Machine Learning HW1 report B04507009 電機三 何吉瑞

請實做以下兩種不同 feature 的模型,回答第(1)~(3) 題:

- 1. 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- 2. 抽全部 9 小時內 pm2. 5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等)都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

	public	private
所有汙染源	7.46222	5.52818
只有 pm2.5	7.44013	5.62719

兩者結果相近,原因可能是其他有利預測參數(如 pm10)和沒有適當轉換的參數(如角度沒有取成水平垂直分量)相互抵銷

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

	public	private
所有汙染源 9 小時	7. 46222	5. 52818
所有汙染源 5 小時	7. 65918	5. 44081
只有 pm2.5 9 小時	7. 44013	5. 62719
只有 pm2.5 5 小時	7. 57904	5. 79187

9 小時的分析結果略優於 5 小時,所有汙染源的因素相對複雜,在 pm2.5 的 case 中比較能看出 9 小時表現較好

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

		public	private
所有汙染源	$\lambda = 0.1$	7.46268	5.52570
	$\lambda = 0.01$	7.46227	5.52793
	$\lambda = 0.001$	7.46222	5.52815
	$\lambda = 0.0001$	7.46222	5.52817
只有 pm2.5	$\lambda = 0.1$	7.44070	5.62750
	$\lambda = 0.01$	7.44018	5.62722
	$\lambda = 0.001$	7.44013	5.62719
	$\lambda = 0.0001$	7.44013	5.62719

大致而言差距不大

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^u ,其標註(label)為一存量 y^u ,模型參數為一向量 w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 n=1Nyn-xnw2 。 若將所有訓練資料的特徵值以矩陣 $X = [x^u x^u \cdots x^u]^u$ 表示,所有訓練資料的標

註以向量 $y = [y \mid y^2 \cdots y^k]$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。(其中 $X \mid X$ 為 invertible)

- a. $(X^TX)X^Ty$
- b. $(X^TX)^{-1}X^Ty$
- c. $(X^TX)^{-1}X^Ty$
- d. $(X^TX)^{-2}X^Ty$

$$e = (y - wX)$$

$$e^{T}e = (y - wX)^{T}(y - wX)$$

$$\frac{\partial e^{T}e}{\partial w} = -2X^{T}(y - wX) = 2(X^{T}Xw - X^{T}y)$$

令偏微分為 0 求最小值

$$X^T X w - X^T y = 0$$
$$w = (X^T X)^{-1} X^T y$$

答案為(c)