Métodos III - Series de Fourier

May 6, 2019

1 Series de Fourier

```
Jose A. Hernando

Departamento de Física de Partículas. Universidade de Santiago de Compostela

Abril 2019

In [1]: import time

print(' Last version ', time.asctime() )

Last version Mon May 6 19:40:59 2019
```

2 Objectivos

Concepto de función par, impar y periódica.

Concepto de base completa de funciones.

Descomposición de una función periódica en series de Fourier.

Relación entre las series de Fourier y las series numéricas.

Mostrar algunos ejemplos sencillos.

Introducción Fourier fue un gran matemático Francés de la época Napoleónica que se dio cuenta que una función periódica podía descomponerse en una serie de sumas de senos y cosenos...

3 Series de Fourier

Funciones pares, impares y periódicas. Decimos que una función f(x) es **periódica** con periodo T si: f(x+T)=f(x).

```
Por ejemplo, f(x) = sin(x) es una función periódica de periodo T = 2\pi, sin(2\pi + x) = sin(x) Una función es par si f(-x) = f(x) e impar si f(-x) = -f(x)
```

Por ejemplo, $f(x) = \cos(nx)$ es par, y $f(x) = \sin(x)$ es impar.

Ejercicio: Verifica que dado n natural, n>0, $\cos(nx)$ es par y $\sin(nx)$ impar, y ambos son periódicas con periodo 2π

Teorema: Sea f(x) una función par y g(x), h(x) impar, cumplen:

1)
$$g(0) = 0$$

2)
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

3)
$$\int_{-a}^{a} g(x) = 0$$

4)
$$f(x)g(x)$$
 es impar

5)
$$g(x) h(x)$$
 es par

También se cumple:

1)
$$\int_{-\pi}^{\pi} g(x) \cos(nx) dx = 0$$
,

$$2) \int_{\pi}^{\pi} f(x) \sin(nx) dx = 0,$$

para
$$n = 1, 2, \dots \in \mathcal{N}$$

Ejercicio: Toda función f(x) se puede expresar como la suma de una función par y otra impar. Definimos:

$$h(x) = \frac{1}{2}(f(x) + f(-x)), \ g(x) = \frac{1}{2}(f(x) - f(-x))$$

donde h(x) es par, g(x) es impar y f(x) = h(x) + g(x)

Ejemplo: Convertir f(x) = 0 si $x \le 0$ y 1 si x > 0 en una suma de función par e impar.

Funciones ortogonales Las siguiente funciones, $\sin(nx)$, $\cos(mx)$ con $n, m = 1, 2, \dots \in \mathcal{N}$ son "ortogonales".

Teorema: Se cumple:

- 1) $\int_{-\pi}^{\pi} \sin(nx) \cos(mx) dx = 0$
- 2) $\int_{-\pi}^{\pi} \cos(nx) \cos(mx) dx = \pi \delta_{nm}$
- 3) $\int_{-\pi}^{\pi} \sin(nx) \sin(mx) dx = \pi \delta_{nm}$

donde:

 $\delta_{-}\{nm\} = 1 \text{ si } n = m \text{ y } 0 \text{ si } n \neq m$

Ejercicio: Comprueba que las funciones, $\sin nx$, $\cos mx$, $\cos n$, $m=1,2,\dots\in\mathcal{N}$ son ortogonales en $[-\pi,\pi]$

```
scx = lambda x : np.sin(n*x) * np.cos(m*x)

ssx = lambda x : np.sin(n*x) * np.sin(m*x)
```

ccx = lambda x : np.cos(n*x) * np.cos(m*x)

 $\#gf.fun1d(scx, xrange, label = '\$\sin('+str(n)+'x) \cos('+str(m)+'x)\$')$

gf.fun1d(ssx, xrange, newfig = False, label = '\sin('+str(n)+'x) \sin('+str(m)+'x)\sin('+st

La integral

$$\int_{-\pi}^{\pi} \sin nx \cos mx \, \mathrm{d}x = 0$$

es nula por ser el integrando una función impar.

La integral

$$\int_{-\pi}^{\pi} \sin nx \sin mx \, dx = \int_{-\pi}^{\pi} \frac{1}{2} \left(\cos(n-m)x - \cos(n+m)x \right) dx$$
$$= \frac{1}{2} \left(\frac{1}{n-m} \sin(n-m)x - \frac{1}{n+m} \sin(n+m)x \right) \Big|_{-\pi}^{\pi}$$

que vale 0 si $n \neq m$ y para n = m

$$\frac{1}{2}\left(x - \frac{1}{2n}\sin 2nx\right)\Big|_{-\pi}^{\pi} = \pi$$

y finalmente, la integral

$$\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \int_{-\pi}^{\pi} \frac{1}{2} \left(\cos(n-m)x + \cos(n+m)x \right) dx$$
$$= \frac{1}{2} \left(\frac{1}{n-m} \sin(n-m)x + \frac{1}{n+m} \sin(n+m)x \right) \Big|_{-\pi}^{\pi}$$

que vale 0 si $n \neq m$ y para n = m

$$\frac{1}{2}\left(x+\frac{1}{2n}\sin 2nx\right)\Big|_{\pi}^{\pi}=\pi$$

Diremos que dos **funciones son ortogonales**, f(x), g(x), en un intervalo [a,b] si:

$$\int_a^b f(x) g(x) \, \mathrm{d}x = 0$$

y ortonormales si su norma es unidad, siendo su norma:

$$\int_{a}^{b} f^{2}(x) \, \mathrm{d}x = \int_{a}^{b} g^{2}(x) \, \mathrm{d}x = 1$$

Decimos que un conjunto numerable $\{\Psi_n(x)\}$ con $n \in \mathcal{N}$ es completo en un intervalo [a,b], si son funciones ortonormales que permiten que "toda" función f(x) pueda expresarse como:

$$f(x) = \sum_{n} a_n \, \Psi_n(x)$$

donde a_n son los coeficientes:

$$a_n = \int_a^b f(x) \, \Psi_n(x) \mathrm{d}x$$

esto es, podemos dar una función como una serie de funciones.

Series de Fourier El siguiente conjunto de funciones definidas es completo en $[-\pi, \pi]$:

$$\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\sin nx, \frac{1}{\sqrt{\pi}}\cos nx$$

$$con n = 1, 2, \dots \in \mathbb{N}$$

Toda función periódica continua, acotada, f(x), con periodo $T=2\pi$ puede darse como una serie de Fourier:

$$f(x) = \frac{a_0}{2} + \sum_{n=1} a_n \cos nx + \sum_{n=1} b_n \sin nx$$

donde:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

Cuestión: Si f(x) es continua con periodo 2π y par, ¿tendra coeficientes b_n ? ¿Y si es impar tendrá a_n ?

Ejemplo: Obtener la serie de Fourier de la función f(x) = x si $x \ge 0$ y f(x) = -x si $x \le 0$.

Es una función par, por lo tanto $b_n = 0$.

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x \, dx = \frac{x^2}{\pi} \Big|_0^{\pi} = \pi$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} x \cos nx \, dx = \frac{2}{\pi} \left(\frac{x}{n} \sin nx + \frac{1}{n^2} \cos nx \right) \Big|_0^{\pi} = 2 \frac{((-1)^n - 1)}{\pi n^2}$$

Si n es par, $a_n = 0$. Podemos dar

$$a_k = \frac{-4}{\pi(2k+1)^2}, \ k = 0, 1, 2 \in \mathcal{N}$$

Asi:

$$S(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k} \frac{1}{(2k+1)^2} \cos(2k+1)x$$

```
In [7]: N = 10
    def sx(x):
        ss = np.pi/2
        for k in range(0, N):
            ss = ss + -4*np.cos((2*k+1)*x)/(np.pi*(2*k+1)*(2*k+1))
        return ss
        gf.fun1d(fx, xrange, label = 'f(x)');
        gf.fun1d(sx, xrange, newfig = False, label = 'S(x)');
```


A veces las series de Fourier pueden ayudarnos a calcular series numéricas *Ejercicio*: Calcula, usando el desarrollo de Fourier anterior, el valor de:

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}$$

Solución: Si valoramos la serie en x = 0 obtenemos:

$$S(0) = \frac{\pi}{2} - \sum_{k=0}^{\infty} \frac{4}{(2k+1)^2 \pi} = 0$$

Esto es:

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$$

Teorema de Dirichlet Toda función periódica en $[-\pi, \pi]$ (continua en un número finito de trozos y con un número finito de máximos y mínimos) admite desarrollo en serie de Fourier.

Solo que la función puede ser discontinua en un número finito de puntos mientras que la serie de Fourier *siempre* en continua. En los puntos de discontinuidad la serie nos da el valor medio entre su valor a la izquierda y la derecha de la función en ese punto.

Ejemplo: Sea la función definida en $[-\pi, \pi]$

$$f(x) = 0 \text{ si } x < 0, 1 \text{ si } x \ge 0$$

```
In [8]: xrange = (-np.pi, np.pi, 100)
    def fx(x):
        sig = x/abs(x)
        return 1/2 + sig/2.
        gf.fun1d(fx, xrange);
```


$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} dx = 1$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, \cos nx \, dx = \frac{1}{\pi} \int_{0}^{\pi} \cos nx \, dx = \frac{1}{n\pi} \sin n\pi \Big|_{0}^{\pi} = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{0}^{\pi} \sin nx \, dx = -\frac{1}{n\pi} \cos n\pi \Big|_{0}^{\pi} = -\frac{(-1)^n - 1}{n\pi} = \frac{1 - (-1)^n}{n\pi}$$

los términos b_n para n par se anulan, así podemos dar:

$$b_k = \frac{2}{(2k+1)\pi}$$

 $con k = 0, 1, 2 \cdots \in \mathcal{N}$

Por lo tanto la función se expresa con la siguiente serie de Fourier:

$$S(x) = \frac{1}{2} + \sum_{k=0}^{\infty} \frac{2}{(2k+1)\pi} \sin(2k+1)x$$

Experimenta: cambia en el siguiente código el número de términos de la serie de Fourier y observa su convergencia con la función original.

```
In [9]: N = 100
    def sx(x):
        ss = 1./2.
        for k in range(0, N):
            ss = ss + 2*np.sin((2*k+1)*x)/(np.pi*(2*k+1))
        return ss
        gf.fun1d(fx, xrange, label = 'f(x)');
        gf.fun1d(sx, xrange, newfig = False, label = 'S(x)');
```


Cuestión: ¿Cuánto vale la serie de Fourier en x=0? ¿Y la función?

Series periódicas con periodo 2L Sea ahora una función periódica con periodo [-L, L], la podemos dar como una serie de Fourier a partir del siguiente conjunto de funciones ortonormales.

$$\frac{1}{\sqrt{2L}}, \, \frac{1}{\sqrt{L}} \sin \frac{n\pi x}{L}, \, \frac{1}{\sqrt{L}} \cos \frac{n\pi x}{L}$$

con:

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

Así:

$$S(x) = \frac{a_0}{2} + \sum_{n} a_n \cos \frac{n\pi x}{L} + \sum_{n} b_n \sin \frac{n\pi x}{L}$$

Cuestión: ¿Qué funciones y desarrollo obtienes con $L = \pi$?

Desarrollo de Fourier para una función no periódica definida en un intervalo [0, L] ¿Y si la función está definida solo en una región [0, L]? Podemos extender la función a [-L, L] por ejemplo f(-x) = f(x) haciéndola par, y calculado su serie de Fourier, y declarándola válida solo en el intervalo [0, L]

Ejercicio: Sea $f(x) = x^2$ definida en [0,2] dar su desarrollo en serie de Fourier. definimos $g(x) = x^2$ en [-2,2]

$$a_0 = \frac{1}{2} \int_{-2}^2 x^2 dx = \int_0^2 x^2 dx = \frac{x^3}{3} \Big|_0^2 = \frac{8}{3}$$
$$a_n = \frac{1}{2} \int_{-2}^2 x^2 \cos \frac{n\pi x}{2} dx = \int_0^2 x^2 \cos \frac{n\pi x}{2} dx$$

integrando por partes:

$$= \frac{2x^2}{n\pi} \sin \frac{n\pi x}{2} - \int_0^2 \frac{4x}{n\pi} \sin \frac{n\pi x}{2} dx$$

$$= \left[\frac{2x^2}{n\pi} \sin \frac{n\pi x}{2} + \frac{8x}{(n\pi)^2} \cos \frac{n\pi x}{2} - \frac{16}{(n\pi)^3} \sin \frac{n\pi x}{2} \right] \Big|_0^2 = \frac{16}{(n\pi)^2} (-1)^n$$

Luego:

$$S(x) = \frac{4}{3} + 16\sum_{n} \frac{(-1)^n}{(n\pi)^2} \cos \frac{n\pi x}{2}$$

La belleza de los números complejos nos permite reescribir de forma compacta y elegante los desarrollos de Fourier, date cuenta:

$$\cos nx = \frac{1}{2} \left(e^{inx} + e^{-inx} \right), \sin nx = -\frac{i}{2} \left(e^{inx} - e^{-inx} \right),$$

Así:

$$S(x) = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n - ib_n) e^{inx} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n + ib_n) e^{-inx}$$

Si definimos:

$$c_0 = a_0/2$$
, $c_n = a_n - ib_n$, $c_{-n} = c_n^* = a_n + ib_n$

tenemos:

$$S(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

Pero ésta es otra historia y debe ser contada en otro ocasión

¡Aún hay más! Joseph Fourier fue un gran físico y matemático Francés que se dio cuenta que una función periódica podía descomponerse en una serie de sumas de senos y cosenos. Fourier participó en la famosa expedición "científica" de Napoleón a Egipto.

Aquí tienes su entrada en la Wikipedia: https://es.wikipedia.org/wiki/Joseph_Fourier Por cierto, Dirichlet fue alumno suyo.

En análisis en transformadas de Fourier es fundamental en Física cuántica, en Optica, y tiene aplicaciones fundamentales en propagación de señales y tratamiento de imágenes.

¡Algunos de tus filtros de instagram son algoritmos que modifican las transformadas de Fourier de las imágenes!

Joseph Fourier