DoSA-2D User Manual

Linear Vibrator Example

2022-03-19 GiTae Kweon (zgitae@gmail.com)

DoSA Structure

Program Structure

Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

2. Part Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Virtual Test

✓ Force : Magnetic force estimation

✓ Stroke : Magnetic force estimation for each stroke

✓ Current : Magnetic force estimation for each current

Analysis Model

Analysis Model

1. Shape Model

2. Product Specifications

가. Coil

• Coil Turns : 126 turns

• Coil Resistance: 15.75 Ohm

나. Magnet

• Material : N52 (NdFeB 52)

• Magnetization Direction: 90 (UP)

다. Power

• Voltage: 2.5V

(Example Files: DoSA-2D Install directory > Samples > LV)

New design

1. Toolbar > Click New button

2. Design Name: "LV"

3. Click OK

Part Design

Add a coil

1. Toolbar > Click Coil button

2. Coil Name: "coil"

3. Input the coil shape

✓ Coil Location: Base_X 1.5, Base_Y -0.67

✓ Left-down point : X 0, Y 0

(Relative coordinates)

✓ Right-Up Point : X 0.365, Y 1.18

(Relative coordinates)

4. Screen Adjustment : Use Fit All button

5. Click OK button

6. Check shape (FEMM Window)

Coil Design

1. Input the coil instrumental specifications

✓ Coil Wire Grade : Bonded_IEC_Grade_1B

✓ Copper Diameter: 0.045

✓ Horizontal Coefficient : 0.95 (Bonded Type)

✓ Vertical Coefficient : 1.13 (Bonded Type)

✓ Resistance Coefficient : 1.1 (Bonded Type)

2. Calculate the coil specification

✓ Click the "Coil Design" button

3. Check the coil specification

Add a magnet

1. Toolbar > Click Magnet button

2. Magnet Name: "magnet"

3. Magnet Shape

✓ Magnet location : Base_X 0, Base_Y 0.4

✓ Left-down Point : X 0, Y 0

(Relative Coordinates)

✓ Right-Up point : X 1.35, Y 1.0

(Relative Coordinates)

4. Screen Adjustment: Use Fit All button

5. Click OK button

6. Confirm Shape (FEMM window)

Magnet Settings

1. Magnet Settings

✓ Part Material : N52

✓ Direction : UP

✓ Moving Parts : MOVING

Add a plate

1. Toolbar > Click Steel Button

2. Steel Name: "plate"

3. Face Type: **RECTANGLE**

4. Plate Shape

✓ Plate location : Base_X 0, Base_Y 0.2

✓ Left-down point : X 0, Y 0

(Relative Coordinates)

✓ Right-Up point : X 1.35, Y 0.2

(Relative Coordinates)

5. Screen Adjustment: Use Fit All button

6. Click OK button

7. Shape confirm (FEMM window)

Add a yoke

- 1. Toolbar > Click Steel Button
- 2. Steel Name: "yoke"
- 3. Add input lines of point
 - ✓ Click the 'A' button four times
- 4. Yoke Shape
 - ✓ Yoke location: Base_X 0, Base_Y 0.2
 - ✓ 1 Point: X 0, Y 1.4
 - ✓ 2 Point : X 0, Y 1.2
 - ✓ 3 Point : X 1.9, Y 1.2
 - ✓ 4 Point: X 2.05, Y 1.05
 - ✓ 5 Point: X 2.05, Y 0
 - ✓ 6 Point : X 2.25, Y 0
 - ✓ 7 Point: X 2.25, Y 1.05
 - ✓ 8 Point : X 1.9, Y 1.4
- 5. Screen Adjustment: Use Fit All button

Add a yoke

6. Add the Arc Shape

✓ 3 Point : Arc, Dir check

✓ 7 Point : Arc check

7. Click OK button

8. Shape confirmation (FEMM window)

Plate, Yoke settings

1. Click the plate in the treeview

2. Plate settings

✓ Part Material : 430 Stainless Steel

✓ Moving Parts : MOVING

3. Click the yoke in the treeview

4. Plate settings

✓ Part Material: 430 Stainless Steel

✓ Moving Parts: MOVING

[BH curve]

Virtual Test

Test of the magnetic force

- 1. Toolbar > Click Force Button
- 2. Force Test Name: "force"
- 3. Click OK button
- 4. Settings of magnetic force test
 - ✓ Voltage: 2.5
- 5. Click "Force Test" Button

Results of the magnetic force

- 6. Force: -0.05515 N
- 7. Magnetic Density
 - ✓ Click the B Magnitude button
- 8. Vector of Magnetic Density
 - ✓ Click the B Vector button

Test of the stroke-magnetic force

1. Toolbar > Click Stroke button

2. Stroke Test Name: "stroke"

3. Click OK button

4. Settings of the test

✓ Voltage: 2.5

✓ Initial Stroke: -0.5

✓ Final Stroke: 0.5

✓ Step Count: 5

Results of the stroke-magnetic force

5. Click "Stroke Test" button

Test of the current-magnetic force

1. Toolbar > Click Current button

2. Current Test Name: "current"

3. Click OK button

4. Test settings

✓ Initial Current: 0.0

✓ Final Current: 0.1

✓ Step Count: 5

Results of the current-magnetic force

5. Click "Current Test" button

Tips

Open design

- 1. Toolbar > Click Open Button
- 2. Double click the design directory.
- 3. Double click the design file.

Thank You

Email: zgitae@gmail.com

Homepage: http://openactuator.org