VIOLA-JONES DETECTOR

Objectives

- ► Classification step should be computationally efficient.
- ► Expensive training affordable.

Strategy

- Extract very large set of measurements (features), i.e. d in \mathbb{R}^d large.
- Use Boosting with decision stumps.
- ► From Boosting weights, select small number of important features.
- ▶ Class imbalance: Use Cascade.

Classification step

Compute only the selected features from input image.

FEATURE EXTRACTION

Extraction method

- 1. Enumerate possible windows (different shapes and locations) by j = 1, ..., d.
- 2. For training image *i* and each window *j*, compute
 - $x_{ij} :=$ average of pixel values in gray block(s)
 - average of pixel values in white block(s)
- 3. Collect values for all j in a vector $\mathbf{x}_i := (x_{i1}, \dots, x_{id}) \in \mathbb{R}^d$.

The dimension is huge

- ▶ One entry for (almost) every possible location of a rectangle in image.
- ► Start with small rectangles and increase edge length repeatedly by 1.5.
- ▶ In Viola-Jones paper: Images are 384×288 pixels, $d \approx 160000$.

SELECTED FEATURES

First two selected features

200 features are selected in total.

TRAINING THE CASCADE

Training procedure

- 1. User selects acceptable rates (FPR and DR) for each level of cascade.
- 2. At each level of cascade:
 - ► Train boosting classifier.
 - ► Gradually increase number of selected features until rates achieved.

Use of training data

Each training step uses:

- ► All positive examples (= faces).
- ▶ Negative examples (= non-faces) misclassified at previous cascade layer.

EXAMPLE RESULTS

RESULTS

 $\it Table~3$. Detection rates for various numbers of false positives on the MIT + CMU test set containing 130 images and 507 faces.

Detector	False detections							
	10	31	50	65	78	95	167	422
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%	94.1%
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2%	93.7%	_
Rowley-Baluja-Kanade	83.2%	86.0%	_	-	-	89.2%	90.1%	89.9%
Schneiderman-Kanade	_	_	_	94.4%	_	_	_	_
Roth-Yang-Ahuja	-	-	-	-	(94.8%)	-	-	_

ADDITIVE VIEW OF BOOSTING

Basis function interpretation

The boosting classifier is of the form

$$f(\mathbf{x}) = \operatorname{sgn}(F(\mathbf{x}))$$
 where $F(\mathbf{x}) := \sum_{m=1}^{M} \alpha_m g_m(\mathbf{x})$.

- ▶ A linear combination of functions g_1, \ldots, g_m can be interpreted as a representation of F using the **basis functions** g_1, \ldots, g_m .
- ▶ We can interpret the linear combination $F(\mathbf{x})$ as an approximation of the decision boundary using a basis of weak classifiers.
- ▶ To understand the approximation, we have to understand the coefficients α_m .

Boosting as a stage-wise minimization procedure

It can be shown that α_m is obtained by minimizing a risk,

$$(\alpha_m, g_m) := \arg\min_{\alpha'_m, g'_m} \hat{R}_n(F^{\text{(m-1)}} + \alpha'_m g'_m)$$

under a specific loss function, the **exponential loss**. Notation: $F^{(m)} := \sum_{i \le m} \alpha_m g_m$.

EXPONENTIAL LOSS

Definition

$$L^{\exp}(y,f(x)) := \exp(-y \cdot f(x))$$

Relation to indicator function

$$y \cdot f(x) = \begin{cases} +1 & x \text{ correctly classified} \\ -1 & x \text{ misclassified} \end{cases}$$

This is related to the indicator function we have used so far by

$$-y \cdot f(x) = 2 \cdot \mathbb{I}\{f(x) \neq y\} - 1$$

ADDITIVE PERSPECTIVE

Exponential loss risk of additive classifier

Our claim is that AdaBoost minimizes the empirical risk under L^{\exp} ,

$$\hat{R}_n(F^{\text{(m-1)}} + \beta_m g_m) = \frac{1}{n} \sum_{i=1}^n \exp(-y_i F^{\text{(m-1)}} - y_i \beta_m g_m(\mathbf{x}_i))$$
 in fixed in m th step fixed in m th step we only have to minimize here

Relation to AdaBoost

It can be shown that the classifier obtained by solving

$$\operatorname{arg} \min_{\beta_m, g_m} \hat{R}_n(F^{(m-1)} + \beta_m g_m)$$

at each step m yields the AdaBoost classifier.

ADABOOST AS ADDITIVE MODEL

More precisely, it can be shown:

If we build a classifier $F(\mathbf{x}) := \sum_{m=1}^{M} \beta_m g_m(\mathbf{x})$ which minimizes

$$\hat{R}_n(F^{\scriptscriptstyle{(m-1)}}(\mathbf{x}) + \beta_m g_m(\mathbf{x}))$$

at each step m, we have to choose:

- \triangleright g_m as the classifier which minimizes the weighted misclassifiation rate.

This is precisely equivalent to what AdaBoost does.

In other words

AdaBoost approximates the Bayes-optimal classifier (under exponential loss) using a basis of weak classifiers.

- ▶ Since we do not know the true risk, we approximate by the empirical risk.
- ► Each weak learner optimizes 0-1 loss on *weighted* data.
- ▶ Weights are chosen so that procedure overall optimizes *exponential* loss risk.

LOSS FUNCTIONS

- ► The right figure shows the misclassification rate and the average exponential loss on the same data as number of weak learners increases.
- From the additive model perspective, the exponential loss helps explain why prediction error continues to improve when training error is already optimal.

ILLUSTRATION

Circle = data points, circle size = weight.

Dashed line: Current weak learner. Green line: Aggregate decision boundary.

BAGGING AND RANDOM FORESTS

BACKGROUND: RESAMPLING TECHNIQUES

We briefly review a technique called bootstrap on which Bagging and random forests are based.

Bootstrap

Bootstrap (or **resampling**) is a technique for improving the quality of estimators.

Resampling = sampling from the empirical distribution

Application to ensemble methods

- ▶ We will use resampling to generate weak learners for classification.
- ▶ We discuss two classifiers which use resampling: Bagging and random forests.
- Before we do so, we consider the traditional application of Bootstrap, namely improving estimators.

BOOTSTRAP: BASIC ALGORITHM

Given

- ightharpoonup A sample $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$.
- ▶ An estimator \hat{S} for a statistic S.

Bootstrap algorithm

- 1. Generate *B* bootstrap samples $\mathcal{B}_1, \dots, \mathcal{B}_B$. Each bootstrap sample is obtained by sampling *n* times with replacement from the sample data. (Note: Data points can appear multiple times in any \mathcal{B}_b .)
- 2. Evaluate the estimator on each bootstrap sample:

$$\hat{S}_b := \hat{S}(\mathcal{B}_b)$$

(That is: We estimate *S* pretending that \mathcal{B}_b is the data.)

3. Compute the **bootstrap estimate** of *S* by averaging over all bootstrap samples:

$$\hat{S}_{\mathrm{BS}} := \frac{1}{B} \sum_{b=1}^{B} \hat{S}_b$$

EXAMPLE: VARIANCE ESTIMATION

Mean and Variance

$$\mu := \int_{\mathbb{R}^d} \mathbf{x} \, p(\mathbf{x}) d\mathbf{x} \qquad \qquad \sigma^2 := \int_{\mathbb{R}^d} (\mathbf{x} - \mu)^2 p(\mathbf{x}) d\mathbf{x}$$

Plug-in estimators for mean and variance

$$\hat{\mu} := \frac{1}{n} \sum_{i=1}^{n} \tilde{\mathbf{x}}_{i} \qquad \qquad \hat{\sigma}^{2} := \frac{1}{n} \sum_{i=1}^{n} (\tilde{\mathbf{x}}_{i} - \hat{\mu})^{2}$$

BOOTSTRAP VARIANCE ESTIMATE

Bootstrap algorithm

- 1. For b = 1, ..., B, generate a boostrap sample \mathcal{B}_b . In detail: For i = 1, ..., n:
 - ▶ Sample an index $j \in \{1, ..., n\}$.
 - Set $\tilde{\mathbf{x}}_i^{(b)} := \tilde{\mathbf{x}}_j$ and add it to \mathcal{B}_b .
- 2. For each b, compute mean and variance estimates:

$$\hat{\mu}_b := \frac{1}{n} \sum_{i=1}^n \tilde{\mathbf{x}}_i^{(b)} \qquad \qquad \hat{\sigma}_b^2 := \frac{1}{n} \sum_{i=1}^n (\tilde{\mathbf{x}}_i^{(b)} - \hat{\mu}_b)^2$$

3. Compute the bootstrap estimate:

$$\hat{\sigma}_{ ext{BS}}^2 := rac{1}{B} \sum_{b=1}^B \hat{\sigma}_b^2$$

HOW OFTEN DO WE SEE EACH SAMPLE?

Sample $\{\tilde{\mathbf{x}}_1,...,\tilde{\mathbf{x}}_n\}$, bootstrap resamples $\mathcal{B}_1,...,\mathcal{B}_B$.

In how many sets does a given \mathbf{x}_i occur?

Probability for \mathbf{x}_i not to occur in n draws:

$$\Pr{\{\tilde{\mathbf{x}}_i \not\in \mathcal{B}_b\}} = (1 - \frac{1}{n})^n$$

For large *n*:

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e} \approx 0.3679$$

- ► Asymptotically, any $\tilde{\mathbf{x}}_i$ will appear in $\sim 63\%$ of the bootstrap resamples.
- Multiple occurrences possible.

How often is $\tilde{\mathbf{x}}_i$ expected to occur?

The *expected* number of occurences of each $\tilde{\mathbf{x}}_i$ is B.

Bootstrap estimate averages over reshuffled samples.

BOOTSTRAP: APPLICATIONS

Estimate variance of estimators

- ► Since estimator \hat{S} depends on (random) data, it is a random variable.
- ▶ The more this variable scatters, the less we can trust our estimate.
- ▶ If scatter is high, we can expect the values \hat{S}_b to scatter as well.
- ► In previous example, this means: Estimating the variance of the variance estimator.

Variance reduction

- ▶ Averaging over the individual bootstrap samples can reduce the variance in \hat{S} .
- ▶ In other words: \hat{S}_{BS} typically has lower variance than \hat{S} .
- ► This is the property we will use for classicifation in the following.

As alternative to cross validation

To estimate prediction error of classifier:

- ▶ For each b, train on \mathcal{B}_b , estimate risk on points not in \mathcal{B}_b .
- ► Average risk estimates over bootstrap samples.

BAGGING

Idea

- Recall Boosting: Weak learners are deterministic, but selected to exhibit high variance.
- Strategy now: Randomly distort data set by resampling.
- ► Train weak learners on resampled training sets.
- ► Resulting algorithm: **Bagging** (= **B**ootstrap **agg**regation)

REPRESENTATION OF CLASS LABELS

For Bagging with *K* classes, we represent class labels as vectors:

$$\mathbf{x}_{i} \text{ in class } k \qquad \text{as} \qquad y_{i} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \longleftarrow k \text{th entry}$$

This way, we can average together multiple class labels:

$$\frac{1}{n}(y_1 + \ldots + y_n) = \begin{pmatrix} p_1 \\ \vdots \\ p_k \\ \vdots \\ p_k \end{pmatrix}$$

We can interpret p_k as the probability that one of the *n* points is in class *k*.

BAGGING: ALGORITHM

Training

For b = 1, ..., B:

- 1. Draw a bootstrap sample \mathcal{B}_b of size n from training data.
- 2. Train a classifier f_b on \mathcal{B}_b .

Classification

► Compute

$$f_{\text{avg}}(\mathbf{x}) := \frac{1}{B} \sum_{b=1}^{B} f_b(\mathbf{x})$$

This is a vector of the form $f_{avg}(\mathbf{x}) = (p_1(\mathbf{x}), \dots, p_k(\mathbf{x})).$

▶ The Bagging classifier is given by

$$f_{\text{Bagging}}(\mathbf{x}) := \arg \max_{k} \{p_1(\mathbf{x}), \dots, p_k(\mathbf{x})\},$$

i.e. we predict the class label which most weak learners have voted for.