2018-2019 学年第 1 学期考试试题

课程名称 <u>《操作系统》</u> 任课教师签名	信号量机制实现同步时,同步信号量的初值一般为。								
出题教师签名题库抽题 审题教师签名	A. 0; 1 B. 1; 0								
考试方式(闭)卷 适用专业 2016 计算机类各专业	C. 不确定; 1 D. 1; 不确定								
考试时间 ()分钟	6有利于 CPU 密集型的作业,不利于 I/O 密集型的作业。								
题号 一 二 三 四 五 六 七 总分	A. 时间片轮转调度算法 B. 先来先服务调度算法								
得分	C. 短作业优先调度算法 D. 优先级调度算法								
评卷人	7. 在下列解决死锁的方法中,属于死锁预防策略的是。								
- 、单项选择题(每小题 2 分, 共 30 分)	A. 银行家算法 B. 资源有序分配法								
. 操作系统的基本职能是。	C. 死锁检测法 D. 资源分配图化简								
. 控制和管理系统内各种资源,有效地组织多道程序的运行	8. 通常,用户编写的程序中所使用的地址是。								
. 提供用户界面,方便用户使用	A. 物理地址 B. 绝对地址								
2. 提供方便的可视化编辑程序	C. 逻辑地址 D. 内存地址								
). 提供功能强大的网络管理工具. 计算机开机后,操作系统最终被加载到。	9. 若处理器有 24 位地址,则它支持的虚拟地址空间大小为字节。								
	A. 24K B. 16K C. 24M D. 16M								
a. BIOS B. ROM	10. 以下不属于连续内存分配的内存管理方式为 。								
EEPROM D. RAM	A . 固定分区分配 B . 可变分区分配								
. 进住从运行必到阻塞必可能定因为。	C. 单一分区分配 D. 页式分配								
运行进程执行 P 操作 B. 进程调度程序的调度	11. 分页式虚拟存储管理系统中,一般来说页面大小越大,则可能产生缺页中								
. 进程的时间片用完 D. 运行进程执行了 V 操作 . 进程和程序的本质区别是。	断的次数。								
· 处/主/中/主/丁町子/火区///									

A. 前者为动态的,后者为静态的 B. 前者存储在内存,后者在外存

C. 前者在文件中,后者在内存中 D. 前者分时使用 CPU,后者独占

5. 在使用信号量机制实现互斥时,互斥信号量的初值一般为____;使用

11. /25 2. /27 0. /2/C/V
12. 在请求分页系统中,页面分配策略与页面置换策略不能组合使用的
是。
A. 可变分配,全局置换 B. 可变分配,局部置换
C. 固定分配,全局置换 D. 固定分配,局部置换
13. 对于文件系统来说,文件及其属性可以集中在中以便查询。
A. 目录 B. 盘块 C. 字典 D. 索引
14不是 Windows 操作系统的文件管理方式。
A. FAT16 B. FAT32 C. NTFS D. Ext4
15. 在操作系统中,用户在使用 I/O 设备时,通常采用。
A. 物理设备名 B. 逻辑设备名
C. 虚拟设备名 D. 设备号
二、判断题(每小题 2 分,共 10 分)
1. 一般来说,用户进程的 PCB 存放在内存的用户空间,系统进程的 PCB 存
放在系统的内核空间。()
2. 只要系统发生死锁,一定是具备了产生死锁的四个条件。()
3. 打印机是一类典型的块设备。()
4. 引入缓冲区的目的主要是为了增强系统的并行操作能力。()
5. 物理文件的连续组织方式在磁盘上容易导致存储碎片的产生。()
三、简答题(每小题 5 分, 共 10 分)

恒定

D 无关联

越小

1. 什么是临界资源? 什么是临界区?

2. 解释内存动态分区分配中的"外部碎片"现象。

越名

四、应用题(共 15 分)

1. (8分)有5个进程,它们在0时刻按照1-5的次序进入就绪队列,每 为 个进程的优先级(数字小的优先级高)和需要的处理器时间(单位:秒) 如表所示。忽略进程调度的开销,回答下列问题:

进程	需要的处理器时间/s	优先级
P1	10	3
P2	1	1
Р3	2	3
P4	1	4
P5	5	2

- (1)分别写出采用先来先服务算法和非抢占式优先级调度算法时,进程执行的次序。
- (2) 分别计算两种算法下,这5个进程的平均周转时间。
- 2. (7分)某计算机系统采用二级页表的分页存储管理方式,虚拟地址格式如下所示:

10 位	10 位	12 位
页目录号	页表索引	页内地址

回答下列问题:

- (1)逻辑地址的页(页面)大小和物理地址的块(页框)大小各为多少? 进程的虚拟地址空间大小为多少页?
- (2) 若某指令周期内先后访问了虚拟地址 0100 0000H 和 0111 2048H,则进行地址转换时共访问了多少个二级页表?要求说明理由。

拔高部分(共35分)

五、单项选择题(每小题 2 分, 共 20 分)

1.	下列选项中会导致用户进程从用户	态切换到内核态的	勺操作是。	I. A	١.	项数不变, 有	了一个:	空闲区的大	小变大	į.				
整数除以零; II. sin()函数调用; III. read 系统调用				В	B. 项数不变,有一个空闲区的起始地址变小,大小变大									
A.	仅I、II	B. 仅I、III		C	.	项数增加								
C.	仅II、III	D. I、II和III		D).	项数减少								
2.	属于同一个进程的两个线程 thread	1和 thread2 并发	执行,共享初值为	可0的 5.	. 豸	系统为某进程分	分配了	4个页框,	该进程	呈已证	方问的页	可号序列	列为 2, 0,	2, 9,
全是	局变量 x。thread1 和 thread2 实现对	全局变量 x 加 1 的	机器级代码描述	如下。3	, 4	., 2, 8, 2, 4	, 8, 4	,5。若进和	呈要访	问的	下一页	的页号	为 7,依排	居 LRU
	thread1 Thread2			舅	算法,应淘汰页的页号是。									
	mov R1, x	mov R2, x		A	۸.	2	B.	3	C.	4		D	. 8	
	inc R1	inc R2		6.		 走进程访问页记	面的序	列如下所示	☆。					
	mov x, R1	mov x, R2			٠٠٠,	1,3,4,5,6,	0,3,	2, 3, 2,	0, 4, 0	, 3,	2,9,2	,1,		
在所有可能的指令执行序列中,使 x 的值为 2 的序列个数是。								t				时间		
A.	1 B. 2	C. 3	D. 4	若	 雪工	作集的窗口力	八小为	6, 则在 t t	时刻的	工作	集为			
3. 假设系统中有 4 个同类资源,进程 P1、P2、P3 需要的资源数分别为 4、				4、 A	١.	{0, 4, 3, 2	, 9}		В	3.	{2, 3,	0, 4}		
3、1, P1、P2、P3 已申请到的资源数分别为 2、1、0,则执行安全性检测			_C	7.	{6, 0, 3, 2	2}		Б).	{4, 5,	6, 0,	3, 2}		
算法的结果是。				7.	7. 系统总是访问磁盘的某些磁道,而不响应对其它磁道的访问请求,这种									
A. 不存在安全序列,系统处于不安全状态				珂	现象称为磁臂黏着。下列磁盘调度算法中,不会导致磁臂黏着的是。									
B. 存在多个安全序列,系统处于安全状态			A	١.	先来先服务	(FCF	S)	В	3. 1	最短寻り	道时间位	尤先(SS T	TF)	
C. 存在唯一安全序列 P3、P1、P2,系统处于安全状态			C	7.	扫描算法(S	CAN)	Б) . {	循环扫扫	苗算法	(CSCAN	.)	
D. 存在唯一安全序列 P3、P2、P1,系统处于安全状态			8.	8. 下列关于 SP00Ling 技术的叙述中,错误的是。										
4. 某一作业完成后,系统收回其主存空间,并与相邻空闲区合并,为此需				之需 A	A. 需要外存的支持									

B. 需要多道程序设计技术的支持

C. 可以让多个作业共享一台独占设备

修改空闲区表,如果待回收的空闲区有相邻的低址空闲区,也有相邻的高址

空闲区,那么空闲区表将____。

- D. 由用户作业控制设备与输入/输出井之间的数据传送
- 9. 在虚拟页式内存管理系统中,页表项中的'访问位'给______提供参考价值。

A. 分配页面

B. 页面置换算法

C. 换出页面

D. 程序访问

10. 在请求页式存储管理中, _______算法导致的缺页次数总是最少。

A. LRU

B. OPT

C. FIFO

D. CLOCK

六、应用题(共15分)

1. 有 A、B 两人通过信箱进行辩论,每个人都从自己的信箱中取得对方的问题,将答案和向对方提出的新问题组成一个邮件放人对方的信箱中。假设 A 的信箱最多放 M 个邮件,B 的信箱最多放 N 个邮件。初始时 A 的信箱中有 x 个邮件(0<x<M),B 的信箱中有 y 个邮件(0<y<N)。辩论者每次取出一个邮件。当信箱不为空时,辩论者才能从信箱中取邮件,否则等待。当信箱不满时,辩论者才能将新邮件放入信箱,否则等待。使用信号量和 P、V(或 wait、signal)操作实现上述过程的同步。请在下面伪代码框架中补全缺少的代码。(8 分)

semaphore Full_A = x; //表示 A 的信箱中的邮件数量 semaphore Empty_A = ___1 ; //表示 A 的信箱中还可存放的邮件数量 semaphore Full_B = __2 ; //表示 B 的信箱中的邮件数量 semaphore Empty_B = N-y; //表示 B 的信箱中还可存放的邮件数量 semaphore mutex_A = mutex_B = __3 ; //用于信箱 A 和 B 的互斥 CoBegin

```
B {
A {
while(TRUE){
                             while(TRUE){
                             7;
 4;
                             P(mutex B):
 P(mutex A):
 从 A 的信箱中取出一个邮件:
                             从 B 的信箱中取出一个邮件:
 V(mutex_A);
                             V(mutex_B);
 5 ;
                             V(Empty_B);
 回答问题并提出新问题:
                             回答问题并提出新问题;
```

CoEnd

- 2. 某文件系统采用索引节点存放文件的属性和地址信息,簇大小为 4KB。每个文件索引节点占 64B,有 11 个地址项,其中直接地址项 8 个,一级、二级、三级间接地址项各 1 个,每个地址项长度为 4B。请回答下列问题:
- (1) 该文件系统能支持的最大文件长度是多少(给出计算表达式即可)?
- (2) 若文件 F1 大小为 20KB, 文件 F2 大小为 40KB, 则该文件系统获取 F1 和 F2 最后一个簇的簇号需要的时间是否相同?为什么? (7分)