1. Transitioning from Regression to Classification

• Covers how to identify when a problem should be modeled using classification (predicting discrete labels) instead of regression (predicting continuous values).

2. Key Differences

- Regression predicts numeric values (e.g., house prices).
- Classification predicts discrete categories (e.g., email is spam or not).
- Introduces binary classification (two classes) and multi-class classification (more than two classes).

3. Data Preparation

• Shows how to convert a continuous target into categorical classes, such as binning age into groups or profit margins into "low/medium/high".

4. Choosing the Right Model

- Presents common classification algorithms:
 - Logistic Regression
 - K-Nearest Neighbors (KNN)
 - Decision Trees
 - Support Vector Machines (SVM)
- Highlights that regression models unlike logistic models aren't suitable for discrete class outputs.

5. Training & Model Evaluation

• Foreshadows splitting data into train/test sets, fitting classification models, and evaluating performancE

1. Introduction to the ML Lifecycle

• Explains the purpose: helps developers navigate the complexities of building ML solutions.

2. Key Stages of the Lifecycle

A. Understanding ML & Gathering Insights

- Defines ML as the ability for systems to learn without explicit programming.
- Highlights importance of grasping the foundational concept: learning from data.

B. Framing the Business Problem

- Emphasizes beginning with the right question.
- Must define business metrics and objectives before picking a model.

C. Data Collection & Understanding

- Gather relevant data.
- Use exploratory data analysis (EDA) to understand structure, patterns, and quality.

D. Feature Engineering (Preparation)

- Manipulate raw data to improve model input:
 - Create new meaningful features

- o Handle correlations and missing values
- Encode categorical data through techniques like one-hot encoding (e.g., transforming 'ocean proximity' into binary flags)

E. Building the ML Pipeline

- Combine preprocessing, feature engineering, and model training into a reproducible pipeline.
- Helps maintain consistent transformations throughout experimentation and deployment.

F. Model Training & Evaluation

- Train models and evaluate them on key metrics:
 - o Classification: accuracy, precision, recall, confusion matrix
 - o Regression: RMSE, MAE
- Compare against baseline models.

G. Operationalizing the Pipeline

- Deploy the end-to-end pipeline into production:
 - o Ensure it's **scalable, maintainable**, and version-controlled.
 - o Include monitoring for data drift and retraining.