As in the case of a group isomorphism, the homomorphism g is unique and denoted by h^{-1} , and it is easy to show that a bijective ring homomorphism $h: A \to B$ is an isomorphism.

Definition 2.20. Given a ring A, a subset A' of A is a subring of A if A' is a subgroup of A (under addition), is closed under multiplication, and contains 1.

For example, we have the following sequence in which every ring on the left of an inclusion sign is a subring of the ring on the right of the inclusion sign:

$$\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$
.

The ring \mathbb{Z} is a subring of both $\mathbb{Z}[\sqrt{d}]$ and $\mathbb{Z}[\sqrt{-d}]$, the ring $\mathbb{Z}[\sqrt{d}]$ is a subring of \mathbb{R} and the ring $\mathbb{Z}[\sqrt{-d}]$ is a subring of \mathbb{C} .

If $h: A \to B$ is a homomorphism of rings, then it is easy to show for any subring A', the image h(A') is a subring of B, and for any subring B' of B, the inverse image $h^{-1}(B')$ is a subring of A.

As for groups, the kernel of a ring homomorphism $h: A \to B$ is defined by

Ker
$$h = \{ a \in A \mid h(a) = 0 \}.$$

Just as in the case of groups, we have the following criterion for the injectivity of a ring homomorphism. The proof is identical to the proof for groups.

Proposition 2.18. If $h: A \to B$ is a homomorphism of rings, then $h: A \to B$ is injective iff Ker $h = \{0\}$. (We also write Ker $h = \{0\}$.)

The kernel of a ring homomorphism is an abelian subgroup of the additive group A, but in general it is not a subring of A, because it may not contain the multiplicative identity element 1. However, it satisfies the following closure property under multiplication:

 $ab \in \operatorname{Ker} h$ and $ba \in \operatorname{Ker} h$ for all $a \in \operatorname{Ker} h$ and all $b \in A$.

This is because if h(a) = 0, then for all $b \in A$ we have

$$h(ab) = h(a)h(b) = 0h(b) = 0$$
 and $h(ba) = h(b)h(a) = h(b)0 = 0$.

Definition 2.21. Given a ring A, an additive subgroup \mathfrak{I} of A satisfying the property below

$$ab \in \mathfrak{I}$$
 and $ba \in \mathfrak{I}$ for all $a \in \mathfrak{I}$ and all $b \in A$ (*ideal)

is called a two-sided ideal. If A is a commutative ring, we simply say an ideal.

It turns out that for any ring A and any two-sided ideal \mathfrak{I} , the set A/\mathfrak{I} of additive cosets $a+\mathfrak{I}$ (with $a\in A$) is a ring called a *quotient ring*. Then we have the following analog of Proposition 2.12, also called the *first isomorphism theorem*.