Macro, Money and Finance: A Continuous-Time Approach

Problem Set

Professor: Fernando Mendo

Due Date: Sunday March 2nd, 10 pm. Please send your solution to the academic coordinator of the summer course. Please include your codes.

1. Consider an infinitely-lived household with logarithmic preferences over consumption $\{c_t\}_{t>0}$,

$$U_0 = \mathbb{E}\left[\int_0^\infty e^{-\rho t} \log(c_t) dt\right]$$

The household has initial wealth $n_0 > 0$ and does not receive any endowment or labor income. Wealth can be invested into two assets. A risk-free bond with (instantaneous) return $r^b dt$ and a risky stock with return $r^s dt + \sigma dZ_t$, where Z_t is a Brownian motion. Here, r^b , r^s , and σ are constant parameters.

The household's net worth evolution is

$$dn_t = -c_t dt + n_t [(1 - \theta_t^s)r^b dt + \theta_t^s (r^s dt + \sigma dZ_t)]$$

where θ_t^s denotes the fraction of wealth invested into the stock. The household chooses consumption $\{c_t\}_{t\geq 0}$ and portfolio shares $\theta_t^s\}_{t\geq 0}$ to maximize utility U_0 subject to the net worth evolution (and a solvency constraint $n_t \geq 0$).

- (a) In this part, you will solve the consumption-portfolio choice problem using the Hamilton-Jacobi-Bellman (HJB) equation. The state space of this decision problem is one-dimensional with state variable n_t , so you can denote the household's value function by V(n).
 - i. Write down the (deterministic) HJB equation for the value function V(n).
 - ii. Take first-order conditions with respect to all choice variables.
 - iii. Let's make a guess that optimal consumption is proportional to net worth, c(n) = an with some constant a > 0 (to be determined below). Use the first-order condition for consumption derived in part (b) to turn this into a guess for the value function V(n).

 Hint: Don't forget to add an integration constant (call it b) when moving from V'(n) to V(n); V(n) is the sum of two terms
 - iv. Use your guess for V(n) to simplify the first-order condition for θ_t^s and solve the resulting equation for θ_t^s .
 - v. Substitute the optimal choices and the guess for V(n) into the HJB equation to eliminate V(n), V'(n), V''(n), c, θ^s and the max operator.
 - vi. The resulting equation in step (e) has to hold for all n > 0 (if it does not, the previous guess was incorrect). Show that this is indeed possible if we choose a and b appropriately. What are the required values for a and b?
- (b) Now consider the same decision problem as before but approach it with the stochastic maximum principle instead of the HJB equation.

- i. Denote by ξ_t the costate for net worth n_t and by σ_t^{ξ} its (arithmetic) volatility loading (that is $d\xi_t = \mu_t^{\xi} dt + \sigma_t^{\xi} dZt$ with some drift μ_t^{ξ}). Write down the Hamiltonian of the problem.
- ii. The choice variables have to maximize the Hamiltonian at all times. Take the first-order conditions in this maximization problem.
- iii. Let's again make the guess $c_t = an_t$ with an unknown constant a > 0. Use the first-order condition for consumption derived in part (b) to turn this into a guess for the costate ξ_t . Also determine the implied costate volatility σ_t^{ξ} .
- iv. Determine the optimal solution for θ_t^s .
- v. Write down the costate equation for ξ_t and substitute in your guess for c_t , the implied guesses for ξ_t and σ_t^{ξ} , and the implied optimal solution for θ_t^s . Show that the costate equation is indeed satisfied (and hence the guess was correct) if you choose a suitably. Which value(s) for a work?
- vi. Verify that the optimal solution coincides with the one you obtained from the HJB approach. Also show that $\xi_t = e^{-\rho t} V'(n_t)$, where V is the value function determined previously.
- 2. In this exercise, you will solve BruSan (2014) numerically, under the assumption of log utility. Our goal is to construct functions $q(\eta)$, $\iota(\eta)$, $\kappa(\eta)$ and $\sigma^q(\eta)$ on the [0,1] grid. Slides 133-135 describe the set of equations and the algorithm. The parameter values are $\rho_e = 0.06$, $\rho_h = 0.05$, $a_e = 0.11$, $a_h = 0.03$, $\delta = 0.05$, $\phi = 10$, $\alpha = 0.5$, $\sigma = 0.1$ where $\Phi(\iota) = (1/\phi) \log(1 + \phi \iota)$
 - (a) Solve the model at the boundaries: for $\eta = 0$ and $\eta = 1$
 - (b) Create a uniform grid for $\eta \in [0.0001, 0.9999]$
 - (c) Solve the ODE for $q(\eta)$ assuming $\kappa(0) = 0$ as boundary condition. Stop once you reach $\kappa \geq 1$. From here on, set $\kappa = 1$, solve for q and σ^q .
 - (d) Verify your solution by plotting $q(\eta)$ and $\sigma^q(\eta)$. Also plot $\iota(\eta)$, $\kappa(\eta)$.
 - (e) An alternative derivation for the drift and volatility of η in the general case is given by:

$$\mu_t^{\eta} = (1 - \eta_t) \left[\left(\varsigma_t^e - \sigma - \sigma_t^q \right) \left(\sigma_t^{\eta} + \sigma + \sigma_t^q \right) - \left(\varsigma_t^h - \sigma - \sigma_t^q \right) \left(-\frac{\eta_t}{1 - \eta_t} \sigma_t^{\eta} + \sigma + \sigma_t^q \right) - \left(\frac{C_t^e}{N_t^e} - \frac{C_t^h}{N_t^h} \right) \right]$$

$$\sigma_t^{\eta} = \frac{\kappa_t - \eta_t}{\eta_t} \left(\sigma + \sigma_t^q \right)$$

where ς_e and ς_h are risk prices. Show these expressions are equivalent to the ones derived in the slides (you can assume logarithmic preferences).

- (f) Plot $\eta \mu^{\eta}(\eta)$ and $\eta \sigma^{\eta}(\eta)$
- (g) Plot $r(\eta)$. Note that you will need to approximate a second order derivative.
- 3. Consider the first monetary model studied in class with log utility and without government policy $(\mu_B = i = \sigma_B = G = \tau = 0)$. There can still be a constant supply of bonds $B_t \neq 0$. In this problem, we add stochastic volatility to the model. Suppose idiosyncratic risk $\tilde{\sigma}$ evolves according to the exogenous stochastic process

$$d\tilde{\sigma}_t = b(\tilde{\sigma}_{ss} - \tilde{\sigma}_t)dt + \nu\sqrt{\tilde{\sigma}_t}dZ_t$$

where $\tilde{\sigma}_{ss}$, b, and ν are constants.

(a) Use goods market clearing and optimal investment to express q_K , q_B , and ι in terms of $\vartheta := \frac{q_B}{q_B + q_K}$.

(b) Derive the "money valuation equation", i.e., an expression of the form $\mu_{\vartheta t} = f(\vartheta_t, \tilde{\sigma}_t)$ (drift of ϑ) where f only depends on parameters of the model.

Feel free to use the following suggestion or an alternative procedure

- (a) Postulate a Geometric Brownian motion for ϑ , q_B and q_K .
- (b) Use the definition of ϑ to find the law of motion $d\vartheta_t$ using Ito's Lemma
- (c) Use the martingale pricing condition to simplify the expression for $\mu_{\vartheta t}$

$$\frac{\mathbb{E}\left[dr_t^{K,\tilde{i}}\right]}{dt} - \frac{\mathbb{E}\left[dr_t^B\right]}{dt} = \zeta_t \left(\sigma_t^{K,\tilde{i}} - \sigma_t^B\right) + \tilde{\zeta}_t \left(\tilde{\sigma}_t^{K,\tilde{i}} - \tilde{\sigma}_t^B\right)$$

where ζ is the price of risk.

- (d) Find the price of risk and replace in the expression for $\mu_{\vartheta t}$
- (c) Suppose that $\sigma_{\sigma,t} = 0$ and the economy is at the steady state with $\tilde{\sigma}_t = \tilde{\sigma}^{ss}$ for some $\tilde{\sigma}^{ss} > 0$.
 - i. Derive expressions for q^B , q^K and ϑ in the monetary and non-monetary equilibria.
 - ii. What is the smallest value of $\tilde{\sigma}^{ss}$ that allows for a monetary equilibrium? Denote this value by $\tilde{\sigma}^{ss}_{\min}$.
 - iii. Suppose that $\tilde{\sigma}^{ss} > \tilde{\sigma}^{ss}_{\min}$, what happens to q^B , q^K and ϑ as $\tilde{\sigma}^{ss}$ rises?
 - iv. Suppose that $0 < \tilde{\sigma}^{ss} < \tilde{\sigma}^{ss}_{\min}$, what happens to q^B , q^K and ϑ as $\tilde{\sigma}^{ss}$ falls?
- 4. Solving the previous model numerically.
 - (a) Set a = 0.2, $\phi = 1$, $\delta = 0.05$, $\rho = 0.01$, $\tilde{\sigma}^{ss} = 0.2$, b = 0.05, $\nu = 0.02$.
 - (b) Apply Ito's lemma to $\vartheta_t = \vartheta(\tilde{\sigma}_t)$, and equate the drift term with $\vartheta_t \mu_t^{\vartheta}$, where μ_t^{ϑ} is given by the Cox-Ingersol-Ross process above. This gives you an HJB-looking equation for $\vartheta(\tilde{\sigma})$.
 - (c) Solve the model using value function iteration:
 - i. Suggest a grid for $\tilde{\sigma}$ and construct the M matrix using build_M.m.
 - ii. Rewrite the money valuation equation such that in the discretized form you get:

$$\rho \vartheta = u(\vartheta) + M\vartheta$$

iii. Write a loop that updates $\vartheta(\tilde{\sigma})$ with the implicit method:

$$\vartheta_{t-\Delta t} = \left((1 + \rho \Delta t)I - \Delta tM \right)^{-1} \left(\Delta t u(\vartheta_t) + \vartheta_t \right)$$

- iv. Iterate over $\vartheta(\tilde{\sigma})$ until convergence
- (d) Plot $\vartheta, q^B, q^K, r^f, \zeta, \tilde{\xi}$ as functions of $\tilde{\sigma}$. Explain the dependence of the variables on $\tilde{\sigma}$.