Евгений Борисов

моделируем логику человеческих решений

интерпретируемость (для некоторых приложений это критично)

предикат - «простое» правило для выделения объектов

- предикат может быть описан естественным языком
- достаточно простая формула
- зависит от небольшого числа признаков

примеры применения пороговых правил

если [возраст>60] **или** [ранее был инфаркт] **то** операцию не делаем, риск неудачи > 60%

если [сумма<5000] **и** [зарплата>20000] **то** кредит выдать, риск невозврата 5%

предикат - «простое» правило для выделения объектов

- предикат может быть описан естественным языком
- достаточно простая формула
- зависит от небольшого числа признаков

[длинна > 10] <u>и</u> [ширина < 5] <u>или</u> [форма = квадрат]

предикат - «простое» правило для выделения объектов

- предикат может быть описан естественным языком
- достаточно простая формула
- зависит от небольшого числа признаков

[длинна
$$> 10$$
] и [ширина < 5] или [форма = квадрат]

• должен быть информативен, т.е. выделяет некоторое количество объектов одного класса

предикат - «простое» правило для выделения объектов

- предикат может быть описан естественным языком
- достаточно простая формула
- зависит от небольшого числа признаков

[длинна
$$> 10$$
] и [ширина < 5] или [форма = квадрат]

• должен быть информативен, т.е. выделяет некоторое количество объектов одного класса

один предикат это маловато....

о интуитивном понятии закономерности

тесты Бонгарда

о интуитивном понятии закономерности

тесты Бонгарда

закономерность - набор правил (предикатов)

• пороговое правило(decision stump) $R(x) = [a_i \le f_i(x) < b_i]$

- пороговое правило(decision stump) $R(x) = [a_i \le f_i(x) < b_i]$
- конъюнкция $R(x) = \bigwedge_{i} [a_{i} \leq f_{i}(x) < b_{i}]$

- пороговое правило(decision stump) $R(x) = [a_i \le f_i(x) < b_i]$
- конъюнкция $R(x) = \bigwedge_{i} [a_{i} \leq f_{i}(x) < b_{i}]$
- синдром $R(x) = \left[\sum_{i} \left[a_{i} \leq f_{i}(x) < b_{i}\right] > d\right]$

- пороговое правило(decision stump) $R(x) = [a_i \le f_i(x) < b_i]$
- конъюнкция $R(x) = \bigwedge_{i} [a_{i} \leq f_{i}(x) < b_{i}]$
- синдром $R(x) = \left[\sum_{i} \left[a_{i} \leq f_{i}(x) < b_{i}\right] > d\right]$
- полуплоскость $R(x) = \left[\sum_{i} w_{i} \cdot f_{i}(x) \geqslant w_{0}\right]$

- пороговое правило(decision stump) $R(x) = [a_i \le f_i(x) < b_i]$
- конъюнкция $R(x) = \bigwedge_{i} [a_{i} \leq f_{i}(x) < b_{i}]$
- синдром $R(x) = \left[\sum_{i} \left[a_{i} \leq f_{i}(x) < b_{i}\right] > d\right]$
- полуплоскость $R(x) = \left[\sum_{i} w_{i} \cdot f_{i}(x) \geqslant w_{0}\right]$
- шар $R(x) = [\rho(x_0, x) \leqslant w_0]$

задача: нужно отбирать «хорошие» закономерности

вопрос: как их оценивать

введём понятие информативности

как определить информативность предиката?

предикат выделил объекты

- р количество позитивных
- n количество негативных

введём понятие информативности

как определить информативность предиката?

предикат выделил объекты

- р количество позитивных
- n количество негативных

«простые» эвристики

р	n	p-n	p-5n	$\frac{P}{P} - \frac{n}{N}$	$\frac{p}{n+1}$
50	0	50	50	0.25	50
100	50	50	-150	0	1.96
50	9	41	5	0.16	5
5	0	5	5	0.03	5
100	0	100	100	0.5	100
140	20	120	40	0.5	6.67

информативность - энтропийный критерий

два исхода с вероятностями q и 1-q

количество информации: $I_0 = -\log_2(q)$ $I_1 = -\log_2(1-q)$

энтропия - математическое ожидание количества информации

$$h(q) = -q \cdot \log_2(q) - (1-q) \cdot \log_2(1-q)$$

энтропия выборки **S**: исходы q это принадлежность к классу **y**

 $H(y) = h\left(\frac{P}{S}\right)$ S - количество объектов в выборке P - количество объектов класса **у** (позитивных) в выборке

информативность - энтропийный критерий

S - количество объектов в выборке

Р - количество объектов класса у (позитивных) в выборке

$$H\left(y\right) = h\left(\frac{P}{S}\right)$$
 энтропия выборки S

предикат **R** выделил в **S** объекты

р - количество позитивных

п - количество негативных

$$H\left(y\left|R\right.\right) = \frac{\left(p+n\right)}{S} \cdot h\left(\frac{p}{p+n}\right) + \frac{s-p-n}{S} \cdot h\left(\frac{P-p}{S-p-n}\right)$$
 энтропия выборки S после получения информации **R**

информационный выигрыш (Information gain)

$$iGain(y, R) = H(y) - H(y|R)$$

- Р количество объектов класса у (позитивных) в выборке
- N количество объектов класса не у (негативных) в выборке
- S количество объектов в выборке (S = P+N)

предикат **R** выделил в S объекты

- р количество позитивных
- n количество негативных

информативность

точный статистический тест Фишера

$$iStat(y, R) = \frac{-1}{S} \log_2 \left(\frac{C_P^p \cdot C_N^n}{C_S^{p+n}} \right)$$

предикат **R** выделил в **S** объекты

- р количество позитивных
- n количество негативных

q_c - априорная вероятность класса с, выделеного предикатом R

информативность

неопределенность Джини (Gini impurity)

$$Gini(y, R) = \sum_{c} q_{c} \cdot (1 - q_{c}) = \frac{p}{p+n} \cdot \left(1 - \frac{p}{p+n}\right) + \frac{n}{p+n} \cdot \left(1 - \frac{n}{p+n}\right)$$

основные вопросы построения логического классификатора

- как извлекать признаки <u>не наука, но творчество</u>
- какого вида закономерности нужны простые, малое количество признаков
- как определить информативность iGain, Gini ...
- как искать закономерности ограниченный перебор (rule induction)
- как объединить закономерности в алгоритм

как искать закономерности

P=200 N=100

как объединить закономерности в алгоритм:

решающее дерево

рекурсивное разделение данных на две части

строим простой предикат ищем признак **i** и порог **b** для него

максимизируем информативность

$$\max_{i,b} |iGain(y, [X_i > b])|$$
 $\min_{i,b} (X_i) < \max_{i} (X_i) < \max_{i} (X_i)$

разделение набора объектов решающим деревом

как объединить закономерности в алгоритм:

решающее дерево, алгоритм ID3

$$\max_{i,b} |iGain(y, [X_i > b])|$$

$$min(X_i) < b < max(X_i)$$

рекурсивное разделение данных на две части

пример дерева для набора iris

результат работы решающего дерева

на учебном наборе - 100% точность

результат работы решающего дерева

на учебном наборе - 100% точность

на тесте - переобучение

решающее дерево

достоинство: интерпретируемость результата

недостаток: переобучение, неустойчивы к шуму

задача XOR : оптимальное дерево

задача XOR : результат «жадной» стратегии для дерева

pruning - обрезка решающего дерева

<u>pre-pruning</u> – критерий раннего останова. если информативность меньше порога или глубина велика то прекращаем ветвление

post-pruning – пост-редукция.
 простматриваем все внутренние вершины дерева
 проверяем их качество на тестовой выборке,
 заменяем листом, где качество после разделения ухудшается

Оценка важности признаков (feature importances)

Оценка важности признаков (feature importances)

$$I_{t} = \frac{N_{t}}{N} \cdot \left(G_{t} - \frac{N_{tR}}{N_{t}} \cdot G_{R} - \frac{N_{tL}}{N_{t}} \cdot G_{L} \right)$$

G₊ - неопределенность Джини (Gini impurity) в узле t

N - всего объектов учебной выборки,

N₊ - количество объектов в узле t,

G₁ - неопределенность Джини для левой ветки

 N_{H} - количество объектов после разделения в узле t слева,

G_р - неопределенность Джини для правой ветки

 N_{tR} - количество объектов после разделения в узле t справа,

логические методы: литература

git clone https://github.com/mechanoid5/ml_lectorium.git

- К.В. Воронцов Логические алгоритмы классификации. курс "Машинное обучение" ШАД Яндекс 2014
- Е.С.Борисов Классификатор на основе решающего дерева. http://mechanoid.kiev.ua/ml-dtree.html

Вопросы?

логические методы: практика

sklearn.datasets UCI Repository kaggle

задание

- посчитать число узлов и листьев
- pre-pruning (ограничить глубину дерева)