项目名称: CD 播放机

Neusoft

项目编号: Ljfb

文档编号: Ljfb-001

软件系统设计书

版本: Ver0.1

东软集团股份有限公司 东软汽车电子解决方案事业本部第一事业部

总页数	23	正文	19	附录	-	生效日期	
编制: 聂	礼硕,史雨恆	亘,王天宇,	孙雨萌	审批:			

修改履历

编号	修改内容	修改人	版本	修改日期	是否评审	评审日期
1	初版做成	聂礼硕	0.1	2025/08/17	是	2025/08/17
		王天宇				
		孙雨萌				
		史雨恒				
2	第一章: 系统架构说明整体重	聂礼硕	0.2	2025/08/18	是	2025/08/19
	构	王天宇				
	第二章:模块设计整体重构	孙雨萌				
	 第三章:任务划分整体重构	史雨恒				
	第四章:Power on/off 设计修					
	 正,时序图修正					
	 第五章: message 和 mail 结构					
	 体定义修正					
	 第六章: Port 分配修正, Timer					
	 分配修正					
	 第七章:					
3	第一章: 系统架构说明整体重	聂礼硕	0.3	2025/08/19	是	2025/08/20
	 构	王天宇				
	 第二章:模块设计整体重构	 孙雨萌				
	 第三章:任务划分整体重构	· 史雨恒				
	第四章:Power on/off 设计修					
	 正,时序图修正					
	 第五章: message 和 mail 结构					
	体定义修正					
	第七章:					
4						
5 6						
7						
8						
9						
10						

目录

设计	概要	5
1.1 1.2 1.3	设计背景和CONCEPTSYSTEM ARCHITECTURE系统设计一般性说明	5
模块	设计	7
2.1 2.2	系统内模块划分和各模块功能分配	
任矣	设计:	13
3.1 3.2	任务划分 任务优先级分配	
系统	POWERON/OFF设计	15
4.1 4.2 4.3	Power off设计 Power on设计 Error引起的系统复归设计	. 18
RT	DS配置设计	21
5.1 5.2	系统Message结构设计	. 22
系统	其他资源分配	22
6.1 6.2	SIO分配PORT分配	
WA	TCH DOG设计	22
附件		23
8.1 8.2	相关式样相关或件相关硬件手册	
	1.1 1.2 1.3 模块 2.1 2.2 任 套 3.1 3.2 系 统 4.1 4.2 4.3 RT (5.1 5.2 S (5.1 6.2) WA 8.1	1.1 设计背景和CONCEPT 1.2 SYSTEM ARCHITECTURE 1.3 系统设计一般性说明 模块设计 2.1 系统内模块划分和各模块功能分配 2.2 系统整体BLOCK图 任务设计: 3.1 任务划分 3.2 任务优先级分配 系统POWERON/OFF设计 4.1 POWER OFF设计 4.2 POWER ON设计 4.3 ERROR引起的系统复归设计 RTOS配置设计 5.1 系统MESSAGE结构设计 5.2 邮箱设计 系统其他资源分配 6.1 SIO分配 6.2 PORT分配 WATCH DOG设计 WATCH DOG设计 附件 附件 附件 NHC

设计概要 1

页

设计背景和 CONCEPT 1.1

本设计是 CD 播放机项目的软件系统设计,系统将基于 STM32F103RC MCU,采用 CMSIS-RTOS 作为操作系统。系统实现各 BLOCK 间接口的标准化,通过硬件模块与用户进行交互,确保在各种操作 情况下都能够可靠进行。设计要求包括:

模块化设计, 易于维护与扩展;

各模块之间采用标准接口进行通信,确保灵活性;

任务与资源管理采用 RTOS 进行调度和管理,确保实时性和响应性;

1.2 **System Architecture**

本系统的体系架构如下图 1-1 所示:

图 1-1 系统体系架构

图 1-1 为系统体系架构图,包括 BSW (软件基础)层、RTE (运行时环境)、Application (应用)层;

其中 MCU 层属于硬件基础,对应 STM32F103RC 开发板,提供 CPU、内存、外设等

CMSIS-RTOS 层属于实时操作系统抽象层,提供线程、消息队列、定时器等基础功能,所有模块通过 RTOS 任务调度进行管理,每个模块的主要功能对应一个或多个任务。

RTE 层封装了基础软件层的通信和服务,为应用层软件组件提供了标准化的基础软件和通信接口, 使得应用层可以通过 RTE 接口函数调用基础软件的服务。

Application 层作为业务功能层负责实现具体功能,包括:

KEY: 处理按键事件;

POWER: 处理电源事件 (开机;关机);

CD:核心逻辑(弹出/加载;播放/暂停;上一首/下一首);

OLED:显示逻辑(固定布局显示; CD 状态显示; 歌曲信息显示:包括曲名,曲名号,单曲时长,时间状态);

1.3 系统设计一般性说明

No	ITEM	Description			
1	RTOS	CMSIS-RTOS 4.81.1 (基于 FreeRTOS 内核,支持线程管理、消息			
		队列、Mail Queue 及定时器功能)			
2	MCU/CPU 配置	STM32F103RCT	6 (64-LQFP 封装, FLASH: 256KB, RAM: 48KB,		
		主频: 72MHz,	内置 IWDG、I2C 接口、定时器及 GPIO)		
3	软件平台	使用 AutoSAR 名	架构的嵌入式软件平台,采用组件化分层设计,		
		分为 BSW 层,	RTE 层,APP 层		
4	关键计算机资源配备	STM32F103RCT	6: ROM (FLASH) 、RAM、Timer、I2C 接口、		
	方式	中断控制器、看门狗(IWDG)等全内置			
5	系统内部 BUS	I2C 总线 (用于 OLED 模组通信, 引脚 PB6/SCL、PB7/SDA)			
6	系统外部 BUS 或车载	无			
	总线				
7	实时性要求	任务执行时	≤4ms		
		间			
		任务切换时			
		按键响应时 短按小于 30ms, 大于 1.7s			
		间	长按大于 1.7s		
8	技术规范	设计规范	部门最新设计模板		

页

软件系统设计书 第7

		编码规范	部门最新编码规范		
		单体测试规 范	部门最新单体测试指南		
		维护规范	暂无		
9	开发与调试环境	HOST 机	Window 10		
		编程语言	C99		
		编译器	Keil MDK 5.24.2.0		
		调试器	STM32 ST-Link v2		
10	开发类型	新规			
		按键控制:			
		支持 WK_UP(支持 WK_UP(Power on/off)、KEY_0(Load/Eject/Previous)、		
		KEY_1 (Play/Pause/Next),区分短按(<1.7s)/ 长按(≥ 1.7s)			
		OLED 显示:	OLED 显示:		
		第一行显示 Pe	第一行显示 Power 状态 + CD Source, 第二行显示 CD 状态		
		(如 PLAY/PAUSE),第三行显示播放信息(Music ### +			
11	 功能点说明	P:hh:mm:ss)	P:hh:mm:ss)		
11	为形术机构	CD 模拟:			
			支持 100 首曲目循环切换, Play/Pause 状态切换, 上一曲 /		
			下一曲(0.5s 间隔连续切换)		
			电源管理:		
			Power on/off 切换, 上电 / 下电时序控制(先 OLED 后		
			CD),异常强制下电		
		·看门狗:IWDG 配置(LSI 时钟、分频 32、重装载值 125)			
12	技术难点说明	线程间通信同步(Message Queue/Mail Queue);			
		按键去抖与长	按键去抖与长按检测(30ms 去抖、1.7s 长按计时);		
		CD 状态迁移逻辑 (多状态切换及超时控制);			
	看门狗喂狗任务与系统核心流程的协同				

2 模块设计

2.1 系统内模块划分和各模块功能分配

系统整体构成结构请参考图 2-1 所示:

图 2-1 系统整体结构图

根据图 2-1,系统按功能划分为 KEY,POWER,CD,OLED,WD 以及 OLED Driver 模块,各模块功能如

下:

KEY 模块:

子 功能	功能描述	备注
按键检测	检测 WK_UP (Power 键) 、KEY_0 (Load/Eject	支持短按(<1.7s)和长按(≥
	键)、KEY_1(Play/Pause 键)的电平变化	1.7s)
去抖处理	30ms 内连续 3 次检测到稳定电平, 判定为有效	避免机械抖动干扰
	按键	
事件封装	定义 KeyEvent 数据结构,包含按键 ID 和动作类	预留 3 个 8bit 扩展字段
	型 (短按/长按)	
消息发送	通过消息队列将按键事件发送至 Power 模块或	优先响应 Power 键事件
	CD 模块	

Power 模块:

子功能	功能描述	备注
电源控制	响应 WK_UP 键: Power Off→On 或 Power On→	发送状态通知至其他模块

页

	Off		_
上电/下电时序	上电:先启动 OLED 模块,再启动 CD 模块	确保模块协同	
	下电:先关闭 OLED 模块,延迟后关闭 CD 模块		
异常处理	若模块未返回正常状态,强制切断电源并通知	错误信息格式:	"模块+Error"
	OLED 显示错误		

第9

CD 模块:

子功能	功能描述	备注
状态管理	维护 CD 状态: NO DISC、LOADING、EJECTING、	支持状态迁移逻辑
	PLAY、PAUSE、STOP 等	
播放控制	响应 Play/Pause 键:Stop→Play、Play→Pause、	无光盘时不响应
	Pause→Play	
曲目切换	响应上一曲/下一曲键:	模拟项目共 100 首曲目, 循环切
	Play 状态:单次切换	换,上一曲按键时若在首曲(1)
	Pause 状态: 0.5s 间隔连续切换	则切换到尾曲(100);下一首
		按键时若在尾曲(100)则切换
		至首曲 (1)
消息交互	通过消息队列接收按键事件,向 OLED 模块发	包含曲目编号、时间等信息
	送状态消息	

OLED 模块:

子功能	功能描述	备注
驱动配置	通过 I2C 接口(PB6/SCL、PB7/SDA)初始化 OLED,	地址 0x3C
	通信速率 100kHz	
线程与通信	创建 OLED 线程,通过邮箱队列接收其他模块	支持 Power、CD 模块消息
	的状态消息	
显示布局	第一行: Power 状态 (左) 和 CD 源 (右)	所有内容左对齐显示
	第二行: CD 状态 (如 PLAY、PAUSE)	
	第三行:播放信息 (曲目编号、时间)	
内容格式化	曲目编号: "Music###" (3 位数字)	单首曲目时长≤80分钟
	时间格式: "P:hh:mm:ss"	

WD 模块:

子功能	功能描述	备注
独立看门狗配置单元	负责 IWDG(独立看门狗)的硬件配置,包括时钟源选择(LSI)、预分频系数设置(128)、	

软件系统设计书

页

	重装载值配置 (1000)	
喂狗任务管理	创建低优先级监控任务,以 10ms 间隔定期执行喂狗操作,维持 IWDG 计数器正常运行	任务优先级低于系统核心业务 线程,避免干扰主流程
超时复位处理	监控 IWDG 计数器状态, 当喂狗任务异常停止导致计数器溢出(约4秒)时, 触发系统复位	确保系统在软件异常 (如任务死 锁) 时能自动恢复

第10

Driver 模块:

子功能	功能描述	备注
OLED Driver	实现 I2C 通信配置(100kHz 速率、地址 0x3C),支持全屏点亮/熄灭、字符及位图显示	引脚 PB6 (SCL)、PB7 (SDA)
WatchDog Driver	提供 IWDG 底层驱动接口,包括初始化配置 (时钟源、分频系数、重装载值)、喂狗操作的 硬件封装	封装 STM32F103xx 的 IWDG 寄存器操作,为上层喂狗任务提 供接口

2.2 系统整体 Block 图

图 2-2 STM32F103RC核心板原理图

页

1.系统硬件 Block 图

基于上图 2-2 关于 STM32F103RCT6 核心板设计,硬件以微控制器为核心,外围包含输入设备、输出设备、电源模块及调试接口,具体构成及连接关系如下:

1.核心控制器: 见图 2-2 中【1】

型号: STM32F103RCT6 (64-LQFP 封装)

核心参数: FLASH 256KB, RAM 48KB, 主频 72MHz, 内置独立看门狗 (IWDG)、定时器、I2C 接口及 GPIO 接口

关键引脚:

调试接口: PA13 (JTMS/SWDIO)、PA14 (JTCK/SWCLK) (支持 SWD 模式调试)

电源引脚: VDD 1、VDD 2、VDD 3 (接 VCC3.3), VSS (接地)

2.输入设备:

按键模块见图 2-2 中【2】:

WK UP Key: 连接 PAO 引脚 (高电平有效,用于电源控制)

KEY 0/KEY 1: 连接通用 GPIO (低电平有效,用于 CD 控制,如 Load/Eject、Play/Pause)

复位按键: 连接 RESET 引脚 (通过 10K 电阻上拉至 VCC3.3)

3.输出设备:

OLED 显示模组见图 2-2 中【3】:

通过 I2C 总线连接,引脚为 PB6 (SCL,串行时钟线)、PB7 (SDA,串行数据线),通信地址 0x3C,供电 VCC3.3

4.电源模块:见图 2-2 中【4】

输入: USB 供电 (VCC5)

稳压: 通过 AMS1117-3.3 芯片转换为 VCC3.3, 为 STM32 及外围设备: OLED、按键供电

5.辅助电路: 见图 2-2 中【5】

晶振: 8MHz 高频晶振 (OSC_IN1/OSC_OUT1)、32.768kHz 低频晶振 (RTC 时钟)

存储: W25Q16 FLASH 芯片 (用于程序存储扩展)

2.系统软件 Block 图

图 2-3 软件数据信息流图

根据图 2-3 所描述的软件数据信息流图可以得到下表

No.	发送模 块	接收模 块	交互内容概要
1	KEY 模块	POWER 模块	发送 WK_UP 按键事件 (短按→Power On, 长按→Power Off)
2	KEY 模块	CD 模块	发送 KEY_0/KEY_1 事件(Load/Eject、Play/Pause 等)
3	POWER 模块	CD 模块	发送电源状态通知 (On/Off), 控制模块上电/下电

页

4	CD 模块	POWER 模块	发送成功上电/下电通知
5	POWER 模块	OLED 模块	发送电源状态通知 (On/Off), 控制模块上电/下电
6	OLED 模块	POWER 模块	发送成功上电/下电通知
7	CD 模 块	OLED 模块	发送 CD 状态 (PLAY/PAUSE 等) 及播放信息 (曲目
			编号、时间)

3 任务设计:

3.1 任务划分

系统中的任务根据模块功能进行划分,每个模块的主要任务由 RTOS 管理。以下是任务划分的详细说明:

No.	Main Function	insta nces	Task Name	argument	STACK SIZE(Byte)		Message Queue	PRI
0x01	TSK_OLED_Contr ol	1	TSK_OLED_CTL		300	\boxtimes		osPriorityBelo wNormal
0x02	TSK_KEY_Control	1		&KeyEvent Queue				osPriorityAbo veNormal
0x03	TSK_CD_Control	1	TSK_CD_CTL	&CommHa ndlerStruct	500			osPriorityNor mal
0x04	TSK_PWR_Contr	1	TSK_PWR_CTL	&PwrState Struct	400		\boxtimes	osPriorityHigh
0x05	TSK_IWDG	1	TSK_IWDG	NULL	150			osPriorityLow

3.2 任务优先级分配

系统任务的优先级划分依据模块功能的实时性需求、对系统稳定性的影响程度以及任务之间的依赖 关系。任务调度由 CMSIS-RTOS 管理,优先级数值越高,任务在调度中获得的执行权越高。以下对各 任务的优先级分配进行详细说明:

1. TSK_KEY_Control (优先级 osPriorityAboveNormal):

功能说明: 负责按键扫描、消抖处理、按键事件识别,并将识别结果通过消息队列发送给系统其他模块。

优先级原因:作为系统最主要的人机交互接口,该任务必须保证对用户操作的毫秒级响应。赋予其

较高优先级 (osPriorityAboveNormal),可确保在任何系统负载下用户输入都能得到及时处理,避免因其他任务阻塞而导致的操控延迟或失灵现象,保障交互体验的实时性与流畅性。

2. TSK CD Control (优先级 osPriorityNormal):

功能说明: 负责 CD 的播放、暂停、跳曲、停止控制,同时需要通过通信接口完成数据读取,确保音频数据流的连续性。

优先级原因: 音频数据处理对实时性有严格的要求,任何轻微的数据流中断都可能导致可闻的爆音或播放卡顿。因此,将其优先级设置为 osPriorityNormal,次于按键任务,使其在调度中能获得充足的执行权,优先处理音频数据,保证播放的连续性。

3. TSK_OLED_Control (优先级 osPriorityBelowNormal):

功能说明: 负责驱动 OLED 屏幕,完成菜单显示、状态提示、播放信息更新等操作。

优先级原因:显示更新需要及时反馈系统和用户的状态变化,但其对瞬时响应的要求低于输入和音频处理任务。设定为 osPriorityBelowNormal 优先级,使其既能及时更新界面,又不会抢占关键实时任务 (Key、CD)的 CPU 资源,在系统资源分配上取得平衡。

4. TSK PWR Control (优先级 osPriorityHigh):

功能说明: 负责电源开关控制、上电/断电逻辑的管理,以及系统进入 Power On/Off 状态时的模块通知。

优先级原因: 电源管理是关系到系统整体运行的基础关键功能,但其触发频率较低且处理过程允许一定的时间窗口。赋予其 osPriorityHigh 的高优先级,是为了确保在需要执行开关机等关键操作时,该任务能立即被响应,可靠地完成硬件上下电流程,保障系统安全。

5. TSK IWDG (优先级 osPriorityLow):

功能说明: 负责定期刷新独立看门狗计数器 (IWDG), 防止系统在正常运行时被错误复位。同时 监控关键任务的存活状态,作为系统最后一道防护机制。

优先级原因: 喂狗操作在时间上有容错余量(典型周期为数百毫秒至数秒), 因此实时性要求最低。

页

优先级设为 osPriorityLow, 保证其不会抢占关键实时任务的执行。

任务优先级的分配,参考3.1节任务划分及设置。

4 系统 PowerOn/Off 设计

4.1 Power off 设计

入口: Power off 开始

出口: Power off Mode

处理流程和内容:

系统 Power off 的整体处理流程概要描述如下 (参见图 4-1):

键侧触发: KEY 模块向 POWER 模块发送系统下电请求信息,通过 message 投递给 POWER 模块。

电源下电顺序: POWER 启动 Power off Guard Timer = 50ms, 作为关机时限, 随后分步向 OLED,CD 模块发送 Power off 模块下电请求信息 (OLED 使用 mail 发送, CD 使用 message 发送)。

下电判定: 若在 50ms 内收齐所有关联系统任务的 "Power off 完了"模块下电完成信息,则 POWER 变为关机状态。否则执行 Power off Recovery (参见图 4-2)。

Power off Recovery 会再次对未响应,发送非下电完成位的模块重新发送模块下电请求信息,并接收。 此操作执行三次,只要接收到 "正常下电标志信息",就立即停止重试,视为该模块下电成功;如果三次重试后始终未收到正常下电标志信息,则判定为下电异常,向OLED CD 发送POWER ERROR 且 power 状态变为 power off。

图 4-1 Power off 处理流程图

17页

图 4-2 Power off 容错处理流程图

第18

4.2 Power on 设计

入口: Power on 开始

出口: Power on Mode

处理流程和内容:

系统 Power on 的整体处理流程概要描述如下 (参见图 4-1):

键侧触发: KEY 模块向 POWER 模块发送系统上电请求信息,通过 message 投递给 POWER 模块。

电源上电顺序: POWER 启动 Power on Guard Timer = 50ms, 作为开机时限, 随后分步向 OLED,CD 模块发送 Power on 模块上电请求信息 (OLED 使用 mail 发送, CD 使用 message 发送)。

上电判定:若在 50ms 内收齐所有关联系统任务的 "Power on 完了"模块上电完成信息,则 POWER 变为开机状态。否则执行 Power on Recovery (参见图 4-2)。

Power on Recovery 会再次对未响应,发送非上电完成位的模块重新发送模块上电请求信息,并接收。此操作执行三次,只要接收到 "正常上电标志信息",就立即停止重试,视为该模块上电成功;如果三次重试后始终未收到正常上电标志信息,则判定为上电异常,向 OLED CD 发送 POWER ERROR 且 power 状态变为 power off。

图 4-3 Power on 处理流程图

4-4 Power on 容错处理流程图

4.3 Error 引起的系统复归设计

在系统运行过程中,如果由于任务缺陷导致处于"死循环"或者跑飞;其他任务过度消耗资源致喂狗任务被阻塞;任务栈溢出,篡改了喂狗任务数据。导致 Watchdog 未能在规定时间内得到喂养,独立看门狗 (IWDG)将触发 MCU 硬件复位。复位发生后,MCU 将重新执行上电初始化流程,系统时钟、外设和中断向量被重新配置,各功能模块(KEY 扫描、POWER 控制、CD 控制、OLED 显示)依次完成初始化并重新注册到 RTOS调度中。通过这一机制,系统在遇到异常时能够自动复归,避免长期死锁或无响应状态,确保整体运行的安全性与一致性。

图 4-5 系统复归处理流程图

5 RTOS 配置设计

5.1 系统 Message 结构设计

系统中的消息结构定义了任务之间通信的格式。所有任务通过 消息队列 和 邮箱 进行通信。消息结构体设计如下:

字段名	类型	描述
msgID	uint32_t	消息 ID, 用于区分不同类型的事件。
scourceID	uint32_t	资源 ID, 用于标记是那个模块发送。
targetID	uint32_t	标志 ID, 用于明确消息发给那个模块。

东软秘密, 未经许可不得扩散

msgData uint32_t 消息数据,携带具体的信息(如按键值、播放状态等)。

5.2 邮箱设计

页

系统使用 邮箱 来传递任务间的同步消息,确保任务能够按顺序执行。邮箱 ID 分配如下:

字段名	类型	描述
msgID	uint32_t	消息 ID,用于区分不同类型的事件。
scourceID	uint32_t	资源 ID, 用于标记是那个模块发送。
targetID	uint32_t	标志 ID,用于明确消息发给那个模块。
msgData	uint32_t	消息数据,携带具体的信息

6 系统其他资源分配

6.1 SIO 分配

IIC 接口	使用者	用途说明
PB6	OLED 模块	串行时钟线
PB7	OLED 模块	串行数据线

6.2 Port 分配

GPIO	使用者	用途说明
PA0	KEY 模块	接受 WK_UP 按键的电平状态。
PC1	KEY 模块	接受 KEY0 按键的电平状态。
PC13	KEY 模块	接受 KEY1 按键的电平状态。

7 Watch Dog 设计

本项目通过配置独立看门狗 (IWDG) 管理单元 (时钟源 LSI / 预分频系数 32/ 重装载值 125) 和创建低优先级喂狗任务 (30ms 周期), 监控 CD OLED 关键模块状态,异常时停止喂狗触发 IWDG 计数器溢出复位 (约 100ms 秒),保障系统稳定运行。

为 32, 重装载值 125。

- (二) 创建一个低优先级的喂狗任务,负责以30ms为周期执行喂狗(刷新IWDG计数器)操作。、
- (三) 停止喂狗后, IWDG 计数器溢出 (100ms 秒), 触发系统复位。

8 附件

8.1 相关式样

嵌入式业务方向应本生培训课题-实践课 Ver0.70-202508.pdf

(新版) STM32F103RC 核心板--原理图-2019.PDF

STM32 核心学习板 V1.02.pdf

8.2 相关硬件手册

CortexTM-M3 Devices.pdf

CortexTM-M3 Devices Reference manual.pdf

CortexTM-M3 Devices Generic User Guide.pdf

8.3 其他资料

Ljfb-CD-需求跟踪矩阵.xls

Ljfb-KEY-需求跟踪矩阵.xls

Ljfb-OLED-需求跟踪矩阵.xls

Ljfb-POWER WD-需求跟踪矩阵.xls