

Mathematics of Cryptography

Data Encryption & Security (CEN-451)

Spring 2025 (BSE-8A&B)

Mathematics of Cryptography

• Cryptography is based on some specific areas of mathematics, including number theory, linear algebra and matrices which are pervasive in cryptographic algorithms.

Outline of this lecture:

- I. Integer arithmetic.
- II. Modular arithmetic.
- III. Congruence equations.
- IV. Matrices.

Integer Arithmetic

Set of Integers

• The set of integers, denoted by **Z**, contains all integer numbers from negative infinity to positive infinity.

$$\mathbf{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}$$

• In cryptography, we are interested in three binary operations applied to the set of integers.

• The following example shows the results of the three binary operations on two integers.

Add:	5 + 9 = 14	(-5) + 9 = 4	5 + (-9) = -4	(-5) + (-9) = -14
Subtract:	5 - 9 = -4	(-5) - 9 = -14	5 - (-9) = 14	(-5) - (-9) = +4
Multiply:	$5 \times 9 = 45$	$(-5) \times 9 = -45$	$5 \times (-9) = -45$	$(-5) \times (-9) = 45$

- In integer arithmetic, if we divide **a** by **n**, we can get **q** and **r**, where:
 - a is dividend
 - n is divisor
 - q is quotient
 - r is remainder
- The relationship between these four integers can be shown as:

$$a = q \times n + r$$

 $n \longrightarrow 11$

• In cryptography we often impose two restrictions:

$$n > 0$$
 and $r \ge 0$

- When we use a computer or a calculator, **r** and **q** are negative when **a** is negative.
- Q) How can we apply the restriction that **r** needs to be positive?
- A) We decrement the value of **q** by 1 and we add the value of **n** to **r** to make **r** positive.

$$-255 = (-23 \times 11) + (-2)$$
 \leftrightarrow $-255 = (-24 \times 11) + 9$

Divisibility: Common Divisor

• Common divisors of two integers:

- Greatest Common Divisor (GCD) of two positive integers is the largest integer that can divide both integers.
- The **Euclidean algorithm** can find the **GCD** on basis of the following two facts:
 - $\gcd(a, 0) = a$
 - gcd(a, b) = gcd(b, r), where r is the remainder of dividing a by b.
- Example:

$$gcd(36,10) = gcd(10,6) = gcd(6,4) = gcd(4,2) = gcd(2,0) = 2$$

Example 01: Find the greatest common divisor of 2740 and 1760.

q	r_1	r_2	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
	20	0	

Hence, we have gcd(2740, 1760) = 20.

Example 01: Find the greatest common divisor of 2740 and 1760.

q	r1	r2	r

• Example 02: Find the greatest common divisor of 25 and 60.

q	r_1	r_2	r
0	25	60	25
2	60	25	10
2	25	10	5
2	10	5	0
	5	0	

• Hence, we have gcd(25, 60) = 5.

Example 02: Find the greatest common divisor of 25 and 60.

q	r1	r2	r

Relatively Prime:

- When gcd (a, b) = 1, we say that a and b are relatively prime.
- Two numbers are **relatively prime** if they have no common factors other than 1.
- For example, 7 and 20 are relatively prime.

Divisibility: Extended Euclidean Algorithm

• Given two integers **a** and **b**, we often need to find other two integers, **s** and **t**, such that:

$$s \times a + t \times b = \gcd(a, b)$$

• The Extended Euclidean Algorithm can calculate the gcd(a, b) and at the same time calculate the value of s and t.

Divisibility:

Extended Euclidean Algorithm (Cont.)

Divisibility:

Extended Euclidean Algorithm (Cont.)

• Example 01: Given $\mathbf{a} = 161$ and $\mathbf{b} = 28$, find $\gcd(\mathbf{a}, \mathbf{b})$ and the values of s and t.

•
$$r = r_1 - (q \times r_2)$$
 $s = s_1 - (q \times s_2)$ $t = t_1 - (q \times t_2)$

$$\mathbf{s} = \mathbf{s}_1 - (\mathbf{q} \times \mathbf{s}_2)$$

$$\mathsf{t} = t_1 - (q \times t_2)$$

q	r_1 r_2	r	s_1 s_2	S	t_1 t_2	t
5	161 28	21	1 0	1	0 1	- 5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	- 5 6	-23
	7 0		-1 4		6 −23	

• We get gcd (161, 28) = 7, s = -1 and t = 6.

Example 01: Given $\mathbf{a} = 161$ and $\mathbf{b} = 28$, find $\gcd(\mathbf{a}, \mathbf{b})$ and the values of \mathbf{s} and \mathbf{t} .

$$\mathbf{r} = r_1 - (q \times r_2) \qquad \mathbf{s} = s_1 - (q \times s_2) \qquad \mathbf{t} = t_1 - (q \times t_2)$$

$$\mathbf{s} = \mathbf{s}_1 - (\mathbf{q} \times \mathbf{s}_2)$$

$$\mathbf{t} = \mathbf{t}_1 - (\mathbf{q} \times \mathbf{t}_2)$$

q	r1	r2	r	s1	s2	S	t1	t2	t

Divisibility: Extended Euclidean Algorithm (Cont.)

• Example 02: Given $\mathbf{a} = 17$ and $\mathbf{b} = 0$, find $\gcd(\mathbf{a}, \mathbf{b})$ and values of \mathbf{s} and \mathbf{t} .

q	r_1	r_2	r	s_I	s_2	S	t_1	t_2	t
	17	0		1	0		0	1	

• We get gcd (17, 0) = 17, s = 1, and t = 0.

Divisibility: Extended Euclidean Algorithm (Cont.)

• Example 03: Given $\mathbf{a} = 0$ and $\mathbf{b} = 45$, find $\gcd(\mathbf{a}, \mathbf{b})$ and the values of \mathbf{s} and \mathbf{t} .

q	r_{I}	r_2	r	s_I	s_2	S	t_1	t_2	t
0	0	45	0	1	0	1	0	1	0
	45	0		0	1		1	0	

• We get gcd (0, 45) = 45, s = 0, and t = 1.

Modular Arithmetic

Modular Arithmetic

- The division relationship ($a = q \times n + r$) has two inputs (a and n) and two outputs (q and r).
- In modular arithmetic, we are interested in only one of the outputs, i.e. r. Hence, we don't care about q.
- This implies that we can change the above relation into a binary operator with two inputs **a** and **n**, and one output **r**.

Modulo Operator

- The modulo operator is shown as mod. The second input **n** is called the modulus. The output **r** is called the residue.
- The mod takes an integer a and positive modulus n as inputs. The operator creates a non-negative residue $r \rightarrow a \mod n = r$

Modulo Operator (Cont.)

- Example 01: Find the result of the following operations
 - a. 27 mod 5

b. 36 mod 12

c. -18 mod 14

- d. -7 mod 10
- Solution: we divide a by n and find q and r. We then discard q and keep r.
- a. Dividing 27 by 5 results in r = 2.
- b. Dividing 36 by 12 results in $\mathbf{r} = \mathbf{0}$.
- c. Dividing -18 by 14 results in r = -4. After adding the modulus to -4, r = 10.
- d. Dividing -7 by 10 results in r = -7. After adding the modulus to -7, r = 3.

Set of Residues

- The result of the modulo operation with modulus **n** is always an integer between **0** and **n-1**.
- The modulo operation creates a set, which in modular arithmetic is referred to as the set of *least residues* modulo n, or Z_n .

$$\mathbf{Z}_n = \{ 0, 1, 2, 3, \dots, (n-1) \}$$

$$\mathbf{Z}_2 = \{ 0, 1 \}$$

$$\mathbf{Z}_6 = \{ 0, 1, 2, 3, 4, 5 \}$$

$$\mathbf{Z}_{11} = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$$

Operation in Z_n

- The three binary operations (addition, subtraction and multiplication) that we discussed for Z can also be defined for Z_n .
- Result may need to be mapped to Z_n using the mod operator.

Operation in $Z_n(Cont.)$

- Example 01: Perform the following operations (the inputs come from Z_n).
 - a. Add 7 to 14 in Z_{15} .
 - b. Subtract 11 from 7 in Z_{13} .
 - c. Multiply 11 by 7 in Z_{20} .
- Solution:

$$(14+7) \mod 15 \rightarrow (21) \mod 15 = 6$$

 $(7-11) \mod 13 \rightarrow (-4) \mod 13 = 9$
 $(7 \times 11) \mod 20 \rightarrow (77) \mod 20 = 17$

Operation in $Z_n(Cont.)$

- Example 02: Perform the following operations (the inputs come from Z or Z_n).
 - a. Add 17 to 27 in Z_{14} .
 - b. Subtract 43 from 12 in Z_{13} .
 - c. Multiply 123 by -10 in Z_{19} .
- Solution: Home Work!

Properties of Mod Operator

• First Property:

$$(a + b) \mod n = [(a \mod n) + (b \mod n)] \mod n$$

• Second Property:

$$(a - b) \mod n = [(a \mod n) - (b \mod n)] \mod n$$

• Third Property:

$$(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n$$

a. Original process

b. Applying properties

Properties of Mod Operator (Cont.)

Benefits of Mod Properties:

- In cryptography, we deal with very large integers.
- If we multiple a very large integers by another, we may have an integer that is too large to be stored in the computer.
- Applying the Mod properties make the first two operands smaller before the multiplication is applied.

Properties of Mod Operator (Cont.)

- Example 01: the following shows an application of mod properties:
 - a. $(1,723,345 + 2,124,945) \mod 11 = (8 + 9) \mod 11 = 6$
 - b. $(1,723,345 2,124,945) \mod 11 = (8 9) \mod 11 = 10$
 - c. $(1,723,345 \times 2,124,945) \mod 11 = (8 \times 9) \mod 11 = 6$

Properties of Mod Operator (Cont.)

• Example 02: in arithmetic, we often need to find the remainder of powers of 10 when divided by an integer.

 $10^n \bmod x = (10 \bmod x)^n \qquad \text{Applying the third property } n \text{ times.}$

Congruence

Congruence

- In cryptography, we often use the concept of congruence instead of equality.
- The congruence operator maps a member from \mathbf{Z} to a member of \mathbf{Z}_{n} , where equality operator is **one-to-one** while congruence is **many-to-one**.
- To show that two integers are congruent, we use the congruence operator (\equiv).

Congruence (Cont.)

• Example 01:

$$2 \equiv 12 \pmod{10}$$
 $13 \equiv 23 \pmod{10}$
 $3 \equiv 8 \pmod{5}$ $8 \equiv 13 \pmod{5}$

• Example 02:

$$34 \equiv 24 \pmod{10}$$
 $-8 \equiv 12 \pmod{10}$
 $23 \equiv 33 \pmod{5}$ $-8 \equiv 2 \pmod{5}$

Congruence (Cont.)

• The phrase (mod 10) in $2 \equiv 12 \pmod{10}$, means that the destination set is Z_{10} .

$$-8 \equiv 2 \equiv 12 \equiv 22 \pmod{10}$$

Congruence Relationship

Inverses

- In cryptography, we often work with inverses.
- If sender uses an integer as encryption key, the receiver uses the *inverse* of that integer as decryption key.

Multiplicative Inverse

- In modular arithmetic, an integer may or may not have a multiplicative inverse.
- When it does, the product of the integer and its multiplicative inverse is congruent to 1 modulo n.
- In $\mathbf{Z_{n}}$, two numbers \mathbf{a} and \mathbf{b} are the multiplicative inverse of each other if

$$a \times b \equiv 1 \pmod{n}$$

• E.g. in modulus 10, the multiplicative inverse of 3 is 7,

i.e.
$$(3 \times 7) \mod 10 = 1$$

Multiplicative Inverse (Cont.)

- It can be proved that a has a multiplicative inverse in \mathbb{Z}_n if and only if $\gcd(n, a) = 1$, i.e. a and n are relatively prime.
- The integer a in \mathbb{Z}_n has a multiplicative inverse if and only if $gcd(n, a) \equiv 1 \pmod{n}$.
- Example 01: find the multiplicative inverse of 8 in \mathbb{Z}_{10} .
- Solution:
 - There is no multiplicative inverse because $gcd(10, 8) = 2 \neq 1$.

Multiplicative Inverse (Cont.)

- Example 02: find all multiplicative inverses in \mathbb{Z}_{10} .
- Solution:
 - There are only three pairs: (1, 1), (3, 7) and (9, 9).
 - The numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative inverse.
 - We can see that:

$$(1 \times 1) \mod 10 \equiv 1$$

$$(3 \times 7) \mod 10 \equiv 1$$

$$(9 \times 9) \mod 10 \equiv 1$$

Multiplicative Inverse (Cont.)

- Example 03: find all multiplicative inverse pairs in \mathbb{Z}_{11} .
- Solution:
 - We have the pairs: (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), and (10, 10).
 - In moving from Z_{10} to Z_{11} the number of pairs doubles.
 - In \mathbb{Z}_{11} , the $\gcd(11, a)$ is 1 for all values of a except 0. Hence, all integers 1 to 10 have multiplicative inverses.

Extended Euclidean Algorithm for Multiplicative Inverse

- The extended Euclidean algorithm can find the multiplicative inverses of b in Z_n when gcd(n, b) = 1.
- The multiplicative inverse of $\bf b$ is the value of $\bf t$ after being mapped to $\bf Z_n$.

"Extended Euclidean Algorithm for Multiplicative Inverse (Cont.)

Extended Euclidean Algorithm for Multiplicative Inverse (Cont.)

• Example 01: Find the multiplicative inverse of 11 in Z_{26} .

q	r_{I}	r_2	r	t_1 t_2	t
2	26	11	4	0 1	-2
2	11	4	3	1 -2	5
1	4	3	1	-2 5	- 7
3	3	1	0	5 -7	26
	1	0		-7 26	

• The gcd (26, 11) is 1; the inverse of 11 is -7 or 19.

Example 01: Find the multiplicative inverse of 11 in \mathbb{Z}_{26} .

$$\mathbf{r} = \mathbf{r}_1 - (\mathbf{q} \times \mathbf{r}_2)$$

$$\mathbf{t} = \mathbf{t}_1 - (\mathbf{q} \times \mathbf{t}_2)$$

q	r1	r2	r	t1	t2	t
	26	11		0	1	

"Extended Euclidean Algorithm for Multiplicative Inverse (Cont.)

• Example 02: Find the multiplicative inverse of 23 in Z_{100} .

q	r_{I}	r_2	r	t_1	t_2	t
4	100	23	8	0	1	-4
2	23	8	7	1	- 4	19
1	8	7	1	-4	9	-13
7	7	1	0	9	-13	100
	1	0		-13	100	

• The gcd (100, 23) is 1; the inverse of 23 is -13 or 87.

"Extended Euclidean Algorithm for Multiplicative Inverse (Cont.)

• Example 03: Find the inverse of 12 in Z_{26} .

q	r_I	r_2	r	t_1	t_2	t
2	26	12	2	0	1	-2
6	12	2	0	1	-2	13
	2	0		-2	13	

• The gcd (26, 12) is 2; the inverse does not exist.

Matrices (Do it Yourself!)

Matrices

• In cryptography we need to handle matrices. The following brief review of matrices is necessary preparation for the study of cryptography.

m columns

• Examples of matrices:

$$\begin{bmatrix} 2 & 1 & 5 & 11 \\ Row \text{ matrix} \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 12 \end{bmatrix} \begin{bmatrix} 23 & 14 & 56 \\ 12 & 21 & 18 \\ 10 & 8 & 31 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
Column matrix
$$\begin{bmatrix} Square \\ matrix \end{bmatrix}$$

• Example of addition and subtraction:

$$\begin{bmatrix} 12 & 4 & 4 \\ 11 & 12 & 30 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 1 \\ 3 & 2 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 2 & 3 \\ 8 & 10 & 20 \end{bmatrix}$$

$$\mathbf{C} = \mathbf{A} + \mathbf{B}$$

$$\begin{bmatrix} -2 & 0 & -2 \\ -5 & -8 & 10 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 1 \\ 3 & 2 & 10 \end{bmatrix} - \begin{bmatrix} 7 & 2 & 3 \\ 8 & 10 & 20 \end{bmatrix}$$

$$\mathbf{D} = \mathbf{A} - \mathbf{B}$$

• Example for product of a row matrix (1×3) by a column matrix (3×1) . The result is a matrix of size 1×1 .

$$\begin{bmatrix} 53 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 7 \\ 8 \\ 2 \end{bmatrix}$$

In which:
$$53 = 5 \times 7 + 2 \times 8 + 1 \times 2$$

• Example for product of a 2×3 matrix by a 3×4 matrix. The result is a 2×4 matrix.

• Example of scalar multiplication:

 $\begin{bmatrix} 15 & 6 & 3 \\ 9 & 6 & 12 \end{bmatrix} = 3 \times \begin{bmatrix} 5 & 2 & 1 \\ 3 & 2 & 4 \end{bmatrix}$

Determinant

- The determinant of a square matrix **A** of size **m** × **m** denoted as **det(A)** is a scalar calculated recursively.
- The determinant is defined only for a square matrix.
- Example for the determinant of a 2×2 matrix based on the determinant of a 1×1 matrix:

$$\det\begin{bmatrix} 5 & 2 \\ 3 & 4 \end{bmatrix} = (-1)^{1+1} \times 5 \times \det[4] + (-1)^{1+2} \times 2 \times \det[3] \longrightarrow 5 \times 4 - 2 \times 3 = 14$$

or
$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11} \times a_{22} - a_{12} \times a_{21}$$

Determinant (Cont.)

• Example for the calculation of the determinant of a 3×3 matrix:

$$\det\begin{bmatrix} 5 & 2 & 1 \\ 3 & 0 & -4 \\ 2 & 1 & 6 \end{bmatrix} = (-1)^{1+1} \times 5 \times \det\begin{bmatrix} 0 & -4 \\ 1 & 6 \end{bmatrix} + (-1)^{1+2} \times 2 \times \det\begin{bmatrix} 3 & -4 \\ 2 & 6 \end{bmatrix} + (-1)^{1+3} \times 1 \times \det\begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$$
$$= (+1) \times 5 \times (+4) \qquad + \qquad (-1) \times 2 \times (24) \qquad + \qquad (+1) \times 1 \times (3) = -25$$

Matrices Inverse

- Multiplicative inverses are **only** defined for **square matrices**.
- Cryptography uses residue matrices, i.e. matrices where all elements are in \mathbb{Z}_n .
- A residue matrix has a multiplicative inverse if the determinant of the matrix has a multiplicative inverse in $\mathbf{Z_n}$.
- In other words, a residue matrix has a multiplicative inverse if gcd (det(A), n) = 1.

Matrices Inverse (Cont.)

- We focus our concern in matrix arithmetic modulo 26.
- The inverse of a matrix does not always exist, but when it does, it satisfies the equation $A^{-1}A = I$.
- Example: a residue matrix A in \mathbb{Z}_{26} .

$$\mathbf{A} = \begin{bmatrix} 3 & 5 & 7 & 2 \\ 1 & 4 & 7 & 2 \\ 6 & 3 & 9 & 17 \\ 13 & 5 & 4 & 16 \end{bmatrix} \qquad \mathbf{A}^{-1} = \begin{bmatrix} 15 & 21 & 0 & 15 \\ 23 & 9 & 0 & 22 \\ 15 & 16 & 18 & 3 \\ 24 & 7 & 15 & 3 \end{bmatrix}$$
$$\det(\mathbf{A}) = 21 \qquad \det(\mathbf{A}^{-1}) = 5$$

Thank You!