Hamilton Jacobi

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

3 de diciembre de 2024

Agenda

Ecuación de Hamilton Jacobi

Sección

Recapitulando

• Una transformación canónica $Q_i = Q_i(q_j, p_j, t), P_i = P_i(q_j, p_j, t),$ permite encontrar las soluciones de las ecuaciones de Hamilton.

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t), P_i = P_i(q_j, p_j, t),$ permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \leftarrow \mathcal{H}'\left(Q_i, P_i, t\right)$ con $\mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual alguna (o varias) coordenada Q_j o P_j son cíclicas

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t), P_i = P_i(q_j, p_j, t),$ permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \leftarrow \mathcal{H}'\left(Q_i, P_i, t\right)$ con $\mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual alguna (o varias) coordenada Q_j o P_j son cíclicas
- Tenemos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que las 2s nuevas coordenadas y momentos (P_i, Q_i) son constantes.

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t), P_i = P_i(q_j, p_j, t),$ permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \leftarrow \mathcal{H}'\left(Q_i, P_i, t\right)$ con $\mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual alguna (o varias) coordenada Q_j o P_j son cíclicas
- Tenemos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que las 2s nuevas coordenadas y momentos (P_i, Q_i) son constantes.
- Esas 2s cantidades constantes Q_i y P_i pueden expresarse en función de las 2s condiciones iniciales $(q_i(0), p_i(0))$; es decir, $Q_i = q(q_j(0), p_j(0)), P_i = p(q_j(0), p_j(0)).$

Título transparencia

Recapitulando

En presentación consideramos

