1 Critère d'Eisenstein

Critère d'Eisenstein

Ici, nous démontrons le célèbre critère d'Eisenstein que l'on utilise énormément en pratique pour montrer qu'un polynôme est irréductible.

Soit *A* un anneau commutatif et unitaire.

Notation 1. Soit $P \in A[X]$. On note $\gamma(P)$ le contenu du polynôme P.

Lemme 2. Soit $p \in A$ tel que (p) est premier. Alors A/(p) est intègre.

[**ULM18**] p. 32

Démonstration. Soient \overline{a} , $\overline{b} \in A/(p)$. On suppose $\overline{a}\overline{b} = 0$. Comme $\overline{a}\overline{b} = \overline{a}\overline{b}$, on a $ab \in (p)$. Donc par hypothèse,

$$a \in (p)$$
 ou $b \in (p)$
 $\Rightarrow \overline{a} = 0$ ou $\overline{b} = 0$

et ainsi A/(p) est bien intègre.

p. 22

Lemme 3. Si A est intègre, alors A[X] l'est aussi.

Démonstration. Soient $P,Q \in A[X]$ non nuls, de degrés respectifs n et m que l'on écrit $P = \sum_{i=0}^{n} a_i X^i$ et $Q = \sum_{j=0}^{m} b_j X^j$. Alors, le coefficient de X^{n+m} dans le produit PQ est $a_n b_m$. Comme $a_n \neq 0$, $b_m \neq 0$ et A est intègre, ce coefficient est non nul. Donc en particulier, le produit PQ est non nul. □

Lemme 4. On suppose A factoriel. Soit $a \in A$ irréductible. Alors (a) est premier.

p. 64

Démonstration. On suppose que $a \mid bc$ avec $b, c \in A$. Alors, il existe $d \in A$ tel que

$$ad = bc \tag{*}$$

Si b est inversible, alors $a \mid c$. De même, si c est inversible, alors $a \mid b$. Supposons donc que b et c ne sont pas inversibles. Comme a est irréductible, on en déduit que d est un élément non nul et non inversible de A. Il existe donc des décompositions en irréductibles

$$b = \beta_1 \dots \beta_n$$
, $c = \gamma_1 \dots \gamma_m$ et $d = \delta_1 \dots \delta_k$

avec $n, m, k \in \mathbb{N}^*$. Par conséquent, en injectant dans (*):

$$a\delta_1 \dots \delta_k = \beta_1 \dots \beta_n \gamma_1 \dots \gamma_m$$

Comme la factorisation en irréductibles est unique à l'ordre près, il existe β_i ou γ_j qui est associé à a. Si bien que a divise b ou c; c'est ce que l'on voulait démontrer.

2 Critère d'Eisenstein

Lemme 5 (Gauss). On suppose A factoriel. Alors:

[GOZ] p. 10

- (i) Le produit de deux polynômes primitifs est primitif.
- (ii) $\forall P, Q \in A[X] \setminus \{0\}, \gamma(PQ) = \gamma(P)\gamma(Q).$
- (i) Soient $P, Q \in A[X]$ tels que $\gamma(P) = \gamma(Q) = 1$. Supposons $\gamma(PQ) \neq 1$. Alors, Démonstration. il existe $p \in A$ irréductible tel que p divise tous les coefficients de PQ. Donc, dans A/(p), $\overline{PQ} = \overline{PQ} = 0.$

Mais, par le Théorème 4, (p) est premier. Donc par le Théorème 2 A/(p) est intègre, et en particulier, A/(p)[X] l'est aussi par le Théorème 3. Ainsi, $\overline{P}=0$ ou $\overline{Q}=0$: absurde.

(ii) En factorisant, on écrit $P = \gamma(P)R$ et $Q = \gamma(Q)S$ où $R, S \in A[X]$ avec $\gamma(R) = \gamma(S) = 1$. D'où $PQ = \gamma(P)\gamma(Q)RS$ avec $\gamma(RS) = 1$ par le Point (i). Ainsi, $\gamma(PQ) = \gamma(P)\gamma(Q)$.

Théorème 6 (Critère d'Eisenstein). Soient \mathbb{K} le corps des fractions de A et $P = \sum_{i=0}^{n} a_i X^i \in$ A[X] de degré $n \ge 1$. On suppose que A est factoriel et qu'il existe $p \in A$ irréductible tel que :

- (i) $p \mid a_i, \forall i \in [0, n-1]$. (ii) $p \nmid a_n$. (iii) $p^2 \nmid a_0$.

Alors P est irréductible dans $\mathbb{K}[X]$.

Démonstration. Par l'absurde, on suppose P = UV avec $U, V \in \mathbb{K}[X]$ de degré supérieur ou égal à 1. Soit a un multiple commun à tous les dénominateurs des coefficients non nuls de U et V. On a

$$a^{2}P = \underbrace{aU}_{=U_{1}} \underbrace{aV}_{=V_{1}}$$

$$\in A[X] \in A[X]$$

On applique le Théorème 5 pour obtenir :

$$a^{2}\gamma(P) = \gamma(U_{1})\gamma(V_{1}) \tag{*}$$

En factorisant, on écrit $U_1=\gamma(U_1)U_2$ et $V_1=\gamma(V_1)V_2$ avec $U_2,V_2\in A[X]$. Il vient :

$$a^{2}P = \gamma(U_{1})\gamma(V_{1})U_{2}V_{2} \stackrel{(*)}{=} a^{2}\gamma(P)U_{2}V_{2}$$

Et comme $a \in A \setminus \{0\}$ et que A est intègre, on a $P = \gamma(P)U_2V_2 = U_3V_3$ avec $U_3 = \gamma(P)U_2 \in A[X]$ et $V_3 = V_2 \in A[X]$ (dans un souci de symétrie des notations) qui sont de degré supérieur ou égal à 1.

On pose $U_3 = \sum_{i=0}^r b_i X^i$ et $V_3 = \sum_{j=0}^s c_j X^j$ avec $b_r c_s = a_n \neq 0$ par définition de P. Dans A/(p), on a

$$\underbrace{\overline{P}}_{=\overline{a_n}X^n} = \overline{U_3}\overline{V_3} = \overline{U_3}\overline{V_3}$$

3 Critère d'Eisenstein

et en particulier, le terme de degré 0, $\overline{b_0 c_0} = \overline{b_0} \overline{c_0}$ est nul. Mais, p est irréductible et A est factoriel, donc au vu du Théorème 4, (p) est premier et A/(p) est intègre par le Théorème 2. Donc par le Théorème 3, A/(p)[X] est aussi intègre. D'où $\overline{b_0} = 0$ ou $\overline{c_0} = 0$ (mais pas les deux car sinon $p^2 \mid b_0 c_0 = a_0$, ce qui serait en contradiction avec le Point (iii)).

On suppose donc $\overline{b_0} = 0$ et $\overline{c_0} \neq 0$. Si on avait $\forall i \in [0, r]$, $\overline{b_i} = 0$, on aurait en particulier $\overline{b_r} = 0$, et donc $\overline{b_r} \overline{c_s} = \overline{a_n} = 0$ (exclu par le Point (ii)). Donc,

$$\exists i \in \llbracket 0, r-1 \rrbracket$$
 tel que $\overline{b_0} = \cdots = \overline{b_i} = 0$ et $b_{i+1} \neq 0$

Ainsi,

$$\overline{a_{i+1}} = \sum_{k=0}^{i+1} \overline{b_k} \overline{c_{i+1-k}} = \underbrace{\overline{b_{i+1}}}_{\neq 0} \underbrace{\overline{c_0}}_{\neq 0} \neq 0$$

ce qui est absurde au vu du Point (i) car $i \in [0, r-1]$ avec $r-1 \le n-1$.

Application 7. Soit $n \in \mathbb{N}^*$. Il existe des polynômes irréductibles de degré n sur \mathbb{Z} .

[**PER**] p. 67

Démonstration. On applique le Théorème 6 au polynôme $P = X^n - 2$ avec le premier p = 2 qui nous donne l'irréductibilité du polynôme sur \mathbb{Q} . Reste à montrer qu'il est irréductible sur \mathbb{Z} .

Or, en supposant P réductible sur \mathbb{Z} , on peut écrire P = QR avec $Q, R \in \mathbb{Z}[X]$ de degré supérieur ou égal à 1 car P est primitif. Mais à fortiori, $Q, R \in \mathbb{Q}[X]$ et ne sont pas inversibles donc P est réductible sur \mathbb{Q} : absurde.

Bibliographie

Théorie de Galois [GOZ]

Ivan Gozard. *Théorie de Galois. Niveau L3-M1*. 2e éd. Ellipses, 1er avr. 2009.

 $\verb|https://www.editions-ellipses.fr/accueil/4897-15223-theorie-de-galois-niveau-13-m1-2e-edition-9782729842772.html.|$

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

 $\verb|https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529. \\ \verb|html.||$

Anneaux, corps, résultants

[ULM18]

Felix Ulmer. *Anneaux, corps, résultants. Algèbre pour L3/M1/agrégation*. Ellipses, 28 août 2018. https://www.editions-ellipses.fr/accueil/9852-20186-anneaux-corps-resultants-algebre-pour-13-m1-agregation-9782340025752.html.