Lista 7

Kamil Matuszewski

30 listopada 2015

1	2	3	4	5	6	7	8
X	D	X		X	?	X	D

Gdzie X-spisane, D-Deklarowane, N-niedeklarowane.

Zadanie 1

Wiemy, że wzór na pochodną
$$p_{n+1}$$
 to $\sum_{i=0}^{n} (x_k - x_i)' \cdot \prod_{j=0; j \neq i}^{n} (x_k - x_j) = \sum_{i=0}^{n} \prod_{j=0; j \neq i}^{n} (x_k - x_j)$ Uzbrojeni w tą wiedzę, możemy zapisać, że:
$$L_n(x) = \sum_{k=0}^{n} f(x_k) \frac{p_{n+1}(x)}{(x-x_k)p'_{n+1}(x_k)} = \sum_{k=0}^{n} f(x_k) \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x_k-x_n)}{\sum_{i=0}^{n} \prod_{j=0; j \neq i}^{n} (x_k-x_j)}$$
 Teraz zauważmy, że dolna suma, będzie niezerowa dla i=k, dla wszystkich pozostałych elementów bedzie to no prostu 0, stad pożemy sopisać:

będzie to po prostu 0, stąd możemy zapisać:

$$\sum_{k=0}^{n} f(x_k) \frac{\prod_{i=0; i \neq k}^{n} (x - x_i)}{\prod_{j=0; j \neq k}^{n} (x_k - x_j)}$$

Teraz, nie ważne czy najpierw pomnożymy czy podzielimy, możemy więc zapisać te równanie w

1

$$\sum_{k=0}^{n} f(x_k) \prod_{i=0; i \neq k}^{n} \frac{x - x_i}{x_k - x_i}$$

 $\begin{array}{l} \sum\limits_{k=0}^{n}f(x_{k})\prod\limits_{i=0;i\neq k}^{n}\frac{x-x_{i}}{x_{k}-x_{i}}\\ \text{A to już jest dokładnie definicja wielomianu interpolacyjnego Lagrange'a.} \end{array}$

Zadanie 2

۵)	x_k	-2	-1	0	1
a)	y_k	1	0	1	-2

x_k	$f(x_k)$			
-2	1			
-1	0	-1		
0	1	1	1	
1	-2	-3	-2	-1

$$L_n(x) = 1 - (x+2) + (x+2)(x+1) - (x+2)(x+1)x$$

b)	x_k	1	2	-1	-2	0
D)	y_k	-2	9	0	1	1

x_k	$f(x_k)$				
1	-2				
2	9	11			
-1	0	3	4		
-2	1	-1	1	1	
0	1	0	1	0	1

$$L_n(x) = -2 + 11(x - 1) + 4(x - 1)(x - 2) + (x - 1)(x - 2)(x + 1) + (x - 1)(x - 2)(x + 1)(x + 2)$$

Zadanie 3

Z definicji rekurencyjnej:

$$\begin{cases} f[x_i] = f(x_i) \\ f[x_0 \cdots x_k] = \frac{f[x_1 \cdots x_k] - f[x_0 \cdots x_{k-1}]}{x_k - x_0} \end{cases}$$

 $\begin{cases} f[x_i] = f(x_i) \\ f[x_0 \cdots x_k] = \frac{f[x_1 \cdots x_k] - f[x_0 \cdots x_{k-1}]}{x_k - x_0} \end{cases}$ Widzimy, że jeśli znamy dwa wcześniejsze ilorazy różnicowe, potrzebujemy tylko jednego dzielenia i dwóch odejmowań (dla k¿1). Wiemy też, że możemy zrobić to metodą tabelkową. Mamy wtedy:

	k=0	k=1	 k=n
x_0	$f(x_0)$		
x_1	$f(x_1)$	$f[x_0, x_1]$	
• • •			
x_n	$f(x_n)$	$f[x_{n-1}, x_n]$	$f[x_0\cdots x_n]$

Teraz, obliczmy ilość dzieleń potrzebną do wypełnienia tabeli dla n:

D(0) = 0 bo mamy 0 dzieleń dla każdej wartości.

D(1) = 1 bo potrzebujemy tylko $f[x_0, x_1]$

D(n) = D(n-1) + n bo obliczamy wszystkie ilorazy różnicowe dla n-1, i doliczamy do tego nty wiersz za pomocą n ilorazów różnicowych.

Rozwiązując tą zależność otrzymujemy:

$$D(n) = \frac{(1+n)*n}{2}$$

Odejmowań jest zawsze dwa razy więcej, stąd:

$$S(n) = 2D(n) = (1+n) * n$$

Zadanie 5

Wiemy, że zachodzi wzór:

Wiemy, że zachodzi wzor:
$$|f(x) - L_n(x)| \leq \frac{||f^{(n+1)}(\eta)||}{(n+1)!} \cdot max_{x \in [a,b]|p_{n+1}|}$$
 Torga, wiemy, że głosy neggo funkcje jest siny

Teraz, wiemy, że skoro naszą funkcją jest sinus, to $||f^{(n+1)}(x)|| = \pm 2^{n+1}\sin(2x) \setminus \cos(2x)$

 $A \sin(2x)$ i $\cos(2x)$ są zawsze ≤ 1 . Dodatkowo, węzły są równoodległe a x jest brany z przedziału [0,1], stad $p_{n+1} \leqslant 1 |f(x) - L_n(x)| \leqslant \frac{2^{n+1}}{(n+1)!}$

Teraz:
$$\frac{2^{n+1}}{(n+1)!} \leqslant \frac{1}{10^4} \Leftrightarrow n \geqslant 10$$

Zadanie 6

$$||f^{(n+1)}(x)|| \le \frac{n!}{x^{n+1}}$$

 $||f^{(n+1)}(x)||\leqslant \frac{n!}{x^{n+1}}$ Węzły losowe, x musi być z przedziału [1,2], tak samo jak x_i , tak więc $(x-x_i)\leqslant 1$, więc $p_{n+1}\leqslant 1$, skoro tak, to:

skoro tak, to:

$$|f(x) - L_n(x)| \le \frac{n!}{(n+1)!1^{n+1}} = \frac{1}{(n+1)1^{n+1}} \le \frac{1}{10^3}$$

 $(n+1) \cdot 1 \ge 10^3 \Leftrightarrow n \ge 999$

Zadanie 7

$$\begin{split} ||f^{(n+1)}(\pm 1)|| &= e \\ p_{n+1} \leqslant \frac{1}{2^n} \\ \frac{e}{(n+1)! \cdot 2^n} \leqslant \frac{1}{10^5} \Leftrightarrow n \geqslant 6 \end{split}$$

Zadanie 8

WYMACHAJ