

SEQUENCE LISTING

<110> Walke, D. Wade
Wilganowski, Nathaniel
Turner, C. Alexander Jr.
Friedrich, Glenn
Abuin, Alejandro
Zambrowicz, Brian
Sands, Arthur T.

<120> Novel Human Enzymes and Polynucleotides
Encoding the Same

<130> Lex-0130-USA

<150> US 60/180,413
<151> 2000-02-04

<160> 5

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 777

<212> DNA

<213> Homo sapiens

<400> 1

atgtccctcg	ccattgcatt	ggccttcctg	ccactggtag	taacattgt	gttgcggtag	60
cggcactact	tccgattgt	ggtgcgacg	gtcttgcgt	gaaggctccg	agactgcctg	120
tcagggtctg	ggatcgagga	gcccccttc	agctacgtgc	tcacccatgc	cctgccccgt	180
gaccctggtc	acatcctac	caccctggac	cactggagca	gccgctgcga	gtacttgagc	240
cacatggggc	ctgtcaaaagg	tcagatcctg	atgcggctgg	tggaggagaa	ggccctgtct	300
tgtgtgtctgg	aattgggaac	ctactgtgga	tactctaccc	tgcttattgc	ccgagccctg	360
ccccctgggg	gtcgcccttct	tactgtggag	cgggacccac	gcacggcagc	atggctgaa	420
aaactcatcc	gcctggccgg	ctttgatgag	cacatggtag	agctcatcgt	gggcagctca	480
gaggacgtga	tccctgtgcct	acgcacccag	tatcagctga	gtcgggcaga	cctggtgctc	540
ctggcacacc	ggccacacatg	ttacctgagg	gacctgcagc	tgctggaggc	ccatgcccta	600
ctgcccagcag	gtgccaccgt	gctggctgac	catgtgtct	tccctgtgc	accccgcttc	660
ttgcagtatg	ctaagagctg	tggccgtac	cgctgcccgc	tccaccacac	tggccttcca	720
gacttccctg	ccatcaagga	tggatagct	cagctcacct	atgctggacc	aggctga	777

<210> 2

<211> 258

<212> PRT

<213> Homo sapiens

<400> 2

Met	Ser	Pro	Ala	Ile	Ala	Leu	Ala	Phe	Leu	Pro	Leu	Val	Val	Thr	Leu		
1																	
														10	15		
Leu	Val	Arg	Tyr	Arg	His	Tyr	Phe	Arg	Leu	Leu	Val	Arg	Thr	Val	Leu		
														20	25	30	
Leu	Arg	Ser	Leu	Arg	Asp	Cys	Leu	Ser	Gly	Leu	Arg	Ile	Glu	Glu	Arg		
															35	40	45
Ala	Phe	Ser	Tyr	Val	Leu	Thr	His	Ala	Leu	Pro	Gly	Asp	Pro	Gly	His		

50	55	60	
Ile Leu Thr Thr Leu Asp His Trp Ser Ser Arg		Cys Glu Tyr Leu Ser	
65	70	75	80
His Met Gly Pro Val Lys Gly Gln Ile Leu Met Arg	Leu Val Glu Glu		
85	90	95	
Lys Ala Pro Ala Cys Val Leu Glu Leu Gly Thr	Tyr Cys Gly Tyr Ser		
100	105	110	
Thr Leu Leu Ile Ala Arg Ala Leu Pro Pro Gly	Gly Arg Leu Leu Thr		
115	120	125	
Val Glu Arg Asp Pro Arg Thr Ala Ala Val Ala	Glu Lys Leu Ile Arg		
130	135	140	
Leu Ala Gly Phe Asp Glu His Met Val Glu Leu	Ile Val Gly Ser Ser		
145	150	155	160
Glu Asp Val Ile Pro Cys Leu Arg Thr Gln	Tyr Gln Leu Ser Arg Ala		
165	170	175	
Asp Leu Val Leu Leu Ala His Arg Pro Arg Cys	Tyr Leu Arg Asp Leu		
180	185	190	
Gln Leu Leu Glu Ala His Ala Leu Leu Pro Ala	Gly Ala Thr Val Leu		
195	200	205	
Ala Asp His Val Leu Phe Pro Gly Ala Pro Arg	Phe Leu Gln Tyr Ala		
210	215	220	
Lys Ser Cys Gly Arg Tyr Arg Cys Arg Leu His	His His Thr Gly Leu Pro		
225	230	235	240
Asp Phe Pro Ala Ile Lys Asp Gly Ile Ala Gln	Leu Thr Tyr Ala Gly		
245	250	255	
Pro Gly			

<210> 3
 <211> 507
 <212> DNA
 <213> Homo sapiens

<400> 3
 atgcggctgg tggaggagaa ggccctgtct tgggtgtgg aattggaaac ctactgtgga 60
 tactctaccc tgcttattgc cccgagccctg cccctgggg gtcgccttct tactgtggag 120
 cgggaccac gcacggcagc agtggctgaa aaactcatcc gcctggccgg ctttcatgag 180
 cacatggtgg agctcatcg gggcagctca gaggacgtga tcccgtgcct acgcacccag 240
 tattcagctga gtcgggcaga cctggtgctc ctggcacacc ggccacgatg ttacctgagg 300
 gacctgcagc tgctggaggc ccatgcccata ctgcccagcag gtgccaccgt gctggctgac 360
 catgtgctct tccctgggtgc accccgcttc ttgcagttatg ctaagagctg tggccgctac 420
 cgctgcccgc tccaccacac tggccttcca gacttccctg ccatcaagga tggaaatagct 480
 cagctcacct atgctggacc aggctga 507

<210> 4
 <211> 168
 <212> PRT
 <213> Homo sapiens

<400> 4
 Met Arg Leu Val Glu Glu Lys Ala Pro Ala Cys Val Leu Glu Leu Gly
 1 5 10 15
 Thr Tyr Cys Gly Tyr Ser Thr Leu Leu Ile Ala Arg Ala Leu Pro Pro
 20 25 30
 Gly Gly Arg Leu Leu Thr Val Glu Arg Asp Pro Arg Thr Ala Ala Val
 35 40 45

Ala Glu Lys Leu Ile Arg Leu Ala Gly Phe Asp Glu His Met Val Glu
 50 55 60
 Leu Ile Val Gly Ser Ser Glu Asp Val Ile Pro Cys Leu Arg Thr Gln
 65 70 75 80
 Tyr Gln Leu Ser Arg Ala Asp Leu Val Leu Leu Ala His Arg Pro Arg
 85 90 95
 Cys Tyr Leu Arg Asp Leu Gln Leu Leu Glu Ala His Ala Leu Leu Pro
 100 105 110
 Ala Gly Ala Thr Val Leu Ala Asp His Val Leu Phe Pro Gly Ala Pro
 115 120 125
 Arg Phe Leu Gln Tyr Ala Lys Ser Cys Gly Arg Tyr Arg Cys Arg Leu
 130 135 140
 His His Thr Gly Leu Pro Asp Phe Pro Ala Ile Lys Asp Gly Ile Ala
 145 150 155 160
 Gln Leu Thr Tyr Ala Gly Pro Gly
 165

<210> 5

<211> 2316

<212> DNA

<213> Homo sapiens

<400> 5

agctcttact	ctgccttttgc	ttagctacgt	gacccttgcgc	aaagcatgca	tcctctgaac	60
cttagcttct	tcagaatggaa	aatcacaata	ctgatcctga	cttcttaggt	tctgagggtca	120
gaggaaatgt	gagaacactc	atgggaagct	aagccaggac	ctggcatgaa	gtaagccaga	180
tcctgggtgg	gtcttgactg	ggagaacaat	tccccccacc	ctcacctcca	gctcccccta	240
tccccacaca	gcctggtaa	gtccaagctg	aattcgcggc	cgcttcaaata	cccagttctg	300
ctctgtgact	ctggacaaaa	gacttagct	ttctgagccg	tggttgtga	aatataagga	360
taataattgc	tactggcaaa	agctacacaa	ataggcaata	tgtgggtatg	ggattccctc	420
cctacctccc	tccacccca	ggcccaggt	gggaccatgt	ccctgcctat	tgcatggcc	480
ttcctgcccac	ttggggtaac	attgctggtg	cggtaccggc	actacttccg	attgctggtg	540
cgcacggct	tgctgcgaag	cctccgagac	tgccctgtcag	ggctgcggat	cgaggagcgg	600
gccttcagct	acgtgctcac	ccatgcctc	cccggtgacc	ctggtcacat	cctcaccacc	660
ctggaccact	ggagcagccg	ctgcgagatc	ttgagccaca	tggggctgt	caaaggggac	720
caggaggggca	gctggggcta	ttgtacaaga	gacagatgag	accccggtg	gttggggagct	780
gcagtggagc	aggttaggcat	ttgagatata	ttttatcagg	ggccctgcata	ccatctccca	840
tgtcttctgc	aacagccatc	tcccctcata	ggtcagatcc	tgtgcggct	gttggaggag	900
aaggccccctg	cttgcgtgct	ggaattggga	acctactgtg	gatactctac	cctgcttatt	960
gccccggccc	tgccccctgg	gggtcgccct	cttactgtgg	agcgggaccc	acgcacggca	1020
gcagtggtct	aaaaactcat	ccgcctggcc	ggctttgtat	agcacatgtt	ggagctcatc	1080
gtggggcagct	cagaggacgt	gatcccgtc	ctacgcaccc	agtatcagct	gagtcgggca	1140
gacctgggtc	tcctggcaca	ccggccacga	tgttacctga	gggacctgca	gctgctggag	1200
gccccatgcctt	tactgccatc	agggtccacc	gtgtggctg	accatgtgt	cttccctgg	1260
gcaccccgct	tcttcgacta	tgctaaagac	tgtggccgt	accgctgccc	cctccaccac	1320
actggcccttc	cagacttccc	tgccatcaag	gatggaaatg	ctcagctcac	ctatgctgg	1380
ccaggctgag	gtccaggccc	aggggtactt	actgatgccc	accccccaccc	ccacccaagg	1440
agggacacta	aaatccccctc	cctttccctgt	ttggggcctt	gacacacgct	gggctcagg	1500
ctagggagtc	tctttccca	cctctgaccc	ctttcagctt	ctacactgac	ctcaagtgtc	1560
aagttctatc	aggctgcttg	gtctcaactag	gccccctctt	tccagagaga	accatggact	1620
gacagcaaga	agcctgagct	cccgaccagg	ctctgtca	gatttgcata	gtgactccaa	1680
ggaaatcccc	accttgctct	gagatttaat	cttctctt	aacacgaagg	aagctggatg	1740
ggagagctcc	aggggcctcc	cagttctcgg	cctcagaaag	cctcccatcc	tcaagccatg	1800
ccattctggg	tgggatcaga	ggaagtggca	atgagttaga	cgccctgcag	gaatagctgg	1860
atgcaagctg	ggccagagaa	aatggcacag	aaccctggac	ccagggccag	ggatgccctg	1920
gccttcctta	actctggccc	acctagccaa	ttaggcttt	acccagatct	gagaaccaca	1980

actgctctgg gtcagagaca ggacattcg aattagagca gagcctcggt ccactgcggc 2040
ccccacacag gccccacactg ctagagccac tcacctctga ggctggcttg ccaataggaa 2100
ccaggttgtt gtctttctcc gcgtatgttt ggagctgtgg gcaaaggcac agaggaacaa 2160
ggccagagcc caagttagggc aggtcagggg catgggactg gcccattctg cccagaagac 2220
aacccacacg ttttggggag aagcttcctc ccagttctca gggagataca atccctttct 2280
tgtcatctgc catttatgaa cttgatccaa atactt 2316