Key Physical Fields Derived from a Single 9-DOF IMU on a Golf Club

Draft v1.4 — Jonah Sachs project notes

June 26, 2025

1 Setup & Notation

A single 9-DOF IMU (ax, ay, az, gx, gy, gz, mx, my, mz) is epoxied just below the handle.

- Body axes follow the right-hand rule; $+\hat{z}$ points down the shaft.
- A sensor-fusion filter outputs the quaternion $q_{SI}(t)$ (sensor \rightarrow inertial).
- Lever arm to head CG: $\mathbf{r} = [\,0,0,-\ell]^\mathsf{T}$ with $\ell \approx 1.07\,\mathrm{m}.$

2 Raw Channels (9)

Symbol	Units	Comment	
$\overline{\mathbf{a} = [a_x, a_y, a_z]}$	m/s^2 or g	linear accel. incl. g	
$\boldsymbol{\omega} = [\omega_x, \omega_y, \omega_z]$	rad/s	body rates	
$\mathbf{m} = [m_x, m_y, m_z]$	μT	magnetic heading	

3 Derived Golf Metrics (single-stick model)

Group	Metric	Method (plain-English)	Formula / Symbolic	\mathbf{Use}
Pose	Euler angles (ϕ, θ, ψ)		$(\phi, \theta, \psi) = $ QuatToEuler (q_{SI})	Shaft attitude at impact / takeaway
Timing				
	Backswing time T_b	First sign-change of ω_z (start \rightarrow top).	$T_b = t_{\rm top} - t_{\rm start}$	Rhythm
	Downswing time T_d	Top \rightarrow impact; use max $ \mathbf{a} $ as impact.	$T_d = t_{\text{impact}} - t_{\text{top}}$	Rhythm
	Tempo ratio	Divide the two intervals.	$T_b:T_d$	3:1 goal
Speed / Power	•			
	Head speed v_h	Rotate r to world and cross with ω_I .	$v_h = \ \boldsymbol{\omega}_I \times R_{SI} \mathbf{r}\ $	Carry estimate
	Peak g	Stream the max of $ \mathbf{a} $ per swing.	$a_{\mathrm{pk}} = \max \mathbf{a} $	Mishit flag
	Centripetal force F_c	Use axial ω_z and lever arm ℓ .	$F_c = m\ell\omega_z^2$	Shaft load
Path / Plane				
	Plane tilt β	PCA on shaft axis over downswing; angle vs $+\hat{z}$.	$\beta = \arccos(\hat{n} \cdot \hat{z})$	Swing geometry
	Attack angle α	Take vertical component v_z of v_h .	$\alpha = \arcsin(v_z/ \mathbf{v})$	Up / down strike
	Club-path γ	Azimuth of v_h in ground plane.	$\gamma = \operatorname{atan2}(v_y, v_x)$	Draw / fade
	Face angle ¹	Rotate stored face normal \hat{f}_S by R_{SI} .	$\delta = \arccos(\hat{f}_I \cdot \hat{x})$	Open / closed
Quality				
	Release frame	Zero-cross of angular accel. $\dot{\omega}_z$.	$\dot{\omega}_z = 0$	Lag timing
	Smoothness S	Integrate squared jerk over swing.	$S = \int \dot{\mathbf{a}} ^2 dt$	Compare swings
	Impact FFT	FFT of \mathbf{a} in $\pm 3 \mathrm{ms}$.	PSD around impact	Contact quality

4 Extra Low-Bandwidth Logs

- \bullet Timestamp (ns)
- \bullet Battery voltage HW QA
- Impact flag (boolean) trims backswing data
- \bullet Club ID and length ℓ correct head-speed calc

 $^{^1\}mathrm{One\textsc{-}time}$ static calibration registers the club-face normal \hat{f}_club in the sensor frame.

5 Reference End-to-End Workflow (pseudo-Python)

The code fragment below shows how one nine-value IMU packet

```
[a_x, a_y, a_z, \omega_x, \omega_y, \omega_z, m_x, m_y, m_z]
```

Listing 1: Minimal processing loop

```
# ---- constants & one-time calibration ------
                                # sample rate, Hz
FS
        = 200.0
        = np.array([0, 0, -1.07])  # lever arm in sensor axes (m)
= np.array([1, 0, 0])  # face normal after static calib
R_S
        = np.array([1, 0, 0])
F_S
                                  # shaft axis in sensor frame
# up-direction in world frame
        = np.array([0, 0, 1])
Z_S
Z_I = np.array([0, 0, 1])
                                      # ring buffers for PCA & tempo
BUF_AXES, BUF_TS = [], []
# --- main loop -------
for pkt in imu_stream():
                                     # unpack one packet
   ax, ay, az, gx, gy, gz, mx, my, mz, ts = pkt
   a_S = np.array([ax, ay, az])
   w_S = np.array([gx, gy, gz])
   m_S = np.array([mx, my, mz])
   # (1) sensor fusion -> quaternion and rotation matrix
   q_SI = madgwick.updateIMU(w_S, a_S)
                                # 3 x 3 matrix
   R_SI = quat_to_rotmat(q_SI)
   w_I = R_SI @ w_S
   # (2) rigid-stick kinematics
   r_I = R_SI @ R_S
                                     # club-head velocity
   v_I = np.cross(w_I, r_I)
   # (3) keep history for tempo and plane PCA
   {\tt BUF\_AXES.append(R\_SI @ Z\_S)} \qquad \qquad {\it\# shaft Dir. in world frame}
   BUF_TS.append(ts)
   # (4) simple q-threshold marks impact
   if np.linalg.norm(a_S) > 30.0: # adjust threshold as needed
       # --- tempo ------
       sign_flip = np.where(np.diff(np.signbit(w_I[2])))[0][0]
       Tb = ts - BUF_TS[0]
       Td = ts - BUF_TS[sign_flip]
       # --- swing plane via PCA ------
       X = np.stack(BUF_AXES[sign_flip:])
       X = X - X.mean(axis=0)
       C = X.T @ X / (len(X) - 1) # covariance 3 x 3
       eigval, eigvec = np.linalg.eigh(C)
                                      # normal = eigenvector min var
       n_hat = eigvec[:, 0]
       beta = np.degrees(np.arccos(abs(n_hat @ Z_I)))
       # --- path, attack, face ------
            = v_I
```

```
alpha = np.degrees(np.arcsin(v[2] / np.linalg.norm(v)))
gamma = np.degrees(np.arctan2(v[1], v[0]))
f_I
      = R_SI @ F_S
delta = np.degrees(np.arctan2(f_I[1], f_I[0]))
# --- speed / power ------
v_head = np.linalg.norm(v)
g_peak = max(np.linalg.norm(a_S), 0) # here just current packet
F_{cent} = 0.205 * abs(w_{I}[2])**2 * abs(R_{S}[2]) # 205 g head mass
# --- smoothness (jerk) ------
jerk = np.gradient([np.linalg.norm(a) for a in BUF_AXES],
                 1.0/FS, edge_order=2)
S_{smooth} = np.trapz(jerk**2, dx=1.0/FS)
emit_metrics(dict(Tb=Tb, Td=Td, beta=beta, alpha=alpha,
                gamma=gamma, delta=delta, v_head=v_head,
                g_peak=g_peak, F_cent=F_cent,
                S_smooth = S_smooth , ts = ts))
BUF_AXES.clear()
BUF_TS.clear()
```

Conceptual flow

- 1. **Fusion** $\{\mathbf{a}_S, \boldsymbol{\omega}_S, \mathbf{m}_S\} \rightarrow q_{SI}$ using Madgwick/Kalman.
- 2. Rigid kinematics $\mathbf{v}_I = \boldsymbol{\omega}_I \times (R_{SI}\mathbf{r}_S)$.
- 3. **Buffers** collect shaft directions and time-stamps until impact.
- 4. **Impact** detected with a simple |a| threshold.
- 5. Metrics tempo, plane PCA, path, attack, face, power, quality.

No long-term integration of a is performed, so drift stays negligible.