UNIVERSITY OF SHEFFIELD

Department of Electronic and Electrical Engineering

EEE220 ELECTRIC AND MAGNETIC FIELDS FORMULA SHEET

ILF/AT/JLW 2006

$$\varepsilon_o = 8.854 \times 10^{-12} \text{ Fm}^{-1}$$
 charge on electron = $-1.6 \times 10^{-19} \text{ C}$
 $\mu_o = 4\pi \times 10^{-7} \text{ Hm}^{-1}$ mass of electron = $9.1 \times 10^{-31} \text{ kg}$

1. **ELECTROSTATICS**

(a) Coulomb's Law

Force between two point charges, q_1 and q_2 has magnitude $F = \frac{q_1q_2}{4\pi\varepsilon_o R^2}$ in direction along line joining charges. In vector notation $\underline{F} = \frac{q_1q_2}{4\pi\varepsilon_o R^3} \, \underline{R}$ or $\underline{F} = \frac{q_1q_2}{4\pi\varepsilon_o R^2} \, \hat{\underline{R}}$

(b) Electric Field

Defined by $\underline{E} = \frac{Q}{4\pi\varepsilon_0 R^3} \underline{R}$, and then force is $\underline{F} = q\underline{E}$. In electrostatics we want to solve for \underline{E} .

(c) Potential

Work done in moving q_1 from A to B is $W = q_1 \left(\phi(A) - \phi(B) \right)$ where ϕ is potential. Potential due to charge q is $\phi = \frac{q}{4\pi\varepsilon R}$, and ϕ and E are related by

$$\phi(B) - \phi(A) = -\int_{A}^{B} \underline{E} \cdot \underline{dl} = -\int_{A}^{B} E \cos \theta d\ell$$

$$\underline{E} = -\nabla \phi = \left(-\frac{d\phi}{dx}, -\frac{d\phi}{dy}, -\frac{d\phi}{dz}\right)$$

(d) Gauss's Law

Surface integral of \underline{E} gives $\oint_s E \cos \theta \ da = \frac{Q}{\varepsilon_o}$, Q = total charge enclosed by surface S.

(e) Solving for \underline{E}

Three methods possible.

- (i) Use Coulomb's Law, summing all contributions with care about direction.
- (ii) Calculate ϕ and then use $\underline{E} = \left(-\frac{d\phi}{dx}, -\frac{d\phi}{dy}, -\frac{d\phi}{dz} \right)$.
- (iii) Use Gauss's Law only works if symmetry can be employed to get \underline{E} outside the integral.

(f) Important Cases

- (i) Sheet of charge, $|\underline{E}| = \frac{q_s}{2\varepsilon_o}$, q_s is surface density, or charge per unit area.
- (ii) Line of charge, $|\underline{E}| = \frac{q_{\ell}}{2\pi r \varepsilon_{o}}$, q_{ℓ} is charge per unit length.
- (iii) Sphere of charge Q, $|\underline{E}| = \frac{Q}{4\pi\varepsilon_0 r^2}$.

(g) Capacitance

Capacitance of two conductors is defined by C = Q/V. For parallel plate capacitor $C = \varepsilon A/d$, where $\varepsilon =$ permittivity of separating medium. Effect of dielectric medium is to increase the capacitance.

(h) Energy

Stored energy in capacitor is $\frac{1}{2} CV^2$. Energy density in electric fields is $\frac{1}{2} \varepsilon E^2$.

2. MAGNETIC FIELDS

(a) Force between two circuits

Force is given by Ampère's force law, but this is difficult to use. Introduce \underline{B} field, and force in a circuit is $\underline{F} = \oint I \ \underline{dl} \times \underline{B}$.

(b) **Biot-Savart Law**

$$\underline{B}$$
 field is given by $\underline{B} = \frac{\mu_o}{4\pi} \oint \frac{I\underline{dl} \times \hat{r}}{r^2}$

Analytical results possible only for simple geometries.

(c) Important cases of \underline{B}

- (i) Infinitely long straight wire $B = \mu_0 I/2\pi r$.
- (ii) on axis of circular loop, $B = \mu_o Ia^2 / 2(a^2 + d^2)^{3/2}$.
- (iii) Inside long straight solenoid $B = \mu_0 nI$.

(d) Ampère's Law

$$\oint_C \underline{B} \cdot \underline{dI} = \oint_C B \cos \theta d\ell = \mu_o I$$

I is the current which threads the path of integration. Direction given by right-hand rule

(e) Magnetic Flux

Defined by $\Phi = \int B \cos\theta da$, i.e. Φ is given by the integral over area of normal component of \underline{B} . For uniform B, $\Phi = BA$, hence B is called magnetic flux density. For a closed surface of integration $\oint B \cos\theta da = 0$, which implies no magnetic poles.

3. MAGNETIC INDUCTION

(a) Faraday's Law

If flux linkages through a circuit change with time, magnitude of emf induced is $\mathcal{E} = \frac{d\Phi}{dt}$. Polarity of \mathcal{E} given by Lenz's Law, is such as to try to keep Φ constant.

(b) Self-inductance

Defined by $\varepsilon = L \frac{di}{dt}$ where L depends on geometry of circuit (and also any magnetic materials present). In a circuit L causes current to lag voltage.

Inductance of solenoid $=\frac{\mu_o N^2 A}{\ell}$, where N is the total number of turns, A is the cross-sectional area, and ℓ is the length of the solenoid.

(c) Magnetic Energy

Energy stored in inductance is $\frac{1}{2} Li^2$. Energy per unit volume in magnetic fields is $\frac{B^2}{2\mu_o}$ or $\frac{B^2}{2\mu}$ if magnetic material of permeability μ is present.

(d) Mutual Inductance

Current change in one circuit induces emf in nearby circuit $\varepsilon = M \frac{di}{dt}$. M is coefficient of mutual inductance, depends on geometry and materials. M is reciprocal.

(e) EMF induced by Motion

EMF is generated by conductor moving in B field, $\varepsilon = Blv \sin \theta$

4. MAGNETIC FORCES

(a) Force between parallel wires

Force per unit length is $f = \mu_o I_1 I_2 / 2\pi p$, where p is distance between wires. Like currents attract, unlike repel. The unit of current (Ampere) is defined from this relation.

(b) Force on Linear Conductor

 $F = BIl \sin \theta$ or in vector notation $\underline{F} = I\underline{l} \times \underline{B}$

(c) Torque on Current Loop

 $T = NIBA \sin \alpha$

Applications include motor and meter.

(d) Force on Charged Particle

 $\underline{F} = q(\underline{v} \times \underline{B})$ is at right angles to both \underline{B} and \underline{v} .

Gives Hall effect and gyration of charges about field lines.