Walking technicolor on the lattice

Kieran Holland University of the Pacific

Lattice Higgs Collaboration
Zoltan Fodor (Wuppertal), Julius Kuti (UCSD),
Daniel Nogradi (UCSD), Chris Schroeder (UCSD)

where is UoP?

3 lattice faculty: Jim Hetrick, Jimmy Juge, KH oldest university in California (1851)
Stockton "foreclosure capital" of the USA

outline

- motivation for technicolor
- walking technicolor
- strategy
- something unexpected for fundamental?
- outlook

technicolor

replace Higgs with strong gauge theory

good:

avoid triviality, fine-tuning QCD disguised as Electroweak

bad:

quark masses - extended technicolor flavor-changing neutral currents electroweak precision data light composite Higgs?

what's new?

walking technicolor

if coupling walks, separate scales fix FCNC's?

light composite Higgs?

techniquark fundamental rep. need large N_F

bad for EW precision

extended technicolor difficult

possible theories

conformal window

upper curve: AF lost

lower curve: chiral SB

gray: fundamental

blue: 2-index antisymmetric

red: 2-index symmetric

green: adjoint

perturbative

want to be below window (except Georgi, Luty)

candidates

EW precision prefers small N_F

S parameter

$$N_c = 3$$

2-index Symmetric

fundamental

$$N_F(\chi SB) = 2.5$$

$$N_F(\chi SB) = 11.91$$

 $N_F = 2$ 2-index Symm.

3 Goldstone bosons for W's, Z best candidate?

 $N_F = 12$ fundamental

borderline, test case less likely for new physics

lattice problems

- ullet large bare coupling: QCD-like for all N_F
- small bare coupling: femto-world, free theory
- Wilson: explicit chiral SB
- Staggered: taste-breaking, what N_F ?
- Overlap: expensive

strategy

examine eigenvalues of the Dirac operator λ

if chiral SB and
$$\frac{1}{F_\pi} \ll L \ll \frac{1}{m_\pi}$$

 ϵ -regime

chiral Lagrangian dominated by zero modes

eigenvalue distributions known Random Matrix Theory

$$p_k(z,\mu)$$
 $z = \lambda \Sigma V, \mu = m\Sigma V$

 Σ quark condensate

if conformal $\rho(\lambda) \sim \lambda^{3+\gamma}$

anomalous dimension

staggered simulations

2 and 3 flavors staggered fermions, fundamental rep.

no rooting i.e. continuum $N_F=8,12$

Asqtad action, RHMC algorithm volume 10^4 quark mass ma = 0.01

 $m < \lambda$

look at 1st eigenvalue distribution $p_1(\lambda)$

integrated distribution $\int_{0}^{\lambda} p_{1}(\lambda')d\lambda'$

RMT: fit
$$\Sigma$$
 $\frac{\langle \lambda_1 \rangle}{m} = \frac{\langle z_1 \rangle}{\mu}$ predict distribution

2 staggered flavors

chiral SB with continuum value $N_F=8$? QCD-like consistent with Fleming & co., Pallante & co.

3 staggered flavors

surprise: is $N_F=12$ outside conformal window? not consistent with Fleming & co.

taste-breaking & effective N_F

Damgaard et al. PLB 495, 263 (2000)

staggered 1 flavor eigenvalue distributions

superb agreement with $N_F=1\ {
m RMT}$

NOT $N_F = 4$

taste-breaking reduces effective N_{F} crucial when hunting conformal window

criticism

have not measured F_π, m_π do not know if ϵ -regime conditions met

have not measured taste-breaking what is the effective # of light pions?

can conformal theory with finite quark mass fake RMT with chiral SB?

improve taste-breaking

1 staggered flavor

eigenvalue quartets taste-symmetry restored

improved Dirac operator essential

running coupling

Appelquist, Fleming, Neil, PRL 100 (2008),171607

2,3 staggered flavors, fundamental

Schrodinger functional, box-size L

large L correspond to low energy

8 flavors: coupling large at low energy - - QCD-like

12 flavors: coupling freezes at low energy - - conformal

overlap simulations

overlap fermions, 2 flavors, 2-index symmetric rep.

topology-conserving algorithm, volume $6^4, ma = 0.05$

fit condensate, predict $\rho(z) = \sum_{k=1}^{\infty} p_k(z)$

theory not QCD-like? consistent with DeGrand, Svetitsky, Shamir

outlook

- fundamental $N_F = 12$ might not be settled
- 2-index symmetric maybe conformal
- first runs only beginning project
- taste-breaking crucial in RMT
- Asqtad, stout staggered, HISQ, HYP, ... ?
- 2-index symmetric theory more attractive, fundamental theory is the testing ground