

Práctica 2: Variables aleatorias discretas

1. La tabla siguiente corresponde a la función de probabilidad de una variable aleatoria discreta *X*:

Valores x _i de X	1	2	3	4	5
$p(x_i)$	0,1	0,1	0,3	0,3	0,2

a) Hallar:

a.1)
$$p(X \ge 2)$$
; a.2) $p(1 \le X \le 3)$; a.3) $p(1 < X \le 3)$

a.4)
$$p(X \le 1; a.5) p(X > 2); a.6) p(X \le 2,3)$$

b) Hallar y graficar la función de distribución de X.

Una variable aleatoria discreta X está definida por la siguiente función de probabilidad:

Valores x_i de X	-1	0	1	2
$p(x_i)$	1/5	1/3	2/5	

a) ¿Cuál es la probabilidad que *X* tome el valor 2?

b) Hallar la función de distribución F(x). Calcular F(-3), F(0,5), F(1) y F(5).

c) Graficar la función de distribución.

3. Una firma de inversores ofrece a sus clientes bonos municipales que vencen después de diferente número de años. La función de distribución de T = número de años para el vencimiento de un bono seleccionado aleatoriamente está dada por:

$$F(t) = \begin{cases} 0 & t < 1 \\ \frac{1}{4} & 1 \le t < 3 \\ \frac{1}{2} & 3 \le t < 5 \\ \frac{3}{4} & 5 \le t < 7 \\ 1 & 7 \le t \end{cases}$$
Calcular:

Calcular:

a)
$$P(T=5)$$

- *b*) P(T > 3)
- c) $P(1,4 \le T < 6)$
- d) $P(2 \le T < 5 | T > 1,2)$
- 4. Calcular $E(X) \vee V(X)$ para las variables aleatorias de los ejercicios 1 y 2.
- 5. Sea X una variable aleatoria que toma los valores 0, 1 y 2 y $E(X^2) = 2,3$. Sabiendo que P(x=1) = 0.3, encontrar los parámetros de una nueva variable definida como el triple de la original reducida en una unidad.
- 6. Una variable aleatoria discreta X está definida por la siguiente función de probabilidad. Sabiendo que E(X) = 3, completar la tabla y calcular V(X).

Valores x_i de X	0	3	6	9
$p(x_i)$			0,1	0,2

- 7. Sean X e Y dos variables aleatorias independientes. Se sabe que E(X)=2, E(Y)=4,1, V(X)=0.4 y V(Y)=3. Calcule:
 - a) E(2X+3Y)
 - b) E(5X-1)
 - c) V(3X)
 - $d)E(X^2)$
 - e)V(2Y-1)
 - f)V(5X-Y)
- 8. Si X una variable aleatoria que sigue una distribución Bi(5; 2/3), calcular:

 - (1) P(X = 3) (2) $P(X \le 3)$ (3) P(X < 3) (4) $P(X \ge 3)$

- 9. En un tribunal municipal, se ha determinado que el estacionamiento de vehículos fuera de los límites de tiempo es a razón del 80 % de las infracciones levantadas a vehículos estacionados. Determine la probabilidad de que:
 - a) Dos de tres infracciones hayan sido levantadas por exceder el límite de tiempo.
 - b) Alguna de las tres infracciones haya sido por exceso en el límite de tiempo.
 - c) Ninguna de tres infracciones haya sido por exceder el límite de tiempo.
 - d) A lo sumo tres de cinco infracciones hayan sido provocadas por exceder el límite de tiempo.

- *e)* Exactamente tres de cinco infracciones hayan sido provocadas por exceder el límite de tiempo, si al menos una lo fue.
- *f*) Más de dos infracciones de seis hayan sido provocadas por exceder el límite de tiempo, si a lo sumo cuatro de ellas lo fueron.
- 10. Una cadena de hoteles ha adoptado la política de hacer un descuento del 3% a los clientes que paguen en efectivo en vez de hacerlo con tarjeta de crédito. Su experiencia indica que el 35% de los clientes aceptan el descuento.
 - *a)* Encontrar la probabilidad de que exactamente 5 entre los próximos 20 clientes acepten el descuento.
 - *b*) Encuentre la probabilidad de que a lo sumo 5 clientes entre los próximos 20 clientes acepten el descuento.
 - *c)* Encuentre la probabilidad de que solamente los 5 primeros clientes entre los próximos 20 que entren al hotel acepten el descuento.
- 11. Calcule la P(Y=2) para una variable aleatoria hipergeométrica Y en cada una de las siguientes situaciones
 - a) n=2, N=5, M=3
 - b) n=4, N=8, M=5
 - c) n=5, N=6, M=3
- 12. En una oficina trabajan veinte profesionales de los cuales solamente 15 tienen estudio de posgrado. Si se arma una comisión de seis para llevar a cabo un trabajo, ¿Cuál es la probabilidad de que:
 - a) Tres miembros de la comisión tengan estudio de posgrado?
 - b) A lo sumo dos miembros de la comisión tengan estudios de posgrado?
 - c) Ninguno de los miembros de la comisión tengan estudios de posgrado?
 - d) Más de cuatro miembros de la comisión tengan estudios de posgrado?
 - e) Más de uno y menos de cuatro miembros de la comisión tengan estudios de posgrado?
 - f) Exactamente cuatro miembros de la comisión tengan estudios de posgrado, si alguno de los miembros los tiene?
 - g) ¿Cuál es el desvío de la variable en cuestión?

13. Sea *X* una variable aleatoria tal que $X \sim P(1,8)$, se pide:

(a) P(X = 1)

(b) P(X > 2)

(c) $P(X \le 3)$

(d) $P(3 < X \le 6)$

(e) $P(5 \le X \le 7)$

(f) $P(X \le -1)$

(g) $P(X \le 0)$

(h) $P(X = 2 \ o \ X = 4)$

- 14. Se sabe que durante un período de inventario en cierto local de ventas, un empleado comete en promedio 2,3 errores de conteo.
 - *a)* Determine la probabilidad de que en ese período cometa ningún error.
 - b) Determine la probabilidad de que en ese período cometa algún error.
 - *c*) Determine la probabilidad de que en ese período cometa a lo sumo dos errores.
 - *d*) Halle la probabilidad de que en dos períodos de inventario cometa cinco errores.
 - e) Halle el número esperado de errores en tres períodos de inventario.
- 15. La concertista de piano Linda Melodía se preocupa por el número de tosidos que se presenta en la audiencia justo antes que empiece a tocar. Durante su última gira, Linda estimó un promedio de 4 tosidos por minuto antes de empezar. Le ha prometido a su director que, si escucha más de 5 tosidos en los dos minutos previos al comienzo del concierto de esta noche, se rehusará a tocar.
 - a) ¿Cuál es la probabilidad de que la artista toque esta noche?
 - b) El director con el fin de conciliar y llegar a un acuerdo con la artista le dice que ingrese a la sala sólo un minuto antes de empezar y que no toque si escucha más de 5 tosidos en ese período. ¿Cuál es la probabilidad de que toque?
 - c) Si se sabe que tocó, ¿Cuál es la probabilidad de que haya escuchado más de 3 tosidos?
- 16. El fabricante de galletitas "Chocopep" agrega a la masa un promedio de 8 trocitos de chocolate cada 20gr de masa.
 - *a)* ¿Cuál es la probabilidad de que una galleta de 12gr no contenga trocitos de chocolate?
 - b) Se considera que una galleta de 12 gr es aceptable si contiene al menos 2 trocitos de chocolate. ¿Qué porcentaje de galletas son aceptables?
 - c) Si se toma una galleta de 12 gr al azar y resulta ser aceptable, ¿Cuál es la probabilidad de que tenga a lo sumo 3 trocitos de chocolate?
 - d) ¿Cuál es la probabilidad de que en un paquete que contenga 4 galletas de 12gr cada una ninguna tenga trocitos de chocolate?
- 17. Sea $X \sim G(0,6)$, calcular:

a)
$$P(X \le 4)$$
 b) $P(X > 2)$ c) $P(2 < X \le 4)$ d) $P(X \le 3/x > 1)$
e) $P(X \le 0)$ f) $P(X = 5 \text{ o } X \le 2)$

- 18. Si la inflación de febrero 2025 es del 2,2% según INDEC,
 - a) ¿Cuál es la probabilidad de que al comprar el primer producto sea el segundo que haya aumentado de precio?
 - b) ¿Cuál es el número esperado de productos que aumentaron de precios?
- 19. En un supermercado, se sabe que la probabilidad de que un cliente pague con billetera virtual es 0,4,
 - a) Si se seleccionan 20 clientes, calcular la probabilidad de que 5 clientes paguen con billetera virtual.
 - b) Calcular la probabilidad de que el cuarto cliente sea el primero en pagar con billetera virtual

Respuestas

1)

a.1) 0,9

a.2) 0,5

a.3) 0,4

a.4) 0,1

a.5) 0,8

a.6) 0,2

h)

υj		
X_i	$p(x_i)$	F(x)
1	0,1	0,1
2	0,1	0,2
3	0,3	0,5
4	0,3	0,8
5	0,2	1

2)

a) 0,066666666 ~ 0,067

b) F(-3) = 0 F(0.5) = 8/15

F(1) = 14/15

F(5) = 1

3)

a) 1/4

- b) 1/2
- c) 1/2
- d) 1/3

4)

Para el ejercicio 1: E(x) = 3,4 V(X) = 1,44

Para el ejercicio 2: E(x) = 1/3 V(X) = 0.7555

- 5) Nueva variable Y: E(Y)=2,9 V(Y)=5,49 D(Y)= 2,3431
- 6) V(X)=12,6
- 7)
- a) E(2X+3Y)=16,3
- b) E(5X-1)=9
- c) V(3X)=3,6
- $d)E(X^2)=4,4$
- e)V(2Y-1)=12
- f)V(5X-Y)=13
- 8) 1) \approx 0,3292; 2) \approx 0,5391; 3) \approx 0,2099; 4) \approx 0,7901
- 9)
- a) 0,384
- b) 0,992
- c) 0,008
- d) 0,2627
- e) 0,2049
- f) 0,9507
- 10)
- a) 0,1272
- b) 0,2454
- c)0,0000082
- 11)
- a) 0,3
- b) 0,42857
- c)0,5
- 12)
- a) 0,1174
- b) 0,0139
- c) 0

.UBA económicas

- d) 0,5165
- e) 0,1309
- f) 0,3522
- g) 0,9105
- 13)
- a) 0,2975
- b) 0,2694
- c) 0,8913
- d) 0,1061
- e) 0,0358
- f) 0
- g) 0,1653
- h) 0,3401
- 14)
- a) 0,1003
- b) 0,8997
- c) 0,5961
- d) 0,1725
- e) 6,9
- 15)
- a) 0,1912
- b) 0,78513
- c) 0,4479
- 16)
- a) 0,0082
- b) 0,9523
- c) 0,2588
- d) 0,000000045
- 17)
- a) 0,9744
- b) 0,16
- c) 0,1344
- d) 0,936
- e) 0,85536
- 18)
- a) 0,021516
- b) 45

- 19)
- a) 0,074647019
- b) 0,0864