Bachelor of Engineering Electronic Engineering (HONS)

Headphone Amplifier Design

By

Specter

Student ID: X00097568

Electronic Engineering

List of Tables

1 1	DC operating	point	analysis	result											ļ
T.T	DO operaning	pomi	anarysis	resure.	•		•		•	•	•	•	•		٠

List of Figures

1.1	Single transistor circuit	4
1.2	Basic transistor circuit with R_c and R_e	
1.3	Output of the circuit in Figure 1.2	(

Chapter 1

Simple transistor circuit

1.1 Transistor basic property

Figure 1.1 shows the basic NPN bipolar junction transistor circuit.

Figure 1.1: Single transistor circuit

We can get transistor operating state from simulation result as Table 1.1. It's obvious that I_C and I_E is proximately 200 times greater than I_B which is the main function of transistor.

Equation 1.1 defines β which is the most important parameter of transis-

I_B	9.09789μ					
I_C	2.02293m					
I_E	-2.03003m					

Table 1.1: DC operating point analysis result

tor.

$$\beta = \frac{I_C}{I_B} \tag{1.1}$$

1.2 Limit current gain

Generally, we need a method to control the current gain as we want. Figure 1.2 is a simply solution by adding transistor R_C and R_E .

Figure 1.2: Basic transistor circuit with R_c and R_e

We can derive voltage gain A_V with Equation 1.2. And in circuit in Figure 1.2, A_V is approximate 5 theoretically.

$$A_V \triangleq \frac{V_{out}}{V_{in}} \approx -\frac{R_C}{R_E} \tag{1.2}$$

From simulation result in Figure 1.3, the practical $A_V = \frac{7.6486m}{2m} = 3.8243$.

Figure 1.3: Output of the circuit in Figure 1.2

after