

Assignment Patappathan Help https://www.ht

CS 154: Computer Architecture
WeChatlectettorcs
Winter 2020

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

- Talk next week must attend
 - Details to followignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Reviewing Your Midterm Exams

- You can review your midterm with a TA during office hours
 - Last name: A thru L George T. Tu 10:30 am 12:30 pm
 - Last name: Assignments Reject Example 100 pm 5:00 pm
 - If you can't go to these o/hs, you can see me instead, but let me know many days ahead of time first so I can get your exam from the TA...

WeChat: cstutorcs

- When reviewing your exams:
 - Do <u>not</u> take pictures, do not copy the questions
 - TA cannot change your grade
 - If you have a legitimate case for grade change, the prof. will decide
 - Legitimate = When we graded, we added the total points wrong
 - Not legitimate = Why did you take off N points on this question????

CS154, W20, Midterm Exam Grade Distribution Av. = 84.9 Median = 86

Lecture Outline

- A Simplified Datapath for all Instructions
 - Single Cycle Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

- ALU Design and Control
 - FYI: Read the appendix section B.5 (pp. B-26 thru B-38)
 for review / reference

Load/Store Instructions

Read register operands

includes lw, sw e.g.: Lw \$t0, 4(\$sp)

- Calculate address using 16-bit offset (immediate)
 - First take the stiget ment Project Examt Help
 - Then use ALU

- https://tutorcs.com

 Load: Read memory and update register
- Store: Write register Calde to Still More

2/24/2020

a. Data memory unit

b. Sign extension unit

Branch Instructions

Read register operands

includes beq, bne
e.g.: beq \$t1, \$t2, Label

• Compare operands ignment Project Exam Help PC+4 from instruction datapath and check Zero output ://tutorcs.com • Use ALU, subtract Branch Add Sum target Shift left 2 WeChat: cstutores **ALU** operation Calculate target address register 1 Read data 1 Read Sign-extend displacement register 2 To branch ALU Zero Registers control logic Write Shift left 2 places register Read data 2 Add to PC + 4 Write data (already calculated RegWrite by instruction fetch) Signextend

Putting the Elements Together

- These "simple" data paths perform
 - Assignment Project Exam Help
 - Each datapath element can only do one function at a time
 - Hence, we nebut pepartate in struction and data memories
 - In the next lesson(s), we will see how we can perform parallel-like processing, i.e. pipelining
- Use multiplexers where alternate data sources are used for different instructions

R-Type / Load/Store Datapath

EXAMPLE: sub \$t0, \$t1, \$t2R[rd] = R[rs] – R[rt]

rs - rt

R-Type / Load/Store Datapath

EXAMPLE: sw \$t0, 0(\$t1) R[rs]+SignExtImm = R[rt]

R-Type / Load/Store Datapath

EXAMPLE: lw \$t0, 0(\$t1)

R[rt] = R[rs] + SignExtImm

^{*} To do this, Cin has to be 1

A 32-bit ALU Using 1-bit ALUs as building blocks

Important Notes/Observations:

- slt and overflow are decisions made in bit 31 (MSB)
- 2. Bits CarryIn and Binvert work the same way (redundant) and so can be combined into one ASSIGNMENT Project bit called Bnegate
- 3. To support branching ops, wetpeed anutorcs.com "equality" function. This can be done by WeChat: cstutorcs doing subtraction and seeing if the result is zero (i.e. a = b ←→ a b = 0)

So, we need an output that says "the

answer at the Result is Zero".

Best done as:

Zero = (Result1 + Result2 + ... + Result31)

MIPS ALU Control

ALU when used for

• Load/Store: F = add

• Branch: Assignment Project Exam Help

• R-type: F depends on funct field

ALU_CONTROL[3:0] is Atips, Briegate, Op. 1, Op. (in that order)

ALU_CONTROL[3:0]	FUNCTION		
0000 Chat. CS	AND		
0001	OR		
0010	add		
0110	subtract		
0111	set-on-less-than		
1100	NOR		

Generating the ALU_Control

- We get ALUOp from a decode of the opcode field of the instruction
- We can further is the control of t

opcode	ALUOp	Operation //tuto	funct	ALU function	ALU control
lw	00	load word	XXXXXX	add	0010
SW	00	stor we dhat: c	SXXXXXXXX	add	0010
beq	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
		subtract	100010	subtract	0110
		AND	100100	AND	0000
		OR	100101	OR	0001
		set-on-less-than	101010	set-on-less-than	0111

The Main Control Unit

Control signals derived (i.e. decoded) from instruction

Full Datapath showing 7 Control Signals

YOUR TO-DOs for the Week

•Lab 6 due soon...

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Assignment Project Exam Help

