TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR FB, 23 set 2022

0

Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

NÃO ESCREVA NA CARTEIRA.

1 [25] O programa ao lado resolve numericamente a equação diferencial

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \dots,$$
$$y(0) = \dots$$

Preencha os pontos.

```
#!/usr/bin/python3
h = 0.1
                               # passo em x
x = [0.0]
                               # x inicial
y = [1.0]
                               # y inicial
n = int(10/h)
                               # número de passos
def ff(x,y):
    return (x+1)*y + x**2;
def rk4(x,y,h,ff):
   k1 = h*ff(x,y)
   k2 = h*ff(x+h/2,y+k1/2)
   k3 = h*ff(x+h/2,y+k2/2)
   k4 = h*ff(x+h,y+k3)
   yn = y + k1/6.0 + k2/3.0 + k3/3.0 + k4/6.0
   return yn
for i in range(0,n):
                             # loop da solução numérica
   xn = (i+1)*h
   yn = rk4(x[i],y[i],h,ff)
   x.append(xn)
   y.append(yn)
fou = open('rukfb.out','wt')
for i in range(0,n+1):
                              # imprime o arquivo de saída
   fou.write( '%12.6f %12.6f\n' % (x[i],y[i]) )
fou.close()
```

SOLUÇÃO DA QUESTÃO:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (x+1)y + x^2;$$
$$y(0) = 1 \blacksquare$$

2 [25] Nesta questão, considere que os vetores e_i pertencem à base canônica do \mathbb{R}^3 . A **contração** de dois tensores de ordem 2 A e B é definida por

$$A: B \equiv A_{ij}B_{lm}(e_j \cdot e_l)(e_i \cdot e_m).$$

Se S é um tensor simétrico $S = S_{ij}e_ie_j$, $S_{ij} = S_{ji}$ e se A é um tensor antissimétrico, $A = A_{ij}e_ie_j$, $A_{ij} = -A_{ji}$, obtenha S : A.

SOLUÇÃO DA QUESTÃO:

$$\begin{split} S: A &= S_{ij} A_{lm} (\boldsymbol{e}_j \cdot \boldsymbol{e}_l) (\boldsymbol{e}_i \cdot \boldsymbol{e}_m). \\ &= S_{ij} A_{lm} \delta_{jl} \delta_{im} \\ &= S_{ij} A_{ji} \\ &= \frac{1}{2} S_{ij} A_{ji} + \frac{1}{2} S_{ji} A_{ij} \\ &= \frac{1}{2} S_{ij} \left(A_{ji} + A_{ij} \right) = 0 \; \blacksquare \end{split}$$

3 [25] Utilizando obrigatoriamente integração de contorno com variáveis complexas, calcule

$$I = \int_{x = -\infty}^{+\infty} \frac{1}{x^3 + i} \, \mathrm{d}x.$$

Justifique todos os passos, incluindo a prova de sobre quais partes do contorno a integral é nula.

SOLUÇÃO DA QUESTÃO:

Considere a função $f(z) = 1/(z^3 + i)$. Esta função possui singularidades em

$$z^{3} + i = 0,$$

 $z^{3} = -i = e^{(-i\pi/2 + 2k\pi)};$
 $z = e^{(-i\pi/6 + 2k\pi/3)}.$

Consequentemente, apenas a singularidade em z_1 = i precisa ser considerada no Teorema dos resíduos.

Para verificar a integral sobre o semi-círculo \mathscr{L}_S quando $R \to \infty$:

$$\begin{split} \lim_{R \to \infty} \left| \int_{\mathscr{L}_S} \frac{1}{z^3 + \mathbf{i}} \, \mathrm{d}z \right| &\leq \lim_{R \to \infty} \int_{\mathscr{L}_S} \left| \frac{1}{z^3 + \mathbf{i}} \, \mathrm{d}z \right| \\ &= \lim_{R \to \infty} \int_{\theta = 0}^{\pi} \left| \frac{\mathbf{i} R \mathrm{e}^{\mathrm{i}\theta}}{R^3 \mathrm{e}^{3\mathrm{i}\theta} + \mathbf{i}} \right| \, \mathrm{d}\theta \\ &= \lim_{R \to \infty} \int_{\theta = 0}^{\pi} \left| \frac{\mathbf{i} R \mathrm{e}^{\mathrm{i}\theta}}{R^3 \mathrm{e}^{3\mathrm{i}\theta}} \right| \, \mathrm{d}\theta = \lim_{R \to \infty} \frac{\pi}{R^2} = 0. \end{split}$$

Portanto, pelo Teorema dos resíduos, devemos ter

$$\int_{x=-\infty}^{x=+\infty} \frac{1}{x^3 + i} \, \mathrm{d}x = 2\pi \mathrm{i} c_{-1},$$

onde o resíduo c_{-1} em z_1 é calculado como se segue:

$$\frac{1}{z^3+i}=\frac{1}{(z-z_1)(z-z_2)(z-z_3)};$$

logo, nas proximidades de z_1 ,

$$f(z) \sim \frac{1}{(z-z_1)(z_1-z_2)(z_1-z_3)},$$

donde z_1 é claramente um polo de primeira ordem, e

$$c_{-1} = \frac{1}{(z_1 - z_2)(z_1 - z_3)}$$

$$= \frac{1}{(i - [\sqrt{3}/2 - i/2])(i - [-\sqrt{3}/2 - i/2])}$$

$$= \frac{1}{(3i/2 - \sqrt{3}/2)(3i/2 + \sqrt{3}/2)}$$

$$= \frac{1}{-9/4 - 3/4} = -\frac{1}{3};$$

Finalmente,

$$I = -\frac{2\pi i}{3} \blacksquare$$

$$y^{\prime\prime} + x^2 y = 0.$$

SOLUÇÃO DA QUESTÃO:

O ponto x = 0 é um ponto ordinário. Isso sugere que soluções simples em série de potências são possíveis. De qualquer forma, usamos o ferramental usual do método de Frobenius:

$$y = \sum_{n=0}^{\infty} a_n x^{r+n},$$

$$y' = \sum_{n=0}^{\infty} (r+n) a_n x^{r+n-1},$$

$$y'' = \sum_{n=0}^{\infty} (r+n-1)(r+n) a_n x^{r+n-2}.$$

Substituindo na equação diferencial,

$$\sum_{n=0}^{\infty} (r+n-1)(r+n)a_n x^{r+n-2} + \sum_{n=0}^{\infty} a_n x^{r+n+2} = 0.$$

Faça

$$r + n + 2 = r + m - 2,$$

$$n = m - 4,$$

$$m = n + 4.$$

Agora,

$$\begin{split} \sum_{n=0}^{\infty} (r+n-1)(r+n)a_n x^{r+n-2} + \sum_{m=4} a_{m-4} x^{r+m-2} &= 0, \\ (r-1)(r)a_0 x^{r-2} + (r)(r+1)a_1 x^{r-1} + (r+1)(r+2)a_2 x^r + (r+2)(r+3)a_3 x^{r+1} + \\ \sum_{n=4}^{\infty} \left[(r+n-1)(r+n)a_n + a_{n-4} \right] x^{r+n-2} &= 0, \end{split}$$

A equação indicial é obtida tomando-se $a_0 \neq 0$:

$$(r-1)r = 0,$$

$$r_1 = 1,$$

$$r_2 = 0.$$

Estamos no caso iii do Teorema de Frobenius, e primeiro verificamos se a menor raiz leva a duas soluções. De fato, fazendo r = 0, vemos que tanto a_0 quanto a_1 podem ser quaisquer, mas que $a_2 = 0$ e $a_3 = 0$. A relação de recorrência é

$$(n-1)na_n + a_{n-4} = 0,$$

$$a_n = -\frac{a_{n-4}}{(n-1)n}.$$

Partindo de $a_2 = a_3 = 0$,

$$a_6 = a_7 = a_{10} = a_{11} = a_{14} = a_{15} = \dots = 0.$$

Partindo de $a_0 = 1$ e de $a_1 = 1$, obtemos, respectivamente

$$a_4 = -\frac{1}{12},$$
 $a_5 = -\frac{1}{20},$ $a_8 = +\frac{1}{672},$ $a_9 = +\frac{1}{1440},$ $a_{12} = -\frac{1}{88704}$ $a_{13} = -\frac{1}{224640},$ \vdots \vdots

As duas soluções LI são

$$y_1(x) = 1 - \frac{1}{12}x^4 + \frac{1}{672}x^8 - \frac{1}{88704}x^{12} + \dots,$$

$$y_2(x) = x - \frac{1}{20}x^5 + \frac{1}{1440}x^9 - \frac{1}{224640}x^{13} + \dots,$$

e a solução geral, como sempre, é

$$y(x) = c_1 y_1(x) + c_2 y_2(x) \blacksquare$$