SEQUENCE LISTING

```
<110> RIEBEL, Bettina
     HUMMEL, Werner
     BOMMARIUS, Andreas
<120> RECOMBINANT ENZYMES HAVING IMPROVED NAD(H) ACCEPTANCE
<130> 210212US
<150 DE 10037101.9
<15(> 2000-07-27
  14
  i aji
<160>
  <170>
      PatentIn version 3.1
  1
<210> 1
<211> 759
<212> DNA
<213> Lactobacillus brevis
<220>
<221> CDS
<222> (1)..(759)
<223>
```

<400> 1																	
atg	tct Ser	aac	cgt Arg	ttg Leu 5	gat Asp	ggt Gly	aag Lys	gta Val	gca Ala 10	atc Ile	att Ile	aca Thr	ggt Gly	ggt Gly 15	acg Thr		48
ttg Leu	ggt Gly	atc Ile	ggt Gly 20	tta Leu	gct Ala	atc Ile	gcc Ala	acg Thr 25	aag Lys	ttc Phe	gtt Val	gaa Glu	gaa Glu 30	ggg Gly	gct Ala		96
aag Lys	gtc Val	atg Met 35	att Ile	acc Thr	gac Asp	cgg Arg	cac His 40	agc Ser	gat Asp	gtt Val	ggt Gly	gaa Glu 45	aaa Lys	gca Ala	gct Ala	1	.44
aag Lys	agt Ser 50	gtc Val	ggc Gly	act Thr	cct Pro	gat Asp 55	cag Gln	att Ile	caa Gln	ttt Phe	ttc Phe 60	caa Gln	cat His	gat Asp	tct Ser	1	.92
Ser 65	gat Asp	gaa Glu	gac Asp	ggc Gly	tgg Trp 70	acg Thr	aaa Lys	tta Leu	ttc Phe	gat Asp 75	gca Ala	acg Thr	gaa Glu	aaa Lys	gcc Ala 80	2	240
ttt Phe	agc Sly	cca Pro	gtt Val	tct Ser 85	aca Thr	tta Leu	gtt Val	aat Asn	aac Asn 90	gct Ala	ggg Gly	atc Ile	gcg Ala	gtt Val 95	aac Asn	2	288
aag Lys	agt Ser	gtc Val	gaa Glu 100	gaa Glu	acc Thr	acg Thr	act Thr	gct Ala 105	gaa Glu	tgg Trp	cgt Arg	aaa Lys	tta Leu 110	tta Leu	gcc Ala	3	336
Val	aac Asn	ctt Leu 115	gat Asp	ggt Gly	gtc Val	ttc Phe	ttc Phe 120	ggt Gly	acc Thr	cga Arg	tta Leu	ggg Gly 125	att Ile	caa Gln	cgg Arg	3	384
atg Met	aag Lys 130	aac Asn	aaa Lys	ggc	tta Leu	ggg Gly 135	gct Ala	tcc Ser	atc Ile	atc Ile	aac Asn 140	atg Met	tct Ser	tcg Ser	atc Ile	4	132
gaa Glu 145	ggc Gly	ttt Phe	gtg Val	ggt Gly	gat Asp 150	cct Pro	agc Ser	tta Leu	ggg Gly	gct Ala 155	tac Tyr	aac Asn	gca Ala	tct Ser	aaa Lys 160	2	480
Gl ^à ààà	gcc Ala	gta Val	cgg Arg	att Ile 165	atg Met	tcc Ser	aag Lys	tca Ser	gct Ala 170	gcc Ala	tta Leu	gat Asp	tgt Cys	gcc Ala 175	cta Leu	į	528
aag Lys	gac Asp	tac Tyr	gat Asp 180	gtt Val	cgg Arg	gta Val	aac Asn	act Thr 185	gtt Val	cac His	cct Pro	ggc	tac Tyr 190	atc Ile	aag Lys	!	576
aca Thr	cca Pro	ttg Leu	gtt Val	gat Asp	gac Asp	cta Leu	cca Pro	ggg Gly	gcc Ala	gaa Glu	gaa Glu	gcg Ala	atg Met	tca Ser	caa Gln	1	624

cgg acc aag acg cca atg ggc cat atc ggt gaa cct aac gat att gcc Arg Thr Lys Thr Pro Met Gly His Ile Gly Glu Pro Asn Asp Ile Ala tac atc tgt gtt tac ttg gct tct aac gaa tct aaa ttt gca acg ggt Tyr Ile Cys Val Tyr Leu Ala Ser Asn Glu Ser Lys Phe Ala Thr Gly tct gaa ttc gta gtt gac ggt ggc tac act gct caa tag Ser Glu Phe Val Val Asp Gly Gly Tyr Thr Ala Gln <210> <211> PRT <213> Lactobacillus brevis <400≥ Met Ser Asn Arg Leu Asp Gly Lys Val Ala Ile Ile Thr Gly Gly Thr Щ Leu Gly Ile Gly Leu Ala Ile Ala Thr Lys Phe Val Glu Gly Ala Lys Val Met Ile Thr Asp Arg His Ser Asp Val Gly Glu Lys Ala Ala Lys Ser Val Gly Thr Pro Asp Gln Ile Gln Phe Phe Gln His Asp Ser Ser Asp Glu Asp Gly Trp Thr Lys Leu Phe Asp Ala Thr Glu Lys Ala

Lys Ser Val Glu Glu Thr Thr Ala Glu Trp Arg Lys Leu Leu Ala

Phe Gly Pro Val Ser Thr Leu Val Asn Asn Ala Gly Ile Ala Val Asn

100 105 110

Val Asn Leu Asp Gly Val Phe Phe Gly Thr Arg Leu Gly Ile Gln Arg 115 120 125

Met Lys Asn Lys Gly Leu Gly Ala Ser Ile Ile Asn Met Ser Ser Ile 130 135 140

Glu Gly Phe Val Gly Asp Pro Ser Leu Gly Ala Tyr Asn Ala Ser Lys 145 150 155 160

Gly Ala Val Arg Ile Met Ser Lys Ser Ala Ala Leu Asp Cys Ala Leu 165 170 175

Lys Asp Tyr Asp Val Arg Val Asn Thr Val His Pro Gly Tyr Ile Lys
180 185 190

Thr Pro Leu Val Asp Asp Leu Pro Gly Ala Glu Glu Ala Met Ser Gln
195 200 205

Arginhr Lys Thr Pro Met Gly His Ile Gly Glu Pro Asn Asp Ile Ala 210 220

Tyr le Cys Val Tyr Leu Ala Ser Asn Glu Ser Lys Phe Ala Thr Gly 225 230 235

Ser Glu Phe Val Val Asp Gly Gly Tyr Thr Ala Gln 245 250

<210> 3

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

```
accgaccggc acagcgatgt tggt
<210>
<211>
      8
<212>
      PRT
<213> Artificial Sequence
<220>
<223> synthetic peptide
<400≥
Thr Asp Arg His Ser Asp Val Gly
  144
  <210>
      5
   l al
<211>
      24
<212>
      DNA
  14
<213>
      Artificial Sequence
   <220>
<223> synthetic DNA
<400>
      5
accaacatcg ctgtgccggt cggt
<210>
<211>
<212>
      DNA
<213>
      Artificial Sequence
```

24

24

<400> 3

```
<220>
<223>
       synthetic peptide
<400> 6
gvdshrdt
<210>
       7
<211>
<212>
        DNA
<213> Artificial Sequence
<220≥
<223≥
       synthetic peptide
<400≥
tdrhsdvg
    In You
    the Unit See than the that
```

8

8