Infinite graphs with decidable MSO theories

Madhavan Mukund

Chennai Mathematical Institute

92 G N Chetty Rd, Chennai 600 017, India

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan

Relational structures and FOL

- Relational structures $\mathcal{A} = (A, R_1^A, R_2^A, \dots R_k^A)$
 - A is the domain—assume countable
 - Each R_i^A is a relation on A, with arity n_i
 - Example: $\mathcal{A} = (\mathbb{N}, 0, \text{succ}, <)$
- First order logic over A
 - Variables x, y that range over A
 - Relation symbol R_i for each underlying relation R_i^A
 - Propositional connectives \neg , \lor , \land , \Rightarrow , ...
 - Quantifiers ∀, ∃
 - Example: $\forall x \; \exists y \; x < y, \; \forall x \; \exists y \; y < x$

Monadic Second Order Logic

- Add set quantifiers $\forall X$, $\exists X$
- Add atomic formulas $x \in Y$ (or Y(x))
 - Subsets are monadic predicates
- Example:

```
egin{array}{l} \operatorname{less}(x,y) = \ orall X\left[X(x) \wedge 
ight. \ orall u \ orall v \left(X(u) \wedge \operatorname{succ}(u,v)
ight) \Rightarrow X(v) 
ight] \Rightarrow X(y) \end{array}
```

< is expressible using succ in MSO

$$\begin{array}{c} \bullet \ \forall X \ [X(0) \land (\forall x \ \forall \ y(X(x) \land \mathsf{succ}(x,y) \Rightarrow X(y)) \\ \Rightarrow \forall z \ X(z)] \end{array}$$

Principle of mathematical induction

When is MSO decidable?

- Given a structure $\mathcal{A}=(A,R_1^A,\ldots,R_k^A)$ and an MSO sentence φ , is φ true in A?
 - In verification parlance, is the model checking problem for MSO formulas over *A* decidable?
- If A is finite, MSO is decidable
 - Exhaustively enumerate all possibilities for quantifiers
- Theorem [Büchi 1960] MSO over $(\mathbb{N}, 0, \text{succ})$ is decidable
 - S1S Second order theory of 1 Successor
 - S1S formula $\varphi \mapsto$ (Büchi) automaton M_{φ}
 - φ is satisfiable iff $L(M_{\varphi})$ is nonempty

When is MSO decidable ...

- Theorem [Rabin 1969]
 MSO over the infinite binary tree is decidable
 - $T_2 = \{0,1\}^*$ nodes of infinite binary tree
 - Relations S_0 , S_1 left and right child
 - S2S Second order theory of 2 Successors
 - Satisfiability reduces to emptiness for tree automata
- Corollary [Rabin 1969]
 - \bullet SnS is decidable for all n
 - S ω S is decidable
 - MSO over dense linear orders is decidable
 -
 - All follow by MSO interpretations in S2S

MSO interpretations: An example

- \blacksquare S3S, MSO over complete ternary tree T_3 is decidable
- Consider vertices $T = (10 + 110 + 1110)^*$ in T_2
- Nodes in T: $1^{i_1}0\dots 1^{i_m}0$, with $i_1,\dots,i_m\in\{1,2,3\}$
- Represents the node $(i_1-1)\ldots(i_m-1)$ in T_3
- Translate S3S formulas over T_3 into S2S formulas over $T \subset T_2$

MSO interpretations: An example

Successor relations S_0, S_1, S_2 of T_3

$$egin{aligned} \psi_0(x,y) &= \exists z (S_1(x,z) \wedge S_0(z,y)) \ \psi_1(x,y) &= \exists u \exists v (S_1(x,u) \wedge S_1(u,v) \wedge S_0(v,y)) \ \psi_2(x,y) &= \ldots \end{aligned}$$

Relativize quantifiers

$$\forall x \varphi(x) \text{ in S3S} \mapsto \forall x (T(x) \Rightarrow \tilde{\varphi}(x)) \text{ in S2S}$$

 $\exists X \varphi(X) \text{ in S3S} \mapsto \exists X (X \subseteq T \land \tilde{\varphi}(X)) \text{ in S2S}$

MSO interpretations

- In general, an MSO interpretation of structure *A* in structure *B* consists of
 - Mapping the domain of \mathcal{A} into a subset of the domain of \mathcal{B} by a domain formula In the example, T_3 was mapped to $T \subseteq T_2$
 - Mapping each relation R_i of A into an "isomorphic" relation over the subset defined by the domain formula

In the example, each successor relation S_i over T_3 was mapped to a relation ψ_i over $T\subseteq T_2$

Proposition If \mathcal{A} is MSO-interpretable in \mathcal{B} and MSO is decidable over \mathcal{B} then MSO is decidable over \mathcal{A}

MSO interpretations: results

- Theorem [Muller-Schupp 1985]
 MSO is decidable over pushdown graphs.
- Theorem [Caucal 1996/2003]
 MSO is decidable over prefix-recognizable graphs.
- Both results can be got from MSO interpretations into MSO over the tree T_m , for appropriate m
- For pushdown graphs, choose *m* to be number of states plus size of stack alphabet.
- For prefix-recognizable graphs, choose m to be the size of the alphabet.

Unfolding graph structures

- Graphs with edge labels I and vertex labels J
- $lacksquare G = (V, (E_i)_{i \in I}, (P_j)_{j \in J})$
- Unfold G from $v_0 \in V$ into $G' = (V', (E'_i)_{i \in I}, (P'_i)_{j \in J})$
 - $oldsymbol{V'}$: all paths $v_0 i_1 v_1 \ldots i_k v_k$
 - $(p,q) \in E'_i$ iff q extends p by edge from E_i
 - $p \in P_j'$ iff last vertex in p is in P_j
- Example: $G_0=(\{v_0\},E_0=E_1=\{(v_0,v_0)\})$ Unfolding of G_0 is the binary tree T_2

Unfolding graphs

- Theorem [Courcelle and Walukiewicz, 1998]

 If MSO is decidable for a graph, then MSO is also decidable for its unfolding from any MSO-definable vertex.
- Decidability of S2S follows from trivial decidability of MSO over G_0 !
- Theorem also holds for a different type of unfolding called tree iteration

Due to [Muchnik (reported by Semenov 1985)] and [Walukiewicz 2002]

The Caucal hierarchy [Caucal, 2002]

- T_0 = the class of finite trees
- \mathcal{G}_n = the class of graphs which are MSO-interpretable in a tree of \mathcal{T}_n
- T_{n+1} = the class of unfoldings of graphs in G_n
- MSO is decidable for each structure in the Caucal hierarchy
 - Trivially for finite trees in T_0
 - For higher levels, follows from what we have seen so far
- \mathcal{G}_0 is the class of finite graphs
- T_1 is the class of regular trees

The Caucal hierarchy, by example

A finite graph in \mathcal{G}_0 ...

... its unfolding in T_1 ...

...and a pushdown graph in \mathcal{G}_1 by MSO-interpretation in the unfolding ...

$$egin{aligned} \psi_d(x,y) = \ \psi_e(x,y) = \exists z \exists z' (E_a(z,z') \wedge E_c(z,y) \wedge E_c(z',x)) \end{aligned}$$

The Caucal hierarchy, by example ...

If we unfold

we get a tree in T_2

The Caucal hierarchy, by example

By an MSO-interpretation, we can identify a graph in G_2 at the leaves of this tree

- This is isomorphic to the structure $(\mathbb{N}, \operatorname{succ}, P_2)$, where P_2 is the predicate powers of two
- Original proof of decidability of MSO for $(N, succ, P_2)$ by [Elgot and Rabin, 1966] was "non uniform" Meeting, 1 March 2004 p.15

Reference

Constructing Infinite Graphs with a Decidable MSO-Theory

Wolfgang Thomas

Invited talk, MFCS 2003

The paper is available from Wolfgang Thomas's webpage.