CHAPTER 8

Combinational Circuit design and Simulation Using Gate

Contents

- 8.1 Review of Combinational Circuit Design
- 8.2 Design of Circuits with Limited Gate Fanin
- 8.3 Gate delays and Timing Diagrams
- 8.4 Hazards in Combinational Logic
- 8.5 Simulation and Testing of Logic Circuits

Objectives

Topics introduced in this chapter:

- Draw a timing diagram for a combinational circuit with gate delays.
- Define static 0-and 1-hazards and dynamic hazard. Given a combinational circuit, find all of the static 0-and 1-hazards. For each hazard, specify the order in which the gate outputs must switch in order for the hazard to actually produce a false output.
- Given switching function, realize it using a two-level circuit which is free of static and dynamic hazards (for single input variable changes).
- Design a multiple-output NAND or NOR circuit using gates with limited fan-in.
- Explain the operation of a logic simulator that uses four-valued logic.
- Test and debug a logic circuit design using a simulator.

Example: Realize $f(a,b,c,d) = \sum m(0,3,4,5,8,9,10,14,15)$ using 3-input NOR gate

f' = a'b'c'd + ab'cd + abc' + a'bc + a'cd'

$$f' = b'd(a'c'+ac) + a'c(b+d'+abc')$$

$$f = [b+d'+(a+c)(a'+c')][a+c'+b'd][a'+b'+c]$$

Example: Realize the functions given in Figure 8-2,

using only 2-input NAND gates and inverters.

If we minimize each function separately, the result is

$$f_1 = b'c' + ab' + a'b$$

 $f_2 = b'c' + bc + a'b$
 $f_3 = a'b'c + ab + bc'$

Figure 8-2

Figure 8–3: Realization of Figure 8–2

$$f_1 = b'(\underline{a'+c'}) + \underline{a'b}$$

$$f_2 = (b'+c)(b+c') + \underline{a'b}$$

$$f_2 = b(a'+c) + \underline{b'c'}$$

$$f_3 = a'b'c + b(\underline{a+c'})$$

$$a'b'c = a'(b'c) = a'(b+c')'$$

8.3 Gate Delays and Timing Diagrams

Propagation Delay in an Inverter

8.3 Gate Delays and Timing Diagrams

Timing Diagram for AND-NOR Circuit

8.3 Gate Delays and Timing Diagrams

Timing Diagram for Circuit with Delay

Types of Hazards

Detection of a 1-Hazard

(a) Circuit with a static 1-hazard

Circuit with Hazard Removed

Detection of a Static 0-Hazard

$$F = (A + C)(A'+D')(B'+C'+D)$$

(a) Circuit with a static 0-hazard

(b) Karnaugh map for circuit of (a)

(c) Timing diagram illustrating 0-hazard of (a)

Karnaugh Map Removing Hazards

$$F = (A+C)(A'+D')(B'+C'+D)(C+D')(A+B'+D)(A'+B'+C')$$

8.5 Simulation and Testing of Logic Circuit

(a) Simulation screen showing switches

(b) Simulation screen with missing gate input

8.5 Simulation and Testing of Logic Circuit

And and OR Functions for Four-Valued Simulation

0	1	X	Z
0	0	0	0
0	1	X	X
0	X	X	X
0	X	X	X
	0 0 0 0	0 1 0 0 0 1 0 X 0 X	0 0 0 0 1 X 0 X X

+	0	1	X	Ζ
0	0	1	X	X
1	1	1	1	1
X	X	1	X	X
X Z	X	1	X	X

8.5 Simulation and Testing of Logic Circuit

Logic Circuit with Incorrect Output

Example:
$$F = AB(C'D + CD') + A'B'(C + D)$$

