

Inteligencia Artificial

Unidad 1: Representación Avanzada del Conocimiento

TEMA 2: Algoritmos de la IA Clásica

Módulo 5: Algoritmo de búsqueda Simulated Anneling

MÓDULO 5: Algoritmo de Búsqueda Simulated Anneling

Unidad 1

Representación Avanzada del Conocimiento

TEMA 2: Algoritmos de la IA Clásica

Sesión 8

- 1. Origen del Algoritmo Simulated Anneling
- 2. ¿Cómo funciona este Algoritmo?
- 3. Fases en el Algoritmo Simulated Anneling
- 4. Ejemplos de aplicación

1. Origen del Algoritmo Simulated Anneling

Este algoritmo tiene su origen en la metalurgia.

- En metalurgia, el recocido se refiere al proceso de calentar el metal a una temperatura alta y luego enfriarlo lentamente en un ambiente controlado.
- A mayor <u>temperatura</u>, los átomos aumentan su <u>energía</u> del metal se mueven velozmente.
- Si el metal se enfriara rápidamente, los átomos se detendrían repentinamente donde quiera que estuvieran (y el metal no guardaría una forma uniforme). Se produciría una disposición aleatoria de los átomos y un resultado de mala calidad.
- En cambio, si el metal se enfría lentamente, los átomos tienen tiempo para encontrar gradualmente la mejor orientación posible y alinearse en una buena forma o estado.
- Entonces, es preferible el enfriamiento lento que el rápido, porque hace que el metal sea más dúctil, reduce los defectos y lo hace significativamente más fuerte (*).

(*) Fuente: Verhoeven, JD *Fundamentals of Physical Metalurgy*, Wiley, Nueva York, 1975, p. 326

1. Origen del Algoritmo Simulated Anneling en I.A.

El **Algoritmo Simulated Anneling en I.A.** es un algoritmo que se inspira en la <u>recocido de los metales</u> para **resolver problemas de optimización global** (encontrar mínimos y máximos globales).

- Inspirado en el proceso físico de enfriamiento controlado de metales.
- Si el enfriamiento es adecuado, se obtiene la estructura de menor energía (mínimo global)

Simulated Anneling es un algoritmo Hill Climbing estocástico (casual).

Objetivo: Evitar el problema de los máximos (o mínimos)

locales de la Escalada de la Colina.

Debe encontrar mínimos y máximos globales.

1. Origen del Algoritmo Simulated Anneling en I.A.

Es una adaptación del algoritmo **Metropolis-Hastings** (1953), que simulaba el proceso de recocido.

Metropolis-Hastings logra verificar que un pequeño desplazamiento aleatorio de un átomo resulta en un cambio de energía. Así:

- Si el cambio de energía es negativo, el estado energético de la nueva configuración es menor y se acepta la nueva configuración.
- Si el cambio de energía es positivo, la nueva configuración tiene un estado energético superior.

La adaptación a **Simulated Anneling** (1983-85) incorpora el **factor de probabilidad de Boltzmann** para validar la función de aceptación (de un mejor estado):

$$P=e^{-rac{\Delta E}{T}}$$
 Donde:
 $\Delta E=Es$ la diferencia de energia entre dos estados
 $T=Temperatura$

Al examinar esta ecuación, debemos notar dos cosas:

- La probabilidad es proporcional a la temperatura: a medida que el sólido (metal) se enfría, la probabilidad se reduce.
- La probabilidad es inversamente proporcional a la energía: a medida que el cambio de energía es mayor, la probabilidad de aceptar el cambio se reduce.

1. Origen del Algoritmo Simulated Anneling en I.A.

Caso del Guía de Turismo: Llevar a un grupo de pasajeros partiendo del punto A hacia B y G retornando finalmente al punto inicial A. Debe recorrer la menor distancia en el menor tiempo posible.

Imaginemos <u>muchas</u>
<u>conexiones/rutas</u> como los átomos
que se mueven a gran velocidad
cuando la <u>temperatura es alta</u>

A medida que disminuimos la temperatura (energía) nos quedaremos con <u>pocas</u> <u>conexiones/rutas</u>, así como los átomos encuentran un estado final optimo cuando menor temperatura reciban.

Simulamos el proceso de recocido en algunos sistemas de alta temperatura, pero al ir disminuyendo la temperatura logramos finalmente establecer una solución definitiva.

2. ¿Cómo funciona este Algoritmo?

Metodología

- a) Temperatura: parámetro de control principal.
- **b)** Energía: función heurística sobre la calidad de la solución f'(n).
- c) Función de aceptación: permite escoger el nodo sucesor (puede ser peor).

$$P=e^{-rac{\Delta E}{T}}$$
 Donde:
 $\Delta E=Es$ la diferencia de energia entre dos estados
 $T=Temperatura$

d) Estrategia de enfriamiento:

- El número de iteraciones de la búsqueda.
- Cómo disminuir de la temperatura.
- Cuántos sucesores explorar para cada paso de temperatura.
- e) Se hacen pasos aleatorios por el espacio de soluciones.

2. ¿Cómo funciona este Algoritmo?

Simulated Anneling - Flujo

3. Fases en el Algoritmo Simulated Anneling

Se consideran nueve fases en este algoritmo:

- 1. Inicializar Temperatura
- 2. Establecer Tour Aleatorio
- 3. Inicializar Tours
- 4. Elegir dos nodos
- 5. Establecer Nuevo Tour
- 6. Energía
- 7. Función de Aceptación
- 3. El mejor
- 9. Actualizar temperatura

EJEMPLO #1: el problema del Agente Viajero (TSP)

Descripción del problema: TSP por sus siglas en inglés (Travelman Salesman Problem), es un problema de optimización que consiste en hallar la ruta

mínima de un recorrido de **n** ciudades, saliendo desde la ciudad de origen o nodo cero, recorriendo las **n** ciudades y

retornando al punto o ciudad de origen

Solución: a través de Algoritmo de Recocido Simulado

Pasos a seguir:

- 1. Inicializar Temperatura
- 2. Establecer Tour Aleatorio
- 3. Inicializar Tours
- 4. Elegir dos nodos
- 5. Establecer Nuevo Tour
- 6. Energía
- 7. Función de Aceptación
- 8. El mejor
- 9. Actualizar temperatura

EJEMPLO #1: el problema del Agente Viajero (TSP)

Paso #1: Inicializar temperatura

Temperatura inicial

Temp = 1000

Pasos a seguir:

- 1. Inicializar Temperatura
- 2. Establecer Tour Aleatorio
- 3. Inicializar Tours
- 4. Elegir dos nodos
- 5. Establecer Nuevo Tour
- 6. Energía
- 7. Función de Aceptación
- 8. El mejor
- 9. Actualizar temperatura

EJEMPLO #1 el problema del Agente Viajero (TSP)

Paso #2: Establecer Tour aleatorio

Temperatura inicial
Temp = 1000

Pasos a seguir:

- 1. Inicializar Temperatura
- 2. Establecer Tour Aleatorio
- 3. Inicializar Tours
- 4. Elegir dos nodos
- 5. Establecer Nuevo Tour
- 6. Energía
- 7. Función de Aceptación
- 8. El mejor
- 9. Actualizar temperatura

Tour aleatorio

1(Bolivia)-2(Colombia)-3(Venezuela)-4(Brasil)-5(Argentina)-6(Chile)-7(Perú)

EJEMPLO #1 el problema del Agente Viajero (TSP)

Paso #3: Inicializar Tours -> actual, mejor y nuevo

Temperatura inicial
Temp = 1000

Pasos a seguir:

- 1. Inicializar Temperatura
- 2. Establecer Tour Aleatorio
- 3. Inicializar Tours
- 4. Elegir dos nodos
- 5. Establecer Nuevo Tour
- 6. Energía
- 7. Función de Aceptación
- 8. El mejor
- 9. Actualizar temperatura

Tour aleatorio

1(Bolivia)-2(Colombia)-3(Venezuela)-4(Brasil)-5(Argentina)-6(Chile)-7(Perú)

TActual = 1-2-3-4-5-6-7

TMejor = 1-2-3-4-5-6-7

TNuevo = 1-2-3-4-5-6-7

EJEMPLO #1 el problema del Agente Viajero (TSP)

Paso #4: Elegir dos nodos (estados)

Temperatura inicial

Temp = 1000

Pasos a seguir:

- 1. Inicializar Temperatura
- 2. Establecer Tour Aleatorio
- 3. Inicializar Tours
- 4. Elegir dos nodos
- 5. Establecer Nuevo Tour
- 6. Energía
- 7. Función de Aceptación
- 8. El mejor
- 9. Actualizar temperatura

Tour aleatorio

1(Bolivia)-2(Colombia)-3(Venezuela)-4(Brasil)-5(Argentina)-6(Chile)-7(Perú)

TActual = 1-2-3-4-5-6-7

TMejor = 1-2-3-4-5-6-7

TNuevo = 1-2-3-4-5-6-7

4 = Brasil

6 = Chile

EJEMPLO #1 el problema del Agente Viajero (TSP)

Paso #5: Alternamos el tour con el nuevo orden (intercambiamos el orden de visita de los nodos elegidos).

Temperatura inicial
Temp = 1000

Pasos a seguir:

- 1. Inicializar Temperatura
- 2. Establecer Tour Aleatorio
- 3. Inicializar Tours
- 4. Elegir dos nodos
- 5. Establecer Nuevo Tour
- 6. Energía
- 7. Función de Aceptación
- 8. El mejor
- 9. Actualizar temperatura

Tour aleatorio

1(Bolivia)-2(Colombia)-3(Venezuela)-4(Brasil)-5(Argentina)-6(Chile)-7(Perú)

TActual = 1-2-3-4-5-6-7

TMejor = 1-2-3-4-5-6-7

TIX:**vo** = 1-2-3-4-5-6-7

TNuevo = 1-2-3-6-5-4-7

4 = Brasil

6 = Chile

Intercambiamos 4 por 6 y viceversa en el nuevo tour (**TNuevo**)

EJEMPLO #1 el problema del Agente Viajero (TSP)

Paso #6: Establecemos un valor para la energía.

Temperatura inicial

Temp = 1000

Pasos a seguir:

- 1. Inicializar Temperatura
- 2. Establecer Tour Aleatorio
- 3. Inicializar Tours
- 4. Elegir dos nodos
- 5. Establecer Nuevo Tour
- 6. Energía
- 7. Función de Aceptación
- 8. El mejor
- 9. Actualizar temperatura

Tour aleatorio

1(Bolivia)-2(Colombia)-3(Venezuela)-4(Brasil)-5(Argentina)-6(Chile)-7(Perú)

TActual = 1-2-3-4-5-6-7

TMejor = 1-2-3-4-5-6-7

TNuevo = 1-2-3-6-5-4-7

Energía= ????

EJEMPLO #1 el problema del Agente Viajero (TSP)

Paso #6: Establecemos un valor para la energía. La energía depende de la distancia entre dos nodos.

40

35

Distancia entre dos nodos (países)

X\Y	Perú	Chile	Argentina	Brasil	Venezuela	Colom	Bolivia
Perú	0.00	20.62	29.15	35.00	33.54	14.14	15.81
Chile	20.62	0.00	20.62	36.06	43.01	30.41	18.03
Argentina	29.15	20.62	0.00	18.03	30.41	29.15	14.14
Brasil	35.00	36.06	18.03	0.00	15.81	26.93	20.62
Venezuela	33.54	43.01	30.41	15.81	0.00	20.62	25.00
Colombia	14.14	30.41	29.15	26.93	20.62	0.00	15.81
Bolivia	15.81	18.03	14.14	20.62	25.00	15.81	0.00

Energía Actual

Energía Nueva

TSP South America

Colombia

Venezuela

EActual = 15.81+20.62+15.81+18.03+20.62+20.62+15.81 = **127.32**

ENueva = 15.81+20.62+43.01+20.62+18.03+35.00+15.81 = 168.90

EJEMPLO #1 el problema del Agente Viajero (TSP)

Paso #7: Reemplazamos la energía actual (EActual) y nueva (ENueva) en la función de aceptación para obtener el Tour actual (TActual)

```
Temp = 1000
```

EActual = 127.32

ENueva = 168.90

FUNCIÓN DE ACEPTACIÓN

```
Si ENueva < EActual
Prob = 1
sino
Prob = exp( (EActual-ENueva)/Temp)

Si Prob > Random(0,1)
TActual = TNuevo
```

Pasos a seguir:

- 1. Inicializar Temperatura
- 2. Establecer Tour Aleatorio
- 3. Inicializar Tours
- 4. Elegir dos nodos
- 5. Establecer Nuevo Tour
- 6. Energía
- 7. Función de Aceptación
- 8. El mejor
- 9. Actualizar temperatura

REEMPLAZANDO

Si 168.90 < 127.32

```
Prob = 1
sino
```

```
Prob = \exp((127.32 - 168.90)/1000) = 0.96
```

Si Prob > 0.45

TActual = TNuevo //En este caso TActual = 1-2-3-6-5-4-7

EJEMPLO #1 el problema del Agente Viajero (TSP)

Paso #8 y #9: De ser el caso, actualizamos el mejor Tour (TMejor) y reducimos la temperatura (Temp).

La mejor solución:

Si Distancia TActual < Distancia TMejor TMejor = TActual

REEMPLAZANDO

Si 168.90 < 127.32

TMejor = TActual //No cambia TMejor

Pasos a seguir:

- 1. Inicializar Temperatura
- 2. Establecer Tour Aleatorio
- 3. Inicializar Tours
- 4. Elegir dos nodos
- 5. Establecer Nuevo Tour
- 6. Energía
- 7. Función de Aceptación
- 8. El mejor
- 9. Actualizar temperatura

TActual = 1-2-3-6-5-4-7

TMejor = 1-2-3-4-5-6-7

TNuevo = 1-2-3-6-5-4-7

Se actualiza la temperatura

Temp = (1-VEnfriamiento) * Temp

Temp = (1-0.003)*1000

Temp = 997

Donde:

VEnfriamiento = 0.003

EJEMPLO #1: el problema del Agente Viajero (TSP)

Resultados de esta primera iteración:

TActual = 1-2-3-6-5-4-7

TMejor = 1-2-3-4-5-6-7

TNuevo = 1-2-3-6-5-4-7

Distancia Actual = EActual = 168.90

Distancia Mejor = 127.32

Distancia Nueva = ENueva = 168.90

Temperatura = 997

EJEMPLO# 2:

Solución al problema del vendedor ambulante (TSP) utilizando el módulo simanneal – en Python

EJEMPLO#3:

Solución al problema de encontrar el mínimo valor de una función objetivo - en Python

PREGUNTAS

Dudas y opiniones