Hypercapnic gas stimulus in ventilators: First step towards CVR imaging in ventilated patients

G. Magnusson¹, M. Engström¹, L. Tobieson², C. Georgiopoulos^{1,2}, G. Cedersund¹, A. Tisell^{1,2}

¹Linköping University, Linköping, Sweden

²Region Östergötland, Linköping, Sweden

1

Cerebrovascular Reactivity

The brain has an advanced system for regulating its blood flow, termed cerebral autoregulation. One way to probe this system is to use a technique called Cerebrovascular Reactivity (CVR) which measures the change in blood to a given stimulus.

- CVR is calculated as: $\frac{\Delta Blood\ Flow}{\Delta Stimulus}$ and can be seen as an indirect measurement of the vascular reserve of the brain.
- Hypo-/hypercapnia is often used as stimulus as the brain has several mechanisms sensing the CO₂ level and alter its blood flow accordingly.
- The changes in blood flow is usually monitored with transcranial doppler or magnetic resonance (MR) imaging to produce CVR maps.
- CVR is today used as a diagnostic tool for multiple patient groups such stroke, brain tumor and small vessel disease.^[1]

2

Research question

The steady state CO_2 level in the blood is controlled by equation (1) below.

To perform hypo-/hypercapnic CVR measurement there exist therefore three main strategies:

- Use medicine, such as acetazolamide, to alter \dot{V}_{CO_2} .
- Change the ventilation \dot{V}_A , for example through breath-holding.
- Alter $F_{CO_2}^i$ in the inhaled gas.

The last alternative is considered to be most reliable and reproducible. [2]

Problem formulation:

- For ventilated patients there exists today, to our knowledge, no straightforward way to alter $F_{CO_2}^i$.
- Therefore, the only option is to administer drugs or use breath-holding (turning on and off the ventilator).

We therefore set out to construct a system that works together with a ventilator to administer a fix amount of CO_2 in the inhaled gas in order to enable reliable and safe CVR measurements for ventilated patients.

Method

We used a solution inspired by INOmax, a system to administer small amounts of Nitric Oxide together with a ventilator.^[3] The idea is relatively simple:

- Measure the flow from the ventilator and control an additional flow of high concentration CO₂ which is added to the ventilator flow.
- By controlling the proportion of the additional flow, a target CO₂-concentration can be achieved.

Our system: iCO₂ CVR System, was built with three main components:

- Flow sensor Honeywell AWM720P
- Mass Flow Controller (MFC) Brooks SLA5850
 - Attached to a gas tube containing 10% O2 + 90% CO2
- Central control Computer running a control program written in Python

4

Results and discussion

The iCO₂ CVR System was completed with satisfactory results.

• We were able to achieve target CO_2 -concentration ranging from 1–10% with a mean error less than 1% when ventilating a test lung.

Below is an example showing the target CO_2 in orange and the measured CO_2 in blue.

Discussion:

- The timing of the additional CO₂ flow to the ventilator flow turned out to be crucial since the gases mixed very little in the ventilator tube.
- By adding some additional elements to the ventilator circuit, such as a humidifier, mixing of the gases could be increased.
- The length of the CO_2 -delivery-tube is a limiting factor since too large compressible volume in the tube will affect the accuracy of the system.

References

- 1. Liu, P., De Vis, J. B., & Lu, H. (2019). Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review. NeuroImage, 187, 104–115. https://doi.org/10.1016/j.neuroimage.2018.03.047
- 2. Fierstra, J., Sobczyk, O., Battisti-Charbonney, A., Mandell, D. M., Poublanc, J., Crawley, A. P., Mikulis, D. J., Duffin, J., & Fisher, J. A. (2013). Measuring cerebrovascular reactivity: What stimulus to use? Journal of Physiology, 591(23), 5809–5821. https://doi.org/10.1113/jphysiol.2013.259150
- 3. Ambalavanan, N., El-Ferzli, G. T., Roane, C., Johnson, R., & Carlo, W. A. (2009). Nitric Oxide Administration Using an Oxygen Hood: A Pilot Trial. PLOS ONE, 4(2), e4312. https://doi.org/10.1371/journal.pone.0004312