INTRUMENTY QUANTO PRZEGLĄD, WYCENA I PRZYKŁADY

Rajmund Leśniak Seweryn Turula

25 stycznia, 2023

OPIS OPCJI QUANTO

Instrumenty *Quanto* (również: *cross-currency derivative*) są intrumentami pochodnymi, w której instrument bazowy jest denominowany w walucie zagranicznej a sam instrument jest rozliczany w walucie krajowej. Takie instrumenty są atrakcyjne dla ludzi, którzy chcą inwestować w zagraniczne aktywa, a z drugiej strony nie chcą być wystawieni na ryzyko kursu walutowego.

Quanto == "Quantity adjusting option", przy czym rozważane są różne instrumenty w tym Quanto Forward i Futures, Quanto Option czy Quanto Swaps. Same opcje quanto często nazywamy 'fixed exchange rate foreign equity call'. Najpopularniejszym rynkiem opcji quanto jest rynek energetyczny.

TRZY SCENARIUSZE RYZYKA

Inwestorzy mogą zdecydować się na inwestycje w zagraniczne aktywa o różnym stopniu ochrony przed niekorzystnymi zmianami kursów walutowych, cenami akcji lub ich kombinacji.

1. Inwestor uczestniczy w zyskach w kapitale zagranicznym, pragnie ochrony przed stratą w tym kapitale, ale nie przejmuje się ryzykiem wynikającym z potencjalnego spadku kursu waluty.

W takiej sytuacji, inwestor pragnie wypłaty tak zwanego foreign equity call struck in foreign currency, którego wypłata to:

$$C_1 = X^* \max[S' - K', 0],$$

gdzie X^* to spot-exchange rate, S' i K' podane są w zagranicznej walucie (*foreign*).

Trzy scenariusze ryzyka

2. Inwestor chce otrzymać jakikolwiek zwrot z kapitału zagranicznego, ale chce mieć pewność, że zysk ten będzie istotny po przeliczeniu na własną walutę krajową.

Inwestor ten zainteresowany jest wtedy tak zwanym *foreign equity call struck in domestic currency,* którego wypłata to:

$$C_2 = \max[X^*S' - K, 0],$$

gdzie zarówno iloczyn X^*S' oraz K wyrażone są w walucie inwestora (domestic).

Trzy scenariusze ryzyka

3. Inwestor, podobnie jak w przypadku pierwszym, chce uczestniczyć w zyskach w kapitale zagranicznym, ale tym razem interesuje go zabezpieczenie przed ryzykiem walutowym (*hedge*). Robi to poprzez ustalenie z góry stawki, po której przeliczana będzie wypłata opcji na walutę krajową.

Takie podejście bezpośrednio łączy opcję *call* z kontraktem walutowym *forward* i nazywane jest *fixed exchange rate foreign equity call*, znane również jako opcja *Quanto*.

$$C_3 = \bar{X} \max[S' - K', 0] = \max[\bar{X}S' - K, 0],$$

gdzie \bar{X} to ustalony z góry kurs wymiany walut.

WYCENA OPCJI QUANTO

Wyprowadzimy teraz szkicowo wzór na cenę opcji quanto przy założeniach jak z Blacka-Scholes'a (inna możliwość to użycie NTS - normal tempered stable process, [Kim et al. 2015]).

Załóżmy, że mamy krajową i zagraniczną stopę bez ryzyka r_d oraz r_f . Niech $(S(t))_{t\geq 0}$ będzie procesem cen akcji w walucie zagranicznej (USD), $(V(t))_{t\geq 0}$ procesem cen w walucie krajowej (PLN) oraz $(F(t))_{t\geq 0}$ procesem kursu wymiany pary walutowej (USDPLN). Zakładamy, że procesy V(t) oraz F(t) są takie, że:

$$V(t) = V(0) \exp(\mu_X t + \sigma_X W_X(t))$$

$$F(t) = F(0) \exp(\mu_Y t + \sigma_Y W_Y(t))$$

przy czym $(W_X(t))_{t\geq 0}$ oraz $(W_Y(t))_{t\geq 0}$ są procesami Wienera ze współczynnikiem korelacji ρ . Dla uproszczenia mamy:

$$W_Y(t) = \rho W_X(t) + \sqrt{1 - \rho^2} \bar{W}_Y(t)$$

i $W_X(t)$ oraz $(W)_Y(t)$ są niezależne.

Chcemy znaleźć miarę martyngałową \mathbb{Q} , aby $e^{-r_dt}V(t)$ i $e^{-(r_d-r_f)t}F(t)$ były martyngałami. Stosujemy twierdzenie Girsanowa.

WYCENA OPCJI QUANTO

Dostajemy, że:

$$\begin{split} \lambda_1 &= \frac{1}{\sigma_X} (\mu_X + \frac{1}{2} \sigma_X^2 - r_d) \\ \lambda_2 &= \frac{\rho}{\sigma_X \bar{\rho}} (-\mu_X - \frac{1}{2} \sigma_X^2 + r_d) + \frac{1}{\sigma_Y \bar{\rho}} (\mu_Y + \frac{1}{2} \sigma_Y^2 - r_d + r_f) \end{split}$$

gdzie $\bar{\rho}=\sqrt{1-\rho^2}$. Mamy również wzory na procesy, które są niezależnymi procesami Wienera w mierze \mathbb{Q} :

$$\tilde{W}_X(t) = \lambda_1 t + W_X(t)$$

$$\tilde{\bar{W}}_Y(t) = \lambda_2 t + \bar{W}_Y(t)$$

Dla miary \mathbb{Q} mamy:

$$\begin{split} V(t) &= V(0) \exp \left(r_d t - \frac{\sigma_X^2}{2} t + \sigma_X \tilde{W}_X(t) \right) \\ F(t) &= F(0) \exp \left((r_d - r_f) t - \frac{\sigma_Y^2}{2} t + \sigma_Y \rho \tilde{W}_X(t) + \sigma_Y \bar{\rho} \tilde{\tilde{W}}_Y(t) \right). \end{split}$$

Ponieważ $S(t) = \frac{V(t)}{F(t)}$, to dostajemy:

$$S(t) = S(0) \exp \left(r_f t - rac{1}{2} (\sigma_X^2 - \sigma_Y^2) t + (\sigma_X - \sigma_Y
ho) ilde{W}_X(t) - \sigma_Y ar{
ho} ilde{ar{W}}_Y(t)
ight).$$

WYCENA OPCJI QUANTO

Niech $\sigma^2 = \sigma_X^2 - 2\sigma_X\sigma_Y\rho + \sigma_Y^2$ oraz $(W(t))_{t\geq 0}$ będzie procesem Wienera niezależnym od $(\tilde{W}_X(t))_{t\geq 0}$ i $(\tilde{W}_Y(t))_{t\geq 0}$ w mierze \mathbb{Q} . Wtedy proces $(\sigma_X - \sigma_Y\rho)\tilde{W}_X(t) - \sigma_Y\bar{\rho}\tilde{W}_Y(t)$ jest równoważny procesowi $((\sigma W(t))_{t\geq 0}$ w L^2 , więc:

$$\begin{split} S(t) &= S(0) \exp \left(r_f t - \frac{1}{2} (\sigma_X^2 - \sigma_Y^2) t + (t) \right) \\ &= S(0) \exp \left(r_f t + (\sigma_Y^2 - \sigma_X \sigma_Y \rho) t - \frac{\sigma^2}{2} t + (t) \right) \right). \end{split}$$

Funkcja wypłaty dla opcji quanto jest dana:

$$F_{fix}(S(T)-K)^+$$

gdzie F_{fix} to wcześniej ustalony kurs wymiany walut.

Zatem z wzorów Blacka-Scholesa, cena opcji call quanto w chwili *t* jest równa:

$$c = e^{-r_d(T-t)} \mathbb{E}_{\mathbb{Q}}[F_{fix}(S(T) - K)^+ | \mathcal{F}_t]$$

= $F_{fix} \left(e^{(r_f - r_d + \sigma_Y^2 - \rho \sigma_X \sigma_Y)(T-t)} S(t) N(d_1) - e^{-r_d(T-t)} K N(d_2) \right),$

gdzie

$$d_1 = \frac{(r_f + \sigma_Y^2 - \rho \sigma_X \sigma_Y + \sigma^2/2)(T - t) + \log(S(t)/K)}{\sigma \sqrt{T - t}}$$
$$d_2 = d_1 - \sigma \sqrt{T - t}$$

Przykład

$$S_0 = 146\$,$$
 $K = 120\$$

$$S_T = 169.3$$

$$t = 0, T = 1/2$$

$$\triangleright$$
 USD/*PLN*_t = 4.73

$$\triangleright$$
 USD/*PLN*_T = 4.32

$$F_{fix} = 4.73$$

$$r_f = 0.0004999$$

$$r_d = 0.07046$$

$$\rho = 0.1379$$

$$\sigma_X = 0.808$$

•
$$\sigma_Y = 0.1333$$

$$\sigma = 0.6413$$

Przykład

Przepływy pieniężne w 1 strategii:

- ▶ w momencie t: $-USD/PLN_t * C_{BSM} = -209.67 PLN$
- ▶ w momencie T: $\max(S_T K, 0) * USD/PLN_T = 212.98 PLN$
- ➤ zysk wynosi 3.31 *PLN*

Przepływy pieniężne w 2 strategii (przy użyciu opcji quanto):

- ▶ w momencie t: $-C_{quanto} = -219.70 PLN$
- w momencie $T: \max(S_T K, 0) * F_{fix} = 233.19 PLN$
- ➤ zysk wynosi 13.49 *PLN*

Przykład

REFERENCES I

Kim, Young Shin et al. (2015). "Quanto option pricing in the presence of fat tails and asymmetric dependence". In: *Journal of Econometrics* 187.2, pp. 512–520. DOI:

10.1016/j.jeconom.2015.02.URL:

https://ideas.repec.org/a/eee/econom/v187y2015i2p512-520.html.