Math 115 Theorems

- 1. **Corollary.** Let $a = \prod_p p^{\alpha(p)}$, $b = \prod_p p^{\beta(p)}$, $c = \prod_p p^{\gamma(p)}$.
 - (a) $ab = c \iff \alpha(p) + \beta(p) = \gamma(p) \ \forall p$.
 - (b) $a \mid c \iff \alpha(p) \leq \gamma(p) \ \forall p$.
 - (c) c is a common divisor of a and b iff $\gamma(p) \le \min(\alpha(p), \beta(p)) \ \forall p$.
 - (d) $gcd(a,b) = \prod_{p} p^{\min(\alpha(p),\beta(p))}$.
 - (e) $lcm(a,b) = \prod_{p} p^{max(\alpha(p),\beta(p))}$.
 - (f) c is the square of an integer iff $\gamma(p)$ is even for all p.
- 2. Pascal's Identity. $\binom{\alpha+1}{k+1} = \binom{\alpha}{k+1} + \binom{\alpha}{k}$.
- 3. Binomial Theorem. $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$.
- 4. **Theorem.** If $a \equiv b \pmod{m}$, then gcd(a, m) = gcd(b, m).
- 5. **Euler's Theorem.** If gcd(a, m) = 1, then $a^{\phi(m)} \equiv 1 \pmod{m}$.
- 6. **Fermat's Little Theorem.** Let *p* be a prime. Then:
 - (a) $\forall a \in \mathbb{Z}$ and a not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.
 - (b) $\forall a \in \mathbb{Z}, a^p \equiv a \pmod{p}$.
- 7. **Wilson's Theorem.** If p is prime, then $(p-1)! \equiv -1 \pmod{p}$.
- 8. **Solvability of** $x^2 \equiv -1 \pmod{p}$. Let p be a prime. Then, $x^2 \equiv -1 \pmod{p}$ has a solution $x \in \mathbb{Z}$ iff p = 2 or $p \equiv 1 \pmod{4}$.
- 9. **Fermat's Theorem on Sum of Squares.** Let p be a prime such that $p \equiv 1 \pmod{4}$. Then p can be written as $p = a^2 + b^2$ with $a, b \in \mathbb{Z}$.
- 10. **Solving Degree 1 Congruences.** Let $a,b \in \mathbb{Z}$ and let $g = \gcd(a,m)$. Then:
 - (a) The congruence $ax \equiv b \pmod{m}$ has a solution iff $g \mid b$.
 - (b) If (a) is true, then $\frac{a}{g}x \equiv \frac{b}{g} \pmod{\frac{m}{g}}$ has a solution modulo $\frac{m}{g}$.
- 11. **Chinese Remainder Theorem.** If $x \equiv a_1 \pmod{m_1}, \dots, x \equiv a_k \pmod{m_k}$ (where the m_i 's are pairwise relatively prime), then let $M = m_1 m_2 \cdots m_k$ and $y_i = \text{inverse}\left(\frac{M}{m_i} \pmod{m_i}\right)$. Then, a solution to the simultaneous congruence is given by $x \equiv a_1 \frac{M}{m_1} y_1 + \dots + a_k \frac{M}{m_k} y_k \pmod{M}$.
- 12. **Theorem.** If $m \in \mathbb{Z}_{>0}$, then $\phi(m) = \left(\prod_{p \text{ prime}, p \mid m} (1 \frac{1}{p})\right) \cdot m$.
- 13. **RSA Cryptography Lemma.** Suppose $m \in \mathbb{Z}_{>0}$ and gcd(a,m) = 1. Let $h, h' \in \mathbb{Z}_{>0}$ such that $hh' \equiv 1 \pmod{\phi(m)}$. Then $a^{kk'} \equiv a \pmod{m}$.
- 14. **Primality Testing.** If there is an integer a such that 0 < a < m and $a^{m-1} \not\equiv 1 \pmod{m}$, then m is not prime.

- 15. **Hensel's Lemma.** To solve the congruence $f(x) \equiv 0 \pmod{p^k}$, first find the solutions to $f(x) \equiv 0 \pmod{p}$. Then, for each solution a_1 to $f(x) \equiv 0 \pmod{p}$, "lift" its solution by the recurrence relation $a_2 = a_1 f(a_1)\overline{f'(a_1)}$, where $\overline{f'(a_1)}$ is found by solving $f'(a_1)\overline{f'(a_1)} \equiv 1 \pmod{p}$ for $\overline{f'(a_1)}$. To higher powers, we generalize this recurrence relation to $a_{j+1} = a_j f(a_j)\overline{f'(a_1)}$.
- 16. **Hensel's Lemma (General Case).** Let $f \in \mathbb{Z}[x]$, $a \in \mathbb{Z}$, $j \in \mathbb{Z}_{>0}$, and $\tau \in \mathbb{N}$. Assume that $f(a) \equiv 0 \pmod{p^j}$, $p^{\tau} \mid |f'(a)|$ and $j \geq 2\tau + 1$. Then:
 - (a) There is a $\tau \in \mathbb{Z}$, unique modulo p, such that $f(a+tp^{j-\tau}) \equiv 0 \pmod{p^{j+1}}$.
 - (b) If $b \equiv a \pmod{p^{j-\tau}}$, then $f(b) \equiv f(a) \pmod{p^j}$ and $p^j \mid\mid f'(b)$.
- 17. **Corollary to Hensel's Lemma.** Let $f \in \mathbb{Z}[x]$, p be prime, $a \in \mathbb{Z}$, $\tau \in \mathbb{N}$, and let $l \in \mathbb{Z}$. Assume that $p^{\tau} \mid \mid f'(a), f(a) \equiv 0 \pmod{p^l}$, and $l \geq 2\tau + 1$. Then, for any $\alpha \geq l$, there exists a $b \in \mathbb{Z}$, unique modulo $p^{\alpha-\tau}$, such that $b \equiv a \pmod{p^{l-\tau}}$ and $f(b) \equiv 0 \pmod{p^{\alpha}}$.
- 18. **Lemma.** Let $f \in \mathbb{Z}[x]$ and p prime. Assume that a_1, \ldots, a_r are roots of $f \pmod{p}$, with r > 0 and $a_i \equiv a_j \pmod{p}$ for all $i \neq j$. Then there is a polynomial $g \in \mathbb{Z}[x]$ such that $f(x) \equiv (x a_1)g(x) \pmod{p}$. Also, for any such g, a_1, \ldots, a_r are roots of $g \pmod{p}$.
- 19. **Theorem.** If $f(x) \equiv 0 \pmod{p}$ has (at least) r solutions $x \equiv a_1, \dots, a_r \pmod{p}$, with $a_i \not\equiv a_j \pmod{p}$ (for all $i \neq j$), then there is a polynomial $q \in \mathbb{Z}[x]$ such that $f(x) \equiv (x a_1) \cdots (x a_r)q(x) \pmod{p}$.
- 20. **Theorem 2.26.** The congruence $f(x) \equiv 0 \pmod{p}$ of degree $n \ge 0$ has at most n solutions.
- 21. Corollary 2.27. If $f \in \mathbb{Z}[x]$ has degree $n \ge 0$ (thus, $f \ne 0$), and the congruence $f(x) \equiv 0 \pmod{p}$ has more than n distinct solutions, then $f \equiv 0 \pmod{p}$ (as polynomials).
- 22. **Lemma.** Let $f \in \mathbb{Z}[x]$ be a monic polynomial of degree n. If the congruence $f(x) \equiv 0 \pmod{p}$ has n solutions, $x \equiv a_1, \ldots, a_n \pmod{p}$, distinct modulo p, then $f(x) \equiv (x a_1) \cdots (x a_n) \pmod{p}$.
- 23. **Proposition.** Let $f \in \mathbb{Z}[x]$. Then there is a well-defined function \tilde{f} with $\tilde{f} : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ given by $\tilde{f}(\tilde{a}) = f(\tilde{a})$ for all $\tilde{a} \in \mathbb{Z}/m\mathbb{Z}$.
- 24. **Proposition.** Let $f,g \in \mathbb{Z}[x]$. If $f \equiv g \pmod{m}$ (as polynomials), then $\tilde{f} = \tilde{g}$ (as functions $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$).
- 25. **Corollary.** Let $\psi : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ be any function. If ψ can be given by a polynomial (i.e. $\psi = f$ for some $f \in \mathbb{Z}[x]$), then it can be given by a polynomial of degree less than p.
- 26. **Theorem 2.28.** If $F : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$, then there is a polynomial $f \in \mathbb{Z}[x]$ with degree at most p-1 such that $F(x) \equiv f(x) \pmod{p}$ for all residue classes $x \pmod{p}$.
- 27. **Theorem.** The polynomials in Theorem 2.28 are unique modulo p.
- 28. Corollary 2.30. Suppose d > 0 and $d \mid (p-1)$, then the congruence $x^d \equiv 1 \pmod{p}$ has exactly d solutions.
- 29. **Proposition.** Let a have order h modulo m, and let $n \in \mathbb{N}$. Then, $a^n \equiv 1 \pmod{m}$ iff n is a multiple of h.
- 30. **Corollary.** If a has order h (modulo m), then $h \mid \phi(m)$.
- 31. **Corollary.** Let $m, m' \in \mathbb{Z}_{>0}$ and $a \in \mathbb{Z}$. Assume that a has orders h and h' modulo m and m', respectively (i.e. gcd(a, m) = gcd(a, m') = 1). Then, if $m \mid m'$, then $h \mid h'$.
- 32. **Proposition.** Suppose g is a primitive root modulo m. Then:
 - (a) $1, g, \dots, g^{\phi(m)-1}$ are distinct modulo m.
 - (b) The above numbers are a reduced residue system modulo m.

- (c) Let $a \in \mathbb{Z}$, with gcd(a, m) = 1. Then there exists an $i \in \mathbb{Z}$ such that for all $j \in \mathbb{N}$, $g^j \equiv a \pmod{m}$ iff $j \equiv i \pmod{\phi(m)}$.
- 33. **Generalization of Corollary 2.30.** Assume that there is a primitive root modulo m and let d be a positive divisor of $\phi(m)$. Then, the congruence $x^d \equiv 1 \pmod{m}$ has exactly d solutions.
- 34. **Generalization of Theorem 2.37.** Assume that there is a primitive root modulo m and let $n \in \mathbb{Z}_{>0}$, and let $a \in \mathbb{Z}$ coprime to m. Then the congruence $x^n \equiv a \pmod{m}$ has $\gcd(n, \phi(m))$ solutions if $a^{\phi(m)/\gcd(n, \phi(m))} \equiv 1 \pmod{m}$ or has no solutions otherwise.
- 35. **Euler's Criterion.** Let p be an odd prime and let $a \in \mathbb{Z}$ with $p \nmid a$. Assume that there is a primitive root modulo p. Then, $x^2 \equiv a \pmod{p}$ has two solutions if $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ or has no solutions otherwise.
- 36. **Lemma.** Suppose $a \in \mathbb{Z}$ has order h modulo m. Then:
 - (a) If d > 0, and $d \mid h$, then a^d has order $\frac{h}{d}$ modulo m.
 - (b) For all $k \in \mathbb{N}$, a^k has order $\frac{h}{\gcd h,k} \pmod{m}$.
- 37. **Corollary.** If there is a primitive root modulo m, then there are $\phi(\phi(m))$ of them (as residue classes modulo m).
- 38. **Lemma.** Suppose that $a, b \in \mathbb{Z}$ have order h and k, respectively modulo m, and that h and k are coprime. Then, ab has order hk modulo m.
- 39. If p is prime, then there exists a primitive root modulo p.
- 40. **Lemma.** Let $m, m' \in \mathbb{Z}_{>0}$ with $m \mid m'$. Let $a \in \mathbb{Z}$, with gcd(a, m') = 1. Then:
 - (a) gcd(a, m) = 1.
 - (b) If h, h' are the orders of a and m' modulo m, respectively, then $h \mid h'$.
- 41. **Theorem.** Let p be an odd prime and let $\alpha \in \mathbb{Z}_{>0}$. Then there exists a primitive root modulo p^{α} .
- 42. **Theorem 2.41** There exists a primitive root modulo m iff $m = 1, 2, 4, p^{\alpha}, 2p^{\alpha}$, where $\alpha \in \mathbb{Z}_{>0}$ and p an odd prime.
- 43. **Theorem 2.39** If p is a prime, then there exist $\phi(\phi(p^2)) = (p-1)\phi(p-1)$ many primitive roots modulo p^2 .
- 44. **Diffie-Hellman Key Exchange.** This is a process used in order to initialize the secure line before message transfers occur. Suppose Alice and Bob are the participants. Then:
 - (a) They (publicly) agree on a large prime p (600 digits...) and a primitive root g modulo p.
 - (b) Alice thinks up a number a, 1 < a < p 1, and sends $g^a \underline{\text{mod }} p$ to Bob.
 - (c) Bob thinks up a number b, 1 < b < p-1, and sends $g^b \mod p$ to Alice.
 - (d) Alice computes $(g^b)^a \underline{\text{mod }} p$ and Bob computes $(g^a)^b \underline{\text{mod }} p$, which becomes their shared key.
- 45. Solving Quadratic Congruences Modulo $p \neq 2$. Let $ax^2 + bx + c \equiv 0 \pmod{p}$ be a quadratic congruence with $a \not\equiv 0 \pmod{p}$. First, multiply it by $\overline{a} \underline{mod} p$ to get $x^2 + \overline{a}bx + \overline{a}c \equiv 0 \pmod{p}$. Then, complete the square to get $(x + \overline{2}\overline{a}b)^2 + \overline{a}c (\overline{2}\overline{a}b)^2$. Then, solve the resulting congruence.
- 46. **Theorem 3.1.** Let $a, b \in \mathbb{Z}$. Then:
 - (a) $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$.
 - (b) $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.
 - (c) If $a \equiv b \pmod{p}$, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.

- (d) If $p \nmid a$, then $\left(\frac{a^2}{p}\right) = 1$ and $\left(\frac{a^2b}{p}\right) = \left(\frac{b}{p}\right)$.
- (e) $\left(\frac{1}{p}\right) = 1$ and $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$.
- 47. **Theorem 3.2** (Lemma of Gauss). Let $a \in \mathbb{Z}$ be relatively prime to p and let n be the number of elements of the set $\{j \in \{1, 2, ..., p-1\} \mid ja\underline{\text{mod}}p > \frac{p}{2}\}$. Then, $\left(\frac{a}{p}\right) = (-1)^n$.
- 48. **Part of Theorem 3.3.** Let $a \in \mathbb{Z}$ be relatively prime to p. Assume also that a is odd. Let $t = \sum_{j=1}^{(p-1)/2} \left[\frac{ja}{p}\right]$. Then, $\left(\frac{a}{p}\right) = (-1)^t$.
- 49. Quadratic Reciprocity. We have:
 - (a) $\left(\frac{-1}{p}\right) = 1$ if $p \equiv 1 \pmod{4}$ and -1 if $p \equiv -1 \pmod{4}$.
 - (b) $\left(\frac{2}{p}\right) = 1$ if $p \equiv \pm 1 \pmod{8}$ and -1 if $p \equiv \pm 3 \pmod{8}$.
 - (c) For all odd primes p,q with $p \neq q$, we have that $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$.
- 50. **Variation of Theorem 3.4.** If p,q are odd primes, then $\left(\frac{q}{p}\right)$ =
 - (a) $\left(\frac{p}{q}\right)$ if $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$.
 - (b) $-\left(\frac{p}{q}\right)$ if $p \equiv q \equiv -1 \pmod{4}$.
- 51. Quadratic Reciprocity for Jacobi Symbols Let Q be an odd positive integer. Then:
 - (a) $\left(\frac{-1}{Q}\right) = \left(-1\right)^{\frac{Q-1}{2}}$.
 - (b) $\left(\frac{2}{Q}\right) = (-1)^{\frac{Q^2-1}{8}}$.
 - (c) If *P* is an odd positive integer, then $\left(\frac{P}{Q}\right) = (-1)^{\frac{P-1}{2} \cdot \frac{Q-1}{2}} \left(\frac{Q}{P}\right)$
- 52. **Lemma.** For all odd positive integers a and b, we have $\frac{ab-1}{2} \equiv \frac{a-1}{2} + \frac{b-1}{2} \pmod{2}$, so therefore, $(-1)^{\frac{ab-1}{2}} = (-1)^{\frac{a-1}{2}} (-1)^{\frac{b-1}{2}}$.
- 53. For all odd positive integers a and b, we have $\frac{(ab)^2-1}{8} \equiv \frac{a^2-1}{8} + \frac{b^2-1}{8} \pmod{2}$, so therefore, $(-1)^{\frac{(ab)^2-1}{8}} = (-1)^{\frac{a^2-1}{8}}(-1)^{\frac{b^2-1}{8}}$.
- 54. **Theorem 3.10.** Let $f(x,y) = ax^2 + bxy + cy^2$ be a nonzero binary quadratic form with integer coefficients, and let $d = b^2 4ac$ be its discriminant. Then:
 - (a) If d is a perfect square (including 0), then f can be factored into two linear factors with integer coefficients.
 - (b) If d is not a perfect square, then f cannot be factored into linear factors with rational coefficients.
- 55. **Theorem.** Let $d \in \mathbb{Z}$. Then there exists a binary quadratic form of discriminant d iff $d \equiv 0 \pmod{4}$ or $d \equiv 1 \pmod{4}$.
- 56. **Theorem 3.13.** Let $n, d \in \mathbb{Z}$ with $n \neq 0$. Then there exists a form of discriminant d that properly represents n iff the congruence $x^2 \equiv d \pmod{4|n|}$ has a solution.
- 57. **Corollary.** Let p be an odd prime and $d \in \mathbb{Z}$. Then there is a form of discriminant d that (properly) represents p iff $\left(\frac{d}{p}\right) = 0$ or 1.

- 58. Corollary. Let p be a prime. Then there exists a binary quadratic form of discriminant -4 that represents p iff p is represented by $x^2 + y^2$.
- 59. **Theorem.** Let f be a positive definite quadratic form of discriminant -4. Then an integer n is represented by f iff it is represented by $x^2 + y^2$.
- 60. **Theorem.** Let $d \in \mathbb{Z}$ and assume $d \equiv 0 \pmod{4}$ or $d \equiv 1 \pmod{4}$. Then there is a finite list f_1, \ldots, f_n of forms of discriminant d such that for all $n \in \mathbb{Z}$, n is represented by some form of discriminant d iff f is represented by one of f_1, \ldots, f_n .
- 61. **Theorem.** For any $d \equiv 0 \pmod{4}$ or $d \equiv 1 \pmod{4}$, there are infinitely many forms of discriminant d.
- 62. **Theorem.** Let $a,b,c,d \in \mathbb{R}$ and $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then:
 - (a) $T_M(\mathbb{Z}^2) \subseteq \mathbb{Z}^2$ (i.e. $T_M(x,y) \in \mathbb{Z}^2$ for all $(x,y) \in \mathbb{Z}^2$) iff $a,b,c,d \in \mathbb{Z}$.
 - (b) T_M maps \mathbb{Z}^2 bijectively to \mathbb{Z}^2 iff $a,b,c,d\in\mathbb{Z}$ and $\det M=\pm 1$.
- 63. **Theorem.** Let \sim be the relation that determines whether two binary quadratic forms are equivalent. Then, \sim is an equivalence relation.
- 64. **Theorem.** Let f, g be equivalent forms. Then:
 - (a) f and g represent the same numbers.
 - (b) f and g properly represent the same numbers.
- 65. **Reducing Quadratic forms** Begin with $f(x,y) = ax^2 + bxy + cy^2$. Carry out the following procedure:
 - (a) Step 1: If |c| < |a|, then $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \Gamma$ takes f to $f(y, -x) = cx^2 bxy + ay^2$. So, after doing this if necessary, we may assume that $|a| \le |c|$.
 - (b) Step 2: Notice that, for any $m \in \mathbb{Z}$, the matrix $\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \in \Gamma$ takes f(x,y) to $f(x+my,y) = ax^2 + (2am+b)xy + (am^2 + bm + c)y^2$. Choose m (unique) such that $-|a| < 2am + b \le |a|$.
 - (c) Step 3: If |c| < |a|, go back to Step 1. Otherwise, continue.
 - (d) Step 4:
 - If |c| > |a|, done; we have a reduced form.
 - If |c| = |a| and $b \ge 0$, done; we have a reduced form.
 - If |c| = |a| and b < 0, then use $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ again. Your form is reduced, because 0 < b < |a| = |c|.
- 66. **Theorem.** Let $d \in \mathbb{Z}$ be not a perfect square. Then:
 - (a) If f is indefinite (d > 0), then $0 \le |a| \le \frac{\sqrt{d}}{2}$.
 - (b) If f is positive definite (d < 0, a > 0, and c > 0), then $0 < a < \sqrt{-\frac{d}{3}}$.
 - (c) Excluding negative forms (with d < 0), there are only finitely many reduced forms of discriminant d.
- 67. **Corollary.** Let $d \in \mathbb{Z}$, not a perfect square. Then there are only finitely many equivalence classes of forms of discriminant d.
- 68. **Lemma.** Let $f(x,y) = ax^2 + bxy + cy^2$ be a reduced positive definite form. Then:

- (a) Suppose that $x, y \in \mathbb{Z}$ are coprime and that $f(x, y) \leq c$. Then, f(x, y) is equal to a or c and (x, y) is one of $\pm (1, 0), \pm (0, 1), \pm (1, 1)$.
- (b) The number of proper representations of a by f is:
 - i. 2 if a < c.
 - ii. 4 if $0 \le b < a = c$.
 - iii. 6 if a = b = c.
- 69. **Theorem 3.25.** Let f and g be reduced positive definite forms. If f is equivalent to g, then f = g.
- 70. **Theorem.** Let $f(x,y) = ax^2 + bxy + cy^2$ be a reduced positive definite form. Then w(f) =
 - (a) 4 if a = c and b = 0.
 - (b) 6 if a = b = c.
 - (c) 2 if otherwise.
- 71. **Lemma.** Let f be a positive definite form, let g be a form equivalent to f and let $M \in \Gamma$ be a matrix that takes f to g, so $g = f \circ T_M$. Then:
 - (a) If A_1, \ldots, A_r are distinct automorphs of f, then A_1M, \ldots, A_rM are distinct elements of Γ that take f to g.
 - (b) Conversely, if B_1, \ldots, B_r are distinct elements of Γ that take f to g, then $B_1 M^{-1}, \ldots, B_r M^{-1}$ are distinct automorphs of f.
- 72. **Theorem.** Let f be a positive definite form. Then, $w(f) \in \{2,4,6\}$ and it depends only on the equivalence class of f.
- 73. ADD THEOREMS FROM NOVEMBER 19 LECTURE HERE