CT - TP 1 -

Mesures de l'aire d'une carte de lycéen

I - Mesurage individuel

1.1 - Détermination des longueurs des côtés

- 1. Chaque binôme mesure les dimensions d'une carte de lycéen dans le but d'en déterminer l'aire de la surface. On supposera la carte rectangulaire et on notera L la longueur du grand côté et ℓ celle du petit.
- 2. Déterminer également les incertitudes-types expérimentales (incertitudes de type B) sur L et ℓ en s'appuyant sur le processus de mesure et en explicitant le ou les modèles choisis.

1.2 - Variabilité du mesurage de l'aire

Par calcul de propagation des incertitudes

- 3. Déterminer la valeur mesurée de l'aire \mathcal{A} de la carte ainsi que son incertitude-type composée.
- 4. Écrire le résultat du mesurage.
- 5. Déterminer la contribution à la variance de chacune des grandeurs d'entrée (cf Annexe.).

Par simulation grâce à la méthode de Monte Carlo

- 6. Réaliser n tirages aléatoires des grandeurs d'entrée utiles pour déterminer l'aire, en s'appuyant sur le processus de mesure et en explicitant le ou les modèles choisis.
- 7. En déduire n valeurs simulées de l'aire \mathcal{A} .
- 8. Représenter sur des figures différentes les histogrammes des n tirages des grandeurs d'entrée et des n valeurs simulées de \mathcal{A} .
- 9. Déterminer la valeur moyenne des valeurs simulées de \mathcal{A} et leur incertitude-type évaluée par un écart-type échantillonnal.
- 10. Écrire le résultat de la simulation du mesurage de A.
- 11. Le résultat est-il compatible avec celui obtenu par calcul de propagation des incertitudes?

II - Mise en commun des mesurages de la demi-classe

- 12. Chaque binôme entre dans la feuille de tableur vidéo-projetée sa valeur mesurée de \mathcal{A} .
- 13. Le résultat par une analyse statistique (incertitude-type de type A) des valeurs des binômes est-il compatible avec les deux autres résultats?

Annexe

Soit G une grandeur déterminée indirectement grâce aux mesurages de deux grandeurs d'entrée E_1 et E_2 . Pour évaluer la contribution de chacune des grandeurs d'entrée à la variance de G, on identifie les coefficients C_1 et C_2 tels que

$$u^{2}(G) = C_{1}^{2}u^{2}(E_{1}) + C_{2}^{2}u^{2}(E_{2})$$

La contribution à la variance de E_1 est alors le rapport suivant :

$$C_V(E_1) = \frac{C_1^2 u^2(E_1)}{u^2(G)}$$

Celle de E_2 :

$$C_V(E_2) = \frac{C_2^2 u^2(E_2)}{u^2(G)}$$

On exprime généralement ces contributions par un pourcentage et, bien sûr, $C_V(E_1) + C_V(E_2) = 100 \%$, puisque seules ces deux grandeurs influent sur la variance de G.