```
In [ ]:
        import sys
        !{sys.executable} -m pip install --user scikit-allel
In [1]:
        import numpy as np
        import scipy
        import pandas
        import matplotlib as mpl
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        sns.set_style('white')
        sns.set_style('ticks')
        sns.set_context('notebook')
        import h5py
        import allel; print('scikit-allel', allel.__version__)
```

scikit-allel 1.3.8

VCF to HDF5

In [2]: allel.vcf_to_hdf5('/users/mcevoysu/scratch/output/Bpendula/vcf_filtering/

Get data

```
In [3]: callset_var_fn = '/users/mcevoysu/scratch/output/Bpendula/scikit-allel/ra
    callset_var = h5py.File(callset_var_fn, mode='r')

In [4]: calldata_var = callset_var['calldata']
    list(calldata_var)

Out[4]: ['AD', 'DP', 'GQ', 'GT', 'MIN_DP', 'PGT', 'PID', 'PL', 'PS', 'RGQ', 'S
    B']

In [5]: list(callset_var['variants'])
```

```
Out[5]:
         ['AC',
          'AF',
          'ALT',
          'AN',
          'BaseQRankSum',
          'CHROM',
          'DP',
          'END',
          'ExcessHet',
           'FILTER_LowQual',
          'FILTER_PASS',
          'FS',
          'ID',
          'InbreedingCoeff',
          'MLEAC',
          'MLEAF',
          'MQ',
           'MQRankSum',
          'POS',
          'QD',
           'QUAL',
          'RAW_MQandDP',
          'REF',
          'ReadPosRankSum',
          'SOR',
          'altlen',
          'is snp',
           'numalt'l
```

Make datasets

```
In [6]: variants = allel.VariantChunkedTable(callset_var['variants'])
variants
```

Out [6]: <VariantChunkedTable shape=(581456,) dtype=[('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')] nbytes=99.3M cbytes=22.2M cratio=4.5 values=h5py._hl.group.Group>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	END	Ε
0	[23 9 -1]	[0.031 0.012 nan]	[b'T' b'A' b'']	728	0.175	b'Contig0'	16605	-1	
1	[1 -1 -1]	[0.001351 nan nan]	[b'*' b'' b'']	728	-0.979	b'Contig0'	16619	-1	
2	[1 -1 -1]	[0.001351 nan nan]	[b'C' b'' b'']	728	0.962	b'Contig0'	16693	-1	
•••									
581453	[2 -1 -1]	[0.002703 nan nan]	[b'T' b'' b'']	728	0.544	b'Contig5225'	14215	-1	
581454	[4 -1 -1]	[0.005405 nan nan]	[b'T' b'' b'']	728	0.787	b'Contig5225'	13624	-1	
581455	[9 -1 -1]	[0.014 nan nan]	[b'G' b'' b'']	728	0.619	b'Contig5225'	13422	-1	

```
In [7]: variants_np = variants[:]
    rawsnps = variants_np.query('(is_snp == True)')
    rawsnps
```

Out[7]: <VariantTable shape=(371986,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	END
0	[23 9 -1]	[0.031 0.012 nan]	[b'T' b'A' b'']	728	0.175	b'Contig0'	16605	-1
1	[1 -1 -1]	[0.001351 nan nan]	[b'C' b'' b'']	728	0.962	b'Contig0'	16693	-1
2	[478 -1 -1]	[0.654 nan nan]	[b'G' b'' b'']	728	-0.043	b'Contig0'	17345	-1
•••								
371983	[2 -1 -1]	[0.002703 nan nan]	[b'T' b'' b'']	728	0.544	b'Contig5225'	14215	-1
371984	[4 -1 -1]	[0.005405 nan nan]	[b'T' b'' b'']	728	0.787	b'Contig5225'	13624	-1
371985	[9 -1 -1]	[0.014 nan nan]	[b'G' b'' b'']	728	0.619	b'Contig5225'	13422	-1

In [8]: notsnp = variants_np.query('(is_snp != True)')
notsnp

Out [8]: <VariantTable shape=(209470,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	END
0	[1 -1 -1]	[0.001351 nan nan]	[b'*' b'' b'']	728	-0.979	b'Contig0'	16619	-1
1	[3 -1 -1]	[0.004054 nan nan]	[b'*' b'' b'']	728	nan	b'Contig0'	16752	-1
2	[7 3 -1]	[0.009459 0.004054 nan]	[b'G' b'*' b'']	728	-0.873	b'Contig0'	16787	-1
•••								
209467	[3 3 -1]	[0.004054 0.004054 nan]	[b'A' b'*' b'']	728	-1.773	b'Contig5225'	106474	-1
209468	[95 2 -1]	[0.128 0.002703 nan]	[b'T' b'*' b'']	728	0.0	b'Contig5225'	58497	-1
209469	[4 -1 -1]	[0.00542 nan nan]	[b'*' b'' b'']	726	0.0	b'Contig5225'	16743	-1

Plot function

```
In [9]:
        def plot_hist(f, dsubset='', bins=30, ):
            if dsubset == 'var':
                 x = variants[f][:]
                 l = 'Variant'
            elif dsubset == 'snp':
                 x = rawsnps[f][:]
                 l = 'Raw SNP'
            elif dsubset == 'notsnp':
                 x = notsnp[f][:]
                 l = 'Raw Not SNP'
            elif dsubset == 'biallelic':
                 x = biallelic np[f][:]
                 l = 'Biallelic SNP'
            elif dsubset == 'varsel':
                 x = var_selection[f][:]
                 l = 'Filtered Variants'
            elif dsubset == 'snpsel':
                 x = snp selection[f][:]
                 l = 'Filtered SNP'
            else:
```

```
x = bi_selection[f][:]
    l = 'Biallelic SNP'
fig, ax = plt.subplots(figsize=(10, 5))
sns.despine(ax=ax, offset=10)
ax.hist(x, bins=bins)
ax.set_xlabel(f)
ax.set_ylabel('No. variants')
ax.set_title('%s %s distribution' % (l, f))
```

Find Biallelic SNPS

Out[13]: <VariantTable shape=(352414,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	END
0	[1 -1 -1]	[0.001351 nan nan]	[b'C' b'' b'']	728	0.962	b'Contig0'	16693	-1
1	[478 -1 -1]	[0.654 nan nan]	[b'G' b'' b'']	728	-0.043	b'Contig0'	17345	-1
2	[23 -1 -1]	[0.031 nan nan]	[b'T' b'' b'']	728	0.66	b'Contig0'	17175	-1
•••								
352411	[2 -1 -1]	[0.002703 nan nan]	[b'T' b'' b'']	728	0.544	b'Contig5225'	14215	-1
352412	[4 -1 -1]	[0.005405 nan nan]	[b'T' b'' b'']	728	0.787	b'Contig5225'	13624	-1
352413	[9 -1 -1]	[0.014 nan nan]	[b'G' b'' b'']	728	0.619	b'Contig5225'	13422	-1

MQ - RMS mapping quality

In [14]: plot_hist('MQ','var') # RMS mapping quality


```
In [16]: filter_expression = '(MQ < 55)'
bi_selection = biallelic_np.query(filter_expression)[:]
#np.count_nonzero(var_selection)</pre>
```

```
In [17]: plot_hist('MQ')
```



```
In [18]: filter_expression = '(MQ < 40)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>
```


In [20]: plot_hist('MQ','notsnp')

QD - Variant Confidence/Quality by Depth


```
In [23]: filter_expression = '(QD < 2)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>
```


In [25]: plot_hist('QD','notsnp') # Variant Confidence/Quality by Depth

SOR - Symmetric Odds Ratio of 2x2 contingency table to detect strand bias

plot_hist('SOR','biallelic') # Symmetric Odds Ratio of 2x2 contingency ta

In [29]: plot_hist('SOR') # Symmetric Odds Ratio of 2x2 contingency table to detec

In [30]: plot_hist('SOR','notsnp') # Symmetric Odds Ratio of 2x2 contingency table

MQRankSum - Z-score From Wilcoxon rank sum test of Alt vs. Ref read mapping qualities

plot_hist('MQRankSum','biallelic') # Z-score From Wilcoxon rank sum test

In [34]: plot_hist('MQRankSum') # Z-score From Wilcoxon rank sum test of Alt vs. R

In [35]: plot_hist('MQRankSum', 'notsnp') # Z-score From Wilcoxon rank sum test of

ReadPosRankSum - Z-score from Wilcoxon rank sum test of Alt vs. Ref read position bias

In [37]: plot_hist('ReadPosRankSum','biallelic') # Z-score from Wilcoxon rank sum

In [38]: plot_hist('ReadPosRankSum', 'notsnp') # Z-score from Wilcoxon rank sum tes

DP - Approximate read depth

In [39]: plot_hist('DP','var')


```
In [41]: filter_expression = '(DP > 20000) & (DP < 40000)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>
```

In [42]: plot_hist('DP')

AN - Total number of alleles in called genotypes

In [44]: plot_hist('AN','var') # Total number of alleles in called genotypes

In [45]: plot_hist('AN','biallelic') # Total number of alleles in called genotypes

In [46]: plot_hist('AN', 'notsnp') # Total number of alleles in called genotypes

Selected filter

```
In [47]: # QD: Variant Confidence/Quality by Depth
# AN: Total number of alleles in called genotypes
filter_expression = '(QD >= 2) & (MQ >= 40) & (MQRankSum >= -12.5) & (is_
variant_selection = variants_np.eval(filter_expression)[:]
np.count_nonzero(variant_selection)
```

Out[47]: 335876

Genotype

```
In [48]: calldata_var = callset_var['calldata']
list(calldata_var)

Out[48]: ['AD', 'DP', 'GQ', 'GT', 'MIN_DP', 'PGT', 'PID', 'PL', 'PS', 'RGQ', 'S
B']

In [49]: genotypes_var = allel.GenotypeChunkedArray(calldata_var['GT'])
genotypes_var
```

Out [49]: <GenotypeChunkedArray shape=(581456, 364, 2) dtype=int8 chunks=(65536, 64, 2) nbytes=403.7M cbytes=17.9M cratio=22.5 compression=gzip compression_opts=1 values=h5py._hl.dataset.Dataset>

								360			
0	0/0	0/0	0/0	0/0	0/0		0/0	0/1	0/0	0/0	0/0
1	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
2	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
•••	0/0 0/0 0/0 0/0 0.0 0										
581453	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
581453 581454 581455	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
581455	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0

```
In [50]: # using the selected filters set above
gt_filtered_snps = genotypes_var.subset(variant_selection)
gt_filtered_snps
```

Out [50]: <GenotypeChunkedArray shape=(335876, 364, 2) dtype=int8 chunks=(2625, 364, 2) nbytes=233.2M cbytes=18.4M cratio=12.7 compression=blosc compression_opts= {'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

								360			
0	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/1	0/0	0/0	0/0
1	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
2	1/1	0/1	0/1	0/1	0/1	•••	0/1	0/1	0/0	0/1	0/1
•••	0/0 0/0 0/0 0/0 0.0 0.0 0/1 0/0 0/1 0										
335873	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
335874	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
335875	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0

```
In [51]: # grab the allele counts for the populations
    ac = gt_filtered_snps.count_alleles()
    ac
```

out[51]: <AlleleCountsChunkedArray shape=(335876, 4) dtype=int32 chunks=(20993, 4)
 nbytes=5.1M cbytes=792.5K cratio=6.6 compression=blosc compression_opts=
 {'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

	0	1	2	3
0	696	23	9	0
1	727	1	0	0
2	250	478	0	0
•••				
335873	726	2	0	0
335874	726	2	0	0
335875	724	4	0	0

```
In [52]: ac[:]
```

Out [52]: <AlleleCountsArray shape=(335876, 4) dtype=int32>

	0	1	2	3
0	696	23	9	0
1	727	1	0	0
2	250	478	0	0
•••		•••		
335873	726	2	0	0
335874	726	2	0	0
335875	724	4	0	0

```
In [53]: # Which ones are biallelic?
  is_biallelic_01 = ac.is_biallelic_01()[:]
  ac1 = ac.compress(is_biallelic_01, axis=0)[:, :2]
  ac1
  ##this part of the code is only for graphing the SFS, is not useful for f
```

```
In [54]: # plot the sfs of the derived allele
s = allel.sfs_folded(ac1)
allel.plot_sfs(s, yscale="linear", n=ac1.sum(axis=1).max())
```

Out[54]: <Axes: xlabel='derived allele frequency', ylabel='site frequency'>


```
In [55]: biallelic = (ac.max_allele() == 1)
###This is the filter expression for biallelic sites
biallelic
```

```
In [56]: # select only the biallelic variants
   gt_biallelic = gt_filtered_snps.compress(biallelic)
   gt_biallelic
```

out[56]: <GenotypeChunkedArray shape=(316299, 364, 2) dtype=int8 chunks=(2472, 364, 2)
nbytes=219.6M cbytes=16.5M cratio=13.3 compression=blosc compression_opts=
{'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

	0	1	2	3	4	•••	359	360	361	362	363
								0/0			
1	1/1	0/1	0/1	0/1	0/1	•••	0/1	0/1	0/0	0/1	0/1
2	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/1	0/0	0/0	0/0
•••											
316296	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
316297	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
316298	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0

```
In [57]: n_variants = len(gt_biallelic)
n_variants

Out[57]: 316299

In [58]: pc_missing = gt_biallelic.count_missing(axis=0)[:] * 100 / n_variants
    pc_het = gt_biallelic.count_het(axis=0)[:] * 100 / n_variants
```

Samples

```
In [59]: samples_var = callset_var['samples']
    samples_var = list(samples_var)
    samples_var
```

```
[b'ESP00102-001',
Out [59]:
           b'ESP00102-002',
           b'ESP00102-003'
           b'ESP00102-004'
           b'ESP00102-005',
           b'ESP00102-006',
           b'ESP00102-007'
           b'ESP00102-008',
           b'ESP00102-009',
           b'ESP00102-010',
           b'ESP00102-011'
           b'ESP00102-012',
           b'ESP00102-013',
           b'ESP00102-014'
           b'ESP00102-015'
           b'ESP00102-016',
           b'ESP00102-017'
           b'ESP00102-018'
           b'ESP00102-019',
           b'ESP00102-020',
           b'ESP00102-021'
           b'ESP00102-022'
           b'ESP00102-023',
           b'ESP00102-024'.
           b'ESP00102-025'
           b'ESP00199-001'
           b'ESP00199-002',
           b'ESP00199-003',
           b'ESP00199-004'
           b'ESP00199-005',
           b'ESP00199-006',
           b'ESP00199-007'
           b'ESP00199-008'
           b'ESP00199-009',
           b'ESP00199-010',
           b'ESP00199-011'
           b'ESP00199-012',
           b'ESP00199-013',
           b'ESP00199-014'
           b'ESP00199-015'
           b'ESP00199-016',
           b'ESP00199-017',
           b'ESP00199-018'
           b'ESP00199-019',
           b'ESP00199-020',
           b'ESP00199-021'
           b'ESP00199-022'
           b'ESP00199-023'
           b'ESP00199-024',
           b'ESP00199-025'
           b'ESP00337-001'
           b'ESP00337-002'
           b'ESP00337-003'
           b'ESP00337-004'
           b'ESP00337-005'
           b'ESP00337-006',
           b'ESP00337-007',
           b'ESP00337-008'
           b'ESP00337-009'
           b'ESP00337-010',
```

b'ESP00337-011'. b'ESP00337-012' b'ESP00337-013', b'ESP00337-014', b'ESP00337-015', b'ESP00337-016' b'ESP00337-017' b'ESP00337-018', b'ESP00337-019', b'ESP00337-020', b'ESP00337-021', b'ESP00337-022'. b'ESP00337-023' b'ESP00337-024' b'ESP00337-025', b'FIN00015-001', b'FIN00015-002' b'FIN00015-003' b'FIN00015-004', b'FIN00015-005' b'FIN00015-006' b'FIN00015-007' b'FIN00015-008', b'FIN00015-009', b'FIN00015-010'. b'FIN00015-011', b'FIN00015-012'. b'FIN00015-013' b'FIN00015-014' b'FIN00015-015', b'FIN00015-016', b'FIN00015-017' b'FIN00015-018', b'FIN00015-019', b'FIN00015-020' b'FIN00015-021' b'FIN00015-022' b'FIN00015-023' b'FIN00015-024' b'FIN00015-025' b'FIN00020-001', b'FIN00020-002' b'FIN00020-003' b'FIN00020-004', b'FIN00020-005', b'FIN00020-006' b'FIN00020-007' b'FIN00020-008', b'FIN00020-009' b'FIN00020-010' b'FIN00020-011' b'FIN00020-012', b'FIN00020-013' b'FIN00020-014' b'FIN00020-015' b'FIN00020-016', b'FIN00020-017' b'FIN00020-018' b'FIN00020-019', b'FIN00020-020',

```
b'FIN00020-021'.
b'FIN00020-022'
b'FIN00020-023'
b'FIN00020-024',
b'FIN00020-025',
b'FIN00044-001'
b'FIN00044-002'
b'FIN00044-003',
b'FIN00044-004'
b'FIN00044-005'
b'FIN00044-006',
b'FIN00044-007'.
b'FIN00044-009'
b'FIN00044-010'
b'FIN00044-011',
b'FIN00044-012',
b'FIN00044-013'
b'FIN00044-014'
b'FIN00044-015',
b'FIN00044-016',
b'FIN00044-017'
b'FIN00044-018',
b'FIN00044-019',
b'FIN00044-020'
b'FIN00044-021'
b'FIN00044-022',
b'FIN00044-023'
b'FIN00044-024'
b'FIN00044-025'
b'FIN00046-001',
b'FIN00046-002'
b'FIN00046-003'
b'FIN00046-004',
b'FIN00046-005',
b'FIN00046-006'
b'FIN00046-007'
b'FIN00046-008'
b'FIN00046-009'
b'FIN00046-010'
b'FIN00046-011'
b'FIN00046-012',
b'FIN00046-013'
b'FIN00046-014'
b'FIN00046-015',
b'FIN00046-016',
b'FIN00046-017'
b'FIN00046-018'
b'FIN00046-019',
b'FIN00046-020'
b'FIN00046-021'
b'FIN00046-022'
b'FIN00046-023'
b'FIN00046-024'
b'FIN00046-025'
b'GBR00013-001'
b'GBR00013-002'
b'GBR00013-003'
b'GBR00013-004'
b'GBR00013-005',
b'GBR00013-006',
```

```
b'GBR00013-007'.
b'GBR00013-008'
b'GBR00013-009',
b'GBR00013-010',
b'GBR00013-013'
b'GBR00013-014'
b'GBR00013-015'
b'GBR00013-016',
b'GBR00013-017'
b'GBR00013-018'
b'GBR00013-019',
b'GBR00013-020'.
b'GBR00013-021'
b'GBR00013-022'
b'GBR00013-023',
b'GBR00013-024',
b'GBR00013-025'
b'GBR00015-101',
b'GBR00015-102',
b'GBR00015-103'
b'GBR00015-104'
b'GBR00015-105',
b'GBR00015-106',
b'GBR00015-107'
b'GBR00015-108'
b'GBR00015-109',
b'GBR00015-110',
b'GBR00015-111'
b'GBR00015-112'
b'GBR00015-113',
b'GBR00015-114',
b'GBR00015-115'
b'GBR00015-116',
b'GBR00015-117',
b'GBR00015-118'
b'GBR00015-119'
b'GBR00015-120',
b'GBR00015-121'
b'GBR00015-122'
b'GBR00015-123'
b'GBR00015-124',
b'IRL00017-001'
b'IRL00017-002'
b'IRL00017-003'
b'IRL00017-004',
b'IRL00017-005'
b'IRL00017-006',
b'IRL00017-007'
b'IRL00017-008'
b'IRL00017-009'
b'IRL00017-010'
b'IRL00017-011',
b'IRL00017-012'
b'IRL00017-013'
b'IRL00017-014',
b'IRL00017-015',
b'IRL00017-016'
b'IRL00017-017'
b'IRL00017-018',
b'IRL00017-019',
```

```
b'IRL00017-020'.
b'ITA00243-001'
b'ITA00243-002'
b'ITA00243-003',
b'ITA00243-004',
b'ITA00243-005'
b'ITA00243-006'
b'ITA00243-007',
b'ITA00243-008'
b'ITA00243-009',
b'ITA00243-010',
b'ITA00243-011'.
b'ITA00243-012'
b'ITA00243-013'
b'ITA00243-014',
b'ITA00243-015',
b'ITA00243-016'
b'ITA00243-017'
b'ITA00243-018',
b'ITA00243-019',
b'ITA00243-020'
b'ITA00243-021',
b'ITA00243-022',
b'ITA00243-023'
b'ITA00243-024'
b'ITA00243-025',
b'ITA00248-001',
b'ITA00248-002'
b'ITA00248-003'
b'ITA00248-004',
b'ITA00248-005',
b'ITA00248-006',
b'ITA00248-007'
b'ITA00248-009',
b'ITA00248-010'
b'ITA00248-011'
b'ITA00248-012',
b'ITA00248-013'
b'ITA00248-014'
b'ITA00248-015'
b'ITA00248-017'
b'ITA00248-018'
b'ITA00248-019'
b'ITA00248-020',
b'ITA00248-021',
b'ITA00248-022'
b'ITA00248-023'
b'ITA00248-024',
b'ITA00248-025'
b'LUX00021-001'
b'LUX00021-002'
b'LUX00021-003',
b'LUX00021-004'
b'LUX00021-005'
b'LUX00021-006',
b'LUX00021-007'
b'LUX00021-008'
b'LUX00021-009',
b'LUX00021-010',
b'LUX00021-011',
```

```
b'LUX00021-012'.
b'LUX00021-013',
b'LUX00021-014'
b'LUX00021-015',
b'LUX00021-016',
b'LUX00021-017'
b'LUX00021-018'
b'LUX00021-019',
b'LUX00021-020',
b'LUX00021-021'
b'LUX00021-022',
b'LUX00021-023'.
b'LUX00021-024'
b'LUX00021-025'
b'NLD00013-001',
b'NLD00013-002',
b'NLD00013-003'
b'NLD00013-004'
b'NLD00013-005',
b'NLD00013-006',
b'NLD00013-007'
b'NLD00013-008'
b'NLD00013-009',
b'NLD00013-010',
b'NLD00013-011'
b'NLD00013-012',
b'NLD00013-013'.
b'NLD00013-014'
b'NLD00013-015'
b'NLD00013-016',
b'NLD00013-017'
b'NLD00013-018'
b'NLD00013-019',
b'NLD00013-020',
b'NLD00013-021'
b'NLD00013-022'
b'NLD00013-023'
b'NLD00013-024'
b'NLD00013-025'
b'SWE00093-001'
b'SWE00093-002'
b'SWE00093-003'
b'SWE00093-004'
b'SWE00093-005'
b'SWE00093-006',
b'SWE00093-007'
b'SWE00093-008'
b'SWE00093-009',
b'SWE00093-010'
b'SWE00093-011'
b'SWE00093-012'
b'SWE00093-013',
b'SWE00093-014'
b'SWE00093-015'
b'SWE00093-016',
b'SWE00093-017'
b'SWE00093-018'
b'SWE00093-019'
b'SWE00093-020',
b'SWE00093-021',
```

```
b'SWE00093-022',
           b'SWE00093-023',
           b'SWE00093-024'
           b'SWE00093-025']
In [64]: samples_fn = '~/scratch/data/Bpendula/Betula_pendula_sample_list_scikit-a
         samples = pandas.read_csv(samples_fn, sep='\t')
         samples
Out[64]:
                             Population
            0
                ESP00102-001
                              ESP00102
               ESP00102-002
                              ESP00102
            2
               ESP00102-003
                              ESP00102
            3
               ESP00102-004
                              ESP00102
            4
               ESP00102-005
                              ESP00102
         359
               SWE00093-021 SWE00093
         360 SWE00093-022 SWE00093
          361 SWE00093-023
                             SWE00093
                             SWE00093
         362 SWE00093-024
         363 SWE00093-025 SWE00093
         364 rows × 2 columns
In [65]:
        samples.Population.value_counts()
Out[65]:
         Population
         ESP00102
                      25
          ESP00199
                      25
                      25
          ESP00337
          FIN00015
                      25
          FIN00020
                      25
          FIN00046
                      25
          ITA00243
                      25
                      25
         NLD00013
          SWE00093
                      25
         LUX00021
                      25
          FIN00044
                      24
          GBR00015
                      24
         GBR00013
                      23
                      23
          ITA00248
          IRL00017
                      20
         Name: count, dtype: int64
In [66]:
         populations = samples.Population.unique()
         populations
         ###This identifiers come from the metadata file
```

Gt frequency function

```
In [67]:
         def plot genotype frequency(pc, title):
              fig, ax = plt.subplots(figsize=(24, 5))
              sns.despine(ax=ax, offset=24)
              left = np.arange(len(pc))
              palette = sns.color palette("hls", 15)
              pop2color = {'ESP00102': palette[0],
                            'ESP00199': palette[8],
                            'ESP00337': palette[1],
                            'FIN00015': palette[9],
                            'FIN00020': palette[2],
                            'FIN00044': palette[10],
                            'FIN00046': palette[3],
                            'GBR00013': palette[11],
                            'GBR00015': palette[4],
                            'IRL00017': palette[12],
                            'ITA00243': palette[5],
                            'ITA00248': palette[13],
                            'LUX00021': palette[6],
                            'NLD00013': palette[14],
                            'SWE00093': palette[7]}
              colors = [pop2color[p] for p in samples.Population]
              ax.bar(left, pc, color=colors)
              ax.set_xlim(0, len(pc))
              ax.set xlabel('Sample index')
              ax.set_ylabel('Percent calls')
              ax.set title(title)
              handles = [mpl.patches.Patch(color=palette[0]),
                          mpl.patches.Patch(color=palette[8]),
                          mpl.patches.Patch(color=palette[1]),
                          mpl.patches.Patch(color=palette[9]),
                          mpl.patches.Patch(color=palette[2]),
                          mpl.patches.Patch(color=palette[10]),
                          mpl.patches.Patch(color=palette[3]),
                          mpl.patches.Patch(color=palette[11]),
                          mpl.patches.Patch(color=palette[4]),
                          mpl.patches.Patch(color=palette[12]),
                         mpl.patches.Patch(color=palette[5]),
                         mpl.patches.Patch(color=palette[13]),
                         mpl.patches.Patch(color=palette[6]),
                         mpl.patches.Patch(color=palette[14]),
                         mpl.patches.Patch(color=palette[7])]
              ax.legend(handles=handles, labels=['ESP00102', 'ESP00199', 'ESP00337'
                 'FIN00044', 'FIN00046', 'GBR00013', 'GBR00015', 'IRL00017', 'ITA00243', 'ITA00248', 'LUX00021', 'NLD00013', 'SWE00093'], title
                         bbox_to_anchor=(1, 1), loc='upper left')
```

Plot missing

```
In [68]: plot_genotype_frequency(pc_missing, 'Missing')
```


Plot heterozygosity

PCA

```
palette = sns.color palette("hls",15)
pop_colours = {
                 'ESP00102': palette[0],
                  'ESP00199': palette[8],
                  'ESP00337': palette[1],
                  'FIN00015': palette[9],
                  'FIN00020': palette[2],
                  'FIN00044': palette[10],
                  'FIN00046': palette[3],
                  'GBR00013': palette[11],
                  'GBR00015': palette[4],
                  'IRL00017': palette[12],
                  'ITA00243': palette[5],
                  'ITA00248': palette[13],
                  'LUX00021': palette[6],
                  'NLD00013': palette[14],
                  'SWE00093': palette[7]
}
def plot_pca_coords(coords, model, pc1, pc2, ax, sample_population):
    sns.despine(ax=ax, offset=5)
    x = coords[:, pc1]
    y = coords[:, pc2]
    for pop in populations:
         flt = (sample_population == pop)
         ax.plot(x[flt], y[flt], marker='o', linestyle=' ', color=pop_colo
                 label=pop, markersize=6, mec='k', mew=.5)
    ax.set_xlabel('PC%s (%.1f%%)' % (pc1+1, model.explained_variance_rati
    ax.set_ylabel('PC%s (%.1f%%)' % (pc2+1, model.explained_variance_rati
def fig_pca(coords, model, title, sample_population=None):
```

```
if sample_population is None:
    sample_population = samples.Population
# plot coords for PCs 1 vs 2, 3 vs 4
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(1, 2, 1)
plot_pca_coords(coords, model, 0, 1, ax, sample_population)
ax = fig.add_subplot(1, 2, 2)
plot_pca_coords(coords, model, 2, 3, ax, sample_population)
ax.legend(bbox_to_anchor=(1, 1), loc='upper left')
fig.suptitle(title, y=1.02)
fig.tight_layout()
```

```
In [72]: ac2 = gt_biallelic.count_alleles()
ac2
```

Out[72]: <AlleleCountsChunkedArray shape=(316299, 2) dtype=int32 chunks=(39538, 2)
 nbytes=2.4M cbytes=597.6K cratio=4.1 compression=blosc compression_opts=
 {'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

	0	1
0	727	1
1	250	478
2	705	23
•••	•	
316296	726	2
316297	726	2
316298	724	4

```
In [73]: flt = (ac2[:, :2].min(axis=1) > 1)
   gf = gt_biallelic.compress(flt, axis=0)
   gn = gf.to_n_alt()
   gn
```

```
In [74]: coords1, model1 = allel.pca(gn, n_components=10, scaler='patterson')
In [75]: fig_pca(coords1, model1, 'Figure 1. Conventional PCA.')
```

Figure 1. Conventional PCA.

In [83]: outliers = coords1[:,3]<-800
samples[outliers]</pre>

 Out [83]:
 ID
 Population

 86
 FIN00015-012
 FIN00015

FIN00015-014

FIN00015

In [84]: pc_het[outliers]

Out[84]: array([7.83815314, 7.40818023])

In [85]: pc_missing[outliers]

Out[85]: array([0.07176754, 0.07239985])