Recurrent Neural Networks

Ling 282/482: Deep Learning for Computational Linguistics
C.M. Downey
Fall 2025

- Feed-forward networks: fixed-size input, fixed-size output
 - Feedforward LM: n-gram assumption (i.e. fixed-size context of word embeddings)

- Feed-forward networks: fixed-size input, fixed-size output
 - Feedforward LM: n-gram assumption (i.e. fixed-size context of word embeddings)
- RNNs process sequences of vectors
 - Maintaining "hidden" state
 - Applying the same operation at each step

- Feed-forward networks: fixed-size input, fixed-size output
 - Feedforward LM: n-gram assumption (i.e. fixed-size context of word embeddings)
- RNNs process sequences of vectors
 - Maintaining "hidden" state
 - Applying the same operation at each step
- Different RNNs
 - Different operations at each step
 - Operation also called "recurrent cell"
 - Other architectural considerations (e.g. depth, bidirectionally)

Long-distance dependencies: agreement

- Language modeling (fill-in-the-blank)
 - The keys _____
 - The keys on the table _____
 - The keys next to the book on top of the table _____
- To get the number on the verb, need to look at the subject, which can be very far away
 - And number can disagree with linearly-close nouns

Selectional Restrictions

- The family moved from the city because they wanted a larger _____.
- The team moved from the city because they wanted a larger ____.

Selectional Restrictions

- The family moved from the city because they wanted a larger house.
- The team moved from the city because they wanted a larger market.
- Need models that can capture long-range dependencies like this.
- N-gram (whether count-based or neural) cannot (e.g. with n=4)
 - P(word I "they wanted a larger")

 $h_t = f(x_t, h_{t-1})$

Simple / Vanilla / Elman RNNs

- Same kind of feed-forward computation we've been studying, but:
 - x_t : sequence element at time t
 - h_{t-1} : hidden state of the model at previous time t-1

Simple / Vanilla / Elman RNNs

- Same kind of feed-forward computation we've been studying, but:
 - x_t : sequence element at time t
 - h_{t-1} : hidden state of the model at previous time t-1

Simple/"Vanilla" RNN:
$$h_t = \tanh(W_x x_t + W_h h_{t-1} + b)$$

Training: BPTT

- Backpropagation Through Time
- "Unroll" the network across time-steps
- Apply backprop to the "wide" network
 - Each cell has the same parameters
 - Gradients sum across time-steps
 - Multi-variable chain rule

"Unrolled" RNN

JM sec 9.2.3

Power of RNNs

Hierarchical clustering of Vanilla RNN hidden states trained as LM on synthetic data:

What trends do you notice?

Elman 1990

Power of RNNs

Hierarchical clustering of Vanilla RNN hidden states trained as LM on synthetic data:

Elman 1990

RNN for Text Classification

JM sec 9.2.5

RNNs for Language Modeling

Deep RNNs:

Deep RNNs:

Deep RNNs:

Deep RNNs:

Deep RNNs:

Batching in RNNs

- Intuitively, shape of inputs: [batch_size, seq_len, vocab_size]
- But what is sequence length??
 - "This is the first example </s>": 6
 - "This is another </s>": 4

Padding and Masking

- Step 1: pad all sequences in batch to be of the same length
 - "This is the first example </s>": 6
 - "This is another </s> PAD PAD": 6
- Step 2: build a "mask" (1 = True token, 0 = padding)

- Step 3: use mask to tell model what to ignore, either
 - Select correct final states (classification)
 - Multiply losses in tagging tasks (LM)

Summary

- RNNs allow for neural processing of sequential data
- In principle, should help models capture **long-distance dependencies** (e.g. number agreement, selectional preferences, ...)
 - Maintain a state over time
 - Repeatedly apply the same weights
 - as opposed to n-gram models, which cannot build such dependencies
- Uses: classification, tagging
- Extensions: deep, bidirectional

Next Time

- Discuss a technical problem in training Vanilla RNNs
 - Vanishing gradients
- Introduce gating-based RNNs
 - LSTMs
 - GRUs
 - Strengths, weaknesses, differences