Chapter 5 Choice

Li Yan(李艳)
School of Economics
Central university of Finance and Economics

Structure

- Rational constrained choice
- Computing ordinary demands
 - Interior solution (内在解)
 - Corner solution (角点解)
 - "Kinky" solution
- Example: Choosing taxes

Economic Rationality

- The principal behavioral postulate is that a decision-maker chooses its most preferred alternative from those available to it.
- The available choices constitute the choice set.
- How is the most preferred bundle in the choice set located?

- The most preferred affordable bundle is called the consumer's ORDINARY DEMAND (or DEMAND,一般需求) at the given prices and budget.
- Ordinary demands will be denoted by $x_1^*(p_1,p_2,m)$ and $x_2^*(p_1,p_2,m)$.

- When $x_1^* > 0$ and $x_2^* > 0$ the demanded bundle is INTERIOR.
- If buying (x_1^*,x_2^*) costs \$m then the budget is exhausted.

- (x_1^*, x_2^*) satisfies two conditions:
- (a) the budget is exhausted; $p_1x_1^* + p_2x_2^* = m$
- (b) tangency: the slope of the budget constraint, $-p_1/p_2$, and the slope of the indifference curve containing (x_1^*,x_2^*) are equal at (x_1^*,x_2^*) .

Meaning of the Tangency Condition

- Consumer's marginal willingness to pay equals the market exchange rate.
- Suppose at a consumption bundle (x_1, x_2) ,

$$MRS = 2, P_1/P_2 = I$$

- The consumer is willing to give up 2 unit of x_2 to exchange for an additional unit of x_1
- The market allows her to give up only I unit of x_2 to obtain an additional x_1
- (x_1, x_2) is not optimal choice
- She can be better off increasing her consumption of x_1 .

Computing Ordinary Demands

- Solve for 2 simultaneous equations.
 - Tangency
 - Budget constraint
- The conditions may be obtained by using the Lagrangian multiplier method (拉格 朗日方程), i.e., constrained optimization in calculus.

Computing Ordinary Demands

• How can this information be used to locate (x_1^*, x_2^*) for given p_1, p_2 and m?

 Suppose that the consumer has Cobb-Douglas preferences.

$$U(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$$

• At (x_1^*, x_2^*) , MRS = p_1/p_2 so the tangency condition (MRS = p_1/p_2) is

$$MRS = \frac{\alpha x_2}{\beta x_1} = \frac{p_1}{p_2}$$

$$x_2 = \frac{\beta p_1}{\alpha p_2} x_1 \tag{1}$$

• (x_1^*, x_2^*) also exhausts the budget so

$$p_1 x_1 + p_2 x_2 = m \tag{2}$$

 The solution to the simultaneous equations (1) and (2) is:

$$x_1^* = \frac{\alpha}{\alpha + \beta} \frac{m}{p_1}$$
$$x_2^* = \frac{\beta}{\alpha + \beta} \frac{m}{p_2}$$

Lagrange Multipliers

$$\begin{aligned} &Max \ U(x_1, x_2) \quad s.t. \ p_1 x_1 + p_2 x_2 = m \\ &L = U(x_1, x_2) + \lambda (m - p_1 x_1 - p_2 x_2) \\ &\frac{\partial L}{\partial x_1} = \frac{\partial U}{\partial x_1} - \lambda p_1 = 0 \\ &\frac{\partial L}{\partial x_2} = \frac{\partial U}{\partial x_2} - \lambda p_2 = 0 \\ &\frac{\partial L}{\partial \lambda} = m - p_1 x_1 - p_2 x_2 = 0 \end{aligned}$$

Equal Marginal Principle

$$\lambda = \frac{\partial U / \partial x_1}{p_1} = \frac{\partial U / \partial x_2}{p_2}$$
In the case of $U(x_1, x_2, ..., x_n)$,
$$\lambda = \frac{\partial U / \partial x_1}{\partial x_1} = \frac{\partial U / \partial x_2}{\partial x_2} = ... = \frac{\partial U / \partial x_n}{\partial x_n}$$

Understanding lamda

$$\frac{dU}{dm} = \frac{\partial U}{\partial x_1} \frac{dx_1}{dm} + \frac{\partial U}{\partial x_2} \frac{dx_2}{dm}$$
Since $dm = p_1 dx_1 + p_2 dx_2$, $\lambda = \frac{\partial U}{\partial x_1} / p_1 = \frac{\partial U}{\partial x_2} / p_2$

$$\frac{dU}{dm} = \lambda p_1 \frac{dx_1}{dm} + \lambda p_2 \frac{dx_2}{dm} = \lambda (p_1 dx_1 + p_2 dx_2) / dm$$

$$\Rightarrow \frac{dU}{dm} = \lambda$$

λ is the shadow price of income

How to Allocate Time Efficiently?

$$Max U = s_1 + ... + s_n = \sum_{i=1}^n s_i$$

$$s.t. (1) \ s_i = f_i(t_i), \ f_i(t_i) > 0, \ f_i'(t_i) < 0$$

$$(2) \sum_{i=1}^n t_i \le T$$

$$\Rightarrow \partial f_1(t_1) / \partial t_1 = \partial f_2(t_2) / \partial t_2 = \dots = \partial f_n(t_n) / \partial t_n = \lambda$$

 λ : shadow price of time

Rational Constrained Choice: Summary

- When x₁* > 0 and x₂* > 0
 and (x₁*,x₂*) exhausts the budget,
 and indifference curves have no
 'kinks', the ordinary demands are obtained by solving:
- (a) $p_1x_1^* + p_2x_2^* = y$
- (b) the slopes of the budget constraint, $-p_1/p_2$, and of the indifference curve containing (x_1^*,x_2^*) are equal at (x_1^*,x_2^*) .

- But what if $x_1^* = 0$?
- Or if $x_2^* = 0$?
- If either $x_1^* = 0$ or $x_2^* = 0$ then the ordinary demand (x_1^*, x_2^*) is at a corner solution (角点解) to the problem of maximizing utility subject to a budget constraint.

Notice that the "tangency solution" is not the most preferred affordable bundle. The most preferred affordable bundle

Demand curve

$$x_1 = \begin{cases} m/p_1 & \text{when } p_1 < p_2; \\ \text{any number between 0 and } m/p_1 & \text{when } p_1 = p_2; \\ 0 & \text{when } p_1 > p_2. \end{cases}$$

Is Tangency Condition Sufficient?

 Tangency condition is sufficient and necessary if

(I) Preferences are convex

(2) Solutions are interior

(a)
$$p_1x_1^* + p_2x_2^* = m$$
; (b) $x_2^* = ax_1^*$.

Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives

$$x_1^* = \frac{m}{p_1 + ap_2}; x_2^* = \frac{am}{p_1 + ap_2}.$$

Choosing Taxes: Various Taxes

- Quantity tax: on x: (p+t)x
- Value tax: on px: (I+t)px
 - Also called ad valorem tax
- Lump sum tax:T
- Income tax:
 - Can be proportional or lump sum

Income Tax vs. Quantity Tax

- Original budget: $p_1x_1 + p_2x_2 = m$
- After quantity tax:

$$(p_1+t)x_1 + p_2x_2 = m$$

• At optimal choice (x_1^*, x_2^*)

$$(p_1+t)x_1^* + p_2x_2^* = m$$
 (5.2)

- Tax revenue: R*=tx₁*
- With an income tax, budget is:

$$p_1x_1 + p_2x_2 = m - tx_1^*$$

Income vs. Quantity Tax

- Proposition: (x_1^*, x_2^*) is affordable under income tax
- Equivalent to: prove that (x_1^*, x_2^*) satisfies budget constraint under income tax.
- Or, budget constraint holds at point (x_1^*, x_2^*) .

$$p_1x_1^* + p_2x_2^* = m - tx_1^*$$

- Which is true according to (5.2).
- It is not an optimal choice because prices are different.
- Conclusion: The optimal choice must be more preferred to (x_1^*, x_2^*)

Estimating utility function - Choice based Method

Year	p_1	p_2	m	x_1	x_2	81	82	Utility
1	1	1	100	25	75	.25	.75	57.0
2	1	2	100	24	38	.24	.76	33.9
3	2	1	100	13	74	.26	.74	47.9
4	1	2	200	48	76	.24	.76	67.8
5	2	1	200	25	150	.25	.75	95.8
6	1	4	400	100	75	.25	.75	80.6
7	4	1	400	24	304	.24	.76	161.1

•
$$U(x_1, x_2) = x_1^{1/4} x_2^{3/4}$$