Drought in tropical forests

The role of tree height and wood density for hydraulic efficiency, productivity and vulnerability to cavitation of trees along a lowland precipitation gradient

Roman Link

Department of Plant Ecology and Ecosystem Research Georg August University of Göttingen

January 25, 2018

- **Chapter 1:** Predicting radial sap flow profiles from Costa Rican tropical dry forest species
- Chapter 2: Predicting plant vulnerability to embolism in Costa Rican humid tropical forest species
- Chapter 3: Relationship between productivity, structural and functional, wood anatomical and hydraulic traits of tropical forest species from Costa Rica

Structure of my PhD project

- **Chapter 1:** Predicting radial sap flow profiles from Costa Rican tropical dry forest species
- Chapter 2: Predicting plant vulnerability to embolism in Costa Rican humid tropical forest species
- Chapter 3: Relationship between productivity, structural and functional, wood anatomical and hydraulic traits of tropical forest species from Costa Rica
- Bonus Chapter: Maximum-likelihood estimation of xylem vessel lengths

- Introduction
- Predicting radial sap flow profiles from Costa Rican tropical dry forest species
- Predicting plant vulnerability to embolism in Costa Rican humid tropical forest species
- Relationship between productivity, structural and functional, wood anatomical and hydraulic traits of tropical forest species from Costa Rica

Structure of this presentation

- Introduction
- Predicting radial sap flow profiles from Costa Rican tropical dry forest species
- Predicting plant vulnerability to embolism in Costa Rican humid tropical forest species
- Relationship between productivity, structural and functional, wood anatomical and hydraulic traits of tropical forest species from Costa Rica
- Maximum-likelihood estimation of xylem vessel lengths: Not in the focus of this presentation!

Introduction

Introduction

- Basics about plant water relations
- Why is it important to know about drought effects in the tropics?

Design of the study

- 5 research sites along a rainfall gradient on the Pacific shoreline of Costa Rica
- Gradient from tropical dry forest to humid tropical lowland forest
- Based on existing research sites of the **Instituto** Tecnológico de Costa Rica

Design of the study

Introduction

- At each of the 5 research sites:
 - 8 species representing a gradient in tree height and wood density
 - 5 replicates per species
 - ⇒ 40 trees per site, 200 trees in total
- Field measurements of temperature, relative humidity and precipitation
- Problems with the design
 - Opportunistic use of pre-existing plots
 - Different plot sizes and numbers at each site
 - Differences in historic land use (pristine primary forest vs. disturbed primary forest vs. secondary forest)
 - → Plot-based comparisons are difficult
 - ⇒ Not that important for our (eco-physiological) research questions, but limits usability of plot network for other studies

Radial sap flow

- What are radial sap flow profiles?
- What are they needed for?

Heat field deformation sensors

Explain how they work

Heat field deformation sensors

- Problems: Figures from Sebastian's paper
- Relative values are probably reliable, absolute values have to be handled with care

Research questions & hypotheses

- Why we focus on radial gradients
- Hypothesis: The shape of radial sap flow profiles can be predicted by wood density and tree height

Data analysis

- Non-linear Bayesian hierarchical model
- Simultaneously estimating shape of profiles on one stage on the model, and regressing relationship between parameters and predictors on second model stage
- ONE SLIDE!

Preliminary results I - predicted profiles

• Figure and some explication

Preliminary results II - predicted relationships

• Figure and some explication

Vulnerability curves

- What are vulnerability curves?
- What kind of information do they offer?

The Cavi1000

• Some photos, basic information about how it works

Research questions & hypotheses

• Plant vulnerability to embolism can be predicted by structural, functional and wood anatomical traits

Data analysis

- Non-linear Bayesian hierarchical model
- Compare to HFD model, mention Ogle et al. 2009
- ONE SLIDE!

Observed vulnerability curves

• Do not overinterprete!

References

Big picture

- Analyzed variables (methods section)
- Design

Growth data

- short description
- picture

Wood anatomy

- short description
- picture

Drought in tropical forests

Non-structural carbohydrates

- short description
- picture
- data not available so far

Drought in tropical forests

Research questions & hypotheses

• Lots and lots of hypotheses

Data analysis

• Short explanation of structural equation models

Meta-model & causal diagram

• figures on one or two slides

Example for SEM: Martyna's paper

• Meta-model, causal diagram & final path model

Radial sap flow profiles Vulnerability curves The big picture References

Summary

- Sap flow
- Vulnerability curves
- SEM

Thanks & goodbye

Names of assistants (pictures?)

References

 Fuchs S, Leuschner C, Link R, Coners H, Schuldt B, 2017. Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees, Agricultural and Forest Meteorology 244–245,151-161.

https://doi.org/10.1016/j.agrformet.2017.04.003...

