

DIGITAL DESIGN

ASSIGNMENT REPORT

ASSIGNMENT ID: 1

Student Name: 徐驰

Student ID: 11912224

PART 1: DIGITAL DESIGN THEORY

Provide your answers here:

- 1.
- (a)64*1024=65536 bytes
- (b)128*1024*1024=134217728 bytes
- (c)6.4*1024*1024*1024=6871947674 bytes
- 2.
- (a)111111111111111

(b)
$$2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 = 16383$$
 (decimal),

3fff(hexadecimal)

- 3.
- (a)10111000
- (b)b8, 10111000

Method (b) is faster

- 4.
- (a)27904836: (9 减去各位加一) 72095164
- (b)63325006: (9 减去各位加一) 36674994
- 5.0123456789ABCDEF
- (a)3911
- (b)1100011011101111
- (b)0011100100010001
- (c)3911
- (d)equivalent
- 6.
- (a)19.625 转成 10011.101

- (b)4/3 不断乘二后取整数部分,8 次后得到 1.01010101, (341/256=1.33203125)_D, difference:(1/768=0.00130208333)
- $(c)(1.55)_H$, $(1.33203125)_D$, equivalent, because conversion of binary and hexadecimal doesn't change precision.

7.

6:0110, 5:0101, 0:0000, 3:0011

(a)(0110010100000011)BCD

(b)(1001100000110110)excess-3 code

(c)(1010101100000101)8,4,-2,-1 code

(d)(1000011100000100)6311 code

8.(binary: hexadecimal)

(a)00000000: 0

(b)10111111: BF

(c)10111111: BF

(d)01011010: 5A

(e)11100101: E5

(f)11111111: FF

(g)01000000: 40

PART 2: DIGITAL DESIGN LAB (TASK1)

DESIGN

Describe the design of your system by providing the following information:

• Verilog design (provide the Verilog code)

```
module lab2(addend, augend, addend_led, augend_led, sum_led);
  input signed [1:0] addend;
  input signed [1:0] augend;
  output [1:0] addend_led;
  output [1:0] augend_led;
  output [2:0] sum_led;

assign addend_led = addend;
  assign augend_led = augend;
  assign sum_led = addend + augend;
endmodule
```

• Truth-table

	addend		aug	end	addend_led augend_		d_led	l sum_led			
位数	1	0	1	0	1	0	1	0	2	1	0
	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	1	0	0	1
	0	0	1	0	0	0	1	0	1	1	0
	0	0	1	1	0	0	1	1	1	1	1
	0	1	0	0	0	1	0	0	0	0	1
	0	1	0	1	0	1	0	1	0	1	0
	0	1	1	0	0	1	1	0	1	1	1
	0	1	1	1	0	1	1	1	0	0	0
	1	0	0	0	1	0	0	0	1	1	0
	1	0	0	1	1	0	0	1	1	1	1
	1	0	1	0	1	0	1	0	1	0	0

1	0	1	1	1	0	1	1	1	0	1
1	1	0	0	1	1	0	0	1	1	1
1	1	0	1	1	1	0	1	0	0	0
1	1	1	0	1	1	1	0	1	0	1
1	1	1	1	1	1	1	1	1	1	0

SIMULATION

Describe how you build the test bench and do the simulation.

• Using Verilog(provide the Verilog code)

```
module lab2_sim();

reg signed [1:0]addend;

reg signed [1:0]augend;

wire signed [1:0]addend_led;

wire signed [1:0]augend_led;

wire signed [2:0]sum_led;

lab2 xc(addend, augend, addend_led, augend_led, sum_led);

initial
```

Wave form of simulation result (provide screen shots)

 The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation.

	addend		augend		addend_led		augend_led		sum_led		
位数	1	0	1	0	1	0	1	0	2	1	0
	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	1	0	0	1
	0	0	1	0	0	0	1	0	1	1	0
	0	0	1	1	0	0	1	1	1	1	1
	0	1	0	0	0	1	0	0	0	0	1
	0	1	0	1	0	1	0	1	0	1	0
	0	1	1	0	0	1	1	0	1	1	1
	0	1	1	1	0	1	1	1	0	0	0
	1	0	0	0	1	0	0	0	1	1	0
	1	0	0	1	1	0	0	1	1	1	1
	1	0	1	0	1	0	1	0	1	0	0
	1	0	1	1	1	0	1	1	1	0	1

1	1	0	0	1	1	0	0	1	1	1
1	1	0	1	1	1	0	1	0	0	0
1	1	1	0	1	1	1	0	1	0	1
1	1	1	1	1	1	1	1	1	1	0

Yes.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

• Problems and solutions

PART 2: DIGITAL DESIGN LAB (TASK2)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design while using data flow (provide the Verilog code)
- Verilog design while using structured design (provide the Verilog code)
- Truth-table

x	у	(x+y)'	x'y'	(xy)'	x'+y'
0	0	1	1	1	1
0	1	0	0	1	1
1	0	0	0	1	1
1	1	0	0	0	0

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog (provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation

CONSTRAINT FILE AND THE TESTING

Describe how you test your design on the Minisys Practice platform.

- Constraint file (provide the screen shots on the feature of a pin and the binding info between pins and the input /output ports)
- The testing result (provide the screen shots (at least 3 testing scene)) to show state of inputs and outputs along with the related descriptions.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

• Problems and solutions