Конспект лекций по курсу «Теория вероятностей»

Лектор: канд. физ.-мат. наук Родионов Игорь Владимирович

Набор: Алексей Шепелев

Содержание

1	Лекция от $10.02.2018$	1
2	Лекция от 17.02.2018	4
3	Лекция от 03.03.2018	4
4	Лекция от $10.03.2018$	4
5	Лекция от $17.03.2018$	6
6	Лекция от $24.03.2018$	10
7	Лекция от $31.03.2018$	10
8	Лекция от 07.04.2018	14

1 Лекция от 10.02.2018

Будем обозначать вероятностное пространство как $(\Omega, \mathcal{F}, \mathsf{P})$, где

- 1. Ω пространство элементарных исходов;
- 2. $\mathcal{F} \sigma$ -алгебра на Ω ;
- 3. Р вероятностная, $P: \mathcal{F} \rightarrow [0,1]$, причем
 - a) $P(\Omega) = 1$;
 - b) Р σ -аддитивна, то есть $\forall \{A_n\}_{n=1}^{+\infty} \in \mathcal{F}$, причем $A_n \cap A_m = \emptyset$ при $n \neq m$: $P\left(\bigsqcup_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} \mathsf{P}(A_n)$.

Определение. Последовательность $\{A_n\}$ убывает к A, если $\forall n: A_n \supseteq A_{n+1}$ и $A = \bigcap_{n=1}^{+\infty} A_n$. Последовательность $\{A_n\}$ возрастает к A, если $\forall n: A_n \subseteq A_{n+1}$ и $A = \bigcup_{n=1}^{+\infty} A_n$.

Теорема (о непрерывности вероятностной меры). Пусть (Ω, \mathcal{F}) — измеримое пространство u на нем определена функция $P: \mathcal{F} \to [0,1]$, удовлетворяющая следующим свойствам: $P(\Omega) = 1$ и P — конечно аддитивная. Тогда следующие утверждения эквивалентны:

- 1. P вероятностная мера;
- 2. $\forall A \downarrow A : P(A_n) \rightarrow P(A)$ (непрерывность снизу);
- 3. $\forall A \uparrow A : P(A_n) \rightarrow P(A)$ (непрерывность сверху);
- 4. $\forall A \downarrow \varnothing : \mathsf{P}(A_n) \to 0$ (непрерывность в нуле).

Теорема (Каратеодори). $[6/\partial]$ Пусть Ω — некое множество, \mathcal{A} — σ -алгебра на Ω и P_{σ} — вероятностная мера на (Ω, \mathcal{A}) . Тогда существует единственная вероятностная мера на $(\Omega, \sigma(\mathcal{A}))$, являющаяся продолжением P_{σ} , то есть $\forall A \in \mathcal{A} : \mathsf{P}_{\sigma}(A) = \mathsf{P}(A)$.

Рассмотрим измеримое пространство $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ и вероятностную меру P на нем.

Определение. Функция $\mathcal{F}(x), x \in \mathbb{R}$, заданная по правилу $F(x) = P((-\infty, x])$ — функция распределения вероятностной меры P.

Лемма (свойство функции распределения). Пусть $F(x) - \phi y$ нкция распределения, тогда

- 1. F(x) не убывает;
- 2. $\lim_{x \to +\infty} F(x) = 1$; $\lim_{x \to -\infty} F(x) = 0$;
- 3. F(x) непрерывна справа.
- **A** Пусть $y \ge x$, тогда $F(y) F(x) = P((-\infty, y]) P((-\infty, x]) = P((x, y]) \ge 0$, следовательно, F(x) неубывает.

Пусть $x_n \to -\infty$ при $n \to +\infty$, тогда $(-\infty, x_n] \to \emptyset$, следовательно, $F(x_n) = P((-\infty, x_n]) \underset{n \to +\infty}{\longrightarrow} 0$ по теореме о непрерувности вероятностной меры.

Пусть $x_n \to +\infty$ при $n \to +\infty$, тогда $(-\infty, x_n] \to \mathbb{R}$, следовательно, $F(x_n) = P((-\infty, x_n]) \xrightarrow[n \to +\infty]{} P(\mathbb{R}) = 1$.

Пусть $x_n \downarrow x$, тогда $(-\infty, x_n] \downarrow (-\infty, x]$, отсюда по теореме о непрерывности вероятностной меры вытекает, что $F(x_n) = \mathsf{P}\big((-\infty, x_n]\big) \underset{n \to +\infty}{\longrightarrow} \mathsf{P}\big((-\infty, x]\big) = F(x)$.

Свойство 1. Функция распределения имеет предел слева $\forall x \in \mathbb{R}$, при этом число точек разрыва не более, чем счетно.

▲ Пусть $x_n \to x - 0$ — возрастающая последовательность, тогда $F(x_n) = P((-\infty, x_n]) \xrightarrow[n \to +\infty]{} P((-\infty, x_n]) = F(x - 0)$. Каждая точка разрыва — скачок функции распределения, каждому скачку сопоставим [F(x - 0), F(x)], а этому отрезку в свою очередь сопоставим некую рациональную точку, которая лежит в (F(x - 0), F(x)). Следовательно каждому скачку мы сопоставили точку из \mathbb{Q} , а так как \mathbb{Q} счетно, то число разрывов не более, чем счетно.

Определение. Функция F(x), котороя удовлетворяет свойствам 1)-3) из леммы, называется функцией распределения на \mathbb{R} .

Теорема (о взаимно однозначном соответствии между вероятностной мерой и функцией распределения на \mathbb{R}). Пусть F(X) — функция распределения на \mathbb{R} , тогда существует единственная вероятностная мера P на $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ такая, что F(x) является ее функцией распределения, то есть $F(x) = P(-\infty, x]$).

A Рассмотрим полукольцо $S = \{(a, b]\}$ на \mathbb{R} . Определим σ -аддитивную вероятностную меру P((a, b]) = F(b) - F(a), а по теореме P единственным образом продолжается на всю σ -алгебру $\mathscr{B}(\mathbb{R})$.

Классификация вероятностных мер и функций распределения на прямой

(1) Дискретное распределение

Пусть $\mathscr{X} \subseteq \mathbb{R}$ не более, чем счетно.

Определение. Вероятностная мера P на $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$, удовлетворяющая свойству $\mathsf{P}(\mathbb{R} \backslash \mathscr{X}) = 0$, называется дискретной вероятностной мерой на \mathscr{X} , ее функция распределения также называется дискретной.

Рассмотрим
$$\mathscr{X}=\{x_k\}$$
, положим $p_k=\mathsf{P}\big(\{x_k\}\big)$, тогда $\mathsf{P}(\mathscr{X})=1=\sum_k\mathsf{P}(x_k)$.

Определение. Набор чисел $\{p_k\}$ на называется распределением вероятностей на \mathscr{X} .

(2) Абсолютно непрерывное распределение

Определение. Пусть F(x) — функция распределения вероятностной меры Р на \mathbb{R} , причем $\forall x \in \mathbb{R}$ верно $F(x) = \int\limits_{-\infty}^{x} p(t) \, dt$, где $p(t) \geqslant 0$, а $\int\limits_{-\infty}^{+\infty} p(t) \, dt = 1$. Тогда Р абсолютно непрерывна, F(x) также называется абсолютно непрерывной, а p(t) — плотность распределения F(x). Причем p(t) определена однозначно, кроме множества меры нуль.

Примеры:

1. Равномерное распределение R[a, b]

$$p(x) = \frac{1}{b-a} \cdot I(x \in [a, b]).$$

2. Нормальное (гауссовское) распределение $N(a, \sigma^2)$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left[-\frac{(x-a)^2}{2\sigma^2}\right].$$

3. Экспоненциальное распределение $\text{Exp}(\alpha)$ '

$$p(x) = \alpha e^{-\alpha x} \cdot I(x > 0).$$

4. Распределение Коши Cauchy(θ)

$$p(x) = \frac{\theta}{\pi (x^2 + \theta^2)}.$$

5. Гамма распределение $\Gamma(\alpha, \gamma)$

$$p(x) = \frac{x^{\alpha - 1} \gamma^{\alpha}}{\Gamma(\alpha)} \cdot e^{-\gamma x} \cdot I(x > 0).$$

Определение. $\Gamma(\alpha) = \int\limits_0^{+\infty} x^{\alpha-1} e^{-x} \, dx$, причем $\forall n \in \mathbb{N} : \Gamma(n) = (n-1)!, \, \forall \lambda \in \mathbb{R} : \Gamma(\lambda \pm 1) = \lambda \Gamma(\lambda)$, а $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

③ Сингулярные распределения

Определение. Пусть F(x) — функция распределения на \mathbb{R} . Точка $x_0 \in \mathbb{R}$ называется точкой роста F(x), если $\forall \varepsilon > 0 : F(x_0 + \varepsilon) - F(x_0 - \varepsilon) > 0$.

Определение. Функция распределения называется сингулярной, если она непрерывна и множество ее точек роста имеет Лебегову меру нуль. Например, функция Кантора.

Теорема (Лебега о функции распределения). $[6/\partial]$ Пусть F(x) — функция распределения на \mathbb{R} . Тогда существуют единственные α_1, α_2 и $\alpha_3, \alpha_i \geqslant 0, \alpha_1 + \alpha_2 + \alpha_3 = 1$ и функции распределения $F_1(x), F_2(x)$ и $F_3(x)$ такие, что $F(x) = \alpha_1 F_1(x) + \alpha_2 F_2(x) + \alpha_3 F_3(x)$, где $F_1(x)$ — дискретная функция распределения, $F_2(x)$ — абсолютно непрерывная, а $F_3(x)$ — сингулярная.

2 Лекция от 17.02.2018

Вероятностная мера в $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$

Определение.

3 Лекция от 03.03.2018

4 Лекция от 10.03.2018

Свойство 2. Если $\xi = \eta$ почти наверное и $\mathsf{E}|\eta| <= +\infty, \ mo \ \mathsf{E}|\xi| < +\infty$ и $\mathsf{E}\xi = \mathsf{E}\eta.$

▲ Пусть $A = \{\xi \neq \eta\}$, тогда $I_A = 0$ почти наверное, следовательно $\xi \cdot I_a = 0$ почти наверное и $\eta \cdot I_A = 0$ почти наверное. Так как $\xi = \xi \cdot I_A + \xi \cdot I_{\overline{A}}$, то $\xi = \xi \cdot I_A + \eta \cdot I_A$, потому что на \overline{A} выполняется $\xi = \eta$. Из свойства 6 имеем $\mathsf{E}\xi = \mathsf{E}(\xi \cdot I_A) + \mathsf{E}(\eta \cdot I_{\overline{A}}) = \mathsf{E}(\eta \cdot I_A) + E(\eta \cdot I_{\overline{A}}) = \mathsf{E}\eta$.

Свойство 3. Пусть $\xi \geqslant 0$ и $\mathsf{E}\xi \geqslant 0$, тогда $\xi = 0$ почти наверное.

A Рассмотрим события $A = \{\xi > 0\}$ и $A_n = \{\xi > \frac{1}{n}\}$, следовательно, $A_n \uparrow A$. Имеем $\mathsf{P}(A_n) = \mathsf{E} I_{A_n}$, так как $n\xi > 1$ на A_n , то $\mathsf{E} I_{A_n} \leqslant \mathsf{E}(n\xi \cdot I_A) \leqslant n\mathsf{E} \xi = 0$, значит, $\mathsf{P}(A) = \lim_{n \to +\infty} \mathsf{P}(A_n)$.

Свойство 4. Пусть $\mathsf{E}\xi$ и $\mathsf{E}\eta$ конечны, $\forall A \in \mathcal{F} : \mathsf{E}(\xi \cdot I_A) \leqslant \mathsf{E}(\eta \cdot I_A)$. Тогда $\xi \leqslant \eta$ почти наверное.

▲ Рассмотрим событие $B = \{\xi > \eta\}$. Из условия и построения B получаем, что $\mathsf{E}(\eta \cdot I_B) \leqslant \mathsf{E}(\xi \cdot I_B) \leqslant \mathsf{E}(\eta \cdot I_B)$, следовательно, $\mathsf{E}(\xi \cdot I_B) = \mathsf{E}(\eta \cdot I_B)$, значит $\mathsf{E}\big((\xi - \eta) \cdot I_B\big) = 0$. Так как $(\xi - \eta) \cdot I_B \geqslant 0$, то по свойству $8 \ (\xi - \eta) \cdot I_B = 0$ почти наверное, следовательно $I_B = 0$ почти наверное, потому что $\xi - \eta > 0$ на B. ■

Теорема (о математическом ожидании произвольной случайной величины). Пусть $\xi \perp \eta$, причем $\xi = \eta$ конечны, тогда $\xi = \eta$ конечно $\xi = \eta$ конечно $\xi = \eta$.

▲ Пусть ξ и η — простые случайные величины, то есть ξ принимает значения $\{x_1, \ldots, x_n\}$, η принимает значения $\{y_1, \ldots, y_n\}$. Тогда по линейности

$$\begin{split} \mathsf{E}\xi\eta &= \sum_{k,j=1}^{n} x_{k} y_{j} \mathsf{P}(\xi = x_{k}, \eta = y_{j}) = \sum_{k,j=1}^{n} x_{k} y_{j} \mathsf{P}(\xi = x_{k}) \cdot \mathsf{P}(\eta = y_{j}) = \\ &= \sum_{k=1}^{n} x_{k} \mathsf{P}(\xi = x_{k}) \sum_{j=1}^{n} y_{j} \mathsf{P}(\eta = y_{j}) = \mathsf{E}\xi \cdot \mathsf{E}\eta. \end{split}$$

Рассмотрим $\xi_n \uparrow \xi$, $\xi_n = \sum_{k=0}^{n \cdot 2^n - 1} \frac{k}{2^n} I\left(\frac{k}{2^n} \leqslant \xi \leqslant \frac{k+1}{2^n}\right) + nI(\xi > n)$, следовательно, $\xi_n = \varphi_n(\xi)$, значит, $\xi_n - \mathcal{F}_{\xi}$ -измеримая. Пусть $\xi, \eta \geqslant 0$. Существует последовательность \mathcal{F}_{ξ} -измеримых (\mathcal{F}_{η} -измеримых) простых неотрицательных простых функций $\xi_n \uparrow \xi \ (\eta_n \uparrow \eta)$. Так как $\xi \perp \eta$, то $\xi_n = \varphi_n(\xi) \perp \varphi_n(\eta) = \eta_n$. Следовательно, $\xi_n \cdot \eta_n \uparrow \xi \cdot \eta$, а по определению математического ожидания $\mathsf{E}\xi\eta = \lim_{n \to +\infty} \mathsf{E}(\xi_n\eta_n) = \lim_{n \to +\infty} \mathsf{E}\xi_n \cdot \mathsf{E}\eta_n = \mathsf{E}\xi \cdot \mathsf{E}\eta$.

Пусть теперь ξ и η — произвольные случайные величины. ξ^+ и ξ^- — функции от ξ , η^+ и η^- — функции от η , следовательно, $\xi^+ \perp \!\!\! \perp \eta^+$ и $\xi^- \perp \!\!\! \perp \eta^-$, отсюда $(\xi\eta)^+ = \xi^+\eta^+ + \xi^-\eta^-$ значит, $\mathsf{E}(\xi\eta)^+ = \mathsf{E}\xi^+\eta^+ + \mathsf{E}\xi^-\eta^- = \mathsf{E}\xi^+\mathsf{E}\eta^+ + \mathsf{E}\xi^-\mathsf{E}\eta^-$, аналогично $\mathsf{E}(\xi\eta)^- = \mathsf{E}\xi^+\eta^- + \mathsf{E}\xi^-\eta^+ = \mathsf{E}\xi^+\mathsf{E}\eta^- + \mathsf{E}\xi^-\mathsf{E}\eta^+$. Осталось заметить, что $\mathsf{E}\xi\eta = \mathsf{E}(\xi\eta)^+ - \mathsf{E}(\xi\eta)^- = \mathsf{E}\xi^+\mathsf{E}\eta^+ + E\xi^-\mathsf{E}\eta^- - \mathsf{E}\xi^+\mathsf{E}\eta^- - \mathsf{E}\xi^-\mathsf{E}\eta^+ = (\mathsf{E}\xi^+ - \mathsf{E}\xi^-)(\mathsf{E}\eta^+ - \mathsf{E}\eta^-) = \mathsf{E}\xi + \mathsf{E}\eta$.

Пусть
$$\xi = \sum_{i=1}^n x_i \cdot I(\xi = x_i)$$
 — простая случайная величина. Тогда $\mathsf{E} g(\xi) = \sum_{i=1}^n g(x_i) \cdot \mathsf{P}(\xi = x_i) = \sum_{i=1}^n g(x_i) \Delta F_{\xi}(x_i)$, где $\Delta F_{\xi}(x_i) = F_{\xi}(x_i) - F_{\xi}(x_i - 0)$.

Теорема (о замене переменной в интеграле Лебега). $[6/\partial]$ Пусть (Ω, \mathcal{F}) и (E, \mathcal{E}) — два измеримых пространства и $X = X(\omega)$ — $\mathcal{F}|\mathcal{E}$ -измеримая функция со значениями в E, то есть $\forall B \in \mathcal{E}: X^{-1}(B) \in \mathcal{F}$. Пусть P — вероятностная мера на (Ω, \mathcal{F}) и P_X — вероятностная мера на (E, \mathcal{E}) , заданная по правилу $P_X(A) = P(\omega: X(\omega) = A)$ для $A \in \mathcal{E}$. Тогда для любой \mathcal{E} -измеримой функции $g(x), x \in E$, то есть $\forall B \in \mathcal{E}: g^{-1}(B) \in E$, верно, $\int_A g(x) P_X(dx) = \int_{X^{-1}(A)} g(X(\omega)) P(d\omega)$.

Пусть $\xi:\Omega\to\mathbb{R}(\mathbb{R}^n)$, в таком случае вероятностная мера P_ξ однозначно восстанавливается по F_ξ , следовательно, по теореме $\mathsf{E} g(\xi)=\int g(\xi)\,d\mathsf{P}=\int g(x)\mathsf{P}_\xi(dx)=\int g(x)\,d\mathcal{F}_\xi(x).$

Пусть ξ — абсолютно непрерывная случайная величина с плотностью $p_{\xi}(x)$, тогда $d\mathcal{F}_{\xi}(x) = p_{\xi}(x)$, следовательно $\mathsf{E}g(x) = \int\limits_{\mathbb{R}} g(x) p_{\xi}(x) \, dx$.

Прямое произведение вероятностных пространств и формула свертки

Определение. Пусть $(\Omega_1, \mathcal{F}_1, \mathsf{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathsf{P}_2)$ — два вероятностных пространства. Тогда $(\Omega, \mathcal{F}, \mathsf{P})$ — их прямое произведение, если

- 1. $\Omega = \Omega_1 \times \Omega_2$;
- 2. $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$, то есть $\mathcal{F} = \sigma \{ \{B_1 \times B_2\} | B_1 \in \mathcal{F}_1, B_2 \in \mathcal{F}_2 \};$
- 3. $P = P_1 \otimes P_2$, то есть P продолжение вероятностной меры $P_1 \times P_2$, заданное на прямоугольнике $B_1 \times B_2$, $B_1 \in \mathcal{F}_2$, $B_2 \in \mathcal{F}_2$ по правилу $P(B_1 \times B_2) = P_1(B_1) \cdot P_2(B_2)$. Так как $\{B_1 \times B_2\}$ полукольцо, то P существует и единственна по теореме Каратеодори.

Теорема (Фубини). $[6/\partial]$ Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — прямое произведение вероятносных пространств $(\Omega_1, \mathcal{F}_1, \mathsf{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathsf{P}_2)$. Пусть $\xi: \Omega \to \mathbb{R}$ такая, что $\int_{\Omega} |\xi(\omega_1, \omega_2)| \, d\mathsf{P} < +\infty$. Тогда интегралы $\int_{\Omega_1} \xi(\omega_1, \omega_2) \mathsf{P}_1(d\omega_1)$ и $\int_{\Omega_2} \xi(\omega_1, \omega_2) \mathsf{P}_2(d\omega_2)$ определены почти наверное относительно P_2 и P_1 соответственно, являются измеримыми случайными величинами относительно \mathcal{F}_2 и \mathcal{F}_1 соответственно

 $u\int\limits_{\Omega}\xi(\omega_1,\omega_2)\,d\mathsf{P}=\int\limits_{\Omega_2}\int\limits_{\Omega_1}\xi(\omega_1,\omega_2)\mathsf{P}_1(d\omega_1)\mathsf{P}_2(d\omega_2)+\int\limits_{\Omega_1}\int\limits_{\Omega_2}\xi(\omega_1,\omega_2)\mathsf{P}_2(d\omega_2)\mathsf{P}_1(d\omega_1).$ Из всего этого следует, что двойной интеграл равен повторному.

Утверждение. Пусть $\xi \perp \eta$ — случайные величины, тогда $(\mathbb{R}^2, \mathscr{B}(\mathbb{R}^2), \mathsf{P}_{(\xi,\eta)}) = (\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathsf{P}_{\xi}) \otimes (\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathsf{P}_{\eta}).$

▲ Достаточно проверить свойство прямого произведения:

- 1. $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$;
- 2. $\mathscr{B}(\mathbb{R}^2) = \sigma(\mathscr{B}(\mathbb{R}) \times \mathscr{B}(\mathbb{R}))$ по определению борелевской σ -алгебры в \mathbb{R}^2 ;
- 3. $P_{(\xi,\eta)}(B_1 \times B_2) = P(\xi \in B_1, \eta \in B_2) = P(\xi \in B_1) \cdot P(\eta \in B_2) = P_{\xi}(B_1) \cdot P_{\eta}(B_2)$.

5 Лекция от 17.03.2018

Дисперсия и ковариация

Определение. Дисперсией случайной величины ξ называется $\mathsf{D}\xi = \mathsf{E}(\xi - \mathsf{E}\xi)^2,$ если $\mathsf{E}\xi < +\infty.$ Очевидно, $\mathsf{D}\xi \geqslant 0.$

Определение. Ковариация двух случайных величин называется $\text{cov}(\xi, \eta) = \mathsf{E}\big((\xi - \mathsf{E}\xi)(\eta - \mathsf{E}\eta)\big)$. Легко заметить, что $\text{cov}(\xi, \xi) = \mathsf{D}\xi$. Если $\text{cov}(\xi, \eta) = 0$, то случайные величины ξ и η называются некоррелированными.

Определение. Величина $\rho(\xi,\eta) = \frac{\text{cov}(\xi,\eta)}{\sqrt{\mathsf{D}\xi\cdot\mathsf{D}\eta}}$ называется коэффициентом корреляции случайных величин ξ и η при условии, что $\mathsf{D}\xi$ и $\mathsf{D}\eta$ не равны нулю и конечны.

Свойства ковариации и дисперсии

Свойство 1 (Билинейность ковариации). $cov(a\xi+b\zeta,\eta)=a\,cov(\xi,\eta)+b\,cov(\zeta,\eta)$

Свойство 2.
$$cov(\xi,\eta) = \mathsf{E}\xi\eta - \mathsf{E}\xi\cdot\mathsf{E}\eta \ \Rightarrow \ \mathsf{D}\xi = \mathsf{E}\xi^2 - (\mathsf{E}\xi)^2$$

Свойство 3. Пусть $c \in \mathbb{R}$, тогда $\mathsf{D}(c\xi) = c^2 \mathsf{D}\xi$, $\mathsf{D}(\xi+c) = \mathsf{D}\xi$, $\mathsf{D}c = 0$.

Свойство 4 (Неравенство Коши-Буняковского). $|\mathsf{E}\xi\eta|^2\leqslant\mathsf{E}\xi^2\cdot\mathsf{E}\eta^2$

▲ Рассмотрим для $\lambda \in \mathbb{R}$ функцию $f(\lambda) = \mathsf{E}(\xi - \lambda \eta)^2 \geqslant 0$. Имеем $f(\lambda) = \mathsf{E}\xi^2 + 2\lambda \mathsf{E}\xi\eta + \lambda^2 \mathsf{E}\eta^2 \geqslant 0$. Для выполнения неравенства дискриминант полученного многочлена должен быть меньше нуля: $D = 4\mathsf{E}\xi\eta - 4\mathsf{E}\xi^2\eta^2 \leqslant 0$, откуда следует неравенство.

Свойство 5. $|\rho(\xi,\eta)| \le 1$, причем $\rho(\xi,\eta) = \pm 1 \iff \xi = a\eta + b$ почти наверное.

• Рассмотрим случайные величины $\xi_1 = \xi - \mathsf{E}\xi$ и $\eta_1 = \eta - \mathsf{E}\eta$, следовательно $\rho(\xi,\eta) = \frac{\mathsf{E}\xi_1\eta_1}{\sqrt{\mathsf{E}\xi_1^2\cdot\mathsf{E}\eta_1^2}} \leqslant 1$ по неравенству Коши-Буняковского. Пусть $|\rho(\xi,\eta)| = 1$, тогда дискриминант D=0, следовательно, $\exists!\lambda_0: f(\lambda_0)=0$, то есть $\mathsf{E}(\xi_1+\lambda_0\eta_1)^2=0$, отсюда $(\xi_1+\lambda_0\eta)^2=0$ почти наверное, а, значит, и $\xi_1+\lambda_0\eta=0$ почти наверное. Теперь можно заключить, что $\xi=\mathsf{E}\xi-\lambda_0(\eta-\mathsf{E}\eta)$.

Свойство 6. Если $\xi \perp \eta$, то $cov(\xi, \eta) = 0$, обратное неверное.

$$\blacktriangle$$
 $\operatorname{cov}(\xi,\eta) = \mathsf{E}\xi\eta - \mathsf{E}\xi \cdot \mathsf{E}\eta$, но так как $\xi \perp \!\!\! \perp \eta$, то $\mathsf{E}\xi\eta = \mathsf{E}\xi \cdot \mathsf{E}\eta$, следовательно, $\operatorname{cov}(\xi,\eta) = 0$.

Лемма. Пусть ξ_1, \ldots, ξ_n — попарно некоррелированные случайные величины (например, независимые в совокупности), $Dx_1, \ldots, D\xi_n < +\infty$, тогда $D(\xi_1, \ldots, \xi_n) = D\xi_1 + \ldots + D\xi_n$.

$$D\left(\sum_{i=1}^{n} \xi_{i}\right) = \cos\left(\sum_{i=1}^{n} \xi_{i}, \sum_{j=1}^{n} \xi_{j}\right) = \sum_{i,j=1}^{n} \cos(\xi_{i}, \xi_{j}).$$

По условию, если $i \neq j$, то $\text{cov}(\xi_i, \xi_j) = 0$, следовательно

$$D\left(\sum_{i=1}^n \xi_i\right) = \sum_{i=1}^n \operatorname{cov}(\xi_i, \xi_i) = \sum_{i=1}^n \mathsf{D}\xi_i.$$

Многомерный случай

Определение. Пусть $\vec{\xi} = (\xi_1, \dots, \xi_n)$ — случайный вектор, тогда его математическим ожиданием называется вектор из математических ожиданий его компонент, то есть $\vec{\mathsf{E}} \vec{\xi} = (\mathsf{E} \xi_1, \dots, \mathsf{E} \xi_n)$.

Определение. Матрицей ковариаций случайного вектора $\vec{\xi}$ называется

$$\operatorname{Var} \vec{\xi} = \begin{pmatrix} \operatorname{cov}(\xi_1, \eta_1) & \cdots & \operatorname{cov}(\xi_1, \eta_n) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(\xi_n, \eta_1) & \cdots & \operatorname{cov}(\xi_n, \eta_n) \end{pmatrix} = \left\| \operatorname{cov}(\xi_i, \eta_j) \right\|_{i,j=1}^n.$$

Лемма. Mampuua ковариаций случайного вектора — симметрическая и неотрицательно определенная¹.

 \blacktriangle Матрица $\operatorname{Var} \vec{\xi} = \|\operatorname{cov}(\xi_i, \eta_j)\|_{i,j=1}^n$ — симметрическая, так как $r_{ij} \equiv \operatorname{cov}(\xi_i, \xi_j) = \operatorname{cov}(\xi_j, \xi_i) \equiv r_{ji}$. Пусть $\vec{x} \in \mathbb{R}^n$, тогда

$$\vec{x}^T \operatorname{Var} \vec{\xi} \vec{x} = (\vec{x}, \operatorname{Var} \vec{\xi} \vec{x}) = \sum_{i,j=1}^n \operatorname{cov}(\xi_i, \xi_j) x_i x_j = \sum_{i,j=1}^n \operatorname{cov}(x_i \xi_i, x_j \xi_j) = \\ = \operatorname{cov} \left(\sum_{i=1}^n x_i \xi_i, \sum_{j=1}^n x_j \xi_j \right) = \operatorname{cov} \left(\sum_{i=1}^n x_i \xi_i, \sum_{i=1}^n x_i \xi_i \right) = \operatorname{D} \left(\sum_{i=1}^n x_i \xi_i \right) \geqslant 0.$$

Неравенства

Лемма (Неравенство Маркова). Пусть $\xi \geqslant 0$ — случайная величина, $\mathsf{E}\xi < +\infty$ (существует). Тогда $\forall \varepsilon > 0 : \mathsf{P}(\xi \geqslant \varepsilon) \leqslant \frac{\mathsf{E}\xi}{\varepsilon}$.

▲ $P(\xi \geqslant \varepsilon) = EI(\xi \geqslant \varepsilon)$. На множестве $\xi \geqslant \varepsilon$ случайная величина $\frac{\xi}{\varepsilon} \geqslant 1$, следовательно $EI(\xi \geqslant \varepsilon) \leqslant E\left(\frac{\xi}{\varepsilon} \cdot I(\xi \geqslant \varepsilon)\right) \leqslant \frac{1}{\varepsilon} \cdot E\xi$.

Лемма (Неравенство Чебышёва). Пусть $\xi-c$ лучайная величина такая, что $\mathsf{D}\xi<+\infty,\ mor\partial a\ \forall \varepsilon>0: \mathsf{P}\big(|\xi-\mathsf{E}\xi|\geqslant \varepsilon\big)\leqslant \frac{\mathsf{D}\xi}{\varepsilon^2}.$

▲
$$P(|\xi - \mathsf{E}\xi| \geqslant \varepsilon) = P(|\xi - \mathsf{E}\xi|^2 \geqslant \varepsilon^2)$$
. Из неравенства Маркова имеем, что $P(|\xi - \mathsf{E}\xi|^2 \geqslant \varepsilon^2) \leqslant \frac{\mathsf{E}(\xi - \mathsf{E}\xi)^2}{\varepsilon^2} = \frac{\mathsf{D}\xi}{\varepsilon^2}$.

Лемма (Неравенство Йенсена). Пусть g(x) — борелевская выпуклая вниз (вверх) функция $u \ \mathsf{E}\xi < +\infty$. Тогда $\mathsf{E}g(\xi) \geqslant g(\mathsf{E}\xi)$ ($\mathsf{E}g(\xi) \leqslant g(\mathsf{E}\xi)$).

▲ Так как g(x) выпукла вниз, то $\forall x_0 \in \mathbb{R} : g(x) \geqslant g(x_0) + \lambda(x_0)(x - x_0)$. Положим $x = \xi$ и $x_0 = \mathsf{E}\xi$, тогда $g(\xi) \geqslant g(\mathsf{E}\xi) + \lambda(\mathsf{E}\xi)(\xi - \mathsf{E}\xi)$, считая математическое ожидание от обоих частей неравенства, получаем $\mathsf{E}g(\xi) \geqslant g(\mathsf{E}\xi) + 0$. ■

Определение. Пусть ξ и $\{\xi_i\}_{i=1}^{+\infty}$ — случайные величины, тогда $\xi_n \stackrel{\mathsf{P}}{\to} \xi$ сходится по вероятность, если $\forall \varepsilon > 0 : \mathsf{P} \big(\omega : |\xi_n(\omega) - \xi(\omega)| > \varepsilon \big) \to 0$ при $n \to +\infty$.

Теорема (Закон больших чисел в форме Чебышёва). Пусть $\{\xi_1, \dots, \xi_n\}_{i=1}^{+\infty} - nocnedoвательность пonapho некоррелированных случайных величин таких, что <math>\forall n \in \mathbb{N} : \mathsf{D}\xi_n \leqslant C$. Обозначим $S_n = \sum_{i=1}^n \xi_i$, тогда $\frac{S_n - \mathsf{E}S_n}{n} \stackrel{\mathsf{P}}{\to} 0$ при $n \to +\infty$.

 $^{^1}$ Матрица Aнеотрицательно определена, если $\forall \vec{x} \in \mathbb{R}^n: \vec{x}^T A \vec{x} \geqslant 0$

▲ По неравенству Чебышёва Р $\left| \frac{S_n - \mathsf{E} S_n}{n} \right| > \varepsilon \geqslant \frac{\mathsf{D}(S_n - \mathsf{E} S_n)}{n^2 \varepsilon^2}$, по свойству дисперсии о сдвиге это равно $\frac{\mathsf{D} S_n}{n^2 \varepsilon^2}$. Применяя лемму о дисперсии суммы, получаем $\frac{\sum_{i=1}^n \mathsf{D} \xi_i}{n^2 \varepsilon^2} \to 0$.

Следствие. Пусть $\{\xi_n\}_{i=1}^{+\infty}$ — независимые случайные величины такие, что $\forall n \in \mathbb{N} : \mathsf{D}\xi_n \leqslant C \land \mathsf{E}\xi_n = a.$ Тогда $\frac{S_n}{n} \overset{\mathsf{P}}{\to} a \ npu \ n \to +\infty.$

Условные математические ожидания (УМО)

Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство; $\xi: \Omega \to \mathbb{R}$ — случайная величина; $\mathcal{F}_{\xi} = \{\xi^{-1}(B), B \in \mathscr{B}(\mathbb{R})\}$ — σ -алгебра, порожденная ξ . Если \mathcal{G} — под σ -алгебра σ -алгебра \mathcal{F} , то ξ называется \mathcal{G} -измеримой, если $\mathcal{F}_{\xi} \subset \mathcal{G}$.

Определение. Пусть ξ — случайная случайная величина на $(\Omega, \mathcal{F}, \mathsf{P}), \mathcal{G}$ — под σ -алгебра \mathcal{F} . Условным математическим ожиданием случайной величины ξ относительно \mathcal{G} называется случайная величина $\mathsf{E}(\xi|\mathcal{G}, \mathsf{обладающая} \mathsf{следующи-}\mathsf{ми} \mathsf{свойствами}$:

1. $\mathsf{E}(\xi|\mathcal{G})$ является σ -измеримой случайной величиной;

2.
$$\forall A \in \mathcal{G} : \mathsf{E}(\xi \cdot I_A) = \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}) \cdot I_A\big)$$
 или, что тоже самое, $\int\limits_A \xi \, d\mathsf{P} = \int\limits_A \mathsf{E}(\xi|\mathcal{G}) \, d\mathsf{P}$.

Обозначаем $\mathsf{E}(\xi|\eta) \equiv \mathsf{E}(\xi|\mathcal{F}_{\eta}),$ если такая η существует.

Определение. Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство. Функция множеств $\nu : \mathcal{F} \to \mathbb{R}$ — заряд (мера со знаком), если ν — σ -аддитивна на \mathcal{F} , то есть $\nu \left(\bigsqcup_{i=1}^{+\infty} A_i \right) = \sum_{i=1}^{+\infty} \nu(A_i)$ для $\{A_i\}_{i=1}^{+\infty} \in \mathcal{F}$, ряд в правой части сходится абсолютно и $\sup_{A \in \mathcal{F}} |\nu(A)| < +\infty$.

Определение. Заряд ν называется абсолютно непрерывным относительно меры P, если $\forall A \in \mathcal{F} : (P(A) = 0 \Rightarrow \nu(A) = 0).$

Теорема (Радона-Никодима). $[6/\partial]$ Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство, ν — заряд на \mathcal{F} , абсолютно непрерывный относительно меры P . Тогда существует и единственна случайная величина η на $(\Omega, \mathcal{F}, \mathsf{P})$ такая, что $\mathsf{E}\eta < +\infty$ и $\nu(A) = \int_A \eta \, d\mathsf{P} = \mathsf{E}\eta \cdot I_A$.

6 Лекция от 24.03.2018

Лемма (о существовании УМО). Пусть ξ — случайная величина $c \ \mathsf{E}|\xi| < +\infty$. $T \mathsf{r} \partial a \ \forall \mathcal{G} \subset \mathcal{F} \ (nod\sigma\text{-ansebpa}) : \mathsf{E}(\xi|\mathcal{G})$ существует и единственно почти наверное.

▲ Рассмотрим вероятностное пространство $(\Omega, \mathcal{G}, \mathsf{P})$. Положим, что $\forall A \in \mathcal{G}: Q(A) = \int\limits_A \xi \, d\mathsf{P} = \mathsf{E}(\xi \cdot I_A)$, следовательно, Q(A) — заряд на $(\Omega, \mathcal{G}, \mathsf{P})$, абсолютно непрерывный относительно меры P . Тогда по теореме Радона-Никодима существует и единственна почти наверное случайная величина η на $(\Omega, \mathcal{G}, \mathsf{P})$ с $\mathsf{E}\eta < +\infty$ такая, что $Q(A) = \int\limits_A \eta \, d\mathsf{P}$. Значит, η — УМО. Действительно, η \mathcal{G} - измерима и $\forall A \in \mathcal{G}: \int\limits_A \eta \, d\mathsf{P} = \int\limits_A^A \xi \, d\mathsf{P}$.

Теорема. Пусть σ -алгебра $\mathcal G$ порожедена разбиением Ω $\{D_n\}_{n=1}^{+\infty}$, причем, $\mathsf{P}(D_n) > 0$. Тогда, если $\mathsf{E}\xi < +\infty$, то $\mathsf{E}(\xi|\mathcal G) = \sum\limits_{n=1}^{+\infty} \frac{\mathsf{E}(\xi \cdot I(D_n))}{\mathsf{P}(D_n)} \cdot I(D_n)$.

▲ Пусть

7 Лекция от 31.03.2018

Условные распределения

Определение. Величиной $\mathsf{E}(\xi|\eta=y)$ называется такая борелевска функция $\varphi(y),$ что $\forall B\in\mathscr{B}(\mathbb{R}): \mathsf{E}(\xi\cdot I(\eta\in B)=\int\limits_{B}\varphi(y)\mathsf{P}_{\eta}(dy).$

Лемма. Если $\mathsf{E}\xi$ существует, то $\mathsf{E}(\xi|\eta=y)$ существует и единственно почти наверное относительно P_{η} .

▲ Рассмотрим $\psi(B) = \mathsf{E}\big(\xi\cdot I(\eta\in B)\big)$ — заряд на $\big(\mathbb{R},\mathscr{B}(\mathbb{R}),\mathsf{P}_\eta\big)$, потому что $\psi(B)$ σ -аддитивна по свойству интеграла Лебега и конечна, так как $\mathsf{E}(\xi) < +\infty$. ψ абсолютно непрерывна относительно P_η , так как если $\mathsf{P}_\eta(B) = 0$, то $I(\eta\in B) = 0$ почти наверное, следовательно, $\mathsf{E}\big(\xi\cdot I(\eta\in B)\big) = 0$, а, значит, выполнены условия теоремы Радона-Никодима, то есть существует и единственна почти наверное случайная величина φ на $\big(\mathbb{R},\mathscr{B}(\mathbb{R}),P_\eta\big)$ (борелевская функция) такая, что $\psi(B) = \int\limits_{B} \varphi(y)\mathsf{P}_\eta(dy)$.

Лемма. $\mathsf{E}(\xi|\eta=y)=\varphi(y)$ тогда и только только тогда, когда $\mathsf{E}(\xi|\eta)=\varphi(\eta)$ почти наверное.

▲ Пусть $B \in \mathcal{B}(\mathbb{R})$, тогда $\mathsf{E}\big(\mathsf{E}(\xi|\eta) \cdot I(\eta \in B)\big) = \mathsf{E}\big(\xi \cdot I(\eta \in B)\big) = \int_B \varphi(y) \mathsf{P}_\eta(dy)$. По теореме о замене переменных в интеграле Лебега это можно переписать, как $\int_{\{\eta \in B\}} \varphi(\eta) \, d\mathsf{P} = \mathsf{E}\big(\varphi(\eta) \cdot I(\eta \in B)\big)$, что равносильно условию $\mathsf{E}(\xi|\eta) = \varphi(\eta)$ почти $\{\eta \in B\}$ наверное по Свойству. Обратно аналогично, по тем же равенствам.

Следствие. Пусть $\xi - \mathcal{F}_{\eta}$ -измеримая случайная величина, тогда существует борелевская функция $\psi(x)$ такая, что $\xi = \psi(x)$ почти наверное. **A** Так как $\xi - \mathcal{F}_{\eta}$ -измеримая, то по свойству 1 $\xi = \mathsf{E}(\xi|\eta)$ почти наверное. С другой стороны, так как существует единственная $\psi(x): \psi(x) = \mathsf{E}(\xi|\eta = x)$, то $\xi = \mathsf{E}(\xi|\eta) = \psi(\eta)$.

Определение. Условным распределением случайной величины ξ при условии $\eta = y$ называется вероятностная мера $\mathsf{P}(\xi \in B || \eta = y) = \mathsf{E}\big(I(\xi \in B) | \eta = y)$. Является мерой на $\mathscr{B}(R)$.

Определение. Условной плотностью случайной величины ξ относительно η называется плотность условного распределения $\mathsf{P}(\xi \in B | \eta = y)$, то есть функция $f_{\xi|\eta}(x|y)$ такая, что $\mathsf{P}(\xi \in B | \eta = y) = \int\limits_{\mathbb{R}} f_{\xi|\eta}(x|y) \, dx$.

Теорема (о свойстве условной плотности). Пусть существует условная плотность случайной величины ξ относительно случайной величины η $f_{\xi|\eta}(x|y)$. Тогда для любой борелевской функции g(x) такой, что $\mathsf{E}\big|g(x)$ существует, выполнено $\mathsf{E}\big(g(\xi)|\eta=y\big)=\int\limits_{\mathbb{R}}g(x)f_{\xi|\eta}(x|y)\,dx$ относительно P_{η} почти наверное.

 \blacktriangle Пусть $B \in \mathscr{B}(\mathbb{R})$, пусть также $g(x) = I_A(x), A \in \mathscr{B}(\mathbb{R})$. Тогда

$$\int\limits_{\mathbb{R}} g(x) \cdot f_{\xi|\eta}(x|y) \, dx = \int\limits_{\mathbb{R}} I_A(x) \cdot f_{\xi|\eta}(x|y) \, dx = \int\limits_{A} \cdot f_{\xi|\eta}(x|y) \, dx =$$

$$= \mathsf{P}(\xi \in A|\eta = y) = \mathsf{E}\big(I(\xi \in A)|\eta \in y) = \mathsf{E}\big(g(\xi)|\eta = y).$$

Так как доказали для индикаторов, то доказали и для всех простых функций g(x). Далее с помощью теоремы Лебега для условных математических ожиданий доказываем для всех g(x). ($\mathsf{E}(\xi_n|\eta) \xrightarrow{\mathrm{n.h.}} \mathsf{E}(\xi|\eta)$, где $\xi_n \xrightarrow{\mathrm{n.h.}} \to \xi$, $\xi_n \to \mathsf{Inpoction}$)

Теорема (о виде условной плотности). Пусть ξ и η — случайные величины такие, что существует их совместная плотность $f_{(\xi,\eta)}(x,y)$. Пусть $f_{\eta}(y)$ — плотность случайной величины η , тогда функция

$$\varphi(x,y) = \frac{f_{(\xi,\eta)}(x,y)}{f_{\eta}(y)} \cdot I(f_{\eta}(y) > 0)$$

есть условная плотность $f_{\xi|\eta}(x|y)$.

 \blacktriangle Для любых $A \in \mathscr{B}(\mathbb{R}), B \in \mathscr{B}(\mathbb{R})$ выполнено

$$P(\xi \in B, \eta \in A) = \int_{B \rtimes A} f_{(\xi, \eta)}(x, y) \, dx \, dy = \int_{A} \left(\int_{B} \frac{f_{(\xi, \eta)}(x, y)}{f_{\eta}(y)} \, dx \right) f_{\eta}(y) \, dy,$$

с другой стороны

$$\mathsf{P}(\xi \in B, \eta \in A) = \mathsf{E}\big(I(\xi \in B, \eta \in A)\big) = \int_{\{\eta \in A\}} I(\xi \in B) \, d\mathsf{P}.$$

Далее по интегральному свойству получаем, что

$$P(\xi \in B, \eta \in A) = \int_{\{\eta \in A\}} E(I(\xi \in B)|\eta) dP,$$

заменяя переменные, окончательно имеем следующее:

$$\begin{split} \mathsf{P}(\xi \in B, \eta \in A) &= \int\limits_A \mathsf{E} \big(I(\xi \in B | \eta = y) \mathsf{P}_{\eta}(dy) = \\ &= \int\limits_A \mathsf{P}(\xi \in B | \eta = y) \mathsf{P}_{\eta} \, dy = \int\limits_A \mathsf{P}(\xi \in B | \eta = y) f_{\eta}(y) \, dy. \end{split}$$

Алгоритм подсчета УМО

- 1. Найти совместную плотность $f_{(\xi,\eta)}(x,y)$, затем $f_{\eta}(y) = \int\limits_{\mathbb{R}} f_{(\xi,\eta)}(x,y) \, dx$, тогда условная плотность $f_{\xi|\eta}(x|y) = \frac{f_{(\xi,\eta)}(x,y)}{f_{\eta}(y)}$.
- 2. Вычислить $\varphi(y) = \mathsf{E}\big(g(\xi)|\eta=y\big) = \int\limits_{\mathbb{R}} g(x) f_{\xi|\eta}(x|y) \, dx.$
- 3. Тогда $\mathsf{E}\big(g(x)|\eta) = \varphi(\eta)$.

Виды сходимости случайных величин

Определение. Последовательность $\{\xi_n\}_{n\geqslant 1}$ сходится к случайной величине ξ

- 1. по вероятности $(\xi_n \xrightarrow{\mathsf{P}} \xi)$, если $\forall \varepsilon > 0 : \mathsf{P}(\omega : |\xi_n(\omega) \xi(\omega)| \geqslant \varepsilon \xrightarrow[n \to +\infty]{} 0$,
- 2. почти наверное $(\xi_n \xrightarrow{\text{п.н.}})$, если $P(\omega : \xi_n \to \xi) = 1$,
- 3. в $L_p(\xi_n \xrightarrow{L_p})$, если $\mathsf{E}|\xi_n|^p < +\infty$, $\mathsf{E}|\xi|^p < +\infty$ и $\mathsf{E}|\xi_n \xi|^p \xrightarrow[n \to +\infty]{} 0 \ (p > 0)$,
- 4. по распределению $(\xi_n \xrightarrow{d} \xi)$, если для любого ограниченной функции f(x) выполнено $\mathsf{E} f(\xi_n) \xrightarrow[n \to +\infty]{d} \mathsf{E} f(\xi)$.

Теорема (Александрова). $[6/\partial] \xi_n \xrightarrow{d} \xi$ тогда только тогда, когда $F_{\xi_n}(x) \xrightarrow{6}$ основном $F_{\xi}(x)$, то есть $F_{\xi}(x) \to F_{\xi}(x)$ во всех точках непрерывности функции распределения $F_{\xi}(x)$.

Лемма (критерий сходимости почти наверное). $\xi_n \xrightarrow{n.н.} \xi$ тогда и только тогда, когда $\forall \varepsilon > 0 : \mathsf{P} \big(\omega : \sup_{k \geqslant n} |\xi_k(\omega) - \xi(\omega)| \geqslant \varepsilon \big) \xrightarrow[n \to +\infty]{} 0.$

 \blacktriangle Пусть $A_k^{\varepsilon} = \{\omega : |\xi_k - \xi| \geqslant \varepsilon\}, A^{\varepsilon} = \bigcap_{n=1}^{+\infty} \bigcup_{k \geqslant n} A_k^{\varepsilon} = \{\omega : \forall n \; \exists f \geqslant n : |\xi_n - \xi| \geqslant \varepsilon\}.$ Тогда $\{\omega : \xi_n(\omega) \not \to \xi(\omega)\} = \bigcup_{m=1}^{+\infty} A^{\frac{1}{m}} = \{\omega : \exists m \; \forall n \; \exists k \geqslant n : |\xi_k(\omega) - \xi(\omega)| > \varepsilon\}.$ Следовательно,

$$P(\omega : \xi_n(\omega) \not\to \xi(\omega)) = 0 \Leftrightarrow P\left(\bigcup_{m=1}^{+\infty} A^{\frac{1}{m}}\right) = 0 \Leftrightarrow$$
$$\Leftrightarrow \forall m \in \mathbb{N} : P\left(A^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 : P(A^{\varepsilon}) = 0,$$

так как всегда существует m, что $\frac{1}{m} \geqslant \varepsilon \geqslant \frac{1}{m+1}$, то есть $A^{\frac{1}{m+1}} \supseteq A^{\varepsilon} \supseteq A^{\frac{1}{m}}$. Но $\bigcup_{k\geqslant n} A_k^{\varepsilon} \downarrow A^{\varepsilon}$, следовательно,

$$\begin{split} 0 &= \mathsf{P}\left(A^{\varepsilon}\right) = \lim_{n \to +\infty} \mathsf{P}\left(\bigcup_{k \geqslant n} A_k^{\varepsilon}\right) \Leftrightarrow \forall \varepsilon > 0 : \mathsf{P}\left(\bigcup_{k \geqslant n} A_k^{\varepsilon}\right) \xrightarrow[n \to +\infty]{} 0 \Leftrightarrow \\ &\Leftrightarrow \forall \varepsilon > 0 : \mathsf{P}\left(\omega : \sup_{k \geqslant n} \left|\xi_k(\omega) - \xi(\omega)\right| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0. \end{split}$$

Теорема (взаимоотношения различных видов сходимости).

$$\begin{array}{c}
n. \mathcal{H}. \\
\downarrow \\
L_n
\end{array} \mathsf{P} \longrightarrow d$$

следовательно, $P(|\xi_n - \xi| \ge \varepsilon) \to 0$.

 $(L_p \Rightarrow \mathsf{P})$ $\mathsf{P}(|\xi_n - \xi| \geqslant \varepsilon) = \mathsf{P}(\omega : |\xi_n(\omega) - \xi(\omega)|^p > \varepsilon^p$, а по неравенству Маркова это меньше или равно $\frac{\mathsf{E}|\xi_n(\omega) - \xi(\omega)|^p}{\varepsilon p} \xrightarrow[n \to +\infty]{} 0.$

 $(\mathsf{P}\Rightarrow d)$ Пусть f(x) — ограниченная непрерывная функция, тогда $\exists C\in\mathbb{R}\ \forall x\in\mathbb{R}: |f(x)|\geqslant C.$ Зафиксируем $\varepsilon>0$, возьмем $N\in\mathbb{R}: \mathsf{P}\big(|\xi|>N\big)\leqslant \frac{\varepsilon}{4C}.$ На отрезке $[-N,N]\ f(x)$ равномерно непрерывна, следовательно,

$$\exists \delta > 0 \forall x, y \in \mathbb{R} : (|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2}).$$

Рассмотрим разбиение Ω :

$$A_{1} = \left\{ \omega : |\xi(\omega)| < N, |\xi_{n}(\omega) - \xi(\omega)| \leq \delta \right\},$$

$$A_{2} = \left\{ \omega : |\xi(\omega)| > N, |\xi_{n}(\omega) - \xi(\omega)| \leq \delta \right\},$$

$$A_{3} = \left\{ \omega : |\xi_{n}(\omega) - \xi(\omega)| > \delta \right\}.$$

Оценим

$$\begin{split} \left| \mathsf{E} f(\xi_n) - \mathsf{E} f(\xi) \right| \leqslant \mathsf{E} \big| f(\xi_n) - f(\xi) \big| &= \mathsf{E} \big[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \big] \bigg| \leqslant \big[. \end{split}$$
 Пусть $\omega \in A_1$, тогда $\left| f(\xi_n) - f(\xi) \right| \leqslant \frac{\varepsilon}{2}$, следовательно, $\mathsf{E} \big[|f(\xi_n) - f(\xi)| \cdot I_{A_1} \big] \leqslant \frac{\varepsilon}{2} \cdot \mathsf{E} I_{A_1} &= \frac{\varepsilon}{2} \cdot \mathsf{P}(A_1) \leqslant \frac{\varepsilon}{2}.$ Если же $\omega \in A_2, A_3$, то $|f(\xi_n) - f(\xi)| \leqslant 2C$ Значит, $\left| \mathsf{E} \right| \frac{\varepsilon}{2} + 2C \cdot \mathsf{P}(A_2) + 2C \cdot \mathsf{P}(A_3) \leqslant \frac{\varepsilon}{2} + 2C \cdot \mathsf{P} \big(|\xi| > N \big) + 2C \cdot \mathsf{P} \big(|\xi_n - \xi| > \delta \big) \leqslant C_1 \varepsilon.$ Следовательно, $\mathsf{E} f(\xi_n) \to \mathsf{E} f(\xi)$, то есть $\xi_n \overset{d}{\to} \xi$.

8 Лекция от 07.04.2018