Question

- 1. Get the "Abalone" dataset from UCI ML Repo
- 2. Use a decision tree (C4.5/J48) learner in WEKA to predict the number of rings Abalone will have
- 3. Write the description of your process and methods. What parameters (testing/training size, classification target, subtree raising etc.) did you use? Did you preprocess the dataset? Why did you select those parameters/preprocessing?
- 4. What were your results? Show what decision trees you found.

Answer

A. TUTORIAL PADA ABALONE DATA

1. Download WEKA dari alamat: https://www.cs.waikato.ac.nz/ml/weka/downloading.html
Download sesuai system operasi pada laptop anda.

- 2. Download data Abalon di UCI Machine Learning Repository(abalone.data) dari alamat: http://archive.ics.uci.edu/ml/machine-learning-databases/abalone/
- 3. Setelah terdownload, rename abalone.data menjadi abalone.csv

4.

Index of /ml/machine-learning-databases/abalone

5. Langkah selanjutnya adalah buka file abalone.scv dengan Microsoft excel

6. Berilah nama tiap kolom attribute dan class nya sesuai dengan yang ada pada abalone.name pada database UCI.

7. Pindahlah kolom Sex dari paling kiri ke kolom paling kanan(setelah Rings)

Langkah selanjutnya adalah save as data dengan nama abalone.arrf dan selanjutnya buka file dengan Wordpad dan tambahkan @attribute dan real sebagai relation sebagai berikut:

Dan simpan file abalone.arff

9. Langkah selanjutnya buka WEKA

10. Setelah terbuka, load file abalone.arff dan ikuti langkah sebagai berikut:

Classify

Klik kanan pada result list dan pilih Visualize tree, seperti berikut:

Parameter

B. TUTORIAL DATA BREAST CANCER

1. Untuk data breast cancer, datanya sudah tersedia pada weka jadi langkah-langkahnya tidak perlu mengubah data menjadi .arff karena dalam weka udah menjadi breast-cancer.arff

2. Setelah open file akan muncul gambar seperti di bawah ini:

3. Langkah selanjutnya klik Classify dan ikuti langkah berikut:

Klik Visualize Tree dari klik kanan pada result dan hasilnya sebagai berikut:

Question

5. What do the results tell us? Why are the results (in)accurate? Why did changing parameter(s) improve/degrade accuracy?

Answer

• Use Training Set

Correctly Classified Instances	2829	67.728	용
Incorrectly Classified Instances	1348	32.272	옿
Kappa statistic	0.6358		
Mean absolute error	0.0244		
Root mean squared error	0.1105		
Relative absolute error	38.1689 %		
Root relative squared error	61.7967 %		
Total Number of Instances	4177		

• Cross Validation Folds: 10

Correctly Classified Instances	214	15.0704 %
Incorrectly Classified Instances	1206	84.9296 %
Kappa statistic	0.0222	
Mean absolute error	0.0622	
Root mean squared error	0.2108	
Relative absolute error	97.0872 %	
Root relative squared error	117.7184 %	
Total Number of Instances	1420	
Percantage Splits 66%		
Correctly Classified Instances	779	18.6497 %
Incorrectly Classified Instances	3398	81.3503 %
Kappa statistic	0.0658	
Mean absolute error	0.0609	
Root mean squared error	0.2042	
Relative absolute error	95.0928 %	
Root relative squared error	114.1805 %	
Total Number of Instances	4177	

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.000	0.000	0.000	0.000	0.000	0.000	?	?	1
	0.000	0.000	0.000	0.000	0.000	0.000	?	?	2
	0.000	0.000	0.000	0.000	0.000	0.000	0.774	0.003	3
	0.103	0.002	0.500	0.103	0.171	0.221	0.623	0.075	4
	0.115	0.010	0.316	0.115	0.169	0.173	0.651	0.082	5
	0.193	0.034	0.274	0.193	0.227	0.188	0.573	0.120	6
	0.172	0.059	0.224	0.172	0.195	0.128	0.586	0.120	7
	0.142	0.095	0.175	0.142	0.157	0.052	0.504	0.130	8
	0.471	0.576	0.134	0.471	0.208	-0.077	0.465	0.153	9
	0.088	0.069	0.196	0.088	0.122	0.027	0.539	0.170	10
	0.070	0.045	0.176	0.070	0.100	0.039	0.559	0.136	11
	0.023	0.026	0.054	0.023	0.032	-0.005	0.531	0.066	12
	0.014	0.023	0.031	0.014	0.019	-0.014	0.523	0.055	13
	0.000	0.009	0.000	0.000	0.000	-0.018	0.464	0.031	14
	0.000	0.009	0.000	0.000	0.000	-0.016	0.519	0.027	15
	0.000	0.006	0.000	0.000	0.000	-0.010	0.504	0.018	16
	0.000	0.006	0.000	0.000	0.000	-0.009	0.547	0.013	17
	0.000	0.004	0.000	0.000	0.000	-0.006	0.468	0.010	18
	0.000	0.004	0.000	0.000	0.000	-0.005	0.514	0.017	19
	0.000	0.001	0.000	0.000	0.000	-0.001	0.766	0.002	20
	0.000	0.001	0.000	0.000	0.000	-0.002	0.397	0.002	21
	0.000	0.001	0.000	0.000	0.000	-0.001	0.273	0.001	22
	0.000	0.000	0.000	0.000	0.000	0.000	0.438	0.002	23
	0.000	0.000	0.000	0.000	0.000	0.000	0.273	0.001	24
	0.000	0.000	0.000	0.000	0.000	0.000	?	?	25
	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.001	26
	0.000	0.000	0.000	0.000	0.000	0.000	0.273	0.001	27
	0.000	0.000	0.000	0.000	0.000	0.000	?	?	29
eighted Avg.	0.151	0.131	0.159	0.151	0.128	0.035	0.531	0.116	

Dilihat dari hasil akurasi yang telah diujikan terdapat perbedaan di masing-masing parameter. Hal tersebut terjadi disebabkan karena *misclassified*.