

$$|\mathbf{A}_{n+1}| = 3|A_n| + \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 3 & -1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 & \vdots & \vdots \\ 0 & 0 & -1 & 3 & \ddots & \ddots & \vdots \\ \ddots & \ddots & 0 & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & 3 & -1 \\ 0 & 0 & 0 & 0 & \cdots & -1 & 3 \end{bmatrix} - |A_{n-1}|$$

$$\Rightarrow |\mathbf{A}_{n+1}| = 3|A_n| - |A_{n-1}|$$

Die Behauptung gilt auch für den Nachfolger von n – nämlich n+1 – und damit für alle $n\in\mathbb{N}, n\geq 3$

Prof. Dr. Hans-Jürgen Dobner, HTWK Leipzig, MNZ

n	$det(A_n)$
4	55
5	144
10	17711
15	2178309
20	267914296
30	4052739537881

Prof. Dr. Hans-Jürgen Dobner, HTWK Leipzig, MNZ