26/10/2016 510/11 د جمود عهی محاميرة ك * Hyperbolic tangent function (tanh) tanh = Sinh X

Cosh X

The sinh x

The sin $\frac{2}{1+e^{-2x}}-1=\tanh x=bipolar Sigmoid at d=2$ # The hyperbolic tangent is tanhx is the same as a bipolar sigmoidal function $g(x) = \frac{2}{1 + e^{2x}} - 1$ (d = i) $\frac{2}{1+\sqrt{2}}-1=\tanh\left(\frac{x}{2}\right)$ * The bipolar sigmoidal function $g(x) = \frac{2}{1 + e^{\alpha x}}$ is the same ds a hyperbolic $1 + e^{\alpha x}$ tangent function of the form $\tanh\left(\frac{\alpha x}{2}\right)$ $x \frac{d}{dx} (tanhx) = Sech^2 x$ Jip lev! sech x = 1 - tanh x

عرض (S) = 1 - 5²

طرح (S) = 1 - 5²

المعافلات المعافلات المعافلات المعافلات المعافلات) المعافلات الم

لوجت - 1- 3 الجواب فرقوض Sech X = Coshx باضرالهُم المومية لحد 1 س Exampled: Wo = 6.8 Xz=0,9 W2 =-1,5 hyperbolic tangent S = tanhy Activation y= (0.7)(1.5) + (0.9) (-1.5) + 0.8 output signal, for a hyperbolic tangent function abirolar sigmoid S= tanky = tank 0,5 = 0,462 Example? esent Paraneter inel Bias veight Wo Live Fel Mrellie أوم وسا إذا كاست الإث رة النادِّمة 18.0 5=tanh y => y = tanh S for S= 0.81 = y= tanh = 1.127 y = (0,7)(1.5) + (0,9)(-1.5) + wo will 1.127 = -0.3 + W. Wo = 1. 427 ANN Il po familier ver d'une, mo condi

Example3:-

find the value of the derivative of the output signal with respect the activation in ex 2

$$S = \tanh y \rightarrow \frac{ds}{dy} = \frac{d(\tanh y)}{dy}$$

$$= \operatorname{Sech}^2 y = 1 - \tanh^2 y$$

$$\frac{ds}{dy} = 1 - 5^2$$

for the previous example

Example 41-

a neuron employs a hyperbolic tangent function.

Under certain operating conditions; the derivative of

the output segnal S with respect to the activation

y is found to be 0.441. Find the values of y

and C

and S

$$\frac{ds}{dy} = sech^2 y = 0.441$$

$$\Rightarrow sech y = \sqrt{0.441} = \pm, 0.664$$

Remember that seen's

الإش رة السالم ومؤصر لأله عم منعنى عومية

y = Sech (0,664) = + 0,968 even NIs sech NI's miss zou lio S = tanh (±0,968) هنا ينفع فيمسر عن الم عوهوديس 48 47,0 ل]-1,1[po tanh eli, 52, 08 Alternative Solution: Ob W Spi Fie de à [] Up mis x S= tanh y du = 1 - tanh y = 0,441 tanh y= V1-0.441= (5) y = tanh = 1 S = tanh = 1 (+ 0.748) + 0.968 Example 5:-W/2 /2/2 9.3 tanh (0.54) +0,6 $h(x) = tanh(\alpha x)$ output Function Q=1.5

```
* For Hidden neuron N3 ( <= 0.5)
 Activation,
4 43 = (1.5)(1.1) + (2)(1.4) -0.5 = 3.95
#output h(43) = tanh (0.5 y3) = tanh (0.5 x 3.95)
                   = 0.962
 * For Hidden neuron N4 (x=0.5)
  Activation
  # 44 = (1.5) (-1.2) + (2)(-0.9) + 0.6 = -3
  # output h (yu) = tanh (0.5 yy) = tanh (0.5 x -3)
* for output NS (\alpha = 1.5)
# Activation, y = h (43)(0.8) + h (44)(-0.7)-1.5
                  = (0.962)(0.8) + (-0.965)(-0.7)-1.5
                 = -0,697
 # owlput signal, S1 = h(45) = tanh (1.5 45)
 = Lanh (-1.5 × 0.097) - _ 0.144
 * for output No (x=1.5)
# activation, y = h(1/3) (0.8) + h(1/4) (0.5) - 0.6
                  = (0.962)(6.8)+(-0.905)(0.5)-0.6
   # output signal S2;
          57 = h (46) = tanh (1.546) = tanh (-1.5 x 0.283)
```

لستطيع مي كش مم ال موال أنه نويد فيم ال علم الله بلك بعرفة out puts 1 given the outputs of ANN, find the inputs Example 6:-* In the two-input, two-output neural network shown, the hidden neurons employ bipolar sigmoidal functions while the output neurons employ binary sigmoidal Functions. If the outpids are measured as $S_1 = 0.75$ and $S_2 = 0.58$ find the inputs x, and Xz 8,=0.75 Bipolar . Binary Sigmoids Signoid 52=0,58 / طالما لم يذكر في السكال ممة به منظمل أنها بد ل output layer (N5 and No) (Binary Signoids) $N_5 \implies y_5 = ln\left(\frac{S_1}{1-S_1}\right) = ln\left(\frac{0.75}{1-0.75}\right) = 1.099$ $N_6 \Rightarrow Y_6 = In \left(\frac{5_2}{1-5_2}\right) = In \left(\frac{0.58}{1-0.58}\right) = 0.373$ ys = 0.5 9(43) +0.6 9(44) +0.8 =1.099 3 => 0.5 9 (43) + 0.8 9(44) = 0.299 (1) Y6 = -0.5 9(43) + 6.7 9(44) + 8.9 = 0.373 -0,59(y3+0,79(y4) = -0.557 -- (2) هل معادلسم في محمولسم

activation is bipolar sigmoids

$$y_3 = -\ln\left(\frac{1+9(y_3)}{1-9(y_3)}\right) = \ln\left(\frac{1+0.855}{1-0.855}\right) = 2.549$$

$$94 = 2n \left(\frac{1+9(94)}{1-9(94)}\right) = 2n \left(\frac{1+(-0.214)}{1-(-0.214)}\right) = -0.435$$

صر عهم آخی ک عملس لکت

$$y_3 = -X_1 + 2 \times_2 - 2$$

 $\Rightarrow -X_1 + 2 \times_2 = 4.549 - ... (3)$

$$y_4 = -x_1 + x_2 - 1.5 = -0.435$$

 $-x_1 + x_2 = 0.865 --- (4)$

$$x_1 = 2.819$$

Asimelteneously

* لا مط أنك في الله إلى الم تم مل معاد لسِم أنيسِم (و () لا نغراج (ولا) و () لا نغراج (ولا) و ولا) و ا

بدل معا أننا في الحل ا بحونها عَلَسيا لندفع الإسارات عموليه و علم من من بدأناس السلمان الشبكة وهو معطى ، وانتعينا بإرجاد فيم ال ديسوان

Summary: Input ____ output (forward Path) ___ input - hidden-output Output - Input (Backward Path) output - hidden input # sometimes we use a linear function activation f(4) P(x) = XX bround Bounding letzi => ower bound as it is a file of the regist of the clap in und I Bounds vain Example 7. Consider the two-input, three-output neural network Shown, The hidden and output neurons employ Unear functions of the form f(x) = x x; with x = 0.2 for each hidden neuron and x = 1 for each output neuron If the outputs are found to be S1=0,22,52=0.16, 53 = 0.115, determine the inputs X, and X2 + S, =0.15 f(x) =0,2x Linear Act. Pr f(x) = x

Outputs of the network $S_1 = f(y_5) = y_5$ Since f(x) = x (linear) 52 = f(46) = 46 = -0.16 $S_3 = P(y_7) = y_7 = 0.115$ Activations of the output neurons 95 = (1) f(y3) + (-1) f(y4) + 0.2 = 0.22 f(y3) - f(y4) = 0.02 --- (1) y6 = (1) f(y3) + (1) f(y4) + 0.4 = -0.16 f(y3)+f(y4)=-0.56 ---(2) عَكَم نَعِيدُ النَّاجَ مِم مِعًا وَرَسُم سِ لَازُم لِعَا لَمُ مِهَامِح جِلًا لَلنَّا لَا مِم إِمَّا لَيْم 47 = (-1) f(92) + (-0.5) f(94) - 0.3 = 0.115 f(y3) + 0.5 f(y4) = - 0.415 --- (3) عد إذا كانت المعادلات مستقلة عبر بعضام وعددها أكبر مس عدد المعادلات ملاحدها ولات معناك عدد للنوائي مم الكول (لا يوجد عل) * ثلا مظرانه المشكة تفاية وباللك لازم هلائ بل منا لينا لل عادرات في عهو لسم له وي الأواكر وداد الان هذه لعادلات الله ي مستقلة عبر عصول للعفل كورياضيا خلاي فيرجل (عدد العادلات أكبرص عدد الحاصل) م ولام مما أمراث عك بقد في فروف معينة ولذا لدبد أمر لا يكور العالى في مواصفات الشيكك أي تعارض منزيائي أو رياض أو منعفي ﴿ بِاللَّا يَ نَهُونَعُ } مرالمعادلات اللَّال الله في ميلواقع معادليًا مر (والمعادلة (Lyus oris alili)

العناد بين أنك ركف لا يماد المعموليم (1931, 1944) أم الل معادليسم فقط مم بلعاد لون الملوث وسنجد أم الشيدة لعقم للقائيا اععاد لذ إلالا bee (a visit of Aberlehim I(y3) = -0.27 f (94) = -0,29 لا تحقوم م المرها سم الفيسم معادلة رضم (3) * Activations of the hidden neurons $y_3 = \frac{f(y_3)}{0.2}$ Since fly3)=0.243 -0.27 = -1.35 = 0.5 x, - 0.4 x2-92 =>0.5 x, -0.4 x2 = -1.15 --- (4) $y_{4} = \frac{f(y_{4})}{0.2} = -0.29 = -1.45$ = 0.5.7, - X2 +913 => 0.5 x1 - x2 = -1.75 --- (5) ي بحل المعادليس 4 و 5 L = -1.5 $x_i = 1$ Example 8: A single neuron recieves two inputs X, =0,8 and x2=1.2 with weights w, = 1.6 and wz = 0.6, respectively. the bias weight is wo = 1.4 the newn employs the a typer hyperbolic tangent In in the form s= tanh (xy). Where s is the output [o]

Signal. Y is the activation and & is a positive parameter. The derivative of S with respect to y is found to be 0.311 Calculate the Values of x, y, and S. Solution * Activation y= (0.8)(1.6) + (6.6)(1.7) -1.4 = 0.6 * Deravative $\frac{ds}{dy} = \frac{\alpha}{7} \operatorname{sech}^{2}(\alpha y) = \alpha \left[1 - \tanh^{2}(\alpha y)\right]$ tanh 2 (0.60x) = 1 - 0.311 م الأصرومة عكس على الأعسر ونفية النفاطح مدد فيمر م ابئ مقورطعادية tanh (0.6 x) 0.689

Parction tanh2 (6.60) output Signal s= tanh (0.6 x3) - 0.947

محد مجد ي عبد العظار سلام

x activation $y = X_1 - 1.5 X_2 - 1$

$$0 \times_{1} = \times_{2} = 0 \implies S = 1$$

$$9 = -1$$

(2)
$$x_1 = 1, x_2 = 0 \implies S = 1$$

 $y = 1 - 1 = 0$

(3)
$$X_1 = 0$$
 $X_2 = 1 \Rightarrow S = 0$
 $Y = -1.5 - 1 = -2.5$

$$9 \times_1 = \times_2 = 1 \implies S = 1$$
 $9 = \times_{-1.5} - 1 = -1.5$

5=0	5=1	5=1	S=1	>
-2.5	-1.5	-1	0	9

(1)
$$y = -1 > -2 \Rightarrow S = 1$$

XI + Xz table

①
$$y=-1 > -2 \Rightarrow S=1$$
 ③ $y=-2.5 < 2 \Rightarrow S=6$