Curriculum Vitae

Name Edward Baxter Linscott

Nationality New Zealander Email edward.linscott@epfl.ch

Date of birth 26/11/1991 Website https://elinscott.github.io/

Professional Experience

start date	end date	iob title	institution

1 Nov 2019 present Postdoctoral Researcher École polytechnique fédérale de Lausanne

I am currently a postdoc at EPFL, Lausanne, Switzerland, in the group of Prof. Nicola Marzari. I am working on developing Koopmans spectral functionals for addressing systematic errors in density functional theory.

1 Mar 2014 31 July 2014 Research Assistant University of Otago

I was briefly employed as a Research Assistant at the University of Otago, where I continued the work from my honours year studying the behaviour of dipolar Bose gases. This work resulted in a publication where we predicted an instability of dipolar BECs in regions of experimental interest.

21 Nov 2011 30 Jan 2012 Summer Studentship University of Otago

I spent a summer in a studentship with an engineering/physics/medical research group developing new computed tomography (CT) scanning technology. I was involved in developing software that allowed the research team to quantify the quality of their images (and hence assess the performance of their machines during development).

Education

1 Oct 2015 26 Oct 2019 PhD in Physics (in progress) University of Cambridge

Title: "Describing Correlation Effects in Biological Systems"

Supervisors: Prof. Mike Payne and Dr. Daniel Cole (Newcastle)

Funding: Cambridge-Rutherford Memorial Scholarship (valued at approx. €150,000; competitively awarded)

Many key reactions in biology are performed by metalloproteins. These systems are a challenge to accurately simulate due to two contrasting reasons. Firstly, the strong correlation present due to the transition metal atoms requires more accurate theories than semi-local density-functional theory. And secondly the ambient protein environment requires explicit treatment of thousands of atoms at the quantum-mechanical level. Over the course of my PhD I developed novel approaches within linear-response theory for determining Hubbard and Hund's parameters from first principles for DFT + U calculations. I also developed a dynamical mean-field theory module for the linear scaling package ONETEP. I applied these tools to study (a) photodissociation of carboxy-heme (b) the electronic structure of hemocyanin, and (c) water-to-oxygen conversion performed by the oxygen evolving complex.

1 Oct 2014 30 Sep 2015 MPhil in Scientific Computing University of Cambridge Distinction

Title: "Strong Correlation Effects in the Electronic Structure of the Photosystem II Complex"

Supervisors: Prof. Mike Payne and Dr. Daniel Cole

Funding: EPSRC (valued at approx. €50,000)

Designed to lead into my PhD, my masters project motivated the need for models of the oxygen-evolving complex (OEC) that are thousands of atoms in size, and demonstrated that such calculations are feasible with the linear scaling density functional theory code ONETEP. The thesis also explored the DFT + U as a method for treating the correlation present in the OEC core.

25 Feb 2013 4 Nov 2013 BSc (Hons) in Physics University of Otago First Class

Title: "Non-zero Temperature Theory for Ultra-Cold Dipolar Bose Gases"

Supervisor: Prof. P. Blair Blakie

This one-year honours programme comprised of taught courses in physics and mathematics, and a research project. My research project explored the effects of temperature on the behaviour of quasi-2D dipolar Bose-Einstein condensates; that is, BECs whose atoms (a) interact with an appreciable magnetic dipole-dipole moment and (b) are contained within a 2D optical trap. (See the "Professional Experience" section for the outcome of this research.)

1 Mar 2010 10 Nov 2012 BSc in Mathematics and Physics University of California Straight A+'s Berkeley

A three-year Bachelor's degree with a double-major in mathematics and physics. I spent the final semester of this degree on exchange at Berkeley.

Publications	
EBL and P.B. Blakie, <i>Thermally activated local collapse of a flattened dipolar condensate</i> . Phys. Rev. A 90 (2014) 053605	6 citations; selected as an Editors' Suggestion
EBL, D. J. Cole, M. C. Payne, and D. D. O'Regan, <i>Role of spin in the calculation of Hubbard U and Hund's J parameters from first principles</i> . Phys. Rev. B 98 (2018) 235157	14 citations
C. J. Edgcombe, S. M. Masur, EBL, J. Whaley-Baldwin, and C. H. W. Barnes, <i>Analysis of a capped carbon nanotube by linear-scaling density-functional theory</i> . Ultramicroscopy 198 (2019) 26	6 citations
M. A. al-Badri, EBL, A. Georges, D. J. Cole, and C. Weber, <i>Superexchange mechanism</i> and quantum many body excitations in the archetypal di-Cu oxo-bridge. Comm. Phys. 3 (2020) 4	3 citations
EBL, D. J. Cole, N. D. M. Hine and C. Weber, $ONETEP + TOSCAM$: uniting dynamical mean field theory and linear-scaling density functional theory. JCTC 16 (2020) 4899	1 citation
J. C. A. Prentice, J. Aarons, J. C. Womack, A. E. A. Allen, L. Andrinopoulos, L. Anton, R. A. Bell, A. Bhandari, G. A. Bramley, R. J. Charlton, R. J. Clements, D. J. Cole, G. Constantinescu, F. Corsetti, S. M-M. Dubois, K. K. B. Duff, J. María Escartín, A. Greco, Q. Hill, L. P. Lee, EBL, D. D. O'Regan, M. J. S. Phipps, L. E. Ratcliff, Á. Ruiz Serrano, E. W. Tait, G. Teobaldi, V. Vitale, N. Yeung, T. J. Zuehlsdorff, J. Dziedzic, P. D. Haynes, N. D. M. Hine, A. A. Mostofi, M. C. Payne, and CK. Skylaris, <i>The ONETEP linear-scaling density functional theory program.</i> J. Chem. Phys. 52 (2020) 174111	9 citations
S. M. Masur, EBL, and C. J. Edgcombe, <i>Modelling a capped carbon nanotube by linear-scaling density-functional theory</i> , J. Electron Spectrosc. Relat. Phenom. 241 (2020) 146896	

Grants and Scholarships			
Year	Description	Approximate value	
2018	EPSRC capital grant for computing hours on CSD3, a Tier-2 HPC centre	€30,000	
2014	$\it LB\ Wood\ Scholarship\ to\ supplement\ an\ existing\ scholarship\ for\ postgraduate\ study\ in\ Britain$	€5,500	
2013	Cambridge—Rutherford Memorial Scholarship for doctorate studies at the University of Cambridge	€150,000	
	Douglass D. Crombie Award in Physics for an Otago graduate embarking on doctoral studies overseas	€4,000	
2012	University of Otago Prestige Scholarship in Science to support honours study	€1,000	
	Beverley Bursary for study towards physics honours (2011-2013)	€2,000	
	The Alumni of the University of Otago in America Inc. Award to support an academic exchange to the United States	€600	

2010	Alumni Annual Appeal Scholarship for study at the University of Otago	€4,000
	University of Otago Dux Scholarship for study at the University of Otago	€4,000
	University of Canterbury Dux Scholarship for study at the University of Canterbury (not taken up)	€4,000
	University of Canterbury Mathematics Scholarship for study at the University of Canterbury (not taken up)	€2,500
	University of Canterbury Science Scholarship for study at the University of Canterbury (not taken up)	€600

Awards and Prizes		
2016	Poster prize at CCP9 Young Researchers' Event	
2013	$Prince\ of\ Wales\ Award\ $ for the most outstanding student completing an undergraduate degree at the University of Otago in 2013	
2011	Robert Jack / Institute of Physics Prize for the top student in 200-level physics	
	Gloria Olive Memorial Prize in Mathematics for the top student in 300-level mathematics	
2010	Department of Mathematics and Statistics Scholarship for study at the University of Canterbury	
	Robert Jack / Institute of Physics Prize for the top student in 100-level physics	
	R. J. T. Bell Prize for the top student in 200-level mathematics	
	New Zealand Institute of Chemistry Prize for the top student in CHEM111: Molecular Architecture	

Conferences, Seminars, Schools, and Workshops			
Year	Event	Location	Contribution
2020	Quantum Fluids in Isolation Seminar Series	Boston	Invited talk
2018	Autumn School on Correlated Electrons	Jülich	Poster
	CCP9 Young Researchers' Event	York	Poster
	DPG March Meeting	Berlin	
	CDT student-run seminar series	Cambridge	Invited talk
2017	Autumn School on Correlated Electrons	Jülich	Poster
	CCP-BioSim Conference: Frontiers of Biomolecular Simulation	Southampton	Poster
	New Generation in Strongly Correlated Electron Systems	Barcelona	Contributed talk
	ONETEP Masterclass	Warwick	Tutor
	Workshop on Localisation in Quantised Systems	London	
	CCP9 Young Researchers' Event	Cambridge	
2016	Physics by the Lake	Windsor	Poster
	CCP9 Young Researchers' Event	York	Poster
	"Programming: Modern Fortran" UCS workshop	Cambridge	
2015	Psi-K conference	San Sebastian	Poster
	ONETEP Masterclass	Cambridge	

Skills

Programming

Used daily Fortran, Python, Bash

Used monthly MPI, OpenMP

Some experience C++, MATLAB, CUDA

I am a contributor to ONETEP, a commercially available scientific DFT code, and a developer of TOSCAM, a publically available DMFT code

In 2017 I audited *Machine Learning and Algorithims for Data Mining*, a master's course on machine learning run by the Department of Computer Science and Technology at the University of Cambridge.

I participated in Google Hash Code 2018. I sporadically compete on Project Euler and CodinGame

Packages and Software

Used daily ONETEP, TOSCAM, vim, LATEX, SLURM, git

Used monthly PyMol, VMD, ASE

Some experience CASTEP, Siesta, Maestro

Teaching

J		
2017	Supervised ten third-year students for thermal and statistical physics	University of Cambridge
2016	Supervised nine second-year students for experimental methods, oscillations, waves, optics, quantum mechanics, and condensed matter	University of Cambridge
2015	Supervised nine first-year students for physics	University of Cambridge
2013	Lab demonstrator, university tutor, and private tutor for first-year biological physics	University of Otago

Mentoring

During the course of my PhD I have provided support to two students.

I have spent a significant amount of time with M. A. Al-Badri (Masters, and then PhD student from King's College London), teaching him about DMFT and working with him on DMFT calculations on hemocyanin. I have hosted him in Cambridge twice, and visited him at KCL periodically. A paper resulted from this work.

I have been the local port-of-call for S. Mansur (PhD student, Cambridge) for support running ONETEP calculations. This work has resulted in two publications.

Outreach

I gave talks on computational physics to high school groups in the outreach event *Physics at Work 2017* at the Cavendish Laboratory.

Interests

I am a violinist, and have been a member (and concertmaster) of many orchestras including the New Zealand Symphony Secondary Schools Orchestra, the Christchurch Youth Orchestra, and the Cambridge Musical Society Symphony Orchestra. I love the outdoors and am an avid runner, cyclist, camper, and hiker.

Referees		
	Prof. Mike Payne	Prof. P. Blair Blakie
Address	Room 528, Mott Building	Room 420, Science III
	Cavendish Laboratory	Department of Physics
	University of Cambridge	University of Otago

	19 J J Thomson Avenue	362 Leith St
	Cambridge CB3 0HE	Dunedin 9016
	United Kingdom	New Zealand
Email	mcp1@cam.ac.uk	blair.blakie@otago.ac.nz
Phone	+44 (0)1223 337254	+64 (0)3 479 4114