Applied Data Science (Prof. Dr. Kauffeldt)

Inhalt

- 1 Deskriptive Methoden
- 2 Testmethoden
 - 2.1 Ablauf statistischer Test
 - 2.2 Testen von Lageparametern
 - 2.3 Testen von Zusammenhängen
 - 2.4 Multiples Testen
- 3 Regressionsmodelle
 - 3.1 Lineare Regression
 - 3.2 Logistische Regression

1 Deskriptive Methoden

1.1 Statistiken

Analysen -> Exploration -> Deskriptivstatistik

Deskriptivstatistik

Deskriptivstatistik

	spend_food
N	128
Fehlend	5
Mittelwert	183
Median	150
Modalwert	200
Standardabweichung	129
Varianz	16642
IQR	150
Wertebereich	800
Minimum	0
Maximum	800

1.2 Graphiken

Nominale und Ordinale Daten: Häufigkeiten

Analysen -> Exploration -> Deskriptivstatistik -> Diagramme -> Balkendiagramm

Analysen -> Exploration -> Deskriptivstatistik -> Pareto-Diagramm

Numerische Daten und Ordinale Daten: Boxplot und Violinplot

Analysen -> Exploration -> Deskriptivstatistik -> Diagramme -> Boxplots

Numerische Daten: Histogramm und Dichte

Analysen -> Exploration -> Deskriptivstatistik -> Diagramme -> Histogramme

Bivariate numerische Daten: Streudiagramm

Analysen -> Exploration -> Deskriptivstatistik -> Streudiagramm

2 Testmethoden

2.1 Ablauf statistischer Test

- 1. Problemstellung und Hypothesen formulieren Nullhypothese H_0 ("Status Quo") und Alternativhypothese H_1 ("Forschungshypothese")
- 2. Passenden statistischen Test auswählen
- Voraussetzungen des Tests prüfen bspw. Varianzhomogenität, Normalverteilung
- 4. Ggf. Voranalyse
- 5. **Ggf. Data Engineering** bspw. Codierung
- 6. Test durchführen und interpretieren

2.2 Testen von Lageparametern

Übersicht:

Messniveau	Test auf	Einstichprobentest	Zweistichp	robentest
			$Unabh\"{a}ngig$	$Abh\"{a}ngig$
Numerisch	Mittel- wert	t-Test	t-Test (Varianz- homogenität) Welch-Test	Gepaarter t-Test
Ordinal	Median	Vorzeichen-Test (Wilcoxon W) (*)	Mann-Whitney-U- Test (*)	Wilcoxon- Vorzeichen-Rang- Test (*)

(*) Nichtparametrische Tests

Beispiel: Zweistichproben t-Test (unabhängig)

Schritt 1: Problemstellung und Hypothesen formulieren

 $H_0: Durschnittsgr\"{o}$ ße $Mann \leq Durchschnittsgr\"{o}$ ßeFrau

 $H_1: Durschnittsgr\"{o}$ ße $Mann > Durchschnittsgr\"{o}$ ßeFrau

Schritt 2: Passenden Test auswählen Unabhängiger Zweistichproben t-Test

Schritt 3: Voraussetzungen des Tests überprüfen

<u>Voraussetzungen t-Test</u>

- T1. Numerische abhängige Variable.
- T2. Normalität. Die Population(en) sind normalverteilt.
- T3. Unabhängigkeit. Die Messungen innerhalb und zwischen den Gruppen sind unabhängig.
- T4. Binäre Gruppenvariable. Es werden genau zwei Gruppen verglichen. [*]
- T5. Homoskedastizität. Varianzhomogenität: Varianz Gruppe 1 = Varianz Gruppe 2. [*]

[*] Nur für Zweistichprobentest

T1.

Körpergröße ist numerisch. 🗸

T2.

Überprüfung: Shapiro-Wilk-Test (H_0 : Normalverteilung, H_1 : Keine Normalverteilung) und QQ-Plot: Erst nach Gruppe filtern, dann Analysen -> Exploration -> Deskriptivstatistik -> Shapiro-Wilk und Q-Q

Gruppe Männer:

	height
N	44
Fehlend	0
Mittelwert	181
Median	180
Standardabweichung	7.08
Minimum	169
Maximum	197
Shapiro-Wilk W	0.975
Shapiro-Wilk p	0.464

Deskriptivstatistik

→ Erfüllt 🗸

Gruppe Frauen:

	height
N	87
Fehlend	0
Mittelwert	166
Median	165
Standardabweichung	6.58
Minimum	154
Maximum	184
Shapiro-Wilk W	0.964
Shapiro-Wilk p	0.017

→ Nicht erfüllt **X**

T3.
Messungen sind unabhängig. ✓

T4.
Nur 2 Gruppen. ✓

 $\underline{\mathsf{T5.}}$ Überprüfung: Levenes Test (H_0 : Varianzen aller Gruppen sind gleich, H_1 : Varianzen mindestens zweier Gruppen unterscheiden sich)

Levene's Test auf Varianzhomogenität

\$\frac{1}{2}	F	df	df2	р
height	0.0233	1	129	0.879

Anmerkung. Ein niedriger p-Wert deutet auf eine Verletzung der Annahme gleicher Varianzen hin

Was tun, wenn die Voraussetzungen des Tests verletzt sind?

Abhängig von der Art der Verletzung:

- Bei gewissen Verletzungen (bspw. abhängige Variable nicht-numerisch) kann der Test nicht durchgeführt werden
 - Bspw. bei ordinaler Variable Mann-Whitney-U-Test verwenden.
- Bei anderen Verletzungen erhalten wir weniger robuste Resultate.
 - Bei Verletzungen der Verteilungsannahme (Normalität), verwenden eines nichtparametrischen Tests zur Überprüfung der Resultate

Schritt 4: Voranalyse

Analysen -> t-Test für unabhängige Stichproben -> Deskriptivstatistik und Deskriptive Diagramme

Schritt 5: Test durchführen und interpretieren

Analysen -> t-Test für unabhängige Stichproben

								95 Konfiden	% zintervall		
		Statistik	±%	df	р	Mittlere Differenz	Std fehler der Differenz	Untere	Obere	-	Effektstärke
height	Student's t	-11.7		129	< .001	-14.6	1.25	-Inf	-12.5	Cohens d	-2.17
	Bayes- Faktor ₁₀	1.12e+19	NaN								

Anmerkung. Η_a μ female < μ male

ightarrow p-Wert < 5% ightarrow H_0 kann abgelehnt werden ightarrow Statistisch signifikant ightarrow Beleg für H_1

Effektstärke:

$$Cohens\:d = rac{Mittelwert_1 - Mittelwert_2}{gepoolte\:Standardabweichung}$$

Cohen's d effect size	Interpretation	Differences in SD
d=.019	Trivial effect	<1/5 from a SD
d = .20	Small effect	1/5 from a SD
d = .50	Medium effect	1/2 from a SD
d=.80 or higher	Large effect	8/10 from a SD

Bayes-Faktor:

$$BF_{10} = rac{P(ext{Beobachtete Daten} \mid ext{H1 wahr})}{P(ext{Beobachtete Daten} \mid ext{H0 wahr})}$$

2.3 Testen von Zusammenhängen

Übersicht:

Variable 2	Variable 1	Numerisch	Ordinal		Nominal
				nicht- binär	$bin\ddot{a}r$
Numerisch		Pearson Korrelation	Spearman ρ Kendall τ	Eta Quadrat	t-Test Punkt-Biseriale Korrelation
Ordinal			Spearman ρ Kendall τ	Chi2- Test	Mann-Whitney-U Test Cramers V
	nicht-binär			Chi2- Test	Chi2- Test
Nominal	$bin \ddot{a}r$				Chi2- Test Exakter Test nach Fisher

2.3.1 Pearson Korrelationskoeffizient

Die Kovarianz misst die lineare Beziehung zwischen zwei Variablen X und Y:

$$cov(X,Y) = rac{(x_1 - Mittelwert_x)(y_1 - Mittelwert_y) + \ldots + (x_n - Mittelwert_x)(y_n - Mittelwert_y)}{n-1}$$

Da die Kovarianz von der Einheit der Messungen abhängt wird in der Praxis eine normierte Variante der Kovarianz verwendet - der *Pearson Korrelationskoeffizient r*:

$$r = rac{cov(X,Y)}{Standardabweichung_X \cdot Standardabweichung_Y}$$

Der Pearson Korrelationskoeffizient kann nur Werte zwischen -1 und +1 annehmen, wobei -1 eine perfekte negative lineare Beziehung und +1 eine perfekte positive lineare Beziehung anzeigt:

Beispiel: Korrelationstest mit Pearson Korrelationskoeffizient (Pearsons r)

Schritt 1: Problemstellung und Hypothesen formulieren

Wir wollen wissen, ob Größe und Gewicht positiv korreliert sind. Wir müssen also testen, ob der Korrelationskoeffizient signifikant positiv ist.

$$H_0: r_{Gr\"{o}eta e Gewicht} \leq 0$$

$$H_1: r_{Gr\"{o} \& eGewicht} > 0$$

Schritt 2: Passenden Test auswählen

Da Größe und Gewicht beide numerisch → Pearson Korrelationskoeffizient

Schritt 3: Voraussetzungen des Tests überprüfen

Vorraussetzungen Pearson Korrelationstest

- PK1. Beide Variablen sind numerisch.
- PK2. Normalität. Die Variablen sind normalverteilt.
- **PK3. Unabhängigkeit.** Die Messungen sind unabhängig.

Besprechung der Voraussetzungen → Vorlesung.

Schritt 4: Voranalyse

Analysen -> Exploration -> Streudiagramm

Schritt 5: Test durchführen und interpretieren

Analysen -> Regression -> Korrelationsmatrix

Korrelationsmatrix height Pearson's r — df — — p-Wert — — weight Pearson's r 0.640 *** — — df 130 — p-Wert < .001</td> — N 132 —

Anmerkung. H_a ist eine positive Korrelation Anmerkung. * p < .05, ** p < .01, *** p < .001, einseitig

Interpretation	Correlation value
Small correlation	0.10 to 0.29
Medium correlation	0.30 to 0.49
Large correlation	0.50 to 1.0

Außerdem ist $r^2=0,64^2=40,96\%$ der Anteil der Varianz, den die Variablen teilen und der somit erklärt wird.

2.3.2 Spearman Rho und Kendall Tau Korrelationskoeffizient

Im Falle ordinaler Variablen können wir die Kovarianz nicht berechnen, da wir keinen Mittelwert berechnen können. Korrelationskoeffizienten werden mithilfe von *rangbasierten* Ansätzen bestimmt, die die Daten der Größe nach ordnen und jeder Beobachtung entsprechend ihrer Position einen Rang zuweisen. Beliebte rangbasierte Korrelationskoeffizienten sind: Spearmans Rho und Kendalls Tau.

Rangbasierte Ansätze identifizieren allgemeinere monotone Zusammenhänge:

Ein Koeffizient von 1 zeigt eine perfekt positive monotone Beziehung an:

Voraussetzungen rangbasierte Korrelationstests

- **RK1. Ordinal.** Beide variablen sind mindestens ordinal.
- RK2. Unabhängigkeit. Die Messungen sind unabhängig.

Spearmans Rho:

Dieser Koeffizient funktioniert genauso wie Pearsons r, mit dem Unterschied, dass er die Kovarianz und die Standardabweichungen in Bezug auf die Ränge anstelle der Werte der Variablen berechnet.

$$r^{S} = \frac{cov(Rang(X), Rang(Y))}{Standardabweichung_{Rang(X)} \cdot Standardabweichung_{Rang(Y)}}$$

Kendall Tau:

"Diese Koeffizienten basieren auf der Anzahl der konkordanten und diskordanten Paare in einem Datensatz. Gegeben zwei Variablen X und Y, sind zwei Beobachtungspaare (x_i, y_i) und (x_j, y_j)

- $\bullet \ \ \textit{konkordant} \ \text{wenn} \ x_i > x_j \ \text{and} \ y_i > y_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{and $y_ix_j} \ und \ y_i = x_j \ \text{and} \ y_i = x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{and} \ y_i = x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{and} \ y_i = x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{oder if $x_i\textit{diskordant}} \ \text{oder if $x_i\textit{diskordant}} \ \text{wenn} \ x_i > x_j \ \text{oder if $x_i\textit{diskordant}} \ \text{oder if $x_i\textit{diskordant}}$
 - (1,3) und (6,9) sind konkordant
 - (3,1) und (6,9) sind diskordant

Beziehung zwischen dem Spearman und Kendall Koeffizient:

$$Kendall \approx 0.7 \cdot Spearman$$

Ausführlichere Beispiele zu Spearman Rho und Kendall Tau → Vorlesung.

2.3.3 Partielle Korrelation

Beim Testen von Korrelationen müssen wir potenzielle Störvariablen berücksichtigen. Angenommen, wir möchten testen, ob das Alter mit dem Kauf von Bio-Produkten korreliert. Dann müssen wir auch berücksichtigen, dass das Alter mit dem Einkommen korreliert, das wiederum mit dem Kauf der (teureren) Bio-Produkte korreliert sein könnte.

Die Korrelation von 0,39 könnte zum Teil auf die positive Korrelation zwischen Alter und Einkommen zurückzuführen sein. Daher müssen wir den Effekt des Einkommens eliminieren. Die partielle Korrelationsanalyse bietet eine Möglichkeit, dies zu tun.

Partieller Korrelationskoeffizient:

Seien X, Y und Z drei Variablen. Angenommen, wir möchten die Korrelation zwischen X und Y untersuchen, während wir für Z kontrollieren. Der angepasste Korrelationskoeffizient ist dann:

$$r_{XY,Z} = rac{r_{XY} - r_{XZ} \cdot r_{YZ}}{\sqrt{1 - r_{XZ}^2} \cdot \sqrt{1 - r_{YZ}^2}}$$

2.3.4 Unabhängigkeitstests

Um zu testen, ob eine nominale und eine nominale oder ordinale Variable miteinander assoziiert sind, können wir einen Unabhängigkeitstest verwenden:

Chi2 (χ^2) Test oder exakter Test nach Fisher (bei 2 imes 2 Kontingenztafeln)

Hypothesen:

 H_0 : Die Variablen X und Y sind unabhängig und H_1 : Die Variablen X und Y sind abhängig.

Beispiel: Unabhängigkeitstest

Schritt 1: Problemstellung und Hypothesen formulieren

Wir wollen wissen, ob Haarfarbe und Augenfarbe voneinander abhängen.

 H_0 : Haarfarbe und Augenfarbe sind unabhängig

 H_1 : Haarfarbe und Augenfarbe sind abhängig

Schritt 2: Passenden Test auswählen

Da Haarfarbe (black, blonde, brown, red) und Augenfarbe (blue, brown, green) zu einer 4×3 -Tafel führen \rightarrow Chi2-Test

Schritt 3: Voraussetzungen des Tests überprüfen

Vorraussetzungen Chi2-Unabhängigkeitstest

- C1. Beide Variablen sind kategorial.
- **C2. Große Stichprobe.** Daumenregel: n > 50.
- C3. Hinreichend große erwartete Häufigkeiten. Alle erwarteten Häufigkeiten > 5.
- C4. Unabhängigkeit. Messungen sind unabhängig.

Besprechung der Voraussetzungen → Vorlesung.

Schritt 4: Voranalyse

Analysen -> Häufigkeiten -> Unabhängige Stichproben -> Balkendiagramm

Analysen -> Häufigkeiten -> Unabhängige Stichproben -> Anzahl Beobachtet / Erwartet

hair

brown

40.7

12.3

73.0

red

0.824

1.672

0.504

3.000

Insgesamt

36.0

73.0

131.0

blonde

9.07

33.00

reuztabellen	euztabellen					Kreuztabeller	1		
		ha	air			10		-12	
eye	black	blonde	brown	red	— Insgesamt	eye		black	
Blue	1	20	15	0	36	Blue	Erwartet	6.05	
Brown	20	6	44	3	73	Brown	Erwartet	12.26	
Green	1	7	14	0	22	Green	Erwartet	3.69	
Insgesamt	22	33	73	3	131	Insgesamt	Erwartet	22.00	

Wie berechnet man die erwarteten Häufigkeiten E?

$$E_{Zeile\;i,Spalte\;j} = rac{(Beobachtet\;Zeile\;i) imes (Beobachtet\;Spalte\;j)}{Beobachtungen\;Gesamt}$$

Beispiel:

$$E_{eye\;blue,hair\;black} = rac{36 imes22}{131}pprox 6,05$$

Wie berechnet man die Chi2-Teststatistik?

Allgemein für eine $n \times m$ Kontingenztafel mit B = beobachtete Häufigkeit und E = erwartete Häufigkeit:

$$\chi^2 = rac{(B_{1,1} - E_{1,1})^2}{E_{1,1}} + \cdots + rac{(B_{n,m} - E_{n,m})^2}{E_{n,m}}$$

Im Beispiel:

$$\chi^2 = rac{(1-6,05)^2}{6,05} + \dots + rac{(0-0,504)^2}{0,504} pprox 37,1$$

Wie bestimmt man die Freiheitsgrade eines Chi2-Tests?

$$Freiheitsgrade = (AnzahlZeilen - 1) \times (AnzahlSpalten - 1)$$

Im Beispiel:

$$Freiheitsgrade = 2 \times 3 = 6$$

Schritt 5: Test durchführen und interpretieren

Analysen -> Häufigkeiten -> Unabhängige Stichproben -> Tests Chi2

	Wert	df	р
χ²	37.1	6	< .001
N	131		

Effektstärke:

Analysen -> Häufigkeiten -> Unabhängige Stichproben -> Phi und Cramers V

	Wert
Phi-Koeffizient	NaN
Cramer's V	0.377

$$Cramers~V = \sqrt{rac{\chi^2/n}{min(Z-1,S-1)}},$$

wobei n = Stichprobengröße, Z = Anzahl Zeilen, S = Anzahl Spalten

Value of φ or Cramer's V	Description		
.00 and under .10	Negligible association		
.10 and under .20	Weak association		
.20 and under .40	Moderate association		
.40 and under .60	Relatively strong association		
.60 and under .80	Strong association		
.80 to 1.00	Very strong association		

Quelle: Rea, L. M., and Parker, R. A. (1992). Designing and conducting survey research. San Francisco: Jossey-Boss.

2×2 -Kontingenztafel

Wenn jede Variable 2 Kategorien hat, kann man entweder einen Chi2-Test mit Kontinuitätskorrektur oder einen exakten Test nach Fisher (Voraussetzungen siehe unten) durchführen:

Analysen -> Häufigkeiten -> Unabhängige Stichproben -> Tests

Voraussetzungen exakter Test nach Fisher

- E1. Binäre kategoriale Variablen.
- E2. Unabhängigkeit.

Effektstärken bei 2×2 -Kontingengenztafeln

Analysen -> Häufigkeiten -> Unabhängige Stichproben -> Verglichene Maße

Gegeben folgende Kontingenztafel mit beobachteten Häufigkeiten a, b, c, d:

$$C$$
 d $Odds-Ratio(OR)=rac{a/b}{c/d}$ $RelativesRisiko(RR)=rac{a/(a+b)}{c/(c+d)}$

Interpretation \rightarrow Vorlesung.

2.4 Multiples Testen

Problem: Multiple Tests führen zu einer Alphafehler-Inflation

Mögliche Korrekturen (p-Wert-Anpassungen) bei multiplen Tests:

Bonferroni-Korrektur:

$$p_{bonf} = p_{unangepasst} imes ext{(Anzahl Tests)}$$

Sidak-Korrektur:

$$p_{sid} = 1 - (1 - p_{unangepasst})^{(\text{Anzahl Tests})}$$

Holm-Bonferroni-Korrektur:

• Sortiere die unangepassten p-Werte von niedrig nach hoch: \$p(1) < \dots Passe den iten p-Wert wie folgt an:

$$p_{hbonf} = (\text{Anzahl Tests} - i + 1) \cdot p_{unangepasst}$$

Benjamini Hochberg:

- Sortiere die unangepassten p-Werte von niedrig nach hoch: $p(1) < \text{dots Multipliziere jeden p-Wert mit der Anzahl der Tests und dividiere ihn durch seinen Rang. <math>\frac{p \cdot t}{i}$
- Die resultierende Sequenz sollte nicht abnehmen. Falls sie abnimmt, setze den vorherigen p-Wert gleich dem nachfolgenden. Wiederhole diesen Schritt, bis die Sequenz nicht mehr abnimmt.

Beispiele → Vorlesung.

Die Anpassungen können von konservativ (lehnen die Nullhypothese seltener) ab nach liberal geordnet werden:

konservativ -- Bonferroni -- Sidak -- Holm-Bonferroni -- Benjamini-Hochberg

3 Regressionsmodelle

3.1 Lineare Regression

3.1.1 Grundlegende Idee

In den Sozialwissenschaften möchten wir oft untersuchen, ob eine unabhängige Variable (X) eine abhängige Variable (Y) beeinflusst. Zum Beispiel: Erhöhen Marketingausgaben (X) den Umsatz (Y)?

Die Idee der **linearen Regression** besteht darin, eine Gerade an die Daten anzupassen. Die theoretische Gleichung eines solchen Modells lautet:

$$Umsatz = \beta_0 + \beta_1 \cdot Marketing + \varepsilon,$$

wobei

- β_0, β_1 = Achsenabschnitt, Steigung
- ε = Fehlerterm, der Variablen berücksichtigt, die nicht in der Gleichung enthalten sind (z. B. Reputation des Unternehmens, Produktqualität)

Wie findet man die optimale Gerade?

Jede Gerade führt zu spezifischen Fehlern. Wir möchten diejenige Gerade finden, die die Fehler minimiert – also die Linie, die den Datenpunkten am nächsten liegt.

Wie aggregieren wir die Fehler?

• Die totale Summe der Fehler ($\varepsilon_1 + \cdots + \varepsilon_n$) hat den Nachteil, dass sich negative und positive Abweichungen teilweise gegenseitig aufheben.

Die Lösung besteht darin, die gesamte Summe der *quadrierten* Fehler (SSR = Sum of Squared Residuals) zu minimieren (*Ordinary Least Squares (OLS)*-Ansatz):

$$SSR = \varepsilon_1^2 + \dots + \varepsilon_n^2$$

Im Fall einer einfachen linearen Regression (eine abhängige Variable Y, eine unabhängige Variable X) können die geschätzten Regressionskoeffizienten wie folgt berechnet werden:

$$\hat{eta}_1 = rac{cov(X,Y)}{var(X)} \ \ und \ \ \hat{eta}_0 = rac{\Sigma y_i - \hat{eta}_1 \Sigma x_i}{n}.$$

Im obigen Beispiel:

- Kovarianz(Marketing, Umsatz) = 207797,65
- Varianz(Marketing) = 53472,15
- Summe Umsatz = 104432,81
- Summe Marketing = 13392
- n = 33

Daher (Unterschiede zur geschätzten Geraden oben ergeben sich durch Rundungsdifferenzen):

$$\hat{eta}_1 = rac{207797.65}{53472.15} pprox 3.89 \ und \ \hat{eta}_0 = rac{104432.81 - 3.89 \cdot 13392}{33} pprox 1585.99.$$

- Achsenabschnitt ($\hat{\beta}_0$): Der geschätzte Umsatz eines Unternehmens mit 0 Marketingausgaben beträgt 1'587'580 \$
- Steigung $(\hat{\beta}_1)$: Eine Einheitserhöhung der Marketingausgaben erhöht den Umsatz um ca. 3,89 \$

3.1.2 Multiple Lineare Regression

Wir möchten möglicherweise weitere unabhängige Variablen zu unserem Modell hinzufügen. Die theoretische Regressionsgleichung mit k unabhängigen Variablen lautet wie folgt:

$$Y = \beta_0 + \beta_1 \cdot X_1 + \dots + \beta_k \cdot X_k + \varepsilon$$

Konzeptionell unterscheiden wir zwischen Zielvariablen und Kontrollvariablen. Angenommen, X_1 und X_2 sind die Zielvariablen. Wir untersuchen ihren Einfluss auf Y, während wir für X_3, \ldots, X_k kontrollieren.

Die Mathematik funktioniert ähnlich wie beim einfachen Modell, aber nun müssen wir uns eine Regressionsebene (oder einen Hyperebene) vorstellen.

Beispiel:

$$Sales = \beta_0 + \beta_1 \cdot Marketing + \beta_2 \cdot Quality + \varepsilon,$$

wobei Quality durch die durchschnittliche Produktlebensdauer gemessen wird.

3.1.3 Dummy-/One-Hot-Codierung bei kategorialen unabhängigen Variablen

Kategoriale Variablen (nominal oder ordinal) nehmen Kategorien als Werte an. Eine Regressionsgleichung kann jedoch nur mit Zahlen arbeiten.

Daher müssen wir diese Variablen in Indikatorvariablen umwandeln.

Beispiel: Variable "Augenfarbe", die die Kategorien blau, braun, grün annehmen kann.

Indikatorvariablen:

	Indikator blau	Indikator braun	Indikator grün
blau	1	0	0
braun	0	1	0
grün	0	0	1

Wir können jedoch nicht alle 3 Indikatorvariablen verwenden, da zwei immer die dritte perfekt vorhersagen. Diese Abhängigkeit würde dazu führen, dass das Regressionsmodell kollabiert. Daher müssen wir eine der Kategorien weglassen (welche ist egal). Die ausgelassene Kategorie dient als Referenzkategorie: Alle Effekte werden im Verhältnis zu dieser Kategorie gemessen. Im Allgemeinen hat man bei K Kategorien K-1 Indikatorvariablen.

3.1.4 Beispiel Lineare Regression

Schritte Regressionsanalyse

- 1. Schreibe vermutete Ursache-Wirkungs-Beziehungen mit Kontrollvariablen auf.
- 2. Überprüfen der Voraussetzungen.
- 3. Schreiben Sie die geschätzte Regressionsgleichung auf und interpretieren Sie das Ergebnis.
- 4. Ggf. weitere Robustheitsprüfungen.

Schritt 1: Theoretische Regressionsgleichung

Wir möchten untersuchen, wie sich Marketingausgaben auf den Umsatz auswirken, während wir die Reputation eines Unternehmens kontrollieren.

$$Sales = \beta_0 + \beta_1 \cdot Marketing + \beta_2 \cdot Reputation_{high} + \beta_3 \cdot Reputation_{medium}.$$

Schritt 2: Voraussetzungen überprüfen

Voraussetzungen Linearen Regression

- LR1. Numerische abhängige Variable.
- LR2. Linearität. Es besteht eine lineare Beziehung zwischen der abhängigen und den unabhängigen Variablen.
- LR3. Fehlen perfekter (Multi)kollinearität. Es besteht keine perfekte lineare Beziehung zwischen unabhängigen Variablen.
- LR4. Strikte Exogenität. Die bedingten Mittelwerte der Fehler sind null ($E[\varepsilon_i \mid x_i] = 0$).
- LR5. Homoskedastizität. Die Fehler haben für alle i,j gleiche bedingte Varianzen $(var(\varepsilon_i \mid x_i) = var(\varepsilon_i \mid x_j))$.
- LR6. Keine Autokorrelation. Die Fehler sind für alle i,j nicht korreliert ($cov(\varepsilon_i, \varepsilon_j) = 0$).
- LR7. Normalität. Die Fehler folgen einer multivariaten Normalverteilung.

LR1 bis LR3 beziehen sich auf die Variablen, die restlichen Voraussetzungen auf die Fehlerterme.

LR1.

Umsatz ist numerisch. 🗸

LR2.

Güte der Modellanpassung

		Test des Gesamtmodells				
Modell	R	R ²	F	df1	df2	р
1	0.841	0.708	23.4	3	29	< .001

F-Test:

$$H_0: \beta_1 = \beta_2 = \beta_3$$
 (das Modelle erklärt nichts)

 $H_1: \beta_i \neq 0$ für mindestens ein i = 1,2,3 (das Modelle erklärt etwas)

Erfüllt 🗸

LR3.

Analysen -> Regression -> Lineare Regression -> Überprüfung der Voraussetzungen -> Kollinearitätsstatistik

Kollinearitätsstatistik			
	VIF	Toleranz	
Marketing	1.14	0.879	
Reputation	1.07	0.937	

Erfüllt 🗸

LR4.

Das direkte Überprüfen der strikten Exogenität kann herausfordernd sein, da es sich nicht um etwas handelt, das man direkt mit einem statistischen Test testen kann.

Oft ist der beste Ansatz, die theoretische Grundlage für strikte Exogenität zu berücksichtigen. Zum Beispiel, wenn Sie es mit Zeitreihendaten zu tun haben, überlegen Sie, ob vergangene Werte der abhängigen Variablen oder der Prädiktoren den Fehlerterm beeinflussen könnten. Ebenso, wenn Sie mit Querschnittsdaten arbeiten, überlegen Sie, ob der Fehlerterm durch unbeobachtete Faktoren, die mit den Prädiktoren zusammenhängen, beeinflusst werden könnte.

Ein nützlicher erster Schritt ist es jedoch, die Residuen (Fehler) des Regressionsmodells gegen die Prädiktorvariablen zu plotten.

- Wenn in diesen Plots ein systematisches Muster zu erkennen ist (z. B. eine gekrümmte Beziehung), könnte dies darauf hindeuten, dass die Annahme der strikten Exogenität verletzt ist, da es eine Abhängigkeit zwischen den Residuen und den Prädiktoren impliziert.
- Idealerweise sollten die Residuen beim Plotten gegen eine unabhängige Variable eine zufällige Streuung um Null zeigen (kein Muster).

Analysen -> Regression -> Lineare Regression -> Überprüfung der Voraussetzungen -> Diagramme der Residuen

<u>LR 5.</u>
Visuell: Eine der einfachsten und häufigsten Methoden zur Überprüfung der Homoskedastizität besteht darin, die Residuen gegen die angepassten Werte (vorhergesagten Werte) aus Ihrem Regressionsmodell zu plotten.

- So geht's: Berechnen Sie zuerst die Residuen: Residuen = Beobachtet Vorhergesagt. Dann plotten Sie die Residuen auf der y-Achse und die angepassten Werte auf der x-Achse.
- Worauf Sie achten sollten: Wenn der Plot eine zufällige Streuung zeigt (kein klares Muster), weist dies auf Homoskedastizität hin. Wenn der Plot ein klares Muster zeigt, wie zum Beispiel eine Trichterform (die Residuen nehmen mit den angepassten Werten zu oder ab), weist dies auf Heteroskedastizität hin.

Analysen -> Regression -> Lineare Regression -> Überprüfung der Voraussetzungen -> Diagramme der Residuen

<u>LR6.</u>
Analysen -> Regression -> Lineare Regression -> Überprüfung der Voraussetzungen -> Autokorrelationstest

Durbin-Watson-Autokorrelationstest Autokorrelation DW-Statistik p -0.0796 2.11 0.706

Durbin-Watson Autokorrleationstest:

 $H_0: Keine Autokorrelation$

 $H_1: Autokorrelation$

Erfüllt 🗸

LR7.

Analysen -> Regression -> Lineare Regression -> Überprüfung der Voraussetzungen -> Test auf Normalverteilung

Statistik	р
0.978	0.732

Shapiro-Wilk Test:

 $H_0: Normal verteilung$

 $H_1: Keine Normal verteilung \\$

Erfüllt 🗸

Schritt 3: Schreiben Sie die geschätzte Regressionsgleichung auf und interpretieren Sie das Ergebnis.

Analysen -> Regression -> Lineare Regression

Modellkoeffizienten - Sales

Prädiktor	Schätzung	Stdfehler	t	р	Stand. Schätzer
Interzept ^a	1138.71	322.998	3.53	0.001	
Marketing	2.14	0.719	2.97	0.006	0.340
Reputation:					
High – Low	2456.22	438.050	5.61	< .001	1.688
Medium – Low	1073.92	379.661	2.83	0.008	0.738

^a Repräsentiert das Referenzniveau

Geschätzte Regressionsgleichung:

 $Sales = 1138, 71 + 2, 14 \cdot Marketing + 2456, 22 \cdot Reputation_{high} + 1073, 92 \cdot Reputation_{medium}$ Interpretation \rightarrow Vorlesung.