Exercício

1ª) Determinar a média, mediana, moda, desvio padrão e coeficiente de variação dos dados abaixo:

a)
$$X = 9$$
; 11; 14; 15; 17; 19; 23; 28.

 2^{a}) De acordo com a amostra dada A (número de defeitos de um produto uma linha de produção), com n = 50.

X = (5, 8, 0, 4, 6, 10, 9, 6, 2, 2, 6, 8, 9, 9, 7, 6, 5, 4, 0, 1, 0, 1, 1, 3, 4, 3, 3, 9, 9, 8, 6, 6, 5, 4, 7, 9. 10, 8, 10, 10, 5, 1, 3, 3, 4, 5, 5, 8, 5, 5). Pede-se: Caso necessário a distribuição de freqüência, média, mediana, moda, desvio padrão e coeficiente de variação.

3ª) Considere uma variável X contínua representando as idades de uma amostra de 30 pessoas escolhidas ao acaso.

14	16	17	18	21	22	23	25	27	28
28	29	30	31	32	34	34	37	38	39
39	40	41	42	44	45	48	50	53	55

Pede-se: Construa uma distribuição de freqüência para esses dados com todos os elementos. Calcule a média, mediana e moda, desvio padrão e coeficiente de variação. Calculando as separatrizes: Q₃, P₂₅ e D₅.

GABARITO

1) Questão

- a) Primeiro passo organizar os dados em rol:
 - 9 11 14 15 17 19 23 28
 - Obter o somatório de xi= Σ xi = 9+11+14+15+17+19+23+28= 136
 - Obter o somatório de $xi^2 = \sum xi^2 = (9)^2 + (11)^2 + (14)^2 + (15)^2 + (17)^2 + (19)^2 + (23)^2 + (28)^2 = 2586$
 - Aplicar nas fórmulas:

$$\circ$$
 Média: $x = \frac{\sum xi}{n} = \frac{136}{8} = 17$

o Mediana: Observar se a amostra é par ou impar

$$Md = \frac{8}{2} + \left(\frac{8}{2} + 1\right) = \underbrace{\frac{8}{2} + \left(\frac{8}{2} + 1\right)}_{\text{200}} + \underbrace{\frac{4^{\circ} + 5^{\circ}}{2}}_{\text{200}}$$

$$Md = \frac{15 + 17}{2} = 16$$

o Moda: O valor que mais se repete no rol

Mo= amodal, não tem valor se repetindo mais que outro.

Variância (S²)

Como você já tem o Σxi e o Σxi^2 , para calcular a variância vc só precisa substituir na fórmula.

$$S^{2} = \frac{\sum xi^{2} - \frac{\left(\sum xi\right)^{2}}{n}}{n-1}$$

$$S^2 = \frac{2586 - \frac{(136)^2}{8}}{8 - 1} = \frac{274}{7} = 39,14$$

Desvio padrão (S)

$$S = \sqrt{S^2}$$

$$S = \sqrt{39,14}$$

$$S=6,26$$

o Coeficiente de variação

$$CV(\%) = \frac{S}{x}.100$$

$$CV(\%) = \frac{6,26}{17}.100$$

2) Questão

Obs- Neste caso precisa-se observar duas coisas:

- 1ª) Qual o tipo de variável: discreta ou contínua? Discreta (não se agrupa em classes)
- 2ª) Pede-se para agrupar os dados em distribuição de freqüência? Sim, trabalhar com dados agrupados

em tabelas para dados discretos.

5	8	0	4	6	10	9	6	2	2
6	8	9	9	7	6	5	4	0	1
0	1	1	3	4	3	3	9	9	8
6	6	5	4	7	9	10	8	10	10
5	1	3	3	4	5	5	8	5	5

2º passo: Organizar os dados em rol

0	0	0	1	1	1	1	2	2	3
3	3	3	3	4	4	4	4	4	5
5	5	5	5	5	5	5	6	6	6
6	6	6	7	7	8	8	8	8	8
9	9	9	9	9	9	10	10	10	10

3º passo: Fazer a distribuição de frequência

xi	fi	xifi	Xi²	xi²fi	fac↓	Fr	f(%)	fac↑
0	3	0	0	0	3	0,06	6	50
1	4	4	1	4	7	0,08	8	47
2	2	4	4	8	9	0,04	4	43
3	5	15	9	45	14	0,10	10	41
4	5	20	16	80	19	0,10	10	36
5	8	40	25	200	27	0,16	16	31
6	6	36	36	216	33	0,12	12	23
7	2	14	49	98	35	0,04	4	17
8	5	40	64	320	40	0,10	10	15
9	6	54	81	486	46	0,12	12	10
10	4	40	100	400	50	0,08	8	4
\sum_{i}	50	267	-	1857	-	1,00	100	-

Feito isso calcula-se as medidas de posição e dispersão solicitadas:

o a) Média:
$$\frac{1}{x} = \frac{\sum xifi}{n} = \frac{267}{50} = 5,34$$

o b) Mediana: Observar se a amostra é par ou ímpar

$$Md = \frac{50}{2} + \left(\frac{50}{2} + 1\right) = 2$$

você encontrou a posição dos elementos que compõem a mediana, encontrar pela fac↓ quais os elementos correspondente as posições 25° e 26°.

$$Md = \frac{5+5}{2} = 5$$

Mo:Valor que mais se repete nos dados - 5 se repete 8 vezes
 Mo=5

Variância (S²)
$$S^{2}=$$

$$\frac{\sum xi^{2}fi - \frac{\left(\sum xifi\right)^{2}}{n}}{n-1}$$

$$S^{2}=\frac{2586 - \frac{(136)^{2}}{8}}{8-1} = \frac{274}{7} = 39,14$$

o Desvio padrão (S)
$$S = \sqrt{S^2}$$

$$S = \sqrt{39,14}$$

$$S = 6,26$$
o Coeficiente de variação (CV)
$$CV(\%) = \frac{S}{x}.100$$

$$CV(\%) = \frac{6,26}{17}.100$$

CV(%)=36,82%

3) Questão

14	16	17	18	21	22	23	25	27	28
28	29	30	31	32	34	34	37	38	39
39	40	41	42	44	45	48	50	53	55

Passos para construção da Distribuição de frequência:

- 1) Determinar a amplitude dos dados At=Ls-Li;
- 2) Determinar o número de classes $K = 1 + 3,3 \log n$;
- 3) Determinar o comprimento da classe c = At/K;
- 4) Determinar o limite inferior

Li= menor valor do rol;

5) Construir a tabela.

Classes	Fi	xi	Xifi	Xi ²	xi²fi	fac↓	fr	f(%)
[14, 21)	4	17,5	70,0	306,25	1225,0	4	0,13	13
[21, 28)	5	24,5	122,5	600,25	3001,25	9	0,17	17
[28, 35)	8	31,5	252,0	992,25	7938,0	17	0,27	27
[35, 42)	6	38,5	231,0	1482,25	8893,5	23	0,20	20
[42, 49)	4	45,5	182,0	2070,25	8281,	27	0,13	13
[49, 56)	3	52,5	157,5	2756,25	8268,75	30	0,10	10
Total	30	-	1015	-	37607,5	•	1,00	100

Feito isso calcula-se as medidas de posição e dispersão solicitadas:

o a) Média:
$$\frac{1015}{n} = \frac{1015}{30} = 33,83$$

o b) Mediana: Não precisa observar se a amostra é par ou impar

$$Md=Li + \frac{\left[\frac{n}{2} - fac \downarrow ant\right]}{fi}.c$$

você encontrou a posição da mediana por n/2, com o auxílio da fac↓ encontrar a classe da mediana. Daí substituir na fórmula. Ndivido por 2 é 15°(décimo quinto elemento), que pela fac↓ está na 3ª classe.

você identifica a classe modal, que é aquela que tem maior frequência.

Neste caso é a 3ª classe com 8. Daí é só aplicar os dados na fórmula pra

dados agrupados em classe.

$$Md = 28 + \frac{30 - 9}{2}.7$$

Md = 33,25

$$\circ \quad \text{Mo: } Li + \left[\frac{fpost}{fant - fpost} \right] c$$

$$_{\circ}$$
 Mo= 28 + $\left[\frac{6}{5+6}\right]$.7

- o Mo=31,82
- o Variância (S2)

$$S^{2} = \frac{\sum xi^{2}fi - \frac{\left(\sum xifi\right)^{2}}{n}}{n-1}$$

$$S^2 = \frac{37607,5 - \frac{(1015)^2}{30}}{30 - 1} =$$

$$S^2=112,64$$

o Desvio padrão (S)

$$S = \sqrt{S^2}$$

$$S = \sqrt{112,64}$$

$$S=10,61$$

o Coeficiente de variação (CV)

$$CV(\%) = \frac{S}{x}.100$$

$$CV(\%) = \frac{10,61}{33.83}.100$$

Calculando as separatrizes: Q₃, P₂₅ e D₅.

Sep
$$Q_3 = Li + \frac{[Psep - fac \downarrow ant]}{fi}.c$$

Sep $Q_3 = 35 + \frac{[22,5 - f17]}{6}.7$
Sep $Q_3 = 41,42$

Calculando as separatrizes:
$$Q_3$$
, P_{25} e D_5 .

• Sep
$$P_{25} = Li + \frac{\left[Psep - fac \downarrow ant\right]}{fi}.c$$

Sep $P_{25} = 21 + \frac{7,5-4}{5}.7$

• Sep D₅=
$$Li + \frac{\left[Psep - fac \downarrow ant\right]}{fi}.c$$

Sep D₅= $28 + \frac{15 - 9}{8}.7$
Sep D₅= 33,25

Sep $P_{25} = 25.9$

-Quartis: 4 partes (25%, 25%, 25% e 25%)

-Decis: 10 partes (10%, 10%, ...10%) -Percentis: 100 partes (1%, 1%, ..., 1%)

$$\bullet \quad Qx = \frac{x(\sum xi)}{4};$$

•
$$Dx = \frac{x(\sum xi)}{10}$$
; $Cx = \frac{x(\sum xi)}{10}$; $Cx = \frac{x(\sum xi)}{4}$; $Cx = \frac{3(30)}{4} = 22.5^{\circ}$; daí aplicar na fórmula

$$\bullet \quad P_{X} = \frac{x(\sum xi)}{100}$$

Com essas fórmulas encontro a posição da separatriz que quero.

$$Q_3 = \frac{3(30)}{4} = 22.5^{\circ}$$

daí aplicar na fórmula.

$$Px = \frac{x(\sum xi)}{100} = P_{25} = \frac{25(30)}{100} = 7,5^{\circ}$$

$$Px = \frac{x(\sum xi)}{10} = D_5 = \frac{5(30)}{10} = 15^{\circ}$$