Tutorial on the ONIOM method for inorganic chemistry

Keiji Morokuma and Thom Vreven

ACS National Meeting Washington, D.C., 2000

2-layer ONIOM

ONIOM2 Potential Energy Surface

ONIOM energy

E(ONIOM) = E(LOW, REAL) + E(HIGH, MODEL) - E(LOW, MODEL)

Potential energy surface well defined, and also derivatives are available.

ONIOM gradient

 $G(ONIOM) = G(LOW,REAL) + G(HIGH,MODEL) \times J - G(LOW,MODEL) \times J$

J is the Jacobian that projects the forces off the link atoms onto the link atom hosts, and is a function of the atomic coordinates of the model system and link atom hosts.

ONIOM Hessian

 $H(ONIOM) = H(LOW,REAL) + J^T \times H(HIGH,MODEL) \times J - J^T \times H(LOW,MODEL) \times J$

(3-layer) ONIOM3

Example

Input

Output

IMOMM (Maseras, Morokuma JCC, 16, p.1170, 1995)

Bond-breaking energy in C₆₀

Geometries of C₆₀ on AM1 level

Singlet-Triplet and Singlet-Quintet Energy Separations

	$S_0 \rightarrow T_1$	$S_0 \rightarrow Q_1$		$S_0 \rightarrow T_1$	$S_0 \rightarrow C$
Real System			Correction Terms		
ROHF/6-31G	48.4 (2.00)	214.8 (6.00)	ΔE(ROHF/6-31G,real←int)	-41.5	29.1
UHF/6-31G	-47.5 (7.40)	198.5 (6.69)	ΔE(UHF/6-31G,real←int)	-117.4	54.2
			$\Delta E(ROHF,int\leftarrow model)$	51.2	59.0
Intermediate Model System			$\Delta E(UHF,int\leftarrow model)$	34.1	45.8
ROHF/6-31G(d)	89.6 (2.00)	185.8 (6.00)	$\Delta E(ROMP2,int\leftarrow model)$	4.6	35.7
UHF/6-31G(d)	69.0 (2.38)	167.2 (6.39)	ΔE(UMP2,int←model)	27.1	54.1
ROMP2/6-31G(d)	73.4	217.4			
UMP2/6-31G(d)	95.8	235.2	Integrated Energies		
			E(G2MS(R):ROHF/6-31G:ROHF/6-31G)	82.3	280.4
Small Model System			E(G2MS(R):UHF/6-31G:UHF/6-31G)	-11.4	268.7
ROHF/6-31G(d)	38.4 (2.00)	126.8 (6.00)	E(G2MS(R):ROMP2:UHF/6-31G)	-40.8	277.2
UHF/6-31G(d)	34.9 (2.01)	121.4 (6.03)	E(G2MS(R):UMP2:ROHF/6-31G)	57.6	270.5
ROMP2/6-31G(d)	68.8	181.7	E(G2MS(R):ROMP2:ROHF/6-31G)		252.
UMP2/6-31G(d)	68.7	181.1	E(G2MS(U):ROMP2:ROHF/6-31G)	35.5	252.8
ROMP2/6-311+G(2df,2p)	71.6	187.8			
UMP2/6-311+G(2df,2p)	71.8	187.9	Experimental	36.1	
UMP4SDQ/6-31G(d)	66.0	177.1			
UCCSD(T) /6-31G(d)	69.3	181.2			
G2MS(ROMP2)	72.0	187.3			
G2MS(UMP2)	72.4	188.0			

G2 methods in combination with ONIOM: Integration in three dimensions

S(ubstituent)-Value test: Testing ONIOM

S-Value test: example

ONIOM(MO:MM)

ONIOM(MO:MM)

ONIOM(MO:MM)

How to recognize improper cancellation in ONIOM(MO:MM)? Safe:

Bond breaking/forming processes at least three bonds from MM region

Might end up with unnecessarily expensive model system

Easy:

Calculate E(MM,real) - E(MM,model) = S(MM) for alternative connectivities

S-values for reactant at UFF level (Hartrees):

	Bonds as in reactant			Bonds a		
	Model	Real	S-value	Model	Real	S-value
Stretch	0.00674	0.01197	0.00523	0.00349	0.00873	0.00523
Bend	0.47259	0.68288	0.21029	0.03970	0.10388	0.06418
Torsion	0.0029	0.00681	0.00381	0.00278	0.00659	0.00381
Improper torsion	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Vanderwaals	0.00618	0.01213	0.00595	0.06560	0.07128	0.00568
Total	0.48849	0.71378	0.22529	0.11158	0.19048	0.07891

ONIOM(MO:MM)

ONIOM Development and Applications

Group members and visitors

Mr. Sung MO

Dr. Maricel TORRENT

Dr. Peter B. KARADAKOV

Mr. Suyong RE

Dr. Robert FROESE

Dr. Stefan DAPPRICH (Stefan III)

Dr. Istvan KOMAROMI (Istvan V)

Ms. Suzie BYUN

Mr. Dmitri KHOROSHUN

Dr. Stephan IRLE (Stephan IV)

Dr. Djamaladdin G. MUSAEV

Dr. Max HOLTHAUSEN

Dr. Toshiaki MATSUBARA

Dr. Mats SVENSSON

Dr. Stéphane HUMBEL (Stéphane II)

Prof. Nobuaki KOGA

Dr. Stefan SIEBER (Stefan I)

Dr. Feliu MASERAS

Collaborators

Dr. Mike FRISCH

Dr. Odon FARKAS

Prof. H. Bernhard SCHLEGEL

Dr. Benedetta MENNUCCI

Prof. Jacopo TOMASI

Financial Support

US National Science Foundation

Gaussian, Inc.