

Random-Variable Generators

Rationale

- Simulators need generators of random variable with specific distributions
- The actual procedure is:
 - 1. We generate a sequence X of integer random numbers
 - 2. Using X, we generate a sequence U of instances of a random variable uniform in [0,1]
 - 3. Using U, we generate instances of the chosen random variable

- We want to generate instances of a random variable X with cumulative distribution F(x)
- The inverse-transform technique is based on the fact that U=F(X) is a r.v. uniformly distributed in [0,1]
- Therefore, we can generate an instance of u uniform and then compute

$$X = F^{-1}(U)$$

Proof that U = F(X) is uniform in [0,1]:

Let Y=g(X) be function of X monotone increasing (and therefore invertible), X=g⁻¹(Y)

$$F_{y}(y) = P(Y \le y) = P(g^{-1}(Y) \le g^{-1}(y))$$

= $P(X \le g^{-1}(y)) = F_{X}(g^{-1}(y))$

Select g(·) such that g(X)=F_x(X), or also Y=F_x(X), and 0≤y≤1,

$$F_{y}(y) = F_{x}(g^{-1}(y)) = F_{x}(F_{x}^{-1}(y)) = y$$

Y is uniform in [0,1]!

In alternative, from F_y(y)=y, for 0<y<1</p>

$$f_y(y) = dF_y / dy = 1$$

hence Y is uniform in [0,1]

Generating Y uniform in [0,1] and computing the inverse, F⁻¹(Y), we obtain X

- If $\Delta y_1 = \Delta y_2$, the probability of generating an instance of X in Δx_1 or in Δx_2 is the same
- ■The density of samples in Δx_1 is larger than those in Δx_2 , because Δx_1 is narrower

Intervals on the x axis are narrower if the derivative of F(x) is higher, i.e., f(x) is larger

Exponential

- We want to generate instances of a random variable with exponential distribution and rate a, x≥0,
 - $f(x) = a e^{-ax}$, $F(x) = 1 e^{-ax}$

Exponential

The inverse of F(x) is

$$y = 1 - e^{-ax}$$

$$e^{-ax} = 1 - y$$

$$-ax = \ln(1 - y)$$

$$x = -\frac{1}{a}\ln(1 - y)$$

Exponential

- 1. Generate u = U(0,1), uniform in (0,1)
- 2. Calculate $x = -1/a \ln(1-u)$
- 3. Return *x*

Since both u and 1-u are uniformly distributed in (0,1), x can also be calculated as $x = -1/a \ln(u)$

Uniform

- We want to generate instances of a uniform random variable with support [a,b]
 - f(x) = 1/(b-a), F(x) = (x-a)/(b-a), $a \le x \le b$

Uniform

The inverse of F(x) is

$$y = \frac{(x-a)}{(b-a)}$$
support of the r.v. X
$$(b-a)y = x-a$$

$$x = a + (b-a)y$$

Notice that the

function goes from

-inf to +inf but since

y is in [0,1], x falls in

- 1. Generate u = U(0,1), uniform in (0,1)
- 2. Calculate x = a + (b-a) u
- 3. Return *x*

Pareto

- Pareto distribution (k=1)
 - $f(x) = ax^{-(a+1)}$, $F(x) = 1-x^{-a}$ $x \ge 1$
- Inverse:

$$y = 1 - x^{-a}$$

$$x^{-a} = 1 - y$$

$$x = \frac{1}{(1 - y)^{1/a}}$$

Pareto

- 1. Generate u = U(0,1), uniform in (0,1)
- 2. Calculate $x = 1/u^{1/a}$
- 3. Return *x*

Weibull

Weibull distribution

•
$$F(x) = 1 - e^{-(x/a)^b}$$

Inverse:

$$y = 1 - e^{-(x/a)^b}$$

$$e^{-(x/a)^b} = 1 - y$$

$$-\left(\frac{x}{a}\right)^b = \ln(1 - y)$$

$$x = a[-\ln(1 - y)]^{1/b}$$

Weibull

- 1. Generate u=U(0,1), uniform in (0,1)
- 2. Calculate $x = a(-ln(u))^{1/b}$
- 3. Return x

Bernoulli

Bernoulli distribution

- $P(X=x_1)=p$, $P(X=x_2)=1-p$ e 0
- It represents events with two possible outcomes (success/failure, true/false)

Generation

- Generate u=U(0,1), uniform in (0,1)
- 2. If $u \le p$ return $x = x_1$
- 3. otherwise return $x=x_2$

Geometric

- Geometric distribution
 - The probability of X is $P(X=n) = p (1-p)^n$, with n=0,1,2,... and 0
 - The CDF is: $P(X \le n) = 1 (1-p)^{n+1}$
- Inverse:

$$y = 1 - (1 - p)^{x+1}$$
Extending the domain of the function to \mathbb{R}

$$(x+1)\ln(1-p) = \ln(1-y)$$

$$x = \frac{\ln(1-y)}{\ln(1-p)} - 1$$

Geometric

$$x = \frac{\ln(1-y)}{\ln(1-p)} - 1 \implies x = \left| \frac{\ln(u)}{\ln(1-p)} - 1 \right|$$

Geometric

- Generate u=U(0,1), uniform in (0,1)
- 2. Calculate $x = \text{ceil}(\ln(u)/\ln(1-p) 1)$
- 3. Return *x*

For the geometric with probability $f(x)=p(1-p)^{x-k}$, with x=k,k+1,k+2,...

$$x = k + \left\lceil \frac{\ln(u)}{\ln(1-p)} - 1 \right\rceil$$

Discrete uniform distribution

We want to generate an instance x of X, with x in {1,2,...,k} and p(X=x)=1/k

Discrete uniform distribution

• We have F(x)=x/k with x=1,2,...,k

Discrete uniform distribution

- The inverse is x = yk
- **X** can be calculated as x = [ku]
- Indeed, after generating u uniform in (0,1), we return x if

$$\frac{x-1}{k} < u \le \frac{x}{k}$$

that is

$$x-1 < ku \le x$$

$$ku \leq x < ku + 1$$

Empirical discrete distributions

- We want to generate instances of a random variable whose distribution is computed empirically through
 - Measurements
 - Approximations (e.g., when the inverse cannot be expressed in closed form)
- X holds the values $x_1, x_2, ..., x_k$ with probability $p_1, p_2, ..., p_k$
- We derive the cumulative
- We compute the inverse

Empirical discrete distributions

The cumulative distribution is empirically derived by the measured or approximated values

x values	x_1	x ₂	X ₃	•••	\mathbf{x}_{k}
Probability	p_1	p_2	p_3	•••	p_k
CDF, F(x)	0	p ₁	p ₁ +p ₂		1
	0≤x <x<sub>1</x<sub>	x ₁ ≤x <x<sub>2</x<sub>	x ₂ ≤x <x<sub>3</x<sub>		x _k ≤x

Empirical discrete distributions

- To generate instances of X, we can use the following procedure:
- 1. Generate u=U(0,1), uniform in (0,1)
- Return x, according to which condition is satisfied by u in the following table

Returned value of x	X ₁	X ₂	•••	X_k
Condition	0 <u≤f(x<sub>1)</u≤f(x<sub>	$F(x_1) < u \le F(x_2)$	•••	$F(x_{k-1}) < u \le F(x_k)$
	0 <u≤p<sub>1</u≤p<sub>	p ₁ <u≤p<sub>1+p₂</u≤p<sub>		p ₁ ++p _{k-1} <u≤1< td=""></u≤1<>

- To apply it, we must be capable to derive the inverse of F(x)
- We just need to generate a single random number U(0,1)
- The computational cost depends on the computational complexity of the inverse function

Convolution method

 It is used when a random variable can be expressed as sum of other r.v. that can be easily generated

$$X = Y_1 + Y_2 + ... Y_n$$

- We generate an instance for each y_i
- Adding all the y_i we obtain an instance of x

Convolution method

- Examples in which we can apply the convolution method:
 - Erlang-K: it is the sum of K random variables with exponential distribution
 - Binomial with parameters n and p: it is the sum of n
 Bernoulli distributed variables with success
 probability p
 - Chi-square with n degrees of freedom: it is the sum of the squares of n normal r.v. N(0,1)

Erlang-K distribution

- The Erlang-K with mean 1/m is the sum of K r.v. with exponential distribution with mean 1/(Km), $X = \sum_{i=1}^{K} X_i$
- An instance x of X is obtained by summing instances x_i of X_i

$$x = \sum_{i=1}^{K} \left(-\frac{1}{Km} \ln(u_i) \right) = -\frac{1}{Km} \ln \left(\prod_{i=1}^{K} u_i \right)$$

If K is large, it might be inefficient

Acceptance/Rejection Technique

- The acceptance/rejection technique can be applied to random variables with continuous pdf f(x) defined over finite support [a,b]
- Being c the maximum value for f(x), we apply the following procedure:
- 1. Generate $x_i = U(a,b)$, uniform in [a,b]
- 2. Generate $y_i = U(0,c)$, uniform in [0,c]
- If y_i ≤f(x_i) return x_i, otherwise go back to step 1

Generating x_i = U(a,b) and y_i = U(0,c) means generating a random point P in the rectangle delimited by (a,b) on the x-axis and (0,c) on the y-axis

The acceptance probability in an interval (x_1, x_1+dx) of the x-axis is proportional to $f(x_1)$

The efficiency of the technique depends on the area of the rectangle delimitating f(x), i.e., on how much the rectangle is a good approximation of f(x)

The acceptance probability P for a random generated point is equal to the ratio between the area under f(x) and the total area:

$$P = 1/[c(b-a)]$$

The average number of points generated to obtain an instance of X is

$$N = \sum_{i=1}^{\infty} i(1-P)^{i-1}P = \frac{1}{P}$$

 The technique can be applied to variables with infinite support only by approximation, truncating its support

Acceptance/Rejection Technique

- In general, if there exists a pdf g(x) such that $kg(x) \ge f(x)$, we can obtain instances of X (with pdf f(x)) with the procedure:
- 1. Generate x_i from distribution g(x)
- 2. Generate $y_i = U(0, kg(x_i))$, uniform in $[0, kg(x_i)]$
- 3. If $y_i \le f(x_i)$ return x_i , otherwise go back to step 1
- In this general form, acceptance probability P is now P=1/k

Composition method

This method is applied to random variables whose
 CDF can be expressed as weighted sum of other CDFs

$$F(x) = \sum_{i=1}^{n} p_i F_i(x)$$
, with $p_i > 0$, $\sum_{i=1}^{n} p_i = 1$

- Generate an instance of the r.v. I, such that $P(I=i)=p_i$
- Generate an instance of the r.v. with CDF $F_i(x)$
- The method can be also applied to the pdf f(x)

Laplace distribution

We want to generate X with pdf

$$f(x) = \frac{1}{2a}e^{-|x|/a}$$
f(x)
1/2a

Laplace distribution

- The Laplace distribution is the composition of two exponential r.v., with probability ½ it is positive and with the same probability it is negative
- 1. Generate $u_1 = U(0,1)$, and $u_2 = U(0,1)$
- 2. If $u_1 < 1/2$ return $x = a \ln(u_2)$ otherwise return $x = -a \ln(u_2)$

 Notice: this distribution can be generated more efficiently with the inverse-transform technique

Other methods

- There are a few other methods applied to some special distributions
- These ad hoc methods are usually based on mathematical proprieties that are satisfied by some random variables

 We want to generate X with normal (Gaussian) distribution, mean 0 and variance 1, N(0,1),

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

We cannot apply the inverse-transform technique because the inverse cannot be written in closed form

- We use a few properties of the normal distribution
- Let's consider 2 normal independent r.v. considered as Cartesian coordinates of a point in a plane

- Expressing the point in polar coordinates, we have
 - $Z_1 = B \cos \theta$
 - $Z_2 = B \sin \theta$
 - $B^2 = Z_1^2 + Z_2^2$
- We generate separately B and θ , then we calculate Z_1 and Z_2

- The variable B^2 is distributed according to a chi-square with 2 degrees of freedom, i.e. it is an exponential with mean 2
- ullet B² is generated with the inverse- transform
 - 1. Generate u=U(0,1)
 - 2. Calculate B = sqrt(-2ln(u))
 - 3. Return B

- The angle θ is distributed uniformly in $(0,2\pi)$ and it is independent from B
- ullet eta is also generated with the inverse-transform
 - 1. Generate u=U(0,1)
 - 2. Calculate θ = $2\pi u$
 - 3. Return θ

The procedure is hence the following one:

- 1. Generate u=U(0,1)
- 2. Generate v=U(0,1)
- Calculate B=sqrt(-2ln(u))
- 4. Calculate $\theta = 2\pi v$
- 5. Calculate $Z_1 = B \cos(\theta)$
- 6. Calculate $Z_2 = B \sin(\theta)$

- The procedure generates pairs of instances of a normal r.v. at the cost of generating two instances of uniform r.v. and some algebraic operations
- Given an instance Z of a normal r.v. N(0,1), instances of a r.v. X normal with mean μ and variance σ^2 are obtained from

$$X = \mu + \sigma Z$$

- The previously proposed method might not be efficient (logarithms and trigonometric functions are complex)
- If an approximation is sufficient, we can use the Central Limit Theorem to generate a normal r.v.

$$N(\mu,\sigma) \approx \mu + \sigma \frac{(\sum_{i=1}^{n} u_i) - n/2}{(n/12)^{1/2}}$$

Generally, n=12 is used

We want to generate instances of a r.v. X with Poisson distribution and mean a,

$$p(n) = P(X = n) = \frac{e^{-a}a^n}{n!}, \quad n = 0,1,2,\dots$$

X represents the number of arrivals of a Poisson process in the time unit, when a is the average number of arrivals in the time unit

Poisson distribution

X=n if and only if the following relation holds

$$A_1 + A_2 + \cdots + A_n \le 1 < A_1 + A_2 + \cdots + A_n + A_{n+1}$$

where A_i is the *i*-th interarrival time

- Interarrival times A_i are distributed according to an exponential distribution with mean 1/a
- Hence, we can generate an instance of X
 generating interarrival times and calculating
 how many arrivals we have in the time unit

$$A_{1} + \dots + A_{n} \leq 1 < A_{1} + \dots + A_{n} + A_{n+1}$$

$$\sum_{i=1}^{n} -\frac{1}{a} \ln(u_{i}) \leq 1 < \sum_{i=1}^{n+1} -\frac{1}{a} \ln(u_{i})$$

$$\sum_{i=1}^{n} \ln(u_{i}) \geq -a > \sum_{i=1}^{n+1} \ln(u_{i})$$

$$\ln\left(\prod_{i=1}^{n} u_{i}\right) \geq -a > \ln\left(\prod_{i=1}^{n+1} u_{i}\right)$$

$$\prod_{i=1}^{n} u_{i} \geq e^{-a} > \prod_{i=1}^{n+1} u_{i}$$

We have the following procedure:

- 1. Initialization: n=0, q=1
- 2. Generate $u_{n+1}=U(0,1)$
- 3. $q=qu_{n+1}$
- 4. If q < e^{-a} return n,

otherwise

n=n+1 and go back to step 2

The average number of instances of a uniform
 r.v. needed to generate one instance of X is

$$N = \sum_{n=0}^{\infty} (n+1)p(n) = \sum_{n=0}^{\infty} (n+1)\frac{e^{-a}a^{n}}{n!} =$$

$$= \sum_{n=0}^{\infty} n\frac{e^{-a}a^{n}}{n!} + \sum_{n=0}^{\infty} \frac{e^{-a}a^{n}}{n!} = \sum_{n=1}^{\infty} \frac{e^{-a}a^{n}}{(n-1)!} + 1 =$$

$$= a\sum_{n=0}^{\infty} \frac{e^{-a}a^{n}}{n!} + 1 = a+1$$

 We want to generate instances of a r.v. X with binomial (p,n) distribution

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x = 0,1,2,\dots,n$$

X represents the number of successes among
 n independent Bernoulli experiments with
 success probability p

Generation method 1 (convolution)

- 1. Generate n instances u_i di U(0,1)
- 2. Count the number x of variables u_i that are smaller than p
- 3. Return *x*

Generation method 2 (inverse-transform)

- 1. Calculate F(x) and store its values in vector A
- 2. Generate u=U(0,1)
- 3. Lookup x such that $A[x] \le u < A[x+1]$
- 4. Return *x*

Generation method 3

It is based on the observation that a geometric with parameter (1-p) assuming the value i+1 corresponds to i failed Bernoulli experiments

 $g_1+g_2< n \text{ and } g_1+g_2+g_3> n -> \text{ return } 2$

Generation method 3

- 1. Initialization: m=1, q=0
- 2. Generate $u_m = U(0,1)$
- 3. Generate the geometric $g_m = ceil(ln(u_m)/ln(1-p))$
- 4. Calculate q=q+g_m
- 5. If q > n
 return m-1,
 otherwise
 m=m+1 and go back to step 2

Wrap-up

- Good generation of instances of random variables are fundamental for simulation
 - Must be efficient
 - Accurate
- Some (a few) general methods
 - Inverse-transform
 - Acceptance-rejection
- and several specific methods