МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №2.1.2

Определение показателя адиабаты методом изобарического расширения

Пилюгин Л. С. Б02-212 24 апреля 2023 г.

1 Аннотация

Цель работы: определение показателя адиабаты для углекислого газа.

Оборудование: стеклянный сосуд; U-образный жидкостный манометр; газгольдер с углекислым газом; секундомер.

2 Оборудование

Экспериментальная установка состоит из стеклянного сосуда A, снабженного краном К1 и U-образного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на рисунке (вместо груши используется сосуд с углекислым газом).

Проведем с установкой следующие манипуляции:

- 1. Закроем кран К2 (0)
- 2. Откроем кран К1 на некоторое время
- 3. Закроем кран К1 (1)
- 4. Дождемся установления равновесия (2)
- 5. Откроем кран K2 на некоторое время τ (3)
- 6. Дождемся установления равновесия (4)
- 7. Откроем кран К2 (5)
- 8. Подождем 3-4 минуты (0)
- В результате некоторая порция газа совершает процесс, показанный на рисунке.

В сосуде создается избыточное давление p_1 . При втечении в систему газ оказывается нагретым.

Мысленно выделим в сосуде объем ΔV газа. Будем следить за изменением его состояния. Вследствие теплообмена со стенками сосуда через некоторое время газ остынет до комнатной температуры T_0 (процесс 12). При этом давление понизится до $p_0 + \Delta p_1$

$$\Delta p_1 = \rho q \Delta h_1$$

После открытия K2 за время порядка 0.5 с произойдет адиабатическое расширение и его температура окажется ниже комнатной. Далее газ будет изобарически нагреваться (процесс 34).

Зададим время τ , в течение которого кран K2 остается открытым таким, чтобы можно было пренебречь временем Δt адиабатического расширения воздуха. После закрытия крана К2 газ станет изохорически нагреваться до комнатной температуры (процесс 45), причем давление внутри возрастет до $p_0 + \Delta p_2$, где

$$\Delta p_2 = \rho g \Delta h_2$$

Наибольший интерес представляет исследование зависимости отношения перепадов давле-

ния $\frac{\Delta p_1}{\Delta p_2}$ от времени au. С хорошей точностью мы можем считать воздух в газгольдере идеальным газом. Рассмотрим изобарическое расширение воздуха. Для этого запишем уравнение теплового баланса для изменяющейся со временем массы газа $m=\frac{p_0V_0}{RT}\mu$:

$$c_p m dT = -\alpha (T - T_0) dt,$$

где c_p — удельная теплоёмкость воздуха при постоянном давлении, α — положительный постоянный коэффициент, характеризующий теплообмен, V_0 — объем газгольдера.

$$c_p \frac{p_0 V_0}{RT} \mu \, dT = -\alpha (T - T_0) \, dt$$

$$\frac{1}{T(T - T_0)} = -\frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T - T_0} \right)$$

$$\frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T - T_0} \right) \, dT = \frac{\alpha \, dt}{c_p m_0 T_0}$$

$$\ln \frac{T_2}{T_1} - \ln \frac{T_2 - T_0}{T_1 - T_0} = \frac{\alpha}{c_p m_0} \tau$$

$$\frac{\Delta T_1}{T_1} = \frac{\Delta T_2}{T_2} \exp \left(\frac{\alpha}{c_m m_0} \tau \right)$$

Тогда

Для адиабатического расширения $T^{\gamma}=\mathrm{const}\,p^{\gamma-1}$

$$\frac{dT}{T} = \frac{\gamma - 1}{\gamma} \frac{dp}{p}$$

$$\frac{\Delta T_1}{T_1} = \frac{\gamma - 1}{\gamma} \frac{\Delta p_1}{p_0}$$

При изохорическом нагреве газа выполняется соотношение $\frac{p}{T}=\mathrm{const.}$

$$\begin{split} \frac{\Delta T_2}{T_2} &= \frac{\Delta p_2}{p_0} \\ \frac{\gamma - 1}{\gamma} \frac{\Delta p_1}{p_0} &= \frac{\Delta p_2}{p_0} \exp\left(\frac{\alpha}{c_p m_0} \tau\right) \\ \frac{\gamma - 1}{\gamma} \Delta h_1 &= \Delta h_2 \exp\left(\frac{\alpha}{c_p m_0} \tau\right) \\ \ln \frac{\Delta h_1}{\Delta h_2} &= \ln \frac{\gamma}{\gamma - 1} + \frac{\alpha}{c_p m_0} \tau \end{split}$$

Из графика зависимости $\ln \frac{\Delta h_1}{\Delta h_2}$ от τ определим $\gamma.$

3 Результаты измерений

τ	Δh_1	Δh_2
5	10.4	1.5
10	10.7	1.2
15	10.8	1.1
20	10.9	0.9
25	10.8	0.8
30	10.8	0.7
35	10.7	0.5

$$b = 1.79 \pm 0.05 \,\mathrm{c}^{-1}$$

$$\gamma = \frac{\exp b}{\exp b - 1} = 1.2 \pm 0.3$$

Табличное значение $\gamma = 9/7 \approx 1,\! 3$ лежит в пределах погрешности.

4 Вывод

В процессе изобарического расширения был оценен коэффициент адиабаты для углекислого газа. Полученный результат совпадает с табличным с учетом погрешности.