https://github.com/savthe/discrete_math

Идеал кольца

Идеалом I кольца A называется подмножество A такое, что:

- 1. I абелева группа по сложению.
- 2. $\forall a \in A, \forall i \in I$ выполняется $ai \in I$.

Любое кольцо содержит тривиальные идеалы $I = \{0\}$ и I = A.

Идеал кольца A, не совпадающий с A называется собственным.

Собственный идеал называется максимальным, если он не лежит в другом собственном идеале.

Идеал называется главным, если он порожден одним элементом. Запись I=(a) означает, что $I=\{ax\}$, где x — любой элемент из кольца. Например, идеал $2\mathbb{Z}=(2)$ — главный.

- **1.** Определите, является ли множество I идеалом кольца A:
- а) $A = \mathbb{Z}$, I все целые числа, кратные 100.
- б) $A = \mathbb{R}[x], I$ множество всех многочленов, имеющих корень 2.
- в) $A = \mathbb{R}[x]$, I множество всех многочленов, касающихся оси Ox в точке 2.
- г) $R=\mathbb{Z}^{2\times 2}$ множество матриц 2×2 с целочисленными коэффициентами. I множество матриц вида $\begin{pmatrix} a & 2b \\ 0 & c \end{pmatrix}$, где $a,b,c\in\mathbb{Z}$.
- **2.** Перечислите все максимальные идеалы в кольце \mathbb{Z}_{60} .

- **3.** Рассмотрим кольцо $\mathbb{F}_2[x]$ и идеал $I = (x^2 + 1)$
- а) Приведите примеры 3-х элементов из I.
- б) Приведите примеры 3-х элементов из $\mathbb{F}_2[x]$, не принадлежащих I.
- в) Сколько существует идеалов, содержащих I?
- г) Приведите примеры 3-х элементов из $\mathbb{F}_2[x]$, эквивалентных 0 ($p \sim q$, если $p q \in I$).
- д) Приведите примеры 3-х элементов из $\mathbb{F}_2[x]$, эквивалентных 1.
- е) Приведите примеры 3-х элементов из $\mathbb{F}_2[x]$, эквивалентных x^3 .
- **4.** Пусть $I = (x^2 + 1) \subset \mathbb{Z}[x]$. Определите, содержит ли I многочлены:
- a) $x^5 + 4x^3 + x^2 + 3x + 4$, 6) $x^5 + 6x^3 + 2x^2 + 5x + 2$.
- **5.** Докажите, что идеал $I = (x^3 + 1)$ не является максимальным в $\mathbb{Z}_2[x]$. Перечислите максимальные идеалы, содержащие I.
- **6.** Пусть $I=(18),\ J=(24)$ идеалы в $\mathbb{Z}.$ Найдите а) $I\cap J,$ б) I+J.
- 7. Докажите, что кольцо A матриц $\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha+3\beta \end{pmatrix}$, где $\alpha,\beta \in \mathbb{F}_5$ не является полем.
- а) Сколько в нем элементов?
- б) Найдие все необратимые элементы.
- в) Перечислите все идеалы в A.
- Γ) Можно ли разложить A в прямое произведение колец?

- **8.** Найдите все необратимые элементы кольца $\mathbb{F}_2[x]/(x^2+1)$.
- 9. Пусть I=(1+3i) максимальный идеал в $\mathbb{Z}[i]$ ($\mathbb{Z}[i]$ минимальное кольцо, содержащее \mathbb{Z} и i, где $i^2=-1$). Докажите, что $\mathbb{Z}\cap I=10\mathbb{Z}$.
- **10.** Докажите, что если I является идеалом кольца A и содержит единицу, то I = A.
- **11.** Докажите, что поле содержит только тривиальные идеалы (само себя и $\{0\}$).
- **12.** Пусть I, J идеалы кольца A. Докажите, что $I+J=\{i+j:i\in I,j\in J\}$ тоже идеал A.
- **13.** Верно ли, что множество делителей нуля всегда является идеалом кольца?
- **14.** Опишите множество $\mathbb{F}_2[x]/(x^2+x)$, является ли оно кольцом или полем? Перечислите все его идеалы.
- **15.** Найдите мультипликативную группу, идемпотенты и идеалы кольца $\mathbb{F}_2[x]/(x^3+1)$.