Zusammenfassung Petrinetze

© Tim Baumann, http://timbaumann.info/uni-spicker

Def. Ein **Netzgraph** ist ein Tripel (S,T,W), wobei S und T disjunkte, endliche Mengen sind und $W:S\times T\cup T\times S\to \mathbb{N}$. Dadurch ist ein gerichteter, gewichteter, bipartiter Graph mit Kantenmenge $F=\{(x,y)\,|\,W(x,y)\neq 0\}$ gegeben.

Def. Sei $x \in S \cup T$.

- $x := \{y \mid (y, x) \in F\}$ heißt Vorbereich von x und
- $x^{\bullet} := \{y \mid (x, y) \in F\}$ heißt Nachbereich von x.
- x heißt **isoliert**, falls $x \cup x = \emptyset$.
- x heißt vorwärts-verzweigt, falls $|x^{\bullet}| \geq 2$
- x heißt rückwärts-verzweigt, falls $| {}^{\bullet}x | \geq 2$

Def. $(x,y) \in S \times T \cup T \times S$ bilden eine **Schlinge** falls $(x,y) \in F$ und $(y,x) \in F$.

Def. Eine Markierung ist eine Abbildung $M: S \to \mathbb{N}$. Eine Teilmenge $S' \subseteq S$ heißt markiert unter M, falls $\exists s \in S': M(s') > 0$, andernfalls unmarkiert. Ein Element $s \in S$ heißt (un-)markiert, falls $\{s\} \subseteq S$ es ist.

Notation. $\mathfrak{M}(S) := \{M : S \to \mathbb{N}\}\$

Def. Ein **Petrinetz** $N = (S, T, W, M_N)$ besteht aus

- \bullet einem Netzgraphen (S, T, W) und
- einer Anfangsmarkierung $M_N: S \to \mathbb{N}$.

Notation. Für eine feste Transition $t \in T$ ist

$$t^-: S \to \mathbb{N}, \ s \mapsto W(s,t), \qquad t^+: S \to \mathbb{N}, \ s \mapsto W(t,s)$$

Def. Eine Transition $t \in T$ heißt **aktiviert** unter einer Markierung M, notiert M[t), falls

$$\forall s \in S : W(s,t) \leq M(s) \iff t^- \leq M.$$

Ist t aktiviert, so kann t schalten und es entsteht die Folgemarkierung $M' := M + \Delta t$, wobei

$$\Delta t: S \to \mathbb{Z}, \ s \mapsto W(t,s) - W(s,t).$$

Notation. M[t]M'

Def. Für $w = t_1 \cdots t_n \in T^*$ und Markierungen M und M' gilt

$$M[w\rangle M':\iff M[t_1\rangle M_1[t_2\rangle \cdots [t_{n-1}\rangle M_{n-1}[t_n\rangle M')$$

für (eindeutig bestimmte) Markierungen M_1, \ldots, M_{n-1} . Ein Wort $w \in T^*$ heißt **Schaltfolge** (firing sequence) von N, notiert $M_N[w\rangle$, falls $\exists M': M_N[w\rangle M'$. Notation. $[M) := \{M' \mid \exists w \in T^* : M[w \rangle M'\}$ $FS(N) := \{w \in T^* \mid M_N[w)\}$ für ein Petrinetz N

Def. M' heißt **erreichbar** von M, falls $M' \in [M)$.

Def. $w \in T^{\omega}$ heißt unendliche Schaltfolge von N, falls alle endlichen Präfixe von w Schaltfolgen von N sind.

 ${f Def.}$ Eine Schaltfolge ist ${f maximal}$, falls sie endlich ist und in einer toten Markierung endet oder unendlich ist.

Eine Schaltfolge ist schwach/stark fair für eine Trans. $t \in T$ falls

- sie endlich ist und in einer Markierung endet, die t nicht aktiviert
- $oder\ t$ unendlich ist und t unendlich oft deaktiviert ist / t nur endlich oft aktiviert ist
- oder t unendlich oft enthält.

Die Schaltfolge heißt $schwach/stark\ fair$, falls sie für jede Transition schwach/stark fair ist.

Bem. stark fair \implies schwach fair \implies maximal

Def. Der Erreichbarkeitsgraph $\mathfrak{R}(N)$ zu N besitzt die Knoten $[M_N]$ und die Kanten $\{(M, M') | \exists t : M[t] M'\}$.

Def. Für $w = a_1 \cdots a_n \in A^*$ ist $Parikh(w) : A \to \mathbb{N}, \ a \mapsto |i|a_i = a.$

Lem. In $M[w\rangle M'$ hängt M' nur von M und Parikh(w) ab, genauer $M' = M + \sum_{t \in T} Parikh(w)(t) \cdot \Delta t.$

Lem. $M_1[w\rangle M_2 \implies M + M_1[w\rangle M + M_2$

Lem. Sei N ein Petri-Netz. Dann gilt:

- FS(N) ist $pr\ddot{a}fix-abg.$, d. h. $w=vu\in FS(N)\implies v\in FS(N)$.
- Ist $[M_N]$ endlich, so ist FS(N) regulär.

Def. Ein beschriftetes Petrinetz $N = (S, T, W, M_N, \ell)$ best. aus

- einem Petrinetz (S, T, W, M_N) und
- einer Transitionsbeschriftung (labelling) $\ell: T \to \Sigma \cup \{\lambda\}$, wobei Σ eine Menge von Aktionen ist.

Sprechweise. $t \in T$ mit $\ell(t) = \lambda$ heißt intern oder unsichtbar.

Notation. Für $t \in T^*$ ist $\ell(w) := \ell(t_1) \cdots \ell(t_n) \in \Sigma^*$. Dabei wird λ als das leere Wort in Σ^* aufgefasst.

Def. Mit $t \in T$, $w \in T^*$ und Markierungen M, M' ist definiert:

$$\frac{M[t\rangle M'}{M[\ell(t)\rangle\rangle M'} \quad \frac{M[t\rangle}{M[\ell(t)\rangle\rangle} \quad \frac{M[w\rangle M'}{M[\ell(w)\rangle\rangle M'} \quad \frac{M[w\rangle}{M[\ell(w)\rangle\rangle}$$

Def. Die Sprache eines beschrifteten Netzes N ist

$$L(N) := \{ v \in \Sigma^* \mid M_n[v) \rangle \}.$$

Def. Ein beschriftetes Netz mit Endmarkierung ist ein Tupel $N=(S,T,W,M_N,\ell,\mathrm{Fin})$ wobei

- (S, T, W, M_N, ℓ) ein beschriftetes Netz und
- Fin $\subseteq \mathfrak{M}(S)$ eine endliche Menge ist.

Die entspr. Sprache ist $L_{\text{fin}}(N) := \{v \in \Sigma^* \mid \exists M \in \text{Fin} : M_N[v] \}$.

Notation. $\mathfrak{L}^{\lambda} \coloneqq \{L_{\mathrm{fin}}(N) \mid N \text{ beschr. Netz mit Endmarkierung}\}\$ $\mathfrak{L} \coloneqq \{L_{\mathrm{fin}}(N) \mid N \text{ beschr. Netz mit Endmark. ohne interne Trans.}\}\$

Satz. { reguläre Sprachen } $\subset \mathfrak{L}$

Nebenläufigkeit I

Def. Eine Multimenge über X ist eine Funktion $\mu: X \to \mathbb{N}$.

$$\begin{array}{ll} \textbf{Notation.} & \mathfrak{M}(X) \coloneqq \{\mu : X \to \mathbb{N}\} \\ & \mu_Y \in \mathfrak{M}(X), x \mapsto |\{\star \mid x \in Y\}| \text{ für } Y \subset X, \\ & \emptyset \coloneqq \mu_\emptyset \in \mathfrak{M}(X), \quad \mu_x \coloneqq \mu_{\{x\}} \in \mathfrak{M}(X) \text{ für } x \in X \\ \end{array}$$

Def. Ein Schritt μ ist eine Multimenge $\mu \neq \emptyset \in \mathfrak{M}(T)$. Der Schritt μ ist aktiviert unter M, notiert $M[\mu]$, falls

$$\forall s \in S : \mu^-(s) := \sum_{t \in T} \mu(t) W(s, t) \le M(s).$$

Durch Schalten von μ entsteht die Folgemarkierung $M' \in \mathfrak{M}(S)$ mit

$$M'(s) = M(s) + \sum_{t \in T} \mu(t) \cdot (W(t, s) - W(s, t)).$$

Bem. Analog wird verallgemeinert: $M[\mu\rangle M', M[w\rangle, M[w\rangle M'$ für $\mu\in\mathfrak{M}(T)\setminus\{\emptyset\}$ bzw. $w\in(\mathfrak{M}(T)\setminus\{\emptyset\})^*$.

Def. $SS(N) := \{w \in (\mathfrak{M}(T) \setminus \{\emptyset\})^* \mid M_N[w]\}$ heißen **Schrittfolgen** (step sequences).

Def. Zwei Transitionen $t, t' \in T$ sind

- nebenläufig unter M, falls M[t+t'],
- in Konflikt unter M, falls $\neg M[t+t']$.

Notation. Für $\mu \in \mathfrak{M}(T)$ ist $\ell(\mu)$ die Multimenge mit

$$\ell(\mu): \Sigma \to \mathbb{N}, x \mapsto \sum_{t \in T} \ell(t) = x \mu(t)$$

(falls die rechte Zahl endlich ist für alle $x \in \Sigma$).

Für $w = \mu_1 \cdots \mu_n \in \mathfrak{M}(T)^*$ ist $\ell(w) := \ell(\mu_1) \cdots \ell(\mu_n)$.

Def. Mit $\mu \in \mathfrak{M}(T) \setminus \{0\}$, $w \in (\mathfrak{M}(T) \setminus \{0\})^*$ und M, M' ist defin.:

$$\frac{M[\mu\rangle M'}{M[\ell(\mu))\rangle M'} \quad \frac{M[\mu\rangle}{M[\ell(\mu))\rangle} \quad \frac{M[w\rangle M'}{M[\ell(w))\rangle M'} \quad \frac{M[w\rangle}{M[\ell(w))\rangle}$$

Lem. $M[t_1\rangle,\ldots,M[t_n]\wedge\forall i\neq j: {}^{\bullet}t_i\cap {}^{\bullet}t_i=\emptyset \implies M[t_1+\ldots t_n]$

Lem. $M[\mu]M' \wedge \text{Parikh}(w) = \mu \implies M[w]M'$

Bem. Über Schrittfolgen werden somit dieselben Markierungen erreicht wie über Schaltfolgen.

Def. Der schrittweise Erreichbarkeitsgraph $\mathfrak{SR}(N)$ besitzt die Knoten [M] und die Kanten $\{(M, M') \mid \exists \mu \in \mathfrak{M}(T) \setminus \{\emptyset\} : M[\mu] M'\}$.

Lem. Sei N schlingenfrei. Dann gilt:

$$(\forall w \in T^*, \text{Parikh}(w) = \mu : M[w)) \iff M[\mu]$$

Def. Eine Stelle $s \in S$ heißt n-beschränkt / beschränkt, falls

$$\sup\{M(s)\,|\,M\in[M_N\rangle\}\leq n\quad/\quad \sup\{M(s)\,|\,M\in[M_N\rangle\}<\infty.$$

Ein Netz heißt (n-) beschränkt, wenn alle Stellen $s \in S$ (n-) beschränkt sind. Ein Netz heißt **sicher**, wenn es 1-beschränkt ist. Ein Netz heißt **strukturell beschränkt**, wenn es bei beliebig geänderter Anfangsmarkierung beschränkt ist.

Prop. $[M_N]$ endlich $\iff N$ beschränkt

Lebendigkeit

Def. Sei $t \in T$ eine Trans. in einem Netz N und M eine Markierung.

- t heißt tot (oder 0-lebendig) unter M, falls $\forall M' \in [M] : \neg M'[t]$
- t heißt 1-lebendig unter M, falls $\exists w \in T^* : M[wt]$
- t heißt 2-lebendig unter M, falls

$$\forall n \in \mathbb{N} : \exists w_1, \dots, w_n \in T^* : M[w_1 t w_2 t \cdots w_n t]$$

- t heißt 3-lebendig unter M, falls eine unendliche Schaltfolge w existiert, M[w⟩, die t unendlich oft enthält.
- t heißt (4-) lebendig unter M, falls

$$\forall M' \in [M] : \neg(t \text{ ist tot unter } M)$$

• t heißt lebendig, falls t lebendig unter M_N ist.

Bem.
$$t$$
 4-lebendig $\implies t$ 3-lebendig $\implies t$ 2-lebendig $\implies t$ 1-lebendig $\iff \neg (t \text{ 0-lebendig})$

Def. Bezogen auf eine Markierung M:

- M heißt tot, falls alle Transitionen unter M tot sind.
- M heißt lebendig, wenn alle $t \in T$ unter M lebendig sind.
- M heißt monoton lebendig, wenn alle $M' \geq M$ lebendig sind.

Def. Bezogen auf ein Netz N:

- N heißt tot, falls M_N tot ist.
- N heißt verklemmungsfrei, falls $\forall M \in [M_N) : \neg(M \text{ tot})$
- N heißt lebendig, wenn M_N lebendig ist.
- N heißt monoton lebendig, wenn M_N monoton lebendig ist.

S- und T-Invarianten

Def. Die **Inzidenzmatrix** eines Netzes N ist die Matrix $C(N) \in \mathbb{Z}^{|T| \times |S|}$ mit $C(N)_{st} = \Delta t(s)$ für $s \in S$ und $t \in T$.

Bem. Folglich ist $\Delta t = C(N) \cdot t$ (wenn man t als One-Hot-Vektor auffasst) und für $M[w\rangle M'$ ist $M' = M + C(N) \cdot \text{Parikh}(w)$.

Def. Eine S-Invariante $y: S \to \mathbb{Z}$ ist eine Lsg von $C(N)^T \cdot y = 0$. Der Träger supp(y) einer S-Invarianten y ist $\{s \in S \mid y(s) \neq 0\}$.

Notation. S-Inv(N) := { S-Invarianten von N } = ker(C(N)^T)

Lem/Def. Das Netz N heißt von S-Invarianten überdeckt, falls folgende äquivalente Bedingungen gelten:

- N besitzt eine positive (d. h. $\forall s \in S : y(s) > 0$) S-Invariante.
- Für alle $s \in S$ gibt es eine nichtnegative (d. h. $\forall s \in S : y(s) \ge 0$) S-Invariante mit $s \in \text{supp}(y)$.

Lem. $y \in S\text{-Inv}(N) \implies \forall M \in [M_N] : y^T \cdot M = y^T \cdot M_N$

Bem. Das Lemma kann verwendet werden um zu zeigen, dass ein M nicht erreichbar ist.

Lem. Sei keine Transition in N tot. Dann gilt für $y \in \mathbb{Z}^S$:

$$\forall M \in [M_N] : y^T \cdot M = y^T \cdot M_N \implies y \in S\text{-Inv}(N)$$

Lem. Sei $s \in S$ und $y \in S$ -Inv(N) nichtnegativ mit y(s) > 0. Dann ist s beschränkt, genauer $(y^T \cdot M_N/y(s))$ -beschränkt.

Lem. Ist N von S-Invarianten überdeckt, so ist N strukturell beschränkt.

Satz. Besitzt N eine lebendige Markierung, so gilt:

N ist strukturell beschr. $\iff N$ ist von S-Invarianten überdeckt.

Def. Ein home state ist eine Markierung M mit

$$\forall M' \in [M\rangle : M \in [M'\rangle.$$

Ein Netz N heißt reversibel, wenn M_N ein home state ist.

Lem. Angenommen, N ist reversibel und keine Transitionen sind tot unter M_N . Dann ist N lebendig.

 $Bem.\ Es$ gibt lebendige, sichere Netze, die nicht von S-Invarianten überdeckt sind.

Def. Eine T-Invariante $x: T \to \mathbb{Z}$ ist eine Lsg von $C(N) \cdot x = 0$. Das Netz N heißt von T-Invarianten überdeckt, wenn es eine positive T-Invariante gibt.

Notation. T-Inv $(N) := \{ T$ -Invarianten von $N \} = \ker(C(N))$

Lem. Sei $w \in T^*$ mit M[w]M'. Dann gilt:

$$\operatorname{Parikh}(w) \in T\operatorname{-Inv}(N) \iff M = M'$$

Satz. Ist N lebendig und beschränkt, so ist N von T-Invarianten überdeckt.

Einige Entscheidbarkeitsprobleme

Problem (E – **Erreichbarkeit**). Gegeben seien ein Netz N und eine Markierung M. Frage: Ist M erreichbar in N?

Problem (0-E – 0-Erreichbarkeit). Gegeben seien ein Netz N. Frage: Ist die Nullmarkierung erreichbar?

 $Bem.\$ Diese Probleme sind lösbar, falls der Erreichbarkeitsgraph endlich ist.

Problem (TE – **Teilerreichbarkeit**). Gegeben ein Netz N, eine Teilmenge $S' \subseteq S$ und $M : S' \to \mathbb{N}$. Frage: Gibt es eine erreichbare Markierung $M \in \mathfrak{M}(S)$ mit $M|_{S'} = M'$?

- **Def.** Ein Entscheidungsproblem A ist auf ein Entscheidungsproblem B reduzierbar (notiert $A \mapsto B$), falls ein Lösungsalgorithmus für A existiert, welcher einen (vllt. gar nicht existenten!) Lösungsalgorithmus für B verwenden darf.
- A ist linear / polynomiell many-one-reduzierbar auf B, falls aus einer Instanz I von A in linearer / polynomieller Zeit eine Instanz I' von B berechnet werden kann, sodass die Antwort auf I gleich der Antwort auf I' ist. Notation: A \(\frac{\lin}{\text{poly}} \)_M B / A \(\frac{\text{poly}}{\text{poly}} \)_M B

Satz. (0-E)
$$\stackrel{\text{lin}}{\longmapsto}_M$$
 (E) $\stackrel{\text{lin}}{\longmapsto}_M$ (TE) $\stackrel{\text{lin}}{\longmapsto}_M$ (0-E)

Beweis ((TE)
$$\stackrel{\text{lin}}{\longmapsto}_M$$
 (0-E)). Konstruiere $\overline{N}=(\overline{S},\overline{T},\overline{W},M_{\overline{N}})$ mit

$$\begin{split} \overline{S} &\coloneqq S \coprod \{ \overline{s'} \mid s' \in S' \} \\ \overline{T} &\coloneqq T \coprod \{ t_{s'} \mid s' \in S' \} \coprod \{ t_s \mid s \in S \setminus S' \} \\ \overline{W} &\coloneqq W \cup \{ s \to t_s \mid s \in S \setminus S' \} \cup \{ s' \to t_{s'} \leftarrow \overline{s'} \mid s' \in S' \} \\ M_{\overline{N}} &\coloneqq (s \in S \mapsto M_N(s), \ \overline{s'} \mapsto M'(s')) \end{split}$$

Dann: M' teilerreichbar in $N \iff$ Nullmark. erreichbar in \overline{N}

Satz (schwierig!). (E) ist entscheidbar.

Problem (L – **Lebendigkeit**). Gegeben N. Frage: Ist N lebendig?

Problem (EL – **Einzellebendigkeit**). Gegeben seien N und $t \in T$. Frage: Ist t lebendig?

Satz. (L)
$$\stackrel{\text{lin}}{\longmapsto}_M$$
 (EL) $\stackrel{\text{lin}}{\longmapsto}_M$ (L)

$$\begin{split} \mathbf{Beweis.} \ \ _{n}(\mathbf{L}) & \stackrel{\text{lin}}{\longmapsto}_{M} (\mathbf{EL})^{\text{``}}. \ \text{Konstruiere} \ \overline{N} = (\overline{S}, \overline{T}, \overline{W}, M_{\overline{N}}) \ \text{mit} \\ & \overline{S} \coloneqq S \amalg \{s_{t} \mid t \in T\} \\ & \overline{T} \coloneqq T \amalg \{t_{\text{afterall}}\} \\ & \overline{W} \coloneqq W \cup \{t \to s_{t} \mid t \in T\} \cup \{s_{t} \to t_{\text{afterall}} \mid t \in T\} \\ & M_{\overline{N}} \coloneqq (s \in S \mapsto M_{N}(s), \ s_{t} \mapsto 0) \end{split}$$

Dann: N lebendig $\iff t_{\text{afterall}}$ lebendig in \overline{N} .

"(EL) $\stackrel{\text{lin}}{\longmapsto}_M$ (L)". Sei t die Transition, deren Lebendigkeit untersucht werden soll. Konstruiere $\tilde{N} = (S, T, \tilde{W}, M_N)$ mit $\tilde{W}(t', s) := W(t', s) + \delta^t_{t'}$. Dann: t lebendig in $N \iff \tilde{N}$ lebendig

Satz. (EL) ist reduzierbar auf (TE)

Beweisidee. Gefragt sei, ob eine Transition t_0 in Netz N lebendig ist. Erweitere N zu einem Netz \hat{N} , sodass jede Transition t aus N außer t_0 und jede neue Transition lebendig ist (indem man die nötigen Marken zum Schalten von t bereitstellt und nach dem Schalten die durch t erzeugten Marken entfernt).

Dann zeige: \hat{N} lebendig $\iff t_0$ lebendig in N.

 $M_{\overline{N}} := (s \in S \mapsto M_N(s), s_{\text{distr}} \mapsto 0, s_{\text{control}} \mapsto 1)$

Satz. (0-E) $\stackrel{\text{lin}}{\longmapsto}_M$ Co-(L), das ist (L) mit umgekehrter Antwort

Beweis. Konstruiere $\overline{N} = (\overline{S}, \overline{T}, \overline{W}, M_{\overline{N}})$ mit

$$\begin{split} \overline{S} &\coloneqq S \amalg \{s_{\text{distr}}, s_{\text{control}}\} \\ \overline{T} &\coloneqq T \amalg \{t_s \mid s \in S\} \coprod \{t_{\text{distr}}, t_{\text{blackhole}}\} \\ \overline{W} &\coloneqq W \cup \{t \rightleftarrows s_{\text{control}} \mid t \in T\} \cup \{t_{\text{distr}} \to s \to t_s \to s_{\text{distr}} \mid s \in S\} \\ &\cup \{s_{\text{distr}} \rightleftarrows t_{\text{distr}}\} \cup \{s_{\text{control}} \to t_{\text{blackhole}}\} \end{split}$$

(Bemerke: Jede Markierung \hat{M} mit $\hat{M}(s_{\text{distr}}) \geq 0$ ist lebendig.) Dann: Nullmarkierung in N erreichbar $\iff \overline{N}$ nicht lebendig

Problem. SR – Spezielles Reproduktionsproblem Gegeben ein Netz N, gibt es eine nicht-leere Schaltfolge w mit $M_N[w\rangle M_N$?

Satz. (SR) $\stackrel{\text{lin}}{\longmapsto}_M$ (0-E)

Beweis. Konstruiere $\widetilde{N}=(\widetilde{S},\widetilde{T},\widetilde{W},M_{\widetilde{N}})$ mit

 $\widetilde{S} \coloneqq S \times \{\text{active}, \text{comparison}\} \coprod \{s_{\text{control}}\}$

 $\widetilde{T} := T \times \{\text{one-shot, multiple}\} \coprod \{t_s \mid s \in S\}$

$$\begin{split} \widetilde{W}((t, _), (s, \text{active})) &:= W(t, s), \qquad \widetilde{W}(s_{\text{control}}, (t, \text{one-shot})) := 1, \\ \widetilde{W}((s, \text{active}), (t, _)) &:= W(s, t) \qquad \widetilde{W}((s, _), t_s) \coloneqq 1, \end{split}$$

$$W((s, \text{active}), (t, _)) := W(s, t) \qquad W((s, _), t_s) := 1,$$

Dann gilt: $\exists w \in t^* \setminus \{\lambda\} : M_N[w] \setminus M_N \iff 0 \in [M_{\widetilde{N}}]$

$$\widetilde{W}(\mbox{${}_{--}$},\mbox{${}_{--}$}) := 0 \text{ sonst}, \quad M_{\widetilde{N}}(s,\mbox{${}_{--}$}) := M_N(s), \quad M_{\widetilde{N}}(s_{\rm control}) := 1$$

Fazit. (L) und (EL) sind entscheidbar, aber mindestens so schwer wie (E), (0-E) und (TE).

Beschränktheit und Überdeckbarkeit

Lem (Dickson). \leq ist eine Wohlquasiordnung auf \mathbb{N}^n , d. h. für alle unendlichen Folgen $(M_i)_{i\in\mathbb{N}}$ in \mathbb{N}^n gibt es eine Teilfolge $(M_{i_j})_{j\in\mathbb{N}}$ mit $M_{i_j} \leq M_{i_{j+1}}$ für alle $j \in \mathbb{N}$.

Def. Ein Weg in einem Graphen (V, E) ist eine Folge $v_1 \dots v_n$ in V mit $\forall i \neq j : v_i \neq v_j$ und $(v_i, v_{i+1}) \in E$.

Def. Ein Graph (V, E) heißt lokal endlich, falls für alle $v \in V$ die Menge $\{w \in V \mid (v, w) \in E\}$ endlich ist.

Lem (König). Sei (V, E) ein lokal endlicher gerichteter Graph und $v_0 \in V$ ein Knoten, sodass für alle $v \in V$ ein Weg von v_0 nach v existiert. Dann gibt es einen unendlichen Weg ausgehend von v_0 .

Satz. N ist unbeschränkt \iff $\exists M, M' \in [M_N) : \exists w \in T^* : M[w\rangle M' \land M \le M' \land M \ne M'$

Def. Eine **erweiterte** Markierung von N ist eine Abbildung

$$M: S \to \mathbb{N} \cup \{\omega\}.$$

Notation. $\mathfrak{M}^{\omega}(S) := \{ \text{ erw. Mark. von } N \} := (\mathbb{N} \cup \{\omega\})^S$

Def. Sei N ein Netz und M_1 , M_2 erweiterte Markierungen.

- M_2 überdeckt $M_1 : \iff M_1 \leq M_2$
- M_1 ist **überdeckbar** : $\iff \exists M \in [M_N) : M_1 \leq M$

Def. Eine Menge $S' \subseteq S$ heißt simultan unbeschränkt, falls

$$\forall n \in \mathbb{N} : \exists M \in [M_N) : \forall s \in S : M(s) > n.$$

Def. Sei $N = (S, T, W, M_N)$ ein Netz. Ein Überdeckungsgraph von N ist ein kantenbeschrifteter, gericht. Graph Cov(N) = (V, E), der von folgendem (nichtdet.) Algorithmus berechnet wird:

```
1: V := \emptyset \subset \mathfrak{M}^{\omega}(S), A := \{M_N\} \subset \mathfrak{M}^{\omega}(S),
2: E := \emptyset \subset \mathfrak{M}^{\omega}(S) \times T \times \mathfrak{M}^{\omega}(S),
```

- 3: PRED := const $\mathbf{nil} \in (\mathfrak{M}^{\omega}(S) \cup {\{\mathbf{nil}\}\}}^{\mathfrak{M}^{\omega}(S)}$
- 4: while $A \neq \emptyset$ do
- 5: wähle $M \in A$
- 6: $A := A \setminus \{M\}, \quad V := V \cup \{M\}$
- 7: **for** $t \in T$ mit M[t) **do**
- 8: $M' := M + \Delta t, \quad M^* := M$
- 9: while $M^* \neq \text{nil} \land M^* \nleq M' \text{ do } M^* := PRED(M^*)$
- 10: if $M^* \neq \text{nil then } M' := M' + \omega \cdot (M' M^*)$
- 11: $E := \{(M, t, M')\}$
- 12: if $M' \notin V \cup A$ then $A := A \cup \{M'\}$, PRED(M') := M

Satz. Cov(N) ist endlich (\iff der Algorithmus terminiert)

Kor. Es ist entscheidbar, ob N beschränkt ist.

Beweis. Konstruiere Cov(N) = (V, E) wobei $V \subset \mathfrak{M}^{\omega}(S)$ endl. ist. Überprüfe, ob sogar $V \subset \mathfrak{M}(S)$ gilt. Falls ja, so ist $\mathfrak{R}(N) = Cov(N)$ endlich. Falls nein, so gibt es M, M' wie im letzten Satz und N ist somit unbeschränkt.

Bem. Jedes $\mathrm{Cov}(N)$ ist (nach Einführen eines Fehlerzustandes und Kanten dorthin) ein determ. endl. Automat mit Startzustand $M_N.$

Def. $L(\text{Cov}(N)) \subseteq T^*$ ist die Sprache der von einem Cov(N) akzeptierten Wörter.

Notation. $M_w := \operatorname{durch} w \in L(\operatorname{Cov}(N))$ erreichter Zust. in $\operatorname{Cov}(N)$

$$\begin{array}{ll} \textbf{Lem.} & M_N[w\rangle M & \Longrightarrow & w \in L(\mathrm{Cov}(N)) \land \\ & \forall \, s \in S \, : \, M_w(s) \in \{M(s), \omega\} \end{array}$$

Lem. Für alle M in Cov(N) u. alle $n \in \mathbb{N}$ gibt es ein $M' \in [M_N]$ mit

$$\begin{cases} M'(s) = M(s) & \text{falls } M(s) \neq \omega, \\ M'(s) > n & \text{falls } M(s) = \omega. \end{cases}$$

Kor. • S' ist simultan unbeschränkt \iff (const ω) \in Cov(N)

- Sei \tilde{M} eine Markierung von N. Dann gilt: \tilde{M} ist überdeckbar in $N \iff \tilde{M}$ wird von einem M in Cov(N) überdeckt
- t ist nicht tot in $N \iff t$ ist Kantenbeschriftung in Cov(N)

Lem. Für jedes Netz N mit Transition $t \in T$ sind äquivalent:

- t ist 2-lebendig
- t ist Beschriftung in einem Kreis in Cov(N)

 ${\bf Kor.}\,$ 2-Lebendigkeit von Transitionen ist entscheidbar.

Strukturtheorie und Free-Choice-Netze

Konvention. In diesem Abschn. seien alle Kantengewichte 0 oder 1.

Def. Eine Teilmenge $R \subseteq S$ heißt

• Siphon, falls ${}^{\bullet}R \subseteq R^{\bullet}$ • Falle, falls $R^{\bullet} \subseteq {}^{\bullet}R$

Lem. • Ist R ein Siphon und unmarkiert unter M, so ist R unmarkiert unter allen $M' \in [M)$.

 Ist R eine Falle und markiert unter M, so ist R markiert unter allen M' ∈ [M⟩.

Lem. Angenommen, N hat keine isolierten Stellen. Ist $R \neq \emptyset$ ein Siphon und unmarkiert unter $M \in [M_n)$, so ist N nicht lebendig.

Lem. Sei $T \neq \emptyset$ und M eine tote Markierung. Dann ist $R = M^{-1}(\{0\})$ ein nichtleerer, unmarkierter Siphon.

Lem. Sei $T \neq \emptyset$. Enthält jeder nichtleere Siphon eine markierte Falle, so ist N verklemmungsfrei.

Def. Ein Netz N mit Kantengewichten in $\{0,1\}$ heißt

• Free-Choice-Netz (FC-Netz), falls

$$\forall t, t' \in T : t \neq t' \land s \in {}^{\bullet}t \cap {}^{\bullet}t' \implies {}^{\bullet}t = {}^{\bullet}t' = \{s\}.$$

• erweitertes Free-Choice-Netz (EFC-Netz), falls

$$\forall t, t' \in T : {}^{\bullet}t \cap {}^{\bullet}t' \neq \emptyset \implies {}^{\bullet}t = {}^{\bullet}t'.$$

Bem. Ist N ein EFC-Netz, $s \in S$, $t_1, t_2 \in s^{\bullet}$ und M eine Markierung, so gilt $M[t_1\rangle \iff M[t_2\rangle$.

Lem. Die Vereinigung von Siphons / Fallen ist wieder ein Siphon / eine Falle. Damit bilden Siphons / Fallen mit der Vereinigung einen beschränkten Halbverband.

Kor. • Jedes $R \subseteq S$ enthält eine größte Falle.

• $R \subseteq S$ enthält eine markierte Falle \iff die größte Falle in R ist markiert

Def. Sei $P \subseteq S$ und < eine Totalordnung auf P. Die durch < induzierte lexikographische Ordnung < lex auf $\mathfrak{M}(S)$ ist

$$\begin{array}{cccc} M_1 <_{\text{lex}} M_2 & :\iff \exists\, p \in P : & \forall\, q < p : M_1(q) = M_2(q) \\ & \land & M_1(p) < M_2(p). \end{array}$$

Lem. $<_P$ ist Noethersch (wohlfundiert)

Lem. Sei N ein EFC-Netz, $R\subseteq S$ und $Q\subseteq R$ die größte Falle in R. Dann gibt es eine Totalordnung < auf $R\setminus Q$, sodass:

Für alle Markierungen M mit $M|_Q \equiv 0$ und $\exists t \in R^{\bullet} : M[t]$ gilt

$$\exists M' \in [M] : M' <_{\text{lex}} M \land M'|_{Q} \equiv 0.$$

Beweis. Setze $n := |R \setminus Q|$. Wähle

- $t_1 \in R^{\bullet} \setminus {}^{\bullet}R$ und $s_1 \in {}^{\bullet}t_1 \cap (R \setminus Q)$
- $t_2 \in (R \setminus \{s_1\})^{\bullet} \setminus {}^{\bullet}(R \setminus \{s_1\}) \text{ und } s_2 \in {}^{\bullet}t_1 \cap (R \setminus (Q \cup \{s_1\}))$

• ...

• $t_n \in (R \setminus \{s_1, \dots, s_{n-1}\})^{\bullet} \setminus {\bullet}(R \setminus \{s_1, \dots, s_{n-1}\})$ und $s_n \in {\bullet}t_1 \cap (R \setminus (Q \cup \{s_1, \dots, s_{n-1}\}))$

Definiere < durch $s_n < \ldots < s_2 < s_1$. Für t mit M[t) gibt es ein $i \in \{1, \ldots, n\}$ mit $s_i \in {}^{\bullet}t$. Da N EFC ist, gilt ${}^{\bullet}t_i = {}^{\bullet}t$. Somit existiert M' mit $M[t_i)M'$. Es stimmen M und M' auf $Q \cup \{s_{i+1}, \ldots, s_n\}$ überein, aber $M'(s_i) < M(s_i)$. Also $M' <_{\text{lex}} M$.

Kor. Die Aussage des letzten Satzes gilt auch für alle Markierungen M mit $M|_Q \equiv 0$ und $\exists \, t \in R^{\bullet} : t$ ist nicht tot unter M, falls R ein Siphon ist.

Satz (Commoner). Sei N ein EFC-Netz ohne isol. Stellen. Dann:

N ist lebendig \iff jeder Siphon $\neq \emptyset$ enth. eine markierte Falle

Beweis. "⇒". Sei R ein nichtleerer Siphon und $Q \subseteq R$ die größte Falle in R. Wähle $t \in R^{\bullet}$. Angenommen, $M_N|_Q \equiv 0$. Durch mehrmalige Anwendung des vorh. Korollar (beachte: t ist nicht tot) erhalten wir eine unendliche absteigende Reihe $M_N >_{\text{lex}} M_1 >_{\text{lex}} \dots$ im Widerspruch zur Noetherianität von $<_{\text{lex}}$.

Kor. Jedes lebendige EFC-Netz ist monoton lebendig.

Netzvariationen

Def. Ein **High-Level-Netz** N ist gegeben durch

- eine endliche Menge S von Stellen,
- eine endliche Menge T von Transitionen,
- eine Menge L von Marken (eine Markierung von N ist gegeben durch eine Multimenge von L für jede Stelle von N, also durch eine Abbildung in $\mathfrak{M}(L)^S$)
- für jede Transition $t \in T$ eine (berechenbare) Transitionsregel $r_t \subseteq \mathfrak{M}(S \times L) \times \mathfrak{M}(S \times L)$
- und eine Anfangsmarkierung $M_N: S \to \mathfrak{M}(L)$.

Def. Ein Netz mit Zeit ist ein Tupel $N = (S, T, W, M_N, \tau)$, wobei

- (S, T, W, M_N) ein sicheres Petrinetz ist mit $\forall t \in T : {}^{\bullet}t \neq \emptyset$ und
- $\tau: S \to \mathbb{N}_1$ die **Latenzzeit** aller Transitionen angibt.

Ein **Zustand** von N ist ein Tupel (M, res) , wobei M eine Markierung ist und $\operatorname{res}: T \to \mathbb{N}_0$ die Restzeit jeder Transition angibt. Es gibt zwei verschiedene Schaltschritte:

$$(M, \operatorname{res})[\sigma)(M, \operatorname{res}') :\iff \operatorname{res} \geq 1 \wedge \operatorname{res}' = \operatorname{res} -1 \quad (\mathbf{Zeitschritt})$$

$$(M, \operatorname{res})[t\rangle(M', \operatorname{res}') :\iff M[t\rangle M' \wedge \qquad (\mathbf{Transition})$$

$$\wedge \operatorname{res}'(t') = \begin{cases} \tau(t') & \text{falls } \neg(M[t'\rangle) \wedge M'[t'\rangle \\ \operatorname{res}(t') & \text{sonst} \end{cases}$$

Def. Ein Netz mit Prioritäten ist ein Petri-Netz $N = (S, T, W, M_N)$ mit einer Halbordnung \square . Das Netz schaltet unter Beachtung der Priorität, falls

$$M[t) \cap M' : \iff M[t)M' \land \forall t' \in T : M[t') \implies t' \not \sqsubset t$$

Def. Ein Netz mit Inhibitor-Kanten ist eine Petri-Netz $N = (S, T, W, M_N)$ zusammen mit einer Menge $I \subseteq S \times T$ von Inhibitor-Kanten. Man definiert:

$$M[t]_I M' : \iff M[t]_I M' \land \forall s \in S : (s,t) \in I \implies M(s) = 0$$

Def. Eine Zählermaschine besteht aus N-wertigen Registern c_1, \ldots, c_n und einem Programm bestehend aus den Instruktionen

- INCR (c_i) erhöhe c_i um eins
- JZDEC (c_i, m) springe zu Adresse m, falls $c_i = 0$, ansonsten erniedrige c_i um eins.

Prop. Für jede Turingmaschine gibt es eine 2-Zählermaschine, die die Turingmaschine simuliert (bei passender Kodierung der Eingabe und Ausgabe).

Kor. Das Halteproblem für 2-Zählermaschinen ist unentscheidbar.

Lem. Zählermaschinen lassen sich als Netze mit Zeit, mit Prioritäten oder mit Inhibitor-Kanten kodieren.

Kor. Das Erreichbarkeitsproblem ist für solche Netze unentscheidbar.

Def. Ein Netz mit Kapazitäten ist eine Petri-Netz $N = (S, T, W, M_N)$ zusammen mit einer Abbildung $k: S \to \mathbb{N} \cup \{\infty\}$. Man definiert:

$$M[t]_k M' : \iff M[t] M' \wedge M' \leq k$$

Nichtdeterminismus und modulare Konstruktion

Def. Zwei Netze N_1 und N_2 heißen sprachäquivalent, wenn $L(N_1) = L(N_2).$

Satz. Für beschränkte Netze ist Sprachäquivalenz entscheidbar.

Beweis. Für beschränkte Netze N ist L(N) regulär (man erhält einen endlichen Automaten aus $\Re(N)$). Gleichheit von regulären Sprachen ist entscheidbar.

Bem. Sprachäquivalenz ist unzureichend für den Systemvergleich.

Def. Die **ready-Semantik** eines Netzes N ist

$$\operatorname{ready}(N) := \{(w, X) \mid \exists M : M_N[w] \land X = \{a \in \Sigma \mid M[a] \}\}.$$

 N_1 , N_2 heißen **ready-äquivalent**, falls ready (N_1) = ready (N_2) .

Def. Die Failure-Semantik (Verweigerungssemantik) eines Netzes N ist

$$\mathfrak{F}(N) := \{ (w, X) \mid X \subseteq \Sigma, \exists M : M_N[w] \land M \land \forall a \in X : \neg M[a] \}.$$

Dabei heißt X Verweigerungsmenge.

 N_1 , N_2 sind **failure-äquivalent**, falls $\mathfrak{F}(N_1) = \mathfrak{F}(N_2)$.

Lem. \bullet $(w, X) \in \mathfrak{F}(N), Y \subseteq X \implies (w, Y) \in \mathfrak{F}(N)$

- $(w,\emptyset) \in \mathfrak{F}(N) \iff w \in L(N)$
- $(w, X) \in \mathfrak{F}(N), \forall a \in Y : (wa, \emptyset) \not\in L(N) \implies (w, X \cup Y) \in \mathfrak{F}(N)$
- $(w, X) \in \mathfrak{F}(N), Y \subseteq \Sigma \setminus \ell(T) \implies (w, X \cup Y) \in \mathfrak{F}(N)$

Lem.
$$(w, X) \in \mathfrak{F}(N) \iff \exists Y \subseteq \Sigma \setminus X : (w, Y) \in \text{ready}(N)$$

Satz. Ready-Äquivalenz ⇒ ¾-Äquivalenz ⇒ Sprachäquivalenz

Bem. Die Umkehrungen sind falsch.

Satz. Für beschränkte Netze ist \(\frac{1}{3} - \text{Aquivalenz entscheidbar} \).

Beweisidee. Aus jedem Netz N kann man einen endlichen Automaten konstruieren, dessen Sprache kanonisch isomorph zu $\mathfrak{F}(N)$ ist. Gleichheit von regulären Sprachen ist entscheidbar.

Def. Seien N_1 und N_2 mit Σ beschriftete Petrinetze und $A \subseteq \Sigma$. Die parallele Komposition mit Synchronisation über A ist das beschriftete Netz $N \parallel_A N_2 = (S, T, W, M_N, \ell)$ mit

- $S = S_1 \coprod S_2$
- T = $\{(t_1,\lambda) | t_1 \in T_1, \ell_1(t_1) \not\in A\}$ $\coprod \{(\lambda, t_2) \mid t_2 \in T_2, \ell_2(t_2) \not\in A\}$ $\coprod \{(t_1, t_2) \in T_1 \times T_2 \mid \ell_1(t_1) = \ell_2(t_2) \in A\}$
- $W(s_1 \in S_1, (t_1, t_2)) := W_1(s_1, t_1)$ falls $t_1 \in T_1$ $W(s_2 \in S_1, (t_1, t_2)) := W_2(s_2, t_2) \text{ falls } t_2 \in T_2$ $W(s \in S, t \in T) := 0 \text{ (sonst)}$ $W((t_1, t_2), s_1 \in S_1) := W_1(t_1, s_1) \text{ falls } t_1 \in T_1$ $W((t_1, t_2), s_2 \in S_1) := W_2(t_2, s_2)$ falls $t_2 \in T_2$ $W(t \in T, s \in S) := 0 \text{ (sonst)}$
- $M_N := M_{N_1} \coprod M_{N_2}$
- $\ell((t_1, t_2) \in T_1 \times T_2) := \ell_1(t_1) = \ell_2(t_2)$ $\ell(t_1 \in T_1) := \ell_1(t_1)$ $\ell(t_2 \in T_2) := \ell_2(t_2)$

Bem. Die Menge der mit Σ beschr. Netze wird mit \parallel_A zu einem komm. Monoid mit neutralem Element $(S = \emptyset, T = \Sigma, -, -, \ell = id)$

Lem. Sei $N = N_1 \parallel N_2, M_1, M_1' \in \mathfrak{M}(S_1), M_2, M_2' \in \mathfrak{M}(S_2)$ und $(t_1^{(1)}, t_2^{(1)}), \dots, (t_1^{(n)}, t_2^{(n)}) \in T_N$. Dann gilt:

$$M_1 \coprod M_2[(t_1^{(1)}, t_2^{(1)}), \dots, (t_1^{(n)}, t_2^{(n)})) M_1' \coprod M_2'$$

 $\iff M_1[t_1^{(1)}, \dots, t_1^{(n)}) M_1' \land M_2[t_2^{(1)}, \dots, t_2^{(n)}) M_2'$

Bem. Dabei gilt $M[\lambda]M$ immer.

Lem. Sei $a \in \Sigma \cup \{\lambda\}$. Es gilt $M_1 \coprod M_2[a] \setminus M'_1 \coprod M'_2$ g. d. wenn

- Falls $a \in A$: $M_1[a] M_1' \wedge M_2[a] M_2'$
- Falls $a \notin A$: $M_1[a\rangle M_1' \wedge M_2[\lambda\rangle M_2' \text{ oder } M_1[\lambda\rangle M_1' \wedge M_2[a\rangle M_2']$

Def. Seien $u, v \in \Sigma^*$. Dann ist

$$u \parallel_A v \coloneqq \left\{ w = w_1 \cdots w_n \middle| \begin{array}{l} u = u_1 \cdots u_n, v = v_1 \cdots v_n \text{ mit} \\ u_i, v_i \in \Sigma \cup \{\lambda\} \text{ sodass} \\ \forall 1 \le i \le n : u_i = v_i = w_i \in A \end{array} \right\}$$

Bem. Im Fall $u_i v_i = w_i$ gilt $u_i = \lambda$ oder $v_i = \lambda$.

Lem. Es sind äquivalent:

- in $N_1 \parallel_A N_2$ gilt $M_1 \coprod M_2[w] M_1' \coprod M_2'$
- $\exists u, v \in \Sigma^* : M_1[u] M_1' \wedge M_2[v] M_2' \wedge w \in u \parallel_A v$

Satz. • $L(N_1 \parallel_A N_2) = \cup \{u \parallel_A v \mid u \in L(N_1), v \in L(N_2)\}$

•
$$\mathfrak{F}(N_1 \parallel_A N_2) = \begin{cases} (w, Z) & \exists (u, X) \in \mathfrak{F}(N_1), (v, Y) \in \mathfrak{F}(N_2) : \\ w \in u \parallel_A v \text{ und} \\ Z \cap A \subseteq X \cup A \text{ und } Z \setminus A \subseteq X \cap Y \end{cases}$$

Def. Ein beschriftetes Netz heißt verklemmungsfrei, wenn

$$\forall M \in [M_N\rangle : \exists a \in \Sigma : M[a\rangle\rangle.$$

Zwei Netze heißen v-äquivalent, falls beide verklemmungsfrei oder beide nicht verklemmungsfrei sind.

Lem. N ist verklemmungsfrei $\iff \forall w \in \Sigma^* : (w, \Sigma) \notin \mathfrak{F}(N)$

Def. Zwei Netze N_1 und N_2 heißen **VA-äquivalent**, falls:

Für alle Netze N und alle $A \subseteq \Sigma$ gilt:

Die Netze $N_1 \parallel_A N$ und $N_2 \parallel_A N$ sind v-äquivalent.

Satz. 3- und VA-Äquivalenz stimmen überein.

Beweisidee. Seien N_1 und N_2 VA-äquivalent.

Setze $A := (\ell_1(T_1) \cup \ell_2(T_2)) \setminus \{\lambda\}$. Zeige:

Es gibt ein Netz N, sodass für alle N' mit $l'(N') \setminus \{\lambda\} \subseteq A$ gilt:

$$N \parallel_A N'$$
 ist verklemmungsfrei $\iff (w, X) \notin \mathfrak{F}(N')$

Dann:

$$\begin{array}{cccc} (w,X)\not\in \mathfrak{F}(N_1) & (w,X)\not\in \mathfrak{F}(N_2)\\ & \updownarrow & & \updownarrow\\ N\parallel_A N_1 \text{ verklemmungsfrei} & \iff & N\parallel_A N_2 \text{ verklemmungsfrei} \end{array}$$