

planetmath.org

Math for the people, by the people.

norm-Euclidean number field

Canonical name NormEuclideanNumberField

Date of creation 2013-03-22 16:52:26 Last modified on 2013-03-22 16:52:26

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 17

Author pahio (2872)

Entry type Topic

Classification msc 13F07 Classification msc 11R21 Classification msc 11R04

Related topic Euclidean Valuation

 $Related\ topic \qquad Quadratic Imaginary Euclidean Number Fields$

Related topic ListOfAllImaginaryQuadraticPIDs

Related topic EuclideanField

Related topic AlgebraicNumberTheory

Related topic MixedFraction
Defines norm-Euclidean

Definition. An algebraic number field K is a norm-Euclidean number field, if for every pair (α, β) of the http://planetmath.org/AlgebraicIntegerintegers of K, where $\beta \neq 0$, there exist \varkappa and ϱ of the field such that

$$\alpha = \varkappa \beta + \varrho, \quad |N(\varrho)| < |N(\beta)|.$$

Here N means the norm function in K.

Theorem 1. A field K is norm-Euclidean if and only if each number γ of K is in the form

$$\gamma = \varkappa + \delta \tag{1}$$

where \varkappa is an of the field and $|N(\delta)| < 1$.

Proof. First assume the condition (1). Let α and β be integers of K, $\beta \neq 0$. Then there are the numbers \varkappa , $\delta \in K$ such that \varkappa is integer and

$$\frac{\alpha}{\beta} = \varkappa + \delta, \quad |N(\delta)| < 1.$$

Thus we have

$$\alpha = \varkappa \beta + \beta \delta = \varkappa \beta + \rho.$$

Here $\rho = \beta \delta$ is integer, since α and $\varkappa \beta$ are integers. We also have

$$|N(\rho)| = |N(\beta)| \cdot |N(\delta)| < |N(\beta)| \cdot 1 = |N(\beta)|.$$

Accordingly, K is a norm-Euclidean number field. Secondly assume that K is norm-Euclidean. Let γ be an arbitrary element of the field. We http://planetmath.org/MultiplesOfAnAlgebraicNumbercan determine a rational integer $m \neq 0$ such that $m\gamma$ is an algebraic integer of K. The assumption guarantees the integers \varkappa , ϱ of K such that

$$m\gamma = \varkappa m + \varrho, \quad \mathcal{N}(\varrho) < \mathcal{N}(m).$$

Thus

$$\gamma = \frac{m\gamma}{m} = \varkappa + \frac{\varrho}{m}, \quad \left| \mathbf{N} \left(\frac{\varrho}{m} \right) \right| = \frac{|\mathbf{N}(\varrho)|}{|\mathbf{N}(m)|} < 1,$$

Q.E.D.

Theorem 2. In a norm-Euclidean number field, any two non-zero have a greatest common divisor.

Proof. We recall that the greatest common divisor of two elements of a commutative ring means such a common divisor of the elements that it is divisible by each common divisor of the elements. Let now ϱ_0 and ϱ_1 be two algebraic integers of a norm-Euclidean number field K. According the definition there are the integers \varkappa_i and ϱ_i of K such that

$$\begin{cases} \varrho_0 = \varkappa_2 \varrho_1 + \varrho_2, & |\mathcal{N}(\varrho_2)| < |\mathcal{N}(\varrho_1)| \\ \varrho_1 = \varkappa_3 \varrho_2 + \varrho_3, & |\mathcal{N}(\varrho_3)| < |\mathcal{N}(\varrho_2)| \\ \varrho_2 = \varkappa_4 \varrho_3 + \varrho_4, & |\mathcal{N}(\varrho_4)| < |\mathcal{N}(\varrho_3)| \\ & \cdots \\ \varrho_{n-2} = \varkappa_n \varrho_{n-1} + \varrho_n, & |\mathcal{N}(\varrho_n)| < |\mathcal{N}(\varrho_{n-1})| \\ \varrho_{n-1} = \varkappa_{n+1} \varrho_n + 0, \end{cases}$$

The ends to the remainder 0, because the numbers $|N(\varrho_i)|$ form a descending sequence of non-negative rational integers — see the entry norm and trace of algebraic number. As in the Euclid's algorithm in \mathbb{Z} , one sees that the last divisor ϱ_n is one greatest common divisor of ϱ_0 and ϱ_1 . N.B. that ϱ_0 and ϱ_1 may have an infinite amount of their greatest common divisors, depending the amount of the units in K.

Remark. The ring of integers of any norm-Euclidean number field is a unique factorization domain and thus all ideals of the ring are principal ideals. But not all algebraic number fields with ring of integers a http://planetmath.org/UFDUFD are norm-Euclidean, e.g. $\mathbb{Q}(\sqrt{14})$.

Theorem 3. The only norm-Euclidean quadratic fields $\mathbb{Q}(\sqrt{d})$ are those with

$$d \in \{-11,\ -7,\ -3,\ -2,\ -1,\ 2,\ 3,\ 5,\ 6,\ 7,\ 11,\ 13,\ 17,\ 19,\ 21,\ 29,\ 33,\ 37,\ 41,\ 57,\ 73\}.$$