Computer Vision (600.461/600.661) Homework 1: Mathematical Background

Instructor: René Vidal

Due 09/11/2014, 11.59PM Eastern

- 1. **Properties of Symmetric Matrices.** Let $S \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Show that:
 - (a) All the eigenvalues of S are real, i.e., $\sigma(S) \subset \mathbb{R}$.

Assume
$$\lambda \in \Im S\tilde{v} = \tilde{\lambda}\tilde{v}$$

- (b) Let (λ, v) be an eigenvalue-eigenvector pair. If $\lambda_i \neq \lambda_j$, then $v_i \perp v_j$; i.e., eigenvectors corresponding to distinct eigenvalues are orthogonal.
- (c) There always exist n orthonormal eigenvectors of S, which form a basis of \mathbb{R}^n .
- (d) S is positive definite (positive semidefinite) if and only if all of its eigenvalues are positive (non-negative), i.e., $S \succ 0$ ($S \succeq 0$), iff $\forall i = 1, 2, ..., n, \lambda_i > 0$ ($\lambda_i \geq 0$).
- (e) If $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are the sorted eigenvalues of S, then $\max_{\|\boldsymbol{x}\|_2=1} \boldsymbol{x}^\top S \boldsymbol{x} = \lambda_1$ and $\min_{\|\boldsymbol{x}\|_2=1} \boldsymbol{x}^\top S \boldsymbol{x} = \lambda_n$.
- 2. Properties of the SVD. Let $A = U\Sigma V^{\top}$ be the SVD of a matrix $A \in \mathbb{R}^{m \times n}$ of rank r. Show that:
 - (a) $A\mathbf{v}_j = \sigma_j \mathbf{u}_j$ for $j = 1, \dots, r$ and $A^{\top} \mathbf{u}_j = \sigma \mathbf{v}_j$ for $j = 1, \dots, r$.
 - (b) The range or image of A is spanned by the left singular vectors of A associated with its nonzero singular values, i.e., range(A) = span{ u_i } $_{i=1}^r$.
 - (c) The kernel or null space of A is spanned by the right singular vectors of A associated with its zero singular values, i.e., $\ker(A) = \operatorname{span}\{v_i\}_{i=r+1}^m$.
 - (d) The squared Frobenius norm of A is equal to the sum of the squared singular values of A, i.e., $||A||_F^2 = \sum_{ij} a_{ij}^2 = \sum_{k=1}^r \sigma_k^2$.
 - (e) The right singular vector of A associated to its smallest singular value, v_m , is a solution to the optimization problem $\min_{\boldsymbol{x}} \|A\boldsymbol{x}\|_2^2$ such that $\|\boldsymbol{x}\|_2 = 1$.
- 3. **Least Squares.** Recall that the pseudo inverse of a matrix $A \in \mathbb{R}^{m \times n}$ is the unique matrix $A^{\dagger} \in \mathbb{R}^{n \times m}$ such that: (i) $AA^{\dagger}A = A$, (ii) $A^{\dagger}AA^{\dagger} = A^{\dagger}$, (iii) $(AA^{\dagger})^{\top} = AA^{\dagger}$, and (iv) $(A^{\dagger}A)^{\top} = A^{\dagger}A$. Let $A = U\Sigma V^{\top}$ be the SVD of A, let $r = \operatorname{rank}(A)$ and let $b \in \mathbb{R}^m$. Show that:
 - (a) The pseudo-inverse of A is given by $A^{\dagger} = V_r \Sigma_r^{-1} U_r^{\top}$, where $A = U_r \Sigma_r V_r^{\top}$ is the compact SVD of A.
 - (b) $x^* = A^{\dagger} b$ is a solution to the optimization problem $\min_{x} \|Ax b\|_2^2$. When is x^* the unique solution?
 - (c) If $b \in \text{range}(A)$, $x^* = A^{\dagger}b$ is the solution to the optimization problem $\min_{x} \|x\|_2^2$ such that Ax = b.

Submission instructions. Send email to vision14jhu@gmail.com with subject 600.461/600.661:HW1 and attachment firstname-lastname-hw1-vision14.zip or firstname-lastname-hw1-vision14.tar.gz. The attachment should have the following content:

1. A file called hwl.pdf containing your answers to each one of the analytical questions. If at all possible, you should generate this file using the latex template hwl-vision14.tex. If not possible, you may use another editor, or scan your handwritten solutions. But note that you must submit a single PDF file with all your answers.