Lecture 21: Change of Coordinates (§1.3&2.7)

Recall polar coordinates in Calc 2:

The rectangular coordinates of a point (x, y) and its **polar** coordinates (r, θ) are related by the equations

Polar to rectangular:

$$x = r\cos\theta \qquad \qquad y = r\sin\theta$$

Rectangular to polar:

$$r = \sqrt{x^2 + y^2} \qquad \tan \theta = \frac{y}{x}$$

NOTE: We restrict $r \geq 0$ for the convenience of multiple integration in the later lectures.

ex. Convert to an equation in rectangular coordinates.

1.
$$r = 2$$

2.
$$r = 2\cos\theta$$

3.
$$r = 2\sin\theta$$

4.
$$r = 2 \csc \theta$$

ex. Convert to an equation in polar coordinates.

1.
$$x^2 + y^2 = 5$$

2.
$$y = \sqrt{4x - x^2}$$

ex. Describe the shaded region in polar coordinates.

Next, we introduce two generalizations of polar coordinates to \mathbb{R}^3 , cylindrical and spherical coordinates.

Cylindrical Coordinates (r, θ, z)

In \mathbb{R}^2 , a point with rectangular coordinates (x, y) can be easily converted to (r, θ) in polar coordinates and vice versa. We use the same concept in \mathbb{R}^3 to do the conversion between rectangular and cylindrical coordinates.

Cylindrical to rectangular:

$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$

Rectangular to cylindrical:

$$r = \sqrt{x^2 + y^2} \qquad \tan \theta = \frac{y}{x} \qquad z = z$$

 $\underline{\mathbf{ex.}}$ Describe the solid E in cylindrical coordinates.

$$E = \{(x, y, z) \mid x^2 + y^2 \le 5, \ 0 \le z \le 7\}$$

<u>ex.</u> Find an equation in cylindrical coordinates for the surface $z = \sqrt{4x^2 + 4y^2}$.

Spherical Coordinates

In \mathbb{R}^3 , a point P in the **spherical coordinate** system is represented by the ordered triple (ρ, θ, ϕ) , where

- ρ is the distance between P and the origin $(\rho \geq 0)$
- θ is the same angle used to describe the location in cylindrical coordinates $(0 \le \theta \le 2\pi)$
- ϕ is the angle formed by the positive z-axis and line segment OP $(0 \le \phi \le \pi)$

Spherical to rectangular:

$$x = \rho \sin \phi \cos \theta$$
 $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

Rectangular to spherical:

$$\rho = \sqrt{x^2 + y^2 + z^2} \qquad \tan \theta = \frac{y}{x} \qquad \cos \phi = \frac{z}{\rho}$$

 $\underline{\mathbf{ex.}}$ Describe the solid E in spherical coordinates.

$$E = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 9, \ x, \ y, \ z \ge 0\}$$

ex. Describe the surface $z = \sqrt{x^2 + y^2}$ in spherical coordinates.

<u>ex.</u> Identify the surface $r = 4 \sin \theta$ in cylindrical coordinates.

<u>ex.</u> Identify the surface $\rho = 4\cos\phi$ in spherical coordinates.

ex. Sketch the solid described by the given inequalities:

$$r^2 \leq z \leq 8-r^2$$

ex. Sketch the solid described by the given inequalities:

$$\rho \le 1, \ 0 \le \phi \le \frac{\pi}{4}, \ 0 \le \theta \le \frac{\pi}{2}$$

Now You Try It (NYTI):

1. (1) Convert the point $\left(2,\frac{3\pi}{4},-1\right)$ in cylindrical coordinates to rectangular coordinates. $\left(-\sqrt{2},\sqrt{2},-1\right)$

(2) Convert the point $(-3\sqrt{3}, -3, 5)$ in rectangular coordinates to cylindrical coordinates. (6,7 π /6,5)

2. (1) Convert the point $\left(4, \frac{\pi}{3}, \frac{\pi}{4}\right)$ in spherical coordinates to rectangular coordinates. $(\sqrt{2}, \sqrt{6}, 2\sqrt{2})$

(2) Convert the point $(2, -2\sqrt{3}, 3)$ in rectangular coordinates to spherical coordinates. $(5, \frac{5\pi}{3}, \cos^{-1}(\frac{3}{5}))$

3. Identify the surface in cylindrical coordinates.

$$(1) r^2 + z^2 = 4$$

a sphere centered at the origin with radius 2

(2)
$$r = 4\cos\theta$$

a circular cylinder with radius 2

4. Identify the surface in spherical coordinates.

(1)
$$\rho \cos \phi = 1$$

a horizontal plane z=1

(2)
$$\rho = \cos \phi$$

a sphere of radius $\frac{1}{2}$ centered at $\left(0,0,\frac{1}{2}\right)$