

Predictive Model Using Regression and Clustering

Kalbe Nutritionals Data Scientist

Presented by Philipus Dima Wira Pratomo

Philipus Dima Wira Pratomo

About You

Graduated from Pertamina University majoring in petroleum engineering with a GPA of 3.78. Currently I want to shift career to data scientist by attending a data science bootcamp. where I am developing expertise using data visualization tools such as Tableau and Looker Studio, SQL and several Python libraries to create machine learning. My objective is to become a professional data scientist and leverage my skills to contribute to data-driven decision-making in diverse industries.

Job Experience

PT Global Digital Niaga Tbk (blibli.com)
Merchandising Junior Officer

Warung Pintar Group
Marketplace Executive

PT. Pertamina Persero (Dit.Hulu)
Strategic Planning & Risk Management
Intern

Exploratory Data Analysis In dbeaver

Data Ingestion Into Tableau Public

Predictive Model Using Regression

Predictive Model Using Clustering

Exploratory Data Analysis In dbeaver

Average Age of Customers Based on Their Marital Status

Average Age of Customers Based on Their Gender

Store Name with the Highest Total Quantity

Best-Selling Product Name with the Highest Total Amount

Average Age of Customers Based on Their Marital Status

select "Marital Stat	us " , avg(age)	from customer	group by 1						
ner 1 ×									
"Marital Status" , avg(age 🖁 🖁 Enter a SQL expression to filter results (use Ctrl-									
Marital Status	123 avg								
	31.3333333333								
Married	43.0382352941								
Single	29.3846153846								

Average Age of Customers Based on Their Gender

Store Name with the Highest Total Quantity

Best-Selling Product Name with the Highest Total Amount

Data Ingestion Into Tableau Public

Worksheet 1: Total Quantity from Month to Month

Worksheet 2: Total Amount from Day to Day

Worksheet 3: Sales Quantity by Product

Worksheet 4: Total Sales Amount by Store Name

Worksheet 1: Total Quantity from Month to Month

INSIGHT

- When viewed as a whole over each month, there are no significant increases or decreases in Quantity.
- The highest Quantity of sales was recorded in March.
- The lowest Quantity of sales was recorded in February.

Worksheet 2: Total Amount from Day to Day

INSIGHT

- there was a decrease in the Total Amount on the last date
- The highest total was on the 1st
- And the lowest total number was on the 31st

Worksheet 3: Sales Quantity by Product

INSIGHT

- The following is a table of Sales Quantity for each product.
- It is evident that the highest total is in Thai Tea, with a total of 2,853.
- The lowest total is for Cashew, with 627.

Worksheet 4: Total Sales Amount by Store Name

INSIGHT

- The following is a graph displaying the total sales amount for each store name.
- It is apparent that there isn't a significant difference in the total sales amount among the various store names.
- However, the lowest is Buana Indah with a total of 10.63 million, while the highest is Lingga with a total of 13.11 million.

For details, you can see here

Predictive Model

Data Understanding

Data Cleaning & Data Preprocessing

Regression

Clustering

Data Understanding

Checking for Null Values, Data Types, Value in every Columns and Unique Value in ID

- There are some null values in the "Marital Status" column of the "df_customer" dataset.
- The values in the "income" feature in the "df_customer" dataset are currently using a comma as a decimal separator; these should be replaced with a period and converted to float data type.
- The values in the "Latitude" and "Longitude" features in the "df_store" dataset are currently using a comma as a decimal separator; these should be replaced with a period.
- The "date" feature in the "df_transaction" dataset should be converted to a datetime data type.
- Many values in the "TransactionID" feature in the "df_transaction" dataset are duplicated, even though "TransactionID" should be unique. In this case, we will select the records with the latest date.

Data Cleaning & Data Preprocessing

Handling Type Data & Correct Value

```
[ ] df_customer['Income'] = df_customer['Income'].replace(',','.',regex=True).astype('float')

[ ] df_store['Latitude'] = df_store['Latitude'].replace(',','.',regex=True)

    df_store['Longitude'] = df_store['Longitude'].replace(',','.',regex=True)

[ ] df_transaction['Date'] = pd.to_datetime(df_transaction['Date'])
```

Handling Duplicate Data

```
df_transaction = df_transaction.sort_values(by=['TransactionID', 'Date'], ascending=[True, False])
df_transaction = df_transaction.drop_duplicates(subset='TransactionID', keep='first')
```

Handling Missing Value

Missing values in Marital Status are filled in with "Other"

```
df_customer['Marital Status'] = df_customer['Marital Status'].fillna("Others")
```

Combine All Data


```
[24] df_merge = pd.merge(df_transaction,df_customer,on=["CustomerID"])
[25] df_merge = pd.merge(df_merge, df_product.drop(columns=['Price']), on=["ProductID"])
[26] df_merge = pd.merge(df_merge,df_store,on=["StoreID"])
```

Machine Learning Regression (Time Series)

All Data

Machine Learning Regression (Time Series)

Split into Data Training 80% and Data Testing 20%

ARIMA

Parameter	Value		
Р	48		
D	2		
Q	1		

Machine Learning Clustering

Feature Engineering

- There will be Feature Engineering
- 1. total_trx (count TransactionID)
- 2. total_qty (sum Qty)
- total_amount (sum TotalAmount)

Outlier Handling

Will be Outlier Handling in new Feature because Clustering very influential on outliers

Normalize

Normalization helps eliminate the effects of scale differences, ensuring that attributes with a larger range of values do not dominate attributes with a smaller range of values.

Elbow Method

Silhouette score

3-D Visualization

Cluster	Total Customer	Total Transaction		Total Quantity		Total Amount				
		mean	median	max	mean	median	max	mean	median	max
0	211	11	11	15	38	38	53	337,079	335,000	476,200
1	108	7	7	10	25	25	37	208,935	212,950	322,600
2	124	15	15	18	55	54	73	496,818	490,100	676,200

INSIGHTS

- 1. Cluster 1 represents customers with the lowest total count, characterized by average transaction values, average purchased quantity, and the lowest total amount compared to the other clusters.
- 2. Cluster 2 represents customers with a moderate total count, but they exhibit characteristics of higher average transaction values, average purchased quantity, and the highest total amount compared to the other clusters.
- 3. Cluster 0 is the largest cluster in terms of customer count.

Video Presentation Here

link video here

Thank You

