Quantum algorithms for finding the structure of abelian and solvable groups

QIC710 Presentation

Abhibhav Garg 2021

Overview

The hidden subgroup problem for abelian groups

Finite abelian Groups

Decomposing finite abelian groups

Solvable groups

Order of solvable groups

The hidden subgroup problem for

abelian groups

Function $f:G\to S$ hides subgroup H if

$$f(x) = f(y) \iff x - y \in H.$$

Function $f: G \rightarrow S$ hides subgroup H if

$$f(x) = f(y) \iff x - y \in H.$$

Given a black box for f, can you find H.

Function $f: G \rightarrow S$ hides subgroup H if

$$f(x) = f(y) \iff x - y \in H.$$

Given a black box for f, can you find H.

Generalises the Simon mod m problem.

Function $f: G \rightarrow S$ hides subgroup H if

$$f(x) = f(y) \iff x - y \in H.$$

Given a black box for f, can you find H.

Generalises the Simon mod m problem. $G=\left(\mathbb{Z}/m\mathbb{Z}\right)^d$, and $H=r\mathbb{Z}.$

General solution

 $\bullet \;$ Start with state $|0\rangle,$ and apply $F_{G}\;(F_{m}^{\otimes k}).$

General solution

- Start with state $|0\rangle$, and apply F_G $(F_m^{\otimes k})$.
- Query the function f on an ancilla and measure it.

General solution

- Start with state $|0\rangle$, and apply F_G $(F_m^{\otimes k})$.
- Query the function f on an ancilla and measure it.
- Apply F^{*}_G to get a random character trivial on H (an element in the orthogonal complement of r).

Finite abelian Groups

The structure theorem

Theorem

Any finite abelian group is isomorphic to a direct sum of cyclic group of prime power orders.

In other words, if G is finite abelian then

$$G \cong \mathbb{Z}/\mathfrak{p}_1^{e_1}\mathbb{Z} \oplus \mathbb{Z}/\mathfrak{p}_2^{e_2}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/\mathfrak{p}_k^{e_k}\mathbb{Z}.$$

Sylow subgroups and decomposition.

Definition

A Sylow p—subgroup of G is a maximal subgroup with every element having order a power or p.

Sylow subgroups and decomposition.

Definition

A Sylow p—subgroup of G is a maximal subgroup with every element having order a power or p.

Theorem

Any finite abelian group is isomorphic to a direct sum of its Sylow p—subgroups.

Sylow subgroups and decomposition.

Definition

A Sylow p—subgroup of G is a maximal subgroup with every element having order a power or p.

Theorem

Any finite abelian group is isomorphic to a direct sum of its Sylow p—subgroups. If $G=\oplus G_i$ with G_i a p_i —Sylow subgroup, and if H is any subgroup of G then $H=\oplus H_i$ with H_i a subgroup of G_i .

Presentation and cyclic decomposition

Theorem

Suppose $\alpha_1, \ldots, \alpha_k$ generate G. Suppose M is such that $\prod \alpha_i^{n_i} = e$ if and only if $n \in \mathcal{L}(col(M))$. Then we can find g_1, \ldots, g_l such that

$$G\cong g_1\mathbb{Z}\oplus g_2\mathbb{Z}\oplus\cdots\oplus g_1\mathbb{Z}.$$

Decomposing finite abelian groups

Theorem Statement

Theorem ([1])

Given a finite abelian group G, we can find the decomposition of G in polynomial time.

• Unique encoding.

- Unique encoding.
- Efficiently find a generating set for G.

- Unique encoding.
- Efficiently find a generating set for G.
- Orders of generators are prime powers.

- Unique encoding.
- Efficiently find a generating set for G.
- Orders of generators are prime powers.
- $\bullet \ \ \text{Given } \alpha \in G \ \text{we can compute} \ U_\alpha : |g\rangle \to |\alpha g\rangle.$

• To find a generating set, just sample $O(\log |G|)$ elements randomly. Each element picked doubles the size of the subgroup.

- To find a generating set, just sample $O(\log |G|)$ elements randomly. Each element picked doubles the size of the subgroup.
- If $g^{pq} = e$ with (p, q) = 1 then g^p, g^q have order q, p and $g = (g^p)^r (g^q)^s$.

 $\bullet \ \mbox{We have} \ G = \oplus G_{\mathfrak i} \ \mbox{where} \ G_{\mathfrak i} \ \mbox{is the} \ p_{\mathfrak i} - \mbox{Sylow subgroup}.$

- We have $G = \oplus G_i$ where G_i is the p_i -Sylow subgroup.
- Suppose g is a generator with order a power of p_1 .

- We have $G = \bigoplus G_i$ where G_i is the p_i -Sylow subgroup.
- Suppose g is a generator with order a power of p_1 .
- The subgroup $g\mathbb{Z}$ can be written as $g\mathbb{Z}=\oplus H_i.$

- We have $G = \bigoplus G_i$ where G_i is the p_i -Sylow subgroup.
- Suppose g is a generator with order a power of p_1 .
- The subgroup $g\mathbb{Z}$ can be written as $g\mathbb{Z}=\oplus H_i.$
- It must be $H_i = \{e\}$ for i > 1.

- We have $G = \bigoplus G_i$ where G_i is the p_i -Sylow subgroup.
- Suppose g is a generator with order a power of p_1 .
- The subgroup $g\mathbb{Z}$ can be written as $g\mathbb{Z} = \oplus H_i$.
- It must be $H_i = \{e\}$ for i > 1.
- Divide the generators into sets based on order.

• Let q be the max order of g_1, \ldots, g_k .

- Let q be the max order of g_1, \ldots, g_k .
- $\bullet \ \ \text{Define} \ \varphi: \left(\mathbb{Z}/q\mathbb{Z}\right)^k \to G \ \text{sending basis} \ e_i \to g_i.$

- Let q be the max order of g_1, \ldots, g_k .
- Define $\phi : (\mathbb{Z}/q\mathbb{Z})^k \to G$ sending basis $e_i \to g_i$.
- Find generators y₁,...,y₁ of K the subgroup hidden by φ (equivalently ker (φ)).

- Let q be the max order of g_1, \ldots, g_k .
- Define $\phi : (\mathbb{Z}/q\mathbb{Z})^k \to G$ sending basis $e_i \to g_i$.
- Find generators y₁,...,y₁ of K the subgroup hidden by φ (equivalently ker (φ)).
- Output $\phi(y_1), \phi(y_2), \dots, \phi(y_l)$.

Correctness

 $\bullet \,$ We have $G\cong \left(\mathbb{Z}/q\mathbb{Z}\right)^k/K$ by isomorphism theorem.

Correctness

- We have $G \cong (\mathbb{Z}/q\mathbb{Z})^k / K$ by isomorphism theorem.
- To find the generators, we can combine the matrix A of K and the matrix M = kI and apply the theorem.

Solvable groups

• Given G, define commutator [G, G] to be the subgroup generated by $ghg^{-1}h^{-1}$ for all $g,h \in G$.

- Given G, define commutator [G, G] to be the subgroup generated by $ghg^{-1}h^{-1}$ for all $g,h \in G$.
- Set $G_0 := G$ and define $G_i = [G_{i-1}, G_{i-1}]$.

- Given G, define commutator [G, G] to be the subgroup generated by $ghg^{-1}h^{-1}$ for all $g,h \in G$.
- Set $G_0 := G$ and define $G_i = [G_{i-1}, G_{i-1}]$.
- G is solvable if $G_{\mathfrak{m}} = \{e\}$ for some \mathfrak{m} .

• If G is finite, then G is solvable if there are g_1, \ldots, g_m such that

$$\{e\}=H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{\mathfrak{m}}=G$$

where H_i is generated by g_1, \ldots, g_i .

• If G is finite, then G is solvable if there are g_1, \ldots, g_m such that

$$\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_m = G$$

where H_i is generated by g_1, \ldots, g_i .

• In this case H_{i+1}/H_i is cyclic.

• If G is finite, then G is solvable if there are g_1, \ldots, g_m such that

$$\{e\}=H_0\triangleleft H_1\triangleleft \cdots \triangleleft H_{\mathfrak{m}}=G$$

where H_i is generated by g_1, \ldots, g_i .

- In this case H_{i+1}/H_i is cyclic.
- Given generators for G, we can find such g_1, \ldots, g_m classically, although it might be $H_{i+1} = H_i$.

• If G is finite, then G is solvable if there are g_1, \ldots, g_m such that

$$\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_m = G$$

where H_i is generated by g_1, \ldots, g_i .

- In this case H_{i+1}/H_i is cyclic.
- Given generators for G, we can find such $g_1, ..., g_m$ classically, although it might be $H_{i+1} = H_i$.
- We have $|G| = \prod |H_{i+1}/H_i|$.

Order of solvable groups

• We saw how to do order finding by reducing to phase estimation.

- We saw how to do order finding by reducing to phase estimation.
- $\bullet\,$ Alternatively, hidden subgroup problem on $\mathbb{Z}.$

- We saw how to do order finding by reducing to phase estimation.
- Alternatively, hidden subgroup problem on \mathbb{Z} .
- Subgroup is generated by r := ord(a).

- We saw how to do order finding by reducing to phase estimation.
- Alternatively, hidden subgroup problem on \mathbb{Z} .
- Subgroup is generated by r := ord(a).
- The function f is $f(x) = a^x$.

• Pick $N > r^2$.

- Pick $N > r^2$.
- $\bullet\,$ Do the same steps as hsp on $\mathbb{Z}/N\mathbb{Z}$ with f.

- Pick $N > r^2$.
- Do the same steps as hsp on $\mathbb{Z}/N\mathbb{Z}$ with f.
- Whp, we get the closest integer to jN/r for some j.

- Pick $N > r^2$.
- Do the same steps as hsp on $\mathbb{Z}/N\mathbb{Z}$ with f.
- Whp, we get the closest integer to jN/r for some j.
- Use the continued fraction based method to find r.

Theorem statement

Theorem ([2])

Given generators g_1, \ldots, g_k of a solvable group, there exists an algorithm that outputs the order of G with high probability. The algorithm also produces a pure state that is ε close to $|G\rangle = \sum_{g \in G} |g\rangle$.

Some definitions and assumptions

• For any $a \in G$ and subgroup H of G, define $ord_H(a)$ to be the smallest r such that $a^r \in H$.

Some definitions and assumptions

- For any $a \in G$ and subgroup H of G, define $ord_H(a)$ to be the smallest r such that $a^r \in H$.
- For any subgroup H of G define $|H\rangle = |H|^{1/2} \sum_{\alpha \in H} |\alpha\rangle$.

Some definitions and assumptions

- For any $a \in G$ and subgroup H of G, define $ord_H(a)$ to be the smallest r such that $a^r \in H$.
- For any subgroup H of G define $|H\rangle = |H|^{1/2} \sum_{\alpha \in H} |\alpha\rangle$.
- We assume that we have a unitary performing $U: |g\rangle |h\rangle \rightarrow |g\rangle |gh\rangle.$

Two step process for finding the order of solvable groups

• Use $|H_i\rangle$ to find $ord_{H_i}(g_{i+1})$.

Two step process for finding the order of solvable groups

- Use $|H_i\rangle$ to find $ord_{H_i}(g_{i+1})$.
- Use ord_{H_i}(g_{i+1}) to construct $|H_{i+1}\rangle$.

• Do the same steps as order finding, with second qubit set to $|H\rangle$.

- Do the same steps as order finding, with second qubit set to |H>.
- \bullet Pick N. Start with $|0\rangle|H\rangle$ and apply F_N to the first register to get

$$\sum_{\alpha\in\mathbb{Z}/N\mathbb{Z}}|\alpha\rangle|H\rangle.$$

- Do the same steps as order finding, with second qubit set to |H>.
- \bullet Pick N. Start with $|0\rangle|H\rangle$ and apply F_N to the first register to get

$$\sum_{\alpha \in \mathbb{Z}/N\mathbb{Z}} |\alpha\rangle |H\rangle.$$

Use a multiplicity controlled gate to compute

$$\sum_{\alpha\in\mathbb{Z}/N\mathbb{Z}}|\alpha\rangle|g_{i+1}^{\alpha}H\rangle.$$

• Apply F_N* to get

$$\sum_{\alpha,b\in\mathbb{Z}/N\mathbb{Z}}\omega_N^{\alpha b}|b\rangle|g_{\mathfrak{i}+1}^\alpha H\rangle.$$

Apply F_N to get

$$\sum_{\alpha,b\in\mathbb{Z}/N\mathbb{Z}}\omega_N^{\alpha b}|b\rangle|g_{\mathfrak{i}+1}^\alpha H\rangle.$$

• Measure first register, with high probability the result is an integer closest to jN/r.

• We use k copies of $|H_i\rangle$ to construct k-1 copies of $|H_{i+1}\rangle=|g_{i+1}H_i\rangle.$

- We use k copies of $|H_i\rangle$ to construct k-1 copies of $|H_{i+1}\rangle=|g_{i+1}H_i\rangle.$
- Using the same as before, prepare l copies of state

$$\sum_{\alpha,b\in\mathbb{Z}/r\mathbb{Z}}\omega_{\mathfrak{r}}^{\alpha b}|b\rangle|g_{\mathfrak{i}+1}^{\alpha}H\rangle.$$

- We use k copies of $|H_i\rangle$ to construct k-1 copies of $|H_{i+1}\rangle = |g_{i+1}H_i\rangle$.
- Using the same as before, prepare l copies of state

$$\sum_{\alpha,b\in\mathbb{Z}/r\mathbb{Z}}\omega_{\mathfrak{r}}^{\alpha b}|b\rangle|g_{\mathfrak{i}+1}^{\alpha}H\rangle.$$

• Measure the first register, let b_1,\ldots,b_1 be the outcome and $|\psi_i\rangle$ the residual state.

- We use k copies of $|H_i\rangle$ to construct k-1 copies of $|H_{i+1}\rangle = |g_{i+1}H_i\rangle$.
- Using the same as before, prepare l copies of state

$$\sum_{\alpha,b\in\mathbb{Z}/r\mathbb{Z}}\omega_{\mathfrak{r}}^{\alpha b}|b\rangle|g_{\mathfrak{i}+1}^{\alpha}H\rangle.$$

- Measure the first register, let b_1, \ldots, b_1 be the outcome and $|\psi_i\rangle$ the residual state.
- whp, say b₁ is relatively prime to r.

• Pick c so that $c \cong b_2b_1^{-1} \pmod{r}$.

- Pick c so that $c \cong b_2b_1^{-1} \pmod{r}$.
- $\bullet \ \mbox{Apply U_G^c to the state $|\psi_2\rangle|\psi_1\rangle$ to get $|H_{i+1}\rangle|\psi_1\rangle$.}$

• Membership testing

- Membership testing
- Subgroup testing

- Membership testing
- Subgroup testing
- Normality testing

- Membership testing
- Subgroup testing
- Normality testing
- We can use |gH⟩ instead of |g⟩ and use algorithms that work on abelian groups.

References i

References

- [1] K. K. Cheung and M. Mosca. Decomposing finite abelian groups. *arXiv preprint* cs/0101004, 2001.
- [2] J. Watrous. Quantum algorithms for solvable groups. In *Proceedings of the thirty-third annual ACM symposium on Theory of computing*, pages 60–67, 2001.

Proof Details

 $\bullet \quad \text{Let M}_{g^{\,j}\,\,h}\,\, \text{denote multiplication by}\,\, g^{\,j}\,h.$

Proof Details

- Let $M_{q^{j}h}$ denote multiplication by $g^{j}h$.
- We have

$$\begin{split} \mathbf{M}_{g^{j}h}|\psi_{1}\rangle &= \sum_{\alpha} \omega_{r}^{\alpha b_{1}}|g^{j+\alpha}H\rangle \\ &= \sum_{\alpha} \omega_{r}^{(\alpha-j)b_{1}}|g^{\alpha}H\rangle \\ &= \omega_{r}^{-jb_{1}}|\psi_{1}\rangle. \end{split}$$

Proof Details

• We have

$$\begin{split} \mathbf{U}_{G}^{c}|\psi_{2}\rangle|\psi_{1}\rangle &= \sum_{\alpha} \sum_{\mathbf{h} \in \mathbf{H}} \omega_{\tau}^{\alpha \, \mathbf{b}_{2}} |g^{\,\alpha}\,\mathbf{h}\rangle \mathbf{M}_{\left(\,g^{\,\alpha}\,\mathbf{h}\,\right)}c\,|\psi_{1}\rangle \\ &= \sum_{\alpha} \sum_{\mathbf{h} \in \mathbf{H}} \omega_{\tau}^{\,\alpha \, \mathbf{b}_{2} - \alpha \, c \, \mathbf{b}_{1}} |g^{\,\alpha}\,\mathbf{h}\rangle|\psi_{1}\rangle \\ &= \sum_{\alpha} \sum_{\mathbf{h} \in \mathbf{H}} |g^{\,\alpha}\,\mathbf{h}\rangle|\psi_{1}\rangle \end{split}$$