

TẦNG MẠNG IP và ĐỊNH TUYẾN

GV: MAI Xuân Phú xuanphu150@gmail.com Khoa Công Nghệ Thông Tin Đại Học Công Nghiệp TPHCM

Nội dung

- ☐ Giao thức tầng mạng Internet Protocol
- ■Địa chỉ IP
- ☐ Các giao thức điều khiển Internet
 - Giao thức thông báo điều khiển ICMP
 - Giao thức phân giải địa chỉ ARP
- □Định tuyến
 - Định tuyến tĩnh và động
 - Giải thuật định tuyến
 - Các giao thức định tuyến
 - Nội vùng
 - Liên vùng

Tầng Mạng

- ☐ Vận chuyển segment từ bên gửi sang bên nhận
- ☐ Bên gửi đóng gói segment thành các datagram
- ☐ Bên nhận, chuyển các segment lên tầng giao vận
- ☐ Giao thức tầng mạng trong mỗi bộ định tuyến, máy chủ
- ☐ Router kiểm tra các header trong tất cả các gói tin IP đi qua nó

Giao thức tầng mạng Internet Protocol

- ☐ Khái niệm cơ bản
- □ Nguyên lý lưu và chuyển tiếp
- □Đặc điểm Giao thức IP

Internet Protocol

- ☐ Giao thức ở tầng mạng
- ☐ Hai chức năng cơ bản
 - Định tuyến (Routing): xác định đường đi của gói tin từ nguồn đến đích
 - Chuyển tiếp (Forwarding): chuyển dữ liệu từ đầu vào đến đầu ra của bộ định tuyến (router)

Định tuyến và chuyển tiếp gói tin

Host

Đặc điểm giao thức IP

- ☐ Không tin cậy nhưng nhanh
 - Truyền dữ liệu theo phương thức "Best Effort"
 - IP không có cơ chế phục hồi lỗi
 - Khi cần sẽ kết hợp với dịch vụ tầng trên để đảm bảo độ tin cậy (TCP)
- ☐ Giao thức không liên kết (Connectionless)
- ☐ Các gói tin được xử lý độc lập (Datagram)

Dia chi IP

- □ Lớp địa chỉ IP
- □CIDR Địa chỉ IP không phân lớp
- ☐ Mạng con và mặt nạ mạng
- ☐ Các địa chỉ IP đặc biệt

Internet theo người dùng

9

Internet thực tế

con thực tế

Địa chỉ IP

- □IP phiên bản 4 (IP v4)
 - o 32 bit
 - Phổ biến, nhưng sắp cạn kiệt

- □IP phiên bản 6 (IP v6)
 - 128 bit
 - Tương lai của Internet

Địa chỉ IP (IPv4)

- □Địa chỉ IP : Một số 32bit để định danh giao diện máy trạm, bộ định tuyến
- ☐ Mỗi địa chỉ IP được gán cho một giao diện
- □Có tính duy nhất

Định dạng địa chỉ IP

□ 32 bit địa chỉ → 4.294.967.296 địa chỉ

Ví dụ: 203.178.136.63 259.12.49.192 133.27.4.27

0 – 255 integer

Sử dụng 4 phần 8 bits để miêu tả một địa chỉ 32 bits

Địa chỉ máy trạm & địa chỉ mạng

- □Địa chỉ IP bao gồm 2 phần
 - Host ID địa chỉ máy trạm
 - Network ID địa chỉ mạng

- □ Làm thế nào phân biệt 2 phần?
 - Phân lớp địa chỉ
 - Không phân lớp CIDR

Phân lớp địa chỉ IP

			8bi	ts		8bits	8bits	8bits
Class A	0		7bit			Н	Н	Н
Class B	1	0	6bit		N	Н	Н	
Class C	1	1	0		5bit	Ν	Ν	Н
Class D	1	1	1	0	Multicast			
Class E	1	1	1	1	Reserve for future use			

	# of network	# of hosts
Class A	128	2^24
Class B	16384	65536
Class C	2^21	256

Hạn chế của phân địa chỉ theo lớp

□ Lãng phí không gian địa chỉ

→Cách giải quyết

- CIDR Classless Inter Domain Routing
 - Địa chỉ mạng có độ dài bất kỳ
 - · Định dạng địa chỉ

Mặt nạ mạng

- Net Mask Mặt nạ mạng
- ☐ Chia địa chỉ IP thành 2 phần
 - Úng với máy trạm
 - Úng với mạng
- ■Địa chỉ IP AND Mặt nạ mạng
 - Địa chỉ mạng
 - Khoảng địa chỉ IP

Mô tả mặt nạ mạng

- 255.255.255.224
- /27
- 0xFFFFFFe0

 Sẽ là một trong các số:

128 252

192 254

224 255

240

Cách tính địa chỉ mạng

IP Address

Netmask (/27)

AND

Network address

203.178.142.128/27

Kích thước mạng

255

255

255

192

- Kích thước
 - Theo lũy thừa 2
- RFC1878

- Trong trường hợp /26
 - Phần máy trạm = 6 bits
 - 2⁶=64
 - Dải địa chỉ có thể gán:
 - 0 63
 - 64 127
 - 128 191
 - 192 255

Các dạng địa chỉ

■Địa chỉ mạng

- Địa chỉ IP gán cho 1 mạng
- o Phần Host ID: toàn bộ bit 0
- ■Địa chỉ máy trạm
 - Địa chỉ IP gán cho 1 card mạng
- ■Địa chỉ quảng bá
 - Dùng để gửi cho tất cả các máy trạm trong mạng
 - o Phần Host ID: toàn bộ bit 1
- □ Ví dụ: tìm các địa chỉ mạng và quảng bá
 - o 203.178.142.128/25
 - o 203.178.142.128/24

Mang con - Subnet

- □ Là một phần của 1 mạng nào đó
 - Vài mạng con sẽ được tạo ra
- ☐ Tạo subnet như thế nào?
 - → Dùng mặt nạ dài hơn

Ví dụ chia subnet (1)

□ Chia làm 2 subnet

```
11001000 00010111 00010000 00000000
          23.
200.
                      16.
                                         /24
11001000 00010111 00010000 00000000
                     16.
                                         /25
200.
         23.
11001000 00010111 00010000 10000000
200.
        23.
                     16.
                               128
                                         /25
```


Ví dụ chia subnet (2)

☐ Chia làm 4 subnet

- Mang với mặt na /24
- Cần tạo 4 mạng con
 - Mang với 14 máy tính → /28
 - Mang với 30 máy tính → /27
 - Mang với 31 máy tính → /26
 - Mang với 70 máy tính → /25

Ví dụ chia subnet (3)

Không gian địa chỉ IPv4

- ☐ Không gian theo lý thuyết
 - \circ 0.0.0.0 \rightarrow 255.255.255.255
- ☐ Một số địa chỉ đặc biệt (RFC 1918)
 - Địa chỉ riêng (Private IP)
 - 10.0.0.0/8 → Dải IP: 10.0.0.0 10.255.255.255
 - 172.16.0.0/12 → Dải IP: 172.16.0.0 172.31.255.255
 - 192.168.0.0/16 → Dải IP: 192.168.0.0 192.168.255.255
 - Loopback address: 127.0.0.0
 - Multicast address: 224.0.0.0 239.255.255.255
 - Địa chỉ liên kết nội bộ: 169.254.0.0/16

Gán địa chỉ IP

- □ Người quản trị gán trực tiếp
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
 - Ubuntu: /etc/network/interfaces
- □ DHCP: Dynamic Host Configuration Protocol: Giao thức cấu hình địa chỉ động
 - "plug-and-play"

DHCP

- Cho phép máy trạm nhận một địa chỉ IP động khi kết nối vào mạng
 - Có thể "renew", "release"
 - Hỗ trợ người dùng hay di chuyển
- ☐ Tổng quan về DHCP:
 - Máy trạm quảng bá thông điệp "DHCP discover"
 - Máy chủ DHCP trả lời với "DHCP offer"
 - Máy trạm xin địa chỉ với : "DHCP request"
 - Máy chủ DHCP cấp địa chỉ với: "DHCP ack"

Hoạt động của DHCP (1)

Hoạt động của DHCP (2)

Định dạng gói tin IP

IP header (1)

- □ Phiên bản giao thức (4 bits)
 - o IPv4
 - o IPv6
- □Độ dài phần đầu: 4bits
 - Tính theo Từ (4 bytes)
 - o Min: 5
 - o Max: 60

IP header (2)

- □DS (Differentiated Service : 8bits)
 - o Tên cũ: Type of Service
 - Hiện tại được sử dụng trong quản lý QoS
 - Diffserv

IP header (3)

- □Độ dài toàn bộ, tính cả phần đầu (16 bits)
 - Theo bytes
 - o Max: 65536
- □ ID Số hiệu gói tin
 - Để xác định chuỗi gói tin bị phân mảnh
- ☐ Flag Cờ
 - o 3 bit
 - Bit 1: không dùng
 - Bit 2: nếu bằng 1, "Không phân mảnh"
 - Bit 3: Cò phân mảnh
- □ Fragmentation offset Vị trí gói tin bị phân mảnh trong gói tin ban đầu

IP header (4)

- ☐TTL, 8 bits Thời gian sống
 - Độ dài đường đi gói tin có thể qua
 - o Max: 255
 - Router giảm TTL đi 1 đơn vị khi xử lý
 - Gói tin bị hủy nếu TTL bằng 0
- ☐ Protocol giao thức tầng trên
 - Giao thức giao vận phía trên (TCP, UDP,...)
 - Các giao thức tầng mạng khác (ICMP, IGMP, OSPF)
 cũng có trường này

IP header (5)

- □ Checksum Mã kiểm soát lỗi
- □Địa chỉ IP nguồn
 - 32 bit, địa chỉ trạm gửi
- □Địa chỉ IP đích
 - o 32 bit, địa chỉ trạm đích

IP Header Checksum

□ Chỉ tính phần Header gói IP

- với trường Checksum bằng 0
- 16 bits

Compute a IP checksum

- 1. Put a 0 in the checksum field.
- 2. Add each 16-bit value together.
- 3. Add in any carry
- 4. Inverse the bits and put that in the checksum field.

Check the checksum

- 1. Add each 16-bit value together (including the checksum).
- 2. Add in carry.
- 3. Inverse the bits.
- 4. The result must be 0.

IP Header Checksum – Ví dụ

```
☐ IP header:
   45 00 00 6c 92 cc 00 00 38 06 00 00 92 95 ba 14 a9 7c 15 95
☐ Tính
   □ Tổng
       45\ 00 + 00\ 6c + 92\ cc + 00\ 00 + 38\ 06 + 00\ 00 + 92\ 95 + ba\ 14 +
a9.7c + 15.95 = 31BF8
   ☐ Cộng dồn phần dư
      3 + 1BF8 = 1BFB (0001101111111011)
   ☐ Đảo bit
       0001101111111011
       111001000000100
☐ IP header với Checksum
       45 00 00 6c 92 cc 00 00 38 06 e4 04 92 95 ba
14 a9 7c 15 95
```


Phân mảnh & kết hợp gói IP

☐ Phụ thuộc MTU (Maximum Transmission Unit)

Phân mảnh gói tin IP (1)

Phân mảnh gói tin IP (2)

Ví dụ:

MTU: 128 bytes (108 bytes dữ liệu)

Offset: bội số của 8 bytes ->

13*8=104 bytes

	4	5	UU		LEN=308	
		ID=	368	0	Offset=	
	H	ΤL	Pro=	6	Checksun	
	Source Address					
	Destination Address					
נ	Data (348 octets)					
					-	
	1 [-	Ω			

Datagram gốc

F1

4	5	00		LEN= 124
ID=368			0 1	Offset=0
H	ΓL	Pro=6		Checksum
Source Address				
Destination Address				
Data (104 octets)				

4	5	00			LEN= 124	
ID=368			0	1	Offset= 13	
Τ	TL	Pro=6			Checksum	le
Source Address						ľ
Destination Address						
Data (104 octets)						\mathbf{L}

F3

ID 200 01 045-1 20				
ID=368 0 1 Offset=26)			
TTL Pro=6 Checksum				
Source Address				
Destination Address				
Data (104 octets)				

			_		
5	00	LEN= 56			
ID=	368	0 Offset= 39			
ΠL	Pro=6	Checksum	F۷		
	Source A	Address	' '		
Destination Address					
Data (36 octets)					
	ΠL	Source Destination	ID=368 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO		

Source: Olivier Glück, UCBL - Module LIF8: Réseaux

Network Address Translation NAT

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

NAT

- □ NAT = Network Address Translation
- □RFC 1631, 1918, 2663
- ☐ Chức năng: "thay đổi" địa chỉ
 - Incoming: thay đổi thông tin đích đến
 - Outgoing: thay đổi thông tin nguồn

NAT - Cách hoạt động

- □ Dùng chuyển đổi global <-> local
 - Thông tin cục bộ bên trong (Inside local)
 - Thông tin toàn cục bên trong (Inside global)
- ☐ Thông tin trong bảng chuyển đổi
 - Static
 - o dynamic

Địa chỉ riêng và NAT

© Pearson Education France

NAT - IP masquerading

46

NAT - port forwarding

Source: Olivier Glück, UCBL - Module LIF8: Réseaux

Giao thức điều khiển Internet

- ☐ Giao thức thông báo điều khiển ICMP
- ☐ Giao thức phân giải địa chỉ ARP

Giao thức ICMP

- □ ICMP Internet Control Message Protocol
- ☐ Giao thức ở tầng mạng để trao đổi thông tin
 - Báo lỗi: báo gói tin không đến được một máy trạm,
 một mạng, một cổng, một giao thức
 - Thông điệp phản hồi
 - Kiểm tra mạng internet

■Được bao bọc bởi 1 gói tin IP

Protocol:

1: ICMP

2: IGMP

6: TCP

17: UDP

89: OSPF

49

Cấu trúc gói tin ICMP

- ☐ Type: Ioại gói tin ICMP
- □ Code: nguyên nhân gây lỗi
- ☐ Checksum: để kiểm lỗi gói tin
- □ Data: dữ liệu đặc trưng tương ứng Type và

Code

Một số dạng gói tin ICMP

ICMP Type	Code	Mô tả
0	0	Echo Reply (to ping)
3	0	Destination network unreachable
3	1	Destination host unreachable
3	2	Destination protocol unreachable
3	3	Destination port unreachable
3	6	Destination network unknown
3	7	Destination host unknown
4	0	Source quench (Congestion Control)
8	0	Echo request
9	0	Router advertisement
10	0	Router discovery
11	0	TTL expired
12	0	IP header bad 51

ICMP Ứng dụng

□ Ping

- Để kiểm tra kết nối
- Sử dụng gói tin "Echo Request" và "Echo Reply"
- Ví dụ: ping google.com

□ Traceroute

Công cụ dò vết đường đi

Ví dụ: tracert google.com

Giao thức phân giải địa chỉ

□ ARP – Address Resolution Protocol

 Tham khảo: TCP IP Protocol Suite, Chap-07 ARP & RARP

Định tuyến

☐ Tham khảo

Jim Kurose & Keith Ross, "Computer Networking: A
 Top Down Approach Featuring the Internet", 3rd
 edition, Addison-Wesley, July 2004: chapter 4.5

Tài liệu tham khảo

- □ Andrew S. Tanenbaum, "Computer Networks", 4th edition: chapter 5
- Nader F. Mir, "Computer and Communication Networks": chapter 7
- □ Jim Kurose & Keith Ross, "Computer Networking: A Top-Down Approach": chapter 4

Thảo luận

- □Câu hỏi?
- □Ý kiến?
- □Đề xuất?

