Second-Language Speakers and Morphological Irregularity: A Computational Approach

Weldon Scott

AP Research

April 26, 2021

Compositionality and Irregularity

- Manner of inflection (Szabó, 2004)
- Frequency (Wu et al., 2019)

Compositional	Irregular
walk-ed	had
play-ed	was/were

Adaptability of Language

- Lupyan and Dale (2010)
- Fitting social/communicative niche
- Population size

Dinka

- 2 million native speakers (Ladd et al., 2009)
- Limited L2 acquisition

LATTA T SPT OL TH LATTA OF ANT S OVI AT LATTA OF APPT SPT UJT ZLIIA:

1- 95 PCh hoth 8 PPOUT HE YELLOUT HE BUT THE WLIV HULL HUN YELL HUN THU PLUT WILL JENT 15-L OF HUN TIR JYCT HILL I BULL HISH, BUTH HISH HE YALLE HISH OTVY I TEUT. MIT 17 HEAD B'THOUGHT OF BELL HAT DAI YET HE HE HEATHY AND HELD HUTH YER HUT HE MACH LUTT.

V- HOTH YOTHER WIT HE BEET UST HE ZUNTA BOWN HATH MID HOW ALSH HOLL LOWING SIGH MAN ALST MAL VILL IN HEAU I THISTAL HIT I AND HER THE I AND I ARE HELD AND HER ARE HE OF ILLY BY ANDA MUL ALL ANY ALBUST THE TABLE TO STATE HAT THAT THE AUT JUST HUTH HP1 2 MML HTH HIS YVT 193HYCH 2 HMU HI MATH HI PATH.

אהרושי ברביף צוער דעם דבה זכא ב דבואו ו אנבאבי ב עויזה 1 THERT I PUH. TAYT I THU HIT, TUTY AUT HE TETH XMILL HI BY THATTA HETH TO THATT TO ATE.

Second-Language Acquisition

- Birdsong and Flege (2001)
- Difficulty with irregular forms
- Retention of familiar features

How does the presence of second-language speakers affect the degree of irregularity in a language?

Initial Expectations

- Shaped by Lupyan and Dale
- Native language influence
- Easier learning

Natural Language Data

- Desired
- External variables (Brezina and Pallotti, 2016)
- Lack of uniformity (Clyne, 1992)

Simulated Language Data

- Quantity of data (Mannila et al., 2013)
- Versatility (Cangelosi & Parisi, 2002)
- Increasing prevalence (Mitkov, 2005)

Iterated Learning Model

- Simplistic but generalizable (Kirby, 2001)
- Iterative evolution of linguistic structure

Meaning Space

- 2-dimensional (Kirby, 2001)
- (Ao, Bo) to (A9, B9)
- Thoughts

Signal Space

- Sequences of characters in Latin alphabet
- "Atomic units of language" (Kirby, 2001)
- Speech

Definite Clause Grammar

- Linguistic analysis capabilities (Pereira & Warren, 1980)
- Set of rewrite rules
- Specific to individual speakers

Sample Grammar

$(X, Y) \rightarrow XY$			
$(Ao, Bo) \rightarrow v$			
$Ao \rightarrow s$			
A1 → de			
Bo → a			
$B1 \rightarrow q$			

	Ao	A1
Во	V	dea
B1	sq	deq

Generation Structure

- Speaker and listener
- Speaker error
- Uneven distribution for meanings (Piantadosi, 2014)

Meaning Distribution

(Ao, Bo)	11.6%
(A1, B0)	5.8%
(A5, Bo)	1.9%
(A5, B5)	0.32%
(A9, B9)	0.11%

Simulation Structure

- Homogeneous and heterogeneous stages
- 100 samples
- Signals for all meanings

Homogeneous Stage

- Initial evolution
- 10 languages
- 90% after 25 generations

Heterogeneous Stage

- Interlinguistic contact
- Most and least irregular languages
- 5% increments

Sample Language

	Ao	A1	A ₂	A 3	A4	A 5	A 6	A 7	A8	A 9
Во	t	ус	d	I	С	XC	рс	ZC	јср	qc
B1	tb	y	jb	lb	bb	xb	pb	zb	jbp	qb
B2	u	yu	ju	lu	bu	xu	pu	zu	jup	qu
B3	ty	уу	jy	ly	by	ху	ру	zy	јур	qy
B4	tm	ym	jm	lm	bm	xm	pm	zm	jmp	qm
B5	th	yh	jh	lh	bh	xh	ph	zh	jhp	qh
В6	td	yd	jd	ld	bd	xd	pd	zd	jdp	qd
В7	n	yn	jn	In	bn	xn	pn	zn	jnp	qn
B8	tz	yz	jz	lz	bz	XZ	pz	ZZ	jzp	qz
В9	tf	yf	jf	lf	bf	xf	pf	zf	jfp	qf

Prevalence of Irregularity

Homogeneous Stage Results

Metric	Value
Mean	6.44
Standard Deviation	1.45
Median	7
Minimum	2
Maximum	11

Homogeneous Stage Results

Heterogeneous Stage Selection

Metric	Language 4	Language 7
Mean (95% confidence)	7.42 ± 0.23	4.72 ± 0.33
Standard Deviation	1.16	1.70
Median	7	4

Acquisition of Low-Irregularity Language

Acquisition of High-Irregularity Language

Heterogeneous Stage Results

- Unexpected increases
- Length of irregular forms

Heterogeneous Stage Results

Implications

- Analyze variables in isolation
- Support Lupyan and Dale
- Language learners

Limitations

- Arbitrary parameters (Cangelosi & Parisi, 2002)
- Small meaning space (Kirby, 2001)
- Only simple combinations of languages

Future Directions

- Complex computational models (e.g., Kirby, 2002)
- Context-dependent grammar
- Cross-linguistic studies

References

- Birdsong, D., & Flege, J. E. (2001). Regular-irregular dissociations in L2 acquisition of English morphology. BUCLD 25: Proceedings of the 25th Annual Boston University Conference on Language Development (pp. 123–132). Boston, MA: Cascadilla Press.
- Brezina, V., & Pallotti, G. (2016). Morphological complexity in written L2 texts. Second Language Research, 35(1), 99–119. doi: 10.1177/0267658316643125
- Cangelosi A., & Parisi D. (2002) Computer simulation: A new scientific approach to the study of language evolution. In Cangelosi A., Parisi D. (Eds.), Simulating the evolution of language. Springer. doi: 10.1007/978-1-4471-0663-0_1
- Clyne, M. G. (Ed.). (1992). Pluricentric languages: Differing norms in different nations. Walter de Gruyter.
- Crystal, D. (2006). English worldwide. In D. Denison & R. M. Hogg (Eds.). A history of the English language. pp. 420–439. Cambridge University Press. doi: 10.1017/CBO9780511791154.002
- Kirby, S. (2001). Spontaneous evolution of linguistic structure-an iterated learning model of the emergence of regularity and irregularity. *IEEE Transactions on Evolutionary Computation*, 5(2), 102–110. doi: 10.1109/4235.918430

References

- Kirby, S. (2002). Learning, bottlenecks and the evolution of recursive syntax. In T. Briscoe (Ed.). Linguistic evolution through language acquisition. pp. 173–203. Cambridge University Press. doi: 10.1017/CBO9780511486524.006
- Ladd, D. R., Remijsen, B., & Manyang, C. A. (2009). On the distinction between regular and irregular inflectional morphology: Evidence from Dinka. *Language*, 85(3), 659–670.
- Lupyan, G., & Dale, R. (2010). Language structure is partly determined by social structure. *PloS One*, 5(1), e8559. doi:10.1371/journal.pone.0008559
- Mannila, H., Nevalainen, T., & Raumolin-Brunberg, H. (2013). Quantifying variation and estimating the effects of sample size on the frequencies of linguistic variables. In M. Krug & J. Schlüter (Eds.), Research methods in language variation and change (pp. 337–360). Cambridge University Press.
- Mitkov, R. (Ed.). (2005). The Oxford handbook of computational linguistics. Oxford University Press. doi: 10.1093/oxfordhb/9780199276349.001.0001
- Pereira, F. C. N., & Warren, D. H. D. (1980). Definite clause grammars for language analysis—A survey of the formalism and a comparison with augmented transition networks. Artificial Intelligence, 13(3), 231–278. doi: 10.1016/0004-3702(80)90003-X

References

- Piantadosi, S. T. (2014). Zipf's word frequency law in natural language: A critical review and future directions. *Psychonomic Bulletin & Review, 21*(5), 1112–1130. doi: 10.3758/s13423-014-0585-6
- Seidlhofer, B. (2001). Closing a conceptual gap: The case for a description of English as a lingua franca. International Journal of Applied Linguistics, 11(2), 133–158. doi: 10.1111/1473-4192.00011
- Szabó, Z. G. (2020). Compositionality. The Stanford encyclopedia of philosophy, E. N. Zalta (Ed.).
- Wu, S., Cotterell, R., and O'Donnell, T.J. (2019). Morphological irregularity correlates with frequency. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 5117–5126. Florence, Italy

Thank You