EE6550 Machine Learning

Lecture Three – Support Vector Machines

Chung-Chin Lu

Department of Electrical Engineering

National Tsing Hua University

March 2, 2017

Binary Classification Problem

- $\mathscr{I} \subseteq \mathbb{R}^N$: the input space.
- $\mathscr{Y}' = \mathscr{Y} = \{-1, +1\}$: the output, label space with loss function $L(y', y) = 1_{y' \neq y}$.
- c: a fixed but unknown target concept in the concept class C.
- \mathcal{H} : the hypothesis set.
- $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$: a sample of m items, drawn i.i.d. from the input space according to P, with labels $(c(\mathbf{x}_1), \dots, c(\mathbf{x}_m))$.
- Problem: find a hypothesis (binary classifier) $h: \mathscr{I} \to \{-1, +1\} \text{ in } \mathcal{H} \text{ with small generalization error}$

$$R(h) = E[1_{h(\mathbf{x}) \neq c(\mathbf{x})}] = P(h(\mathbf{x}) \neq c(\mathbf{x})).$$

Linear Binary Classifiers

- Occam's razor principle: hypothesis sets with smaller complexity e.g., smaller VC-dimension or Rademacher complexity provide better learning guarantees, when everything else being equal.
- A natural hypothesis set with relatively small complexity is that of linear classifiers, or halfspaces (represented by their boundary hyperplanes), which can be defined as follows:

$$\mathcal{H} = \{ \mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b) \mid \mathbf{w} \in \mathbb{R}^N, \ b \in \mathbb{R} \}.$$

The Contents of This Lecture

- Support vector machines separable case.
- Support vector machines general case.
- Margin guarantees.

Linearly Separable Labeled Training Samples

- $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$: a labeled training sample of m items, drawn i.i.d. from the input space according to P, with labels $(c(\mathbf{x}_1), \dots, c(\mathbf{x}_m))$.
- Assumption: there is a hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$ which perfectly separates the training sample into two populations of positively and negatively labeled points.
- Existence of one perfectly separating hyperplane implies that of infinitely many such separating hyperplanes.
- Which hyperplane should a learning algorithm select?

Two possible separating hyperplanes.

೨

SVM - Maximum-Margin Hyperplane

- $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$: a linearly separable labeled training sample of m items, drawn i.i.d. from the input space according to P, with labels $(c(\mathbf{x}_1), \dots, c(\mathbf{x}_m))$.
- $H : \mathbf{w} \cdot \mathbf{x} + b = 0$ with $c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b) > 0, 1 \le i \le m$: a perfectly separating hyperplane for S.
- Geometric margin of a perfectly separating hyperplane (\mathbf{w}, b) with respective to S:

$$\rho = \min_{1 \le i \le m} \frac{|\mathbf{w} \cdot \mathbf{x}_i + b|}{\|\mathbf{w}\|}.$$

• The SVM algorithm will return a hyperplane with the maximum margin, or distance to the closest points, which is known as the maximum-margin hyperplane,

$$(\mathbf{w},b)^{SVM} = \arg\max_{\substack{(\mathbf{w},b): c(\mathbf{x}_i)(\mathbf{w}\cdot\mathbf{x}_i+b)>0, 1\leq i\leq m\\ \mathbf{w}\neq \mathbf{0}}} \min_{1\leq i\leq m} \frac{|\mathbf{w}\cdot\mathbf{x}_i+b|}{\|\mathbf{w}\|}.$$

7

∞

Canonical Representation

The canonical representation of a perfectly separating hyperplane to a linearly separable labeled training sample $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$ is an affine equation for the hyperplane

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

such that

$$\min_{1 \le i \le m} c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b) = 1.$$

The geometric margin of a canonically represented perfectly separating hyperplane to S is

$$\rho = \min_{1 \le i \le m} \frac{|\mathbf{w} \cdot \mathbf{x}_i + b|}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}.$$

• If a maximum-margin hyperplane is canonically represented as $\mathbf{w} \cdot \mathbf{x} + b = 0$, then the two hyperplanes

$$\mathbf{w} \cdot \mathbf{x} + b = \pm 1$$

are called marginal hyperplanes.

9

Margin Maximization Problem

$$\rho_{\max} = \max_{\substack{(\mathbf{w},b):c(\mathbf{x}_i)(\mathbf{w}\cdot\mathbf{x}_i+b)>0,1\leq i\leq m\\\mathbf{w}\neq\mathbf{0}}} \frac{|\mathbf{w}\cdot\mathbf{x}_i+b|}{\|\mathbf{w}\|}$$

$$= \max_{\substack{(\mathbf{w},b):c(\mathbf{x}_i)(\mathbf{w}\cdot\mathbf{x}_i+b)>0,1\leq i\leq m\\\mathbf{w}\neq\mathbf{0},\min_{1\leq i\leq m}c(\mathbf{x}_i)(\mathbf{w}\cdot\mathbf{x}_i+b)=1}} \min_{\substack{1\leq i\leq m\\\mathbf{w}\neq\mathbf{0},\min_{1\leq i\leq m}c(\mathbf{x}_i)(\mathbf{w}\cdot\mathbf{x}_i+b)=1}} \frac{|\mathbf{w}\cdot\mathbf{x}_i+b|}{\|\mathbf{w}\|}$$
by the scaling invariance of (\mathbf{w},b)

$$= \max_{\substack{(\mathbf{w},b):c(\mathbf{x}_i)(\mathbf{w}\cdot\mathbf{x}_i+b)>0,1\leq i\leq m\\\mathbf{w}\neq\mathbf{0},\min_{1\leq i\leq m}c(\mathbf{x}_i)(\mathbf{w}\cdot\mathbf{x}_i+b)=1}} \frac{1}{\|\mathbf{w}\|}$$

$$= \max_{\substack{(\mathbf{w},b):c(\mathbf{x}_i)(\mathbf{w}\cdot\mathbf{x}_i+b)\geq 1,1\leq i\leq m\\\mathbf{w}\neq\mathbf{0}}} \frac{1}{\|\mathbf{w}\|} \text{ since at least one } \frac{1}{\mathbf{w}\neq\mathbf{0}}$$

inequality must reach the lower bound 1.

1

• Assumption: the sample S is not trivially labeled, i.e., the points in the sample S are neither all positively labeled nor all negatively labeled.

In this case, we have

$$\rho_{\max} = \max_{(\mathbf{w},b): c(\mathbf{x}_i)(\mathbf{w}\cdot\mathbf{x}_i+b) \ge 1, 1 \le i \le m} \frac{1}{\|\mathbf{w}\|}.$$

The Primal Problem for SVM - Separable Case

Minimize
$$F(\mathbf{w}, b) = \frac{1}{2} ||\mathbf{w}||^2$$

Subject to $1 - c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b) \le 0, i = 1, \dots, m$
 $(\mathbf{w}, b) \in \mathbb{R}^N \times \mathbb{R}.$

• A quadratic programming (QP) problem.

Kuhn-Tucker Necessary Conditions for Local Minimal Solutions

Consider a nonlinear programming problem with equality constraints as well as inequality constraints, defined as

Minimize
$$f(\mathbf{x})$$

Subject to $g_i(\mathbf{x}) \leq 0, i = 1, ..., m$
 $h_j(\mathbf{x}) = 0, j = 1, ..., l$
 $\mathbf{x} \in X,$

where X is a nonempty set in \mathbb{R}^N . Assume that

- $\bar{\mathbf{x}}$: a feasible solution, i.e., a point in X satisfying all equality constraints as well as inequality constraints;
- $I = \{i | g_i(\bar{\mathbf{x}}) = 0\};$
- f and $g_i, i \in I$: differentiable at $\bar{\mathbf{x}}$;

- $g_i, i \notin I$: continuous at $\bar{\mathbf{x}}$;
- $h_i, j = 1, \ldots, l$: continuously differentiable at $\bar{\mathbf{x}}$;
- $\nabla g_i(\bar{\mathbf{x}})$ for $i \in I$ and $\nabla h_j(\bar{\mathbf{x}})$ for $j = 1, \ldots, l$ are linearly independent.

If $\bar{\mathbf{x}}$ is a local minimal solution, then there exist scalars λ_i for all $i \in I$ and μ_j for $j = 1, \ldots, l$ such that

$$\nabla f(\bar{\mathbf{x}}) + \sum_{i \in I} \lambda_i \nabla g_i(\bar{\mathbf{x}}) + \sum_{j=1}^l \mu_j \nabla h_j(\bar{\mathbf{x}}) = \mathbf{0}$$
$$\lambda_i \ge 0 \text{ for all } i \in I$$

In addition, if $g_i, i \notin I$, are also differentiable at $\bar{\mathbf{x}}$, then an equivalent form can be written as

$$\nabla f(\bar{\mathbf{x}}) + \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{\mathbf{x}}) + \sum_{j=1}^{l} \mu_j \nabla h_j(\bar{\mathbf{x}}) = \mathbf{0}$$
$$\lambda_i g_i(\bar{\mathbf{x}}) = 0 \text{ for all } i = 1, \dots, m$$
$$\lambda_i \geq 0 \text{ for all } i = 1, \dots, m.$$

15

- The scalars $\lambda_1, \ldots \lambda_m$ and μ_1, \ldots, μ_l are called Lagrangian multipliers.
- The conditions $\lambda_i g_i(\bar{\mathbf{x}}) = 0$, i = 1, ..., m, are called complementary slackness conditions.

Remark: If the feasible solution $\bar{\mathbf{x}}$ is a boundary point of X, the differentiability of f, g_i , and h_j at $\bar{\mathbf{x}}$ implicitly assumes that f, g_i , and h_j are defined in a neighborhood of $\bar{\mathbf{x}}$.

Various Convexity and Concavity Concepts

• $S \subseteq X$: the set of all feasible solutions of the nonlinear programming problem, called the feasible region, defined as

$$S \triangleq \{ \mathbf{x} \in X \mid g_i(\mathbf{x}) \le 0, i = 1, \dots, m, \text{ and } h_j(\mathbf{x}) = 0, j = 1, \dots, l \}.$$

- A real-valued function u is said to be pseudoconvex at a feasible solution $\hat{\mathbf{x}}$ in S if it is differentiable at $\hat{\mathbf{x}}$ and $\nabla u(\hat{\mathbf{x}})^T(\mathbf{x} \hat{\mathbf{x}}) \geq 0$ for $\mathbf{x} \in S$ implies that $u(\mathbf{x}) \geq u(\hat{\mathbf{x}})$.
- A real-valued function u is said to be pseudoconcave at a feasible solution $\hat{\mathbf{x}}$ in S if -u is pseudoconvex at $\hat{\mathbf{x}}$.
- A real-valued function u is said to be quasiconvex at a feasible solution $\hat{\mathbf{x}}$ in S if u is defined in a convex set containing S and

$$u(\lambda \mathbf{x} + (1 - \lambda)\hat{\mathbf{x}}) \le \max\{u(\mathbf{x}), u(\hat{\mathbf{x}})\}\$$

for all $\lambda \in (0,1)$ and all $\boldsymbol{x} \in S$.

- A real-valued function u is said to be quasiconcave at a feasible solution $\hat{\mathbf{x}}$ in S if -u is quasiconvex at $\hat{\mathbf{x}}$.
- A real-valued function u is said to be convex at a feasible solution $\hat{\mathbf{x}}$ in S if u is defined in a convex set containing S and

$$u(\lambda \mathbf{x} + (1 - \lambda)\hat{\mathbf{x}}) \le \lambda u(\mathbf{x}) + (1 - \lambda)u(\hat{\mathbf{x}})$$

for all $\lambda \in (0,1)$ and all $\mathbf{x} \in S$.

- A real-valued function u is said to be concave at a feasible solution $\hat{\mathbf{x}}$ in S if -u is convex at $\hat{\mathbf{x}}$.
- If a real-valued function u is both convex and differentiable at a feasible solution $\hat{\mathbf{x}}$ in S, then it is pseudoconvex at $\hat{\mathbf{x}}$.
- If a real-valued function u is convex at a feasible solution $\hat{\mathbf{x}} \in S$, then it is quasiconvex at $\hat{\mathbf{x}}$.

Kuhn-Tucker Sufficient Conditions for Global Minimum Solutions

Consider a nonlinear programming problem with inequality as well as equality constraints, defined as

Minimize
$$f(\mathbf{x})$$

Subject to $g_i(\mathbf{x}) \leq 0, i = 1, ..., m$
 $h_j(\mathbf{x}) = 0, j = 1, ..., l$
 $\mathbf{x} \in X,$

where X is a nonempty set in \mathbb{R}^N . Assume that

- $\bar{\mathbf{x}}$: a feasible solution;
- $\bullet I = \{i | g_i(\bar{\mathbf{x}}) = 0\}.$

Assume that the Kuhn-Tucker necessary conditions hold true at $\bar{\mathbf{x}}$, i.e., there exist scalars $\lambda_i \geq 0, i \in I$, and $\mu_j \in \mathbb{R}, j = 1, 2, \dots, l$, such

that

$$\nabla f(\bar{\mathbf{x}}) + \sum_{i \in I} \lambda_i \nabla g_i(\bar{\mathbf{x}}) + \sum_{j=1}^l \mu_j \nabla h_j(\bar{\mathbf{x}}) = \mathbf{0}.$$

In addition, if $g_i, i \notin I$, are also differentiable at $\bar{\mathbf{x}}$, then an equivalent form of the Kuhn-Tucker necessary conditions can be written as

$$\nabla f(\bar{\mathbf{x}}) + \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{\mathbf{x}}) + \sum_{j=1}^{l} \mu_j \nabla h_j(\bar{\mathbf{x}}) = \mathbf{0}$$
$$\lambda_i g_i(\bar{\mathbf{x}}) = 0 \text{ for all } i = 1, \dots, m$$
$$\lambda_i \geq 0 \text{ for all } i = 1, \dots, m.$$

Also assume that

- $J = \{j | \mu_j > 0\}$ and $K = \{j | \mu_j < 0\};$
- f: pseudoconvex at $\bar{\mathbf{x}}$;
- $g_i, i \in I$: quasiconvex at $\bar{\mathbf{x}}$;

2

• $h_j, j \in J$: quasiconvex at $\bar{\mathbf{x}}$;

• $h_j, j \in K$: quasiconcave at $\bar{\mathbf{x}}$.

Then $\bar{\mathbf{x}}$ is a global minimum solution.

Convex Function

Let

- X: a nonempty open convex subset of \mathbb{R}^n ;
- $f: X \to \mathbb{R}$: a twice differentiable function.

Then $f(\mathbf{x})$ is convex on X, i.e.,

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2) \ \forall \ \mathbf{x}_1, \mathbf{x}_2 \in X, \ \lambda \in (0, 1)$$

if and only if its Hessian matrix $\mathbf{H}(\mathbf{x})$ is positive semi-definite, i.e.,

$$\mathbf{v}^T \mathbf{H}(\mathbf{x}) \mathbf{v} \ge 0, \ \forall \ \mathbf{v} \in \mathbb{R}^n,$$

for all $\mathbf{x} \in X$.

Qualification of the Primal Problem

- The object function $F(\mathbf{w}, b) = \frac{1}{2} ||\mathbf{w}||^2$ is infinitely differentiable and convex so that it is pseudoconvex at any feasible point.
- The inequality constraint functions $g_i(\mathbf{w}, b) = 1 c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b), 1 \le i \le m$, are affine functions so that they are infinitely differentiable and convex and then quasiconvex at any feasible point.
- $\nabla F = [\mathbf{w}^T 0]^T$, $\nabla g_i = -c(\mathbf{x}_i)[\mathbf{x}_i^T 1]^T$.
- The Kuhn-Tucker necessary conditions are:

$$\nabla F + \sum_{i=1}^{m} \lambda_i \nabla g_i = \mathbf{0} \Leftrightarrow \mathbf{w} = \sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i) \mathbf{x}_i, 0 = \sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i)$$
$$\lambda_i g_i(\mathbf{w}, b) = 0, \ i = 1, 2, \dots, m$$
$$\lambda_i \geq 0, \ i = 1, 2, \dots, m.$$

23

- Any feasible point (\mathbf{w}, b) which satisfies the Kuhn-Tucker necessary conditions in above is a global minimum solution.
- The weight vector \mathbf{w} solution of the SVM problem is a linear combination of the training set vectors $\mathbf{x}_1, \dots, \mathbf{x}_m$.

Support Vectors

- Support vectors: any vector \mathbf{x}_i which appears in the linear combination $\mathbf{w} = \sum_{i=1}^m \lambda_i c(\mathbf{x}_i) \mathbf{x}_i$ with $\lambda_i \neq 0$.
- If $\lambda_i \neq 0$, we must have $c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ by the complementary slackness conditions.
- Support vectors lie in the two marginal hyperplanes $\mathbf{w} \cdot \mathbf{x} + b = \pm 1$.

Remarks

- Support vectors fully define the maximum-margin hyperplane or SVM solution.
- Vectors in the sample not lying on the marginal hyperplanes do not affect the solution to the SVM problem.
- While the solution **w** of the SVM problem is unique, the support vectors are not.

How to Determine Optimal Lagrangian Variables λ_i^{SVM} ?

• Once optimal Lagrangian variables λ_i^{SVM} are determined, we can compute

$$\mathbf{w}^{SVM} = \sum_{i=1}^{m} \lambda_i^{SVM} c(\mathbf{x}_i) \mathbf{x}_i$$

and for any support vector \mathbf{x}_i , we have

$$b^{SVM} = c(\mathbf{x}_j) - \mathbf{w}^{SVM} \cdot \mathbf{x}_j = c(\mathbf{x}_j) - \sum_{i=1}^m \lambda_i^{SVM} c(\mathbf{x}_i) (\mathbf{x}_i \cdot \mathbf{x}_j).$$

• We will use the Lagrangian dual problem to determine optimal λ_i^{SVM} .

The Existence and Uniqueness of the Solution for the Primal Problem for SVM - Separable Case

- The feasible region $S = \{(\mathbf{w}, b) \in \mathbb{R}^{N+1} \mid 1 c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b) \le 0, 1 \le i \le m\}$ is a nonempty polyhedra set in \mathbb{R}^{N+1} .
- The projection $\pi(S)$ of the polyhedra set S onto \mathbb{R}^N by $\pi((\mathbf{w}, b)) = \mathbf{w}$ is a polyhedra set in \mathbb{R}^N .
- A polyhedra set is a closed convex set.
- Any nonempty closed convex set in \mathbb{R}^N contains a unique element of smallest length.
- The unique element \mathbf{w}^{SVM} in $\pi(S)$ of smallest length minimizes $\frac{1}{2} \|\mathbf{w}\|^2$ among all $\mathbf{w} \in \pi(S)$.
- The unique b^{SVM} is equal to $c(\mathbf{x}_j) \mathbf{w}^{SVM} \cdot \mathbf{x}_j$ by any support vector \mathbf{x}_j .

Lagrangian Dual Function

• Primal problem:

Minimize
$$f(\mathbf{x})$$

Subject to $g_i(\mathbf{x}) \leq 0, i = 1, \dots, m$
 $h_j(\mathbf{x}) = 0, j = 1, \dots, l$
 $\mathbf{x} \in X,$

where X is a nonempty set in \mathbb{R}^n .

• Lagrangian function: for all $\mathbf{x} \in X$, $\lambda \in \mathbb{R}^m$, and $\nu \in \mathbb{R}^k$,

$$L(\mathbf{x}, \lambda, \nu) \triangleq f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{k} \nu_j h_j(\mathbf{x}).$$

• Lagrangian dual function: for all $\lambda \in \mathbb{R}^m$ and $\nu \in \mathbb{R}^k$,

$$\theta(\lambda, \nu) \triangleq \inf_{\mathbf{x} \in X} L(\mathbf{x}, \lambda, \nu) = \inf_{\mathbf{x} \in X} \left(f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{k} \nu_j h_j(\mathbf{x}) \right).$$

Global Minimum of a Convex Function

Let

- X: a nonempty open convex subset of \mathbb{R}^n ;
- $f: X \to \mathbb{R}$: a differentiable convex function.

Then $\bar{\mathbf{x}}$ is an optimal solution to the minimization of $f(\mathbf{x})$ subject to $\mathbf{x} \in X$ if and only if $\nabla f(\bar{\mathbf{x}}) = \mathbf{0}$.

Lagrangian Dual Function for SVM - Separable Case

- $X = \mathbb{R}^N \times \mathbb{R}$: a nonempty open convex set.
- Lagrangian function: for all $\mathbf{w} \in \mathbb{R}^N$, $b \in \mathbb{R}$, and $\lambda \in \mathbb{R}^m$,

$$L(\mathbf{w}, b, \lambda) = F(\mathbf{w}, b) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}, b)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{m} \lambda_i (1 - c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b))$$

• For any fixed $\lambda \in \mathbb{R}^m$, the gradient ∇L of the Lagrangian function w.r.t. (\mathbf{w}, b) is

$$\nabla L = \nabla F + \sum_{i=1}^{m} \lambda_i \nabla g_i$$

$$= \begin{bmatrix} \mathbf{w} \\ 0 \end{bmatrix} - \sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i) \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix}$$

and the Hessian matrix is

$$\mathbf{H} = \left[egin{array}{ccc} I_{N imes N} & \mathbf{0} \ \mathbf{0}^T & 0 \end{array}
ight]$$

which is positive semi-definite.

33

• For any fixed $\lambda \in \mathbb{R}^m$, the Lagrangian function is differentiable and convex over a non-empty open convex set X so that $(\hat{\mathbf{w}}, \hat{b})$ is an optimal solution to the minimization of $L(\mathbf{w}, b, \lambda)$ subject to $(\mathbf{w}, b) \in X$ if and only if $\nabla L(\hat{\mathbf{w}}, \hat{b}, \lambda) = \mathbf{0}$ if and only if

$$\hat{\mathbf{w}} = \sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i) \mathbf{x}_i$$
 and $0 = \sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i)$.

- Note that for a fixed $\lambda \in \mathbb{R}^m$, $\sum_{i=1}^m \lambda_i c(\mathbf{x}_i) \neq 0$ if and only if the infimum of the Lagrangian function $L(\mathbf{w}, b, \lambda)$ is $-\infty$.

34

• Lagrangian dual function: for all $\lambda \in \mathbb{R}^m$,

$$\theta(\lambda) = \inf_{(\mathbf{w},b)\in X} L(\mathbf{w},b,\lambda)$$

$$= \begin{cases} \frac{1}{2} ||\hat{\mathbf{w}}||^2 + \sum_{i=1}^m \lambda_i (1 - c(\mathbf{x}_i)(\hat{\mathbf{w}} \cdot \mathbf{x}_i + \hat{b})), \\ & \text{if } \sum_{i=1}^m \lambda_i c(\mathbf{x}_i) = 0, \\ -\infty, & \text{if } \sum_{i=1}^m \lambda_i c(\mathbf{x}_i) \neq 0 \end{cases}$$

$$= \begin{cases} \sum_{i=1}^m \lambda_i - \frac{1}{2} \sum_{i,j=1}^m \lambda_i \lambda_j c(\mathbf{x}_i) c(\mathbf{x}_j) (\mathbf{x}_i \cdot \mathbf{x}_j), \\ & \text{if } \sum_{i=1}^m \lambda_i c(\mathbf{x}_i) = 0, \\ -\infty, & \text{if } \sum_{i=1}^m \lambda_i c(\mathbf{x}_i) \neq 0 \end{cases}$$

Lagrangian Dual Problem

Maximize
$$\theta(\mathbf{u}, \mathbf{v})$$

Subject to $u_i \ge 0, i = 1, \dots, m$
 $\mathbf{u} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^k$

- Also referred to as the max-min dual problem.
- Given a primal problem, several Lagrangian dual problems can be devised, depending on which constraints are handled as $g_i(\mathbf{x}) \leq 0$ and $h_j(\mathbf{x}) = 0$ and which constraints are treated by the set X.

Lagrangian Dual Problem for SVM - Separable Case

Maximize
$$\theta(\lambda) = \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{m} \lambda_i \lambda_j c(\mathbf{x}_i) c(\mathbf{x}_j) (\mathbf{x}_i \cdot \mathbf{x}_j)$$

Subject to $\lambda_i \geq 0, i = 1, \dots, m$
 $\sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i) = 0$
 $\lambda \in \mathbb{R}^m$

• A quadratic programming (QP) problem.

Kuhn-Tucker Necessary Conditions for Local Maximal Solutions

Consider a nonlinear programming problem with equality constraints as well as inequality constraints, defined as

Maximize
$$f(\mathbf{x})$$

Subject to $g_i(\mathbf{x}) \ge 0, i = 1, ..., m$
 $h_j(\mathbf{x}) = 0, j = 1, ..., l$
 $\mathbf{x} \in X,$

where X is a nonempty set in \mathbb{R}^N . Let

- $\bar{\mathbf{x}}$: a feasible solution, i.e., a point in X satisfying all equality constraints as well as inequality constraints;
- $I = \{i | g_i(\bar{\mathbf{x}}) = 0\};$
- f and $g_i, i \in I$: differentiable at $\bar{\mathbf{x}}$;

- $g_i, i \notin I$: continuous at $\bar{\mathbf{x}}$;
- $h_i, j = 1, \ldots, l$: continuously differentiable at $\bar{\mathbf{x}}$;
- $\nabla g_i(\bar{\mathbf{x}})$ for $i \in I$ and $\nabla h_j(\bar{\mathbf{x}})$ for $j = 1, \ldots, l$ are linearly independent.

If $\bar{\mathbf{x}}$ is a local optimal solution, then there exist scalars λ_i for all $i \in I$ and μ_j for $j = 1, \ldots, l$ such that

$$\nabla f(\bar{\mathbf{x}}) + \sum_{i \in I} \lambda_i \nabla g_i(\bar{\mathbf{x}}) + \sum_{j=1}^l \mu_j \nabla h_j(\bar{\mathbf{x}}) = \mathbf{0}$$
$$\lambda_i \ge 0 \text{ for all } i \in I$$

In addition, if $g_i, i \notin I$, are also differentiable at $\bar{\mathbf{x}}$, then an equivalent form can be written as

$$\nabla f(\bar{\mathbf{x}}) + \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{\mathbf{x}}) + \sum_{j=1}^{l} \mu_j \nabla h_j(\bar{\mathbf{x}}) = \mathbf{0}$$
$$\lambda_i g_i(\bar{\mathbf{x}}) = 0 \text{ for all } i = 1, \dots, m$$
$$\lambda_i \geq 0 \text{ for all } i = 1, \dots, m.$$

Kuhn-Tucker Sufficient Conditions for Global Maximum Solutions

Consider a nonlinear programming problem with inequality as well as equality constraints, defined as

Maximize
$$f(\mathbf{x})$$

Subject to $g_i(\mathbf{x}) \ge 0, i = 1, ..., m$
 $h_j(\mathbf{x}) = 0, j = 1, ..., l$
 $\mathbf{x} \in X,$

where X is a nonempty set in \mathbb{R}^N . Let

- $\bar{\mathbf{x}}$: a feasible solution;
- $I = \{i | g_i(\bar{\mathbf{x}}) = 0\}.$

Assume that the Kuhn-Tucker necessary conditions hold true at $\bar{\mathbf{x}}$, i.e., there exist scalars $\lambda_i \geq 0, i \in I$, and $\mu_j \in \mathbb{R}, j = 1, 2, \dots, l$, such

that

$$\nabla f(\bar{\mathbf{x}}) + \sum_{i \in I} \lambda_i \nabla g_i(\bar{\mathbf{x}}) + \sum_{j=1}^l \mu_j \nabla h_j(\bar{\mathbf{x}}) = \mathbf{0}.$$

In addition, if $g_i, i \notin I$, are also differentiable at $\bar{\mathbf{x}}$, then an equivalent form of the Kuhn-Tucker necessary conditions can be written as

$$\nabla f(\bar{\mathbf{x}}) + \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{\mathbf{x}}) + \sum_{j=1}^{l} \mu_j \nabla h_j(\bar{\mathbf{x}}) = \mathbf{0}$$
$$\lambda_i g_i(\bar{\mathbf{x}}) = 0 \text{ for all } i = 1, \dots, m$$
$$\lambda_i \geq 0 \text{ for all } i = 1, \dots, m.$$

Also assume that

- $J = \{j | \mu_j > 0\}$ and $K = \{j | \mu_j < 0\};$
- f: pseudoconcave at $\bar{\mathbf{x}}$;
- $g_i, i \in I$: quasiconcave at $\bar{\mathbf{x}}$;

4

• $h_j, j \in J$: quasiconcave at $\bar{\mathbf{x}}$;

• $h_j, j \in K$: quasiconvex at $\bar{\mathbf{x}}$.

Then $\bar{\mathbf{x}}$ is a global maximum solution.

Concave Function

Let

- X: a nonempty open convex subset of \mathbb{R}^n ;
- $f: X \to \mathbb{R}$: a twice differentiable function.

Then $f(\mathbf{x})$ is concave on X, i.e.,

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \ge \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2) \ \forall \ \mathbf{x}_1, \mathbf{x}_2 \in X, \ \lambda \in (0, 1)$$

if and only if its Hessian matrix $\mathbf{H}(\mathbf{x})$ is negative semi-definite, i.e.,

$$\mathbf{v}^T \mathbf{H}(\mathbf{x}) \mathbf{v} \le 0, \ \forall \ \mathbf{v} \in \mathbb{R}^n,$$

for all $\mathbf{x} \in X$.

Qualification of the Dual Problem

• The object function

$$\theta(\lambda) = \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{m} \lambda_i \lambda_j c(\mathbf{x}_i) c(\mathbf{x}_j) (\mathbf{x}_i \cdot \mathbf{x}_j)$$

is infinitely differentiable and concave so that it is pseudoconcave at any feasible point.

• The inequality constraint functions $g_i(\lambda) = \lambda_i, 1 \leq i \leq m$, and the equality constraint function $h(\lambda) = \sum_{i=1}^m \lambda_i c(\mathbf{x}_i)$ are affine functions so that they are infinitely differentiable, concave and convex and then quasiconcave and quasiconvex at any feasible point.

• $\nabla \theta(\lambda) = \mathbf{1} - \mathbf{A}\lambda$, where **A** is the Gram matrix of the vectors $c(\mathbf{x}_i)\mathbf{x}_i, i = 1, 2, \dots, m$,

$$\mathbf{A} = [c(\mathbf{x}_i)\mathbf{x}_i \cdot c(\mathbf{x}_j)\mathbf{x}_j] \\
= \begin{bmatrix} c(\mathbf{x}_1)\mathbf{x}_1 \cdot c(\mathbf{x}_1)\mathbf{x}_1 & \cdots & c(\mathbf{x}_1)\mathbf{x}_1 \cdot c(\mathbf{x}_m)\mathbf{x}_m \\ c(\mathbf{x}_2)\mathbf{x}_2 \cdot c(\mathbf{x}_1)\mathbf{x}_1 & \cdots & c(\mathbf{x}_2)\mathbf{x}_2 \cdot c(\mathbf{x}_m)\mathbf{x}_m \\ \vdots & \ddots & \vdots \\ c(\mathbf{x}_m)\mathbf{x}_m \cdot c(\mathbf{x}_1)\mathbf{x}_1 & \cdots & c(\mathbf{x}_m)\mathbf{x}_m \cdot c(\mathbf{x}_m)\mathbf{x}_m \end{bmatrix}$$

• $\nabla g_i(\lambda) = \mathbf{e}_i, i = 1, 2, \dots, m, \text{ and } \nabla h(\lambda) = [c(\mathbf{x}_1), \dots, c(\mathbf{x}_m)]^T.$

• The Kuhn-Tucker necessary conditions are:

$$\nabla \theta + \sum_{i=1}^{m} u_i \nabla g_i + v \nabla h = \mathbf{0} \Leftrightarrow \mathbf{A}\lambda = \mathbf{1} + \mathbf{u} + v$$

$$\vdots$$

$$c(\mathbf{x}_1)$$

$$\vdots$$

$$c(\mathbf{x}_m)$$

$$u_i \lambda_i = 0, \ i = 1, 2, \dots, m$$

$$u_i \geq 0, \ i = 1, 2, \dots, m.$$

• Any feasible point λ which satisfies the Kuhn-Tucker necessary conditions in above is a global maximum solution.

46

Weak Duality Theorem

Assume that

- \mathbf{x} : a feasible solution to the primal problem P, i.e., $\mathbf{x} \in X, \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \mathbf{h}(\mathbf{x}) = \mathbf{0};$
- (\mathbf{u}, \mathbf{v}) : a feasible solution to the dual problem D, i.e., $\mathbf{u} \geq \mathbf{0}$.

Then we have

$$f(\mathbf{x}) \ge \theta(\mathbf{u}, \mathbf{v}).$$

Proof. Since $\mathbf{x} \in X$,

$$egin{array}{lll} heta(\mathbf{u},\mathbf{v}) &=& \inf_{\mathbf{y}\in X} \left(f(\mathbf{y}) + \mathbf{u}^T \mathbf{g}(\mathbf{y}) + \mathbf{v}^T \mathbf{h}(\mathbf{y})\right) \\ &\leq & f(\mathbf{x}) + \mathbf{u}^T \mathbf{g}(\mathbf{x}) + \mathbf{v}^T \mathbf{h}(\mathbf{x}) \\ &\leq & f(\mathbf{x}), \end{array}$$

since $\mathbf{u} \geq \mathbf{0}, \mathbf{g}(\mathbf{x}) \leq \mathbf{0}$ and $\mathbf{h}(\mathbf{x}) = \mathbf{0}$.

Corollaries of the Weak Duality Theorem

- $\inf\{f(\mathbf{x}) \mid \mathbf{x} \in X, \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \mathbf{h}(\mathbf{x}) = \mathbf{0}\} \geq \sup\{\theta(\mathbf{u}, \mathbf{v}) \mid \mathbf{u} \geq \mathbf{0}\}.$
- If $f(\bar{\mathbf{x}}) \leq \theta(\bar{\mathbf{u}}, \bar{\mathbf{v}})$, where $\bar{\mathbf{u}} \geq \mathbf{0}$ and $\bar{\mathbf{x}} \in {\mathbf{x} \in X, \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \mathbf{h}(\mathbf{x}) = \mathbf{0}}$, then $\bar{\mathbf{x}}$ and $(\bar{\mathbf{u}}, \bar{\mathbf{v}})$ solve the primal and dual problems respectively.
- If $\inf\{f(\mathbf{x}) \mid \mathbf{x} \in X, \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \mathbf{h}(\mathbf{x}) = \mathbf{0}\} = -\infty$, then $\theta(\mathbf{u}, \mathbf{v}) = -\infty$ for all $\mathbf{u} \geq \mathbf{0}, \mathbf{v} \in \mathbb{R}^k$.
- If $\sup\{\theta(\mathbf{u}, \mathbf{v}) \mid \mathbf{u} \geq \mathbf{0}\} = +\infty$, then the primal problem has no feasible solution.

Strong Duality Theorem

Assume that

- X: a nonempty convex set in \mathbb{R}^n ;
- $f: X \to \mathbb{R}$ and $\mathbf{g}: X \to \mathbb{R}^m$: convex functions on X;
- $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^k$: an affine function, i.e., $\mathbf{h}(\mathbf{x}) = A\mathbf{x} \mathbf{b}$ for some $k \times n$ matrix A and some vector \mathbf{b} in \mathbb{R}^k ;
 - Without loss of generality, we may assume that the matrix A has full rank.
- $\mathbf{0} \in \text{int } \mathbf{h}(X), \text{ where } \mathbf{h}(X) = {\mathbf{h}(\mathbf{x}) : \mathbf{x} \in X};$
- there exists an $\mathbf{x}' \in X$ such that $\mathbf{g}(\mathbf{x}') < \mathbf{0}$ and $\mathbf{h}(\mathbf{x}') = \mathbf{0}$.

Then we have

$$\inf\{f(\mathbf{x}): \mathbf{x} \in X, \mathbf{g}(\mathbf{x}) \le \mathbf{0}, \mathbf{h}(\mathbf{x}) = \mathbf{0}\} = \sup\{\theta(\mathbf{u}, \mathbf{v}): \mathbf{u} \ge \mathbf{0}\}.$$

49

Furthermore, if the inf is finite, then $\sup\{\theta(\mathbf{u},\mathbf{v})\mid\mathbf{u}\geq\mathbf{0}\}$ is achieved at some $(\bar{\mathbf{u}},\bar{\mathbf{v}})$ with $\bar{\mathbf{u}}\geq\mathbf{0}$. If the inf is achieved at $\bar{\mathbf{x}}$, then $\sum_{i=1}^{m} \bar{u}_{i}g_{i}(\bar{\mathbf{x}})=0$.

Justification of Strong Duality for SVM

- $X = \mathbb{R}^N \times \mathbb{R}$: a non-empty convex set.
- $F(\mathbf{w}, b) = \frac{1}{2} ||\mathbf{w}||^2$: a convex function on X.
- $g_i(\mathbf{w}, b) = 1 c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b), 1 \le i \le m$: affine functions so that they are convex functions on X.
- There exists an $(\mathbf{w}', b') \in X$ such that $\mathbf{g}(\mathbf{w}', b') < \mathbf{0}$.

Then we have

$$\inf\{F(\mathbf{w},b): (\mathbf{w},b) \in X, \mathbf{g}(\mathbf{w},b) \le \mathbf{0}\} = \sup\{\theta(\lambda): \lambda \ge \mathbf{0}\}.$$

- For a linearly separable labeled training sample, the inf is finite and can be achieved at some feasible point $(\mathbf{w}^{SVM}, b^{SVM})$. Then $\sup\{\theta(\lambda) \mid \lambda \geq \mathbf{0}\}$ is achieved at some $\lambda^{SVM} \geq \mathbf{0}$.
- The primal and dual problems are equivalent.

The SVM Algorithm - Separable Case

- $S = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m)$: a linearly separable labeled training sample of size m with labels $(c(\mathbf{x}_1), c(\mathbf{x}_2), \dots, c(\mathbf{x}_m))$.
- h_S^{SVM} : the hypothesis returned by SVM,

$$h_S^{SVM}(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^{SVM} \cdot \mathbf{x} + b^{SVM})$$
$$= \operatorname{sgn}(\sum_{i=1}^{m} \lambda_i^{SVM} c(\mathbf{x}_i)(\mathbf{x}_i \cdot \mathbf{x}) + b^{SVM})$$

• $b^{SVM} = c(\mathbf{x}_j) - \sum_{i=1}^m \lambda_i^{SVM} c(\mathbf{x}_i) (\mathbf{x}_i \cdot \mathbf{x}_j)$ for any support vector \mathbf{x}_j . Thus we have

$$h_S^{SVM}(\mathbf{x}) = \operatorname{sgn}(c(\mathbf{x}_j) + \sum_{i=1}^m \lambda_i^{SVM} c(\mathbf{x}_i) (\mathbf{x}_i \cdot (\mathbf{x} - \mathbf{x}_j))$$

for any support vector \mathbf{x}_i .

52

ullet The hypothesis solution h_S^{SVM} depends only on inner products between vectors and not directly on the vectors themselves.

The Maximum Margin ρ_{\max}

• $b^{SVM} = c(\mathbf{x}_j) - \sum_{i=1}^m \lambda_i^{SVM} c(\mathbf{x}_i) (\mathbf{x}_i \cdot \mathbf{x}_j)$ for any support vector \mathbf{x}_j . This implies

$$\sum_{j=1}^{m} \lambda_{j}^{SVM} c(\mathbf{x}_{j}) b^{SVM}$$

$$= \sum_{j=1}^{m} \lambda_{j}^{SVM} c(\mathbf{x}_{j})^{2} - \sum_{j=1}^{m} \lambda_{j}^{SVM} c(\mathbf{x}_{j}) \sum_{i=1}^{m} \lambda_{i}^{SVM} c(\mathbf{x}_{i}) (\mathbf{x}_{i} \cdot \mathbf{x}_{j}).$$

• Since $\sum_{j=1}^{m} \lambda_i^{SVM} c(\mathbf{x}_j) = 0$ and $\mathbf{w}^{SVM} = \sum_{i=1}^{m} \lambda_i^{SVM} c(\mathbf{x}_i) \mathbf{x}_i$, we have

$$\sum_{j=1}^{m} \lambda_j^{SVM} = \|\mathbf{w}^{SVM}\|^2.$$

• $\rho_{\max}^2 = \frac{1}{\|\mathbf{w}^{SVM}\|^2} = \frac{1}{\sum_{i=1}^m \lambda_i^{SVM}}$.

The Contents of This Lecture

- Support vector machines separable case.
- Support vector machines general case.
- Margin guarantees.

Non-Linearly Separable Labeled Training Samples

- $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$: a labeled training sample of m items, drawn i.i.d. from the input space according to P, with labels $(c(\mathbf{x}_1), \dots, c(\mathbf{x}_m))$.
- Problem: the training data S is often not linearly separable in practice, i.e., for any hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$, there exists $\mathbf{x}_i \in S$ such that

$$c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1.$$

• Idea: relax inequality constraints using slack variables $\eta_i \geq 0$, i = 1, 2, ..., m, such that

$$c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \eta_i.$$

- A slack variable η_i measures the amount by which vector \mathbf{x}_i violates the desired inequality $c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1$.

Point \mathbf{x}_i is classified incorrectly and point \mathbf{x}_j is correctly classified, but with a margin less than 1.

Remarks

- Soft margin : $\rho = 1/\|\mathbf{w}\|$.
- For a hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$, a vector \mathbf{x}_i with $\eta_i > 0$ can be viewed as an outlier.
- How should we select the hyperplane in the general, separable or non-separable, case?
- There are two conflicting objectives: on one hand, we wish to limit the total amount of slack due to outliers, which can be measured by $\sum_{i=1}^{m} \eta_i$ or $\sum_{i=1}^{m} \eta_i^p$ for some $p \geq 1$; on the other hand, we seek a hyperplane with a large soft margin, though a larger soft margin can lead to more outliers and thus larger amounts of slack.

The Primal Problem for SVM - General Case

Minimize
$$F(\mathbf{w}, b, \eta) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \eta_i$$
Subject to
$$1 - \eta_i - c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b) \leq 0, i = 1, \dots, m$$

$$-\eta_i \leq 0, i = 1, \dots, m$$

$$(\mathbf{w}, b, \eta) \in \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^m.$$

• A quadratic programming (QP) problem.

Remarks

- The parameter C > 0 determines the trade-off between margin-maximization (or minimization of $||w||^2$) and the minimization of the slack penalty $\sum_{i=1}^{m} \eta_i$.
- The parameter C is typically determined via n-fold cross-validation.

Qualification of the Primal Problem - General Case

- The object function $F(\mathbf{w}, b, \eta) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^m \eta_i$ is infinitely differentiable and convex so that it is pseudoconvex at any feasible point.
- The inequality constraint functions $g_i(\mathbf{w}, b, \eta) = 1 \eta_i c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b)$ and $h_i(\mathbf{w}, b, \eta) = -\eta_i$, $1 \le i \le m$, are affine functions so that they are infinitely differentiable and convex and then quasiconvex at any feasible point.

•
$$\nabla F = \begin{bmatrix} \mathbf{w} \\ 0 \\ C\mathbf{1} \end{bmatrix}$$
, $\nabla g_i = \begin{bmatrix} -c(\mathbf{x}_i)\mathbf{x}_i \\ -c(\mathbf{x}_i) \\ -\mathbf{e}_i \end{bmatrix}$, and $\nabla h_i = \begin{bmatrix} \mathbf{0} \\ 0 \\ -\mathbf{e}_i \end{bmatrix}$.

• The Kuhn-Tucker necessary conditions are:

$$\nabla F + \sum_{i=1}^{m} \lambda_i \nabla g_i + \sum_{i=1}^{m} \mu_i \nabla h_i = \mathbf{0}$$

$$\Leftrightarrow \mathbf{w} = \sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i) \mathbf{x}_i, 0 = \sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i), C = \lambda_i + \mu_i, i \in [1, m]$$

$$\lambda_i g_i(\mathbf{w}, b, \eta) = 0, i \in [1, m]$$

$$\mu_i \eta_i = 0, i \in [1, m]$$

$$\lambda_i, \mu_i \ge 0, i \in [1, m].$$

- Any feasible point (\mathbf{w}, b, η) which satisfies the Kuhn-Tucker necessary conditions in above is a global minimum solution.
- The weight vector \mathbf{w} solution of the general, separable or non-separable, SVM problem is also a linear combination of the training set vectors $\mathbf{x}_1, \ldots, \mathbf{x}_m$.

Support Vectors

- Support vectors: any vector \mathbf{x}_i which appears in the linear combination $\mathbf{w} = \sum_{i=1}^m \lambda_i c(\mathbf{x}_i) \mathbf{x}_i$, i.e., $\lambda_i \neq 0$.
- If $\lambda_i \neq 0$, we must have $c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b) = 1 \eta_i$ by the complementary slackness conditions.
- If $\eta_i = 0$, the support vector \mathbf{x}_i lies in the marginal hyperplane $\mathbf{w} \cdot \mathbf{x} + b = c(\mathbf{x}_i)$.
- If $\eta_i > 0$, the support vector \mathbf{x}_i is an outlier. In this case, $\mu_i = 0$ and then $\lambda_i = C$.

Remarks

- Support vectors fully define the maximum-margin hyperplane or SVM solution.
- Support vectors \mathbf{x}_i are either outliers, in which case λ_i must be C, or vectors lying on the marginal hyperplanes.
- Vectors in the sample neither outliers nor lying on the marginal hyperplanes do not affect the solution to the SVM problem.
- As in the separable case, note that while the solution **w** of the SVM problem is usually unique, the support vectors are not.

How to Determine Optimal Lagrangian Variables λ_i^{SVM} ?

• Once optimal Lagrangian variables λ_i^{SVM} are determined, we can compute

$$\mathbf{w}^{SVM} = \sum_{i=1}^{m} \lambda_i^{SVM} c(\mathbf{x}_i) \mathbf{x}_i$$

and for any support vector \mathbf{x}_j lying on the marginal hyperplanes, we have

$$b^{SVM} = c(\mathbf{x}_j) - \mathbf{w}^{SVM} \cdot \mathbf{x}_j = c(\mathbf{x}_j) - \sum_{i=1}^m \lambda_i^{SVM} c(\mathbf{x}_i) (\mathbf{x}_i \cdot \mathbf{x}_j).$$

• We will use the Lagrangian dual problem to determine optimal λ_i^{SVM} .

Lagrangian Dual Function for SVM - General Case

- $X = \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^m$: a nonempty open convex set.
- Lagrangian function: for all $\mathbf{w} \in \mathbb{R}^N$, $b \in \mathbb{R}$, $\eta \in \mathbb{R}^m$, and $\lambda \in \mathbb{R}^m$, $\mu \in \mathbb{R}^m$,

$$L(\mathbf{w}, b, \eta, \lambda, \mu)$$

$$= F(\mathbf{w}, b, \eta) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}, b, \eta) + \sum_{i=1}^{m} \mu_i h_i(\mathbf{w}, b, \eta)$$

$$= \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{m} \eta_i + \sum_{i=1}^{m} \lambda_i (1 - \eta_i - c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b))$$

$$- \sum_{i=1}^{m} \mu_i \eta_i.$$

• For any fixed $\lambda, \mu \in \mathbb{R}^m$, the gradient ∇L of the Lagrangian function w.r.t. (\mathbf{w}, b, η) is

$$\nabla L = \nabla F + \sum_{i=1}^{m} \lambda_i \nabla g_i + \sum_{i=1}^{m} \mu_i \nabla h_i$$

$$= \begin{bmatrix} \mathbf{w} \\ 0 \\ C\mathbf{1} \end{bmatrix} - \sum_{i=1}^{m} \lambda_i \begin{bmatrix} c(\mathbf{x}_i)\mathbf{x}_i \\ c(\mathbf{x}_i) \\ \mathbf{e}_i \end{bmatrix} - \sum_{i=1}^{m} \mu_i \begin{bmatrix} \mathbf{0} \\ 0 \\ \mathbf{e}_i \end{bmatrix}$$

and the Hessian matrix is

$$\mathbf{H} = \left[egin{array}{ccc} I_{N imes N} & \mathbf{0}_{N imes (m+1)} \ \mathbf{0}_{(m+1) imes N} & \mathbf{0}_{(m+1) imes (m+1)} \end{array}
ight]$$

which is positive semi-definite.

67

• For any fixed $\lambda, \mu \in \mathbb{R}^m$, the Lagrangian function is differentiable and convex over a non-empty open convex set X so that $(\hat{\mathbf{w}}, \hat{b}, \hat{\eta})$ is an optimal solution to the minimization of $L(\mathbf{w}, b, \eta, \lambda, \mu)$ subject to $(\mathbf{w}, b, \eta) \in X$ if and only if $\nabla L(\hat{\mathbf{w}}, \hat{b}, \hat{\eta}, \lambda, \mu) = \mathbf{0}$ if and only if

$$\hat{\mathbf{w}} = \sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i) \mathbf{x}_i, \ 0 = \sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i), \text{ and } C = \lambda_i + \mu_i, \ i \in [1, m].$$

- Note that for any fixed $\lambda, \mu \in \mathbb{R}^m$, $\sum_{i=1}^m \lambda_i c(\mathbf{x}_i) \neq 0$ or $C \neq \lambda_i + \mu_i$ for some $i \in [1, m]$ if and only if the infimum of the Lagrangian function $L(\mathbf{w}, b, \eta, \lambda, \mu)$ is $-\infty$.

83

• Lagrangian dual function: for any $\lambda, \mu \in \mathbb{R}^m$,

$$\theta(\lambda, \mu)$$

$$= \inf_{(\mathbf{w}, b, \eta) \in X} L(\mathbf{w}, b, \eta, \lambda, \mu)$$

$$= \begin{cases} \frac{1}{2} ||\hat{\mathbf{w}}||^2 + C \sum_{i=1}^m \hat{\eta}_i + \sum_{i=1}^m \lambda_i (1 - \hat{\eta}_i - c(\mathbf{x}_i)(\hat{\mathbf{w}} \cdot \mathbf{x}_i + \hat{b})) \\ - \sum_{i=1}^m \mu_i \hat{\eta}_i, & \text{if } \sum_{i=1}^m \lambda_i c(\mathbf{x}_i) = 0, C = \lambda_i + \mu_i, i \in [1, m] \\ -\infty, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \sum_{i=1}^m \lambda_i - \frac{1}{2} \sum_{i,j=1}^m \lambda_i \lambda_j c(\mathbf{x}_i) c(\mathbf{x}_j)(\mathbf{x}_i \cdot \mathbf{x}_j), \\ & \text{if } \sum_{i=1}^m \lambda_i c(\mathbf{x}_i) = 0, C = \lambda_i + \mu_i, i \in [1, m], \\ -\infty, & \text{otherwise.} \end{cases}$$

Lagrangian Dual Problem for SVM - General Case

Maximize
$$\theta(\lambda, \mu) = \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{m} \lambda_i \lambda_j c(\mathbf{x}_i) c(\mathbf{x}_j) (\mathbf{x}_i \cdot \mathbf{x}_j)$$

Subject to $\lambda_i, \mu_i \geq 0, i = 1, \dots, m$
 $\lambda_i + \mu_i - C = 0, i = 1, \dots, m$
 $\sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i) = 0$
 $(\lambda, \mu) \in \mathbb{R}^m \times \mathbb{R}^m$

Or equivalently,

Maximize
$$\theta(\lambda) = \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{m} \lambda_i \lambda_j c(\mathbf{x}_i) c(\mathbf{x}_j) (\mathbf{x}_i \cdot \mathbf{x}_j)$$

Subject to $\lambda_i \geq 0, i = 1, \dots, m$
 $C - \lambda_i \geq 0, i = 1, \dots, m$
 $\sum_{i=1}^{m} \lambda_i c(\mathbf{x}_i) = 0$
 $\lambda \in \mathbb{R}^m$

• A quadratic programming (QP) problem.

Qualification of the Dual Problem

• The object function

$$\theta(\lambda) = \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{m} \lambda_i \lambda_j c(\mathbf{x}_i) c(\mathbf{x}_j) (\mathbf{x}_i \cdot \mathbf{x}_j)$$

is infinitely differentiable and concave so that it is pseudoconcave at any feasible point.

• The inequality constraint functions $g_i(\lambda) = \lambda_i, 1 \leq i \leq m$, $\tilde{g}_i(\lambda) = C - \lambda_i, 1 \leq i \leq m$, and the equality constraint function $h(\lambda) = \sum_{i=1}^m \lambda_i c(\mathbf{x}_i)$ are affine functions so that they are infinitely differentiable, concave and convex and then quasiconcave and quasiconvex at any feasible point.

- $\nabla \theta(\lambda) = \mathbf{1} \mathbf{A}\lambda$, where $\mathbf{A} = [c(\mathbf{x}_i)\mathbf{x}_i \cdot c(\mathbf{x}_j)\mathbf{x}_j]$ is the Gram matrix of the vectors $c(\mathbf{x}_i)\mathbf{x}_i$, $1 = 1, 2, \dots, m$.
- $\nabla g_i(\lambda) = \mathbf{e}_i, i = 1, 2, \dots, m, \nabla \tilde{g}_i(\lambda) = -\mathbf{e}_i, i = 1, 2, \dots, m, \text{ and } \nabla h(\lambda) = [c(\mathbf{x}_1), \dots, c(\mathbf{x}_m)]^T.$
- The Kuhn-Tucker necessary conditions are:

$$\nabla \theta + \sum_{i=1}^{m} u_i \nabla g_i + \sum_{i=1}^{m} \tilde{u}_i \nabla \tilde{g}_i + v \nabla h = \mathbf{0}$$

$$\Leftrightarrow \mathbf{A}\lambda = \mathbf{1} + \mathbf{u} - \tilde{\mathbf{u}} + v \begin{bmatrix} c(\mathbf{x}_1) \\ \vdots \\ c(\mathbf{x}_m) \end{bmatrix}$$

$$u_i \lambda_i = 0, \, \tilde{u}_i (C - \lambda_i) = 0, \, i = 1, 2, \dots, m$$

$$u_i, \, \tilde{u}_i \geq 0, \, i = 1, 2, \dots, m.$$

• Any feasible point λ which satisfies the Kuhn-Tucker necessary conditions in above is a global maximum solution.

Justification of Strong Duality for SVM - General Case

- $X = \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^m$: a non-empty convex set.
- $F(\mathbf{w}, b, \eta) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^m \eta_i$: a convex function on X.
- $g_i(\mathbf{w}, b, \eta) = 1 \eta_i c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i + b), 1 \le i \le m$: affine functions so that they are convex functions on X.
- $h_i(\mathbf{w}, b, \eta) = -\eta_i, 1 \le i \le m$: affine functions so that they are convex functions on X.
- There exists an $(\mathbf{w}', b', \eta') \in X$ such that $\mathbf{g}(\mathbf{w}', b', \eta') < \mathbf{0}$ and $\mathbf{h}(\mathbf{w}', b', \eta') < \mathbf{0}$.

Then we have

$$\inf\{F(\mathbf{w}, b, \eta) : (\mathbf{w}, b, \eta) \in X, \mathbf{g}(\mathbf{w}, b, \eta) \le \mathbf{0}, \mathbf{h}(\mathbf{w}, b, \eta) \le \mathbf{0}\}$$

$$= \sup\{\theta(\lambda, \mu) : (\lambda, \mu) \ge \mathbf{0}\}.$$

- For a non-trivial labeled training sample, the inf is finite and can be achieved at some feasible point $(\mathbf{w}^{SVM}, b^{SVM}, \eta^{SVM})$. Then $\sup\{\theta(\lambda) \mid \lambda \geq \mathbf{0}\}$ is achieved at some $(\lambda^{SVM}, \mu^{SVM}) \geq \mathbf{0}$.
- The primal and dual problems are equivalent.

The SVM Algorithm - General Case

- $S = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m)$: a non-trivial labeled training sample of size m with labels $(c(\mathbf{x}_1), c(\mathbf{x}_2), \dots, c(\mathbf{x}_m))$.
- h_S^{SVM} : the hypothesis returned by SVM,

$$h_S^{SVM}(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^{SVM} \cdot \mathbf{x} + b^{SVM})$$
$$= \operatorname{sgn}(\sum_{i=1}^{m} \lambda_i^{SVM} c(\mathbf{x}_i) (\mathbf{x}_i \cdot \mathbf{x}) + b^{SVM})$$

• $b^{SVM} = c(\mathbf{x}_j) - \sum_{i=1}^m \lambda_i^{SVM} c(\mathbf{x}_i) (\mathbf{x}_i \cdot \mathbf{x}_j)$ for any support vector \mathbf{x}_j with $0 < \lambda_j < C$. Thus we have

$$h_S^{SVM}(\mathbf{x}) = \operatorname{sgn}(c(\mathbf{x}_j) + \sum_{i=1}^m \lambda_i^{SVM} c(\mathbf{x}_i) (\mathbf{x}_i \cdot (\mathbf{x} - \mathbf{x}_j))$$

for any support vector \mathbf{x}_j with $0 < \lambda_j < C$.

ullet The hypothesis solution h_S^{SVM} depends only on inner products between vectors and not directly on the vectors themselves.

The SVM Soft Margin ρ_{SVM}

• $b^{SVM} = c(\mathbf{x}_j) - c(\mathbf{x}_j)\eta_j^{SVM} - \sum_{i=1}^m \lambda_i^{SVM} c(\mathbf{x}_i)(\mathbf{x}_i \cdot \mathbf{x}_j)$ for any support vector \mathbf{x}_j , i.e., $\lambda_j^{SVM} > 0$. This implies

$$\sum_{j=1}^{m} \lambda_{j}^{SVM} c(\mathbf{x}_{j}) b^{SVM}$$

$$= \sum_{j=1}^{m} \lambda_{j}^{SVM} (1 - \eta_{j}^{SVM}) c(\mathbf{x}_{j})^{2}$$

$$- \sum_{j=1}^{m} \lambda_{j}^{SVM} c(\mathbf{x}_{j}) \sum_{i=1}^{m} \lambda_{i}^{SVM} c(\mathbf{x}_{i}) (\mathbf{x}_{i} \cdot \mathbf{x}_{j}).$$

• Since $\sum_{j=1}^{m} \lambda_i^{SVM} c(\mathbf{x}_j) = 0$ and $\mathbf{w}^{SVM} = \sum_{i=1}^{m} \lambda_i^{SVM} c(\mathbf{x}_i) \mathbf{x}_i$,

we have

$$\sum_{j=1}^{m} \lambda_j^{SVM} (1 - \eta_j^{SVM}) = \|\mathbf{w}^{SVM}\|^2.$$

•
$$\rho_{SVM}^2 = \frac{1}{\|\mathbf{w}^{SVM}\|^2} = \frac{1}{\sum_{j=1}^m \lambda_j^{SVM} (1 - \eta_j^{SVM})}.$$

The Contents of This Lecture

- Support vector machines separable case.
- Support vector machines non-separable case.
- Margin guarantees.

Binary Linear Classification Problem

- $\mathscr{I} \subseteq \mathbb{R}^N$: the input space.
- $\mathscr{Y}' = \mathscr{Y} = \{-1, +1\}$: the output, label space with loss function $L(y', y) = 1_{y' \neq y}$.
- c: a fixed but unknown target concept in the concept class \mathcal{C} .
- $\mathcal{H} = \{ \mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b) \mid \mathbf{w} \in \mathbb{R}^N, \ b \in \mathbb{R} \}$: the hypothesis set of all linear classifiers.
- $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$: a sample of m items, drawn i.i.d. from the input space according to P, with labels $(c(\mathbf{x}_1), \dots, c(\mathbf{x}_m))$.
- Problem: find a linear hypothesis (binary linear classifier) $h: \mathscr{I} \to \{-1, +1\}$ in \mathcal{H} with small generalization error

$$R(h) = E[1_{h(\mathbf{x}) \neq c(\mathbf{x})}] = P(h(\mathbf{x}) \neq c(\mathbf{x})).$$

VC-Dimension Generalization Bound - Binary Linear Classification

- $\mathscr{I} \subseteq \mathbb{R}^N$: the input space, not contained in any hyperplane.
- $c: \mathscr{I} \to \{-1, +1\}$: a fixed but unknown target concept in the concept class \mathscr{C} .
- $\mathcal{H} = \{ \mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b) \mid \mathbf{w} \in \mathbb{R}^N, \ b \in \mathbb{R} \}$: the hypothesis set of all linear classifiers.
 - Since the input space \mathscr{I} is not contained in any hyperplane, we cannot use linear classifiers in \mathbb{R}^{N-1} .
 - $\operatorname{VCdim}(\mathcal{H}) = N + 1.$
- $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$: a sample of size m drawn i.i.d. from the input space \mathscr{I} according to an unknown distribution P, with labels $(c(\mathbf{x}_1), \dots, c(\mathbf{x}_m))$.

 ∞

For any $\delta > 0$, with probability at least $1 - \delta$, we have

$$\forall h \in \mathcal{H}, \quad R(h) \leq \hat{R}_S(h) + \sqrt{\frac{2(N+1)\ln\frac{em}{N+1}}{m}} + \sqrt{\frac{\ln\frac{1}{\delta}}{2m}}.$$

Proof. This is a direct consequence of Corollary 3.4.

Remarks

- When the dimension N of the input space is large compared to the sample size m, this VC-dimension generalization bound is uninformative.
- Informative bound which does not depend on the dimension N of the input space will be derived.

Geometric Margin of a Point to a Linear Classifier

The geometric margin $\rho_h(\mathbf{x})$ of a point \mathbf{x} in \mathbb{R}^N with respect to a linear classifier $h: x \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b)$ is its distance to the hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$:

$$\rho_h(\mathbf{x}) = \frac{|\mathbf{w} \cdot \mathbf{x} + b|}{\|\mathbf{w}\|}.$$

Geometric Margin of a Finite Set of Points to a Linear Classifier

The geometric margin $\rho_h(A)$ of a finite set $A = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ of points in \mathbb{R}^N with respect to a linear classifier $h : \mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b)$ is the minimum geometric margin over the points in the set:

$$\rho_h(A) = \min_{1 \le i \le m} \frac{|\mathbf{w} \cdot \mathbf{x_i} + b|}{\|\mathbf{w}\|}.$$

Canonical Representation of a Separating Linear Classifier to a Finite Set of Points

- $A = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$: a finite set of points in \mathbb{R}^N .
- h: a separating linear classifier to A, i.e, no points of A being in the boundary hyperplane of h.

A representation $h: x \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b)$ of the separating linear classifier h to the set A is called canonical to A if

$$\min_{1 \le i \le m} |\mathbf{w} \cdot \mathbf{x}_i + b| = 1.$$

The geometric margin of the set A with respective to the canonically represented separating linear classifier

$$h: \mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b)$$
 to A is

$$\rho_h(A) = \min_{1 \le i \le m} \frac{|\mathbf{w} \cdot \mathbf{x}_i + b|}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}.$$

VC-Dimension of a Family of Separating Linear Classifiers to a Finite Input Space with Margin Guarantee

Theorem 4.2: Let

- $A \subseteq \mathbb{R}^N$: a finite input space with $r \triangleq \max_{\mathbf{x} \in A} \|\mathbf{x}\|_2$.
- \mathcal{H} : the family of all separating linear classifiers to A with geometric margin at least $1/\Lambda$ whose boundary hyperplane contains the origin $\mathbf{0}$, i.e.,

$$\mathcal{H} = \{ \mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x}) \mid \min_{\mathbf{x} \in A} |\mathbf{w} \cdot \mathbf{x}_i| = 1 \text{ and } ||\mathbf{w}|| \leq \Lambda \}.$$

- Every separating hyperplane to the input space A has a unique canonical representation to A up to ± 1 .
- Each linear classifier (hypothesis) h in \mathcal{H} is a function from the input space A to the output (label) space $\{-1, +1\}$.

Then $d = VC \dim(\mathcal{H}) \leq r^2 \Lambda^2$.

Proof. Assume

- $B = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_d\}$: a *d*-subset of *A* that can be shattered by \mathcal{H} ;
- $\mathbf{y} = (y_1, y_2, \dots, y_d) \in \{-1, +1\}^d$: a dichotomy of B;
- $\mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w}_{\mathbf{y}} \cdot \mathbf{x})$: a linear classifier in \mathcal{H} which realizes the dichotomy \mathbf{y} of B.
 - $-\mathbf{w}_{\mathbf{y}}$ depends on \mathbf{y} .

Then we have

$$1 \le y_i(\mathbf{w_y} \cdot \mathbf{x}_i) \ \forall \ i \in [1, d]$$

and, summing up over i, yield

$$d \le \mathbf{w_y} \cdot \sum_{i=1}^d y_i \mathbf{x}_i \le ||\mathbf{w_y}|| \left\| \sum_{i=1}^d y_i \mathbf{x}_i \right\|.$$

By taking equally weighted sum over all possible dichotomies \mathbf{y} and

noting that $\|\mathbf{w}_{\mathbf{y}}\| \leq \Lambda$, we have

$$d \leq \Lambda \sum_{\mathbf{y} \in \{-1,+1\}^d} \frac{1}{2^d} \sqrt{\sum_{i=1}^d y_i \mathbf{x}_i \cdot \sum_{j=1}^d y_j \mathbf{x}_j}$$

$$\leq \Lambda \sqrt{\sum_{\mathbf{y} \in \{-1,+1\}^d} \frac{1}{2^d} \sum_{i,j=1}^d y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)}$$
since $f(x) = \sqrt{x}$ is a concave function on $[0, \infty)$

$$= \Lambda \sqrt{\sum_{i,j=1}^d (\mathbf{x}_i \cdot \mathbf{x}_j) \frac{1}{2^d} \sum_{\mathbf{y} \in \{-1,+1\}^d} y_i y_j}$$

$$= \Lambda \sqrt{\sum_{i=1}^d (\mathbf{x}_i \cdot \mathbf{x}_i)}$$

$$\leq \Lambda \sqrt{dr^2} = \Lambda r \sqrt{d}$$

since

$$\frac{1}{2^d} \sum_{\mathbf{y} \in \{-1,+1\}^d} y_i y_j = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}$$

Thus we have $d \leq \Lambda^2 r^2$.

Rademacher Complexity of a Family of Linear Functions on Bounded Input Space with Bounded Weight Vector

Theorem 4.3: Let

- $\mathscr{I} = \bar{B}(r; \mathbf{0}) = \{\mathbf{x} : ||\mathbf{x}|| \le r\} \subseteq \mathbb{R}^N$: the bounded input space, associated with a probability space $(\bar{B}(r; \mathbf{0}), \mathcal{F}, P)$.
- $\mathcal{H} = \{ \mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} \mid ||\mathbf{w}|| \leq \Lambda \}$: the family of all linear functions with bounded weight vector.
- $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$: a sample of m points drawn i.i.d. from the input space $\bar{B}(r; \mathbf{0})$ according to an unknown distribution P.

Then the empirical Rademacher complexity of \mathcal{H} w.r.t. the sample S can be upper bounded as follows:

$$\hat{\mathfrak{R}}_S(\mathcal{H}) \le \sqrt{\frac{r^2 \Lambda^2}{m}}.$$

Proof.

$$\hat{\mathfrak{R}}_{S}(\mathcal{H}) = \frac{1}{2^{m}} \sum_{\sigma_{1},\sigma_{2},...,\sigma_{m} \in \{-1,+1\}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h(\mathbf{x}_{i})$$

$$= \frac{1}{2^{m}} \sum_{\sigma_{1},\sigma_{2},...,\sigma_{m} \in \{-1,+1\}} \sup_{\|\mathbf{w}\| \leq \Lambda} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}(\mathbf{w} \cdot \mathbf{x}_{i})$$

$$= \frac{1}{2^{m}} \sum_{\sigma_{1},\sigma_{2},...,\sigma_{m} \in \{-1,+1\}} \sup_{\|\mathbf{w}\| \leq \Lambda} \frac{1}{m} \mathbf{w} \cdot \sum_{i=1}^{m} \sigma_{i} \mathbf{x}_{i}$$

$$\leq \frac{\Lambda}{m} \sum_{\sigma_{1},\sigma_{2},...,\sigma_{m} \in \{-1,+1\}} \frac{1}{2^{m}} \sqrt{\sum_{i=1}^{d} \sigma_{i} \mathbf{x}_{i} \cdot \sum_{j=1}^{d} \sigma_{j} \mathbf{x}_{j}}$$

$$\leq \frac{\Lambda}{m} \sqrt{\sum_{\sigma_{1},\sigma_{2},...,\sigma_{m} \in \{-1,+1\}} \frac{1}{2^{m}} \sum_{i,j=1}^{m} \sigma_{i} \sigma_{j}(\mathbf{x}_{i} \cdot \mathbf{x}_{j}),}$$

again since $f(x) = \sqrt{x}$ is a concave function on $[0, \infty)$. Now we

have

$$\hat{\mathfrak{R}}_{S}(\mathcal{H}) \leq \frac{\Lambda}{m} \sqrt{\sum_{i,j=1}^{m} (\mathbf{x}_{i} \cdot \mathbf{x}_{j}) \frac{1}{2^{m}}} \sum_{\sigma_{1},\sigma_{2},...,\sigma_{m} \in \{-1,+1\}} \sigma_{i} \sigma_{j}$$

$$= \frac{\Lambda}{m} \sqrt{\sum_{i=1}^{m} (\mathbf{x}_{i} \cdot \mathbf{x}_{i})}$$

$$\leq \frac{\Lambda}{m} \sqrt{mr^{2}} = \sqrt{\frac{\Lambda^{2}r^{2}}{m}}$$

since

$$\frac{1}{2^m} \sum_{\sigma_1, \sigma_2, \dots, \sigma_m \in \{-1, +1\}} \sigma_i \sigma_j = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}$$

Thus we have $\hat{\mathfrak{R}}_S(\mathcal{H}) \leq \sqrt{\frac{r^2\Lambda^2}{m}}$.

ρ -Margin Loss Function

- $\rho > 0$: a given confidence margin.
- $\Phi_{\rho}(x): \mathbb{R} \to [0,1]$: a soft inverse limiter with margin ρ , defined as

$$\Phi_{\rho}(x) = \begin{cases}
1, & \text{if } x \leq 0, \\
1 - x/\rho, & \text{if } 0 \leq x \leq \rho, \\
0, & \text{if } x \geq \rho.
\end{cases}$$

The ρ -margin loss function $L_{\rho}: \mathbb{R} \times \mathbb{R} \to [0,1]$ is defined as

$$L_{\rho}(y',y) \triangleq \Phi_{\rho}(y'y).$$

Three functions $\Phi_0(x) \leq \Phi_\rho(x)$ (in red) $\leq \Phi_0(x-\rho)$ (in blue) for constructing different loss functions.

Remarks

• When using a real-valued function h as a hypothesis to approximate a concept c which is a $\{-1, +1\}$ -valued function, the 0-1 loss function used will be

$$L(y', y) = 1_{\operatorname{sgn}(y') \neq \operatorname{sgn}(y)} = 1_{y'y \leq 0} = \Phi_0(y'y),$$

where $\Phi_0(x)$ is the hard inverse limiter,

$$\Phi_0(x) = \begin{cases} 1, & \text{if } x \le 0, \\ 0, & \text{if } x > 0. \end{cases}$$

• The 0-1 loss function $L(y', y) = 1_{y'y \le 0}$ is always no greater than the ρ -margin loss function $L_{\rho}(y', y)$.

Empirical ρ -Margin Loss

- \mathscr{I} : the input space of all possible items ω , associated with a probability space $(\mathscr{I}, \mathcal{F}, P)$.
- $c: \mathscr{I} \to \{-1, +1\}$: a fixed but unknown target concept in the concept class \mathscr{C} .
- \mathscr{Y}' : the output space, which is usually a bounded subset of \mathbb{R} .
- \mathcal{H} : a hypothesis set of \mathscr{Y}' -valued functions on the input space \mathscr{I} .
- $L_{\rho}(y',y) = \Phi_{\rho}(y'y)$: the ρ -margin loss function.
- $S = (\omega_1, \ldots, \omega_m)$: a sample of size m drawn i.i.d. from \mathscr{I} according to an unknown distribution P, with labels $(c(\omega_1), \ldots, c(\omega_m))$.
- h: an arbitrary hypothesis in \mathcal{H} .

The empirical ρ -margin loss of an hypothesis h w.r.t. the concept c on the labeled sample S is defined as

$$\hat{R}_{S,\rho}(h) \triangleq \frac{1}{m} \sum_{i=1}^{m} L_{\rho}(h(\omega_i), c(\omega_i)) = \frac{1}{m} \sum_{i=1}^{m} \Phi_{\rho}(h(\omega_i)c(\omega_i)).$$

Remarks

• Since the 0-1 loss function $L(y', y) = 1_{y'y \le 0}$ is always no greater than the ρ -margin loss function $L_{\rho}(y', y)$, the empirical error is

$$\hat{R}_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} L(h(\omega_{i}), c(\omega_{i}))$$

$$\leq \frac{1}{m} \sum_{i=1}^{m} L_{\rho}(h(\omega_{i}), c(\omega_{i})) = \hat{R}_{S,\rho}(h).$$

Talagrand's Lemma

Lemma 4.2: Let

- \mathscr{I} : the input space of all possible items ω , associated with a probability space $(\mathscr{I}, \mathcal{F}, P)$.
- $\mathscr{Y}' \subseteq \mathbb{R}$: the output space, which is a subset of \mathbb{R} .
- \mathcal{H} : a hypothesis set of \mathscr{Y}' -valued measurable functions on the input space \mathscr{I} .
- $\Phi: \mathscr{Y}' \to \mathbb{R}$: an α -Lipschitz function, i.e., there is an $\alpha > 0$ such that $|\Phi(x) \Phi(y)| \le \alpha |x y|, \ \forall \ x, y \in \mathscr{Y}'$.
- $S = (\omega_1, \omega_2, \dots, \omega_m)$: a sample of m items drawn i.i.d. from \mathscr{I} according to P.

Assume that

• $\sup_{h \in \mathcal{H}} \left(\sum_{i=1}^{j} \sigma_i(\Phi \circ h)(\omega_i) + \sum_{i=j+1}^{m} \alpha \sigma_i h(\omega_i) \right)$ is finite for all $\sigma_i \in \{-1, +1\}, i \in [1, m]$ and for all $j \in [0, m]$.

Then we have

$$\hat{\mathfrak{R}}_S(\Phi \circ \mathcal{H}) \le \alpha \hat{\mathfrak{R}}_S(\mathcal{H}),$$

where both $\hat{\mathfrak{R}}_S(\Phi \circ \mathcal{H})$ and $\hat{\mathfrak{R}}_S(\mathcal{H})$ are finite.

Proof. By the definition of empirical Rademacher complexity,

$$\hat{\mathfrak{R}}_{S}(\Phi \circ \mathcal{H}) = \frac{1}{2^{m}} \sum_{\substack{\sigma_{1}, \sigma_{2}, \dots, \sigma_{m} \in \{-1, +1\}}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}(\Phi \circ h)(\omega_{i})$$

$$= \frac{1}{2^{m-1}} \sum_{\substack{\sigma_{1}, \sigma_{2}, \dots, \sigma_{m-1} \in \{-1, +1\}}} \frac{1}{2} \sum_{\substack{\sigma_{m} \in \{-1, +1\}}} \frac{1}{m}$$

$$\sup_{h \in \mathcal{H}} (u_{m-1}(h) + \sigma_{m}(\Phi \circ h)(\omega_{m})),$$

where $u_{m-1}(h) \triangleq \sum_{i=1}^{m-1} \sigma_i(\Phi \circ h)(\omega_i)$. Since $\sup_{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_i(\Phi \circ h)(\omega_i)$ is finite for any given $\sigma_1, \sigma_2, \ldots, \sigma_m$ by assumption, for any $\epsilon > 0$, there exist $h_1, h_2 \in \mathcal{H}$ such that

$$\sup_{h \in \mathcal{H}} (u_{m-1}(h) + (\Phi \circ h)(\omega_m)) - \epsilon \leq u_{m-1}(h_1) + (\Phi \circ h_1)(\omega_m),$$

$$\sup_{h \in \mathcal{H}} (u_{m-1}(h) - (\Phi \circ h)(\omega_m)) - \epsilon \leq u_{m-1}(h_2) - (\Phi \circ h_2)(\omega_m)$$

and then

$$\frac{1}{2} \sum_{\sigma_{m} \in \{-1,+1\}} \sup_{h \in \mathcal{H}} (u_{m-1}(h) + \sigma_{m}(\Phi \circ h)(\omega_{m})) - \epsilon$$

$$\leq \frac{1}{2} (u_{m-1}(h_{1}) + (\Phi \circ h_{1})(\omega_{m})) + \frac{1}{2} (u_{m-1}(h_{2}) - (\Phi \circ h_{2})(\omega_{m}))$$

$$\leq \frac{1}{2} (u_{m-1}(h_{1}) + u_{m-1}(h_{2}) + s\alpha(h_{1}(\omega_{m}) - h_{2}(\omega_{m})))$$
by Lipschitz property, where $s = \operatorname{sgn}(h_{1}(\omega_{m}) - h_{2}(\omega_{m}))$

$$= \frac{1}{2} (u_{m-1}(h_{1}) + s\alpha h_{1}(\omega_{m})) + \frac{1}{2} (u_{m-1}(h_{2}) - s\alpha h_{2}(\omega_{m}))$$

$$\leq \frac{1}{2} \sup_{h \in \mathcal{H}} (u_{m-1}(h) + s\alpha h(\omega_{m})) + \frac{1}{2} \sup_{h \in \mathcal{H}} (u_{m-1}(h) - s\alpha h(\omega_{m}))$$

$$= \frac{1}{2} \sum_{\sigma_{m} \in \{-1,+1\}} \sup_{h \in \mathcal{H}} (u_{m-1}(h) + \alpha \sigma_{m} h(\omega_{m})).$$

Since the inequality holds for any $\epsilon > 0$, we have

$$\frac{1}{2} \sum_{\sigma_m \in \{-1,+1\}} \sup_{h \in \mathcal{H}} (u_{m-1}(h) + \sigma_m(\Phi \circ h)(\omega_m))$$

$$\leq \frac{1}{2} \sum_{\sigma_m \in \{-1,+1\}} \sup_{h \in \mathcal{H}} (u_{m-1}(h) + \alpha \sigma_m h(\omega_m)).$$

Now we have

$$\hat{\Re}_{S}(\Phi \circ \mathcal{H}) \leq \frac{1}{2^{m-1}} \sum_{\substack{\sigma_{1}, \sigma_{2}, \dots, \sigma_{m-1} \in \{-1, +1\} \\ n}} \frac{1}{2} \sum_{\substack{\sigma_{m} \in \{-1, +1\} \\ \sigma_{m} \in \{-1, +1\} }} \frac{1}{m}$$

$$\sup_{h \in \mathcal{H}} \left(\sum_{i=1}^{m-1} \sigma_{i}(\Phi \circ h)(\omega_{i}) + \alpha \sigma_{m} h(\omega_{m}) \right)$$

$$= \frac{1}{2^{m-1}} \sum_{\substack{\sigma_{1}, \dots, \sigma_{m-2}, \sigma_{m} \in \{-1, +1\} \\ n}} \frac{1}{2} \sum_{\substack{\sigma_{m-1} \in \{-1, +1\} \\ n}} \frac{1}{m}$$

$$\sup_{h \in \mathcal{H}} \left(u_{m-2}(h) + \sigma_{m-1}(\Phi \circ h)(\omega_{m-1}) \right),$$

where $u_{m-2}(h) \triangleq \sum_{i=1}^{m-2} \sigma_i(\Phi \circ h)(\omega_i) + \alpha \sigma_m h(\omega_m)$. Since $\sup_{h \in \mathcal{H}} \left(\sum_{i=1}^{m-1} \sigma_i(\Phi \circ h)(\omega_i) + \alpha \sigma_i h(\omega_i) \right)$ is finite for any given $\sigma_1, \sigma_2, \ldots, \sigma_m$ by assumption, by proceeding similar argument in

above, we have

$$\hat{\mathfrak{R}}_{S}(\Phi \circ \mathcal{H}) \leq \frac{1}{2^{m-1}} \sum_{\substack{\sigma_{1}, \dots, \sigma_{m-2}, \sigma_{m} \in \{-1, +1\} \\ n \in \mathcal{H}}} \frac{1}{2^{m-1}} \sum_{\substack{\sigma_{1}, \dots, \sigma_{m-2}, \sigma_{m} \in \{-1, +1\} \\ n \in \mathcal{H}}} \frac{1}{2^{m-1}} \sum_{\substack{\sigma_{1}, \dots, \sigma_{m-2}, \sigma_{m} \in \{-1, +1\} \\ \sigma_{1}, \dots, \sigma_{m-2}, \sigma_{m} \in \{-1, +1\} }} \frac{1}{2^{m}} \sum_{\substack{\sigma_{m-1} \in \{-1, +1\} \\ n \in \mathcal{H}}} \frac{1}{m}$$

$$\sup_{h \in \mathcal{H}} \left(\sum_{i=1}^{m-2} \sigma_{i}(\Phi \circ h)(\omega_{i}) + \alpha \sum_{i=m-1}^{m} \sigma_{i}h(\omega_{i}) \right)$$

$$= \frac{1}{2^{m-1}} \sum_{\substack{\sigma_{1}, \dots, \sigma_{m-3}, \sigma_{m-1}\sigma_{m} \in \{-1, +1\} \\ \sigma_{1}, \dots, \sigma_{m-2} \in \{-1, +1\} }} \frac{1}{m}$$

$$\sup_{h \in \mathcal{H}} \left(u_{m-3}(h) + \sigma_{m-2}(\Phi \circ h)(\omega_{m-2}) \right),$$

where $u_{m-3}(h) \triangleq \sum_{i=1}^{m-3} \sigma_i(\Phi \circ h)(\omega_i) + \alpha \sum_{i=m-1}^m \sigma_i h(\omega_i)$. By

continuing similar argument, we have

$$\hat{\mathfrak{R}}_{S}(\Phi \circ \mathcal{H}) \leq \frac{1}{2^{m}} \sum_{\sigma_{1}, \sigma_{2}, \dots, \sigma_{m} \in \{-1, +1\}} \sup_{h \in \mathcal{H}} \frac{1}{m} \alpha \sum_{i=1}^{m} \sigma_{i} h(\omega_{i})$$

$$= \alpha \hat{\mathfrak{R}}_{S}(\mathcal{H}).$$

Remarks

• By assuming that

$$\sup_{h \in \mathcal{H}} \left(\sum_{i=1}^{j} \sigma_i(\Phi \circ h)(\omega_i) + \sum_{i=j+1}^{m} \alpha \sigma_i h(\omega_i) \right)$$

is finite for all $\sigma_i \in \{-1, +1\}, i \in [1, m]$, for all $j \in [0, m]$ and for all random samples $S = (\omega_1, \ldots, \omega_m)$ of size m and by taking average over the random sample S of size m, we have

$$\mathfrak{R}_m(\Phi \circ \mathcal{H}) \leq \alpha \mathfrak{R}_m(\mathcal{H}).$$

• The soft inverse limiter $\Phi_{\rho}(x)$ with margin $\rho > 0$ is a $1/\rho$ -Lipschitz function since its maximum slope is $1/\rho$.

Margin-Based Generalization Bound for Binary Classification

Theorem 4.4: Let

- \mathscr{I} : the input space of all possible items ω , associated with a probability space $(\mathscr{I}, \mathcal{F}, P)$.
- $c: \mathscr{I} \to \{-1, +1\}$: a fixed but unknown target concept in the concept class \mathscr{C} .
- $\mathscr{Y}' \subseteq \mathbb{R}$: the output space, which is a subset of \mathbb{R} .
- \mathcal{H} : a hypothesis set of \mathscr{Y}' -valued measurable functions on the input space \mathscr{I} such that $\sup_{h\in\mathcal{H}}|h(\omega)|<+\infty\ \forall\ \omega\in\mathscr{I}$.
- $S = (\omega_1, \omega_2, \dots, \omega_m)$: a sample of m items drawn i.i.d. from \mathscr{I} according to an unknown distribution P with labels $(c(\omega_1), c(\omega_2), \dots, c(\omega_m))$.

- $\rho > 0$: a given confidence margin.
- $L_{\rho}(y',y) = \Phi_{\rho}(y'y) : \mathbb{R} \times \mathbb{R} \to [0,1]$: the ρ -margin loss function.
- $g_h: \mathscr{I} \times \{-1, +1\} \to [0, 1]$: the loss function associated with h under the ρ -margin loss function L_{ρ} , defined as $g_h(\omega, y) \triangleq L_{\rho}(h(\omega), y) = \Phi_{\rho}(h(\omega)y)$.
- $\mathcal{G} = \{g_h \mid h \in \mathcal{H}\}$: the family of loss functions associated with hypotheses in \mathcal{H} under the ρ -margin loss function L_{ρ} .
- $\mathscr{Z} = \mathscr{I} \times \{-1, +1\}$: the input set of loss functions g_h , associated with a probability space $(\mathscr{Z}, \tilde{\mathcal{F}}, \tilde{P})$ where \tilde{P} is an extension of P from on \mathcal{F} to on $\tilde{\mathcal{F}} = \mathcal{F} \times 2^{\{-1, +1\}}$.
- $\tilde{S} = ((\omega_1, c(\omega_1)), \dots, (\omega_m, c(\omega_m)))$: the labeled sample corresponding to S.
- $\hat{A}_{\tilde{S}}(g_h) = \frac{1}{m} \sum_{i=1}^m g_h(\omega_i, c(\omega_i)) = \frac{1}{m} \sum_{i=1}^m L_\rho(h(\omega_i), c(\omega_i)) = \hat{R}_{S,\rho}(h)$, the empirical ρ -margin loss of h w.r.t. c on sample S.

• $E_{z \sim \tilde{P}}[g_h(z)] = E_{\tilde{S} \sim \tilde{P}_m}[\hat{A}_{\tilde{S}}(g_h)] = E_{S \sim P_m}[\hat{R}_{S,\rho}(h)] \ge E_{S \sim P_m}[\hat{R}_{S}(h)] = R(h).$

For any $\delta > 0$, with probability at least $1 - \delta$, each of the following holds for all h in \mathcal{H} :

$$R(h) \leq \hat{R}_{S,\rho}(h) + \frac{2}{\rho} \mathfrak{R}_m(\mathcal{H}) + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}},$$

$$R(h) \leq \hat{R}_{S,\rho}(h) + \frac{2}{\rho}\hat{\mathfrak{R}}_S(\mathcal{H}) + 3\sqrt{\frac{\ln\frac{2}{\delta}}{2m}}.$$

Proof. By the Rademacher complexity bound for the family \mathcal{G} in Theorem 3.1, for any $\delta > 0$, with probability at least $1 - \delta$, each of the following holds for all g_h in \mathcal{G} :

$$E_{z \sim \tilde{P}}[g_h(z)] \leq \frac{1}{m} \sum_{i=1}^m g_h(\omega_i, c(\omega_i)) + 2\Re_m(\mathcal{G}) + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}}$$

$$E_{z \sim \tilde{P}}[g_h(z)] \leq \frac{1}{m} \sum_{i=1}^m g_h(\omega_i, c(\omega_i)) + 2\Re_{\tilde{S}}(\mathcal{G}) + 3\sqrt{\frac{\ln \frac{2}{\delta}}{2m}}.$$

Let

$$\tilde{\mathcal{H}} \triangleq \{z = (\omega, y) \mapsto h(\omega)y \mid h \in \mathcal{H}\},\$$

which is a family of $(-\mathscr{Y}' \cup \mathscr{Y}')$ -valued functions on the input set $\mathscr{Z} = \mathscr{I} \times \{-1, +1\}$. It is clear that $\mathscr{G} = \Phi_{\rho} \circ \tilde{\mathcal{H}}$. Since Φ_{ρ} is a bounded $1/\rho$ -Lipschitz function and $\sup_{h \in \mathcal{H}} |h(\omega)|$ is finite for all $\omega \in \mathscr{I}$, $\sup_{h \in \mathcal{H}} \left(\sum_{i=1}^{j} \sigma_{i} \Phi_{\rho}(h(\omega_{i})c(\omega)) + \sum_{i=j+1}^{m} \frac{1}{\rho} \sigma_{i} h(\omega_{i})c(\omega) \right)$ is finite for all $\sigma_{i} \in \{-1, +1\}, i \in [1, m]$, for all $j \in [0, m]$ and for all

sample $S = (\omega_1, \ldots, \omega_m)$ of size m, we have

$$\hat{\mathfrak{R}}_{\tilde{S}}(\mathcal{G}) \leq \frac{1}{\rho} \hat{\mathfrak{R}}_{\tilde{S}}(\tilde{\mathcal{H}}) \text{ and then } \mathfrak{R}_m(\mathcal{G}) \leq \frac{1}{\rho} \mathfrak{R}_m(\tilde{\mathcal{H}})$$

by Talagrand's lemma. The empirical Rademacher complexity of \mathcal{H} is

$$\hat{\mathfrak{R}}_{\tilde{S}}(\tilde{\mathcal{H}}) = \frac{1}{2^m} \sum_{\sigma_1, \sigma_2, \dots, \sigma_m \in \{-1, +1\}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \sigma_i c(\omega_i) h(\omega_i)$$

$$= \frac{1}{2^m} \sum_{\sigma_1, \sigma_2, \dots, \sigma_m \in \{-1, +1\}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \sigma_i h(\omega_i) = \hat{\mathfrak{R}}_{S}(\mathcal{H})$$

and then $\mathfrak{R}_m(\tilde{\mathcal{H}}) = \mathfrak{R}_m(\mathcal{H})$. Now with

$$\frac{1}{m} \sum_{i=1}^{m} g_h(\omega_i, c(\omega_i)) = \hat{R}_{S,\rho}(h) \text{ and } R(h) \leq \sum_{z \sim \tilde{P}} [g_h(z)],$$

the theorem is proved.

Remarks

• The margin-based generalization bound for binary classification shows the trade-off between two terms: the larger the desired margin ρ , the smaller the middle term; however, the first term, the empirical ρ -margin loss $\hat{R}_{S,\rho}(h)$, increases as a function of ρ .

Margin-Based Generalization Bound for Linear Hypotheses on Bounded Input Space with Bounded Weight Vector

Corollary 4.1: Let

- $\mathscr{I} = \bar{B}(r; \mathbf{0}) = \{\mathbf{x} : ||\mathbf{x}|| \le r\} \subseteq \mathbb{R}^N$: a bounded input space, associated with a probability space $(\bar{B}(r; \mathbf{0}), \mathcal{F}, P)$.
- $c: \mathscr{I} \to \{-1, +1\}$: a fixed but unknown target concept in the concept class \mathscr{C} .
- $\mathcal{H} = \{\mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} \mid ||\mathbf{w}|| \leq \Lambda\}$: the set of all linear functions with bounded weight vector.
 - It is clear that $\sup_{h \in \mathcal{H}} |h(\mathbf{x})| \le \Lambda ||\mathbf{x}|| < +\infty \ \forall \ \mathbf{x} \in \mathscr{I}$.
- $S = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m)$: a sample of m points drawn i.i.d. from the input space $\bar{B}(r; \mathbf{0})$ according to an unknown distribution P with labels $(c(\mathbf{x}_1), c(\mathbf{x}_2), \dots, c(\mathbf{x}_m))$.

- $\rho > 0$: a given confidence margin.
- $L_{\rho}(y',y) = \Phi_{\rho}(y'y) : \mathbb{R} \times \mathbb{R} \to [0,1]$: the ρ -margin loss function.
- $\hat{R}_{S,\rho}(h) = \frac{1}{m} \sum_{i=1}^{m} L_{\rho}(h(\mathbf{x}_i), c(\mathbf{x}_i)) = \frac{1}{m} \sum_{i=1}^{m} \Phi_{\rho}(h(\mathbf{x}_i)c(\mathbf{x}_i))$: the empirical ρ -margin loss of a linear hypothesis h in \mathcal{H} w.r.t. the concept c on the sample S.
- $R(h) = \underset{\mathbf{x} \sim P}{E} [1_{\text{sgn}(h(\mathbf{x})) \neq c(\mathbf{x})}]$: the generalization error of linear hypothesis $h \in \mathcal{H}$.

For any $\delta > 0$, with probability at least $1 - \delta$, all h in \mathcal{H} :

$$R(h) \leq \hat{R}_{S,\rho}(h) + 2\sqrt{\frac{r^2\Lambda^2/\rho^2}{m}} + \sqrt{\frac{\ln\frac{1}{\delta}}{2m}}.$$

Proof. This is a direct consequence of Theorems 4.3 and 4.4.

Remarks

- The margin-based generalization bound for linear hypotheses does not depend directly on the dimension of the input space, but only on the margin.
- It suggests that a small generalization error can be achieved when ρ/r is large (small second term) while the empirical ρ -margin loss is relatively small (first term).
 - The latter occurs when few points are either classified incorrectly or correctly, but with margin less than ρ .
- The learning guarantee in Corollary 4.1 hinges upon the hope of a good margin value ρ : if there exists a relatively large margin value $\rho > 0$ for which the empirical ρ -margin loss is small, then a small generalization error is guaranteed by the corollary.

118

• This favorable margin ρ depends on the distribution: while the learning bound is distribution-independent, the existence of a good margin is in fact distribution-dependent.

Strong Justification for SVM

• For $\rho = 1$, the soft inverse limiter Φ_1 with margin 1 is upper bounded by the hinge function $x \mapsto \max(1 - x, 0)$:

$$\Phi_1(x) \le \max(1 - x, 0) \ \forall \ x \in \mathbb{R}$$

and then the empirical 1-margin loss $\hat{R}_{S,\rho}(h)$ of a linear hypothesis $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$ is upper bounded by the average amount of slack penalty:

$$\hat{R}_{S,1}(h) = \frac{1}{m} \sum_{i=1}^{m} \Phi_1(h(\mathbf{x}_i)c(\mathbf{x}_i))$$

$$\leq \frac{1}{m} \sum_{i=1}^{m} \max(1 - c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i), 0)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \eta_i.$$

• The margin-based generalization bound with $\rho = 1$ implies that with probability at least $1 - \delta$, for any linear function $h: \mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x}$ with $\|\mathbf{w}\| \leq \Lambda$ on bounded input space $\bar{B}(r; \mathbf{0})$,

$$R(h) \leq \frac{1}{m} \sum_{i=1}^{m} \eta_i + 2\sqrt{\frac{r^2 \Lambda^2}{m}} + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}},$$

where $\eta_i = \max(1 - c(\mathbf{x}_i)(\mathbf{w} \cdot \mathbf{x}_i), 0)$ are the slack penalty over the training set.

- The objective function minimized by the SVM algorithm has precisely the form of this upper bound: the first term corresponds to the slack penalty over the training set and the second to the minimization of the $\|\mathbf{w}\|$ which is equivalent to that of $\|\mathbf{w}\|^2$.
- We have been using a parameter C in SVM to adjust the relative strength in the minimization of either term.

Searching for Large-Margin Separating Hyperplanes in High-Dimensional Space

- Since margin-based generalization bound does not directly depend on the dimension of the input space and do guarantee good generalization with a favorable margin, it suggests seeking large-margin separating hyperplanes in a very high-dimensional space.
- The next lecture provides a way of doing this, in addition to overcoming the very high cost of computation with very high-dimensional vectors as well as further generalization of SVM to nonlinear separation.