Amendments to the Claims

The listing of claims will replace all prior versions, and listings of claims in the application.

1. (currently amended) A compound of Formula I:

$$R^8 - E_s$$
 R^6
 R^5
 R^4
 R^7_q
 R^7_q

$$R^8 - E_s$$
 O_r
 D_p
 A
 R^1_n
 R^3
 R^3

wherein;

m, n, q, r, and s are independently selected from 0 or 1; $\underline{m}=1$, $\underline{n}=1$, $\underline{q}=0$, $\underline{s}=1$, $\underline{r}=0$ or 1, and p is 0, 1, 2, or 3;

A is selected from C and CH, forming a six-membered azine ring selected from piperidine, 1,4-dihydropyridine, and 1,2,5,6-tetrahydropyridine;

R², R³, R⁴, R⁵, and R⁶ are independently selected from hydrogen. halogen, alkyl, haloalkyl, hydroxyl, alkoxy, haloalkoxy, pentahalothio, alkylthio, cyano, nitro, alkylcarbonyl, alkoxycarbonyl, aryl, or aryloxy, provided that at least one of R², R³, R⁴, R⁵, and R⁶ are

other than hydrogen; and either of R^2 and R^3 , or R^3 and R^4 may be taken together with - OCF₂O-, -OCF₂CF₂-, C₂F₂CO-, or -CH=CHCH=CH-, forming a benzo-fused ring;

and when, where

(a) m and n are 0;

a double bond between methyl carbon (a) and the 4 position of the six-membered azine ring is formed,

where

B is phenyl substituted with R⁹, R10, R¹¹, R¹², and R¹³,

where

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from hydrogen, halogen, alkyl, haloalkyl, hydroxyl, alkoxy, haloalkoxy, mercapto, and alkylthio, cyano, alkylcarbonyl, alkoxycarbonyl, or aryloxy; and, wherein either of R⁹ and R¹⁰, or R¹⁰ and R¹¹ may be

taken together with OCF₂O, OCF₂CF₂, or CF₂CF₂O, forming a benzo fused ring, and;

and when

(b) m is 1, and n is 0;

a double bond between methyl carbon (a) and the 4-position of the six-ntembered azine ring is formed,

$$R^8 - E_s$$
 R^6
 R^4
 R^7_q
 R^7_q
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8

where

B is a bridging group from methyl carbon (a) to R;

where

B is selected from O, S, *CH₂O, *OCH₂, OC(=O)O, *OC(=0)NR¹⁵, *NR¹⁵C(=O)O, *OC(=S)NR⁵, *NR¹⁵C(=S)O, *OCH,C(=O)NR, *NR¹⁵C(=O)CH₂O, *CH₂OC(=O)NR¹⁵, *NR¹⁵C(=O)OCH₂, *NR¹⁵CH₂, *CH₂NR¹⁵, *NR¹⁵C(=O), *C(=O)NR¹⁵, *NR¹⁵SO₂, *SO₂NHNR¹⁵, *NR¹⁵SO₂, *SO₂NHNR¹⁵, *OC(=O)NR¹⁵SO₂, *SO₂NR¹⁵C(=O)O, *OC(=O)NR¹⁵, *CHR¹⁶, *CHR¹⁶NR¹⁵C(=O)O, *NR¹⁵C(=O)NR¹⁶; 1,4 dioxycyclohexyl, or 4 oxypiperidin 1-yl, where the asterisk denotes attachment to the methyl carbon (a);

where

R¹⁵ and R¹⁶ are independently selected from hydrogen, alkyl, alkylaminocarbonyl, and arylearbonyl wherein the aryl is optionally substituted with halogen, alkyl, alkoxy, haloalkyl, haloalkoxy, or nitro;

where

R is alkyl. cycloalkyl, alkenyl, or alkoxycarbonyl; or

R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹,

or,

R is pyrid 2 yl substituted with R¹⁸, R¹⁹, R²⁰, and R²¹,

or

pyrid-3-yl substituted willi R¹⁷, R¹⁹, R²⁰, and R²¹,

or

pyrid-4-yl substituted with R¹⁷, R¹⁸, R²⁰, and R²¹,

 \mathbf{or}

pyridazin-3-yl-substituted with R¹⁹, R²⁰ and R²¹,

where

R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹, are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, cyano, nitro, alky-Icarhonyl. alkoxycarbonyl, alkoxycarhonylamino, aryl, aryloxy, and 2-alkyl-2H-tetrazole, and,

wherein either of R¹⁷ and R¹⁸, or R¹⁸ and R¹⁹ may be taken together with -CH,CH-CHCH₂, OCF₂O, or -CF₂CF₂O, to form a benzofiused ring;

and when

(c) m and n are 1;

a single bond between methyl carbon (a) $\underline{\alpha}$ and the 4-position of the six-membered azine ring is formed;

$$R^8 - E_s$$
 O_r
 D_p
 A
 R^1
 R^3
 R^3
 R^4
 R^3

B is a bridging group from methyl carbon (a) $\underline{\alpha}$ to R;

where

B is selected from O, S, *CH₂O, *OCH₂, OC(=O)O, *OC(=O)NR¹⁵, *NR¹⁵C(=O)O, *OC(=S)NR1¹⁵, *NR¹⁵C(=S)O, *OCH₂C(=O)NR¹⁵, *NR¹⁵C(=O)CH₂O, -*CH₂OC(=O)NR¹⁵, *NR¹⁵C(=O)OCH₂, *NR¹⁵CH₂, *CH₂NR¹⁵, *NR¹⁵C(=O). *C(=O)NR¹⁵, *NR¹⁵SO₂, *SO₂NR¹⁵, *NR¹⁵NHSO₂, *SO₂NHNR¹⁵, *OC(=O)NR¹⁵SO₂, *SO₂NR¹⁵C(=O)O, *OC(=O)NR¹⁵CHR¹⁶, *CHR¹⁶NR¹⁵C(=O)O, *NR¹⁵C(=O)NR¹⁶; 1,4 dioxycyclohexyl, or 4 oxypiperidin-l yl, where the asterisk denotes attachment to the methyl carbon (a) $\underline{\alpha}$; where R¹⁵ is H and R¹⁶ are described above;

and,

R is alkyl, cycloalkyl, alkenyl, or alkoxycarbonyl;

or

R is phenyl substituted with R^{17} , R^{18} , R^{19} , R^{20} , and R^{21} ; pyrid-2-yl substituted with R^{18} , R^{19} , R^{20} , and R^{21} ; pyrid-3-yl substituted with R^{17} , R^{19} , R^{20} , and R^{21} ; pyrid-4-yl substituted with R^{17} , R^{18} , R^{20} , and R^{21} ; or pyridazin-3-yl substituted with R^{19} , R^{20} , and R^{21} ; where R^{17} , R^{18} , R^{19} , R^{20} , and R^{21} are described above;

R1 is selected from hydrogen, alkyl, alkoxyalkyl, or aryl;

when p is 1, 2, or 3;

D is -CH2-, and an azabicyclo derivative of the six-membered azine ring is formed;

when q is 0, and r is 1, an N-oxide derivative of the six-membered azine ring nitrogen is formed;

when q is 1 and r is 0 or 1;

R⁷ is selected from alkyl. haloalkyl. hydroxyalkyl, alkoxyalkyl, dialkylaminoalkyl, alkylaminocarbony Ioxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylcarbonyloxyalkyl, alkoxycarhonylalkyl, carhoxyalkyl, arylalkyl, arylcarbonyl, sulfonato, or sulfonatoalkyl, and may bear a negative charge resulting in an inner salt; and a separate ion is chloride, bromide, iodide, or an alkyl or phenyl sulfate or sulfonate; when s is 0 or 1;

R⁸-is selected from hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, alkoxy, alkoxyalkyl, amino, morpholinyl, optionally substituted indolyl, piperidinyl, optionally substituted (pyńdyl)alkenyl, optionally substituted 1,2,3,4-tetrahydronaphthylenyl, optionally substituted arylpyrazolyl, benzo[b]thiophenyl, 5-hydropyridino[l, 2a]pyrimidinonyl, optionally substituted 4-hydro-1.3-thiazolino[3,2a]pyrimidinonyl, 1,2,3,4-tetrahydro-quinolinyl, 2-thioxo-1,3-dihydroquinazolinonyl, 1.3-dihydroquinazolindionyl, or benzo[c]azolindionyl, wherein the optional substituent is selected from halo-gen, alkyl, alkoxy, and nitro;

Of

 R^8 is phenyl substituted with R^{22} , R^{23} , R^{24} , R^{25} , and R^{26} ,

or

pyrid 2 yl substituted with R²³, R²⁴, R²⁵, and R²⁶,

$$R^{23}$$
 R^{26}
 R^{25}
 R^{24}

Of

pyrid 3-yl substituted with R²², R²⁴. R²⁵, and R²⁶

or

pyrid4-yl substituted wito R²², R²³, R²⁵, and R²⁶,

where

R²², R²³, R²⁴ R²⁵, and R²⁶ are independently selected from hydrogen, halogen, alkyl, hydroxy, alkoxy, alkoxyalkyl, dialkoxyalkyl, trialkoxyalkyl, alkoxyiminoalkyl, alkenyloxyiminoalkyl, alkynyloxyiminoalkyl, cycloalkylalkoxy, alkoxyalkoxy, alkylthio, dithioalkoxyalkyl, trithioalkoxyalkyl, alkylsulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, cycloalkylaminosulfonyl, alkenyloxy, alkynyloxy, haloalkenyloxy, alkylsulfonyloxy, optionally substituted arylalkoxy, cyano, nitro, amino, alkylamino, alkylcarbonylamino, alkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, haloalkylcarbonylamino, alkoxyalkoxycarhonylamino, (alkyl)(alkoxycarbony-1)amino, alkylsulfonylamino, optionally substituted (heteroaryl)(alkoxycarbonyl)amino, optionally substituted arylcarbonylamino, formyl, optionally substituted 1,3-dioxolan-2-yl, optionally substituted 1,3-dioxan-2yl, optionally substituted 1,3-oxazolidin-2-yl, optionally substituted 1,3-oxazaperhydroin-2-yl, optionally substituted 1,3-dithiolan-2-yl, optionally substituted 1,3-dithian 2-yl, alkoxycarbonyl, alkylaminocarbonyloxy, alkylaminocarbonylamino, dialkylaminocarbonylamino, alkylamino(thiocarbonyl)amino, dialkylphosphoroureidyl, optionally substituted thienyl, optionally substituted 1,3-thiazolylalkoxy, optionally substituted aryl, optionally substituted aryloxy, optionally substituted aryloxyalkyl, optionally substituted arylaminocarbonyloxy, optionally substituted heteroaryl, optionally substituted heteroaryloxy, optionally substituted pyrrolyl, optionally substituted pyrazolyl, optionally substituted pyrazinyloxy, optionally substituted 1,3-oxazolinyl, optionally substituted 1,3-oxazolinyloxy, optionally substituted 1,3-oxazolinylamino, optionally substituted 1,2,4-triazolyl, optionally substituted

1,2,3-thiadiazolyl. optionally substituted 1,2,5-thiadiazolyl, optionally substituted 1,2,5-thiadiazolyloxy, optionally substituted 2H-tetrazolyl, optionally substituted pyridyl, optionally substituted pyridylamino, optionally substituted pyrimidinyl, optionally substituted pyrimidinyloxy, optionally substituted 3,4,5,6-tetrahydropyrimidinyloxy, optionally substituted pyridazinyloxy, or optionally substituted 1,2,3,4-tetrahydronaphthalenyl, wherein the optional substituent is selected from one or more of halogen, alkyl, haloalkyl, alkoxy, dialkoxyalkyl, dithioalkoxyalkyl, cyano, nitro, amino, or alkoxycarbonylamino, provided that at least one of R²², R²³, R²⁴, R²⁵, and R²⁶ is other than hydrogen;

when s is 1;

E is a bridging group selected from $(CR^{27}R^{26})_x$ - $(CR^{29}R^{30})_y$ -, $(CR^{27}R^{21})_*$ - $(CR^{29}R^{30})_y$ O*, C_3H_6 , C_4H_8 , C(=O), $C(=O)C_2H^*$, $C_2H_4C(=O)^*$, $C_3H_6C(=O)^*$. $C_4H_5NHC(=O)^*$, or $C(=S)NH^*$, where the asterisk denotes attachment at R^8 ;

where

x is 1; y is 0, $\frac{1}{9}$

and,

where R²⁷, R²⁸, R²⁹, and R³⁰ are independently selected from hydrogen, alkyl, and aryl optionally substituted with alkoxy;

N-oxides;

and

agriculturally-acceptable salts thereof.

2. (original) A compound of claim 1, wherein p and q are 0, r is 0 or 1; and s is 1; R², R³, R⁴, R⁵ and R⁶ are independently selected from hydrogen, halogen, alkyl, haloalkyl, hydroxyl, alkoxy, haloalkoxy, pentahalothio, alkylthio, nitro, aryl and aryloxy;

E is the bridging group $-(CR^{27}R^{28})_x$ – $(CR^{29}R^{30})_y$ –, where x is 1 and y is 0, R^{27} and R^{28} are hydrogen; and R⁸ is phenyl substituted with R²², R²³, R²⁵, and R²⁶, where R²², R²³, R²⁵, and R²⁶ are independently selected from hydrogen, alkoxy, dialkoxyalkyl, dithioalkoxyalkyl, alkoxyiminoalkyl, alkenyloxyiminoalkyl, alkynyloxyiminoalkyl, alkoxycarbonylamino, optionally substituted arylcarbonylamino, alkoxycarbonyl, alkylaminocarbonyloxy, optionally substituted 1,3-dioxolane-2-yl, optionally substituted 1,3-dioxan-2yl, optionally substituted 1,3-dithiolan-2-yl, optionally substituted 1,3dithian-2-yl, optionally substituted aryl, optionally substituted aryloxy, optionally substituted 2H-tetrazole, optionally substituted pyridyl, optionally substituted pyridyloxy, optionally substituted pyrimidinyl, optionally substituted pyrimidinyloxy, and optionally substituted pyridazinyloxy.

Claims 3-8 (cancelled)

- 9. (currently amended) A compound of claim 2, wherein A is CH, forming said piperidine ring;
- (e) m and n are 1, forming a single bond between methyl carbon (a) $\underline{\alpha}$ and the 4-position of said rings;

R¹ is hydrogen;

B is said bridging group selected from O[[,]] and *OC(=O)NR¹⁵, where R¹⁵ is hydrogen; and

R is phenyl substituted with R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹ where R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹ are independently selected from hydrogen, halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, nitro, aryl, aryloxy, and 2-alkyl-2H-tetrazole.

- 10. (original) A compound of claim 9, wherein R², R³, R⁴, R⁵, and R⁶ are independently selected from hydrogen, halogen, haloalkyl, and haloalkoxy; and R²², R²³, R²⁴, R²⁵ and R²⁶ are independently selected from hydrogen, dialkoxyalkyl, dithioalkoxyalkyl, alkoxyiminoalkyl, alkylaminocarbonyloxy, optionally substituted 1,3-dioxolane-2-yl, optionally substituted aryloxy, optionally substituted 2H-tetrazole, optionally substituted pyridyloxy, and optionally substituted pyridazinyloxy.
- 11. (original) A compound of claim 10, wherein B is the bridging group O or *OC(=O)NR¹⁵; R¹⁷, R¹⁸, R¹⁹, R²⁰, and R²¹ are independently selected from hydrogen, halogen, haloalkyl, and haloalkoxy.
- 12. (original) A compound of claim 11, wherein R^2 , R^3 , R^5 , R^6 , R^7 , R^{18} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} and R^{26} are hydrogen; R^4 and R^{19} are difluoromethyl, trifluoromethyl or trifluoromethoxy; and R^{24} is pyrid-2-yloxy or pyrimidin-2-yloxy.
- 13. (original) A composition containing an insecticidally effective amount of a compound of claim 1 in admixture with at least one agriculturally acceptable extender or adjuvant.
- 14. (original) A composition containing an insecticidally effective amount of a compound of claim 2 in admixture with at least one agriculturally acceptable extender or adjuvant.

Claims 15-20 (cancelled)

- 21. (original) A composition containing an insecticidally effective amount of a compound of claim 9 in admixture with at least one agriculturally acceptable extender or adjuvant.
- 22. (original) A composition containing an insecticidally effective amount of a compound of claim 10 in admixture with at least one agriculturally acceptable extender or adjuvant.
- 23. (original) A composition containing an insecticidally effective amount of a compound of claim 11 in admixture with at least one agriculturally acceptable extender or adjuvant.
- 24. (original) A composition containing an insecticidally effective amount of a compound of claim 12 in admixture with at least one agriculturally acceptable extender or adjuvant.
- 25. (original) The insecticidal composition of claim 13, further comprising one or more second compounds.
- 26. (original) The insecticidal composition of claim 14, further comprising one or more second compounds.

Claims 27-32 (cancelled)

33. (original) The insecticidal composition of claim 21, further comprising one or more second compounds.

- 34. (original) The insecticidal composition of claim 22, further comprising one or more second compounds.
- 35. (original) The insecticidal composition of claim 23, further comprising one or more second compounds.
- 36. (original) The insecticidal composition of claim 24, further comprising one or more second compounds.
- 37. A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 13 to a locus where insects tobacco budworm are present or are expected to be present.
- 38. A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 14 to a locus where insects tobacco budworm are present or are expected to be present.

Claims 39-44 (cancelled)

- 45. (currently amended) A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 21 to a locus where insects tobacco budworm are present or are expected to be present.
- 46. (currently amended) A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 22 to a locus where insects tobacco budworm are present or are expected to be present.

- 47. (currently amended) A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 23 to a locus where insects tobacco budworm are present or are expected to be present.
- 48. (currently amended) A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 24 to a locus where insects are present or are expected to be present.
- 49. (currently amended) A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 25 to a locus where insects tobacco budworm are present or are expected to be present.
- 50. (currently amended) A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 26 to a locus where insects tobacco budworm are present or are expected to be present.

Claims 51-56 (cancelled)

- 57. A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 33 to a locus where insects tobacco budworm are present or are expected to be present.
- 58. A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 34 to a locus where insects tobacco budworm are present or are expected to be present.

- 59. A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 35 to a locus where insects tobacco budworm are present or are expected to be present.
- 60. A method of controlling insects tobacco budworm, comprising applying an insecticidally effective amount of a composition of claim 36 to a locus where insects tobacco budworm are present or are expected to be present.