$x^2 = 4ay$	(0,0)	$+ve\ Y-axis$	(0, a)	4 <i>a</i>	y + a = 0	$(\pm 2a,a)$
$x^2 = -4ay$	(0,0)	$-ve\ Y - axis$	(0, -a)	4 <i>a</i>	y-a=0	$(\pm 2a, -a)$
$(y-\beta)^2$	(α,β)	$\parallel X - axis$	$(\alpha + \alpha, \beta)$	4 <i>a</i>	$x + a = \alpha$	$(\alpha + a, \beta \pm 2a)$
$=4a(x-\alpha)$						
$(x-\alpha)^2$	(α,β)	$\parallel Y - axis$	$(\alpha, \alpha + \beta)$	4 <i>a</i>	$y + a = \beta$	$(\alpha \pm 2a, \beta + a)$
$=4a(y-\beta)$						

- (1) The parabola $x = ay^2 + by + c$ ($a \neq 0$) is || to X axis
- (2) The parabola $y = px^2 + qx + r (p \neq 0)$ is || to Y axis
- (3) The parametric of $y^2 = 4ax$ is $(at^2, 2at)$
- (4) The position of a point $P(x_1, y_1)$ w.r.t $y^2 = 4ax$

If $y_1^2 - 4ax_1 > 0$, then outside the parabola

- = 0, then on the parabola
- < 0, then inside the parabola
- (5) The equation of tangent of the parabola $y^2 = 4ax$ at $P(x_1, y_1)$ is $yy_1 = 2a(x + x_1)$.
- (6) The equation of normal of the parabola $y^2 = 4ax$ at $P(x_1, y_1)$ is $y_1(x x_1) + 2a(y y_1) = 0$.

Ellipse

- (1) If P(x,y) be a point on the foci S & S', then SP = a ex; S'P = a + ex; SP + S'P = 2a.
- (2) The equation of auxiliary circle of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ($a^2 > b^2$) is $x^2 + y^2 = a^2$.
- (3) Any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(a^2 > b^2)$ is $(a\cos\theta, b\sin\theta)$.
- (4) The position of a point $P(x_1, y_1)$ w.r.t the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(a^2 > b^2)$

If
$$\frac{{x_1}^2}{a^2} + \frac{{y_1}^2}{b^2} - 1 > 0$$
, then outside the ellipse

- = 0, then on the ellipse
- < 0 , then inside the ellipse
- (5) The equation of tangent of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $P(x_1, y_1)$ is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$.
- (6) The equation of normal of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $P(x_1, y_1)$ is $b^2 x_1 (y y_1) = a^2 y_1 (x x_1)$.

<u>Form</u>	x^2 y^2	x^2 y^2	$(x-\alpha)^2$ $(y-\beta)^2$	$(x-\alpha)^2$ $(y-\beta)^2$
	$\begin{vmatrix} \overline{a^2} + \overline{b^2} \\ = 1 (a^2 > b^2) \end{vmatrix}$	$\overline{b^2}^+ \overline{a^2}$ = 1 (a ² > b ²)	$\frac{a^2}{a^2} + \frac{b^2}{b^2}$ = 1 ($a^2 > b^2$)	$\frac{b^2}{b^2} + \frac{a^2}{a^2} = 1 (a^2 > b^2)$
<u>Centre</u>	(0,0)	(0,0)	(α, β)	(α, β)