TEORIA DE GRAFOS E COMPUTABILIDADE

MODELAGEM

Prof. Alexei Machado

CIÊNCIA DA COMPUTAÇÃO

PUC MINAS

A rainha é a peça mais poderosa do jogo de Xadrez. Numa jogada ela pode mover-se tantas casas quantas quiser em qualquer direção vertical, horizontal ou diagonal, desde que não haja nenhuma outra peça que obstrua sua passagem. O desenho que se segue mostra uma posição particular da rainha, juntamente com as 27 possibilidades de movimento. Estas 27 casas (além daquela onde a rainha está) estão sob o domínio da rainha. Qualquer outra peça que estivesse numa destas casas estaria sob ataque da rainha em questão.

Exemplo 1 (cont.)

- Encontre o número máximo de rainhas que podem ser colocadas em um tabuleiro de forma que nenhuma rainha ataque a outra. Modele este problema utilizando Teoria dos Grafos e proponha uma solução para ele. e = movimentos possiveis a partir da posição problema = conjunto independente máximo numMax = 8
- Encontre o menor número de rainhas que podem ser colocadas em um tabuleiro de forma que toda posição não ocupada seja atacada. Modele este problema utilizando Teoria dos Grafos e proponha uma solução para ele.

- Suponha que N candidatos a uma vaga devem ser entrevistados individualmente por profissionais de uma empresa.
- Os entrevistadores são escolhidos de acordo com a área de atuação que o Vértices: Candidatos e entrevistadores candidato está pleiteando

 Arestas: Entrevistas
- Como determinar o número mínimo de períodos de entrevista considerando que cada profissional entrevista individualmente cada candidato?
- Como determinar o número mínimo de períodos de entrevista considerando que todos os profissionais entrevistam conjuntamente cada candidato?

Uma empresa possui N tarefas a serem executadas e K funcionários já contratados. Muitas das tarefas são complexas e exigem trabalho especializado, de modo que a partir das características de cada funcionários e de cada tarefa, a empresa já designou quais funcionários estarão responsáveis por quais tarefas. Se todos os funcionários designados para uma determinada tarefa estiverem disponíveis, esta tarefa poderá ser executada em uma hora. A empresa deseja saber o número mínimo de horas que serão necessários para que todas as tarefas sejam executadas. Modele este problema utilizando teoria de grafos e proponha uma solução para ele.

Existem 2n alunos que toda manhã vão andando para o colégio em grupo de 2. Encontre o número de dias que serão necessários para que cada aluno saia exatamente 1 vez com todos os outros.

Neste ano, Maria ficou responsável pela organização da quadrilha do seu bairro. Sabe-se que existem n meninas e n meninos dispostos a participar. Ela gostaria de saber de quantas maneiras possíveis ela poderia fazer o agrupamento dos casais de forma que nenhum casal se repita de um agrupamento para o outro. Modele este problema utilizando teoria dos grafos e proponha uma solução para ele.

□ Suponha que n times estão participando de uma competição na qual cada time deve jogar exatamente uma vez contra cada um dos outros n-1 times. Assumindo que qualquer quantidade de jogos pode ser jogado simultaneamente, quantas rodadas serão necessárias para finalizar este torneio? Modele este problema utilizando teoria de grafos e proponha uma solução para ele.

O Rio de Janeiro está preparando uma campanha de vacinação. O mapa a seguir mostra a localização de postos de vacinação e arestas ligando postos cujo tempo de deslocamento seja menor que 15 minutos. Cada posto de vacinação pode ser transformado em um posto de coordenação e distribuição de vacinas. Para facilitar a logística, um ponto de coordenação pode atender todos os postos de vacinação cujo tempo de deslocamento seja menor que 15 minutos. Qual é o número mínimo de postos de coordenação necessários? Modele este problema utilizando a teoria dos grafos e proponha uma solução para ele.

Exemplo 7 (cont.)

 Uma escola deve programar a distribuição dos exames especiais de forma que os alunos não tenham que fazer mais do que um exame por dia. Existem oito disciplinas no curso e a secretaria organizou um quadro que marca com um asterisco as disciplinas que possuem alunos em comum. Qual é o número mínimo de dias de exame necessários? Modele este problema utilizando Teoria do Grafos e proponha uma solução para ele.

Exemplo 8 (cont.)

	Português	Matemática	História	Geografia	Inglês	Biologia	Química	Física
Português	-	*	-	*	-	*	*	*
Matemática		-	*	-	-	-	*	*
História			-	*	-	-	-	*
Geografia				-	*	*	-	*
Inglês					-	*	-	-
Biologia						-	*	-
Química							-	*
Física								-

Em uma creche há 10 crianças matriculadas, porém, nunca estão todas ao mesmo tempo na creche. É necessário planejar os escaninhos em que os pais deixam as refeições das crianças. A tabela a seguir apresenta a permanência de cada criança (enumeradas de 1 a 10) na creche nos horários entre 7:00 e 12:00 – o horário em que a creche funciona. Um asterisco indica que uma determinada criança está na creche no horário indicado, e deve ter um escaninho reservado para sua refeição. Modele o problema utilizando a teoria de grafos e determine o número mínimo de escaninhos necessários para que cada criança tenha um escaninho individual.

Exemplo 9 (cont.)

	01	02	03	04	05	06	07	08	09	10
07:00	*	-	-	-	*	-	-	*	-	-
08:00	*	*	*	-	*	-	-	*	-	-
09:00	*	*	*	-	-	*	-	*	-	*
10:00	*	*	-	-	-	*	*	-	*	*
11:00	*	-	-	*	-	-	*	-	*	*
12:00	-	-	-	*	-	-	-	-	*	*

Existem n experimentos biológicos sendo processados e_1 ; e_2 ; ...; e_i em determinado laboratório. Cada um desses experimentos possui várias lâminas de ensaio que devem ser mantidas refrigeradas segundo uma temperatura constante em um intervalo de temperatura $[l_i; h_i]$. A temperatura pode ser fixada livremente dentro do intervalo, contudo, uma vez fixada, não mais poderá ser alterada, sob pena de destruir os elementos biológicos. Dados os intervalos e sabendo-se que cada refrigerador é grande o suficiente para preservar todas as lâminas de todos os experimentos, cada refrigerador deverá funcionar em apenas uma temperatura. Modele o problema utilizando a teoria de grafos e determine o menor número possível de refrigeradores capazes de atender ao laboratório. 15