19CSE341 Mobile Ad Hoc Networks

UNIT 3

Amritha School of Engineering

- Battery Management:
 - Datalink and Network layers
- □ Transmit Power Management:
 - Datalink and Network layers
- System Power Management

Battery Management Schemes

- □ Key Fact: *Batteries recover their charge when idle*
 - ⇒ Use some batteries and leave others to idle/recover
- □ Task scheduling:
 - 1. Round-robin batteries
 - 2. Divide batteries in High-charge and low-charge class. Select one from high-charge using roundrobin

Datalink Layer Battery Management

- □ Lazy Packet Scheduling:
 Reduce the power ⇒ Increase the transmission time
- Battery-Aware MAC Protocol:
 Packets carry remaining charge.
 Lower back off interval for nodes with higher charge

Network Layer Battery Management

Goal: Increase the lifetime of the network

- □ Shaping: If battery charge becomes below threshold, stop next transmission allowing battery to recover
- Battery Energy Efficient (BEE) Routing Protocol: Minimize energy and use max battery charge

Transmission Power Management

More transmit power ⇒ Longer reach but lower battery life **Datalink**:

- 1. Dynamic Power Adjustment: Use the min power required for the next hop Low High
- 2. Distributed Topology Control: Find power required and direction of neighbors. Remove neighbors that have two-hop paths with less power than direct transmission
- 3. Distributed Power Control Loop: Find the minimum power required for successful RTS/CTS, Data/Ack
- 4. Centralized Topology Control: The power of each node is reduced until it has single connectivity, i.e., there is one path between each pair of nodes or bi-connectivity, i.e, there are 2 disjoint paths between each pair of nodes

Transmission Power Management (Cont)

Network Layer: Minimize computation (compression, idle listening, routing table)+transmission

1. Common Power Control: Given reachability of each node as a function of power, find the min power level that provides network connectivity.

- 2. Min Power Consumption Routing: Bellman Ford using Power as the cost metric
- **3. Min Variance in Node Power Levels**: Every node should relay the same amount of traffic. Select next hop with the shortest Q.

Transmission Power Management (Cont)

4. Min Battery Cost Routing: Minimize sum of battery cost (based on charge) along a path ⇒ Does not ensure that lower charge nodes are not used

- **5. Min-Max Battery Cost Routing**: Select the path which minimizes the max power required at *any* node
 - ⇒ Does not give min total power
 - ⇒ Reduced lifetime for the network
- **6.** Conditional Min-Max Battery Cost Routing:

Using only nodes that have battery charge over a threshold, Find the min total power path.

Transmission Power Management (Cont)

- 7. Localized Power-Aware Routing: Power =ad α +c, α > 2
 - ⇒ Two one mile hops are better than one two mile hop

 \Rightarrow n-hops are best, n = round{da(α -1)/c^{1/ α})}

Find the neighbor with the minimum expected power

8. Charge Based Clustering: Select cluster head that has the highest charge. Reconfigure when the cluster head is not the one with highest charge.

Higher layers can also be made energy conscious

⇒ shut down when inactive

Processor Power Management Schemes

- 1. Remote Access Switch: System sleeps. Only PHY receiver is on. On receipt of a particular signal, wakes up the system.
- **2. Power Aware Multi-Access Signaling** (PAMAS): Power-off if you hear RTS/CTS for another node or if you have nothing to send.

Device Power Management Schemes

- □ Turn off individual components: LCD display, DRAM, CDROM, CPU, Drive
- □ Run CPU at lower clock rate, lower voltages
- Spin down disks when unused

- **Battery Management**: idling increases the capacity of the battery
- □ Transmission Power Management: Distance vs. Power tradeoff
- □ System Power Management: Put system/components to sleep whenever possible

Homework

Transmit power = $ad^{\alpha}+c$

1. Where should intermediate node A be located between source S and destination D so that the total power is minimized.

2. If the path between source S and destination D consists of n equal size hops. What should n be so that the total power is minimized?

