5. INFORME DE ANÁLISIS Y CONCLUSIONES DEL TALLER

Algoritmo: Búsqueda Lineal (O(n))

Estudiante: Jhoan Manuel Chavez Ocampo

1. Objetivo y Tareas Realizadas

El objetivo de este taller fue implementar el algoritmo de **Búsqueda Lineal** en las funciones de un sistema de gestión de tienda de electrónica.

En el archivo ejercicios_practicos.py, logré implementar correctamente:

- 1. **Búsqueda Básica:** Encontrar la posición (índice) de un elemento simple.
- 2. **Filtros Complejos:** Buscar productos por **nombre**, **marca**, por **rango de precio** y por **disponibilidad y stock** (usando la lógica AND).
- 3. **Estadísticas:** Recorrer las listas para obtener el valor total de inventario y el conteo de productos por categoría.
- 4. **Análisis de Rendimiento:** Modifiqué el algoritmo para contar el número de **comparaciones** realizadas.

2. Análisis de la Complejidad Temporal

La Búsqueda Lineal tiene una **complejidad de O(n)** (Orden de n), donde n es el número de elementos en la lista.

Escenario	Comparaciones Necesarias	Conclusión

Mejor Caso	1	El elemento está al inicio de la lista. Rápido (O(1)).
Peor Caso	n	El elemento está al final de la lista o no existe. Lento, ya que se revisa la lista entera.

Reflexión del Estudiante: Para las tareas de la tienda que requieren un recorrido completo (como calcular el inventario total o contar todas las marcas), la complejidad siempre es O(n) porque debemos tocar todos los elementos.

3. Conclusiones sobre la Aplicación

¿Cuándo es eficiente en la Tienda?

La Búsqueda Lineal es suficiente y eficiente para este sistema porque:

- 1. Es simple y fácil de codificar.
- 2. Los datos son pequeños: Con menos de 50 productos y 10 empleados, la diferencia de velocidad con un algoritmo más complejo es mínima.
- 3. Los datos no están ordenados: La Búsqueda Lineal no requiere que la lista esté ordenada, lo que ahorra tiempo de pre-procesamiento.

¿Cuál es su principal limitación?

Si la tienda creciera y tuviera **millones** de productos (escala grande), la Búsqueda Lineal (O(n)) sería muy lenta.

En ese caso, para búsquedas rápidas por ID, se necesitaría ordenar la lista y usar **Búsqueda Binaria** (O(log n)).