Indian Institute of Space Science and Technology

Thiruvananthapuram

MA211 - Linear Algebra

Tutorial-2

1. Find all eigenvalues and an eigenvector corresponding to each eigenvalue

$$(i) \ A = \begin{bmatrix} 3 & 0 \\ 0 & -6 \end{bmatrix}$$

$$(ii) \ A = \left[\begin{array}{ccc} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{array} \right]$$

$$(iii) \ A = \left[\begin{array}{ccc} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{array} \right]$$

2. The product of two eigenvalues of $A = \begin{bmatrix} 7 & 0 & -3 \\ -9 & -2 & 3 \\ 18 & 0 & -8 \end{bmatrix}$

is -2. Find the third eigenvalue.

3. Verify Cayley-Hamilton theorem for

$$A = \left[\begin{array}{rrr} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array} \right]$$

and hence find A^{-1} and A^{5} .

4. Check whether the following are vector spaces or not.

i. V = Ker A, A is a $m \times n$ real matrix $Ker A = \{x \in \mathbb{R}^n / Ax = 0\}$.

ii.
$$V = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 1\}.$$

iii. $V = \{\text{set of entire polynomials } P \text{ with real coefficients such that } p(0) = 0, p(1) = 0 \text{ and } p(2) = 0\}.$

iv.
$$V = \left\{ \left(\begin{array}{cc} a & 1 \\ b & c \end{array} \right) / a, b, c \in R \right\}.$$

v.
$$V = \{ f : R \longrightarrow R / \frac{d^2 f}{dx^2} + f = 0 \}.$$

vi. $V = \{3 \times 3 \text{ real matrices with diagonal } 1, 1, 1\}.$

5. Find whether the vectors are linearly independent or not.

i.
$$\{(1, -3, 5), (2, 2, 4), (4, -4, 14)\}$$
 in \mathbb{R}^3 .

ii.
$$\{-x^2, 1+4x^2\}$$
 in P_3 .

iii. $f(x) = x, g(x) = \frac{1}{x}$ in the vector space of all real valued functions from R^+ to R.

1

iv.
$$\{1, \sin x, \sin 2x\}$$
 in $V = \{f : R \longrightarrow R\}$

6. Say True / False and Justify your answer

- i. $\{u, v, w\}$ is linearly independent then $\{u, u+v, u+v+w\}$ also linearly independent.
- ii. If $\{u, v, w\}$ is linearly independent then all its proper subsets are linearly independent.
- iii. There is a set of four vectors in \mathbb{R}^3 , such that any three of which form a linearly independent set.
- iv. Union of linearly independent sets again linearly independent.
- 7. Check whether the given set is a basis for the corresponding vector space.
 - i. $\{(1,2,3),(3,2,1),(0,0,1)\}$ in \mathbb{R}^3 .
 - ii. $\{(1, 1+t, (1+t)^2, (1+t)^3)\}$ in P_3 .
- 8. Find a basis for
 - i. $V = \{\text{all } 2 \times 2 \text{ real matrices}\}\ \text{over } R.$
 - ii. V = KerA over R, where $A = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 2 & 4 & 3 \\ 1 & 3 & 9 & 4 \end{bmatrix}$.
- 9. Find v such that
 - i. $\{x, 1 + x^2, v\}$ is a basis for P_2 .
 - ii. $\{(1,5), v\}$ is a basis for R^2 .
- 10. Find a basis for the given subspace
 - i. W = xy plane in \mathbb{R}^3
 - ii. $W = \{(x, y, z)/3x + 2y + z = 0\}$ in \mathbb{R}^3 .
 - iii. $W = \{\text{Polynomials } p(t) \text{ of degree } \leq 2 \text{ with real coefficients and } p(0) = 0, p(4) = 0 \}$ in P_2 .
- 11. Verify
 - i. $\left\{ \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} / a + b = 0 \right\}$ is a subspace of the vector space of 2×2 real matrixes.
 - ii. $\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} / a, b \in R \right\}$ is a subspace of the vector space of 2×2 real matrixes.
 - iii. R^2 is a subspace of R^3 .
 - iv. Span $({x, x^2})$ is a subspace of P_3 .
- 12. Apply Gram-Schmidt process to find an orthonormal basis from the given basis
 - i. $\{(1,0,3),(2,2,0),(3,1,2)\}$ for \mathbb{R}^3 in this order.
 - ii. $\{(1,2,0),(2,-1,1),(-2,6,4)\}$ for \mathbb{R}^3 in the given order.
- 13. Check whether the given maps are linear or not
 - (a) $T: R \to R^3$ given by T(x) = (x, x + 1, x + 2).
 - (b) $T: R \to R^2$ given by $T(x) = (x, x^2)$.
 - (c) $T: P_3 \to P_4$ by $T(p(x)) = p(x) + x^4$.

- (d) $T: P_4 \to P_4$ by $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_2x + a_3x^2$.
- (e) $T: \mathbb{R}^2 \to \mathbb{R}^3$ by T(x,y) = (x+3, 2y, x+y)
- (f) $T: \{ \text{ real sequences } \} \to R \text{ by } T(\text{ a sequence }) = n^{th} term + (n-1)^{th} term.$
- 14. Find range (T), ker (T) and their dimensions
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^3$ by T(x, y, z) = (x + 2y z, y + z, x + y 2x)
 - (b) $T: P_3 \to P_3$ by $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_0 a_3x^2$.
 - (c) $T: \mathbb{R}^4 \to \mathbb{R}^3$ by T(x, y, z, u) = (x y + z + u, x + 2z u, x + y + 3z 3u).
 - (d) $T: \mathbb{R}^4 \to \mathbb{R}^3$ by T(x, y, z, u) = (x+2y+3z+2u, 2x+4y+7z+5u, x+2y+6z+5u).
- 15. Find the matrix of T

for R^4 .

- (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x,y) = (2x 7y, 4x + 3y) with respect to the same ordered basis $B = \{(1,3), (2,5)\}$ for domain and codomain.
- (b) $T: R^3 \to R^4$ by T(x,y,z) = (x+y,y+z,x+z,x+y+z) with respect to the ordered basis $B_1 = \{(1,0,1), (1,1,0), (0,1,1)\}$ for R^3 and $B_2 = \{(0,1,1,1), (1,0,1,1), (1,1,0,1), (1,1,1,0)\}$ for R^4 .
- (c) $T: P_3 \to P_2$ by $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1x + a_2x^2$ with respect to the ordered basis $B_1 = \{1, x, x^2, x^3\}$ for P_3 and $B_2 = \{5, 5 + x, 5 + x^2\}$ for P_2 .
- 16. Find T(1,3,5), where $T: R^3 \to R^2$ has the matrix representation $[T] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ with respect to the ordered basis $B_1 = \{(1,0,1), (1,1,0), (0,1,1)\}$ for R^3 and $B_2 = \{(2,3), (5,3)\}$ for R^2 .
- 17. Find T(2,7), where $T: \mathbb{R}^2 \to \mathbb{R}^4$ has the matrix representation $[T] = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}$ with respect to the ordered basis $B_1 = \{(1,1), (2,3)\}$ for \mathbb{R}^2 and $B_2 = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,0)\}$
- 18. Let $[T] = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 1 & 3 \end{bmatrix}$ be the matrix representation of $T: \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the ordered basis $B = \{(1,0,0), (0,1,1), (0,0,1)\}$ for both domain and codomain. Find T.
- 19. Let $T: R^2 \to R^4$ has the matrix representation $[T] = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}$ with respect to the ordered basis $B_1 = \{(1,1), (2,3)\}$ for R^2 and $B_2 = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$ for R^4 . Find T.
- 20. Let $[T] = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$ be the matrix representation of $T : R^3 \to R$ with respect to the ordered basis $B_1 = \{(1,0,0), (0,1,1), (0,0,2)\}$ for R^3 and $B_2 = \{8\}$ for R. Find T.

21. Let $[T] = \begin{bmatrix} 8 & 11 \\ -6 & -11 \end{bmatrix}$ be the matrix representation of $T: \mathbb{R}^2 \to \mathbb{R}^2$ with respect to the ordered basis $B_1 = \{(1, -2), (2, 5)\}$ for \mathbb{R}^2 and $B_2 = \{(1, -2), (2, 5)\}$ for \mathbb{R}^2 . Find T.

Assignment-II

Submit the answers of questions 2, 4(ii), 4(vi), 5(ii), 7(ii), 8(ii), 11(ii), 12(i), 13(c), 14(c), 15(c), 19 on or before 22-11-2023.