STAT5030 Assignment 3

Due: Mar 8, 2023

1. (Underfitted Model)

True Model: $\mathbf{Y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon}$, $E(\boldsymbol{\varepsilon}) = \mathbf{0}$, $Var(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$.

Mis-specified Model: $\mathbf{Y} = \mathbf{X}\mathbf{b} + \boldsymbol{\varepsilon}$, $E(\boldsymbol{\varepsilon}) = \mathbf{0}$, $Var(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$.

Let the least squares estimate of \boldsymbol{b} be $\hat{\boldsymbol{b}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}$,

- (a) Prove that $\hat{\boldsymbol{b}}$ is a biased estimator of \boldsymbol{b} and find the bias.
- (b) Find the variance of $\hat{\boldsymbol{b}}$.
- (c) Prove that S^2 is a biased estimator of σ^2 where

$$S^{2} = \frac{\boldsymbol{Y}^{\top} (\boldsymbol{I} - \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top}) \boldsymbol{Y}}{n - r(\boldsymbol{X})}.$$

- (d) Show that S^2 overestimate σ^2 .
- (e) Find $E(\hat{\varepsilon})$ and $Var(\hat{\varepsilon})$.
- 2. (Over-fitted model)

True Model: $Y = X_1b_1 + \varepsilon$, $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma^2 I$.

Mis-specified Model: $m{Y} = m{X} m{b} + m{arepsilon}, \quad m{X} = \left(m{X}_1 \quad m{X}_2 \ \right) \quad m{b} = \left(m{b}_1 \\ m{b}_2 \ \right).$

- (a) What is $E(\hat{\boldsymbol{b}})$.
- (b) Evaluate $E(S^2)$.
- (c) Evaluate $Var(\hat{\boldsymbol{b}})$.
- 3. Suppose $Y \sim N_3(\mathbf{0}, I)$. Find the distribution of

$$\frac{1}{3}[(Y_1 - Y_2)^2 + (Y_2 - Y_3)^2 + (Y_3 - Y_1)^2].$$

4. Consider the full rank model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_{p-1} x_{i,p-1} + \varepsilon_i, \quad i = 1, 2, 3, \dots, n$$

where the ε_i are i.i.d. $N(0, \sigma^2)$ and the x_{ij} are standardized so that for $j = 1, 2, \dots, p-1, \sum_i x_{ij} = 0$ and $\sum_i x_{ij}^2 = c$. In matrix notation, the model can be written as

$$Y = X\beta + \varepsilon$$
.

Show that

$$\frac{1}{p}\sum_{i=0}^{p-1}var(\hat{\beta}_j)$$

is minimized when the columns of X are mutually orthogonal.

- 5. For the regression model $\mathbf{Y} = \mathbf{X}\mathbf{b} + \boldsymbol{\varepsilon}$, $E(\boldsymbol{\varepsilon}) = \mathbf{0}$, $Var(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$. Let $\hat{\mathbf{b}}_k = (\mathbf{X}^\top \mathbf{X} + k\mathbf{I})^{-1} \mathbf{X}^\top \mathbf{Y}$.
 - (a) Prove $E(\hat{\boldsymbol{b}}_k) = \boldsymbol{b} k(\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I})^{-1}\boldsymbol{b}$.
 - (b) Prove that $Var(\hat{\boldsymbol{b}}_k) = \sigma^2 \boldsymbol{X}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + k \boldsymbol{I})^{-2}$.
 - (c) Show that for a fixed k, the estimator $\hat{\boldsymbol{b}}_k$ is unbiased for b if and only if k=0.
- 6. Aerial observations Y_1, Y_2, Y_3 and Y_4 are made of angles $\theta_1, \theta_2, \theta_3$ and θ_4 respectively, of a quadrilateral on the ground. Let the observations be subject to independent normal errors with zero means and common variance σ^2 ,
 - (a) Evaluate the least squares estimates of $\theta_1, \theta_2, \theta_3$ and θ_4 .
 - (b) Evaluate the unbiased estimator of σ^2 .
 - (c) Derive a test statistic for the hypothesis that the quadrilateral is a parallelogram with $\theta_1 = \theta_3$ and $\theta_2 = \theta_4$.
- 7. In order to estimate two parameters θ and ϕ , it is possible to make observations of tree types:
 - (a) the first type have expectation θ ,
 - (b) the second type have expectation $\theta + \phi$, and
 - (c) the third type have expectation $\theta 2\phi$.

All observations are subject to independent normal errors with zeros means and common variance σ^2 . If m observations of type (a), m observations of type (b) and n observations of type (c) are made, find the least squares estimates $\hat{\theta}$ and $\hat{\phi}$. Prove that these estimates are uncorrelated if m = 2n.

8. Consider the linear regression model

$$y = X_{n \times p} \beta_{p \times 1} + \varepsilon.$$

where $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$. Let $\hat{\boldsymbol{\beta}}$ be the least squares estimate of $\boldsymbol{\beta}$. Define $\tilde{\boldsymbol{\beta}} = c\hat{\boldsymbol{\beta}}$ where $c \leq 1$. The mean squared error(MSE) of $\tilde{\boldsymbol{\beta}}$ is

$$MSE(\tilde{\boldsymbol{\beta}}) = E(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\top}(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}).$$

- (a) Prove that $MSE(\tilde{\boldsymbol{\beta}}) = c^2 \sigma^2 tr(\boldsymbol{X}^\top \boldsymbol{X})^{-1} + (c-1)^2 \boldsymbol{\beta}^\top \boldsymbol{\beta}$.
- (b) Let c^* be the value of c such that $MSE(\tilde{\beta})$ is a minimum. Find c^* .
- (c) Let $p = 5, \sigma^2 = 1, \boldsymbol{\beta}^{\top} = (1, 2, 3, 4, 5)$ and the eigenvalues of $\boldsymbol{X}^{\top} \boldsymbol{X}$ be 1, 2, 3, 4, 5. Evaluate c^* .
- 9. True model: $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \varepsilon_i$, i = 1, 2, 3, 4, 5 $\varepsilon_i \sim N(0, \sigma^2)$, iid.

 $\text{Mis-specified model: } y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \qquad i = 1, 2, 3, 4, 5 \quad \varepsilon_i \sim N(0, \sigma^2), iid.$

Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the least squares estimates of β_0 and β_1 respectively. If x = -2, -1, 0, 1, 2. Find the bias of $\hat{\beta}_0$ and $\hat{\beta}_1$.

10. Let

$$Y = X\beta + \varepsilon$$
, $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma^2 I$.

and the LS estimator of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$. Now, assume additional information $(\boldsymbol{u}, \boldsymbol{H})$ are available where

$$u = H\beta + \gamma$$
, $E(\gamma) = 0$, $Var(\gamma) = W$

and \boldsymbol{W} is known.

- (a) Find the generalized least squares estimate of β using all available information.
- (b) Let $\hat{\boldsymbol{\beta}}_a = (\boldsymbol{H}^{\top} \boldsymbol{W}^{-1} \boldsymbol{H})^{-1} \boldsymbol{H}^{\top} \boldsymbol{W}^{-1} \boldsymbol{u}$ be the generalized least squares estimate of $\boldsymbol{\beta}$ based ONLY on the additional information $(\boldsymbol{u}, \boldsymbol{H})$. Further, let the generalized least squares estimate of $\boldsymbol{\beta}$ using all available information obtained in part (a) be $\hat{\boldsymbol{\beta}}_k$. Show that

$$\hat{\boldsymbol{\beta}}_k = w_1 \hat{\boldsymbol{\beta}} + w_2 \hat{\boldsymbol{\beta}}_a.$$

What are w_1 and w_2 ? What is the value of $|w_1 + w_2|$, the determinant of $w_1 + w_2$?