Interconnected mean-field models: their dynamical repertoires

Najwa Moursli¹

Internship Supervisors:

Pr. A.Destexhe², Ph.D. D.Depannmaecker², Ph.D. M.Carlu²

Pr. F.VILLERS¹ and Pr. X.TANNIER¹

 ${\sf Polytech\text{-}Sorbonne}^1,\ {\sf UNIC\text{-}CNRS}^2$

November 22, 2021

- Table of contents
- Motivations
- 2 Fundamentals Concepts
- 3 Methods
- 4 Simulations
- 5 Discussions
- 6 References

Figure 1: From single cells to the Connectome $\left[1\right]$

Project Main Goals

Embedding it in larger structures

- Similarities or Differences while scaling up (higher vs lower dimension)
- Scope Validity of lower dimension

Exploring new possible behaviors

- Changing values parameters
- Observing their impacts
- Kind of model which determine purposes

Testing assumptions on structural aspects of the dynamics

- Validity of models based on others
- Validity of behaviours represented

Identifying important features of a system

- Relevant parameters could impacts the global dynamics
- Creating the architecture based on those parameters

Relevant model

Pinpoint relevant parameters to vary and model architecture to undergo simulation

State Mapping

Delimit different states observed to construct a bifurcation map

Time varying Parameters

Simulate over the time of the chosen parameters and configuration model

New dynamics

Resulting in the discover of new dynamics and behaviors to interpret

2 Fundamentals Concepts SCIENCES SORBONNE

- Table of contents
- 2 Fundamentals Concepts
- Methods

Threshold inhibition

Time

Figure 2: Representation of a single neuron

Figure 3: Action Potential Mechanism [2]

cnrs 2 Fundamentals Concepts

Figure 4: Connections of FS and RS cells [3]

RS cells [4]

Figure 6: Firing pattern of FS cells [4]

Figure 7: From cortex to column to simple circuit [5]

Figure 8: Mapping of synchronous vs asynchronous states for the whole-brain activity [1]

- Table of contents

- Methods
 - AdEx :Adaptive exponential integrate-and-fire model
 - Mean-Field model

Figure 9: Schematic of the corresponding spiking AdEx neuron network with connections between and within both populations

(3) Methods

SCIENCES SORBONNE UNIVERSITÉ

AdEx Mathematical Formalism

AdEx characteristic equations :

$$\begin{cases}
C_m \frac{d\nu}{dt} = -g_I(\nu - E_I) + gI * Dt * e^{\frac{w - \nu_t}{D_t}} - w + I_{syn}) \\
\tau_w \frac{dw}{dt} = a(\nu - E_L) - w
\end{cases}$$
(1)

Synaptic equations:

$$\begin{cases} \frac{dG_{syn_{i,e}}}{dt} = -\frac{G_{syn_{i,e}}}{T_{syn}} \\ I_{syn} = -G_{syn_{e}} * (\nu - E_{e}) - G_{syn_{i}} * (\nu - E_{i}) \\ G_{syn_{i,e}}(t) = Q_{i,e} \sum_{i,e.pre} \mathcal{H}(t - t_{sp}^{e,i}(k)) \times e^{\frac{t - t_{sp}^{e,i}(k)}{T_{i,e}}} \end{cases}$$
(2)

Figure 10: Mean-field neural mass model with synaptic feedforward and feedback connections. Each ellipse represents a population

$$\mathbb{P}_{T}(E_{\alpha}|E_{\gamma}') = \binom{N_{\alpha}}{\nu_{\alpha}N_{\alpha}T} \times \mathbb{P}_{\alpha}(E_{\gamma}')^{(\nu_{\alpha}N_{\alpha}T)} \times (1 - \mathbb{P}_{\alpha}(E_{\gamma}'))^{N_{\alpha}(1 - \nu_{\alpha}N_{\alpha}T)}$$
(3)

$$W(\nu'|\nu) = \lim_{T \to 0} \frac{\prod_{\alpha=1,\dots,K} \mathbb{P}_T(E_\alpha|E'_\gamma)}{T} \tag{4}$$

$$\mathbb{P}_t(E_{\gamma}') = \nu_{\alpha}(E_{\gamma}') \times T \le 1 \tag{5}$$

$$\Longrightarrow \partial_t \mathbb{P}_t(\nu) = \int_0^{\frac{1}{\tau}} \partial \nu' \times \mathbb{P}(\nu') \times W(\nu|\nu') - \mathbb{P}(\nu) \times W(\nu'|\nu) \tag{6}$$

 $\partial \nu' \times \mathbb{P}(\nu') \times W(\nu|\nu')$ models the neurons flow entering in states E_{α} and $\mathbb{P}(\nu) \times W(\nu'|\nu)$, neurons flow leaving states E_{α} .

$$\begin{cases}
T_{syn} \frac{d\nu_{e}(k)}{dt} &= F_{e}(\nu_{e}^{input}(k), \nu_{i}(k)) - \nu_{e}(k) \\
T_{syn} \frac{d\nu_{i}(k)}{dt} &= F_{i}(\nu_{e}^{input}(k), \nu_{i}(k)) - \nu_{i}(k) \\
\frac{dw(k)}{dt} &= \frac{-w(k)}{\tau_{w}*b*\nu_{e}(k)} + a(\mu_{\nu}(\nu_{e}(k), \nu_{i}(k), w(k)) - E_{l})
\end{cases}$$
(7)

Figure 11: Transfer function as the key for in Mean-Field ODE integration

- Table of contents
- Motivations
- Methods
- Simulations
 - Mean-field models

Figure 12: FR distribution sampled from the spiking simulation Gaussian predictions of the population activities

Figure 13: Time traces of the Firing rates and instantaneous transfer function of RS cells (+ is the MF prediction) and FS (+ is the MF prediction)

Figure 14: Configuration of the model: these connections are subject to a delay and each column receive a different external drive

ј со	lumns	RECE	IVE
E1	E2	I 1	12
\sim	\sim		\sim

					12
SEND	E1	Qe	Qe_1	Qe	Qe_1
Ē	E2	Qe_2	Qe	Qe_2	Qe
S	11	Qi	0	Qi	0
lines	12	0	Qi	0	Qi
=					

Table 1: Synaptic weight connections matrix

j columns RECEIVE

			L2	11	14
)	E 1	0	delay	0	delay
į	E2	delay	0	delay	0
)	11	0	0	0	0
)	12	0	0	0	0
:					

Table 2: Synaptic connections delay matrix

Simulations Population E1 & E2

SCIENCES

Figure 15: Bifurcation map of E1 states

Figure 16: Bifurcation map of E2 states

Simulations

SCIENCES SORBONNE UNIVERSITÉ

Simulation results

State 3 : Stable LC_{EI}

Simulations

Simulation results

State 4: Chaotic-like State₁

Simulations

Simulation results

State 5 : Chaotic-like State₂

SCIENCES SORBONNE UNIVERSITÉ

Figure 17: Bifurcation map of I1 states

1.85

1.92

2.06

1.71

Figure 18: Bifurcation map of I2 states

Qe (nS)

1.92 1.99 2.06

1.64 1.71

SCIENCES SORBONNE UNIVERSITÉ

Table of contents

- 1 Motivations
- 2 Fundamentals Concepts
- 3 Methods
- 4 Simulations
- 5 Discussions
 - Results Outcomes
 - Limits and Perspectives
- 6 References

5 Discussions

Results Outcomes

The outcomes of this study are the following ones

- Mean-field simulate AI states well
- ullet High delays and $Q_{
 m e}\Longrightarrow$ stabilisation of the system with $L\mathcal{C}_{EI}$

	Delay (ms)	$g=\frac{Q_i}{Q_e}$ (nS)
	5	2.75
E1	4	2.6
	3	2.43
	5	2.7
E2	4	2.7
	3	2.56

•		- -	
	Delay (ms)	$g=\frac{Q_i}{Q_e}$ (nS)	
	5	2.99	
1	4	2.84	
	3	2.7	
	5	3.05	
12	4	2.65	
	3	2.65	

- Mean input $\mu_{nu_{\alpha}}$ impact \Longrightarrow dominant inhibition phenomenon is delay dependent
- Unexpected behavior : LC_{FA} and θ -resonance

Figure 19: Obvious and Underlying Limits

Table of contents

- 1 Motivations
- 2 Fundamentals Concepts
- 3 Methods
- 4 Simulations
- 5 Discussions
- 6 References

- J. S. Goldman, L. Kusch, B. H. Yalcinkaya, D. Depannemaecker, T.-A. E. Nghiem, V. Jirsa, and A. Destexhe, "Brain-scale emergence of slow-wave synchrony and highly responsive asynchronous states based on biologically realistic population models simulated in the virtual brain," bioRxiv, 2020.
- [2] P. Dayan and L. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, vol. 15. 01 2001.
- [3] A.-M. Oswald, B. Doiron, J. Rinzel, and A. Reyes, "Spatial profile and differential recruitment of gaba(b) modulate oscillatory activity in auditory cortex," *The Journal of neuroscience: the official journal of the Society for Neuroscience*, vol. 29, pp. 10321–34, 08 2009.
- [4] Y. Zerlaut, S. Chemla, F. Chavane, and A. Destexhe, "Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons," *Journal of Computational Neuroscience*, vol. 44, pp. 45–61, Feb. 2018.
- [5] A. Rocha, "Toward a comprehensive understanding of eeg and its analyses," SSRN Electronic Journal, 01 2018.