Deep Learning

Hung-yi Lee

李宏毅

Three Steps for Deep Learning

Neural Network

Different connection leads to different network structures

Network parameter θ : all the weights and biases in the "neurons"

Fully Connect Feedforward Network

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given network structure, define *a function set*

Matrix Operation

Output Layer as Multi-Class Classifier

Feature extractor replacing feature engineering

FAQ

 Q: How many layers? How many neurons for each layer?

Trial and Error

+ Intuition

- Q: Can the structure be automatically determined?
 - E.g. Evolutionary Artificial Neural Networks
- Q: Can we design the network structure?

Convolutional Neural Network (CNN)

Loss for an Example

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} l^n$$

Find *a function in function set* that
minimizes total loss L

Find <u>the network</u>

parameters θ^* that minimize total loss L

Gradient Descent

