SiScLab Project 8

Katta, Partmann, Wasmer

January 24, 2019

Module Design Goals

Multifunctionality:

- automated workflows like in &AiiDA
- manual data analysis with Python

Module Design Goals

Multifunctionality:

- automated workflows like in &AiiDA
- manual data analysis with Python

• no boilerplate code!

Module Design Goals

Multifunctionality:

- automated workflows like in &AiiDA
- manual data analysis with Python

no boilerplate code!

- Desktop
- Web

 → Web like in

 AiiDAlab

Input: Fleur calculation results stored in Hierarchical Data Format (HDF).

- modular output types for application domain (e.g. viz)
- dependency resolution

Input: Fleur calculation results stored in Hierarchical Data Format (HDF).

- modular output types for application domain (e.g. viz)
- dependency resolution

Input: Fleur calculation results stored in Hierarchical Data Format (HDF).

Module uses *type introspection* to enable features:

- modular output types for application domain (e.g. viz)
- dependency resolution

Input: Fleur calculation results stored in Hierarchical Data Format (HDF).

Module uses *type introspection* to enable features:

- modular output types for application domain (e.g. viz)
- dependency resolution

Input: Fleur calculation results stored in Hierarchical Data Format (HDF).

Module uses *type introspection* to enable features:

- modular output types for application domain (e.g. viz)
- dependency resolution

$$W_{s,\mathbf{k},\nu}^{\mathrm{eff}} = \begin{pmatrix} \sum\limits_{\substack{g \in \mathrm{groups} \\ c \in \mathrm{characters}}} n_{s,\mathbf{k},\nu,g,I} N_g \\ \sum\limits_{\substack{g \in \mathrm{all \ groups} \\ c \in \mathrm{all \ characters}}} n_{s,\mathbf{k},\nu,g,I} N_g \end{pmatrix} \left(W_{s,\mathbf{k},\nu}^{\mathrm{unf}}\right)^{\alpha}$$

- $W_{\mathbf{s},\mathbf{k},\nu}^{\text{eff}}$: effective weight
- $n_{s,k,\nu,g,l}$: State-specific l-like charge
- N_g : no. of atoms in group
- $W_{s,\mathbf{k},\nu}^{\mathrm{unf}}$: unfolding weight; $\alpha=0\implies$ no unfolding

$$W_{s,\mathbf{k},\nu}^{\mathrm{eff}} = \begin{pmatrix} \sum\limits_{\substack{g \in \mathrm{groups} \\ c \in \mathrm{characters}}} n_{s,\mathbf{k},\nu,g,l} N_g \\ \sum\limits_{\substack{g \in \mathrm{all \ groups} \\ c \in \mathrm{all \ characters}}} N_{s,\mathbf{k},\nu,g,l} N_g \end{pmatrix} \left(W_{s,\mathbf{k},\nu}^{\mathrm{unf}}\right)^{\alpha}$$

- $W_{s,\mathbf{k},\nu}^{\text{eff}}$: effective weight
- $n_{s,k,\nu,g,l}$: State-specific l-like charge
- N_g : no. of atoms in group
- $W_{s,\mathbf{k},\nu}^{\mathrm{unf}}$: unfolding weight; $\alpha=0 \implies$ no unfolding

$$W_{s,\mathbf{k},\nu}^{\mathrm{eff}} = \begin{pmatrix} \sum\limits_{\substack{g \in \mathrm{groups} \\ c \in \mathrm{characters}}} n_{s,\mathbf{k},\nu,g,l} N_g \\ \frac{\sum\limits_{\substack{g \in \mathrm{all \ groups} \\ c \in \mathrm{all \ characters}}} N_{s,\mathbf{k},\nu,g,l} N_g \end{pmatrix} \begin{pmatrix} W_{s,\mathbf{k},\nu}^{\mathrm{unf}} \end{pmatrix}^{\alpha}$$

- $W_{s,\mathbf{k},\nu}^{\text{eff}}$: effective weight
- $n_{s,k,\nu,g,l}$: State-specific *l*-like charge
- N_g : no. of atoms in group
- $W_{s,\mathbf{k},\nu}^{\mathrm{unf}}$: unfolding weight; $\alpha=0 \implies$ no unfolding

$$W_{s,\mathbf{k},\nu}^{\mathrm{eff}} = \begin{pmatrix} \sum\limits_{\substack{g \in \mathrm{groups} \\ c \in \mathrm{characters}}} n_{s,\mathbf{k},\nu,g,l} N_g \\ \sum\limits_{\substack{g \in \mathrm{all \ groups} \\ c \in \mathrm{all \ characters}}} N_{s,\mathbf{k},\nu,g,l} N_g \end{pmatrix} \left(W_{s,\mathbf{k},\nu}^{\mathrm{unf}}\right)^{\alpha}$$

- $W_{\mathbf{s},\mathbf{k},\nu}^{\text{eff}}$: effective weight
- $n_{s,k,\nu,g,l}$: State-specific *l*-like charge
- N_g : no. of atoms in group
- $W_{s,\mathbf{k},\nu}^{\mathrm{unf}}$: unfolding weight; $\alpha=0 \implies$ no unfolding

$$W_{s,\mathbf{k},\nu}^{\mathrm{eff}} = \begin{pmatrix} \sum\limits_{\substack{g \in \mathrm{groups} \\ c \in \mathrm{characters}}} n_{s,\mathbf{k},\nu,g,l} N_g \\ \sum\limits_{\substack{g \in \mathrm{all \ groups} \\ c \in \mathrm{all \ characters}}} N_{s,\mathbf{k},\nu,g,l} N_g \end{pmatrix} \begin{pmatrix} W_{s,\mathbf{k},\nu}^{\mathrm{unf}} \end{pmatrix}^{\alpha}$$

- $W_{\mathbf{s},\mathbf{k},\nu}^{\text{eff}}$: effective weight
- $n_{s,k,\nu,g,l}$: State-specific *l*-like charge
- N_g : no. of atoms in group
- $W_{s,\mathbf{k},\nu}^{\mathrm{unf}}$: unfolding weight; $\alpha=0 \implies$ no unfolding

Typically, $\sim 10^7 \mbox{ data points are accessed.}$

- ullet reshaping $(\mathbf{k},
 u)
 ightarrow (\mathbf{k} \cdot
 u)$
- weight filter t: $W_{s,\mathbf{k},\nu}^{\text{eff}} > t$
- using optimized numpy functions for tensor product
- buffering on selection change
- ightharpoonup Speedup $\sim 10^2$

Typically, $\sim 10^7$ data points are accessed.

- reshaping $(\mathbf{k}, \nu) \to (\mathbf{k} \cdot \nu)$
- weight filter t: $W_{s,\mathbf{k},\nu}^{\text{eff}} > t$
- using optimized numpy functions for tensor product
- buffering on selection change
- ightharpoonup Speedup $\sim 10^2$

Typically, $\sim 10^7$ data points are accessed.

- reshaping $(\mathbf{k}, \nu) \to (\mathbf{k} \cdot \nu)$
- weight filter t: $W_{s,k,\nu}^{\text{eff}} > t$
- using optimized numpy functions for tensor product
- buffering on selection change
- ightharpoonup Speedup $\sim 10^2$

Typically, $\sim 10^7$ data points are accessed.

- reshaping $(\mathbf{k}, \nu) \to (\mathbf{k} \cdot \nu)$
- weight filter t: $W_{s,\mathbf{k},\nu}^{\text{eff}} > t$
- using optimized numpy functions for tensor product
- buffering on selection change
- ightharpoonup Speedup $\sim 10^2$

Typically, $\sim 10^7$ data points are accessed.

- reshaping $(\mathbf{k}, \nu) \to (\mathbf{k} \cdot \nu)$
- weight filter t: $W_{s,\mathbf{k},\nu}^{\text{eff}} > t$
- using optimized numpy functions for tensor product
- buffering on selection change
- ightharpoonup Speedup $\sim 10^2$

Typically, $\sim 10^7$ data points are accessed.

- reshaping $(\mathbf{k}, \nu) \to (\mathbf{k} \cdot \nu)$
- weight filter t: $W_{s,\mathbf{k},\nu}^{\text{eff}} > t$
- using optimized numpy functions for tensor product
- buffering on selection change
- ightharpoonup Speedup $\sim 10^2$

Typically, $\sim 10^7$ data points are accessed.

- reshaping $(\mathbf{k}, \nu) \rightarrow (\mathbf{k} \cdot \nu)$
- weight filter t: $W_{s,\mathbf{k},\nu}^{\text{eff}} > t$
- using optimized numpy functions for tensor product
- buffering on selection change
- ightharpoonup Speedup $\sim 10^2$

Visualization Module

- Abstract interfaces for different viz. libs and applications
- InteractiveControlDisplay as frontend contracts

Visualization Module

- Abstract interfaces for different viz. libs and applications
- InteractiveControlDisplay as frontend contracts

Visualization Module

- Abstract interfaces for different viz. libs and applications
- InteractiveControlDisplay as frontend contracts

Desktop Frontend

Choice of GUI Toolkit: **TKinter**, Kivy, PySide/PyQt, ...

Choice of Plotting tool: matplotlib

The Python Visualization Landscape as of 2017...

The Python Visualization Landscape as of 2017...

Python Visualization Landscape by rougier / BSD-2

- Needed: an OSS Tool Selection Process for building a Web Dashboard using only
- Decision Priority Order: support...
 - I. ... interactive graphical control elements ('widgets')
 - II. ... easy deployment
 - III. ... some actual plotting libraries

- Needed: an OSS Tool Selection Process for building a Web Dashboard using only
- Decision Priority Order: support...
 - I. ... interactive graphical control elements ('widgets')
 - II. ... easy deployment
 - III. ... some actual plotting libraries

- Needed: an OSS Tool Selection Process for building a Web Dashboard using only
- Decision Priority Order: support...
 - I. ... interactive graphical control elements ('widgets')
 - II. ... easy deployment
 - III. ... some actual plotting libraries

- Needed: an OSS Tool Selection Process for building a Web Dashboard using only
- Decision Priority Order: support...
 - I. ... interactive graphical control elements ('widgets')
 - II. ... easy deployment
 - III. ... some actual plotting libraries

- Needed: an OSS Tool Selection Process for building a Web Dashboard using only
- Decision Priority Order: support...
 - I. ... interactive graphical control elements ('widgets')
 - II. ... easy deployment
 - III. ... some actual plotting libraries

I. Widgets	<section-header> jupyter</section-header>	pyviz 🔤 panel	🙎 bokeh	💴 dash
Languages	e e	e e	🤚 / Js	🤚 / Js

¹Excluded: writing from scratch using Flask

²workaround. See also: appmode, voila, thebelab

³interactive only

I. Widgets	😇 jupyter	pyviz 🔤 panel	🙎 bokeh	💴 dash
Languages	•	e	🤚 / Js	🤚 / Js
II. Deployment				
- Jupyter	✓	✓	×	×
- Standalone ¹	(⊗binder, 🗢)²	© Bokeh	O Boken	plotly

¹Excluded: writing from scratch using Flask

²workaround. See also: appmode, voila, thebelab

³interactive only

I. Widgets	😇 jupyter	pyviz 🔤 panel	🙎 bokeh	💴 dash
Languages	•	•	🤚 / Js	🤚 / Js
II. Deployment				
- Jupyter	✓	✓	×	×
- Standalone ¹	(⊗binder, 🔷)²	Golden	O Boken	plotly
III. Plots ³				
- 2D	🕙 mpl, bqplot,	🤾 hvplot, 🤽	O Bokeh	plotly
- 3D	ipyvolume	×	O Boken	plotly
				-

¹Excluded: writing from scratch using Flask

²workaround. See also: appmode, voila, thebelab

³interactive only