Mosaic Machine Learning Exercise

Xiaoyu Bai

In the classification of 20Newsgroups dataset, I use python and scikit-learn package for implementation. Since there is built-in function in scikit-learn package to fetch the data, I download the data through this package instead of manually doing so from the website.

Tokenization

First of all, we need to transform the text data into a numerical vector for classification. For Q1 (implementation of 4 traditional ML approaches), I am using tf-idf as the tokenization method. The pros of tf-idf includes that the inverse-document-frequency will alleviate the impact of some common meaningless words; the vector is normalized so the classification is based on cosine similarity and the length of the article will not affect topic classification. The cons is that it is still based on bag-of-words so the correlation of adjacent terms will not be taken into consideration.

1. Multinomial Naive Bayes Model

To begin with, multinomial naive Bayes model may serve as a good baseline with the assumption that among features there is no correlation.

The tokenization construct vector dimension of 12979 however each vector is actually in sparse format so it can fit into the memory. The training set size is 11314 and test set size is 7532. The only parameter tuned in multinomial naive Bayes is the additive smoothing factor to estimate the probability.

The F-1 score for multiple classes is calculated as the unweighted mean of all classes.

With optimum smoothing factor of 0.03, the multinomial naive Bayes model achieves:

$$F - 1 score = 0.8386$$

$$Test\ Accuracy = 0.8336$$

 $Training\ Accuracy = 0.9949$

Another interesting thing to look at is the features which plays most important role in classification for each topic. The table below lists the top 10 most informative features for each topic based on Naive Bayes model.

Topic	Top 10 most informative features	
alt.atheism	people sgi atheism com livesey atheists caltech god edu keith	
comp.graphics	polygon subject com university lines files 3d image edu graphics	
comp.os.ms-windows.misc	com ax ms drivers driver files dos file edu windows	
comp.sys.ibm.pc.hardware	disk pc com controller bus edu card ide drive scsi	
comp.sys.mac.hardware	scsi simms monitor centris se quadra drive edu apple mac	
comp.windows.x	application x11r5 xterm widget edu com server mit motif window	
misc.forsale	lines condition distribution university new shipping offer 00 edu sale	
rec.autos	organization subject oil writes article engine edu cars com car	
rec.motorcycles	writes ca article motorcycle bikes ride edu dod com bike	
rec.sport.baseball	article com runs games players game team year baseball edu	
rec.sport.hockey	games season players play nhl edu ca game team hockey	
sci.crypt	crypto nsa government escrow keys com chip encryption clipper key	
sci.electronics	university ca organization circuit power subject lines use com edu	
sci.med	science dyer cs com msg gordon banks geb edu pitt	
sci.space	gov digex access orbit alaska moon henry edu nasa space	
soc.religion.christian	faith people christ christian bible edu church christians jesus god	
talk.politics.guns	firearms weapons batf stratus fbi people com guns edu gun	
talk.politics.mideast	armenia people arab armenians edu armenian turkish jews israeli israel	
talk.politics.misc	state government article writes clinton people optilink cramer com edu	
talk.religion.misc	objective people morality kent christian com edu jesus sandvik god	

2. K-Nearest-Neighbors

Another simplistic model will be KNN in which case the training process takes very little computational cost. However the prediction process may take longer compared with other classifiers. The only parameter tuned in KNN model is the number of nearest neighbors.

With optimum K value of 200, the KNN model achieves:

$$F - 1 score = 0.7069$$

$$Test\ Accuracy = 0.7246$$

$$Training\ Accuracy = 0.7792$$

The model is under-fitted since the training accuracy is also very low. But due to the limitation of the KNN model, it is hard to achieve a very high accuracy.

3. Random Forest

Next implemented classifier is random forest. Random forest is known for low bias but high variance. Unlike the usual sequential boosting methods, random forest implements multiple decision tree in parallel so it can be considered as an ensemble learning method.

Two models with different number of decision trees in the forest has been compared. In each model, the max depth of the tree is set as a tuning parameter. The best achievable test accuracy is about 80% however this already suffers from a nearly 100% training accuracy, which means the random forest model is not suitable for this problem.

In optimal case (number of decision trees in forest is 500 and maximum depth of the tree is 200), the random forest model achieves:

$$F-1 \, score = 0.7884$$

 $Test \, Accuracy = 0.8016$
 $Training \, Accuracy = 0.9999$

4. Support Vector Machine with Linear Kernel

SVM is known to be good at text classification based on bag-of-words because the text vector has high dimensional feature space, most features are relevant, and text vectors are sparse [1]. Since most text

categorization problems are linearly separable, here a SVM model with linear kernel is implemented. Hinge loss and L-2 norm is applied.

The performance of SVM is as below:

$$F - 1 \, score = 0.8458$$

$$Test\ Accuracy = 0.8523$$

$$Training\ Accuracy = 0.9948$$

It will be interesting to look at the top 10 most informative features again and compare this with the naive Bayes model. Although the naive Bayes model already did a good job, this time the top 10 word stems seem make even more sense.

Topic	Top 10 most informative features	
alt.atheism	mangoe rushdie jaeger cobb okcforum islamic wingate atheists keith	
	atheism	
comp.graphics	polygon images cview animation tiff 3do pov image 3d graphics	
comp.os.ms-windows.misc	win winqvt risc file ini driver ax win3 cica windows	
comp.sys.ibm.pc.hardware	scsi pc bus irq controller 486 vlb bios ide gateway	
comp.sys.mac.hardware	lciii adb iisi lc duo centris quadra powerbook apple mac	
comp.windows.x	expo xlib xpert lcs xterm window server x11r5 widget motif	
misc.forsale	00 interested asking condition wanted sell offer shipping forsale sale	
rec.autos	callison mazda auto ford toyota engine dealer automotive cars car	
rec.motorcycles	dog helmet bmw ride motorcycles riding motorcycle bikes bike dod	
rec.sport.baseball	uniforms braves tigers giants stadium pitching cubs sox phillies baseball	
rec.sport.hockey	finals wings pens cup flyers leafs penguins playoff nhl hockey	
sci.crypt	gtoal cryptography crypto nsa security pgp tapped key encryption clipper	
sci.electronics	kolstad uv 2600 adcom tv cooling voltage 8051 electronics circuit	
sci.med	syndrome medical pitt dyer treatment cancer photography disease msg	
	doctor	
sci.space	funding sci planets rockets shuttle prb launch moon orbit space	
soc.religion.christian	christianity geneva fisher easter christians church rutgers christ clh athos	
talk.politics.guns	feustel handgun fbi cathy firearms weapons waco atf guns gun	
talk.politics.mideast	holocaust gt1091a argic serdar armenia armenian armenians turkish	
	israel israeli	
talk.politics.misc	jobs ipser drieux tax drugs clinton optilink gay cramer kaldis	
talk.religion.misc	biblical tyre promise thyagi christian psyrobtw hudson beast weiss morality	

The general performance of each traditional classifier is summarized as below:

Classifier	F-1 Score	Computational Time (s)
Multinomial Naive Bayes	0.8318	0.20
K-Nearest Neighbors	0.7069	11.05
Random Forest	0.7771	74.55
Support Vector Machine	0.8458	8.90

5. Neural Network

In this section, a convolutional neural network has been trained for classification. The neural network model is based on Keras with TensorFlow backend. The network structure is derived from the structure in [2]. After running the original model, it is found that the original model suffers from severe overfitting issue. Therefore dropout layers have been added to prevent overfitting.

For all the above methods, the feature extraction is based on 1-hot-like vector which does not reflect the relation between words. For example, "dinner" and "supper" should be very close in terms of meaning. However in the previous feature extraction method, there is no way to distinguish that "dinner" has closer meaning to "supper" than "computer". Therefore, the CNN deep learning model with word-embedding is expected to achieve better performance.

Instead of starting from training the embedding layer from scratch, I initialize with a pre-trained model Global Vectors for Word Representation (GloVe) which is available in [3]. The structure of embedding layer is shown in the figure below:

Reference about word-embedding for constructing this model can be found in [4-6]. Specifically in this implementation, the maximum number of words (with most frequent appearance) is set to be 20k and maximum sequence length is set to be 1000.

- 1. When using GloVe, a frozen layer (weight does not change during training) using the GloVe model is set in the CNN structure to implement word-embedding. However there are many people raise the question that their claim of >95% accuracy cannot be met after a few epochs [8-9]. And since my training set is smaller than the one used in [4], the accuracy is not expected to reach 95%.
- 2. In contrast, I also tried fine-tuning based on GloVe matrix weight. The only difference in the coding perspective is that I change the frozen layer in network to be trainable. So the weights in the embedding layer will also be trained in the training process.

The training process of approach 1 and 2 are displayed in the following figures:

However the best result from CNN does not win over SVM significantly, but the computational cost is much more expensive. After 40 epochs training in CNN, the performance is as blow:

$$F - 1 score = 0.8579$$

$$Test\ Accuracy = 0.8672$$

$$Training\ Accuracy = 0.9738$$

Further improvement can be achieved by increasing the maximum number of words and maximum length of sequences. However the computational cost will also increase correspondingly.

Define, evaluate and compare the performance of the above models for doing this text classification.

Unweighted average F-1 score has been used in the previous evaluation for each model. The definition of F-1 score for each class is:

$$F - 1 = 2 \cdot \frac{1}{\frac{1}{precision} + \frac{1}{recall}}$$

Classifier	F-1 Score	Computational Time (s)
Multinomial Naive Bayes	0.8318	0.20
K-Nearest Neighbors	0.7069	11.05
Random Forest	0.7771	74.55
Support Vector Machine	0.8458	8.90
Convolutional Network	0.8579	≈1 hour after 40 epochs

What if the text is unlabeled short sentence, would you still consider to use the above models and why?

All the above models are supervised learning and labeled data are required so they do not applied any more. Since the data is unlabeled, clustering has to be performed beforehand. Cosine similarity will be a good standard for text clustering.

What would be your solution to classify any new unlabeled text?

Compare the performance and computational cost, SVM with linear kernel will be a good choice to classify new unlabeled text.

Code

'main_Q1.py': script that contains the four conventional machine learning model construction and prediction. Installation of scikit-learn package is required to run.

'main_Q2.py': script that contains the deep learning model. Installation of scikit-learn, TensorFlow and Keras is required to run.

'glove.6B.100d.txt': a pre-trained model for vector representation of words.

Reference

- [1] Joachims, T., 1998. Text categorization with support vector machines: Learning with many relevant features. *Machine learning: ECML-98*, pp.137-142.
- [2] https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
- [3] https://nlp.stanford.edu/projects/glove/
- [4] http://nadbordrozd.github.io/blog/2016/05/20/text-classification-with-word2vec/
- [5] https://github.com/dennybritz/cnn-text-classification-tf/issues/69
- [6] http://adventuresinmachinelearning.com/word2vec-tutorial-tensorflow/
- [7] https://github.com/fchollet/keras/issues/5826
- [8] https://datascience.stackexchange.com/questions/17885/getting-low-accuracy-on-keras-pretrained-word-embeddings-example
- [9] https://github.com/fchollet/keras/issues/5826