Programme de colle - Semaine 7

Notation

On adoptera les principes suivants pour noter les étudiants :

- \times si l'étudiant sait répondre à la question de cours, il aura une note > 8.
- \times si l'étudiant ne sait pas répondre à la question de cours ou s'il y a trop d'hésitations, il aura une note ≤ 8 .

Questions de cours

• Le noyau et l'image sont des ev

Soit $f \in \mathcal{L}(E, F)$. Alors:

- \times Ker(f) est un sous espace vectoriel de E,
- \times Im(f) est un sous espace vectoriel de F.

Preuve.

- Ker(f):
 - $Ker(f) \subset E$ par définition.
 - $0_E \in \operatorname{Ker}(f) \operatorname{car} f(0_E) = 0_F$
 - Soit $(u_1, u_2) \in (\text{Ker}(f))^2$ et soit $(\lambda_1, \lambda_2) \in \mathbb{R}^2$, vérifions : $\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 \in \text{Ker}(f)$, *i.e.* montrons : $f(\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2) = 0_F$.

$$f(\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2) = \lambda_1 \cdot f(u_1) + \lambda_2 \cdot f(u_2) \quad (car \ f \ est \ linéaire)$$

$$= \lambda_1 \cdot 0_F + \lambda_2 \cdot 0_F \qquad (car \ u_1 \in \operatorname{Ker}(f) \ et \ u_2 \in \operatorname{Ker}(f))$$

$$= 0_F$$

Donc $\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 \in \text{Ker}(f)$.

Ker(f) est donc un sous espace vectoriel de E.

- $\operatorname{Im}(f)$:
 - $\operatorname{Im}(f) \subset F$ par définition.
 - $0_F \in \text{Im}(f) \text{ car } f(0_E) = 0_F$
 - Soit $(v_1, v_2) \in (\operatorname{Im}(f))^2$ et soit $(\lambda_1, \lambda_2) \in \mathbb{R}^2$, vérifions : $v_3 = \lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 \in \operatorname{Im}(f)$, c'est-à-dire :

$$\exists u_3 \in E, f(u_3) = v_3.$$

Comme v_1 et v_2 appartiennent à Im(f), on sait alors :

$$\exists (u_1, u_2) \in E^2, \ f(u_1) = v_1 \ \text{et} \ f(u_2) = v_2$$

Donc, comme f est linéaire :

$$v_3 = \lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 = \lambda_1 \cdot f(u_1) + \lambda_2 \cdot f(u_2) = f(\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2)$$

Donc en posant $u_3 = \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2$, on a bien $f(u_3) = v_3$, donc $v_3 \in \text{Im}(f)$.

On conclut que Im(f) est un sous-espace vectoriel de F.

• Caractérisation de l'image

Soit $f: E \to F$ une application linéaire et soit (e_1, \ldots, e_n) une base de E. Alors

$$\operatorname{Im}(f) = \operatorname{Vect}(f(e_1), \dots, f(e_n)).$$

Preuve.

Montrons que $\operatorname{Im}(f) = \operatorname{Vect}(f(e_1), \dots, f(e_n))$ par double inclusion.

• $\operatorname{Im}(f) \subset \operatorname{Vect}(f(e_1), \dots, f(e_n))$:

Soit $v \in \text{Im}(f)$, alors il existe $u \in E$ tel que v = f(u). De plus, $u \in E$, donc il s'écrit comme une combinaison linéaire de la base canonique, *i.e.* il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ tel que :

$$u = \sum_{k=1}^{n} \lambda_k \cdot e_k$$

Donc:

$$v = f(u) = f\left(\sum_{k=1}^{n} \lambda_k \cdot e_k\right) = \sum_{k=1}^{n} \lambda_k \cdot f(e_k).$$

v est donc une combinaison linéaires des $(f(e_1), \ldots, f(e_n))$, donc $v \in \text{Vect}(f(e_1), \ldots, f(e_n))$.

• Vect $(f(e_1), \ldots, f(e_n)) \subset \operatorname{Im}(f)$:

Soit $v \in \text{Vect}(f(e_1), \dots, f(e_n))$, donc v s'écrit comme combinaison linéaire des $(f(e_1), \dots, f(e_n))$. Ainsi, il existe $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tel que :

$$v = \sum_{k=1}^{n} \lambda_k \cdot f(e_k) = f\left(\sum_{k=1}^{n} \lambda_k \cdot e_k\right)$$

donc en posant $u = \sum_{k=1}^{n} \lambda_k \cdot e_k$, on a bien f(u) = v. On en déduit que $v \in \text{Im}(f)$.

• Caractérisation des applications injectives / surjectives

Soit $f \in \mathcal{L}(E, F)$. Alors

- 1. f est injective si et seulement si $Ker(f) = \{0_E\}$ (i.e. $\forall u \in E, f(u) = 0_F \Rightarrow u = 0_E$).
- 2. f est surjective si et seulement si Im(f) = F.

Preuve.

- 1. On raisonne par double implication.
- (\Rightarrow) Supposons f est injective alors, par définition :

$$(u_1, u_2) \in E^2, \ f(u_1) = f(u_2) \Rightarrow u_1 = u_2$$

Soit $u \in \text{Ker}(f)$.

Alors $f(u) = 0_F = f(0_E)$, i.e. $f(u) = f(0_E)$.

Donc, comme f est injective, $u = 0_E$.

Donc $Ker(f) = \{0_E\}.$

 (\Leftarrow) Supposons $Ker(f) = \{0_E\}.$

Soient $(u_1, u_2) \in E^2$ tel que $f(u_1) = f(u_2)$, alors par linéarité de f:

$$f(u_1) = f(u_2) \Leftrightarrow f(u_1) - f(u_2) = 0_F \Leftrightarrow f(u_1 - u_2) = 0_F \Leftrightarrow u_1 - u_2 \in \text{Ker}(f)$$

On en déduit que $u_1 - u_2 = 0_F$ donc $u_1 = u_2$, *i.e.* f est injective.

- 2. On procède par double implication.
- (\Rightarrow) Supposons f est surjective, alors pour tout $v \in F$, il existe $u \in E$ tel que f(u) = v. Donc $v \in \text{Im}(f)$. On en déduit : Im(f) = F.

(\Leftarrow) Supposons $\operatorname{Im}(f) = F$. Soit $v \in F$. Alors $v \in \operatorname{Im}(f)$. Donc, par définition de $\operatorname{Im}(f)$, il existe $u \in E$ tel que : v = f(u). On en déduit que f est surjective.

Connaissances exigibles

Algèbre linéaire

- Application linéaire, endomorphisme, isomorphisme, automorphisme.
- Noyau, image, caractérisation des injections et surjections, caractérisation de Im(f).
- Rang, théorème du rang, caractérisation des isomorphismes.
- Application linéaire associée à une matrice.
- Matrice associée à une application linéaire.
- Aucun résultat de réduction n'est au programme.