# 数码管显示驱动及 I/O 扩展芯片 CH422

手册 版本: 2 <u>http://wch.cn</u>

## 1、概述

CH422 芯片可以用于数码管显示驱动或者 I/0 扩展。CH422 内置时钟振荡电路,可以动态驱动 4 位数码管或者 32 只 LED 发光管;CH422 用于 I/0 扩展时,可以提供 8 个双向输入输出引脚和 4 个通用输出引脚;CH422 通过 2 线串行接口与单片机等交换数据。



# 2、特点

- 动态显示扫描控制,直接驱动 4 位数码管或者 32 只发光管 LED。
- 内置电流驱动级,段电流驱动能力不小于 15mA,输出的字电流不小于 100mA。
- 内置时钟振荡电路,不需要外部提供时钟或者外接振荡元器件,更抗干扰。
- 通过两线串行接口远程扩展出 8 个通用输入输出引脚 GP10 和 4 个通用输出引脚 GP0。
- 4个通用输出引脚可以选择推挽输出或者开漏输出。
- 支持 3V~5V 电源电压,支持低功耗睡眠,可以被输入电平变化唤醒。
- 高速 2 线串行接口,时钟速度从 0 到 1MHz,兼容两线 1<sup>2</sup>C 总线,节约引脚。
- 采用 SOP16 无铅封装,兼容 RoHS。

## 3、封装



| 封装形式  | 宽度     |        | 引脚间距    |       | 封装说明       | 订货型号   |  |
|-------|--------|--------|---------|-------|------------|--------|--|
| S0P16 | 3. 9mm | 150mil | 1. 27mm | 50mil | 标准的 16 脚贴片 | CH422G |  |

# 4、引脚

| 引脚号                     | 引脚名称                 | 类型      | 引脚说明                                |  |  |  |
|-------------------------|----------------------|---------|-------------------------------------|--|--|--|
| 14                      | VCC                  | 电源      | 正电源,持续电流不小于 100mA                   |  |  |  |
| 7                       | GND                  | 电源      | 公共接地,持续电流不小于 100mA                  |  |  |  |
| 12~13、<br>15~16、<br>1~4 | SEG0∼SEG7<br>100∼107 | 三态输出及输入 | 数码管的段驱动,高电平有效,<br>双向输入输出,内置弱上拉电阻    |  |  |  |
| 8~11                    | DIGO~DIG3<br>0C0~0C3 | 推挽或开漏输出 | 数码管的字驱动,低电平有效,<br>通用输出,可选开漏输出,低电平有效 |  |  |  |
| 6                       | SDA                  | 开漏输出及输入 | 2 线串行接口的数据输入和输出,内置上拉电阻              |  |  |  |
| 5                       | 5 SCL 输入             |         | 2 线串行接口的数据时钟                        |  |  |  |

# 5、功能说明

# 5.1. 内部电路原理 (用于解释功能,仅供参考)



#### 5.2. 一般说明

本手册中的数据,以 B 结尾的为二进制数,以 H 结尾的为十六进制数,否则为十进制数,标注为 x 的位表示该位可以是任意值。

单片机(也可以是 CPU、DSP、微处理器、MCU 等控制器)通过 2 线串行接口控制 CH422 芯片,CH422 的 2 线串行接口是由硬件实现的,单片机可以频繁地通过串行接口进行高速操作,而绝对不会降低 CH422 的工作效率。

# 5.3. 显示驱动

CH422 对数码管和发光管采用动态扫描驱动,顺序为 DIG0 至 DIG3,当其中一个引脚吸入电流时,其它引脚则不吸入电流(参考图中的 U20、U22、T1 $\sim$ T4)。CH422 内部具有电流驱动级,可以直接驱动 0.5 英寸至 1 英寸的共阴数码管,段驱动引脚 SEG6 $\sim$ SEG0 分别对应数码管的段 G $\sim$ 段 A,段驱动引脚 SEG7 对应数码管的小数点,字驱动引脚 DIG3 $\sim$ DIG0 分别连接 4 个数码管的阴极,CH422 也可以连接 8×4 矩阵的发光二级管 LED 阵列或者 32 个独立发光管,或者通过外接反相驱动器支持共阳数码管,或者外接大功率管支持大尺寸的数码管。

CH422 内部具有 4 个 8 位的数据寄存器(图中的 U15),用于保存 4 个字数据,分别对应于 CH422 所驱动的 4 个数码管或者 4 组每组 8 个的发光二极管。数据寄存器中字数据的位  $7\sim$ 位 0 分别对应各个数码管的小数点和段  $G\sim$ 段 A,对于发光二极管阵列,则每个字数据的数据位唯一地对应一个发光二级管。当数据位为 1 时,对应的数据管的段或者发光管就会点亮;当数据位为 0 时,则对应的数据管的段或者发光管就会熄灭。例如,第三个数据寄存器的位 0 为 1,所以对应的第三个数码管的段 A 点亮。下图是数码管的段名称。



### 5.4. 双向输入输出引脚

CH422 的 107~100 引脚为双向输入输出引脚,默认为输入方向,用于输入外部引脚的当前状态, 当设置为输出方向时,可以输出高低电平以驱动 LED 发光管或者进行 1/0 扩展。

# 5.5. 通用输出引脚

CH422 的 0C3~0C0 引脚为推挽或者开漏输出引脚,默认为推挽输出。

选择开漏输出方式后只有输出低电平和不输出两种状态,无法输出高电平,默认为不输出状态。 在动态扫描显示驱动方式下,0C3~0C0 引脚可以用于驱动共阴数码管的各个公共端,并且能够 以脉冲方式吸收较大的灌电流。

#### 5.6. 上电复位

CH422 内置上电复位电路(图中的 R12 和 C11),用于在芯片刚通电时将内部各寄存器恢复为默认的状态。例如,每次上电后,双向输入输出引脚为输入状态,通用输出引脚为高电平状态。

#### 5.7. 串行接口

CH422 具有硬件实现的 2 线串行接口,包含 2 根信号线:串行数据时钟输入线 SCL、串行数据输入和输出线 SDA。

SDA 是带上拉电阻的准双向信号线,默认是高电平。SDA 用于串行数据输入和输出,高电平表示位数据 1,低电平表示位数据 0,串行数据输入的顺序是高位在前,低位在后。

SCL 是输入信号线,默认为高电平。SCL 用于提供串行时钟,CH422 在其上升沿从 SDA 输入数据,在其下降沿从 SDA 输出数据。

在 SCL 为高电平期间发生的 SDA 下降沿定义为串行接口的启动信号,在 SCL 为高电平期间发生的 SDA 上升沿定义为串行接口的停止信号。CH422 只在检测到启动信号后才接收并分析命令。所以在单片机 I/O 引脚资源紧张时,可以在保持 SDA 引脚状态不变的情况下,将 SCL 引脚与其它接口电路共用;如果能够确保 SDA 引脚的变化仅在 SCL 引脚为低电平期间发生,那么 SCL 引脚和 SDA 引脚都可以与其它接口电路共用。

单片机与 CH422 的通讯过程总是分为 6 个步骤,按单片机的操作方向分成两种类型,一种是写操作,用于输出数据,一种是读操作,用于输入数据。具体过程可以参考例子程序中的说明。

写操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输出字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 总是固定为 1,输出字节 1 和输出字节 2 各自包含 8 个数据位,即一个字节数据。

读操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输入字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 总是固定为 1,输出字节 1 和输入字节 2 各自包含 8 个数据位,即一个字节数据。

下图是一个写操作的实例,字节 1 为 01001000B,即 48H;字节 2 为 00000001B,即 01H。



## 6、操作命令

CH422 的操作命令分为 4 组。各命令的启动信号、停止信号、应答 1 和应答 2 都相同,区别在于输出字节 1 和字节 2 的数据不同以及字节 2 的传输方向不同。字节 1 用于两线串口控制逻辑,或者用于产生地址(图中的 AOUT 总线),字节 2 用于输入和输出数据(图中的 DIN 和 DOUT 总线)。

#### 6.1. 设置系统参数命令(图中的 WR-SET 控制线)

该命令的输出字节 1 为 01001000B,即 48H;输出字节 2 为 [SLEEP] 00 [OD\_EN] 0 [A\_SCAN] 0 [10\_0E] B。 设置系统参数命令用于设定 CH422 的系统级参数(写入图中的 U12):双向输入输出引脚 107~100的输出使能 10\_0E、动态显示自动扫描使能 A\_SCAN、输出引脚 0C3~0C0 开漏输出使能 0D\_EN、低功耗睡眠控制 SLEEP。上电复位后,上述参数默认都为 0。

 $10_0$ E 用于控制双向输入输出引脚  $107\sim100$  的三态输出,为 0 时禁止输出(用于通过图中的 100 世行输入),为 1 时允许输出(图中的 100 划 100 输出)。

A\_SCAN 用于控制动态显示的自动扫描功能,为 0 时启用 I/0 扩展功能, $I07\sim I00$  和 0000000 用于通用输入和输出(选择图中的 U16 提供 I0 引脚数据和 U21 提供 I0 引脚数据),为 1 时启用数码管动态显示功能(选择图中的 U15 提供段数据和 U20 提供字数据)。

 $0D_EN$  用于使能输出引脚  $0C3\sim0C0$  的开漏输出,为 0 时  $0C3\sim0C0$  是推挽输出(可以输出低电平和高电平),为 1 时  $0C3\sim0C0$  是开漏输出(只能输出低电平和不输出)。

SLEEP 用于使 CH422 进入低功耗睡眠状态,从而可以节约电能。处于低功耗睡眠状态中的 CH422 可以被下述两种事件中的任何一种唤醒,第一种事件是输入电平变化,即检测到 107~100 引脚输入的当前状态与事先写入 107~100 引脚的输出寄存器(图中的 U16)中的数据不同;第二种事件是接收到单片机发出的下一个操作命令。当 CH422 被唤醒后,SLEEP 位会自动清 0。睡眠和唤醒操作本身不会影响 CH422 的其它工作状态。

该命令不影响各个引脚的输出寄存器和内部数据缓冲区中的数据。常用的几个命令如下:

- (1)、字节 2 为 00H, 启用 I/O 扩展功能, IO7~IOO 为输入, OC3~OCO 为通用输出;
- (2)、字节 2 为 11H, 启用 I/O 扩展功能, IO7~IOO 为输出, OC3~OCO 为开漏输出;
- (3)、字节 2 为 05H, 启用数码管自动扫描功能, SEG7~SEGO 和 DIG3~DIGO 为输出。

## 6.2. 设置通用输出命令(图中的 WR-OC 控制线)

该命令的输出字节 1 为 46H,输出字节 2 为 0000  $[0C_DAT]$  B,即 00H 到 0FH 之间的 8 位数据,用于写入通用输出引脚  $0C3\sim0C0$  的输出寄存器(图中的 U21),写 0 则使引脚输出低电平,写 1 则引脚输出高电平。

#### 6.3. 加载段数据命令/设置双向输入输出命令(图中的 WR-10 控制线)

该命令的输出字节 1 为 70H、72H、74H、76H,其中位 2 $\sim$ 位 1 为地址(图中的 A0UT 总线),用于选择双口 SRAM(图中的 U15)的地址,输出字节 2 为[ $10_DAT$ ]B,即 00H 到 0FFH 之间的 8 位数据,用于写入双口 SRAM 的指定地址,同时用于写入双向输入输出引脚  $107\sim100$  的输出寄存器(图中的 U16),如果 10 0E 为 1 允许输出,那么写 0 则使引脚输出低电平,写 1 则使引脚输出高电平。

#### 6.4. 读取双向输入输出命令(图中的 RD-10 控制线)

该命令的输出字节 1 为 01001101B,即 4DH;输入字节 2 为双向输入输出引脚  $107\sim100$  的当前引脚状态。

读取双向输入输出命令用于获得 107~100 引脚的当前状态,当 10\_0E 为 0 时为获取输入状态,否则为获取输出状态。该命令属于读操作,是唯一的具有数据返回的命令,单片机必须先释放 SDA 引脚(三态输出禁止或者上拉到高电平),然后 CH422 从 SDA 引脚输出当前引脚状态。

# 7、参数

# 7.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

| 名称            | 参数说明                                              | 最小值   | 最大值      | 单位         |
|---------------|---------------------------------------------------|-------|----------|------------|
| TA            | 工作时的环境温度                                          | -40   | 85       | $^{\circ}$ |
| TS            | 储存时的环境温度                                          | -55   | 125      | $^{\circ}$ |
| VCC           | 电源电压(VCC 接电源,GND 接地)                              | -0. 5 | 6. 0     | ٧          |
| V10           | 输入或者输出引脚上的电压                                      | -0. 5 | VCC+0. 5 | ٧          |
| l Moc         | 单个 DIG/OC 引脚的连续驱动电流                               | 0     | 30       | mA         |
| <b>IM</b> dig | 单个 DIG/0C 引脚的 1/4 脉冲驱动电流                          | 0     | 120      | mA         |
| lMio          | 单个 SEG/10 引脚的连续驱动电流                               | -25   | 25       | mA         |
| lMall         | 所有 SEG/10 引脚的连续驱动电流的总和<br>或所有 DIG/0C 引脚的连续驱动电流的总和 | 0     | 160      | mA         |

### 7. 2. 电气参数 (测试条件: TA=25℃, VCC=5V, 如果 VCC=3. 3V 那么表中电流值需乘以 40%)

| 名称    | 参数说明                        | 最小值      | 典型值  | 最大值      | 单位 |
|-------|-----------------------------|----------|------|----------|----|
| VCC   | 电源电压                        | 3        | 5    | 5. 3     | ٧  |
| ICC   | 工作电流                        | 0. 1     | 80   | 150      | mA |
| ICCs5 | 5V 时静态电流(SCL 和 SDA 为高电平)    |          | 0. 4 | 0. 9     | mA |
| ICCs3 | 3. 3V 时静态电流(SCL 和 SDA 为高电平) |          | 0. 1 | 0. 3     | mA |
| VIL   | SCL 和 SDA 引脚低电平输入电压         | -0. 5    |      | 0.8      | ٧  |
| VIH   | SCL 和 SDA 引脚高电平输入电压         | 2. 0     |      | VCC+0. 5 | ٧  |
| VILio | 10 引脚低电平输入电压                | -0. 5    |      | 0. 6     | ٧  |
| VIHio | 10 引脚高电平输入电压                | 1. 9     |      | VCC+0. 5 | ٧  |
| V0Loc | DIG/0C 引脚低电平输出电压(-100mA)    |          | 0. 6 | 0. 8     | ٧  |
| V0Loc | DIG/OC 引脚低电平输出电压(-30mA)     |          | 0. 2 | 0. 3     | ٧  |
| V0Hoc | DIG/OC 引脚高电平输出电压(5mA)       | VCC-0. 5 |      |          | ٧  |

| V0Lio | SEG/IO 引脚低电平输出电压(-15mA) |          |      | 0. 5 | ٧  |
|-------|-------------------------|----------|------|------|----|
| VOHio | SEG/10 引脚高电平输出电压(20mA)  | VCC-0. 5 |      |      | ٧  |
| VOL   | SDA 引脚低电平输出电压(-4mA)     |          |      | 0. 5 | ٧  |
| IUP1  | I0 引脚的输入弱上拉电流           | 1        | 5    | 10   | uA |
| IUP2  | SDA 引脚的输入上拉电流           | 150      | 250  | 400  | uA |
| VR    | 上电复位的默认电压门限             | 2. 3     | 2. 6 | 2. 9 | V  |

# 7.3. 时序参数 (测试条件: TA=25℃, VCC=5V, 参考附图)

(注:本表计量单位以纳秒即 10-9 秒为主,未注明最大值则理论值可以无穷大)



| 名称    | 参数说明                   | 最小值 | 典型值 | 最大值 | 单位  |
|-------|------------------------|-----|-----|-----|-----|
| TPR   | 电源上电检测产生的复位时间          | 15  | 30  | 80  | mS  |
| TSSTA | SDA 下降沿启动信号的建立时间       | 100 |     |     | nS  |
| THSTA | SDA 下降沿启动信号的保持时间       | 100 |     |     | nS  |
| TSST0 | SDA 上升沿停止信号的建立时间       | 100 |     |     | nS  |
| THST0 | SDA 上升沿停止信号的保持时间       | 100 |     |     | nS  |
| TCLOW | SCL 时钟信号的低电平宽度         | 100 |     |     | nS  |
| TCHIG | SCL 时钟信号的高电平宽度         | 100 |     |     | nS  |
| TSDA  | SDA 输入数据对 SCL 上升沿的建立时间 | 30  |     |     | nS  |
| THDA  | SDA 输入数据对 SCL 上升沿的保持时间 | 10  |     |     | nS  |
| TAA   | SDA 输出数据有效对 SCL 下降沿的延时 | 3   |     | 30  | nS  |
| TDH   | SDA 输出数据无效对 SCL 下降沿的延时 | 3   |     | 40  | nS  |
| Rate  | 平均数据传输速率               | 0   |     | 1 M | bps |

## 8、应用

## 8.1. 数码管显示驱动(下图)

CH422 通过 2 线串行接口 SCL 和 SDA 与外部的单片机相连接。电容 C1 和 C2 布置于 CH422 的电源引脚附近,用于电源退耦,减少驱动大电流产生的干扰。

CH422 可以动态驱动 4 个共阴数码管,所有数码管的相同段引脚(段 A $\sim$ 段 G 以及小数点)并联后通过串接的限流电阻 R1 连接 CH422 的段驱动引脚 SEGO $\sim$ SEG7,各数码管的公共阴极分别由 CH422 的 DIGO $\sim$ DIG3 引脚进行驱动。段引脚串接的电阻 R1 用于限制和均衡段驱动电流,在 5V 电源电压下,串接 200  $\Omega$  电阻通常对应段电流 13mA。CH422 内部可以对段驱动电流进行限制,所以 R1 可以省掉。

如果需要驱动共阳数码管或者增加驱动电流,可以参考 CH452 数据手册中的方法处理。



### 8.2. 远程 I/0 扩展 (下图)

CH422 通过 2 线串行接口 SCL 和 SDA 与外部的单片机相连接, 电容 C3 用于电源退耦。

CH422 的  $107\sim100$  引脚可以用于输入或者输出,图中将 106 和 107 引脚用于驱动两种极性的 LED 发光管。CH422 的  $003\sim000$  引脚只能用于输出。为了获得较大的连续电流驱动能力,可以使能开漏输出,并参考图中将 001、002、003 引脚并联用于驱动继电器 100 K1。



# 8.3. 抗干扰

由于 CH422 的驱动电流较大,会在电源上产生较大的毛刺电压,所以如果电源线或者地线的 PCB 布线不合理,将有可能影响单片机或者 CH422 的稳定性,建议使用较粗的电源线和地线,并靠近 CH422 在正负电源之间并联电源退耦电容。

对于强干扰的应用环境,单片机可以每隔数秒定期对 CH422 进行刷新,包括重新加载各个 I/0 引脚的输出寄存器,以及重新设置系统参数。

另外,如果由标准 MCS-51 单片机的 I/0 引脚对 CH422 进行较远距离的驱动,通常要加强 MCS-51 单片机的 I/0 引脚的上拉能力,以便在远距离传输时保持较好的数字信号波形。上拉电阻的阻值可以是  $500\,\Omega$  到  $10K\,\Omega$ ,近距离无需上拉电阻。

## 8.4. 单片机接口程序

网站上提供了部分单片机的 C 语言和 ASM 汇编接口程序。