Semantic Role Labeling

Deep Processing Techniques for NLP Ling571 February 27, 2017

Semantic Role Labeling

- Aka Thematic role labeling, shallow semantic parsing
- Form of predicate-argument extraction
- Task:
 - → For each predicate in a sentence:
 - Identify which constituents are arguments of the predicate
 - Determine correct role for each argument
- Both PropBank, FrameNet used as targets
- Potentially useful for many NLU tasks:
 - → Demonstrated usefulness in Q&A, IE

SRL in QA

Intuition:

- → Surface forms obscure Q&A patterns
- → Q: What year did the U.S. buy Alaska?
- \neg S_A :...before Russia sold Alaska to the United States in 1867
- Learn surface text patterns?
 - Long distance relations, require huge # of patterns to find
- Learn syntactic patterns?
 - Different lexical choice, different dependency structure

Semantic Roles & QA

- Approach:
 - Perform semantic role labeling
 - FrameNet
 - Perform structural and semantic role matching
 - Use role matching to select answer

Q: Who d'sco:verea prions.?

S: 9 97 : Sian ey B. Pn.1.sin er. Unitea Saites. d "scovery of pr"ons, ...

 $S = M \cup M \cup G$

Sem Struo (ac. Stan ey 1B. Pfius.in e-r)

Summary

- FrameNet and QA:
 - → FrameNet still limited (coverage/annotations)
 - → Bigger problem is lack of alignment b/t Q & A frames
- Even if limited,
 - Substantially improves where applicable
 - Useful in conjunction with other QA strategies
 - → Soft role assignment, matching key to effectiveness

SRL Subtasks

- Argument identification:
 - → The [San Francisco Examiner] issued [a special edition] [yesterday].
 - → Which spans are arguments?
 - ── In general (96%), arguments are (gold) parse constituents
 - → 90% arguments are aligned w/auto parse constituents

Role labeling:

The $[Arg_0]$ San Francisco Examiner] issued $[Arg_1]$ a special edition] $[Arg_0]$ H-TMPyesterday].

Semantic Role Complexities

- Discontinuous arguments:
 - [Arg1 The pearls], [Arg0 she] said, [C-Arg1 are fake].
- Arguments can include referents/pronouns:
 - [$_{Arg0}$ The pearls], [$_{R-Arg0}$ that] are [$_{Arg1}$ fake]

SRL over Parse Tree

Figure 20 16 Pane h"ee fur a PropB, aok sentence, :d1owing the PropBank: argum.ent labels. 1be dotted line \$\forall J00WS\$ the path fuame NPf S! VP! VBD i mr AR GO, the -SBJ eonsti.hrent the San Francisco Examiner.

Basic SRL Approach

- Generally exploit supervised machine learning
- Parse sentence (dependency/constituent)
 - → For each predicate in parse:
 - For each node in parse:
 - Create a feature vector representation
 - → Classify node as semantic role (or none)
- Much design in terms of features for classification

Classification Features

- Gildea & Jurafsky, 2002 (foundational work)
 - Employed in most SRL systems

Features:

- specific to candidate constituent argument
- for predicate generally

Governing predicate:

- Nearest governing predicate to the current node
 - Verbs usually (also adj, noun in FrameNet)
 - E.g. 'issued'
- Crucial: roles determined by predicate

SRL Features

- Constituent internal information:
 - Phrase type:
 - Parse node dominating this constituent
 - → E.g. NP
 - Different roles tend to surface as different phrase types
 - Head word:
 - → E.g. Examiner
 - ── Words associated w/specific roles e.g. pronouns as agents
 - POS of head word:
 - → E.g. NNP

SRL Features

- Structural features:
 - → Path: Sequence of parse nodes from const to pred
 - E.g. NP↑S↓VP↓VBD
 - Arrows indicate direction of traversal
 - Can capture grammatical relations
 - Linear position:
 - ─ Binary: Is constituent **before** or **after** predicate
 ─ E.g. before
 - Voice:
 - Active or passive of clause where constituent appears
 - ── E.g. active (strongly influences other order, paths, etc)
 - Verb subcategorization

Other SRL Constraints

- Many other features employed in SRL
 - ── E.g. NER on constituents, neighboring words, path info
- Global Labeling constraints:
 - → Non-overlapping arguments:
 - FrameNet, PropBank both require
 - → No duplicate roles:
 - Labeling of constituents is not independent
 - Assignment to one constituent changes probabilities for others

Classification Approaches

- Many SRL systems use standard classifiers
 - → E.g. MaxEnt, SVM
 - → However, hard to effectively exploit global constraints
- Alternative approaches
 - Classification + reranking
 - Joint modeling
 - → Integer Linear Programming (ILP)
 - Allows implementation of global constraints over system

State-of-the-Art

- → Best system from CoNLL shared task (PropBank)
 - → ILP-based system (Punyakanok)

FrameNet "Parsing"

- → (Das et al., 2014)
- Identify targets that evoke frames
 - $-1 \sim 79.2\%$ F-measure
- Classify targets into frames
 - → 61% for exact match
- Identify arguments
 - → ~ 50%

SRL Challenges

- Open issues:
 - → SRL degrades significantly across domains
 - \dashv E.g. WSJ $\rightarrow \rightarrow$ Brown: Drops > 12% F-measure
 - SRL depends heavily on effectiveness of other NLP
 - ── E.g. POS tagging, parsing, etc.
 - Errors can accumulate
 - Coverage/generalization remains challenging
 - → Resource coverage still gappy (FrameNet, PropBank)
- Publicly available implementations:
 - Shalmaneser, SEMAFOR

Summary

- Computational Semantics:
 - Deep compositional models yielding full logical form
 - Semantic role labeling capturing who did what to whom
 - Lexical semantics, representing word senses, relations

Computational Models of Discourse

Roadmap

- Discourse
 - Motivation
 - Dimensions of Discourse
 - Coherence & Cohesion
 - Coreference

What is a Discourse?

- Discourse is:
 - Extended span of text
 - → Spoken or Written
 - → One or more participants
 - Language in Use
 - Goals of participants
 - Processes to produce and interpret

Why Discourse?

- Understanding depends on context
 - → Referring expressions: it, that, the screen
 - → Word sense: plant
 - → Intention: Do you have the time?
- Applications: Discourse in NLP
 - Question-Answering
 - Information Retrieval
 - Summarization
 - Spoken Dialogue
 - Automatic Essay Grading

Reference Resolution

U: Where is A Bug's Life playing in Summit?

S: A Bug's Life is playing at the Summit theater.

U: When is it playing there?

S: It's playing at 2pm, 5pm, and 8pm.

U: I'd like 1 adult and 2 children for the first show. How much would that cost?

- Knowledge sources:
 - Domain knowledge
 - Discourse knowledge
 - → World knowledge

Coherence

- → First Union Corp. is continuing to wrestle with severe problems. According to industry insiders at PW, their president, John R. Georgius, is planning to announce his retirement tomorrow.
- → Summary:
- → First Union President John R. Georgius is planning to announce his retirement tomorrow.
- Inter-sentence coherence relations:
 - Second sentence: main concept (nucleus)
 - First sentence: subsidiary, background

Different Parameters of Discourse

- Number of participants
 - → Multiple participants -> Dialogue
- Modality
 - → Spoken vs Written

Goals

- Transactional (message passing) vs Interactional (relations, attitudes)
- Cooperative task-oriented rational interaction

Coherence Relations

- John hid Bill's car keys. He was drunk.
- → ?? John hid Bill's car keys. He likes spinach.
- → Why odd?
 - No obvious relation between sentences
 - Readers often try to construct relations
- How are first two related?
 - Explanation/cause
- Utterances should have meaningful connection
 - Establish through coherence relations