# FORMULE DE PLANCHEREL SUR $GL_n \times GL_n \setminus GL_{2n}$

# 1. Introduction

Soit F un corps p-adique, G un groupe réductif déployé sur F et  $X = H \setminus G$  une variété sphérique homogène admettant une mesure invariante. Sakellaridis et Venkatesh [17] introduisent une donnée radicielle associé à X, qui n'existe que sous certaines conditions sur X. On peut associer à la donnée radicielle dualle un groupe réductif complexe  $\check{G}_X$  qu'ils appellent le groupe dual de la variété sphérique X. On note  $G_X$  le groupe réductif déployé sur F dont le groupe dual est  $\check{G}_X$ , le groupe  $G_X$  est associé à la donnée radicielle de X. Sakellaridis et Venkatesh introduisent aussi une application  $\iota_X: \check{G}_X \times SL_2(\mathbb{C}) \to \check{G}$  sous certaines hypothèses. L'existence de l'application  $\iota_X$  a ensuite été vérifiée par Knop et Schalke [15] sans ces hypothèses. Supposons que  $\iota_X$  est trivial sur  $SL_2(\mathbb{C})$ .

La correspondance de Langlands locale pour G donne une application surjective  $Irr(G) \to \Phi(G)$  à fibres finies entre l'ensemble Irr(G) des classes d'isomorphismes de représentations irréductibles de G et l'ensemble  $\Phi(G)$  des paramètres de Langlands. Elle donne une partition de Irr(G) en L-paquets

$$Irr(G) = \bigcup_{\varphi \in \Phi(G)} \Pi^G(\varphi),$$

où  $\Pi^G(\phi)$  est l'ensemble des classes d'isomorphismes de représentations qui ont pour paramètre de Langlands  $\phi$ . La correspondance de Langlands locale est prouvée pour  $GL_n(F)$  par Harris-Taylor [7], Henniart [8] et pour les groupes orthogonaux impairs par Arthur [1]. Rappellons la

Conjecture 1.1 (Sakellaridis-Venkatesh [17, Conjecture 16.2.2]). Il existe un isomorphisme G-équivariant de représentations unitaires

$$(2) \hspace{1cm} L^{2}(X) \simeq \int_{\Phi_{\mathrm{temp}}(G_{X})}^{\oplus} \mathfrak{H}_{\varphi} d\varphi,$$

où  $\Phi_{\mathsf{temp}}(\mathsf{G}_X)$  est l'ensemble des paramètres de Langlands tempérés de  $\mathsf{G}_X$  modulo  $\check{\mathsf{G}}_X$ -conjugaison,  $\mathsf{d}\varphi$  est dans la classe naturelle des mesures sur  $\Phi_{\mathsf{temp}}(\mathsf{G}_X)$  et  $\mathcal{H}_\varphi$  est une somme directe sans multiplicité de représentations dans  $\Pi^\mathsf{G}(\iota_X \circ \varphi)$ .

Supposons de plus la correspondance de Langlands locale pour  $G_X$ , on dispose alors d'une correspondance fonctorielle  $T_X: Temp(G_X) \to Temp(G)$ . Cette correspondance associe à une classe d'isomorphisme de représentations tempérées de  $G_X$  un ensemble fini de classes d'isomorphisme de représentations tempérées de G. On obtient alors la

Date: 23 septembre 2019.

Conjecture 1.2 (Sakellaridis-Venkatesh). Supposons que la mesure de Plancherel  $d\mu_{G_X}$  sur  $G_X$  se descend en une mesure sur  $Temp(G)/\sim$ , où  $\sim$  est la relation d'équivalence "égalité des paramètres de Langlands". Alors il existe un isomorphisme Géquivariant de représentations unitaires

$$(3) \hspace{1cm} L^{2}(X) \simeq \int_{\text{Temp}(G_{X})/\sim}^{\oplus} \widetilde{T}_{X}(\sigma) d\mu_{G_{X}}(\sigma),$$

où  $d\mu_{G_X}$  est la mesure de Plancherel sur  $G_X$  et  $\widetilde{T}_X(\sigma)$  est une somme directe sans multiplicité de représentations dans  $T_X(\sigma)$ .

Spécifions maintenant au cas où  $G = GL_{2n}$  et  $X = GL_n \times GL_n \setminus GL_{2n}$ . On a  $\check{G}_X = Sp_{2n}$  et  $G_X = SO(2n+1)$ . La correspondance de Langlands locale est prouvé pour G et  $G_X$  par Harris-Taylor [7], Henniart [8] et Arthur [1]. De plus, la mesure de Plancherel se descend à  $Temp(G_X)/\sim$  d'après Ichino-Lapid-Mao [10]. L'essentiel de notre travail consiste alors à prouver le

**Théorème 1.1.** Il existe un isomorphisme  $\mathsf{GL}_{2n}$ -équivariant de représentations unitaires

$$(4) \hspace{1cm} L^{2}(GL_{n}\times GL_{n}\backslash GL_{2n})\simeq \int_{Temp(SO(2n+1))/\sim}^{\oplus}T(\sigma)d\mu(\sigma),$$

où  $d\mu(\sigma)$  est la mesure de Plancherel sur SO(2n+1) et  $T: Temp(SO(2n+1))/\sim \to Temp(GL_{2n})/\sim$  est l'application de transfert provenant de la correspondance de Langlands locale.

On déduit le théorème précédent d'un résultat analogue sur le modèle de Shalika. Plus précisément, on prouve le

**Théorème 1.2.** Les notations  $H_n$  et  $\theta$  sont définies dans la suite, voir section 1.3 par exemple. Il existe un isomorphisme  $\mathsf{GL}_{2n}$ -équivariant de représentations unitaires

$$(5) \hspace{1cm} L^{2}(H_{\mathfrak{n}}\backslash GL_{2\mathfrak{n}},\theta)\simeq \int_{Temp(SO(2\mathfrak{n}+1))/\sim}^{\oplus} T(\sigma)d\mu(\sigma),$$

où  $d\mu(\sigma)$  est la mesure de Plancherel sur SO(2n+1) et  $T: Temp(SO(2n+1))/\sim \to Temp(GL_{2n})$  est l'application de transfert provenant de la correspondance de Langlands locale.

Dans la suite de cette introduction, F désigne un corps de nombres et  $\psi$  un caractère non trivial de  $\mathbb{A}_F$ . On note  $H_n(\mathbb{A}_F)$  le groupe des matrices de la forme  $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$  avec  $X\in M_n(\mathbb{A}_F)$  et  $g\in GL_n(\mathbb{A}_F)$ . L'élément  $\sigma_n$  est la matrice associée à la permutation  $\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 3 & \dots & 2n-1 \end{pmatrix} \begin{pmatrix} n & n+1 & n+2 & \dots & 2n \\ 2 & 1 & 2 & n \end{pmatrix}$ . Soit  $\theta$  le caractère sur  $H_n(\mathbb{A}_F)$  qui envoie  $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$  sur  $\psi(\text{Tr}(X))$ .

Soit  $\pi$  une représentation automorphe cuspidale irréductible de  $GL_{2n}(\mathbb{A}_F)$  et  $\phi_1, \phi_2$  des fonctions de Schwartz sur  $H_n(\mathbb{A}_F)\backslash GL_{2n}(\mathbb{A}_F)$  qui agissent par le caractère  $\theta$  sur  $H_n(\mathbb{A}_F)$ . On note  $\Sigma\phi_i\in C^\infty([GL_{2n}])$ , pour i=1,2, la fonction définie par  $\Sigma\phi_i(g)=\sum_{x\in H_n(F)\backslash GL_{2n}(F)}\phi_i(xg)$  pour tout  $g\in GL_{2n}(\mathbb{A}_F)$ . D'autre part, pour  $\phi\in\pi$ , on introduit la période globale

(6) 
$$\mathcal{P}_{\mathsf{H}_{\mathfrak{n}},\theta}(\varphi) = \int_{[\mathsf{Z}_{2\mathfrak{n}} \setminus \mathsf{H}_{\mathfrak{n}}]} \varphi(\mathsf{h}) \theta(\mathsf{h}) d\mathsf{h},$$

où  $Z_{2n}$  est le centre de  $GL_{2n}$  et les crochets désignent le quotient des points adéliques modulo les points rationnels.

Sakellaridis et Venkatesh conjecturent une factorisation du produit scalaire

$$(7) \hspace{1cm} <(\Sigma\varphi_{1})_{\pi}, (\Sigma\varphi_{2})_{\pi}>_{\mathsf{Pet}} = \int_{[Z_{2\pi}\setminus\mathsf{GL}_{2\pi}]} (\Sigma\varphi_{1})_{\pi}(g) \overline{(\Sigma\varphi_{2})_{\pi}(g)} \mathrm{d}g,$$

où  $(\Sigma \varphi_1)_{\pi}$  est la projection sur  $\pi$  de  $\Sigma \varphi_i$  et dg est la mesure de Tamagawa de  $[Z_{2n} \setminus GL_{2n}]$  [17, section 17.1].

Si  $\pi$  est le transfert d'une représentation automorphe cuspidale  $\sigma$  de  $SO(2n+1)(\mathbb{A}_F)$  alors cette factorisation prend la forme suivante

(8) 
$$\langle (\Sigma \varphi_1)_{\pi}, (\Sigma \varphi_2)_{\pi} \rangle_{Pet} = q \prod_{\nu}' \langle \varphi_{1,\nu}, \varphi_{2,\nu} \rangle_{\sigma_{\nu}},$$

où q est un rationnel. Les quantités  $<\phi_{1,\nu},\phi_{2,\nu}>_{\sigma_{\nu}}$  sont des formes hermitiennes  $H_n(F_{\nu})$ -invariante. On renvoie à [17, section 17.5] pour la signification du produit  $\prod_{\nu}'$ . En effet, le produit n'est pas absolument convergent et on doit l'interpréter comme l'évaluation d'une fonction L. Si  $\pi$  n'est pas le transfert d'une représentation automorphe cuspidale de  $SO(2n+1)(\mathbb{A}_F)$  alors

(9) 
$$\langle (\Sigma \phi_1)_{\pi}, (\Sigma \phi_2)_{\pi} \rangle_{Pet} = 0.$$

Sakellaridis et Venkatesh conjecturent que les formes hermitiennes  $\langle \phi_{1,\nu}, \phi_{2,\nu} \rangle_{\sigma_{\nu}}$  (pour  $\sigma_{\nu}$  tempérée) apparaissent dans la formule de Plancherel explicite pour  $H_n(F_{\nu})\backslash GL_{2n}(F_{\nu})$ . Plus précisement, on a la

Conjecture 1.3 (Sakellaridis-Venkatesh [17, section 17]).

$$(10) \qquad <\varphi_{1,\nu}, \varphi_{2,\nu}>_{\mathsf{L}^2} = \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\sim} <\varphi_{1,\nu}, \varphi_{2,\nu}>_{\sigma_{\nu}} \mathrm{d}\mu_{\mathsf{SO}(2n+1)}(\sigma_{\nu})$$

La section 5 est consacré à la preuve de cette conjecture. Plus précisément, on obtient le

**Théorème 1.3.** Soit  $\nu$  une place non archimédienne de F et  $\psi$  un caractère additif de  $F_{\nu}$ . On pose  $Y_n = H_n(F_{\nu}) \backslash GL_{2n}(F_{\nu})$ . Soient  $\phi_1, \phi_2 \in C_c^{\infty}(Y_n, \theta)$ . On a

$$(11) \quad (\phi_1,\phi_2)_{L^2(Y_n,\theta)} = \int_{\mathsf{Temp}(SO(2n+1))/\sim} (\phi_1,\phi_2)_{Y_n,\mathsf{T}(\sigma)} \frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_\sigma|} d\sigma,$$

La quantité  $(\phi_1, \phi_2)_{Y_n, T(\sigma)}$  est définie de manière explicite dans la section 5.1. Le facteur  $\frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_\sigma|}$  est défini dans la section 1.1.

Ce résultat est la formule de Plancherel explicite sur  $H_n(F_\nu)\backslash GL_{2n}(F_\nu)$  qui nous permet d'en déduire les théorèmes 1.1 et 1.2.

De manière duale, on conjecture une factorisation de la période globale  $\mathcal{P}_{H_n,\theta}$  en produit de périodes locales  $\mathcal{P}_{H_n,\theta,\nu}$ . C'est cette factorisation et le lien avec la formule de Plancherel qui va nous permettre d'obtenir une formule de Plancherel explicite sur  $L^2(H_n\backslash GL_{2n},\theta)$ . Plus précisément, pour  $\Phi$  une fonction de Schwartz sur  $\mathbb{A}^n_F$  et  $W_{\varphi}$  la fonction de Whittaker associée à  $\varphi$ , on introduit dans la suite des fonctions zêta globales  $J(s,W_{\varphi},\Phi)$ , qui sont reliées à la période globale par la relation

(12) 
$$\operatorname{Res}_{s=1} J(s, W_{\varphi}, \Phi) = \mathcal{P}_{H_n, \theta}(\varphi) \widehat{\Phi}(0).$$

De plus, ces fonctions zêta globales se décomposent en un produit de fonctions zêta locales, pour Re(s) assez grand, on a

$$J(s,W_{\phi},\Phi) = L^{S}(s,\pi,\Lambda^{2}) \prod_{\nu \in S} J(s,W_{\nu},\Phi_{\nu}), \label{eq:Jacobian}$$

où S est un ensemble de places suffisamment grand. On obtient alors une factorisation de la période globale sous la forme

$$\mathfrak{P}_{\mathsf{H}_{\mathfrak{n}},\theta}(\phi) = \frac{\mathsf{Res}_{s=1}\mathsf{L}^{\mathsf{S}}(s,\pi,\Lambda^2)}{\widehat{\Phi}^{\mathsf{S}}(0)} \prod_{\nu \in \mathsf{S}} \frac{\mathsf{J}(1,W_{\nu},\Phi_{\nu})}{\widehat{\Phi}_{\nu}(0)}.$$

On verra que le facteur  $\frac{J(1,W_{\nu},\Phi_{\nu})}{\widehat{\Phi}_{\nu}(0)}$  ne dépend pas de  $\Phi$ . On l'exprimera sous la forme d'une intégrale et que l'on note par la lettre  $\beta$  dans la section 5. C'est cette forme linéaire  $\beta$  qui nous servira à prouver le théorème 5.1.

On commence dans la section 2 par prouver une relation sur les facteurs  $\gamma$  du carré extérieur. Les sections 3 et 4 sont des préliminaires pour le théorème 5.1. On fini dans la section 5 par prouver une formule de Plancherel explicite sur  $L^2(H_n \setminus GL_{2n}, \theta)$  et une formule de Plancherel abstraite sur  $L^2(GL_n \times GL_n \setminus GL_{2n})$ .

1.1. Notations. Dans la suite on notera F un corps p-adique (sauf dans la section 2 où F peut désigner un corps archimédien) et  $\psi$  un caractère non trivial de F. On note  $q_F$  le cardinal du corps résiduel de F et  $|.|_F$  (ou simplement |.|) la valeur absolue sur F normalisé par  $|\omega|_F = q_F^{-1}$  où  $\omega$  est une uniformisante de F. On notera  $G_m$  le groupe  $GL_m(F)$  et  $PG_m = Z_m(F)\backslash GL_m(F)$ . On note  $H_n(F)$  le groupe des matrices de la forme  $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$  avec  $X\in M_n(F)$  et  $g\in GL_n(F)$ . L'élément  $\sigma_n$  est la matrice associée à la permutation  $\begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 3 & \cdots & 2n - 1 \end{pmatrix}$ .

L'élément  $\sigma_n$  est la matrice associée à la permutation  $\begin{pmatrix} 1 & 2 & \cdots & n & n+1 & n+2 & \cdots & 2n \\ 1 & 3 & \cdots & 2n-1 & 2 & 4 & \cdots & 2n \end{pmatrix}$ . On note SO(2m+1) la forme déployé du groupe spécial orthogonal sur un espace de dimension 2m+1. On note  $A_n$  le sous groupe de  $G_n$  des matrices diagonales inversibles,  $B_n$  le sous groupe des matrices triangulaires supérieures inversibles,  $\overline{B}_n$  le sous groupe des matrices triangulaires inférieures inversibles,  $N_n$  le sous-groupe de  $B_n$  des matrices dont les éléments diagonaux sont  $1, \overline{N}_n = {}^tN_n$  et  $M_n$  l'ensemble des matrices de taille  $n \times n$  à coefficients dans F. On note  $V_n$  le sous-groupe de  $M_n$  des matrices triangulaires inférieures strictes. On note  $U_n$  le groupe des matrices de la forme  $\begin{pmatrix} 1_{n-1} & \chi \\ 0 & 1 \end{pmatrix}$  pour  $\chi \in F^{n-1}$  et  $P_n = G_{n-1}U_n$  le sous-groupe mirabolique.

On note  $\delta_{B_n}$  le caractère modulaire de  $B_n$ . On notera par des lettres gothiques les algèbres de Lie correspondantes et pour  $\mathfrak g$  une algèbre de Lie  $\mathcal U(\mathfrak g)$  désignera l'algèbre enveloppante.

Lorsque X est un espace totalement discontinu, on notera  $C_c^\infty(X)$  ou S(X), l'espace des fonctions localement constante à support compact. Lorsque G est un groupe algébrique réel ou complexe, on note S(G) l'espace des fonctions  $C^\infty$  à décroissance rapide ainsi que toute ses dérivées. De plus, lorsque  $\mathbb{A}_K$  l'anneau des adèles d'un corps de nombres K et G est un groupe algébrique sur K, on note  $S(G(\mathbb{A}))$  le produit restreint des espaces  $S(G(K_\nu))$  lorsque  $\nu$  parcours l'ensemble des places de K i.e. l'ensemble des combinaisons linéaires des fonctions  $f = \otimes_{\nu} f_{\nu}$  avec  $f_{\nu} \in S(G(K_{\nu}))$  pour tout  $\nu$  et  $f_{\nu} = \mathbb{1}_{G(\mathcal{O}_{\nu})}$  sauf pour un nombre fini de  $\nu$ , où  $\mathcal{O}_{\nu}$  est l'anneau des entiers de  $K_{\nu}$ .

Pour G un groupe réductif connexe sur F (dans la suite G sera  $GL_{2n}$ ,  $SO_{2n+1}$  ou un quotient, d'un sous-groupe de Levi de ces groupes), on note Temp(G) l'ensemble

des classes d'isomorphismes de représentations irréductibles tempérées de G(F) et  $\Pi_2(G) \subset \mathsf{Temp}(G)$  le sous-ensemble des représentations de carré intégrable. On note  $\mathsf{Z}_G$  le centre de  $\mathsf{G}(\mathsf{F})$  et  $\mathsf{A}_G$  le tore déployé maximal dans  $\mathsf{Z}_G$ . Soit  $\mathsf{M}$  un sous-groupe de Levi de  $\mathsf{G}$  et  $\sigma \in \Pi_2(\mathsf{M})$ . On note  $\mathsf{W}(\mathsf{G},\mathsf{M})$  le groupe de Weyl associé au couple  $(\mathsf{G},\mathsf{M})$  et  $\mathsf{W}(\mathsf{G},\sigma)$  le sous-groupe de  $\mathsf{W}(\mathsf{G},\mathsf{M})$  fixant la classe d'isomorphisme de  $\sigma$ . On note  $\Phi(\mathsf{G})$  l'ensemble des paramètres de Langlands tempérés de  $\mathsf{G}$  et  $\mathsf{Temp}(\mathsf{G})/\mathsf{Stab}$  le quotient de  $\mathsf{Temp}(\mathsf{G})$  par la relation d'équivalence  $\pi \equiv \pi' \iff \varphi_\pi = \varphi_{\pi'}$ , où  $\varphi_\pi$  est le paramètre de Langlands associé à  $\pi$ .

Pour P=MN un sous-groupe parabolique de G, on note  $\mathfrak{i}_P^G(\sigma)$  l'induction parabolique normalisée lorsque  $\sigma$  est une représentation lisse de M: c'est la représentation régulière à droite de G sur l'espace des fonctions localement constantes  $f:G\mapsto \sigma$  qui vérifient  $f(mng)=\delta_P(m)^{\frac{1}{2}}\sigma(m)f(g)$  pour tous  $m\in M, n\in N$  et  $g\in G$ . Lorsque  $G=G_n$  et  $M=G_{n_1}\times...\times G_{n_k}$ , on note  $\pi_1\times...\times \pi_k=\mathfrak{i}_P^G(\pi_1\boxtimes...\boxtimes \pi_k)$  pour  $\pi_\mathfrak{i}$  des représentations lisses de  $G_{n_\mathfrak{i}}$ . Lorsque G=SO(2n+1) et  $M=G_{n_1}\times...\times G_{n_k}\times SO(2m+1)$ , on note  $\pi_1\times...\times \pi_k\rtimes \sigma_0=\mathfrak{i}_P^G(\pi_1\boxtimes...\boxtimes \pi_k\boxtimes \sigma_0)$  pour  $\pi_\mathfrak{i}$  des représentations lisses de  $G_{n_\mathfrak{i}}$  et  $\sigma_0$  une représentation lisse de SO(2m+1).

On peut définir une application  $\Phi(SO(2m+1)) \to \Phi(G_{2m})$ , rappelons qu'un élément de  $\Phi(SO(2m+1))$  est un morphisme admissible  $\phi: W_F' \to {}^LSO(2m+1)$ , où  $W_F'$  est le groupe de Weil-Deligne de F. Or  ${}^LSO(2m+1) = Sp_{2m}(\mathbb{C})$ , l'application  $\Phi(SO(2m+1)) \to \Phi(G_{2m})$  est définie par l'injection de  $Sp_{2m}(\mathbb{C})$  dans  $GL_{2m}(\mathbb{C})$  grâce à la correspondance de Langlands locale pour  $GL_{2m}$ . La correspondance de Langlands locale pour SO(2m+1) et pour  $GL_{2m}$ , nous permettent de définir une application de transfert  $T: Temp(SO(2m+1))/Stab \to Temp(G_{2m})$ .

Dans les mesures de Plancherel, on verra apparaître des termes  $|S_{\sigma}|$  pour  $\sigma \in \mathsf{Temp}(\mathsf{SO}(2n+1))$  ou  $\mathsf{Temp}(\mathsf{PG}_{2n})$ . On n'explicite pas les ensembles  $S_{\sigma}$  et on se contente de donner leur cardinal. Pour  $\sigma \in \mathsf{Temp}(\mathsf{SO}(2n+1))$  sous-représentation de  $\pi_1 \times ... \times \pi_1 \rtimes \sigma_0$ , avec  $\pi_i \in \Pi_2(\mathsf{G}_{\mathfrak{n}_i})$  et  $\sigma_0 \in \Pi_2(\mathsf{SO}(2m+1))$ , le facteur  $|S_{\sigma}|$  est le produit  $|S_{\pi_1}|...|S_{\pi_l}||S_{\sigma_0}|$ ; où  $|S_{\sigma_0}| = 2^k$  tel que  $\mathsf{T}(\sigma_0) \simeq \tau_1 \times ... \times \tau_k$  avec  $\tau_i \in \Pi_2(\mathsf{G}_{\mathfrak{m}_i})$  et  $|S_{\pi_i}| = \mathfrak{n}_i$ .

Pour  $\pi \in \mathsf{Temp}(\mathsf{G})$  et r une représentation admissible de  ${}^\mathsf{L}\mathsf{G}$ , on note  $\mathsf{L}(s,\pi,r)$  la fonction  $\mathsf{L}$  associée par la correspondance de Langlands locale et  $\gamma(s,\pi,r,\psi)$  le facteur  $\gamma$  associée. Lorsque  $\mathsf{r}$  est la représentation standard, on l'omettra. De plus, on note  $\gamma^*(0,\pi,r,\psi)$  la régularisation du facteur  $\gamma$  en 0, défini par la relation

$$\gamma^*(0,\pi,r,\psi) = \lim_{s \to 0^+} \frac{\gamma(s,\pi,r,\psi)}{(slog(q_F))^{n_{\pi,r}}},$$

où  $n_{\pi,r}$  est l'ordre du zéro de  $\gamma(s,\pi,r,\psi)$  en s=0.

1.2. **Mesures.** On équipe F avec la mesure de Haar dx qui est autoduale par rapport à  $\psi$  et  $F^{\times}$  de la mesure de Haar  $d^{\times}x = \frac{dx}{|x|_F}$ . Pour  $m \ge 1$ , on équipe  $F^m$  de la mesure produit  $(dx)^m$  et  $(F^{\times})^m$  de la mesure  $(d^{\times}x)^m$ . On équipe les groupes  $M_n$ ,  $U_n$ ,  $N_n$ ,  $\overline{N}_n$  des mesures de Haar "produit des coordonnées". Par exemple, on équipe  $M_n$  de la mesure  $dX = \prod_{i,j=1}^n dX_{i,j}$  où  $dX_{i,j}$  est la mesure de Haar sur F que l'on a fixé précédemment. On équipe  $G_n$  de la mesure  $dg = |\det g|_F^{-n} \prod_{i,j=1}^n dg_{i,j}$  et  $P_n$  la mesure de Haar à droite obtenu comme produit des mesures sur  $G_{n-1}$  sur  $U_n$ . On équipe les groupes compact des mesures de Haar de masse totale égale à 1.

On équipe  $N_n \setminus G_n$  de la mesure

(16) 
$$\int_{N_n \setminus G_n} f(g) dg = \int_{\overline{B}_n} f(b) db$$

pour tout  $f \in \mathcal{S}(G_n)$  invariante par  $N_n$ . On a l'isomorphisme  $P_n \backslash G_n \simeq F^n/0$ , on équipe  $P_n \backslash G_n$  de la mesure dg telle que  $|\det g| dg$  s'identifie à la mesure  $(dx)^n$  sur  $F^n$ . Si l'on identifie  $P_n \backslash G_n$  à l'ouvert dense  $F^{n-1} \times F^\times$ , cela revient à identifier la mesure sur  $P_n \backslash G_n$  à la mesure  $(dx)^{n-1} \times d^\times y$  sur  $F^{n-1} \times F^\times$ . La mesure sur  $P_n \backslash G_n$  n'est pas invariante. Cependant on a la formule d'intégration suivante

(17) 
$$\int_{G_n} f(g) dg = \int_{P_n \setminus G_n} \int_{P_n} f(pg) |\det p|^{-1} dp dg,$$

pour tout  $f \in S(G_n)$ .

Pour G un groupe réductif connexe sur F, on fixe un isomorphisme  $A_G \simeq (F^\times)^{\dim(A_G)}$  et on équipe  $A_G$  de la mesure  $(d^\times x)^{\dim(A_G)}$  provenant de l'isomorphisme avec  $(F^\times)^{\dim(A_G)}$ . Décrivons le choix de la normalisation d'une mesure sur  $\operatorname{Temp}(G)$ . Soit M un sous-groupe de Levi de G et  $\sigma \in \Pi_2(M)$ . Soit  $\widehat{A_M}$  le dual unitaire de  $A_M$ et  $d\widetilde{\chi}$  la mesure de Haar duale de celle de  $A_M$ . On équipe alors  $\widehat{A_M}$  de la mesure  $d\chi$  définie par

(18) 
$$d\chi = \gamma^*(0,1,\psi)^{-\dim(A_M)} d\widetilde{\chi}.$$

La mesure  $d\chi$  est indépendante du caractère  $\psi$ .

On note  $X^*(M)$  le groupe des caractères algébriques de M, on dispose alors d'une application  $\chi \otimes \lambda \in X^*(M) \otimes i\mathbb{R} \mapsto \sigma \otimes \chi_{\lambda} \in \Pi_2(M)$  où  $\chi_{\lambda}(g) = |\chi(g)|^{\lambda}$ . On définit alors une base de voisinage de  $\sigma$  dans  $\Pi_2(M)$  comme l'image d'une base de voisinage de 0 dans  $X^*(M) \otimes i\mathbb{R}$ .

Il existe une unique mesure  $d\sigma$  sur  $\Pi_2(M)$  tel que l'isomorphisme local  $\sigma \in \Pi_2(M) \mapsto \omega_\sigma \in \widehat{A}_M$  préserve localement les mesures. Soit P un sous groupe parabolique de G de Levi M. On définit alors la mesure  $d\pi$  sur Temp(G) localement autour de  $\pi \simeq i_P^G(\sigma)$  par la formule

(19) 
$$d\pi = |W(G, M)|^{-1} (i_P^G)_* d\sigma,$$

où  $(i_p^G)_*d\sigma$  est la mesure  $d\sigma$  poussée en avant en une mesure sur Temp(G) par l'application  $i_p^G$ . Cette mesure ne dépend pas du choix du groupe parabolique. La mesure  $d\pi$  est choisie pour vérifier la relation 80.

1.3. **Résultats.** Soit F un corps p-adique et  $\psi$  un caractère non trivial de F. Rappelons que l'on note  $H_n(F)$  le groupe des matrices de la forme  $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$  avec  $X \in M_n(F)$  et  $g \in GL_n(F)$ . L'élément  $\sigma_n$  est la matrice associée à la permutation  $\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 3 & \dots & 2n-1 \end{pmatrix} \begin{pmatrix} n & n+1 & n+2 & \dots & 2n \\ 2n & 4 & \dots & 2n \end{pmatrix}$ . De plus,  $\theta$  est le caractère sur  $H_n(F)$  qui envoie  $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$  sur  $\psi(Tr(X))$ . Le résultat principal est le

**Théorème 1.4.** On a un isomorphisme de représentations unitaires

$$(20) \hspace{1cm} L^{2}(\mathsf{H}_{\mathfrak{n}}(\mathsf{F})\backslash \mathsf{GL}_{2\mathfrak{n}}(\mathsf{F}), \theta) \simeq \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1)(\mathsf{F}))/\mathsf{Stab}}^{\oplus} \mathsf{T}(\sigma) d\sigma.$$

Ce théorème est équivalent au théorème 1.1. En effet, il suffit de calculer explicitement la (classe de la) mesure de Plancherel sur SO(2n+1). La mesure de Plancherel d'un groupe réductif p-adique G a été calculée par Waldspurger et Harish-Chandra [20] sous la forme

(21) 
$$d\mu_{G}(\sigma) = d(\sigma)j(\sigma)^{-1}d\sigma,$$

où  $d(\sigma)$  est le degré formel de  $\sigma$  et  $j(\sigma)$  est un scalaire produit d'opérateurs d'entrelacements (voir [20]). Le degré formel pour SO(2n+1) a été calculé par Ichino-Lapid-Mao [10] et le facteur j pour SO(2n+1) découle de la normalisation des opérateurs d'entrelacements d'Arthur [1]. Finalement, on obtient que la mesure de Plancherel pour SO(2n+1) est

$$d\mu_{SO(2n+1)}(\sigma) = \frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_\sigma|} d\sigma.$$

On renvoie à l'article de Beuzart-Plessis [5, Proposition 2.13.2] pour l'analogue de ce résultat pour les groupes unitaires.

De l'isomorphisme  $L^2(GL_n(F)\times GL_n(F)\backslash GL_{2n}(F))\simeq L^2(H_n(F)\backslash G_{2n}(F),\theta)$   $GL_{2n}$ -invariant (lemme 5.7), on en déduit le

Théorème 1.5. On a un isomorphisme de représentations unitaires

$$(23) \qquad L^{2}(GL_{n}(F)\times GL_{n}(F)\backslash GL_{2n}(F))\simeq \int_{Temp(SO(2n+1)(F))/Stab}^{\oplus}T(\sigma)d\sigma.$$

Rappelons que ces deux formules de Plancherel abstraite sont obtenu en prouvant une formule de Plancherel explicite sur  $H_N \setminus G_n$ .

Théorème 1.6. On pose  $Y_n=H_n\backslash G_{2n}.$  Soient  $\phi_1,\phi_2\in C_c^\infty(Y_n,\theta).$  On a

$$(24) \quad (\phi_1,\phi_2)_{\mathsf{L}^2(\mathsf{Y}_n,\theta)} = \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\sim} (\phi_1,\phi_2)_{\mathsf{Y}_n,\mathsf{T}(\sigma)} \frac{|\gamma^*(0,\sigma,\mathsf{Ad},\psi)|}{|\mathsf{S}_\sigma|} d\sigma,$$

La quantité  $(\phi_1, \phi_2)_{Y_n, T(\sigma)}$  est définie de manière explicite dans la section 5.1. Le facteur  $\frac{|\gamma^*(0, \sigma, Ad, \psi)|}{|S_{\sigma}|}$  est défini dans la section 1.1.

Pour finir, au cours de la preuve de la formule de Plancherel explicite, on a besoin d'une égalité sur des facteurs gamma définie de deux manière différentes. On prouve le

**Théorème 1.7.** Soit  $\pi$  une représentation tempérée irréductible de  $GL_{2n}(F)$ . On note  $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$  le facteur gamma de Jacquet-Shalika, voir section 2. Alors il existe une constante  $c(\pi)$  de module 1 telle que tout  $s \in \mathbb{C}$ , on ait

(25) 
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma(s, \pi, \Lambda^2, \psi).$$

## 2. Facteurs γ du carré extérieur

Dans cette partie F désigne un corps local de caractéristique 0 et  $\psi$  un caractère non trivial de F. Soit  $\pi$  une représentation tempérée irréductible de  $GL_{2n}(F)$ . Jacquet et Shalika ont défini une fonction L du carré extérieur  $L_{JS}(s,\pi,\Lambda^2)$  par des intégrales notées  $J(s,W,\varphi)$ , où  $W\in \mathcal{W}(\pi,\psi)$  est un élément du modèle de Whittaker de  $\pi$  et  $\varphi\in\mathcal{S}(F^n)$ . Matringe a prouvé que, lorsque F est non archimédien, ces intégrales  $J(s,W,\varphi)$  vérifient une équation fonctionnelle, ce qui permet de définir des facteurs  $\gamma$ , que l'on note  $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ .

On montre que l'on a encore une équation fonctionnelle lorsque F est archimédien et que les facteurs  $\gamma$  sont égaux à une constante de module 1 prés à ceux définis par Shahidi, que l'on note  $\gamma^{Sh}(s,\pi,\Lambda^2,\psi)$ . Plus exactement, des constantes  $c^{Sh}(\pi)$  et  $c(\pi)$  de module 1, telle que

(26) 
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = c^{Sh}(\pi)\gamma^{Sh}(s,\pi,\Lambda^2,\psi) = c(\pi)\gamma(s,\pi,\Lambda^2,\psi),$$

pour tout  $s \in \mathbb{C}$ . La dernière égalité est une conséquence de l'égalité des facteurs gamma de Shahidi et d'Artin pour le carré extérieur à une racine de l'unité prés prouvée par Henniart [9]. La preuve se fait par une méthode de globalisation, on considère  $\pi$  comme une composante locale d'une représentation automorphe cuspidale.

## 2.1. Préliminaires.

2.1.1. Théorie locale. Les intégrales  $J(s,W,\varphi)$  sont définies par

$$(27) \qquad \int_{\mathsf{N}_{\mathfrak{n}}\backslash\mathsf{G}_{\mathfrak{n}}}\int_{\mathsf{V}_{\mathfrak{n}}} W\left(\sigma_{\mathfrak{n}}\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}g & 0\\ 0 & g\end{pmatrix}\sigma_{\mathfrak{n}}^{-1}\right)d\mathsf{X}\varphi(e_{\mathfrak{n}}g)|\det g|^{s}dg$$

pour tous  $W \in \mathcal{W}(\pi,\psi)$ ,  $\varphi \in \mathcal{S}(F^n)$  et  $s \in \mathbb{C}$ . Le groupe  $V_n$  est l'ensemble des matrices triangulaires inférieures strictes, on l'équipe de la mesure de Haar  $dX = \prod_{1 \leqslant j < i \leqslant n} dX_{i,j}$ . L'élément  $\sigma_n$  est la matrice associée à la permutation  $\begin{pmatrix} 1 & 2 & \cdots & n & n+1 & n+2 & \cdots & 2n \\ 1 & 3 & \cdots & 2n-1 & 2 & 4 & \cdots & 2n \end{pmatrix}$ .

Jacquet et Shalika ont démontré que ces intégrales convergent pour Re(s) suffisamment grand, plus exactement, on dispose de la

**Proposition 2.1** (Jacquet-Shalika [12]). Il existe  $\eta > 0$  tel que les intégrales  $J(s, W, \varphi)$  convergent absolument pour  $Re(s) > 1 - \eta$ .

Kewat [14] montre, lorsque F est p-adique, que ce sont des fractions rationnelles en  $q^s$  où q est le cardinal du corps résiduel de F. On aura aussi besoin d'avoir le prolongement méromorphe de ces intégrales lorsque F est archimédien et d'un résultat de non annulation.

**Proposition 2.2** (Belt [2], Matringe [16]). Fixons  $s_0 \in \mathbb{C}$ . Il existe  $W \in W(\pi, \psi)$  et  $\varphi \in S(F^n)$  tels que  $J(s, W, \varphi)$  admet un prolongement méromorphe à tout le plan complexe et ne s'annule pas en  $s_0$ . Si  $F = \mathbb{R}$  ou  $\mathbb{C}$ , le point  $s_0$  peut éventuellement être un pôle. Si F est p-adique, on peut choisir W et  $\varphi$  tels que  $J(s, W, \varphi)$  soit entière

Lorsque la représentation est non-ramifiée, on peut représenter la fonction L du carré extérieur obtenue par la correspondance de Langlands locale, que l'on note  $L(s, \pi, \Lambda^2)$ , (qui est égale à celle obtenue par la méthode de Langlands-Shahidi d'après un résultat d'Henniart [9]) par ces intégrales.

**Proposition 2.3** (Jacquet-Shalika [12]). Supposons que F est p-adique, le conducteur de  $\psi$  est l'anneau des entiers  $\mathcal{O}_F$  de F. Soit  $\pi$  une représentation non ramifiée de  $GL_{2n}(F)$ . On note  $\varphi_0$  la fonction caractéristique de  $\mathcal{O}_F^n$  et  $W_0 \in \mathcal{W}(\pi, \psi)$  l'unique fonction de Whittaker invariante par  $GL_{2n}(\mathcal{O}_F)$  et qui vérifie W(1) = 1. Alors

(28) 
$$J(s, W_0, \phi_0) = L(s, \pi, \Lambda^2).$$

Pour finir cette section, on énonce l'équation fonctionnelle démontrée par Matringe lorsque F est un corps p-adique. Plus précisément, on a la

**Proposition 2.4** (Matringe [16]). Supposons que F est un corps p-adique et  $\pi$  générique. Il existe un monôme  $e^{JS}(s,\pi,\Lambda^2,\psi)$  en  $q^s$  ou  $q^{-s}$ , tel que pour tous  $W \in \mathcal{W}(\pi,\psi)$  et  $\phi \in \mathcal{S}(F^n)$ , on ait

$$(29) \qquad \qquad \varepsilon^{\mathrm{JS}}(s,\pi,\Lambda^{2},\psi)\frac{\mathrm{J}(s,W,\varphi)}{\mathrm{L}(s,\pi,\Lambda^{2})} = \frac{\mathrm{J}(1-s,\rho(w_{n,n})\widetilde{W},\hat{\varphi})}{\mathrm{L}(1-s,\widetilde{\pi},\Lambda^{2})},$$

où  $\hat{\varphi}=\mathfrak{F}_{\psi}(\varphi)$  est la transformée de Fourier de  $\varphi$  par rapport au caractère  $\psi$  définie par

(30) 
$$\mathcal{F}_{\psi}(\phi)(y) = \int_{\mathbb{F}^n} \phi(x) \psi(\sum_{i=1}^n x_i y_i) dx$$

pour tout  $y \in F^n$  et  $\widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \overline{\psi})$  est la fonction de Whittaker définie par  $\widetilde{W}(g) = W(w_n(g^t)^{-1})$  pour tout  $g \in GL_{2n}(F)$ , avec  $w_n$  la matrice associée à la permutation  $\begin{pmatrix} 1 & \cdots & 2n \\ 2n & \cdots & 1 \end{pmatrix}$  et  $w_{n,n} = \sigma_n \begin{pmatrix} 0 & 1_n \\ 1_n & 0 \end{pmatrix} \sigma_n^{-1}$ . On définit alors le facteur  $\gamma$  de Jacquet-Shalika par la relation

(31) 
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = \epsilon^{JS}(s,\pi,\Lambda^2,\psi) \frac{L(1-s,\widetilde{\pi},\Lambda^2)}{L(s,\pi,\Lambda^2)}.$$

2.1.2. Théorie globale. La méthode que l'on utilise est une méthode de globalisation. Essentiellement, on verra  $\pi$  comme une composante locale d'une représentation automorphe cuspidale. Pour ce faire, on aura besoin de l'équivalent global des intégrales  $J(s,W,\varphi)$ .

Soit K un corps de nombres et  $\psi_{\mathbb{A}}$  un caractère non trivial de  $\mathbb{A}_K/K$ . Soit  $\Pi$  une représentation automorphe cuspidale irréductible de  $GL_{2n}(\mathbb{A}_K)$ . Pour  $\phi \in \Pi$ , on considère

$$(32) W_{\varphi}(g) = \int_{N_{2n}(K) \backslash N_{2n}(\mathbb{A}_K)} \varphi(ug) \psi_{\mathbb{A}}(u)^{-1} du$$

la fonction de Whittaker associée. On considère  $\psi_{\mathbb{A}}$  comme un caractère de  $N_{2n}(\mathbb{A}_K)$  en posant  $\psi_{\mathbb{A}}(u) = \psi_{\mathbb{A}}(\sum_{i=1}^{2n-1} u_{i,i+1})$ . Pour  $\Phi \in \mathcal{S}(\mathbb{A}_K^n)$  une fonction de Schwartz, on note  $J(s, W_{\phi}, \Phi)$  l'intégrale

$$(33) \qquad \int_{\mathsf{N}_{\mathfrak{n}}\backslash\mathsf{G}_{\mathfrak{n}}} \int_{\mathsf{V}_{\mathfrak{n}}} W_{\varphi}\left(\sigma_{\mathfrak{n}}\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_{\mathfrak{n}}^{-1}\right) \mathrm{d}X\Phi(e_{\mathfrak{n}}g) |\det g|^{s} \mathrm{d}g$$

où l'on note  $G_n$  le groupe  $GL_n(\mathbb{A}_K)$ ,  $B_n$  le sous groupe des matrices triangulaires supérieures,  $N_n$  le sous-groupe de  $B_n$  des matrices dont les éléments diagonaux sont 1 et  $M_n$  l'ensemble des matrices de taille  $n \times n$  à coefficients dans  $\mathbb{A}_K$ .

Finissons cette section par l'équation fonctionnelle globale démontrée par Jacquet et Shalika.

**Proposition 2.5** (Jacquet-Shalika [12]). Les intégrales  $J(s, W_{\phi}, \Phi)$  convergent absolument pour Re(s) suffisamment grand. De plus,  $J(s, W_{\phi}, \Phi)$  admet un prolongement méromorphe à tout le plan complexe et vérifie l'équation fonctionnelle suivante

(34) 
$$J(s, W_{\varphi}, \Phi) = J(1 - s, \rho(w_{n,n})\widetilde{W}_{\varphi}, \hat{\Phi}),$$

où  $\widetilde{W}_{\phi}(g) = W_{\phi}(w_n(g^t)^{-1})$  et  $\hat{\Phi}$  est la transformée de Fourier de  $\Phi$  par rapport au caractère  $\psi_{\mathbb{A}}$ .

Comme on peut s'y attendre, les intégrales globales sont reliées aux intégrales locales. Plus exactement, si  $W_{\varphi} = \prod_{\nu} W_{\nu}$  et  $\Phi = \prod_{\nu} \Phi_{\nu}$ , où  $\nu$  décrit les places de K, on a

(35) 
$$J(s, W_{\varphi}, \Phi) = \prod_{\nu} J(s, W_{\nu}, \Phi_{\nu}).$$

 $2.1.3.\ Globalisation.$  Comme la preuve se fait par globalisation, la première chose à faire est de trouver un corps de nombres dont F est une localisation. On dispose du

**Lemme 2.1** (Kable [13]). Supposons que F est un corps  $\mathfrak{p}$ -adique. Il existe un corps de nombres k et une place  $\nu_0$  telle que  $k_{\nu_0} = F$ , où  $\nu_0$  est l'unique place de k au dessus de  $\mathfrak{p}$ .

On va définir une topologie sur  $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ . Soit M un sous-groupe de Levi de  $\mathsf{GL}_{2n}(\mathsf{F})$ ,  $\mathsf{P}$  un parabolique de Levi M et  $\sigma \in \Pi_2(M)$ . La classe d'équivalence de l'induction parabolique normalisé  $\mathfrak{i}_{\mathsf{P}}^{\mathsf{G}}(\sigma)$  est indépendante du parabolique  $\mathsf{P}$  et on la notera  $\mathfrak{i}_{\mathsf{M}}^{\mathsf{G}}(\sigma)$ . On note  $\mathsf{X}^*(M)$  le groupe des caractères algébriques de M, on dispose alors d'une application  $\chi \otimes \lambda \in \mathsf{X}^*(M) \otimes \mathfrak{i}\mathbb{R} \mapsto \mathfrak{i}_{\mathsf{M}}^{\mathsf{G}}(\sigma \otimes \chi_{\lambda}) \in \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$  où  $\chi_{\lambda}(g) = |\chi(g)|^{\lambda}$ . On définit alors une base de voisinage de  $\mathfrak{i}_{\mathsf{M}}^{\mathsf{G}}(\sigma)$  dans  $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$  comme l'image d'une base de voisinage de 0 dans  $\mathsf{X}^*(M) \otimes \mathfrak{i}\mathbb{R}$ .

Cette topologie sur  $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$  nous permet d'énoncer le résultat principal dont on aura besoin pour la méthode de globalisation.

Proposition 2.6 (Beuzart-Plessis [5]). Soient k un corps de nombres,  $\nu_0, \nu_1$  deux places distinctes de k avec  $\nu_1$  non archimédienne. Soit U un ouvert de  $Temp(GL_{2n}(k_{\nu_0}))$ . Alors il existe une représentation automorphe cuspidale irréductible  $\Pi$  de  $GL_{2n}(\mathbb{A}_k)$  telle que  $\Pi_{\nu_0} \in U$  et  $\Pi_{\nu}$  est non ramifiée pour toute place non archimédienne  $\nu \notin \{\nu_0, \nu_1\}$ .

2.1.4. Fonctions tempérées. On aura besoin dans la suite de connaître la dépendance que  $J(s,W,\varphi)$  lorsque l'on fait varier la représentation  $\pi$ . Pour ce faire, on introduit la notion de fonction tempérée et on étend la définition de  $J(s,W,\varphi)$  pour ces fonctions tempérées.

On note  $K_{2n}$  le sous-groupe compact maximal de  $GL_{2n}(F)$  défini par  $K_{2n}=GL_{2n}(\mathcal{O}_F)$  lorsque F est p-adique et  $K_{2n}=\{g\in GL_{2n}(F),g\overline{g}^t=I_n\}$  lorsque  $F=\mathbb{R}$  ou  $\mathbb{C}$ 

L'espace des fonctions tempérées  $C^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)$  est l'espace des fonctions  $f:GL_{2n}(F)\to \mathbb{C}$  telles que  $f(ng)=\psi(n)f(g)$  pour tous  $n\in N_{2n}(F)$  et  $g\in GL_{2n}(F)$ , on impose les conditions suivantes :

- Si F est p-adique, f est invariante à droite par un sous-groupe compact ouvert et il existe d>0 et C>0 tels que  $|f(\mathfrak{n}\mathfrak{a}k)|\leqslant C\delta_{B_{2\mathfrak{n}}}(\mathfrak{a})^{\frac{1}{2}}\log(\|\mathfrak{a}\|)^d$ , où  $\|\mathfrak{a}\|=1+\mathfrak{m}\mathfrak{a}\mathfrak{x}(|\mathfrak{a}_{i,i}|)$ , pour tous  $\mathfrak{n}\in N_{2\mathfrak{n}}(F)$ ,  $\mathfrak{a}\in A_{2\mathfrak{n}}(F)$  et  $k\in K_{2\mathfrak{n}}$ ,
- Si F est archimédien, f est  $C^{\infty}$  et il existe d>0 tel que pour tout  $\mathfrak{u}\in \mathcal{U}(\mathfrak{gl}_{2n}(\mathsf{F}))$ , il existe C>0 tel que  $|(R(\mathfrak{u})f)(\mathfrak{n}\mathfrak{a}k)|\leqslant C\delta_{B_{2n}}(\mathfrak{a})^{\frac{1}{2}}\log(\|\mathfrak{a}\|)^d$  pour tous  $\mathfrak{n}\in N_{2n}(\mathsf{F}),\ \mathfrak{a}\in A_{2n}(\mathsf{F}),\ k\in K_{2n}.$

On muni l'espace  $C^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)$  de la topologie provenant des seminormes  $\sup_{||g||< M} |f(g)|$ , pour M>0, où  $||g||=\max(|g_{i,j}|,|\det g|^{-1})$  dans le cas p-adique et  $\sup_{||g||< M} |R(\mathfrak{u})f(g)|$  dans le cas archimédien, pour M>0 et  $\mathfrak{u}\in \mathfrak{U}(\mathfrak{gl}_{2n}(F))$ .

On rappelle la majoration des fonctions tempérées sur la diagonale,

**Lemme 2.2** ([5, Lemme 2.4.3]). Soit  $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi)$ . Il existe d > 0 tel que pour tout  $N \ge 1$ , il existe C > 0 tel que

$$|W(bk)|\leqslant C\prod_{i=1}^{2n-1}(1+|\frac{b_i}{b_{i+1}}|)^{-N}\delta_{B_{2n}}(b)^{\frac{1}{2}}\log(||b||)^d,$$

pour tous  $b \in A_{2n}(F)$  et  $k \in K_{2n}$ .

**Lemme 2.3** ([5, Lemme 2.4.4]). Pour tout C > 0, il existe N tel que pour tous s vérifiant 0 < Re(s) < C et d > 0, l'intégrale

(37) 
$$\int_{A_n} \prod_{i=1}^{n-1} (1 + |\frac{a_i}{a_{i+1}}|)^{-N} (1 + |a_n|)^{-N} \log(||a||)^d |\det a|^s da$$

converge absolument.

On étend la définition des intégrales  $J(s, W, \phi)$  aux fonctions tempérées W, on montre maintenant la convergence de ces intégrales

**Lemme 2.4.** Pour  $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi)$  et  $\varphi \in \mathcal{S}(F^n)$ , l'intégrale  $J(s, W, \varphi)$  converge absolument pour tout  $s \in \mathbb{C}$  vérifiant Re(s) > 0. De plus, pour tous  $\varphi \in \mathcal{S}(F^n)$  et  $s \in \mathbb{C}$  tel que Re(s) > 0, la forme linéaire  $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi) \mapsto J(s, W, \varphi)$  est continue.

Démonstration. Soit  $G_n=N_nA_nK_n$  la décomposition d'Iwasawa de  $G_n$ . Il suffit de montrer la convergence de l'intégrale

$$\int_{A_n} \int_{K_n} \int_{V_n} \left| W \left( \sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ak & 0 \\ 0 & ak \end{pmatrix} \sigma_n^{-1} \right) \phi(e_n ak) \right| dX dk \left| \det a \right|^{Re(s)} \delta_{B_n}^{-1}(a) da.$$

On pose  $\mathfrak{u}_X=\sigma_\mathfrak{n}\begin{pmatrix}1&X\\0&1\end{pmatrix}\sigma_\mathfrak{n}^{-1},$  ce qui nous permet d'écrire

(39) 
$$\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a} & 0 \\ 0 & \mathfrak{a} \end{pmatrix} = \mathfrak{bu}_{\mathfrak{a}^{-1}X\mathfrak{a}}\sigma_{\mathfrak{n}},$$

où  $b = diag(a_1, a_1, a_2, a_2, ...)$ . On effectue le changement de variable  $X \mapsto aXa^{-1}$ , l'intégrale devient alors (40)

$$\int_{A_n}\int_{K_n}\int_{V_n}\left|W\left(bu_X\sigma_n\begin{pmatrix}k&0\\0&k\end{pmatrix}\sigma_n^{-1}\right)\varphi(e_nak)\right|dXdk|\det a|^{Re(s)}\delta_{B_n}^{-2}(a)da.$$

On écrit  $\mathfrak{u}_X=\mathfrak{n}_X\mathfrak{t}_Xk_X$  la décomposition d'Iwasawa de  $\mathfrak{u}_X$  et on pose  $k_\sigma=\sigma_n\begin{pmatrix}k&0\\0&k\end{pmatrix}\sigma_n^{-1}$ . Le lemme 2.2 donne alors

$$(41) |W(bt_Xk_Xk_\sigma)| \leqslant C \prod_{i=1}^{2n-1} (1 + |\frac{t_jb_j}{t_{j+1}b_{j+1}}|)^{-2N} \delta_{B_{2n}}^{\frac{1}{2}}(bt_X) \log(||bt_X||)^d.$$

On aura besoin d'inégalités prouvées par Jacquet et Shalika concernant les  $\mathbf{t_{j}}.$  On dispose de la

**Proposition 2.7** (Jacquet-Shalika [12]). On a  $|t_k| \ge 1$  lorsque k est impair et  $|t_k| \le 1$  lorsque k est pair. En particulier,  $|\frac{t_j}{t_{j+1}}| \ge 1$  lorsque j est impair et  $|\frac{t_j}{t_{j+1}}| \le 1$  lorsque j est pair.

On combine alors cette proposition avec le fait que  $\frac{b_j}{b_{j+1}}=1$  lorsque j est impair et  $\frac{b_j}{b_{j+1}}=\frac{a_{\frac{j}{2}}}{a_{\frac{j}{2}+1}}$  lorsque j est pair. Ce qui nous permet de majorer  $(1+|\frac{t_jb_j}{t_{j+1}b_{j+1}}|)^{-2N}$  par  $|\frac{t_j}{t_{j+1}}|^{-2N}$  lorsque j est impair et par  $|\frac{t_j}{t_{j+1}}|^{-N}(1+|\frac{a_{j/2}}{a_{j/2+1}}|)^{-N}$  lorsque j est pair. Ce qui donne

(42)

$$\begin{split} |W(bt_Xk_Xk_\sigma)| &\leqslant C \prod_{j=1}^{2n-1} |\frac{t_j}{t_{j+1}}|^{-N} \prod_{j=1,j \text{ impair}}^{2n-1} |\frac{t_j}{t_{j+1}}|^{-N} \prod_{i=1}^{n-1} (1+|\frac{a_i}{a_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(bt_X) \log(\|bt_X\|)^d \\ &\leqslant C \prod_{j=1,j \text{ impair}}^{2n-1} |\frac{t_j}{t_{j+1}}|^{-N} \prod_{i=1}^{n-1} (1+|\frac{a_i}{a_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(bt_X) \log(\|bt_X\|)^d, \end{split}$$

puisque  $\prod_{j=1}^{2n-1} |\frac{t_j}{t_j+1}|^{-N} = |\frac{t_1}{t_{2n}}|^{-N} \leqslant 1$  d'après la proposition 2.7.

De plus, encore d'après la proposition 2.7, on a

$$(43) \qquad \prod_{j=1,j \text{ impair}}^{2n-1} |\frac{t_j}{t_{j+1}}|^{-N} \leqslant \prod_{j=1,j \text{ impair}}^{2n-1} \frac{1}{|t_j|^N}.$$

Pour finir, on aura besoin de la

**Proposition 2.8** (Jacquet-Shalika [12]). Pour  $X \in Lie(\overline{N}_n)$ , on pose  $||X|| = \sup_{i,j} |X_{i,j}|$ . On pose  $m(X) = \sqrt{1 + ||X||}$  lorsque F est archimédien et  $m(X) = \sup(1, ||X||)$  lorsque F est non-archimédien. Il existe une constante  $\alpha > 0$  telle que pour tout  $X \in Lie(\overline{N}_n)$ , on ait

(44) 
$$\prod_{j=1,j}^{2n-1} |t_j| \geqslant m(X)^{\alpha}$$

Grâce à cette proposition, on obtient la majoration

$$(45) \qquad |W(\mathfrak{bt}_{X}k_{X}k_{\sigma})| \leqslant C\mathfrak{m}(X)^{-\alpha N} \prod_{i=1}^{n-1} (1+|\frac{\mathfrak{a}_{i}}{\mathfrak{a}_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(\mathfrak{bt}_{X}) \log(\|\mathfrak{bt}_{X}\|)^{d}.$$

D'autre part, il existe C' > 0 tel que

$$|\phi(e_n ak)| \leqslant C'(1+|a_n|)^{-N}.$$

L'intégrale  $J(s,W,\varphi)$  est alors majorée (à une constante près) par le maximum du produit des intégrales

(47) 
$$\int_{V_n} m(X)^{-\alpha N} \delta_{B_{2n}}^{\frac{1}{2}}(t_X) \log(||t_X||)^{d-j} dX$$

et

$$(48) \quad \int_{A_{\mathfrak{n}}} \prod_{i=1}^{n-1} (1+|\frac{a_{i}}{a_{i+1}}|)^{-N} (1+|a_{\mathfrak{n}}|)^{-N} \log(||b||)^{j} |\det a|^{Re(s)} \delta_{B_{2\mathfrak{n}}}^{\frac{1}{2}}(b) \delta_{B_{\mathfrak{n}}}^{-2}(a) da,$$

pour j compris entre 0 et d. La première intégrande est majorée par  $\mathfrak{m}(X)^{-\alpha N+c}$ , où  $\mathfrak{c}$  est une constante, on en déduit que la première converge pour N assez grand et la deuxième pour N assez grand lorsque  $Re(\mathfrak{s})>0$  d'après le lemme 2.3 où l'on a utilisé la relation  $\delta_{B_{2n}}^{\frac{1}{2}}(\mathfrak{b})=\delta_{B_n}^2(\mathfrak{a})$ .

2.2. **Facteurs**  $\gamma$ . Dans cette partie, on prouve l'égalité entre les facteurs  $\gamma^{JS}(., \pi, \Lambda^2, \psi)$  et  $\gamma^{Sh}(., \pi, \Lambda^2, \psi)$  à une constante (dépendant de  $\pi$ ) de module 1 près.

On commence à montrer cette égalité pour les facteurs  $\gamma$  archimédiens. Pour le moment, les résultats connus ne nous donnent même pas l'existence du facteur  $\gamma^{JS}$  dans le cas archimédien, ce sera une conséquence de la méthode de globalisation.

Soit  $\pi$  une représentation tempérée irréductible de  $\operatorname{GL}_{2n}(F)$ . On aura besoin d'un résultat sur la continuité du quotient  $\frac{J(1-s,\rho(w_{n,n})\widetilde{W},\hat{\varphi})}{J(s,W,\varphi)}$  lorsque l'on fait varier la représentation  $\pi$ , on dispose du

Lemme 2.5. Soient  $W_0 \in \mathcal{W}(\pi, \psi)$ ,  $\phi \in \mathcal{S}(\mathsf{F}^n)$  et  $s \in \mathbb{C}$  tel que  $0 < \mathsf{Re}(s) < 1$ . Supposons que  $\mathsf{J}(s, W_0, \phi) \neq 0$ . Alors il existe une application continue  $\pi' \in \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F})) \mapsto \mathsf{W}_{\pi'} \in \mathsf{C}^w(\mathsf{N}_{2n}(\mathsf{F}) \backslash \mathsf{GL}_{2n}(\mathsf{F}), \psi)$  et un voisinage  $\mathsf{V} \subset \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$  de  $\pi$  qui vérifient que  $\mathsf{W}_0 = \mathsf{W}_\pi, \mathsf{W}_{\pi'} \in \mathcal{W}(\pi', \psi)$  pour tout  $\pi' \in \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$  et l'application  $\pi' \in \mathsf{V} \mapsto \frac{\mathsf{J}(1-s, \rho(w_{n,n})\widetilde{W}_{\pi'}, \mathcal{F}_{\psi}(\phi))}{\mathsf{J}(s, \mathsf{W}_{\pi'}, \phi)}$  est bien définie et continue.

En particulier, si F est un corps p-adique, ce quotient est égal à  $\gamma^{JS}(s, \pi', \Lambda^2, \psi)$  (proposition 2.4); donc  $\pi' \in V \mapsto \gamma^{JS}(s, \pi', \Lambda^2, \psi)$  est continue.

Démonstration. On utilise l'existence de bonnes sections  $\pi' \mapsto W_{\pi'}$  [4, Corollaire 2.7.1]. La forme linéaire  $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi) \mapsto J(s, W, \varphi)$  est continue (lemme 2.4), il existe donc un voisinage V de  $\pi$  tel que  $J(s, W_{\pi'}, \varphi) \neq 0$ . Le quotient  $\frac{J(1-s, \rho(w_{n,n})\widetilde{W}_{\pi'}, \mathcal{F}_{\psi}(\varphi))}{J(s, W_{\pi'}, \varphi)}$  est alors bien une fonction continue de  $\pi'$  sur V.

On étudie maintenant la dépendance du quotient  $\frac{J(1-s,\rho(w_{n,n})\widetilde{W},\mathcal{F}_{\psi}(\varphi))}{J(s,W,\varphi)}$  par rapport au caractère additif  $\psi$ , où l'on note  $\mathcal{F}_{\psi}$  pour la transformée de Fourier par rapport à  $\psi$ . Les caractères additifs de F sont de la forme  $\psi_{\lambda}$  avec  $\lambda \in F^*$  où  $\psi_{\lambda}(x) = \psi(\lambda x)$ . On dispose d'un isomorphisme  $W \in \mathcal{W}(\pi,\psi) \mapsto W_{\lambda} \in \mathcal{W}(\pi,\psi_{\lambda})$  donné par  $W_{\lambda}(g) = W(\mathfrak{a}(\lambda)g)$  pour tout  $g \in GL_{2n}(F)$  où  $\mathfrak{a}(\lambda) = \text{diag}(\lambda^{2n-1},\lambda^{2n-2},...,\lambda,1)$ .

**Lemme 2.6.** Soient  $\lambda \in F^*$ ,  $W \in \mathcal{W}(\pi, \psi)$ ,  $\varphi \in \mathcal{S}(F^n)$  et  $s \in \mathbb{C}$  tel que 0 < Re(s) < 1. Supposons que  $J(s, W, \varphi) \neq 0$ . Alors (49)

$$\frac{J(1-s,\rho(w_{n,n})\widetilde{(W_{\lambda})},\mathcal{F}_{\psi_{\lambda}}(\varphi))}{J(s,W_{\lambda},\varphi)}=\omega_{\pi}(\lambda)^{2n+1}|\lambda|^{n(2n-1)(s-\frac{1}{2})}\frac{J(1-s,\rho(w_{n,n})\widetilde{W_{r}},\mathcal{F}_{\psi}(\varphi))}{J(s,W_{r},\varphi)},$$

où  $W_r$  est la translation à gauche de W par  $r(\lambda) = diag(\lambda, 1, \lambda, 1, ...)$ . Lorsque F est un corps p-adique, on en déduit que

$$(50) \hspace{1cm} \gamma^{JS}(s,\pi,\Lambda^2,\psi_{\lambda}) = \omega_{\pi}(\lambda)^{2n+1} |\lambda|^{n(2n-1)(s-\frac{1}{2})} \gamma^{JS}(s,\pi,\Lambda^2,\psi).$$

Démonstration. La mesure de Haar auto-duale pour  $\psi_{\lambda}$  est reliée à la mesure de Haar auto-duale pour  $\psi$  par un facteur  $|\lambda|^{\frac{n}{2}}$ . On en déduit que  $\mathcal{F}_{\psi_{\lambda}}(\varphi)(x) = |\lambda|^{\frac{n}{2}}\mathcal{F}_{\psi}(\varphi)(\lambda x)$ . Le changement de variable  $g \mapsto \lambda^{-1}g$  dans l'intégrale définissant  $J(1-s, \rho(w_{n,n})\widetilde{W}, \mathcal{F}_{th}(\varphi)(\lambda))$  donne

$$(51) \quad J(1-s,\rho(w_{n,n})\widetilde{W},\mathcal{F}_{\psi_{\lambda}}(\varphi)) = |\lambda|^{n(s-\frac{1}{2})}\omega_{\pi}(\lambda)J(1-s,\rho(w_{n,n})\widetilde{W},\mathcal{F}_{\psi}(\varphi)).$$

D'autre part,

$$J(s, W_{\lambda}, \widehat{\varphi}) = \int_{N_{n} \setminus G_{n}} \int_{V_{n}} W\left(a(\lambda)\sigma_{n}\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_{n}^{-1}\right) dX \widehat{\varphi}(e_{n}g) |\det g|^{s} dg.$$

On décompose  $a(\lambda)\sigma_n$  sous la forme  $r(\lambda)diag(b(\lambda),b(\lambda))$  où l'on note  $b(\lambda)=diag(\lambda^{2n-2},\lambda^{2n-4},...,1)$  et  $r(\lambda)=diag(\lambda,1,\lambda,1,...)$ . Après les changements de variables,  $X\mapsto b(\lambda)^{-1}Xb(\lambda)$  et  $g\mapsto b(\lambda)^{-1}g$ , on obtient la relation

(53) 
$$J(s, W_{\lambda}, \widehat{\phi}) = \delta_{B_n}(b(\lambda)) |\det b(\lambda)|^{-s} |\lambda|^{\kappa(n)} J(s, L(r(\lambda)^{-1})W, \widehat{\phi}),$$

où L(g) est la translation à gauche par  $g^{-1}$  et le facteur  $|\lambda|^{\kappa(n)}$  (que l'on n'explicite pas) provient du changement de variable  $X \mapsto b(\lambda)^{-1}Xb(\lambda)$ .

De plus, pour tout  $g \in GL_{2n}(F)$ , on a

(54) 
$$\widetilde{(W_{\lambda})}(g) = W(a(\lambda)w_n(g^t)^{-1}) = \widetilde{W}(w_n a(\lambda)^{-1}w_n^{-1}g) = \omega_{\pi}(\lambda)^{2n-1}(\widetilde{W})_{\lambda}(g),$$
  
où l'on a utilisé la relation  $w_n a(\lambda)^{-1}w_n^{-1} = \lambda^{-(2n-1)}a(\lambda)$ . Ce qui donne l'égalité

$$(55) \qquad J(1-s,\rho(w_{n,n})\widetilde{(W_{\lambda})},\widehat{\varphi}) = \omega_{\pi}(\lambda)^{2n-1}\delta_{B_{\pi}}(b(\lambda))|\det b(\lambda)|^{s-1}|\lambda|^{\kappa(n)}$$
 
$$J(1-s,\rho(w_{n,n})L(r(\lambda)^{-1})\widetilde{W},\widehat{\varphi}).$$

Pour finir, on remarque que l'on a pour tout  $g \in GL_{2n}(F)$ ,

(56) 
$$L(r(\lambda)^{-1})\widetilde{W}(g) = \widetilde{W}(w_n r(\lambda)^{-1} w_n^{-1} g) = \omega_{\pi}(\lambda) L(\widetilde{r(\lambda)^{-1}}) W = \omega_{\pi}(\lambda) \widetilde{W_r}.$$
 On déduit de 53 et 55 la relation suivante

$$(57) \quad \frac{J(1-s,\rho(w_{n,n})\widetilde{(W_{\lambda})},\widehat{\varphi})}{J(s,W_{\lambda},\varphi)} = \omega_{\pi}(\lambda)^{2n}|\lambda|^{n(n-1)(2s-1)}\frac{J(1-s,\rho(w_{n,n})\widetilde{W_{r}},\widehat{\varphi})}{J(s,W_{r},\varphi)},$$

où l'on a utilisé l'égalité  $\det b(\lambda) = \lambda^{n(n-1)}$ . On déduit le lemme grâce à la relation 51.

Les facteurs  $\gamma$  de Shahidi du carré extérieur vérifient la même dépendance par rapport au caractère additif  $\psi$  (voir Henniart [9]). Dans la suite, on pourra donc choisir arbitrairement un caractère additif non trivial, les relations seront alors vérifiées pour tous les caractères additifs, en particulier pour le caractère  $\psi$  que l'on a fixé.

**Proposition 2.9.** Soit  $F = \mathbb{R}$  ou  $\mathbb{C}$ . Soit  $\pi$  une représentation tempérée irréductible de  $GL_{2n}(F)$ . Les intégrales  $J(s,W,\varphi)$  admettent un prolongement méromorphe à  $\mathbb{C}$  pour tous  $W \in \mathcal{W}(\pi,\psi)$  et  $\varphi \in \mathcal{S}(F^n)$ .

Il existe une fonction méromorphe  $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$  telle que pour tous  $s\in\mathbb{C}$ ,  $W\in\mathcal{W}(\pi,\psi)$  et  $\varphi\in\mathcal{S}(F^n)$ , on ait

$$(58) \hspace{1cm} \gamma^{JS}(s,\pi,\Lambda^2,\psi)J(s,W,\varphi) = J(1-s,\rho(w_{n,n})\widetilde{W},\mathcal{F}_{\psi}(\varphi)).$$

De plus, il existe une constante  $c^{Sh}(\pi)$  de module 1 telle que pour tout  $s \in \mathbb{C}$ ,

$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = c^{Sh}(\pi)\gamma^{Sh}(s,\pi,\Lambda^2,\psi).$$

Démonstration. Soit k un corps de nombres, on suppose que k a une seule place archimédienne, elle est réelle (respectivement complexe) lorsque  $F=\mathbb{R}$  (respectivement  $F=\mathbb{C}$ ); par exemple,  $k=\mathbb{Q}$  si  $F=\mathbb{R}$  et  $k=\mathbb{Q}(i)$  si  $F=\mathbb{C}$ . Soient  $\nu\neq\nu'$  deux places non archimédiennes distinctes, soit  $U\subset Temp(GL_{2n}(F))$  un ouvert contenant  $\pi$ . On choisit un caractère non trivial  $\psi_{\mathbb{A}}$  de  $\mathbb{A}_k/k$ .

D'après la proposition 2.6, il existe une représentation automorphe cuspidale irréductible  $\Pi$  telle que  $\Pi_{\infty} \in \mathbb{U}$  et  $\Pi_{w}$  soit non ramifiée pour toute place non archimédienne  $w \neq v, v_{0}$ .

On choisit des fonctions  $W_w \in \mathcal{W}(\pi_w, (\phi_{\mathbb{A}})_w)$  et  $\phi_w \in \mathcal{S}(k_w)$  dans le but d'appliquer l'équation fonctionnelle globale. On note  $S = \{\infty, v\}$  l'ensemble des places

où  $\Pi$  est ramifiée et T l'ensemble des places où  $\psi_{\mathbb{A}}$  est ramifié. Pour  $w \notin S \cup T$ , on prend les fonctions "non ramifiées" qui apparaissent dans la proposition 2.3. Pour  $w \in S \cup T$ , on fait un choix, d'après la proposition 2.2, tel que  $J(s, W_w, \phi_w) \neq 0$ . On pose alors

(60) 
$$W = \prod_{w} W_{w} \quad \text{et} \quad \Phi = \prod_{w} \phi_{w}.$$

D'après la proposition 2.5, on a

(61) 
$$\prod_{w \in S \cup T} J(s, W_w, \phi_w) L^{S \cup T}(s, \Pi, \Lambda^2)$$

$$= \prod_{w \in S \cup T} J(1 - s, \rho(w_{n,n}) \widetilde{W}_w, \mathcal{F}_{(\psi_{\mathbb{A}})_w}(\phi_w)) L^{S \cup T}(1 - s, \widetilde{\Pi}, \Lambda^2),$$

où  $L^{S \cup T}(s, \Pi, \Lambda^2) = \prod_{w \notin S \cup T} L(s, \Pi_w, \Lambda^2)$  est la fonction L partielle. D'autre part, les facteurs  $\gamma$  de Shahidi vérifient une relation similaire (voir Henniart [9]),

$$(62) \qquad \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(\mathsf{s},\Pi,\Lambda^2) = \prod_{w\in\mathsf{S}\cup\mathsf{T}} \gamma^{\mathsf{Sh}}(\mathsf{s},\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w) \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(1-\mathsf{s},\widetilde{\Pi},\Lambda^2).$$

Les équations (61) et (62), en utilisant la proposition 2.4 pour les places  $w \in \{v\} \cup T$ , donnent

$$(63) \qquad J(1-s,\rho(w_{n,n})\widetilde{W}_{\infty},\mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty})) = \\ J(s,W_{\infty},\varphi_{\infty})\gamma^{Sh}(s,\Pi_{\infty},\Lambda^{2},(\psi_{\mathbb{A}})_{\infty}) \prod_{w \in \{v\} \cup T} \frac{\gamma^{Sh}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})}{\gamma^{JS}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})}.$$

Ce qui prouve la première partie de la proposition pour  $\Pi_{\infty}$ , l'existence du facteur  $\gamma^{JS}(s,\Pi_{\infty},\Lambda^2,(\psi_{\mathbb{A}})_{\infty})$ .

On s'occupe tout de suite du quotient  $\frac{\gamma^{Sh}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}{\gamma^{JS}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}$  lorsque  $w \in \mathbb{T}$ . En effet,  $\Pi_w$  est non ramifiée, une combinaison de la proposition 2.3 et du lemme 2.6 va nous permettre de calculer ce quotient. Il existe  $\lambda \in \mathbb{F}^*$  et un caractère non ramifié  $\psi_0$  de  $\mathbb{F}$  tel que  $(\psi_{\mathbb{A}})_w(x) = \psi_0(\lambda x)$ . La remarque suivant le lemme 2.6 nous dit que les facteurs  $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$  et  $\gamma^{Sh}(s,\pi,\Lambda^2,\psi)$  ont la même dépendance par rapport au caractère additif. On en déduit que

$$(64) \qquad \frac{\gamma^{\operatorname{Sh}}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})}{\gamma^{\operatorname{JS}}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})} = \frac{\gamma^{\operatorname{Sh}}(s,\Pi_{w},\Lambda^{2},\psi_{0})}{\gamma^{\operatorname{JS}}(s,\Pi_{w},\Lambda^{2},\psi_{0})} = 1,$$

d'après la proposition 2.3 et le calcul non ramifié des facteurs gamma de Shahidi (voir Henniart [9]).

L'équation (63) devient alors

$$\begin{split} J(1-s,\rho(w_{n,n})\widetilde{W}_{\infty},\mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty})) = \\ J(s,W_{\infty},\varphi_{\infty})\gamma^{\mathrm{Sh}}(s,\Pi_{\infty},\Lambda^{2},(\psi_{\mathbb{A}})_{\infty}) \frac{\gamma^{\mathrm{Sh}}(s,\Pi_{\nu},\Lambda^{2},(\psi_{\mathbb{A}})_{\nu})}{\gamma^{\mathrm{JS}}(s,\Pi_{\nu},\Lambda^{2},(\psi_{\mathbb{A}})_{\nu})}. \end{split}$$

On choisit maintenant pour U une base de voisinage contenant  $\pi$ , en utilisant le lemme 2.5 et la continuité des facteurs  $\gamma$  de Shahidi sur  $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ , on en déduit que

(66) 
$$R(s) = \frac{J(1-s, \rho(w_{n,n})\widetilde{W}, \mathcal{F}_{\psi}(\phi))}{J(s, W, \phi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi)}$$

qui est à priori bien définie pour 0 < Re(s) < 1, est une fonction méromorphe indépendante de W et de  $\phi$ . La fonction R(s) ne dépend pas du choix de la base de voisinage et des choix qui sont fait lors de l'utilisation de la proposition 2.6. En effet, on a

(67) 
$$R(s) = \frac{J(1-s, \rho(w_{n,n})\widetilde{W}, \mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty}))}{J(s, W, \varphi_{\infty})\gamma^{Sh}(s, \pi, \Lambda^{2}, (\psi_{\mathbb{A}})_{\infty})},$$

où  $W \in \mathcal{W}(\pi, \psi)$ , qui est bien indépendant des choix que l'on a fait. De plus, R est une limite de fractions rationnelles en  $q_{\nu}^{s}$  (les quotients  $\frac{\gamma^{sh}(s,\Pi_{\nu},\Lambda^{2},(\psi_{A})_{\nu})}{\gamma^{Js}(s,\Pi_{\nu},\Lambda^{2},(\psi_{A})_{\nu})}$ ); donc R est une fonction périodique de période  $\frac{2i\pi}{\log q_v}$ 

En réutilisant le même raisonnement en une place  $\nu'$  de caractéristique résiduelle

distincte de celle de  $\nu$ , on voit que R est aussi périodique de période  $\frac{2i\pi}{\log q_{\nu'}}$ . La fonction R est donc une fonction périodique de période  $\frac{2i\pi}{\log q_{\nu}}$  et  $\frac{2i\pi}{\log q_{\nu'}}$  avec  $q_{\nu}$  et  $q_{\nu'}$  premier entre eux; ce qui est impossible sauf si R est constante. Ce qui nous permet de voir qu'il existe une constante  $c^{Sh}(\pi) = R$  telle que

(68) 
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c^{Sh}(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi),$$

où l'on a noté  $\gamma^{JS}(s, \pi, \Lambda^2, \psi) = R(s)\gamma^{Sh}(s, \pi, \Lambda^2, \psi)$ .

Il ne nous reste plus qu'à montrer que la constante  $c^{\operatorname{Sh}}(\pi)$  est de module 1. Reprenons l'équation fonctionnelle locale archimédienne,

(69) 
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) J(s, W, \phi) = J(1 - s, \rho(w_{n,n})\widetilde{W}, \mathcal{F}_{\psi}(\phi)).$$

On utilise maintenant l'équation fonctionnelle sur la représentation  $\tilde{\pi}$  pour transformer le facteur  $J(1-s, \rho(w_{n,n})W, \mathcal{F}_{\psi}(\phi))$ , ce qui nous donne

(70) 
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi)J(s,W,\varphi) = \frac{J(s,W,\mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\varphi)))}{\gamma^{JS}(1-s,\tilde{\pi},\Lambda^2,\bar{\psi})}.$$

Puisque  $\mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\varphi)) = \varphi$ , on obtient donc la relation

(71) 
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi)\gamma^{JS}(1 - s, \widetilde{\pi}, \Lambda^2, \overline{\psi}) = 1.$$

D'autre part, en conjuguant l'équation 69, on obtient

(72) 
$$\overline{\gamma^{JS}(s,\pi,\Lambda^2,\psi)} = \gamma^{JS}(\bar{s},\bar{\pi},\Lambda^2,\bar{\psi}).$$

Comme  $\pi$  est tempérée,  $\pi$  est unitaire, donc  $\tilde{\pi} \simeq \bar{\pi}$ . On en déduit, pour  $s = \frac{1}{2}$ ,

$$|\gamma^{JS}(\frac{1}{2},\pi,\Lambda^{2},\psi)|^{2}=1.$$

D'autre part, le facteur  $\gamma$  de Shahidi vérifie aussi  $|\gamma^{\text{Sh}}(\frac{1}{2},\pi,\Lambda^2,\psi)|^2=1$ ; on en déduit donc que  $c^{Sh}(\pi)$  est bien de module 1.

**Proposition 2.10.** Supposons que F est un corps  $\mathfrak{p}$ -adique. Soit  $\pi$  une représentation tempérée irréductible de  $GL_{2n}(F)$ .

Le facteur  $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$  est défini par la proposition 2.4. Alors il existe une constante  $c^{Sh}(\pi)$  de module 1 telle que pour tout  $s \in \mathbb{C}$ ,

$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = c^{Sh}(\pi)\gamma^{Sh}(s,\pi,\Lambda^2,\psi).$$

Démonstration. D'après le lemme 2.1, il existe un corps de nombres k et une place  $\nu_0$  telle que  $k_{\nu_0} = F$ , où  $\nu_0$  est l'unique place de k au dessus de p. Soit  $\nu$  une place non archimédiennes et de caractéristique résiduelle distincte de celle de  $\nu_0$ . Soit  $U \subset \mathsf{Temp}(\mathsf{GL}_{2n}(F))$  un ouvert contenant  $\pi$ . On choisit un caractère non trivial  $\psi_{\mathbb{A}}$  de  $\mathbb{A}_k/k$ .

D'après la proposition 2.6, il existe une représentation automorphe cuspidale irréductible  $\Pi$  telle que  $\Pi_{\nu_0} \in U$  et  $\Pi_w$  soit non ramifiée pour toute place non archimédienne  $w \neq \nu$ .

Pour  $w = v_0, v$  ou une place archimédienne, on choisit d'après la proposition 2.2, des fonctions de Whittaker  $W_w$  et des fonctions de Schwartz  $\phi_w$  telles que  $J(s, W_w, \phi_w) \neq 0$ . Pour les places non ramifiées, on choisit les fonctions "non ramifiées" de la proposition 2.3. On pose alors

$$W = \prod_{w} W_{w}$$
 et  $\Phi = \prod_{w} \Phi_{w}$ .

On note  $S_{\infty}$  l'ensemble des places archimédienne,  $S = S_{\infty} \cup \{\nu, \nu_0\}$  et T l'ensemble des places où  $\psi_{\mathbb{A}}$  est non ramifié. D'après l'équation fonctionnelle globale (proposition 2.5), on a

$$(75) \qquad \begin{aligned} & \prod_{w \in S \cup T} J(s, W_w, \phi_w) L^{S \cup T}(s, \Pi, \Lambda^2) \\ & = \prod_{w \in S \cup T} J(1 - s, \rho(w_{n,n}) \widetilde{W}_w, \mathcal{F}_{(\psi_{\mathbb{A}})_w}(\phi_w)) L^{S \cup T}(1 - s, \widetilde{\Pi}, \Lambda^2), \end{aligned}$$

où  $L^{S\cup T}(s,\Pi,\Lambda^2)$  est la fonction L partielle. Les facteurs  $\gamma$  de Shahidi vérifient (voir Henniart [9])

$$(76) \qquad \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(\mathsf{s},\Pi,\Lambda^2) = \prod_{w\in\mathsf{S}\cup\mathsf{T}} \gamma^{\mathsf{Sh}}(\mathsf{s},\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w) \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(1-\mathsf{s},\widetilde{\Pi},\Lambda^2).$$

On rappelle que lors de la preuve de la proposition précédente, on a démontré que  $\frac{\gamma^{S\,h}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}{\gamma^{J\,S}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}=1$  pour  $w\in\mathsf{T}$ . En utilisant les propositions 2.4 et 2.9, on obtient donc la relation

$$(77) \qquad \prod_{\nu_{\infty} \in S_{\infty}} c^{Sh}(\Pi_{\nu_{\infty}}) \frac{\gamma^{JS}(s,\Pi_{\nu},\Lambda^{2},(\psi_{\mathbb{A}})_{\nu})}{\gamma^{Sh}(s,\Pi_{\nu},\Lambda^{2},(\psi_{\mathbb{A}})_{\nu})} \frac{\gamma^{JS}(s,\Pi_{\nu_{0}},\Lambda^{2},\psi)}{\gamma^{Sh}(s,\Pi_{\nu_{0}},\Lambda^{2},\psi)} = 1.$$

Le reste du raisonnement est maintenant identique à la fin de la preuve de la proposition 2.9. Par continuité, le quotient  $\frac{\gamma^{JS}(s,\pi,\Lambda^2,\psi)}{\gamma^{Sh}(s,\pi,\Lambda^2,\psi)}$  est une fonction périodique de période  $\frac{2i\pi}{\log q_{\nu}}$ . Or c'est une fraction rationnelle en  $q_{\nu_0}^s$ , on obtient que c'est une constante. En évaluant  $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$  en  $s=\frac{1}{2}$ , on montre que cette constante est de module 1.

#### 3. Limite spectrale

Dans cette partie F est un corps p-adique. On renvoie à la section 1.2 pour la normalisation des mesures sur Temp(G), pour un groupe G réductif connexe sur F.

On note  $PG_{2n} = G_{2n}(F)/Z_{2n}(F)$ . Soit  $f \in \mathcal{S}(PG_{2n})$ , pour  $\pi \in Temp(PG_{2n})$ , on définit  $f_{\pi}$  par

(78) 
$$f_{\pi}(g) = Tr(\pi(g)\pi(f^{\vee})),$$
 pour tout  $g \in PG_{2n}$ , où  $f^{\vee}(x) = f(x^{-1}).$ 

Proposition 3.1 (Harish-Chandra [20], Shahidi [18], Silberger-Zink [19]). Il existe une unique mesure  $\mu_{PG_{2n}}$  sur  $Temp(PG_{2n})$  telle que

(79) 
$$f(g) = \int_{\text{Temp}(PG_{2n})} f_{\pi}(g) d\mu_{PG_{2n}}(\pi),$$

pour tous  $f \in S(PG_{2n})$  et  $g \in PG_{2n}$ . De plus, on a l'égalité de mesure suivante :

(80) 
$$d\mu_{\mathsf{PG}_{2\pi}}(\pi) = \frac{\gamma^*(0, \pi, \overline{\mathsf{Ad}}, \psi)}{|\mathsf{S}_{\pi}|} d\pi,$$

 $\begin{array}{ll} \text{où } \gamma^*(0,\pi,\overline{Ad},\psi) = \lim_{s \to 0} (slog(q_F)^{-n_{\pi,\overline{Ad}}} \gamma(s,\pi,\overline{Ad},\psi), \text{ avec } n_{\pi,\overline{Ad}} \text{ l'ordre du } \\ \text{z\'ero } \text{de } \gamma(s,\pi,\overline{Ad},\psi) \text{ en } s = 0. \text{ Pour } \pi \in \text{Temp}(PG_{2n}) \text{ sous-repr\'esentation de } \\ \pi_1 \times ... \times \pi_k, \text{ avec } \pi_i \in \Pi_2(G_{n_i}), \text{ le facteur } |S_\pi| \text{ est le produit } \prod_{i=1}^k n_i. \end{array}$ 

On note  $\Phi(G)$  l'ensemble des paramètres de Langlands tempérés de G et  $\mathsf{Temp}(G)/\mathsf{Stab}$  le quotient de  $\mathsf{Temp}(G)$  par la relation d'équivalence  $\pi \equiv \pi' \iff \phi_{\pi} = \phi_{\pi'}$ , où  $\phi_{\pi}$  est le paramètre de Langlands associé à  $\pi$ .

Rappelons (section 1.1) que la correspondance de Langlands locale pour SO(2m+1) nous permet de définir une application de transfert  $T: Temp(SO(2m+1))/Stab \to Temp(G_{2m})$ . On sait caractériser l'image de l'application de transfert. Plus exactement,

$$(81) \hspace{1cm} \pi \in \mathsf{T}(\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}) \iff \pi = \left( \bigvee_{\mathfrak{i}=1}^k \tau_{\mathfrak{i}} \times \widetilde{\tau_{\mathfrak{i}}} \right) \times \bigvee_{\mathfrak{j}=1}^l \mu_{\mathfrak{i}}$$

avec  $\tau_i \in \Pi_2(G_{n_i})$  et  $\mu_i \in T(\text{Temp}(SO(2m_i + 1))/\text{Stab}) \cap \Pi_2(G_{2m_i})$ .

**Proposition 3.2.** Soit  $\phi$  une fonction à support compact sur  $\mathsf{Temp}(\mathsf{PG}_{2n})$ , on a

$$(82) \qquad \begin{aligned} &\lim_{s\to 0^+} n\gamma(s,1,\psi) \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi)\gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}} = \\ &\int_{\mathsf{Temp}(\mathsf{SO}_{2n+1})/\mathsf{Stab}} \varphi(\mathsf{T}(\sigma)) \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} d\sigma. \end{aligned}$$

Pour  $\sigma \in \text{Temp}(SO(2n+1))$  sous-représentation de  $\pi_1 \times ... \times \pi_1 \times \sigma_0$ , avec  $\pi_i \in \Pi_2(G_{\pi_i})$  et  $\sigma_0 \in \Pi_2(SO(2m+1))$ , le facteur  $|S_{\pi}|$  est le produit  $|S_{\pi_1}|...|S_{\pi_1}||S_{\sigma_0}|$ ; où  $|S_{\sigma_0}| = 2^k$  tel que  $T(\sigma_0) \simeq \tau_1 \times ... \times \tau_k$  avec  $\tau_i \in \Pi_2(G_{m_i})$ .

 $D\acute{e}monstration$ . D'après la relation 80, on a (83)

$$\int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi) \gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}}(\pi) = \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi) \frac{\gamma^*(0,\pi,\overline{Ad},\psi)}{|S_\pi| \gamma(s,\pi,\Lambda^2,\psi)} d\pi.$$

Soit  $\pi \in \mathsf{Temp}(\mathsf{PG}_{2n})$ . En prenant des partitions de l'unité, on peut supposer que  $\varphi$  est à support dans un voisinage U suffisamment petit de  $\pi$ . On écrit la représentation  $\pi$  sous la forme

(84) 
$$\pi = \left( \underset{i=1}{\overset{t}{\times}} \tau_{i}^{\times m_{i}} \times \widetilde{\tau_{i}}^{\times n_{i}} \right) \times \left( \underset{i=1}{\overset{u}{\times}} \mu_{j}^{\times p_{j}} \right) \times \left( \underset{k=1}{\overset{v}{\times}} \nu_{k}^{\times q_{k}} \right),$$

οù

—  $\tau_i \in \Pi_2(G_{d_i})$  vérifie  $\tau_i \not\simeq \widetilde{\tau_i}$  pour tout  $1 \leqslant i \leqslant t$ . De plus, pour tous  $1 \leqslant i < i' \leqslant t$ ,  $\tau_i \not\simeq \tau_{i'}$  et  $\tau_i \not\simeq \widetilde{\tau_{i'}}$ .

- $-\mu_i \in \Pi_2(G_{e_i})$  vérifie  $\mu_i \simeq \widetilde{\mu_i}$  et  $\gamma(0,\mu_i,\Lambda^2,\psi) \neq 0$  pour tout  $1 \leq j \leq u$ . De plus, pour tous  $1 \le j < j' \le u$ ,  $\mu_j \not\simeq \mu_{j'}$ .
- $\nu_k \in \Pi_2(\mathsf{G}_{\mathsf{f}_k})$  vérifie  $\gamma(0,\nu_k,\Lambda^2,\psi) = 0$  ( et donc  $\nu_k \simeq \widetilde{\nu_k}$  ) pour tout  $1 \leqslant k \leqslant \nu$ . De plus, pour tous  $1 \leqslant k < k' \leqslant \nu, \, \nu_k \not\simeq \nu_{k'}$ .

On note  $M = \left(\prod_{i=1}^t G_{d_i}^{m_i+n_i} \times \prod_{j=1}^u G_{e_j}^{p_j} \times \prod_{k=1}^{\nu} G_{f_k}^{q_k}\right)/Z_{2n}$ . Alors  $\pi = Ind_M^{PG_{2n}}(\tau)$ pour une certaine représentation  $\tau$  de M.

On note  $X^*(M)$  le groupe des caractères algébriques de M. On note  $A \subset \prod_{i=1}^t (i\mathbb{R})^{m_i+n_i} \times$  $\textstyle\prod_{i=1}^u (i\mathbb{R})^{p_j} \times \textstyle\prod_{k=1}^v (i\mathbb{R})^{q_k} = (i\mathbb{R})_M \text{ qui est l'hyperplan défini par la condition que}$ la somme des coordonnées est nulle.

On équipe  $(i\mathbb{R})_M$  du produit des mesures de Lebesgue sur  $i\mathbb{R}$  et  $\mathcal{A}$  de la mesure de Haar telle que la mesure quotient sur  $(i\mathbb{R})_M/A \simeq i\mathbb{R}$  soit la mesure de Lebesgue. L'isomorphisme local  $\chi \otimes \alpha \in X^*(M) \otimes i\mathbb{R}/(\frac{2i\pi}{\log(\mathfrak{q}_F)})\mathbb{Z} \mapsto |\chi|_F^\alpha \in \widehat{A_M}$  préserve

localement les mesures, où l'on équipe  $\widehat{A_M}$  de la mesure  $\left(\frac{2\pi}{\log(\mathfrak{q}_F)}\right)^{\dim(A_M)}$ 

Dans la suite, on notera les coordonnées de la manière suivanté :

- $x_i(\lambda) = (x_{i,1}(\lambda), ..., x_{i,m_i}(\lambda), \widetilde{x_{i,1}}(\lambda), ..., \widetilde{x_{i,n_i}}(\lambda)) \in (i\mathbb{R})^{m_i} \times (i\mathbb{R})^{n_i},$
- $y_{\mathbf{j}}(\lambda) = (y_{\mathbf{j},1}(\lambda), ..., y_{\mathbf{j},p_{\mathbf{j}}}(\lambda)) \in (i\mathbb{R})^{p_{\mathbf{j}}},$
- $--z_{\mathbf{k}}(\lambda)=(z_{\mathbf{k},1}(\lambda),...,z_{\mathbf{k},\mathbf{q}_{\mathbf{k}}}(\lambda))\in(i\mathbb{R})^{\mathbf{q}_{\mathbf{k}}},$

pour tout  $\lambda \in \mathcal{A}$ .

On a un isomorphisme  $\mathcal{A} \simeq X^*(M) \otimes i\mathbb{R}$  donné par  $\lambda \mapsto |\det|^{\lambda}$ , où l'on note  $|\det|^{\lambda} = \prod_{i=1}^t \prod_{l=1}^{m_i} |\det|^{\frac{x_{i,l}(\lambda)}{d_i}} |\det|^{\frac{x_{i,l}(\lambda)}{d_i}} \times \prod_{j=1}^u \prod_{l=1}^{p_j} |\det|^{\frac{y_{j,l}(\lambda)}{e_j}} \times \prod_{k=1}^v \prod_{l=1}^{q_k} |\det|^{\frac{z_{k,l}(\lambda)}{f_k}}.$  On dispose alors d'une application  $\lambda \in \mathcal{A} \mapsto \pi_{\lambda} \in \text{Temp}(PG_{2n})$ , où

$$(85) \qquad \pi_{\lambda} = \left( \bigvee_{i=1}^{t} \left( \bigvee_{l=1}^{m_{i}} \tau_{i} \otimes |\det|^{\frac{x_{i,1}(\lambda)}{d_{i}}} \right) \times \left( \bigvee_{l=1}^{n_{i}} \widetilde{\tau_{i}} \otimes |\det|^{\frac{x_{\widetilde{i},1}(\lambda)}{d_{i}}} \right) \right) \\ \times \left( \bigvee_{j=1}^{u} \bigvee_{l=1}^{p_{j}} \mu_{j} \otimes |\det|^{\frac{y_{j,1}(\lambda)}{e_{j}}} \right) \times \left( \bigvee_{k=1}^{v} \bigvee_{l=1}^{q_{k}} \nu_{k} \otimes |\det|^{\frac{z_{k,1}(\lambda)}{f_{k}}} \right).$$

Cette dernière induit un homéomorphisme  $U \simeq V/W(PG_{2n}, \tau)$ , où V est un voisinage de 0 dans  $\mathcal{A}$  et  $W(\mathsf{PG}_{2n},\tau)$  est le sous-groupe de  $W(\mathsf{PG}_{2n},M)$  fixant la représentation  $\tau$ . Alors

$$(86) \qquad \int_{U} \varphi(\pi) \gamma(s,\pi,\Lambda^{2},\psi)^{-1} d\mu_{PG_{2\pi}}(\pi) = \int_{U} \varphi(\pi) \frac{\gamma^{*}(0,\pi,\overline{Ad},\psi)}{|S_{\pi}| \gamma(s,\pi,\Lambda^{2},\psi)} d\pi$$

d'après la relation 80. Du choix des mesures  $d\pi$  sur  $\mathsf{Temp}(\mathsf{PG}_{2n})$  et  $d\lambda$  sur  $\mathcal{A}$ , cette intégrale est égale à

(87) 
$$\frac{1}{|W(\mathsf{PG}_{2n},\tau)|} \left(\frac{\log(\mathsf{q})}{2\pi}\right)^{\dim(\mathcal{A})} \int_{V} \phi(\pi_{\lambda}) \frac{\gamma^{*}(0,\pi_{\lambda},\overline{\mathsf{Ad}},\psi)}{|S_{\pi_{\lambda}}|\gamma(s,\pi_{\lambda},\Lambda^{2},\psi)} d\lambda.$$

De plus, on a

(88) 
$$|S_{\pi_{\lambda}}| = \prod_{i=1}^{t} d_{i}^{m_{i}+n_{i}} \prod_{j=1}^{u} e_{j}^{p_{j}} \prod_{k=1}^{v} f_{k}^{q_{k}}.$$

On notera ce produit P dans la suite.

On en déduit l'égalité suivante :

$$\begin{split} & \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi) \gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}}(\pi) = \\ & \frac{1}{|W(\mathsf{PG}_{2n},\tau)|\mathsf{P}} \left(\frac{\log(\mathfrak{q})}{2\pi}\right)^{\dim(\mathcal{A})} \int_{\mathcal{A}} \phi(\lambda) \frac{\gamma^*(0,\pi_\lambda,\overline{\mathsf{Ad}},\psi)}{\gamma(s,\pi_\lambda,\Lambda^2,\psi)} d\lambda, \end{split}$$

où  $\phi(\lambda) = \phi(\pi_{\lambda})$  si  $\lambda \in V$  et 0 sinon. La fonction  $\phi$  est  $W(PG_{2n}, \tau)$ -invariante à support compact.

Décrivons maintenant la forme des facteurs  $\gamma$ , on aura besoin des propriétés de ces derniers.

Propriété 3.1. Les facteurs  $\gamma$  vérifient les propriétés suivantes :

- $\gamma(s, \pi_1 \times \pi_2, Ad) = \gamma(s, \pi_1, Ad)\gamma(s, \pi_2, Ad)\gamma(s, \pi_1 \times \widetilde{\pi_2})\gamma(s, \widetilde{\pi_1} \times \pi_2),$
- $\gamma(s, \pi | \det|^{x}, Ad) = \gamma(s, \pi, Ad),$
- $\gamma(s, \pi, Ad)$  a un zéro simple en s = 0,
- $\gamma(s, \pi_1 \times \pi_2, \Lambda^2) = \gamma(s, \pi_1, \Lambda^2) \gamma(s, \pi_2, \Lambda^2) \gamma(s, \pi_1 \times \pi_2),$
- $-\gamma(s,\pi|\det|^x,\Lambda^2)=\gamma(s+2x,\pi,\Lambda^2),$
- $-\gamma(s,\pi,\Lambda^2)$  a au plus un zéro simple en s=0 et  $\gamma(0,\pi,\Lambda^2)=0$  si et seulement si  $\pi$  est dans l'image de l'application de transfert  $\mathsf{T}$ ,

pour tous  $x \in \mathbb{C}$ ,  $\pi \in \Pi_2(G_{\mathfrak{m}})$  et  $\pi_1, \pi_2 \in \mathsf{Temp}(G_{\mathfrak{m}})$ .

On en déduit que

(90)

$$\begin{split} \gamma^*(0,\pi_{\lambda},\overline{Ad},\psi) &= \left(\prod_{i=1}^t \prod_{1\leqslant l\neq l'\leqslant m_i} (\frac{x_{i,l}(\lambda)-x_{i,l'}(\lambda)}{d_i}) \prod_{1\leqslant l\neq l'\leqslant n_i} (\frac{\widetilde{x_{i,l}}(\lambda)-\widetilde{x_{i,l'}}(\lambda)}{d_i}) \right) \\ &\left(\prod_{j=1}^u \prod_{1\leqslant l\neq l'\leqslant p_j} (\frac{y_{j,l}(\lambda)-y_{j,l'}(\lambda)}{e_j}) \right) \left(\prod_{k=1}^v \prod_{1\leqslant l\neq l'\leqslant q_k} (\frac{z_{k,l}(\lambda)-z_{k,l'}(\lambda)}{f_k}) \right) F(\lambda), \end{split}$$

où F est une fonction  $W(PG_{2n},\tau)$ -invariante  $C^{\infty}$  qui ne s'annule pas sur le voisinage V (quitte à rétrécir V), il s'agit d'un produit de facteur  $\gamma$  ne s'annulant pas sur V. De même, on a

(91)

$$\begin{split} \gamma(s,\pi_{\lambda},\Lambda^2,\psi)^{-1} &= \left( \prod_{i=1}^t \prod_{\substack{1\leqslant l\leqslant m_i\\ 1\leqslant l'\leqslant n_i}} (s+\frac{x_{i,l}(\lambda)+\widetilde{x_{i,l'}}(\lambda)}{d_i})^{-1} \right) \\ \left( \prod_{j=1}^u \prod_{1\leqslant l< l'\leqslant p_j} (s+\frac{y_{j,l}(\lambda)+y_{j,l'}(\lambda)}{e_j})^{-1} \right) \left( \prod_{k=1}^v \prod_{1\leqslant l\leqslant l'\leqslant q_k} (s+\frac{z_{k,l}(\lambda)+z_{k,l'}(\lambda)}{f_k})^{-1} \right) G(2\lambda+s), \end{split}$$

où la fonction G est une fonction  $W(PG_{2n},\tau)$ -invariante méromorphe sur  $\mathcal{A}\otimes\mathbb{C}$  et n'a pas de pôle sur  $\frac{1}{2}V+\mathcal{H}$  (quitte à rétrécir V); ici  $\mathcal{H}=\{z\in\mathbb{C}, Re(z)>0\}\cup\{0\}$  s'injecte dans  $\mathcal{A}\otimes\mathbb{C}$  par l'application  $s\in\mathcal{H}\mapsto\lambda_s\in\mathcal{A}\otimes\mathbb{C}$  dont les coordonnées sont  $x_i(\lambda_s)=d_i(s,...,s),\ y_j(\lambda_s)=e_j(s,...,s)$  et  $z_k(\lambda_s)=f_k(s,...,s)$ .

On énonce maintenant le résultat fondamental de [5], qui permet d'obtenir la proposition pour la représentation d'Asai. En reprenant les notations de [5], on

écrit

(92)

$$\phi(\lambda)\frac{\gamma^*(0,\pi_\lambda,\overline{Ad},\psi)}{\gamma(s,\pi_\lambda,\Lambda^2,\psi)} = \phi_s(\lambda) \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda)}{d_i}) \prod_{j=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda)}{e_j}) \prod_{i=1}^\nu R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda)}{f_k}),$$

où  $\varphi_s(\lambda) = \varphi(\lambda)F(\lambda)G(2\lambda + s)$ . De plus,  $\varphi_s$  est  $W(PG_{2n}, \tau)$ -invariante à support compact. Les lettres P, Q, R désignent des fractions rationnelles qui apparaissent dans le quotient des facteurs  $\gamma$  (voir [5, section 3]).

**Proposition 3.3** (Beuzart-Plessis [5]). La limite

$$(93) \quad \lim_{s\to 0^+} \frac{\mathrm{ns}}{|W|} \int_{\mathcal{A}} \varphi_s(\lambda) \prod_{i=1}^t \mathsf{P}_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{\mathsf{x}_i(\lambda)}{\mathsf{d}_i}) \prod_{j=1}^u \mathsf{Q}_{\mathfrak{p}_j,s}(\frac{\mathsf{y}_j(\lambda)}{\mathsf{e}_j}) \prod_{i=1}^v \mathsf{R}_{\mathsf{q}_k,s}(\frac{\mathsf{z}_k(\lambda)}{\mathsf{f}_k}) \mathrm{d}\lambda$$

est nulle si  $m_i \neq n_i$  pour un certain i ou si l'un des  $p_i$  est impair. De plus, dans le cas contraire, elle est égale à

$$\begin{split} &\frac{D(2\pi)^{N-1}2^{-c}}{|W'|} \\ &\int_{\mathcal{A}'} \lim_{s \to 0^+} \phi_s(\lambda') s^N \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda')}{d_i}) \prod_{i=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda')}{e_j}) \prod_{i=1}^v R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda')}{f_k}) d\lambda'; \end{split}$$

 $\begin{array}{l} - \ D = \prod_{i=1}^t d_i^{n_i} \prod_{j=1}^u e_j^{\frac{p_j}{2}} \prod_{k=1}^v f_k^{\lceil \frac{q_k}{2} \rceil}, \\ - \ c \ est \ le \ cardinal \ des \ 1 \leqslant k \leqslant t \ tel \ que \ q_k \equiv 1 \mod 2, \\ - \ N = \sum_{i=1}^t n_i + \sum_{j=1}^u \frac{p_j}{2} + \sum_{k=1}^v \lceil \frac{q_k}{2} \rceil, \\ - \ W \ et \ W' \ sont \ definis \ de \ manière \ intrinsèque \ dans \ 3.3, \ W \ est \ isomorphe \ \grave{a} \end{array}$  $W(PG_{2n}, \tau)$  et W' est isomorphe à  $W(SO(2n+1), \sigma)$  (defini plus loin).

De plus, A' est le sous-espace de A défini par les relations :

 $-x_{i,l}(\lambda) + \widetilde{x_{i,l}}(\lambda) = 0 \text{ pour tous } 1 \leqslant i \leqslant t \text{ et } 1 \leqslant l \leqslant n_i,$ 

 $\begin{array}{l} -\ y_{j,l}(\lambda)+y_{j,p_j+1-l}(\lambda)=0\ \textit{pour tous}\ 1\leqslant j\leqslant u\ \textit{et}\ 1\leqslant l\leqslant \frac{p_j}{2},\\ -\ z_{k,l}(\lambda)+z_{k,q_k+1-l}(\lambda)=0\ \textit{pour tous}\ 1\leqslant k\leqslant v\ \textit{et}\ 1\leqslant l\leqslant \lceil\frac{q_k}{2}\rceil. \end{array}$ 

On équipe A' de la mesure Lebesgue provenant de l'isomorphisme

$$(95) \qquad \qquad \mathcal{A}' \simeq \prod_{i=1}^t (i\mathbb{R})^{n_i} \prod_{j=1}^u (i\mathbb{R})^{\frac{p_j}{2}} \prod_{k=1}^{\nu} (i\mathbb{R})^{\lfloor \frac{q_k}{2} \rfloor}$$

$$\mathit{qui\ envoie}\ (x_i(\lambda),y_j(\lambda),z_k(\lambda))\ \mathit{sur}\ ((x_{i,1},...,x_{i,n_i}),(y_{j,1},...,y_{j,\frac{p_j}{2}}),(z_{k,1},...,z_{k,\lceil\frac{q_{l_k}}{2}\rceil})).$$

Supposons tout d'abord que  $\pi$  n'est pas de la forme  $T(\sigma)$  pour un certain  $\sigma \in$ Temp(SO(2n+1))/Stab. D'après la caractérisation 81, il existe  $1 \le i \le r$  tel que  $m_i \neq n_i$  ou  $p_i$  est impair (on vérifie aisément que les autres cas se mettent sous la forme qui apparait dans 81). Alors en prenant U suffisamment petit, on peut supposer que U ne rencontre pas l'image de l'application de transfert T. Autrement dit, le terme de droite de la proposition est nul; d'après 3.3, le terme de gauche l'est aussi.

Supposons maintenant qu'il existe  $\sigma \in \text{Temp}(SO(2n+1))/\text{Stab}$  tel que  $\pi = T(\sigma)$ . Alors  $m_i = n_i$  pour tout  $1 \le i \le t$  et les  $p_i$  sont pairs. De plus, on peut écrire

$$(96) \hspace{1cm} \sigma = \left( \overset{t}{\underset{i=1}{\times}} \tau_{i}^{\times n_{i}} \times \overset{u}{\underset{j=1}{\times}} \mu_{j}^{\times \frac{p_{j}}{2}} \times \overset{\nu}{\underset{k=1}{\times}} \nu_{k}^{\times \lfloor \frac{q_{k}}{2} \rfloor} \right) \rtimes \sigma_{0},$$

où  $\sigma_0$  est une représentation de SO(2m+1) pour un certain m tel que

(97) 
$$\mathsf{T}(\sigma_0) = \sum_{\substack{k=1 \\ q_k \equiv 1 \mod 2}}^{\nu} \nu_k.$$

On note  $L=\prod_{i=1}^t G_{d_i}^{n_i}\prod_{j=1}^u G_{\varepsilon_j}^{\frac{p_j}{2}}\prod_{k=1}^v G_{f_k}^{\lfloor\frac{q_k}{2}\rfloor}\times SO(2m+1).$  On a  $\sigma=Ind_L^{SO(2n+1)}(\Sigma)$ , où  $\Sigma\in\Pi_2(L)$ . Le groupe W' de la proposition 3.3 est isomorphe à  $W(SO(2n+1),\sigma)$ , où  $W(SO(2n+1),\sigma)$  est le sous-groupe de W(SO(2n+1),L) fixant la classe d'isomorphisme de  $\sigma$ .

Comme précédemment,  $X^*(L) \otimes i\mathbb{R}$  est isomorphe à  $\mathcal{A}'$ . On en déduit une application  $\lambda' \in \mathcal{A}' \mapsto \sigma_{\lambda'} \in \mathsf{Temp}(\mathsf{SO}(2n+1))$ , avec

$$(98) \qquad \sigma_{\lambda'} = \left( \underset{i=1}{\overset{t}{\underset{l=1}{\times}}} \underset{l=1}{\overset{\pi_{i}}{\underset{l=1}{\times}}} \tau_{i} \otimes |\det|^{\frac{x_{i,1}(\lambda')}{d_{i}}} \right) \times \left( \underset{j=1}{\overset{u}{\underset{l=1}{\times}}} \underset{l=1}{\overset{p_{j}}{\underset{l}{\times}}} \mu_{j} \otimes |\det|^{\frac{y_{j,1}(\lambda')}{e_{j}}} \right) \times \left( \underset{k=1}{\overset{x_{i,1}(\lambda')}{\underset{l=1}{\times}}} \right) \times \sigma_{0}.$$

De plus, d'après 81, pour  $\lambda \in V$ ,  $\pi_{\lambda} \in T(SO(2n+1)/Stab)$  si et seulement si  $\lambda \in \mathcal{A}'$ ; quitte à rétrécir V. Dans ce cas  $\pi_{\lambda} = T(\sigma_{\lambda})$ .

En utilisant cette caractérisation et la définition de la fonction  $\phi$  (équation 89), on obtient

$$(99) \qquad \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}} \Phi(\mathsf{T}(\sigma)) \frac{\gamma^*(0,s,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} d\sigma$$

$$= \frac{1}{|W'|} \left( \frac{\log(\mathsf{q}_\mathsf{F})}{2\pi} \right)^{\dim(\mathcal{A}')} \int_{\mathcal{A}'} \Phi(\mathsf{T}(\sigma_{\lambda'})) \frac{\gamma^*(0,\sigma_{\lambda'},\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma_{\lambda'}}|} d\lambda'$$

$$= \frac{1}{|W'|} \left( \frac{\log(\mathsf{q}_\mathsf{F})}{2\pi} \right)^{\dim(\mathcal{A}')} \int_{\mathcal{A}'} \Phi(\lambda') \frac{\gamma^*(0,\sigma_{\lambda'},\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma_{\lambda'}}|} d\lambda'.$$

De plus,

$$|S_{\sigma_{\lambda'}}| = \prod_{i=1}^t d_i^{n_i} \prod_{j=1}^u e_j^{\frac{p_j}{2}} \prod_{k=1}^{\nu} f_k^{\lfloor \frac{q_k}{2} \rfloor} |S_{\sigma_0}| = 2^c \frac{p}{D},$$

d'après les notations de la proposition 3.3 et la relation 97. D'autre part, d'après la proposition 3.3 et l'équation 89, on a

(101)

$$\begin{split} &\lim_{s\to 0^+} n\gamma(s,1,\psi) \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi)\gamma(s,\pi,\lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}}(\pi) = \frac{D(2\pi)^{N-1}2^{-c}\gamma^*(0,1,\psi)log(q_F)}{|W'|P} \\ &\left(\frac{log(q_F)}{2\pi}\right)^{\dim(\mathcal{A})} \int_{\mathcal{A}'} \lim_{s\to 0^+} \phi_s(\lambda') s^N \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda')}{d_i}) \prod_{i=1}^u Q_{p_j,s}(\frac{y_j(\lambda')}{e_j}) \prod_{i=1}^\nu R_{q_k,s}(\frac{z_k(\lambda')}{f_k}) d\lambda'. \end{split}$$

Cette dernière intégrale est égale à

(102) 
$$\int_{\mathcal{A}'} \varphi(\lambda') \lim_{s \to 0^+} s^{N} \frac{\gamma^*(0, \pi_{\lambda'}, \overline{Ad}, \psi)}{\gamma(s, \pi_{\lambda'}, \Lambda^2, \psi)} d\lambda'.$$

De plus, on remarque que  $s\mapsto \gamma(s,\pi_{\lambda'},\Lambda^2,\psi)^{-1}$  a un pôle d'ordre N en s=0. Notre membre de gauche est donc égal à

$$(103) \quad \frac{D\left(2\pi\right)^{N-1}2^{-c}log(q_F)}{|W'|P}\left(\frac{log(q)}{2\pi}\right)^{\dim(\mathcal{A})}\int_{\mathcal{A}'}\phi(\lambda')\frac{\gamma^*(0,\sigma_{\lambda'},Ad,\psi)}{log(q_F)^N}d\lambda';$$

On a utilisé les relations  $\gamma^*(0,1,\psi)\gamma^*(0,\pi_{\lambda'},\overline{Ad},\psi) = \gamma^*(0,\pi_{\lambda'},Ad,\psi)$  et

(104) 
$$\frac{\gamma(s,\mathsf{T}(\sigma_{\lambda'}),\mathsf{Ad},\psi)}{\gamma(s,\mathsf{T}(\sigma_{\lambda'}),\Lambda^2,\psi)} = \gamma(s,\sigma_{\lambda'},\mathsf{Ad},\psi).$$

Dans l'expression 103, le facteur  $\frac{\log(q_F)}{2\pi}$  apparait avec un exposant  $\dim(\mathcal{A}) - N + 1 = \dim(\mathcal{A}')$ ; on en déduit que 103 est égal au membre de droite 99, d'après l'égalité 100.

## 4. Une formule d'inversion de Fourier

On note  $H_n$  le sous-groupe des matrices de la forme  $\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1}$  où X est dans  $M_n$  et g dans  $G_n$ . On pose  $H_n^P = H_n \cap P_{2n}$ . On note  $\theta$  le caractère sur  $H_n$  qui envoie  $\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1}$  sur  $\psi(Tr(X))$ .

On équipe  $H_n$ ,  $H_n\cap N_{2n}\backslash H_n$  et  $H_n^P\cap N_{2n}\backslash H_n^P$  des mesures suivantes :

$$-\int_{H_n} f(s)ds = \int_{G_n} \int_{M_n} f\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1} \right) dXdg, \quad f \in \mathcal{S}(G_{2n}),$$

$$- \int_{H_{\mathfrak{n}} \cap N_{2\mathfrak{n}} \setminus H_{\mathfrak{n}}} f(\xi) d\xi = \int_{N_{\mathfrak{n}} \setminus G_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) dX dg, \quad f \in \mathcal{S}(G_{2\mathfrak{n}}) \text{ invariante à gauche par } N_{2\mathfrak{n}},$$

 $-\int_{\mathsf{H}_n^\mathsf{P}\cap\mathsf{N}_{2n}\backslash\mathsf{H}_n^\mathsf{P}} \mathsf{f}(\xi) \mathsf{d}\xi = \int_{\mathsf{N}_n\backslash\mathsf{P}_n} \int_{\mathsf{V}_n} \mathsf{f}\left(\sigma_n\begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}\right) \mathsf{d}\mathsf{X}\mathsf{d}g, \quad \mathsf{f} \in \mathcal{S}(\mathsf{G}_{2n}) \text{ invariante à gauche par } \mathsf{N}_{2n}.$ 

**Proposition 4.1.** Soit  $f \in S(G_{2n})$ , alors on a

 $\int_{\mathsf{H}_{\mathfrak{n}}}\mathsf{f}(s)\theta(s)^{-1}ds = \int_{\mathsf{H}_{\mathfrak{n}}^{P}\cap\mathsf{N}_{2\mathfrak{n}}\setminus\mathsf{H}_{\mathfrak{n}}^{P}}\int_{\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}}\setminus\mathsf{H}_{\mathfrak{n}}}W_{\mathsf{f}}(\xi_{\mathfrak{p}},\xi)\theta(\xi)^{-1}\theta(\xi_{\mathfrak{p}})d\xi d\xi_{\mathfrak{p}}.$ 

où  $W_f$  est la fonction de  $G_{2n} \times G_{2n}$  définie par

(106) 
$$W_{f}(g_{1},g_{2}) = \int_{N_{2}u} f(g_{1}^{-1}ug_{2})\psi(u)^{-1}du$$

pour tous  $g_1, g_2 \in G_{2n}$ .

Démonstration. On montre la proposition par récurrence sur  $\mathfrak n$ . Pour  $\mathfrak n=1,\ \sigma_\mathfrak n$  est trivial,  $H_1=N_2Z(G_2)$  et  $H_1^P=N_2$  donc  $H_1^P\cap N_2\backslash H_1^P$  est trivial. Le membre de droite est alors

$$(107) \qquad \int_{\mathbb{F}^*} W_f \left( 1, \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right) dz = \int_{\mathbb{F}^*} \int_{\mathbb{N}_2} f \left( \mathfrak{u} \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right) \psi(\mathfrak{u})^{-1} d\mathfrak{u} dz.$$

Ce qui est bien l'égalité voulue. Supposons maintenant que n > 1 et que la proposition soit vraie au rang n - 1.

Le sous groupe  $\Omega_n$  des matrices de la forme  $\sigma_n\begin{pmatrix} 1 & Y \\ 0 & 1 \end{pmatrix}\begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix}\sigma_n^{-1}$  où Y est une matrice triangulaire inférieure stricte de taille n et  $h \in \overline{B}_n$  le sous-groupe des matrices triangulaires inférieures inversible, s'identifie à un ouvert dense du quotient  $H_n \cap N_{2n} \setminus H_n$ . On injecte  $\Omega_{n-1}$  dans  $\Omega_n$ , en rajoutant des 0 sur la dernière ligne et colonne de Y et voyant h comme un élément de  $\overline{B}_n$ . On note  $\widetilde{\Omega}_n$  l'ensemble des matrices de la forme  $\sigma_n\begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix}\sigma_n^{-1}$  où  $\widetilde{Y}$  est de la forme  $\begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{y} & 0 \end{pmatrix}$  avec  $\widetilde{y} \in F^{n-1}$  et  $\widetilde{h}$  de la forme  $\begin{pmatrix} 1_{n-1} & 0 \\ \widetilde{l} & \widetilde{l}_n \end{pmatrix}$  avec  $\widetilde{l} \in F^{n-1}$  et  $\widetilde{l}_n \in F^*$ . Dans la suite, on fera l'identification de  $F^{n-1} \times F^{n-1} \times F^*$  et  $\widetilde{\Omega}_n$  à travers l'isomorphisme  $(\widetilde{y},\widetilde{l},\widetilde{l}_n) \in F^{n-1} \times F^{n-1} \times F^* \mapsto \sigma_n\begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix}\sigma_n^{-1} \in \widetilde{\Omega}_n$  où  $\widetilde{Y} = \begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{y} & 0 \end{pmatrix}$  et  $\widetilde{h} = \begin{pmatrix} 1_{n-1} & 0 \\ \widetilde{l} & \widetilde{l}_n \end{pmatrix}$ . On en déduit que  $\Omega_n = \Omega_{n-1}\widetilde{\Omega}_n$ .

De même, on dispose d'une décomposition,  $\Omega_n^P = \Omega_{n-1}^P \widetilde{\Omega}_n^P$ , où  $\Omega_n^P$  est l'ensemble des matrices de  $\Omega_n$  avec  $h \in P_n$  et  $\widetilde{\Omega}_n^P$  est l'ensemble des matrices de la forme  $\sigma_n \begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix} \sigma_n^{-1}$  où  $\widetilde{Y}$  est de la forme  $\begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{z} & 0 \end{pmatrix}$  avec  $\widetilde{z} \in F^{n-1}$  et  $\widetilde{p}$  de la forme  $\begin{pmatrix} 1_{n-2} & 0 & 0 \\ \widetilde{l} & \widetilde{l}_{n-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$  avec  $\widetilde{l} \in F^{n-2}$  et  $\widetilde{l}_{n-1} \in F^*$ . De plus,  $\Omega_n^P$  s'identifie à un

ouvert dense du quotient  $H_n^P \cap N_{2n} \setminus H_n^P$ . Dans la suite, on fera l'identification de  $F^{n-1} \times F^{n-2} \times F^*$  et  $\widetilde{\Omega}_n^P$  à travers l'isomorphisme  $(\widetilde{z},\widetilde{l},\widetilde{l}_{n-1}) \in F^{n-1} \times F^{n-2} \times F^* \mapsto \sigma_n \begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix} \sigma_n^{-1} \in \widetilde{\Omega}_n^P$  où  $\widetilde{Z} = \begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{z} & 0 \end{pmatrix}$  et  $\widetilde{p} = \begin{pmatrix} 1_{n-1} & 0 \\ \widetilde{l} & \widetilde{l}_n \end{pmatrix}$ .

On équipe  $\Omega_n$ ,  $\widetilde{\Omega}_n$ ,  $\Omega_n^P$ ,  $\widetilde{\Omega}_n^P$  des mesures suivantes :

$$\begin{split} &-\int_{\Omega_n} f(\xi) d\xi = \int_{\overline{B}_n} \int_{V_n} f\left(\sigma_n \begin{pmatrix} 1 & Y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix} \sigma_n^{-1} \right) dY dh, \quad f \in \mathcal{S}(G_{2n}), \\ &-\int_{\widetilde{\Omega}_n} f(\widetilde{\xi}) d\widetilde{\xi} = \int_{F_{n-1} \times F^*} \int_{F^{n-1}} f\left(\sigma_n \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix} \sigma_n^{-1} \right) d\widetilde{Y} d\widetilde{h}, \quad f \in \mathcal{S}(G_{2n}), \\ &-\int_{\Omega_n^P} f(\xi_p) d\xi_p = \int_{\overline{B}_n \cap P_n} \int_{V_n} f\left(\sigma_n \begin{pmatrix} 1 & Z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix} \sigma_n^{-1} \right) dZ dp, \quad f \in \mathcal{S}(G_{2n}), \\ &-\int_{\widetilde{\Omega}_n^P} f(\widetilde{\xi}_p) d\widetilde{\xi}_p = \int_{F_{n-2} \times F^*} \int_{F^{n-1}} f\left(\sigma_n \begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix} \sigma_n^{-1} \right) d\widetilde{Y} d\widetilde{h}, \quad f \in \mathcal{S}(G_{2n}). \end{split}$$

On utilise ces décompositions pour écrire le membre de droite de la proposition sous la forme

$$(108) \qquad \int_{\widetilde{\Omega}_{n}^{p}} \int_{\Omega_{n-1}^{p}} \int_{\widetilde{\Omega}_{n}} \int_{\Omega_{n-1}} W_{f}(\xi_{p}'\widetilde{\xi}_{p},\xi'\widetilde{\xi}) |\det \xi_{p}'\xi'|^{-1} d\xi' d\widetilde{\xi} d\xi_{p}' d\widetilde{\xi}_{p},$$

On a choisi les représentants des matrices Y et  $\widetilde{Y}$  de sorte que le caractère  $\theta$  soit trivial.

On fixe  $\widetilde{\xi}_p \in \widetilde{\Omega}_{n-1}$  et  $\widetilde{\xi} \in \widetilde{\Omega}_n$ . On pose  $f' = L(\widetilde{\xi}_p)R(\widetilde{\xi})f$ , on a alors

(109) 
$$\int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{f}(\xi_{p}'\widetilde{\xi}_{p}, \xi'\widetilde{\xi}) |\det \xi_{p}'\xi'|^{-1} d\xi' d\xi_{p}' =$$

$$\int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{f'}(\xi_{p}', \xi') |\det \xi_{p}'\xi'|^{-1} d\xi' d\xi_{p}'.$$

De plus,

(110) 
$$W_{f'}(\xi_p', \xi') = \int_{N_{2n-2}} \int_{V} f'(\xi_p'^{-1} v u \xi') \psi(u)^{-1} \psi(v)^{-1} dv du,$$

où V est le sous-groupe des matrices de  $N_{2n}$  avec seulement les deux dernières colonnes non triviales, on dispose donc d'une décomposition  $N_{2n}=N_{2n-2}V$ . On effectue le changement de variable  $\nu\mapsto {\xi'}_p\nu{\xi'}_p^{-1}$ , ce qui donne

$$(111) \qquad W_{f'}(\xi_p',\xi') = |\det \xi_p'|^2 \int_{N_{2n-2}} \int_V f'(\nu \xi_p'^{-1} u \xi') \psi(u)^{-1} \psi(\nu)^{-1} d\nu du.$$

On note  $\widetilde{f}'(g) = |\det g|^{-1} \int_V f'\left(\nu\begin{pmatrix} g & 0 \\ 0 & I_2 \end{pmatrix}\right) \psi(\nu)^{-1} d\nu$  pour  $g \in G_{2n-2}$ ; alors  $\widetilde{f}' \in \mathcal{S}(G_{2n-2})$ . On obtient ainsi l'égalité

(112) 
$$W_{f'}(\xi'_{p}, \xi') = |\det \xi'_{p} \xi'| W_{\widetilde{f}'}(\xi'_{p}, \xi').$$

Appliquons l'hypothèse de récurrence,

$$\int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{f'}(\xi'_{p}, \xi') |\det \xi'_{p} \xi'|^{-1} d\xi' d\xi'_{p} = 
(113) \qquad \int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{\widetilde{f'}}(\xi'_{p}, \xi') d\xi' d\xi'_{p} = \int_{H_{n-1}} \widetilde{f'}(s) \theta(s)^{-1} ds = 
\int_{H_{n-1}} |\det s|^{-1} \int_{V} f(\widetilde{\xi}_{p}^{-1} v s \widetilde{\xi}) \theta(s)^{-1} \psi(v)^{-1} dv ds.$$

Il nous faut maintenant intégrer sur  $\widetilde{\xi}_p$  et  $\widetilde{\xi}$  pour revenir à notre membre de droite. Explicitons l'intégrale sur  $\widetilde{\xi}_p$  en le décomposant sous la forme  $\sigma_n \begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix} \sigma_n^{-1}$ .

On rappelle que l'on identifie  $F^{n-1} \times F^{n-2} \times F^*$  et  $\widetilde{\Omega}_n^P$  à travers l'isomorphisme  $(\widetilde{z},\widetilde{l},\widetilde{l}_{n-1}) \in F^{n-1} \times F^{n-2} \times F^* \mapsto \sigma_n \begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix} \sigma_n^{-1} \in \widetilde{\Omega}_n^P$  où  $\widetilde{Z} = \begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{z} & 0 \end{pmatrix}$ 

et 
$$\widetilde{\mathfrak{p}}=\begin{pmatrix} 1_{\mathfrak{n}-1} & 0\\ \widetilde{\mathfrak{l}} & \widetilde{\mathfrak{l}}_{\mathfrak{n}} \end{pmatrix}$$
. On obtient alors

$$\int_{F^{n-2}\times F^*}\int_{F^{n-1}}\int_{\widetilde{\Omega}_n}\int_{H_{n-1}}|\det s|^{-1}\int_V f\left(\sigma_n\begin{pmatrix}\widetilde{p}^{-1}&0\\0&\widetilde{p}^{-1}\end{pmatrix}\begin{pmatrix}1&-\widetilde{Z}\\0&1\end{pmatrix}\sigma_n^{-1}\nu s\widetilde{\xi}\right)\theta(s)^{-1}\psi(\nu)^{-1}d\nu ds d\widetilde{\xi}d\widetilde{Z}d\widetilde{p}.$$

La conjugaison de  $\nu$  par  $\sigma_n^{-1}$  s'écrit sous la forme  $\begin{pmatrix} n_1 & y \\ t & n_2 \end{pmatrix}$  où  $n_1, n_2$  sont dans  $U_n$ , les coefficients de y sont nuls sauf la dernière colonne et t est de la forme  $\begin{pmatrix} 0_{n-1} & * \\ 0 & 0 \end{pmatrix}$ . Le caractère  $\psi(\nu)$  devient après conjugaison  $\psi(\text{Tr}(y) + \text{Ts}(t))$ ,

où  $Ts(t) = t_{n-1,n}$ . Les changements de variables  $\widetilde{Z} \mapsto \widetilde{p}\widetilde{Z}\widetilde{p}^{-1}$ ,  $n_1 \mapsto \widetilde{p}n_1\widetilde{p}^{-1}$ ,  $n_2 \mapsto \widetilde{p}n_2\widetilde{p}^{-1}$ ,  $t \mapsto \widetilde{p}t\widetilde{p}^{-1}$  et  $y \mapsto \widetilde{p}y\widetilde{p}^{-1}$  transforme l'intégrale précédente en (115)

$$\begin{split} \int_{F^{n-2}\times F^*} \int_{F^{n-1}} \int_{\widetilde{\Omega}_n} \int_{H_{n-1}} |\det s|^{-1} \int_{\sigma_n^{-1}V\sigma_n} f\left(\sigma_n \begin{pmatrix} 1 & -\widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} n_1 & y \\ t & n_2 \end{pmatrix} \begin{pmatrix} \widetilde{p}^{-1} & 0 \\ 0 & \widetilde{p}^{-1} \end{pmatrix} \sigma_n^{-1} s \widetilde{\xi} \right) \\ \theta(s)^{-1} \psi(-\mathsf{Tr}(y)) \psi(-\mathsf{Ts}(\widetilde{p}t\widetilde{p}^{-1})) |\det \widetilde{p}|^3 d\left(\begin{matrix} n_1 & y \\ t & n_2 \end{matrix}\right) ds d\widetilde{\xi} d\widetilde{Z} d\widetilde{p}. \end{split}$$

On explicite maintenant l'intégrale sur s ce qui donne que  $\sigma_n^{-1}s\sigma_n$  est de la forme  $\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}$  avec X une matrice de taille n dont la dernière ligne et dernière colonne sont nulles et  $g \in G_{n-1}$  vu comme élément de  $G_n$ . Le changement de variable  $X \mapsto \widetilde{p}X\widetilde{p}^{-1}$  donne

$$\begin{split} &\int_{\mathbb{F}^{n-2}\times\mathbb{F}^*}\int_{\mathbb{F}^{n-1}}\int_{\widetilde{\Omega}_n}\int_{M_{n-1}}\int_{G_{n-1}}|\det\widetilde{p}^{-1}g|^{-2}\int_{\sigma_n^{-1}V\sigma_n}\\ (116) &\quad f\left(\sigma_n\begin{pmatrix}1&-\widetilde{Z}\\0&1\end{pmatrix}\begin{pmatrix}n_1&y\\t&n_2\end{pmatrix}\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}\widetilde{p}^{-1}g&0\\0&\widetilde{p}^{-1}g\end{pmatrix}\sigma_n^{-1}\widetilde{\xi}\right)\\ &\quad \psi(-\mathsf{Tr}(X))\psi(-\mathsf{Tr}(y))\psi(-\mathsf{Ts}(\widetilde{p}t\widetilde{p}^{-1}))|\det\widetilde{p}|d\begin{pmatrix}n_1&y\\t&n_2\end{pmatrix}dgdXd\widetilde{\xi}d\widetilde{Z}d\widetilde{p}. \end{split}$$

On effectue maintenant le changement de variables  $g\mapsto \widetilde{p}g,$  notre intégrale devient alors

$$\begin{split} &\int_{\mathsf{F}^{n-2}\times\mathsf{F}^*}\int_{\mathsf{F}^{n-1}}\int_{\widetilde{\Omega}_n}\int_{\mathsf{M}_{n-1}}\int_{\mathsf{G}_{n-1}}|\det g|^{-2}\int_{\sigma_n^{-1}V\sigma_n}\\ (117) &\quad f\left(\sigma_n\begin{pmatrix}1&-\widetilde{\mathsf{Z}}\\0&1\end{pmatrix}\begin{pmatrix}n_1&y\\t&n_2\end{pmatrix}\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}g&0\\0&g\end{pmatrix}\sigma_n^{-1}\widetilde{\xi}\right)\\ &\quad \psi(-\mathsf{Tr}(\mathsf{X}))\psi(-\mathsf{Tr}(\mathsf{y}))\psi(-\mathsf{Ts}(\widetilde{\mathsf{p}}\mathsf{t}\widetilde{\mathsf{p}}^{-1}))|\det\widetilde{\mathsf{p}}|d\begin{pmatrix}n_1&y\\t&n_2\end{pmatrix}\mathrm{d} g\mathrm{d} \mathsf{X}\mathrm{d}\widetilde{\xi}\mathrm{d}\widetilde{\mathsf{Z}}\mathrm{d}\widetilde{\mathsf{p}}. \end{split}$$

**Lemme 4.1.** *Soit*  $F \in S(M_n)$ , *alors* 

$$(118) \qquad \int_{\mathsf{F}^{n-2}\times\mathsf{F}^*}\int_{\mathsf{Lie}(\mathsf{U}_n)}\mathsf{F}(\mathsf{t})\psi(-\mathsf{T}\mathsf{s}(\widetilde{\mathsf{p}}\mathsf{t}\widetilde{\mathsf{p}}^{-1}))|\det\widetilde{\mathsf{p}}|d\mathsf{t}d\widetilde{\mathsf{p}}=\mathsf{F}(0).$$

On rappelle que l'on identifie  $F^{n-2} \times F^*$  à l'ensemble des matrices de la forme  $\begin{pmatrix} 1_{n-2} & 0 \\ \widetilde{l} & \widetilde{l}_{n-1} \end{pmatrix}$  avec  $\widetilde{l} \in F^{n-2}$  et  $\widetilde{l}_n \in F^*$ .

Démonstration. La mesure  $|\det \widetilde{\mathfrak{p}}| d\widetilde{\mathfrak{p}}$  correspond à la mesure additive sur  $\mathsf{F}^{n-1}$ . En remarquant que  $\mathsf{Ts}(\widetilde{\mathfrak{p}}\mathsf{t}\widetilde{\mathfrak{p}}^{-1})$  n'est autre que le produit scalaire des vecteurs dans  $\mathsf{F}^{n-1}$  correspondant à  $\widetilde{\mathfrak{p}}$  et t, le lemme n'est autre qu'une formule d'inversion de Fourier.

Le lemme précédent nous permet de simplifier notre intégrale en 119)

$$\begin{split} \int_{F^{n-1}} \int_{\widetilde{\Omega}_n} \int_{M_{n-1}} \int_{G_{n-1}} |\det g|^{-2} \int_{\sigma_n^{-1} V_0 \sigma_n} f\left(\sigma_n \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} n_1 & y \\ 0 & n_2 \end{pmatrix} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1} \widetilde{\xi} \right) \\ \psi(-\mathsf{Tr}(\mathsf{X})) \psi(-\mathsf{Tr}(\mathsf{y})) d\begin{pmatrix} n_1 & y \\ 0 & n_2 \end{pmatrix} dg dX d\widetilde{\xi} d\widetilde{\mathsf{Z}}, \end{split}$$

où  $\sigma_n^{-1}V_0\sigma_n$  est le sous-groupe de  $\sigma_n^{-1}V\sigma_n$  où t=0.

On explicite l'intégration sur  $\widetilde{\xi}$  de la forme  $\sigma_n \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix} \sigma_n^{-1}$  où  $\widetilde{Y}$  est une

matrice de la forme  $\begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{y} & 0 \end{pmatrix}$  avec  $\widetilde{y} \in F^{n-1}$  et  $\widetilde{h} \in F^{n-1} \times F^*$  que l'on identifie avec un élément de  $G_n$  dont seule la dernière ligne est non triviale. Ce qui nous permet d'identifier  $F^{n-1} \times F^{n-1} \times F^*$  et  $\widetilde{\Omega}_n$ . L'intégrale devient

$$\int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1} \times \mathbb{F}^*} \int_{G_{n-1}} \int_{M_{n-1}} |\det g|^{-2} \int_{\sigma_n^{-1} V_0 \sigma_n}$$

$$f\left(\sigma_n \begin{pmatrix} 1 & -\widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} n_1 & y \\ 0 & n_2 \end{pmatrix} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix} \sigma_n^{-1} \right)$$

$$\psi(-\mathsf{Tr}(X)) \psi(-\mathsf{Tr}(y)) d\begin{pmatrix} n_1 & y \\ 0 & n_2 \end{pmatrix} dX dg d\widetilde{h} d\widetilde{Y} d\widetilde{Z}.$$

On remarque que l'on a

$$\begin{pmatrix} \mathfrak{n}_1 & \mathfrak{y} \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix} \begin{pmatrix} 1 & \widetilde{\mathsf{Y}} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathfrak{n}_1 & 0 \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathfrak{n}_1^{-1} \mathfrak{y} + \mathsf{X} + \mathsf{g} \widetilde{\mathsf{Y}} \mathsf{g}^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix},$$

On effectue les changement de variable  $y\mapsto n_1y$  et  $\widetilde{Y}\mapsto g^{-1}\widetilde{Y}g$  et on combine les intégrales sur X, y et  $\widetilde{Y}$  en une intégration sur  $M_n$  dont on note encore la variable X. On obtient alors

$$\begin{split} & (122) \\ & \int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1} \times \mathbb{F}^*} \int_{G_{n-1}} \int_{\mathbb{M}_n} |\det g|^{-1} \int_{\mathbb{U}_n^2} \\ & f \left( \sigma_n \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_1 & 0 \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g\widetilde{\mathsf{h}} & 0 \\ 0 & g\widetilde{\mathsf{h}} \end{pmatrix} \sigma_n^{-1} \right) \psi(-\mathsf{Tr}(\mathsf{X})) d(\mathfrak{n}_1,\mathfrak{n}_2) d\mathsf{X} dg d\widetilde{\mathsf{h}} d\widetilde{\mathsf{Z}}. \end{split}$$

On effectue le changement de variable  $n_2 \mapsto n_2 n_1$  et on remarque que l'on a

$$\begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & 0 \\ 0 & \mathsf{n}_2 \mathsf{n}_1 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \mathsf{n}_1 \mathsf{X} \mathsf{n}_1^{-1} - \widetilde{\mathsf{Z}} \mathsf{n}_2 \\ 0 & \mathsf{n}_2 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & 0 \\ 0 & \mathsf{n}_1 \end{pmatrix}.$$

Le changement de variables  $X \mapsto \mathfrak{n}_1^{-1}(X + \widetilde{\mathsf{Z}}\mathfrak{n}_2)\mathfrak{n}_1$  nous donne alors (124)

$$\begin{split} \int_{\mathsf{F}^{\mathfrak{n}-1}} \int_{\mathsf{F}^{\mathfrak{n}-1} \times \mathsf{F}^*} \int_{G_{\mathfrak{n}-1}} \int_{\mathsf{M}_{\mathfrak{n}}} |\det \mathsf{g}|^{-1} \int_{\mathsf{U}_{\mathfrak{n}}^2} \mathsf{f} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & n_2 \end{pmatrix} \begin{pmatrix} n_1 \mathsf{g} \widetilde{\mathsf{h}} & 0 \\ 0 & n_1 \mathsf{g} \widetilde{\mathsf{h}} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \\ \psi(-\mathsf{Tr}(X)) \psi(-\mathsf{Tr}(\widetilde{\mathsf{Z}} n_2)) \mathsf{d}(n_1, n_2) \mathsf{d} X \mathsf{d} \mathsf{g} \mathsf{d} \widetilde{\mathsf{h}} \mathsf{d} \widetilde{\mathsf{Z}}. \end{split}$$

On reconnait une formule d'inversion de Fourier selon les variables  $\widetilde{Z}$  et  $n_2$  ce qui nous permet de simplifier notre intégrale en

$$(125) \quad \int_{\mathsf{F}^{\mathfrak{n}-1}\times\mathsf{F}^*} \int_{\mathsf{G}_{\mathfrak{n}-1}} \int_{\mathsf{M}_{\mathfrak{n}}} |\det g|^{-1} \int_{\mathsf{U}_{\mathfrak{n}}} \mathsf{f}\left(\sigma_{\mathfrak{n}}\begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_1 g \widetilde{\mathfrak{h}} & 0 \\ 0 & \mathfrak{n}_1 g \widetilde{\mathfrak{h}} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \\ \psi(-\mathsf{Tr}(\mathsf{X})) d\mathfrak{n}_1 d\mathsf{X} dg d\widetilde{\mathfrak{h}}.$$

Après combinaison des intégrations sur  $\mathfrak{n}_1$ ,  $\mathfrak{g}$ ,  $\widetilde{\mathfrak{h}}$ ; on trouve bien notre membre de gauche

(126) 
$$\int_{G_n} \int_{M_n} f\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1} \right) \psi(-\mathsf{Tr}(\mathsf{X})) d\mathsf{X} d\mathsf{g}.$$

On remarquera que l'on a pris garde à ne pas échanger l'intégrale sur V avec les intégrales sur  $\widetilde{H}$ ,  $H_{n-1}$ ,  $\widetilde{\Omega}_{n-1}$  et  $H_{n-1}^P$  qui chacune est absolument convergente mais l'intégrale totale ne l'est pas. On s'est contenté d'échanger des intégrales sur les différents H d'une part, d'échanger des intégrales sur les  $n_1$ ,  $n_2$ , t, y qui compose l'intégrale sur V d'autre part. On doit seulement vérifier qu'il n'y a pas de problème de convergence lorsque l'on combine l'intégration en X sur  $M_n$  (cf. intégrale 122) et lorsque l'on échange l'intégrale sur  $U_n$  et  $M_n$  (cf. intégrale 125). Pour ce qui est de la dernière intégrale, on intègre sur un sous-groupe fermé et  $f \in \mathcal{S}(G_{2n})$  donc l'intégrale est absolument convergente. Pour ce qui est de l'intégrale 122, à part l'intégration sur  $\widetilde{Z}$ , on intègre sur un sous-groupe fermé donc on peut bien combiner les intégrales.

Finissons par montrer la convergence absolue de notre membre de droite. Notons  $\mathbf{r}(g) = 1 + ||e_{2n}g||_{\infty}$ . On a

(127)

$$\begin{split} W_{r^N|\det|^{-\frac{1}{2}}f}\left(\sigma_n\begin{pmatrix}1&X'\\0&1\end{pmatrix}\begin{pmatrix}\alpha'k'&0\\0&\alpha'k'\end{pmatrix}\sigma_n^{-1},\sigma_n\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}\alpha k&0\\0&\alpha k\end{pmatrix}\sigma_n^{-1}\right) = \\ (1+|a_n|)^N|\det\alpha(\alpha')^{-1}|^{-1}W_f\left(\sigma_n\begin{pmatrix}1&X'\\0&1\end{pmatrix}\begin{pmatrix}\alpha'k'&0\\0&\alpha'k'\end{pmatrix}\sigma_n^{-1},\sigma_n\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}\alpha k&0\\0&\alpha k\end{pmatrix}\sigma_n^{-1}\right), \end{split}$$

pour tous  $a \in A_n$ ,  $a' \in A_{n-1}$ ,  $X, X' \in V_n$ ,  $k \in K_n$  et  $k' \in K_{n-1}$ . Il suffit de vérifier la convergence de l'intégrale

(128) 
$$\int_{V_{n}} \int_{A_{n-1}} \int_{\bar{\mathfrak{n}}_{n}} \int_{A_{n}} (1 + |a_{n}|)^{-N} |\det \mathfrak{a}(\mathfrak{a}')^{-1}|$$

$$W_{r^{N}|\det|^{-\frac{1}{2}}f} \left( \sigma_{n} \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a}'k' & 0 \\ 0 & \mathfrak{a}'k' \end{pmatrix} \sigma_{n}^{-1}, \sigma_{n} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a}k & 0 \\ 0 & \mathfrak{a}k \end{pmatrix} \sigma_{n}^{-1} \right)$$

$$\delta_{B_{n}}(\mathfrak{a})^{-1} \delta_{B_{n-1}}(\mathfrak{a}')^{-1} d\mathfrak{a} dX d\mathfrak{a}' dX'$$

pour N suffisamment grand. On note  $\mathfrak{u}_X = \sigma_\mathfrak{n} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \sigma_\mathfrak{n}^{-1}$  et  $\mathfrak{u}_{X'} = \sigma_\mathfrak{n} \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \sigma_\mathfrak{n}^{-1}$ . On a alors

$$(129) \hspace{1cm} \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a}k & 0 \\ 0 & \mathfrak{a}k \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} = \mathfrak{b}\sigma_{\mathfrak{n}}k\sigma_{\mathfrak{n}}^{-1}\mathfrak{u}_{(\mathfrak{a}k)^{-1}X(\mathfrak{a}k)},$$

où  $b = diag(a_1, a_1, a_2, a_2, ...)$  et

$$(130) \qquad \quad \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a}'k' & 0 \\ 0 & \mathfrak{a}'k' \end{pmatrix} \\ \sigma_{\mathfrak{n}}^{-1} = b'\sigma_{\mathfrak{n}}k'\sigma_{\mathfrak{n}}^{-1}u_{(\mathfrak{a}'k')^{-1}X'(\mathfrak{a}'k')},$$

où  $b' = diag(a'_1, a'_1, a'_2, a'_2, ...).$ 

On effectue les changements de variables  $X \mapsto (\alpha k) X(\alpha k)^{-1}$  et  $X' \mapsto (\alpha' k') X' (\alpha' k')^{-1}$ . D'après les lemme 2.2 et la preuve du lemme 2.4, il existe d > 0 tel que pour tout

 $\mathsf{N}\geqslant 1,$  l'intégrale 128 est alors majorée à une constante près par

(131)

$$\begin{split} \int_{V_n} \int_{A_{n-1}} \int_{\nu_n} \int_{A_n} (1+|a_n|)^{-N} |\det \alpha(\alpha')^{-1} |m(X)^{-\alpha N} \prod_{i=1}^{n-1} (1+|\frac{\alpha_i}{\alpha_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}} (bt_X) \log(\|bt_X\|)^d \\ m(X')^{-\alpha'N} \prod_{i=1}^{n-1} (1+|\frac{\alpha_i'}{\alpha_{i+1}'}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}} (b't_{X'}) \log(\|b't_{X'}\|)^d \delta_{B_n}^{-2} (\alpha) \delta_{B_{n-1}}^{-2} (\alpha') d\alpha dX d\alpha' dX'. \end{split}$$

Les quantités  $\mathfrak{m}(X)$ ,  $\mathfrak{m}(X')$ ,  $\alpha$  et  $\alpha'$  sont celles que l'on obtient par l'application de la proposition 2.8. On rappelle que  $\mathfrak{m}(X)=\sup(1,\|X\|)$ , où  $\|X\|=\sup_{i,j}|X_{i,j}|$ . On a  $\delta_{B_{2n}}^{\frac{1}{2}}(\mathfrak{b}')\delta_{B_{n-1}}^{-2}(\mathfrak{a}')=|\det\mathfrak{a}'|^2$ . On en déduit que cette dernière intégrale est majorée (à constante près) par le maximum du produit des intégrales

(132) 
$$\int_{V_n} \mathsf{m}(\mathsf{X})^{-\alpha \mathsf{N}} \delta_{\mathsf{B}_{2n}}^{\frac{1}{2}}(\mathsf{t}_{\mathsf{X}}) \log(\|\mathsf{t}_{\mathsf{X}}\|)^{d-j} \mathsf{d}\mathsf{X},$$

$$\int_{V_n} \mathfrak{m}(X')^{-\alpha' N} \delta_{B_{2n}}^{\frac{1}{2}}(t_{X'}) \log(\|t_{X'}\|)^{d-j'} dX',$$

(134) 
$$\int_{A_n} \prod_{i=1}^{n-1} (1 + |\frac{a_i}{a_{i+1}}|)^{-N} (1 + |a_n|)^{-N} \log(||b||)^j |\det a| da,$$

et

(135) 
$$\int_{A_{n-1}} \prod_{i=1}^{n-2} (1 + \left| \frac{\alpha_i'}{\alpha_{i+1}'} \right|)^{-N} (1 + \left| \alpha_{n-1}' \right|)^{-N} \log(\|b'\|)^{j'} |\det \alpha'| d\alpha',$$

pour j,j' compris entre 0 et d. Ces dernières intégrales convergent pour N assez grand, voir [12, proposition 5.5] pour les deux premières intégrales et le lemme 2.3 pour les deux dernières.

5. Formules de Plancherel

Pour  $W \in \mathcal{C}^w(N_{2n} \backslash G_{2n})$ , on note

(136) 
$$\beta(W) = \int_{H_n^P \cap N_{2n} \setminus H_n^P} W(\xi_p) \theta(\xi_p)^{-1} d\xi_p.$$

**Lemme 5.1.** L'intégrale 136 est absolument convergente. La forme linéaire  $W \in \mathcal{C}^w(N_{2n} \setminus G_{2n}) \mapsto \beta(W)$  est continue. De plus, la restriction de  $\beta$  a  $\mathcal{W}(\pi, \psi)$  est non nulle.

 $D\acute{e}monstration$ . D'après la décomposition d'Iwasawa,  $P_n=N_nA_{n-1}K_n^P$ , où  $K_n^P$  est un sous-groupe compact, il suffit de montrer la convergence de l'intégrale

$$(137) \qquad \int_{V_n} \int_{A_{n-1}} \left| W \left( \sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha k & 0 \\ 0 & \alpha k \end{pmatrix} \sigma_n^{-1} \right) \right| \delta_{B_{n-1}}(\alpha)^{-1} d\alpha dX,$$

pour tout  $k \in K_n^P$ . D'après la preuve du lemme 2.4, on obtient la majoration suivante :

$$\int_{V_n} \int_{A_{n-1}} \prod_{i=1}^{n-2} (1 + \frac{|a_i|}{|a_{i+1}|})^{-N} \mathfrak{m}(X)^{-\alpha N} \delta_{B_{2n}} (bt_X)^{\frac{1}{2}} \\ \log(||bt_X||)^d \delta_{B_n}(a) \delta_{B_{n-1}}(a)^{-1} dadX,$$

pour tout  $N \ge 1$ . Cette dernière intégrale est convergente pour N suffisamment grand par le même argument que dans la preuve du lemme 2.4.

Pour finir, le modèle de Kirillov  $\mathcal{K}(\pi, \psi)$  contient  $C_c^{\infty}(N_{2n} \backslash P_{2n}, \psi)$  [6]. En particulier, il existe une fonction de Whittaker dont la restriction a  $A_{2n-1}K_{2n}^P$  est l'indicatrice de  $A_{2n-1}(\mathcal{O}_F)$ , alors  $\beta$  est non nulle sur cette fonction.

**Proposition 5.1.** Pour  $\pi = T(\sigma)$  avec  $\sigma \in Temp(SO(2n+1))$ , la restriction de  $\beta$  à  $W(\pi, \psi)$  est un élément de  $Hom_{H_n}(W(\pi, \psi), \theta)$ .

La preuve de cette proposition se fera après quelques préliminaires. On commence par prouver un lemme et introduire des notations.

**Lemme 5.2.** Pour  $W \in S(Z_{2n}N_{2n} \setminus G_{2n})$  et  $\varphi \in S(F^n)$ , on a

(139) 
$$\lim_{s \to 0^+} \gamma(ns, 1, \psi) J(s, W, \phi) = \phi(0) \int_{Z_{2n}(H_n \cap N_{2n}) \setminus H_n} W(\xi) \theta(\xi)^{-1} d\xi.$$

 $D\acute{e}monstration$ . On a (140)

$$\begin{split} \gamma(ns,1,\psi) J(s,W,\varphi) &= \int_{A_{n-1}} \int_{K_n} \int_{V_n} W\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha k & 0 \\ 0 & \alpha k \end{pmatrix} \sigma_n^{-1} \right) \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \\ & \psi(-\text{Tr$$

De plus, d'après la thèse de Tate, on a

(141) 
$$\gamma(\mathsf{ns}, 1, \psi) \int_{Z_n} \phi(e_n z k) |\det z|^s dz = \int_{F_n^*} \widehat{\phi_k}(x) |x|^{1-\mathsf{ns}} dx,$$

où l'on a posé  $\varphi_k(x)=\varphi(xe_nk)$  pour tous  $x\in F$  et  $k\in K_n$ . Ce qui nous donne par convergence dominée

(142) 
$$\lim_{s \to 0+} \gamma(ns, 1, \psi) \int_{Z_n} \phi(e_n z k) |\det z|^s dz = \int_F \widehat{\phi_k}(x) dx = \phi(0).$$

On en déduit, aussi par convergence dominée, que  $\lim_{s\to 0^+}\gamma(\mathfrak{n} s,1,\psi)J(s,W,\varphi)$  est égal a

ce qui nous permet de conclure.

On étend la forme linéaire  $f \in \mathcal{S}(G_{2n}) \mapsto \int_{N_{2n}} f(u) \psi(u)^{-1} du$  par continuité en une forme linéaire sur  $C^w(G_{2n})$  [5], que l'on note

(144) 
$$f \in C^{w}(G_{2n}) \mapsto \int_{N_{2n}}^{*} f(u)\psi(u)^{-1} du.$$

Pour  $f \in C^w(G_{2n})$ , on peut ainsi définir  $W_f$  par la formule

(145) 
$$W_{f}(g_{1},g_{2}) = \int_{N_{2n}}^{*} f(g_{1}^{-1}ug_{2})\psi(u)^{-1}du,$$

pour tous  $g_1, g_2 \in G_{2n}$ .

Soit  $f \in S(G_{2n})$  et  $\pi \in Temp(G_{2n})$ , on pose  $W_{f,\pi} = W_{f_{\pi}}$ .

Proposition 5.2 (Beuzart-Plessis [5]). L'application linéaire

$$f \in \mathcal{S}(G_{2n}) \mapsto (\pi \mapsto W_{f,\pi}) \in \mathcal{S}(\mathsf{Temp}(G_{2n}, C^w(N_{2n} \times N_{2n} \setminus G_{2n} \times G_{2n}, \psi \otimes \psi^{-1}))$$
 est continue.

**Proposition 5.3** (Beuzart-Plessis [5]). Pour tout  $f \in S(PG_{2n})$ . On pose  $\widetilde{f}(g) = \int_{Z_n} f(zg) dz$ , alors  $\widetilde{f} \in PG_{2n}$ . On a  $\widetilde{f}_{\pi} = f_{\pi}$  pour tout  $\pi \in Temp(PG_{2n})$ . De plus,

$$(146) W_{\widetilde{f}} = \int_{\text{Temp}(PG_{2n})} W_{f,\pi} d\mu_{PG_{2n}}(\pi).$$

**Lemme 5.3.** Soit  $W \in \mathcal{W}(\pi, \psi)$ , alors if existe  $f \in \mathcal{S}(G_{2n})$  tel que  $W_{f,\pi}(1,.) = W$ .

 $D\acute{e}monstration$ . On a

(147) 
$$W_{f,\pi}(1,.) = \int_{N_{2\pi}} f_{\pi}(u.)\psi(u)^{-1} du.$$

D'autre part, soit  $f \in \mathcal{S}(G_{2n})$  alors f est bi-invariante par un sous-groupe ouvert compact K. On a une décomposition  $V_{\pi} = V_{\pi}^K \oplus V_{\pi}(K)$ , où  $V_{\pi}(K)$  est l'espace des vecteurs K-invariants. Comme  $\pi$  est admissible,  $V_{\pi}^K$  est de dimension finie. On note  $\mathcal{B}_{\pi}^K$  une base de cet espace. Alors pour tout  $g \in G_{2n}$ , on a  $f_{\pi}(g) = \text{Tr}(\pi(g)\pi(f^{\vee})) = \sum_{v \in \mathcal{B}_{\pi}^K} \langle \pi(g)\pi(f^{\vee})v,v^{\vee} \rangle$ , où  $(v^{\vee})_{v \in \mathcal{B}_{\pi}^K}$  est la base duale de  $\mathcal{B}_{\pi}^K$ . On en déduit que  $f_{\pi}$  est une somme (finie) de coefficient matriciel.

On note  $\mathsf{Coeff}^\mathsf{K} = \{g \mapsto < \pi(g)\nu, \widetilde{\nu} >, \nu \in V_\pi, \widetilde{\nu} \in V_{\widetilde{\pi}} \}$ . Alors toute somme finie de  $\mathsf{Coeff}^\mathsf{K}$  est de la forme  $f_\pi$  avec  $f \in \mathcal{S}(\mathsf{G}_{2n},\mathsf{K})$ . En effet,  $f \in \mathcal{S}(\mathsf{G}_{2n},\mathsf{K}) \mapsto \pi(f^\vee) \in \mathsf{End}(V_\pi^\mathsf{K})$  est surjective, où l'on a noté  $\mathcal{S}(\mathsf{G}_{2n},\mathsf{K})$  le sous espace de  $\mathcal{S}(\mathsf{G}_{2n},\mathsf{K})$  des fonctions bi-invariante par  $\mathsf{K}$ . La surjectivité est une conséquence du lemme de Burnside et du fait que  $V_\pi^\mathsf{K}$  est un  $\mathcal{S}(\mathsf{G}_{2n},\mathsf{K})$ -module irréductible de dimension finie. L'isomorphe de représentation nous donne  $\mathsf{End}(V_\pi^\mathsf{K}) \simeq \pi^\mathsf{K} \boxtimes \widetilde{\pi}^\mathsf{K}$  le résultat.

Pour montrer le lemme, il nous faut montrer qu'il existe un coefficient matriciel  $c = \langle \pi(.)\nu, \widetilde{\nu} \rangle$  tel que  $W = \int_{N_{2n}} c(u.)\psi(u)^{-1}du$ . Or

$$(148) \hspace{1cm} \nu \mapsto \int_{N_{2n}} c(u.) \psi(u)^{-1} du = \int_{N_{2n}} <\pi(u.) \nu, \widetilde{\nu} > \psi(u)^{-1} du$$

est une fonctionnelle de Whittaker. Il suffit donc de montrer que l'on peut choisir  $\tilde{\nu}$  pour que cette fonctionnelle soit non nulle. C'est le contenu de [17, Théorème 6.4.1].

Corollaire 5.1 (de la limite spectrale). Soit  $f \in S(G_{2n})$  et  $g \in G_{2n}$ , alors

$$(149) \int_{\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{H}_{\mathfrak{n}}} W_{\mathsf{f}}(\mathsf{g},\xi)\theta(\xi)^{-1}d\xi = \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}} \beta(W_{\mathsf{f},\mathsf{T}(\sigma)}(\mathsf{g},.)) \\ \frac{\gamma^{*}(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} c(\mathsf{T}(\sigma))c_{\beta}(\sigma)d\sigma.$$

Démonstration. On peut supposer que g = 1 en remplaçant f par L(g)f. On pose  $\widetilde{f}(g) = \int_{Z_n} f(zg)dz$ , alors  $\widetilde{f} \in PG_{2n}$ . On a donc

$$(150) \qquad \int_{\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{H}_{\mathfrak{n}}} W_{\mathsf{f}}(1,\xi)\theta(\xi)^{-1}\mathrm{d}\xi = \int_{\mathsf{Z}_{2\mathfrak{n}}(\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}})\backslash\mathsf{H}_{\mathfrak{n}}} W_{\widetilde{\mathsf{f}}}(1,\xi)\theta(\xi)^{-1}\mathrm{d}\xi.$$

On choisit  $\phi \in \mathcal{S}(\mathsf{F}^n)$  tel que  $\phi(0) = 1$ . D'après le lemme 5.2, la proposition 5.3 et la continuité de  $\pi \mapsto J(s, W_{f,\pi}(1,.), \phi)$ , on a

$$\begin{split} \text{(151)} \\ \int_{\mathsf{Z}_{2n}(\mathsf{H}_n\cap\mathsf{N}_{2n})\backslash\mathsf{H}_n} W_{\widetilde{\mathsf{f}}}(1,\xi)\theta(\xi)^{-1}d\xi &= \lim_{s\to 0^+} \mathsf{n}\gamma(s,1,\psi)\mathsf{J}(s,W_{\widetilde{\mathsf{f}}}(1,.),\varphi) \\ &= \lim_{s\to 0^+} \mathsf{n}\gamma(s,1,\psi) \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \mathsf{J}(s,W_{\mathsf{f},\pi}(1,.),\varphi)d\mu_{\mathsf{PG}_{2n}}(\pi). \end{split}$$

D'après l'équation fonctionnelle 2.4, on a

$$\begin{split} &\int_{H_{\mathfrak{n}}\cap N_{2\mathfrak{n}}\backslash H_{\mathfrak{n}}} W_{f}(1,\xi)\theta(\xi)^{-1}d\xi = \\ &\lim_{s\to 0^{+}} n\gamma(s,1,\psi) \int_{\text{Temp}(PG_{2\mathfrak{n}})} J(1-s,\rho(w_{\mathfrak{n},\mathfrak{n}})\widetilde{W_{f,\pi}(1,.)},\widehat{\varphi})c(\pi)\gamma(s,\pi,\Lambda^{2},\psi)^{-1}d\mu_{PG_{2\mathfrak{n}}}(\pi). \end{split}$$

La proposition 3.2, nous permet d'obtenir la relation

$$\begin{split} &\int_{\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{H}_{\mathfrak{n}}} W_{\mathsf{f}}(1,\xi)\theta(\xi)^{-1}d\xi = \\ &\int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1)/\mathsf{Stab}} J(1,\rho(w_{\mathfrak{n},\mathfrak{n}})\widetilde{W_{\mathsf{f},\mathsf{T}(\sigma)}}(1,.),\widehat{\varphi})c(\mathsf{T}(\sigma))\frac{\gamma^{*}(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|}d\sigma. \end{split}$$

En remplaçant f par R(h)f,  $h \in H_n$ , dans le membre de droite; cela revient à multiplier par  $\theta(h)$ . On en déduit la même relation pour le membre de droite. Ce qui signifie que

$$\int_{\mathsf{Temp}(\mathsf{SO}(2n+1)/\mathsf{Stab}} \mathsf{J}(1,\mathsf{R}(\xi)\rho(w_{\mathfrak{n},\mathfrak{n}})\widetilde{W_{\mathsf{f},\mathsf{T}(\sigma)}}(1,.),\widehat{\varphi}) - \theta(\xi) \mathsf{J}(1,\rho(w_{\mathfrak{n},\mathfrak{n}})\widetilde{W_{\mathsf{f},\mathsf{T}(\sigma)}}(1,.),\widehat{\varphi}) \mathrm{d}\mu(\sigma) = 0,$$

 $\begin{array}{l} \mathrm{pour\ tout\ } \xi \in H_{\mathfrak{n}}, \ \mathrm{où}\ d\mu(\sigma) = c(T(\sigma)) \frac{\gamma^*(0,\sigma,Ad,\psi)}{|S_{\sigma}|} d\sigma. \\ \mathrm{D'après\ le\ lemme\ de\ séparation\ spectrale\ } [5, Lemme\ 5.7.2] \ \mathrm{et\ la\ continuit\'e\ de\ } \sigma \mapsto \end{array}$  $J(1, \rho(w_{n,n})\widetilde{W_{f,T(\sigma)}}(1,.), \widehat{\phi})$ , on en déduit que  $J(1, R(\xi)\rho(\widetilde{w_{n,n})W_{f,T(\sigma)}}(1,.), \widehat{\phi}) =$  $\theta(\xi)J(1,\rho(w_{\mathfrak{n},\mathfrak{n}})W_{\mathfrak{f},\mathsf{T}(\sigma)}(1,.),\widehat{\varphi}) \text{ pour tout } \xi \in \mathsf{H}_{\mathfrak{n}} \text{ et donc que } J(1,\rho(w_{\mathfrak{n},\mathfrak{n}})W_{\mathfrak{f},\mathsf{T}(\sigma)}(1,.),\widehat{\varphi})$ est  $(H_n,\theta)$ -invariant (dans le sens où le changement f par  $R(\xi)$ f revient à multiplier par  $\theta(\xi)$ ).

**Lemme 5.4.** Soit  $\sigma \in \text{Temp}(SO(2n+1))$  et  $\pi = T(\sigma)$ . Alors

(155) 
$$J(1,\widetilde{W},\widehat{\varphi}) = \varphi(0)c_{\beta}(\sigma)\beta(W),$$

pour tous  $W \in \mathcal{W}(\pi, \psi)$  et  $\phi \in \mathcal{S}(\mathbb{F}^n)$ .

*Démonstration*. En effet, soit  $W \in \mathcal{W}(\pi, \psi)$ , on a

(156) 
$$J(1,\widetilde{W},\widehat{\varphi}) = \int_{N_{\mathfrak{n}} \backslash G_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} \widetilde{W} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \psi(-\mathsf{Tr}(X)) dX \widehat{\varphi}(e_{\mathfrak{n}}g) |\det g| dg.$$

D'après le lemme 5.3, on choisit  $f \in \mathcal{S}(G_{2n})$  tel que  $W_{f,\pi}(1,.) = \rho(w_{n,n}^{-1})W$ . D'après ce que l'on vient de dire précédemment, on en déduit que  $J(1,\widetilde{W},\widehat{\varphi})$  vérifie la relation  $J(1,R(\xi)\widetilde{W},\widehat{\varphi}) = \theta(\xi)J(1,\widetilde{W},\widehat{\varphi})$ , pour tout  $\xi \in H_n$ .

Comme  $\widehat{\varphi}(e_ng)$  est arbitraire parmi les fonctions invariante à gauche par  $G_{n-1}U_{n-1}$ , on en déduit que

$$\int_{N_{\mathfrak{n}} \backslash P_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} \widetilde{W} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \\ \psi(-\mathsf{Tr}(X)) dX dg$$

est  $(H_n, \theta)$ -invariant en tant que fonction de  $\widetilde{W}$ . D'après l'isomorphisme  $G_{2n}$ -équivariant  $W \in \mathcal{W}(\pi, \psi) \mapsto \widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \psi^{-1})$ ,  $\beta$  restreint à  $\mathcal{W}(\pi, \psi)$  est  $(H_n, \theta)$ -invariant, ce qui termine la preuve de la proposition 5.1.

Remarque 5.1. Cette preuve que  $\beta$  restreint à  $W(\pi,\psi)$  est  $(H_n,\theta)$ -invariant est quelque peut détournée dû au fait qu'il nous manque un résultat. On conjecture que  $\operatorname{Hom}_{H_n\cap P_{2n}}(\pi,\theta)$  qui est de dimension au plus 1. En utilisant le fait que  $\pi\simeq\widetilde{\pi}$  donc  $\pi$  est  $(H_n,\theta)$ -distinguée, on a  $\operatorname{Hom}_{H_n}(\pi,\theta)\neq 0$ . Ce dernier est un sous-espace de  $\operatorname{Hom}_{H_n\cap P_{2n}}(\pi,\theta)$ . On en déduirait alors que la restriction de  $\beta$  à  $W(\pi,\psi)$ , qui est bien  $H_n\cap P_{2n}$ -invariant, est un élément de  $\operatorname{Hom}_{H_n}(\pi,\theta)$ . Ce qui simplifierait légèrement la preuve à condition de prouver le résultat de dimension 1.

**Proposition 5.4.** Soit  $\sigma \in \text{Temp}(SO(2n+1))$ , on pose  $\pi = T(\sigma)$  le transfert de  $\sigma$  dans  $\text{Temp}(G_{2n})$ . La forme linéaire  $\widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \psi^{-1}) \mapsto \beta(\widetilde{W})$  est un élément de  $\text{Hom}_{H_n}(\mathcal{W}(\widetilde{\pi}, \psi^{-1}), \theta)$ . On identifie  $\mathcal{W}(\pi, \psi)$  et  $\mathcal{W}(\widetilde{\pi}, \psi^{-1})$  par l'isomorphisme  $G_{2n}$ -équivariant  $W \mapsto \widetilde{W}$ . Il existe un signe  $c_{\beta}(\sigma) = c_{\beta}(\pi)$  tel que

(158) 
$$\beta(\widetilde{W}) = c_{\beta}(\sigma)\beta(W),$$

*pour tout*  $W \in \mathcal{W}(\pi, \psi)$ .

Démonstration. En effet,  $\operatorname{Hom}_{H_n}(\mathcal{W}(\pi,\psi),\theta)$  est de dimension au plus 1, d'après l'unicité du modèle de Shalika [11]. De plus,  $\pi$  est le transfert de  $\sigma$  donc  $\widetilde{\pi} \simeq \pi$ . On en déduit l'existence de  $c_{\beta}(\pi) \in \mathbb{C}$ . Pour finir, en appliquant l'équation 158, pour  $\pi$  et  $\widetilde{\pi}$ , on obtient  $\beta(\widetilde{W}) = c_{\beta}(\pi)c_{\beta}(\widetilde{\pi})\beta(\widetilde{W})$ . Comme  $\beta$  est non nulle (lemme 5.1), on en déduit que  $c_{\beta}(\widetilde{\pi})c_{\beta}(\pi) = 1$  donc  $c_{\beta}(\pi)$  est un signe.

Finissons la preuve du lemme 5.4, on remarque que l'on a

$$\begin{split} &(159) \\ &\int_{N_{\mathfrak{n}}\backslash G_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} \widetilde{W} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \psi(-\mathsf{Tr}(X)) dX \widehat{\varphi}(e_{\mathfrak{n}}g) |\det g| dg \\ &= \int_{P_{\mathfrak{n}}\backslash G_{\mathfrak{n}}} \int_{N_{\mathfrak{n}}\backslash P_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} \widetilde{W} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{ph} & 0 \\ 0 & \mathfrak{ph} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \psi(-\mathsf{Tr}(X)) dX d\mathfrak{p} \widehat{\varphi}(e_{\mathfrak{n}}h) |\det h| dh. \end{split}$$

De plus,

$$\int_{N_{n}\backslash P_{n}} \int_{V_{n}} \widetilde{W} \left( \sigma_{n} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ph & 0 \\ 0 & ph \end{pmatrix} \sigma_{n}^{-1} \right) \psi(-Tr(X)) dX dp$$

$$= \beta \left( R \left( \sigma_{n} \begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix} \sigma_{n}^{-1} \right) \widetilde{W} \right)$$

$$= \beta(\widetilde{W}),$$

puisque  $\beta$  est  $(H_n, \theta)$ -invariant. De plus,

(161) 
$$\int_{P_{\mathfrak{n}}\backslash G_{\mathfrak{n}}} \widehat{\varphi}(e_{\mathfrak{n}}h) |\det h| dh = \int_{F^{\mathfrak{n}}} \widehat{\varphi}(x) dx = \varphi(0).$$

On conclut grâce à la proposition 5.4.

Pour finir la preuve du corollaire, il suffit d'utiliser le lemme 5.4 dans la relation  $\Box$ 

5.1. Formule de Plancherel explicite sur  $H_n \setminus G_{2n}$ . On note  $Y_n = H_n \setminus G_{2n}$  munie de la mesure quotient. On dispose d'une surjection  $f \in \mathcal{S}(G_{2n}) \mapsto \varphi_f \in \mathcal{S}(Y_n, \theta)$  avec

(162) 
$$\varphi_f(y) = \int_{H_n} f(hy)\theta(h)^{-1} dh,$$

pour tout  $y \in G_{2n}$ .

Soit  $\phi_1,\phi_2\in S(Y_n,\theta)$ , il existe  $f_1,f_2\in S(G_{2n})$  tel que  $\phi_i=\phi_{f_i}$  pour i=1,2. On a

(163) 
$$(\varphi_1, \varphi_2)_{L^2(Y_n)} = \int_{H_n} f(h)\theta(h)^{-1} dh,$$

où  $f = f_1 * f_2^*$ , on note  $f_2^*(g) = \overline{f_2(g^{-1})}$ .

En effet,

$$(164) \qquad (\phi_1, \phi_2)_{\mathsf{L}^2(\mathsf{Y}_n)} = \int_{\mathsf{Y}_n} \int_{\mathsf{H}_n \times \mathsf{H}_n} \mathsf{f}_1(\mathsf{h}_1 \mathsf{y}) \overline{\mathsf{f}_2(\mathsf{h}_2 \mathsf{y})} \theta(\mathsf{h}_1)^{-1} \theta(\mathsf{h}_2) d\mathsf{h}_1 d\mathsf{h}_2 d\mathsf{y}.$$

L'intégrale est absolument convergente. On effectue le changement de variable  $h_1\mapsto h_1h_2$  et on combine les intégrales selon y et  $h_2$  en une intégrale sur  $G_{2n}$ . Ce qui donne

(165) 
$$(\varphi_1, \varphi_2)_{L^2(Y_n)} = \int_{G_{2n}} \int_{H_n} f_1(h_1 y) \overline{f_2(y)} \theta(h_1)^{-1} dh_1 dy.$$

On pose

$$(166) \qquad (\phi_{1},\phi_{2})_{Y_{n},\pi} = (f_{1},f_{2})_{Y_{n},\pi} = \int_{H_{n}^{p} \cap N_{2n} \setminus H_{n}^{p}} \beta\left(W_{f,\pi}(\xi_{p},.)\right) \theta(\xi_{p}) d\xi_{p},$$

pour tout  $\pi \in T(\text{Temp}(SO(2n+1)))$ .

On note  $S(Y_n, \theta)_{\pi}$  le quotient de  $S(Y_n, \theta)$  par l'intersection des noyaux de toutes les applications  $S(Y_n, \theta) \to \pi$  linéaires  $G_{2n}$ -équivariante.

**Proposition 5.5.** Supposons  $\pi = \mathsf{T}(\sigma)$  avec  $\sigma \in \mathsf{Temp}(\mathsf{SO}(2n+1))$ . La forme bilinéaire  $(.,.)_{\mathsf{Y}_n,\pi}$  sur  $\mathsf{S}(\mathsf{G}_{2n})$ ) est une forme hermitienne continue semi-definie positive qui se factorise par  $\mathsf{S}(\mathsf{Y}_n,\theta)_\pi$ .

Démonstration. Commençons par le

Lemme 5.5. Soit  $\pi \in \mathsf{Temp}(\mathsf{G}_{2n})$ . On introduit un produit scalaire sur  $\mathcal{W}(\pi,\psi)$ :

(167) 
$$(W, W')^{Wh} = \int_{N_{2n} \setminus P_{2n}} W(\mathfrak{p}) \overline{W'(\mathfrak{p})} d\mathfrak{p},$$

pour tous  $W, W' \in \mathcal{W}(\pi, \psi)$ .

L'opérateur  $\pi(f^{\vee}): \mathcal{W}(\pi, \psi) \to \mathcal{W}(\pi, \psi)$  est de rang fini. Notons  $\mathcal{B}(\pi, \psi)_f$  une base finie orthonormée de son image. Alors

(168) 
$$W_{\mathsf{f},\pi} = \sum_{W' \in \mathfrak{B}(\pi,\Psi)_{\mathsf{f}}} \pi(\mathsf{f}_2) W' \otimes \overline{\pi(\mathsf{f}_1) W'}.$$

 $D\acute{e}monstration.$  Le produit scalaire  $(.,.)^{Wh}$  est  $P_{2n}$ -invariant, d'après Bernstein [3], il est aussi  $G_{2n}$ -invariant.

Pour  $W \in \mathcal{W}(\pi, \psi)$ , la décomposition de  $\pi(f^{\vee})W$  selon ce produit scalaire est

(169) 
$$\pi(f^{\vee})W = \sum_{W' \in \mathcal{B}(\pi, \psi)_f} (\pi(f^{\vee})W, W')^{Wh}W'$$
$$= \sum_{W' \in \mathcal{B}(\pi, \psi)_f} (W, \pi(\overline{f})W')^{Wh}W'.$$

Cette égalité nous permet grâce au produit scalaire  $(.,.)^{Wh}$  de faire l'identification

(170) 
$$\pi(f^{\vee}) = \sum_{W' \in \mathcal{B}(\pi, \Psi)_f} W' \otimes \overline{\pi}(f) \overline{W'}.$$

La  $G_{2n}$ -invariance de  $(.,.)^{Wh}$  nous donne que  $W' \otimes \overline{\pi}(f_1 * f_2^*)\overline{W'} = \pi(f_2)W' \otimes \overline{\pi}(f_1)W'$ .

On obtient alors

(171) 
$$\pi(f^{\vee}) = \sum_{W' \in \mathfrak{B}(\pi, \psi)_{f}} \pi(f_{2})W' \otimes \overline{\pi(f_{1})W'}.$$

On en déduit que

$$(172) W_{f,\pi}(g_1, g_2) = \sum_{W' \in \mathcal{B}(\pi, \psi)_f} \int_{N_{2\pi}}^* (\pi(ug_2)\pi(f_1)W', \pi(g_1)\pi(f_2)W')\psi(u)^{-1} du$$

$$= \sum_{W' \in \mathcal{B}(\pi, \psi)_f} \pi(f_1)W'(g_2)\overline{\pi(f_2)W'}(g_1),$$

pour tous  $g_1, g_2 \in G_{2n}$ . La dernière égalité provient de [5, Prop 2.14.3].

Le lemme 5.5 donne la relation

$$(173) \qquad (\mathsf{f}_1,\mathsf{f}_2)_{\mathsf{Y}_{\mathfrak{n}},\mathsf{T}(\sigma)} = \sum_{\mathsf{W}' \in \mathfrak{B}(\mathsf{T}(\sigma),\psi)_{\mathsf{f}}} \overline{\beta(\mathsf{T}(\sigma)(\mathsf{f}_2)\mathsf{W}')} \beta(\mathsf{T}(\sigma)(\mathsf{f}_1)\mathsf{W}')$$

qui est indépendant du choix de  $f_1, f_2$  puisque la restriction de  $\beta$  à  $\mathcal{W}(\mathsf{T}(\sigma), \psi)$  est  $(\mathsf{H}_n, \theta)$ -invariante, d'après la proposition 5.1. De plus,  $(\mathsf{f}_1, \mathsf{f}_2)_{\mathsf{Y}_n, \mathsf{T}(\sigma)}$  dépend uniquement de  $\mathsf{T}(\sigma)(\mathsf{f}_1)$  et  $\mathsf{T}(\sigma)(\mathsf{f}_2)$ . On en déduit que  $(.,.)_{\mathsf{Y}_n,\pi}$  se factorise par  $\mathcal{S}(\mathsf{Y}_n, \theta)_{\mathsf{T}(\sigma)}$ .

On remarque que

(174) 
$$(f_1, f_2)_{Y_n, T(\sigma)} = (\beta \otimes \beta)(W_{f_1 * f_2^*, \pi}),$$

ce qui nous permet de déduire, d'après la proposition 5.2 et le lemme 5.1, que  $(.,.)_{Y_n,T(\sigma)}$  est continue.

**Théorème 5.1.** Soient  $\varphi_1, \varphi_2 \in S(Y_n, \theta)$ . On a

$$(175) \ \ (\phi_1,\phi_2)_{\mathsf{L}^2(\mathsf{Y}_{\mathfrak{n}})} = \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}} (\phi_1,\phi_2)_{\mathsf{Y}_{\mathfrak{n}},\mathsf{T}(\sigma)} \frac{|\gamma^*(0,\sigma,\mathsf{Ad},\psi)|}{|\mathsf{S}_{\sigma}|} d\sigma.$$

Démonstration. D'après 4.1 et 5.1, on a

$$(176) \begin{array}{l} \int_{H_{\mathfrak{n}}} f(\mathfrak{h}) \theta(\mathfrak{h})^{-1} d\mathfrak{h} = \int_{H_{\mathfrak{n}} \cap N_{2\mathfrak{n}} \setminus H_{\mathfrak{n}}^{p}} \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}} \beta\left(W_{\mathsf{f},\mathsf{T}(\sigma)}(\xi_{\mathsf{p}},.)\right) \\ \theta(\xi_{\mathfrak{p}}) \frac{\gamma^{*}(0,\sigma,\mathsf{Ad},\psi)}{|S_{\sigma}|} c(\mathsf{T}(\sigma)) c_{\beta}(\sigma) d\sigma d\xi_{\mathfrak{p}}. \end{array}$$

**Lemme 5.6.** La fonction  $\sigma \mapsto \beta\left(W_{f,T(\sigma)}(\xi_p,.)\right)$  est à support compact.

 $D\acute{e}monstration$ . D'après la définition de  $f_\pi,\,W_{f,\pi}$  est nul dès que  $\pi(f^\vee)$  l'est.

Soit K un sous-groupe ouvert compact tel que  $f^{\vee}$  est biinvariant par K. Alors  $\pi(f^{\vee}) \neq 0$ , seulement lorsque  $\pi$  admet des vecteurs K-invariant non nuls.

D'après Harish-Chandra [20, Théorème VIII.1.2], il n'y a qu'un nombre fini de représentations  $\tau \in \Pi_2(M)$  modulo  $X^*(M) \otimes i\mathbb{R}$  qui admettent des vecteurs  $K_f$ -invariant non nuls.

Comme toute représentation  $\pi \in Temp(G_{2n})$  est une induite d'une telle représentation  $\tau$  pour un bon choix de sous-groupe de Levi M, on en déduit le lemme.  $\square$ 

D'après la proposition 5.2 et le lemme 5.1, on sait que  $\xi_p \mapsto \beta(W_{f,\pi}(\xi_p,.))$  est continue. On en déduit que

$$(177) \quad \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}} \beta\left(W_{\mathsf{f},\mathsf{T}(\sigma)}(\xi_{\mathsf{p}},.)\right) \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} c(\mathsf{T}(\sigma)) c_{\beta}(\sigma) d\sigma$$

est absoluement convergente.

De plus, l'intégration extérieure  $\int_{H_n\cap N_{2n}\setminus H_n^p}\theta(\xi_p)d\xi_p$  n'est autre que la forme linéaire continue  $\overline{\beta}(\bar{\cdot})$ , on en déduit que l'on peut échanger l'ordre d'intégration pour obtenir

$$(178) \qquad \int_{\mathsf{Temp}(SO(2n+1))/\mathsf{Stab}} (\phi_1,\phi_2)_{\mathsf{Y}_n,\mathsf{T}(\sigma)} \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_\sigma|} c(\mathsf{T}(\sigma)) c_\beta(\sigma) d\sigma.$$

Pour finir, [5, prop 4.1.1] nous dit que les formes sesquilinéaires  $(\phi_1,\phi_2) \mapsto (\phi_1,\phi_2)_{Y_n,T(\sigma)} \frac{\gamma^*(0,\sigma,Ad,\psi)}{|S_\sigma|} c(T(\sigma)) c_\beta(\sigma)$  sont automatiquement définies positives. On en déduit que

(179) 
$$\gamma^*(0, \sigma, Ad, \psi)c(\mathsf{T}(\sigma))c_{\beta}(\sigma) = |\gamma^*(0, \sigma, Ad, \psi)|.$$

Corollaire 5.2. On a une décomposition de Plancherel abstraite sur  $L^2(H_n \backslash G_{2n})$  :

$$(180) \hspace{1cm} L^2(\mathsf{H}_n \backslash \mathsf{G}_{2n}) = \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}}^{\oplus} \mathsf{T}(\sigma) \frac{|\gamma^*(0,\sigma,\mathsf{Ad},\psi)|}{|\mathsf{S}_{\sigma}|} d\sigma.$$

# 5.2. Formule de Plancherel abstraite sur $G_n \times G_n \setminus G_{2n}$ .

**Lemme 5.7.** On dispose d'un isomorphisme  $G_{2n}$ -équivariant d'espace de Hilbert

(181) 
$$L^{2}(G_{n} \times G_{n} \backslash G_{2n}) \simeq L^{2}(H_{n} \backslash G_{2n}, \theta).$$

Démonstration. On considère l'application  $f \in C_c^{\infty}(H_n \backslash G_{2n}, \theta) \mapsto \widetilde{f} \in C_c^{\infty}(G_n \times G_n \backslash G_{2n})$ , où  $\widetilde{f}$  est définie par

(182) 
$$\widetilde{f}(g) = \int_{G_n} f\left(\sigma_n \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} g \sigma_n^{-1} \right) d\gamma$$

pour tout  $g \in G_{2n}$ .

Commençons par montrer que l'application est bien définie. En effet, pour  $g' \in G_n$  et  $X \in M_n$ , on a

(183) 
$$\begin{pmatrix} g' & X \\ 0 & g' \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} = \begin{pmatrix} g'\gamma & X\gamma \\ 0 & g' \end{pmatrix}.$$

On note K un compact tel que  $supp(f)\subset H_nK$ . On en déduit que  $f\left(\sigma_n\begin{pmatrix}\gamma&0\\0&1_n\end{pmatrix}g\sigma_n^{-1}\right)$ 

est nul sauf si il existe  $g' \in G_n$  tel que  $\begin{pmatrix} g'\gamma & X\gamma \\ 0 & g' \end{pmatrix} \in K$ . On en déduit alors que  $\gamma$  est dans un compact. L'intégrale est donc absoluement convergente. De plus, pour tous  $g_1,g_2\in G_n$  et  $g\in G_{2n}$ , on a

$$\begin{split} \widetilde{f}\left(\begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}g\right) &= \int_{G_n} f\left(\sigma_n \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix} g\sigma_n^{-1} \right) d\gamma \\ &=_{\gamma \mapsto g_2 \gamma g_1^{-1}} \int_{G_n} f\left(\sigma_n \begin{pmatrix} g_2 & 0 \\ 0 & g_2 \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} g\sigma_n^{-1} \right) d\gamma \\ &= \int_{G_n} f\left(\sigma_n \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} g\sigma_n^{-1} \right) d\gamma \\ &= \widetilde{f}(g). \end{split}$$

Pour finir, montrons que  $\widetilde{f}$  est à support compact modulo  $G_n \times G_n$ . Grâce à la décomposition d'Iwasawa, écrivons g sous la forme  $\begin{pmatrix} g_2 & x \\ 0 & g_2 \end{pmatrix} k$  avec  $g_1, g_2 \in G_n$ ,

$$x\in M_n$$
 et  $k\in K.$  Alors  $\widetilde{f}(g)=\widetilde{f}\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}k\right)$ , on a alors

(185) 
$$\widetilde{f}(g) = \int_{G_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & \gamma x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} k \sigma_{\mathfrak{n}}^{-1} \right) d\gamma$$

$$= \int_{G_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} k \sigma_{\mathfrak{n}}^{-1} \right) \psi(\mathsf{Tr}(\gamma x)) d\gamma$$

Cette dernière intégrale est la transformée de Fourier d'une fonction à support compact sur  $M_n$ , à savoir la fonction  $\varphi_k$  définie par  $\varphi_k(y) = f\left(\sigma_n\begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}k\sigma_n^{-1}\right)|\det y|^{-n}$  si  $y \in G_n$  et 0 sinon. Le facteur  $|\det y|^{-n}$  provient de la transformation de la mesure multiplicative  $d\gamma$  en une mesure additive. On en déduit que  $\widetilde{f}$  est à support compact modulo  $G_n \times G_n$ . Ce qui prouve que l'application  $f \in C_c^\infty(H_n \backslash G_{2n}, \theta) \mapsto \widetilde{f} \in C_c^\infty(G_n \times G_n \backslash G_{2n})$  est bien définie.

Cette application est linéaire et injective. En effet, si  $\widetilde{f}=0$ , alors  $\varphi_k=0$  pour tout  $k\in K$ , donc  $f\left(\sigma_n\begin{pmatrix}\gamma&0\\0&1\end{pmatrix}k\sigma_n^{-1}\right)=0$  pour tout  $\gamma\in G_n$  et  $k\in K$ . On en déduit que f=0 car elle est  $(H_n,\theta)$ -invariante.

Pour finir, montrons qu'il existe une constante c>0 telle que  $\|f\|_{L^2(H_n\setminus G_{2n},\theta)}=c\|\widetilde{f}\|_{L^2(G_n\times G_n\setminus G_{2n})}.$  Ce qui prouve que l'application  $f\in C_c^\infty(H_n\setminus G_{2n},\theta)\mapsto \widetilde{f}\in C_c^\infty(G_n\times G_n\setminus G_{2n})$  s'étend en un isomorphisme d'espace de Hilbert  $L^2(H_n\setminus G_{2n},\theta)\simeq L^2(G_n\times G_n\setminus G_{2n}).$ 

En effet,

$$\begin{split} \|\widetilde{\mathbf{f}}\|_{L^{2}(\mathbf{H}_{n}\setminus\mathbf{G}_{2n},\boldsymbol{\theta})} &= \int_{\mathbf{M}_{n}\times\mathbf{K}} |\widetilde{\mathbf{f}}\left(\begin{pmatrix} 1 & \mathbf{x} \\ 0 & 1 \end{pmatrix}\mathbf{k}\right)|^{2}d\mathbf{x}d\mathbf{k} \\ &= \int_{\mathbf{M}_{n}\times\mathbf{K}} |\int_{\mathbf{G}_{n}} \mathbf{f}\left(\sigma_{n}\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix}\mathbf{k}\sigma_{n}^{-1}\right) \psi(\mathsf{Tr}(\gamma\mathbf{x})d\gamma|^{2}d\mathbf{x}d\mathbf{k} \\ &= \int_{\mathbf{M}_{n}\times\mathbf{K}} |\widehat{\boldsymbol{\phi}}_{\mathbf{k}}(\mathbf{x})|^{2}d\mathbf{x}d\mathbf{k}. \end{split}$$

La transformé de Fourier conserve la norme  $L^2$  avec un choix de constante appropriée, on en déduit qu'il existe une constante c'>0 telle que

$$\begin{split} \|\widetilde{f}\|_{L^2(H_{\mathfrak{n}}\setminus G_{2\mathfrak{n}},\theta)} &= c' \int_{M_{\mathfrak{n}}\times K} |\varphi_k(x)|^2 dx dk \\ &= c' \int_K \int_{G_{\mathfrak{n}}} |f\left(\sigma_{\mathfrak{n}}\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} k \sigma_{\mathfrak{n}}^{-1} \right)|^2 \frac{d\gamma}{|\det \gamma|^{\mathfrak{n}}} dk. \end{split}$$

On met l'accent sur le fait que l'on a modifié la mesure additive sur  $M_n$  restreinte à  $G_n$  en une mesure multiplicative sur  $G_n$ . La mesure  $\frac{d\gamma}{|\det\gamma|^n}dk$  est une mesure de Haar sur  $G_nK\simeq H_n\backslash G_{2n}$ . On en déduit bien qu'il existe une constante c>0 telle que  $\|f\|_{L^2(H_n\backslash G_{2n},\theta)}=c\|\widetilde{f}\|_{L^2(G_n\times G_n\backslash G_{2n})}$ .

Cet isomorphisme d'espace  $L^2$  nous permet de faire le lien entre les formules de Plancherel sur  $G_n \times G_n \setminus G_{2n}$  et sur  $H_n \setminus G_n$ . En effet, on dispose du

**Théorème 5.2.** Une décomposition de Plancherel abstraite sur  $L^2(G_n \times G_n \backslash G_{2n})$  est obtenue par la relation

$$(188) \qquad L^2(G_n \times G_n \backslash G_{2n}) = \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}}^{\oplus} \mathsf{T}(\sigma) \frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_{\sigma}|} d\sigma.$$

Démonstration. C'est une conséquence du lemme 5.7 et du corollaire 5.2.

## Références

- [1] J. Arthur, The Endoscopic Classification of Representations Orthogonal and Symplectic Groups, vol. 61, American Mathematical Soc., 2013.
- [2] D. Belt, On the holomorphy of exterior-square L-functions, arXiv preprint arXiv:1108.2200, (2011).
- [3] J. N. Bernstein, P-invariant distributions on gl(n) and the classification of unitary representations of gl(n) (non-archimedean case), in Lie Group Representations II, R. Herb, S. Kudla, R. Lipsman, and J. Rosenberg, eds., Berlin, Heidelberg, 1983, Springer Berlin Heidelberg.
- [4] R. Beuzart-Plessis, Archimedean theory and ε-factors for the Asai Rankin-Selberg integrals, arXiv e-prints, (2018), p. arXiv:1812.00053.

- [5] R. Beuzart-Plessis, Plancherel formula for GL<sub>n</sub>(F)\GL<sub>n</sub>(E) and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups, (2018).
- [6] Gel'fand, I. M. and Kazhdan, D. A., On the representation of the group GL(n, K) where K is a local field, Functional Analysis and Its Applications, 6 (1972), pp. 315–317.
- [7] M. Harris, R. Taylor, and V. G. Berkovich, The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Princeton University Press, 2001.
- [8] G. Henniart, Une preuve simple des conjectures de langlands pour gl(n) sur un corps padique, Inventiones mathematicae, 139 (2000), pp. 439-455.
- [9] ——, Correspondance de Langlands et Fonctions L des carrés extérieur et symétrique, International Mathematics Research Notices, 2010 (2010), pp. 633–673.
- [10] A. Ichino, E. Lapid, and Z. Mao, On the formal degrees of square-integrable representations of odd special orthogonal and metaplectic groups, Duke Math. J., 166 (2017), pp. 1301– 1348.
- [11] H. Jacquet and S. Rallis, Uniqueness of linear periods, Compositio Mathematica, 102 (1996), pp. 65–123.
- [12] H. Jacquet and J. Shalika, *Exterior square L-functions*, Automorphic forms, Shimura varieties, and L-functions, 2 (1990), pp. 143–226.
- [13] A. C. Kable, Asai L-functions and Jacquet's conjecture, American journal of mathematics, 126 (2004), pp. 789–820.
- [14] P. K. Kewat, The local exterior square l-function: Holomorphy, non-vanishing and shalika functionals, Journal of Algebra, 347 (2011), pp. 153 – 172.
- [15] F. Knop and B. Schalke, The dual group of a spherical variety, Transactions of the Moscow Mathematical Society, 78 (2017).
- [16] N. MATRINGE, Linear and Shalika local periods for the mirabolic group, and some consequences, Journal of Number Theory, 138 (2014), pp. 1–19.
- [17] Y. Sakellaridis and A. Venkatesh, *Periods and harmonic analysis on spherical varieties*, arXiv e-prints, (2012), p. arXiv :1203.0039.
- [18] F. Shahidi, Fourier transforms of intertwining operators and plancherel measures for gl(n), American Journal of Mathematics, 106 (1984).
- [19] A. J. Silberger and E.-W. Zink, The formal degree of discrete series representations of central simple algebras over p-adic fields, Max-Planck-Institut für Mathematik, (1996).
- [20] J.-L. WALDSPURGER, La formule de Plancherel pour les groupes p-adique. d'après Harish-Chandra, Journal of the Institute of Mathematics of Jussieu, 2 (2003), pp. 235–333.