

2.º Teste de Repescagem de Introdução à Arquitetura de Computadores

IST-LEIC-Taguspark

17 janeiro 2014

NOME	NÚMERO	

Duração: 60 minutos

1.	(1+1+1 valores)	Considere o	seguinte	programa,	que deve	completar.	Preencha ap	enas o que	e entender
	necessário								

PLACE	2000H	
saldo:	WORD	200
pilha:	WOILD	100H
piiiu.		10011
PLACE	0	
	MOV SP,	
	MOV BTE,	
	,	
rot1:		; código omitido
rot2:	PUSH	,

1.° Semestre 2013/2014

- a) Complete a zona de dados, com o necessário para a pilha e a interrupção 1 e 2 funcionarem corretamente. Para simplificar, o código da rotina de interrupção 1 foi omitido;
- b) Complete o programa principal, com o necessário para a pilha e a interrupção 2 funcionarem corretamente. O corpo do programa principal deve terminar em ciclo infinito (salto para a própria instrução);
- c) Complete a rotina de interrupção 2 ("int2"), que deve duplicar o valor da variável "saldo" (na memória).

2.	(1 valor) Considere um sistema com transferência de dados por DMA em regime de bloco (transferência de uma só vez) e uma interrupção periódica. Cada bloco de dados transferido tem 1000 palavras e cada palavra transferida por DMA demora 0,5 microssegundos. Qual a frequência máxima do sinal de interrupção? <u>Justifique</u> .
3.	(2 valores) Tem de decidir entre dois processadores qual o melhor para correr a sua aplicação. O processador A tem um relógio de 3 GHz, a duração média de cada instrução é de 1,8 ciclos de relógio por instrução, e o compilador gera 200 Mega instruções. Por sua vez, o processador B tem um relógio de 2 GHz, a duração média de cada instrução é de 2,2 ciclos de relógio por instrução, e o compilador gera 100 Mega instruções. Indique qual o melhor processador. <u>Justifique</u> .

4. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela com o tamanho de cada dispositivo (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Tamanho (bytes)	Início	Fim
RAM			
Periférico			
ROM1			
ROM2			

5. (3 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica simplificada.

A	В	C	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

			CD						
		00	01	11	10				
	00								
AB	01								
AB	11								
	10								

6. (2+1 valores) O circuito seguinte implementa a operação de fatorial do Operando, usando microprogramação. SUB_R0 decrementa R0 de uma unidade. O sinal ≤ 1 fica ativo (a 1) sempre que R0 ≤ 1. A ALU suporta 4 operações (especificadas por OP_ALU): na sua saída pode aparecer R0+R1, R0*R1, 0 ou 1.

a) Preencha a tabela seguinte com os sinais necessários para implementar o divisor. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço	Microinstrução (RTL)	LOAD_R0	LOAD_R1	SUB_R0	OP_ALU	SEL_MICRO _SALTO	MICRO _SALTO
0	$R0 \leftarrow Operando;$ $R1 \leftarrow 1$						
1	(≤ 1): MPC ← 5						
2	R1 ← R1 * R0						
3	R0 ← R0 - 1						
4	MPC ← 1						
5	MPC ← 5						

b)	Quantos bits de largura deve ter a ROM, no mínimo?	
----	--	--

- 7. (1+1 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 2048 palavras e <u>blocos de 8 palavras</u>.
 - a) Indique o número de bits de cada um dos campos em que o endereço se divide para acesso à cache.

Etiqueta	
Índice	
Palavra dentro do bloco	
Byte dentro da palavra	

b)	Na execução de instruções do tipo MOV R1, [R2], o núcleo do PEPE verificou que, em média, o valor
	pretendido estava na cache 90% das vezes, caso em que este demorava 3 ns a obter. Medindo-se um tempo
	médio de acesso de 5,7 ns, qual será o tempo de acesso a um valor quando este não está na cache?

	ns

- 8. (2+1 valores) Considere um processador com 24 bits de endereço, endereçamento de byte e suporte para memória virtual com páginas de 4K bytes. A memória física tem uma capacidade de 1 Mbyte.
 - a) Preencha a tabela seguinte:

Dimensão do espaço virtual	
Dimensão da página física	
Número de páginas virtuais	
Número de páginas físicas	

b) Suponha que a TLB é uma *cache* totalmente associativa de 4 entradas, inicialmente vazia. Preencha o seu conteúdo após os acessos aos endereços virtuais seguintes e assumindo que a TLB será preenchida de cima para baixo, à medida que for sendo necessário.

Acessos realizados		
Endereço virtual	Endereço físico	
23BA52H		
17BA4EH		
23BA0CH		
158054H		
47F054H		
17B1FEH		

TLB		
Página virtual	Página física	
	34	
	5C	
	AE	
	04	