Manual for Package: open-channel-flow Revision 1:3M

Karl Kästner

October 14, 2019

Contents

1	@Back	cwater1D 1
	1.1	Backwater1D
	1.2	backwater_approximation
	1.3	backwater_curve_iterative
	1.4	backwater_length
	1.5	dh_dx
	1.6	dzs_dx
	1.7	gvf_x_chow
	1.8	invert
	1.9	solve
	1.10	solve_analytic
2	@Pote	ential_Flow 3
	2.1	Potential_Flow
	2.2	apply_boundary_potential_old
	2.3	assemble_discretization_matrix_rectilinear
	2.4	assemble_potential_matrix
	2.5	bc_dirichlet
	2.6	boundary_condition_side_outflow
	2.7	boundary_condition_side_outflow_1
	2.8	contour
	2.9	cut_boundary
	2.10	cut_rectangle
	2.11	infer_bed_level
	2.12	infer_bed_level2
	2.13	infer_bed_level3
	2.14	infer_bed_level_loop
	2.15	objective_bed_level
	2.16	old

	2.17	plot
	2.18	quiver
	2.19	sediment_transport
	2.20	solve_potential
	2.21	streamline
	2.22	surface_elevation
	2.23	test
	2.24	velocity_near_bed
	2.25	vertical_velocity
3	@Pote	ntial_Flow_Analytic 6
	3.1	Potential_Flow_Analytic
	3.2	derive_lateral_outflow
	3.3	derive_lateral_outflow_finite_width
	3.4	lateral_outflow
	3.5	lateral_outflow_finite_width
	3.6	streamline
4	@SWI	E 7
_	4.1	SWE
	4.2	bc_incoming_non_reflecting
	4.3	bc_inflow
	4.4	bc_inflow_low_pass
	4.5	bc_inflow_non_reflecting
	4.6	bc_level
	4.7	bc_level_sommerfeld
	4.8	bc_nonreflecting
	4.9	bc_reflecting
	4.10	dot
	4.11	dt_cfl
	4.12	energy
	4.13	flux
	4.14	flux_lin
	4.15	fluxmateig
	4.16	jacobian
	4.17	lindot
	4.18	roe_average
	4.19	solve_analytic
	4.20	solve_stationary
	4.21	source_bed_level
	4.22	source_friction
	4.23	source_width
	4.24	swe_geometry
	4.25	swe_ic

5	@SWI	${f E}_{-}{f 2}{f d}$	11			
	5.1	SWE_2d	11			
	5.2	apply_boundary_condition_stationary	11			
	5.3	assemble_stationary	11			
	5.4	solve_stationary	11			
6	@Side_Weir 12					
	6.1	Side_Weir	12			
	6.2	dzs_dx	12			
	6.3	surface_elevation	12			
7	open-o	channel-flow	12			
	7.1	Potential_Flow_Map	12			
	7.2	diffusion_wave	13			
	7.3	friction_slope	13			
	7.4	linear_wave	13			
8	meand	ler-bend/@Equilibrium_Bend	13			
	8.1	Equilibrium_Bend	13			
	8.2	bed_profile	13			
	8.3	bed_profile_uniform	14			
	8.4	calibrate	14			
	8.5	dD_dr	14			
	8.6	dh_dr	14			
	8.7	dh_dr_uniform	14			
	8.8	grain_size_profile	14			
9	meander-bend 14					
	9.1	Kinoshita	14			
	9.2	bend_transverse_velocity	15			
	9.3	bend_velocity_near_bed	15			
	9.4	kinoshita	15			
	9.5	random_meander	15			
	9.6	test_rozovskii	15			
10	old		15			
	10.1	$\label{eq:UniformFlow} UniformFlow \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	15			
11	rating	-curve	15			
	11.1	ChezyRatingCurve	15			
	11.2	DynamicKeuleganRC	15			
	11.3	DynamicManningRC	16			
	11.4	DynamicPowerRC	16			
	11.5	KeuleganRatingCurve	16			
	11.6	ManningRatingCurve	16			

	11.7	PolyRatingCurve
	11.8	PowerRatingCurve
	11.9	PowerRatingCurveOffset
	11.10	RatingCurve
	11.11	csarea
	11.12	csdischarge
	11.13	csperimeter
	11.14	csradius
	11.15	cswidth
	11.16	test_PowerRatingCurve
	11.17	wfunc
12	open-c	channel-flow 18
	12.1	surface_slope
	12.2	sw_reflection
	12.3	sw_reflection_stepwise
	12.4	test_inverse_backwater_curve
	12.1	best-inverse_backwater_curve
13	unifor	m-stationary-flow 19
	13.1	chezy2drag
	13.2	critical_flow_depth
	13.3	drag2chezy
	13.4	normal_flow_depth
	13.5	normal_flow_depth
	13.6	normal_flow_discharge
	13.7	normal_flow_slope
	13.8	normal_flow_velocity
14	velocit	y-profile/@Log_profile 20
	14.1	Log_profile
	14.2	df_dh
	14.3	df_dh
	14.4	df_dln_z0
	14.5	df_dln_z0
	14.6	profile
	14.7	profile
	14.8	profile_bias
	14.9	regmtx
	14.10	ubar
15	velocit	y-profile/@Log_profile_with_bend_correction 21
-9	15.1	Log_profile_with_bend_correction
	15.2	df_dc
		df dc

	15.4	$du_{-}dz \ \dots \dots \dots \dots \dots$	22
	15.5	fit	22
	15.6	profile	22
	15.7	regmtx	22
	15.8	u	22
	15.9	$u \ \ldots \ $	22
16	velocit	${ m cy-profile/@Log_profile_with_cubic_wake}$	23
	16.1	Log_profile_with_cubic_wake	23
	16.2	$\mathrm{df}_{-}\mathrm{dc}$	23
	16.3	$\mathrm{df}_{-}\mathrm{dc}_{-}$	23
	16.4	profile	23
	16.5	regmtx	23
17	velocit	sy-profile/@Log_profile_with_dip	23
	17.1	Log_profile_with_dip	23
	17.2	fit	23
	11.2		20
18		<i>y</i> 1	24
	18.1	Log_profile_with_linear_bend_correction	24
	18.2	df_dc	24
	18.3	df_dc	24
	18.4	du_dz	24
	18.5	profile	24
	18.6	regmtx	24
19	velocit	${ m cy-profile/@Log_profile_with_wake}$	24
	19.1	Log_profile_with_wake	24
	19.2	$df_dc \dots \dots \dots \dots \dots \dots \dots \dots \dots $	25
	19.3	$df_{-}dc_{-}\ldots\ldots\ldots\ldots\ldots$	25
	19.4	$du_dz \ \dots $	25
	19.5	$profile_{-} \dots \dots \dots \dots \dots$	25
	19.6	regmtx	25
20	velocit	cy-profile/@VP	25
	20.1	VP	25
	20.2	process_joint	25
	20.3	process_transverse_profile	25
	20.4	process_vertical_profile	26
	20.5	profile_prediction_error	26
21	velocit	y-profile/@Vertical_profile	27
_	21.1	Vertical_profile	27
	21.2	fit	27
	21.2		27

22	velocit	y-profile	27
	22.1	fit_displacement_profile	27
	22.2	lateral_division_method	27
	22.3	test_law_of_the_wall_fit	27
	22.4	transverse_velocity_profile	28
	22.5	transverse_velocity_profile_olesen	28
	22.6	transverse_velocity_profile_rozovskii	28
	22.7	transverse_velocity_profile_shiono_knight	28
	22.8	transverse_velocity_profile_with_slope	28
	22.9	vertical_profile_of_velocity_vriend	
	22.10	vertical_velocity_profile	
23	wrapp	er	29
	23.1	discharge2stage	29
	23.2	stage2discharge	

1 @Backwater1D

1.1 Backwater1D

solve the gradually varied flow equation (backwater equation) in one dimension

c.f. Chow, Bresse

1.2 backwater_approximation

approximation of the backwater curve by an exponential function note: this is not necessarily a good approximation in the case of tide, $\mathbb{Q}t$ can be given

1.3 backwater_curve_iterative

analytic solution of the gradually varied flow equation ${\tt c.f.}$ Bresse, Chow

1.4 backwater_length

backwater length

$1.5 ext{dh}_{-} ext{dx}$

```
change of depth along channel for the backwater equation beta : momentum coefficient this is effectively an equation in h^3
```

$1.6 dzs_dx$

change of surface elevation along channel

1.7 gvf_x_chow

```
analytical solution to the gradually varied flow equation (
   backwater equation)
c.f. Chow, Bresse
```

1.8 invert

```
determine bed level from surface elevation
(inverse backwater equation)
this is ill conditioned, as the surface is smooth for subcritical
    flow,
even if the bed is not smoth
```

C : chezy
W : width
Q : discharge
S : bed slope

y0 : surface elevation at outflow

lateral inflow

1.9 solve

```
solve the gradually varied flow equation (backwater equation) \mathbf{C} : chezy \mathbf{W} . width
```

W : width
Q : discharge
S : bed slope

y0 : surface elevation at outflow

1.10 solve_analytic

analytical solution to the gradually varied flow equation (bresse method) $u_.^{(n-m)./(1-u_.^n)}$

2 @Potential_Flow

2.1 Potential_Flow

numerical solution of the potential flow on a curvilinear grid (not necessarilly curvilinear)

2.2 apply_boundary_potential_old

2.3 assemble_discretization_matrix_rectilinear

assemble the discretisation matrix

2.4 assemble_potential_matrix

assemble the discretisation matrix for potential flow

2.5 bc_dirichlet

apply Dirichlet boundary conditions

2.6 boundary_condition_side_outflow

```
apply boundary conditions for side outflow
p*phi + (1-p)*d/db phi = rhs
y : along channel coordinate
```

2.7 boundary_condition_side_outflow_1

```
apply boundary conditions
p*phi + (1-p)*d/db phi = rhs
```

2.8 contour

contour plot of the potential flow solution

2.9 cut_boundary

```
cut the boundary from the domain
wa : width of inlet to side channel
wb : width of side channel
```

2.10 cut_rectangle

```
cut a rectangle from the domain
TODO, this requires also an adaptation of the derivative matrices
    -> step over to semi-unstructured mesh
```

2.11 infer_bed_level

```
note: this is pretty much a broken function for the inference of
    stationary
    morphology
```

Missing:

- rolling down of transverse slope to balance secondary flow in bends
- quasi time steippong

at stationary state:

- changes of discharge along the streamlines of discharge are balanced
 - by a change in depth, to keep the velocity and sediment transport constant along the streamline

$$dz_b/dt = dqs/dx + dqs/dn = 0$$
 (i)

TODO this only true for infinite bends, as sediment can also move to the side dqs/ds = d/s(q/h) = 1/h dq/ds - q/h^2 dh/ds = 0

TODO this is only true in an ifinite bend (ikeda) dqs/dn = 0

streamlines along discharge or velocity -> does not matter eq (i) is direction independent

2.12 infer_bed_level2

infer the bed level

2.13 infer_bed_level3

$2.14 \quad infer_bed_level_loop$

the bed level does not completely converge but starts to oscillate, this is presumably due to the non-compact kernel implementation of the laplacian oberator

2.15 objective_bed_level

objective function for determining the bed level

2.16 old

2.17 plot

surface plot

2.18 quiver

2.19 sediment_transport

compute the sediment transport

2.20 solve_potential

solve for the flow potential

2.21 streamline

compute a streamline

2.22 surface_elevation

compute surface elevation according to Bernoulli's law

2.23 test

2.24 velocity_near_bed

determine the velocity near the bed

2.25 vertical_velocity

determine the vertical velocity from continuity

3 @Potential_Flow_Analytic

3.1 Potential_Flow_Analytic

analytical solutions to various depth-averaged potential flow $\ensuremath{\operatorname{problems}}$

3.2 derive_lateral_outflow

derive potential flow solution to lateral outlfow from an
 infinitely
wide main channel

3.3 derive_lateral_outflow_finite_width

derive coefficients for lateral outflow in the case of potential flow

3.4 lateral_outflow

potential flow solution to the case of lateral outflow from an
 infinitely
wide channel

3.5 lateral_outflow_finite_width

analytical potential flow solution to lateral outflow from an
 infinitely
wide channel

3.6 streamline

numerically follow path along streamline by integrating the velocity $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

4 @SWE

4.1 SWE

Class to solve the (cross sectionally averaged) shallow water equation (st venant equation)

4.2 bc_incoming_non_reflecting

set non-reflecting boundary condition for the 1D SWE

4.3 bc_inflow

inflow boundary condition

$4.4 \, bc_inflow_low_pass$

set low frequency Dirichlet, high frequency pass boundary condition

4.5 bc_inflow_non_reflecting

set non-reflecting boundary condition

4.6 bc_level

set surface level as Dirichlet boundary condition

4.7 bc_level_sommerfeld

set surface level as boundary condition by sommerfeld method

4.8 bc_nonreflecting

set non-reflecting boundary condition extrapolate $0\text{-}\mathrm{order}$

4.9 bc_reflecting

set reflecting boundary condition extrapolate 0-order and invert \boldsymbol{v}

4.10 dot

```
time derivative (only for matlab internal ode-solver) TODO this is not swe specific continuity dA/dt + dQ/dx = I

momentum dQ/dt + d/dx(Qu + 1/2 gh^2) = gA(S_f - S_b)
S_b = dz_b/dx
S_f = tau_x/rho_w = C_f u|u|
```

$4.11 ext{ dt_cfl}$

determine time step required by cfl

4.12 energy

determine total energy as sump of potential and kinetic energy this is preserved for fricitionless flows $\,$

4.13 flux

st venant's shallow water equation fluw

4.14 flux_lin

linearised st-venant equation

4.15 fluxmateig

eigenvalues und vectors of the swe

4.16 jacobian

```
Jacobian of the SWE dq/dt + J dq/dx = sourceterm note: d/dx(A*q) = J dq/dx
```

4.17 lindot

4.18 roe_average

roe average for the ${\tt SWE}$

4.19 solve_analytic

linearised analytic solution of the swe

4.20 solve_stationary

stationary solution to the SWE

4.21 source_bed_level

source term of the SWE caused by a change of the bed level $\,$

Note: this term causes splitting and averaging methods to fail to give accurate predictions of the smooth surface at steps of the bed

4.22 source_friction

friction source term of the SWE

4.23 source_width

source term (reaction term) for channels with variable width

4.24 swe_geometry

predefined functions to set up channel geometry

4.25 swe_ic

predefined functions of channel geometries

5 @SWE_2d

5.1 SWE_2d

Dynamic solution of the shallow water equation (depth average, 2D)

5.2 apply_boundary_condition_stationary

apply boundary condition for stationary flow

5.3 assemble_stationary

TODO, g should be replaced by gx,gy,gz, see chaudhri assemble discretisation matrix for stationary flow

5.4 solve_stationary

solve SWE for statinary flow (dU/dt = dQ/dt = 0)

6 @Side_Weir

6.1 Side_Weir

side weir, analytical solution to (critical) lateral outflow

$6.2 dzs_dx$

side weir, along channel surface gradient

6.3 surface_elevation

along-channel surface elevation for (critical) lateral outflow over a side-weir

7 open-channel-flow

functions for open channel flow, sub modules:

@Backwater1D

gradually varied flow in 1D (backwater)

@Potential_Flow

 $\label{thm:condition} \mbox{\tt depth averaged potential flow, numerical solution} \\ \mbox{\tt @Potential_Flow_Analytic}$

 $\begin{array}{c} \textbf{depth averaged potential flow, analytical solution} \\ \textbf{rating-curve} \end{array}$

empirical rating curves

@Side_Weir

analytical solution to lateral outflow over a side weir ${\tt @SWE}$

 $\begin{array}{c} \mbox{dynamical solution of the shallow water equation (saint-venant-equation)} \end{array}$

 $\verb"in 1D"$

@SWE_2d

dynamical solution of the shallow water equation (saintvenant-equation)

in 2D

velocity-profile

vertical and transverse velocity profiles of the streamwise velocity

7.1 Potential_Flow_Map

wrapper to store precomputed streamlines of potential flows

7.2 diffusion_wave

```
propagation of a diffusion wave (flood wave), c.f. ponce advection diffusion where is the bed slope? friction slope eddy slope chow 1988 d(A+A0)/dt + dQ/dx = q \\ dQ/dt + d/dx \ betaQ^2/A + gA(dh/dx + Sf + Se) - beta q_i v_i + Wf B \\ = 0 \\ A0 \ ignored inflow and wind shear ignored
```

7.3 friction_slope

friction slope (surface slope) for uniform stationary flow

7.4 linear_wave

linear wave routing (linearised kinematic wave)

8 meander-bend/@Equilibrium_Bend

8.1 Equilibrium_Bend

Transverse profile of the bed level and bed material grain size in an equilibrium (infintely long) meander bend

8.2 bed_profile

predict transverse bed profile of an equilibrium meander bend

8.3 bed_profile_uniform

transverse profile of the bed level of an equilibrium meander bend with uniform grain size $\,$

8.4 calibrate

calibrate bend geometry to given profile

$8.5 \, \mathrm{dD_dr}$

$8.6 \, \mathrm{dh_dr}$

across channel derivative of flow depth for a meandering river

8.7 dh_dr_uniform

transverse gradient of the bed level of an equilibrium meander bend for the case of uniform bed material

8.8 grain_size_profile

transverse (across channel) profile of the bed material grain size in a river meander $\,$

9 meander-bend

9.1 Kinoshita

- % Public properties
- % Public get properties
- % Private properties
- % Constructor
- $\mbox{\ensuremath{\mbox{\%}}}$ Setters and getters
- % generic methods

9.2 bend_transverse_velocity

transverse velocity profile in a meander bend

9.3 bend_velocity_near_bed

near-bed-velocity in a meander bend

9.4 kinoshita_

9.5 random_meander

generate a pseudo random meander

9.6 test_rozovskii

10 old

10.1 UniformFlow

11 rating-curve

11.1 ChezyRatingCurve

rating curve, Chezy formalism

11.2 DynamicKeuleganRC

Dynamic Rating Curve, Keulegan roughness formulation (dynamic = correction for hysteresis loop)

11.3 DynamicManningRC

Dynamic Rating Curve, Manning roughness formulation (dynamic = correction for hysteresis loop)

11.4 DynamicPowerRC

Dynamic Power Law Rating curve
(dynamic = correction for hysteresis loop)

11.5 KeuleganRatingCurve

11.6 ManningRatingCurve

11.7 PolyRatingCurve

11.8 PowerRatingCurve

stationary rating curve, power law

11.9 PowerRatingCurveOffset

stationary rating curve, stage-discharge follows power law

11.10 RatingCurve

Fri Feb 13 10:02:52 CET 2015 rating curve superclass

11.11 csarea

 $\ensuremath{\operatorname{predict}}$ cross sectional area from transverse bed level profile and surface elevation

11.12 csdischarge

compute discharge

11.13 csperimeter

compute wetted perimeter

11.14 csradius

compute hydraulic radius of the cross section

11.15 cswidth

determine cross section width

11.16 test_PowerRatingCurve

11.17 wfunc

determine channel width

12 open-channel-flow

```
functions for open channel flow, sub modules:
@Backwater1D
       gradually varied flow in 1D (backwater)
@Potential_Flow
       depth averaged potential flow, numerical solution
@Potential_Flow_Analytic
       depth averaged potential flow, analytical solution
rating-curve
       empirical rating curves
@Side_Weir
       analytical solution to lateral outflow over a side weir
@SWE
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 1D
@SWE_2d
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 2D
velocity-profile
       vertical and transverse velocity profiles of the streamwise
           velocity
```

12.1 surface_slope

surface slope for uniform stationary flow

12.2 sw_reflection

```
reflection coefficients of shallow water waves at a sudden change of the cross section (sudden change of admittance) c.f. lighthill, ippen-harleman
```

12.3 sw_reflection_stepwise

```
time passes and phase shifts
transmission and reflection coefficient depend on direction !
iterative (recursive) reflection and transmission
```

12.4 test_inverse_backwater_curve

13 uniform-stationary-flow

13.1 chezy2drag

13.2 critical_flow_depth

critical flow depth in uniform stationary flow

13.3 drag2chezy

13.4 normal_flow_depth

normal flow depth for uniform stationary flow function $H = normal_flow_depth(Q,W,C,S)$

13.5 normal_flow_depth_

normal flow depth in uniform stationary flow

13.6 normal_flow_discharge

normal flow discharge for uniform stationary flow

13.7 normal_flow_slope

normal flow slope in uniform stationary flow

13.8 normal_flow_velocity

normal flow velocity in uniform stationary flow

14 velocity-profile/@Log_profile

14.1 Log_profile

logarithmic profile of the streamwise velocity

$14.2 ext{d}f_{-}dh$

sensitivity of profile with respect to depth

14.3 df_dh_

sensitivity of profile with respect to depth

14.4 df_dln_z0

sensitivity of velocity profile with respect to roughness length

$14.5 \quad df_d ln_z 0_$

sensitivity of profile with respect to roughness length

14.6 profile

vertical profile of the streamwise velocity

14.7 profile_

```
scale of velocity at instrument depth to depth average velocity
roughness length and associated standard error can change in time,
i.e. may be passed as vectors
     : [1xn] water surface level
zs
     : [1x1] bottom level
     : [1xn] or [1x1]
       level of velocity measurement,
       i.e. level of HADCP beam bin centre, coincides with
           instrument level,
       if the HADCP is horizontally aligned
       only needs to be passed as vector if instrument is
           redeployed or
       becomes misaligned
ln_z0 : [1xn] or [1x1]
       natural logarithm of the roughness length
     : [1xn] or [1x1]
       standard error of ln_z0
function [fz_mu fz_s fz_sp fz_bias fz_eps] = log_profile(zs,zb,za,
   ln_z0,s,sp,e)
```

14.8 profile_bias

14.9 regmtx

regression matrix

14.10 ubar

depth averaged velocity

15 velocity-profile/@Log_profile_with_bend_correction

15.1 Log_profile_with_bend_correction

vertical velocity profile corrected for bend flow

$15.2 ext{d}f_{-}dc$

sensitivity of the velocity profile with respect to the bend correction parameter \boldsymbol{c}

 $15.3 \quad df_- dc_-$

 $15.4 \quad du_dz$

15.5 fit

fit the vertical velocity profile

15.6 profile_

vertical velocity profile

15.7 regmtx

regression matrix

15.8 u

streamwise velocity

15.9 u₋

streamwise velocity

16 velocity-profile/@Log_profile_with_cubic_wake

$16.1 \quad Log_profile_with_cubic_wake$

log profile with cubic wake

$16.2 ext{d}f_{-}dc$

sensitivity of profile with respect to wave parameter

$16.3 ext{d}f_{-}dc_{-}$

sensitivity of profile with respect to wake parameter

16.4 profile_

vertical velocity profile

16.5 regmtx

regression matrix

$17 \quad velocity-profile/@Log_profile_with_dip$

$17.1 \quad Log_profile_with_dip$

Logarithmic profile with dip

17.2 fit

fit the vertical velocity profile

18 velocity-profile/@Log_profile_with_linear_bend_correction

18.1 Log_profile_with_linear_bend_correction

log profile with linear bend correction

18.2 df_dc

sensitivity of profile with respect to wake parameter

$18.3 ext{df}_{-} ext{dc}_{-}$

sensitivity of velocity profile with respect to wave parameter

$18.4 du_dz$

velocity shear along vertical

18.5 profile_

velocity profile

18.6 regmtx

regression matrix

19 velocity-profile/@Log_profile_with_wake

$19.1 \quad Log_profile_with_wake$

logarithmic velocity profile with wake correction ${\tt c.f.}$ coles

$19.2 ext{d}f_{-}dc$

sensitivity of profile with respect to wake parameter

19.3 df_dc_

sensitivity of velocity profile with respect to wake parameter

 $19.4 du_dz$

velocity shear

19.5 profile_

predict velocity profile

19.6 regmtx

```
log law with wake  u = us/k \ ln(z) - us/k \ ln(z0) + us/k \ (2/H^2 \ z - 3/H^3 \ z^2)
```

- 20 velocity-profile/@VP
- 20.1 VP

velocity profile

- 20.2 process_joint
- ${\bf 20.3 \quad process_transverse_profile}$

process the transverse velocity profile $% \left(1\right) =\left(1\right) \left(1\right)$

20.4 process_vertical_profile

predict vertical profile error distribution parameter for ${\tt HADCP}$ error estimate

20.5 profile_prediction_error

```
input :
      : [nbin x nens]
        - values for each bin (or across section) and ensemble (or
            reference measurement)
        this are estimates estimates of the discharge or the cross
            sectional averaged
        velocity from the raw values
        - the profile should be limited to the effective profiling
           range,
        abobj 75-100m for a 600kHz ADCP
      : distance between HADCP bins
width : cross section width
objput:
      sd_n : expected standard deviation for increasing profiling
          range
function [s_rel s_err s_dat rho res m2 u_pred fdx] =
   velocity_variation(U)
hadcp_prediction_error
TODO take scales and unscaled velocity to do combine with harmmean
    estimate
note: previus versions:
       residual was computed with respect to the predicted local
           velocity
       mse was not upscaled to cs, as profile was expected to cover
           entire cs
       finite width of cs was not considered
parametric estimate from moments, objliers should be filtered
    beforehand
Note that the median absolute deviation is not a good estimate,
because it may excludes rare events like reverse flow of floods
thus, the only acceptible more robust estimate would be mean
    absolute deviation
```

21 velocity-profile/@Vertical_profile

21.1 Vertical_profile

vertical profile of the streamwise velocity, superclass

21.2 fit

```
fit vertical velocity profile parameter
function obj = fit(obj,U,S,h,binmask)
```

21.3 u

predict velocity along the vertical based on profile

22 velocity-profile

22.1 fit_displacement_profile

fit the log profile to the vertical profile of the streamwise velocity $% \left(1\right) =\left(1\right) \left(1\right) \left($

22.2 lateral_division_method

22.3 test_law_of_the_wall_fit

22.4 transverse_velocity_profile

```
transverse profile of the streamwise velocity c.f. shiono knight
```

22.5 transverse_velocity_profile_olesen

transverse profile of the streamwise velocity in a meander bend

22.6 transverse_velocity_profile_rozovskii

22.7 transverse_velocity_profile_shiono_knight

```
transverse profile of the streamwise velocity, determined
    analytically
by the method of shiono and knight
shape of velocity profile only dependent on lambda, f, H, not slope
```

22.8 transverse_velocity_profile_with_slope

```
stationary 1D shallow water equation across a river section 0 = -g h SO - tau_b/rho + d/dn (nu h du/dn) 0 = -g h SO + g u^2/C^2 + d/dn (nu h du/dn) includes tranvese gradient term
```

note that shiono/knight 1991 provide an <code>_analytic_</code> solution, which takes the form of an expontially decaying side wall effect

${\bf 22.9} \quad {\bf vertical_profile_of_velocity_vriend}$

vertical profile of the streamwise velocity, method of de vriend

22.10 vertical_velocity_profile

vertical profile of the streamwise velocity in non-uniform flow

23 wrapper

23.1 discharge2stage

wrapper function

23.2 stage2discharge