CheatSheet di Ricerca Operativa e Pianificazione delle Risorse

Fabio Ferrario

@fefabo

2022/2023

Indice

1		grammazione Lineare	3
	1.1	Il metodo del Simplesso	3
		1.1.1 Due Fasi	5
	1.2	Dualitá	6
		1.2.1 Passare da Primale a Duale	6
	1.3	Gli Scarti Complementari	7
2	Ott	imizzazione Non Lineare	8
	2.1	Algoritmo del Gradiente	8
		Algoritmo di Newton	
3	Ott	imizzazione Non Lineare Vincolata	١0
	3.1	Funzione Lagrangiana	10
	3.2	Condizioni KKT	
		3.2.1 Differenziare tra Max e Min	
		3.2.2 Risolvere il Sistema	
		3.2.3 Trovare i punti di Minimo e Massimo	12

Capitolo 1

Programmazione Lineare

1.1 Il metodo del Simplesso

La forma Tabellare

V. BASE	Eq	Z	x_1	x_2		x_n	T. Noto
Z	R_0	1	c_1	c_2		c_n	0
x_1	R_1	0	a_{11}	a_{12}		a_{1n}	b_1
÷	:	•	:	<i>a</i> ₁₂ ∶	٠	÷	:
x_m	R_n			a_{m2}			b_m

Forma Aumentata Per portare il problema in forma aumentata:

	Minoreuguale	<u>≤</u>	=	+ Slack		
Vincoli	Vincoli Maggioreuguale		· ≥	=	- Surplus	
	Uguale	=	Invariato			
Variabili non positive	$x_i \le 0$	$x_i = -x_i' \text{ con } x_i' \ge 0$				
variabili non positive	Ogni apparizione di x_i viene sostituita con $-x_i'$					
Funzione Obiettivo	$Z = \Sigma x$	$_{i}$ \rightarrow	Z	$-\Sigma x_i = 0$		

Test di Ottimalità Una volta portato il problema in forma tabellare, eseguo il test di ottimalitá:

Tipo di Problema	Massimo	Minimo	
Soluzione Ottima sse	Coefficienti riga (0) ≥ 0	Coefficienti riga (0) ≤ 0	

Nuova Soluzione di Base Una volta verificato che la soluzione non é ottima, bisogna calcolare una nuova soluzione di base:

Definisco:

Tipo di Problema	Massimo	Minimo	
Variabile Entrante (Colonna Pivot)	Coefficiente riga (0) più Piccolo (Più Negativo)	Coefficiente riga (0) più Grande (Più Positivo)	
Variabile Uscente (Riga Pivot)	Test del Rapporto Minimo		
Numero Pivot	Intersezione Riga/Colonna Pivot		

Per la nuova Riga Pivot				
Variabile di Base	\rightarrow	Variabile Entrante.		
Coefficienti e Termine Noto	\rightarrow	Divisi per Numero Pivot.		

per ogni altra Riga						
Definisco	P_i i-esimo coefficiente della nuova riga pivot					
Dennisco	X_p coefficiente della colonna pivot nella riga in esame.					
il coefficiente i-esimo x_i della riga in esame X diventa:						
$X_p > 0$	$X_p > 0 x_i := x_i - X_p \cdot P_i$					
$X_p < 0 x_i := x_i + X_p \cdot P_i$						
$X_p = 0$	$X_p = 0$ La riga in esame resta Invariata					

1.1.1 Due Fasi

Funzione Obiettivo: Somma di tutte le variabili artificiali introdotte. (min $z = \Sigma y_i \implies \max z = -\Sigma y_i \implies \max z + \Sigma y_i = 0$) Vincoli: Per ogni vincolo che viene violato dalla soluzione Origine, sommo una variabile artificiale (unica) con coefficiente 1.

Tableau iniziale: Le variabili artificiali devono essere in base, quindi devo azzerarle in R(0) sottraendogli il vincolo a cui sono associate.

Una volta fatte entrare in base tutte le variabili artificiali, posso iterare normalmente.

Finito di iterare, avró tutte le variabili artificiali =1 in (0), rimuovo quindi le colonne artificiali e ripristino la funzione obiettivo.

Adesso faccio entrare in base (nello stesso modo di prima) le variabili che devono essere in base. poi itero normalmente.

1.2 Dualitá

1.2.1 Passare da Primale a Duale

	Primale	Duale	Ritorno
Funzione Obiettivo	$\max c^T x$	$\min b^T \lambda$	$\max c^T x$
	$x_i^T a \le c$	$\lambda_i \ge 0$	$x_i^T a \le c$
Vincoli ⇒ Non Negativitá	$x_i^T a \ge c$	$\lambda_i \le 0$	$x_i^T a \ge c$
	$x_i^T a = c$	λ_i Free	$x_i^T a = c$
	$x_j \ge 0$	$\lambda_j^T a \ge c$	$x_j \ge 0$
Non Negatività \Longrightarrow Vincoli	$x_j \le 0$	$\lambda_j^T a \le c$	$x_j \le 0$
	x_j Free	$\lambda_j^T a = c$	x_j Free

Metodo con le matrici Un trucco per generare rapidamente il duale é utlizzare le matrici:

Avendo il seguente problema di PL:

si riconoscono opportunamente gli elementi che compongono il duale:

$$\begin{array}{c} \text{M2X} & \text{C}_{1} \times_{1} \\ \text{M}_{2} \times_{2} \\ \text{M}_{3} \times_{1} \\ \text{M}_{4} \times_{1} \times_{1} \\ \text{M}_{2} \times_{2} \times_{2} \\ \text{M}_{3} \times_{2} \times_{2} \times_{2} \\ \text{M}_{4} \times_{1} \times_{1} \\ \text{M}_{5} \times_{2} \times_{2} \times_{2} \\ \text{M}_{5} \times_{1} \times_{1} \\ \text{M}_{6} \times_{1} \times_{1} \times_{2} \\ \text{M}_{7} \times_{1} \times_{1} \times_{2} \times_{2} \times_{2} \\ \text{M}_{1} \times_{1} \times_{1} \times_{1} \times_{2} \times_{2} \times_{2} \\ \text{M}_{2} \times_{1} \times_{1} \times_{1} \times_{2} \times_{2} \times_{2} \\ \text{M}_{2} \times_{1} \times_{1} \times_{1} \times_{2} \times_{2} \times_{2} \\ \text{M}_{3} \times_{1} \times_{1} \times_{1} \times_{2} \times_{2} \times_{2} \\ \text{M}_{4} \times_{1} \times_{1} \times_{1} \times_{2} \times_{2} \times_{2} \\ \text{M}_{5} \times_{1} \times_{1} \times_{1} \times_{2} \times_{2} \times_{2} \times_{2} \\ \text{M}_{5} \times_{1} \times_{1} \times_{1} \times_{2} \times_{2} \times_{2} \times_{2} \\ \text{M}_{6} \times_{1} \times_{1} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \\ \text{M}_{7} \times_{1} \times_{1} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \\ \text{M}_{7} \times_{1} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \\ \text{M}_{7} \times_{1} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \\ \text{M}_{7} \times_{1} \times_{2} \times_{$$

Che come problema duale generano:

min
$$b_1\lambda_1 + b_2\lambda_2$$

$$a_{11}\lambda_1 + a_{21}\lambda_1 \gg c_1$$

$$a_{12}\lambda_2 + a_{22}\lambda_2 \gg c_2$$

$$\lambda_1 7,0 \quad \lambda_2 7,0$$

1.3 Gli Scarti Complementari

Se abbiamo una soluzione ammissibile per il primale possiamo verificarne l'ottimalità tramite le condizioni degli scarti complementari: Quindi, data x^* :

$x_i^* \neq 0$	i-esimo (corrispondente) vincolo del duale attivo.
i-esimo vincolo del primale NON attivo	$\lambda_i = 0$

Pongo quindi a sistema le equazioni trovate per trovare la soluzione corrispondente del Duale. Se i valori delle funzioni obiettivo sono uguali, allora le due soluzioni sono entrambe ottime.

Capitolo 2

Ottimizzazione Non Lineare

2.1 Algoritmo del Gradiente

Data una funzione a piú variabili f(X) e un punto x^0 , ogni passo del metodo del gradiente si effettua in questo modo:

- 1. Calcolo $\nabla f(x^k)$, con la direzione di crescita $d^k = \pm \nabla f(x^k)$ (+ max e min)
- 2. Calcolo $x^{k+1} = x^k \pm \alpha^k \cdot d^k$
- 3. In cui α^k é il max di $f(x^k \pm \alpha^k \cdot d^k)$. ovvero Valuto f nel nuovo punto e massimizzo la funzione risultante $g(\alpha)$, generalmente in modo analitico $(g'(\alpha) = 0)$.
- 4. Sostituisco α trovato in x^{k+1} .
- 5. Valuto i criteri di arresto (Con epsilon o con un numero predefinito di iterazioni, e nel caso ripeto)

Per verificare che il punto trovato sia un punto di ottimo, semplicemente controllo che $\nabla f(x^*) = 0$.

2.2 Algoritmo di Newton

Data una funzione a piú variabili f(X) e un punto x^0 , una iterazione del metodo di Newton si effettua in questo modo:

- 1. Calcolo $\nabla f(x^k)$ e $H(x^k)$.
- 2. Calcolo il vettore spostamento, ponendo: $H_f(x^0)V = -\nabla f(x^0)$ e risolvendo il sistema di equazioni.
- 3. trovo $x^{k+1} = x^k + V$, in cui V é il vettore spostamento.

Capitolo 3

Ottimizzazione Non Lineare Vincolata

3.1 Funzione Lagrangiana

In un problema di ottimizzazione vincolata definito come:

opt
$$f(x_1,...,x_n)$$
, $g_m(x_1,...,x_n) = 0$ Vincoli di Uguaglianza, $h_l(x_1,...,x_n) \leq 0$ Vincoli di Disguaglianza,

Generiamo la Lagrangiana cosí definita:

$$L(V) = f(X) \pm \sum_{i=0}^{m} \lambda_i \cdot g_i(X) \pm \sum_{j=0}^{l} \mu_j \cdot h_j(X)$$

in cui \pm diventa + per i problemi di MIN e – per i problemi di MAX, Abbiamo che λ sono i moltiplicatori lagrangiani associati ai vincoli di Uguaglianza, e μ quelli associati ai vincoli di Disuguaglianza.

con $V=\{x_1,...,x_n,\lambda_1,...,\lambda_m,\mu_1,...,\mu_l\}$, ovvero tutte le variabili e $X=\{x_1,...,x_n\}$, ovvero tutte le variabili originiali.

3.2 Condizioni KKT

Tabella Bisogna quindi generare un sistema che avrá n + m + l incognite utilizzando le KKT, riportate qui in modo semplificato:

Stazionarietá Problemi di MIN (-)				
$\nabla f = -\sum \lambda_i \cdot \nabla g_i - \sum \mu_j \cdot \nabla h_j$				
Stazionarietá Problemi di MAX (+)				
$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$				
Ammissibilitá Vincoli Uguaglianza	\forall $g_i = 0$			
Ammissibilitá Vincoli Disuguaglianza	$\forall \qquad h_j \le 0$			
Condizione di Complementarietá	$\forall \qquad \qquad \mu_j \cdot h_j = 0$			
Non Negativitá di μ	$\forall \qquad \qquad \mu_j \geq 0$			

Dove con ∀ si intende chiaramente tutti quelli presenti.

3.2.1 Differenziare tra Max e Min

Quando si usano le KKT bisogna differenziare tra problemi di Max e Problemi di Min. Ogni problema ha le seguenti possibili combinazioni:

G P				
Problema di Massimo	$\mu_i \ge 0$	$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$		
1 Toblema di Massimo	$\mu_i \le 0$	$\nabla f = -\sum \lambda_i \cdot \nabla g_i - \sum \mu_j \cdot \nabla h_j$		
Problema di Minimo	$\mu_i \ge 0$	$\sqrt{g} = \sum_{i} x_i \cdot \sqrt{g_i} = \sum_{i} \mu_j \cdot \sqrt{m_j}$		
Tropicina di Williamo	$\mu_i \le 0$	$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$		

é utile sapere che se scegliessimo di avere la funzione obiettivo **Sempre come** somma di elementi negativi, sia per i problemi di massimo che di minimo, allora potremmo, in base ai valori di μ , sapere in un solo calcolo se il punto é candidato a massimo o minimo.

3.2.2 Risolvere il Sistema

Per risolvere il sistema, o lo si risolve con il metodo classico, oppure tramite questo metodo: Con la condizione di **Complementarietá** sappiamo che:

$$\mu_j \cdot h_j = 0 \implies \mu_j = 0 \lor h_j = 0$$

Quindi, con l variabili mu_j abbiamo 2^l combinazioni di sistemi, in cui $mu_j =$ $0 \lor \mu_i \neq 0$. Cosí possiamo risolvere le 2^l combinazioni per trovare tutti i punti candidati.

Trovare i punti di Minimo e Massimo 3.2.3

I punti trovati dalle condizioni KKT sono solo candidati a essere punti di max/min, perché le KKT sono condizioni Necessarie ma non Sufficienti.

Le condizioni KKT diventano Sufficienti se:

- Per i Punti di Massimo:
 - -f é concava.
 - I vincoli $h_i(X)$ sono tutti Convessi.
- Per i Punti di Minimo:
 - -f é convessa.
 - I vincoli $h_i(X)$ sono tutti Convessi.