

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

ESE

July- 2023

Max. Marks: 100 Class: F.Y. MCA

Course Code: MC507

Name of the Course: Design and Analysis of Algorithms

Duration: 3.00 hrs Semester: II

Branch: M.C.A.

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q. No.	Questions	Max. Marks	CO- BL
Q1			
A)	Find the bounding function and complexity of following code.	16	1-3
	<pre>1. void function(int n) { int count = 0; for(int i=n/4; i<=n; i++) for(int j=1; j<=n; j=3*j) for(int k=1;k<=n; k=k*3) count++; }</pre> 2. void function(int n) { int count = 0; for(int i=0; i <n; (j%i="=" 0)="" for(int="" i++)="" if="" j="i;" j<i*i;j++)="" k="0;k<j;k++)" printf("*");="" th="" {for(int="" }="" }<=""><th></th><th></th></n;>		
	<pre>3. void function(int n) { int count = 0; for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) for(int k=i;k<=n/2;k++) count++; }</pre> 4. while(n>1) { n=n/2 stmt }		
B)	Apply merge sort algorithm on array A = (10 1 52 8 6 13 20 3 50 69) Show all the iterations. OR Write quick sort algorithm and find its complexity.	4	2-3
Q2 A)	Consider sum of subset problem defined on the following set A={1,2,3,5,7,9}. Solve the problem using backtracking technique and dynamic method. Analyze and compare both the methods.	10	3-4 4-4
B)	Draw the portion of state space tree generated by recursive backtracking	10	3-3

	algorithm for 4-Queen problem with an example.3-		1
Q3 A	Consider start state for a 15 puzzle problem as shown in table below. Show three levels of branching using branch and bound states with justification. (show the various Queues for -live node, E node, dead node)	10	4-3
	1 2 3 4 5 6 8		
	7 9 10 12 11 13 15 14		
B)	Write Kruskal's algorithm for minimum spanning tree. Analyze the algorithm. OR	10	4-4
	Find minimum Spanning Tree for following graph using Kruskals's algorithm.		4-3
(9)	10 14 2		
	6 7 3		
	25 5 22 4 12		
Q4A	i) Compare Greedy and Dynamic programing techniques (Definition, Working, Performance, Analysis, Example)	6	3-4
	ii) Build the Finite automata for pattern matching in the document. (Pattern: SSPPIT)	4	Self study
B)	Given a chain of four matrices A1,A2,A3,A4 with P=[4 6 3 4 5] Find matrix M. Also preserve the order of multiplication.	10	3-3
Q 5 A	Find the shortest path distance between every pair of vertices using Floyd Warshall Algorithm.	10	4-3

