12A3

Signa Notation

i is indexing

often used to Z 4;

lif "we" all know start & Styp veloci!

Don't forget special formulas:

$$\frac{\hat{\Sigma}}{1} = n, \quad \hat{\Sigma}_{i} := \frac{n(n+1)(2n+1)}{2}, \quad \sum_{i=1}^{n} \frac{1}{2} = \frac{n(n+1)(2n+1)}{2}, \quad \sum_{i=1}^{n} \frac{1}{2} = n^{2}(n+1)^{2} = \frac{n(n+1)(2n+1)}{2}.$$
Areas & Summation $f(x)$

Area under curve

Area under curve

Sum of blacks!

Area a Σ blacks = Σ height width

black height height

n blacks Σ f(x;) Δx Σ i = 1 Σ i = 1

eg. $y = x^2$, $x \in [0, 6]$, opprox. area under the curve using 3 "sub-intermle" and right endpoint sample points.

(right end of each sub-int.)

= 112

$$A = \sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{3} (x_i)^2 \cdot 2$$

$$= 2 \left(2^2 + 4^2 + 6^2 \right)$$

$$= 2 \left(2^2 + 4^2 + 6^2 \right)$$

$$= 3 \left(2^2 + 4^2 + 6^2 \right)$$

$$= 3 \left(2^2 + 4^2 + 6^2 \right)$$

$$= 3 \left(2^2 + 4^2 + 6^2 \right)$$

In genual! bigger n => more blocks => better

eg. Approx. oven unda y= \frac{1}{x} on [1,5] using 8 sub-intervals & left endpoint sample points

$$\frac{1}{2} \int_{0}^{1} \frac{1}{2} \int_$$

Ara ~
$$\sum_{i=1}^{n} H(\pi_i) d\pi = \sum_{i=1}^{n} H(\pi_i) \frac{1}{2}$$

x3 = a+20x = 1

In general left condpoints one
$$a + (i-1)ax = x_i$$

The general left condpoints one $a + (i-1)ax = x_i$

Midpoints one $a + (i-\frac{1}{2})ax = x_i$
 $A = \sum_{i=1}^{g} f(x_i)ax = \sum_{i=1}^{g} \frac{1}{x_i} \cdot \frac{1}{2}$
 $= \sum_{i=1}^{g} \frac{1}{(\frac{1}{2} + \frac{1}{2})} \cdot \frac{1}{2}$
 $= \frac{1}{2} + \frac{1}{4} + \frac$

Empoint Mests: Over & Undercitimater

by f'(x)>0

Left end. undbrestinate

right end. ovacutirale

Say 51/10/20

a under time to

Letts get exact area unda
$$y=x^2$$
 on $Co_1(c)$

Area = $\lim_{n\to\infty} \frac{1}{n} \int_{i=1}^{\infty} f(x_i) \Delta x$

$$= \lim_{n\to\infty} \frac{1}{n} \int_{i=1}^{\infty} \frac{1}{n} \int_{i=1}^{$$

$$= \lim_{n \to \infty} \frac{6^{3}}{6} \left(2 + \left(\frac{\text{Suff pidi}}{n^{3}} \right) \right)$$

$$= \frac{1}{3} 6^{3} = 72$$

$$= \frac{1}{3} 6^{3} = 72$$

$$= \frac{1}{3} 6^{3} = \frac{1}{3} 72$$