	Seminar über ausgewählte Kapitel der Biomedizinischen Technik	3 LP
M-ETIT-105960	Statistische Methoden der Informationsverarbeitung	4 LP
M-MACH-102565	Strömungslehre	8 LP
M-ETIT-105299	Superconductors for Energy Applications	5 LP
M-MACH-106054	Systematische Werkstoffauswahl	4 LP
M-ETIT-102181	Systemdynamik und Regelungstechnik	6 LP
M-MACH-101259	Technische Mechanik	5 LP
M-MACH-102567	Werkstoffkunde	9 LP
M-MACH-105732	Windkraft	4 LP
M-ETIT-105301	Workshop angewandte Hochfrequenztechnik	3 LP
M-CIWVT-106107	Zellbiologie	3 LP

11 Module

11.1 Modul: Molekularbiologie und Genetik [M-CHEMBIO-106204]

Verantwortung: Prof. Dr. Jörg Kämper

Prof. Dr. Natalia Requena Sanchez

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Medizinisch-technischer Profilierungsbereich

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CHEMBIO-103675	Molekularbiologie und Genetik	5 LP	Kämper, Requena

Erfolgskontrolle(n)

Schriftliche Prüfung im Umfang von 120 Minuten über die Inhalte der Vorlesungsteile Molekularbiologie (3 LP) und Genetik (2 LP) (Insgesamt 5LP)

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden vertiefen ihr Wissen um die molekularen Grundlagen des Lebens und die technischen Möglichkeiten, Lebewesen über Veränderung ihrer Gene oder deren Expression zu manipulieren. Dies umfasst ein tieferes theoretisches Verständnis folgender Bereiche: Mikrobiologie, Genetik, Molekularbiologie

VL Genetik:

Inhalt

DNA, DNA-Struktur, DNA-Topologie, Chromosomen, Chromatin, DNA-Replikation, Mutationen, Reparatur, Transponierbare Elemente, Aufbau von Genen, Transkription, RNA Prozessierung, Regulation der Genexpression bei Pro-und Eukaryonten (transkriptionell, posttranskriptionell, posttranslatio-nal), Proteinsynthese, Epigenetik: Methylierung, Histonmodifikationen, Hu-mangenetik, Tumorgenetik, Genomprojekte, Funktionelle Geno-mik/Proteomik/Bioinformatik, Immungenetik (Einleitung), Entwicklungsgenetik (Einleitung).

VL Molekularbiologie:

Molekularbiologie Einleitung, DNA Extraktion, Restriktionsenzyme, Klonie-rung in Vektoren, Bibliothek screening, Bioinformatik, Sequenzierung, Ge-nome sequencing, RNA, Northern-blot, RT-PCR, Real time PCR, cDNA Bib-liothek, Microarrays, Rekombinante Proteine, Western blot, Affinity chroma-tography, Mutagenesis, Transformation

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur

Arbeitsaufwand

Präsenzzeit: 75 h

Nachbereitung und Prüfungsvorbereitung: 75 h

Summe: 150 h

5 LP

Lehr- und Lernformen

Vorlesungen

Literatur

VL Genetik:

Inhalt der Vorlesung in Stichworten

Lehrbücher der Genetik, z.B. Knippers, Molekulare Genetik, 9. Auflage; Watson, Molecular Biology of the Gene, 5. Auflage; Grif-fiths, Introduction to Genetic Analysis, 9. Auflage

VL Molekularbiologie:

Lehrbücher der Molekularbiologie, z.B. Molekulare Zellbiologie-Lodish (Spektrum), Watson-Molekularbiologie (Pearson)

11.2 Modul: Angewandte Medizintechnik [M-ETIT-106446]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technische Grundlagen

Leistungspunkte Notenskala Level Version **Turnus Dauer** Sprache best./nicht Deutsch/ **Jedes** 2 1 best. Wintersemester Semester Englisch

Pflichtbestandteile			
T-ETIT-113043	Angewandte Medizintechnik	4 LP	Nahm

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus mehreren strukturierten, schriftlichen Ausarbeitungen (Protokolle) zum Thema Angewandte Medizintechnik.

- Zur Veranstaltung "Einführungspraktikum in die Medizintechnik" müssen 4 Protokolle gemäß Vorgabe abgegeben werden.
- · Zur Veranstaltung "Medizintechnik in der Klinik" müssen 5 Protokolle gemäß Vorgabe abgegeben werden.
- Die Protokolle werden einzeln hinsichtlich der Bewertungskriterien entweder mit "akzeptiert" oder mit "nicht akzeptiert" bewertet.
- Nicht akzeptierte Protokolle können überarbeitet und erneut abgegeben werden.

Die Prüfung gilt als "bestanden", wenn die geforderte Anzahl an Protokollen mit "akzeptiert" bewertet wurden.

Voraussetzungen

keine

Qualifikationsziele

Zielsetzung für die Lehrveranstaltung "Einführungspraktikum Medizintechnik":

Diese Veranstaltung bildet den praktischen Teil der LV "Einführung in die Medizintechnik". Analog der Aufteilung in "Einführung in die Medizintechnik" werden hier Experimente sowohl zum Thema Biomedizinische Messtechnik, als auch zum Thema "Medical Imaging Technology" durchgeführt.

Im Teil Medizinische Messtechnik setzen sich die Studierenden mit der Funktionsweise und der Anwendung von Medizinprodukten auseinander. Der Teil "Medical Imaging" ist in englischer Sprache angelegt und besteht aus Versuchen zur digitalen Bildverarbeitung in der Medizin.

Kompetenzen, die in der Lehrveranstaltung "Einführungspraktikum Medizintechnik" erworben werden:

- · Fähigkeit zur kritischen Auseinandersetzung mit der Funktion und Bedienung von Medizingeräten
- Fähigkeit zur Anwendung von Methoden zur Verarbeitung und Auswertung medizinische Bilddaten
- · Verständnis für die Ursachen und Konsequenzen von Fehlerquellen und Einflussfaktoren

Zielsetzung für die Lehrveranstaltung "Medizintechnik in der Klink":

- Analyse von klinischen Abläufen und Verständnis für die daraus resultierenden Anforderungen an die Medizintechnik entwickeln.
- Den persönlichen Kontakt zwischen den Studierenden und den Ärzten bzw. dem klinischem Personal herstellen und die "Kompetenz der gemeinsamen Sprache" entwickeln.

Kompetenzen, die in der Lehrveranstaltung "Medizintechnik in der Klinik" erworben werden:

- Klinische (diagnostische oder therapeutische) Abläufe in unterschiedlichen medizinischen Fachgebieten analysieren, darstellen und beschreiben.
- Medizintechnische Systeme in den Zusammenhang der klinischen Abläufe einordnen und die Funktion und den klinischen Nutzen der Systeme erklären.
- · Anforderungskataloge (Requirement Specification) für Medizinprodukte erstellen.

Inhalt

Inhalt der LV "Medizintechnik in der Klink"

Stationen der Klinikexkursion:

- Perfusor
- EKG
- Elektrokauter
- Sonograf
- Chirurgieroboter

Begleitend findet das Seminar "Einführung in die Anforderungsanalyse für Medizinprodukte" statt.

Dabei werden die Methoden entwickelt, die für die Erstellung der Protokolle und die schriftliche Ausarbeitung benötigt werden:

- Requirement Management
- · Workflow Analysis
- Usability Engineering
- · Systems Engineering

Inhalt der LV "Einführungspraktikum Medizintechnik"

Experimente zur Medizinischen Messtechnik

- Oszillometrie
- Pulsoximetrie
- EKG-Ableitung

Experiments on Medical Imaging Technology:

- · Experiment on CT
- · Experiment on MRT
- · Experiment on Ultrasound

Zusammensetzung der Modulnote

Das Modul gilt bei erfolgreicher Studienleistung als bestanden.

Arbeitsaufwand LV "Medizintechnik in der Klinik":

Einführungsseminar:

Präsenz: 4 Blöcke á 2h = 12h Nachbearbeitung: 3x 3h = 9h

Exkursion:

Präsenz in der Klinik: 1 Tag á 10h

Ausarbeitung von 5 Protokollen: 5x 6h = 30h

Insgesamt: 61h = 2 LP

LV "Einführungspraktikum Medizintechnik":

Einführungsveranstaltung:

Präsenz: 1 Block 2h Nachbearbeitung: 2h

4 Versuche:

Vorbereitung eines Versuchs: 4h Versuchsdurchführung: 5h Ausarbeitung des Protokolls: 5h Insgesamt: 4 x 14 + 4 = 60h = 2 LP

Gesamtaufwand für das Modul: 61 + 60 = 121h = 4 LP

Lehr- und Lernformen

Das Modul setzt sich aus zwei Lehrveranstaltungen zusammen:

- Exkursion "Medizintechnik in der Klinik" (2 SWS; 2LP)
- Praktikum "Einführungspraktikum Medizintechnik" (2 SWS; 2LP)

Die beiden Lehrveranstaltungen finden als halbsemestrige Blockveranstaltungen hintereinander im Wintersemester statt.

11.3 Modul: Antennen und Mehrantennensysteme [M-ETIT-100565]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
4

Pflichtbestandteile			
T-ETIT-106491	Antennen und Mehrantennensysteme	5 LP	Zwick

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von 20 Minuten.

Voraussetzungen

Das Modul "Antennen und Antennensysteme" darf nicht begonnen oder abgeschlossen sein.

Qualifikationsziele

Die Studierenden besitzen ein vertieftes Wissen zu Antennen und Antennensystemen. Hierzu gehören Funktionsweise, Berechnungsmethoden aber auch Aspekte der praktischen Umsetzung. Sie sind in der Lage, die Funktionsweise beliebiger Antennen zu verstehen sowie Antennen mit vorgegebenen Eigenschaften zu entwickeln und dimensionieren.

Inhalt

Die Vorlesung vermittelt die feldtheoretischen Grundlagen sowie die Funktionsweise aller wesentlichen Antennenstrukturen. Die Funktionsweise von Antennenarrays wird zusätzlich über Matlab-Übungen visualisiert. Des Weiteren werden Antennenmessverfahren vermittelt, sowie ein Einblick in moderne Antennen- und Mehrantennensysteme. Daneben wird ein praxisorientierter Workshop zum rechnergestützten Entwurf und zur Simulation von Antennen durchgeführt, in dem die Studierenden das Softwaretool CST einsetzen lernen und damit selbständig Antennendesignaufgaben durchführen. Einzelne Antennen werden anschließend aufgebaut und vermessen sodass die Studierenden den gesamten Prozess kennen lernen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen:

Präsenzstudienzeit Vorlesung/Übung: 30 h

Präsenzstudienzeit Rechnerübung CST/MATLAB: 30h

Selbststudienzeit inkl. Prüfungsvorbereitung: 90 h

Insgesamt 150 h = 5 LP

11.4 Modul: Bachelorarbeit [M-ETIT-106260]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Bachelorarbeit

Leistungspunkte
15Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-112708	Bachelorarbeit	12 LP	Nahm
T-ETIT-112709	Bachelorarbeit Präsentation	3 LP	Nahm

Erfolgskontrolle(n)

§14, (1 a) Dem Modul Bachelorarbeit sind 15 LP zugeordnet. Es besteht aus der Bachelorarbeit mit 12 LP und einer Präsentation mit 3 LP. Die Präsentation ist innerhalb von sechs Monaten nach Anmeldung zur Bachelorarbeit durchzuführen. Über eine Verlängerung der Frist entscheidet der Prüfungsausschuss auf begründeten Antrag des bzw. der Studierenden mit Zustimmung des bzw. der ausgebenden Prüfenden.

Voraussetzungen

§14 (1): Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die bzw. der Studierende Modulprüfungen im Umfang von 120 LP gemäß § 20 Abs. 2 erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der bzw. des Studierenden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage, eine abgegrenzte Aufgabenstellung aus dem Bereich der Medizintechnik innerhalb einer vorgegebenen Frist nach wissenschaftlichen Methoden und unter der Einhaltung der Regeln guter wissenschaftlicher Praxis unter Anleitung und unter Anwendung des im Bachelorstudium erworbenen Theorie- und Methodenwissens selbstständig zu bearbeiten. Die Studierenden sind in der Lage, zu recherchieren, die Informationen zu analysieren und zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen und zu erkennen. Die Studierenden überblicken eine Fragestellung, können wissenschaftliche Methoden und Verfahren auswählen und diese zur Lösung einsetzen bzw. weitere Potentiale aufzeigen. Dies erfolgt grundsätzlich auch unter Berücksichtigung von gesellschaftlichen und/oder ethischen Aspekten.

Die Studierenden können ihre Ergebnisse interpretieren und evaluieren. Sie sind außerdem in der Lage, ihre Ergebnisse in einer klar strukturierten, schriftlichen Ausarbeitung unter Verwendung der entsprechenden Fachterminologie zu dokumentieren. Darüber hinaus sind die Studierenden in der Lage, ihre Ergebnisse vor einer Gruppe zu präsentieren und zu verteidigen. Außerdem haben sie ihre Problemlösungskompetenz sowie ihre Kompetenz des Transfers des Theorie- und Methodenwissens der Medizintechnik in konkrete Anwendungen vertieft.

Neben den fachbezogenen Qualifikationszielen sammeln die Studierenden auch Kenntnisse und Erfahrungen auf den Gebieten des Projekt- sowie des Selbst- und Zeitmanagements. Dazu gehören auch Kenntnisse und Methoden verschiedener Präsentationstechniken.

Inhalt

Die Studierenden bearbeiten eigenverantwortlich mit wissenschaftlichen Methoden und unter der Einhaltung der Regeln guter wissenschaftlicher Praxis ein mit dem fachlichen Prüfer abgestimmtes Forschungsthema, das sich mit einer Problemstellung aus dem Bereich des Bachelorstudiengangs beschäftigt.

Zusammensetzung der Modulnote

Die Modulnote ergibt sich aus der Note der Bachelorarbeit.

Arbeitsaufwand

450 h

11.5 Modul: Basispraktikum Mobile Roboter [M-INFO-101184]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte Notenskala **Turnus Dauer Sprache** Level Version Deutsch/ best./nicht Jedes 3 2 best. Englisch Sommersemester Semester

Pflichtbestandteile			
T-INFO-101992	Basispraktikum Mobile Roboter	4 LP	Asfour

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der/Die Studierende kann Schaltpläne lesen, selbständig komplexe Platinen bestücken, testen, Fehler in der Elektronik erkennen und beheben. Er/Sie kann eingebettete Systeme auf Basis von Mikrocontrollern in der Sprache C und unter Verwendung eines Cross-Compilers programmieren. Er/Sie kann Methoden zur Ansteuerung von Sensoren und Aktoren in der Robotik anwenden, Versuche mit Robotern durchführen und Aufgaben aus diesem Themenbereich eigenständig und im Team lösen.

Inhalt

Im Rahmen des Praktikums werden in Zweierteams ARMURO-Roboter aufgebaut. Jeder Student erhält seinen eigenen Roboter und nimmt diesen unter Anleitung eigenständig in Betrieb. Mit dem Roboter wird jede Woche ein neuer Versuch durchgeführt, auf den die Studenten sich mit den zur Verfügung gestellten Unterlagen vorbereiten. Die Versuche basieren auf der Programmierung von Mikrocontrollern in C und umfassen die Ansteuerung der Sensoren und Aktoren des Roboters sowie mit Generierung von reaktiven Verhaltensmustern. Am Ende des Praktikums findet ein Abschlussrennen statt, bei dem die Roboter einen Hindernisparcours bewältigen müssen.

Arbeitsaufwand

Vorlesung mit 4 SWS, 4 LP. 4 LP entspricht ca. 120 Stunden, davon ca. 15 * 4h = 60 Std. Präsenzzeit Vorlesung ca. 15 * 3h = 45 Std. Vor- und Nachbereitungszeit Vorlesung ca. 15 Std. Prüfungsvorbereitung und Präsenz in selbiger

Empfehlungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

11.6 Modul: Batteriemodellierung mit MATLAB [M-ETIT-103271]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile				
T-ETIT-106507	Batteriemodellierung mit MATLAB	3 LP	Weber	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind mit den Grundlagen der Lithium-Ionen Batterietechnologie vertraut, sie sind in der Lage Batteriemodelle aufzustellen und in MATLAB zu implementieren.

Inhalt

Im Vorlesungsteil der Lehrveranstaltung werden die benötigten Grundlagen der Modellierung von Lithium-Ionen Batterien vermittelt. Nach einer kurzen Einführung in die Lithium-Ionen Batterietechnologie wird anhand von Beispielen vorgestellt, wie Batteriemodelle für verschiedene Applikationen in MATLAB umgesetzt werden können. Themen sind unter anderem Modelle zur Simulation des komplexen Innenwiderstandes, der nichtlinearen Lade-/Entladekurve sowie des dynamischen Strom-/Spannungsverlaufs einer Batterie während eines Fahrprofils.

Im Übungsteil der Lehrveranstaltung werden von den Studierenden selbstständig MATLAB-Modelle zur Simulation von Batterien entworfen, implementiert und getestet. Der praktische Teil der Lehrveranstaltung umfasst nach einer Einweisung in MATLAB (fakultativ) die Konzeptionierung verschiedener Modelle, das Aufstellen der benötigten Modellgleichungen, die Implementierung dieser in MATLAB und den Test des Modelle in Simulationsrechnungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 7 * 2 h = 14 h
- 2. Präsenzzeit Übung: 8 * 2h = 16 h
- 3. selbstständiges Implementieren der Modelle: 15 * 3 h = 45 h
- 4. Prüfungsvorbereitung und Präsens in selbiger: 15 h

Insgesamt: 90 h = 3 LP

11.7 Modul: Bauelemente der Elektrotechnik [M-ETIT-104538]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile				
T-ETIT-109292	Bauelemente der Elektrotechnik	6 LP	Kempf	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die physikalisch-chemischen Hintergründe sowie den Aufbau und die Funktionsweise passiver und aktiver Bauelemente der Elektrotechnik. Sie kennen insbesondere die physikalischen Wirkprinzipien der genannten Bauelemente und können diese mathematisch beschreiben.

Die Studierenden sind in der Lage, mit Spezialisten verwandter Disziplinen auf dem Gebiet der elektrischen und elektronischen Bauelemente zu kommunizieren und können in der Gesellschaft aktiv zum Meinungsbildungsprozess in Bezug auf materialtechnische Fragestellungen beitragen. Das vermittelte Wissen bildet zudem eine gute Ausgangslage für die weiterführenden Veranstaltungen in der Elektrotechnik und Informationstechnik.

Inhalt

Dieses Modul vermittelt einen Überblick über den physikalischen Hintergrund, den Aufbau und die Funktionsweise passiver und aktiver Bauelemente der Elektrotechnik.

Im ersten Teil der Vorlesung werden zunächst die wesentlichen Resultate der in der Vorlesung "Optik und Festkörperelektronik" diskutieren Bauelemente auf der Grundlage von metallischen, nicht-metallischen und dielektrischen Werkstoffen zusammengefasst. Es folgt eine eingehende Diskussion der physikalischen Grundlagen magnetischer und supraleitender Werkstoffe sowie den daraus abgeleiteten passiven Bauelementen der Elektrotechnik.

Im zweiten Teil der Vorlesung werden die physikalischen Grundlagen von Halbleiterbauelementen (pn-Übergang, Halbleiter-Grenzschichten etc) wiederholt und hierauf aufbauend die Funktionsweise aktiver Bauelemente der Elektrotechnik im Detail diskutiert. Hierbei werden insbesondere Bipolartransistoren, Feldeffekttransistoren (JFET, MOSFET, HEMT, MODFET) und Leistungshalbleiterbauelemente (Leistungsdioden, IGBT, Thyristor, Triac, Leistungs-MOSFET) behandelt.

Am Ende der Vorlesung wird ein kurzer Überblick über aktive, supraleitende Bauelemente (Josephson-Kontakt, SQUID) und deren schaltungstechnischen Anwendungen gegeben.

Zusammensetzung der Modulnote

Die Modulnote entspricht dem Ergebnis der schriftlichen Prüfung.

Anmerkungen

Modulverantwortlicher Sebastian Kempf

Arbeitsaufwand

Der Arbeitsaufwand für einen durchschnittlichen Studierenden beträgt 167h. Hierunter fallen:

- 45h Präsenzzeit für 45 Vorlesungen und 15 Übungen (jeweils a 45 Min.)
- 90h für die Vor- bzw. Nachbereitung der Vorlesungen und Übungen (ca. 2 h pro Vorlesung bzw. Übung)
- · 32h für die Klausurvorbereitung und Klausurteilnahme

Empfehlungen

Ein wesentlicher Teil der Bachelor-Pflichtmodule sollte erfolgreich abgeschlossen sein. Außerdem ist die vorherige Teilnahme am Modul "Optik und Festkörperelektronik" dringend empfohlen.

11.8 Modul: Begleitstudium - Angewandte Kulturwissenschaft [M-ZAK-106235]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: Zusatzleistungen

Leistungspunkte 22 **Notenskala** Zehntelnoten

Turnus Jedes Semester **Dauer** 3 Semester **Sprache** Deutsch

Level 3 **Version** 1

Wahlinformationen

Die im Begleitstudium Angewandte Kulturwissenschaft erworbenen Leistungen müssen mit Ausnahme der Mündlichen Prüfung und des Praxismoduls von den Studierenden selbst im Studienablaufplan verbucht werden. Im Campus-Management-System werden diese Leistungen durch das ZAK zunächst als "nicht zugeordnete Leistungen" verbucht. Anleitungen zur Selbstverbuchung von Leistungen finden Sie in den FAQ unter https://campus.studium.kit.edu/ sowie auf der Homepage des ZAK unter https://www.zak.kit.edu/begleitstudium-bak.php. Prüfungstitel und Leistungspunkte der verbuchten Leistung überschreiben die Platzhalter-Angaben im Modul.

Sofern Sie Leistungen des ZAK für die **Überfachlichen Qualifikationen und das Begleitstudium** nutzen wollen, ordnen Sie diese unbedingt zuerst den Überfachlichen Qualifikationen zu und wenden sich für eine Verbuchung im Begleitstudium an das Sekretariat Lehre des ZAK (stg@zak.kit.edu).

Im Vertiefungsmodul müssen drei Leistungen in drei unterschiedlichen Bausteinen erbracht werden. Zur Wahl stehen die folgenden Bausteine:

- · Technik & Verantwortung
- Doing Culture
- Medien & Ästhetik
- Lebenswelten
- Global Cultures

Erbracht werden müssen zwei Leistungen mit je 3 LP und eine Leistung mit 5 LP. Für die Selbstverbuchung im Vertiefungsmodul ist zunächst die passende Teilleistung auszuwählen.

<u>Hinweis:</u> Sofern Sie sich vor dem 01.04.2023 beim ZAK für das Begleitstudium Angewandte Kulturwissenschaft angemeldet haben, gilt die Selbstverbuchung einer Leistung in diesem Modul als Antrag im Sinne von §20 Absatz 2 der Satzung für das Begleitstudium Angewandte Kulturwissenschaft. Dies bedeutet, dass sich Ihre Gesamtnote im Begleitstudium als Durchschnitt der Noten der Prüfungsleistungen (und nicht als Durchschnitt der Modulnoten) berechnet.

Pflichtbestandteile						
T-ZAK-112653	Grundlagenmodul - Selbstverbuchung BAK 3 LP Mielke, Myglas					
Vertiefungsmodul (\	Vahl: 3 Bestandteile)					
T-ZAK-112654	Vertiefungsmodul - Technik & Verantwortung - Selbstverbuchung BAK	3 LP	Mielke, Myglas			
T-ZAK-112655	Vertiefungsmodul - Doing Culture - Selbstverbuchung BAK	3 LP	Mielke, Myglas			
T-ZAK-112656	Vertiefungsmodul - Medien & Ästhetik - Selbstverbuchung BAK	3 LP	Mielke, Myglas			
T-ZAK-112657	Vertiefungsmodul - Lebenswelten - Selbstverbuchung BAK	3 LP	Mielke, Myglas			
T-ZAK-112658	Vertiefungsmodul - Global Cultures - Selbstverbuchung	3 LP	Mielke, Myglas			
Pflichtbestandteile						
T-ZAK-112660	Praxismodul	4 LP	Mielke, Myglas			
T-ZAK-112659	Mündliche Prüfung - Begleitstudium Angewandte Kulturwissenschaft	4 LP	Mielke, Myglas			

Erfolgskontrolle(n)

Die Erfolgskontrollen sind in der jeweiligen Teilleistung erläutert.

Sie setzen sich zusammen aus:

- Protokollen
- Referaten
- · einer Seminararbeit
- · einem Praktikumsbericht
- · einer mündlichen Prüfung

Nach erfolgreichem Abschluss des Begleitstudiums erhalten die Absolvierenden ein benotetes Zeugnis und ein Zertifikat des KIT.

Voraussetzungen

Das Angebot ist studienbegleitend und muss nicht innerhalb eines definierten Zeitraums abgeschlossen werden. Bei der Anmeldung zur Abschlussprüfung muss eine Immatrikulation oder Annahme zur Promotion vorliegen.

Die Anmeldung zum Begleitstudium erfolgt für KIT-Studierende durch Wahl dieses Moduls im Studierendenportal und Selbstverbuchung einer Leistung. Zusätzlich ist eine Anmeldung zu den einzelnen Lehrveranstaltungen notwendig, die jeweils kurz vor Semesterbeginn möglich ist.

Vorlesungsverzeichnis, Satzung (Studienordnung), Anmeldeformular zur mündlichen Abschlussprüfung und Leitfäden zum Erstellen der verschiedenen schriftlichen Leistungsanforderungen sind als Download auf der Homepage des ZAK unter www.zak.kit.edu/begleitstudium-bak zu finden.

Oualifikationsziele

Absolventinnen und Absolventen des Begleitstudiums Angewandte Kulturwissenschaft weisen ein fundiertes Grundlagenwissen über Bedingungen, Verfahren und Konzepte zur Analyse und Gestaltung grundlegender gesellschaftlicher Entwicklungsaufgaben im Zusammenhang mit kulturellen Themen auf. Sie haben theoretisch wie praktisch im Sinne eines erweiterten Kulturbegriffs einen fundierten Einblick in verschiedene kulturwissenschaftliche und interdisziplinäre Themenbereiche im Spannungsfeld von Kultur, Technik und Gesellschaft erhalten.

Sie können die aus dem Vertiefungsmodul gewählten Inhalte in den Grundlagenkontext einordnen sowie die Inhalte der gewählten Lehrveranstaltungen selbständig und exemplarisch analysieren, bewerten und darüber in schriftlicher und mündlicher Form wissenschaftlich kommunizieren. Absolventinnen und Absolventen können gesellschaftliche Themen- und Problemfelder analysieren und in einer gesellschaftlich verantwortungsvollen und nachhaltigen Perspektive kritisch reflektieren.

Inhalt

Das Begleitstudium Angewandte Kulturwissenschaft kann ab dem 1. Semester begonnen werden und ist zeitlich nicht eingeschränkt. Der Umfang umfasst mindestens 3 Semester. Das Begleitstudium gliedert sich in 3 Module (Grundlagen, Vertiefung, Praxis). Erworben werden insgesamt 22 Leistungspunkte (LP).

Die thematischen Wahlbereiche des Begleitstudiums gliedern sich in folgende 5 Bausteine und deren Unterthemen:

Baustein 1 Technik & Verantwortung

Wertewandel / Verantwortungsethik, Technikentwicklung / Technikgeschichte, Allge meine Ökologie, Nachhaltigkeit

Baustein 2 Doing Culture

Kulturwissenschaft, Kulturmanagement, Kreativwirtschaft, Kulturinstitutionen, Kulturpolitik

Baustein 3 Medien & Ästhetik

Medienkommunikation, Kulturästhetik

Baustein 4 Lebenswelten

Kultursoziologie, Kulturerbe, Architektur und Stadtplanung, Arbeitswissenschaft

Baustein 5 Global Cultures

Multikulturalität / Interkulturalität / Transkulturalität, Wissenschaft und Kultur

Zusammensetzung der Modulnote

Die Gesamtnote des Begleitstudiums errechnet sich als ein mit Leistungspunkten gewichteter Durchschnitt der Noten der Prüfungsleistungen.

Vertiefungsmodul

- Referat 1 (3 LP)
- Referat 2 (3 LP)
- · Seminararbeit inkl. Referat (5 LP)
- · mündliche Prüfung (4 LP)

Anmerkungen

Mit dem Begleitstudium Angewandte Kulturwissenschaft stellt das KIT ein überfachliches Studienangebot als Zusatzqualifikation zur Verfügung, mit dem das jeweilige Fachstudium um interdisziplinäres Grundlagenwissen und fachübergreifendes Orientierungswissen im kulturwissenschaftlichen Bereich ergänzt wird, welches für sämtliche Berufe zunehmend an Bedeutung gewinnt.

Im Rahmen des Begleitstudiums erwerben Studierende fundierte Kenntnisse verschiedener kulturwissenschaftlicher und interdisziplinärer Themenbereiche im Spannungsfeld von Kultur, Technik und Gesellschaft. Neben Hochkultur im klassischen Sinne werden weitere Kulturpraktiken, gemeinsame Werte und Normen sowie historische Perspektiven kultureller Entwicklungen und Einflüsse in den Blick genommen.

In den Lehrveranstaltungen werden Bedingungen, Verfahren und Konzepte zur Analyse und Gestaltung grundlegender gesellschaftlicher Entwicklungsaufgaben auf Basis eines erweiterten Kulturbegriffs erworben. Dieser schließt alles von Menschen Geschaffene ein - auch Meinungen, Ideen, religiöse oder sonstige Überzeugung. Dabei geht es um Erschließung eines modernen Konzepts kultureller Vielfalt. Dazu gehört die kulturelle Dimension von Bildung, Wissenschaft und Kommunikation ebenso wie die Erhaltung des kulturellen Erbes. (UNESCO, 1982)

Für das Begleitstudium werden laut Satzung § 16 ein Zeugnis und ein Zertifikat durch das ZAK ausgestellt. Die erbrachten Leistungen werden außerdem im Transcript of Records des Fachstudiums sowie auf Antrag im Zeugnis ausgewiesen. Sie können außerdem zusätzlich in den Überfachlichen Qualifikationen anerkannt werden (siehe Wahlinformationen).

Arbeitsaufwand

Der Arbeitsaufwand setzt sich aus der empfohlenen Stundenanzahl der einzelnen Module zusammen:

- Grundlagenmodul ca. 90 h
- Vertiefungsmodul ca. 340 h
- Praxismodul ca. 120 h

Summe: ca. 550 h

Lehr- und Lernformen

- Vorlesungen
- Seminare
- Workshops
- Praktikum

Literatur

Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell festgelegt.

11.9 Modul: Begleitstudium - Nachhaltige Entwicklung [M-ZAK-106099]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: Zusatzleistungen

Leistungspunkte

Notenskala Zehntelnoten

Turnus Jedes Semester **Dauer** 3 Semester **Sprache** Deutsch

Level 3 **Version** 1

Wahlinformationen

Die im Begleitstudium Nachhaltige Entwicklung erworbenen Leistungen müssen mit Ausnahme der Mündlichen Prüfung von den Studierenden selbst im Studienablaufplan verbucht werden. Im Campus-Management-System werden diese Leistungen durch das ZAK zunächst als "nicht zugeordnete Leistungen" verbucht. Anleitungen zur Selbstverbuchung von Leistungen finden Sie in den FAQ unter https://campus.studium.kit.edu/ sowie auf der Homepage des ZAK unter https://www.zak.kit.edu/begleitstudium-bene. Prüfungstitel und Leistungspunkte der verbuchten Leistung überschreiben die Platzhalter-Angaben im Modul.

Sofern Sie Leistungen des ZAK für die **Überfachlichen Qualifikationen und das Begleitstudium** nutzen wollen, ordnen Sie diese unbedingt zuerst den Überfachlichen Qualifikationen zu und wenden sich für eine Verbuchung im Begleitstudium an das Sekretariat Lehre des ZAK (stg@zak.kit.edu).

Im Wahlmodul müssen Leistungen im Umfang von 6 LP in zwei der vier Bausteine erbracht werden:

- · Nachhaltige Stadt- und Quartiersentwicklung
- Nachhaltigkeitsbewertung von Technik
- · Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit
- · Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft

In der Regel sind zwei Leistungen mit je 3 LP zu erbringen. Für die Selbstverbuchung im Wahlmodul ist zunächst die passende Teilleistung auszuwählen.

<u>Hinweis:</u> Sofern Sie sich vor dem 01.04.2023 beim ZAK für das Begleitstudium Nachhaltige Entwicklung angemeldet haben, gilt die Selbstverbuchung einer Leistung in diesem Modul als Antrag im Sinne von §19 Absatz 2 der Satzung für das Begleitstudium Nachhaltige Entwicklung. Dies bedeutet, dass sich Ihre Gesamtnote im Begleitstudium als Durchschnitt der Noten der Prüfungsleistungen (und nicht als Durchschnitt der Modulnoten) berechnet.

Pflichtbestandteile					
T-ZAK-112345	Grundlagenmodul - Selbstverbuchung BeNe	3 LP	Myglas		
Wahlmodul (Wahl: n	nind. 6 LP)				
T-ZAK-112347	Wahlmodul - Nachhaltige Stadt- und Quartiersentwicklung - Selbstverbuchung BeNe	3 LP			
T-ZAK-112348	Wahlmodul - Nachhaltigkeitsbewertung von Technik - Selbstverbuchung BeNe	3 LP			
T-ZAK-112349	Wahlmodul - Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit - Selbstverbuchung BeNe	3 LP			
T-ZAK-112350	Wahlmodul - Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft - Selbstverbuchung BeNe	3 LP			
Pflichtbestandteile					
T-ZAK-112346	Vertiefungsmodul - Selbstverbuchung BeNe	6 LP	Myglas		
T-ZAK-112351	Mündliche Prüfung - Begleitstudium Nachhaltige Entwicklung	4 LP			

Erfolgskontrolle(n)

Die Erfolgskontrollen sind im Rahmen der jeweiligen Teilleistung erläutert.

Sie setzen sich zusammen aus:

- Protokollen
- · einem Reflexionsbericht
- Referaten
- Präsentationen
- · die Ausarbeitung einer Projektarbeit
- · einer individuellen Hausarbeit

Nach erfolgreichem Abschluss des Begleitstudiums erhalten die Absolvierenden ein benotetes Zeugnis und ein Zertifikat, die vom ZAK ausgestellt werden.

Voraussetzungen

Das Angebot ist studienbegleitend und muss nicht innerhalb eines definierten Zeitraums abgeschlossen werden. Für alle Erfolgskontrollen der Module des Begleitstudiums ist eine Immatrikulation erforderlich. Die Teilnahme am Begleitstudium wird durch § 3 der Satzung geregelt.

Die Anmeldung zum Begleitstudium erfolgt für KIT-Studierende durch Wahl dieses Moduls im Studierendenportal und Selbstverbuchung einer Leistung. Die Anmeldung zu Lehrveranstaltungen, Erfolgskontrollen und Prüfungen ist in § 6 der Satzung geregelt und ist in der Regel kurz vor Semesterbeginn möglich.

Vorlesungsverzeichnis, Satzung (Studienordnung), Anmeldeformular zur mündlichen Abschlussprüfung und Leitfäden zum Erstellen der verschiedenen schriftlichen Leistungsanforderungen sind als Download auf der Homepage des ZAK unter http://www.zak.kit.edu/begleitstudium-bene zu finden.

Qualifikationsziele

Absolventinnen und Absolventen des Begleitstudiums Nachhaltige Entwicklung erwerben zusätzliche praktische und berufliche Kompetenzen. So ermöglicht das Begleitstudium den Erwerb von Grundlagen und ersten Erfahrungen im Projektmanagement, schult Teamfähigkeit, Präsentationskompetenzen und Selbstreflexion und schafft zudem ein grundlegendes Verständnis von Nachhaltigkeit, das für alle Berufsfelder von Bedeutung ist.

Absolventinnen und Absolventen können gesellschaftliche Themen- und Problemfelder analysieren und in einer gesellschaftlich verantwortungsvollen und nachhaltigen Perspektive kritisch reflektieren. Sie können die aus den Modulen "Wahlbereich" und "Vertiefung" gewählten Inhalte in den Grundlagenkontext einordnen sowie die Inhalte der gewählten Lehrveranstaltungen selbständig und exemplarisch analysieren, bewerten und darüber in schriftlicher und mündlicher Form wissenschaftlich kommunizieren.

Inhalt

Das Begleitstudium Nachhaltige Entwicklung kann ab dem 1. Semester begonnen werden und ist zeitlich nicht eingeschränkt. Das breite Angebot an Lehrveranstaltungen des ZAK ermöglicht es, das Studium in der Regel innerhalb von drei Semestern abzuschließen. Das Begleitstudium umfasst 19 Leistungspunkte (LP). Es besteht aus drei Modulen: Grundlagen, Wahlbereich und Vertiefung.

Die thematischen Wahlbereiche des Begleitstudiums gliedern sich in Modul 2 Wahlbereich in folgende 4 Bausteine und deren Unterthemen:

Baustein 1 Nachhaltige Stadt- & Quartiersentwicklung

Die Lehrveranstaltungen bieten einen Überblick über das Ineinandergreifen von sozialen, ökologischen und ökonomischen Dynamiken im Mikrokosmos Stadt.

Baustein 2 Nachhaltigkeitsbewertung von Technik

Meist anhand laufender Forschungsaktivitäten werden Methoden und Zugänge der Technikfolgenabschätzung erarbeitet.

Baustein 3 Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit

Unterschiedliche Zugänge zum individuellen Wahrnehmen, Erleben, Gestalten und Verantworten von Beziehungen zur Mitund Umwelt und zu sich selbst werden exemplarisch vorgestellt.

Baustein 4 Nachhaltigkeit in Kultur, Wirtschaft & Gesellschaft

Die Lehrveranstaltungen haben i.d.R. einen interdisziplinären Ansatz, können aber auch einen der Bereiche Kultur, Wirtschaft oder Gesellschaft sowohl anwendungsbezogen als auch theoretisch fokussieren.

Kern des Begleitstudiums ist eine **Fallstudie im Vertiefungsbereich**. In diesem **Projektseminar** betreiben Studierende selbst Nachhaltigkeitsforschung mit praktischem Bezug. Ergänzt wird die Fallstudie durch eine mündliche Prüfung mit zwei Themen aus Modul 2 Wahlbereich und Modul 3 Vertiefung.

Zusammensetzung der Modulnote

Die Gesamtnote des Begleitstudiums errechnet sich als ein mit Leistungspunkten gewichteter Durchschnitt der Noten der Prüfungsleistungen.

Wahlmodul

- Referat 1 (3 LP)
- · Referat 2 (3 LP)
- · mündliche Prüfung (4 LP)

Vertiefungsmodul

- individuelle Hausarbeit (6 LP)
- mündliche Prüfung (4 LP)

Anmerkungen

Das Begleitstudium Nachhaltige Entwicklung am KIT basiert auf der Überzeugung, dass ein langfristig soziales und ökologisch verträgliches Zusammenleben in der globalen Welt nur möglich ist, wenn Wissen über notwendige Veränderungen in Wissenschaft, Wirtschaft und Gesellschaft erworben und angewandt wird.

Das fachübergreifende und transdisziplinäre Studienangebot des Begleitstudiums ermöglicht vielfältige Zugänge zu Transformationswissen sowie Grundlagen und Anwendungsbereichen Nachhaltiger Entwicklung. Für das Begleitstudium werden laut Satzung § 16 ein Zeugnis und ein Zertifikat durch das ZAK ausgestellt. Die erbrachten Leistungen werden außerdem im Transcript of Records des Fachstudiums sowie auf Antrag im Zeugnis ausgewiesen. Sie können außerdem zusätzlich in den Überfachlichen Qualifikationen anerkannt werden (siehe Wahlinformationen). Dies muss über das jeweilige Fachstudium geregelt werden.

Im Vordergrund stehen erfahrungs- und anwendungsorientiertes Wissen und Kompetenzen, aber auch Theorien und Methoden werden erlernt. Ziel ist es, das eigene Handeln als Studierende, Forschende und spätere Entscheidungstragende ebenso wie als Individuum und Teil der Gesellschaft unter dem Aspekt der Nachhaltigkeit vertreten zu können.

Nachhaltigkeit wird als Leitbild verstanden, an dem sich wirtschaftliches, wissenschaftliches, gesellschaftliches und individuelles Handeln orientieren soll. Danach ist die langfristige und sozial gerechte Nutzung von natürlichen Ressourcen und der stofflichen Umwelt für eine positive Entwicklung der globalen Gesellschaft nur mittels integrativer Konzepte anzugehen. Deshalb spielt die "Bildung für nachhaltige Entwicklung" im Sinne des Programms der Vereinten Nationen eine ebenso zentrale Rolle wie das Ziel "Kulturen der Nachhaltigkeit" zu fördern. Hierzu wird ein praxis-zentriertes und forschungsbezogenes Lernen von Nachhaltigkeit ermöglicht und der am ZAK etablierte weite Kulturbegriff verwendet, der Kultur als habituelles Verhalten, Lebensstil und veränderlichen Kontext für soziale Handlungen versteht.

Das Begleitstudium vermittelt Grundlagen des Projektmanagements, schult Teamfähigkeit, Präsentationskompetenzen sowie Selbstreflexion. Es schafft komplementär zum Fachstudium am KIT ein grundlegendes Verständnis von Nachhaltigkeit, das für alle Berufsfelder von Bedeutung ist. Integrative Konzepte und Methoden sind dabei essenziell: Um natürliche Ressourcen langfristig zu nutzen und die globale Zukunft sozial gerecht zu gestalten, müssen nicht nur verschiedene Disziplinen, sondern auch Bürgerinnen und Bürger, Praktiker und Institutionen zusammenarbeiten.

Arbeitsaufwand

Der Arbeitsaufwand setzt sich aus der Stundenanzahl der einzelnen Module zusammen:

- · Grundlagenmodul ca. 180 h
- Wahlmodul ca. 150 h
- Vertiefungsmodul ca. 180 h

Summe: ca. 510 h

Lehr- und Lernformen

- Vorlesungen
- Seminare
- Workshops

Literatur

Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell festgelegt.

11.10 Modul: Bildverarbeitung [M-ETIT-102651]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-105566	Bildverarbeitung	3 LP	Heizmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

- + Studierende haben fundiertes Wissen über Grundlagen und Vorgehensweisen der Bildverarbeitung und automatischen Sichtprüfung
- + Studierende beherrschen unterschiedliche Methoden zur Bildgewinnung, Vorverarbeitung und Bildauswertung und können sie anhand ihrer Voraussetzungen, Modellannahmen und Ergebnisse charakterisieren.
- + Studierende sind in der Lage, Aufgaben der Bildverarbeitung und automatischen Sichtprüfung zu analysieren und zu strukturieren, Lösungsmöglichkeiten aus den Methoden der Bildverarbeitung zu synthetisieren und ihre Eignung einzuschätzen.

Inhalt

Bildverarbeitung ist ein Sammelbegriff für die Erfassung von Bildsignalen mittels optischer Abbildung und Kameras, die Verarbeitung der aufgenommenen Bildsignale mittels (digitaler) Bildsignalverarbeitung und die Auswertung der Bilddaten zur Gewinnung von Nutzinformation aus den aufgenommenen Bildern.

Das Modul vermittelt Grundlagen, Vorgehensweisen und beispielhafte Anwendungen der Bildverarbeitung.

Die Inhalte umfassen im Einzelnen:

- + Optische Abbildung
- Abbildung mit Lochkamera, Zentralprojektion
- Abbildung mit Linse (Objektiv)
- + Farbe
- Photometrie
- Farbwahrnehmung und Farbräume
- Filter
- + Sensoren zur Bildgewinnung
- CCD-, CMOS-Sensoren
- Farbsensoren
- Qualitätskriterien
- + Bildaufnahmeverfahren
- Erfassung von optischen Eigenschaften
- Erfassung der räumlichen Gestalt (3D-Form)
- + Bildsignale
- Mathematische Beschreibung von Bildsignalen
- Systemtheorie
- Fourier-Transformation
- + Vorverarbeitung und Bildverbesserung
- Einfache Bildverbesserungsmaßnahmen
- Verminderung systematischer Störeinflüsse
- Verminderung zufälliger Störungen
- + Segmentierung
- Bereichsorientierte Segmentierung
- Kantenorientierte Verfahren
- + Texturanalyse
- Texturtypen
- Modellbasierte Texturanalyse
- Merkmalsbasierte Texturanalyse
- + Detektion
- Detektion bekannter Objekte mittels linearer Filter
- Detektion unbekannter Objekte (Defekte)
- Geradendetektion (Radon- und Hough-Transformation)

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (1 h) der wöchentlichen Vorlesung sowie die Vorbereitung (45 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von ca. 90 h.

Empfehlungen

Kenntnis zu Inhalten der Module "Signale und Systeme" (z. B. Fourier-Transformation, Abtastung) und "Messtechnik" (z. B. Rauschen, Matched Filter) sind von Vorteil.

11.11 Modul: Bioanalytik [M-CHEMBIO-106306]

Verantwortung: Dr. Claudia Muhle-Goll

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Medizinisch-technischer Profilierungsbereich

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CHEMBIO-112779	Bioanalytik	3 LP	Muhle-Goll

Erfolgskontrolle(n)

Klausur zu Vorlesung nach Anmeldung (schiftliche Prüfungsleistung, Ende des Wintersemesters, 90 min).

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden verschaffen sich einen Einblick in die verschiedenen Messverfahren in der Bioanalytik. Der Fokus liegt dabei auf der instrumentellen Analytik von biologisch interessanten Molekülen und deren Eigenschaften. Es wird gelernt, die verschiedenen Messmethoden im Hinblick auf Anwendbarkeit, evtl. auftretende Fehler und Informationsgehalt einzuschätzen. Es wird ein grundsätzliches Verständnis der physikalischen Grundlagen der unterschiedlichen Methoden erarbeitet.

Inhalt

Spektroskopie

- Moleküleigenschaften
- Absorption
- · Lineare Polarisation
- Zirkulare Polarisation
- Lichtstreuung
- Inelastische Streuung
- Fluoreszenz
- Kernspinresonanz

Trennverfahren

- · Chromatographie
- Gelelektrophorese
- · Zentrifugation

Kalorimetrie

- · Differentielle Scanning Kalorimetrie
- Isothermale Titrationskalorimetrie

Fehlerbetrachtung

- · Systematische Fehler
- · Statistische Fehler
- · Signal/Rausch-Verhältnis

Röntgenstrukturanalyse

- Kristallisation
- Röntgenbeugung
- Phasenproblem
- · Strukturmodellierung

Spezielle Mikroskopie

- Elektronenmikroskopie
- Rastermikroskopie

Massenspektrometrie

- · Elektronensprayionisation
- · Matrix-assistierte Laser-Desorptions-Ionisierung

Zusammensetzung der Modulnote

Die Modulnote ist die Klausurnote. Bei geringer Zahl von Anmeldungen zur Klausur, kann auch ersatzweise eine 30-minütige mündliche Prüfung zur Festsetzung der Klausurnote erfolgen.

Arbeitsaufwand

Vorlesung "Bioanalytik"

Präsenzzeit in der Vorlesung: 30 h

Vor- und Nachbereitung inkl. Vorbereitung zur Modulabschlussprüfung:

60 h

Summe: 90 h (3 LP)

Literatur

Lottspeich/Engels, Bioanalytik, Springer.

P.J. Walla, Modern Biophysical Chemistry: Detection and Analysis of Biomol-ecules, Wiley VCH.

11.12 Modul: Biochemie [M-CHEMBIO-100149]

Verantwortung: Prof. Dr. Frank Breitling

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
JährlichDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CHEMBIO-100214	Biochemie	4 LP	Breitling

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt über eine schriftliche Prüfung im Umfang von 120 Minuten über die Inhalte der Vorlesung.

Voraussetzungen

keine

Qualifikationsziele

- · Sie kennen die Hintergründe der Enzymkinetik.
- · Sie verstehen die Gesetzmäßigkeiten in Struktur und Funktion von Proteinen und Lipiden.
- · Sie verstehen die chemischen Grundlagen für Biomembranen und Transport.
- · Sie kennen die Prinzipien wichtiger Stoffwechselwege.

Inhalt

- Biophysikalische Grundlagen: Thermodynamik, Kinetik, Spektroskopie
- Proteine: strukturelle Prinzipien, funktionelle Konsequenzen
- Enzyme: Grundlagen der Katalyse, Kofaktoren
- Enzymkinetik: quantitative Beschreibung, Inhibitoren
- Enzymmechanismen: Regulation, Beispiel Proteasen
- Funktionelle Proteinkomplexe: Antikörper, Muskel
- · Lipide: Aufbau und Eigenschaften
- Biomembranen: Zusammensetzung und Verhalten
- · Membranproteine: Bauprinzip, Funktionen
- · Transport durch Membranen: Poren, Kanäle, Transporter
- · Signaltransduktion: Rezeptoren, Liganden, Kaskaden

Zusammensetzung der Modulnote

Die Note ergibt sich aus der erreichten Punktzahl in der Klausur.

Anmerkungen

Folien auf:

http://www.biologie.kit.edu/450.php

Arbeitsaufwand

Präsenzzeit: 30 Stunden

Vor-und Nachbereitungszeit: 90 Stunden Gesamter Arbeitsaufwand: 120 Stunden

Lehr- und Lernformen

Vorlesung 80%, eigenständige Literaturarbeit 20%

Literatur

- · Lehrbücher:
 - W. Müller-Esterl "Biochemie" (Spektrum Verlag)
 - L. Stryer "Biochemie" (Spektrum Verlag)

 - K. Munk "Biochemie, Zellbiologie, Ökologie, Evolution" (Spektrum Verlag)
 Horn/Lindenmeier/Moc/Grilhösl/Berghold/Schneider/Münster "Biochemie des Menschen" (Thieme Verlag)
- Internetmaterialien

11.13 Modul: Biochemie [M-CHEMBIO-106304]

Verantwortung: Prof. Dr. Anne Ulrich

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Medizinisch-technischer Profilierungsbereich

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion6ZehntelnotenJedes Semester2 SemesterDeutsch31

Pflichtbestandteile			
T-CHEMBIO-112776	Biochemie	6 LP	Ulrich

Erfolgskontrolle(n)

Schriftliche Prüfungsleistung mit Inhalten beider Vorlesungen zu gleichen Anteilen. Bearbeitungszeit 4 h (jeweils 2 h pro Vorlesung).

Voraussetzungen

Keine

Qualifikationsziele

Nach Abschluss des Modules können die Studierenden ihre Fachkenntnis und die modernen Methoden der Biochemie auf einfache wissenschaftliche Fragestellungen anwenden, da sie sich in den beiden Vorlesungen ein breites Wissen über den Aufbau, die Struktur und Funktion von Proteinen, Lipiden, Kohlenhydraten und Nukleinsäuren angeeignet haben. Sie kennen die Mechanismen enzymatischer Reaktionen und wie diese reguliert werden. Sie wissen, wie Biomembranen zusammengesetzt sind und wie Signale und Stoffe durch diese hindurch transportiert werden. Sie kennen die unterschiedlichen Strategien, wie eine Zelle Energie gewinnen kann und sind vertraut mit den Stoffwechselwegen von Zuckern, Fetten und Aminosäuren. Sie haben ein Verständnis dafür entwickelt, wie Gene zur Produktion von Proteinen abgelesen werden kann.

Inhalt

Vorlesung:

Biochemie der Proteine und Lipide

Aminosäuren: Aufbau und Eigenschaften

Proteine: strukturelle Prinzipien, funktionelle Konsequenzen Charakterisierung: Masse, Sequenz, Struktur, Beispiel Hämoglobin Enzyme: Katalyse, Kofaktoren, Kinetik, Inhibitoren, Regulation

Lipide: Aufbau und Eigenschaften

Biomembranen: Zusammensetzung und Verhalten

Membranproteine: Bauprinzip, Funktionen

Transport durch Membranen: Poren, Kanäle, Transporter Signaltransduktion: Rezeptoren, Liganden, Kaskaden

Vorlesung:

Biochemie der Kohlenhydrate und Nukleinsäuren

Kohlenhydrate: Glykolyse, Zitratzyklus, Atmungskette, Glukoneogenese Stoffwechsel der Fettsäuren, Harnstoffzyklus Nukleinsäuren: Transkription, Translation, Proteinbiosynthese DNA Replikation, Gentechnik

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

A) Vorlesung

Präsenzzeit in der Vorlesung: 30 h

Vor- und Nachbereitung inkl. Vorbereitung zur Modulabschlussprüfung:

60 h

Summe: 90 h (3 LP) B) Vorlesung

Präsenzzeit in der Vorlesung: 30 h

Vor- und Nachbereitung inkl. Vorbereitung zur Modulabschlussprüfung:

60 h

Summe: 90 h (3 LP)

Gesamtaufwand im Modul: 180 h (6 LP)

Literatur

- Müller-Esterl "Biochemie Eine Einführung für Mediziner und Naturwissen-schaftler"
- Stryer "Biochemie"
- Voet/Voet/Pratt "Lehrbuch der Biochemie" (Ed. Beck-Sickinger & Hahn, Wiley-VCH)
- Munk "Biochemie, Zellbiologie, Ökologie, Evolution" (Grundstudium Biolo-gie, Spektrum Verlag)
- Horn/Lindenmeier/Moc/Grilhösl/Berghold/Schneider/Münster "Biochemie des Menschen" (Thieme Verlag)
- Skript mit Bildern aus Müller-Esterl (auf Biochemie-Homepage)

11.14 Modul: Computational Intelligence [M-MACH-105296]

Verantwortung: apl. Prof. Dr. Ralf Mikut

apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-MACH-105314	Computational Intelligence	4 LP	Meisenbacher, Mikut, Reischl

Erfolgskontrolle(n)

Eine Erfolgskontrolle muss stattfinden und kann schriftlich, mündlich oder anderer Art sein.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die grundlegenden Methoden der Computational Intelligence (Fuzzy-Logik, Künstliche Neuronale Netze, Evolutionäre Algorithmen) zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen sowohl die wichtigsten mathematischen Methoden als auch den Transfer zu praktischen Anwendungsfällen.

Inhalt

- Begriff Computational Intelligence, Anwendungsgebiete und -beispiele
- Fuzzy Logik: Fuzzy-Mengen; Fuzzifizierung und Zugehörigkeitsfunktionen; Inferenz: T-Normen und -Konormen, Operatoren, Prämissenauswertung, Aktivierung, Akkumulation; Defuzzifizierung, Reglerstrukturen für Fuzzy-Regler
- Künstliche Neuronale Netze: Biologie neuronaler Netze, Neuronen, Multi-Layer-Perceptrons, Radiale-Basis-Funktionen, Kohonen-Karten, Lernverfahren (Backpropagation, Levenberg-Marquardt)
- Evolutionäre Algorithmen: Basisalgorithmus, Genetische Algorithmen und Evolutionsstrategien, Evolutionärer Algorithmus GLEAM, Einbindung lokaler Suchverfahren, Memetische Algorithmen, Anwendungsbeispiele

Arbeitsaufwand

Der Arbeitsaufwand beträgt ca. 120 Zeitstunden, entsprechend 4 Leistungspunkten.

Lehr- und Lernformen

Vorlesung

11.15 Modul: Datenanalyse für Ingenieure [M-MACH-105307]

Verantwortung: apl. Prof. Dr. Ralf Mikut

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion5ZehntelnotenJedes Sommersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-MACH-105694	Datenanalyse für Ingenieure	5 LP	Meisenbacher, Mikut, Reischl

Erfolgskontrolle(n)

Eine Erfolgskontrolle muss stattfinden und kann schriftlich, mündlich oder anderer Art sein.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die Methoden der Datenanalyse zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen sowohl die grundlegenden mathematischen Data-Mining-Methoden zur Analyse von Einzelmerkmalen und Zeitreihen mit Klassifikations-, Cluster- und Regressionsverfahren inkl. einer Auswahl praxisrelevanter Verfahren (Bayes-Klassifikatoren, Support-Vektor-Maschinen, Entscheidungsbäume, Fuzzy-Regelbasen) als auch Einsatzszenarien zur Beherrschung praktischer Problemstellungen (Datenaufbereitung, Validierungen).

Inhalt

- · Einführung und Motivation
- Begriffe und Definitionen (Arten von mehrdimensionalen Merkmalen Zeitreihen und Bilder, Einteilung Problemstellungen)
- Einsatzszenario: Problemformulierungen, Merkmalsextraktion, -bewertung, -selektion und -transformation, Distanzmaße, Bayes-Klassifikation, Support-Vektor-Maschinen, Entscheidungsbäume, Cluster-Verfahren, Regression, Validierung
- 14tägige Rechnerübungen und Anwendungen (Software-Übung mit SciXMiner): Import von Daten, Verschiedene Benchmarkdatensätze, Steuerung Handprothese, Energieprognose

Arbeitsaufwand

Der Arbeitsaufwand beträgt ca. 150 Zeitstunden, entsprechend 5 Leistungspunkten.

Lehr- und Lernformen

Vorlesung

11.16 Modul: Einführung in die Finite-Elemente-Methode [M-MACH-106209]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile				
T-MACH-105320	Einführung in die Finite-Elemente-Methode	3 LP	Böhlke, Langhoff	
T-MACH-110330	Übungen zu Einführung in die Finite-Elemente-Methode	1 LP	Böhlke, Langhoff	

Erfolgskontrolle(n)

Prüfungsleistung schriftlich, 90 min; Die Übungen sind als Studienleistung T-MACH-110330 Klausurvorleistungen

Voraussetzungen

keine

Qualifikationsziele

Nach Abschluss des Moduls kennen die Studierenden die mathematischen und mechanischen Grundlagen der FEM und können effektiv Festigkeits- und Temperaturanalysen mit einem kommerziellen FE-Softwarepaket durchführen. Die Absolventinnen und Absolventen können die schwache Formulierung von Randwertproblemen herleiten und das Gleichungssystem der FEM aufstellen. Die Studierenden kennen die unterschiedlichen Approximationsansätze im Rahmen der FEM und können gezielt numerische Lösungsverfahren für lineare Gleichungssysteme einsetzen.

Inhalt

Dieses Modul soll Studierenden die theoretischen und numerischen Aspekte der linearen Finite-Elemente-Methode vermitteln. Zu Beginn werden typische Randwertprobleme der Festkörpermechanik diskutiert. Dann werden die schwachen Formen der Differentialgleichungen hergeleitet und deren Eigenschaften diskutiert. Es schließt sich die Darstellung der Approximationsansätze im Rahmen der Finiten-Elemente-Methode an. Eigenschaften der FEM-Lösung sowie numerische Aspekte werden angesprochen. Am Ende wird eine Einführung in die numerische Lösung linearer Gleichungssysteme gegeben.

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung und Übungen: 15 * 2 h + 15* 2 h = 60 h
- 2. Vor- und Nachbereitungszeit Vorlesung und Übungen: 15 * 1 h + 15 * 1h = 30 h
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 30 h

Lehr- und Lernformen

Vorlesung, Saalübung, Rechnerübung, Sprechstunde

11.17 Modul: Einführung in die Hochspannungstechnik [M-ETIT-105276]

Verantwortung: Dr.-Ing. Michael Suriyah

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-110702	Einführung in die Hochspannungstechnik	3 LP	Suriyah

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Prüfung (ca. 20 Minuten).

Qualifikationsziele

Die Studierenden kennen die wesentliche Ursachen für die Entstehung von Überspannungen in elektrischen Stromnetzen.

Die Studierenden kennen die wesentlichen Komponenten und Messmitteln der Hochspannungstechnik.

Die Studierenden sind fähig, die unterschiedliche Verfahren zur Messung von hohen Spannungen kritisch zu beurteilen.

Die Studierenden kennen die für den Entwurf, die Auslegung und die Inbetriebnahme einer hochspannungstechnische Prüfschaltung notwendigen Entwicklungsschritte.

Die Studierenden kennen die relevanten Methoden zur Diagnose von elektrischen Isoliermaterialen und -systemen.

Inhalt

Die Integration erneuerbarer Energien in das bestehende Stromnetz ist eine gewaltige Herausforderung hinsichtlich der Gewährleistung einer stabilen und sicheren Energieversorgung. Die Hochspannungstechnik ist dabei eine Schlüsseltechnologie, um die Energiewende zum Erfolg werden zu lassen. Neben der konventionellen Drehstromübertragung gewinnt in Deutschland auch die Hochspannungs-Gleichstrom-Übertragung (HGÜ) im Rahmen des Netzausbaus der Übertragungsnetze immer stärker an Bedeutung. Ziel dieser Veranstaltung ist es, neue Erkenntnisse auf dem Gebiet der Hochspannungstechnik umfassend zu vermitteln und zu diskutieren. Neuen Werkstoffen und Prüfverfahren von Isoliersystemen und Produkten kommt dabei eine besondere Bedeutung zu.

Themen:

- 1. Werkstoffe der Hochspannungstechnik
- 2. Betriebsmittel der elektrischen Energietechnik
- 3. Methoden der Hochspannungsmesstechnik
- 4. Monitoring, Diagnostik und Zustandsbewertung von Betriebsmitteln
- 5. Gastvorlesung aus der Industrie

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen: Präsenzzeit in Vorlesung (30 h = 1 LP) Selbststudienzeit (60 h = 2 LP) Insgesamt (90 h = 3 LP)

Empfehlungen

Grundlegende Kenntnisse in Netzwerktheorie, Feldtheorie und elektrische Messtechnik

11.18 Modul: Einführung in die Medizintechnik [M-ETIT-106492]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technische Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch/Englisch	2	1

Pflichtbestandteile					
T-ETIT-106492	Biomedizinische Messtechnik I	3 LP	Nahm		
T-ETIT-113048	Medical Imaging Technology I	3 LP	Spadea		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei schriftlichen Klausuren, eine zum Prüfungsstoff für Biomedizinische Messtechnik I und eine zum Prüfungsstoff für Medical Imaging Technology I. Die beiden Klausuren haben einen Umfang von je 60 Minuten.

Voraussetzungen

keine

Qualifikationsziele

- Vorlesung "Biomedizinische Messtechnik I"
 - Die Absolventinnen und Absolventen sind fähig diagnostische Fragestellungen in eine messtechnische Aufgabenstellung zu übersetzt.
 - Die Absolventinnen und Absolventen k\u00f6nnen die Grundlagen der analogen Schaltungstechnik, sowie der digitalen Signalerfassung und Signalverarbeitung zur L\u00f6sung der messtechnischen Aufgabenstellung anwenden.
 - Die Absolventinnen und Absolventen k\u00f6nnen die Quellen von Biosignalen identifiziert und die zugrundeliegenden physiologischen Mechanismen erkl\u00e4rt.
 - Die Absolventinnen und Absolventen können die Messkette von der Erfassung der physikalischen Messgröße bis zur Darstellung der medizinisch relevanten Information beschrieben und erklärt.
 - Darüber hinaus können die Studierenden selbstorganisiert und reflexiv in kleinen Teams arbeiten und zu ausgewählten Themen den aktuellen Wissenstand und die Wissenschaftshistorie präsentieren.
- Lecture "Medical Imaging Technology I"

For each imaging modality students will be able to:

- identify required energy source;
- analyze the interactions between the form of energy and biological tissue distinguishing desired signal from noise contribution;
- critically interpret the image content to derive knowledge
- evaluate image quality and implementing strategies to improve it.

Moreover, the students will be able to communicate in technical and clinical English languange.

Inhalt

Vorlesung "Biomedizinische Messtechnik I"

Die Vorlesung beschäftigt neben der Entstehung von Biosignalen auch mit Systemen zur Messung von Vitalparametern (Herzfrequenz, Blutdruck, Pulsoxymetrie, Körpertemperatur, EKG):

Im Detail werden dabei folgende Themen näher betrachtet:

- Definition von Biosignal deren Entstehung, Messtechnik, Messsignal und Biosignal
- Physikalisches Messen in der Medizin
 - Definition von physikalischen Basisgrößen, Messprinzip, Messmethode und Messverfahren im Sinne der Messtechnik
 - Definition von Diagnostik und Vorgehen
 - Definition von Monitoring
 - Anforderungen an das Anästhesiemonitoring
- Definition von Vitalfunktionen und deren Bedeutung in der Medizin
 - Sauerstoffversorgung des Gehirns (Blutversorgung, Autoregulation, Interoperative Diagnose)
- Betrachtung von physiologischen Vorgängen und deren physikalische Basisgrößen, sowie Sensoren zum Erfassen und Wandeln der physiologischen Größen.
 - Dabei werden speziell folgenden Sensoren betrachtet:
 - Elektroden,
 - Chemische Sensoren,
 - Drucksensoren
 - optische Sensoren
- Körpertemperatur
 - Temperaturregelung im Körper, Messprinzipien und Messmethoden
- Elektrokardiographie:
 - Signalentstehung, Ableitung, Signalform, Messsystem, Elektrode/ Haut Messprinzip/Differenzmessung, Messkette und Störgrößen
 - Herzratenvariabilität
- Oszillometrie
 - Komponenten des Blutdrucks
 - Druckpuls/Strompuls (Pulswelle)
 - Genauigkeit, Zuverlässigkeit, Fehlerquellen
- Kontinuierliche invasive und nichtinvasive Blutdruckmessung
 - Volumenkompensationsmethode: Prinzip der entspannten Arterie Funktionsweise, Messsystem Vorteile, Nachteile, Limitierungen
 - Pulstransitzeit-Methode: Zusammenhang Blutdruck-Pulswellengeschwindigkeit Messmethode, Messsystem
- Pulsoxymetrie
 - Hämoglobin / Sauerstoff-Dissoziationskurve, Photometrie / Spektralphotometrie/ Oxymetrie, Auswertung des Volumenpulses, Grenzen der Pulsoxymetrie, Störquellen
- Analoge Messtechnik
 - idealer / realer Operationsverstärker
 - Basisschaltungen von Operationsverstärker
 - Messverstärker
 - Aufbau, Eigenschaften, Dimensionierung von Messsystemen
- Digitale Signalverarbeitung
 - analoge / digitale Signale
 - A / D -Wandler
 - Digitale Filterung
 - Digitale Filtertypen: FIR / IIR Auslegung von Filtern

Elektrische Sicherheit in medizinischen genutzten Bereich nach DIN 60601-1

Lecture "Medical Imaging Technology I"

The module Medical Imaging Technology I provides knowledge on

- the basic knowledge of mathematical and physical principles of medical imaging formation, including X-ray based modalities, nuclear medicine imaging, magnetic resonance imaging and ultrasound
- the component of medical imaging devices.
- assessment of image quality in terms of signal-to-noise-ratio, presence of artifact, spatial, spectral and temporal resolution
- safety and protection for patients and workers.

Zusammensetzung der Modulnote

Die Modulnote ist gemittelte Note der beiden schriftlichen Prüfung.

In "Biomedizinischer Messtechnik I" können auch Bonuspunkte vergeben werden. Die Erreichung von Bonuspunkten funktioniert folgendermaßen:

- · die Lösung von Bonusaufgaben erfolgt freiwillig.
- die Studierenden tragen sich im ILIAS in Gruppen zu max. 3 Teilnehmern für eine Bonusaufgabe ein.
- · die Lösung der Bonusaufgabe muss zum vorgegebenen Abgabezeitpunkt im ILIAS eingestellt werden.
- die Lösungen werden von den Vorlesungsassistenten gelesen und ggf. korrigiert und freigegeben.
- die Gruppen präsentieren ihre Lösungen in der Vorlesung (20 min).
- die Bonuspunkte werden von Dozenten anhand der schriftlichen Lösung und des Vortrags für jeden Studierenden individuell vergeben.
- Jeder Teilnehmer kann maximal 6 Bonuspunkte erwerben.
- Bonuspunkte können nur einmal erworben werden.

Die Anrechnung der Bonuspunkte erfolg folgendermaßen:

- · Die Erfolgskontrolle erfolgt in einer schriftlichen Prüfung (Klausur) im Umfang von 60 min (max. 60 Punkte).
- Die Klausur besteht aus 6 Aufgaben zu je 5 Punkten und 5 Aufgaben zu 6 Punkten = 11 Aufgaben.
- · Für die bestandene Bonusaufgabe können max 6 Punkte auf das Klausurergebnis gutgeschrieben werden.
- Die Note kann damit maximal um einen Notenschritt verbessert werden.

Die Gesamtpunktzahl bleibt dabei auf 60 Punkte beschränkt. Die Bonuspunkte finden nur bei bestandener Prüfung Berücksichtigung. Bonuspunkte verfallen nicht und bleiben für eventuell zu einem späteren Zeitpunkt absolvierte Prüfungsleistungen erhalten.

Anmerkungen

Die Veranstaltung "Biomedizinische Messtechnik I" basiert auf einer interaktiven Kombination von Vorlesungsteilen und Seminarteilen. Im Seminarteil sind die Teilnehmer aufgefordert, einzelne Themen der LV in kleinen Gruppen selbstständig vorzubereiten und vorzutragen. Diese Beiträge werden bewertet und die Studenten erhalten hierfür Bonuspunkte. Die Bonuspunkte werden zu den erreichten Punkten der schriftlichen Klausur hinzuaddiert. Aus der Summe der Punkte ergibt sich die Modulnote.

Arbeitsaufwand

Vorlesung "Biomedizinische Messtechnik I"

- 1. Präsenzzeiten in den Vorlesungen: 30 h
- 2. Vorbereitung und Nachbereitung der Vorlesungen und Bonusaufgaben. 30 h
- 3. Vorbereitung und Teilnahme an der Prüfung: 30 h

Gesamtaufwand ca. 90 Stunden = 3 LP

Lecture "Medical Imaging Technology I"

- 1. attendance in lectures an exercises: 2SWS = 30 h
- 2. preparation / follow-up: 15*2 h = 30 h
- 3. preparation of and attendance in examination: 30 h

A total of 90 h = 3 CR

Gesamtaufwand der zwei Veranstaltungen: 180 h = 6 LP

Empfehlungen

Empfohlene Vorkenntnisse für "Biomedizinische Messtechnik I":

Grundlagen in physikalischer Messtechnik, analoger Schaltungstechnik und in Signalverarbeitung.

Recommendations for "Medical Imaging Technology I":

Basic knowledge in the field of physics and signal processing is helpful.

Lehr- und Lernformen

Das Modul setzt sich aus zwei Lehrveranstaltungen zusammen:

- Vorlesung "Biomedizinische Messtechnik I" (2 SWS; 3 LP; Deutsch)
- Lecture "Medical Imaging Technology I" (2 SWS; 3 LP; English)

11.19 Modul: Einführung in die Technische Mechanik II [M-MACH-101603]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-MACH-102210	Einführung in die Technische Mechanik II: Dynamik	5 LP	Fidlin

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75 min) in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden

Erlaubte Hilfsmittel zur Klausur sind ein nicht-programmierbarer Taschenrechner sowie Literatur.

Voraussetzungen

keine

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der abgelegten Teilleistung.

Anmerkungen

Bei dieser Veranstaltung handelt es sich um einen Lehrimport aus der Fakultät für Maschinenbau. Das Modul besteht aus der Vorlesung und Übung Einführung in die Technische Mechanik II: Dynamik. Die Inhalte und Ziele sind der entsprechenden Lehrveranstaltung und die Form der Erfolgskontrolle der zugeordnet Teilleistung zu entnehmen.

Arbeitsaufwand

- 1. Präsenzzeit in V und Ü: 45 Stunden
- 2. Vor- und Nachbereitung: 45 Stunden
- 3. Prüfungsvorbereitung: 60 Stunden

Lehr- und Lernformen

- V Einführung in die Technische Mechanik II: Dynamik (3 LP)
- Ü Einführung in die Technische Mechanik II: Dynamik (2 LP)

11.20 Modul: Electrochemical Energy Technologies [M-ETIT-105690]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
3Version
1

Pflichtbestandteile			
T-ETIT-111352	Electrochemical Energy Technologies	5 LP	Krewer

Erfolgskontrolle(n)

Type of Examination: Written exam Duration of Examination: 120 minutes

Voraussetzungen

none

Qualifikationsziele

Students have well-grounded knowledge of electrochemical energy technologies for conversion and storage of electrical energy. They know the working principle of fuel cells, batteries and electrolysers and their components. They understand the underlying electrochemical, electrical and physical processes, and the resulting loss processes as function of operation and cell design. Participation in the course puts them in a position to build cells and evaluate and understand their performance and operating behavior. Furthermore, they can select the appropriate electrochemical cell for a given application, analyse, interpret and operate it.

Inhalt

Lecture:

- Application and operating principle of fuel cells, batteries and elec-trolysers
- · Thermodynamics, potential and voltage of electrochemical cells
- · Kinetics and electrochemical reactions
- Transport processes in electrochemical cells
- Composition and types of fuel cells and electrolysers
- · Composition and types of batteries
- · Operation and characterization of electrochemical cells
- Electrochemical systems

Exercise:

· Application of the theory to batteries and fuel cells including example calculations.

Zusammensetzung der Modulnote

The module grade is the grade of the written exam.

Arbeitsaufwand

- 1. Attendance in lectures: 30 * 45 Min. = 22,5 h
- 2. Attendance in excercises: 15 * 45 Min. = 11,25 h
- 3. Preparation/follow-upder Vorlesungen und Übungen: 76,25 h (approx. 1,75 h per lecture/exercise)
- 4. Preparation of and attendance in examination: 40 h

In total: 150 h = 5 LP

11.21 Modul: Elektrische Maschinen und Stromrichter [M-ETIT-102124]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101954	Elektrische Maschinen und Stromrichter	6 LP	Hiller

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die wesentlichen elektrischen Maschinen und Stromrichter.

Sie sind in der Lage, deren Verhalten durch Kennlinien und einfache Modelle zu beschreiben.

Sie analysieren die Netzrückwirkung und die Auswirkung von Stromrichtern auf die elektrische Maschine mit Hilfe der Beschreibung durch Fourierreihen.

Sie können die Bestandteile von Energieübertragungs- und Antriebssystemen erkennen und deren Verhalten durch Kopplung der Modelle von Stromrichter und Maschine berechnen.

Inhalt

Grundlagenvorlesung der Antriebstechnik und Leistungselektronik. Es werden zunächst Wirkungsweise und Betriebsverhalten der wichtigsten elektrischen Maschinen erläutert.

Anschließend werden die Funktion und das Verhalten der wichtigsten Stromrichterschaltungen beschrieben.

Wirkungsweise und Einsatzgebiete von elektrischen Maschinen und leistungselektronischen Schaltungen werden an Beispielen vertieft.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

14x V und 14x U à 1,5 h: =..35 h
14x Nachbereitung V à 1 h = 14 h
13x Vorbereitung zu U à 2 h = 26 h
Prüfungsvorbereitung: = 80 h
Prüfungszeit = 2 h
Insgesamt ca. 157 h
(entspricht 6 Leistungspunkten)

11.22 Modul: Elektroenergiesysteme [M-ETIT-102156]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101923	Elektroenergiesysteme	5 LP	Leibfried

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage elektrische Schaltungen (passive oder mit gesteuerten Quellen) im Zeit- und Frequenzbereich zu berechnen. Sie kennen ferner die wichtigsten Netzbetriebsmittel, ihre physikalische Wirkungsweise und ihre elektrische Ersatzschaltung.

Inhalt

Die Vorlesung behandelt im ersten Teil die Berechnung von Ausgleichsvorgängen in linearen elektrischen Netzwerken durch Differentialgleichungen und mit Hilfe der Laplace-Transformation. Im zweiten Teil der Vorlesung werden die elektrischen Netzbetriebsmittel behandelt.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzstudienzeit Vorlesung: 30 h

Präsenzstudienzeit Übung: 15 h

Selbststudienzeit: 90 h

Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt 135 h = 5 LP

11.23 Modul: Elektromagnetische Felder und Wellen [M-ETIT-106346]

Verantwortung: Prof. Dr. Martin Doppelbauer

Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion7ZehntelnotenJedes Wintersemester1 SemesterDeutsch21

Pflichtbestandteile			
T-ETIT-112864	Elektromagnetische Felder und Wellen	7 LP	Doppelbauer, Randel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Ziel ist die Vermittlung der theoretischen Grundlagen von elektrischen, magnetischen und elektromagnetischen Feldern auf Basis der Maxwell-Gleichungen. Die Studierenden können elektromagnetische Felder einfacher Anordnungen von Ladungen und stromführenden Leitern analytisch mit Hilfe der Maxwell-Gleichungen berechnen, Feldbilder skizzieren und die auftretenden Kräfte und Leistungen daraus ableiten. Sie können den Einfluss von Dielektrika und ferromagnetischen Materialien berücksichtigen.

In zweiten Teil der Vorlesung werden zusätzliche Qualifikationen im Bereich der elektromagnetischen Wellen erworben. Die Studierenden sind in der Lage, Berechnungen elektromagnetischen Wellenphänomenen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen. Die Studierenden haben ein Verständnis für die physikalischen Zusammenhänge erlangt und können Lösungsansätze für grundlegende Aufgabenstellungen erarbeiten. Mit Hilfe der erlernten Methodik sind sie in die Lage versetzt, die Inhalte von Vorlesungen mit technischen Anwendungen zu verstehen.

Inhalt

Der erste Teil der Vorlesung ist eine Einführung in die elektromagnetische Feldtheorie auf Basis der Maxwell-Gleichungen. Behandelt werden elektrostatische Felder, elektrische Strömungsfelder, magnetische Felder und zeitlich langsam veränderliche Felder:

- · Mathematische Grundlagen der Feldtheorie
- Grundlagen elektromagnetischer Felder
- · Elektrostatische Felder
- · Elektrische Strömungsfelder
- Magnetische Felder
- · Quasistationäre (zeitlich langsam veränderliche) Felder

Der zweite Teil der Vorlesung ist eine Einführung in die Theorie elektromagnetischer Wellen auf Basis der Maxwell-Gleichungen. Behandelt werden die folgenden Themen:

- Verschiebungsstromdichte
- · Die Wellengleichung
- · Ebene Wellen im nichtleitenden Medium
- · Reflexion und Brechung von ebenen Wellen
- · Reflexion an einer Leiteroberfläche; der Skineffekt
- · Harmonische Wellen
- · Linear und zirkular polarisierte Wellen
- · Lösungsmethoden zu Potentialproblemen
- · Separation der skalaren Wellengleichung
- · Wellenleiter (Hohlleiter, Glasfaser)
- Der Hertzsche Dipol

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt.

Zusätzlich werden Tutorien in Kleingruppen angeboten.

Die Unterlagen zur Lehrveranstaltung (Skript und Formelsammlung) finden sich im ILIAS System. Die Anmeldung zum Kurs kann ohne Passwort erfolgen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Das Modul wird in zwei Teilen angeboten: Elektromagnetische Felder (11 Doppelstunden) und Elektromagnetische Wellen (11 Doppelstunden). Im Studiengang BSc ETIT sind beide Teile verpflichtend.

Arbeitsaufwand

Der Arbeitsaufwand teilt sich folgendermaßen auf:

- Präsenzzeit in Vorlesungen (1,5 h je 22 Termine) und Übungen (1,5 h je 15 Termine) = 55,5 h
- Präsenzzeit in Tutorien = 13 Wochen je 2,5 h = 32,5 h
- Vor- und Nachbereitung des Stoffs = 13 Wochen je 3 h = 39 h
- Klausurvorbereitung und Präsenz in der Klausur: 2 Wochen je 40 h = 80 h

Gesamtaufwand ca. 210 Stunden = 7 ECTS

Empfehlungen

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters.

11.24 Modul: Elektronische Schaltungen [M-ETIT-104465]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	1	2

Pflichtbestandteile					
T-ETIT-109318	Elektronische Schaltungen	6 LP	Ulusoy		
T-ETIT-109138	Elektronische Schaltungen - Workshop	1 LP	Zwick		

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- 1. einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Elektronische Schaltungen (6 LP).
- einer schriftlichen Ausarbeitung zu Lehrveranstaltung Elektronische Schaltungen Workshop, (1 LP). Die schriftliche Ausarbeitung wird korrigiert und mit Punkten bewertet. Bei Erreichen der erforderlichen Punktezahl gilt der Workshop als bestanden.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden werden befähigt, die Funktionen und Wirkungsweisen von Dioden, Z-Dioden, bipolaren- und Feldeffekttransistoren, analogen Grundschaltungen, von einstufigen Verstärkern bis hin zu Operationsverstärkern zu analysieren und zu bewerten. Durch die vermittelten Kenntnisse über Bauelementparameter und Funktion der Bauelemente werden die Studierenden in die Lage versetzt, verschiedene Verstärkerschaltungen analysieren und berechnen zu können. Durch den Erwerb von Kenntnissen um Kleinsignalmodelle der Bauelemente können die Studierenden ihr theoretisches Wissen für den Aufbau von Schaltungen praktisch anwenden. Darüber hinaus wird den Studierenden erweiterte Kenntnisse über den schaltungstechnischen Aufbau und Anwendungen aller digitalen Grundelemente (Inverter, NAND, NOR, Tri-state Inverter und Transmission Gates) sowie von Schaltungen für den Einsatz in sequentielle Logik, wie Flipflops vermittelt. Diese Kenntnisse erlauben den Studierenden aktuelle Trends in der Halbleiterentwicklung kritisch zu begleiten und zu analysieren. Auf diese Weise werden die Studierenden befähigt, moderne elektrische Systeme von der Signalerfassung (Sensor, Detektor) über die Signalkonditionierung (Verstärker, Filter, etc.) zu analysieren und ggfs. eigenständig zu optimieren.

Die Studierenden erlernen im Workshop die Koordination eines Projekts in kleinen Teams und die Darstellung der Ergebnisse in Form einer technischen Dokumentation. Weiterhin sind sie in der Lage, einfach elektronische Transistorschaltungen zu realisieren und charakterisieren.

Inhalt

Grundlagenvorlesung über passive und aktive elektronische Bauelemente und Schaltungen für analoge und digitale Anwendungen.

Schwerpunkte sind der Aufbau und die schaltungstechnische Realisierung analoger Verstärkerschaltungen mit Bipolar- und Feldeffekttransistoren, der schaltungstechnische Aufbau von einfachen Logikelementen für komplexe logische Schaltkreise. Im Einzelnen werden die nachfolgenden Themen behandelt:

- · Einleitung (Bezeichnungen, Begriffe)
- Passive Bauelemente (R, C, L)
- · Halbleiterbauelemente (Dioden, Transistoren)
- Dioden
- · Bipolare Transistoren
- · Feldeffekttransistoren (JFET, MOSFET, CMOS), Eigenschaften und Anwendungen
- · Verstärkerschaltungen mit Transistoren
- · Eigenschaften von Operationsverstärkern
- Kippschaltungen
- · Sequentielle Logik

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt. Parallel dazu werden weitere Übungsaufgaben und Vorlesungsinhalte in Form dedizierter Tutorien in Kleinstgruppen zur Übung und Vertiefung der Lehrinhalte gestellt und gelöst.

Der Workshop greift zahlreiche dieser Schwerpunkte auf. Es werden unterschiedliche Sensoren analysiert. Zusätzlich zu der allgemeinen Funktionsweise und Theorie der Temperatur-, Licht- oder auch Drucksensoren wird geeignete Elektronik untersucht, um die physikalischen Größen in eine proportionale, auswertbare Größe wie Spannung oder Strom zu wandeln. Es werden einfache Sensor-Prinzipien behandelt, um die notwendigen Vorkenntnisse zur Durchführung des Versuches an das Semester anzupassen. Für die Temperaturmessung werden temperaturabhängige Widerstände eingesetzt oder pn-Übergänge untersucht. Mit LEDs, Photodioden und Phototransistoren werden Anwendungen für die Helligkeitsmessung realisiert. Die eigenständige Versuchsdurchführung verläuft folgendermaßen: Verständnis Sensor-Prinzip, Entwurf von Auswerteschaltungen für das Sensorsignal, Simulation der Schaltungen in LTSpice, Aufbau und Vergleich von Schaltungen sowie Auswertung mit dem µController-Board.

Zusammensetzung der Modulnote

Die Modulnote setzt sich aus der Note der schriftlichen Prüfung zusammen.

Arbeitsaufwand

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (2 h) der wöchentlichen Vorlesung, der 14 tägigen Übung und den sechs Tutoriumsterminen sowie die Vorbereitung (82 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von ca. 180 h für die Lehrveranstaltung Elektronische Schaltungen, d.h. 6 LP.

Der Arbeitsaufwand des Workshops setzt sich wie folgt zusammen:

- 1. Präsenzzeit in der Vorbereitungsveranstaltung inkl. Nachbereitung: 2 h
- 2. Bearbeitung der Aufgabenstellung: 23 h
- 3. Anfertigung der schriftlichen Ausarbeitung (Protokoll): 5 h

Der Zeitaufwand des Workshops beträgt etwa 30 Stunden. Dies entspricht 1 LP.

Empfehlungen

Der erfolgreiche Abschluss von LV "Lineare elektrische Netze" wird empfohlen.

11.25 Modul: Elektrotechnisches Grundlagenpraktikum [M-ETIT-102113]

Verantwortung: Dr.-Ing. Armin Teltschik

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6 Notenskala best./nicht best.

Turnus Dauer Sprache Deutsch 3 Version 4

Pflichtbestandteile			
T-ETIT-101943	Elektrotechnisches Grundlagenpraktikum	6 LP	Teltschik

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines mündlichen Abschlusskolloquiums von ca. 20 min Dauer sowie während des Praktikums durch Überprüfung der absolvierten Versuchs-Aufgaben.

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Die Veranstaltung ist nicht benotet.

Voraussetzungen

Kenntnisse zum Inhalt der folgenden Module müssen vorhanden sein: "M-ETIT-102102 – Digitaltechnik" und "M-ETIT-104465 – Elektronische Schaltungen".

Qualifikationsziele

Die Studierenden erlernen den Umgang mit typischen Laborgeräten der Elektrotechnik (z.B. Multimeter, Funktionsgenerator, Oszilloskop). An praktischen Versuchen erfolgt die Anwendung Messgeräte. Die Studierenden vertiefen die bereits erlernten Grundlagen Elektronischer Schaltungstechnik, und Digitaltechnik in der Praxis. Sie erlernen den Umgang mit den zugehörigen Mess-, Analyse und Simulationswerkzeugen und werden mit der Interpretation von Datenblättern vertraut gemacht.

Inhalt

Es werden Versuche aus folgenden Bereichen durchgeführt:

- Oszilloskopmesstechnik,
- Operationsverstärker: Grundschaltungen, Rechenschaltungen, Fourier-/ analyse & synthese
- Messtechnik mit LabVIEW
- Schaltungssimulation mit SPICE
- Kleinsignalverhalten bipolarer Transistoren
- Wechselspannung, Kleintransformatoren, Gleichrichter, Linearregler
- Digitaltechnik, Automatenentwurf, Detektion von Laufzeitfehlern
- Gleichstromsteller

Zusammensetzung der Modulnote

Die Veranstaltung ist nicht benotet.

Anmerkungen

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit im Praktikum: 36 h
- 2. Vor-/Nachbereitung derselbigen: 63 / 36 h
- 3. Klausurvorbereitung und Präsenz in selber: 20 h

11.26 Modul: Erzeugung elektrischer Energie [M-ETIT-100407]

Verantwortung: Dr.-Ing. Bernd Hoferer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101924	Erzeugung elektrischer Energie	3 LP	Hoferer

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten) über die ausgewählte Lehrveranstaltung.

Qualifikationsziele

Die Studierenden sind in der Lage, energietechnische Problemstellungen zu erkennen und Lösungsansätze zu erarbeiten. Sie haben ein Verständnis für physikalisch-theoretische Zusammenhänge der Energietechnik erlangt. Sie sind ebenfalls in der Lage die erarbeiteten Lösungen fachlich in einem wissenschaftlichen Format zu beschreiben, zu analysieren und zu erklären.

Inhalt

Grundlagenvorlesung Erzeugung elektrischer Energie. Von der Umwandlung der Primärenergieressourcen der Erde in kohlebefeuerten Kraftwerken und in Kernkraftwerken bis zur Nutzung erneuerbarer Energien behandelt die Vorlesung das gesamte Spektrum der Erzeugung. Die Vorlesung gibt einen Überblick über die physikalischen Grundlagen, die technischwirtschaftlichen Aspekte und das Entwicklungspotential der Erzeugung elektrischer Energie sowohl aus konventionellen als auch aus regenerativen Quellen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Wer das Modul Erzeugung Elektrischer Energie (EEE) im Bachelor (SPO 2015 und 2018) gemacht hat, soll im Master nicht das Modul Electric Power Generation and Power Grid wählen.

Arbeitsaufwand

Präsenzstudienzeit: 30 h Selbststudienzeit: 60 h Insgesamt 90 h = 3 LP

11.27 Modul: Experimentalphysik [M-PHYS-105008]

Verantwortung: Prof. Dr. Thomas Schimmel **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-PHYS-110163	Experimentalphysik A	6 LP	Schimmel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden identifizieren die Grundlagen der Physik auf breiter Basis. In der Experimentalphysik A werden insbesondere an Beispielen aus der Mechanik Grundkonzepte der Physik (Kraftbegriff, Felder, Superpositionsprinzip, Arbeit, Leistung, Energie, Erhaltungssätze etc.) beschrieben. Vom Stoffgebiet werden die Grundlagen der Mechanik in voller Breite sowie die Sätze zu Schwingungen und Wellen und die Thermodynamik (Hauptsätze der Thermodynamik, ideale und reale Gase, Zustandsänderungen und Zustandsgleichungen, mikroskopische Beschreibung idealer Gase, Wärmekraftmaschinen und Wärmepumpen, Entropiebegriff) behandelt

Inhalt

- Mechanik (Kraft, Impuls, Energie, Stoßprozesse, Erhaltungssätze, Drehimpuls, Drehmoment, Statische Felder, Gravitation und Keplersche Gesetze)
- Schwingungen und Wellen
- Thermodynamik (Hauptsätze der Thermodynamik, ideale und reale Gase, Zustandsänderungen und Zustandsgleichungen, mikroskopische Beschreibung idealer Gase, Wärmekraftmaschinen und Wärmepumpen, Entropiebegriff)

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in Vorlesungen, Übungen
- 2. Vor-/Nachbereitung derselbigen
- 3. Klausurvorbereitung und Präsenz in selbiger.

11.28 Modul: Experimentalphysik [M-PHYS-101684]

Verantwortung: Prof. Dr. Thomas Schimmel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Zusatzleistungen

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion5ZehntelnotenJedes Wintersemester1 SemesterDeutsch31

Pflichtbestandteile				
T-PHYS-103240	Experimentalphysik A	5 LP	Schimmel	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung nach § 4 Abs. 2 Nr.1 SPO-AB_2015_KIT_15.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden identifizieren die Grundlagen der Physik auf breiter Basis. In der Experimentalphysik A werden insbesondere an Beispielen aus der Mechanik Grundkonzepte der Physik (Kraftbegriff, Felder, Superpositionsprinzip, Arbeit, Leistung, Energie, Erhaltungssätze etc.) beschrieben. Vom Stoffgebiet werden die Grundlagen der Mechanik in voller Breite sowie die Sätze zu Schwingungen und Wellen und die Thermodynamik (Hauptsätze der Thermodynamik, ideale und reale Gase, Zustandsänderungen und Zustandsgleichungen, mikroskopische Beschreibung idealer Gase, Wärmekraftmaschinen und Wärmepumpen, Entropiebegriff) behandelt

Inhalt

- Mechanik (Kraft, Impuls, Energie, Stoßprozesse, Erhaltungssätze, Drehimpuls, Drehmoment, Statische Felder, Gravitation und Keplersche Gesetze)
- Schwingungen und Wellen
- Thermodynamik (Hauptsätze der Thermodynamik, ideale und reale Gase, Zustandsänderungen und Zustandsgleichungen, mikroskopische Beschreibung idealer Gase, Wärmekraftmaschinen und Wärmepumpen, Entropiebegriff)

11.29 Modul: Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung [M-MACH-106051]

Verantwortung: Prof. Dr.-Ing. Frank Henning **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik

KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbau

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile	pestandteile					
T-MACH-105535	Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung	4 LP	Henning			

Erfolgskontrolle(n)

Prüfungsleistung schriftlich; Dauer ca. 90 min

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen unterschiedliche polymere Matrixwerkstoffe und Faserwerkstoffe und sind in der Lage die Eigenschaften und Anwendungsgebiete des Verbundmaterials gemäß der Kombination aus Faser- und Matrixmaterial abzuleiten. Sie verstehen das Prinzip der Verstärkungswirkung von Fasern in einer umgebenden Matrix sowie die Aufgaben der einzelnen Komponenten des Verbundwerkstoffs. Sie können nachvollziehen welchen Einfluss der Faservolumengehalt und die Faserlängen (Kurzfaser-, Langfaser und Endlosfaserverstärkung) auf die mechanischen Eigenschaften und die Leistungsfähigkeit eines Polymermatrixverbundes haben. Die Studenten kennen die wichtigen industriellen Herstellprozesse für diskontinuierlich und kontinuierlich verstärkte Polymermatrixverbundwerkstoffe.

Inhalt

Physikalische Zusammenhänge der Faserverstärkung

- Paradoxa der FVW

Anwendungen und Beispiele

- Automobilbau
- Transportation
- Energie- und Bauwesen
- Sportgeräte und Hobby

Matrixwerkstoffe

- Aufgaben der Matrix im Faserverbundwerkstoff
- Grundlagen Kunststoffe
- Duromere
- Thermoplaste

Verstärkungsfasern und ihre Eigenschaften

- Aufgaben im FVW, Einfluss der Fasern
- Glasfasern
- Kohlenstofffasern
- Aramidfasern
- Naturfasern

Halbzeuge/Prepregs

Verarbeitungsverfahren

Recycling von Verbundstoffen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

- 1. Präsenzzeit Vorlesung: 21 h
- 2. Klausurvorbereitung und Präsenz in Prüfung: 99 h

Insgesamt: 120 h = 4 LP

Lehr- und Lernformen

Vorlesung

Literatur

- [1] M. Flemming and S. Roth, Faserverbundbauweisen: Eigenschaften; mechanische, konstruktive, thermische, elektrische, ökologische, wirtschaftliche Aspekte. Berlin: Springer, 2003.
- [2] M. Flemming, et al., Faserverbundbauweisen: Halbzeuge und Bauweisen. Berlin: Springer, 1996.
- [3] M. Flemming, et al., Faserverbundbauweisen: Fasern und Matrices. Berlin: Springer, 1995.
- [4] M. Flemming, et al., Faserverbundbauweisen: Fertiqungsverfahren mit duroplastischer Matrix. Berlin: Springer, 1999.
- [5] H. Schürmann, Konstruieren mit Faser-Kunststoff-Verbunden: mit ... 39 Tabellen, 2., bearb. und erw. Aufl. ed. Berlin: Springer, 2007.
- [6] A. Puck, Festigkeitsanalyse von Faser-Matrix-Laminaten: Modelle für die Praxis. München: Hanser, 1996.
- [7] M. Knops, Analysis of failure in fibre polymer laminates: the theory of Alfred Puck. Berlin, Heidelberg [u.a.]: Springer, 2008.

11.30 Modul: Fertigungsmesstechnik [M-ETIT-103043]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-106057	Fertigungsmesstechnik	3 LP	Heizmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten. Bei weniger als 20 Prüflingen kann alternativ eine mündliche Prüfung im Umfang von ca. 20 Minuten. Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

- Studierende haben fundiertes Wissen über Grundlagen, Methoden und Verfahren für das Messen und Prüfen in der industriellen Fertigung.
- Studierende können unterschiedliche Messprinzipien, -verfahren und -geräte hinsichtlich ihrer Voraussetzungen, Eigenschaften, Anwendungsbereiche und Ergebnisse beurteilen.

Studierende sind in der Lage, fertigungsmesstechnische Aufgaben zu analysieren, die daraus folgenden Anforderungen an eine geeignete messtechnische Umsetzung abzuleiten, passende messtechnische Umsetzungen zu finden und die daraus folgenden Eigenschaften des Messergebnisses zu aufzuzeigen...

Inhalt

Die Fertigungsmesstechnik spielt eine wesentliche Rolle bei der Sicherstellung einer effizienten industriellen Fertigung. Sie stellt gewissenmaßen die Sinnesorgane für die Qualitätssicherung und die Automatisierungstechnik dar und umfasst alle mit dem Messen und Prüfen verbundenen Tätigkeiten.

Aufbauend auf den methodischen Grundlagen, die Thema der Pflichtvorlesung "Messtechnik" sind, vermittelt die Vorlesung Verfahren und Umsetzungen für das Messen und Prüfen in der industriellen Praxis. Dabei liegt der Schwerpunkt auf geometrischen Eigenschaften; die meisten vorgestellten Konzepte lassen sich darüber hinaus auf andere Eigenschaften übertragen. Sensorsysteme für die Messung geometrischer Eigenschaften werden vorgestellt und mit ihren charakteristischen Eigenschaften diskutiert.

Die Inhalte umfassen im Einzelnen:

- Grundlagen der FMT
 - Grundbegriffe, Definitionen
 - Maßverkörperungen
 - Messunsicherheiten
- · Messtechnik im Betrieb und im Messraum
 - Koordinatenmesstechnik
 - · Form- und Lagemesstechnik
 - Oberflächen- und Konturmesstechnik
 - Komparatoren
 - Mikro- und Nanomesstechnik
 - Messräume
- · Fertigungsorientierte Messtechnik
 - Messmittel und Lehren
 - Messvorrichtungen
 - · Messen in der Maschine
 - Sichtprüfung
 - Statistische Prozessregelung (SPC)
- Optische/berührungslose Messverfahren
 - Integrierbare optische Sensoren
 - Eigenständige optische Messsysteme
 - Optische 2,5D-Koordinatenmesstechnik
 - Optische 3D-Koordinatenmesstechnik
 - Computertomographie
 - Systemintegration und Standardisierung
- Prüfmittelmanagement
 - Bedeutung und Zusammenhänge
 - Beherrschte Prüfprozesse
- Prüfplanung

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung

Arbeitsaufwand

Gesamt: ca. 90h, davon

Präsenzzeit in Vorlesungen: 23h
 Vor-/Nachbereitung der Vorlesungen: 23h

3. Klausurvorbereitung und Präsenz in selbiger: 44h

Empfehlungen

Kenntnisse der Stochastik und von Grundlagen der Messtechnik sind hilfreich.

11.31 Modul: Forschungspraktikum in der Medizintechnik [M-ETIT-106000]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Industrie-, Forschungs- oder Klinikpraktikum

Leistungspunkte
15Notenskala
best./nicht best.Turnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
1

Pflichtbestandteile			
T-ETIT-112178	Forschungspraktikum in der Medizintechnik	15 LP	Nahm

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung bestehend aus einer schriftlichen Ausarbeitung (Umfang ca. 15 Seiten).

Die Bestätigung der Teilnahme und des erfolgreichen Abschlusses des Forschungspraktikums erfolgt durch die betreuende Hochschullehrerin bzw. den betreuenden Hochschullehrer.

Die formale Anerkennung erfolgt durch das ETIT-Praktikantenamt

Voraussetzungen

Industriepraktikum und Klinikpraktikum dürfen nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-ETIT-105998 Industriepraktikum in der Medizintechnik darf nicht begonnen worden sein.
- 2. Das Modul M-ETIT-106001 Klinikpraktikum in der Medizintechnik darf nicht begonnen worden sein.

Qualifikationsziele

Die Studierenden sind in der Lage, eine interdisziplinäre Projektarbeit auf dem Gebiet der Medizintechnik mit wissenschaftlichen Methoden zu bearbeiten. Die Studierenden sind in der Lage, die im Studium bereits erworbenen Kenntnisse unter Anleitung auf eine ingenieurwissenschaftliche Fragestellung anzuwenden.

Sie können die Bearbeitung einer Problemstellung unter Anleitung planen, strukturieren, vorbereiten, durchführen und schriftlich wie mündlich dokumentieren.

Dabei wählen sie adäquate Methoden für eine lösungsorientierte Bearbeitung der Fragestellung aus. Die Studierenden sind in der Lage, selbstorganisiert und strukturiert zu arbeiten. Sie verfügen über Kompetenzen in den Bereichen Projektmanagement, Teamarbeit und Präsentation.

Inhalt

Im Rahmen des Forschungspraktikums soll eine Forschungsfrage mit medizintechnischer Relevanz auf dem Gebiet der Medizintechnik oder einem technologisch verwandten Gebiet bearbeitet werden.

Diese kann aus dem Bereich der Grundlagenforschung, Anwendungsforschung oder klinischer Forschung und von theoretischer und/oder experimenteller Natur sein, z.B. physiologische Eigenschaften und Verhalten von Geweben und Organen, oder die Entwicklung von neuen Verfahren oder Geräte für die Diagnostik, Therapie oder Rehabilitation. Im Vordergrund steht die Erarbeitung von Ergebnissen unter Anwendung wissenschaftlicher Methoden, das Projektmanagement und die Präsentation der Ergebnisse.

Die Projektarbeit kann auch in Studierendenteams bearbeitet werden. In diesem Fall bearbeiten die einzelnen Studierenden jeweils einen Aspekt einer übergeordneten Team-Fragestellung z.B. im Rahmen eines Verbundprojektes.

Die Studierenden können Vorschläge für die Themenstellung einbringen. Es ist möglich, die Projektarbeit im Rahmen einer Kooperation mit einem KIT-Institut (Universitäts- oder Großforschungsbereich) oder einer externen Forschungseinrichtung bzw. einer Institution aus dem berufspraktischen Umfeld anzufertigen.

Projekte im Rahmen eines Forschungspraktikums können von allen Instituten der KIT-Fakultät Elektrotechnik- und Informationstechnik im Universitäts- und Großforschungsbereich vergeben werden. Auch andere KIT-Institute sowie externe Forschungseinrichtungen können Themen anbieten, sofern das Projekt die Möglichkeit bietet, eine interdisziplinäre Aufgabenstellung auf dem Gebiet der Medizintechnik oder einem technologisch verwandten Gebiet mit wissenschaftlichen Methoden zu bearbeiten.

In Absprache mit dem betreuenden Institut kann das Forschungspraktikum mit einem Vortrag abgeschlossen werden.

Näheres regeln die Praktikantenrichtlinien für den Bachelor-Studiengang Medizintechnik.

Zusammensetzung der Modulnote

Das Modul gilt mit erfolgreicher Bewertung der schriftlichen Ausarbeitung als bestanden.

Arbeitsaufwand

Das Forschungspraktikum hat eine Dauer von mindestens 12 Wochen bei einem Umfang von mindestens 450 Stunden (entsprechend 15 LP).

Empfehlungen

Ein wesentlicher Teil der Bachelor-Pflichtmodule sollte erfolgreich abgeschlossen sein.

11.32 Modul: Genetik [M-CIWVT-106108]

Verantwortung: Prof. Dr. Christoph Syldatk

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
2Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CIWVT-111063	Genetik	2 LP	Neumann

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 90 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, grundlegende Aspekte der Genetik von Pro- und Eukaryoten detailliert zu beschreiben und mit eigenen Worten zu erläutern. Dazu zählen Aufbau und Organisation der Nukleinsäuren, Replikationsmechanismen, Transkription, Translation, Genregulation, Rekombination, Transposition, Reparaturmechanismen und Grundlagen der Virologie. Darauf aufbauend sind sie in der Lage, ihr Grundlagenwissen anzuwenden, z. B. um Graphiken zu erklären oder dies auf gentechnische Methoden zu übertragen.

Inhalt

DNA, Chromatin und Chromosomen; Gene und Genome; DNA-Replikation; Transkription; Translation; Rekombination; Mutation und Reparaturmechanismen; Regulation der Genexpression; Methoden und Anwendungen der molekularen Gentechnik

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 4 SWS: 20 h Selbststudium: 10 h Klausurvorbereitung: 30 h

Empfehlungen

Es wird empfohlen, zunächst das Modul M-CIWVT-106107 – Zellbiologie zu belegen.

Literatur

- · Munk, Taschenlehrbuch Biologie, Genetik (Thieme)
- Knippers, Genetik (Thieme)

11.33 Modul: Grundlagen der Datenübertragung [M-ETIT-106338]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen

Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
1

Pflichtbestandteile				
T-ETIT-112851	Grundlagen der Datenübertragung	6 LP	Schmalen, Zwick	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können grundlegende Probleme in den Bereichen Hochfrequenztechnik und Nachrichtentechnik beschreiben und analysieren. Durch Anwendung der erlernten Methoden können Studierende die Vorgänge in modernen Datenübertragungssystemen erfassen, beurteilen und verwendete Algorithmen und Techniken bzgl. ihrer Leistungsfähigkeit vergleichen. Dazu gehören insbesondere auch die Zusammenhänge zwischen den physikalischen Signalen im analogen Teil des Systems und den resultierenden Eigenschaften der digitalen Datenübertragung.

Inhalt

Dieses Modul soll Studierenden die grundlegenden theoretischen und praktischen Aspekte moderner Datenübertragungssysteme vermitteln. Es werden hauptsächlich die Themen

- · Konzept der Kanalkapazität
- · Leitungstheorie, Reflexionsfaktor und Leistungsübertragung
- Komponenten (Modulator/Detektor, Mischer, Verstärker, Antennen) und Systeme
- · Signalbeschreibung im Bandpassbereich und im äquivalenten Tiefpassbereich
- · Modulation, Demodulation und Detektion
- · Berechnung von Fehlerwahrscheinlichkeiten
- Höherwertige Modulationsverfahren
- · Grundlagen der Nachrichtencodierung

behandelt. Das Modul vermittelt damit einen Überblick über unterschiedliche Datenübertragungssysteme und deren Funktionsweise von den physikalischen Signalen bis hin zur Performanz (z.B. Fehlerrate) der Übertragung

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 30 h Arbeitsaufwand (für Studierende). Hierbei ist von durchschnittlichen Studierenden auszugehen, die eine durchschnittliche Leistung erreichen. Unter den Arbeitsaufwand fallen (z.B. 4 SWS):

- 1. Präsenzzeit in Vorlesungen, Übungen: 15*4 h = 60 h
- 2. Vor-/Nachbereitung derselbigen: 25*4 h = 100 h
- 3. Klausurvorbereitung und Präsenz in selbiger: 20 h

Summe: 180 LP = 6 LP

Empfehlungen

Kenntnisse zu Physik, höherer Mathematik, Wahrscheinlichkeitstheorie, Grundlagen elektromagnetischer Wellen, Schaltungstechnik, sowie Signale und Systeme sind hilfreich.

11.34 Modul: Grundlagen der Digitaltechnik und Systemmodellierung [M-ETIT-106350]

Verantwortung: Prof. Dr.-Ing. Mike Barth

Prof. Dr.-Ing. Jürgen Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	2	1	

Pflichtbestandteile				
T-ETIT-112872	Grundlagen der Digitaltechnik	4 LP	Becker	
T-ETIT-112989	Systemmodellierung	2 LP	Barth	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von zwei schriftlichen Prüfungen im Umfang von 80 und 60 Minuten sowie durch die Bewertung von Challenges. Die Challenges können während des Semesters von den Studierenden eigenständig bearbeitet und zur Bewertung abgegeben werden.

Voraussetzungen

keine

Qualifikationsziele

Teilleistung "Grundlagen der Digitaltechnik" (Becker – 2 SWS entspricht ca. 16 VL-Einheiten à 90 Minuten)

Die Studierenden:

- können die grundlegenden Verfahren der Digitaltechnik und der digitalen Informationsverarbeitung mit dem Schwerpunkt digitale Schaltungen benennen und zuordnen.
- lernen verschiedene Kodierungen und Zahlendarstellungen inkl. deren Arithmetik als methodische Grundlage informationsverarbeitender Systeme.
- kennen die mathematischen Grundlagen und können graphische sowie algebraische Verfahren für den Entwurf, die Analyse und die Optimierung digitaler Schaltungen verstehen und anwenden
- können eine verbale Aufgabenstellung in eine formale Form überführen und diese technisch in Form eines Schaltnetzes optimiert realisieren.
- lernen Automaten als Modellierungswerkzeug zustands- und ereignisgesteuerter Komponenten kennen und korrekt zu spezifizieren.
- können aus Automatenspezifikationen allgemeine datenverarbeitende Systeme mathematisch korrekt beschreiben und digitaltechnisch geeignet umsetzen.

Teilleistung "Systemmodellierung" (Barth – 1 SWS entspricht ca. 7 VL-Einheiten à 90 Minuten)

Die Studierenden:

- können den in der Digitaltechnik kennengelernten Automatenentwurf vertiefend anwenden und auf weitere ereignisdiskrete Systeme überführen.
- kennen Petrinetze und deren Entwurfs- bzw. Schaltlogiken mit Hinblick auf automatisierungstechnische Systeme.
- können technische Systeme in unterschiedliche Schichten und Hierarchien gliedern und kennen bekannte Systemmodelle.
- · kennen mechatronische Grundsysteme und deren Prinzipien zum Informationsaustausch.
- · können vernetzte Systemarchitekturen unterscheiden und Fachbegriffe der Informationstechnik zuordnen.
- verstehen die Abbildung von Systemen in Modellierungshierarchien sowie deren jeweilige Abstraktion und Zielstellungen.
- verstehen die Unterschiede der Modellierung von Systemen mit verteilten und mit konzentrierten Parametern.
- · kennen rechnerbasierte Werkzeuge zur Modellierung und Simulation von Systemen mit konzentrierten Parametern.

Inhalt

Vorlesungsteil "Grundlagen der Digitaltechnik" (Becker – 2 SWS)

Diese Vorlesung stellt eine Einführung in wichtige theoretische Grundlagen der Digitaltechnik dar, die für Studierende des 1. Semesters vorgesehen ist. Da sie daher nicht auf Kenntnissen der Schaltungstechnik aufbauen kann, stehen abstrakte Modellierungen des Verhaltens und der Strukturen im Vordergrund. Darüber hinaus soll die Vorlesung auch Grundlagen vermitteln, welche in anderen Vorlesungen benötigt werden.

Schwerpunkte der Vorlesung sind die formalen, methodischen und mathematischen Grundlagen zum Entwurf digitaler Systeme. Darauf aufbauend wird auf die technische Realisierung digitaler Systeme eingegangen.

Zu Beginn werden die Begriffe Nachricht und Signal präzisiert, wobei binären Signalen eine besondere Bedeutung zukommt. Verschiedene Zahlendarstellungen und deren Arithmetik werden als Grundlage informationsverarbeitender Systeme vorgestellt. In kompakter Weise werden einige mathematische Grundlagen zur Mengenlehre und zum Arbeiten mit Relationen vermittelt. Die formale Basis einer algebraischen Behandlung der Digitaltechnik wird skizziert in Form der Schaltalgebra, welche umfangreich dargestellt wird. Als technische Realisierung der Schaltalgebra werden Bausteine der Digitaltechnik und insbesondere Schaltnetze betrachtet, wobei deren Entwurf, Analyse und Optimierung zentral im Vordergrund stehen. Automaten werden als Grundlage zur Modellierung zustands- und ereignisgesteuerter digitaler Systeme eingeführt.

Übung – Anteil "Grundlagen der Digitaltechnik" (4 Übungen)

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt. Zusätzlich werden in Form dedizierter Tutorien in Kleingruppen weitere Übungsaufgaben gestellt, welche selbstständig mit Unterstützung eines studentischen Tutors bearbeitet werden. Das Lösen praxisbezogener Problemstellungen mit Bezug zur Digitaltechnik wird in Form eines Blended Learning Konzepts verzahnt mit den Vorlesungsinhalten angeboten.

Vorlesungsteil "Systemmodellierung" (Barth – 1 SWS)

- Systemmodellierung mit räumlich konzentrierten Parametern.
- · Vertiefende Automatentheorie mit Fokus auf automatisierte Systeme.
- Petri-Netzte in Erweiterung der parallelisierenden Möglichkeiten von Automaten.
- Formale Analyse von Petrinetzen hinsichtlich Erreichbarkeit.
- Grundlagen zur Modellierung einfacher kontinuierlicher Systeme.
- Systemmodelle und -hierarchien der Mechatronik und Automatisierungstechnik.
- Grundlegende Systembegriffe von mechatronischen Systemen mit Bezug zu System-Architekturen (OSI, Cloud, Edge, zentral, dezentral, Orchestrierung, Choreographie, Service-Architekturen, Virtualisierung).
- Beschreibung von Systemen mit Hilfe von Signalen (Wirkungen) zwischen Teilsystemen, Blockschaltbild.

Übung – Anteil "Systemmodellierung" (3 Übungen)

Begleitend zur Vorlesung werden in der Übung die Grundlagen der Systemmodellierung mit räumlich konzentrierten Parametern vertieft. Hierzu werden Übungsaufgaben gemeinsam modelliert, gerechnet und die Lösungswege besprochen.

Zusammensetzung der Modulnote

Die Modulnote ist das nach Leistungspunkten gewichtete Mittel der Noten der beiden schriftlichen Prüfungen.

Arbeitsaufwand

- 1. Präsenzzeit in 23 Vorlesungen und 7 Übungen: 30 * 1,5 h = 45 h
- 2. Vor-/Nachbereitung derselbigen: 90 h (ca. 2h pro Einheit)
- 3. Klausurvorbereitung und Präsenz in selbiger: = 30h + 2h

Summe: 167 h = 6 LP

11.35 Modul: Grundlagen der Hochfrequenztechnik [M-ETIT-102129]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
5

Pflichtbestandteile			
T-ETIT-101955	Grundlagen der Hochfrequenztechnik	6 LP	Zwick

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird sowie durch die Bewertung von Hausübungen. Die Hausübungen können während des Semesters von den Studierenden bearbeitet und zur Korrektur abgegeben werden. Die Abgabe erfolgt in handschriftlicher Form.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden besitzen grundlegendes Wissen und Verständnis im Bereich der Hochfrequenztechnik und können dieses Wissen in andere Bereiche des Studiums übertragen. Dazu gehören insbesondere die Leitungstheorie, die Mikrowellennetzwerkanalyse und Grundlagen komplexerer Mikrowellensysteme (Empfängerrauschen, Nichtlinearität, Kompression, Antennen, Verstärker, Mischer, Oszillatoren, Funksysteme, FMCW-Radar, S-Parameter). Die erlernten Methoden ermöglichen die Lösung einfacher oder grundlegender hochfrequenztechnischer Problemstellungen (z.B. Impedanzanpassung, stehende Wellen).

Inhalt

Grundlagenvorlesung Hochfrequenztechnik: Schwerpunkte der Vorlesung sind die Vermittlung eines grundlegenden Verständnisses der Hochfrequenztechnik sowie der methodischen und mathematischen Grundlagen zum Entwurf von Mikrowellensystemen. Wesentliche Themengebiete sind dabei passive Bauelemente und lineare Schaltungen bei höheren Frequenzen, die Leitungstheorie, die Mikrowellennetzwerkanalyse, sowie ein Überblick über Mikrowellensysteme.

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt. Zusätzlich dazu werden in der Übung die wichtigsten Zusammenhänge aus der Vorlesung noch einmal wiederholt.

Zusätzlich zur Saalübung wird in einem Tutorium die selbstständige Bearbeitung von typischen Aufgabenstellungen der Hochfrequenz-technik geübt. Dazu bearbeiten die Studierenden die Aufgaben in Kleingruppen und erhalten Hilfestellung von einem studentischen Tutor.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen: Präsenzstudienzeit Vorlesung/Übung: 60 h Präsenzstudienzeit Tutorium: 15 h Selbststudienzeit inkl. Prüfungsvorbereitung: 105 h Insgesamt 180 h = 6 LP

Empfehlungen Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

11.36 Modul: Grundlagen der Künstlichen Intelligenz [M-INFO-106014]

Verantwortung: TT-Prof. Dr. Pascal Friederich

Prof. Dr. Gerhard Neumann

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte

5

Notenskala Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester **Sprache** Deutsch

Level

Version 1

Pflichtbestandteile				
T-INFO-112194	Grundlagen der Künstlichen Intelligenz	5 LP	Friederich, Neumann	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden kennen die grundlegenden Konzepte der klassischen künstlichen Intelligenz und des maschinellen Lernens.
- Die Studierenden verstehen die Algorithmen und Methoden der klassischen KI, und können diese sowohl abstrakt beschreiben als auch praktisch implementieren und anwenden.
- Die Studierenden verstehen die Methoden des maschinellen Lernens und dessen mathematische Grundlagen. Sie kennen Verfahren aus den Bereichen des überwachten und unüberwachten Lernens sowie des bestärkenden Lernens, und können diese praktisch einsetzen.
- Die Studierenden kennen und verstehen grundlegende Anwendungen von Methoden des maschinellen Lernens in den Bereichen Computer Vision, Natural Language Processing und Robotik.
- Die Studierenden können dieses Wissen auf neue Anwendungen übertragen, sowie verschiedene Methoden analysieren und vergleichen.

Inhalt

Dieses Modul behandelt die theoretischen und praktischen Aspekte der künstlichen Intelligenz, incl. Methoden der klassischen KI (Problem Solving & Reasoning), Methoden des maschinellen Lernens (überwacht und unüberwacht), sowie deren Anwendung in den Bereichen computer vision, natural language processing, sowie der Robotik.

Überblick

Einführung

- Historischer Überblick und Entwicklungen der KI und des maschinellen Lernens, Erfolge, Komplexität, Einteilung von KI-Methoden und Systemen
- · Lineare Algebra, Grundlagen, Lineare Regression

Teil 1: Problem Solving & Reasoning

- Problem Solving, Search, Knowledge, Reasoning & Planning
- Symbolische und logikbasierte KI
- Graphische Modelle, Kalman/Bayes Filter, Hidden Markov Models (HMMs), Viterbi
- Markov Decision Processes (MDPs)

Teil 2: Machine Learning - Grundlagen

- Klassifikation, Maximum Likelihood, Logistische Regression
- · Deep Learning, MLPs, Back-Propagation
- · Over/Underfitting, Model Selection, Ensembles
- Unsupervised Learning, Dimensionalitätsreduktion, PCA, (V)AE, k-means clustering
- Density Estimation, Gaussian Mixture models (GMMs), Expectation Maximization (EM)

Teil 3: Machine Learning - Vertiefung und Anwendung

- · Computer Vision, Convolutions, CNNs
- Natural Language Processing, RNNs, Encoder/Decoder
- · Robotik, Reinforcement Learning

Arbeitsaufwand

2 SWS Vorlesung + 1 SWS Übung

8 Stunden Arbeitsaufwand pro Woche, plus 30 Stunden Klausurvorbereitung: 150 Stunden

Empfehlungen LA II

11.37 Modul: Grundtechniken der Biologie [M-CHEMBIO-101843]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Medizinisch-technischer Profilierungsbereich

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	3

Pflichtbestandteile					
T-CHEMBIO-100201	Methodenpraktikum	4 LP	Gradl, Nick		
T-CHEMBIO-107577	Moderne Methoden der Biologie	4 LP	Biologie		

Erfolgskontrolle(n)

Dieses Modul enthält folgende Erfolgskontrollen:

- Prüfungsleistung anderer Art zur Teilleistung "Moderne Methoden der Biologie"
 Dafür werden drei schriftliche oder elektronische Tests über 25 Minuten geschrieben:
 - 1. Teil: "Fit für Hefe" (30 Punkte)
 - 2. Teil: Zelluläre Methoden (30 Punkte)
 - 3. Teil: Hochdurchsatz-Technologien (30 Punkte)
 - Insgesamt können 90 Punkte erlangt werden.
- Studienleistungen zum Biologischen Methodenpraktikum

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden verstehen die theoretischen Grundlagen aller in der modernen Biologie eingesetzten Methoden und sind in der Lage, wichtige Grundtechniken der modernen Biologie unter Anleitung erfolgreich durchzuführen. Dazu zählen folgende Techniken:

- · Fluoreszenzmikroskopie; Umgang mit fluoreszenten Proteinen und Immunfluoreszenz
- Western Blotting
- · Genomische und RT-PCR
- · Bioinformatische Analysen und Umgang mit Gen-Datenbanken

Eingebunden sind diese methodische Zugänge in eine kleine wissenschaftliche Geschichte, so dass Sie beispielhaft sehen können, wie in der Forschung verschiedene Methoden mit einer Fragestellung verknüpft werden (hypothesengeleitete Wissenschaft). Unsere Abteilung arbeitet mit Pflanzen oder pflanzlichen Zellen. Die Methoden und die Ansätze können jedoch unmittelbar auf andere biologische Systeme oder Fragestellungen übertragen werden.

Inhalt

Vorlesung:

Das Modul Biologische Methoden hat die modernen praktische Aspekte im Visier. In einer Ringvorlesung wird das gesamte Spektrum biologischer Methoden vorgestellt und gründlich behandelt. Methodenkompetenz bedeutet nicht, dass man Protokolle im Labor "nachkochen" kann. Nur wer versteht, warum eine biologische Methode so und nicht anders durchgeführt wird, wird später in der Lage sein, auf eine Problemstellung in Forschung und Beruf erfolgreich zu antworten.

Methodenpraktikum

Im Rahmen des Biologischen Methodenpraktikums bieten wir eine Einführung in die Methodik der **molekularen Zellbiologie** an. Hier geht es also um zelluläre Fragestellungen:

- Wo agiert ein bestimmtes Protein in der Zelle (subzelluläre Lokalisation)
- · Wie wird ein bestimmtes Protein abhängig von Entwicklung oder Signalen gebildet (Muster der Regulation)
- Wie kann man einem Protein bei der Arbeit "zusehen" (zelluläre Dynamik)

Anmerkungen

Gruppeneinteilung in ILIAS beachten!

Arbeitsaufwand

- Moderne Methoden der Biologie (V): 60 Präsenzstunden; 4 LP; 60 Stunden Bearbeitungszeit
- Praktikum Anwendung molekularbiologischer Methoden (P): 90 Präsenzstunden; 6 LP; 90 Stunden Bearbeitungszeit

Zur Bearbeitung zählt die Vor- und Nachbereitung der Vorlesung und das Lernen auf die Teilprüfungen. Bei den Praktika zählen hierzu auch das Auswerten von Ergebnissen, Anfertigen von Zeichnungen und Schreiben von Protkollen.

Lehr- und Lernformen

Vorlesung, Praktikum

11.38 Modul: Höhere Mathematik I [M-MATH-101731]

Verantwortung: Prof. Dr. Dirk Hundertmark **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch-physikalische Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
11	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	1	1	

Pflichtbestandteile					
T-MATH-103353	Höhere Mathematik I - Klausur	11 LP	Anapolitanos,		
			Hundertmark,		
			Kunstmann		

Erfolgskontrolle(n)

Schriftlich. Die Prüfung besteht aus einer 120-minütigen Klausur (verbindlich hinsichtlich der Prüfungsform ist der aktuelle Studienplan und die Bekanntgabe des Prüfungsamts).

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden beherrschen die Grundlagen mathematischen Argumentierens (Beweisformen, Aussagenlogik, Mengen, Abbildungen, vollständige Induktion). Sie kennen die wichtigsten Elemente der eindimensionalen Analysis und der korrekte Umgang mit Folgen, Reihen, Grenzwerten, Funktionen, Potenzreihen und Integralen gelingt ihnen sicher. Sie verstehen zentrale Begriffe wie Stetigkeit, Differenzierbarkeit und Integrierbarkeit, wichtige Aussagen hierzu sind ihnen bekannt. Die in der Vorlesung dargelegten Begründungen dieser Aussagen können die Studierenden nachvollziehen und einfache, hierauf aufbauende Aussagen selbstständig begründen. Sie können mit reellen und komplexen Zahlen rechnen, kennen grundlegende elementare Funktionen und können Ihre Eigenschaften reproduzieren.

Die Studierenden beherrschen die Grundlagen der Vektorraumtheorie. Der Umgang mit Vektoren, linearen Abbildungen und Matrizen gelingt ihnen problemlos. Die Studierenden sind vertraut mit den Standardlösungsmethoden für lineare Gleichungssysteme und können diese anwenden.

Inhalt

Vorlesung

Logische Grundlagen, reelle Zahlen, Ungleichungen, Induktion, komplexe Zahlen, Folgen, Grenzwerte, Reihen, Konvergenzkriterien, exp-Reihe im Komplexen, sin, cos, Stetigkeit, Potenzreihen, Hyperbelfunktionen, Differentialrechnung einer Variablen, Kettenregel, Mittelwertsatz, Kriterien für Extremwertberechnung, Taylorentwicklung, bestimmtes / unbestimmtes Integral, partielle Integration, Substitutionsregel, Integrieren von Potenzreihen, uneigentliche Integrale, Cn als Vektorraum, Basen, Dimension, Skalarprodukt, Orthonormalbasen, Lineare Abbildungen, Matrizen, Lineare Gleichungssysteme, Determinanten.

Übungen

Begleitend zur Vorlesung werden Übungsaufgaben gestellt, die teils in einer großen Saalübung, teils in kleinen Übungsgruppen (Tutorien) besprochen werden.

Zusammensetzung der Modulnote

Notenbildung ergibt sich aus der schriftlichen Prüfung

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in Vorlesungen, Übungen: (6+2) SWS*15 h/SWS = 120 h
- 2. Vor-/Nachbereitung derselbigen: 170 h
- 3. Klausurvorbereitung und Präsenz in selbiger: 40 h

Summe: 330 h

Lehr- und Lernformen

Vorlesung, Übung und Tutorium

Literatur

Wird in der Vorlesung und auf der Vorlesungshomepage bekanntgegeben. Je nach Dozent wird ein Skript bzw. eine Kurzfassung der Vorlesung zur Verfügung gestellt.

11.39 Modul: Höhere Mathematik II [M-MATH-101732]

Verantwortung: Prof. Dr. Dirk Hundertmark **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch-physikalische Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	1	1

Pflichtbestandteile							
T-MATH-103354	Höhere Mathematik II - Klausur	8 LP	Anapolitanos,				
			Hundertmark,				
			Kunstmann				

Erfolgskontrolle(n)

Schriftlich: 120-minütige Klausur

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen Skalarprodukte und verstehen die Bedeutung der Orthogonalität von Vektoren. Sie können linear unabhängige Vektoren orthogonalisieren und Eigenvektoren und Eigenwerte von Matrizen berechnen, sowie gewisse Klassen von Matrizen diagonalisieren. Die Studierenden beherrschen die Differentialrechnung für vektorwertige Funktionen mehrerer Veränderlicher und Techniken der Vektoranalysis wie die Berechnung von Extremwerten unter Nebenbedingungen, die Definition und Anwendung von Differentialoperatoren, die Berechnung von Gebiets-, Kurven- und Oberflächenintegralen sowie zentrale Integralsätze.

Inhalt

Vorlesung:

Kreuzprodukt, Eigenwertprobleme, Diagonalisierung von Matrizen, Orthonormalbasen, Differentialgleichungen, Raumkurven, Differentiation, partielle Ableitungen, Taylorsatz, Extremwerte mit und ohne Nebenbedingungen, inverse und implizite Funktionen, Integrale, Kurvenintegrale, Integralsätze im R2, Potentialfelder, Volumen-, Oberflächenintegrale, Variablensubstitution, Polarkoordinaten, Zylinderkoordinaten, Kugelkoordinaten, Stokesscher und Gaußscher Integralsatz im R3.

Übung:

Begleitend zur Vorlesung werden Übungsaufgaben gestellt, die teils in einer großen Saalübung, teils in kleinen Übungsgruppen (Tutorien) besprochen werden.

Zusammensetzung der Modulnote

Notenbildung ergibt sich aus der schriftlichen Prüfung

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in Vorlesungen, Übungen: (4+2) SWS*15 h/SWS = 90 h
- 2. Vor-/Nachbereitung derselbigen: 110 h
- 3. Klausurvorbereitung und Präsenz in selbiger: 40h

Summe: 240 h

Lehr- und Lernformen

Vorlesung, Übung und Tutorium

Literatur

Wird in der Vorlesung und auf der Vorlesungshomepage bekanntgegeben. Je nach Dozent wird ein Skript bzw. eine Kurzfassung der Vorlesung zur Verfügung gestellt

11.40 Modul: Höhere Mathematik III [M-MATH-101738]

Verantwortung: Prof. Dr. Dirk Hundertmark **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch-physikalische Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	1	1

Pflichtbestandteile						
T-MATH-103357						

Erfolgskontrolle(n)

Schriftlich, 90-minütige Klausur

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen den theoretischen und praktischen Umgang mit Anfangswertproblemen für gewöhnliche Differentialgleichungen, und können elementare gewöhnliche Differentialgleichungen explizit selbständig lösen. Sie können klassische Lösungsmethoden für lineare Differentialgleichungen anwenden. Sie haben grundlegende Kenntnisse über typische lineare partielle Differentialgleichungen und können insbesondere Lösungen mit Hilfe eines Separationsansatzes berechnen.

Inhalt

Vorlesung

Gewöhnliche Differentialgleichungen: Elementare Methoden, Bernoulli- und Riccati- Differentialgleichung, exakte Differentialgleichungen, Potenzreihenansätze, Systeme von Differentialgleichungen, Differentialgleichungen höherer Ordnung, Existenz- und Eindeutigkeitssätze, lineare Differentialgleichungssysteme. Partielle Differentialgleichungen: Transportgleichung und Charakteristiken, Potentialgleichung, Diffusionsgleichung, Wellengleichung.

Übungen

Begleitend zur Vorlesung werden Übungsaufgaben gestellt, die teils in einer großen Saalübung, teils in kleinen Übungsgruppen (Tutorien) besprochen werden.

Zusammensetzung der Modulnote

Notenbildung ergibt sich aus der schriftlichen Prüfung

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in Vorlesungen, Übungen: (2+1) SWS*15 h/SWS = 45 h
- 2. Vor-/Nachbereitung derselbigen: 55 h
- 3. Klausurvorbereitung und Präsenz in selbiger: 20 h

Summe: 120 h

Lehr- und Lernformen

Vorlesung, Übung und Tutorium

Literatur

Wird in der Vorlesung und auf der Vorlesungshomepage bekanntgegeben. Je nach Dozent wird ein Skript bzw. eine Kurzfassung der Vorlesung zur Verfügung gestellt.

11.41 Modul: Hybride und elektrische Fahrzeuge [M-ETIT-100514]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-100784	Hybride und elektrische Fahrzeuge	4 LP	Doppelbauer

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden verstehen die technische Funktion aller Antriebskomponenten von hybriden und elektrischen Fahrzeugen sowie deren Zusammenspiel im Antriebsstrang zu verstehen. Sie verfügen über Detailwissen der Antriebskomponenten, insbesondere Batterien und Brennstoffzellen, leistungselektronische Schaltungen und elektrische Maschinen inkl. der zugehörigen Getriebe. Weiterhin kennen sie die wichtigsten Antriebstopologien und ihre spezifischen Vor- und Nachteile. Die Studierenden können die technischen, ökonomischen und ökologischen Auswirkungen alternativer Antriebstechnologien für Kraftfahrzeuge beurteilen und bewerten.

Inhalt

Ausgehend von den Mobilitätsbedürfnissen der modernen Industriegesellschaft und den politischen Rahmenbedingungen zum Klimaschutz werden die unterschiedlichen Antriebs- und Ladekonzepte von batterieelektrischen- und hybridelektrischen Fahrzeugen vorgestellt und bewertet. Die Vorlesung gibt einen Überblick über die Komponenten des elektrischen Antriebsstranges, insbesondere Batterie, Ladeschaltung, DC/DC-Wandler, Wechselrichter, elektrische Maschine und Getriebe. Gliederung:

- Hybride Fahrzeugantriebe
- Elektrische Fahrzeugantriebe
- · Fahrwiderstände und Energieverbrauch
- Betriebsstrategie
- · Energiespeicher
- · Grundlagen elektrischer Maschinen
- Asynchronmaschinen
- Synchronmaschinen
- Sondermaschinen
- Leistungselektronik
- Laden
- Umwelt
- · Fahrzeugbeispiele

Anforderungen und Spezifikationen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

14x V und 7x U à 1,5 h: = 31,5 h 14x Nachbereitung V à 1 h = 14 h 6x Vorbereitung zu U à 2 h = 12 h Prüfungsvorbereitung: = 50 h Prüfungszeit = 2 h Insgesamt = 109,5 h (entspricht 4 Leistungspunkten)

Empfehlungen

Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").

11.42 Modul: Industriepraktikum in der Medizintechnik [M-ETIT-105998]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Industrie-, Forschungs- oder Klinikpraktikum

Leistungspunkte
15Notenskala
best./nicht best.Turnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
1

Pflichtbestandteile			
T-ETIT-112176	Industriepraktikum in der Medizintechnik	15 LP	Nahm

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung bestehend aus einer schriftlichen Ausarbeitung (Umfang ca. 15 Seiten).

Die Bestätigung der Teilnahme und des erfolgreichen Abschlusses des Industriepraktikums erfolgt durch den Betrieb, in dem das Praktikum absolviert wurde.

Die formale Anerkennung erfolgt durch das ETIT-Praktikantenamt.

Voraussetzungen

Forschungspraktikum und Klinikpraktikum dürfen nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-ETIT-106001 Klinikpraktikum in der Medizintechnik darf nicht begonnen worden sein.
- 2. Das Modul M-ETIT-106000 Forschungspraktikum in der Medizintechnik darf nicht begonnen worden sein.

Qualifikationsziele

Die Studierenden haben berufspraktische Tätigkeiten kennengelernt und Kompetenzen auf dem Gebiet der Medizintechnik/ Elektrotechnik und Informationstechnik erworben. Sie sind damit in der Lage sich in der Berufswahl zu orientieren bzw. eine Spezialisierung im konsekutiven Masterstudium vorzunehmen.

Durch die Mitarbeit an konkreten technischen Aufgaben kennen die Studierenden die besondere Tätigkeit einer Ingenieurin bzw. eines Ingenieurs und können konkrete medizintechnische Fragestellungen bearbeiten. Die Studierenden haben sich dabei fachrichtungsbezogene Kenntnisse aus der Praxis angeeignet und weitere Eindrücke über ihre spätere berufliche Umwelt sowie ihre Stellung und Verantwortung innerhalb des Betriebes gesammelt. Darüber hinaus haben sie einen Einblick in die betriebliche Organisation und Führungsstruktur gewonnen.

Inhalt

Im Rahmen des Industriepraktikums soll eine Aufgabenstellung mit medizintechnischer Relevanz auf dem Gebiet der Medizintechnik oder einem technologisch verwandten Gebiet bearbeitet werden.

Mögliche Tätigkeitsfelder könnten sein:

- · Qualitätsmanagement für Produkte
- Berechnung, Entwicklung, Simulation, Konstruktion, Normung und Fertigung von einzelnen Bauelementen, Bauteilen, Baugruppen, Medizinprodukten, Medizintechnischen Systemen
- Norm- und gesetzeskonforme Projektierung, Montage, Inbetriebnahme, Betrieb und Wartung von ganzen Anlagen, der Elektro- und Informationstechnik oder von Medizinprodukten/ Medizintechnischen Systemen
- Tätigkeiten in industriellen Forschungs- und Entwicklungslaboratorien mit direktem Bezug zur Medizintechnik
- · Software-Entwicklung und Engineering, z.B. Simulation oder auf den Gebieten KI und maschinellem Lernen
- · Ingenieursdienstleistungen mit Bezug zur Medizintechnik
- Tätigkeiten in industriellen Forschungs- und Entwicklungslaboratorien, Versuchs- und Prüffeldern zur Prüfung, Erprobung und Beurteilung von Verfahren oder Geräten, Medizinprodukten, Medizintechnischen Systemen nach Normvorgaben

Näheres regeln die Praktikantenrichtlinien für den Bachelor-Studiengang Medizintechnik.

Zusammensetzung der Modulnote

Das Modul gilt mit erfolgreicher Bewertung der schriftlichen Ausarbeitung als bestanden.

Arbeitsaufwand

Das Industriepraktikum hat eine Dauer von mindestens 12 Wochen bei einem Umfang von mindestens 450 Stunden (entsprechend 15 LP)

Empfehlungen

Ein wesentlicher Teil der Bachelor-Pflichtmodule sollte erfolgreich abgeschlossen sein.

11.43 Modul: Informations- und Automatisierungstechnik [M-ETIT-106336]

Verantwortung: Prof. Dr.-Ing. Mike Barth

Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	1	1

Pflichtbestandteile					
T-ETIT-112878	Informations- und Automatisierungstechnik	5 LP	Barth, Sax		
T-ETIT-112879	Informations- und Automatisierungstechnik - Praktikum	2 LP	Sax		

Erfolgskontrolle(n)

- 1. Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.
- 2. Einer Erfolgskontrolle in Form einer Studienleistung bestehend aus Projektdokumentationen und der Kontrolle des Quellcodes im Rahmen der Lehrveranstaltung Praktikum

Voraussetzungen

Keine

Qualifikationsziele

Vorlesungsteil "Informationstechnik" (Sax - 2 SWS entspricht ca. 14 VL-Einheiten á 90 Minuten)

Die Studierenden lernen Aufbau und Funktionsweise informationstechnischer Systeme und deren Verwendung kennen.

Die Studierenden können

- die Charakteristika von eingebetteten Systemen abgrenzen.
- · verschiedene Programmiersprachen und -paradigmen nennen und deren Unterschiede gegenüberstellen.
- die zur Erstellung eines ausführbaren Programms notwendigen Komponenten aufzählen und deren Interaktion beschreiben.
- generelle Rechnerarchitekturen beschreiben, deren Vor- und Nachteile gegenüberstellen, sowie Möglichkeiten zur Performanz-Steigerung erläutern.
- verschiedene Möglichkeiten, Daten strukturiert abzuspeichern und zu organisieren, nennen und bewerten.
- die Aufgaben eines Betriebssystems beschreiben, sowie die grundlegenden Funktionen von Prozessen und Threads wiedergeben.
- · die Phasen und Prozesse des Projektmanagements erläutern und die Planung kleiner Projekte skizzieren.
- die Charakteristika und Vorgehensweise zur Analyse großer Datenbestände beschreiben.
- · die Merkmale und Eigenschaften von selbstlernenden Systemen benennen und abgrenzen.
- Methoden des maschinellen Lernens einordnen, beschreiben und bewerten.

Durch die Teilnahme am Praktikum Informationstechnik können die Studierenden komplexe programmiertechnische Probleme in einfache und übersichtliche Module zerlegen und dazu passende Algorithmen und Datenstrukturen entwickeln, sowie diese mit Hilfe einer Programmiersprache in ein ausführbares Programm umsetzen.

Vorlesungsteil "Automatisierungstechnik" (Barth – 1 SWS entspricht ca. 7 VL-Einheiten á 90 Minuten)

Die Studierenden

- gewinnen ein grundlegendes Verständnis aktueller Herausforderungen des Engineerings von (verteilten) Automatisierungssystemen.
- · kennen die Cluster industrieller Systeme und Prozesse.
- können Probleme im Bereich der Automatisierung von industriellen Anlagen, Maschinen und Systemen analysieren, strukturieren und formal beschreiben.
- · können die Sprachmittel der Steuerungstechnik verstehen, anwenden und weiterentwickeln.
- sind in der Lage, die Architektur eines Automatisierungssystem hinsichtlich Kommunikation, Level und Datenflüssen zu entwickeln.
- sind fähig, die Arbeitsweisen eines Automatisierungssystems nachzuvollziehen und können die notwendigen Komponenten auswählen.
- · kennen grundlegende Informationsmodelle der Automatisierungstechnik.

Inhalt

Vorlesungsteil "Informationstechnik" (Sax, 14 VL)

- · Programmiersprachen, Programmerstellung und Programmstrukturen Objektorientierung
- · Rechnerarchitekturen und eingebettete Systeme
- Datenstrukturen
- · Projektmanagement
- · Big Data
- · Maschinelle Lernverfahren

Übung – Anteil IT (7 Übungen)

• Begleitend zur Vorlesung werden in der Übung die Grundlagen der Programmiersprache C++ vermittelt. Hierzu werden Übungsaufgaben mit Bezug zum Vorlesungsstoff gestellt, sowie die Lösungen dazu detailliert erläutert. Schwerpunkte sind dabei der Aufbau und die Analyse von Programmen sowie deren Erstellung.

Vorlesungsteil "Automatisierungstechnik" (Barth, 7 VL)

- Theoretische und praktische Aspekte der industriellen Automatisierungstechnik.
- IEC61131-3 Sprachen und Programmstruktureinheiten
- · Objektorientierte Aspekte der Steuerungstechnik
- · Live-Demos zur Steuerungsprogrammkonzeption
- · Deterministische Systeme für die Steuerungstechnik
- · Kommunikationsarchitekturen und -modelle
- · AT-Architekturen inkl. Modularisierung

Übung – Anteil AT (3 Übungen)

• Begleitend zur Vorlesung werden in der Übung die Grundlagen der IEC-61131-3-Steuerungsimplementierung vermittelt. Hierzu werden praxisnahe Aufgaben gestellt und deren Lösungen gemeinsam besprochen. Schwerpunkte sind dabei der Aufbau von Steuerungsprogrammen sowie deren Implementierung und Validierung in realen Systemen.

Praktikum Informationstechnik (6 Termine):

 Bei der Umsetzung in einen strukturierten und lauffähigen Quellcode, unter Einhaltung von vorgegebenen Qualitätskriterien, wird das Schreiben komplexer C/C++-Codeabschnitte und der Umgang mit einer integrierten Entwicklungsumgebung trainiert. Die Implementierung erfolgt auf einem Microcontrollerboard, welches bereits aus anderen Lehrveranstaltungen bekannt ist.
 Die Roarbeitung des Preinktes erfolgt in kleinen Teams, die des Cosemboraielt in individuelle Aufgaben zerlagen und

Die Bearbeitung des Projektes erfolgt in kleinen Teams, die das Gesamtprojekt in individuelle Aufgaben zerlegen und selbstständig bearbeiten. Hierbei werden Inhalte aus Vorlesung und Übung wieder aufgegriffen und auf konkrete Problemstellungen angewendet. Am Ende des Praktikums soll jedes Projektteam den erfolgreichen Abschluss seiner Arbeit auf der "Magni Silver Plattform" demonstrieren.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Achtung:

Die diesem Modul zugeordneten Teilleistungen sind Bestandteil der Orientierungsprüfung folgender Studiengänge:

· Bachelor Elektrotechnik und Informationstechnik (SPO 2023, §8)

Die Prüfung ist zum Ende des 2. Fachsemesters anzutreten. Eine Wiederholungsprüfung ist bis zum Ende des 3. Fachsemesters abzulegen.

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen und Übungen: 31 * 1,5 h = 46,5 h
- 2. Vor-/Nachbereitung derselbigen: 60 h
- 3. Praktikum 6 Termine = 9 h
- 4. Vor-/Nachbereitung des Praktikums = 55 h
- 5. Klausurvorbereitung und Präsenz in selbiger: = 50 h

Summe: 220 h = 7 LP

Empfehlungen

- Kenntnisse in den Grundlagen der Programmierung sind empfohlen (Besuch des MINT-Kurs C++).
- Die Inhalte des Moduls Digitaltechnik sind hilfreich.

11.44 Modul: Informationstechnik II und Automatisierungstechnik [M-ETIT-104547]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile			
T-ETIT-109319	Informationstechnik II und Automatisierungstechnik	4 LP	Sax

Erfolgskontrolle(n)

Schriftliche Prüfung im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung und Übung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden lernen aktuelle Problemstellungen der Informationstechnik und die Werkzeuge für deren Lösung kennen, beginnend bei einfachen Algorithmen bis hin zu selbstlernenden Systemen.

Die Studierenden können

- die Merkmale, Eigenschaften und Klassen von Algorithmen benennen und einordnen, sowie die Laufzeitkomplexität bestimmen.
- · bekannte Sortier-, Such- und Optimierungsalgorithmen gegenüberstellen und demonstrieren.
- · die Merkmale, Eigenschaften und Komponenten von selbstlernenden Systemen benennen und abgrenzen.
- Methoden des maschinellen Lernens einordnen, beschreiben und bewerten.
- Die Charakteristika sowie die Notwendigkeit und Vorgehensweise zur Analyse großer Datenbestände beschreiben.
- Ansätze zur Verwaltung und Analyse großer Datenbestände hinsichtlich ihrer Anwendbarkeit und Wirksamkeit einschätzen.
- Methoden zur Anomalieerkennung wiedergeben.
- Begriffe der IT-Sicherheit angeben und typische Schutzmechanismen einordnen.
- die grundlegenden Komponenten, Funktionen und Aufgaben der Automatisierungstechnik in verschiedenen Einsatzbereichen gegenüberstellen und anhand ihres Automatisierungsgrades einordnen.

Inhalt

Vorlesung Informationstechnik II und Automatisierungstechnik:

Grundlagenvorlesung Informationstechnik. Schwerpunkte der Veranstaltung sind:

- Grundlagen und Eigenschaften verschiedener Klassen von Algorithmen
- Selbstlernende Systeme und maschinelles Lernen, beispielsweise Clusteringverfahren und Neuronale Netze
- Grundlagen und Verfahren zur Analyse großer Datenbestände
- · Verfahren zur Anomalieerkennung als Anwendungsfeld von selbstlernenden Systemen auf große Datenmengen
- Grundlagenbegriffe und Prozesse zur Entwicklung sicherer Software
- Bedeutung, grundlegende Begriffe und Komponenten der Automatisierungstechnik sowie deren informationstechnische Realisierung

Übung Informationstechnik II und Automatisierungstechnik:

Begleitend zur Vorlesung werden in der Übung die Grundlagen der in der Vorlesung vorgestellten Methoden erläutert und deren Anwendung aufgezeigt. Hierzu werden Übungsaufgaben mit Bezug zum Vorlesungsstoff gestellt sowie die Lösungen dazu detailliert erläutert

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen:

- 1. Präsenzzeit in 14 Vorlesungen und 7 Übungen (32 Stunden)
- 2. Vor-/Nachbereitung von Vorlesung und Übung (42 Stunden)
- 3. Klausurvorbereitung und Präsenz in selbiger (46 Stunden) Summe: 120 h = 4 LP

Empfehlungen

Grundlagen der Programmierung (MINT-Kurs) und die Inhalte des Moduls Informationstechnik I sind hilfreich.

11.45 Modul: Introduction to Quantum Information Processing [M-ETIT-106264]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Englisch	3	1

Pflichtbestandteile			
T-ETIT-112715	Introduction to Quantum Information Processing	6 LP	Kempf

Erfolgskontrolle(n)

The examination takes place within the framework of an oral overall examination (30 minutes) on the selected events with which the minimum CR requirement is fulfilled in total.

Voraussetzungen

none

Qualifikationsziele

The students will be able to analyze, structure and formally describe problems in the field of quantum information processing. In particular, they will be able to understand the difference between classical and quantum information processing and are able to analyze and implement quantum algorithms for solving given information problems. Moreover, the students are able to critically evaluate existing algorithms regarding complexity, suitability and quantum supremacy.

Inhalt

This module provides an introductory overview in the emerging field of quantum information processing (QIP). It particularly intends to discuss the mathematical and physical basics of QIP including the concepts of quantum bits, superposition, entanglement, decoherence, quantum noise, gate-based quantum computing (oracle-based and quantum fourier transform based), quantum parallelism, and quantum error correction. Using these concepts, the supremacy of several quantum algorithms as well as difference between classical and quantum algorithms will be discussed. This includes, for example, Deutsch's algorithm, Deutsch-Josza's algorithm, Simon's algorithm, Grover's algorithm, Shor's algorithm and many more.

The tutorial is closely related to the lecture and deals with special aspects concerning quantum information processing. Moreover, it deepens the knowledge by discussing examples.

Zusammensetzung der Modulnote

The module grade is the grade of the oral exam.

Arbeitsaufwand

A workload of approx. 184 h is required for the successful completion of the module. This is composed as follows:

- 1. Attendance time in lectures: 14*1,5 h = 21 h
- 2. Attendance time in tutorials: 14*1,5 h = 21 h
- 3. Preparation and follow-up of lectures: 14*4 h= 56 h
- 4. Preparation and follow-up of tutorials: 14*4 h= 56 h
- 5. Preparation for the oral exam: 30 h

Empfehlungen

Basic knowledge in the field of quantum mechanics as gained in the lecture "Optik und Festkörperelektronik" is helpful.

11.46 Modul: Klinikpraktikum in der Medizintechnik [M-ETIT-106001]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Industrie-, Forschungs- oder Klinikpraktikum

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
15	best./nicht best.	Jedes Semester	1 Semester	Deutsch/Englisch	3	1

Pflichtbestandteile				
T-ETIT-112179	Klinikpraktikum in der Medizintechnik	15 LP	Nahm	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung bestehend aus einer schriftlichen Ausarbeitung (Umfang ca. 15 Seiten).

Die Bestätigung der Teilnahme und des erfolgreichen Abschlusses des Klinikpraktikums erfolgt durch den Betrieb, in dem das Praktikum absolviert wurde.

Die formale Anerkennung erfolgt durch das ETIT-Praktikantenamt.

Voraussetzungen

Industriepraktikum und Forschungspraktikum dürfen nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-ETIT-106000 Forschungspraktikum in der Medizintechnik darf nicht begonnen worden sein.
- 2. Das Modul M-ETIT-105998 Industriepraktikum in der Medizintechnik darf nicht begonnen worden sein.

Qualifikationsziele

Die Studierenden haben berufspraktische Tätigkeiten kennengelernt und Kompetenzen auf dem Gebiet der Medizintechnik erworben. Sie sind damit in der Lage, sich in der Berufswahl zu orientieren bzw. eine Spezialisierung im konsekutiven Masterstudium vorzunehmen.

Durch die Mitarbeit im klinischen Alltag kennen die Studierenden die besondere interdisziplinäre Tätigkeit einer Ingenieurin bzw. eines Ingenieurs der Medizintechnik im klinischen Umfeld. Die Studierenden haben sich dabei fachrichtungsbezogene Kenntnisse aus der klinischen Praxis angeeignet und weitere Eindrücke über ihre spätere berufliche Umwelt sowie ihre Stellung und Verantwortung innerhalb der Klinik gesammelt. Darüber hinaus haben sie einen Einblick in die betriebliche Organisation und Führungsstruktur gewonnen.

Inhalt

Im Rahmen des Klinikpraktikums soll eine Aufgabenstellung bearbeitet werden, die mehrere Teilgebiete der Medizintechnik umfasst.

Mögliche Tätigkeitsfelder:

- · Betriebsmanagement
- Norm- und gesetzeskonforme Projektierung, Beschaffung, Montage, Inbetriebnahme, Betrieb und Wartung von medizintechnischen Geräten und Anlagen
- · Prüfen von medizintechnischen Geräten und Anlagen
- · betriebswirtschaftlich geprägtes Technik-Management
- · Sicherheitsingenieur für Medizintechnik
- · Klinische IT-Infrastruktur/ Datenmanagement
- · Qualitätsmanagement/-sicherung
- Mitwirkung beim Einsatz medizintechnischer Anlagen und Systeme
- Umgang mit und Anwendung von Anlagen zur Erzeugung ionisierender
- · Strahlung und radioaktiver Stoffe, Strahlenschutz

Näheres regeln die Praktikantenrichtlinien für den Bachelor-Studiengang Medizintechnik.

Zusammensetzung der Modulnote

Das Modul gilt mit erfolgreicher Bewertung der schriftlichen Ausarbeitung als bestanden.

Arbeitsaufwand

Das Klinikpraktikum hat eine Dauer von mindestens 12 Wochen bei einem Umfang von mindestens 450 Stunden (entsprechend 15 LP).

Empfehlungen

Ein wesentlicher Teil der Bachelor-Pflichtmodule sollte erfolgreich abgeschlossen sein.

11.47 Modul: Kontinuumsmechanik [M-MACH-105180]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion5ZehntelnotenJedes Wintersemester1 SemesterDeutsch32

Pflichtbestandteile				
T-MACH-110377	Kontinuumsmechanik der Festkörper und Fluide	4 LP	Böhlke, Frohnapfel	
T-MACH-110333	Übungen zu Kontinuumsmechanik der Festkörper und Fluide	1 LP	Böhlke, Frohnapfel	

Erfolgskontrolle(n)

Prüfungsleistung schriftlich, 90 min; Die Übungen sind als Studienleistung T-MACH-110333 Klausurvorleistungen

Voraussetzungen

keine

Qualifikationsziele

Nach Abschluss des Moduls können die Studierenden die Prinzipien der Kontinuumsmechanik für die Modellierung von Festkörpern und Flüssigkeiten angeben. Die Absolventinnen und Absolventen können Tensoroperationen im Rahmen der Kontinuumsmechanik an konkreten Beispielen durchführen sowie numerische Konzepte zur Lösung von Problemen bei der Modellierung von Festkörpern bzw. Flüssigkeiten angeben. Darüber hinaus sind die Absolventinnen und Absolventen in der Lage, konkrete Problemstellungen bei der Modellierung von Festkörpern bzw. Flüssigkeiten mit kommerzieller Software zu bearbeiten.

Inhalt

Dieses Modul soll Studierenden die theoretischen und praktischen Aspekte der Kontinuumsmechanik von Festkörpern und Flüssigkeiten vermitteln. Zu Beginn gibt es eine Einführung in die Tensorrechnung und die Kinematik. Dann werden die Bilanzgleichungen der Mechanik und Thermodynamik behandelt. Das Modul vermittelt einen Überblick über die Materialtheorie der Festkörper und Fluide. Dazu gehören auch die Feldgleichungen für Festkörper und Fluide. Über die thermomechanischen Kopplungen hinaus vermittelt das Modul Kenntnisse in der Dimensionsanalyse.

Anmerkungen

keine

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung und Übungen: 15 * 2 h + 15* 2 h = 60 h
- 2. Vor- und Nachbereitungszeit Vorlesung und Übungen: 15 * 3 h = 45 h
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 45 h

Empfehlungen

keine

Lehr- und Lernformen

Vorlesung, Übung, Ergänzungsseminar, Sprechstunden

Literatur

siehe enthaltene Teileistungen

11.48 Modul: Labor für angewandte Machine Learning Algorithmen [M-ETIT-104823]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Prof. Dr.-Ing. Eric Sax Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-ETIT-109839	Labor für angewandte Machine Learning Algorithmen	6 LP	Becker, Sax, Stork

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Prüfungsleistungen anderer Art.

- · Protokolle (Labordokumentation) und kontinuierliche Bewertung der Teamarbeit während der Präsenzzeit
- · Vortrag in Form einer Präsentation

Abfrage nach Ende der Veranstaltung zu den Inhalten des Labors.

Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden sind in der Lage aktuelle komplexe Probleme des modernen Elektro- und Informationstechnik-Ingenieurs zu analysieren und die Notwendigkeit für Verfahren des maschinellen Lernens zu beurteilen.
- Die Studierenden können verschiedene moderne Verfahren des maschinellen Lernens nennen und deren Funktionsweise erklären.
- Die Studierenden sind in der Lage diese hinsichtlich ihrer Anforderungen (u.a. Trainingszeit, Datenverfügbarkeit, Effizienz, Performance) auszuwählen und erfolgreich mit aktuellen Programmiersprachen und typischen Software-Frameworks umzusetzen.
- Die Studierenden sind in der Lage passende Implementierungsalternativen (HW/SW-Codesign) im gesamten Prozess zu wählen und umzusetzen.
- Die Studierenden sind in der Lage für eine gegebene Problemstellung systematisch ein geeignetes praxistaugliches Konzept basierend auf Verfahren des maschinellen Lernens zu entwickeln oder gegebene Konzepte zu evaluieren, vergleichen und zu beurteilen.
- Die Studierenden beherrschen die Analyse und Lösung entsprechender Problemstellungen im Team.

Die Studierenden können ihre Konzepte und Ergebnisse evaluieren und dokumentieren.

Inhalt

In diesem Kurs wird der praktische Umgang mit gängigen Algorithmen und Methoden des maschinellen Lernens projektbezogen und praxisnah vermittelt. Die Studierenden lernen, gängige Algorithmen und Strukturen (z.B. Clusteringverfahren, Neuronale Netze, Deep Learning) selbständig zu implementieren. Das Labor bietet die Möglichkeit, die Anwendung des Maschinellen Lernens auf realitätsnahen Problemstellungen sowie die Limitierungen der Verfahren kennenzulernen. Anwendungsfelder können zum Beispiel autonomes Fahren oder intelligente Stromnetze sein. Im Mittelpunkt stehen die heute in Industrie und Wissenschaft gebräuchlichen Methoden, Prozesse und Werkzeuge, wie beispielsweise Tensorflow oder NVidia CUDA. Dabei wird nicht nur auf die Algorithmen, sondern auch auf den kompletten Prozess der Datenanalyse eingegangen. Darunter fallen die Problemstellungen des überwachten und unüberwachten Lernens sowie die Herausforderung der Vorverarbeitung und der Visualisierung der Daten. Für die systematische Entwicklung und Evaluierung dieser Problemstellungen werden aktuelle Frameworks ausgewählt und appliziert. Damit verbunden sind die problemspezifische Auswahl und der Einsatz geeigneter Plattformen und Hardware (zum Beispiel: CPU, GPU, FPGA).

Ein Teil der Versuche ist in Ablauf und Struktur vorgegeben. In einem freien Teil des Labors werden die Studierenden mit ihren bereits gewonnenen Erfahrungen kreativ und selbstständig den Lösungsraum einer realen Problemstellung explorieren.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der Protokolle, die kontinuierliche Bewertung der Teamarbeit, der Vortrag und die Abfrage zu den Inhalten des Labors ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Anmerkungen

Das Labor ist aus Kapazitätsgründen auf eine Teilnehmerzahl von 30 Studierenden begrenzt. Sofern erforderlich wird ein Auswahlverfahren durchgeführt. Die Plätze werden unter Berücksichtigung des Studienfortschritts der Studierenden (Fachsemester und fachspezifische Programmierkenntnisse) vergeben. Details werden in der ersten Veranstaltung und auf der Homepage der Veranstaltung bekanntgegeben.

Während sämtlicher Labortermine einschließlich der Einführungsveranstaltung herrscht Anwesenheitspflicht. Die Anwesenheitspflicht ist sowohl zur Durchführung der Arbeiten im Team vor Ort notwendig, als auch zur praktischen Vermittlung von Techniken und Fähigkeiten, die im reinen Selbststudium nicht erlernt werden können.

Arbeitsaufwand

- Teilnahme an den Laborterminen: 52h
 Termine á 4h
- 2. Vor- und Nachbereitung, Anfertigung von Berichten: 84h
- 3. Vorbereitung des Vortrags: 16h
- 4. Vorbereitung und Teilnahme an der mündlichen Abfrage: 28h

Empfehlungen

Hilfreich für die Arbeiten im Labor sind Kenntnisse in den Grundlagen der Informationstechnik (z.B. M-ETIT-102098), Signalund Systemtheorie (z.B. M-ETIT-102123) sowie Wahrscheinlichkeitstheorie (z.B. M-ETIT-102104). Dringend empfohlen werden Programmierkenntnisse (z.B. C++ oder Python).

11.49 Modul: Labor Schaltungsdesign [M-ETIT-100518]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile				
T-ETIT-100788	Labor Schaltungsdesign	6 LP	Becker, Sander	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung, sowie einer mündlichen Gesamtprüfung (30 Minuten) über die ausgewählten Lehrveranstaltungen. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

Das Praktikum vermittelt die notwendigen Kenntnisse und Fähigkeiten für den Entwurf elektronischer Schaltungen, wie sie z.B. als Bindeglied zwischen Mikrokontrollern/FPGAs und Sensoren/Aktuatoren benötigt werden. Am Ende der Veranstaltung sind die Teilnehmer in der Lage, für ein vorgegebenes Problem benötigte Bauteile anhand relevanter Kriterien auszuwählen, zu elementaren Baugruppen zu verschalten und schließlich daraus ein funktionierendes Gesamtsystem zu bilden. Neben dem Schaltungsdesign werden grundlegende Methoden und Fertigkeiten für die Erstellung von Layouts vermittelt. Außerdem werden die Teilnehmer in die Lage versetzt die entworfenen Schaltungen real aufzubauen und zu testen.

Inhalt

Bei der Lehrveranstaltung handelt es sich um ein dreiwöchiges Blockpraktikum. Ziel des Praktikums ist die Entwicklung und der Aufbau der gesamten Elektronik zum Betrieb eines selbstbalancierenden einachsigen Beförderungsmittels.

Im ersten Teil des Praktikums werden im Stil einer interaktiven Vorlesung häufig benötigte Grundschaltungen besprochen. Dazu gehören u.a. Schaltungen zur Spannungsversorgung, Taktgenerierung, Aufbereitung von Sensorwerten sowie Leistungstreiber und die Ansteuerung von Displays. Neben der Vorstellung der einzelnen Schaltungen wird auch eine Übersicht über Bauteile gegeben, welche häufig im entsprechenden Bereich verwendet werden. Dabei wird Wert darauf gelegt, reale Bauelemente auf Basis ihrer Datenblätter zu betrachten. Zur Festigung des erworbenen Wissens werden immer wieder kleine praktische Übungen durchgeführt, in denen die Teilnehmer die besprochenen Schaltungen selbst ausprobieren können. Ziel dieses ersten Teils ist zum einen die Auffrischung des bereits in vorhergehenden Veranstaltungen erworbenen Wissens und zum anderen die Vermittlung des praktischen Umgangs mit immer wieder benötigten Basisschaltungen.

Nach der Vermittlung der Grundschaltungen folgt eine kurze Einführung in die Erstellung von Platinenlayouts. Dazu zählen neben der Einarbeitung in das im Praktikum verwendete Layoutprogramm vor allem Tipps zur Platzierung und Verdrahtung von Bauelementen auf der Platine. Dabei werden unter anderem Themen wie Minimierung von Rauschen und Übersprechen, Platzierung von Abblockkondensatoren und Masseverbindungen behandelt.

Im dritten und größten Teil des Praktikums erstellen die Teilnehmer in Teams schließlich nacheinander ein Konzept, einen Schaltplan und ein Layout eines Schaltungsteils zum Betrieb des Beförderungsmittels. Dabei werden lediglich die genauen Anforderungen an den Schaltungsteil und die Schnittstellen zu benachbarten Teilen vorgegeben. Alle weiteren Entwicklungsschritte sollen von den Studierenden, basierend auf dem in den ersten beiden Praktikumsteilen vermittelten Wissen, möglichst eigenverantwortlich durchgeführt werden.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der mündlichen Prüfung, den während des Praktikums gegebenen Präsentationen und Versuchen und der Mitarbeit während des Praktikums ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen:

- 1. Präsenzzeit im Labor: 15 Tage á 8h = 120h
- 2. Vor-/Nachbereitung desselbigen: 15 Tage á 2h = 30h
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 15h

Empfehlungen

Grundlegende Kenntnisse von elektronischen Basisschaltungen (z.B. Lehrveranstaltungen LEN, Nr. 2305256, ES, Nr. 2312655 und EMS, Nr. 2306307)

11.50 Modul: Lineare Elektrische Netze [M-ETIT-106417]

Verantwortung: Prof. Dr.-Ing. John Jelonnek

Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Elektrotechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
8	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	1	1	

Pflichtbestandteile				
T-ETIT-113001	Lineare Elektrische Netze	6 LP	Jelonnek, Kempf	
T-ETIT-109317	Lineare Elektrische Netze - Workshop A	1 LP	Leibfried, Lemmer	
T-ETIT-109811	Lineare Elektrische Netze - Workshop B	1 LP	Nahm	

Erfolgskontrolle(n)

Die Erfolgskontrolle des gesamten Moduls besteht aus drei unabhängigen Teilen:

- 1. In einer schriftlichen Prüfung im Umfang von 120 Minuten werden die Inhalte der Lehrveranstaltung Lineare Elektrische Netze (6 LP) geprüft. Bei bestandener Prüfung können Studierende einen Notenbonus von bis zu 0,4 Notenpunkten erhalten, wenn zuvor semesterbegleitend zwei Projektaufgaben erfolgreich bearbeitet wurden. Die Bearbeitung der Projektaufgaben wird durch die Abgabe einer Dokumentation oder des Projektcodes nachgewiesen.
- 2. Schriftliche Ausarbeitung zur Lehrveranstaltung Lineare Elektrische Netze Workshop A, (1 LP)
- 3. Schriftliche Ausarbeitung zur Lehrveranstaltung Lineare Elektrische Netze Workshop B, (1 LP)

Für beide Workshops gilt: Die schriftlichen Ausarbeitungen wird korrigiert und mit Punkten bewertet. Bei Erreichen der erforderlichen Punktezahl gilt der Workshop als bestanden.

Voraussetzungen

keine

Qualifikationsziele

Im Modul Lineare Elektrische Netze erwirbt der Studierende Kompetenzen bei der Analyse und dem Design von elektrischen Schaltungen mit linearen Bauelementen mit Gleichstrom und Wechselstrom. Hierbei ist er in der Lage, die Themen zu erinnern und zu verstehen, zudem die behandelten Methoden anzuwenden, um hiermit die elektrischen Schaltungen mit linearen Bauelementen zu analysieren und deren Relevanz, korrekte Funktion und Eigenschaften zu beurteilen.

Die Studierenden erlernen im Workshop die Koordination eines Projekts in kleinen Teams und die Darstellung der Ergebnisse in Form einer technischen Dokumentation. Weiterhin sind sie in der Lage, grundlegende einfache Problemstellungen aus der Elektrotechnik (z.B. Messtechnik, analoge Schaltungstechnik) zu erkennen sowie praxis- und entscheidungsrelevant Lösungsansätze zu erarbeiten.

Inhalt

In der Lehrveranstaltung Lineare Elektrische Netze werden die folgenden Themen behandelt:

- · Methoden zur Analyse komplexer linearer elektrischer Schaltungen
- Definitionen von U, I, R, L, C, unabhängige Quellen, abhängige Quellen
- Kirchhoff sche Gleichungen, Knotenpunkt-Potential-Methode, Maschenstrom-Methode
- Ersatz-Stromquelle, Ersatz-Spannungsquelle, Stern-Dreiecks-Transformation, Leistungsanpassung
- Operationsverstärker, invertierender Verstärker, Addierer, Spannungsfolger, nicht-invertierender Verstärker, Differenzverstärker
- · Sinusförmige Ströme und Spannungen, Differentialgleichungen für L und C, komplexe Zahlen
- Beschreibung von RLC-Schaltungen mit komplexen Zahlen, Impedanz, komplexe Leistung, Leistungsanpassung
- Brückenschaltungen, Wheatstone-, Maxwell-Wien- und Wien-Brückenschaltungen
- · Serien- und Parallel-Schwingkreise
- · Vierpoltheorie, Z, Y und A-Matrix, Impedanztransformation, Ortskurven und Bodediagramm
- · Transformator, Gegeninduktivität, Transformator-Gleichungen, Ersatzschaltbilder des Transformators
- · Drehstrom, Leistungsübertragung und symmetrische Last

In Workshop A werden die Studierenden in die aktuelle Thematik rund um erneuerbare Energiequellen eingeführt. Hierfür wird eine Solarzelle verwendet und mit Anleitung unterschiedliche praxisnahe Szenarien realisiert, um die Eigenschaften von Photovoltaik und die Vorteile eines Energiespeichers kennenzulernen. Durch die Aufgabenstellung sind die optimale Ausnutzung regenerativer Energiequellen oder die Einflüsse auf Solarmodule durch Abschattung zu untersuchen. Darüber hinaus wird durch einen Langzeitversuch den Studierenden die grundlegenden Funktionen von MATLAB nähergebracht und die Möglichkeiten eines Datenloggers aufgezeigt.

In Workshop B sollen die Studierenden verschiedene Schaltungen mit Operationsverstärkern kennenlernen. Die Aufgabe erstreckt sich dabei von Literaturrecherche über Simulation und experimentellen Aufbau bis hin zur Vermessung der realen Schaltung und die Diskussion der Ergebnisse. Dafür kommen unter anderem einfache Grundschaltungen in Betracht, wie bspw. invertierender- u. nichtinvertierender Verstärker, Differenzverstärker oder RC- und RL-Glieder. Darüber hinaus werden aktive Filter mit Operationsverstärkern (Tiefpässe/Hochpässe höherer Ordnung, RLC-Glied) aufgebaut und Kennlinien wie der Amplituden- oder Phasengang ausgewertet.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der Lehrveranstaltung Lineare Elektrische Netze. Wie im Abschnitt "Erfolgskontrolle(n)" beschrieben, setzt diese sich aus der Note der schriftlichen Prüfung Lineare Elektrische Netze und einem eventuell erhaltenen Notenbonus zusammen. Zusätzlich ist das Bestehen beider Workshops Voraussetzung für das Bestehen des Moduls.

Anmerkungen

Achtung:

Die diesem Modul zugeordneten Teilleistungen sind Bestandteil der Orientierungsprüfung folgender Studiengänge:

- Bachelor Elektrotechnik und Informationstechnik (SPO 2023, §8)
- Bachelor Mechatronik und Informationstechnik (SPO 2023, §8)
- Bachelor Medizintechnik (SPO 2022, §8)

Die Prüfung ist zum Ende des 2. Fachsemesters anzutreten. Eine Wiederholungsprüfung ist bis zum Ende des 3. Fachsemesters abzulegen.

Arbeitsaufwand

Unter den Arbeitsaufwand der LV Lineare Elektrische Netze fallen

- 1. Präsenzzeit in Vorlesungen, Übungen 60 h
- 2. Vor-/Nachbereitung 90 h
- 3. Klausurvorbereitung und Präsenz in selbiger 30 h

Der Zeitaufwand beträgt etwa 180 Stunden. Dies entspricht 6 LP.

Der Arbeitsaufwand eines Workshops setzt sich wie folgt zusammen:

- 1. Präsenzzeit in der Vorbereitungsveranstaltung inkl. Nachbereitung: 2h
- 2. Bearbeitung der Aufgabenstellung: 23h
- 3. Anfertigung der schriftlichen Ausarbeitung (Protokoll): 5h

Der Zeitaufwand pro Workshop beträgt etwa 30 Stunden. Dies entspricht jeweils 1 LP.

11.51 Modul: Machine Vision [M-MACH-101923]

Verantwortung: Dr. Martin Lauer

Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion8ZehntelnotenJedes Wintersemester1 SemesterEnglisch31

Pflichtbestandteile			
T-MACH-105223	Machine Vision	8 LP	Lauer, Stiller

Erfolgskontrolle(n)

Art der Prüfung: schriftliche Prüfung Dauer der Prüfung: 60 Minuten

Voraussetzungen

Keine

Qualifikationsziele

Nach Besuch der Veranstaltung sind die Teilnehmer vertraut mit modernen Techniken des Maschinensehens und der Mustererkennung zur Auswertung von Kamerabildern. Hierzu zählen insbesondere die Techniken zur Auswertung von Grauwertstrukturen, zur Analyse von Farbbildern, zur Segmentierung von Bildinhalten, zur Bestimmung des räumlichen Bezugs zwischen den Bildern und der 3-dimensionalen Welt sowie zur Musterekennung mit verschiedenen Techniken aus dem Bereich der Klassifikationsverfahren. Die Teilnehmer haben gelernt, die Algorithmen mathematisch zu analysieren, als Software zu implementieren und auf Problemstellungen im Bereich der Videobildauswertung anzuwenden. Die Teilnehmer sind in der Lage, Aufgabenstellungen zu analysieren und geeignete algorithmische Verfahren zu entwickeln.

Inhalt

Die Vorlesung behandelt grundlegende Techniken des Maschinensehens. Es konzentriert sich auf folgende Themen:

Bildvorverarbeitung

Kanten- und Eckendetektion

Kurven- und Parameterschätzung

Farbverarbeitung

Bildsegmentierung

Kameraoptik

Mustererkennung

Tiefes Lernen

Bildvorverarbeitung

Das Kapitel über Bildvorverarbeitung behandelt Techniken und Algorithmen zur Filterung und Verbesserung der Bildqualität. Ausgehend von einer Analyse der typischen Phänomene, die bei der Bildaufnahme mit Digitalkameras entstehen, führt die Vorlesung die Fourier-Transformation und das Shannon-Nyquist-Abtasttheorem ein. Zudem werden Grauwerthistogrammbasierte Techniken einschließlich des High-dynamic-range-imaging eingeführt. Die Faltungsoperation sowie typische Filter zur Bildverbesserung beschließen das Kapitel.

Kanten- und Eckenerkennung

Grauwertkanten und -ecken spielen eine große Rolle im Maschinensehen, da sie oft wichtige Informationen über Objektgrenzen und -formen liefern. Grauwertecken können als Merkmalspunkte verwendet werden, da sie in anderen Bildern einfach wiedergefunden werden können. Das Kapitel führt Filter und Algorithmen ein, um Grauwertkanten und -ecken zu erkennen. Beispiele sind der Canny-Detektor sowie der Harris-Detektor.

Kurven- und Parameterschätzung

Um ein Bild durch geometrische Primitive (z.B. Linien, Kreise, Ellipsen) anstatt einzelnen Pixeln beschreiben zu können sind robuste Verfahren zur Parameterschätzung erforderlich. Die Vorlesung führt die Hough-Transformation, das Prinzip der kleinsten quadratischen Abweichung sowie robuste Varianten (M-Schätzer, LTS-Schätzer, RANSAC) ein.

Farbverarbeitung

Dieses kurze Kapitel befasst sich mit der Rolle von Farbe im Maschinensehen. Es führt verschiedene Farbmodelle ein, um die Natur von Farbe sowie die Repräsentation von Farbe zu verstehen. Es schließt mit dem Thema der Farbkonsistenz.

Bildsegmentierung

Bildsegmentierungstechniken gehlren zum Kern der Veranstaltung. Das Ziel der Bildsegmentierung ist es, ein Bild in verschiedene Bereiche zu teilen. Jeder Bereich ist durch eine bestimmte Eigenschaft gekennzeichnet, z.B. gleiche Farbe, Textur oder Zugehörigkeit zum selben Objekt. Verschiedene Ideen zur Segmentierung von Bildern werden in der Vorlesung eingeführt und in Form von Segmentierungsalgorithmen vorgestellt, wobei die Spannbreite von verhältnismäßig einfachen Verfahren wie Region-Growing. Connected-Components-Labeling und morphologischen Operatoren bis hin zu sehr flexiblen und leistungsfähigen Methoden wie Level-Set-Ansätzen und Zufallsfeldern reicht.

Kameraoptik

Der Inhalt eines Bildes ist durch die Kameraoptik mit der 3-dimensionalen Umwelt verknüpft. In diesem Kapitel führt die Vorlesung optische Modelle zur Modellierung der Abbildung zwischen Welt und Bild ein, so z.B. das Lochkameramodell, das dünne-Linsen-Modell, telezentrische und katadioptrische Abbildungsmodelle. Darüberhinaus werden Kalibrierverfahren eingeführt, mit denen die jeweiligen Abbildungen für konkrete Kameras bestimmt werden können.

Mustererkennung

Mustererkennung hat das Ziel, semantische Informationen in einem Bild zu extrahieren, d.h. zu bestimmen, welche Art Objekt ein Bild zeigt. Diese Aufgabe geht über klassische Messtechnik hinaus und gehört in den Bereich der Künstlichen Intelligenz. Das besondere daran ist, dass die Methoden zur Mustererkennung nicht fertige Algorithmen sind, sondern Lernverfahren, die sich mit Hilfe von Beispieldaten an konkrete Aufgabenstellungen anpassen lassen.

Das Kapitel führt Standardtechniken der Mustererkennung ein, darunter die Support-Vector-Machine (SVM), Entscheidungsbäume, Ensemble-Techniken und Boosting-Algorithmen. Es verknüpft diese Verfahren mit leistungsfähigen Bildmerkmalen wie den Histograms-of-oriented-Gradients- (HOG), Haar- oder Locally-binary-patterns- (LBP) Ansatz.

Tiefes Lernen

In den letzten Hagren wurden die Standardverfahren zur Mustererkennung mehr und mehr ersetzt durch Techniken des tiefen Lernens. Tiefes Lernen basiert auf künstlichen neuronalen Netzwerken, einer sehr Istarken und generischen Form eines Klassifikators. Die Vorlesung führt die mehrschichtigen Perzeptronen als wichtigste Form neuronaler Netze ein, bespricht die zugehörigen Lernverfahren und Netzwerktopologien wie tiefe Autoencoder, Faltungsnetze und Multi-Task-Learning.

Arbeitsaufwand

240 Stunden, davon

Präsenzzeit Vorlesung: 15*4 h = 60 h

Vor- und Nachbereitungszeit Vorlesung: 15*6 h=90 h Prüfungsvorbereitung und Präsens in selbiger: 90 h

Lehr- und Lernformen

Vorlesung

Literatur

Main results are summarized in the slides that are made available as pdf-files. Further recommendations will be presented in the lecture.

11.52 Modul: Maschinenkonstruktionslehre [M-MACH-101299]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	4

Pflichtbestandteile				
T-MACH-112225	Maschinenkonstruktionslehre I und II	6 LP	Matthiesen	
T-MACH-112226	Maschinenkonstruktionslehre I, Vorleistung	1 LP	Matthiesen	
T-MACH-112227	Maschinenkonstruktionslehre II, Vorleistung	1 LP	Matthiesen	

Erfolgskontrolle(n)

Schriftliche Prüfung über die Inhalte von Maschinenkonstruktionslehre I&II

Dauer: 90 min zzgl. Einlessezeit

Prüfungsvorleistung: Erfolgreiche Teilnahme an den Vorleistungen im Lehrgebiet Maschinenkonstruktionslehre I&II

Voraussetzungen

Keine

Qualifikationsziele

Lernziel Federn:

- Federarten erkennen können und Beanspruchung erklären können
- Eigenschaften einer federnden LSS in später vorgestellten Maschinenelementen erkennen und beschreiben können
- · Wirkprinzip verstehen und erklären können
- Einsatzgebiete von Federn kennen und aufzählen
- · Belastung und daraus resultierende Spannungen graphisch darstellen können
- · Artnutzgrad als Mittel des Leichtbaus beschreiben können
- Verschiedene Lösungsvarianten bezüglich Leichtbau analysieren können (Artnutzungsgrad einsetzen)
- Mehrere Federn als Schaltung erklären können und Gesamtfedersteifigkeit berechnen können

Lernziel technische Systeme:

- · Erklären können, was ein technisches System ist
- "Denken in Systemen"
- Systemtechnik als Abstraktionsmittel zur Handhabung von Komplexität anwenden
- Funktionale Zusammenhänge technischer Systeme erkennen
- Den Funktionsbegriff kennen lernen
- C&C²-A als Mittel der Systemtechnik anwenden können

Lernziel Visualisierung:

- · Prinzipskizzen erstellen und interpretieren können
- Technische Freihandzeichnung als Mittel zur Kommunikation anwenden
- Die handwerklichen Grundlagen des technischen Freihandzeichnens anwenden können
- Ableitung von 2D-Darstellungen in unterschiedliche perspektivische Darstellungen technischer Gebilde und umgekehrt
- · Lesen von technischen Zeichnungen beherrschen
- · Zweckgerichtet technische Zeichnungen bemaßen
- · Schnittdarstellungen technischer Systeme als technische Skizze erstellen können

Lernziel Lagerungen:

- · Lagerungen in Maschinensystemen erkennen und in ihre Grundfunktionen erklären können
- · Lager (Typ/Bauart/Funktion) nennen und in Maschinensystemen und Technischen Zeichnungen erkennen können
- Einsatzbereiche und Auswahlkriterien für die verschiedenen Lager und Lagerungen nennen und Zusammenhänge erklären können
- Gestaltung der Festlegungen der Lager in verschiedenen Richtungen radial/axial und in Umfangsrichtung funktional erklären können
- Auswahl als iterativen Prozess exemplarisch kennen und beschreiben können
- Dimensionierung von Lagerungen exemplarisch für die Vorgehensweise des Ingenieurs bei der Dimensionierung von Maschinenelementen durchführen können
- Erste Vorstellungen für Wahrscheinlichkeiten in der Vorhersage von Lebensdauern von Maschinenelementen entwickeln
- Am Schädigungsbild erkennen können, ob statische oder dynamische Überlast Grund für Werkstoffversagen war
- Äquivalente statische und dynamische Lagerlasten aus Katalog und gegebenen äußeren Kräften auf das Lager berechnen können
- · Grundgleichung der Dimensionierung nennen, erklären und auf die Lagerdimensionierung übertragen können

Lernziele Dichtungen:

Die Studierenden...

- können das grundlegende Funktionsprinzip von Dichtungen diskutieren.
- · können die physikalischen Ursachen eines Stoffüberganges
- beschreiben.
- können das C&C-Modell auf Dichtungen anwenden
- · können die drei wichtigsten Klassierungskriterien von Dichtungen nennen, erläutern und anwenden
- können die Funktionsweise einer berührungslosen und einer berührenden Dichtung verdeutlichen.
- · können die Dichtungsbauformen unterscheiden, bestimmen und den Klassierungskriterien zuordnen.
- können den Aufbau und die Wirkungsweise eines
- · Radialwellenrings diskutieren.
- · Können statische Dichtungen anhand verschiedener
- Auswahlkriterien bewerten.
- · können dynamische, rotatorische Dichtungen anhand
- · verschiedener Auswahlkriterien bewerten.
- · können translatorische Dichtungen anhand verschiedener
- · Auswahlkriterien bewerten.
- · können das Konstruktionsprinzip "Selbstverstärkung" beschreiben und an einer Dichtung anwenden.

- können den Stickslip anhand des Bewegungsablaufs einer
- · translatorischen Dichtung erklären

Lernziele Gestaltung:

Die Studierenden...

- · können die Grundregeln der Gestaltung und Gestaltungsprinzipien in konkreten Problemen anwenden
- haben die Prozessphasen der Gestaltung verstanden
- können Teilsysteme in ihrer Einbindung in das Gesamtsystem gestalten
- · können Anforderungsbereiche an die Gestaltung nennen und berücksichtigen
- kennen die Hauptgruppen der Fertigungsverfahren
- · kennen die Fertigungsprozesse und können diese erklären
- können die Auswirkung der Werkstoffwahl und des Fertigungsverfahren in einer Konstruktionszeichnung berücksichtigen und erkennbar abbilden.

Lernziele Schraubenverbindungen:

Die Studierenden...

- · können verschiedene Schraubenanwendungen aufzählen und erklären.
- können Bauformen erkennen und in ihrer Funktion erklären
- können ein C&C² Modell einer Schraubenverbindung aufbauen und daran die Einflüsse auf die Funktion diskutieren
- · können die Funktionsweise einer Schraubenverbindung mit Hilfe eines Federmodelles erklären
- · können die Schraubengleichung wiedergeben, anwenden und diskutieren.
- Können die Beanspruchbarkeit niedrig belasteter Schraubenverbindungen zum Zweck der Dimensionierung abschätzen
- Können angeben, welche Schraubenverbindung berechnet und welche nur grob ausgelegt werden
- · Können die Dimensionierung von Schraubenverbindungen als Flanschverbindung durchführen
- Können das Verspannungsschaubild erstellen, erklären und diskutieren

Inhalt

MKL I:

Einführung in die Produktentwicklung

Werkzeuge zur Visualisierung (Techn. Zeichnen)

Produkterstellung als Problemlösung

Technische Systeme Produkterstellung

- Systemtheorie
- · Contact and Channel Approach C&C2-A

Grundlagen ausgewählter Konstruktions- und Maschinenelemente

- Federn
- Lagerung und Führungen
- Dichtungen

Begleitend zur Vorlesung finden Übungen statt, mit folgenden Inhalt:

Getriebeworkshop

Werkzeuge zur Visualisierung (Techn. Zeichnen)

Technische Systeme Produkterstellung

- Systemtheorie
- Contact amd Channel Approach C&C²-A

Federn

Lagerung und Führungen

MKL II:

- Dichtungen
- Gestaltung
- Dimensionierung
- Bauteilverbindungen
- Schrauben

Arbeitsaufwand

MKL1:

Präsenz: 33,5 h

Anwesenheit in Vorlesungen: 15 * 1,5 h = 22,5 h Anwesenheit in Übungen: 8 * 1,5 h = 12 h

Selbststudium: 56,5 h

Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die

Klausur: 56,5 h

Insgesamt: 90 h = 3 LP

MKL2:

Präsenz: 33 h

Anwesenheit in Vorlesungen: 15 * 1,5 h = 22,5 h Anwesenheit in Übungen: 7 * 1,5 h = 10,5 h

Selbststudium: 87 h

Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die

Klausur: 87h

Insgesamt: 150 h = 5 LP

Mehraufwand für Fachfremde Studiengänge MKL1 + MKL2 insgesamt: 30 h = 1 LP

(Wirtschaftsingenieurwesen Bachelor 2015, Chemieingenieurwesen und Verfahrenstechnik Bachelor 2015, Ingenieurpädagogik LA Bachelor Berufliche Schulen 2015, Ingenieurpädagogik LA Bachelor Berufliche Schulen 2015)

Lehr- und Lernformen

Vorlesung

Hörsaalübung

Semesterbegleitende Projektarbeit

Online-Test

11.53 Modul: Maschinenkonstruktionslehre A [M-MACH-106527]

Verantwortung: Prof. Dr.-Ing. Tobias Düser

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile				
T-MACH-112984	Maschinenkonstruktionslehre A	6 LP	Matthiesen	
T-MACH-112981	Workshop zu Maschinenkonstruktionslehre A	2 LP	Matthiesen	

Erfolgskontrolle(n)

Siehe einzelne Teilleistungen

Voraussetzungen

Keine

Oualifikationsziele

In der Maschinenkonstruktionslehre erwerben die Studierenden Kompetenzen zur Analyse und Synthese an Beispielen. Diese umfassen sowohl einzelne Maschinenelemente wie Lager oder Federn als auch kompliziertere Systeme wie Getriebe oder Kupplungen. Die Studierenden können nach Absolvieren der Maschinenkonstruktionslehre die gelernten Inhalte auf weitere – auch aus der Vorlesung nicht bekannte – technische Systeme anwenden, indem sie die exemplarisch erlernten Wirkprinzipien und Grundfunktionen auf andere Kontexte übertragen. Dadurch können die Studierenden unbekannte technische Systeme selbstständig analysieren und für gegebene Problemstellungen geeignete Systeme synthetisieren.

Inhalt

MKL A

- Federn
- · Technische Systeme
- · Lager und Lagerungen
- Dichtungen
- · Bauteilverbindung
- Getriebe

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Keine

Arbeitsaufwand

MKL A: Gesamter Arbeitsaufwand: 240 h, davon Anwesenheit 75 h, aufgeteilt in Vorlesung + Übung: 4 SWS -> 60 h sowie Workshop: 1 SWS -> 15 h; Selbststudium 165 h

Empfehlungen

Keine

Lehr- und Lernformen

Vorlesungen, Übungen und Semsterbegleitende Workshops sowie Projektarbeiten

Literatur

Grundlagen der Berechnung und Gestaltung von Maschinenelementen; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-22033-X oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Grundlage für Keine

11.54 Modul: Maschinenkonstruktionslehre III und IV [M-MACH-102829]

Verantwortung: Prof. Dr.-Ing. Albert Albers

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
13	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	3

Pflichtbestandteile				
T-MACH-104810	Maschinenkonstruktionslehre III und IV	11 LP	Matthiesen	
T-MACH-110955	Maschinenkonstruktionslehre III, Vorleistung	1 LP	Matthiesen	
T-MACH-110956	Maschinenkonstruktionslehre IV, Vorleistung	1 LP	Matthiesen	

Erfolgskontrolle(n)

Schriftliche Prüfung, bestehend aus theoretischem und konstruktivem Teil.

Die theoretische Prüfung dauert 1 Stunde zzgl. Einlesezeit

Die konstruktive Prüfung dauert 3 Stunden zzgl. Einlesezeit.

Es müssen beide Prüfungsteile bestanden werden, um die Gesamtprüfung Maschinenkonstruktionslehre III+IV zu bestehen.

Voraussetzungen

Keine

Qualifikationsziele

In der Maschinenkonstruktionslehre erwerben die Studierenden Kompetenzen zur Analyse und Synthese an Beispielen (= Leitbeispielen). Die Leitbeispiele umfassen sowohl einzelne Maschinenelemente wie Lager oder Federn als auch kompliziertere Systeme wie Getriebe oder Kupplungen. Die Studierenden können nach Absolvieren der Maschinenkonstruktionslehre die gelernten Inhalte auf weitere – auch aus der Vorlesung nicht bekannte – technische Systeme anwenden, indem sie die exemplarisch erlernten Wirkprinzipien und Grundfunktionen auf andere Kontexte übertragen. Dadurch können die Studierenden unbekannte technische Systeme selbstständig analysieren und für gegebene Problemstellungen geeignete Systeme synthetisieren.

Inhalt

Toleranzen und Passungen

Bauteilverbindungen

Getriebe

Grundlagen der Bauteildimensionierung

Wellenkupplungen

Grundlagen der Fluidtechnik

Elektrische Maschinen

Arbeitsaufwand

MKL3:

Präsenz: 45 h

Anwesenheit Vorlesung (15 VL): 22,5h Anwesenheit Übung (7 ÜB): 10,5h

Anwesenheit Projektarbeit (3 Meilensteine x 4h): 12h

Selbststudium: 135 h

Projektarbeit im Team: 90h

Persönliche Vor- und Nachbereitung von Vorlesung und Übung: 45h

MKL4:

Präsenz: 40,5 h

Anwesenheit Vorlesung (13 VL): 19,5h

Anwesenheit Übung (6 ÜB): 9h

Anwesenheit Projektarbeit (3 Meilensteine x 4h): 12h

Selbststudium: 169,5 h

Projektarbeit im Team: 105h

Persönliche Vor- und Nachbereitung von Vorlesung und Übung, inkl. Vorbereitung auf die Klausur: 64,5h

Insgesamt: 390 h = 13 LP

Lehr- und Lernformen

Vorlesungen

Hörsaalübungen

Semesterbegleitende Projektarbeit

11.55 Modul: Mathematische Methoden der Kontinuumsmechanik [M-MACH-106210]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile				
T-MACH-110375	Mathematische Methoden der Kontinuumsmechanik	4 LP	Böhlke	
T-MACH-110376	Übungen zu Mathematische Methoden der Kontinuumsmechanik	2 LP	Böhlke	

Erfolgskontrolle(n)

Details sind den Lehrveranstaltungen des Moduls zu entnehmen

Qualifikationsziele

Details sind den Lehrveranstaltungen des Moduls zu entnehmen

Inhalt

Details sind den Lehrveranstaltungen des Moduls zu entnehmen

11.56 Modul: Mensch-Maschine-Interaktion [M-INFO-100729]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-INFO-101266	Mensch-Maschine-Interaktion	6 LP	Beigl	
T-INFO-106257	Übungsschein Mensch-Maschine-Interaktion	0 LP	Beigl	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Oualifikationsziele

Nach Abschluss der Veranstaltung können die Studierenden

- grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
- grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
- grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
- · existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Inhalt

Themenbereiche sind:

- 1. Informationsverarbeitung des Menschen (Modelle, physiologische und psychologische Grundlagen, menschliche Sinne, Handlungsprozesse),
- 2. Designgrundlagen und Designmethoden, Ein- und Ausgabeeinheiten für Computer, eingebettete Systeme und mobile Geräte.
- 3. Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
- 4. Technische Grundlagen und Beispiele für den Entwurf von Benutzungsschnittstellen (Textdialoge und Formulare, Menüsysteme, graphische Schnittstellen, Schnittstellen im WWW, Audio-Dialogsysteme, haptische Interaktion, Gesten),
- 5. Methoden zur Modellierung von Benutzungsschnittstellen (abstrakte Beschreibung der Interaktion, Einbettung in die Anforderungsanalyse und den Softwareentwurfsprozess),
- 6. Evaluierung von Systemen zur Mensch-Maschine-Interaktion (Werkzeuge, Bewertungsmethoden, Leistungsmessung, Checklisten).
- 7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Präsenzzeit: Besuch der Vorlesung 15 x 90 min = 22 h 30 min Präsenzzeit: Besuch der Übung 8x 90 min =12 h 00 min Vor- / Nachbereitung der Vorlesung 15 x 150 min = 37 h 30 min Vor- / Nachbereitung der Übung 8x 360min =48h 00min Foliensatz/Skriptum 2x durchgehen 2 x 12 h =24 h 00 min Prüfung vorbereiten = 36 h 00 min

SUMME = 180h 00 min

Empfehlungen

Siehe Teilleistung

11.57 Modul: Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen [M-INFO-100824]

Verantwortung: Prof. Dr.-Ing. Jürgen Beyerer **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Wintersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-INFO-101361	Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen	3 LP	Beyerer, Geisler

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Ziel der Vorlesung ist es, den Studierenden fundiertes Wissen über die Phänomene, Teilsysteme und Wirkungsbeziehungen an der Schnittstelle zwischen Mensch und informationsverarbeitender Maschine zu vermittelen. Dafür lernen sie die Sinnesorgane des Menschen mit deren Leistungsvermögen und Grenzen im Wahrnehmungsprozess sowie die Äußerungsmöglichkeiten von Menschen gegenüber Maschinen kennen. Weiter wird ihnen Kenntnis über qualitative und quantitative Modelle und charakteristische Systemgrößen für den Wirkungskreis Mensch-Maschine-Mensch vermittelt sowie in die für dieses Gebiet wesentlichen Normen und Richtlinien eingeführt. Die Studierenden werden in die Lage versetzt, einen modellgestützten Systementwurf im Ansatz durchzuführen und verschiedene Entwürfe modellgestützt im Bezug auf die Leistung des Mensch-Maschine-Systems und die Beanspruchung des Menschen zu bewerten.

Inhalt

nhalt der Vorlesung ist Basiswissen für die Mensch-Maschine-Wechselwirkung als Teilgebiet der Arbeitswissenschaft:

- · Teilsysteme und Wirkungsbeziehungen in Mensch-Maschine-Systemen: Wahrnehmen und Handeln.
- · Sinnesorgane des Menschen.
- · Leistung, Belastung und Beanspruchung als Systemgrößen im Wirkungskreis Mensch-Maschine-Mensch.
- · Quantitative Modelle des menschlichen Verhaltens.
- Das menschliche Gedächtnis und dessen Grenzen.
- · Menschliche Fehler.
- Modellgestützter Entwurf von Mensch-Maschine-Systemen.
- · Qualitative Gestaltungsregeln, Richtlinien und Normen für Mensch-Maschine-Systeme.

Arbeitsaufwand

Gesamt: ca. 60h, davon

- 1. Präsenzzeit in Vorlesungen: 23h
- 2. Vor-/Nachbereitung derselbigen: 12h
- 3. Klausurvorbereitung und Präsenz in selbiger: 25h

Empfehlungen

Siehe Teilleistung.

11.58 Modul: Mess- und Regelungstechnik [M-ETIT-106339]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
1

Pflichtbestandteile			
T-ETIT-112852	Mess- und Regelungstechnik	6 LP	Heizmann, Hohmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

- Studierende haben fundiertes Wissen über die theoretischen Grundlagen der Messtechnik, darunter Skalierungen von Messgrößen, das SI-Einheitensystem, die Modellbildung für Messsysteme, die Beschreibung und Behandlung von systematischen und stochastischen Messabweichungen, die Gewinnung und Linearisierung von Messkennlinien und die Propagation von Messunsicherheiten.
- Studierende beherrschen die Vorgehensweise bei der grundlegenden Gestaltung von Messsystemen unter Berücksichtigung des o.g. Wissens.
- Studierende sind in der Lage, Aufgabenstellungen der Messtechnik zu analysieren, Lösungsmöglichkeiten für Messsysteme zu synthetisieren und die Eigenschaften der erzielten Lösung einzuschätzen
- Ziel ist die Vermittlung der Grundlagen der Regelungs- und Steuerungstechnik, daher können die Studierenden grundsätzliche regelungstechnische Problemstellungen erkennen und bearbeiten. Sie kennen die dafür relevanten Fachbegriffe.
- Die Studierenden sind in der Lage, reale Prozesse formal zu beschreiben und Anforderungen an Regelungsstrukturen im Zeit- und Bildbereich für Festwert- und Folgeregelungen abzuleiten.
- Studierende sind in der Lage die Dynamik von Systemen mit Hilfe graphischer und algebraischer Methoden zu analysieren.
- Die Studierenden können Reglerentwurfsverfahren für einschleifige Eingrößensysteme benennen. Sie können perfekte Regelungen und Steuerungen entwerfen.
- · Sie können Entwurfsschritte mit Hilfe des Nyquistkriteriums und der der Wurzelortzkurve durchführen.
- Studierende können Strukturen zur Störgrößenkompensation, von mehrschleifigen Regelkreisen und zwei Freiheitsgrade Strukturen benennen und Entwurfsschritte dafür ausführen.
- Studierende können im Bildbereich entworfene Regelungen und Steuerungen mit dem Fast Sampling Design digitalisieren.
- Studierende kennen Verfahren des Computergestützten Entwurfs und können Teilschritte darin ausführen.

Inhalt

- Beschreibung von Messgrößen
 - Metrische Größen und ihre Eigenschaften
 - SI-Einheitensystem
- · Struktur von Messsystemen
- Messabweichungen
 - Systematische und stochastische Abweichungen
- Kurvenanpassung
 - Interpolation
 - Approximation
- Kennlinien und ihre Fehler
 - Linearisierung von Kennlinien
 - Behandlung von Störgrößen
- · Unsicherheitspropagation
 - Fehlerfortpflanzung
 - Guide to the Expression of Uncertainty in Measurement (GUM)
- · Grundbegriffe der Regelungs- und Steuerungstechnik
 - Regelkreise
 - Steuerungsstrukturen
 - · Einbettung in Automatisierungsstrukturen
- Beschreibung von Systemen im Zeit- und Bildbereich
 - Zustandsraumdarstellung
 - Ableitung einer E/A Darstellung
 - Signalflussbilder und Regelkreisglieder
 - Realisierung von Reglern (Analog und Digital)
- · Analyse von Regelkreisen im Zeit- und Bildbereich
 - Stationäre Genauigkeit
 - Stabilität
 - Dynamik (Bandbreite)
 - Robustheit
- · Entwurf von einschleifigen Regelkreisen
 - Perfekte Regelung
 - Entwurf mit dem Nyguistkriterium
 - Wurzelortskurve
 - Heuristiken
- Entwurf von erweiterten Regelkreisstrukturen
 - Störgrößenkompensation
 - Vermaschung
 - Zwei Freiheitsgrade Struktur

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Gesamt ca. 180h, davon

- 1. Präsenzzeit in Vorlesungen und Übungen: 60h
- 2. Vor-/Nachbereitung der Vorlesungen und Übungen: 60h
- 3. Klausurvorbereitung und Präsenz in selbiger: 60h

Summe: 180 LP = 6 LP

Empfehlungen

Kenntnisse aus "Signale und Systeme" sind hilfreich.

11.59 Modul: Mikrobiologie [M-CHEMBIO-106205]

Verantwortung: Prof. Dr. Reinhard Fischer

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Medizinisch-technischer Profilierungsbereich

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Wintersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-CHEMBIO-112607	Mikrobiologie	3 LP	Fischer

Erfolgskontrolle(n)

Schriftliche Prüfung im Umfang von 120 Minuten über die Inhalte der Vorlesungsteile Mikrobiologie (3 LP)

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden vertiefen ihr Wissen um die molekularen Grundlagen des Lebens und die technischen Möglichkeiten, Lebewesen über Veränderung ihrer Gene oder deren Expression zu manipulieren. Dies umfasst ein tieferes theoretisches Verständnis folgender Bereiche: Mikrobiologie,Genetik, Molekularbiologie

Inhalt

VL Mikrobiologie:

- · Struktur und Funktion der prokaryotischen Zelle
- Systematik, Phylogenie, Evolution
- · Mikrobielles Wachstum
- · Biogeochemische Stoffzyklen
- Energiestoffwechsel und Biosyntheseleistungen
- · Mikroorganismen und Umwelt
- Biotechnologie

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur

Arbeitsaufwand

Präsenzzeit: 45 h Nachbereitung und Prüfungsvorbereitung: 45 h Summe: 90 h 3 LP

Lehr- und Lernformen

Vorlesungen

Literatur

VL Mikrobiologie:

K. Munk (Hrsg.) Grundstudium Mikrobiologie, Spektrum Vlg. Madigan/Martinko/Parker "Brock Mikrobiologie (Hrsg. W. Goebel),Spektrum G. Fuchs "Allgemeine Mikrobiologie", Thieme Vlg.

11.60 Modul: Nachrichtentechnik I [M-ETIT-102103]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-ETIT-101936	Nachrichtentechnik I	6 LP	Schmalen

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 180 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studentinnen und Studenten können Probleme im Bereich der Nachrichtentechnik beschreiben und analysieren.

Durch Anwendung der erlernten Methoden können Studierende die Vorgänge in nachrichtentechnischen Systemen erfassen, beurteilen und verwendete Algorithmen und Techniken bzgl. ihrer Leistungsfähigkeit vergleichen.

Inhalt

Die Vorlesung stellt eine Einführung in die Nachrichtentechnik auf der Basis mathematischer und systemtheoretischer Grundkenntnisse dar. Es werden hauptsächlich folgende Themen behandelt:

- Grundlagen der Signalaufbereitung, Quantisierung und Quellencodierung zur effizienten Komprimierung von Signalen
- · Signale und Systeme im komplexen Basisband und äquivalente Signalbeschreibung in Tiefpassdarstellung
- · Modulation und Demodulation inklusive Matched-Filter
- Höherwertige Modulationsverfahren
- Grundlagen der Entscheidungstheorie und Berechnung von Fehlerwahrscheinlichkeiten
- Kanalcodierung und Fehlerkorrekturverfahren
- Grundlagen der Informationstheorie und Konzept der Kanalkapazität
- Übertragungskanäle und deren Einfluss auf die Signalübertragung (z.B. Mobilfunk)
- Entzerrung zur Kompensation des Einflusses von Übertragungskanälen
- Mehrträgermodulationsverfahren (z.B. OFDM)
- Mehrantennensysteme zur Kapazitätssteigerung
- · Kurzer Ausblick in die Welt der Netzwerke

Das Modul vermittelt damit einen breiten Überblick über die Grundlagen der Nachrichtentechnik und zeigt, wie diese in die Praxis umgesetzt werden, welche Konzepte bei der Entwicklung eine wichtige Rolle spielen und wie deren Performanz analysiert werden kann. Die grundlegenden Konzepte werden dabei anhand praktischer Verfahren (z.B. WLAN, 5G) illustriert.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Ab WS20/21 erstmals im Wintersemester statt im Sommersemester.

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 3 h = 45 h
- 2. Vor-/Nachbereitung Vorlesung: 15 * 6 h = 90 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
- 5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt: 180 h = 6 LP

Empfehlungen

Dringend empfohlen werden Kenntnisse der Inhalte in Höherer Mathematik I und II (z.B. M-MATH-101731 und M-MATH-101732), sowie Signale und Systeme (M-ETIT-104525) und Wahrscheinlichkeitstheorie (M-ETIT-102104).

11.61 Modul: Nachrichtentechnik II / Communications Engineering II [M-ETIT-105274]

Verantwortung: Dr.-Ing. Holger Jäkel

Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Semester	1 Semester	Deutsch/Englisch	3	1

Pflichtbestandteile			
T-ETIT-110697	Nachrichtentechnik II / Communications Engineering II	4 LP	Jäkel, Schmalen

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Competence Certificate

The assessment will be carried out in the form of a written exam of 120 minutes

Voraussetzungen

keine

Oualifikationsziele

Die Studierenden sind in der Lage, auch komplexere Problemstellungen der Nachrichtentechnik zu analysieren. Sie können selbstständig Lösungsansätze erarbeiten und deren Gültigkeit überprüfen sowie Software zur Problemlösung einsetzen. Die Übertragung der erlernten Methoden ermöglicht den Studierenden, auch andere Themenstellungen schnell zu erfassen und mit dem angeeigneten Methodenwissen zu bearbeiten.

Competence Goal

The students are able to analyze even more complex problems in communications engineering. You can independently develop and validate solutions and use problem-solving software. The transfer of the learned methods enables the students to quickly grasp other topics and to work on them with the appropriate methodological knowledge.

Inhalt

Die Lehrveranstaltung erweitert die in der Vorlesung Nachrichtentechnik I behandelten Fragestellungen. Der Fokus liegt hierbei auf der detaillierten Analyse bekannter Algorithmen und der Einführung neuer Verfahren, die nicht in der Vorlesung Nachrichtentechnik I besprochen wurden, insbesondere aus den Bereichen System- und Kanal-Modellierung, Entzerrung und Synchronisation.

Content

The course broadens the questions dealt with in the lecture Communication Engineering I. The focus here is on the detailed analysis of known algorithms and the introduction of new methods that were not discussed in the lecture Communications Engineering I, especially in the areas of system and channel modeling, equalization and synchronization

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Module grade calculation

The module grade is the grade of the written exam

Anmerkungen

Das Modul kann erstmalig im Sommersemester 2020 begonnen werden. Bitte beachten Sie: Die Lehrveranstaltung "Nachrichtentechnik II" findet jedes Sommersemester (ab Sommersemester 2020) statt und die englische Version "Communications Engineering II" findet jedes Wintersemester statt (ab Wintersemester 2020/2021)

Annotations

The module can be started for the first time in summer term2020. Please note: The German course "Nachrichtentechnik II" takes place every summer term(starting summer term 2020) and the English version "Communications Engineering II" takes place every winter term (starting winter term 2020/2021).

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
- 2. Vor-/Nachbereitung Vorlesung: 15 * 4 h = 60 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
- 5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt: 135 h = 4 LP

Workload

- 1. Attendance Lecture: 15 * 2 h = 30 h
- 2. Preparation / Postprocessing Lecture: 15 * 4 h = 60 h
- 3. Presence Exercise: 15 * 1 h = 15 h
- 4. Preparation / follow-up Exercise: 15 * 2 h = 30 h
- 5. Exam preparation and presence in the same: charged in preparation / follow-up

Total: 135 h = 4 LP

Empfehlungen

Kenntnis der grundlegenden Ingenieurmathematik inklusive Integraltransformationen und Wahrscheinlichkeitstheorie sowie Grundlagenwissen über die Nachrichtentechnik.

Vorheriger Besuch der Vorlesung "Nachrichtentechnik I", "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" wird empfohlen.

11.62 Modul: Optical Networks and Systems [M-ETIT-103270]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
3Version
2

Pflichtbestandteile			
T-ETIT-106506	Optical Networks and Systems	4 LP	Randel

Erfolgskontrolle(n)

Type of Examination: oral exam

Duration of Examination: 20 min (approx.)

Modality of Exam: Oral exams (approx. 20 minutes) are offered throughout the year upon individual appointment.

Voraussetzungen

none

Qualifikationsziele

The module provides knowledge about optical networks and systems with applications ranging from photonic interconnects, to fiber-to-the-home (FTTH), optical metro and long-haul networks, and automotive and industrial automation. The role of various network layers will be discussed in conjunction with relevant standards and protocols. Physical-layer specifications of relevant photonic components and system design trade-offs will be introduced.

The students

- · get familiar with optical network architectures and protocols
- learn how to design optical communication systems in a variety of application scenarios
- · understand how application constraints (performance, cost, energy-efficiency) drive technology innovation
- comprehend the benefits and challenges of using optical communication compared to alternatives (e.g. electrical, and wireless)
- · are familiar with relevant standardization bodies and are able to interpret essential aspects of standard documents.

Inhalt

Photonic interconnects: rack-to-rack, board-to-board, chip-to-chip, datacenter interconnects, intensity modulation, direct detection, single-mode fiber vs. multi-mode fiber, serial vs. parallel optics, space-division multiplexing vs. wavelength-division multiplexing, Ethernet (10G, 40G, 100G), Fibre Channel, scaling and energy efficiency.

Access neetworks: fiber-to-the-X, passive optical networks (GPON, EPON, NG-PON2, WDM PON), statistical multiplexing vs. point-to-point

Metro- and long-haul networks:

- System-design aspects: dense WDM (ITU grid), optical amplifiers, chromatic dispersion, coherent detection, optical vs. electronic impairment mitigation, capacity limits.
- Wavelength switching: wavelength selective switch (WSS), reconfigurable optical add-drop multiplexer (ROADM).
- Standards and protocols: synchronous optical networking and synchronous digital hierarchy (SONET/SDH), optical transport network (OTN), generalized multi-protocol label switching (GMPLS), software-defined networking (SDN).

Optical networks in automotive and industrial automotion: polymer-optical fiber (POF), MOST Bus, Profibus and Profinet, optical vs. electrical communication links, overcoming bandwidth limitations using digital signal processing.

Zusammensetzung der Modulnote

The module grade is the grade of the oral exam.

Arbeitsaufwand

total 120 h, hereof 30 h lecture, 15 h problems class and 75 h recapitulation and self-studies

Empfehlungen

Interest in communications engineering, networking, and photonics.

Literatur

Ivan Kaminow, Tingye Li, Alan E. Willner (Editors), Optical Fiber Telecommunications (Sixth Edition), Elsevier Rajiv Ramaswami, Kumar N. Sivarajan and Galen H. Sasaki, Optical Networks (Third Edition), Elsevier

11.63 Modul: Optik und Festkörperelektronik [M-ETIT-105005]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-110275	Optik und Festkörperelektronik	6 LP	Lemmer

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer 120-minütigen schriftlichen Prüfung zu den Inhalten der Vorlesung und Übung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden erlangen Kenntnisse über die Grundlagen der Quantenmechanik und entwickeln ein Verständnis der festkörperphysikalischen Vorgänge in elektronischen Bauelementen und Werkstoffen der Elektrotechnik und Informationstechnik.

Die Studierenden:

- verfügen über grundlegende Kenntnisse der Quantenmechanik (Schrödinger-Gleichung, Eigenzustände, Aufbau der Materie).
- besitzen grundlegende Kenntnisse der Halbleiterphysik (Bandstruktur, Transporteigenschaften, Halbleitergrundgleichungen).
- kennen die Grundlagen der Modellierung von Halbleiterbauelementen und können die erlernten mathematischen und physikalischen Methoden auf andere Bereiche übertragen.
- · haben ein Verständnis der Wirkungsweise verschiedener Halbleitermaterialien
- haben ein mikroskopisches Verständnis der Wirkungsweise einer pn-Diode.
- verstehen die Polarisierbarkeit und das Verhalten dielektrischer, piezoelektrischer und ferroelektrischer Materialien sowie ihre Bedeutung für Kondensatoren und Isolatoren.
- besitzen Grundkenntnisse zu Aufbau von und Transport in Ionenleitern und erlernen die grundlegende Modellierung und Analogien zu elektrischen Leitern.
- verstehen die grundlegenden Prozesse an Grenzflächen von Ionenleitern zu Halbleitern und Metallen und ihren Einsatz und ihre Wirkungsweise in (Doppelschicht-)Kondensatoren, Batterien und Brennstoffzellen

Inhalt

Im Rahmen der Vorlesung werden folgende Inhalte behandelt:

- · Grundlagen der Quantenmechanik
- Elektronische Zustände
- · Vom Wasserstoffatom zum Periodensystem der Elemente
- · Elektronen in Kristallen
- Halbleiter
- Quantenstatistik für Ladungsträger
- · Dotierte Halbleiter
- · Halbleiter im Nichtgleichgewicht
- Der pn-Übergang
- · Dielektrische, piezoelektrische und ferroelektrische Werkstoffe und deren Anwendung
- Ionenleiter
- Elektrochemische Grenzflächen

Hinweis: Die Dozierenden behalten sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit Vorlesung/Übung/Tutorien: 70 h

Vor- und Nachbereitung, Prüfungsvorbereitung und -präsenz: 110 h

11.64 Modul: Optoelectronic Components [M-ETIT-100509]

Verantwortung: Prof. Dr. Wolfgang Freude

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101907	Optoelectronic Components	4 LP	Freude

Erfolgskontrolle(n)

Type of Examination: oral exam

Duration of Examination: approx. 30 minutes

Modality of Exam: Oral examination, usually one examination day per month during the Summer and Winter terms. An extra questions-and-answers session will be held if students wish so.

Voraussetzungen

none

Qualifikationsziele

Comprehending the physical layer of optical communication systems. Developing a basic understanding which enables a designer to read a device's data sheet, to make most of its properties, and to avoid hitting its limitations.

The students

- understand the components of the physical layer of optical communication systems
- acquire the knowledge of operation principles and impairments of optical waveguides
- · know the basics of laser diodes, luminescence diodes and semiconductor optical amplifiers
- · understand pin-photodiodes
- know the systems sesitivity limits, which are caused by optical and electrical noise

Inhalt

The course concentrates on the most basic optical communication components. Emphasis is on physical understanding, exploiting results from electromagnetic field theory, (light waveguides), solid-state physics (laser diodes, LED, and photodiodes), and communication theory (receivers, noise). The following components are discussed:

- Light waveguides: Wave propagation, slab waveguides, strip wave-guides, integrated optical waveguides, fibre waveguides
- Light sources and amplifiers: Luminescence and laser radiation, luminescent diodes, laser diodes, stationary and dynamic behavior, semiconductor optical amplifiers
- · Receivers: pin photodiodes, electronic amplifiers, noise

Zusammensetzung der Modulnote

The module grade is the grade of the oral exam.

Anmerkungen

There are no prerequisites, but solution of the problems on the exercise sheet, which can be downloaded as homework each week, is highly recommended. Also, active participation in the problem classes and studying in learning groups are strongly advised.

Arbeitsaufwand

total 120 h, hereof 45 h contact hours (30 h lecture, 15 h problem class), and 75 h homework and self-studies

Empfehlungen

Minimal background required: Calculus, differential equations, Fourier transforms and p-n junction physics.

Literatur

Detailed textbook-style lecture notes as well as the presentation slides can be downloaded from the IPQ lecture pages.

Agrawal, G.P.: Lightwave technology. Hoboken: John Wiley & Sons 2004

Iizuka, K.: Elements of photonics. Vol. I, especially Vol. II. Hoboken: John Wiley & Sons 2002

Further textbooks in German (also in electronic form) can be named on request.

11.65 Modul: Optoelektronik [M-ETIT-100480]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskala
4Turnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-ETIT-100767	Optoelektronik	4 LP	Lemmer

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Prüfung (90 Minuten).

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden

- besitzen ein grundlegendes Wissen und Verständnis der Wechselwirkung von Licht und Materie
- kennen die für die Herstellung von optoelektronischen Bauelementen erforderlichen Technologien.
- verfügen über ein Verständnis der Designprinzipien von optoelektronischen Bauelementen.
- können das Wissen in andere Bereiche des Studium übertragen.
- haben grundlegende Kenntnisse über den Aufbau und die Systemintegration von Halbleiterleuchtdioden (LEDs) und Halbleiterlaserdioden.
- kennen die grundlegenden Modulationskonzepte in der Optoelektronik
- haben ein grundlegendes Verständnis von quantenmechanischen Effekten in optoelektronischen Bauelementen.

Inhalt

Einleitung

Optik in Halbleiterbauelementen

Herstellungstechnologien

Halbleiterleuchtdioden

Quantenmechanische Grundlagen der Optoelektronik

Laserdioden

Modulatoren

Weitere Quantenbauelemente

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

ab Wintersemester 2020 / 2021 wird die zugehörige Lehrveranstaltung im Wintersemester angeboten (Verschiebung vom Sommersemester ins Wintersemester)

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen, Übungen: 32 h
- 2. Vor-/Nachbereitung derselbigen: 48 h
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 40 h

Empfehlungen

Kenntnisse der Festkörperelektronik

11.66 Modul: Orientierungsprüfung [M-ETIT-106426]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Universität gesamt

Bestandteil von: Orientierungsprüfung

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
0	best./nicht best.	Jedes Semester	2 Semester	Deutsch	3	1

Pflichtbestandteile					
T-ETIT-113001	Lineare Elektrische Netze	6 LP	Jelonnek, Kempf		
T-ETIT-109317	Lineare Elektrische Netze - Workshop A	1 LP	Leibfried, Lemmer		
T-ETIT-109811	Lineare Elektrische Netze - Workshop B	1 LP	Nahm		
T-ETIT-111815	Physiologie und Anatomie für die Medizintechnik	6 LP	Nahm		

Modellierte Fristen

Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen

Keine

Anmerkungen

BSc Medizintechnik SPO 2022, § 8 enthält wichtige Informationen zur Orientierungsprüfung und zum Verlust des Prüfungsanspruchs.

11.67 Modul: Photovoltaische Systemtechnik [M-ETIT-100411]

Verantwortung: Dipl.-Ing. Robin Grab

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Sommersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-ETIT-100724	Photovoltaische Systemtechnik	3 LP	Grab

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die wesentlichen Komponenten einer Photovoltaik-Anlage, verstehen, wie diese funktionieren und ineinandergreifen und wie photovoltaische Systeme dimensioniert werden. Sie sind sich über die unterschiedlichen Eigenschaften und Einsatzgebiete von Inselsystemen und netzgebundenen Photovoltaik-Anlagen, sowie von Dach- und Freiflächenanlagen im Klaren. Zudem sind ihnen wichtige wirtschaftliche Kennzahlen zur Kostenentwicklung und Verbreitung von Photovoltaik-Anlagen bekannt.

Inhalt

- Energieverbrauch und -bereitstellung
- Solare Einstrahlung
- Konfiguration von PV-Systemen#
- Solarzelle und Solargenerator
- Anpasswandler und MPP-Tracking
- Batterien und Laderegler
- Wechselrichter
- Netzintegration
- Energetische Bewertung von PV-Anlagen
- Wirtschaftliche Bewertung von PV-Anlagen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzstudienzeit: 30 h Selbststudienzeit: 60 h Insgesamt 90 h = 3 LP

11.68 Modul: Physikalisches Anfängerpraktikum [M-PHYS-103435]

Verantwortung: Dr. Hans Jürgen Simonis

Prof. Dr. Alexey Ustinov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
best./nicht best.Turnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile					
T-PHYS-100609	Physikalisches Anfängerpraktikum	6 LP	Ustinov		

Erfolgskontrolle(n)

Zum Praktikum gibt es keine gesonderte Prüfung. Das Praktikum ist bestanden, wenn alle 20 Versuche durchgeführt und die zugehörigen Protokolle fristgerecht angefertigt und anerkannt sind. Das Praktikum wird nicht benotet.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden lernen grundlegende physikalische Phänomene durch experimentelle Erfahrung kennen. Sie können mit unterschiedlichen Messgeräten und Methoden umgehen und sind geübt in Erfassung und Darstellung experimenteller Daten sowie in Datenanalyse mit Fehlerrechnung.

Inhalt

Das Praktikum umfasst die Gebiete

- Mechanik (freier Fall, Schwingungen, Elastizität, Wellenlehre, ..)
- Wärmelehre (Schmelzwärme, Spezifische Wärme, Dampfdruck, Gasthermometer, ..)
- **Elektrizitätslehre** (Spannungsmessung, Brückenschaltung, Wechselstrom, Transformator, elektrischer Schwingkreis, ..)
- Optik (Linsensysteme, Mikroskop, Spektrometrie, Beugung, Brechung, ..)
- Atomphysik (e-Bestimmung, e/m-Bestimmung, Halbleiterwiderstand)

Arbeitsaufwand

- · Präsenzzeit: 60 Stunden
- · Vor- und Nachbereitung zu Hause: 120 Stunden
- · Summe: 180 Stunden

Literatur

Literaturauszüge zu den meisten Versuchen sind auf der Webseite zum Praktikum (s.o.) hinterlegt.

Die dort ebenfalls bereitgestellten detaillierten Versuchsanleitungen (Aufgabenblätter) enthalten weitere Literaturangaben.

11.69 Modul: Physiologie und Anatomie für die Medizintechnik [M-ETIT-105874]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technische Grundlagen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
DeutschLevel
1Version
2

Pflichtbestandteile					
T-ETIT-111815	Physiologie und Anatomie für die Medizintechnik	6 LP	Nahm		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Die Erfolgskontrolle umfasst den Inhalt von Physiologie und Anatomie I (jedes Wintersemester) and Physiologie und Anatomie II (jedes Sommersemester).

Voraussetzungen

Die Module "M-ETIT-100390 - Physiologie und Anatomie I" und "M-ETIT-100391 - Physiologie und Anatomie II" dürfen nicht begonnen sein.

Qualifikationsziele

Nach dem Studium dieses Moduls

- sind die Studierenden in der Lage die strukturellen und funktionellen Grundprinzipien des Organismus auf verschiedenen Organisationsebenen (molekular und zellular bis Organ- und Organsystemebene) zur Einordnung des Organismus in seine Umwelt zu beschreiben und zu erklären,
- verfügen sie über die Fähigkeit, diese Kenntnisse zur Erklärung übergeordneter Organ- und Organsystemfunktionen anzuwenden,
- kennen sie fortgeschrittene mathematische, naturwissenschaftliche und ingenieurwissenschaftliche Methoden zur Beschreibung physiologischer Vorgänge und sind in der Lage diese einzusetzen.
- können sie die funktionellen Zusammenhänge auf der Ebene der Organe und Organsysteme aus diagnostischer und therapeutischer Sicht beschreiben und daraus die Anforderungen an medizintechnische Systeme ableiten
- und können sie die Quellen von Biosignalen identifizieren und Verbindung zwischen physiologischen Parametern und physikalischen Messgrößen herleiten.

Darüber hinaus können die Studierenden selbstorganisiert und reflexiv arbeiten und in kleinen Teams kooperativ Aufgaben lösen. Sie können zu ausgewählten Themen den aktuellen Wissenstand und die Wissenschaftshistorie präsentieren und kritisch diskutieren.

Inhalt

Physiologie und Anatomie I (Wintersemester)

Die Vorlesung vermittelt Basiswissen über die wesentlichen Organsysteme des Menschen und die medizinische Terminologie. Sie wendet sich an Studierende technischer Studiengänge, die an physiologischen Fragestellungen interessiert sind.

Themenblöcke:

- · Organisationsebenen des Organismus
- · Bausteine des Lebens
 - Proteine
 - Lipide
 - Kohlenhydrate
 - Lipide
 - Nuleinsäuren
- Zellen
 - Aufbau
 - Membrantransportprozesse
 - Proteinbiosynthese
 - Zellatmung
 - Nervenzellen
 - Muskelzellen
- Gewebe
 - Gewebetypen
 - Zellverbindungen
- Sinnesorgane
 - Auge
 - Gehör

Physiologie und Anatomie II (Sommersemester)

Die Vorlesung erweitert das vermittelte Wissen des ersten Teils der Vorlesung und stellt weitere Organsysteme des Menschen vor.

Themenblöcke:

- Das Nervensystem
 - · Anatomie und funktionelle Gliederung
- Das kardiovaskuläre System
 - Anatomie und Funktion des Herzens
 - Gefäßsystem und Blutdruck
- · Das respiratorische System
 - Anatomie und Ventilation
 - Gastransport
- · Das Verdauungssystem
 - Anatomie
 - Physiologie der Verdauung
- Das endokrine System
 - Endokrine Organe
 - Hormonelle Signaltransduktion
- Säure-Base-Haushalt
- Wasser-Elektrolyt-Haushalt
- Thermoregulation

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Achtung:

Die diesem Modul zugeordnete Teilleistung ist Bestandteil der Orientierungsprüfung folgender Studiengänge:

• Bachelor Medizintechnik (SPO 2022, §8)

Die Prüfung ist zum Ende des 2. Fachsemesters anzutreten. Eine Wiederholungsprüfung ist bis zum Ende des 3. Fachsemesters abzulegen.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen:

- Präsenzzeit in Vorlesungen (2 h je 30 Termine) = 60 h
- Selbststudium (3 h je 30 Termine) = 90 h
- Vor-/Nachbereitung = 30 h

Gesamtaufwand ca. 180 Stunden = 6 LP

Lehr- und Lernformen Winter-/Sommersemester:

WiSe: Physiologie und Anatomie ISoSe: Physiologie und Anatomie II

11.70 Modul: Praktikum Design und Entwurf von Quantenschaltkreisen [M-ETIT-106262]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
1

Pflichtbestandteile					
T-ETIT-112713	Praktikum Design und Entwurf von Quantenschaltkreisen	6 LP	Kempf		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von einer Prüfungsleistung anderer Art. Diese besteht aus mündlichen Abfragen sowie jeweils einem Protokoll zu den Inhalten und Ergebnissen der drei eigenständigen Teile des Praktikums. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

Nach erfolgreichem Abschluss des Moduls verstehen die Studierenden die Grundlagen des Designs und des Entwurfs von supraleitenden Quantenschaltungen. Sie kennen die Verwendung von Stand-der-Technik-Software im Bereich des Schaltungsentwurfs und wissen, wie man Quantenobjekte als Black-Box beschreiben kann. Zuletzt werden die Studierenden in der Lage sein, Quantenschaltkreise zu analysieren, zu strukturieren und formal zu beschreiben.

Inhalt

In diesem Kurs lernen die Studierenden den Entwurf und die Dimensionierung von Quantenschaltungen auf der Grundlage einer beispielhaften Qubit-Technologie, nämlich den supraleitenden Qubits. Dazu werden Quantenbauelemente als Black Box modelliert und eine Schaltung unter Verwendung der "ad-hoc eingeführten" Kennlinien entworfen und realisiert. Im ersten Teil des Praktikums werden die Studierenden dann ein Quantenbauelement mit Hilfe von SPICE-basierten Simulationen dimensionieren und optimieren. Die Schaltungselemente und die zugehörigen Kennlinien werden zuvor vom Betreuer vorgestellt und mit den Studierenden diskutiert, ohne auf quantenmechanische Feinheiten einzugehen. Im zweiten Teil entwerfen die Studierenden eine einfache Auslese- und Anregungsschaltung mit Hilfe von HF-Simulationen (Sonnet, AWR Microwave Office etc.). Sie werden wichtige Parameter wie Übersprechen, Dynamikbereich usw. simulieren. Im letzten Teil des Praktikums setzen die Studierenden die entworfenen Schaltungen (Quantenbauelement und Auslese- bzw. Anregungsschaltung) in ein geeignetes physikalisches Layout für eine mögliche Fertigung um, wobei sie einerseits die von der Industrie vorgegebenen Entwurfsregeln für die Fertigung und andererseits technologische Methoden wie die Schattenlithographie anwenden. Das Praktikum soll den Studierenden somit einen Einblick in den modernen Schaltungsentwurf und das Layout geben und sie mit einer Reihe von industriell relevanten Simulationswerkzeugen vertraut machen. Auch wenn dieses Praktikum mit Quantenbauelementen durchgeführt wird, sind die erlernten Methoden natürlich auch für den konventionellen Schaltungsentwurf geeignet.

Zusammensetzung der Modulnote

Die mündlichen Abfragen sowie die Protokolle der drei Versuchsteile gehen in die Bewertung der Prüfungsleistung anderer Art ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

A workload of approx. 180 h is required for the successful completion of the module. This is composed as follows:

- 1. Preparation of the lab course: 40 h
- 2. Discussion and lab course planning with supervisor: 10 h
- 3. Attendance time in the lab course: 70 h
- 4. Preparation of the written report: 60 h

11.71 Modul: Praktikum Elektrochemische Energietechnologien [M-ETIT-105703]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile					
T-ETIT-111376	Praktikum Elektrochemische Energietechnologien	5 LP	Röse		

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus vier Versuchen. Der Gesamteindruck wird bewertet. Zum Bestehen des Moduls müssen alle Versuche erfolgreich absolviert werden. Bei Nichtbestehen ist das Praktikum komplett zu wiederholen.

Die Teilnahme an der Praktikums-Sicherheitsunterweisung sowie die Teilnahme an einem Eingangskolloquium ist verpflichtend (unbenotet).

Voraussetzungen

Die Voraussetzung für die Zulassung zum Modul ist, dass die Studierenden die Modulprüfung "M-ETIT-105690 – Electrochemical Energy Technologies" erfolgreich abgelegt haben.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-ETIT-105690 - Electrochemical Energy Technologies muss erfolgreich abgeschlossen worden sein.

Qualifikationsziele

Die Studierenden vertiefen und verfestigen ihre zuvor erlernten Grundkenntnisse aus der Vorlesung "Elektrochemischen Energietechnologien". Sie verstehen, wie man Prozesse an Grenzflächen unter Stoffumwandlung durch Ladungstransfer experimentell analysiert und quantitativ beschreibt. Sie sind in der Lage elektrochemische Zellen aufzubauen, verstehen deren Funktionsprinzip und werden in die Lage versetzt, ablaufende elektrochemische Prozesse zu bestimmen. Des Weiteren sind sie in der Lage elektrochemische Messmethoden gezielt auf Fragestellungen anzuwenden, die relevant für die Analyse moderner Energiewandler und -Speichertechnologien sind.

Sie sind darüber hinaus befähigt, gemessene Daten zu dokumentieren, auszuwerten und die Ergebnisse kritisch zu diskutieren. Sie können Fehlerabschätzungen kompetent durchführen und beherrschen sicher die rechnergestützte Datenauswertung.

Inhalt

Vier ausgewählte experimentelle Versuche aus den Gebieten der Elektrochemie werden durchgeführt:

Praktikumsversuch 1: Ermittlung von Transportparametern reversibler Systeme

- Voltammetrie an einer stationären Elektrode
- · Voltammetrie an einer rotierenden Scheibenelektrode

Praktikumsversuch 2: Bestimmung der Wasserstoff- und Sauerstoffüberspannung

Praktikumsversuch 3: Bau einer Polymerelektrolytmembran Brennstoffzelle

Praktikumsversuch 4: Untersuchung der selbstgebauten PEM-Brennstoffzelle unter verschiedenen Betriebsbedingungen

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilungen der schriftlichen Versuchsprotokolle ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Anmerkungen

Die Teilnahme an der Sicherheitsunterweisung ist Pflicht. Die Teilnahme an der Sicherheitsunterweisung ist im selben Prüfungszeitraum wie das Praktikum erforderlich und muss bei Wiederholung des Praktikums erneut absolviert werden.

Arbeitsaufwand

1. Präsenzzeit im Praktikum: 4x 5 h (Block-Veranstaltung)

2. Vorbereitung für die Versuche: 30 h

3. Anfertigung Protokolle: 100 h

11.72 Modul: Praktikum Hard- und Software in leistungselektronischen Systemen [M-ETIT-103263]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile				
T-ETIT-106498	Praktikum Hard- und Software in leistungselektronischen Systemen	6 LP	Hiller	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung.

Voraussetzungen

Die Module "M-ETIT-100402 - Workshop Schaltungstechnik in der Leistungselektronik" und "M-ETIT-100404 - Workshop Mikrocontroller in der Leistungselektronik" wurden weder begonnen noch abgeschlossen.

Qualifikationsziele

Die Studierenden kennen die für den Entwurf, den Aufbau, die Regelung und die Inbetriebnahme einer leistungselektronischen Schaltung notwendigen Entwicklungsschritte. Sie sind in der Lage, eine einfache leistungselektronische Schaltung selbstständig zu entwickeln. Sie können die Software mit den notwendigen Funktionen für einen sicheren Betrieb einer einfachen leistungselektronischen Schaltung entwerfen. Sie sind in der Lage, die Funktion zu beurteilen und zu dokumentieren.

Inhalt

Die Teilnehmer sollen den Aufbau einer Schaltung vom Design über die Inbetriebnahme bis zur Regelung an einem praktischen Beispiel selbst durchführen. Ziel ist die schrittweise Entwicklung (Schaltplanentwurf, Simulation, Regelung, Parameterbestimmung und Aufbau) eines einfachen funktionsfähigen Geräts durch jeden Teilnehmer nach Vorgaben des Dozenten. An mehreren Nachmittagen werden die einzelnen Schritte bis zur Fertigstellung des Geräts unter Betreuung durchgeführt.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfungsleistung anderer Art.

Die Notenbildung ergibt sich aus der Versuchsdurchführung, -dokumentation und Abfrage zum Verständnis der Lernninhalte

Arbeitsaufwand

Präsenzzeit (14 x 4 h): 60 h

Häusliche Vorbereitungszeit: 42 h

Erstellen des Abschlussberichts: 55 h

Insgesamt: 157 h (entspricht 6 LP)

11.73 Modul: Praktikum Matlab zur Modellierung im Bereich Optoelektronik [M-ETIT-105867]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte 3 Notensle Zehnteln		Dauer 1 Semester	Sprache Deutsch/Englisch	Level	Version	
-------------------------------------	--	----------------------------	------------------------------------	--------------	----------------	--

Pflichtbestandteile				
T-ETIT-111800	Praktikum Matlab zur Modellierung im Bereich Optoelektronik	3 LP	Lemmer	

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus der Beurteilung von Code, schriftlicher Ausarbeitung und mündlicher Befragung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden lernen, numerische Methoden zur Lösung komplexer Probleme anzuwenden.

Die Studierenden sind in der Lage Berechnungen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen.

Begleitend erlernen die Studierenden das Visualisieren von Ergebnissen nach wissenschaftlichen Ansprüchen.

Inhalt

Dieses Modul soll Studierenden die Modellierung mit Matlab vermitteln und dabei die Verwendung von Algorithmen und Methoden zur Simulation nahebringen. Dabei wird zudem auf den Aufbau und die Funktion verschiedener Bauteile im Bereich Optoelektronik eingegangen.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung von Code, schriftlicher Ausarbeitung und mündlicher Befragung ein.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen:

Präsenzzeit in Übungen: 10 h

Eigenständige Programmierung, schriftliche Ausarbeitung und mündliche Befragung: 80 h

11.74 Modul: Product Lifecycle Management [M-MACH-106195]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-MACH-105147	Product Lifecycle Management	4 LP	Ovtcharova

Erfolgskontrolle(n)

Schriftliche Prüfung 90 Min.

Voraussetzungen

Keine

Qualifikationsziele

Nach erfolgreichem Besuch der Lehrveranstaltung können die Studierende:

- die Herausforderungen beim Datenmanagement und -austausch benennen und Lösungskonzepte hierfür beschreiben.
- · das Managementkonzept PLM und seine Ziele verdeutlichen und den wirtschaftlichen Nutzen herausstellen.
- die Prozesse die zur Unterstützung des Produktlebenszyklus benötigt werden erläutern und die wichtigsten betrieblichen Softwaresysteme (PDM, ERP, ...) und deren Funktionen beschreiben.

Inhalt

- Grundlagen für das Produktdatenmanagement und den Datenaustausch
- IT-Systemlösungen für Product Lifecylce Management (PLM)
- · Wirtschaftslichkeitsbetrachtung und Einführungsproblematik
- · Anschauungsszenario für PLM am Beispiel des Institutseigenen 14.0Lab

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung

Arbeitsaufwand

Präsenzzeit in Vorlesungen und Übungen: 15*3 h = 45 h

Vor-/Nachbereitung derselbigen: 15*2 h = 30 h Klausurvorbereitung und Präsenz in selbiger: 45 h

Summe: 120 h = 4 LP

Lehr- und Lernformen

Vorlesung und Übungen

11.75 Modul: Radiation Protection [M-ETIT-100562]

Verantwortung: PD Dr. Bastian Breustedt

Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
3Version
3

Pflichtbestandteile			
T-ETIT-100825	Radiation Protection	3 LP	Breustedt, Nahm

Erfolgskontrolle(n)

Success control is carried out as part of an overall written examination (2 h).

Voraussetzungen

none

Qualifikationsziele

- The students understand the terminology used in radiation protection and apply it correctly.
- The students are able to describe the types of ionizing radiation, their properties and the principles for their measurement.
- · The students are able to describe the biological risks associated to exposures to ionizing radiation.
- The students are able to describe the basic principles of radiation protection and their implementation in national and international law.
- Based on a basic understanding of the scientific foundations of radiation protection the students are able to critically evaluate radiation protection measures for a given situation, which involves the use of ionizing radiation.

Inhalt

The module covers the basics of radiation protection for ionizing radiation and provides an overview of the subject.

The topics which will be covered are:

- · Ionizing Radiation and its applications,
- · Interaction of Radiation with Matter,
- · Biological Effects of Radiation,
- · Measurement of Radiation Principles and detector designs,
- Measurement of Radiation Applications and Examples
- · Dosimetry for external + internal Exposures,
- · Legal Aspects (Regulation, Ethics) and
- · Radiation Protection Principles and Application

The students will gain insight on ionizing radiation, it's applications and the biological risks associated with exposures to ionizing radiation. The scientific foundations of radiation protection (natural sciences, engineering, medicine as well as sociological and legal basics) are summarized. The pricinclples, standards and practice of radiation protection in applications of ionizing radiation are derived and demonstrated.

Zusammensetzung der Modulnote

The module grade is the grade of the written exam.

Arbeitsaufwand

Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in lectures (2 h * 15 appointments each) = 30 h

Self-study (3 h * 15 appointments each) = 45 h

Preparation / post-processing = 20 h

Total effort approx. 95 hours = 3 LP

Empfehlungen

Basic knowledge in the field of physics is helpful.

11.76 Modul: Radio-Frequency Electronics [M-ETIT-105124]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
3Version
2

Pflichtbestandteile			
T-ETIT-110359	Radio-Frequency Electronics	5 LP	Ulusoy

Erfolgskontrolle(n)

The success criteria will be determined by a written examination of 120 min.

Voraussetzungen

none

Qualifikationsziele

- * The students have a comprehensive understanding of the theory and the basic design methodology of electronic circuits at high frequencies.
- * They understand the limitations of active and passive circuit elements including various transistor technologies and their impact on the applications.
- * They understand the limitations and how linear network theory is applied for advanced electronic circuits.
- * The students can apply the acquired theoretical knowledge using modern design tools.

Inhalt

In this module, the theory and design methodology of high-frequency electronic circuits will be studied in detail. The focus of the module is on the fundamentals of active linear circuits. The important topics are phasor analysis, resonance, impedance matching networks, two-port parameters of transistors, high-frequency behavior of basic amplifier circuits, practical design methodology of high-frequency amplifiers, and introduction to the design of non-linear circuits using the linear design methodology. In the tutorial the student will have the possibility to apply their theoretical knowledge by designing, assembling and testing a radio-frequency amplifier in the framework of a design challeng

Zusammensetzung der Modulnote

The module grade is the grade of the written examination.

Arbeitsaufwand

- 1. Attendance to the lectures (15*(2)=30h)
- 2. Attendance to the exercises and workshop (15*(2)=30h)
- 3. Preparation to the lectures, exercises and workshop (15*(1+1)=30h)
- 4. Preparation of homework assignments and to the oral exam (20+40h)

Total: 150h = 5L

Empfehlungen

Contents of the modules "Linear electrical networks" and "Electronic circuits".

11.77 Modul: Robotik I - Einführung in die Robotik [M-INFO-100893]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
3

Pflichtbestandteile			
T-INFO-108014	Robotik I - Einführung in die Robotik	6 LP	Asfour

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Studierende sind in der Lage, die vorgestellten Konzepte auf einfache und realistische Aufgaben aus der Robotik anzuwenden. Dazu zählt die Beherrschung und Herleitung der für die Robotermodellierung relevanten mathematischen Konzepte. Weiterhin beherrschen Studierende die kinematische und dynamische Modellierung von Robotersystemen, sowie die Modellierung und den Entwurf einfacher Regler. Die Studierenden kennen die algorithmischen Grundlagen der Bewegungs- und Greifplanung und können diese Algorithmen auf Problemstellungen der Robotik anwenden. Sie kennen Algorithmen aus dem Bereich der Bildverarbeitung und sind in der Lage, diese auf Problemstellungen der Robotik anzuwenden. Sie können Aufgabenstellungen als symbolisches Planungsproblem modellieren und lösen. Die Studierenden besitzen Kenntnisse über intuitive Programmierverfahren für Roboter und kennen Verfahren zum Programmieren und Lernen durch Vormachen.

Inhalt

Die Vorlesung vermittelt einen Überblick über die Grundlagen der Robotik am Beispiel von Industrierobotern, Service-Robotern und autonomen humanoiden Robotern. Dabei wird ein Einblick in alle relevanten Themenbereiche gegeben. Dies umfasst Methoden und Algorithmen zur Modellierung von Robotern, Regelung und Bewegungsplanung, Bildverarbeitung und Roboterprogrammierung. Zunächst werden mathematische Grundlagen und Methoden zur kinematischen und dynamischen Robotermodellierung, Trajektorienplanung und Regelung sowie Algorithmen der kollisionsfreien Bewegungsplanung und Greifplanung behandelt. Anschließend werden Grundlagen der Bildverarbeitung, der intuitiven Roboterprogrammierung insbesondere durch Vormachen und der symbolischen Planung vorgestellt.

In der Übung werden die theoretischen Inhalte der Vorlesung anhand von Beispielen weiter veranschaulicht. Studierende vertiefen ihr Wissen über die Methoden und Algorithmen durch eigenständige Bearbeitung von Problemstellungen und deren Diskussion in der Übung. Insbesondere können die Studierenden praktische Programmiererfahrung mit in der Robotik üblichen Werkzeugen und Software-Bibliotheken sammeln.

Anmerkungen

Dieses Modul darf nicht gerprüft werden, wenn im Bacherlor-Studiengang Informatik SPO 2008 die Lehrveranstaltung **Robotik I** mit **3 LP** im Rahmen des Moduls **Grundlagen der Robotik** geprüft wurde.

Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung, 6 LP. 6 LP entspricht ca. 180 Stunden, davon ca. 45 Std. Vorlesungsbesuch

ca. 15 Std. Übungsbesuch

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

11.78 Modul: Seminar Batterien I [M-ETIT-105319]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
1

Pflichtbestandteile			
T-ETIT-110800	Seminar Batterien I	3 LP	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von einer schriftlichen Ausarbeitung und einem Seminarvortrag. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

Nach Abschluss des Seminars sind die Studierenden in der Lage sich selbstständig in eine ingenieurswissenschaftliche Fragestellung im Themengebiet Batterien einzuarbeiten, die zugehörige Literatur zu analysieren und diese in Form einer schriftlichen Ausarbeitung sowie einer Präsentation vorzustellen.

Inhalt

Das Seminar "Batterien I" richtet sich in erster Linie an Studierende im Bachelorstudiengang, die planen, eine Bachelorarbeit im Forschungsgebiet Batterien durchzuführen.

In diesem Seminar werden von den Teilnehmern wissenschaftliche Fragestellungen im Themengebiet Batterien bearbeitet. Dies umfasst in der Regel eine Literaturrecherche, die Zusammenstellung der in den Veröffentlichungen beschriebenen Methoden, Verfahren und Ergebnisse sowie eine kritische Bewertung derselben. Im Einzelfall können neben einer Literaturrecherche auch andere, praxisnahe Themen bearbeitet werden.

Die Ergebnisse werden in einer Seminararbeit zusammengefasst und im Rahmen des Seminars in einem Vortrag präsentiert. In die Benotung der Arbeit fließt die schriftliche Ausarbeitung sowie ein Vortrag, der im Rahmen der Veranstaltung zu halten ist, ein.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der schriftlichen Ausarbeitung und des Seminarvortrags ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

1. Präsenszeit Seminar: 15 * 2 h = 30 h

- 2. Erstellung Seminararbeit: 30 h
- 3. Erstellung Seminarvortrag: 30 h

Insgesamt: 90 h = 3 LP

11.79 Modul: Seminar Brennstoffzellen I [M-ETIT-105320]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
1

Pflichtbestandteile			
T-ETIT-110798	Seminar Brennstoffzellen I	3 LP	Weber

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von einer schriftlichen Ausarbeitung und einem Seminarvortrag. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

Nach Abschluss des Seminars sind die Studierenden in der Lage sich selbstständig in eine ingenieurswissenschaftliche Fragestellung im Themengebiet Brennstoffzellen einzuarbeiten, die zugehörige Literatur zu analysieren und diese in Form einer schriftlichen Ausarbeitung sowie einer Präsentation vorzustellen.

Inhalt

Das Seminar "Forschungsprojekte Brennstoffzellen" richtet sich in erster Linie an Studierende, die planen, eine wissenschaftliche Abschlussarbeit im Forschungsgebiet Brennstoffzellen durchzuführen.

In diesem Seminar werden von den Teilnehmern wissen-schaftliche Fragestellungen im Themengebiet Brennstoffzellen bearbeitet. Dies umfasst eine Literaturrecherche, die Zusammenstellung der in den Veröffentlichungen beschriebenen Methoden, Verfahren und Ergebnisse sowie eine kritische Bewertung derselben.

Die Ergebnisse werden in einer Seminararbeit zusammengefasst und im Rahmen des Seminars in einem Vortrag präsentiert. In die Benotung der Arbeit fließt die schriftliche Ausarbeitung sowie ein Vortrag, der im Rahmen der Veranstaltung zu halten ist, ein.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der schriftlichen Ausarbeitung und des Seminarvortrags ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

- 1. Präsenszeit Seminar: 15 * 2 h = 30 h
- 2. Erstellung Seminararbeit und Vortrag: 30 h
- 3. Erstellung Seminarvortrag: 30 h

Insgesamt: 90 h = 3 LP

11.80 Modul: Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung [M-ETIT-100397]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

KIT-Fakultät für Informatik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-ETIT-100714	Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung	4 LP	Hiller	

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus einem 15-minütigen Abschlussvortrag mit anschließender Diskussion sowie einer 2-seitigen schriftlichen Ausarbeitung. Der Gesamteindruck wird bewertet.

Bewertet werden:

- Vortrag
 - Folienqualität (Form und Inhalt)
 - Vortrag (Aufbau, Stil, Inhalt)
 - Verhalten bei der Fragerunde
- · Ausarbeitung mit einer Zusammenfassung der wesentlichen Inhalte
 - Format, Rechtschreibung, sprachlicher Stil (wissenschaftlich/sachlich)
 - Inhalt, (grafische) Aufbereitung der recherchierten Ergebnisse
 - Qualität und Quantität der verwendeten Quellen, Zitationsstil

Voraussetzungen

keine

Qualifikationsziele

Die Teilnehmer sind in der Lage, den aktuellen Stand der Technik des Fachgebiets "Leistungselektronik in Systemen der regenerativen Energieerzeugung" durch selbständige Literaturrecherche und Literaturstudium zu erschließen.

Sie erarbeiten eine komprimierte Darstellung der wesentlichen Fakten und Zusammenhänge. Sie beherrschen die persönlichen und technischen Aspekte der Präsentationstechnik. Sie sind in der Lage, die Ergebnisse in einem öffentlichen Fachvortrag darzustellen und Fragen des Publikums zu beantworten.

Inhalt

Die Teilnehmer des Seminars sollen eigenständig Recherchen zu aktuellen Themen der Wissenschaft und Forschung durchführen. Neben der Recherche ist die Auswahl der relevanten Ergebnisse und deren Präsentation vor Fachpublikum Hauptbestandteil des Seminars.

Der Schwerpunkt liegt auf Leistungselektronik in Systemen der regenerativen Energieerzeugung.

Die genauen Themen werden in jedem Semester neu definiert. Vergangene Seminare hatten beispielsweise folgende Themen:

- · Off-Shore-Windparks: Projekte, Technik, Netzanbindung
- · Gewinnung elektrischer Energie aus dem Meer
- Solaranlagen
- · Windkraftanlagen: Moderne Ausfuhrungen und Netzanbindung
- "Private" Energiewende (Mögliche Maßnahmen zuhause)

Der Dozent behält sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilungen des Abschlussvortrags sowie der schriftlichen Ausarbeitung (jeweils nach den oben genannten Kriterien) ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Sieht man den Prüfling zwischen zwei Notenwerten, gibt die Mitarbeit in den vorbereitenden Treffen den Ausschlag.

Anmerkungen

Teilnahme an insgesamt 7 vorbereitenden Treffen (ca. alle 14 Tage mit durchschnittlich 1,5 h Dauer) mit den Themen:

- Infoveranstaltung
- Besprechung und Verteilung der Themen
- Vortrags- und Präsentationstechniken
- Präsentation der Materialsammlungen
- · Vorstellung von Struktur und Aufbau der Vorträge
- Vorstellung der fertigen Folienpräsentation
- Probevorträge

Arbeitsaufwand

Anwesenheit an vorbereitenden Treffen: 14 h

4x Vorbereitung à 24 h: 96 h

Insgesamt ca.: 110 h (entspricht 4 LP)

11.81 Modul: Seminar über ausgewählte Kapitel der Biomedizinischen Technik [M-ETIT-100383]

Verantwortung: Dr.-Ing. Axel Loewe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Wintersemester1 SemesterDeutsch31

Pflichtbestandteile				
T-ETIT-100710	Seminar über ausgewählte Kapitel der Biomedizinischen Technik	3 LP	Loewe	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages (ca. 25 Minuten) mit nachfolgender Diskussion (ca. 10 Minuten) .

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage, ein wissenschaftliches Thema aus der biomedizinische Technik zu recherchieren, Wesentliches herauszuarbeiten, den Inhalt aufzuarbeiten, einen Vortrag auszuarbeiten und schließlich zu präsentieren.

Inhalt

Das Seminar hat das Ziel, dass Studenten selbstständig ein wissenschaftliches Thema im Bereich der Biomedizinischen Technik aufarbeiten und dieses präsentieren, um ihre Präsentationsfertigkeiten zu verbessern. Zuerst wird eine Einführung in Präsentationstechniken und in Feedback-Regeln gegeben. Dann erfolgt eine Testpräsentation, um die erlernten Techniken auszuprobieren. Schließlich wählen die Studenten ein Thema der biomedizinischen Technik für ihre Präsentation aus und bereiten einen Fachvortrag über dieses Thema vor.

Zusammensetzung der Modulnote

Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages (ca. 25 Minuten) mit nachfolgender Diskussion (ca. 10 Minuten).

Arbeitsaufwand

Präsenzzeit: 15 Wochen * 2SWS = 30h

Erarbeitung des Themas, Austausch mit Betreuer, Vorbereitung des Vortrags: 60h

11.82 Modul: Seminar: Grundlagen Eingebetteter Systeme [M-ETIT-105356]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Prof. Dr.-Ing. Eric Sax Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Semester	1 Semester	Deutsch	3	2

Pflichtbestandteile			
T-ETIT-110832	Seminar: Grundlagen Eingebetteter Systeme	4 LP	Becker, Sax, Stork

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Ausarbeitung sowie eines Vortrags. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

Die Teilnehmer des Seminars können sich selbstständig in ein gegebenes technisches Thema einarbeiten, alle relevanten Aspekte identifizieren und die Ergebnisse zusammenfassend darstellen. Sie können die Ergebnisse einer Arbeit prägnant in Form eines kurzen Textes (etwa 4-6-seitige Ausarbeitung) sowie einem etwa 30-minütigen Vortrag in Wort und Bild (Folien) präsentieren.

Inhalt

Im Seminar "Eingebettete Systeme" wird durch die Studierenden unter Anleitung von wissenschaftlichen Mitarbeitenden ein gegebenes Thema aus dem Bereich der Informationsverarbeitung durch Literatur- und Internetrecherche aufgearbeitet und dann in einem kurzen Text (etwa 4-6-seitige Ausarbeitung) sowie einem etwa 30-minütigen Vortrag in Wort und Bild (Folien) den anderen Seminarteilnehmern präsentiert.

Zusammensetzung der Modulnote

Die Notenbildung ergibt sich aus der Ausarbeitung und dem Vortrag.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen:

- 1. Selbstständige Einarbeitung in ein Thema: 60h
- 2. Erstellen eines wissenschaftlichen Artikels: 40h
- Vorbereiten und Halten des Vortrags: 20h

Summe: 120h = 4 LP

11.83 Modul: Signale und Systeme [M-ETIT-106372]

Verantwortung: Dr.-Ing. Mathias Kluwe

Prof. Dr.-Ing. Sander Wahls

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Informationstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	2	2

Pflichtbestandteile				
T-ETIT-112860	Signale und Systeme	7 LP	Kluwe, Wahls	
T-ETIT-112861	Signale und Systeme - Workshop	1 LP	Kluwe, Wahls	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Zusätzlich ist die Anfertigung des Protokolls im Rahmen des Workshops Voraussetzung für das Bestehen des Moduls.

Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden beherrschen die Grundlagen, Eigenschaften und Rechenregeln der Laplace-Transformation und können diese zur Lösung von linearen Differentialgleichungen anwenden.
- Die Studierenden sind in der Lage, die Laplace-Transformation zur Beschreibung zeitkontinuierlicher dynamischer Systeme zu nutzen.
- Die Studierenden kennen einige Grundlagen der komplexen Analysis im Kontext der Integraltransformationen wie z.B. Laurententwicklung und Residuensatz.
- Die Studierenden kennen die komplexe Umkehrformel der Laplace-Transformation und können diese für komplizierte Bildfunktionen einsetzen.
- Die Studierenden kennen die zweiseitige Laplace-Transformation und beherrschen die Grundlagen, Eigenschaften und Rechenregeln der Fourier-Transformation.
- Studierende können die Fourier-Transformation zur Beschreibung von zeitkontinuierlichen Signalen im Frequenzbereich anwenden.
- Studierende sind mit dem Abtasttheorem für die Umsetzung von zeitkontinuierlichen in zeitdiskrete Signale vertraut und können die können die diskrete Fourier-Transformation zur Beschreibung von zeitdiskreten Signalen im Frequenzbereich anwenden.
- Die Studierenden sind vertraut mit den Grundlagen, Eigenschaften und Rechenregeln der z-Transformation.
- · Studierende können die z-Transformation zur Beschreibung von zeitdiskreten Systemen anwenden.

Inhalt

- Laplace-Transformation
 - Motivation und Definition
 - Eigenschaften und Beispiele
- · Laplace-Transformation gewöhnlicher Differentialgleichungen
 - Gewöhnliche und verallgemeinerte Differentiationsregel
 - Laplace-Transformation allgemeiner linearer Differentialgleichungen mit konstanten Koeffizienten
 - Rücktransformation über die Partialbruchzerlegung rationaler Funktionen
 - Rechenregeln der Laplace-Transformation (1):
 - Integrationsregel und Dämpfungsregel
 - Rücktransformation über die Faltungsregel der Laplace-Transformation
 - Rechenregeln der Laplace-Transformation (2): Verschiebungsregeln und Grenzwertsätze
- Charakterisierung des Übertragungsverhaltens dynamischer Systeme mit Übertragungs- und Gewichtsfunktion
- · Funktionentheorie: Laurent-Entwicklung, Residuum und Residuensatz
- Komplexe Umkehrformel der Laplace-Transformation
 - Herleitung der komplexen Umkehrformel
 - Berechnung des komplexen Umkehrintegrals
- Zweiseitige Laplace-Transformation und Fourier-Transformation
 - Zweiseitige Laplace-Transformation
 - Definition und Eigenschaften der Fourier-Transformation
 - Rechenregeln und Korrespondenzen der Fourier-Transformation
- z-Transformation
 - Definition, Eigenschaften und Rechenregeln der z-Transformation
 - Einsatz zur Lösung von Differenzengleichungen
- · Mathematische Grundlagen: Räume
- · Zeitkontinuierliche Signale
 - Fourier-Reihe
 - Fourier-Transformation
 - Testsignale
 - Allgemeine Signaleigenschaften
- · Zeitkontinuierliche Systeme
 - Eigenschaften
 - Systembeschreibung durch Differentialgleichungen
 - Laplace-Transformation
 - Systemfunktion
 - Frequenzselektive Filter
- · Zeitdiskrete Signale
 - Fourier-Transformation zeitdiskreter Signale
 - Abtasttheorem
 - Diskrete Fourier-Transformation
- Zeitdiskrete Systeme
 - Eigenschaften
 - Systembeschreibung durch Differenzengleichungen
 - Die z-Transformation
 - Systemfunktion
 - Zeitdiskrete Darstellung kontinuierlicher Systeme
 - Frequenzselektive Filter

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Gesamt ca. 240h, davon

- 1. Präsenzzeit in Vorlesungen und Übungen: 75h
- 2. Vor-/Nachbereitung der Vorlesungen und Übungen: 115h
- 3. Klausurvorbereitung und Präsenz in selbiger: 25h
- 4. Vorbereitungszeit für den Workshop: 5h
- 5. Präsenzzeit im Workshop: 15h
- 6. Anfertigung des Protokolls zum Workshop: 5h

Summe: 240 LP = 8 LP

Empfehlungen Kenntnisse aus HM3 sind hilfreich.

11.84 Modul: Spezielle Themen der Medizintechnik [M-ETIT-105878]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technische Grundlagen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
2

Pflichtbestandteile			
T-ETIT-111819	Spezielle Themen der Medizintechnik	8 LP	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Die schriftliche Prüfung umfasst die Lehrinnhalte der drei Lehrveranstaltungen: Aktuelle Entwicklungen in der Biomedizinischen Technik, Spezielle Anforderungen an die Medizintechnik und Einführungsseminar über ausgewählte Themen der Biomedizinischen Technik.

Voraussetzungen

keine

Qualifikationsziele

In diesem Modul erhalten die Studierenden einen Überblick über die Aspekte, die speziell für die Medizintechnik von hoher Relevanz sind.

Das übergeordnete Qualifikationsziel ist ein grundlegendes Verständnis für die besonderen Herausforderungen und Anforderungen in der Medizintechnik.

Die Studierenden können Beispiele für die aktuellen Herausforderungen für die industrielle Forschung und Entwicklung und für die Grundlagenforschung auf dem Gebiet der Biomedizinischen Technik nennen und erklären. Sie können Anforderungen aus Sicht der Anwender, der Patienten und der Industrie an Beispielen entwickeln und formulieren. Sie können Beispiele für aktuelle Forschungsthemen erklären und die zugrundeliegenden wissenschaftlichen Fragestellungen ableiten.

Die Studierenden kennen die grundlegenden Anforderungen an die Medizintechnik aus regulatorischer Sicht, unter dem Aspekt der Patientensicherheit und im Hinblick auf die Validierung und Zulassung. Sie kenne grundlegende Standards und Normen und Können diese auf Beispiele anwenden.

Inhalt

- · Die Inhalte liegen im Ermessen der zukünftig dafür zuständigen Dozenten.
- Da die entsprechenden Berufungsverfahren noch nicht abgeschlossen sind kann an dieser Stelle keine detaillierte Inhaltsangabe erfolgen.
- Die Modulbeschreibung wird im Zuge der Neuberufungen umgehend angepasst.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Vorlesungen: "Aktuelle Entwicklungen in der Biomedizinischen Technik" und "Spezielle Anforderungen an die Medizintechnik", jeweils

- Präsenzzeiten in Vorlesungen (1,5h je 15 Termine) = 22,5 h
- Vor-/Nachbereitung (2 h je 15 Termine) = 30 h
- Selbststudium und Prüfungsvorbereitung: 30,5 h

Summe: 83 Stunden = 3 LP

Einführungsseminar über ausgewählte Themen der Biomedizinischen Technik

• Präsenzzeiten Seminar: 14 x 1,5h = 21 h

- Vorbereitung / Nachbereitung: 14 x 2h = 28 h
- · Selbststudium: 10h

Summe: 59 h = 2 LP

Gesamtaufwand der drei Veranstaltungen: 225 h = 8 LP

Empfehlungen

Kenntnisse in:

- · Physiologie und Anatomie für die Medizintechnik
- Medizintechnik in der Klinik
- · Lineare elektrische Netze
- Elektromagnetische Felder
- Digitaltechnik

Lehr- und Lernformen

Vorlesung: **Ringvorlesung über aktuelle Entwicklungen in der Medizintechnik**, 2 SWS / 3 ECTS, N.N. (Nachf. Dössel). Die Dozenten für die Vorlesungseinheiten kommen aus den Produktentwicklungsbereichen medizintechnischer Unternehmen und aus Universitären oder klinischen Forschungsgruppen.

Vorlesung: **Spezielle Anforderungen an die Medizintechnik**, 2 SWS / 3 ECTS, N.N. (Nachf. Dössel). In diese Veranstaltungen sollen insbesondere zu den Themen Regulatory and Clinical Affairs und Entwicklungsprozessen Spezialisten aus der industriellen Praxis einbezogen werden.

Seminar: Einführung in ausgewählte Themen der Biomedizinischen Technik. 2 SWS / 2 ECTS, A. Loewe

11.85 Modul: Statistische Methoden der Informationsverarbeitung [M-ETIT-105960]

Verantwortung: Dr.-Ing. Holger Jäkel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile			
T-ETIT-112108	Statistische Methoden der Informationsverarbeitung	4 LP	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von 20 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden werden in die Lage versetzt, ausgewählte Methoden der statistischen Informations- und Nachrichtenverarbeitung anzuwenden, indem diese anhand von verschiedenen Themen eingeführt und illustriert werden. Sie entwickeln ein Bewusstsein für mögliche Lösungsansätze und geeignete Methoden.

Zudem sind Absolventen der Vorlesung mit verschiedenen Aspekten der Informationsverarbeitung, wie unter anderem Filterung und Anwendung statistischer Methoden, vertraut und können die erworbenen Methodenkenntnisse in andere Themenbereiche übertragen.

Inhalt

Gegenstand der Vorlesung ist die Vermittlung der vielfältigen Verarbeitungsmethoden bei der Informationsverarbeitung im Bereich der Nachrichtentechnik. Neben einer kurzen Wiederholung der Wahrscheinlichkeitstheorie in Kombination mit Signalverarbeitung ist insbesondere deren Anwendung auf nachrichtentechnische Systeme zu nennen. Weiterhin spielen Probleme der Parameterschätzung und Entscheidungstheorie eine wichtige Rolle, beispielsweise zur Kanalschätzung, zur Simulation nachrichtentechnischer Systeme und deren Zuverlässigkeitsanalyse.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
- 2. Vor-/Nachbereitung Vorlesung: 15 * 2 h = 30 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor-/Nachbereitung Übung: 15 * 1 h = 15 h
- 5. Klausurvorbereitung und Präsenz in selbiger: 30 h

Insgesamt: 120 h = 4 LP

Empfehlungen

Vorheriger Besuch der Vorlesungen "Signale und Systeme" und "Wahrscheinlichkeitstheorie" wird dringend empfohlen.

Die Vorlesung kann parallel zu der Vorlesung "Nachrichtentechnik I" besucht werden.

11.86 Modul: Strömungslehre [M-MACH-102565]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
8Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
2 SemesterSprache
Deutsch/EnglischLevel
3Version
1

Pflichtbestandteile				
T-MACH-105207	Strömungslehre 1&2	8 LP	Frohnapfel	

Erfolgskontrolle(n)

gemeinsame Erfolgskontrolle der LV "Strömungslehre I" und "Strömungslehre II"; schriftliche Prüfung, 3. Std. (benotet)

Voraussetzungen

Keine

Qualifikationsziele

Nach Abschluss dieses Moduls ist der/die Studierende in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, herzuleiten und auf Beispiele anzuwenden. Er/Sie kann die charakteristischen Eigenschaften von Fluiden benennen und Strömungszustände unterscheiden. Der/Die Studierende ist in der Lage, Strömungsgrößen für grundlegende Anwendungsfälle zu bestimmen. Dies beinhaltet die Berechnung von

- · statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken
- zweidimensionalen viskosen Strömungen
- verlustfreien inkompressiblen und kompressiblen Strömungen (Stromfadentheorie)
- · verlustbehafteten technischen Rohrströmungen

Inhalt

Eigenschaften von Fluiden, Oberflächenspannung, Hydro- und Aerostatik, Kinematik, Stromfadentheorie (kompressibel und inkompressibel), Verluste in Rohrströmungen, Dimensionsanalyse, dimensionslose Kennzahlen

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton'scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Zusammensetzung der Modulnote

Note der Prüfung

Anmerkungen

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand

Präsenzzeit: 64 StundenSelbststudium: 176 Stunden

Lehr- und Lernformen

Vorlesungen + Übungen

Literatur

Zirep J., Bühler, K.: Grundzüge der Strömungslehre, Grundlagen, Statik und Dynamik der Fluide, Springer Vieweg

Kuhlmann, H.: Strömungsmechanik, Pearson Studium

Spurk, J.H.: Strömungslehre, Einführung in die Theorieder Strömungen, Springer-Verlag

Kundu, P.K., Cohen, K.M.: Fluid Mechanics, Elsevier 2008

11.87 Modul: Superconductors for Energy Applications [M-ETIT-105299]

Verantwortung: apl. Prof. Dr. Francesco Grilli

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

KIT-Fakultät für Elektrotechnik und Informationstechnik

KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Berufspädagogik und Allgemeine

Pädagogik

KIT-Fakultät für Maschinenbau

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion5ZehntelnotenJedes Wintersemester1 SemesterEnglisch31

Pflichtbestandteile				
T-ETIT-110788	Superconductors for Energy Applications	5 LP	Grilli	

Erfolgskontrolle(n)

oral exam approx. 30 minutes.

Voraussetzungen

The module "Superconducting Materials for Energy Applications" must not be taken.

Qualifikationsziele

The students acquire a good knowledge of physical properties of superconductors including those currently employed in energy applications (niobium-based superconductors, cuprates, MgB2) and also promising recently discovered ones (pnictides)).

The students have a thorough understanding of the wide range of superconducting energy applications (magnets, cables, fault current limiters, motors, transformers, etc.). They can discuss the advantages they offer with respect to their conventional counterparts; they can also define the scientific and technical challenges involved in those applications.

With the practical exercise, the students learn to use different software packages (Matlab, Comsol Multiphysics) and to model the electromagnetic and thermal behavior of superconducting wires and applications.

The students are able to talk about topic-related aspects in English using the technical terminology of the field of study.

Inhalt

Superconductivity is one of the most important discoveries in physics in the twentieth century and has just celebrated its 100th birthday. Investigating the origins of the universe in particle accelerators or having detailed images of the human body with MRI would be impossible without employing technology based on superconductors. The near future will see superconductors enter our everyday life even more deeply, in the form of cables powering our cities, fault current limiters protecting our electric grids, and super-fast levitating trains reducing dramatically travel times.

The lecture provides an introduction to superconductivity with an overview of its main features and of the theories developed to explain it. Superconducting materials and their properties will be presented, especially materials currently employed in energy applications (niobium-based superconductors, uprates, MgB2) and promising recently discovered ones (pnictides). The wide range of superconducting energy applications (magnets, cables, fault current limiters, motors, transformers, etc.) will be covered as well as the advantages they offer with respect to their conventional counterparts.

The practical exercises are based on using numerical models (e.g. finite-element method or network approach) to investigate the electromagnetic and thermal behavior of superconducting wires and applications such as cables and magnets.

Zusammensetzung der Modulnote

The module grade is the grade of the oral exam.

Arbeitsaufwand

Each credit point (LP) corresponds to approximately 30 hours of work (by the student). This is based on the average student who achieves an average performance.

The workload in hours is broken down as follows:

- 1. Presence time in lectures, exercises 45 h
- 2. Preparation / Post-processing of the same 30 h
- 3. Exam preparation and presence in the same 75 h

Empfehlungen

A basic knowledge of electromagnetism and thermodynamics is the only requirement. Previous knowledge of superconductivity is not necessary.

11.88 Modul: Systematische Werkstoffauswahl [M-MACH-106054]

Verantwortung: Dr.-Ing. Stefan Dietrich

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile				
T-MACH-100531	Systematische Werkstoffauswahl	4 LP	Dietrich, Schulze	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung mit einer Dauer von 2 h.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können für einen vorgegebenen Anwendungsfall den am besten geeigneten Werkstoff auswählen. Sie beherrschen die systematische Werkstoffauswahl mit Hilfe von Werkstoffindices und Werkstoffauwsahldiagrammen. Sie erkennen Zielkonflikte und können gute Kompromisslösungen finden. Sie kennen die Möglichkeiten und Grenzen von hybriden Werkstoffkonzepten (Verbundwerkstoffe, Werkstoffverbunde, Schäume) und können erkennen, ob ein solches Konzept in einem gegebenen Anwendungsfall nutzbare Vorteile erbringt.

Inhalt

Die wichtigsten Aspekte und Kriterien der Werkstoffauswahl werden behandelt und Leitlinien für eine systematische Vorgehensweise beim Auswahlprozess erarbeitet. Dabei werden u.a. folgende Themen angesprochen:

- · Informationen und Einleitung
- Erforderliche Grundlagen der Werkstoffkunde
- · Ausgewählte Methoden / Herangehensweisen der Werkstoffauswahl
- · Beispiele für Materialindices und Werkstoffeigenschaftsschaubilder
- Zielkonflikt und Formfaktoren
- Verbundwerkstoffe und Werkstoffverbunde
- Hochtemperaturwerkstoffe
- · Materialien für medizinische Geräte, Gesundheitsprodukte und Bionik
- Berücksichtigung von Fertigungseinflüssen
- Nachhaltige Werkstoffauswahl
- Fehlerhafter Werkstoffauswahl und abzuleitende Konsequenzen
- · Zusammenfassung und Fragerunde

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Der Arbeitsaufwand für die Vorlesung beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (30 h) sowie Vorund Nachbearbeitungszeit zuhause (30 h) und Prüfungsvorbereitungszeit (60 h).

Empfehlungen

Einfache Grundlagen in Werkstoffkunde, Mechanik und Konstruktionslehre wie sie in der Vorlesung Werkstoffkunde I/II vermittelt werden.

Lehr- und Lernformen

Vorlesung

11.89 Modul: Systemdynamik und Regelungstechnik [M-ETIT-102181]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-ETIT-101921	Systemdynamik und Regelungstechnik	6 LP	Hohmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

- Ziel ist die Vermittlung theoretischer Grundlagen der Regelungstechnik, daher können die Studierenden grundsätzliche regelungstechnische Problemstellungen erkennen und bearbeiten.
- Die Studierenden sind in der Lage, reale Prozesse formal zu beschreiben und Anforderungen an Regelungsstrukturen abzuleiten.
- Sie können die Dynamik von Systemen mit Hilfe graphischer und algebraischer Methoden analysieren.
- Die Studierenden können Reglerentwurfsverfahren für Eingrößensysteme benennen, anhand von Kriterien auswählen, sowie die Entwurfsschritte durchführen und die entworfene Regelung beurteilen, ferner können Sie Störungen durch geeignete Regelkreisstrukturen kompensieren.
- Die Studierenden kennen relevante Fachbegriffe der Regelungstechnik und können vorgeschlagene Lösungen beurteilen und zielorientiert diskutieren.
- Sie kennen computergestützte Hilfsmittel zur Bearbeitung systemtheoretischer Fragestellungen und können diese einsetzen.

Inhalt

Die Grundlagenvorlesung Systemdynamik und Regelungstechnik vermittelt den Studierenden Kenntnisse auf einem Kerngebiet der Ingenieurwissenschaften. Sie werden vertraut mit den Elementen sowie der Struktur und dem Verhalten dynamischer Systeme. Die Studenten lernen grundlegende Begriffe der Regelungstechnik kennen und gewinnen einen Einblick in die Aufgabenstellungen beim Reglerentwurf und in entsprechende Lösungsmethoden im Frequenz- und Zeitbereich. Dies versetzt sie in die Lage, mathematische Methoden zur Analyse und Synthese dynamischer Systeme systematisch anzuwenden

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen

- 1. Präsenzzeit in Vorlesung/Übung (2+2 SWS: 60h2 LP)
- 2. Vor-/Nachbereitung von Vorlesung/Übung/Tutorium(optional) (105h3.5 LP)
- 3. Vorbereitung/Präsenzzeit schriftliche Prüfung (15h0.5 LP)

11.90 Modul: Technische Mechanik [M-MACH-101259]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-MACH-102208	Einführung in die Technische Mechanik I: Statik und Festigkeitslehre	5 LP	Fidlin

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75 min) in der vorlesungsfreien Zeit des Semesters (nach §4 (2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Erlaubte Hilfsmittel: nicht-programmierbare Taschenrechner, Literatur

Voraussetzungen

Keine

Qualifikationsziele

Fachliche Kompetenzen:

Die Studierenden

- · kennen und verstehen die grundlegenden Elemente der Statik;
- · können einfache Berechnungen der Statik selbständig durchführen;
- kennen die Grundbegriffe der Festigkeitslehre: Spannung, Dehnung und deren Verhältnis im Rahmen der elementaren Elastizitätstheorie;
- kennen die gängigsten Festigkeitshypothesen:
- können Dehnstäbe, Torsionswellen und Biegebalken selbständig berechnen;
- · kennen die klassischen Fälle von Stabilitätsverlust in auf Druck belasteten Stäben.

Überfachliche Kompetenzen:

Die Studierenden sind vertraut mit analytischer Vorgehensweise und problemorientiertem Denken. Sie kennen die Vielseitigkeit technischer Fragestellungen und können das Wesentliche erkennen und sich darauf konzentrieren. Dieses Wissen können die Studierenden einsetzen, um praxisnahe Ingenieurprobleme theoretisch zu analysieren und zu Lösungsansätzen zu entwickeln.

Inhalt

Statik: Kraft · Moment · Allgemeine Gleichgewichtsbedingungen · Massenmittelpunkt · Innere Kräfte in Tragwerken · Ebene Fachwerke · Theorie des Haftens

Anmerkungen

Die Lehrveranstaltung "Einführung in die Technische Mechanik I: Statik und Festigkeitslehre" [2162238] wird ab dem Sommersemester 2016 jeweils im Sommersemester angeboten.

Arbeitsaufwand

ca. 150 Stunden (Präsenzzeit: 45 Stunden, Selbststudiumzeit inkl. Vor- und Nachbereitung sowie Prüfungsvorbereitung 105 h).

Lehr- und Lernformen

Vorlesung und Übungen

11.91 Modul: Überfachliche Qualifikationen [M-ETIT-105804]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Überfachliche Qualifikationen

Leistungspunkte
3Notenskala
best./nicht best.Turnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Wahlinformationen

Zur Selbstverbuchung abgelegter überfachlicher Qualifikationen von HoC, ZAK oder SPZ sind die Teilleistungen mit dem Titel "Selbstverbuchung-HOC-SPZ-ZAK-..." passend zur Notenskala, benotet oder unbenotet, auszuwählen. Titel und LP der Leistung werden übernommen.

Die Verbuchung erfolgt im Studierendenportal über den Menüpunkt "Prüfungsanmeldung und -abmeldung",

Überfachliche Qualifikationen (Wahl: mind. 3 LP)				
T-ETIT-111316	Einführung in die wissenschaftliche Methode (Seminar)	1 LP	Nahm	
T-WIWI-100796	Industriebetriebswirtschaftslehre	3 LP	Fichtner	
T-ETIT-111317	Introduction to the Scientific Method (Seminar)	1 LP	Nahm	
T-MACH-105442	Patente und Patentstrategien in innovativen Unternehmen	4 LP	Albers, Matthiesen, Zacharias	
T-ETIT-100814	Seminar Project Management for Engineers	3 LP	Noe	
T-ETIT-108820	Seminar Projekt Management für Ingenieure	3 LP	Day, Noe	
T-ETIT-100754	Seminar Wir machen ein Patent	3 LP	Stork	
T-ETIT-111923	Technikethik - ARs ReflecTIonis	2 LP	Kühler	
T-ETIT-100797	TutorInnenprogramm - Start in die Lehre	2 LP		
T-ETIT-111526	Selbstverbuchung-HOC-SPZ-ZAK-benotet	2 LP		
T-ETIT-111527	Selbstverbuchung-HOC-SPZ-ZAK-benotet	2 LP		
T-ETIT-111528	Selbstverbuchung-HOC-SPZ-ZAK-benotet	2 LP		
T-ETIT-111530	Selbstverbuchung-HOC-SPZ-ZAK-unbenotet	2 LP		
T-ETIT-111531	Selbstverbuchung-HOC-SPZ-ZAK-unbenotet	2 LP		
T-ETIT-111532	Selbstverbuchung-HOC-SPZ-ZAK-unbenotet	2 LP		

11.92 Modul: Virtual Reality Praktikum [M-MACH-106249]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
2

Pflichtbestandteile				
T-MACH-102149	Virtual Reality Praktikum	4 LP	Ovtcharova	

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet). In die Modulnote gehen die individuelle Beurteilung der Projektumsetzung und der Projektabschlusspräsentation mit ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Voraussetzungen

Keine

Qualifikationsziele

Nach erfolgreich absolviertem Praktikum sind die Studierenden in der Lage bestehende Hardware und Software für Virtual Reality (VR) Anwendungen bedienen und benutzen zu können um eine komplexen Aufgabenstellung im Team zu konzipieren und umzusetzen.

Inhalt

- Grundlagen und Einführung in VR (Hardware, Software, Anwendungen)
- Einarbeitung in die Entwicklungsumgebungen (PolyVR, Blender, ...)
- Erstellen eigener VR-Anwendungen in Kleingruppen

Zusammensetzung der Modulnote

Prüfungsleistung anderer Art (benotet). In die Modulnote gehen die individuelle Beurteilung der Projektumsetzung und der Projektabschlusspräsentation mit ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

Präsenzzeit in Team-Meetings und Schulungen: 15*2 h = 30h

Eigene Projektumsetzung wärend des Semesters: 73 h

Demonstrator-Aufbereitung und Projektabschlusspräsentation: 17 h

Summe: 120 h = 4 LP

Lehr- und Lernformen

Projektarbeit im Team

11.93 Modul: Vorlesung Grundtechniken der Biologie [M-CHEMBIO-106203]

Verantwortung: Prof. Dr. Jörg Kämper

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Medizinisch-technischer Profilierungsbereich

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-CHEMBIO-10757	Moderne Methoden der Biologie	4 LP	Biologie

Erfolgskontrolle(n)

Dieses Modul enthält folgende Erfolgskontrollen:

Prüfungsleistung anderer Art zur Teilleistung "Moderne Methoden der Biologie"
 Dafür werden drei schriftliche oder elektronische Tests über 25 Minuten geschrieben:

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden erlernen die theoretischen Grundlagen aller in der modernen Biologie eingesetzten Methoden.

Dazu zählen folgende Techniken:

- Fluoreszenzmikroskopie; Umgang mit fluoreszenten Proteinen und Immunfluoreszenz
- Western Blotting
- Genomische und RT-PCR
- Bioinformatische Analysen und Umgang mit Gen-Datenbanken

Inhalt

Vorlesung:

Das Modul Biologische Methoden hat die modernen praktische Aspekte im Visier. In einer Ringvorlesung wird das gesamte Spektrum biologischer Methoden vorgestellt und gründlich behandelt. Methodenkompetenz bedeutet nicht, dass man Protokolle im Labor "nachkochen" kann. Nur wer versteht, warum eine biologische Methode so und nicht anders durchgeführt wird, wird später in der Lage sein, auf eine Problemstellung in Forschung und Beruf erfolgreich zu antworten.

Arbeitsaufwand

· Moderne Methoden der Biologie (V): 60 Präsenzstunden; 5 LP; 90 Stunden Bearbeitungszeit

Zur Bearbeitung zählt die Vor- und Nachbereitung der Vorlesung und das Lernen auf die Teilprüfungen.

Lehr- und Lernformen

Vorlesung

11.94 Modul: Wahrscheinlichkeitstheorie [M-ETIT-102104]

Verantwortung: Dr.-Ing. Holger Jäkel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Mathematisch-physikalische Grundlagen

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
2

Pflichtbestandteile			
T-ETIT-101952	Wahrscheinlichkeitstheorie	5 LP	Jäkel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Inhalte der Höheren Mathematik I und II werden benötigt (z.B. M-MATH-101731 und M-MATH-101732).

Qualifikationsziele

Die Studentinnen und Studenten können Probleme im Bereich der Wahrscheinlichkeitstheorie formal beschreiben und analysieren.

Durch Anwendung von Methoden der Wahrscheinlichkeitstheorie können Studierende Fragestellungen der Elektrotechnik und Informationstechnik modellieren und lösen.

Inhalt

Kenntnisse aus dem Bereich der Stochastik sind für die Arbeit eines Ingenieurs heute unbedingt erforderlich. In der Vorlesung Wahrscheinlichkeitstheorie werden die Studierenden an dieses Wissensgebiet herangeführt. Der Aufbau der Vorlesung ist dabei wie folgt:

Zunächst werden der Wahrscheinlichkeitsraum und bedingte Wahrscheinlichkeiten, sowie der Begriff der Zufallsvariablen eingeführt. Anschließend erfolgt die Behandlung der Kennwerte von Zufallsvariablen und die Diskussion der wichtigsten speziellen Wahrscheinlichkeitsverteilungen und deren Eigenschaften, sowohl im diskreten als auch im stetigen Fall.

Im Kapitel über mehrdimensionale Zufallsvariablen werden insbesondere der Korrelationskoeffizient und die Funktionen mehrdimensionaler Zufallsvariablen ausführlich besprochen.

Schließlich erfolgt eine Einführung in die Grundlagen der Statistik und deren Anwendung in der Elektrotechnik und Informationstechnik.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
- 2. Vor-/Nachbereitung Vorlesung: 15 * 5 h = 75 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
- 5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt: 150 h = 5 LP

Empfehlungen

Inhalte der Digitaltechnik werden empfohlen (z.B. M-ETIT-102102).

11.95 Modul: Werkstoffkunde [M-MACH-102567]

Verantwortung: Dr.-Ing. Johannes Schneider **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials

Science

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion9ZehntelnotenJedes Semester2 SemesterDeutsch31

Pflichtbestandteile			
T-MACH-105148	Werkstoffkunde I & II	9 LP	Schneider

Erfolgskontrolle(n)

Mündliche Prüfung

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können für die wichtigsten Ingenieurswerkstoffe die Eigenschaftsprofile beschreiben und Anwendungsgebiete nennen.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung beschreiben und deren Auswertung erläutern. Sie können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Die Studierenden sind in der Lage die grundlegenden Mechanismen zur Festigkeitssteigerung von Eisen- und Nichteisenwerkstoffen zu beschreiben und anhand von Phasendiagrammen und ZTU-Schaubildern zu reflektieren.

Die Studierenden können gegebene Phasen-, ZTU oder andere werkstoffrelevante Diagramme interpretieren, daraus Informationen ablesen und daraus die Gefügeentwicklung ableiten.

Die Studierenden können die in Polymerwerkstoffen, Metallen, Keramiken und Verbundwerkstoffen jeweils auftretenden werkstoffkundlichen Phänomene beschreiben und Unterschiede aufzeigen.

Inhalt

Atomaufbau und atomare Bindungen

Kristalline und amorphe Festkörperstrukturen

Störungen in kristallinen Festkörperstrukturen

Legierungslehre

Materietransport und Umwandlungen im festen Zustand

Korrosion

Verschleiß

Mechanische Eigenschaften

Werkstoffprüfung

Eisenbasiswerkstoffe

Nichteisenmetalle

Polymere Werkstoffe

Keramische Werkstoffe

Verbundwerkstoffe

Zusammensetzung der Modulnote

Note der mündlichen Prüfung

Arbeitsaufwand

Präsenzzeit: 90 Stunden Selbststudium: 180 Stunden

Lehr- und Lernformen

Vorlesungen und Übungen

Literatur

W. Bergmann: Werkstofftechnik I + II, Hanser Verlag, München, 2008/9

M. Merkel: Taschenbuch der Werkstoffe, Hanser Verlag, München, 2008

R. Schwab: Werkstoffkunde und Werkstoffprüfung für Dummies, Wiley VCH, Weinheim, 2011

J.F. Shackelford; Werkstofftechnologie für Ingenieure, Pearson Studium, München, 2008 (E-Book)

J.F. Shackelford,: Introduction to Materials Science for Engineers. Prentice Hall, 2008

Vorlesungs- und Praktikumsskripte

11.96 Modul: Windkraft [M-MACH-105732]

Verantwortung: Dr. Balazs Pritz

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion4ZehntelnotenJedes Wintersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-MACH-105234	Windkraft	4 LP	Lewald

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung.

Dauer der Prüfung: 80 Min.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind mit den elementaren Grundlagen zur Nutzung von Windkraft vertraut. Schwerpunkt der Vorlesung sind allgemeine Grundlagen zur Nutzung von Windkraft zur Elektrizitätserzeugung ergänzt um die geschichtliche Entwicklung, Allgemeinwissen zu Wind sowie alternativen, erneuerbaren Energien.

Inhalt

Die Vorlesung wendet sich auf Grund des breit angelegten Basiswissens an Hörer aller Fakultäten und jeglicher Semester.

Ausgehend von einem Überblick alternativer, erneuerbarer Energietechnologien sowie allgemeiner Energiedaten, wird der Einstieg in die Windenergie mittels einer Übersicht der historischen Entwicklung der Windkraft getätigt.

Da der Wind als indirekte Solarenergie die Antriebsenergie liefert, wird dem globalen und den lokalen Windsystemen sowie deren Messung und Energieinhalt ein eigenes Kapitel gewidmet.

Darauf aufbauend werden die aerodynamischen Grundlagen und Zusammenhänge von Windkraftanlagen bzw. deren Profilen erläutert.

Einen weiteren Schwerpunkt bildet das elektrische System der Windkraftanlagen. Angefangen von grundlegender Generatortechnik über die Kontrolle und Steuerung der Energieabgabe.

Nach den Schwerpunkten Aerodynamik und elektrisches System werden die weiteren Bestandteile von Windkraftanlagen und deren Besonderheiten im Zusammenhang erläutert. Abschließend werden die aktuellen ökonomischen, ökologischen und legislativen Randbedingungen für den Betrieb von Windkraftanlagen untersucht.

Ergänzend zu den Windkraftanlagen zur Elektrizitätserzeugung wird in der Vorlesung auch kurz auf alternative Nutzungsmöglichkeiten wie Pumpensysteme eingegangen.

Den Abschluss bildet ein Überblick aktueller Entwicklungen wie Supergrids oder auch Zukunftsvisionen der Windenergienutzung.

Arbeitsaufwand

Präsenzzeit: 28 Stunden Selbststudium: 60 Stunden

Prüfungsvorbereitung: 30 Stunden

Lehr- und Lernformen

Vorlesung in Präsenz, Kursmaterial wird über ILIAS bereitgestellt.

11.97 Modul: Workshop angewandte Hochfrequenztechnik [M-ETIT-105301]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-ETIT-110790	Workshop angewandte Hochfrequenztechnik	3 LP	Zwick

Erfolgskontrolle(n)

Zur Vorbereitung der Laborversuche sind von jeder Laborgruppe vor dem Versuch einige Aufgaben als Hausarbeit gemeinsam zu bearbeiten und direkt vor Versuchsbeginn in einfacher Ausfertigung beim Betreuer abzugeben. Die Aufgaben zum Versuch an sich werden während der Durchführung bearbeitet und protokolliert. Das Protokoll soll direkt nach der Versuchsdurchführung beim Betreuer abgegeben werden. Vor jeder Versuchsdurchführung gibt es eine schriftliche bzw. mündliche Prüfung (ca. 20 min., keine Hilfsmittel) über den Versuchsinhalt. Der Gesamteindruck wird bewertet.

Voraussetzungen

Grundlegende Kenntnisse zur Nachrichtentechnik und Grundlagen der Hochfrequenztechnik

Qualifikationsziele

Die Studierenden besitzen ein grundlegendes Wissen über Hochfrequenzkomponenten und Systeme sowie deren praktischen Einsatz. Dazu kennen sie die Funktionsweise eines Netzwerkkanalysators und können diesen praktisch einsetzen. Sie kennen die praktischen Probleme bei der messtechnischen Charakterisierung und können die Messergebnisse interpretieren. Darüber hinaus sind sie in der Lage selbstorganisiert in einem Team zusammenzuarbeiten

Inhalt

Unter dem Motto: "Praxisrelevanz durch modernste Ausstattung und aktuelle Problemstellungen" wird den Studierenden ein zeitgemäßes und technisch anspruchsvolles Hochfrequenzlaboratorium auf Bachelorniveau angeboten. Ziel der Versuche ist es die in den Vorlesungen vermittelte Theorie praxisnah zu vertiefen und den Umgang mit Hochfrequenzmessgeräten und HF-Komponenten zu trainieren. In Gruppen von 2 Studierenden werden an 4 Nachmittagen verschiedene Versuche durchgeführt und protokolliert. Die Reihenfolge und Themen der Versuche können variieren.

Zusammensetzung der Modulnote

Die Note für die Versuchsdurchführung setzt sich aus der Vorbereitung, aus dem Protokoll und der schriftlichen oder mündlichen Lernzielkontrolle zum jeweiligen Versuch zusammen. Nähere Angaben erfolgen zu Beginn der Veranstaltung. Studierende, die unvorbereitet zum jeweiligen Versuch erscheinen, dürfen an der Versuchsdurchführung nicht teilnehmen. Der Versuch muss zu einem anderen Zeitpunkt wiederholt werden.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen:

Präsenzstudienzeit Labor: 25 h

Versuchsvorbereitung, Protokolle, Prüfungsvorbereitung: 65 h

Insgesamt 90 h = 3 LP

11.98 Modul: Zellbiologie [M-CIWVT-106107]

Verantwortung: apl. Prof. Dr. Hans-Eric Gottwald

Prof. Dr. Christoph Syldatk

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Medizinisch-technischer Profilierungsbereich

Zusatzleistungen

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Wintersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-CIWVT-111062	Zellbiologie	3 LP	Gottwald

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine schriftliche Prüfung Zellbiologie mit einem Umfang von 90 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Identifizieren pro- und eukaryotischer Zellen, Identifizieren der Bestandteile pro- und eukaryotischer Zellen, Kenntnis der wichtigsten Stoffwechselvorgänge, der wichtigsten Molekülklassen und deren Vorkommen, Beherrschung der Lichtmikroskop-Theorie, In der Lage sein Bioreaktoren und deren Betriebsmodus entsprechend der Anwendung auszuwählen.

Inhalt

Mikroskopie, Zellaufbau bei Prokaryoten und Eukaryoten, eukaryotische Zellkompartimente, Bau und Funktion biologischer Makromoleküle, Zellkommunikation, Zellzyklus

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 2 SWS: 30 h Selbststudium: 20 h Klausurvorbereitung: 40 h

Empfehlungen

Keine

Literatur

- Alberts, Lehrbuch Molekulare Zellbiologie (Wiley-VCH)
- Munk: Biochemie Zellbiologie (Thieme)
- Plattner/Hentschel: Tellbiologie (Thieme)

12 Teilleistungen

12.1 Teilleistung: Angewandte Medizintechnik [T-ETIT-113043]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106446 - Angewandte Medizintechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	4	best./nicht best.	Jedes Wintersemester	1 Sem.	1

Lehrveranstaltungen					
WS 23/24	2305271	Medizintechnik in der Klinik	2 SWS	Exkursion (EXK) /	Nahm, Spadea
WS 23/24	2305273	Einführungspraktikum Medizintechnik	2 SWS	Praktikum (P) / 🗣	Nahm, Spadea

Legende: 🖥 Online, 😂 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus mehreren strukturierten, schriftlichen Ausarbeitungen (Protokolle) zum Thema Angewandte Medizintechnik.

- Zur Veranstaltung "Einführungspraktikum in die Medizintechnik" müssen 4 Protokolle gemäß Vorgabe abgegeben werden
- · Zur Veranstaltung "Medizintechnik in der Klinik" müssen 5 Protokolle gemäß Vorgabe abgegeben werden.
- Die Protokolle werden einzeln hinsichtlich der Bewertungskriterien entweder mit "akzeptiert" oder mit "nicht akzeptiert" bewertet.
- · Nicht akzeptierte Protokolle können überarbeitet und erneut abgegeben werden.

Die Prüfung gilt als "bestanden", wenn die geforderte Anzahl an Protokollen mit "akzeptiert" bewertet wurden.

Voraussetzungen

12.2 Teilleistung: Antennen und Mehrantennensysteme [T-ETIT-106491]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-100565 - Antennen und Mehrantennensysteme

Teilleistungsart Prüfungsleistung mündlich Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Wintersemester Version 4

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von 20 Minuten.

Voraussetzungen

T-ETIT-100638 - Antennen und Mehrantennensysteme wurde weder begonnen, noch abgeschlossen.

Das Modul "Antennen und Antennensysteme" darf nichtbegonnen oder abgeschlossen sein.

Anmerkungen

Die Zahl der Vorlesungstermine hat sich in den letzten 2 Jahren zugunsten der Übungstermine soweit verschoben, dass mittlerweile 2+2 SWS korrekt ist. Das Modul besteht also aus 2 SWS Vorlesung und 2 SWS Rechnerübung. - Da die Vor-/Nachbereitungszeit bei der Rechnerübung deutlich geringer als für den eigentlichen Vorlesungsstoff ist, entspricht der studentische Gesamtaufwand 5 LP (ab WS20/21, zuvor 6 LP)

12.3 Teilleistung: Bachelorarbeit [T-ETIT-112708]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106260 - Bachelorarbeit

Teilleistungsart
AbschlussarbeitLeistungspunkte
12Notenskala
DrittelnotenTurnus
Jedes SemesterVersion

Voraussetzungen

§ 14 Modul Bachelorarbeit

(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die bzw. der Studierende Modulprüfungen im Umfang von 120 LP gemäß § 20 Abs. 2 erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der bzw. des Studierenden.

Abschlussarbeit

Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 6 Monate **Maximale Verlängerungsfrist** 1 Monate **Korrekturfrist** 6 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.

Anmerkungen

§ 14 Modul Bachelorarbeit

(1 a) Dem Modul Bachelorarbeit sind 15 LP zugeordnet. Es besteht aus der Bachelorarbeit mit 12 LP und einer Präsentation mit 3 LP. Die Präsentation ist innerhalb von sechs Monaten nach Anmeldung zur Bachelorarbeit durchzuführen. Über eine Verlängerung der Frist entscheidet der Prüfungsausschuss auf begründeten Antrag des bzw. der Studierenden mit Zustimmung des bzw. der ausgebenden Prüfenden.

12.4 Teilleistung: Bachelorarbeit Präsentation [T-ETIT-112709]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106260 - Bachelorarbeit

Teilleistungsart Studienleistung **Leistungspunkte**

Notenskala best./nicht best.

Turnus Jedes Semester **Version** 1

Voraussetzungen

Bachelorarbeit wurde begonnen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-ETIT-112708 - Bachelorarbeit muss begonnen worden sein.

Anmerkungen

§14 (1 a) Dem Modul Bachelorarbeit sind 15 LP zugeordnet. Es besteht aus der Bachelorarbeit mit 12 LP und einer Präsentation mit 3 LP. Für die Präsentation ist keine Prüfungsanmeldung notwendig. Das Bestehen wird durch den ETIT-Studiengangservice eingetragen.

Die Präsentation ist innerhalb von sechs Monaten nach Anmeldung zur Bachelorarbeit durchzuführen.

12.5 Teilleistung: Basispraktikum Mobile Roboter [T-INFO-101992]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101184 - Basispraktikum Mobile Roboter

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	4	best./nicht best.	Jedes Sommersemester	2

Lehrveranstaltungen					
SS 2023	24624	Basispraktikum Mobile Roboter	4 SWS	Praktikum (P) / 🗣	Asfour

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO und besteht aus mehreren Teilaufgaben. Die Bewertung erfolgt mit den Noten "bestanden" / "nicht bestanden".

Voraussetzungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

Empfehlungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

12.6 Teilleistung: Batteriemodellierung mit MATLAB [T-ETIT-106507]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103271 - Batteriemodellierung mit MATLAB

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	2304228	Batteriemodellierung mit MATLAB	1 SWS	Vorlesung (V) / 🗣	Weber
WS 23/24	2304229	Übungen zu 2304228 Batteriemodellierung mit MATLAB	1 SWS	Übung (Ü) / 🗣	Weber

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

12.7 Teilleistung: Bauelemente der Elektrotechnik [T-ETIT-109292]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104538 - Bauelemente der Elektrotechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 23/24	2312700	Bauelemente der Elektrotechnik	3 SWS	Vorlesung (V) / 🗣	Kempf, Lemmer
WS 23/24		Übung zu 2312700 Bauelemente der Elektrotechnik	1 SWS	Übung (Ü) / 🗣	Wünsch

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

12.8 Teilleistung: Bildverarbeitung [T-ETIT-105566]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102651 - Bildverarbeitung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023	2302114	Bildverarbeitung	2 SWS	Vorlesung (V) / 🗯	Heizmann

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Die Kenntnis der Inhalte der Module "Systemtheorie" und "Messtechnik" wird dringend empfohlen. Die Kenntnis der Inhalte des Moduls "Methoden der Signalverarbeitung" ist von Vorteil.

12.9 Teilleistung: Bioanalytik [T-CHEMBIO-112779]

Verantwortung: Dr. Claudia Muhle-Goll

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-106306 - Bioanalytik

Teilleistungsart
Prüfungsleistung schriftlichLeistungspunkte
3Notenskala
DrittelnotenTurnus
Jedes WintersemesterDauer
1 Sem.Version
1

Lehrveranstaltungen					
WS 23/24	5141	Bioanalytik	2 SWS	Vorlesung (V)	Luy

12.10 Teilleistung: Biochemie [T-CHEMBIO-100214]

Verantwortung: Prof. Dr. Frank Breitling

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-100149 - Biochemie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4DrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 23/24	7007	Biochemie I (Wahlfach für Chemiker)	2 SWS	Vorlesung (V)	Breitling	

Erfolgskontrolle(n)

Schriftliche Prüfung über 120 Minuten. Zum Bestehen der Prüfung müssen mindesten 50% der Gesamtpunktzahl erreicht werden.

Voraussetzungen

12.11 Teilleistung: Biochemie [T-CHEMBIO-112776]

Verantwortung: Prof. Dr. Anne Ulrich

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-106304 - Biochemie

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten **Dauer** 2 Sem.

Version

12.12 Teilleistung: Biomedizinische Messtechnik I [T-ETIT-106492]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-106492 - Einführung in die Medizintechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich3DrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 23/24	2305269	Biomedizinische Messtechnik I	2 SWS	Vorlesung (V) / 🗯	Nahm, Schaufelberger	

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten. Die Teilleistungsnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Die frühere Fassung "T-ETIT-101928 - Biomedizinische Messtechnik "I darf weder begonnen noch abgeschlossen sein.

Empfehlungen

Grundlagen in physikalischer Messtechnik, analoger Schaltungstechnik und in Signalverarbeitung

Anmerkungen

Die Veranstaltung basiert auf einer interaktiven Kombination von Vorlesungsteilen und Seminarteilen. Im Seminarteil sind die Teilnehmer aufgefordert, einzelne Themen der LV in kleinen Gruppen selbstständig vorzubereiten und vorzutragen. Diese Beiträge werden bewertet und die Studenten erhalten hierfür Bonuspunkte. Die Bonuspunkte werden zu den erreichten Punkten der schriftlichen Klausur hinzuaddiert. Aus der Summe der Punkte ergibt sich die Modulnote.

12.13 Teilleistung: Computational Intelligence [T-MACH-105314]

Verantwortung: Stefan Meisenbacher

apl. Prof. Dr. Ralf Mikut apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-105296 - Computational Intelligence

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4DrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 23/24	2105016	Computational Intelligence	2 SWS	Vorlesung (V) / 🗯	Mikut, Reischl, Meisenbacher	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 1h)

Voraussetzungen

12.14 Teilleistung: Datenanalyse für Ingenieure [T-MACH-105694]

Verantwortung: Stefan Meisenbacher

apl. Prof. Dr. Ralf Mikut apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-105307 - Datenanalyse für Ingenieure

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten

Turnus Jedes Sommersemester Version

Lehrveranstaltungen							
SS 2023	2106014	Datenanalyse für Ingenieure	3 SWS	Vorlesung / Übung (VÜ) / 😘	Mikut, Reischl, Meisenbacher		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 1h)

Voraussetzungen

12.15 Teilleistung: Einführung in die Finite-Elemente-Methode [T-MACH-105320]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106209 - Einführung in die Finite-Elemente-Methode

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	4

Lehrveranstaltungen						
SS 2023	2162282	Einführung in die Finite-Elemente- Methode	2 SWS	Vorlesung (V) / 🗣	Langhoff, Böhlke	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (90 min)

Klausurzulassung: bestandene Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330)

Voraussetzungen

Das Bestehen der Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330) ist Klausurvorleistung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110330 - Übungen zu Einführung in die Finite-Elemente-Methode muss erfolgreich abgeschlossen worden sein.

Anmerkungen

Kenntnisse aus den Vorlesungen "Kontinuumsmechanik der Festkörper und Fluide" und "Mathematische Methoden der Kontinuusmmechanik" und den jeweils begleitenden Übungsveranstaltungen werden vorausgesetzt

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen.

Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

12.16 Teilleistung: Einführung in die Hochspannungstechnik [T-ETIT-110702]

Verantwortung: Dr.-Ing. Michael Suriyah

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-105276 - Einführung in die Hochspannungstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen						
SS 2023	2307395	Einführung in die Hochspannungstechnik	2 SWS	Vorlesung (V) / 🗣	Suriyah	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Prüfung (circa 20 Minuten).

Voraussetzungen

keine

Empfehlungen

Grundlegende Kenntnisse in Netzwerktheorie, Feldtheorie und elektrische Messtechnik

12.17 Teilleistung: Einführung in die Technische Mechanik I: Statik und Festigkeitslehre [T-MACH-102208]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-101259 - Technische Mechanik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen						
SS 2023	2162238	Einführung in die Technische Mechanik I: Statik und Festigkeitslehre	2 SWS	Vorlesung (V) / 🗣	Fidlin	
SS 2023	2162239	Übungen zu Einführung in die Technische Mechanik I: Statik und Festigkeitslehre	1 SWS	Übung (Ü) / 😂	Fidlin, Singhal	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) in der vorlesungsfreien Zeit des Semesters (nach §4 (2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Für Wirtschaftsingenieurwesen erfolgt die Erfolgskontrolle in Form einer schriftlichen Prüfung (Einführung in die Technische Mechanik I: Statik - 75 min).

Erlaubte Hilfsmittel: nicht-programmierbare Taschenrechner

Voraussetzungen

Keine

12.18 Teilleistung: Einführung in die Technische Mechanik II: Dynamik [T-MACH-102210]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-101603 - Einführung in die Technische Mechanik II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 23/24	2161276	Einführung in die Technische Mechanik II: Dynamik	2 SWS	Vorlesung (V) / 🗣	Fidlin	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75 min) in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden

Erlaubte Hilfsmittel zur Klausur sind ein nicht-programmierbarer Taschenrechner sowie Literatur.

Voraussetzungen

Keine

12.19 Teilleistung: Einführung in die wissenschaftliche Methode (Seminar) [T-ETIT-111316]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	1	best./nicht best.	Jedes Semester	1 Sem.	1

Lehrveranstaltungen					
SS 2023	2305744	Einführung in die wissenschaftliche Methode	1 SWS	Seminar (S) / 🗣	Nahm
WS 23/24	2305504	Einführung in die wissenschaftliche Methode	1 SWS	Seminar (S) / 🗣	Nahm

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♣ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung. Die Prüfung erfolgt durch die Erstellung und Präsentation einer Seminararbeit.

Voraussetzungen

keine

Anmerkungen

Detaillierte Informationen zu Inhalten, Qualifikationszielen und Arbeitsaufwand unter:

M-ETIT-105664 - Einführung in die wissenschaftliche Methode (Seminar)

12.20 Teilleistung: Electrochemical Energy Technologies [T-ETIT-111352]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105690 - Electrochemical Energy Technologies

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	2304236	Electrochemical Energy Technologies	2 SWS	Vorlesung (V) / 🗣	Krewer
WS 23/24	2304237	Exercise for 2304236 Electrochemical Energy Technologies	1 SWS	Übung (Ü) / 🗣	Krewer

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Type of Examination: Written exam

Duration of Examination: approx. 120 minutes

Voraussetzungen

none

12.21 Teilleistung: Elektrische Maschinen und Stromrichter [T-ETIT-101954]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-102124 - Elektrische Maschinen und Stromrichter

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	2306387	Elektrische Maschinen und Stromrichter	2 SWS	Vorlesung (V) / 😂	Hiller
WS 23/24		Übung zu 2306387 Elektrische Maschinen und Stromrichter	2 SWS	Übung (Ü) / 🗯	Hiller

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine

12.22 Teilleistung: Elektroenergiesysteme [T-ETIT-101923]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102156 - Elektroenergiesysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023	2307391	Elektroenergiesysteme	2 SWS	Vorlesung (V) / 🗣	Leibfried
SS 2023	2307393	Übungen zu 2307391 Elektroenergiesysteme	1 SWS	Übung (Ü) / 🗣	Steinle

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

12.23 Teilleistung: Elektromagnetische Felder und Wellen [T-ETIT-112864]

Verantwortung: Prof. Dr. Martin Doppelbauer

Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-106346 - Elektromagnetische Felder und Wellen

> **Teilleistungsart** Prüfungsleistung schriftlich

Leistungspunkte 7

Notenskala Drittelnoten

Turnus Jedes Wintersemester Version

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

12.24 Teilleistung: Elektronische Schaltungen [T-ETIT-109318]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104465 - Elektronische Schaltungen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1 Sem.	2

Lehrveranstaltungen						
SS 2023	2308655	Elektronische Schaltungen	3 SWS	Vorlesung (V) / 🗣	Ulusoy	
SS 2023	2308657	Übungen zu 2312655 Elektronische Schaltungen	1 SWS	Übung (Ü) / 🗣	Ulusoy	
SS 2023	2308658	Tutorien zu 2312655 Elektronische Schaltungen	SWS	Zusatzübung (ZÜ) / • ∗	Ulusoy	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Empfehlungen

Der erfolgreiche Abschluss von LV "Lineare elektrische Netze" wird dringend empfohlen, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.

12.25 Teilleistung: Elektronische Schaltungen - Workshop [T-ETIT-109138]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104465 - Elektronische Schaltungen

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
1

Lehrveranst	taltungen				
SS 2023	2308450	Elektronische Schaltungen - Workshop	1 SWS	Praktikum (P) / 🗣	Zwick

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Ausarbeitung. Die schriftliche Ausarbeitung wird korrigiert und mit Punkten bewertet. Bei Erreichen der erforderlichen Punktezahl gilt der Workshop als bestanden.

Voraussetzungen

12.26 Teilleistung: Elektrotechnisches Grundlagenpraktikum [T-ETIT-101943]

Verantwortung: Dr.-Ing. Armin Teltschik

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102113 - Elektrotechnisches Grundlagenpraktikum

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung mündlich	6	best./nicht best.	Jedes Sommersemester	3

Lehrveranstaltungen							
SS 2023		Elektrotechnisches Grundlagenpraktikum	4 SWS	Praktikum (P) / 🗣	Teltschik		

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines mündlichen Abschlusskolloquiums von ca. 20 min Dauer sowie während des Praktikums durch Überprüfung der absolvierten Versuchs-Aufgaben.

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Die Veranstaltung ist nicht benotet.

Voraussetzungen

Kenntnisse zum Inhalt der folgenden Module müssen vorhanden sein: "M-ETIT-102102 – Digitaltechnik" und "M-ETIT-104465 – Elektronische Schaltungen".

Anmerkungen

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit.

Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

12.27 Teilleistung: Erzeugung elektrischer Energie [T-ETIT-101924]

Verantwortung: Dr.-Ing. Bernd Hoferer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100407 - Erzeugung elektrischer Energie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich3DrittelnotenJedes Wintersemester2

Lehrverans	taltungen				
WS 23/24	2307356	Erzeugung elektrischer Energie	2 SWS	Vorlesung (V) / 🗣	Hoferer

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen

12.28 Teilleistung: Experimentalphysik A [T-PHYS-103240]

Verantwortung: Prof. Dr. Thomas Schimmel **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101684 - Experimentalphysik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich5Drittelnoten1

Lehrverans	Lehrveranstaltungen							
WS 23/24	4040011	Experimentalphysik A für die Studiengänge Elektrotechnik, Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geoökologie, Technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik	4 SWS	Vorlesung (V) / •	Schimmel			
WS 23/24	4040012	Übungen zur Experimentalphysik A für Elektrotechnik	1 SWS	Übung (Ü) / 🗣	Schimmel, Wertz			

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel ca. 180 min)

Voraussetzungen

12.29 Teilleistung: Experimentalphysik A [T-PHYS-110163]

Verantwortung: Prof. Dr. Thomas Schimmel **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105008 - Experimentalphysik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6Drittelnoten1

Lehrverans	Lehrveranstaltungen							
WS 23/24	4040011	Experimentalphysik A für die Studiengänge Elektrotechnik, Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geoökologie, Technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik	4 SWS	Vorlesung (V) / •	Schimmel			
WS 23/24	4040012	Übungen zur Experimentalphysik A für Elektrotechnik	1 SWS	Übung (Ü) / 🗣	Schimmel, Wertz			

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel 180 min)

Voraussetzungen

12.30 Teilleistung: Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung [T-MACH-105535]

Verantwortung: Prof. Dr.-Ing. Frank Henning **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik

KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbau

Bestandteil von: M-MACH-106051 - Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4DrittelnotenJedes Sommersemester2

Lehrveranstaltungen							
SS 2023		Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung	2 SWS	Vorlesung (V) / 😘	Henning		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung 90 Minuten

Voraussetzungen

12.31 Teilleistung: Fertigungsmesstechnik [T-ETIT-106057]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103043 - Fertigungsmesstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen					
SS 2023	2302116	Fertigungsmesstechnik	2 SWS	Vorlesung (V) / 🗯	Heizmann	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten. Bei weniger als 20 Prüflingen kann alternativ eine mündliche Prüfung im Umfang von ca. 20 Minuten. Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung.

Voraussetzungen

keine

Empfehlungen

Kenntnisse der Stochastik und von Grundlagen der Messtechnik sind hilfreich.

12.32 Teilleistung: Forschungspraktikum in der Medizintechnik [T-ETIT-112178]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-106000 - Forschungspraktikum in der Medizintechnik

Teilleistungsart Studienleistung Leistungspunkte 15 **Notenskala** best./nicht best.

Turnus Jedes Semester **Dauer** 1 Sem.

Version 1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung bestehend aus einer schriftlichen Ausarbeitung (Umfang ca. 15 Seiten).

Die Bestätigung der Teilnahme und des erfolgreichen Abschlusses des Forschungspraktikums erfolgt durch die betreuende Hochschullehrerin bzw. den betreuenden Hochschullehrer.

Die formale Anerkennung erfolgt durch das ETIT-Praktikantenamt.

Voraussetzungen

Industriepraktikum und Klinikpraktikum dürfen nicht vorhanden sein

12.33 Teilleistung: Genetik [T-CIWVT-111063]

Verantwortung: Dr. Anke Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106108 - Genetik

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten

Turnus Jedes Wintersemester Version

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Es wird empfohlen, zunächst die Teilleistung Zellbiologie zu absolvieren.

12.34 Teilleistung: Grundlagen der Datenübertragung [T-ETIT-112851]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen

Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106338 - Grundlagen der Datenübertragung

Teilleistungsart Prüfungsleistung schriftlich **Leistungspunkte** 6

Notenskala Drittelnoten **Turnus** Jedes Sommersemester Version

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

12.35 Teilleistung: Grundlagen der Digitaltechnik [T-ETIT-112872]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106350 - Grundlagen der Digitaltechnik und Systemmodellierung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	1 Sem.	1

Lehrverans	Lehrveranstaltungen						
WS 23/24	2311615	Digitaltechnik / Grundlagen der Digitaltechnik	3 SWS	Vorlesung (V) / 🗯	Becker		
WS 23/24	2311616	Tutorien zu 2311615 Digitaltechnik / Grundlagen der Digitaltechnik	SWS	Tutorium (Tu) / 🗣	Höfer		
WS 23/24	2311617	Übungen zu 2311615 Digitaltechnik / Grundlagen der Digitaltechnik	1 SWS	Übung (Ü) / 😘	Höfer		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 80 Minuten sowie durch die Bewertung von Challenges. Die Challenges können während des Semesters von den Studierenden eigenständig bearbeitet und zur Bewertung abgegeben werde. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Anmerkungen

Diese Teilleistung dauert nur bis Ende Dezember/Anfang Januar.

Für den Rest des Semester schließt sich die Teilleistung "Systemmodellierung" an, die den Studierenden des BSC MEDT im 1. Fachsemester und im BSc MIT im 1. oder 3. Fachsemester empfohlen wird.

12.36 Teilleistung: Grundlagen der Hochfrequenztechnik [T-ETIT-101955]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102129 - Grundlagen der Hochfrequenztechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	6

Lehrveran	Lehrveranstaltungen					
SS 2023	2308080	Tutorien zu 2308406 Grundlagen der Hochfrequenztechnik	SWS	Tutorium (Tu) / 🗣	Nuß	
SS 2023	2308406	Grundlagen der Hochfrequenztechnik	2 SWS	Vorlesung (V) / 🗣	Nuß	
SS 2023	2308408	Übungen zu 2308406 Grundlagen der Hochfrequenztechnik	2 SWS	Übung (Ü) / 🗣	Nuß	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird sowie durch die Bewertung von Hausübungen. Die Hausübungen können während des Semesters von den Studierenden bearbeitet und zur Korrektur abgegeben werden. Die Abgabe erfolgt in handschriftlicher Form.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

Anmerkungen

Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

12.37 Teilleistung: Grundlagen der Künstlichen Intelligenz [T-INFO-112194]

Verantwortung: TT-Prof. Dr. Pascal Friederich

Prof. Dr. Gerhard Neumann

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-106014 - Grundlagen der Künstlichen Intelligenz

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	5

Lehrveranstaltungen					
WS 23/24	2400158	Grundlagen der künstlichen Intelligenz	3 SWS	Vorlesung / Übung (VÜ) / ♀	Neumann, Friederich, Shaj Kumar

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min) nach § 4 Abs. 2 Nr. 1 SPO erfolgen.

Voraussetzungen

Kognitive Systeme darf nicht begonnen sein.

Empfehlungen

Grundlagen der Wahrscheinlichkeitstheorie und Statistik werden dringend empfohlen.

12.38 Teilleistung: Grundlagenmodul - Selbstverbuchung BAK [T-ZAK-112653]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Teilleistungsart Studienleistung Leistungspunkte 3

Notenskala best./nicht best.

Version

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul umfasst eine Studienleistung nach § 5 Absatz 4 in Form von zwei Protokollen zu zwei frei wählbaren Sitzungen der Ringvorlesung "Einführung in die Angewandte Kulturwissenschaft", Umfang jeweils ca. 6000 Zeichen (inkl. Leerzeichen).

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Fjordevik, Anneli und Jörg Roche: Angewandte Kulturwissenschaften. Vol. 10. Narr Francke Attempto Verlag, 2019.

Anmerkungen

Das Grundlagenmodul besteht aus der Vorlesung "Einführung in die Angewandte Kulturwissenschaft", die jeweils nur im Wintersemester angeboten wird. Empfohlen werden daher ein Studienbeginn im Wintersemester und ein Absolvieren vor Modul 2.

12.39 Teilleistung: Grundlagenmodul - Selbstverbuchung BeNe [T-ZAK-112345]

Verantwortung: Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

Teilleistungsart Studienleistung Leistungspunkte 3 **Notenskala** best./nicht best.

Version

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul umfasst eine Studienleistung nach § 5 Absatz 4:

Ringvorlesung Einführung in die Nachhaltige Entwicklung in Form von Protokollen zu jeder Sitzung der Ringvorlesung "Einführung in die Nachhaltige Entwicklung", wovon zwei frei zu wählende abzugeben sind. Umfang jeweils ca. 6.000 Zeichen (inkl. Leerzeichen).

oder

Projekttage Frühlingsakademie Nachhaltigkeit in Form eines Reflexionsberichts über alle Bestandteile der Projekttage "Frühlingsakademie Nachhaltigkeit". Umfang ca. 12.000 Zeichen (inkl. Leerzeichen)

Die Erfolgskontrolle erfolgt studienbegleitend ohne Note.

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Kropp, Ariane: Grundlagen der Nachhaltigen Entwicklung: Handlungsmöglichkeiten und Strategien zur Umsetzung. Springer-Verlag, 2018.

Pufé, Iris: Nachhaltigkeit. 3. überarb. Edition, UTB, 2017.

Roorda, Niko, et al.: Grundlagen der nachhaltigen Entwicklung. Springer-Verlag, 2021.

Anmerkungen

Modul Grundlagen besteht aus der Vorlesung "Nachhaltige Entwicklung" plus Begleitseminar, die jeweils nur im Sommersemester angeboten werden oder alternativ aus den Projekttagen "Frühlingsakademie Nachhaltigkeit", die jeweils nur im Wintersemester angeboten werden. Empfohlen werden das Absolvieren vor dem Wahlmodul und dem Vertiefungsmodul.

In Ausnahmefällen können Wahlmodul oder Vertiefungsmodul auch parallel zum Grundlagenmodul absolviert werden. Ein vorheriges Absolvieren der aufbauenden Module Wahlmodul und Vertiefungsmodul sollte jedoch vermieden werden.

12.40 Teilleistung: Höhere Mathematik I - Klausur [T-MATH-103353]

Verantwortung: PH. D. Ioannis Anapolitanos

Prof. Dr. Dirk Hundertmark apl. Prof. Dr. Peer Kunstmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101731 - Höhere Mathematik I

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich11Drittelnoten1

Lehrveranstaltungen						
WS 23/24	0130000	Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik	6 SWS	Vorlesung (V)	Anapolitanos	
WS 23/24	0130100	Übungen zu 0130000 - HM I (ETIT) Übung	2 SWS	Übung (Ü) / 🗣	Anapolitanos	
WS 23/24	0133000	Höhere Mathematik I (Analysis) für die Fachrichtung Informatik	4 SWS	Vorlesung (V) / 🗣	Tolksdorf, Heister	
WS 23/24	0133100	Übungen zu 0133000	2 SWS	Übung (Ü) / 🗣	Tolksdorf, Heister	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Voraussetzungen

12.41 Teilleistung: Höhere Mathematik II - Klausur [T-MATH-103354]

Verantwortung: PH. D. Ioannis Anapolitanos

Prof. Dr. Dirk Hundertmark apl. Prof. Dr. Peer Kunstmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101732 - Höhere Mathematik II

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich8Drittelnoten1

Lehrveranstaltungen					
SS 2023		Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik	4 SWS	Vorlesung (V)	Anapolitanos
SS 2023	0180150	Übungen zu 0180100	2 SWS	Übung (Ü)	Anapolitanos

Voraussetzungen

12.42 Teilleistung: Höhere Mathematik III - Klausur [T-MATH-103357]

Verantwortung: PH. D. Ioannis Anapolitanos

Prof. Dr. Dirk Hundertmark apl. Prof. Dr. Peer Kunstmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101738 - Höhere Mathematik III

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich4Drittelnoten1

Lehrveranstaltungen						
WS 23/24	0130400	Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik	2 SWS	Vorlesung (V) / 🗣	Liao	
WS 23/24	0130500	Übungen zu 0130400 (Höhere Mathematik III für Elektrotechnik und Informationstechnik)	1 SWS	Übung (Ü) / 🗣	Liao	
WS 23/24	0194000	Tutorium für Höhere Mathematik III für Elektrotechnik	SWS	Tutorium (Tu)	Liao	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Voraussetzungen

12.43 Teilleistung: Hybride und elektrische Fahrzeuge [T-ETIT-100784]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-100514 - Hybride und elektrische Fahrzeuge

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	2306321	Hybride und elektrische Fahrzeuge	2 SWS	Vorlesung (V) / 🗯	Doppelbauer
WS 23/24	2306323	Übungen zu 2306321 Hybride und elektrische Fahrzeuge	1 SWS	Übung (Ü) / 🗯	Doppelbauer

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").

12.44 Teilleistung: Industriebetriebswirtschaftslehre [T-WIWI-100796]

Verantwortung: Prof. Dr. Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart
Studienleistung schriftlich

Leistungspunkte
3

Notenskala
best./nicht best.

Jedes Wintersemester
1

Lehrverans	taltungen				
WS 23/24	2581040	Industriebetriebswirtschaftslehre	2 SWS	Vorlesung (V) / 🗣	Fichtner

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer unbenoteten schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten.

Voraussetzungen

Keine

12.45 Teilleistung: Industriepraktikum in der Medizintechnik [T-ETIT-112176]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-105998 - Industriepraktikum in der Medizintechnik

Teilleistungsart Studienleistung Leistungspunkte 15 Notenskala best./nicht best.

Turnus Jedes Semester Dauer 1 Sem. **Version** 1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung bestehend aus einer schriftlichen Ausarbeitung (Umfang ca. 15 Seiten).

Die Bestätigung der Teilnahme und des erfolgreichen Abschlusses des Industriepraktikums erfolgt durch den Betrieb, in dem das Praktikum absolviert wurde.

Die formale Anerkennung erfolgt durch das ETIT-Praktikantenamt.

Voraussetzungen

Forschungspraktikum und Klinikpraktikum dürfen nicht vorhanden sein.

12.46 Teilleistung: Informations- und Automatisierungstechnik [T-ETIT-112878]

Verantwortung: Prof. Dr.-Ing. Mike Barth

Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106336 - Informations- und Automatisierungstechnik

Teilleistungsart Prüfungsleistung schriftlich **Leistungspunkte** 5

Notenskala Drittelnoten **Turnus** Jedes Sommersemester **Dauer** 1 Sem.

Version

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

12.47 Teilleistung: Informations- und Automatisierungstechnik - Praktikum [T-ETIT-112879]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-106336 - Informations- und Automatisierungstechnik

Teilleistungsart
StudienleistungLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes SommersemesterDauer
1 Sem.Version
1

Erfolgskontrolle(n)

Einer Erfolgskontrolle in Form einer Studienleistung bestehend aus Projektdokumentationen und der Kontrolle des Quellcodes im Rahmen der Lehrveranstaltung Praktikum

Voraussetzungen

12.48 Teilleistung: Informationstechnik II und Automatisierungstechnik [T-ETIT-109319]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104547 - Informationstechnik II und Automatisierungstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen					
SS 2023	2311654	Informationstechnik II und Automatisierungstechnik	2 SWS	Vorlesung (V) / 🗣	Sax
SS 2023	2311655	Übungen zu 2311654 Informationstechnik II und Automatisierungstechnik	1 SWS	Übung (Ü) / 🗣	Zink

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Voraussetzungen

keine

Empfehlungen

Grundlagen der Programmierung sind hilfreich (MINT-Kurs).

Die Inhalte des Moduls "Informationstechnik I" sind hilfreich.

12.49 Teilleistung: Introduction to Quantum Information Processing [T-ETIT-112715]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106264 - Introduction to Quantum Information Processing

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2023		Introduction to Quantum Information Processing	2 SWS	Vorlesung (V) / 🗣	Kempf		
SS 2023	2312678	Tutorial for 2312677 Introduction to Quantum Information Processing	2 SWS	Übung (Ü) / 🗣	Ilin, Kempf		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

The examination takes place within the framework of an oral overall examination (30 minutes) on the selected events with which the minimum CR requirement is fulfilled in total.

Voraussetzungen

none

12.50 Teilleistung: Introduction to the Scientific Method (Seminar) [T-ETIT-111317]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	1	best./nicht best.	Jedes Semester	1 Sem.	1

Lehrveranstaltungen						
SS 2023	2305745	Introduction to the Scientific Method	1 SWS	Seminar (S) / 🗣	Nahm	
WS 23/24	2305746	Introduction to the Scientific Method	1 SWS	Seminar (S) / 🗣	Nahm	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

The sucess control takes place in the form of a study achievement. The exam consists of the preparation and the presentation of a seminar paper.

Voraussetzungen

none

Anmerkungen

Detailled information on contents, competence goals, and work load at:

M-ETIT-105665 - Introduction to the Scientific Method (Seminar)

12.51 Teilleistung: Klinikpraktikum in der Medizintechnik [T-ETIT-112179]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-106001 - Klinikpraktikum in der Medizintechnik

Teilleistungsart Studienleistung Leistungspunkte 15 Notenskala best./nicht best.

Turnus Jedes Semester

Dauer 1 Sem. **Version** 1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung bestehend aus einer schriftlichen Ausarbeitung (Umfang ca. 15 Seiten).

Die Bestätigung der Teilnahme und des erfolgreichen Abschlusses des Klinikpraktikums erfolgt durch den Betrieb, in dem das Praktikum absolviert wurde.

Die formale Anerkennung erfolgt durch das ETIT-Praktikantenamt

Voraussetzungen

Industriepraktikum und Forschungspraktikum dürfen nicht vorhanden sein.

12.52 Teilleistung: Kontinuumsmechanik der Festkörper und Fluide [T-MACH-110377]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-105180 - Kontinuumsmechanik

TeilleistungsartLeistungspunkteNotenskalaTurnusDauerVersionPrüfungsleistung schriftlich4DrittelnotenJedes Wintersemester1 Sem.5

Lehrveranstaltungen						
WS 23/24	2161252	Kontinuumsmechanik der Festkörper und Fluide	2 SWS	Vorlesung (V) / 🗣	Böhlke, Frohnapfel	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung

Voraussetzungen

bestandene Studienleistung "Übungen zu Kontinuumsmechanik der Festkörper und Fluide" (T-MACH-110333)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110333 - Übungen zu Kontinuumsmechanik der Festkörper und Fluide muss erfolgreich abgeschlossen worden sein.

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, und Studierende des Studiengangs MATWERK werden in jedem Fall zu den Rechnerübungen zugelassen.

Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

12.53 Teilleistung: Labor für angewandte Machine Learning Algorithmen [T-ETIT-109839]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Prof. Dr.-Ing. Eric Sax Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104823 - Labor für angewandte Machine Learning Algorithmen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung anderer Art	6	Drittelnoten	Jedes Wintersemester	1 Sem.	1

Lehrveranstaltungen						
WS 23/24		Labor für angewandte Machine Learning Algorithmen	4 SWS	Praktikum (P) / 🗣	Sax, Stork, Becker	

Legende: ■ Online, 🥸 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Prüfungsleistungen anderer Art.

- · Protokolle (Labordokumentation) und kontinuierliche Bewertung der Teamarbeit während der Präsenzzeit
- · Vortrag in Form einer Präsentation

Abfrage nach Ende der Veranstaltung zu den Inhalten des Labors.

Voraussetzungen

keine

Empfehlungen

Vorausgesetzt werden Kenntnisse in den Grundlagen der Informationstechnik (z.B. M-ETIT-102098), Signal- und Systemtheorie (z.B. M-ETIT-102123) sowie Wahrscheinlichkeitstheorie (z.B. M-ETIT-102104)

Außerdem: Programmierkenntnisse (z.B. C++ oder Python) sind zwingend erforderlich

Anmerkungen

Das Labor ist aus Kapazitätsgründen auf eine Teilnehmerzahl von 30 Studierenden begrenzt. Sofern erforderlich wird ein Auswahlverfahren durchgeführt. Die Plätze werden unter Berücksichtigung des Studienfortschritts der Studierenden (Fachsemester und fachspezifische Programmierkenntnisse) vergeben. Details werden in der ersten Veranstaltung und auf der Homepage der Veranstaltung bekanntgegeben.

Während sämtlicher Labortermine einschließlich der Einführungsveranstaltung herrscht Anwesenheitspflicht. Die Anwesenheitspflicht ist sowohl zur Durchführung der Arbeiten im Team vor Ort notwendig, als auch zur praktischen Vermittlung von Techniken und Fähigkeiten, die im reinen Selbststudium nicht erlernt werden können.

12.54 Teilleistung: Labor Schaltungsdesign [T-ETIT-100788]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Dr.-Ing. Oliver Sander

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100518 - Labor Schaltungsdesign

TeilleistungsartLeistungspunkteNotenskala
DrittelnotenTurnus
Jedes WintersemesterVersion

Lehrveranstaltungen					
WS 23/24	2311638	Labor Schaltungsdesign	4 SWS	Praktikum (P) / 🗣	Becker

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung, sowie einer mündlichen Gesamtprüfung (30 Minuten) über die ausgewählten Lehrveranstaltungen. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Empfehlungen

Grundlegende Kenntnisse von elektronischen Basisschaltungen z.B. Lineare Elektrische Netze, Elektronische Schaltungen und Elektrische Maschinen und Stromrichter

12.55 Teilleistung: Lineare Elektrische Netze [T-ETIT-113001]

Verantwortung: Prof. Dr.-Ing. John Jelonnek

Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106417 - Lineare Elektrische Netze

M-ETIT-106426 - Orientierungsprüfung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrverans	taltungen				
WS 23/24	2305256	Lineare elektrische Netze	3 SWS	Vorlesung (V) / 🗣	Kempf, Jelonnek

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

In einer schriftlichen Prüfung im Umfang von 120 Minuten werden die Inhalte der Lehrveranstaltung Lineare Elektrische Netze geprüft. Bei bestandener Prüfung können Studierende einen Notenbonus von bis zu 0,4 Notenpunkten erhalten, wenn zuvor semesterbegleitend zwei Projektaufgaben erfolgreich bearbeitet wurden. Die Bearbeitung der Projektaufgaben wird durch die Abgabe einer Dokumentation oder des Projektcodes nachgewiesen.

Voraussetzungen

12.56 Teilleistung: Lineare Elektrische Netze - Workshop A [T-ETIT-109317]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried

Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106417 - Lineare Elektrische Netze

M-ETIT-106426 - Orientierungsprüfung

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion

Lehrveranstaltungen					
WS 23/24	2307905	Lineare Elektrische Netze - Workshop A	1 SWS	Praktikum (P) / 🗣	Lemmer

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Ausarbeitung. Die schriftliche Ausarbeitung wird korrigiert und mit Punkten bewertet. Bei Erreichen der erforderlichen Punktezahl gilt der Workshop als bestanden.

Voraussetzungen

12.57 Teilleistung: Lineare Elektrische Netze - Workshop B [T-ETIT-109811]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106417 - Lineare Elektrische Netze

M-ETIT-106426 - Orientierungsprüfung

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes WintersemesterDauer
1 Sem.Version
1

Lehrveranstaltungen					
WS 23/24	2307400	Lineare Elektrische Netze - Workshop B	1 SWS	Praktikum (P) / 🗣	Leibfried

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Ausarbeitung. Die schriftliche Ausarbeitung wird korrigiert und mit Punkten bewertet. Bei Erreichen der erforderlichen Punktezahl gilt der Workshop als bestanden.

Voraussetzungen

12.58 Teilleistung: Machine Vision [T-MACH-105223]

Verantwortung: Dr. Martin Lauer

Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-101923 - Machine Vision

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich8DrittelnotenJedes Wintersemester2

Lehrveranstaltungen					
WS 23/24	2137308	Machine Vision	4 SWS	Vorlesung / Übung (VÜ) / ♀	Lauer, Klemp

Legende: █ Online, ্ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Art der Prüfung: schriftliche Prüfung Dauer der Prüfung: 60 Minuten

Voraussetzungen

Keine

12.59 Teilleistung: Maschinenkonstruktionslehre A [T-MACH-112984]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-106527 - Maschinenkonstruktionslehre A

TeilleistungsartLeistungspunkteNotenskalaTurnusDauerVersionPrüfungsleistung schriftlich6DrittelnotenJedes Wintersemester1 Sem.2

Lehrveranstaltungen						
WS 23/24	2145170	Maschinenkonstruktionslehre A	3 SWS	Vorlesung / Übung (VÜ)	Matthiesen, Düser	

Erfolgskontrolle(n)

Schriftliche Prüfung mit einer Dauer von 90 min.

Voraussetzungen

Voraussetzung für die Teilnahme an der Klausur ist der Workshop Maschinenkonstruktionslehre A (T-MACH-112981)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112981 - Workshop zu Maschinenkonstruktionslehre A muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Keine

Anmerkungen

Die Studierenden sind mit den grundlegenden Maschinenelementen technischer Systeme vertraut und sind dazu in der Lage diese im Systemkontext zu analysieren

12.60 Teilleistung: Maschinenkonstruktionslehre I und II [T-MACH-112225]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6Drittelnoten2

Lehrveranstaltungen						
SS 2023	2146178	Maschinenkonstruktionslehre II	2 SWS	Vorlesung (V) / 🗣	Matthiesen, Düser	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Schriftliche Klausur (90min) über die Inhalte von MKL I und MKL II.

Voraussetzungen

Die Teilleistungen "T-MACH-112226 - Maschinenkonstruktionslehre I, Vorleistung" und "T-MACH-112227-Maschinenkonstruktionslehre II, Vorleistung" müssen erfolgreich bestanden sein.

12.61 Teilleistung: Maschinenkonstruktionslehre I, Vorleistung [T-MACH-112226]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Wintersemester Version

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn der Projektsitzung das Wissen aus der Vorlesung abgefragt. Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Des weiteren wird ein Onlinetest zur Wissensüberprüfung durchgeführt.

12.62 Teilleistung: Maschinenkonstruktionslehre II, Vorleistung [T-MACH-112227]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
1

Lehrveranstaltungen					
SS 2023	2146185	Übungen zu Maschinenkonstruktionslehre II	2 SWS	Übung (Ü) / 🗣	Matthiesen, Düser

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

CIW/ VT/ IP-M/ WiING / MATH/ MWT: Zum Bestehen der Vorleistung ist es erforderlich, dass eine Konstruktionsaufgabe erfolgreich absolviert wird.

MIT: Zum Bestehen der Vorleistung ist es erforderlich, dass eine Konstruktionsaufgabe erfolgreich absolviert wird.

NWT: Für Studierende der Fachrichtung NwT ist stattdessen als Studienleistung die Erstellung eines Lehrvideos zur Vermittlung eines technischen Systems als Prüfungsvorleistung zu erbringen

Voraussetzungen

Keine

12.63 Teilleistung: Maschinenkonstruktionslehre III und IV [T-MACH-104810]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102829 - Maschinenkonstruktionslehre III und IV

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	11	Drittelnoten	Jedes Semester	3

Lehrveranstaltungen						
SS 2023	2146177	Maschinenkonstruktionslehre IV	2 SWS	Vorlesung (V) / 🗣	Matthiesen, Düser	
SS 2023	3146020	Mechanical Design IV Lecture	2 SWS	Vorlesung (V) / 🗣	Düser, Burkardt	
WS 23/24	2145151	Maschinenkonstruktionslehre III	2 SWS	Vorlesung (V) / 🗣	Matthiesen, Düser	
WS 23/24	3145016	Mechanical Design III (Lecture)	2 SWS	Vorlesung (V) / 🗣	Burkardt, Düser	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung bestehend aus:

- · schriftlichem Teil mit Dauer 60 min und
- · konstruktivem Teil mit Dauer 180 min

Insgesamt: 240 min

Voraussetzungen

Für die Zulassung zur Prüfung ist die erfolgreiche Teilnahme an T-MACH-110955 Maschinenkonstruktionslehre III, Vorleistung und T-MACH-110956 Maschinenkonstruktionslehre IV, Vorleistung erforderlich.

Modellierte Voraussetzungen

Es muss eine von 2 Bedingungen erfüllt werden:

- 1. Die Teilleistung T-MACH-110955 Maschinenkonstruktionslehre III, Vorleistung muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung T-MACH-110956 Maschinenkonstruktionslehre IV, Vorleistung muss erfolgreich abgeschlossen worden sein.

12.64 Teilleistung: Maschinenkonstruktionslehre III, Vorleistung [T-MACH-110955]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102829 - Maschinenkonstruktionslehre III und IV

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	1	best./nicht best.	Jedes Wintersemester	1

Lehrverans	Lehrveranstaltungen						
WS 23/24	2145153	Übungen zu Maschinenkonstruktionslehre III	2 SWS	Übung (Ü) / 🗣	Matthiesen, Düser		
WS 23/24	2145154	Workshop zu Maschinenkonstruktionslehre III	1 SWS	Praktikum (P) / 🗣	Matthiesen, Düser		
WS 23/24	3145017	Mechanical Design III (Tutorial)	2 SWS	Übung (Ü) / 🗣	Burkardt, Düser		
WS 23/24	3145018	Mechanical Design III (Workshop)	1 SWS	Seminar / Praktikum (S/P) /	Burkardt, Düser		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn der Projektsitzung das Wissen aus der Vorlesung abgefragt. Der Wissenstand, der im Rahmen von MKL III statt findenden CAD-Ausbildung vermittelt wird, wird in einer semesterbegleitenden CAD-Aufgabe in einem Kolloquium mit Anwesenheitspflicht abgefragt. Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen

Keine

12.65 Teilleistung: Maschinenkonstruktionslehre IV, Vorleistung [T-MACH-110956]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102829 - Maschinenkonstruktionslehre III und IV

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
1

Lehrveran	Lehrveranstaltungen						
SS 2023	2146184	Übungen zu Maschinenkonstruktionslehre IV	1 SWS	Übung (Ü) / 🗣	Matthiesen, Düser		
SS 2023	2146187	Workshop zu Maschinenkonstruktionslehre IV	1 SWS	Praktische Übung (PÜ) / ♀	Matthiesen, Düser		
SS 2023	3146021	Mechanical Design IV Tutorials	1 SWS	Übung (Ü) / 🗣	Düser, Burkardt		
SS 2023	3146022	Mechanical Design IV Workshop	1 SWS	Praktische Übung (PÜ) / ♀	Düser, Burkardt		

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn des Workshops das Wissen aus der Vorlesung abgefragt. Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen

Keine

12.66 Teilleistung: Mathematische Methoden der Kontinuumsmechanik [T-MACH-110375]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106210 - Mathematische Methoden der Kontinuumsmechanik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	1 Sem.	1

Lehrverans	taltungen				
WS 23/24	2161254	Mathematische Methoden der Kontinuumsmechanik	2 SWS	Vorlesung (V) / 🗣	Böhlke

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung

Klausurzulassung: bestandene Studienleistung Übung zu Mathematische Methoden der Kontinuumsmechanik (T-MACH-110376)

Voraussetzungen

bestandene Studienleistung Übungen zu Mathematische Methoden der Kontinuumsmechanik (T-MACH-110376)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110376 - Übungen zu Mathematische Methoden der Kontinuumsmechanik muss erfolgreich abgeschlossen worden sein.

12.67 Teilleistung: Medical Imaging Technology I [T-ETIT-113048]

Verantwortung: Prof. Dr. Maria Francesca Spadea

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-106492 - Einführung in die Medizintechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich3DrittelnotenJedes Wintersemester1

Lehrveranst	taltungen				
WS 23/24	2305261	Medical Imaging Technology I	2 SWS	Vorlesung (V)	Spadea

Erfolgskontrolle(n)

The examination takes place in form of a written examination lasting 60 minutes. The course grade is the grade of the written exam.

Voraussetzungen

none

12.68 Teilleistung: Mensch-Maschine-Interaktion [T-INFO-101266]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen					
SS 2023	24659	Mensch-Maschine-Interaktion	2 SWS	Vorlesung (V) / 🗯	Beigl, Lee

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-106257 - Übungsschein Mensch-Maschine-Interaktion muss erfolgreich abgeschlossen worden sein.

12.69 Teilleistung: Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen [T-INFO-101361]

Verantwortung: Prof. Dr.-Ing. Jürgen Beyerer

Dr. Jürgen Geisler

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100824 - Mensch-Maschine-Wechselwirkung in der Anthropomatik: Basiswissen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 23/24		Mensch-Maschine- Wechselwirkung in der Anthropomatik: Basiswissen	2 SWS	Vorlesung (V) / 🕃	van de Camp

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

12.70 Teilleistung: Mess- und Regelungstechnik [T-ETIT-112852]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106339 - Mess- und Regelungstechnik

Teilleistungsart Prüfungsleistung schriftlich **Leistungspunkte** 6

Notenskala Drittelnoten **Turnus** Jedes Sommersemester **Dauer** 1 Sem. **Version**

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

12.71 Teilleistung: Methodenpraktikum [T-CHEMBIO-100201]

Verantwortung: Dr. habil. Dietmar Gradl

Prof. Dr. Peter Nick

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-CHEMBIO-101843 - Grundtechniken der Biologie

Teilleistungsart Studienleistung Leistungspunkte 4 **Notenskala** best./nicht best.

Version 3

Lehrveranstaltungen					
SS 2023		Biologisches Methodenpraktikum für Studierende der Chemischen Biologie	12 SWS	Praktikum (P) / 🗣	Nick, Gradl, Ponnu

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

akzeptiertes Gruppenprotokoll, Vortrag

Voraussetzungen

keine

Empfehlungen

Bitte Gruppeneinteilung in ILIAS beachten!

12.72 Teilleistung: Mikrobiologie [T-CHEMBIO-112607]

Verantwortung: Prof. Dr. Reinhard Fischer

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-106205 - Mikrobiologie

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich3Drittelnoten1

Lehrveranstaltungen					
WS 23/24	7300	Mikrobiologie (BA-04)	3 SWS	Vorlesung (V)	Fischer

Erfolgskontrolle(n)

Klausur über die Vorlesungen Mikrobiologie (3 LP)

Voraussetzungen

keine

Empfehlungen

wichtige Informationen auf:

http://www.biologie.kit.edu/310.php

12.73 Teilleistung: Moderne Methoden der Biologie [T-CHEMBIO-107577]

Verantwortung: Dozentinnen und Dozenten Biologie

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** M-CHEMBIO-101843 - Grundtechniken der Biologie

M-CHEMBIO-106203 - Vorlesung Grundtechniken der Biologie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4	Drittelnoten	Jedes Sommersemester	3

Lehrveranstaltungen					
SS 2023		Moderne Methoden der Biologie (Bachelor Biologie Modul BA-05 und ANG-05)	4 SWS	Vorlesung (V) / 🗣	Dozentinnen und Dozenten der Biologie, Kämper

Legende: 🖥 Online, 🕸 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Als Erfolgskontrolle gibt es zwei Varianten, bei beiden Varianten können **insgesamt maximal 75 Punkte** erlangt werden. Generell empfehlen wir Variante A), die zweite Variante B) ist für Studierende gedacht, die beispielsweise ein Semester im Ausland verbringen und während der Vorlesungszeit nicht vor Ort sind.

Variante A:

Während der Vorlesungszeit werden drei ILIAS-Tests absolviert, mit den drei Tests können insgesamt 25 Punkte der Gesamtpunktzahl erreicht werden. Zusätzlich wird am Ende der Vorlesungszeit ein schriftlicher Test über 60 Minuten geschrieben. Mit dem schriftlichen Prüfungsteil können maximal 50 Punkte erreicht werden.

Die ILIAS-Test werden nach unten stehenden Vorlesungsabschnitten absolviert, pro Test haben Sie **30 Minuten** Zeit, die einzelenen Tests sind **6 Stunden an vorher bekannten Terminen** frei geschaltet. Jeder Test darf nur einmal absolviert werden, eine direkte Wiederholung ist nicht möglich.

- Standard-Methoden Molekular- und Zellbiologie
- · Rekombinante Zellen und zelluläre Methoden
- · Hochdurchsatz-Technologien

Variante B:

Am Ende der Vorlesungszeit absolvieren Sie einen schriftlichen Test über 75 Minuten, innerhalb dieses Tests können 75 Punkte erlangt werden.

WICHTIG: Sie dürfen Variante A oder B asbolvieren, Mischformen der beiden Varianten sind NICHT möglich.

Empfehlungen

weitere Informationen im ILIAS-Kurs

12.74 Teilleistung: Molekularbiologie und Genetik [T-CHEMBIO-103675]

Verantwortung: Prof. Dr. Jörg Kämper

Prof. Natalia Requena

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** M-CHEMBIO-106204 - Molekularbiologie und Genetik

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	5	Drittelnoten	1

Lehrveranstaltungen					
WS 23/24	7301	Molekularbiologie (BA-04)	2 SWS	Vorlesung (V) / 🗣	Requena Sanchez
WS 23/24	7401	Genetik (BA-04)	2 SWS	Vorlesung (V) / 🗯	Kämper, Kaster

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Klausur über die Vorlesungen Genetik (3LP) und Molekularbiologie (2LP)

Voraussetzungen

keine

Empfehlungen

wichtige Informationen auf:

http://www.biologie.kit.edu/310.php

12.75 Teilleistung: Mündliche Prüfung - Begleitstudium Angewandte Kulturwissenschaft [T-ZAK-112659]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich4Drittelnoten1

Erfolgskontrolle(n)

Mündliche Prüfung nach § 7, Abs. 6 im Umfang von ca. 45 Minuten über die Inhalte von zwei Lehrveranstaltungen aus dem Vertiefungsmodul 2 (4 LP)

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

12.76 Teilleistung: Mündliche Prüfung - Begleitstudium Nachhaltige Entwicklung [T-ZAK-112351]

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich4Drittelnoten1

Erfolgskontrolle(n)

Eine mündliche Prüfung nach § 7 Abs. 6 im Umfang von ca. 40 Minuten über die Inhalte von zwei Lehrveranstaltungen aus dem Wahlmodul.

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss des Grundlagenmoduls und des Vertiefungsmoduls, sowie der erforderlichen Wahlpflichtteilleistungen im Wahlmodul.

12.77 Teilleistung: Nachrichtentechnik I [T-ETIT-101936]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102103 - Nachrichtentechnik I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen						
WS 23/24	2310506	Nachrichtentechnik I	3 SWS	Vorlesung (V) / 🗯	Schmalen	
WS 23/24	2310508	Übungen zu 2310506 Nachrichtentechnik I	1 SWS	Übung (Ü) / 🗯	Schmalen, Edelmann	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 180 Minuten.

Voraussetzungen

keine

Empfehlungen

Dringend empfohlen werden Kenntnisse der Inhalte in Höherer Mathematik I und II (z.B. M-MATH-101731 und M-MATH-101732), sowie Signale und Systeme (M-ETIT-104525) und Wahrscheinlichkeitstheorie (M-ETIT-102104).

Anmerkungen

ab WS20/21 das erste Mal im Wintersemester statt im Sommersemester

12.78 Teilleistung: Nachrichtentechnik II / Communications Engineering II [T-ETIT-110697]

Verantwortung: Dr.-Ing. Holger Jäkel

Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105274 - Nachrichtentechnik II / Communications Engineering II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrverans	taltungen				
SS 2023	2310511	Nachrichtentechnik II	2 SWS	Vorlesung (V) / 🗯	Jäkel
SS 2023	2310513	Übungen zu 2310511 Nachrichtentechnik II	1 SWS	Übung (Ü) / 🗯	Sturm
WS 23/24	2310509	Communications Engineering II	2 SWS	Vorlesung (V) / 🗯	Jäkel
WS 23/24	2310510	Übung zu 2310509 Communications Engineering II	1 SWS	Übung (Ü) / 🛱	Jäkel

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Empfehlungen

Kenntnis der grundlegenden Ingenieurmathematik inklusive Integraltransformationen und Wahrscheinlichkeitstheorie sowie Grundlagenwissen über die Nachrichtentechnik.

Vorheriger Besuch der Vorlesung "Nachrichtentechnik I", "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" wird empfohlen.

12.79 Teilleistung: Optical Networks and Systems [T-ETIT-106506]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103270 - Optical Networks and Systems

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 23/24	2309470	Optical Networks and Systems	2 SWS	Vorlesung (V) / 🗣	Randel, N.N., Mahmud, Sherifaj
WS 23/24	2309471	Tutorial for 2309470 Optical Networks and Systems	1 SWS	Übung (Ü) / 🗣	Randel, N.N.

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten).

Voraussetzungen

keine

Empfehlungen

Grundkenntnisse der Nachrichtentechnik und Kommunikationstechnik, photonische Komponenten, Wellenausbreitung in optischen Fasern.

12.80 Teilleistung: Optik und Festkörperelektronik [T-ETIT-110275]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105005 - Optik und Festkörperelektronik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen					
SS 2023	2304205	Optik und Festkörperelektronik	3 SWS	Vorlesung (V) / 🗣	Lemmer, Krewer
SS 2023	2304206	Übungen zu 2304205 Optik- und Festkörperelektronik	2 SWS	Übung (Ü) / 🗣	Lemmer, Krewer

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Voraussetzungen

keine

12.81 Teilleistung: Optoelectronic Components [T-ETIT-101907]

Verantwortung: Prof. Dr. Wolfgang Freude

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100509 - Optoelectronic Components

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023	2309486	Optoelectronic Components	2 SWS	Vorlesung (V) / 🗯	Freude
SS 2023	2309487	Optoelectronic Components (Tutorial)	1 SWS	Übung (Ü) / 🗯	Freude

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 30 Minuten). Die individuellen Termine für die mündliche Prüfung werden regelmäßig angeboten.

Voraussetzungen

keine

Empfehlungen

Kenntnisse in folgenden Bereichen: Elemente der Wellenausbreitung, Physik des pn-Übergangs.

12.82 Teilleistung: Optoelektronik [T-ETIT-100767]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100480 - Optoelektronik

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Wintersemester Version 2

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Prüfung (90 Minuten).

Voraussetzungen

keine

Empfehlungen

Kenntnisse der Festkörperelektronik

12.83 Teilleistung: Patente und Patentstrategien in innovativen Unternehmen [T-MACH-105442]

Verantwortung: Prof. Dr.-Ing. Albert Albers

Prof. Dr.-Ing. Sven Matthiesen Dipl.-Ing. Frank Zacharias

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4DrittelnotenJedes Semester1

Lehrveranstaltungen					
SS 2023	2147160	Patente und Patentstrategien in innovativen Unternehmen	2 SWS	Block-Vorlesung (BV) / 🖥	Zacharias
WS 23/24	2147161	Patente und Patentstrategien in innovativen Unternehmen	2 SWS	Block (B) / 🗣	Zacharias

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, benotet, Dauer: ca. 20 Minuten

Voraussetzungen

keine

Empfehlungen

Keine

12.84 Teilleistung: Photovoltaische Systemtechnik [T-ETIT-100724]

Verantwortung: Dipl.-Ing. Robin Grab

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100411 - Photovoltaische Systemtechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrverans	taltungen				
SS 2023	2307380	Photovoltaische Systemtechnik	2 SWS	Vorlesung (V) / 🗣	Grab

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

keine

12.85 Teilleistung: Physikalisches Anfängerpraktikum [T-PHYS-100609]

Verantwortung: Prof. Dr. Alexey Ustinov **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103435 - Physikalisches Anfängerpraktikum

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	6	best./nicht best.	Jedes Semester	1

Lehrveranstaltungen						
SS 2023	4040133	Physikalisches Anfängerpraktikum für Chemiker, Chemische Biologen, Technomathematiker und WMK (1 Kurs)	6 SWS	Praktikum (P) / 🗣	Ustinov, Simonis	
WS 23/24	4040113	Physikalisches Anfängerpraktikum für die Studiengänge Chemie, Chemische Biologie, Technomathematik, Medizintechnik und WMK	6 SWS	Praktikum (P) / 🗣	Ustinov, Wolf, Simonis	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

12.86 Teilleistung: Physiologie und Anatomie für die Medizintechnik [T-ETIT-111815]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105874 - Physiologie und Anatomie für die Medizintechnik

M-ETIT-106426 - Orientierungsprüfung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
SS 2023	2305282	Physiologie und Anatomie II	2 SWS	Vorlesung (V) / 🗣	Nahm
WS 23/24	2305281	Physiologie und Anatomie I	2 SWS	Vorlesung (V) / 😘	Nahm

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Die Erfolgskontrolle umfasst den Inhalt von Physiologie und Anatomie I (jedes Wintersemester) and Physiologie und Anatomie II (jedes Sommersemester).

Voraussetzungen

Die Teilleistungen "T-ETIT-101932 - Physiologie und Anatomie I" und "T-ETIT-101933 - Physiologie und Anatomie II" dürfen nicht begonnen sein.

Anmerkungen

Winter-/Sommersemester:

WiSe: Physiologie und Anatomie I SoSe: Physiologie und Anatomie II

12.87 Teilleistung: Praktikum Design und Entwurf von Quantenschaltkreisen [T-ETIT-112713]

Verantwortung: Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106262 - Praktikum Design und Entwurf von Quantenschaltkreisen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art6DrittelnotenJedes Semester1

Lehrveranstaltungen						
SS 2023		Praktikum Design und Entwurf von Quantenschaltkreisen	4 SWS	Praktikum (P) / 🗣	Kempf, Mitarbeiter*innen	

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus der Bewertung eines schriftlichen Praktikumsberichts mit einem Umfang von 10 bis 20 Seiten. Dieser soll in das Thema des Praktikums einführen, die Durchführung des Praktikums beschreiben sowie die nachfolgende Datenauswertung zusammenfassen und die Ergebnisse in den wissenschaftlichen Kontext bringen.

Voraussetzungen

keine

12.88 Teilleistung: Praktikum Elektrochemische Energietechnologien [T-ETIT-111376]

Verantwortung: Dr. Philipp Röse

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105703 - Praktikum Elektrochemische Energietechnologien

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2023		Laboratory Electrochemical Energy Technologies	3 SWS	Praktikum (P) / 🗣	Röse

Legende: █ Online, ເૐ Präsenz/Online gemischt, Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus vier Versuchen. Der Gesamteindruck wird bewertet. Zum Bestehen des Moduls müssen alle Versuche erfolgreich absolviert werden. Bei Nichtbestehen ist das Praktikum komplett zu wiederholen.

Die Teilnahme an der Praktikums-Sicherheitsunterweisung sowie die Teilnahme an einem Eingangskolloquium ist verpflichtend (unbenotet).

Voraussetzungen

Die Voraussetzung für die Zulassung zum Modul ist, dass die Studierenden die Modulprüfung "M-ETIT-105690 – Electrochemical Energy Technologies" erfolgreich abgelegt haben.

12.89 Teilleistung: Praktikum Hard- und Software in leistungselektronischen Systemen [T-ETIT-106498]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103263 - Praktikum Hard- und Software in leistungselektronischen Systemen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	6	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen					
SS 2023	2306346	Praktikum Hard- und Software in leistungselektronischen Systemen	1	Praktikum (P) / 😘	Schulz, Swoboda, Hiller
WS 23/24	2306346	Praktikum Hard- und Software in leistungselektronischen Systemen	4 SWS	Praktikum (P) / 🗣	Hiller, Swoboda, Cujic

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, × Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung.

Voraussetzungen

Die Module "M-ETIT-100402 - Workshop Schaltungstechnik in der Leistungselektronik" und "M-ETIT-100404 - Workshop Mikrocontroller in der Leistungselektronik" wurden weder begonnen noch abgeschlossen.

12.90 Teilleistung: Praktikum Matlab zur Modellierung im Bereich Optoelektronik [T-ETIT-111800]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105867 - Praktikum Matlab zur Modellierung im Bereich Optoelektronik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3DrittelnotenJedes Wintersemester1

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus der Beurteilung von Code, schriftlicher Ausarbeitung und mündlicher Befragung.

Voraussetzungen

keine

12.91 Teilleistung: Praxismodul [T-ZAK-112660]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Teilleistungsart Studienleistung Leistungspunkte 4

Notenskala best./nicht best.

Version

Erfolgskontrolle(n)

Praktikum (3 LP)

Studienleistung ,Praktikumsbericht' (im Umfang ca. 18.000 Zeichen inkl. Leerzeichen) (1 LP)

Voraussetzungen

keine

Anmerkungen

Kenntnisse aus Grundlagenmodul und Vertiefungsmodul sind hilfreich.

12.92 Teilleistung: Product Lifecycle Management [T-MACH-105147]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-106195 - Product Lifecycle Management

Teilleistungsart
Prüfungsleistung schriftlich
Prüfungsleistung schriftlich
Prüfungsleistung schriftlich
Prüfungsleistung schriftlich
Prüfungsleistung schriftlich
Prüfungsleistung schriftlich

Lehrverans	taltungen				
WS 23/24	2121350	Product Lifecycle Management	2 SWS	Vorlesung (V) / 🗣	Ovtcharova,
					Elstermann

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung 90 Min.

Voraussetzungen

Keine

12.93 Teilleistung: Radiation Protection [T-ETIT-100825]

Verantwortung: PD Dr. Bastian Breustedt

Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100562 - Radiation Protection

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich3DrittelnotenJedes Sommersemester2

Lehrveranstaltungen					
SS 2023	2305272	Radiation Protection	2 SWS	Vorlesung (V) / 🗣	Breustedt

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Success control is carried out as part of an overall written examination (2 h). The module grade is the grade of the written exam.

Voraussetzungen

none

12.94 Teilleistung: Radio-Frequency Electronics [T-ETIT-110359]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105124 - Radio-Frequency Electronics

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Wintersemester Version 2

Erfolgskontrolle(n)

The success criteria will be determined by a written examination of 120 min.

Empfehlungen

Contents of the modules "Linear electrical networks" and "Electronic circuits".

12.95 Teilleistung: Robotik I - Einführung in die Robotik [T-INFO-108014]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100893 - Robotik I - Einführung in die Robotik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	2424152	Robotik I - Einführung in die Robotik	3/1 SWS	Vorlesung (V) / 🗣	Asfour

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

Anmerkungen

Dieses Modul darf nicht gerprüft werden, wenn im Bacherlor-Studiengang Informatik SPO 2008 die Lehrveranstaltung **Robotik I** mit **3 LP** im Rahmen des Moduls **Grundlagen der Robotik** geprüft wurde.

12.96 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-benotet [T-ETIT-111528]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art2Drittelnoten1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer benoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a graded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

12.97 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-benotet [T-ETIT-111527]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Leistungspunkte Prüfungsleistung anderer Art 2

Notenskala Drittelnoten **Version** 1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer benoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a graded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

12.98 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-benotet [T-ETIT-111526]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art2Drittelnoten1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer benoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a graded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

12.99 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-unbenotet [T-ETIT-111530]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Version 1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer unbenoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a ungraded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

12.100 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-unbenotet [T-ETIT-111532]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Leistungspunkte
Studienleistung 2 be

Notenskala Version best./nicht best. 1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer unbenoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a ungraded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

12.101 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-unbenotet [T-ETIT-111531]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Version 1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Platzhalter zur Selbstverbuchung einer unbenoteten überfachlichen Qualifikation, die am House of Competence, am Sprachenzentrum oder am Zentrum für Angewandte Kulturwissenschaft und Studium Generale erbracht wurde.

Titel und LP der Leistung werden übernommen.

Annotations

Placeholder for self-booking of a ungraded interdisciplinary qualification, which was provided at the House of Competence, the "Sprachenzentrum" or the Center for Applied Cultural Studies and Studium Generale.

12.102 Teilleistung: Seminar Batterien I [T-ETIT-110800]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105319 - Seminar Batterien I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrveranstaltungen					
SS 2023	2304226	Seminar Batterien	2 SWS	Seminar (S) / 🗣	Weber
WS 23/24	2304226	Seminar Batterien	2 SWS	Seminar (S) / 🗣	Weber

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Voraussetzungen

keine

12.103 Teilleistung: Seminar Brennstoffzellen I [T-ETIT-110798]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105320 - Seminar Brennstoffzellen I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrveranstaltungen					
SS 2023	2304227	Seminar Brennstoffzellen	2 SWS	Seminar (S) / 🗣	Weber
WS 23/24	2304227	Seminar Brennstoffzellen	2 SWS	Seminar (S) / 🗣	Weber

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Prüfungsleistungen anderer Art.

Die Note setzt sich zusammen aus:

- 1. schriftliche Ausarbeitung (50%)
- 2. Seminarvortrag (50%)

Voraussetzungen

keine

12.104 Teilleistung: Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung [T-ETIT-100714]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100397 - Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2023		Leistungselektronik in Systemen der regenerativen Energieerzeugung	3 SWS	Seminar (S) / 🗣	Hiller	

Legende: ■ Online, 🥸 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus einem 15-minütigen Abschlussvortrag mit anschließender Diskussion sowie einer 2-seitigen schriftlichen Ausarbeitung. Der Gesamteindruck wird bewertet.

Bewertet werden:

- Vortrag
 - Foliengualität (Form und Inhalt)
 - Vortrag (Aufbau, Stil, Inhalt)
 - · Verhalten bei der Fragerunde
- · Ausarbeitung mit einer Zusammenfassung der wesentlichen Inhalte
 - Format, Rechtschreibung, sprachlicher Stil (wissenschaftlich/sachlich)
 - Inhalt, (grafische) Aufbereitung der recherchierten Ergebnisse
 - Qualität und Quantität der verwendeten Quellen, Zitationsstil

In die Modulnote gehen die Beurteilungen des Abschlussvortrags sowie der schriftlichen Ausarbeitung (jeweils nach den oben genannten Kriterien) ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Sieht man den Prüfling zwischen zwei Notenwerten, gibt die Mitarbeit in den vorbereitenden Treffen den Ausschlag.

Voraussetzungen

keine

Anmerkungen

Teilnahme an insgesamt 7 vorbereitenden Treffen (ca. alle 14 Tage mit durchschnittlich 3 h Dauer) mit den Themen:

Infoveranstaltung

Besprechung und Verteilung der Themen

Vortrags- und Präsentationstechniken

Präsentation der Materialsammlungen

Vorstellung von Struktur und Aufbau der Vorträge

Vorstellung der fertigen Folienpräsentation

Probevorträge

12.105 Teilleistung: Seminar Project Management for Engineers [T-ETIT-100814]

Verantwortung: Prof. Dr. Mathias Noe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Sommersemester Version

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 30 Minuten)

Bestätigung der "erfolgreichen Teilnahme" (unbenotet, Studienleistung) ist für den Studiengang ENTECH durch das Bestehen einer 15 minütigen mündlichen Gesamtprüfung möglich.

Voraussetzungen

keine

Anmerkungen

Not applicable in summer term 2022

Exam and Seminar are held in English.

Detailled information on contents, competence goals, and work load at:

M-ETIT-100551 - Seminar Project Management for Engineers

12.106 Teilleistung: Seminar Projekt Management für Ingenieure [T-ETIT-108820]

Verantwortung: Dr. Christian Day

Prof. Dr. Mathias Noe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionStudienleistung mündlich3best./nicht best.Jedes Sommersemester2

Lehrveranstaltungen							
SS 2023	2312684	Projektmanagement für Ingenieure	2 SWS	Seminar (S) /	Noe		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 30 Minuten).

Voraussetzungen

keine

Anmerkungen

Detaillierte Informationen zu Inhalten, Qualifikationszielen und Arbeitsaufwand unter:

M-ETIT-104285 - Seminar Projektmanagement für Ingenieure

12.107 Teilleistung: Seminar über ausgewählte Kapitel der Biomedizinischen Technik [T-ETIT-100710]

Verantwortung: Dr.-Ing. Axel Loewe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100383 - Seminar über ausgewählte Kapitel der Biomedizinischen Technik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3DrittelnotenJedes Wintersemester1

Lehrveranstaltungen							
WS 23/24		Seminar über ausgewählte Kapitel der Biomedizinischen Technik	2 SWS	Seminar (S) / 🗣	Loewe		

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages (ca. 25 Minuten) mit nachfolgender Diskussion (ca. 10 Minuten).

Voraussetzungen

keine

12.108 Teilleistung: Seminar Wir machen ein Patent [T-ETIT-100754]

Verantwortung: Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	3	best./nicht best.	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen				
SS 2023	2311633	Seminar Wir machen ein Patent	2 SWS	Seminar (S) / 🗣	Stork

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Ausarbeitung einer fiktiven Patentschrift. Das Seminar ist unbenotet gilt mit erfolgreicher Bewertung der schriftlichen Ausarbeitung als bestanden.

Voraussetzungen

keine

Empfehlungen

Ein technisches Verständnis wird erwartet, das ungefähr dem fünften Semester entspricht.

Anmerkungen

Das Seminar ist teilnehmerbegrenzt

Das Auswahlverfahren beginnt nach der ersten Vorlesung

Die Platzvergabe erfolgt nach Studienfortschritt und Studiengang. Studierende der Elektotechnik und Informationstechnik und solche im Masterstudium werden bevorzugt zugelassen.

Detaillierte Informationen zu Inhalten, Qualifikationszielen und Arbeitsaufwand unter:

M-ETIT-100458 - Seminar Wir machen ein Patent

12.109 Teilleistung: Seminar: Grundlagen Eingebetteter Systeme [T-ETIT-110832]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Prof. Dr.-Ing. Eric Sax Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-105356 - Seminar: Grundlagen Eingebetteter Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung anderer Art	4	Drittelnoten	Jedes Semester	1 Sem.	2

Lehrveranstaltungen					
SS 2023	2311628	Seminar Grundlagen Eingebetteter Systeme	2 SWS	Seminar (S) / 🗯	Becker, Sax, Stork
WS 23/24	2311628	Seminar: Grundlagen Eingebetteter Systeme	2 SWS	Seminar (S) / 🗣	Becker, Sax, Stork

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Ausarbeitung sowie eines Vortrags. Der Gesamteindruck wird bewertet. Die Notenbildung ergibt sich aus der Ausarbeitung und dem Vortrag.

Voraussetzungen

12.110 Teilleistung: Signale und Systeme [T-ETIT-112860]

Verantwortung: Dr.-Ing. Mathias Kluwe

Prof. Dr.-Ing. Sander Wahls

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106372 - Signale und Systeme

Teilleistungsart
Prüfungsleistung schriftlichLeistungspunkte
7Notenskala
DrittelnotenTurnus
Jedes WintersemesterDauer
1 Sem.Version
1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

12.111 Teilleistung: Signale und Systeme - Workshop [T-ETIT-112861]

Verantwortung: Dr.-Ing. Mathias Kluwe

Prof. Dr.-Ing. Sander Wahls

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106372 - Signale und Systeme

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes SommersemesterDauer
1 Sem.Version
2

Lehrverans	taltungen				
SS 2023	2302905	Signale und Systeme - Workshop	1 SWS	Praktikum (P) / 🗯	Heizmann

Erfolgskontrolle(n)

Anfertigung eines Protokolls im Rahmen des Workshops

Voraussetzungen

Keine

12.112 Teilleistung: Spezielle Themen der Medizintechnik [T-ETIT-111819]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-105878 - Spezielle Themen der Medizintechnik

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte o **Notenskala** Drittelnoten **Turnus** Jedes Sommersemester Version

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Die schriftliche Prüfung umfasst die Lehrinnhalte der drei Lehrveranstaltungen: Aktuelle Entwicklungen in der Biomedizinischen Technik, Spezielle Anforderungen an die Medizintechnik und Einführungsseminar über ausgewählte Themen der Biomedizinischen Technik.

Voraussetzungen

12.113 Teilleistung: Statistische Methoden der Informationsverarbeitung [T-ETIT-112108]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105960 - Statistische Methoden der Informationsverarbeitung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich4Drittelnoten2

Lehrveranstaltungen						
WS 23/24	2310518	Statistische Methoden der Informationsverarbeitung	2 SWS	Vorlesung (V) / 🗯	Jäkel	
WS 23/24	2310519	Übung zu 2310518 Statistische Methoden der Informationsverarbeitung	1 SWS	Übung (Ü) / 😘	Jäkel	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von 20 Minuten. Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

12.114 Teilleistung: Strömungslehre 1&2 [T-MACH-105207]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-102565 - Strömungslehre

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich8DrittelnotenJedes Sommersemester2

Lehrverans	Lehrveranstaltungen							
SS 2023	2154512	Strömungslehre I	3 SWS	Vorlesung / Übung (VÜ) / 🗯	Frohnapfel			
SS 2023	3154510	Fluid Mechanics I	3 SWS	Vorlesung / Übung (VÜ) / 😘	Frohnapfel			
WS 23/24	2153512	Strömungslehre II	3 SWS	Vorlesung / Übung (VÜ) / ♣	Frohnapfel			
WS 23/24	3153511	Fluid Mechanics II	3 SWS	Vorlesung / Übung (VÜ) / ♀	Frohnapfel			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung 3 Stunden

Voraussetzungen

12.115 Teilleistung: Superconductors for Energy Applications [T-ETIT-110788]

Verantwortung: apl. Prof. Dr. Francesco Grilli

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105299 - Superconductors for Energy Applications

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung mündlich	5	Drittelnoten	Jedes Wintersemester	1 Sem.	2

Lehrverans	Lehrveranstaltungen						
WS 23/24	2312704	Superconductors for Energy Applications	2 SWS	Vorlesung (V) / 🗣	Grilli		
WS 23/24	2312705	Übungen zu 2312704 Superconductors for Energy Applications	1 SWS	Übung (Ü) / ●	Grilli		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

oral exam approx. 30 minutes.

Voraussetzungen

A basic knowledge of electromagnetism and thermodynamics is the only requirement. Previous knowledge of superconductivity is not necessary.

"T-ETIT-106970 - Superconducting Materials for Energy Applications" must not be taken.

12.116 Teilleistung: Systematische Werkstoffauswahl [T-MACH-100531]

Verantwortung: Dr.-Ing. Stefan Dietrich

Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-106054 - Systematische Werkstoffauswahl

Teilleistungsart
Prüfungsleistung schriftlichLeistungspunkte
4Notenskala
DrittelnotenTurnus
Jedes SommersemesterVersion
5

Lehrveranstaltungen						
SS 2023	2174576	Systematische Werkstoffauswahl	3 SWS	Vorlesung (V) / 🗣	Dietrich	
SS 2023	2174577	Übungen zu 'Systematische Werkstoffauswahl'	1 SWS	Übung (Ü) / 🗣	Dietrich	

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung mit einer Dauer von 2 h.

Voraussetzungen

keine

Empfehlungen

Einfache Grundlagen in Werkstoffkunde, Mechanik und Konstruktionslehre wie sie in der Vorlesung Werkstoffkunde I/II vermittelt werden.

12.117 Teilleistung: Systemdynamik und Regelungstechnik [T-ETIT-101921]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102181 - Systemdynamik und Regelungstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen							
WS 23/24	2303155	Systemdynamik und Regelungstechnik	2 SWS	Vorlesung (V) / 🗯	Hohmann		
WS 23/24	2303156	Tutorien zu 2303155 Systemdynamik und Regelungstechnik	SWS	Tutorium (Tu) / 🕄	Piscol		
WS 23/24	2303157	Übungen zu 2303155 Systemdynamik und Regelungstechnik	1 SWS	Übung (Ü) / 🕸	Piscol		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Anmerkungen

wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten

12.118 Teilleistung: Systemmodellierung [T-ETIT-112989]

Verantwortung: Prof. Dr.-Ing. Mike Barth

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106350 - Grundlagen der Digitaltechnik und Systemmodellierung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	2	Drittelnoten	Jedes Wintersemester	1 Sem.	1

Lehrverans	taltungen				
WS 23/24	2311171	Systemmodellierung	1 SWS	Vorlesung (V) / 🗯	Barth

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Anmerkungen

Diese Teilleistung beginnt Anfang Januar.

Die Belegung wird den Studierenden des BSc MEDT im 1. Fachsemester und im BSc MIT im 1. oder 3. Fachsemester empfohlen.

12.119 Teilleistung: Technikethik - ARs ReflecTlonis [T-ETIT-111923]

Verantwortung: Dr. phil. Michael Kühler

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	2	best./nicht best.	Jedes Semester	1 Sem.	1

Lehrverans	Lehrveranstaltungen						
SS 2023	9003013	ARS REFLECTIONIS. Verantwortlich denken und handeln in Technik, Wissenschaft und Innovation	SWS	Block (B) /	Kühler, Does		
WS 23/24	9003013	ARS REFLECTIONIS. Verantwortlich denken und handeln in Technik, Wissenschaft und Innovation	SWS	Block (B) /	Kühler, Does		

Legende: 🖥 Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Multiple-Choice Abschlusstest

Voraussetzungen

keine

Anmerkungen

ARS ReflecTionis ist ein modularer Online-Kurs zum Selbststudium. Ziel ist, die Studierenden zur kritischen Reflexion der ethischen Herausforderungen des eigenen Faches und der eigenen zukünftigen beruflichen Tätigkeit zu befähigen. Dabei lassen sich passgenau studienbereichsspezifische Komponenten zu konkreten Fragen der Verantwortungsübernahme mit allgemeinen Komponenten zu Grundlagen der Ethik und normativer Argumentation kombinieren. Die einzelnen Komponenten enthalten jeweils eine per Video aufgezeichnete Micro-Lecture, die über ILIAS angesehen werden kann, sowie weiteres Kursmaterial zum Selbststudium. Optional werden Q&A Sessions und Workshops angeboten, um im Austausch mit den Dozierenden Fragen klären und Diskussionen vertiefen zu können. Der Kurs wird über einen Multiple-Choice-Test abgeschlossen.

Der Kurs wird von der Academy for Responsible Research, Teaching, and Innovation (ARRTI) kontinuierlich weiterentwickelt und betreut und in Kooperation mit dem House of Competence (HoC) angeboten.

12.120 Teilleistung: TutorInnenprogramm - Start in die Lehre [T-ETIT-100797]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105804 - Überfachliche Qualifikationen

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Semester **Version** 1

Erfolgskontrolle(n)

Die Erfolgskontrolle setzt sich aus der Teilnahme an Präsenzbausteinen (Anwesenheitspflicht von 80%) sowie der Abgabe eines schriftlichen Reflexionsportfolios zusammen.

Die Anwesenheitspflicht ist sowohl zur Durchführung der Arbeiten im Team vor Ort notwendig, als auch zur praktischen Vermittlung von Techniken und Fähigkeiten, die im reinen Selbststudium nicht erlernt werden können.

Voraussetzungen

Semesterbegleitende Tätigkeit als TutorIn am KIT während der Programmteilnahme..

Anmerkungen

Detaillierte Informationen zu Inhalten, Qualifikationszielen und Arbeitsaufwand unter:

M-ETIT-100563 - TutorInnenprogramm - Start in die Lehre

12.121 Teilleistung: Übungen zu Einführung in die Finite-Elemente-Methode [T-MACH-110330]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

KIT-Fakultät für Maschinenbau **Einrichtung:**

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106209 - Einführung in die Finite-Elemente-Methode

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	1	best./nicht best.	Jedes Sommersemester	1

Lehrverans	taltungen				
SS 2023		Übungen zu Einführung in die Finite-Elemente-Methode	1 SWS	Übung (Ü) / 🗣	Lauff, Langhoff, Böhlke, Klein

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Einführung in die Finite-Elemtente-Methode" (siehe Teilleistung 76-T-MACH-105320)

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, bestehen die Klausurvorleistungen in der erfolgreichen Bearbeitung der schriftlichen Übungsblätter und in der erfolgreichen Bearbeitung von Hausaufgaben am Rechner.

Für Studierende der Fachrichtung Maschinenbau, die nicht den Schwerpunkt 13 gewählt haben, und für Studierende anderer Fachrichtungen bestehen die Klausurvorleistungen in der Bearbeitung der schriftlichen Übungsaufgaben.

Anmerkungen

Kenntnisse aus den Vorlesungen "Kontinuumsmechanik der Festkörper und Fluide" und "Mathematische Methoden der Kontinuusmmechanik" und den jeweils begleitenden Übungsveranstaltungen werden vorausgesetzt.

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen.

Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

12.122 Teilleistung: Übungen zu Kontinuumsmechanik der Festkörper und Fluide [T-MACH-110333]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-105180 - Kontinuumsmechanik

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
1

Lehrveranst	taltungen				
WS 23/24		Übungen zu Kontinuumsmechanik der Festkörper und Fluide	1 SWS	Übung (Ü) / 🗣	Dyck, Karl, Böhlke

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgreiches Bestehen der Übungen ist Voraussetzung für die Teilnahme an der Klausur "Kontinuumsmechanik der Festkörper und Fluide" (T-MACH-110377).

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, und für Studierende der Fachrichtung MATWERK bestehen die Klausurvorleistungen in der erfolgreichen Bearbeitung der schriftlichen Übungsblätter und in der erfolgreichen Bearbeitung von Hausaufgaben am Rechner.

Für Studierende der Fachrichtung Maschinenbau, die nicht den Schwerpunkt 13 gewählt haben, bestehen die Klausurvorleistungen in der erfolgreichen Bearbeitung der schriftlichen Übungsaufgaben.

Voraussetzungen

Keine

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, und Studierende des Studiengangs MATWERK werden in jedem Fall zu den Rechnerübungen zugelassen.

Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

12.123 Teilleistung: Übungen zu Mathematische Methoden der Kontinuumsmechanik [T-MACH-110376]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke **Einrichtung:** KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-106210 - Mathematische Methoden der Kontinuumsmechanik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	2	best./nicht best.	Jedes Wintersemester	1 Sem.	2

Lehrveranstaltungen						
WS 23/24	2161255	Übungen zu Mathematische Methoden der Kontinuumsmechanik	2 SWS	Übung (Ü) / ♀	Lauff, Sterr, Böhlke	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgreiche Bearbeitung der Übungsblätter. Details werden in der ersten Vorlesung bekanntgegeben.

Voraussetzungen

12.124 Teilleistung: Übungsschein Mensch-Maschine-Interaktion [T-INFO-106257]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2023	2400095	Mensch-Maschine-Interaktion	1 SWS	Übung (Ü) / 🗯	Beigl, Lee	
SS 2023	24659	Mensch-Maschine-Interaktion	2 SWS	Vorlesung (V) / 🗯	Beigl, Lee	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO (unbenoteter Übungsschein).

Für das Bestehen müssen regelmäßig Übungsblätter abgegeben werden. Die konkreten Angaben dazu werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.

Anmerkungen

Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

12.125 Teilleistung: Vertiefungsmodul - Doing Culture - Selbstverbuchung BAK [T-ZAK-112655]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 3 **Notenskala** Drittelnoten

Version 1

Erfolgskontrolle(n)

In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten.

In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen.

Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden.

Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- · ZAK Begleitstudium

Empfehlungen

Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Vertiefungsbaustein festgelegt.

Anmerkungen

12.126 Teilleistung: Vertiefungsmodul - Global Cultures - Selbstverbuchung [T-ZAK-112658]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 3 **Notenskala** Drittelnoten

Version 1

Erfolgskontrolle(n)

In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten.

In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen.

Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden.

Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- · ZAK Begleitstudium

Empfehlungen

Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Vertiefungsbaustein festgelegt.

Anmerkungen

12.127 Teilleistung: Vertiefungsmodul - Lebenswelten - Selbstverbuchung BAK [T-ZAK-112657]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 3 **Notenskala** Drittelnoten

Version 1

Erfolgskontrolle(n)

In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten.

In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen.

Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden.

Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- · ZAK Begleitstudium

Empfehlungen

Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Vertiefungsbaustein festgelegt.

Anmerkungen

12.128 Teilleistung: Vertiefungsmodul - Medien & Ästhetik - Selbstverbuchung BAK [T-ZAK-112656]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 3 **Notenskala** Drittelnoten Version 1

Erfolgskontrolle(n)

In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten.

In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen.

Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden.

Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- · ZAK Begleitstudium

Empfehlungen

Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Vertiefungsbaustein festgelegt.

Anmerkungen

12.129 Teilleistung: Vertiefungsmodul - Selbstverbuchung BeNe [T-ZAK-112346]

Verantwortung: Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art6Drittelnoten1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form mehrerer Teilleistungen, die in der Regel eine Präsentation der (Gruppen-)Projektarbeit, eine schriftliche Ausarbeitung der (Gruppen-)Projektarbeit sowie eine individuelle Hausarbeit, ggf. mit Anhängen umfassen (Prüfungsleistungen anderer Art gemäß Satzung § 5 Absatz 3 Nr. 3 bzw. § 7 Absatz 7).

Die Präsentation wird in der Regel für Praxispartner geöffnet, die schriftliche Ausarbeitung wird ebenfalls an Praxispartner weitergegeben.

Voraussetzungen

Die aktive Teilnahme in allen drei Pflichtbestandteilen.

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- · ZAK Begleitstudium

Empfehlungen

Kenntnisse aus 'Grundlagenmodul' und 'Wahlmodul' sind hilfreich.

12.130 Teilleistung: Vertiefungsmodul - Technik & Verantwortung - Selbstverbuchung BAK [T-ZAK-112654]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 3 **Notenskala** Drittelnoten Version 1

Erfolgskontrolle(n)

In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten.

In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen.

Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden.

Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- · ZAK Begleitstudium

Empfehlungen

Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Vertiefungsbaustein festgelegt.

Anmerkungen

12.131 Teilleistung: Virtual Reality Praktikum [T-MACH-102149]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-106249 - Virtual Reality Praktikum

Teilleistungsart Leistungspunkte Prüfungsleistung anderer Art 4 Notenskala Turnus Version Drittelnoten Jedes Semester 2

Lehrveranstaltungen					
WS 23/24	2123375	Virtual Reality Praktikum	3 SWS	Projekt (PRO) / 🗣	Ovtcharova, Häfner

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet)

Voraussetzungen

Keine

Anmerkungen

Teilnehmerzahl begrenzt

12.132 Teilleistung: Wahlmodul - Nachhaltige Stadt- und Quartiersentwicklung - Selbstverbuchung BeNe [T-ZAK-112347]

Einrichtung: Universität gesamt

Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art3Drittelnoten1

Erfolgskontrolle(n)

Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- · ZAK Begleitstudium

Empfehlungen

Die Inhalte des Grundlagenmoduls sind hilfreich.

12.133 Teilleistung: Wahlmodul - Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft - Selbstverbuchung BeNe [T-ZAK-112350]

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art3Drittelnoten1

Erfolgskontrolle(n)

Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- · ZAK Begleitstudium

Empfehlungen

Die Inhalte des Grundlagenmoduls sind hilfreich.

12.134 Teilleistung: Wahlmodul - Nachhaltigkeitsbewertung von Technik - Selbstverbuchung BeNe [T-ZAK-112348]

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art3Drittelnoten1

Erfolgskontrolle(n)

Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- · ZAK Begleitstudium

Empfehlungen

Die Inhalte des Grundlagenmoduls sind hilfreich.

12.135 Teilleistung: Wahlmodul - Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit - Selbstverbuchung BeNe [T-ZAK-112349]

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art3Drittelnoten1

Erfolgskontrolle(n)

Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen

Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- · ZAK Begleitstudium

Empfehlungen

Die Inhalte des Grundlagenmoduls sind hilfreich.

12.136 Teilleistung: Wahrscheinlichkeitstheorie [T-ETIT-101952]

Verantwortung: Dr.-Ing. Holger Jäkel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102104 - Wahrscheinlichkeitstheorie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	2310505	Wahrscheinlichkeitstheorie	2 SWS	Vorlesung (V) / 🗯	Jäkel
WS 23/24	2310507	Übungen zu 2310505 Wahrscheinlichkeitstheorie	1 SWS	Übung (Ü) / 🗯	Jäkel

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Inhalte der Höheren Mathematik I und II werden benötigt (z.B. M-MATH-101731 und M-MATH-101732).

12.137 Teilleistung: Werkstoffkunde I & II [T-MACH-105148]

Verantwortung: Dr.-Ing. Johannes Schneider **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials

Science

Bestandteil von: M-MACH-102567 - Werkstoffkunde

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	9	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
SS 2023	2182562	Werkstoffkunde II für ciw, vt, mit	4 SWS	Vorlesung / Übung (VÜ) / ♀	Schneider
WS 23/24	2181555	Werkstoffkunde I für ciw, vt, MIT	4 SWS	Vorlesung / Übung (VÜ) / ♀ ⁵	Schneider

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♣ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

mündlich; 30 bis 40 Minuten

Es sind keine Hilfsmittel zugelassen!

Voraussetzungen

12.138 Teilleistung: Windkraft [T-MACH-105234]

Verantwortung: Norbert Lewald

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-105732 - Windkraft

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4DrittelnotenJedes Wintersemester2

Lehrveranstaltungen					
WS 23/24	2157381	Windkraft	2 SWS	Veranstaltung (Veranst.) / ♣	Lewald

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 120 Minuten

Voraussetzungen

12.139 Teilleistung: Workshop angewandte Hochfrequenztechnik [T-ETIT-110790]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105301 - Workshop angewandte Hochfrequenztechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen					
SS 2023		Workshop angewandte Hochfrequenztechnik	2 SWS	Praktikum (P) / 🗣	Pauli

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Zur Vorbereitung der Laborversuche sind von jeder Laborgruppe vor dem Versuch einige Aufgaben als Hausarbeit gemeinsam zu bearbeiten und direkt vor Versuchsbeginn in einfacher Ausfertigung beim Betreuer abzugeben. Die Aufgaben zum Versuch an sich werden während der Durchführung bearbeitet und protokolliert. Das Protokoll soll direkt nach der Versuchsdurchführung beim Betreuer abgegeben werden. Vor jeder Versuchsdurchführung gibt es eine schriftliche bzw. mündliche Prüfung (ca. 20 min., keine Hilfsmittel) über den Versuchsinhalt.

Voraussetzungen

Grundlegende Kenntnisse zur Nachrichtentechnik und Grundlagen der Hochfrequenztechnik

12.140 Teilleistung: Workshop zu Maschinenkonstruktionslehre A [T-MACH-112981]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-106527 - Maschinenkonstruktionslehre A

Teilleistungsart
StudienleistungLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes WintersemesterDauer
1 Sem.Version
2

Lehrveranstaltungen					
WS 23/24	2145171	Maschinenkonstruktionslehre A - Workshop	1 SWS	Praktikum (P) / 🗣	Düser, Matthiesen

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn der Projektsitzung das Wissen aus der Vorlesung abgefragt.

Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Keine

12.141 Teilleistung: Zellbiologie [T-CIWVT-111062]

Verantwortung: apl. Prof. Dr. Hans-Eric Gottwald

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106107 - Zellbiologie

Teilleistungsart Prüfungsleistung schriftlich **Leistungspunkte**

Notenskala Drittelnoten **Turnus** Jedes Wintersemester Version

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine