Relational Model

Rajeev Srivastava rajeevs@cdac.in

ToC

- Example of Relation
- Tuples
- Cardinality
- Attribute
- Degree/Arity
- Domains
- Relation vs. Table

- Definition of a Relation
- Candidate Key
- Super Key
- Primary Key
- Composite Key
- Foreign Key
- Integrity Rules

Example of Relation

Consider the <u>relation</u> EMPLOYEE represented by the following table:

EmpCode	Name	Desig	Grade	JoinDate	BasicSalary	Gender	DeptCode

Tuples in a Relation

A relation is a set of tuples; each row here is a tuple :

EmpCode	Name	Desig	Grade	JoinDate	BasicSalary	Gender	DeptCode	
								1
								2
								3
								4
								5
								6
								7

Cardinality of a Relation

No of Tuples in a Relation at a point in time.

Cardinality = 7

EmpCode	Name	Desig	Grade	JoinDate	BasicSalary	Gender	DeptCode	
								1
								2
								3
								4
								5
								6
								7

Attribute in a Relation

An <u>attribute</u> represents a quality/information about an entity.

A tuple consists of Attribute values.

EmpCode	Name	Desig	Grade	JoinDate	BasicSalary	Gender	DeptCode

Degree (=Arity) of a Relation

A degree or arity of a Relation is the number of attributes in it.

Degree = 8

EmpCode	Name	Desig	Grade	JoinDate	BasicSalary	Gender	DeptCode

Domains

Each attribute has a domain associated with it.

Attribute values in a relation are restricted to the values from its domain.

EmpCode	Name	Desig	Grade	JoinDate	BasicSalary	Gender	DeptCode
	DESIG	PE				DEP	^T ACCO
		ТО					PURC
		STO					COUR

Consider the Employee relation defined as:

```
create table EMPLOYEE(
      EmpCode
                    integer(4),
                    char(30),
      Name
      Desig
                    char(4),
      Grade
                    integer(4),
                    date,
      JoinDate
                    integer(7),
      Basic
                    char(1),
      Gender
                    char(4))
      DeptCode
```

Domains of Attributes of Employee Relation:

EmpCode set of all 4-digit numbers

Name set of all 30-alpha characters

Desig set of all designation codes

Grade set of all grade values

JoinDate set of all dates (in a given range)

Basic set of all possible values for basic

Gender set {'M','F', 'T'}

DeptCode set of all dept codes

A Relation may be represented as a Table where

Relation	Table
Tuple	Row/Record
Attribute	Column
Degree/Arity	No of Columns in the table
Cardinality	No or Rows in the table
Domain	Pool of acceptable values for a column
Primary Key	Unique Identifier

But, a Relation is not a Table, because:

- A table has an inherent order for rows; there is no concept of order for tuples in a relation.
- A relation must have a <u>primary key</u>; a table need not have an identifier.
- The tuples in a relation must be unique; there is no such restriction for tables

Relation (R): Observations

- R is set of tuples.
- R is time-variant.
- R cannot have duplicate tuples.
- Tuples are unordered.
- Attribute values are atomic.
- R is a subset of the <u>Cartesian Product</u> of a set of domains.

Candidate Key & Super Key

A set of attributes is said to be <u>Candidate Key</u> if and only if it satisfies the following time-independent properties:

<u>Uniqueness property</u>: No two distinct tuples have the same value for the key. <u>Minimality property</u>: None of the attributes of the key can be discarded from the key without destroying the uniqueness property.

A **Super Key** is a Non-Minimal Candidate Key.

Candidate Key?

```
create table EMPLOYEE(
```

```
EmpCode integer(4),
Name char(30),
Desig char(4),
Grade integer(4),
JoinDate date,
```

Basic integer(7),
Gender char(1),
DeptCode char(4))

Candidate Key?

```
create table EMPLOYEE (
       EmpCode
                        integer(4),
       Name
                        char(30),
                        char(4),
       Desig
                        integer(4),
       Grade
                        date,
       JoinDate
                        integer(7),
       Basic
                        char(1),
       Gender
       DeptCode
                        char(4),
                        char(100),
       Email
       MobileNo
                        char(16))
```

Primary Key

is a candidate key that have following two qualities -

- Uniquely identifies a tuple in a relation
- Must NOT be NULL

*Should be selected from candidate keys such that it never/rarely changes.

Primary Key?

```
create table EMPLOYEE (
       EmpCode
                        integer(4),
       Name
                        char(30),
       Desig
                        char(4),
                        integer(4),
       Grade
                        date,
       JoinDate
                        integer(7),
       Basic
                        char(1),
       Gender
       DeptCode
                        char(4),
                        char(100),
       Email
       MobileNo
                        char(16))
```

Composite Key

- A candidate key with two or more attributes that uniquely identifies the tuple in a Relation.
- Also called as <u>compound key</u>

Composite Primary Key

A primary key which is a composite key is called as Composite Primary Key.

Can we have more than one primary key in a table?

No. We can not.

People who are new to RDBMS are often get confused with the restriction of single Primary Key in a table and the concept of Composite Key. To clarify the same -

A table can have only one Primary Key.

The Primary Key can be defined on a single column or more than one columns. If the Primary Key is defined using more that one columns, it is known as a Composite Key (or Composite Primary Key).

Therefore, a Composite Key in a table does not mean that there are more than one Primary Keys in the table. Instead, a Composite Key uses more than one columns to define a (Single) Primary Key.

Foreign Key

- A <u>Foreign Key</u> is a set of attributes in one relation whose values are required to match one of the values of the primary key of the <u>same or different relation</u>.
- There can be more than one foreign key in a given relation.

Identify a relation in any system/business, define its Attributes, Domain for each attribute and find out Primary, Key, Foreign Keys, Candidate Keys, Super Key in the relation.

Foreign Key(s)?

```
create table EMPLOYEE(
       EmpCode
                        integer(4),
                        char(30),
       Name
       Desig
                        char(4),
                        integer(4),
       Grade
       JoinDate
                        date,
                        integer(7)),
       Basic
                        char(1),
       Gender
       DeptCode
                        char(4))
create table DEPT(
       DeptCode
                        char(4),
       DeptName
                        char(30),
                        char(10))
       Location
```

Integrity Rules

Entity Integrity: Implemented through Primary Key

"No Attribute participating in the primary key of a relation may accept null values"

Guarantees that each tuple will have a unique identity.

Referential Integrity: Implemented through Foreign Key

"Values of the foreign key (a) must be either null, or (b) if non-null, must match with the primary key value of some tuple of the `parent' relation. The reference can be to the same relation"

*Foreign Key is also know as Reference/Referential key.