Scilab Textbook Companion for Op Amps and Linear Integrated Circuits by J. M. Fiore¹

Created by
Sadhvi Sharma
Electronics and Communication
Electronics Engineering
Shri Mata Vaishno Devi University
College Teacher
None
Cross-Checked by
K. V. P. Pradeep

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Op Amps and Linear Integrated Circuits

Author: J. M. Fiore

Publisher: Cenage Learning, India

Edition: 1

Year: 2009

ISBN: 9788131512340

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Introductory Concepts and Fundamentals	5
2	Operational Amplifier Internals	16
3	Negative Feedback	18
4	Basic Op Amp Circuits	2 1
5	Practical limitation of Op Amps circuits	30
6	Specialised Op Amps	40
7	Nonlinear circuits	45
8	Voltage regulation	55
9	Oscillators and Frequency Generators	62
10	Integrators and Differentiators	72
11	Active filters	81
19	Analog to Digital to Analog Conversion	89

List of Scilab Codes

Exa 1.1	Decibel power gain	5
Exa 1.2	Loss in dB	5
Exa 1.3	Ordinary power gain	6
Exa 1.4	Total dB gain	6
Exa 1.5	Gain	7
Exa 1.6	Output gain	7
Exa 1.7	Power in dBW	8
Exa 1.8	Output power in dBW and dBm	8
Exa 1.9	Output power in watts	9
Exa 1.10	Value in dBV	9
Exa 1.11		0
Exa 1.12		0
Exa 1.13		1
Exa 1.14		1
Exa 1.15	Gain and phase values at 1600000 Hz	2
Exa 1.16		2
Exa 1.17		3
Exa 1.18		.3
Exa 1.19		4
Exa 2.2		6
Exa 3.1		8
Exa 3.2		9
Exa 3.3		9
Exa 3.4		20
Exa 4.1		21
Exa 4.2		21
Exa 4.3		2
Exa 4.4		2

Exa 4.5	Input Impedance and output voltage
Exa 4.6	Design an inverting amplifier
Exa 4.7	Minimum and maximum gain
Exa 4.8	Design the circuit
Exa 4.9	Load current
Exa 4.10	calculate Ri
Exa 4.11	Load Current
Exa 4.12	Design the amplifier
Exa 4.13	Output of summing amplifier
Exa 4.14	Determine the output of non inverting summer 28
Exa 4.15	Design the difference amplifier
Exa 5.1	Upper break frequency
Exa 5.2	Frequency response
Exa 5.3	Minimum acceptable funity
Exa 5.4	System gain and upper break frequency
Exa 5.5	System gain and upper break
Exa 5.6	Upper break requency
Exa 5.7	Does slewing occur
Exa 5.8	Minimum acceptable slew rate
Exa 5.9	Calculate new offset
Exa 5.10	Output voltage typically
Exa 5.11	Output drift
Exa 5.12	Output Voltage
Exa 5.13	Ripples in output
Exa 5.14	Output noise voltage
Exa 6.1	Output signal
Exa 6.2	Instrumentation amplifier 41
Exa 6.3	Power bandwidth 41
Exa 6.4	bandwidth required
Exa 6.5	Voltage controlled amplifier
Exa 6.6	Design an amplifier
Exa 6.7	Design a non inverting amplifier
Exa 7.1	Point at which led flashes 45
Exa 7.2	Capacitor voltage and time constant 45
Exa 7.3	Sketch Vout
Exa 7.4	Sketch the transfer curve
Exa 7.5	Draw the transfer curve
Exa 7.6	Temperature tranducer response characteristics 51

Exa 7.7	Sketch output waveform	52
Exa 7.8	Determine the Output voltage	53
Exa 7.9	Output Voltage	54
Exa 8.1	Output	55
Exa 8.2	The power dissapation	55
Exa 8.3	Value of R2	57
Exa 8.4	12 V Regulator	57
Exa 8.5	2V to 5V supply	58
Exa 8.6	Step down Voltage regulator	59
Exa 8.7	Heat sink rating	60
Exa 9.1	frequency of oscillation	62
Exa 9.2	Maximum and minimum frequency of oscillation	62
Exa 9.3	Frequency of oscillation	63
Exa 9.4	Value of Ri	64
Exa 9.5	Output frequency and amplitude	65
Exa 9.6	Square wave generator	65
Exa 9.7	Output frequency	66
Exa 9.8	Maximum and minimum frequency	66
Exa 9.9	Free running frequency	67
Exa 9.10	Timing resistor and capacitor	68
Exa 9.11	Square wave generator	69
Exa 9.12	range of output frequency	69
Exa 10.1	vout and lower frequency range	72
Exa 10.2	Output	72
Exa 10.3	Output of the circuit	73
Exa 10.4	Integrator connected to accelerometer	74
Exa 10.5	Range for differentiation	75
Exa 10.6	Output Waveform	76
Exa 10.7	Sketch the output wave form	77
Exa 10.8	LVDT	78
Exa 11.1	Butterworth low pass filter	81
Exa 11.2	Design second order bessel filter	82
Exa 11.3	Fifth order system	83
Exa 11.4	Crossover network	85
Exa 11.5	Band pass filter	86
Exa 11.6	Band pass filter with center frequency	87
Exa 11.7	Notch filter	87
Exa 12.1	determine the resolution	89

Exa 12.2	Determine the step size	. 90
Exa 12.3	sampling rates and no of bits	. 90

Chapter 1

Introductory Concepts and Fundamentals

Scilab code Exa 1.1 Decibel power gain

Scilab code Exa 1.2 Loss in dB

```
1 // Chapter 1
2 //Loss expressed
```

Scilab code Exa 1.3 Ordinary power gain

```
1 // Chapter 1
2 //Ordinary power gain
3 / page 15
4 //Example no 1-3
5 // Given
6 clc;
          //in dB
7 G1 = 23;
8 G=10^{(G1/10)};
9 printf("\n The ordinary power gain is \%.4 f \n",G);
        // Result
10 Pin=10^-3;
                    //in mW
11 Pout=Pin*G;
12 printf("\n The output power is \%.4 \text{ f mW } \text{ n}", Pout);
      // Result
```

Scilab code Exa 1.4 Total dB gain

```
1  // Chapter 1
2  // Total gain
3  //page 15
4  //Example no 1-4
5  //Given
```

Scilab code Exa 1.5 Gain

```
1 // Chapter 1
2 //Ordinary Gain
3 //page 16
4 //Example no 1-5
5 // Given
6 clc;
                //in Volt
7 Ao=2;
                 // in milliVolt
8 \text{ Ai} = 50;
                    //input in Volt
9 \text{ Ai1=0.05};
10 Av=Ao/Ai1;
11 printf("\n The ordinary power gain %.0f \n ",Av); //
       Result
12 Av1 = 20 * log10 (Av);
13 printf("\n The power gain is \%.2 \, f \, dB \n", Av1); //
      Result
```

Scilab code Exa 1.6 Output gain

```
1 // Chapter 1
2 // Amplifier Gain
3 // page 17
4 // Example no 1-6
5 // Given
```

Scilab code Exa 1.7 Power in dBW

Scilab code Exa 1.8 Output power in dBW and dBm

```
1 // Chapter 1
2 //Output power in dBW
3 //page 18
4 //Example no 1-8
5 //Given
6 clc;
7 clear;
8 P=0.200; //in Watt
```

Scilab code Exa 1.9 Output power in watts

Scilab code Exa 1.10 Value in dBV

```
10 printf("\n The value in dBV is \%.2\,\mathrm{f} dBV\n", V1);// Result
```

Scilab code Exa 1.11 Output signal in dBV

Scilab code Exa 1.12 The gain of amplifier in dB

```
1 // Chapter 1
2 // Gain of the amplifier
3 //page 19
4 //Example no 1-12
5 //Given
6 clc;
7 Pin1=20; //in dBm
8 Pin=-10; //in dBW
9 Pout=25; //in dBW
10 G=Pout-Pin;
11 printf("\n The gain of amplifer is %.0f dB",G);//Result
```

Scilab code Exa 1.13 Gain lost at 10 Hz

```
1 // Chapter 1
2 //Gain lost
3 //page 23
4 //Example no 1-13
5 //Given
6 clc;
7 clear;
8 fc=40; //in Hz
9 f=10; //in Hz
10 Av=-10*log10(1+(fc^2)/(f^2));
11 printf("\n Gain lost is %.1 f dB", Av); // Result
```

Scilab code Exa 1.14 Phase Response

```
1 // Chapter 1
2 //Phase response
3 //page 14
4 //Example no 1-14
5 // Given
6 clc;
                    // in Hz
7 fc=120;
                    // in Hz
8 \text{ fc1=1200};
                    // in Hz
9 \text{ fc2=12};
10 w1 = atan(fc/fc2);
11 printf("\n W1 = %.1f degrees one decade below fc\n"
      ,w1*180/%pi);// Result
12 w2=atan(fc/fc1);
13 printf("\n W2 = %.2f degrees one decade below fc\n",
      w2*180/%pi);// Result
```

Scilab code Exa 1.15 Gain and phase values at 1600000 Hz

Scilab code Exa 1.16 The rise time for Lag network

```
1 // Chapter 1
2 //Rise time
3 //page 29
4 //Example no 1-16
5 //Given
6 clc;
7 //f2=0.35/Tr;
8 f2=100*10^3; //in kHz
9 Tr=0.35/f2;
10 printf("\n The rise time for 90 degree lag network is %.7f sec",Tr);// Result
```

Scilab code Exa 1.17 Bode gain plot

```
1 //Chapter 1
2 / page 30
3 //Example no 1-17
4 //figure 1.15
5 // Given
6 clc;
7 clear;
8 Avmidband=26;
9 f = (100:.5:40000+.5);
10
11 Av=[Avmidband*ones(200+.5:.5:10000-.5)];
12 for i=0:6/200:6
13 Av = [Avmidband - i Av]
14 end
15 for i=0:12/40000:12
16 Av=[Av Avmidband-i]
17 \text{ end}
18 for i=0:6/20000:6
19 Av=[Av Avmidband-12-i]
20 end
21 x = ones(Av)
22 clf
23 gainplot(f,x)
24 plot(f, Av)
25 title ('Gainplot for complete amplifier')
```

Scilab code Exa 1.18 Find current in the circuit

```
1 // Chapter 1
2 //page 34
3 //Example no 1-18
4 //figure 1.19
5 //tail current
```

```
6 //Given
7 clc;
8 Vcc=20; //in Volt
                //in Ohm
9 \text{ Rc} = 3000;
10 \text{ Rb} = 5000;
                     //in ohm
                     //in Ohm
11 Rt = 2000;
12 \ \text{Vee=10};
                    //in Volt
13 It=(Vee-0.7)/Rt;
14 printf("\n It =\%.5 f Amp\n ",It);// Result
15 // Ie1 = Ie2 = It/2
16 Ic=It/2;
17 Vc = Vcc - Ic*Rc;
18 printf("\n Collector voltage is \%.3 \, f \, V \ ", Vc); //
      Result
                 //Assumumption
19 B = 100;
20 Ib=Ic/B;
21 printf("\n Ib \%.8 f Amp\n ",Ib);// Result
22 \text{ Vb=-Ib*Rb};
23 printf("\n Base Voltage \%.5 f V\n ", Vb); // Result
```

Scilab code Exa 1.19 Find input output voltage gains

```
1 //Chapter 1
\frac{2}{\text{page }}40
3 //Example no 1-19
4 // Determine single ended output
5 // figure 1.20
6 // Given
7 clc;
8 Vcc=15; //in Volt
9 \text{ Rc} = 8000;
                     //in Ohm
                 //in ohm
10 \text{ re} = 30;
                     //in Ohm
11 Rt = 10000;
12 Vee=8;
                   //in Volt
13 It = (Vee - 0.7)/Rt;
```

Chapter 2

Operational Amplifier Internals

Scilab code Exa 2.2 Square up circuit

```
1 // chapter 2
2 // figure 2.13
3 //frequency counter
5 clc; clear;
6 t = (0:0.1:100);
8 k = input('Enter the reference voltage between 0 to
      0.8=,;
9
10
11 f=0.1;
12 x3=1*sin(2*f*t);
14 x4 = squarewave(2*f*t-k,50-10*k*%pi)
15 figure;
16
17 plot2d1(t,x3);
18 plot2d1(t,x4);
19 xlabel('time n-->');
20 ylabel('amplitude\longrightarrow');
```

21 title('squre wave at cutt reference voltage');

Chapter 3

Negative Feedback

Scilab code Exa 3.1 Closed loop gain and break frequency

```
1 //Chapter 3
2 //Closed loop gain
3 / page 75
4 //Example no 3-1
5 //figure 3.4
6 clc;
7 clear;
8 \text{ Aol} = 200;
9 f2_ol=10000; // in Hz
10 B=0.04;
11 Asp=Aol/(1+B*Aol);
12 printf("\n Asp %.2 f \n ",Asp);
                                               //Result
13 printf("\n Approximately Asp =1/B equal to \%.0 \, f \, \n"
      ,1/B);//result
14 S=Aol/Asp;
15 printf("\n S =%.0 f \n",S);
16 f2_sp=f2_ol*S;
17 printf("\nf2_{sp} %.0 f Hz",f2_sp);
                                     //Result
```

Scilab code Exa 3.2 Design the amplifier

```
1 //Chapter 3
2 //page 76
3 //Example no 3-2
4 //figure 3.7
5 clear;
6 clc;
7 Asp1=20
8 Asp=10^(Asp1/20);
9 printf("\n Asp =\%.0 f\n", Asp); // Result
10 //Rf/Ri=Asp-1;
11 printf("\n Rf/Ri=\%.0 f\n", Asp-1); // Result
12 printf("Rf must be 9 times larger than Ri. \n There are many possibilities "); // Result
```

Scilab code Exa 3.3 Input Output impedance

```
1 //Chapter 3
2 //page 82
3 //Example no 3-3
4 clc;
5 clear;
6 Zin_ol=300*10^3;
                             //in Ohms
7 Zout = 100;
                     //in Ohms
8 \text{ Aol} = 50000;
9 Zout_ol=100;
10 Asp=100;
11 S=Aol/Asp;
12 printf("\n S = \%.0 \, \text{f}",S); // Result
13 Zin_sp=S*Zin_ol;
14 printf("\n Zin_sp = \%.0 f Ohm", Zin_sp); // Result
15 Zout_sp=Zout_ol/S;
16 printf("\n Zout_sp = %.1 f Ohm", Zout_sp); // Result
```

Scilab code Exa 3.4 Amplifier current gain

```
//Chapter 3
//Output current of circuit
//page 88
//Example no 3-4
clc;
clear;
R1=9000; // in Ohm
R2=1000; // in Ohm
B=R2/(R1+R2);
printf("\n B is %.2 f\n",B);//Result
//Aps=1/B;
Aps=(R1+R2)/R2;
printf("\n Aps = %.0 f \n ",Aps);//Result
```

Chapter 4

Basic Op Amp Circuits

Scilab code Exa 4.1 Input Impedance and gain

```
1
2 clear;
3 clc;
4 close;
5 //page no 98
6 //figure 4.2
7 Rf=10*10^3; ///In Ohms
8 Ri=1*10^3; ///In Ohms
9 Av=1+(Rf/Ri);
10 disp(Av, "Gain of Circuit is")
```

Scilab code Exa 4.2 Design an amplifier

```
1 clc;
2 clear;
3 close;
4 //page no 98
5 //figure 4.3
```

```
6 Av1=26; // in dB
7 Av=20;
8 / Zi = 47 * 10^3
                 //in ohms
9 Ri=1*10^3;
                   ///In Ohms
10 //we know Av=1+(Rf/Ri)
11 Rf=Ri*(Av-1);
12 disp(Rf, "Value of Rf(ohm) when Ri is 1k");
13 Ri = 2*10^3;
                   ///In Ohms
14 Rf=Ri*(Av-1);
15 disp(Rf, "Value of Rf(ohm) when Ri is 1k")
                   ///In Ohms
16 Ri = 5*10^2;
17 Rf = Ri * (Av - 1);
18 disp(Rf, "Value of Rf(ohm) when Ri is 1k")
```

Scilab code Exa 4.3 Design a voltage follower

```
1
2 clc;
3 clear;
4 close;
5 //pagec no 99
6 //figure 4.4
7 Av=1;
8 //Av=1+(Rf/Ri)
9 //Rf/Ri=Av-1=0
10 disp("Rf/Ri=0");
11 disp("Rf is replaced by short circuiting wire and Ri can have any theoretical value")
12 disp("When Ri is infinite it can be deleted from circuit");
```

Scilab code Exa 4.4 Input Impedance and Vout

```
1 clc;
2 clear;
3 close;
4 //pagec no 100
5 Rf = 14*10^3; //in ohm
6 Ri = 2*10^3; //in ohm
7 Av1=1+(Rf/Ri);
8 disp(Av1, "Av1 is");
9 Av3=20*log10(Av1);
10 disp(Av3, "Av1 in dB is");
11
12 Rf = 18*10^3; //in ohm
13 Ri = 2*10^3; //in ohm
14 Av2=1+(Rf/Ri);
15 disp(Av2, "Av2 is");
16 Av4=20*log10(Av2);
17 disp(Av4, "Av2 dB is ");
18 Avt = Av3 + Av4;
19 disp(Avt, "Total Gain dB Av1+Av2 is");
20 vin=-30;//in dB
21 vout=Avt+vin;
22 disp(vout, "Vout in dB");
```

Scilab code Exa 4.5 Input Impedance and output voltage

```
1 clc;
2 clear;
3 close;
4 //pagec no 102
5 Ri=5*10^3; // in ohm
6 Rf=20*10^3; // in ohm
7 vin=100*10^-3; //In volt
8 Av=-(Rf/Ri);
9 vout=vin*Av;
10 disp("Volt", vout, "Vout is ");
```

```
11 disp("(i.e. negative sign means inverted)");
```

Scilab code Exa 4.6 Design an inverting amplifier

```
1 clc;
2 clear;
3 close;
4 //pagec no 103
5 Ri=15*10^3;
6 zin=Ri;
7 Av=-10; //inverting amplifier gain
8 //Av=-(Rf/Ri)
9 Rf=Ri*-Av;
10 disp("ohm",Rf," Value for Rf ");
```

Scilab code Exa 4.7 Minimum and maximum gain

```
1 clc;
2 clear;
3 close;
4 //pagec no 103
5 //capacitors are used to remove higher frequencies
6 Rf=200*10^3; //In Ohm
7 Ri=15*10^3; //In Ohm
8 Av=-(Rf/Ri);
9 Av1=20*log10(-Av);
10 disp(Av, "Maximum gain is ");
11 disp(Av1, "Maximum gain in dB is ");
12 Av2=0; // divider action makes Ri infinite
13 disp(Av2, "Minimum gain in dB is ");
```

Scilab code Exa 4.8 Design the circuit

```
1 clc;
2 clear;
3 close;
4 //pagec no 105
5 //Figure 4.6
6 Iin=50*10^-6; //In Ampere
7 Vout=4; //In Volt
8 Rf=Vout/Iin;
9 disp("ohm", Rf," Transresistance of Circuit is");
```

Scilab code Exa 4.9 Load current

```
1 clc;
2 clear;
3 close;
4 //pagec no 107
5 // Figure 4.13
6 Ri=20*10^3;
                    //In Ohm
                    //In Volt
7 Vin=0.4;
8 R1=1*103; //In \text{ ohm}
9 gm=1/Ri;
                    //unit-micro*Siemens
10 Iload=gm*Vin;
11 disp("A", Iload, "Load current is");
12 //maximum current is 20microAmp in Op Amp
13 Vout=(Ri+Rl)*Iload;
14 disp("V", Vout, "V max ");
```

Scilab code Exa 4.10 calculate Ri

```
1 clc;
2 clear;
```

```
3 close;
4 //figure 4.15
5 //pagec no 107
6 //Figure 4.15
7 Iload=100*10^-6; //In Amp
8 Vin=10; //In Volt
9 gm=Iload/Vin;
10 Ri=1/gm;
11 disp("ohm",Ri," Value of Ri")
```

Scilab code Exa 4.11 Load Current

```
1 clc;
2 clear;
3 close;
4 //pagec no 111
5 // Figure 4.17
                        //In Ampere
6 Iin=5*10^-6;
                   //In Ohm
7 Ri=33*10^3;
                        //In Ohm
8 Rf=1*10^3;
                             //In Ohm
9 Rload=10*10^3;
                            //for inverting current
10 Ai = 1 + (Ri/Rf);
      amplifier
11    Iout=Ai*Iin;
12 disp("A", Iout, "I out ");
13 Vmax=Iout*Rload+Iin*Ri;
14 disp("V", Vmax,"Vmax is");
15 disp("(No problem)")
```

Scilab code Exa 4.12 Design the amplifier

```
1 clc;
2 clear;
```

```
3 close;
4 //pagec no 111
5 // Figure 4.18
6 Ai = 50;
7 R1=200*10^3;
                           //In Ohm
8 //Ai=1+(Ri/Rf)
9 Rf=1*10^3;
                         //In Ohm(Assumption)
10 Ri=Rf*(Ai-1);
11 disp("ohm", Ri, "Ri for Rf 1000ohm");
12 Rf = 2 * 10 ^ 3;
                        //In Ohm(Assumption)
13 Ri=Rf*(Ai-1);
14 disp("ohm", Ri, "Ri for Rf 2000ohm");
15 Rf = 0.5 * 10 ^ 3;
                           //In Ohm(Assumption)
16 Ri=Rf*(Ai-1);
17 disp("ohm", Ri, "Ri for Rf 500ohm");
18 Imax=13.5/Rl;
19 disp("A", Imax, "Resulting current");
20 disp("A", Imax/50, "Maximum allowable input current")
```

Scilab code Exa 4.13 Output of summing amplifier

```
1 clc;
2 clear;
3 close;
4 //pagec no 113
5 // Figure 4.20
6 // Noninverting Amplifier
7 Rf=10*10^3;
                         //In Ohm(Assumption)
8 //Channel 1
                         //In Ohm(Assumption)
9 Ri1=4*10^3;
10 Vi1=1;
                //In Volt
11 Av1=-Rf/Ri1;
12 Vo1 = Av1 * Vi1;
13 disp("V", Vo1, "Vout1");
```

```
14 //Channel 2
15 Ri2=2*10^3;
                           //In Ohm(Assumption)
16 \text{ Vi2} = -2;
                   //In Volt
17 Av2=-Rf/Ri2;
18 Vo2 = Av2 * Vi2;
19 disp("V", Vo2, "Vout2");
20 //Channel 3
21 Ri3=1*10^3;
                             //In Ohm(Assumption)
                    //In Volt
22 \text{ Vi3=0.5};
23 Av3=-Rf/Ri3;
24 \text{ Vo3}=\text{Av3}*\text{Vi3};
25 disp("V", Vo3, "Vout1")
26 disp("V", Vo1+Vo2+Vo3, "Total output via summation
        ")
```

Scilab code Exa 4.14 Determine the output of non inverting summer

```
1 clc;
 2 clear;
3 close;
4 //pagec no 116
 5 // Figure 4.22
 6 // Noninverting Amplifier
 7 V1=1;
          //In Volt
                   //In Volt
8 \quad V2 = -0.2;
9 //to draw graph of V3
10 step=0.5;
11 t=0:step:10*%pi;
12
13 V3=2*sin(100*t); //In Volt
14 R1=20*10^3; //In \text{ ohm}
                   //In ohm
15 R2=20*10^3;
16 R3=20*10^3; //In ohm
17 Rf=20*10^3; //In ohm
18 Ri = 5*10^3; //In ohm
```

Scilab code Exa 4.15 Design the difference amplifier

```
1 clc;
2 clear;
3 close;
4 //pagec no 118
5 // Figure 4.27
6 Ri=10*10^3;
                     //In ohm
                //In dB
7 Av=26;
8 Av1=10*log10(Av);
9 Rf1=Av1*Ri;
10 / Rf1 = 20 * Ri1;
11 / Ri1 + 20 * Ri1 = Ri;
12 //Ri1 = Ri - Rf1;
13 Ri1=Ri/21;
14 Rf1=20*Ri1;
15 disp("ohm", Rf1, "Rf1 is")
```

Chapter 5

Practical limitation of Op Amps circuits

Scilab code Exa 5.1 Upper break frequency

Scilab code Exa 5.2 Frequency response

```
1 //Chapter 5
2 //page 135
3 //Example no 5-2
```

Scilab code Exa 5.3 Minimum acceptable funity

```
1 // clear //
2 //Example5.3: Finimum acceptable frequency
3 // Page 138
4 //figure 5.5
5 clear;
6 clc;
                 //in Ohms
7 \text{ Rf} = 20000;
                  //in Ohms
8 Ri=500;
9 f2=50*10^3;
                       //In Hz
10 Anoise=1+(Rf/Ri);
11 disp(Anoise, "Anoise");
12 funity=Anoise*f2;
13 disp("Hz", funity, "funity");
14
15 disp("For this application 741 would not be fast
     enough, therefore 411 would be fine");
```

Scilab code Exa 5.4 System gain and upper break frequency

```
1 // \operatorname{clear} //
2 //Example5.4: System gain and upper break frequency
\frac{3}{40} // Page 140
4 //figure 5.6
5 clear;
6 clc;
7 //STAGE 1
8 disp("Stage 1");
9 Rf1=14000;
                     //in Ohms
                        //in Ohms
10 Ri1=2000;
11 Av1=1+(Rf1/Ri1);
12 disp(Av1, "Av");
13 Anoise1=1+(Rf1/Ri1);
14 disp(Anoise1, "Anoise");
15 GBW = 1 * 10^6;
                          //in Hz (from Datasheet)
16 f1=GBW/Anoise1;
17 disp(f1, "f2");
18
19 //STAGE 2
20 disp("Stage 2");
21 Rf2=20000;
                     //in Ohms
22 Ri2 = 10000;
                         //in Ohms
23 Av2=-(Rf2/Ri2);
24 disp(Av2, "Av");
25 Anoise2=1+(Rf2/Ri2);
26 disp(Anoise2, "Anoise");
27 GBW = 1 * 10^6;
                          //in Hz (from Datasheet)
28 f2=GBW/Anoise2;
29 disp(f2, "f2");
30
31 //STAGE 3
32 disp("Stage 3");
                     //in Ohms
33 Rf3=12000;
34 \text{ Ri3} = 4000;
                        //in Ohms
35 \text{ Av3}=1+(Rf3/Ri3);
36 disp(Av3,"Av");
37 Anoise3=1+(Rf3/Ri3);
38 disp(Anoise3, "Anoise");
```

Scilab code Exa 5.5 System gain and upper break

```
1 //clear//
2 //Example5.5:System gain and upper break frequency
3 //Page 142
4 clear;
5 clc;
6 Anoise=10;
7 funity=4*10^6; //in Hz
8 f2=funity/Anoise;
9 disp(f2,"f2");
10 n=3;
11 f2_system=f2*(2^(1/n)-1)^0.5;
12 disp(f2_system,"f2_system");
```

Scilab code Exa 5.6 Upper break requency

```
1 //clear//
2 //Example5.6:design a circuit with upper break
     frequency
3 //Page 142
```

```
4 clear;
5 clc;
           //in dB
6 \text{ Av1} = 26;
              //ordinary gain
7 \text{ Av} = 20;
8 f2=500*10^3; //in Hz
10 funity=f2*Av; //(Anoise=Av for non inverting
      terminal)
11 disp("Hz",funity,"funity")
12 //411 has funity =4MHZ, therefore atleast 2 stages
      would be required
13 //Stage 1
14 f411=4*10^6;
                           //in hz
15 Av1=f411/f2;
16 disp(Av1, "Av");
17 //To achive gain of 20 second stage should have gain
       of atleast Av2=2.5
18 Av2=2.5;
19 f2=f411/Av2;
20 disp("Hz",f2,"f2");
```

Scilab code Exa 5.7 Does slewing occur

```
1 //clear//
2 //Example5.7:" is 741's power bandwith atleast 3kHz""
3 //Page 148
4 //figure 5.6
5 clear;
6 clc;
7 slewrate=0.5/10^-6; // in V/S
8 Vp=12; //in Volts
9 fmax=slewrate/(2*%pi*Vp);
10 disp("Hz",fmax,"Fmax");
11 //Result
```

Scilab code Exa 5.8 Minimum acceptable slew rate

```
1 //clear//
2 //Example5.8:"minimum acceptable rate for 741""
3 //Page 149
4 //figure 5.6
5 clear;
6 clc;
7 fmax=20000; //in Hz
8 Vp=10; //in Volts
9 slewrate=fmax*(2*%pi*Vp);
10 disp("V/S",slewrate,"Slew rate ");
11 ///Result in V/S
```

Scilab code Exa 5.9 Calculate new offset

```
1 // clear //
 2 //Example5.9: Typical offset voltage"
 \frac{3}{2} = \frac{157}{2}
 4 //figure 5.9
 5 clear;
 6 clc;
7 Rf=10000; // in Ohm
8 Ri=1000; // in ohm
9 Roff=0; // in ohm
                        //in ohm
 9 \text{ Roff=0};
10 Anoise=1+Rf/Ri;
11 disp(Anoise, "Anoise");
12 Vos=0.5*10^-3; //in Volt
13 Ios=10*10^-9; //in Amp
14 Ib=800*10^-9; //in Amp
                             //in Amp
15 Vout = (Vos * Anoise) + (Ib * Roff * Anoise + Ib * Rf);
16 disp("V", Vout, "Vout");
```

```
17
18 Roff=Ri*Rf/(Rf+Ri);
19 Vout=(Vos*Anoise)+(Ios*Rf);
20 disp("V", Vout," Vout_offset");
21 //result
```

Scilab code Exa 5.10 Output voltage typically

```
1
2 // clear //
3 //Example5.10:"Output voltage""
4 //Page 158
5 // figure 5.24
6 clear;
7 clc;
8 \text{ Rf} = 20000;
                   // in Ohm
                    //in ohm
9 Ri=5000;
10 Av=-Rf/Ri;
                         //in Volt
11 Vin=3*10^-3;
12 Vout = Av * Vin;
13 disp("V", Vout, "Vout");
14
15 //411 typical apecs
                         //in Volt
16 \text{ Vos} = 0.8 * 10^{-3};
17 Ios=25*10^-12;
                          //in Amp
18 lb=50*10^-12;
                          //in Amp
19 Anoise=1+Rf/Ri;
20 Roff = 0;
21 Vout=(Vos*Anoise)+(Ib*Roff*Anoise+Ib*Rf);
22 disp("V", Vout, "Vout");
23 // Result
```

Scilab code Exa 5.11 Output drift

```
1
2 // clear //
3 //Example5.11:"Output Drift""
4 // Page 161
5 //figure 5.23
6 clear;
7 clc;
8 Roff=909;
                        //in Ohm
                        //in Ohm
9 Rf = 10000;
10 Anoise=11;
11 DT=55;
               //degree Celsius
12 DVbyDT = 5*10^-6;
                      // V/C
13 DInoisebyDT=200*10^-12;
                                        // A/C
14 Vdrift=(DVbyDT*DT*Anoise)+(DInoisebyDT*DT*Rf);
15 disp("V", Vdrift, "Vdrift");
16 Av=Anoise;
17 Vdriftin=Vdrift/Av;
18 disp("V", Vdriftin, "Vdriftinput");
```

Scilab code Exa 5.12 Output Voltage

```
1 //Example5.12:" Output "
2 //Page 163
3 clear;
4 clc;
5 Av=20;
                    //in dB
6 Vin = -60;
                   //in dBV
7 CMRR = -90;
                   //in dB
8 //for differential input
9 Vout = Av + Vin;
10 disp("dBV", Vout, "Vout for differential mode input");
11 //for common mode input
12 Vout1 = Vout + CMRR;
13 disp("dBV", Vout1, "Vout for common mode signal");
14 //This signal is so small that it is overshadowed by
```

Scilab code Exa 5.13 Ripples in output

```
//Example5.13:"How much Ripples is seen in output"
//Page 164
clc;
PSRR=86; //in dB
Vripple=0.5; //in Volt
Psrr=10^(PSRR/20);
disp(Psrr,"PSRR ordinary value");
Vout=Vripple/Psrr;
disp("Vpp", Vout," Vout_ripple ")
//result//
```

Scilab code Exa 5.14 Output noise voltage

```
1 //Example5.14:" Output noise voltage""
2 // Page 167
3 //figure 5.29
4 clear;
5 clc;
6 Rf=99000;
                   // in Ohm
                   //in ohm
7 \text{ Ri} = 1000;
8 \text{ Rs} = 100;
                   //in ohm
9 Av=1+Rf/Ri;
10 disp(Av, "Av ordinary value");
11 disp(20*log10(Av), "Av dB value");
                         //for non inverting amplifier
12 Anoise=Av;
13 Rnoise=Rs+Rf*Ri/(Rf+Ri);
14 disp("Ohm", Rnoise, "Rnoise");
15
```

```
//Given in degree cel.
16 T = 300;
17 K=1.38*10^-23;
                          //Boltzmann's constant
                          //In V/Hz
18 Vind=4*10^-9;
19 Iind=0.6*10^-12;
                        //in A/Sqrtof Hz
20 eth=(4*K*T*Rnoise)^0.5;
                                   //sqared the
21 etot=((Vind^2)+(Iind*Rnoise)^2 +eth^2)^0.5;
22 \operatorname{disp}("V/(Hz) \hat{0.5}", \operatorname{etot}," \operatorname{etotal"});
23
                          //in Hz
24 funity=10*10^6;
25 f2=funity/Anoise;
26 disp("Hz",f2,"f2");
27 BWnoise=f2*1.57;
28 disp("Hz", BWnoise, "BWnoise");
29
30 en=etot*(BWnoise)^0.5;
31 \text{ disp}("V",en,"en");
32
33 en_out=en*Anoise;
34 disp("V", en_out, "en_out");
35
36 //for a nominal output signal of 1V RMS signal to
      noise ratio is
                          //in V
37 signal=1;
38 Noise=en_out;
39 S_N=signal/Noise;
40
41 disp(S_N, "Signal to Noise ratio");
                                                       //
      answer in book is approxmately
42 disp(20*log10(S_N), "S/N in dB");
43 // Result
```

Chapter 6

Specialised Op Amps

Scilab code Exa 6.1 Output signal

```
1 //Example6.1:"Output signal""
2 //Page 176
3 // figure 6.4
4 clear;
5 clc;
6 R1 = 20000;
                   //in Ohm
7 R2 = 400;
                    //in Ohm
                          //in V (Vinp=Vin+)
8 \text{ Vinp=0.006};
                          //in V Vinp=Vin_)
9 Vinm = -0.006;
                        //in V
10 Vh=0.010;
11 Vad=Vinm*(1+R1/R2)-Vinp*R1/R2;
      equation Va=0.606mV approx
12 \text{ disp}("V", Vad, "Va");
13 //for common mode
14 Vac = Vh * (1+R1/R2) - Vh * R1/R2;
15 \text{ disp}("V", Vac,"Va");
16 \text{ Rf} = 50000;
                     //in Ohm
                       //in Ohm
17 Ri=10000;
18 Av=Rf/Ri;
19 disp(Av, "Av");
20 \text{ Va} = -0.606;
                       //V
```

Scilab code Exa 6.2 Instrumentation amplifier

```
1 //Example6.2:" Designing the Circuit""
2 //Page 180
3 //figure 6.9
4 clear;
5 clc;
6 Av=10;
7 Rg=(49.4*10^3)/(Av-1);
8 disp("Ohm", Rg, "Rg")
```

Scilab code Exa 6.3 Power bandwidth

```
//in Ohm
8 Rf = 50000;
9 Ri=2000;
                     //in Ohm
10 Rset=3*10^6;
                            //in Ohm
11    Iset = (Vcc - 0.5) / Rset;
12 disp("A", Iset, "Iset")
13 Anoise=1+Rf/Ri;
14 disp(Anoise, "Anoise");
15 funity=200000;
                         //in Hz
16 f2=funity/Anoise;
17 disp("Hz",f2,"f2");
18 SR=0.11/10^-6;
                     //in V/S
19 fmax=SR/(2*%pi*Vp);
20 disp("Hz",fmax, "fmax");
21 // Result //
```

Scilab code Exa 6.4 bandwidth required

```
//Example6.4:" Determine the approx Bandwidth""
//Page 191
clear;
clc;
Refresh=60;
Height=1024;
Width=1024;
Pixelrate=Refresh*Height*Width;
disp("pixels per second", Pixelrate," Pixelrate");
Tr=1/Pixelrate;
f2=0.35/(0.3*Tr);
disp("Hz",f2,"f2");
//Result//
```

Scilab code Exa 6.5 Voltage controlled amplifier

```
1 //Example6.5:"OTA use"
2 //Page 191
3 //figure 6.22
4 clear;
5 clc;
                    //in V
6 Vp=5;
7 Vm = -Vp;
8 Rcontrol = 22000;
                        //In Ohm
9 \text{ Vd=0.7};
                    //in V
11 disp("A", Iabc, "Iabc");
12 //Using voltage divider
13 Loss=470/(33000+470);
14 disp(Loss, "Loss");
                        //in V
15 Vpp=0.050;
16 Vinmax=Vpp/Loss;
17 disp("V", Vinmax, "Vinmax");
                        //in S
18 \text{ gm} = 0.010;
19 Iout=Vpp*gm;
20 disp("A", Iout, "Iout");
21 //maximum output
22 Rf = 22000;
                        //in Ohm
23 Vout=Iout*Rf;
24 disp("V", Vout, "Vout");
25 // result //
```

Scilab code Exa 6.6 Design an amplifier

```
1  //Example6.6:" design an Amplifier "
2  //Page 197
3  //figure 6.27
4  clear;
5  clc;
6  Av=-20;
7  Ri=50000;  //in Ohm
```

Scilab code Exa 6.7 Design a non inverting amplifier

Chapter 7

Nonlinear circuits

Scilab code Exa 7.1 Point at which led flashes

```
1 // Chapter7
2 / \text{Example} - 7.1
3 // Figure 7.11
4 //page 216
5 clear;
6 clc;
7 R=10*10^6; //in Ohm
8 C=10*10^-9; //in Farad
9 T=R*C; //discharge Time
10 printf("\n T %.1f S\n",T);
11 Vled=2.5; //in V
                            //in V
12 Vsat=13;
                      //in Ohm
13 R1=500;
14 Iled=(Vsat-Vled)/R1;
15 printf("\n Iled \%.3 f A\n", Iled);
16 // result //
```

Scilab code Exa 7.2 Capacitor voltage and time constant

```
1 // Chapter7
2 / \text{Example} - 7.2
3 // Figure 7.24
4 //page 222
5 clear;
6 clc;
7 R2=1.5*10^3;
                           //in Ohm
                           //in Ohm
8 R1=10*10^3;
                     //in V
9 \ Vcc=15;
                                          (=Vp_{-})
                    //in V
10 Vpm=1;
11 C=10*10^-9;
                          //in Farad
12
13 Vofst=Vcc*R2/(R1+R2);
14 printf("\n Voffset %0.2 f V", Vofst);
15 Vc=Vofst+Vpm;
16 printf("\n Vc %0.2 f V", Vc);
                          //in Ohm
17 Rl=10*10^6;
18 T=R1*C;
                     //discharge Time
19 printf("\n T %0.2 f S",T);
20 Vinp=1.96;
21 Vinm=5.96;
22 Vind=Vinp-Vinm;
23 printf("\n Vin_diff = \%0.0 \, \text{f V } \n ", Vind);
24 // Graph
25 t = (0:0.01:5)';
26 	 f = 1;
                //1 \,\mathrm{kHz}
27 Vin=2*sin(f*\%pi*t);
28 Vin1=Vin^2-1;
29 Vout=Vin1+2.96;
30 clf;
31 plot(t, Vout, t, Vin1)
                           signal & Blue Output signal","t
32 xtitle ("Green Input
      ", "Vin"); // result
33 xgrid;
```

Scilab code Exa 7.3 Sketch Vout

```
1 // Chapter7
2 // Page.No-226
3 // Example 7_3
4 / page 226
5 // Output waveform of zener limits Diodes
6 // Given
7 clc;
8 clear;
9 Rf = 20 * 10 ^ 3;
                           //in Ohm
                           //in Ohm
10 Ri=10*10^3;
11 Av=-Rf/Ri;
                     //in V
12 Vin=4;
13 Vout = Av * Vin;
14 printf("\n Vout = %0.0 f V(peak)", Vout);
15 Vzener=5.1;
                           //in V
16
17 Vlimit=(Vzener+0.7);
18 printf("\n Vlimit +\sqrt{1}.1 f V", Vlimit);
19 //graph
20
21 \text{ TO} = 4;
22 t = -5.99 : 0.01 : 6;
23 t_{temp} = 0.01:0.01:T0/4;
24 s=length(t)/length(t_temp);
25 \, dx = [];
26 x = [];
27 \text{ for } i=1:s
        if modulo(i,2) == 1 then
28
            dx = [dx -ones(1,length(t_temp))];
29
            x=[x .1*t_temp($:-1:1)];
30
31
        else
32
            dx = [dx ones(1,length(t_temp))];
            x=[x .1*t_temp];
33
34
        end
35 end
36 clf();
```

```
37 k=-(-80*2*x)-8; //function for output plot
38 x1=[]
                     //function for clipped output
39 \text{ for } c=1:length(x)
40
       if k(c) < -5.8 then
            x1(c) = -5.8;
41
42
       else
            if k(c) < 5.8 then
43
            x1(c)=k(c);
44
45
       else
46
            x1(c)=5.8
47
            end
48
       end
49 end
50 \text{ plot}(t-1.5, -80*x+4, t-1.5, k, t-1.5, x1);
51 xtitle("Input(Blue) / Output (Green/Red for
      clipped ) waveform");
52
53 xgrid;
```

Scilab code Exa 7.4 Sketch the transfer curve

```
1 // Chapter7
2 // Page.No-229
3 // Example 7_4
4 // Sketch the Transfer Curve
5 // Given
6 clc;
7 clear;
8 \ Vz=3.9;
                   //in V
9 Rf=20000;
                       //in Ohm
                      //in Ohm
10 Ri=5000;
                        //in Ohm
11 Ra=10000;
12 Vbreak = Vz + 0.7;
13 printf("\n Vbreak + %.2 f V", Vbreak);
14
```

```
15 Av = -Rf/Ri;
16 printf ("\n Av %.2 f ", Av);
17
18 Av2=(-Rf*Ra/(Rf+Ra))/Ri;
19 printf("\n Av2 %.2 f ", Av2);
20 // Graph
21 t = -4:0.001:4;
22 L=length(t);
23 \text{ for } i=1:L
        if t(i) <-1.15</pre>
24
25
             x1(i) = Av2*t(i) + 3.0705;
26
27
       elseif t(i) < 1.15</pre>
28
29
             x1(i) = Av*t(i);
30
31
32
          elseif t(i) > 1.15
33
             x1(i) = Av2*t(i) -3.0705;
34
          end;
35 \text{ end};
36 clf;
37 plot2d1(t,x1);
38 xtitle('Transfer Characteristics', 'Vin', 'Vout')
39 xgrid;
```

Scilab code Exa 7.5 Draw the transfer curve

```
1 // Chapter7
2 // Page.No-231
3 // Example_7_5
4 // Sketch the Transfer Curve
5 // Given
6 clc;
7 clear;
```

```
//in V
8 Vz1=1;
9 \ Vz2=2.2;
                        //in V
                            //in Ohm
10 Rf = 12000;
                            //in Ohm
11 Ri=10000;
12 R2 = 15000;
                            //in Ohm
13 R1=20000;
                            //in Ohm
14 Vbreak1 = Vz1 + 0.7;
15 printf("\n Vbreak1_in + \%.2 f V", Vbreak1);
16 Vbreak2=Vz2+0.7;
17 printf("\n Vbreak2_in + \%.2 f V", Vbreak2);
18
19 Av = -Rf/Ri;
20 printf("\n Av %.1 f ", Av);
21 Av1=-Rf*(Ri+R1)/(R1*Ri);
22 printf("\n Av1 %.1 f ", Av1);
23
24 \text{ Av2} = -\text{Rf} * (\text{Ri} * \text{R1} + \text{R1} * \text{R2} + \text{R2} * \text{Ri}) / (\text{R1} * \text{Ri} * \text{R2});
25 printf("\n Av2 %.1 f ", Av2);
26 Vbreak1_out=Av*Vbreak1
27 Vbreak2_out=Vbreak1_out+Av2*(Vbreak2-Vbreak1);
28 printf("\n Vbreak1_out %.2 f V ", Vbreak1_out);
29 printf("\n Vbreak2_out \%.2 f V", Vbreak2_out);
30 //graph
31 t = -5:0.01:5;
32 L=length(t);
33 for i=1:L
34
        //if t(i) < then
        //end
35
36
        if t(i) < -2.9 then
37
             x1(i) = Av2*t(i) -3;
         elseif t(i) < -1.15 then
38
39
             x1(i) = Av1*t(i) -0.67;
        elseif t(i)<1.15 then
40
41
             x1(i)=Av*t(i);
42
        elseif t(i)<2.9 then
             x1(i) = Av1*t(i) + 0.67;
43
        elseif t(i) > 2.9 then
44
             x1(i) = Av2*t(i) + 3;
45
```

```
46 end;

47 end;

48 clf;

49 plot2d1(t,x1);

50 xtitle('Transfer Characteristics','Vin','Vout')
```

Scilab code Exa 7.6 Temperature tranducer response characteristics

```
1 // Chapter7
2 // Page.No-232
3 // Example_7_6
4 // Sketch the Transfer Curve
5 // Given
6 clc;
7 clear;
                  //in V
8 Vz1=1;
9 Vz2=2.2;
10 Rf=10000;
8 \ Vz1=1;
                    //in V
                         //in Ohm
                          //in Ohm
11 Ri=10000;
12
13 Vzp=3-0.7;
14 printf("\n Vz+in %.2 f V", Vzp);
15 Vzm = -(4-0.7);
16 printf("\n Vz_in %.2 f V", Vzm);
17 //Ra | | Rf=8k
18 Ra=8000*Rf/(Rf-8000);
19 Av2=0.8;
20 \text{ Av1}=1;
21 // graph
22 t = -50:0.001:50;
23 L=length(t);
24 for i=1:L
            if t(i) < -40 then
25
26
            x1(i)=0.8*t(i)-8;
27
       elseif t(i) < 30 + 0.01 then
```

Scilab code Exa 7.7 Sketch output waveform

```
1 // Chapter7
2 // Page.No-241
3 // Example 7_{-4}
4 // Sketch the output waveform
5 // Given
6 clc;
7 clear;
8 \text{ Vi=5};
                 //in V
9 Vsat=13;
                   //in V
                      //in Ohm
10 R2 = 2000;
11 R1=20000;
                        //in Ohm
12 Vupper=Vsat*R2/R1;
13 Vlower=-Vsat*R2/R1;
14 printf("\n Vupperthreshold %.1 f V", Vupper);
15 printf("\n Vlowerthreshold %.1f V", Vlower);
16 t = (0:0.1:20)';
17 f=0.1;
18 x3=1*sin(2*f*\%pi*t);
19 A=asin(Vupper);
20 k=atan(imag(A),real(A))
21
22
23 x4 = squarewave (2*f*%pi*t-2*f*%pi*k,50)
```

```
24
25  plot(t,x3,t,x4);
26  //plot2d1();
27  xlabel('time n->');
28  ylabel('Vout->');
29  title('Input(Blue) / Output(Green)');
30  xgrid(color("grey"));
```

Scilab code Exa 7.8 Determine the Output voltage

```
1 // Chapter7
2 // Page.No-250
3 // Example 7_8
4 // Determine the output voltage
5 // Figure 7.56
6 // Given
7 clc;
8 clear;
9 \quad Vin=1;
                    //in V
                     //in Kelvin
10 T = 300;
11 Ri=50000;
                           //in Ohm
12 Is=30*10^-9;
                                    //in Amp
13 //\text{Vout} = -0.0259 * \ln (\text{Vin} / \text{RiIs})
14 Vout = -0.0259 * log1p(Vin/(Ri*Is))
15 printf("\n Vout when Vin=1V %.4 f V\setminus n", Vout);
16 / for Vin = 0.5V
17 Vin1=0.5;
                        //in V
18 Vout1 = -0.0259 * log1p(Vin1/(Ri*Is))
19 printf("\n Vout when Vin=0.5V %.4 f V\setminus n", Vout1);
20 // for Vin=2V
21 \ Vin2=2;
                      //in V
22 Vout2 = -0.0259 * log1p(Vin2/(Ri*Is))
23 printf("\n Vout when Vin=2V %.4 f V", Vout2);
```

Scilab code Exa 7.9 Output Voltage

```
1 // Chapter7
2 // Page.No-253
3 // Example_7_9
4 // Determine the output voltage
5 // Figure 7.62
6 // Given
7 clc;
8 clear;
9 \text{ K=0.1};
10 t = (0:0.01:0.5);
11 Vin=2*sin(2*60*\%pi*t);
12 Vout=K*Vin^2;
13
14 plot(t, Vout, t, Vin)
15 xtitle(" Input(Green)
                           signal & Output (Blue) signal
     ","t","V");//result
```

Chapter 8

Voltage regulation

Scilab code Exa 8.1 Output

```
1 // Chapter8
2 // Page.No-263
3 // Example8_1
4 // Figure 8.4
5 // Output of Voltage and Current
6 // Given
7 clear; clc;
8 R1 = 5000;
                       //In Ohm
9 R2 = 20000;
                         //In Ohm
10 R3=10000;
                         //In Ohm
                    //In V
11 Vz=3.9;
12 V1=Vz*(R2+R3)/R3;
13 printf("\n Output Load Voltage Vl is = \%.2 \, f \, V \ n", Vl)
      ; // Result
14 Iz=(V1-Vz)/R1;
15 printf("\n Output Zener Current Iz is = \%.5 \, f \, A \, n",
      Iz); // Result
```

Scilab code Exa 8.2 The power dissapation

```
1 // Chapter8
2 // Page. No-264
3 // Example 8_2
4 // Figure 8.4
5 // Power dissipation for Q1
6 // Page. No-264
7 // Example_8_2
8 // Figure 8.4
9 // Given
10 clear; clc;
                          //in V
11 Vl=11.7;
                      //in Ohm
12 R1=20;
13 Il=V1/R1;
14 printf("\n Output Load Current Il is = \%.3 \, f \, A \, n",Il
      ); // Result
15 Vc=20; Ve=11.7;
                          //in V
16 Vce=Vc-Ve;
  printf("\n Output Load Voltage Vce is = \%.2 \text{ f V}\n",
      Vce); // Result
18 Pd=Il*Vce;
  printf("\n Power dissiption Pd is = \%.2 \text{ f W } \text{ n}", Pd);
      // Result
                                   //in Amp
20 \text{ Ib=0.020};
21 B=I1/Ib;
22 printf("\n Beta is = \%.2 \, f \n",B); // Result
23 P1=I1*V1;
24 printf("\n Power dissiption across load, Pl is = \%.3
      f W \setminus n", P1); // Result
                          //in V
25 \text{ Vin} = 20;
26 Pin=Il*Vin;
                          //Iin=Il
27 printf("\n Input Power dissiption, Pin is = \%.2 \text{ f W}\
      n", Pin); // Result
28 n=P1/Pin;
29 printf("\n Efficiency is = \%.3 f or \%.1 f
                                                   percent \
      n",n,n*100); // Result
```

Scilab code Exa 8.3 Value of R2

Scilab code Exa 8.4 12 V Regulator

```
1 // Chapter8
2 // 12V Voltage Regulator
3 // Page.No-279
4 // Example8_4
5 // Figure 8.17
6 // Given
7 clear; clc;
                           //in V
8 Vref=7.15;
                         //in V
9 Vout=12;
                             //in Amp
10 Ilimit = 0.050;
                         //in Ohm
11 R2 = 10000;
12 R1 = Vout * R2 / Vref - R2;
13 printf("\n Value of R1 is = \%. f Ohm\n", R1); //
      Result
                             //in V
14 Vsense=0.65;
```

```
15 Rsc=Vsense/Ilimit;
16 printf("\n Value of current sense resistor is = %.f
    Ohm\n",Rsc); // Result
17 R3=R1*R2/(R1+R2);
18 printf("\n Value of minimum drift resistor is = %.f
    Ohm\n",R3); // Result
```

Scilab code Exa 8.5 2V to 5V supply

```
1 // Chapter8
2 // Design a contineously adjusted supply b/w 2V to
      5 V
3 // Page. No-279
4 // Example8_5
5 // Figure 8.15.1
6 // Given
7 clear; clc;
                          //in V
8 Vref=7.15;
                       //in V
9 Vout=5;
10 / (R1b+R2)/R2=Vref/Vout;
11 printf("\n For maximum case (R1b+R2)/R2 is = %.2 f \n
     ", Vref/Vout); // Result
12 R2=1;
                       // In Ohm (Assumption)
13 R1b=Vref/Vout-1;
14 printf("\n For R2=1 Ohm R1b:R2 is = \%.2 f:\%.0 f \n",
      R1b,R2); // Result
                       // in V
15 Voutm=2;
16 printf("\n For maximum case (R1a+R1b+R2)/R2 is = \%.3
      f \setminus n", Vref/Voutm); // Result
17 R1a=Vref/Voutm-1-0.43;
18 printf("\n For R2=1 Ohm R1b:R2 is = \%.3 f:\%.0 f \n",
      R1a,R2); // Result
                        //in Ohm
19 R1a=10000;
                                          (Assumption)
20 R2=R1a/2.145;
21 printf("\n Value of R2 is = \%. f Ohm\n", R2); //
```

```
Result
22 // Similarly
23 R1b=R2*0.43;
24 printf("\n Value of R1b is = \%. f Ohm\n", R1b); //
      Result
25 //Ilimit=Vsense/rsc;
                              //in V
26 \quad Vsense=0.65;
                          //in Amp
27 Ilimit=1;
28 Rsc=Vsense/Ilimit;
29 printf ("\n Value of current sense resistor is = \%. f
      Ohm \ n", Rsc); // Result
                              //in Ohm
30 R1 = 6000;
31 R3=R1*R2/(R1+R2);
32 printf ("\n Value of minimum drift resistor is = \%. f
      Ohm n, R3); // Result
                          //in Amp
33 \text{ Ic} = 1;
                          //in Amp
34 \text{ Ib=0.150};
35 B=Ic/Ib;
36 printf("\n Value of B minimum = \%.2 \, f \ n",B); //
      Result
```

Scilab code Exa 8.6 Step down Voltage regulator

```
//in Amp
12 Isw = 0.75;
13 R3=0.11/Isw;
14 printf("\n Value of R3 is = \%.2 f Ohm\n",R3); //
      Result
15 Iout = 0.200;
                         //in Amp
16 Df = 0.2;
17 delI =2*Iout*Df;
18 printf("\n Value of del I is = \%.3 f Amp\n", delI); //
       Result
19 F=50000;
                        //in Hz
                     //in V
20 \text{ Vin=20};
21 L1=Vout*(Vin-Vout)/(delI*Vin*F);
22 printf("\n Value of L1 is = \%.4 \, \text{f H} \ \text{n}", L1); // Result
                         //in V
23 Vripple=0.040;
24 C2=Vout*(Vin-Vout)/(8*F^2*Vin*Vripple*L1);
25 printf("\n Value of C2 is = \%.6 f F\n", C2); // Result
26 //C2 is ste a standard of 33 microF or 47 microF
```

Scilab code Exa 8.7 Heat sink rating

```
1 // Chapter8
2 // Determine appropriate heat sink rating
3 // Page. No-296
4 // Example 8_7
5 // Figure 8.34
6 // Given
7 clear; clc;
8 \text{ Tj} = 150;
                       // in degree C
                     // in degree C
9 \text{ Ta} = 40;
                      // in C/W
10 Qjc=3.0;
11 Qcs=1.6;
                       // in
                               C/W
12 PD = 6;
                    //in W
13 Qsa=(Tj-Ta)/PD - Qjc-Qcs;
14 printf("\n Value of Qsa = \%.2 f C/W\n", Qsa); //
      Result
```

Chapter 9

Oscillators and Frequency Generators

Scilab code Exa 9.1 frequency of oscillation

Scilab code Exa 9.2 Maximum and minimum frequency of oscillation

```
1 // Chapter9
```

```
2 // Maximum and minimum Frequency of oscillation
3 // Page.No-307
4 // Example 9_2
5 // Figure 9.9
6 // Given
7 clear; clc;
8 // for minimium frequency
                         //in Ohm
9 R = 11100;
                           //in F
10 C=0.1*10^-6;
11 f=1/(2*\%pi*R*C);
12 printf ("\n The mimimum frequency of oscillation = \%
      .1 f Hz\n",f); // Result
13 // for maximum frequency
14 R = 1100;
                       //in Ohm
                           //in F
15 C=0.1*10^-6;
16 fm=1/(2*\%pi*R*C);
17 printf("\n The maximum frequency of oscillation = \%
      .0 f Hz n, fm); // Result
18 printf ("\n For C=0.001 microF, the range is from \%.1 f
       \rm Hz\ to^{'}\%.0\,f\ Hz\backslash n ", f*10,fm*10);//Result
19 printf("\n For C=0.0001microF, the range is from \%.1
      f Hz to \%.0 \, f Hz\n ", f*100,fm*100);//Result
20 Rf = 10000 + 2700;
                             //in ohm
                             //in Ohm
21 Ri=5600;
22 Av = 1 + Rf / Ri;
23 printf("\n Gain ,Av is \%.2 \, f \ n ", Av); // Result
```

Scilab code Exa 9.3 Frequency of oscillation

```
1 // Chapter9
2 // Frequency of oscillation
3 // Page.No-310
4 // Example_9_3
5 // Figure 9.12-9.14
6 // Given
```

```
7 clear; clc;
8 R = 1000;
                        //in Ohm
9 C=0.1*10^-6;
                            //in F
10 f=1/(2*\%pi*1.732*R*C);
11 printf("\n The mimimum frequency of oscillation = \%
      .0 f Hz n, f); // Result
12 / Vo = (R+Xc) * I1 - R*I2
13 W=1/((6^0.5)*C*R);
14 printf("\n The frequency = \%.0 \, f \, Hz \ ", W); // Result
15 //Vo/V3=1+(6*Xc/R)+(5*Xc/R^2)+(Xc/R)^3;
16 Vr=1-(5/((W*C*R)^2));
                                      //Vr=Vo/V3
17 printf("\n The Vo/V3 is = \%.0 \, f \ n", Vr); // Result
18 printf ("\n The gain of ladder network is B= V3/Vo =
      1/\%.0 f \ n", Vr); // Result
```

Scilab code Exa 9.4 Value of Ri

```
1 // Chapter9
2 // value of Rf
3 // Page.No-313
4 // Example9_4
5 //Figure 9.15
6 // Given
7 clear; clc;
                            //in F
8 C=0.1*10^-6;
                        //in Ohm
9 R = 1000;
10 Av = -29;
11 Rf = -Av*R;
12 printf("\n The value for Rf is = \%.0 f Ohm\n", Rf); //
       Result
13 f=1/(2*\%pi*6^0.5*R*C);
14 printf("\n The frequency, fo = \%.0 \, f \, Hz \ n",f); //
      Result
```

Scilab code Exa 9.5 Output frequency and amplitude

```
1 // Chapter9
2 // Output Frequency and Amplitudes
3 // Page.No-318
4 // Example9_5
5 // Figure 9.21
6 // Given
7 clear; clc;
                         //in V
8 Vsat=13;
                             //in ohm
9 R2 = 10000;
10 R3=20000;
                              //in ohm
11 R=33000;
                             //in ohm
12 C=0.01*10^-6;
                               //in Farad
13 Vup=Vsat*R2/R3;
14 printf("\n Value of Vupperthreshold is = \%.1 \text{ f V} \text{ N}",
      Vup); // Result
15 //dv/dt=Vsat/RC=k
16 \text{ k=Vsat/R/C};
17 printf("\n dv/dt = \%.0 \, f \, V/S \n",k); // Result
18 T=Vsat/k;
19 printf("\n T = \%.5 f S \ n",T); // Result
20
21 f = 1/T/2;
22 printf("\nf = \%.0 f Hz\n",f); // Result
```

Scilab code Exa 9.6 Square wave generator

```
1 // Chapter 9
2 // 2kHZ Square Wave generator
3 // Page.No-323
4 // Example9_6
```

Scilab code Exa 9.7 Output frequency

```
// Chapter 9
2 // determine Output frequency
3 // Page. No-327
4 // Example9_7
5 // Figure 9.28
6 // Given
7 clear; clc;
                      //in V
8 \text{ Vp=12};
                          //in Ohm
9 R1 = 4700;
                          //in Ohm
10 R2 = 2000;
11 R3=20000;
                          //in Ohm
12 C=1.1*10^-9;
                              //in Farad
13 Vc = Vp * (R3/(R2+R3));
14 printf("\n The control Voltage is = \%.2 \text{ f V} \cdot \text{n}", Vc);
      // Result
15 fo=2*(Vp-Vc)/(Vp*R1*C);
16 printf("\n Output frequency = \%.0 \, f \, Hz \ n",fo); //
      Result
```

Scilab code Exa 9.8 Maximum and minimum frequency

```
1 // Chapter 9
2 // determine Output frequency
3 // Page.No-328
4 // Example 9_8
5 // Figure 9.29
6 // Given
7 clear; clc;
                     //in V
8 \text{ Vp=12};
                         //in Ohm
9 R1=4700;
                          //in Ohm
10 R2=2000;
11 R3=20000;
                         //in Ohm
12 C=1.1*10^-9;
                              //in Farad
13 Vc = Vp * (R3/(R2+R3));
14 // for minimum Vc
15 Vcmin=Vc-0.5;
16 printf("\n The control Voltage is = \%.2 \,\mathrm{f} V\n", Vcmin
      ); // Result
17 fo=2*(Vp-Vcmin)/(Vp*R1*C);
18 printf("\n Output frequency = \%.0 \, \text{f Hz} \, \text{n}",fo); //
      Result
19 // for maximum Vc
20 disp("For minimum frequency Use maximum Vc");
21 \quad Vcmin1=Vc+0.5;
22 printf("\n The control Voltage is = \%.2 \, f \, V \ n",
      Vcmin1); // Result
23 fo=2*(Vp-Vcmin1)/(Vp*R1*C);
24 printf("\n Output frequency = \%.0 f Hz\n",fo); //
      Result
```

Scilab code Exa 9.9 Free running frequency

```
1 // Chapter 9
2 // determine Output frequency
3 // Page.No-333
4 // Example9_9
```

```
5 // Figure 9.37
6 // Given
7 clear; clc;
                    //in V
8 \text{ Vp=6};
                          //in Ohm
9 R1 = 4000;
10 C=330*10^-12;
                                //in Farad
11 C2=270*10^-12;
                                 //in Farad
12 fo=0.3/(R1*C);
13 printf("\n Free runing frequency = \%.0 \, \text{f Hz} \, \text{n}", fo);
       // Result
14 fl=8*fo/Vp;
15 printf("\n Lock Range = \%.0 \, f Hz\n",fl); // Result
16 fc=sqrt(2*\%pi*f1/(3600*C2))/(2*\%pi);
17 printf("\n Capture Range = \%.0 \, f \, Hz \n",fc); //
      Result
```

Scilab code Exa 9.10 Timing resistor and capacitor

```
1 // Chapter 9
2 // determine Output frequency
3 // Page.No-336
4 // Example9_10
5 //Figure 9.40
6 // Given
7 clear; clc;
8 R = 10000;
                         //in Ohm
9 printf("\n Value of Assumed resistance is = \%.0 \,\mathrm{f}
      Ohm \setminus n", R); // Result
10
11 Tout=100*10^-6;
12 C=Tout/(1.1*R);
13 printf("\n Value of Capacitance is = \%.11 f F\n",C);
       // Result
14 printf("\n The nearst value would be 10nF");
```

Scilab code Exa 9.11 Square wave generator

```
1 // Chapter 9
2 // determine Output frequency
3 // Page.No-340
4 // Example9_11
5 // Given
6 clear; clc;
                      ///in Hz
7 f = 2000;
8 DC = 0.8;
9 T=1/f;
10 Thigh=DC*T;
11 printf("\n T high is = \%.6 f Sec\n", Thigh); //
      Result
12 \quad Tlow=T-Thigh;
13 printf("\n T low is = \%.6 f Sec\n", Tlow); // Result
14 //assumption
15 Rb=10000;
                            //in Ohm
16 / \text{Tlow} = 0.69 \text{RC}
17 C1=Tlow/(0.69*Rb);
18 printf("\n Value of Capacitance C is = \%.10 \, \mathrm{f} \, \mathrm{F} \, \mathrm{n}",
      C1); // Result
19 // \text{Thigh} = 0.69 (\text{Ra+Rb})
20 Ra=Thigh/(0.69*C1)-Rb;
21 printf("\n Value of resistance Ra is = \%.0 f Ohm\n",
      Ra); // Result
```

Scilab code Exa 9.12 range of output frequency

```
1 // Chapter 9
2 // determine Output frequency
3 // Page.No-344
```

```
4 // Example_9_12
5 //Figure 9.47
6 // Given
7 clear; clc;
8 R=110000;
                         //in Ohm
9 C=0.1*10^-6;
                            //in Farad
10 //
11 disp("When C=0.1microF")
12
13 fomin=0.15/(R*C);
14 printf("\n For low range with lowest
                                          frequency =
     \%.1 f Hz n, fomin); // Result
15 //
16 R1 = 10000;
                         //in Ohm
17 fomax = 0.15/(R1*C);
18 printf("\n For low range with highest frequency =
     \%.1 f Hz n, fomax); // Result
19 //
20 disp("When C=0.01 microF")
                         //in Ohm
21 R=110000;
22 C=0.01*10^-6;
                             //in Farad
23 fomin = 0.15/(R*C);
24 printf("\n For low range with lowest
                                            frequency =
     \%.1 f Hz n, fomin); // Result
25 //
26 R1=10000;
                         //in Ohm
27 fomax = 0.15/(R1*C);
28 printf("\n For low range with highest
                                           frequency =
     \%.1 f Hz n, fomax); // Result
29 //
30 disp("When C=0.001 microF")
31 R = 110000;
                         //in Ohm
32 C=0.001*10^-6;
                              //in Farad
33 fomin = 0.15/(R*C);
34 printf("\n For low range with lowest
                                            frequency =
     \%.1 f Hz n, fomin); // Result
35 / /
36 R1 = 10000;
                         //in Ohm
```

```
37 fomax=0.15/(R1*C);  
38 printf("\n For low range with highest frequency = \%.1 \, f \, Hz \n", fomax); // Result
```

Chapter 10

Integrators and Differentiators

Scilab code Exa 10.1 vout and lower frequency range

```
1 / chapter 10
 2 //Vout and lower frequency
3 //page no. 354
 4 // Example 10_{-1}
 5 // Figure 10.7
6 //Given
 7 clc;
 8 clear;
 9 t = 0;
10 Ri=10000;
11 C=10^-8;
12 Rf=100000;
                            //in Ohm
                           //in farad
                              //in Ohm
13 // \text{Vout}(t) = -1/(\text{Ri} * \text{C}) * \text{int}(\text{Vi}(t)) dt
14 Flow=1/(2*%pi*Rf*C);
15 printf("\n Flow is %.0f Hz",Flow);
```

Scilab code Exa 10.2 Output

```
1 / \text{chapter } 10
2 //Vout
3 //page no. 356
4 // Example 10_2
5 // Figure 10.7
6 //Given
7 clc;
8 clear;
9 \text{ step=0.1};
10 t=0:step:10;
11 disp("Answer is coming interm of t so solution is
      done by graph");
12 / x = 1;
13 //f = 5000;
14 x0 = -1.6; x1 = 0:0.1:10;
15 Vin=sin(t);
16
17 xtitle('Sin(x)','t')
18 X=integrate('sin(t)', 't', x0, x1);
                   //in Ohm
19 Ri=10000;
                        //in farad
20 C=10^-8;
21 Rf = 100000;
                           //in Ohm
22 \text{ Vout} = -0.318 * X;
23 clf;
24 plot(t, Vin,t, Vout);
25 xtitle('Input(Blue) / Output(Green)', 't', 'V');
```

Scilab code Exa 10.3 Output of the circuit

```
1 //Chapter 10
2 //Sketch the output Waveform
3 //page no. 358
4 //Example10_3
5 //Figure 10.7
6 //Given
```

```
7 clc;
8 clear;
9 T0 = 4;
10 t = -5.99 : 0.01 : 6;
11 t_{temp} = 0.01:0.01:T0/4;
12 s=length(t)/length(t_temp);
13 dx = [];
14 x = [];
15 for i=1:s
       if modulo(i,2) == 1 then
16
            dx = [dx -ones(1,length(t_temp))];
17
18
            x=[x .1*t_temp($:-1:1)];
19
       else
            dx = [dx ones(1,length(t_temp))];
20
            x=[x .1*t_temp];
21
22
        end
23 end
24 clf();
25 subplot (1,2,2)
26 plot (50*t,10*x-0.5,8)
27 xtitle ("Output Waveform", "Microsecond", "V");
28 t = -30:0.01:30;
29 subplot (1,2,1);
30 plot('onn',10*t,[2*squarewave(2*t/(%pi),50)])
31 xtitle("Input Waveform", "Microsecond", "V");
```

Scilab code Exa 10.4 Integrator connected to accelerometer

```
1 //chapter 10
2 //Vout
3 //page no. 359
4 //Figure 10.11a
5 //Given
6 clc;
7 clear;
```

```
//in Ohm
8 \text{ Rf} = 400000;
9 C=20*10^-9;
                            //in farad
10 flow=1/(2*\%pi*Rf*C);
11 printf("\n Flow = \%.1 f Hz",flow);
                          //in Ohm
12 Ri=15000;
13 //integration
14 function Vin=f(t), Vin=.6, endfunction
15 \text{ exact} = -2.5432596188;
16 I = intg(0, 10^-3, f)
17
18 Vout = -1*I/Ri/C;
19 printf("\n Vout(t) = \%.1 f V", Vout); // Result
20
21 // Graph
22 t = (0:0.001:6);
23 V=Vout*ones(1:0.001:4);
24
25 for i=0.001:0.001:1-.001
26
       V=[Vout*(1-i) V Vout*(1-i)]
27 end
28
29 V=[V zeros (5.001:0.001:6)]
30 \ V = [2 \ V \ 0]
31 clf;
32 plot(t, V)
33 xgrid;
34 xtitle('Integrator output', '$t$', "$Voltage$")
```

Scilab code Exa 10.5 Range for differentiation

```
5 // Figure 10.19
6 //Given
7 clc;
8 clear;
9 Ri = 100;
                     //in Ohm
                        //in farad
10 Ci = 10^- - 8;
                       //in Ohm
11 Rf=5000;
                         //in farad
12 Cf = 10^-10;
13 fhf=1/(2*%pi*Rf*Cf);
14 fh_in=1/(2*%pi*Ri*Ci);
15 printf("\n Fhigh(f dbk)=\%.0 f Hz", fhf);
16 printf("\n Fhigh(in)=\%.0f Hz",fh_in);
17 //graph is drawn taking function sin(t)
18 t = [0:0.01:15];
19 Vi=sin(t);
20 plot(2*Vi);
21 plot(diff(-1.885*100*Vi));
22 xtitle ("Partial Differentiator of sin(t)", "t", "V");
23
24 xgrid;
```

Scilab code Exa 10.6 Output Waveform

```
1 //Chapter 10
2 //Sketch the output Waveform
3 //page no. 368
4 //Example10_6
5 //Figure 10.19
6 //Given
7 clc;
8 clear;
9 Rf=5000; //in Ohm
10 C=10^-8; //in farad
11
12 f=4000; //in KHz
```

```
13 T=1/f;
14 printf("\n T = \%.6 f second",T);
15 S=6/(125*10^-6);
16 printf("\n Slope = \%.0 \, f \, V/S",S);
17 // graph
18 \text{ step=1};
19 t=0:step:1;
20 \text{ Vin=S*t};
21 dy=diff(S*t/step); //approximate differentiation of
      sine function
22
23 Vout = -Rf *C*dy;
24 printf("\n Vou(t) = \%.1 \text{ f V}", Vout);
25
26 \text{ TO} = 4;
27 t = -5.99:0.01:6;
28 t_temp=0.01:0.01:T0/2;
29 s=length(t)/length(t_temp);
30 \, dx = [];
31 x = [];
32 for i=1:s
        if modulo(i,2) == 1 then
33
            dx = [dx - ones(1, length(t_temp))];
34
            x=[x .5*t_temp($:-1:1)];
35
36
        else
37
            dx = [dx ones(1,length(t_temp))];
38
            x=[x .5*t_temp];
39
        end
40 \text{ end}
41 // figure
42
43 subplot (1,1,1)
44 plot(t,3-6*x,'b',t,2.4*dx,'r')
45 xtitle('Input(b) and Output(r)', 't', "V")
```

Scilab code Exa 10.7 Sketch the output wave form

```
1 // Chapter 10
2 //Sketch the output Waveform
3 //page no. 370
4 / Example 10_7
5 // Figure 10.23
6 // Given
7 clc;
8 clear;
                     //in KHz
9 f = 4;
10 T=1/f;
11 S=5*10^6;
12 \text{ step=1};
13 t=0:step:1;
14 Vin=S*t;
15 printf("\n Vin(t) = \%.0 \, f * t",S);
16 Rf=5000;
                        //in Ohm
                        //in farad
17 C=10^-8;
18 dy=diff(S*t/step); //approximate differentiation of
      sine function
19 Vout = -Rf * C * dy;
20 printf("\n Vou(t) = \%.0 \text{ f V}", Vout);
21 t = (0:0.1:5*\%pi)';
22 plot(t,3*squarewave(t));
23 xtitle("Output Wave form", "t", "V");
24 xtitle('Input(b) and Output(r)', 't');
```

Scilab code Exa 10.8 LVDT

```
1 //Chapter 10
2 //Sketch the output Waveform
3 //page no. 370
4 //Example10_8
5 //Figure 10.24a
```

```
6 //Given
7 clc;
8 clear;
                        //in Ohm
9 Ri = 250;
10 Ci = 0.5 * 10^{-6};
                                //in farad
11 Rf = 40000;
                           //in Ohm
12 Cf = 2*10^-9;
                             //in farad
13 fhf = 1/(2*\%pi*Rf*Cf);
14 fh_in=1/(2*%pi*Ri*Ci);
15 printf("\n Fhigh(f dbk)=\%.0 f Hz", fhf);
16 printf("\n Fhigh(in)=%.0f Hz",fh_in);
17 //
18
                      //in V/S
19 S = 10;
20 \text{ step=1};
21 disp(S, "For slope")
22 t=0:step:1;
23 Vin=10*t;
24 dy=diff(S*t/step); //approximate differentiation of
      sine function
25 \text{ Vout} = -\text{Rf} * \text{Ci} * \text{dy};
26 printf("\n Vout(t) = \%.1 \, \text{f V}", Vout);
27 //
                                //in V/S
28 \text{ Slope} = -4/0.2;
29 \text{ step=1};
30 disp(Slope, "For slope")
31 t=0:step:1;
32 \text{ Vin=} 10*t;
33 dy=diff(Slope*t/step); //approximate differentiation
        of sine function
34 \quad Vout2 = -Rf * Ci * dy;
35 printf("\n Vout(t) = \%.1 f V", Vout2);
36 //graph
37 t = (0:0.0001:1.5);
38 V=Vout*ones(0:0.0001:.2);
39 V=[V zeros(.2+.0001:0.0001:.5-.0001)];
40 V=[V Vout2*ones(.5:0.0001:.7)];
41 V = [V \ zeros(.7 + .0001 : 0.0001 : 1 - .0001)];
```

```
42  V=[V Vout*ones(1:0.0001:1.2)];
43  V=[V zeros(1.2+.0001:.0001:1.5)]
44  clf;
45  plot(t,V)
46
47  xtitle('Differentiator output', '$t$', "$Voltage$")
```

Chapter 11

Active filters

Scilab code Exa 11.1 Butterworth low pass filter

```
1 // Chapter 11
2 // Design a low pass Butterworth filter
3 // Page. No-397
4 // Example11_1
5 //Figure 11.13 and 11.14
6 // Given
7 clear; clc;
8 L=1.414;
                          //Alpha
                     //in Ohm
9 Ri=1;
10 Rf = 2-L;
11 printf("\n The value of Rf is = \%.3 f Ohm\n", Rf); //
      Result
12 Av=1+Rf/Ri;
13 printf("\n The pass band gain of = \%.3 \, f \, \text{n",Av}); //
       Result
                          //in Hz
14 \text{ fc} = 1000;
15 \ W=2*\%pi*fc;
16 printf("\n The critical frequency is = \%.0 \, f radians
      per seconds\n",W); // Result
17 R = 1/W;
18 printf("\n The Resistor required is = \%.6 \, f \, Ohm \ n", R
```

Scilab code Exa 11.2 Design second order bessel filter

```
1 // Chapter 11
    2 // Design a second order high pass Bessel's filter
    \frac{3}{4} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}
  4 // Example 11_2
    5 // Figure 11.25
   6 // Given
    7 clear; clc;
                                                                                                                                                           // Aplha = DAMPING
    8 L=1.732;
   9 Kf = 1.274;
10 R1=L/2;
11 printf("\n The Resistor required is = \%.3 f Ohm\n",
                               R1); // Result
12 R2=2/L;
13 printf("\n The Resistor required is = \%.3 f Ohm\n",
                                R2); // Result
                                                                                                                                                           //in Hz
14 F3db=5000;
15 Fc=F3db/Kf;
16 printf ("\n The critical frequency is = \%.0 \, \text{f Hz} \, \text{n}", Fc
                                ); // Result
17 Wc=2*\%pi*Fc;
18 printf("\n The Wc is = \%.0 \, f radians per seconds\n",
                                Wc); // Result
19 R1n=R1/Wc;
20 printf("\n The value of scaled Resistor R1 is = \%.7
                                f Ohm \ n", R1n); // Result
```

```
21 R2n=R2/Wc;
22 printf("\n The value of scaled Resistor R2 is = %.7
    f Ohm\n",R2n); // Result
```

Scilab code Exa 11.3 Fifth order system

```
1 // Chapter 11
2 // Design a filter to remove subsonic tones
3 // Page. No-406
4 // Example11_2
5 // Figure 11.29
6 // Given
7 clear; clc;
8 f3db=20;
                         //In Hz
9 W3db = 2 * \%pi * f3db;
10 printf("\n The desired break frequency, W3db is = %
      .1f radians per second\n", W3db); // Result
11 disp("Stage 1");
12 \text{ kf} = 1.557;
13 Wc = W3db/kf;
14 printf("\n The Wc is = \%.1f radians per second\n", Wc
      ); // Result
                    //Rscaled value
15 Rscaled=1/80.7;
                    // Practical Value
16 R=1000*Rscaled;
17 printf("\n The scaled Resistor required is = \%.3 \,\mathrm{f}
      Ohm \ n", R); // Result
18 C=1*10^-6;
                         //Assumed Value
19 printf("\n The assumed capacitor is = \%.6 f Farad\n
      ",C); // Result
20 disp("Stage 2");
21 Alpha=1.775;
22 R1 = Alpha/2;
23 printf("\n The Resistor R1 required is = \%.4 \text{ f Ohm} \cdot \text{n}
      ",R1); // Result
24 R2=2/Alpha;
```

```
25 printf("\n The Resistor R2 required is = \%.3 \text{ f Ohm} \setminus n
      ",R2); // Result
26 kf1=1.613;
27 \text{ Wc1=W3db/kf1};
28 printf("\n The required critical frequency ,Wc is =
      \%.1f radians per second\n", Wc1); // Result
29 //we will scale the resistor
30 R1s=R1/Wc1;
31 R2s=R2/Wc1;
32 printf("\n The scaled resistor R1 is = \%.4 \text{ f Ohm} \cdot \text{n}",
      R1s); // Result
33 printf("\n The scaled resistor R2 is = \%.4 \text{ f Ohm} \cdot \text{n}",
      R2s); // Result
34 printf("\n The assumed capacitor is = \%.6 f Farad\n
      ",C); // Result
35 //for practical values of resistor and capacitor
      multiplying by 10<sup>6</sup>
36 R1m = R1s * 10^6;
37 R2m = R2s * 10^6;
38 printf("\n The practical value of resistor R1 is
       \%.0 f Ohm \ n", R1m); // Result
39 printf("\n The practical value of
                                          resistor R2 is
       \%.0 f Ohm n, R2m); // Result
40 printf("\n The assumed capacitor is = \%.6 \, \text{f Farad} \setminus \text{n}
      ",C); // Result
41
42 disp("Stage 3");
43 Alpha=1.091;
44 R21=Alpha/2;
45 R22=2/Alpha;
46 \text{ kf2=1.819};
47 \text{ Wc2=W3db/kf2};
48 printf("\n The required critical frequency, Wc is =
      %.1f radians per second\n", Wc2); // Result
49 //Scale resistor by Wc to achive tuning frequency
50 R21s = R21/Wc2;
51 R22s = R22/Wc2;
52 printf("\n The scaled resistor R1 is = \%.5 f Ohm\n",
```

```
R21s); // Result

53 printf("\n The scaled resistor R2 is = %.4f Ohm\n", R22s); // Result

54 // for practical values of resistor and capacitor multiplying by 10^6

55 R21m=R21s*10^6;

56 R22m=R22s*10^6;

57 printf("\n The practical value of resistor R1 is = %.0f Ohm\n",R21m); // Result

58 printf("\n The practical value of resistor R2 is = %.0f Ohm\n",R22m); // Result

59 printf("\n The assumed capacitor is = %.6f Farad\n ",C); // Result
```

Scilab code Exa 11.4 Crossover network

```
1 // Chapter 11
2 // crossover network
3 // Page.No-412
4 // Example 11_4
5 // Figure 11.32
6 // Given
7 clear; clc;
8 L=1.414;
                          //Alpha
9 \text{ fc} = 800;
                     //In Hz
10 Rf = 2-L;
11 printf("\n The value of Rf is = \%.3 f Ohm\n", Rf); //
      Result
12 \text{ Wc}=2*\%\text{pi}*\text{fc};
13 printf("\n The critical frequency is = \%.0 f radians
      per seconds\n", Wc); // Result
14 R=1/Wc;
15 printf("\n The value of scaled Resistor R1 is = \%.7
      f Ohm \ n", R); // Result
16
```

```
17 printf("\n The value of scaled Resistor and capacitor is = \%.0\,\mathrm{f} Ohm and 10\mathrm{nF}\,\mathrm{n"},\mathrm{R*10^*8}); // Result
```

Scilab code Exa 11.5 Band pass filter

```
1 // Chapter 11
   2 // Band pass Filter
   \frac{3}{4} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}
   4 // Example11_5
   5 // Given
   6 clear; clc;
                                                                                                                                       //in Hz
   7 f2=1200;
   8 f1=800;
                                                                                                                                       //in Hz
   9 BW=f2-f1;
10 printf("\n The Bandwidth is \%.3 f Hz\n", BW); //
                            Result
11 fo=(f1*f2)^0.5;
12 printf("\n fo is \%.0 f Hz\n",fo); // Result
13 Q=fo/BW;
14 printf("\n Q is \%.2 f \n",Q); // Result
15 Av = -2*Q*Q;
16 printf("\n Av is \%.0 f \n", Av); // Result
17 fut = 10 * Av * fo;
18 printf("\n funity is \%.0 \, f \, Hz \n", fut); // Result
19 R2=2*Q;
20 printf("\n R2 is %.1f Ohm\n",R2); // Result
21 R1b=Q/(2*Q*Q-1);
22 printf("\n R1b is \%.4 f Ohm\n", R1b); // Result
23 \ W=2*\%pi*fo;
24 printf ("\n The frequency is = \%.0 f radians per
                            seconds\n",W); // Result
25 C=1/W;
26 printf("\n C is %.7f F\n",C); // Result
27 // practical component value
```

```
28 printf("\n R and C are %.0 f Ohm and %.8 f F\n", R2*10, C/10); // Result
```

Scilab code Exa 11.6 Band pass filter with center frequency

```
1 // Chapter 11
2 // Band pass Filter
3 // Page. No-424
4 // Example_11_6
5 // Given
6 clear; clc;
7 Q = 25;
                        //in Hz
8 \text{ fo} = 4300;
                        //R damping
9 Rd=3*Q-1;
10 printf("\n Rdamping is %.1f Ohm\n", Rd); // Result
11 W = 2 * \%pi * fo;
12 printf ("\n The frequency is = \%.0 f radians per
      seconds\n",W); // Result
13 C=1/W;
14 printf("\n C is \%.7 f F\n",C); // Result
15 // practical component value
16 printf("\n Rdamping and C are %.0f Ohm and %.10f F\n
     ",Rd*5000,C/5000); // Result
17 //remaining other Resistor are of 5K Ohm
```

Scilab code Exa 11.7 Notch filter

```
1 // Chapter 11
2 // Band pass Filter
3 // Page.No-427
4 // Example_11_7
5 // Given
6 clear; clc;
```

Chapter 12

Analog to Digital to Analog Conversion

Scilab code Exa 12.1 determine the resolution

```
1 // Chapter 12
2 // Resolution of System
3 // Page.No-445
4 // Example12_1
5 // Given
6 clear; clc;
                    //in V
7 V = 2;
8 Bits=12;
                          //12 bit words
9 levels=2^Bits;
10 step=V/levels;
11 printf("\n The system can resolve = \%.6 \, f \, V \ ", step);
       // Result
12 Drange=20*log10(levels);
13 printf("\n The Dynamic Range is = \%.0 \, f \, dB \n", Drange)
      ; // Result
14
15 DR=6*Bits;
16 printf("\n The Dynamic Range is approx (6dB * no. of
      bits), i.e. = \%.0 \, f \, dB \ n", DR); // Result
```

Scilab code Exa 12.2 Determine the step size

```
1 // Chapter 12
2 // Step size
3 // Page.No-446
4 // Example12_2
5 // Given
6 clear; clc;
7 Bits=16;
                         //in V
8 V = 0.775;
                         //in Vp_p
9 Vp=1.550;
10 levels=2^Bits;
                          //12 bit words
11 DR=6*Bits;
12 printf("\n The Dynamic Range is = \%.0 \, f \, dB \n", DR);
13 step=Vp/levels;
14 printf("\n The system can resolve = \%.8 \, f \, V \ ", step);
       // Result
```

Scilab code Exa 12.3 sampling rates and no of bits

```
10 //we cannot have fractional bit so,
11 printf("\n we cannot have fractional bit so, Bits
required are = \%.0 \, f \n", Bits+1); // Result
```