(1) Let $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5 + Gx^6 + ...$ be an Infinite MacLaurin Power Series approximating the Solution Curve for the following Differential Equation with Initial Condition:

$$y' = x + 1$$
 $y(0)=2$.

- (1a) Use the given MacLaurin Series to solve this Differential Equation.
- (1b) Classify your series solution: finite or infinite.
- (1c) Check this solution by substitution.
- (1d) Graph this solution and classify the function: power, exponential, logarithmic, sinusoidal, logistic, other.

(2) Let $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5 + Gx^6 + ...$ be an Infinite MacLaurin Power Series approximating the Solution Curve for the following Differential Equation with Initial Condition:

$$y' = x^2 - x + 5$$
 $y(0)=0$.

- (2a) Use the given MacLaurin Series to solve this Differential Equation.
- (2b) Classify your series solution: finite or infinite.
- (2c) Check this solution by substitution.
- (2d) Graph this solution and classify the function: power, exponential, logarithmic, sinusoidal, logistic, other.

(3) Let $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5 + Gx^6 + ...$ be an Infinite MacLaurin Power Series approximating the Solution Curve for the following Differential Equation with Initial Condition:

$$y' = y$$
 $y(0)=1.$

- (3a) Use the given MacLaurin Series to solve this Differential Equation.
- (3b) Classify your series solution: finite or infinite.
- (3c) Graph this solution and classify the function: power, exponential, logarithmic, sinusoidal, logistic, other.
- (3d) Solve the Differential Equation by the Method of Separation of Variables. Does this solution match your function classification?

(4) Let $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5 + Gx^6 + ...$ be an Infinite MacLaurin Power Series approximating the Solution Curve for the following Differential Equation with Initial Condition:

$$y' = -y$$
 $y(0)=2.$

- (4a) Use the given MacLaurin Series to solve this Differential Equation.
- (4b) Classify your series solution: finite or infinite.
- (4c) Graph this solution and classify the function: power, exponential, logarithmic, sinusoidal, logistic, other.
- (4d) Solve the Differential Equation by the Method of Separation of Variables. Does this solution match your function classification?

Power Series Solutions for Differential Equations Introduction to Hooke's Law

(5) Let $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5 + Gx^6 + ...$ be an Infinite MacLaurin Power Series approximating the Solution Curve for the following Differential Equation with Initial Condition:

$$y' = \frac{1}{1+x}$$
 $y(0)=1$.

- (5a) Use the given MacLaurin Series to solve this Differential Equation.
- (5b) Classify your series solution: finite or infinite.
- (5c) Graph this solution and classify the function: power, exponential, logarithmic, sinusoidal, logistic, other.
- (5d) Solve the Differential Equation by the Method of Separation of Variables. Does this solution match your function classification?

Power Series Solutions for Differential Equations Introduction to Hooke's Law

(6) Let $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5 + Gx^6 + ...$ be an Infinite MacLaurin Power Series approximating the Solution Curve for the following Differential Equation with Initial Condition:

$$y' = \frac{1}{1-x}$$
 $y(0)=1$.

- (6a) Use the given MacLaurin Series to solve this Differential Equation.
- (6b) Classify your series solution: finite or infinite.
- (6c) Graph this solution and classify the function: power, exponential, logarithmic, sinusoidal, logistic, other.
- (6d) Solve the Differential Equation by the Method of Separation of Variables. Does this solution match your function classification?

(7) Let $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5 + Gx^6 + ...$ be an Infinite MacLaurin Power Series approximating the Solution Curve for the following Differential Equation with Initial Condition:

$$y' = x + y$$
 $y(0)=1$.

- (7a) Use the given MacLaurin Series to solve this Differential Equation.
- (7b) Classify your series solution: finite or infinite.
- (7c) Graph this solution and classify the function: power, exponential, logarithmic, sinusoidal, logistic, other.
- (7d) Solve this 1st Order Differential Equation using the Method of Separation of Variables if possible. If this is not possible, explain why.

(8) Let $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5 + Gx^6 + ...$ be an Infinite MacLaurin Power Series approximating the Solution Curve for the following Differential Equation with Initial Condition:

$$y' = x - y$$
 $y(0) = -1$.

- (8a) Use the given MacLaurin Series to solve this Differential Equation.
- (8b) Classify your series solution: finite or infinite.
- (8c) Graph this solution and classify the function: power, exponential, logarithmic, sinusoidal, logistic, other.
- (8d) Solve this 1st Order Differential Equation using the Method of Separation of Variables if possible. If this is not possible, explain why.

Power Series Solutions for Differential Equations Introduction to Hooke's Law

(9) Let $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5 + Gx^6 + ...$ be an Infinite MacLaurin Power Series approximating the Solution Curve for the following Differential Equation with Initial Condition:

$$y'' = -y$$
 $y(0)=0, y'(0)=1.$

- (9a) Use the given MacLaurin Series to solve this Differential Equation.
- (9b) Classify your series solution: finite or infinite.
- (9c) Graph this solution and classify the function: power, exponential, logarithmic, sinusoidal, logistic, other.
- (9d) Solve this 1st Order Differential Equation using the Method of Separation of Variables if possible. If this is not possible, explain why.

(10) Let $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5 + Gx^6 + ...$ be an Infinite MacLaurin Power Series approximating the Solution Curve for the following Differential Equation with Initial Condition:

$$y'' = -y$$
 $y(0)=1, y'(0)=0.$

- (10a) Use the given MacLaurin Series to solve this Differential Equation.
- (10b) Classify your series solution: finite or infinite.
- (10c) Graph this solution and classify the function: power, exponential, logarithmic, sinusoidal, logistic, other.
- (10d) Use Newton's 2^{nd} Law of Motion (net $\overline{\mathbf{F}} = m \overline{\mathbf{a}}$) and Hooke's Law for Springs ($\overline{\mathbf{F}} = -k \overline{\mathbf{s}}$) to show that the displacement of an object suspended by a spring follows a differential model similar to the one you just solved ($\frac{\mathbf{d}^2 \overline{(\mathbf{s}(\mathbf{t}))}}{\mathbf{d}\mathbf{t}^2} = \frac{-k}{m} \overline{\mathbf{s}(\mathbf{t})}$)!

Power Series Solutions for Differential Equations Introduction to Hooke's Law

Teacher's notes:

Model power series solutions by doing the odd questions from this packet and grade the rest.