ALGEBRA PER INFORMATICA 2020-21

FOGLIO DI ESERCIZI 2

Esercizio 1. Stabilire se le seguenti relazioni sono funzioni tra gli insiemi specificati:

- (1) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x+3}$;
- (2) $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, g(a,b) = a \cdot b;$
- (3) $h: \mathbb{Q} \to \mathbb{Z}, h(p/q) = p q;$
- (4) $k: \mathscr{P}(\mathbb{Z}) \to \mathscr{P}(\mathbb{N}), k(X) = X \cap \mathbb{N};$
- (5) $\alpha : \{1,2,3\} \to \{a,b\}$ data da $\alpha(1) = a$, $\alpha(2) = b$;
- (6) $\gamma: \mathbb{N} \to \mathscr{P}(\mathbb{N})$ data da $\gamma(n) = \{x \in \mathbb{N} : x \text{ è un divisore di } n\}$;
- (7) $\beta: \mathbb{R} \to \mathbb{R}, \ \beta(x) = \sqrt{x};$
- (8) $\delta : \mathbb{N} \to \mathbb{R}$, $\delta(x) = \sqrt{x}$.

Esercizio 2. Sia $f: \mathbb{Z} \to \mathbb{N}$ l'applicazione definita da $f(x) = x^2 + 1$. Determinare le seguenti controimmagini:

$$f^{-1}(0), f^{-1}(1), f^{-1}(2), f^{-1}(3).$$

Esercizio 3. Definire un'applicazione $f: \mathbb{N} \to \mathbb{N}$ diversa dall'identità e tale che $\forall n \in \mathbb{N}$ si ha f(3n) = 3n.

Esercizio 4. Calcolare f(5) dove $f: \mathbb{N} \to \mathbb{N}$ è l'applicazione definita da:

$$f(0) = 1, f(n) = n \cdot f(n-1) \ \forall n > 0.$$

Esercizio 5. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ l'applicazione data da f(x,y) = x - y e siano

$$A = \{(x, y) \in \mathbb{R}^2 : x = y\}, \ B = \{(x, y) \in \mathbb{R}^2 : x > y\}.$$

Determinare f(A) e f(B).

Esercizio 6. Sia $h : \mathbb{R}^2 \to \mathbb{R}$, $h(x,y) = x^2 - y^2$ e sia $M = \{(\sqrt{5}, \sqrt{5}), (7,7)\}$. Determinare $h^{-1}(h(M))$.

Esercizio 7. Siano $f: A \to B$ una funzione e $X, Y \subseteq A$ due sottoinsiemi. Provare che:

- (1) $f(X \cup Y) = f(X) \cup f(Y)$;
- (2) $f(X \cap Y) \subseteq f(X) \cap f(Y)$.

Esibire un esempio in cui $f(X \cap Y) \neq f(X) \cap f(Y)$.

Esercizio 8. Stabilire se le seguenti funzioni sono iniettive e/o surgettive e determinarne l'immagine:

(1)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2 - 3x + 2$;

```
(2) f: \mathbb{Z} \to \mathbb{Z}, f(x) = 5x;
```

(3)
$$f: \mathbb{Q} \to \mathbb{Q}$$
, $f(x) = 5x$;

$$(4) f: \mathscr{P}(\mathbb{N}) \to \mathscr{P}(\mathbb{N}), f(X) = \mathbb{N} \setminus X := \{x \in \mathbb{N} : x \notin X\};$$

(5)
$$f: \mathcal{P}(X)^2 \to \mathcal{P}(X)$$
, $f(A,B) = A \cup B$, dove X è un insieme.

(6)
$$f: \mathbb{Z} \to \mathbb{Z}^2$$
, $f(x) = (2x, x - 1)$.

Esercizio 9. Costruire delle funzioni che soddisfino le richieste seguenti:

- (1) $f: \mathbb{Z} \to \mathbb{Z}$ iniettiva e non surgettiva;
- (2) $g: \mathbb{N} \to \mathbb{N}$ surgettiva e non iniettiva;
- (3) $r: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ surgettiva e tale che $r(x,x) = 0 \ \forall x \in \mathbb{Z}$;
- (4) $h: \mathbb{N} \to \mathscr{P}(\mathbb{N})$ iniettiva e tale che $\emptyset, \mathbb{N} \in h(\mathbb{N})$;
- (5) $\alpha : \mathbb{N} \to \mathbb{Z}$ bigettiva.

Esercizio 10. Siano $f, g : \mathbb{R} \to \mathbb{R}$ due funzioni date da f(x) = x - 2 e $g(x) = 1 + x^2$.

- (1) Come sono definite le funzioni $f \circ g : \mathbb{R} \to \mathbb{R}$ e $g \circ f : \mathbb{R} \to \mathbb{R}$?
- (2) Esistono numeri reali *x* per cui $(f \circ g)(x) = (g \circ f)(x)$?
- (3) Le funzioni $f \circ g$ e $g \circ f$ sono uguali?

Esercizio 11. Determinare un insieme A e un'applicazione $f: A \to A$ tale che $f \circ f = f$, ma $f \neq \mathrm{Id}_A$.

Esercizio 12. Siano
$$f: \mathbb{Z} \to \mathbb{N}$$
 data da $f(n) = |n|$ e $g: \mathbb{N} \to \mathbb{Z}$ data da $g(x) = -x$.

- (1) Provare che f e g non sono invertibili (cioè non bigettive) e verificare che $f \circ g = \mathrm{Id}_{\mathbb{N}}$, ma $g \circ f \neq \mathrm{Id}_{\mathbb{Z}}$.
- (2) Determinare un'applicazione $h: \mathbb{N} \to \mathbb{Z}$ diversa da g e tale che $f \circ h = \mathrm{Id}_{\mathbb{N}}$.
- (3) Determinare una funzione $t : \mathbb{Z} \to \mathbb{N}$ diversa da f e tale che $t \circ g = \mathrm{Id}_{\mathbb{N}}$.