

## **CS918: LECTURE 6**

Vector Representation and Models for Word Embeddings

Arkaitz Zubiaga, 22<sup>nd</sup> October, 2018



#### **LECTURE 6: CONTENTS**

- Vector space models for language representation.
- Word embeddings.
  - SVD: Singular Value Decomposition.
  - Iteration based models.
  - CBOW and skip-gram models.
  - Word2Vec and Glove.



#### **RECAP: STATISTICAL LANGUAGE MODELS**

• Goal: compute the **probability of a sequence of words**:  $P(W) = P(w_1, w_2, w_3, w_4, w_5, ..., w_n)$ 

- Related task: probability of an upcoming word:
- P(w<sub>5</sub> | w<sub>1</sub>, w<sub>2</sub>, w<sub>3</sub>, w<sub>4</sub>)
- Both of the above are language models.



## **VECTOR SPACE MODELS**



#### **VECTOR REPRESENTATION**

- So far we've extracted **n-gram counts**, etc. from texts.
- For most NLP tasks, we need a vector representation, which can be fed to:
  - Sentiment classifier.
  - Information retrieval system.
  - Question answering system.
  - Etc.



- So far, we have viewed words as (sequences of) atomic symbols.
  - We have used edit distance to compute similarity.
  - N-grams & LMs → what may follow/precede the word?



- So far, we have viewed words as (sequences of) atomic symbols.
- This doesn't tell us anything about semantic similarity, e.g.:
  - Is "Chinese" closer to "Asian" or to "English"?
  - Are "king" & "queen" more related than "doctor" & "mountain"?



- We may identify significant similarity based on word overlap between:
  - "Facebook to fight 'fake news' by asking users to rank trust in media outlets"
  - "Facebook's latest fix for fake news: ask users what they trust"

→ Using stemmer/lemmatiser



- We may identify significant similarity based on word overlap between:
  - "Facebook to fight 'fake news' by asking users to rank trust in media outlets"
  - "Facebook's latest fix for fake news: ask users what they trust"
    - → Using stemmer/lemmatiser
- But we'll fail when there isn't an overlap:
  - "Zuckerberg announces new feature that crowdsources trustworthiness of news organisations"



**NO OVERLAP** 

#### WORDS AS ATOMIC SYMBOLS

- Likewise for text classification, e.g.:
  - If classifier learns that:

"Leicester will welcome back Jamie Vardy for their Premier League clash with Watford" belongs to the topic "sport"

• We'll fail to classify the following also as "sport:"

"Blind Cricket World Cup: India beat Pakistan by two wickets in thrilling final to retain title"



#### WORD VECTORS: ONE-HOT OR BINARY MODEL

• Word represented as:  $\{0,1\}^{|V|\times 1}$  vector, |V| = vocabulary size

```
e.g. V = [hotel, motel, cat, dog], |V| = 4

hotel = [1, 0, 0, 0]

motel = [0, 1, 0, 0]

cat = [0, 0, 1, 0]

dog = [0, 0, 0, 1]
```



#### WORD VECTORS: ONE-HOT OR BINARY MODEL

- Word represented as:  $\{0,1\}^{|V|\times 1}$  vector, |V| = vocabulary size
- Still no notion of similarity, e.g.:

$$(w^{hotel})^T w^{motel} = (w^{hotel})^T w^{cat} = 0$$



#### **BAG-OF-WORDS MODEL**

- Bag-of-words:  $\vec{v} = \{ |w_1|, |w_2|, ..., |w_n| \}$
- Toy example: hello world hello I like chocolate  $v = \{2, 3, 1, 1, 1\}$
- Widely used, but largely being replaced by word embeddings.
- Con: inefficient for large vocabularies.
- Con: doesn't capture semantics (each word is an unrelated token)



#### WORD VECTORS: ONE-HOT OR BINARY MODEL

• **Solution:** why not reduce dimensionality of vector space?

$$\mathbb{R}^{N\times 1}$$
 or (in matrix format)  $\mathbb{R}^{N\times |V|}$ 

```
to something like:
from:
               = [1, 0, 0, 0]
                                        hotel
                                                  = [1, 0]
     hotel
     motel
              = [0, 1, 0, 0]
                                        motel = [1, 0]
     cat
              = [0, 0, 1, 0]
                                        cat = [0, 1]
     dog
              = [0, 0, 0, 1]
                                        dog
                                                  = [0, 1]
```

1<sup>st</sup> dimension = 1 if word is a building 2<sup>nd</sup> dimension = 1 if word is an animal now we can relate words!



### **WORD EMBEDDINGS:**

SINGULAR VALUE DECOMPOSITION (SVD)



#### WORD EMBEDDINGS

- Assumptions:
  - We can represent words as vectors of some dimension.
  - Each dimension has some semantic meaning, unknown a priori, but could be e.g.:
    - Whether it is an object/concept/person.
    - Gender of person.
    - ...



#### INTUITION OF WORD EMBEDDINGS

Words with the same context will have similar meaning:

buy a carpurchase a carget a carbuy chocolatepurchase chocolateget chocolatedon't buydon't purchasedon't getwill you buy it?will you purchase it?will you get it?

**buy, purchase and get** occur in equal or very similar contexts they must have **similar meanings**!



#### **BUILDING A CO-OCCURRENCE MATRIX**

- Given as input:
  - A text/corpus.
  - An offset **△** (e.g. 5 words)
- In a co-occurrence matrix with |V| rows, |V| columns:
  - The (i, j)<sup>th</sup> value indicates the number of times words i and j co-occur within the given offset Δ.



#### **BUILDING A CO-OCCURRENCE MATRIX**

- Examples ( $\Delta$  = 2 words):
  - We need to tackle fake news to keep society informed.
  - How can we build a classifier to deal with fake news?
  - Fake co-occurs with: to(2), news(2), deal(1), tackle(1), with(1)
  - Deal (with) and tackle are different tokens for us.
    - Frequent occurrence in similar contexts will indicate similarity.



#### WORD EMBEDDINGS: WORD-WORD MATRIX

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

- The table will be **huge (and sparse) for large |V|** (vocabularies).
- We need to reduce the dimensionality.



#### WORD EMBEDDINGS: SVD METHODS

- SVD: Singular Value Decomposition
- We **build co-occurrence matrix** (|V|x|V|) with offset  $\Delta$ .
- We use **SVD to decompose X** as  $X = USV^T$  , where:
  - U(|V| x r) and V(|V| x r) are unitary matrices, and
  - S(r x r) is a diagonal matrix.
- The columns of U (the left singular vectors) are then the word embeddings of the vocabulary.



#### WORD EMBEDDINGS: SVD METHODS

$$|V| \begin{bmatrix} & |V| & & |V|$$

Reducing dimensionality by selecting first k singular vectors:

$$|V| \left[ \begin{array}{c} |V| \\ \hat{X} \end{array} \right] = |V| \left[ \begin{array}{ccc} k \\ | & | \\ u_1 & u_2 & \cdots \\ | & | \end{array} \right] k \left[ \begin{array}{ccc} \sigma_1 & 0 & \cdots \\ 0 & \sigma_2 & \cdots \\ \vdots & \vdots & \ddots \end{array} \right] k \left[ \begin{array}{ccc} -v_1 & - \\ -v_2 & - \\ \vdots & \vdots & \ddots \end{array} \right]$$

We get |V| vectors of k dimensions each: word embeddings e.g. word embedding of word w:

$$WE(W) = \{V_1, V_2, ..., V_k\}$$



#### SVD EXAMPLE IN PYTHON

#### Corpus:

I like deep learning. I like NLP. I enjoy flying.

 $\Delta = 1$ 

like & I co-occur twice

```
import numpy as np
la = np.linalg
words = ["I", "like", "enjoy",
         "deep", "learning", "NLP", "flying", "."]
X = np.array([[0,2,1,0,0,0,0,0],
             [2,0,0,1,0,1,0,0],
              [1,0,0,0,0,0,1,0],
              [0,1,0,0,1,0,0,0],
              [0,0,0,1,0,0,0,1],
              [0,1,0,0,0,0,0,1],
              [0,0,1,0,0,0,0,1],
              [0,0,0,0,1,1,1,0]
U, s, Vh = la.svd(X, full matrices=False)
```



#### PLOTTING SVD EXAMPLE IN PYTHON

• Corpus: I like NLP. I like deep learning. I enjoy flying.



```
for i in xrange(len(words)):
    plt.text(U[i,0], U[i,1], words[i])
```



#### PLOTTING SVD EXAMPLE IN PYTHON

• Corpus: I like NLP. I like deep learning. I enjoy flying.





#### COMPUTING WORD SIMILARITY

• Corpus: I like NLP. I like deep learning. I enjoy flying.



```
for i in xrange(len(words)):
   plt.text(U[i,0], U[i,1], words[i])
```

We can compute similarity between w<sub>i</sub> and w<sub>j</sub> by comparing: U[i, 0:k] and U[j, 0:k]



#### **COMPUTING WORD SIMILARITY**

- Given 2 words w<sub>1</sub> and w<sub>2</sub>, similarity is computed as:
  - Dot/inner product, which equates:





#### COMPUTING WORD SIMILARITY

- Given 2 words w<sub>1</sub> and w<sub>2</sub>, similarity is computed as:
  - Dot/inner product, which equates:
     |w<sub>1</sub>| \* |w<sub>2</sub>| \* cos(θ)
  - **High similarity** for: near-parallel vectors with high values in same dimensions.
  - Low similarity for: orthogonal vectors, low value vectors.



#### PROS AND CONS OF SVD

- Pro: has shown to perform well in a number of tasks.
  - Useful e.g. for topic models, Latent Dirichlet Allocation (LDA).
- Con: dimensions need to change as new words are added to the corpus, costly.
- Con: resulting vectors can still be high dimensional and sparse.
- Con: Quadratic cost to perform SVD.



## **WORD EMBEDDINGS:**

# STATE-OF-THE-ART ALTERNATIVES TO SVD



#### ITERATION BASED METHODS: WORD2VEC

- Main intuition: Instead of computing co-occurrences from entire corpus, predict surrounding words in a window of length c of every word.
  - Allows easier updates, faster to incorporate new words in model.
  - Leads to low dimensional, dense vectors.
  - This is the idea behind word2vec (Mikolov 2013)



#### **ALTERNATIVE: ITERATION BASED METHODS**

Intuition: predict surrounding words.

e.g. will you X it?  $\rightarrow$  try to predict X, use a neural network to predict and refine predictions.

```
will you buy it? \rightarrow high score will you purchase it? \rightarrow high score
```

will you **beer** it?  $\rightarrow$  low score will you **university** it?  $\rightarrow$  low score



#### WORD2VEC: CBOW AND SKIPGRAM MODELS

- Continuous bag of words model (CBOW): having the context, predict a word.
- Skip gram model: having the word, predict its context.





#### WORD2VEC: WHY IS IT COOL?

- They are very good for encoding similarity.
  - Analogies testing dimensions of similarity can be solved quite well just by doing vector subtraction in the embedding space Syntactically
    - $X_{apple} X_{apples} \approx X_{car} X_{cars} \approx X_{family} X_{families}$
    - Similarly for verb and adjective morphological forms
       Semantically (Semeval 2012 task 2)
    - $X_{shirt} X_{clothing} \approx X_{chair} X_{furniture}$
    - $X_{king} X_{man} \approx X_{queen} X_{woman}$



#### WORD2VEC: WHY IS IT COOL?

They are very good for inferring word relations:

v('Paris') - v('France') + v('Italy') = v('Rome')

v('king') - v('man') + v('woman') = v('queen')



#### PROS AND CONS: ITERATION BASED METHODS

- **Pro:** Do not need to operate on entire corpus which involves very sparse matrices.
- **Pro:** Can capture semantic properties of words as linear relationships between word vectors.
- Pro: Fast and can be easily updated with new sentences.
- Con: Can't take into account the vast amount of repetition in the data.



### ANOTHER ALTERNATIVE: GLOVE

- Glove (Pennington et al. 2014), is similar to word2vec:
  - Count-based method instead of prediction-based.
  - Does matrix factorisation for dimensionality reduction.

- Can leverage repetitions in the corpus as using the entire word cooccurrence matrix.
- How? Train only on non-zero entries of the co-occurrence matrix.



#### **GLOVE**

- Computationally expensive for building matrix, then much faster as non-zero entries are not so many.
- **Intuition:** relationships between words should be explored in terms of their cooccurrence probabilities with some selected words k.

| Probability and Ratio | k = solid            | k = gas              | k = water            | k = fashion          |
|-----------------------|----------------------|----------------------|----------------------|----------------------|
| P(k ice)              | $1.9 \times 10^{-4}$ | $6.6 \times 10^{-5}$ | $3.0 \times 10^{-3}$ | $1.7 \times 10^{-5}$ |
| P(k steam)            | $2.2 \times 10^{-5}$ | $7.8\times10^{-4}$   | $2.2\times10^{-3}$   | $1.8\times10^{-5}$   |
| P(k ice)/P(k steam)   | 8.9                  | $8.5\times10^{-2}$   | 1.36                 | 0.96                 |















Want to play around?

https://lamyiowce.github.io/word2viz/





#### **EVALUATION OF WORD EMBEDDINGS**

- Extrinsic evaluation: test your model in a text classification, sentiment analysis, machine translation,... task!
  - Does it outperform other methods (e.g. bag-of-words)?
  - Compare two models A and B: which one's better?



#### **EVALUATION OF WORD EMBEDDINGS**

#### Intrinsic evaluation:

- Use datasets labelled with word similarities:
  - e.g. TOEFL dataset: "pose" is closest in meaning to:
     a) claim, b) model, c) assume, d) present

do we get it right with embeddings?

- Common sense:
  - Paris + UK France = London?



Preparing the input:
 Word2Vec takes lists of lists of words (lists of sentences) as input.



Training the model:

```
model = Word2Vec(sentences, min_count=10, size=300, workers=4)
```

We will only train vectors for words occurring 10+ times in the corpus

We want to parallellise the task running 4 processes

We want to produce word vectors of 300 dimensions



It's memory intensive!

It stores matrices: **#vocabulary** (dependent on min\_count), **#size** (size parameter) of **floats** (single precision aka 4 bytes).

Three such matrices are held in RAM. If you have: 100,000 unique words, size=200, the model will require approx.:

100,000\*200\*4\*3 bytes =  $\sim$ 229MB.



## Storing a model:

```
model = Word2Vec.load_word2vec_format('mymodel.txt', binary=False)
```

• or

```
model = Word2Vec.load_word2vec_format('mymodel.bin.gz', binary=True)
```

# Resuming training:

```
model = gensim.models.Word2Vec.load('mymodel.bin.gz')
model.train(more_sentences)
```



# Using the model

Word2vec supports several word similarity tasks out of the box:

```
model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)
[('queen', 0.50882536)]
model.doesnt_match("breakfast cereal dinner lunch";.split())
'cereal'
model.similarity('woman', 'man')
0.73723527
```

If you need the raw output vectors in your application, you can access these either on a word-by-word basis

```
model['computer'] # raw NumPy vector of a word
array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32)
```



```
model['computer'] # raw NumPy vector of a word
array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32)
```

This will give us the vector representation of 'computer:'

```
v('computer') = \{-0.00449447, -0.00310097, ...\}
```

• How do we get then the vector representations for sentences, e.g.:

I have installed Ubuntu on my computer



- Vector representations for sentences, e.g.:
  - I have installed Ubuntu on my computer
- Standard practice is either of:
  - Summing word vectors (they have the same dimensionality): v('l') + v('have') + v('installed') + v('Ubuntu') + ...
  - Getting the average of word vectors:
     (v('I') + v('have') + v('installed') + ...) / 7



- One can train a model from a large corpus (millions, if not billions of sentences). Can be time-consuming, memory-intensive.
- Pre-trained models are available.
  - Remember to choose a suitable pre-trained model.
  - Don't use word vectors pre-trained from news articles when you're working with social media!



Glove's pre-trained vectors:
 <a href="https://nlp.stanford.edu/projects/glove/">https://nlp.stanford.edu/projects/glove/</a>

#### Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the <u>Public Domain Dedication and License</u> v1.0 whose <a href="http://www.opendatacommons.org/licenses/pddl/1.0/">http://www.opendatacommons.org/licenses/pddl/1.0/</a>.
  - Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB d
  - Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
  - Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
  - Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glo
- Ruby <u>script</u> for preprocessing Twitter data



Pre-trained word vectors for 30+ languages (from Wikipedia):
 <a href="https://github.com/Kyubyong/wordvectors">https://github.com/Kyubyong/wordvectors</a>

| Language                        | ISO 639-1 | Vector Size | Corpus Size | Vocabulary Size |
|---------------------------------|-----------|-------------|-------------|-----------------|
| Bengali (w)   Bengali (f)       | bn        | 300         | 147M        | 10059           |
| Catalan (w)   Catalan (f)       | ca        | 300         | 967M        | 50013           |
| Chinese (w)   Chinese (f)       | zh        | 300         | 1G          | 50101           |
| Danish (w)   Danish (f)         | da        | 300         | 295M        | 30134           |
| Dutch (w)   Dutch (f)           | nl        | 300         | 1G          | 50160           |
| Esperanto (w)   Esperanto (f)   | eo        | 300         | 1G          | 50597           |
| Finnish (w)   Finnish (f)       | fi        | 300         | 467M        | 30029           |
| French (w)   French (f)         | fr        | 300         | 1G          | 50130           |
| German (w)   German (f)         | de        | 300         | 1G          | 50006           |
| Hindi (w)   Hindi (f)           | hi        | 300         | 323M        | 30393           |
| Hungarian (w)   Hungarian (f)   | hu        | 300         | 692M        | 40122           |
| Indonesian (w)   Indonesian (f) | id        | 300         | 402M        | 30048           |



UK Twitter word embeddings:

https://figshare.com/articles/UK Twitter word embeddings II /5791650

#### **UK Twitter word embeddings (II)**

16.01.2018, 23:08 by Vasileios Lampos

Word embeddings trained on UK Twitter content (II)

The total number of tweets used was approximately 1.1 billion, covering the years 2012 to and including 2016.

**Settings:** Skip-gram with negative sampling (10 noise words), a window of 9 words, 512 layers (dimensionality) and 10 epochs of training.



 Twitter Word2Vec model: <a href="https://www.fredericgodin.com/software/">https://www.fredericgodin.com/software/</a>

#### Twitter Word2vec model

As part of our ACL W-NUT 2015 shared task paper, we release a Twitter word2vec model trained on 400 million tweets, as described in detail in this paper. The model, including Python code to load and access it, can be downloaded here.



#### **REFERENCES**

- Gensim (word2vec): <u>https://radimrehurek.com/gensim/</u>
- Word2vec tutorial: <a href="https://rare-technologies.com/word2vec-tutorial/">https://rare-technologies.com/word2vec-tutorial/</a>
- FastText: https://github.com/facebookresearch/fastText/
- GloVe: Global Vectors for Word Representation: <a href="https://nlp.stanford.edu/projects/glove/">https://nlp.stanford.edu/projects/glove/</a>



### **ASSOCIATED READING**

 Jurafsky, Daniel, and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics. 3rd edition. Chapter 6.3-6.13.