Univerza *v Ljubljani* Fakulteta *za matematiko in fizik*o

Oddelek za fiziko Sklopljena nihajna kroga

Poročilo pri fizikalnem praktikumu IV

Kristofer Č. Povšič

Asistentka: Jelena Vesić

Uvod

Pri sklopitvi povzročimo, da posameznih oscilatorjev več ne obravnavamo ločeno, ampak kot en sistem. sistem sestavljen iz n enakih oscilatorjev, ima n lastnih nihanj, ki jih opišemo z lastnimi frekvencami ω_n in lastnimi vektorji.

Ko povežemo dva identična nihajna kroga s kondenzatorjem C_0 , je en način nihanja, da nihata v fazi in vmesnega sklopitvenega kondenzatorja ne zaznata. Drugi način pa je, da nihata v nasprotni fazi.

Rešitev diferencialne enačbe za zgolj kapacitivno sklopljena kroga nam za začetni pogoj, kjer drugi krog miruje in začnemu vzbujati prvi krog, napove odvisnost napetosti oblike

$$U_1 = U_0 e^{-\beta t} \cos(\omega t) \cos(\Delta \omega t)$$

$$U_2 = U_0 e^{-\beta t} \cos(\omega t) \sin(\Delta \omega t)$$

Naša eksperimentalna postavitev pa ni ravno tako idealna - predvsem je problem induktivna sklopitev, ki pri manjših vrednostih nastavljivega kondenzatorja igra precej veliko vlogo, a smo jo tu ignorirali. Ko merimo resonančno krivuljo, vidio, da je resonačni vrh položnejši, čim večje je dušenje β . Pogosto namesto parametra β navajamo doboroto oz. kvaliteto nihajnega kroga

$$Q = \frac{\omega_1}{\Delta \omega} = \frac{\omega}{2\beta} = \sqrt{\frac{L}{CR^2}} \tag{1}$$

pri čemer je ω_1 resonančna frekvenca, $\Delta\omega$ širina resonančne krivulje pri $\frac{1}{\sqrt{2}}$ maksimuma.

Naloga

- Izmerite časovni potek napetosti na obeh krogih pri vzbujanju s stopničastim signalom za vse različne sklopitve $C_0 = 0$, 150, 330, 560, 820, 1150pF.
- \bullet Izmerite frekvenčno karakteristiko enega nihajnega kroga in določite dobroto Q.
- Izmerite frekvenčno karakteristiko sklopljenih nihajnih krogov z meritvijo odziva drugega kroga za vsak C_0 in izmerite razliko lastnih krožnih frekvenc $\Delta\omega$.

Potrebščine

- digiatlni osciloskop
- funkcijski generator napetosti, namizni multimeter
- nihajna kroga in kabli, USB ključek
- prenosnik s programom SkNikKr napisan v LabView

Navodilo

- 1. Odziv obeh nihajnih krogov na napetostno stopnico: Povežem stvari kot je v navodilih in potem spreminjam sklopitveni kondenzator in opazujem signale v obeh krogih.
- 2. Vsiljeno nihanje enega nihajnega kroga: Sklopitveni kondenzator C_0 naj bo izklopljen, torej $C_0 = 0$ in kratko sklenimo drugi nihajni krog, tako da povežemo izhod U_2 in zemljo. Nato odstrani še kratko sklenitev kroga.
- 3. Vsiljeno nihanje sklopljenih krogov: Pri vklopljenem sklopitvenem kondenzatorju lahko opazimo resonančno obnašanje na obeh krogih, vendar je na drugem krogu bolj izrazito. S programom izmerite frekvenčno odvisnost od efektivne napetosti na drugem krogu v istem frekvenčnem intervalu kot pri 1. nalogi.

Obdelava podatkov

1. del

Pri različnih kapacitivnih sklopitvah posnamemo potek napetosti U_1 v prvem krogu, ki ga napajamo direktno in napetosti U_2 v krogu, ki je vzbujen.

C[pF]	N	$Nt_0[\pm 5\mu s]$	$\omega[\pm 0.03 \mu s^{-1}]$
0	14	200	1.26
150	27	400	2.51
330	38	580	3.64
560	37	600	3.77
820	37	635	3.99
1150	36	630	3.96

Tabela 1: Frekvence napetosti U_1

C[pF]	N	$Nt_0[\pm 5\mu s]$	$\omega[\pm 0.03 \mu s^{-1}]$
0	22	310	1.95
150	33	500	3.14
330	40	600	3.77
560	21	310	1.95
820	21	340	2.14
1150	30	500	3.14

Tabela 2: Frekvence napetosti ${\cal U}_2$

C[pF]	$\Delta\omega [\mathrm{ms}^{-1}]$	$\pm [\mathrm{ms}^{-1}]$	$\beta [\mathrm{ms}^{-1}]$	$\pm [\mathrm{ms}^{-1}]$
0	31.42	0.79	10.52	1.04
150	24.17	0.46	6.53	1.31
330	18.48	0.27	6.12	1.48
560	17.95	0.26	5.94	1.44
820	16.98	0.23	5.45	1.37
1150	20.27	0.33	6.28	1.63

C[pF]	$\Delta\omega [\mathrm{ms}^{-1}]$	$\pm [\mathrm{ms}^{-1}]$	$\beta [\mathrm{ms}^{-1}]$	$\pm [\mathrm{ms}^{-1}]$
0	22.44	0.40	6.40	1.81
150	17.70	0.25	5.68	1.71
330	15.71	0.20	5.76	2.51
560	23.71	0.45	6.76	1.92
820	23.27	0.43	6.64	1.88
1150	28.56	0.65	8.14	2.31

Slika 1: Poteki napetosti v prvem in drugem krogu pri $C_0=0 \mathrm{pF}$

Slika 2: Poteki napetosti v prvem in drugem krogu pri $C_0=150 \mathrm{pF}$

Slika 3: Poteki napetosti v prvem in drugem krogu pri $C_0=330 \mathrm{pF}$

Slika 4: Poteki napetosti v prvem in drugem krogu pri $C_0=560 \mathrm{pF}$

Slika 5: Poteki napetosti v prvem in drugem krogu pri $C_0=820\mathrm{pF}$

Slika 6: Poteki napetosti v prvem in drugem krogu pri $C_0=1150 \mathrm{pF}$

2. del

Slika 7: Resonančne krivulje brez sklopitve.

Izračunana dobrota je:

$$Q = 34 \pm 5$$

3. del

Slika 8: Resonančne krivulje brez sklopitve.

C[pF]	$\omega_1[\mu s^{-1}]$	$\pm [\mu \mathrm{s}^{-1}]$	$\omega_2[\mu \mathrm{s}^{-1}]$	$\pm [\mu \mathrm{s}^{-1}]$
150	41.3	0.2	43.0	0.2
330	42.9	0.2	43.0	0.2
560	42.9	0.2	43.0	0.2
820	42.9	0.2	43.0	0.2
1150	42.9	0.2	43.0	0.2