Credit risk model for forecasting loan default

2024-01-06

#importing	data								
<pre>data <- read.csv('/ dataframe head(data)#</pre>						/loan2	.csv')	#impo	rting the
## X loan		te	rm int	_rate	install	Lment	grade	emp_le	ength
home_owners ## 1 1 MORTGAGE	•	0 mont	ns 10	90.99		NA	Е	10+ y	/ears
## 2 2	0 3	6 mont	าร	0.00		0.00	Α	< 1	year
RENT ## 3 3 RENT	2500 3	86 mont	ns :	13.98	8	35.42	С	4 y	/ears
## 4 4	5000 3	6 mont	ns :	15.95	17	75.67	D	4 y	/ears
RENT ## 5 5 MORTGAGE	7000 3	6 mont	ns	9.91	22	25.58	В	10+ y	/ears
## 6 6	2000 3	6 mont	าร	5.42	6	50.32	Α	10+ y	/ears
RENT ## annual ## 1	_inc NA							_	_status Current
## 4 5 ## 5 5	9000 3796 0000	es not			redit po	·		s:Full Charg Full Full	ged Off Ly Paid ged Off Ly Paid Ly Paid revol_util
total_acc ## 1	·	•			NA	' -	NA	– NA	- \$100.00%
NA	CTEUIC	_card	100.00						
## 2 ma 1	jor_pur	chase	0.00		0		0	0	© 0.00% ©
## 3		other	19.86		0		7	0	0.213
10 ## 4 debt_c 15	onsolid	lation	19.57		Θ		7	0	0.999
## 5		other	10.80		3		7	0	0.472
20 ## 6 debt_c 15	onsolid	lation	3.60		0		7	0	Θ
		nv tota NA	al_rec	_prncı N	o total_ A	_rec_i	nt rep NA	ay_fai	il 0

```
## 2
                0.00
                                  0.00
                                                 0.00
                                                               0
## 3
             3075.29
                              2500.00
                                              575.29
## 4
             2948.76
                              1909.02
                                              873.81
                                                               1
## 5
             8082.39
                              7000.00
                                             1082.39
                                                               0
                                                               0
## 6
             2161.66
                              2000.00
                                              161.66
#(part1)data cleaning
#number of rows before cleaning
nrow(data)
## [1] 38480
#removing missing values
data2 <- na.omit(data) #function removes rows with NA</pre>
head(data2)#visualizing the dataframe
##
                       term int rate installment grade emp length
     X loan amnt
home ownership
## 2 2
                0 36 months
                                 0.00
                                             0.00
                                                       Α
                                                           < 1 year
RENT
## 3 3
            2500 36 months
                               13.98
                                            85.42
                                                       C
                                                            4 years
RENT
            5000 36 months
## 4 4
                               15.95
                                           175.67
                                                            4 years
                                                       D
RENT
            7000 36 months
## 5 5
                                9.91
                                           225.58
                                                          10+ years
MORTGAGE
            2000 36 months
                                5.42
                                            60.32
## 6 6
                                                          10+ years
RENT
## 7 7
            3600 36 months
                               10.25
                                           116.59
                                                       В
                                                          10+ years
MORTGAGE
##
     annual inc
                                                          loan status
## 2
                                                          Charged Off
## 3
          20004 Does not meet the credit policy. Status: Fully Paid
## 4
          59000
                                                          Charged Off
## 5
          53796
                                                           Fully Paid
## 6
          30000
                                                           Fully Paid
         675048 Does not meet the credit policy. Status: Fully Paid
## 7
##
                purpose
                           dti deling 2yrs open acc pub rec revol util
total acc
                                                    0
                                                            0
                                                                  60.00%
## 2
         major purchase 0.00
                                          0
1
## 3
                   other 19.86
                                          0
                                                    7
                                                            0
                                                                    0.213
10
## 4 debt consolidation 19.57
                                          0
                                                    7
                                                            0
                                                                    0.999
15
## 5
                   other 10.80
                                          3
                                                    7
                                                            0
                                                                    0.472
20
## 6 debt consolidation 3.60
                                          0
                                                    7
                                                            0
                                                                        0
15
```

8

0

0

other 1.55

7

```
25
##
     total_pymnt_inv total_rec_prncp total_rec_int repay_fail
## 2
                0.00
                                0.00
                                              0.00
                                                            1
## 3
             3075.29
                             2500.00
                                            575.29
                                                            0
## 4
                                                            1
             2948.76
                             1909.02
                                            873.81
## 5
            8082.39
                             7000.00
                                           1082.39
                                                            0
## 6
                                                            0
             2161.66
                             2000.00
                                            161.66
## 7
                                            606.03
                                                            0
            4206.03
                             3600.00
#number of rows after cleaning
nrow(data2)
## [1] 38419
#the number of rows removed during cleaning
dif <- nrow(data) - nrow(data2)</pre>
sprintf('the number of rows removed is %d',dif)
## [1] "the number of rows removed is 61"
#number of columns in data2
ncol(data2)
## [1] 21
#(part2) feature selection
#scatter plot approach
str(data2)
                   38419 obs. of 21 variables:
## 'data.frame':
                    : int 2 3 4 5 6 7 8 9 10 11 ...
## $ X
## $ loan amnt
                           0 2500 5000 7000 2000 3600 8000 6000 25600
                     : int
19750 ...
                          "36 months" "36 months" "36 months" "36
## $ term
                     : chr
months" ...
## $ int rate
                     : num 0 13.98 15.95 9.91 5.42 ...
## $ installment
                            0 85.4 175.7 225.6 60.3 ...
                     : num
                           "A" "C" "D" "B" ...
                     : chr
## $ grade
                            "< 1 year" "4 years" "4 years" "10+ years"
## $ emp length
                     : chr
                            "RENT" "RENT" "MORTGAGE" ...
## $ home ownership : chr
## $ annual inc
                     : num
                            0 20004 59000 53796 30000 ...
                            "Charged Off" "Does not meet the credit
## $ loan status
                     : chr
                           "Charged Off" "Fully Paid" ...
policy. Status:Fully Paid"
                            "major purchase" "other"
## $ purpose
                     : chr
"debt consolidation"
                    "other"
## $ dti
                     : num 0 19.9 19.6 10.8 3.6 ...
## $ delinq_2yrs
                     : int 0003000000...
##
                            0 7 7 7 7 8 12 5 16 15 ...
   $ open acc
                     : int
## $ pub rec
                            0 0 0 0 0 0 0 0 0 0 ...
                     : int
                          "@0.00%@" "0.213" "0.999" "0.472" ...
## $ revol util
                     : chr
## $ total acc : int 1 10 15 20 15 25 49 9 32 44 ...
```

```
## $ total_pymnt_inv: num 0 3075 2949 8082 2162 ...
## $ total_rec_prncp: num 0 2500 1909 7000 2000 ...
## $ total_rec_int : num 0 575 874 1082 162 ...
## $ repay_fail : int 1 0 1 0 0 0 0 0 0 ...
## - attr(*, "na.action")= 'omit' Named int [1:61] 1 1124 3070 3541
3647 3669 3887 4261 5132 6115 ...
## ..- attr(*, "names")= chr [1:61] "1" "1124" "3070" "3541" ...
#relationship between independent variables and repay_fail
plot(data2$repay_fail,data2$loan_amnt) #loan amount vs repay fail
```


plot(data2\$repay fail,data2\$int rate) #int rate vs repay fail

plot(data2\$repay_fail,data2\$installment) #installment vs repay fail

plot(data2\$repay_fail,data2\$annual_inc) #annual inc vs repay fail

plot(data2\$repay_fail,data2\$dti) #dti vs repay fail

plot(data2\$repay_fail,data2\$delinq_2yrs) #deling 2years vs repay fail

plot(data2\$repay_fail,data2\$open_acc) #open acc vs repay fail

plot(data2\$repay_fail,data2\$pub_rec) #pub rec vs repay fail

plot(data2\$repay_fail,data2\$total_acc) #total acc vs repay fail

plot(data2\$repay_fail,data2\$total_rec_prncp) #total_rec_prncp vs
repau_fail

plot(data2\$repay_fail,data2\$total_rec_int) #total_rec_int vs
repay_fail


```
#since the output is binary it is not possible to use a scatter plot
for feature selection
#(part2) feature selection
############ for feature
install.packages("corrr")#installing of package for creating and
handling dataframes
## Installing package into '/home/vaasala/R/x86 64-pc-linux-gnu-
library/4.3'
## (as 'lib' is unspecified)
library('corrr')#importing the library
install.packages("ggcorrplot")#package for visualization of
correlation matrix
## Installing package into '/home/vaasala/R/x86 64-pc-linux-gnu-
library/4.3'
## (as 'lib' is unspecified)
library(ggcorrplot)
## Loading required package: ggplot2
install.packages("FactoMineR")#package used for multivariate data
analsyis
## Installing package into '/home/vaasala/R/x86 64-pc-linux-gnu-
library/4.3'
## (as 'lib' is unspecified)
library("FactoMineR")
str(data2)#the column and data types
## 'data.frame':
                  38419 obs. of 21 variables:
                   : int 2 3 4 5 6 7 8 9 10 11 ...
## $ X
                   : int 0 2500 5000 7000 2000 3600 8000 6000 25600
## $ loan amnt
19750 ...
                   : chr "36 months" "36 months" "36
## $ term
months" ...
   $ int rate
                   : num 0 13.98 15.95 9.91 5.42 ...
##
                          0 85.4 175.7 225.6 60.3 ...
## $ installment
                  : num
## $ grade
                   : chr
                          "A" "C" "D" "B" ...
## $ emp length : chr "< 1 year" "4 years" "4 years" "10+ years"</pre>
## $ home ownership : chr "RENT" "RENT" "RENT" "MORTGAGE" ...
## $ annual inc
                 : num
                          0 20004 59000 53796 30000 ...
## $ loan_status : chr "Charged Off" "Does not meet the credit
```

```
policy. Status: Fully Paid" "Charged Off" "Fully Paid" ...
## $ purpose
                            "major purchase" "other"
                     : chr
"debt consolidation" "other" ...
   $ dti
                     : num 0 19.9 19.6 10.8 3.6 ...
##
##
    $ deling 2yrs
                     : int 0003000000...
##
    $ open acc
                     : int 0 7 7 7 7 8 12 5 16 15 ...
##
                     : int
                            0 0 0 0 0 0 0 0 0 0 ...
    $ pub rec
                     : chr "00.00% "0" "0.213" "0.999" "0.472" ...
##
    $ revol util
##
    $ total acc
                     : int 1 10 15 20 15 25 49 9 32 44 ...
##
   $ total pymnt inv: num 0 3075 2949 8082 2162 ...
##
   $ total rec prncp: num 0 2500 1909 7000 2000 ...
   $ total rec int : num 0 575 874 1082 162 ...
                    : int 1010000000...
    $ repay_fail
##
## - attr(\overline{*}, "na.action")= 'omit' Named int [1:61] 1 1124 3070 3541
3647 3669 3887 4261 5132 6115 ...
     ... attr(*, "names")= chr [1:61] "1" "1124" "3070" "3541" ...
colSums(is.na(data2))#number of missing values present in dataset
##
                 Χ
                         loan amnt
                                              term
                                                          int rate
installment
##
                 0
                                 0
                                                 0
                                                                 0
0
##
             grade
                        emp_length
                                    home ownership
                                                        annual inc
loan status
                 0
                                                 0
                                                                 0
##
                                 0
0
##
                               dti
                                       deling 2yrs
           purpose
                                                          open acc
pub rec
                 0
                                 0
                                                 0
                                                                 0
##
0
##
        revol util
                         total acc total pymnt inv total rec prncp
total rec int
##
                 0
                                 0
                                                 0
                                                                 0
0
##
        repay_fail
##
#there are no missing values
#principal component analysis can only be applied to numerical data so
the categorical columns must be removed.
data3 <- subset(data2, select = -c(X, term,</pre>
grade, emp length, home ownership, loan status, purpose, revol util, repay f
ail))
#repay fail column also removed because it is the dependent variable
str(data3)
                    38419 obs. of 12 variables:
## 'data.frame':
## $ loan amnt : int 0 2500 5000 7000 2000 3600 8000 6000 25600
```

```
19750 ...
                     : num 0 13.98 15.95 9.91 5.42 ...
   $ int rate
##
   $ installment
                     : num 0 85.4 175.7 225.6 60.3 ...
##
                     : num 0 20004 59000 53796 30000 ...
   $ annual inc
##
                     : num 0 19.9 19.6 10.8 3.6 ...
   $ dti
##
   $ deling 2yrs
                     : int 0003000000...
                     : int 0 7 7 7 8 12 5 16 15 ...
##
   $ open acc
##
   $ pub rec
                     : int 00000000000...
##
   $ total acc
                     : int 1 10 15 20 15 25 49 9 32 44 ...
##
   $ total pymnt inv: num  0 3075 2949 8082 2162 ...
##
   $ total rec prncp: num 0 2500 1909 7000 2000 ...
   $ total rec int : num 0 575 874 1082 162 ...
head(data3)
    loan amnt int rate installment annual inc dti deling 2yrs
open acc pub rec
## 2
                   0.00
                              0.00
                                               0.00
                                                               0
0
        0
## 3
                             85.42
         2500
                 13.98
                                        20004 19.86
                                                              0
7
        0
## 4
         5000
                 15.95
                            175.67
                                        59000 19.57
                                                              0
7
        0
## 5
         7000
                  9.91
                            225.58
                                        53796 10.80
                                                              3
7
        0
## 6
                                                              0
         2000
                  5.42
                             60.32
                                        30000
                                               3.60
7
        0
## 7
         3600
                  10.25
                            116.59
                                       675048
                                               1.55
                                                              0
8
        0
    total_acc total_pymnt_inv total_rec_prncp total_rec_int
##
## 2
            1
                         0.00
                                         0.00
                                                       0.00
## 3
                      3075.29
                                       2500.00
                                                     575.29
           10
## 4
           15
                      2948.76
                                       1909.02
                                                     873.81
## 5
           20
                      8082.39
                                       7000.00
                                                     1082.39
## 6
           15
                      2161.66
                                       2000.00
                                                     161.66
## 7
           25
                      4206.03
                                      3600.00
                                                     606.03
#normalizing the data
data3 normalized <- scale(data3)</pre>
head(data3 normalized)
##
     loan amnt
                 int rate installment annual inc
                                                        dti
deling 2yrs
## 2 -1.4994346 -3.2776629
                            -1.546672 -1.0707622 -1.9882696
0.2994498
## 3 -1.1618471 0.4914804
                            -1.138147 -0.7604690 0.9630919
0.2994498
                            -0.706522 -0.1555803
## 4 -0.8242597 1.0226115
                                                  0.9199954
0.2994498
## 5 -0.5541897 -0.6058310 -0.467825 -0.2363025 -0.3832996
5.6124525
```

```
## 6 -1.2293646 -1.8163784 -1.258189 -0.6054155 -1.4532796
0.2994498
## 7 -1.0133087 -0.5141637
                             -0.989075 9.4002834 -1.7579267
0.2994498
##
       open acc
                   pub rec
                            total acc total pymnt inv total rec prncp
## 2 -2.0799101 -0.2357255 -1.8239688
                                            -1.2614572
                                                            -1.3691975
## 3 -0.5228984 -0.2357255 -1.0469715
                                            -0.9177389
                                                            -1.0146818
## 4 -0.5228984 -0.2357255 -0.6153063
                                            -0.9318809
                                                            -1.0984865
## 5 -0.5228984 -0.2357255 -0.1836411
                                            -0.3581065
                                                            -0.3765534
## 6 -0.5228984 -0.2357255 -0.6153063
                                            -1.0198533
                                                            -1.0855849
## 7 -0.3004681 -0.2357255 0.2480241
                                            -0.7913586
                                                            -0.8586948
##
     total rec int
        -0.8690454
## 2
## 3
        -0.6453254
## 4
        -0.5292362
## 5
        -0.4481232
## 6
        -0.8061787
## 7
        -0.6333711
#plotting of the covariance matrix
corr matrix <- cor(data3 normalized) #calculation of correlations for</pre>
the covariance matrix
ggcorrplot(corr_matrix) #covariance plot of the features
```


#applying principle component analysis
data3_pca <- princomp(corr_matrix)
summary(data3 pca)</pre>

```
## Importance of components:
                                       Comp.2
                                                             Comp.4
##
                             Comp.1
                                                  Comp.3
Comp.5
                          0.8521109 0.4534905 0.33037942 0.28757739
## Standard deviation
0.22327073
## Proportion of Variance 0.5877865 0.1664807 0.08835952 0.06694789
0.04035441
## Cumulative Proportion 0.5877865 0.7542672 0.84262671 0.90957460
0.94992900
##
                              Comp.6
                                          Comp.7
                                                      Comp.8
Comp.9
## Standard deviation
                          0.20177284 0.102337390 0.084900170
0.055093005
## Proportion of Variance 0.03295739 0.008478052 0.005835049
0.002457086
## Cumulative Proportion 0.98288639 0.991364444 0.997199493
0.999656579
##
                               Comp. 10
                                            Comp.11 Comp.12
## Standard deviation
                          0.0161308844 0.0128071282
## Proportion of Variance 0.0002106414 0.0001327795
                                                          0
## Cumulative Proportion 0.9998672205 1.00000000000
                                                          1
#the first six components can accurately present 95.8 percent of the
data, so we select the 1st 6 components
install.packages("factoextra")
## Installing package into '/home/vaasala/R/x86 64-pc-linux-gnu-
library/4.3'
## (as 'lib' is unspecified)
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at
https://goo.gl/ve3WBa
fviz eig(data3 pca, addlabels = TRUE)#visualization of principal
components
```


Graph of the variables
fviz_pca_var(data3_pca, col.var = "black")

head(data	a3)						
	_	_	installment a	annual_inc	dti	delinq_2yr	^s
open_acc ## 2	pub_re 0	0.00	0.00	0	0.00		0
0 0		12.00	05 40	20004	10.06		0
## 3 7	2500	13.98	85.42	20004	19.86		0
## 4	5000	15.95	175.67	59000	19.57		0
7 6 ## 5) 7000	9.91	225.58	53796	10 00		3
## 5 7 (9.91	223.36	33790	10.00		3
## 6	2000	5.42	60.32	30000	3.60		0
7	3600	10.25	116.59	675048	1.55		Θ
8 6		10.25	110.33	075010	1.33		Ü
	_	total_pymi	nt_inv total_		total_		
## 2 ## 3	1 10	3(0.00 975.29	0.00 2500.00		0.00 575.29	
## 4	15	29	948.76	1909.02		873.81	
## 5 ## 6	20 15		982.39 161.66	7000.00 2000.00		1082.39 161.66	
## 7	25		206.03	3600.00		606.03	

#contribution of each variable to the major principle components
fviz_cos2(data3_pca, choice = "var", axes = 1:2)


```
#removing the columns with the least contribution
data4 <- subset(data3, select = -</pre>
c(annual_inc,dti,int_rate,pub_rec,total_acc,open_acc,delinq_2yrs))
head(data4)
##
     loan amnt installment total pymnt inv total rec prncp
total_rec_int
                      0.00
                                       0.00
## 2
                                                       0.00
0.00
## 3
          2500
                     85.42
                                    3075.29
                                                    2500.00
575.29
## 4
                    175.67
                                    2948.76
          5000
                                                    1909.02
873.81
## 5
          7000
                    225.58
                                    8082.39
                                                    7000.00
1082.39
## 6
          2000
                     60.32
                                    2161.66
                                                    2000.00
161.66
## 7
          3600
                    116.59
                                    4206.03
                                                    3600.00
606.03
# 3 view plot of principle componenet analysis
install.packages("gridExtra")
## Installing package into '/home/vaasala/R/x86 64-pc-linux-gnu-
library/4.3'
## (as 'lib' is unspecified)
library("gridExtra")
grid.arrange(fviz eig(data3 pca, addlabels = TRUE),
             fviz_cos2(data3_pca, choice = "var", axes = 1:2),
             ncol = 2)
```


#(part3) fitting the model(pca) str(data2) ## 'data.frame': 38419 obs. of 21 variables: 2 3 4 5 6 7 8 9 10 11 ... ## \$ X : int : int 0 2500 5000 7000 2000 3600 8000 6000 25600 ## \$ loan amnt 19750 ... ## \$ term : chr "36 months" "36 months" "36 months" "36 months" ... \$ int rate ## : num 0 13.98 15.95 9.91 5.42 ... 0 85.4 175.7 225.6 60.3 ... ## \$ installment : num "A" "C" "D" "B" ... ## \$ grade : chr ## \$ emp length "< 1 year" "4 years" "4 years" "10+ years" : chr ## \$ home ownership : chr "RENT" "RENT" "MORTGAGE" ... 0 20004 59000 53796 30000 ... ## \$ annual inc : num "Charged Off" "Does not meet the credit ## \$ loan status : chr policy. Status: Fully Paid" "Charged Off" "Fully Paid" ... "major purchase" "other" ## \$ purpose : chr "debt consolidation" "other" ## \$ dti : num 0 19.9 19.6 10.8 3.6 ... ## \$ deling 2yrs : int 0003000000... : int 0 7 7 7 7 8 12 5 16 15 ... ## \$ open acc 0 0 0 0 0 0 0 0 0 0 ... ## \$ pub_rec : int "**6**0.00% " "0.213" "0.999" "0.472" ... ## \$ revol util : chr : int 1 10 15 20 15 25 49 9 32 44 ... ## \$ total acc ## \$ total pymnt inv: num 0 3075 2949 8082 2162 ...

```
## $ total rec prncp: num 0 2500 1909 7000 2000 ...
## $ total rec int : num 0 575 874 1082 162 ...
## $ repay fail
                  : int 1010000000...
## - attr(*, "na.action")= 'omit' Named int [1:61] 1 1124 3070 3541
3647 3669 3887 4261 5132 6115 ...
     ... attr(*, "names")= chr [1:61] "1" "1124" "3070" "3541" ...
data4$repay fail=data2["repay fail"]
# changing repay fail column to be not nested
str(data4)
## 'data.frame':
                   38419 obs. of 6 variables:
## $ loan amnt : int 0 2500 5000 7000 2000 3600 8000 6000 25600
19750 ...
## $ installment : num 0 85.4 175.7 225.6 60.3 ...
## $ total pymnt inv: num 0 3075 2949 8082 2162 ...
## $ total rec prncp: num 0 2500 1909 7000 2000 ...
## $ total rec int : num 0 575 874 1082 162 ...
## $ repay fail :'data.frame': 38419 obs. of 1 variable:
##
     ..$ repay fail: int 1 0 1 0 0 0 0 0 0 ...
data4$repay fail <- unlist(data4$repay_fail$repay_fail)</pre>
head(data4)
    loan amnt installment total pymnt inv total rec prncp
total rec int
                                                     0.00
## 2
                     0.00
                                     0.00
0.00
## 3
         2500
                    85.42
                                  3075.29
                                                  2500.00
575.29
## 4
         5000
                   175.67
                                  2948.76
                                                  1909.02
873.81
## 5
                   225.58
         7000
                                  8082.39
                                                  7000.00
1082.39
## 6
         2000
                    60.32
                                  2161.66
                                                  2000.00
161.66
## 7
         3600
                   116.59
                                  4206.03
                                                  3600.00
606.03
##
    repay fail
## 2
## 3
             0
## 4
             1
## 5
             0
## 6
             0
## 7
             0
data4 <- data.frame(data4)</pre>
str(data4)
```

```
## 'data.frame':
                    38419 obs. of 6 variables:
                    : int 0 2500 5000 7000 2000 3600 8000 6000 25600
## $ loan amnt
19750 ...
## $ installment : num 0 85.4 175.7 225.6 60.3 ...
## $ total pymnt inv: num 0 3075 2949 8082 2162 ...
## $ total rec prncp: num 0 2500 1909 7000 2000 ...
## $ total rec int : num 0 575 874 1082 162 ...
## $ repay fail
                     : int 1010000000...
#splitting the data into training and testing- the caret package
install.packages("caret")
## Installing package into '/home/vaasala/R/x86 64-pc-linux-gnu-
library/4.3'
## (as 'lib' is unspecified)
library("caret")
## Loading required package: lattice
#partitioning data frame into training and testing sets
head(data4)
##
     loan amnt installment total pymnt inv total rec prncp
total rec int
## 2
                      0.00
                                      0.00
                                                      0.00
0.00
## 3
          2500
                     85.42
                                   3075.29
                                                   2500.00
575.29
                    175.67
                                   2948.76
## 4
          5000
                                                   1909.02
873.81
## 5
                    225.58
          7000
                                   8082.39
                                                   7000.00
1082.39
                                   2161.66
## 6
          2000
                     60.32
                                                   2000.00
161.66
## 7
          3600
                    116.59
                                   4206.03
                                                   3600.00
606.03
##
     repay fail
## 2
              1
## 3
              0
## 4
              1
## 5
              0
## 6
              0
## 7
              0
col <- c("loan_amnt","installment","total_pymnt_inv",</pre>
"total_rec_prncp", "total_rec_int", "repay_fail")#assigning values to
col object for iteration
all indices <- NULL #assigning the all indices vector as null object
for (i in col) { #for loop for partitioning each column
  train indices <- createDataPartition(unlist(data4[i]), times=1,</pre>
p=.6, list=FALSE) #partition each column 80% as training set
```

```
all indices <- union(all indices, train indices) #combine train
indices columns together in each iteration of i
}
#create training set
data4 train <- data4[all indices , ]#selecting the rows for train</pre>
indices
#create testing set
data4 test <- data4[-all indices, ]#selecting the rows for test</pre>
indices by reducing train indices
#view number of rows in each set
data4 train <- data.frame(data4 train)</pre>
data4_test <- data.frame(data4_test)</pre>
#observation of data4 train
head(data4 train)
##
      loan amnt installment total pymnt inv total rec prncp
total rec int
## 3
           2500
                      85.42
                                     3075.29
                                                      2500.00
575.29
## 4
           5000
                     175.67
                                     2948.76
                                                      1909.02
873.81
## 6
           2000
                      60.32
                                     2161.66
                                                      2000.00
161.66
           8000
                     243.49
## 8
                                     8724.97
                                                      8000.00
724.97
## 9
           6000
                     186.61
                                     6717.95
                                                      6000.00
717.95
## 10
          25600
                     599.26
                                    32659.13
                                                     25600.00
7240.06
##
      repay_fail
## 3
## 4
               1
## 6
               0
## 8
               0
## 9
               0
## 10
nrow(data4_train)
## [1] 38226
str(data4 train)
## 'data.frame':
                    38226 obs. of 6 variables:
## $ loan amnt
                      : int 2500 5000 2000 8000 6000 25600 6250 9000
4500 10500 ...
## $ installment : num 85.4 175.7 60.3 243.5 186.6 ...
## $ total pymnt inv: num 3075 2949 2162 8725 6718 ...
```

```
## $ total rec prncp: num 2500 1909 2000 8000 6000 ...
## $ total rec int : num 575 874 162 725 718 ...
## $ repay fail
                   : int 0 1 0 0 0 0 1 0 0 0 ...
#observation of data4 test
head(data4 test)
##
        loan_amnt installment total_pymnt_inv total_rec_prncp
total rec int
## 140
            12800
                       427.72
                                     11334.69
                                                      8357.55
2318.62
## 502
            2000
                        42.87
                                      2411.67
                                                      2000.00
411.67
## 590
            8900
                       189.86
                                      6742.15
                                                      6225.00
523.23
## 797
            35000
                       961.50
                                     15297.39
                                                      6005.16
9355.32
## 1213
            22750
                       577.09
                                     20355.34
                                                     16775.00
3702.41
## 1351
                        49.75
                                      1731.54
            1500
                                                      1500.00
290.82
##
        repay fail
## 140
                 1
## 502
                 0
## 590
                 0
## 797
                 1
## 1213
                 0
## 1351
nrow(data4 test)
## [1] 193
str(data4 test)
## 'data.frame':
                  193 obs. of 6 variables:
## $ loan amnt
                   : int 12800 2000 8900 35000 22750 1500 6000 5000
7500 12500 ...
## $ installment
                  : num 427.7 42.9 189.9 961.5 577.1 ...
## $ total pymnt inv: num 11335 2412 6742 15297 20355 ...
## $ total rec prncp: num 8358 2000 6225 6005 16775 ...
## $ total rec int : num
                            2319 412 523 9355 3702 ...
## $ repay fail
                            1 0 0 1 0 0 0 0 0 0 ...
                     : int
#utilizing the logit link function
model logit <- glm(repay fail ~ loan amnt + installment +
total pymnt inv + total rec prncp + total rec int,
                   family = binomial(link = "logit"), #linkage
                   data = data4 train) #data
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
#utilizing the probit link function
model probit <- glm(repay fail ~ loan amnt + installment +
total_pymnt_inv + total_rec_prncp + total_rec_int,
                   family = binomial(link = "probit"), #linkage
                   data = data4 train) #data
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#utilizing the complementary log log(cloglog) link function
model cloglog <- glm(repay fail ~ loan amnt + installment +</pre>
total pymnt inv + total_rec_prncp + total_rec_int,
                    family = binomial(link = "cloglog"), #linkage
                    data = data4 train) #data
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#(part4)validation
#holdout validation for model selection using testing dataset
#logit
predictions1 <- predict(model logit, data4 test)</pre>
# predicting the target variable
print(predictions1)
                                  590
                                              797
##
                      502
                                                         1213
          140
1351
    9.2706443
               -4.1247190 -4.1977578 75.4194935 -2.5305342
##
2.3202532
##
         2393
                     2501
                                 2671
                                             2893
                                                         3113
3264
               -4.4756823 -7.1224448 -8.4502704
## -3.8355939
                                                  -3.0417280 -
14.6862220
                                                         3789
##
         3411
                     3632
                                 3731
                                             3785
4142
## -5.7426216
               -4.8254636 -2.6341456 -20.8732451 -3.2200314
9.3868562
##
         4586
                     4711
                                 4808
                                             5064
                                                         5099
5177
## -2.9599825
               -3.2083643 -2.7551233
                                       36.5691842
                                                   -3.9667741 -
13.1517186
         5266
                     5662
                                             5927
                                                        5973
##
                                 5753
5988
## 24.9684368 -2.1579897 -11.8860876 12.8660614 -9.8336269 -
```

5.3995148 ## 62	32	6329	6371	6385	7253	
7457 ## -4.18747	55	14.9728796	-5.8130321	-7.6542991	-11.7676160	
31.8676479	.59	7715	7781	7854	7980	
8293						
## -4.10322 7.6098219	83	-6.3663807	-6.2065095	-5.5005031	11.6619882	-
	60	9111	9333	9353	9359	
## -7.03328	30	2.5099091	-6.8369178	-13.6839433	-14.7071295	-
6.5089092 ## 96	29	10077	10145	10191	10497	
10652 ## -5.44711	97	-19 2966049	-8 1615038	-5.7192716	-6.3748982	_
10.9668723						
## 110 12045	62	11138	11718	11734	11807	
## -9.06463 3.7554922	40	4.0911873	20.4418892	19.6929665	-5.2910459	-
## 120	62	13249	13281	13509	13526	
13532 ## -5.97155	59	-5.6505304	-6.0845491	-8.8592058	-5.3011798	-
5.4852887 ## 137	44	13771	13786	13939	14127	
15106 ## -6.11071	77	-2.8892770	-6.9566397	2 2657256	-10.2917890	
32.7661981						-
## 154 16142	73	15519	15893	16039	16133	
## -7.55807 4.5370417	75	-2.9198963	-6.7257195	7.1272177	15.0577252	-
## 165	07	16640	16730	16738	17005	
	51	54.5216955	-4.3291498	-8.0398538	-13.2834373	-
3.2587144 ## 177	70	17835	17907	17980	18248	
18603 ## -2.92129	12	_0_0152070	_31_5221/197	1.7823059	-5.0785401	
3.4359626						-
## 186 19753	50	18857	19040	19295	19711	
## -4.18774 3.1961072	46	-17.7964633	-2.6826255	-4.7655060	-7.1258086	-
## 202	96	20406	20688	20726	20746	
	13	-10.0837292	-0.2909281	-4.5646156	-12.8276629	-
6.0469728 ## 208	64	20961	21294	21900	22098	

22209 ## -9.2346810	-12.5620184	-2.1755154	-8.9068577	-20,4480020	_
3.0138975					
## 22338 23642	22633	22668	23182	23510	
## -10.4411664	-5.9832080	-7.1609497	-12.6277678	-3.2641054	-
6.1525730 ## 23927	23943	23976	24031	24125	
24184 ## -7.0473776	-14.7992124	18.8723099	-10.8473878	-5.2375477	-
3.4615096 ## 24839	25041	25219	25284	25515	
25529 ## 13.1826037	-2.6522048	3.2898882	-2.4639177	-5.3157536	-
10.8020503 ## 25618	25879	26036	26210	26422	
27102					
## -13.6364586 10.1641774	-2.2008199	-4.7341246	-17.9008372	11.9504404	-
## 27336 28120	27550	27581	27668	28048	
## -3.3756442	-7.6874712	45.7040574	-2.5090754	-3.6373153	-
6.1856847 ## 28444	28565	28575	28613	29328	
29501 ## 0.1603372	-8.7133223	-8.0734225	-4.2603834	-3.4415838	_
4.2167028	20017	20064	20140	20445	
## 29834 30616	30017	30064	30140	30445	
## -0.2592817 8.0307697	-3.1994937	-4.5554383	26.5415713	-8.9730748	
## 30777 33031	30895	31048	31113	31824	
## -34.9147717	-10.9410051	-15.9210982	16.9183806	-7.3483869	-
12.6014628 ## 33051	33066	33172	33403	33428	
33627 ## 20.6089644	-2.7571037	-11.8502944	-3.3333153	-4.8225988	_
4.8386027 ## 34183	34579	34629	34816	35011	
35056					
## -3.3582746 3.3942424	-8.4094921	-9.4867425	-5.6742250	-12.6753112	-
## 35090	35166	35187	35237	35467	
35545 ## -6.3601079	-4.2817417	-4.4647454	5.6451791	-3.8392457	
33.4433036 ## 35691	35814	36003	36267	36355	
36415 ## -6.8015948	-3.0920879	-4.3098488	-11.1287057	20.5431051	_

```
12.8322915
##
         36565
                      36626
                                  36658
                                               36961
                                                            37019
37251
## -4.8376705
                 -6.6126002 -7.9529577
                                         37.4084673 -17.7354229
6.1178985
##
         37327
                      37362
                                  37414
                                               37735
                                                            37825
37866
##
   -6.0380503
                -5.2187241 -2.8799227 38.4190636 -8.7903540 -
16.1596858
##
         37894
## -9.6877487
#omitting any missing values
predictions1 <- na.omit(unlist(predictions1))</pre>
data4 testvec <- na.omit(unlist(data4 test$repay fail))</pre>
#normalization of predictions1
predictions1 <- scale(predictions1)</pre>
print(predictions1)
##
                   [,1]
## 140
          9.094876e-01
## 502
         -9.328351e-02
## 590
         -9.875116e-02
## 797
          5.861362e+00
## 1213
          2.605647e-02
## 1351
          4.179802e-02
## 2393
         -7.163973e-02
## 2501
         -1.195565e-01
## 2671
         -3.176920e-01
## 2893
         -4.170924e-01
## 3113
         -1.221127e-02
## 3264
         -8.839130e-01
## 3411
         -2.143990e-01
## 3632
         -1.457409e-01
## 3731
          1.830017e-02
## 3785
         -1.347071e+00
## 3789
         -2.555898e-02
## 4142
         -4.872048e-01
## 4586
         -6.091839e-03
## 4711
         -2.468559e-02
## 4808
         9.243829e-03
## 5064
          2.953044e+00
## 5099
         -8.145982e-02
## 5177
         -7.690408e-01
## 5266
          2.084618e+00
## 5662
          5.394500e-02
## 5753
         -6.742962e-01
## 5927
          1.178639e+00
## 5973
         -5.206499e-01
```

```
## 5988
         -1.887142e-01
## 6232
         -9.798143e-02
## 6329
          1.336354e+00
## 6371
         -2.196699e-01
## 6385
         -3.575063e-01
## 7253
         -6.654275e-01
## 7457
          2.601089e+00
## 7459
         -9.167472e-02
## 7715
         -2.610933e-01
## 7781
         -2.491254e-01
## 7854
         -1.962741e-01
## 7980
          1.088503e+00
## 8293
         -3.541768e-01
## 8360
         -3.110173e-01
## 9111
          4.033819e-01
## 9333
         -2.963175e-01
## 9353
         -8.088829e-01
## 9359
         -8.854782e-01
## 9507
         -2.717630e-01
## 9629
         -1.922779e-01
## 10077 -1.229044e+00
## 10145 -3.954755e-01
## 10191 -2.126510e-01
## 10497 -2.617309e-01
## 10652 -6.054841e-01
## 11062 -4.630834e-01
## 11138
         5.217557e-01
## 11718
         1.745762e+00
## 11734
          1.689698e+00
## 11807 -1.805942e-01
## 12045 -6.564335e-02
## 12062 -2.315369e-01
## 13249 -2.075051e-01
## 13281 -2.399955e-01
## 13509 -4.477051e-01
## 13526 -1.813529e-01
## 13532 -1.951352e-01
## 13744 -2.419545e-01
## 13771 -7.988529e-04
## 13786 -3.052799e-01
## 13939
         3.839323e-02
## 14127 -5.549477e-01
## 15106 -2.237372e+00
## 15473 -3.503032e-01
## 15519 -3.091001e-03
## 15893 -2.879933e-01
## 16039
         7.490316e-01
## 16133
          1.342706e+00
## 16142 -1.241498e-01
## 16507 6.711273e-01
```

```
## 16640 4.296962e+00
## 16730 -1.085871e-01
## 16738 -3.863688e-01
## 17005 -7.789012e-01
## 17293 -2.845478e-02
## 17770 -3.195426e-03
## 17835 -5.192710e-01
## 17907 -2.144243e+00
## 17980
         3.489138e-01
## 18248 -1.646861e-01
## 18603 -4.172350e-02
## 18650 -9.800157e-02
## 18857 -1.116744e+00
## 19040
         1.467098e-02
## 19295 -1.412525e-01
## 19711 -3.179438e-01
## 19753 -2.376803e-02
## 20296 -2.914310e-01
## 20406 -5.393724e-01
         1.937124e-01
## 20688
## 20726 -1.262140e-01
## 20746 -7.447821e-01
## 20769 -2.371826e-01
## 20864 -4.758130e-01
## 20961 -7.248961e-01
## 21294 5.263303e-02
## 21900 -4.512723e-01
## 22098 -1.315237e+00
## 22209 -1.012790e-02
## 22338 -5.661300e-01
## 22633 -2.324092e-01
## 22668 -3.205744e-01
## 23182 -7.298181e-01
## 23510 -2.885835e-02
## 23642 -2.450878e-01
## 23927 -3.120725e-01
## 23943 -8.923715e-01
## 23976
         1.628264e+00
## 24031 -5.965396e-01
## 24125 -1.765894e-01
## 24184 -4.363594e-02
## 24839
         1.202335e+00
## 25041
          1.694827e-02
## 25219
         4.617708e-01
## 25284
         3.104336e-02
## 25515 -1.824438e-01
## 25529 -5.931456e-01
## 25618 -8.053282e-01
## 25879
         4.579801e-02
## 26036 -1.389033e-01
```

```
## 26210 -1.124558e+00
## 26422
         1.110096e+00
## 27102 -5.453947e-01
## 27336 -3.720809e-02
## 27550 -3.599896e-01
## 27581
         3.636877e+00
## 27668
         2.766287e-02
## 28048 -5.679668e-02
## 28120 -2.475665e-01
## 28444 2.274939e-01
## 28565 -4.367844e-01
## 28575 -3.888817e-01
## 28613 -1.034393e-01
## 29328 -4.214430e-02
## 29501 -1.001694e-01
## 29834
         1.960815e-01
## 30017 -2.402154e-02
## 30064 -1.255270e-01
## 30140
         2.202382e+00
## 30445 -4.562293e-01
## 30616
         8.166711e-01
## 30777 -2.398214e+00
## 30895 -6.035477e-01
## 31048 -9.763553e-01
         1.481994e+00
## 31113
## 31824 -3.346059e-01
## 33031 -7.278489e-01
## 33051
         1.758269e+00
## 33066
         9.095583e-03
## 33172 -6.716167e-01
## 33403 -3.403937e-02
## 33428 -1.455265e-01
## 33627 -1.467245e-01
## 34183 -3.590781e-02
## 34579 -4.140398e-01
## 34629 -4.946823e-01
## 34816 -2.092789e-01
## 35011 -7.333771e-01
## 35056 -3.860035e-02
## 35090 -2.606238e-01
## 35166 -1.050382e-01
## 35187 -1.187377e-01
## 35237 6.380868e-01
## 35467 -7.191310e-02
## 35545 2.719042e+00
## 35691 -2.936733e-01
## 35814 -1.598119e-02
## 36003 -1.071422e-01
## 36267 -6.175989e-01
## 36355 1.753339e+00
```

```
## 36415 -7.451286e-01
## 36565 -1.466547e-01
## 36626 -2.795252e-01
## 36658 -3.798638e-01
## 36961 3.015873e+00
## 37019 -1.112175e+00
## 37251 -2.424921e-01
## 37327 -2.365147e-01
## 37362 -1.751803e-01
## 37414 -9.859517e-05
## 37735
       3.091526e+00
## 37825 -4.425509e-01
## 37866 -9.942159e-01
## 37894 -5.097295e-01
## attr(,"scaled:center")
## [1] -2.878606
## attr(,"scaled:scale")
## [1] 13.35835
print(data4 testvec)
##
    1 0 0 0 1 0
## [38] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 1 0 0 1
0 0 0 0 1 0
## [186] 0 0 0 0 1 0 0 0
# computing model performance metrics
df1 <- data.frame( R21 = R2(predictions1, data4_testvec), #R2 error</pre>
         RMSE1 = RMSE(predictions1, data4 testvec), #root mean
square error
         MAE1 = MAE(predictions1, data4 testvec)) #mean absolute
error
#probit
predictions2 <- predict(model_probit, data4 test)</pre>
# predicting the target variable
print(predictions2)
                            590
                                     797
##
        140
                  502
                                              1213
1351
    3.3606134
            -2.0025601 -1.9548521 30.2375564 -1.1000199
1.3133606
```

11.11	2202	2501	2671	2002	2112	
## 3264	2393	2501	2671	2893	3113	
## -1.8 5.950380	954779 ค	-2.1555498	-3.1391215	-3.4332836	-1.5276791	-
##	3411	3632	3731	3785	3789	
4142 ## -2.6		-2.2391024	-1.4420511	-8.6242870	-1.6447702	-
4.085362 ##	4586	4711	4808	5064	5099	
	573364	-1.6565415	-1.4849874	14.5117762	-1.9849868	-
5.126606 ##	5 5266	5662	5753	5927	5973	
5988 ## 9.8	695769	-1.2443177	-5.0609323	5.3108723	-4.2485708	_
2.553736 ##	7 6232	6329	6371	6385	7253	
7457						
## -2.0 12.58234		5.7117019	-2.0902352	-3.3915957	-4.9920671	
## 8293	7459	7715	7781	7854	7980	
## -2.0 3.351343		-2.8298786	-2.4210284	-2.5204546	4.3443734	-
##	8360	9111	9333	9353	9359	
9507 ## -3.1		0.6186157	-3.0574481	-5.6262095	-5.9695226	-
2.943010 ##	4 9629	10077	10145	10191	10497	
	675527	-7.6519881	-3.6032145	-2.5083516	-2.8173813	-
4.508360 ##	5 11062	11138	11718	11734	11807	
12045 ## -3.9	075928	1.2175886	7.7681095	7.4488037	-2.4278898	-
1.856663 ##	1 12062	13249	13281	13509	13526	
13532 ## -2.7	365915	-2.6045224	-2.7666250	-3.8425584	-2.4821862	_
2.550159 ##		13771	13786	13939	14127	
15106						
## -2.7 12.51869		-1.5152783	-3.0823136	-1.3281516	-3.7679372	-
## 16142	15473	15519	15893	16039	16133	
		-1.5276478	-3.1068620	2.4424928	5.6332357	-
##	16507	16640	16730	16738	17005	
17293						

## 2.0702607	21.6325960	-2.0401271	-3.6004230	-5.3335519	-
1.6793899 ## 17770	17835	17907	17980	18248	
18603 ## -1.5486811	-4 2075858	-12.4768870	0.5143090	-2.4016021	_
1.3742938					
## 18650 19753	18857	19040	19295	19711	
## -2.0377036 1.6747090	-7.3436263	-1.4562871	-2.2721703	-3.1813154	-
## 20296 20769	20406	20688	20726	20746	
## -3.0162363 2.7563238	-4.3202299	-0.5073647	-2.1606673	-5.4291544	-
## 20864 22209	20961	21294	21900	22098	
## -3.9843040	-5.1474388	-1.2597980	-3.8518920	-7.7911133	-
1.5820175 ## 22338	22633	22668	23182	23510	
23642 ## -4.4283505	-2.7034969	-3.2224761	-5.2813734	-1.7008881	-
2.7197497 ## 23927	23943	23976	24031	24125	
24184 ## -2.7656793	-6.0230825	7.4336944	-4.3783757	-2.4434664	-
1.7670749 ## 24839	25041	25219	25284	25515	
25529 ## 5.1178082	-1.4369446	0.9751478	-1.3654999	-2.4553541	-
4.6250685 ## 25618	25879	26036	26210	26422	
27102 ## -5.4269025	-1.2943200	-2.2292964	-7.0792633	4.5271157	_
4.1295462 ## 27336	27550	27581	27668	28048	
28120					
## -1.7282715 2.8317208	-3.4295952	18.9102025	-1.38014/1	-1.8238733	-
## 28444 29501	28565	28575	28613	29328	
## -0.3313231 2.0259157	-3.8648051	-3.5807350	-2.0375927	-1.7453305	-
## 29834 30616	30017	30064	30140	30445	
## -0.4836376	-1.6155967	-2.1995972	10.6548489	-3.5209371	
2.8151716 ## 30777	30895	31048	31113	31824	
33031 ## -13.7328516	-4.7599069	-6.2688158	6.6595229	-3.2481085	-
5.2764352					

```
##
                    33066
        33051
                                33172
                                            33403
                                                        33428
33627
##
   8.5219986
               -1.4943869 -5.0385359 -1.7248602 -2.3010657
2.3049761
##
        34183
                    34579
                                34629
                                            34816
                                                        35011
35056
## -1.6578375
               -3.6717601 -3.8324092
                                       -2.5664486
                                                   -5.3858372
1.7469905
##
        35090
                    35166
                                35187
                                            35237
                                                        35467
35545
## -2.8807878
               -1.9222126 -2.0689516
                                        1.8526874 -1.8896492
12.9009978
##
        35691
                    35814
                                36003
                                            36267
                                                        36355
36415
## -3.0884087
                -1.5931817 -2.1223639
                                       -4.3318204
                                                    7.8117998
5.2721408
##
        36565
                    36626
                                36658
                                            36961
                                                        37019
37251
## -2.1945410
               -2.9771034 -3.5017370 15.0127094
                                                   -7.1819950
2.8050722
        37327
##
                    37362
                                37414
                                            37735
                                                        37825
37866
## -2.7239878
               -2.4736459 -1.5196627 15.0992629 -3.8242873
6.6756813
##
        37894
## -3.8147708
#omitting any missing values
predictions2 <- na.omit(unlist(predictions2))</pre>
data4 testvec <- na.omit(unlist(data4 test$repay fail))</pre>
#normalization of predictions2
predictions2 <- scale(predictions2)</pre>
print(predictions2)
##
## 140
         0.891785097
## 502
        -0.111230754
## 590
        -0.102308444
## 797
         5.918286617
## 1213
         0.057561500
## 1351
         0.017662716
## 2393
        -0.091204332
## 2501
        -0.139842752
## 2671
        -0.323789435
## 2893
        -0.378803365
## 3113
        -0.022418946
## 3264
        -0.849548451
## 3411
        -0.232887961
## 3632
        -0.155468671
```

```
## 3731
         -0.006404857
## 3785
         -1.349620123
## 3789
         -0.044317218
## 4142
         -0.500754499
## 4586
         -0.027965418
## 4711
         -0.046518672
## 4808
         -0.014434768
## 5064
          2.977265455
## 5099
         -0.107944201
## 5177
         -0.695487082
## 5266
          2.109085545
## 5662
          0.030575047
## 5753
         -0.683204746
## 5927
          1.256520739
## 5973
         -0.531277639
## 5988
         -0.214311303
## 6232
         -0.120298010
## 6329
          1.331483539
## 6371
         -0.239839135
## 6385
         -0.371006936
## 7253
         -0.670325634
## 7457
          2.616425264
## 7459
         -0.112955549
## 7715
         -0.265955104
## 7781
         -0.189492319
## 7854
         -0.208086914
## 7980
          1.075767003
## 8293
         -0.363478989
## 8360
         -0.322604847
## 9111
          0.378979179
## 9333
         -0.308514940
## 9353
         -0.788922380
## 9359
         -0.853128492
## 9507
         -0.287112922
## 9629
         -0.198193239
## 10077 -1.167781659
## 10145 -0.410583687
## 10191 -0.205823418
## 10497 -0.263617878
## 10652 -0.579863268
## 11062 -0.467508243
## 11138
          0.490998541
## 11718
          1.716071026
## 11734
          1.656354734
## 11807 -0.190775525
## 12045 -0.083945224
## 12062 -0.248508634
## 13249 -0.223809203
## 13281 -0.254125470
## 13509 -0.455345569
```

```
## 13526 -0.200929992
## 13532 -0.213642361
## 13744 -0.257026956
## 13771 -0.020099758
## 13786 -0.313165281
## 13939
         0.014896506
## 14127 -0.441389971
## 15106 -2.077948642
## 15473 -0.365889725
## 15519 -0.022413083
## 15893 -0.317756296
## 16039
         0.720079010
## 16133
          1.316808857
## 16142 -0.127641610
## 16507
          0.650464498
## 16640
         4.308994730
## 16730 -0.118256502
## 16738 -0.410061631
## 17005 -0.734189821
## 17293 -0.050791761
## 17770 -0.026346720
## 17835 -0.523612662
## 17907 -2.070129877
         0.359471818
## 17980
## 18248 -0.185859216
## 18603 0.006267047
## 18650 -0.117803255
## 18857 -1.110112112
## 19040 -0.009067267
## 19295 -0.161653003
## 19711 -0.331680502
## 19753 -0.049916333
## 20296 -0.300807558
## 20406 -0.544679259
## 20688 0.168399341
## 20726 -0.140799813
## 20746 -0.752069314
## 20769 -0.252198952
## 20864 -0.481854704
## 20961 -0.699383111
## 21294
         0.027679951
## 21900 -0.457091134
## 22098 -1.193800723
## 22209 -0.032581253
## 22338 -0.564899874
## 22633 -0.242319322
## 22668 -0.339378342
## 23182 -0.724431450
## 23510 -0.054812330
## 23642 -0.245358909
```

```
## 23927 -0.253948608
## 23943 -0.863145203
## 23976 1.653529021
## 24031 -0.555553625
## 24125 -0.193688657
## 24184 -0.067190531
## 24839
         1.220414081
## 25041 -0.005449851
## 25219
         0.445657477
## 25284
         0.007911677
## 25515 -0.195911866
## 25529 -0.601689895
## 25618 -0.751648164
## 25879
        0.021223675
## 26036 -0.153634775
## 26210 -1.060671182
## 26422
         1.109943296
## 27102 -0.509017769
## 27336 -0.059933542
## 27550 -0.378113569
         3.799855152
## 27581
## 27668
         0.004050242
## 28048 -0.078187359
## 28120 -0.266299637
## 28444
         0.201322475
## 28565 -0.459506120
## 28575 -0.406379600
## 28613 -0.117782522
## 29328 -0.063123899
## 29501 -0.115598692
## 29834
         0.172836762
## 30017 -0.038861216
## 30064 -0.148080448
## 30140
         2.255946408
## 30445 -0.395196244
## 30616
         0.789777061
## 30777 -2.305019245
## 30895 -0.626907256
## 31048 -0.909102028
## 31113 1.508744170
## 31824 -0.344172083
## 33031 -0.723507899
## 33051
         1.857062679
## 33066 -0.016192669
## 33172 -0.679016187
## 33403 -0.059295572
## 33428 -0.167056996
## 33627 -0.167788323
## 34183 -0.046761036
## 34579 -0.423403031
```

```
## 34629 -0.453447463
## 34816 -0.216688675
## 35011 -0.743968165
## 35056 -0.063434351
## 35090 -0.275476100
## 35166 -0.096204241
## 35187 -0.123647227
## 35237 0.609774140
## 35467 -0.090114256
## 35545 2.676019136
## 35691 -0.314305171
## 35814 -0.034669176
## 36003 -0.133636356
## 36267 -0.546846896
## 36355 1.724241944
## 36415 -0.722704779
## 36565 -0.147134848
## 36626 -0.293488949
## 36658 -0.391605458
## 36961 3.070949526
## 37019 -1.079883980
## 37251 -0.261315832
## 37327 -0.246151509
## 37362 -0.199332785
## 37414 -0.020919716
## 37735 3.087136682
## 37825 -0.451928514
## 37866 -0.985193645
## 37894 -0.450148759
## attr(,"scaled:center")
## [1] -1.407804
## attr(,"scaled:scale")
## [1] 5.347048
print(data4 testvec)
    ##
1 0 0 0 1 0
## [38] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0 1
0 0 0 0 1 0
## [186] 0 0 0 0 1 0 0 0
# computing model performance metrics
df2 <- data.frame( R22 = R2(predictions2, data4_testvec), #R2 error</pre>
         RMSE2 = RMSE(predictions2, data4 testvec), #root mean
```

```
square error
            MAE2 = MAE(predictions2, data4 testvec)) #mean absolute
error
#cloglog
predictions3 <- predict(model cloglog, data4 test)</pre>
# predicting the target variable
print(predictions3)
                           502
                                          590
                                                        797
##
             140
1213
## 1.065591e+15 -3.188628e+14 -5.654685e+14 1.120646e+16 -
1.031412e+15
                          2393
                                         2501
##
            1351
                                                       2671
2893
## -5.736446e+13 -6.386008e+14 -6.413651e+14 -1.257551e+15 -
1.594137e+15
##
                          3264
            3113
                                         3411
                                                       3632
3731
## -7.783694e+14 -2.423272e+15 -9.481514e+14 -1.266676e+15 -
1.017901e+14
##
            3785
                          3789
                                         4142
                                                       4586
4711
## -4.807300e+15 -5.351019e+14 -1.891959e+15 -3.118149e+14 -
3.431986e+14
##
                          5064
            4808
                                         5099
                                                       5177
5266
## -1.927856e+14 5.532038e+15 -5.090162e+14 -2.281858e+15
3.945045e+15
##
            5662
                          5753
                                         5927
                                                       5973
5988
## -7.542826e+13 -2.487148e+15 1.657695e+15 -2.116887e+15 -
1.051046e+15
                          6329
##
            6232
                                         6371
                                                       6385
7253
## -6.095581e+14 2.532420e+15 -1.221875e+15 -1.657618e+15 -
2.970304e+15
            7457
                          7459
##
                                         7715
                                                       7781
7854
## 5.011655e+15 -5.762673e+14 -1.801182e+15 -1.248308e+15 -
1.079832e+15
##
            7980
                          8293
                                         8360
                                                       9111
## 9.358578e+14 -1.986602e+15 -1.566415e+15 5.551240e+14 -
1.475310e+15
##
            9353
                          9359
                                         9507
                                                       9629
10077
## -2.157820e+15 -2.421152e+15 -1.274149e+15 -1.591914e+15 -
3.625126e+15
```

## 10145	10191	10497	10652	
11062	1 665706 15	1 065227 15	1 767167 15	
## -1.423796e+15 2.338999e+15	-1.665/86e+15	-1.96533/e+15	-1./6/16/e+15	-
## 11138	11718	11734	11807	
12045 ## 9.640831e+14	3.073827e+15	3.118433e+15	-1.325855e+15	_
6.231003e+14				
## 12062 13526	13249	13281	13509	
## -1.092857e+15	-1.049664e+15	-1.240494e+15	-1.944788e+15	-
8.367113e+14 ## 13532	13744	13771	13786	
13939	13744	13771	13700	
## -9.659951e+14	-1.280820e+15	-4.215975e+14	-1.333934e+15	-
1.041993e+14 ## 14127	15106	15473	15519	
15893				
## -1.521757e+15 1.423904e+15	-6.357688e+15	-1.477230e+15	-4.258233e+14	-
## 16039	16133	16142	16507	
16640				
## 1.373007e+15 8.393751e+15	2.265235e+15	-1.466840e+15	8.754568e+14	
## 16730	16738	17005	17293	
17770	1 570620 15	2 252447 15	2 101007 14	
## -1.192350e+15 2.218541e+14	-1.5/8638e+15	-2.35344/e+15	-3.10189/e+14	-
## 17835	17907	17980	18248	
18603 ## -2.112815e+15	E 6625000.15	4 2504270+14	7 6022020114	
2.013629e+15	-3.0033696+13	4.2594276+14	-7.092393E+14	-
## 18650	18857	19040	19295	
19711 ## -6.024410e+14	<i>-1</i> 881130 <u>0</u> ±15	-1 /80266-1/	-6 700081 <u>o</u> ±1/	_
1.374386e+15	-4.0011336+13	-1.4002006+14	-0.7990016+14	_
## 19753	20296	20406	20688	
20726 ## -2.494320e+14	-1.524864e+15	-2.696422e+15	2.879471e+14	_
9.717139e+14				
## 20746 21294	20769	20864	20961	
## -2.154895e+15	-1.207123e+15	-1.313990e+15	-2.158838e+15	
3.482846e+12	22222	22222	2222	
## 21900 22633	22098	22209	22338	
## -2.213101e+15	-4.010734e+15	-2.754824e+14	-2.699680e+15	-
1.883403e+15 ## 22668	23182	23510	22642	
23927	23102	23510	23642	

```
## -1.261182e+15 -2.040043e+15 -3.238319e+14 -2.016257e+15 -
1.372335e+15
##
           23943
                        23976
                                      24031
                                                    24125
24184
## -2.533775e+15 2.978016e+15 -1.862872e+15 -9.795661e+14 -
2.965336e+14
##
          24839
                        25041
                                      25219
                                                    25284
25515
## 2.169404e+15 -2.263741e+14 3.481447e+14 -1.399882e+14 -
1.165406e+15
           25529
                        25618
                                      25879
                                                    26036
26210
## -2.382497e+15 -2.451547e+15 -2.929831e+13 -9.022399e+14 -
3.430145e+15
##
           26422
                        27102
                                      27336
                                                    27550
27581
## 2.102450e+15 -1.720092e+15 -3.254985e+14 -1.373218e+15
6.368548e+15
##
          27668
                        28048
                                      28120
                                                    28444
28565
## -1.238815e+14 -4.433414e+14 -1.040592e+15 3.942395e+14 -
1.841114e+15
##
           28575
                        28613
                                      29328
                                                    29501
29834
## -1.819512e+15 -9.915565e+14 -4.236759e+14 -6.961049e+14
1.470168e+14
          30017
##
                        30064
                                      30140
                                                    30445
30616
## -7.097815e+14 -5.722446e+14 3.949163e+15 -1.208777e+15
1.417900e+15
##
           30777
                        30895
                                      31048
                                                    31113
31824
## -6.502047e+15 -2.275046e+15 -2.967996e+15 3.010196e+15 -
1.811196e+15
##
          33031
                        33051
                                      33066
                                                    33172
33403
## -2.076040e+15 2.732910e+15 -1.205163e+14 -2.631614e+15 -
4.183108e+14
##
          33428
                        33627
                                      34183
                                                    34579
34629
## -6.952269e+14 -6.747441e+14 -8.900155e+14 -1.438041e+15 -
1.642654e+15
                        35011
                                      35056
##
           34816
                                                    35090
35166
## -1.250288e+15 -2.855319e+15 -2.927560e+14 -1.277079e+15 -
1.028165e+15
##
          35187
                        35237
                                      35467
                                                    35545
35691
## -1.456772e+15 1.169571e+15 -6.892853e+14 5.136591e+15 -
1.400267e+15
```

```
##
           35814
                          36003
                                         36267
                                                        36355
36415
                                                3.161623e+15 -
## -4.904718e+14 -6.880526e+14 -2.129474e+15
2.035450e+15
##
           36565
                          36626
                                         36658
                                                        36961
37019
## -6.361604e+14 -1.346006e+15 -1.800704e+15
                                                6.250768e+15 -
3.887758e+15
##
           37251
                          37327
                                         37362
                                                        37414
37735
## -1.032187e+15 -1.452964e+15 -7.886487e+14 -3.386227e+14
6.054572e+15
##
           37825
                          37866
                                         37894
## -1.268683e+15 -4.297927e+15 -1.365341e+15
#omitting any missing values
predictions3 <- na.omit(unlist(predictions3))</pre>
data4 testvec <- na.omit(unlist(data4_test$repay_fail))</pre>
#normalization of predictions3
predictions3 <- scale(predictions3)</pre>
print(predictions3)
##
                   [,1]
          0.7756029578
## 140
## 502
          0.1597417989
## 590
          0.0500415475
## 797
          5.2866752713
## 1213
         -0.1572289925
## 1351
          0.2760668870
## 2393
          0.0175093447
## 2501
          0.0162796767
## 2671
         -0.2578248579
## 2893
         -0.4075522062
## 3113
         -0.0446654025
## 3264
         -0.7763850113
## 3411
         -0.1201913802
## 3632
         -0.2618840426
## 3731
          0.2563045378
## 3785
         -1.8368976444
## 3789
          0.0635498330
## 4142
         -0.5400353200
## 4586
          0.1628770000
## 4711
          0.1489162615
## 4808
          0.2158260640
          2.7624601365
## 5064
## 5099
          0.0751538362
## 5177
         -0.7134783661
## 5266
          2.0565013297
## 5662
          0.2680313763
```

```
## 5753
         -0.8047994940
## 5927
          1.0389952752
## 5973
         -0.6400923797
## 5988
         -0.1659628990
## 6232
          0.0304287097
## 6329
          1.4281083784
## 6371
         -0.2419547667
## 6385
         -0.4357910745
## 7253
         -1.0197269926
## 7457
          2.5309728684
## 7459
          0.0452378263
## 7715
         -0.4996538946
## 7781
         -0.2537132695
## 7854
         -0.1787683358
## 7980
          0.7178925333
## 8293
         -0.5821365450
## 8360
         -0.3952203455
## 9111
          0.5485266701
## 9333
         -0.3546927940
## 9353
         -0.6583009392
## 9359
         -0.7754417231
## 9507
         -0.2652081623
## 9629
         -0.4065630212
## 10077 -1.3110183793
## 10145 -0.3317772942
## 10191 -0.4394244274
## 10497 -0.5726768961
## 10652 -0.4845227576
## 11062 -0.7388968701
## 11138
          0.7304482790
## 11718
          1.6689481627
## 11734
          1.6887906126
## 11807 -0.2882090650
## 12045
          0.0244046032
## 12062 -0.1845623209
## 13249 -0.1653481877
## 13281 -0.2502370706
## 13509 -0.5635356653
## 13526 -0.0706182660
## 13532 -0.1281289589
## 13744 -0.2681760969
## 13771
         0.1140412256
## 13786 -0.2918033672
## 13939
          0.2552328472
## 14127 -0.3753542547
## 15106 -2.5265733631
## 15473 -0.3555469254
## 15519
         0.1121614117
## 15893 -0.3318253061
## 16039 0.9123543989
```

```
## 16133 1.3092535265
## 16142 -0.3509250702
## 16507
          0.6910237142
## 16640
         4.0354667707
## 16730 -0.2288208894
## 16738 -0.4006576367
## 17005 -0.7453238899
## 17293
         0.1635999580
## 17770
         0.2028952014
## 17835 -0.6382809706
## 17907 -2.2178099000
## 17980
         0.4910615764
## 18248 -0.0406040038
## 18603 -0.5941589542
## 18650
         0.0335946665
## 18857 -1.8697440761
## 19040
         0.2357366852
## 19295 -0.0008658143
## 19711 -0.3097978370
## 19753
         0.1906274449
## 20296 -0.3767364084
## 20406 -0.8978930428
## 20688
         0.4296755092
## 20726 -0.1306728993
## 20746 -0.6570001088
## 20769 -0.2353926491
## 20864 -0.2829311073
## 20961 -0.6587541897
## 21294 0.3031342438
## 21900 -0.6828922974
## 22098 -1.4825525197
## 22209
         0.1790391558
## 22338 -0.8993426256
## 22633 -0.5362292491
## 22668 -0.2594400361
## 23182 -0.6059093253
## 23510
         0.1575313249
## 23642 -0.5953283464
## 23927 -0.3088854581
## 23943 -0.8255414223
## 23976
         1.6263275421
## 24031 -0.5270961462
## 24125 -0.1341658815
## 24184
          0.1696747085
## 24839
          1.2666239797
## 25041
          0.2008845443
## 25219
          0.4564538544
          0.2393124754
## 25284
## 25515 -0.2168351711
## 25529 -0.7582467512
```

```
## 25618 -0.7889630678
## 25879
         0.2885518548
## 26036 -0.0997680418
## 26210 -1.2242832431
## 26422
         1.2368403118
## 27102 -0.4635820128
## 27336
         0.1567899495
## 27550 -0.3092781680
## 27581
          3.1345738838
## 27668
         0.2464773915
## 28048
          0.1043686486
## 28120 -0.1613124947
## 28444
         0.4769586779
## 28565 -0.5174175289
## 28575 -0.5078078700
## 28613 -0.1394997063
## 29328
         0.1131166566
## 29501 -0.0080708300
## 29834
         0.3669839711
## 30017 -0.0141547225
## 30064
         0.0470272487
## 30140
          2.0583330281
## 30445 -0.2361283403
## 30616
         0.9323242968
## 30777 -2.5907897991
## 30895 -0.7104478333
## 31048 -1.0187004694
## 31113
         1.6406424268
## 31824 -0.5041087020
## 33031 -0.6219220718
## 33051
          1.5172944645
## 33066
         0.2479744013
## 33172 -0.8690639097
## 33403
         0.1155032660
## 33428 -0.0076802601
## 33627
         0.0014313297
## 34183 -0.0943301663
## 34579 -0.3381139886
## 34629 -0.4291342587
## 34816 -0.2545940128
## 35011 -0.9685770430
## 35056
         0.1713551447
## 35090 -0.2665116636
## 35166 -0.1557847717
## 35187 -0.3464463289
## 35237
          0.8218576036
## 35467 -0.0050371988
         2.5865496340
## 35545
## 35691 -0.3213107815
## 35814 0.0834031316
```

```
## 36003 -0.0044888599
## 36267 -0.6456914937
## 36355 1.7080031932
## 36415 -0.6038661521
## 36565 0.0185949360
## 36626 -0.2971731533
## 36658 -0.4994414789
## 36961 3.0821806179
## 37019 -1.4278479465
## 37251 -0.1575736603
## 37327 -0.3447525726
## 37362 -0.0492380963
## 37414 0.1509518078
## 37735 2.9949048763
## 37825 -0.2627768229
## 37866 -1.6103077193
## 37894 -0.3057740435
## attr(,"scaled:center")
## [1] -6.779617e+14
## attr(,"scaled:scale")
## [1] 2.247996e+15
print(data4_testvec)
    ##
1 0 0 0 1 0
## [38] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 1 0 0 1
0 0 0 0 1 0
## [186] 0 0 0 0 1 0 0 0
# computing model performance metrics
df3 <- data.frame( R23 = R2(predictions3, data4_testvec), #R2 error</pre>
         RMSE3 = RMSE(predictions3, data4 testvec), #root mean
square error
         MAE3 = MAE(predictions3,data4 testvec)) #mean absolute
error
#observing results
print(df1)
##
        R21
               RMSE1
                       MAE1
## 1 0.5813747 0.7691173 0.4680241
print(df2)
```

```
R22
                   RMSE2
                              MAE2
## 1 0.5857539 0.7676999 0.4708263
print(df3)
##
           R23
                   RMSE3
                              MAE3
## 1 0.5626744 0.7752011 0.5054075
#results
#R22>R21>R23
#RMSE3>RMSE1>RMSE2
#MAE2>MAE1>MAE3
#considering the 3 error metrics the model 1 seems to be the most
plausible, the logistic regression model is suitable for this task
#cross validation for model selection
library(caret)
head (data4)
     loan amnt installment total pymnt inv total rec prncp
##
total_rec_int
                      0.00
                                       0.00
## 2
                                                       0.00
0.00
## 3
          2500
                     85.42
                                    3075.29
                                                    2500.00
575.29
## 4
          5000
                    175.67
                                    2948.76
                                                    1909.02
873.81
## 5
          7000
                    225.58
                                    8082.39
                                                    7000.00
1082.39
## 6
          2000
                     60.32
                                    2161.66
                                                    2000.00
161.66
                    116.59
## 7
          3600
                                    4206.03
                                                    3600.00
606.03
##
     repay fail
## 2
              1
## 3
              0
## 4
              1
## 5
              0
## 6
              0
## 7
              0
#assinging the equation
eqn <- unlist(repay_fail) ~ loan_amnt + installment + total_pymnt_inv
+ total_rec_prncp + total_rec_int
#fitting model(logit)
model logit crossval <- train(</pre>
  egn,
  data = data4, #dataset
 method = "glm", #model for validation
trControl = trainControl(method = "cv", number = 10), # 10-fold
```

```
cross-validation
  metric = "RMSE", #metric of evaluation
  family=binomial(link = "logit"), #family of link for glm
)
## Warning in train.default(x, y, weights = w, ...): You are trying to
do
## regression and your outcome only has two possible values Are you
trying to do
## classification? If so, use a 2 level factor as your outcome column.
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
print(model logit crossval)
## Generalized Linear Model
##
## 38419 samples
##
       5 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 34577, 34577, 34577, 34577,
34578, ...
## Resampling results:
##
     RMSE
##
                Rsquared
                           MAE
##
     0.1120959 0.9018555 0.02860973
```

```
#fitting model(probit)
model probit crossval <- train(</pre>
  eqn,
  data = data4, #dataset
 method = "glm", #model for validation
  trControl = trainControl(method = "cv", number = 10), # 10-fold
cross-validation
 metric = "RMSE", #metric of evaluation
  family=binomial(link = "probit"), #family of link for glm
)
## Warning in train.default(x, y, weights = w, ...): You are trying to
## regression and your outcome only has two possible values Are you
trying to do
## classification? If so, use a 2 level factor as your outcome column.
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
probabilities
## numerically 0 or 1 occurred
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
probabilities
## numerically 0 or 1 occurred
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
probabilities
## numerically 0 or 1 occurred
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
probabilities
## numerically 0 or 1 occurred
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
probabilities
## numerically 0 or 1 occurred
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
probabilities
## numerically 0 or 1 occurred
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
probabilities
## numerically 0 or 1 occurred
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
probabilities
## numerically 0 or 1 occurred
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
```

```
probabilities
## numerically 0 or 1 occurred
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
probabilities
## numerically 0 or 1 occurred
## Warning in train.default(x, y, weights = w, ...): glm.fit: fitted
probabilities
## numerically 0 or 1 occurred
print(model probit crossval)
## Generalized Linear Model
##
## 38419 samples
##
       5 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 34577, 34577, 34577, 34577, 34577,
34578, ...
## Resampling results:
##
##
     RMSE
              Rsquared
                         MAE
##
     0.12302 0.8826403 0.03597402
#fitting model(cloglog)
model cloglog crossval <- train(</pre>
  eqn,
  data = data4, #dataset
 method = "glm", #model for validation
 trControl = trainControl(method = "cv", number = 10), # 10-fold
cross-validation
 metric = "RMSE", #metric of evaluation
  family=binomial(link = "cloglog"), #family of link for glm
)
## Warning in train.default(x, y, weights = w, ...): You are trying to
## regression and your outcome only has two possible values Are you
trying to do
## classification? If so, use a 2 level factor as your outcome column.
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
```

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
print(model cloglog crossval)
## Generalized Linear Model
##
## 38419 samples
##
      5 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 34577, 34577, 34578, 34577, 34577,
34577, ...
## Resampling results:
##
##
     RMSE
                Rsquared
                           MAE
##
     0.1367265 0.8526693 0.01952194
#goodness of fit using receiver operating characteristic curve(ROC)
library(pROC)
```

```
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
     cov, smooth, var
#loait
# Create an ROC object
predictions1 <- na.omit(unlist(predictions1))</pre>
data4 testvec <- na.omit(unlist(data4 test$repay fail))</pre>
print(data4 testvec)
    ##
1 0 0 0 1 0
## [38] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0 1
0 0 0 0 1 0
## [186] 0 0 0 0 1 0 0 0
print(predictions1)
##
              [,1]
## 140
       9.094876e-01
## 502
       -9.328351e-02
## 590
       -9.875116e-02
## 797
       5.861362e+00
## 1213
       2.605647e-02
## 1351
       4.179802e-02
## 2393
      -7.163973e-02
## 2501
       -1.195565e-01
## 2671
       -3.176920e-01
## 2893
       -4.170924e-01
## 3113
       -1.221127e-02
## 3264
       -8.839130e-01
## 3411
      -2.143990e-01
## 3632
      -1.457409e-01
## 3731
       1.830017e-02
## 3785
       -1.347071e+00
## 3789
      -2.555898e-02
## 4142
      -4.872048e-01
## 4586
      -6.091839e-03
## 4711 -2.468559e-02
```

```
## 4808
          9.243829e-03
## 5064
          2.953044e+00
## 5099
         -8.145982e-02
## 5177
         -7.690408e-01
## 5266
          2.084618e+00
## 5662
          5.394500e-02
## 5753
         -6.742962e-01
## 5927
          1.178639e+00
## 5973
         -5.206499e-01
## 5988
         -1.887142e-01
## 6232
         -9.798143e-02
## 6329
          1.336354e+00
## 6371
         -2.196699e-01
## 6385
         -3.575063e-01
## 7253
         -6.654275e-01
## 7457
          2.601089e+00
## 7459
         -9.167472e-02
## 7715
         -2.610933e-01
## 7781
         -2.491254e-01
## 7854
         -1.962741e-01
## 7980
          1.088503e+00
## 8293
         -3.541768e-01
## 8360
         -3.110173e-01
## 9111
          4.033819e-01
## 9333
         -2.963175e-01
## 9353
         -8.088829e-01
## 9359
         -8.854782e-01
## 9507
         -2.717630e-01
## 9629
         -1.922779e-01
## 10077 -1.229044e+00
## 10145 -3.954755e-01
## 10191 -2.126510e-01
## 10497 -2.617309e-01
## 10652 -6.054841e-01
## 11062 -4.630834e-01
## 11138
         5.217557e-01
## 11718
          1.745762e+00
## 11734
          1.689698e+00
## 11807 -1.805942e-01
## 12045 -6.564335e-02
## 12062 -2.315369e-01
## 13249 -2.075051e-01
## 13281 -2.399955e-01
## 13509 -4.477051e-01
## 13526 -1.813529e-01
## 13532 -1.951352e-01
## 13744 -2.419545e-01
## 13771 -7.988529e-04
## 13786 -3.052799e-01
## 13939 3.839323e-02
```

```
## 14127 -5.549477e-01
## 15106 -2.237372e+00
## 15473 -3.503032e-01
## 15519 -3.091001e-03
## 15893 -2.879933e-01
## 16039
         7.490316e-01
## 16133
         1.342706e+00
## 16142 -1.241498e-01
## 16507
         6.711273e-01
## 16640
         4.296962e+00
## 16730 -1.085871e-01
## 16738 -3.863688e-01
## 17005 -7.789012e-01
## 17293 -2.845478e-02
## 17770 -3.195426e-03
## 17835 -5.192710e-01
## 17907 -2.144243e+00
## 17980
         3.489138e-01
## 18248 -1.646861e-01
## 18603 -4.172350e-02
## 18650 -9.800157e-02
## 18857 -1.116744e+00
## 19040
         1.467098e-02
## 19295 -1.412525e-01
## 19711 -3.179438e-01
## 19753 -2.376803e-02
## 20296 -2.914310e-01
## 20406 -5.393724e-01
## 20688 1.937124e-01
## 20726 -1.262140e-01
## 20746 -7.447821e-01
## 20769 -2.371826e-01
## 20864 -4.758130e-01
## 20961 -7.248961e-01
## 21294 5.263303e-02
## 21900 -4.512723e-01
## 22098 -1.315237e+00
## 22209 -1.012790e-02
## 22338 -5.661300e-01
## 22633 -2.324092e-01
## 22668 -3.205744e-01
## 23182 -7.298181e-01
## 23510 -2.885835e-02
## 23642 -2.450878e-01
## 23927 -3.120725e-01
## 23943 -8.923715e-01
## 23976
         1.628264e+00
## 24031 -5.965396e-01
## 24125 -1.765894e-01
## 24184 -4.363594e-02
```

```
## 24839
        1.202335e+00
## 25041
          1.694827e-02
## 25219
         4.617708e-01
## 25284
          3.104336e-02
## 25515 -1.824438e-01
## 25529 -5.931456e-01
## 25618 -8.053282e-01
## 25879
         4.579801e-02
## 26036 -1.389033e-01
## 26210 -1.124558e+00
## 26422
         1.110096e+00
## 27102 -5.453947e-01
## 27336 -3.720809e-02
## 27550 -3.599896e-01
## 27581
         3.636877e+00
## 27668
         2.766287e-02
## 28048 -5.679668e-02
## 28120 -2.475665e-01
## 28444
        2.274939e-01
## 28565 -4.367844e-01
## 28575 -3.888817e-01
## 28613 -1.034393e-01
## 29328 -4.214430e-02
## 29501 -1.001694e-01
         1.960815e-01
## 29834
## 30017 -2.402154e-02
## 30064 -1.255270e-01
## 30140
         2.202382e+00
## 30445 -4.562293e-01
## 30616
         8.166711e-01
## 30777 -2.398214e+00
## 30895 -6.035477e-01
## 31048 -9.763553e-01
         1.481994e+00
## 31113
## 31824 -3.346059e-01
## 33031 -7.278489e-01
## 33051
         1.758269e+00
## 33066
        9.095583e-03
## 33172 -6.716167e-01
## 33403 -3.403937e-02
## 33428 -1.455265e-01
## 33627 -1.467245e-01
## 34183 -3.590781e-02
## 34579 -4.140398e-01
## 34629 -4.946823e-01
## 34816 -2.092789e-01
## 35011 -7.333771e-01
## 35056 -3.860035e-02
## 35090 -2.606238e-01
## 35166 -1.050382e-01
```

```
## 35187 -1.187377e-01
## 35237 6.380868e-01
## 35467 -7.191310e-02
## 35545 2.719042e+00
## 35691 -2.936733e-01
## 35814 -1.598119e-02
## 36003 -1.071422e-01
## 36267 -6.175989e-01
## 36355 1.753339e+00
## 36415 -7.451286e-01
## 36565 -1.466547e-01
## 36626 -2.795252e-01
## 36658 -3.798638e-01
## 36961 3.015873e+00
## 37019 -1.112175e+00
## 37251 -2.424921e-01
## 37327 -2.365147e-01
## 37362 -1.751803e-01
## 37414 -9.859517e-05
## 37735 3.091526e+00
## 37825 -4.425509e-01
## 37866 -9.942159e-01
## 37894 -5.097295e-01
## attr(,"scaled:center")
## [1] -2.878606
## attr(,"scaled:scale")
## [1] 13.35835
roc_obj_logit <- roc(response = data4_testvec, predictor =</pre>
predictions1)
## Setting levels: control = 0, case = 1
## Warning in roc.default(response = data4 testvec, predictor =
predictions1):
## Deprecated use a matrix as predictor. Unexpected results may be
produced,
## please pass a numeric vector.
## Setting direction: controls < cases
# AUC value
auc_value_logit <- auc(roc_obj_logit)</pre>
#ROC curve
plot(roc obj logit, main = "ROC Curve - Logit", col = "blue")
```



```
#AUC values
print(auc value logit)
## Area under the curve: 1
#probit
# Create an ROC object
predictions2 <- na.omit(unlist(predictions2))</pre>
data4 testvec <- na.omit(unlist(data4 test$repay fail))</pre>
roc obj probit <- roc(response = data4 testvec, predictor =</pre>
predictions2)
## Setting levels: control = 0, case = 1
## Warning in roc.default(response = data4 testvec, predictor =
predictions2):
## Deprecated use a matrix as predictor. Unexpected results may be
produced,
## please pass a numeric vector.
## Setting direction: controls < cases
# AUC value
auc value probit <- auc(roc obj probit)</pre>
#ROC curve
plot(roc_obj_probit, main = "ROC Curve - probit", col = "green")
```



```
#AUC values
print(auc value probit)
## Area under the curve: 1
#cloglog
# Create an ROC object
predictions3 <- na.omit(unlist(predictions3))</pre>
data4 testvec <- na.omit(unlist(data4 test$repay fail))</pre>
roc obj cloglog <- roc(response = data4 testvec, predictor =</pre>
predictions3)
## Setting levels: control = 0, case = 1
## Warning in roc.default(response = data4 testvec, predictor =
predictions3):
## Deprecated use a matrix as predictor. Unexpected results may be
produced,
## please pass a numeric vector.
## Setting direction: controls < cases
# AUC value
auc value cloglog <- auc(roc obj cloglog)</pre>
#ROC curve
plot(roc_obj_cloglog, main = "ROC Curve - cloglog", col = "red")
```



```
#AUC values
print(auc_value_cloglog)

## Area under the curve: 1

#all curves in one plot
plot(roc_obj_logit, col = "blue", main = "ROC Curves", lwd = 2)
plot(roc_obj_probit, col = "green", add = TRUE, lwd = 2)
plot(roc_obj_cloglog, col = "red", add = TRUE, lwd = 2)
legend("bottomright", legend = c("Logit", "Probit", "cloglog"), col = c("blue", "green", "red"), lwd = 2)
```



```
#validation using AIC(akike information criterion)
# Calculation of AIC
aic 1 <- AIC(model logit)</pre>
aic 2 <- AIC(model probit)</pre>
aic_3 <- AIC(model_cloglog)</pre>
# Comparing AIC values
if (aic 1 < aic 2 & aic 1 < aic 3) {
  cat("Model 1 most suitable.\n")
} else if (aic_2 < aic_1 & aic_2 < aic_3) {</pre>
  cat("Model 2 is most suitable.\n")
} else {
  cat("Model 3 is most suitable.\n")
}
## Model 1 most suitable.
#using the AIC we have determined that model 1 is the best
#using the 2 seperate metric we have determined and selected the model
1 to be the most suitable
```