	Utech
Name:	
Roll No.:	An Annual (V Standarder 2 and Experience)
Inviailator's Sianature :	

2012

ELECTROMAGNETIC FIELD THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

Choose the correct alternatives for any ten of the following: 1.

 $10 \times 1 = 10$

- If a vector field Q is solenoidal, which of the following is i) true?
 - a) $\oint Q \cdot dl = 0$ b) $\oint Q \cdot ds = 0$
 - $\nabla \times Q = 0$
- d) $\nabla^2 Q = 0$.
- An electric potential field is produced by two point ii) charges $1\mu C$ and $4\mu C$ located at (-2, 1, 5) and (1, 3, -1). The energy stored in the field is
 - a) 2.57 mJ
- b) 5·14 mJ
- 10·28 mJ c)
- d) none of these.

4303(O) [Turn over

b)
$$-18 \pi \hat{k} \text{ V/m}$$

c)
$$-72\pi \hat{k} \text{ V/m}$$

d)
$$-360\pi \hat{k} \text{ V/m}.$$

iv) Which of the following is zero?

For a Cartesian point (-3, 4, -1), which of the following v) is correct?

a)
$$\rho = -5$$

a)
$$\rho = -5$$
 b) $r = \sqrt{26}$

c)
$$0 = \tan^{-1}\left(\frac{5}{1}\right)$$

c)
$$0 = \tan^{-1}\left(\frac{5}{1}\right)$$
 d) $\varphi = \tan^{-1}\left(\frac{4}{3}\right)$.

Which of the following potentials does not satisfy vi) Laplace's equations?

a)
$$V = 2x + 5$$

b)
$$V = \frac{10}{r}$$

c)
$$V = r \cos \varphi$$

d)
$$V = 10xy$$
.

4303(O)

- vii) Two identical coaxial circular coils carry the current but in opposite directions. The magnitude of the field B at a point on the axis midway between the coils is
 - a) zero
 - the same as that produced by one coil b)
 - twice as that produced by one coil c)
 - half that produced by one coil. d)
- viii) Plane y = 0 carries a uniform current of 30k mA/m. At (1,10,-2) the magnetic field intensity is
 - a) $-15\hat{i}$ mA/m b) $15\hat{i}$ mA/m
 - $477 \cdot 5 \hat{j} \, \text{mA/m}$
- d) none of these.
- The electric field component of a wave in free space is ix) $E = 10\cos(10^7 t + kz)^{\circ}$ V/m. It can be inferred that
 - the wave propagates along \hat{j} a)
 - b) the wavelength $\lambda = 188 \cdot 5 \text{ m}$
 - the amplitude is 10 V/m c)
 - both (b) and (c) are correct. d)

- x) What is the major factor for determining whether the medium is a free space, lossless dielectric, lossy dielectric or a good conductor?
 - a) Attenuation constant
 - b) Constitutive parameters (σ, ε, μ)
 - c) Loss tangent
 - d) Reflection coefficient.
- xi) Which of the following does not satisfy the wave equation?
 - a) $50e^{i\omega(t-3z)}$
- b) $\sin \omega (10z + 5t)$
- c) $(x+2t)^2$
- d) $\cos^2(y+5t)$.
- xii) The poyting vector physically denotes the power density leaving or entering a given volume in a time varying field.
 - a) True

b) False.

4303(O)

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. An EM wave travels in free space with electric field component, $E = 100e^{i(0.8669+0.5z)}$ i V/m. Determine
 - a) ω and λ
 - b) the magnetic field component
 - c) the time average power.

2 + 2 + 1

- 3. a) A magnetostatic field never delivers energy to a charged particle moving in that field. Explain.
 - b) A charged particle of mass 2 kg and charge 3C starts at appoint (1, -2, 0) with velocity $4\hat{i}+3\hat{k}$ m/s in an electric field $12\hat{i}+10\hat{j}$ V/m. At time t=1 s, determine
 - i) the acceleration of the particle
 - ii) its velocity
 - iii) its K.E.

2 + 3

4. State Ampere's circuital law and hence find out $\nabla \times H$. Find the magnetic field intensity due to an infinite sheet of current. 2+3

4303(O)

5

[Turn over

- a) What is uniqueness theorem ? Give the general procedures to find the solution for Laplace's and Poisson's equations.
 - b) In a one dimensional device, the charge density is given by $\rho = \rho_0 x/a$. If E = 0 at x = 0 & V = 0 at x = a. Find V and E.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 6. a) Express gradient and divergence operator in cylindrical coordinate system.
 - b) Prove that $\oint \nabla T \cdot dl = 0$, where *T* is any scalar function.
 - c) State and explain the fundamental theorem of divergence and hence show $\nabla . E = \rho / \epsilon_0$. 5 + 5 + 5
- 7. a) Find out the expression for electric field intensity due to an infinite sheet of uniform charge density σ in the *x-y* plane and hence show that the intensity is independent of the distance from the sheet.
 - b) Derive the expression for electrostatic energy stored in a continuous distribution of charge. 8 + 7

- 8. a) Determine the charge densities due to each of the following electric flux densities :
 - i) $D = (r \sin \varphi) \hat{r} (3r \cos \varphi) \hat{\varphi} + (z^2) \hat{k}$
 - ii) $D = (2\cos\theta/r^3)\hat{r} + (\sin\theta/r^3)\hat{\theta} C/m^2$
 - b) A spherical charge distribution is given by

$$\rho = \begin{cases} \rho_0 r / \alpha & , r < \alpha \\ 0 & , r > \alpha \end{cases}$$

Find V and E everywhere.

- 7 + 8
- 9. a) Derive the boundary conditions for E and D for
 - i) Dielectric Dielectric interface
 - ii) Dielectric Conductor interface.
 - b) Derive the magnetic boundary conditions.
 - c) Using Biot-Savart law find the magnetic field intensity due to a straight filamentary conductor. Also find the value when the conductor is infinitely long. 5 + 4 + 6

=========