University of Toronto

Dept. of Electrical and Computer Engineering

Final

Date - April 19, 2001

Duration: 2.5 Hr.

ECE231S — Introductory Electronics
Lecturers - D.A. Johns, N. Kherani, T. Kosteski

ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY

- 1. Two handwritten aid-sheets allowed and calculator type unrestricted.
- 2. Grading indicated by []. Attempt all questions since a blank answer will certainly get 0.

	Question	Mark
	1	· · · · · · · · · · · · · · · · · · ·
	2	
	3	
	4	
	5	<u>.</u>
	6	
ast Name:	7	
Last Ivallic.	- 8	
irst Name:	9	<u></u>
nst name.		
student #:	Total	

(max grade = 50)

[5] Question 1: Consider the circuit below. Assuming the diode is ideal and the capacitor is initially discharged, find the output voltage at time just before $t = 3 \,\text{ms}$. (Hint, make a sketch of the output waveform).

$$|v_o|_{t=3\,\mathrm{ms}} =$$

Last Name:	
------------	-------------

[5] Question 2: The opamp in the circuit below is ideal except for a unity-gain bandwidth of $\omega_I = 2 \times 10^7 \text{rad/sec}$ and a slew-rate of $SR = 1 \text{V/}\mu\text{sec}$. Given that the input will be a step function, find the maximum size of the input step before the opamp slew-rate limits

Max input step =	

Last Name:	
------------	--

[5] Question 3: A given diode is measured to have an on voltage of 0.65V when a current of 1 mA is applied through it. In addition, it is found that for every decade increase in current, the diode on voltage increases by 0.11V. Find n and I_s for this diode. ($V_T = 25 \text{mV}$)

I_s	=			•	

Last Name: _____

[5] Question 4: Assuming $\beta = 20$ and $I_{s2} = 2I_{s1}$, find the voltage, V_{C2} . Ignore the Early effect.

$V_{C2} =$		

Last Name:

[5] Question 5: For the circuit below find the small-signal gain v_o/v_i , input resistance R_{in} and-output resistance R_{out} . For dc analysis assume β goes to infinity.

$\frac{v_o}{v_i} =$	
$R_{in} =$	
$R_{out} =$	

Last Name: ______

[5] Question 6: For the circuit below, find the base currents, I_{B1} and I_{B2} . For the transistors,

 β = 100, V_A = $\infty\,\text{, and }V_{\text{CESAT}}$ = $0.2\,\text{V}$.

I _{B1} =			
$I_{B2} =$			

Last Name:

[5] Question 7: An NMOS transistor with $W = 10 \,\mu\text{m}$ and $L = 0.5 \,\mu\text{m}$ in a technology with $\mu_n C_{ox} = 100 \,\mu\text{A/V}^2$ and $V_t = 1\text{V}$ is used in the circuit below. Ignoring the Early effect, find v_o / v_i when the dc value of v_i is adjusted such that v_o is biased to zero volts. Also find the minimum output voltage.

	5V		
v_i			
	100μΑ	¥ 15k	0
	-5V		

		 _	 	_
ν_{-}				
$\frac{v_o}{}$	=			
v_i				
í				

$$v_o|_{\min} =$$

Last Name: _____

[5] Question 8: For the CMOS inverter shown below, find the output resistance when $v_{IN} = 0V$.

$$\mu_n C_{ox} = 3\mu_p C_{ox} = 100\mu\text{A/V}$$

$$V_{tn} = |V_{tp}| = 1\text{V}$$

$$\left(\frac{W}{L}\right)_1 = 10 \qquad \left(\frac{W}{L}\right)_2 = 20$$

Last Name: _____

[5] Question 9: For the CMOS inverter shown below, find the size of Q_2 such that when the Early effect is ignored, the small-signal gain goes to minus infinity at $v_{\rm IN}=2.0{\rm V}$.

$$\mu_n C_{ox} = 3\mu_p C_{ox} = 100\mu \text{A/V}$$
 $V_{tn} = |V_{tp}| = 1\text{V}$

$$\left(\frac{W}{L}\right)_1 = 10$$

Last Name:

[5] Question 10: Consider the circuit below. Given that the output voltage is equal to $v_{\rm OUT} = 4.9 \, \rm V$, find the current, I_{D2} . Ignore the finite-output impedance of the transistors.

$$\mu_n C_{ox} = 3\mu_p C_{ox} = 100\mu\text{A/V}^2$$

$$V_{tn} = |V_{tp}| = 1\text{V}$$

$$\left(\frac{W}{L}\right)_1 = 10 \qquad \left(\frac{W}{L}\right)_2 = 10 \qquad \left(\frac{W}{L}\right)_3 = 20$$

 $I_{D2} =$

Last Name:	
------------	--

Scratch sheet (can be used for rough calculations)