Определение 1. Два линейных оператора $A_i \colon D(A_i) \subset \mathcal{X} \to \mathcal{X}, i = 1, 2$ (\mathcal{X} — банахово пространство) называются подобными, если существует обратимый оператор $\mathcal{U} \in \operatorname{End} \mathcal{X}$, такой что $\mathcal{U}D(A_2) = D(A_1)$ и $A_1\mathcal{U}x = \mathcal{U}A_2x$ $\forall x \in D(A_2)$. Оператор \mathcal{U} назовем оператором преобразования оператора A_1 в A_2 .

Символом A будем обозначать невозмущенный линейный оператор $(A\colon D(A)\subset\mathcal{X}\to\mathcal{X})$, хорошо изученный с точки зрения интересующих нас структурных свойств. Оператор $B\colon D(B)\subset\mathcal{X}\to\mathcal{X}$ называется подчиненным оператору A, если $D(B)\supset D(A)$ и существует такая постоянная C>0, что $\|Bx\|\leqslant C(\|x\|+\|Ax\|)$ $\forall x\in D(A)$. Множество операторов, подчиненных оператору A, обозначим символом $\mathcal{L}_A(\mathcal{X})$.

Поскольку областью определения возмущенного оператора вида A-B, $B\in\mathcal{L}_A(\mathcal{X})$, является область определения D(A) оператора A, то будем далее всюду считать, что D(B)=D(A) $\forall B\in\mathcal{L}_A(\mathcal{X})$. Такая договоренность позволяет рассматривать $\mathcal{L}_A(\mathcal{X})$ как линейное пространство. Более того, $\mathcal{L}_A(\mathcal{X})$ можно нормировать, если положить $\|B\|_A=\inf C$, где инфимум берется по всем постоянным C>0, удовлетворяющим записанному выше неравенству. Нетрудно видеть, что $\mathcal{L}_A(\mathcal{X})$ – банахово пространство. Символами $\sigma(A)$ и $\rho(A)$ обозначается соответственно спектр и резольвентное множество оператора A.

Определение 2. Пусть \mathfrak{U} — линейное многообразие операторов из \mathcal{L}_A и $\mathcal{J}: \mathfrak{U} \to \mathfrak{U}, \Gamma$: End \mathcal{X} — два трансформатора (т.е. линейные операторы в пространстве операторов). Тройку $(\mathfrak{U}, \mathcal{J}, \Gamma)$ назовем допустимой для оператора A, а \mathfrak{U} — допустимый пространством возмущений, если

- 1. \mathfrak{U} банахово пространство (со своей нормой $\|\cdot\|$), непрерывно вложенное в $\mathcal{L}_A(\mathcal{X})$ (т.е. $\|X\| \geqslant const\|X\|_A \ \forall X \in \mathfrak{U}$);
- 2. \mathcal{J} и Γ непрерывные операторы;
- 3. $(\Gamma X)D(A) \subset D(A)$ и $A\Gamma X \Gamma XA = X \mathcal{J}X \ \forall X \in \mathfrak{U}$;
- 4. $(\Gamma X)Y, \ X\Gamma Y \in \mathfrak{U} \ \forall X,Y \in \mathfrak{U}$ и существует такая постоянная $\gamma > 0$, что $\|\Gamma\| \leqslant \gamma$ и $\max\{\|X\Gamma Y\|, \|(\Gamma X)Y\|\} \leqslant \gamma \|X\| \|Y\| \ \forall X,Y \in \mathfrak{U};$
- 5. \mathcal{J} проектор и $\mathcal{J}((\Gamma X)\mathcal{J}Y) = 0 \ \forall X, Y \in \mathfrak{U};$
- 6. $\forall X \in \mathfrak{U} \ \forall \varepsilon > 0 \ \exists \lambda_0 \in \rho(A), \ \text{что} \ \|X(A \lambda_0 I) 1\|_{\infty} < \varepsilon.$

Пусть $(\mathfrak{U}, \mathcal{J}, \Gamma)$ — допустимая для оператора $A \colon D(A) \subset \mathcal{X} \to \mathcal{X}$ тройка и $B \in \mathfrak{U}$ — возмущение оператора A. Будем искать такой оператор $X_0 \in \mathfrak{U}$, чтобы выполнялось равенство

$$(A - B)(I + \Gamma X_0) = (I + \Gamma X_0)(A - \mathcal{J}X_0), \tag{1}$$

которое при условии $\|\Gamma X_0\|_{\infty} < 1$ (влекущего обратимость оператора $U = I + \Gamma X_0$) означает подобие операторов A - B и $A - \mathcal{J} X_0$. Нетрудно проверить, что равенство (1) имеет место, если X_0 – решение нелинейного уравнения вида

$$X = B\Gamma X - (\Gamma X)\mathcal{J}B - (\Gamma X)\mathcal{J}(B\Gamma X) + B = \Phi(X), \tag{2}$$

рассматриваемого в банаховом пространстве $\mathfrak U$ допустимый возмущений. Из метода сжимающих отображений, примененного к нелинейному оператору $\Phi\colon \mathfrak{U} \to \mathfrak{U}$ (корректность его определения следует из определения допустимой тройки), получаем, что имеет место

Теорема 1. Если выполнено условие

$$\gamma \|B\| \|\mathcal{J}\| < \frac{1}{4},\tag{3}$$

то уравнение (2) имеет решение X_0 , для которого выполнено равенство (1), причем оператор $I + \Gamma X_0$ обратим.

Замечание 1. Построение трансформатора Γ обычно осуществляется с помощью трансформатора $ad_A \colon D(ad_A) \subset \operatorname{End} \mathcal{X} \to \operatorname{End} \mathcal{X}$ с областью определения $D(ad_A)$, состоящих из таких операторов $X_0 \in \operatorname{End} \mathcal{X}$, которые переводят D(A) в D(A), и оператор $AX_0 - X_0A \colon D(A) \to \mathcal{X}$ допускает единственное расширение с D(A) до некоторого оператора $Y_0 \in \operatorname{End} \mathcal{X}$ (и тогда полагается $Y_0 = ad_A X_0$).

Теоремы о расщеплении рассматриваемых здесь дифференциальных операторов получены с помощью выбора специальных допустимых троек, которые строятся в предположении существования разложения банахова пространства \mathcal{X} в прямую сумму $\mathcal{X} = \mathcal{X}_1 \oplus \mathcal{X}_2$ инвариантных относительно не возмущенного оператора $A \colon D(A) \subset \mathcal{X} \to \mathcal{X}$ подпространств \mathcal{X}_1 и \mathcal{X}_2 , причем множества $\sigma_i = \sigma(A_i), i = 1, 2$, взаимно не пересекаются $(A_i = A | \mathcal{X}_i, i = 1, 2, -$ сужение A на \mathcal{X}_i , и будем писать $A = A_1 \oplus A_2$).

Пусть \mathcal{P}_i , i=1,2, – проекторы, ассоциированные с указанным разложением пространства \mathcal{X} , т.е. $\mathcal{X}_i=\mathrm{Im}\mathcal{P}_i,$ i=1,2. Отметим, что если одно из множеств $\sigma_i,$ i=1,2, компактно, то $\mathcal{P}_i=P(\sigma_i,A),$ i=1,2, – проекторы Рисса, построенные по спектральным множествам $\sigma_i,$ i=1,2.

Определение 3. Допустимая для оператора A тройка $(\mathfrak{U}, \mathcal{J}, \Gamma)$ называется допустимой тройкой теории расщепления операторов, если выполнены следующие свойства:

- 1. $\mathcal{P}_i X \mathcal{P}_j \in \mathfrak{U}$, i, j = 1, 2, для любого $X \in \mathfrak{U}$, и трансформатор \mathcal{J} имеет вид $\mathcal{J} X = \mathcal{P}_1 X \mathcal{P}_1 + \mathcal{P}_2 X \mathcal{P}_2, X \in \mathfrak{U}$;
- 2. $\mathcal{P}_i(\Gamma X)\mathcal{P}_j=\Gamma(\mathcal{P}_iX\mathcal{P}_j),\,i,j=1,2$ для любого $X\in\mathfrak{U},$ причем $\mathcal{P}_i(\Gamma X)\mathcal{P}_i=0,\,i=1,2.$

Рассматриваемые нами допустимые тройки для оператора A удовлетворяют свойствам из определения 3. Это позволяет представить допустимое пространство $\mathfrak U$ в виде прямой суммы $\mathfrak U=\mathfrak U_{11}\oplus\mathfrak U_{12}\oplus\mathfrak U_{21}\oplus\mathfrak U_{22}$ подпространств $\mathfrak U_{ij}=\{\mathcal P_iX\mathcal P_j\colon X\in\mathfrak U\},\,i,j=1,2.$ Символом X_{ij} будем обозначать оператор (операторный блок) $\mathcal P_iX\mathcal P_j$ из $\mathfrak U_{ij},\,i,j=1,2.$ так что $X=(\mathcal P_1+\mathcal P_2)X(\mathcal P_1+\mathcal P_2)=X_{11}+X_{12}+X_{21}+X_{22},X\in\mathfrak U.$

Применяя к обеим частям уравнения (2) операторы \mathcal{P}_1 и \mathcal{P}_2 (справа и слева) и используя условие 2 из определения 3, получаем следующую систему уравнений для блоков X_{ij} , i, j = 1, 2, оператора $X \in \mathfrak{U}$:

$$X_{11} = B_{12}\Gamma X_{21} + B_{11},\tag{4}$$

$$X_{21} = B_{22}\Gamma X_{21} - (\Gamma X_{21})B_{11} - (\Gamma X_{21})B_{12}\Gamma X_{21} + B_{21} = \Phi(X_{21}),$$
 (5)

$$X_{12} = B_{11}\Gamma X_{12} - (\Gamma X_{12})B_{22} - (\Gamma X_{12})B_{21}\Gamma X_{12} + B_{12} = \Phi(X_{12}),$$
 (6)

$$X_{22} = B_{21}\Gamma X_{12} + B_{22}. (7)$$

Важно отметить, что уравнения (5) и (6) независимы от остальных уравнений и рассматриваются соответственно в подпространствах \mathfrak{U}_{21} и \mathfrak{U}_{12} . Условия их разрешимости, и, следовательно, также и уравнений (4), (7), удобно формулировать, используя следующие величины: $b_{ij} = \|B_{ij}\|$, $i, j = 1, 2, \tilde{b}_{12}$, \tilde{b}_{21} – нормы операторов $X \mapsto B_{12}\Gamma X \colon \mathfrak{U}_{12} \to \mathfrak{U}_{12}$, $X \mapsto B_{21}\Gamma X \colon \mathfrak{U}_{21} \to \mathfrak{U}_{21}$ соответственно и \tilde{b}_{22} – наибольшая из норм операторов $X \mapsto (\Gamma X)B_{22} \colon \mathfrak{U}_{12} \to \mathfrak{U}_{12}$, $X \mapsto B_{22}\Gamma X \colon \mathfrak{U}_{21} \to \mathfrak{U}_{21}$. Отметим, что $\tilde{b}_{12} \leqslant \gamma b_{12}$, $\tilde{b}_{21} \leqslant \gamma b_{21}$.

Теорема 2. Пусть выполнено условие

$$d = \gamma b_{11} + \tilde{b}_{22} + 2\gamma (b_{12}b_{21})^{1/2} < 1. \tag{8}$$

Tогда оператор A-B подобен оператору вида

$$A - \mathcal{P}_1 X \mathcal{P}_1 - \mathcal{P}_2 X \mathcal{P}_2 = A - X_{11} - X_{22},$$

где X – решение уравнения (2), X_{ij} , i,j=1,2, – решения соответствующих уравнений (4)-(7), а оператор $U=I+\Gamma X=I+\Gamma X_{12}+\Gamma X_{21}$ является оператором преобразования, причем

$$U^{-1} = I + (I - \Gamma X_{21})(I - (\Gamma X_{12})\Gamma X_{21})^{-1}\Gamma X_{12} + + (I - \Gamma X_{12})(I - (\Gamma X_{21})\Gamma X_{12})^{-1}\Gamma X_{21}.$$
(9)

Кроме того, имеют место следующие оценки:

$$||X_{11} - B_{11}|| \le \frac{2b_{21}\tilde{b}_{12}}{1 - \tilde{b}_{22} - \gamma b_{11} + q} \le \frac{2\gamma b_{21}b_{12}}{1 - \tilde{b}_{22} - \gamma b_{11}};\tag{10}$$

$$||X_{22} - B_{22}|| \leqslant \frac{2b_{12}\tilde{b}_{21}}{1 - \tilde{b}_{22} - \gamma b_{11} + q} \leqslant \frac{2\gamma b_{21}b_{12}}{1 - \tilde{b}_{22} - \gamma b_{11}}; \tag{11}$$

$$||X_{21} - B_{21}|| \leqslant \frac{2qb_{21}}{1 - \tilde{b}_{22} - \gamma b_{11} + q} \leqslant \frac{2b_{21}}{1 - \tilde{b}_{22} - \gamma b_{11}}; \tag{12}$$

$$||X_{12} - B_{12}|| \leqslant \frac{2qb_{12}}{1 - \tilde{b}_{22} - \gamma b_{11} + q} \leqslant \frac{2b_{12}}{1 - \tilde{b}_{22} - \gamma b_{11}}; \tag{13}$$

$$||X_{11} - B_{11} - B_{12}\Gamma B_{21}|| \leqslant \frac{2\tilde{b}_{12}b_{21}q}{1 - \tilde{b}_{22} - \gamma b_{11}}; \tag{14}$$

$$||X_{22} - B_{22} - B_{21}\Gamma B_{12}|| \leqslant \frac{2b_{12}\tilde{b}_{21}q}{1 - \tilde{b}_{22} - \gamma b_{11}},\tag{15}$$

 $r\partial e \ q = [(1 - \tilde{b}_{22} - \gamma b_{11})^2 - 4\gamma b_{12}b_{21}]^{1/2}.$

Доказательство. Рассмотрим уравнение (5) и определяемый его правой частью нелинейный оператор $\Phi_1 \colon \mathfrak{U}_{21} \to \mathfrak{U}_{21}$. Найдем шар $B(r_1) = \{Y \in \mathfrak{U}_{21} \colon \|Y\| \leqslant r_1\}$ из пространства \mathfrak{U}_{21} , который оператор Φ_1 переводит в себя. Определяемый далее радиус шара r_1 удобно представить в виде $r_1 = rb_{21}$. Из условия $\|\Phi_1(Y)\| \leqslant rb_{21}$ для любого $Y \in \mathfrak{U}_{21}$ получаем, что $\Phi_1(B(r_1)) \subset B(r_1)$, если число r > 0 удовлетворяет неравенству

$$r\tilde{b}_{22}b_{21} + r\gamma b_{21}b_{11} + r^2\gamma \tilde{b}_{12}b_{21}^2 + b_{21} \leqslant rb_{21}.$$

Отсюда получаем, что в качестве r_1 можно взять число

$$r_1 = rb_{21} = \frac{1 - \tilde{b}_{22} - \gamma b_{11} - q}{2\gamma \tilde{b}_{12}} = 2b_{21}(1 - \tilde{b}_{22} - \gamma b_{11} - q)^{-1}.$$

Для любой пары операторов Y_1, Y_2 из шара $B(r_1)$ имеют место оценки

$$\begin{split} \|\Phi_{1}(Y_{1}) - \Phi_{1}(Y_{2})\| &\leqslant (\tilde{b}_{22} + \gamma b_{11} + 4\gamma^{2} b_{12} b_{21} (1 - \tilde{b}_{22} - \gamma b_{11} + q)^{-1}) \|Y_{1} - Y_{2}\| \leqslant \\ &\leqslant \left(\tilde{b}_{22} + \gamma b_{11} + \frac{2\gamma (b_{12} b_{21})^{1/2} (1 - \tilde{b}_{22} - \gamma b_{11})}{1 - \tilde{b}_{22} - \gamma b_{11} + q}\right) \|Y_{1} - Y_{2}\| \leqslant \\ &\leqslant d \|Y_{1} - Y_{2}\|. \end{split}$$

В силу условия (8) теоремы оператор Φ_1 является оператором сжатия в шаре $B(r_1)$, и поэтому уравнение (5) имеет единственное в шаре $B(r_1)$ решение X_{21} , которое можно найти методом простых итераций. Следовательно, уравнение (4) имеет соответствующее решение X_{11} . Оценки (10),(12), (14) непосредственно следуют из условия принадлежности оператора X_{21} шару $B(r_1)$.

Аналогичные рассуждения применимы к уравнению (6) (и следовательно, к уравнению (7)), с которым связан оператор $\Phi_2: \mathfrak{U}_{12} \to \mathfrak{U}_{12}$. Он является оператором сжатия в шаре $B(r_2)$, где $r_2 = 2b_{12}(1-b_{22}-\gamma b_{11}+q)^{-1}$, что позволяет получить оценки (11),(13) и (15).

Поскольку $\|\Gamma X_{21}\|_{\infty} \|\Gamma X_{12}\|_{\infty} \leqslant \gamma^2 r_1 r_2 = 4\gamma^2 b_{12} b_{21} (1-\tilde{b}_{22}-\gamma b_{11}+q)^{-1} < 1$, то операторы $I-(\Gamma X_{21})\Gamma X_{12}, I-(\Gamma X_{12})\Gamma X_{21}$ обратимы. Непосредственной проверкой легко убедиться в том, что обратный к $U=I+\Gamma X_{12}+\Gamma X_{21}=I+\Gamma X$ оператор допускает представление вида (9). **Теорема доказана.**

Замечание 2. Преимущество рассмотрения оператора $A = A - \mathcal{P}_1 X \mathcal{P}_1 - \mathcal{P}_2 X \mathcal{P}_2$ перед оператором A - B состоит в том, что подпространства $\mathcal{X}_i = \operatorname{Im} \mathcal{P}_i, i = 1, 2$, инвариантны относительно оператора A и поэтому $\tilde{A} = \tilde{A}_1 \oplus \tilde{A}_2$, где $\tilde{A}_i = A_i - \mathcal{P}_i X | \mathcal{X}_i, i = 1, 2$ — сужения \tilde{A} на \mathcal{X}_i . Таким образом, изучение оператора A - B по существу сводится к изучению операторов \tilde{A}_1 и \tilde{A}_2 . Например, $\sigma(A - B) = \sigma(\tilde{A}) = \sigma(\tilde{A}_1) \cup \sigma(\tilde{A}_2)$.