**Binomial**  $X \sim B(n, p)$ 

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
  $k = 0, 1, ..., n$ 

$$EX = np$$
,  $Var X = np(1-p)$ 

$$mgf: M_X(t) = (pe^t + 1 - p)^n$$

Beta is conjugate prior, Fisher info  $I(p) = \frac{1}{p(1-p)}$ 

Poisson  $X \sim P(\lambda)$ 

$$p(k) = \frac{e^{-\lambda}\lambda^k}{k!} \qquad k = 0, 1, \dots$$

 $EX = \lambda, \quad Var X = \lambda$ 

$$mgf: M_X(t) = e^{\lambda(e^t - 1)}$$

Gamma is conjugate prior, Fisher info  $I(\lambda) = \frac{1}{\lambda}$ 

**Normal**  $X \sim N(\mu, \Sigma)$ ,  $\Sigma$  positive definite

$$f(x) = \frac{\exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}}{(2\pi)^{\frac{k}{2}} \sqrt{\det(\Sigma)}} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

mgf:  $M_X(t) = \exp(\mu' t + \frac{1}{2} t' \Sigma t)$ 

Normal is conj. prior, Fisher info  $I(\mu, \sigma^2) = \begin{bmatrix} 1/\sigma^2 & 0 \\ 0 & 1/2\sigma^4 \end{bmatrix}$ 

Beta  $X \sim \text{Beta}(\alpha, \beta)$ 

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$
  $0 \le x \le 1$ 

$$EX = \frac{\alpha}{\alpha + \beta}, \quad Var X = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

using the beta function:

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$

**Gamma**  $X \sim \text{Gamma}(\alpha, \beta)$ 

$$f(x) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)} \qquad x > 0$$

$$EX = \frac{\alpha}{\beta}, \quad Var X = \frac{\alpha}{\beta^2}$$

mgf: 
$$M_X(t) = (1 - \frac{t}{\beta})^{-\alpha}, t < \beta$$

$$X \sim \text{Gamma}(\alpha, \beta) \iff \beta X \sim \text{Gamma}(\alpha, 1)$$

 $X_i$  iid Gamma $(\alpha_i, \beta)$ , then

$$\sum X_i \sim \text{Gamma}(\sum \alpha_i, \beta)$$

Gamma function:  $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$ .

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
.

$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$$

 $\Gamma(k) = (k-1)!$  for k positive integer.

**Exponential** Special case:  $\text{Exp}(\lambda) \equiv \text{Gamma}(1, \lambda)$ 

Chi square Special case:  $\chi_n^2 \equiv \text{Gamma}(\frac{n}{2}, \frac{1}{2})$ 

Let  $Z_i$  be iid N(0,1).

$$\sum_{i=1}^{n} Z_i^2 \sim \chi_n^2$$

Noncentral  $\chi^2$ . Let  $Y \sim N(\mu, I)$  be an n vector. Then

$$||Y||^2 \sim \chi_n^2(||\mu||^2)$$

 $\mathbf{F}$ 

$$F(m,n) \equiv \frac{\frac{\chi_m^2}{m}}{\frac{\chi_n^2}{n}}$$

Where numerator and denominator are independent  $\chi^2$ .

 $\mathbf{T}$ 

$$t(n) = \frac{N(0,1)}{\sqrt{\frac{\chi_n^2}{n}}}$$

Where numerator and denominator are independent.

Moment generating functions determine distribution

$$M_X(t) \equiv \mathcal{E}(e^{tX}), \quad M_X'(0) = \mathcal{E}(X)$$

 $X_i$  independently distributed  $\iff$ 

$$M_{\sum X_i}(t) = \prod M_{X_i}(t)$$

#### Characteristic function

$$\phi(t) = E(e^{it^T X}) = E(\cos(t^T X)) + i E(\sin(t^T X))$$

Order statistics for sorted sample  $X_{(1)}, \ldots, X_{(n)}$  has pdf:

$$n! \prod_{i=1}^{n} f(X_{(i)}) \quad I(X_{(1)} < \dots < X_{(n)})$$

**Jensen's Inequality** if  $S \subset \mathbb{R}^k$  convex and closed, g convex Canonical form model indexed by  $\eta$ . on S,  $P[X \in S] = 1$ , and E X is finite, then  $E X \in S$ , E g(X)exists, and

$$E g(X) \ge g(E X)$$

**Holder's Inequality** if r, s > 1 and  $\frac{1}{r} + \frac{1}{s} = 1$  then

$$\mathrm{E}\left|XY\right| \le \left(\mathrm{E}\left|X\right|^r\right)^{\frac{1}{r}} \left(\mathrm{E}\left|X\right|^s\right)^{\frac{1}{s}}$$

T(X) Sufficient means the distribution of X|T(X) does not depend on  $\theta$ .

Factorization theorem: T(x) is sufficient  $\iff$ 

$$f_{\theta}(x) = h(x)q(\theta, T(x))$$

 $L_x(\theta) = p_{\theta}(x) = p(x, \theta)$  likelihood is function of  $\theta$ , density is function of x.

The likelihood ratio

$$\lambda_x(\theta) = \frac{L_x(\theta)}{L_x(\theta_0)}$$

is minimal sufficient. To show T(x) is minimal sufficient show that it is sufficient and a function of the likelihood  $\lambda_x(\theta)$ .

#### Fisher information

$$I(\theta) = \mathcal{E}_{\theta} \left[ \frac{\partial}{\partial \theta} \log L_X(\theta) \right]^2 = \mathcal{E}_{\theta} \left[ -\frac{\partial^2}{\partial \theta^2} \log L_X(\theta) \right]$$

bias  $\hat{v} \equiv E(\hat{v}) - v$ 

$$MSE(\hat{v}) \equiv E(\hat{v} - v)^2 = Var(\hat{v}) + (bias \hat{v})^2$$

**Rao-Blackwell** Let S(X) be an unbiased point estimator for  $g(\theta)$ . Conditioning on a sufficient statistic T(X) reduces variance.

$$\operatorname{Var}_{\theta}(S(X)) \ge \operatorname{Var}_{\theta}(\operatorname{E}(S(X)|T(X)))$$

Also holds for more general convex loss function L:

$$R(\theta, S) \equiv E_{\theta} L(\theta, S(X)) \ge E_{\theta} L(\theta, E(S(X)|T(X)))$$

Completeness T(X) is complete if E g(T(X)) = 0 implies g = 0 almost surely for all  $\theta$ .

Cramer Rao Inequality Let  $g: \Theta \to R$ . Suppose there exists an unbiased estimator U(X),  $\to U(X) = q(\theta)$ . Then

$$\operatorname{Var}_{\theta} U(X) \ge \left(\frac{\partial g(\theta)}{\partial \theta}\right)^T I(\theta)^{-1} \left(\frac{\partial g(\theta)}{\partial \theta}\right)$$

Basu's Theorem - If T(X) complete sufficient statistic and A(X) is ancillary then A(X) and T(X) are independent.

**Lehmann - Scheffe** Suppose T(X) is complete sufficient. Then there exists unique unbiased estimator E h(T(x)) of  $q(\theta) \in R$  with smallest variance (MVUE).

**Exponential Families** T(x) is natural sufficient statistic and is complete sufficient if the k parameter exponential family is full rank.

$$p(x,\theta) = h(x) \exp\{\eta(\theta)^T T(x) - B(\theta)\}\$$

$$q(x,\eta) = h(x) \exp\{\eta^T T(x) - A(\eta)\}\$$

$$\dot{A}(\eta) = \mathcal{E}_{\eta}(T(X)) \quad \ddot{A}(\eta) = I(\eta) = \operatorname{Var}_{\eta}(T(X))$$

Then moment generating function for T(X) is

$$M_{T(X)}(t) = \exp\{A(t+\eta) - A(\eta)\}\$$

Equivalent statements useful for GLM's such as  $Y \sim$  $N(X\beta, \sigma_0^2 I)$ , where Z is  $n \times p$ :

1.  $I(\beta) = \frac{1}{\sigma_o^2} X^T X$  positive definite 2. rank(X) = p 3. model is identifiable. More generally another equivalent statement is  $Var(T(X)) = \ddot{A}(\eta)$  is positive definite.

# **Decision Theory**

**Decision rule**  $\delta: \mathcal{X} \to \mathcal{A}$ , where  $\delta \in \mathcal{D}$ , the space of possible decision rules and  $\mathcal{A}$  is the action space.

Loss function  $l: \Theta \times \mathcal{A} \to \mathbb{R}^+$  Posterior mean minimizes square error loss; median minimizes absolute loss.

Risk function  $R: \Theta \times \mathcal{D} \to \mathbb{R}^+$  expected loss for a particular value of  $\theta$ 

$$R(\theta, \delta) = \mathcal{E}_{\theta} l(\theta, \delta(X)) = \int l(\theta, \delta(x)) \cdot p_{\theta}(x) dx$$

Bayes setup:

$$\pi(\theta|x) = \frac{p_{\theta}(x)\pi(\theta)}{m(x)}$$

Bayes decision rule If there exists  $\delta_{\pi} \in \mathcal{D}$  w.r.t prior  $\pi$  such

$$r(\pi, \delta_{\pi}) = \inf_{\delta \in \mathcal{D}} r(\pi, \delta)$$

To find Bayes rule minimize the posterior risk:

$$\delta_{\pi}(x) = \min_{a \in \mathcal{A}} r_{\pi}(a|x)$$

Bayes risk  $r_{\pi}: \mathcal{D} \to \mathbb{R}^+$  expected loss for fixed prior  $\pi$ 

$$r_{\pi}(\delta) = \mathcal{E}_{\pi} R(\theta, \delta) = \int_{\Theta} R(\theta, \delta) \pi(d\theta) = \int_{\mathcal{X}} r_{\pi}(\delta(x)|x) m(x) dx$$

To find Bayes risk: 1) find the Bayes rule 2) compute the risk function 3) take the expectation of the risk wrt prior  $\pi$ .

Minimax decision rule  $\delta^*$  minimizes the worst case scenario, satisfies

$$\sup_{\theta} R(\theta, \delta^*) = \inf_{\delta} \sup_{\theta} R(\theta, \delta)$$

To show  $\delta^*$  is minimax, first check for constant risk  $R(\theta, \delta^*)$ c for all  $\theta$ , then find a prior  $\pi$  such that  $\delta^*$  is the Bayes rule. This  $\pi$  is least favorable. More generally can find a sequence of priors  $(\pi_k)$  such that the Bayes risk  $r_{\pi_k}(\delta_{\pi_k}) \to c$ .

### **Multivariate Normal**

Stein's formula:  $X \sim N(\mu, \sigma)$ 

$$E(g(X)(X - \mu)) = \sigma^2 E(g'(X))$$

assuming these expectations are finite.

 $X \sim N(\mu, \Sigma)$ , A an  $m \times n$  matrix, then

$$AX \sim N(A\mu, A\Sigma A^t)$$

For  $\Sigma$  full rank it's possible to transform between  $Z \sim N(0, I)$  and X:

$$X = \Sigma^{1/2}Z + \mu$$
  $Z = \Sigma^{-1/2}(X - \mu)$ 

In block matrix form:

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N \left( \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right)$$

Assuming  $\Sigma_{11}$  is positive definite then the conditional distribution

$$X_2|X_1 \sim N(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(X_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12})$$

## **Conditional Distributions**

Conditional pdf:

$$f_{X|Y}(x,y) \equiv \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

Iterated expectation:

$$E(Y) = E(E(Y|X))$$

Conditional variance formula:

$$Var(Y) = Var(E(Y|X)) + E(Var(Y|X))$$

## General Techniques

Singular Value Decompostion (SVD) Any matrix X can be written

$$X = UDV^T$$

with U, V orthogonal, and D diagonal.

Moore Penrose Psuedoinverse  $A^+$  exists uniquely for every matrix A.

Projection matrix P are symmetric and idempotent. They have eigenvalues either 0 or 1.

$$P = P^T$$
  $P^2 = P$ 

Covariance of linear transformations

$$Cov(Ay, Bx) = ACov(y, x)B^T$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Integration by parts:

$$\int uv' = uv - \int u'v$$

Transformation theorem: Given some regularity conditions, Y = g(X) has pdf

$$p_Y(y) = p_X(g^{-1}(y))|J_{g^{-1}(y)}|$$

Matrix / Vector differentiation

$$\frac{\partial A^T \beta}{\partial \beta} = A$$
,  $\frac{\partial \beta^T A \beta}{\partial \beta} = (A + A^t)\beta = 2A\beta$  for A symmetric.