CS 565 Sample Final

Your name: Ben Delaware

April 24, 2022

Problem 1. Give two examples of values in the lambda calculus extended with natural numbers.

Xx x+1

1x.2

there's a space here!

5 5 **Problem 2.** Give two examples of stuck expressions in the lambda calculus extended with natural numbers.

5+ (XX.X)

Problem 3. Give two examples of reducible expressions in the lambda calculus extended with natural numbers, and show the result of taking a single step using the call-by-value reduction strategy.

 $(\lambda_{x, x+1})(3+5) \rightarrow (\lambda_{x, x+1})8 \rightarrow 8+1$ $((\lambda_{x, x})(\lambda_{x, x+1}))5 \rightarrow (\lambda_{x, x+1})5 \rightarrow 5+1-36$ $(3+5) \rightarrow 8$

Problem 4. For an arbitrary postcondition and IMP program, is there *always* a precondition that would result in a valid Hoare triple? In other words, for a concrete Q and c is there always a way to fill in the first part of the following triple such that it is provable?

$$|-\{\} c \{Q\}$$

If your answer is "yes", is this assertion always $\underline{\text{unique}}$? If your answer is "no", give an example of a Q and c for which there is no such completion.

Yes, it is the assertion Produced by Wlp(c,Q).

Recall that we showed + Ewlp(c,Q) 3 c {Q} is
always provable as part of the proof of relative completeness.

not syntactically

This assertion is unique: we can define

many different, but equivalent assertions: 5=5 mulp(c,Q),

for example. It is always smantically unique however: there is

weater precondition that will make it true!

Problem 5. Provide typing contexts and annotations that make each of the following be well-typed simply typed lambda calculus with natural number (STLC+Nat) expressions, or state that no such typing context and annotations exist. Give the type for the entire term if it is well-typed.

 $\vdash (\lambda w : \overset{\text{net}}{\longrightarrow} \lambda z : \overset{\text{net}}{\longrightarrow} (wzz) + 1) (\lambda y : \overset{\text{net}}{\longrightarrow} \lambda x : \overset{\text{net}}{\longrightarrow} (y+x) 2 : \overset{\text{net}}{\longrightarrow} (x+x) = 0$

 $+\lambda \times : nat > nat \times (1+w) : (nat > nat) > nat > nat$

Problem 6. Give an example of a either a reduction or typing rule that, when added to STLC+Nat, would break progress. Provide a concrete counterexample that demonstrates the violation.

1

Problem 7. Give an example of a either a reduction or typing rule that, when added to STLC+Nat, would break preservation. Provide a concrete counterexample that demonstrates the violation.

$$\Gamma + t_1 : Not \quad \Gamma + t_2 : Not \quad \Gamma + t_3 : T$$

$$\Gamma + (t_1 + t_2) \quad t_3 : Nat$$

$$Note : \vdash (0+1) \quad 3 : Nat \quad and \quad (0+1) \quad 3 \longrightarrow 13,$$
but $\gamma = 13$

Problem 8. Give the most general unifiers for the following sets of constraints, or state that no solution exists.

• ${Z=Y \rightarrow Q, Q=Nat}$

• $\{W=Q \rightarrow Q, Q=Nat, W=U, U=Nat\}$

• {}(the empty set of constraints)

Problem 9. Suppose we have types $Q,\,U,\,$ and W with Q<:U and U<:W. Which of the following subtyping assertions are then true? Write true or false after each one.

- $(U \rightarrow Q) \rightarrow U <: (Q \rightarrow U) \rightarrow W$. Necd: fulse $U <: W \text{ and } (Q \rightarrow U) <: (U \rightarrow Q)$,

 but $U \not\models Q$
- $\{q:Q, y:Q\} <: \{y:U, q:W\}.$

false

• $\{f: U \rightarrow U, y:U\} <: \{g: Q \rightarrow W, y:W\}.$ Line

Problem 10. Give the definition of polymorphic function composition \circ in System F. In Coq, the definition of this function is:

Definition comp $\{A \mid B \mid C\}$ $(f : A \rightarrow B)$ $(g : B \rightarrow C) : A \rightarrow C :=$ fun $a \Rightarrow g$ $(f \mid a)$.

Λ A. AB. AC. Xf: A > B. λg: B = C. Ja. g(fa)

Problem 11. Give an example of a System F term which has no analogue in the simply typed lambda calculus.