Monthly Meeting on October

Yuichiro Honda Morita lab. M1

2016/10/05

- 1 Previous work
- Progress
- 3 Next step

Last month

- searched an (polynomial) algorithm to partition two matroids into their common bases
- 2 found an algorithm to find all common bases in two matroids in $O(n(n^2 + t)\lambda)$

- Previous work
- 2 Progress
- 3 Next step

References

Komei Fukuda, Makoto Namiki: "Finding all common bases in two matroids", Discrete Applied Mathmatics 56 (1995) 231-243

Finding all common bases in two matroids

Main result

Given two matroids M_1 , M_2 , and a common base B^1 , there is an algorithm finding all common bases of them in $O(n(n^2+t)\lambda)$ where λ is number of the bases and t is time to make one pivot operation.

Finding all common bases in two matroids

alogrithm "Enumerate"

```
input: M_1 := (E, \mathcal{B}_1), M_2 := (E, \mathcal{B}_2), B^1 \in \mathcal{B}_1 \cap \mathcal{B}_2 output: all common bases of M_1 and M_2
```

- 1 k := 1, output B^k . P := (R, ..., R). (Here, $P \in \{L, R\}^n$)
- **2** $f := min\{j \mid P_j = R\}$
- 3 If f doesn't exist, stop. Else, create $G := G(T_{M_1}(B^k), T_{M_2}(B^k))$ and find directed cycle C satisfying theorem 1 with breadth first search.
- 4 If C doesn't exist, goto step 2. Else, k := k+1, make pivot operation along C and obtain new B^k , $T_{M_1}(B^k)$, and $T_{M_2}(B^k)$. $P_f := L$, $\forall j < k; \ P_j := R$, goto step 2.

- Previous work
- Progress
- 3 Next step

next month

TODO:

- 1 learn about matroid intersection
- 2 learn how to partition a matoid into bases
- tackle two different partition matroids (can be partitioned into their common bases)
- generalized partition matroid of two different uniform matroids and any matroid