SESSION 2019

ÉPREUVE DE MATHÉMATIQUES

DURÉE: 4 heures

L'énoncé comporte 5 pages, numérotées de 1 à 5.

Tous documents et appareils électroniques interdits.

Partie 1 : analyse-algèbre

Cette partie est constituée de deux exercices indépendants

Exercice 1

Dans tout l'exercice, n désigne un entier supérieur ou égal à 1.

Une matrice M de $\mathcal{M}_n(\mathbb{R})$ est dite à diagonale propre si les valeurs propres de M sont toutes réelles et si ses termes diagonaux sont ses valeurs propres.

On note \mathcal{E}_n l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ à diagonale propre, $\mathcal{A}_n(\mathbb{R})$ le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices antisymétriques (c'est-à-dire vérifiant ${}^tA=-A$).

- 1. (a) Montrer que \mathcal{E}_n n'est pas vide.
 - (b) L'ensemble \mathcal{E}_n est-il un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$?
 - (c) Montrer que toute matrice de $\mathcal{M}_n(\mathbb{R})$ est somme de deux matrices de $\mathcal{E}_n(\mathbb{R})$.
 - (d) Caractériser les matrices de \mathcal{E}_2 .
- 2. Soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice symétrique de $\mathcal{M}_n(\mathbb{R})$ et $\lambda_1, \ldots, \lambda_n$ ses valeurs propres non nécessairement distinctes.
 - (a) Établir l'égalité suivante :

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^2 = \sum_{i=1}^{n} \lambda_i^2$$

- (b) Déterminer l'ensemble des matrices symétriques réelles à diagonale propre.
- 3. Soit A une matrice antisymétrique à diagonale propre.
 - (a) Montrer que ^tAA est nilpotente.
 - (b) En déduire que A=0. (On pourra utiliser entre autres le résultat suivant : toute matrice M de $\mathcal{M}_n(\mathbb{R})$ est trigonalisable dans \mathbb{C} , c'està-dire semblable à une matrice triangulaire dont les termes diagonaux sont les valeurs propres de M).
- 4. (a) Quelle est la dimension de $\mathcal{A}_n(\mathbb{R})$?
 - (b) Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ tel que $F \subset \mathcal{E}_n$. Montrer que $\dim(F) \leqslant \frac{n(n+1)}{2}$.
 - (c) Quelle est la dimension maximale d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, inclus dans \mathcal{E}_n ?

Exercice 2

On considère la suite de fonctions définie par : $u_n(x) = \prod_{k=1}^n \left(1 + \frac{x}{n} f\left(\frac{k}{n}\right)\right)$, où f est une fonction continue de [0,1] dans |R|, non identiquement nulle, et x appartient à [-A,A], avec A>0. On se propose d'étudier la limite de cette suite et d'en trouver un développement asymptotique quand n tend vers $+\infty$.

Première partie

- 1. Montrer que, pour n assez grand, pour tout $x \in [-A, A]$ et pour tout entier $k \in \{1, ..., n\}$: $\left| \frac{x}{n} f\left(\frac{k}{n}\right) \right| < 1$.
- 2. Montrer que, si $|u| \le \frac{1}{2}$, alors: $0 \le u \ln(1+u) \le u^2$.
- 3. En déduire qu'il existe K tel que, pour n assez grand et pour tout $x \in [-A, A]$:

$$0 \le \sum_{k=1}^{n} \frac{x}{n} f\left(\frac{k}{n}\right) - \sum_{k=1}^{n} \ln\left(1 + \frac{x}{n} f\left(\frac{k}{n}\right)\right) \le \frac{K}{n}.$$

4. En déduire la limite u(x) de la suite $\{u_n(x)\}$, quand n tend vers $+\infty$, qu'on écrira sous la forme $u(x)=e^{Lx}$, en précisant la valeur de L.

Deuxième partie

On étudie ici la convergence *uniforme* de la suite $\{u_n(x)\}$ sur [-A, A].

5

- a) Montrer qu'il existe une constante B telle que, pour n assez grand et pour tout $x\in [-A,\,A]\ :\ \begin{cases} \left|\ln\left(u_n(x)\right)\right|\leq B\\ \left|\ln\left(u(x)\right)\right|\leq B \end{cases}.$
- b) En déduire que, dans les mêmes conditions : $|u_n(x)-u(x)| \le |\ln(u_n(x))-L|x| e^B$.

6,

- a) Montrer qu'il existe une constante C telle que, pour n assez grand et pour tout $x \in [-A, A] : \left| \ln \left(u_n(x) \right) L \, x \right| \leq \frac{C}{n} + A \left[\frac{1}{n} \sum_{k=1}^n f \left(\frac{k}{n} \right) L \right] .$
- b) En déduire la convergence *uniforme* de la suite $\{u_n(x)\}$ sur [-A,A].

Troisième partie

On va chercher ici un équivalent de $u_n(x)-L x$ quand $n \to +\infty$. Dans toute la suite, on considère un x fixé non nul dans [-A,A].

7. Montrer que:
$$u_n(x) - e^{Lx} \sim e^{Lx} \left[\ln(u_n(x)) - Lx \right]$$
 quand $n \to +\infty$.

8. Montrer que, si
$$|u| \le \frac{2}{3}$$
, alors: $\left| \ln(1+u) - u + \frac{u^2}{2} \right| \le |u|^3$.

9. Montrer qu'il existe une constante
$$D$$
 telle que, pour n assez grand :

$$\ln(u_n(x)) - L \ x = x \left[\frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}) - L \right] - \frac{x^2}{2n^2} \sum_{k=1}^n f^2(\frac{k}{n}) + D \frac{|x|^3}{n^2}.$$

10. En décomposant le terme
$$\frac{1}{n}\sum_{k=1}^n f(\frac{k}{n}) - L$$
 sous forme d'une somme d'intégrales sur les

intervalles
$$\left[\frac{k-1}{n},\frac{k}{n}\right]$$
 , donner un équivalent de $\frac{1}{n}\sum_{k=1}^n f(\frac{k}{n}) - L$ quand $n \to +\infty$.

11. En déduire un équivalent de
$$u_n(x)-L x$$
 quand $n \to +\infty$.

Partie 2 : probabilités-statistiques

Cette partie est constituée de deux exercices indépendants

Exercice 1

On considère une suite $(X_k)_{k\in\mathbb{N}^*}$ de variables aléatoires indépendantes, définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, de même loi, admettant toutes un moment d'ordre 2. On suppose de plus que les variables X_k sont centrées et réduites, c'est-à-dire que $\mathbb{E}(X_k) = 0$ et que $\mathrm{Var}(X_k) = 1$.

On note Φ la fonction de répartition de la loi normale centrée réduite.

Pour tout entier naturel n non nul et tout réel α strictement positif, on pose :

$$S_n = \sum_{k=1}^n X_k, \quad U_n(\alpha) = \frac{1}{n^{\alpha}} S_n, \quad T_n(\alpha) = \frac{1}{n^{\alpha}} \sum_{k=1}^n S_k$$

- 1. (a) Montrer que si $\alpha > \frac{1}{2}$, alors la suite $(U_n(\alpha))_{n\geqslant 1}$ converge en probabilité vers une variable certaine que l'on précisera.
 - (b) Montrer que si $\alpha > \frac{3}{2}$, alors la suite $(T_n(\alpha))_{n\geqslant 1}$ converge en probabilité vers une variable certaine que l'on précisera.

Dans la suite de l'exercice, on pose, pour tout entier naturel n non nul :

$$\begin{cases} U_n = U_n(\frac{1}{2}) = \frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}} \\ V_n = \frac{X_{n+1} + X_{n+2} + \dots + X_{2n}}{\sqrt{n}} \\ Y_n = (\sqrt{2} - 1)U_n - V_n \end{cases}$$

- 2. Soit ε un réel strictement positif.
 - (a) Montrer que les suites $(\mathbb{P}([U_n \geqslant \varepsilon]))_{n \in \mathbb{N}^*}$ et $(\mathbb{P}([V_n \leqslant -\varepsilon]))_{n \in \mathbb{N}^*}$ admettent des limites finies quand n tend vers $+\infty$, limites que l'on exprimera à l'aide de Φ .
 - (b) On suppose qu'il existe un réel ℓ tel que $\lim_{n\to+\infty} \mathbb{P}([Y_n\geqslant \sqrt{2}\varepsilon])=\ell$. Montrer que $\ell\geqslant \left(1-\Phi(\varepsilon)\right)^2$.
 - (c) En déduire que Y_n ne converge pas en probabilité vers 0.
- 3. (a) Montrer que si la suite $(U_n)_{n\in\mathbb{N}^*}$ convergeait en probabilité vers une variable aléatoire U, alors la suite $U_{2n}-U_n$ convergerait en probabilité vers 0.
 - (b) En déduire qu'il n'existe pas de variable Z telle que U_n converge en probabilité vers Z.
 - (c) Quel résultat vient-on de montrer concernant le théorème de la limite centrée?
- 4. Dans cette question, on suppose que α est strictement inférieur à $\frac{1}{2}$ et on admet le résultat suivant : Si deux suites de variables aléatoires (A_n) et (B_n) sont telles que (A_n) converge en loi vers la loi d'une variable A et (B_n) converge en probabilité vers une constante c, alors la suite (A_nB_n) converge en loi vers la loi de la variable cA et la suite (A_n+B_n) converge en loi vers la loi de la variable A+c.
 - (a) Justifier la convergence en loi de la suite de variables aléatoires $(Z_n)_{n\geqslant 1}$ définie par $Z_n=\frac{1}{|U_n|+n^{\alpha-\frac{1}{2}}}$.
 - (b) En déduire que la suite $(W_n)_{n\geqslant 1}$, où $W_n=\frac{1}{1+|U_n(\alpha)|}$, converge en probabilité vers 0.

Exercice 2

On dispose d'observations d'une variable d'intérêt X, soit x_i , i = 1, ..., n, s'interprétant comme les réalisations de variables aléatoires X_i , indépendantes et de même loi que celle de X.

Le statisticien envisage deux spécifications possibles de cette loi :

- soit la loi normale $\mathcal{N}(\theta,\theta)$, de densité f_1
- soit la loi normale $\mathcal{N}(\theta, \theta^2)$ de densité f_2 .

Dans les deux cas, θ est un paramètre strictement positif.

Préambule

On considère la fonction g définie par : $g(x) = e^{-ax^2 + bx + c}$ où a > 0. Montrer que cette fonction est, à une constante multiplicative près, la densité d'une loi normale dont on précisera les paramètres.

Problème

Afin de choisir entre les deux spécifications des lois ci-dessus, le statisticien construit un modèle mixte, où les observations suivent la loi de densité $f = A(\lambda, \theta) f_1^{\lambda} f_2^{1-\lambda}$, où λ est un paramètre de [0,1] et f_1 et f_2 les densités respectives des lois $\mathcal{N}(\theta, \theta)$ et $\mathcal{N}(\theta, \theta^2)$.

- 1. (a) Montrer que la loi des observations (de densité f) est une loi normale dont on précisera les paramètres.
 - (b) Calculer la fonction $A(\lambda, \theta)$.
- 2. On rappelle que la vraisemblance du modèle est la fonction (qui dépend par ailleurs de θ et de λ) :

$$(x_1,\ldots,x_n)\longmapsto L(x_1,\ldots,x_n)=\prod_{i=1}^n f(x_i)$$

Les estimateurs du maximum de vraisemblance de θ et de λ , notés $\hat{\theta}_n$ et $\hat{\lambda}_n$, sont les quantités (dépendants des x_i) maximisant la vraisemblance, considérée comme dépendant de θ et de λ , à x_i fixés, ou, ce qui est équivalent, son logarithme. Ils peuvent être considérés chacun comme des réalisations d'une fonction des variables aléatoires X_i . Les équations de vraisemblance sont les conditions du premier ordre que doivent satisfaire ces estimateurs (on ne demande pas de vérifier que ces conditions caractérisent bien un maximum).

- (a) Écrire les équations de vraisemblance permettant de déterminer les estimateurs $\hat{\theta}_n$ et $\hat{\lambda}_n$.
- (b) Calculer explicitement ces estimateurs, qu'on exprimera en fonction des moments empiriques $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ et

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

- 3. Étudier la convergence en probabilité de $\hat{\lambda}_n$, quand n tend vers $+\infty$.
- 4. (a) Étudier la convergence en probabilité et la normalité asymptotique de S_n^2 , quand n tend vers $+\infty$.

[On rappelle que la normalité asymptotique consiste à étudier la convergence en loi vers une loi normale de $\sqrt{n}(S_n^2 - s^2)$ où s^2 est la limite en probabilité de S_n^2 .]

- (b) En déduire la normalité asymptotique de $\hat{\lambda}_n$, sous l'hypothèse $H_0: \lambda = 0$, quand n tend vers $+\infty$.
- 5. On suppose que l'on sait que θ ne peut prendre ses valeurs que dans $]0,\varepsilon]$, avec $0<\varepsilon<1$. Proposer un test de l'hypothèse $H_0:\lambda=0$ contre $H':\lambda\neq 0$ avec une région critique indépendante de θ , pour un risque de première espèce valant au plus α .

[On rappelle que le risque de première espèce est la probabilité de refuser (à tort) l'hypothèse nulle alors qu'elle est vraie]

- 6. (a) Étudier la normalité asymptotique de $\hat{\lambda}_n$ sous l'hypothèse $H_1: \lambda = 1$, quand n tend vers $+\infty$.
 - (b) En déduire la puissance asymptotique (en utilisant les approximations normales démontrées ci-dessus, lorsque n est assez grand) du test visé en 5, lorsque $\lambda = 1$, pour un risque de première espèce fixé au plus à α .

On l'exprimera en introduisant la fonction de répartition Φ de la loi normale centrée réduite.

[On rappelle que la puissance est la probabilité de refuser (à raison) l'hypothèse nulle lorsqu'elle est fausse, ici dans le cas particulier $\lambda = 1$.]