Theorie des groupes

Bcp de monde...

September 2024

Table des matières

Exemples en tout genres

0.1 Section1

Définition : (distance) mdr a definition d'une distance

0.1.1 Sous-section1

Théorème:

 $\dim \ker \varphi + \dim \operatorname{Im} f = \dim E$

Preuve:

exemple de preuve

0.1.2 Comment faire un lemme

Lemme:

avec la box noire sans nom

 $\mathbf{Lemme:} \ \mathrm{nom}$

sasn la box mais avec le nom

Lemme:

sans rien

 \mathbf{test}

Chapitre 1

Notion de groupe, morphisme, produit direct

1.1 Groupes, sous-groupes, exemples

1.1.1 Définitions

Définition: (Groupe)

Un groupe est un ensemble non vide G munis d'une loi * telle que :

- (i) * est associative
- (ii) * possède un neutre $e \in G$
- (iii) Tout élément possède un inverse pour *

Définition: (Groupe abélien)

Un groupe G est dit <u>abélien</u> si $\forall (x,y) \in G, xy = yx$

1.1.2 Sous-groupes

Définition: (Sous-groupe)

Un sous-ensemble H de G est appelé sous-groupe si :

- $e \in H$
- $\bullet \ \forall x,y \in H, xy^1 \in H$

Définition: (Groupe fini)

G est dit fini si il est cardinal fini, on note alors o(G) = |G|, appelé ordre de G.

Sous-groupe engendré

Définition : (Sous-groupe engendré par une partie)

Soient G un groupe et $S \subset G$

Soit G_S l'ensemble des sous groupes de G qui contiennent S, on appel sous groupe engendré par

S l'ensemble : $\langle S \rangle := \bigcap_{H \in G_{\alpha}} H$

Si de plus $\langle S \rangle = G$ on dit que S est une partie génératrice de G ou que S engendre G

Définition : (Groupe de type fini)

Si G est engendré par un unique élément, on dit que G est monogène.

De plus, un groupe monogène fini est dit cyclique si il existe une partie finie $S \subseteq G$ qui engendre G, on dit que G est de type fini.

Définition : (Ordre d'un élément)

- Si $\langle x \rangle$ est infini, on dit que x est d'ordre infini.
- Si $\langle x \rangle$ est fini, on dit que x est d'ordre $|\langle x \rangle|$

Si $x^n = e$ alors o(x)|n

1.2 morphismes de groupes

Définition : (Morphisme de groupe)

Soit $(G,*),(H,\cdot)$ deux groupes. Un morphisme de groupes de G dans H est une application

 $f: G \longrightarrow H$ tel que $\forall x, y \in G, f(x * y) = f(x) \cdot f(y)$

Exercice:

- 1. $f(e_G) = e_H$
- 2. $f^{-1}(x) = f(x^{-1})$
- 3. $\forall n \in \mathbb{N} , f^n(x) = f(x^n)$
- 4. Si K < G, alors f(K) < H
- 5. Si K < H, alors $f^{-1}(K) < G$

Exemple:

- 1. $\epsilon: \mathbb{S}_n \longrightarrow \{-1,1\}$
- 2. $det: \mathbb{GL}_n(\mathbb{R}) \longrightarrow \mathbb{R}^*$
- 3. $exp: \mathbb{C} \longrightarrow \mathbb{C}^*$
- 4. Mais $exp: \mathcal{M}_2(\mathbb{R}) \longrightarrow (\mathbb{GL}_2(\mathbb{R}), \times)$

1.2.1 Isomorphismes

Définition: (Isomorphisme)

- 1. Un isomorphisme de G dans H est un morphisme de groupes bijectif.
- 2. G et H sont isomorphe ssi il existe un isomorphisme entre les deux.

Exercice:

Si f est un isomorphisme alors f^{-1} aussi

Exercice:

- 1. $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ ne sont pas isomorphe
- 2. $\mathbb{Z}/6\mathbb{Z}$ et \mathbb{S}_n ne sont pas isomorphe (car l'un est abélien et l'autre non).
- 3. $\mathbb{Z}/mn\mathbb{Z}$ et $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ sont isomorphe ssi $m \wedge n = 1$

Définition: (Automorphisme)

Un automorphisme est un isomorphisme d'un groupe G dans lui-même. L'ensemble des automorphismes de G se note Aut(G).

Exercice:

Montrer que $Aut(G) < \mathbb{S}_G$, où \mathbb{S}_G désigne l'ensemble des bijections de GG dans lui même

Exercice:

$$\forall g \in G, \text{ on note} \quad \begin{matrix} \sigma_g : \middle| G & \longrightarrow & G \\ x & \longmapsto & gxg^{-1} \end{matrix} \quad \text{(automorphisme intérieur assoccié à g), montrer que } \\ \sigma_g \in Aut(G)$$

Exercice:

On note Int(G) l'ensemble des automorphismes intérieurs de G, montrer que Int(G) < Aut(G)

Théorème : (Théorème de Cayley)

Tout groupe G est isomorphe à un sous-groupe de \mathbb{S}_G . En particulier, si |G| = n, alors G est isomorphe à un sous-groupe de \mathbb{S}_n .

Pour tout $g \in G$, on pose $\begin{array}{c|cccc} \tau_g : G & \longrightarrow & G \\ x & \longmapsto & gx \end{array}$ τ_g est une bijection de G dans G. Notons $T_G := \{\tau_g, g \in G\}$ G} $\subseteq \mathbb{S}_G$.

Vérifions que :

- 1. $T_G < \mathbb{S}_G$
- 2. G est isomorphe à T_G

Preuve de 1:

- $Id_G = \tau_e \in T_G(T_G \neq \emptyset)$
- $\forall g_1, g_2 \in G, \forall x \in G, \tau_{g_1g_2}(x) = g_1g_2x = g_1(g_2x) = \tau_{g_1}(\tau_{g_2}(x)), \text{ donc on a bien } \tau_{g_1g_2} = \tau_{g_1}\tau_{g_2}$
- $\forall g \in G, \tau_{g^{-1}} \circ \tau_g = \tau_g \circ \tau_{g^{-1}} = Id_G \text{ Donc } (\tau_g)^{-1} = \tau_{g^{-1}} \in T_G$

Preuve de 2 : Notons $\phi: G \longrightarrow T_G$ Alors ϕ est un morphisme (d'après la preuve de 1) ϕ est immédiatement $g \mapsto \tau_g$ Alors ϕ est un morphisme (d'après la preuve de 1) ϕ est immédiatement $g \mapsto \tau_g$ Donc

Soit $g \in G$ tel que $\tau_g = Id_G$. Alors $\forall x \in G, gx = x$. Si on prend $x = e_G$, on obtient $g = e_G$. Donc $Ker(\phi) = e_G$, et donc ϕ est injectif.

1.3 Produits directs

Définition : (Produit direct)

Le groupe "produit direct" de deux groupes G_1, G_2 est l'ensemble $G_1 \times G_2$ muni de la loi :

$$\begin{array}{cccc}
\cdot : & (G_1 \times G_2) \times (G_1 \times G_2 & \longrightarrow & G_1 \times G_2 \\
& & ((x_1, x_2), (y_1, y_2)) & \longmapsto & (x_1 y_1, x_2 y_2)
\end{array}$$

Exercice:

vérifier que $G_1 \times G_2$ muni de cette loi ests bien un groupe.

Définition: (Projections et injections canoniques)

- 1. Projections canoniques $p_i: \left| \begin{array}{ccc} G_1 \times G_2 & \longrightarrow & G_i \\ (x_1, x_2) & \longmapsto & x_i \end{array} \right|$
- $q_1: \left| egin{array}{ccccc} G_1 & \longrightarrow & G_1 imes G_2 & ext{et} & q_2: \left| egin{array}{cccc} G_2 & \longrightarrow & G_1 imes G_2 \ x_1 & \longmapsto & (x_1, e_2) \end{array}
 ight.$ 2. Injections canoniques:

Remarque:

 $\operatorname{Im}(q_i)$ est isomorphe à G_i . Ainsi $G_1 \times G_2$ contient un sous-groupe isomorphe à G_1 , de même pour G_2 . Remarque:

 $\forall x = (x_1, x_2) \in G_1 \times G_2$, on a:

$$x = (p_1(x), p_2(x)) = (x_1, x_2) = (x_1, e_2)(e_1, x_2) = (e_1, x_2)(x_1, e_2) = q_1(x_1)q_2(x_2) = q_2(x_2)q_2(x_1)$$

Théorème: Un groupe G est isomorphe au produit direct $G1 \times G_2$ ssi G contient deux sousgroupes H_1, H_2 tel que :

- 1. H_i est isomorphe à G_i (i = 1, 2)
- 2. $h_1h_2 = h_2h_1, \forall h_1 \in H_1, \forall h_2 \in H_2$
- 3. $G = H_1H_2$
- 4. $H_1 \cap H_1 = \{e_G\}$

Preuve:

 \Rightarrow Supposons qu'il existe $\phi: G_1 \times G_2 \longrightarrow G$ isomorphe.

- 1. On a que $G_1 \simeq \{G_1, e_2\} \simeq \phi(\{G_1, e_2\}) := H_1$ il suffit alors de remarquer que H_1 est un sous groupe de G. On construit de même H_2
- 2. $\forall (h_1, h_2) \in H_1 \times H_2$, on note $h'_1 = (h_1, e_2)$ idem pour h'_2 , on a alors:

$$h_1h_2 = \phi(h_1'h_2') = \phi(h_2'h_1') = h_2h_1$$

3. $\forall x \in G, \exists ! \ x' = (h_1, h_2) \in G_1 \times G_2 \text{ tel que } \phi(x') = x. \text{ On a alors :}$

$$x = \phi(x') = \phi(h_1'h_2') = h_1h_2$$

4. Immédiat

 \subset Construisons un isomorphisme de G dans $G_1 \times G_2$

 $\overline{\text{Fait}}: \forall g \in G, \exists ! (h_1, h_2) \in H_1 \times H_2 \text{ tel que } g = h_1 h_2$

En effet : l'existence vient de 3), l'unicité vient de 4) : $g = h_1 h_2 = k_1 k_2$ alors $(k_1)^{-1} h_1 = k_2 (h_2)^{-1}$. Comme

 $H_1 \cap H_2 = \{e\}$ on obtient $(k_1)^{-1}h_1 = k_2(h_2)^{-1} = e_G \Rightarrow h_1 = k_1$ et $h_2 = k_2$ Notons $\phi_1: H_1 \longrightarrow G_1$ et $\phi_2: H_2 \longrightarrow G_2$ les isomorphismes données par 1).

Posons $\phi: \mid G \longrightarrow G_1 \times G_2$ $h_1h_2 \longmapsto (\phi_1(h_1), \phi_2(h_2))$

Mq ϕ est un morphisme (α) , injectif (β) , surjectif γ

 $(\alpha): \phi(h_1h_2h_1'h_2') = \phi(h_1h_1'h_2h_2') = (\phi_1(h_1h_1'), \phi_2(h_2h_2')) = (\phi_1(h_1), \phi_1(h_1'), \phi_2(h_2)\phi_2(h_2')) = (\phi_1(h_1), \phi_2(h_2))(\phi_1(h_1'), \phi_2(h_2)) = (\phi_1(h_1), \phi_1(h_1'), \phi_2(h_2))(\phi_1(h_1'), \phi_2(h_2)) = (\phi_1(h_1), \phi_1(h_1'), \phi_1(h_1'), \phi_2(h_2)) = (\phi_1(h_1), \phi_1(h_1'), \phi_2(h_2)) = (\phi_1(h_1), \phi_1(h_1'), \phi_2(h_2)) = (\phi_1(h_1), \phi_1(h_1'), \phi_2(h_2)) = (\phi_1(h_1), \phi_1(h_1'), \phi_1(h_1'), \phi_2(h_1'), \phi_1(h_1'), \phi_2(h_1'), \phi_1(h_1'), \phi_1(h_1'), \phi_2(h_1'), \phi_1(h_1'), \phi_1(h_1'), \phi_2(h_1'), \phi_1(h_1'), \phi_1(h_1'),$

```
\phi(g)\phi(g')
```

 (β) : Soit $x = h_1 h_2$ tel que $\phi(x) = (\phi_1(h_1), \phi_2(h_2)) = (e_1, e_2)$

Alors $\phi_1(h_1) = e_1$ et $\phi_2(h_2) = e_2 \Rightarrow h_1 = h_2 = e_G$

 (γ) : Soit $x = (x_1, x_2) \in G_1 \times G_2$, soit (h_1, h_2) tel que $\phi_i(h_i) = x_i$, alors $x = (\phi_1(h_1), \phi_2(h_2)) = \phi(h_1, h_2)$, cela montre la surjectivité de ϕ .

Exemple:

 $(\mathbb{Z}/2^{\alpha}\mathbb{Z},+,\times)estanneau$. On note $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$ l'ensemble des éléments inversibles de l'anneau (pour la loi \times). Si $\alpha \geq 3$, $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$ est isomorphe à $(\mathbb{Z}/2^{\alpha-2}\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$

Chapitre 2

Classes modulo un sous-groupe, sous-groupes distingués

2.1 Classes à droite, classes à gauche

Soit H < G. On définit $x\mathcal{R}_H y \iff xy^{-1} \in H$ et $x_H \mathcal{R} y \iff x^{-1} y \in H$

Exemple:

- 1. \mathcal{R}_H et ${}_H\mathcal{R}$ définissent deux relations d'équivalences
- 2. La classe d'équivalence de x pour \mathcal{R}_H est Hx appelée classe à droite de x modulo H, idem pour ${}_H\mathcal{R}$

Exemple:

Dans S_3 , $\sigma := (1,2,3)$, $\tau := (1,2)$ $S_3\{e,\sigma,\sigma^2,\tau,\tau\sigma,\sigma\tau\}$, pour $H = \{e,\tau\}$ $H_{\sigma} = \{\sigma,\tau\sigma\}$, $H_{\sigma^2} = \{\sigma^2,\tau\sigma^2(=\sigma\tau)\}$ $\sigma H = \{\sigma,\sigma\tau\}$, $\sigma^2 H = \{\sigma^2,\sigma^2\tau(=\tau\sigma)\}$ donc $\sigma H \neq H\sigma$

Exemple:

Si G est abélien, on a $xH = Hx, \forall x \in G$.

Remarque :

 $\forall g \in G, \begin{array}{c} \tau_g : \middle| G \longrightarrow G \\ x \longmapsto gx \end{array} \text{ est une bijection. En particulier, } \tau_g|_H \text{ est une bijection de } H \text{ sur } gH. \text{ De } \\ \text{même, } \begin{array}{c} \rho_g : \middle| G \longrightarrow G \\ x \longmapsto xg \end{array}, \text{ alors } \rho_g|_H \text{ est une bijection de } H \text{ sur } Hg. \end{array}$

Remarque

Soit $\{e\} \cup \{x_i, i \in I\}$ un système de représentants des classes à gauche modulo H. On a alors $G = H \cup \bigsqcup_{i \in I} x_i H$ (union disjointe).

Remarque:

L'application : $x_iH \longrightarrow H(x_i)^{-1}$ est une bijection de l'ensemble des classes à gauche sur l'ensemble des classes à droite.

Définition : (Indice de H dans G)

L'indice de H dans G est le cardinal (fini ou infini) de l'ensemble des classes à gauche (= cardinal de l'ensemble des classes à droite), il est noté [G:H]

On en déduit le théorème de Lagrange :

Théorème : Théorème de Lagrange Soit G un groupe fini et H < G. Alors :

- 1. |G| = |H|[G:H]
- 2. $\forall x \in G, o(x) \mid |G|$

2.2 Sous-groupes distingués

Définition: (S)

oit G un groupe fini, H < G est dit distingué (ou normal) dans G ssi $\forall x \in G, xH = Hx$.

Le cas échéant on note : $H \triangleleft$

Définition: (U)

n groupe G est dit simple ssi ses seuls sous-groupes distingué sont $\{e\}$ et G.

Remarque:

Si G est abélien, tout H < G est distingué.

Exemple:

Soit H < G. Alors $H \triangleleft G \iff \forall g \in G, gHg^{-1} = H$

Propriété:

Soit $H \setminus G$ l'ensemble des classes à gauche modulo H.

L'application : $(xH, yH) \longrightarrow xyH$ est bien définie ssi $H \triangleleft G$.

Idem pour les classes à droites G/H.

Preuve:

 \Rightarrow) Soit $h \in H, y \in G$, l'application est bien définie, donc egH = hgH donc yH = hgH donc $H = y^{-1}hyH$, donc $y^{-1}hy \in H$.

 \Leftarrow) Si $x, x' \in G$ tel que xH = x'H, et si $y, y' \in G$ tel que yH = y'H, alors on a $h, h' \in H$ vérifiant : x' = xh et y' = yh'. Donc $x'y' = xyy^{-1}hyh'$, avec $y^{-1}hyh' \in H$ car $H \triangleleft G$. Donc $x'y'H \subseteq xyH$, par symétrie on a \supset

Théorème: Groupe quotient Soit G un groupe, $H \triangleleft G$. On note \bar{x} la classe de x modulo H, $\frac{G}{H}$ l'ensemble des classes modulo H. Alors :

1. L'application *: $\left| \begin{array}{ccc} (\frac{G}{H}) \times (\frac{G}{H}) & \longrightarrow & \frac{G}{H} \\ (\bar{x}, \bar{y}) & \longmapsto & \bar{x} * \bar{y} := \bar{xy} \end{array} \right|$ munit $\frac{G}{H}$ d'une structure de groupe tel que $\bar{e} = H$ est l'élément neutre.

2. En particulier, l'application $\pi: G \longrightarrow \frac{G}{H}$ est un morphisme de groupes de noyau H.

2.2.1 Sous-groupes distinguées et noyaux

Propriété:

Si $\phi: G \longrightarrow G'$ un morphisme, alors $Ker(\phi) \triangleleft G$.

Preuve:

Si
$$h \in Ker(\phi), g \in G, \phi(ghg^{-1}) = \phi(g)\phi(h)\phi(g)^{-1} = \phi(g)\phi(g)^{-1} = e_{G'}, \text{ donc } ghg^{-1} \in Ker(\phi).$$

Théorème :Groupes distingués et morphismes Soit G un groupe. Alors $H \triangleleft G$ ssi $\exists G'$ groupe, $\exists \phi: G \longrightarrow G'$ morphisme tel que $H = Ker(\phi)$

Exemple:

- 1. ε : $\mathbb{S}_n \longrightarrow -1, 1$ (signature), alors $A_n := Ker(\varepsilon) \triangleleft \mathbb{S}_n$
- 2. $det: \mathbb{GL}_n(\mathbb{R}) \longrightarrow \mathbb{R}^*$, alors $\mathbb{SL}_n(\mathbb{R}) := Ker(det) \triangleleft \mathbb{GL}_n(\mathbb{R})$

Théorème :Premier théorème d'isomorphisme Soit $\phi: G \longrightarrow G'$ un morphisme de groupe. Alors, $G/Ker(\phi)$ est isomorphe à $Im(\phi)$.

Chapitre 3

Étude de $\mathbb{Z}/n\mathbb{Z}$, de \mathbb{S}_n , de \mathbb{D}_n

3.1 J'ai pas le nom...

3.1.1 Autres exemples de sous groupes normaux

- j'ai pas le premier...
- Le centre d'un groupe $Z(G) = \{g \in G, gx = gx \ \forall x \in G\}$ est un sous groupe normal de G. (preuve en exercice (feuille 3)). Z(G) est en fait <u>caractéristique</u> c'est à dire qu'il est invariant par tout automorphisme intérieur
- Le groupe <u>dérivé</u> de G est le sous-groupe (noté D(G)) qui est engendré par les commutateurs de G c'est à dire les éléments de la forme $[a,b] = aba^{-1}b^{-1}$ est aussi un sous-groupe normal.

Exemple:

- 1. Si G est abélien alors Z(G) = G
- 2. Si $n \leq 3$ alors $Z(S_n) = \{e\}$

Preuve:

Preuve du deuxième point :

Soit $\sigma \in \mathbb{S}_n$ avec $\sigma \neq e$.

Soit alors $i \in [1, n]$ tel que l'on ait $\sigma(i) := j \neq i$

Soit enfin $k \in [1, n] \setminus \{i, j\}$, on pose $\tau = (j, k)$.

On à bien $\sigma \tau \neq \tau \sigma$, car $\sigma \tau(i) = j \neq \tau \sigma(j) = k$

Exercice:

- $D(G) \triangleleft G$ et G/D(G) est abélien
- Soit $H \triangleleft \text{alors } G/H \text{ est abélien} \Leftrightarrow D(G) \triangleleft H$
- D(G) est un sous groupe caractéristique de G
- $\forall n \leq 3 \ D(S_n) = A_n$ ou A_n est le groupe alterné, désigne les permutations de signature paire

Définition : (Normalisateur d'un sous-groupe)

Soit H < G, on note $N_G(H) = \{g \in G, gH = Hg\}$, on l'appel le normalisateur de H dans G

Exercice:

Mq $H \triangleleft N_g(H)$ et que $N_g(H) < G$

Exemple:

Dans A_4

Soit $H = \{e, (1, 2), (3, 4)\} < A_4, |H| = 2.$

O a $H < D(A_4)$ et $H \triangleleft D(A_4)$ car $\frac{|D(A_4)|}{|H|} = 2$. Verifier que $N_{A_4}(H) = D(A_4)$:

Soit $N = N_{A_4}(H)$ pour simplifier. On sait que $D(A_4) < N$ donc $|D(A_4)| = 4$ divise |N| donc $|N| \in \{4, 8, 12\}$, mais vu $N < A_4$, |N| divise 12, donc |N| = 4 où |N| = 12. Mais $N \neq A_4$ car $(1,2,3)H(1,2,3) \neq H$

3.2 Groupes Monogènes, cycliques, symétriques, diédraux

3.2.1 Groupes Monogènes

Définition: (Groupe monogène)

Un groupe G est dit monogène si il est engendré par une unique élément

Théorème : Soit G un groupe monogène alors :

- Ou bien G est isomorphe à \mathbb{Z}
- Ou bien G est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ pour un certain $n \in \mathbb{N}$

Preuve:

Si il est injectif on à bien $G \simeq \mathbb{Z}$.

Sinon, il existe $n \in \mathbb{N}$ tq ker $\psi = n\mathbb{Z}$

Et d'après le premier théorème d'isomorphisme, il existe un isomorphisme de groupe $\tilde{\psi}: \mathbb{Z}/n\mathbb{Z} \longrightarrow Im(\psi) = G$ tel que le diagramme ci-dessus commute.

Propriété:

Tout groupe fini d'ordre p avec p premier est cyclique

Preuve:

utiliser lagrange

3.2.2 Sous-groupes d'un groupe monogène

Propriété:

- 1. Tout sous-groupe non trivial d'un groupe monogène infini est infini
- 2. Tout sous groupe d'un groupe cyclique est monogène et cyclique

Preuve:

- 1. Ici $G \simeq \mathbb{Z}$, donc tout H < G est isomorphe à un sous-groupe de \mathbb{Z} i ;e. un groupe de la forme $n\mathbb{Z}$ pour $n \neq 0$, donc H est infini
- 2. On reprend le diagramme :

Soit $K < G = \mathbb{Z}/n\mathbb{Z}$ on à $K = \pi(\pi^{-1}(K))$ car π est surjective. Comme $\pi^{-1}(K)$ est un sous groupe de \mathbb{Z} il existe k > 0 tq $\pi^{-1}(K) = k\mathbb{Z}$.

Alors $K = \pi(k\mathbb{Z})$ est le sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ engendré par $\pi(k)$, K est donc monogène et fini

Remarque:

Si on reprend la preuve précédente on à $\pi^{-1}(0) = n\mathbb{Z} \subset \pi^{-1}(K) = k\mathbb{Z}$.

Ainsi, $n\mathbb{Z} \subset k\mathbb{Z}$ et donc k|n. Par conséquent, pour tout sous-groupe K de $\mathbb{Z}/n\mathbb{Z}$, il exise un diviseurk de n tq $\pi(k)$ engendre K, l'ordre de $\pi(k)$ étant $\frac{n}{k}$, on a $|K| = \frac{n}{k}$ en particulier ce diviseur est unique on à donc le thm suivant.

Théorème : Soit $G = \langle x \rangle$ un groupe cyclique d'ordre n alors :

Pour tout diviseur d de n, il existe un unique sous groupe d'ordre d de G et ce sous groupe est $\frac{n}{2}$

engendré par $x\,\overline{d}$

Propriété:

Soit G un groupe non trivial alors:

G n'a pas de d'autres sous-groupes que $G, \{e\} \iff$ G est cyclique d'ordre p premier

Preuve:

⇐ évident par lagrange

 \implies Soit $x \in G \setminus \{e\}$ alors < x >= G par hypothèse. Si G était infini, il posséderait des sous-groupes non triviaux de type $n\mathbb{Z}$, donc G est fini. Comme il n'a pas d'autres sous-groupes que $\{e\}$ et G on a forcément |G| = p premier par le théorème précédent