Versuch V303: Der Lock-In-Verstärker

1 Ziel

Es soll die Funktionsweise eines Lock-In-Verstärkers kennengelernt werden.

2 Stichworte

Lock-In-Technik, Bandpaß, Gleichrichter, Faltung, Integrierglied, Modulation, Rauschen, Tiefpaß

3 Theoretische Grundlagen

Der Lock-In-Verstärker ist ein Verstärker mit integriertem phasenempfindlichem Detektor. Sein Haupteinsatzgebiet liegt in der Messung stark verrauschter Signale. Hierzu wird das Meßsignal mit einer Referenzfrequenz ω_0 moduliert (was z.B. durch ein rotierendes mechanisches Zerhackerrad erreicht werden kann). Abb.1 zeigt den schematischen Aufbau des Lock-In-Verstärkers. Das modulierte, verrauschte Nutzsignal U_{sig} wird zunächst durch einen Bandpaßfilter von Rauschanteilen höherer ($\omega \gg \omega_0$) und niedrigerer Frequenzen ($\omega \ll \omega_0$) befreit. In einem Mischer wird es danach mit einem Referenzsignal U_{ref} mit der Frequenz ω_0 multipliziert. Die Phasenlage des ϕ des Referenzsignals kann dabei durch einen Phasenschieber variiert werden und so mit dem Signal synchronisiert werden ($\Delta \phi = 0$). Der dem Mischer nachgeschaltete Tiefpaß ($\tau = RC \gg 1/\omega_0$) integriert das Mischsignal $U_{sig} \times U_{ref}$ über mehrere Perioden der Modulationsfrequenz. Dabei werden sich die Beiträge der nicht zur Modulationsfrequenz synchronisierten Rauschbeiträge weitgehend

Abbildung 1: Schematischer Aufbau eines Lock-In-Verstärkers

herausmitteln, sodaß am Ausgang eine zur Eingangsspannung U_{sig} proportionale Gleichspannung $U_{out} \propto U_0 \cos \phi$ gemessen wird.

Der nachgeschaltete Tiefpaß definiert dabei die Bandbreite des Restrauschens: indem man die Zeitkonstante $\tau=RC$ sehr groß wählt, kann man die Bandbreite $\Delta\nu=1/(\pi RC)$ beliebig klein wählen. So kann man mit einem Lock-In-Verstärker Güten von Q=100000 erreichen, während mit einem Bandpaß "nur" Güten von Q=1000 erreicht werden.

In Abb. 2 werden die Signalverläufe einer sinusförmigen Signalspannung

$$U_{sig} = U_0 \sin(\omega t), \tag{1}$$

betrachtet, die durch eine Rechteckspannung U_{ref} derselben Frequenz moduliert wird. Die Referenzspannung realisiert hierbei einen Schalter oder Chopper. Das Rechtecksignal hat eine auf 1 normierte Amplitude, die bei einer positiven Signalspannung (positive Halbwelle) auf 1 steht (Schalter offen) und bei einer negativen Signalspannung (negative Halbwelle) auf -1 steht (Schalter geschlossen). Die Rechteckspannung kann durch eine Fourierreihe angenähert werden, die sich aus den ungeraden Harmo-

Abb. 2: Signalverläufe

nischen der Grundfrequenz ω zusammensetzt und die Form

$$U_{ref} = \frac{4}{\pi} \left(\sin(\omega t) + \frac{1}{3} \sin(3\omega t) + \frac{1}{5} \sin(5\omega t) + \dots \right)$$
 (2)

hat. Das Produkt aus Signal- und Modulationsfrequenz ergibt

$$U_{sig} \times U_{ref} = \frac{2}{\pi} U_0 \left(1 - \frac{2}{3} \cos(2\omega t) - \frac{2}{15} \cos(4\omega t) - \frac{2}{35} \cos(6\omega t) + \dots \right)$$
(3)

und enthält nun die geraden Oberwellen der Grundfrequenz ω (Gleichrichter). Der nachgeschaltete Tiefpaßfilter wird so gewählt, daß er die Oberwellen unterdrückt und man eine zur Signalspannung proportionale Gleichspannung erhält:

$$U_{out} = \frac{2}{\pi} U_0 \tag{4}$$

Sind Signal- und Referenzspannung nicht wie in dem Beispiel von Abb. 2 in Phase, sondern haben eine feste Phasendifferenz ϕ , dann erhält man für die

Ausgangsspannung

$$U_{out} = \frac{2}{\pi} U_0 \cos(\phi) \tag{5}$$

wieder eine zur Signalspannung proportionale Gleichspannung. Die Ausgangsspannung hängt jedoch von der Phase zwischen Signal- und Referenzspannung ab. Sie ist maximal bei $\phi=0$.

4 Aufgaben

- 1. Verifizieren Sie die Funktion eines phasenempfindlichen Gleichrichters für 5 verschiedene Phasen.
- 2. Verifizieren Sie die Funktionsweise eines Lock-In-Verstärkers mit der Schaltung in Abb. 4.
- 3. Überprüfen Sie die Rauschunterdrückung des Lock-In-Verstärkers mit einer Photodetektorschaltung.

5 Versuchsaufbau und Durchführung

Zum Kennenlernen eines Lock-In-Verstärkers stehen ein modular aufgebauter Verstärker und ein Speicher-Oszilloskop zur Verfügung. Bei dem Lock-

In-Verstärker sind der Vorverstärker, die Filter (Hoch-, Tief- und Bandpaßfilter), der Phasenschieber, ein Funktionsgenerator, ein Rauschgenerator, ein Tiefpaß-Verstärker und ein Amplituden-/ Lock-In-Detektor separat bedienbar (Abb. 3). Mit dem Speicher-Oszilloskop können die Signale aller Komponenten einzeln vermessen und skizziert werden.

Bauen Sie die nachfolgenden Schaltungen schrittweise auf und kontrollieren Sie nach jedem Element die Signalformen.

Abbildung 4: Schematischer Aufbau eines Lock-In-Verstärkers

- 1. Machen Sie sich mit dem Signal Processor/Lock-In Amplifier vertraut. Sehen Sie sich hierzu als erstes die Signale des Funktionsgenerators (Reference/Oscillator) an. Bei welchem Ausgang kann die Spannungsamplitude variieren werden und welcher der beiden Ausgänge liefert eine konstante Spannung. Wie groß ist sie?
- 2. Bauen Sie die Schaltung in Abb. 4 schrittweise auf. Brücken Sie für diesen Versuchsteil den Noise Generator bzw. stellen Sie ihn auf OFF. Geben Sie ein sinusförmiges Signal U_{sig} von ca. 1 kHz und 10 mV (Oscillator output) auf den Verstärker und mischen Sie den Ausgang mit einem Sinussignalsignal (Referenzsignal U_{ref}) identischer Frequenz. Skizzieren Sie das Ausgangssignals für mindestens 5 verschiedene Phasen. Wie sieht das Ausgangssignal aus, wenn Sie es integrieren (Tiefpaß). Messen Sie die Ausgangsspannung in Abhängigkeit von der Phasenverschiebung. Nehmen Sie mindestens 10 Meßwerte auf und vergleichen Sie das Ergebnis mit Gl. 5.
- 3. Verändern Sie die Schaltung, indem Sie zusätzlich ein Rauschsignal (Noise Generator) von der Größenordnung der Signalspannung hinzugeben. Wiederholen Sie alle Messungen von Aufgabe 2. Wie verändern sich die Signale?

4. Bauen Sie eine Photodetektorschaltung wie in Abb. 5 auf. Modulieren Sie die Leuchtdiode (LED) mit einer Rechteckspannung und lassen Sie

Abbildung 5: Schematischer Aufbau eines Lock-In-Verstärkers

sie mit 50 Hz bis 500 Hz blinken. Das ausgesendete Licht kann mit einer Photodiode gemessen werden. Messen Sie die Lichtintensität der LED als Funktion des Abstandes r zwischen LED und Photodiode. Welches ist der maximale Abstand r_{max} , bei dem das Licht der Photodiode noch nachgewiesen werden kann?

Literatur

[1] H.-J. Kunze, Physikalische Meßmethoden s.105-124.