IE0005

Cardiovascular Disease Analysis

Team 2: Chen Yi Bin Jonathan, Gu Shiyuan, Mendos

Content

Introduction

Choice of dataset Objective

02

Methodology

Exploratory analysis Machine Learning

New learning

Exploring new techniques

Outcome

Conclusion of analysis and areas for exploration

01 Introduction

Cleaning and structuring dataset

Background

- Group of disorders of the heart and blood vessels and include coronary heart disease, cerebrovascular disease, rheumatic heart disease and other conditions (WHO)
- Takes approximately 17,9 million lives annually around the globe
 - leading cause of death globally
- In singapore, nearly 1/3 of the deaths are due to heart disease or stroke alone

HEART DISEASE RISK FACTORS

Our main objective for this dataset analysis is to determine the <u>most indicative variable</u> in predicting the presence of cardiovascular diseases (CVDs).

Methodology

Step 1 Data Preparation

Data preprocessing

Cardiovascular Disease dataset

Consisting of **70,000** records of patients data **11** attributes of a person **NO** Duplicates, **NO** missing values

The presence of **cardiovascular disease** is one of the attributes.

Data preprocessing

The published dataset has

- 12 features
- 3 types of data (Quantitative, Categorical, Binary)

Column name	Data description	
age	Age (int)	
height	Height (int)	
weight	Weight (float)	
gender	Gender (categorical code)	
ap_hi	Systolic blood pressure (int)	
ap_lo	Diastolic blood pressure (int)	
cholesterol	Cholesterol (1:normal, 2: above normal, 3: well above normal)	
gluc	Glucose (1:normal, 2: above normal, 3: well above normal)	
smoke	Smoking (binary)	
alco	Alcohol intake (binary)	
active	Physical activity (binary)	
cardio	Presence or absence of cardiovascular disease (binary)	

Variables

Base on the dataset:

	Numerical	Categorical
1	Age	Gender
2	Weight	Cholesterol
3	Height	Glucose level
4	ap_hi	Smoke
5	ap_lo	Alcohol intake
6		Active

→ convert the"categorical" type to"category" data types

Observation on data quality

- 'Age' values are unrealistic
- 'Weight' and "Height" min/max values are unrealistic
- "ap_hi" and "ap_lo" cannot be negative, max value is unrealistic

	count	mean	std	min	25%	50%	75%	max
age	70000.0	19468.865814	2467.251667	10798.0	17664.0	19703.0	21327.0	23713.0
height	70000.0	164.359229	8.210126	55.0	159.0	165.0	170.0	250.0
weight	70000.0	74.205690	14.395757	10.0	65.0	72.0	82.	200.0
ap_hi	70000.0	128.817286	154.011419	-150.0	120.0	120.0	140.	16020.0
ap_lo	70000.0	96.630414	188.472530	-70.0	80.0	80.0	90.	11000.0
cardio	70000.0	0.499700	0.500003	0.0	0.0	0.0	1.0	1.0

Data cleaning

'Age' - Needs recalculation

```
# Convert the age into years
CVdata['age'] = CVdata['age'] // 365.25
```

• 'Weight' and "Height" - Needs filtering that fall below 2.5% or above 97.5%

For Blood Pressure Low (bp_lo) and Blood Pressure High (bp_hi)

Outliers identified through boxplot (1373 anomaly data points (1.96%) removed)

```
CardioData_backup1 = CardioData_backup.copy()

CardioData_backup1
= CardioData_backup1.drop(CardioData_backup.loc[(ap_hi < 50) | (ap_hi > 180) | (ap_lo < 34) | (ap_lo > 120)].index)

fig, axes = plt.subplots(nrows=2, figsize=(10,10))
sb.boxplot(data=CardioData_backup1, x='ap_hi', ax=axes[0], orient='h')
sb.boxplot(data=CardioData_backup1, x='ap_lo', ax=axes[1], orient='h')
```


Feature engineering

- Used the weight and height data to create a new column "BMI" to carry out further analysis
- BMI = weight(kg)/height^2(m)

```
CVdata_v1 = CVdata.copy()

CVdata_v1['BMI'] = CVdata['weight']/((CVdata['height']/100)**2)

BMI = pd.DataFrame(CVdata_v1[['BMI']])

BMI.describe()
```

	1
^	BMI
count	58685.000000
mean	27.117707
std	4.119901
min	17.358919
25%	23.951227
50%	26.291724
75%	29.687500
max	43.282548

Convert Blood Pressure Low (bp_lo) and Blood Pressure High (bp_hi) from a numerical variable to a categorical one for easier analysis

Category	Systolic (mm Hg)	Diastolic (mm Hg)	Management
Dangerously low	≤50	≤33	A critical condition that requires emergency medical attention with IV fluids
Very low	≤60	≤40	Lifestyle modifications with medications
Low	Less than 90	Less than 60	Lifestyle modifications and regular checkups
Normal	Less than 120	Less than 80	Active lifestyle
Elevated	120-129	80 or more	Doctors may recommend lifestyle changes at this stage
Hypertension stage I	130-139	80-89	Doctors may prescribe blood pressure medications and some lifestyle changes to reduce the risk of heart disease and stroke.
Hypertension stage II	140-159	90-99	Doctors may prescribe a combination of medications and lifestyle changes; they may treat complications that may have increased due to high blood pressure.
Hypertensive crisis	180 or higher	120 or higher	A critical condition that requires emergency medical attention

• **6 categories** from very low to High blood pressure (Hypertension) Stage 2

```
# Rank Systolic blood pressure

CVdata_v1.loc[ap_hi <= 60, 'ap_hi'] = 1

CVdata_v1.loc[(ap_hi > 60) & (ap_hi < 90), 'ap_hi'] = 2

CVdata_v1.loc[(ap_hi >= 90) & (ap_hi < 120), 'ap_hi'] = 3

CVdata_v1.loc[(ap_hi >= 120) & (ap_hi <= 129), 'ap_hi'] = 4

CVdata_v1.loc[(ap_hi >= 130) & (ap_hi <= 139), 'ap_hi'] = 5

CVdata_v1.loc[ap_hi >= 140, 'ap_hi'] = 6

# Rank Diastolic blood pressure

CVdata_v1.loc[ap_lo <= 40, 'ap_lo'] = 1

CVdata_v1.loc[(ap_lo > 40) & (ap_lo < 60), 'ap_lo'] = 2

CVdata_v1.loc[(ap_lo >= 60) & (ap_lo < 80), 'ap_lo'] = 3

CVdata_v1.loc[(ap_lo >= 80) & (ap_lo <= 89), 'ap_lo'] = 5

CVdata_v1.loc[ap_lo >= 90, 'ap_lo'] = 6
```

Sort them into new column "bp"

```
# Rank blood pressure and append it to the dataframe
bp = pd.DataFrame(CVdata_v1[['ap_hi', 'ap_lo']])
CVdata_v1['bp'] = bp.max(axis=1).astype('category')
```

Step 2 Exploratory **Analysis**

Categorical Analysis

Observations

- Compared categorical data to cardio to see which contributes to CVDs the most
- It can be clearly seen that patients with CVD have higher cholesterol and blood glucose level and are generally less active
- The relation between CVDs lifestyle choices (smoking, alcohol consumption), gender are not obvious
- High relation between CVDs and blood pressure

Correlation Between Numerical Features

 BMI, Weight, Height and age doesn't have good correlation with cardio at glance

Step 3 Machine Learning

Selected Attributes for simple Decision tree

Predictor
ВМІ
bp
cholesterol
gluc

active

- BMI represents the attributes height and weight
- **bp** represents ap_low and ap_high

Simple Decision Tree

Since correlation may not offer the same results as a decision tree.

We decided to use a simple decision tree to check if it offers better results.

Response Variable: cardio

Predictor Feature: BMI

Divided the BMI and cardio data set to train and test sets

75% to train, 25% to test

Boxplot Train set

Develop a decision tree with the test set

Train data

Classification Accuracy

: 0.6966578056483311

Test data

Classification Accuracy

: 0.698541439476554


```
Accuracy in Train Data = (TP+TN)/Total= (18973 + 11869)/44013= 0.700
```

- Accuracy in Test Data = (TP+TN)/Total= (6343 + 3906)/14672= 0.699
- Train fnr = FN/(TP+FN) = 10098/(10098 + 11869)= 0.460
- Test fnr = FN/(TP+FN) = 3322/(3322 + 3906)= 0.460

Response Variable : Cardio Predictor Feature : Blood Pressure

Goodness of Fit of Model Classification Accuracy Train Dataset : 0.55881286137959

Goodness of Fit of Model Classification Accuracy Test Dataset

: 0.5620199692780338

- 4000

3000

2000

1000

Simple Decision Tree

Repeated ML analysis for interested predictors:

Predictor	Train Accuracy	Test Accuracy
ВМІ	0.6966578056483311	0.6985414394765540
bp	0.5599650088544667	0.5585637480798771
cholesterol	0.755531374682626	0.7574244751664106
gluc	0.8528878363097143	0.8552867383512545
active	0.8044763063005398	0.8002432155657963

Multi-Variate Classification Tree

choosing the most accurate predictors Multi-Variate Classification is set up.

Response Variable: cardio
Predictor Feature:
active, gluc, cholesterol
active, gluc
gluc, cholesterol

Active, cholesterol

```
# Import essential models and functions from sklearn
from sklearn.tree import DecisionTreeClassifier
 from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion matrix
# Extract Response and Predictors
y = pd.DataFrame(CVD_clean['cardio'])
X = pd.DataFrame(CVD_clean[["active", "cholesterol"]])
# Split the Dataset into Train and Test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
# Decision Tree using Train Data
dectree = DecisionTreeClassifier(max_depth = 2) # create the decision tree object
dectree.fit(X_train, y_train)
                                                # train the decision tree model
# Predict Response corresponding to Predictors
 y train pred = dectree.predict(X train)
 y_test_pred = dectree.predict(X_test)
# Check the Goodness of Fit (on Train Data)
print("Goodness of Fit of Model \tTrain Dataset")
print("Classification Accuracy \t:", dectree.score(X_train, y_train))
# Check the Goodness of Fit (on Test Data)
print("Goodness of Fit of Model \tTest Dataset")
print("Classification Accuracy \t:", dectree.score(X_test, y_test))
# Plot the Confusion Matrix for Train and Test
f, axes = plt.subplots(1, 2, figsize=(12, 4))
sb.heatmap(confusion_matrix(y_train, y_train_pred);
           annot = True, fmt=".0f", annot_kws={"size": 18}, ax = axes[0])
sb.heatmap(confusion_matrix(y_test, y_test_pred),
           annot = True, fmt=".0f", annot_kws={"size": 18}, ax = axes[1])
Goodness of Fit of Model
                                Train Dataset
Classification Accuracy
                               : 0.5917770807996757
Goodness of Fit of Model
                               Test Dataset
Classification Accuracy
                               : 0.5875576036866359
<Axes: >
                                                      20000
                                                      18000
          20067
                                 3838
                                                      16000
                                                                            6640
                                                                                                                      5000
                                                      14000
                                                                                                                       4000
                                                      12000
                                                      10000
                                                                                                                       3000
                                 7669
                                                     8000
                                                                                                  2540
                                                                                                                       2000
                                                     6000
```

Multi-Variate Classification Tree

Predictor	Train Accuracy	Test Accuracy
Active, Gluc, Cholesterol	0.5914997119631313	0.588389656938044
Active, Gluc	0.5406772066824553	0.5428827444956478
Gluc, Cholesterol	0.5924384987945124	0.5867895545314901
Active, Cholesterol	0.5917770807996757	0.5875576036866359

Some single predictor has better accuracy

03 New learning

Cleaning and structuring dataset

Feature scaling

Normalizing dataset with different scales

Transform the data in such a manner that it has mean as 0 and standard deviation as 1

Prevent features with wider ranges from dominating the distance metric.

```
#we perform some Standardization
from sklearn.preprocessing import MinMaxScaler
CVD_scale=CVD_clean.copy()

columns_to_scale = ['age', 'weight', 'cholesterol','gender','BMI','height', 'bp']

scaler = MinMaxScaler()
CVD_scale[columns_to_scale] = scaler.fit_transform(CVD_clean[columns_to_scale])

CVD_scale.head()
```

	age	gender	height	weight	cholesterol	gluc	smoke	alco	active	cardio	BMI	bp
0	0.600000	1.0	0.600000	0.185185	0.0	1	0	0	1	0	0.193281	0.8
1	0.742857	0.0	0.200000	0.611111	1.0	1	0	0	1	1	0.616590	1.0
2	0.628571	0.0	0.500000	0.222222	1.0	1	0	0	0	1	0.243602	0.8
3	0.542857	1.0	0.633333	0.555558	0.0	1	0	0	1	1	0.413528	1.0
4	0.514288	0.0	0.200000	0.074074	0.0	1	0	0	0	0	0.227381	0.4

Logistic regression

Usually used for **Binary classification** problems.

Binary Classification refers to predicting the output variable that is discrete in **two classes**.

With or without CVD in this case.

Performed 3 models:

- Logistic regression with default parameters
- Forward feature subset
- Hyperparameter tuning

Basic Model

The accuracy score is: 0.7013361068885511 Sensitivity (TPR) = 0.6946859903381642

Confusion matrix

	precision	recall	f1-score	support
0	0.70	0.71	0.70	6289
1	0.70	0.69	0.70	6210
accuracy			0.70	12499
macro avg	0.70	0.70	0.70	12499
weighted avg	0.70	0.70	0.70	12499

```
# Logistic Regression
logreg = LogisticRegression()
logreg.fit(X train scaled, y train scaled)
v pred = logreg.predict(X test scaled)
# Evaluation: Confusion matrix#
logreg acc = accuracy score(y test scaled, y pred)
cm = confusion matrix(y test scaled, y pred) # Confusion matrix
tpr logreg = cm[1][1] / (cm[1][0] + cm[1][1])
print('The accuracy score is:', logreg acc) # accuracy score
print('Sensitivity (TPR) =', tpr logreg)
print('\n Confusion matrix \n \n')
print(classification report(y test scaled, y pred ))
# Plot the confusion matrix as a heatmap
plt.figure(figsize=(8, 6))
sb.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False,
           xticklabels=['Predicted 0', 'Predicted 1'],
           yticklabels=['Actual 0', 'Actual 1'])
plt.xlabel('Predicted Label')
plt.vlabel('True Label')
plt.title('Confusion Matrix')
plt.show()
```

Feature Subset Selection

Intends to select a subset of attributes or features that makes the **most** meaningful contribution to a machine learning activity

		score is: 0. TPR) = 0.632			
Confusio	n ma	trix			
		precision	recall	f1-score	support
	0	0.68	0.77	0.72	6289
	1	0.73	0.63	0.68	6210
accur	acy			0.70	12499
macro	avg	0.71	0.70	0.70	12499
weighted	avg	0.71	0.70	0.70	12499

```
# Sequential Forward Selection(sfs)
sfs = SequentialFeatureSelector(LogisticRegression(),
         direction='forward',
          scoring = 'accuracy',
         cv = 5,
          n iobs=-1)
sfs.fit(X train scaled, y train scaled)
print("Features selected by forward sequential selection: " f"{sfs.get feature names out()}")
C:\Users\gushi\anaconda3\lib\site-packages\sklearn\feature selection\ sequential.py:206: FutureWa
select' to None is deprecated in 1.0 and will become 'auto' in 1.3. To keep the same behaviour as
f the features) and avoid this warning, you should manually set `n features to select='auto'` and
instance.
 warnings.warn(
Features selected by forward sequential selection: ['gender' 'cholesterol' 'alco' 'active' 'bp']
#train the model after subset selection with selected features
X_train_subset = X_train_scaled[sfs.get_feature_names_out()]
X_test_subset = X_test_scaled[sfs.get_feature_names_out()]
logreg subset = LogisticRegression()
logreg subset.fit(X train subset, y train scaled)
y pred = logreg subset.predict(X test subset)
# Evaluation: Confusion matrix#
logreg acc subset = accuracy score(y test scaled, y pred)
cm subset = confusion matrix(v test scaled, v pred) # Confusion matrix
tpr logreg subset = cm subset[1][1] /(cm subset[1][0] + cm subset[1][1])
print('The accuracy score is:', logreg acc subset) # accuracy score
print('Sensitivity (TPR) =', tpr logreg subset)
print('\n Confusion matrix \n \n')
print(classification report(y test scaled, y pred ))
# Plot the confusion matrix as a heatmap
plt.figure(figsize=(8, 6))
sb.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False,
           xticklabels=['Predicted 0', 'Predicted 1'],
           vticklabels=['Actual 0', 'Actual 1'])
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title('Confusion Matrix')
plt.show()
```

Tuned Logistic regression

GridSearchCV can save effort in optimizing machine learning model. It is computationally expensive.

This approach find out the best hyperparameters for the dataset.

```
parameters = {
     'penalty' : ['11','12'], #l1 Lasso L2 ridge
     'C' : [0.001,0.01,0.1,1,10,100],
tun logreg = LogisticRegression()
clf tun1 = GridSearchCV(tun logreg,
                                                       # model.
                   param grid = parameters, # hyperparameters
                   scoring='accuracy',
                                             # metric for scoring
                                              # number of folds GridSearchCV does an internal 5-fold cross validation
                   cv=5.
                   verbose=3,
                   n jobs=-1)
clf tun1.fit(X train scaled,y train scaled)
print("Tuned Hyperparameters :", clf tun1.best params )
print("Accuracy :",clf tun1.best score )
Fitting 5 folds for each of 12 candidates, totalling 60 fits
Tuned Hyperparameters : {'C': 100, 'penalty': '12'}
Accuracy: 0.7098051353445006
```

Result

Model	accuracy score
Basic Model	0.7302617190347743
Feature Subset Selection	0.7269811183203324
Tuned Logistic regression	0.72577324719251

Logistic Regression model trained with default, forward subset selection and hyperparameter tuning gives us similar results, in comparison, the **basic model** is significantly better.

How ML solved our objective

Simple Decision Tree

Glucose level is the most indicative variable. Followed by Active and Cholesterol

Multi-Variate Classification Tree

Some Single predictor has better accuracy for this dataset

Logistic regression

By making use of all available variables in the better suited model, the accuracy was closer to the most indicative variable

Interesting findings

Categorical Analysis

The observation seen in categorical analysis was largely supported by the Decision Tree ML model

Modelling Multi-variable

Combining variables with high accuracy as predictor in model may not result it better accuracy

Optimizing ML

The more ML model is optimized, it is more computationally expensive.

The accuracy is more stable but does not necessarily lead to better accuracy.

Conclusions

By analysing the dataset, we have determined that Glucose level is the most indicative variable in predicting the presence of cardiovascular diseases (CVDs)

Team contribution

Chen Yi Bin Jonathan

Code: Data preparation +slides

Gu Shiyuan

Code: Machine learning (Simple Decision Tree) and New learning +slides

Mendos

Code: Exploratory Analysis and Machine learning (Simple Decision Tree) + slides

Thank You!

- https://www.kaggle.com/datasets/sulianova/cardiov ascular-disease-dataset/data
- https://www.kaggle.com/code/mertoezcan/comparis on-of-different-machine-learning-models
- https://www.medicinenet.com/blood_pressure_char t_reading_by_age/article.htm