Portable University Model of the Atmosphere (PUMA)

Dynamical core of the PlanetSimulator (University Hamburg)

Original version

- Global spectral general circulation model of the dry atmosphere
- Numerical solution of hydrostatic EULER equations for an ideal gas on a rotating sphere
- Diabatic, dissipative processes: only Newtonian Cooling and Rayleigh friction

Simple physics extension

- Inclusion of a vapor vapor transport equation
- Boundary layer and condensation scheme by Reed and Jablonowski (2011)

Summary of the governing PUMA equations

Vorticity:
$$\frac{\partial \eta}{\partial t} = \nabla_h \cdot (\mathbf{k} \times \mathbf{F}_{\mathbf{v}_h}) + D_{\eta}$$

Divergence: $\frac{\partial D}{\partial t} = -\nabla_h \cdot \mathbf{F}_{\mathbf{v}_h} + \nabla^2_h \left(\frac{\mathbf{v}_h^2}{2} \cos^2(\varphi) + \phi + RT \ln(p_s) \right) + D_D$
Temperature: $\frac{\partial T}{\partial t} = -\nabla_h \cdot (\mathbf{v}_h T) + DT - \dot{\sigma} \frac{\partial T}{\partial \sigma} + \frac{\kappa T}{p} \frac{Dp}{Dt} + D_T$
Water vapor: $\frac{\partial}{\partial t} (p_s q) = -\nabla_h \cdot (\mathbf{v}_h p_s q) - \frac{\partial}{\partial \sigma} (\dot{\sigma} p_s q) + D_q$

Surface pressure:
$$\frac{\partial \ln p_s}{\partial t} + \int_0^1 \frac{1}{p_s} \nabla_h \cdot (p_s \mathbf{v}_h) d\boldsymbol{\sigma} = 0$$

Geopotential:
$$\frac{\partial \phi}{\partial \sigma} = -\frac{RT}{\sigma}$$

Vertical velocity:
$$\dot{\sigma} = \sigma \int_{0}^{1} \frac{1}{p_{s}} \nabla_{h} \cdot (p_{s} \mathbf{v}_{h}) d\sigma - \int_{0}^{\sigma} \frac{1}{p_{s}} \nabla_{h} \cdot (p_{s} \mathbf{v}_{h}) d\sigma$$

Level arrangement for a five layer model ($\Delta \sigma = 1/N = 1/5 = 0.2$)

σ-value	Index	Variable
σ =0	1/2	$ \dot{\sigma}_{\frac{1}{2}}=0$
$\sigma = \frac{1}{2} \Delta \sigma = 0.1$	1	$=$ \mathbf{v}_{h1} , ϕ_{1} , T_{1}
$\sigma = \Delta \sigma = 0.2$	1½ -	$ \dot{\sigma}_{1+\frac{1}{2}}$
$\sigma=1\frac{1}{2}\Delta\sigma=0.$	3 2	$ \mathbf{v}_{h2}$, ϕ_2 , T_2
$\sigma = 2\Delta \sigma = 0.4$	2½	$ \dot{\sigma}_{2+\frac{1}{2}}$
$\sigma=2\frac{1}{2}\Delta\sigma=0.$	5 3	$-\mathbf{v}_{h3},\phi_3,T_3$
$\sigma = 3\Delta \sigma = 0.6$	31/2	$ \dot{\sigma}_{3+\frac{1}{2}}$
$\sigma=3\frac{1}{2}\Delta\sigma=0.$	7 4 ——————————	$-\mathbf{v}_{h4},\phi_4,T_4$
$\sigma = 4\Delta \sigma = 0.8$	4½ —	$$ $\dot{\sigma}_{4+\frac{1}{2}}$
$\sigma=5\frac{1}{2}\Delta\sigma=0.9$	9 N=5	$-\mathbf{v}_{h5}, \phi_5, T_5$
σ =1	$N+\frac{1}{2}$	$\dot{\boldsymbol{\sigma}}_{5+\frac{1}{2}} = 0$
		PUMA

Spectral method (Hoskins and Simmons 1975)

PUMA is based on a longitude-latitude grid. However, with spherical coordinates singularities occur at the poles. These singularities induce a collapse of coordinate lines into a single point.

Source: http://www.personal.umich.edu/~cjablono/project.html

With the spectral method this problem can be solved. All fields are represented by the expansion

$$G(\lambda, \varphi, t) = \sum_{n=0}^{\infty} \sum_{m=-n}^{m=n} Y_n^m (\lambda, \mu(\varphi)) \hat{G}_n^m(t)$$

Linear terms are evaluated in spectral space while for nonlinear terms the spectral transform method is applied.

Spectral triangular truncation

The condition that at least (3M+1) longitudes must be used leads to typical values for the spectral truncation wavenumber.

The fastest performance of a Fast FOURIER Transform results when 2ⁿ (n integer) longitudes are given in the model.

Longitudes	Truncation	DCMIP	Resolution
		denotation	at equator [km]
32	T10		1250.9
64	T21		625.5
128	T42		312.7
256	T85	LOW	156.4
512	T170	MEDIUM	78.2
1024	T341	HIGH	39.1
2048	T682	ULTRA	19.6

Semi implicit time integration scheme

- Linear part of PUMA can be solved without spectral transform method.
- This part describes high frequency gravity wave oscillations.

With the semi-implicit scheme the tendency is also a function of the "unknown" new state vector \mathbf{X}^{q+1}

$$\mathbf{X}^{q+1} = \mathbf{X}^{q-1} - i\Delta t \mathbf{A} \cdot (\mathbf{X}^{q-1} + \mathbf{X}^{q+1})$$

where **A** is the linear tendency operator of the linear part. This scheme gives unconditional numerical stability

Hyperdiffusion

To dampen small-scale spatial noise a hyperdiffusion term of the form

$$\left[(-1)^{n_h-1} k_h \nabla_h^{2n_h} F \right]$$

is added to the vorticity, divergence and temperature equations where n_h is the order of hyperdiffusion and k_h the coefficient.

Flow diagram of the PUMA model code

Figure 8.4: Flow diagram of main routines

