Esercizi prob 3

December 27, 2024

1 Esercizio 3.1

Per BC1, $\forall \varepsilon$

$$\mathbb{P}\left(|X_n - X| > \varepsilon, i.o.\right) = 0$$

Ovvero:

$$\forall \varepsilon, \ per \ q.o. \ \omega, \ \exists N : |X_n(\omega) - X(\omega)| \le \varepsilon$$

Che è quasi la tesi (basta prendere solo una quantità numerabile di ε che però tendano a 0). Ω_0 sarà l'intersezione (numerabile) di tutti gli insiemi per cui vale la formula scritta sopra.

2 Esercizio 3.2

$2.1 \quad (1)$

$$\mathbb{P}\left(\left\{X_n \neq 0\right\}\right) = \frac{1}{k(n)} \to 0$$

2.2(2)

Dato ω , per ogni valore distinto di k esiste un valore di n tale che $X_n(\omega)=1$, quindi $X_n(\omega)=1$ infinite volte.

Quindi

$$\nexists \omega : X_n(\omega) \to \omega$$

(tranne forse $\omega = 0$ o $\omega = 1$ ma non ho voglia di controllare).

- 3 Esercizio 3.3
- **3.1** $Y_n \to 0$
- 3.2 (Y_n) non converge q.c.
- 4 Esercizio 3.4

$$\mathbb{P}\left(|X_1| > x\right) = \left(\mathbb{P}\left(\bigcap_n \left\{|X_n| > x\right\}\right)\right)^{\frac{1}{n}} = \exp\left[\frac{1}{n}\ln\mathbb{P}\left(\bigcap_n \left\{|X_n| > x\right\}\right)\right]$$