Detailed Report — AI Safety Models POC

1. Introduction

Conversational AI systems such as chatbots, virtual assistants, and customer support agents are widely used today. While powerful, they bring risks related to user safety — including exposure to abusive language, escalation of hostile conversations, self-harm indicators, and exposure of children to inappropriate content.

The assignment required developing a **Proof of Concept (POC)** implementing a suite of **AI Safety Models**, integrated into a cohesive system, and demonstrated in a near real-time chat simulator.

This report documents the design, implementation, outputs, and evaluation of the POC.

2. Objectives

The objectives of this assignment were to:

- 1. **Abuse Language Detection** detect abusive/offensive language.
- 2. **Escalation Pattern Recognition** recognize rising tension in conversations.
- 3. **Crisis Intervention** detect signs of self-harm or suicidal ideation.
- 4. **Content Filtering** enforce age-appropriate communication.
- 5. **Integration & Real-Time Demo** integrate these models into a chat simulator that can process messages in near real time.
- 6. **Evaluation & Documentation** provide evaluation metrics, code, and a report explaining results and limitations.

3. Implementation Approach

3.1 Repository Setup

A modular repository was created with the following key components:

• Data preparation (data_prep.py) — generates small demo datasets (abuse + crisis).

- Model training (train_abuse.py, train_crisis.py) TF-IDF + Logistic Regression classifiers.
- **Escalation detection (escalation_detector.py)** rolling-window sentiment + abuse trend detection.
- **Content filtering (content_filter.py)** rule-based age gating for explicit, sexual, and violent terms.
- Evaluation (evaluate.py) computes precision, recall, and F1.
- Integration (app.py) Flask chat simulator that combines all models.

3.2 Data Preparation

- Abuse dataset 20 samples generated with a mix of positive and abusive text. Saved to data/abuse_dataset.csv.
- **Crisis dataset** 20 synthetic samples including self-harm and neutral expressions. Saved to data/crisis dataset.csv.

3.3 Models

Abuse Detector

- TF-IDF features (1–2 grams, max 20k features).
- Logistic Regression classifier.
- o Lightweight, CPU-friendly, <10ms inference.

• Crisis Detector

- Similar TF-IDF + Logistic Regression setup.
- Trained on small synthetic dataset.

• Escalation Detector

- Uses VADER sentiment analyzer.
- Maintains a rolling 6-message window.
- Escalation score combines negative sentiment average, slope (trend), and abuse frequency.

Content Filter

Rules vary by age group:

- <13: block all explicit terms.</p>
- 13–15: block sexual content, flag violent content.
- ≥16: allow most, but flag self-harm.

4. Results & Outputs

4.1 Data Preparation

```
Saved abuse dataset to ...\data\abuse_dataset.csv with 20 samples

Saved crisis dataset to ...\data\crisis_dataset.csv with 20 samples
```

→ Confirms datasets were generated and stored.

4.2 Abuse Detector Training

```
Classification report:

precision recall f1-score support

0 1.00 1.00 1.00 2

1 1.00 1.00 1.00 2
```

→ The abuse model achieved perfect precision, recall, and F1 on the small test set. This is expected due to the very small dataset size.

4.3 Crisis Detector Training

Crisis detection report:								
	precision	recall	f1-score	support				
0	0.00	0.00	0.00	2				
1	0.50	1.00	0.67	2				
accuracy			0.50	4				

→ The crisis model shows weak performance due to limited data. Class 0 (non-crisis) was not predicted correctly. Still, crisis class (1) was partially detected. This highlights the need for larger, balanced datasets in production.

4.4 Evaluation Script

	precision	recall	f1-score	support	
9	1.00	1.00	1.00	10	
1	1.00	1.00	1.00	10	
accupacy			1.00	20	
accuracy macro avg	1.00	1.00	1.00	20	
weighted avg	1.00	1.00	1.00	20	

 \rightarrow On the abuse dataset, evaluation again yielded perfect results. This reflects overfitting to the small dataset, not generalizable performance.

4.5 Chat Simulator

Launched via:

```
python src/app.py
 * Running on http://127.0.0.1:5000
```

AI Safety POC Chat Simulator

User age:	20	
Message:		
Send		

- → The web UI successfully accepted input messages and returned JSON-style results including:
 - Abuse flag and score
 - Crisis flag and score
 - Age-based filtering decision
 - Escalation score and flag

5. Analysis

5.1 Strengths

- Fully working modular system integrating multiple safety layers.
- Fast, CPU-friendly inference.
- Demonstrates abuse detection, escalation recognition, crisis intervention, and age filtering.
- Flask integration provides real-time demo capability.

5.2 Limitations

- Small synthetic datasets: results are not statistically reliable.
- Crisis model weak: shows precision/recall imbalance due to data scarcity.
- **Bias & generalization**: rule-based filters may not handle slang, sarcasm, or multilingual inputs.
- **Evaluation metrics inflated**: due to tiny datasets.

5.3 Improvements

- Use larger datasets (e.g., Jigsaw Toxic Comment, SuicideWatch Reddit).
- Fine-tune small transformers (e.g., DistilBERT) for abuse/crisis detection.
- Expand escalation detector with conversational context features (e.g., response latency, repetition).
- Add multilingual pipelines.

6. Ethical Considerations

- Bias: Must audit across demographics, languages, and cultures.
- **Human-in-the-loop**: Automatic blocks only for clear abuse; sensitive flags (e.g., suicide) should escalate to human review.
- Privacy: Only anonymized text logs; avoid storing personally identifiable information (PII).
- **Transparency**: Clear explanations and audit trails for moderation decisions.

7. Conclusion

This Proof of Concept demonstrates the **feasibility of integrating multiple AI Safety Models** into a unified system for conversational AI. Despite limitations of dataset size, the project showcases the pipeline, architecture, and real-time demo, fulfilling the assignment's requirements.

Future work should focus on scaling datasets, improving model robustness with transformers, and building monitoring systems for fairness, accuracy, and safety at production scale.