Data Modelling/Data Base Systems VU 184.685/VU 184.686, WS 2020

The Relational Model

Anela Lolić

Institute of Logic and Computation, TU Wien

Acknowledgements

The slides are based on the slides (in German) of Sebastian Skritek.

The content is based on Chapter 3 of (Kemper, Eickler: Datenbanksysteme – Eine Einführung).

For related literature in English see Chapter 3 and 4 of (Ramakrishnan, Gehrke: Database Management Systems).

Overview

- The Relational Model
- Translation of a Conceptual to a Logical Schema
 - "Translation" of EER to a Relation Schema
 - Features of Relation Schemata
- Query Languages
 - Relational Algebra
 - Relational Calculus
 - Expressive Power of Query Languages

	phone book	
name: string	address: string	telNr: integer
Mickey Mouse	Main Street	4711
Minnie Mouse	Broadway	94725
Donald Duck	Highway	95672

	phone book		schema
name: string	address: string	telNr: integer	Schema
Mickey Mouse	Main Street	4711	
Minnie Mouse	Broadway	94725	
Donald Duck	Highway	95672	

schema		phone book	
Schema	telNr: integer	address: string	name: string
)	4711	Main Street	Mickey Mouse
instance	94725	Broadway	Minnie Mouse
Illstance	95672	Highway	Donald Duck

name

) .		phone book	
schema	telNr: integer	address: string	name: string
	4711	Main Street	Mickey Mouse
instance	94725	Broadway	Minnie Mouse
instance	95672	Highway	Donald Duck
J			

name attributes

		phone book		schema
;	name: string	address: string	telNr: integer	Schema
	Mickey Mouse	Main Street	4711	
	Minnie Mouse	Broadway	94725	instance
	Donald Duck	Highway	95672	Instance
				J

name attributes

tuple (row)

	phone book	
name: string	address: string	telNr: integer
Mickey Mouse	Main Street	4711
Minnie Mouse	Broadway	94725
Donald Duck	Highway	95672

schema

·instance

name phone book schema name: string address: string telNr: integer attributes Main Street Mickey Mouse 4711 tuple (row) Minnie Mouse **Broadway** 94725 instance Highway Donald Duck 95672 field

schema:

```
phone book: (name: string, address: string, telNr: integer)
```

```
instance
{
    ("Mickey Mouse", "Main Street", 4711),
    ("Minnie Mouse", "Broadway", 94725),
    ("Donald Duck", "Highway", 95672)
```



```
schema:
    phone book: (name: string, address: string, telNr: integer)

instance
{
    ("Mickey Mouse", "Main Street", 4711),
    ("Minnie Mouse", "Broadway", 94725),
    ("Donald Duck", "Highway", 95672)
    attention:
    no order
```



```
schema:
```

```
phone book: (name: string, address: string, telNr: integer)
```

```
instance
{
    ("Mickey Mouse", "Main Street", 4711),
    ("Minnie Mouse", "Broadway", 94725),
    ("Donald Duck", "Highway", 95672)
```

attention: no order no duplicates

Definition (relation)

Let D_1, D_2, \ldots, D_n be domains.

A relation R over D_1, D_2, \ldots, D_n is a subset of the Cartesian product of the domains:

$$R \subseteq D_1 \times \cdots \times D_n$$

 $n \dots$ arity of the relation

relational data base: set of relations

Example

$$R \subseteq \mathsf{string} \times \mathsf{string} \times \mathsf{integer}$$

Example

$$R \subseteq \mathsf{string} \times \mathsf{string} \times \mathsf{integer}$$

Mickey Mouse	Main Street	4711
Minnie Mouse	Broadway	94725
Donald Duck	Highway	95672

Definition (tuple)

A tuple t is an element of a relation R.

$$t \in R$$

Example

t = ("Mickey Mouse", "Main Street", 4711)

Definition (relation schema)

The schema of a relation consists of

- the name of the relation.
- the list of the attributes

RelName: $(Attr_1: dom_1, ..., Attr_n: dom_n)$

Example

phone book: (name: string, address: string, telNr: integer)

Key

Definition (key)

A key is a minimal set of attributes, whose values identify a tuple uniquely.

Key

Definition (key)

A key is a minimal set of attributes, whose values identify a tuple uniquely.

Remark: In general several keys are possible to occur. A candidate for a key is picked as primary key (marked by underlining).

Example

phone book: (name: string, address: string, telNr: integer) phone book: (name: string, address: string, telNr: integer)

Definition: Foreign Key

foreign key A foreign key is a set of attributes that point to the key of a(nother) relation.

Example

room: (roomNr: integer, description: string, place: string)

employee: (PNR: int, name: string,

roomNr: integer: room.roomNr)

Learning Objectives

- What is ... ? / What does ... consist of?
 - a relation
 - a relation schema
 - a key / a primary key
 - a foreign key

Translation of a Conceptual Schema to a Logical Schema

Translation of a Conceptual Schema to a Logical Schema

EER → Relation Schema

Summary: Concepts

Summary: Concepts

entity types

attributes

relationship types

weak entity types

generalization

key

"weak key"

cardinalities

Summary: Concepts

entity types

attributes

relationship types

weak entity types

generalization

key

"weak key"

cardinalities

relation schema

key

foreign key

From EER to a Relation Schema: Uni-Schema

Example (university schema)

Example

student

<u>matrNr</u>	name
24002	Xenokrates
25403	Jonas
26120	Fichte
26830	Aristoxenos

student

<u>matrNr</u>	name
24002	Xenokrates
25403	Jonas
26120	Fichte
26830	Aristoxenos

lecture

<u>lecNr</u>	title
5001	Grundzüge
5041	Ethik
4052	Logik

student		
<u>matrNr</u>	name	
24002	Xenokrates	
25403	Jonas	
26120	Fichte	
26830	Aristoxenos	

at...da...t

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5001	
24002	5001	
24002	4052	

lecture	
<u>lecNr</u>	title
5001	Grundzüge
5041	Ethik
4052	Logik

Relational Illustration of Entity Types

Relational Illustration of Entity Types

E: $(A_1: type_1, \ldots, A_i: type_i, A_{i+1}: type_{i+1}, \ldots, A_k: type_k)$

Anela Lolić

University Schema

Example (university schema)

Anela Lolić

Relational Illustration of Entity Types

relational illustration of the four entity types from the university schema

```
student: (matrNr: integer, name: string, semester: integer)
```

lecture: (lecNr: integer, title: string, SWS: integer)

professor: (persNr: integer, name: string, rank: string,

room: integer)

assistant: (persNr: integer, name: string, field: string)

Anela Lolić

intuitively:

R: (key of $rel(E_1)$, ..., key of $rel(E_n)$, attributes of R)

Anela Lolić Seit

assumption:
$$E_i(A_1^i, \dots, A_{k_i}^i, B_1^i, \dots B_{\ell_i}^i)$$
 (for all $1 \le i \le n$)

《日》《圖》《意》《意》

assumption:
$$E_i(A_1^i, \ldots, A_{k_i}^i, B_1^i, \ldots B_{\ell_i}^i)$$
 (for all $1 \le i \le n$)

$$R:$$
 (key of $rel(E_1)$

key of
$$rel(E_n)$$

attributes of R

Anela Lolić Seite 2

assumption:
$$E_i(A_1^i, \ldots, A_{k_i}^i, B_1^i, \ldots, B_{\ell_i}^i)$$
 (for all $1 \le i \le n$)

$$R: (A_1^1: E_1.A_1^1, \dots, A_{k_1}^1: E_1.A_{k_1}^1,$$
 key of $rel(E_1)$

key of
$$rel(E_n)$$

attributes of R

Anela Lolić Seite 21

assumption:
$$E_i(\mathsf{A}_1^i,\ldots,\mathsf{A}_{k_i}^i,\mathsf{B}_1^i,\ldots\mathsf{B}_{\ell_i}^i)$$
 (for all $1\leq i\leq n$)

Anela Lolić

assumption:
$$E_i(\mathsf{A}_1^i,\ldots,\mathsf{A}_{k_i}^i,\mathsf{B}_1^i,\ldots\mathsf{B}_{\ell_i}^i)$$
 (for all $1\leq i\leq n$)

$$R: (A_1^1: E_1.A_1^1, \dots, A_{k_1}^1: E_1.A_{k_1}^1, \qquad \text{key of } \mathit{rel}(E_1)$$

$$\dots,$$

$$A_1^n: E_n.A_1^n, \dots, A_{k_n}^n: E_n.A_{k_n}^n, \qquad \text{key of } \mathit{rel}(E_n)$$

$$AR_1, \dots, AR_{k_n}) \qquad \text{attributes of } R$$

From EER to a Relation Schema: Uni-Schema

Example (university schema)

Anela Lolić

```
relational illustration of the relationship types from the university
schema
(foreign key implicit)
```

```
attend: (matrNr: integer, lecNr: integer)
      give: (persNr: integer, lecNr: integer)
  work for: (assPersNr: integer, profPersNr: integer)
presuppose: (predecessor: integer, successor: integer)
  examine: (matrNr: integer, lecNr: integer, persNr: integer,
            grade: decimal)
```



```
relational illustration of the relationship types from the university schema (foreign key implicit)
```

```
attend: (matrNr: integer, lecNr: integer)
give: (persNr: integer, lecNr: integer)
work for: (assPersNr: integer, profPersNr: integer)
presuppose: (predecessor: integer, successor: integer)
```

examine: (matrNr: integer, lecNr: integer, persNr: integer,

grade: decimal)

Key?

Anela Lolić

```
relational illustration of the relationship types from the university schema (foreign key implicit)
```

```
attend: (matrNr: integer, lecNr: integer) (N:M)
give: (persNr: integer, lecNr: integer) (1:N)
work for: (assPersNr: integer, profPersNr: integer) (N:1)
presuppose: (predecessor: integer, successor: integer) (N:M)
examine: (matrNr: integer, lecNr: integer, persNr: integer, grade: decimal) (N:M:1)
```


Anela Lolić

student					
<u>matrNr</u>	name				
24002	Xenokrates				
25403	Jonas				
26120	Fichte				
26830	Aristoxenos				
28106	Carnap				
29555	Feuerbach				

I	lecture					
<u>lecNr</u>	title					
5001	Grundzüge					
5041	Ethik					
5049	Mäeutik					
4052	Logik					
5216	Bioethik					

student				
<u>matrNr</u>	name			
24002	Xenokrates			
25403	Jonas			
26120	Fichte			
26830	Aristoxenos			
28106	Carnap			
29555	Feuerbach			

attend					
matrNr	lecNr				

lecture						
<u>lecNr</u>	title					
5001	Grundzüge					
5041	Ethik					
5049	Mäeutik					
4052	Logik					
5216	Bioethik					

student						
matrNr name						
24002	Xenokrates					
25403	Jonas					
26120	Fichte					
26830	Aristoxenos					
28106	Carnap					
29555	Feuerbach					

attend						
matrNr lecNr						
24002	4052					
24002	5001					

lecture				
<u>lecNr</u>	title			
5001	Grundzüge			
5041	Ethik			
5049	Mäeutik			
4052	Logik			
5216	Bioethik			

student				
<u>matrNr</u>	name			
24002	Xenokrates			
25403	Jonas			
26120	Fichte			
26830	Aristoxenos			
28106	Carnap			
29555	Feuerbach			

attend						
matrNr	lecNr					
24002	4052					
24002	5001					
26120	5001					

lecture			
<u>lecNr</u>	title		
5001	Grundzüge		
5041	Ethik		
5049	Mäeutik		
4052	Logik		
5216	Bioethik		

The key of a relation that originated from a N:M relationship contains all foreign key attributes from entities involved in the relationship.

The key of a relation that originated from a N:M relationship contains all foreign key attributes from entities involved in the relationship.

Example

attend: (matrNr: integer, lecNr: integer) (N:M)

presuppose: (predecessor: integer, successor: integer) (N:M)

pro	professor		give		I	ecture
<u>PersNrNr</u>	name		persNr	lecNr	<u>lecNr</u>	title
2125	Sokrates				5001	Grundzüge
2126	Russel				5041	Ethik
2127	Kopernikus				5049	Mäeutik
2133	Popper				4052	Logik
2134	Augustinus				5216	Bioethik
2136	Curie					

professor		
<u>PersNrNr</u>	name	
2125	Sokrates	
2126	Russel	
2127	Kopernikus	
2133	Popper	
2134	Augustinus	
2136	Curie	

give		
persNr	lecNr	
2137		
2125	5041	
2125	5049	
2125	4052	
2126		

lecture		
<u>lecNr</u>	title	
5001	Grundzüge	
5041	Ethik	
5049	Mäeutik	
4052	Logik	
5216	Bioethik	

professor		
<u>PersNrNr</u>	name	
2125	Sokrates	
2126	Russel	
2127	Kopernikus	
2133	Popper	
2134	Augustinus	
2136	Curie	

give		
persNr	lecNr	
2137	5001	
2125	5041	
2125	5049	
2125	4052	
2126	5216	

lecture		
<u>lecNr</u>	title	
5001	Grundzüge	
5041	Ethik	
5049	Mäeutik	
4052	Logik	
5216	Bioethik	

The key of a relation that originated from a 1:N relationship contains all foreign key attributes originating from the "N" side of the in the relationship involved entity.

The key of a relation that originated from a 1:N relationship contains all foreign key attributes originating from the "N" side of the in the relationship involved entity.

Example

give: (persNr: integer, lecNr: integer) (1:N)

The key of a relation that originated from a 1:N relationship contains all foreign key attributes originating from the "N" side of the in the relationship involved entity.

Example

```
give: (persNr: integer, lecNr: integer) (1:N)
```

work for: (assPersNr: integer, profPersNr: integer) (N:1)

The key of a relation that originated from a 1:N relationship contains all foreign key attributes originating from the "N" side of the in the relationship involved entity.

Example

```
give: (persNr: integer, lecNr: integer) (1:N)
```

work for: (assPersNr: integer, profPersNr: integer) (N:1)

examine: (matrNr: integer, lecNr: integer, persNr: integer,

grade: decimal) (N:M:1)

Seite 27

what we had:

```
professor: (persNr: integer, name: string, rank: string, room: integer)

lecture: (lecNr: integer, title: string, SWS: integer)

give: (lecNr: integer, persNr: integer)
```


what we had:

```
professor: (persNr: integer, name: string, rank: string, room: integer)

lecture: (lecNr: integer, title: string, SWS: integer)
give: (lecNr: integer, persNr: integer)
```

refinement through combination of relations:

```
professor: (persNr: integer, name: string, rank: string, room: integer)
```


what we had:

```
professor: (persNr: integer, name: string, rank: string, room: integer)

lecture: (lecNr: integer, title: string, SWS: integer)

give: (lecNr: integer, persNr: integer)
```

refinement through combination of relations:

```
professor: (persNr: integer, name: string, rank: string, room: integer)

lecture: (lecNr: integer, title: string, SWS: integer, persNr: integer: prof.persNr)
```


what we had:

```
professor: (persNr: integer, name: string, rank: string, room: integer)

lecture: (lecNr: integer, title: string, SWS: integer)

give: (lecNr: integer, persNr: integer)
```

refinement through combination of relations:

```
professor: (persNr: integer, name: string, rank: string, room: integer)

lecture: (lecNr: integer, title: string, SWS: integer, persNr: integer: prof.persNr)
```

Only relations with the same key can be combined!

Result of a Correct Combination

professor			
persNr	name	rank	room
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36

lecture			
<u>lecNr</u>	title	SWS	persNr
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5049	Mäeutik	2	2125
4052	Logik	4	2125
5216	Bioethik	2	2126

. . .

Anela Lolić Seite 29

professor				
persNr	name	rank	room	give
2125	Sokrates	C4	226	5041
2125	Sokrates	C4	226	5049
2125	Sokrates	C4	226	4052
2126	Russel	C4	232	5216
2136	Curie	C4	36	???

	lecture		
<u>lecNr</u>	title	SWS	
5001	Grundzüge	4	
5041	Ethik	4	
5049	Mäeutik	2	
4052	Logik	4	
5216	Bioethik	2	

professor				
persNr	name	rank	room	give
2125	Sokrates	C4	226	5041
2125	Sokrates	C4	226	5049
2125	Sokrates	C4	226	4052
2126	Russel	C4	232	5216
2136	Curie	C4	36	???

lecture		
<u>lecNr</u>	title	SWS
5001	Grundzüge	4
5041	Ethik	4
5049	Mäeutik	2
4052	Logik	4
5216	Bioethik	2

problem key: relation professor needs a new key

professor				
persNr	name	rank	room	give
2125	Sokrates	C4	226	5041
2125	Sokrates	C4	226	5049
2125	Sokrates	C4	226	4052
2126	Russel	C4	232	5216
2136	Curie	C4	36	???

lecture			
<u>lecNr</u>	title	SWS	
5001	Grundzüge	4	
5041	Ethik	4	
5049	Mäeutik	2	
4052	Logik	4	
5216	Bioethik	2	

problem key: relation professor needs a new key

update anomaly: Sokrates moves

professor				
persNr	name	rank	room	give
2125	Sokrates	C4	226	5041
2125	Sokrates	C4	226	5049
2125	Sokrates	C4	226	4052
2126	Russel	C4	232	5216
2136	Curie	C4	36	???

lecture			
<u>lecNr</u>	title	SWS	
5001	Grundzüge	4	
5041	Ethik	4	
5049	Mäeutik	2	
4052	Logik	4	
5216	Bioethik	2	

problem key: relation professor needs a new key

update anomaly: Sokrates moves

insert anomaly: Curie is new and does not yet give a lecture. What

is the key?

Anela Lolić

professor				
name	rank	room	give	
Sokrates	C4	226	5041	
Sokrates	C4	226	5049	
Sokrates	C4	226	4052	
Russel	C4	232	5216	
Curie	C4	36	???	
	name Sokrates Sokrates Russel	name rank Sokrates C4 Sokrates C4 Sokrates C4 Russel C4	name rank room Sokrates C4 226 Sokrates C4 226 Sokrates C4 226 Russel C4 232	

lecture			
<u>lecNr</u>	title	SWS	
5001	Grundzüge	4	
5041	Ethik	4	
5049	Mäeutik	2	
4052	Logik	4	
5216	Bioethik	2	

problem key: relation professor needs a new key

update anomaly: Sokrates moves

insert anomaly: Curie is new and does not yet give a lecture. What

is the key?

delete anomaly: lecture Ethik does not take place

Anela Lolić

Null Values and how to Avoid Them

Example

Students that work as student assistant are assigned a room. There are 25,000 students and 200 student assistants.

Null Values and how to Avoid Them

Example

Students that work as student assistant are assigned a room. There are 25,000 students and 200 student assistants.

Null Values and how to Avoid Them

Example

Students that work as student assistant are assigned a room. There are 25,000 students and 200 student assistants.

student: (matrNr, name, semester)

sit in: (<u>matrNr: student</u>, roomNr: room)

room: (roomNr, m2, location)

Soite 21

Null Values and how to Avoid Them.

Example

Students that work as student assistant are assigned a room. There are 25,000 students and 200 student assistants.

student: (matrNr, name, semester)

sit in: (matrNr: student, roomNr: room)

room: (roomNr, m2, location)

student: (matrNr, name, semester, roomNr: room)

Nothing to be combined to avoid null values.


```
professor: ( persNr, name, rank )
room: ( roomNr, m2, location )
```



```
professor: ( persNr, name, rank )
room: ( roomNr, m2, location )
sit in: ( persNr: professor, roomNr: room) or
( persNr: professor roomNr: room)
```


(persNr: professor roomNr: room)

professor: (persNr, name, rank, roomNr: room)

room: (roomNr, m2, location)

Anela Lolić Seite 3:


```
( persNr: professor roomNr: room )
professor: ( persNr, name, rank, roomNr: room )
  room: ( roomNr, m2, location )
professor: ( persNr, name, rank )
  room: ( roomNr, m2, location, persNr: professor )
```


<ロ > ∢ □ > ∢ □ > ∢ □ > ↓ □ > 0 □

FANALTÄT
FÜR SPERMATE
Fixalty of Monnesica

attention: avoidance of null values

room: (<u>roomNr</u>, m2, location) professor: (persNr, name, rank)

Anela Lolić Seite 3

room: (roomNr, m2, location, persNr: professor)

Refinement of (min, max)-Notation

translation to a relation schema:

$$R^s$$
: $(key(E_1), key(E_2), \ldots, key(E_n))$

 (\min,\max) -notation: for every entity e_i of type E_i it holds that:

$$\min_{i} \leq \# \text{tuple of the form } (\dots, e_i, \dots) \in R \leq \max_{i}$$

Seite 33

Refinement of (min,max)-Notation

professor: (persNr, name, rank)

room: (roomNr, m2, location)

Refinement of (min,max)-Notation


```
professor: ( persNr, name, rank)
```

room: (roomNr, m2, location)

sit in: (persNr: professor, roomNr: room)

Refinement of (min, max)-Notation


```
professor: ( persNr, name, rank)
```

room: (roomNr, m2, location)

sit in: (persNr: professor, roomNr: room)

professor: (persNr, name, rank, roomNr: room)

room: (roomNr, m2, location)

Seite 3/

Refinement of (min,max)-Notation

The (min, max)-notation determines the number of times an entity (of type E) is allowed to occur in an instance of a relationship type.

- (0,1) at most once ⇒ relationship tuple is uniquely identified key receives the foreign key attributes from E, combination might lead to null values
- (1,1) exactly once ⇒ relationship tuple is uniquely identified each entity of type E is in a relationship key receives the foreign key attributes from E, combine relationship with the relation E

- 《□》 《레》 《토》 《토》 - [3

intuitively:

```
W ( key of rel(E),

weak key of W,

attributes of W)
```


assumption: E: $(A_1, \ldots, A_i, A_{i+1}, \ldots, A_n)$

assumption: E:
$$(A_1, \ldots, A_i, A_{i+1}, \ldots, A_n)$$

W:
$$(A_1: E.A_1, ..., A_i: E.A_i, W_1, ..., W_j, W_{j+1}, ..., W_k)$$

ロト 4回ト 4 三ト 4 三 りの(

Anela Lolić Seite 37

exam: (matrNr: student.matrNr, partExam, grade)

exam: (matrNr: student.matrNr, partExam, grade)

comprise: (matrNr: exam, partExam: exm, lecNr: lecture)

give: (matrNr: exam, partExam: exam, persNr: prof)

intuitively: "inherit" the key

assumtpion: E:
$$(A_1, \ldots, A_i, A_{i+1}, \ldots, A_k)$$

Anela Lolić

intuitively: "inherit" the key

assumtpion: E:
$$(A_1, \ldots, A_i, A_{i+1}, \ldots, A_k)$$

$$S: (A_1: E.A_1, \ldots, A_i: E.A_i, S_1, \ldots, S_k)$$

Anela Lolić

relational illustration of the generalization from the university schema

employee: (persNr, name)

relational illustration of the generalization from the university schema

employee: (persNr, name)

professor: (persNr: employee.persNr, rank, room)

assistant: (persNr: employee.persNr, subject)

Anela Lolić

From EER to the Relation Schema: Uni-Schema

Example (university schema)

FANOUTÄT Füllt INFORMATIK Faculty of Informatio

Anela Lolić

Relational University Data Base

student			
<u>matrNr</u>	name	sem	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
28106	Carnap	3	
29120	Theophrastos	2	
29555	Feuerbach	2	

professor			
persNr	name	rank	room
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36
2137	Kant	C4	7

Relational University Data Base

lecture			
<u>lecNr</u>	title	SWS	persNr
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5043	Erkenntnistheorie	3	2126
5049	Mäeutik	2	2125
4052	Logik	4	2125
5052	Wissenschaftstheorie	3	2126
5216	Bioethik	2	2126
5259	Der Wiener Kreis	2	2133
5022	Glaube und Wissen	2	2134
4630	Die drei Kritiken	4	2137

presuppose			
preNr	<u>sucNr</u>		
5001	5041		
5001	5043		
5001	5049		
5041	5216		
5043	5052		
5041	5052		
5052	5259		

Relational University Data Base

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5001	
27550	5001	
27550	4052	
28106	5041	
28106	5001	
28106	4052	
28106	4630	
29120	5001	
29120	5041	
29120	5049	
29555	5022	
25403	5022	

	assistant			
persNr	name	field	boss	
3002	Platon	Ideenlehre	2125	
3003	Aristoteles	Syllogistik	2125	
3004	Wittgenstein	Sprachtheorie	2126	
3005	Rhetikus	Planetenbewegung	2127	
3006	Newton	Kepler Gesetze	2127	
3007	Spinoza	Gott und Natur	2126	

examine			
<u>matrNr</u>	<u>lecNr</u>	persNr	grade
28106	5001	2126	1
25403	5041	2125	2
27550	4630	2137	2

Anela Lolić Seite 4

Learning Objectives

- How do we translate
 - entity types
 - relationship types
 - weak entity types
 - generalization relationships

to the relational model?

- What do we have to take care of when translating relationship types?
 - How do we identify keys?
 - What can we do to obtain a minimal number of relations?
 - How can null values be avoided?
- What kind of anomalies can occur in a bad schema?

Query Languages

Query Languages

in this lecture:

- Relational Algebra
- Relational Calculus

Query Languages

in this lecture:

- Relational Algebra
- Relational Calculus

both languages

- form theoretical basis for SQL
- are equally expressive
- are closed under relations

Relational Algebra

The Relational Algebra

CODD 1970: A relational model for large shared data banks. Communications of the ACM, 13(6): 377-387

CODD 1972: Relational Completeness of Data Base Sub Languages. In: Rustin, R., Hrsg.: Database Systems, 33-64 Prentice Hall, Englewood Cliffs, NY, USA

The Relational Algebra

CODD 1970: A relational model for large shared data banks. Communications of the ACM, 13(6): 377-387

CODD 1972: Relational Completeness of Data Base Sub Languages. In: Rustin, R., Hrsg.: Database Systems, 33-64 Prentice Hall, Englewood Cliffs, NY, USA

procedural query language:

expression implicitly contains the execution plan for performing the query

The Relational Algebra

CODD 1970: A relational model for large shared data banks. Communications of the ACM, 13(6): 377-387

CODD 1972: Relational Completeness of Data Base Sub Languages. In: Rustin, R., Hrsg.: Database Systems, 33-64 Prentice Hall, Englewood Cliffs, NY, USA

procedural query language:

expression implicitly contains the execution plan for performing the query

set based language:

operations work with sets of tuples

Relational Algebra – Why (do we have to learn this)?

- basis of many (relational) query languages
- describes possible operations on relations (= tools and mindset)
- applications:
 - construction and optimization of query plans in DBMSs
 - as functions of "procedural" DB interfaces
 - communication about data base operations, description of possible procedures
 - development of algorithms for answering the query

Relational Algebra – Why (do we have to learn this)?

construction and optimization of query plans in DBMSs

```
Example (postgres query plan)
Hash Join
Hash Cond: (w.ssn = e.essn)
 -> Hash Join
    Hash Cond: (w.pno = p.pnumber)
    -> Seq Scan on workson w
    -> Hash
      -> Bitmap Heap Scan on project p
         Recheck Cond: ((pname)::text = 'Aquarius'::text)
        -> Bitmap Index Scan on projectpnameidx
           Index Cond: ((pname)::text = 'Aquarius'::text)
 -> Hash
    -> Seq Scan on employee e
       Filter: ((bdate)::text > '1957-12-31'::text)
```


Relational Algebra – Why (do we have to learn this)?

as functions of "procedural" DB interfaces

```
Example (computations with SPARK data frames)
mDF.join(pDF,pDF("made") === mDF("name"))
.select(mDF("name"),pDF("name"))
.except(mDF
.join(pDF,pDF("made") === mDF("name"))
.join(dDF,dDF("for") === pDF("id"))
.select(mDF("name"),pDF("name")))
```


Operators of the Relational Algebra

basic operators

 σ : selection

 π : projection

U: union

-: set difference

×: Cartesian product (cross product)

 ρ : renaming

Operators of the Relational Algebra

basic operators

```
\sigma: selection
```

 π : projection

∪: union

-: set difference

X: Cartesian product (cross product)

 ρ : renaming

⋈: join

M, M bzw. M: left, right resp. full outer join

⋊ bzw. ⋉: left resp. right semi-join

Example

find all students that are studying for more than 10 semesters

student			
matrNr	name	semester	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
28106	Carnap	3	

Example

find all students that are studying for more than 10 semesters

 $\sigma_{\mathsf{semester}>10}(\mathsf{student})$

student			
matrNr	name	semester	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
28106	Carnap	3	

Example

find all students that are studying for more than 10 semesters

$$\sigma_{\text{semester}>10}(\text{student})$$

student			
matrNr	name	semester	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
28106	Carnap	3	

$\sigma_{semester>10}(student)$			
matrNr	name semester		
24002	Xenokrates	18	
25403	Jonas	12	

- selection of tuples of the relation R through the formula F
- F uses comparison operators $(=, \neq, \leq, \geq, >, <)$, logical operators (\neg, \lor, \land) , attribute names from R and constants

Definition ($\sigma_F(R)$)

- schema: $att(\sigma_F(R)) = att(R)$
- instance: $\sigma_F(R) = \{t \in R \mid t \text{ satisfies } F\}$

evaluation of F for tuple t: replace all attribute names in F by the respective value in t

Projection $\pi_{A_i}(R)$

Example

find all ranks for professors

professor			
persNr	name	rank	room
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36

Projection $\pi_{A_i}(R)$

Example

find all ranks for professors

$\pi_{rank}(professor)$

professor			
persNr	name	rank	room
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36

Projection $\pi_{A_i}(R)$

Example

find all ranks for professors

$\pi_{rank}(professor)$

	professor			
persNr	name	rank	room	
2125	Sokrates	C4	226	
2126	Russel	C4	232	
2127	Kopernikus	C3	310	
2133	Popper	C3	52	
2134	Augustinus	C3	309	
2136	Curie	C4	36	

$\pi_{\it rank}(\it professor)$	
rank	
C3	
C4	

projection $\pi_{A_i}(R)$

- \blacksquare selection of a set of attributes A_i from a relation R
- attention: duplicates are eliminated

projection $\pi_{A_i}(R)$

- selection of a set of attributes A; from a relation R
- attention: duplicates are eliminated

Definition $(\pi_{A_i}(R))$

Let A_i be a subset of the attributes from R

- schema: $att(\pi_{A_i}(R)) = A_i$
- instance: $\{t' \mid \exists t \in R : t.A_i = t'\}$

student			
matrNr	name	semester	
24002	Xenokrates	18	
25403	Jonas	12	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
26120	Fichte	10	
28106	Carnap	3	

student			
matrNr	name	semester	
24002	Xenokrates	18	
25403	Jonas	12	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
26120	Fichte	10	
28106	Carnap	3	

selection: select tuples

student			
matrNr	name	semester	
24002	Xenokrates	18	
25403	Jonas	12	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
26120	Fichte	10	
28106	Carnap	3	

student			
matrNr	name	semester	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	

selection: select tuples

student			
matrNr	name semest		
24002	Xenokrates	18	
25403	Jonas	12	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
26120	Fichte	10	
28106	Carnap	3	

selection: select tuples

projection: project to attributes (columns)

student			
matrNr	name semeste		
24002	Xenokrates	18	
25403	Jonas	12	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
26120	Fichte	10	
28106	Carnap	3	

student
matrNr
24002
25403
26830
27550
26120
28106

selection: select tuples

projection: project to attributes (columns)

Union $R \cup S$

Example

find the names of all professors and assistants

Union $R \cup S$

Example

find the names of all professors and assistants

 $\pi_{name}(professor)$

 $\pi_{\mathsf{name}(\mathsf{professor})}$

name Sokrates

Curie

3. Query Languages

Union $R \cup S$

Example

find the names of all professors and assistants

 $\pi_{name}(professor) \quad \pi_{name}(assistant)$

 $\pi_{\mathsf{name}(\mathsf{professor})}$

name

Sokrates

Curie

 $\pi_{\mathsf{name}(\mathsf{assistant})}$

name

Platon

- . . .

Spinoza

The Relational Model

Union $R \cup S$ Example

find the names of all professors and assistants

 $\pi_{name}(professor) \cup \pi_{name}(assistant)$

 $\pi_{\text{name}(\text{professor})}$

name Sokrates

Curie

 $\pi_{\text{name}(\text{assistant})}$

name

Platon

. . .

Spinoza

Union $R \cup S$

Example

find the names of all professors and assistants

 $\pi_{name}(professor) \cup \pi_{name}(assistant)$

 $\pi_{\text{name}(\text{professor})}$ name Sokrates Curie $\pi_{\text{name}(\text{assistant})}$ name Platon . . .

Spinoza

$\pi_{name}(professor) \cup \pi_{name}(assistant)$
name
Sokrates
Kant
Platon
Spinoza

Union $R \cup S$

- defined on two relations R, S with equal schema
- returns all tuples that occur in R or in S

Definition $(R \cup S)$

- precondition: att(R) = att(S)
- schema: $att(R \cup S) = att(R)$
- instance: $\{t \mid t \in R \text{ oder } t \in S\}$

Set Difference R - S

Example

find the (matriculation number of) students who have not taken an exam yet

$\pi_{matrNr}(student)$
matrNr
24002
25403
26120
26830
27550
28106
29120
29555

$\pi_{matrNr}(examine)$
<u>matrNr</u>
28106
25403
27550

Anela Lolić

Set Difference R - S

Example

find the (matriculation number of) students who have not taken an exam yet

$$\pi_{matrNr}(student) - \pi_{matrNr}(examine)$$

$\pi_{matrNr}(student)$
matrNr
24002
25403
26120
26830
27550
28106
29120
29555

$\pi_{matrNr}(examine)$
<u>matrNr</u>
28106
25403
27550

Set Difference R - S

Example

find the (matriculation number of) students who have not taken an exam yet

 $\pi_{matrNr}(student) - \pi_{matrNr}(examine)$

$\pi_{matrNr}(student)$
matrNr
24002
25403
26120
26830
27550
28106
29120
29555

$\pi_{matrNr}(examine)$
<u>matrNr</u>
28106
25403
27550

$\pi_{matrNr}(student)$
$\pi_{matrNr}(examine)$
matrNr
24002
26120
26830
29120
29555

Set Difference R-S

- defined on two relations R, S with equal schema
- returns all tuples that occur in R but not in S

Definition (R - S)

- \blacksquare precondition: att(R) = att(S)
- \blacksquare schema: att(R-S)=att(R)
- instance: $\{t \mid t \in R \text{ und } t \notin S\}$

Cartesian Product $R \times S$

Example

find all pairs of students and entries in "attend"

$student \times attend$

student $ imes$ attend				
matrNr	name	sem	attend.matrNr	lecNr
24002	Xenokrates	18	26120	5001
24002	Xenokrates	18	27550	5001
24002	Xenokrates	18	25403	5022
25403	Jonas	12	26120	5001
29555	Feuerbach	2	29555	5022
29555	Feuerbach	2	25403	5022

Anela Lolić Seite 63

Cartesian Product $R \times S$

- combines each tuple from *R* with each tuple from *S*
- lacksquare schema from $R \times S$ is the union of the attributes from R and S
- size of the result: $|R \times S| = |R| * |S|$
- the usually "nicer" operation is the join

Cartesian Product $R \times S$

- combines each tuple from R with each tuple from S
- lacksquare schema from R imes S is the union of the attributes from R and S
- size of the result: $|R \times S| = |R| * |S|$
- the usually "nicer" operation is the join

Definition $(R \times S)$

Let $att(R) = (A_1, ..., A_m)$ and $att(S) = (B_1, ..., B_n)$.

- schema: $att(R \times S) = (A_1, \dots, A_m, B_1, \dots, B_n)$ (ensure that attribute names do not occur twice)
- instance: $\{t \mid \exists t_1 \in R : t.[A_1, ..., A_m] = t_1 \text{ and } \exists t_2 \in S : t.[B_1, ..., B_n] = t_2\}$

7 D C 7 D C 7 E C 7 E C E

Renaming $\rho_X(R)$

Example (renaming of attributes)

find the lecNr of all lectures that do not have a precondition

lecNr title SWS persNr

presuppose
preNr sucNr

Renaming $\rho_X(R)$

Example (renaming of attributes)

find the lecNr of all lectures that do not have a precondition

 $\rho_{\mathsf{lecNr}\leftarrow\mathsf{sucNr}}(presuppose)$

lecNr title SWS persNr

presuppose
preNr sucNr

Example (renaming of attributes)

find the lecNr of all lectures that do not have a precondition

 $\rho_{\mathsf{lecNr}\leftarrow\mathsf{sucNr}}(presuppose)$

lecNr title SWS persNr

preSuppose
preNr sucNr

 $\rho_{\mathsf{lecNr}\leftarrow\mathsf{sucNr}}(\mathsf{presuppose})$

preNr lecNr

 $\rho_{\mathsf{lecNr}\leftarrow\mathsf{sucNr}}(\mathsf{presuppose})$

preNr

lecNr

Renaming $\rho_X(R)$

Example (renaming of attributes)

find the lecNr of all lectures that do not have a precondition

$$\rho_{\mathsf{lecNr}\leftarrow\mathsf{sucNr}}(\mathit{presuppose})$$

lecNr title SWS persNr

presuppose
preNr sucNr

$$\pi_{\mathsf{lecNr}}(\mathsf{lecture}) - \pi_{\mathsf{lecNr}}(\rho_{\mathsf{lecNr}\leftarrow\mathsf{sucNr}}(\mathsf{presuppose}))$$

FAULUTÄZ FOR INFORMATIK WILLEN Facilityol Momento

Example (renaming of relations)

find all pairs of students (matrNr) who attend (at least) one lecture together $\$

attend matrNr lecNr

Example (renaming of relations)

find all pairs of students (matrNr) who attend (at least) one lecture together

attend matrNr lecNr matrNr lecNr

Example (renaming of relations)

find all pairs of students (matrNr) who attend (at least) one lecture together

attend				atte	nd
matrNr	lecNr			matrNr	lecNr
	$ ho_{S1}$ (a	attend)	$ ho_{S2}$ (atte	end)	
S1				S2	2
matrNr	lecNr			matrNr	lecNr

Example (renaming of relations)

find all pairs of students (matrNr) who attend (at least) one lecture together

attend matrNr lecNr attend matrNr lecNr

$$\rho_{S1}(attend) \times \rho_{S2}(attend)$$

$$\rho_{S1}(\textbf{attend}) \times \rho_{S2}(\textbf{attend})$$
 S1.matrNr S1.lecNr S2.matrNr S2.lecNr

Example (renaming of relations)

find all pairs of students (matrNr) who attend (at least) one lecture together

attend		
matrNr	lecNr	

$$\sigma_{S1.lecNr=S2.lecNr}(\rho_{S1}(attend) \times \rho_{S2}(attend))$$

$\sigma_{S1.lecNr=S2.lecNr}(ho_{S1}(attend) imes ho_{S2}(attend))$			
S1.matrNr	S1.lecNr	S2.matrNr	S2.lecNr
26120	5001	26120	5001
26120	5001	27550	5001
29555	5022	25403	5022

■ renaming of attributes $\rho_{A \leftarrow B}(R)$:

 $\rho_{A \leftarrow B}(R)$ renames attribute B of the relation R to A

- renaming of attributes $\rho_{A \leftarrow B}(R)$:
 - $\rho_{A\leftarrow B}(R)$ renames attribute B of the relation R to A
- renaming of relations $\rho_V(R)$
 - relation R is renamed to V

Primitive Operators of the Relational Algebra

- $\sigma_F(R)$: selection of tuples in R that satisfy F
- $\pi_{A_i}(R)$: projection of attributes A_i
 - ρ: renaming of attributes or relations
 - U: union
 - -: set difference
 - × Cartesian product (cross product)

Example (a very common kind of query)

Which students attend which lectures?

student			
matrNr	name	sem	
26120	Fichte	10	
25403	Jonas	12	

attend		
matrNr	lecNr	
26120	5001	
27550	5001	

lecture		
lecNr	title	
5001	Grundzüge	
5041	Ethik	

Example (a very common kind of query)

Which students attend which lectures?

student				
matrNr	name	sem		
26120	Fichte	10		
25403	Jonas	12		

attend		
matrNr	lecNr	
26120	5001	
27550	5001	

lecture		
lecNr	title	
5001	Grundzüge	
5041	Ethik	

 $student \times attend \times lecture$

Example (a very common kind of query)

Which students attend which lectures?

student			
matrNr	name	sem	
26120	Fichte	10	
25403	Jonas	12	

attend		
matrNr	lecNr	
26120	5001	
27550	5001	

lecture		
lecNr	title	
5001	Grundzüge	
5041	Ethik	

 $\sigma_{\mathsf{student.matrNr} = \mathsf{attend.matrNr}} \\ (\mathsf{student} \times \mathsf{attend} \times \mathsf{lecture})$

Example (a very common kind of query)

Which students attend which lectures?

student			attend			lecture		
matrNr	name	sem	matrNr	lecNr		lecNr	title	
26120	Fichte	10	26120	5001		5001	Grundzüge	
25403	Jonas	12	27550	5001		5041	Ethik	

 $\sigma_{\mathsf{student.matrNr} = \mathsf{attend.matrNr} \land \mathsf{lecture.lecNr} = \mathsf{attend.lecNr}} \\ (\mathsf{student} \times \mathsf{attend} \times \mathsf{lecture})$

Example

Which students attend which lectures?

 $\pi_{St.MNr,N,S,VNr}(\sigma_{\text{student.matrNr}=\text{attend.matrNr}}(\text{student} \times \text{attend}))$

student ⋈ attend

student							
matrNr	name	sem					
24002	Xenokrates	18					

attend						
matrNr	lecNr					
26120	5001					

student \bowtie attend							
matrNr	name	sem	lecNr				
26120	Fichte	10	5001				
27550	Schopenhauer	6	5001				
27550	Schopenhauer	6	4052				
28106	Carnap	3	5041				
28106	Carnap	3	5001				

Anela Lolić

- combines two relations R, S
 - 1 constructs the Cartesian product of a relation
 - 2 selects the tuples that take the same value on same attributes
 - 3 removes attributes that occur twice
 - 4 (degenerates to the Cartesian product in case there are no attributes with same names)

- combines two relations R, S
 - 1 constructs the Cartesian product of a relation
 - 2 selects the tuples that take the same value on same attributes
 - 3 removes attributes that occur twice
 - 4 (degenerates to the Cartesian product in case there are no attributes with same names)

$R \bowtie S$											
а	tt(R)	\ att(S	5)	а	tt(R)	$\cap att(S)$	5)	а	tt(S)	\ att(F	?)
A_1	A_2		A_m	B_1	B_2		B_k	C_1	C_2		C_n

Definition (natural join)

Let R, S be given with the following schemata:

 $R(A_1, \ldots, A_m, B_1, \ldots B_k)$ and $S(B_1, \ldots B_k, C_1, \ldots C_n)$. The natural join is defined as

$$R \bowtie S = \pi_{A_1, \dots, A_m, R.B_1, \dots, R.B_k, C_1, \dots, C_n} \sigma_{R.B_1 = S.B_1 \land \dots \land R.B_k = S.B_k} (R \times S)$$

$R \bowtie S$											
$att(R) \setminus att(S)$			$att(R) \cap att(S)$ $att(S)$			tt(S)	$) \setminus att(R)$				
A_1	A_2		A_m	B_1	B_2		B_k	C_1	C_2		C _n

Ex: The Natural Join

Which students attend which lecture?

student							
matrNr	name	sem					
24002	Xenokrates	18					
25403	Jonas	12					

attend						
matrNr	lecNr					
26120	5001					
27550	5001					

lecture							
lecNr	title	SWS	persNr				
5001	Grundzüge	4	2137				
5041	Ethik	4	2125				

Ex: The Natural Join

	$student \bowtie attend \bowtie lecture$							
matrNr	name	sem	lecNr	title	SWS	persNr		
26120	Fichte	10	5001	Grundzüge	4	2137		
27550	Schopenhauer	6	5001	Grundzüge	4	2137		
27550	Schopenhauer	6	4052	Logik	4	2125		
28106	Carnap	3	5041	Ethik	4	2125		
28106	Carnap	3	5001	Grundzüge	4	2137		
28106	Carnap	3	4052	Logik	4	2125		
28106	Carnap	3	4630	Die drei Kritiken	4	2137		
29120	Theophrastos	2	5001	Grundzüge	4	2137		
29120	Theophrastos	2	5041	Ethik	4	2125		
29120	Theophrastos	2	5049	Mäeutik	2	2125		
29555	Feuerbach	2	5022	Glaube und Wissen	2	2134		
25403	Jonas	12	5022	Glaube und Wissen	2	2134		

Anela Lolić Seite 74

Definition: Expressions of the Relational algebra

Definition (relational algebra)

the basic expressions of the relational algebra are:

- relations of the data base or
- constant relations

Definition: Expressions of the Relational algebra

Definition (relational algebra)

the basic expressions of the relational algebra are:

- relations of the data base or
- constant relations

let R and S be expressions of the relational algebra, then so are:

- \bullet $\sigma_F(R)$ and $\pi_{A_i}(R)$
- \blacksquare $R \cup S$, R S, and $R \times S$
- $\rho_{A \leftarrow B}(R)$ and $\rho_V(R)$

$$\pi_{\textit{name}}(\sigma_{\textit{R.MN}=\textit{St.MN}}(\rho_{\textit{R}}(\pi_{\textit{MN}}(\textit{student}) - \pi_{\textit{MN}}(\textit{attend})) \times student)) \cup \pi_{\textit{name}}(\textit{professor})$$

Example

$$\pi_{name}(\sigma_{R.MN=St.MN}(\rho_R(\pi_{MN}(student) - \pi_{MN}(attend)) \times student)) \cup \pi_{name}(professor)$$

professor

student

Example

```
\pi_{\textit{name}}(\sigma_{\textit{R.MN} = \textit{St.MN}}(\rho_{\textit{R}}(\pi_{\textit{MN}}(\textit{student}) - \pi_{\textit{MN}}(\textit{attend})) \times \\ \textit{student})) \cup \pi_{\textit{name}}(\textit{professor})
```

 $\pi_{\it name}$ | professor

student

 π_{matrNr} π_{matrNr} | student attend

Example

 $\pi_{\textit{name}}(\sigma_{\textit{R.MN}=\textit{St.MN}}(\rho_{\textit{R}}(\pi_{\textit{MN}}(\textit{student}) - \pi_{\textit{MN}}(\textit{attend})) \times student)) \cup \pi_{\textit{name}}(\textit{professor})$

 π_{name} | professor

student

Example

 $\pi_{name}(\sigma_{R.MN=St.MN}(\rho_R(\pi_{MN}(student) - \pi_{MN}(attend)) \times student)) \cup \pi_{name}(professor)$

 $\pi_{\it name}$ | professor

Example

$$\pi_{name}(\sigma_{R.MN=St.MN}(\rho_R(\pi_{MN}(student) - \pi_{MN}(attend)) \times student)) \cup \pi_{name}(professor)$$

 $\pi_{ extit{name}} \ ert$ professor

$$\pi_{\textit{name}}(\sigma_{\textit{R.MN}=\textit{St.MN}}(\rho_{\textit{R}}(\pi_{\textit{MN}}(\textit{student}) - \pi_{\textit{MN}}(\textit{attend})) \times student)) \cup \pi_{\textit{name}}(\textit{professor})$$

$$\pi_{name}(\sigma_{R.MN=St.MN}(\rho_R(\pi_{MN}(student) - \pi_{MN}(attend)) \times student)) \cup \pi_{name}(professor)$$

$$\pi_{name}(\sigma_{R.MN=St.MN}(\rho_R(\pi_{MN}(student) - \pi_{MN}(attend)) \times student)) \cup \pi_{name}(professor)$$

$$\pi_{name}(\sigma_{R.MN=St.MN}(\rho_R(\pi_{MN}(student) - \pi_{MN}(attend)) \times student)) \cup \pi_{name}(professor)$$

$$\pi_{name}(\sigma_{R.MN=St.MN}(\rho_R(\pi_{MN}(student) - \pi_{MN}(attend)) \times student)) \cup \pi_{name}(professor)$$

$$\pi_{name}(\sigma_{R1.MN=St.MN}(\cdots)) \qquad \pi_{name}(professor)$$

$$\pi_{name}(\sigma_{R.MN=St.MN}(\rho_R(\pi_{MN}(student) - \pi_{MN}(attend)) \times \\ student)) \cup \pi_{name}(professor)$$

$$\begin{matrix} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & &$$

Example

$$\pi_{name}(\sigma_{R.MN=St.MN}(\rho_R(\pi_{MN}(student) - \pi_{MN}(attend)) \times student)) \cup \pi_{name}(professor)$$

$$\tau_{name} \qquad \qquad \tau_{name} \qquad \qquad \qquad \tau_{name} \qquad \tau_{name}$$

Anela Lolić

Example

Example

Anela Lolić

Example

$$\pi_{name}(\sigma_{R.MN=St.MN}(\rho_{R}(\pi_{MN}(student) - \pi_{MN}(attend)) \times student)) \cup \pi_{name}(professor)$$
 π_{name}
 π_{name}

Anela Lolić

Example

schema:

$$R(A, B, C)$$
, $S(B, D, E)$, $T(A, C, D)$

$$\pi_{ACD}(\sigma_{E < 5 \land C \neq 2}(R \bowtie S)) - T$$

schema:

$$R(A, B, C)$$
, $S(B, D, E)$, $T(A, C, D)$

$$\pi_{ACD}(\sigma_{E < 5 \land C \neq 2}(R \bowtie S)) - T$$

schema:

$$R(A, B, C)$$
, $S(B, D, E)$, $T(A, C, D)$

$$\pi_{ACD}(\sigma_{E<5\wedge C\neq 2}(R\bowtie S))-T$$

	R			S			T	
Α	В	С	В	D	Ε	Α	С	D
1	2	3	8	3	1	1	3	3
7	1	4	4	9	9	3	7	4
2	4	3	4	4	1	7	4	9
3	4	7	1	7	7	7	2	7
1	1	1	3	7	7			
7	4	2						

schema:

$$R(A, B, C)$$
, $S(B, D, E)$, $T(A, C, D)$

$$\pi_{ACD}(\sigma_{E<5\wedge C\neq 2}(R\bowtie S))-T$$

	R			5			Т	
Α	В	С	В	D	Ε	Α	С	D
1	2	3	8	3	1	1	3	3
7	1	4	4	9	9	3	7	4
2	4	3	4	4	1	7	4	9
3	4	7	1	7	7	7	2	7
1	1	1	3	7	7			
7	4	2						

schema:

$$R(A, B, C)$$
, $S(B, D, E)$, $T(A, C, D)$

$$\pi_{ACD}(\sigma_{E < 5 \wedge C \neq 2}(R \bowtie S)) - T$$

	R			S			T	
Α	В	С	В	D	Ε	Α	С	D
1	2	3	8	3	1	1	3	3
7	1	4	4	9	9	3	7	4
2	4	3	4	4	1	7	4	9
3	4	7	1	7	7	7	2	7
1	1	1	3	7	7			
7	4	2						

schema:

$$R(A, B, C)$$
, $S(B, D, E)$, $T(A, C, D)$

$$\pi_{ACD}(\sigma_{E<5\wedge C\neq 2}(R\bowtie S))-T$$

	R			5			Т	
Α	В	С	В	D	Ε	Α	С	D
1	2	3	8	3	1	1	3	3
7	1	4	4	9	9	3	7	4
2	4	3	4	4	1	7	4	9
3	4	7	1	7	7	7	2	7
1	1	1	3	7	7			
7	4	2						

		_		
	,	/		
Α	С	D	T	
2	3	4	•	
3	7	4		

Α

Ex: Evaluation of an Expression of the RA

schema:

$$R(A, B, C)$$
, $S(B, D, E)$, $T(A, C, D)$

R(A,B,C), S(B,D,E), I query:

$$\pi_{ACD}(\sigma_{E < 5 \land C \neq 2}(R \bowtie S)) - T$$

	R			S			Т	
	K							
Α	В	С	В	D	Ε	Α	С	D
1	2	3	8	3	1	1	3	3
7	1	4	4	9	9	3	7	4
2	4	3	4	4	1	7	4	9
3	4	7	1	7	7	7	2	7
1	1	1	3	7	7			
7	4	2						

The General Join $R \bowtie_{\theta} S$

lacktriangle combines two relations R, S, also in case they do not have attributes with the same name

based on a logical condition θ

The General Join $R \bowtie_{\theta} S$

combines two relations R, S, also in case they do not have attributes with the same name.

based on a logical condition θ

Definition

Let R and S be given with the following schemata:

$$R(A_1, ..., A_n)$$
 and $S(B_1, ..., B_m)$.

Let θ be a predicate over the attributes $A_1, \ldots, A_n, B_1, \ldots, B_m$. The general join is defined as

$$R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$$

The General Join $R \bowtie_{\theta} S$

 \blacksquare combines two relations R, S, also in case they do not have attributes with the same name

based on a logical condition θ

Example (θ)

$$\theta = sem > 10 \land SWS = 4 \lor persNr = 2134$$

$$\theta = student.matrNr = attend.matrNr \land attend.lecNr = lecture.lecNr$$

$$\theta = lecture.lecNr = presuppose.preNr$$

natural join (revised): only those tuples that have found a "join-partner" remain in the result

	L		
Α	В	С	
a_1	b_1	c ₁	\bowtie
a_2	b_2	C 2	

$$\begin{array}{c|ccc} & R & \\ \hline C & D & E \\ \hline c_1 & d_1 & e_1 \\ c_3 & d_2 & e_2 \\ \end{array}$$

3. Query Languages

Other Joins

natural join (revised): only those tuples that have found a "join-partner" remain in the result

	,				D							
					Т					$L\bowtie R$	•	
Α	В	C		C	D	Ε		_				
	<u>_</u>		M		٠		=	Α	В	С	D	E
a_1	b_1	C 1		<i>C</i> ₁	<i>d</i> ₁	e_1		a ₁	b_1	Cı	d_1	61
a_2	b_2	C 2		C 3	d_2	e_2		- U1		U 1	u 1	

full outer join: all tuples remain in the result

					D					$L \bowtie F$?		
	L D				Λ_			Α	В	С	D	E	
A	В .	C	M	C	υ	Ε	=	a_1	b_1	<i>c</i> ₁	d_1	<i>e</i> ₁	
a_1	b_1	<i>C</i> ₁	N	<i>C</i> ₁	d_1	e_1	_	a 2	b_2	C 2	NULL	NULL	
a ₂	b_2	C 2		C 3	d_2	e ₂		NULL	NULL	C 3	d_2	e_2	
											-	WIEN .	ANULTÄT GR REFERMATE Facility of Informatio

Anela Lolić Seite 81

left outer join: tuple from the left relation remain in the result

	L		
Α	В	С	
a_1	b_1	c ₁	M
a_2	b_2	c ₂	

$$\begin{array}{c|cccc} & R & & \\ \hline C & D & E \\ \hline c_1 & d_1 & e_1 \\ c_3 & d_2 & e_2 \\ \end{array}$$

left outer join: tuple from the left relation remain in the result

	L	
Α	В	С
a_1	b_1	c ₁
a_2	b_2	c ₂

 \mathbb{M}

M

right outer join: tuples from the right relation remain in the result

Ε

 e_1

 e_2

$$\begin{array}{c|ccc} & L & \\ \hline A & B & C \\ \hline a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ \hline \end{array}$$

 $\begin{array}{ccc}
R \\
C & D \\
c_1 & d_1 \\
c_3 & d_2
\end{array}$

		L⋈	R		
	Α	В	С	D	Ε
=	a_1	b_1	<i>c</i> ₁	d_1	e_1
	NULL	NULL	c ₃	d_2	e_2

semi-join from L with R (resp. R with L): all tuples from the relation L

(resp. R) that can be joined are selected

	1				R					
									$L \ltimes R$)
Α	В	С		С	D	Ε				
			N/					Α	В	С
a_1	b_1	c_1	K	c_1	d_1	e_1	=			
	,				,			a_1	b_1	<i>C</i> ₁
a_2	b_2	c_2		C 3	d_2	e_2				

	L				R				L×F	
Α	В	С		С	D	Ε				
a_1	b_1	c ₁	×	<i>c</i> ₁	d_1	<i>e</i> ₁	=		-J	
a_2	b_2	C 2		C 3	d_2	e 2		<i>c</i> ₁	a_1	e_1

Intersection $R \cap S$

- defined on two relations R, S with the same schema
- returns all rows that occur in R and in S
- can be expressed via set-difference:

$$R \cap S = R - (R - S)$$

Intersection $R \cap S$

- defined on two relations R, S with the same schema
- returns all rows that occur in R and in S
- can be expressed via set-difference:

$$R \cap S = R - (R - S)$$

Example

find the persNr of C4-professors that give a lecture

$\pi_{\mathit{persNr}}(\mathit{lecture}) \cap \pi_{\mathit{persNr}}\sigma_{\mathit{rank}=C4}(\mathit{professor})$				
persNr				
2137				
2125				
2126				
2137				

Example

Which studends have attended all 4h lectures?

attend	

<u>matrNr</u>	<u>lecNr</u>	
26120	5001	
27550	5001	
27550	4052	
28106	5041	
28106	5001	-
28106	4052	
28106	4630	
29120	5001	
29120	5041	
29120	5049	

$\pi_{lecNr}\sigma_{SWS=4}(lecture)$
lecNr
5001
5041
4052
4630

$$R \div S$$
matrNr
$$28106$$

Example

Which studends have attended all 4h lectures?

3. Query Languages

attend

<u>matrNr</u>	<u>lecNr</u>	
26120	5001	
27550	5001	
27550	4052	
28106	5041	
28106	5001	-
28106	4052	
28106	4630	
29120	5001	
29120	5041	
29120	5049	

attend $\div \pi_{lecNr}\sigma_{SWS=4}(lecture)$

$\pi_{\textit{lecNr}}\sigma_{\textit{SWS}=4}(\textit{lecture})$
lecNr
5001
5041
4052
4630

$$R \div S$$
matrNr
$$28106$$

- defined on two relations R, S
- schema of S has to be a subset of the schema of R
- resulting schema: attributes of R without the ones from S
- result contains all tuples from $\pi_{att(R)\setminus att(S)}(R)$ that form a tuple in R with the ones in S
- counterpart to the Cartesian product:

$$T = U \times V \Rightarrow T \div U = V$$
 and $T \div V = U$

can be expressed by

$$R \div S = \pi_{\mathcal{R}-\mathcal{S}}(R) - \pi_{\mathcal{R}-\mathcal{S}}((\pi_{\mathcal{R}-\mathcal{S}}(R) \times S) - R)$$

(with $\mathcal{R} = att(R)$ and $\mathcal{S} = att(S)$)

Definition

Let R, S be relations, where $S \subseteq \mathcal{R}$. Tuple $t \in R \div S$ in case there is for every tuple $s \in S$ a tuple $r \in R$ with:

$$r.S = s$$

$$r.S = s$$

 $r.(R-S) = t$

Example

find the lecNr of all the lectures that are second-level predecessors of lecture 5216 (= predecessor of predecessor of 5216)

predNr sucNr

presuppose

predNr sucNr

Example

find the lecNr of all the lectures that are second-level predecessors of lecture 5216 (= predecessor of predecessor of 5216)

 ρ_{V_1} (presuppose) ρ_{V_2} (presuppose)

presuppose
predNr sucNr

presuppose
predNr sucNr

Example

find the lecNr of all the lectures that are second-level predecessors of lecture 5216 (= predecessor of predecessor of 5216)

 $\rho_{V_1}(\text{presuppose}) \quad \rho_{V_2}(\text{presuppose})$

presuppose predNr sucNr

presuppose
predNr sucNr

 V_1 predNr sucNr

 V_2 preNr sucNr

Example

find the lecNr of all the lectures that are second-level predecessors of lecture 5216 (= predecessor of predecessor of 5216)

$$\rho_{V_1}(\text{presuppose}) \quad \rho_{V2}(\text{presuppose})$$

presuppose
predNr sucNr

presuppose
predNr sucNr

 V_1 predNr sucNr

 V_2 preNr sucNr

$$\pi_{V_1.predNr} \Big(\sigma_{V_1.sucNr=V_2.predNr \land V_2.sucNr=5216} \Big)$$

$$(\rho_{V_1}(\textit{presuppose}) \times \rho_{V2}(\textit{presuppose})))$$

Anela Lolić

Learning Objectives

- What does it mean for a query language to be relationally closed?
- How are operators of the relational algebra defined?
- What are the operators of the relational algebra?
- What are correct expressions in the relational algebra?

Overview

Query Languages

- Relational Algebra
- Relational Calculus
- Expressive Power of Query Languages

declarative query language: specifies which data is demanded, not how it is obtained

declarative query language: specifies which data is demanded, not how it is obtained

set-oriented language: operations on sets of tuples

declarative query language: specifies which data is demanded, not how it is obtained

set-oriented language: operations on sets of tuples

queries in the relational calculus are of the form

$$\{t \mid P(t)\}$$

where P(t) is a formula

declarative query language: specifies which data is demanded, not how it is obtained

set-oriented language: operations on sets of tuples queries in the relational calculus are of the form

$$\{t \mid P(t)\}$$

where P(t) is a formula there are two distinct, but equally powerful variations:

- the tuple relational calculus
- the domain relational calculus

Example

professor(persNr, name, rank, room)

find all C4-professors

Example

professor(persNr, name, rank, room)

■ find all C4-professors

$$\{p \mid p \in professor \land p.rank = 'C4'\}$$

Example

professor(persNr, name, rank, room)

■ find all C4-professors

$$\{p \mid p \in professor \land p.rank = 'C4'\}$$

• find the names of all C4-professors:

$$\{[p.name] \mid p \in professor \land p.rank = 'C4'\}$$

Example

```
professor(persNr, name, rank, room)
assistant(persNr, name, birthDate, boss)
```

• find pairs of professors and their respective assistants

```
\{[p.name, a.persNr] \mid p \in professor \land a \in assistant \land p.persNr = a.boss\}
```


Soite OF

Example

	professor	
persNr	name	
2125	Sokrates	
2126	Russel	
2127	Kopernikus	

assistant					
persNr			boss		
3002			2125		
3003			2125		
3004			2126		

Example

	professor	
<u>persNr</u>	name	
2125	Sokrates	
2126	Russel	
2127	Kopernikus	

assistant					
persNr			boss		
3002			2125		
3003			2125		
3004			2126		

result				
name	persNr			

Example

		professor							
		<u>persNr</u>	name						
p :	= (2125	Sokrates						
		2126	Russel						
		2127	Kopernikus						

		assist	tant		
	<u>persNr</u>			boss	
(3002			2125) = a
	3003			2125	
	3004			2126	

result				
name	persNr			
Sokrates	3002			

Example

$$\{[p.name, a.persNr] \mid p \in profs \land a \in ass \land p.persNr = a.boss\}$$

		professor						
		<u>persNr</u>	name					
p :	= (2125	Sokrates					
		2126	Russel					
		2127	Kopernikus					

assistant					
persNr			boss		
3002			2125		
3003			2125) = a	
3004			2126		

result				
name	persNr			
Sokrates	3002			
Sokrates	3003			

Example

		professor						
		<u>persNr</u>	name					
p	= (2125	Sokrates					
		2126	Russel					
		2127	Kopernikus					

assistant			
<u>persNr</u>			boss
3002			2125
3003			2125
3004			2126

result			
name	persNr		
Sokrates	3002		
Sokrates	3003		

Example

		professor			
		persNr	name		
		2125	Sokrates		
p	= (2126	Russel		
		2127	Kopernikus		

assistant			
persNr			boss
3002			2125
3003			2125
3004			2126

result			
name	persNr		
Sokrates	3002		
Sokrates	3003		
Russel	3004		

Example

student(matrNr, name, semester) attend(matrNr, lecNr) lectures(lecNr, title, SWS, heldBy)

students who attend at lest one lecture

Example

```
student(matrNr, name, semester)
attend(matrNr, lecNr)
lectures(lecNr, title, SWS, heldBy)
```

students who attend at lest one lecture

```
\{s \mid s \in student \land \exists a \in attend(s.matrNr = a.matrNr)\}
```


Example

```
student(matrNr, name, semester)
attend(matrNr, lecNr)
lectures(lecNr, title, SWS, heldBy)
```

students who attend at lest one lecture

$$\{s \mid s \in student \land \exists a \in attend(s.matrNr = a.matrNr)\}$$

matrNr of the students that attend all lectures

```
\{[s.matrNr] \mid s \in student \land \forall I \in lecture(
\exists a \in attend(a.lecNr = I.lecNr
\land a.matrNr = s.matrNr))\}
```


Anela Lolić

Example (queries in the tuple relational calculus)

student		
<u>matrNr</u>		
24002		
25403		
26120		
26830		

lecture		
<u>lecNr</u>	title	
5041	Ethik	
5049	Mäeutik	
4052	Logik	
5216	Bioethik	

atte	attend		
<u>matrNr</u>	<u>lecNr</u>		
26120	5041		
26830	5041		
29120	5049		
24002	4052		
26120	4052		
25403	5216		
26120	5216		

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = I.lecNr \land a.matrNr = s.matrNr)) \}
```


Example (queries in the tuple relational calculus)

	stude	nt	
	<u>matrNr</u>		
5	24002		
	25403		
	26120		
	26830		

lecture		
<u>lecNr</u>	title	
5041	Ethik	
5049	Mäeutik	
4052	Logik	
5216	Bioethik	

attend			
<u>matrNr</u>	<u>lecNr</u>		
26120	5041		
26830	5041		
29120	5049		
24002	4052		
26120	4052		
25403	5216		
26120	5216		

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = I.lecNr \land a.matrNr = s.matrNr)) \}
```


Example (queries in the tuple relational calculus)

	stude	nt
	<u>matrNr</u>	
5	24002	
	25403	
	26120	
	26830	

		lecture	
	<u>lecNr</u>	title	
1	5041	Ethik	
	5049	Mäeutik	
	4052	Logik	
	5216	Bioethik	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
{ [s.matrNr] | s \in student \land ∀I \in lecture(
 ∃a \in attend(a.lecNr = I.lecNr \land a.matrNr = s.matrNr))}
```


Example (queries in the tuple relational calculus)

student		nt
	<u>matrNr</u>	
5	24002	
	25403	
	26120	
	26830	

		lecture	
	<u>lecNr</u>	title	
1	5041	Ethik	X
	5049	Mäeutik	
	4052	Logik	
	5216	Bioethik	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
{ [s.matrNr] | s \in student \land ∀I \in lecture(
 ∃a \in attend(a.lecNr = I.lecNr \land a.matrNr = s.matrNr))}
```


Example (queries in the tuple relational calculus)

student		nt	
	<u>matrNr</u>		
5	24002		
	25403		
	26120		
	26830		

		lecture	
	<u>lecNr</u>	title	
Ī	5041	Ethik	X
/(5049	Mäeutik	
	4052	Logik	
	5216	Bioethik	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = l.lecNr \land a.matrNr = s.matrNr)) \}
```


Example (queries in the tuple relational calculus)

	ent	
	<u>matrNr</u>	
5	24002	
	25403	
	26120	
	26830	

	lecture		
	<u>lecNr</u>	title	
	5041	Ethik	X
'(5049	Mäeutik	X
	4052	Logik	
	5216	Bioethik	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
{ [s.matrNr] | s \in student \land ∀I \in lecture(
 ∃a \in attend(a.lecNr = I.lecNr \land a.matrNr = s.matrNr))}
```


Example (queries in the tuple relational calculus)

	student		
	<u>matrNr</u>		
5	24002		
	25403		
	26120		
	26830		

	lecture		
	<u>lecNr</u>	title	
	5041	Ethik	X
	5049	Mäeutik	X
C	4052	Logik	
	5216	Bioethik	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
{ [s.matrNr] | s \in student \land ∀I \in lecture(
 ∃a \in attend(a.lecNr = I.lecNr \land a.matrNr = s.matrNr))}
```


Seite 98

Example (queries in the tuple relational calculus)

	nt	
	<u>matrNr</u>	
5	24002	
	25403	
	26120	
	26830	

	lecture		
	<u>lecNr</u>	title	
Ī	5041	Ethik	X
	5049	Mäeutik	X
(4052	Logik	√
	5216	Bioethik	

	attend		•
	<u>matrNr</u>	<u>lecNr</u>	
Ī	26120	5041	
	26830	5041	
	29120	5049	
(24002	4052	a
	26120	4052	
	25403	5216	
	26120	5216	

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = l.lecNr \land a.matrNr = s.matrNr)) \}
```


Saita 08

Example (queries in the tuple relational calculus)

student		
	<u>matrNr</u>	
s	24002	
	25403	
	26120	
	26830	

lecture		
<u>lecNr</u>	title	
5041	Ethik	X
5049	Mäeutik	X
4052	Logik	✓
5216	Bioethik	X

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = I.lecNr \land a.matrNr = s.matrNr)) \}
```


C-:1--00

Example (queries in the tuple relational calculus)

	student		
s(<u>matrNr</u>		
	24002		
	25403		
	26120		
	26830		

lecture		
<u>lecNr</u>	title	
5041	Ethik	
5049	Mäeutik	
4052	Logik	
5216	Bioethik	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = l.lecNr \land a.matrNr = s.matrNr)) \}
```


Seite 08

Example (queries in the tuple relational calculus)

	student	
s(<u>matrNr</u>	
	24002	
	25403	
	26120	
	26830	

lecture		
<u>lecNr</u>	title	
5041	Ethik	X
5049	Mäeutik	X
4052	Logik	X
5216	Bioethik	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = l.lecNr \land a.matrNr = s.matrNr)) \}
```


Example (queries in the tuple relational calculus)

	student	
	<u>matrNr</u>	
	24002	
	25403	
5	26120	
	26830	

lecture		
<u>lecNr</u> title		
5041	Ethik	
5049	Mäeutik	
4052	Logik	
5216	Bioethik	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
\{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = I.lecNr \land a.matrNr = s.matrNr)) \}
```


Seite 08

Example (queries in the tuple relational calculus)

	student	
	<u>matrNr</u>	
	24002	
	25403	
<i>s</i> (26120	
	26830	

lecture		
<u>lecNr</u>	title	
5041	Ethik	√
5049	Mäeutik	✓
4052	Logik	✓
5216	Bioethik	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = l.lecNr \land a.matrNr = s.matrNr)) \}
```


Example (queries in the tuple relational calculus)

	student	
	<u>matrNr</u>	
	24002	
	25403	
	26120	
s(26830	

lecture		
<u>lecNr</u>	title	
5041	Ethik	
5049	Mäeutik	
4052	Logik	
5216	Bioethik	

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = l.lecNr \land a.matrNr = s.matrNr)) \}
```


Example (queries in the tuple relational calculus)

	student	
	<u>matrNr</u>	
	24002	
	25403	
	26120	
s(26830	

lecture			
<u>lecNr</u>	title		
5041	Ethik	√	
5049	Mäeutik	X	
4052	Logik	X	
5216	Bioethik	X	

attend			
<u>matrNr</u>	<u>lecNr</u>		
26120	5041		
26830	5041		
29120	5049		
24002	4052		
26120	4052		
25403	5216		
26120	5216		

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = l.lecNr \land a.matrNr = s.matrNr)) \}
```


Example (queries in the tuple relational calculus)

student			
<u>matrNr</u>			
24002			
25403			
26120			
26830			

lecture			
<u>lecNr</u>	title		
5041	Ethik		
5049	Mäeutik		
4052	Logik		
5216	Bioethik		

attend		
<u>matrNr</u>	<u>lecNr</u>	
26120	5041	
26830	5041	
29120	5049	
24002	4052	
26120	4052	
25403	5216	
26120	5216	

```
 \{ [s.matrNr] \mid s \in student \land \forall I \in lecture( \\ \exists a \in attend(a.lecNr = l.lecNr \land a.matrNr = s.matrNr)) \}
```


Definition (syntax)

a tuple relational calculus guery has the form:

$$\{t \mid P(t)\}$$

 $t \dots$ tuple variable (sometimes tuple constructor); $P(t) \dots$ formula, formulas are built from atoms (see definition)

Definition (syntax)

a tuple relational calculus query has the form:

$$\{t \mid P(t)\}$$

 $t \dots$ tuple variable (sometimes tuple constructor); $P(t) \dots$ formula, formulas are built from atoms (see definition)

Definition (semantics)

A tuple t is in the result if it satisfies the formula P(t).

The variable t is a free variable in the formula P(t), therefore it is not bound by a quantifier (\forall, \exists) .

Definition (syntax: atoms and formulas)

atoms:

```
t \in R: t tuple variable; R relation name
```

 $s.A\phi t.B$: s and t tuple variables; A and B attribute names; ϕ a comparison operator $(=, \neq, <, \leq, >, \geq)$

 $s.A\phi c$: as above, c a constant

Definition (syntax: atoms and formulas)

atoms:

```
t \in R: t tuple variable; R relation name
```

s. $A\phi t.B$: s and t tuple variables; A and B attribute names; ϕ a comparison operator $(=, \neq, <, \leq, >, \geq)$

 $s.A\phi c$: as above, c a constant

formulas:

atoms are formulas

P formula, then so are $\neg P$ and (P)

 P_1, P_2 formulas, then so are $P_1 \wedge P_2, P_1 \vee P_2$ and $P_1 \rightarrow P_2$

P(t) formula with free variable t, then so are $\forall t \in R(P(t))$ and $\exists t \in R(P(t))$

400400450450 5

Example

student(matrNr, name, semester) attend(matrNr, lecNr) lecture(lecNr, title, SWS, givenBy) professor(persNr, name, rank, room)

■ students that attend at least one lecture given by Curie:

Example

```
student(matrNr, name, semester)
attend(matrNr, lecNr)
lecture(lecNr, title, SWS, givenBy)
professor(persNr, name, rank, room)
```

students that attend at least one lecture given by Curie:

```
 \{s \mid s \in student \land \exists a \in attend(s.matrNr = a.matrNr \\ \land \exists I \in lecture(a.lecNr = I.lecNr \\ \land \exists p \in professor(p.persNr = I.givenBy \\ \land p.name = 'Curie')))\}
```


Example

student(matrNr, name, semester) lecture(lecNr, title, SWS, givenBy) attend(matrNr, lecNr)

students that attend all 4h lectures

Example

student(matrNr, name, semester) lecture(lecNr, title, SWS, givenBy) attend(matrNr, lecNr)

students that attend all 4h lectures

```
\{s \mid s \in student \land \forall v \in lecture(I.SWS \neq 4 \lor \exists a \in attend(a.lecNr = I.lecNr \land a.matrNr = s.matrNr))\}
```


C-11- 100

Example

student(matrNr, name, semester)
assistant(persNr, name, birthDate, boss)
professor(persNr, name, rank, room)

persNr of all professors and assistants

$$\{[p.persNr] \mid p \in professor \lor p \in assistant\}$$

names of assistants that are also names of students

```
\{[p.name] \mid p \in assistant \land \exists s \in student(p.name = s.name)\}
```


Saite 102

Example

assistant(persNr, name, birthDate, boss) professor(persNr, name, rank, room)

all assistants that are not professors

Example

assistant(persNr, name, birthDate, boss) professor(persNr, name, rank, room)

■ all assistants that are not professors

```
\{a \mid a \in assistant \land \neg \exists p \in professor(p.persNr = a.persNr)\}
```


Example

assistant(persNr, name, birthDate, boss) professor(persNr, name, rank, room)

all assistants that are not professors

$$\{a \mid a \in assistant \land \neg \exists p \in professor(p.persNr = a.persNr)\}$$

$$\{a \mid a \in assistant \land \forall p \in professor(p.persNr \neq a.persNr\}$$

Seite 104

Example

professor(persNr, name, rank, room)

find all C4-professors

$$\{[p, n, r, o] \mid ([p, n, r, o] \in professor \land r = 'C4')\}$$

Example

professor(persNr, name, rank, room)

■ find all C4-professors

$$\{[p, n, r, o] \mid ([p, n, r, o] \in professor \land r = 'C4')\}$$

■ find the names of all C4-professors

$$\{[n] \mid \exists p, o, r([p, n, r, o] \in professor \land r = \text{`C4'})\}$$

Example

professor(persNr, name, rank, room)
assistant(persNr, name, birthDate, boss)

• find pairs of professors and their corresponding assistants

$$\{[n, a] \mid \exists p, r, o([p, n, r, o] \in professor \land \exists m, f([a, m, f, p] \in assistant))\}$$

Example

student(matrNr, name, semester) attend(matrNr, lecNr) lecture(lecNr, title, SWS, givenBy)

students that attend at least one lecture:

```
\{[m,n] \mid \exists s([m,n,s] \in student \land \exists v([m,v] \in attend))\}
```


Example

student(matrNr, name, semester) attend(matrNr, lecNr) lecture(lecNr, title, SWS, givenBy)

students that attend at least one lecture:

$$\{[m,n] \mid \exists s([m,n,s] \in student \land \exists v([m,v] \in attend))\}$$

matrNr of students that attend all lectures:

$$\{[m] \mid \exists n, s([m, n, s] \in student \land \forall v, t, s, p \\ ([v, t, s, p] \in lecture \rightarrow [m, v] \in attend)\}$$

Definition (syntax)

a domain relational calculus query has the form:

$$\{[v_1, v_2, \ldots, v_n] \mid P(v_1, v_2, \ldots, v_n)\}$$

 v_1, v_2, \ldots, v_n ...domain variables, representing a value in the domain of some attribute; $P(v_1, v_2, \ldots, v_n)$ a formula, formulas are built from atoms (see definition).

Definition (syntax)

a domain relational calculus query has the form:

$$\{[v_1, v_2, \ldots, v_n] \mid P(v_1, v_2, \ldots, v_n)\}$$

 v_1, v_2, \ldots, v_n ...domain variables, representing a value in the domain of some attribute; $P(v_1, v_2, \ldots, v_n)$ a formula, formulas are built from atoms (see definition).

Definition (semantics)

A tuple $[v_1, v_2, \ldots, v_n]$ is in the result if it satisfies the formula $P(v_1, v_2, \ldots, v_n)$. The variables v_1, v_2, \ldots, v_n are free variables in the formula $P(v_1, v_2, \ldots, v_n)$ – therefore they are not bound by a quantifier (\forall, \exists) .

Anela Lolić Seite 109

Definition (syntax: atoms and formulas)

atoms:

 $[v_1, \ldots, v_n] \in R$: v_1, v_2, \ldots, v_n domain variables; R is an n-ary relation name

 $x\phi y$: x, y domain variables; ϕ a comparison operator $(=, \neq, <, \leq, >, \geq)$

 $x\phi c$: as above, c a constant

←□→ ←□→ ←□→ ←□→ □

Definition (syntax: atoms and formulas)

atoms:

```
[v_1, \ldots, v_n] \in R: v_1, v_2, \ldots, v_n domain variables; R is an n-ary relation name
```

 $x\phi y$: x, y domain variables; ϕ a comparison operator $(=, \neq, <, \leq, >, \geq)$

 $x\phi c$: as above, c a constant

formulas:

atoms are formulas

P formula, then so are $\neg P$ and (P)

 P_1, P_2 formulas, then so are $P_1 \wedge P_2, P_1 \vee P_2$ and $P_1 \Rightarrow P_2$

P(v) formula with free variable v, then so are $\forall v(P(v))$ and $\exists v(P(v))$

FANGUTÄZ FÜR SEPERMATIK Facalty of Informatio

Example

```
student(matrNr, name, semester)
attend(matrNr, lecNr)
lecture(lecNr, title, SWS, givenBy)
professor(persNr, name, rank, room)
```

name and matrNr of students that attend at least one lecture given by Curie:

```
\{[m,n] \mid \exists s([m,n,s] \in student \land \\ \exists v([m,v] \in attend \land \\ \exists t,d,p([v,t,d,p] \in professor \land \\ \exists a,r,u([p,a,r,u] \in professor \land \\ a = \text{`Curie'})))\}
```


Anela Lolić Seite 111

Example

Anela Lolić

```
student(matrNr, name, semester)
attend(matrNr, lecNr)
lecture(lecNr, title, SWS, givenBy)
professor(persNr, name, rank, room)
```

■ name and matrNr of students that attend at least one lecture given by Curie:

```
\{[m, n] \mid \exists s, v, t, d, p, r, u([m, n, s] \in student \land [m, v] \in attend \land [v, t, d, p] \in professor \land [p, 'Curie', r, u] \in professor)))\}
```


Seite 112

Example

student(matrNr, name, semester) attend(matrNr, lecNr) lecture(lecNr, title, SWS, givenBy)

■ name and matrNr of students attending all 4h lectures

$$\{[m, n] \mid \exists s([m, n, s] \in student \land \\ \forall v, t, s, p(([v, t, s, p] \in lecture \land s = 4)) \\ \rightarrow [m, v] \in attend)\}$$

Example

```
student(matrNr, name, semester)
assistant(persNr, name, birthDate, boss)
professor(persNr, name, rank, room)
```

persNr of all professors and assistants:

$$\{[p] \mid (\exists n, g, b([p, n, g, b] \in assistant) \lor (\exists r, a([p, n, r, a] \in professor)\}$$

names of assistants that are also names of students:

$$\{[n] \mid \exists p, g, b, m, s ([p, n, g, b] \in assistant \land [m, n, s] \in student)\}$$

Example

assistant(persNr, name, birthDate, boss) professor(persNr, name, rank, room)

■ all assistants that are not professors:

Example

assistant(persNr, name, birthDate, boss) professor(persNr, name, rank, room)

■ all assistants that are not professors:

$$\{[p] \mid \exists n, g, b \quad ([p, n, g, b] \in assistant \land \neg \exists n, r, a([p, n, r, a] \in professor))\}$$

Example

assistant(persNr, name, birthDate, boss) professor(persNr, name, rank, room)

all assistants that are not professors:

$$\{[p] \mid \exists n, g, b \qquad ([p, n, g, b] \in assistant \land \\ \neg \exists n, r, a([p, n, r, a] \in professor))\}$$
$$\{[p] \mid \exists n, g, b \qquad ([p, n, g, b] \in assistant \land \\ \forall n, r, a(\neg([p, n, r, a] \in professor)))\}$$

Example

all students attending at least one lecture student(matrNr, name, semester) attend(matrNr, lecNr)

■ tuple relational calculus:

$$\{s \mid s \in student \land \exists a \in attend(s.matrNr = a.matrNr)\}$$

domain relational calculus:

$$\{[m, n, s] \mid [m, n, s] \in student \land \exists v([m, v] \in attend)\}$$

Seite 116

Example

student(matrNr, name, semester) examine(matrNr, lecNr, grade)

■ tuple relational calculus:

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

domain relational calculus:

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall vnr, no([mnr, vnr, no] \in examine \rightarrow no = 2)\}
```


WIEN Control to tout of the control tout

Example

matNr of all the students that obtained in all exams the grade 2: student(matrNr, name, semester) examine(matrNr, lecNr, grade)

tuple relational calculus:

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

domain relational calculus:

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \\ \forall vnr, no([mnr, vnr, no] \in examine \rightarrow no = 2)\}
```


Example (semantics tuple relational calculus)

student			
<u>matrNr</u>	name	sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

examine			resul
<u>matrNr</u>	<u>lecNr</u>	grade	matrN
28106	5041	2	
27550	5001	2	
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

 $\{[s.matrNr] \mid s \in student \land \forall e \in examine($ $s.matrNr = e.matrNr \rightarrow e.grade = 2)$

Example (semantics tuple relational calculus)

student			
<u>matrNr</u>	name	sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	1 ?
27550	5001	2	
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

$$s = (1, 1, 1, 1)$$
?

Anela Lolić Seite 1

Example (semantics tuple relational calculus)

student			
<u>matrNr</u>	name	sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

е	examine		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	1 ?
27550	5001	2	
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
                      s.matrNr = e.matrNr \rightarrow e.grade = 2)
```

$$s = (1, 1, 1, 1)$$
? $s \in student$?

result matrNr 1 X

Comparison: Tuple and Domain Relational Calculus

Example (semantics tuple relational calculus)

student			
<u>matrNr</u>	name	sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

examine			
<u>matrNr</u>	<u>lecNr</u>	grade	
28106	5041	2	
27550	5001	2	
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

$$s = (1, 1, 1, 1)$$
? $s \in student$? $\Rightarrow X$

Example (semantics tuple relational calculus)

student			
<u>matrNr</u>	name	sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
                      s.matrNr = e.matrNr \rightarrow e.grade = 2)
```

$$s = (1, 1, 1, 1)$$
? $s \in student$? $\Rightarrow X$

Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
<i>s</i> =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
```

$$s.matrNr = e.matrNr \rightarrow e.grade = 2)$$

Anela Lolić Seite 118

Example (semantics tuple relational calculus)

	student			
	<u>matrNr</u>	name	sem	
s =	26120	Fichte	10	
	29555	Feuerbach	2	
	28106	Carnap	3	
	27550	Schopenhauer	6	

е	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

 $s \in student$

Anela Lolić Seite 13

Example (semantics tuple relational calculus)

	student			
	<u>matrNr</u>	name	sem	
s =	26120	Fichte	10	
	29555	Feuerbach	2	
	28106	Carnap	3	
	27550	Schopenhauer	6	

e	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

 $s \in student \checkmark$

3. Query Languages

Comparison: Tuple and Domain Relational Calculus

Example (semantics tuple relational calculus)

	<u>matrNr</u>	name	sem
s = (26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

e	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
                      s.matrNr = e.matrNr \rightarrow e.grade = 2)
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

	student			
	<u>matrNr</u>	name	sem	
s =	26120	Fichte	10	
	29555	Feuerbach	2	
	28106	Carnap	3	
	27550	Schopenhauer	6	

e	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2)
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

 $s \in student \checkmark \forall e \in examine \dots$?

Anela Lolić Seite 11

Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
s =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

е	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸)
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

 $s \in student \checkmark \forall e \in examine \dots$?

Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
s =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

e	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
                      s.matrNr = e.matrNr \rightarrow e.grade = 2)
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
s =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

e	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	matrNr
28106	5041	2 🗸	
27550	5001	2 🗸	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
s =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

,			
е	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
<i>s</i> =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

е	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 ?
28106	5001	2 🗸	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
s =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

e	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 ?
28106	5001	2 🗸	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
<i>s</i> =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

e	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 ?
28106	5001	2 🗸	
26120	5001	2 🗸	
27550	4052	1	
25403	5001	1	

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

	student					
	<u>matrNr</u>	name	sem			
s =	26120	Fichte	10			
	29555	Feuerbach	2			
	28106	Carnap	3			
	27550	Schopenhauer	6			

e	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 ?
28106	5001	2 🗸	
26120	5001	2 🗸	
27550	4052	1	
25403	5001	1	

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

name Fichte	sem
Fichte	10
Feuerbach	2
Carnap	3
Schopenhauer	6

е	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 ?
28106	5001	2 🗸	
26120	5001	2 🗸	
27550	4052	1 🗸	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
<i>s</i> =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

e	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 ?
28106	5001	2 🗸	
26120	5001	2 🗸	
27550	4052	1 🗸	
25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

	student					
	<u>matrNr</u>	name	sem			
<i>s</i> =	26120	Fichte	10			
	29555	Feuerbach	2			
	28106	Carnap	3			
	27550	Schopenhauer	6			

е		result		
<u>matrNr</u>	<u>lecNr</u>	grade	Ī	<u>matrNr</u>
28106	5041	2 🗸		
27550	5001	2 🗸		26120 ?
28106	5001	2 🗸		
26120	5001	2 🗸		
27550	4052	1 🗸		
25403	5001	1 🗸) [

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
<i>s</i> =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

е	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 ?
28106	5001	2 🗸	
26120	5001	2 🗸	
27550	4052	1 🗸	
25403	5001	1 🗸	

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

```
s \in student \checkmark \forall e \in examine ...? \checkmark
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
<i>s</i> =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

e	examine						
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>				
28106	5041	2 🗸					
27550	5001	2 🗸	26120 ?				
28106	5001	2 🗸					
26120	5001	2 🗸					
27550	4052	1 🗸					
25403	5001	1 🗸					

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

$$s \in student \checkmark \forall e \in examine \dots ? \checkmark \Rightarrow \checkmark$$

Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
<i>s</i> =	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

e	examine					
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>			
28106	5041	2 🗸				
27550	5001	2 🗸	26120 🗸			
28106	5001	2 🗸				
26120	5001	2 🗸				
27550	4052	1 🗸				
25403	5001	1 🗸				

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots ? \checkmark \Rightarrow \checkmark
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
	26120	Fichte	10
s = (29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

e	examine					
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>			
28106	5041	2				
27550	5001	2	26120 🗸			
28106	5001	2	29555 ?			
26120	5001	2				
27550	4052	1				
25403	5001	1				

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

	student			examine			result
	<u>matrNr</u>	name	sem	<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
	26120	Fichte	10	28106	5041	2	
<i>s</i> =	29555	Feuerbach	2	27550	5001	2	26120 🗸
	28106	Carnap	3	28106	5001	2	29555 ?
	27550	Schopenhauer	6	26120	5001	2	
				27550	4052	1	
				25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

	student				е	xamine		result
	<u>matrNr</u>	name	sem		<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
	26120	Fichte	10		28106	5041	2 ✓	
<i>s</i> =	29555	Feuerbach	2) (27550	5001	2 ✓	26120 🗸
	28106	Carnap	3		28106	5001	2 ✓	29555 ?
	27550	Schopenhauer	6		26120	5001	2 ✓	
					27550	4052	1 🗸	
					25403	5001	1./	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
	26120	Fichte	10
s =	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

е	examine					
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>			
28106	5041	2 🗸				
27550	5001	2 🗸	26120 🗸			
28106	5001	2 🗸	29555 ?			
26120	5001	2 🗸				
27550	4052	1 🗸				
25403	5001	1 🗸				

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots ? \checkmark
```


Example (semantics tuple relational calculus)

student				
<u>matrNr</u>	name	sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

e	examine				
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>		
28106	5041	2			
27550	5001	2	26120 🗸		
28106	5001	2	29555 🗸		
26120	5001	2			
27550	4052	1			
25403	5001	1			

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots ? \checkmark \Rightarrow \checkmark
```


Example (semantics tuple relational calculus)

	student				
	<u>matrNr</u>	name	sem		
	26120	Fichte	10		
	29555	Feuerbach	2		
s =	28106	Carnap	3		
	27550	Schopenhauer	6		

е	examine			
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>	
28106	5041	2		
27550	5001	2	26120 🗸	
28106	5001	2	29555 🗸	
26120	5001	2	28106 ?	
27550	4052	1		
25403	5001	1		

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


result matrNr

26120 🗸 29555 🗸 28106 ?

Comparison: Tuple and Domain Relational Calculus

Example (semantics tuple relational calculus)

				-			
	student				е	xamine	
	<u>matrNr</u>	name	sem		<u>matrNr</u>	<u>lecNr</u>	grade
	26120	Fichte	10		28106	5041	2
	29555	Feuerbach	2		27550	5001	2
=	28106	Carnap	3		28106	5001	2
	27550	Schopenhauer	6	(26120	5001	2
					27550	4052	1

 $\{[s.matrNr] \mid s \in student \land \forall e \in examine($ $s.matrNr = e.matrNr \rightarrow e.grade = 2)$

25403

5001

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student		
	<u>matrNr</u>	name	sem	mat
	26120	Fichte	10	281
	29555	Feuerbach	2	275
s =	28106	Carnap	3	281
	27550	Schopenhauer	6	261
				275

е	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2 🗸	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2 🗸	28106 ?
27550	4052	1 🗸	
25403	5001	1 🗸	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

	student				
	<u>matrNr</u>	name	sem		
	26120	Fichte	10		
	29555	Feuerbach	2		
5 =	28106	Carnap	3		
	27550	Schopenhauer	6		

е	examine			
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>	
28106	5041	2)	
27550	5001	2 🗸	26120 🗸	
28106	5001	2	29555 🗸	
26120	5001	2 🗸	28106 ?	
27550	4052	1 🗸		
25403	5001	1 🗸		

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

	student				
	<u>matrNr</u>	name	sem		
	26120	Fichte	10		
	29555	Feuerbach	2		
s =	28106	Carnap	3		
	27550	Schopenhauer	6		

е	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 ✓	
27550	5001	2 🗸	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2 🗸	28106 ?
27550	4052	1 🗸	
25403	5001	1 🗸	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
                      s.matrNr = e.matrNr \rightarrow e.grade = 2)
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

	student				
	<u>matrNr</u>	name	sem		
	26120	Fichte	10		
	29555	Feuerbach	2		
=	28106	Carnap	3		
	27550	Schopenhauer	6		

е	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2 🗸	28106 ?
27550	4052	1 🗸	
25403	5001	1 🗸	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

	student				
	<u>matrNr</u>	name	sem		
	26120	Fichte	10		
	29555	Feuerbach	2		
5 =	28106	Carnap	3		
	27550	Schopenhauer	6		

е	examine					
<u>matrNr</u>	<u>lecNr</u>	grade		<u>matrNr</u>		
28106	5041	2 🗸				
27550	5001	2 🗸		26120 🗸		
28106	5001	2 🗸)	29555 🗸		
26120	5001	2 🗸		28106 ?		
27550	4052	1 🗸				
25403	5001	1 🗸				

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student			
	<u>matrNr</u>	name	sem		
	26120	Fichte	10		
	29555	Feuerbach	2		
s =	28106	Carnap	3		
	27550	Schopenhauer	6		

е	examine					
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>			
28106	5041	2 🗸				
27550	5001	2 🗸	26120 🗸			
28106	5001	2 🗸	29555 🗸			
26120	5001	2 🗸	28106 ?			
27550	4052	1 🗸				
25403	5001	1 🗸				

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine ...? \checkmark
```


Example (semantics tuple relational calculus)

		student				
	<u>matrNr</u>	name	sem			
	26120	Fichte	10			
	29555	Feuerbach	2			
s =	28106	Carnap	3			
	27550	Schopenhauer	6			

е	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 🗸
28106	5001	2 🗸	29555 🗸
26120	5001	2 🗸	28106 🗸
27550	4052	1 🗸	
25403	5001	1 🗸	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

```
s \in student \checkmark \forall e \in examine \dots ? \checkmark \Rightarrow \checkmark
```


Example (semantics tuple relational calculus)

	student	
<u>matrNr</u>	name	sem
26120	Fichte	10
29555	Feuerbach	2
28106	Carnap	3
27550	Schopenhauer	6
	26120 29555 28106	matrNrname26120Fichte29555Feuerbach28106Carnap

е	examine					
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>			
28106	5041	2				
27550	5001	2	26120 🗸			
28106	5001	2	29555 🗸			
26120	5001	2	28106 🗸			
27550	4052	1	27550 ?			
25403	5001	1				

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
                      s.matrNr = e.matrNr \rightarrow e.grade = 2)
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student		е	xamine			result
	<u>matrNr</u>	name	sem	<u>matrNr</u>	<u>lecNr</u>	grade		<u>matrNr</u>
	26120	Fichte	10	28106	5041	2)	
	29555	Feuerbach	2	27550	5001	2		26120 🗸
	28106	Carnap	3	28106	5001	2		29555 🗸
5 =	27550	Schopenhauer	6	26120	5001	2		28106 🗸
				27550	4052	1		27550 ?
				25403	5001	1)	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

 $s \in student \checkmark \forall e \in examine \dots$?

Example (semantics tuple relational calculus)

	student				е	xamine			result
	<u>matrNr</u>	name	sem		<u>matrNr</u>	<u>lecNr</u>	grade	Ī	<u>matrNr</u>
	26120	Fichte	10		28106	5041	2 ✓)	
	29555	Feuerbach	2		27550	5001	2		26120 🗸
	28106	Carnap	3		28106	5001	2 🗸)	29555 🗸
5 =	27550	Schopenhauer	6)	26120	5001	2 🗸)	28106 🗸
					27550	4052	1		27550 ?
					25403	5001	1 🗸)	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

 $s \in student \checkmark \forall e \in examine \dots$?

Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
; =	27550	Schopenhauer	6

	examine					
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>			
28106	5041	2 🗸				
27550	5001	2	26120 🗸			
28106	5001	2 🗸	29555 🗸			
26120	5001	2 🗸	28106 🗸			
27550	4052	1	27550 ?			
25403	5001	1 🗸				

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

		student	
	<u>matrNr</u>	name	sem
	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
s =	27550	Schopenhauer	6
	-	· · · · · · · · · · · · · · · · · · ·	

е	examine			
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>	
28106	5041	2 🗸		
27550	5001	2	26120 🗸	•
28106	5001	2 🗸	29555 🗸	•
26120	5001	2 🗸	28106 🗸	•
27550	4052	1	27550 ?	
25403	5001	1 🗸		

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

 $s \in student \checkmark \forall e \in examine \dots$?

Example (semantics tuple relational calculus)

	student			
	<u>matrNr</u>	name	sem	
	26120	Fichte	10	
	29555	Feuerbach	2	
	28106	Carnap	3	
s =	27550	Schopenhauer	6	

е	examine		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 🗸
28106	5001	2 🗸	29555 🗸
26120	5001	2 🗸	28106 🗸
27550	4052	1	27550 ?
25403	5001	1 🗸	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
                      s.matrNr = e.matrNr \rightarrow e.grade = 2)
```

```
s \in student \checkmark \forall e \in examine \dots?
```


Example (semantics tuple relational calculus)

	student		
	<u>matrNr</u>	name	sem
	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
5 =	27550	Schopenhauer	6

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 🗸
28106	5001	2 🗸	29555 🗸
26120	5001	2 🗸	28106 🗸
27550	4052	1	27550 ?
25403	5001	1 🗸	

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

 $s \in student \checkmark \forall e \in examine \dots$?

Anela Lolić Seite 11:

Example (semantics tuple relational calculus)

	student			
	<u>matrNr</u>	name	sem	
	26120	Fichte	10	
	29555	Feuerbach	2	
	28106	Carnap	3	
s =	27550	Schopenhauer	6	

examine				result	
<u>matrNr</u>	<u>lecNr</u>	grade		<u>matrNr</u>	
28106	5041	2 🗸			
27550	5001	2 🗸		26120 🗸	
28106	5001	2 🗸		29555 🗸	
26120	5001	2 🗸		28106 🗸	
27550	4052	1 X		27550 ?	
25403	5001	1 🗸			

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```

 $s \in student \checkmark \forall e \in examine \dots$?

Example (semantics tuple relational calculus)

	student	
<u>matrNr</u>	name	sem
26120	Fichte	10
29555	Feuerbach	2
28106	Carnap	3
27550	Schopenhauer	6
	26120 29555 28106	matrNrname26120Fichte29555Feuerbach28106Carnap

е	examine				
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>		
28106	5041	2 🗸			
27550	5001	2 🗸	26120 🗸		
28106	5001	2 🗸	29555 🗸		
26120	5001	2 🗸	28106 🗸		
27550	4052	1 X	27550 ?		
25403	5001	1 🗸			

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
                      s.matrNr = e.matrNr \rightarrow e.grade = 2)
```

 $s \in student \checkmark \forall e \in examine \dots ? X$

Example (semantics tuple relational calculus)

	student	
<u>matrNr</u>	name	sem
26120	Fichte	10
29555	Feuerbach	2
28106	Carnap	3
27550	Schopenhauer	6
	26120 29555 28106	matrNrname26120Fichte29555Feuerbach28106Carnap

е	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2 🗸	26120 🗸
28106	5001	2 🗸	29555 🗸
26120	5001	2 🗸	28106 🗸
27550	4052	1 X	27550 ?
25403	5001	1 🗸	

$$\{[s.matrNr] \mid s \in student \land \forall e \in examine($$

 $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

$$s \in student \checkmark \forall e \in examine ...? X \Rightarrow X$$

Example (semantics tuple relational calculus)

	student		e	xamine		result
<u>matrNr</u>	name	sem	<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
26120	Fichte	10	28106	5041	2	
29555	Feuerbach	2	27550	5001	2	26120 🗸
28106	Carnap	3	28106	5001	2	29555 🗸
27550	Schopenhauer	6	26120	5001	2	28106 🗸
			27550	4052	1	27550 X
			25403	5001	1	

```
\{[s.matrNr] \mid s \in student \land \forall e \in examine(
s.matrNr = e.matrNr \rightarrow e.grade = 2)\}
```


Example (semantics tuple relational calculus)

	student			_			result
	student			е	examine		
<u>matrNr</u>	name	sem		<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
26120	Fichte	10		28106	5041	2	
29555	Feuerbach	2		27550	5001	2	26120 🗸
28106	Carnap	3		28106	5001	2	29555 🗸
27550	Schopenhauer	6)	26120	5001	2	28106 🗸
				27550	4052	1	
				25403	5001	1	

 $\{[s.matrNr] \mid s \in student \land \forall e \in examine($ $s.matrNr = e.matrNr \rightarrow e.grade = 2)\}$

Seite 118

Example (semantics domain relational calculus)

student			examine			ĺ	result
<u>matrNr</u>	name	Sem	<u>matrNr</u>	<u>lecNr</u>	grade		<u>matrNr</u>
26120	Fichte	10	28106	5041	2		
29555	Feuerbach	2	27550	5001	2		
28106	Carnap	3	28106	5001	2		
27550	Schopenhauer	6	26120	5001	2		
			27550	4052	1		
			25403	5001	1		

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \}
             \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)
```


Example (semantics domain relational calculus)

student			е	result		
<u>matrNr</u>	name	Sem	<u>matrNr</u>	<u>lecNr</u>	grade	matrNi
26120	Fichte	10	28106	5041	2	1 ?
29555	Feuerbach	2	27550	5001	2	
28106	Carnap	3	28106	5001	2	
27550	Schopenhauer	6	26120	5001	2	
			27550	4052	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \}
             \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)
```

25403

5001

Example (semantics domain relational calculus)

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

е	examine				
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>		
28106	5041	2	1 ?		
27550	5001	2			
28106	5001	2			
26120	5001	2			
27550	4052	1			
25403	5001	1			

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

 \exists *nam*, *sem*: [*mnr*, *nam*, *sem*] \in *student*?

Example (semantics domain relational calculus)

3. Query Languages

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

е	examine				
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>		
28106	5041	2	1 ?		
27550	5001	2			
28106	5001	2			
26120	5001	2			
27550	4052	1			
25403	5001	1			

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

 \exists nam, sem: [mnr, nam, sem] \in student? \times

Example (semantics domain relational calculus)

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

е	examine			
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>	
28106	5041	2	1 X	
27550	5001	2		
28106	5001	2		
26120	5001	2		
27550	4052	1		
25403	5001	1		

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

 $\exists nam, sem : [mnr, nam, sem] \in student? X \Rightarrow X$

FANOUTÄT FOR INFORMATIK Facility of Informatica

Example (semantics domain relational calculus)

student					
<u>matrNr</u>	name	Sem			
26120	Fichte	10			
29555	Feuerbach	2			
28106	Carnap	3			
27550	Schopenhauer	6			

е	examine		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

 $\exists nam, sem : [mnr, nam, sem] \in student? X \Rightarrow X$

Example (semantics domain relational calculus)

			_			
student			e	xamine		result
<u>matrNr</u>	name	Sem	<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
26120	Fichte	10	28106	5041	2	
29555	Feuerbach	2	27550	5001	2	26120 ?
28106	Carnap	3	28106	5001	2	
27550	Schopenhauer	6	26120	5001	2	
			27550	4052	1	
			25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```


Example (semantics domain relational calculus)

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

e	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \}
             \forall Inr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)
```

 $\exists nam, sem : [mnr, nam, sem] \in student?$

Example (semantics domain relational calculus)

		student	
	<u>matrNr</u>	name	Sem
(26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

е	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

 \exists *nam*, *sem*: [*mnr*, *nam*, *sem*] \in *student*?

Example (semantics domain relational calculus)

	student						
	<u>matrNr</u>	name	Sem				
ĺ	26120	Fichte	10				
	29555	Feuerbach	2				
	28106	Carnap	3				
	27550	Schopenhauer	6				

е	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

 \exists nam, sem: [mnr, nam, sem] \in student? \checkmark

3. Query Languages

Example (semantics domain relational calculus)

student						
<u>matrNr</u>	name	Sem				
26120	Fichte	10				
29555	Feuerbach	2				
28106	Carnap	3				
27550	Schopenhauer	6				

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forallInr, gr...?
```


Example (semantics domain relational calculus)

student			
<u>matrNr</u>	name	Sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

е	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \}
             \forall Inr, gr([mnr, Inr, gr] \in examine \rightarrow gr = 2)
```

```
\exists nam, sem : [mnr, nam, sem] \in student? \checkmark
\forall Inr, gr \dots ? Inr = 'a', gr = 'b'
```


Example (semantics domain relational calculus)

student			
<u>matrNr</u>	name	Sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \}
             \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)
```

```
\exists nam, sem : [mnr, nam, sem] \in student? \checkmark
\forall Inr, gr \dots? Inr = 'a', gr = 'b' \checkmark
```


3. Query Languages

Example (semantics domain relational calculus)

student			
<u>matrNr</u>	name	Sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\exists nam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? lnr = 'a', gr = 'b' \checkmark lnr = 4052, gr = 1 \checkmark
```

FANGLTÄT FÜR SPERMATE Facility of Information

Example (semantics domain relational calculus)

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\exists nam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? lnr = 'a', gr = 'b' \checkmark lnr = 4052, gr = 1 \checkmark ...
```

FANGULTÄT FÜR 10FERMATE Facultyol Monnatio

Anela Lolić Seite 11:

Example (semantics domain relational calculus)

student			
<u>matrNr</u>	name	Sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... lnr = 5001, gr = 2
```


Example (semantics domain relational calculus)

		student	
	<u>matrNr</u>	name	Sem
(26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

е	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2 🗸	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... lnr = 5001, gr = 2
```


Example (semantics domain relational calculus)

		student	
	<u>matrNr</u>	name	Sem
ĺ	26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

e	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2 🗸	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... lnr = 5001, gr = 2
```


Example (semantics domain relational calculus)

	student	
<u>matrNr</u>	name	Sem
26120	Fichte	10
29555	Feuerbach	2
28106	Carnap	3
27550	Schopenhauer	6

e	result		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 ?
28106	5001	2	
26120	5001	2 🗸	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\exists nam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... lnr = 5001, gr = 2 \checkmark
```


Example (semantics domain relational calculus)

	student	
<u>matrNr</u>	name	Sem
26120	Fichte	10
29555	Feuerbach	2
28106	Carnap	3
27550	Schopenhauer	6

e		result	
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	
26120	5001	2 🗸	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\exists nam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... lnr = 5001, gr = 2 \checkmark \Rightarrow \checkmark
```


Example (semantics domain relational calculus)

	student			e	xamine		result
<u>matrNr</u>	name	Sem	ma	atrNr	<u>lecNr</u>	grade	<u>matrNr</u>
26120	Fichte	10	28	106	5041	2	
29555	Feuerbach	2	27	550	5001	2	26120 🗸
28106	Carnap	3	28	106	5001	2	29555 ?
27550	Schopenhauer	6	26	120	5001	2	
			27	550	4052	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

25403

5001

WIEW.

Example (semantics domain relational calculus)

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

е	examine		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 ?
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

 \exists *nam*, *sem*: [*mnr*, *nam*, *sem*] \in *student*?

Example (semantics domain relational calculus)

		student	
	<u>matrNr</u>	name	Sem
	26120	Fichte	10
(29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

е	examine			
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>	
28106	5041	2		
27550	5001	2	26120 🗸	
28106	5001	2	29555 ?	
26120	5001	2		
27550	4052	1		
25403	5001	1		

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

 \exists nam, sem: [mnr, nam, sem] \in student? \checkmark

Example (semantics domain relational calculus)

		student	
	<u>matrNr</u>	name	Sem
(26120	Fichte	10
	29555	Feuerbach	2
	28106	Carnap	3
	27550	Schopenhauer	6

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 ?
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forallInr, gr...?
```


Example (semantics domain relational calculus)

	student			
	<u>matrNr</u>	name	Sem	
(26120	Fichte	10	
	29555	Feuerbach	2	
	28106	Carnap	3	
	27550	Schopenhauer	6	

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 ?
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forallInr, gr...?...\checkmark
```


Example (semantics domain relational calculus)

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

e	result		
matrNr lecNr		grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forallInr, gr...? ...\checkmark \Rightarrow \checkmark
```


Example (semantics domain relational calculus)

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	matrNr
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 ?
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \}
             \forall Inr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)
```

 $\exists nam, sem : [mnr, nam, sem] \in student?$

Example (semantics domain relational calculus)

	student				
	<u>matrNr</u>	name	Sem		
	26120	Fichte	10		
	29555	Feuerbach	2		
	28106	Carnap	3		
	27550	Schopenhauer	6		

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 ?
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \}
             \forall Inr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)
```

 $\exists nam, sem : [mnr, nam, sem] \in student? \checkmark$

Example (semantics domain relational calculus)

student				
	<u>matrNr</u>	name	Sem	
(26120	Fichte	10	
	29555	Feuerbach	2	
	28106	Carnap	3	
	27550	Schopenhauer	6	

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 ?
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forallInr, gr...?
```


Example (semantics domain relational calculus)

3. Query Languages

	student				
	<u>matrNr</u>	name	Se	m	
	26120	Fichte		10	
	29555	Feuerbach		2	
(28106	Carnap	DC	3	
	27550	Schopenhauer		6	

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 ?
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark\forallInr, gr...? ... \checkmark
```


Example (semantics domain relational calculus)

	student			
	<u>matrNr</u>	name	Sem	
C	26120	Fichte	10	
	29555	Feuerbach	2	
	28106	Carnap	3	
	27550	Schopenhauer	6	

	examine			result
m	<u>natrNr</u>	<u>lecNr</u>	grade	matrNr
2	8106	5041	2	
2	7550	5001	2	26120 🗸
2	8106	5001	2	29555 🗸
2	6120	5001	2	28106 ?
2	7550	4052	1	
2	5403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... \checkmark
```


Example (semantics domain relational calculus)

3. Query Languages

	student			
	<u>matrNr</u>	name	Sem	
	26120	Fichte	10	
	29555	Feuerbach	2	
	28106	Carnap	3	
	27550	Schopenhauer	6	

е	examine			
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>	
28106	5041	2 🗸		
27550	5001	2	26120 🗸	
28106	5001	2	29555 🗸	
26120	5001	2	28106 ?	
27550	4052	1		
25403	5001	1		

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... \checkmark
```


result matrNr

26120 **✓**29555 **✓**28106 ?

Comparison: Tuple and Domain Relational Calculus

3. Query Languages

	student				
	<u>matrNr</u>	name	Sem		
Ī	26120	Fichte	10		
	29555	Feuerbach	2		
(28106	Carnap	3		
	27550	Schopenhauer	6		

examine				
<u>matrNr</u>	<u>lecNr</u>	grade		
28106	5041	2 🗸		
27550	5001	2		
28106	5001	2		
26120	5001	2		
27550	4052	1		
25403	5001	1		

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark\forallInr, gr . . . ? . . . \checkmark
```


result matrNr

26120 **✓** 29555 **✓**

Comparison: Tuple and Domain Relational Calculus

	student				
	<u>matrNr</u>	name	Sem		
	26120	Fichte	10		
	29555	Feuerbach	2		
(28106	Carnap	3		
	27550	Schopenhauer	6		

examine				
<u>matrNr</u>	<u>lecNr</u>	grade		
28106	5041	2 🗸		
27550	5001	2		
28106	5001	2 🗸		
26120	5001	2		
27550	4052	1		
25403	5001	1		

```
2 28106?
1 1
tudent) \( \)
```

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... \checkmark
```


3. Query Languages

	student				
	<u>matrNr</u>	name	Sem		
	26120	Fichte	10		
	29555	Feuerbach	2		
(28106	Carnap	3		
	27550	Schopenhauer	6		

E	resul		
<u>matrNr</u>	<u>lecNr</u>	grade	matrN
28106	5041	2 🗸	
27550	5001	2	26120
28106	5001	2 🗸	29555
26120	5001	2	28106
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... \checkmark
```


Example (semantics domain relational calculus)

	student				
	<u>matrNr</u>	name	Se	m	
	26120	Fichte		10	
	29555	Feuerbach		2	
(28106	Carnap	DC	3	
	27550	Schopenhauer		6	
Ī					

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2 🗸	
27550	5001	2	26120 🗸
28106	5001	2 🗸	29555 🗸
26120	5001	2	28106 🗸
27550	4052	1	
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \}
             \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)
```

```
\exists nam, sem : [mnr, nam, sem] \in student? \checkmark
\forall Inr, gr \dots ? \dots \checkmark \Rightarrow \checkmark
```


Anela Lolić

Example (semantics domain relational calculus)

student			
<u>matrNr</u>	name	Sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

е	xamine		result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 🗸
27550	4052	1	27550 ?
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```


-

Example (semantics domain relational calculus)

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 🗸
27550	4052	1	27550 ?
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

 \exists *nam*, *sem*: [*mnr*, *nam*, *sem*] \in *student*?

FANULTÄT FÜR INFORMATIK Facility et Informatio

Anela Lolić Seite 1

Example (semantics domain relational calculus)

	student	
<u>matrNr</u>	name	Sem
26120	Fichte	10
29555	Feuerbach	2
28106	Carnap	3
27550	Schopenhauer	6

-			
е	examine		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 🗸
27550	4052	1	27550 ?
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

 \exists nam, sem: [mnr, nam, sem] \in student? \checkmark

Anela Lolić Seite 1

3. Query Languages

student			
<u>matrNr</u>	name	Sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 🗸
27550	4052	1	27550 ?
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forallInr, gr...?
```


student		
<u>matrNr</u>	name	Sem
26120	Fichte	10
29555	Feuerbach	2
28106	Carnap	3
27550	Schopenhauer	6

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 🗸
27550	4052	1	27550 ?
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... \checkmark
```


student			
<u>matrNr</u>	name	Sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

e	examine		
<u>matrNr</u>	<u>lecNr</u>	grade	matrNr
28106	5041	2	
27550	5001	2	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 🗸
27550	4052	1	27550 ?
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark\forallInr, gr . . . ? . . . \checkmark
```


student			
<u>matrNr</u>	name	Sem	
26120	Fichte	10	
29555	Feuerbach	2	
28106	Carnap	3	
27550	Schopenhauer	6	

•	examine		
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2 🗸	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 🗸
27550	4052	1	27550 ?
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark\forallInr, gr . . . ? . . . \checkmark
```


	student	
<u>matrNr</u>	name	Sem
26120	Fichte	10
29555	Feuerbach	2
28106	Carnap	3
27550	Schopenhauer	6

examine				
<u>matrNr</u>	<u>lecNr</u>	grade		
28106	5041	2		
27550	5001	2 🗸		
28106	5001	2		
26120	5001	2		
27550	4052	1		
25403	5001	1		

```
result
matrNr

26120 ✓
29555 ✓
28106 ✓
27550 ?
```

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... \checkmark
```


result matrNr

26120 ✓ 29555 ✓ 28106 ✓ 27550 ?

Comparison: Tuple and Domain Relational Calculus

3. Query Languages

student				
name	Sem			
Fichte	10			
Feuerbach	2			
Carnap	3			
Schopenhauer	6			
	name Fichte Feuerbach Carnap			

examine					
<u>matrNr</u>	<u>lecNr</u>	grade			
28106	5041	2			
27550	5001	2 🗸			
28106	5001	2			
26120	5001	2			
27550	4052	1 X			
25403	5001	1			

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \forall lnr, gr...? ... \checkmark
```


Example (semantics domain relational calculus)

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2 🗸	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 🗸
27550	4052	1 X	27550 ?
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \\ \forall Inr, gr([mnr, Inr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \foralllnr, gr...? ... \checkmark X
```


Anela Lolić Seite 1

Example (semantics domain relational calculus)

student				
<u>matrNr</u>	name	Sem		
26120	Fichte	10		
29555	Feuerbach	2		
28106	Carnap	3		
27550	Schopenhauer	6		

examine			result
<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
28106	5041	2	
27550	5001	2 🗸	26120 🗸
28106	5001	2	29555 🗸
26120	5001	2	28106 🗸
27550	4052	1 X	27550 X
25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \\ \forall Inr, gr([mnr, Inr, gr] \in examine \rightarrow gr = 2)\}
```

```
\existsnam, sem: [mnr, nam, sem] \in student? \checkmark \foralllnr, gr...? ... \checkmark X \Rightarrow X
```


Anela Lolić Seite 1

Anela Lolić

Comparison: Tuple and Domain Relational Calculus

Example (semantics domain relational calculus)

student		examine			result	
<u>matrNr</u>	name	Sem	<u>matrNr</u>	<u>lecNr</u>	grade	<u>matrNr</u>
26120	Fichte	10	28106	5041	2	
29555	Feuerbach	2	27550	5001	2	26120 🗸
28106	Carnap	3	28106	5001	2	29555 🗸
27550	Schopenhauer	6	26120	5001	2	28106 🗸
			27550	4052	1	
			25403	5001	1	

```
\{[mnr] \mid \exists nam, sem([mnr, nam, sem] \in student) \land \forall lnr, gr([mnr, lnr, gr] \in examine \rightarrow gr = 2)\}
```


Seite 119

Safe Expressions and Expressive Power of Query Languages

"A guery in the relational calculus is safe, if its result depends only on values that occur in the data base or in the guery, but not on the domain."

"A query in the relational calculus is safe, if its result depends only on values that occur in the data base or in the query, but not on the domain."

Example (unsafe queries)

$$\{t \mid \neg(t \in R)\}$$

$$\{[a] \mid \neg([a] \in R)\}$$

Safe Expressions in the Tuple Relational Calculus

in some cases queries specify an infinite set of results:

Example

$$\{n \mid \neg (n \in professor)\}\$$

results in all tuples that do not occur in the relation professor. We can think of infinitely many such tuples.

Safe Expressions in the Tuple Relational Calculus

Definition (domain of an expression)

The domain of a formula contains

- all constants occurring in the formula and
- all attribute values of relations that are referenced in the formula.

Safe Expressions in the Tuple Relational Calculus

Definition (domain of an expression)

The domain of a formula contains

- all constants occurring in the formula and
- all attribute values of relations that are referenced in the formula.

Definition (safe expressions)

An expression in the tuple relational calculus is safe if the result of the expression is a subset of the domain.

in some cases queries might result in an infinite set of results

Example

$$\{[p, n, r, o] \mid \neg([p, n, r, o] \in professor)\}$$

results in all tuples that do not occur in the relation professor; we can think of infinitely many such tuples

Definition (safe expressions)

an expression

$$\{[x_1, x_2, \ldots, x_n] \mid P(x_1, x_2, \ldots, x_n)\}$$

is safe if:

• for each tuple $[c_1, c_2, \dots, c_n]$ in the result: c_i $(1 \le i \le n)$ is contained in the domain of P

Definition (safe expressions)

an expression

$$\{[x_1, x_2, \ldots, x_n] \mid P(x_1, x_2, \ldots, x_n)\}$$

is safe if:

- for each tuple $[c_1, c_2, \ldots, c_n]$ in the result: c_i $(1 \le i \le n)$ is contained in the domain of P
- for each subformula $\exists x P_1(x)$: if the constant c satisfies P(c), then c is contained in the domain of P_1

Definition (safe expressions)

an expression

$$\{[x_1, x_2, \ldots, x_n] \mid P(x_1, x_2, \ldots, x_n)\}$$

is safe if:

- for each tuple $[c_1, c_2, \ldots, c_n]$ in the result: c_i $(1 \le i \le n)$ is contained in the domain of P
- for each subformula $\exists x P_1(x)$: if the constant c satisfies P(c), then c is contained in the domain of P_1
- for each subformula $\forall x P_1(x)$: satisfied if and only if $P_1(x)$ is satisfied for all values in the domain of P_1

(2. and 3. are satisfied in the tuple relational calculus automatically!)

Expressive Power of the Query Languages

The three languages

- relational algebra,
- tuple relational calculus, restricted to safe expressions and
- domain relational calculus, restricted to safe expressions are equally expressive.

Expressive Power of the Query Languages

The three languages

- relational algebra,
- tuple relational calculus, restricted to safe expressions and
- domain relational calculus, restricted to safe expressions are equally expressive.

important: SQL is equally expressive as well (with some specific restrictions)

Learning Objectives

- What are the differences between the relational algebra and the relational calculus?
- What does it mean for a language to be relationally complete?
- What are the differences between tuple relational calculus and domain relational calculus?
- How do expressions in tuple resp. domain relational calculus look like?
- What are safe expressions in the relational calculus?

