Inter-networking

COS 460 & 540

CAPTAIN JAMES T. KIRK

I'M SORRY, I CAN'T HEAR YOU OVER THE SOUND OF HOW AWESOME I AM.

Problem

LAN's are great... but...

We want to connect them together

...across the world

Inter-networking

- Internet Protocol (IP)
- Routing
- The Internet
- Multicast*
- Multi-protocol Label Switching*

Internet Protocol (IP)

- What is an Internetwork
- Service Model
 - Datagrams, Packet Format, ...
- Addressing
- Datagram Forwarding
- ARP, DHCP, ICMP, ...

What?

- "internet" vs "Internet"
- "network" vs "subnetwork"
- physical vs logical networks

Bridge, Router, Switch

- repeater & hub physical
- bridge link
- switch network
- router internet
- gateway application

Alternatives?

Novell's IPX

Internet Protocol (IP)

- √ What is an Internetwork
- Service Model
 - Datagrams, Packet Format, ...
- Addressing
- Datagram Forwarding
- ARP, DHCP, ICMP, ...

Service Model

- Datagram Delivery
- Packet Format
- Fragmentation and Reassembly

Datagram Delivery

Underlying network is...

- reliable or unreliable
- connection-oriented or connectionless
- small or large packet/frame sized
- physical, logical, wireless, ...

Datagram Delivery

- IP Datagram is basis of protocol
- Provides a "best-effort" or unreliable service
- May be out of order
- Connectionless

Packet Format

Fragmentation

Problem:

- IP datagrams can be 64 kB
- The underlying network may have 512 Byte MTU

Solution:

- Each fragment is an IP datagram
- Each IP datagram is rebuilt for each network

Fragmentation

Fragmentation

(b)

Start of header				
Ident = x		0	Offset = 128	
Rest of header				
376 data bytes				

Internet Protocol (IP)

- √ What is an Internetwork
- √ Service Model
 - ✓ Datagrams, Packet Format, ...
- Addressing
- Datagram Forwarding
- ARP, DHCP, ICMP, ...

- Need to identify any host on the network
- Globally unique
- Hierarchal (not flat like Ethernet)
 - for easier routing
 - represents a network of networks

- 32 bit addresses
- "Dotted Decimal" format
 - 130.111.135.26
- Contains two parts
 - Network
 - Host

- Network portion
 - specifies a unique physical* network
 - used for routing
- Host portion
 - specifies a unique host on the network
 - local delivery

Internet Protocol (IP)

- √ What is an Internetwork
- √ Service Model
 - ✓ Datagrams, Packet Format, ...
- √ Addressing
- Datagram Forwarding
- ARP, DHCP, ICMP, ...

How do datagrams traverse the internetwork

Forwarding vs Routing

 forwarding is taking an input packet and sending it out the appropriate port

routing is the process of building forwarding tables.

- Every datagram has destination IP
- Network part uniquely identifies a physical network
 - All hosts/routers on network can communicate with all others
- Every network has a router on the net

Each host and router maintains a forwarding table

Next-hop
RI
130.111.32.1
R2
141.114.1.1
R2
76.5.4.3

If destination network == source network

deliver locally

if destination network in forwarding table

deliver to next-hop

if destination network unknown

deliver to default

- Local delivery for local datagrams
- Routers forward datagrams towards the physical network

Internet Protocol (IP)

- √ What is an Internetwork
- √ Service Model
 - ✓ Datagrams, Packet Format, ...
- √ Addressing
- √ Datagram Forwarding
- ARP, DHCP, ICMP, ...

Address Resolution Protocol (ARP)

Local delivery

it's not that simple

IP Address != Ethernet Address

Address Resolution

- Finds local or link-level address for an IP address
 - Both hosts on the same IP Network
 - Discover / Dynamic
- Uses broadcast feature of link-level

Address Resolution

- 1. Do we have the IP-MAC addresses cached?
- 2. Send out broadcast query
- 3. Look for response, and fill in cache

ARP Packet

0 16 31 Hardware type = 1 ProtocolType = 0x0800HLen = 48PLen = 32Operation SourceHardwareAddr (bytes 0–3) SourceHardwareAddr (bytes 4–5) SourceProtocolAddr (bytes 0-1) TargetHardwareAddr (bytes 0–1) SourceProtocolAddr (bytes 2–3) TargetHardwareAddr (bytes 2–5) TargetProtocolAddr (bytes 0-3)

Request or Response

ARP

- Problems?
 - ARP Spoofing (http://en.wikipedia.org/wiki/ARP_spoofing)

ARP Spoofing

Dynamic Host Configuration Protocol

Who Am I?

- Static configuration of hosts
 - not flexible or adaptable to changes
 - cumbersome
- Dynamic configuration
 - provide host with an IP address
 - additional information: router, boot info...

- 1. Broadcast request: DHCPDISCOVER
- 2.Look for responses: DHCPOFFERs
- 3. Pick one and DHCPREQUEST
- 4. Wait for DHCPACK

Problem:

Broadcast means you need a DHCP server on every network.

Solution:

DHCP forwarding

DHCP Forwarding

- IP Address is *leased* for a given amount of time.
- Host must renew the lease with the server.
- Server can deny renewal
 - Can request a new lease

ICMP

When things don't go as planned.

ICMP

Remember: Best-effort service

- Diagnostic purposes (ping)
- TTL (hops) reaches 0 at a router
- Host not reachable (network error)
- Network redirection

ARP, DHCP, ICMP

These protocols are at the edge between the Network and IP layers

- Address Resolution Protocol (ARP)
- Dynamic Host Configuration Protocol (DHCP)
- Internet Control Message Protocol (ICMP)

Internet Protocol (IP)

- √ What is an Internetwork
- √ Service Model
 - ✓ Datagrams, Packet Format, ...
- √ Addressing
- √ Datagram Forwarding
- ✓ARP, DHCP, ICMP, ...

Internet Protocol (IP)

- √ What is an Internetwork
- √ Service Model
 - ✓ Datagrams, Packet Format, ...
- √ Addressing
- √ Datagram Forwarding
- ✓ARP, DHCP, ICMP, ...

Virtual Networks (VPN)

VPN

Inter-networking

- √ Internet Protocol (IP)
- **★**Routing
- The Internet
- Multicast*
- Multi-protocol Label Switching*

Routing

- Network as a graph
- Distance Vector (RIP)
- Link State
 - Open Shortest Path First (OSPF)
- Mobile Routing

Forwarding vs Routing

 forwarding is taking an input packet and sending it out the appropriate port

routing is the process of building forwarding tables.

Tables

Routing Table

Network Next Hop

42 192.168.1.1

Forwarding Table

Network	Port	MAC
42	I	00:BC:D4:34:32:0B

Network Graph

- Table of distance/cost to all nodes
- Distribute to immediate neighbors
- Link Down = ∞
- periodic & triggered

Dest	Cost	Нор
В	3	В
C	∞	-
D	∞	-
Ε	I	Ε
F	6	F

Dest	Cost	Нор
В	2	Ε
C	6	Ε
D	2	Ε
E	ĺ	E
F	3	Е

- Complete Map
- Exchange with immediate neighbors

Distance Vector Game

1. Make "Routing Table" of network

Destination

Cost

Next Hop

2. Send messages to neighbors with

From: _____

Destination

Cost

- 3. Use messages from neighbors and destroy
- 4. Repeat from step 2

- Link State Packet (LSP)
 - Distance/Cost of neighbors
 - Flood to all routers

Dest	Cost	Нор
В	5	В
C	8	В
D	10	В

Step Confirmed Tentative Replaced

ı	(A,0,-)		
2	(A,0,-)	(B,5,B) (C,10,C)	

From: B cost 5 (A,5,A) (C,3,C) (D,11,D)

	(A,0,-)		
4	(B,5,B)	(D, I0,B)	(D, 14, B)
	(C,8,B)	·	·

+(D, 10, B)

- Link State Packet (LSP)
 - Distance/Cost of neighbors
 - Flood to all routers

Link State Game

1. Make "Routing Table" of network

Confirmed

Tentative

2. Flood messages to everyone with neighbor information only, keep your own

From:

Neighbor Cost

NextHop

- 3. Use messages from others (Dijkstra's Alg.)
- 4. Repeat from step 2, until tentative is empty

Metrics

- Bandwidth
- Latency
- "hops"
- Cost (dollars)
- Utilization
- Geo-Political boundaries

Inter-networking

- √ Internet Protocol (IP)
- ✓ Routing
- **★**The Internet
- Multicast*
- Multi-protocol Label Switching*

The Internet

- Construction
 - Autonomous Systems
- Subnetting
- Classless Routing (CIDR)
- Border Gateway Routing (BGP)
- IPv6

What does it look like

Subnetting

Network part of address uniquely identifies a physical network

- Class B network (16 & 16 bits) unused
- Class C network (24& 8 bits) too small

Subnetting

Allocate one "network" to several physical networks

internal to network

outside routes same

Subnetting

Subnet mask: 255.255.255.0 Subnet number: 128.96.33.0

Subnetting

- Solves scalability problem
 - improve address assignment efficiency
 - aggregates information, from a distance

Classless Routing (CIDR)

- Scalability problems in the backbone
 - Single location with multiple C nets
 - Lots of entries to maintain outside
 - Assignment of Class B wastes

CIDR

- Solution: aggregate routes
 - 192.4.16/20 = 192.4.16 to 192.4.31
 - 192.4.16/24 = 192.4.16

CIDR

- Solution: Assign blocks of Class C addresses
 - creates aggregate routes to AS

- Each Autonomous System (AS)
 - Has a "border"
 - Handles its own internal routing
 - Has its own policies for in & out

- Find some path to destination
- Avoid *loops*
- Compliant with policies of ASs

- Border Gateway Protocol (BGP)
 - AS numbers are unique
 - One node is the speaker for the network
 - Advertises complete paths to networks
 - Prevent loops
 - Path withdrawn messages

- Scalable (by hierarchy)
 - AS has own internal policies and routing
 - Only AS borders run BGP on backbone
 - Aggregate networks
 - Only need to find path to border

IPv6

0 4 12 16 24 31 Version TrafficClass FlowLabel NextHeader PayloadLen HopLimit SourceAddress DestinationAddress Next header/data

IPv6 - Why?

- Address exhaustion (really Class B)
- Real-time services
- Security
- Configuration
- Routing mobile hosts
- Jumbograms

Addresses

- $128 \text{ bits} = 3.4 \times 10^{38} \text{ nodes}$
- Notation = x:x:x:x:x:x:x:x
 - :: = zeros; 45de:1230:FG::11:12
 - IPv4 (zero extended) ::FFFF:128.96.33.81

Packet Format

RES

M

Configuration

- No more DHCP servers...
- Prefixes are assigned to networks (at AS)
 - Obtain interface ID
 - Obtain address prefix for subnet
 - local link only (1111 1110 10)
 - routers periodically advertise prefix
- Temporary addresses for mobile and privacy

Inter-networking

- √ Internet Protocol (IP)
- ✓ Routing
- √ The Internet
- Multicast*
- Multi-protocol Label Switching*

Inter-networking

fin