## MATH 231BR: ADVANCED ALGEBRAIC TOPOLOGY HOMEWORK 3

## DUE: TUESDAY, FEBRUARY 21 AT 12:00AM (MIDNIGHT) ON CANVAS

In the below, I use LAT to refer to Miller's *Lectures on Algebraic Topology*, available at: https://math.mit.edu/~hrm/papers/lectures-905-906.pdf.

1. Problem 1: Closure properties of Cofibrations (10 points)

Prove that cofibrations are closed under the following operations:

- (1) Products with a space Y: if  $A \to X$  is a cofibration, then the induced map  $A \times Y \to X \times Y$  is as well.
- (2) Compositions: if  $A \to B$  and  $B \to X$  are cofibrations, then so is  $A \to B \to X$ .
- (3) Countably transfinite compositions: if  $X_i \to X_{i+1}$  are cofibrations for integers  $i \ge 0$ , then  $X_0 \to \varinjlim_n X_n$  is a cofibration.
  - 2. Problem 2: Homotopy pushouts (15 points)

Given a diagram of spaces of the form

$$\begin{array}{c} A \longrightarrow X \\ \downarrow \\ B, \end{array}$$

construct the homotopy pushout, which is universal for diagrams of the form

$$\begin{array}{ccc}
A & \longrightarrow X \\
\downarrow & & \downarrow \\
B & \longrightarrow Y.
\end{array}$$

Furthermore:

- Explain how to modify your construction to apply to the setting of pointed spaces and express the homotopy cofiber as a special case of a homotopy pushout of pointed spaces.
- Give an example where the homotopy pushout (of unpointed spaces) is *not* a pushout in the homotopy category. (Hint: consider the case where X = B = \*.)
  - 3. Problem 3: Space of Little cubes (15 points)

Let  $\square^n = (0,1)^n$  denote the open unit cube of dimension n. A map  $f: \square^n \hookrightarrow \square^n$  is said to be a rectilinear embedding if it is of the form

$$f(x_1,\ldots,x_n) = (a_1x_1 + b_1,\ldots,a_nx_n + b_n)$$

for real numbers  $a_i > 0$  and  $b_i$ . A map  $\coprod_{i=1}^k \Box^n \to \Box^n$  is said to be a rectilinear embedding if it is an open embedding and its restriction to each  $\Box^n$  in the domain is a rectilinear embedding in the above sense.

We let  $C_k(n)$  denote the space of rectilinear embeddings of k disjoint n-cubes  $\coprod_{i=1}^k \square^n \to \square^n$ , topologized as an open subspace of  $(\mathbb{R}^{2n})^k$ . As we discussed in class for k=2, there is a continous map  $C_k(n) \times (\Omega^n X)^k \to \Omega^n X$ , which allows us to view  $C_k(n)$  as a space parametrizing k-ary products on n-fold loop spaces.

<sup>&</sup>lt;sup>1</sup>This is true for general transfinite compositions as well, with the same proof.

On the other hand, let  $\operatorname{Conf}_k(\mathbb{R}^n)$  denote the space of k disjoint ordered points in  $\mathbb{R}^n$ , viewed as an open subspace of  $(\mathbb{R}^n)^k$ .

- (1) Prove that there are homotopy equivalences  $C_k(n) \simeq \operatorname{Conf}_k(\mathbb{R}^n)$ .
- (2) Prove that there are homotopy equivalences  $\operatorname{Conf}_2(\mathbb{R}^n) \simeq S^{n-1}$ . (Hint: one direction is given by the map  $S^{n-1} \simeq \mathbb{R}^n \{0\} \to \operatorname{Conf}_2(\mathbb{R}^n)$  which sends  $x \in \mathbb{R}^n \{0\}$  to the ordered pair of points (0, x).)

**Remark:** The maps  $C_k(n) \times (\Omega^n X)^k \to \Omega^n X$  fit together into what is called an *action of the*  $\mathbb{E}_{n}$ - or *little n-cubes operad* on an *n*-fold loop space  $\Omega^n X$ . In *The Geometry of Iterated Loop Spaces*, May proved that this action completely charactertizes connected *n*-fold loop spaces: any connected space Y with an action of the  $\mathbb{E}_n$ -operad is homotopy equivalent to  $\Omega^n X$  for a space X called the n-fold delooping of Y.

## 4. Problem 4: Eckmann-Hilton argument (10 points)

An *H*-space is pointed space (X,\*) equipped with a multiplication map  $m: X \times X \to X$  which is homotopy unital in the sense that the diagram



commutes up to homotopy. (We do *not* include the homotopies as part of the data of an H-space.) Prove that if X is an H-space, then  $\pi_1(X,*)$  is an abelian group. Moreover, prove that the map  $\pi_1(X,*) \times \pi_1(X,*) \to \pi_1(X,*)$  induced by m is equal to the group operation. (Hint: make an argument in pure algebra using the fact that m induces a unital group homomorphism  $\pi_1(X,*) \times \pi_1(X,*) \to \pi_1(X,*)$ .)

**Remark:** Taking  $X = \Omega^{n-1}Y$ , this gives a different proof that  $\pi_n(Y, *)$  is abelian for  $n \geq 2$ , as well as the fact that the group operation doesn't depend on which coordinate we use. It also proves that for an H-space X (for example, a topological group), the group operation in  $\pi_n(X, *)$  is equal to the operation given by pointwise multiplication of two representatives  $S^n \to X$  using the H-space product.