

NESG2031M05

Data Sheet

NPN SiGe RF Transistor for Low Noise, High-Gain Amplification Flat-Lead 4-Pin Thin-Type Super Minimold (M05)

R09DS0035EJ0400 Rev. 4.00 Jun 20, 2012

FEATURES

• The device is an ideal choice for low noise, high-gain at low current amplifications.

NF = 0.8 dB TYP., Ga = 17.0 dB TYP. @ V_{CE} = 2 V, I_{C} = 5 mA, f = 2 GHz NF = 1.3 dB TYP., G_{a} = 10.0 dB TYP. @ V_{CE} = 2 V, I_{C} = 5 mA, f = 5.2 GHz

- Maximum stable power gain: MSG = 21.5 dB TYP. @ V_{CE} = 3 V, I_{C} = 20 mA, f = 2 GHz
- High breakdown voltage technology for SiGe Tr. adopted: V_{CEO} (absolute maximum ratings) = 5.0 V
- Flat-lead 4-pin thin-type super minimold (M05) package

<R> ORDERING INFORMATION

Part Number	Order Number	Package	Quantity	Supplying Form
NESG2031M05	NESG2031M05-A	Flat-lead 4-pin thin-	50 pcs	8 mm wide embossed
		type supper minimold	(Non reel)	taping
NESG2031M05-T1	NESG2031M05-T1-A	(M05, 2012 PKG)	3 kpcs/reel	Pin 3 (Collector), Pin 4
		(Pb-Free)		(Emitter) face the
				perforation side of the tape

Remark To order evaluation samples, please contact your nearby sales office. Unit sample quantity is 50 pcs.

ABSOLUTE MAXIMUM RATINGS $(T_A = +25^{\circ}C)$

Parameter	Symbol	Ratings	Unit
Collector to Base Voltage	V_{CBO}	13.0	V
Collector to Emitter Voltage	V_{CEO}	5.0	V
Emitter to Base Voltage	V_{EBO}	1.5	V
Collector Current	I _C	35	mA
Total Power Dissipation	P _{tot} Note	175	mW
Junction Temperature	T _j	150	°C
Storage Temperature	T _{stg}	-65 to +150	°C

Note: Mounted on 1.08 cm² × 1.0 mm (t) glass epoxy PCB

CAUTION

Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The mark <R> shows major revised points.

The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

$_{<R>}$ ELECTRICAL CHARACTERISTICS (T_A = +25°C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
DC Characteristics						
Collector Cut-off Current	I _{CBO}	$V_{CB} = 5 \text{ V}, I_{E} = 0$	_	_	100	nA
Emitter Cut-off Current	I _{EBO}	$V_{EB} = 1 \text{ V}, I_{C} = 0$	_	_	100	nA
DC Current Gain	h _{FE} Note 1	$V_{CE} = 2 \text{ V}, I_{C} = 5 \text{ mA}$	130	190	260	-
RF Characteristics	RF Characteristics					
Gain Bandwidth Product	f _T	$V_{CE} = 3 \text{ V}, I_{C} = 20 \text{ mA}, f = 2 \text{ GHz}$	20	25	_	GHz
Insertion Power Gain	S _{21e} 2	$V_{CE} = 3 \text{ V}, I_{C} = 20 \text{ mA}, f = 2 \text{ GHz}$	16.0	18.0	_	dB
Noise Figure (1)	NF	$V_{CE} = 2 \text{ V}, I_{C} = 5 \text{ mA}, f = 2 \text{ GHz},$	_	0.8	1.1	dB
		$Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$				
Noise Figure (2)	NF	$V_{CE} = 2 \text{ V}, I_{C} = 5 \text{ mA}, f = 5.2 \text{ GHz},$	_	1.3	_	dB
		$Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$				
Associated Gain (1)	G_a	$V_{CE} = 2 \text{ V}, I_{C} = 5 \text{ mA}, f = 2 \text{ GHz},$	15.0	17.0	_	dB
		$Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$				
Associated Gain (2)	G_a	$V_{CE} = 2 \text{ V}, I_{C} = 5 \text{ mA}, f = 5.2 \text{ GHz},$	_	10.0	_	dB
		$Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$				
Reverse Transfer Capacitance	C _{re} Note 2	$V_{CB} = 2 \text{ V}, I_{E} = 0, f = 1 \text{ MHz}$	_	0.15	0.25	pF
Maximum Stable Power Gain	MSG Note 3	$V_{CE} = 3 \text{ V}, I_{C} = 20 \text{ mA}, f = 2 \text{ GHz}$	19.0	21.5	_	dB
Gain 1 dB Compression Output	P _{O (1 dB)}	$V_{CE} = 3 \text{ V}, I_{C} = 20 \text{ mA}, f = 2 \text{ GHz},$	_	13	_	dBm
Power		$Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$				
3rd Order Intermodulation	OIP ₃	$V_{CE} = 3 \text{ V}, I_{C} = 20 \text{ mA}, f = 2 \text{ GHz},$	_	23	_	dBm
Distortion Output Intercept		$Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$				
Point						

Notes: 1. Pulse measurement: PW \leq 350 μ s, Duty Cycle \leq 2%

2. Collector to base capacitance when the emitter grounded

3. MSG =
$$\frac{S_{21}}{S_{12}}$$

h_{FE} CLASSIFICATION

<R>

Rank	FB/YFB
Marking	T1H
h _{FE} Value	130 to 260

REVERSE TRANSFER CAPACITANCE

TYPICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise specified)

TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE

Ambient Temperature T_A (°C)

Collector to Base Voltage VcB (V)

COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

Remark The graph indicates nominal characteristics.

DC CURRENT GAIN vs. COLLECTOR CURRENT

DC CURRENT GAIN vs. COLLECTOR CURRENT

Remark The graph indicates nominal characteristics.

DC CURRENT GAIN vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY

Remark The graph indicates nominal characteristics.

GAIN BANDWIDTH PRODUCT vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY

INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MSG vs. COLLECTOR CURRENT

Remark The graph indicates nominal characteristics.

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

Remark The graph indicates nominal characteristics.

INSERTION POWER GAIN, MAG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG vs. COLLECTOR CURRENT

Remark The graph indicates nominal characteristics.

Remark The graph indicates nominal characteristics.

Collector Current Ic (mA)

NOISE FIGURE, ASSOCIATED GAIN vs. COLLECTOR CURRENT

Collector Current Ic (mA)

NOISE FIGURE, ASSOCIATED GAIN vs. COLLECTOR CURRENT

Remark The graphs indicate nominal characteristics.

Associated Gain Ga (dB)

S-PARAMETERS

S-parameters and noise parameters are provided on our web site in a form (S2P) that enables direct import of the parameters to microwave circuit simulators without the need for keyboard inputs.

Click here to download S-parameters.

[Products] → [RF Devices] → [Device Parameters]

URL http://www.renesas.com/products/microwave/

PACKAGE DIMENSIONS

<R> FLAT-LEAD 4-PIN THIN-TYPE SUPER MINIMOLD (M05, 2012 PKG) (UNIT: mm)

PIN CONNENTION

- 1. Base
- 2. Emitter
- 3. Collector
- 4. Emitter

Remark () : Reference value

Revision History

NESG2031M05 Data Sheet

		Description	
Rev.	Date	Page	Summary
_	Sep 2004	-	Previous No. : PU10189EJ03V0DS
4.00	Jun 20, 2012	p.1	Modification of ORDERING INFORMATION
		p.2	Modification of ELECTRICAL CHARACTERISTICS
			Modification of h _{FE} CLASSIFICATION
		p.11	Modification of S-PARAMETERS
		p.12	Modification of PACKAGE DIMENSIONS

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

CEL:

NESG2031M05-T1-A NESG2031M05-A