Bài tập Phương pháp chia đôi

- Use the Bisection method to find p_3 for $f(x) = \sqrt{x} \cos x$ on [0, 1]. 1.
- Let $f(x) = 3(x+1)(x-\frac{1}{2})(x-1)$. Use the Bisection method on the following intervals to find p_3 .

- **a.** [-2, 1.5] **b.** [-1.25, 2.5]
- 3. Use the Bisection method to find solutions accurate to within 10^{-2} for $x^3 7x^2 + 14x 6 = 0$ on each interval.

a. [0, 1]

[1, 3.2]

- **c.** [3.2, 4]
- Use the Bisection method to find solutions accurate to within 10^{-2} for $x^4 2x^3 4x^2 + 4x + 4 = 0$ on each interval.

a. [−2, −1]

b. [0, 2]

c. [2, 3]

- **d.** [-1,0]
- Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems.

a. $x - 2^{-x} = 0$ for $0 \le x \le 1$

b. $e^x - x^2 + 3x - 2 = 0$ for $0 \le x \le 1$

c. $2x\cos(2x) - (x+1)^2 = 0$ for $-3 \le x \le -2$ and $-1 \le x \le 0$

d. $x \cos x - 2x^2 + 3x - 1 = 0$ for $0.2 \le x \le 0.3$ and $1.2 \le x \le 1.3$

Use the Bisection method to find solutions, accurate to within 10^{-5} for the following problems.

a. $3x - e^x = 0$ for $1 \le x \le 2$

b. $2x + 3\cos x - e^x = 0$ for $0 \le x \le 1$

c. $x^2 - 4x + 4 - \ln x = 0$ for $1 \le x \le 2$ and $2 \le x \le 4$

d. $x + 1 - 2\sin \pi x = 0$ for $0 \le x \le 0.5$ and $0.5 \le x \le 1$

- 7. **a.** Sketch the graphs of y = x and $y = 2 \sin x$.
 - Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $x = 2 \sin x$.
- **a.** Sketch the graphs of y = x and $y = \tan x$. 8.
 - Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $x = \tan x$.
- **a.** Sketch the graphs of $y = e^x 2$ and $y = \cos(e^x 2)$. 9.
 - Use the Bisection method to find an approximation to within 10^{-5} to a value in [0.5, 1.5] with $e^x - 2 = \cos(e^x - 2).$
- 10. Let $f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?

a. [-1.5, 2.5]

b. [-0.5, 2.4]

c. [-0.5, 3]

d. [-3, -0.5]

- Let $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?
 - [-3, 2.5]
- **b.** [-2.5, 3]
- **c.** [-1.75, 1.5]
- **d.** [-1.5, 1.75]
- Find an approximation to $\sqrt{3}$ correct to within 10^{-4} using the Bisection Algorithm. [Hint: Consider 12. $f(x) = x^2 - 3$.
- Find an approximation to $\sqrt[3]{25}$ correct to within 10^{-4} using the Bisection Algorithm. 13.
- Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation 14. with accuracy 10^{-3} to the solution of $x^3 + x - 4 = 0$ lying in the interval [1, 4]. Find an approximation to the root with this degree of accuracy.
- 15. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $x^3 - x - 1 = 0$ lying in the interval [1, 2]. Find an approximation to the root with this degree of accuracy.
- Let $f(x) = (x-1)^{10}$, p = 1, and $p_n = 1 + 1/n$. Show that $|f(p_n)| < 10^{-3}$ whenever n > 1 but that 16. $|p - p_n| < 10^{-3}$ requires that n > 1000.
- Let $\{p_n\}$ be the sequence defined by $p_n = \sum_{k=1}^n \frac{1}{k}$. Show that $\{p_n\}$ diverges even though $\lim_{n\to\infty} (p_n 1)^n = \sum_{k=1}^n \frac{1}{k}$. 17. $p_{n-1}) = 0.$
- 18. The function defined by $f(x) = \sin \pi x$ has zeros at every integer. Show that when -1 < a < 0 and 2 < b < 3, the Bisection method converges to
 - **a.** 0, if a + b < 2
- **b.** 2, if a+b>2 **c.** 1, if a+b=2
- 19. A trough of length L has a cross section in the shape of a semicircle with radius r. (See the accompanying figure.) When filled with water to within a distance h of the top, the volume V of water is

$$V = L \left[0.5\pi r^2 - r^2 \arcsin(h/r) - h(r^2 - h^2)^{1/2} \right].$$

Suppose L = 10 ft, r = 1 ft, and V = 12.4 ft³. Find the depth of water in the trough to within 0.01 ft.

20. A particle starts at rest on a smooth inclined plane whose angle θ is changing at a constant rate

$$\frac{d\theta}{dt} = \omega < 0.$$

At the end of t seconds, the position of the object is given by

$$x(t) = -\frac{g}{2\omega^2} \left(\frac{e^{wt} - e^{-wt}}{2} - \sin \omega t \right).$$

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 10^{-5} , the rate ω at which θ changes. Assume that g = 32.17 ft/s².

