9. nonferrous metals

9.1 Copper and its alloys

brass: A copper-rich copper-zinc alloy

- □Up to approximately 35%Zn----- a phase-----FCC
- **□** α -brasses----soft, ductile, easily cold worked
- \square and β 'phases at room temperature
- □ β ' phases-----fit for hot work

Application:

- ➤ Costume jewelry
- Cartridge casings
- ➤ Automotive radiators
- ➤ Musical instruments
- ➤ Electronic packaging
- >coins

Copper and its alloys

bronze: A copper-rich copper-tin alloy; aluminum, silicon, and nickel bronzes are also possible.

- ☐Stronger than brasses
- □Corrosion resistance

Beryllium copper

- ☐Tensile strengths(1400MPa)
- □Excellent electrical
- □Corrosion property
- □Wear resistance
- □Cast, hot worked, cold worked

Structural metallic materials Copper and its alloys

Compositions, Mechanical Properties, and Typical Applications for Eight Copper Allots

				Mechanical Properties			
Alloys Name	UNS Number	Compositions((wt%)	Condition ^b	Tensile Strength (Mpa(ksi))	Yield Strength (Mpa(ksi))	Ductility(%EL in 50 mm (2in.)	Typical Applications
			Wrought Alloys				
Electrolytic tough pitch	C11000	0.04 O	Annealed	220(32)	69(10)	45	Electrical wire, rivets. Screening, gaskets, pans, nails, roofing
Beryllium copper	C17200	1.9 Be, 0.20 Co	Precipitation hardened	1140-1310 (165-190)	965-1205 (140-175)	4-10	Springs, bellows, firing pins, bushings, values, diaphragms
Cartridge brass	C26000	30 Zn	Annealed Cold- worked (H04 hard)	300(44) 525(76)	75(11) 435(63)	68 8	Automotive radiator cores, ammunition components, lamp fixtures, flashlight shells, kickplates
Phosphor bronze, 5 % A	C51000	5 Sn, 0.2 P	Annealed Cold- worked (H04 hard)	325(47) 560(81)	130(19) 515(75)	64 10	Bellows, clutch disks, diaphragms, fuse clips, springs
Copper-nickel, 30%	C71500	30 Ni	Annealed Cold- worked (H02 hard)	380(55) 515(75)	125(18) 485(70)	36 15	Condenser and heat-exchanger components, saltwater piping
			Cast Alloys				
Leaded yellow brass	C85400	29Zn, 3Pb, 1 Sn	As cast	234(34)	83(12)	35	Furniture hardware, radiator fittings, light fixtures, battery clamps
Tin bronze	C90500	10 Sn, 2 Zn	As cast	310(45)	152(22)	25	Bearings, bushings, piston rings, steam fittings, gears
Aluminum bronze	C95400	4Fe, 11Al	As cast	586(85)	241(35)	18	Bearings, gears, worms, bushings, valve seats and guar s, p cki

9.2 Aluminum and its alloys

- ✓ Low density(2.7g/cm³ as compared to 7.9g/cm³ for steel)
- √ High electrical
- √ High conductivities
- ✓ Resistance to corrosion
- ✓ Excellent deformability (shaping)
- ✓ Damage tolerant
- ×Low melting temperature (660°C)
- × Moderate mechanical resistance
- × Moderate stiffness

Application:

- ➤ Aircraft structural parts
- ➤ Beverage cans
- ➤ Bus bodies
- ➤ Automotive parts

Structural metallic materials Aluminum and its alloys

Compositions, Mechanical Properties, and Typical Applications for Several Common Aluminum Alloys

	_	<u> </u>			Mechanical Properties		
Aluminum Association Number	UNS Number	Compositions((wt%) ^a	Condition(Temper Designation)	Tensile Strength(Mpa(ksi))	Yield Strength (Mpa(ksi))	Ductility(%EL in 50 mm (2in.)	Typical Applications
			Wr	ought, Nonheat-Treatable Al	loys		
1100	A91100	0.12Cu	Annealed(O)	90(13)	35(5)	35-45	Food/chemical handling and storage equipment. Heat exchangers, light reflectors
3003	A930030	0.12Cu,1.2Mn,0.1Zn,	Annealed(O)	110(16)	40(6)	30-40	Cooking utensils and piping
5052	A95052	2.5Mg,0.25Cr	Strain hardened(H32)	230(33)	195(28)	12-18	Aircraft fuel and oil lines, fuel tanks, appliances, rivets, and wire
				Wrought, heat-Treatable All	oys		
2024	A92024	4.4Cu,1.5Mg,0.6Mn	Heat-treated(T4)	470(68)	325(47)	20	Aircraft structures, rivets, truck wheels, screw machine products
6061	A96061	1.0Mg,0.60 Si,0.30Cu,0.20Cr	Heat-treated(T4)	240(35)	145(21)	22-45	Trucks, canoes, railroad cars. Furniture, pipelines
7075	A97075	5.6Zn,2.5Mg,1.6Cu,0.23Cr	Heat-treated(T6)	570(83)	505(73)	11	Aircraft structures, rivers, truck wheels, screw machine products
				Cast, heat-Treatable Alloy	/S		
295.0	A02950	4.5Cu,1.1Si	Heat-treated(T4)	455(66)	110(16)	8.5	Flywheel and rear-axle housings, bus and aircraft wheels, crankcases
356.0	A03560	7.0Si,0.3Mg	Heat-treated(T6)	228(33)	164(24)	3.5	Aircraft pump parts, automotive transmission cases, water-cooled cylinder blocks
				Aluminum-Lithium Alloy	ys		
2090		2.7Cu,0.25Mg,2.25Li, 0.12Zr	Heat-treated, cold worked(T83)	455(66)	455(66)	5	Aircraft structure-s and cryogenic tankage structure-s
8090		1.3Cu, 0.95 Mg, 2.0Li, 0.1Zr	Heat-treated, cold worked(T651)	465(67)	360(52)		Aircraft structure-s that must be highly damage

Strain hardenable: Mechanical properties enhanced by predeformation of the material

Precipitation hardenable: Mechanical properties enhanced by the precipitation of a finely distributed second phase

9.3 Magnesium and its alloys

- ✓ Low density(1.7g/cm³, the lowest of all the structural metals)
- √HCP crystal structure---soft---low elastic modulus
- ✓ Casting or hot working between 200 and 350°C
- ✓ Excellent thermal conduction
- \times Low melting temperature (651°C)
- × Susceptible to corrosion in marine environments
- × Very low mechanical resistance
- × Fine magnesium powder ignites easily when heated in air

Application:

- **≻**Aircraft
- ➤ Complex parts for missile application
- ➤ Luggage
- handheld device for automotive

Structural metallic materials Magnesium and its alloys

Compositions, Mechanical Properties, and Typical Applications for Six Common Magnesium Alloy

				Mechan	ical Properties		
AS L M N u	UNS Number	Compositions((wt%)	Condition	Tensile Strength(Mpa(ksi))	Yield Strength(Mpa(ksi))	Ductility(%EL in 50 mm (2in.)	Typical Applications
be							
<u> </u>			Wrought Alloys				
AZ 31 B	M11311	3.0 Al, 1.0 Zn 0.2 Mn		262(38)	200(29)	15	Structures and tubing, cathodic protection
H K3 1 A	M13310	3.0 Th ,0.6 Zr	Strain hardened, partially annealed	255(37)	200(29)	9	High strength to 315°C(600°F)
2K 60 A	M16600	5.5Zn, 0.45zr	Artificially aged	350(51)	285(41)	11	Forgings of maximum strength for aircraft
			Cast Alloys				
AZ 91 D	M11916	9.0 Al,0.45 Mn, 0.7 Zn	As cast	230(33)	150(22)	3	Die-cast parts for automobiles. Luggage, and electronic devices
A M 60 A	M10600	6.0Al, 0.13	As cast	220(32)	130(19)	6	Automotive wheels
AS 41 A	M10410	4.3 Al, 1.0 Si, 0.35 Mn	As cast	210(31)	140(20)	6	Die castings requiring good creep resistance

9.4 Titanium and its alloys

- ✓ Low density(4.5g/cm³)
- ✓ high melting temperature (1668°C)
- ✓ Excellent corrosion resistance (protective TiO₂ dense & compact)
- √Tensile strengths(1400MPa)
- √ Highly ductile
- √ Easily forged
- ✓ Machined
- ×thermo-mechanically shape
- ×very bad friction property

Structural metallic materials Titanium and its alloys

Composition, Mechanical Properties, and Typical Applications for Several Common

ita	nium			Average Properties	Me	chanical	
All oy Typ e	Common Name (UNS Number)	Composition (wt%)	Condition	Tensile Strength (Mpa(ksi))	Yield Strength(M pa(ksi))	Ductility(%EL in 50 mm (2in.)	Typical Applications
Co m me rcia Ily pur e	Unalloyed(R50250)	99.5Ti	Annealed	240(35)	170(25)	24	Jet engine shrouds , cases and airframe skins, corrosion-resistant equipment for marine and chemical processing industries
	Ti-5Al-2.5Sn(R54520)	5 Al, 2.5 Sn, balance Ti	Annealed	826(120)	784(114)	16	Gas turbine engine casting and rings; chemical processing strength to temperatures of 480°C (900°F)
Ne ar	Ti-8Al-1Mo- 1V(R54810)	8 Al,1 Mo, 1V, balance Ti	Annealed(duple x)	950(138)	890(129)	15	Forgoing for jet engine components (compressor disks, plates and hubs)
	Ti-6Al-4V(R56400)	6 Al ,4V, balance Ti	Annealed	947(137)	877(127)	14	High-strength prosthetic implants, chemical-processing equipment, airframe structural components
	Ti-6Al-4V(R56620)	6Al ,2 Sn, 6V, 0.75 Cu, balance	Annealed	1050(153)	985(143)	14	Rocket engine case airframe applications and high- strength airframe structures
	Ti-10V-2Fe-3Al	10V,2Fe,3Al,b alance Ti	Solution+ aging	1223(178)	1150(167)	10	Best combination of high strength and toughness of any commercial titanium alloys, used for applications requiring uniformity of tensile properties at surface and center locations; high-strength airframe components SIAE 2014–11–6

Allotropic transformation of Ti & Ti alloys:

Above $T_{transus}$ (882°C for pure Ti) : BCC (β Ti) Below $T_{transus}$ (882°C for pure Ti) : HC (α Ti)

Depending on the forging route : the microstructure may be fully α , $\alpha + \beta$ or fully β

The geometry of the part is the same

But the microstructure and the properties are very different and definitive => Memory of Titanium

Ti tanium alloys: thermomechanical treatment

Deformation(thermomechanical) is required: loss of the shape

Application:

- ➤ Airplane structures
- ➤ Space vehicles
- ➤ Surgical implants
- >Chemical industries

Ti tanium alloys Application: landing gear

AIRBUS A380

Forge libre

4500T

Ti tanium alloys Application: landing gear

AIRBUS A380

Ti tanium alloys Application: engine pylon

Ti tanium alloys Process principle

High temperature:900°C for TA6V Low strain rate Very fine grain microstructure

9.5 superalloys:

the super alloy have superlative combinations of properties.

Most are used in aircraft turbine components, which must withstand exposure to severely oxidizing environments and High temperatures for reasonable time periods.

Structural metallic materials The Superalloys

Table 11.1	0 Co	mpositions	for	Several	Superalloys

						Composition (w	t%)			
Alloy Name	Ni	Fe	Co	Cr	Mo	W	Ti	AI	C	Other
		0.000		NAME OF	91000-0	Iron-Nickel (Wrought)			ri verili	
A-286	26	55.2	_	15	1.25		2.0	0.2	0.04	0.005 B, 0.3 V
Incoloy 925	44	29	-	20.5	2.8	Nickel (Wrought)	2.1	0.2	0.01	1.8 Cu
Inconel-718	52.5	18.5	_	19	3.0	-	0.9	0.5	0.08	5.1 Nb, 0.15 max 0.
Waspaloy	57.0	2.0 max	13.5	19.5	4.3	Nickel (Cast)	3.0	1.4	0.07	0.006 B, 0.09 Zr
Rene 80	60	-	9.5	14	4	4	5	3	0.17	0.015 B, 0.03 Zr
Mar-M-247	59	0.5	10	8.25	0.7	10	1	5.5	0.15	0.015 B, 3 Ta, 0.05 Z 1.5 Hf
						Cobalt (Wrought)				
Haynes 25 (L-605)	10	1	54	20	_	15	_	_	0.1	
						Cobalt (Cast)				
X-40	10	1.5	57.5	22	227	7.5		1122	0.50	0.5 Mn, 0.5 St

- ➤ Distinguish
- **≻**Security
- ➤ Coinable
- ➤ Wear resistant
- ➤ Corrosion resistance
- ➤ Value
- ➤ Recyclability
- ➤ Antibacterial

- □2-euro coin: this coin is termed bimetallic-it consists of an outer ring and an inner disk. For the outer ring, a 75Cu-25Ni alloy is used, which has a silver color. The inner disk is composed of a three-layer structure-high-purity nickel that is clad on both sides with a nickel brass alloy(75Cu-20Zn-5-Ni);this alloy has a gold color
- □1-euro coin: this coin is also bimetallic, but the alloys used for its outer ring and inner disk are reversed from those for the 2-euro coin
- □50-20-,and 10-euro-cent pieces: these coins are made of a "Nordic Gold" alloy-89Cu-5Al-5Zn-1Sn
- □5-2-,and 1-euro-cent pieces: copper-plated steels are used for these coins.

9.6 Aerospace Materials: selection criteria

Aerospace Materials: selection criteria

Material selection

Tentative choice of material

Consider metal, ceramic, polymers, composites

Aerospace Materials: selection criteria

Assemble materials data

Cost, Density

Elastic properties

Yield strength

Hardness

Tensile strength

Ductility

Fracture

Fatigue strength

Thermal conductivity

Specific heat

Thermal shock resistance

Creep parameters

Exidation and corrosion rates

Approximate stress analysis

Mean stress

Bending moments

Buckling loads

Stress concentrations

Contact stresses

Permissible defections

Fatigue stresses

Other constrains

Environment

temperature

Aerospace Materials: selection criteria

Analysis of material performance in tentative design

Reconsider choice of material or design as necessary, leading to material specifications for viable component design

Detailed specification and design

Choice of material, detailed stress analysis. Detailed component design

Choice of production methods

Forming, heat treatment, Joining, surface finish, Quality control detailed costing, Reconsider material choice and design as necessary

Aerospace Materials: selection criteria

Prototype testing

Assessment of performance; analysis of failures, optimization of performance, and production

Establish production

Monitor field failures, and performance and cost relative to competition

Further development

Improvements for better performance or lower costs. Innovation; new materials radically new design

The upturned wing of a Dewoitime D-27 single

seat fighter statically tested

One hundred men load the wing of a Rohrbach.Romar flying-boat which had an wing span approaching 40 metres (1928)

complex built to allow the loading of the wing

Independent of time

Physical: Lightness density kg/m³ Heat resistance °C/K melting Temp. T, **Dimensional stability** °C-1 thermal expansion α Metallurgy possibility to quench possibility to cast defect content

Independent of time

Mechanical:

Mech. resistance

Ductility

Stiffness

Resistance to shock

Resistance to Crack propagation yield stress YS $(R_{e\,0,2})$ MPa ultimate tensile strength UTS (R_m) MPa elongation to fracture A%

Young modulus E GPa

resilience K_{cu} J/cm²

(fracture energy per unit surface)

toughness K_{1C}

SIAE

MPa√m

Dependent of time

Fatigue	fatigue limit	σ_{D}	MPa
	fatigue life	N _R	cycles
	notch sensitivity	q	
Damage tolerance	crack propagation rate	da/dN	m/cycles
Effect of time & temp	erature :		
Effect of time & temp	erature : creep rate		

Manufacturing criteria

Manufacturing process :

With material removing Without material removing

machining
casting or powder metallurgy
forming (forging, rolling, deep
drawing, superplastic forming....)

Assembling process:

Welding (TIG, MIG, FSW...), Soldering, Diffusion Bonding, Riveting (2 millions rivets on A340), Sticking....

Manufacturing criteria

Processing: five candidates

- **≻**Machining
- **≻Sintering/HP**
- **≻**Casting
- **≻Welding**
- **≻**Forging

Candidate materials for frame applications

```
Metallic alloys

✓ aluminum alloys

          (50 % of the frame)

✓ magnesium alloys

          (0 % of the frame
          mostly for missiles)

✓ titanium alloy

          (few percents)

√ steels

          (few percents)
```

```
Composite materials
```

✓ polymer matrix composites

matrix: polymer

fibres: metal, glass, carbon,

✓ metal matrix composites

matrix: aluminum

fibres : glass, carbon, kevlar

✓ ceramic matrix composites

matrix : C, SiC

fibres : C, SiC

Frame (mass %): Al 50%, Composite 20%, Steel 13% Ti 6%, others balance

Candidate materials for frame applications

Introduction to Aerospace Materials

Introduction to Aerospace Materials

Candidate materials for frame applications

Next technological jump: 100% composite fuselage?

✓ today limitation

- because the cockpit is pressurized crack propagation & air-tightness
- because still difficult to manufacture large parts

"hand craft" small scale composite fabrication

Candidate materials for frame applications

Composites - Introduction

✓ anisotropic materials

two or more materials, chemically and geometrically different, combined on a macroscopic scale to form a useful material

✓ light materials

on A320, the use of C/Epoxy allows a weight gain of 1650 kg (2.8% of the airplane total mass)

=> save 3300 tons of kerosene over the airplane life = 1.7

✓ require to re-think in term of design

Candidate materials for frame applications

Composites - Introduction

- ✓ benefits
- controlled anisotropy of mechanical properties
- no fatigue
- complex shape achievable
 number of parts lowered
- repairable

=> Ideal for structures where high strength-toweight and high stiffness-to-weight ratios are required

=> Limited to in-plane distributed load (bi-dimensional parts)

Composites - Introduction

✓ drawbacks

- high notch sensitivity (crack propagation)
- low resistance to shocks
- low resistance to lightning
- low resistance to fire

/ toxicity of smokes

- difficult to assemble with metals
- difficult to automate the mfg process

Composites - Fibres

- ✓ glass (10 20 µm)
- ✓ aramide (Kevlar®)
- ✓ polyethylene
- √ boron (100 µm)
- ✓ SiC (silicon carbide) (15 µm)
- ✓ Carbon (7 µm)

Fibres are inserted

- in a polymer matrix
 - polymer matrix composites
- after sizing (chemical coating)
 - to lower the friction on mfg tools
 - to enhance the chemical bonding to the matrix