La vérifiation formelle pour assurer la sureté des systèmes cyber-physiques

Ulrich Fahrenberg

École polytechnique, Palaiseau, France

Schiaparelli

Atterrisseur expérimental ESA / Roscosmos

Schiaparelli

Atterrisseur expérimental ESA / Roscosmos

Schiaparelli Schématique

Schiaparelli Schématique

Systèmes cyber-physiques Exemples

Systèmes cyber-physiques Schématique

Systèmes cyber-physiques Schématique

• à LIX : développer des méthodes pour assurer la sureté des systèmes cyber-physiques

Modèle mathématique d'un thermostat

Modèle mathématique d'un thermostat

Modèle Simulink

d'une éolienne

Schiaparelli

De l'insuffisance de la simulation d'un modèle

La vérification formelle

S'assurer des propriétés sans simulation

La vérification formelle des systèmes cyber-physiques dans le Monde

Conclusion

La vérifiation formelle pour assurer la sureté des systèmes cyber-physiques

- système cyber-physique : système informatique embarqué qui interagit avec son environnement physique
- pour assurer la sureté des systèmes cyber-physiques :
 la vérification formelle
- à LIX: vérification formelle des systèmes cyber-physiques distribués
- la Chaire académique "Ingénerie des Systèmes Complexes" :
 X, ENSTA ParisTech, Télécom ParisTech
- exemple : meute de sous-marins autonomes qui explorent une baie

