An Introduction to Al

WEEK 1, COHORT 4

"aimed at getting you to kickass in AI"

• Before we answer this question, let see if we remember some familiar personalities.

Agamemnon

Odysseus

Achilles

• How about these guys?

Artemis

Athena

Thetis

• What do they all have in common?

• How about these guys?

Artemis

Athena

Thetis

What do they all have in common?

Prophesy, and we can say Prophesy which is Prediction, is the act of saying what will happen in future

Back to Artificial Intelligence

"The current wave of advances in AI doesn't actually bring us intelligence but instead a critical component of intelligence, prediction"

 AI, in the broadest sense, describes the different ways a machine interacts with the world around it. To maximize our chance of achieving a given goal. At it core, ML is a simply way of achieving AI.

Overview of Artificial Intelligence

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Machine Learning

What is Machine Learning

Machine learning uses data and produces a program to perform a task

Task: Human Activity Detection

Machine Learning vs Deep Learning

- ML subset of Al
- Machines learn to do task without explicitly programmed to do so.
- Reinforcement learning, decision tree, DL, clustering ...

- DL subset of ML
- DL learns to do task without explicitly programmed to do so.
- Mimics the neurons in a human brain.
- CNN, RNN, AutoEncoder ...

Classes of Machine Learning

Supervised Learning:

Predicting values. Known targets.

User inputs correct answers to learn from. Machine uses the information to guess new answers.

REGRESSION:

Estimate continuous values (Real-valued output)

CLASSIFICATION:

Identify a unique class (Discrete values, Boolean, Categories)

Unsupervised Learning:

Search for structure in data. **Unknown** targets.

User inputs data with undefined answers. Machine finds useful information hidden in data.

Cluster Analysis

Group into sets

Density Estimation

Approximate distributions

Dimension Reduction

Select relevant variables

Clustering

Reinforcement Learning

In the problem, an agent is supposed decide the best action to select based on his current state which will earn the agent a reward. When this step is repeated, the problem is known as a *Markov Decision Process*.

Deep Minds

Alpha Go

Reinforcement Learning

Dota 2

Open Al Bots vs Humans

- Using a separate <u>LSTM</u> for each hero and no human data, it learns recognizable strategies.
- OpenAl Five plays 180 years worth of games against itself every day, learning via self-play.

Lets focus a little more on Deep Learning.

Why deep learning is having great impact in the world?

Massive Data

Modern Algorithms

Computational Powerhouse

 DL isn't a single approach but a rather a class of algorithms that you can apply to broad spectrum of problem.

There are different types of Deep Learning Architecture

Natural Language Processing

Study of interaction between computers and human languages.

Interdisciplinary Tasks: Speech-to-Text

- Sentimental analysis
- Chatbot
- Machine translation
- Text classification

Why NLP is hard?

- 300+ ethnic groups in Nigeria (NLP Bigger than Wazobia)
- Languages are ambiguous("I love Blackberry?")
- Interpretation of context(I am hungry, because I am broke)
- Machine don't understand Language.

Natural Language Processing - Architectures

Recurrent Neural Network (RNN)

- Feed-forward network
- Feedback mechanism

Long / Short Term Memory (LSTM)

- Memory cell
- Retain information
- Can remember info. Not just the last computed value.

Gated Recurrent Unit (GRU)

- Faster and simpler LSTM
- Fewer weight
- Two gates
- Update gates maintain info.
- Reset gates flush info.

Computer Vision

• Is a field of computer science that works on enabling computer see, identify and process images. CV is linked with AI as computer must interpret what it sees and perform necessary analysis.

Computer Vision- Architectures

- Inspired by the brain visual cortex
- High Image processing application
- Learn higher-order features in data via convolution.

Convolve the filter/kernel with the i.e "slide over the image spatially computing dot products"

EVERYDAY APPLICATIONS OF AI

Gmail - Smart Compose

Typical language generation models, such as <u>ngram</u>, <u>neural bag-of-words</u> (BoW) and <u>RNN language</u>(RNN-LM) models, learn to predict the next word conditioned on the prefix word sequence.

Google Len

Google Len - Text Selection

Google Map

Google leveraged on geolocation mapping.

Google News

- Clustering
- Recommender System
- Topic modelling

Google Assistant - WaveNet

The ability of computers to understand natural speech has been revolutionised in the last few years by the application of deep neural networks (e.g., <u>Google Voice Search</u>). However, generating speech with computers — a process usually referred to as <u>speech synthesis</u> or text-to-speech (TTS).

Waymo

Waymo

Radar: a device that sends radio wave to find out the position and speed of moving object.

Lidar: like radar, but instead of sending out radio waves it emits pulses of infrared light—aka lasers invisible to the human eye.

Vision: High end camera for realtime object detection.

Generative Adversarial Networks

The Bleeding Edges of Al

GANs

A generative Adversarial Network is a class of machine learning system invented by Ian Goodfellow and his colleagues in 2014.

Two neural networks contest with each other in a game.

GANs - Application

A Latent Vector Space for Drawing

A Neural Representation of Sketch Drawings

David Ha and Douglas Eck

GANs - Application

Generation of music

Generation of Art

Common Myths Around Al

Jay Shah, MS Computer Science & Machine Learning, Arizona State University (2020)

Answered May 11

A lot of people looking to get started in machine learning usually are concerned for,

"I can't get into machine learning until..."

- I get a degree or higher degree.
- I complete a course.
- I am good at linear algebra.
- I know statistics and probability theory.
- I have mastered this library or that tool.

But these are not true in all contexts.

Which of them do you think is correct?

Starter Kit

Curiosity (Ok with failure)

Self-Education

"AI will digitally disrupt all industries.

Don't be left behind"

- Dave Waters

Anything you can do, AI can do better

