LFIS223 Astronomía General Mónica Zorotovic

Tema 4a Transporte de energía

Transporte de Energía

- Radiación Radiación electromagnética (fotones).
 (Ej. luz de ampolleta).
- Convección Grandes masas de fluidos circulan transportando energía.
 (Ej. agua hirviendo en una tetera).
- Conducción Energía se transporta a través del material por interacciones entre átomos (a alta temperatura son iones y electrones).
- (Ej. propagación de calor por un metal).

Radiación v/s Convección

Transporte radiativo: fotones de la región caliente se mueven hacia la región fría. En su camino sufren colisiones con otras partículas (OPACIDAD) realizando una caminata aleatoria

Transporte **convectivo**: la misma materia caliente se mueve hacia arriba, transportando el calor, se enfría y vuelve a bajar.

^{*} Por ahora no tomaremos en cuenta el transporte por conducción ya que juega un rol menor en estrellas "comunes"

Recordatorio Opacidad de la atmósfera terrestre

Opacidad = propiedad de la materia que impide el paso de la luz por ella. Depende de la frecuencia de la luz. Por ejemplo, la atmósfera de Venus es transparente a la luz ultravioleta, pero es opaca a la luz visual.

Opacidad estelar

La opacidad depende del conjunto de obstáculos que se encuentra en su camino el portador de energía, ya sea un fotón, un ion, un electrón o una burbuja de gas. Diversos fenómenos contribuyen a la opacidad estelar: transiciones ligado-ligado, ligado-libre, libre-libre, o dispersión por electrones libres.

Mayor opacidad = Menor recorrido

La opacidad depende de la frecuencia (o longitud de onda).

La opacidad media (conocida como **Opacidad media de Rosseland**) mide la opacidad promediada sobre todo el espectro de frecuencias (integrada de v = 0 a ∞), y es la que usamos para comparar qué método de transporte de energía es más eficiente dentro de una estrella.

Opacidad estelar

- ligado-ligado (excitación): electrón absorbe/emite un fotón de la energía justa para subir/bajar de nivel DENTRO del átomo
- ligado-libre (ionización): electrón absorbe un fotón con suficiente energía para salir del átomo

Opacidad estelar

- libre-libre: un electrón que pasa cerca de un ion siente una aceleración. Una carga acelerada produce radiación (llamada <u>Bremsstrahlung</u>), y es "libre-libre", porque el electrón no está ni estaba en un átomo.

Un electrón libre también puede ganar energía durante una colisión con un ion y absorber un fotón (absorción libre libre)

- Dispersión (**scattering**) por electrones libres: un electrón aislado no puede absorber un fotón que pasa (¿por qué no?), pero puede dispersarlo en alguna otra dirección

Transporte Radiativo

Cuando la energía es transportada hacia afuera enteramente por radiación (fotones), el gradiente de temperatura es:

$$\frac{dT}{dr} = -\frac{3\kappa\rho}{4acT^3} \frac{L(r)}{4\pi r^2}$$

Luminosidad por cm²

Donde

 κ = opacidad media por gramo de materia. a = $4\sigma/c$ = constante de radiación cuerpo negro

 $(\sigma = constante de Stefan-Boltzmann)$

Aumenta con κ , L y ρ , disminuye con T (aunque κ aumenta al bajar T)

Transporte Convectivo

Si el transporte de energía se da por convección, es decir calor transportado por la circulación de materia, el gradiente de temperatura está dado por

$$\frac{dT}{dr} = \left(1 - \frac{1}{\gamma}\right) \frac{T}{P} \frac{dP}{dr}$$

Donde $\gamma = C_p/C_V$ es el coeficiente adiabático = razón entre la capacidad calorífica a presión constante y la capacidad calorífica a volumen constante.

Aumenta con T

Condiciones para convección

El movimiento convectivo se establece cuando el gradiente de temperatura radiativo supera al convectivo

$$|dT/dr|_{rad} > |dT/dr|_{conv}$$

$$\frac{3\kappa\rho}{4acT^3} \frac{L(r)}{4\pi r^2} > \left(1 - \frac{1}{\gamma}\right) \frac{T}{P} \frac{dP}{dr}$$

Factores que inducen convección:

- Alta opacidad (ocurre en capas frías ¿por qué?)
- Alto flujo de calor que los fotones no alcanzan a transportar
- Combinación de alta luminosidad y temperatura baja

Estrellas con M>1.2-1.5 M_o núcleo convectivo envoltura radiativa

Estrellas con M<~1.2-1.5 M_o
núcleo radiativo
envoltura convectiva
(como el sol)

Estrellas con M<~0.35-0.5 M_o
Completamente convectiva

> 1.5 solar masses

Convection Zone

0.5 - 1.5 solar masses

< 0.5 solar masses

Transporte radiativo

Cuando la radiación interactúa con un medio (por ejemplo una nube), éste absorberá parte de la radiación y emitirá al mismo tiempo su propia radiación.

- Coeficiente de absorción (κ_{v}) = atenuación a la frecuencia v por unidad de longitud (distancia, dl).

- Coeficiente de emisión (j_v) = intensidad generada en la frecuencia v por unidad de longitud (dl).

La variación de intensidad por unidad longitud es:

$$\frac{dI_{\nu}}{dl} = -\kappa_{\nu}I_{\nu} + j_{\nu}$$

Camino libre medio

Es la distancia media recorrida por un fotón de frecuencia v antes de ser absorbido, y corresponde al inverso del coeficiente de absorción.

$$l_{\nu} = \frac{1}{\kappa_{\nu}}$$

En el vacío: $\kappa_v = j_v = 0$, es decir, el fotón viaja en línea recta, sin interactuar con nada (camino libre medio = infinito)

Nos da una medida de qué tan opaco o transparente es un medio para la radiación.

$$d\tau_{\nu} = \kappa_{\nu} dl$$

 $T_{v} << 1 = medio$ **ópticamente delgado** (transparente, deja pasar los fotones).

 $T_{v} >> 1$ = medio **ópticamente grueso** (opaco, bloquea el paso de los fotones).

La fotósfera de una estrella se define como la superficie donde $T_{ij} = 2/3$

Medio ópticamente grueso. Camino libre medio corto. Medio ópticamente delgado. Camino libre medio largo

Depende de la frecuencia (o longitud de onda), ya que los átomos o moléculas de una nube pueden absorber sólo fotones de ciertas frecuencias.

Ejemplo: transmitancia (inverso de la opacidad, en porcentaje) en la atmósfera terrestre

$$T\%=rac{I}{I_0}\cdot 100\%$$

donde I_o es la intensidad del rayo incidente, e I es la intensidad de la luz que recibimos

Función Fuente S_v

Es una característica del material, que describe la relación entre su coeficiente de emisión (j_{ν}) y su coeficiente de absorción (κ_{ν}) .

$$S_{\nu} = \frac{j_{\nu}}{\kappa_{\nu}}$$

Nos da una medida de cómo los fotones de cierta frecuencia en un haz de luz son eliminados y reemplazados por nuevos fotones, por el material que atraviesa.

Usando la ecuación:

$$rac{dI_{
u}}{dl} = -\kappa_{
u}I_{
u} + j_{
u}$$

Y las nuevas variables:

$$S_{\nu} = \frac{j_{\nu}}{\kappa_{\nu}} d\tau_{\nu} = \kappa_{\nu} dl$$

La variación de intensidad por unidad longitud nos queda:

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + \mathcal{S}_{\nu}$$

Consideramos que la radiación atraviesa una región de largo L cuya profundidad óptica aumenta en el sentido de la propagación de la radiación de 0 a T_{.,}

Integrando la ecuación

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + \mathcal{S}_{\nu}$$

Podemos demostrar que: (demostración en pizarra)

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} \mathcal{S}_{\nu} e^{-(\tau_{\nu} - \tau_{\nu}')} d\tau_{\nu}'$$

La intensidad medida por el observador será la suma de dos componentes:

- la intensidad inicial, $I_{\nu}(0)$ atenuada por la opacidad de la región (por la absorción)
- y la superposición de la emisión de todas las capas de la región.

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} \mathcal{S}_{\nu} e^{-(\tau_{\nu} - \tau_{\nu}')} d\tau_{\nu}'$$

Si suponemos que la función fuente es constante dentro de la región atravesada por la radiación, obtenemos:

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + S_{\nu} (1 - e^{-\tau_{\nu}})$$

(demostración en pizarra)

Aproximaciones para una nube con función fuente constante:

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + \mathcal{S}_{\nu} \left(1 - e^{-\tau_{\nu}}\right)$$

Para el caso **ópticamente delgado** $(T_v << 1)$

usamos
$$e^x=\sum_{n=0}^{\infty}rac{x^n}{n!}=1+x+rac{x^2}{2!}+rac{x^3}{3!}+\cdots$$
 ~ 1 + X (primer orden)

$$e^{-\tau_{\nu}} \simeq 1$$
 y $1 - e^{-\tau_{\nu}} \simeq \tau_{\nu} \to I_{\nu} \simeq I_{\nu}(0) + S_{\nu}\tau_{\nu}$

La intensidad de fondo se observa sin ninguna atenuación, y se suma la radiación emitida por la región, sumada para todas las capas, sin atenuación.

Aproximaciones para una nube con función fuente constante:

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + \mathcal{S}_{\nu} \left(1 - e^{-\tau_{\nu}}\right)$$

Para el caso **ópticamente grueso** ($T_v >> 1$)

$$e^{-\tau_{\nu}} \simeq 0 \rightarrow I_{\nu} \simeq \mathcal{S}_{\nu}$$

Se pierde toda información sobre la intensidad de fondo, y se observa una intensidad igual a la función fuente de la nube.