CHAPTER 2:

SUPERVISED LEARNING

Learning a Class from Examples

- Class C of a "family car"
 - Prediction: Is car x a family car?
 - Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

Sometimes OK to say "doubt" (or abstain)

Input representation:

 x_1 : price, x_2 : engine power

Training set X

Class C: the true class (concept)

Hypothesis class ${\mathcal H}$

Fixing p'_1 , p'_2 , e'_1 , e'_2 , we get a hypothesis h

 $h(x) = \begin{cases} 1 & \text{if } x \text{ is in the yellow area} \\ 0 & \text{otherwise} \end{cases}$

We get a **set of hypotheses** if we vary p'_1 , p'_2 , e'_1 , e'_2

This is called a hypothesis class \mathcal{H} (not necessarily contains C, flexibility)

Empirical error of a hypothesis

S, G, and the Version Space

Margin

- □ Choose h with largest margin
 - Intuitive to choose h halfway between S and G
 - Margin: the distance between the boundary and the instances closest to it
 - Need a way to compute it
- But how to choose the hypothesis space H in the first place?

VC Dimension

- \blacksquare \mathcal{H} needs to be large/flexible enough (how to quantify?)
- Just count the number of parameters? Deep learning.
- \square N points can be labeled in 2^N ways as +/-
- \square \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of these labeling
- \square VC(\mathcal{H}) = the maximum such N
- Oblivious to data distribution
- lacktriangle The bigger ${\mathcal H}$ the better?

An axis-aligned rectangle shatters 4 points only!
No need to shatter any four points.

But no way to shatter 5 points regardless of their positions

Noise and Model Complexity

Noise: any unwanted anomaly in the data, e.g. imprecision in feature/label, hidden feature (XOR without X_2)

Use the simpler one because

- Generalizes better (less affected by single instances: Occam's razor)
- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)

Engine power

Multiple Classes, C_i (i=1,...,K)

An input instance belongs to one and exactly one of them.

K two-class problems?

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N$$

$$r_i^t = \begin{cases} 1 \text{ if } \mathbf{x}^t \in C_i \\ 0 \text{ if } \mathbf{x}^t \in C_j, j \neq i \text{ (i.e., } \mathbf{x}^t \notin C_i) \end{cases}$$

Train K hypotheses $h_i(\mathbf{x})$, i = 1,...,K:

$$h_i(\mathbf{x}^t) = \begin{cases} 1 \text{ if } \mathbf{x}^t \in C_i \\ 0 \text{ if } \mathbf{x}^t \in C_j, j \neq i \end{cases}$$

$$E(\{h_i\}_{i=1}^K | \mathcal{X}) = \sum_{t=1}^N \sum_{i=1}^K 1(h_i(\mathbf{x}^t) \neq r_i^t)$$

still has some consistency issues

Price

Nonparametric: k-nearest neighbor

- □ Given a new query point x
- Find the k training examples nearest to x
- Output the most frequent label in the k examples

- k is a hyperparameter specified by user
- Trivially extends to multiple classes

k-Nearest Neighbor Classifier

k-Nearest Neighbor Classifier Code

```
def get_neighbors(training_set, # n training examples
                   labels,
                                  # label of the n training examples
                   test_instance):
  n = length(training_set)
  distance = [0, 0, ..., 0] # n zeros
  for i = 1 \dots n
      distance(i) = Euclidean_distance(test_instance, training_set[i])
  index = numpy.argsort(distance)
  # compute the most frequent label among the k-nearest neighbors
  count = [0, 0] # for two classes. Suppose labels can be either 0 or 1
  for j = 1 ... k (or from 0 to k - 1 if you use Python)
     l = labels[ index[ j ] ]
                                                   numpy.array([2, 3, -1, 0])
      count[l] += 1
                                                   returns [2, 3, 0, 1]
  return 0 if count[0] > count[1] else 1
```

Regression (numeric value)

$$\mathcal{X} = \left\{x^{t}, r^{t}\right\}_{t=1}^{N}$$

$$r^{t} \in \Re$$

$$g(x) = w_{1}x + w_{0}$$

$$r^{t} = f(x^{t}) + \varepsilon$$

$$g(x) = w_{2}x^{2} + w_{1}x + w_{0}$$

$$\text{noise possibly from }$$

$$\text{unobserved features}$$

$$E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^{t} - g(x^{t})\right]^{2}$$

$$E(w_{1}, w_{0} \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^{t} - (w_{1}x^{t} + w_{0})\right]^{2}$$

$$\text{High order?}$$

$$\text{Low order?}$$

Model Selection & Generalization

 Learning is an ill-posed problem; as data is not sufficient to find a unique solution

X 1	<i>X</i> ₂	h_1	h_2	h_3	h_4	h_5	h_6	h_7	h_8	h_9	h_{10}	h_{11}	h_{12}	h_{13}	h_{14}	h_{15}	h_{16}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- Each distinct training example removes half the hypotheses
- t ullet So we need inductive bias, i.e., assumptions about ${\mathcal H}$
 - Rectangles, linear function, max margin, most specific
- Generalization: How well a model predicts on new data
- \square Underfitting: \mathcal{H} less complex than C or f
- \square Overfitting: \mathcal{H} more complex than C or f (noise)

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} : c (\mathcal{H})
 - 2. Training set size: N
 - 3. Generalization error, E, on new data
- □ As $N \uparrow$, $E \downarrow$ then plateaus
 - \Box If $c(\mathcal{H})$ is too high, E will be kept in check only up to a point
- \square As c (\mathcal{H}) \uparrow , first $E \downarrow$ and then $E \uparrow$

Cross-validation

- Measure the quality of a given inductive bias
 - To estimate generalization error, we need data unseen during training. We split the dataset as
 - Training set (50%)
 - Validation set (50%), report the error on it
- Measure the quality of the best inductive bias from a given set of inductive biases
 - Split the dataset as

 - Training set (50%)Validation set (25%)use them to select the best inductive bias
 - Test set (25%): apply the best inductive bias to it and report error
- Resampling when there is few data

Dimensions of a Supervised Learner

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N$$

- 1. Model: $g(\mathbf{x} | \theta)$
 - g: hypothesis space \mathcal{H} (rectangles), θ : parameters (four corners) Should be large enough, have enough capacity, to include the unknown function that generated the data represented in \mathbf{x} (with noise)
- 2. Loss function:

$$E(\theta \mid \mathcal{X}) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t} \mid \theta))$$

There should be enough training data to allow us to pinpoint the correct (or a good enough) hypothesis

3. Optimization procedure:

$$\theta^* = \arg\min_{\theta} E(\theta \mid X)$$