APPENDIX

Proof of Theorem 1

Proof: Let $\vec{W} = \mathbf{A}\vec{X} = [W_1, ..., W_m]$, since $\vec{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\vec{X}})$ then we have $\vec{W} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\vec{W}})$, where $\mathbf{\Sigma}_{\vec{W}} = \mathbf{A}\mathbf{\Sigma}_{\vec{X}}\mathbf{A}^{\top}$. Note that $\mathbf{\Sigma}_{\vec{X}} = \sigma^2 \mathbf{I}$, and \mathbf{I} denotes the identity matrix. Let $\vec{Z} = ReLU(\vec{W}) = \max(\vec{W}, \mathbf{0}) = [Z_1, ..., Z_m]$, we first discuss the relationship between \vec{W} and \vec{Z} .

Obviously, the variance of W_i can be expressed as $var(W_i) = (\eta_i \sigma)^2$, i = 1, ..., m, η_i is related with **A**, then the probability density function of W_i , denoted by $f_{W_i}(x)$, is expressed as

$$f_{W_i}(x) = \frac{1}{\sqrt{2\pi}n_i\sigma}e^{-\frac{x^2}{2(\eta_i\sigma)^2}}.$$

According to $Z_i = \max(W_i, 0)$, we have the mean and the variance of Z_i as below:

$$E(Z_i) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\eta_i \sigma} e^{-\frac{x^2}{2(\eta_i \sigma)^2}} \max(x, 0) dx$$

$$= \int_0^{\infty} \frac{1}{\sqrt{2\pi}\eta_i \sigma} e^{-\frac{x^2}{2(\eta_i \sigma)^2}} x dx = \frac{\eta_i \sigma}{\sqrt{2\pi}};$$

$$E(Z_i^2) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\eta_i \sigma} e^{-\frac{x^2}{2(\eta_i \sigma)^2}} \max(x, 0)^2 dx$$

$$= \int_0^{\infty} \frac{1}{\sqrt{2\pi}\eta_i \sigma} e^{-\frac{x^2}{2(\eta_i \sigma)^2}} x^2 dx = \frac{(\eta_i \sigma)^2}{2};$$

$$var(Z_i) = E(Z_i^2) - E(Z_i)^2 = \frac{\pi - 1}{2\pi} (\eta_i \sigma)^2.$$

Our purpose is to compute the covariance matrix of \vec{Z} , that is $\Sigma_{\vec{Z}}$. After computing $var(Z_i)$, which is on the diagonal position of $\Sigma_{\vec{Z}}$, we now calculate $cov(Z_i, Z_j), i \neq j$, by

$$cov(Z_i, Z_j) = E(Z_i Z_j) - E(Z_i)E(Z_j).$$

Assume that the joint probability density function of W_i and W_j is written as

$$f_{W_i,W_j}(x,y) = \frac{1}{2\pi\eta_i\eta_j\sigma^2\sqrt{1-\rho_{ij}^2}}p(x,y,\rho_{ij},\eta_i,\eta_j),$$

where $p(x,y,\rho_{ij},\eta_i,\eta_j)=e^{-\frac{1}{2(1-\rho_{ij}^2)}\left(\frac{x^2}{(\eta_i\sigma)^2}-\frac{2\rho_{ij}xy}{\eta_i\eta_j\sigma^2}+\frac{y^2}{(\eta_j\sigma)^2}\right)}$, and ρ_{ij} is the correlation coefficient between W_i and W_j . Then,

$$\begin{split} E(Z_i Z_j) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{W_i, W_j}(x, y) \max(x, 0) \max(y, 0) dx dy \\ &= \int_{0}^{\infty} \int_{0}^{\infty} f_{W_i, W_j}(x, y) xy dx dy \\ &= \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2\pi \eta_i \eta_j \sigma^2 \sqrt{1 - \rho_{ij}^2}} p(x, y, \rho_{ij}, \eta_i, \eta_j) xy dx dy. \end{split}$$

Furthermore, define $u=\frac{x}{\eta_i\sigma\sqrt{1-\rho_{ij}^2}}, v=\frac{y}{\eta_j\sigma\sqrt{1-\rho_{ij}^2}}$, the computation of $E(Z_iZ_j)$ is transformed to be

$$E(Z_i Z_j) = M_{ij} \sigma^2,$$

where $M_{ij} = \frac{\left(\sqrt{1-\rho_{ij}^2}\right)^3 \eta_i \eta_j}{2\pi} \int_0^\infty \int_0^\infty e^{-\frac{1}{2}(u^2 - 2\rho_{ij}uv + v^2)} uv du dv$. Hence,

$$cov(Z_i, Z_j) = E(Z_i Z_j) - E(Z_i) E(Z_j)$$
$$= M_{ij}\sigma^2 - \frac{\eta_i \eta_j \sigma^2}{2\pi} = (M_{ij} - \frac{\eta_i \eta_j}{2\pi})\sigma^2.$$

According to the expressions of $var(Z_i)$ and $cov(Z_i, Z_j)$, it is clear to see that $\Sigma_{\vec{Z}}$ can be formulated as

$$\mathbf{\Sigma}_{\vec{Z}} = \sigma^2 \hat{\mathbf{\Sigma}}_{\vec{Z}},$$

where $\hat{\Sigma}_{\vec{Z}}$ is only determined by the matrix **A**.

Therefore, the covariance matrix of $\vec{Y} = \vec{B}\vec{Z}$, i.e. $\Sigma_{\vec{V}}$ is written as

$$\boldsymbol{\Sigma}_{\vec{Y}} = \mathbf{B}\boldsymbol{\Sigma}_{\vec{Z}}\mathbf{B}^{\top} = \sigma^2\mathbf{B}\hat{\boldsymbol{\Sigma}}_{\vec{Z}}\mathbf{B}^{\top}.$$

Due to $E[\|\vec{Y} - E[\vec{Y}]\|_2^2] = tr(\mathbf{\Sigma}_{\vec{Y}}) = \sigma^2 tr(\mathbf{B}\hat{\mathbf{\Sigma}}_{\vec{Z}}\mathbf{B}^{\top})$ $(tr(\cdot))$ denotes the trace of a matrix) and $E[\|\vec{X} - E[\vec{X}]\|_2^2] = tr(\mathbf{\Sigma}_{\vec{X}}) = n\sigma^2$, then we have

$$E[\|\vec{Y} - E[\vec{Y}]\|_2^2] = \alpha E[\|\vec{X} - E[\vec{X}]\|_2^2],$$

where $\alpha = \frac{tr(\mathbf{B}\hat{\boldsymbol{\Sigma}}_{\vec{Z}}\mathbf{B}^{\top})}{n}$. That means $E[\|\vec{Y} - E[\vec{Y}]\|_2^2]$ and $E[\|\vec{X} - E[\vec{X}]\|_2^2]$ are linearly related.