Lista 8

Para todas as listas de exercício, você deve criar arquivos .m com os códigos implementados e, se necessário, um arquivo em pdf com os resultados gerados (pode ser a impressão dos resultados calculados ou figuras). Todos arquivos devem ser nomeados como RA000000_LXX_YY.m, em que

- 000000 é o número do seu RA
- XX é o número da lista.
- Y é o número do exercício.
- 1) Num teste de tração uniaxial, um corpo de prova é tracionado numa máquina. Durante o teste, a força F aplicada ao corpo de prova e o comprimento L do corpo de prova são medidos. A tensão verdadeira (ou tensão de engenharia) σ_v e a deformação verdadeira ε_v são definidos como:

$$\sigma_{v} = \frac{F}{A_0} \frac{L}{L_0}, \ \varepsilon_{v} = \ln \frac{L}{L_0}$$

em que A_0 e L_0 são, respectivamente, a área da seção transversal inicial e o comprimento inicial. A curva tensão verdadeira-deformação verdadeira pode ser modelada através da equação

$$\sigma_v = K \varepsilon_t^m$$

F(kN)	24.6	29.3	31.5	33.3	34.8	35.7	36.6	37.5	38.8	39.6	40.4
L (mm)	12.58	12.82	12.91	12.95	13.05	13.21	13.35	13.49	14.08	14.21	14.48

Se F estiver em N e L estiver em metros, as fórmulas acima fornecem a tensão verdadeira σ_{ν} em Pa e a deformação verdadeira é adimensional. Os valores de F e L apresentados na tabela são medidos num experimento. Encontre os valores dos parâmetros K (em Pa) e M ajustando o modelo com uma regressão linear. Considere que $A_0 = 1.25 \times 10^{-4} \, m^2$ e $L_0 = 0.0125 \, m$. Sua função deve retornar os valores K e m nessa ordem.

$$[K,m] = RA000000_L08_01();$$

2) Uma parte da tabela de vapor do fluido refrigerante R134a superaquecido a 1.8 bar é mostrada.

$v \text{ (m}^3/\text{kg)}$	0.13730	0.14222	0.14710
h (kJ/kg)	286.24	295.45	304.79

a) Usando uma interpolação linear, encontre o valor da entalpia h para um volume específico ν de 0.141 m³/kg;

b) Se a entalpia é 300 kJ/kg, encontre o volume específico correspondente.

Sua função deve retornar o valor da entalpia ha (em kJ/kg) para o item a e o volume específico vb (em m³/kg) para o item b, nessa ordem.

```
[ha, vb] = RA000000_L08_02;
```

3) A temperatura em °C de uma placa aquecida é medida em vários pontos ao longo da placa. Os resultados obtidos são mostrados na tabela abaixo.

	x = 0	<i>x</i> = 2	<i>x</i> = 4	<i>x</i> = 6	<i>x</i> = 8
y = 2 $y = 4$ $y = 6$	100.00	90.00	80.00	70.00	60.00
	85.00	64.49	53.50	48.15	50.00
	70.00	48.90	38.43	35.03	40.00
	55.00	38.78	30.39	27.07	30.00
	40.00	35.00	30.00	25.00	20.00

Estime a temperatura da placa em:

a)
$$x = 6.0$$
 e $y = 5.4$

b)
$$x = 1.6 \text{ e } y = 3.2$$

Sua função deve retornar a temperatura Ta para o item a e a temperatura Tb para o item b, nessa ordem.