Олимпиада школьников «Надежда энергетики». Заключительный этап.

РЕШЕНИЕ ВАРИАНТ 27101 для 10-го класса

1. Некоторое количество одноатомного идеального газа совершает два различных процесса a и δ (см. рис.). Сравните теплоемкости газа в этих процессах в точке \boldsymbol{D} .

Решение.

$$\begin{split} Q &= \Delta U + \Delta A \\ C &= \frac{Q}{\Delta T} = \frac{\Delta U}{\Delta T} + \frac{\Delta A}{\Delta T} \\ C &= \frac{\Delta U}{\Delta T} + p \frac{\Delta V}{\Delta T} = \frac{3}{2} \upsilon R + p \frac{\Delta V}{\Delta T} \\ \left(\frac{\Delta V}{\Delta T}\right)_a &> \left(\frac{\Delta V}{\Delta T}\right)_{\tilde{o}} \end{split}.$$

Ombem:
$$C_a > C_{\underline{6}}$$

2. Два тела, массы которых равны m_1 и $m_2 = 2m_1$, начинают двигаться в поле силы тяжести. В начальный момент времени их скорости взаимно перпендикулярны и равны, соответственно, v_1 =3 м/с и v_2 =4 м/с. Через некоторый промежуток времени скорость первого тела стала равна нулю. Найдите скорость второго тела через тот же промежуток времени. Сила сопротивления движению отсутствует.

Решение.

За время остановки первой частицы она получила импульс силы, равный $-\vec{p}_1$, а вторая $-2\vec{p}_1$. Отсюда новый импульс второй частицы $\vec{p}_2^{\scriptscriptstyle /}=\vec{p}_2-2\vec{p}_1$, а модуль её скорости

$$v_2' = \frac{1}{2m_1} \sqrt{\left(2m_1v_2\right)^2 + \left(2m_1v_1\right)^2} = \frac{1}{2} \sqrt{\left(2v_2\right)^2 + \left(2v_1\right)^2} = 5 \text{ m/c.}$$

Ответ: 5 м/с.

3. Анод и катод вакуумного диода представляют собой плоскопараллельные пластины, которые подключены к источнику постоянного напряжения через реостат. При изменении сопротивления реостата напряжение на диоде связано с силой тока в цепи выражением $U=C\sqrt[3]{I^2}$. Как изменится сила давления электронов о поверхность анода, если напряжение между пластинами увеличить в 3 раза? Начальной скоростью электронов пренебречь.

Решение.

Взаимодействие электронов с поверхностью анода можно рассмотреть как абсолютно неупругий удар. Сила \vec{F} , с которой электроны действуют на анод, и сила \vec{N} , с которой анод действует на электроны, подчиняются третьему закону Ньютона:

$$\vec{F} = -\vec{N} \ . \tag{1}$$

С другой стороны, сила \vec{N} меняет импульс электронов:

Олимпиада школьников «Надежда энергетики». Заключительный этап.

$$\vec{N} = \frac{\Delta m\vec{v}}{\Delta t} = \frac{0 - m\vec{v}}{\Delta t} = -\frac{m\vec{v}}{\Delta t}, \quad N = \frac{mv}{\Delta t}, \quad (2)$$

где m — масса электронов, столкнувшихся с анодом за время Δt .

Эту массу можно определить из выражения

$$m = m_0 \cdot n \cdot v \cdot \Delta t \cdot S , \qquad (3)$$

где m_0 - масса электрона, n - концентрация электронов, S - площадь анода. Концентрация электронов связана с силой тока: I = nevS (4), где e - заряд электрона.

Тогда
$$I = C^{-\frac{3}{2}}U^{\frac{3}{2}} = nevS$$
 (4)

Скорость электронов перед ударом о поверхность анода определяется из закона сохранения

энергии:
$$\frac{m_0 v^2}{2} = eU, \qquad (5)$$

откуда $v = \sqrt{\frac{2eU}{m_0}} \ . \tag{6}$

Из уравнений (4) и (6) получаем
$$C^{-\frac{3}{2}}U^{\frac{3}{2}} = neS\sqrt{\frac{2eU}{m_0}}$$
, откуда $n = \frac{C^{-\frac{3}{2}}U}{eS}\sqrt{\frac{m_0}{2e}}$ (7)

Тогда масса электронов из уравнения (3)
$$m = m_0 \frac{C^{-3/2}U}{e} \sqrt{\frac{m_0}{2e}} \Delta t$$
 (8)

Сила со стороны анода из уравнения (2):
$$N = \frac{mv}{\Delta t} = \sqrt{2}C^{-\frac{3}{2}}U^2\sqrt{\frac{m_0}{e}} \sim U^2$$
 (9)

При увеличении напряжения между пластинами в 3 раза сила давления электронов о поверхность анода увеличится в 9 раз.

Ответ: 9.

4. Оператор, контролирующий работу гидрогенераторов на ГЭС, зафиксировал изменение силы тока через один из генераторов, представленное в виде графика. Мощность, отдаваемая гидрогенератором в электрическую сеть, в начальный момент времени составляла $P_0 = 120$ МВт. Определите энергию, выработанную генератором за время, равное $3t_0$, где $t_0 = 1$ час. ЭДС генератора все время остается постоянной, внутреннее сопротивление генератора пренебрежимо мало по сравнению с сопротивлением внешней цепи.

Решение:

Полный заряд, прошедший через генератор за 3 часа, равен площади под графиком

$$q = \frac{I_0 + \frac{I_0}{2}}{2} 2t_0 + \frac{I_0}{2} t_0 = 2I_0 t_0.$$

Средняя сила тока, прошедшего через генератор, равна

Олимпиада школьников «Надежда энергетики». Заключительный этап.

$$I = \frac{q}{3t_0} = \frac{2}{3}I_0.$$

Энергия, выработанная гидрогенератором, равна

$$W = IU \cdot 3t_0 = \frac{2}{3}I_0U \cdot 3t_0 = 2I_0Ut_0 = 2P_0t_0 = 240$$
 МВт час.

Здесь, U — ЭДС генератора (поскольку внутреннее сопротивление генератора пренебрежимо мало по сравнению с сопротивлением внешней цепи), I — средняя сила тока, $P_0 = I_0 U$ — начальная мощность гидрогенератора.

Ответ: $W = 240 \, \text{MBT-час.}$

5. В одном сосуде находится сухой воздух. В другом таком же сосуде находится влажный воздух с относительной влажностью $\varphi=50\%$. На сколько процентов отличаются плотности сухого и влажного воздуха в сосудах, если их температуры и давления одинаковы? Молярная масса воздуха $M_{\rm B}=29$ г/моль, молярная масса водяного пара $M_{\rm II}=18$ г/моль. Давление насыщенных паров при данной температуре определяется формулой $p_{\rm Hac}=0,2p$, где p-давление влажного воздуха. Постройте качественно график зависимости плотности воздуха от его относительной влажности $\rho(\varphi)$.

Решение.

 $p_{\scriptscriptstyle \rm B}$ — парциальное давление воздуха, $p_{\scriptscriptstyle \rm H}$ — парциальное давление пара, плотность сухого воздуха $\rho_0 = \frac{M_{\scriptscriptstyle \rm B}p}{RT}.$

$$\begin{cases} p_{\scriptscriptstyle \mathrm{B}} V = (p-p_{\scriptscriptstyle \mathrm{II}}) V = \frac{m_{\scriptscriptstyle \mathrm{B}}}{M_{\scriptscriptstyle \mathrm{B}}} RT \rightarrow m_{\scriptscriptstyle \mathrm{B}} = \frac{M_{\scriptscriptstyle \mathrm{B}} (p-p_{\scriptscriptstyle \mathrm{II}}) V}{RT} \\ p_{\scriptscriptstyle \mathrm{II}} V = \frac{m_{\scriptscriptstyle \mathrm{II}}}{M_{\scriptscriptstyle \mathrm{II}}} RT \rightarrow m_{\scriptscriptstyle \mathrm{II}} = \frac{M_{\scriptscriptstyle \mathrm{II}} p_{\scriptscriptstyle \mathrm{II}} V}{RT} \end{cases}$$

Плотность влажного воздуха:

$$\rho_{\varphi} = \frac{m_{\rm B} + m_{\rm II}}{V} = \frac{M_{\rm B} p}{RT} - \frac{(M_{\rm B} - M_{\rm II}) \varphi p_{\rm H}}{RT}$$

$$\frac{\rho_{\varphi}}{\rho_0} = 1 - \left(1 - \frac{M_{\Pi}}{M_{B}}\right) \varphi \frac{p_{H}}{p} = 1 - \left(1 - \frac{18}{29}\right) \cdot 0.5 \cdot 0.2 = 1 - 0.0379 \approx 1 - 0.04$$

Ответ: плотность влажного воздуха меньше на 4 %

Вид графика:

