

2003 2022

Year-on-Year Change Line Chart

Observations:

- There is a positive relationship between the average house price and the home price index.
- The strong correlation in yearly changes underscores the reliability of using year-on-year shifts in average house prices as a robust indicator for understanding and predicting corresponding movements in the home price index.

- There is a positive relationship between GDP and the house price index.
- •when GDP experiences a slowdown, it tends to have a negative effect on the home price index. Reduced economic activity can lead to lower demand for housing, impacting prices and overall market dynamics

Yearly Line Chart

2003 2022

Year-on-Year Change Line Chart

Observations:

- · Homeownership rate and home price index show a negative relationship.
- •On a year-to-year basis, the correlation between homeownership rate and home price index isn't strong.
- significant shifts in homeownership rates can notably influence the home price index, often resulting in a negative impact.

- Population and home prices demonstrate a positive relationship.
- While population growth is associated with higher home prices, it's noted that changes in population alone don't significantly impact the home price index.
- Over time, population growth may slow down, yet home prices continue to rise, suggesting other factors contribute more significantly to the upward trend in home prices.

Yearly Line Chart

2003 2022

Year-on-Year Change Line Chart

Observations:

- The Zillow index and home price index are essentially the same.
- They highly correlate, making the Zillow index a reliable predictor of the home price index.

mortage_rate YoY% and Home_price_index YoY% by Year and Month • mortage_rate YoY% • Home_price_index YoY% 150% 150% 0% 0% 20% 20% Year

- Mortgage rates and the home price index exhibit a clear negative correlation.
- in 2022, as mortgage rates increased, the home price index decreased, and inversely, in 2019 to 2020, a decrease in mortgage rates coincided with an increase in the home price index.

Yearly Line Chart

2003 2022

Year-on-Year Change Line Chart

Observations:

- The relationship between inflation and the home price index is not strongly correlated, indicating a limited direct influence.
- High inflation takes time to show its effect on home prices and impacting home prices over time.
- A delay exists between sustained inflation and its effect on home prices

- Inverse relationship between the unemployment rate and the home price index. As unemployment increases, the home price index tends to decrease, and vice versa.
- The home price index is notably sensitive to minor fluctuations in the unemployment rate

Data Frame Dimensions And Data Type Information

```
In [51]: print('Dimentions',usa df.shape)
         usa df.info()
         Dimentions (246, 14)
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 246 entries, 0 to 245
         Data columns (total 14 columns):
              Column
                                    Non-Null Count Dtype
                                    -----
              date
                                                    datetime64[ns]
                                    246 non-null
              Avg House price
                                    246 non-null
                                                   float64
              GDP
                                    246 non-null
                                                   float64
              Home price index
                                    246 non-null
                                                    float64
              Home ownership rate
                                                   float64
                                    246 non-null
              Unemployment rate
                                    246 non-null
                                                    float64
              inventory index
                                                   float64
                                    246 non-null
              zillow index
                                    246 non-null
                                                   float64
              inflation
                                    246 non-null
                                                    float64
              mortage rate
                                                   float64
                                    246 non-null
              Consumer Price index 246 non-null
                                                    float64
              Population
                                    246 non-null
                                                    float64
          12 year
                                    246 non-null
                                                    int64
                                    246 non-null
          13 month
                                                    int64
         dtypes: datetime64[ns](1), float64(11), int64(2)
         memory usage: 27.0 KB
```


- •features like Population, GDP, and zillow_index with strong positive correlations to Home_price_index.
- Unemployment_rate, Home_ownership_rate, and mortgage_rate for their negative correlations with Home_price_index.
- inflation and Consumer_Price_index for subtle positive correlations with Home_price_index.
- ·year and Population have the highest VIF values, indicating they might have strong multicollinearity with other variables in the model.
- •GDP and inventory_index also have high VIF values, suggesting they might be correlated with other predictors.
- · Avg_House_price, Home_ownership_rate, Unemployment_rate, and mortage_rate have moderate VIF values.
- inflation and Consumer_Price_index have the lowest VIF values, indicating they have the least multicollinearity with other variables.

Code for Model building

```
results = []
# Loop through each model
for model_name, model in regression_models.items():
    # Cross-validation scores
   cv_scores = cross_val_score(model, X_train, y_train, cv=5)
    # Fit the model
    model.fit(X train, y train)
    # Make predictions for train data
   y pred train = model.predict(X train)
    # Evaluate the model
    mae_train = mean_absolute_error(y_train,y_pred_train)
   mse train = mean squared error(y train, y pred train)
   r2 train = r2 score(y train, y pred train)
   # Make predictions for test data
   y_pred_test = model.predict(X_test)
    # Evaluate the model
   mae test = mean_absolute_error(y_test,y_pred_test)
   mse_test = mean_squared_error(y_test, y_pred_test)
    r2 test = r2 score(y test, y pred test)
    results.append({
        "Model": model name,
        "MSE Train": mse_train,
        "R2 Score Train": r2 train,
        "MAE Train": mae train,
        "MSE Test": mse test,
        "R2 Score Test": r2_test,
        "MAE Test": mae_test,
        "CV Score": np.mean(cv scores)
    })
# Display the results
results df = pd.DataFrame(results)
print(results df)
```

Model Used

```
In [33]: from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.neighbors import KNeighborsRegressor
```

Metrics Score Comparison

36]: re	sults_df							
36]:	Model	MSE Train	R2 Score Train	MAE Train	MSE Test	R2 Score Test	MAE Test	CV_Score
0	Linear Regression	5.128700	0.997523	1.716588	5.909237	0.996322	1.879435	0.997005
1	Ridge Regression	6.203073	0.997004	1.860886	7.714368	0.995198	2.071351	0.996324
2	Lasso Regression	10.070173	0.995136	2.443181	7.947971	0.995053	2.272569	0.994648
3	Elastic Net	90.249051	0.956412	7.794727	92.262246	0.942571	7.800826	0.954221
4	Decision Tree Regressor	0.000000	1.000000	0.000000	4.558036	0.997163	1.612000	0.995332
5	Random Forest Regressor	0.414679	0.999800	0.476993	1.930133	0.998799	1.076937	0.997476
6	KNN Model	18.215202	0.991202	3.380989	19.647883	0.987770	3.438648	0.977243

Hyperparameter tuning

```
from sklearn.model selection import GridSearchCV
# Defining the parameter grid
param_grid = {
    'n_estimators': [100, 200, 250, 300],
    'max_depth': [5, 10, 20, 30],
    'min samples split': [2, 5, 10],
    'min samples leaf': [1, 2, 4],
    'bootstrap': [True, False]}
# Instantiate the grid search model
grid search = GridSearchCV(estimator=random forest regressor model, param grid=param grid,
                           cv=3, n jobs=-1, verbose=2)
# Fit the grid search to the data
grid_search.fit(X_train, y_train)
# Get the best parameters
best_params = grid_search.best_params_
print(f"Best parameters: {best_params}")
Fitting 3 folds for each of 288 candidates, totalling 864 fits
Best parameters: {'bootstrap': True, 'max_depth': 10, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 300}
```

Final Model Link

Final Model Score

Source:

Average house Price: https://fred.stlouisfed.org/series/USSTHPI

Consumer Price index: https://fred.stlouisfed.org/series/STICKCPIM157SFRBATL

GDP: https://fred.stlouisfed.org/series/GDP

Home Ownership Rate: https://fred.stlouisfed.org/series/RSAHORUSQ156S

Home Price Index:https://fred.stlouisfed.org/series/CSUSHPISA Inflation Breakeven 5 yrs: https://fred.stlouisfed.org/series/T5YIE Inventory index: https://fred.stlouisfed.org/series/ETOTALUSQ176N Mortgage Rate: https://fred.stlouisfed.org/series/MORTGAGE30US

Population: https://fred.stlouisfed.org/series/POPTHM

Unemployment Rate: https://fred.stlouisfed.org/series/UNRATE

Zillow home price index: https://fred.stlouisfed.org/series/VAUCSFRCONDOSMSAMID