

Hiérarchie de Chomsky Grammaire de type 2 : Grammaire hors-contexte (context-free) Règles de la forme $A \to \beta$ où $A \in V_0$ et pas de restriction sur β_* Le Elles sont particulièrement étudiées Les langages algébriques correspondants sont reconnus par des L'analyse de ces langages est polynomiale. Exemple $P = \{S \longrightarrow aSb, S \longrightarrow ab\}$ $\implies L(G) = \{a^nb^n \mid n > 0\}$ Ефеппе Конскать

Hiérarchie de Chomsky Grammaire de type 4 Les parties droites de toutes les règles sont des terminaux.

Les règles sont de la forme X + \alpha \circ \varphi Une telle grammaire ne fait qu'énumèrer les phrases de son ...

Itération et quotient de langages

- Le langage itéré de L'est défini par : L' = Σ ≥ L' T² , Γ¹ = {Λ ∈ Σ, |∃η ∈ Γ³, η'Λ ∈ Γ¹}

- Exercice 7 : Démontrer les propriétés de de l'itération.
 - 1. Stabilité par concaténation : Si $L_1\subseteq L^*$ et $L_2\subseteq L^*$ alors $L_1L_2\subseteq L^*$. 3. Croissance : Si $L_1 \subseteq L$ alors $L_1^* \subseteq L^*$
 - 5. $L^*L = LL^*$
 - 6. $L^*L^* = (L^*)^* = L^*$
 - 7. $L^* = \epsilon + L^*L = \epsilon + L(L^*)$
 - $8. \ (L_1 + L_2)^* = (L_1^* + L_2^*)^* = (L_1^* \cdot L_2^*)^* = L_1^* (L_1 \cdot L_2^*)^* = (L_1^* L_2)^* \cdot L_1^*$

Généralités • L'écriture des équations algébriques sur Σ* est possible La concaténation (notation multiplicative) et Étapes de la section : e équation linéaire à une inconnue, e systèmes de n'équations linéaires à n'inconnues. Exemple de systèmes : $(1) \begin{cases} bX_0 + aX_1 &= X_0 \\ aX_2 + bX_3 &= X_1 \\ aX_1 + bX_3 + \epsilon &= X_2 \\ bX_1 + aX_3 &= X_3 \end{cases}$ (2) $\begin{cases} bX_0 + aX_1 + \epsilon = X_0 \\ bX_1 + aX_0 = X_1 \end{cases}$

Système d'équations linéaires Résolution du système d'équations Sous forme matricielle, la plus petite solution est A*B. (SE) admet une plus petite solution. • Si $\in \notin A_{i,j} \ \forall i,j \in [1,m]$ alors (SE) a une solution est Méthode de GAUSS • Mettre l'équation de X_i sous la forme $X_i = A_{i,i}X_i + C_i$ C'est la résolvante partielle de l'équation de X Remplacer dans (SE) l'équation de X_i par sa résolvante • Remplacer X_i par $\sum_{i=1}^{m} A_{i,i} + B_i$ de son équation dans

Exemples de monoides

Exercice 11: Montrer que les triplets suivants sont des

- e (N, +, 0) et (N, x, 1) où N est l'ensemble des entiers
 - e Soit L⊆Σ? est un langage sur un alphabet Σ.
 - (Ł*,...ε), en particulier (Σ*,...ε)

 - $(P(L^*), +, \emptyset)$, en particulier $(P(\Sigma^*), +, \emptyset)$ $(P(L^*), -, e)$, en particulier $(P(\Sigma^*), -, e)$

Merpheno de Mor Définition

Soient (D, x, e) et (D', x', e') deux monoîdes. Un morphisme $(D, X, e) \rightarrow (D', X', e')$ est une application $h : D \rightarrow D'$ qui vérifie

• $h(x \times y) = h(x) \times' h(y)$ quels que soient $x \in D$ et $y \in D$. Exercice 12

- Montrer que : "longueur", u → |u| définit un morphisme de
- Soit (D, \times, e) , montrer que toute application $f: \Sigma \to D$ s'étend de façon unique en un morphisme de monoïdes