Definition

Seien Vund W reelle Vektorräume. Dann heisst

$$\mathcal{F}: V \to W, x \mapsto \mathcal{F}(x)$$

lineare Abbildung falls $\forall x, y \in V$, $\forall \alpha \in \mathbb{R}$

- F(x+y) = F(x) + F(y)
- $F(\alpha x) = \alpha F(x)$

Beispiele von linearen Abbildungen

- $F: \mathbb{R}^2 \to \mathbb{R}^3, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ x-2y \\ 3x \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
- $V = \mathbb{R}^n, W = \mathbb{R}^m, A \in \mathbb{R}^{m \times n}, \mathcal{F} : \mathbb{R}^n \to \mathbb{R}^m, x \mapsto Ax.$

Beispiele von linearen Abbildungen

- ▶ **Identität:** V beliebig, $\mathcal{F}: V \to V, x \mapsto x$.
- ▶ **Nullabbildung:** V, W beliebig, $F: V \to W, x \mapsto 0$.

Beispiel einer linearen Abbildungen

Ableitung: $V = C^{1}(]a, b[), W = C^{0}(]a, b[), \mathcal{F} : C^{1}(]a, b[) \to C^{0}(]a, b[), f \mapsto \frac{df}{ds}.$

Repetition

Lineare Algebra

Lineare Abbildungen

> terierte ^Eunktionensysteme

Beispiele von linearen Abbildungen

- ▶ Streckung: $\mathbb{R}^n \to \mathbb{R}^n, x \mapsto \lambda x$
- Drehungen und Spiegelungen: Siehe Abschnitt orthogonale Matrizen.
- ▶ **Projektionen:** z.B. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ (Orthogonal projektion auf die xy-Ebene).

Bemerkung: Eine lineare Abbildung $P: V \rightarrow V$ für die $P \circ P = P$ gilt, heisst **Projektion**.

Achtung: Die Translation $\mathbb{R}^n \to \mathbb{R}^n, x \mapsto x + a$, für $0 \neq a \in \mathbb{R}^n$, ist **keine** lineare Abbildung.

Repetition

Lineare Algebra

Lineare Abbildungen

> terierte Funktionensysteme

$$\mathcal{F}: C^0([a,b]) \to \mathbb{R}^k, \quad f \mapsto egin{pmatrix} f(a_1) \ dots \ f(a_k) \end{pmatrix}$$

▶ **Interpolation:** Sei P_{n-1} die Menge der Polynome vom Grad < n und $a_1 < \ldots < a_n$. Dann ist

$$\mathcal{F}: \mathbb{R}^n \to P_{n-1}, \quad \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \mapsto p$$

linear, wobei p das eindeutig definierte Polynom mit $p(a_i) = y_i$ für $1 \le i \le n$ ist.

Lineare Abbildungen

Iterierte Funktionensysteme

Repetition Lineare Algebra

Definition

Sei $A \in \mathbb{R}^{n \times n}$, $a \in \mathbb{R}^n$. Dann heisst

affin lineare Abbildung.

Funktionensysteme

 $\mathcal{F}: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto Ax + a$

Definition

Eine Abbildung $\mathcal{F}: \mathbb{R}^n \to \mathbb{R}^n$ heisst **Kontraktion**, wenn eine Konstante c < 1 existiert so, dass $\forall x, y \in \mathbb{R}^n$ gilt $\|\mathcal{F}(x) - \mathcal{F}(y)\| < c\|x - y\|.$

Definition

Ist $\mathcal{F}:U\to V$ eine beliebige Funktion, und $M\subset U$, so heisst $\mathcal{F}(M) := \{\mathcal{F}(x) : x \in M\}$ **Bild** der Menge M unter der Abbildung \mathcal{F} .

Iterierte

Definition

Seien $\mathcal{F}_1,\ldots,\mathcal{F}_k:\mathbb{R}^n\to\mathbb{R}^n$ affin lineare Kontraktionen. Dann heisst

$$\mathcal{H}: \mathbb{R}^n \supset M \mapsto \mathcal{H}(M) := \bigcup_{i=1}^k \mathcal{F}_i(M)$$

Hutchinson-Operator.

Satz

- ▶ Für jeden Hutchinson-Operator \mathcal{H} existiert eine eindeutige nichtleere Menge $M_{\infty} \subset \mathbb{R}^n$ so, dass $\mathcal{H}(M_{\infty}) = M_{\infty}$. D.h. M_{∞} ist ein Fixpunkt von \mathcal{H} .
- Ist $M_0 \subset \mathbb{R}^n$ eine beliebige nichtleere Menge, so konvergiert die Folge $M_0, M_1 := \mathcal{H}(M_0), M_2 := \mathcal{H}(M_1), \ldots, M_i = \mathcal{H}(M_{i-1}), \ldots$ in der sogenannten Hausdorff-Metrik gegen M_{∞} .

Lineare Algebra

Lineare Abbildungen

Iterierte Funktionensysteme

Fraktale

Aufgrund der Konstruktion sind einzelne Teile von M_{∞} ähnlich zu M_{∞} . Diese Eigenschaft der **Selbstähnlichkeit** ist charakteristisch für sogenannte **Fraktale**.

Repetition

Lineare Algebra

Lineare Abbildungen

terierte ⁻unktionensystem

Anwendung: Barnsleys Farn.

Wie konstruiert man einen Hutchinson-Operator, dessen Fixpunktmenge M_{∞} wie ein Farnblatt aussieht?

Das Farnblatt besteht aus drei verkleinerten Kopien (blau, magenta und rot) des ganzen grünen Blattes. Man bestimmt leicht drei affine lineare Abbildungen, welche das grüne Blatt auf das blaue, auf das magentafarbene respektive auf das rote Teilblatt abbilden. Eine vierte Abbildung verwendet man noch, welche das grüne Blatt auf das untere gelbe Stielende abbildet.

Repetition

Lineare Algebra

Lineare Abbildunger

> erierte unktionensystem

Man Carlatat

Man findet etwa

$$\mathcal{F}_{1} \begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} 0.7248 & 0.0337 \\ -0.0253 & 0.7426 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0.206 \\ 0.2538 \end{pmatrix} \\
\mathcal{F}_{2} \begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} 0.1583 & -0.1297 \\ 0.355 & 0.3676 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0.1383 \\ 0.175 \end{pmatrix} \\
\mathcal{F}_{3} \begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} 0.3386 & 0.3694 \\ 0.2227 & -0.0756 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0.0679 \\ 0.0826 \end{pmatrix} \\
\mathcal{F}_{4} \begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} 0 & 0.2439 \\ 0 & 0.3053 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Im beigefügten Matlab-Programm wird die Menge M_{∞} iterativ approximiert, indem in jedem Schritt zufällig eine der vier Abbildungen auf den im vorigen Schritt konstruierten Punkt angewandt wird. Der Startpunkt ist beliebig.