A-2^a PI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Seconda prova intermedia 20 giugno 2017

Nome:	0	Orale 23 giugno 2017 ore 9:00 aula N14
Cognome:	0	Orale 13 luglio 2017 ore 14:00 aula N14
Matricola:		

Esercizio 1

È dato il problema di PL in figura.

- 1. Facendo uso delle condizioni di ortogonalità, dimostrare o confutare l'ottimalità della soluzione $\bar{x}_1 = -2$; $\bar{x}_2 = 0$;
- 2. Facendo uso dell'analisi di sensitività, dimostrare o confutare che la soluzione ottenuta al punto 1 rimane ottima anche se il costo di x_2 diminuisce di due unità.
- 3. Facendo uso dell'analisi di sensitività, dimostrare o confutare che la base ottima ottenuta al punto 1 rimane ottima anche se il termine noto del primo vincolo è pari a 5.

$$\min x_1 + 3x_2 \begin{cases} x_1 + x_2 \le 3 \\ -x_1 + x_2 \ge 1 \\ x_1 + 2x_2 \ge -2 \\ x_1 \le 0 \\ x_2 > 0 \end{cases}$$

Esercizio 2

In tabella sono riportati gli archi di una rete di flusso composta da 8 nodi s,1,2,3,4,5,6,p.

Per ogni arco sono dati il valore della sua capacità massima e un flusso iniziale. In particolare, s è il nodo sorgente e p è il nodo pozzo.

- 1. Partendo dai dati in tabella, determinare se la distribuzione di flusso iniziale data è ammissibile, e spiegarne il motivo. In caso affermativo, mostrare il flusso iniziale e determinare una soluzione ottima al problema del massimo flusso utilizzando l'algoritmo di Ford e Fulkerson. Altrimenti, scaricare il flusso iniziale e risolvere il problema del massimo flusso utilizzando Ford e Fulkerson.
- 2. Individuare un taglio di capacità minima tra i nodi s e p. Evidenziare il taglio ottimo trovato.
- 3. Partendo dalla soluzione ottima trovata al punto 1, si determini il nuovo flusso massimo e il nuovo taglio di capacità minima se:
 - a. la nuova capacità dell'arco (3,6) è uguale a 7
 - b. la nuova capacità dell'arco (2,5) è uguale a 1
 - c. la nuova capacità dell'arco (6,5) è uguale a 1

Archi	s,1	s,3	1,2	2,1	2,3	1,4	2,5	3,5	3,6	6,5	4,5	4,p	5,p	6,p
Flussi	2	4	1	0	1	2	0	3	2	1	1	1	4	1
Capacità	8	10	2	4	1	12	4	8	3	7	2	1	7	8

N.B. Mostrare tutti i passi dell'algoritmo. Motivare ogni risposta data.

Domanda 3

Illustrare le definizioni di (1) percorso e (2) cammino e in cosa differiscono dato un digrafo con pesi ≥ 0 sugli archi. (3) Dimostrare che la soluzione ottima dell'algoritmo di Dijkstra rispetta sempre le condizioni di ottimalità sui percorsi orientati di costo minimo in un digrafo con pesi ≥ 0 . (4) Illustrare il funzionamento dell'algoritmo di Dijkstra e (5) dimostrarne la complessità computazionale.

A-Esame

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Primo appello 20 giugno 2017

Nome:	0	Orale 23 giugno 2017 ore 9:00 aula N14
Cognome:	0	Orale 13 luglio 2017 ore 14:00 aula N14
Matricola:		

Esercizio 1

È dato il problema di PL in figura.

- 1. Ridurre il problema in forma standard.
- 2. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema in forma standard o dimostrare che il problema è impossibile o illimitato inferiormente.

$$\max x_1 + 3x_2$$

$$\begin{cases} x_1 + x_2 \le 3 \\ -x_1 + x_2 \ge 1 \\ x_1 + 2x_2 \ge -2 \\ x_1 \le 0 \\ x_2 > 0 \end{cases}$$

Esercizio 2

In tabella sono riportati gli archi di una rete di flusso composta da 8 nodi s,1,2,3,4,5,6,p.

Per ogni arco sono dati il valore della sua capacità massima e un flusso iniziale. In particolare, s è il nodo sorgente e p è il nodo pozzo.

- 1. Partendo dai dati in tabella, determinare se la distribuzione di flusso iniziale data è ammissibile, e spiegarne il motivo. In caso affermativo, mostrare il flusso iniziale e determinare una soluzione ottima al problema del massimo flusso utilizzando l'algoritmo di Ford e Fulkerson. Altrimenti, scaricare il flusso iniziale e risolvere il problema del massimo flusso utilizzando Ford e Fulkerson. 2. Individuare un taglio di capacità minima tra i nodi s e p. Evidenziare il taglio ottimo trovato.
- 3. Partendo dalla soluzione ottima trovata al punto 1, si determini il nuovo flusso massimo e il nuovo taglio di capacità minima se:
- a. la nuova capacità dell'arco (3,6) è uguale a 7
- b. la nuova capacità dell'arco (2,5) è uguale a 1
- c. la nuova capacità dell'arco (6,5) è uguale a 1

Archi	s,1	s,3	1,2	2,1	2,3	1,4	2,5	3,5	3,6	6,5	4,5	4,p	5,p	6,p
Flussi	2	4	1	0	1	2	0	3	2	1	1	1	4	1
Capacità	8	10	2	4	1	12	4	8	3	7	2	1	7	8

N.B. Mostrare tutti i passi dell'algoritmo. Motivare ogni risposta data.

Domanda 3

Illustrare le definizioni di (1) base di una matrice, (2) rango di una matrice e (3) soluzione base ammissibile di un problema di PL in forma standard. Dimostrare (4) le condizioni algebriche di ottimalità e (5) quelle di illimitatezza per un problema di PL in forma standard. Fornire un'interpretazione geometrica del cambio di base nell'algoritmo del simplesso nel caso di (6) pivot non degenere e (7) pivot degenere.

B-2^a PI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Seconda prova intermedia 20 giugno 2017

Nome:	0	Orale 23 giugno 2017 ore 9:00 aula N14
Cognome:	0	Orale 13 luglio 2017 ore 14:00 aula N14
Matricola:		

Esercizio 1

È data la rete di flusso in figura, con i costi degli archi e le forniture dei nodi.

Utilizzando il simplesso su rete (fase 1 e fase 2), trovare una soluzione ottima del problema di flusso a costo minimo sulla rete data.

Esercizio 2

In tabella è riportata la matrice di incidenza nodi/archi di un digrafo composto da 7 nodi s1...6. Per ogni arco è riportata una peso. In particolare, s è il nodo sorgente.

Rete	а	b	С	d	е	f	g	h	i	ı	m	n	0	р
s	1	1										1	1	
1								-1		-1	-1			1
2		-1		1		1								
3	-1		1		1									
4				-1	-1			1	1				-1	
5			-1			-1	1			1		-1		
6							-1		-1		1			-1
Peso	2	3	3	3	3	2	6	3	7	4	1	6	7	2

- **a.** Trovare il cammino orientato minimo dal nodo *s* verso tutti gli altri nodi utilizzando l'algoritmo di Dijkstra in versione efficiente.
- a.1: Indicare in quale ordine vengono aggiunti gli archi all'albero (oppure in quale ordine i flag dei nodi vengono fissati a 1).
- a.2: Mostrare l'albero dei cammini orientati minimi.
- **b.** Mostrare come varia la soluzione ottima del problema nei seguenti tre casi distinti:
- b.1: l'arco *e* ha peso 5;
- b.2: l'arco *i* ha peso 4;
- b.3: l'arco *m* ha peso 2.
- **c.** Per i casi a, b.1, b.2, b.3 mostrare il cammino orientato minimo dal nodo *s* al nodo 4, dal nodo *s* al nodo 5, dal nodo *s* al nodo 6. In tutti e 4 i casi indicare il peso del cammino orientato minimo.

N.B. Mostrare tutti i passi dell'algoritmo. Motivare ogni risposta data.

Domanda 3

Illustrare le definizioni di (1) flusso netto e (2) capacità del taglio in una rete. (3) Dimostrare che una distribuzione di flusso è ottima in una rete se e solo se la rete residua non contiene alcun cammino orientato dal nodo sorgente al nodo pozzo. (4) Illustrare il funzionamento dell'algoritmo di Ford-Fulkerson e (5) dimostrarne la complessità computazionale.

B-Esame

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Primo appello 20 giugno 2017

Nome:	0	Orale 23 giugno 2017 ore 9:00 aula N14
Cognome:	0	Orale 13 luglio 2017 ore 14:00 aula N14
Matricola:		

Esercizio 1

Dovete formare una squadra di calcetto a 5 e dovete coprire i vari ruoli (1 portiere, 2 centrocampisti e 2 attaccanti) avendo a disposizione una rosa di 5 persone: Alberto, Bernardo, Carlo, Davide ed Emanuele. Nell'allenamento pre-partita avete dato un voto a ciascun giocatore per ciascuno dei 3 ruoli, ottenendo i risultati in tabella (10 voto massimo, 1 voto minimo).

	A	В	C	D	E
Portiere	10	9	5	5	3
Centrocampo	9	7	7	6	5
Attacco	7	6	5	5	6

- 1. Formulare il problema di PL di formare la squadra massimizzando la somma dei voti dei giocatori nei ruoli assegnati.
- 2. Utilizzando le condizioni di ortogonalità dimostrare o confutare l'esistenza di una soluzione ottima in cui Alberto è portiere, Bernardo e Carlo giocano a centrocampo, Davide ed Emanuele giocano in attacco.

Esercizio 2

In tabella è riportata la matrice di incidenza nodi/archi di un digrafo composto da 7 nodi s1...6. Per ogni arco è riportata una peso. In particolare, s è il nodo sorgente.

Rete	а	b	С	d	е	f	g	h	i	ı	m	n	0	р
s	1	1										1	1	
1								-1		-1	-1			1
2		-1		1		1								
3	-1		1		1									
4				-1	-1			1	1				-1	
5			-1			-1	1			1		-1		
6							-1		-1		1			-1
Peso	2	3	3	3	3	2	6	3	7	4	1	6	7	2

- **a.** Trovare il cammino orientato minimo dal nodo *s* verso tutti gli altri nodi utilizzando l'algoritmo di Dijkstra in versione efficiente.
- a.1: Indicare in quale ordine vengono aggiunti gli archi all'albero (oppure in quale ordine i flag dei nodi vengono fissati a 1).
- a.2: Mostrare l'albero dei cammini orientati minimi.
- **b.** Mostrare come varia la soluzione ottima del problema nei seguenti tre casi distinti:
- b.1: l'arco *e* ha peso 5;
- b.2: 1'arco *i* ha peso 4;
- b.3: 1'arco *m* ha peso 2.
- **c.** Per i casi a, b.1, b.2, b.3 mostrare il cammino orientato minimo dal nodo *s* al nodo 4, dal nodo *s* al nodo 5, dal nodo *s* al nodo 6. In tutti e 4 i casi indicare il peso del cammino orientato minimo.

N.B. Mostrare tutti i passi dell'algoritmo. Motivare ogni risposta data.

Domanda 3

Illustrare le definizioni di (1) poliedro, (2) vertice, (3) direzione e (4) direzione estrema di un poliedro. Partendo dal teorema di Weyl-Minkowski, dimostrare (5) le condizioni geometriche di ottimalità e (6) quelle di illimitatezza per un problema di PL.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Primo appello 20 giugno 2017

Nome:	O Or	ale 23 giugno 2017 ore 9:00 aula N14
Cognome:	O	ale 13 luglio 2017 ore 14:00 aula N14
Matricola:		

Esercizio 1

Una vetreria acquista lastre di vetro di misura standard ($L\times H$)=(8×1) metri che poi taglia per ricavare finestre di tre tipologie A, B e C, tutte di altezza standard H=1 metro. Sono pervenuti gli ordini in Tabella.

Tipo vetro	A	В	C
Dimensioni vetro (LxH) in m	(2×1)	(3×1)	(1,5×1)
Numero finestre ordinate	12	11	22

- 1. Formulare il problema di soddisfare gli ordini in tabella acquistando il minimo numero di lastre.
- 2. Il titolare della vetreria osserva che per soddisfare l'ordine è sufficiente acquistare 12 lastre (8×1) e tagliarle ricavando da ciascuna lastra un vetro A, un vetro B e due vetri C. Facendo uso delle condizioni di ortogonalità, confermare o confutare l'ottimalità di questa soluzione.

Esercizio 2

State applicando l'algoritmo di Floyd-Warshall ad un digrafo con 5 nodi (A, B, C, D, E). Alla fine del passo 1 (k = A) ottenete le matrici (a sinistra i costi dei percorsi, a destra i predecessori):

passo 1	Α	В	С	D	E
Α	0	2	+∞	2	-3
В	6	0	2	4	—1
С	+∞	5	0	-3	5
D	-2	0	+∞	0	-5
E	4	6	2	6	0

passo 1	Α	В	С	D	Е	
Α	Α	Α	С	Α	Α	
В	В	В	В	В	В	
С	Α	С	С	С	С	
D	D	Α	С	D	Α	
E	Е	Α	E	Α	E	

- 1. Effettuare i passi 2, 3, 4 e 5 dell'algoritmo, aggiornando entrambe le matrici ad ogni passo dell'esecuzione. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.
- 2. Fissare gli elementi in posizione (C, D) nelle due matrici uguali a +∞ e D. Ripetere i passi 2, 3, 4 e 5 dell'algoritmo. In presenza di cicli negativi arrestare l'algoritmo e mostrare un ciclo negativo.
- 3. Se l'algoritmo completa il passo 5 senza individuare cicli di peso negativo, mostrare i cammini orientati minimi $C \to D$ e $C \to A$ per le matrici ottime ottenute ai punti 1 e 2.

N.B. Mostrare tutti i passi dell'algoritmo. Motivare ogni risposta data.

Domanda 3

Illustrare (1) il problema di flusso di costo minimo su una rete con n nodi e m archi; (2) la sua formulazione in forma standard min{c^T x:Ax=b;x≥0}, spiegando le particolarità di A e b. Illustrare le definizioni di (3) ciclo e (4) albero ricoprente nel grafo sottostante la rete. Dimostrare: (5) che se m≥n la matrice dei coefficienti A non può avere rango n; (6) che se la rete è connessa gli archi di un albero ricoprente la rete sono associati a una base di A; (7) che una base di A non può contenere gli archi di un ciclo del grafo sottostante la rete.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Primo appello 20 giugno 2017

Nome:	0	Orale 23 giugno 2017 ore 9:00 aula N14
Cognome:	0	Orale 13 luglio 2017 ore 14:00 aula N14
Matricola:		

Esercizio 1

È data la rete di flusso in figura, con i costi degli archi e le forniture dei nodi. Partendo dalla base (A,D),(D,C),(C,E),(A,B) e utilizzando la fase 2 del simplesso su rete, trovare una soluzione ottima del problema di flusso a costo minimo sulla rete data.

Esercizio 2

In tabella sono riportati gli archi di una rete di flusso composta da 8 nodi s,1,2,3,4,5,6,p.

Per ogni arco sono dati il valore della sua capacità massima e un flusso iniziale. In particolare, s è il nodo sorgente e p è il nodo pozzo.

- 1. Partendo dai dati in tabella, determinare se la distribuzione di flusso iniziale data è ammissibile, e spiegarne il motivo. In caso affermativo, mostrare il flusso iniziale e determinare una soluzione ottima al problema del massimo flusso utilizzando l'algoritmo di Ford e Fulkerson. Altrimenti, scaricare il flusso iniziale e risolvere il problema del massimo flusso utilizzando Ford e Fulkerson. 2. Individuare un taglio di capacità minima tra i nodi s e p. Evidenziare il taglio ottimo trovato.
- 3. Partendo dalla soluzione ottima trovata al punto 1, si determini il nuovo flusso massimo e il nuovo taglio di capacità minima se:
- a. la nuova capacità dell'arco (1,2) è uguale a 8
- b. la nuova capacità dell'arco (1,2) è uguale a 8 e dell'arco (1,4) è uguale a 6
- c. la nuova capacità dell'arco (1,2) è uguale a 8 e dell'arco (4,5) è uguale a 1

Archi	s,1	s,3	1,2	2,1	2,3	1,4	2,5	3,5	3,6	6,5	4,5	4,p	5,p	6,p
Flussi	2	1	1	1	0	2	0	1	0	0	1	1	2	0
Capacità	10	5	2	1	3	3	4	8	6	2	4	10	7	3

N.B. Mostrare tutti i passi dell'algoritmo. Motivare ogni risposta data.

Domanda 3

Illustrare le definizioni di (1) percorso e (2) cammino e in cosa differiscono dato un digrafo con pesi sugli archi qualsiasi. (3) Dimostrare che la soluzione ottima dell'algoritmo di Floyd-Warshall rispetta sempre le condizioni di ottimalità sui percorsi orientati di costo minimo in un digrafo con pesi qualsiasi. (4) Illustrare il funzionamento dell'algoritmo di Floyd-Warshall e (5) dimostrarne la complessità computazionale.