Consumer Theory: Review and Extensions

Econ 50 | Lecture 11 | February 9, 2016

Lecture

Group Work

- Labor/Consumption Tradeoff
- Review of Units
- Looking forward to producer theory

One last midterm question

Part I Labor/Consumption Tradeoff

Endowment Budget Constraint

- Instead of starting with money income (I), you start with an endowment of X and Y
- You can buy and sell **X** and **Y** for prices P_x and P_y
- If you sold your endowment for money, you would get:

Therefore your budget constraint may be written:

Labor Supply Budget Constraint

- Instead of starting with and endowment of goods, you start with an 24 hours of leisure time (L)
- You can sell your time wage rate w
- If you sold all your time for money, you would get: 24w

Therefore your budget constraint may be written: wL + Y = 24w

Labor Supply Problem

Why is w the price of leisure?

Backward-Bending Labor Supply Curve

Why backward-bending?

Labor Supply Budget Constraint with Nonwage Income

- Instead of starting with just leisure, your endowment is
 24 hours of leisure time (L) and Y^E dollars of nonwage income
- You can sell your time wage rate w
- If you sold all your time for money, you would get: 24w + YE

Therefore your budget constraint may be written: wL + Y = 24w + Y^E

Labor Supply Problem with Nonwage Income

Part II Revealed Preference

Revealed Preference

- We don't observe utility functions directly
- We do observe choices
- What can we deduce about preferences from observed choices?
- For this section, assume strict convexity

Direct Revealed Preference

Indirect Revealed Preference

Units of Good X

Trapping the Indifference Curve

Weak Axiom of Revealed Preference

 If A is directly revealed preferred to B, and the two bundles are not the same, then it cannot be that B is directly revealed preferred to A

WARP Violation

Units of Good X

WARP Violation

WARP Violation

Units of Good X

Part III Units and Lagrange

Units: MRS

$$MRS_{x,y} = \frac{\frac{\partial u(x,y)}{\partial x}}{\frac{\partial u(x,y)}{\partial y}} = \frac{MU_x}{MU_y}$$

Units: Lagrange Utility Max

$$\mathcal{L}(x,y,\lambda) = u(x,y) + \lambda(I - P_x x - P_y y)$$

Units: Lagrange Cost Minimization (Consumers)

$$\mathcal{L}(x,y,\lambda) = P_x x + P_y y + \lambda (U - u(x,y))$$

Cost Minimization: Consumers and Firms

$$\mathcal{L}(x,y,\lambda) = P_x x + P_y y + \lambda (U - u(x,y))$$

$$\mathcal{L}(L, K, \lambda) = wL + rK + \lambda(q - f(K, L))$$

Units: Lagrange Cost Minimization (Firms)

$$\mathcal{L}(L, K, \lambda) = wL + rK + \lambda(q - f(K, L))$$

What does λ represent?

The marginal change in the **objective function** due to a marginal relaxation of the **constraint**

Interpreting the first two FOCs

$$\mathcal{L}(x,y,\lambda) = u(x,y) + \lambda(I - P_x x - P_y y)$$