The Claims

1. (Currently Amended) A valve mechanism for controlling the flow of fluid therethrough, which mechanism comprises a plunger member at least part of which is journalled for axial reciprocation between a rest position and an operative position within an electric coil under the influence of a magnetic field generated by that coil when an electric current passes through the coil, the distal end of the plunger extending into a valve head chamber having an outlet bore in fluid flow communication with a nozzle outlet, the reciprocation of the plunger being adapted to open or close a fluid flow path from the valve head chamber through that bore, eharacterised characterized in that:

[[a.]] the plunger is of a unitary construction and is made from an electromagnetically soft material having a saturation flux density greater than 1.4 Tesla; and

[[c.]] the plunger has a diameter of 3 mms or less and a length to diameter ratio of less than 15:1.

- 2. (Currently Amended) A valve mechanism as claimed in claim 1, eharacterised characterized in that the plunger is made from a material having a saturation flux density greater than 1.5 Tesla.
- 3. (Currently Amended) A valve mechanism as claimed in claim 1, eharacterised characterized in that the plunger is made from a material having a saturation flux density of from substantially 1.6 to substantially 2.2 Tesla.

- 4. (Currently Amended) A valve mechanism as claimed in claim 1, eharacterised characterized in that the plunger has a diameter of less than 2.5 mms and a length of from 10 to 20 mms.
- 5. (Currently Amended) A valve mechanism as claimed in claim 1, eharacterised characterized in that the plunger has a diameter of less than 1 mm and a length to diameter ratio of from 5:1 to 10:1.
- 6. (Currently Amended) A valve mechanism as claimed in claim 1, eharacterised characterized in that the material from which the plunger is made has a coercivity of less than 100 amperes per metre meter.
- 7. (Currently Amended) A valve mechanism as claimed in claim 1, eharacterised characterized in that the material from which the plunger is made has a coercivity of less than less than 50 amperes per meter.
- 8. (Currently Amended) A valve mechanism as claimed in claim 1, characterised characterized in that the material from which the plunger is made has a relative magnetic permeability in excess of 10,000.

- 9. (Currently Amended) A valve mechanism as claimed in claim 1, eharacterised characterized in that the material from which the plunger is made has a relative magnetic permeability in excess of 50,000.
- 10. (Currently amended) A valve mechanism as claimed in <u>claim 1</u> any one of the preceding claims, characterised <u>characterized</u> in that the nozzle bore leading from the valve head chamber to the nozzle orifice has a length to diameter ratio of less than 8:1.
- 11. (Currently amended) A valve mechanism as claimed in <u>claim 1</u> any one of the preceding claims, characterised <u>characterized</u> in that the nozzle bore leading from the valve head chamber to the nozzle orifice has a length to diameter ratio of from 1.5:1 to 5:1.
- 12. (Currently amended) A valve mechanism for controlling the flow of fluid therethrough, which mechanism comprises a plunger member at least part of which is journalled for axial reciprocation between a rest position and an operative position within an electric coil under the influence of a magnetic field generated by that coil when an electric current passes through the coil, the distal end of the plunger extending into a valve head chamber having an outlet bore in fluid flow communication with a nozzle outlet, the reciprocation of the plunger being adapted to open or close a fluid flow path from the valve head chamber to that nozzle orifice through that bore, characterised characterized in that:

[[b.]] the plunger is of a unitary construction and is made from an electromagnetically soft material having a saturation flux density greater than 1.4 Teslar, a coercivity of less than 25 ampere per meter, and a relative magnetic permeability in excess of 10,000; and

[[c.]] the plunger has a diameter of less than 2.5 mms and has a length to diameter ratio of from 3:1 to 10:1; and

[[d.]] the nozzle bore leading from the valve head chamber to the nozzle orifice has a length to diameter ratio of less than 8:1, and the nozzle orifice has a diameter substantially the same as that of the bore.

- of the preceding claims, characterised characterized in that the bore has a diameter of from 20 to 400 micrometres micrometers and a bore length to diameter ratio of from 1.5:1 to 8:1.
- of the preceding claims, characterised characterized in that the plunger has an internal axial bore or cavity formed in the distal end thereof, said bore or cavity extending axially within the plunger proximally no further than that point at which the plunger enters the coil when the plunger is fully retracted into the coil.

- of the preceding claims, characterised characterized in that the nozzle orifice is one of a plurality formed in a nozzle plate carrying an array of a plurality of valves mounted thereon, each nozzle orifice being in register with the plunger of a valve mechanism.
- 16. (Currently Amended) An array of valve mechanisms as claimed in claim 15, eharacterised characterized in that the nozzle bore and the nozzle orifice are formed as a single component with the nozzle plate.
- 17. (Currently Amended) A valve mechanism as claimed in <u>claim 12 any</u> one of the preceding claims, characterised characterized in that the coil is wound or formed directly upon a tubular support member within which the plunger is to move.
- 18. (Currently Amended) A valve mechanism as claimed in <u>claim 12 any</u> one of the preceding claims, characterised <u>characterized</u> in that the distal wall of the valve head chamber carries one or more upstanding areas to provide an enhanced seal between the opposed end faces of the plunger and the distal wall.
- 19. (Currently Amended) A valve mechanism as claimed in claim 18, characterised characterized in that the sealing areas are provided by one or more upstanding ribs substantially concentric with the inlet to the nozzle bore.

20. (Currently Amended) A valve mechanism as claimed in <u>claim 12</u> any one

of the preceding claims, characterised characterized in that the coil is a single winding

upon a tubular support member.

21. (Currently Amended) A valve mechanism as claimed in <u>claim 12</u> any

one of the preceding claims, characterised characterized in that a metal container is

provided as a magnetic return path to the coil.

22. (Currently Amended) An array of valve mechanisms as claimed in claim

16, characterised characterized in that a metal container is provided around each coil to

act as a magnetic screen between adjacent valve mechanisms in the array.

23. (Currently Amended) A valve mechanism as claimed in claim 12 any one

of the preceding claims, characterised characterized in that the plunger is journalled

within a tubular support member for the coil and the plunger and the tubular support

member do not have congruent cross sections, whereby axial fluid flow paths are formed

between the tubular member and the plunger.

24. (Currently Amended) A valve mechanism as claimed in claim 12 any one

of the preceding claims, characterised characterized in that the conductor of the coil is

deposited, wound or otherwise formed directly upon or within the wall of a tubular

March 14, 2008

support member which provides the interface between the conductor of the coil and the

plunger which is journalled in direct sliding engagement within the support member.

25. (Currently Amended) A valve mechanism as claimed in claim 12 any one

of the preceding claims, characterised characterized in that the nozzle bore has a length to

diameter ratio of from 1:1 to 5:1 and a nozzle orifice diameter of from 20 to 400

micrometres micrometers.

26. (Canceled)

27. (Canceled)

28. (Currently Amended) A drop on demand printer in which a droplet of ink

or other fluid is ejected from a nozzle orifice to form a printer dot upon a substrate and in

which the flow of the fluid from a source of the fluid to the nozzle orifice is regulated by

a valve mechanism comprising a plunger member adapted to be reciprocated within a coil

under the influence of an electric current applied to the coil, eharacterised characterized

in that the printer is provided in operative combination therewith with a computer

adapted to control the operation of the printer, characterised characterized in that:

[[a.]] the computer is adapted to operate in combination with a mechanism for

observing the ejected droplet and/or the printed dot of fluid applied to a substrate; and

Page 8 of 14

[[b.]] the computer is programmed to detect differences between the observed droplet and/or dot and the desired droplet and/or dot and to apply a correction to the current applied to the coil of the valve regulating the flow of fluid to the nozzle orifice so as to maintain the desired observed droplet or dot parameters.

29. (Canceled)

- 30. (Currently Amended) A printer as claimed in claim 28, eharacterised characterized in that the computer is programmed to operate with byte signals.
- 31. (Currently Amended) A printer as claimed in claim 28, eharacterised characterized in that the computer is programmed to respond to the shape and/or size of the ejected droplet and/or the printed dot.
- 32. (Currently Amended) A method for operating a printer as claimed in claim 28, characterised characterized in that the performance of the valve mechanism is calibrated using the comparison of the observed and desired parameters for the ejected droplets and/or printed dots so as to provide one or more records of variations to the operation of the valve required to achieve the desired print parameter.

33. (Canceled)

34. (Currently Amended) A method for operating a printer as claimed in claim 28, characterised characterized in that the computer modifies the operation of the valve so as to decelerate the plunger at it approaches either or both extreme of its travel.

- 35. (Canceled)
- 36. (Canceled)
- 37. (Currently Amended) A method for operating the solenoid valve of a drop on demand ink jet printer as claimed in <u>claim either of claims 27 or 28</u> to print a line of ink upon a substrate, which line has a length equivalent to at least three individual printed dots, <u>characterised characterized</u> in that the plunger is held in the valve open position by applying a current to the coil of the valve which current has an amplitude of less than 50% of that required to move the plunger initially from its rest position.
- 38. (Currently Amended) A method of operating an ink jet printer as claimed in <u>claim either of claims 27 or 28</u>, <u>characterised characterized</u> in that the valve is operated at a frequency greater than 1 kHz.
- 39. (Currently Amended) A method for applying an image forming composition to a pile fabric using a drop on demand ink printer, characterised characterized in that the printer is a drop on demand printer as claimed in claim either of

elaims 27 or 28 and in that the printer is operated at a drop generation frequency of at least 1 kHz.

- 40. (Currently Amended) A method as claimed in claim 39, eharacterised characterized in that the pile fabric has a pile length of at least 2 mms and the printer is operated at a pressure of less than 5 Bar.
- 41. (Currently Amended) A method as claimed in <u>claim either of claims</u> 39 or 40, <u>characterised characterized</u> in that the fluid is an ink or dyestuff having a viscosity of from 50 to 150 Cps at 25° C., the fabric is a fabric or textile having a pile length of 1 mms, in that the nozzle orifice has a diameter of from 80 to 250 micrometres micrometers and the valve is operated at a frequency of 1 kHz or more.
- 42. (Currently Amended) A multi-nozzle drop on demand ink jet print head as claimed in <u>claim_either_of_claims_27_or_28</u>, <u>characterised_characterized_in_that_it</u> comprises a nozzle plate having a plurality of nozzle orifices therein, each at the distal end of a nozzle bore through the nozzle plate, and in that the nozzle plate and nozzle orifices are of a unitary construction and in that each nozzle bore is associated with a valve mechanism for controlling the flow of fluid through that bore.
- 43. (Currently Amended) A method for forming the nozzle plate of a print head as claimed in claim 42, characterised characterized in that the nozzle bores are formed substantially simultaneously in the nozzle plate.

- 44. (Currently Amended) A print head as claimed in claim 42 or a method as claimed in claim 43, characterised characterized in that the nozzle orifice and the nozzle bore are formed as a bore within a foil nozzle plate having a thickness of up to 400 micrometres micrometers, the bore having a length to diameter ratio of less than 8:1.
- 45. (Currently Amended) A valve mechanism for controlling the flow of fluid therethrough and a drop on demand ink jet printer incorporating such a valve mechanism, which mechanism comprises a plunger member at least part of which is journalled for axial reciprocation between a rest position and an operative position within an electric coil under the influence of a magnetic field generated by that coil when an electric current passes through the coil, the distal end of the plunger extending into a valve head chamber having an outlet bore in fluid flow communication with a nozzle outlet, the reciprocation of the plunger being adapted to open or close a fluid flow path from the valve head chamber through that bore, characterised characterized in that:
- [[b.]] At at least a major portion of the plunger is made from an electromagnetically soft material having a saturation flux density greater than 1.6 Tesla; and
- [[d.]] the plunger has a diameter of 3 mms or less and a length to diameter ratio of less than 15:1.