2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

. 2/2

2/2

+183/1/38+

-	-				
Nom et prénom, lisibles :	Identifiant (de haut en bas):				
Mansais Laus					
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ⑥ » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.					
Q.2 Un alphabet est:					
un ensemble une suite finie	un ensemble ordonné 🛮 un ensemble fini				
Q.3 Que vaut $L \cdot \{\varepsilon\}$?					
□ {ε} □ ε	2 L □ 0				
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{a, b\}$?					
\square $\{aa,ab,ba,bb\}$ \square $\{aa,bb\}$ \square $\{\epsilon,a,b,aa,ab,ba,bb\}$ \square $\{\epsilon,a,b,aa,ab,ba,bb\}$					
Q.5 Que vaut <i>Pref</i> ({ab, c}):					
\square 0 \blacksquare {ab, a, c, ε } \square	$\{b,\varepsilon\}$ \Box $\{a,b,c\}$ \Box $\{b,c,\varepsilon\}$				
Q.6 Que vaut $Fact(\{a\}\{b\}^*)$ (l'ensemble des facteurs))				
Q.7 Pour toute expression rationnelle e , on a $e^* \equiv 0$	e*)*.				
☐ faux	👸 vrai				
Q.8 Pour toutes expressions rationnelles e, f , on a ($(ef)^*e \equiv e(ef)^*.$				
獨 faux	□ vrai				
	_ ·				
	_				
$\Box L(e) \subseteq L(f) \qquad \Box L(e) \supseteq L(f)$					
Q.10 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$, or	on a $A \cdot L_1 = A \cdot L_2 \implies L_1 = L_2$.				
faux	□ vrai				
Q.11 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-	-+]?[0-9A-F]+)*' n'engendre pas :				
□ ′-42′ Ø ′42+(42*42)′	□ '-42-42' □ '42+42'				
144 1	<u> </u>				

+183/2/37+

Un automate déterministe est non-déterministe. Q.12 0/2☐ toujours faux parfois vrai c'est le contraire Q.13 Un automate fini déterministe... n'est pas à transitions spontanées n'a pas plusieurs états initiaux 0/2n'a pas plusieurs états finaux n'est pas nondéterministe Quel automate ne reconnaît pas le langage décrit par l'expression $(a^*b^*)^*$. Q.14 2/2 Quel est le résultat d'une élimination arrière des transi-Q.15 tions spontanées? 2/2 Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents? 2/2 ☐ Aucune de ces réponses n'est correcte. Q.17 L'ensemble de tous les prénoms de la promotion est un langage non reconnaissable par un automate fini déterministe 0/2non reconnaissable par un automate fini à transitions spontanées rationnel non reconnaissable par un automate fini nondéterministe Q.18 A propos du lemme de pompage Si un langage le vérifie, alors il est rationnel -1/2Si un langage ne le vérifie pas, alors il n'est pas rationnel ☐ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont

la *n*-ième lettre avant la fin est un a (i.e., $(a + b)^*a(a + b)^{n-1}$):

-1/2	$\frac{n(n+1)}{2}$ \square $n+1$ \square Il n'existe pas. \square 2^n			
	Q.20 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b + c + d)^*a(a + b + c + d)^{n-1}$):			
-1/2	\boxtimes 2^n \square 4^n \textcircled{p} $\frac{n(n+1)(n+2)(n+3)}{4}$ \square Il n'existe pas.			
	Q.21 Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$			
2/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	Q.22 & Quelle(s) opération(s) préserve(nt) la rationnalité?			
1.2/2	Pref 🛛 Suff 🖸 Transpose 🛍 Fact 🖸 Sous – mot 🖂 Aucune de ces réponses n'est correcte.			
	Q.23 De Quelle(s) opération(s) préserve(nt) la rationnalité?			
1.2/2	Intersection ☑ Différence Complémentaire ☑ Différence symétrique ☑ Union ☐ Aucune de ces réponses n'est correcte.			
	${f Q.24}$ Soit ${\it Rec}$ l'ensemble des langages reconnaissables par DFA, et ${\it Rat}$ l'ensemble des langages définissables par expressions rationnelles.			
0/2	$igtherpoonup Rec = Rat$ $igcap Rec \supseteq Rat$ $igcap Rec \supseteq Rat$ $igcap Rec \supseteq Rat$			
	Q.25 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il			
2/2	☐ accepte un langage infini ☐ a des transitions spontanées ☐ est déterministe ☐ accepte le mot vide			
	Q.26 On peut tester si un automate déterministe reconnaît un langage non vide.			
0/2	☐ Cette question n'a pas de sens ☐ Non ☐ Seulement si le langage n'est pas rationnel ☐ Oui			
	Q.27 On peut tester si un automate nondéterministe reconnaît un langage non vide.			
0/2	☐ souvent ☐ rarement ☐ jamais ☑ oui, toujours			
	Q.28 Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}?			
2/2	□ 6 □ 7 ■ 4 □ Il n'existe pas.			
	Q.29 Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.			
-1/2	☐ faux en temps infini			

Q.30 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?

0/2

$\{u\in\Sigma^*\mid u\in L\wedge u\in L'\}$			$\{u\in\Sigma^*\mid u\in L\wedge u\notin L'\}$
	$\{u^nv^n\mid u\in L,v\in L',n\in\mathbb{N}\}$	}	

Quels états peuvent être fusionnés sans changer le langage reconnu.

3 avec 4 ☐ 2 avec 4

☐ 1 avec 3 ☐ 0 avec 1 et avec 2

🂹 1 avec 2

☐ Aucune de ces réponses n'est correcte.

Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

0/2

Il existe un ε -NFA qui reconnaisse $\mathcal P$	[\square Il existe un DFA qui reconnaisse ${\cal P}$
Il existe un NFA qui reconnaisse $\mathcal P$	\times	${\cal P}$ ne vérifie pas le lemme de pompage $>$

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

0/2

$$\Box$$
 $(a+b+c)^*$ \Box $a^*+b^*+c^*$ \blacksquare $a^*b^*c^*$ \Box $(abc)^*$

Q.34

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

 $\Box (ab^* + (a+b)^*)(a+b)^+$

 \triangle $(ab^+ + a + b^+)(a(a + b^+))^*$

 \Box $(ab^* + a + b^*)a(a + b)^*$

Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de

Q.36

Sur $\{a,b\}$, quel est le complémentaire de .

2/2

2/2

Fin de l'épreuve.