Zahra Atashgahi

+31~(0)5~348~961~41, Amersfoort, the Netherlands z.atashgahi@utwente.nl | Homepage | <u>Github</u> | Google Scholar | <u>LinkedIn</u>

RESEARCH INTERESTS

- Machine Learning Sparse Neural Networks Deep Learning Cost-efficient Neural Networks
- Time Series Analysis Healthcare Interpretability Feature Selection Continual Learning

EDUCATION

Ph.D. in Artificial Intelligence, University of Twente

Oct. 2019 - Apr. 2024 (Expected)

• Faculty of Electrical Engineering, Mathematics and Computer Science, Data Management & Biometrics Group

M.Sc. in Computer Science (Artificial Intelligence), Amirkabir University of Technology

Sep. 2017 – Sep. 2019

• Thesis: Abnormal Activity Detection for the Elderly People Living in Smart Homes

B.Sc. in Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic)

Sep. 2013 - Aug. 2017

• Thesis: Design and Implementing IoT-Based Health Monitoring System

Work Experience

Machine Learning Scientist Intern at Booking.com

 $Jul.\ 2023-Sep.\ 2023$

Amsterdam (on-site)

• Project. Enhancing Predictive Performance in Marketing: Exploring the Integration of Behavioral User Feature

PhD Candidate in Artificial Intelligence

Oct. 2019 - Apr. 2024 (Expected)

University of Twente, The Netherlands (May. 2020 – Present)

Eindhoven University of Technology, The Netherlands (Oct. 2019 - Apr. 2020)

- Topic: Cost-effective artificial neural networks. In my Ph.D. research, I seek to develop algorithms for artificial neural networks to solve various machine learning tasks efficiently while considering the optimal trade-off between computational costs, data requirements, and performance.
- Supervisors: Dr. Decebal Mocanu (University of Twente/ Eindhoven University of Technology), Prof. Dr. Raymond Veldhuis (University of Twente), and Prof. Dr. Mykola Pechenizkiy (Eindhoven University of Technology).
- **Project.** As a part of my PhD, I collaborate in the EDIC (Exceptional and Deep Intelligent Coach) project; we aim to develop an intelligent coach to support users in maintaining a healthy lifestyle. In this project, I mainly focus on: Feature Selection from high-dimensional data, Event detection from multi-dimensional time series, and Learning from heterogeneous data of diabetes patients

Student Visitor, University of Cambridge

Jan. 2023 - Apr. 2023

Department of Applied Mathematics and Theoretical Physics, van der Schaar Lab

• Supervisor: Prof. Dr. Mihaela van der Schaar (University of Cambridge)

Honors & Awards

Accepted as a student volunteer IJCAI 2022	2022
Accepted at the Oxford Machine Learning Summer School (acceptance rate: 15%) OxML2021	2021
Accepted as a student volunteer IJCAI 2021	2021
Scholarship recipient for the 8th ACM Celebration of Women in Computing womENcourage 2021	2021
Ranked 3rd out of 45 in Artificial Intelligence Students Amirkabir University of Technology	2019
Direct admission to Graduate Program (M.Sc.) in Artificial Intelligence Amirkabir University of Technology	2017
Ranked 4th out of 25 in Computer Hardware Engineering Students Amirkabir University of Technology	2017
Ranked in top 0.8% in the National Entrance Exam among approximately 230k students Iran	2012
Semi-finalist at Student National Mathematics Olympiad among high school Iranian students Iran	2011
Semi-finalist at Student National Computer Olympiad among high school Iranian students Iran	2011

TECHNICAL SKILLS

Programming Languages: Python, Matlab, R, C/C++, Java

Machine Learning Libraries: Tensorflow, Keras, Scikit-Learn, Pandas, NumPy

Database Systems: MySQL, SQL Server

Hardware Design Languages: Verilog, VHDL, 8086 Assembly, AVR Assembly Web Development: HTML5, CSS, XML, XSLT, JavaScript, Jqueri, AJAX, PHP

ACTIVITIES

Program committee member at NeurIPS 2023, ICML 2023, ICLR 2023 SNN workshop	2023
Project Management within EDIC (Exceptional and Deep Intelligent Coach) Project	Apr. 2022 – Apr. 2023
Program committee member at NeurIPS 2022, ICML 2022, AAAI 2023, SNN 2022	2022
Program committee member at ICBINB @NeurIPS 2021, SNN 2021, CLEATED @ICDM 2021	2021
Co-organizing Sparse Neural Networks discussion group University of Twente	Dec. $2020 - \text{June } 2022$
Organizing study group on Mathematics for Machine Learning book University of Twente	Nov. 2020 – June 2022
Neural Networks and Deep Learning Coursera	Aug. 2018

PERSONAL AND PROFESSIONAL DEVELOPMENT

AI and Machine Learning in Healthcare Summer School Virtual	Sep. 2022
Science writing University of Twente	Nov. 2021
Oxford Machine Learning Summer School (OxML2021) Virtual	Aug. 2021
Academic presentations bootcamp University of Twente	Aug. 2021
Scientific information bootcamp University of Twente	Apr. 2021
Academic publishing bootcamp University of Twente	Feb. 2021
Neural Networks and Deep Learning Coursera	Aug. 2018

ORGANIZATION

- 1. (Tutorial) Sparse Training for Supervised, Unsupervised, Continual, and Deep Reinforcement Learning with Deep Neural Networks, **IJCAI 2023**, *Macao*. [Website]
- 2. (Workshop) Sparsity in Neural Networks On practical limitations and tradeoffs between sustainability and efficiency, ICLR 2023, (Kigali, Rwanda) [Website]
- 3. (Tutorial) Sparse Neural Networks Training, ECML-PKDD 2022, (Grenoble, France) [Website]

TEACHING & SUPERVISION

- M.Sc. Student Supervision (Together with Dr. Decebal Mocanu) | Eindhoven University of Technology Dec. 2022 Oct. 2023
 - Matthijs Keep, "Supervised feature selection"
- B.Sc. Student Supervision (Together with Dr. Decebal Mocanu) | University of Twente
- Apr. 2021 Jul. 2021
- Neil Kichler, "Robustness of sparse MLPs for supervised feature selection" (best thesis award)
- Xuhao Zhang, "Supervised feature selection using sparse neural networks"
- Karolis Girdziunas, "Supervised Feature Selection using Sparse Evolutionary Training and Neuron Strength"

Teaching Assistant | Amirkabir University of Technology

2017

- Internet Engineering (Fall 2017)
- Computer Networks (Spring 2017)
- Electrical Circuits (Spring 2017)

LANGUAGE SKILLS

English (Working proficiency), Persian (Native), Dutch (Elementary), Arabic (Elementary)

PUBLICATIONS

- 1. **Atashgahi**, **Z.** (2023). Cost-effective artificial neural networks [Doctoral Consortium]. *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23.*
- 2. Atashgahi, Z., Zhang, X., Kichler, N., Liu, S., Yin, L., Pechenizkiy, M., Veldhuis, R., & Mocanu, D. C. (2022). Feature selection with neuron evolution in sparse neural networks. *Transactions on Machine Learning Research (TMLR)*.
- 3. Sokar, G., **Atashgahi**, **Z.**, Pechenizkiy, M., & Mocanu, D. C. (2022). Where to pay attention in sparse training for feature selection? *Advances in Neural Information Processing Systems (NeurIPS 2022)*.
- 4. Atashgahi, Z., Pieterse, J., Liu, S., Mocanu, D. C., Veldhuis, R., & Pechenizkiy, M. (2022a). A brain-inspired algorithm for training highly sparse neural networks. Accepted at Machine Learning (ECML-PKDD journal track), arXiv preprint arXiv:1903.07138. [code]
- 5. Atashgahi, Z., Sokar, G., van der Lee, T., Mocanu, E., Mocanu, D. C., Veldhuis, R., & Pechenizkiy, M. (2022). Quick and robust feature selection: The strength of energy-efficient sparse training for autoencoders. *Machine Learning (ECML-PKDD Journal track)*, 111(1), 377–414. [code]
- 6. Liu, S., Chen, T., **Atashgahi**, **Z.**, Chen, X., Sokar, G., Mocanu, E., Pechenizkiy, M., Wang, Z., & Mocanu, D. C. (2022). Deep ensembling with no overhead for either training or testing: The all-round blessings of dynamic sparsity. *International Conference on Learning Representations (ICLR 2022)*. [code]
- 7. Liu, S., Chen, T., Chen, X., **Atashgahi**, **Z.**, Yin, L., Kou, H., Shen, L., Pechenizkiy, M., Wang, Z., & Mocanu, D. C. (2021). Sparse training via boosting pruning plasticity with neuroregeneration. *Advances in Neural Information Processing Systems (NeurIPS 2021)*. [code]
- 8. **Atashgahi**, **Z.**, Mocanu, D. C., Veldhuis, R., & Pechenizkiy, M. (2021). Unsupervised online memory-free change-point detection using an ensemble of lstm-autoencoder-based neural networks (extended abstract). 8th ACM Celebration of Women in Computing womENcourage.
- 9. **Atashgahi**, **Z.**, Sokar, G., van der Lee, T., Mocanu, E., Mocanu, D. C., Veldhuis, R., & Pechenizkiy, M. (2021a). Quick and robust feature selection: The strength of energy-efficient sparse training for autoencoders [extended abstract]. *Proceedings of BNAIC/BENELEARN 2021*.
- 10. Liu, S., van der Lee, T., Yaman, A., **Atashgahi**, **Z.**, Ferraro, D., Sokar, G., Pechenizkiy, M., & Mocanu, D. C. (2020). Topological insights into sparse neural networks. *Proceedings of ECML-PKDD*. [code]

Preprints

- 1. (Under review) Atashgahi, Z., Veldhuis, R., Pechenizkiy, M., & Mocanu, D. C. (2023). Adaptive sparsity level during training for efficient time series forecasting with transformers. arXiv preprint arXiv:2305.18382
- 2. (Under review) Atashgahi, Z., Mocanu, D. C., Veldhuis, R., & Pechenizkiy, M. (2022). Memory-free online change-point detection: A novel neural network approach. arXiv preprint arXiv:2207.03932 [code]

POSTERS AND PRESENTATIONS

- 1. (talk) "Learning Efficiently from Data using Sparse Neural Networks" [link], TrustML Young Scientist Seminars organized by RIKEN-AIP center, Virtual.
- 2. (poster) Atashgahi, Z., Zhang, X., Kichler, N., Liu, S., Yin, L., Pechenizkiy, M., Veldhuis, R., & Mocanu, D. C. (2023). Feature selection with neuron evolution in sparse neural networks [ICLR 2023 Workshop on Sparsity in Neural Networks: On practical limitations and tradeoffs between sustainability and efficiency], Kigali, Rwanda
- 3. (poster and oral presentation), "Quick and robust feature selection: The strength of energy-efficient sparse training for autoencoders", ECML-PKDD 2022, Grenoble, France.
- 4. (poster and oral presentation) "A brain-inspired algorithm for training highly sparse neural networks", ECML-PKDD 2022, Grenoble, France.
- 5. (oral presentation) "A Brain-inspired Algorithm for Training Highly Sparse Neural Networks", Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands.
- 6. (poster) Atashgahi, Z., Pieterse, J., Liu, S., Mocanu, D. C., Veldhuis, R., & Pechenizkiy, M. (2022b). A brain-inspired algorithm for training highly sparse neural networks [Sparsity in Neural Networks: Advancing Understanding and Practice 2022, SNN Workshop 2022] [Link]
- 7. (poster) Atashgahi, Z. (2021). Cost-effective artificial neural networks [IJCAI 2021 (virtual), doctoral consortium workshop]
- 8. (poster) Atashgahi, Z., Sokar, G., van der Lee, T., Mocanu, E., Mocanu, D., Veldhuis, R., & Pechenizkiy, M. (2021b). Quick and robust feature selection: The strength of energy-efficient sparse training for autoencoders [Sparsity in Neural Networks: Advancing Understanding and Practice 2021, SNN Workshop 2021]
- 9. (poster) Kichler, N., **Atashgahi**, **Z.**, & Mocanu, D. (2021). Robustness of sparse mlps for supervised feature selection [Sparsity in Neural Networks: Advancing Understanding and Practice 2021, SNN Workshop 2021]
- (poster) Liu, S., Chen, T., Atashgahi, Z., Chen, X., Sokar, G., Mocanu, E., Pechenizkiy, M., Wang, Z., & Mocanu, D. (2021). Freetickets: Accurate, robust and efficient deep ensemble by training with dynamic sparsity [Sparsity in Neural Networks: Advancing Understanding and Practice 2021, SNN Workshop 2021]