EVALUACIÓN DE LÓGICA (1º - GM / GII) — 26-03-2014

TEST. La solución correcta se ha marcado con asteriscos.

- 1. La cadena de símbolos $((p \lor q) \to (q \neg \to p))$ formada a partir del alfabeto $\{p,q\}$
 - (a) es una proposición bien formulada
 - *(b)* no es una proposición bien formulada
 - (c) es una proposición inconsistente
- 2. Sabiendo que $\bar{v}(\neg(q \to \neg p) \to \neg p) = 0$ se puede asegurar que:

(a)
$$v(p) = 1 \text{ y } v(q) = 0$$

(b)
$$v(p) = 1 y v(q) = 1$$

(c)
$$v(p) = 0$$

- 3. Sea la proposición $P = \neg(p \to r) \to (q \lor r)$ y una interpretación v tal que v(p) = v(q) = 0. Para que resulte $\bar{v}(P) = 1$: ha de ser:
 - $(a)^*$ No importa el valor de r
 - (b) Ha de ser v(r) = 1
 - (c) Ha de ser v(r) = 0
- 4. La proposición $(p \to (q \lor p)) \land (p \to \neg q)$:
 - (a) Es una contradicción
 - *(b)* Su negación no es ni tautología ni contradicción
 - (c) Es una tautología
- 5. $P ext{ y } Q$ son proposiciones con alfabeto $\{p,q,r\}$. La tabla de P tiene exactamente cinco filas con valor 1 y la tabla de Q tiene exactamente cuatro filas con valor 0. Entonces $P \wedge Q$:
 - *(a)* Es consistente
 - (b) Es consistente con cuatro filas de valor 1
 - (c) Es una tautología

- 6. La proposición $p \to (q \to r)$ es equivalente a:
 - (a) $(p \to q) \to r$
 - $*(b)* \neg (p \land q \land \neg r)$
 - (c) Ninguna de las dos anteriores
- 7. Sean las proposiciones $P = p \leftrightarrow q, \ Q = \neg(p \land \neg q)$, se cumple:
 - $*(a)* \neg Q \models \neg P$
 - (b) $Q \models P$
 - (c) $P \models \neg Q$
- 8. Sean la proposiciones $P=p \to (q \to r)$ y $Q=(p \to q) \to r$, entonces se cumple:
 - (a) $P \vee Q$ es una tautología
 - (b) $P \wedge Q$ es una contradicción
 - $(c)^* P \wedge Q$ es consistente
- 9. Sea A un álgebra de Boole y sean $x,y\in A$. Una de las propiedades de absorción asegura que:
 - (a) $x \lor (x \land y) = y$
 - (b) $x \wedge (x \vee y) = y$
 - $*(c)* x \lor (x \land y) = x$
- 10. Sean x,y elementos de un álgebra de Boole A, tales que $x \wedge \neg y = 0$. Entonces se cumple:
 - *(a)* $x \to y = 1$
 - (b) $y \ge x$
 - (c) $y = \neg x$

- 11. En la lógica de proposiciones se cumple que:
 - (a) un esquema de inferencia es una regla de inferencia
 - *(b)* toda regla de inferencia es un esquema de inferencia
 - (c) algunas reglas de inferencia no son esquemas de inferencia
- 12. Supongamos que $\Gamma \cup \{\neg P\}$ es un conjunto de proposiciones contradictorio. Entonces se cumple:
 - $*(a)*\Gamma \models P$
 - (b) P pertenece al conjunto Γ
 - (c) P es una tautología
- 13. Sea $\Gamma=\{p\to q, \neg p\to q, \neg q\}$ y sea P una proposición que solo contiene la letra q. Entonces se cumple:
 - (a) $\Gamma \cup \{P\}$ no es contradictorio
 - (b) $\Gamma \cup \{\neg P\}$ no es contradictorio
 - $*(c)*\Gamma \models P$
- 14. Sea $\Gamma \subset \Gamma' \subset \mathcal{P}(\mathcal{A})$. Entonces se cumple:
 - (a) Si Γ' es contradictorio, entonces Γ es contradictorio
 - *(b)* Si Γ es contradictorio, entonces Γ' es contradictorio
 - (c) Ni (a) ni (b) es cierto
- 15. Sea $\Gamma = \{P_1, \dots, P_n\}, n > 1$. Entonces se cumple:
 - (a) Γ es contradictorio si y sólo si $P_1 \vee \cdots \vee P_n$ es una contradicción
 - (b) Γ es contradictorio si y sólo si $P_1 \equiv \neg P_n$
 - *(c)* Γ es contradictorio si y sólo si $P_1 \wedge \cdots \wedge P_n$ es una contradicción

- 16. El enunciado $\{\neg R \to P, R \to Q\} \models P \lor Q$:
 - (a) Es cierto sólo si $P \equiv Q$
 - *(b)* Es cierto
 - (c) No es cierto
- 17. Sea Γ un conjunto finito no vacío de cláusulas generadas por un alfabeto finito no vacío \mathcal{A} . Entonces se cumple:
 - (a) Si todos los literales de cada cláusula son positivos, entonces Γ es contradictorio
 - (b) Si todos los literales de cada cláusula son negativos, entonces Γ es contradictorio
 - *(c)* Si Γ es contradictorio, entonces existe una cláusula con un literal positivo y existe otra cláusula con un literal negativo
- 18. La afirmación $\{P, \neg Q\} \models \neg R$ si y solo si $\{P, R\} \models Q$ es:
 - *(a)* Verdadera
 - (b) Verdadera solo cuando P=Q o R=Q
 - (c) Falsa
- 19. El esquema $\frac{P}{Q}$ es una regla de inferencia si y solo si $\frac{P\vee Q}{Q}$ lo es. El enunciado anterior es:
 - (a) Verdadero solo si P = Q
 - *(b)* Siempre verdadero
 - (c) Falso excepto cuando P = Q
- 20. Sea P una proposición y C una cláusula de P. Entonces:
 - (a) $P \vee C \equiv C$
 - (b) $P \wedge C \equiv P$
 - $*(c)*P \models C$

3 PROBLEMAS. Soluciones.

- P1. (0,4 puntos) Sea la proposición $P = \neg(r \to (p \land q)) \land r$.
 - a) ¿Qué valores de verdad deben tomar (p, q, r) para que sea $\nu(P) = 1$?
 - b) Encontrar una proposición Q equivalente a P en la que sólo aparezcan los conectores $\{\neg, \lor\}$.
 - c) Hallar la forma normal conjuntiva de P.
 - d) Hallar una proposición X=X(p,q) tal que $P\wedge X$ tenga sólo dos modelos.

SOLUCIÓN.— Se da en la tabla siguiente:

(a)	$r=1 \text{ y } p \wedge q=0, \text{ es decir, } (p,q) \neq (1,1).$
	Por tanto: $(p,q,r) = (1,0,1), (0,1,1), (0,0,1)$
b) Q	$P \equiv \neg[(r \to (p \land q)) \lor \neg r] \equiv$
	$\equiv \neg[(\neg r \lor \neg(\neg p \lor \neg q)) \lor \neg r] = Q$
c) FNC	$P \equiv (p \lor q \lor r) \land (p \lor \neg q \lor r) \land$
	$\wedge (\neg p \vee q \vee r) \wedge (\neg p \vee \neg q \vee r) \wedge (\neg p \vee \neg q \vee \neg r)$
d) <i>X</i>	Ver a): con $X = p \lor q$ se anula el valor 1 de P en $(0,0,1)$.
	$P \wedge X$ vale 1 solo en $(p, q, r) = (1, 0, 1), (0, 1, 1).$

Sobre c): Eliminando el conector condicional y aplicando equivalencias de De Morgan se llega a $P \equiv r \wedge (\neg p \vee \neg q) \wedge r \equiv (\neg p \vee \neg q) \wedge r$, la forma clausal de P. Ahora se completan los paréntesis y simplificando resulta la forma normal conjuntiva propuesta en la tabla.

P2. (0,2 puntos) En una álgebra de Boole A, demostrar la desigualdad siguiente:

$$(x \lor y) \land (x \to x') \land (y \to y') \le x' \lor y'.$$

SOLUCIÓN.— [Caso $A = \mathcal{B}(\mathcal{A})$. Con x = [P], y = [Q], etc., la desigualdad propuesta es en este álgebra de Boole particular la versión algebraica de la regla de casos: $P \vee Q, P \rightarrow P', Q \rightarrow Q' \models P' \vee Q'$.]

Para demostrarla con los métodos d eálgebra de Boole abstracta usaremos la propiedad distributiva y dos veces cada una de las desigualdades $x \wedge (x \to x') \leq x'$ (modus pones algebraico) y $x \wedge a \leq x$. Se tiene:

$$\begin{split} &(x\vee y)\wedge(x\to x')\wedge(y\to y')=\\ &=[x\wedge(x\to x')\wedge(y\to y')]\vee[y\wedge(x\to x')\wedge(y\to y')]\leq\\ &\leq[x'\wedge(y\to y')]\vee[y'\wedge(x\to x')]\leq x'\vee y'. \end{split}$$

P3. (0,4 puntos) (i) Verificar por resolución que el siguiente esquema no es una regla de inferencia:

$$(P \to Q) \land (R \to S)$$
$$(Q \land S) \to T$$
$$\neg P \lor \neg R$$

- (ii) Encontrar valores de (P,Q,R,S,T) tales que las premisas del esquema anterior valgan 1 y la conclusión valga 0.
- (iii) Añadir a las premisas una proposición, que no sea una contradicción y en cuya escritura no aparezcan ni P ni R, de modo que con la nueva proposición añadida el esquema se convierta en una regla.
- SOLUCIÓN.— (i) Las dos premisas y la negación de la conclusión dan las cinco cláusulas que se indican abajo y a la izquierda. En la columna derecha aparecen los pasos de una resolución que se estabiliza sin llegar a la contradicción:

- (ii) La conclusión vale 0 si y solo si P=R=1. Con estos valores las premisas quedan de la forma $Q \wedge S$, $(Q \wedge S) \to T$, y ambas valen 1 si Q=S=T=1. Así pues, cuando todas las letras que aparecen valen 1 las premisas valen 1 y la conclusión vale 0: el esquema propuesto no es una regla.
- (iii) La resolución efectuada en (i) pone de manifiesto que para alcanzar la contradicción, con las condiciones impuestas, bastaría añadir a las premisas uno de cualquiera de estos literales negados: $\neg Q$, $\neg S$, $\neg T$.