

## PARAMETERIZED DISTRIBUTIONS

## Why

1

## Why

A conditional distribution (density)  $q: Y \times X \to \mathbf{R}$  is functionally parametrizable if there exists a function  $f: X \to \Theta$  and distribution (density) family  $\{p^{(\theta)}: Y \to \mathbf{R}\}_{\theta \in \Theta}$  satisfying  $q(y,x) \equiv p^{(f(x))}(\gamma)$  for all  $x \in X$  and  $y \in Y$ .

In this case we call f the parameterizer and we call  $\{p^{(\theta)}\}_{\theta\in\Theta}$  the parameterized family. A parameterized conditional distribution is an ordered pair whose first coordinate is a function from X to  $\Theta$  and whose second coordinate is a family of distributions on X with parameter set  $\Theta$ . For a particular choice of parameterizer and family, it induces a conditional distribution.

Since all conditional distributions are functionally parametrizable (consider  $\{q(\cdot,\xi)\}_{\xi\in X}$  with parameters X and identity parameterizer), we are interested in parameterizers and parameterized families that are simple. Said differently, we are interested in approximating a conditional distribution by selecting an appropriate parameterizer and parameterized family.

If  $\{f_{\phi}: X \to \Theta\}_{\phi \in \Phi}$  is a family of functions and  $\{q^{(\theta)}\}$  is a family of distributions, then  $\{p^{(\phi)}: X \times Z \to \mathbf{R}\}_{\phi}$  defined by  $p^{(\phi)}(\cdot, \zeta) \equiv q^{f_{\phi}(\zeta)}$  is a conditional distribution family called a functionally parameterized conditional distribution family. In other words, by selecting some parameters  $\phi$ , we induce a conditional distribution  $p^{(\phi)}: X \times Z \to \mathbf{R}$ 

<sup>&</sup>lt;sup>1</sup>Future editions will include.

We similarly define parameterized conditional densities and functionally parameterized conditional density families.

## Basic example

Let  $Z = \{1, 2\}$  and  $X = \mathbb{R}$ . Let  $f : \{1, 2\} \to \mathbb{R} \times \mathbb{R}_+$  be defined by  $f(1) = (\mu_1, \sigma_1)$  and  $f(2) = (\mu_2, \sigma_2)$ . Let  $\{g^{(\theta)}\}_{\theta}$  be the normal family. Then  $(f, \{g^{(\theta)}\})$  is a functionally parameterized conditional density.<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Future editions will modify.

