Esercizio 2 (7 punti) Si realizzi la sintesi di un circuito sequenziale che, presa in input una sequenza di bit, dia in output 1 ogni volta che negli ultimi tre bit sono contenuti due 0. Non si considerino sovrapposizioni.

ESEMPIO IN: 1101'0100'11

OUT: 0000'1001'00

Si utilizzino FF di tipo SR per il bit di stato più significativo e FF di tipo T per i restanti bit.

Svolgimento

La macchina a stati (di Mealy) è la seguente:

La tavella della verità è:

NS,out
$S_1, 0$
S_0 , 0
S ₀ ,1
S_2 , 0
S ₀ ,1
S_0 , O

Usando la codifica:

 $S_0,00$

S₁,01

 $S_2, 10$

Posso scrivere:

S_1S_0,x	NS,out
000	01, 0
001	00, 0
010	00, 1
011	10, 0
100	00, 1
101	00, 0
11x	xx, x

Da cui

out =
$$\overline{S_1}S_0\overline{x} + S_1\overline{x} = S_0\overline{x} + S_1\overline{x}$$

Per i FF di tipo T ed SR ho la seguente tabella:

S_1S_0,x	NS,out	Set ₁ ,	Reset ₁	,T ₀
000	01, 0	0	х	1
001	00, 0	0	Х	0
010	00, 1	0	х	1
011	10, 0	1	0	0
100	00, 1	0	1	0
101	00, 0	0	1	0
11x	xx, x	Х	x	0

Da cui ricavo

$$Set_1 = \overline{S_1}S_0x + S_1S_0 = S_0x + S_1S_0$$

$$Reset_1 = S_1 + \overline{S_0} + \overline{x}$$

$$T_0 = \overline{S_1}\overline{x}$$

Esercizio 3 (1+2+1 punti)

- a) Rappresentare X = -97 e Y = 39 in Ca2, ognuno con il minimo numero di bit.
- b) Dopo aver calcolato il numero di bit necessario per rappresentare sia la somma X+Y che la differenza X-Y, portare X e Y alla lunghezza necessaria ed eseguire le due operazioni.
- c) Infine, verificare i risultati ottenuti.

a)

$$X = -97 \rightarrow -(97) \rightarrow -(64 + 32 + 1) \rightarrow -(2^{6} + 2^{5} + 2^{0}) \rightarrow -(01100001) \rightarrow 10011110 + 1 \rightarrow 1001_1111$$

 $Y = 39 \rightarrow 32 + 4 + 2 + 1 \rightarrow 2^{5} + 2^{2} + 2^{1} + 2^{0} \rightarrow 100111$

b)

$$A=X+Y=-58$$
.

Un numero in complemento a 2 di N bits rappresenta i numeri nell'intervallo [-2^{N-1}: 2^{N-1}-1]. Con N=7 rappresentiamo i numeri nell'intervallo [-64:63].

L'operazione X+Y in binario è:

Convertiamo A per controllare che il valore sia corretto:

A= 1100 0110 =- (0011 1001+1)
$$\rightarrow$$
 -(0011 1010) \rightarrow -(32+16+8+2) \rightarrow -58

B=X-Y = -136. N=9 intervallo di rappresentazione [-256:255].

Quindi per l'operazione in binario utilizziamo 9 bits, sia per X, sia per -Y.

Per X estendiamo il segno, scrivendo X= 1_1001_1111 Poi Calcoliamo -Y.

$$Y = 0_0010_0111.$$

$$-Y = -(0_0010_0111) \rightarrow 1_1101_1000+1 \rightarrow 1_1101_1001$$

L'operazione X-Y in binario è:

Convertiamo B per controllare che il valore sia corretto:

B= 1 0111 1000 = -(0 1000 0111+1)
$$\rightarrow$$
 -(0 1000 1000) \rightarrow -(128+8) \rightarrow - 136

Esercizio 5 (2+2+1+2 punti)

- Si consideri il seguente circuito e si scrivano le espressioni della funzione f realizzata e della sua duale f.
- Trasformare poi tali espressioni, usando assiomi e regole dell'algebra di Boole, in forma normale (SOP o POS, a scelta)
- Si stenda la tavola di verità di f e di f.

• Si scrivano l'espressione minimale POS di f, l'espressione minimale SOP di \tilde{f} e l'espressione

canonica POS di $f \oplus \tilde{f}$.

f si può ricavare dall'equazione del MUX.

Supponendo che i bit di selezione siano s1 ed s0 ed i bit di ingresso siano d3 d2 d1 d0 sappiamo che

$$f = d_0 s_1 s_0 + d_1 s_1 s_0 + d_2 s_1 s_0 + d_3 s_1 s_0$$

Quindi possiamo scrivere

$$f = (\overline{ca})\overline{a}\overline{b} + \overline{da}b + (\overline{c}\oplus d)\overline{ab} + (\overline{c}b)\overline{ab} = \overline{a}\overline{b}c + \overline{a}\overline{bd} + \overline{ab}(c\oplus d) + \overline{abc} =$$

$$= \overline{a}\overline{b}c + \overline{a}\overline{bd} + \overline{ab}(\overline{cd} + \overline{c}d) + \overline{abc} = \overline{a}\overline{b}c + \overline{a}\overline{bd} + \overline{ab}\overline{cd} + \overline{ab}\overline{cd} + \overline{ab}\overline{cd} + \overline{ab}\overline{cd}$$
b)

$$f = \overline{a} \overline{b} c + \overline{a} bd + a\overline{b} \overline{c} d + a\overline{b} \overline{c} d + a\overline{b} \overline{c}$$
 (forma SOP di f)

e la funzione duale \tilde{f} è uguale ad:

$$\tilde{f} = (\overline{a} + \overline{b} + c)(\overline{a} + b + d)(a + \overline{b} + c + \overline{d})(a + \overline{b} + \overline{c} + d)(a + b + \overline{c})$$
 (forma POS di \tilde{f})

abcd	f ilde f	$f \oplus \hat{f}$
0000	01	1
0001	01	1
0010	10	1
0011	10	1
0100	01	1
0101	10	1
0110	0 0	0
0111	11	0
1000	0 0	0
1001	11	0
1010	10	1
1011	01	1
1100	10	1
1101	10	1
1110	0 1	1
1111	0 1	1

d) Realizziamo le mappe di Karnaugh per f ed $\, \tilde{f} \,$

La forma minima POS di $f\,$ è

La forma minima SOP di $\tilde{f}\ \ \grave{\mathrm{e}}$

$$\tilde{f} = \overline{a} \, \overline{b} \, \overline{c} + \overline{a} \, \overline{c} \, \overline{d} + \overline{b} \overline{c} + \overline{a} \overline{c} d + \overline{a} \overline{c} d + \overline{a} \overline{c} d$$

La forma canonica POS di $f \oplus \tilde{f}~$ è

$$f \oplus \tilde{f} = (a+\overline{b}+\overline{c}+d) (a+\overline{b}+\overline{c}+\overline{d}) (\overline{a}+b+c+d) (\overline{a}+b+c+\overline{d})$$

Esercizio 6 (1+2+1 punti)

a) Dati i numeri in rappresentazione IEEE 754 X = 0xc0e40000 e Y = 0xbf580000, (a) rappresentarli in notazione decimale (approssimato $\pm 0,03$), (b) eseguire l'operazione X+Y e (c) rappresentare il risultato sia in notazione decimale a virgola mobile (approssimato $\pm 0,03$) e sia in esadecimale.

(b)

Somma di Z=X ed Y

- Allineo la Y, che ha esponente minore facendo scorrere a destra la mantissa di e_x -e_y posizioni (3 posizioni).

$$(m_v >> 3) = 0001_1011_0000_0000_0000_0000$$

- Sommo m_x ed $(m_y >> 3)$

$$\begin{split} m_x &= 1.110_0100_0000_0000_0000_0000 \\ (m_y >> 3) &= \underbrace{0.001_1011_0000_0000_0000_0000}_{1.111_1111_0000_0000_0000_0000_0000} \end{split}$$

Quindi

$$\begin{split} m_z = & 1.111_1111_0000_0000_0000_0000 = (1+0.5+0.25+0.125+0.0625+0.03125...) \cong 1.96 \\ e_z & corrisponde & all'esponente massimo tra & e_x & ed & e_y. & Quindi \\ e_z = & max(e_x, e_y) = 129 \\ e & s_z = 1. \end{split}$$

Possiamo quindi costruire la rappresentazione IEEE 754 di Z come

In esadecimale

Z = c0ff0000

In notazione decimale

$$Z \cong -1.96*4 \cong -7.84$$

Notate che a causa nell'approssimazione $m_z \cong -1.96$ il valore di Z è diverso dalla somma -7.12-0.84= -7.96.

Se avessimo usato un valore più preciso di m_z = 1.9921875 otterremmo il valore esatto di Z= 7.96875.