Suite numérique

Exercice 1 (*, convergence implique bornée) Montrer que toute suite convergente est bornée.

Exercice 2 (*, Nature) Étudier la nature des suites suivantes, et déterminer leur limite éventuelle:

1.
$$u_n = \frac{\sin(n) + 3\cos(n^2)}{\sqrt{n}}$$
 2. $u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$ 3. $u_n = \frac{n^3 + 5n}{4n^2 + \sin(n) + \ln(n)}$ 4. $u_n = \sqrt{2n + 1} - \sqrt{2n - 1}$ 5. $u_n = 3^n e^{-3n}$.

2.
$$u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$

3.
$$u_n = \frac{n^3 + 5n}{4n^2 + \sin(n) + \ln(n)}$$

4.
$$u_n = \sqrt{2n+1} - \sqrt{2n-1}$$

Exercice 3 (*,Somme télescopique)

1. Déterminer deux réels a et b tels que

$$\frac{1}{k^2-1} = \frac{a}{k-1} + \frac{b}{k+1}.$$

2. En déduire la limite de la suite

$$u_n = \sum_{k=2}^n \frac{1}{k^2 - 1}.$$

3. Sur le même modèle, déterminer la limite de la suite

$$v_n = \sum_{k=0}^{n} \frac{1}{k^2 + 3k + 2}.$$

Exercice 4 (*, Exemple de suites adjacentes) Démontrer que les suites (u_n) et (v_n) données ci-dessous forment des couples de suites adjacentes.

1.
$$u_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $v_n = u_n + \frac{1}{n}$

2.
$$u_n = \sum_{k=1}^n \frac{1}{k+n}$$
 et $v_n = \sum_{k=n}^{2n} \frac{1}{k}$.

Exercice 5 (*, Avec des quantificateurs) Soit (u_n) une suite de nombres réels. Écrire avec des quantificateurs les propositions suivantes :

- 1. (u_n) est bornée.
- 2. (u_n) n'est pas croissante.
- 3. (u_n) n'est pas monotone.
- 4. (u_n) n'est pas majorée.
- 5. (u_n) ne tend pas vers $+\infty$.

Exercice 6 (*, Moyenne de Cesàro) Soit $(u_n)_{n\geqslant 1}$ une suite réelle. On pose $S_n=\frac{u_1+\cdots+u_n}{n}$.

- 1. On suppose que (u_n) converge vers 0. Soient $\varepsilon > 0$ et $n_0 \in \mathbb{N}$ tel que, pour $n \ge n_0$, on a $|u_n| \le \varepsilon$.
 - (a) Montrer qu'il existe une constante M telle que, pour $n \ge n_0$, on a

$$|S_n| \leqslant \frac{M(n_0 - 1)}{n} + \varepsilon.$$

- (b) En déduire que (S_n) converge vers 0.
- 2. On suppose que $u_n = (-1)^n$. Que dire de (S_n) ? Qu'en déduisez-vous?
- 3. On suppose que (u_n) converge vers l. Montrer que (S_n) converge vers l.
- 4. On suppose que (u_n) tend vers $+\infty$. Montrer que (S_n) tend vers $+\infty$.

Trouver un exemple de suite qui diverge mais dont la moyenne de Cesàro converge.

Exercice 7 (*, Convergence des suites extraites) Soit (u_n) une suite de nombres réels.

- 1. On suppose que (u_{2n}) et (u_{2n+1}) convergent vers la même limite. Prouver que (u_n) est convergente.
- 2. Donner un exemple de suite telle que (u_{2n}) converge, (u_{2n+1}) converge, mais (u_n) n'est pas convergente.
- 3. On suppose que les suites (u_{2n}) , (u_{2n+1}) et (u_{3n}) sont convergentes. Prouver que (u_n) est convergente.

Exercice 8 (*, Suite Héron) Etudier la suite :

$$u_0 > \sqrt{2}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right)$$

Feuille d'exercices ISEN

Suite numérique

Correction 1 Soit (u_n) une suite convergeant vers $l \in \mathbb{R}$. Par définition

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \qquad |u_n - \ell| < \epsilon.$$

Choisissons $\epsilon=1$, nous obtenons le N correspondant. Alors pour $n\geqslant N$, nous avons $|u_n-\ell|<1$; autrement dit $\ell-1< u_n<\ell+1$. Notons $M=\max_{n=0,\dots,N-1}\{u_n\}$ et puis $M'=\max(M,\ell+1)$. Alors pour tout $n\in\mathbb{N}$ $u_n\leqslant M'$. De même en posant $m=\min_{n=0,\dots,N-1}\{u_n\}$ et $m'=\min(m,\ell-1)$ nous obtenons pour tout $n\in\mathbb{N}$, $u_n\geqslant m'$.