

Who am I

Dennis Fok

- PhD in Econometrics
- Professor of Econometrics and Data Science
- Director of Econometric Institute, Erasmus School of Economics
- Research interests:
 - Modeling individual behavior
 - Marketing models
 - Panel data models
 - Simulation-based estimation methods
 - High-dimensional data
- Publications:
 - Marketing (Marketing Science, Journal of Marketing Research, International Journal of Research in Marketing)
 - Econometrics (Journal of Econometrics, Journal of Applied Econometrics)

© 2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin

Course setup

Background of this course

Statistics:

- Most scary course –or– exiting and fun?
- Basis for many courses to follow!

Goals:

- (Re-)introduce statistics
- Apply everything in Python (or R)
- Not just know how to do things: also understand why!
- Critical thinking!

Ezafus

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Slide 3 of 3

Setup of course

People involved

- Me!
- + (technical) assistant

Material

- Handouts of slides (most important)
- Book: Bruce, Bruce, and Gedeck, "Practical Statistics for Data Scientists" (we do chapters 1-5)
- Additional exercises

Study advice

Steps to take:

- 1 Preparation: read book
- 2 Lectures
 - Theory
 - In-class practice
- **3** After lecture:
 - Reread book (try out code examples in book)
 - Practice
 - ► Weekly assignment
 - ► Apply methods in own work environment!
- 4 "Final" assignment is to be submitted in parts
- Questions and discussions
 - During class
 - Through *Discussions* on Canvas

2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin

(c) 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Outline of course

- Basics of statistics and inference
- 2 Distributions, descriptive statistics and hypothesis testing
- 3 Testing for differences
- 4 Linear regression model
- **6** Diagnostics for multiple regression + model selection
- 6 Generalized linear models (logistical regression)
- Bayesian statistics

Goal of statistics

Goals:

- Summarize properties of data
- 2 Make statements on (differences across) datasets → Statistical hypothesis testing
- 3 Estimate properties of (assumed) data generating process

Descriptive statistics

Inferential statistics

Population Sampling Inferential Statistics

us University Rotterdam, All rights reserved. No text and datamini

statistics

Inference/Inferential statistics

Usually statements on the **population** are the target!

Two important things to keep in mind:

- How good are these statements?
- 2 Estimation uncertainty will always be present
- 3 All methods have associated assumptions (also ML/Al methods)!
 - Properties of methods derived under these assumptions
 - What if assumptions are not correct?

Some key concepts in statistics

- Data and variables
- Samples and population
- Variation and uncertainty
- Models

Key concept 1: Data

Key starting point is always: data or dataset → collection of observed variables or features

Classification of data/variables

- Role in the analysis
 - Dependent/Response/Outcome variable
 - Independent/Explanatory variable
- Measurement type
 - Numeric
 - ► Continuous (eg. temperature)
 - ► Discrete (eg. a count)
 - Categorical (aka: factor with levels)
 - ► Binary (eg. yes/no)
 - ► Nominal (no ordering: eg. color)
 - ► Ordinal (with ordering: eg. disagree/neutral/agree)

Notes:

- No clear dependent variable → Exploratory statistics
- ullet Measurement type (dependent) variable o Determines type of statistical analysis
- In R/Python: data type may determine "actions" by functions

Data sets

Terminology

- Data frame: PataFrame objects
 - ightarrow Data like a spreadsheet

2025 Erasmus University Rotterdam, All rights reserved. No text and datamini

- → Structured, rectangular data
- Other data shapes: possible, but more advanced material

Lafus

Slide 11 of 30

Key concept 2: samples and population

- Source of data
 - Experimental
 - Observational
- Independent observations?
 - Repeated observations?
 - Hierarchical clustering? (eg. Children within a Class within a School)
- Random sample from population?
 - What is the population of interest?
 - What effects to control for?

Beware of selective sampling / sampling bias

Question

How (not) to get random sample for political survey?

© 2025 Exames University Rotterdam, All rights reserved. No test and datamining

Examples of non-random samples

- Survey on "random" people at the local market
- Response to a (e)mail/or online survey (response rate matters)
- •
- \rightarrow Compare "population" to "sample" to spot (potentially big) problems

Key concept 3: Variation and uncertainty

- Variation across samples is always expected
 - measurement error
 - different respondents
 - random variation
 - **.**..
 - \rightarrow When is variation larger than expected?
- Comparing (assumed) truth (=unobserved) versus measurement/estimation (=observed)
 - Expectations vs. (sample) means
- Statistical concept: significance
 - A difference (assumed truth observed) is significant:
 - \rightarrow Size of found difference is unlikely under the assumed truth
 - Not significant:
 - ightarrow The found difference is not larger than what can be expected by chance alone
 - Not significant does not mean no true difference! (and other way around?)

Ezafus

Slide 13 of 30

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Key concept 4: Models

Statistical/Econometric models:

- Set of assumptions made about the data generating process
- Allow for description and prediction (and sometimes prescription)
- Important for all statistical procedures (even for "just testing")
- "All models are wrong, but some are useful" (Box & Draper, 1987)
- Know which assumptions are crucial!
- Model choice and testing of assumptions are important
- How to fix things?

2025 Erasmus University Rotterdam, All rights reserved. No text and datamini

Models in Python (sneak preview)

Many models are available in Python packages (eg in statsmodels), examples:

- Linear model $\stackrel{\bullet}{\sim}$ m = smf.ols(..)
- Generalized linear model $\frac{1}{2}$ m = smf.glm(..)
- Linear mixed effects * m = smf.mixedlm(..)
- etc.

Most models allow for a large range of functions/results

- r = m.fit(): fit the model to data and get result named r
- ? r.summary(): print summary
- r.predict(): give fitted values
- r.params: give coefficients
- * sm.stats.anova_lm(r): analysis of variance of fitted model
- etc

```
(after import statsmodels.api as sm and
     import statsmodels.formula.api as smf)
```


Organization of (statistical) analysis in Python

Steps to take:

- Import data (using pandas DataFrame: import pandas as pd)
 - Create a data frame directly: data = pd.DataFrame(..)
 - Load from file, eg. data = pd.read_csv("file.csv")
- Select and transform data (if necessary)
- Explore data (spot & fix errors)
 - data.plot(title="Title text", ..)
 - data.describe()
- Perform statistical calculations
- Present results

Organize all of this in a script, such that the results can be replicated!

 \rightarrow See programming course for more info

Assignment

- See the file Day-1-AssignmentPython.pdf on canvas.
- Do exercise 1.1

Ezafus,

Slide 18 of 30

Explore data

Use descriptive statistics to understand your data

Graphical:

- various plots: dataname.plot.scatter(..),
 for example dataname.plot.scatter('xvar', 'yvar')
- histograms: dataname.seriesname.plot.hist()
- density: 🛃 dataname.seriesname.plot.density()
- boxplots: dataname.boxplot('varname')

where dataname refers to a dataframe and seriesname to a variable within the data)

Things to look for

- Degree of variation in variables
- Shape of distributions
- Signs of relations between variables (eg. correlation)
- Strange observations: Outliers!

Leafung

Summary statistics

- Graphical summaries of data are useful
- ullet Numerical summaries o basis for further analysis

Descriptive statistics

Consider *n* observations on a variable: X_1, X_2, \ldots, X_n

Measures of location/central tendency

- Mode (dataname.seriesname.mode()): most frequently observed value
- Mean (♠ .mean() or ♠ np.mean(..) from ♠ import numpy as np)

 (note dataname.seriesname should come before the . or instead of the ..)

$$\frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\sum_{i=1}^{n} X_i}{n} = \bar{X}$$

 Median=50%quantile (.median()): 50% of observations is smaller (median is much less sensitive to outliers than mean)

Ezafus

Slide 20 of 3

Measures of variation

Possible measures of variation

- Range (max-min): use ? .min() and ? .max()
- Inter-quantile range
 - 75% quantile 25% quantile or
 - 3rd quartile 1st quartile)
 - • quantile(0.75) .quantile(0.25)
 - Also useful to detect outliers
 - \rightarrow Common definition of outlier: obs. more than 1.5×IQR below 1st or above 3rd quartile

Slide 21 of 30

Putting some things together: Boxplots

Ezafus,

CI: 1- 22 - C2

Other measures of variation

ullet Mean deviation from mean? o will always be zero

- Mean absolute deviation from mean?
 - Very useful (robust to outliers) but
 - \blacksquare Absolute values are mathematically difficult
- ightarrow Use mean squared deviation from mean

Mean squared deviation & Degrees of freedom

The mean squared deviation is a crucial tool in statistics!

Given a sample X_1, \ldots, X_n . Define sum of squares $= \sum_i (X_i - \bar{X})^2$

Important detail: how to define "mean"?

- Naive definition: sum over all i (all observations) and divide by n
- However: we used the data to calculate \bar{X} !
- Here we know that $\sum_i (X_i \bar{X}) = 0$ \rightarrow We "loose" the information of one observation, degrees of freedom becomes n-1
- Estimated variance of X (var())

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

- In general: degrees of freedom = no. obs no. estimated parameters
- Standard deviation = √Variance (♣ .std())

1

Slide 24 of 3

In-class assignment

(E) 2025 Erasmus University Rocteroam, All rights reserved. No text and datamining

Assignment

- See the file Day-1-AssignmentPython.pdf on canvas.
- Do exercise 1.2

Ezafus

2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin

Estimation uncertainty

Sample mean $\frac{1}{n}\sum_{i}X_{i}$ and sample variance $\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$ are both estimates!

Therefore:

- $\bullet \ \mathsf{Different} \ \mathsf{sample} \to \mathsf{different} \ \mathsf{findings}$
- There is estimation uncertainty

Estimates of what?

- ightarrow Corresponding population concepts (remember the concept inferential statistics)
 - Expected value: E[X]
 - (Population) variance: $Var[X] = E[(X E[X])^2]$

Ezafus

Higher order moments

Until now:

- Central tendency (eg. mean)
- Measures of variation (eg. variance)

Moments of a random variable X

- First moment: $E[X] = \mu$
- Second (central) moment: $\mathsf{E}[(X-\mu)^2] = \mathsf{Var}[X] = \sigma^2$
- Third (standardized) moment: $E\left[\frac{(X-\mu)^3}{\sigma^3}\right] = \text{skewness}$
- Fourth (standardized) moment: $E\left[\frac{(X-\mu)^4}{\sigma^4}\right] = \text{kurtosis}$
- ightarrow Can estimate all of these using data
- 🤚 .skew() or 🍓 .kurtosis()

(do check exact definition of what is calculated!)

-Czafus

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Moments for normal distribution

If $X \sim N(\mu, \sigma^2)$

- mean= $E[X] = \mu$ \rightarrow location
- variance= $E[(X \mu)^2] = \sigma^2$ \rightarrow spread/variation
- skewness= $E\left[\frac{(X-\mu)^3}{\sigma^3}\right] = 0$ \rightarrow skewed or symmetric?
- kurtosis= $E\left[\frac{(X-\mu)^4}{\sigma^4}\right] = 3$ \rightarrow "peakedness"

Notes

• Often we look at excess kurtosis = kurtosis - 3

Assignment

• Can test moments against values for normal distribution (more in later lectures)

Overview of descriptive statistics

Getting a quick overview

- dataframename.describe() from pandas package
- Various packages will give you options for descriptive statistics
- If you do not have a package yet:
 - Install it first (see programming course). This is needed only once.
 - Next load it with <a> import packagename (in each session where you use it)
 - Abbreviate the package name (for later use): use eg # import pandas as pd instead

Also possible: bivariate (or multivariate) descriptives

- scatter plot
- conditional boxplot
- correlation
- contingency table/cross table

Before next time

Assignment for next week

- Read
 - Chapter 1 (this week's material)
 - Chapter 2 (next week)
- Try some examples in the book yourself (see here for data and code)
- Finish today's assignments (1.1 1.4)
- Continue to practice using own data (or the housing data)
 - Create simple plots
 - Calculate summary statistics
 - Inspect distributions of some variables (also consider transformations of variables)
 - Visualize relations between variables
- Optional: Exercise 2 (Volkswagen prices)

(c) 2025 Erasmus University Rotterdam, All rights reserved. No text and dataminin