				Sul	ojec	t Co	de:]	BCS	503
Roll No:									

Printed Page: 1 of 2

BTECH (SEM V) THEORY EXAMINATION 2024-25 DESIGN AND ANALYSIS OF ALGORITHM

TIME: 3 HRS M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

1.	Attempt all questions in brief.	2×07	7 = 14
Q no.	Question	СО	Level
a.	With example define algorithm. List few algorithm design techniques.	1	K1
b.	Briefly discuss the basic steps taken to design an algorithm.	1	K1
c.	Derive the time complexity of Heap Sort.	2	K2
d.	List the properties of Binomial Heap	2	K1
e.	With a suitable example explain the concept of Convex –Hull Problem	3	K2
f.	With a suitable example explain "Branch and Bound".	4	K2
g.	Describe "Randomized algorithms". List few randomized algorithms.	5	K2

SECTION B

2.	Attempt any three of the following:	07 x 3	3 = 21
a.	Illustrate the operation of Merge –Sort on array A= (38, 27, 43, 3, 9, 82, 10).	1	K3
	Also drive the time complexity of Merge Sort.		
b.	Define Binomial Heap. Write an algorithm for union of two binomial heaps.	2	K2
	Also take a suitable example which clearly illustrates merging operation of two binomial heaps.		5.1
c.	Apply the greedy single source shortest path algorithm on the graph given below.	3	K3
	2 3 4 2 2 1 3		
d.	Write Floyd's and Warshal's algorithm to find all pair shortest path in a	4	K2
	graph. Discuss its time complexity.		
e.	Explain Vertex Cover Problem. Solve vertex cover problem using approximation algorithm	5	K2

SECTION C

3.	Attempt any one part of the following:	07 x	1 = 07
a.	Write Quick –Sort partition algorithm. Drive best and worst case time complexity of quick sort.	1	K2
	complexity of quick soft.		
b.	Find out Upper, Lower and Average bounds for the function $f(n) = 3n+2$	1	K3

4.	Attempt any one part of the following:	07 x	1 = 07
a.	Insert the following string in the initially empty tries: DOG, DONE, CAT, CAN,	2	K3
	RIGHT, DO, JUG, DAA, CA, CAME. Also make a compress tries of it.		
b.	Design a Binomial Heap for the following A.	2	K3
	$A = \{7, 2, 4, 17, 1, 11, 6, 8, 15, 10, 20\}$		

Roll No: Subject Code: BCS503

Printed Page: 2 of 2

BTECH (SEM V) THEORY EXAMINATION 2024-25 DESIGN AND ANALYSIS OF ALGORITHM

TIME: 3 HRS M.MARKS: 70

5.	Attempt any one part of the following:	07 x	1 = 07
a.	Write and explain the Kruskal's algorithm to find Minimum Spanning	g 3	K2
	Tree of a graph with a suitable example.		
b.	Find the optimal solution of the fractional Knapsack problem with n= and the knapsack capacity of m=15. The profits and weights of the iten are given below.		К3
	Objects: 1 2 3 4 5 6 7		
	Profit (P): 5 10 15 7 8 9 4		
	Weight (w): 1 3 5 4 1 3 2		

6.	Attempt any <i>one</i> part of the following:	07×1	1 = 07
a.	Illustrate the N-queens problem? Draw "State Space Tree" for 4 queen's	4	K3
	problem using backtracking.		
b.	Find the optimal solution to the 0/1 Knapsack instances with n=4 and	4	K2
	Knapsack capacity m=8 where profits and weights as follows: P={1, 2,		
	$[5,6]$ and W= $\{2,3,4,5\}$		

7.	Attempt any <i>one</i> part of the following:	$07 \times 1 = 07$
a.	Explain P, NP, NP -Complete and NP-Hard complexity classes. How they are	5 K2
	related to each other.	OV
b.	Write Knuth-Morris-Pratt string matching algorithm. Take a suitable	5 K3
	example Compute the prefix function π for the pattern	(2)
	ababbabbabbabbabbabb when the alphabet is $\Sigma = \{a, b\}$.	1 7
	ababbabbabbabbabbabbabbabbabbabbabbabba	
	21.32.10	