

SEQUENCE LISTING

<110> Wakamiya, Nobutaka

<120> RECOMBINANT HUMAN MANNAN-BINDING PROTEINS AND PROCESS FOR PRODUCING THE SAME

<130> 19036/36614

<140>

<141>

<150> PCT/JP98/03311

<151> 1998-07-23

<150> JP 10-11864

<151> 1998-01-23

<160> 28

<170> PatentIn Ver. 2.0

<210> 1

<211> 3605

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (66)..(809)

<220>

<221> mat_peptide

<222> (126)..(809)

<400> 1

ggtaaatatg tgttcattaa ctgagattaa ccttccctga gttttctcac accaaggtga 60

ggacc atg tcc ctg ttt cca tca ctc ctc ctc ctc ctc ctg agt atg gtg 110

Met Ser Leu Phe Pro Ser Leu Pro Leu Leu Leu Ser Met Val

-20

-15

-10

gca gcg tct tac tca gaa act gtg acc tgt gag gat gcc caa aag acc
Ala Ala Ser Tyr Ser Glu Thr Val Thr Cys Glu Asp Ala Gln Lys Thr
-5 -1 1 5 10

tgc cct gca gtg att gcc tgt agc tct cca ggc atc aac ggc ttc cca 206 Cys Pro Ala Val Ile Ala Cys Ser Ser Pro Gly Ile Asn Gly Phe Pro 15 20 25

ggc aaa gat ggg cgt gat ggc acc aag gga gaa aag ggg gaa cca ggc 254 Gly Lys Asp Gly Arg Asp Gly Thr Lys Gly Glu Lys Gly Glu Pro Gly 30 35 40

caa ggg ctc aga ggc tta cag ggc ccc cct gga aag ttg ggg cct cca 302 Gln Gly Leu Arg Gly Leu Gln Gly Pro Pro Gly Lys Leu Gly Pro Pro

gga aat cca ggg cct tct ggg tca cca gga cca aag ggc caa aaa gga 350 Gly Asn Pro Gly Pro Ser Gly Ser Pro Gly Pro Lys Gly Gln Lys Gly 60 65 70 75

gac Asp	cct Pro	gga Gly	aaa Lys	agt Ser 80	ccg Pro	gat Asp	ggt Gly	gat Asp	agt Ser 85	agc Ser	ctg Leu	gct Ala	gcc Ala	tca Ser 90	gaa Glu	398
aga Arg	aaa Lys	gct Ala	ctg Leu 95	caa Gln	aca Thr	gaa Glu	atg Met	gca Ala 100	cgt Arg	atc Ile	aaa Lys	aag Lys	tgg Trp 105	ct`g Leu	acc Thr	446
ttc Phe	tct Ser	ctg Leu 110	ggc Gly	aaa Lys	caa Gln	gtt Val	ggg Gly 115	aac Asn	aag Lys	ttc Phe	ttc Phe	ctg Leu 120	acc Thr	aat Asn	ggt Gly	494
gaa Glu	ata Ile 125	atg Met	acc Thr	ttt Phe	gaa Glu	aaa Lys 130	gtg Val	aag Lys	gcc Ala	ttg Leu	tgt Cys 135	gtc Val	aag Lys	ttc Phe	cag Gln	542
gcc Ala 140	tct Ser	gtg Val	gcc Ala	acc Thr	ccc Pro 145	agg Arg	aat Asn	gct Ala	gca Ala	gag Glu 150	aat Asn	gga Gly	gcc Ala	att Ile	cag Gln 155	590
aat Asn	ctc Leu	atc Ile	aag Lys	gag Glu 160	gaa Glu	gcc Ala	ttc Phe	ctg Leu	ggc Gly 165	atc	act Thr	gat Asp	gag Glu	aag Lys 170	aca Thr	638
gaa Glu	gly aaa	cag Gln	ttt Phe 175	Val	gat Asp	ctg Leu	aca Thr	gga Gly 180	aat Asn	aga Arg	ctg Leu	acc Thr	tac Tyr 185	aca Thr	aac Asn	686
tgg Trp	aac Asn	gag Glu 190	Gly	gaa Glu	ccc Pro	aac Asn	aat Asn 195	Ala	ggt Gly	tct Ser	gat Asp	gaa Glu 200	gat Asp	tgt Cys	gta Val	734
ttg Leu	cta Leu 205	Leu	aaa Lys	aat Asn	ggc Gly	cag Gln 210	Trp	aat Asn	gac Asp	gtc Val	ccc Pro 215	Cys	tcc Ser	acc Thr	tcc Ser	782
cat His 220	Leu	gec Ala	gto Val	tgt Cys	gag Glu 225	Phe	cct Pro	atc Ile	tga	aggg	tca	tato	acto	ag		829
gcc	ctcc	ttg	tctt	ttta	ict g	gcaac	ccac	a gg	ccca	cagt	atg	ıctto	jaaa	agat	aaatta	. 889
tat	caat	ttc	ctca	atato	ca g	jtatt	gttc	c tt	ttgt	gggc	aat	.cact	aaa	aatg	gatcact	949
aac	agca	ıcca	acaa	aagca	at a	atag	gtagt	a gt	agta	igtta	ı gca	gcaç	gcag	tagt	agtcat	1009
gct	aatt	ata	taat	attt	tt a	aatat	atac	ct at	gagg	gecet	ato	tttt	gca	tcct	acatta	1069
att	atct	agt	ttaa	attaa	atc t	gtaa	atgct	t to	gata	agtgt	taa	actto	gctg	cagt	atgaaa	1129
ata	aagad	cgga	ttta	attt	tc (catt	cacaa	ac aa	acad	cctgt	gct	ctgt	tga	gcct	tccttt	1189
ctg	gtttg	gggt	aga	gggct	cc (ccta	atgad	ca to	cacca	acagt	t tta	aatao	ccac	agct	ttttad	1249
caa	agtti	cag	gta	ttaaq	gaa	aatc	tattt	ct gt	caact	tttct	t cta	atgaa	actc	tgtt	ttctt	1309
cta	aatga	agat	att	aaac	cat (gtaa	agaad	ca ta	aaata	aacaa	a ato	ctca	agca	aaca	agcttca	a 1369
ça	aatt	ctca	cac	acat	aca	tacc	tatai	ta ci	cac	tttc	t aga	atta	agat	atg	ggacati	1429
tti	tgac	tccc	tag	aagc	ccc	gtta	taac	tc c	tcct	agta	c taa	actc	ctag	gaa	aatacta	a 1489
tt	ctga	cctc	cat	gact	gca	cagt	aatt	tc g	tctg	ttta	t aa	acat	tgta	tag	ttggaa	1549

catattgtgt gtaatgttgt atgtcttgct tactcagaat taagtctgtg agattcattc 1609 atgtcatgtg tacaaaagtt tcatcctttt cattgccatg tagggttccc ttatattaat 1669 attecteagt teatecatte tattgttaat aggeaettaa gtggetteea atttttggee 1729 atgaggaaga gaacccacga acattcctgg acttgtcttt tggtggacat ggtgcactaa 1789 tttcactacc tatccaggag tggaactggt agaggatgag gaaagcatgt attcagcttt 1849 agtagatatt accagttttc ctaagtgatt gtatgaattt atgctcctac cggcaatgtg 1909 tggcagtcct agatgctcta tgtgcttgta aaaagtcaat gttttcagtt ctcttgattt 1969 tcattattcc tgtggatgta aagtgatatt tccccatggt tttaatctgt atttccccaa 2029 catgtaataa ggttgaacac ttttttatat gcttattggg cacttgggta tcttcttctg 2089 tgaagtaccc gttcacattt ttgtattttg tttaaattag ttagccaata tttttcttac 2149 tqatttttaa qttattttta cattctqaat atqtcctttt taatqtqtat tacaaatatt 2209 ttgctagttt ttgacttgct cctaatgttg aattttgatg aacaaaattt cctaattttg 2269 agaaagtett atttatteat attttettte aaaattagtg etttttgtgt catgtttaag 2329 aaatttttgc ccatcccaaa atcataagat atttttcatg attttgaaac catgaagaga 2389 tttttcatqa ttttqaaatc atqaaqatat ttttccattt ttttctaata gttttattaa 2449 taaacattet atetatteet ggtagaatag atateeaett gagacageae tatgtaggaa 2509 agaccatttt teeteeactg aactagggtg gtgeattttt gtaagttagg taactgtatg 2569 tgtgtgtgtc tgtttctggg ctgtctattc tagtctattt gttgatgctt gtgtcaaaca 2629 gtacactate ttaattattg tacatttata gttgtaactg tagtecaget ttgttettet 2689 tcaaqtcaaq atttccatat aaatattaqa aacaqtttct caatttctac aaaatcctga 2749 tgaggtttct actgggacca cattgagtct atcaatcaac ttatgcagaa ctggcaactt 2809 actactgaat etetaateaa tgtteateat gtategette atttaaetag gattteteta 2869 acttaattgc tatgttttga gatttttagt ttaaaaacct tgtatatctt gttttggtgg 2929 ttttagtgat tttaataata tattttaaat attttttctt ttctattgtt gtacacagaa 2989 atacagttaa gttttgtgtg tagtcttacg atgtttagta acctcaataa gtttatttct 3049 taaatotagt aatttgtaga ttoototgga ttttgtatat goatagtoat gtaagotgaa 3109 aatatggcaa tacttgcttc ttcccaattg ctttaccttt tttcttacct tattgcactg 3169 gttagcaacc ccaatacaga gaccaccaga gcaggtatag actcctgaaa gacaatataa 3229 tgaagtgete cagteaggee tatetaaaet ggatteaeag etetgteaet taattgetae 3289 atgatetaga gecagttaet ttgtgtttea gecatgtatt tgeagetgag agaaaataat 3349 cattettatt teatgaaaat tgtggggatg atgaaataag ttaacacett taaagtgtgt 3409 agtaaagtat caggatacta tattttaggt cttaatacac acagttatgc cgctagatac 3469

39

atgcttttta atgagataat gtgatattat acataacaca tatcgatttt taaaaattaa 3529 3605 aaaaaaaaa aaaaaa <210> 2 <211> 747 <212> DNA <213> Homo sapiens <400> 2 atgtccctgt ttccatcact ccctctcctt ctcctgagta tggtggcagc gtcttactca 60 gaaactgtga cetgtgagga tgcccaaaag acctgccetg cagtgattge etgtagetet 120 ccaggcatca acggcttccc aggcaaagat gggcgtgatg gcaccaaggg agaaaagggg 180 gaaccaggee aagggeteag aggettaeag ggeeeceetg gaaagttggg geeteeagga 240 aatccagggc cttctgggtc accaggacca aagggccaaa aaggagaccc tggaaaaagt 300 ccggatggtg atagtagcct ggctgcctca gaaagaaaag ctctgcaaac agaaatggca 360 cgtatcaaaa agtggctgac cttctctctg ggcaaacaag ttgggaacaa gttcttcctg 420 accaatggtg aaataatgac ctttgaaaaa gtgaaggeet tgtgtgteaa gtteeaggee 480 tetgtggcca cececaggaa tgetgeagag aatggageea tteagaatet eateaaggag 540 gaagcettee tgggeateae tgatgagaag acagaaggge agtttgtgga tetgacagga 600 aatagactga cctacacaaa ctggaacgag ggtgaaccca acaatgctgg ttctgatgaa 660 gattgtgtat tgctactgaa aaatggccag tggaatgacg tcccctgctc cacctcccat 720 747 ctggccgtct gtgagttccc tatctga <210> 3 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: sense DNA 41 tatgccgcgg aatcgatgat taccgtacgg aattcgggcc c <210> 4 <211> 39 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: antisense DNA

<400>4

acggcgcctt agctactaat ggcatgcctt aagcccggg

<210> 5 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: sense DNA	
<400> 5 agetteegeg getgeaggga teeategat	29
<210> 6 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: antisense DNA	
<400> 6 aggcgccgac gtccctaggt agctattaa	29
<210> 7 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 5' sense primer (PS1)	
<400> 7 ccccgcggga attctgtgga atgtgtgtca gttaggg	37
<210> 8 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 3' antisense primer (PS2)	
<400> 8 ccctgcagct ttttgcaaaa gcctaggcct cc	32
<210> 9 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 5' sense primer (PS3)	
<400> 9 ccccgcggtg tggaatgtgt gtcagttagg g	31

<210>	10	
<211>	16	
<212>		
<213>	Artificial Sèquence	
<220>		
<223>	Description of Artificial Sequence: sense DNA	
<400>		
aattgg	gccc atcgat	16
	•	
	·	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: antisense DNA	
<400>		1.0
cccggc	stage tattaa	16
010		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
000		
<220>	Description of Autificial Company 51 games	
<223>	Description of Artificial Sequence: 5' sense	
	primer (PD1)	
-400-	10	
<400>		41
ggerge	cagte ceteatgett egaceattga actgeategt e	-T.T.
<210>	13	
<211>		
<211>		
	Artificial Sequence	
\Z13>	Altificial Sequence	
<220>		
	Description of Artificial Sequence: 3' antisense	
\ L LJ>	primer (PD2)	
	primer (rbb)	
<400>	13	
	tctaa agccagcaaa agtcccatgg tc	32
<210>	14	
<211>		
<212>	DNA	
	Artificial Sequence	
	•	
<220>		
	Description of Artificial Sequence: 5' sense	
	primer (PN1)	
<400>	14	
gacta	daget teacgetgee geaageae	28

<210><211><211><212><213>	29	
	Description of Artificial Sequence: 3' antisense primer (PN2)	
<400> ggggat		29
<210><211><212><212><213>	28	
<220> <223>	Description of Artificial Sequence: antisense primer	
<400> atctt	16 gttca agcatgcgaa acgatect	28
<210><211><212><212><213>	50	
<220> <223>	Description of Artificial Sequence: sense DNA	
<400> agctt	17 gatat categatgeg geegeggtae eagatetegt aegtetagag	50
<210><211><212><212><213>	· 50	
<220> <223>	Description of Artificial Sequence: antisense primer	
<400> actat	> 18 agtag ctacgeegge gecatggtet agageatgea gatetettaa	50
<220> <223>	> Description of Artificial Sequence: 5' sense primer (PC1)	
<400: ccgat	> 19 ttačtt accgccatgt tgacattgat tattgactag ttattaa	47

<210> 20 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 3' antisense primer (PC2)	
<400> 20 ccatcgatcg gttcactaaa cgagetetge ttatatagae etece	45
<210> 21 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 5' sense primer (PB11)	
<400> 21 cctctagact gtgccttcta gttgccagcc at	32
<210> 22 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 3' antisense primer (PB12)	
<400> 22 ccagatctgt acccatagag cccaccgcat cc	32
<210> 23 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 5' sense primer (PB21)	
<400> 23 ttggatccct gtgccttcta gttgccagcc at	32
<210> 24 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 3' antisense primer (PB22)	
<400> 24 ttcgtacgga tcccatagag cccaccgcat cc	32

<211> 7635 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: plasmid pNOW1 <400> 25 gcgcgtttcg gtgatgacgg tgaaaacctc tgacacatgc agctcccgga gacggtcaca 60 gettgtetgt aageggatge egggageaga caageeegte agggegegte agegggtgtt 120 ggcgggtgtc ggggctggct taactatgcg gcatcagagc agattgtact gagagtgcac 180 catatgeege ggtgtggaat gtgtgteagt tagggtgtgg aaagteecea ggeteeceag 240 caggcagaag tatgcaaagc atgcatctca attagtcagc aaccatagtc ccgcccctaa 300 ctccgcccat cccgcccta actccgccca gttccgccca ttctccgccc catggctgac 360 taattttttt tatttatgca gaggccgagg cgcctctgag ctattccaga agtagtgagg 420 aggetttttt ggaggeetag gettttgeaa aaaagetgea gtgggettae atggegatag 480 ctagactggg cggttttatg gacagcaagc gaaccggaat tgccagctgg ggcgcctct 540 ggtaaggttg ggaagccctg caaagtaaac tggatggctt tcttgccgcc aaggatctga 600 tggcgcaggg gatcaagatc tgatcaagag acaggatgag gatcgtttcg catgattgaa 660 caagatggat tgcacgcagg ttctccggcc gcttgggtgg agaggctatt cggctatgac 720 tgggcacaac agacaatcgg ctgctctgat gccgccgtgt tccggctgtc agcgcagggg 780 cgcccggttc tttttgtcaa gaccgacctg tccggtgccc tgaatgaact gcaggacgag 840 geagegege tategtgget ggeeaegaeg ggegtteett gegeagetgt getegaegtt 900 gtcactgaag cgggaaggga ctggctgcta ttgggcgaag tgccggggca ggatctcctg 960 tcatctcacc ttgctcctgc cgagaaagta tccatcatgg ctgatgcaat gcggcggctg 1020 catacgettg atceggetae etgeceatte gaccaccaag egaaacateg categagega 1080 gcacgtactc ggatggaagc cggtcttgtc gatcaggatg atctggacga agagcatcag 1140 gggctcgcgc cagccgaact gttcgccagg ctcaaggcgc gcatgcccga cggcgaggat 1200 ctcgtcgtga cccatggcga tgcctgcttg ccgaatatca tggtggaaaa tggccgcttt 1260 tetggattea tegaetgtgg ceggetgggt gtggeggace getateagga catagegttg 1320 gctaccegtg atattgctga agagettgge ggegaatggg etgacegett eetegtgett 1380 taeggtateg cegeteeega ttegeagege ategeettet ategeettet tgaegagtte 1440 ttetgagegg gaetetgggg ttegaaatga eegaeeaage gaegeeeaae etgeeateae 1500 gagatttega ttecacegee geettetatg aaaggttggg etteggaate gtttteeggg 1560 acgccggctg gatgatecte cagcgcggga teacatgctg gattettege ceaccecete 1620

<210> 25

gateceeteg egagttggtt cagetgetge etgaggetgg aegaeetege ggagttetae 1680 cggcagtgca aatecgtegg catecaggaa accageageg getateegeg catecatgee 1740 cccgaactgc aggagtgggg aggcacgatg gccgctttgg tcgacccgga cgggacgctc 1800 ctgcgcctga tacagaacga attgcttgca ggcatctcat gagtgtgtct tcccgttttc 1860 cgcctgaggt cactgcgtgg atgggatccg tgacataatt ggacaaacta cctacagaga 1920 tttaaagctc taaggtaaat ataaaatttt taagtgtata atgtgttaaa ctactgattc 1980 taattgtttg tgtattttag attccaacct atggaactga tgaatgggag cagtggtgga 2040 atgeetttaa tgaggaaaac etgttttget eagaagaaat geeatetagt gatgatgagg 2100 ctactgctga ctctcaacat tctactcctc caaaaaaagaa gagaaaggta gaagacccca 2160 aggactttcc ttcagaattg ctaagttttt tgagtcatgc tgtgtttagt aatagaactc 2220 ttgcttgctt tgctatttac accacaaagg aaaaagctgc actgctatac cagaaattat 2280 gaaatattet gtaacettta taagtaggea taacagttat aateataaca taetgttttt 2340 tottactoca cacaggoata gagtgtotgo tattaataac tatgotcaaa aattgtgtac 2400 ctttagcttt ttaatttgta aaggggttaa taaggaatat ttgatgtata gtgccttgac 2460 tagagateat aateageeat accaeatttg tagaggtttt acttgettta aaaaacetee 2520 cacacctccc cetgaacetg aaacataaaa tgaatgcaat tgttgttgtt aacttgttta 2580 ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca aataaagcat 2640 ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatet tatcatgtct 2700 gggcccgata tccgatgtac gggccagata tacgcgttga cattgattat tgactagtta 2760 ttaatagtaa tcaattacgg ggtcattagt tcatagccca tatatggagt tccgcgttac 2820 ataacttacg gtaaatggcc cgcctggctg accgcccaac gacccccgcc cattgacgtc 2880 aataatgacg tatgttccca tagtaacgcc aatagggact ttccattgac gtcaatgggt 2940 ggactattta eggtaaaetg eccaettgge agtacateaa gtgtateata tgccaagtae 3000 gccccctatt gacgtcaatg acggtaaatg gcccgcctgg cattatgccc agtacatgac 3060 cttatgggaa ctttcctact tggcagtaca tctacgtatt agtcatcgct attaccatgg 3120 tgatgcggtt ttggcagtac atcaatgggc gtggatagcg gtttgactca cggggatttc 3180 caagteteea eeceattgae gteaatggga gtttgttttg geaccaaaat eaaegggaet 3240 ttccaaaatg tcgtaacaac tccgccccat tgacgcaaat gggcggtagg cgtgtacggt 3300 gggaggtcta tataagcaga gcatcgatgc ggccgcggta cctctagact gtgccttcta 3360 gttgccagce atetgttgtt tggcccccc tecccegtge ettecttgae cetggaaggt 3420 gccactccca ctgtcctttc ctaataaaat gaggaaattg catcgcattg tctgagtagg 3480 tgtcattcta ttctgggggg tggggtgggg caggacagca aggggggagga ttgggaagac 3540

aatagcaggc atgctgggga tgcggtgggc tctatggtct aggctgtgcc ttctagttgc 3600 cagecatetg ttgtttggee eccetteece egtgeettee ttgaecetgg aaggtgeeae 3660 teceaetgte ettteetaat aaaatgagga aattgeateg eattgtetga gtaggtgtea 3720 ttctattctg gggggtgggg tggggcagga cagcaagggg gaggattggg aagacaatag 3780 caggcatgct ggggatgcgg tgggctctat ggcgtacggg atgctagaga attctgtgga 3840 atgtgtgtca gttagggtgt ggaaagtccc caggctcccc agcaggcaga agtatgcaaa 3900 geatgeatet caattagtea geaaceatag teeegeeeet aacteegeee ateeegeeee 3960 taacteegee eagtteegee catteteege eccatggetg actaattttt tttatttatq 4020 cagaggeega ggegeetetg agetatteea gaagtagtga ggaggetttt ttggaggeet 4080 aggettttge aaaaaagetg cagteeetea tggttegaee attgaaetge ategtegeeg 4140 tgtcccaaaa tatggggatt ggcaagaacg gagacctacc ctggcctccg ctcaggaacg 4200 agttcaagta cttccaaaga atgaccacaa cctcttcagt ggaaggtaaa cagaatctgg 4260 tgattatggg taggaaaacc tggttctcca ttcctgagaa gaatcgacct ttaaaggaca 4320 gaattaatat agtteteagt agagaaetea aagaaeeaee aegaggaget eattttettg 4380 ccaaaagttt ggatgatgcc ttaagactta ttgaacaacc ggaattgtca agtaaagtag 4440 acatggtttg gatagtcgga ggcagttctg tttaccagga agccatgaat caaccaggcc 4500 acctcagact ctttgtgaca aggatcatgc aggaatttga aagtgacacg tttttcccag 4560 aaattgattt ggggaaatat aaacttetee eagaataeee aggegteete tetgaggtee 4620 aggaggaaaa aggcatcaag tataagtttg aagtctacga gaagaaagac taacaggaag 4680 atgettteaa gttetetget eeceteetaa agetatgeat ttttataaga eeatgggaet 4740 tttgctggct ttaagatccg tgacataatt ggacaaacta cctacaqaqa tttaaaqctc 4800 taaggtaaat ataaaatttt taagtgtata atgtgttaaa ctactgattc taattgtttg 4860 tgtattttag attccaacct atggaactga tgaatgggag cagtggtgga atgcctttaa 4920 tgaggaaaac ctgttttgct cagaagaaat gccatctagt gatgatgagg ctactgctga 4980 ctctcaacat tctactcctc caaaaaagaa gagaaaggta gaagacccca aggactttcc 5040 ttcagaattg ctaagttttt tgagtcatgc tgtgtttagt aatagaactc ttgcttgctt 5100 tgctatttac accacaaagg aaaaagctgc actgctatac cagaaattat gaaatattct 5160 gtaaccttta taagtaggca taacagttat aatcataaca tactgttttt tcttactcca 5220 cacaggcata gagtgtctgc tattaataac tatgctcaaa aattgtgtac ctttagcttt 5280 ttaatttgta aaggggttaa taaggaatat ttgatgtata gtgccttgac tagagatcat 5340 aatcagccat accacatttg tagaggtttt acttqcttta aaaaacctcc cacacctccc 5400 cctgaacctg aaacataaaa tgaatgcaat tgttgttgtt aacttgttta ttgcagctta 5460

taatggttac aaataaagca atagcatcac aaatttcaca aataaagcat ttttttcact 5520 gcattctagt tgtggtttgt ccaaactcat caatgtatct tatcatgtct gggcccctgc 5580 attaatgaat eggeeaaege geggggagag geggtttgeg tattgggege tetteeqett 5640 cetegeteac tgactegetg egeteggteg tteggetgeg gegageggta teageteact 5700 caaaggeggt aataeggtta tecacagaat caggggataa egeaggaaag aacatgtgag 5760 caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg tttttccata 5820 ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc 5880 cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg cgctctcctg 5940 tteegaeeet geegettaee ggataeetgt eegeetttet eeetteggga agegtggege 6000 tttctcaatg ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc tccaagctgg 6060 gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt aactatcgtc 6120 ttgagtccaa dccggtaaga cacgacttat cgccactggc agcagccact ggtaacagga 6180 ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg cctaactacg 6240 gctacactag aaggacagta tttggtatet gegetetget gaageeagtt acetteggaa 6300 aaagagttgg tagetettga teeggeaaac aaaceacege tggtageggt ggtttttttg 6360 tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct ttgatctttt 6420 ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg gtcatgagat 6480 tatcaaaaag gatetteace tagateettt taaattaaaa atgaagtttt aaateaatet 6540 aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt gaggcaccta 6600 tetcagegat etgtetattt egtteateea tagttgeetg acteeeegte gtgtagataa 6660 ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatqataccq cqaqacccac 6720 geteacegge tecagattta teageaataa accageeage eggaagggee qaqeqeagaa 6780 gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg gaagctagag 6840 taagtagttc gccagttaat agtttgcgca acgttgttgc cattgctaca ggcatcgtgg 6900 tgtcacgete gtegtttggt atggetteat teageteegg tteecaaega teaaqqeqaq 6960. ttacatgatc ccccatgttg tgcaaaaaag cggttagctc cttcggtcct ccgatcgttg 7020 tcagaagtaa gttggccgca gtgttatcac tcatqqttat qqcaqcactq cataattctc 7080 ttactgtcat gccatccgta agatgctttt ctgtgactqq tqaqtactca accaaqtcat 7140 tetgagaata gtgtatgegg egacegagtt getettgeee ggegteaata egggataata 7200 ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa 7260 aactotcaag gatottacog otgittgagat ocaqttoqat qtaacccact oqtqcaccca 7320 actgatette ageatetttt aettteacea gegtttetgg gtgageaaaa acaggaagge 7380

aaaatgeege aaaaaaggga ataagggega caeggaaatg ttgaatacte atactettee 7440 tttttcaata ttattgaage atttateagg gttattgtet catgagegga tacatatttg 7500 aatgtattta gaaaaataaa caaatagggg tteegegeae attteeega aaagtgeeae 7560 etgaegteta agaaaceatt attateatga cattaaceta taaaaatagg egtateaega 7620 ggeeettteg teete 7635

<210> 26 <211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 26

aaggaaaaaa gcggccgcat gtccctgttt ccatcactc

39

<210> 27

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 27

gctctagatc agatagggaa ctcacagac

29

<210> 28

<211> 248

<212> PRT

<213> Homo sapiens

<400> 28

Met Ser Leu Phe Pro Ser Leu Pro Leu Leu Leu Ser Met Val Ala $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ala Ser Tyr Ser Glu Thr Val Thr Cys Glu Asp Ala Gln Lys Thr Cys 20 25 30

Pro Ala Val Ile Ala Cys Ser Ser Pro Gly Ile Asn Gly Phe Pro Gly 35 40 45

Lys Asp Gly Arg Asp Gly Thr Lys Gly Glu Lys Gly Glu Pro Gly Gln 50 55 60

Gly Leu Arg Gly Leu Gln Gly Pro Pro Gly Lys Leu Gly Pro Pro Gly 65 70 75 80

Asn Pro Gly Pro Ser Gly Ser Pro Gly Pro Lys Gly Gln Lys Gly Asp 85 90 95

Pro Gly Lys Ser Pro Asp Gly Asp Ser Ser Leu Ala Ala Ser Glu Arg

Lys Ala Leu Gln Thr Glu Met Ala Arg Ile Lys Lys Trp Leu Thr Phe

		115					120					125			
Ser	Leu 130	Gly	Lys	Gln	Val	Gly 135	Asn	Lys	Phe	Phe	Leu 140	Thr	Asn	Gly	Glu
Ile 145	Met	Thr	Phe	Glu	Lys 150	Val	Lys	Ala	Leu	Cys 155	Val	Lys	Phe	Gln	Ala 160
Ser	Val	Ala	Thr	Pro 165	Arg	Asn	Ala	Ala	Glu 170	Asn	Gly	Ala	Ile	Gln 175	Asn
Leu	Ile	Lys	Glu 180	Glu	Ala	Phe	Leu	Gly 185	Ile	Thr	Asp ·	Glu	Lys 190	Thr	Glu
Gly	Gln	Phe 195	Val	Asp	Leu	Thr	Gly 200	Asn	Arg	Leu	Thr	Tyr 205	Thr	Asn	Trp
Asn	Glu 210	Gly	Glu	Pro	Asn	Asn 215	Ala	Gly	Ser	Asp	Glu 220	Asp	Cys	Val	Leu
Leu 225	Leu	Lys	Asn	Gly	Gln 230	Trp	Asn	Asp	Val	Pro 235	Cys	Ser	Thr	Ser	His 240
Leu	Ala	Val	Cys	Glu 245	Phe	Pro	Ile								