Comparative Study of Classifiers on Three Different Datasets

Anand Kumar

February 5, 2025

Contents

1	Introduction							
2	2 Data Preprocessing							
3	Experiments and Results 3.1 Q1: Decision Tree Classifier 3.2 Q2: Random Forest Classifier 3.3 Q3: XGBoost Classifier 3.4 Q4: AdaBoost Classifier	3 3 4 4 4						
4	Illustrative Results							
5	5 Conclusion							
6	References							

1 Introduction

This assignment involves working with three different datasets:

- Dataset 1: A medical biopsy dataset. The target variable (*Biopsy*) indicates whether a patient is Healthy or has Cancer.
- **Dataset 2:** A fetal health dataset. The target variable (*fetal_health*) can have three classes (1, 2, 3).
- Dataset 3: A banking (marketing) dataset. The target variable (y) is binary (yes or no), indicating whether a customer subscribed to a term deposit.

The goal is to compare four classification algorithms on each dataset:

- 1. Decision Tree (Q1)
- 2. Random Forest (Q2)
- 3. XGBoost (Q3)
- 4. AdaBoost (Q4)

We evaluate each model using **5-fold cross-validation**, reporting:

- Accuracy
- Precision
- Recall
- F1 Score
- AUC-ROC (Area Under the ROC Curve)

Additionally, we plot:

- ROC curves
- Decision boundaries (by selecting any two features for a 2D visualization)

2 Data Preprocessing

For each dataset, we apply the following general steps:

- 1. Loading and Concatenation (if needed): For Dataset 2, for example, two partial CSV files are concatenated into a single DataFrame.
- 2. Handling Missing Values:
 - Replace non-numeric or "?" values with NaN.

- Impute NaN by the mean of the respective column.
- 3. Feature Selection for Visualization (2D): We select two features (e.g., Age vs. Smokes (years) in Dataset 1) for plotting the decision boundary.
- 4. **Train-Test Split:** Usually, a portion (20%) is separated to evaluate or plot ROC. For 5-fold CV, the entire data is systematically split.

5. 5-Fold Cross-Validation:

• Use StratifiedKFold with n_splits=5 to preserve class distribution in each fold.

6. Metrics Calculation:

- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
- Precision = $\frac{TP}{TP+FP}$
- Recall = $\frac{TP}{TP+FN}$
- $F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$
- AUC-ROC via roc_auc_score, often using predict_proba.

3 Experiments and Results

We summarize the four classifiers below (Q1–Q4). The same methodology is applied to all three datasets.

3.1 Q1: Decision Tree Classifier

Dataset 1 (Biopsy):

- We fit a DecisionTreeClassifier using 5-fold cross-validation.
- For each fold, we compute Accuracy, Precision, Recall, F1 Score, and AUC-ROC.
- After cross-validation, we use a separate train/test split to plot the ROC curve and to visualize decision boundaries (using two selected features).

Dataset 2 (Fetal Health):

- Multi-class classification. We use average='weighted' for precision/recall/F1.
- For AUC-ROC, we use roc_auc_score(..., multi_class='ovr').

Dataset 3 (Banking):

- Binary classification (yes/no).
- Similar approach: 5-fold CV, metrics, ROC plot, and 2D decision boundary (using two numeric features, e.g., euribor3m vs. duration).

3.2 Q2: Random Forest Classifier

The procedure is the same, except we use:

```
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100, random_state=42)
```

We again do 5-fold CV on each dataset, collect metrics, plot ROC, and visualize 2D boundaries.

3.3 Q3: XGBoost Classifier

Using:

```
from xgboost import XGBClassifier
clf = XGBClassifier(random_state=42)
```

We replicate the same pipeline:

- 5-fold CV (stratified).
- Evaluate all metrics.
- Plot ROC curves (multi-class for Dataset 2, binary for Datasets 1 and 3).
- Plot 2D decision boundaries with selected features.

3.4 Q4: AdaBoost Classifier

Using:

```
from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier(random_state=42)
```

Again, we use the same methodology of cross-validation, metrics, ROC, and decision boundaries.

4 Illustrative Results

Although your results will vary, an example of average (5-fold) performance metrics might look like this:

(These figures are only examples. You would replace them with the actual results from your code.)

Table 1: Illustrative Cross-Validation Results									
Classifier	Dataset	Accuracy	Precision	Recall	$\mathbf{F1}$	AUC-ROC			
Decision Tree	Dataset 1	0.90	0.88	0.92	0.90	0.93			
Decision Tree	Dataset 2	0.91	0.90	0.89	0.89	$0.90 \; (ovr)$			
Decision Tree	Dataset 3	0.88	0.85	0.84	0.84	0.89			
Random Forest	Dataset 1	0.93	0.91	0.95	0.93	0.96			
Random Forest	Dataset 2	0.94	0.93	0.92	0.92	0.95 (ovr)			
Random Forest	Dataset 3	0.90	0.88	0.87	0.87	0.91			
XGBoost	Dataset 1	0.94	0.93	0.96	0.94	0.96			
XGBoost	Dataset 2	0.95	0.94	0.93	0.94	$0.96 \; (ovr)$			
XGBoost	Dataset 3	0.91	0.89	0.89	0.89	0.92			
AdaBoost	Dataset 1	0.91	0.89	0.92	0.90	0.94			
AdaBoost	Dataset 2	0.93	0.92	0.90	0.91	0.94 (ovr)			
AdaBoost	Dataset 3	0.89	0.86	0.84	0.85	0.90			

5 Conclusion

In this assignment, we implemented and compared four classification algorithms—Decision Tree, Random Forest, XGBoost, and AdaBoost—on three distinct datasets. We used 5-fold cross-validation to compute:

- Accuracy
- Precision
- Recall
- F1 Score
- AUC-ROC

Additionally, we plotted ROC curves and generated 2D decision boundary visualizations (by selecting two numeric features at a time). The experiments suggest that ensemble methods (Random Forest, XGBoost, AdaBoost) typically outperform a single decision tree on average. However, the ideal choice depends on hyperparameter tuning, data characteristics, and class imbalances.

6 References

- Scikit-learn Documentation: https://scikit-learn.org/stable/
- XGBoost Documentation: https://xgboost.readthedocs.io/en/stable/
- Pandas Documentation: https://pandas.pydata.org/docs/