RELIABILITY IN PORTFOLIO OPTIMIZATION USING UNCERTAIN ESTIMATES

RACHIT SETH (Y6114008)

MTech thesis under the supervision of Dr. RAGHU NANDAN SENGUPTA Industrial and Management Engineering, Indian Institute of Technology Kanpur

Pseudo-Codes for the paper Reliability in Portfolio Optimization using Uncertain Estimates

Raghu Nandan SENGUPTA¹, Rachit SETH¹, Peter WINKER²
¹IME Department, IIT Kanpur, INDIA; Ph: +91-512-679-6607

Email: raghus@iitk.ac.in and sethrachit@gmail.com

²Department of Statistics and Econometrics, University Giessen, GERMANY Ph: +49-641-99-22641; Fax: +49-641-99-22649

Email: Peter.Winker@wirtschaft.uni-giessen.de

01:	START
02:	IMPORT: Library Functions,
03:	DEFINE: Variables [B, N, S, r, V_0 , time (τ) , Delta (δ) , Alpha (α) ,
05.	Expected Value/Mean, Variance, Covariance, Threshold value (r_c) ,
	Reliability values $(\beta's)$, Endowment values]
04:	INPUT: Initial Values [B, N, S, V_0 , time (τ) , Delta (δ) , Alpha (α) ,
01.	Reliability values $(\beta's)$, Endowment values]
	Reflability values (\$\psi_3\$), Bhaowhene values;
	DEFINITIONS OF DIFFERENT FUNCTIONS
	FUNCTION: BOOTSTRAP
05:	DEFINE: Function [Bootstrap]
06:	START: Function [Bootstrap]
07:	FUNCTIONALITY: Performs bootstrap to find the kernel densities for both Mean and Variance of all N assets
08:	CALCULATE: [All statistical values and statistical test values as
00.	required to check for distribution properties]
09:	REPORT: [All statistical values and statistical test values as
	required to check for distribution properties]
10:	END: Function [Bootstrap]
	FUNCTION: OPTIMIZATION (BRANCH & BOUND)
11:	DEFINE: Function [Branch & Bound]
12: 13:	START: Function [Branch & Bound]
13.	FUNCTIONALITY: Performs Optimization Branch & Bound algorithm to find the deterministic objective value and decision variables X_{\bullet} .
	Also check whether optimality condition is satisfied if YES then
	terminate else proceed
14:	END: Function [Branch & Bound]
	FUNCTION: ROSENBLAT TRANSFORMATION
15:	DEFINE: Function [Rosenblatt Transformation]
16:	START: Function [Rosenblatt Transformation]
17:	FUNCTIONALITY: Performs Rosenblatt Transformation to find $m{U}$
18:	END: Function [Rosenblatt Transformation]
	FUNCTION: RBDO: PERFORMANCE MEASURE APPROACH
19:	DEFINE: Function [RBDO: Performance Measure Approach]
20:	START: Function [RBDO: Performance Measure Approach]

RELIABILITY IN PORTFOLIO OPTIMIZATION USING UNCERTAIN ESTIMATES

RACHIT SETH (Y6114008)

MTech thesis under the supervision of Dr. RAGHU NANDAN SENGUPTA Industrial and Management Engineering, Indian Institute of Technology Kanpur

Pseudo-Codes for the paper Reliability in Portfolio Optimization using Uncertain Estimates

Raghu Nandan SENGUPTA¹, Rachit SETH¹, Peter WINKER²
¹IME Department, IIT Kanpur, INDIA; Ph: +91-512-679-6607

Email: raghus@iitk.ac.in and sethrachit@gmail.com

²Department of Statistics and Econometrics, University Giessen, GERMANY Ph: +49-641-99-22641; Fax: +49-641-99-22649

Email: Peter.Winker@wirtschaft.uni-giessen.de

FUNCTIONALITY: Performs RBDO: Performance Measure Approach] 21: optimization to find the MPP points $oldsymbol{U}^*$ 22: **END:** Function [RBDO: Performance Measure Approach] -----FUNCTION: INVERSE ROSENBLAT TRANSFORMATION-----23: **DEFINE:** Function [Inverse Rosenblatt Transformation] **START:** Function [Inverse Rosenblatt Transformation] FUNCTIONALITY: Performs inverse Rosenblatt Transformation to find 25: X 26: **END:** Function [Inverse Rosenblatt Transformation] 27: REPEAT: Steps 11 to 27 till optimality condition is satisfied 28: CALCULATE: [optimal values of X, Objective function] **REPORT:** [optimal values of X, Objective function, return-risk, optimal allocation endowment]

30: **END**