

# FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

# **CERTIFICATION TEST REPORT**

**FOR** 

**2400-2483.5MHZ TRANSCEIVER** 

MODEL NUMBER: A2541E24A & A2541E24C

FCC ID: X7J-A13022601 IC: 8975A-A13022601

**REPORT NUMBER: SR9723856A** 

**ISSUE DATE: 2013-07-04** 

Prepared for ANAREN, INC 6635 KIRKVILLE ROAD EAST SYRACUSE NY, 13057, U.S.A

Prepared by
UL LLC
1285 WALT WHITMAN RD.
MELVILLE, NY 11747, U.S.A.

TEL: (631) 271-6200 FAX: (877) 854-3577



NVLAP LAB CODE 100255-0

# **Revision History**

| Rev. | Issue<br>Date | Revisions                    | Revised By |
|------|---------------|------------------------------|------------|
|      | 6/12/13       | Initial Issue                | M. Antola  |
| A    | 7/04/13       | Added section for Duty Cycle | M. Antola  |

DATE: 2013-07-04

# **TABLE OF CONTENTS**

| 1.       | •        | ATT                                                                    | ESTATION OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                  |
|----------|----------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 2        |          | TES                                                                    | ST METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                  |
| 3        |          | FAC                                                                    | CILITIES AND ACCREDITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                  |
| 4        | •        | CAL                                                                    | IBRATION AND UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                  |
|          | 4.       | 1.                                                                     | MEASURING INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                  |
|          | 4.       | 2.                                                                     | SAMPLE CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                  |
|          | 4.       | 3.                                                                     | MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                  |
| 5        |          | EQI                                                                    | JIPMENT UNDER TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                  |
|          | 5.       | 1.                                                                     | DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                  |
|          | 5.       | 2.                                                                     | MAXIMUM OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                  |
|          | 5.       | 3.                                                                     | DESCRIPTION OF AVAILABLE ANTENNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                  |
|          | 5.       | 4.                                                                     | SOFTWARE AND FIRMWARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                  |
|          | 5.       | 5.                                                                     | WORST-CASE CONFIGURATION AND MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                  |
|          | 5.       | 6.                                                                     | DESCRIPTION OF TEST SETUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                  |
| 6        |          | TES                                                                    | ST AND MEASUREMENT EQUIPMENT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                  |
|          |          |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |
| 7        |          | ON                                                                     | TIME, DUTY CYCLE AND MEASUREMENT METHODS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                  |
| 7.<br>8. |          |                                                                        | TIME, DUTY CYCLE AND MEASUREMENT METHODS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |
|          | 8.       | <b>AN</b> 7                                                            | GFSK 1Mbps 250kHz MODE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 <b>4</b>                                                                                         |
|          | 8.       | <b>AN</b> 7<br><i>1.</i><br>8.1.                                       | TENNA PORT TEST RESULTS1  GFSK 1Mbps 250kHz MODE1  1. 6 dB BANDWIDTH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>4</b><br> 4<br> 4                                                                               |
|          | 8.       | <b>AN</b> 7                                                            | GENNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       1         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>4</b><br> 4<br> 4                                                                               |
|          | 8.       | <b>AN</b> 7<br>1.<br>8.1.<br>8.1.<br>8.1.                              | GFNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       1         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14<br>14<br>17<br>20<br>23                                                                         |
|          | 8.       | ANT<br>1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.                              | GFNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       2         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14<br>14<br>17<br>20<br>23                                                                         |
|          | 8.       | ANT<br>1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.                      | GFNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       2         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2                                                                                                                                                                                                                                                                                                                                                                                                                 | 14<br>14<br>17<br>20<br>23<br>24<br>27                                                             |
|          | 8.       | ANT<br>1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.                      | GFSK 1Mbps 250kHz MODE.       1         1. 6 dB BANDWIDTH.       1         2. 99% BANDWIDTH.       1         3. OUTPUT POWER.       2         4. AVERAGE POWER.       2         5. POWER SPECTRAL DENSITY.       2         6. CONDUCTED SPURIOUS EMISSIONS.       2         GFSK 1Mbps 160kHz MODE.       3                                                                                                                                                                                                                                                                                                                                                                                                         | 14<br>14<br>17<br>20<br>23<br>24<br>27                                                             |
|          | 8.       | ANT<br>1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.2.<br>8.2.      | GFNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       1         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2         GFSK 1Mbps 160kHz MODE       3         1. 6 dB BANDWIDTH       3         2. 99% BANDWIDTH       3                                                                                                                                                                                                                                                                                                       | 14<br>14<br>17<br>20<br>23<br>24<br>27<br>31<br>34                                                 |
|          | 8.       | ANT<br>1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.2.<br>8.2.<br>8 | GFNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       1         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2         GFSK 1Mbps 160kHz MODE       3         1. 6 dB BANDWIDTH       3         2. 99% BANDWIDTH       3         3. OUTPUT POWER       3                                                                                                                                                                                                                                                                       | 14<br>14<br>14<br>17<br>20<br>23<br>24<br>27<br>31<br>34<br>37                                     |
|          | 8.       | ANT<br>1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.2.<br>8.2.      | IENNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       2         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2         GFSK 1Mbps 160kHz MODE       3         1. 6 dB BANDWIDTH       3         2. 99% BANDWIDTH       3         3. OUTPUT POWER       3         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2                                                                                                                                                                                           | 14<br>14<br>17<br>20<br>24<br>27<br>31<br>31<br>31<br>31                                           |
|          | 8.       | ANT<br>1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>2.<br>8.2.<br>8.2.<br>8.2 | IENNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       2         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2         GFSK 1Mbps 160kHz MODE       3         1. 6 dB BANDWIDTH       3         2. 99% BANDWIDTH       3         3. OUTPUT POWER       3         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2                                                                                                                                           | 14<br>14<br>17<br>20<br>24<br>27<br>31<br>31<br>31<br>31<br>41<br>41                               |
|          | 8.<br>8. | ANT 1. 8.1. 8.1. 8.1. 8.1. 8.2. 8.2. 8.2. 8                            | IENNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       1         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2         GFSK 1Mbps 160kHz MODE       3         1. 6 dB BANDWIDTH       3         2. 99% BANDWIDTH       3         3. OUTPUT POWER       3         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2         GFSK 2Mbps 500kHz MODE       2                                                                                                    | 14<br>14<br>17<br>23<br>24<br>27<br>31<br>31<br>31<br>31<br>48                                     |
|          | 8.<br>8. | ANT<br>1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.2.<br>8.2.<br>8.2.<br>8 | IENNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       2         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2         GFSK 1Mbps 160kHz MODE       3         1. 6 dB BANDWIDTH       3         3. OUTPUT POWER       3         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2         GFSK 2Mbps 500kHz MODE       2         1. 6 dB BANDWIDTH       2                                                                                                   | 14<br>17<br>17<br>17<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18             |
|          | 8.       | ANT<br>1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.2.<br>8.2.<br>8.2.<br>8 | IENNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       1         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2         GFSK 1Mbps 160kHz MODE       3         1. 6 dB BANDWIDTH       3         2. 99% BANDWIDTH       3         4. AVERAGE POWER       4         5. POWER SPECTRAL DENSITY       4         6. CONDUCTED SPURIOUS EMISSIONS       4         GFSK 2Mbps 500kHz MODE       4         1. 6 dB BANDWIDTH       4         2. 99% BANDWIDTH       4         3. OUTPUT POWER       5         3. OUTPUT POWER       5 | 14<br>14<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 |
|          | 8.       | ANT<br>1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.2.<br>8.2.<br>8.2.<br>8 | IENNA PORT TEST RESULTS       1         GFSK 1Mbps 250kHz MODE       1         1. 6 dB BANDWIDTH       1         2. 99% BANDWIDTH       1         3. OUTPUT POWER       2         4. AVERAGE POWER       2         5. POWER SPECTRAL DENSITY       2         6. CONDUCTED SPURIOUS EMISSIONS       2         GFSK 1Mbps 160kHz MODE       3         1. 6 dB BANDWIDTH       3         2. 99% BANDWIDTH       3         4. AVERAGE POWER       4         5. POWER SPECTRAL DENSITY       4         6. CONDUCTED SPURIOUS EMISSIONS       4         GFSK 2Mbps 500kHz MODE       4         1. 6 dB BANDWIDTH       4         2. 99% BANDWIDTH       4         3. OUTPUT POWER       5         3. OUTPUT POWER       5 | 14<br>14<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 |

DATE: 2013-07-04

|     | 8.3.5.         | POWER SPECTRAL DENSITY                           |                     |
|-----|----------------|--------------------------------------------------|---------------------|
|     | 8.3.6.         | CONDUCTED SPURIOUS EMISSIONS                     | 61                  |
|     | 8.4. GF        | FSK 2Mbps 320kHz MODE                            | 65                  |
|     | 8.4.1.         | 6 dB BANDWIDTH                                   |                     |
|     | 8.4.2.         | 99% BANDWIDTH                                    | 68                  |
|     | 8.4.3.         | OUTPUT POWER                                     |                     |
|     | 8.4.4.         | AVERAGE POWER                                    |                     |
|     | 8.4.5.         | POWER SPECTRAL DENSITY                           |                     |
|     | 8.4.6.         | CONDUCTED SPURIOUS EMISSIONS                     | 78                  |
| 9.  | BADIA.         | ATED TEST RESULTS                                | 82                  |
| -   |                |                                                  |                     |
|     | 9.1. LIN       | IMITS AND PROCEDURE                              | 82                  |
|     | 9.2. TR        | RANSMITTER ABOVE 1 GHz – MODEL: A2541E24A        | 83                  |
|     | 9.2.1.         | TX ABOVE 1 GHz FOR GFSK 1Mbps 250kHz MODE IN THI |                     |
|     | 9.2.2.         |                                                  |                     |
|     | 9.2.3.         | TX ABOVE 1 GHz FOR GFSK 2Mbps 500kHz MODE IN THI |                     |
|     | 9.2.4.         | TX ABOVE 1 GHz FOR GFSK 2Mbps 320kHz MODE IN THI | E 2.4 GHz BAND92    |
|     | 9.3. TR        | RANSMITTER ABOVE 1 GHz – MODEL: A2541E24C        | 95                  |
|     | 9.3.1.         | TX ABOVE 1 GHz FOR GFSK 1Mbps 250kHz MODE IN THI |                     |
|     | 9.3.2.         | TX ABOVE 1 GHz FOR GFSK 1Mbps 160kHz MODE IN THI |                     |
|     | 9.3.3.         | TX ABOVE 1 GHz FOR GFSK 2Mbps 500kHz MODE IN THI |                     |
|     | 9.3.4.         | TX ABOVE 1 GHz FOR GFSK 2Mbps 320kHz MODE IN THI | E 2.4 GHz BAND .104 |
|     | 9. <i>4.</i> W | VORST-CASE BELOW 1 GHz                           | 107                 |
|     |                |                                                  |                     |
| 10  | . AC P         | POWER LINE CONDUCTED EMISSIONS                   | 109                 |
| 4.4 | CETI           | TUD DUOTOS                                       | 442                 |

REPORT NO: SR9723856A FCC ID: X7J-A13022601

# 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** ANAREN INC

6635 KIRKVILLE ROAD

EAST SYRACUSE, NY, 13057, USA

**EUT DESCRIPTION:** 2400-2483.5MHZ TRANSCEIVER

**MODEL:** A2541E24A & A2541E24C

SERIAL NUMBER: 203 & 204

**DATE TESTED:** 2013-04-16 to 2013-06-11

#### **APPLICABLE STANDARDS**

STANDARD TEST RESULTS

DATE: 2013-07-04

IC: 8975A-A13022601

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Michel Anto

Approved & Released For UL LLC By: Tested By:

Bob DeLisi Mike Antola

WiSE Principal Engineer WiSE Project Lead UL UL

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

DATE: 2013-07-04

IC: 8975A-A13022601

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Rd. Melville, NY 11747, USA.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at <a href="http://ts.nist.gov/standards/scopes/1002550.htm">http://ts.nist.gov/standards/scopes/1002550.htm</a>.

# 4. CALIBRATION AND UNCERTAINTY

# 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

#### 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

# 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                                              | UNCERTAINTY      |
|--------------------------------------------------------|------------------|
| Conducted Disturbance, 0.15 to 30 MHz                  | 3.52 dB          |
| Radiated Disturbance, 30 to 1000 MHz                   | 4.94 dB          |
| Radiated Emissions, 1-26GHz (worst case, Ground Plane) | ± 5.7, k=2 (95%) |

Uncertainty figures are valid to a confidence level of 95%.

Laboratories Inc.

# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

The EUT is a 2.4GHz transceiver that is manufactured by Anaren, Inc. with model numbers A2541E24A and A2541E24C. Models are identical except A2541E24A has an integral printed antenna and A2541E24C has a U.FL connector.

DATE: 2013-07-04

IC: 8975A-A13022601

# 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

| Model: A2541E24A |                   |          |              |              |  |  |
|------------------|-------------------|----------|--------------|--------------|--|--|
| Frequency Range  | Mode              | PA_Table | Output Power | Output Power |  |  |
| (MHz)            |                   | Value    | (dBm)        | (mW)         |  |  |
|                  |                   | (Hex)    |              |              |  |  |
| 2402 - 2480      | GFSK 2Mbps 500kHz | 0xCF     | 7.96         | 6.25         |  |  |
| 2402 - 2480      | GFSK 2Mbps 320kHz | 0xCF     | 7.93         | 6.21         |  |  |
| 2402 - 2480      | GFSK 1Mbps 250kHz | 0xCF     | 7.95         | 6.24         |  |  |
| 2402 - 2480      | GFSK 1Mbps 160kHz | 0xCF     | 7.99         | 6.30         |  |  |
| Model: A2541E240 |                   |          |              |              |  |  |
| Frequency Range  | Mode              | PA_Table | Output Power | Output Power |  |  |
| (MHz)            |                   | Value    | (dBm)        | (mW)         |  |  |
|                  |                   | (Hex)    |              |              |  |  |
| 2402 - 2480      | GFSK 2Mbps 500kHz | 0xC6     | 7.46         | 5.57         |  |  |
| 2402 - 2480      | GFSK 2Mbps 320kHz | 0xC6     | 7.39         | 5.48         |  |  |
| 2402 - 2480      | GFSK 1Mbps 250kHz | 0xC6     | 7.15         | 5.19         |  |  |
| 2402 - 2480      | GFSK 1Mbps 160kHz | 0xC6     | 7.23         | 5.28         |  |  |

# 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio of model A2541E24A utilizes an integral PCB antenna, with a maximum gain of 2 dBi.

The radio of model A2541E24C utilizes a monopole antenna, with a maximum gain of 3 dBi.

# 5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was rev. 1.0.00.

The test utility software used during testing was CC2541 Certification Test ver. 1.0.

Page 7 of 126

#### 5.5. WORST-CASE CONFIGURATION AND MODE

Conducted antenna port and power line conducted emission tests were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. Radiated emissions tests were performed at the highest output power setting per model (i.e. A2541E24A set to PA\_Table value 0xCF, A2541E24C set to PA\_Table value 0xC6).

DATE: 2013-07-04

IC: 8975A-A13022601

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z.

It was determined that Y orientation was worst-case orientation for Model A2541E24A; therefore, all final radiated testing was performed with the EUT in Y orientation.

It was determined that Z orientation was worst-case orientation for Model A2541E24C; therefore, all final radiated testing was performed with the EUT in Z orientation.

Based on the baseline scan, the worst-case data rates were:

- GFSK 2Mbps 500kHz
- GFSK 1Mbps 250kHz
- GFSK 2Mbps 320kHz
- GFSK 1Mbps 160kHz

All final testing was performed in each of these modes. Other data rates that are also deemed compliant are:

GFSK 250kbps 160kHz

# 5.6. DESCRIPTION OF TEST SETUP

#### **SUPPORT EQUIPMENT**

| Support Equipment List                              |        |              |                   |     |
|-----------------------------------------------------|--------|--------------|-------------------|-----|
| Description Manufacturer Model Serial Number FCC ID |        |              |                   |     |
| Test Board                                          | Anaren | A253X/A254X  | NA                | NA  |
| Laptop                                              | IBM    | Thinkpad T43 | 00045-636-421-009 | DoC |

DATE: 2013-07-04

IC: 8975A-A13022601

#### **I/O CABLES**

|             | I/O Cable List |                      |                   |            |                     |         |
|-------------|----------------|----------------------|-------------------|------------|---------------------|---------|
| Cable<br>No |                | # of identical ports | Connector<br>Type | Cable Type | Cable<br>Length (m) | Remarks |
|             |                | •                    | / *               |            |                     |         |

# **TEST SETUP**

The EUT is installed on a test board which is connected to a laptop computer during the tests. Test software exercised the radio module.

# **SETUP DIAGRAM FOR TESTS**



DATE: 2013-07-04

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: 2013-07-04

IC: 8975A-A13022601

| Radiated Emissions              |                   |                 |            |            |                 |
|---------------------------------|-------------------|-----------------|------------|------------|-----------------|
| Description                     | Manufacturer      | Model           | Identifier | Cal Date   | Cal Due<br>Date |
| 30-1000MHz                      |                   |                 |            |            |                 |
|                                 | Rohde &           |                 |            |            |                 |
| EMI Receiver                    | Schwarz           | ESIB26          | ME5B-081   | 2013-01-29 |                 |
| Log-P Antenna                   | Schaffner         | UPA6109         | 44067      | 2012-05-16 | 2013-06-30      |
| Bicon Antenna                   | Schaffner         | VBA6106A        | 43441      | 2012-11-12 | 2013-11-12      |
| Switch Driver                   | HP                | 11713A          | ME7A-627   | N/A        | N/A             |
| System Controller               | Sunol<br>Sciences | SC99V           | 44396      | N/A        | N/A             |
| Camera Controller               | Panasonic         | WV-CU254        | 44395      | N/A        | N/A             |
| RF Switch Box                   | UL                | 1               | 44398      | N/A        | N/A             |
| Measurement Software            | UL                | Version 9.5     | 44740      | N/A        | N/A             |
| Above 1GHz (Band Optimized Sy   |                   | VC131011 3.3    | 144140     | 14/73      | 11/7            |
| Above 10112 (Baria Optimized by | Rohde &           |                 |            |            |                 |
| EMI Receiver                    | Schwarz           | ESIB40          | 34968      | 2013-01-30 | 2014-01-31      |
| Horn Antenna (1-2 GHz)          | ETS               | 3161-01 (26°)** | 51442      | 2008-03-28 | See * below     |
| Horn Antenna (2-4 GHz)          | ETS               | 3161-02 (22°)** | 48107      | 2007-09-27 | See * below     |
| Horn Antenna (4-8 GHz)          | ETS               | 3161-03 (22°)** | 48106      | 2007-09-27 | See * below     |
| Horn Antenna (8-12 GHz)         | ETS               | 3160-07 (26°)** | 8933       | 2008-11-24 | See * below     |
| Horn Antenna (12-18 GHz)        | ETS               | 3160-08 (26°)** | 8932       | 2007-09-27 | See * below     |
| Horn Antenna (18-26.5 GHz)      | ETS               | 3160-09 (27°)** | 8947       | 2007-09-26 | See * below     |
| Signal Path Controller          | HP                | 11713A          | 50250      | N/A        | N/A             |
| Gain Controller                 | HP                | 11713A          | 50251      | N/A        | N/A             |
| RF Switch / Preamp Fixture      | UL                | BOMS1           | 50249      | N/A        | N/A             |
| System Controller               | UL                | BOMS2           | 50252      | N/A        | N/A             |
| Measurement Software            | UL                | Version 9.5     | 44740      | N/A        | N/A             |
| Temp/Humidity/Pressure Meter    | Cole Parmer       | 99760-00        | 4268       | 2012-12-22 | 2014-12-22      |

<sup>\* -</sup> Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than  $2D^2/\lambda$ . Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

<sup>\*\* -</sup> Number in parentheses denotes antenna beam width.

| Bench Tests                                                   |                 |          |       |            |                 |
|---------------------------------------------------------------|-----------------|----------|-------|------------|-----------------|
| l lescription   Manufacturer   Model   Identitier   Call late |                 |          |       |            | Cal Due<br>Date |
| RF Room 1                                                     |                 |          |       |            |                 |
| Spectrum Analyzer                                             | Agilent         | E4446A   | 72823 | 2013-01-29 | 2014-01-31      |
| Power Sensor                                                  | Rohde & Schwarz | NRP-Z81  | 73137 | 2013-01-30 | 2014-01-31      |
| Temp/Humidity/Pressure Meter                                  | Cole Parmer     | 99760-00 | 4268  | 2012-12-22 | 2014-12-22      |

| Conducted Emissions          |              |                  |            |            |                 |
|------------------------------|--------------|------------------|------------|------------|-----------------|
| Description                  | Manufacturer | Model            | Identifier | Cal Date   | Cal Due<br>Date |
| Conducted Emissions – GP 1   |              |                  |            |            |                 |
|                              | Rohde &      |                  |            |            |                 |
| EMI Receiver                 | Schwarz      | ESCI 7           | 75141      | 2013-01-30 | 2014-01-31      |
| LISN                         | Solar        | 9252-50-R-24-BNC | ME5A-636   | 2013-01-31 | 2014-01-31      |
| Switch Driver                | HP           | 11713A           | 44397      | N/A        | N/A             |
| RF Switch Box                | UL           | 4                | 44404      | N/A        | N/A             |
| Measurement Software         | UL           | Version 9.5      | 44736      | N/A        | N/A             |
| Temp/Humidity/Pressure Meter | Cole Parmer  | 99760-00         | 43734      | 2012-03-13 | 2014-03-13      |

# 7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

DATE: 2013-07-04

IC: 8975A-A13022601

#### **LIMITS**

None; for reporting purposes only.

# **PROCEDURE**

KDB 789033 Zero-Span Spectrum Analyzer Method.

# **RESULTS**

The EUT operates at 100% duty cycle

# 8. ANTENNA PORT TEST RESULTS

# 8.1. GFSK 1Mbps 250kHz MODE

#### **8.1.1. 6 dB BANDWIDTH**

#### **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% the EBW and the VBW is set to 3 times the RBW. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) |
|---------|--------------------|-------------------------|------------------------|
| Low     | 2402               | 0.8000                  | 0.5                    |
| Middle  | 2440               | 0.8080                  | 0.5                    |
| High    | 2480               | 0.8080                  | 0.5                    |

DATE: 2013-07-04

# **6 dB BANDWIDTH**



DATE: 2013-07-04



Swp

Center 2.480 000 GHz

opyright 2000-2010 Agilent Technologi

#Res BW 30 kHz

**#VBW 300 kHz** 

DATE: 2013-07-04

IC: 8975A-A13022601

More

1 of 2

Span 5 MHz

#Sweep 100 ms (601 pts)

#### 8.1.2. 99% BANDWIDTH

#### **LIMITS**

None; for reporting purposes only.

# **TEST PROCEDURE**

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

DATE: 2013-07-04

IC: 8975A-A13022601

#### **RESULTS**

| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 2402      | 1.0602        |
| Middle  | 2440      | 1.0535        |
| High    | 2480      | 1.0517        |

#### 99% BANDWIDTH



DATE: 2013-07-04



#Sweep 100 ms (601 pts)

x dB

99.00 % -26.00 dB

Occ BW % Pwr

#VBW 43 kHz

1.0517 MHz

18.821 kHz

1.274 MHz\*

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

DATE: 2013-07-04

# 8.1.3. OUTPUT POWER

#### **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

# **TEST PROCEDURE**

Peak power is measured using the maximum peak conducted output power procedure per section 9.1.1 specified in "558074 D01 DTS Meas Guidance v03" April 8, 2013.

DATE: 2013-07-04

IC: 8975A-A13022601

#### **RESULTS**

| Channel | Frequency | Peak Power | Offset | Total Peak | Limit | Margin  |
|---------|-----------|------------|--------|------------|-------|---------|
|         |           | Reading    |        | Power      |       |         |
|         | (MHz)     | (dBm)      | (dBm)  | (dBm)      | (dBm) | (dB)    |
| Low     | 2402      | -3.05      | 11.00  | 7.95       | 30    | -22.050 |
| Middle  | 2440      | -3.14      | 11.00  | 7.86       | 30    | -22.140 |
| High    | 2480      | -3.51      | 11.00  | 7.49       | 30    | -22.510 |

#### **OUTPUT POWER**



DATE: 2013-07-04



DATE: 2013-07-04

#### 8.1.4. AVERAGE POWER

# **LIMITS**

None; for reporting purposes only.

# **TEST PROCEDURE**

The transmitter output is connected to a power meter.

#### **RESULTS**

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: 2013-07-04

| Channel | Frequency<br>(MHz) | AV power<br>(dBm) |
|---------|--------------------|-------------------|
| Low     | 2402               | 7.81              |
| Middle  | 2440               | 7.66              |
| High    | 2480               | 7.33              |

#### 8.1.5. POWER SPECTRAL DENSITY

# **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: 2013-07-04

IC: 8975A-A13022601

#### **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option per section 10.2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", April 8, 2013.

#### **RESULTS**

| Channel | Frequency<br>(MHz) | PSD<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|---------|--------------------|--------------|----------------|----------------|
| Low     | 2402               | -4.12        | 8              | -12.12         |
| Middle  | 2440               | -4.31        | 8              | -12.31         |
| High    | 2480               | -4.71        | 8              | -12.71         |

# **POWER SPECTRAL DENSITY**



DATE: 2013-07-04



DATE: 2013-07-04

#### 8.1.6. CONDUCTED SPURIOUS EMISSIONS

# **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: 2013-07-04

IC: 8975A-A13022601

# **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

# **RESULTS**

#### SPURIOUS EMISSIONS, LOW CHANNEL



DATE: 2013-07-04

IC: 8975A-A13022601



I his report shall not be reproduced except in full, without the written approval of Underwriters

Laboratories Inc.

#### **SPURIOUS EMISSIONS, MID CHANNEL**



DATE: 2013-07-04



Page 29 of 126

# SPURIOUS EMISSIONS, HIGH CHANNEL



DATE: 2013-07-04



Page 30 of 126

# 8.2. GFSK 1Mbps 160kHz MODE

# **8.2.1. 6 dB BANDWIDTH**

#### **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the EBW and the VBW is set to 3 times the RBW. The sweep time is coupled.

DATE: 2013-07-04

IC: 8975A-A13022601

#### **RESULTS**

| Channel | Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) |
|---------|--------------------|-------------------------|------------------------|
| Low     | 2402               | 0.5070                  | 0.5                    |
| Middle  | 2440               | 0.5070                  | 0.5                    |
| High    | 2480               | 0.5070                  | 0.5                    |

# **6 dB BANDWIDTH**



DATE: 2013-07-04



DATE: 2013-07-04

#### 8.2.2. 99% BANDWIDTH

#### **LIMITS**

None; for reporting purposes only.

# **TEST PROCEDURE**

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

DATE: 2013-07-04

IC: 8975A-A13022601

# **RESULTS**

| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 2402      | 0.8990        |
| Middle  | 2440      | 0.8980        |
| High    | 2480      | 0.8900        |

#### 99% BANDWIDTH



DATE: 2013-07-04



DATE: 2013-07-04

#### 8.2.3. OUTPUT POWER

#### **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

## **TEST PROCEDURE**

Peak power is measured using the maximum peak conducted output power procedure per section 9.1.1 specified in "558074 D01 DTS Meas Guidance v03" April 8, 2013.

DATE: 2013-07-04

IC: 8975A-A13022601

| Channel | Frequency | Peak Power | Offset | Total Peak | Limit | Margin  |
|---------|-----------|------------|--------|------------|-------|---------|
|         |           | Reading    |        | Power      |       |         |
|         | (MHz)     | (dBm)      | (dBm)  | (dBm)      | (dBm) | (dB)    |
| Low     | 2402      | -3.01      | 11.00  | 7.99       | 30    | -22.010 |
| Middle  | 2440      | -3.09      | 11.00  | 7.91       | 30    | -22.090 |
| High    | 2480      | -3.48      | 11.00  | 7.52       | 30    | -22.480 |

#### **OUTPUT POWER**



DATE: 2013-07-04





#### 8.2.4. AVERAGE POWER

## **LIMITS**

None; for reporting purposes only.

## **TEST PROCEDURE**

The transmitter output is connected to a power meter.

## **RESULTS**

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: 2013-07-04

| Channel | Frequency<br>(MHz) | AV power<br>(dBm) |
|---------|--------------------|-------------------|
| Low     | 2402               | 7.82              |
| Middle  | 2440               | 7.68              |
| High    | 2480               | 7.34              |

#### 8.2.5. POWER SPECTRAL DENSITY

## **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: 2013-07-04

IC: 8975A-A13022601

#### **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option per section 10.2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", April 8, 2013.

| Channel | Frequency<br>(MHz) | PSD<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|---------|--------------------|--------------|----------------|----------------|
| Low     | 2402               | -2.26        | 8              | -10.26         |
| Middle  | 2440               | -2.39        | 8              | -10.39         |
| High    | 2480               | -2.71        | 8              | -10.71         |

#### **POWER SPECTRAL DENSITY**



DATE: 2013-07-04





#### 8.2.6. CONDUCTED SPURIOUS EMISSIONS

## **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: 2013-07-04

IC: 8975A-A13022601

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

## **RESULTS**

#### SPURIOUS EMISSIONS, LOW CHANNEL



DATE: 2013-07-04



# SPURIOUS EMISSIONS, MID CHANNEL



DATE: 2013-07-04



Page 46 of 126

#### SPURIOUS EMISSIONS, HIGH CHANNEL



DATE: 2013-07-04



Page 47 of 126

# 8.3. GFSK 2Mbps 500kHz MODE

#### 8.3.1. 6 dB BANDWIDTH

## **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the EBW and the VBW is set to 3 times the RBW. The sweep time is coupled.

DATE: 2013-07-04

IC: 8975A-A13022601

| Channel | Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) |
|---------|--------------------|-------------------------|------------------------|
| Low     | 2402               | 1.1920                  | 0.5                    |
| Middle  | 2440               | 1.2330                  | 0.5                    |
| High    | 2480               | 1.2420                  | 0.5                    |

## **6 dB BANDWIDTH**



DATE: 2013-07-04



#Res BW 51 kHz

opyright 2000-2010 Agilent Technologi

#Sweep 100 ms (601 pts)

**#VBW 300 kHz** 

DATE: 2013-07-04

IC: 8975A-A13022601

1 of 2

#### 8.3.2. 99% BANDWIDTH

## **LIMITS**

None; for reporting purposes only.

## **TEST PROCEDURE**

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

DATE: 2013-07-04

IC: 8975A-A13022601

| Channel | Frequency<br>(MHz) | 99% Bandwidth<br>(MHz) |
|---------|--------------------|------------------------|
| Low     | 2402               | 2.0729                 |
| Middle  | 2440               | 2.0820                 |
| High    | 2480               | 2.0799                 |

#### 99% BANDWIDTH



DATE: 2013-07-04





## 8.3.3. OUTPUT POWER

#### **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

## **TEST PROCEDURE**

Peak power is measured using the maximum peak conducted output power procedure per section 9.1.1 specified in "558074 D01 DTS Meas Guidance v03" April 8, 2013.

DATE: 2013-07-04

IC: 8975A-A13022601

| Channel | Frequency | Peak Power | Offset | Total Peak | Limit | Margin  |
|---------|-----------|------------|--------|------------|-------|---------|
|         |           | Reading    |        | Power      |       |         |
|         | (MHz)     | (dBm)      | (dBm)  | (dBm)      | (dBm) | (dB)    |
| Low     | 2402      | -3.04      | 11.00  | 7.96       | 30    | -22.040 |
| Middle  | 2440      | -3.12      | 11.00  | 7.88       | 30    | -22.120 |
| High    | 2480      | -3.5       | 11.00  | 7.50       | 30    | -22.500 |

#### **OUTPUT POWER**



DATE: 2013-07-04



Page 55 of 126

DATE: 2013-07-04

#### 8.3.4. AVERAGE POWER

## **LIMITS**

None; for reporting purposes only.

## **TEST PROCEDURE**

The transmitter output is connected to a power meter.

#### **RESULTS**

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: 2013-07-04

| Channel | Frequency<br>(MHz) | AV power<br>(dBm) |
|---------|--------------------|-------------------|
| Low     | 2402               | 7.75              |
| Middle  | 2440               | 7.61              |
| High    | 2480               | 7.27              |

#### 8.3.5. POWER SPECTRAL DENSITY

## **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: 2013-07-04

IC: 8975A-A13022601

#### **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option per section 10.2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", April 8, 2013.

| Channel | Frequency | PSD   | Limit | Margin |
|---------|-----------|-------|-------|--------|
|         | (MHz)     | (dBm) | (dBm) | (dB)   |
| Low     | 2402      | -7.79 | 8     | -15.79 |
| Middle  | 2440      | -7.79 | 8     | -15.79 |
| High    | 2480      | -8.29 | 8     | -16.29 |

## **POWER SPECTRAL DENSITY**



DATE: 2013-07-04



Copyright 2000-2010 Agilent Technologies

DATE: 2013-07-04

#### 8.3.6. CONDUCTED SPURIOUS EMISSIONS

#### **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: 2013-07-04

IC: 8975A-A13022601

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

## **RESULTS**

#### SPURIOUS EMISSIONS, LOW CHANNEL



DATE: 2013-07-04



#### **SPURIOUS EMISSIONS, MID CHANNEL**



DATE: 2013-07-04



Page 63 of 126

#### SPURIOUS EMISSIONS, HIGH CHANNEL



DATE: 2013-07-04



Page 64 of 126

# 8.4. GFSK 2Mbps 320kHz MODE

#### 8.4.1. 6 dB BANDWIDTH

## **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the EBW and the VBW is set to 3 times the RBW. The sweep time is coupled.

DATE: 2013-07-04

IC: 8975A-A13022601

| Channel | Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) |
|---------|--------------------|-------------------------|------------------------|
| Low     | 2402               | 0.7250                  | 0.5                    |
| Middle  | 2440               | 0.6580                  | 0.5                    |
| High    | 2480               | 0.7080                  | 0.5                    |

#### **6 dB BANDWIDTH**



DATE: 2013-07-04





#### 8.4.2. 99% BANDWIDTH

#### **LIMITS**

None; for reporting purposes only.

## **TEST PROCEDURE**

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

DATE: 2013-07-04

IC: 8975A-A13022601

| Channel | Frequency<br>(MHz) | 99% Bandwidth<br>(MHz) |
|---------|--------------------|------------------------|
| Low     | 2402               | 1.7386                 |
| Middle  | 2440               | 1.7276                 |
| High    | 2480               | 1.7372                 |

#### 99% BANDWIDTH



DATE: 2013-07-04



DATE: 2013-07-04

#### 8.4.3. OUTPUT POWER

#### **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

## **TEST PROCEDURE**

Peak power is measured using the maximum peak conducted output power procedure per section 9.1.1 specified in "558074 D01 DTS Meas Guidance v03" April 8, 2013.

DATE: 2013-07-04

IC: 8975A-A13022601

| Channel | Frequency | Peak Power | Offset | Total Peak | Limit | Margin  |
|---------|-----------|------------|--------|------------|-------|---------|
|         |           | Reading    |        | Power      |       |         |
|         | (MHz)     | (dBm)      | (dBm)  | (dBm)      | (dBm) | (dB)    |
| Low     | 2402      | -3.07      | 11.00  | 7.93       | 30    | -22.070 |
| Middle  | 2440      | -3.22      | 11.00  | 7.78       | 30    | -22.220 |
| High    | 2480      | -3.56      | 11.00  | 7.44       | 30    | -22.560 |

#### **OUTPUT POWER**



DATE: 2013-07-04





#### 8.4.4. AVERAGE POWER

### **LIMITS**

None; for reporting purposes only.

# **TEST PROCEDURE**

The transmitter output is connected to a power meter.

#### **RESULTS**

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: 2013-07-04

| Channel | Frequency<br>(MHz) | AV power<br>(dBm) |
|---------|--------------------|-------------------|
| Low     | 2402               | 7.8               |
| Middle  | 2440               | 7.65              |
| High    | 2480               | 7.31              |

#### 8.4.5. POWER SPECTRAL DENSITY

### **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: 2013-07-04

IC: 8975A-A13022601

#### **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option per section 10.2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", April 8, 2013.

#### **RESULTS**

| Channel | Frequency<br>(MHz) | PSD<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|---------|--------------------|--------------|----------------|----------------|
|         | (IVITZ)            | (ubiii)      | (ubili)        | (ub)           |
| Low     | 2402               | -3.37        | 8              | -11.37         |
| Middle  | 2440               | -3.52        | 8              | -11.52         |
| High    | 2480               | -3.79        | 8              | -11.79         |

#### **POWER SPECTRAL DENSITY**



DATE: 2013-07-04



Page 76 of 126



#### 8.4.6. CONDUCTED SPURIOUS EMISSIONS

### **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: 2013-07-04

IC: 8975A-A13022601

### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

#### SPURIOUS EMISSIONS, LOW CHANNEL



DATE: 2013-07-04



#### **SPURIOUS EMISSIONS, MID CHANNEL**



DATE: 2013-07-04



Page 80 of 126

# SPURIOUS EMISSIONS, HIGH CHANNEL



DATE: 2013-07-04



Page 81 of 126

# 9. RADIATED TEST RESULTS

#### 9.1. LIMITS AND PROCEDURE

#### **LIMITS**

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

| Frequency Range<br>(MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit (dBuV/m) at 3 m |
|--------------------------|---------------------------------------|--------------------------------------|
| 30 - 88                  | 100                                   | 40                                   |
| 88 - 216                 | 150                                   | 43.5                                 |
| 216 - 960                | 200                                   | 46                                   |
| Above 960                | 500                                   | 54                                   |

#### **TEST PROCEDURE**

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

DATE: 2013-07-04

IC: 8975A-A13022601

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For band edge measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

For spurious measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and the RMS Averaging method per KDB 558074 was utilized for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

# 9.2. TRANSMITTER ABOVE 1 GHz – MODEL: A2541E24A

# 9.2.1. TX ABOVE 1 GHz FOR GFSK 1Mbps 250kHz MODE IN THE 2.4 GHz BAND

DATE: 2013-07-04

IC: 8975A-A13022601

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









| Device:Transcei  | ver with Range E | xtender    |           |             |             |                                    |             |                                  |             |         |                |         |
|------------------|------------------|------------|-----------|-------------|-------------|------------------------------------|-------------|----------------------------------|-------------|---------|----------------|---------|
| Model:A2541E2    | 4A               |            |           |             |             |                                    |             |                                  |             |         |                |         |
| Job#:SR9723856   | Tested by: DC/R  | М          |           |             |             |                                    |             |                                  |             |         |                |         |
| GFSK 1Mbps 25    | OkHz             |            |           |             |             |                                    |             |                                  |             |         |                |         |
| Low Channel - 24 | 1028411-         |            |           |             |             |                                    |             |                                  |             |         |                |         |
| Low Channel - 24 | IOZIVINZ         |            |           |             |             |                                    |             |                                  |             |         |                |         |
| Test Frequency   |                  |            | AF [dB/m] |             | dB(uVolts/r | FCC Part 15<br>Subpart C<br>15.209 | Margin (dB) |                                  | Margin (dB) |         | [cm]           | Polarit |
| 4803.639         | 77.7             |            | 27.1      |             |             |                                    | -           | 74                               |             |         |                | Horz    |
| 4804.127         | 76.93            |            | 27.1      | -52.17      | 51.86       |                                    | -           | 74                               |             |         |                | Vert    |
| 12011.673        | 62.21            | PK2        | 37.2      | -47.78      | 51.63       | -                                  | -           | 74                               | -22.37      | 283     | 287            | Vert    |
| 12011.028        | 60.78            | PK2        | 37.2      | -47.81      | 50.17       | -                                  | -           | 74                               | -23.83      | 248     | 236            | Horz    |
| 4804.102         | 73.58            | MAv1       | 27.1      | -52.17      | 48.51       | 54                                 | -5.49       | -                                | -           | 291     | 313            | Horz    |
| 4804.113         | 72.3             | MAv1       | 27.1      | -52.17      | 47.23       | 54                                 | -6.77       | -                                | -           | 10      | 230            | Vert    |
| 12011.347        | 52.16            | MAv1       | 37.2      | -47.79      | 41.57       | 54                                 | -12.43      | -                                | -           | 283     | 287            | Vert    |
| 12009.099        | 51.48            | MAv1       | 37.2      | -47.9       | 40.78       | 54                                 | -13.22      | -                                | -           | 248     | 236            | Horz    |
| Mid Channel - 24 | I40MHz           |            |           |             |             |                                    |             |                                  |             |         |                |         |
| Test Frequency   | Meter Reading    | Detector   | AF [dB/m] | BOMS Factor | dB(uVolts/r | FCC Part 15<br>Subpart C<br>15.209 | Margin (dB) | FCC Part 15<br>Subpart C<br>Peak | Margin (dB) | Azimuth | Height<br>[cm] | Polarit |
| 4880.2646        | 78.5             | PK2        | 27.2      | -52.12      | 53.58       | -                                  | -           | 74                               | -20.42      | 302     |                | Horz    |
| 4880.1907        | 76.61            | PK2        | 27.2      | -52.12      | 51.69       | -                                  | -           | 74                               |             |         | 221            | Vert    |
| 7319.26          | 79.68            | PK2        | 28        | -51.12      | 56.56       | -                                  | -           | 74                               | -17.44      | 265     | 102            | Vert    |
| 7319.28          | 80.05            | PK2        | 28        | -51.12      | 56.93       | -                                  | -           | 74                               | -17.07      | 241     | 289            | Horz    |
| 12201.319        | 61.1             | PK2        | 37.2      | -47.38      | 50.92       | -                                  | -           | 74                               | -23.08      | 301     | 366            | Vert    |
| 12201.129        | 59.92            | PK2        | 37.2      | -47.37      | 49.75       | -                                  | -           | 74                               | -24.25      | 251     | 387            | Horz    |
| 4880.208         | 74.38            | MAv1       | 27.2      | -52.12      | 49.46       | 54                                 | -4.54       | -                                | -           | 302     | 304            | Horz    |
| 4879.9788        | 72.42            | MAv1       | 27.2      | -52.12      | 47.5        | 54                                 | -6.5        | -                                | -           | 268     | 221            | Vert    |
| 7319.631         | 75.33            | MAv1       | 28        | -51.12      | 52.21       | 54                                 | -1.79       | -                                | -           | 265     | 102            | Vert    |
| 7319.49          | 75.91            | MAv1       | 28        | -51.12      | 52.79       | 54                                 | -1.21       | -                                | -           | 241     | 289            | Horz    |
| 12201.094        | 50.39            | MAv1       | 37.2      | -47.37      | 40.22       | 54                                 | -13.78      | -                                | -           | 301     | 366            | Vert    |
| 12201.182        | 49.56            | MAv1       | 37.2      | -47.38      | 39.38       | 54                                 | -14.62      | -                                | -           | 251     | 387            | Horz    |
| High Channel - 2 | 480MHz           |            |           |             |             |                                    |             |                                  |             |         |                |         |
| Test Frequency   |                  |            |           |             | dB(uVolts/r |                                    | Margin (dB) |                                  | Margin (dB) |         | [cm]           | Polarit |
| 4959.782         | 78.9             |            | 27.3      | -51.95      |             | -                                  | -           | 74                               |             |         |                | Horz    |
| 4959.68          | 78.74            |            | 27.3      |             | 54.09       |                                    | -           | 74                               |             |         |                | Vert    |
| 7439.4           | 74.48            |            | 28.1      |             |             |                                    | -           | 74                               |             |         |                | Horz    |
| 7440.502         | 74.87            |            | 28.1      |             | 52.1        |                                    | -           | 74                               |             |         |                | Vert    |
| 12401.438        | 59.94            |            | 37.2      | -47.64      | 49.5        |                                    | -           | 74                               |             |         |                | Vert    |
| 12398.903        | 58.4             |            | 37.2      | -47.48      | 48.12       |                                    | -           | 74                               |             |         |                | Horz    |
| 4960.145         |                  | MAv1       | 27.3      |             |             |                                    |             |                                  | -           | 296     |                | Horz    |
| 4960.139         | 74.74            |            | 27.3      |             |             |                                    | -3.9        |                                  | -           | 278     |                | Vert    |
| 7439.54          |                  |            | 28.1      | -50.85      | 46.98       |                                    | -7.02       |                                  | -           | 326     |                | Horz    |
| 7439.51          |                  | MAv1       | 28.1      | -50.85      | 47.48       |                                    | -6.52       |                                  | -           | 91      |                | Vert    |
| 12398.978        | 48.89            |            | 37.2      | -47.49      | 38.6        |                                    |             |                                  | -           | 311     |                | Vert    |
| 12398.888        | 48.87            | MAv1       | 37.2      | -47.48      | 38.59       | 54                                 | -15.41      | -                                | -           | 248     | 120            | Horz    |
| PK2 - KDB55807   | 4 v02 10.2.3.2/8 | .1.1 Metho | d: Maximu | m Peak      |             |                                    |             |                                  |             |         |                |         |
|                  | 74 v02 10.2.3.2/ |            |           |             |             |                                    |             |                                  |             |         |                |         |

# 9.2.2. TX ABOVE 1 GHz FOR GFSK 1Mbps 160kHz MODE IN THE 2.4 GHz BAND

DATE: 2013-07-04

IC: 8975A-A13022601

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)







DATE: 2013-07-04

IC: 8975A-A13022601



| Device:Transcei  | ver with Range E       | xtender    |             |                |                      |                                    |             |                                  |                       |         |        |               |
|------------------|------------------------|------------|-------------|----------------|----------------------|------------------------------------|-------------|----------------------------------|-----------------------|---------|--------|---------------|
| Model:A2541E2    | -                      | xtemoer    |             |                |                      |                                    |             |                                  |                       |         |        |               |
|                  | Tested by: AA/         | RM         |             |                |                      |                                    |             |                                  |                       |         |        |               |
| GFSK 1Mbps 16    |                        |            |             |                |                      |                                    |             |                                  |                       |         |        |               |
|                  |                        |            |             |                |                      |                                    |             |                                  |                       |         |        |               |
| Low Channel - 24 | 102MHz                 |            |             |                |                      |                                    |             |                                  |                       |         |        |               |
| Test Frequency   | Meter Reading          | Detector   | AF [dB/m]   | BOMS<br>Factor | dB(uVolts/r          | FCC Part 15<br>Subpart C<br>15.209 | Margin (dB) | FCC Part 15<br>Subpart C<br>Peak | Margin (dB)           | Azimuth | Height | Polari        |
| 4804.303         | 78.28                  | PK2        | 27.1        | -52.2          | 53.22                | -                                  | -           | 74                               | -20.78                | 283     | 284    | Horz          |
| 4804.1227        | 75.54                  | PK2        | 27.1        | -52.2          | 50.47                | -                                  |             | 74                               | -23.53                | 265     | 202    | Vert          |
| 12010.785        | 62.4                   | PK2        | 37.2        | -47.8          | 51.78                |                                    | -           | 74                               | -22.22                | 243     | 357    | Horz          |
| 12010.887        | 62.45                  | PK2        | 37.2        | -47.8          | 51.83                | -                                  | -           | 74                               | -22.17                | 296     | 263    | Vert          |
| 4804.044         | 75.11                  | MAv1       | 27.1        | -52.2          | 50.04                | 54                                 | -3.96       | -                                | -                     | 283     | 284    | Horz          |
| 4804.0135        | 71.66                  |            | 27.1        |                | 46.59                | 54                                 | -7.41       | -                                | -                     | 265     |        | Vert          |
| 12010.716        |                        | MAv1       |             | -47.8          | 42.57                | 54                                 |             | -                                | _                     | 243     |        | Horz          |
| 12010.704        | 52.58                  |            |             | -47.8          | 41.96                | 54                                 |             | -                                | -                     | 296     |        | Vert          |
|                  |                        |            |             |                |                      |                                    |             |                                  |                       |         |        |               |
| Mid Channel - 24 | 140MHz                 |            |             |                |                      |                                    |             |                                  |                       |         |        |               |
|                  |                        |            |             | BOMS<br>Factor |                      | FCC Part 15<br>Subpart C           |             | FCC Part 15<br>Subpart C         |                       | Azimuth | _      |               |
|                  | Meter Reading          |            | AF [dB/m]   |                | dB(uVolts/r          | 15.209                             | Margin (dB) | Peak                             | Margin (dB)           | [Degs]  | [cm]   | Polar         |
| 4879.8577        | 78.3                   |            | 27.2        | -52.1          | 53.38                | -                                  | -           | 74                               | -20.62                | 300     |        | Horz          |
| 4879.7695        | 76.32                  | PK2        | 27.2        | -52.1          | 51.4                 | -                                  | -           | 74                               | -22.6                 | 261     | 269    | Vert          |
| 7318.5611        | 79                     | PK2        | 28          | -52.3          | 54.66                | -                                  | -           | 74                               | -19.34                | 242     | 298    | Horz          |
| 7318.7013        | 80.43                  | PK2        | 28          | -52.3          | 56.09                | -                                  | -           | 74                               | -17.91                | 94      | 187    | Vert          |
| 12199.65         | 61.14                  | PK2        | 37.2        | -47.3          | 51.06                | -                                  | -           | 74                               | -22.94                | 237     | 326    | Horz          |
| 12200.002        | 60.97                  | PK2        | 37.2        | -47.3          | 50.87                | -                                  | -           | 74                               | -23.13                | 299     | 302    | Vert          |
| 4880.0811        | 75.1                   | MAv1       | 27.2        | -52.1          | 50.18                | 54                                 | -3.82       | -                                | -                     | 300     | 363    | Horz          |
| 4879.995         | 72.74                  | MAv1       | 27.2        | -52.1          | 47.82                | 54                                 | -6.18       | -                                | -                     | 261     | 269    | Vert          |
| 7318.7916        | 74.09                  | MAv1       | 28          | -52.3          | 49.75                | 54                                 | -4.25       | -                                | -                     | 242     | 298    | Horz          |
| 7318.7714        | 74.56                  | MAv1       | 28          | -52.3          | 50.22                | 54                                 | -3.78       | -                                | -                     | 94      | 187    | Vert          |
| 12199.411        | 49.98                  | MAv1       | 37.2        | -47.3          | 39.91                | 54                                 | -14.09      | -                                | -                     | 237     | 326    | Horz          |
| 12200.498        | 50.19                  | MAv1       | 37.2        | -47.3          | 40.06                | 54                                 | -13.94      | -                                | -                     | 299     | 302    | Vert          |
| High Channel - 2 | 480MHz                 |            |             |                |                      |                                    |             |                                  |                       |         |        |               |
|                  |                        |            |             |                |                      |                                    |             |                                  |                       |         |        |               |
|                  |                        | <b>.</b>   | 45 ( ID / 1 | BOMS<br>Factor | 10/ 1/ 1/            | FCC Part 15<br>Subpart C           |             | FCC Part 15<br>Subpart C         |                       | Azimuth | _      |               |
| 4960.2866        | Meter Reading<br>79.12 |            |             | -51.9          | dB(uVolts/r<br>54.48 | 15.209                             | Margin (dB) | Реак<br>74                       | Margin (dB)<br>-19.52 | [Degs]  | [cm]   | Polar<br>Horz |
| 4959.9038        | 79.12                  |            | 27.3        | -51.9<br>-52   | 54.48                | -                                  | -           | 74                               | -19.52<br>-20.55      | 258     |        | Vert          |
|                  |                        |            |             |                |                      |                                    | -           |                                  |                       |         |        |               |
| 7441.4329        |                        |            | 28.1        |                |                      |                                    | -           |                                  | -22.81                |         |        |               |
| 7441.3728        |                        |            |             | -52.1          |                      | -                                  | -           | 74                               |                       | 273     |        | Horz          |
| 12399.699        |                        |            |             | -47.5          |                      |                                    | -           | 74<br>74                         |                       |         |        | Horz          |
| 12400.878        |                        |            |             | -47.6          |                      |                                    | 1 07        | /4                               | -23.61                | 298     |        | Vert          |
| 4960.0872        |                        | MAv1       | 27.3        |                |                      | 54                                 |             | -                                | -                     | 300     |        | Horz          |
| 4960.1814        |                        | MAv1       |             | -51.9          |                      | 54                                 |             |                                  |                       | 258     |        | Vert          |
| 7441.2626        |                        | MAv1       |             | -52.1          |                      | 54                                 |             |                                  | -                     | 92      |        | Vert          |
| 7441.3427        |                        | MAv1       |             | -52.1          |                      | 54                                 |             |                                  | -                     | 273     |        | Horz          |
| 12399.586        |                        | MAv1       |             | -47.5          |                      | 54                                 |             |                                  | -                     | 247     |        | Horz          |
| 12400.747        | 50.24                  | MAv1       | 37.2        | -47.6          | 39.84                | 54                                 | -14.16      | -                                | -                     | 298     | 326    | Vert          |
| PK2 - KDB55807   | 4 v02 10.2.3.2/8       | .1.1 Metho | d: Maximu   | m Peak         |                      |                                    |             |                                  |                       |         |        |               |
|                  | 74 v02 10.2.3.2        |            |             |                | A                    |                                    |             |                                  |                       |         |        |               |

Page 88 of 126

# 9.2.3. TX ABOVE 1 GHz FOR GFSK 2Mbps 500kHz MODE IN THE 2.4 GHz BAND

DATE: 2013-07-04

IC: 8975A-A13022601

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









| ## 4804.08   69.53   PKZ   27.1   -52.2   44.46   .   .   .   .   .   .   .   .   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | ver with Range E | xtender   |           |        |             |             |             |             |             |         |        |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-----------|-----------|--------|-------------|-------------|-------------|-------------|-------------|---------|--------|--------|
| Company   Comp   |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| BolMs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | RM        |           |        |             |             |             |             |             |         |        |        |
| Test Frequency   Meter Reading   Detector   AF [68]/m   [68]   dB    d   | GFSK 2Mbps 50    | 0kHz             |           |           |        |             |             |             |             |             |         |        |        |
| Test Frequency Meter Reading Detector AF [d8/m] [d8] d8[uVolts/r] 15.009 Margin (d8] Peak Margin (d8] Elegal [cm] Polar (d8) 4804.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low Channel - 24 | 102MHz           |           |           |        |             |             |             |             |             |         |        |        |
| Test Frequency Meter Reading Detector AF [d8/m] [d8] d8[uVolts/r] 15.009 Margin (d8] Peak Margin (d8] Elegal [cm] Polar (d8) 4804.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| Test Frequency Meter Reading Detector AF [d8]/m] [d8] dB[Wotts/r] 15.209 Margin [d8] Peak Margin [d8] Degs] [cm] Polar 4804.08 69.53 PK2 27.1 52.2 50.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| ## 4804.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                  |           |           |        |             |             |             |             |             |         | _      |        |
| ## 4804.1165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                  |           |           |        |             | 15.209      | Margin (dB) |             |             | [Degs]  |        | Polari |
| 12012.413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                  |           |           |        |             | -           | -           |             |             |         |        |        |
| 12007.811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4804.1165        | 75.84            | PK2       | 27.1      | -52.2  | 50.77       | -           | -           | 74          | -23.23      | 11      | 345    | Vert   |
| 4804.1315 62.09 MAv1 27.1 -52.2 37.02 54 -16.98 360 350 Horz 4804.083 70.17 MAv1 27.1 -52.2 45.1 54 8.9 11 345 Vert 12012.41 50.91 MAv1 37.2 47.7 40.37 54 -13.63 - 281 377 Vert 12007.776 50.05 MAv1 37.2 48 39.29 54 -14.71 250 200 Horz 12007.776 50.05 MAv1 37.2 48 39.29 54 -14.71 250 200 Horz 12007.776 50.05 MAv1 37.2 48 39.29 54 -14.71 250 200 Horz 12007.776 50.05 MAv1 37.2 48 39.29 54 -14.71 250 200 Horz 12007.776 50.05 MAv1 57.2 48 39.29 54 -14.71 250 200 Horz 12007.776 50.05 MAv1 57.2 48 39.29 54 -14.71 250 200 Horz 12007.776 50.05 MAv1 57.2 48 39.29 54 -14.71 250 200 Horz 12007.776 50.05 MAv1 57.2 48 39.29 54 -14.71 5.2 50.05 Margin (dB) Peak Margin (dB) [Degs] [mm] Polar 4879.9769 77.49 PK2 27.2 -52.1 52.57 - 74 -24.31 249 178 Vert 17318.66 73.83 PK2 28 -51.1 50.7 - 74 -24.31 249 178 Vert 17318.66 73.83 PK2 28 -51.1 50.7 - 74 -23.3 121 366 Vert 17318.66 73.83 PK2 28 -51.1 50.7 - 74 -23.26 309 398 Horz 17318.66 PK2 33.2 48.5 50.74 74 -23.26 309 398 Horz 17318.94 FK2 38.0057 72.04 MAv1 27.2 -52.1 47.12 54 6.58 74 -27.42 360 246 Vert 17318.94 76.5 MAv1 27.2 -52.1 43.86 54 -10.14 24.8 178 Vert 17318.95 68.2 MAv1 27.2 -52.1 43.86 54 -10.14 24.8 178 Vert 17318.95 68.2 MAv1 28 -51.1 50.0 54 -8.92 1211 386 Vert 17318.95 68.2 MAv1 33.2 -48.5 50.14 4.7 54 -11.53 30.9 398 Horz 17318.95 68.2 MAv1 33.2 -48.5 50.14 4.7 54 -11.53 30.9 398 Horz 17318.95 68.2 MAv1 33.2 -48.5 50.14 50.0 54 -8.92 1211 386 Vert 17318.95 68.2 MAv1 33.2 -48.5 50.14 50.0 54 -8.92 121 386 Vert 17318.95 68.2 MAv1 33.2 -48.5 50.14 50.0 54 -8.92 121 386 Vert 17318.95 68.2 MAv1 33.2 -48.5 50.14 50.0 54 -8.92 121 386 Vert 17318.95 68.2 MAv1 33.2 -48.5 50.14 50.0 54 -8.92 121 386 Vert 17318.95 68.2 MAv1 33.2 -48.5 50.15 50.0 54 -8.92 121 386 Vert 17318.95 68.2 MAv1 33.2 -48.5 50.5 54 -10.14 20.0 30.3 391 Horz 17318.95 77.96 PK2 28.1 -50.8 53.25 74 -20.03 303 391 Horz 17318.95 77.96 PK2 28.1 -50.8 53.25 74 -20.03 303 391 Horz 17318.95 77.96 PK2 28.1 -50.8                                                                                                     | 12012.413        | 61.06            | PK2       | 37.2      | -47.7  | 50.52       | -           | -           | 74          | -23.48      | 281     | 377    | Vert   |
| AB04.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12007.811        | 60.68            | PK2       | 37.2      | -48    | 49.92       | -           | -           | 74          | -24.08      | 250     | 200    | Horz   |
| 12012.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4804.1315        | 62.09            | MAv1      | 27.1      | -52.2  | 37.02       | 54          | -16.98      | -           | -           | 360     | 350    | Horz   |
| Mid Channel - 2440MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4804.083         | 70.17            | MAv1      | 27.1      | -52.2  | 45.1        | 54          | -8.9        | -           | -           | 11      | 345    | Vert   |
| Mid Channel - 2440MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12012.41         | 50.91            | MAv1      | 37.2      | -47.7  | 40.37       | 54          | -13.63      | -           | -           | 281     | 377    | Vert   |
| Roms   Factor   Reduction   Pack   Reduction   Pack   Reduction   Pack   Reduction   Red   | 12007.776        | 50.05            | MAv1      | 37.2      | -48    | 39.29       | 54          | -14.71      | -           | -           | 250     | 200    | Horz   |
| Roms   Factor   Reduction   Pack   Reduction   Pack   Reduction   Pack   Reduction   Red   | Mid Channel - 24 | 140MHz           |           |           |        |             |             |             |             |             |         |        |        |
| Test Frequency Meter Reading Detector AF [dB/m] [dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | <del></del>      |           |           |        |             |             |             |             |             |         |        |        |
| Test Frequency Meter Reading Agreement Pick Frequency Agreement Pick Fr |                  |                  |           |           | BOMS   |             | FCC Part 15 |             | FCC Part 15 |             |         |        |        |
| Test Frequency Meter Reading 4879.9769 77.49 PK2 27.2 -52.1 52.57 - 74 -21.43 290 359 Horz 4879.9769 77.49 PK2 27.2 -52.1 52.57 - 74 -21.43 290 359 Horz 7318.62 81.4 PK2 28 -51.1 58.27 - 74 -15.73 222 386 Horz 7318.66 73.83 PK2 28 -51.1 50.7 - 74 -23.3 121 386 Vert 9758.2008 66.01 PK2 33.2 -48.5 50.74 - 74 -23.3 121 386 Vert 4880.0257 72.04 MAv1 27.2 -52.1 43.86 54 -6.88 - 74 -27.42 360 246 Vert 7318.94 76.5 MAv1 28 -51.1 53.38 54 -0.62 - 222 386 Horz 7318.85 68.2 MAv1 28 -51.1 53.38 54 -0.62 - 222 386 Horz 7318.85 68.2 MAv1 33.2 -48.5 50.74 - 10.14 - 228 380 Horz 7318.85 68.2 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.2309 577.74 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                  |           |           | Factor |             | Subpart C   |             | Subpart C   |             | Azimuth | Height |        |
| 4879.9769 77.49 PK2 27.2 -52.1 52.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test Frequency   | Meter Reading    | Detector  | AF [dB/m] | [dB]   | dB(uVolts/r |             | Margin (dB) | Peak        | Margin (dB) | [Degs]  | [cm]   | Polari |
| 7318.62 81.4 PK2 28 -51.1 58.27 74 -15.73 222 386 Horz 7318.66 73.83 PK2 28 -51.1 50.7 74 -23.3 121 386 Vert 9758.2008 66.01 PK2 33.2 -48.5 50.74 74 -23.26 309 398 Horz 9758.3311 61.86 PK2 33.2 -48.5 46.58 74 -27.42 360 246 Vert 4880.0257 72.04 MAv1 27.2 -52.1 47.12 54 -6.88 290 359 Horz 4880.0934 68.78 MAv1 27.2 -52.1 43.86 54 -10.14 - 248 178 Vert 7318.94 76.5 MAv1 28 -51.1 53.38 54 -0.62 - 222 386 Horz 7318.85 68.2 MAv1 28 -51.1 45.08 54 -8.92 121 386 Vert 9758.2209 57.74 MAv1 33.2 -48.5 36.22 54 -11.53 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert 9758.3386 71.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert 9758.3386 71.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert 9758.3386 71.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert 9758.3386 71.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert 9758.3386 975 9758.3386 975 9758.3386 975 9758.3386 975 9758.3386 975 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 975 9759 9758.3386 9759 9758.3386 9759 9759 9758.3386 9759 9758.3386 9759 9758 9759 9758 9759 9758 9759 9758 9759 9758 9759 9758 9759 9758 9759 9758 9759 9758 9759 9759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | _                |           |           |        |             |             |             |             |             |         |        |        |
| 7318.62 81.4 PK2 28 -51.1 58.27 74 -15.73 222 386 Horz 7318.66 73.83 PK2 28 -51.1 50.7 - 74 -23.3 121 386 Vert 9758.2008 66.01 PK2 33.2 -48.5 50.74 74 -23.26 309 398 Horz 9758.3311 61.86 PK2 33.2 -48.5 46.58 - 74 -27.42 360 246 Vert 4880.0257 72.04 MAv1 27.2 -52.1 47.12 54 -6.88 290 359 Horz 4880.0934 68.78 MAv1 27.2 -52.1 43.86 54 -10.14 - 248 178 Vert 7318.94 76.5 MAv1 28 -51.1 53.38 54 -0.62 - 222 386 Horz 7318.85 68.2 MAv1 28 -51.1 53.38 54 -0.62 - 222 386 Horz 9758.2209 57.74 MAv1 33.2 -48.5 36.22 54 -11.53 309 398 Horz 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert High Channel - 2480MHz  **BOMS** Factor** Subpart C** AF [dB/m] [dB] dB/UVolts/r 15.209 Margin (dB) Peak Margin (dB) [Degs] [cm] Polai 4960.912 78.58 PK2 27.3 -51.9 53.97 74 -22.47 262 283 Vert 7438.557 75.96 PK2 28.1 -50.8 53.25 74 -22.47 262 283 Vert 7438.557 75.96 PK2 28.1 -50.8 53.25 74 -22.47 262 283 Vert 7438.557 75.96 PK2 28.1 -50.8 53.25 74 -22.47 262 283 Vert 7438.557 75.27 PK2 28.1 -50.8 52.56 74 -22.47 262 283 Vert 7438.577 75.27 PK2 28.1 -50.8 52.56 74 -22.47 262 283 Vert 7438.587 75.56 MAv1 27.3 -51.9 53.97 74 -22.47 262 283 Vert 7438.587 75.96 PK2 28.1 -50.8 53.25 74 -22.47 262 283 Vert 7438.587 75.56 MAv1 27.3 -51.9 48.94 54 -5.06 303 391 Horz 7438.848 70.97 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81.04 Vert                                                                                                          | 4880.05          | 74.61            | PK2       | 27.2      | -52.1  | 49.69       |             | -           | 74          | -24.31      | 248     | 178    | Vert   |
| 7318.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                  |           |           |        | 58.27       |             | -           | 74          |             | 222     | 386    | Horz   |
| 9758.2008 66.01 PK2 33.2 -48.5 50.74 74 -23.26 309 398 Horz 9758.3311 61.86 PK2 33.2 -48.5 46.58 74 -27.42 360 246 Vert 4880.0257 72.04 MAv1 27.2 -52.1 47.12 54 -6.88 290 359 Horz 4880.0934 68.78 MAv1 27.2 -52.1 43.86 54 -10.14 248 178 Vert 7318.94 76.5 MAv1 28 -51.1 53.38 54 -0.62 222 386 Horz 7318.85 68.2 MAv1 28 -51.1 45.08 54 -8.92 121 386 Vert 9758.2209 57.74 MAv1 33.2 -48.5 42.47 54 -11.53 309 398 Horz 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert High Channel - 2480MHz    BOMS   FCC Part 15   Subpart C   Margin (dB) Peak   M                                 |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| 9758.3311 61.86 PK2 33.2 -48.5 46.58 74 -27.42 360 246 Vert 4880.0257 72.04 MAv1 27.2 -52.1 47.12 54 -6.88 290 359 Horz 4880.0934 68.78 MAv1 27.2 -52.1 43.86 54 -10.14 - 24.8 178 Vert 7318.94 76.5 MAv1 28 -51.1 53.38 54 -0.62 222 336 Horz 7318.85 68.2 MAv1 28 -51.1 45.08 54 -8.92 121 386 Vert 9758.2209 57.74 MAv1 33.2 -48.5 42.47 54 -11.53 30.9 398 Horz 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 398 Horz 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 398 Horz 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 - 30.9 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                  |           |           |        |             |             | -           |             |             |         |        |        |
| 4880.0257 72.04 MAv1 27.2 -52.1 47.12 54 -6.88 290 359 Horz 4880.0934 68.78 MAv1 27.2 -52.1 43.86 54 -10.14 248 178 Vert 7318.94 76.5 MAv1 28 -51.1 53.38 54 -0.62 222 386 Horz 7318.85 68.2 MAv1 28 -51.1 45.08 54 -8.92 121 386 Vert 9758.2209 57.74 MAv1 33.2 -48.5 42.47 54 -11.53 309 398 Horz 9758.3386 51.5 MAv1 33.2 -48.5 42.47 54 -11.53 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 542.47 54 -17.78 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 542.47 54 -17.78 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 542.47 54 -17.78 360 246 Vert 9758.3386 51.5 MAv1 33.2 -48.5 542.47 54 -17.78 360 246 Vert 9758.3386 51.5 MAv1 53.2 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 5                                         |                  |                  |           |           |        |             |             | -           |             |             |         |        |        |
| 4880.0934 68.78 MAv1 27.2 -52.1 43.86 54 -10.14 248 178 Vert 7318.94 76.5 MAv1 28 -51.1 53.38 54 -0.62 222 386 Horz 7318.85 68.2 MAv1 28 -51.1 45.08 54 -8.92 121 386 Vert 9758.2209 57.74 MAv1 33.2 -48.5 42.47 54 -11.53 309 398 Horz 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert  High Channel - 2480MHz  BOMS Factor AF [dB/m] [dB] dB(uVolts/r 15.209 Margin (dB) Peak Margin (dB) [Degs] [cm] Polar 4960.912 78.58 PK2 27.3 -51.9 53.97 74 -20.03 303 391 Horz 4959.8 76.18 PK2 27.3 -52 51.53 74 -20.75 304 387 Horz 7438.557 75.96 PK2 28.1 -50.8 53.25 74 -20.75 304 387 Horz 4960.626 73.56 MAv1 27.3 -51.9 48.94 54 -5.06 303 391 Horz 4959.424 70.52 MAv1 28.1 -50.8 48.94 54 -5.06 303 391 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.9 46.7 54 -7.3 81 204 Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| 7318.94 76.5 MAv1 28 -51.1 53.38 54 -0.62 222 386 Horz 7318.85 68.2 MAv1 28 -51.1 45.08 54 -8.92 121 386 Vert 9758.2209 57.74 MAv1 33.2 -48.5 42.47 54 -11.53 30.9 398 Horz 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert High Channel - 2480MHz    BOMS   Factor   G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B    G B                    |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| 7318.85 68.2 MAv1 28 -51.1 45.08 54 -8.92 121 386 Vert 9758.2209 57.74 MAv1 33.2 -48.5 42.47 54 -11.53 309 398 Horz 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert  High Channel - 2480MHz  Test Frequency Meter Reading Detector AF [dB/m] [dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| 9758.2209 57.74 MAv1 33.2 -48.5 42.47 54 -11.53 309 398 Horz 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert  High Channel - 2480MHz  BOMS Factor [dB] dB(uVolts/r 15.209 Margin (dB) Peak Margin (dB) [Degs] [cm] Polar 4960.912 78.58 PK2 27.3 -51.9 53.97 74 -20.03 303 391 Horz 7438.557 75.96 PK2 28.1 -50.8 53.25 74 -20.75 304 387 Horz 7438.577 75.27 PK2 28.1 -50.8 52.56 74 -21.44 81 204 Vert 4960.626 73.56 MAv1 27.3 -51.9 48.94 54 -5.06 303 391 Horz 4959.424 70.52 MAv1 27.3 -52 45.86 54 -8.14 26.2 283 Vert 7438.848 70.97 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.9 46.7 54 -7.3 81 204 Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| 9758.3386 51.5 MAv1 33.2 -48.5 36.22 54 -17.78 360 246 Vert  High Channel - 2480MHz  BOMS Factor [dB] dB(uVolts/r 15.209 Margin (dB) Peak Margin (dB) [Degs] [cm] Polar 4960.912 78.58 PK2 27.3 -51.9 53.97 74 -20.03 303 391 Horz 7438.557 75.96 PK2 28.1 -50.8 53.25 74 -20.75 304 387 Horz 7438.577 75.27 PK2 28.1 -50.8 52.56 74 -21.44 81 204 Vert 4960.626 73.56 MAv1 27.3 -51.9 48.94 54 -5.06 303 391 Horz 7438.848 70.97 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.8 48.25 54 -5.75 81 204 Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                  |           |           |        |             |             |             |             | -           |         |        |        |
| High Channel - 2480MHz    BOMS   FCC Part 15   Subpart C   Subpart C   Subpart C   Subpart C   Margin (dB)   Detector   AF [dB/m]   [dB]   dB(uVolts/r   15.209   Margin (dB)   Peak   Margin (dB)   Detector   Polar   Polar  |                  |                  |           |           |        |             |             |             | -           | <u> </u>    |         |        |        |
| BOMS   FCC Part 15   Subpart C   Margin (dB)   Detector   AF [dB/m]   [dB]   dB(uVolts/r   15.209   Margin (dB)   Peak   Margin (dB)   [Degs]   [cm]   Polar   | 3730.3386        | 31.5             | IVIAN I   | 55.2      | -70.5  | 30.22       | 34          | -17.78      | -           | -           | 500     | 240    | vert   |
| Test Frequency Meter Reading Detector AF [dB/m] [dB] dB(uVolts/r 15.209 Margin (dB) Peak Margin (dB) [Degs] [cm] Polar 4960.912 78.58 PK2 27.3 -51.9 53.97 74 -20.03 303 391 Horz 4959.8 76.18 PK2 27.3 -52 51.53 74 -22.47 262 283 Vert 7438.557 75.96 PK2 28.1 -50.8 53.25 74 -20.75 304 387 Horz 7438.577 75.27 PK2 28.1 -50.8 52.56 74 -21.44 81 204 Vert 4960.626 73.56 MAv1 27.3 -51.9 48.94 54 -5.06 303 391 Horz 4959.424 70.52 MAv1 27.3 -52 45.86 54 -8.14 262 283 Vert 7438.848 70.97 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.9 46.7 54 -7.3 81 204 Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | High Channel - 2 | 480MHz           |           |           |        |             |             |             |             |             |         |        |        |
| Test Frequency Meter Reading Detector AF [dB/m] [dB] dB(uVolts/r 15.209 Margin (dB) Peak Margin (dB) [Degs] [cm] Polar 4960.912 78.58 PK2 27.3 -51.9 53.97 74 -20.03 303 391 Horz 4959.8 76.18 PK2 27.3 -52 51.53 74 -22.47 262 283 Vert 7438.557 75.96 PK2 28.1 -50.8 53.25 74 -20.75 304 387 Horz 7438.577 75.27 PK2 28.1 -50.8 52.56 74 -21.44 81 204 Vert 4960.626 73.56 MAv1 27.3 -51.9 48.94 54 -5.06 303 391 Horz 4959.424 70.52 MAv1 27.3 -52 45.86 54 -8.14 262 283 Vert 7438.848 70.97 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.9 46.7 54 -7.3 81 204 Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                  |           |           | DOME   |             | ECC Dark 15 |             | ECC Dart 15 |             |         |        |        |
| Test Frequency Meter Reading Detector AF [dB/m] [dB] dB(uVolts/r 15.209 Margin (dB) Peak Margin (dB) [Degs] [cm] Polar 4960.912 78.58 PK2 27.3 -51.9 53.97 74 -20.03 303 391 Horz 4959.8 76.18 PK2 27.3 -52 51.53 74 -22.47 262 283 Vert 7438.557 75.96 PK2 28.1 -50.8 53.25 74 -20.75 304 387 Horz 7438.577 75.27 PK2 28.1 -50.8 52.56 74 -21.44 81 204 Vert 4960.626 73.56 MAv1 27.3 -51.9 48.94 54 -5.06 303 391 Horz 4959.424 70.52 MAv1 27.3 -52 45.86 54 -8.14 262 283 Vert 7438.848 70.97 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.9 46.7 54 -7.3 - 81 204 Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                  |           |           |        |             |             |             |             |             | Azimuth | Height |        |
| 4960.912     78.58 PK2     27.3 -51.9 53.97 74 -20.03 303 391 Horz       4959.8     76.18 PK2     27.3 -52 51.53 74 -22.47 262 283 Vert       7438.557     75.96 PK2     28.1 -50.8 53.25 74 -20.75 304 387 Horz       7438.577     75.27 PK2     28.1 -50.8 52.56 74 -21.44 81 204 Vert       4960.626     73.56 MAv1     27.3 -51.9 48.94 54 -5.06 303 391 Horz       4959.424     70.52 MAv1     27.3 -52 45.86 54 -8.14 262 283 Vert       7438.848     70.97 MAv1     28.1 -50.8 48.25 54 -5.75 304 387 Horz       7441.272     69.47 MAv1     28.1 -50.9 46.7 54 -7.3 81 204 Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test Frequency   | Meter Reading    | Detector  | AF [dB/m] | [dB]   | dB(uVolts/r |             | Margin (dB) | Peak        | Margin (dB) |         | _      | Polari |
| 4959.8     76.18     PK2     27.3     -52     51.53     -     -     74     -22.47     262     283     Vert       7438.557     75.96     PK2     28.1     -50.8     53.25     -     -     74     -20.75     304     387     Horz       7438.577     75.27     PK2     28.1     -50.8     52.56     -     -     74     -21.44     81     204     Vert       4960.626     73.56     MAv1     27.3     -51.9     48.94     54     -5.06     -     -     303     391     Horz       4959.424     70.52     MAv1     27.3     -52     45.86     54     -8.14     -     -     262     283     Vert       7438.848     70.97     MAv1     28.1     -50.8     48.25     54     -5.75     -     -     304     387     Horz       7441.272     69.47     MAv1     28.1     -50.9     46.7     54     -7.3     -     -     81     204     Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| 7438.557     75.96     PK2     28.1     -50.8     53.25     -     -     74     -20.75     304     387     Horz       7438.577     75.27     PK2     28.1     -50.8     52.56     -     -     74     -21.44     81     204     Vert       4960.626     73.56     MAv1     27.3     -51.9     48.94     54     -5.06     -     -     303     391     Horz       4959.424     70.52     MAv1     27.3     -52     45.86     54     -8.14     -     -     262     283     Vert       7438.848     70.97     MAv1     28.1     -50.8     48.25     54     -5.75     -     -     304     387     Horz       7441.272     69.47     MAv1     28.1     -50.9     46.7     54     -7.3     -     -     81     204     Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                  |           |           |        |             |             | -           | 74          |             |         |        |        |
| 7438.577     75.27     PK2     28.1     -50.8     52.56     -     -     74     -21.44     81     204     Vert       4960.626     73.56     MAv1     27.3     -51.9     48.94     54     -5.06     -     -     303     391     Horz       4959.424     70.52     MAv1     27.3     -52     45.86     54     -8.14     -     -     262     283     Vert       7438.848     70.97     MAv1     28.1     -50.8     48.25     54     -5.75     -     -     304     387     Horz       7441.272     69.47     MAv1     28.1     -50.9     46.7     54     -7.3     -     -     81     204     Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7438.557         |                  |           |           |        |             | -           | -           | 74          |             |         |        | Horz   |
| 4960.626     73.56     MAv1     27.3     -51.9     48.94     54     -5.06     -     -     303     391     Horz       4959.424     70.52     MAv1     27.3     -52     45.86     54     -8.14     -     -     262     283     Vert       7438.848     70.97     MAv1     28.1     -50.8     48.25     54     -5.75     -     -     304     387     Horz       7441.272     69.47     MAv1     28.1     -50.9     46.7     54     -7.3     -     -     81     204     Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                  |           |           |        |             |             | -           |             |             |         |        |        |
| 4959.424     70.52 MAv1     27.3     -52     45.86     54     -8.14     -     -     262     283     Vert       7438.848     70.97 MAv1     28.1     -50.8     48.25     54     -5.75     -     -     304     387     Horz       7441.272     69.47 MAv1     28.1     -50.9     46.7     54     -7.3     -     -     81     204     Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| 7438.848 70.97 MAv1 28.1 -50.8 48.25 54 -5.75 304 387 Horz 7441.272 69.47 MAv1 28.1 -50.9 46.7 54 -7.3 81 204 Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
| 7441.272 69.47 MAv1 28.1 -50.9 46.7 54 -7.3 81 204 Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |           |           |        |             |             |             |             |             |         |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7441.272         | 65.47            | WAVI      | 28.1      | -50.9  | 46./        | 54          | -7.3        | -           | -           | 81      | 204    | vert   |
| PK2 - KDB558074 v02 10.2.3.2/8.1.1 Method: Maximum Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PK2 - KDR55807   | 4 v02 10 2 3 2/2 | 1.1 Metho | d: Maximu | m Peak |             |             |             |             |             |         |        |        |

DATE: 2013-07-04

IC: 8975A-A13022601

This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

# 9.2.4. TX ABOVE 1 GHz FOR GFSK 2Mbps 320kHz MODE IN THE 2.4 GHz BAND

DATE: 2013-07-04

IC: 8975A-A13022601

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









| Device:Transcei   | ver with Range E | xtender    |           |        |             |             |                 |             |             |         |        |         |
|-------------------|------------------|------------|-----------|--------|-------------|-------------|-----------------|-------------|-------------|---------|--------|---------|
| Model:A2541E2     |                  |            |           |        |             |             |                 |             |             |         |        |         |
|                   | Tested by: AA/   | RM         |           |        |             |             |                 |             |             |         |        |         |
| GFSK 2Mbps 32     |                  | I LIVI     |           |        |             |             |                 |             |             |         |        |         |
| OTOK ZWIDPS 32    | OKITE            |            |           |        |             |             |                 |             |             |         |        |         |
| Low Channel - 24  | 102MHz           |            |           |        |             |             |                 |             |             |         |        |         |
|                   |                  |            |           |        |             |             |                 |             |             |         |        |         |
|                   |                  |            |           | BOMS   |             | FCC Part 15 |                 | FCC Part 15 |             |         |        |         |
|                   |                  |            |           | Factor |             | Subpart C   |                 | Subpart C   |             | Azimuth | _      |         |
| Test Frequency    | Meter Reading    | Detector   | AF [dB/m] | [dB]   | dB(uVolts/r | 15.209      | Margin (dB)     | Peak        | Margin (dB) | [Degs]  | [cm]   | Polari  |
| 4803.98           | 77.56            | PK2        | 27.1      | -52.2  | 52.48       | -           | -               | 74          | -21.52      | 310     | 368    | Horz    |
| 4804.06           | 72.9             | PK2        | 27.1      | -52.2  | 47.83       | -           | -               | 74          | -26.17      | 155     | 249    | Vert    |
| 12008.583         | 61.55            | PK2        | 37.2      | -47.9  | 50.82       | -           | -               | 74          | -23.18      | 285     | 222    | Vert    |
| 12008.681         | 60.79            | PK2        | 37.2      | -47.9  | 50.07       | -           | -               | 74          | -23.93      | 249     | 113    | Horz    |
| 4804.145          | 73.44            | MAv1       | 27.1      | -52.2  | 48.37       | 54          | -5.63           | -           | -           | 310     | 368    | Horz    |
| 4804.075          | 67.74            | MAv1       | 27.1      | -52.2  | 42.67       | 54          | -11.33          | -           | -           | 155     | 249    | Vert    |
| 12008.885         | 51.75            |            |           | -47.9  | 41.04       | 54          | -12.96          |             | -           | 285     |        | Vert    |
| 12008.604         |                  | MAv1       | 37.2      |        | 39.61       | 54          | -14.39          | -           | -           | 249     |        | Horz    |
| Mid Channel - 24  | MOMH2            |            |           |        |             |             |                 |             |             |         |        |         |
| miu chaffiler - Z | ++UIVIIIZ        |            |           |        |             |             |                 |             |             |         |        |         |
|                   |                  |            |           | BOMS   |             | FCC Part 15 |                 | FCC Part 15 |             |         |        |         |
|                   |                  |            |           | Factor |             | Subpart C   |                 | Subpart C   |             | Azimuth | Height |         |
| Test Frequency    | Meter Reading    | Detector   | AF [dB/m] |        | dB(uVolts/r |             | Margin (dB)     |             | Margin (dB) |         | [cm]   | Polarit |
| 4880.15           | _                |            | 27.2      | -52.1  | 52.76       |             | -               | 74          |             |         |        | Horz    |
| 4879.679          | 75.9             |            | 27.2      |        | 50.98       | _           | -               | 74          | -23.02      | 267     |        | Vert    |
| 7319.198          |                  |            | 27.2      |        | 56.32       | -           | -               | 74          |             |         |        | Vert    |
| 7320.821          |                  |            | 28        |        | 56.75       | -           | -               | 74          |             |         |        | Horz    |
| 4880.055          |                  | MAv1       | 27.2      | -51.1  | 48.82       | - 54        | -5.18           | - /4        | -17.25      | 310     |        | Horz    |
|                   |                  |            |           |        |             |             |                 |             |             |         |        | Vert    |
| 4879.945          |                  |            | 27.2      |        | 46.66       | 54          | -7.34           |             |             | 267     |        |         |
| 7319.308          |                  | MAv1       |           | -51.1  | 51.26       | 54          | -2.74           | -           | -           | 278     |        | Vert    |
| 7319.128          | 75.17            | MAv1       | 28        | -51.1  | 52.05       | 54          | -1.95           | -           | -           | 239     | 288    | Horz    |
| High Channel - 2  | 480MHz           |            |           |        |             |             |                 |             |             |         |        |         |
|                   |                  |            |           | BOMS   |             | FCC Part 15 |                 | FCC Part 15 |             |         |        |         |
|                   |                  |            |           | Factor |             | Subpart C   |                 | Subpart C   |             | Azimuth | Hajaht |         |
| Test Franciancy   | Meter Reading    | Detector   | AF [dB/m] |        | dB(uVolts/r |             | Margin (dB)     |             | Margin (dB) |         | [cm]   | Polarit |
| 4959.549          |                  |            | 27.3      | -52    | 53.77       | 13.203      | iviai giii (ub) | 74          |             | 308     |        | Horz    |
| 4959.865          |                  |            | 27.3      |        | 53.77       |             |                 | 74          |             |         |        | Vert    |
|                   |                  |            |           |        |             |             |                 | 74          |             |         |        |         |
| 7438.998          |                  |            | 28.1      |        | 51.08       | -           | -               |             |             |         |        | Horz    |
| 7439.138          |                  |            |           | -50.8  |             | -           | -               | 74          | -21.31      |         |        | Vert    |
| 12401.543         |                  |            |           | -47.7  | 48.51       | -           | -               | 74          | -25.49      | 312     |        | Vert    |
| 12400.11          | 60.73            |            |           | -47.6  | 50.37       | -           | -               | 74          | -23.63      | 236     |        | Horz    |
| 4959.995          |                  | MAv1       | 27.3      | -52    | 49.94       | 54          | -4.06           | -           | -           | 308     | 299    | Horz    |
| 4959.998          |                  | MAv1       |           | -52    |             |             |                 |             | -           | 251     |        | Vert    |
| 7439.389          | 67.99            | MAv1       | 28.1      | -50.8  | 45.25       | 54          | -8.75           | -           | -           | 331     | 322    | Horz    |
| 7439.348          | 70.11            | MAv1       | 28.1      | -50.8  | 47.37       | 54          | -6.63           | -           | -           | 76      | 182    | Vert    |
| 12401.493         | 48.66            | MAv1       | 37.2      | -47.6  | 38.22       | 54          | -15.78          | -           | -           | 312     | 350    | Vert    |
| 12398.657         | 48.99            | MAv1       | 37.2      | -47.5  | 38.72       | 54          | -15.28          | -           | -           | 236     | 241    | Horz    |
| DKO KDOSSOS       | 400.40.0.7.5.75  | 4 4 5 5 15 | 4.14.     | _ n ·  |             |             |                 |             |             |         |        |         |
| rk2 - KDB55807    | 4 v02 10.2.3.2/8 | .i.i Metho | o: Maximu | m reak |             |             |                 |             |             |         |        |         |

# 9.3. TRANSMITTER ABOVE 1 GHz – MODEL: A2541E24C

# 9.3.1. TX ABOVE 1 GHz FOR GFSK 1Mbps 250kHz MODE IN THE 2.4 GHz BAND

DATE: 2013-07-04

IC: 8975A-A13022601

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



### RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 95 of 126



DATE: 2013-07-04

IC: 8975A-A13022601



| Device:Transcei  | ver with Range E | xtender    |           |                |             |                          |             |                          |             |         |        |         |
|------------------|------------------|------------|-----------|----------------|-------------|--------------------------|-------------|--------------------------|-------------|---------|--------|---------|
| Model:A2541E2    | 4C               |            |           |                |             |                          |             |                          |             |         |        |         |
| Job#:SR9723856   | Tested by: AA/   | RM         |           |                |             |                          |             |                          |             |         |        |         |
| GFSK 1Mbps 25    | 0kHz             |            |           |                |             |                          |             |                          |             |         |        |         |
| Low Channel - 24 | I02MHz           |            |           |                |             |                          |             |                          |             |         |        |         |
|                  |                  |            |           |                |             |                          |             |                          |             |         |        |         |
| Test Frequency   | Meter Reading    | Detector   | AF [dR/m] | BOMS<br>Factor | dB(uVolts/r | FCC Part 15<br>Subpart C | Margin (dB) | FCC Part 15<br>Subpart C | Margin (dB) | Azimuth | _      | Polari  |
| 4804.24          | 79.95            |            | 27.1      |                |             | -                        | -           | 74                       |             | 268     |        | Horz    |
| 4804.64          | 81.65            |            |           | -52.2          |             |                          | -           | 74                       | -17.39      | 222     |        | Vert    |
| 4803.98          |                  | MAv1       |           | -52.1          |             | - 54                     |             | - /4                     | -17.55      | 268     |        | Horz    |
|                  |                  |            |           |                |             |                          |             | -                        |             |         |        |         |
| 4803.94          | 78.33            | MAV1       | 27.1      | -52.2          | 53.25       | 54                       | -0.75       | -                        | -           | 222     | 1/2    | Vert    |
| Mid Channel - 24 | I40MHz           |            |           |                |             |                          |             |                          |             |         |        |         |
|                  |                  |            |           |                |             |                          |             |                          |             |         |        |         |
|                  |                  |            |           | BOMS<br>Factor |             | FCC Part 15<br>Subpart C |             | FCC Part 15<br>Subpart C |             | Azimuth | _      |         |
|                  | Meter Reading    |            |           |                | dB(uVolts/r |                          | Margin (dB) |                          | Margin (dB) |         | [cm]   | Polari  |
| 4880.551         | 73.31            |            | 27.2      | -43.7          | 56.8        | -                        | -           | 74                       |             | 354     |        | Horz    |
| 4879.709         | 71.87            |            | 27.2      |                | 55.36       | -                        | -           | 74                       | -18.64      | 240     |        | Vert    |
| 7319.36          | 80.31            |            | 28        |                | 57.19       | -                        | -           | 74                       | -16.81      | 92      |        | Horz    |
| 7319.24          | 79.34            |            | 28        |                | 56.22       | -                        | -           | 74                       | -17.78      | 327     |        | Vert    |
| 12201.193        | 59.86            |            | 37.2      |                |             | -                        | -           | 74                       | -24.32      | 317     |        | Vert    |
| 12199.369        | 58.87            |            | 37.2      |                |             | -                        | -           | 74                       | -25.19      | 143     |        | Horz    |
| 4880.195         | 69.51            | MAv1       |           | -43.7          | 53          | 54                       |             | -                        | -           | 354     |        | Horz    |
| 4879.924         | 67.27            | MAv1       | 27.2      | -43.7          | 50.76       | 54                       |             | -                        | -           | 240     |        | Vert    |
| 7319.41          | 76.05            | MAv1       | 28        |                | 52.93       | 54                       |             | -                        | -           | 92      | 225    | Horz    |
| 7319.47          |                  | MAv1       | 28        |                | 51.93       | 54                       |             | -                        | -           | 327     |        | Vert    |
| 12201.208        |                  | MAv1       |           | -47.4          |             | 54                       |             | -                        | -           | 317     |        | Vert    |
| 12201.378        | 48.15            | MAv1       | 37.2      | -47.4          | 37.96       | 54                       | -16.04      | -                        | -           | 143     | 130    | Horz    |
| High Channel - 2 | 480MHz           |            |           |                |             |                          |             |                          |             |         |        |         |
|                  |                  |            |           | BOMS           |             | FCC Part 15              |             | FCC Part 15              |             |         |        |         |
|                  |                  |            |           | Factor         |             | Subpart C                |             | Subpart C                |             | Azimuth | Height |         |
| Test Frequency   | Meter Reading    | Detector   | AF [dB/m] | [dB]           | dB(uVolts/r |                          | Margin (dB) |                          | Margin (dB) |         | [cm]   | Polarit |
| 4960.461         | 71.67            |            | 27.3      |                |             | 54                       |             | -                        | -18.73      | 357     |        | Horz    |
| 4960.416         | 72.01            | PK2        | 27.3      | -43.7          | 55.61       | 54                       | -           | -                        | -18.39      | 29      | 317    | Vert    |
| 7439.23          | 75.54            | PK2        | 28.1      | -50.8          | 52.8        | 54                       | -           | -                        | -21.2       | 292     | 380    | Vert    |
| 7439.591         | 76.44            | PK2        | 28.1      | -50.9          | 53.69       | 54                       | -           | -                        | -20.31      | 6       | 305    | Horz    |
| 12399.289        | 59.08            | PK2        | 37.2      | -47.5          | 48.78       | 54                       | -           | -                        | -25.22      | 327     | 344    | Vert    |
| 12401.403        | 59.83            | PK2        | 37.2      | -47.6          | 49.39       | 54                       | -           | -                        | -24.61      | 227     | 312    | Horz    |
| 4959.835         | 67.22            | MAv1       | 27.3      | -43.7          | 50.8        | 54                       | -3.2        | 74                       | -           | -       | 220    | Horz    |
| 4959.79          | 67.42            | MAv1       |           | -43.7          |             | 54                       | -3          | 74                       | -           | -       | 317    | Vert    |
| 7440.69          | 70.93            | MAv1       | 28.1      | -50.9          | 48.16       | 54                       | -5.84       | 74                       | -           | -       | 380    | Vert    |
| 7440.563         | 71.81            | MAv1       | 28.1      | -50.9          | 49.04       | 54                       | -4.96       | 74                       | -           | -       | 305    | Horz    |
| 12398.733        | 49.12            | MAv1       | 37.2      | -47.5          | 38.85       | 54                       | -15.15      | 74                       | -           | -       | 344    | Vert    |
| 12398.928        |                  | MAv1       |           | -47.5          |             | 54                       |             | 74                       |             | -       |        | Horz    |
|                  |                  |            |           |                |             |                          |             |                          |             |         |        |         |
| PK2 - KDB55807   | 4 v02 10.2.3.2/8 | .1.1 Metho | d: Maximu | m Peak         |             |                          |             |                          |             |         |        |         |

# 9.3.2. TX ABOVE 1 GHz FOR GFSK 1Mbps 160kHz MODE IN THE 2.4 GHz BAND

DATE: 2013-07-04

IC: 8975A-A13022601

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









| Manufacturer:A   | ver with Range E                     | vtandar   |           |        |             |             |             |             |             |            |        |       |
|------------------|--------------------------------------|-----------|-----------|--------|-------------|-------------|-------------|-------------|-------------|------------|--------|-------|
| Model:A2541E2    |                                      | xtender   |           |        |             |             |             |             |             |            |        |       |
|                  | Tested by: AA/                       | RM        |           |        |             |             |             |             |             |            |        |       |
| GFSK 1Mbps 16    |                                      | MINI      |           |        |             |             |             |             |             |            |        |       |
| drak liviops 10  | OKH2                                 |           |           |        |             |             |             |             |             |            |        |       |
| Low Channel - 2  | IO2MHz                               |           |           |        |             |             |             |             |             |            |        |       |
|                  |                                      |           |           |        |             |             |             |             |             |            |        |       |
|                  |                                      |           |           | BOMS   |             | FCC Part 15 |             | FCC Part 15 |             |            |        |       |
|                  |                                      |           |           | Factor |             | Subpart C   |             | Subpart C   |             | Azimuth    | Height |       |
| Test Frequency   | Meter Reading                        | Detector  | AF [dB/m] | [dB]   | dB(uVolts/r | 15.209      | Margin (dB) | Peak        | Margin (dB) | [Degs]     | [cm]   | Polar |
| 4803.92          | 81.09                                | PK2       | 27.1      | -52.2  | 56.01       | -           | -           | 74          | -17.99      | 232        | 135    | Vert  |
| 4804.32          | 79.14                                | PK2       | 27.1      | -52.2  | 54.08       |             |             | 74          | -19.92      | 270        | 189    | Horz  |
| 4804.09          | 78.81                                | MAv1      | 27.1      | -52.2  | 53.74       | 54          | -0.26       | -           | -           | 232        | 135    | Vert  |
| 4804.029         | 76.69                                | MAv1      | 27.1      | -52.2  | 51.62       | 54          | -2.38       | -           | -           | 270        | 189    | Horz  |
|                  |                                      |           |           |        |             |             |             |             |             |            |        |       |
| Mid Channel - 2  | 140MHz                               |           |           |        |             |             |             |             |             |            |        |       |
|                  |                                      |           |           |        |             |             |             |             |             |            |        |       |
|                  |                                      |           |           | BOMS   |             | FCC Part 15 |             | FCC Part 15 |             |            |        |       |
|                  |                                      |           |           | Factor |             | Subpart C   |             | Subpart C   |             | Azimuth    | Height |       |
| Test Frequency   | Meter Reading                        | Detector  | AF [dB/m] | [dB]   | dB(uVolts/r | 15.209      | Margin (dB) | Peak        | Margin (dB) | [Degs]     | [cm]   | Polar |
| 4879.68          | 79.77                                | PK2       | 27.2      | -52.1  | 54.85       | -           | -           | 74          | -19.15      | 230        | 131    | Vert  |
| 4880.08          | 77.89                                | PK2       | 27.2      | -52.1  | 52.97       | -           | -           | 74          | -21.03      | 307        | 243    | Horz  |
| 7319.722         | 79.27                                | PK2       | 28        | -51.1  | 56.15       | -           | -           | 74          | -17.85      | 81         | 250    | Horz  |
| 7320.443         | 79.51                                | PK2       | 28        | -51.1  | 56.38       | -           | -           | 74          | -17.62      | 338        | 382    | Vert  |
| 12200.92         | 59.2                                 | PK2       | 37.2      | -47.4  | 49.04       | -           | -           | 74          | -24.96      | 249        | 291    | Horz  |
| 12199.818        | 59.21                                | PK2       | 37.2      | -47.3  | 49.12       | -           | -           | 74          | -24.88      | 38         | 259    | Vert  |
| 4880.02          | 77.36                                | MAv1      | 27.2      | -52.1  | 52.44       | 54          | -1.56       | -           | -           | 230        | 131    | Vert  |
| 4879.98          | 75.5                                 | MAv1      | 27.2      | -52.1  | 50.58       | 54          | -3.42       | -           | -           | 307        | 243    | Horz  |
| 7319.832         | 76.18                                | MAv1      | 28        | -51.1  | 53.06       | 54          | -0.94       | -           | -           | 81         | 250    | Horz  |
| 7320.172         | 76.45                                | MAv1      | 28        | -51.1  | 53.33       | 54          | -0.67       | -           | -           | 338        | 382    | Vert  |
| 12199.54         | 49.64                                | MAv1      | 37.2      | -47.3  | 39.57       | 54          | -14.43      | -           | -           | 249        | 291    | Horz  |
| 12199.608        | 50.01                                | MAv1      | 37.2      | -47.3  | 39.93       | 54          | -14.07      | -           | -           | 38         | 259    | Vert  |
| High Channel - 2 | 480MHz                               |           |           |        |             |             |             |             |             |            |        |       |
|                  |                                      |           |           |        |             |             |             |             |             |            |        |       |
|                  |                                      |           |           | BOMS   |             | FCC Part 15 |             | FCC Part 15 |             | l <u>.</u> |        |       |
| _                |                                      |           |           | Factor |             | Subpart C   |             | Subpart C   |             | Azimuth    | _      |       |
|                  | Meter Reading                        |           |           |        | dB(uVolts/r |             | Margin (dB) |             | Margin (dB) |            | [cm]   | Polar |
| 4959.96          |                                      |           | 27.3      | -52    | 52.78       |             | -           | 74          |             |            |        | Vert  |
| 4960.06          |                                      |           | 27.3      |        | 52.37       |             | -           | 74          |             |            |        | Horz  |
| 7439.461         |                                      |           |           | -50.8  | 54.81       |             | -           | 74          |             |            |        | Vert  |
| 7439.621         |                                      |           |           | -50.9  | 54.85       |             | -           | 74          |             | _          |        | Horz  |
| 12400.32         | 59.66                                |           |           | -47.6  | 49.29       |             | -           | 74          |             |            |        | Horz  |
| 12400.6          | 58.88                                |           |           | -47.6  | 48.49       |             | -           | 74          |             |            |        | Vert  |
| 4959.98          | 75.13                                |           | 27.3      |        | 50.48       | 54          |             | -           | -           | 255        |        | Vert  |
| 4960.05          |                                      | MAv1      | 27.3      |        | 49.59       |             |             |             | -           | 308        |        | Horz  |
| 7440.192         |                                      | MAv1      |           | -50.9  | 51.31       | 54          |             |             | -           | 286        |        | Vert  |
| 7440.172         |                                      |           |           | -50.9  | 51.5        |             |             |             | -           | 8          |        | Horz  |
| 12399.46         |                                      | MAv1      |           | -47.5  | 40.19       |             |             |             | -           | 238        |        | Horz  |
| 12400.71         | 49.21                                | MAv1      | 37.2      | -47.6  | 38.82       | 54          | -15.18      | -           | -           | 13         | 139    | Vert  |
| DV2 VDDCC003     | 4,02102727                           | 1 1 1 1 1 | d Maria   | m Dool |             |             |             |             |             |            |        |       |
|                  | 4 v02 10.2.3.2/8<br>74 v02 10.2.3.2/ |           |           |        |             |             |             |             |             |            |        |       |

# 9.3.3. TX ABOVE 1 GHz FOR GFSK 2Mbps 500kHz MODE IN THE 2.4 GHz BAND

DATE: 2013-07-04

IC: 8975A-A13022601

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)







DATE: 2013-07-04

IC: 8975A-A13022601



| Manufacturer:A                   |                  | unned      |           |                |             |                          |             |                          |             |         |        |        |
|----------------------------------|------------------|------------|-----------|----------------|-------------|--------------------------|-------------|--------------------------|-------------|---------|--------|--------|
| Device:Transcei<br>Model:A2541E2 | ver with Range E | xtender    |           |                |             |                          |             |                          |             |         |        |        |
|                                  |                  | DNA        |           |                |             |                          |             |                          |             |         |        |        |
|                                  | Tested by: AA/   | KIVI       |           |                |             |                          |             |                          |             |         |        |        |
| GFSK 2Mbps 50                    | UKHZ             |            |           |                |             |                          |             |                          |             |         |        |        |
| Low Channel - 24                 | 402MHz           |            |           |                |             |                          |             |                          |             |         |        |        |
|                                  |                  |            |           |                |             |                          |             |                          |             |         |        |        |
|                                  |                  |            |           | BOMS<br>Factor |             | FCC Part 15<br>Subpart C |             | FCC Part 15<br>Subpart C |             | Azimuth | _      |        |
|                                  | Meter Reading    |            |           |                | dB(uVolts/r |                          | Margin (dB) |                          | Margin (dB) |         | [cm]   | Polari |
| 4804.836                         | 80.85            | PK2        |           | -52.1          |             | -                        | -           | 74                       |             |         | 219    | Vert   |
| 4804.91                          | 81.43            | PK2        | 27.1      | -52.1          | 56.41       | -                        | -           | 74                       | -17.59      | 299     | 311    | Horz   |
| 12000.86                         | 59.71            | PK2        | 37.2      | -48            | 48.87       | -                        | -           | 74                       | -25.13      | 247     | 338    | Horz   |
| 12009.069                        | 60.79            | PK2        | 37.2      | -47.9          | 50.09       | -                        | -           | 74                       | -23.91      | 252     | 250    | Vert   |
| 4804.734                         | 76.14            | MAv1       | 27.1      | -52.1          | 51.11       | 54                       | -2.89       | -                        | -           | 286     | 219    | Vert   |
| 4804.684                         | 76.88            | MAv1       | 27.1      | -52.1          | 51.85       | 54                       | -2.15       | -                        | -           | 299     | 311    | Horz   |
| 12007.793                        | 50.09            | MAv1       | 37.2      | -48            | 39.33       | 54                       | -14.67      | -                        | -           | 247     | 338    | Horz   |
| 12007.831                        |                  |            | 37.2      |                |             | 54                       |             | -                        | -           | 252     |        | Vert   |
|                                  |                  |            |           |                |             |                          |             |                          |             |         |        |        |
| Mid Channel - 2                  | 440MHz           |            |           |                |             |                          |             |                          |             |         |        |        |
|                                  |                  |            |           | BOMS<br>Factor |             | FCC Part 15<br>Subpart C |             | FCC Part 15<br>Subpart C |             | Azimuth | Uni-be |        |
|                                  | Meter Reading    |            |           | [dB]           | dB(uVolts/r | 15.209                   | Margin (dB) | Peak                     | Margin (dB) | [Degs]  | [cm]   | Polar  |
| 4879.12                          | 79.89            | PK2        | 27.2      | -52.1          | 54.97       | -                        | -           | 74                       | -19.03      | 302     | 219    | Vert   |
| 4879.112                         | 80.25            | PK2        | 27.2      | -52.1          | 55.33       | -                        | -           | 74                       | -18.67      | 303     | 299    | Horz   |
| 7318.592                         | 81.11            | PK2        | 28        | -51.1          | 57.98       | -                        | -           | 74                       | -16.02      | 347     | 386    | Vert   |
| 7321.418                         | 81.19            | PK2        | 28        | -51.2          | 58.04       | -                        | -           | 74                       | -15.96      | 101     | 287    | Horz   |
| 4879.194                         | 75.25            | MAv1       | 27.2      | -52.1          | 50.33       | 54                       | -3.67       | -                        | -           | 302     | 219    | Vert   |
| 4879.33                          | 75.48            | MAv1       | 27.2      | -52.1          | 50.56       | 54                       | -3.44       | -                        | -           | 303     | 299    | Horz   |
| 7318.923                         | 76.19            | MAv1       | 28        | -51.1          | 53.07       | 54                       | -0.93       | -                        | -           | 347     | 386    | Vert   |
| 7318.783                         | 76.65            | MAv1       | 28        | -51.1          | 53.53       | 54                       | -0.47       | -                        | -           | 101     | 287    | Horz   |
| High Channel - 2                 | 480MHz           |            |           |                |             |                          |             |                          |             |         |        |        |
|                                  |                  |            |           | BOMS           |             | FCC Part 15              |             | FCC Part 15              |             |         |        |        |
|                                  |                  |            |           | Factor         |             | Subpart C                |             | Subpart C                |             | Azimuth | Height |        |
| Test Frequency                   | Meter Reading    | Detector   | AF [dB/m] | [dB]           | dB(uVolts/r | 15.209                   | Margin (dB) | Peak                     | Margin (dB) | [Degs]  | [cm]   | Polari |
| 7438.88                          | _                |            |           | -50.8          |             | -                        | - '         | 74                       |             |         |        | Vert   |
| 4959.088                         | 80.14            | PK2        | 27.3      |                |             | -                        | -           | 74                       |             |         | 372    | Vert   |
| 4959.29                          |                  |            | 27.3      |                |             | _                        | -           | 74                       |             |         |        | Horz   |
| 7438.65                          |                  |            |           | -50.8          |             | _                        | -           | 74                       |             |         |        | Horz   |
| 7441.375                         | 78.54            |            |           | -50.9          |             | -                        | -           | 74                       |             | _       |        | Vert   |
| 12402.37                         | 60.23            |            |           | -47.7          |             | -                        | _           | 74                       |             |         |        | Vert   |
| 4959.359                         |                  | MAv1       | 27.3      |                |             | 54                       | -3.28       |                          | -24.27      | 294     |        | Vert   |
| 4960.71                          |                  | MAv1       |           | -51.9          |             | 54                       |             |                          | -           | 328     |        | Horz   |
| 7438.91                          |                  | MAv1       |           | -50.8          |             |                          |             |                          | -           | 5       |        | Horz   |
| 12398                            |                  | MAv1       |           | -47.4          |             |                          |             |                          | -           | 134     |        | Horz   |
|                                  |                  |            |           |                |             |                          |             |                          |             |         |        |        |
| 12402.27                         |                  | MAv1       |           | -47.7          |             | 54                       |             |                          | -           | 134     |        | Horz   |
| 12402.27                         | 49.82            | MAv1       | 37.2      | -47.7          | 39.33       | 54                       | -14.67      | -                        | -           | 263     | 219    | Vert   |
| PK2 - KDB55807                   | 4 v02 10.2.3.2/8 | .1.1 Metho | d: Maximu | m Peak         |             |                          |             |                          |             |         |        |        |
|                                  | 74 v02 10.2.3.2  |            |           |                | Average     |                          |             |                          |             |         |        |        |

# 9.3.4. TX ABOVE 1 GHz FOR GFSK 2Mbps 320kHz MODE IN THE 2.4 GHz BAND

DATE: 2013-07-04

IC: 8975A-A13022601

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)







DATE: 2013-07-04

IC: 8975A-A13022601



# DATE: 2013-07-04 IC: 8975A-A13022601

# **HARMONICS AND SPURIOUS EMISSIONS**

| Manufacturer:A                   |                        | unn mel    |           |                |               |             |                |             |                       |               |        |              |
|----------------------------------|------------------------|------------|-----------|----------------|---------------|-------------|----------------|-------------|-----------------------|---------------|--------|--------------|
| Device:Transcei<br>Model:A2541E2 | ver with Range B       | xtender    |           |                |               |             |                |             |                       |               |        |              |
|                                  | 4C<br>Tested by: AA/   | DM         |           |                |               |             |                |             |                       |               |        |              |
| JOD#:SK9/23856<br>GFSK 2Mbps 32  |                        | DIVI       |           |                |               |             |                |             |                       |               |        |              |
| aran ziviops 32                  | UKTZ                   |            |           |                |               |             |                |             |                       |               |        |              |
| Low Channel - 24                 | 102MHz                 |            |           |                |               |             |                |             |                       |               |        |              |
|                                  |                        |            |           |                |               |             |                |             |                       |               |        |              |
|                                  |                        |            |           | BOMS           |               | FCC Part 15 |                | FCC Part 15 |                       |               |        |              |
|                                  |                        |            |           | Factor         |               | Subpart C   |                | Subpart C   |                       | Azimuth       | Height |              |
| Test Frequency                   | Meter Reading          | Detector   | AF [dB/m] | [dB]           | dB(uVolts/r   | 15.209      | Margin (dB)    | Peak        | Margin (dB)           | [Degs]        | [cm]   | Polari       |
| 4804.56                          | 80.47                  | PK2        | 27.1      | -52.1          | 55.43         | -           | -              | 74          | -18.57                | 302           | 309    | Horz         |
| 4804.681                         | 80.49                  | PK2        | 27.1      | -52.1          | 55.46         | -           | -              | 74          | -18.54                | 302           | 260    | Vert         |
| 4804.14                          | 77.69                  | MAv1       | 27.1      | -52.2          | 52.62         | 54          | -1.38          | -           | -                     | 302           | 309    | Horz         |
| 4804.01                          | 77.18                  | MAv1       | 27.1      | -52.2          | 52.11         | 54          | -1.89          | -           | -                     | 302           | 260    | Vert         |
|                                  |                        |            |           |                |               |             |                |             |                       |               |        |              |
| Mid Channel - 24                 | 140MHz                 |            |           |                |               |             |                |             |                       |               |        |              |
|                                  |                        |            |           | BOMS           |               | FCC Part 15 |                | FCC Part 15 |                       |               |        |              |
|                                  |                        |            |           | Factor         |               | Subpart C   |                | Subpart C   |                       | Azimuth       | Unight |              |
| Tost Erganian                    | Mater Panding          | Detector   | AE [dD/m² |                | dB(uVolts/r   |             | Marrie (40)    |             | Margie (da)           | Azimuth       | _      | Polari       |
| 4879.407                         | Meter Reading<br>80.43 |            |           | -52.1          |               | 15.209      | Margin (dB)    | 74<br>74    | Margin (dB)<br>-18.49 | [Degs]<br>308 |        | Horz         |
| 4879.407<br>4879.467             | 80.43<br>78.99         |            |           | -52.1<br>-52.1 |               | -           | -              | 74          |                       |               |        | Vert         |
| 48/9.46/<br>7319.111             |                        |            |           | -52.1<br>-51.1 |               | -           | -              | 74          |                       |               |        | Vert         |
| 7319.111                         | 79.72                  |            |           | -51.1          |               |             | -              | 74          |                       |               |        | Vert         |
| /319.131<br>12198.27             | 79.72<br>60.38         |            |           | -47.2          |               |             | -              | 74          |                       |               |        | Vert         |
| 12198.27                         | 59.73                  |            |           | -47.4          |               |             | -              | 74          |                       | 236           |        | Vert         |
|                                  |                        |            |           |                |               |             | 4.55           | /4          | -24.48                |               |        |              |
| 4879.958<br>4879.878             |                        | MAv1       |           | -52.1<br>-52.1 | 52.45         | 54          | -1.55<br>-3.03 | -           | -                     | 308<br>308    |        | Horz         |
|                                  |                        | MAv1       |           | -52.1<br>-51.1 | 50.97         | 54          |                | -           | -                     | 308<br>86     |        | Vert         |
| 7319.301<br>7319.361             | 76.24<br>75.02         | MAv1       |           |                | 53.12<br>51.9 | 54          |                | -           | -                     | 219           |        | Horz<br>Vert |
|                                  |                        |            |           | -51.1          |               | 54          |                | -           |                       |               |        |              |
| 12201.04                         | 49.67                  | MAv1       |           | -47.4<br>-47.4 |               | 54<br>54    |                | -           | -                     | 325<br>236    |        | Vert<br>Horz |
| 12201.727                        | 48.43                  | MAV1       | 37.2      | -4/.4          | 38.22         | 54          | -15./8         | -           | -                     | 236           | 153    | HOTZ         |
| High Channel - 2                 | 480MHz                 |            |           |                |               |             |                |             |                       |               |        |              |
|                                  |                        |            |           | BOMS           |               | FCC Part 15 |                | FCC Part 15 |                       |               |        |              |
|                                  |                        |            |           | Factor         |               | Subpart C   |                | Subpart C   |                       | Azimuth       | Height |              |
| Test Frequency                   | Meter Reading          | Detector   | AF [dB/m] |                | dB(uVolts/r   |             | Margin (dB)    |             | Margin (dB)           |               | [cm]   | Polari       |
| 4959.56                          | _                      |            | 27.3      |                |               |             | -              | 74          |                       |               |        | Horz         |
| 4959.42                          | 79.69                  |            | 27.3      |                |               |             | -              | 74          |                       |               |        | Vert         |
| 7439.18                          |                        |            |           | -50.8          |               |             | -              | 74          |                       |               |        | Vert         |
| 7439.28                          | 77.89                  |            |           | -50.8          |               |             | -              | 74          |                       |               |        | Horz         |
| 12398.36                         | 58.88                  |            |           | -47.5          |               |             | -              | 74          |                       | _             |        | Vert         |
| 12398.48                         | 59.67                  |            |           | -47.5          |               | -           | -              | 74          |                       |               |        | Horz         |
| 4960.14                          |                        | MAv1       |           | -51.9          |               | 54          | -3.16          |             | -                     | 312           |        | Horz         |
| 4959.771                         |                        | MAv1       | 27.3      |                |               |             |                |             | -                     | 294           |        | Vert         |
| 7440.633                         |                        | MAv1       |           | -50.9          |               |             |                |             | -                     | 289           |        | Vert         |
| 7440.773                         |                        | MAv1       |           | -50.9          |               |             |                |             | -                     | 8             |        | Horz         |
| 12401.43                         |                        | MAv1       |           | -47.6          |               |             |                |             | -                     | 45            |        | Vert         |
| 12401.476                        |                        | MAv1       |           | -47.6          |               |             |                | -           | -                     | 193           |        | Horz         |
|                                  |                        | _          |           |                |               | ,           |                |             |                       |               |        |              |
| PK2 - KDB55807                   | 4 v02 10.2.3.2/8       | .1.1 Metho | d: Maximu | m Peak         |               |             |                |             |                       |               |        |              |
|                                  | 74 v02 10.2.3.2        |            |           |                | Average       |             |                |             |                       |               |        |              |

# 9.4. WORST-CASE BELOW 1 GHz

#### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

DATE: 2013-07-04



| Device:Transceiver w/Range Extender                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model:A2541E24C         Job#:SR9723856 Tested by: MA         GFSK 2Mbps 500kHz Tx         GFSK 2Mbps 500kHz Tx         GFSK 2Mbps 500kHz Tx         AF-54         GL-3M         FCC Pt 15         Azimuth Height PcC Pt Pt Pt Pt PcC PcC Pt PcC                                                                                                 |
| GFSK 2Mbps 500kHz Tx         Vertical 30 - 200MHz         AF-54 GL-3M GB(uVolts/meter)         FCC Pt 15 Subpart C         Azimuth Height GB(Degs)         Po           60.0198         23.24 QP         6.9 0.1         30.24 40         -9.76 241 113 Ve         Ve           56.705         20.38 QP         7.5 0.2         28.08 40         -11.92 298 121 Ve         Ve           107.9675         18.97 QP         12.1 0.4 31.47 43.5 -12.03 88 131 Ve         113.216 16.5 QP         12.8 0.4 29.7 43.5 -13.8 83 106 Ve         Ve           103.471         15.07 QP         11.4 0.4 26.87 43.5 -16.63 158 104 Ve         Ve         53.273 13.75 QP         8.6 0.1 22.45 40 -17.55 209 117 Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Vertical 30 - 200MHz  AF-54 GL-3M AF-54 GL-3M AF-54 GB-3M AF-54 GB |
| AF-54   GL-3M   B(uVolts/meter)   FCC Pt 15   Azimuth   Height   Po   G0.0198   23.24   QP   6.9   0.1   30.24   40   -9.76   241   113   Ve   G0.0198   23.24   QP   7.5   0.2   28.08   40   -11.92   298   121   Ve   G0.0197   G0.0198   |
| AF-54   GL-3M   AF-54   GL-3   |
| Test Frequency Meter Reading Detector [dB/m] [dB] dB(uVolts/meter) Subpart C Margin (dB) [Degs] [cm] Po 60.0198 23.24 QP 6.9 0.1 30.24 40 -9.76 241 113 Ve 56.705 20.38 QP 7.5 0.2 28.08 40 -11.92 298 121 Ve 107.9675 18.97 QP 12.1 0.4 31.47 43.5 -12.03 88 131 Ve 113.216 16.5 QP 12.8 0.4 29.7 43.5 -13.8 83 106 Ve 103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 60.0198 23.24 QP 6.9 0.1 30.24 40 -9.76 241 113 Ve 56.705 20.38 QP 7.5 0.2 28.08 40 -11.92 298 121 Ve 107.9675 18.97 QP 12.1 0.4 31.47 43.5 -12.03 88 131 Ve 113.216 16.5 QP 12.8 0.4 29.7 43.5 -13.8 83 106 Ve 103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 107.9675 18.97 QP 12.1 0.4 31.47 43.5 -12.03 88 131 Ve 113.216 16.5 QP 12.8 0.4 29.7 43.5 -13.8 83 106 Ve 103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 113.216 16.5 QP 12.8 0.4 29.7 43.5 -13.8 83 106 Ve 103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 103.471 15.07 QP 11.4 0.4 26.87 43.5 -16.63 158 104 Ve 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 53.273 13.75 QP 8.6 0.1 22.45 40 -17.55 209 117 Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QP - Quasi-Peak detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| QP - Quasi-Peak detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| QP - Quasi-Peak detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

DATE: 2013-07-04

### 10. AC POWER LINE CONDUCTED EMISSIONS

### **LIMITS**

FCC §15.207 (a)

RSS-Gen 7.2.2

| Frequency of Emission (MHz) | Conducted Limit (dBuV) |            |  |
|-----------------------------|------------------------|------------|--|
|                             | Quasi-peak             | Average    |  |
| 0.15-0.5                    | 66 to 56 *             | 56 to 46 * |  |
| 0.5-5                       | 56                     | 46         |  |
| 5-30                        | 60                     | 50         |  |

DATE: 2013-07-04

IC: 8975A-A13022601

### **TEST PROCEDURE**

**ANSI C63.4** 

Decreases with the logarithm of the frequency.

### **RESULTS**

### **6 WORST EMISSIONS**

| Manufacturer:A     | naren             |          |          |              |               |        |               |        |
|--------------------|-------------------|----------|----------|--------------|---------------|--------|---------------|--------|
| Device:Transce     | iver with range E | xtender  |          |              |               |        |               |        |
| Model:A2541E2      | 4A                |          |          |              |               |        |               |        |
| Job Number:SR9     | 9723856 Tested    | by: AA   |          |              |               |        |               |        |
| GFSK 1Mbps 2       | 50kHz, 2440MHz    | z        |          |              |               |        |               |        |
|                    |                   |          |          |              |               |        |               |        |
| Line - L1 .15 - 30 | MHz               |          |          |              |               |        |               |        |
|                    |                   |          | 5A636 L1 |              | FCC Part 15   |        | FCC Part 15   |        |
| Test Frequency     | Meter Reading     | Detector | (dB)     | (dB(uVolts)) | Subpart C QPk | Margin | Subpart C Avg | Margin |
| 0.19275            | 45.34             | PK       | 10       | 55.34        | 63.9          | -8.56  | -             |        |
| 0.26025            | 41.06             | PK       | 10       | 51.06        | 61.4          | -10.34 | -             |        |
| 0.3795             | 32.07             | PK       | 10       | 42.07        | 58.3          | -16.23 | -             |        |
| 0.411              | 32.07             | PK       | 10       | 42.07        | 57.6          | -15.53 | -             |        |
| 3.354              | 25.12             | PK       | 10.1     | 35.22        | 56            | -20.78 | -             |        |
| 4.7895             | 25.64             | PK       | 10.2     | 35.84        | 56            | -20.16 | -             |        |
| 0.19275            | 35.18             | Av       | 10       | 45.18        | -             | -      | 53.9          | -8.72  |
| 0.26025            | 29.63             | Av       | 10       | 39.63        | -             | -      | 51.4          | -11.77 |
| 0.3795             | 15.35             | Av       | 10       | 25.35        | -             | -      | 48.3          | -22.99 |
| 0.411              | 13.33             | Av       | 10       | 23.33        | -             | -      | 47.6          | -24.27 |
| 3.354              | 7.91              | Av       | 10.1     | 18.01        | -             | -      | 46            | -27.99 |
| 4.7895             | 4.78              | Av       | 10.2     | 14.98        | -             | -      | 46            | -31.02 |
| Neutral .15 - 30   | MHz               |          |          |              |               |        |               |        |
|                    |                   |          | 5A636    |              |               |        |               |        |
|                    |                   |          | L4Neut   |              | FCC Part 15   |        | FCC Part 15   |        |
| Test Frequency     | Meter Reading     | Detector | (dB)     | (dB(uVolts)) | Subpart C QPk | Margin | Subpart C Ave | Margin |
| 0.1905             | 44.05             |          | 10       | 54.05        | 64            |        | -             |        |
| 0.276              | 37.97             |          | 10       | 47.97        |               | -12.93 | _             |        |
| 0.3165             | 37.21             |          | 10       | 47.21        |               | -12.59 | _             |        |
| 0.4605             | 31.07             |          | 10       | 41.07        |               | -15.63 | _             |        |
| 3.417              | 23.44             |          | 10.2     | 33.64        |               | -22.36 | _             |        |
| 5.4015             |                   | PK       | 10.2     | 31.2         | 60            |        | _             |        |
| 0.1905             | 30.34             |          | 10       | 40.34        | -             |        | 54            | -13.66 |
| 0.276              | 20.36             |          | 10       | 30.36        |               | -      | 50.9          |        |
| 0.3165             | 21.97             |          | 10       | 31.97        | -             | -      |               | -17.83 |
| 0.4605             | 16.49             |          | 10       | 26.49        | _             | -      | 46.7          |        |
| 3.417              | 5.53              |          | 10.2     | 15.73        | _             | -      | 46            |        |
| 5.4015             | 2.43              |          | 10.2     | 12.63        | -             | -      | 50            |        |
|                    |                   |          |          |              |               |        |               |        |
| PK - Peak detect   | tor               |          |          |              |               |        |               |        |

DATE: 2013-07-04

### **LINE 1 RESULTS**



DATE: 2013-07-04

#### **LINE 2 RESULTS**



DATE: 2013-07-04

# 11. SETUP PHOTOS

### ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP



DATE: 2013-07-04

### **RADIATED RF MEASUREMENT SETUP (BELOW 1 GHz)**



DATE: 2013-07-04



Page 114 of 126





# **RADIATED RF MEASUREMENT SETUP (ABOVE 1 GHz)**



DATE: 2013-07-04



Page 116 of 126





### RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION



DATE: 2013-07-04





# POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP



DATE: 2013-07-04

IC: 8975A-A13022601



Page 124 of 126

# **END OF REPORT**

DATE: 2013-07-04