

(1) MESURE DE LA LIAISON ENTRE 2 VARIABLES QUANTITATIVES

Nom	Taille x _i (cm)	Poids y _i (kg)
Pierre	175	73
Arantxa	168	56
• • • • •		••••
Martin	185	87

La connaissance de la taille x apporte une certaine information sur le poids y

Il existe une relation de dépendance entre x et y

(2) MESURE DE LA LIAISON ENTRE 2 VARIABLES QUANTITATIVES

La connaissance de x n'apporte aucune certaine information sur y

x et y sont indépendantes

La connaissance de x permet de connaître exactement la valeur de y

Il existe une relation fonctionnelle entre x et y

(3) MESURE DE LA LIAISON ENTRE 2 VARIABLES QUANTITATIVES

Covariance:
$$Cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Propriétés:

$$Cov(x,y) > 0 \iff x \text{ et y varient dans le même sens}$$

$$Cov(x,y) < 0 \iff x \text{ et y varient en sens contraire}$$

$$Cov(x,y) = Cov(y,x)$$

$$Cov(x,x) = V(x)$$

$$Cov(a x + b y, z) = a Cov(x,z) + b Cov(y,z)$$

(4) MESURE DE LA LIAISON ENTRE 2 VARIABLES QUANTITATIVES

Corrélation linéaire:
$$\rho = \frac{\text{cov}(x,y)}{\sigma(x) \sigma(y)}$$

Propriétés:

$$-1 \le \rho \le 1$$

$$y = a x + b \iff \begin{cases} \rho = 1 & \text{si } a > 0 \\ \rho = -1 & \text{si } a < 0 \end{cases}$$

 $|\rho| = 1 \iff$ Il existe une relation fonctionnelle entre x et y

 $\rho = 0 \iff x \text{ et y sont indépendantes}$

 $0 < |\rho| < 1 \iff$ Il existe une dépendance linéaire d'autant plus forte que $|\rho|$ est grand

(1) AJUSTEMENT LINEAIRE

Est-il possible de trouver une fonction numérique f telle que y = f(x)?

Si une telle fonction existe, on dit que f est un modèle du phénomène étudié.

x est la variable explicative. y est la variable expliquée.

(2) AJUSTEMENT LINEAIRE

On désire trouver la droite qui passe « au mieux » à l'intérieur du nuage de points

(3) AJUSTEMENT LINEAIRE

Droite de régression de y en x

Droite de régression de x en y

(4) AJUSTEMENT LINEAIRE REGRESSION LINEAIRE DE Y EN X

Droite de régression linéaire de y en x y = f(x) = ax + b

La droite de régression linéaire de y en x, notée $D_{y/x}$, minimise $S = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left(y_i - ax_i - b\right)^2$

$$a = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{Cov(x,y)}{V(x)}$$

$$b = \overline{y} - a\overline{x}$$

 $D_{v/x}$ passe par le point moyen $(\overline{x}, \overline{y})$

(5) AJUSTEMENT LINEAIRE REGRESSION LINEAIRE DE Y EN X

Droite de régression linéaire de y en x y = f(x) = ax + b

y = a x + b définit un modèle affine

 $\hat{y}_i = a x_i + b$ = valeur de y_i prévue par le modèle

 $r_i = y_i - \hat{y}_i = résidu de la ième observation$

$$e_i = |r_i| = |y_i - a x_i - b| = erreur due au modèle$$

(6) AJUSTEMENT LINEAIRE REGRESSION LINEAIRE DE X EN Y

Droite de régression linéaire de x en y x = f(y) = a'y + b'

La droite de régression linéaire de x en y, notée $D_{x/y}$, minimise $S' = \sum_{i=1}^{n} e_i'^2 = \sum_{i=1}^{n} \left(x_i - a'y_i - b'\right)^2$

$$a' = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (y_i - \overline{y})^2} = \frac{Cov(x,y)}{V(y)}$$

$$b' = \overline{x} - a' \overline{y}$$

 $D_{x/y}$ passe par le point moyen $(\overline{x}, \overline{y})$

LIENS ENTRE CORRELATION ET DROITES DE REGRESSION

$$D_{y/x}: y = ax + b$$

$$a = \frac{Cov(x,y)}{V(x)}$$

$$b = \overline{y} - a\overline{x}$$

$$\rho^2 = a a'$$

$$\rho = a \frac{\sigma(x)}{\sigma(y)} = a' \frac{\sigma(y)}{\sigma(x)}$$

$$D_{x/y}: x = a'y + b' \qquad a' = \frac{Cov(x,y)}{V(y)}$$
$$\Leftrightarrow y = \frac{1}{a'}x - \frac{b'}{a'}$$

$$a' = \frac{Cov(x,y)}{V(y)}$$

$$b' = \overline{x} - a' \overline{y}$$

Indépendance linéaire

Le degré de dépendance linéaire se mesure à la proximité des droites de régression

Liaison fonctionnelle linéaire

(1) AJUSTEMENT A UNE FONCTION EXPONENTIELLE

y i
0,8
1,2
1,5
1,9
2,3
3,1

(2) AJUSTEMENT A UNE FONCTION EXPONENTIELLE

Modèle exponentiel

 $y = e^x$ exponentielle de base e

 $y = a^x$ exponentielle de base a

Forme exponentielle générale

Changement de variable

$$ln y = ln b + x ln a$$

$$Y = A X + B$$
 avec $Y = \ln y$

$$X = X$$

$$\Delta = \ln a$$

$$A = \ln a$$

$$B = \ln b$$

L'ajustement affine de Y en fonction de X donne A et B, d'où $a = e^A$, $b = e^B$, et le modèle $y = b a^x$

(3) AJUSTEMENT A UNE FONCTION EXPONENTIELLE

(1) AJUSTEMENT A UNE FONCTION PUISSANCE

Droite de régression linéaire de y en x

Analyse des résidus

Le modèle affine ne convient pas

(2) AJUSTEMENT A UNE FONCTION PUISSANCE

Modèle puissance

$$y = b x^a$$

Changement de variable

$$ln y = ln b + a ln x$$

$$Y = A X + B$$
 avec

$$Y = \ln y$$

$$X = \ln x$$

$$A = a$$

$$B = \ln b$$

L'ajustement affine de Y en fonction de X donne A et B, d'où a = A, $b = e^B$, et le modèle $y = b x^a$

(3) AJUSTEMENT A UNE FONCTION PUISSANCE

- Série initiale (x_i, y_i)
- Série prévue par le modèle (x_i, \hat{y}_i)

Le modèle puissance est mieux adapté que le modèle affine

QUALITE D'UN AJUSTEMENT

L'ajustement est d'autant meilleur que SCR est proche de 0, c.à.d. que SCR/SCT est proche de 0 ou SCM/SCT est proche de 1.

$$R = \frac{SCM}{SCT} = \text{Coefficient de détermination} = \rho^2 = (\text{coef. de corrélation})^2$$

= proportion de la variation totale due à l'ajustement