Lista 13 – Cinética

- 1. Para remover uma mancha de um prato de porcelana, fez-se o seguinte: cobriu-se a mancha com meio copo de água fria, adicionaram-se algumas gotas de vinagre e deixou-se por uma noite. No dia seguinte, a mancha havia clareado levemente. Usando apenas água e vinagre, sugira duas alterações no procedimento, de tal modo que a remoção da mancha possa ocorrer em menor tempo. Justifique cada uma das alterações propostas.
- 2. Assinale a altenativa incorreta. Um catalisador:
 - a) altera a energia de ativação de uma reação
 - b) altera a velocidade de uma reação
 - c) altera o ΔH da reação
- 3. A síntese de álcoois em laboratórios pode ser realizada por meio da reação de substituição de haleto de alquila em meio básico, conforme a reação: $R X + OH^-$ ® $ROH + X^-$, onde $X = C\ell$, Br ou I. Considerando essa reação, analise a tabela a seguir onde se mostram diferentes experimentos desenvolvidos:

Experimentos	Concentração inicial (mol/L)		Velocidade inicial de
	Haleto de alquila	OH-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	0,2	0,2	0,02
2	0,4	0,2	0,04
3	0,6	0,2	0,06
4	0,2	0,4	0,02
5	0,2	0,6	0,02

Assinale (V) verdadeiro ou (F) falso. Analisando a tabela, esta permite concluir que a velocidade da reação:

- I. Depende da concentração do haleto de alquila. ()
- II. Depende apenas da concentração da base. ()
- III. Esta reação é caracterizada como de primeira ordem. ()
- IV. Esta reação é caracterizada como de segunda ordem. ()
- 4. A água oxigenada ou solução aquosa de peróxido de hidrogênio (H_2O_2) é uma espécie oxidante bastante utilizada no dia-a-dia: descoloração dos cabelos, desinfecção de lentes de contato, de ferimentos, etc. A sua decomposição produz liberação de oxigênio e é acelerada por alguns fatores, como a exposição à luz ou a catalisadores $Fe^{2+}_{(aq)}$, $Fe^{3+}_{(aq)}$ e $Pt_{(s)}$. Um estudo da cinética da reação $2 H_2O_2 -> O_2 + 2 H_2O$ foi realizado seguindo as condições experimentais descritas na tabela a seguir:

Tempo de duração do experimento	Temperatura °C	Catalisador
t_1	20	sem
t_2	25	sem
t_3	35	com
t ₄	35	sem

Assinale a opção que classifica, de forma crescente, os tempos de duração dos experimentos:

A -
$$t_1$$
, t_2 , t_4 , t_3

$$B \text{ - } t_3,\, t_4,\, t_2,\, t_1$$

$$C - t_2, t_1, t_3, t_4$$

D -
$$t_4$$
, t_3 , t_1 , t_2

5. A reação $2NO_{(g)} + 2H_{2(g)} \longrightarrow N_{2(g)} + H_2O_{(g)}$ foi estudada a 904°C. Os dados da tabela seguinte referem-se a essa reação.

[NO] (mol / L)	[H ₂] (mol / L)	Velocidade (mol / L . s)
0,420	0,122	0,140
0,210	0,122	0,035
0,105	0,122	0,0087
0,210	0,244	0,070
0,210	0,366	0,105

A respeito dessa reação é correto afirmar que sua expressão da velocidade é:

a)
$$v = k[NO][H_2]$$

b)
$$v = k[NO]^2 [H_2]$$

c)
$$v = k[H_2]$$

d)
$$v = k[NO]^4 [H2]^2$$

e)
$$v = k[NO]^2 [H2]^2$$