Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta}==0$	1
$\tau_{0}^{#1} == 0$	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta} == \partial_{\beta}\partial^{\beta}t^{\alpha}$	1
$\sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	м
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	м
$\sigma_{1}^{#2}\alpha$ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	ĸ
$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#1}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	ĸ
	$\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$\partial_\delta\partial_\chi\partial^\alpha\sigma^{eta\chi\delta}+\partial_\delta\partial^\delta\partial_\chi\sigma^{lpha\chieta}$	
$\sigma_1^{\#1}\alpha\beta == \sigma_1^{\#2}\alpha\beta$	$3 \partial_{\delta} \partial_{\chi} \partial_{\alpha} \sigma^{\beta \chi \delta} +$	3
	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha\beta\chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha\chi\beta} = =$	
	$3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha}$	
$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi==0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\beta\delta\varepsilon} +$	
	$3 \eta^{\beta X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} = =$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} \partial^{\delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta X \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta X} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{lphaeta\chi}+2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{lpha\chieta}+$	
	$3~\eta^{lpha\chi}~\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta\epsilon}_{~~\delta}+$	
	$3~\eta^{eta\chi}~\partial_\phi\partial^\phi\partial_\epsilon\partial_\delta\sigma^{lpha\delta\epsilon}+$	
	$3~\eta^{lpha\chi}~\partial_\phi\partial^\phi\partial_\epsilon\partial^\epsilon\sigma^{eta\delta}_{~~\delta}$	
$\tau_{2}^{\#1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	2
	$3\partial_{\delta}\partial_{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} +$	
	$3\partial_{\delta}\partial_{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{\chi}_{\chi}$	
Total constraints/dauge	4	20

	Quadratic (free) action	$S == \iiint (\frac{1}{6} (6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 15 \tau_3 \partial_{\beta} \mathcal{A}'_{\ \ \theta} \partial' \mathcal{A}^{\alpha \beta}_{\alpha} + 9 \tau_3 \partial_{\beta} \mathcal{A}_{\beta \ \theta}^{\ \theta})$	$\partial' \mathcal{A}^{lphaeta}_{} + 9 r_3 \partial_{lpha} \mathcal{A}^{lphaeta\prime} \partial_{eta} \mathcal{A}^{eta}_{eta\prime} ,$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$	$15r_3\partial_\alpha\mathcal{A}^{\alpha\beta'}\partial_\theta\mathcal{A}^{\ \theta}_{\ \ \beta}+30r_3\partial'\mathcal{A}^{\alpha\beta}_{\ \ \alpha}\partial_\theta\mathcal{A}^{\ \theta}_{\ \beta}+$	$4t_2\mathcal{R}_{_{I}\theta\alpha}\partial^\theta f^{\alpha\prime} + 2t_2\partial_\alpha f_{_{I}\theta}\partial^\theta f^{\alpha\prime} - t_2\partial_\alpha f_{_{\theta_I}}\partial^\theta f^{\alpha\prime} -$	$t_2\partial_i f_{lpha heta}\partial^ heta f^{lpha_I} + t_2\partial_ heta f_{lpha_I}\partial^ heta f^{lpha_I} - t_2\partial_ heta f_{lpha}\partial^ heta f^{lpha_I} - 4t_2$	$\mathcal{A}_{\alpha\theta_{l}}\left(\mathcal{A}^{\alpha\prime\theta}+\partial^{\theta}f^{\alpha\prime}\right)+2t_{2}\mathcal{A}_{\alpha\prime\theta}\left(\mathcal{A}^{\alpha\prime\theta}+2\partial^{\theta}f^{\alpha\prime}\right)+$	$8 r_2 \partial_{\beta} \mathcal{R}_{\alpha \iota \theta} \partial^{\theta} \mathcal{R}^{\alpha \beta \iota} 4 r_2 \partial_{\beta} \mathcal{R}_{\alpha \theta \iota} \partial^{\theta} \mathcal{R}^{\alpha \beta \iota} \text{+}$	$4r_2\partial_eta \mathcal{H}_{_{I}etalpha}\partial^eta \mathcal{H}_{_{}Blpha}\partial^eta \mathcal{H}_{_{}Blpha}\partial^eta \mathcal{H}_{_{I}etalpha}\partial^eta \mathcal{H}_{_{}Blpha}\partial^eta \mathcal{H}_{_{}Blpha}\partial^eta$ -	$2r_2\partial_{ert}\mathcal{R}_{lphaeta heta}\partial^{ heta}\mathcal{R}^{lphaeta\prime}+2r_2\partial_{ heta}\mathcal{R}_{lphaeta\prime}\partial^{ heta}\mathcal{R}^{lphaeta\prime}.$	$4r_2\partial_ heta \mathcal{A}_{lpha^{(eta)}}\partial^ heta \mathcal{A}^{lpha eta^{(eta)}}))[t, ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext{$	$\mathcal{A}_{1+\ \alpha}^{\#1}$ $\mathcal{A}_{1+\ \alpha}^{\#2}$ $f_{1+\ \alpha}^{\#1}$ $\mathcal{A}_{1}^{\#2}$ $\mathcal{A}_{1}^{\#2}$ $f_{1-\ \alpha}^{\#2}$
--	-------------------------	---	---	--	--	---	---	--	--	---	--	---

	ī			•	•	•	$\mathscr{A}_2^{\#1}$	$\dagger^{\alpha\beta\chi}$	0	0		0	$\sigma_2^{\#2}$	1 $^{\alpha \beta \chi}$	0		0	()
0	0	0	0	0	0	0													
0	0	0	0	0	0	0	$ au_{1}^{\#2}$	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	$t_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0					
							$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0	Ī				1.0
0	0	0	$-\frac{3k^2r_3}{2}$	0	0	0	$\sigma_{1^-}^{\#1}{}_{lpha}$ (0	0	0	$\frac{2}{3k^2r_3}$	0	0	0	$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
kt ₂							δ	1.0		La	ı				${\mathfrak r}_0^{\#2}$	0	0	0	0
$\frac{1}{3}$ \vec{l} $\sqrt{2}$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0	$\tau_{1}^{\#1}\alpha\beta$	$\frac{3\bar{\imath}\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0	$\tau_{0}^{\#1}$	0	0	0	0
$\frac{\sqrt{2}t_2}{3}$	2 2	$\frac{1}{3}$ \vec{i} kt_2	0	0	0	0	$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2} = \frac{3}{(3+k^2)^2 t_2}$	$\frac{3ik}{(3+k^2)^2t_2} \boxed{{(}}$	0	0	0	0	$\sigma_{0}^{\#1}$	$\sigma_{0}^{\#1} + 0$	$\tau_{0}^{\#1} + 0$	$\tau_{0}^{\#2} + 0$	$\sigma_{0}^{\#1} \downarrow 0$
		kt_2 -					σ_1^{*}	3+6	(3+)	- (3+						P	1	1	ρ
$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}$	0	0	0	0	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0					
$\mathcal{A}_1^{\#1} + ^{lphaeta}$	$\mathcal{A}_{1}^{\#2} + \alpha \beta$	$f_{1+}^{#1} +^{\alpha \beta}$	$\mathcal{A}_{1^{-}}^{\#1} \dagger^{\alpha}$	$\mathcal{A}_{1}^{\#2} \uparrow^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{#2} \uparrow^{\alpha}$		$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + \alpha$	$\tau_1^{\#2} + \alpha$					

 $\mathcal{A}_{2^{+}\alpha\beta}^{\#1} \, f_{2^{+}\alpha\beta}^{\#1} \, \mathcal{A}_{2^{-}\alpha\beta\chi}^{\#1}$

 $\sigma_{2^{+}\alpha\beta}^{\#1} \ \tau_{2^{+}\alpha\beta}^{\#1} \ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$

 $\sigma_{2}^{\#1}\dagger^{lphaeta}$

Massive and massless spectra

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$