

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral III — Lista 0

Prof. Adriano Barbosa

(1) Para $f \in g$ abaixo, verifique se f = g.

(a)
$$f(x) = x + \sqrt{2-x} e g(u) = u + \sqrt{2-u}$$
.

(b)
$$f(x) = \frac{x^2 - x}{x - 1} e g(x) = x$$
.

(2) Determine se as curvas abaixo são gráfico de uma função de x

(3) Determine o maior domínio das funções abaixo:

(a)
$$f(x) = \frac{x+4}{x^2-9}$$

(b)
$$f(t) = \sqrt[3]{2t - 1}$$

(c)
$$f(x) = \frac{2x^3 - 5}{x^2 + x - 6}$$

(d)
$$f(t) = \sqrt{3-t} - \sqrt{2+t}$$

(4) De um pedaço retangular de cartolina de dimensões $8\text{cm} \times 15\text{cm}$, quatro quadrados iguais devem ser cortados, um em cada canto. A parte cortada remanescente é então dobrada formando uma caixa aberta. Expresse o volume da caixa como uma função de x.

(5) A relação entre as escalas de temperatura Celsius (C) e Fahrenheit (F) é dada pela função afim $F=\frac{9}{5}C+32$. Desenhe o gráfico dessa função. Encontre o intervalo na escala F correspondente as temperaturas em C que estão entre 18° C e 25° C.

(6) Para a função h cujo gráfico é dado abaixo, determine os valores, quando possível.

- (7) Dado que $\lim_{x \to 2} f(x) = 4$, $\lim_{x \to 2} g(x) = -2$ e $\lim_{x \to 2} h(x) = 0$, calcule os limites abaixo, caso existam.

 (a) $\lim_{x \to 2} [f(x) + 5g(x)]$ (b) $\lim_{x \to 2} [g(x)]^3$ (c) $\lim_{x \to 2} \sqrt{f(x)}$ (d) $\lim_{x \to 2} \frac{3f(x)}{g(x)}$ (e) $\lim_{x \to 2} \frac{g(x)}{h(x)}$

- (f) $\lim_{x\to 2} \frac{g(x)h(x)}{f(x)}$
- (8) Determine em quais intervalos a função abaixo é contínua.

(9) Use os teoremas sobre funções contínuas e explique porque as funções abaixo são contínuas em todos os pontos do seu domínio:

(a)
$$F(x) = \frac{2x^2 - x - 1}{x^2 + 1}$$

(b)
$$h(x) = \frac{\operatorname{sen}(x)}{x+1}$$

(c)
$$g(x) = \cos(1 - x^2)$$

- (10) Encontre a equação da reta tangente as curvas abaixo nos pontos dados: (a) $y=4x-3x^2,$ (2, -4) (b) $y=\sqrt{x},$ (1, 1)
- (11) O deslocamento retilíneo de uma partícula é dado pela equação $s(t) = \frac{1}{t^2}$. Determine a velocidade da partícula nos instantes $t=1,\,t=2$ e t=a com a um número real positivo qualquer.

- (12) Suponha $y = \sqrt{2x+1}$, onde x e y são funções de t. Se $\frac{dx}{dt} = 3$, encontre $\frac{dy}{dt}$ quando x = 4.
- (13) Encontre a antiderivada mais geral para as funções abaixo:

 - (a) f(x) = x 3(b) $f(x) = \frac{1}{2} + \frac{3}{4}x^2 \frac{4}{5}x^3$ (c) f(x) = (x+1)(2x-1)(d) $f(x) = \frac{1+x+x^2}{\sqrt{x}}$ (e) $f(x) = 2 \operatorname{sen} x \sec^2 x$
- (14) O gráfico de g consiste em duas retas e um semicírculo. Use-o para calcular cada integral (a) $\int_0^2 g(x) \ dx$ (b) $\int_2^6 g(x) \ dx$ (c) $\int_0^6 g(x) \ dx$

- (15) Apenas analisando o gráfico das funções, calcule as seguintes integrais (a) $\int_{-1}^{1} x \ dx$ (b) $\int_{-1}^{1} |t| \ dt$ (c) $\int_{-1}^{1} y^2 \ dy$ (d) $\int_{-\pi}^{\pi} \sin \theta \ d\theta$ (e) $\int_{-\pi}^{\pi} \cos \phi \ d\phi$