SRM INSTITUTE OF SCIENCE AND TECHNOLOGY RAMAPURAM CAMPUS DEPARTMENT OF MATHEMATICS CONTINUOUS ASSESSMENT – 2

* Required

Answer ALL Questions

Each question carries ONE mark.

1. *

If
$$\varphi(x, y, z) = xyz$$
, then $\nabla \varphi =$

(A)
$$yz\vec{i} + zx\vec{j} + xy\vec{k}$$

(B)
$$xy \vec{i} + yz \vec{j} + xz \vec{k}$$

(C)
$$xz\vec{i} + zy\vec{j} + xy\vec{k}$$

(D)
$$x\vec{i} + y\vec{j} + z\vec{k}$$

- \bigcirc c

The magnitude of maximum directional derivative of

 $\varphi(x, y, z) = x^2 + y^2 + z^2$ at (1,1,1) is

(A) 0

(B) 3

(C) 2

(D) 2√3

- \bigcirc A
- \bigcirc c
- D

3. *

The unit normal vector to the surface $x^2 + y^2 - z^2 = 1$ at the point (1,1,1) is

 $(A)\frac{\vec{i}+\vec{j}+\vec{k}}{\sqrt{3}}$

 $(B)\frac{\vec{l}+\vec{j}-\vec{k}}{\sqrt{3}}$

 $(C)\frac{\vec{\iota}-\vec{\jmath}-\vec{k}}{\sqrt{3}}$

(D) $\frac{\vec{i} + \vec{j} + \vec{k}}{\sqrt{2}}$

- A
- B
- 0 0
- \bigcirc D

Angle between two level surfaces $\varphi_1=\mathcal{C}_1$ and $\varphi_2=\mathcal{C}_2$ is given by

- $(A) \sin \theta = \frac{\nabla \varphi_{1} \bullet \nabla \varphi_{2}}{|\nabla \varphi_{1}| |\nabla \varphi_{2}|} \qquad (B) \cos \theta = \frac{\nabla \varphi_{1} \bullet \nabla \varphi_{2}}{|\nabla \varphi_{1}| |\nabla \varphi_{2}|}$
- (C) $\tan \theta = \frac{\nabla \varphi_1 \bullet \nabla \varphi_2}{|\nabla \varphi_1| |\nabla \varphi_2|}$
- (D) $\tan \theta = \frac{\nabla \varphi_1 \times \nabla \varphi_2}{|\nabla \varphi_1| |\nabla \varphi_2|}$

5. *

The condition for vector \vec{F} to be solenoidal is

(A) $\operatorname{div} \vec{F} = 0$

(B) $\operatorname{curl} \vec{F} = 0$

(C) $\operatorname{div} \vec{F} \neq 0$

(D) $\operatorname{curl} \vec{F} \neq 0$

If \vec{u} and \vec{v} are irrotational, then $\vec{u} \times \vec{v}$ is

(A) irrotational

(B) solenoidal

(C) zero vector

(D) constant

- \bigcap A
- (E
- \bigcirc c
- \bigcirc D

7. *

The formula to find the directional derivative of a scalar field φ at a point P (x, y, z) in the direction of vector \vec{a} is

(A)
$$D.D. = \frac{\nabla \varphi \bullet \vec{a}}{|\vec{a}|}$$

(B)
$$D.D. = \frac{\nabla \varphi \times \vec{a}}{|\vec{a}|}$$

(C)
$$D.D. = \frac{\nabla \varphi + \vec{a}}{|\vec{a}|}$$

(D)
$$D.D. = \frac{\nabla \varphi - \vec{a}}{|\vec{a}|}$$

- A
- B
- \bigcirc c
- O D

If $\vec{F} = 3 \times z \vec{i} + 4 y z \vec{j} - z \vec{k}$, then $curl \vec{F}$ at (1,1,1) =

 $(A) - 4\vec{i} + 3\vec{j}$

(B) $-4\vec{i} - 3\vec{j}$

(C) $-4\vec{i} + 3\vec{j} + \vec{k}$

(D) $-4\vec{i} - 3\vec{j} - \vec{k}$

- A
- () E
- \bigcirc 0
- \bigcirc D

9. *

The relation between line integral and surface integral is given by

- (A) Gauss divergence theorem
- (B) Cauchy's theorem

(C) Stoke's theorem

(D) Convolution theorem

- O A
- () B

If \vec{F} represents the variable force acting on a particle along arc AB, then the work done is given by

$$(A)\int_{A}^{B} \vec{F} \bullet d\vec{r}$$

(B)
$$\int_{A}^{B} \vec{F} \times d\vec{r}$$

(A)
$$\int_{A}^{B} \vec{F} \cdot d\vec{r}$$
(C)
$$\int_{A}^{B} \vec{F} \cdot d\vec{r} = 0$$

(B)
$$\int_{A}^{B} \vec{F} \times d\vec{r}$$
(D)
$$\int_{A}^{B} \vec{F} \times d\vec{r} = 0$$

11. *

If $\vec{F} = (axy + z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$ is irrotational, then the value of a is

(A)3

(B) 1

(C) 2

(D) 6

D

If $\vec{F} = x z^3 \vec{i} - 2 x y z \vec{j} + x z \vec{k}$, then $div \vec{F}$ at (1, 2, 0) =

(A) 20

(B) 1

(C) 2

(D) 3

- O A
- E
- \bigcirc
- () D

13. *

If \vec{r} is the position vector of the point (x, y, z) with respect to the origin, then $\nabla \times \vec{r} =$

(A) 0

(B) 1

(C) 2

(D) 3

- A
- O B
- \bigcirc C
- D

14. *

If the divergence of the vector is zero, then the vector is said to be

(A) irrotational vector

(B) constant vector

(C) zero vector

(D) solenoidal vector

- В
- D

15. *

According to Green's theorem, $\oint_C (P dx + Q dy) =$

(A)
$$\iint\limits_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy$$

(A)
$$\iint\limits_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy$$
 (B)
$$\iint\limits_{R} \left(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial x} \right) dx \, dy$$

(C)
$$\iint\limits_{R} \left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} \right) dx \, dy$$
 (D)
$$\iint\limits_{R} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dx \, dy$$

(D)
$$\iint\limits_{R} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dx \, dy$$

If $\vec{F} = 3x^2\vec{\imath} + 5xy^2\vec{j} + xyz^3\vec{k}$, then $\nabla \cdot \vec{F}$ at (2, 0, 0) =

(A) 12

(B) 6

(C) - 6

(D) 24

- D

17. *

If the integral $\int_A^B \vec{F} \cdot d\vec{r}$ depends only on the end points but not on the path C, then \vec{F} is

- (A) neither solenoidal nor irrotational (B) solenoidal

(C) irrotational

(D) conservative

18. *

If \vec{r} is the position vector of the point (x, y, z) with respect to the origin, then $div \vec{r} =$

(A) 0

(B) 1

(C) 2

(D) 3

- D

19. *

By Stoke's theorem, $\int \vec{F} \cdot d\vec{r} =$

- (A) $\iint_{S} \nabla \times \vec{F} \, dS$ (C) $\iint_{S} (\nabla \cdot \vec{F}) \hat{n} \, dS$
- (B) $\iint_{S} \nabla \bullet \vec{F} \, dS$ (D) $\iint_{S} (\nabla \times \vec{F}) \bullet \hat{n} \, dS$

According to Green's theorem, the area bounded by a simple closed curve is

- (A) $\frac{1}{2} \oint_C (x \, dy y \, dx)$ (C) $2 \oint_C (x \, dy y \, dx)$
- (B) $\frac{1}{2} \oint_C (x \, dy + y \, dx)$ (D) $\oint_C (x \, dy y \, dx)$

21. *

If φ is a scalar function, then $\nabla \times \nabla \varphi =$

 $(A)\vec{0}$

(B) 1

(C) 2

(D) constant

If the vector $\vec{F} = (x + 3y)\vec{i} + (y - 2z)\vec{j} + (x + az)\vec{k}$ is solenoidal, then a =

(A) 2

(B) 0

(C) - 2

(D) -1

23. *

The relation between the surface integral and the volume integral is given by

- (A) Green's theorem
- (B) Stoke's theorem
- (C) Gauss Divergence theorem (D) Cauchy's theorem

The condition for \overrightarrow{F} to be conservative is

 $(\mathbf{A})\,\nabla\bullet\vec{F}=0$

(B)0

(C) $\nabla \times \vec{F} = \vec{0}$

(D) 1

25. *

By Gauss divergence theorem, $\iiint \nabla \cdot \vec{F} \, dV =$

(A) $\iint_{S} \vec{F} \cdot \hat{n} dS$ (C) $\int_{S} \vec{F} \cdot \hat{n} dS$

(B) $\iint_{S} \vec{F} \times \hat{n} \, dS$ (D) $\int_{S} \vec{F} \times \hat{n} \, dS$

- A

- \bigcap D

26. *

$$L[t^3] =$$

(A) $\frac{3}{s^3}$

(B) $\frac{6}{s^4}$

(C) $\frac{3}{s^4}$

(D) $\frac{6}{s^3}$

- A
- (E
- \bigcirc C
- O D

27. *

$$L[e^{-t}t] =$$

(A) $\frac{1}{s+1}$

 $(B) \frac{1}{(s-1)^2}$

(C) $\frac{1}{(s+1)^2}$

(D) $\frac{1}{s-1}$

- A
- B
- O
- O D

If L[f(t)] = F(s), then $L\left[\int_0^t f(t) dt\right] =$

(A) $\frac{F(s)}{s}$

(B) $F\left(\frac{s}{a}\right)$

(C) $\frac{f(t)}{t}$

(D) F(u)

A

- O B
- O 0
- O D

29. *

 $L[e^{3t}] =$

(A) $\frac{1}{s-3}$

(B) $\frac{s}{s^2+9}$

(C) $\frac{1}{s - \log 9}$

(D) $\frac{9}{s}$

- () B
- \bigcirc C
- () D

30. *

 $L[\sin 3t] =$

(A) $\frac{1}{s^2-9}$

(B) $\frac{1}{s^2+9}$

(C) $\frac{s}{s^2-9}$

(D) $\frac{3}{s^2+9}$

- \bigcirc A
- B
- \bigcirc C
- D

31. *

L[f(t) * g(t)] =

(A) F(s) - G(s)

- (B) F(s) + G(s)
- (C) F(s) G(s)
- (D) $F(s) \div G(s)$

- A
- B
- C

$$L[1] =$$

- (A) $\frac{1}{s}$
- (C) $\frac{2}{s^3}$

- (B) $\frac{1}{s^2}$
- (D) $\frac{1}{s^3}$

- A
- (B
- \bigcirc 0

33. *

$L[\sinh 2t] =$

(A) $\frac{2}{s^2-4}$

(B) $\frac{2}{s^2+4}$

(C) $\frac{1}{s^2-4}$

(D) $\frac{s}{s^2 + 4}$

- () E
- \bigcirc c
- O D

$$L\left[\frac{\sin 4 t}{4}\right] =$$

(A) $\frac{s}{s^2 + 16}$

(B) $\frac{1}{s^2+16}$

(C) $\frac{1}{s^2-16}$

(D) $\frac{s}{s^2 - 16}$

- (A
- B
- () C
- () D

35. *

If L[f(t)] = F(s), then $L[e^{at} f(t)] =$

(A) F(s+a)

(B) F(s-a)

(C) $\frac{1}{a} F\left(\frac{s}{a}\right)$

(D) $\frac{1}{s} F\left(\frac{s}{a}\right)$

- A
- (E
- \bigcirc c
- O D

36, *

 $L[t \sin 2t] =$

(A) $\frac{4 s}{(s^2+4)^2}$

(B) $\frac{4s}{(s^2-4)^2}$

(C) $\frac{s}{(s^2+4)^2}$

(D) $\frac{4 s}{(s^2-4)^2}$

- A
- B
- \bigcirc 0
- O D

37. *

If L[f(t)] = F(s), then L[f'(t)] =

(A) s F(s) - f(0)

 $\overline{\text{(B) } s^2 F(s) - f(0)}$

(C) s F(s) - s f(0)

(D) s F(s)

- A
- B
- \bigcirc C
- \bigcirc D

If L[f(t)] = F(s), then by Initial Value Theorem $\lim_{t\to 0} f(t) =$

(A) $\lim_{s \to \infty} s F(s)$

(B) $\lim_{s\to 0} s F(s)$

(C) $\lim_{s \to \infty} F(s)$

(D) $\lim_{s\to 0} F(s)$

- A
- O C
- () D

39. *

The Laplace transform of a periodic function f(t) with period p is given by

(A)
$$L[f(t)] = \frac{1}{1 - e^{-sp}} \int_0^p e^{-st} f(t) dt$$

(B)
$$L[f(t)] = \frac{1}{1+e^{-sp}} \int_0^p e^{-st} f(t)dt$$

(C)
$$L[f(t)] = \frac{1}{1+e^{-sp}} \int_0^\infty e^{-st} f(t) dt$$

(D)
$$L[f(t)] = \frac{1}{1 - e^{-sp}} \int_0^\infty e^{-st} f(t) dt$$

- () B
- \bigcap C

O D

40. *

$$L^{-1}\left[\frac{1}{s+3}\right] =$$

(A) e^{3t}

(C) cos 3t

(B) e^{-3t}

(D) $\sin 3t$

(A

B

O C

O D

41. *

$$L^{-1}\left[\frac{s}{s^2-9}\right] =$$

(A) $\cos 3t$

(B) $\sin 3t$

(C) $\cosh 3t$

(D) $\sinh 3t$

() A

B

O

42. *

$$L^{-1}\left[\frac{1}{(s-1)^2}\right] =$$

- (A) $t e^{t}$ (C) e^{-t}

- (B) e^{t} (D) $t e^{-t}$

- D

43. *

If L[f(t)] = F(s), then $L^{-1}[s F(s)] =$

- (A) $\int_{0}^{t} f(t) dt$
- (C) f'(t)

- \bigcap D

$$L^{-1}\left[\frac{1}{s^2+2s+5}\right] =$$

- (A) $e^{-t} \cosh 2t$
 - (C) $\frac{e^{-t}\sin 2t}{2}$

- (B) $e^t \cos 2t$
- (D) $\frac{e^{-2} \sinh 5t}{5}$

- (A
- B
- O
- \bigcap D

45. *

$$L^{-1}\left[\frac{1}{s^2+4}\right] =$$

(A) $\frac{\cos 2t}{2}$

(B) $\frac{\sin 2t}{2}$

(C) $\sin 2t$

(D) $\cos 2t$

- (A
- B
- \bigcirc 0

46. *

If L[f(t)] = F(s), then $L^{-1}[F(s+a)] =$

(A) $e^{at} f(t)$

(B) $e^{-at} f(t)$

(C) $\frac{1}{a}f(t)$

(D) $\frac{1}{s}f(t)$

- \bigcirc c

47. *

By Linear Property of Inverse Laplace Transforms, $L^{-1}[a F(s) + b G(s)] =$

- (A) $L^{-1}[a F(s)]$ (B) $a L^{-1}[F(s)] + b L^{-1}[G(s)]$
- (C) $L^{-1}[b G(s)]$ (D) $L^{-1}[F(s)] + L^{-1}[G(s)]$
- A
- B

48. *

$$L^{-1}\left[\frac{1}{(s-a)^2+b^2}\right] =$$

(A) $e^{at} \cosh bt$

(B) $e^{at}\cos bt$

(C) $\frac{e^{at} \sin bt}{b}$

(D) $\frac{e^{at} \sinh bt}{b}$

- (A
- () B
- O
- () D

49. *

$$L^{-1}\left[\frac{1}{s}\right] =$$

(A) 1

(B) $\sin t$

(C) 2

 $(D)\cos t$

- A
- B
- O 0
- \bigcirc

$$L^{-1}\left[\frac{s}{s^2 - 16}\right] =$$

 $(A) \cosh 4t$

(B) $\cos 4t$

(C) $\frac{\sinh 4t}{4}$

 $(D) \sin 4t$

- \bigcirc c
- () D

Back

Submit

Never submit passwords through Google Forms.

reCAPTCHA Privacy Terms

This form was created inside of SRM Institute of Science and Technology. Report Abuse

Google Forms