Input: An initial labelled set \mathcal{L} , an unlabelled pool \mathcal{U} of n examples, a stopping criterion SC, a batch size b, a balancing parameter w

Output: A labelled dataset

Compute the similarity matrix \mathcal{M} of s(i,k) where $x_i, x_k \in \mathcal{L} \cup \mathcal{U}$;

Set $\alpha = \beta = \mu - 0.5 \times \delta$; μ and δ being the mean and standard deviation of the similarity matrix \mathcal{M} :

Calculate density for all the unlabelled examples $x_i, i \in I_u$

while SC is not met do $CS = \emptyset$, $Selected = \emptyset$;

Construct the candidate set CS

while $|\mathcal{CS}| = 0$ do

Update β ; Update CS;

end

Rank examples in CS by descending density order;

foreach $t, t = 1 \dots b$ do

else

if $|\mathfrak{CS}| < b$ then

| $Selected = Selected \cup CS$:

Select the top b ranked examples from CS with highest density and add them into Selected;

end

end Label each example $x_i \in Selected$;

 $\mathcal{L} = \mathcal{L} \cup Selected$, $\mathcal{U} = \mathcal{U}/Selected$;

end