3 全射・単射

学籍番号: 名前

A, B を集合、 $f: A \rightarrow B$ を写像とする.

- 1. $f:A \to B$ が全射 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ 任意の $b \in B$ について、ある $a \in A$ があって b = f(a).
- 2. $f: A \to B$ が単射 $\iff a_1, a_2 \in A$ について, $a_1 \neq a_2$ ならば $f(a_1) \neq f(a_2)$. $\iff a_1, a_2 \in A$ について, $f(a_1) = f(a_2)$ ならば $a_1 = a_2$.
- $3. \ 1_A:A \to A$ が恒等写像 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ 任意の $a \in A$ について $1_A(a)=a$ となる写像.
- 4. 部分集合 $X\subset A$ について, $i:X\hookrightarrow A$ が包含写像 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ 任意の $x\in X$ について $i(x)=x\in A$ となる写像.
- $5. \ f:A\to B$ が全単射 (1 対 1 の対応) $\stackrel{\mathrm{def}}{\Longleftrightarrow} f$ が全射かつ単射. \Longleftrightarrow ある $g:B\to A$ があって, $g\circ f=1_A$ かつ $f\circ g=1_B$ が成り立つ. この g を f の逆 写像といい $f^{-1}:B\to A$ で表す. (逆像の記号と同じことに注意.)

問題 $1. f: X \to Y$ を空でない集合の間の写像とし, $A \subset X$ を空でない部分集合とする. 「f が単射ならば $A = f^{-1}(f(A))$ である」の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

逆の包含を示す. $x\in f^{-1}(f(A))$ とする. $f(x)\in f(A)$ であるので、ある $a\in A$ があって f(x) に f(a) である. よって f は単射なので、x に $a\in A$ である.

以上より f が単射ならば $A = f^{-1}(f(A))$ である.

語句群

任意の ある C ⊃ ∈ ∉ = ≠

問題 $2. f: X \to Y$ を空でない集合の間の写像とし, $B \subset Y$ を空でない部分集合とする. 「 f が全射ならば $B = f(f^{-1}(B))$ 」の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.] $x \in f^{-1}(B)$ ならば $f(x) \in B$ である. これより B つっこう $f(f^{-1}(B))$ である.

逆の包含を示す. $y\in B$ とする. f が全射なので、 $a\in X$ があって、 y=f(a) となる. $f(a)=y\in B$ より a $f^{-1}(B)$ である. よって $y=f(a)\in f(f^{-1}(B))$ となる.

以上より f が全射ならば $B = f(f^{-1}(B))$ である.

語句群 -

任意の ある C ⊃ ∈ ∉ = ≠

問題 3. A,B,C は空でない集合とし, $f:A\to B,g:B\to C$ を写像とする. 次のうち正しい主張を全て選べ.

- (1). $g \circ f$ が単射ならば f は単射.
- (2). $g \circ f$ が単射ならば g は単射.
- (3). g∘f が全射ならば f は全射.
- (4). g o f が全射ならば g は全射.
- (5). $f \geq g$ が単射ならば $g \circ f$ は単射.
- (6). f と g が全射ならば $g \circ f$ は全射.
- (7). f が単射で g が全射ならば, $g \circ f$ は全射.
- (8). f が単射で g が全射ならば, $g \circ f$ は単射.
- (9). f が全射で g が単射ならば, $g \circ f$ は単射.
- (10). f が全射で g が単射ならば, $g \circ f$ は全射.

$$(1) \quad (4) \quad (5) \quad (6)$$

$$(1) \quad (5) \quad (7) \quad (7)$$