Total No. of Questions: 6

Total No. of Printed Pages:3

Faculty of Engineering End Sem (Odd) Examination Dec-2022 RA3CO23

Strength of Materials for Mechanical Engineers
Programme: B.Tech. Branch/Specialisation: RA

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 (1)	(ICQs)	Should be with	en in tun mstea	id of only a, b,	c or u.	
Q.1	i.	How can be the Poissons ratio be expressed in terms of bull				1
		modulus(K) a	modulus(K) and modulus of rigidity(G)?			
		(a) $(3K - 4G)$	$/\left(6K+4G\right)$	(b) $(3K + 4G)$	$/\left(6K-4G\right)$	
		(c) $(3K - 2G)$	$/\left(6K+2G\right)$	(d) $(3K + 2G)$	/(6K - 2G)	
	ii.	What is the li	miting values o	f Poisson's rati	o?	1
		(a) -1 and 0.5		(b) -1 and -0.5	5	
		(c) -1 and -0.5	5	(d) 0 and 0.5		
	iii.	Shear force is	unbalanced	to the left	or right of the section.	1
				(b) Vertical fo		
		(c) Inclined for	orce	(d) Condition	al force	
	iv.	` ′			entation of shear force	1
		plotted as ordinate.				
		(a) Scalar		(b) Aerial		
		(c) Graphical		(1) (2) 11		
	v.	• •		is also known a	as .	1
	•••	(a) Polar modulus		(b) Sectional modulus		_
				(d) Torsional		
	vi.	* *		` '	nm diameter can safely	1
	٧1.		e shear stress is	_	ini diameter can safery	1
		,		(c) 332 kNm	(d) 564 kNm	
	:				(u) 304 KINIII	1
	vii.		ction are		(4)	1
		(a) KINIII	(b) kN/m	(C) KIN	(d) m	

P.T.O.

	viii.	In simply supported beams, deflection is zero at	1			
		(a) Mid span (b) Supports				
		(c) Throughout (d) Point of action of load				
	ix.	The stress acts tangential to circumference is called stress.	1			
		(a) Hoop (b) Fluid				
		(c) Longitudinal (d) Yield				
	х.	is half the circumferential stress.	1			
		(a) Hoop stress (b) Longitudinal stress				
		(c) Fluid stress (d) Transverse stress				
Q.2	i.	Define the thermal stress.	2			
	ii.	Explain the volumetric strain 3				
	iii.	Derive the expression for extension of a bar due to self load. 5				
OR	iv.	Derive the relationship between elastic constants. 5				
Q.3	i.	Explain the point of contra flexture.	4			
	ii.	Derive the relationship between shear force & bending moment.	6			
OR	iii.	Draw the shear force diagram and bending moment diagram of above beam.				
		2 kN/m 3 kN				
		A B C D E				

i.	Explain the torsional rigidity.	5
ii.	Derive the torsion equation.	5
iii.	For a Helical compression spring (H.C.S), subjected to a Max.	5
	force of 1250 N. The deflection of spring corresponding to Max.	
	force should be approximate 30 mm. The Spring Index(C)=6.	
	spring made of patented and cold drawn steel wire of Grade1.	

		The constants (A=1753, m=0.182, G=81370 N/mm²) given as shown. Permissible Shear stress for spring wire taken as 50% of the Ultimate tensile strength (Sut). Find The following; (a) Wire diameter (d) (b) Mean Coil diameter (D)	
Q.5	i. ii.	Explain the double integral method. Describe the Macaulay's method for deflection of beams.	4 6
OR	iii.	Describe the area moment method for determining of deflection of beams.	6
Q.6	i. ii. iii.	Attempt any two: Describe the lames theorem. What are hoop stress and longitudinal stress of a thin shell? Discuss the deformation in thin and thick cylinders.	5 5 5

[3]

Marking Scheme RA3CO23

Strength of Materials for Mechanical Engineers

Q.1	i.	(c) $(3K - 2G) / (6K + 2G)$	1 Mark	1
	ii.	(d) 0 and 0.5	1 Mark	1
	iii.	(b) Vertical force	1 Mark	1
	iv.	(c) Graphical	1 Mark	1
	v.	(a) Polar modulus	1 Mark	1
	vi.	(b) 254 kNm	1 Mark	1
	vii.	(d) m	1 Mark	1
	viii.	(b) Supports	1 Mark	1
	ix.	(a) Hoop	1 Mark	1
	х.	(b) Longitudinal stress	1 Mark	1
Q.2	i.	Definition	1 Mark	2
		Diagram	1 Mark	
	ii.	Explanation	1 Mark	3
		Expression	2 Marks	
	iii.	Diagram	1 Mark	5
		As per the attempt	4 Marks	
OR	iv.	As per the attempt	5 Marks	5
Q.3	i.	Definition	2 Marks	4
		Diagram	2 Marks	
	ii.	As per the attempt	6 Marks	6
OR	iii.	Value shear force	1 Mark	6
		Diagram	2 Marks	
		Value of bending moment	1 Mark	
		Diagram	2 Marks	
Q.4		Attempt any two:		
	i.	Explanation	2 Marks	5
		Expression	3 Marks	
	ii.	Condition	2 Marks	5
		Expression	3 Marks	
	iii.	(a) Wire diameter (d)	3 Marks	5
		(b) Mean Coil diameter (D)	2 Marks	

Q.5	i.	Normal expression	1 Mark	4
		Single integration	2 Marks	
		Double integration	1 Marks	
	ii.	Diagram	1 Mark	6
		Moment equation	1 Mark	
		Constant value	2 Marks	
		Slope	1 Mark	
		Deflection	1 Marks	
OR	iii.	Diagram	1 Mark	6
		Bending moment diagram	1 Mark	
		B.M/E ₁ diagram	2 Marks	
		Deflection	2 Marks	
Q.6		Attempt any two:		
	i.	Condition	2 Marks	5
		Statement	3 Marks	
	ii.	Hoop stress	2.5 Marks	5
		Longitudinal stress	2.5 Marks	
	iii.	Thin cylinders	2.5 Marks	5
		Thick cylinders.	2.5 Marks	
