Digital Systems HW4

1. What function accurately describes the following circuit?

 $f(A,B,C,D)=(AC')'(B+(B\oplus C))+(B\oplus C)\oplus(A+D)$

Α	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
В	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
С	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
D	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
f	0	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1

	A'B'	A'B	AB	AB'
C'D'	0	1	0	1
C'D	1	1	0	1
CD	1	1	1	1
CD'	1	1	1	1

$$f(A,B,C,D) = C + AB' + A'B + A'D$$

- 2. For each of the following logical circuits:
 - a) Write out the corresponding function.
 - b) Simplify as much as possible.
 - c) Write out the corresponding truth table.
 - d) Draw the simplified circuit.

I.
$$F(A,B) = A' + (A'(AB))B$$

II.
$$F(A,B) = A'$$

III.

Α	0	0	1	1
В	0	1	0	1
F	1	1	0	0

I.
$$F(A,B,C) = B(C+BA')'$$

II.
$$F(A,B,C) = B(C'(BA')') = BC'(B'+A) = BC'B'+BC'A = ABC'$$

III.

Α	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
c	0	1	0	1	0	1	0	1
F	0	0	0	0	0	0	1	0

IV.

I. F(A,B,C) = (AB+B+B')(B+C)

II. F(A,B,C) = B+C

III.

Α	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
c	0	1	0	1	0	1	0	1
F	0	1	1	1	0	1	1	1

I. F(Z,X,Y) = ((Z'(ZX+X+Y))(ZX+X+Y)')'

II. F(Z,X,Y) = (Z'(ZX+X+Y))'+(ZX+X+Y)= Z+(ZX+X+Y)'+(ZX+X+Y)

= Z+(ZX)'X'Y'+ZX+X+Y

= Z+(Z'+X')X'Y'+ZX+X+Y = Z+Z'X'Y'+X'X'Y'+ZX+X+Y = X+Y+Z+X'Y'+X'Y'

= X+Y+Z+Y'+X'

= 1

III.

Z	0	0	0	0	1	1	1	1
X	0	0	1	1	0	0	1	1
Υ	0	1	0	1	0	1	0	1
F	0	1	1	1	1	1	1	1

I. F(Z,X,Y) = (X'Y+XZ)'+(X'ZY)'
II. F(Z,X,Y) = (X'Y)'(XZ)'+X+Z'+Y'
= (X+Y')(X'+Z')+X+Z'+Y'
= XX'+XZ'+Y'X'+Y'Z'+X+Z'+Y'
= X+Z'+Y'

III.

X	0	0	0	0	1	1	1	1
Z	0	0	1	1	0	0	1	1
Υ	0	1	0	1	0	1	0	1
F	1	1	1	0	1	1	1	1

3. Design a circuit with three inputs (x,y,z) and two outputs (F1 and F2). F1 returns the appropriate parity bit corresponding to the three inputs. F2 returns 1 if the majority of the inputs are on ("1"), and 0 otherwise.

a) Write out the truth table for functions F1 and F2.

X	0	0	0	0	1	1	1	1
Υ	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
F1	0	1	1	0	1	0	0	1
F2	0	0	0	1	0	1	1	1

b) Express F1 and F2 as standard SOP functions.

$$F1(X,Y,Z) = X'Y'Z+X'YZ'+XY'Z'+XYZ$$

 $F2(X,Y,Z) = X'YZ+XY'Z+XYZ'+XYZ$

c) Simplify the expressions for the functions.

F1	X'Y'	X'Y	XY	XY'
Z'	0	1	0	1
Z	1	0	1	0

F1(X,Y,Z) = X'Y'Z+X'YZ'+XY'Z'+XYZ

F2	X'Y'	X'Y	XY	XY'
Z'	0	0	1	0
Z	0	0	1	1

$$F2(X,Y,Z) = XY+XZ = X(Y+Z)$$

d) Realize the functions (draw the logic circuit) using AND and OR gates (containing 2 inputs each) and NOT gates.

- 4. We wish to design a circuit capable of receiving a student's grade at the input and giving a 1 bit pass fail indicator at the output. Any grade 64 and above is considered passing, and would require an output of "1" any any grade lower an output of "0".
 - a) How many inputs are necessary?

7 because
$$2^7 = 128 > 100$$
, and $2^6 = 64 < 100$.

b) Write out the appropriate truth table.

Α	В	С	D	Ε	F	G	f
0	0	0	0	0	0	0	0
0							0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1							1
1	1	0	0	1	0	0	1
1	1	0	0	1	0	0	Ф
1	1					•	Ф
1	1	1	1	1	1	1	Φ

- c) Write the function in SOP form. $f(A,B,C,D,E,F,G) = \Sigma(64,~65,~...,~99,~100) + \Sigma_{0}(101,~102,~...,~126,~127)$ = A
- d) Realize the corresponding logic circuit.

