

수학 계산력 강화

(2)부채꼴의 호의 길이와 넓이

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2019-02-13
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

부채꼴의 호의 길이와 넓이

반지름의 길이가 r, 중심각의 크기가 θ (라디안)인

부채꼴의 호의 길이를 *l*,

부채꼴의 넓이를 S라 하면

(1) $l = r\theta$

(2)
$$S = \frac{1}{2}r^2\theta = \frac{1}{2}rl$$

 \blacksquare 중심각의 크기가 θ , 반지름의 길이가 r, 호의 길이가 l인 부채꼴에서 라디안의 정의를 이용하여 다음을 구하여라.

- **1.** $l=1, \ \theta=2$ 일 때, r의 값
- **2.** $r=2, \ \theta=1$ 일 때, l의 값
- 3. l=1, r=29 때, θ 의 값

 \blacksquare 반지름의 길이 r와 중심각의 크기 θ 가 다음과 같은 부채 꼴의 호의 길이 l를 구하여라.

4.
$$r=1, \ \theta=\frac{\pi}{6}$$

5.
$$r=3, \ \theta=\frac{\pi}{12}$$

6.
$$r=6, \ \theta=\frac{2}{3}\pi$$

7.
$$r=9, \ \theta=\frac{2}{3}\pi$$

 \blacksquare 반지름의 길이 r와 중심각의 크기 θ 가 다음과 같은 부채 꼴의 넓이 *S*를 구하여라.

8.
$$r=3, \ \theta=\frac{\pi}{7}$$

9.
$$r = 4$$
, $\theta = \frac{\pi}{4}$

10.
$$r=5$$
, $\theta = \frac{6}{5}\pi$

11.
$$r=2$$
, $\theta=30^{\circ}$

12.
$$r = 6$$
, $\theta = \frac{2}{3}\pi$

13.
$$r=5, \ \theta=\frac{2\pi}{5}$$

14.
$$r=4, \ \theta=\frac{\pi}{4}$$

15.
$$r=9$$
, $\theta=\frac{2}{3}\pi$

16.
$$r = \frac{3}{2}, \ \theta = \frac{2}{3}\pi$$

17.
$$r = 6$$
, $\theta = \frac{\pi}{6}$

18.
$$r=2, \ \theta=\frac{\pi}{6}$$

19.
$$r=4, \ \theta=\frac{\pi}{12}$$

20.
$$r=1, \ \theta=\frac{\pi}{2}$$

ightharpoonup 반지름의 길이 r와 호의 길이 l이 다음과 같은 부채꼴의 넓이 S를 구하여라.

21.
$$r=3$$
, $l=\frac{5}{4}\pi$

22.
$$r=5$$
, $l=4\pi$

23.
$$r = 12$$
, $l = 4\pi$

24.
$$r=4$$
, $l=\frac{3}{2}\pi$

25.
$$r=2, l=\frac{6}{5}\pi$$

 \blacksquare 다음과 같이 주어진 반지름의 길이가 r, 중심각의 크기가 θ 인 부채꼴의 호의 길이 l과 넓이 S를 각각 구하여라.

26.
$$r=1, \ \theta=\frac{\pi}{6}$$

27.
$$r=2, \ \theta=30^{\circ}$$

28.
$$r=2, \ \theta=\frac{\pi}{4}$$

29.
$$r = 6$$
, $\theta = 45^{\circ}$

30.
$$r=6, \ \theta=\frac{\pi}{3}$$

31.
$$r=4$$
, $\theta=\frac{\pi}{4}$

32.
$$r=4, \ \theta=120^{\circ}$$

33.
$$r=3, \ \theta=\frac{\pi}{3}$$

34.
$$r = 15$$
, $\theta = 36$ °

 \blacksquare 다음과 같이 주어진 호의 길이가 l, 넓이가 S인 부채꼴 의 반지름의 길이 r와 중심각의 크기 θ 를 각각 구하여라.

35.
$$l = \pi$$
, $S = \frac{\pi}{2}$

36.
$$l=3\pi$$
, $S=6\pi$

37.
$$l = \frac{6}{5}\pi$$
, $S = \frac{9}{5}\pi$

38.
$$l = 2\pi$$
, $S = \frac{9}{4}\pi$

- **39.** $l = 3\pi$, $S = 9\pi$
- $lacksymbol{\square}$ 반지름의 길이가 r, 중심각의 크기가 heta인 부채꼴에서 호 의 길이를 l, 넓이를 S라 할 때, 다음을 구하여라.

40.
$$l=3\pi, \ \theta=\frac{\pi}{6}$$
일 때, r 의 값

41.
$$l = \pi$$
, $\theta = \frac{2}{3}\pi$ 일 때, S의 값

42.
$$l=\pi, \; \theta=\frac{\pi}{4}$$
일 때, r 의 값

43.
$$l=2, \ \theta=45\,^{\circ}$$
일 때, S의 값

44.
$$l=2\pi, \ \theta=\frac{\pi}{9}$$
일 때, S의 값

45.
$$l=\frac{4}{3}\pi,~\theta=\frac{\pi}{6}$$
일 때, r 의 값

46.
$$l = \frac{3}{4}\pi$$
, $r = 3$ 일 때, θ 의 값

47.
$$l = \frac{2}{3}\pi$$
, $r = 4$ 일 때, θ 의 값

48. S=
$$3\pi$$
, $\theta = 30^{\circ}$ 일 때, l 의 값

49.
$$\theta = \frac{4}{5}\pi$$
, $S = 40\pi$ 일 때, l 의 값

50.
$$S = \frac{2}{3}\pi$$
, $\theta = \frac{\pi}{3}$ 일 때, l 의 값

51.
$$\theta = \frac{5\pi}{3}$$
, $S = 30\pi$ 일 때, l 의 값

52.
$$\theta = \frac{5}{9}\pi$$
, $S = 90\pi$ 일 때, l 의 값

- ☑ 둘레의 길이가 다음과 같은 부채꼴에서 넓이 S가 최대일 때, 반지름의 길이 r의 값을 구하여라.
- **53.** 10
- **54.** 12
- **55.** 14
- **56.** 18
- **57.** 20
- **58.** 22
- **59.** 32
- 둘레의 길이가 다음과 같은 부채꼴에서 넓이 S가 최대일 때, 중심각의 크기를 구하여라.
- **60.** 8
- **61.** 40

- ☑ 다음 물음에 답하여라.
- **62.** 부채꼴 OAB의 둘레의 길이가 24일 때, 부채꼴 OAB의 넓이가 최대가 되도록 하는 반지름 r의 값 을 구하여라.

- **63.** 둘레의 길이가 20, 넓이가 24인 부채꼴의 반지름 의 길이를 r, 중심각의 크기를 θ 라 할 때, $r+\theta$ 의 값을 구하여라. (단, $0 < \theta < \frac{\pi}{2}$)
- **64.** 반지름의 길이가 r이고 중심각의 크기가 θ (라디 안)인 부채꼴의 둘레의 길이가 16이다. 부채꼴의 넓 이가 최대일 때, $r+\theta$ 의 값을 구하여라.
- 65. 부채꼴의 둘레의 길이가 24, 넓이가 36인 부채꼴 의 중심각의 크기를 구하여라.
- **66.** 둘레의 길이가 10인 부채꼴의 넓이가 최대가 되 도록 하는 반지름의 길이를 a, 중심각을 b라 할 때, a+b의 값을 구하여라.

67. 반지름의 길이가 4cm이고 넓이가 $24cm^2$ 인 부채 꼴의 중심각의 크기를 θ , 호의 길이를 lcm라고 할 때, $\theta+l$ 의 값을 구하여라.. (단, 중심각의 단위는 라 디안이다.)

68. 그림과 같은 두 부채꼴 OAB,OCD에 대하여 $\widehat{AB} = 2\pi$, $\widehat{CD} = \pi$ 이다. 색칠한 부분의 넓이가 $\frac{9}{2}\pi$ 일 때, \overline{AC} 의 길이를 구하여라. (단, \widehat{AB} 는 호 \overline{AB} 의 길이, CD는 호 CD의 길이를 나타낸다.)

69. 다음 그림과 같은 두 부채꼴 AOB, COD에 대하 여 $\widehat{AB}=2\pi$, $\widehat{CD}=rac{4}{3}\pi$ 이다. 색칠한 부분의 넓이가 $\frac{10}{3}\pi$ 일 때, $\overline{\rm AC}$ 의 길이를 구하여라.

70. 부피가 $16\pi \text{ cm}^3$ 인 원뿔이 있다. 이 원뿔의 옆면을 펼친 부채꼴의 호의 길이가 8πcm일 때, 원뿔의 겉 넓이를 구하여라.

정답 및 해설

반지름의 길이가 r인 원에서 중심각의 크기가 2라 디안인 부채꼴의 호의 길이는 2r이므로

$$2r = 1$$

$$\therefore r = \frac{1}{2}$$

 $r\!=\!2$ 인 원에서 중심각의 크기가 1라디안인 부채 꼴의 호의 길이는 2이다.

$$l = 2$$

3) $\frac{1}{2}$

r=2인 원에서 길이가 2인 호에 대한 중심각의 크기가 1라디안이고, 중심각의 크기는 호의 길이 에 비례하므로 길이가 1인 호에 대한 중심각의 크 기는 $\frac{1}{2}$ 라디안이다.

$$\therefore \ \theta = \frac{1}{2}$$

4)
$$\frac{\pi}{6}$$

$$\Rightarrow l=1 \cdot \frac{\pi}{6} = \frac{\pi}{6}$$

5)
$$\frac{\pi}{4}$$

$$\Rightarrow l=3 \cdot \frac{\pi}{12} = \frac{\pi}{4}$$

6)
$$4\pi$$

$$\Rightarrow l = 6 \times \frac{2}{3}\pi = 4\pi$$

7)
$$6\pi$$

8)
$$\frac{9}{14}\pi$$

$$\Rightarrow S = \frac{1}{2} \cdot 3^2 \cdot \frac{\pi}{7} = \frac{9}{14}\pi$$

$$\Rightarrow S = \frac{1}{2}r^2\theta = \frac{1}{2} \times 4^2 \times \left(\frac{\pi}{4}\right) = 2\pi$$

10) 15π

11)
$$\frac{\pi}{3}$$

12) 12π

$$\Rightarrow S = \frac{1}{2}r^2\theta = \frac{1}{2} \times 36 \times \frac{2}{3}\pi = 12\pi$$

$$\Rightarrow S = \frac{1}{2} \cdot 5^2 \cdot \frac{2}{5}\pi = 5\pi$$

$$\Rightarrow S = \frac{1}{2} \cdot 4^2 \cdot \frac{\pi}{4} = 2\pi$$

15) 27π

16)
$$\frac{3}{4}\pi$$

$$\Rightarrow S = \frac{1}{2}r^2\theta = \frac{1}{2} \times \left(\frac{3}{2}\right)^2 \times \frac{2}{3}\pi = \frac{3}{4}\pi$$

$$\Rightarrow S = \frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times \frac{\pi}{6} = 3\pi$$

$$\Rightarrow S = \frac{1}{2} \cdot 2^2 \cdot \frac{\pi}{6} = \frac{\pi}{3}$$

19) $\frac{2}{3}\pi$

$$\Rightarrow S = \frac{1}{2} \cdot 4^2 \cdot \frac{\pi}{12} = \frac{2}{3}\pi$$

$$\Rightarrow S = \frac{1}{2} \cdot 1^2 \cdot \frac{\pi}{2} = \frac{\pi}{4}$$

21) $\frac{15}{8}\pi$

$$\Rightarrow S = \frac{1}{2} \cdot 3 \cdot \frac{5}{4} \pi = \frac{15}{8} \pi$$

22) 10π

23)
$$24\pi$$

24) 3π

$$\Rightarrow S = \frac{1}{2} \cdot 4 \cdot \frac{3}{2}\pi = 3\pi$$

$$25) \ \frac{6}{5}\pi$$

$$\Rightarrow S = \frac{1}{2} \cdot 2 \cdot \frac{6}{5} \pi = \frac{6}{5} \pi$$

26)
$$l = \frac{\pi}{6}$$
, $S = \frac{\pi}{12}$

$$\Rightarrow l=1\times\frac{\pi}{6}=\frac{\pi}{6}, S=\frac{1}{2}\times1^2\times\frac{\pi}{6}=\frac{\pi}{12}$$

27)
$$l = \frac{\pi}{3}$$
, $S = \frac{\pi}{3}$

$$\theta = 30^{\circ} = 30 \times 1^{\circ} = 30 \times \frac{\pi}{180} = \frac{\pi}{6}$$
이므로

$$l = 2 \times \frac{\pi}{6} = \frac{\pi}{3}, S = \frac{1}{2} \times 2^2 \times \frac{\pi}{6} = \frac{\pi}{3}$$

28)
$$l = \frac{\pi}{2}$$
, $S = \frac{\pi}{2}$

$$\Rightarrow l=2\times\frac{\pi}{4}=\frac{\pi}{2}, S=\frac{1}{2}\times2^2\times\frac{\pi}{4}=\frac{\pi}{2}$$

29)
$$l = \frac{3}{2}\pi$$
, $S = \frac{9}{2}\pi$

$$\Rightarrow$$
 $\theta = 45$ ° $= 45 \times 1$ ° $= 45 \times \frac{\pi}{180} = \frac{\pi}{4}$ 이므로

$$l = 6 \times \frac{\pi}{4} = \frac{3}{2}\pi$$
, $S = \frac{1}{2} \times 6^2 \times \frac{\pi}{4} = \frac{9}{2}\pi$

30)
$$l = 2\pi$$
, $S = 6\pi$

31)
$$l = \pi$$
, $S = 2\pi$

$$\Rightarrow l = 4 \cdot \frac{\pi}{4} = \pi, S = \frac{1}{2} \cdot 4^2 \cdot \frac{\pi}{4} = 2\pi$$

32)
$$l = \frac{8}{3}\pi$$
, $S = \frac{16}{3}\pi$

$$\Rightarrow$$
 $\theta = 120$ ° $= 120 \times 1$ ° $= 120 \times \frac{\pi}{180} = \frac{2}{3} \pi$ 이므로

$$l = 4 \times \frac{2}{3}\pi = \frac{8}{3}\pi$$
, $S = \frac{1}{2} \times 4^2 \times \frac{2}{3}\pi = \frac{16}{3}\pi$

33)
$$l = \pi$$
, $S = \frac{3}{2}\pi$

$$\Rightarrow l=3\times\frac{\pi}{3}=\pi$$
, $S=\frac{1}{2}\times3^2\times\frac{\pi}{3}=\frac{3}{2}\pi$

34)
$$l = 3\pi$$
, $S = \frac{45}{2}\pi$

$$\Rightarrow$$
 36° = 36× $\frac{\pi}{180}$ = $\frac{\pi}{5}$ 이므로

$$l = 15 \cdot \frac{\pi}{5} = 3\pi$$
, $S = \frac{1}{2} \cdot 15^2 \cdot \frac{\pi}{5} = \frac{45}{2}\pi$

35)
$$r = 1$$
, $\theta = \pi$

$$\Rightarrow$$
 S= $\frac{1}{2}rl$ 이므로

$$\frac{\pi}{2} = \frac{1}{2} \times r \times \pi \qquad \therefore \quad r = 1$$

또,
$$l = r\theta$$
이므로 $\pi = 1 \times \theta$ $\therefore \theta = \pi$

36)
$$r = 4$$
, $\theta = \frac{3\pi}{4}$

37)
$$r=3$$
, $\theta = \frac{2}{5}\pi$

$$ightharpoonup$$
 반지름의 길이를 r , 중심각의 크기를 $heta$ 라 하면

호의 길이는
$$\frac{6}{5}\pi = r\theta$$

부채꼴의 넓이는
$$\frac{9}{5}\pi = \frac{1}{2}r^2\theta$$

$$\frac{1}{2}r^2\theta \div r\theta = \frac{1}{2}r = \frac{3}{2}$$

$$\therefore r = 3, \ \theta = \frac{2}{5}\pi$$

38)
$$r = \frac{9}{4}$$
, $\theta = \frac{8}{9}\pi$

$$\Rightarrow$$
 S= $\frac{1}{2}rl$ 이므로

$$\frac{9}{4}\pi = \frac{1}{2} \times r \times 2\pi \qquad \therefore \quad r = \frac{9}{4}$$

또,
$$l = r\theta$$
이므로

$$2\pi = \frac{9}{4} \times \theta$$
 $\therefore \theta = \frac{8}{9}\pi$

39)
$$r = 6$$
, $\theta = \frac{\pi}{2}$

$$\Rightarrow$$
 S= $\frac{1}{2}rl$ 이므로

$$9\pi = \frac{1}{2} \times r \times 3\pi \qquad \therefore r = 6$$

또,
$$l = r\theta$$
이므로

$$3\pi = 6 \times \theta$$
 $\theta = \frac{\pi}{2}$

$$\Rightarrow 3\pi = r \cdot \frac{\pi}{6}$$
 $\therefore r = 18$

$$\therefore r = 18$$

41)
$$S = \frac{3}{4}\pi$$

$$\Rightarrow$$
 반지름을 r 이라 할 때

$$l = r\theta$$
, $\pi = \frac{2}{3}\pi r$ $\therefore r = \frac{3}{2}$

$$\therefore (부채꼴의 넓이) = \frac{1}{2}rl = \frac{3}{4}\pi$$

$$\Rightarrow \pi = r \cdot \frac{\pi}{4}$$
 $\therefore r = 4$

$$\therefore r = 4$$

43)
$$\frac{8}{\pi}$$

$$\Rightarrow \theta = 45 \degree = 45 \times 1 \degree = 45 \times \frac{\pi}{180} = \frac{\pi}{4} \circ] \overrightarrow{2},$$

$$l = r\theta \circ] \square \overrightarrow{2} \quad 2 = r \times \frac{\pi}{4} \qquad \therefore \quad r = \frac{8}{\pi}$$

$$S = \frac{1}{2} r l \circ] \square \overrightarrow{2} \quad S = \frac{1}{2} \times \frac{8}{\pi} \times 2 = \frac{8}{\pi}$$

44)
$$18\pi$$

$$\Rightarrow l = r\theta \text{ 에서 } 2\pi = r \cdot \frac{\pi}{9} \qquad \therefore r = 18$$
$$\therefore \text{ S} = \frac{1}{2}rl = \frac{1}{2} \cdot 18 \cdot 2\pi = 18\pi$$

$$\Rightarrow l = r\theta \text{ MeV} \quad \frac{4}{3}\pi = r \cdot \frac{\pi}{6} \qquad \therefore r = 8$$

46)
$$\frac{\pi}{4}$$

$$\Rightarrow \frac{3}{4}\pi = 3\theta \qquad \therefore \theta = \frac{\pi}{4}$$

47)
$$\frac{\pi}{6}$$

$$\Rightarrow \frac{2}{3}\pi = 4\theta \qquad \therefore \theta = \frac{\pi}{6}$$

다 부채꼴의 반지름의 길이를
$$r$$
라고 하면 $\theta = 30\,^\circ = 30 \times 1\,^\circ = 30 \times \frac{\pi}{180} = \frac{\pi}{6}\,$ 이고 $S = \frac{1}{2}r^2\theta$ 이므로
$$3\pi = \frac{1}{2} \times r^2 \times \frac{\pi}{6}$$
 $r^2 = 36$ \therefore $r = 6$ $(\because r > 0)$ 또, $S = \frac{1}{2}rl$ 이므로
$$3\pi = \frac{1}{2} \times 6 \times l$$
 \therefore $l = \pi$

49) 8π

50)
$$\frac{2}{3}\pi$$

다 부채꼴의 반지름의 길이를
$$r$$
라고 하면
$$S = \frac{1}{2}r^2\theta \ \text{이므로}$$

$$\frac{2}{3}\pi = \frac{1}{2} \times r^2 \times \frac{\pi}{3}$$

$$r^2 = 4 \qquad \therefore \quad r = 2 \quad (\because \ r > 0)$$
 또, $S = \frac{1}{2}rl \ \text{이므로}$
$$\frac{2}{3}\pi = \frac{1}{2} \times 2 \times l$$

$$\therefore l = \frac{2}{3}\pi$$

51) 10π

 \Rightarrow 부채꼴의 반지름을 r이라 하면 부채꼴의 넓이가

$$30\pi = \frac{1}{2}r^2\theta = \frac{1}{2}r^2\frac{5}{3}\pi$$

$$r^2 = 36$$
 $\therefore r = 6$

따라서 호의 길이는 $r\theta = 6 \times \frac{5}{3}\pi = 10\pi$ 이다.

$$\Rightarrow \frac{1}{2}r^2\theta = S$$

$$\frac{1}{2}r^2 \cdot \frac{5}{9}\pi = 90\pi$$

$$r^2 = 90 \times 2 \times \frac{9}{5}$$

$$r^2 = 18^2$$

$$\therefore r = 18$$

$$l = r\theta = 18 \times \frac{5}{9}\pi = 10\pi$$

53) $\frac{5}{2}$

 \Rightarrow 부채꼴의 호의 길이를 l이라 하면 $l = 10 - 2r \ (0 < r < 5)$ 이므로 $S = \frac{1}{2}rl = \frac{1}{2}r(10-2r)$ $=-r^2+5r=-\left(r-\frac{5}{2}\right)^2+\frac{25}{4}$ 따라서 S는 $r=\frac{5}{2}$ 일 때 최댓값 $\frac{25}{4}$ 를 가지므로 넓이가 최대일 때의 반지름의 길이는 $\frac{5}{2}$ 이다.

 \Rightarrow 부채꼴의 호의 길이를 l, 넓이를 S라 하면 $l = 12 - 2r \ (0 < r < 6)$ 이므로 $S = \frac{1}{2}rl = \frac{1}{2}r(12 - 2r)$ $=-r^2+6r=-(r-3)^2+9$ 따라서 r=3일 때 부채꼴의 넓이가 최대이다.

55) $\frac{7}{2}$

⇒ 부채꼴의 호의 길이를 l이라 하면 $l = 14 - 2r \ (0 < r < 7)$ 이므로 $S = \frac{1}{2}rl = \frac{1}{2}r(14 - 2r)$ $=-r^2+7r=-\left(r-\frac{7}{2}\right)^2+\frac{49}{4}$ 따라서 S는 $r=\frac{7}{2}$ 일 때 최댓값 $\frac{49}{4}$ 를 가지므로 넓이가 최대일 때의 반지름의 길이는 $\frac{7}{2}$ 이다.

56)
$$\frac{9}{2}$$

 \Rightarrow 부채꼴의 호의 길이를 l이라 하면 $l = 18 - 2r \ (0 < r < 9)$ 이므로 $S = \frac{1}{2}rl = \frac{1}{2}r(18 - 2r)$ $=-r^2+9r=-\left(r-\frac{9}{2}\right)^2+\frac{81}{4}$ 따라서 S는 $r=\frac{9}{2}$ 일 때 최댓값 $\frac{81}{4}$ 을 가지므로 넓이가 최대일 때의 반지름의 길이는 $\frac{9}{2}$ 이다.

57) 5

 \Rightarrow 부채꼴의 반지름의 길이를 r, 호의 길이를 l이라 고 하면 둘레의 길이가 20이므로 $20 = l + 2r \qquad \therefore \quad l = 20 - 2r$ 이때, r > 0, l > 0이므로 0 < r < 10한편, 부채꼴의 넓이를 S라고 하면 $S = \frac{1}{2}rl = \frac{1}{2}r(20 - 2r) = -r^2 + 10r$ $=-(r-5)^2+25$ 따라서 r=5일 때 부채꼴의 넓이가 최대가 된다.

 \Rightarrow 부채꼴의 호의 길이를 l이라 하면 $l = 22 - 2r \ (0 < r < 11)$ 이므로 $S = \frac{1}{2}rl = \frac{1}{2}r(22 - 2r)$ $=-r^2+11r=-\left(r-\frac{11}{2}\right)^2+\frac{121}{4}$ 따라서 S는 $r=\frac{11}{2}$ 일 때 최댓값 $\frac{121}{4}$ 을 가지므 로 넓이가 최대일 때의 반지름의 길이는 $\frac{11}{2}$ 이다.

59) 8

⇒ 부채꼴의 호의 길이를 l이라 하면 $l = 32 - 2r \ (0 < r < 16)$ 이므로 $S = \frac{1}{2}rl = \frac{1}{2}r(32 - 2r)$ $=-r^2+16r=-(r-8)^2+64$ 따라서 S는 r=8일 때 최댓값 64를 가지므로 넓 이가 최대일 때의 반지름의 길이는 8이다.

60) 2

$$\Rightarrow$$
 $2r+r\theta=8$, $\theta=rac{8-2r}{r}$ (부채필의 넓이)= $rac{1}{2}r^2\theta=rac{1}{2}r^2\Big(rac{8-2r}{r}\Big)$

$$=\frac{1}{2}r(8-2r)=\frac{1}{2}\left(-2r^2+8r\right)$$

$$=-r^2+4r=-(r-2)^2+4$$
 따라서 $r=2$ 일 때 최댓값을 가지고 이 때 중심각 의 크기 $\theta=\frac{8-4}{2}=2$ 이다.

61) 2

62) 6

$$r\theta + 2r = 24 \qquad \therefore \quad \theta = \frac{24}{r} - 2$$
 (부채꼴 OAB의 넓이)
$$= \frac{1}{2}r^2\theta = \frac{1}{2}r^2\left(\frac{24}{r} - 2\right) = 12r - r^2 = -(r - 6)^2 + 36$$
 따라서 $r = 6$ 일 때, 최댓값을 가진다.

63) $\frac{22}{3}$

64) 6

65)2

ightharpoons 부채꼴의 반지름과 중심각을 각각 r, heta라 하면 $2r + r\theta = 24$, $\frac{1}{2}r^2\theta = 36$ $\therefore r^2 - 12r + 36 = 0$, r = 6, $\theta = 2$

66) $\frac{9}{9}$

⇒ 부채꼴의 호의 길이는 ab이고, 둘레의 길이가 2a + ab = 10이므로 ab = 10 - 2a부채꼴의 넓이는 $\frac{1}{2}a(10-2a)=-a^2+5a=-\left(a-\frac{5}{2}\right)^2+\frac{25}{4}$ 이므로 $a = \frac{5}{2}$ 일 때, 최대가 된다. 따라서 이때 b=2이므로 $a+b=\frac{9}{2}$ 이다.

67) 15

⇨ 부채꼴의 넓이가 24이고 반지름이 4이므로

$$24 = \frac{1}{2}r^2\theta = \frac{1}{2} \times 4^2 \times \theta = 8\theta$$
 $\therefore \theta = 3$ 호의 길이는 $l = r\theta = 4 \times 3 = 12$ $\therefore \theta + l = 3 + 12 = 15$

68) 3

➡ 부채꼴 OAB, OCD에 대하여 중심각이 같으며 호
 의 길이가 2배이므로 OC=CA이다.

부채꼴의 중심각의 크기를 θ 라고 하자.

호의 길이에 의해 $x\theta = \pi$

색칠한 부분의 넓이에 의해

$$\frac{1}{2}4x^2\theta-\frac{1}{2}x^2\theta=\frac{9}{2}\pi$$

$$x^2\theta = 3\pi$$

연립해주면
$$x=3$$
, $\theta=\frac{\pi}{3}$ \therefore $\overline{AC}=3$

69) 2

70) $36\pi \text{ cm}^2$

□ 원뿔의 옆면의 부채꼴의 호의 길이가 $8\pi \, \mathrm{cm} \, \mathrm{O}$ 므로 밑면의 반지름의 길이는 $4\, \mathrm{cm} \, \mathrm{O}$ 다.

원뿔의 높이를 h라 하면 부피가 $16\pi \,\mathrm{cm}^3$ 이므로

$$\frac{1}{3} \times 4^2 \pi \times h = 16\pi \qquad \therefore \quad h = 3$$

따라서 원뿔의 모선의 길이는 $\sqrt{4^2+3^2}=5$ 이다.

: (원뿔의 겉넓이)=(밑면의 넓이)+(옆면의 넓이)

$$=16\pi + \frac{1}{2} \cdot 5 \cdot 8\pi = 36\pi \, (\text{cm}^2)$$