MAT 2777 Probabilités et statistique pour ingénieur.e.s

Chapitre 3
Variables aléatoires continues

P. Boily (uOttawa)

Hiver 2023

Aperçu

- 3.1 Variables aléatoires continues (p.3)
 - L'aire sous la courbe (p.5)
 - Les fonctions de densité (p.7)
- 3.2 L'espérance d'une variable aléatoire continue (p.18)
 - La moyenne et la variance (p.25)
- 3.3 Les lois normales (p.26)
 - La loi normale centrée réduite (p.29)
 - Les variables aléatoires normales (p.30)
- 3.4 Les lois exponentielles (p.39)
 - Propriétés (p.41)

- 3.5 Les lois Gamma (p.44)
- 3.6 Les lois de probabilité conjointes (p.47)
- 3.7 L'approximation normale des lois binomiales (p.60)
 - La correction continue (p.61)
 - Le calcul des probabilités binomiales (p.63)

Annexe – Résumé (p.65)

3.1 – Variables aléatoires continues

Comment aborder les probabilités lorsqu'il y a un nombre indénombrable de résultats, comme on peut le rencontrer si X représente la taille d'un individu dans la population, par exemple (les résultats résident dans un intervalle continu sur la ligne réelle) ?

Quelle est la probabilité qu'une personne choisie au hasard mesure 6 pieds ?

Dans le cas discret, la fonction de masse de probabilité $f_X(x) = P(X = x)$ était le principal objet d'intérêt. Dans le cas continu, le rôle analogue est joué par la **fonction de densité de probabilité** (f.d.p.), toujours désignée par $f_X(x)$, mais avec

$$f_X(x) \neq P(X=x).$$

La fonction de répartition (f.r.c.) d'une telle variable aléatoire X est encore définie par

$$F_X(x) = P(X \le x) \,,$$

une fonction d'une variable réelle x; mais $P(X \le x)$ ne se calcule pas simplement en ajoutant quelques termes de la forme $P(X = x_i)$ (comme au chapitre précédent). Notez que

$$\lim_{x \to -\infty} F_X(x) = 0 \quad \text{et} \quad \lim_{x \to +\infty} F_X(x) = 1.$$

Nous pouvons décrire la distribution de la variable aléatoire $X\ via$

$$f_X(x) = \frac{d}{dx} F_X(x).$$

L'aire sous la courbe

Pour tout a < b, nous avons

$$\{X \le b\} = \{a < X \le b\} \cup \{X \le a\},\$$

de sorte que

$$P\left(X \leq b\right) = P\left(a < X \leq b\right) + P\left(X \leq a\right) - \underbrace{P(\{a < X \leq b\} \cap \{X \leq a\})}_{P(\varnothing) = 0},$$

d'où

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx$$

Fonctions de densité de probabilité

La fonction de densité de probabilité (f.d.p.) d'une v.a. continue X est une fonction intégrable $f_X:X(\mathcal{S})\to\mathbb{R}$ telle que

- $f_X(x) > 0$ pour tout $x \in X(\mathcal{S})$ and $\lim_{x \to \pm \infty} f_X(x) = 0$;
- pour tout événement $A = (a,b) = \{X \mid a < X < b\}$,

$$P(A) = P((a,b)) = \int_a^b f_X(x) dx;$$

• pour tout x,

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt;$$

lacktriangle pour tout x,

$$P(x > X) = 1 - P(X \le x) = 1 - F_X(x) = 1 - \int_{-\infty}^{x} f_X(t) dt;$$

• pour tout a, b,

$$P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b)$$
$$= F_X(b) - F_X(a) = \int_a^b f(x) \, dx.$$

Exemples:

1. Soit X une v.a. dont la p.d.f. est

$$f_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ x/2 & \text{si } 0 \le x \le 2 \\ 0 & \text{si } x > 2 \end{cases}$$
 (remarquez que $\int_0^2 f(x) \, dx = 1$).

La f.r.c. correspondante est :

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$$

$$= \begin{cases} 0 & \text{si } x < 0 \\ 1/2 \cdot \int_0^x t dt = 1/2 \cdot [t^2/2]_0^x = x^2/4 & \text{si } 0 < x < 2 \\ 1 & \text{si } x \ge 2 \end{cases}$$

2. Quelle est la probabilité de l'événement $A = \{X \mid 0.5 < X < 1.5\}$?

Solution: on doit évaluer

$$P(A) = P(0.5 < X < 1.5) = F_X(1.5) - F_X(0.5) = \frac{(1.5)^2}{4} - \frac{(0.5)^2}{4} = \frac{1}{2}.$$

3. Quelle est la probabilité de l'événement $B = \{X \mid X = 1\}$?

Solution: on doit évaluer

$$P(B) = P(X = 1) = P(1 \le X \le 1) = F_X(1) - F_X(1) = 0.$$

C'est inattendu : même si $f_X(1)=0.5 \neq 0$, P(X=1)=0! La probabilité qu'une v.a continue X prenne une valeur unique particulière est **nulle**.

4. Supposons que, pour un certain $\lambda > 0$, la f.d.p. de X est

$$f_X(x) = \begin{cases} \lambda \exp(-\lambda x) & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$
 (est-ce que $\int_{-\infty}^{\infty} f(x) \, dx = 1$?)

Quelle est la probabilité que X > 10.2?

Solution: la f.r.c. correspondante est :

$$F_X(x;\lambda) = P_{\lambda}(X \le x) = \int_{-\infty}^x f_X(t) \, dt = \begin{cases} 0 & \text{si } x < 0 \\ \lambda \int_0^x \exp(-\lambda t) \, dt & \text{si } x \ge 0 \end{cases}$$
$$= \begin{cases} 0 & \text{si } x < 0 \\ [-\exp(-\lambda t)]_0^x & \text{si } x \ge 0 \end{cases} = \begin{cases} 0 & \text{si } x < 0 \\ 1 - \exp(-\lambda x) & \text{si } x \ge 0 \end{cases}$$

Alors

$$P_{\lambda}(X > 10.2) = 1 - F_X(10.2; \lambda) = 1 - [1 - \exp(-10.2\lambda)] = \exp(-10.2\lambda)$$

est une fonction du **paramètre de la distribution** λ :

λ	$P_{\lambda}(X > 10.2)$
0.002	0.9798
0.02	0.8155
0.2	0.1300
2	1.38×10^{-9}
20	2.54×10^{-89}
200	0 (à toutes fins pratiques)

$$\lambda = 0.2$$
, $P_{0.2}(X > 10.2) \approx 0.1300$

$$\lambda = 2$$
, $P_2(X > 10.2) \approx 1.38 \times 10^{-9}$

3.2 – L'espérance d'une v.a. continue

Pour une v.a. continue X avec une f.d.p. $f_X(x)$, l'**espérance** de X est définie comme suit

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx.$$

De manière similaire au cas discret, pour toute fonction h(X), nous avons

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

Notez que l'espérance n'existe pas nécessairement !

Exemples:

1. Trouvez l'espérance de X dans l'exemple 1, ci-dessus.

Solution: il nous faut évaluer

$$E[X] = \int_{-\infty}^{\infty} x f_X(X) dx = \int_0^2 x f_X(x) dx = \int_0^2 x \cdot x/2 dx$$
$$= \int_0^2 \frac{x^2}{2} dx = \left[\frac{x^3}{6}\right]_{x=0}^{x=2} = \frac{4}{3}.$$

2. Qu'en est-il de X^2 ?

Solution: nous avons $E[X^2] = \int_0^2 \frac{x^3}{2} dx = 2$.

3. Calculez l'espérance de la v.a. X avec f.d.p.

$$f_X(x) = \frac{1}{\pi(1+x^2)}, \quad -\infty < x < \infty.$$

Solution: on vérifie qur $f_X(x)$ est bien un f.d.p. :

$$\int_{-\infty}^{\infty} f_X(x) \, dx = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \frac{1}{\pi} \left[\arctan(x) \right]_{-\infty}^{\infty} = \frac{1}{\pi} \left[\frac{\pi}{2} - \frac{-\pi}{2} \right] = 1.$$

On peut aussi facilement voir que

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt = \frac{1}{\pi} \int_{-\infty}^x \frac{1}{1+t^2} dt = \frac{1}{\pi} \arctan(x) + \frac{1}{2}.$$

En particulier, $P(X \le 3) = F_X(3) = \frac{1}{\pi}\arctan(3) + \frac{1}{2} \approx 0.8976$, disons.

L'espérance de X est

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{-\infty}^{\infty} \frac{x}{\pi (1 + x^2)} dx.$$

Si cette intégrale impropre existe, alors elle doit être égale, entre autres, à

$$\underbrace{\int_{-\infty}^{0} \frac{x}{\pi(1+x^2)} \, dx + \int_{0}^{\infty} \frac{x}{\pi(1+x^2)} \, dx}_{\text{candidat 1}} \quad \text{et à} \quad \underbrace{\lim_{a \to \infty} \int_{-a}^{a} \frac{x}{\pi(1+x^2)} \, dx}_{\text{candidat 2}}.$$

Il est facile de trouver une primitive de $f_X(x) = \frac{x}{\pi(1+x^2)}$.

Posons $u=1+x^2$. Alors du=2xdx et $xdx=\frac{du}{2}$, d'où

$$\int \frac{x}{\pi(1+x^2)} dx = \frac{1}{2\pi} \int u \, du = \frac{1}{2\pi} \ln|u| = \frac{1}{2\pi} \ln(1+x^2).$$

L'intégrale dans le cas 2 devient alors

$$\lim_{a \to \infty} \left[\frac{\ln(1+x^2)}{2\pi} \right]_{-a}^a = \lim_{a \to \infty} \left[\frac{\ln(1+a^2)}{2\pi} - \frac{\ln(1+(-a)^2)}{2\pi} \right] = \lim_{a \to \infty} 0 = 0;$$

tandis que l'intégrale dans le cas 1 devient

$$\left[\frac{\ln(1+x^2)}{2\pi}\right]_{-\infty}^{0} + \left[\frac{\ln(1+x^2)}{2\pi}\right]_{0}^{\infty} = 0 - (\infty) + \infty - 0 = \infty - \infty,$$

ce qui est **indéfini**. Ainsi, E[X] n'existe pas (ou est indéfini)

Moyenne et variance d'une v.a. continue

Comme dans le cas discret, la **moyenne** de X est définie comme étant $\mathrm{E}[X]$, et la **variance** et l'**écart-type** de X sont, comme précédemment,

$$Var[X] \stackrel{\text{def}}{=} E[(X - E(X))^2] \stackrel{\text{formule}}{=} E[X^2] - E^2[X],$$

$$ET[X] = \sqrt{Var[X]}.$$

Si X,Y sont des v.a. continues, et $a,b\in\mathbb{R}$, alors

$$E[aY + bX] = aE[Y] + bE[X]$$

$$Var[a + bX] = b^{2}Var[X]$$

$$ET[a + bX] = |b|ET[X]$$

3.3 – Les lois normales

Un exemple très important de distributions continues est celui de la f.d.p.

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} .$$

La f.r.c. correspondante est désignée par

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \phi(t) dt.$$

On dit d'une variable aléatoire Z avec cette f.r.c. qu'elle relève d'une loi normale centrée réduite, ce que l'on dénote par $Z \sim \mathcal{N}(0,1)$.

Normal density

La loi normale centrée réduite

L'espérance et la variance de $Z \sim \mathcal{N}(0,1)$ sont

$$E[Z] = \int_{-\infty}^{\infty} z \, \phi(z) \, dz = \int_{-\infty}^{\infty} z \, \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} \, dz = 0,$$

$$Var[Z] = \int_{-\infty}^{\infty} z^2 \, \phi(z) \, dz = 1, \quad ET[Z] = \sqrt{Var[Z]} = \sqrt{1} = 1.$$

Les autres quantités d'intérêt sont les suivantes :

$$\Phi(0) = P(Z \le 0) = \frac{1}{2}, \ \Phi(-\infty) = 0, \ \Phi(\infty) = 1,$$

$$\Phi(1) = P(Z \le 1) = \text{pnorm}(1) \approx 0.8413, \ \text{etc.}$$

Les v.a. normales

Soit $\sigma > 0$ et $\mu \in \mathbb{R}$. Si $Z \sim \mathcal{N}(0,1)$ et $X = \mu + \sigma Z$, alors

$$\frac{X-\mu}{\sigma} = Z \sim \mathcal{N}(0,1).$$

La f.r.c. de X est donnée par

$$F_X(x) = P(X \le x) = P(\mu + \sigma Z \le x) = P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

The f.d.p. de X est ainsi

$$f_X(x) = \frac{d}{dx} F_X(x) = \frac{d}{dx} \Phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right).$$

Toute variable aléatoire X avec cette f.c.r./f.d.p. doit satisfaire

$$E[X] = \mu + \sigma E[Z] = \mu,$$

$$Var[X] = \sigma^2 Var[Z] = \sigma^2 \implies ET[X] = \sigma.$$

et est dite normale, de moyenne μ et variance σ^2 , désignée par

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
.

Toute loi normale (générale) X peut être obtenue à l'aide une transformation linéaire de la loi normale centrée réduite Z :

$$X = a + bZ$$
.

Table 1. Normal Distribution Function Lower tail of the standard normal distribution is tabulated

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.0
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	3.0
0.10	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	3.0
0.20	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6
0.30	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6
0.40	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7
0.60	0.7258	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7
0.70	0.7580	0.7612	0.7642	0.7673	0.7703	0.7734	0.7764	0.7793	0.7823	0.7
0.80	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8079	0.8106	3.0
0.90	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	3.0
1.00	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	3.0
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	3.0
1.20	0.8849	0.8869	0.8888	0.8906	0.8925	0.8943	0.8962	0.8980	0.8997	9.0
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	9.0
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	9.0
1.50	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	9.0
1.60	0.9452	0.9463	0.9474	0.9485	0.9495	0.9505	0.9515	0.9525	0.9535	9.0
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	9.0
1.80	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	9.0
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	9.0
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.6
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.6
1 2 20	0.0004	0.000	0.0000	0.00=4	1 0 000	1 0 000	0.0004	1 0 000 4	0.000	1 ~ ~

Exemples:

- 1. Supposons que $Z \sim \mathcal{N}(0,1)$, la loi normale centrée réduite. Évaluez les probabilités suivantes :
 - a) $P(Z \le 0.5) = 0.6915$
 - b) P(Z < -0.3) = 0.3821
 - c) $P(Z > 0.5) = 1 P(Z \le 0.5) = 1 0.6915 = 0.3085$
 - d) P(0.1 < Z < 0.3) = P(Z < 0.3) P(Z < 0.1) = 0.6179 0.5398 = 0.0781
 - e) P(-1.2 < Z < 0.3) = P(Z < 0.3) P(Z < -1.2) = 0.5028.

2. Supposons que le temps d'attente pour un café à 9h du matin (en minutes) suit une loi normale avec une moyenne de 5 minutes et un écart-type de 0.5 minutes. Quelle est la probabilité qu'un temps d'attente soit d'au plus 6 minutes ?

Solution: soit X le temps d'attente ; alors $X \sim \mathcal{N}(5, 0.5^2)$ et

$$Z = \frac{X-5}{0.5} \sim \mathcal{N}(0,1)$$
, (Z est la normalisation de X).

La probabilité recherchée est ainsi

$$P(X \le 6) = P\left(\frac{X - 5}{0.5} \le \frac{6 - 5}{0.5}\right) = P\left(Z \le \frac{6 - 5}{0.5}\right) = \Phi\left(\frac{6 - 5}{0.5}\right)$$
$$= \Phi(2) = P(Z \le 2) \approx 0.9772 \text{ (du tableau)}.$$

3. Des bouteilles de bière sont remplies de telle sorte que le volume réel du liquide qu'elles contiennent (en ml) varie de façon aléatoire selon une loi normale avec $\mu=376.1$ et $\sigma=0.4$. Quelle est la probabilité que le volume de toute bouteille choisie au hasard soit inférieur à 375mL?

Solution: Soit X le volume du liquide dans la bouteille ; alors

$$X \sim \mathcal{N}(376.1, 0.4^2)$$
 d'où $Z = \frac{X - 376.1}{0.4} \sim \mathcal{N}(0, 1)$.

La probabilité recherchée est ainsi

$$P(X < 375) = P\left(\frac{X - 376.1}{0.4} < \frac{375 - 376.1}{0.4}\right) = P\left(Z < \frac{-1.1}{0.4}\right)$$
$$= P(Z \le -2.75) = \Phi(-2.75) \approx 0.003.$$

4. Si $Z \sim (0,1)$, pour quelles valeurs a, b et c avons-nous :

- a) $P(Z \le a) = 0.95$;
- b) $P(|Z| \le b) = P(-b \le Z \le b) = 0.99;$
- c) $P(|Z| \ge c) = 0.01$.

Solution:

a) D'après le tableau, nous voyons que

$$P(Z \le 1.64) \approx 0.9495$$
 et $P(Z \le 1.65) \approx 0.9505$.

Il est clair que nous devons avoir 1.64 < a < 1.65; une interpolation linéaire fournit une estimation adéquate de $a \approx 1.645$, bien que ce niveau de précision ne soit généralement pas nécessaire. Il est souvent suffisant de tout simplement présenter l'intervalle.

b) Notez que

$$P(-b \le Z \le b) = P(Z \le b) - P(Z < -b)$$

Puisque la f.d.p. $\phi(z)$ est symétrique autour de z=0,

$$P(Z < -b) = P(Z > b) = 1 - P(Z \le b),$$

d'où

$$P(-b \le Z \le b) = P(Z \le b) - [1 - P(Z \le b)] = 2P(Z \le b) - 1.$$

Dans la question, nous avons $P(-b \le Z \le b) = 0.99$, alors

$$0.99 = 2P(Z \le b) - 1 \Longrightarrow P(Z \le b) = \frac{1 + 0.99}{2} = 0.995.$$

On consulte le tableau et on constate que

$$P(Z \le 2.57) \approx 0.9949$$
 et $P(Z \le 2.58) \approx 0.9951$;

ce qui suggère que $b \approx 2.575$.

c) Notez que $\{|Z| \geq c\} = \mathbb{R} \setminus \{|Z| < c\}$; nous devons ainsi trouver c tel que

$$P(|Z| < c) = 1 - P(|Z| \ge c) = 1 - 0.01 = 0.99.$$

Ceci équivaut à

$$P(-c < Z < c) = P(-c \le Z \le c) = 0.99$$

puisque $|x| < y \iff -y < x < y$, et P(Z = c) = 0 pour tout c. Ce problème a été résolu dans l'exemple précédent ; prenez $c \approx 2.575$.

3.4 – Les lois exponentielles

Supposons que des voitures arrivent selon un processus de Poisson **avec un** taux λ .

Sur une période de temps x, on s'attend à ce que le nombre d'arrivées N suive un processus de Poisson avec paramètre λx . Soit X le temps d'attente jusqu'à l'arrivée de la première voiture. Ainsi

$$P(X > x) = 1 - P(X \le x) = P(N = 0) = \exp(-\lambda x).$$

Nous disons de X qu'elle suit une loi exponentielle $Exp(\lambda)$, avec

$$F_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - e^{-\lambda x} & \text{si } 0 \le x \end{cases} \quad \text{et} \quad f_X(x) = \begin{cases} 0 & \text{si } x \le 0 \\ \lambda e^{-\lambda x} & \text{si } 0 \le x \end{cases}$$

PDF for Exponential P(X < 0.5) when lambda = 4

CDF for Exponential P(X < 0.5) when lambda = 4

Si $X \sim \text{Exp}(4)$, alors $P(X < 0.5) = F_X(0.5) = 1 - e^{-4(0.5)} \approx 0.865$.

Propriétés des v.a. exponentielles

•
$$\mu = \mathrm{E}[X] = \int_0^\infty x \lambda e^{-\lambda x} \, dx = \left[-\frac{(\lambda x + 1)e^{-\lambda x}}{\lambda} \right]_0^\infty = 1/\lambda;$$

•
$$\sigma^2 = \text{Var}[X] = \int_0^\infty x^2 \lambda e^{-\lambda x} \, dx - \frac{1}{\lambda^2} = \left[-\frac{(\lambda x(\lambda x + 2) + 2)e^{-\lambda x}}{\lambda^2} \right]_0^\infty - \frac{1}{\lambda^2} = \frac{1}{\lambda^2};$$

Perte de mémoire:

$$P(X > s + t \mid X > t) = P(X > s),$$

• $Exp(\lambda)$ est l'analogue continu de la distribution **géométrique** Geo(p).

Exemple: la durée de vie d'un certain type d'ampoule a une distribution exponentielle avec une moyenne de 100 heures (e.g., $\lambda = 1/100$).

1. Quelle est la probabilité qu'une ampoule dure au moins 100 heures ?

Solution: $X \sim \mathsf{Exp}(1/100)$, so

$$P(X > 100) = 1 - P(X \le 100) = \exp(-100/100) = e^{-1} \approx 0.3679.$$

2. Sachant qu'une ampoule électrique a déjà brûlé pendant 100 heures, quelle est la probabilité qu'elle dure encore au moins 100 heures ?

Solution: nous évaluons $P(X > 200 \mid X > 100)$. Par la perte de mémoire,

$$P(X > 200 \mid X > 100) = P(X > 200 - 100) = P(X > 100) \approx 0.3679.$$

3. Le fabricant veut garantir que ses ampoules électriques dureront au moins t heures. Quelle devrait être la valeur de t afin de garantir que 90% des ampoules dureront plus de t heures ?

Solution: nous devons trouver t tel que P(X > t) = 0.9. Autrement dit, nous cherchons t tel que

$$0.9 = P(X > t) = 1 - P(X \le t) = 1 - F_X(t) = e^{-0.01t},$$

ou

$$\ln 0.9 = -0.01t \implies t = -100 \ln 0.9 \approx 10.54$$
 heures.

3.5 – Les lois Gamma

Supposons que des voitures arrivent selon un processus de Poisson avec un taux λ . Rappelons que si X est le temps d'arrivée de la première arrivée de la première voiture, alors $X \sim \mathsf{Exp}(\lambda)$.

Si Y est le temps d'attente avant la rième arrivée, alors Y suit une loi Gamma avec paramètres λ et r, $Y \sim \Gamma(\lambda, r)$, dont la f.d.p. est

$$f_Y(y) = \begin{cases} 0 & \text{lorsque } y < 0 \\ \frac{y^{r-1}}{(r-1)!} \lambda^r e^{-\lambda y} & \text{lorsque } 0 \le y \end{cases}$$

La f.r.c. $F_Y(y)$ s'exprime pas avec des fonctions élémentaires. Nous avons également

$$\mu = \mathrm{E}[Y] = rac{r}{\lambda} \quad ext{et} \quad \sigma^2 = \mathrm{Var}[Y] = rac{r}{\lambda^2}.$$

Exemples:

1. En moyenne, 30 clients arrivent chaque heure dans un magasin selon un processus de Poisson, c-à-d que $\lambda=1/2$ clients arrivent en moyenne à chaque minute. Quelle est la probabilité que le commerçant attende plus de 5 minutes avant que les deux premiers clients arrivent ?

Solution: Soit Y le temps d'attente en minutes avant l'arrivée du deuxième client. Alors $Y \sim \Gamma(1/2,2)$ et

$$P(Y > 5) = \int_{5}^{\infty} \frac{y^{2-1}}{(2-1)!} (1/2)^{2} e^{-y/2} dy = \int_{5}^{\infty} \frac{y e^{-y/2}}{4} dy$$
$$= \frac{1}{4} \left[-2y e^{-y/2} - 4e^{-y/2} \right]_{5}^{\infty} = \frac{7}{2} e^{-5/2} \approx 0.287.$$

2. Les appels téléphoniques arrivent à un standard à un taux moyen de $\lambda=2$ par minute, selon un processus de Poisson. Soit Y le temps d'attente jusqu'à l'arrivée du 5ème appel. Quelles sont la f.d.p., la moyenne et la variance de Y?

Solution: on a

$$f_Y(y) = \frac{2^5 y^4}{4!} e^{-2y}$$
, lorsque $0 \le y < \infty$, $\mathrm{E}[Y] = \frac{5}{2}$, $\mathrm{Var}[Y] = \frac{5}{4}$.

La loi Gamma peut être étendue aux cas où r>0 n'est pas un entier en remplaçant (r-1)! par $\Gamma(r)=\int_0^\infty t^{r-1}e^{-t}\,dt$.

Les lois exponentielle et χ^2 (nous en parlerons plus tard) sont des cas particuliers de $\Gamma(\lambda,r)$: $\operatorname{Exp}(\lambda) = \Gamma(\lambda,1)$ et $\chi^2(r) = \Gamma(1/2,r)$.

3.6 – Les lois de probabilité conjointes

Soient X, Y deux v.a. continues. La **f.d.p. conjointe** de X,Y est une fonction f(x,y) satisfaisant à

- 1. $f(x,y) \ge 0$, pour tout x,y;
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx dy = 1$, and
- 3. $P(A) = \iint_A f(x, y) dxdy$, où $A \subseteq \mathbb{R}^2$.

Pour les v.a. disrètes, on remplace \iint par $\sum \sum$, et on impose $f(x,y) \leq 1$.

La 3e propriété implique que P(A) est le volume du solide sur la région A du plan xy délimitée par la surface z=f(x,y).

Exemples:

- 1. Lancez une paire de dés non biaisés. Pour chacun des 36 résultats possibles, X désigne le plus petit résultat et Y le plus grand.
 - a) Combien de résultats correspondent à $A = \{(X = 2, Y = 3)\}$? **Solution:** les paires (3,2) et (2,3) donnent lieu à l'événement A.
 - b) Calculez P(A)?

 Solution: il y a 36 résultats possibles, alors $P(A) = \frac{2}{36} \approx 0.0556$.
 - c) Quelle est la f.m.p. conjointe de (X,Y) ? **Solution:** un seul résultat (X=a,Y=a) mène à $\{X=Y=a\}$. Pour tout autre événement $\{X\neq Y\}$, on requiert (X,Y) et (Y,X).

La f.m.p. conjointe de (X,Y) est alors

$$f(x,y) = \begin{cases} 1/36, & 1 \le x = y \le 6 \\ 2/36, & 1 \le x < y \le 6 \end{cases}$$

La première propriété est automatiquement satisfaite, tout comme la troisième (par construction). Il n'y a que 6 résultats pour lesquels X=Y, toutes les autres (dont il y en a 15) ont X<Y.

Ainsi,

$$\sum_{x=1}^{6} \sum_{y=x}^{6} f(x,y) = 6 \cdot \frac{1}{36} + 15 \cdot \frac{2}{36} = 1.$$

P.Boily (uOttawa)

d) Calculez P(X=a) et P(Y=b), pour $a,b=1,\ldots,6$.

Solution: pour tout $a=1,\ldots,6$, l'événement $\{X=a\}$ correspond à

$${X = a, Y = a} \cup {X = a, Y = a + 1} \cup \dots \cup {X = a, Y = 6}.$$

Les composantes sont mutuellement exclusives, d'où

$$P(X = a) = \sum_{y=a}^{6} P(\{X = a, Y = y\}) = \frac{1}{36} + \sum_{y=a+1}^{6} \frac{2}{36}$$
$$= \frac{1}{36} + \frac{2(6-a)}{36}, \quad a = 1, \dots, 6.$$

De même, nous avons $P(Y=b)=\frac{1}{36}+\frac{2(b-6)}{36}$, $b=1,\ldots,6$. Ces **probabilités marginales** se retrouvent dans les marges de la f.m.p.

e) Calculez $P(X=3 \mid Y>3)$ et $P(Y\leq 3 \mid X\geq 4)$.

Solution: la notation suggère le calcul;

$$P(X = 3 \mid Y > 3) = \frac{P(X = 3 \cap Y > 3)}{P(Y > 3)}$$

La région correspondant à $P(Y>3)=\frac{27}{36}$ est ombrée en rouge (voir diapo suivante) ; la région correspondant à $P(X=3)=\frac{7}{36}$ est ombrée en bleu.

La région correspondant à $P(X=3\cap Y>3)=\frac{6}{36}$ est l'intersection des régions bleue et rouge, d'où

$$P(X = 3 \mid Y > 3) = \frac{6/36}{27/36} = \frac{6}{27} \approx 0.2222.$$

P.Boily (uOttawa)

Puisque $P(Y \leq 3 \cap X \geq 4) = 0$, alors $P(Y \leq 3 \mid X \geq 4) = 0$.

f) Est-ce que X et Y sont indépendants ?

Solution: pourquoi ne pas simplement utiliser la règle multiplicative pour calculer $P(X=3\cap Y>3)=P(X=3)P(Y>3)$?

C'est parce que nous ne savons pas encore si X et Y sont **indépendants**, si

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
 pour tous les x, y admissibles.

En fait, $P(X = 1, Y = 1) = \frac{1}{36}$, mais $P(X = 1)P(Y = 1) = \frac{11}{36} \cdot \frac{1}{36}$, d'où X et Y sont **dépendants** (c'est souvent le cas lorsque le domaine de la f.d.p./f.m.p. conjointe n'est pas rectangulaire).

- 2. Il y a 8 jetons similaires dans un bol : trois marqués (0,0), deux marqués (1,0), deux marqués (0,1) et un marqué (1,1). Un joueur choisit un jeton au hasard et reçoit la somme des deux coordonnées en dollars.
 - a) Quelle est la f.m.p. conjointe des coordonnées ? **Solution:** soient X_1 et X_2 les coordonnées ; on a

$$f(x_1, x_2) = \frac{3 - x_1 - x_2}{8}, \quad x_1, x_2 = 0, 1.$$

a) Quel est le gain attendu pour ce jeu ? Solution: le gain est tout simplement $X_1 + X_2$;

$$E[X_1 + X_2] = \sum_{x_1, x_2 = 0}^{1} (x_1 + x_2) f(x_1, x_2) = 0 \cdot \frac{3}{8} + 1 \cdot \frac{2}{8} + 1 \cdot \frac{2}{8} + 2 \cdot \frac{1}{8} = 0.75.$$

3. Soient X et Y ayant une f.d.p. conjointe

$$f(x,y) = 2, \quad 0 \le y \le x \le 1.$$

a) Quel est le support de f(x,y) ? Solution: le support est l'ensemble $S=\{(x,y)\mid 0\leq y\leq x\leq 1\}$, un triangle dans le plan xy délimité par l'axe des x, la droite y=1, et la droite y=x, représenté ci-dessous.

b) Calculez $P(0 \le X \le 0.5, 0 \le Y \le 0.5)$?

Solution: nous devons évaluer l'intégrale sur la zone ombragée ;

$$P(0 \le X \le 0.5, 0 \le Y \le 0.5) = P(0 \le X \le 0.5, 0 \le Y \le X)$$

$$= \int_0^{0.5} \int_0^x 2 \, dy \, dx = \int_0^{0.5} [2y]_{y=0}^{y=x} \, dx$$

$$= \int_0^{0.5} 2x \, dx = 1/4.$$

c) Que sont les probabilités marginales P(X=x) et P(Y=y) ? **Solution:** nous avons

$$P(X = x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{y=0}^{y=x} 2 \, dy = [2y]_{y=0}^{y=x} = 2x, \quad 0 \le x \le 1$$

et

$$P(Y = y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{x=y}^{x=1} 2 dx$$
$$= [2x]_{x=y}^{x=1} = 2 - 2y, \ 0 \le y \le 1.$$

d) Calculez E[X], E[Y], et $E[Y^2]$

Solution: nous avons

$$E[X] = \iint_{S} x f(x, y) dA = \int_{0}^{1} \int_{0}^{x} 2x \, dy dx = \int_{0}^{1} [2xy]_{y=0}^{y=x} \, dx$$
$$= \int_{0}^{1} 2x^{2} \, dx = \left[\frac{2}{3}x^{3}\right]_{0}^{1} = \frac{2}{3};$$

$$E[Y] = \iint_{S} yf(x,y) dA = \int_{0}^{1} \int_{y}^{1} 2y \, dx dy = \int_{0}^{1} \left[2xy\right]_{x=y}^{x=1} \, dy$$

$$= \int_{0}^{1} (2y - 2y^{2}) \, dy = \left[y^{2} - \frac{2}{3}y^{3}\right]_{0}^{1} = \frac{1}{3};$$

$$E[Y^{2}] = \iint_{S} y^{2}f(x,y) \, dA = \int_{0}^{1} \int_{y}^{1} 2y^{2} \, dx dy = \int_{0}^{1} \left[2xy^{2}\right]_{x=y}^{x=1} \, dy$$

$$= \int_{0}^{1} (2y - 2y^{3}) \, dy = \left[\frac{2}{3}y^{3} - \frac{1}{2}y^{4}\right]_{0}^{1} = \frac{1}{6}$$

e) Est-ce que X et Y sont indépendants ? **Solution:** non. Comment vous prendriez-vous pour le démontrer?

3.7 - L'approximation normale d'une v.a. binomiale

Si $X \sim \mathcal{B}(n,p)$, nous pouvons interpréter X comme une somme de variables aléatoires indépendantes et identiquement distribués

$$X = I_1 + I_2 + \cdots + I_n$$
 où chaque $I_i \sim \mathcal{B}(1, p)$.

Ainsi, selon le **théorème de la limite centrale** (nous y reviendrons plus tard), pour un n élevé, nous avons

$$Z = \frac{X - np}{\sqrt{np(1-p)}} \stackrel{\text{approx}}{\sim} \mathcal{N}(0,1);$$

c-à-d que si n est élevé et $X \stackrel{\mathsf{exact}}{\sim} \mathcal{B}(n,p)$, alors $X \stackrel{\mathsf{approx}}{\sim} \mathcal{N}(np,np(1-p))$.

L'approximation normale avec correction de continuité

Soit $X \sim \mathcal{B}(n,p)$; on se souvient que $\mathrm{E}[X] = np$ et $\mathrm{Var}[X] = np(1-p)$.

Si n est élevé, nous pouvons approcher X à l'aide d'une v.a. normale de la manière suivante :

$$P(X \le x) = P(X < x + 0.5) = P\left(Z < \frac{x - np + 0.5}{\sqrt{np(1-p)}}\right)$$

et

$$P(X \ge x) = P(X > x - 0.5) = P\left(Z > \frac{x - np - 0.5}{\sqrt{np(1 - p)}}\right).$$

Exemple: supposez que $X \sim \mathcal{B}(36, 0.5)$. Donnez une approximation normale de la probabilité $P(X \leq 12)$. *Note:* Pour n = 36, les probabilités binomiales ne sont pas disponibles dans les tableaux, en général, d'où le recours à l'approximation par la normale.

Solution: puisque $E[X] = 36 \times 0.5 = 18$ et $Var[X] = 36 \times 0.5 \times 0.5 = 9$,

$$P(X \le 12) = P\left(\frac{X - 18}{3} \le \frac{12 - 18 + 0.5}{3}\right)$$

$$\stackrel{\mathsf{approx. norm.}}{\approx} \Phi(-1.83) \stackrel{\mathsf{table}}{\approx} 0.033 \,.$$

Comparez ceci à la valeur obtenue à l'aide de R :

$$pbinom(12, 36, 0.5) = 0.0326.$$

Le calcul de probabilités binomiales

Nous avons donc au moins 3 façons de calculer (ou d'approcher) les probabilités binomiales :

- la formule exacte si $X \sim \mathcal{B}(n,p)$, alors $P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$ pour tout $x=0,1,\ldots,n$;
- les tableaux si $n \le 15$ et $p = 0.1, 0.2, \ldots, 0.9$, on peut se servir des tableaux de f.r.c. (il faut d'abord exprimer la probabilité recherchée à l'aide de termes de la forme $P(X \le x)$), t.q.

$$P(X < 3) = P(X \le 2);$$
 $P(X = 7) = P(X \le 7) - P(X \le 6);$ $P(X > 7) = 1 - P(X \le 7);$ $P(X \ge 5) = 1 - P(X \le 4),$ etc.

• l'approximation par la normale – si $np, n(1-p) \geq 5$, alors

$$\mathcal{B}(n,p) \approx \mathcal{N}(np, np(1-p))$$

et nous avons

$$P(X \le x) \approx \Phi\left(\frac{x - np + \mathbf{0.5}}{\sqrt{np(1 - p)}}\right)$$

$$P(X \ge x) \approx 1 - \Phi\left(\frac{x - np - \mathbf{0.5}}{\sqrt{np(1 - p)}}\right),$$

pour x = 0, 1, ..., n.

Annexe – Résumé

X	Exemple	f(x)	Domaine	E[X]	Var[X]
Uniforme	Un point choisi au hasard dans $\left[a,b ight]$	$\frac{1}{b-a}$	$a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normale	Erreurs de mesure; tailles des enfants; etc.	$\frac{\exp(-(x-\mu)^2/2\sigma^2)}{\sigma\sqrt{2\pi}}$	$-\infty < x < \infty$	μ	σ^2

Résumé

\overline{X}	Exemple	f(x)	Domain	$\mathrm{E}[X]$	Var[X]
Exponentiel	le Temps d'attente à la première arrivée dans un processus de Poisson avec	$\lambda e^{-\lambda x}$	$0 \le x < \infty$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma	taux λ Temps d'attente à la $r^{\rm e}$ arrivée dans un processus de Poisson avec taux λ	$\frac{x^{r-1}}{(r-1)!}\lambda^r e^{-\lambda x}$	$0 \le x < \infty$	$\frac{r}{\lambda}$	$\frac{r}{\lambda^2}$