

Stelling. De overgangen van DFA naar een MN(L)-relatie (op_1) , en van de MN(L)-relatie naar een DFA (op_2) , zijn elkaars inversen – op DFA-isomorfisme na.

We kunnen de stelling ook anders formuleren. Hiervoor beschouwen we twee operaties:

- op₁(DFA) levert als output een MN(L)-relatie \sim_D .
- $op_2(MN(L))$ levert ons als output een DFA.

Stelling. Voor elke DFA D geldt dat de DFA $D' = op_2(op_1(DFA))$ isomorf is met D.

Bewijs. We bewijzen eerst dat op $_1$ en op $_2$ effectief steeds de gewenste output hebben:

1. Elke DFA D bepaalt een MN(L_D) (equivalentie)relatie \sim_D op Σ^* .

Definieer voor elke (bereikbare) toestand volgende deelverzameling van Σ^* :

$$reach(q) = \{ w \in \Sigma^* \mid \delta^*(q_s, w) = q \}$$

De verzameling met als elementen al deze verzamelingen reach (q_i) vormt een partitie van Σ^* :

- Er bestaat geen $\operatorname{reach}(q) = \emptyset$. Elke string $s \in \Sigma^*$ zit namelijk in een of andere $\operatorname{reach}(q)$. De overgangsfunctie δ van een $\overline{\operatorname{DF}}A$ is totaal, dus bij het parsen van s kunnen we voor elk symbool een boog volgen in de DFA, zodat we uiteindelijk in een of andere toestand terechtkomen. De string behoort dan precies tot de $\operatorname{reach}(q)$ van deze toestand. Omdat we veronderstellen dat alle toestanden bereikbaar zijn, is geen enkele $\operatorname{reach}(q)$ leeg.
- De $\operatorname{reach}(q)$'s zijn disjunct. Een string $s \in \Sigma^*$ kan namelijk niet in twee $\operatorname{reach}(q)$'s zitten, want we hebben in een DFA nooit een keuze naar welke toestand we zullen overgaan: er zijn nooit twee verschillende bogen met eenzelfde symbool. Bij het parsen van s belanden we dus in een unieke toestand q en bijgevolg geldt dat $s \in \operatorname{reach}(q)$.
- De unie van alle reach(q)'s is precies Σ^* .

Omdat partities equivalentiere laties induceren en vice versa, kunnen we dus ook de geïnduceerde equivalentiere latie \sim_D beschouwen:

$$x \sim_D y \Leftrightarrow x \text{ en } y \text{ behoren tot dezelfde reach}(q) \Leftrightarrow \delta^*(q_s, x) = \delta^*(q_s, y)$$

We tonen nu aan dat deze equivalentierelatie \sim_D een MN(L)-relatie is. Herinner: **een equivalentierelatie** \sim tussen strings is een Myhill-Nerode relatie voor L als \sim voldoet aan 3 voorwaarden. We checken deze 3 voorwaarden nu voor \sim_D :

- (a) De partitie is eindig. Inderdaad: DFA's hebben een eindig aantal toestanden en bijgevolg zijn er dus ook een eindig aantal reach(q)'s.
- (b) Rechtscongruentie: we willen aantonen dat

$$x \sim_D y \implies xa \sim_D ya$$

Stel dat $x \sim_D y$. Dan geldt volgens de definitie van onze equivalentierelatie \sim_D dat beide strings behoren tot reach(q) voor een $q \in Q$, of nog dat $\delta^*(q_s, x) = \delta^*(q_s, y) = q$. Vanuit deze toestand q hebben we voor elk symbool $a \in \Sigma$ slechts één keuze met betrekking tot de boog die we nemen om over te gaan naar een nieuwe toestand. Noem deze nieuwe toestand $q' = \delta(q, a)$. We hebben nu met de strings xa en ya dezelfde toestand q' bereikt, wat precies wil zeggen dat $xa \sim_D ya$.

(c) \sim_D verfijnt de partitie $\{L, \bar{L}\}$. We willen aantonen dat

$$x \sim_D y \quad \Rightarrow \quad (x \in L \Leftrightarrow y \in L)$$

Stel dat $x \sim_D y$. Als $x \in L$, dan wil dat zeggen dat $\delta^*(q_s, x) \in F$. Omdat $x \sim_D y$ geldt dat $\delta^*(q_s, x) = \delta^*(q_s, y)$ en dus geldt ook dat $y \in L$. We kunnen de andere richting analoog bewijzen.

2. Elke MN(L)-relatie \sim op Σ^* bepaalt een DFA D zodat $L=L_D$:

Gegeven een taal $L \in L_{\Sigma}$. We construeren de DFA $(Q, \Sigma, \delta, q_s, F)$ als volgt:

- $\bullet \ \ Q = \{x_{\sim} \mid x \in \Sigma^*\}$
- $q_s = \varepsilon_{\sim}$
- $F = \{x_{\sim} \mid x \in L\}$
- $\delta(x_{\sim}, a) = (xa)_{\sim}$

Dit is inderdaad een DFA:

- Q en F hebben slechts een eindig aantal toestanden, omdat een MN(L)-relatie geassocieerd is met een eindige partitie. Er zijn dus slechts een eindig aantal equivalentieklassen.
- De overgangsfunctie δ is goed gedefinieerd.

Als $y, z \in \Sigma^*$ tot dezelfde equivalentieklasse x_{\sim} behoren, dan bereiken ze eenzelfde toestand $q \in Q$. Na het volgen van een boog met een symbool $a \in \Sigma$ vanuit deze toestand, moeten we in de DFA voor beide strings in een eenzelfde nieuwe toestand q' terechtkomen, anders zouden er meerdere bogen met dat symbool a bestaan.

We bewijzen dat we effectief in die toestand q' terechtkomen voor beide strings. Omdat volgens de MN(L)-relatie op de strings in Σ^* de rechtscongruentie $y \sim z \Rightarrow ya \sim za$ geldt, behoren de strings ya en za tot dezelfde equivalentieklasse $(xa)_{\sim}$. De definitie $\delta(x_{\sim}, a) = (xa)_{\sim}$ is dus goed.

Tot slot bewijzen we nog dat de DFA de gegeven taal $L \in L_{\Sigma}$ effectief bepaalt, of nog dat $L_{\text{DFA}} = L$:

$$x \in L_{\text{DFA}} \stackrel{\triangle}{\Leftrightarrow} \delta^*(\varepsilon_{\sim}, x) \in F \iff x_{\sim} \in F \stackrel{\triangle}{\Leftrightarrow} x \in L$$

We bewijzen de overgang door per inductie op de lengte van x aan te tonen dat

$$\delta^*(\varepsilon_{\sim}, x) = x_{\sim}$$

- Basisstap: als |x|=0, is $x=\varepsilon$ en geldt per definitie van δ^* dat $\delta^*(\varepsilon_{\sim},x)=\varepsilon_{\sim}$
- Inductiehypothese: stel dat de stelling geldt voor strings x van lengte hoogstens |x| = n
- Inductiestap: we bewijzen dat de stelling ook geldt voor strings van lengte n+1. Zo'n string x' kunnen we schrijven als x'=xa met $|x|=n, a\in\Sigma$. Nu geldt dat

$$\delta^*(\varepsilon_{\sim}, x') = \delta^*(\varepsilon_{\sim}, xa) \qquad x' = xa$$

$$= \delta \left(\delta^*(\varepsilon_{\sim}, x), a \right) \qquad \text{eigenschap } \delta^*$$

$$= \delta(x_{\sim}, a) \qquad \delta^*(\varepsilon_{\sim}, x) \stackrel{\text{inductiehypothese}}{=} x_{\sim}$$

$$= (xa)_{\sim} \qquad \text{definitie } \delta$$

$$= (x')_{\sim} \quad \text{q.e.d.} \qquad x' = xa$$

We willen nu bewijzen dat voor iedere DFA D, de DFA $D' = op_2(op_1(D))$ isomorf is met D. We stellen daarvoor een bijectie op tussen de toestanden van D en de equivalentieklassen van de bijhorende $MN(L_D)$ -relatie:

$$b_1: Q_D \to \{x_{\sim_D} \mid x \in \Sigma^*\}: q \mapsto \operatorname{reach}(q)$$

Dan bestaat er omgekeerd dus ook een bijectie

$$b_2: \{x_{\sim_D} \mid x \in \Sigma^*\} \to Q_{D'}: x_{\sim_D} \mapsto q' \mid x \in \operatorname{reach}(q')$$

tussen de equivalentieklassen van de $MN(L_D)$ -relatie en de toestanden van de DFA D'. We kunnen nu ook de bijectie

$$b = (b_2 \circ b_1) : Q_D \rightarrow Q_{D'}$$

tussen de toestanden van D en de toestanden van D' beschouwen die ontstaat wanneer we de voorgaande twee bijecties samenstellen. We tonen aan dat b effectief voldoet aan de eigenschappen voor isomorfisme:

- $b(F_D) = F_{D'}$: er geldt dat $b(F_D) = b_2(b_1(F_D))$. De bijectie b_1 mapt elke toestand $q_f \in F_D$ naar een equivalentieklasse in $MN(L_D)$ zodat elke string in die equivalentieklasse tot L_D behoort. De bijectie b_2 mapt elke equivalentieklasse die strings uit L_D bevat naar een aanvaardende eindtoestand in D'. Dus elke aanvaardende eindtoestand uit D wordt door b gemapt op een aanvaardende eindtoestand uit D'. Met dezelfde redenering zien we dat ook het omgekeerde geldt.
- $\underline{b(q_s) = q_{s'}}$: er geldt dat $b(q_s) = b_2(b_1(q_s))$. De starttoestand q_s wordt gemapt op ε_{\sim} door b_1 en ε_{\sim} wordt gemapt op q'_s door b_2 , dus q_s wordt gemapt op q'_s door b.
- $b(\delta(q,a)) = \delta'(b(q),a)$: voor elke toestand $q \in Q$ en elk symbool $a \in \Sigma$ worden q en $\delta(q,a)$ gemapt door b_1 op twee equivalentieklassen in $MN(L_D)$ zodat alle strings uit de tweede equivalentieklasse kunnen verkregen worden door een a te zetten achter een string uit de eerste equivalentieklasse. Vervolgens mapt b_2 deze twee equivalentieklasses op twee toestanden in D' zodat er een a-overgang is van de eerste toestand naar de tweede toestand. Dit betekent dat $b(\delta(q,a)) = \delta'(b(q),a)$.