M M M	
Mo Tu We Th Fr Sa Su	Memo No.
	Date /
LEC28. Divorgence 4	beorem
2025,1.23	
Flux of F through Si	urtoce s
Ss Finds	
*If S is graph of	t = fx, y)
Λ -	
(1/12)	
1	1.d5 = t <- tx, -ty, 12 dxdy
A III	
(COX DY	
where this some from?	5
Proof: (xytay!)	toy) > a tix.y/+ty. Dy
) y	± 2x 107 = 05. 1
FINTONY OX	
2 Gryst Fray	
X) > = f(x,y)+fx. px	
$\Rightarrow \vec{u} = \lambda_{\Delta x}, o, f_{x} \rightarrow Ax$	7=2/10,7x7.01
smily => V > Lo, Ay, ty Ay?	> = <0,1, fy > Ay
TXV = ist AY AX	= <-fx, -fy, 1> · dxdy
101701	

Mo Tu We Th Fr Sa Su	Memo No.
	Date /
Example: $\vec{F} = \pm \cdot \hat{k}$ = paraboloid $\pm = x^2 + y^2$ a	through portion of
paraboloid z=x2+y2 a	bove unit disk.
XIX	
× ×	
	<-2x,-2x, 1) -dxdy
= // co, o, & r. < -2x	,-24, 1> dxdy
= \int s \forall x dy = \int s = \overline{\chi}	(x2+y2) dxdy = / 27/12 rdrdo
More generally: (usua	1/y we spectal ones)
one parametric descipt	tan s
S= { X=X(U,V) fina	Il dudu (example: X= psint aso y= psint sino
Y= y (MV)	(y= psh\$ smo
P=(x,y, 2) = P(u,v)	3 N
	sides: Du. Du = (DX. Au, DY. DI
ET DUIDV	$\frac{\partial V}{\partial P} \cdot \Delta V = \langle \frac{\partial V}{\partial X}, \Delta V, \dots \rangle \frac{\partial U}{\partial B}, \Delta U$
± H. AS =	(27. DU) X (2r. DV)
±1.45 =	du. dv. (sm x sv)

Memo No.			_
Date	/	/	

·If we know a normal vector N to the

surtace

Example:

1) plane ouxtby + cz=d, N=(a, b,c)

by eg g(x, y, z) 20, N=99

surface element: DA = DS. Crish

Cosx = N. /2/ /N/. /K/

PAS = CH AD = NO. AD

some as reason: $=\pm\frac{N}{2.7}\cdot dydz$ = + A. dxd+

2-f(x,y)=0 & sow from front page <-tx ; ty, 1> dxdy

Mo Tu We Th Fr Sa Su	Memo No/
Divergence Theorem (Green's Theorem) In 30 For thux
If Sis a closed surface enclosing a region D. with	
and \vec{F} defined and different then $\iint_S \vec{F} \cdot d\vec{s} = \iiint_S d\vec{k}$ where $div(\vec{F}_i^2 + Q\hat{s}_i^2 + RR) = 0$	vFdV
Examples last time $\vec{F} = z \vec{k}$ of to	
() 3 × //s = /// / / / / / / / / / / / / / / /	