Małpi Gaj

SmolPreoi 2024

Dzień 2 - 15.12.2024

Kod zadania: mal Limit pamięci: 1024 MiB

Na Planecie Małp, znajduje się n drzew, ponumerowanych od 0 do n-1. Drzewa te są połączone przez n-1 dwukierunkowych mostów, w taki sposób, że istnieje dokładnie jedna ścieżka między każdą parą drzew.

Małpi Wódz, oburzony rozleniwieniem małp, postanowił zachęcić je do powrotu do bujania się między drzewami zamiast chodzenia po mostach. W tym celu chce doprowadzić do sytuacji, w której każde drzewo będzie połączone mostem maksymalnie z k innymi drzewami. Zburzenie mostu nie jest jednak darmowe.

Pomóż Małpiemu Wodzowi i powiedz jaki będzie minimalmy koszt osiągnięcia jego celu dla każdego k od 0 do n-1.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita n ($2 \le n \le 10^5$), oznaczająca ilość drzew na Planecie Małp.

W kolejnych n-1 wierszach znajdują się po trzy liczby a_i , b_i , w_i , $(0 \le a_i, b_i \le n-1, 1 \le w_i \le 10^9)$. Każda taka trójka liczb oznacza, że między drzewami a_i oraz b_i istnieje most, którego koszt zburzenia wynosi w_i .

Wyjście

W jedynym wierszu wyjścia standardowego powinno znaleźć się n liczb, gdzie i-ta $(1 \le i \le n)$ liczba oznacza minimalny wynik dla k = i - 1.

Przykłady

Wejście dla testu mal0a:

		-	-	 						
5										
0	1 1									
0	2 4	Ļ								
0	3 3	3								
2	4 2)								

Wyjście dla testu mal0a:

10	5	1	Ω	(

Wejście dla testu mal0b:

4			
0 1 5			
2 0 10	0		
0 3 5			

Wyjście dla testu mal0b:

20 10 5 0

Bananowanie

Podzadanie	Ograniczenia	Limit czasu	Liczba punktów
1	$a_i = 0$	3 s	5
2	$a_i = i, b_i = i + 1$	3 s	7
3	$n \le 200$	3 s	14
4	$n \le 2000$	3 s	10
5	$w_i = 1$	3 s	17
6	$w_i \leq 10$	3 s	25
7	brak dodatkowych ograniczeń	3 s	22

1/1