CP317 Software Engineering

Project management – week 1-2 Shaun Gao, Ph.D., P.Eng.

Agenda

- Review week 1-1
- Documentation
 - Document change control
 - Types of documentations
- Project management
 - Concept
- Project management tools
 - PERT charts
 - Critical path methods
 - Gantt charts
- Software Cost Estimation Models
 - COCOMO, Static Single Variable Model, Static Multi-Variable Model
- Risk management
 - Concept

Week 1-1 Review

- What is software engineering?
- What is the relationship between software engineering and engineering?
 - Differences and similarities
- What are the basic tasks of software engineering?
 - Requirement gathering
 - High-level design architecture design
 - Low-level design software design
 - Coding
 - Testing
 - Deployment
- Skills required for software engineers/developers

Documentations

- Documentations are important at every step of software engineering
 - Why?
- Documentation is produced throughout a project's lifespan
- Set up a document tracking system before starting the project
- A document control/management system is one of the first tools
- The benefits of using documents
 - Keep the team members on tracks
 - Provides clear direction for work
 - Prevents conflicts
 - Produce high quality software products

Documentations—cont.

- The seven features of a good document management system?
 - The ability of sharing documents
 - Prevent multiple users from changing a document at the same time
 - Fetch the latest version of a document
 - Fetch earlier version of a document
 - Search documents by using keywords
 - See the changes made to a document
 - Compare two versions of a document to see their differences
- Examples: Rational ClearCase, Database systems

Documentations—cont.

- Documentation types
 - Requirements document
 - System design document/high-level design document
 - Software specification document/software design document/low-level design document
 - Software coding standard: a set of guidelines for programming
 - Software testing procedures (unit testing, integration)
 - Meeting note
 - Release notes
- Document revision history
 - Include Revision, Author, Date, Status and Description

Project management

- Project management
 - Project management is the application of processes, methods, skills, knowledge and experience to achieve specific project objectives according to the project acceptance criteria within agreed parameters.
- The reasons why project management is necessary
 - Ensure that goals are set, tracked, and eventually met
 - Keep team members on track and focused on the problems at hands
- Software project management focuses on 4 P's
 - People, Product, Process, Project.

Project management tools

- PERT Charts
 - A Program Evaluation & Review Technique (PERT) chart is a graph that uses nodes (circles or boxes) and links (arrows) to show the precedence relationships among the tasks in a project.
 - The format of PERT charts can be variety.

- PERT Charts Examples:
 - Assignment and planning
 - It has two paths

- Critical path methods
 - The critical path method is a technique for planning, managing and analyzing the timing of a project.
- A critical path
 - It is the longest duration path through the project network activities
 - If any tasks along the critical path is delayed, the project's final completion is also delayed.

- The Six benefits of using Critical Path methods
 - The method visualizes projects in a clear graphical form.
 - It defines the most important tasks.
 - Saves time and helps in the management of deadlines.
 - Helps to compare the planned with the real status.
 - Identifies all critical activities that need attention.
 - Makes dependencies clear and transparent.

- Gantt charts
 - A Gantt chart is a kind of bar chart invented by Henry Gantt in the 1910s to show a project schedule with respect to time periods.
- An example:

GANTT CHART

Advantages

- Simple
- Good visual communication to others
- Task durations can be compared easily
- Good for scheduling resources

Disadvantages

- Dependencies are more difficult to visualise
- Minor changes in data can cause major changes in the chart

Gantt

- Visually shows duration of tasks
- Visually shows time overlap between tasks
- Visually shows slack time

PERT

- Visually shows dependencies between tasks
- Visually shows which tasks can be done in parallel
- Shows slack time by data in rectangles

Software Cost Estimation Models

- Why do we need software cost estimation models?
- COCOMO Model
- Static Single Variable Model
- Static Multi-Variable Model

COCOMO Model

- COnstructive COst MOdel (COCOMO)
 - COCOMO is a software cost estimate model for software projects that was created by Barry Boehm in the 1970s and published in 1981 in his book.

The Basic COCOMO equations take the form:

$E = a_b (KLOC)^{bb}$ $D = c_b (E)^{db}$ SS = E/D persons P = KLOC/E E = effort D = Deployment time SS = staff size P = productivity $a_b b_c c_b d_b = \text{Coefficients}$

Basic COCOMO Co- efficients

Project	A ₀	b _b	Cp	d,
Organic mode <=50 KLOC	2.4	1.05	2.5	0.38
Semidetached mode 50 - 300 KLOC	3.0	1.12	2.5	0.35
> 300 KLOC	3.6	1.20	2.5	0.32

Static Single Variable Model

 This model is used to estimate the effort, cost and development time for a software project which depends on a single variable.

Cost (C) =
$$a^*(LOC)^b$$

Effort (E) = $a^*(LOC)^b$ MM (MM means Man-Months)
Development Time (DT) = $a^*(LOC)^b$ Months
Where LOC = Number of Lines of Code.

PARAMETERS	a	b
Effort	1.4	0.93
Dev. Duration	4.2	0.26

- Question:
 - Which one is the single variable?

Static Multi-Variable Model

 This model is used to estimate the effort, cost and development time for a software project with depends on multiple internal or external variables.

Cost (C) =
$$a^*(LOC)^b$$

Effort (E) = $a^*(LOC)^b$ MM (MM means Man-Months)
Development Time (DT) = $a^*(LOC)^b$ Months
Where LOC = Number of Lines of Code.

PARAMETERS	a	b
Effort	5.2	0.91
Dev. Duration	4.1	0.36

Question:

Single variable model vs. multi-variable model

Risk management

- Risk management
 - Risk management is a process that allows individual risk events and overall risks to be understood and managed proactively, optimizing success by minimizing threats and maximizing opportunities.

People, Product, Process, Project.

Risk management – cont.

- For each task, you should determine the following
 - Likelihood
 - Severity/Impact
 - Consequence
 - Workaround

Summary

- Documentation
 - Benefits of using documents
- Project management
 - Concept
- Project management tools
 - PERT charts
 - Critical path
 - Critical path method
 - Gantt charts
- Software Cost Estimation Models
 - COCOMO, Static Single Variable Model, Static Multi-Variable Model
- Risk management
 - Concept

Announcement

- Please find a group by end of Sept. 2024
 - Send mean an email with group members (Name, student ID)
- Please let me know if you need help