FERIENKURS ANALYSIS 2 FÜR PHYSIKER

JOHANNES R. KAGER UND JULIAN SIEBER

Aufgabenblatt 2

Aufgabe 1 $(\star\star)$. Der Graph der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) := x^3 - 3xy^2$$

wird gelegentlich als Affensattel bezeichnet.

- (a) Zeigen Sie, dass f differenzierbar ist und bestimmen Sie ∇f .
- (b) Untersuchen Sie das Verhalten von f an der Stelle (0,0). Überlegen Sie sich auch, wie Sie Extremalstellen der Funktion mit auf den Kreis $x^2 + y^2 \le r^2$ eingeschränkten Definitionsbereich suchen würden (dafür müssen Sie keine Rechnung durchführen, Sie werden später noch auf ein entsprechendes Beispiel stoßen).
- (c) Bestimmen Sie eine Funktion, deren Graph Tangentialebene an den Graph G_f im Punkt (1,0) ist.

Aufgabe 2 (*). Bestimmen Sie die globalen Extrema der folgenden Funktionen. Finden Sie dazu jeweils die kritischen Punkte und klassifizieren Sie diese anhand der Hesse Matrix.

- (a) $f(x,y) = x 3y \frac{1}{2}x^2 y^2$ (b) $f(x,y) = \sin(x) + xy^2$

Aufgabe 3 (*). Seien $x_1, \ldots, x_n \in (0, 2\pi)$ Winkel, sodass $\sum_{i=1}^n x_i = 2\pi$. Definiert man die Punkte $P_j := e^{i\sum_{k=1}^{j-1} x_k}$ für $j=1,\ldots,n$, so bildet $P_1P_2,\ldots,P_{j-1}P_j,\ldots,P_nP_1$

Man bestimme für $k=1,\ldots,n$ die Winkel x_k so, dass der Flächeninhalt des n-Ecks maximal wird. Man verwende hierfür die Methode der Lagrange-Multiplikatoren.

Aufgabe 4 $(\star\star)$.

- (a) Wo besitzt die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) \coloneqq 2x 3y + 6z$ innerhalb bzw. auf der Kugel $x^2 + y^2 + z^2 \le 1$ globale Extremstellen? (Verwenden Sie die Lagrangen Multiplikatoren)
- (b) We besitzt die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ mit

$$g(x_1, x_2) := x_1^3 e^{x_1 - x_2}$$

globale bzw. lokale Extremstellen?

Geben Sie jeweils an, ob es sich bei den Extremstellen um Maxima, Minima oder Sattelpunkte handelt.

Aufgabe 5 (*). Bestimmen Sie die Gleichung der Tangente im Punkt P=(1,1) der Kurve $xye^{2(y-x)}=1.^1$ Verwenden Sie - anders als im Beispiel im Skript - nun strikt den Satz über Implizite Funktionen.

Aufgabe 6 (*). Gegeben sei $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) := (e^{x+y}\cos(x-y), e^{x+y}\sin(x-y))$.

- (a) Zeigen Sie, dass f an allen Punkten $(x,y) \in \mathbb{R}^2$ eine lokale Umkehrfunktion besitzt.
- (b) Ist f injektiv?

Aufgabe 7 (**). Angenommen, die Parameter $\boldsymbol{w}=(w_1,w_2)$ liegen in der Nachbarschaft von $\boldsymbol{w_0}=(1,1)$. Folgende Gleichungen seien gegeben:

$$w_1^2 + w_2^2 + u_1^2 + u_2^2 = 3,$$

 $w_1 + w_2 + u_1 + u_2 = 3.$

Zeigen Sie: gilt $w = w_0$, wird das System gelöst, wenn (u_1, u_2) mit (0, 1) ersetzt wird. Zeigen Sie weiters, dass wenn w nahe genug an w_0 liegt, man trotzdem eine Lösung u = g(w) findet, wobei g stetig differenzierbar ist. Beweisen Sie, dass $g \in C^2$. Finden Sie alle partiellen Ableitungen erster und zweiter Ordnung von g bei w_0 .

Aufgabe 8 $(\star\star\star)$. Die Abbildung $E:\mathbb{R}^2\to\mathbb{R}^2$ sei gegeben durch

$$E(x,y) := \begin{pmatrix} e^x \cos y \\ e^x \sin y \end{pmatrix}.$$

- (a) Skizzieren Sie die Bilder der achsenparallelen Geraden unter E und bestimmen Sie die Bildmenge $E(\mathbb{R}^2)$.
- (b) Zeigen Sie, dass $D_E(x,y)$ invertierbar ist für alle $(x,y) \in \mathbb{R}^2$, aber E nicht injektiv ist. Sind damit die Bedingungen des Satzes über die Umkehrfunktion erfüllt?
- (c) Nun seien $a:=(0,\frac{\pi}{3})$ und b:=E(a). Bestimmen Sie die stetige Umkehrabbildung von E, die eine offene Umgebung von b auf eine offene Umgebung von a abbildet.

 $^{^1}$ Diese Funktion war in der in der Übung ausgeteilten Form als $xe^{2(y-x)}=1$ gegeben. Das ändert aber nichts am Konzept. Allerdings wäre die ursprüngliche Funktion direkt nach y auflösbar und man benötigt nicht den Satz über implizite Funktionen.