MATH 7310 Homework 7

James Harbour

April 21, 2022

Problem 1

Let (X, Σ, μ) be a measure space.

(i): Prove that if $\mu(E_n) < +\infty$ for $n \in \mathbb{N}$ and $\mathbb{1}_{E_n} \to f$ in L^1 , then f is (a.e. equal to) the characteristic function of a measurable set.

Proof. For $m \in \mathbb{N}$, let

$$F_m = \{x : \min\{|1 - f(x)|, |f(x)|\} > \frac{1}{m}\}.$$

Then $(F_m)_{m=1}^{\infty}$ is an increasing sequence of sets with $F = \{x : f(x) \notin \{0,1\}\} = \bigcup_{n=1}^{\infty} A_n$.

Observe that, for fixed $m \in \mathbb{N}$,

$$\|\mathbb{1}_{E_n} - f\|_1 \ge \int_{F_m} |\mathbb{1}_{E_n} - f| d\mu \ge \int_{F_m} \frac{1}{m} d\mu = \frac{1}{m} \mu(F_m)$$

for all $n \in \mathbb{N}$, whence sending $n \to \infty$ it follows that $\mu(F_m) = 0$. Thus, it follows that $\mu(F) = 0$. Thus, $f = \mathbb{1}_{f^{-1}(\{1\})}$ almost everywhere.

(ii): Let $\Sigma_f = \{E \in \Sigma : \mu(E) < +\infty\}$. Define an equivalence relation on Σ_f by $E \sim F$ if $\mu(E\Delta F) = 0$. Let $\Omega = \Sigma_f / \sim$, and define a metric ρ on Ω be $\rho([E], [F]) = \mu(E\Delta F)$. Show that the map $\iota : \Omega \to L^1(X, \mu)$ given by $\iota([E]) = \mathbb{1}_E$ is an isometry with closed image.

Proof. Observe that, if $E, F \in \Sigma_f$, then

$$\rho(\iota(E), \iota(F)) = \mu(E\Delta F) = \int \mathbb{1}_{E\Delta F} d\mu = \int |\mathbb{1}_E - \mathbb{1}_F| d\mu,$$

so ι is an isometry. Now suppose that $(f_n)_{n=1}^{\infty}$ is in $\iota(\Omega)$ and $f \in L^1(X,\mu)$ with $||f_n - f||_1 \xrightarrow{n \to \infty} 0$. Then for $n \in \mathbb{N}$, there are $E_n \in \Sigma_f$ such that $f_n = \mathbb{1}_{E_n}$, whence by part (i) there is some measurable $E \subseteq X$ such that $f = \mathbb{1}_E$. As $\mathbb{1}_E = f \in L^1(\mu)$, it follows that $\mu(E) < +\infty$ whence $[E] \in \Omega$ and thus $f = \iota([E]) \in \iota(\Omega)$.

(iii): Show that (Ω, ρ) is a complete metric space.

Proof. Let $([E_n])_{n=1}^{\infty}$ be a Cauchy sequence in (Ω, ρ) . Then as ι is an isometry, it follows that $(\mathbb{1}_{E_n})_{n=1}^{\infty}$ is a Cauchy sequence in $L^1(X, \mu)$. By completeness of $L^1(X, \mu)$, there exists some $f \in L^1(X, \mu)$ such that $\|\mathbb{1}_{E_n} - f\|_1 \xrightarrow{n \to \infty} 0$. As the image of ι is closed, it follows that there is some $E \subseteq X$ with $\mu(E) < +\infty$ such that $f = \mathbb{1}_E = \iota([E])$ almost everywhere. Then, ι being an isometry implies that $\rho([E_n], [E]) \xrightarrow{n \to \infty} 0$.

Problem 2

If X, Y are sets, and $f: X \to \mathbb{C}$, $g: Y \to \mathbb{C}$, we define $f \otimes g: X \times Y \to \mathbb{C}$ by $(f \otimes g)(x, y) = f(x)g(y)$. Fix $1 \leq p < +\infty$.

- (a): Let $(X, \Sigma, \mu), (Y, \mathcal{F}, \nu)$ be σ -finite measure spaces. Show that if $f \in L^p(X, \mu), g \in L^p(Y, \nu)$, then $||f \otimes g||_p = ||f||_p ||g||_p$.
- (b): Let (Z, \mathcal{O}, ζ) be a finite measure space. Suppose that $A \subseteq \mathcal{O}$ is an algebra which generates the σ -algebra of \mathcal{O} . Use the monotone class lemma to show that $\{\mathbb{1}_A : A \in A\}$ is dense in $\{\mathbb{1}_E : E \in \mathcal{O}\}$ in the L^p -norm for all $1 \leq p < +\infty$.
- (c): Let $(X, \Sigma, \mu), (Y, \mathcal{F}, \nu)$ be finite measure spaces. Use the previous part to show that $\{\mathbb{1}_E : E \in \Sigma \otimes \mathcal{F}\} \subseteq \overline{\operatorname{Span}}^{\|\cdot\|_p} \{\mathbb{1}_E \otimes \mathbb{1}_F : E \in \Sigma, F \in \mathcal{F}\}$. Use this to show that $\overline{\operatorname{Span}}^{\|\cdot\|_p} \{\mathbb{1}_E \otimes \mathbb{1}_F : E \in \Sigma, F \in \mathcal{F}\} = L^p(X \times Y, \mu \otimes \nu)$.
- (d): Let $(X, \Sigma, \mu), (Y, \mathcal{F}, \nu)$ be σ -finite measure spaces. Suppose that $D_X \subseteq L^p(X, \mu), D_Y \subseteq L^p(Y, \nu)$ and that

$$\overline{\operatorname{Span}}^{\|\cdot\|_p}(D_X) = L^1(X,\mu), \quad \overline{\operatorname{Span}}^{\|\cdot\|_p}(D_Y) = L^1(Y,\nu).$$

Show that $\overline{\operatorname{Span}}^{\|\cdot\|_p}(\{f\otimes g: f\in D_X, g\in D_Y\})=L^p(X\times Y, \mu\otimes \nu).$

Problem 3

Suppose that $f \in L^p \cap L^\infty$ for some $p < +\infty$ so that $f \in L^q$ for all q > p. Prove that then $||f||_{\infty} = \lim_{q \to \infty} ||f||_q$.

Proof. By Folland Proposition 6.10, we have that

$$||f||_q^{\frac{p}{q}} \le ||f||_p^{\frac{p}{q}} ||f||_{\infty}^{\frac{p}{q}}$$

whence $\limsup_{q\to\infty}\|f\|_q\leq \|f\|_{\infty}$. On the other hand, for $n\in\mathbb{N}$ let $E_n=\{x:|f(x)|>\|f\|_{\infty}-\frac{1}{n}\}$. Then $(E_n)_{n=1}^{\infty}$ is a decreasing sequence of measurable sets with $E=\bigcap_{n=1}^{\infty}E_n=\{x:|f(x)|\geq \|f\|_{\infty}\}$ having $\mu(E)=0$ by definition of the L^{∞} -norm. Observe that, for $n\in\mathbb{N}$ and q>p,

$$||f||_q \ge \left(\int_{E_n} |f|^q d\mu\right)^{\frac{1}{q}} > (||f||_{\infty} - \frac{1}{n})\mu(E_n)^{\frac{1}{q}}$$

whence

$$\liminf_{q \to \infty} \|f\|_q \ge \|f\|_{\infty} - \frac{1}{n}.$$

As this holds for all $n \in \mathbb{N}$, it follows that $\liminf_{q \to \infty} ||f||_q \ge ||f||_{\infty}$ as desired.

Problem 4

If f is a measurable function on X, define the essential range R_f of f to be the set of all $z \in \mathbb{C}$ such that $\{x : |f(x) - z| < \varepsilon\}$ has positive measure for all $\varepsilon > 0$.

(a): Prove that R_f is closed.

Proof. Let $z \in \overline{R_f}$. Then there exists a sequence $(z_n)_{n=1}^{\infty}$ in R_f such that $z_n \to z$. Fix $\varepsilon > 0$. There is some $N \in \mathbb{N}$ such that $n \geq N \implies B_{\varepsilon/2}(z_n) \subseteq B_{\varepsilon}(z)$. Then $f^{-1}(B_{\varepsilon/2}(z_n)) \subseteq f^{-1}(B_{\varepsilon}(z))$, whence $0 < \mu(f^{-1}(B_{\varepsilon/2}(z_n))) \leq \mu(f^{-1}(B_{\varepsilon}(z)))$. Hence $z \in R_f$, so R_f is closed.

(b): Prove that if $f \in L^{\infty}$, then R_f is compact and $||f||_{\infty} = \max\{|z| : z \in R_f\}$.

Proof. Fix $z \in R$ and let M > 0 be such that $\mu(f^{-1}(X \setminus \overline{B_M(0)})) = 0$. Suppose, for the sake of contradiction, that |z| > M. Then we may choose $\varepsilon > 0$ such that $B_{\varepsilon}(z) \subseteq X \setminus B_M(0)$. Then $f^{-1}(B_{\varepsilon}(z)) \subseteq f^{-1}(X \setminus B_M(0))$, whence $\mu(f^{-1}(B_{\varepsilon}(z))) = 0$ contradicting that $z \in R_f$. Thus $|z| \leq M$. As M > 0 was arbitrary for its condition, it follows that $|z| \leq \|f\|_{\infty}$. As $z \in R_f$ was arbitrary, it follows that $\sup_{z \in R_f} |z| \leq \|f\|_{\infty} < +\infty$. Hence R_f is compact by part (a) and Heine-Borel. Let $z_{max} \in R_f$ such that $|z_{max}| = \max_{z \in R_f} |z| = \sup_{z \in R_f} |z|$.

We show that in fact $\mu(f^{-1}(\mathbb{C} \setminus B_{|z_{\max}|}(0))) = 0$, whence it would follow that $||f||_{\infty} \leq |z_{\max}|$ as desired. Let $N \in \mathbb{N}$ such that for all $n \geq N$ we have $|z_{\max}| < |z_{\max}| + \frac{1}{n} < ||f||_{\infty}$. Then for $n \geq N$, set $U_n = (\mathbb{C} \setminus \overline{B_{|z_{\max}|+\frac{1}{n}}(0)}) \setminus (\mathbb{C} \setminus B_{||f||_{\infty}}(0))$. We may cover U_n by countably many balls $B_{r_j}(z_j)$ where $B_{r_j}(z_j) \subseteq U$, i.e. $U = \bigcup_{j=1}^{\infty} B_{r_j}(z_j)$. It follows then that $\mu(f^{-1}(B_{r_j}(z_j))) = 0$, whence $\mu(U_n) = 0$. As the U_n 's are a decreasing sequence of measure zero sets with intersection $(\mathbb{C} \setminus B_{|z_{\max}|(0)}) \setminus (\mathbb{C} \setminus B_{||f||_{\infty}}(0))$, it follows that $\mu(f^{-1}(\mathbb{C} \setminus B_{|z_{\max}|(0)}) \setminus (\mathbb{C} \setminus B_{||f||_{\infty}}(0))) = 0$. Thus $\mu(f^{-1}(\mathbb{C} \setminus B_{|z_{\max}|(0)})) = 0$ as desired.

Problem 5

Suppose that $1 \leq p < +\infty$ and $(f_n)_{n=1}^{\infty}$ in L^p . Prove that $(f_n)_{n=1}^{\infty}$ is Cauchy in the L^p -norm if and only if the following three conditions hold:

- 1. (f_n) is Cauchy in measure;
- 2. the sequence $(|f_n|^p)_{n=1}^{\infty}$ is uniformly integrable
- 3. for every $\varepsilon > 0$ there exists $E \subseteq X$ such that $\mu(E) < +\infty$ and $\int_{E^c} |f_n|^p d\mu < \varepsilon$ for all $n \in \mathbb{N}$.

Lemma 1. Any finite subset $\{f_k\}_{k=1}^n \subseteq L^1(\mu)$ is uniformly integrable.

Proof of Lemma 1. We show first that $f \in L^1(\mu)$ is uniformly integrable. Note that, if $f \in L^1(\mu)$, then $|f|\mathbb{1}_{\{|f|>m\}} \searrow 0$ pointwise a.e. as $\{|f|=+\infty\}=\bigcap_{M\in\mathbb{N}}\{|f|>M\}$ implies that $\lim_{M\to\infty}\mu(|f|>M)=\mu(\{|f|=+\infty\})=0$. Moreover, for all $M\in\mathbb{N}$, $|f\mathbb{1}_{|f|>M}|\leq |f|\in L^1(\mu)$, so by the dominated convergence theorem

$$\lim_{M \to \infty} \int_{\{|f| > M\}} |f| \, d\mu = 0. \tag{1}$$

For any $E \subseteq X$ measurable and $M \in \mathbb{N}$, we have that

$$\int_{E} |f| \, d\mu = \int_{E \cap \{|f| \le M\}} |f| \, d\mu + \int_{E \cap \{|f| > M\}} |f| \, d\mu \le M \cdot \mu(E) + \int_{\{|f| > M\}} |f| \, d\mu \,. \tag{2}$$

Fix $\varepsilon > 0$. By (1), there exists some $N \in \mathbb{N}$ such that $\int_{\{|f| > N\}} |f| d\mu < \frac{\varepsilon}{2}$. Choose $\delta = \frac{\varepsilon}{2N}$. Then, for any $E \subseteq X$ measurable such that $\mu(E) < \delta$, we have by (2) that

$$\left| \int_{E} f \, d\mu \right| \leq \int_{E} |f| \, d\mu < N \cdot \delta + \frac{\varepsilon}{2} = \varepsilon.$$

Now suppose that $\{f_k\}_{k=1}^n \subseteq L^1(\mu)$ is a finite subset of $L^1(\mu)$. Fix $\varepsilon > 0$. By uniform integrability of each of the singletons, for each $k \in \{1, \ldots, n\}$ there exists a $\delta_k > 0$ such that $\mu(E) < \delta_k \implies |\int_E f_k| < \varepsilon$. Choosing $\delta = \min\{\delta_1, \ldots, \delta_n\} > 0$, the claim follows.

Lemma 2. Suppose $(f_n)_{n=1}^{\infty}$ is a sequence in $L^1(\mu)$ and $f \in L^1(\mu)$ such that $||f_n - f||_1 \xrightarrow{n \to \infty} 0$. Then $\{f_n\}_{n=1}^{\infty}$ is uniformly integrable.

Proof of Lemma 2. Observe that, for any measurable $E \subseteq X$ and $n \in \mathbb{N}$,

$$\int_{E} |f_n| \, d\mu \le \int_{E} |f| \, d\mu + \int_{E} |f_n - f| \, d\mu \le \int_{E} |f| \, d\mu + ||f_n - f||_{1}.$$

Fix $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that for $n \geq N$ we have $||f_n - f||_1 < \frac{\varepsilon}{2}$. By Lemma 1, $\{f\}$ is uniformly integrable, so there is some $\delta' > 0$ such that $\mu(E) < \delta'$ implies that $\int_E |f| d\mu < \frac{\varepsilon}{2}$.

Again by Lemma 1, $\{f_k\}_{k=1}^{N-1}$ is uniformly integrable, so there is some $\delta'' > 0$ such that $\mu(E) < \delta''$ implies $\int_E |f_k| d\mu < \varepsilon$ for all $k \in \{1, \ldots, N-1\}$. Setting $\delta = \min\{\delta', \delta''\}$, the claim follows.

Lemma 3 (Lemma 3). Condition (3) holds for any finite subset $\{f_k\}_{k=1}^n \subseteq L^1(\mu)$.

Proof of Lemma 3. We show first that the claim holds for just one function $f \in L^1(\mu)$. Suppose first that f is nonnegative and let $\varepsilon > 0$. Then by definition of the integral, there exists a simple function $0 \le g \le f$ such that

$$\int f \, d\mu - \int g \, d\mu < \varepsilon.$$

By monotonicity of the integral, $\int g \leq \int f < +\infty$, whence it follows that the set $E = \{x : g(x) > 0\}$ has finite measure (as g takes finitely many values). Then

$$\int_{E^c} f \, d\mu = \int_{E^c} f - g \, d\mu \le \int f - g \, d\mu < \varepsilon.$$

Now suppose that f is real-valued and let f^{\pm} be the positive and negative parts of f. Fix $\varepsilon > 0$. Then by the previous case there exist measurable $E^{\pm} \subseteq X$ with $\mu(E^{\pm}) < +\infty$ and $\int_{(E^{\pm})^c} f^{\pm} d\mu < \frac{\varepsilon}{2}$. Letting $E = E^+ \cup E^-$, it follows that $\mu(E) < +\infty$ and

$$\int_{E^c} |f| \, d\mu = \int_{(E^+)^c \cap (E^-)^c} f^+ + f^- \, d\mu \le \int_{(E^+)^c} f^+ \, d\mu + \int_{(E^-)^c} f^- \, d\mu < \varepsilon.$$

Finally, suppose that f is complex-valued. Let u = Re(f) and v = Im(f). The claim then follows from applying the previous case to u, v and using the inequality $|f| \le |u| + |v|$.

Now suppose that we have a finite subset $\{f_k\}_{k=1}^n \subseteq L^1(\mu)$ and fix $\varepsilon > 0$. Then for $1 \le k \le n$ there exists $E_k \subseteq X$ with $\mu(E_k) < +\infty$ and $\int_{E_k^c} |f_k| d\mu < \varepsilon$. Let $E = E_1 \cup \cdots \cup E_n$. Then $\mu(E) < +\infty$ and for $1 \le k \le n$ we have

$$\int_{E^c} |f_k| \, d\mu = \int_{\bigcap_{j=1}^n E_j^c} |f_k| \, d\mu \le \int_{E_k^c} |f_k| \, d\mu < \varepsilon.$$

Lemma 4 (Lemma 4). Suppose $(f_n)_{n=1}^{\infty}$ is a sequence in $L^1(\mu)$ and $f \in L^1(\mu)$ such that $||f_n - f||_1 \xrightarrow{n \to \infty} 0$. Then $\{f_n\}_{n=1}^{\infty}$ satisfies condition (3).

Proof of Lemma 4. As in the proof of Lemma 2, we utilize that for any measurable $E \subseteq X$ and $n \in \mathbb{N}$,

$$\int_{E^c} |f_n| \, d\mu \le \int_{E^c} |f| \, d\mu + \|f_n - f\|_1.$$

Fix $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that for $n \geq N$ we have $||f_n - f||_1 < \frac{\varepsilon}{2}$. By Lemma 3, $\{f_k\}_{k=1}^{N-1}$ satisfies condition (3), so there is some $E_1 \subseteq X$ with $\mu(E_1) < +\infty$ such that $\int_{E_1^c} |f_k| d\mu < \varepsilon$ for all $k \in \{1, \ldots, N-1\}$. The singleton $\{f\}$ also satisfies condition 3, so there is some $E_2 \subseteq X$ with $\mu(E_2) < +\infty$ and $\int_{E_2^c} |f| d\mu < \frac{\varepsilon}{2}$. Setting $E = E_1 \cup E_2$, it follows that $\mu(E) < +\infty$, $\int_{E^c} |f_k| d\mu \leq \int_{E_1^c} |f_k| d\mu < \varepsilon$ for $k \in \{1, \ldots, N-1\}$, and for all $n \geq N$

 $\int_{E^c} |f_n| \, d\mu \le \int_{E^c} |f| \, d\mu + \|f_n - f\|_1 < \int_{E_2^c} |f| \, d\mu + \frac{\varepsilon}{2} < \varepsilon.$

Proof of Theorem.

 \Longrightarrow : Suppose that $(f_n)_{n=1}^{\infty}$ is Cauchy in the L^p -norm. Then by completeness, there is some $f \in L^p(\mu)$ such $||f - f_n||_p \xrightarrow{n \to \infty} 0$. For $\varepsilon > 0$, noting that $\{|f_n - f| \ge \varepsilon\} = \{|f_n - f|^p/\varepsilon^p \ge 1\}$, we have that

$$\mu(\{|f_n - f| \ge \varepsilon\}) = \int_{\{|f_n - f| > \varepsilon\}} \frac{|f_n - f|^p}{\varepsilon^p} d\mu \le \frac{1}{\varepsilon^p} ||f_n - f||_p^p \xrightarrow{n \to \infty} 0.$$

Thus $f_n \to f$ in measure, whence $(f_n)_{n=1}^{\infty}$ is Cauchy in measure.

By the reverse triangle inequality,

$$\left| \|f_n\|_p - \|f\|_p \right| \le \|f_n - f\|_p \xrightarrow{n \to \infty} 0,$$

so $||f_n|^p||_1 \xrightarrow{n \to \infty} ||f|^p||_1 \in L^1(\mu)$. Now by Lemma 2, $(|f_n|^p)_{n=1}^{\infty}$ is uniformly integrable. Also by Lemma 4, condition (3) holds for $(|f_n|^p)_{n=1}^{\infty}$.

 $\underline{\Leftarrow}$: Suppose that $(f_n)_{n=1}^{\infty}$ in $L^p(\mu)$ satisfies the three listed conditions. Fix $\varepsilon > 0$ and let $E \subseteq X$ be as in condition (3). Set $A_{mn} = \{x : |f_m(x) - f_n(x)| \ge \varepsilon\}$ and let $\delta > 0$ be as in condition (2).

By construction, observe that

$$\int_{E \setminus A_{mn}} |f_m - f_n|^p d\mu \le \int_{E \setminus A_{mn}} \varepsilon^p d\mu \le \mu(E) \varepsilon^p$$

As $(f_n)_{n=1}^{\infty}$ is Cauchy in measure, there exists some $N \in \mathbb{N}$ such that for $m, n \geq N$, we have $\mu(A_{mn}) < \delta$. It follows by condition (2) that for $m, n \geq N$,

$$\int_{A_{mn}} |f_m - f_n|^p d\mu \le \int_{A_{mn}} 2^{p-1} (|f_m|^p + |f_n|^p) d\mu < 2^p \varepsilon.$$

Lastly, by condition (3), for all $m, n \in \mathbb{N}$,

$$\int_{E^c} |f_m - f_n|^p d\mu \le \int_{A_{mn}} 2^{p-1} (|f_m|^p + |f_n|^p) d\mu < 2^p \varepsilon.$$

So, for $m, n \geq N$, we have that

$$||f_m - f_n||_p^p \le \mu(E)\varepsilon^p + 2^p\varepsilon + 2^p\varepsilon$$

so $(f_n)_{n=1}^{\infty}$ is Cauchy in the L^p -norm.

Problem 6

Claim. If M is a closed linear subspace of \mathcal{H} , then $(M^{\perp})^{\perp} = M$.

Proof of Claim. Note that we have $\mathcal{H}=M\oplus M^{\perp}$. Let $y\in (M^{\perp})^{\perp}$. Then there exist unique $x\in M, x^{\perp}\in M^{\perp}$ such that $y=x+x^{\perp}$. Noting that $M\subseteq (M^{\perp})^{\perp}$, we have that $x^{\perp}=y-x\in M^{\perp}\cap (M^{\perp})^{\perp}=\{0\}$, whence $x^{\perp}=0$ and $y=x\in M$. Thus $M=(M^{\perp})^{\perp}$.

Proof. On one hand, note that $E \subseteq \overline{\operatorname{Span}(E)} \Longrightarrow (E^{\perp})^{\perp} \subseteq (\overline{\operatorname{Span}(E)}^{\perp})^{\perp} \stackrel{\text{claim}}{=} \overline{\operatorname{Span}(E)}$. On the other hand, as $(E^{\perp})^{\perp}$ is a closed linear subspace of \mathcal{H} and $E \subseteq (E^{\perp})^{\perp}$, it follows that $\overline{\operatorname{Span}(E)} \subseteq (E^{\perp})^{\perp}$.