Spektroskopie

Voraussetzungen und Vorbereitung

Damals: Mit dem Objektivprisma und Film

Spektren mit dem Objektivprisma und Film

Unterschiede

- Ohne Spalt:
- Überlappung von Spektren
- Vom Seeing abhängig
- keine Trennung von Hintergrund und Spektrum
- Einfache Realisierung

- Mit Spalt:
- Keine Überlappung
- Vom Seeing unabhängig
- Einstellbare Auflösung, Spaltbreite
- Trennung von Nutz- und Störsignal
- Komplexerer Aufbau

The basic spectrograph collimator disperser slit camera telescope focal plane lens detector Courtesy Danny Steeghs

Grundsätzliches

- Ein Spektrograph wird speziell für ein Teleskop angepasst.
- Er ist in der Regel fest am Teleskop installiert.
- Käufliche Spektrographen sind für ein bestimmte Teleskopart und Größe bestimmt.
- Das Öffnungsverhältnis des Teleskops muss etwa gleich dem Kollimator sein, typischerweise f/10 oder f/5
- Lange Brennweiten führen zu großen Sternscheibchen, die Spaltbreite muss etwa zum Sternscheibchen passen. Ist das Sternscheibchen zu groß muss ein breiterer Spalt verwendet werden. Dadurch verliert man Auflösung.
- Lässt man in diesem Fall den Spalt klein, ergibt dies eine höhere Auflösung, aber man verliert Licht und kann gleich ein kleineres Teleskop nehmen.
- Fazit: Kleine Teleskope bringen eine höhere Auflösung als Große.
- Der hier gezeigte Selbstbau ist für kleine und mittlere Teleskope konzipiert d.h. 70 - 250 mm Optiken.

Bauarten von Spektrographen

Alpy- Spektrograph niedriger Auflösung R= 600

Selbstbau hochauflösender Spektrograph R>10.000

Strahlengang des Littrow-Spektrographen

L200-Littrow Kollimator f=200mm

H-alpha-Linie mit R=16.000

Was muss man in der Vorbereitung tun?

Am Schreibtisch:

- Man muss 2x fokussieren. Den Stern auf den Spalt mit dem Okularauszug und die Kamera auf den Spalt fokussieren.
- Aufnahme-Kamera auf den Spalt fokussieren und Ausrichten am Sonnenspektrum.
 Diffuses Tageslicht reicht.
- Guiding-Kamera auf den Spalt fokussieren, Spalt parallel zum Chip
- Ohne diese Vorarbeiten hat man keine Chance am Teleskop!!
- Das Teleskop: (Beispiel mobiles Teleskop)
 - Eingenordete Montierung
 - Sucherteleskop mit Kamera (insgesamt brauchen wir 3 Kameras) parallel zum Teleskop ausrichten. Wird später für Platesolving genutzt.
 - Teleskop in die Homeposition bringen und Spektrographen anschließen und Spalt muss parallel zu DE oder RA sein. Achtung Kollision mit Stativ oder Säule im Meridian prüfen
 - Kabel (-Salat) sicher anschließen USB-Kabel für 3 Kameras, Montierung und Motorfokus des Okularauszugs = 5 Kabel.
 - Stromanschluss: Montierung, Kamera, Notebook und Referenzlichtquelle, z.B. Neon

Das erste Spektrum

Am Teleskop

- Hellen Stern einstellen Nachführkamera Spalt parallel zum Chip, Stern fokussieren am Okularauszug, Stern mittig im Spalt, Spaltrichtung parallel zu RA oder DE
- In PHD-2 unter Ansicht->Spektrographenspalt, den Spalt markieren, sonst ist er nicht zu sehen! Mit Ansicht->Spaltposition... positionieren
- Testaufnahme: Aufnahmekamera, Spektrum parallel und mittig auf den Chip ausrichten, Spektrum am Okularauszug fokussieren, muss wie ein Strich sein.

Das Zielobjekt

- Zielobjekt einstellen und mit Platesolving prüfen
- Rote Sterne, zeigen sich aufgebläht in der Nachführkamera, hell im IR
- Belichtung pr
 üfen ob gen
 ügend Signal und auch nicht ges
 ättigt!
- Belichtungsreihe starten
- Kalibrierspektrum, Neon aufnehmen
- Spektrum eines Referenzsterns aufnehmen, dessen Profil bekannt ist aufnehmen, zur Ermittlung der "Instrumental Response"
- Bias, Darks und Flats aufnehmen

Spektrum aufnehmen – PHD-2

Atik-Aufnahme Software Artemis

Himmelshintergrund und Spektrum von Quasar 3C273

Kalibrierungsbilder

Spektroskopie

Neon rot

NeXe-Lampe von Conrad, nicht mehr verfügbar

Kalibrierung bei H-alpha

Simulation von Spektrographen

- Mit der Excel-Tabelle Simspec_StarEx l\u00e4sst sich der Einsatz am Teleskop simulieren oder neu konstruieren
- Einfluss von Brennweite, Spaltbreite und Pixelgröße auf die Auflösung
- Einfluss der Komponenten des Spektrographen, Kollimator, Kameraoptik, Gitter durchspielen
- Teleskop-Parameter: Öffnung und Brennweite Spaltbreite G17 beachten
- Größe des Gitters G22 beachten, 25mm beim StarEx
- Kamera Pixelgröße Der Sampling-Faktor sollte 2-3x mal d.h. Pixelgröße = Spaltbreite/ 2-3 hat Einfluss auf Resolving Power Zelle B26

Kosten Spektrograph

- Optiksatz 518€
- 2x Fokussierer 200€
- Bausatz 3D-Druck Gehäuse mit Schrauben 280€
- Selberdrucken Filament, diverse Schrauben und Gewindemuffen
- Nur Spektroheliograph
- Optiksatz 490€
- 1x Fokusierer 100€
- Bausatz 3D-Druck ab 175€

Links zum Selbstbau

- Webseite von Christian Buil das Projekt Sol'Ex und Star'Ex
- Videos Sol'Ex und Star'Ex Zusammenbau teilweise in französisch
- Optiksatz 518€
- Fertige Druckteile mit Schrauben von <u>Azur3DPrint</u>
- Video zum <u>Spektrographen</u> von Azur3DPrint
- Live <u>Demo</u> des Spektrographen mit N.I.N.A.
- Diskussionsforum in französisch
- Aktuelles Buch über <u>Spektroskopie</u>
- <u>Excel-Blätter</u> zur Berechnung von Gitter-Spektrographen