

PANEL METHODS AND STATIC AERO ELASTIC BEHAVIOUR OF A 2D RIGID AIRFOIL

DIVERGENCE

John S George

January 16, 2022

- 1. PANEL METHODS
- 2. DIVERGENCE
- 3. UNSTEADY INCOMPRESSIBLE POTENTIAL FLOWS

PANEL METHODS

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS
RESULTS

DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC
CALCULATION OF THE
DIVERGENCE SPEED
RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

Panel methods are ideal for calculating the flow field over an airfoil executing unsteady time-dependent motion in an inviscid incompressible medium.

- Hess and Smith(distinct constant source strength for each panel and one vortex of constant strength on each panel).
- Linear vortex (vortex strength on each panel varies linearly from one corner to the other and is continuous across the corner)

PANEL GEOMETRY

PANEL METHODS

PANEL GEOMETRY

RESULTS

HESS AND SMITH POTENTIAL FOLIATION LINEAR FOLIATIONS

DIVERGENCE

FIXED PARAMETERS

ANAIYTIC

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

FOLIATIONS

 $\frac{x}{c} = \frac{1}{2}(\cos\theta +$ 1), $\theta = 0 - 2\pi$ x/c begins at 1, passes through 0 and then goes back to 1.

The numbering scheme is from lower trailing edge to lower leading edge, upper leading edge to upper trailing edge.

Figure 1.1: Airfoil section divided into 30 panels.

PANEL METHODS

PANEL GEOMETRY

HESS AND SMITH

POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS
RESULTS

DIVERGENCE

FIXED PARAMETERS

ITERATIVE ANALYSIS

ANALYTIC CALCULATION OF THE DIVERGENCE SPEED BESUITS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

PANEL REPRESENTATION

PANEL METHODS PANEL GEOMETRY

HESS AND SMITH

POTENTIAL EQUATION

CONDITIONS LINEAR EQUATIONS RESULTS

DIVERGENCE

FIXED PARAMETERS EQUATIONS

ANALYTIC

CALCULATION OF THE DIVERGENCE SPEED RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND

POTENTIAL EQUATION

- There are N source panels and N vortex panels.
- The vorticity on each panel is equal. So there are N+1 unknowns. (N source strengths and 1 vortex strength)
- The potential equation is:

$$\phi_{total} = \phi_{freestream} + \phi_{source} + \phi_{vortex} \text{, ie.}$$

$$\phi(x,y) = U(xcos\alpha + ysin\alpha) + \sum_{j=1}^{m} \frac{\sigma}{2\pi} \int_{0}^{S_{j}} ln(r)ds_{j} - \sum_{j=1}^{m} \frac{\gamma}{2\pi} \int_{0}^{S_{j}} \theta ds_{j}$$

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION

BOUNDARY CONDITIONS

RESULTS DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC
CALCULATION OF THE
DIVERGENCE SPEED

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

BOUNDARY CONDITIONS

■ The Neumann impermeability boundary condition applied at *N* panels yields *N* equations.

$$\frac{\partial \phi}{\partial n} = 0$$

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL FOLIATION

BOUNDARY CONDITIONS LINEAR EQUATIONS RESULTS

DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC
CALCULATION OF THE
DIVERGENCE SPEED

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

BOUNDARY CONDITIONS

■ The Kutta condition can be applied to this flow by enforcing that the pressures just above and just below the trailing edge must be equal.

Figure 1.2: If the two pressures are not equal, then the stagnation streamline will wrap itself around the trailing edge.

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL FOLIATION

BOUNDARY CONDITIONS

RESULTS DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC
CALCULATION OF THE
DIVERGENCE SPEED

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS EQUATIONS

BOUNDARY CONDITIONS

So,

$$C_{pu} = C_{pl}$$

Since the normal velocity on the surface is zero, vector sum of the two tangential velocities at the trailing edge must be equal to zero, ie,

$$V_N^t + V_1^t = 0$$

Applying these boundary conditions yields N+1 equations which can be solved to find the N+1 unknowns.

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS

LINEAR EQUATIONS RESULTS DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC

CALCULATION OF THE DIVERGENCE SPEED RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND

LINEAR EQUATIONS

The boundary conditions can be converted into algebraic equations which can be written in terms of the unknowns, $\sigma_j (j=1,2,...,N)$ (source strength at each panel) and Γ (constant vortex strength),

$$AX = B$$

A is a square matrix of order (N+1)

$$X = (\sigma_1, ..., \sigma_i, ..., \sigma_N, \Gamma)^T$$

$$\mathsf{B} = (b_1, ..., b_i, ..., b_N, b_{N+1})^T$$

PANEL METHODS

PANEL GEOMETRY POTENTIAL EQUATION BOUNDARY

LINEAR EQUATIONS

RESULTS

RESULTS

DIVERGENCE FIXED PARAMETERS

ANALYTIC CALCULATION OF THE

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

Figure 1.3: Comparison of the Cp plots for 80 panels and AOA

= 5 deg for NACA 4412 John's George PANEL METHODS AND STATIC AERO ELASTIC BEHAVIOUR OF A 2D RIGID AIRFOILJANUAR

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY

LINEAR EQUATIONS RESULTS

DIVERGENCE FIXED PARAMETERS EQUATIONS

ANALYTIC CALCULATION OF THE DIVERGENCE SPEED

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

Figure 1.4: Comparison of the Cp plots for 160 panels and AOA

= 5 deg for NACA 4412 John's George ANEL METHODS AND STATIC AERO ELASTIC BEHAVIOUR OF A 2D RIGID AIRFOILJanuar

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY

LINEAR EQUATIONS RESULTS

DIVERGENCE FIXED PARAMETERS

ANALYTIC
CALCULATION OF THE
DIVERGENCE SPEED

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

Figure 1.5: Comparison of the Cp plots for 300 panels and AOA

3 deg for NACA 4412

3 of Steedge PANEL METHODS AND STATIC AERO ELASTIC BEHAVIOUR OF A 2D RIGID AIRFOILJanuar

1.5

0

0.1

02 03 04 05

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS

DIVERGENCE

RESULTS

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC

ANALYTIC CALCULATION OF THE DIVERGENCE SPEED RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

COMPARISON OF CD FOR DIFFERENT PANELS WITH XFLR5-XFOIL DATA 20 panels hspm 40 panels hspm -1.580 panels hspm 160 panels hspm 300 panels hspm Coefficient of Pressure, Cp -1 300 panels xflr5-xfoil -0.5 0 0.5

Figure 1.6: Comparison of the Cp plots for different panels and

AOA = 5 deg for NACA 4412
John'S George PANEL METHODS AND STATIC AERO ELASTIC BEHAVIOUR OF A 2D RIGID AIRFOILJanuar

x/c

06 07 08

0.9

DIVERGENCE

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS
RESULTS

DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS

ANALYTIC CALCULATION OF THE DIVERGENCE SPEED RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS EQUATIONS

Divergence is the phenomenon that occurs when the moments due to aerodynamic forces overcome the restoring moments due to structural stiffness, so resulting in structural failure.

At a critical airspeed known as the torsional divergence speed, the incremental aerodynamic pitching moment is equal to the incremental elastic torsional restoring moment due to an elastic twist of the lifting surface. Above the divergence speed a static instability is created leading to divergence.

Infinite deflections are not possible, and in practice the structure will fail.

DIVERGENCE

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS
BESLITS

DIVERGENCE

FIXED PARAMETERS

ITERATIVE ANALYSIS ANALYTIC CALCULATION OF THE

DIVERGENCE SPEED
RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

PARAMETERS FIXED FOR THE STUDY OF DIVERGENCE

- Torsional Stiffness = 3000 $Nrad^{-1}$
- 2 Density of air = 1 kgm^{-3}
- 3 Shear center was fixed at mid chord.
- 4 Rigid angle of attack = 5 degrees.
- 5 The airfoil is assumed to be symmetric.NACA 0012
- 6 Chord length = 1 m.
- 7 Hess and Smith panel method was used for computing the aerodynamic moment about shear centre.

EQUATIONS

PANEL METHODS

PANEL GEOMETRY POTENTIAL FOLIATION BOUNDARY RESULTS

DIVERGENCE

FIXED PARAMETERS **FOUATIONS**

ANALYTIC

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

FOLIATIONS

Restoring moment equation $M_e = K_\theta \theta$

- \blacksquare M_e is the elastic restoring moment per unit span due to the elastic twist of the wing section.
- \blacksquare K_{θ} is the torsional spring stiffness per unit span of the wing.

ITERATIVE ANALYSIS

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS
BESULTS

DIVERGENCE

FIXED PARAMETERS EQUATIONS

ITERATIVE ANALYSIS

CALCULATION OF THE DIVERGENCE SPEED RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

- For the first iteration the moment due to aerodynamic forces for the rigid angle of attack is calculated about the shear center. The moment for 2D airfoil is obtained from Hess and Smith panel method.
- This moment is then equated to the moment due to structural stiffness to obtain the twist.
- The new angle of attack is taken as sum of the initial rigid angle and the previously obtained twist.
- New moment is calculated from this angle of attack and the iteration continues until it converges.
- This convergence happens only below the divergence speed.
- The iterative analysis is carried out for different free stream velocities.

ANALYTIC CALCULATION OF THE DIVERGENCE SPEED

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS
RESULTS

DIVERGENCE FIXED PARAMETERS

EQUATIONS ITERATIVE ANALYSIS ANALYTIC

CALCULATION OF THE DIVERGENCE SPEED RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AN

$M = qec^2 a_1(\theta_0 + \theta)$

- M = Pitching moment on the airfoil about stiffness centre at initial angle of attack.
- ec = distance between the centre of pressure and stiffness centre.
- \blacksquare q = free stream dynamic pressure.
- a_1 = lift curve slope = 2π (symmetrical airfoil)
- \bullet θ_0 = initial angle of incidence.
- \blacksquare θ = unknown aero elastic twist.

ANALYTIC CALCULATION OF THE DIVERGENCE SPEED

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS
BESILITS

DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC

CALCULATION OF THE DIVERGENCE SPEED RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

CONDITIONS EQUATIONS

- Equating aerodynamic moment with restoring moment $M_e = K_\theta \theta$.
 - Solving this equation for θ gives $\theta = \frac{qec^2a_1}{K_\theta qec^2a_1}\theta_0$.
- lacksquare Or $heta=rac{qR}{1-qR} heta_0$.
- The elastic twist becomes infinite as q approaches $\frac{1}{R}$ and this defines the divergence speed as $q_{diV} = \frac{1}{R} = \frac{K_{\theta}}{\sigma e^2 a_i}$.
- So the elastic twist varies with dynamic pressure as

$$\theta = \frac{q/q_{diV}}{1-q/q_{diV}}\theta_0.$$

■ For the fixed parameters the divergence speed was calculated to be $61.8ms^{-1}$.

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS

RESULTS DIVERGENCE

FIXED PARAMETERS
EQUATIONS

ANALYTIC CALCULATION OF THE DIVERGENCE SPEED

RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

Figure 2.1: Comparison of theoretical and computational values for 8 panels
John's George PANEL METHODS AND STATIC AERO ELASTIC BEHAVIOUR OF A 2D RIGID AIRFOILJANUAR

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS

RESULTS DIVERGENCE

FIXED PARAMETERS
EQUATIONS

ANALYTIC CALCULATION OF THE DIVERGENCE SPEED

RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

Figure 2.2: Comparison of theoretical and computational values for 16 panels
John's George PANEL METHODS AND STATIC AERO ELASTIC BEHAVIOUR OF A 2D RIGID AIRFOILJANUAR

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS

RESULTS DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS

ANALYTIC CALCULATION OF THE DIVERGENCE SPEED

RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

Figure 2.3: Comparison of theoretical and computational values for 100 panels.

John's George PANEL METHODS AND STATIC AERO ELASTIC BEHAVIOUR OF A 2D RIGID AIRFOILJANUAR

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS

RESULTS DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC
CALCULATION OF THE
DIVERGENCE SPEED

RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

Figure 2.4: Converges after 4 iterations at $10ms^{-1}$ for 100

panels
John's Georgepanel Methods and Static Aero Elastic Behaviour of a 2D RIGID AIRFOILJanuar

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS

DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC
CALCULATION OF THE

RESULTS

RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

Figure 2.5: Converges after 9 iterations at $30ms^{-1}$ for 100

panels
John's Georgepanel Methods and Static Aero Elastic Behaviour of a 2D RIGID AIRFOILJanuar

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS

DIVERGENCE EIXED PARAMETERS

RESULTS

EQUATIONS ITERATIVE ANALYSIS ANALYTIC CALCULATION OF THE

RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

Figure 2.6: Converges after 26 iterations at $50ms^{-1}$ for 100

panels
John's GeorgePanel Methods and Static Aero Elastic Behaviour of a 2D RIGID AIRFOILJanuar

SUDDEN ACCELERATION OF FLAT PLATE

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS
RESULTS

DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC
CALCULATION OF THE
DIVERGENCE SPEED
RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

- The flat plate consists of a single lumped-vortex element which is placed at the quarter chord and Kutta condition is assumed to be satisfied.
- A discrete vortex is selected to model the wake.
- The angle of attack is considered to be small. Here, $\alpha = 5 deg$.
- The zero normal flow boundary condition is satisfied at the collocation point at the plate's three-quarter chord point.
- The Kelvin circulation theorem is applied to the vortices.
- The flat plate is suddenly accelerated to a constant velocity $U_{\infty}=10ms^{-1}$.

SUDDEN ACCELERATION OF FLAT PLATE

PANEL METHODS

PANEL GEOMETRY HESS AND SMITH POTENTIAL FOLIATION

LINEAR EQUATIONS DIVERGENCE

RESULTS

FIXED PARAMETERS **FOLIATIONS**

ANAIYTIC CALCULATION OF THE

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

FOLIATIONS

Figure 3.1: Development of wake after the motion of the flat plate for two time steps. $\Delta t = 0.025s$

BOUNDARY CONDITIONS AND EQUATIONS

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS

DIVERGENCE

RESULTS

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC
CALCULATION OF THE
DIVERGENCE SPEED
RESULTS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

BOUNDARY CONDITIONS AND EQUATIONS

ZERO NORMAL FLOW

 \blacksquare For t_1 :

$$\frac{-\Gamma(t_1)}{2\pi(c/2)} + \frac{\Gamma_{W1}}{2\pi[(c/4) + (U_\infty \Delta t/2)]} = -U_\infty \alpha$$

For $t_2 = t_1 + \Delta t$:

$$\frac{-\Gamma(t_2)}{2\pi(c/2)} + \frac{\Gamma_{W2}}{2\pi[(c/4) + (U_\infty \Delta t/2)]} + \frac{\Gamma_{W1}}{2\pi[(c/4) + (U_\infty 3\Delta t/2)]} = -U_\infty \alpha$$

BOUNDARY CONDITIONS AND EQUATIONS

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY

RESULTS DIVERGENCE

FIXED PARAMETERS
EQUATIONS

ANALYTIC CALCULATION OF THE DIVERGENCE SPEED

UNSTEADY IN-COMPRESSIBLE POTENTIAL

FLOWS BOUNDARY CONDITIONS AND EQUATIONS

KELVIN CONDITION

 \blacksquare For t_1 :

$$\frac{d\Gamma}{dt} = \Gamma(t_1) + \Gamma_{W1} = 0$$

For $t_2 = t_1 + \Delta t$:

$$\Gamma(t_2) + \Gamma_{W2} + \Gamma_{W1} = 0$$

Lift per unit span:

$$L' = \int_0^c \Delta p dx = \rho [U_{\infty} \Gamma(t) + \frac{\partial}{\partial t} \Gamma(t) c]$$

PANEL METHODS

PANEL GEOMETRY
HESS AND SMITH
POTENTIAL EQUATION
BOUNDARY
CONDITIONS
LINEAR EQUATIONS

RESULTS DIVERGENCE

FIXED PARAMETERS
EQUATIONS
ITERATIVE ANALYSIS
ANALYTIC
CALCULATION OF THE
DIVERGENCE SPEED

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

Figure 3.2: Variation of lift and circulation after the initiation of a sudden forward motion of a 2D flat plate.

References I

PANEL METHODS

PANEL GEOMETRY POTENTIAL FOLIATION BOUNDARY RESULTS

DIVERGENCE

FIXED PARAMETERS

UNSTEADY IN-COMPRESSIBLE POTENTIAL FLOWS

FOLIATIONS

RESULTS

Katzplotkin-Low speed aerodynamics.

David L Darmofal-Introduction to Aerodynamics.

Mark Drela-Flight Vehicle Aerodynamics.

Wright Cooper-Introduction to aircraft elasticity and loads.