Mecánica del Continuo (GEOC2057)

Quiz 1 - 14/02/2017

The number of points attributed to each question is mentioned beside them. The total number of points is 10. El número de puntos asignado a cada pregunta aparece debajo de cada una de las mismas. El número máximo total de puntos es 10.

Stress

1. Briefly explain the difference between Force, Traction, Stress and the Stress tensor. 2 pts Explicar brevemente la differencia entre Fuerza, Tracción, Esfuerzo y tTensor de esfuerzos.

Correction:

Force: interaction acting through the entire body (body forces) or on a surface (surface forces). (to the corrector: be easy on this definition) **0.5 pts**

Traction: force per unit area on a surface with a specific orientation ${f 0.5}$ pts

Stress: a pair of equal and opposite tractions acting across a surface with a specific orientation **0.5 pts**

Stress tensor: 2nd order tensor defining the state of stress on three mutually orthogonal planes at a given point. (to the corrector: be easy on this definition) **0.5 pts**

2. In 2D, the normal stress on a plane P is (see figure 1): En 2D, el esfuerzo normal en un plano P es (ver figura 1):

$$\sigma_n = \sigma_x \cos^2 \alpha + \tau_{xy} \sin 2\alpha + \sigma_y \sin^2 \alpha$$

And the shear stress on a plane P is: Y el esfuerzo de corte en un plano P es:

$$\tau = (\sigma_x - \sigma_y)\sin\alpha\cos\alpha - \tau_{xy}(\cos^2\alpha - \sin^2\alpha)$$

(a) Which stress directions correspond to $\tau = 0$ (shear stresses equal 0)? **1 pt** Cuáles son las direcciónes de esfuerzos que corresponden a $\tau = 0$ (esfuerzos de corte igual a 0).

Figure 1: Stress components acting on a plane P whose normal is at an angle α from the x axis. Componentes de esfuerzos en un plano P del que la normal hace un angulo α con el eje x.

Correction:

Stress directions corresponding to shear stresses equal 0 are the principal stress directions. ${\bf 1}~{\bf pt}$

(b) Using the equation for shear stress above, show that these planes are at 90° from each others. 1 pt Usando la ecuación para el esfuerzo de corte más arriba, muestre que estos planos son a 90° entre si.

Correction:

All correct mathematical demonstrations are accepted $\mathbf{1}$ \mathbf{pt} , here are different examples:

1) Using

$$\tau = (\sigma_x - \sigma_y) \sin \alpha \cos \alpha - \tau_{xy} (\cos^2 \alpha - \sin^2 \alpha)$$

In the case of principal stresses, we have shear stresses=0 so,

$$\tau = (\sigma_x - \sigma_y) \sin \alpha \cos \alpha - \tau_{xy} (\cos^2 \alpha - \sin^2 \alpha) = 0$$
$$\frac{\tau_{xy}}{\sigma_x - \sigma_y} = \frac{\tan 2\alpha}{2}$$

The solution of this equation is $\alpha = \alpha_0$ and since $\tan 2\alpha = \tan(2\alpha + 180) = \tan(2(\alpha + 90))$, so the two solutions are α_0 and $\alpha_0 + 90$.

2) Using the formula for shear stress when shear stresses = 0:

$$\tau = (\sigma_x - \sigma_y) \sin \alpha \cos \alpha = 0$$

We see that this equation is =0 for $\sin \alpha = 0$ or $\cos \alpha = 0$ which corresponds to $\alpha = 0, 90, 180, 360$, corresponding to 2 directions at 90° from each other.

3) Using the formula of shear stress in the case of principal stresses:

$$\tau = \frac{\sigma_1 - \sigma_3}{2} \sin 2\alpha = 0$$

which happens for $2\alpha=0,180$ and $\alpha=0,90,$ for 2 planes at 90° from each other.

(c) With this stress tensor: Con este tensor de esfuerzos:

$$\sigma = \left(\begin{array}{cc} 20 & 2\\ 2 & -15 \end{array}\right)$$

Calculate the normal stress σ_n and the shear stress τ for a plane P with a normal at an angle of 45° from the x direction. **2 pts** Calcular el esfuerzo normal σ_n y el esfuerzo de corte τ sobre un plano P con una normal haciendo un angulo de 45° con el eje x.

Correction:

$$\sigma_n = (\sigma_x \cos(\alpha)^2) + (\tau_{xy} \sin(2\alpha)) + (\sigma_y \sin(\alpha)^2)$$

$$\sigma_n = (20\cos(45)^2) + (2\sin(90)) + (-15\sin(45)^2) = 4.5$$

1 pt

$$\tau = ((\sigma_x - \sigma_y)\sin(\alpha)\cos(\alpha)) - (\tau_{xy}(\cos(\alpha)^2 - \sin(\alpha)^2))$$
$$\tau = ((20 + 15)\sin(45)\cos(45)) - (2(\cos(45)^2 - \sin(45)^2)) = 17.5$$

1 pt

3. With this stress tensor given in terms of principal stresses: Con este tensor de esfuerzo dado en término de los esfuerzos principales:

$$\sigma = \left(\begin{array}{ccc} 15 & 0 & 0\\ 0 & 5 & 0\\ 0 & 0 & 5 \end{array}\right)$$

(a) To what stress state is this stress tensor corresponding to? 1 pt A cual caso de esfuerzo corresponde este tensor de esfuerzos?

Correction:

Axial or confined compression 1 pt

(b) Draw the Mohr circle corresponding to this stress tensor. **1 pt** *Dibuje* el circulo de Mohr que corresponde a este tensor de esfuerzos.

Correction:

See figure 2. 1 pt

Figure 2: Mohr circle for question 3b

(c) Give the equations of maximum shear stress and mean stress, and give their values for the stress tensor given above. **2 pts** Dé las ecuaciónes de esfuerzo de corte máximo y esfuerzo medio, y dé los valores correspondiendo al tensor de esfuerzos dado más arriba.

Correction:

Maximum shear stress:

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} = \frac{15 - 5}{2} = 5$$

1 pt (0.5 pts for equation and 0.5 pts for value)

Mean stress:

$$\sigma_m = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} = 8.3$$

 ${f 1}$ pt (0.5 pts for equation and 0.5 pts for value)