```
// Code in stata to evaluate the ability of SucCoA and Cobalamin to predict HSIL
// Date: June 1st, 2022. Author: Sergio Serrano-Villar
* Outcome variables: bHSIL (biopsy-proven HSIL), cHSIL (biopsy-proven + cytologic HSIL)
* Predictors: cyto abnormal (abnormal anal cytology), succ (Succinyl CoA), cob (Cobalamin)
*Dataset: "db metab"
use "db_metab", clear
/// Diagnostic accuraccy of anal cytology in the Discovery cohort (filter: "deriv")
*Discriminative ability of the reference test ("cyto_abnormal")
tab cyto abnormal bHSIL if deriv == 1 , col
 Abnormal I
 cytology | Biopsy-proven HSIL
  yes/no | No bHSIL | Total
-----
  Normal | 29 5 | 34
| 34.12 8.77 | 23.94
-----+-----
 Abnormal | 56 52 | 108 | 65.88 91.23 | 76.06
  Total | 85 57 | 142 | 100.00 | 100.00
diagt bHSIL cyto_abnormal if deriv == 1
          Abnormal cytology
Biopsy-pro | yes/no ven HSIL | Pos.
Biopsy-pro |
                     Neg. |
 Abnormal | 52 5 | 57
Normal | 56 29 | 85
              -----
                     ------
  Total | 108 34 | 142
True abnormal diagnosis defined as bHSIL = 1 (labelled bHSIL)
                                      [95% Confidence Interval]
```

Prevalence	Pr(A)	40%	32%	48.7%
Sensitivity Specificity ROC area (Pr(+ A) Pr(- N) Sens. +5 Spec.)/2	91.2% 34.1% .627	80.7% 24.2% .564	97.1% 45.2% .69
Likelihood ratio (+) Likelihood ratio (-) Odds ratio Positive predictive valu Negative predictive valu		1.38 .257 5.39 48.1% 85.3%	1.16 .106 1.99 38.4% 68.9%	1.65 .625 14.4 58% 95%

logistic bHSIL cyto abnormal if deriv == 1

Logistic regression

Number of obs = 142 LR chi2(1) = 13.33 Prob > chi2 = 0.0003 = 0.0697Log likelihood = -88.983294Pseudo R2

```
-----
cyto_abnormal | 5.385714 2.806627 3.23 0.001 1.939373 14.95634 
_cons | .1724138 .0834887 -3.63 0.000 .0667408 .4454028
estat classification //Correctly classified 59.86%
/// Diagnostic accuraccy of SuCCoaA and Cobalamin in the Discovery cohort (filter:
**Metabolite mean and median values according to the dysplasia degree
tabstat succoa ugml cobal ugml if deriv == 1, statistics( mean median ) by(bAINcat)
**Metabolite mean and median values according to the presence of bHSIL
tabstat succoa ugml cobal ugml if deriv == 1, statistics( mean median N) by(bHSIL)
**Discriminative ability as log2 transformed variables
gen log2suc = ln(succ)/ln(2)
gen log2cob = ln(cob)/ln(2)
**For biopsy-proven HSIL
logistic bHSIL log2suc if deriv == 1
lroc, all msize(vtiny) legend(region(fcolor(white)))
logistic bHSIL log2cob if deriv == 1
lroc, all msize(vtiny) legend(region(fcolor(white)))
**For biopsy-proven + cytologic HSIL
logistic cHSIL log2suc if deriv == 1
lroc, all msize(vtiny) legend(region(fcolor(white)))
logistic cHSIL log2cob if deriv == 1
lroc, all msize(vtiny) legend(region(fcolor(white)))
**Selection of most discriminative cutoffs
logistic bHSIL succoa_ugml if deriv == 1
lroc, all msize(vtiny) legend(region(fcolor(white)))
roctab bHSIL suc, binomial detail graph specificity summary
cutpt bHSIL succoa_ugml if deriv == 1, noadjust
gen suc cat2 = suc >=50 //\sim50 the best cutoff
*Modelo con el succinilCoA categorizado por este punto de corte
logistic bHSIL suc cat2 if deriv == 1
                                                     Number of obs = 146

LR chi2(1) = 90.04
Logistic regression
                                                      Prob > chi2 = 0.0000
Log likelihood = -53.076599
                                                     Pseudo R2
                                                                   = 0.4589
     bHSIL | Odds ratio Std. err. z P>|z| [95% conf. interval]

    suc_cat2 | 50.99999
    26.32119
    7.62
    0.000
    18.54656
    140.2416

    _cons | .0909091
    .0358883
    -6.07
    0.000
    .0419351
    .1970775

*Discrimination
diagt bHSIL suc_cat2 if deriv == 1
Biopsy-pro |
                suc cat2
```

z P>|z|

[95% conf. interval]

bHSIL | Odds ratio Std. err.

ven HSIL	Pos.							
Abnormal	51 11	7	58					
	 62							
True abnormal	diagnosis de:	fined as bl	HSIL = 1	(labelled	bHSIL)			
					Confider			
Prevalence		P:	r(A)	40%	32%	48.1	L%	
Sensitivity Specificity ROC area		Pr(+ A)	37.9%	76.7%	95%	5	
Likelihood rat								
Likelihood ratio	tio (-) P:	r(- A)/Pr(- N)	.138	.0686	.278	3	
Odds ratio Positive pred:	ictive value	LR(+)/L1	R(-) Al+) 8	51 32.3%	18.8 70.5%	138	3	
Negative pred:	ictive value	Pr (1	N -)	91.7%	83.6%	96.68	5	
*Cobalamina logistic bHSI	L cob if der:	iv == 1	lassified (fcolor(wh					
*Cobalamina	L cob if derives to be if derives to be if derives to be cob >=150 / L cob_cat2 if	iv == 1 end(region detail gra = 1, noadja eriv == 1, /~50 the ba	(fcolor(whaph specifies the sp	nite))) ficity su cutpt b	HSIL cob, Number	noadju	nst = 14	6
Cobalamina logistic bHSII lroc, all msi: roctab bHSIL coutpt bHSIL co bootstrap e(co gen cob_cat2 = logistic bHSII /	L cob if derives to be if derives to be if derives to be cob >=150 / L cob_cat2 if	iv == 1 end(region detail gra = 1, noadja eriv == 1, /~50 the ba deriv == 1	(fcolor(whaph specifies the sp	nite))) ficity su cutpt b	Number LR chi2 Prob >	noadju of obs 2(1) chi2	ıst	6 29
*Cobalamina logistic bHSII lroc, all msi: roctab bHSIL co totototototototototototototototototot	L cob if derives (vtiny) legates by binomial ob if derives the cob >=150 / C cob cat2 if the c	iv == 1 end(region detail gra = 1, noadja eriv == 1, /~50 the ba deriv == 1	(fcolor(whaph specifies the specifies of	nite))) ficity su cutpt b	Number LR chi2 Prob > Pseudo	of obs 2(1) chi2 R2 conf. i	= 14 = 83.2 = 0.000 = 0.424	6 29 10 5
Cobalamina logistic bHSII lroc, all msi: roctab bHSIL co bootstrap e(co gen cob_cat2 = logistic bHSII / Logistic regre bHSIL cob_cat2cons	L cob if derive (vtiny) legal cob, binomial cob, binomial cob if derive the cob >=150 / cob cob >=150 / cob cob cot 2 if c	iv == 1 end(region detail gra = 1, noadja eriv == 1, /~50 the ba deriv == Std. err 22.62976 .0458252	(fcolor(whaph specifiust rep(100)) est cutoff	pite))) ficity su cutpt b P> z 0.000 0.000	Number LR chi2 Prob > Pseudo 	of obs 2(1) chi2 R2 conf. i	= 14 = 83.2 = 0.000 = 0.424	6 9 0 5 -]
Cobalamina logistic bHSII lroc, all msi: roctab bHSIL co bootstrap e(co gen cob_cat2 = logistic bHSII / Logistic regre bHSIL cob_cat2cons	L cob if derives (vtiny) legal cob, binomial cob if derives the cob >= 150 / cob cob >= 150 / cob	iv == 1 end(region detail gra = 1, noadja eriv == 1, /~50 the ba deriv == Std. err 22.62976 .0458252	(fcolor(whaph specifiust rep(100)) est cutoff	pite))) ficity su cutpt b P> z 0.000 0.000	Number LR chi2 Prob > Pseudo 	of obs 2(1) chi2 R2 conf. i	= 14 = 83.2 = 0.000 = 0.424	6 9 0 5 -]
Cobalamina logistic bHSII lroc, all msi: roctab bHSIL co bootstrap e(co gen cob_cat2 = logistic bHSII / Logistic regre Log likelihood bHSIL cob_cat2 _cons */ *Discriminatic diagt bHSIL co	L cob if derive (vtiny) legates be in omial ob if derive to the cob >=150 / 2	iv == 1 end(region detail gra = 1, noadja eriv == 1, /~50 the ba deriv == Std. err 22.62976 .0458252	(fcolor(whaph specifiust rep(100)) est cutoff	pite))) ficity su cutpt b P> z 0.000 0.000	Number LR chi2 Prob > Pseudo 	of obs 2(1) chi2 R2 conf. i	= 14 = 83.2 = 0.000 = 0.424	6 9 0 5 -]
Cobalamina logistic bHSII lroc, all msi: roctab bHSIL co bootstrap e(co gen cob_cat2 = logistic bHSII / Logistic regre Log likelihood bHSIL cob_cat2 _cons */ *Discriminatic diagt bHSIL co /* Biopsy-pro ven HSIL	L cob if derive (vtiny) legated by binomial ob if derive to be cob >=150 / 2 L cob_cat2 if the	iv == 1 end(region detail gra = 1, noadja eriv == 1, /~50 the ba deriv == 1 Std. err 22.62976 .0458252	(fcolor(whaph specifiust rep(100)) est cutoff 1 7.43 -6.17	pite))) ficity su cutpt b P> z 0.000 0.000	Number LR chi2 Prob > Pseudo 	of obs 2(1) chi2 R2 conf. i	= 14 = 83.2 = 0.000 = 0.424	6 9 0 5 -]
Cobalamina logistic bHSII lroc, all msi: roctab bHSIL co bootstrap e(co gen cob_cat2 = logistic bHSII / Logistic regre Log likelihood bHSIL cob_cat2 _cons */ *Discriminatic diagt bHSIL co /* Biopsy-pro ven HSIL	L cob if derive (vtiny) legated by binomial ob if derive (atpoint) derive (atpo	iv == 1 end(region detail gra = 1, noadja eriv == 1, /~50 the ba deriv == Std. err 22.62976 .0458252 iv == 1 Neg. 12 81	(fcolor(whaph specifiust rep(100)) est cutoff 1 Total Total 58 88	pite))) ficity su cutpt b P> z 0.000 0.000	Number LR chi2 Prob > Pseudo 	of obs 2(1) chi2 R2 conf. i	= 14 = 83.2 = 0.000 = 0.424	6 9 0 5 -]
Cobalamina logistic bHSII lroc, all msi: roctab bHSIL co bootstrap e(co gen cob_cat2 = logistic bHSII / Logistic regre Log likelihood bHSIL cob_cat2 _cons */ *Discriminatic diagt bHSIL co /* Biopsy-pro ven HSIL Abnormal Normal	L cob if derive (vtiny) legated by binomial ob if derive (atpoint) derive (atpo	iv == 1 end(region detail gra = 1, noadja eriv == 1, /~50 the ba deriv == Std. err 22.62976 .0458252 iv == 1 Neg. 12 81	(fcolor(whaph specifiust rep(100)) est cutoff 1 Total Total 58 88	pite))) ficity su cutpt b P> z 0.000 0.000	Number LR chi2 Prob > Pseudo 	of obs 2(1) chi2 R2 conf. i	= 14 = 83.2 = 0.000 = 0.424	6 9 0 5 -]

```
Prevalence
                                   Pr(A) 40% 32% 48.1%
                Pr(+|A) 79.3% 66.6% 88.8%
Pr(-|N) 92% 84.3% 96.7%
(Sens. + Spec.)/2 .857 .797 .917
Sensitivity
Specificity
ROC area
Likelihood ratio (+) Pr(+|A)/Pr(+|N) 9.97 4.84 20.5 Likelihood ratio (-) Pr(-|A)/Pr(-|N) .225 .135 .373 Odds ratio LR(+)/LR(-) 44.4 16.5 119 Positive predictive value Pr(A|+) 86.8% 74.7% 94.5% Negative predictive value Pr(N|-) 87.1% 78.5% 93.2%
* /
logistic bHSIL cob cat2 if deriv == 1
estat classification // Correctly classified 86.99%
**Does each metabolite independently predict bHSIL? Multivariate models
*Outcome: biopsy-proven HSIL
logistic bHSIL suc cat2 cob cat2 if deriv == 1
*Outcome: biopsy-proven + cytologic HSIL
logistic cHSIL suc cat2 cob cat2 if deriv == 1
*Generate composite variable with 2 categories: any metabolite positive vs. both
metabolites negatives
gen supertest 2cat = .
replace supertest 2cat = 0 if cob cat2 == 0 & suc cat2 == 0
replace supertest 2cat = 1 if cob cat2 == 1 | suc cat2 == 1
*Generate composite variables with 3 cats (metabolites --/-+/++)
gen supertest_3cat = .
replace supertest 3cat = 0 if cob cat2 == 0 & suc cat2 == 0
replace supertest_3cat = 1 if (cob_cat2 == 0 & suc_cat2 == 1) | (cob_cat2 == 1 & suc_cat2
replace supertest 3cat = 2 if cob cat2 == 1 & suc cat2 == 1
**PREDICTIVE ABILITY OF CATEGORIZED SUC COA AND COBALAMINE
*Discovery cohort
logistic bHSIL supertest_2cat if deriv == 1
                                                          Number of obs = 146
Logistic regression
                                                          LR chi2(1) = 101.52
                                                          Prob > chi2 = 0.0000
                                                          Pseudo R2 = 0.5175
Log likelihood = -47.333408
        bHSIL | Odds ratio Std. err. z P>|z| [95% conf. interval]
______

    supertest_2cat |
    126
    97.13007
    6.27
    0.000
    27.81005
    570.8727

    _cons |
    .0277778
    .0199128
    -5.00
    0.000
    .0068156
    .1132114

______
* /
*Internal validation and calibration
*Need the user-written package bsvalidation
bsvalidation, rseed(999) adjust (heuristic) group(2) graph
Apparent performance
         _____
                                    [95% Conf. Interval]
Overall:
        Brier scaled (%) = 58.8
```

Discrimination:

```
C-Statistic = 0.892 0.845 0.939
Calibration:
           E:O ratio = 1.000

CITL = 0.000 -0.517 0.517

Slope = 1.000 0.688 1.312
Bootstrap performance (Optimism adjusted)
Number of replications: 50
______
                             [Bootstrap 95% CI]
Overall:
      Brier scaled (%) = 58.2
Discrimination:
         Calibration:
           0.858 2.028
                               0.000 1.316
______
Shrinkage factors
   Heuristic Shrinkage = 0.990
   Bootstrap shrinkage = 0.935
Model adjusted by heuristic shrinkage
      bHSIL | Coefficient Std. err. z P>|z| [95% conf. interval]
______
bHSTI.
supertest_2cat | 4.787919 .7631648 6.27 0.000 3.292144 6.283695

_cons | -3.37432 .2347454 -14.37 0.000 -3.834412 -2.914227
*/
logistic cHSIL supertest 2cat if deriv == 1
*Discrimantion
diagt bHSIL supertest 2cat if deriv == 1
Biopsy-pro | supertest_2cat ven HSIL | Pos. Ne
             Pos. Neg. | Total
 Abnormal | 56 2 | 58
Normal | 16 72 | 88
               -----
  Total | 72 74 | 146
True abnormal diagnosis defined as bHSIL = 1 (labelled bHSIL)
                                        [95% Confidence Interval]
```

		[93	os conflaei	ice interval
Prevalence	Pr(A)	40%	32%	48.1%
Sensitivity Specificity ROC area	Pr(+ A) Pr(- N) (Sens. + Spec.)/2	96.6% 81.8% .892	88.1% 72.2% .845	99.6% 89.2% .939
Likelihood ratio (+) Likelihood ratio (-) Odds ratio Positive predictive valu Negative predictive valu		5.31 .0421 126 77.8% 97.3%	3.4 .0108 30.3 66.4% 90.6%	8.29 .165 86.7% 99.7%

```
*/
```

```
logistic bHSIL supertest 2cat if deriv == 1
estat classification
*Correctly classified
                                        87.67%
**We repeat the previous tests using the composite variables with 3 cats, supertest_3cat
(metabolites --/-+/++)
logistic bHSIL i.supertest_3cat if deriv == 1
Logistic regression
                                                   Number of obs = 146
                                                   LR chi2(2) = 121.46
                                                   Prob > chi2 = 0.0000
Log likelihood = -37.367441
                                                   Pseudo R2 = 0.6191
______
       bHSIL | Odds ratio Std. err. z P>|z| [95% conf. interval]
supertest 3cat |

      38.57143
      31.14471
      4.52
      0.000
      7.924256

      737.9995
      751.9917
      6.48
      0.000
      100.165

          1 |
                                                                  187.747
           2 |
                                                                 5437.46
        cons | .0277778 .0199128 -5.00 0.000 .0068156
                                                                 .1132114
* /
estat classification
logistic bHSIL i.supertest 3cat if deriv == 1
bsvalidation, rseed(111) adjust (heuristic) group(2) graph //Discrimination: C-Statistic
            0.870 1.012
= 0.948
logistic bHSIL i.supertest 3cat if deriv == 1
logistic bHSIL supertest_3cat if deriv == 1
estat classification
/*
Classified + if predicted Pr(D) >= .5
True D defined as bHSIL != 0
______
Sensitivity
                           Pr( +| D) 70.69%
Specificity
                           Pr( -|~D) 97.73%
Positive predictive value Pr(D|+) 95.35% Negative predictive value Pr(\sim D|-) 83.50%
______
False + rate for true ~D Pr(+|~D)
                                        2.27%
False - rate for true D
                           Pr( -| D)
                                      29.31%
False + rate for classified + Pr(\sim D| +)
False - rate for classified - Pr(|D| -)
                                       16.50%
______
Correctly classified
______
*/
diagt bHSIL supertest 3cat if deriv == 1
**We repeat the previous tests including the continuous variables log2suc and log2cob in a
multivariate model
logistic bHSIL log2cob log2suc if deriv == 1
estat classification
Classified + if predicted Pr(D) >= .5
True D defined as bHSIL != 0
-----
                            Pr( +| D) 87.93%
Sensitivity
Specificity
                            Pr( -|~D) 92.05%
Positive predictive value
                           Pr(D|+) 87.93%
```

```
Negative predictive value
                            Pr(~D| -) 92.05%
_____
False + rate for true ^{\text{D}} Pr(+|^{\text{D}}) 7.95%
False - rate for true ^{\text{D}} Pr(-|^{\text{D}}) 12.07%
False - rate for true D Pr(-|D)
False + rate for classified + Pr(\sim D|+)
False - rate for classified - Pr(D|-)
                                       12.07%
Correctly classified
                               90.41%
______
lroc
logistic bHSIL log2cob log2suc if deriv == 1
bsvalidation, rseed(111) adjust (heuristic) group(2) graph
/// Diagnostic accuraccy of SuCCoaA and Cobalamin in the VALIDATION cohort (filter:
"deriv")
**We estimate the bHSIL predicted probabilities in the discovery cohort and compare the
predicted vs. observed bHSIL in the validation cohort.
*For supertest_2cat, Predicted probabilities in the discovery cohort
logistic bHSIL supertest_2cat if deriv == 1
predict p1 //gen predicted probabilities
estat classification
Classified + if predicted Pr(D) >= .5
True D defined as bHSIL != 0
_____
                            Pr( +| D) 96.55%
Sensitivity
Specificity
                           Pr(-|~D) 81.82%
Positive predictive value Pr(D|+) 77.78% Negative predictive value Pr(\sim D|-) 97.30%
False + rate for true ^{\text{D}} Pr(+|^{\text{D}}) 18.18%
False - rate for true D Pr(-|D) 3.45%
                           Pr( -| D)
False - rate for true D
                                        3.45%
```

* Probabilities predicted in the model fitted in the discovery cohort vs. observed bHSIL in the validation cohort diagt bHSIL p1 if valid == 1 /*

22.22%

87.67%

[95% Confidence Interval]

Prevalence	Pr(A)	56%	40%	71.5%
Sensitivity	Pr(+ A)	95.7%	78.1%	99.9%
Specificity	Pr(- N)	83.3%	58.6%	96.4%
ROC area	(Sens. + Spec.)/2	.895	.797	.993
Likelihood ratio (+)		5.74	2.04	16.2
Likelihood ratio (-)		.0522	.0076	.359
Odds ratio		110	12.3	
Positive predictive val		88%	68.8%	97.5%
Negative predictive val		93.8%	69.8%	99.8%

^{*}Predicted probabilities in the validation cohort logistic bHSIL supertest 2cat if valid == 1

False + rate for classified + Pr(~D| +)

Correctly classified

False - rate for classified - Pr(D|-) 2.70%

______* /

```
estat classification
Classified + if predicted Pr(D) >= .5
True D defined as bHSIL != 0
_____
Sensitivity
                              Pr( +| D) 95.65%
Specificity
                              Pr( -|~D) 83.33%
Positive predictive value Pr(D| +) 88.00%
Negative predictive value Pr(~D| -) 93.75%
Negative predictive value
                              Pr(~D| -) 93.75%
False + rate for true ^{\text{D}} Pr( +|^{\text{D}}) 16.67%
False - rate for true D Pr( -| D) 4.35%
False - rate for true D
False + rate for classified + Pr(\sim D| +) 12.00%
False - rate for classified - Pr(D|-) 6.25%
_____
Correctly classified
-----*/
*For supertest_3cat, Predicted probabilities in the discovery cohort
logistic bHSIL supertest 3cat if deriv == 1
predict p2 //gen predicted probabilities
estat classification
Classified + if predicted Pr(D) >= .5
True D defined as bHSIL != 0
______
                              Pr( +| D) 70.69%
Sensitivity
Specificity
                              Pr( -|~D)
Positive predictive value Pr(D|+) 95.35% Negative predictive value Pr(\sim D|-) 83.50%
29.31%
False + rate for classified + Pr(\sim D| +) 4.65% False - rate for classified - Pr(D| -) 16.50%
Correctly classified
-
*/
* Probabilities predicted in the model fitted in the discovery cohort vs. observed bHSIL
in the validation cohort
diagt bHSIL p2 if valid == 1
                                                [95% Confidence Interval]
______
                                  Pr(A) 56% 40% 71.5%
Prevalence
______
                    Pr(+|A) 65.2% 42.7% 83.6%
Pr(-|N) 100% 81.5% 100%
(Sens. + Spec.)/2 .826 .727 .926
Sensitivity
Specificity
ROC area
Likelihood ratio (+) Pr(+|A)/Pr(+|N)
Likelihood ratio (-) Pr(-|A)/Pr(-|N)
                                                      .199
7.73
                                             .348
                                                                 .609
Odds ratio  LR(+)/LR(-) \qquad . \qquad 7.73 \qquad . \\ Positive predictive value <math display="block"> Pr(A|+) \qquad 100\% \qquad 78.2\% \qquad 100\% \\ Negative predictive value <math display="block"> Pr(N|-) \qquad 69.2\% \qquad 48.2\% \qquad 85.7\% 
* /
*Predicted probabilities in the validation cohort
logistic bHSIL supertest 3cat if valid == 1
estat classification
Classified + if predicted Pr(D) >= .5
True D defined as bHSIL != 0
```

```
Pr( -|~D) 83.33%
Specificity
Positive predictive value Pr(D|+) 88.00% Negative predictive value Pr(\sim D|-) 93.75%
______
False + rate for true ~D Pr(+|~D) 16.67% False - rate for true D Pr(-|~D) 4.35% False + rate for classified + Pr(~D|~+) 12.00% False - rate for classified - Pr(~D|~-) 6.25%
Correctly classified
                                                                  90.24%
/// NET RECLASSIFICATION INDEX AND MULTIVARIATE MODELS ADJUSTING FOR POTENTIAL CONFOUNDERS
**Whole cohort (discovery + validation)
*supertest 3cat
bysort bHSIL: tab cyto abnormal supertest 3cat
logistic bHSIL supertest 3cat cyto abnormal age cd4num smoker hpv simp
proctitis chlm ever
Logistic regression
                                                                                      Number of obs = 147
                                                                                      LR chi2(7) = 149.91
Prob > chi2 = 0.0000
                                                                                      Pseudo R2 = 0.7428
Log likelihood = -25.950608
______
         bHSIL | Odds ratio Std. err. z P>|z| [95% conf. interval]
_____

      superte~3cat |
      107.5365
      97.33773
      5.17
      0.000
      18.24243
      633.9125

      cyto_abnor~l |
      5.029541
      4.428908
      1.83
      0.067
      .8953198
      28.25391

      age |
      1.011491
      .0304511
      0.38
      0.704
      .9535351
      1.07297

      cd4num |
      1.00212
      .0010035
      2.11
      0.034
      1.000155
      1.004089

      smoker |
      .3855312
      .2031454
      -1.81
      0.070
      .1372592
      1.082873

      hpv_simp |
      .3266617
      .2026331
      -1.80
      0.071
      .0968468
      1.101821

      proct~m_ever |
      .3635935
      .3374972
      -1.09
      0.276
      .0589533
      2.242457

      ______cons | .0679814 .1555628 -1.17 0.240 .0007666 6.028462
*/
*supertest 2cat
bysort bHSIL: tab cyto abnormal supertest 2cat
logistic bHSIL supertest 2cat cyto abnormal age cd4num smoker hpv simp
proctitis chlm ever
c regression
                                                                           Number of obs = 147
                                                                                      LR chi2(7) = 130.77
                                                                                      Prob > chi2 = 0.0000
Log likelihood = -35.520244
                                                                                      Pseudo R2
                                                                                                          = 0.6480
                    bHSIL | Odds ratio Std. err. z P>|z| [95% conf. interval]

    supertest_2cat | 424.6761
    430.349
    5.97
    0.000
    58.27546
    3094.78

    cyto_abnormal | 3.798017
    2.65189
    1.91
    0.056
    .9665456
    14.92422

    age | 1.030652
    .0304471
    1.02
    0.307
    .9726715
    1.092089

    cd4num | 1.001071
    .0009408
    1.14
    0.255
    .9992291
    1.002917

    smoker | .577941
    .2242165
    -1.41
    0.158
    .2701802
    1.23627

    hpv_simp | .4524815
    .2347818
    -1.53
    0.126
    .1636563
    1.251033

    Stitis chim ever | .4499702

    3941761
    -0.91
    0.362
    0808215
    2.505189
```

Pr(+| D) 95.65%

Sensitivity