Supervised Learning

CSC 461: Machine Learning

Fall 2022

Prof. Marco Alvarez University of Rhode Island

Supervised Learning

Example: spam filtering

Components of supervised learning

Data instance (x, y), $x \in \mathcal{X}$ and $y \in \mathcal{Y}$

• Input space \mathscr{X}

• Output space \mathscr{Y}

Data $\{(x_1, y_1), ..., (x_n, y_n)\} \subseteq \mathcal{X} \times \mathcal{Y}$

• Hypothesis $h: \mathcal{X} \mapsto \mathcal{Y}, h \in \mathcal{H}$

Example: spam filtering

- **▶** Problem
 - ✓ automatically tagging email messages as spam (1) or ham (0)
- ▶ Input space
 - ✓ assume every email is represented as a fixed-length vector of 10 features
- Output space?

Input space

► Samples (data instances) are drawn from an **unknown distribution** *P*(*X*, *Y*)

$$\mathcal{D} = \{(\mathbf{x_1}, y_1), ..., (\mathbf{x_n}, y_n)\}$$

$$(\mathbf{x_i}, y_i) \sim P$$

Example: MNIST Dataset

0 6	0	0	0	O	O	0	0	0	0	0	0	0	0	0
1	1	1	1	/	/	(/	1	1	1	1	1	/	1
2 .	2 \	2	2	J	2	2	2	2	2	2	2	2	2	2
3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4 4	4 4	4	4	4	4	4	#	4	4	4	4	ч	4	4
5	5 5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	b	6	6	6	6	6	6	b
7	7 7	7	7	7	7	7	7	77	7	7	7	7	7	7
8 8	3 8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	q	9	9	9	9	9	9

https://en.wikipedia.org/wiki/MNIST_databas

MNIST data instance


```
[[ 0. 1. 5. 11. 15. 4. 0. 0.]
[ 0. 8. 16. 13. 6. 2. 0. 0.]
[ 0. 11. 7. 0. 0. 0. 0. 0. 0.]
[ 0. 11. 16. 16. 11. 2. 0. 0.]
[ 0. 0. 4. 4. 5. 12. 3. 0.]
[ 0. 0. 0. 0. 0. 5. 11. 0.]
[ 0. 0. 1. 6. 0. 10. 11. 0.]
[ 0. 0. 2. 12. 16. 15. 2. 0.]
```

Matrix representation

Output space

Binary classification

$$\mathcal{Y} = \{0,1\}$$

 $\mathcal{Y} = \{-1, +1\}$

Multiclass classification $\mathcal{Y} = \{0,1,...,k-1\}$

$$\mathcal{Y} = \{0, 1, ..., k - 1\}$$

Regression

$$\mathcal{Y} = \mathbb{R}$$

Defining hypothesis spaces

- Hypotheses are functions that belong to a respective hypothesis space
 - ✓ space is defined by the machine learning technique, for example, decision trees, neural networks, support vector machines, etc.
- How to perform machine learning?
 - ✓ define the hypothesis space \mathcal{H}
 - ✓ find the best function within this space, $g \in \mathcal{H}$
 - ✓ a **loss function** is necessary to evaluate/compare hypotheses

Loss Functions

What is the goal of (**supervised**) learning?

► Finding a hypothesis (classifier/regressor) that best approximates the target function

For $g \in \mathcal{H}$ and $\forall (x_i, y_i) \sim P$, we want $g(x) \approx f(x)$

ML uses **search** and **optimization** (to **minimize expected loss**)

Expected Loss

$$\mathbb{E}\left[l(g,(x_i,y_i))\right]_{(x_i,y_i)\sim P}$$

We cannot calculate this term, but we can approximate it

Approximating the expected loss?

$$\mathbb{E}\left[l(g,(x_i,y_i))\right]_{(x_i,y_i)\sim P}$$

$$\approx \frac{1}{n}\sum_{i=1}^n l\left(g,(x_i,y_i)\right)$$

the **law of large numbers** states that the arithmetic mean of the values almost surely converges to the expected value as the number of repetitions approaches infinity

Law of large numbers

$$Pr\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n x_n = \mathbb{E}[x]\right) = 1$$

credit: wikipedia

0/1 loss

$$L_{0/1}(h,\mathcal{D}) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}} I(h(x_i) \neq y_i)$$
indicator function

Prediction	Target
5	5
1	9
2	2
7	7
8	0
0	0
0	8
3	3
6	6
4	4

Squared loss

$$L_{sq}(h, \mathcal{D}) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}} (h(x_i) - y_i)^2$$

positive loss and penalizes big mistakes

Prediction	Target
1.2	1.4
2.3	2.3
1.1	1.2
3.4	4.1
2.3	2.5
1.1	1.1
2.5	2.6
3.1	3.2
1.7	1.8
2.3	2.3

Absolute loss

$$L_{abs}(h,\mathcal{D}) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}} |h(x_i) - y_i|$$

Prediction	Target
1.2	1.4
2.3	2.3
1.1	1.2
3.4	4.1
2.3	2.5
1.1	1.1
2.5	2.6
3.1	3.2
1.7	1.8
2.3	2.3

Learning

• We can use a ML method to calculate:

$$g = \arg\min_{h \in \mathcal{H}} L(g, \mathcal{D})$$

- Problem: it may overfit the training data \mathcal{D}
- ▶ Solution: split your data in train, validation, test
 ✓ use train and validation to select the best hypothesis
 ✓ use test for final evaluation and report

Train, Validation, Test

Example using MNIST

https://colab.research.google.com/drive/1m_hc2sSC4fNhRRNR2q-Dfk2ji5V6ILQ? usp=sharing