

Streaming Factor Trajectory Learning for Temporal Tensor Decomposition

Shikai Fang, Xin Yu, Shibo Li, Zheng Wang, Robert Kirby, Shandian Zhe

NeurIPS 2023

Github Repo: https://github.com/xuangu-fang/Streaming-Factor-Trajectory-Learning

Tensor Date

- Multi-dim Array
- Represent interactions of multiple objects/entitiles
- Each entry: (index1, index2..)-> value

(location, region, time, climate)

(user, movie, episode)

(subject, voxel, electrode)

Tensor Decomposition

- Learning representation of latent factors
- Simple case: Collaborative Filterling (Matrix Factorization)

CP / Tucker / TT Decomposition

Bayesian Tensor Decomposition

Deterministic factors: Vectors

Probabilistic factors: **Distributions**

$$\mathcal{N}\left(\mathbf{u}_{s}^{k}\mid\mathbf{u}_{s}^{k},v\mathbf{I}\right)$$

Uncertainty counts!

Example: Bayesian CP Decomposition

Joint Distribution

Priors of factors and noise

$$p\left(\left\{y_{\mathbf{i}}\right\}_{\mathbf{i}\in S}, \mathcal{U}, \tau\right) = \operatorname{Gam}\left(\tau \mid a_{0}, b_{0}\right) \prod_{k=1}^{K} \prod_{s=1}^{d_{k}} \mathcal{N}\left(\mathbf{u}_{s}^{k} \mid \mathbf{m}_{s}^{k}, v\mathbf{I}\right)$$

$$\prod_{i \in S} \mathcal{N}\left(y_{\mathbf{i}} \mid \mathbf{1}^{\top}\left(\mathbf{u}_{i_{1}}^{1} \circ \ldots \circ \mathbf{u}_{i_{K}}^{K}\right), \tau^{-1}\right) \quad \mathbf{CP} \text{ likelihood}$$

Approx. Posterior

$$p\left(\mathcal{U},\tau\right|\left\{y_{\mathbf{i}}\right\}_{\mathbf{i}\in S}) \approx q(\mathcal{U},\tau) = q(\tau) \prod_{k=1}^{K} \prod_{s=1}^{d_{k}} q\left(\mathbf{u}_{s}^{k}\right)$$

$$= \operatorname{Gamma}(\tau \mid a^{\star},b^{\star}) \prod_{k=1}^{K} \prod_{s=1}^{d_{k}} \mathcal{N}\left(\mathbf{u}_{s}^{k} \mid \boldsymbol{\mu}_{s}^{k \star}, \boldsymbol{\Sigma}_{s}^{k \star}\right)$$

Bayesian inference toolbox

Variational inference(VI):

• minimize the **KL** divergence of exact posterior and approx. posterior

$$\mathcal{L} = \int q^*(\mathcal{U}, \tau) \log \frac{p\left(\{y_i\}_{i \in S_t} \mid \mathcal{U}, \tau\right) q(\mathcal{U}, \tau)}{q^*(\mathcal{U}, \tau)} d\mathcal{U} d\tau$$

Expectation propagation(EP):

• moment match when L(reverse order) has closed form solution

Assumed density filtering(ADF):

• moment match when having tractable normalization term

Reparameterization trick (SVI):

• Probabilistic version SGD when L is totally intractable

...(sampling based methods)

Temporal Tensor Data

- Tensor-valued time series
- Represent time-varing and high-order interactions

(region, site, weather)

(subject, voxel, electrode)

(user, user, location, message)

Tensor structure are evolving through time!

Temporal Tensor: trival solutions

- Drop timestamps
- Augment tensor with discrete time mode

- Too Sparse!
- Loss temporal continuity

Temporal Tensor Decomposition

Most existing work[1][2][3]:

Evolving weights + Static Factors

$$y_{\mathbf{i}}(\mathbf{t}) \approx \mathbf{w}(\mathbf{t})^{\top} \left(\mathbf{u}_{i_1}^1 \circ \ldots \circ \mathbf{u}_{i_K}^K \right)$$

- Over-Simplistic!
- Evolving factors dominate in many cases

^[1] Zhang, Yanging, et al. "Dynamic tensor recommender systems." The Journal of Machine Learning Research 22.1 (2021): 3032-3066.

^[2] Fang, Shikai, et al. "Bayesian Continuous-Time Tucker Decomposition." International Conference on Machine Learning. PMLR, 2022.

^[3] Li, Shibo, et al.. "Decomposing Temporal High-Order Interactions via Latent ODEs." International Conference on Machine Learning. PMLR, 2022.

SFTL

SFTL(ours): Learning functional factor trajectories!

CP:
$$y_{\mathbf{i}}(t) \approx \mathbf{w}^{\top} \left(\mathbf{u}_{i_1}^{1}(t) \circ \ldots \circ \mathbf{u}_{i_K}^{K}(t) \right)^{\top}$$

Tucker:
$$y_{\mathbf{i}}(t) \approx \operatorname{vec}(\mathcal{W})^{\top} \left(\mathbf{u}_{i_1}^1(t) \otimes \ldots \otimes \mathbf{u}_{i_K}^K(t) \right)$$

Gaussian Process for Trajectory Learning

Gaussian Process(GP): Bayesian Functional Prior

$$y_{\mathbf{i}}(t) \approx \mathbf{w}^{\top} \left(\mathbf{u}_{i_1}^{1}(t) \circ \ldots \circ \mathbf{u}_{i_K}^{K}(t) \right)^{\top}$$

$$GP(0, k(t, t'))$$

- Non-parametric: strong and flexiable
- Non-scalable : O(N^3) time cost

State-Space Gaussian Process

Linear-Cost GP with Chain-Structure

State Space Model

 $\mathcal{GP}\left(\mathbf{w_r} \mid \mathbf{0}, \mathbf{K_r}(t, t')\right)$

Space: $\mathcal{O}(N^2)$ Time: $\mathcal{O}(N^3)$

$$p\left(\gamma_{\mathbf{r}}\left(t_{n+1}\right) \mid \gamma_{\mathbf{r}}\left(t_{n}\right)\right) \\ = \mathcal{N}\left(\gamma_{\mathbf{r}}\left(t_{n+1}\right) \mid \mathbf{A}_{n}\gamma_{\mathbf{r}}\left(t_{n}\right), \mathbf{Q}_{n}\right)$$

Space: $\mathcal{O}(\Lambda)$

Joint Prob of SFTL (CP)

noise

states of factor trajectory

$$p(\{\mathbf{h}_{j,k}^m\}, \tau, \mathbf{y}) = p(\tau) \prod_{m=1}^M \prod_{j=1}^{d_m} p(\mathbf{h}_{j,1}^m) \prod_{k=1}^{c_j^m - 1} p(\mathbf{h}_{j,k+1}^m | \mathbf{h}_{j,k}^m)$$

$$\cdot \prod_{n=1}^N \mathcal{N}(y_n | \mathbf{1}^\top (\mathbf{u}_{\ell_{n1}}^1(t_n) \circ \dots \circ \mathbf{u}_{\ell_{nM}}^M(t_n)), \tau^{-1}).$$

likelihood

Inference Challenges

• One obvervation interweaving of multi-trajectories

• Datasets are collected in **fast-generating & streaming** manner

Inference Challenges

Security / Privacy / Safety-constrained senarios

Data are NOT allowed to be stored/revisited

Classical Offline Algorithems

• Offline learning of classical tensor models:

$$\min_{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}} \sum_{(i,j) \in \text{ obs}} \frac{\left(A_{ij} - \langle U_i, V_j \rangle\right)^2}{\left(A_{ij} - \langle U_i, V_j \rangle\right)^2} + w_0 \sum_{(i,j) \notin \text{ obs}} \left(\langle U_i, V_j \rangle\right)^2$$

- Need to collect **all observations** at first
- Then go through data for **multi-epochs** to update

Can not fit **streaming** tesnor data!

Bayesian Straeming Inference

- Online learning/ Straming Inference: data come, model update, date drops
- Principple: Incremental version of Bayes' rule:

Posterior on old data

$$p\left(\boldsymbol{\theta} \mid \mathcal{D}_{\mathrm{old}} \cup \mathcal{D}_{\mathrm{new}}\right) \propto p\left(\boldsymbol{\theta} \mid \mathcal{D}_{\mathrm{old}}\right) p\left(\mathcal{D}_{\mathrm{new}} \mid \boldsymbol{\theta}\right)$$

Posterior on all data

Likelihood on current model

Streaming Inference ⇔ Kalman Filter!

Incremental version of Bayes' rule:

$$p\left(\boldsymbol{\theta} \mid \mathcal{D}_{\mathrm{old}} \cup \mathcal{D}_{\mathrm{new}}\right) \propto p\left(\boldsymbol{\theta} \mid \mathcal{D}_{\mathrm{old}}\right) p\left(\mathcal{D}_{\mathrm{new}} \mid \boldsymbol{\theta}\right)$$

Chain-Struture of factor trajactoy

$$\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \cdots \rightarrow \bigcirc$$

$$t_1 \quad t_2 \quad t_3 \quad t_N$$

Kalman Filter!

Observation:

Message Passing & Moment Matching

Last Challenge:

One obvervation States of multi-trajectories

- Classical Kalman Filter

Latent Space:
Observation:
Observation:

Message Passing & Moment Matching

Conditional Moment-Matching

$$\mathcal{N}\left(y|\mathbf{1}^{\top}\left(\mathbf{u}_{\ell_{1}}^{1}(t_{n+1})\circ\cdots\circ\mathbf{u}_{\ell_{M}}^{M}(t_{n+1})\right)\right) \approx \left[\prod_{m=1}^{M} \mathcal{N}\left(\mathbf{u}_{\ell_{m}}^{m}(t_{n+1})|\boldsymbol{\gamma}_{\ell_{m}}^{m},\boldsymbol{\Sigma}_{\ell_{m}}^{m}\right) \operatorname{Gam}(\tau|\alpha_{\boldsymbol{\ell}},\omega_{\boldsymbol{\ell}})\right]$$

Observation

Msgs to multi-trajatories

Message Passing (Expectation Propagation)

$$\mathbb{E}_{q}[\mathbf{v}_{\ell}^{\backslash m}] = \mathbb{E}_{q}[\mathbf{v}_{\ell_{1}}^{1}] \circ \dots \circ \mathbb{E}_{q}[\mathbf{v}_{\ell_{m-1}}^{m-1}] \circ \mathbb{E}_{q}[\mathbf{v}_{\ell_{m+1}}^{m+1}] \circ \dots \circ \mathbb{E}_{q}[\mathbf{v}_{\ell_{M}}^{M}],
\mathbb{E}_{q}[\mathbf{v}_{\ell}^{\backslash m} \left(\mathbf{v}_{\ell}^{\backslash m}\right)^{\top}] = \mathbb{E}_{q}[\mathbf{v}_{\ell_{1}}^{1} \left(\mathbf{v}_{\ell_{1}}^{1}\right)^{\top}] \circ \dots \circ \mathbb{E}_{q}[\mathbf{v}_{\ell_{m-1}}^{m-1} \left(\mathbf{v}_{\ell_{m-1}}^{m-1}\right)^{\top}]
\circ \mathbb{E}_{q}[\mathbf{v}_{\ell_{m+1}}^{m+1} \left(\mathbf{v}_{\ell_{m+1}}^{m+1}\right)^{\top}] \circ \dots \circ \mathbb{E}_{q}[\mathbf{v}_{\ell_{M}}^{M} \left(\mathbf{v}_{\ell_{M}}^{M}\right)^{\top}].$$

Inference Algorithem of SFTL

Efficient Online algorithem:

- Closed-form Updates
- Conditional Moment Match
- Kalman Filter+ (RTS Smoother)

Inference Algorithem of SFTL

Algorithm 1 Streaming Factor Trajectory Learning (SFTL)

```
1: Input: kernel hyper-parameters a, \rho, \nu = p + \frac{1}{2} \ (p \in \{0, 1, 2, \ldots\})
 2: n \leftarrow 0

 while Receiving a new batch of entreis B<sub>n+1</sub> do

          if n = 0 then
 4:
              Set a_n=a_0, b_n=b_0, \widehat{\boldsymbol{\mu}}_{j,c_{i,n+1}^m}^m=\mathbf{0}, and \widehat{\mathbf{V}}_{j,c_{i,n+1}^m}^m=\overline{\mathbf{P}}_{\infty} in (8).
 5:
              Goto 9.
 6:
          end if
          Retrieve the involved preceding factor states \Theta_n = \{\mathbf{h}_{j,c_{i,n}}^m | j \in \mathcal{I}_{n+1}^m \}_m and their running
          posterior, p(\Theta_n, \tau | \mathcal{D}_{t_n}) \approx \text{Gam}(\tau | a_n, b_n) \prod_{m=1}^M \prod_{j \in \mathcal{I}_{n+1}^m} \mathcal{N}(\mathbf{h}_{j, c_{i,n}^m}^m | \widehat{\boldsymbol{\mu}}_{j, c_{i,n}^m}^m, \widehat{\mathbf{V}}_{j, c_{i,n}^m}^m).
          According to (8) and (9), use conditional Expectation Propagation to calcu-
          late the running posterior of the current factor states, p(\Theta_{n+1}, \tau | \mathcal{D}_{t_{n+1}})
          \text{Gam}(\tau|a_{n+1},b_{n+1}) \prod_{m=1}^{M} \prod_{j \in \mathcal{I}_{n+1}^{m}} \mathcal{N}(\mathbf{h}_{j,c_{i,n+1}^{m}}^{m}|\widehat{\boldsymbol{\mu}}_{j,c_{i,n+1}^{m}}^{m},\widehat{\mathbf{V}}_{j,c_{i,n+1}^{m}}^{m}).
          if Needed then
10:
              Run RTS smoothing on any factor state chain \{\mathbf{h}_{i,k}^m|k=1,2,\ldots\} of interest.
11:
          end if
12:
          n \leftarrow n + 1
14: end while
15: Run RTS smoothing for every factor state chain \{\mathbf{h}_{i,k}^m | k=1,2,\ldots\}.
16: Return: \{q(\mathbf{h}_{j,k}^m|\mathcal{D})|k=1,2,\ldots\}_{1\leq m\leq M,1\leq j\leq d_m}, q(\tau|\mathcal{D}), \text{ where } \mathcal{D} \text{ is all the data received.}
```


Experiments: Simulation

$$y_{(i,j)}(t) \sim \mathcal{N}\left(u_i^1(t)u_j^2(t), 0.05\right)$$

Experiments: Online Prediction

Experiments: Prediction Accuracy

Online beat Offline!

	RMSE	FitRecord
Static	PTucker	0.656 ± 0.147
	Tucker-ALS	0.846 ± 0.005
	CP-ALS	0.882 ± 0.017
	CT-CP	0.664 ± 0.007
	CT-GP	0.604 ± 0.004
	BCTT	0.518 ± 0.007
	NONFAT	0.503 ± 0.002
	THIS-ODE	0.526 ± 0.004
Stream	POST	0.696 ± 0.019
	ADF-CP	0.648 ± 0.008
	BASS-Tucker	0.976 ± 0.024
	SFTL-CP	$\boldsymbol{0.424 \pm 0.014}$
	SFTL-Tucker	0.430 ± 0.010

	MAE	
Static	PTucker	0.369 ± 0.009
	Tucker-ALS	0.615 ± 0.006
	CP-ALS	0.642 ± 0.012
	CT-CP	0.46 ± 0.004
	CT-GP	0.414 ± 0.001
	BCTT	0.355 ± 0.005
	NONFAT	0.341 ± 0.001
	THIS-ODE	0.363 ± 0.004
Stream	POST	0.478 ± 0.014
	ADF-CP	0.449 ± 0.006
	BASS	0.772 ± 0.031
	SFTL-CP	0.242 ± 0.006
	SFTL-Tucker	0.246 ± 0.001

Experiments: Learned Trajectories

0.5 0.0 - 0.00.5 -0.50.0 0.0 Reasonable uncertainty -1.0 -0.5-0.5Time Time Time (a) $u_{1,1}^1(t)$ (b) $u_{1,2}^1(t)$ (c) $u_{1,3}^1(t)$ **Indicate tensor rank?** 0.4^{-1} 0.8 0.7 0.0 -0.50.0 -0.5-0.7-1.4Time Time Time

(e) $u_{2,2}^2(t)$

(f) $u_{2,3}^2(t)$

(d) $u_{2,1}^2(t)$

Thanks.

Github Repo

