

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE INFORMÁTICA E MATEMÁTICA APLICADA

DIM0320 Algoritmos e Programação de Computadores

#FUNÇÕES

ELIEZIO SOARES

ELIEZIOSOARES@DIMAP.UFRN.BR

Modularização / Decomposição

- Os programas de computador que resolvem problemas reais, comumente são muito maiores do que os programas apresentados nestes primeiros passos.
- A melhor maneira de desenvolver, manter e evoluir um programa grande (complexo) é construí-lo como uma composição de pequenas partes, ou módulos.
- Cada módulo sendo responsável por tarefas menores dilui-se a complexidade do programa original.

Funções

- Funções são módulos de um programa de computador.
- Os programas são escritos combinando novas funções desenvolvidas pelos programadores com funções da biblioteca padrão do Python.
- Uma função realiza uma rotina com começo, meio e fim e podem/devem ser executadas quantas vezes forem necessárias.
- Exemplo:
 - Exibir informações na tela.
 - Ler um arquivo do disco.
 - Realizar uma operação matemática.
 - Exibir um menu de opções.
 - Solicitar uma entrada ao usuário.

Funções

 As funções são ativadas / invocadas / chamadas / executadas por uma chamada de função.

 Uma chamada de função especifica o nome da função a ser executada e fornece informações (argumentos / parâmetros) exigidas pela função para realizar a tarefa a que se propõe.

Funções

 Uma função pode chamar outra função através do nome da função seguido pelo parêntese esquerdo, depois os argumentos (ou vários separados por vírgulas) e o parêntese direito.

Trabalhando o conceito...

 Cada um será uma função e pode fazer o que bem entender com os parâmetros para retornar o resultado correto.

- Função Somar()
- Função Subtrair()
- Função dividir()
- Exemplo:
 - Calcular a média de um aluno.

Definição de funções

- Nós já utilizamos chamadas de função:
 - int('50')
 - float('55.0')
 - print("Olá!")
 - input("Fala: ")

Definição de funções

Sintaxe:

```
def nome-da-função (lista-de-parâmetros) :
    //instruções
```

- Nome-da-função: Qualquer identificador válido.
- Lista-de-parâmetros: É uma lista separada por vírgula contendo declarações de variáveis que receberão valores na invocação da função.

Definição de funções

 Considere implementar uma função quadrado para calcular os quadrados dos números inteiros.

Essa função recebe um parâmetro inteiro e retorna o número recebido multiplicado por ele mesmo.

```
def quadrado(numero):
    return numero*numero
```

Devolução de controle para o invocador

- O controle é devolvido ao se atingir a última instrução identada em relação a palavra def.
- Através da interrupção da execução com a palavra return;
 - Exemplo:

```
def imprimeQuadrado(numero):
    if numero==1:
        return
    print("%d\t" %(numero*numero))
```

Através do retorno de um valor com a palavra return seguida por uma variável, valor, ou expressão.

```
def quadrado(numero):
    return numero*numero
```

Invocando Funções

Exemplo Completo

```
def imprimeQuadrado(numero):
    if numero<=1:
        return
    print("%d\t" %(numero*numero))
def quadrado(numero):
    return numero*numero
tamanho=6
numQuadrado=0
for i in range(tamanho):
    imprimeQuadrado(i)
```

Construindo um código...

- Passo I:
 - Definir a função exibeMenu()
 - A função método exibeMenu mostra as opções para a escolha do usuário.
 - A função deve ler a opção do usuário e retornar um inteiro com o número digitado.

```
def exibeMenu():
    print("##### MENU #####\n")
    print("0- SAIR\n")
    print("1- SOMAR\n")
    opcao = int(input("Escolha uma opcao: "))
    return opcao
```

Construindo um código...

- Passo II:
 - Definir a função somar(numero1, numero2)
 - A função somar recebe dois números inteiros como parâmetro.
 - A função deve somar os dois números e retornar o valor resultante.

```
def somar(numero1, numero2):
    resultado = numero1+numero2
    return resultado
```

Construindo um código...

Passo III:

- Implementar o programa principal
 - O programa principal será executado após a definição das funções.
 - Usaremos as variáveis opcao (para armazenar a escolha do usuário), num1 (para armazenar o primeiro número digitado para a operação), num2 (para armazenar o segundo número digitado para a operação) e resultado (para armazenar o valor após a operação escolhida).
 - Construa um laço para exibir o menu e realizar operações até que o usuário escolha a opção 0 que equivale a sair do programa.
 - Execute o método somar se a escolha do usuário for 1 (equivale a opção Somar).

```
def exibeMenu():
    print("##### MENU #####\n")
    print ("0- SAIR\n")
    print ("1- SOMAR\n")
    opcao = int(input("Escolha uma opcao: "))
    return opcao
def somar(numero1, numero2):
    resultado = numero1+numero2
    return resultado
i = 0
opcao=1
num1=0
num2=0
resultado=0
while opcao!=0:
    opcao = exibeMenu()
    if opcao <= 0:
        break
    num1= float(input("Informe o primeiro numero para a operacao: "))
    num2= float(input("Informe o segundo numero para a operacao: "))
    if opcao == 1:
        resultado = somar(num1, num2)
    print("Resultado: %f\n\n" %resultado)
```

Dúvidas

- 1. Altere a função exibeMenu() para exibir as opções:
 - Sair
 - Somar
 - Subtrair
 - Multiplicar
 - Dividir
- 2. Implemente as seguintes funções:
 - Somar(numero1, numero2)
 - Subtrair(numero1, numero2)
 - Multiplicar(numero1, numero2)
 - Dividir(numero1, numero2)
- 3. Altere o programa principal para executar os métodos acima conforme escolha do usuário.

•Construa um programa que manipule uma lâmpada. O programa deve exibir as seguintes opções ao usuário: (0)Sair; (1) Acender luz; (2) Apagar luz; (3) Consultar estado atual;

- Para isso o programa deve implementar as funções:
 - exibeOpcoes()
 - Escreve na tela o menu de opções.
 - acenderLampada()
 - Altera a lâmpada para acesa.
 - apagarLampada()
 - Altera a lâmpada para apagada.
 - exibirStatus()
 - Informa o estado atual da lâmpada.

- Adapte o programa anterior (crie um novo projeto) para funcionar com 20 lâmpadas. Cada lâmpada será identificada por um número sequencial. Para acender, apagar, ou consultar o estado de uma lâmpada será necessário informar o identificador da lâmpada desejada.
- Para isso o programa deve implementar as funções:
 - exibeOpcoes()
 - Escreve na tela o menu de opções.
 - acenderLampada(int idLampada)
 - Altera a lâmpada para acesa.
 - apagarLampada(int idLampada)
 - Altera a lâmpada para apagada.
 - exibirStatus(int idLampada)
 - Informa o estado atual da lâmpada.
 - exibirTodas()
 - Informa o estado atual de todas as lâmpadas.

Escopo das Variáveis

"É um contexto limitado aos quais valores e expressões estão associados."

- Python utiliza escopo estático
 - "No escopo estático, o nome é ligado a uma coleção de comandos de acordo com sua posição no programa-fonte."

Escopo Local x Escopo Global

Escopo Local:

O primeiro tipo de variáveis que veremos são as variáveis locais. Estas são aquelas que só tem validade dentro do bloco no qual são declaradas.

Escopo Global:

 Variáveis globais são declaradas, como já sabemos, fora de todas as funções do programa. Elas são conhecidas e podem ser alteradas por todas as funções do programa.

Escopo Local x Escopo Global

```
escopo 1
x = 1
y = 2
def soma(a, b):
            escopo 2
    s=a+b
    return s
def_print ate(a):
    for i in range(a):escopo3
        print i escopo4
print soma(x, y)
print_ate(10)
```

Acessando variáveis globais

Dúvidas

•Construa um programa que manipule uma lâmpada. O programa deve exibir as seguintes opções ao usuário: (0)Sair; (1) Acender luz; (2) Apagar luz; (3) Consultar estado atual;

- Para isso o programa deve implementar as funções:
 - exibeOpcoes()
 - Escreve na tela o menu de opções.
 - acenderLampada()
 - Altera a lâmpada para acesa.
 - apagarLampada()
 - Altera a lâmpada para apagada.
 - exibirStatus()
 - Informa o estado atual da lâmpada.

- Adapte o programa anterior (crie um novo projeto) para funcionar com 20 lâmpadas. Cada lâmpada será identificada por um número sequencial. Para acender, apagar, ou consultar o estado de uma lâmpada será necessário informar o identificador da lâmpada desejada.
- Para isso o programa deve implementar as funções:
 - exibeOpcoes()
 - Escreve na tela o menu de opções.
 - acenderLampada(int idLampada)
 - Altera a lâmpada para acesa.
 - apagarLampada(int idLampada)
 - Altera a lâmpada para apagada.
 - exibirStatus(int idLampada)
 - Informa o estado atual da lâmpada.
 - exibirTodas()
 - Informa o estado atual de todas as lâmpadas.