								Run 1	Run 2	Run
				Schlur	Schlumberger					
Company: L	Lamont Doherty	Joherty								
	ODP Leg	201, Site	ODP Leg 201, Site 1230A PRU-4A	J-4A						
¥.	Peru Mai	Peru Margin								
	JOIDES	Resolution		Ocean: Pacific						
	Phasor Induction	duction								
DA PF	Gamma Ray	ay								
Latitud 1230	,	Ş								
, Site	9 Deg 06.7529' S Latitude	S Latitude		Elev.: K.B.	11.3 m					
rgin 6.752 J 201, Dohe DN	80 Deg 35.01' W Longitude	√ Longitude		G.L.	-5097 m					
Ma g 06 Leg				D.F.	11 m					
Peru DDP amo	Permanent Datum:	ı								
9 0 7: L	Log Measured From:	1	w l	11.3 m abov	above Perm. Datum					
any	Drilling Measured From:	ed From: RKB								
Rig: Field: Locat Well: Comp	API Serial No	ial No.	Max. Hole Devi. 0 deg	Longitude	Latitude					
Logging Date		16-Mar-2002				Logging Date				
Run Number						Run Number				
Depth Driller		5375 m				Depth Driller	7,5,45			
Bottom Log Interval		5373 m				Bottom Log Interval	erval			
Top Log Interval		5099 m				Top Log Interval				
Casing Driller Size @ Depth	Depth	0.000 in	@ 5178 m		@	Casing Driller Size @ Depth	Size @ Depth		(9)	
Casing Schlumberger		5179 m				Casing Schlumberger	berger			
Type Fluid In Hole		Sepiolite/Saltwater	ter			Type Fluid In Hole	ole			
Density	Viscosity	1.07 g/cm3					Viscosity			
Fluid Loss PH						M Fluid Loss	PH			
		mudpit	3		1		ηple			
RM @ Measured Temperature	perature	0.235 ohm.m	@ 33 degC		9	RM @ Measured Temperature	d Temperature		@ (@	
RMF @ Measured Temperature	mperature		(9)		(9)	RMF @ Measu	RMF @ Measured Temperature		@ (@	
RMC @ Measured Temperature	mperature		®		@	RMC @ Measu	RMC @ Measured Temperature		@	
RM @ MRT RN	RMF @ MRT	0.421 @ 9	@ 9	@	@	RM @ MRT	RMF @ MRT	@	@	
Maximum Recorded Temperatures	emperatures	9 degC				Maximum Reco	Maximum Recorded Temperatures			
Circulation Stopped	Time	16-Mar-2002	3:00			Circulation Stopped	pped Time			
Logger On Bottom	Time	Mar-20	8:45			Logger On Bottom				
Unit Number	Location	0 	Houston ODP			Unit Number	Location			
Witnessed By		K. Swain				Witnessed By				
Witnessed By		Gilles Guerin				Witnessed By				

	(8)																																				ω
		(9)	(9)	(9)		\dashv			@					ŀ								+										+	+	+	+		
																																					D Z
	@																																				Run 4
																	MEF																				
THE US	ATES	, PA	ĸRΤ	NEI	RS, R	EPR	RESE	ENT	ATI	VES,	AG	SEN	TS	, C	SNC	SUL	IAT.	NTS	AN	ID E	EMF	PLC	ΥE	ES) IS	SÙ	JBJI	EC.	T T	T C	ΉE	TE	RM	S			
AND COMPA	F THE	E RE	ECC	ORD	ED-D	ATA	(b)	DIS	SCL	AIME	ERS	AN	۱D۱	WΑ	IVE	RS	OF	WA	ARR.	AN ⁻	TIES	S A	ND	RE	PR	ES	EŇ.	ľΑ٦	ΓΙΟ	NS	RE	GA	RDI	INC	3		
FOR A	NY IN	IFEF	REN	VCE	DRA	WN	OR	DE	CISI	ON N	MAE	DE I	N C	CON	NNE	CT	ION	I W	ITH	THI	E U	SE	OF	Th	IIS	RE	CO	RD	ED-	D/	TA	·	NOIL	<u> Э</u> ІС			
OTHER SERVIOUS OS1: Hngs/l			S														OTF OS		SE	RV	ICE	S2															
OS2: MEST																	OS2	2:																			
OS3: OS4:																	OS3 OS4																				
OS5:																	OS	5:																			
REMARKS: RU Hole cored with					9											+	REN	ЛAF	RKS	: R	UN	ΝL	IME	EF	2										—		
Log presented						oor.																															
Lamont Tempe								_																										_			
Wireline Heave Sepliolite mud)																							
Drillers TD 537					•								<u> </u>		mk	orf.																					
D :: D: 0 1 1			- 4	70																																	
Drill Pipe Schlu Sea Floor Schl																																—	—	_	—		
Software bug s Low backgrour																_		al.																_			
source used fo													es 6	a w	ear	C II II	em	aı														_			_		
																																		_			
																																		_			
SERVICE ORD	FR #	<u>.</u>			RUN	I											SFF	S//I0	CE (SRI	OFF	2 #-				RU	N 2										
PROGRAM VE										10C	0-30	06					PRO	OGF	RAM	VE	RS																
FLUID LEVEL: LOGGED	INT	ERV	'AL				STAF	RT			S	TOI	-				FLU		<u>LEV</u> OG(ITE	RV	AL				- 5	STA	RT		Т		- 5	STO	P	
																																4					
																																#		_			
																																士		_			
								E	Q	UII	⊃ [ΛE		1T	-	D	E	S	CF	RIF	7	- (1													
					RUI																					R	U١	12									
SFT-281 24	S				E E TS)- <i>F</i>		JIPI	ME	ΞN	Γ																											
SFT-178 4722		VVI	IIIV	ט) ו	13)-4	(2																															
GSR-U 135 GSR-U/Y																																					
	D)\/\	/NII	10	LE	FC)	PN/	1FN	JT						+																					
	D(<i>-</i>					(011	1 10		• 1																											
LEH-QT								画	•				3	5.	14																						
LEH-QT 1726				_	CTE			-)	_ 33	3.98	3																									
DTC-H ECH-KC 9343					IStatı oISta				[_ 33	3.34	1	3	4.2	25																						
SGT-N			Ga	amr	na Ra	зy			ı —	_ 33	3.06	3	3	3 :	34																						
SGH-K 2448													J	٠.٠	∵ 7																						

DEFAULT	PI_LDL_APS	_NGS_0	006LUP	Input [FN:8	DLIS Files PRODUCER	16-Mar-200	2 08:47	5383.5 M	5079.3 M
				Output	DLIS Files	;			
DEFAULT TCOM	PI_LDL_APS PI_LDL_APS			FN:32 FN:33	PRODUCER PRODUCER	17-Mar-200 17-Mar-200		5383.5 M 5383.5 M	5084.2 M 5084.2 M
			OP S	ystem Ve	ersion: 10C	0-306			
DIT-E DTA-A APS-BA SGT-N	10C0-306 10C0-306 10C0-306 10C0-306				HLDT-A NPLC-B HNGS-BA DTC-H	10C0- 10C0- 10C0- 10C0-	-306 -306		
Time Ma	ark Every 60 S			PIP S	SUMMARY				
	ancevery oo o						10000	Tension (1 (LBF	
		_					<u>Calil</u> 2000	orated Downho (LBF	le Force (CDF))
	Main Pass		SFL_ QUAL From D3T to SFQF	0.2		SFL Unaver	raged (SI IMM)	FLU)	2
0	Gamma Ray (GR) (GAPI)	100		0.2	Medium Induct		orocesse HMM)	d Resistivity (IN	ЛРН)
	Coliner (CALI)		IMQF ID_QUAL		Doop Industi	on Phonor re	,000000	Posiativity (IDI	DIN/
0	Caliper (CALI) (IN)	<u>2</u> 0	From IMQF to	0.2	_ neeh maacm		ocessed HMM)	Resistivity (IDI	2

SFCR SHT	SFL Channel Ra Surface Hole Te	atio	-nor concouon			1000	DEGF
BHT GDEV GGRD GTSE	APS-BA: Accelerator-Porosity Tool Bottom Hole Te Average Angula Geothermal Gra Generalized Te	mperature (use ir Deviation of l idient mperature Sele	ed in calculations Borehole from N ection	órmal	IEAR_ES	40 0 0.01 TIMATE	DEGF DEG DF/F
SHT BHT GDEV GGRD GTSE	Surface Hole Te HNGS-BA: Hostile Natural Gamma Ray Bottom Hole Te Average Angula Geothermal Gra Generalized Te	Sonde mperature (use Ir Deviation of l Idient	ed in calculations Borehole from N	ormal	JEAR_ES	68 40 0 0.01 TIMATE	DEGF DEGF DEG DF/F
SHT	Surface Hole Te SGT-N: Scintillation Gamma-Ray - N Bottom Hole Te	emperature mperature (use or Deviation of l dient	ed in calculations Borehole from N	s) ormal	VEAR_ES	68 40 0 0.01	DEGF DEGF DEG DF/F
SHT	Surface Hole Te HOLEV: Integrated Hole/Cement Volur Bottom Hole Te	emperature ne mperature (use ir Deviation of l idient mperature Sele	ed in calculations Borehole from N	s) ormal	- NEAR_ES	68 40 0 0.01	DEGF DEGF DF/F DEGF
DFD DO PP TD	System and Miscellaneous Drilling Fluid De Depth Offset for Playback Proce Total Depth	nsity Playback ssing				1.07 0.0 MPUTE 17647.6	G/C3 M FT
Format: DIT	E_LogPhasor Vertical Scale: 1:20	0		Grap	hics File	Created: 17	-Mar-2002 13:54
	OP	System Ve	ersion: 10C	0-306			
DIT-E DTA-A APS-BA SGT-N	10C0-306 10C0-306 10C0-306 10C0-306		HLDT-A NPLC-B HNGS-BA DTC-H	10C0- 10C0- 10C0- 10C0-	306 306		
		Input E	DLIS Files				
DEFAULT	PI_LDL_APS_NGS_006LUP	FN:8	PRODUCER	16-Mar-200	2 08:47	5383.5 M	5079.3 M
		Output	DLIS Files				
DEFAULT TCOM	PI_LDL_APS_NGS_021PUP PI_LDL_APS_NGS_021PUP	FN:32 FN:33	PRODUCER PRODUCER	17-Mar-200 17-Mar-200			
		Input D	DLIS Files				
DEFAULT	PI_LDL_APS_NGS_008LUP	FN:11	PRODUCER	16-Mar-200	2 09:52	5383.5 M	5202.5 M
		•	DLIS Files				
DEFAULT TCOM	PI_LDL_APS_NGS_023PUP PI_LDL_APS_NGS_023PUP	FN:35 FN:36	PRODUCER PRODUCER	17-Mar-200 17-Mar-200	-	5383.5 M 5383.5 M	5207.7 M 5207.7 M
	ОР		ersion: 10C	0-306			
DIT-E DTA-A APS-BA SGT-N	10C0-306 10C0-306 10C0-306 10C0-306		HLDT-A NPLC-B HNGS-BA DTC-H	10C0- 10C0- 10C0- 10C0-	306 306		
Time M	ark Every 60 S	PIP S	UMMARY				
o W					10000		n (TENS) BF) 0

			5		l	١			5250									:			
			Z													}	,				
			\dashv		- 1							+	H	(+	+	
			$ \mathbf{q} $		1										3)	- ;			
			7		' >								П	7	3			1		T	
					į								П					-			
				2	1									₹,	**************************************						
				\geq	. \								$\parallel \parallel$		ļ.				\perp	+	
			-	ر	Ť								H	}		-		-:		+	
		\dashv			1	\						+	\Box	\ <u>\</u>	<u>-</u>				+	+	
		7				?								\$							
		\perp				- 1								Y,	† .						
			\			Ż							\square								
		- ;	\prec			/					-	+	\dashv	\$		1	-		+	+	
		\dashv	+			1						+	\dashv	\$				-		+	
		<u> </u>				-						+	$\dagger \dagger$	1			\dashv	\exists		+	
		K	7			- (\prod					1			
			\sum			ì							Ц	7		Ì					
)			1						\perp	\sqcup	1					\perp	\perp	
		_{				_}	,				_	+	\sqcup	1				+	+	+	
		\dashv	\forall									+	\dashv	7	<u>.</u>				+	+	
			3				1		E075			+	\dashv	{	<i>Y</i>	į				+	
			-(1				\		5275			+	\forall	#		1	\dashv		+	\dagger	
			_{)									\prod	_ {	i.	_ 1		:			
				\leq			7-1						П	Ţ	7						
														}	<u>.</u>						
		•	\leq)			- 1					+	H	4		-			+	-	
				${}$										1					+		
	\dashv	+	\dashv	\forall			,					+	+	T) ,				+	\dagger	
				_	<u> </u>			1							ÿ			:			
			4					/				\perp	П	Z							
		-						 				+	\sqcup							\perp	
		\perp	$\frac{2}{\sqrt{2}}$					 			-+	+	\dashv	7				:	+	+	
				>				l l				+	+					-	+	+	
\vdash	\dashv	+						1				+	+	7			>	:	+	\dagger	
								† 						3	i.	{		:			
			\Box	\sum								\perp		\{\{\}			>				
			-					 				+	\sqcup	4	<u> </u>	,		#		\perp	
			\dashv	4				 				+	H	-				:	+	+	
		+	\dashv	7				1				+	H	\forall				#	+	+	
			1					+					$\dagger \dagger$	13	5			::		+	
								I L						{			>	_;			
					5							\downarrow			ļ.			:			
			_					i	5300			\perp		ಠ			,		\perp	\perp	
			\dashv			<u> </u>		i I				+	\sqcup	F	7				+	+	
		+	\dashv	5				1			-+	+	H	₹				:	+	+	
		+	\dashv	\geq				1				+	\forall				1	\exists	+	+	
								· - 						- 1			(

MRE2	Medium Siamo Reference (20 kHz)	-1.78642	MM/M
MSR2 MXE2	Medium Sigma Reference (20 kHz) Medium Quad 20 kHz Sonde Error Correction	3250 -34.2041	MM/M MM/M
SFCR SHT	SFL Channel Ratio Surface Hole Temperature APS-BA: Accelerator-Porosity Tool	1000 68	DEGF
BHT GDEV	Rottom Hole Temperature (used in calculations)	40 0	DEGF DEG
GGRD GTSE	Average Angular Deviation of Borehole from Normal Geothermal Gradient Generalized Temperature Selection	0.01 LINEAR_ESTIMATE	DF/F
SHT	Surface Hole Temperature	68	DEGF
BHT	HNGS-BA: Hostile Natural Gamma Ray Sonde Bottom Hole Temperature (used in calculations)	40	DEGF
GDEV GGRD	Average Angular Deviation of Borehole from Normal Geothermal Gradient	0.01	DEG DF/F
GTSE SHT	Generalized Temperature Selection Surface Hole Temperature	LINEAR_ESTIMATE 68	DEGF
ВНТ	SGT-N: Scintillation Gamma-Ray - N		
GDEV GGRD	Bottom Hole Temperature (used in calculations) Average Angular Deviation of Borehole from Normal Geothermal Gradient	0.01	DEGF DEG DF/F
GTSE SHT	Generalized Temperature Selection Surface Hole Temperature	LINEAR_ESTIMATE 68	DEGF
BHT GDEV GGRD	HOLEV: Integrated Hole/Cement Volume Bottom Hole Temperature (used in calculations) Average Angular Deviation of Borehole from Normal Geothermal Gradient Controlling Temperature Selection	0.01	DEGF DEG DF/F
GTSE SHT	Generalized Temperature Selection Surface Hole Temperature	LINEAR_ESTIMATE 68	DEGF
DFD DO	System and Miscellaneous Drilling Fluid Density Depth Offset for Playback	1.07	G/C3 M
PP TD	Playback Processing Total Depth	RECOMPUTE 17647.6	FT
	FE_LogPhasor Vertical Scale: 1:200	Graphics File Created: 1	
	OP System Version: 10C0-30	6	
	MCM		
DIT-E		10C0-306	
DTA-A APS-BA		10C0-306 10C0-306	
SGT-N		10C0-306	

DIT-E	10C0-306	HLDT-A	10C0-306
DTA-A	10C0-306	NPLC-B	10C0-306
APS-BA	10C0-306	HNGS-BA	10C0-306
SGT-N	10C0-306	DTC-H	10C0-306

PI_LDL_APS_NGS_008LUP

DEFAULT

LS Bkg. High Voltage

FN:11 PRODUCER **Output DLIS Files**

16-Mar-2002 09:52

17-Mar-2002 14:07

5202.5 M

5383.5 M

N/A

0.8025

Input DLIS Files

DEFAULT PI_LDL_APS_NGS_023PUP FN:35 PRODUCER 17-Mar-2002 14:07 **TCOM** PI_LDL_APS_NGS_023PUP FN:36 PRODUCER

1129

Measurement	Nominal	Master	Before	After	Change	Limit	Units
estile Environment Litho Density - A	A Wellsite Calibration - B	ackground Meas	surement				
ster: 25-Jan-2002 14:22 Before: 2	21-Feb-2002 4:36 After:	16-Mar-2002 13:	35				
LSW1 Background	100.0	89.06	86.19	87.21	1.019	0.03000	CPS
LSW2 Background	105.0	93.23	91.94	91.16	-0.7827	0.03000	CPS
LSW3 Background	210.0	180.0	177.0	178.4	1.486	0.03000	CPS
LSW4 Background	290.0	237.9	235.4	237.0	1.540	0.03000	CPS
LSW5 Background	610.0	529.6	525.7	526.2	0.5357	0.03000	CPS
SSW1 Background	100.0	85.18	85.99	85.89	-0.09821	0.03000	CPS
SSW2 Background	200.0	166.8	165.6	167.1	1.530	0.03000	CPS
SSW3 Background	530.0	446.5	445.9	441.3	-4.582	0.03000	CPS
SSW4 Background	280.0	235.8	234.2	233.3	-0.9212	0.03000	CPS
SSW5 Background	205.0	176.3	175.5	177.7	2.273	0.03000	CPS

1134

1135

1129

SS Bkg. High Voltage	11/3	1173	1180	1178	-2.820	N/A	V
Hostile Environment Litho Density - A Wellsite C Master: 25-Jan-2002 14:22 Before: 21-Feb-2002			From BKG Meas	urments			
LS Background Resolution SS Background Resolution	1.000 1.000	1.042 0.9530	1.032 0.9479	1.052 0.9570	0.01986 0.009117	N/A N/A	
Hostile Environment Litho Density - A Wellsite C Before: 7-Feb-2002 1:47	alibration - Caliρε	r Calibration					
Caliper Small Ring Caliper Large Ring	12.00 18.25	N/A N/A	16.99 23.87	N/A N/A	N/A N/A	N/A N/A	IN IN
Accelerator-Porosity Tool Wellsite Calibration - E Master: 25-Jan-2002 18:34 Before: 16-Mar-2002	6:13 After: 16-M	Mar-2002 11:12					
Near Det Bkg Cotrate	30.00	32.90	31.64	32.59	0.9511	N/A	CPS
Far Det Bkg Cntrate Array-1 Det Bkg Cntrate	30.00 30.00	34.46 28.56	32.77 29.11	32.64 29.15	-0.1335 0.03336	N/A N/A	CPS CPS
Array-1 Det Bkg Chtrate Array-2 Det Bkg Chtrate	30.00	30.78	28.66	29.15	0.8174	N/A N/A	CPS
Array Therm Det Bkg Cntrate	30.00	32.89	34.90	31.52	-3.376	N/A	CPS
Accelerator-Porosity Tool Wellsite Calibration - C Master: 25-Jan-2002 18:35	Calibration Ratios						
Near/Far Calibration Ratio	0.9250	0.9022	N/A	N/A	N/A	N/A	
Near/Array Calibration Ratio	1.030	1.063	N/A	N/A	N/A	N/A	
Near/Array Cal Ratio Up/Down	1.000	1.007	N/A	N/A	N/A	N/A	
Accelerator-Porosity Tool Wellsite Calibration - T Master: Calibration not done	ank Check						
Array-1 Standoff Porosity	11.10	11.94	N/A	N/A	N/A	N/A	PU
Array-2 Standoff Porosity	11.10	11.71	N/A	N/A	N/A	N/A	PU
Average Slowing Down Time	6.000	N/A	N/A	N/A	N/A	N/A	US
Array 1 SDT Ratio Up/Down	1.000	N/A	N/A	N/A	N/A	N/A	ļ
Array-1 SDT Ratio Up/Down Sigma Formation	1.000 27.50	N/A 27.64	N/A N/A	N/A N/A	N/A N/A	N/A N/A	CU
Sigma Formation	27.50	21.04	IN/A	IN/A	IN/A	IN/A	CU
Hostile Natural Gamma Ray Sonde Wellsite Cal Master: 23-Jan-2002 11:37 Before: 7-Feb-2002	1:13 After: 16-M	1ar-2002 13:31					
Na 511 Peak Loc	40.00	40.51	40.71	40.60	-0.1139	1.000	
Na 511 Peak Res	15.50	15.75	17.24	16.36	-0.8792	2.000	%
High Voltage Na 1785 Peak Loc	1150 142.6	1203 144.6	1207	1211 145.3	4.461	30.00	V
Na 1785 Peak Loc Na 1785 Peak Res	8.500	144.6 9.254	146.2 9.073	9.056	-0.8852 -0.01723	7.000 2.000	%
Temperature	15.50	9.25 4 21.86	9.073 29.34	29.05	-0.01723 -0.2867	2.000 N/A	% DEGC
Na Count Rate	45.00	39.29	40.56	38.30	-2.263	8.000	CPS
Hostile Natural Gamma Ray Sonde Wellsite Cal Master: 23-Jan-2002 11:37 Before: 7-Feb-2002		or 2 Check					
Na 511 Peak Loc	40.00	40.54	40.54	40.49	-0.04351	1.000	
Na 511 Peak Loc Na 511 Peak Res	15.50	16.19	16.67	16.83	0.1667	2.000	%
High Voltage	1150	1233	1236	1241	4.679	30.00	V
Na 1785 Peak Loc	142.6	143.9	144.1	144.7	0.6076	7.000	
Na 1785 Peak Res	8.500	9.453	8.968	9.504	0.5361	2.000	%
Temperature	15.50	21.24	29.04	29.75	0.7097	N/A	DEGC
Na Count Rate	45.00	39.11	40.36	38.11	-2.251	8.000	CPS
Hostile Natural Gamma Ray Sonde Wellsite Call Master: 23-Jan-2002 11:37 Before: 7-Feb-2002			Detector 2				
Coincidence Count Rate Ratio	1.000	1.004	1.005	1.005	-0.0001048	0.05000	
Scintillation Gamma-Ray - N Wellsite Calibration Before: Calibration out of date 7-Feb-2002 1:0		ation					
Gamma Ray (Jig - Bkg)	167.5	N/A	167.5	N/A	N/A	15.23	GAPI
Gamma Ray (Calibrated)	165.0	N/A	165.0	N/A	N/A	15.00	GAPI
A							
Accelerator-Porosity Tool - Detector Plateau Sett	.ings :						
Near Detector Plateau Setting Far Detector Plateau Setting Array Detector Plateau Setting 1748 V 2052 V 1969 V							

Dual Induction - E / Equipment Identification

Primary Equipment: Dual Induction Sonde Dual Induction Cartridge

DIS - HB 442 DIC - EB 438

Auxiliary Equipment. Mass Isolated Housing	MIH - ZA 417	
	Dual Induction - E Wellsite Calibration	
Phase ID Elect Real Offset 10 kHz MM/M Value	Induction Electronics (10 kHz) Phase ID Elect Real Gain 10 kHz Value Phase ID Elect Phase 10	kHz DEG Value
Before 37.20	Before 0.9756 Before	10.64
-262.8 37.15 337.2 (Minimum) (Nominal) (Maximum)	0.8294 0.9794 1.171 0.6325 10.63 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal)	20.63 (Maximum)
Phase ID Elect Quad Offset 10 kHz MM/M Value	Phase ID Elect Quad Gain 10 kHz Value Phase IM Elect Phase 10	
Before 22.47	Before 0.9637 Before	13.32
-277.5 22.53 322.5 (Minimum) (Nominal) (Maximum)	0.8193 0.9693 1.157 3.310 13.31 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal)	23.31 (Maximum)
Phase IM Elect Real Offset 10 kHz MM/M Value	Phase IM Elect Real Gain 10 kHz Value	
Before 96.46	Before 0.9498	
-453.5 96.54 646.5 (Minimum) (Nominal) (Maximum)	0.8074 0.9574 1.140 (Minimum) (Nominal) (Maximum)	
Phase M Elect Quad Offset 10 kHz MM/M Value	Phase IM Elect Quad Gain 10 kHz Value	
95.06	Before 0.9476	
-454.8 95.18 645.2 (Minimum) (Nominal) (Maximum)	0.8055 0.9555 1.137 (Minimum) (Nominal) (Maximum)	
Before: Calibration out of date 5-Oct-2001 23:57		
	Dual Induction - E Wellsite Calibration	
Phase ID Elect Real Offset 20 kHz MM/M Value	Induction Electronics (20 kHz) Phase ID Elect Real Gain 20 kHz Value Phase ID Elect Phase 20	kHz DEG Value
Before 14.67	Before 1.001 Before	9.784
-110.3 14.68 139.7	0.8551 1.005 1.207 -5.718 9.282	24.28
(Minimum) (Nominal) (Maximum) Phase ID Elect Quad Offset 20 kHz MM/M Value	(Minimum) (Nominal) (Maximum) (Minimum) (Nominal) Phase ID Elect Quad Gain 20 kHz Value Phase IM Elect Phase 20	(Maximum) kHz DEG Value
Before 9.083	Before 0.9891 Before	12.07
-115.9 9.089 134.1	0.8445 0.9945 1.192 -2.653 12.35	27.35
(Minimum) (Nominal) (Maximum) Phase IM Elect Real Offset 20 kHz MM/M Value	(Minimum) (Nominal) (Maximum) (Minimum) (Nominal) Phase IM Elect Real Gain 20 kHz Value	(Maximum)
Before 40.06	Before 1.011	
-184.7 40.31 265.3 (Minimum) (Nominal) (Maximum)	0.8587 1.009 1.212 (Minimum) (Nominal) (Maximum)	
Phase IM Elect Quad Offset 20 kHz MM/M Value	Phase IM Elect Quad Gain 20 kHz Value	
Before 39.84	Before 1.009	
-185.2 39.80 264.8 (Minimum) (Nominal) (Maximum)	0.8566 1.007 1.209 (Minimum) (Nominal) (Maximum)	
Before: 7-Feb-2002 1:10	(manual) (manual)	
	Due Hardwarten - F. Walletin - Callbration	
	Dual Induction - E Wellsite Calibration Induction Electronics (40 kHz)	
Phase ID Elect Real Offset 40 kHz MM/M Value	Phase ID Elect Real Gain 40 kHz Value Phase ID Elect Phase 40	kHz DEG Value
Before 9.567	Before 0.9871 Before	29.04
-75.43 9.570 94.57 (Minimum) (Nominal) (Maximum)	0.8395 0.9895 1.185 9.068 29.07 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal)	49.07 (Maximum)
Phase D Elect Quad Offset 40 kHz MM/M Value	Phase ID Elect Quad Gain 40 kHz Value Phase IM Elect Phase 40	kHz DEG Value
5.882 5.882	Before 0.9737 Be	32.65
-79.10 5.897 90.90 (Minimum) (Nominal) (Maximum)	0.8281 0.9781 1.169 12.68 32.68 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal)	52.68 (Maximum)
Phase IM Elect Real Offset 40 kHz MM/M Value	Phase IM Elect Real Gain 40 kHz Value	
-103.8 26.19 156.2	0.8673 1.017 1.224	
(Minimum) (Nominal) (Maximum)	(Minimum) (Nominal) (Maximum)	
Phase M Elect Quad Offset 40 kHz MM/M Value	Phase IM Elect Quad Gain 40 kHz Value	
-104.1 25.92 155.9	0.8649 1.015 1.221	
(Minimum) (Nominal) (Maximum) Before: Calibration out of date 6-Oct-2001 0:00	(Minimum) (Nominal) (Maximum)	
Defore. Calibration out of date 6-Oct-2001 0:00		

Hostile Environment Litho Density	- A / Equipment Identificat	ion	
Primary Equipment:			
HOSTILE ENVIRONMENT LITHO DENSITY HIGH V	HLDV - A	10	
HOSTILE ENVIRONMENT LITHO DENSITY CARTRI	HLDC - AA	11	
Gamma Source Radioactive	GSR - Z	1846	
Auxiliary Equipment:			
HOSTILE ENVIRONMENT LITHO DENSITY SONDE	HLDS - B	10	
HOSTILE ENVIRONMENT ELECTRONICS CARTRIDG	HEH - H	12	
HOSTILE ENVIRONMENT ELECTRONICS CARTRIDG	HEH - G	11	
HOSTILE ENVIRONMENT LITHO DENSITY PAD	HLDP - B	10	

	Nuclear Porosity Lithology Cartridge - B / Equipment Identification	
Primary Equipment: NPLC Cartridge	NPLC - B 79	
Auxiliary Equipment: NPLC Housing	NPH - B 82	

Accelerator-Porosity Tool / Equipment Identification							
Primary Equipment: Accelerator-Porosity Sonde APS Minitron	APS - BA MNTR - F	22 4185					
Auxiliary Equipment: Accelerator-Porosity Housing APS Calibration Water Tank APS Aluminium Calibrator Sleeve	APH - AC SFT - 178 SFT - 281	22 4722 24					

Hostile Natural Gamma Ray Sonde / Equipment Identification							
Primary Equipment: HNGS Sonde		HNGS - BA	77				
Auxiliary Equipment: HNGS Sonde Housing Gamma Source Radioactive		HNSH - BA GSR - U	n 77 79 135				

Scintillation Gamma-Ray - N / Equipment Identification							
Primary Equipment: Scintillation Gamma Cartridge Scintillation Gamma Detector	SGC - TB SGD - TAA	9582					
Auxiliary Equipment: Scintillation Gamma Housing Gamma Source Radioactive	SGH - K GSR - U/Y	2448					

Scintillation Gamma-Ray - N Wellsite Calibration											
Detector Calibration											
Phase	Gamma Ray Background GAI	l Value	Phase	Gamma Ray (Ji	g - Bkg) GAPI	Value	Phase	Gamma Ray (Ca	alibrated) (GAPI	Value
Before		4.502	Before			167.5	Before				165.0
0 (Minir		20.0 aximum)	152 (Mini	2.3 167 mum) (Nom		.7 mum)	150 (Mini).0 165. mum) (Nom		180. (Maxir	-
Before: (Before: Calibration out of date 7-Feb-2002 1:09										

Company: Lamont Doherty

Well: ODP Leg 201, Site 1230A PRU-4A

Field: Peru Margin

Rig: JOIDES Resolution

Ocean: Pacific

Phasor Induction

Gamma Ray