Subject: Physics

Part Class: SS1

Term: First Term

Week 1

Topic: Fundamental and Derived Quantities

🔭 Sub-theme: Interaction of Matter, Space, and Time

© Topic Focus

- Fundamental & Derived Quantities and Units
- Distance vs. Displacement

Lesson Content

1. Physical Quantities

A **physical quantity** is anything that can be measured and expressed with a number and a unit. **Examples:**

- A bag weighs **15 kilograms** → *Mass*
- A journey takes **2 hours** → *Time*
- A footballer runs at 8 meters per second → Speed

2. Fundamental Quantities

These are the **basic quantities** in physics that cannot be broken down further. All other quantities are derived from them.

Quantity	Symbo	I SI Unit	Unit Symbol
Length	L	metre	m
Mass	m	kilogram	ı kg

Quantity	Symbol SI Unit	Unit Symbol
----------	----------------	--------------------

Time t second s

Electric current I ampere A

Temperature T kelvin K

Amount of substance n mole mol

Luminous intensity Iv candela cd

Real-Life Applications:

• Length: Distance between buildings or football pitch length

• Mass: Weighing items at home or hospital

• **Time:** Stopwatch timing or cooking time

• Current: Charging a phone

• **Temperature:** Using a thermometer

• Amount of substance: Measuring chemicals in lab

• Luminous intensity: Measuring brightness of light bulbs

3. Derived Quantities

These are obtained by combining **two or more fundamental quantities** through mathematical operations.

Derived Quantity Formula		SI Unit	Derived From	
Speed	Distance ÷ Time	m/s	m and s	
Area	Length × Breadth	m²	$m \times m$	
Volume	L×B×H	m³	$m \times m \times m$	
Force	Mass × Acceleratio	Mass × Acceleration newton (N) kg·m/s²		
Pressure	Force ÷ Area	pascal (Pa)	N/m²	

Derived Quantity Formula

SI Unit Derived From

Density

Mass ÷ Volume

kg/m³

 $kg \div m^3$

Real-Life Applications:

• **Speed:** Car speedometers

Area: Calculating land/floor size

• Volume: Measuring liquids in bottles

• Force: Pushing heavy objects

• **Pressure:** Pumping a balloon

• **Density:** Whether objects float or sink in water

• 4. Distance vs. Displacement

Feature Distance Displacement

Meaning Total path covered Shortest path from start to end

Quantity Type Scalar (no direction) Vector (has direction)

Can be Zero? Never zero if movement occurs Can be zero (if start = end)

Unit metre (m) metre (m)

Real-Life Examples:

Example 1 (Distance vs Displacement):

Tunde walks 4 meters forward, then 4 meters back.

- Distance = 4 + 4 = 8 m
- Displacement = **0 m** (He returned to the starting point)

Example 2 (Displacement):

A cyclist moves 10 meters east, then 5 meters west.

- Distance = 10 + 5 = **15 m**
- Displacement = **5 m east** (10 5)

Why It's Important:

- **Drivers** need distance to calculate fuel usage
- **Pilots** and **sailors** use displacement for navigation
- Athletes may return to start point: displacement = 0 but distance ≠ 0

Summary

- Physics studies measurable quantities.
- Fundamental quantities are the basis of all measurements.
- **Derived quantities** come from combining fundamental ones.
- **Distance** is the total path covered.
- **Displacement** is how far out of place an object is—and includes direction.