Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný rozdíl, předpokládáme, že připravený posluchač dokáže zdárně zodpovědět většinu z nich.

Tento dokument je k dispozici ve variantě převážně s řešením a bez řešení.

Je to pracovní dokument a nebyl soustavně redigován, tým ALG neručí za překlepy a jazykové prohřešky, většina odpovědí a řešení je ale pravděpodobně správně :-).

5. Datová struktura D obsahuje pouze jednosměrně zřetězený spojový seznam s n prvky a ukazatel na první prvek seznamu. Odstranění posledního prvku seznamu je operací se složitostí

- a) O(1)
- b) $\Theta(1)$
 - $\Theta(\log_2(n))$
- (d)) $\Omega(n)$
- e) $\Omega(n \cdot \log_2(n))$

Datová struktura D obsahuje pouze obousměrně zřetězený spojový seznam s n prvky a ukazatel na první prvek seznamu. Asymptotická složitost operace vložení nového prvku do tohoto seznamu je v nejlepším případě

a) O(0)

- b) **)**Θ(1)
 - c) $\Theta(\log_2(n))$
 - d) $\Omega(n)$
 - e) $\Omega(n \cdot \log_2(n))$

The set $O(n \cdot \log(n))$ is a subset of

- $\Theta(n \cdot \log(n))$ $\Omega(n \cdot \log(n))$
- O(log(n))
- $O(n^2)$ O(n)

8. For function f(x) it holds: $f(x) \in O(x^2 \cdot \log_2(x))$ and $f(x) \in \Omega(x^2)$. These conditions are valid just for one function in the following list:

b) $f(x) = x^3$ $f(x) = x \cdot \log_2(x)$ c) $f(x) = x^2$ $f(x) = 2^x$

9. For function f(x) it holds: $f(x) \in \Omega(x^2)$ and $f(x) \in O(x^3)$. These conditions are valid just for one function in the following list:

 $f(x) = x^2 \cdot \log_2(x)$

- $f(x) = x \cdot \log_2(x)$ c) $f(x) = 2^x$
- d) f(x) = x + 1

Právě jeden z následujících výroků je nepravdivý. Označte jej.

x 1992X

XHN

a) $x^2 \in \Omega(x + \log_2(x))$ b) $x^2 \in \Omega(x \cdot \log_2(x))$

- (c) $x^2 \in \Theta(x + \log_2(x))$
- d) $x^2 \in O(x^2 \log_2(x))$
- e) $x^2 \in \Theta(x^2 + \log_2(x))$

Algoritmus A projde celým polem délky N a prvek s indexem k zpracuje za c+log₂(N) milisekund. Konstanta c je stále stejná. Asymptotická složitost zpracování celého pole je

- a) $\Omega(N^2)$
- b) $\Omega(c \cdot N^2)$

46

Pro rostoucí spojité fukce f(x), g(x) platí $f(x) \in O(g(x))$. Z toho plyne, že

17.

Pokud funkce f roste asymptoticky stejně rychle jako funkce g (tj. $f(x) \in \Theta(g(x))$), platí právě jedno následující tvrzení. Které?

jsou-li v bodě x definovány obě funkce, pak f(x) = g(x) ani poměr f(x)/g(x) ani poměr g(x)/f(x) nekonverguje k nule s rostoucím x rozdíl f(x) - g(x) je kladný pro každé x > y, kde y je nějaké dostatečně velké číslo obě funkce f i g jsou definovány jen pro nezáporné argumenty

e) nic z předchozího

18.

Právě jeden z následujících výroků je nepravdivý. Označte jej.

19.

V následujících vztazích doplňte na prázdná místa (......) symboly O nebo O nebo O tak, aby vznikla pravdivá tvrzení. Je-li možností více, uveďte je všechny, nehodí-li se ani jeden symbol, prázdné místo proškrtněte.

a)
$$x^2 \cdot 2^x \in \dots ((\ln(x^2))^2 + 2^x)$$

b) $(\ln(x^2))^2 + 2^x \in \dots (x^2 + \ln(x^2))$
c) $2^x \cdot (\ln(x))^{-1} \notin \dots (2^x \cdot (\ln(x^2))^{-1})$

20.

V následujících vztazích doplňte na prázdná místa (......) symboly O nebo O nebo O tak, aby vznikla pravdivá tvrzení. Je-li možností více, uveďte je všechny, nehodí-li se ani jeden symbol, prázdné místo proškrtněte.

(a)
$$x^2 \cdot \ln(x^2) \in \dots (x^2 + \ln(x))$$

b) $x^3 + \ln(x^2) \in \dots (x^3 + 2^x)$
c) $x^3 \cdot \ln(x^2) \notin \dots (\ln(x^2) + 2^x)$

21.

22.

Uveďte příklad tří rostoucích funkcí reálné proměnné f(x), g(x) a h(x), pro které současně platí všechny tři následující vztahy:

 $f(x) \notin O(g(x)), g(x) \notin \Theta(h(x)), h(x) \notin \Omega(f(x))$

Pokud taková trojice funkcí nemůže existovat, napište krátké zdůvodnění, proč.

Uveďte příklad tří rostoucích funkcí reálné proměnné f(x), g(x) a h(x), pro které současně platí všechny tři následující vztahy:

 $f(x) \notin O(g(x)), g(x) \notin \Omega(h(x)), h(x) \notin \Theta(f(x))$

Pokud taková trojice funkcí nemůže existovat, napište krátké zdůvodnění, proč.