BITCOIN PRICE PREDICTION

Ang Kai En Kim Yeontae Ng Jing Xiang Sim Jun You Wang Zihan Wong Cheuk Wah (Jane)

BRIEF BITCOIN HISTORY

TABLE OF CONTENTS

Data Collection

What information can we use to predict bitcoin price changes?

OVERVIEW OF DATA SOURCES

Market Data

On-Chain Data

Autoregressive Data

Futures Market

Google Trends

VADER

MARKET DATA

ETHEREUM DATA

ON-CHAIN DATA

Bitcoin Transaction Count

AUTOREGRESSIVE DATA

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t$$

FUTURES DATA

Bitcoin Perpetual Futures to Spot Volume Ratio

Source: Kaiko derivatives and asset volume data for 20 top spot exchanges and 8 derivative markets. btc-usd/usdt/busd perpetual futures contracts.

GOOGLE TRENDS DATA

Interest over time ?

SENTIMENT ANALYSIS DATA

```
warnings.warn(message)
Downloading (...)lve/main/config.json: 100%
                                                                                       758/758 [00:00<?, ?B/s]
                                                                              232k/232k [00:00<00:00, 28.9MB/s]
Downloading (...)solve/main/vocab.txt: 100%
                                                                               | 112/112 [00:00<00:00, 112kB/s]
Downloading (...)cial_tokens_map.json: 100%
Downloading pytorch_model.bin: 100%
                                                                             438M/438M [00:04<00:00, 101MB/s]
C:\Users\JunYou\Downloads\tweets_sentiment\process_tweets.py:80: DtypeWarning: Columns (4,5,6,7,12) have mixed t
ypes. Specify dtype option on import or set low_memory=False.
 df1 = pd.read_csv(f"Bitcoin_tweets.csv", lineterminator='\n')
C:\Users\JunYou\Downloads\tweets_sentiment\process_tweets.py:9: UserWarning: Could not infer format, so each ele
ment will be parsed individually, falling back to 'dateutil'. To ensure parsing is consistent and as-expected, p
lease specify a format.
 df['date'] = pd.to_datetime(df['date'], errors='coerce')
Traceback (most recent call last):
  File "C:\Users\JunYou\Downloads\tweets_sentiment\process_tweets.py", line 131, in <module>
   main()
  File "C:\Users\JunYou\Downloads\tweets_sentiment\process_tweets.py", line 125, in main
    agg_df = combined.groupby('date')['Vader_Comp', 'Vader_Pos', 'Vader_Neg', 'Vader_Neu', 'BERT_SCORE'].mean()
  File "C:\Users\JunYou\miniconda3\envs\tweets\lib\site-packages\pandas\core\groupby\generic.py", line 1767, in
 _aetitem__
   raise ValueError(
ValueError: Cannot subset columns with a tuple with more than one element. Use a list instead.
```

SENTIMENT ANALYSIS DATA

FinBERT

(Financial Sentiment Analysis with BERT)

 Pre-trained NLP model to analyse sentiment of financial text

SENTIMENT ANALYSIS DATA

VADER

(Valence Aware Dictionary and sEntiment Reasoner)

 Natural Language Toolkit (NLTK) model that provides sentiment scores based on the words used

OVERVIEW OF DATA SOURCES

Market Data

On-Chain Data

Autoregressive Data

Futures Market

Google Trends

VADER

Data Processing

Preprocessing, dealing with null values, dimensionality reduction

DATES WITH MISSING DATA

Only weekday data is considered (markets closed on weekends)

DATA IMPUTATION

TARGET FEATURES

DIMENSIONALITY REDUCTION

Granger Causality Statistical Test for time-based causality between two features

Variance Inflation Factor

Measure of **multicollinearity** between multiple regression variables

FEATURE IMPORTANCE

Instead of UMAP and PCA, we use the **Gini Impurity** measure calculated by decision tree models.

Through this, we can select top features and reduce dimensionality.

Impurity	Task	Formula	Description
Gini impurity	Classification	$\sum\nolimits_{i=1}^{c} f_i (1 - f_i)$	f_i is the frequency of label i at a node and C is the number of unique labels.
Entropy	Classification	$\sum\nolimits_{i=1}^{C} -f_i \log(f_i)$	f_i is the frequency of label i at a node and C is the number of unique labels.
Variance / Mean Square Error (MSE)	Regression	$\frac{1}{N}\sum\nolimits_{i=1}^{N}(y_{i}-\mu)^{2}$	y_i is label for an instance, N is the number of instances and μ is the mean given by $\frac{1}{N}\sum_{i=1}^{N}y_i$
Variance / Mean Absolute Error (MAE) (Scikit-learn only)	Regression	$\frac{1}{N} \sum\nolimits_{i=1}^{N} y_i - \mu $	y_i is label for an instance, N is the number of instances and μ is the mean given by $\frac{1}{N}\sum_{i=1}^{N}y_i$

FEATURE SELECTION

Using the arbitrary threshold of **0.01**, we filter features to keep the most important ones. We are left with **29 features** in our training dataset!

Prediction Methods

How do we effectively predict the daily price changes of Bitcoin?

NEURAL NETWORKS

INPUT SIZE

670 samples, **14** features Look back **1** day

MODEL LAYERS

2 LSTM layers with **64** & **32** neurons respectively

REGULARIZER

Dropout rate: 50%

Hyperparameters

300 epochs, **32** batch size Adam Optimizer Learning Rate: **0.1**

TIME SERIES FORECASTING

ARIMA

PROPHET

To statistically model the time-series in terms of moving averages and seasonality

Apply lagged version of the time series, by making predictions with lag = 1, differentiation = 0

Decompose the time series data

Combine the level, trend, seasonality and noise **additively**Set the seasonal period to be **50** days

Forecast with univariate features

Input historical figures

Fit the data into the ARIMA model

Order of autoregressive model = 1
Degree of differencing = 0
Order of moving-average model = 0

Forecast the price change and the uncertainty interval (the upper & lower bounds of predicted price change)

GRADIENT BOOSTED TREE

A generally powerful domain-agnostic model

Combine multiple weak learners into a **strong predictive model**

Hyperparameters

3

MAXIMUM DEPTH

100

NUMBER OF ESTIMATORS

LINEAR REGRESSION

Serves as the **baseline model** to compare all other models against!

Prediction Metrics

How did our models perform?

LINEAR REGRESSION

RMSE: 1.0097

LSTM

RMSE: 1.0043

LSTM with Percentage Change

Flat prediction in test period!

ARIMA

RMSE: 1.0012

Price Change Autocorrelation

Prophet

RMSE: 1.0089

Gradient Boosting

RMSE: 0.994

Purchasing Simulation

Utilising our model to trade

TRADING STRATEGY

Strategy: Swing Trading

Focuses on taking smaller gains in short term trends and cutting losses quicker

If model indicates...

Positive Price Change: Initiate Buy Order

Buy one more Bitcoin before prices rise tomorrow, as long as we have enough money.

Negative Price Change: Execute Sell Order

Sell all our Bitcoin today, before prices drop tomorrow!

TRADING SIMULATION

Initial capital: \$1,000,000 Transaction fee: 2%

Trading profit (%): 3.73%

Conclusion

We're nearly at the end!

Importance of good data and feature selection

Understanding and evaluation of different models

Model must be coupled with market knowledge

AREA FOR IMPROVEMENTS

More reliable data Feature engineering Model tuning

THANK YOU

Ang Kai En Kim Yeontae Ng Jing Xiang Sim Jun You Wang Zihan Wong Cheuk Wah (Jane)

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

