

BLANK PAGE

भारतीय मानक

आई. एस. ओ. मीट्रिक समलम्बी पेंच चूड़ियां भाग 4 छूटें (दूसरा पुनरीक्षण)

Indian Standard ISO METRIC TRAPEZOIDAL SCREW THREADS PART 4 TOLERANCES

(Second Revision)

ICS 21.040.10

@ BIS 1999

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

NATIONAL FOREWORD

This Indian Standard (Part 4) (Second Revision) which is identical with ISO 2903: 1993 'ISO metric trapezoidal screw threads — Tolerances', issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Engineering Standards Sectional Committee and approval of the Light Mechanical Engineering Division Council.

This standard was originally issued in 1973 and subsequently revised in 1988. The first revision was harmonized with ISO Standard by adopting ISO 2903: 1977. This second revision has been taken up to align it with the latest version of ISO 2903, which has been technically revised in 1993.

The text of ISO Standard has been approved as suitable for publication as Indian Standard without deviations. In the adopted standard certain conventions are not identical to those used in Indian Standards; attention is especially drawn to the following:

- a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.
- b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a full point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their place are listed below along with their degree of equivalence for the editions indicated:

International Standard	Corresponding Indian Standard	Degree of Equivalence
ISO 965-1 ¹⁾	IS — (Part 1): — ISO general purpose metric screw threads — Tolerances: Part 1 Principle and basic data (under preparation)	ldentical .
ISO 2901 : 1993	IS 7008 (Part 1): 1999 ISO metric trapezoidal screw threads: Part 1 Basic profile and maximum material profile (second revision)	do
ISO 2902 : 1977	IS 7008 (Part 2): 1988 ISO metric trapezoidal screw threads: Part 2 Pitch diameter combination (first revision)	do
ISO 5408 : 1983	IS 10587: 1983 Terminology for screw threads	Technically Equivalent

This standard (Part 4) covers the tolerances for ISO metric trapezoidal screw threads. The other parts covering various aspects of the ISO metric trapezoidal screw threads are given as under:

IS No. Title
IS 7008 (Part 1): 1999 ISO metric trapezoidal screw threads: Part 1 Basic profile and maximum material profile (second revision)

(Continued on third cover)

[&]quot;To be published (Revision of ISO 965-1: 1980).

Indian Standard ISO METRIC TRAPEZOIDAL SCREW THREADS

PART 4 TOLERANCES (Second Revision)

1 Scope

This International Standard specifies a tolerance system for metric trapezoidal screw threads in accordance with ISO 2902. The tolerances refer to the basic profile ISO 2901.

The tolerance system does not apply to trapezoidal screw threads with special requirements on axial displacement, for example lead screws.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 965-1:1980, ISO general purpose metric screw threads — Tolerances — Part 1: Principles and basic data.

ISO 2901:1993, ISO metric trapezoidal screw threads

— Basic profile and maximum material profiles.

ISO 2902:1977, ISO metric trapezoidal screw threads — General plan.

ISO 5408:1983, Cylindrical screw threads — Vocabulary.

3 Definitions

For the purposes of this International Standard, the definitions given in ISO 5408 apply.

4 Symbols

(See figures 1 to 4)

basic major diameter of nut thread, in millimetres D_{Δ} D_1 basic minor diameter of nut thread, in millimetres basic pitch diameter of nut thread, in millimetres D_2 basic major diameter of bolt thread, in millimetres d_3 basic minor diameter of bolt thread, in millimetres basic pitch diameter of bolt thread, in millimetres d_2 P pitch, in millimetres lead, in millimetres Ν designation for thread engagement group "Normal" designation for thread engagement group 'Long' thread engagement, in millimetres T tolerance, in micrometres T_{D1} T_{D2} tolerances for D_1 , D_2 , d, d_3 , d_2 (for D_4 no tol- T_{d} erances are specified), in micrometres $T_{\alpha 3}$ T_{d2} ei, EI lower deviations (EI for nut threads is equal to zero), in micrometres es, ES upper deviations, in micrometres

5 Structure of the tolerance system

The system is based on the tolerance system for ISO general-purpose metric screw threads of ISO 965-1, completed with tolerance positions c and e, and with values for pitches above 6 mm.

The recommended tolerance classes are, however, not the same as those for ISO metric screw threads in ISO 965-1.

6 Tolerance grades

The following tolerance grades are established:

	Tole	rance	grade	8S
Minor diameter of nut threads D_1 :		4		
Major diameter of bolt threads d :		4		
Pitch diameter of nut threads D_2 :		7	8	9
Pitch diameter of bolt threads d_2 :	(6)	7	8	9
Minor diameter of bolt threads d_3 :		7	8	9

Tolerance grade 6 for the pitch diameter (d_2) of the bolt thread has been included only as a means to establish the pitch diameter tolerances of grades 7, 8 and 9. See 13.4.2.

The tolerance grade for the minor diameter (d_3) of the bolt thread is always the same as for the pitch diameter (d_2) .

However, the values for T_{d3} and T_{d2} are not the same for a same grade because $T_{d3}=1.25T_{d2}+|es|$.

7 Tolerance positions

Figure 1 — Tolerance positions with respect to zero line (basic size)

The following tolerance positions are standardized for the pitch diameter.

- a) For nut threads: H with zero fundamental deviation (see figure 2 and table 1).
- b) For both threads: c and e with negative fundamental deviation (see figure 3 and table 1).

The tolerance position for the minor diameter D_1 and the major diameter D_4 of the nut threads is always H, i.e. with zero fundamental deviation. The tolerance position for the major diameter d and minor diameter d_3 of the bolt threads is in all cases h, i.e. with zero fundamental deviation, and it is independent of the tolerance position of the pitch diameter.

Figure 2 - Nut threads with tolerance position H for the pitch diameter

Figure 3 — Bolt threads with tolerance positions c and e for the pitch diameter

Table 1 — Fundamental deviations for the pitch diameter of nut threads and bolt threads

	Fundamental deviation						
Pitch	Nut thread	Bolt t	hread				
P	D_2	a	2				
	H	C	es				
	EI	es	es				
mm	μm	μm	μm				
1,5	0	- 140	67				
2	0	- 150	71				
3	0	- 170	85				
4	0	190	- 95				
5	0	212	- 106				
6	0	236	- 118				
7	0	- 250	125				
8	0	- 265	132				
9	0	- 280	140				
10	0	- 300	150				
12	0	- 335	160				
14	0	- 355	180				
16	0	375	190				
18	0	400	200				
20	0	425	212				
22	0	- 450	- 224				
24	0	- 475	- 236				
28	0	- 500	- 250				
32	0	- 530	- 265				
36	0	- 560	- 280				
40	0	- 600	- 300				
44	0	- 630	- 315				

8 Lengths of thread engagement

The length of thread engagement is classified into the groups N or L, in accordance with table 2.

9 Crest and root diameter tolerances

9.1 Minor diameter tolerances of nut thread (T_{D1})

For the minor diameter tolerance of the nut thread, T_{D1} , there is only one tolerance grade, 4 (see table 3).

9.2 Major diameter tolerances of bolt thread (T_d)

For the major diameter tolerance of the bolt thread, T_d , there is only one tolerance grade, 4 (see table 4).

9.3 Minor diameter tolerances of bolt thread (T_{co})

For the minor diameter tolerance of the bolt thread, T_{d3} , there are three tolerance grades, 7, 8, and 9, in accordance with table 5.

10 Pitch diameter tolerances

For the pitch diameter tolerances there are three tolerance grades, 7, 8 and 9 for nut threads, in accordance with table 6, and four tolerance grades, 6, 7, 8 and 9 for bolt threads, in accordance with table 7.

Table 2 — Lengths of thread engagement

Table 3 — Minor diameter tolerances of nut threads (T_{D1})

tinodda (1 _{D1})					
Pitch P	Tolerance grade 4				
mm	μm				
1,5 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 28 32 36 40 44	190 236 315 375 450 500 560 630 670 710 800 900 1 000 1 120 1 180 1 250 1 320 1 500 1 600 1 800 1 900 2 000				

Table 4 — Major diameter tolerances of bolt threads (T_d)

Pitch P	Tolerance grade 4				
mm	μm				
1,5 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 28 32 36 40 44	150 180 236 300 335 375 425 450 500 530 600 670 710 800 850 900 950 1 060 1 120 1 250 1 320 1 400				

Table 5 — Minor diameter tolerances of bolt thread (T_{co})

Basic major diameter		Pitch		Tolerance position c			erance posit	
•	d	P	of the pit	ch diameter	tolerance	of the pit	ch diameter	tolerance
over	up to		To	olerance grade	es	To	olerance grade	es
			7	8	9	7	8	9
mm	mm	mm	μM	μm	μm	μM	μM	μm
5,6	11,2	1,5 2 3	352 388 435	405 445 501	471 525 589	279 309 350	332 366 416	398 446 504
11,2	22,4	2 3 4	400 450 521	462 520 609	544 614 690	321 365 426	383 435 514	465 529 595
		5 8	562 709	656 828	775 965	456 576	550 695	669 832
		3 5 6	482 587 655	564 681 767	670 806 899	397 481 537	479 575 649	585 700 781
22,4	45	7 8 10 12	694 734 800 866	813 859 925 998	950 1 015 1 087 1 223	569 601 650 691	688 726 775 823	825 882 937 1 048

Basic maj	or diameter	Pitch	Tolerance position c of the pitch diameter tolerance				erance positi e ch diameter t	
over	up to		To	lerance grade	s	To	lerance grade	s
			7	8	9	7	8	9
mm	mm	mm	μm	μm	μm	μm	μm	μm
		3 4 8	501 565 765	589 659 890	701 784 1 052	416 470 632	504 564 757	616 689 919
45	90	9 10 12	811 831 929	943 963 1 085	1 118 1 138 1 273	671 681 754	803 813 910	978 988 1 098
		14 16 18	970 1 038 1 100	1 142 1 213 1 288	1 355 1 438 1 525	805 853 900	967 1 028 1 088	1 180 1 253 1 320
		4 6 8 12	584 705 796 960	690 830 928 1 122	815 986 1 103 1 335	489 587 663 785	595 712 795 947	720 868 970 1 160
90	180	14 16 18	1 018 1 075 1 150	1 193 1 263 1 338	1 418 1 500 1 588	843 890 950	1 018 1 078 1 138	1 243 1 315 1 388
		20 22 24 28	1 175 1 232 1 313 1 388	1 363 1 450 1 538 1 625	1 613 1 700 1 800 1 900	962 1 011 1 074 1 138	1 150 1 224 1 299 1 375	1 400 1 474 1 561 1 650
		8 12 18	828 998 1 187	965 1 173 1 400	1 153 1 398 1 650	695 823 987	832 998 1 200	1 020 1 223 1 450
180	355	20 22 24	1 263 1 288 1 363	1 488 1 513 1 600	1 750 1 775 1 875	1 050 1 062 1 124	1 275 1 287 1 361	1 537 1 549 1 636
		32 36 40 44	1 530 1 623 1 663 1 755	1 780 1 885 1 925 2 030	2 092 2 210 2 250 2 380	1 265 1 343 1 363 1 440	1 515 1 605 1 625 1 715	1 827 1 930 1 950 2 065

Table 6 — Pitch diameter tolerances of nut thread $\{T_{D2}\}$

Table 6 — Pitch diameter tolerances of nut thread $\langle T_{D2} \rangle$ Basic major diameter Pitch Tolerance grades						
Basic maj	or diameter d	Pitch		Tolerance grades		
over	up to and incl.		7	8	9	
mm	mm	mm	μm	μm	μm	
5,6	11,2	1,5 2 3	224 250 280	280 315 355	355 400 450	
11,2	22,4	2 3 4	265 300 355	335 375 450	425 475 560	
		5 8	375 475	475 600	600 750	
		3 5 6	335 400 450	425 500 560	530 630 710	
22,4	45	7 8 10 12	475 500 530 560	600 630 670 710	750 800 850 900	
		3 4 8	355 400 530	450 500 670	560 630 850	
45	90	9 10 12	560 560 630	710 710 800	900 900 1 000	
		14 16 18	670 710 750	850 900 950	1 060 1 120 1 180	
		4 6 8 12	425 500 560 670	530 630 710 850	670 800 900 1 060	
90	180	14 16 18	710 750 800	900 950 1 000	1 120 1 180 1 250	
		20 22 24 28	800 850 900 950	1 000 1 060 1 120 1 180	1 250 1 320 1 400 1 500	
		8 12 18	600 710 850	750 900 1 060	950 1 120 1 320	
180	355	20 22 24	900 900 950	1 120 1 120 1 180	1 400 1 400 1 500	
		32 36 40 44	1 060 1 120 1 120 1 120 1 250	1 320 1 400 1 400 1 500	1 700 1 800 1 800 1 900	

Table 7 — Pitch diameter tolerances of bolt thread (T_{d2})

Basic ma	jor diameter	Pitch diameter	Tolerances of k	Tolerance		
	d	P			-	
over	up to and incl.		6	7	8	9
mm	mm	mm	μm	μm	μm	μm
5,6	11,2	1,5 2 3	132 150 170	170 190 212	212 236 265	265 300 335
11,2	22,4	2 3 4	160 180 212	200 224 265	250 280 335	315 355 425
		5 8	224 280	280 355	355 450	450 560
		3 5 6	200 236 265	250 300 335	315 375 425	400 475 530
22,4	45	7 8 10 12	280 300 315 335	355 375 400 425	450 475 500 530	560 600 630 670
		3 4 8	212 236 315	265 300 400	335 375 500	425 475 630
45	90	9 10 12	335 335 375	425 425 475	530 530 600	670 670 750
		14 16 18	400 425 450	500 530 560	630 670 710	800 850 900
		4 6 8 12	250 300 335 400	315 375 425 500	400 475 530 630	500 600 670 800
90	180	14 16 18	425 450 475	530 560 600	670 710 750	850 900 950
		20 22 24 28	475 500 530 560	600 630 670 710	750 800 850 900	950 1 000 1 060 1 120
		8 12 18	355 425 500	450 530 630	560 670 800	710 850 1 000
180	355	20 22 24	530 530 560	670 670 710	850 850 900	1 060 1 060 1 120
		32 36 40 44	630 670 670 710	800 850 850 900	1 000 1 060 1 060 1 120	1 250 1 320 1 320 1 400

Figure 4 — Lead and pitch of multiple-start thread

11 Recommended tolerance classes

in order to reduce the number of gauges and tools, the tolerances should preferably be chosen from tables 8 and 9.

The following general rules can be formulated for the choice of tolerance quality.

- a) Medium: for general use.
- b) Coarse: for cases when manufacturing difficulties can arise.

If the actual length of thread engagement is unknown, group N is recommended.

Table 8 — Recommended tolerance classes for nut threads

Tolerance quality	Tolerances for the pitch diameter			
	N	L		
Medium	7H	8H		
Coarse	8H	9H		

Table 9 — Recommended tolerance classes for bolt threads

Tolerance quality	Tolerances for the pitch diameter				
	N	L			
Medium	7e	8e			
Coarse	8c	9c			

12 Multiple-start threads

The tolerances for multiple-start threads (see figure 4) are the same as for single-start threads, with the exception of the pitch diameter tolerances which are enlarged.

The tolerance values for T_{D2} and T_{d2} , specified in tables 6 and 7, shall, for multiple-start threads, be multiplied by a factor according to table 10.

Table 10 - Factors for multiple-start threads

Number of starts	2	3	4	5 and larger
Factor	1,12	1,25	1,4	1,6

13 Formulae

13.1 Fundamental deviations

The fundamental deviations for nut and bolt threads have been calculated according to the following formulae.

for
$$EI_{H} = 0$$

$$es_c = -(125 + 11P)$$
 for P up to and including 2

$$es_c = -5 + 94,12\sqrt{P}$$
 for $P = 3$ to $P = 44$

$$e_{S_0} = -(50 + 11P)$$
 for P up to and including 3

$$es_0 = -47.49\sqrt{P}$$
 for $P = 4$ to $P = 44$

13.2 Length of thread engagement

For the calculation of the limits of the normal length of thread engagements $I_{\rm N}$ in table 2, the following rule has been applied.

For each pitch within a certain diameter range, d has been set equal to the smallest diameter (within the range) which appears in table 2.

$$I_{\rm N}$$
 min. = 2,24 $Pd^{0,2}$
 $I_{\rm N}$ max. = 6,7 $Pd^{0,2}$

13.3 Crest diameter tolerances

13.3.1 Tolerances for minor diameter of nut thread $\{T_{D1}\}$

The T_{D1} tolerances for grade 4 are calculated according to the following formula:

$$T_{D1} = 0.63 (230P^{0.7})$$

13.3.2 Tolerances for major diameter of bolt thread (T_d)

The T_d tolerances for grade 4 are calculated according to the following formula:

$$T_d = 0.63 \left(180 \sqrt[3]{P^2} - \frac{3.15}{\sqrt{P}} \right)$$

13.3.3 Tolerances for minor diameter of bolt thread (T_{c3})

The T_{d3} tolerances are obtained from the T_{d2} values according to the following formula:

$$T_{d3} = 1.25T_{d2} + |es|$$

13.4 Pitch diameter tolerances

13.4.1 Tolerances for pitch diameter of nut thread (T_{D2})

The T_{D2} tolerances are obtained from the tolerances for grade 6, T_{d2} (6), (see table 7) according to table 11.

Table 11 — Tolerances for pitch diameter of nut thread (T_{n2})

	Tolerance grades				
7	8	9			
1,7T _{d2} (6)	2,12T _{d2} (6)	2,65T _{d2} (6)			

13.4.2 Tolerances for pitch diameter of bolt thread (T_{d2})

The T_{d2} tolerances are calculated according to the following formulae (d equal to the geometrical mean value of the diameter range limits):

$$T_{d2}$$
 (6) = $90P^{0.4} \times d^{0.1}$
 T_{d2} (7) = 1,25 T_{d2} (6)

$$T_{d2}(8) = 1.6T_{d2}(6)$$

$$T_{d2}(9) = 2T_{d2}(6)$$

13.5 Rules of rounding

The values for pitch and crest diameter tolerances and for fundamental deviations have been calculated for the formulae above and then rounded off to the nearest value in the R40 series of preferred numbers.

The calculated values for the minor diameter tolerances T_{d3} have not been rounded.

14 Designation

A complete designation for a screw thread shall comprise a designation for the thread system and size, and a designation for the thread tolerance.

The thread designation shall be as given in ISO 2902.

The tolerance designation consists of a symbol for the pitch diameter tolerance only.

There is no need to designate the crest diameter tolerance since

- the tolerance position is always the same;
- only one tolerance grade is established for the minor diameter of nut threads (D₁) and for the major diameter of bolt threads (d).

Each tolerance designation shall comprise:

- a figure indicating the grade of the pitch diameter tolerance;
- a letter indicating the position of the pitch diameter tolerance, capital for nuts, small for bolts.

EXAMPLES

For nut threads:

For boit threads:

For two-start, left-hand bolt threads:

Tr
$$40 \times 14$$
 (P7) LH $-7e$

A fit between threaded parts is indicated by the nut thread tolerance designation followed by the bolt thread tolerance designation separated by a stroke.

EXAMPLES

Tr
$$40 \times 7 - 7H/7e$$

$$Tr 40 \times 14 (P7) - 7H/7e$$

(Continued from second cover)

(first revision) IS 7008 (Part 3): 1988 ISO metric trapezoidal screw threads: Part 3 Basic dimen revision) IS 7684: 1975 Limits of sizes for ISO metric trapezoidal nut threads (diametro to 100 mm) IS 7685: 1975 Limits of sizes for ISO metric trapezoidal bolts threads (diametro to 100 mm) IS 7726: 1975 Limits of sizes for ISO metric trapezoidal nut threads (diametro to 300 mm)	IS No.	i itle
revision) IS 7684: 1975 Limits of sizes for ISO metric trapezoidal nut threads (diametro to 100 mm) IS 7685: 1975 Limits of sizes for ISO metric trapezoidal bolts threads (diametro to 100 mm) IS 7726: 1975 Limits of sizes for ISO metric trapezoidal nut threads (diametro to 105 to 300 mm) IS 7727: 1975 Limits of sizes for ISO metric trapezoidal bolts threads (diametro to 105 to 300 mm) Limits of sizes for ISO metric trapezoidal bolts threads (diametro to 100 mm)	IS 7008 (Part 2) : 1988	ISO metric trapezoidal screw threads: Part 2 Pitch diameter combination (first revision)
to 100 mm) Limits of sizes for ISO metric trapezoidal bolts threads (diam 8 to 100 mm) IS 7726: 1975 Limits of sizes for ISO metric trapezoidal nut threads (diam 105 to 300 mm) IS 7727: 1975 Limits of sizes for ISO metric trapezoidal bolts threads (diam 105 to 300 mm)	IS 7008 (Part 3) : 1988	ISO metric trapezoidal screw threads: Part 3 Basic dimensions (first revision)
8 to 100 mm) IS 7726: 1975 Limits of sizes for ISO metric trapezoidal nut threads (diam 105 to 300 mm) IS 7727: 1975 Limits of sizes for ISO metric trapezoidal bolts threads (diam	IS 7684 : 1975	Limits of sizes for ISO metric trapezoidal nut threads (diameter range 8 to 100 mm)
105 to 300 mm) IS 7727: 1975 Limits of sizes for ISO metric trapezoidal bolts threads (diam	IS 7685 : 1975	Limits of sizes for ISO metric trapezoidal bolts threads (diameter range 8 to 100 mm)
·	IS 7726 : 1975	Limits of sizes for ISO metric trapezoidal nut threads (diameter range 105 to 300 mm)
	IS 7727 : 1975	Limits of sizes for ISO metric trapezoidal bolts threads (diameter range 105 to 300 mm)

T:41-

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2: 1960 'Rules for rounding off numerical values (*revised*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publication), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Handbook' and 'Standards Monthly Additions'

This Indian Standard has been developed from Doc: No. LM 01 (0370).

PATNA. PUNE. THIRUVANANTHAPURAM.

Amendments Issued Since Publication

Amend No.	. Date of Issue	Text Affected
	BUREAU OF INDIAN STANDARDS	
Headquarte	ers:	
	ivan, 9 Bahadur Shah Zafar Marg, New Delhi 110002 s: 323 01 31, 323 33 75, 323 94 02	Telegrams: Manaksanstha (Common to all offices)
Regional O	ffices:	Telephone
Central:	Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002	323 76 17, 323 38 41
Eastern :	1/14 C.I.T. Scheme VII M, V.I.P. Road, Maniktola CALCUTTA 700054	{337 84 99, 337 85 61 337 86 26, 337 91 20
Northern:	SCO 335-336, Sector 34-A, CHANDIGARH 160022	{60 38 43 60 20 25
Southern:	C.I.T. Campus, IV Cross Road, CHENNAI 600113	{235 02 16, 235 04 42 235 15 19, 235 23 15
Western :	Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400093	{832 92 95, 832 78 58 832 78 91, 832 78 92
Branches:	AHMADABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR.	-