

Classificação de Emoções do Rosto humano

Equipe 5 - Balduino da Silva | Cassia Santos | Francisco Expedito | Matheus Soares | Thayane Gonçalo | Giulia Duarte | Lucas Almeida

Sumário

- Introdução
- Materias e Métodos
- Resultados
- Conclusões

Introdução

A base de dados "Human Face Emotions" disponível no Kaggle é uma coleção de imagens de rostos humanos classificadas em diferentes expressões faciais.

A base é amplamente utilizado em projetos de Reconhecimento de Emoções com CNNs, Aplicações em Tempo Real e Modelos de Transfer Learning.

Objetivo

O objetivo geral consiste em treinar um modelo que identifica e classifica as emoções de alegria, tristeza e raiva dos humanas a partir de imagens.

O objetivo específico consiste em treinar o modelo EfficientNet proposto pela referência, de forma a melhor a métrica de acurácia do modelo.

Materiais e Métodos

Base de Dados

Este conjunto de dados contém imagens de rostos humanos com emoções felizes, tristes e raivosos.

Base de dados

A base de dados possui algumas imagens corrompidas, duplicadas e inadequada para o modelo.

Tabela 1: Qualidade da imagem

Classes	Corrompidas	Duplicados	Inadequadas
Angry	6	4	2
Нарру	1	6	8
Sad	5	0	10
Total	12	10	20

Base de Dados

Classe raiva:

shutterstock com - 292800785

shutterstock.com · 292800785

Classe tristeza:

Modelo Efficientnetb0

Disponível no Kaggle nomeado de "human-emotions-efficientnetb0" do autor Jovan Chua e possui a acurácia de 67%.

Vantagens:

- Configura um pipeline completo para treinamento e avaliação de um modelo de deep learning usando PyTorch.
- Define um dataset personalizado
- Define funções para treinar e avaliar o modelo
- Utiliza métricas para acompanhar o desempenho durante o processo.

Modelo

O modelo utilizado é a EfficientNet_B0 da biblioteca torchvision models, que possui como arquitetura base a ConvNet, sendo otimizada para eficiência e desempenho.

Modelo

- Parâmetros do Modelo:
 - Resolução da Imagem: 224x224 pixels.
 - Número de Camadas: 82.
 - Aproximadamente 5.3 milhões.
 - Parâmetros Treináveis: Sim, mas ajustável para congelar camadas.
- 2. Principais Características:
 - Módulos MBConv: 7 blocos com convoluções expansivas.
 - Ativação: SiLU (Swish).
 - Pooling: Adaptive Average Pooling.
- 3. Camada Final: Fully connected para classificação.

Modelo

O modelo EfficientNet utiliza-se da técnica de "Transfer Learning", onde os pesos do aprendizado que já foi treinado em um grande conjunto de dados por organizações para uma tarefa específica é carregado no modelo.

Layer (Type)	Input Shape	Output Shape	Param #	Trainable
Conv2d (features.0.0)	[32, 3, 224, 224]	[32, 32, 112, 112]	864	False
MBConv (features.1.0)	[32, 32, 112, 112]	[32, 16, 112, 112]	1,448	False
MBConv (features.4.0)	[32, 40, 28, 28]	[32, 80, 14, 14]	37,130	False
MBConv (features.6.0)	[32, 112, 14, 14]	[32, 192, 7, 7]	262,492	False
Conv2d (features.8.0)	[32, 320, 7, 7]	[32, 1280, 7, 7]	409,600	True
Linear (classifier.1)	[32, 1280]	[32, 3]	3,843	True

Melhoria do Conjunto de Dados

Limpeza dos Dados:

Remoção de imagens duplicadas e de baixa qualidade. Impacto: Reduz ruído, melhora a acurácia do modelo.

2. Ampliar o Conjunto de Dados:

Descrição: Adição de imagens em variados cenários. Impacto: Enriquecimento do dataset, melhora na distinção de emoções.

Melhoria do Conjunto de Dados

Para ampliar o conjunto de dados, a técnica usada foi a adição de imagens de outra base de dados.

É usado a base de dados do Kaggle FER-2013, que contêm imagens de rostos em escala de cinza de 48x48 pixels.

Otimização do Modelo

- 1. Balanceamento das Classes:
 - Descrição: Igualar a quantidade de imagens entre classes.
 - Impacto: Previne viés, melhora a acurácia em classes menos representadas.
- Redução na Dimensão das Imagens:
 - Descrição: Ajuste do tamanho das imagens.
 - Impacto: Acelera o treinamento, mantém a eficiência computacional.

Resultados

Base de dados

Após a limpeza, pré-processamento e adição de novas imagens na base de dados. Seu tamanho 720 amostras, com resolução de 48x48 pixels e em escala de cinza.

Modelo da referência

É possível observar que por mais que o modelo aprenda com os dados de treinamento, não é possível generalizar com os dados de teste.

Época	Perda de Treinamento	Acurácia de Treinamento	Perda de Teste	Acurácia de Teste
0	1.02943	0,51%	0.90412	0,56%
1	0.73483	0,74%	0.76880	0,74%
2	0.54129	0,81%	0.67089	0,73%
3	0.43293	0,90%	0.63564	0,70%
4	0.35312	0,92%	0.62396	0,72%
5	0.29912	0,94%	0.66314	0,68%

Modelo Proposto

Já no modelo proposto é possível observar uma melhora na sua generalização.

Época	Perda de Treinamento	Acurácia de Treinamento	Perda de Teste	Acurácia de Teste
0	0.16324	0,96%	0.36805	0,85%
1	0.11552	0,98%	0.35697	0,88%
2	0.11365	0,98%	0.34919	0,89%
3	0.09538	0,98%	0.34884	0,89%
14	0.02551	0,99%	0.35924	0,88%
15	0.03168	0,99%	0.36878	0,89%
16	0.02706	0,99%	0.38192	0,89%
17	0.03210	0,99%	0.40462	0,89%
18	0.03490	0,99%	0.41144	0,89%
19	0.03006	0,99%	0.40458	0,89%

Modelos

Essa comparação destaca que o Modelo Proposto tem uma acurácia média significativamente melhor em comparação com o Modelo Referência.

Modelo	Média da Acurácia de Treinamento	Média da Acurácia de Teste
Modelo Referência	0,79%	0,69%
Modelo Proposto	0,98%	0,88%

Conclusões

- A base de dados possui amostras duplicadas e inadequadas para o uso no modelo.
- Por mais que a base de dados se proponha a classificar expressões faciais, na prática as imagens comportam também expressões corporais. Levando a concluir que elas dificultava a classificação das emoções faciais.

Referências

https://www.kaggle.com/code/jovanchua/human-emotions-efficientnetb0

https://www.kaggle.com/datasets/msambare/fer2013

Obrigado!