Problem Set 12

Problem 1

- (1) 构成半群, 独异点, 群
- (2) 构成半群, 独异点, 群
- (3) 构成半群, 不构成独异点, 群
- (4) 构成半群, 不构成独异点, 群
- (5) 构成半群, 独异点, 不构成群
- (6) 构成半群, 独异点, 群

Problem 2

(1)

易知 $x * y = x \in S$, 即(S, *)满足封闭性, 构成一个代数系统

- \therefore 对于 $\forall x,y,z\in S,$ 都有(x*y)*z=x*z=x,x*(y*z)=x*y=x
- $\therefore (x * y) * z = x * (y * z)$
- ∴ S关于 * 运算满足结合性
- :: S关于 * 运算构成半群

(2)

 $\therefore (S,*)$ 是半群,要成为独异点,则需有单位元假设 $\exists e \in S$ 对于 $\forall x \in S$ 满足e*x=x*e=x不妨设e=a,若单位元e为b或c同理.

 $\therefore a * a = a, a$ 为单位元对a满足 a * b = a = b, b * a = b, a为单位元对b满足,则需a = b a * c = a = c, c * a = c, a为单位元对c满足,则需a = c

: 称为独异点的条件是a = b = c

Problem 3

易知 $a \circ b = a \in A$,即 $\langle A, \circ \rangle$ 满足封闭性,构成一个代数系统

 \because 対于 $\forall a,b,c \in A$,都有 $(a \circ b) \circ c = a \circ c = a, a \circ (b \circ c) = a \circ b = a$

- $\therefore (a \circ b) \circ c = a \circ (b \circ c)$
- :: A关于 ∘ 运算满足结合性
- ∴ ⟨*A*, ∘⟩是一个半群

Problem 4

 $\therefore xaxba = xbc$

 \therefore 由左消去律可知axba = bc

 $\therefore a^{-1}(axba) = a^{-1}(bc)$

 $\therefore (a^{-1}a)xba = a^{-1}bc$

 $\therefore x(ba) = a^{-1}bc$

:: 该方程在群G中仅有一个解

Problem 5

:: a是群 $\langle G, \circ \rangle$ 的幂等元

 $\therefore a \circ a = a$

对于 $\forall x \in G$,

 $\therefore a \circ x = (a \circ a) \circ x = a \circ (a \circ x)$

 \therefore 由左消去律得 $x = a \circ x$

- ∴ a是x的左单位元
- $\therefore x \circ a = x \circ (a \circ a) = (x \circ a) \circ a$
- \therefore 由右消去律得 $x = x \circ a$
- :. a也是x的右单位元
- :. a是单位元

Problem 6

 $(abc)^{n+1} = abcabc \cdots abc$

当abc的阶有穷,设为r

- $\therefore (abc)^{n+1} = a(bca)^n bc$
- $\therefore abc = a(bca)^n bc$
- $\therefore (bca)^n = e$
- $\therefore bca$ 阶有穷,设为r',可知r'|r
- \therefore 同理|bca|=r'时|abc|有穷为r,有r|r'
- |abc| = |bca|

同理可知|abc| = |cab|

|abc| = |bca| = |cab| = r

当abc的阶无穷,

假设|bca|有穷,由前面的论述可知会使|abc|有穷,与|abc|无穷矛盾

:: |bca| 无穷

同理可知|cab|无穷

$$|abc| = |bca| = |cab| = \infty$$

综上
$$|abc| = |bca| = |cab|$$

Problem 7

法一:

已知G为偶数阶群,设阶数为2k

可知存在 $a \in G, a \neq e,$ 有 $a^{2k} = e$

 $\because a^k \in G$

 $\therefore (a^k)^2 = a^{2k} = e$

∴ 存在二阶元*a*^k

法二:

已知G为偶数阶群,设阶数为2k

对于 $a \in G$, 若|a| > 2, 则 $a \neq a^{-1}$

若不然,则 $a = a^{-1}$,从而 $a^2 = e$, $|a| \le 2$ 与|a| > 2矛盾

- :: G中阶大于2的元素a与其逆 a^{-1} 成对出现, 所以个数是偶数个
- \therefore G中阶小于等于2的元素a个数也是偶数个,最少也有两个
- :: 只有|e|=1
- \therefore 必定存在一个元素a, 使得|a|=2

Problem 8

对于一个不等于单位元e的元a, 可知它有逆元 a^{-1} , 且易知 a^{-1} 也不是单位元

当 $a \neq a^{-1}$ 时,令 $b = a^{-1}$,则满足ab = ba = e

则此时我们可知对于 $\forall a \in G$,都有 $a = a^{-1}$

- $\therefore ab=(ab)^{-1}=b^{-1}a^{-1}=ba,$ 其中 $a,b\in G,a
 eq b$
- \therefore G中存在非单位元a和 $b, a \neq b, 且 ab = ba$

Problem 9

	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

通过观察易知 $\langle S, * \rangle$ 与 $\langle \mathbb{Z}_4, \oplus_4 \rangle$ 同构

 $\therefore \langle S, * \rangle$ 构成群

Problem 10

对于充分性:

·: G为交换群

 $\therefore \forall a,b \in G, ab = ba$

 $\therefore (ab)^2 = abab = a(ba)b = a(ab)b = aabb = a^2b^2$

对于必要性:

 $\therefore a^2b^2 = aabb = (ab)^2 = abab$

 $\therefore a(ab)b = a(ba)b$

 $\therefore ab = ba$

:: G为交换群