TODO AND TO-REVISE

COLTON GRAINGER

- o.1. **Minimal and maximal subgroups.** Suppose N is a nontrivial abelian subgroup of G, minimal with the property that it is normal in G. Let H be a proper subgroup of G such that NH = G. The intersection of N with H is trivial and H is a maximal subgroup of G.
- o.2. **[1, No. 3.1.40].** Let G be a group, let N be a normal subgroup of G and let $\overline{G}=G/N$. The elements \overline{x} and \overline{y} commute in \overline{G} if and only if $x^{-1}y^{-1}xy\in N$.
- o.3. [1, No. 3.4.7]. If G is a finite group and $H \triangleleft G$, there is a composition series of G one of whose terms in H.
- o.4. **[1, No. 3.4.11].** If H is a nontrivial normal subgroup of the solvable group G, there is a nontrivial subgroup A of H with $A \triangleleft G$ and A abelian.
- 0.5. **[1, No. 3.5.10].** We find a composition series for A_4 , and argue that A_4 is not solvable.
- o.6. **[1, No. 4.1.9].** Assume G acts transitively on the finite set A and let H be a normal subgroup of G. Let $\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r$ be the distinct orbits of H on A.
 - (a) G permutes the sets $\mathscr{O}_1, \mathscr{O}_2, \ldots, \mathscr{O}_r$ in the sense that for each $g \in G$ and each $i \in \{1, \ldots, r\}$ there is a j such that $g\mathscr{O}_i = \mathscr{O}_j$, where $g\mathscr{O} = \{g(\alpha) : \alpha \in \mathscr{O}\}$. Then G is transitive on $\{\mathscr{O}_1, \ldots, \mathscr{O}_r\}$. Furthermore, all orbits of H on A have the same cardinality.
 - (b) If $\alpha \in \mathcal{O}_1$, then $|\mathcal{O}_1| = |H: H \cap \mathsf{Stab}_G(\alpha)|$. Furthermore, $r = |G: \mathsf{HStab}_G(\alpha)|$.
- 0.7. **[1, No. 4.4.20].** For any finite group P, let d(P) be the minimum¹ number of generators of P. Let m(P) be the maximum of the integers d(A) as A runs² over all *abelian* subgroups of P. Define the *Thompson subgroup* of P as

$$J(P) = \langle A : A \text{ is an abelian subgroup of } P \text{ with } d(A) = m(P) \rangle$$
.

- (a) J(P) is a characteristic subgroup of P.
- (b) For each of the following groups P, we exhaustively list all abelian subgroups A of P that satisfy d(A) = m(P): Q_8 , D_8 , D_{16} , QD_{16} (the quasidihedral group of order 16).
- o.8. [1, No. 6.2.25]. Let G be a simple group of order p^2qr where all p, q, r are prime. Then |G| = 60.

Proof sketch. By Feit-Thomposon, G must be of even order. Suppose that p is not 2. Then by "Erik's lemma", if G is a group of order 2k where k is odd, then G has a normal subgroup. Considering that p^2qr could be written as 2k with k odd if $p \neq 2$, we must have p = 2.

Without loss of generality, assume q < r. We can thus bound $n_r \in \{2q, 4q\}$. We want to show $n_r = 2q$. If we could do so, then we'd be able to consider $P \in \text{Syl}_2\left(G\right)$. From here, we could argue that $p^2 \equiv 1 \pmod q$. Thence we'd find $q \mid (p-1)$ or $q \mid (p+1)$. Lastly, we'd observe q = 2+1. Moreover, if we could limit n_r to be 2q, then we'd be forced by congruence, namely rn + 1 = 2q, to accept that r = 5. \square

1

Date: 2018-10-05.

Compiled: 2018-11-13.

¹For example, d(P) = 1 if and only if P is a nontrivial cyclic group and $d(Q_8) = 2$.

²For example, $\mathfrak{m}(Q_8)=1$ and $\mathfrak{m}(D_8)=2$.

o.9. [1, No. 5.5.23]. Let K and L be groups, let n be a positive integer, let $\rho\colon K\to S_n$ be a homomorphism and let H be the direct product of n copies of L. From [1, No. 5.1.8], we constructed an injective homomorphism ψ from S_n into Aut (H) by letting the elements of S_n permute the n factors of H. The compositions $\psi \circ \rho$ is a homomorphism from G into Aut (H). The wreath product of L by K is the semidirect product $H \rtimes_{\iota h} K$ with respect to this homomorphism and is denoted by $L \setminus K$. Note this wreath product depends on the choice of permutation representation ρ of K — if none is given explicitly, then φ is assumed to be the left regular representation of K.

- (a) Assume K and L are finite groups and ρ is the left regular representation of K. We find $|L \setminus K|$ in terms of |K| and |L|.
- (b) Let p be a prime, let $K=L=Z_p.$ Suppose ρ is the left regular representation of K. Then $Z_p\wr Z_p$ is a non-abelian subgroup of order p^{p+1} and is isomorphic to a Sylow p-subgroup of S_{p^2} . [The p copies of Z_p whose direct products makes up H may be represented by p disjoint p-cycles; these are cyclically permuted by K.]

0.10. [1, No. 6.1.20]. Let p be a prime, let P be a p-subgroup of the finite group G, let N be a normal subgroup of G whose order is relatively prime to p, and let $\tilde{G} = G/N$.

- (a) With Frattini's argument, $N_{\tilde{G}}\left(\bar{P}\right) = \overline{N_{G}\left(P\right)}$. (b) From above, $N_{\tilde{G}}\left(\bar{P}\right) = \overline{N_{G}\left(P\right)}$.

0.11. [1, No. 6.3.12]. Let S be a set and c a positive integer. Formulate the notion of a free nilpotent group on S of nilpotence class c and prove it has the appropriate universal property with respect to the nilpotent groups of class less than or equal to c.

Formulation. The free nilpotent group on S of nilpotence class c, denoted $N_c(S)$, ought to be given by the presentation $\langle S|\gamma_c(F(S))\rangle$ where $\gamma_c(F(S))=[F(S),\gamma_{c-1}(S)]$. From the presentation, there's a surjection $\pi\colon F(S)\to F(S)$ $N_{c}(S)$.

Universal property. Let G be a nilpotent group of class c. Let $\varphi \colon S \to G$ be a map of sets. Then there's a unique $\Psi \colon N_c(S) \to G$ such that the following diagram commutes:

 $\textit{Proof.}^{3} \text{ Observe } \Phi(\gamma_{c}(F(S))) \leqslant \gamma_{c}(G) \text{ as } \Phi([F(S),\gamma_{c-1}(F(S))]) = [\Phi(F(S)),\Phi(\gamma_{c-1}(F(S)))] \leqslant \gamma_{c}(G) = 1.$

0.12. **[1, No. 6.3.14].** Prove that $G = \langle x, y : x^3 = y^3 = (xy)^3 = 1 \rangle$ is an infinite group as follows. Let p be a prime congruent to 1 $\mod 3$ and let G_p be the non-abelian group of order 3p. Let $a,b\in G_p$ with |a|=p and |b| = 3.

- Both ab and ab^2 have order 3.
- G_p is a homomorphic image of G.
- G is therefore an infinite group, as there are infinitely many primes $p \equiv 1 \mod 3$.

[1] D. S. Dummit and R. M. Foote, Abstract algebra, 3rd ed. Hardcover; Prentice Hall, 2004 [Online]. Available: http://www.worldcat.org/isbn/0471433349

 $^{^3}$ I consulted Erik, Hunter, Chris, and https://terrytao.wordpress.com/2009/12/21/the-free-nilpotent-group/ for this problem. The proof here is hardly sufficient, I'll admit—something to revise.