M20580 L.A. and D.E. Tutorial Worksheet 2

Sections 1.1–1.3

1. (a) Find the general solution of the system of linear equations

 $x_1 - 2x_2 + 2x_3 + x_4 = 1$ $x_1 - 2x_2 + 3x_3 = -2$

(b) If the linear system above has infinitely many solutions, give two solutions to the system.

2. Recall: Given a collection of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$, a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ is a new vector of the form

$$\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$$
, for some scalars $c_1, c_2 \dots, c_p$

Suppose

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 4 \\ 7 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

(a) Give an example of a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

(b) Determine whether the vector $\mathbf{w} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$ can be written as a linear combination of the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . If yes, find scalars a_1 , a_2 , a_3 such that $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = \mathbf{w}$.

3. Fill in the blanks

 $\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p\}$ is the set of _____ linear combinations of the vectors _____

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 3 \\ 8 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$.

(a) Give examples of two vectors that are in the set $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$.

(b) How many vectors are there in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

(c) Determine whether the vector $\mathbf{w} = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$ is in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

4. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$. Find the value of h such that $\mathbf{w} = \begin{bmatrix} 4 \\ 3 \\ h \\ 0 \end{bmatrix}$ is a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .