GBI-Tutorium 1

Tristan Schnell

27. Oktober 2011

Inhaltsverzeichnis

- Organisatorisches
- 2 Alphabete
- 3 Aussagenlogik
- 4 Relationen
 - Kartesisches Produkt
 - Relationen
 - Funktionen/Abbildungen

Vorstellung

- Name
- Alter
- Studiengang (Semester)
- Woher?
- Erwartungen

Tutorium ist

- kurze Wiederholung der Vorlesung
- Anlaufstelle für Fragen
- Übungsbereich für aktuellem Vorlesungsstoff
- Ausgabestelle der Übungsblätter
- Freiwillig

Tutorium ist

- kurze Wiederholung der Vorlesung
- Anlaufstelle für Fragen
- Übungsbereich für aktuellem Vorlesungsstoff
- Ausgabestelle der Übungsblätter
- Freiwillig

Tutorium ist nicht

- Vorlesungsersatz
- Lösungsstelle für kommendes Übungsblatt

Übungsblatt

- Übungsblatt einzelnd handschriftlich bearbeiten
- Abgabe Freitag 12:30 Uhr im Briefkasten im Keller
- Offensichtlich abgeschrieben ⇒ 0 Punkte
- Ab Hälfte der Punkte bestanden (Voraussichtlich 120)
- Übungsschein zum Bestehen des Moduls notwendig

Klausur

- 5. März 2012 (11 Uhr)
- Nachprüfung im September
- Klausur ist Teil der Orientierungsprüfung.

Klausur

- 5. März 2012 (11 Uhr)
- Nachprüfung im September
- Klausur ist Teil der Orientierungsprüfung.

Kontakt / Information

- gbi.tutorium@googlemail.com
- http://gbi.ira.uka.de/

Alphabete

Definition

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

- N₊ ?
- $M = \{\phi, 3, \psi, a\}$?

Alphabete

Definition

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Aufgaben

- N₊ ?
- $M = \{\phi, 3, \psi, a\}$?

Notation

- $\mathbb{N}_+ = \{1, 2, 3, \dots\}$ (positive ganze Zahlen)
- $\mathbb{N}_0 = \{0, 1, 2, 3, \dots\}$ (nichtnegative ganze Zahlen)

Aussagenlogik

- Eine Aussage ist ein Satz, der (objektiv) entweder wahr oder falsch sein kann
- Aussagen sind äquivalent (⇔), wenn sie die gleichen Wahrheitswerte besitzen

Aussagenlogik

- Eine Aussage ist ein Satz, der (objektiv) entweder wahr oder falsch sein kann
- Aussagen sind äquivalent (⇔), wenn sie die gleichen Wahrheitswerte besitzen

Logisches UND und ODER

Α	В	$A \wedge B$	Α	В	$A \vee B$
wahr	wahr	wahr	wahr	wahr	wahr
wahr	falsch	falsch	wahr	falsch	wahr
falsch	wahr	falsch	falsch	wahr	wahr
falsch	falsch	falsch	falsch	falsch	falsch

Aussagenlogik

- Eine Aussage ist ein Satz, der (objektiv) entweder wahr oder falsch sein kann
- Aussagen sind äquivalent (⇔), wenn sie die gleichen Wahrheitswerte besitzen

Logisches UND und ODER

Α	В	$A \wedge B$	Α	В	$A \lor B$
wahr	wahr	wahr	wahr	wahr	wahr
wahr	falsch	falsch	wahr	falsch	wahr
falsch	wahr	falsch	falsch	wahr	wahr
falsch	falsch	falsch	falsch	falsch	falsch

Aufgabe

Stelle eine Wahrheitstabelle für den Ausdruck $(A \land B) \lor A$ auf.

Implikation

А	В	\Rightarrow	
wahr	wahr	wahr	
wahr	falsch	falsch	
falsch	wahr	wahr	
falsch	falsch	wahr	

Wichtig!

- A \Rightarrow B ist äquivalent zu $\neg A \lor B$
- D.h. man muss nur etwas tun, wenn A wahr ist. (Beweise)

Implikation

А	В	\Rightarrow	
wahr	wahr	wahr	
wahr	falsch	falsch	
falsch	wahr	wahr	
falsch	falsch	wahr	

Aufgabe

Finde für F einen äquivalenten Ausdruck, in dem A und B jeweils höchstens einmal vorkommen.

$$F = (A \Rightarrow B) \Rightarrow ((B \Rightarrow A) \Rightarrow B)$$

Definition

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Die Menge aller geordneten Paare (a,b) mit a aus A und b aus B

Definition

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Die Menge aller geordneten Paare (a,b) mit a aus A und b aus B

- Berechne $\{a, b\} \times \{1, 2, 3\}$. $\{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- Wieviele Elemente hat $\{\alpha, \beta, \gamma, \delta\} \times \{42, 43, 44\}$?
- Was ist $\emptyset \times M$?

Definition

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Die Menge aller geordneten Paare (a,b) mit a aus A und b aus B

- Berechne $\{a, b\} \times \{1, 2, 3\}$. $\{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- Wieviele Elemente hat $\{\alpha, \beta, \gamma, \delta\} \times \{42, 43, 44\}$? 12
- Was ist $\emptyset \times M$?

Definition

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Die Menge aller geordneten Paare (a,b) mit a aus A und b aus B

- Berechne $\{a, b\} \times \{1, 2, 3\}$. $\{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- Wieviele Elemente hat $\{\alpha, \beta, \gamma, \delta\} \times \{42, 43, 44\}$? 12
- Was ist ∅ × M?
 ∅

Relationen

Definition

- Eine Teilmenge $R \subseteq A \times B$ heißt (binäre) Relation von A in B.
- Wenn A = B, spricht man von einer Relation auf der Menge A.
- Statt (a,b) \in R kann man auch a R b schreiben bzw. statt $(a,b) \in R_{>}$ auch $a \ge b$.

Relationen

Definition

- Eine Teilmenge $R \subseteq A \times B$ heißt (binäre) Relation von A in B.
- Wenn A = B, spricht man von einer Relation auf der Menge A.
- Statt $(a,b) \in R$ kann man auch a R b schreiben bzw. statt $(a,b) \in R_{>}$ auch $a \geq b$.

Aufgabe

Wie ist die Kleiner-Gleich-Relation R_{\leq} auf der Menge M = $\{1,2,3\}$ formell definiert?

Relationen

Definition

- Eine Teilmenge $R \subseteq A \times B$ heißt (binäre) Relation von A in B.
- Wenn A = B, spricht man von einer Relation auf der Menge A.
- Statt $(a,b) \in R$ kann man auch a R b schreiben bzw. statt $(a,b) \in R$ auch $a \ge b$.

Aufgabe

Wie ist die Kleiner-Gleich-Relation R_{\leq} auf der Menge M = $\{1,2,3\}$ formell definiert?

$$R_{<} = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

Eigenschaften von Relationen

linkstotal

eine Relation $R \subseteq A \times B$ ist linkstotal wenn gilt:

$$\forall$$
 a \in A, \exists b \in B : (a , b) \in R

rechtseindeutig

eine Relation $R \subseteq A \times B$ ist rechtseindeutig wenn gil

$$\forall$$
 a \in A, \forall b , c \in B :

(a , b)
$$\in$$
 R \wedge (a , c) \in R \Rightarrow b $=$ c

rechtstotal

eine Relation $R \subseteq A \times B$ ist rechtstotal wenn gilt:

$$\forall$$
 b \in B, \exists a \in A : (a, b) \in R

linkseindeutig

eine Relation $R \subseteq A \times B$ ist linkseindeutig wenn gilt:

$$\forall$$
 a , c \in A, \forall b \in B :

(a , b)
$$\in \mathsf{R} \wedge$$
 (c , b) $\in \mathsf{R} \Rightarrow \mathsf{a} = \mathsf{c}$

Eigenschaften von Relationen

linkstotal Jedes Element aus A hat mindestens einen Partner

in B

rechtseindeutig Jedes Element aus A hat höchstens einen Partner

in B

rechtstotal Jedes Element aus B hat mindestens einen Partner

in A

linkseindeutig Jedes Element aus B hat höchstens einen Partner

in A

Eigenschaften von Relationen

Aufgaben

Sind folgende Relationen links-/rechtstotal, links-/rechtseindeutig?

- Die Gleichheitsrelation $R_{=}$ auf \mathbb{R}
- Die Kleinerrelation $R_{<}$ auf \mathbb{R}

Funktionen/Abbildungen

Definition

Eine Relation, die linkstotal und rechtseindeutig ist, nennt man Funktion oder Abbildung.

Sei f: $A \rightarrow B$ eine Funktion. Dann ist:

- A der Definitionsbereich
- B der Zielbereich
- f(A) der Bildbereich von f

Aufgabe

Was bedeutet es wenn der Bildbereich gleich dem Zielbereich ist?

Eigenschaften von Funktionen/Abbildungen

- ullet linkseindeutig o injektiv
- rechtstotal → surjektiv
- injektiv + surjektiv = bijektiv

Aufgaben

Sind folgende Funktionen injektiv, surjektiv oder bijektiv?

- $f: \mathbb{R} \to \mathbb{R}, x \mapsto x$
- $g: \mathbb{N}_0 \to \mathbb{N}_0, x \mapsto 2x$

Fragen

Fragen?!

Unnützes Wissen

Anatidaephobia ist die Angst von einer Ente beobachtet zu werden.