Лабораторная работа 3.6.1: Спектральный анализ электрических сигналов

Дроздов Т. А. Кириллов М. А. Б03-202

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки.

Ход работы

Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённостей

Следуя техническому описанию генератора мы настроили генерацию прямоугольных импульсов с параметрами $\nu_{\text{повт}}=1$ к Γ ц и длительностью импульса $\tau=50$ мкс.

Получили на экране спектр сигнала и, изменяя либо au, либо $u_{\text{повт}}$, наблюдали, как изменяется спектр.

Затем зафиксировали $\nu_{\text{повт}} = 1$ к Γ ц и $\tau = 60$ мкс. Для этих параметров измерили величину a_n и ν_n для 13 гармоник и сравнили с рассчитанными значениями по формулам. Результаты занесли в таблицу.

$$\nu_n = \frac{n}{T}$$

$$|a_n| = \frac{|\sin \frac{\pi n \tau}{T}|}{\pi n}$$

n	1	2	3	4	5	6	7	8	9	10	11	12	13
$ u_n^{exp}$	1.00	2.00	3.00	4.01	4.99	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.01
$ u_n^{theor}$	1	2	3	4	5	6	7	8	9	10	11	12	13
a_n^{exp}	0.74	0.72	0.67	0.62	0.58	0.57	0.54	0.49	0.44	0.38	0.31	0.24	0.18
$ a_n/a_1 ^{exp}$	1	0.96	0.91	0.83	0.79	0.76	0.72	0.66	0.59	0.51	0.42	0.33	0.24
$ a_n/a_1 ^{theor}$	1	0.98	0.95	0.91	0.86	0.80	0.74	0.67	0.59	0.51	0.43	0.34	0.26

(c) $\nu_{\text{повт}}=1$ к Γ ц, au=60 мкс.

(e) $\nu_{\text{повт}}=1$ к Γ ц, au=100 мкс.

(b) $\nu_{\text{повт}}=1$ к Γ ц, au=20 мкс.

(d) $\nu_{\text{повт}} = 1$ к Γ ц, $\tau = 80$ мкс.

(f) $\nu_{\text{повт}}=1$ к Γ ц, au=140 мкс.

(g) $\nu_{\text{повт}}=1$ к Γ ц, au=180 мкс.

Далее зафиксировали период повторения Т прямоугольного сигнала $T=1,\,\nu_{\rm повт}=1.$ Изменяя длительность импульса $\tau,\,$ измерили полную ширину спектра сигнала $\Delta\nu.$ Полученные данные хаписали в таблице. Из таблицы легко заметить, что $\Delta\nu\tau\approx 1,\,$ т.е. что выполняется соотношение неопределенностей.

τ , MKC	20	40	60	80	100
$\Delta \nu$, к Γ ц	46.48 ± 0.58	23.58 ± 0.29	15.60 ± 0.14	12.21 ± 0.08	9.73 ± 0.07
τ , MKC	120	140	160	180	200
$\Delta \nu$, к Γ ц	8.05 ± 0.07	6.80 ± 0.07	5.82 ± 0.04	5.04 ± 0.02	4.68 ± 0.02

После этого мы зафиксировали длительность импульса $\tau=100$ мкс. Изменяя частоту повторения $\nu_{\text{повт}}$, измерили расстояние $\delta\nu$ между соседними гармониками спектрами. Данные так же представлены в таблице.

$ u_{\text{повт}}, \Gamma_{\text{Ц}} $	200	500	1000	2000
$\delta \nu$, Γ ц	199.8 ± 1.6	499.9 ± 1.5	999.4 ± 3.6	1996.8 ± 8.4

(а) МНК для графика $\Delta \nu (1/\tau)$ коэффициент наклона $k = (92.8 \pm 1.0) 10^{-5}$

(b) МНК для графика $\delta\nu(1/T)$ коэффициент наклона $k=(998.2\pm4.2)10^{-6}$