Overview of Fault Models

Dr. Shubhajit Roy Chowdhury,

Centre for VLSI and Embedded Systems Technology,

IIIT Hyderabad, India

Email: src.vlsi@iiit.ac.in

Why Fault Models?

- Too many actual number of physical defects in circuits.
 - Not possible to consider individually.
 - Difficult to analyze.
- Some logical fault models are considered.
 - A fault model identifies targets for testing.
 - Drastically reduces number of faults to be handled.
 - Makes analysis possible.
 - Effectiveness measurable by experiments.

Levels of abstraction in circuits

Behavioral Description Functional Description Increasing Structural Description level of abstraction Switch-level Description **Geometric Description**

Observations

- □ Faults modeled at the lowest level of abstraction will be more accurate.
 - Will resemble closely with actual physical defects.
- Typically higher-level abstractions are used.
 - To reduce complexity.
 - An example:
 - 50 million transistors
 - 500 million possible defects
 - 5 million gates

Fault Models at Different Levels

■ Behavioral Fault Model

- Related to failure modes of the constructs in HDL.
- Ex: assignment, condition failures etc.

□ Functional Fault Model

- Try to ensure that the given functional block executes the function it was designed for.
- Ex: Adder, Multiplexer etc.

☐ Structural Fault Model

- The circuit is given as a netlist of blocks.
- Here we try to make sure that the interconnections in the given structure are fault-free, and are able to carry both '0'and '1'signals.
 - The blocks (e.g. gates) assumed to be fault-free.
 - Leads to the stuck-at-fault model.

Stuck at fault model

☐ Stuck-at-Fault Model:

- Some line(s) in the circuit are permanently stuck at logic 0 or logic 1
- Denoted as s-a-0 & s-a-1, or as a/0 & a/1 for line 'a'.
- A fan-out stem and fan-out branches are considered different lines.

■ Two Variants:

- Single Stuck-at-Fault
 - 'k' lines → '2k' number of faults
- Multiple Stuck-at-Fault
 - 'k' lines → '3^k-1' number of faults

Stuck at fault

■ Why single stuck-at faults?

- Simpler to handle & reasonably good fault coverage.
- A test set for detecting single stuck-at faults detects a large percentage of multiple stuck-at faults as well.
- Technology independent. Can be applied to TTL, ECL, CMOS etc.
- It is design style independent. Applicable to all design styles:
 Gate array, standard cell, full custom, etc.

■ Example:

- 12 lines (a, b, c, d, e, f, g, h, l, j, k, z) of faults
- ☐ 2x12 = 24 single stuck-at-faults
- \square 3¹²-1 = 5,31,441 multiple stuck-at-faults

Fault Models at different levels

■ Switch-Level Fault Model

- Deals with faults in netlist of transistors in a switch-level description of a circuit.
 - MOS transistors considered as ideal switch.
- Two kinds of faults:
 - Stuck-open fault and Stuck-short fault
- ☐ Geometric Fault Model
 - Derived directly from the layout of the circuit.
 - Some examples of geometric fault models:
 - Bridging fault model
 - PLA fault model
 - Memory fault model

Bridging Fault Models

- Tests for resistive shorts between two normally unconnected nets
- Closest fault-model to real defects
- Bridging-faults are caused by manufacturing defects

Feedback versus Non-feedback Bridging Fault

Delay Faults

- Affect propagation delay of the circuit, circuit fails at high speeds
- More important for high-speed circuits
- Gate delay fault (GDF): slow 1-to-0 or 0to-1 transition at a gate output
- Path delay fault (PDF): exists a path from a primary input to primary output that is slow to propagate a 0-to-1 or 1-to-0 transition

Questions?

