2021年《高等微积分 2》期中考试试题

本试卷分两页, 共七道试题, 其中第 3 题第 (2) 小问 10 分, 第 4 题 10 分, 第 6 题 15 分, 其余各题每小问 5 分; 即使有某些小问无法完成, 也可以使用其结论解决后面的问题.

- 1 (1) 叙述 $f: \mathbf{R}^n \to \mathbf{R}$ 在点 \mathbf{x}_0 处可微的定义, 并证明: 如果 f 在 \mathbf{x}_0 处可微, 则其微分为 $df_{\mathbf{x}_0}(\mathbf{h}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Big|_{\mathbf{x}_0} \cdot h_i$, 其中 $\mathbf{h} = (h_1, \dots, h_n) \in \mathbf{R}^n$.
 - (2) 叙述 $f: \mathbf{R}^n \to \mathbf{R}$ 在点 \mathbf{x}_0 处展开至二阶的带拉格朗日余项的泰勒公式.
- 2 (1) 设 $F: \mathbf{R}^2 \to \mathbf{R}$ 是给定的光滑函数. 已知由方程 F(x-y,z)=0 确定出光滑的隐函数 z=z(x,y). 求 $\frac{\partial^2 z}{\partial x \partial y}$.
 - (2) 对于光滑函数 $g: \mathbf{R}^3 \to \mathbf{R}$, 令 $S = \{(x, y, z) | g(x, y, z) = 0\}$ 为由方程 g(x, y, z) = 0 定义的曲面. 对于点 $(x_0, y_0, z_0) \in S$, 定义曲面 S 在点 (x_0, y_0, z_0) 处的切平面为

$$g_x(x_0, y_0, z_0)(x - x_0) + g_y(x_0, y_0, z_0)(y - y_0) + g_z(x_0, y_0, z_0)(z - z_0) = 0.$$

设 f 是光滑函数. 证明: 曲面 $f(\frac{x-a}{z-c}, \frac{y-b}{z-c}) = 0$ 的所有切平面都经过同一个点 (a,b,c).

- 3(1) 求幂级数 $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n$ 的收敛域.
 - (2) 设幂级数 $\sum\limits_{n=0}^{\infty}a_nx^n$ 在 ${\bf R}$ 上一致收敛. 证明: 存在正整数 N, 使得对 n>N 有 $a_n=0$, 即 在 ${\bf R}$ 上一致收敛的幂级数一定是多项式.
 - (3) 设 f 是开区间 I 上的光滑函数. 假设存在正常数 M, C, 使得对任何正整数 n 与任何 $x \in I$ 都有 $|f^n(x)| \leq MC^n n!$. 证明: f 是 I 上的实解析函数, 即对任何 $x \in I$, 存在正数 $x \in I$, 使得

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \quad \forall x \in (x_0 - r, x_0 + r).$$

- 4 设 $\mathbf{v}_1, \dots, \mathbf{v}_n$ 是平面上的 n 个单位向量,相邻两个向量之间的夹角为 $\frac{2\pi}{n}$ (即 \mathbf{v}_1 与 $\mathbf{v}_2, \mathbf{v}_2$ 与 $\mathbf{v}_3, \dots, \mathbf{v}_n$ 与 \mathbf{v}_1 的夹角都是 $\frac{2\pi}{n}$). 设 $f: \mathbf{R}^2 \to \mathbf{R}$ 是 C^1 光滑函数. 证明: $\sum_{i=1}^n \frac{\partial f}{\partial \mathbf{v}_i} = 0$, 其中 $\frac{\partial f}{\partial \mathbf{v}_i}$ 表示 f 沿 \mathbf{v}_i 的方向导数.
- 5 (1) 设 $f: \mathbf{R}^2 \to \mathbf{R}$ 是连续函数, 且当 $u^2 + v^2 \to +\infty$ 时 f(u, v) 趋近于 $+\infty$. 证明: f 在 \mathbf{R}^2 上 有最小值.
 - (2) 设坐标原点位于 $\triangle ABC$ 的内部, 点 A, B, C 的坐标分别为 $(p_1, q_1), (p_2, q_2), (p_3, q_3)$. 定义 函数 $f: \mathbf{R}^2 \to \mathbf{R}$ 为

$$f(u,v) = e^{p_1 u + q_1 v} + e^{p_2 u + q_2 v} + e^{p_3 u + q_3 v}.$$

证明: 当 $u^2 + v^2 \to +\infty$ 时 f(u,v) 趋近于 $+\infty$, 由此证明 f 在 \mathbb{R}^2 上有最小值.

(3) 证明: 第 (2) 小问中 f 的最小值点 (u_0, v_0) 满足

$$\begin{cases} p_1 e^{p_1 u + q_1 v} + p_2 e^{p_2 u + q_2 v} + p_3 e^{p_3 u + q_3 v} = 0; \\ q_1 e^{p_1 u + q_1 v} + q_2 e^{p_2 u + q_2 v} + q_3 e^{p_3 u + q_3 v} = 0. \end{cases}$$

6 设 $f: \mathbf{R}^2 \to \mathbf{R}$ 是光滑函数,满足当 $x^2 + y^2 = 1$ 时有 f(x,y) = 1,且在单位圆盘 $D = \{(x,y)|x^2 + y^2 \le 1\}$ 上 $(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2$ 的值处处小于等于 1. 证明:

$$\sqrt{x^2 + y^2} \le f(x, y) \le 2 - \sqrt{x^2 + y^2}, \quad \forall (x, y) \in D.$$

- 7 设 $f,g: \mathbf{R}^3 \to \mathbf{R}$ 是光滑映射,令 $S = \{(x,y,z)|f(x,y,z) = 0\}$ 为 f 的零点集合. 假设对任何 $(x,y,z) \in S$ 有 g(x,y,z) = 0 且 $f_z'(x,y,z) \neq 0$,其中 $f_z'(x,y,z)$ 表示 f 对 z 坐标分量的偏导数.
 - (1) 证明: 对任何 $(x_0, y_0, z_0) \in S$, 该点处 g 的梯度向量与 f 的梯度向量成比例, 即存在实数 λ 使得 $\nabla g(x_0, y_0, z_0) = \lambda \nabla f(x_0, y_0, z_0)$.(提示: 由方程 f(x, y, z) = 0 将 z 表示成 x, y 的隐函数, 再代入 g(x, y, z))
 - (2) 定义映射 $Q: \mathbf{R}^3 \to \mathbf{R}^3$ 为 Q(x, y, z) = (x, y, f(x, y, z)). 给出 Q 在点 (x_0, y_0, z_0) 附近有 C^1 光滑逆映射 Q^{-1} 的充分必要条件, 并说明理由.
 - (3) 设 $h: \mathbf{R}^3 \to \mathbf{R}$ 是 C^1 光滑函数, 满足对任何 $u, v \in \mathbf{R}$, 有 h(u, v, 0) = 0. 证明: 当 $w \neq 0$ 且 (u, v, w) 趋近于 $(u_0, v_0, 0)$ 时, 表达式 $\frac{h(u, v, w)}{w}$ 的极限为 $h_3'(u_0, v_0, 0)$, 其中 h_3' 表示 h 对第三个坐标分量的偏导数.
 - (4) 考虑 $h=g\circ Q^{-1}$. 利用前述 (1),(2),(3) 小问的信息, 证明: 对于给定的点 $(x_0,y_0,z_0)\in S$, 当 $(x,y,z)\notin S$ 且趋近于 (x_0,y_0,z_0) 时, 表达式 $\frac{g(x,y,z)}{f(x,y,z)}$ 的极限为 $\frac{g_z'(x_0,y_0,z_0)}{f_z'(x_0,y_0,z_0)}$.