НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ"

Кафедра математического и компьютерного моделирования

Численные методы Отчет по лабораторной работе №2 "Решение нелинейных уравнений" Вариант 33

Студент: Волков Павел Евгеньевич Преподаватель: Амосова Ольга Алексеевна

Группа: А-14-19

Москва 2021

Задача 2.1

Постановка задачи

Методом простой итерации найти вещественные корни алгебраического уравнения P(x)=0 с точностью $\varepsilon=10^{-8}$

$$P(x) = x^6 + 0.9x^5 - 0.2x^3 - 1.3x^2 - 0.7x + 0.1$$

Решение

Построим графики функций P(x) и P'(x) и найдем отрезки локализации, проверив, что на концах отрезков производная функции сохраняет знак:

Эти четыре корня будут иметь следующие отрезки локализации:

$$x_1 \in [-1.4, -1]$$

 $x_2 \in [-0.9, -0.5]$
 $x_3 \in [0, 0.5]$
 $x_4 \in [0.8, 1.3]$

Проверим, что на концах отрезков локализации производная функции сохраняет знак:

Для каждого корня определим итерационный параметр α и q:

$$M_1 = -0.199, m_1 = -13.218$$

 $M_2 = 0.913, m_2 = 0.544$
 $M_3 = -0.7, m_3 = -1.698$
 $M_4 = 30.036, m_4 = 0.645$

Номер корня	1	2	3	4
α	-0.149051	1.372510	-0.834039	0.065186
q	0.970190	0.253698	0.416173	0.957937

Запишем результаты вычислений в таблицу:

ФИО: Волков Пал	Номер варианта: 33					
Уравнение $P(x) = x^6 + 0.9x^5 - 0.2x^3 - 1.3x^2 - 0.7x + 0.1$						Точность $\epsilon = 10^{-8}$
Корни	[a,b]	M_i	m_i	α	q	Число итераций
1-й: -1.15264767	[-1.4, -1]	-0.2	-13.2	-0.149	0.97	36
2-й: -0.686541063	[-0.9, -0.5]	0.913	0.544	1.37	0.254	11
3-й: 0.117006206	[0, 0.5]	-0.7	-1.7	-0.834	0.416	9
4-й: 1.02764921	[0.8, 1.3]	30.0	0.645	0.0652	0.958	26

Задача 2.2

Постановка задачи

Дано уравнение f(x)=0. Найти все корни уравнения с заданной точностью $\varepsilon=10^{-12}$ на указанном отрезке [a,b]. Для решения задачи использовать метод Ньютона и метод, указанный в индивидуальном варианте (метод секущих). Сравнить количество итераций, потребовавшихся для достижения заданной точности каждым методом.

$$f(x) = \sin 3^x - \cos 3x + 0.3, [-1, 2]$$

Решение

Построим график функции и локализуем корни уравнения f(x) = 0:

Получили 3 корня на следующих отрезках:

$$x_1 \in [1.2, 1.4]$$

 $x_2 \in [1.6, 1.8]$
 $x_3 \in [1.9, 2]$

Уравнение: $f(x) = \sin 3^x - \cos 3x + 0.3, [-1, 2]$

Расчетная формула метода Ньютона: $x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$ Расчетная формула метода секущих: $x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})(x^{(k)} - x^{(k-1)})}{f(x^{(k)}) - f(x^{(k-1)})}$

Задача 2.2

Корни	Число итераций	Число итераций		
уравнения	метода Ньютона	метода секущих		
1.3400823839084	6	8		
1.6732949336289	5	7		
1.9730518797929	6	8		

Модифицируем методы для нахождения модуля невязки $r_n = |f(x_n)|$ на каждой итерации и построим сравнительные графики для каждого из корней:

На графиках наглядно продемонстрированы различия в скорости сходимости данных методов. Метод Ньютона обладает квадратичной сходимостью (p=2), в то время как порядок сходимости метода секущих составляет $p=\frac{\sqrt{5}+1}{2}\approx 1.618$, в результате чего и получаем, что метод Ньютона "опережает"метод секущих на 1-2 итерации.

Задача 2.3

Постановка задачи

Найти корни уравнения f(x) = 0 и определить их кратность

$$f(x) = 8(\sqrt{2} - 1) \arctan x - \pi(\sqrt{2} - 1) - 2x(2\sqrt{2} - 1) + 7 - 4\sqrt{2} + x^2$$

Решение

Вычислим производные функции, и определим кратность корней.

Получили 2 корня на следующих отрезках:

$$x_1 \in [0.4, 0.425]$$

 $x_2 \in [1.2, 1.3]$

Причем, как следует из графиков производных, первый корень имеет кратность 3:

Второй корень кратности 1 легко находится с помощью метода Ньютона: $x_2=1.2302155532993027$

Найдем первый корень с помощью метода бисекции: $x_1=0.41420254713302707$ за 34 итерации. Причем ни простой метод Ньютона, ни модифицированный для кратных корней не смогли приблизиться к этому значению.

Ответ: $x_1=0.41420254713302707$, кратность 3; $x_2=1.2302155532993027$, кратность 1