Linear Models

Emily Schemanske & Nitanshi Mahajan 4/15/2023

Hugging Face BERTweet sentiment model

```
# read huggingface data
data_hf = read.csv('/Users/landise/Downloads/lm_huggingface.csv')

# remove date column
data_hf <- subset(data_hf, select = c(adidas_PercentChangeMA, djia_PercentChangeMA, final_score_MA, pn_score_MA))
data_hf <- na.omit(data_hf)

head(data_hf)</pre>
```

```
##
      adidas PercentChangeMA djia PercentChangeMA final score MA pn score MA
## 26
                  0.05230769
                                        0.2015385
                                                       0.8596154
                                                                   0.2671154
## 27
                  0.36538462
                                        0.1503846
                                                       0.8584615
                                                                   0.2725000
## 28
                  0.13038462
                                        0.1846154
                                                       0.8580769 0.3425000
## 29
                  0.27192308
                                        0.3538462
                                                       0.8557692
                                                                   0.4082692
## 30
                  0.55192308
                                        0.2976923
                                                       0.8553846 0.4055769
## 31
                  0.70923077
                                        0.1519231
                                                       0.8557692
                                                                   0.4101923
```

```
# scale pn_score_MA so all values are between 0 and 1
data_hf$pn_score_MA <- (data_hf$pn_score_MA - min(data_hf$pn_score_MA)) / (max
(data_hf$pn_score_MA) - min(data_hf$pn_score_MA))
head(data_hf, 1000)</pre>
```

##		adidas_PercentChangeMA	djia PercentChangeMA	final score MA	pn score MA
##	26	0.052307692	0.201538462		0.707079646
##	27	0.365384615	0.150384615	0.8584615	0.712035398
##	28	0.130384615	0.184615385	0.8580769	0.776460177
##	29	0.271923077	0.353846154	0.8557692	0.836991150
##	30	0.551923077	0.297692308	0.8553846	0.834513274
##	31	0.709230769	0.151923077	0.8557692	0.838761062
##	32	0.502307692	0.147307692	0.8523077	0.839469027
##	33	0.715000000	0.151153846	0.8515385	0.839469027
##	34	0.01000000	0.054230769	0.8517308	0.894690265
##	35	0.023846154	-0.008461538	0.8523077	0.892920354
##	36	0.318076923	0.147692308	0.8519231	0.923362832
##	37	0.463846154	0.056153846	0.8523077	0.913097345
##	39	0.511923077	-0.011923077	0.8509615	0.877699115
##	40	0.305000000	0.015384615	0.8521154	0.821415929
##	41	0.583076923	0.135000000	0.8501923	0.821061947
##	42	0.576923077	-0.010384615	0.8494231	0.876991150
##	44	0.811538462	-0.090000000	0.8432692	0.815929204
##	45	0.258076923	-0.358461538	0.8482692	0.755044248
##	47	0.075384615	-0.278846154	0.8515385	0.729557522
##	48	0.110000000	-0.372307692	0.8509615	0.725486726
##	49	0.161153846	-0.300769231	0.8513462	0.775752212
##	50	0.186923077	-0.274615385	0.8523077	0.749911504
##	51	0.494230769	-0.195384615	0.8521154	0.720884956
##	52	0.383846154	-0.116538462	0.8505769	0.668849558
##	53	0.642307692	-0.041153846	0.8496154	0.635929204
##	54	0.595384615	-0.201153846	0.8469231	0.569734513
##	55	0.580769231	-0.063846154	0.8523077	0.563362832
##	56	0.540384615	-0.022692308	0.8519231	0.566548673
##	57	0.650769231	0.022692308	0.8488462	0.503893805
##	58	0.575769231	-0.113461538	0.8503846	0.501769912
##	59	0.862307692	-0.168846154	0.8526923	0.445132743
##	60	0.762692308	-0.059230769	0.8536538	0.450442478
##	61	0.866923077	-0.040384615	0.8488462	0.445840708
##	62	0.705000000	-0.440000000	0.8525000	0.475398230
##	63	1.198076923	-0.304615385	0.8507692	0.505486726
##	64	1.045000000	-0.241923077	0.8486538	0.476637168
##	65	1.177307692	-0.234230769	0.8519231	0.476106195
##	66	0.843076923	-0.312307692	0.8523077	0.532035398
##	67	1.517307692	0.012307692	0.8548077	0.528672566
##	68	1.547692308	0.027692308	0.8540385	0.527964602
##	69	1.483846154	0.237307692	0.8563462	0.531150442
##	70	1.640000000	0.205000000	0.8607692	0.472212389
##	71	1.516153846	0.303461538	0.8584615	0.505309735
##	72	1.508076923	0.301153846	0.8586538	0.479646018
##	73	1.295000000	0.135000000	0.8573077	0.506548673

#7	# 74	1.287307692	0.175384615	0.8596154 0.562477876
#7	# 75	1.183461538	0.101923077	0.8603846 0.510088496
#7	# 77	1.138846154	0.085769231	0.8596154 0.566725664
#7	# 78	1.281538462	0.036538462	0.8611538 0.622654867
#7	# 79	1.397692308	0.011538462	0.8621154 0.652035398
#7	# 80	1.252307692	0.149615385	0.8640385 0.713982301
#7	# 81	1.310384615	0.139230769	0.8605769 0.655221239
#7	# 82	1.584615385	0.133461538	0.8632692 0.595044248
#7	# 83	1.416923077	0.413846154	0.8671154 0.597522124
#7	# 84	1.973846154	0.562307692	0.8655769 0.537168142
#7	# 85	2.004615385	0.444230769	0.8644231 0.533628319
#7	# 86	1.961923077	0.528461538	0.8617308 0.472743363
#7	# 87	2.090769231	0.590384615	0.8628846 0.473805310
#7	# 88	2.333076923	0.484615385	0.8596154 0.466725664
#7	# 89	1.677307692	0.329230769	0.8596154 0.494867257
#7	# 90	1.709230769	0.198076923	0.8605769 0.521415929
#7	# 91	1.646923077	0.119230769	0.8588462 0.520707965
#7	# 92	1.651923077	0.167307692	0.8580769 0.461769912
#7	# 93	1.614230769	0.116538462	0.8559615 0.406725664
#7	# 94	1.582692308	0.148846154	0.8601923 0.346548673
#7	# 95	1.463846154	0.057307692	0.8586538 0.346194690
#7	# 96	1.265000000	0.088846154	0.8550000 0.342300885
#7	# 97	0.558846154	0.038461538	0.8567308 0.344247788
#7	# 98	0.793461538	0.289230769	0.8575000 0.344955752
#7	# 99	0.670384615	0.301153846	0.8563462 0.289203540
#7	# 100	0.641923077	0.277307692	0.8532692 0.232920354
#7	# 101	0.440769231	0.295384615	0.8528846 0.232920354
#7	# 102	0.574615385	0.400384615	0.8525000 0.202300885
#7	# 103	0.553846154	0.458076923	0.8530769 0.150442478
#7	# 104	0.543846154	0.535384615	0.8519231 0.120707965
#7	# 105	0.479615385	0.381153846	0.8519231 0.120707965
#7	# 106	0.415000000	0.378076923	0.8526923 0.062477876
#7	# 107	0.379615385	0.284615385	0.8546154 0.068141593
#7	# 108	0.338076923	0.262307692	0.8548077 0.127610619
#7	# 109	-0.304230769	0.346538462	0.8521154 0.124070796
#7	# 110	-0.173846154	0.488461538	0.8540385 0.182654867
#7	# 111	0.653461538	0.568076923	0.8528846 0.211858407
#7	# 112	0.541153846	0.474615385	0.8559615 0.206194690
#7	# 113	0.471538462	0.476923077	0.8571154 0.148495575
#7	# 114	0.384230769	0.49000000	0.8582692 0.093097345
#7	# 115	0.876923077	0.560000000	0.8559615 0.064247788
	# 116	1.295000000	0.63000000	0.8567308 0.012389381
#7	# 117	1.056923077	0.403461538	0.8544231 0.045309735
	# 118	1.165000000	0.394230769	0.8548077 0.107079646
	# 119	0.795769231	0.301153846	0.8555769 0.115929204
#7	# 120	1.119230769	0.273461538	0.8519231 0.118407080

##	121	1.078846154	0.328461538	0.8542308 0.178938053	
##	122	1.302307692	0.322307692	0.8565385 0.240353982	
##	123	1.582692308	0.372692308	0.8532692 0.240176991	
##	124	1.437307692	0.293846154	0.8513462 0.263716814	
##	125	1.123846154	0.178846154	0.8530769 0.263716814	
##	126	0.824230769	0.164615385	0.8553846 0.327433628	
##	127	0.744615385	0.245384615	0.8542308 0.383008850	
##	128	0.716538462	0.317692308	0.8559615 0.444424779	
##	129	0.680384615	0.315000000	0.8586538 0.499292035	
##	130	0.764615385	0.379615385	0.8605769 0.526902655	
##	131	0.742307692	0.433846154	0.8605769 0.469911504	
##	132	0.423846154	0.436923077	0.8590385 0.470442478	
##	133	0.337692308	0.441923077	0.8601923 0.529203540	
##	134	0.348461538	0.443076923	0.8580769 0.475752212	
##	135	0.553846154	0.449615385	0.8582692 0.536991150	
##	136	0.522692308	0.522307692	0.8588462 0.479646018	
##	137	0.209615385	0.553076923	0.8584615 0.504247788	
##	138	0.212692308	0.57000000	0.8561538 0.569026549	
##	139	0.221153846	0.648076923	0.8569231 0.627787611	
##	140	0.128846154	0.685384615	0.8575000 0.685663717	
##	141	0.04000000	0.771538462	0.8603846 0.715044248	
##	142	-0.071153846	0.566923077	0.8592308 0.773451327	
##	143	0.037307692	0.592307692	0.8601923 0.802477876	
##	144	-0.314230769	0.602307692	0.8605769 0.744070796	
##	145	0.483461538	0.220769231	0.8613462 0.795398230	
	146	0.585384615	0.273076923	0.8619231 0.855221239	
##	147	0.551538462	0.171153846	0.8571154 0.823539823	
##	148	0.313846154	0.146153846	0.8544231 0.821769912	
	149	0.415000000	0.255384615	0.8555769 0.789557522	
##	150	0.210000000	0.247692308	0.8582692 0.792212389	
##	151	0.256153846	0.220384615	0.8580769 0.794867257	
##	152	0.402307692	0.091923077	0.8582692 0.730619469	
	153	0.413461538	0.183076923	0.8588462 0.733097345	
##	154	0.652307692	0.097692308	0.8530769 0.731327434	
##	155	0.461538462	0.003461538	0.8515385 0.670088496	
	156	0.406153846	-0.039615385	0.8507692 0.669026549	
	157	0.195000000	-0.10000000	0.8511538 0.727433628	
	158	0.053846154	-0.123076923	0.8515385 0.734513274	
	159	-0.118846154	-0.143076923	0.8507692 0.734513274	
	160	-0.069615385	0.017307692	0.8526923 0.760176991	
	161	0.286923077	0.195000000	0.8548077 0.697876106	
	162	0.212307692	0.085769231	0.8538462 0.696814159	
	163	0.490769231	0.09000000	0.8534615 0.644778761	
	164	0.663461538	0.233461538	0.8557692 0.582831858	
	165	0.555769231	0.101153846	0.8553846 0.553097345	
##	166	0.054615385	0.195769231	0.8546154 0.493982301	

##	167	0.085000000	0.500384615	0.8546154	0.492920354
##	168	0.060769231	0.366153846	0.8517308	0.462477876
##	169	-0.10000000	0.391923077	0.8526923	0.457168142
##	170	-0.510000000	0.161923077	0.8488462	0.515575221
##	171	-0.351538462	0.161538462	0.8484615	0.515221239
##	172	-0.215000000	0.071153846	0.8500000	0.515575221
##	173	0.153846154	0.169615385	0.8540385	0.484955752
##	174	0.085769231	0.188846154	0.8567308	0.488849558
##	175	0.187307692	0.121538462	0.8561538	0.518584071
	176	0.106153846	-0.055000000	0.8557692	0.488849558
	177	-0.154230769	-0.117692308	0.8542308	0.481769912
	178	-0.250000000	-0.315000000		0.482123894
	179	0.079230769	-0.128076923		0.425840708
	180	0.103076923	-0.124230769		0.366371681
	181	0.221538462	-0.016153846		0.364601770
	182	0.357692308	-0.071923077		0.361415929
	183	-0.056538462	0.006153846		0.362831858
	184	-0.155384615	0.070769231		0.382300885
	185	-0.095384615	-0.143076923		0.382300885
	186	-0.002692308	-0.037692308		0.350265487
	187	0.321153846	0.037307692		0.381769912
	188	0.543461538	0.196538462		0.439469027
	189	0.468076923	0.202307692		0.438407080
	190	0.666153846	0.218076923		0.470265487
	191	0.819230769	0.086153846		0.502123894
	192	1.023461538	0.230384615		0.564424779
	193	1.121923077	-0.083846154		0.507787611
	194	1.561923077	0.688461538		0.532920354
	195	1.728076923	0.565384615		0.54000000
	196	1.207307692	0.377307692		0.480884956
	197	0.989230769	-0.045769231		0.483716814
	198	0.796153846	0.071153846		0.481238938
	199	0.905000000	0.213461538		0.541769912
	200	0.984615385	0.224615385		0.540353982
	201	0.821153846	0.043846154		0.573805310
	202	0.739230769	0.073076923		0.633097345
	203	0.531923077	0.133846154		0.667787611
	204	0.252307692	0.262307692		0.671681416
	205	0.206153846	0.333846154		0.726902655
	206	0.397692308	0.482692308		0.783185841
	207	0.182692308	0.296538462		0.848318584
	208	0.321538462	0.248461538		0.853982301
	209	0.263076923	0.291538462		0.851150442
	210211	0.218846154 0.299615385	0.243461538 0.253076923		0.880000000
	211	0.132692308	0.255769231		0.942654867
##	Z 1 Z	0.132092308	0.255/09231	0.00/30//	0.94203400/

##	213	0.444230769	0.40000000	0.8655769 0.974513274
##	214	0.458076923	0.498076923	0.8673077 0.915398230
##	215	0.227692308	0.483076923	0.8684615 0.972035398
##	216	-0.266153846	-0.108461538	0.8680769 1.000000000
##	217	-1.460769231	-0.555769231	0.8673077 0.941592920
##	218	-0.769615385	-0.670384615	0.8673077 0.939115044
##	219	-1.133846154	-0.738846154	0.8667308 0.967787611
##	220	-0.658846154	-0.360000000	0.8705769 0.910088496
##	221	-0.376923077	-0.311153846	0.8661538 0.842654867
##	222	0.432307692	0.075769231	0.8665385 0.895044248
##	223	-0.040000000	-0.154230769	0.8653846 0.894336283
##	224	-0.014615385	-0.184615385	0.8630769 0.894690265
##	225	-0.452307692	-0.173076923	0.8625000 0.862654867
##	226	-0.411153846	-0.155000000	0.8611538 0.833805310
##	227	-0.163846154	-0.137307692	0.8603846 0.826017699
##	228	0.019230769	-0.046153846	0.8615385 0.770265487
##	229	0.263846154	-0.015384615	0.8621154 0.741946903
##	230	0.590000000	0.015000000	0.8588462 0.744247788
##	231	0.582692308	0.068076923	0.8596154 0.746725664
##	232	0.986153846	0.643076923	0.8578846 0.750619469
##	233	2.353461538	0.838846154	0.8582692 0.718761062
	234	2.468076923	1.503076923	0.8567308 0.710619469
	235	1.667307692	0.941923077	0.8550000 0.677168142
##	236	2.157307692	1.117692308	0.8551923 0.677345133
##	237	1.254615385	0.756153846	0.8561538 0.647787611
	238	1.716923077	0.711538462	0.8530769 0.649203540
##	239	1.169230769	0.471153846	0.8546154 0.644601770
	240	1.653076923	0.636923077	0.8553846 0.707256637
	241	1.761153846	0.895769231	0.8550000 0.706548673
	242	1.458461538	0.741153846	0.8548077 0.679292035
	243	1.184615385	0.628076923	0.8536538 0.676460177
	244	1.197692308	0.685000000	0.8548077 0.619115044
	245	1.051153846	0.586923077	0.8553846 0.589734513
	246	0.843076923	0.638846154	0.8555769 0.591504425
	247	0.682307692	0.519230769	0.8567308 0.599646018
	248	0.606538462	0.491538462	0.8555769 0.604601770
	249	0.691923077	0.327692308	0.8559615 0.545132743
	250	0.192692308	0.467692308	0.8573077 0.486194690
	251	0.602307692	0.688076923	0.8565385 0.460000000
	252	0.178461538	0.671538462	0.8559615 0.428672566
	253	-0.016153846	0.791153846	0.8567308 0.430088496
	254	0.378846154	0.720384615	0.8580769 0.453805310
	255	0.024615385	0.739230769	0.8565385 0.452389381
	256	0.262307692	0.968846154	0.8580769 0.450265487
	257	0.23000000	0.807307692	0.8573077 0.418407080
##	258	0.543076923	0.615000000	0.8559615 0.361415929

##	259	0.584615385	0.551923077	0.8563462 0.325663717
##	260	0.365769231	0.543076923	0.8571154 0.269734513
##	261	-0.051923077	0.393461538	0.8588462 0.276283186
##	262	0.385384615	0.523076923	0.8576923 0.217876106
##	263	0.254230769	0.510384615	0.8571154 0.245663717
##	264	0.448076923	0.472692308	0.8582692 0.244955752
##	265	0.555000000	0.603461538	0.8578846 0.245132743
##	266	0.505000000	0.483846154	0.8565385 0.212566372
##	267	0.269230769	0.478846154	0.8542308 0.218584071
	268	0.094615385	0.431923077	0.8546154 0.218230088
	269	0.178846154	0.537307692	0.8528846 0.277876106
	270	0.478846154	0.458076923	0.8513462 0.335221239
	271	0.129615385	0.218846154	0.8509615 0.391504425
	272	-0.010384615	0.233846154	0.8476923 0.453805310
	273	0.286538462	0.205384615	0.8492308 0.510442478
	274	-0.184615385	0.115769231	0.8494231 0.485132743
	275	-0.105769231	0.131153846	0.8488462 0.545663717
	276	0.116153846	0.190384615	0.8498077 0.571858407
	277	0.289230769	0.225000000	0.8519231 0.574159292
	278	0.125384615	0.176923077	0.8534615 0.632920354
	279	-0.326153846	0.196538462	0.8534615 0.577699115
	280	-0.513461538	0.163076923	0.8513462 0.606725664
	281	-0.881153846	0.051153846	0.8521154 0.610619469
	282	-0.916153846	-0.009230769	0.8513462 0.636283186
	283	-0.852692308	0.176153846	0.8505769 0.664247788
	284	-0.672307692	0.244230769	0.8517308 0.717699115
	285	-0.798076923	0.175384615	0.8521154 0.751858407
	286	-0.922307692	0.177692308	0.8525000 0.812035398
	287	-0.856153846	0.157307692	0.8532692 0.808672566
	288	-0.933076923	0.143461538	0.8536538 0.869380531
	289	-0.942692308	-0.074230769	0.8532692 0.870088496
	290	-0.998076923	-0.008846154	0.8548077 0.815929204
	291	-1.066538462	0.001538462	0.8538462 0.757168142
	292	-1.254615385	-0.070384615	0.8525000 0.727787611
	293	-0.952692308	-0.100769231	0.8544231 0.663362832
	294	-1.395000000	-0.140000000	0.8548077 0.687433628
	295	-2.005000000	-0.180769231	0.8569231 0.683362832
	296	-1.821153846	-0.174615385	0.8569231 0.624070796
	297	-0.956538462	0.039615385	0.8575000 0.595929204 0.8598077 0.534513274
	298	-1.139615385	0.027692308	
	299	-1.026153846	0.075384615	0.8573077 0.476106195
	300	-1.078846154	0.017692308	0.8578846 0.504070796
	301	-1.404615385	-0.073076923	0.8592308 0.442831858
	302 303	-1.391923077 -1.693846154	-0.186153846 -0.296538462	0.8584615 0.417522124 0.8561538 0.414336283
	304	-2.129615385	-0.360384615	0.8559615 0.387610619
##	JU4	-2.129013303	-0.300304013	0.0339013 0.30/010019

##	305	-1.907692308	-0.418461538	0.8540385	0.386902655
##	306	-2.076153846	-0.477307692	0.8544231	0.332743363
##	307	-1.401923077	-0.161153846	0.8555769	0.357522124
##	308	-1.131538462	-0.162692308	0.8571154	0.330442478
##	309	-1.524615385	-0.613461538	0.8567308	0.331858407
##	310	-1.726923077	-0.468461538	0.8575000	0.333274336
##	311	-1.706153846	-0.559615385	0.8563462	0.300884956
##	312	-1.846153846	-0.518461538	0.8563462	0.297699115
##	313	-1.552692308	-0.177307692	0.8548077	0.326548673
##	314	-1.215000000	-0.071923077	0.8555769	0.266548673
##	315	-1.592692308	-0.005000000	0.8559615	0.207610619
##	316	-1.563461538	-0.165000000	0.8538462	0.202300885
##	317	-0.913846154	-0.23000000	0.8532692	0.206194690
##	318	-1.231538462	-0.051153846	0.8540385	0.206902655
##	319	-1.990384615	-0.421923077	0.8544231	0.207256637
##	320	-2.258846154	-0.587307692	0.8540385	0.155221239
##	321	-2.530769231	-0.695000000	0.8532692	0.097876106
##	322	-2.560000000	-0.608461538	0.8546154	0.125663717
##	323	-2.193076923	-0.533076923	0.8542308	0.101592920
##	324	-2.519615385	-0.274615385	0.8546154	0.098938053
##	325	-2.438846154	0.040384615	0.8561538	0.097345133
##	326	-1.728846154	-0.003846154	0.8551923	0.035929204
##	327	-0.862692308	0.238076923	0.8551923	0.033451327
##	328	-0.700769231	0.349615385	0.8532692	0.032743363
##	329	-1.475384615	0.223461538	0.8532692	0.031681416
##	330	-1.265000000	0.293076923	0.8534615	0.002831858
##	331	-1.038846154	0.413846154	0.8542308	0.00000000
##	332	-0.171153846	0.307692308	0.8551923	0.00000000
##	333	-0.233461538	0.211538462	0.8538462	0.030796460
##	334	0.070769231	0.167307692	0.8538462	0.084955752
##	335	0.319230769	0.166923077	0.8557692	0.027610619
##	336	-0.401538462	0.048076923	0.8553846	0.026902655
##	337	0.088076923	0.096538462	0.8555769	0.090796460
##	338	0.582692308	0.159230769	0.8559615	0.097522124
l					

```
# univariate model for reference
base_mod_hf <- lm(adidas_PercentChangeMA ~ djia_PercentChangeMA, data=data_hf)
summary(base_mod_hf)</pre>
```

```
##
## Call:
## lm(formula = adidas_PercentChangeMA ~ djia_PercentChangeMA, data = data_hf)
## Residuals:
       Min
                 1Q Median
                                   30
                                           Max
## -2.45728 -0.51758 0.01816 0.54109 1.73822
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
                       -0.04695 0.05169 -0.908
                                                     0.364
## (Intercept)
## djia PercentChangeMA 1.61906
                                   0.13898 11.650
                                                    <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8016 on 307 degrees of freedom
## Multiple R-squared: 0.3065, Adjusted R-squared: 0.3043
## F-statistic: 135.7 on 1 and 307 DF, p-value: < 2.2e-16
```

```
# check model with all predictors
hf_full <- lm(adidas_PercentChangeMA ~ ., data=data_hf)
summary(hf_full)</pre>
```

```
##
## Call:
## lm(formula = adidas PercentChangeMA ~ ., data = data hf)
##
## Residuals:
       Min
                 10 Median
                                  30
                                          Max
## -2.13579 -0.49079 0.01898 0.49054 1.71442
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        9.4990
                                  9.1093 1.043 0.297876
## djia PercentChangeMA 1.6702
                                  0.1373 12.161 < 2e-16 ***
## final_score_MA
                       -11.6114 10.6787 -1.087 0.277744
## pn score MA
                         0.7361
                                  0.1903 3.869 0.000134 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7852 on 305 degrees of freedom
## Multiple R-squared: 0.339, Adjusted R-squared: 0.3325
## F-statistic: 52.14 on 3 and 305 DF, p-value: < 2.2e-16
```

```
# delete insignificant predictor
hf_mod <- lm(adidas_PercentChangeMA ~ djia_PercentChangeMA + pn_score_MA, data=
data_hf)
summary(hf_mod)</pre>
```

```
##
## Call:
## lm(formula = adidas_PercentChangeMA ~ djia_PercentChangeMA +
      pn score MA, data = data hf)
## Residuals:
       Min
                 10
                     Median
                                          Max
## -2.16677 -0.49365 -0.01292 0.50323 1.76221
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      -0.4052
                                 0.1090 -3.718 0.000239 ***
## djia PercentChangeMA 1.6531
                                  0.1365 12.112 < 2e-16 ***
## pn score MA
                        0.6818
                                  0.1837 3.712 0.000244 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7855 on 306 degrees of freedom
## Multiple R-squared: 0.3364, Adjusted R-squared: 0.3321
## F-statistic: 77.57 on 2 and 306 DF, p-value: < 2.2e-16
```

NLTK VADER sentiment model

```
# load nltk scores
d = read.csv('/Users/landise/Downloads/lm.csv')

# remove date column
data <- subset(d, select = c(adidas_PercentChangeMA, djia_PercentChangeMA, nltk
_positive_MA, nltk_negative_MA, nltk_neutral_MA, nltk_compound_MA))
head(data)</pre>
```

```
##
     adidas_PercentChangeMA djia_PercentChangeMA nltk_positive_MA nltk_negative
_MA
## 1
                 0.05230769
                                       0.2015385
                                                        0.1204407
                                                                        0.03930
243
## 2
                 0.36538462
                                       0.1503846
                                                        0.1163253
                                                                        0.03980
243
## 3
                0.13038462
                                       0.1846154
                                                        0.1172099
                                                                        0.03837
935
## 4
                 0.27192308
                                       0.3538462
                                                        0.1185561
                                                                        0.03811
012
## 5
                 0.55192308
                                      0.2976923
                                                        0.1170561
                                                                        0.03838
704
## 6
                 0.70923077
                                       0.1519231
                                                        0.1162869
                                                                        0.03854
089
##
     nltk_neutral_MA nltk_compound_MA
## 1
           0.8402207
                            0.7658166
## 2
           0.8438361
                            0.7643704
## 3
           0.8443745
                            0.8117012
           0.8432592
                            0.8127974
## 5
           0.8444899
                            0.8097512
## 6
                            0.8099897
           0.8451438
```

```
# same base model as before
base_mod <- lm(adidas_PercentChangeMA ~ djia_PercentChangeMA, data=data)
summary(base_mod)</pre>
```

```
##
## Call:
## lm(formula = adidas_PercentChangeMA ~ djia_PercentChangeMA, data = data)
##
## Residuals:
       Min
                 1Q
                     Median
                                   3Q
## -2.45728 -0.51758 0.01816 0.54109 1.73822
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       -0.04695
                                   0.05169 -0.908
                                                     0.364
## djia_PercentChangeMA 1.61906
                                   0.13898 11.650
                                                     <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8016 on 307 degrees of freedom
## Multiple R-squared: 0.3065, Adjusted R-squared: 0.3043
## F-statistic: 135.7 on 1 and 307 DF, p-value: < 2.2e-16
```

```
# check full model
nltk_full = lm(adidas_PercentChangeMA ~ ., data=data)
summary(nltk_full)
```

```
##
## Call:
## lm(formula = adidas PercentChangeMA ~ ., data = data)
##
## Residuals:
                    Median
##
       Min
                 10
                                  30
                                          Max
## -2.15391 -0.53721 0.02203 0.40926 1.71116
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       1413.8086 1182.1883 1.196
                                                      0.233
## djia PercentChangeMA
                                     0.1376 13.299 < 2e-16 ***
                         1.8305
                     -1385.2105 1184.7342 -1.169
## nltk_positive_MA
                                                      0.243
## nltk negative MA
                      -1441.3410 1183.3975 -1.218
                                                      0.224
## nltk neutral MA
                       -1412.5541 1182.0382 -1.195
                                                      0.233
## nltk compound MA
                         -4.1132
                                     0.6926 -5.939 7.85e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7148 on 303 degrees of freedom
## Multiple R-squared: 0.4558, Adjusted R-squared: 0.4468
## F-statistic: 50.76 on 5 and 303 DF, p-value: < 2.2e-16
```

```
# delete most insignificant pred
nltk_less1 = lm(adidas_PercentChangeMA ~ djia_PercentChangeMA + nltk_negative_M
A + nltk_neutral_MA + nltk_compound_MA, data=data)
summary(nltk_less1)
```

```
##
## Call:
## lm(formula = adidas_PercentChangeMA ~ djia_PercentChangeMA +
       nltk negative MA + nltk neutral MA + nltk compound MA, data = data)
## Residuals:
       Min
                 10
                      Median
                                   3Q
                                           Max
## -2.16372 -0.51496 0.01823 0.41608 1.71222
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
                                    4.7350 6.671 1.20e-10 ***
## (Intercept)
                        31.5859
## djia_PercentChangeMA 1.7929
                                    0.1339 13.390 < 2e-16 ***
                       -57.7529 10.9951 -5.253 2.82e-07 ***
## nltk negative MA
                                    5.0806 -6.005 5.45e-09 ***
## nltk_neutral_MA
                       -30.5085
## nltk compound MA
                        -4.4275
                                    0.6386 -6.933 2.48e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7153 on 304 degrees of freedom
## Multiple R-squared: 0.4533, Adjusted R-squared: 0.4462
## F-statistic: 63.03 on 4 and 304 DF, p-value: < 2.2e-16
```

All predictors are significant.

Diagnostics

Plots

```
plot(nltk_less1)
```


Im(adidas_PercentChangeMA ~ djia_PercentChangeMA + nltk_negative_MA + nltk_...

Im(adidas_PercentChangeMA ~ djia_PercentChangeMA + nltk_negative_MA + nltk_ ...

Im(adidas_PercentChangeMA ~ djia_PercentChangeMA + nltk_negative_MA + nltk_ ...

Im(adidas_PercentChangeMA ~ djia_PercentChangeMA + nltk_negative_MA + nltk_ ...

```
# lag plot to check for autocorrelation
n <- length(residuals(nltk_full))
plot(tail(residuals(nltk_full), n-1) ~ head(residuals(nltk_full), n-1), xlab=ex
pression(hat(epsilon)[i]), ylab=expression(hat(epsilon)[i+1]))
abline(h=0, v=0, col=grey(0.75))</pre>
```


There is strong evidence of autocorrelation - not uncommon in time series.

Transform the predictors

```
library(car)

## Warning: package 'car' was built under R version 4.1.2

## Loading required package: carData

## Warning: package 'carData' was built under R version 4.1.2

durbinWatsonTest(nltk_less1)

## lag Autocorrelation D-W Statistic p-value
## 1 0.8975952 0.2006623 0
## Alternative hypothesis: rho != 0
```

p-value indiates strong evidence of autocorrelation.

```
# another package for DW test
library(orcutt)
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 4.1.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.1.2
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
dwtest(nltk_less1)
##
##
    Durbin-Watson test
## data: nltk less1
## DW = 0.20066, p-value < 2.2e-16
\#\# alternative hypothesis: true autocorrelation is greater than 0
```

Source: https://rpubs.com/apricitea/handling-autocorrelation (https://rpubs.com/apricitea/handling-autocorrelation)

NLTK final model transformation

```
# get best RHO for transformation
mod_transformed <- cochrane.orcutt(nltk_less1, convergence=5, max.iter=1000)
mod_transformed</pre>
```

```
## Cochrane-orcutt estimation for first order autocorrelation
##
## Call:
## lm(formula = adidas PercentChangeMA ~ djia PercentChangeMA +
      nltk_negative_MA + nltk_neutral_MA + nltk_compound_MA, data = data)
##
##
   number of interaction: 4
##
   rho 0.936129
##
## Durbin-Watson statistic
## (original): 0.20066 , p-value: 1.451e-58
## (transformed): 2.27455 , p-value: 9.914e-01
##
   coefficients:
##
           (Intercept) djia_PercentChangeMA
                                              nltk_negative_MA
                                                     4.095486
##
             10.135928
                                 0.926039
##
       -11.207285
                                 -1.045186
##
```

```
# transform predictors and target
rho <- mod_transformed$rho
y.trans <- data$adidas_PercentChangeMA[-1]-data$adidas_PercentChangeMA[-309]*rh
o
x.trans <- (data$djia_PercentChangeMA)[-1]-(data$djia_PercentChangeMA)[-309]*rh
o
x1.trans <- (data$nltk_negative_MA)[-1]-(data$nltk_negative_MA)[-309]*rho
x2.trans <- (data$nltk_neutral_MA)[-1]-(data$nltk_neutral_MA)[-309]*rho
x3.trans <- (data$nltk_compound_MA)[-1]-(data$nltk_compound_MA)[-309]*rho

# model with transformed preds
mod_transformed <- lm(y.trans ~ x.trans + x1.trans + x2.trans + x3.trans)
summary(mod_transformed)</pre>
```

```
##
## Call:
## lm(formula = y.trans \sim x.trans + x1.trans + x2.trans + x3.trans)
##
## Residuals:
       Min
              1Q Median
                                 3Q
                                         Max
## -0.81899 -0.17101 0.00396 0.16234 1.17445
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6474
                        0.5988 1.081
                                          0.280
                         0.1061 8.728
## x.trans
              0.9260
                                          <2e-16 ***
## x1.trans
              4.0955 19.7523 0.207
                                          0.836
## x2.trans -11.2073 10.0563 -1.114
                                          0.266
## x3.trans
                                          0.290
              -1.0452
                         0.9860 -1.060
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2789 on 303 degrees of freedom
## Multiple R-squared: 0.2094, Adjusted R-squared: 0.199
## F-statistic: 20.06 on 4 and 303 DF, p-value: 1.135e-14
```

dwtest(mod_transformed)

```
##
## Durbin-Watson test
##
## data: mod_transformed
## DW = 2.2746, p-value = 0.9914
## alternative hypothesis: true autocorrelation is greater than 0
```

p-value near 1 indicates we have fixed the issue of autocorrelation

```
n <- length(residuals(mod_transformed))
plot(tail(residuals(mod_transformed), n-1) ~ head(residuals(mod_transformed), n
-1), xlab=expression(hat(epsilon)[i]), ylab=expression(hat(epsilon)[i+1]))
abline(h=0, v=0, col=grey(0.75))</pre>
```


Plot shows no more evidence of autocorrelation.

Select final vars

summary(mod_transformed)

```
##
## Call:
## lm(formula = y.trans \sim x.trans + x1.trans + x2.trans + x3.trans)
##
## Residuals:
       Min
              1Q Median
                                 3Q
                                        Max
## -0.81899 -0.17101 0.00396 0.16234 1.17445
## Coefficients:
##
       Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6474
                        0.5988 1.081
                                         0.280
              0.9260
## x.trans
                         0.1061 8.728
                                         <2e-16 ***
## x1.trans
              4.0955 19.7523 0.207
                                         0.836
## x2.trans -11.2073 10.0563 -1.114
                                         0.266
## x3.trans
                                          0.290
             -1.0452
                        0.9860 - 1.060
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2789 on 303 degrees of freedom
## Multiple R-squared: 0.2094, Adjusted R-squared: 0.199
## F-statistic: 20.06 on 4 and 303 DF, p-value: 1.135e-14
```

```
# y.trans <- data$adidas_PercentChangeMA[-1]-data$adidas_PercentChangeMA[-309]*
rho
# x.trans <- (data$djia_PercentChangeMA)[-1]-(data$djia_PercentChangeMA)[-309]*
rho
# x1.trans <- (data$nltk_negative_MA)[-1]-(data$nltk_negative_MA)[-309]*rho
# x2.trans <- (data$nltk_neutral_MA)[-1]-(data$nltk_neutral_MA)[-309]*rho
# x3.trans <- (data$nltk_compound_MA)[-1]-(data$nltk_compound_MA)[-309]*rho
mod_transformed <- lm(y.trans ~ x.trans + x2.trans + x3.trans)
summary(mod_transformed)</pre>
```

```
##
## Call:
## lm(formula = y.trans ~ x.trans + x2.trans + x3.trans)
## Residuals:
       Min
                1Q Median
                                  30
                                         Max
## -0.81750 -0.17159 0.00408 0.16131 1.17448
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7316
                         0.4395 1.665
                                          0.0970 .
## x.trans
               0.9256
                          0.1059 8.739
                                          <2e-16 ***
## x2.trans
              -12.4144
                         8.1867 -1.516
                                          0.1305
             -1.1947
## x3.trans
                         0.6713 -1.780 0.0761 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2785 on 304 degrees of freedom
## Multiple R-squared: 0.2093, Adjusted R-squared: 0.2015
## F-statistic: 26.82 on 3 and 304 DF, p-value: 2.035e-15
```

```
mod_transformed <- lm(y.trans ~ x.trans + x3.trans)
summary(mod_transformed)</pre>
```

```
##
## Call:
## lm(formula = y.trans ~ x.trans + x3.trans)
## Residuals:
                     Median
##
       Min
                 10
                                  30
                                          Max
## -0.79132 -0.15269 -0.00324 0.17338 1.18297
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.06741 0.03636 1.854
                                           0.0647 .
                       0.10587 8.636 3.31e-16 ***
## x.trans
               0.91428
## x3.trans
              -1.24891 0.67178 -1.859
                                         0.0640 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2791 on 305 degrees of freedom
## Multiple R-squared: 0.2033, Adjusted R-squared: 0.1981
## F-statistic: 38.92 on 2 and 305 DF, p-value: 8.842e-16
```

Try full model transformation

```
full_transformed <- cochrane.orcutt(nltk_full, convergence=5, max.iter=1000)
full_transformed</pre>
```

```
## Cochrane-orcutt estimation for first order autocorrelation
## Call:
## lm(formula = adidas PercentChangeMA ~ ., data = data)
   number of interaction: 4
##
##
   rho 0.937493
## Durbin-Watson statistic
## (original):
               0.20810 , p-value: 1.767e-58
## (transformed): 2.29765 , p-value: 9.952e-01
##
   coefficients:
##
##
            (Intercept) djia_PercentChangeMA
                                                  nltk_positive_MA
           -1464.511470
##
                                    0.925967
                                                       1477.609626
##
       nltk negative MA
                             nltk neutral MA
                                                  nltk compound MA
                                 1462.961715
##
            1481.532644
                                                         -1.124369
```

```
rho <- full_transformed$rho
y.trans <- data$adidas_PercentChangeMA[-1]-data$adidas_PercentChangeMA[-309]*rh
o
x.trans <- (data$djia_PercentChangeMA)[-1]-(data$djia_PercentChangeMA)[-309]*rh
o
x1.trans <- (data$nltk_negative_MA)[-1]-(data$nltk_negative_MA)[-309]*rho
x2.trans <- (data$nltk_neutral_MA)[-1]-(data$nltk_neutral_MA)[-309]*rho
x3.trans <- (data$nltk_compound_MA)[-1]-(data$nltk_compound_MA)[-309]*rho
x4.trans <- (data$nltk_positive_MA)[-1]-(data$nltk_positive_MA)[-309]*rho
full_transformed <- lm(y.trans ~ x.trans + x1.trans + x2.trans + x3.trans + x4.trans)
summary(full_transformed)</pre>
```

```
##
## Call:
## lm(formula = y.trans \sim x.trans + x1.trans + x2.trans + x3.trans +
      x4.trans)
##
## Residuals:
##
      Min
            1Q Median 3Q
                                   Max
## -0.8089 -0.1657 0.0085 0.1555 1.1146
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -91.5424 56.0868 -1.632 0.104
## x.trans
               0.9260 0.1058 8.754 <2e-16 ***
## x1.trans 1481.5326 899.0916 1.648 0.100
## x2.trans 1462.9617 897.0064 1.631
                                        0.104
## x3.trans
              -1.1244 0.9854 -1.141 0.255
## x4.trans 1477.6096
                        899.0695 1.643 0.101
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2781 on 302 degrees of freedom
## Multiple R-squared: 0.2162, Adjusted R-squared: 0.2032
## F-statistic: 16.66 on 5 and 302 DF, p-value: 1.557e-14
```

```
full_transformed <- lm(y.trans ~ x.trans + x1.trans + x2.trans + x4.trans)
summary(full_transformed)</pre>
```

```
##
## Call:
## lm(formula = y.trans ~ x.trans + x1.trans + x2.trans + x4.trans)
##
## Residuals:
       Min
             1Q Median
                                 3Q
                                        Max
## -0.82112 -0.15737 0.00793 0.16000 1.12659
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -88.3953 56.0468 -1.577
                                          0.116
                         0.1058 8.767 <2e-16 ***
## x.trans
               0.9277
## x1.trans 1442.0998 898.8745 1.604 0.110
## x2.trans 1411.7380 896.3283 1.575 0.116
## x4.trans 1421.7429 898.1823 1.583
                                         0.114
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2783 on 303 degrees of freedom
## Multiple R-squared: 0.2128, Adjusted R-squared: 0.2024
## F-statistic: 20.48 on 4 and 303 DF, p-value: 5.974e-15
```

```
full_transformed <- lm(y.trans ~ x.trans + x1.trans + x4.trans)
summary(full_transformed)</pre>
```

```
##
## Call:
## lm(formula = y.trans ~ x.trans + x1.trans + x4.trans)
## Residuals:
       Min
                1Q Median
                                 3Q
                                         Max
## -0.83038 -0.16090 0.00429 0.16325 1.18299
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.12031 0.08338 -1.443 0.1501
## x.trans
              0.92713
                        0.10607 8.741 <2e-16 ***
## x1.trans
             26.48435 12.34193 2.146 0.0327 *
## x4.trans
             7.16004 9.27983 0.772 0.4410
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.279 on 304 degrees of freedom
## Multiple R-squared: 0.2064, Adjusted R-squared: 0.1986
## F-statistic: 26.35 on 3 and 304 DF, p-value: 3.532e-15
```

```
full_transformed <- lm(y.trans ~ x.trans + x1.trans)
summary(full_transformed)</pre>
```

```
##
## Call:
## lm(formula = y.trans ~ x.trans + x1.trans)
## Residuals:
                    Median
##
       Min
                 10
                                  30
                                         Max
## -0.81880 -0.15390 0.00414 0.16331 1.18406
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06305 0.03797 -1.661 0.0978 .
## x.trans
              0.92271
                       0.10584 8.718 <2e-16 ***
## x1.trans
              24.15942 11.96050 2.020 0.0443 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2788 on 305 degrees of freedom
## Multiple R-squared: 0.2048, Adjusted R-squared: 0.1996
## F-statistic: 39.28 on 2 and 305 DF, p-value: 6.61e-16
```

plot(full_transformed)

n <- length(residuals(full_transformed))
plot(tail(residuals(full_transformed), n-1) ~ head(residuals(full_transformed),
n-1), xlab=expression(hat(epsilon)[i]), ylab=expression(hat(epsilon)[i+1]))
abline(h=0, v=0, col=grey(0.75))</pre>

base_transformed <- lm(y.trans ~ x.trans)
summary(base_transformed)</pre>

```
##
## Call:
## lm(formula = y.trans ~ x.trans)
##
## Residuals:
     Min
            1Q Median
                            3Q
                                  Max
## -0.8035 -0.1684 0.0061 0.1603 1.2071
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.00657 0.01600 0.411
                                       0.682
           ## x.trans
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2802 on 306 degrees of freedom
## Multiple R-squared: 0.1942, Adjusted R-squared: 0.1916
## F-statistic: 73.74 on 1 and 306 DF, p-value: 4.596e-16
```

Both models show simliar results.