

# Learning Rules from Incomplete KGs Using Embeddings



Vinh Thinh Ho<sup>1</sup>, Daria Stepanova<sup>1</sup>, Mohamed Gad-Elrab<sup>1</sup>, Evgeny Kharlamov<sup>2</sup>, Gerhard Weikum<sup>1</sup>

hvthinh@mpi-inf.mpg.de, dstepano@mpi-inf.mpg.de, gadelrab@mpi-inf.mpg.de, evgeny.kharlamov@cs.ox.ac.uk, weikum@mpi-inf.mpg.de <sup>1</sup>Max Planck Institute for Informatics, Saarbrücken, Germany <sup>2</sup>University of Oxford, Oxford, United Kingdom

#### 1. Motivation and Contributions

**Knowledge graphs**: huge collections of positive unary and binary facts treated under **Open World Assumption** (e.g. *isMarriedTo(clara,dave),researcher(dave))* 

## Rule-based approach

Automatically constructed, thus incomplete ⇒ KG completion task

## **Embedding-based approach**



 $livesIn(Z, Y) \leftarrow livesIn(X, Y), marriedTo(X, Z)$ 

$$conf(r) = \frac{|\Delta|}{|\Delta| + |\Delta|} = 0.5$$

- + Interpretable
- + Allow for reasoning
- Not extendable
- Local patterns
- Hard to interpret
- No reasoning
- + Extendable (e.g., text)
- + Global patterns

## Our approach: rule-based with embeddings support **Challenges:**

- Structurally different output
- Large embedding size
- Large rule search space

#### **Contributions:**

- ► Framework for rule learning with external sources
- Hybrid embedding based rule measure
- Experiments on real world KGs



## 2. Our Proposal: Rule Learning with External Sources

#### Problem statement:

Given:  $\mathcal{P} = (\mathcal{G}, f)$ 

► Knowledge graph G

ightharpoonup Probability function f: trusfulness of  $\mathcal{G}$ 's missing facts

Find: Ordered set of rules, which

Describe G well and predict highly probable facts based on f

# Our solution:

**Hybrid rule quality function** to prune search space of rules r:

$$\mu(r,\mathcal{P}) = (1-\lambda) imes \mu_1(r,\mathcal{G}) + \lambda imes \mu_2(\mathcal{G}_r,\mathcal{P})$$

▶ Descriptive quality  $\mu_1$  of rule r over  $\mathcal{G}$ :

$$\mu_1:(r,\mathcal{G})\mapsto lpha\in[0,1]$$

⇒ any classical rule measure, e.g., confidence

▶ Predictive quality  $\mu_2$  of r: trustfulness of predictions  $\mathcal{G}_r$  made by r on  $\mathcal{G}$ 

$$\mu_2: (\mathcal{G}_r, \mathcal{P}) \mapsto lpha \in [0,1]$$

 $\Rightarrow$  capture **information about missing facts** in  $\mathcal{G}$  that are relevant for r

• Weighting factor  $\lambda \in [0,1]$  to control the distribution of  $\mu_1$  and  $\mu_2$ 

## Realization of f and $\mu_2$ relying on embeddings:

$$f(fact) = 0.5 imes (1/subject\_rank(fact) + 1/object\_rank(fact))$$
 $\mu_2(\mathcal{G}_r, \mathcal{P}) = rac{\sum_{fact \in \mathcal{G}_r \setminus \mathcal{G}} f(fact)}{|\mathcal{G}_r \setminus \mathcal{G}|}$ 

livesIn(X, Y) ←

livesln(X, Y)  $\leftarrow$  actedln(X,Z) livesln(X, Y)  $\leftarrow$  marriedTo(X,Z),

livesIn(Z,Y)

livesln(X, Y)  $\leftarrow$  marriedTo(X,Z), livesln(Z,Y),

not researcher(X)

add negated atom

#### 4. Rule Refinement

add dangling atom

producedIn(Z,Y)

Extended AMIE [Galárraga, et al, VLDB 2015] (additions are in blue):

livesln(X, Y)  $\leftarrow$  actedln(X,Z),

- Refinement operators: add
  - dangling atom
  - instantiated atom
  - closing atom

  - negated instantiated atom
  - negated closing atom add closing atom
- ► Rule filtering:
  - language bias support
- head coverage
- confidence
- $\blacktriangleright$  embedding-based measure ( $\mu$ )
- exception confidence:

$$e ext{-}conf(r,\mathcal{G}) = conf(r',\mathcal{G})$$
 where  $r':body^-(r) \leftarrow body^+(r), not\ head(r)$ 

#### 3. General Architecture



## 5. Experiments

- Approximation of complete KG: original
- Available KG: random 80% of original KG, preserving the distribution of facts over predicates.
- Embedding models:
  - TransE, HolE, SSP (with text)







- Examples of mined rules:
  - $r_1$ :  $nationality(X, Y) \leftarrow graduated\_from(X, Z), in\_country(Z, Y), not research\_uni(Z)$  $r_2$ :  $scriptwriter\_of(X, Y) \leftarrow preceded\_by(X, Z), scriptwriter\_of(Z, Y), not tv\_series(Z)$