Capstone Project 1

KKBox Customer Churn Prediction

How will I retain my customers?

- Most companies utilize subscription business model, including KKBox
- KKBox shared their customer data on Kaggle to learn more about predicting churn rates.
- **Inquiry:** Can we predict if a user will make a new service subscription transaction within 30 days after the current membership expiration date based on their behaviors and interactions with the product?

KKBox is a Taiwan-based music streaming software

Data Provided

Train Dataset

msno

is_churn

msno

city

bd

gender

registered_via

registration_init_time

Transactions Data

payment method id

payment_plan_days

plan_list_price

msno

 \rightarrow

actual_amount_paid

is_auto_renew

transaction_date

membership_expire_date

is_cancel

User Log Data

→

date

msno

num_25

num_50

num_75

num 985

num 100

num_unq

total_secs

Both groups are similar in certain demographics.

17500 - is chum 0 15000 - 12500 - 12500 - 5000 - 2500 - 6emale Gender

Even gender ratio

Their behaviors with the app was also similar.

Similar length of account distribution

A few demographics features did vary between the 2 groups.

Most of churned users are in their early 20s while users who did not churn are mostly in their late 20s.

Users who did not churn mostly signed up via registration method 7 while most churned users registered via method 9.

They also differed in the monetary transactions made.

Those who did not churn seemed to have made more transactions than those that churned.

The users who used the auto-renew feature tend to be less likely to churn.

Inferential Statistics

Although the distributions may seem to look like they differ visually, these hypotheses should be tested to see if the difference is statistically significant

Method used: Permutation (Bootstrap) Hypothesis Testing

Null Hypothesis	Mean Difference	95% Confidence Interval	P-value	Reject H0
There's no difference in the age between user who churned and did not churn.	2.574	[2.437, 2.711]	0	True
There's no difference in auto-renewal rate between user who churned and did not churn.	0.441	[0.437, 0.445]	0	True
There's no difference in the number of transactions between user who churned and did not churn.	5.520	[5.431, 5.609]	0	True
There's no difference in the number of unique songs listened per session between user who churned and did not churn.	-1.093	[-1.299, -0.888]	0	True

Building the Classification Model

To take advantage of the temporal aspect of the data, we will split the dataset into 2 separate time periods for training and testing data:

- Training Data: February (2017/02/01 2017/02/28)
- Testing Data: March (2017/03/01 2017/03/31)

Feature Engineering

Transactions Data

msno

payment method id

payment_plan_days

plan_list_price

actual amount paid

is_auto_renew

transaction_date

membership_expire_date

is_cancel

Transactions Data

msno

—

avg_actual_amount_paid

avg_is_auto_renew

avg_is_cancel

avg_payment_plan_7

avg_payment_plan_30

avg_discount_received

trans_count

Member Data

msno

city

bd

gender

registered_via

registration_init_time

gender_male registered_via days_since_reg city_3 city_4 city_5 city_6 city_7 city_8 city_9 city_10 city_11 city_12 city_13 city_14

city_15

city_16

city 17

city_18

city_19

city 20

city_21

city_22 registered via 4

registered_via_7
registered via 9

registered via 13

Member Data

msno age

Feature Engineering

User Log Data

msno

date

num_25

num_50

num_75

num_985

num_100

num_unq

total_secs

User Logs Data	
msno	
avg_num_25	
avg_num_50	
avg_num_75	
avg_num_985	
avg_num_100	
avg_num_unq	
avg_rate_num_25	
avg_rate_num_50	
avg_rate_num_75	
avg_rate_num_985	
avg_rate_num_100	
total_secs	
log_count	
days since login	

In total, there are 48 features.

Data Preprocessing

Not all users in the training data and testing data that had churn information had records of transactions or user activity.

- If the user did not have any transactions data, the transactions count feature was filled with 0.
- If the user did not have any user log data, the days since log in was filled with 31.
- All the other features were filled with the sample mean for the column.

In the end, all the values were normalized.

Selecting Classification Model

Fit 5 different classification models on the data using the default parameters and

utilized log loss as the model metric.

Classification Model	Average Log Loss
Logistic Regression	0.463
Random Forest	1.464
Adaptive Boosting	0.681
Gradient Boosting	0.428
Extreme Gradient Boosting	0.427

Random Forest Accuracy Score: 0.962

Fine Tuning Hyperparameters

Utilized GridSearch cross validation to select best parameters for extreme gradient boosting model:

- colsample_bytree = 0.8
- learning_rate = 0.05
- max_depth = 8

Feature Selection

Feature selection is the method of selecting the most important features to be used in the model. The scoring method used to rank each feature is Mutual Information.

Number of Top Features Kept	Log Loss Score
30	0.3919
32	0.3901
35	0.3896
40	0.3907
42	0.3899
All 48	0.3887

Principal Component Analysis

Unlike feature selection, PCA reduces dimensionality through a linear transformation into a lower dimension.

Number of PCA Components	Log Loss Score
29	0.4062
30	0.4067
31	0.405
32	0.4055
33	0.4038
34	0.4023
35	0.3998
36	0.3974
37	0.3958

Final Results

- Final Model
 - XGBoosting(colsample_bytree = 0.8, learning_rate = 0.05, max_depth = 8) using top 35 features
- Results
 - February Train Data
 - Accuracy: 83.7%
 - Log loss: 0.3934
 - March Test Data
 - Accuracy: 78.9%
 - Log loss: 0.4655

Limitations and Further Opportunities

- Model can be improved using server with higher CPU
 - Solving issue of unbalanced dataset by assigning higher weight to users that churned so that all the data can be used to train model
 - Fine tune more hyperparameters
- Model can be improved in a better understanding of the variables provided
 - Extreme negative values in columns that should strictly be positive (age and total seconds listened)

A model with a low log loss allows accurate prediction of the likelihood of churning. Clustering similar users together in terms of demographics and activity can pave the opportunity of a recommender system that provides the most effective promotion for the user.