

Общие сведения о БЭВМ

4

Архитектура ЭВМ

Гарвардская архитектура

Архитектура фон Неймана

БЭВМ-NG

Устройство Управления

Цикл команды

- ► 1. Цикл выборки команды (Instruction Fetch, IF)
- 2. Цикл выборки адреса (Address Fetch, AF)
- 3. Цикл выборки операнда (Operand Fetch, OF)
- 4. Цикл исполнения (Execution, EX)
- ► 5. Цикл прерывания (Interruption, INT)

Циклы пультовых операций

► Ввод адреса (Set Instruction Pointer, SIP)

→ Чтение (Read, RD)

→ Запись (Write, WR)

► Пуск (Start, ST)

Отступление: Дешифратор

	Адре	eC	Строка										
A ₂	A ₁	A ₀	L ₇	L ₆	L ₅	L ₄	L ₃	L ₂	L ₁	L _o			
0	0	0	0	0	0	0	0	0	0	1			
0	0	1	0	0	0	0	0	0	1	0			
0	1	0	0	0	0	0	0	1	0	0			
0	1	1	0	0	0	0	1	0	0	0			
1	0	0	0	0	0	1	0	0	0	0			
1	0	1	0	0	1	0	0	0	0	0			
1	1	0	0	1	0	0	0	0	0	0			
1	1	1	1	0	0	0	0	0	0	0			

Адресуемая память БЭВМ

• 2048 16-ти разрядных ячеек

АЛУ, коммутатор, блок признаков результата

Адресная команда ...

... с прямой абсолютной адресацией

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	K(ЭΠ		0					A	дре	С				

... с относительной адресацией

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	K(ОΠ		1	Р	ежи	M			С	мещ	ени	e		

... с непосредственной загрузкой операнда

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	K	ЭΠ		1	1	1	1				Чи	СЛО			

Форматы команд

Безадресная команда

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0				Р	асш	ире	ние	: KC	П			

Команда ввода-вывода

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	1		При	каз				УС	тро	йст	ВО		

Команда ветвления

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	Ρá	асш.	. K(ПС			С	меш	ени	ıe		

Адресные команды

Наименование	Мнемон.	Код	Описание
Логическое умножение	AND M	2XXX	M & AC → AC
Логическое или	OR M	3XXX	M AC → AC
Сложение	ADD M	4XXX	M + AC → AC
Сложение с переносом	ADC M	5XXX	$M + AC + C \rightarrow AC$
Вычитание	SUB M	6XXX	AC − M → AC
Сравнение	CMP M	7XXX	Установить флаги по результату АС–М
Декремент и пропуск	LOOP M	8XXX	M - 1 → M; Если M <= 0, то IP + 1 → IP
Резерв		9XXX	
Загрузка	LD M	AXXX	M → AC
Обмен	SWAM M	BXXX	$M \leftrightarrow AC$
Переход	JUMP M	CXXX	M → IP
Вызов подпрограммы	CALL M	DXXX	SP - 1 → SP, IP → (SP), M → IP
Сохранение	ST M	EXXX	AC → M

Безадресные команды

Наименование	Мнемон.	Код	Описание
Нет операции	NOP	0000	Место для точек отладки, «патч» программы
Останов	HLT	0100	Отключение ТГ, переход в пультовый режим
Очистка аккумулятора	CLA	0200	0 → AC
Инверсия аккумулятора	NOT	0280	^AC → AC
Очистка рег. переноса	CLC	0300	0 → C
Инверсия рег. переноса	CMC	0380	^C → C
Циклический сдвиг влево	ROL	0400	AC и C сдвигается влево. AC_{15} → C, C → AC_{0}
Циклический сдвиг вправо	ROR	0480	AC и C сдвигается вправо. AC ₀ → C, C → AC ₁₅
Арифметический сдвиг влево	ASL	0500	AC сдвигается влево. AC_{15} → C , 0 → AC_{0}
Арифметический сдвиг вправо	ASR	0580	AC сдвигается вправо. $AC_0 \rightarrow C$, $AC_{15} \rightarrow AC_{14}$
Расширение знака байта	SXTB	0600	$AC_7 \rightarrow AC_{15}AC_8$
Обмен ст. и мл. байтов	SWAB	0680	$AC_7AC_0 \leftrightarrow AC_{15}AC_8$

Безадресные команды (2)

Наименование	Мнемон.	Код	Описание
Инкремент	INC	0700	AC + 1 → AC
Декремент	DEC	0740	AC - 1 → AC
Изменение знака	NEG	0780	^AC +1 → AC
Чтение из стека	POP	0800	(SP)+ → AC
Чтение флагов из стека	POPF	0900	(SP)+ → PS
Возврат из подпрограммы	RET	0A00	(SP)+ → IP
Возврат из прерывания	IRET	0B00	(SP)+ → PS, (SP)+ → IP
Запись в стек	PUSH	0C00	AC → -(SP)
Запись флагов в стек	PUSHF	0D00	PS → -(SP)
Обмен вершины стека с аккумулятором	SWAP	0E00	AC ↔ (SP)

Команды ветвления

Наименование	Мнемон.	Код	Описание
Переход, если равенство	BEQ D	F0XX	IF Z==1 THEN IP+D+1 → IP
Переход, если неравенство	BNE D	F1XX	IF Z==0 THEN IP+D+1 → IP
Переход, если минус	BMI D	F2XX	IF N==1 THEN IP+D+1 → IP
Переход, если плюс	BPL D	F3XX	IF N==0 THEN IP+D+1 → IP
Переход, если выше или равно /перенос	BCS D BHIS D	F4XX	IF C==1 THEN IP+D+1 → IP
Переход, если ниже/нет переноса	BCC D BLO D	F5XX	IF C==0 THEN IP+D+1 → IP
Переход, если переполнение	BVS D	F6XX	IF V==1 THEN IP+D+1 → IP
Переход, если нет переполнения	BVC D	F7XX	IF V==0 THEN IP+D+1 → IP
Переход, если меньше	BLT D	F8XX	IF N⊕V==1 THEN IP+D+1 → IP
Переход, если больше или равно	BGE D	F9XX	IF N⊕V==0 THEN IP+D+1 → IP
Безусловный переход	BR D JUMP D	CEXX	IP+D+1 → IP

Команды ввода-вывода

Наименование	Мнемон.	Код	Описание
Запрет прерываний	DI	1000	
Разрешение прерываний	EI	1100	
Ввод	IN REG	12XX	REG → AC
Вывод	OUT REG	13XX	AC → REG
Прерывание	INT NUM	18XX	Програмное прерывание с векторм NUM
Возврат из прерывания	IRET	0B00	(SP)+ → PS, (SP)+ → IP

Как выполняются эти команды?

•Ответы на ВСЕ вопросы потактового выполнения команд:

Методические указания к лабораторным работам

Приложение В, табл. В.10 или java -Dmode=decoder -jar bcomp-ng.jar

•Используйте БЭВМ в режиме ТАКТ!

Цикл выборки команды: ADD 21

0) Исходное состояние до начала цикла выборки команды

1) IP -> BR, AR Содержимое IP через АЛУ записывается в BR и AR

Цикл выборки команды: ADD 21

2) BR + 1 -> IP, MEM(AR) -> DR, Содержимое BR увеличивается на 1 и записывается в IP, одновременно с этим по 25 адресу содержимое читается в DR

3) DR -> CR Содержимое DR через АЛУ записывается в CR

Цикл выборки операнда: ADD 21

1) DR -> AR Младшие 11 разрядов DR (адрес операнда из команды) пересылаются в AR

2) MEM(AR) -> DR Загрузка из памяти по адресу 21 значения в DR

Цикл исполнения: ADD 21

1) AC + DR -> AC, N, Z, V, C

Содержимое DR на правом входе АЛУ складывается с содержимым АС на левом входе АЛУ и записывается в АС. Признаки результата N,Z,V,C обнулятся