ISTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ

GÖRÜNTÜ İŞLEME YÖNTEMLERİ İLE ARAÇ MARKA VE TÜRLERİNİN TANINMASI

Sinan Eski

Bölüm: Bilgisayar Mühendisliği

Danışman: Prof. Dr. Muhittin Gökmen

Mayıs 2008

GÖRÜNTÜ İŞLEME YÖNTEMLERİ İLE ARAÇ MARKA VE TÜRLERİNİN TANINMASI (ÖZET)

Günümüzde, trafik ve güvenlik denetimlerinde araç tabanlı kontrol sistemleri sıklıkla kullanılmaktadır. Aracın marka ve tür bilgisi, onun kimliğinin tanınmasında önemli bir yere sahiptir. Araç ihbarlarında ve çalıntı araç takibinde marka ve tür bilgisi kontrolü kolaylaştıracaktır. Benzeri şekilde, aşırı hız tespit edilmesinde ve geçiş yasağı uygulanan yol ve köprülerde denetimin sağlanması için aracın tür bilgisi gerekmektedir [14][15].

Bu bitirme çalışmasında, herhangi bir veritabanına bağlanmaksızın, araçların ön görünüşlerinden, marka ve türlerinin tanınması amaçlanmaktadır. Görüntü işleme yöntemleri ile gerçekleştirilecek sistemin, gerçek zamanlı uygulamalarda kullanılabilmesi için, hızlı ve güvenilir sonuç üretmesi beklenmektedir. Bu proje İTÜ Teknokent'inde yer alan Divit firması tarafından desteklenmiştir.

Tanıma yapılacak araç sınıflarının belirlenmesinde Türkiye trafiğinde yaygın olarak yer alan marka (Ford, Opel, Fiat...) ve türler (Otomobil, Minibüs, Kamyon...) baz alınmıştır (Ek 1). Araç çeşitliliği: Araç marka ve model sayısı dikkate alındığında ve modellerin (Ford Fiesta, Ford Focus...) de yıldan yıla değişimi göz önüne alındığında çok geniş bir yelpazeye sahiptir. Bu nedenle marka tanıma işlemi alt modelleri kapsamamaktadır.

Tanıma işlemi araç görüntüleri üzerinden belirli bir kesit alınarak yapılmaktadır. Bu kesit, kullanılacak ilgi alanını (RoI) göstermektedir. İlgi alanın yeri ve büyüklüğü, plaka koordinatlarına göre belirlenmektedir. Araçların plaka yerlerinin bulunması bu projenin kapsamı dışındadır. Plaka yerlerinin tespitinde Divit Plaka Tanıma Sistemi kullanılmıştır. Araç sınıflarına ait özniteliklerin belirlenmesinde üç yöntem kullanılmıştır: Square Mapped Gradient (SMG) [1], SIFT [2], Modified SIFT (M-SIFT)[3]. Proje kapsamında ilk olarak bu yöntemler gerçeklenmiş ve başarımları karşılaştırılmıştır. Daha sonra başarımı ve güvenilirliği artırmak üzere bu yöntemlerin geliştirilmesi için yeni yaklaşımlarda bulunulmuştur. Özellikle M-SIFT yönteminde, SMG benzeri ağırlık maskelerinin ve farklı özniteliklerin kullanılması yöntemin başarısı ve kararlılığını oldukça artırmıştır. Yöntemlere getirilen diğer bir yaklaşım da farklı ilgi alanlarının birlikte kullanılması ile gerçek zamanlı kullanımda ihmal edilebilecek araç sayısını azaltmak olmuştur.

Uygulama, iki temel süreçten oluşur. Biri, sistemin eğitim aşamasıdır; diğeri ise gerçek zamanlı tanımanın yapıldığı kısımdır. Eğitim ve test amacıyla kullanılmak üzere İstanbul Maslak ve Kavacık'ta farklı zamanlarda ve farklı hava koşullarında 384x288, 768x288, 640x480 çözünürlüklerde görüntüler çekilmiştir. Eğitim için 2230 görüntü kullanılırken, yöntemlerin başarılarını karşılaştırmak için yapılan testlerde 3656 test görüntüsü kullanılmıştır. Karşılaştırmalarda en yakın komşuluk ve k-NN yöntemi dikkate alınmıştır.

Proje sonunda Sift'in çalışma hızının gerçek zamanlı uygulamalar için yavaş olduğu ve ayırıcılığının az olduğu tespit edilmiştir. SMG'de marka %89, tür %94 üzeri ve M-SIFT yöntemlerinde yeni yaklaşımlarla %93 üzerinde marka ve %96 üzerinde tür tanıma başarısı elde edilmiştir. Öznitelik vektörünün daha düşük olması M-SIFT için yapılan karşılaştırmalarda büyük hız avantajı sağlamıştır. Öznitelik vektörlerinin PCA, LDA ile küçültülmesi ya da yapay sinir ağları gibi farklı sınıflandırıcıların kullanılması bu farkı ortadan kaldırabilir.

İÇİNDEKİLER

GORUNTU IŞLEME YONTEMLERI ILE ARAÇ MARKA VE TURLERININ	1
	l
GÖRÜNTÜ İŞLEME YÖNTEMLERİ İLE ARAÇ MARKA VE TÜRLERİNİN	
TANINMASI	
İÇİNDEKİLER	
1 GİRİŞ	
1. Square Mapped Gradient (SMG)	
2. Scale Invariant Feature Transform (SIFT)	
3. Modified SIFT (M-SIFT)	
- İlgi alanının belirlenmesi ve geometrik normalize etme	
- Özniteliklerin oluşturulması	
- Sınıflandırmanın yapılması	
- Sift-Ori	
- Sift-Grad	
- Sift-GradWei	
2 PROJE TANIMI VE PLANI	
1. Proje Tanımı	
2. Proje Plani	
2.1. Projenin Amacı	
2.2. Proje Kapsamı	
2.3. Kullanım Alanları	
2.4. Başarım Kriterleri	
3 KURAMSAL BİLGİLER	
1. Temel Kavramlar (Eda Datastan)	
1.1. Kenar Bulma (Edge Detection)	
1.2. Görüntünün Yumuşatılması (Smoothing)	
1.3. Histogram	
Sınıflandırma	
- 3	
3. Hata Fonksiyonu	
3.2. Dot Product	
4 ANALİZ VE MODELLEME	
Sistemi Etkileyebilecek Faktörler	
1.1. Hava Şartları	
1.2. Işık Değişimi	
1.3. Kamera Açısı	
1.4. Hareketli Görüntü	
1.5. Plaka Yeri	
2. Sistemin Calısması	
3. Modelleme	
3.1. Projenin Temel Mimarisi	
3.2. Test ve Kontrol Programı Mimarisi	
5 TASARIM, GERÇEKLEME ve TEST	
1. Square Mapped Gradient	
2. Sift	
3. Modified Sift	

6 DENEYSEL SONUÇLAR	28
1. SMG için yapılan testler	28
2. M-SIFT için yapılan testler	
3. SIFT için yapılan testler	
7 SONUÇ ve ÖNERİLER	36
8 TEŞEKKÜR	37
9 REFERANSLAR	38
EKLER	39
1. EK-1	40
1.1. Tanıma Yapılacak Markalar	40
1.2. Tanıma Yapılacak Araç Türleri	40
2. EK-2 Mark ve Tür için tanıma sonuçları	41
2.1. EK – 2 / A Örnek Marka Sonuçları	41
2.2. EK - 2/ B Tür Sonuçları	41
3. EK – 3 SMG için Parametre Sonuçları	42
3.1. EK – 3 / A	42
3.2. EK – 3 / B Modified Sift İçin Parametre Sonuçları	45
4. EK – 4 Test ve Kontrol Programı Arayüzü	46

1 GİRİŞ

Bilgisayarla görü ve görüntü işleme yöntemleri başta trafik ve güvenlik olmak üzere birçok alanda kullanılmaktadır. Görüntü işleme yöntemleri ile yapılan çalışmalar mevcut ham görüntülerden anlamlı veri elde edilmesini amaçlamaktadır. Son zamanlarda; binalarda, sitelerde, otoparklarda ve özellikle trafik denetiminde araç tabanlı kontrol sistemleri giderek yaygınlaşmaktadır. Güvenliğin artırılması için birçok doğrulama işlemi yapılmaktadır. Araç marka ve türlerinin tanınması, trafik izleme ve güvenlik sistemlerinde kontrolü kolaylaştıracağı gibi kullanılan diğer sistemlerin güvenirliğini de artıracaktır.

Marka ve tür tanıma işlemi görüntü işleme yöntemleri ile yapılacaktır. Daha önceki çalışmalar incelendiğinde araçların tanınması[4], hareketli görüntülerde araçların gerçek zamalı olarak tespiti[5] ve araç türlerinin tanınmasına yönelik[6][7] farklı yaklaşımların olduğu görülür. Gerçeklenecek uygulamada ise araçların ön tarafdan çekilmiş görüntülerinden elde edilecek yerel öznitelikleri kullanılacaktır. Bunun için yapılan araştırmalar sonucu üç yöntemin uygun olduğuna ve gerçeklenebileceğine karar verilmiştir. Bunlardan ilki V.S. Petrovic ve T.F. Cootes'un yaklaşımlarından biri olan Square Mapped Gradient[1] yöntemidir. Diğeri normalde farklı nesnelerin tanınması için geliştirilmiş olan Scale Invariant Feature Transform (SIFT) algoritmasıdır. Sonuncusu ise Michal Conos'un önerdiği Modified SIFT[3] yöntemidir.

Kullanılacak yöntemlere ilişkin yapılan önceki çalışmaları inceleyecek olursak.

Square Mapped Gradient (SMG)

Bu kısımda yer alan bilgiler V.S. Petrovic ve T.F. Cootes'un makalesinden[1] alınmıştır. Araç markalarını sınıflandırmak için kararlı özniteliklerin elde edilmesine yönelik olarak yapılan bu çalışmanın sonucunda en yüksek başarımın SMG öznitelikleri ile %97.7 olmuştur. 640x480 çözünürlükte, 1027 araç ile yapılan testlerde 77 marka sınıfı tanınmaya çalışılmıştır.

Yöntemde, plaka koorninatlarına göre ilgi alanı (RoI) belirlenir.

Şekil 1.1 İlgi Alanın Seçilme Oranları [1]

Plaka bölgesinde olabilecek farklılıkları yok etmek için plaka bölgesi siyaha boyanır. Aracın görüntü içerisindeki konumuna göre çözünürlüğü değişeceğinden kesilen bütün ilgi alanları belirli bir boyuta (50 x 120) normalize edilir. Elde edilen imgenin yatay ve düşey yönünde türevleri (S_x - S_y) alınır. Bu işlem sobel oparatörleri kullanılarak gerçeklenir. Elde edilen gradient cevabının büyüklüğü |S| ve açısı S_α dır.

$$|\mathbf{s}| = (\sqrt{sx^2 + sy^2})$$
$$s_\alpha = (\arctan\left(\frac{sy}{sx}\right))$$

Bu değerler kullanılarak g_x^{SM} , g_y^{SM} elde edilir.

$$g_x^{\text{SM}} = \frac{Sx^2 - Sy^2}{Sx^2 + Sy^2}$$

$$g_y^{\rm SM} = \frac{2SxSy}{Sx^2 + Sy^2}$$

Yöntemdeki önemli nokta eğitim yapılırken araçlardaki ortak olan noktaları belirginleştirip, farklılıkları ortaya çıkaracak bir maskenin elde edilmesidir. s görüntü üzerinde kenar genliklerini ve v yapısal özniteliklerin varyansını gösteren vektör olmak üzere:

$$\mathbf{w} = \frac{diag(\mathbf{v})\mathbf{S}}{|diag(\mathbf{v})\mathbf{S}|}$$

Maske oluşturulduktan sonra tanıma yapılacak görüntüden elde edilen yapısal öznitelikler ile çarpılarak yeni öznitelikler elde edilir ve karşılaştırma işlemi bu öznitelikler üzerinden yapılır.

$$\mathbf{f'} = \frac{diag(\mathbf{w})^{1/2}\mathbf{f}}{|diag(\mathbf{w})^{1/2}\mathbf{f}|}$$

Şekil 1.2 Sistemin Çalışma Aşamları [1]

2. Scale Invariant Feature Transform (SIFT)

Bu yöntem nesneleri tanımak için kullanılmaktadır[2]. Bu çalışmada bu yöntemin aynı grup nesneler için ayırıcılığı denenecektir. Yöntemin en önemli özelliği görüntünün boyutundan, açısından; ışık miktrarnın ya da kamera açısının değişmesinden; kontrast ya da gürültüden etkilenmemesidir[2,8,9].

Algoritmanın temel adımları [2,8]:

- Ölçek Uzayı Uç Noktaların buluması (Scale Space Extrema detection)
- Anahtar noktaların belirlenmesi (Keypoint Localization)

- Yönelimlerin atanması (Orientation assignment)
- Anahtar nokta tanımlayıcılarının tesbiti (Keypoint descriptors)

Ölçek uzayının belirlenmesinde DoG (Difference-of-Gaussianss) kullanılır.

Şekil 1.3 Difference-of-Gaussians Piramiti [2]

Uç noktaların seçilmesinde bir noktanın 3x3x3, 26, komşulundaki noktalara bakılır.

Şekil 1.4 Uç Noktaların Bulunması [2]

Bulunan bu noktaların sayısı toplam piksel sayısından küçüktür. Ancak hala oldukça fazladır ve gerçek uç noktalar olmayabilirler.

Şekil 1.5 Hatalı Uç Nokta [8]

Taylor serileri kullanılarak uç nokta hataları giderilmeye çalışılırken, filtrelemeler ve eşiklemeler uygulanarak anahtar noktaların sayısı azaltılır[8].

Herbir nokta etrafında bir alan seçilir ve uygun yumuşatılmış(smooted) görüntü, L, üzerinde gradient değerinin büyüklüğü ve açı değerleri hesaplanır[9].

$$L(x,y) = G(x,y,\sigma) * I(x,y)$$
 [9]
$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1} \left(\frac{(L(x,y+1) - L(x,y-1))}{(L(x+1,y) - L(x-1,y))}\right)$$
 [9]

Daha sonra her bir anahtar noktanın çevresinde anahtar nokta tanımlayıcıları (descripter) bulunur. Bunun için o nokta çevresinde 4x4 lük alt alanlar seçilir ve her bir alt alana ait histogram değerleri oluşturulur[2]. Histogram kolon değerleri aynı yöndeki gradient büyüklüklerinin toplanması ile hesaplanır. Aşağıdaki resimde 4x4 lik tanımlama değerlerinin 16x16'lik örnekten nasıl oluşturulduğu gösterilmiştir.

Şekil 1.6 Anahtar Nokta Tanımlayıcıları [9]

Anahtar noktaların belirlenmesinin boyuttan, ölçeklemeden, dönmelerden, kontrast ve gürültüden ayrıca ışık şiddetinden bağımsız olduğunu aşağıdaki şekilde görebiliriz. İkinci resim, ilkinin döndürülmesi, ölçeklenmesi, parlaklığının ve kontrastının değiştirilmesi, ve piksel gürültüsü eklenmesi ile elde edilmiştir. Bulunan anahtar noktaların %78'i ilkinde bulunanlara çok yakındır.

Şekil 1.7 Anahtar Noktaların Bulunması [2]

Nesne tanınmasına örnek

Şekil 1.8 3D Nesnelerin Tanınması [9]

3. Modified SIFT (M-SIFT)

Bu kısımdaki açıklamalar Colos'un makalesinden[3] alınmıştır.

Bu yöntem de önceki yöntemler gibi araç plaka bölgesine göre seçilecek bir ilgi alanı üzerinden elde edilecek özniteliklerin karşılaştırılmasına dayanmaktadır.

Yapılan çalışmada arabalara ait 1600x1200 çözünürlükte 100 görüntü kullanılmıştır. Tanınmaya çalışılan araç markaları: Octavie, Opel, Opel2, Skoda 120, Skoda 105, Favorit2, Fiat Uno, Favorit, Fabie. [3]

Ayrıca kamyonlar için1280x512 çözünürlükte ayrı görüntüler toplanmıştır. Tanınmaya çalışılan kamyon markaları: Daf, Iveco, Man, Mercedes, Renault, Scania ve Volvo. [3]

Yöntem üç temel adımdan oluşmaktadır.

- İlgi alanının belirlenmesi ve geometrik normalize etme
- Özniteliklerin oluşturulması
- Sınıflandırmanın yapılması

Şekil 1.9 Sistemin Çalışması [3]

İlgi alanı seçimi için aşağıdaki oranlar kullanılmıştır.

Şekil 1.10 İlgi Alanının Belirlenmesi[3]

Normalize boyutlar 256x92 oranına ayarlanmıştır.

Kesilen ilgi alanı normalize edildikten sonra hücrelere bölünür. Buradaki amaç SIFT'te belirlenmeye çalışan anahtar noktalar yerine her bir hücrenin merkezini bir anahtar nokta gibi düşünmektir.

Öznitelikler oluşturulurken görüntünün yatay ve düşey yöndeki türevlerinden elde edilen gradient değerinin açısına bağlı olarak her bir hücre için histogram oluşturur. Histogramın kaç kolondan oluşacağı sisteme parametre olarak verilmektedir.

Elde edilen gradient cevabının büyüklüğü |s| ve açısı s_{α} 'dır.

$$|s| = (\sqrt{sx^2 + sy^2})$$

$$s_a = (\arctan(\frac{sy}{sx}))$$

Şekil 1.11 Hücre İçi Histogram [3]

Histogramın oluşturulurken üç yöntem izlenebilir.

- Sift-Ori

Burada her bir hücre için tarama yapılırken, görüntü üzerinde o piksele ait olan S_{α} açısının o hücrede karşı düştüğü histogram kolunu bulunur ve değeri bir artırılır [3].

Sift-Grad

Burada her bir hücre için tarama yapılırken, görüntü üzerinde o piksele ait olan s_{α} açısının o hücrede karşı düştüğü histogram kolunu bulunur ve gradient değerinin büyüklüğü, |s|, kadar artırılır. [3]

Sift-GradWei

Burada her bir hücre için tarama yapılırken, görüntü üzerinde o piksele ait olan s_{α} açısının o hücrede karşı düştüğü histogram kolunu bulunur ve gradient değerinin büyüklüğünün, |s|, hücre merkezine uzaklığına bölümünden elde edilen değer kadar artırılır.[3]

Ayrıca açısal kaymaları engellemek için üst üste gelen(overlap) ikinci bir hücreleme yapılır.

Şekil 1 Üst üste hücrelerin gösterimi [3]

Yukarıda önceki çalışmaların kapsamları ve başarımları hakkında genel bilgiler verilmiştir. Bu çalışmada, yukarıda bahsedilen üç yöntem marka ve tür tanıma için kullanılmıştır. Bu yöntemlerin karşılaştırılmaları yapılmış ve başarımlarını artırmaya yönelik yeni yaklaşımlar ortaya konulmuştur. Özellikle M-SIFT yönteminde farklı özniteliklerin ve araçların genel ağırlık maskesinin kullanılması başarımı oldukça artırmıştır. Bununla beraber gerçek zamanlı uygulamalarda ilgi alanı seçilememesine bağlı olarak yapılacak yoksaymaları engellemek için 3 farklı ilgi alanı kullanılmaktadır. Yöntemler için kullanılması gereken parametrelerin seçimi için testler yapılmıştır.

Dökümantasyonun ikinci bölümünde projenin tanımı, planı ve proje ile ilgili kısıtlamalar ve kestirimler verilecektir. Üçüncü bölümde teorik bilgiler; dördüncü bölümde projenin analizi ve yazılım modellemesi yer alacaktır. Sistemin gerçeklenmesine ilişkin bilgiler, uygulanan yeni yaklaşımlar ve yapılan düzenlemler ve sistemin çalışmasına ilişkin teknik bilgiler verilecektir. Yöntemlerin karşılaştırmasına ve yapılan düzenlemerin etkisine yönelik yapılan testler altıncı bölümde; buradan elde edilen sonuçların yorumlanması ve öneriler yedinci bölüm altında açıklanacaktır.

2 PROJE TANIMI VE PLANI

1. Proje Tanımı

Bu projede, araçların ön görünüşlerinden görüntü işleme yöntemleri ile marka ve türlerinin tanınması yapılacaktır. Tanıma işlemi araç plaka koordinatlarına göre belirlenecek ilgi alanı üzerinden yapılacaktır. Plaka yerinin bulunması bu proje kapsamında olmadığından; sistemin çalışması için araca ait imge ve plaka koordinatları sisteme parametre olarak verilecektir.

Sistem iki temel alt süreçten oluşmaktadır. İlki sistemin marka ve tür bilgisini öğrenebilmesi için yapılması gereken eğitim sürecidir. Diğeri ise gerçek zamanlı olarak tanıma işleminin yapılacağı kısımdır. Eğitim süreci için marka ve tür veritabanı oluşturulması gerekmektedir.

Eğitim aşaması aşağıdaki modüllerden oluşmaktadır.

- Araç görüntülerine ait ilgi alanlarının belirlenmesi ve geometrik normalize etme
- Araç görüntülerine ait özniteliklerin oluşturulması
- Araçlarda ortak olan noktaların bastırılması, çok değişim gösteren yerlerin açığa çıkarılması için maske oluşturulması
- Her bir öznitelik vekötürnün maske ile çarpılması ile yeni baskın özniteliklerin oluşturulması
- Oluşan her yeni öznitelik vekötürnün gerçek marka ve tür bilgisi ile etiketlenerek şablon(template) dosyasına kaydedilmesi

Gerçek zamanlı tanıma aşaması aşağıdaki modüllerden oluşmaktadır.

- Araç görüntüsüne ait ilgi alanının belirlenmesi ve geometrik normalize etme
- Araca ait özniteliklerin oluşturulması
- Öznitelik vekötürnün maske ile çarpılması ile yeni baskın öznitelik vekötürünün olusturulması
- Eğitim şablonu ile karşılaştırma yapılarak tanıma sonucunun bulunması (template matching)

2. Proje Plani

2.1. Projenin Amacı

Görüntü işleme yöntemleri kullanılarak, herhangi bir araç veritabanına bağlanmaksızın, araçların marka ve türlerinin tanınması amaçlanmaktadır. Gerçek zamanlı uygulamalarda kullanılabilmesi için sistemin hızlı ve güvenilir sonuç üretmesi beklenmektedir.

2.2. Proje Kapsamı

Araç alt modellerinin çok çeşitli olması, aynı modellerin yıllar içinde farklılık göstermesi nedeni ile bu projede alt modellerin değil ana marka grubunun tanınması hedeflenmektedir. Bu marka ve türlerin seçiminde Türkiye trafiğinde yer alma yoğunlukları temel alınmıştır (Ek - 1).

2.3. Kullanım Alanları

Marka tanıma sistemi öncelikle trafik izleme ve kontrol sistemleri içerisinde kullanılabilir. Trafik kurallarının denetlendiği bir yolda aşırı hız tespit edilmek isteniyorsa aracın türüne de ihtiyaç duyulur; çünkü hız sınırları araçların sınıflarına göre değişiklik göstermektedir[14]. Benzeri şekilde şehir içi ve köprü geçişlerinde bazı araç sınıflarına belirli saatler arasında geçiş yasağı uygulanmaktadır[15]. Bu durumda yasak kapsamındaki bir aracın bu kuralı ihlal edip etmediğinin tesbitinde kullanılabilir.

Araç ihbarlarında ve çalıntı araç takibinde mevcut olan sistemlere (Plaka Tanıma gibi) ek bir tanımlama daha getirerek kontrolu kolaylaştıracaktır. Benzeri şekilde site ve otopark uygulamalarının başarımını artırmaya yönelik olarak kullanılabilecektir. Bunlara ek olarak istatiksel çalışmalar için bir bölge hakkında veri toplamak amacıyla kullanılabilir.

2.4. Başarım Kriterleri

Projenin zamanında tamamlanması, istenen kriterleri yerine getirmesi ve kaliteli bir yazılımın ortaya konulabilmesi hedeflenmektedir. Sistemin başarı kriterleri gerçek zamanlı uygulamalar dikkate alındığında üç ana madde etrafında toplanabilir: sistem gereksinimlerinin az olması, hızlı olması ve yüksek başarıma sahip olması. Sistemin trafik denetiminde ve başka sistemlerle birlikte kullanılabileceği baz alındığında ardışıl gelen araçlar arasında geçen zamandan daha hızlı bir şekilde en doğru sonucu üretmesi beklenmektedir. Mümkün olduğu kadar az bellek ve işlemci zamanı kullanarak kendisi ile birlikte başka sistemlerinden çalışmasına olanak sağlanması istenmektedir. Başarım için ise hedeflenen düzey marka için %90 ve üzeri, tür için %95 ve üzeridir.

3 KURAMSAL BİLGİLER

1. Temel Kavramlar

1.1. Kenar Bulma (Edge Detection)

Bilgisayarla görü ve görüntü işlemede temel kavramlardan biri olan kenar bulma, görüntü üzerindeki keskin geçişlerin olduğu noktaların tesbitinde kullanılan algoritmalarla öznitelik bulma ve öznitelik oluşturma için kullanılır[10]. Görüntünün karakteristiğine ait önemli bilgileri tutan kenarlar siyah beyaz görüntüler için tek bilgi kaynağıdır[11].

Kenarlar görüntünün gradient değerleri ile bulunur. Gradient görüntüdeki her piksele karşılık düşen yoğunluk ve yön bilgisini içerir. Matematiksel olarak, görüntünün yatay ve düşey yönündeki türevlerinden oluşan 2 boyutlu bir vektördür; bu vektör o noktadaki en büyük yoğunluk (intensity) değişim yönünü gösterir, vektörün büyüklüğü ise o yöndeki değişimin oranını verir[10].

Gradient değerleri değişik operatörler ile hesaplanabilir. Kullandığı maskenin hesaplama işleme için basit olması nedeniyle kenar bulma işlemi için sobel operatorü kullanılmıştır.

Sobel operatorü yatay ve düşey yöndeki türevleri hesaplamak için 3x3'lük maskeler kullanır. *I* giriş görüntüsü olmak üzere, Sobel operatörlerinin cevabı bu giriş görüntüsünün 3x3'lük aşağıda verilen maskelerle konvolüsyonudur[10].

$$S_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} *I \quad S_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} *I$$

Elde edilen gradient vektörünün genliği ve açısı aşağıdaki şekilde hesaplanır.

$$|\mathbf{s}| = (\sqrt{sx^2 + sy^2})$$

$$s_{\alpha} = (\arctan(\frac{sy}{sx}))$$

1.2. Görüntünün Yumuşatılması (Smoothing)

Görüntüdeki gürültüyü azaltmak amacıyla yapılır. En fazla kullanılan yöntem ortalama değer alınmasıdır. NxN boyutunda $1/N^2$ değerlerinden oluşan bir maske ile görüntünün konvolusyonundan elde edilir. Projede 3x3 boyutunda aşağıda verilen maske kullanılmıstır.

$$\mathbf{M} = \frac{1}{9} \mathbf{x} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

1.3. Histogram

Histogram, belli bir veri kümesinin elamanlarının frekans dağılımlarıdır. Genellikle histogram kolonları çubuk grafik olarak ifade edilir. Renkli resimler için 4 bant - Kırmızı, Yeşil, Mavi, Yoğunluk-, gri seviye resimler için tek bant olarak gösterilebilir. k adet kolonun olduğu bir histogramda toplam eleman sayısı, n, her bir kolona düşen eleman sayılarının toplamı olarak ifade edilir.

$$n = \sum_{i=1}^{k} mi$$

2. Sınıflandırma

Sınıflandırma işlemi sisteme yeni giren bir verinin hangi sınıftan olduğunun bulunması için kullanılır. Bu projede en yakın k-komşuluk dikkate alınmıştır.

2.1. En Yakın k-Komşuluk (k-NN)

Bu sınıflandırma yönteminde, yeni gelen verinin hangi sınıftan olduğu bulunurken en yakın komşuluğa bakılır. k değeri, en yakın kaç komşunun bulunacağını gösterir ve genellikle tek sayılardır. Yöntemde hata fonksiyonları ile yeni gelen verinin, sınıfları bilinen eğitim seti verileri ile aralarındaki uzaklıklar hesaplanır; minimum değere sahip k komşuluk dikkate alır.

3. Hata Fonksiyonu

Hata fonksiyonları karşılaştırma işlemlerinde iki değer arasındaki uzaklığın nasıl hesaplanacağını belirtir.

3.1. Öklid Uzaklığı(Euclidian Distance)

Bu hata fonksiyonunda iki vektor arasındaki uzaklık iki şekilde hesaplanabilir.

- Vektörler arası uzaklık vectörlerin farklarının mutlak değerine eşittir. L1 Normu olarak adlandırılır.

$$d = |\mathbf{f}_1 - \mathbf{f}_2|$$

- Vektörler arası uzaklık vectörlerin farklarının karelerinin karaköküne eşittir. L2 Normu olarak adlandırılır.

$$d = \sqrt{(\mathbf{f1} - \mathbf{f2})^2}$$

3.2. Dot Product

Bu hata fonksiyonunda iki vektor arasındaki uzaklık, vektörlerin iç çarpımlarının 1'den çıkarılması ile bulunur.

$$d = 1 - \mathbf{f_1}^{\mathrm{T}} \mathbf{f_2}$$
 [1]

4 ANALIZ VE MODELLEME

Araç marka ve tür tanıma sistemi, araç bilgi veritabanından bağımsız olarak, araç öngörünüşlerinden seçilecek ilgi alanı ile görüntü işleme teknikleri kullanılarak gerçeklenecektir. Sistemin çalışması için araç imgesi, plaka koordinatları ve diğer konfigurasyon bilgileri sisteme parametre olarak verilecektir.

Gerçek zamanlı uygulamalarda kullanılacak sistemin ortam şartlarından ve alınacak görüntünün çözünürlüğünden bağımsız olması istenmektedir. Sistemin eğitilmesi ve testlerin yapılması için araç görüntü veritabanının toplanması ve düzenlenmesi gerekmektedir. Bu veritabanı toplanırken sistemden istenen gereksinimler ve sistemi etkileyecek faktörler dikkate alınacaktır.

1. Sistemi Etkileyebilecek Faktörler

Bu proje kapsamında geliştirilecek uygulama dış ortamda kullanılabilir. Bu nedenle sistemin ortam değişkenlerinden mümkün olduğunca az etkilenmesi ve kararlı olması beklenmektedir. Sistemi etkileyebilecek etmenler başlıca: Hava şartları, ışık değişimi, kamera açısı, görüntünün hareketli olması ve plakanın tampon üzerindeki faklı yerleridir.

1.1. Hava Şartları

Görüntü işlemenin başarılı sonuç üretebilmesi için alınan görüntünün kaliteli olması gerekmektedir. Ancak hava durumundaki değişimler alınan görüntünün kalitesini olumsuz etkileyecektir. Sisli, yağmurlu, bulutlu, karlı havalarda alınacak görüntüdeki gürültü miktarı artacaktır. Bununla beraber güneşli havalarda çevreden ve araç yüzeyinden gelen yansımalar olacaktır. Sistemin bu değişimlerden mümkün olduğunca bağımsız olması için eğitim seti için farklı hava koşullarında alınacak görüntüler kullanılacaktır.

1.2. Işık Değişimi

Günün farklı saatlerinde, farklı hava koşullarında ve oluşacak yansımalar sonucunda sistemin çalıştığı ortamdaki ışık miktarı değişim gösterecektir. Bu etkinin azaltılması için kameraya lens takılması ve günün farklı saatlerinde farklı yerlerde yapılan çekimlerin eğitim setinde kullanılması düşünülmektedir.

1.3. Kamera Açısı

Kamera açısının değişmesi görüntü üzerinde perspektif değişimlere neden olacaktır. Bunun neticesinde seçilecek ilgi alanında kaymalar meydana gelecektir. Çözüm için perspektif düzeltme yapılabilir veya farklı kamera açılarına sahip görüntüler eğitim için kullanılabilir.

1.4. Hareketli Görüntü

Gerçek zamanlı uygulamalarda hareketli görüntüler kullanılacaktır. Hareket olması görüntüde titremelere neden olabilir. Gelen görüntüde uygun ilgi alanı bulunmayabilir. Bu nedenle aynı araca ait birden fazla görüntü grubu içerisinden uygun ilgi alanı olan imgeyi sistemin seçmesi beklenecektir. Birden fazla ilgi alanı oranı kullanılarak ihmal edilen araç sayısı azaltılabilir.

1.5. Plaka Yeri

Plaka yerinin tüm araçlar için standart olmaması sistemin performansını etkileyecektir. Ancak aynı marka araçlarda plaka yeri genellikle benzerlik göstermektedir. Bununla birlikte kamyon ve tırlarda aynı markalar için bile plaka yeri farklı olabilmektedir. Yine bu türler için seçilecek ilgi alanı tanıma yapmak için yeterli olmayabilir.

2. Sistemin Çalışması

Tanıma işleminin yapılabilmesi için sistemin araç marka ve türleri ile eğitilmesi gerekmektedir. Bu nedenle yukarıda belirtilen faktörler dikkate alınarak farklı yer ve zamanlarda; değişik kamera açısı ve ışık değerlerine sahip görüntülerin toplanması gerekmektedir. Daha sonra bu görüntülerden uygun olanların seçilerek gruplanması ve gerçek marka ve tür bilgileriyle etiketlenmesi gerekmektedir. Bu işlemin yapılabilmesi için öncelikle araç plaka koordinatları Plaka Tanıma Sistemi ile tespit edilecek ve Araç Kayıt programı ile etiketleme işlemi yapılacaktır. Araçların gerçek bilgileri Emniyet Genel Müdürlüğü'nün araç sorgulama sayfasından alınacaktır. Araç görüntü veritabanında şu bilgiler yer alacaktır: Veritabanı adı, çekim yapılan yer, hava koşulları, gece-gündüz bilgisi, kamera açısı; plaka, marka, tür ve renk bilgisi; plaka koordinatları, plaka özellikleri(kare - dikdörtgen).

Eğitim programı için genel akış diyagramı

Şekil 4.1 Eğitim akış diyagramı

Sistemin çalışması sırasında program alınan imgenin büyüklüğünden bağımsız olacaktır. Bu nedenle alınan görüntülerin çözünürlüğü imgenin tamamı okunmadan sadece çözünürlük bilgisi alınarak bulunur ve uygun ilgi alanının olup olmamasına bakılarak imgenin işlenmesine karar verilir. Test aracına ait birden fazla görüntüden araç çözünürlük bilgisi yüksek olan ve uygun ilgi alanı seçilebilen resim sistem tarafından seçilecektir. Alan dışı kalan araç sayısının azaltılması için orta, sağ ve sol olmak üzere üç adet ilgi alanı kullanılacak ve bunlara ait eğitimler önceden yapılacaktır. Araç ağırlık maskesi eğitim aşaması sonucunda elde edilen maskedir ve ağırlıklandırılmış özniteliklerin oluşturulması için kullanılır.

Gerçek zamanlı çalışan program için genel akış diyagramı

Şekil 4.2 Gerçek zamanlı çalışma akış diyagramı

Ayrıca sistemin kullanımı, testi ve raporlaması için bir kullanıcı arabirimi oluşturulacaktır. Eğitim ve test işlemleri bu program kullanılarak yapılabilecek; ayrıca raporlama modülü ile sistemin marka ve tür tanıma başarısı, çalışma zamanları ve karşılaştırma matrisleri oluşturulacaktır.

3. Modelleme

3.1. Projenin Temel Mimarisi

Projenin temel mimarisi şu şekildedir.

Şekil 4.3 Proje mimarisi

3.2. Test ve Kontrol Programı Mimarisi

Marka Tür Tanıma Arayüzü olarak adlandırılacak olan kullanıcı arabirimi aşağıdaki temel mimaride olacaktır.

Şekil 4.9 Test Programı mimarisi

5 TASARIM, GERÇEKLEME ve TEST

Bu çalışmanın gerçeklenmesinde, Intel tarafından geliştirilen görüntü işleme kütüphanesi olan OpenCV[12] kullanılmıştır. Ortam değişkenlerinden sistemin mümkün olduğunca bağımsız olması için farklı zamanlarda ve farklı yerlerde; farklı kamera açılarında görüntüler toplanmıştır.

Şekil 5.1 Örnek Araç Görüntüleri

Gerçek zamanlı olarak sistemin çalışmasında ilgi alanına bağlı olarak araç kaçırmamak için orta, sağ ve sol olmak üzere üç adet ilgi alanı kullanılmaktadır ve sistem uygun ilgi alanını tanıma yapılacak araca ait görüntü dizisi içerisinden kendisi seçmektedir.

Marka ve tür tanıma sisteminde yapılan kaynak taraması sırasında başarımları yüksek olarak görülen SMG ve M-SIFT yöntemleri ile marka tanımadaki ayırıcılığını denemek için SIFT yöntemi kullanılmıştır. Bu yöntemlerin karşılaştırılması yapılmış ve başarımlarını artırmak için çalışmalar yapılmıştır. Ayrıca algoritmlarada kullanılan ilgi alanın plaka koordinatlarına göre seçilen oranları ile normalize edilen boyutlar için geniş ölçekli bir parametre taraması yapılmıştır. Bu parametre taraması sırasında 1047 test görüntüsü kullanılmıştır. Yöntemler farklı öznitelikler kullanılarak gerçeklenmiş, yeni uyarlamalara gidilmiş ve bunların etkisi gözlenmiştir. Yöntemleri kendi içlerinde karşılaştırırken ve yeni yaklaşımların etkisi gözlenirken 3656 test görüntüsü kullanılmıştır. M-SIFT yöntemi için araç ağırlık maskelerinin kullanılması başarımı ve kararlılığı oldukça artırmıştır.

Sınıflandırma işlemi şablon karşılaştırma (template matching) kullanılarak en yakın komşuluğa göre yapılmıştır.

1. Square Mapped Gradient

Bu yöntem P.S. Petrovic ve T.F.Cootes'un makalesinden[1] uyarlanmıştır. Araç markalarının tanınması üzerine yaptıkları araştırmada en başarılı sonucun Square Mapped Gradient öznitelikleri ile elde edildiği görülmüştür.

Algoritmanın çalışması 3 temel adımdan oluşmaktadır.

- İlgi alanının bulunması ve geometrik normalize etme
- Özniteliklerin bulunması
- Sınıflandırmanın yapılması

Yöntemin en önemli özelliği eğitim aşamasında araçlara ait genel bir ağırlık vektörünün oluşturulmasıdır.

İlgi alanının bulunmasında plaka koordinatları kullanılmaktadır. Plaka alanı siyaha boyanarak oradan gelecek özniteliklerin etkisi yok edilmiştir. Ardından kesit alınan ilgi alanı belirli boyutlara normalize edilir. Bu sayede araçlara ait imgelerin plaka bölgeleri üst üste gelecek şekilde çakışması sağlanır.

Şekil 5.2 RoI seçimi ve Normalize edilmesi

Öznitelik vektörlerinin oluşturulması sırasında öncelikle düşey ve yatay yönde görüntünün türevleri alınır. Bu işlem sırasında 3x3 lük Sobel oparatörleri kullanılmaktadır. Yatay yöndeki sobel cevabı s_x , düşey yöndeki Sobel cevabı s_y ile gösterilsin. Bundan sonra birim çember etrafında paralel öznitelikleri oluşturan g_x^{SM} ve köşegen (diyagonel) öznitelikleri oluşturan g_y^{SM} elde edilir. Bunlar yapısal özniteliklerdir.

$$g_x^{\text{SM}} = \frac{Sx^2 - Sy^2}{Sx^2 + Sy^2}$$
 [1]

$$g_y^{\text{SM}} = \frac{2SxSy}{Sx^2 + Sy^2}$$
 [1]

Ağırlık maskelerinin elde edilmesinde yapısal öznitelikleri kullanılır.

$$\mathbf{w} = \frac{diag(\mathbf{v})\mathbf{S}}{|diag(\mathbf{v})\mathbf{S}|}$$
[1]

Maskelerin elde edilmesinde eğitim setindeki tüm resimler kullanılır. Bu maskeler eğitim setindeki araçlardaki farklılıkların fazla olduğu yerlerde yüksek değerlere, ortak noktalarda ise düşük değerlere sahiptir. Maske oluşturulduktan sonra yapısal öznitelikler ile çarpılarak ağırlıklandırılmış öznitelikler elde edilir ve karşılaştırma işlemi bu öznitelikler üzerinden yapılır.

$$\mathbf{f'} = \frac{diag(\mathbf{w})\mathbf{f}}{|diag(\mathbf{w})\mathbf{f}|}$$
[1]

Şekil 23 Üst: sx, sy, gx, gy Alt: wx, wy, f'x, f'y

Bu yöntemde, seçilecek ilgi alanının plaka koordinatlarına göre hangi oranlarda seçilmesi gerektiği ve normalize boyutların değişiminin sisteme olan etkisi 1047 test görüntüsü ile incelenmiştir (Ek 3 - A). Ayrıca yöntemde farklı özniteliklerin ve ağırlık maskelerinin kullanılması, ilk olarak alınan görüntüde gürültü azaltmaya yönelik yumuşatma (smoothing) işlemlerinin yapılmasının sisteme olan etkisi 3656 test görüntüsü ile incelenmiştir. Bunlara ait sonuçlar altıncı bölümde belirtilecektir.

Kullanılan öznitelikler (f) ve maskeler şu şekildedir.

- İlk olarak makalede[1] belirtilen öznitelik(**f**) ve maske (**w**) kullanılmıştır. Bunların hesaplanmasına ilişkin denklemler yukarıda açıklanmıştır.
- İkinci olarak hesaplama işlemi şu şekilde yapılmıştır. $\mathbf{s_x}$ ve $\mathbf{s_y}$; x ve y yönünde görüntünün türevleri, s genliği ve $\mathbf{v_x}$, $\mathbf{v_y}$ varyansı olmak üzere olmak üzere, elde edilecek ağırlık maskesi \mathbf{a} ile gösterilecektir.

$$\mathbf{a} = \frac{diag(\mathbf{v})\mathbf{S}}{|diag(\mathbf{v})\mathbf{S}|}$$

$$\mathbf{f}_{\mathbf{x}} = \frac{diag(\mathbf{a})^{1/2}\mathbf{S}\mathbf{x}}{|diag(\mathbf{a})^{1/2}\mathbf{S}\mathbf{x}|}$$

 $\mathbf{f_y}$ de benzeri şekilde $\mathbf{s_y}$ kullanılarak hesaplanır. Sonuçta elde edilen \mathbf{f} öznitelik vektörü $\mathbf{f_x}$ ve $\mathbf{f_y}$ nin uç uca eklenmesi ile oluşur.

- Üçüncü olarak, ilk kısımda basedilen **w** maskesi, **sx** ve **sy** özniteliklerini ağırlıklandırma için kullanılmıştır.

$$\mathbf{f}_{\mathbf{x}} = \frac{diag(\mathbf{w}\mathbf{x})^{1/2}S\mathbf{x}}{|diag(\mathbf{w}\mathbf{x})^{1/2}S\mathbf{x}|}$$

 \mathbf{f}_y de benzeri şekilde $\mathbf{s}\mathbf{y}$ kullanılarak hesaplanır. Sonuçta elde edilen \mathbf{f} öznitelik vektörü \mathbf{f}_x ve \mathbf{f}_y nin uç uca eklenmesi ile oluşur.

- Son olarak, üçüncü kısımda bulunan $\mathbf{f}_{\mathbf{x}}$ ve $\mathbf{f}_{\mathbf{y}}$ nin büyüklüğü öznitelik olarak kullanılmıştır.

$$f = \sqrt{fx^2 + fy^2}$$

Yapılan testler sonucunda en yüksek başarımın makalede belirtilen öznitelikler ve ağırlık maskesi kullanılarak elde edildiği görülmüştür.

2. Sift

Sift algoritması nesnelerin tanınmasında oldukça yüksek başarıma sahiptir ve ortam değişkenlerinden, kamera açısından ve ölçekten bağımsızdır[2].

Bu çalışmada, D. Lowe tarafından geliştirilen algoritmanın aynı gruptaki nesneleri (burada hepsi araç) birbirinden ayırma yeteneği incelenecektir. Sift yöntemine ilişkin geliştirilen uygulamada, Rob Hess tarafından gerçeklenen ve D. Lowe'un makalesini temel alan uygulama[13] baz alınmış ve program onun üzerine geliştirilmiştir.

Yöntemin çalışması sırasında ilk olarak ilgi alanları gelen araç imgesinden seçilecek; ve yöntemin ölçekten bağımsız olması dikkate alınarak normalize edilmeyecektir. Seçilen ilgi alanı üzerinde SIFT algoritması uygulanarak öznitelikler belirlenecektir.

Bu işlem için

- İlk olarak ölçek uzayı uç noktaları bulunacak. Bu işlem için DoG kullanılacaktır.
- Uç noktalar belirlendikten sonra bunların sayısını azaltmak ve doğruluğunu artırmak için filtreleme ve eşikleme gibi işlemler uygulanacak ve anahtar noktalar elde edilecektir.
- Ardından yönelimler belirlenecek ve anahtar noktasındaki tanımlayıcılar elde edilecektir. Bu tanımlayıcılar öznitelik vektörünü oluşturacaktır.

Karşılaştırma işlemi yapılırken iki görüntü arasında en çok eşleyen anahtar noktaya sahip olanlar en yakın komşu sayılacaktır.

Yöntem için öncelikle örnek görüntü gruplarında anahtar nokta eşlemelerinin dağılımına bakılmıştır. Aynı ve farklı marka ve türlerdeki araçlar ile yapılan bu çalışma ile eşleşen anahtar noktaların nerede yoğunlaştığı tesbit edilmeye çalışılmıştır. Bu sayede seçilmesi gereken ilgi alanını nereleri kapsaması gerektiği hakkında bilgi sahibi olunmuştur.

Şekil 5.5 Araç resimlerinde anahtar nokta eşlemeleri

Yapılan bu çalışma sonucunda anahtar nokta eşlemelerinin daha çok marka logolarının civarında toplandığı gözlenmiştir. Dolayısıyla projeyi geliştirme düşüncesi olarak yöntemin sadece logo çevresine bakılarak tanıma başarısı incelenecektir. Diğer yöntemler ile kaşılaştırılacaktır.

Araç ön bölgesinden seçilen ilgi alanına göre belirlenen anahtar noktalar aşağıda gösterilmiştir.

Şekil 5.6 Seçilen ilgi alanında anahtar nokta örnekleri

Benzeri şekilde araç logo çevresinde bulunan anahtar nokta örnekleri aşağıda gösterilmiştir.

Şekil 5.7 Logo çevresinde anahtar nokta örnekleri

Logo çevresinde yapılan karşılaştırmalar.

Şekil 5.8 Logo çevresinde anahtar nokta eşlemeleri

Şekil 5.9 Seçilen ilgi alanında anahtar nokta eşlemeleri

Yöntemin gerçek zamanlı uygulamalarda oldukça yavaş kalması, çalışma süresinin uzun olması nedeni ile bu yöntem için çok fazla test yapılamamıştır. Ayrıca bu yöntem için yapılan testlerde süreyi kısaltmak için sadece 5 marka seçilmiş ve testler bu görüntüler üzerinde yapılmıştır. Bu markalar: Renault, Honda, Volkwagen, Peugeot, Fiat'tır.

Sadece logo çevresi seçilerek yapılan testlerde %79 civarında başarı elde edilirken daha geniş bir ilgi alanı seçildiğinde %86'ya yaklaşan başarı elde edilmiştir. Diğer yöntemlerle de aynı ilgi alanları ve aynı test grubu ile testler yapılmıştır. M-SIFT logo çevresinde %94, SMG ise %83 civarında başarı vermiştir. Ayrıca diğer ilgi alanlarında da başarıları SIFT'e göre oldukça yüksek çıkmıştır. Ayrıntılı sonuclar altıncı kısımda yer alacaktır.

3. Modified Sift

Bu yöntem, SIFT algoritmasında elde edilen özniteliklerin kullanılmasına dayanır. Ancak SIFT yönteminin aksine anahtar nokta bulmakla ilgilenmez. Araçların plaka bölgelerinin sabit olduğu kabul edilip ona göre belirlenecek ilgi alanını hücrelere bölerek her bir hücrenin merkezini anahtar nokta varsayar. Geometrik olarak normalize edilen görüntülerde plaka bölgeleri üst üste gelir. Bu sayede de anahtar noktaların eşlenmesi problemi ortadan kalkmış olur.

Gelen görüntü için ilk olarak ilgi alanının belirlenmesi ve normalize boyutlara indirgenmesi işlemi yapılır. Daha sonra normalize edilen görüntü belirli boyutlardaki hücrelere (tile) bölünür. Görüntüye ait gradient büyüklükleri ve açıları bulunur. Ardından her bir hücre için belirli sayıda kolona (bin) sahip histogramlar oluşturulur. Bu

histogramların oluşturulmasında 3 yöntem kullanılabilir: Sift-Ori, Sift-Grad, Sift-GradWei[3].

Sift-Ori:

Burada, her bir hücre için tarama yapılır; bu tarama sırasında her pikselin açı değerine karşılık gelen histogram kolonu bulunur ve değeri bir artırılır. Bunun en önemli dezavantajı faklı durumlar için aynı sonucu verebiliyor olmasıdır. Örneğin düzgün bir daire ile rasgele bir görüntünün histogramları aşağıdaki gibi benzer olabilir [3].

Şekil 5.103 Farklı durumlarda benzer histogram sorunu [3]

Sift-Grad:

Burada, her bir hücre için tarama yapılır; bu tarama sırasında her pikselin açı değerine karşılık gelen histogram kolonu bulunur ve değeri pikselin gradient büyüklüğü kadar artırılır. Bu sayede Sift-Ori'de ortaya çıkan sorun büyük oranda halledilmiş olur [3].

Sift-GradWei:

Burada, her bir hücre için tarama yapılır; bu tarama sırasında her pikselin açı değerine karşılık gelen histogram kolonu bulunur ve değeri pikselin gradient büyüklüğünün, o pikselin hücre merkezine olan uzaklığına bölümü kadar artırılır [3].

Bu çalışma kapsamında ağırlıklı olarak Sift-GradWei kullanılmıştır.

Bu yöntemin açı değişimlerine karşı kararlı olması ve elde edilen öznitelik vektörünün uzunluğunun daha küçük olması önemli bir avantaj sağlamaktadır.

Sistemin başarısını artırmaya yönelik çalışmalar yapılmıştır. Bu bağlamda farklı özniteliklerin oluşturulması ve araçlardaki farklılıkları ortaya çıkaran ağırlıklandırma maskelerinin kullanılmasına karar verilmiştir. Bunun neticesinde aşağıda verilen öznitelikler ve maskeler oluşturulmuştur, başarım karşılaştırmaları yapılmıştır.

Oluşturulan öznitelikler ve maskeler:

Sistemin çalışması için gerekli olan açı α ve öznitelik f olsun: Histogram oluşturulurken her bir hücrede yapılan taramada, piksel değerlerinin karşı düştüğü kolon α açısı ile bulunurken bu alana eklenecek değer f den alınacaktır.

Sx ve Sy; x ve y yönündeki türevleri göstermek üzere: Gradient cevabının büyüklüğü |S| ve açısı S_{α} 'dır.

$$|s| = (\sqrt{sx^2 + sy^2})$$

 $s_{\alpha} = (arctan(\frac{sy}{sx}))$

 $\mathbf{g_x}^{SM}$, $\mathbf{g_y}^{SM}$; wx ve wy SMG yönteminden alınmıştır. [$\mathbf{g_x}^{SM} = gx$, $\mathbf{g_y}^{SM} = gy$]

$$\alpha = s_{\alpha}$$

$$\mathbf{f} = \mathbf{s}$$

$$S_x-S_y$$

$$\alpha = s_{\alpha}$$

f: sx ve sy değerlerinin kaskat bağlanması ile elde edilir.

$$\mathbf{g}_{\mathbf{x}}$$

$$\alpha = (arctan(\frac{gySM}{gxSM}))$$

 \mathbf{f} : $\mathbf{g}_{\mathbf{x}}^{\text{SM}}$ ve $\mathbf{g}_{\mathbf{y}}^{\text{SM}}$ değerlerinin kaskat bağlanması ile elde edilir.

\blacksquare SA_s

$$\alpha = s_{\alpha}$$

v' veritabanındaki tüm görüntülerden elde edilen s'lerin varyansı

$$as = \frac{diag(v)S}{|diag(v)S|}$$

$$\mathbf{f} = \frac{diag(\mathbf{a}\mathbf{s})^{1/2}\mathbf{S}}{|diag(\mathbf{a}\mathbf{s})^{1/2}\mathbf{S}|}$$

$$\blacksquare$$
 SW_x

$$\alpha = S_{\alpha}$$

$$\mathbf{f} = \frac{diag(\mathbf{w}\mathbf{x})^{1/2}\mathbf{S}}{|diag(\mathbf{w}\mathbf{x})^{1/2}\mathbf{S}|}$$

$$\blacksquare$$
 SW_y

$$\alpha = S_{\alpha}$$

$$\mathbf{f} = \frac{diag(\mathbf{w}\mathbf{y})^{1/2}S}{|diag(\mathbf{w}\mathbf{y})^{1/2}S|}$$

$$S_xA_x-S_yA_y$$

$$\alpha = S_{\alpha}$$

vx 'veritabanındaki tüm görüntülerden elde edilen sx 'lerin varyansı vy 'veritabanındaki tüm görüntülerden elde edilen sy 'lerin varyansı

$$\mathbf{a_x} = \frac{diag(\mathbf{vx})\mathbf{S}}{|diag(\mathbf{vx})\mathbf{S}|} \qquad \qquad \mathbf{a_y} = \frac{diag(\mathbf{vy})\mathbf{S}}{|diag(\mathbf{vy})\mathbf{S}|}$$

$$\mathbf{f}_{\mathbf{x}} = \frac{diag(\mathbf{a}\mathbf{x})^{1/2}\mathbf{S}\mathbf{x}}{|diag(\mathbf{a}\mathbf{x})^{1/2}\mathbf{S}\mathbf{x}|} \qquad \qquad \mathbf{f}_{\mathbf{y}} = \frac{diag(\mathbf{a}\mathbf{y})^{1/2}\mathbf{S}\mathbf{y}}{|diag(\mathbf{a}\mathbf{y})^{1/2}\mathbf{S}\mathbf{y}|}$$

f: fx ve fy değerlerinin kaskat bağlanması ile elde edilir.

$$\mathbf{S}_{\mathbf{x}} \mathbf{A}_{\mathbf{s}} - \mathbf{S}_{\mathbf{y}} \mathbf{A}_{\mathbf{s}}$$

$$\alpha = \mathbf{S}_{\alpha}$$

$$\mathbf{f}_{\mathbf{x}} = \frac{diag(\mathbf{a}\mathbf{s})^{1/2} \mathbf{S}\mathbf{x}}{|diag(\mathbf{a}\mathbf{s})^{1/2} \mathbf{S}\mathbf{y}|} \qquad \mathbf{f}_{\mathbf{y}} = \frac{diag(\mathbf{a}\mathbf{s})^{1/2} \mathbf{S}\mathbf{y}}{|diag(\mathbf{a}\mathbf{s})^{1/2} \mathbf{S}\mathbf{y}|}$$

f: fx ve fy değerlerinin kaskat bağlanması ile elde edilir.

$$\mathbf{S}_{\mathbf{x}} \mathbf{W}_{\mathbf{x}} - \mathbf{S}_{\mathbf{y}} \mathbf{W}_{\mathbf{y}}$$

$$\alpha = \mathbf{S}_{\alpha}$$

$$\mathbf{f}_{\mathbf{x}} = \frac{diag(\mathbf{W}\mathbf{x})^{1/2} \mathbf{S}\mathbf{x}}{|diag(\mathbf{W}\mathbf{x})^{1/2} \mathbf{S}\mathbf{y}|} \quad \mathbf{f}_{\mathbf{y}} = \frac{diag(\mathbf{W}\mathbf{y})^{1/2} \mathbf{S}\mathbf{y}}{|diag(\mathbf{W}\mathbf{y})^{1/2} \mathbf{S}\mathbf{y}|}$$

f: fx ve fy değerlerinin kaskat bağlanması ile elde edilir.

f: fx ve fy değerlerinin kaskat bağlanması ile elde edilir.

$$\begin{aligned} & \quad ||\mathbf{S}_{\mathbf{x}}\mathbf{W}_{\mathbf{x}}\mathbf{-}\mathbf{S}_{\mathbf{y}}\mathbf{W}_{\mathbf{y}}|| \\ & \quad \alpha = \mathbf{S}_{\alpha} \\ & \quad \mathbf{f}_{\mathbf{x}} = \frac{diag(\mathbf{W}\mathbf{x})^{1/2}\mathbf{S}\mathbf{x}}{|diag(\mathbf{W}\mathbf{x})^{1/2}\mathbf{S}\mathbf{x}|} \quad \mathbf{f}_{\mathbf{y}} = \frac{diag(\mathbf{W}\mathbf{y})^{1/2}\mathbf{S}\mathbf{y}}{|diag(\mathbf{W}\mathbf{y})^{1/2}\mathbf{S}\mathbf{y}|} \\ & \quad \mathbf{f} = \sqrt{\mathbf{f}\mathbf{x}^2 + \mathbf{f}\mathbf{y}^2} \end{aligned}$$

Yöntemin aldığı parametreler: İlgi alanının seçilme oranları, normalize boyutlar, hücrelerin boyutu ve histogram kolon sayısıdır. Bu parametrelere karşı sistemin nasıl değiştiği ile ilgili testler yapılmıştır(Ek 3 - B). Testler sırasında S_xW_x - S_yW_y 'ye ait olan maske ve öznitelikler kullanılmıştır ve 1047 test görüntüsü üzerinde yapılmıştır. Buradan seçilen parametrelerle yukarıda verilen açı ve öznitelik değerleri için karşılaştırma yapılmıştır. Ayrıca üst üste hücrelerin sistemin performansına etkisi de araştırılmıştır ve yukarıdakilere ek olarak her biri için üst üste(Overlapped) hücreli versiyonları da denenmiştir; isimlendirme yapılırken bu versiyonların sonuna "*-OL" eklenmiştir. Testler için 3656 test görüntüsü kullanılmıştır. Test sonuçları altıncı bölümde ele alınacaktır. Yüksek başarım elde edilen grup için görüntünün ilk alınmasında yumuşatmanın etkisi ve Sift-Grad la elde edilecek özniteliklerin kullanılmasının etkisi araştırılacaktır.

Maske kullanılarak elde edilen öznitelikler sistemin kararlılığını ve başarımını oldukça artırmıştır. %93 üzerinde marka tanıma %96 üzerinde tür tanıma başarısı elde edilmiştir.

Sistemin gerçek zamanlı uygulamalarda kullanılabilmesi için istenen çalışma hızını sağlaması gerekmektedir. Sistemin hızını artırmaya yönelik çalışmalar yapılmıştır. Bu kapsamda şablonların sabit diskten okunması, RamDrive kullanılarak bellek üzerinden okunması ve şablonun kullanıcı arabirimi programı tarafından okunup ortak bellek üzerinden sisteme verilmesi karşılaştırılmıştır. Sonuçlar aşağıda verilmiştir ms.

		1 Resim			2 Resim			3 Resim		10 Resim			
	Min	Max	Ort Tüm	Min	Max	Ort Tüm	Min	Max	Ort Tüm	Min	Max	Ort Tüm	
RamDrive	125	218	159	203	453	262	297	500	364	750	1344	997	
C:	140.6	234,4	172	218.7	390,6	268,8	296	484	368	796,8	1438	1027	
ShareMem	109	187	125	156	484	189	203	360	246	625	1031	751	

Şekil 5.14 Hız sonuçları. Şablon hafizaya alındıktan sonra N resim tanımak için geçen sure. Testler: Intel P4 2.4 GHz, 1 GB Bellek'li bilgisayarda yapılmıştır.

Sistemi test etmek ve raporlama için bir test programı C# dili kullanılarak Visual Sturdio 2005 ile gerçeklenmiştir. Bu programa ait ekran çıktıları Ek-5'de verilmiştir.

6 DENEYSEL SONUÇLAR

Projede sonucunda ortaya konulan sistem başarımlarını karşılaştırmak için testler yapılmıştır.

Bu testlerde farklı zamanlarda ve farklı yerlerde, değişik kamera açıları, ışık şiddetleri ve hava koşullarında toplanan görüntüler kullanılmıştır. Toplanan görüntüler 384x288, 768x288 ve 640x480 çözünürlüklerindedir. Sistemin eğitimi için 2230 görüntü kullanılmıştır ve 52 marka ve 6 tür (Ek 1) sınıflandırılmaya çalışılmıştır. Test setinde 3656 görüntü yer almıştır.

Sistemin gerçek zamanlı olarak çalışması sırasında araç ihmali oranını azaltmak için 3 farklı ilgi alanı kullanılmıştır: Orta, sağ, sol. Dolayısıyla yapılan testlerde bu üç ilgi alanını kapsamaktadır ve her ilgi alanı yönüne göre farklı oranların etkisi gözlenmeye çalışılmıştır.

1. SMG için yapılan testler

			Sistem Par	ametreleri				ÖZNİTELİKLE	R			
	Normaliz	e Boyutlar	(F	lol) Genişle	tme Oranla	rı	Vektör	CuAu CuAu	SxWx-SyWy	malales malales	SxWx-SyWy	Smooted
	Genişlik	Yükseklik	Sol	Sağ	Üst	Alt	Uzunluğu	SxAx-SyAy	SXVVX-SYVVY	gxWx-gyWy	Sxwx-Sywy	gxWx-gyWy
	50		1,5	1,4	0,8	0,3	12000	67,7163	82,1194	85,9803	75,8488	86,6648
	48	128	1,4	1,6	0,8	0,3	12288	67,7711	82,1741	85,6517	75,6846	86,3636
	64	96	1,5	1,5	0,8	0,3	12288	70,0986	83,3242	87,1303	77,1632	88,4173
	48	128	1,5	1,4	0,8	0,3	12288	66,8949	81,5444	85,1314	75	85,9255
	50	120	1,3	1,5	0,9	0,3	12000	69,7426	82,9409	85,5148	77,5465	86,966
	50	90	1,5	1,4	0,9	0,4	9000	73,499	83,1411	83,9101	76,1313	85,803
	50	60	1,3	1,4	0,7	0,3	6000	71,6676	83,0225	85,8201	74,0263	86,6703
_	50		1,4	1,6	0,8	0,3	6000	74,2881	84,6386	86,5553	77,4096	88,2256
İlgi Alanı Orta Bakış Açısı İçin	48		1,4	1,5	0,8	0,3	9216	70,1533	82,8587	86,2541	76,1774	87,3768
ISI	32		1,3	1,4	0,7	0,3	4608	70,2414	80,0329	84,3664	71,4756	
Š.	64		1,4	1,6	0,8	0,3	9216	72,563	84,3921	87,3768	77,8751	88,034
귷	48		1,3	1,4	0,7	0,3	6912	69,6654	81,5414	85,9298	73,9166	86,8897
E E	64		1,4	1,5	0,8	0,3	9216	73,2749	84,529	87,4042	78,4775	87,9244
ō	32		1,5	1,5	0,8	0,3	4096	74,2607	82,3932	84,6386	74,4797	86,3089
an	32		1,4	1,6	0,8	0,3	4096	73,6035	82,448	85,4326	74,4524	86,5827
₹	64			1,5	0,8	-0,2	12288	82,0295	83,2604	82,1389	74,5624	84,2451
. <u>=</u> 0	64	96	1,5	1,4	0,8	-0,2	12288	82,3304	83,3425	82,1937	74,1521	83,8348
	50		0	1,6	0,8	0,3	12000	65,1519	81,7137	87,8182	77,06	88,311
Ë	50			1,6	0,8	0,3	9000	69,614	82,8634	86,9149	76,7041	88,4752
<u></u>	50		0	1,5	0,8	0,3	12000	62,5513	81,5494	87,2707	76,622	88,0646
ĄČ	50		0,5	1,5	0,8	0,3	12000	67,9989	83,0824	86,6137	77,4432	87,8456
Alanı Sağ Bakış Açısı İçin	50		0	1,6	0,9	0,3	12000	67,5609	83,0276	86,559	78,7024	88,0099
ads Ods	50		0,5	1,6	0,9	0,4	12000	67,3566	82,4956	84,5062	75,9018	85,7481
Sa	48			1,6	0,8	0,3	12288	64,8234	82,0695	87,2707	77,5253	88,6942
au	48			1,6	0,8	0,3	9216	69,3129	82,8908	86,6685	78,0454	88,0646
₹	48		0	1,5	0,8	0,3	12288	62,7977	81,4125	86,34	77,2516	88,0372
ig.	48	128	0	1,6	0,8	0,3	12288	64,8234	82,0695	87,2707	77,5253	88,6942
İlgi Alanı Sol Bakış Açısı İçin	50		1,4	0	0,8	0,3	12000	61,391	79,0252	83,4337	72,6451	84,2278
<u>B</u>	50		,-	0,5	0,8	0,3	9000	67,0591	80,0383	81,8182	73,1928	84,0361
S _	50		1,5	0	0,8	0,3	12000	62,5685	78,9157	83,7349	72,6177	84,5016
lanı İçin	50		1,3	0	0,9	0,3	12000	60,0767	78,149	81,736	72,6725	82,092
İlgi Alanı Açısı İçin	48		1,4	0	0,8	0,3	12288	59,5016	78,5049	83,4611	71,7963	84,2826
ilg Ag	48	96	1,5	0	0,8	0,3	9216	66,402	78,8335	82,9956	73,3571	84,7481

Şekil 6.1 SMG için farklı parametrelerde elde edilen sonuçlar

Yukarıdaki sonuçlar dikkate alındığında en yüksek sonuçlar maske kullanarak ve ağırlıklandırılmış fx ve fy özniteliklerini elde etmek için gxSM ve gySM özniteliklerini kullanarak elde edilmiştir. Vektör boyunun küçük olması k-NN sınıflandırma kullanıldığı için hıza büyük etkisi olmuştur. Bu nedenle hız ve başarım açısından optimum olan

değerler seçilmelidir. SMG için bu değerler orta, sağ ve sol için sırasıyla aşağıdaki gibi olmalıdır.

Normalize	e Boyutlar	(F	RoI) Genişle	Vektör	Smooted		
Genişlik	Yükseklik	Sol	Sağ	Üst	Alt	Uzunluğu	gxWx-gyWy
50	60	1,4	1,6	0,8	0,3	6000	88,2256
50	90	0,5	1,6	0,8	0,3	9000	88,4752
48	96	1,5	0	0,8	0,3	9216	84,7481

Şekil 6.2 SMG için tavsiye edilen sonuçlar

Önerilen oranlarda elde edilen sonuçlar:

2. M-SIFT için yapılan testler

Modified SIFT yöntemi için beşinci bölümde hesaplamaları verilen öznitelikler ve açı değerleri ile yapılan test sonuçları aşağıda verilmiştir. Her parametre grubu sonucunda elde edilen öznitelik vektörünün uzunluğuna ve başarımına göre kullanılacak parametreler belirlenecektir. Üst üste (overlap) hücrelemenin yapılması sistemin başarımını artırmaktadır. Bu şekilde hesaplanan işlemlerin adlandırılmasında sona "OL" eklenmiştir.

Araç ağırlık maskeleri sistemi daha kararlı hale getirdiğinden maske kullaılan hesaplamalarda parametre değişimlerine olan duyarlılık daha azdır; özelikle Wx ve Wy maskeleri daha iyi sonuç alınmasını sağlamıştır.

				Sister	n Parametrel	eri							ÖZNİTEL	İKLER	
	Normalize	Boyutlar	(R	oI) Genislet	me Oranları		Hücre B	oyutları	Kolon	Vektör	S	SAs	SWx	SWv	SxWx-SyWy
		Yükseklik	Sol `	Sağ	Ust	Alt		Yükseklik	Sayısı	Uzunluğu				,	-7 711
	124	90	1,4	1,6	0,9	-0,1	11	11	8	704	78,8567	90,1532	90,5361	90,454	91,2199
	124	90	1,4	1,6	0,9	0,3	11	11	8	704	77,4644	80,586	89,0471	89,3209	92,0318
	124	90	1,4	1,5	0,8	0,3	11	11	8	704	77,7382	81,8456	89,184	89,3209	92,2508
	124	68	1,4	1,6	0,9	0,3	11	11	8	528	79,6276	83,4337	88,965	88,7733	92,1139
	124	68	1,4	1,5	0,8	0,3	11	11	8	528	76,0131	80,4217	87,6506	87,7327	91,6484
İlgi Alanı Orta Bakış Açısı İçin	124	68	1,4	1,6	0,9	-0,1	15	13	8	320	77,7899	88,3753	89,0044	88,8129	90,7002
ISI	124	68	1,4	1,6	0,9	0,3	15	13	8	320	75,2464	75,8488	85,9255	85,7065	89,5126
, A	124	56	1,4	1,6	0,9	-0,1	11	11	8	440	78,1182	88,4847	89,3053	89,1138	91,2199
akis	124	56	1,4	1,6	0,9	0,3	11	11	8	440	75,1643	78,5049	86,7196	87,1577	91,0186
a B	124	56	1,4	1,6	0,9	-0,1	15	13	8	256	77,9267	87,5821	88,2932	88,047	90,4814
ö	124	56	1,4	1,6	0,9	0,3	15	13	8	256	71,5225	74,1512	82,3932	83,1051	87,9518
핕	90	56	1,4	1,6	0,9	-0,1	11	11	8	320	78,5011	88,6488	89,0864	89,0864	90,6729
Ā	90	56	1,4	1,6	0,9	0,3	11	11	8	320	75,6298	79,1621	86,8291	86,5279	89,896
<u>=</u>	180	68	1,4	1,6	0,9	0,3	15	13	8	440	72,9463	74,2059	84,0088	84,9945	89,896
	124	90	0,5	1,6	0,9	-0,1	11	11	8	704	78,3156	89,773	90,566	90,5113	92,2888
	124	90	0,5	1,6	0,9	0,3	11	11	8	704	75,6912	73,6381	86,1757	87,6814	91,4591
.E.	124	56	0,5	1,6	0,9	-0,1	11	11	8	440	77,6319	86,9565	88,0777	88,105	91,5778
SI	124	56	0,5	1,6	0,9	0,3	11	11	8	440	70,5448	71,4208	82,9182	83,493	90,1177
Bakış Açısı İçin	124	68	0,5	1,6	0,9	-0,1	15	13	8	320	77,0303	87,4487	88,2964	88,3238	91,3864
kış	124	68	0,5	1,6	0,9	0,3	15	13	8		69,9425	68,1358	82,0422	83,5751	89,7345
	124	68	0,5	1,6	0,9	0,3	11	11	8		76,7862	77,9633	86,6959	87,4076	92,1434
Alanı Sağ	124	68	0	1,6	0,9	0,3	15	13	8	320	72,1872	71,5029	82,5897	84,6154	88,6668
au	90	56	0,5	1,6	0,9	-0,1	11	11	8		78,4523	87,4761	88,6246	88,4878	91,3043
Ā	90	56	0,5	1,6	0,9	0,3	11	11	8	320	72,4062	73,4739	83,8215	84,3964	90,3093
igi ,	90	56	0	1,6	0,9	0,3	11	11	8	320	74,0214	76,1566	84,0131	84,6428	88,9406
	124	90	1,5	0,5	0,9	-0,1	11	11	8		74,3982		88,047	87,9376	90,2626
	124	90	1,5	0,5	0,9	0,3	11	11	8		70,92		82,2563	83,7897	89,7864
Ë	124	90	1,5	0	0,9	0,3	11	11	8		70,5915	72,9189	82,3932	84,0088	88,3352
Sı İç	124	56	1,5	0,5	0,9	-0,1	11	11	8		72,1554	82,1389	83,9715	83,6707	88,7856
AÇI	124	56	1,5	0,5	0,9	0,3	11	11	8		65,9091	68,9211	79,0252	80,2848	87,7875
kış.	124	56	1,5	0	0,9	0,3	11	11	8		67,333	72,4535	79,0252	80,4764	86,5553
Ba	124	68	1,5	0,5	0,9	-0,1	15	13	8		72,3195		83,233	83,0142	87,5274
Sol	124	68	1,5	0,5	0,9	0,3	11	11	8		71,6594	73,8226	82,667	83,598	89,5126
anı	124	68	1,5	0	0,9	0,3	15	13	8		67,7711	69,5783	79,1895	79,8193	85,7065
İlgi Alanı Sol Bakış Açısı İçin	90	56	1,5	0,5	0,9	-0,1	11	11	8		73,3862		84,546	84,081	87,5
<u>=</u>	90	56	1,5	0,5	0,9	0,3	11	11	8	320	67,4699	70,345	79,7645	80,4217	87,3768

Şekil 6.3 M-SIFT için normal hücrelerle elde edilen sonuçlar(1)

					Sistem Par	ametreleri							ÖZN	ITELIKLER		
	Normalize	Boyutlar	(R	ol) Genislet	me Oranla	rı	Hücre B	oyutları	Kolon	Vektör	Sx-Sy	gx-gy	SxAx-SyAy	SxAs-SyAs	SxWx-SyWy	gxWx-gyWy
	Genişlik	Yükseklik	Sol	Sağ	Üst	Alt	Genişlik	Yükseklik	Sayısı	Uzunluğu		0 0,				0, ,
	124	90	1,4	1,6	0,9	-0,1	11	11	. 8	1408	78,6379	85,3118	91,6028	92,1772	92,1772	87,5821
	124	90	1,4	1,6	0,9	0,3	11	11	8	1408	78,8609	87,8423	86,1172	87,7601	92,3604	90,0329
	124	90	1,4	1,5	0,8	0,3	11	11	8	1408	78,7514	89,0197	84,6112	86,966	92,4973	90,2245
	124	68	1,4	1,6	0,9	0,3	11	11	8	1056	80,9419	86,2267	88,965	90,1972	92,5246	88,3899
	124	68	1,4	1,5	0,8	0,3	11	11	8	1056	77,1358	87,8149	85,1862	87,8423	92,1687	89,0197
İlgi Alanı Orta Bakış Açısı İçin	124	68	1,4	1,6	0,9	-0,1	15	13	8	640	79,0208	82,3031	91,302	91,4661	91,3293	84,4092
15	124	68	1,4	1,6	0,9	0,3	15	13	8	640	77,4096	81,9003	83,379	86,172	90,3067	84,31
ΑŠ	124	56	1,4	1,6	0,9	-0,1	11	11	8	880	78,9661	83,151	91,6302	91,7943	91,9037	85,8042
쑮	124	56	1,4	1,6	0,9	0,3	11	11	8	880	77,3275	84,7207	86,5827	88,4447	91,7032	86,8018
аВ	124	56	1,4	1,6	0,9	-0,1	15	13	8	512	79,267	79,1302	91,1105	91,2473	91,3293	82,2484
ö	124	56	1,4	1,6	0,9	0,3	15	13	8	512	74,0142	78,3954	81,4896	84,2826	89,1292	81,736
≡	90	56	1,4	1,6	0,9	-0,1	11	11	8	640	79,3764	81,9201	91,2199	91,302	91,2199	83,7801
¥	90	56	1,4	1,6	0,9	0,3	11	11	8	640	77,4644	81,7634	84,2826	86,4732	90,2519	84,7207
<u>=</u>	180	68	1,4	1,6	0,9	0,3	15	13	8	880	75,6846	83,2421	81,9277	85,6791	90,9912	85,8981
	124	90	0,5	1,6	0,9	-0,1	11	11	8	1408	78,7804	84,0853	92,3161	92,3435	92,6169	86,519
	124	90	0,5	1,6	0,9	0,3	11	11	8	1408	76,5672	86,3126	82,0422	85,8746	92,0613	88,6121
프	124	56	0,5	1,6	0,9	-0,1	11	11	8	880	79,1359	82,9095	92,0153	92,0427	92,2341	85,9721
Si	124	56	0,5	1,6	0,9	0,3	11	11	8	880	73,118	82,1243	83,2466	87,1612	91,0758	85,8473
ΑÇI	124	68	0,5	1,6	0,9	-0,1	15	13	8	640	78,4523	81,1868	91,7145	91,9606	91,8512	84,3588
kış	124	68	0,5	1,6	0,9	0,3	15	13	8	640	72,6252	82,1243	83,055	85,6283	90,9663	84,6701
Ba	124	68	0,5	1,6	0,9	0,3	11	11	8	1056	78,3192	84,3964	85,1903	88,6668	92,3077	87,3802
İlgi Alanı Sağ Bakış Açısı İçin	124	68	0	1,6	0,9	0,3	15	13	8	640	75,3353	82,4802	79,3594	84,369	89,7071	85,8746
를	90	56	0,5	1,6	0,9	-0,1	11	11	8	640	79,5461	81,6243	91,4411	91,6051	91,7145	84,4408
₹	90	56	0,5	1,6	0,9	0,3	11	11	8	640	75,0342	81,4399	84,2048	86,5042	90,9937	84,6975
. <u>eo</u>	90	56	0	1,6	0,9	0,3	11	11	8	640	76,5946	82,0148	81,7137	86,0936	90,1177	85,4366
	124	90	1,5	0,5	0,9	-0,1	11	11	8	1408	74,3709	80,6072	90,2626	90,7549	90,7002	83,9168
	124	90	1,5	0,5	0,9	0,3	11	11	8	1408	71,9058	82,5575	81,9825	84,0635	90,3341	85,4053
	124	90	1,5	0	0,9	0,3	11	11	8	1408	71,5225	82,3111	81,5444	83,598	88,7733	84,6386
	124	56	1,5	0,5	0,9	-0,1	11	11	8	880	73,3315	78,9934	90,1258		90,3446	82,2757
.⊑	124	56	1,5	0,5	0,9	0,3	11	11	8	880	68,8116	79,5455	82,0099	84,2278	88,7459	82,5575
.5	124	56	1,5	0	0,9	0,3	11	11	8	880	69,5236	77,6561	80,6955	83,954	87,7327	81,0789
AÇI	124	68	1,5	0,5	0,9	-0,1	15	13	8	640	73,4956	77,2155	88,8676	88,6488	88,4847	80,7166
kış,	124	68	1,5	0,5	0,9	0,3	15	13	8	640	69,0033	76,862	81,2432	83,3242	88,4173	80,23
Ba	124	68	1,5	0,5	0,9	0,3	11	11	8	1056	73,7678	79,8193	84,0361	86,8839	90,0876	83,6528
Sol	124	68	1,5	0	0,9	0,3	15	13	8	640	70,4545	77,8751	78,012	82,2289	87,103	81,2158
ā	90	56	1,5	0,5	0,9	-0,1	11	11	8	640	74,3435	77,407	88,977	88,9497	88,977	81,0175
İlgi Alanı Sol Bakış Açısı İçin	90	56	1,5	0,5	0,9	0,3	11	11	8	640	70,5641	76,2322	83,1051	84,8028	88,5816	80,0657
=	90	56	1,5	0	0,9	0,3	11	11	8	640	71,6594	78,0394	82,6396	85,0493	87,9244	81,517

Şekil 6.4 M-SIFT için normal hücrelerle elde edilen sonuçlar(2)

				Sistem	n Parametre	ÖZNİTELİKLER									
	Normalize	Boyutlar	(Rol) Genişletme Oranları					Kolon Hücre Boyutları Sayısı			S OL	SAs OL	SWx OL	SWy OL	SxWx-SyWy OL
		Yükseklik	Sol	Sağ	Üst	Alt		Yükseklik							
	124	90	1,4	1,6	0,9	-0,1	11	11			79,5952	91,5755	91,9037	91,767	92,5055
	124	90	1,4	1,6	0,9	0,3	11	11			80,5586	83,3516	91,0186	91,2103	92,8532
_	124	90	1,4	1,5	0,8	0,3	11	11			78,5871	82,8039	90,6353	90,69	92,552
Ξ	124	68	1,4	1,6	0,9	0,3	11	11			80,7503	84,4469	90,0602	90,2793	92,8532
Seçimi Orta Başık Açısı İçin	124	68	1,4	1,5	0,8	0,3	11	11			78,012	80,3395	88,9376	89,1566	92,0044
¥	124	68	1,4	1,6	0,9	-0,1	15	13		-	80,9354	90,6455	90,8917	90,8917	91,9584
Baş	124	68	1,4	1,6	0,9	0,3	15	13			78,4775	80,6407	88,2804	88,609	91,7032
Ę.	124	56	1,4	1,6	0,9	-0,1	11	11			81,0175	90,8917	91,5755	91,7396	92,8337
0	124	56	1,4	1,6	0,9	0,3	11	11			79,0252	81,9003	88,6637	88,9102	92,1139
çim	124	56	1,4	1,6	0,9	-0,1	15	13		-	79,7319	89,4147	90,2079	90,2626	91,7396
Se	124	56	1,4	1,6	0,9	0,3	15	13			76,9168	79,4633	86,747	87,3768	90,7996
ilgi Alanı	90	56	1,4	1,6	0,9	-0,1	11	11			81,1816	90,8917	91,1926	91,2746	92,0131
Şi A	90	56	1,4	1,6	0,9	0,3	11	11			78,4228	81,2979	88,5542	88,8007	91,3198
.≝"	180	68	1,4	1,6	0,9	0,3	15	13	8	792	77,6561	79,6276	87,7054	88,5542	91,7306
_															
Başık Açısı İçin	124	90	0,5	1,6	0,9	-0,1	11	11			80,4211	91,359	91,6872	91,7419	92,8904
ĊISI	124	90	0,5	1,6	0,9	0,3	11	11			78,7846	77,3063	89,625	90,3367	92,8552
ķ	124	56	0,5	1,6	0,9	-0,1	11	11			80,8586	90,2106	90,7848	90,6207	92,781
3aşı	124	56	0,5	1,6	0,9	0,3	11	11			76,3208	77,2516	86,0115	87,5992	92,3624
	124	68	0,5	1,6	0,9	-0,1	15	13			80,6399	90,8395	91,3317	91,4137	92,9724
Seçimi Sağ	124	68	0,5	1,6	0,9	0,3	15	13			76,4303	76,3482	86,2852	87,9004	92,3624
çir	124	68	0,5	1,6	0,9	0,3	11	11		-	78,4287	80,2628	88,2836	89,1048	92,9921
s	124	68	0	1,6	0,9	0,3	15	13			76,2661	77,5527	85,7104	86,5042	89,9808
ilgi Alanı	90	56	0,5	1,6	0,9	-0,1	11	11			81,761	90,9762	91,7692	91,6598	92,8904
<u>.</u>	90	56	0,5	1,6	0,9	0,3	11	11			77,6622	78,2644	87,8456	88,0646	92,2529
.≝"	90	56	0	1,6	0,9	0,3	11	11	8	544	78,3192	80,0164	86,778	87,216	90,3093
	124	90	1.5	0.5	0.0	0.1	11	11	8	1264	70 0120	00.0000	00 2172	00 1350	91,5481
	124	90	1,5 1,5	0,5	0,9	-0,1	11	11			76,6138	89,6882	90,3173 87.2125	90,1258 87.897	91,5481
_				0,5	-	0,3	11			-	75,2738	75,1369	- /	- /	. ,
Ξ	124 124	90 56	1,5 1,5	0,5	0,9	0,3 -0,1	11	11 11			73,7404 76,7232	77,7382 87,7188	86,2815 88,3479	86,8565 88,3753	89,896 90.7002
ĊISI	124		1,5				11	11				-			,
k A	124	56 56	1,5	0,5	0,9	0,3 0,3	11	11			72,0975 71,276	75,2464 75,7393	83,7076 82,8861	84,8576 83,7349	90,1972 87,8423
3aşı	124	68	1,5	0,5	0,9	-0,1	15	13			77,0241	88,4847	88,5941	88,5941	90,6729
0	124	68	1,5	0,5	0,9	-0,1	15	13			73,138	73,1106	83,4337	84,7481	90,6729
ni S	124	68	1,5	0,5	0,9	0,3	15	13			75,356	73,1106	85,5969	86,3089	90,0602
eçin	124	68	1,5	0,5	0,9	0,3	15	13			71,3855	74,6714	82,3658	82,9682	87,5137
S	90	56	1,5	0,5	0,9	-0,1	11	11			77,3523	88.1838	89.0044	88,7309	90.7002
Mar	90	56	1,5	0,5	0,9	-0,1 0,3	11	11			73,5487	76,4239	84,5016	85,4053	90,7002
İlgi Alanı Seçimi Sol Başık Açısı İçin	90	56	1,5	0,5	0,9	0,3	11	11			72,7547	77,5739	83,954	84,31	87,8697
=	90	56	1,5	U	0,9	0,3	11	11	8	544	12,7547	77,5739	83,954	84,31	87,8697

Şekil 6.5 M-SIFT için üst üste hücrelerle elde edilen sonuçlar(1) $\,$

					Sistem Para	ametreleri							ÖZNİTELİKL	ER	
	Normalize	Boyutlar	(Ro	ol) Genişlet	me Oranlar	1	Hücre B	oyutları	Kolon	Vektör	Sx-Sy OL	m, m, Ol	SxAx-SyAy	SxWx-	gxWx-gyWy
	Genişlik	Yükseklik	Sol	Sağ	Üst	Alt	Genislik	Yükseklik	Sayısı	Uzunluğu	SX-SY UL	gx-gy OL	OL	SyWy OL	OL
	124	90	1,4	1,6	0,9	-0,1	11	11	8	2528	79,3764	86,6247	92,8063	92,6149	88,7856
	124	90	1,4	1,6	0,9	0,3	11	11	8	2528	80,8598	89,6221	87,1577	93,264	91,402
_	124	90	1,4	1,5	0,8	0,3	11	11	8	2528	78,8609	90,6627	86,1446	92,9901	91,2377
Alanı Seçimi Orta Başık Açısı İçin	124	68	1,4	1,6	0,9	0,3	11	11	8	1856	81,2705	88,8828	88,8554	93,0723	90,3888
isió	124	68	1,4	1,5	0,8	0,3	11	11	8	1856	78,4775	90,0602	85,7338	92,4973	91,3472
Α	124	68	1,4	1,6	0,9	-0,1	15	13	8	1088	81,8381	84,9836	92,1499	92,2593	87,5821
3aşı	124	68	1,4	1,6	0,9	0,3	15	13	8	1088	80,2026	86,4732	86,3636	92,1961	88,4173
ta E	124	56	1,4	1,6	0,9	-0,1	11	11	8	1520	81,8654	86,0503	92,9431	92,9978	88,0744
ŏ	124	56	1,4	1,6	0,9	0,3	11	11	8	1520	80,2574	87,9518	87,8697	92,7437	89,6221
Ē	124	56	1,4	1,6	0,9	-0,1	15	13	8	848	80,8534	84,0263	92,0405	92,2867	86,4059
Seç	124	56	1,4	1,6	0,9	0,3	15	13	8	848	78,943	84,5838	86,3089	91,7306	87,2399
an	90	56	1,4	1,6	0,9	-0,1	11	11	8	1088	81,7013	84,9289	92,1499	92,2319	86,5153
Ā	90	56	1,4	1,6	0,9	0,3	11	11	8	1088	80,23	86,035	85,816	91,9222	88,2256
ig i	180	68	1,4	1,6	0,9	0,3	15	13	8	1584	79,299	87,7054	86,3089	92,2508	90,0876
_															
Başık Açısı İçin	124	90	0,5	1,6	0,9	-0,1	11	11	8	2528	79,8742	86,2182	93,0271	93,2732	88,3784
ĊISI	124	90	0,5	1,6	0,9	0,3	11	11	8	2528	80,0438	89,406	85,8199	93,1016	91,158
Α	124	56	0,5	1,6	0,9	-0,1	11	11	8	1520	82,1165	86,1909	92,9997	93,1365	88,4058
3aşı	124	56	0,5	1,6	0,9	0,3	11	11	8	1520	78,6751	86,9149	86,5042	92,9099	89,7345
ğě	124	68	0,5	1,6	0,9	-0,1	15	13	8	1088	81,679	85,0971	93,2458	93,3826	87,9136
Alanı Seçimi Sağ	124	68	0,5	1,6	0,9	0,3	15	13	8	1088	78,7298	86,5042	83,5478	92,9099	89,0775
ξi	124	68	0,5	1,6	0,9	0,3	11	11	8	1856	80,6187	88,1467	87,5719	93,5122	90,4188
S	124	68	0	1,6	0,9	0,3	15	13	8	1088	78,0454	86,6137	80,8924	90,8295	88,9132
lan	90	56	0,5	1,6	0,9	-0,1	11	11	8	1088	82,3353	85,3158	93,4372	93,4372	87,9683
igi A	90	56	0,5	1,6	0,9	0,3	11	11	8	1088	79,4963	86,4495	84,3416	92,6636	89,0227
=	90	56	0	1,6	0,9	0,3	11	11	8	1088	79,8796	86,2852	83,7394	91,2674	88,6121
	124	90	1.5	0.5	0.0	0.1	11	11	8	2528	76,4497	82,8228	91,6575	92,0678	85,5306
	124	90	1,5 1,5	0,5 0,5	0,9	-0,1 0,3	11	11	8	2528	75,9584	85,816	84,3647	91,5115	87,7875
_	124	90	1,5	0,5	0,9	0,3	11	11	8	2528	74,9179	84,8302	82,5301	90,2245	86,5553
Başık Açısı İçin	124	56	1,5	0,5		-0,1	11	11	8	1520	77,9814	82,5766	91.6302	91,4387	85,9683
ĊISI	124	56	1,5	0,5	0,9	-0,1	11	11	8	1520	74,3154	83,4885	85,4874	91,4387	86,6101
Ϋ́	124	56	1,5	0,5	0,9	0,3	11	11	8	1520	72,6451	82,2837	82,5027	88,8554	85,1314
3aşı	124	68	1,5	0,5	0,9	-0,1	15	13	8	1088	78,5011	81,5372	91,2199	91,2473	84,546
9	124	68	1,5	0,5	0,9	-0,1	15	13	8	1088	74,9452	82,7218	84,1731	90,69	85,6243
Alanı Seçimi Sol	124	68	1,5	0,5	0,9	0,3	11	11	8	1856	76,8894	83,8718	86,172	91,4841	86,9387
eçir	124	68	1,5	0,5	0,9	0,3	15	13	8	1088	73,1106	81,4622	81,9825	88,4995	84,529
Š	90	56	1,5	0,5	0,9	-0,1	11	11	8	1088	78,7199	81,7013	91,1652	91,1105	84,5733
۸lar	90	56	1,5	0,5	0,9	0,3	11	11	8	1088	75,2191	82,1468	85,5148	90,7996	84,6659
ilgi /	90	56	1,5	0,3	0,9	0,3	11	11	8	1088	74,3154	82,2837	85,104	89,0745	84,8028
=	30	30	1,3	U	0,9	0,5	11	11	٥	1000	74,3134	02,2037	03,104	03,0743	04,0020

Şekil 6.6 M-SIFT için üst üste hücrelerle elde edilen sonuçlar(2)

				Sister	n Parametr	eleri					Öznitelikler (Yumus	şatma işlemi uygula	nmış)
	Normalize	Boyutlar	(R	oI) Genişlet	tme Oranlar	1	Hücre B	oyutları	Kolon	Si	ft-Grad	Sift-Gr	adWei
	Genişlik	Yükseklik	Sol	Sağ	Üst	Alt	Genişlik	Yükseklik	Sayısı	SxWx-SyWy	SxWx-SyWy	SxWx-SyWy	SxWx-SyWy
	124	90	1,4	1,6	0,9	-0,1	11	11	8	92,4234	92,1499	92,2046	91,6849
	124	90	1,4	1,6	0,9	0,3	11	11	8	92,4151	92,2234	92,4973	92,2508
	124	68	1,4	1,6	0,9	0,3	11	11	8	92,4973	92,0865	92,6616	92,1687
	124	68	1,4	1,6	0,9	-0,1	15	13	8	91,5208	90,8643	91,6849	91,1379
	124	68	1,4	1,6	0,9	0,3	15	13	8	91,1829	90,2519	90,2793	89,1019
ORTA	124	56	1,4	1,6	0,9	-0,1	11	11	8	92,0405	91,6028	91,8764	91,1926
ő	90	56	1,4	1,6	0,9	0,3	11	11	8	90,1424	89,4578	90,7174	90,1972
	124	90	0,5	1,6	0,9	-0,1	11	11	8	92,863	92,4528	92,6442	92,4255
	124	90	0,5	1,6	0,9	0,3	11	11	8	92,9647	92,2529	92,2256	91,8423
<u>ښ</u>	124	56	0,5	1,6	0,9	-0,1	11	11	8	92,863	92,2888	92,3435	91,7419
SAĞ	124	56	0,5	1,6	0,9	0,3	11	11	8	91,8423	90,501	91,6233	90,2272
	124	90	1,5	0,5	0,9	-0,1	11	11	8	91,302	90,8643	90,5908	89,9891
	124	90	1,5	0,5	0,9	0,3	11	11	8	90,0602	89,5674	90,0055	89,5126
	124	90	1,5	0	0,9	0,3	11	11	8	89,6221	88,6637	88,9102	88,1709
	124	56	1,5	0,5	0,9	-0,1	11	11	8	89,9617	88,8129	90,0711	88,977
ب	124	56	1,5	0,5	0,9	0,3	11	11	8	89,1292	87,6506	88,8554	87,7601
SOL	124	56	1,5	0	0,9	0,3	11	11	8	87,7327	87,6506	87,7601	86,2267

Şekil 6.7 M-SIFT için normal hücrelerle görüntüde yumuşatma yapılınca elde edilen sonuçlar. Sift-Gra ve Sift-GraWei karşılaştırması.

M-SIFT için önerilen değerler orta, sağ ve sol için sırasıyla aşağıdaki gibi olmalıdır.

Normaliz	e Boyutlar		(RoI) Genişletme Oı		Hücre B	oyutları	Kolon	Vektör	SxWx-SyWy	
Genişlik	Yükseklik	Sol	Sağ	Üst	Alt	Genişlik	Yükseklik	Sayısı	Uzunluğu	
124	68	1,4	1,6	0,9	0,3	11	11	8	528	92,1139
124	68	0,5	1,6	0,9	0,3	11	11	8	528	92,1434
124	68	1.5	0.5	0.9	0.3	11	11	8	528	89.5126

Şekil 6.8 M-SIFT için tavsiye edilen parametreler

Önerilen oranlarla yapılan test sonuçları:

3. SIFT için yapılan testler

SIFT için yapılan testlerde karşılaştırma zamanının çok uzun sürmesi nedeni ile sınıf sayısında azaltmaya gidilmiştir. Eğitim ve test setinden markalar dikkate alınarak bir örnek altküme seçilmiştir. Testlerde 5 adet marka sınıflandırılmaya çalışılmıştır. Dâhil olan markalar: Volkwagen, Peugeot, Renault, Honda, Fiat. Buradan M-SIFT ve SMG başarımının yüksek olduğu görülmektedir. Ayrıca öznitelik oluşturma ve sınıflandırma süreçleri diğer iki yöntemde de SIFT'e göre daha hızlıdır.

				Sift	N	M-Sift (SWx)			SMG		
	Genişletm		Normaliz	e Boyutlar		Normalize Boyutlar					
Sol	Sağ	Üst	Alt	Başarı	Genişlik	Yükseklik	Başarı	Genişlik	Yükseklik	Başarı	
1,4	1,5	0,9	0,3	80%	120	60	97,83%	50	120	98,32%	
1,4	1,5	1,2	-0,2	85,79%	120	60	98,25%	50	120	96,01%	
0,5	0,5	1,2	-0,2	78,59%	120	60	93,56%	50	50	82,54%	
1,4	1,5	1,2	0,3	84,04%							
1,4	1,5	0,8	-0,2	79,04%							

Şekil 6.9 SIFT elde edilen sonuçlar. M-SIFT ve SMG ile karşılaştırma.

Yanlış tanıma yapılan araçlara örnekler aşapıda verilmiştir.

Şekil 6.10 Yanlış tanıma yapılan araç örnekleri

7 SONUÇ ve ÖNERİLER

Yapılan çalışmalar sonucundaher yöntemdeki çeşitli bileşenlerin yönteme olan etkisi gözlenmiş ve uygun görülen bileşenler diğer yöntemlerde de denenmiştir. Özellikle SMG yönteminin kullandığı maske tüm yöntemler üzerinde büyük bir etkiye sahiptir. Bu maskenin oluşturulmasında $\mathbf{s_x}$ ve $\mathbf{s_y}$ den oluşan değişik yöntemler de kullanılmış fakat SGM deki förmülün maskede en iyi sonuç ürettiği görülmüştür. Diğer taraftan SMG yönteminde makalede[1] bahsedilen başarılara ulaşılamamıştır. Bunun en önemli sebebi kamera açısından kaynaklanan perspektif bozulmalar gösterilebilir.

Sift yöntemi ise çok yavaş çalışmaktadır. Sonuçlardan da görülebileceği gibi diğer yöntemlerle arasında önemli farklar olması nedeniyle hız artırma yoluna hiç gidilmemiştir. Hızdan önce başarımını artırabilmek için değişik etmenler denenmiştir. Bu amaçla RoI yeterince küçültülüp logo çevresiyle sınırlı tutulmuş ancak istenen başarılara ulaşılamadığından bu yöntemden vazgeçilmiştir.

M-Sift yöntemi ise kullanılan maskeler ile başarımda SGM yönteminden daha iyi sonuçlar vermiştir. Marka tanımada %93 üzerinde, tür tanıma da ise %96 üzerinde başarı elde edilmiştir. Bununla birlikte M-Sift yönteminin gerek vektör uzunluğunun küçük olması ve gerek kaymalara daha az duyarlı olması önemli bir avataj sağlamaktadır. Bu nedenle bu yöntemin kullanılması tavsiye edilmektedir.

Yanlış tanıma yapılan araçların büyük kısmında yüzeyden paralamaların olduğu, farların açık olduğu ve araç tamponunda yapılan modifiyeler olduğu gözlenmiştir. Ayrıca kendi içinde marka karakteristiğini ön plana çıkaran bazı araçlarda %95 üzerinde hatta bazılarında %100 başarı elde edilmiştir. Bu markalar: JEEP, ISUZU, B.M.C Peugeot, Ford, Renault, Volkswagen, Mini'dir. Bazı markalar içinse düşük sonuçlar elde edilmiştir. Bunun nedeni olarak, bu araç markalarının gerek eğitim gerekse test kümesinde az yer alması; elde olan örneklerde parlamaların ve görüntüde bozuklukların olması söylenebilir.

Sistemin başarısının ve hızının artırılması için farklı sınıflandırıcılar kullanılabilir. Bu projede sadece k-NN yöntemi ile şablon karşılaştırma yapılmıştır.

8 TEŞEKKÜR

Bu bitirme çalışmasında, bizden yardımlarını esirgemeyen ve bize bu imkanı sağlayan, başta danışmanımız Prof. Dr. Muhittin Gökmen olmak üzere; gerekli ekipmanları sağlayan, tecrübelerini bizle paylaşan ve fikirleri ile destek olan Divit çalışanları Abdurkerim Çapar, Muhammed Sabur Beratoğlu ve Erida Dule'ye teşekkür ederiz.

9 REFERANSLAR

- [1] V.S. Petrovic, T.F.Cootes, "Analysis of Feature for Rigid Structure Vehicle Type Recognition", University of Manchester, UK, 2004
- [2] D.G. Lowe, "Object Recognition from Local Scale-Invariant Features", Computer Science Department, University of British Columbia, Canada
- [3] M. Conos, "Recongnition of Vehicle Make from a Frontal View", 2006
- [4] T. Kato, Y.Ninonmiya, I.Masaki, "Preceding Vehicle Recognition Based on Learning From Sample Images", IEEE Intelligent Transportation System Conference, pp. 201-206. 2001.
- [5] S.Sun, G. Bebis, R. Miller, "On-Road Vehicle Detection Using Evolutionary Gabor Filter Optimization", IEEE Transactions on Intelligent Transportation Systems, 2005.
- [6] Thiang, A.T. Guntoro, R. Lim, "Type of Vehicle Recognition Using Gabor Filter Representation and Template Matching Method", 2001.
- [7] S. Mohottala, M. Kagesawa, K. Ikeuchi, "VEHICLE CLASS RECOGNITION USING 3D CG MODELS", Institute of Industrial Science, University of Tokyo, Japonya.
- [8] Offir Pele, "SIFT The Scale Invariant Feature Transform"
- [9] J. Hurrelmann, "The Scale Invariant Feature Transform", TU Berlin.
- [10] R.C. Gonzales, R.E. Woods, *Digital Image Processing*, Prentice Hall. 2002.
- [11] Muhittin Gökmen, "Multimedia Ders Notları", 2008, http://www3.itu.edu.tr/~gokmen/TEL444E-web.htm
- [12] "Open Source Computer Vision Library Reference Manual", Intel Corporation, U.S.A.
- [13] Rob Hess, "SIFT Feature Detector", http://web.engr.oregonstate.edu/~hess/index.html
- [14] "Türkiye'de Araçların Uymasi Gereken Yasal hız Sınırları", 2008, http://www.kgm.gov.tr/fr5.asp?tt=0607
- [15]. "İstanbul'da Kamyon Yasağı", 2005, http://arsiv.sabah.com.tr/2005/12/23/gnd98.html

EKLER

1. EK-1

1.1. Tanıma Yapılacak Markalar

ALFA ROMEO	SKODA
AUDI	SUBARU
B.M.C.	SUZUKI
BMW	TATA
CHEVROLET	ТОУОТА
CHRYSLER	VOLKSWAGEN
CITROEN	VOLVO
DACIA	ANADOL
DODGE_FARGO_CHRYSLER_DESOTO	DAEWOO
FIAT	DAF
FORD	DAIHATSU
HINO	FATIH
HONDA	DODGE
HYUNDAI	GAZ
ISUZU	JAGUAR
IVECO	PEUGEOT_KARSAN
JEEP	MAN
KIA	SAAB
LADA	SCANIA
LAND ROVER	SMART
MAZDA	OTOKAR
MERCEDES-BENZ	PEUGEOT
MINI	PORSCHE
MITSUBISHI	RENAULT
MURAT	SEAT
NISSAN	OPEL

1.2. Tanıma Yapılacak Araç Türleri

ОТОМОВІЬ
OTUBUS
KAMYONET_MINIBUS
KAMYON_TIR
JEEP
TICARI ARAC

2. EK-2 Mark ve Tür için tanıma sonuçları

2.1. EK – 2 / A Örnek Marka Sonuçları

	DOĞRU			DO	ĞRU
MARKA	Yüzde	Araç Sayısı	MARKA	Yüzde	Araç Sayısı
FORD	96,20%	559	SEAT	88,20%	45
HYUNDAI	84,40%	65	SUZUKI	81,20%	13
FIAT	93,40%	427	LAND ROVER	41,60%	5
VOLKSWAGEN	95,10%	234	NISSAN	83,70%	31
OPEL	93,00%	213	CITROEN	71,70%	28
RENAULT	95,00%	616	MINI	100%	2
BMW	87,80%	29	KIA	80%	12
B.M.C.	95,20%	80	CHEVROLET	80%	16
MURAT	92,20%	179	MERCEDES-BENZ	88,20%	60
TOYOTA	93,20%	249	AUDI	76,90%	10
PEUGEOT_KARSAN	100%	10	LADA	90,40%	19
DAIHATSU	57,10%	4	VOLVO	66,60%	2
SKODA	83,60%	46	TATA	83,30%	5
PEUGEOT	95,70%	201	DACIA	90%	9
MAZDA	63,30%	19	ANADOL	25%	1
IVECO	85%	17	ISUZU	100%	6
HONDA	88,80%	96	JEEP	100%	2
MITSUBISHI	86,10%	56			

2.2. EK - 2/ B Tür Sonuçları

Türler	KAMYONET_MINIBUS	OTOMOBIL	TICARI ARAC	JEEP	OTOBUS	KAMYON_TIR	Toplam
	KAMYONET_MINIBUS	отомовіц	TICARI ARAC	JEEP	OTOBUS	KAMYON_TIR	Toplam
KAMYONET_MI	439: %91,0	24: %4,9	7: %1,4	7: %1,4	0: %0	5: %1,0	482
ОТОМОВІL	25: %0,9	2648: %98,2	13: %0,4	5: %0,1	0: %0	3: %0,1	2694
TICARI ARAC	2: %0,4	8: %1,9	395: %97,5	0: %0	0: %0	0: %0	405
JEEP	2: %4,8	13: %31,7	1: %2,4	25: %60,9	0: %0	0: %0	41
OTOBUS	5: %17,8	1: %3,5	0: %0	0: %0	21: %75	1: %3,5	28
KAMYON_TIR	4: %44,4	1: %11,1	0: %0	0: %0	0: %0	4: %44,4	9

3. EK – 3 SMG için Parametre Sonuçları 3.1. EK – 3 / A

Testlar sırasın 1047 test görüntüsü kullanılmıştır

3.1.1. Orta için

3.1.1.		ırta	ıçın								
	Boyutlar Rol Orannları										
-	Yüksekl		Sağ		Alt	Başarı					
50	120	1,5	1,6	1	0,4	89,8617					
50	120	1,5	1,4	0,8	0,3	89,7611					
50	120	1,5	1,4	0,9	0,4	89,7143					
48	128	1,4	1,6	0,8	0,3	89,6629					
64	128	1,4	1,5	0,8	0,3	89,6629					
50	120	1,5	1,6	0,9	0,3	89,6					
50	120	1,5				89,5336					
50	120		1,5	0,8	0,3	89,3258					
		1,4	1,5	0,8	0,3	89,306					
64 48	96	1,5	1,5	0,8	0,3						
	128	1,5	1,4	0,8	0,3	89,306					
50	120	1,3	1,5	0,9	0,3	89,2699					
64	128	1,3	1,4	0,7	0,3	89,1832					
64	128	1,5	1,5	0,8	0,3	89,0785					
50	90	1,5	1,4	0,9	0,4	89,0286					
50	120	1,4	1,6	1	0,3	88,9898					
48	96	1,4	1,6	0,8	0,3	88,9888					
48	128	1,3	1,4	0,7	0,3	88,9625					
64	96	1,4	1,6	0,8	0,3	88,8764					
64	128	1,4	1,6	0,8	0,3	88,8764					
50	120	1,3	1,3	0,7	0,3	88,8521					
50	120	1,3	1,5	0,8	0,3	88,8521					
50	120	1,4	1,5	0,9	0,3	88,8513					
64	128	1,5	1,4	0,8	0,3	88,851					
48	128	1,5	1,5	0,8	0,3	88,851					
48	96	1,5	1,4	0,8	0,3	88,851					
48	96	1,3	1,4	0,7	0,3	88,7417					
50	120	1,5	1,4	0,9	0,2	88,7115					
64	96	1,5	1,4	0,8	0,3	88,6234					
50	120	1,4	1,6	0,9	0,4	88,5876					
48	64	1,5	1,4	0,8	0,3	88,5097					
50	90	1,5	1,6	1	0,4	88,4793					
64	96	1,4	1,5	0,8	0,3	88,427					
50	120	1,4	1,6	0,8	0,3	88,427					
50	90	1,4	1,6	0,8	0,3	88,427					
50	90	1,3	1,4	0,7	0,3	88,4106					
48	96	1,5	1,5	0,8	0,3	88,3959					
50	120	1,4	1,5	0,9	0,4	88,3616					
48	96	1,4	1,5	0,8	0,3	88,3146					
48	72	1,4	1,6	0,8	0,3	88,3146					
50	90	1,4	1,6	1	0,3	88,3087					
50	120	1,3	1,4	0,7	0,3	88,3002					
50	120	1,4	1,6	0,9	0,3	88,2883					
50	90	1,5	1,6	0,9	0,4	88,2286					
48	128	1,4	1,5	0,8	0,3	88,2022					
64	96	1,4	1,5	0,8	-0,2	88,2022					
50	90	1,3	1,5	0,8	0,3	88,1898					
32	72	1,3	1,4	0,7	0,3	88,1898					
64	72	1,5	1,5	0,8	0,3	88,1684					
		.,5	,-	-,-	- , -	,					

Norm						
Воуц				annları		Başarı
Genişli	Yüksel	Sol	Sağ	Üst	Alt	
64	72	1,5	1,5	0,8	0,3	88,1684
64	72	1,5	1,4	0,8	0,3	88,1684
64	72	1,4	1,6	0,8	0,3	88,0899
48	72	1,3	1,4	0,7	0,3	88,0795
50	120	1,4	1,6	0,9	0,2	88,0631
64	96	1,5	1,5	0,8	-0,2	88,0546
64	72	1,4	1,5	0,8	0,3	87,9775
50	120	1,4	1,5	0,9	0,2	87,9504
48	72	1,4	1,5	0,8	0,3	87,7528
48	64	1,4	1,6	0,8	0,3	87,7528
64	96	1,4	1,6	0,8	-0,2	87,7528
64	96	1,4	1,6	0,8	-0,2	87,7528
50	90	1,4	1,6	0,9	0,3	87,7252
64	96	1,5	1,4	0,8	-0,2	87,7133
48	72	1,5	1,4	0,8	0,3	87,7133
50	60	1,5	1,4	0,8	0,3	87,7133
64	96	1,3	1,4	0,7	0,3	87,638
50	120	1,3	1,4	0,9	0,3	87,6106
50	90	1,4	1,6	0,9	0,4	87,5706
50	90	1,4	1,5	0,9	0,3	87,5
50	60	1,5	1,5	0,8	0,3	87,4858
48	72	1,5	1,5	0,8	0,3	87,4858
50	90	1,4	1,5	0,9	0,4	87,4576
50	90	1,3	1,3	0,7	0,3	87,4172
50	60	1,3	1,4	0,7	0,3	87,4172
48	96	1,4	1,6	0,8	-0,2	87,3034
50	60	1,4	1,6	0,8	0,3	87,3034
48	64	1,3	1,4	0,7	0,3	87,1965
32	64	1,5	1,5	0,8	0,3	87,1445
48	64	1,5	1,5	0,8	0,3	87,1445
32	64	1,4	1,6	0,8	0,3	87,0787
50	90	1,3	1,5	0,9	0,3	87,0575
50	90	1,4	1,6	0,9	0,2	87,0496
32	72	1,5	1,5	0,8	0,3	87,0307
48	64	1,5	1,4	0,8	-0,2	87,0307
50	90	1,6	1,6	0,9	0,4	87,018
50	90	1,5	1,4	0,9	0,2	87,0011
32	64	1,3	1,4	0,7	0,2	86,9757
32	64	1,4	1,5	0,8	0,3	86,9663
48	64	1,4	1,5	0,8	0,3	86,8539
64	64	1,5	1,4	0,8	-0,2	86,8032
32	64	1,5	1,4	0,8	0,3	86,8032
64	72					86,755
		1,3	1,4	0,7	0,3	
32	72 72	1,4	1,5	0,8	0,3	86,6292 86,5757
32	72 72	1,5	1,4	0,8	0,3	86,5757 86,5160
32	72 120	1,4	1,6	0,8	0,3	86,5169
50	120	1,6	1,6	0,9	0,4	86,5039
50	90	1,6	1,7	0,9	0,4	86,5039

3.1.2. Sağ için

Norm	nalize		Rol Or	annları		Description
Genişlik	Yüksekli		Sağ	Üst	Alt	Başarı
50	120	0,5	1,7	0,9	0,4	89,2857
48	128	0	1,7	0,8	0,3	88,8995
50	90	0,5	1,7	0,9	0,4	88,3205
50	120	0	1,7	0,9	0,4	88,2239
64	128	0	1,7	0,8	0,3	88,134
48	96	0	1,7	0,8	0,3	87,9426
48	128	0	1,5	0,8	0,3	87,6555
48	128	0	1,6	0,8	0,3	87,5598
50	120	0	1,6	0,8	0,3	87,4641
50	90	0,5	1,6	0,8	0,3	87,3684
50	120	0	1,5	0,8	0,3	87,2727
50	120	0,5	1,5	0,8	0,3	87,177
50	120	0	1,6	0,9	0,3	87,1524
50	120	0	1,6	0,9	0,2	86,8648
50	120	0	1,6	1	0,3	86,7761
50	120	0,5	1,6	0,9	0,3	86,7689
32	72	0	1,7	0,8	0,3	86,6986
50	120	0,5	1,6	0,8	0,3	86,6986
64	128	0	1,6	0,8	0,3	86,6986
50	90	0,5	1,6	0,9	0,3	86,5772
32	64	0	1,6	0,8	0,3	86,5072
32	64	0	1,7	0,8	0,3	86,5072
50	120	0	1,5	0,9	0,3	86,4813
64	96	0	1,7	0,8	0,3	86,4115
50	90	0	1,7	0,9	0,4	86,2934
48	72	0	1,7	0,8	0,3	86,2201
50	90	0	1,6	0,8	0,3	86,2201
50	90	0,5	1,5	0,8	0,3	86,1244
32	72	0	1,6	0,8	0,3	86,1244
48	96	0	1,6	0,8	0,3	86,1244
50	120	0,5	1,4	0,8	0,3	86,0287
50	120	0,5	1,5	0,9	0,2	85,906
32	72	0	1,5	0,8	0,3	85,8373
32	64	0	1,5	0,8	0,3	85,8373
50	120	0,5	1,4	0,7	0,3	85,7416
48	72	0	1,6	0,8	0,3	85,7416
50	120	0	1,5	0,9	0,2	85,7143
50	90	0,5	1,6	1	0,4	85,7004
50	120	0,5	1,6	1	0,4	85,7004
48	96	0	1,5	0,8	0,3	85,6459
64	96	0	1,6	0,8	0,3	85,6459
64	128	0	1,5	0,8	0,3	85,6459
64	128	0	1,5	0,8	0,3	85,6459
50	60	0,5	1,7	0,9	0,4	85,5212
50	90	0,5	1,6	0,9	0,3	85,4267
50	90	0	1,6	0,9	0,3	85,4267
50	90	0	1,6	1	0,2	85,4247
50	90	0	1,5	0,8	0,3	85,3588
50	90	U	1,3	0,0	0,5	05,5500

Norm	محناده		Pol Or	annları		
Genişlik		Sol	Sağ	Üst	Alt	Başarı
50	90	0,5	1,4	0,8	0,3	85,2632
50	60	0,5	1,4	0,8	0,3	85,2632
50	90					85,2349
		0,5	1,5	0,9	0,2	
48	64	0	1,7	0,8	-0,2	85,1675
64	128	0	1,7	0,8	-0,2	85,0718
50	90	0,5	1,4	0,7	0,3	85,0718
64	96	0	1,7	0,8	-0,2	84,7847
50	120	0	1,3	0,7	0,3	84,689
48	96	0	1,7	0,8	-0,2	84,5933
48	72	0	1,5	0,8	0,3	84,5933
50	60	0,5	1,5	0,8	0,3	84,4976
64	72	0	1,7	0,8	0,3	84,4976
50	90	0	1,5	0,9	0,3	84,4679
50	60	0	1,6	0,8	0,3	84,1148
64	128	0	1,6	0,8	-0,2	84,1148
50	120	0,5	1,3	0,7	0,3	84,0191
48	64	0	1,6	0,8	-0,2	84,0191
64	72	0	1,6	0,8	0,3	84,0191
50	60	0	1,6	1	0,3	83,9768
32	64	0	1,6	0,8	-0,2	83,9234
64	64	0	1,7	0,8	-0,2	83,9234
64	96	0	1,6	0,8	-0,2	83,8278
50	60	0	1,7	0,9	0,4	83,7838
50	90	0	1,5	0,9	0,2	83,7009
48	96	0	1,6	0,8	-0,2	83,6364
64	96	0	1,5	0,8	0,3	83,6364
32	64	0	1,7	0,8	-0,2	83,6364
50	60	0,5	1,4	0,7	0,3	83,5407
64	128	0	1,5	0,8	-0,2	83,3493
64	96	0	1,5	0,8	-0,2	83,2536
50	60	0,5	1,5	0,9	0,2	83,1256
60	50	0,5	1,6	0,8	0,3	82,9665
48	40	0,5	1,6	0,8	0,3	82,9665
48	48	0	1,7	0,8	-0,2	82,9665
50	60	0	1,5	0,8	0,3	82,9665
50	60	0	1,6	0,9	0,2	82,9338
50	60	0,5	1,6	1	0,4	82,8794
50	90	0,5	1,3	0,7	0,3	82,8708
60	50	0,5		0,9	0,3	
50			1,7			82,8185
32	60	0,5	1,4	0,8	0,3	82,7751
	48	0	1,7	0,8	-0,2	82,7751
50	60	0,5	1,6	0,9	0,3	82,6462
48	96	0	1,5	0,8	-0,2	82,5837
64	72	0	1,5	0,8	0,3	82,488
64	64	0	1,6	0,8	-0,2	82,488
48	64	0	1,5	0,8	-0,2	82,3923
50	60	0	1,6	0,9	0,3	82,3586
48	40	0	1,6	0,8	0,3	82,2967

3.1.3. Sol İçin

Norn	nalize		Rol Or	annları		D		
Genişlil Yüksekli		Sol	Sağ	Üst	Alt	Başarı		
50	120	1,5	0,5	0,8	0,3	87,7133		
48	128	1,5	0,5	0,8	0,3	87,372		
64	128	1,5	0	0,8	0,3	86,6894		
48	128	1,5	0	0,8	0,3	86,6894		
64	128	1,5	0,5	0,8	0,3	86,5757		
50	120	1,6	0	0,8	0,3	86,5729		
48	96	1,5	0,5	0,8	0,3	86,4619		
50	120	1,4	0,5	0,7	0,3	86,4045		
50	90	1,6	0,5	0,8	0,3	86,3171		
50	120	1,5	0	0,8	0,3	86,2344		
50	120	1,3	0,5	0,7	0,3	86,0927		
48	96	1,5	0	0,8	0,3	86,0068		
50	120	1,6	0,5	1	0,4	85,9922		
50	120	1,4	0,5	0,8	0,3	85,9551		
50	90	1,5	0,5	0,8	0,3	85,6655		
50	120	1,5	0,5	0,9	0,2	85,6328		
64	96	1,5	0,5	0,8	0,3	85,5518		
50	90	1,6	0	0,8	0,3	85,5499		
50	120	1,6	0,5	0,8	0,3	85,422		
50	120	1,5	0	0,9	0,3	85,4048		
64	96	1,5	0,5	0,8	-0,2	85,3242		
50	120	1,6	0	0,9	0,3	85,2564		
50	90	1,4	0,5	0,7	0,3	85,1685		
64	128	1,5	0,5	0,8	-0,2	84,9829		
50	120	1,5	0	0,9	0,2	84,9487		
64	128	1,5	0	0,8	-0,2	84,8692		
64	128	1,5	0	0,8	-0,2	84,8692		
64	128	1,5	0	0,8	-0,2	84,8692		
48	72	1,5	0,5	0,8	0,3	84,7554		
50	90	1,4	0,5	0,8	0,3	84,7191		
32	72	1,5	0,5	0,8	0,3	84,6416		
50	120	1,6	0	1	0,3	84,6054		
48	72	1,5	0	0,8	0,3	84,5279		
64	72	1,5	0,5	0,8	0,3	84,4141		
50	90	1,5	0	0,8	0,3	84,4141		
50	90	1,5	0,5	0,9	0,2	84,2645		
50	120	1,6	0	0,9	0,2	84,2308		
50	90	1,3	0,5	0,7	0,3	84,2163		
32	64	1,5	0,5	0,8	0,3	84,1866		
48	64	1,5	0,5	0,8	-0,2	84,1866		
50	120	1,6	0,5	0,9	0,3	84,1026		
32	72	1,5	0	0,8	0,3	84,0728		
50	90	1,6	0	0,9	0,3	83,9744		
50	90	1,5	0	0,9	0,3	83,9225		
64	96	1,5	0	0,8	-0,2	83,8453		
64	96	1,5	0	0,8	0,3	83,7315		
50	120	1,3	0	0,7	0,3	83,6645		
64	64	1,5	0,5	0,8	-0,2	83,6177		
64	64	1,5	0,5	0,8	-0,2	83,61//		

	nalize	C . I	Başarı			
	Yüksekli		Sağ	Üst	Alt	
50 48	60 64	1,4	0,5	0,7	0,3	83,3708
50	90	1,5	0	0,8	-0,2	83,2765
50	90	1,6	0,5		0,4	83,2685
50	90	1,6	0,5 0	0,9	0,3	83,2051 83,1824
32	64	1,6 1,5	0	0,8	0,3 0,3	83,0489
50	120	1,7	0,5	0,8	0,3	82,7195
50	90	1,6	0,3	0,9	0,4	82,5641
50	90	1,3	0	0,7	0,2	82,5607
50	60	1,5	0,5	0,8	0,3	82,4801
32	64	1,5	0,3	0,8	-0,2	82,4801
32	64	1,5	0,5	0,8	-0,2	82,2526
50	90	1,5	0,3	0,9	0,2	82,2121
50	120	1,7	0	0,9	0,4	82,153
50	60	1,4	0,5	0,8	0,3	82,1348
50	90	1,7	0,5	0,9	0,4	82,0113
50	60	1,3	0,5	0,7	0,3	81,8985
50	60	1,5	0	0,8	0,3	81,6837
50	60	1,6	0	0,8	0,3	81,4578
64	72	1,5	0	0,8	0,3	81,2287
50	60	1,6	0,5	0,8	0,3	81,202
48	48	1,5	0,5	0,8	-0,2	81,1149
32	48	1,5	0	0,8	-0,2	81,1149
50	90	1,7	0	0,9	0,4	80,8782
48	48	1,5	0	0,8	-0,2	80,6598
60	50	1,4	0,5	0,7	0,3	80,5618
64	64	1,5	0	0,8	-0,2	79,9772
50	60	1,6	0,5	0,9	0,3	79,8718
50	60	1,6	0,5	1	0,4	79,7665
50	60	1,5	0	0,9	0,2	79,5895
48	40	1,4	0,5	0,7	0,3	79,5506
32	48	1,5	0,5	0,8	-0,2	79,5222
60	50	1,5	0,5	0,8	0,3	79,5222
50	60	1,5	0	0,9	0,3	79,3615
48	40	1,4	0,5	0,8	0,3	78,9888
50	60	1,6	0	0,9	0,3	78,9744
48	40	1,5	0,5	0,8	0,3	78,9534
50	60	1,5	0,5	0,9	0,2	78,9054
60	50	1,4	0,5	0,8	0,3	78,8764
48	40	1,5	0	0,8	0,3	78,8396
48	40	1,3	0,5	0,7	0,3	78,8079
60	50	1,6	0,5	0,8	0,3	78,6445
64	48	1,5	0,5	0,8	-0,2	78,6121
50	60	1,6	0	0,9	0,2	78,5897
50	60	1,3	0	0,7	0,3	78,5872
60	50	1,5	0	0,8	0,3	78,4983
50	60	1,6	0	1	0,3	78,3959
48	40	1,5	0,5	0,9	0,2	78,3352

3.2. EK – 3 / B Modified Sift İçin Parametre Sonuçları

Testlar sırasın 1047 test görüntüsü ku<u>llanıl</u>mıştır

Norm	aliza		Rol Or			Hüc			Vektör	IIGIIIII		nalize		Pol O	rannları		Н7	icre	Kolon	Vektör	
Genişlik		Sol	Sağ			Genişli			Uzunluğ	Başarı		Yüksekl	Sol	Sağ		Alt				Uzunluğ	Başarı
124	90	1,4	1,6		_	11	11	8		94,0315	124	68	1,4		0,8		11	11			93,0337
124	56	1,4	1,6	_	-0,1	11	11	8		93,8063	180	68	1,3	1,4	0,9	-0,2	11	11	_		93,031
124	56	0,5	1,6	0,9	_	11	11	10	1100	93,768	124	56	1,4	1,6	0,9	-0,1	11	9			93,018
180	68	1,4	1,5	0,8	-0,2	11	11	10		93,7079	124	68	1,4	1,5	0,9	-0,1	11	11		_	93,018
180	68	1,4	1,5	0,8	-0,2	11	11	8		93,7079	124	56	0,5	1,5	0,8	-0,2	11	11			93,0144
120	90	1,4	1,6	0,9	-0,1	9	9	10	2340	93,6937	124	90	0,5	1,6	0,9	0,3	11	11	. 8	1408	93,001
124	90	1,4	1,6	1	0,3	11	11	8	1408	93,6436	124	90	0,5	1,5	0,9	0,2	11	11	. 8	1408	93,001
120	90	1,4	1,6	0,9	-0,1	9	9	8	1872	93,5811	180	68	1,4	1,6	0,9	0,4	11	11	. 8	1536	92,9943
124	90	1,4	1,6	0,9	-0,1	11	9	8	1584	93,5811	180	90	1,4	1,6	1	-0,2	11	11	. 8	2048	92,9625
124	90	0,5	1,5	0,9	-0,1	11	11	8	1408	93,5762	180	68	1,5	1,5	0,8	-0,2	11	11	. 8	1536	92,9465
180	90	1,4	1,6	0,9	0,3	11	11	8		93,4685	180	90	1,3	1,5	0,8	-0,2	11	11	. 8	2048	92,936
124	90	1,4	1,6	0,9	-0,1	11	7	8	2112	93,4685	124	90	1,4	1,5	0,8	-0,2	11	11	. 8	1408	92,9213
124	56	1,4	1,5	0,9	-0,1	11	11	8	880	93,4685	180	90	1,4	1,5	0,8	-0,2	11	11			92,9213
180	90	1,4	1,5	0,9	-0,1	11	11	8		93,4685	180	68	1,4	1,6	0,8	-0,2	11	11			92,9213
180	90	1,4	1,6	0,9	-0,1	11	11	8		93,4685	124	90	1,4	1,6	0,8	-0,2	11	11			92,9213
124	90	1,4	1,6	0,9	_	11	11	8		93,4685	124	56	0,5	1,6	0,8	-0,2	11	11	_		92,9187
180	90	1,4	1,7	0,9		11	11	8		93,4463	180	68	1,4	1,5	0,9	-0,1	11	11	_		92,9054
180	90	1,4	1,6	1	0,3	11	11	8		93,4166	180	68	1,4	1,5	0,9	-0,3	11	11			92,9054
180	90	0,5	1,5	0,8	-0,2	11	11	8		93,3971	180	90	1,4	1,5	0,9	0,2	11	11			92,9054
124	56	0,5	1,6	0,9	-0,2	11	11	8		93,3845	124	90	1,4	1,6	0,9	-0,1	13	9			92,9054
180	90	1,5	1,4	0,9	0,4	11	11	8		93,3714	124	56	0,5	1,6	0,9	-0,2	11	11	_		92,9051
124	68	1,4	1,5	0,8	-0,2	11	11	8		93,3708	180	68	0,5	1,7	0,9	-0,3	11	11	_		92,9051
180	90	1,3	1,5	0,9	-0,2	11	11	8	2048	93,3628	180	90	0,5	1,6	0,9	-0,2	11	11			92,9051
124	90	1,4	1,6	0,9	0,2	11	11	8		93,3559	180	68	1,4	1,7	0,9	0,4	11	11			92,8814
124	90	1,4	1,5	0,9	0,3	11	11	8		93,3559	180	90	1,5	1,4	0,8	-0,2	11	11			92,8328
124	56	1,4	1,6	0,9	-0,1	11	11	10	1100	93,3559	180	90	0,5	1,6	0,8	-0,2	11	11			92,823 92,8097
124	90	1,4	1,6	0,9	-0,1	11	11	10		93,3559	124	56	1,3	1,4	0,9	-0,2	11	11			
124 124	68 90	1,4	1,6	1	-0,2	11 11	11 11	8		93,3031 93,3014	180 124	68 56	1,3	1,5 1,5	0,9	-0,2 -0,2	11 11	11 11			92,8097 92,8097
124	56	0,5	1,6	0,8	-0,2	11	11	8		93,2878	124	56	1,3		0,9	-0,2	11	11	_		92,8097
124	68	1,5 1,5	1,5 1,5	0,8	-0,2	11	11	8		93,2878	124	56	1,4	1,6 1,5	0,8	-0,2	11	11	_		92,809
124	90	1,5	1,5	0,8	-0,2	11	11	8		93,2878	120	60	1,4	1,5	0,8	0,2	11	11			92,7928
180	90	1,5	1,4	0,8	-0,2	11	11	8	2048	93,2725	124	68	1,4	1,6	0,9	-0,1	11	11			92,7928
180	68	0,5	1,6	1	-0,3	11	11	8		93,2432	180	68	1,4	1,6	0,9	-0,2	11	11			92,7928
124	56	1,4	1,6		-0,2	11	11	8		93,2432	124	56	1,4	1,5	0,9	-0,2	11	11			92,7928
124	56	1,4	1,6	0,9	-0,1	11	7	8	1232	93,2432	180	68	1,4	1,5	0,9	0,2	11	11			92,7928
124	68	0,5	1,7	0,9	_	11	11	8		93,2432	124	90	0,5	1,5	0,8	0,3	11	11			92,7273
124	90	1,4	1,6	1	-0,2	11	11	8		93,1896	124	68	0,5	1,6	0,8	0,3	11	11			92,7273
124	56	1,5	1,4	0,8	-0,2	11	11	8		93,1741	124	68	0,5	1,5	0,8	-0,2	11	11		1056	92,7273
180	68	1,4	1,5	0,8	-0,2	11	11	6	1152	93,1461	124	68	0,5	1,6	0,8	-0,2	11	11	. 8	1056	92,7273
180	90	1,4	1,6	0,8	-0,2	11	11	8	2048	93,1461	124	56	0,5	1,4	0,8	-0,2	11	11	. 8	880	92,7273
180	68	1,4	1,5	0,8	-0,2	15	13	8	880	93,1461	124	90	0,5	1,6	0,8	-0,2	11	11	. 8	1408	92,7273
124	90	1,5	1,6	0,9	0,4	11	11	8		93,1429	180	68	1,3	1,5	0,8	-0,2	11	11	. 8	1536	92,7152
180	90	1,4	1,5	0,9	0,3	11	11	8		93,1306	124	90	1,3	1,5	0,8	-0,2	11	11	. 8	1408	92,7152
180	90	1,4	1,6	0,9	0,2	11	11	8	2048	93,1306	180	90	0,5	1,6	0,9	0,3	11	11	. 8	2048	92,7133
124	90	1,4	1,5	0,9	-0,1	11	11	8	1408	93,1306	124	56	0,5	1,5	0,9	-0,1	11	11	. 8	880	92,7133
180	68	1,4	1,6	0,9	_	11	11	8		93,1306	124	56	0,5	1,6	0,9	-0,2	11	9			92,7133
180	68	0,5	1,6		-0,2	11	11	8		93,11	124	56	0,5	1,6	0,9	-0,2	15	9			92,7133
180	90	1,4	1,6	0,9	0,4	11	11	8		93,1073	180	68	0,5	1,6	0,9	-0,2	11	11	_		92,7133
124	90	1,4	1,5	0,9	0,4	11	11	8		93,1073	124	56	1,5	1,4	0,9	-0,1	11	11			92,7024
180	68	1,4	1,5	0,9	0,4	11	11	8		93,1073	124	90	1,5	0,5	0,9	-0,1	11	11			92,7024
180	90	1,4	1,5	0,9	0,4	11	11	8		93,1073	180	90	1,5	0,5	0,9	-0,1	15	15			92,7024
180	90	0,5	1,5	0,9	-0,1	11	11	8		93,0968	124	90	1,3	1,5	0,9	0,3	11	11	_		92,6991
124	68	0,5	1,5	0,9	-0,1	11	11	8		93,0968	180	60	1,3	1,4	0,9	0,3	11	11			92,6991
124	90	0,5	1,6		0,4	11	11	8		93,0934	180	68	1,4		0,9	0,2	11	11	_		92,6802
124 180	56 68	1,4	1,6	1	-0,2 -0,2	11 11	11 11	8	880 1536	93,076 93,076	124 124	90	1,4	1,6 1,5	0,9	-0,1 -0,2	13 11	11 11	_		92,6802 92,6802
			1,6				-				90	$\overline{}$							_		
180 180	60 90	1,4 1,5	1,6 1,5			11 11	11 11	8	-	93,076 93,0603	180	56 60	1,4		0,9	-0,1 0,3	11 11	11 11			92,6802 92,6802
124	68	1,5	1,3	_	_	11	11	8	$\overline{}$	93,0603	180	68	1,4		0,9	-0,2	11	11			92,6802
180	68	1,5	1,4	_	-0,2	11	11	8	$\overline{}$	93,0603	124	56	1,4		0,9	-0,2	11	11	_		92,6802
124	68	1,5	1,4	_		11	11	8		93,0445	124	68	1,4	1,6	0,9	-0,1	11	11	_		92,6802
180	90	1,5	1,4			11	11	8	-	93,0445	120	60	1,4		0,9	0,4	11				92,6554
180	68	1,5	1,4	0,9	_	11	11	8		93,0445	124	90	1,4	1,6	0,9	0,4	11	11	_		92,6554
180	90	1,5	0,5	0,9		11	11	8		93,0445	180	90	1,5	1,6	1	0,4	11	11	_		92,6267
124	90	1,5	1,4	_	-0,1	11	11	8	-	93,0445	124	90	1,5	1,6	1	0,4	11	11	_		92,6267
180	90	1,5	0,5	0,9	_	11	11	10	-	93,0445	124	56	0,5	1,6	0,9	-0,2	15			_	92,6174
			-,-	-,-	, , ,					,			-,-	,-	,-	,-					, , , ,

4. EK – 4 Test ve Kontrol Programı Arayüzü

Şekil 1 Çalışma Anı

Şekil 2 Parametrelerin Girilmesi

Şekil 3 Eğitim Anı

Şekil 4 Genel Rapor

Şekil 5 Grafik Gösterim

Şekil 6 Karşılaştırma Matrislerinin Gösterilmesi