Law of Quadratic Reciprocity

Let p, q be distinct odd primes, and define the following symbols:

$$p R q \mid x^2 \equiv p \pmod{q}$$
 for some $x \in \mathbb{Z}$
 $p \text{ is a } quadratic \ residue \text{ of } q$
 $p N q \mid x^2 \not\equiv p \pmod{q}$ for all $x \in \mathbb{Z}$
 $p \text{ is a } quadratic \ nonresidue \text{ of } q$

Case I

If p = 1 + 4n, for some $n \in \mathbb{Z}$ then either pRq and qRp or pNq and qNp

Case II

If p = 3 + 4m and q = 3 + 4n for some $m, n \in \mathbb{Z}$ then either pRq and qNp or pNq and qRp

— Karl Friedrich Gauss (1801)

Law of Quadratic Reciprocity

		q													
		3	5	7	11	13	17	19	23	29	31	37	41	43	47
p	3	_	N	N	\mathbf{R}	\mathbf{R}	N	N	\mathbf{R}	N	N	\mathbf{R}	N	N	$\overline{\mathbf{R}}$
	5	N	_	N	\mathbf{R}	N	N	\mathbf{R}	N	\mathbf{R}	\mathbf{R}	N	\mathbf{R}	N	N
	7	\mathbf{R}	N	_	N	N	N	\mathbf{R}	N	\mathbf{R}	\mathbf{R}	\mathbf{R}	N	N	\mathbf{R}
	11	N	\mathbf{R}	\mathbf{R}	_	N	N	\mathbf{R}	N	N	N	\mathbf{R}	N	\mathbf{R}	N
	13	\mathbf{R}	N	N	N	_	\mathbf{R}	N	\mathbf{R}	\mathbf{R}	N	N	N	\mathbf{R}	N
	17	N	N	N	N	\mathbf{R}	_	\mathbf{R}	N	N	N	N	N	\mathbf{R}	\mathbf{R}
	19	\mathbf{R}	\mathbf{R}	N	N	N	\mathbf{R}	_	N	N	\mathbf{R}	N	N	N	N
	23	N	N	\mathbf{R}	\mathbf{R}	\mathbf{R}	N	\mathbf{R}	_	\mathbf{R}	N	N	\mathbf{R}	\mathbf{R}	N
	29	N	\mathbf{R}	\mathbf{R}	N	\mathbf{R}	N	N	\mathbf{R}	_	N	N	N	N	N
	31	\mathbf{R}	\mathbf{R}	N	\mathbf{R}	N	N	N	\mathbf{R}	N	_	N	\mathbf{R}	\mathbf{R}	N
	37	\mathbf{R}	N	\mathbf{R}	\mathbf{R}	N	N	N	N	N	N	_	\mathbf{R}	N	\mathbf{R}
	41	N	\mathbf{R}	N	N	N	N	N	\mathbf{R}	N	\mathbf{R}	\mathbf{R}	_	\mathbf{R}	N
	43	\mathbf{R}	N	\mathbf{R}	N	\mathbf{R}	\mathbf{R}	\mathbf{R}	N	N	N	N	\mathbf{R}	_	N
	47	N	N	N	\mathbf{R}	N	\mathbf{R}	\mathbf{R}	\mathbf{R}	N	\mathbf{R}	\mathbf{R}	N	\mathbf{R}	_

 $\mathbf{R} \to p$ is a quadratic residue of q

 $\mathbf{N} \to p$ is a quadratic nonresidue of q