БЕСКОНЕЧНЫЕ НЕАНТАГОНИСТИЧЕСКИЕ ИГРЫ

(ЭКОНОМИЧЕСКИЕ МОДЕЛИ)

ДУОПОЛИЯ А. КУРНО (1838)

Конкуренция между 2-мя игроками (фирмамипроизводителями однородного продукта) по <u>объемам выпуска</u>:

$$q_1, q_2 \ge 0$$

Однородный продукт: затраты (себестоимость)

$$c_1 = c_2 = c$$

<u>Ценовая модель</u>: обратная функция спроса:

$$p(Q) = p_{\text{max}} - kQ$$

где $Q = q_1 + q_2$ – суммарный объем выпуска;

$$p_{\max} \ge 0$$
 — макс. цена;

k — трансформирующий коэффициент (без ограничения общности, k=1)

Стратегии игроков:

принять решение по объемам выпуска

$$q_1, q_2 \ge 0 - ?$$

Очевидно, что целесообразно

$$q_1, q_2 \in [0, p_{\text{max}}]$$

<u>Полезности игроков</u> (функции прибыли):

$$u_1(q_1, q_2) = q_1 p(Q) - q_1 c = q_1 (p_{\text{max}} - q_1 - q_2 - c)$$

$$u_2(q_1, q_2) = q_2 p(Q) - q_2 c = q_2 (p_{\text{max}} - q_1 - q_2 - c)$$

Наилучшие ответы на действия друг друга:

$$\max_{q_1} u_1(q_1, q_2) = \max_{q_1} q_1(p_{\text{max}} - q_1 - q_2 - c)$$

$$\max_{q_2} u_2(q_1, q_2) = \max_{q_2} q_2(p_{\text{max}} - q_1 - q_2 - c)$$

$$\max_{q_2} u_2(q_1, q_2) = \max_{q_2} q_2(p_{\text{max}} - q_1 - q_2 - c)$$

В силу выпуклости функций полезностей:

$$\frac{\partial u_1(q_1, q_2)}{\partial q_1} = 0 \quad \Rightarrow \quad q_1(q_2) = \frac{p_{\text{max}} - q_2 - c}{2}$$

$$\frac{\partial u_2(q_1, q_2)}{\partial q_2} = 0 \quad \Rightarrow \quad q_2(q_1) = \frac{p_{\text{max}} - q_1 - c}{2}$$

Решим систему:

$$\begin{cases} q_{1} = \frac{p_{\text{max}} - q_{2} - c}{2} \\ q_{2} = \frac{p_{\text{max}} - q_{1} - c}{2} \end{cases}$$

Получим:

$$\left|q_1^* = q_2^* = \frac{p_{\max} - c}{3}\right|$$
 - равновесие по Нэшу-Курно

В точке Нэша-Курно:

$$u_1(q_1^*, q_2^*) = u_2(q_1^*, q_2^*) = \frac{(p_{\text{max}} - c)^2}{9}$$

$$p = p_{\text{max}} - \frac{2}{3}(p_{\text{max}} - c)$$

Отклонение от точки равновесия одним из игроком уменьшает <u>его</u> прибыль:

$$u_1(q_1, q_2^*) \le u_1(q_1^*, q_2^*)$$

 $u_2(q_1^*, q_2) \le u_2(q_1^*, q_2^*)$

ДИНАМИЧЕСКИЙ АНАЛОГ ДУОПОЛИИ (по Штакельбергу)

Конкуренция между 2-мя игроками A и B (производителями однородного продукта) по объемам выпуска:

$$q_1, q_2 \in [0, p_{\text{max}}]$$

Однородный продукт: затраты (себестоимость)

$$c_1 = c_2 = c$$

<u>Ценовая модель</u>: обратная функция спроса:

$$p(Q) = p_{\text{max}} - Q$$

где $Q = q_1 + q_2$ — суммарный объем выпуска; $p_{\max} \ge 0$ — макс. цена.

Отличие от дуополии Курно

первым ходит игрок А: $q_1 \in [0, p_{\text{max}}]$

потом – игрок В: $q_2 = q_2(q_1) \in [0, p_{\text{max}}]$

Решение: метод обратной индукции.

Обратная индукция:

BR игрока В:

$$I = \max_{q_2} u_2(q_1, q_2) = \max_{q_2} q_2(p_{\text{max}} - q_1 - q_2 - c)$$

$$\frac{\partial u_2(q_1, q_2)}{\partial q_2} = 0 \implies q_2 * (q_1) = \frac{p_{\text{max}} - q_1 - c}{2}$$

Обратная индукция:

BR игрока **A**:

$$J = \max_{q_1} u_1(q_1, q_2^*) = \max_{q_1} q_1(p_{\text{max}} - q_1 - q_2^* + (q_1) - c) =$$

$$= \max_{q_1} q_1 \left(p_{\text{max}} - q_1 - \frac{p_{\text{max}} - q_1 - c}{2} - c \right) = \max_{q_1} q_1 \left(\frac{p_{\text{max}} - q_1 - c}{2} \right)$$

$$\frac{\partial u_1(q_1, q_2)}{\partial q_1} = 0 \quad \Rightarrow \quad q_1^* = \frac{p_{\text{max}} - c}{2}$$

Дуополия Курно:

$$q_1^* = \frac{p_{\text{max}} - c}{2},$$
 $q_2^* = \frac{p_{\text{max}} - c}{4}$

Дуополия Штакельберга:

$$q_1^* = q_2^* = \frac{p_{\text{max}} - c}{3}$$