

DUALIDADE

Prof. Dr. Claudio Barbieri da Cunha

Escola Politécnica

cbcunha@usp.br

Considere o seguinte problema de programação linear

Maximizar
$$Z = 4x_1 + x_2 + 3x_3$$

sujeito a
 $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$,
 $x_1, x_2, x_3 \ge 0$

Uma possível solução viável para o mesmo seria:

$$x_1 = 0$$

 $x_2 = 0$
 $x_3 = 3$
 $Z = 9$

 Cada solução viável (vértice) representa um limitante inferior da função objetivo, ou seja:

$$Z \leq Z_{max}$$

Examinemos agora as duas restrições do problema

Maximizar
$$Z = 4x_1 + x_2 + 3x_3$$

sujeito a
 $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$

 Também pode-se obter facilmente um limitante <u>superior</u> para Z, através da combinação linear das restrições, com pesos 2 e 3:

$$11x_1 + 5x_2 + 3x_3 \le 11$$

Comparemos essa expressão com a função objetivo

Maximizar
$$Z = 4x_1 + x_2 + 3x_3$$

sujeito a
 $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$

$$11x_1 + 5x_2 + 3x_3 \le 11$$

 $\ge \ge \ge$
 $Z = 4x_1 + 1x_2 + 3x_3$

Portanto, podemos concluir que:

$$Z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11$$

Logo, $Z = 4x_1 + x_2 + 3x_3 \le 11$

Portanto **Z = 11** é um limitante <u>superior</u> da função objetivo.

Esse procedimento de combinação linear pode ser generalizado:

Maximizar
$$Z = 4x_1 + x_2 + 3x_3$$

sujeito a
 $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$

• A fim de buscar o menor limitante superior para Z, com pesos π_1 e π_2 :

Analisando novamente a função objetivo e a expressão

Maximizar
$$Z = 4x_1 + x_2 + 3x_3$$

sujeito a
 $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$

$$(\pi_1 + 3\pi_2)x_1 + (4\pi_1 - \pi_2)x_2 + \pi_2 x_3 \le \pi_1 + 3\pi_2$$

$$\ge \ge \ge$$

$$Z = 4x_1 + 1x_2 + 3x_3$$

Chegamos ao seguinte problema de programação linear:

$$\begin{array}{l} \text{Minimizar } \pi_1 + 3\pi_2 \\ \text{sujeito a} \\ \pi_1 + 3\pi_2 \geq 4 \\ 4\pi_1 \text{-} \ \pi_2 \geq 1 \\ \pi_2 \geq 3 \\ \pi_1 \geq 0, \ \pi_2 \geq 0 \end{array}$$

Definindo o Dual

Dual:

Minimizar $\pi_1 + 3\pi_2$

sujeito a

$$\begin{array}{cccc} \pi_1 + 3\pi_2 & \geq & 4 \\ 4\pi_1 - \pi_2 & \geq & 1 \\ & \pi_2 & \geq & 3 \\ \pi_1 \geq 0, \, \pi_2 \geq 0 \end{array}$$

Primal:

Maximizar
$$4x_1 + x_2 + 3x_3$$

sujeito a

$$x_1 + 4x_2 \le 1$$

 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

Genericamente, o problema Primal e o Dual Associado

Primal Problem

Maximize
$$Z = \sum_{j=1}^{n} c_j x_j$$
,

subject to

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad \text{for } i = 1, 2, \dots, m$$

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j, \quad \text{for } j = 1, 2, \dots, n$$
and
$$x_j \ge 0, \quad \text{for } j = 1, 2, \dots, m.$$

$$y_i \ge 0, \quad \text{for } i = 1, 2, \dots, m.$$

$$x_i \ge 0$$
, for $j = 1, 2, \dots, n$.

Dual Problem

Minimize
$$W = \sum_{i=1}^{m} b_i y_i$$
,

subject to

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j, \quad \text{for } j = 1, 2, \dots, n$$

$$y_i \ge 0$$
, for $i = 1, 2, ..., m$

Primal e Dual Associados

Primal Problem

Maximize Z = cx,

subject to

 $Ax \leq b$

and

 $x \ge 0$.

Dual Problem

Minimize W = yb,

subject to

 $yA \ge c$

and

 $y \ge 0$.

 One Problem
 Other Problem

 Constraint $i \leftarrow \longrightarrow$ Variable i

 Objective function $\leftarrow \longrightarrow$ Right sides

Exemplo de dualidade (1)

Primal Problem in Algebraic Form

Maximize
$$Z = 3x_1 + 5x_2$$
,
subject to
$$x_1 \leq 4$$

$$2x_2 \leq 12$$

$$3x_1 + 2x_2 \leq 18$$
and $x_1 \geq 0$, $x_2 \geq 0$.

Dual Problem in Algebraic Form

Minimize
$$W = 4y_1 + 12y_2 + 18y_3$$
,
subject to $y_1 + 3y_3 \ge 3$
 $2y_2 + 2y_3 \ge 5$
and $y_1 \ge 0$, $y_2 \ge 0$, $y_3 \ge 0$.

Primal Problem in Matrix Form

Maximize
$$Z = \begin{bmatrix} 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, subject to
$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$
 and
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Dual Problem in Matrix Form

Minimize
$$W = [y_1, y_2, y_3] \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$

subject to
$$[y_1, y_2, y_3] \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \end{bmatrix} \ge [3, 5]$$
and
$$[y_1, y_2, y_3] \ge [0, 0, 0].$$

Exemplo de dualidade (1)

Primal

Maximize
$$z = 0.043x_A + 0.027x_B + 0.025x_C + 0.022x_D + 0.045x_E$$
,

subject to:

Cash
$$x_{A} + x_{B} + x_{C} + x_{D} + x_{E} \le 10$$
,
Governments $x_{B} + x_{C} + x_{D} \ge 4$,
Quality $0.6x_{A} + 0.6x_{B} - 0.4x_{C} - 0.4x_{D} + 3.6x_{E} \le 0$,
Maturity $4x_{A} + 10x_{B} - x_{C} - 2x_{D} - 3x_{E} \le 0$,
 $x_{A} \ge 0$, $x_{B} \ge 0$, $x_{C} \ge 0$, $x_{D} \ge 0$, $x_{E} \ge 0$.

Primal Ajustado

Maximize $z = 0.043x_A + 0.027x_B + 0.025x_C + 0.022x_D + 0.045x_E$,

subject to:

$$x_{A} + x_{B} + x_{C} + x_{D} + x_{E} \le 10,$$
 $-x_{B} - x_{C} - x_{D} \le -4,$
 $0.6x_{A} + 0.6x_{B} - 0.4x_{C} - 0.4x_{D} + 3.6x_{E} \le 0,$
 $4x_{A} + 10x_{B} - x_{C} - 2x_{D} - 3x_{E} \le 0,$
 $x_{A} \ge 0, \quad x_{B} \ge 0, \quad x_{C} \ge 0, \quad x_{D} \ge 0, \quad x_{E} \ge 0.$

Exemplo de dualidade (1)

Primal ajustado

Maximize $z = 0.043x_A + 0.027x_B + 0.025x_C + 0.022x_D + 0.045x_E$,

subject to:

$$x_{A} + x_{B} + x_{C} + x_{D} + x_{E} \leq 10,$$

$$- x_{B} - x_{C} - x_{D} \leq -4,$$

$$0.6x_{A} + 0.6x_{B} - 0.4x_{C} - 0.4x_{D} + 3.6x_{E} \leq 0,$$

$$4x_{A} + 10x_{B} - x_{C} - 2x_{D} - 3x_{E} \leq 0,$$

$$x_{A} \geq 0, \quad x_{B} \geq 0, \quad x_{C} \geq 0, \quad x_{D} \geq 0, \quad x_{E} \geq 0.$$

Dual

$$Minimize v = 10y_1 - 4y_2,$$

subject to:

$$y_1$$
 + 0.6 y_3 + 4 y_4 \ge 0.043,
 y_1 - y_2 + 0.6 y_3 + 10 y_4 \ge 0.027,
 y_1 - y_2 - 0.4 y_3 - y_4 \ge 0.025,
 y_1 - y_2 - 0.4 y_3 - 2 y_4 \ge 0.022,
 y_1 + 3.6 y_3 - 3 y_4 \ge 0.045,

O Problema Dual

O DUAL PL:

- Maximizar $\sum_{i=1,m}$ (-b_i) π_i

sujeito a

$$\sum_{i=1,m} (-a_{ij}) \pi_i \leq (-c_j)$$

$$\pi_i \geq 0$$

para todo j = 1, 2, ..., n para todo i = 1, 2, ..., m

DUAL DO DUAL PL:

-Minimizar $\sum_{j=1,n} (-c_j)x_j$

sujeito a

$$\sum_{j=1,n} (-a_{ij}) x_j \ge (-b_j)$$

$$x_j \ge 0$$

Que é exatamente o problema primal.

Dual do Dual

Resulta no primal!

O Teorema Fraco da Dualidade

TEOREMA:

Se $(x_1, x_2, ..., x_n)$ for viável para o problema primal e $(\pi_1, \pi_2, ..., \pi_m)$ for viável para o problema dual, então

$$\sum\nolimits_{j=1,n}\,\boldsymbol{c}_{j}\boldsymbol{x}_{j}\quad\leq\quad\sum\nolimits_{i=1,m}\,\pi_{i}\;\boldsymbol{b}_{i}$$

PROVA:

$$\begin{split} \sum_{j=1,n} c_j x_j &\leq & \sum_{j=1,n} \left(\sum_{i=1,m} \pi_i \ a_{ij} \right) x_j \\ &= & \sum_{j=1,n} \sum_{i=1,m} \pi_i \ a_{ij} x_j \\ &= & \sum_{i=1,m} \left(\sum_{j=1,n} a_{ij} x_j \right) \pi_i \\ &\leq & \sum_{i=1,m} b_i \pi_i \end{split}$$

Implicações do Teorema Fraco da Dualidade

TEOREMA:

Se $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ for viável para o problema primal e $(\pi_1, \pi_2, \dots, \pi_m)$ for viável para o problema dual e $\sum_{j=1,n} \mathbf{c}_j \mathbf{x}_j = \sum_{i=1,m} \mathbf{b}_i \pi_i$

então x é a solução ótima para o problema primal e π a solução ótima para o problema dual.

Teorema Forte da Dualidade

TEOREMA: Se o problema primal tem uma solução ótima

$$\mathbf{x}^* = (\mathbf{x}_1^*, \mathbf{x}_2^*, \dots, \mathbf{x}_n^*)$$

então do dual também tem uma solução ótima

$$\boldsymbol{\pi}^* = \left(\pi_1^*, \pi_2^* ..., \pi_{\mathbf{m}}^*\right)$$

tal que

$$\sum_{\mathbf{j}=1}^{\mathbf{n}}\mathbf{c}_{\mathbf{j}}\mathbf{x}_{\mathbf{j}}^{*}=\sum_{\mathbf{i}=1}^{\mathbf{m}}\mathbf{b}_{\mathbf{i}}\pi_{\mathbf{i}}^{*}$$

Consequências

1	Primal feasible	Dual feasible	
	$Maximize z = 2x_1 + x_2,$	$Minimize v = 4y_1 + 2y_2,$	
	subject to:	subject to:	
	$x_1 + x_2 \le 4,$	$y_1 + y_2 \ge 2,$	
	$x_1 - x_2 \le 2,$	$y_1-y_2\geq 1,$	
	$x_1 \ge 0, x_2 \ge 0.$	$y_1 \ge 0, \qquad y_2 \ge 0.$	
2	Primal feasible and unbounded	Dual infeasible	
	$Maximize z = 2x_1 + x_2,$	$Minimize v = 4y_1 + 2y_2,$	
	subject to:	subject to:	
	$x_1 - x_2 \le 4,$	$y_1 + y_2 \ge 2,$	
	$x_1 - x_2 \le 2,$	$-y_1 - y_2 \ge 1,$	
	$x_1 \ge 0, x_2 \ge 0.$	$y_1 \ge 0, \qquad y_2 \ge 0.$	
3	Primal infeasible	Dual feasible and unbounded	
	$Maximize z = 2x_1 + x_2,$	$Minimize v = -4y_1 + 2y_2,$	
	subject to:	subject to:	
	$-x_1-x_2\leq -4,$	$-y_1 + y_2 \ge 2,$	
	$x_1 + x_2 \le 2,$	$-y_1 + y_2 \ge 1,$	
	$x_1 \ge 0, x_2 \ge 0.$	$y_1 \ge 0, \qquad y_2 \ge 0.$	
4	Primal infeasible	Dual infeasible	
	$Maximize z = 2x_1 + x_2,$	$Minimize v = -4y_1 + 2y_2,$	
	subject to:	subject to:	
	$-x_1 + x_2 \le -4,$	$-y_1 + y_2 \ge 2,$	
	$x_1 - x_2 \le 2,$	$y_1 - y_2 \ge 1,$	
	$x_1 \ge 0, x_2 \ge 0.$	$y_1 \ge 0, \qquad y_2 \ge 0.$	

Regras para formar o Dual

Primal (Maximize)	Dual (Minimize)
<pre>ith constraint ≤ ith constraint ≥ ith constraint = jth variable ≥ 0 jth variable ≤ 0 jth variable unrestricted</pre>	<pre>ith variable ≥ 0 ith variable ≤ 0 ith variable unrestricted jth constraint ≥ jth constraint ≤ jth constraint =</pre>

Exemplo 2

• Problema de tratamento de câncer

	Primal Problem		Dual Problem		
Maximize $-Z = -0.4x_1 - 0.5x_2$,			Minimize $W = 2.7y_1 + 6y_2 + 6y_3'$,		
subject to			subject to		
(S) (O) (B)	$0.3x_1 + 0.1x_2 \le 2.7$ $0.5x_1 + 0.5x_2 = 6$ $0.6x_1 + 0.4x_2 \ge 6$		$y_1 \ge 0$ $y_2 \text{ unconstrained in sign}$ $y_3' \le 0$	(S) (O) (B)	
and			and		
(S) (S)	$ \begin{array}{l} x_1 \ge 0 \\ x_2 \ge 0 \end{array} $		$0.3y_1 + 0.5y_2 + 0.6y_3' \ge -0.4$ $0.1y_1 + 0.5y_2 + 0.4y_3' \ge -0.5$		

Método Dual Simplex

- O método dual simplex é um alternativa para resolver problemas de programação linear
- Ele pode ser resolvido no lugar do primal
- Para inúmeros problemas, o método dual simplex é mais rápido que o método simplex primal.
- Por exemplo, se o número de restrições for muito maior que o de variáveis é aconselhável resolver o dual pois o tempo de processamento cresce mais rapidamente com o número de restrições do que com o número de variáveis
- Ele permite adicionar restrições sem ter que começar o problema do zero (uma restrição equivale a uma variável no dual)
- O método dual simplex é muito útil para análises de sensibilidade.

21