

桥架构的栅极驱动电路——CSC4162

产品概述

CSC4162是一款高性价比的半桥架构的栅极驱动专用电路,用于大功率MOS管、IGBT管栅极驱动,内部集成了逻辑信号处理电路,死区时间控制电路,欠压保护电路,电平位移电路,脉冲滤波电路及输出驱动电路,专用于无刷电机控制器中驱动电路。

主要特点

- 高端悬浮自举电源设计,耐压 200V
- 适应 5V, 3.3V 输入电压
- 最高频率支持 500kHz
- 输出电流能力 IO+/-=1.0A/1.5A
- 内建死区控制电路
- 欠压自关闭输出驱动

引脚排列

典型应用

- 无刷电机驱动器
- 电动车控制器

引脚功能

序号	符号	功能描述	序号	符号	功能描述
1	VCC	电源	5	LO	下桥端输出
2	HIN	上桥端逻辑信号输入	6	VS	上桥端悬浮地
3	LIN	下桥端逻辑信号输入	7	НО	上桥端输出
4	GND	地	8	VB	上桥端自举电源

版本:1.0 2019年07月 联系电话:13480102028

电路功能框图

最大额定值

项目名称	符号	最小值	最大值	单位
上桥自举电源	VB	-0.3	200	V
上桥悬浮端	VS	VB-20	VB+0.3	V
上桥输出电压	$ m V_{HO}$	VS-0.3	VB+0.3	V
电源	VCC	-0.3	20	V
下桥输出电压	$ m V_{LO}$	-0.3	VCC+0.3	V
最大功耗	P_{D}		500	mW
工作结温范围	T_{J}		150	°C
储存温度范围	T_{STG}		150	${\mathbb C}$
ESD(人体模型)		2000	_	V

注意:

(1)如果器件运行条件超过上述各项最大额定值,可能对器件造成永久性损坏。上述参数仅是运行条件的极大值,我们不建议器件在该规范范围外运行。如果器件长时间工作在最大极限条件下,其稳定性可能会受到影响。

(2)无特殊说明, 所有的电压以 GND 作为参考。

静态电气参数(无特别说明情况下, VCC=15V, VS=100V, VB=15V+VS, T_A =25°C)

参数名称	符号	测试条件	最小	典型	最大	单位
电源电压	VCC		10	15	20	V
静态电流	I_{QCC}	V _{IN} =0V or 5V		210	300	μΑ
高端自举静态电流	I_{QBS}	$V_{IN}=0V$ or $5V$		120	160	μΑ
输入高电平	$V_{ m IH}$		2.5			V
输入低电平	V_{IL}				0.8	V
上桥输出高电平	V_{HOH}	与 VB 的差值			100	mV
上桥输出低电平	V_{HOL}	与 VS 的差值			100	mV
下桥输出高电平	V_{LOH}	与 VCC 的差值			100	mV
下桥输出低电平	V_{LOL}				100	mV
输入电流	Iin1	HIN=5V 或-LIN=0V		85	100	μΑ
	Iin2	HIN=0V 或-LIN=5V		0		μΑ
欠压保护上点	VCC _{UV+}			8.4		V
欠压保护下点	VCC _{UV-}			7.7		V
输出拉电流	I_{O^+}	$V_O=0V$, $V_{IN}=V_{IH}$ $PW \le 10\mu S$	0.8	1.0		A
输出灌电流	I _O -	$V_O=0V$, $V_{IN}=V_{IL}$ $PW \le 10\mu S$	1.3	1.5		A

输入输出逻辑真值表

输入端			输出端			
HIN	LĪN		НО	LO		
低电平	低电平		低电平	高电平		
低电平	高电平		低电平	低电平		
高电平	低电平		低电平	低电平		
高电平	高电平		高电平	低电平		

第 3 页

动态电气参数(无特别说明情况下, VCC=15V, VB=15V, CL=1000pF, T_A=25℃)

参数名称	符号	测试条件	最小	典型	最大	单位		
高端输出 HO 开关时间特性								
上升延时	t _{on}			150		ns		
下降延时	$t_{ m off}$			55		ns		
上升时间	t _r			40		ns		
下降时间	t_{f}			20		ns		
低端输出 LO 开关时间特性								
上升延时	t _{on}			160		ns		
下降延时	$t_{ m off}$			55		ns		
上升时间	t _r			35		ns		
下降时间	t_{f}			20		ns		
死区时间特性								
死区时间	DT			100		ns		
上升和下降死区时间差值	MT			10		ns		

开关动作波形示意图

死区时间波形示意图

第 4 页

版本: 1.0 2019年07月

www.hxkchips.com

联系电话:13480102028

典型应用线路图

封装外形及尺寸图

第 5 页

www.hxkchips.com

深圳市和讯康科技有限公司

地址:深圳市宝安区航城街道固戌航城信息港A1栋三

层308室

邮编: 518000

电话: 0755-29172413 传真: 0755-29172413

网址: www.hxkchips.com

注意:本产品为静电敏感元件,请注意防护! ESD 损害的范围可以从细微的性能下降扩大到设备故障。精密集成电路可能更容易受到损害,因此可能导致元件参数不能满足公布的规格。

- ▶ 感谢您使用本公司的产品,建议您在使用前仔细阅读本资料。
- ▶ 本资料中的信息如有变化,恕不另行通知。希望您经常与销售部或者技术支持部门联系,索取最新资料。

第6页

版本: 1.0 2019年07月

www.hxkchips.com