#### VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.



#### LAB REPORT on

# **Machine Learning**

Submitted by

Jayanti R Lahoti(1BM19CS067)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING



B.M.S. COLLEGE OF ENGINEERING BENGALURU-560019 May-2022 to July-2022

(Autonomous Institution under VTU)

### B. M. S. College of Engineering,

**Bull Temple Road, Bangalore 560019**(Affiliated To Visvesvaraya Technological University, Belgaum)

#### **Department of Computer Science and Engineering**



#### **CERTIFICATE**

This is to certify that the Lab work entitled "Machine Learning" carried out by **Jayanti R Lahoti** (**1BM19CS067**), who is bonafide student of **B. M. S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum during the year 2022. The Lab report has been approved as it satisfies the academic requirements in respect of a **Machine Learning - (20CS6PCMAL)** work prescribed for the said degree.

Dr G R Asha Assistant Professor Department of CSE BMSCE, Bengaluru **Dr. Jyothi S Nayak**Professor and Head
Department of CSE
BMSCE, Bengaluru

## **Index Sheet**

| SI.<br>No. | Experiment Title      | Page No. |
|------------|-----------------------|----------|
| 1          | Find-S                | 4        |
| 2          | Candidate Elimination | 5        |
| 3          | Decision Tree         | 7        |
| 4          | Naïve Bayes           | 9        |
| 5          | Linear Regression     | 11       |

#### **Course Outcome**

| CO1 | Ability to apply the different learning algorithms.                                                       |
|-----|-----------------------------------------------------------------------------------------------------------|
| CO2 | Ability to analyze the learning techniques for given dataset                                              |
| CO3 | Ability to design a model using machine learning to solve a problem.                                      |
| CO4 | Ability to conduct practical experiments to solve problems using appropriate machine learning Techniques. |

1) Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.

```
In [14]: import numpy as np
         import pandas as pd
 In [15]: data = pd.read csv("finddata.csv")
         print(data,"\n")
               Time Weather Temperature Company Humidity Goes
         0 Morning
                     Sunny
                                Warm Yes
                                                Mild Yes
                                                 Mild No
         1 Evening
                     Rainy
                                 Cold
                                         No
         2 Morning
                     Sunny Moderate
                                        Yes Normal Yes
         3 Evening
                     Sunny
                              Cold Yes High Yes
 In [19]: d = np.array(data)[:,:-1]
         print("\n The attributes are: ",d)
         target = np.array(data)[:,-1]
         print("\n The target is: ",target)
          The attributes are: [['Morning' 'Sunny' 'Warm' 'Yes' 'Mild']
          ['Evening' 'Rainy' 'Cold' 'No' 'Mild']
['Morning' 'Sunny' 'Moderate' 'Yes' 'Normal']
          ['Evening' 'Sunny' 'Cold' 'Yes' 'High']]
          The target is: ['Yes' 'No' 'Yes' 'Yes']
In [17]: def findS(c,t):
               for i, val in enumerate(t):
                   if val == "Yes":
                        specific hypothesis = c[i].copy()
               for i, val in enumerate(c):
                   if t[i] == "Yes":
                        for x in range(len(specific hypothesis)):
                            if val[x] != specific hypothesis[x]:
                                 specific_hypothesis[x] = '?'
                             else:
                                 pass
               return specific_hypothesis
In [18]: print("\n The final hypothesis is:",findS(d,target))
           The final hypothesis is: ['?' 'Sunny' '?' 'Yes' '?']
In [ ]:
```

2) For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples

```
In [4]: import numpy as np
        import pandas as pd
        #to read the data in the csv file
        data = pd.DataFrame(data=pd.read csv('enjoysport.csv'))
        print(data,"\n")
        #making an array of all the attributes
        concepts = np.array(data.iloc[:,0:-1])
        print("The attributes are: ",concepts)
        #segregating the target that has positive and negative examples
        target = np.array(data.iloc[:,-1])
        print("\n The target is: ",target)
        #training function to implement candidate elimination algorithm
        def learn(concepts, target):
         specific_h = concepts[0].copy()
         print("\n Initialization of specific h and general h")
         print(specific h)
         general h = [["?" for i in range(len(specific h))] for i in
        range(len(specific h))]
         print(general h)
         for i, h in enumerate(concepts):
             if target[i] == "yes":
                 for x in range(len(specific h)):
                     if h[x]!= specific h[x]:
                         specific h[x] ='?'
                         general h[x][x] = '?'
                    # print(specific h)
             if target[i] == "no":
                 for x in range(len(specific h)):
                     if h[x]!= specific h[x]:
```

```
print(specific h)
   print(general_h)
indices = [i for i, val in enumerate(general_h) if val ==
['?', '?', '?', '?', '?', '?']
for i in indices:
        general_h.remove(['?', '?', '?', '?', '?', '?'])
    return specific_h, general_h
   s_final, g_final = learn(concepts, target)
   #obtaining the final hypothesis
  print("\nFinal Specific_h:", s_final, sep="\n")
print("\nFinal General_h:", g_final, sep="\n")
          sky temp humidity
                                         wind water forcast enjoysport
                            normal strong warm
   0 sunny warm
                                                                same
   1 sunny
                warm
                              high strong warm
                                                                same
                                                                                  yes
   2 rainy cold
                               high strong warm change
                                                                                   no
   3 sunny
                warm
                               high strong cool change
                                                                                  yes
   The attributes are: [['sunny' 'warm' 'normal' 'strong' 'warm' 'same']
['sunny' 'warm' 'high' 'strong' 'warm' 'same']
['rainy' 'cold' 'high' 'strong' 'warm' 'change']
     ['sunny' 'warm' 'high' 'strong' 'cool' 'change']]
    The target is: ['yes' 'yes' 'no' 'yes']
   Initialization of specific_h and general_h
['sunny' 'warm' 'normal' 'strong' 'warm' 'same']
[['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'],
['?', '?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?']]
   Steps of Candidate Elimination Algorithm 1
['sunny' 'warm' 'normal' 'strong' 'warm' 'same']
[['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?']]
Steps of Candidate Elimination Algorithm 1
['sunny' 'warm' 'normal' 'strong' 'warm' 'same']
[['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?']]
Steps of Candidate Elimination Algorithm 2
['sunny' 'warm' '?' 'strong' 'warm' 'same']
[['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?']]
Steps of Candidate Elimination Algorithm 4
['sunny' 'warm' '?' 'strong' '?' '?']
[['sunny', '?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?']]
Final Specific_h:
['sunny' 'warm' '?' 'strong' '?' '?']
Final General h:
[['sunny', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?', '?']]
```

3) Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
In [24]: import pandas as pd
                   import math
                   import numpy as np
       In [34]: data = pd.read_csv("data.csv")
                   features = [feat for feat in data]
                   features.remove("answer")
In [37]: class Node:
             def __init__(self):
                  self.children = []
                  self.value = ""
                  self.isLeaf = False
self.pred = ""
In [38]: def entropy(examples):
              pos = 0.0
              neg = 0.0
             for _, row in examples.iterrows():
    if row["answer"] == "yes":
                     pos += 1
                  else:
                    neg += 1
              if pos == 0.0 or neg == 0.0:
                  return 0.0
                 p = pos / (pos + neg)
n = neg / (pos + neg)
                  return -(p * math.log(p, 2) + n * math.log(n, 2))
In [39]: def info_gain(examples, attr):
              uniq = np.unique(examples[attr])
              #print ("\n",uniq)
              gain = entropy(examples)
              #print ("\n",gain)
              for u in uniq:
                 subdata = examples[examples[attr] == u]
                  #print ("\n", subdata)
                  sub_e = entropy(subdata)
                  gain -= (float(len(subdata)) / float(len(examples))) * sub_e
                  #print ("\n",gain)
             return gain
```

```
In [40]: def ID3(examples, attrs):
             root = Node()
             max_gain = 0
             max_feat = ""
             for feature in attrs:
                 #print ("\n", examples)
                 gain = info gain(examples, feature)
                 if gain > max_gain:
                     max_gain = gain
max_feat = feature
             root.value = max_feat
             #print ("\nMax feature attr", max_feat)
             uniq = np.unique(examples[max_feat])
             #print ("\n", uniq)
             for u in uniq:
                 #print ("\n",u)
                 subdata = examples[examples[max_feat] == u]
                 #print ("\n", subdata)
                 if entropy(subdata) == 0.0:
                     newNode = Node()
                      newNode.isLeaf = True
                      newNode.value = u
                      newNode.pred = np.unique(subdata["answer"])
                     root.children.append(newNode)
                 else:
                      dummyNode = Node()
                      dummyNode.value = u
                      new_attrs = attrs.copy()
                      new_attrs.remove(max_feat)
                      child = ID3(subdata, new_attrs)
                      dummyNode.children.append(child)
                      root.children.append(dummyNode)
             return root
 In [41]: def printTree(root: Node, depth=0):
                for i in range(depth):
    print("\t", end="")
                print(root.value, end="")
                if root.isLeaf:
                     print(" -> ", root.pred)
                print()
                for child in root.children:
                     printTree(child, depth + 1)
 In [42]: root = ID3(data, features)
            printTree(root)
            outlook
                     overcast -> ['yes']
                     rain
                              wind
                                      strong -> ['no']
                                       weak -> ['yes']
                     sunny
                              humidity
                                       high -> ['no']
                                       normal -> ['yes']
```

4) Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets



```
In [5]: class NaiveBayesClassifier:
              def __init__(self, X, y):
                   \overline{\text{self.X}}, \overline{\text{self.y}} = X, y
                   self.N = len(self.X)
                   self.dim = len(self.X[0])
                   self.attrs = [[] for _ in range(self.dim)]
                   self.output_dom = {}
                   self.data = []
                   for i in range(len(self.X)):
                       for j in range(self.dim):
                            if not self.X[i][j] in self.attrs[j]:
                                self.attrs[j].append(self.X[i][j])
                       if not self.y[i] in self.output_dom.keys():
                            self.output_dom[self.y[i]] = 1
                       else:
                            self.output_dom[self.y[i]] += 1
                       self.data.append([self.X[i], self.y[i]])
               def classify(self, entry):
                   solve = None
                   max arg = -1
                   for y in self.output_dom.keys():
                       prob = self.output dom[y]/self.N
                       for i in range(self.dim):
                            cases = [x \text{ for } x \text{ in self.data if } x[0][i] == entry[i] \text{ and } x[1] == y]
                            n = len(cases)
                            prob *= n/self.N
                       if prob > max arg:
                            max_arg = prob
                            solve = y
                   return solve
In [6]: nbc = NaiveBayesClassifier(X train, y train)
         total cases = len(y val)
         good = 0
         bad = 0
         predictions = []
         for i in range(total_cases):
             predict = nbc.classify(X_val[i])
             predictions.append(predict)
              if y_val[i] == predict:
                  good += 1
              else:
                  bad += 1
         print('Predicted values:', predictions)
         print('Actual values:', y_val)
         print()
         print('Total number of testing instances in the dataset:', total cases)
         print('Number of correct predictions:', good)
         print('Number of wrong predictions:', bad)
         print()
         print('Accuracy of Bayes Classifier:', good/total_cases)
         Predicted values: ['No', 'Yes', 'No', 'Yes', 'Yes', 'No']
Actual values: ['Yes', 'Yes', 'Yes', 'Yes', 'No']
         Total number of testing instances in the dataset: 6
         Number of correct predictions: 4
         Number of wrong predictions: 2
         Accuracy of Bayes Classifier: 0.666666666666666
```

5)Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
In [17]: import numpy as np
  import matplotlib.pyplot as plt
              import pandas as pd
              from sklearn.metrics import r2_score
      In [9]: dataset = pd.read_csv('salary_dataset.csv')
              X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
     In [10]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
     In [11]: # Fitting Simple Linear Regression to the Training set
              from sklearn.linear_model import LinearRegression
              regressor = LinearRegression()
              regressor.fit(X_train, y_train)
     Out[11]: LinearRegression()
     In [15]: # Predicting the Test set results
              y_pred = regressor.predict(X_test)
              y pred
    Out[15]: array([ 40835.10590871, 123079.39940819, 65134.55626083, 63265.36777221, 115602.64545369, 108125.8914992 , 116537.23969801, 64199.96201652, 76349.68719258, 100649.1375447 ])
     In [18]: r2_score(y_test,y_pred)
     Out[18]: 0.9749154407708353
In [19]: # Visualizing the Training set results
              viz train = plt
              viz_train.scatter(X_train, y_train, color='red')
              viz train.plot(X train, regressor.predict(X train), color='blue')
              viz_train.title('Salary VS Experience (Training set)')
               viz train.xlabel('Year of Experience')
              viz_train.ylabel('Salary')
              viz_train.show()
                                        Salary VS Experience (Training set)
                   120000
                   100000
                    80000
                    60000
                    40000
                                                                                        10
```

Year of Experience

```
In [14]: # Visualizing the Test set results
    viz_test = plt
    viz_test.scatter(X_test, y_test, color='red')
    viz_test.plot(X_train, regressor.predict(X_train), color='blue')
    viz_test.title('Salary VS Experience (Test set)')
    viz_test.xlabel('Year of Experience')
    viz_test.ylabel('Salary')
    viz_test.show()
```

