Matthias Hagen

Michael Völske

Steve Göring

Benno Stein

Bauhaus-University Weimar

www.webis.de

Abstract

- Axiomatic IR has identified a diverse set of constraints that retrieval models should fulfill, but so far these have been limited to theoretical analysis
- We incorporate axioms into the retrieval process via re-ranking
- □ Large-scale study on Clueweb corpora to show feasibility

2

Observations

- Common strong baseline retrieval models perform similarly well, although derived very differently (BM25, PL2, Query Likelihood...)
- Even minor variations tend to fail in some way or another; why?

Axiomatic IR Answer: these models share beneficial properties, independently of how they are derived

Research Goal: identify and formalize these properties as axioms.

4

Axioms

Successful retrieval functions share similar heuristics:

Example:

$$BM25(Q, D) = \sum_{i=1}^{n} IDF(q_i) \cdot \frac{TF(q_i, D) \cdot (k_1 + 1)}{TF(q_i, D) + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{avgdl}\right)}$$

5

Axioms

Successful retrieval functions share similar heuristics:

TF weighting

Example:

$$BM25(Q,D) = \sum_{i=1}^{n} IDF(q_i) \cdot \frac{TF(q_i,D) \cdot (k_1+1)}{TF(q_i,D) + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{avgdl}\right)}$$

Axioms

Successful retrieval functions share similar heuristics:

- TF weighting
- IDF weighting

Example:

$$BM25(Q, D) = \sum_{i=1}^{n} IDF(q_i) \cdot \frac{TF(q_i, D) \cdot (k_1 + 1)}{TF(q_i, D) + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{avgdl}\right)}$$

/

Axioms

Successful retrieval functions share similar heuristics:

- TF weighting
- IDF weighting
- Length normalization

Example:

$$BM25(Q, D) = \sum_{i=1}^{n} IDF(q_i) \cdot \frac{TF(q_i, D) \cdot (k_1 + 1)}{TF(q_i, D) + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{avgdl}\right)}$$

Axioms

Successful retrieval functions share similar heuristics:

- TF weighting
- IDF weighting
- Length normalization

Example:

$$BM25(Q, D) = \sum_{i=1}^{n} IDF(q_i) \cdot \frac{TF(q_i, D) \cdot (k_1 + 1)}{TF(q_i, D) + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{avgdl}\right)}$$

Axioms formally capture these heuristics, and how they should be used.

Axioms

Purpose	Acronyms	Source
Term frequency	TFC1-TFC3	[Fang, Tao, Zhai; SIGIR'04]
	TDC	[Fang, Tao, Zhai; SIGIR'04]
Document length	LNC1 + LNC2	[Fang, Tao, Zhai; SIGIR'04]
	TF-LNC	[Fang, Tao, Zhai; SIGIR'04]
	QLNC	[Cummins, O'Riordan; CIKM'12]
Lower bound	LB1 + LB2	[Lv, Zhai; CIKM'11]
Query aspects	REG	[Zheng, Fang; ECIR'10]
	DIV	[Gollapurdi, Sharma; WWW'09]
Semantic similarity	STMC1 + STMC2	[Fang, Zhai; SIGIR'06]
	STMC3	[Fang, Zhai; SIGIR'06]
	TSSC1 + TSSC2	[Fang, Zhai; SIGIR'06]
Term proximity	PHC + CCC	[Tao, Zhai; SIGIR'07]

Term Frequency Constraints

TFC1 Give a higher score to a document with more occurrences of a query term.

TFC2 The amount of increase in the score due to adding a query term must decrease as we add more terms.

TFC3 Favor a document with more distinct query terms.

Length Normalization Constaints

LNC1 Penalize long documents.

LNC2 Avoid over-penalizing long documents.

TF-LNC Regularize the interaction of TF and document length.

Lower-bounding Term Frequency Constraints

LB1 The presence-absence gap shouldn't be closed due to length normalization.

LB2 Repeated occurrence isn't as important as first occurrence.

11

Term Frequency Constraints

TFC1 Give a higher score to a document with more occurrences of a query term.

TFC2 The amount of increase in the score due to adding a query term must decrease as we add more terms.

TFC3 Favor a document with more distinct query terms.

Length Normalization Constaints

LNC1 Penalize long documents.

LNC2 Avoid over-penalizing long documents.

TF-LNC Regularize the interaction of TF and document length.

Lower-bounding Term Frequency Constraints

LB1 The presence-absence gap shouldn't be closed due to length normalization.

LB2 Repeated occurrence isn't as important as first occurrence.

Axiom Examples: TFC1

TFC1 Give a higher score to a document with more occurrences of a query term.

Given:

- \Box Single-term query $Q = \{q\}$
- $lue{}$ Documents D_1 , D_2 with $|D_1| = |D_2|$

IF
$$TF(q, D_1) > TF(q, D_2)$$
 THEN $Score(Q, D_1) > Score(Q, D_2)$

Q 🔃

Axiom Examples: LB2

LB2 Repeated occurrence isn't as important as first occurrence.

Given:

Axiom Examples: LB2

LB2 Repeated occurrence isn't as important as first occurrence.

Given:

- $lue{}$ Two-term query $Q = \{q_1, q_2\}$
- oxdots Documents D_1 , D_2 with $TF(q_1,D_1)>0$ and $TF(q_1,D_2)>0$ and $TF(q_2,D_1)=TF(q_2,D_2)=0$

 D_2

Axiom Examples: LB2

LB2 Repeated occurrence isn't as important as first occurrence.

- \Box Two-term query $Q = \{q_1, q_2\}$
- $egin{array}{ll} egin{array}{ll} \mbox{Documents }D_1,\,D_2 \mbox{ with }TF(q_1,D_1)>0 \mbox{ and }TF(q_1,D_2)>0 \mbox{ and } TF(q_2,D_1)=TF(q_2,D_2)=0 \end{array}$
- \Box Document $D_1' = D_1 \cup \{q_1\} \setminus \{t_1\}$ for any $t_1 \in D_1$, $t_1 \notin Q$

Axiom Examples: LB2

LB2 Repeated occurrence isn't as important as first occurrence.

- \Box Two-term query $Q = \{q_1, q_2\}$
- $egin{array}{ll} egin{array}{ll} \mbox{Documents }D_1,\,D_2 \mbox{ with }TF(q_1,D_1)>0 \mbox{ and }TF(q_1,D_2)>0 \mbox{ and } TF(q_2,D_1)=TF(q_2,D_2)=0 \end{array}$
- \Box Document $D_1' = D_1 \cup \{q_1\} \setminus \{t_1\}$ for any $t_1 \in D_1$, $t_1 \notin Q$
- \Box Document $D_2' = D_2 \cup \{q_2\} \setminus \{t_2\}$ for any $t_2 \in D_2$, $t_2 \not\in Q$

Axiom Examples: LB2

LB2 Repeated occurrence isn't as important as first occurrence.

- \Box Two-term query $Q = \{q_1, q_2\}$
- $egin{array}{ll} egin{array}{ll} \mbox{Documents } D_1,\,D_2 \mbox{ with } TF(q_1,D_1)>0 \mbox{ and } TF(q_1,D_2)>0 \mbox{ and } TF(q_2,D_1)=TF(q_2,D_2)=0 \end{array}$
- \Box Document $D_1' = D_1 \cup \{q_1\} \setminus \{t_1\}$ for any $t_1 \in D_1$, $t_1 \notin Q$
- \Box Document $D_2' = D_2 \cup \{q_2\} \setminus \{t_2\}$ for any $t_2 \in D_2$, $t_2 \notin Q$

$$\mathsf{IF}\ Score(Q,D_1) = Score(Q,D_2)\ \mathsf{THEN}\ Score(Q,D_1') < Score(Q,D_2')$$

Axiomatic Analysis

- BM25 (no matter the parameter setting) violates the LB2 constraint
- □ A minor modification corrects this, for consistently better performance [Lv and Zhai, CIKM'11]

$$BM25 (Q, D) = \sum_{i=1}^{n} IDF(q_i) \cdot \frac{TF(q_i, D) \cdot (k_1 + 1)}{TF(q_i, D) + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{avgdl}\right)}$$

Axiomatic Analysis

- BM25 (no matter the parameter setting) violates the LB2 constraint
- □ A minor modification corrects this, for consistently better performance [Lv and Zhai, CIKM'11]

$$BM25^{+}(Q, D) = \sum_{i=1}^{n} IDF(q_i) \cdot \left(\frac{TF(q_i, D) \cdot (k_1 + 1)}{TF(q_i, D) + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{avgdl}\right)} + \delta \right)$$

Axiomatic Analysis

- BM25 (no matter the parameter setting) violates the LB2 constraint
- □ A minor modification corrects this, for consistently better performance [Lv and Zhai, CIKM'11]

$$BM25^{+}(Q, D) = \sum_{i=1}^{n} IDF(q_i) \cdot \left(\frac{TF(q_i, D) \cdot (k_1 + 1)}{TF(q_i, D) + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{avgdl}\right)} + \delta \right)$$

Our research question:

How can we automate the "axiomatization" of retrieval models?

Axiomatic Re-ranking Pipeline

Axiomatic Re-ranking Pipeline

1. Retrieve an initial top-k result set.

Axiomatic Re-ranking Pipeline

- 1. Retrieve an initial top-k result set.
- 2. (a) Compute re-ranking preferences of various axioms.

Axiomatic Re-ranking Pipeline

- 1. Retrieve an initial top-k result set.
- 2. (a) Compute re-ranking preferences of various axioms.
 - (b) Aggregate re-ranking preferences.

Axiomatic Re-ranking Pipeline

- 1. Retrieve an initial top-k result set.
- 2. (a) Compute re-ranking preferences of various axioms.
 - (b) Aggregate re-ranking preferences.
- 3. Re-rank the initial result set.

Axiomatic Re-ranking Pipeline

- 1. Retrieve an initial top-k result set.
- 2. (a) Compute re-ranking preferences of various axioms.
 - (b) Aggregate re-ranking preferences.
- 3. Re-rank the initial result set.

Requirements on Axioms

Re-state each axiom as a triple:

A = (precondition, filter, conclusion)

Requirements on Axioms

Re-state each axiom as a triple:

$$A = (precondition, filter, conclusion)$$

Given axiom A and document pair D_1, D_2 :

- \Box The *precondition* evaluates whether or not A can be applied to D_1, D_2
- □ If the *filter* condition is satisfied...
- \Box The *conclusion* is a ranking preference of the form $D_1 >_A D_2$

Adapting Existing Axioms

- 1. Convert to our triple formulation
- 2. Relax equality constraints and tighten inequality constraints
- 3. Modify conclusion to express a ranking preference

Adapting Existing Axioms

- 1. Convert to our triple formulation
- 2. Relax equality constraints and tighten inequality constraints
- 3. Modify conclusion to express a ranking preference

Example: TFC1

Given:

- \Box Single-term query $Q = \{q\}$
- $lue{}$ Documents D_1 , D_2 with $|D_1|=|D_2|$

IF
$$TF(q, D_1) > TF(q, D_2)$$
 THEN $Score(Q, D_1) > Score(Q, D_2)$

Adapting Existing Axioms

- 1. Convert to our triple formulation
- 2. Relax equality constraints and tighten inequality constraints
- 3. Modify conclusion to express a ranking preference

Example: TFC1

- \Box Single-term query $Q = \{q\}$
- Documents D_1 , D_2 with $|D_1| = |D_2|$

IF
$$TF(q, D_1) > TF(q, D_2)$$
 THEN $Score(Q, D_1) > Score(Q, D_2)$

Precondition :=
$$|D_1| \approx_{10\%} |D_2|$$

Filter :=
$$TF(q, D_1) >_{10\%} TF(q, D_2)$$

Conclusion :=
$$D_1 >_{TFC1} D_2$$

Adapting Existing Axioms

Term frequency TFC1–TFC3 TDC Document length LNC1 + LNC2 TF-LNC QLNC Lower bound LB1 + LB2 Query aspects REG	oted
Document length LNC1 + LNC2 TF-LNC QLNC Lower bound LB1 + LB2	/
TF-LNC QLNC Lower bound LB1 + LB2	
QLNC Lower bound LB1 + LB2	/
Lower bound LB1 + LB2	/
	X
Query aspects BFG	/
addity adposits the a	/
DIV	
Semantic similarity STMC1 + STMC2	/
STMC3	X
TSSC1 + TSSC2	X
Term proximity PHC + CCC	X
QPHRA N	ew
PROX1–5	ew
Other ORIG N	ew

New Term Proximity Axioms

Given two documents D_1 , D_2 and multi-term query $Q = \{q_1, q_2, \dots, q_n\}$

Precondition: both documents contain all query terms.

Give preference to the document where:

PROX1 Query term pairs are closer together on average.

PROX2 Query terms first occur earlier in the document.

PROX3 The whole query as a phrase occurs earlier in the document.

PROX4 The number of non-query terms in the closest grouping of all query terms is smaller.

PROX5 The average shortest text span containing all query terms is smaller.

35

New Term Proximity Axioms

Given two documents D_1 , D_2 and multi-term query $Q = \{q_1, q_2, \dots, q_n\}$

PROX1 Query term pairs are closer together on average.

New Term Proximity Axioms

Given two documents D_1 , D_2 and multi-term query $Q = \{q_1, q_2, \dots, q_n\}$

PROX1 Query term pairs are closer together on average.

Consider query term pairs $P = \{(i, j) \mid q_i, q_j \in Q, i < j\}$

$$P = \{ (1,2), (1,3), (2,3) \}$$

New Term Proximity Axioms

Given two documents D_1 , D_2 and multi-term query $Q = \{q_1, q_2, \dots, q_n\}$

PROX1 Query term pairs are closer together on average.

Consider query term pairs $P = \{(i, j) \mid q_i, q_j \in Q, i < j\}$

$$P = \{ (1,2), (1,3), (2,3) \}$$

New Term Proximity Axioms

Given two documents D_1 , D_2 and multi-term query $Q = \{q_1, q_2, \dots, q_n\}$

PROX1 Query term pairs are closer together on average.

Consider query term pairs $P = \{(i, j) \mid q_i, q_j \in Q, i < j\}$ and count $\delta(D, i, j)$ average number of words between q_i , q_j in D

Filter :=
$$\pi(Q, D_1) < \pi(Q, D_2)$$
 where $\pi(Q, D) = \frac{1}{|P|} \sum_{(i,j) \in P} \delta(D, i, j)$

$$P = \{ (1,2), (1,3), (2,3) \}$$

$$\pi(Q,D_i)$$

$$1/3 (1 + 3 + 1) = 5/3$$

New Term Proximity Axioms

Given two documents D_1 , D_2 and multi-term query $Q = \{q_1, q_2, \dots, q_n\}$

PROX1 Query term pairs are closer together on average.

Consider query term pairs $P = \{(i, j) \mid q_i, q_j \in Q, i < j\}$ and count $\delta(D, i, j)$ average number of words between q_i , q_j in D

Filter :=
$$\pi(Q, D_1) < \pi(Q, D_2)$$
 where $\pi(Q, D) = \frac{1}{|P|} \sum_{(i,j) \in P} \delta(D, i, j)$

$$P = \{(1,2), (1,3), (2,3)\}$$

$$\pi(Q,D_i)$$

$$1/3(1+3+1)=5/3$$

New Term Proximity Axioms

Given two documents D_1 , D_2 and multi-term query $Q = \{q_1, q_2, \dots, q_n\}$

PROX1 Query term pairs are closer together on average.

Consider query term pairs $P = \{(i, j) \mid q_i, q_j \in Q, i < j\}$ and count $\delta(D, i, j)$ average number of words between q_i , q_j in D

Filter :=
$$\pi(Q, D_1) < \pi(Q, D_2)$$
 where $\pi(Q, D) = \frac{1}{|P|} \sum_{(i,j) \in P} \delta(D, i, j)$

$$P = \{(1,2), (1,3), (2,3)\}$$

$$\pi(Q,D_i)$$

$$1/3 (1 + 3 + 1) = 5/3$$

$$D_2$$

$$1/3((3+0)/2 + (4+1)/2 + 0) = 4/3$$

New Term Proximity Axioms

Given two documents D_1 , D_2 and multi-term query $Q = \{q_1, q_2, \dots, q_n\}$

PROX1 Query term pairs are closer together on average.

Consider query term pairs $P = \{(i, j) \mid q_i, q_j \in Q, i < j\}$ and count $\delta(D, i, j)$ average number of words between q_i , q_j in D

Filter :=
$$\pi(Q, D_1) < \pi(Q, D_2)$$
 where $\pi(Q, D) = \frac{1}{|P|} \sum_{(i,j) \in P} \delta(D, i, j)$

Conclusion :=
$$D_1 >_{PROX1} D_2$$

$$P = \{ (1,2), (1,3), (2,3) \}$$

$$\pi(Q,D_i)$$

$$D_1$$

$$1/3 (1 + 3 + 1) = 5/3$$

$$D_2$$

$$1/3 ((3+0)/2 + (4+1)/2 + 0) = 4/3$$

$$D_1 >_{PROX1} D_2 = 0$$

$$D_2 >_{PROX1} D_1 = 1$$

Axiom Preference Aggregation

An initial result set $\{D_1, \ldots, D_k\}$ and axiom A yield a k-by-k preference matrix

$$M_A[i,j] = egin{cases} 1 & ext{if } D_i >_A D_j, \ 0 & ext{otherwise.} \end{cases}$$

Axiom Preference Aggregation

An initial result set $\{D_1, \ldots, D_k\}$ and axiom A yield a k-by-k preference matrix

$$M_A[i,j] = egin{cases} 1 & ext{if } D_i >_A D_j, \ 0 & ext{otherwise.} \end{cases}$$

Axiom Preference Aggregation

An initial result set $\{D_1, \ldots, D_k\}$ and axiom A yield a k-by-k preference matrix

$$M_A[i,j] = egin{cases} 1 & ext{if } D_i >_A D_j, \ 0 & ext{otherwise}. \end{cases}$$

Axiom Preference Aggregation

For a set of m axioms $\{A_1, \ldots A_m\}$, aggregate the individual preference matrices and use the aggregate preference matrix for re-ranking.

Axiom Preference Aggregation

For a set of m axioms $\{A_1, \ldots A_m\}$, aggregate the individual preference matrices and use the aggregate preference matrix for re-ranking.

Hypothesis: Different basis retrieval models will deviate from the axiomatic constraints in different ways.

Axiom Preference Aggregation

For a set of m axioms $\{A_1, \ldots A_m\}$, aggregate the individual preference matrices and use the aggregate preference matrix for re-ranking.

Hypothesis: Different basis retrieval models will deviate from the axiomatic constraints in different ways.

Approach: Given a set of queries with known relevance judgments, learn a retrieval-model-specific aggregation function that optimizes the average retrieval performance of the re-ranking.

Axiom Preference Aggregation

Frame as Classification Problem:

Individual axiom preferences as predictors

	1	2	3	 k
1		1	1	1
2			1	1
2 3				1
•				
•				
•				
k				

Axiom Preference Aggregation

Frame as Classification Problem:

- Individual axiom preferences as predictors
- □ Relative document relevance as response

Axiom Preference Aggregation

Frame as Classification Problem:

- Individual axiom preferences as predictors
- Relative document relevance as response
- One training example per document pair

Re-ranking with Aggregated Preferences

- The aggregated preference matrix may contain contradictions
- \Box E.g. M[i,j] = M[j,i]
- Need to solve rank-aggregation problem at this step
- □ We use a Kemeny rank-aggregation scheme [Kemeny; 1959]
- □ Solve using the KwikSort approximation algorithm [Ailon, Charikar, Newman; 2008]

Impact of Axiomatic Reranking on Web Track Performance

- □ Consider 16 basis retrieval models implemented in the Terrier¹ framework
- Index the ClueWeb09 corpus using each basis retrieval model
- □ Retrieve top 50 results and re-rank
- □ 120 queries from TREC Web tracks 2009–2014 as training set
- □ 60 queries as test set
- Measure difference in nNDCG@10 using
 - Axiomatic reranking (AX)
 - Markov Random Field term dependency (MRF)
 - Both (MRF+AX)

Average nDCG@10 on Test Set (n=60) Using Top-50 Results

Model	Basis	
DPH	0.273	
DFRee	0.205	
In_expC2	0.205	
TF_IDF	0.202	
In_expB2	0.201	
DFReeKLIM	0.199	
BM25	0.198	
InL2	0.197	
BB2	0.195	
DFR_BM25	0.194	
LemurTF_IDF	0.187	
DLH13	0.164	
PL2	0.160	
DLH	0.153	
DirichletLM	0.139	
Hiemstra_LM	0.107	

Average nDCG@10 on Test Set (n=60) Using Top-50 Results

Model	Basis	AX	
DPH	0.273	0.291	
DFRee	0.205	0.236	
In_expC2	0.205	0.214	
TF_IDF	0.202	0.228	
In_expB2	0.201	0.202	
DFReeKLIM	0.199	0.213	
BM25	0.198	0.188	
lnL2	0.197	0.197	
BB2	0.195	0.197	
DFR_BM25	0.194	0.206	
LemurTF_IDF	0.187	0.224	
DLH13	0.164	0.187	
PL2	0.160	0.213	
DLH	0.153	0.187	
DirichletLM	0.139	0.242	
Hiemstra_LM	0.107	0.167	
(# higher)		14	

Average nDCG@10 on Test Set (n=60) Using Top-50 Results

Basis	AX	MRF	
0.273	0.291	0.307	
0.205	0.236	0.230	
0.205	0.214	0.229	
0.202	0.228	0.239	
0.201	0.202	0.234	
0.199	0.213	0.224	
0.198	0.188	0.229	
0.197	0.197	0.235	
0.195	0.197	0.236	
0.194	0.206	0.236	
0.187	0.224	0.221	
0.164	0.187	0.184	
0.160	0.213	0.190	
0.153	0.187	0.181	
0.139	0.242	0.192	
0.107	0.167	0.161	
	14	9 (16)	
	0.273 0.205 0.205 0.202 0.201 0.199 0.198 0.197 0.195 0.194 0.187 0.164 0.160 0.153 0.139	0.273	0.273 0.291 0.307 0.205 0.236 0.230 0.205 0.214 0.229 0.202 0.228 0.239 0.201 0.202 0.234 0.199 0.213 0.224 0.198 0.188 0.229 0.197 0.197 0.235 0.195 0.197 0.236 0.194 0.206 0.236 0.187 0.224 0.221 0.164 0.187 0.184 0.160 0.213 0.190 0.153 0.187 0.181 0.139 0.242 0.192 0.107 0.167 0.161

Average nDCG@10 on Test Set (n=60) Using Top-50 Results

Model	Basis	AX	MRF	MRF+AX
DPH	0.273	0.291	0.307	0.314
DFRee	0.205	0.236	0.230	0.245
In_expC2	0.205	0.214	0.229	0.238
TF_IDF	0.202	0.228	0.239	0.200
In_expB2	0.201	0.202	0.234	0.237
DFReeKLIM	0.199	0.213	0.224	0.224
BM25	0.198	0.188	0.229	0.216
InL2	0.197	0.197	0.235	0.212
BB2	0.195	0.197	0.236	0.234
DFR_BM25	0.194	0.206	0.236	0.220
LemurTF_IDF	0.187	0.224	0.221	0.237
DLH13	0.164	0.187	0.184	0.201
PL2	0.160	0.213	0.190	0.211
DLH	0.153	0.187	0.181	0.197
DirichletLM	0.139	0.242	0.192	0.253
Hiemstra_LM	0.107	0.167	0.161	0.163
(# higher)		14	9 (16)	10 (15)

Average nDCG@10 on Test Set (n=60) Using Top-50 Results

Model	Basis	AX	MRF	MRF+AX	max
DPH	0.273	0.291	0.307	0.314	0.642
DFRee	0.205	0.236	0.230	0.245	0.599
In_expC2	0.205	0.214	0.229	0.238	0.591
TF_IDF	0.202	0.228	0.239	0.200	0.589
In_expB2	0.201	0.202	0.234	0.237	0.592
DFReeKLIM	0.199	0.213	0.224	0.224	0.591
BM25	0.198	0.188	0.229	0.216	0.587
InL2	0.197	0.197	0.235	0.212	0.593
BB2	0.195	0.197	0.236	0.234	0.587
DFR_BM25	0.194	0.206	0.236	0.220	0.591
LemurTF_IDF	0.187	0.224	0.221	0.237	0.576
DLH13	0.164	0.187	0.184	0.201	0.499
PL2	0.160	0.213	0.190	0.211	0.550
DLH	0.153	0.187	0.181	0.197	0.470
DirichletLM	0.139	0.242	0.192	0.253	0.564
Hiemstra_LM	0.107	0.167	0.161	0.163	0.397
(# higher)		14	9 (16)	10 (15)	16

Summary

- Axiom-based framework for re-ranking
- Incorporating axiomatic ideas into the retrieval process directly
- New axioms for modeling term proximity preferences

Summary

- Axiom-based framework for re-ranking
- Incorporating axiomatic ideas into the retrieval process directly
- New axioms for modeling term proximity preferences

Future Work

- Formulate further axiomatic ideas in a way suitable for re-ranking (e.g. for near-duplicates)
- Comparison with learning-to-rank algorithms
- Improve efficiency of the re-ranking process

Summary

- Axiom-based framework for re-ranking
- Incorporating axiomatic ideas into the retrieval process directly
- New axioms for modeling term proximity preferences

Future Work

- Formulate further axiomatic ideas in a way suitable for re-ranking (e.g. for near-duplicates)
- Comparison with learning-to-rank algorithms
- Improve efficiency of the re-ranking process

Thank you!

63