Complex Analysis Homework 6

Colin Williams

October 22, 2020

Question 2

Solve the equation $\cos(z) = 2$.

Answer.

I will start by using the identity that for z = x + iy, $\cos(z) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)$. From this we get,

$$\cos(z) = 2$$

$$\iff \cos(x)\cosh(y) - i\sin(x)\sinh(y) = 2$$

$$\iff \begin{cases} \cos(x)\cosh(y) = 2\\ \sin(x)\sinh(y) = 0 \end{cases}$$
AND

I will proceed by examining the second of these equalities:

$$\sin(x)\sinh(y) = 0$$

$$\iff \begin{cases} \sin(x) = 0 \\ \sinh(y) = 0 \end{cases} \text{ OR }$$

$$\iff \begin{cases} x = k\pi, k \in \mathbb{Z} \\ y = 0 \end{cases} \text{ OR }$$

Let's first consider what would happen if we allow y=0. This would cause our other equation, $\cos(x)\cosh(y)=2$ to be equivalent to $\cos(x)\cosh(0)=\cos(x)=2$. However, $\cos(x)=2$ has no solutions in $\mathbb R$ so this is not possible. Therefore, we can only have the possibility that $x=k\pi, k\in\mathbb Z$. From this, our other equation becomes $\cos(k\pi)\cosh(y)=(-1)^k\cosh(y)=2$. This is equivalent to saying $\cosh(y)=2\cdot(-1)^k$. However, we know that $\cosh(y)>0$ for all $y\in\mathbb R$, so we must have that $(-1)^k$ is positive, i.e. that k is even, say k=2n for $n\in\mathbb Z$. Thus, our solution is $x=2n\pi$ and $y=\cosh^{-1}(2)$, i.e. $z=2n\pi+i\cosh^{-1}(2)$ for $n\in\mathbb Z$