Easy Parametricity

Jem Lord

Department of Computer Science and Technology University of Cambridge

16th April 2025

Overview

- 1. Parametricity?
- 2. Models of the Axiom
- 3. The Main Theorem
- 4. How To Get Parametricity (Proof of Main Theorem)
- 5. Scope of the Technique
- 6. Extras

Parametricity?

Suitably uniformly defined families of functions $u_X : FX \to GX$ should be "nice" and satisfy a corresponding equation like naturality.

Parametricity?

Suitably uniformly defined families of functions $u_X: FX \to GX$ should be "nice" and satisfy a corresponding equation like naturality.

e.g. if $\alpha: \prod_{X:\mathcal{U}}(X\times X)\to X$ is suitably uniformly defined then we would hope that either $\alpha=\pi_0$ or $\alpha=\pi_1$.

if $\beta: \prod_{X:\mathcal{U}}(X \to X) \to (X \to X)$ is suitably uniformly defined then we would hope that $\beta = -^{\circ n}$ for some $n: \mathbb{N}$.

Parametricity?

Suitably uniformly defined families of functions $u_X: FX \to GX$ should be "nice" and satisfy a corresponding equation like naturality.

e.g. if $\alpha: \prod_{X:\mathcal{U}}(X\times X)\to X$ is suitably uniformly defined then we would hope that either $\alpha=\pi_0$ or $\alpha=\pi_1$.

if $\beta: \prod_{X:\mathcal{U}}(X \to X) \to (X \to X)$ is suitably uniformly defined then we would hope that $\beta = -^{\circ n}$ for some $n: \mathbb{N}$.

Today, we're going to look at conditions on a universe $\mathcal U$ which ensure all families are appropriately parametric.

For A, B types, write $A \perp B$ for the statement that $a \mapsto \lambda_{-}.a : A \to (B \to A)$ is an equivalence.

Axiom $(PA_{\mathcal{U}})$

 ${\cal U}$ is a universe; for any type $A:{\cal U},\,{\cal U}\perp A$ i.e. the map

$$a \mapsto \lambda_{-}.a : A \to \prod_{X:\mathcal{U}} A$$

is an equivalence.

Slogan: "All functions from ${\cal U}$ to a ${\cal U}$ -small type are constant."

Axiom $(PA_{\mathcal{U}})$

 ${\cal U}$ is a universe; for any type $A:{\cal U},\,{\cal U}\perp A$ i.e. the map

$$a \mapsto \lambda_{-}.a : A \to \prod_{X:\mathcal{U}} A$$

is an equivalence.

Slogan: "All functions from $\mathcal U$ to a $\mathcal U$ -small type are constant."

We can think of this as a simpler version of the instance of parametricity which states that

$$a \mapsto \lambda_{-}.\lambda f.f(a) : A \to \prod_{X:\mathcal{U}} (A \to X) \to X$$

is an equivalence.

Axiom $(PA_{\mathcal{U}})$

 ${\cal U}$ is a universe; for any type $A:{\cal U},\,{\cal U}\perp A$ i.e. the map

$$a \mapsto \lambda_{-}.a : A \to \prod_{X:\mathcal{U}} A$$

is an equivalence.

Slogan: "All functions from $\mathcal U$ to a $\mathcal U$ -small type are constant."

This is also equivalent to asking that there are unique diagonal fillers in squares like

Axiom $(PA_{\mathcal{U}})$

 ${\cal U}$ is a universe; for any type $A:{\cal U},\,{\cal U}\perp A$ i.e. the map

$$a \mapsto \lambda_{-}.a : A \to \prod_{X:\mathcal{U}} A$$

is an equivalence.

Slogan: "All functions from ${\cal U}$ to a ${\cal U}$ -small type are constant."

Or that for any $A: \mathcal{U}$ there are unique diagonal fillers in squares like

Axiom $(PA_{\mathcal{U}})$

 ${\cal U}$ is a universe; for any type $A:{\cal U},\,{\cal U}\perp A$ i.e. the map

$$a \mapsto \lambda_{-}.a : A \to \prod_{X:\mathcal{U}} A$$

is an equivalence.

Slogan: "All functions from ${\cal U}$ to a ${\cal U}$ -small type are constant."

Or as some arcane relative of logical relations.

It expresses validity of the following:

Let T be a \mathcal{U} -small type.

Say that $t_0 R t_1$ iff there exist $\langle \tau_A \rangle_{A:\mathcal{U}} : T$ with $\tau_0 = t_0$ and $\tau_1 = t_1$.

Then $t_0 R t_1$ implies $t_0 = t_1$.

(Here a "relation" between $T_0, T_1 : \mathcal{U}$ would be a type family $\langle T_A' \rangle_{A:\mathcal{U}} : \mathcal{U}$ with $T_0' = T_0$ and $T_1' = T_1$.)

Axiom $(PA_{\mathcal{U}})$

 ${\cal U}$ is a universe; for any type $A:{\cal U},\,{\cal U}\perp A$ i.e. the map

$$a \mapsto \lambda_{-}.a : A \to \prod_{X:\mathcal{U}} A$$

is an equivalence.

Slogan: "All functions from ${\mathcal U}$ to a ${\mathcal U}$ -small type are constant."

Main Theorem

Theorem (Main)

Assume $PA_{\mathcal{U}}$.

Let ${\bf C}$ be a ${\cal U}$ -complete univalent category and ${\bf D}$ be a locally ${\cal U}$ -small category.

Main Theorem

Theorem (Main)

Assume $PA_{\mathcal{U}}$.

Let C be a U-complete univalent category and D be a locally U-small category.

- (a) Let $F, G : \mathbf{C} \to \mathbf{D}$ be functors and let $\alpha : \prod_{X: \mathrm{Ob}(\mathbf{C})} \mathbf{D}(F(X), G(X))$. Then α is natural.
- (b) Let $F, G : \mathbf{C}^{\mathrm{op}} \times \mathbf{C} \to \mathbf{D}$ be bifunctors and let $\beta : \prod_{X : \mathrm{Ob}(\mathbf{C})} \mathbf{D}(F(X, X), G(X, X))$. Then β is dinatural.
- (c) Let $F: \mathbf{C} \to \mathbf{D}$ be a function on objects and morphisms which respects sources, targets and identity morphisms. Then F respects composition, so is a functor.

Models from Modalities

- Let $\mathcal V$ be a univalent universe and $\Diamond:\mathcal V\to\mathcal V$ be an (idempotent monadic) modality on $\mathcal V$.
- Write \mathcal{V}_{\Diamond} for the reflective subuniverse of \lozenge -modal types. \mathcal{V}_{\Diamond} has 1, \times , \rightarrow , Σ , Π and = but may fail to have HITs.

Models from Modalities

- Let $\mathcal V$ be a univalent universe and $\Diamond:\mathcal V\to\mathcal V$ be an (idempotent monadic) modality on $\mathcal V$.
- Write \mathcal{V}_{\Diamond} for the reflective subuniverse of \lozenge -modal types. \mathcal{V}_{\Diamond} has 1, \times , \rightarrow , Σ , Π and = but may fail to have HITs.
- Suppose there is a type \mathbb{I} with $0_{\mathbb{I}}, 1_{\mathbb{I}} : \mathbb{I}$, $0_{\mathbb{I}} \neq 1_{\mathbb{I}}$ and $\Diamond \mathbb{I} \cong 1$. (This is equivalent to the 'axiom of sufficient cohesion'.) Then $\mathsf{PA}_{\mathcal{V}_{\Diamond}}$.

Models from Modalities

- Let $\mathcal V$ be a univalent universe and $\Diamond:\mathcal V\to\mathcal V$ be an (idempotent monadic) modality on $\mathcal V$.
- Write \mathcal{V}_{\Diamond} for the reflective subuniverse of \lozenge -modal types. \mathcal{V}_{\Diamond} has 1, \times , \rightarrow , Σ , Π and = but may fail to have HITs.
- Suppose there is a type \mathbb{I} with $0_{\mathbb{I}}, 1_{\mathbb{I}} : \mathbb{I}$, $0_{\mathbb{I}} \neq 1_{\mathbb{I}}$ and $\Diamond \mathbb{I} \cong 1$. (This is equivalent to the 'axiom of sufficient cohesion'.) Then $\mathsf{PA}_{\mathcal{V}_{\Diamond}}$.
- If \Diamond is the shape modality left adjoint to the flat \flat modality of modal HoTT ($\Diamond = \int \neg \, \flat$), then \mathcal{V}_{\Diamond} has all discrete types including $0,2,\mathbb{N}$ and (I think?) has HITs.

Some Models

- In simplicial type theory, PA holds for the type of groupoids (those C with $[1] \perp C$).
- More generally, the subuniverse of discrete types in cohesive HoTT satisfies PA as soon as the axiom of sufficient cohesion (axiom C2) holds.
- The (internally defined) subuniverse of discrete types in the 1-toposes of cubical sets or simplicial sets satisfy PA.
- Similarly, in any stably locally connected (1-)topos (e.g. simplicial sets, cubical sets), PA is implied by the axiom of sufficient cohesion (axiom C2).
- The univalent universe $\mathcal U$ of modest types in the cubical assemblies model satisfies $\mathsf{PA}_{\mathcal U}.$
- The universe $\mathcal U$ of modest sets of a category of assemblies satisfies $\mathsf{PA}_\mathcal U.$

Main Theorem

Theorem (Main)

Assume $PA_{\mathcal{U}}$.

Let C be a U-complete univalent category and D be a locally U-small category.

- (a) Let $F, G : \mathbf{C} \to \mathbf{D}$ be functors and let $\alpha : \prod_{X: \mathrm{Ob}(\mathbf{C})} \mathbf{D}(F(X), G(X))$. Then α is natural.
- (b) Let $F, G : \mathbf{C}^{\mathrm{op}} \times \mathbf{C} \to \mathbf{D}$ be bifunctors and let $\beta : \prod_{X : \mathrm{Ob}(\mathbf{C})} \mathbf{D}(F(X, X), G(X, X))$. Then β is dinatural.
- (c) Let $F: \mathbf{C} \to \mathbf{D}$ be a function on objects and morphisms which respects sources, targets and identity morphisms. Then F respects composition, so is a functor.

Aside: factorisations

Let **C** be a category and $A \xrightarrow{f} B$ be a morphism of **C**. We denote Fact(f) the type of factorisations of f:

Note that this is equivalently the fibre of f under $\circ: \mathbf{C}^{\bullet \to \bullet \to \bullet} \to \mathbf{C}^{\bullet \to \bullet}$.

Aside: factorisations

Let **C** be a category and $A \xrightarrow{f} B$ be a morphism of **C**. We denote Fact(f) the type of factorisations of f:

$$A \xrightarrow{f_f} B$$

Note that this is equivalently the fibre of f under $\circ: \mathbf{C}^{\bullet \to \bullet \to \bullet} \to \mathbf{C}^{\bullet \to \bullet}$.

Amongst Fact(f) we in particular have the factorisations (f, id) and (id, f):

Main Theorem (but better)

A category **C** is $\bot \in \mathcal{U}$ -tame iff for any $A : \mathcal{U}$, $Fact(f) \bot A$ i.e. all functions from Fact(f) to a \mathcal{U} -small type are constant.

Theorem (A)

Assume $PA_{\mathcal{U}}$. Then any univalent category with limits of shape p*1 for all propositions p is $\bot \in \mathcal{U}$ -tame.

Theorem (B)

Let **C** be a $\bot \in \mathcal{U}$ -tame category and **D** be a locally \mathcal{U} -small category. Then Theorem Main(a,b,c) hold.

Approach to proof of Theorem B

Theorem (B)

Let **C** be a $\bot \in \mathcal{U}$ -tame category and **D** be a locally \mathcal{U} -small category. Then Theorem 1(a,b,c) hold.

- B.1 Massage the goal identity into the form M(f, id) = M(id, f) for some function $M : Fact(f) \rightarrow hom(c, d)$.
- B.2 By $\perp \in \mathcal{U}$ -tameness of **C** and \mathcal{U} -smallness of hom(c, d), M(f, id) = M(id, f) as desired.

Proof of B.1(a)

Let F, G, α be as in hypotheses of Theorem 1(a). For any morphism f in \mathbf{C} , we wish to show that $\alpha_B \circ Ff = Gf \circ \alpha_A$.

Goal: Outer hexagon commutes.

Construct M_f : Fact $(f) \rightarrow \text{hom}_{\mathbf{D}}(FA, GB)$ to interpolate.

Proof of B.1(a)

Construct $M_f : \mathsf{Fact}(f) \to \mathsf{hom}_{\mathbf{D}}(FA, GB)$ to interpolate. So let

be a factorisation of f.

Hence it suffices to show that for all f, $M_f(f, id) = M_f(id, f)$.

Approach to proof of Theorem A

Theorem (A)

Assume $PA_{\mathcal{U}}$. Then any univalent category with limits of shape p*1 for all propositions p is $\bot \in \mathcal{U}$ -tame.

- A.1 Show (using univalence and completeness of **C**) that for any f there is a function $F_f: \mathcal{U} \to \mathsf{Fact}(f)$ with $F_f(\mathbf{0}) = (f, \mathsf{id})$ and $F_f(\mathbf{1}) = (\mathsf{id}, f)$.
- A.2 For any g, any M: Fact $(g) \to A$ and any factorisation (f,h) of g, let M': Fact $(f) \to A$ be $M'(f_l,f_r) = M(f_l,h\circ f_r)$. Then by PA $_{\mathcal{U}}$, $M'F_f$ is constant, so $M(f,h\circ \mathrm{id}) = M'F_f\mathbf{0} = M'F_f\mathbf{1} = M(\mathrm{id},h\circ f)$ as desired.

Proof of A.1

Let $f: X \to Y$ be a morphism of \mathbf{C} . We now want to show (using univalence and completeness of \mathbf{C}) that there is a function $F: \mathcal{U} \to \mathsf{Fact}(f)$ with $F(\mathbf{0}) = (f, \mathsf{id})$ and $F(\mathbf{1}) = (\mathsf{id}, f)$.

Proof of A.1

Let $f: X \to Y$ be a morphism of \mathbf{C} . We now want to show (using univalence and completeness of \mathbf{C}) that there is a function $F: \mathcal{U} \to \mathsf{Fact}(f)$ with $F(\mathbf{0}) = (f, \mathsf{id})$ and $F(\mathbf{1}) = (\mathsf{id}, f)$.

Hence we want to construct an interpolating factorisation $F(S) = X \xrightarrow{l_S} M_S \xrightarrow{r_S} Y$ dependent on a type $S: \mathcal{U}$.

By univalence of **C**, we only need isomorphisms $F(\mathbf{0}) \cong (f, \mathrm{id})$ and $F(\mathbf{1}) \cong (\mathrm{id}, f)$.

For S a category (pictured, a set), let S*1 be the result of freely adjoining a terminal object to S.

For S a category (pictured, a set), let S*1 be the result of freely adjoining a terminal object to S.

Let $J_S:(S*1)\to \mathbf{C}$ be the diagram for a wide pullback of S copies of $f:X\to Y$.

For S a category (pictured, a set), let S*1 be the result of freely adjoining a terminal object to S.

Let $J_S:(S*1)\to \mathbf{C}$ be the diagram for a wide pullback of S copies of $f:X\to Y$. The J_S admit cones from X.

For S a category (pictured, a set), let S*1 be the result of freely adjoining a terminal object to S.

Let $J_S:(S*1)\to \mathbf{C}$ be the diagram for a wide pullback of S copies of $f:X\to Y$.

The J_S admit cones from X.

We shall take the limit of $J_S:(S*1)\to \mathbf{C}$.

Hence, let
$$F(T) = X \xrightarrow{(\langle \operatorname{id}_X \rangle_{s:||T||-1}, f)} \lim J_{||T||_{-1}} \xrightarrow{\pi} Y$$
.

Fortunately, we didn't really use much of that the category $\bf C$ was a 1-category – the same techniques work for higher categories we write down.

Take a wild category to be defined like a category, but without restricting the homotopy types of objects or morphisms, removing associativity, and adding that $idl_{id} = idr_{id} : (id \circ id) = id$.

Theorem

If **C** is a locally \mathcal{U} -small $\bot \in \mathcal{U}$ -tame wild category, then **C** has an associator α , and moreover α satisfies the pentagon equation.

Theorem

If **C** is a locally \mathcal{U} -small $\perp \in \mathcal{U}$ -tame wild category, then so is \mathbf{C}^{\rightarrow} .

What about versions of the axiom for non-univalent universes?

What about versions of the axiom for non-univalent universes? Well, we never assumed univalence.

What about versions of the axiom for non-univalent universes? Well, we never assumed univalence.

Call a category **C** glueable if for any proposition p, object A and p-indexed family $(B_u, i_u : A \cong B_u)_{u:p}$ of objects isomorphic to A, there's a specified object and isomorphism $(B', i' : A \cong B')$ which if u : p equals $(B_u, i_u : A \cong B_u)$.

Theorem (A')

Assume $PA_{\mathcal{U}}$. Then any glueable category with limits of shape p*1 for all propositions p is $\bot \in \mathcal{U}$ -tame.

When **Set** is glueable, so are plenty of other categories, such as presheaf categories and their replete full subcategories.

What about versions of the axiom for non-univalent universes? Well, we never assumed univalence.

Call a category **C** glueable if for any proposition p, object A and p-indexed family $(B_u, i_u : A \cong B_u)_{u:p}$ of objects isomorphic to A, there's a specified object and isomorphism $(B', i' : A \cong B')$ which if u : p equals $(B_u, i_u : A \cong B_u)$.

Theorem (A')

Assume $PA_{\mathcal{U}}$. Then any glueable category with limits of shape p*1 for all propositions p is $\bot \in \mathcal{U}$ -tame.

When **Set** is glueable, so are plenty of other categories, such as presheaf categories and their replete full subcategories.

All models on the Models slide have their category of sets glueable.

Caveat: ${\cal U}$ doesn't contain Prop $_{\cal U}$

Lemma

 $PA_{\mathcal{U}}$ implies \mathcal{U} doesn't contain its subobject classifier. (Hence $LEM_{\mathcal{U}}$ also fails.)

Explicitly, we take $SC_{\mathcal{U}}$ to be the statement that there is $\Omega: \mathcal{U}$ and some $i: \mathsf{hProp}_{\mathcal{U}}/\leftrightarrow \cong \Omega$. (The quotient is only necessary in absence of univalence.)

Caveat: \mathcal{U} doesn't contain $\mathsf{Prop}_{\mathcal{U}}$

Lemma

 $PA_{\mathcal{U}}$ implies \mathcal{U} doesn't contain its subobject classifier. (Hence $LEM_{\mathcal{U}}$ also fails.)

Explicitly, we take $SC_{\mathcal{U}}$ to be the statement that there is $\Omega:\mathcal{U}$ and some $i: hProp_{\mathcal{U}}/\leftrightarrow \cong \Omega$. (The quotient is only necessary in absence of univalence.)

Proof.

Suppose (by $SC_{\mathcal{U}}$) there is $\Omega : \mathcal{U}$ such that $i : hProp_{\mathcal{U}}/\leftrightarrow \cong \Omega$. Define $f : \prod_{X:\mathcal{U}} \Omega$ as $f(X) = i(\|X\|_{-1})$. Then $f(\mathbf{0}) = i([\mathbf{0}]) \neq i([\mathbf{1}]) = f(\mathbf{1})$.

f is nonconstant, contradicting $PA_{\mathcal{U}}$.

18 / 22

Caveat: \mathcal{U} doesn't contain Prop $_{\mathcal{U}}$

Lemma

 $PA_{\mathcal{U}}$ implies \mathcal{U} doesn't contain its subobject classifier. (Hence $LEM_{\mathcal{U}}$ also fails.)

Explicitly, we take $SC_{\mathcal{U}}$ to be the statement that there is $\Omega:\mathcal{U}$ and some $i: hProp_{\mathcal{U}}/\leftrightarrow \cong \Omega$. (The quotient is only necessary in absence of univalence.)

Proof.

Suppose (by $SC_{\mathcal{U}}$) there is $\Omega: \mathcal{U}$ such that $i: hProp_{\mathcal{U}}/\leftrightarrow \cong \Omega$. Define $f: \prod_{X:\mathcal{U}} \Omega$ as $f(X) = i(\|X\|_{-1})$. Then $f(\mathbf{0}) = i([\mathbf{0}]) \neq i([\mathbf{1}]) = f(\mathbf{1})$. f is nonconstant, contradicting $PA_{\mathcal{U}}$.

Despite this failure, it's still possible to have a subuniverse $\mathcal{S} \subseteq \mathcal{U}$ for which LEM_S (hence SC_S) holds and a superuniverse $\mathcal{V} \supseteq \mathcal{U}$ for which SC_V holds: PA remains useful for reasoning about situations with SC.

The End

The End

Questions?

Proof of B.1(b)

Let F, G, β be as in hypotheses of Theorem Main(b).

Goal: Outer diamond commutes.

Construct M_f : Fact $(f) \rightarrow \text{hom}_{\mathbf{D}}(F(A, B), G(B, A))$ to interpolate.

Proof of B.1(c)

Goal: Outer diamond commutes.

Construct M_f : Fact $(f) \rightarrow \text{hom}_{\mathbf{D}}(FA, FC)$ to interpolate.

An Impredicative Univalent Universe

Let \mathcal{U} be an univalent universe which has all (possibly \mathcal{U} -large) products.

Proposition

If $A: \mathcal{U}$ satisfies $\forall a, b. \neg \neg (a = b) \rightarrow (a = b)$, then $a \mapsto \lambda_{-}.a: A \rightarrow (\mathcal{U} \rightarrow A)$ is an equivalence.

Proof sketch.

Let $f: \mathcal{U} \to A$ and assume $f(0) \neq f(1)$. Denote $\text{Prop}_{\neg \neg} := \{a : \text{Prop} \mid a = \neg \neg a\}$.

Then $f: \mathsf{Prop}_{\neg\neg} \hookrightarrow A$ is a split embedding, so $\mathsf{Prop}_{\neg\neg}$ is essentially \mathcal{U} -small.

By large completeness, $\operatorname{Prop}_{\neg\neg}^-: \mathbf{Set} \to \mathbf{Set}$ has an initial algebra $A \cong \operatorname{Prop}_{\neg\neg}^A$, contradicting Cantor's diagonalisation argument.

Hence f(0) = f(1). Similarly, $f(1) = f(X^0) = f(X^1) = f(X)$.

Conjecture

 $\mathsf{PA}_\mathcal{U}$