SLR Weight-Length Relation

Preliminaries

Load Necessary Packages

```
> library(FSA) # for filterD(), hist(), Summarize()
> library(dplyr) # for mutate(), select()
```

Load Data

```
> # Set your working directory to where your external data files (and scripts) are located.
> setwd("C:/aaaWork/Web/GitHub/RcourseNunavut2016/Handouts")
> dSC <- read.csv("SawyerCo_reduced.csv")
> dSC <- mutate(dSC,loglen=log(len),logwt=log(weight))
> Sturg <- filterD(dSC,waterbody=="CHIPPEWA RIVER",species=="Lake Sturgeon",!is.na(len),!is.na(weight))</pre>
```

Quick Summaries

Simple Linear Regression

Fitting the Model

```
> slr1 <- lm(weight~len,data=Sturg)
> residPlot(slr1)
```


- > slr2 <- lm(logwt~loglen,data=Sturg)</pre>
- > residPlot(slr2)


```
> summary(slr2)

Call:
lm(formula = logwt ~ loglen, data = Sturg)

Residuals:
    Min    1Q    Median    3Q    Max
-0.38861 -0.07813 -0.00929    0.07502    0.27416
```

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -13.75159  0.39032 -35.23  <2e-16
loglen
                        0.05575 57.78
                                          <2e-16
             3.22139
Residual standard error: 0.1122 on 143 degrees of freedom
Multiple R-squared: 0.9589,
                               Adjusted R-squared: 0.9586
F-statistic: 3339 on 1 and 143 DF, p-value: < 2.2e-16
> cbind(ests=coef(slr2),confint(slr2))
                           2.5 %
                 ests
(Intercept) -13.751588 -14.523137 -12.980038
loglen
             3.221387 3.111185
                                 3.331589
```

Making Predictions

Summary Plot

```
> Summarize(~loglen,data=Sturg,digits=1)
         nvalid
                                                  Q1
                                                                    QЗ
      n
                     mean
                                sd
                                        min
                                                       median
                                                                           max percZero
  145.0 145.0 7.0
                                                          7.0
                                                                   7.1
                            0.2
                                        6.2
                                                 6.9
                                                                           7.3
> logL <- seq(6.2,7.4,length.out=199)
> logW <- predict(slr2,data.frame(loglen=logL),interval="prediction")
> L <- exp(logL)
> W <- exp(logW)
> headtail(W)
          fit
                     lwr
                                upr
1
      503.2122 396.0909
                           639.3040
2
      513.1332 403.9989
                           651.7484
     523.2498 412.0642
                           664.4362
197 23100.9539 18415.9227 28977.8622
198 23556.3982 18776.6121 29552.9296
199 24020.8217 19144.3296 30139.4663
> plot(weight~len,data=Sturg,pch=19,col=col2rgbt("black",1/3),xlab="Length (mm)",ylab="Weight (g)")
> lines(L,W[,"fit"],lwd=2)
> lines(L,W[,"lwr"],lwd=2,lty=2)
> lines(L,W[,"upr"],lwd=2,lty=2)
```

