Time Series Analysis Basics of Time Series Analysis

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

The Concept of Stationarity: Data Example

About This Lesson

Data Example: Temperature in Atlanta, Georgia

Data: Average monthly temperature records starting in 1879 until 2016.

- Available from the iWearherNet.com
- The Weather Bureau (now the National Weather Service) began keeping weather records for Atlanta 138 years, 8 months and 19 days ago on October 1, 1878.
- Provided in Fahrenheit degrees

Is there seasonality and trend in temperature in Atlanta? Is the residual process after removing seasonality and trend stationary?

Time Series Analysis: General Approach

- Plot the series and check for:
 - a. trend
 - b. a seasonal component
 - c. any apparent sharp changes in behavior
 - d. any outlying observations
- 2. Remove trend and seasonal components to get stationary residuals.
- 3. Choose a model to fit the residual process.
- 4. Forecasting can be carried out by forecasting residuals and then inverting the transformations carried out in Step 2.2.

Residual Process

Sample Autocorrelation

```
## ACF for the temperature time series

acf(temp,lag.max=12*4,main="")

## ACF for the residual process

acf(dif.fit.lm,lag.max=12*4,main="")

acf(dif.fit.gam,lag.max=12*4,main="")
```


Sample Autocorrelation Plots

Summary

