Summary of introduction
Text-to-speech and NVIDIA NeMo

Created by TN Al Ton

Reference source

Main references and sorting topics by

https://github.com/NVIDIA/NeMo/blob/main/tutorials/tts/NeMo_TTS_Primer.ipynb

Additional references

https://docs.nvidia.com/nemo-framework/index.html

https://www.nvidia.com/en-us/glossary/text-to-speech/

https://medium.com/towards-data-science/text-to-speech-with-tacotron-2-and-fastspeech-using-espnet-3a711131e0fa

https://paperswithcode.com/method/wavernn

https://pytorch.org/hub/nvidia_deeplearningexamples_fastpitch/

What is Text-to-Speech?

Text-to-Speech (TTS) หรือ ระบบสังเคราะห์เสียงพูด คือเทคโนโลยีที่แปลง

ข้อความเป็นเสียงพูดโดยอัตโนมัติ

Why TTS?

1. TTS กำลังพัฒนาไปสู่ AI สนทนา โดยร่วมกับ ASR และ NLP

2. นักการตลาดทางโทรศัพท์ เริ่มใช้ TTS แทนพนักงานมนุษย์ โดยใช้หุ่นยนต์สนทนาที่สมจริงมากขึ้นเรื่อยๆ

และ อื่นๆ

The TTS Pipeline

กระบวนการทำงานของ TTS มี 4 ขั้นตอนหลัก

1.Text Normalization : แปลงข้อความคิบให้อยู่ในรูปที่อ่านได้

(เช่น "Mr." \rightarrow "Mister")

Normalization Type	Input	Output
Abbreviations	Mr.	mister
Acronyms	TTS	text to speech
Numbers	42	forty two
Decimals	1.2	one point two
Roman Numerals	VII	seventh
Cardinal Directions	NESW	north east south west
URL	www.github.com	w w w dot github dot com

Text Hello World. Text hello world. Normalization G₂P ► HH-AH0-L-OW1- -W-ER1-L-D-. Spectrogram Synthesis **Audio Synthesis**

The TTS Pipeline

กระบวนการทำงานของ TTS มี 4 ขั้นตอนหลัก

2. Grapheme to Phoneme Conversion (G2P) :แปลงตัวอักษรเป็น หน่วยเสียง (เช่น "Hello" → "HH-AHO-L-OW1")

Text Hello World. Text hello world. Normalization G₂P ► HH-AH0-L-OW1- -W-ER1-L-D-. Spectrogram Synthesis **Audio Synthesis**

The TTS Pipeline

กระบวนการทำงานของ TTS มี 4 ขั้นตอนหลัก

3. Spectrogram Synthesis: แปลงหน่วยเสียงเป็น สเปกโตรแกรม

Text Hello World. Text hello world. Normalization G₂P ► HH-AH0-L-OW1- -W-ER1-L-D-. Spectrogram Synthesis

Audio Synthesis

The TTS Pipeline

กระบวนการทำงานของ TTS มี 4 ขั้นตอนหลัก

4. Audio Synthesis (Spectrogram Inversion) : แปลงสเปกโตรแกรม เป็นเสียงพูด โดยใช้ Vocoder

Spectrogram Synthesis

Spectrogram Synthesis กระบวนการแปลงข้อความ (Text) หรือโฟนิม (Phonemes) ให้กลายเป็น

Spectrogram ซึ่งเป็น ตัวแทนของเสียงในรูปของความถี่เทียบกับเวลา

Why use a spectrogram?

1. <mark>ประสิทธิภาพคำนวณเร็วขึ้น</mark> ลดขนาดข้อมูลได้ ~5 เท่าเมื่อเทียบกับเสียงดิบ (ใช้ Fast Fourier Transform)

2. <mark>ลดความยาวของข้อมูล</mark> ใช้ได้ดีกับโมเดล Deep Learning โดยเฉพาะ RNN/LSTM ที่มีปัญหากับซีเควนซ์ที่ยาว

3. <mark>รองรับ CNN/Transformer</mark> ใช้กับโมเดลได้มีประสิทธิภาพกว่าเสียงดิบ

Types of TTS models

ประเภทของโมเดล TTS มี 2 ประเภทหลัก

Auto-Regressive Models

ทำนายสเปกโตรแกรมที่ละขั้น ใช้ Attention

หรือ Duration Prediction

Parallel Models

ทำนายแบบขนาน ใช้ Duration

Prediction

Auto-Regressive Models

Tacotron2 Model Architecture

1.Encoder

[แปลงข้อความเป็นตัวแทนเสียง]

Input Text : ป้อนข้อความเข้าโมเคล

Character Embedding : แปลงตัวอักษรเป็น

เวกเตอร์

3 Conv Layers + BiLSTM : วิเคราะห์ลำดับ

ข้อความและพิจารณาการออกเสียง

Location Sensitive Attention : ช่วยเลือกข้อมูลที่

เหมาะสมจาก Encoder

Auto-Regressive Models

Tacotron2 Model Architecture

2. Decoder [สร้าง Mel Spectrogram]

2 Layer Pre-Net: เตรียมข้อมูลก่อนป้อนเข้า

Decoder

2 LSTM Layers : ทำนาย Mel Spectrogram ที่ละ

เฟรม

Linear Projection : แปลงผลลัพธ์เป็น

Stop Token: ทำนายว่าควรหยุคสร้างเสียงหรือไม่

5 Conv Layer Post-Net : ปรับปรุงคุณภาพ

Spectrogram

Auto-Regressive Models

3. Vocoder [แปลง Spectrogram เป็นเสียงพูด]

WaveNet MoL แปลง Mel Spectrogram เป็นคลื่น

เสียง (Waveform Samples)

Summary

- 1. Encoder-Decoder + Attention
 - เพื่อสร้าง Mel Spectrogram
 - 2 ใช้ Pre-Net, Stop Token, และ
 - Post-Net เพื่อปรับคุณภาพเสียง
- 3. WaveNet MoL เป็น Vocoder แปลง
 - Spectrogram เป็นเสียงที่เป็นธรรมชาติ

Types of TTS models

ประเภทของโมเดล TTS มี 2 ประเภทหลัก

Auto-Regressive Models

ทำนายสเปกโตรแกรมที่ละขั้น ใช้ Attention

หรือ Duration Prediction

Parallel Models

ทำนายแบบขนาน ใช้ Duration

Prediction

FastPitch Model Architecture

1.Encoder

[แปลงข้อความเป็นตัวแทนเสียง]

Embedding : แปลงอักขระเป็นเวกเตอร์

FFT Block (Feed-Forward Transformer -

FFT) : วิเคราะห์โครงสร้างเสียง

FastPitch Model Architecture

2. Predicting Pitch & Duration

[ทำนายโทนเสียงและระยะเวลา]

2.1 Pitch Predictor :ทำนายโทนเสียงของแต่ละ อักขระใช้

ใช้ Conv1D + FC Layers \longrightarrow คำนวณ MSE Loss เพื่อปรับค่าการทำนายให้แม่นยำ

FastPitch Model Architecture

2. Predicting Pitch & Duration

[ทำนายโทนเสียงและระยะเวลา]

2.2 Duration Predictor :ทำนายระยะเวลาของแต่ ละอักขระใช้

ใช้ Conv1D + FC Layers \longrightarrow คำนวณ MSE Loss เพื่อปรับค่าการทำนายให้แม่นยำ

FastPitch Model Architecture

2. Predicting Pitch & Duration

[ทำนายโทนเสียงและระยะเวลา]

ระหว่าง Training Time ใช้ค่าจริงของ Pitch และ Duration เพื่อสอนโมเดล (คล้าย Teacher Forcing)

FastPitch Model Architecture

3. Expanding Encoder Output

[ขยายผลลัพธ์ของ Encoder ให้ตรงกับ Spectrogram]

Duration Predictor (Conv1D + FC) :ทำนาย

จำนวนครั้งที่ต้องทำซ้ำ แล้ว คำนวณ MSE Loss

Repeat Layer: ทำซ้า Encoder Output ตาม

Duration ที่คาดการณ์

FFT Block : ประมวลผลข้อมูลที่ถูกขยาย

FC (Fully Connected Layer) : แปลงข้อมูลเป็น

คุณลักษณะเสียง

คำนวณ MSE Loss : ปรับผลลัพธ์ให้แม่นยำ

FastPitch Model Architecture

4. Generating Spectrogram [สร้าง Mel Spectrogram]

FFT Block (FFTr) : แปลง Encoder Output เป็น

Spectrogram

FC (Fully Connected Layer): แปลงผลลัพธ์ให้

เป็น Mel Spectrogram

MSE Loss : ปรับผลลัพธ์ให้แม่นยำขึ้น

FastPitch Model Architecture

Summary

- 1. Encoding: FFT Block วิเคราะห์ตัวอักษรเป็น ตัวแทนเสียง
- 2. Predicting Pitch & Duration : Conv1D + FCทำนายโทนเสียงและระยะเวลา
- 3. Expanding Encoder Output : Repeat Layer ทำซ้ำ ข้อมูลตาม Duration, FFT Block ประมวลผล
- 4. Generating SpectrogramFFT Block + FC แปลงข้อมูลเป็น Mel Spectrogram

Compare Auto-Regressive Models with Parallel Models

คุณสมบัติ	Auto-Regressive Models	Parallel Models
หลักการทำงาน	ทำนายสเปกโตรแกรม ทีละเฟรม ต่อเนื่องกัน	ทำนายสเปกโตรแกรม ทุกเฟรมพร้อมกัน
ความเร็วในการประมวลผล	ช้า เพราะต้องรอเฟรมก่อนหน้า	เร็วมาก เพราะคำนวณทุกเฟรมพร้อมกัน
Inference Speed	ช้า เพราะต้องรอแต่ละเฟรมก่อนสร้างเฟรม ถัดไป	เร็วขึ้น 100x เนื่องจากใช้ Duration Prediction
โครงสร้างหลัก	ใช ้ RNN/LSTM + Attention ในการเรียนรู้ ลำคับเสียง	ใช้ CNN/Transformer + Duration Prediction
การฝึก (Training)	ฝึกยากกว่า เสี่ยงต่อ Vanishing/Exploding Gradients	ฝึกง่ายกว่า เพราะคำนวณแบบขนาน
คุณภาพเสียง	ลื่นใหลกว่า เพราะใช้ Attention	ควบคุมจังหวะเสียงได้ดี ด้วย Duration Prediction
ตัวอย่างโมเดล	Tacotron 2 (ใช้ Attention + WaveNet)	FastPitch (ใช้ Duration Prediction)

Audio Synthesis (Spectrogram Inversion)

- * เรียกอีกชื่อว่า Spectrogram Inversion
- * เป็นกระบวนการ แปลง Spectrogram ให้เป็นเ<mark>สียงพูด</mark>
- *ใช้ Vocoder ในการสร้างคลื่นเสียงจาก Spectrogram

Paper Reference (and original signal)	G&L 1 iter.	G&L 10 iter.	SPSI	SPSI+G&L 1	SPSI+G&L 10
Male Speaker					
▶ - :	- :	- :) - :	- :	▶ - :
Music #1					
→ - :	- :	- :	- :	- :	→ - :
Music #2					
- :	- :	- :	- :	- :	- :
Female Speaker					
- :	▶ - :	▶ - :	▶ - :	→ - :	▶ - :

How Spectrogram Inversion Works?

- 1. รับ <mark>Spectrogram</mark> เป็นอินพูต
- 2. เติมข้อมูลเฟสเพื่อสร้างคลื่นเสียง (Waveform Reconstruction)
 - 3. Vocoder แปลง Spectrogram เป็น คลื่นเสียง
 - 4. สร้างใฟล์เสียงที่สามารถเล่นได้

What is Vocoder?

Vocoder (Voice Encoder-Decoder) คือ โมเดลที่ใช้แปลง Spectrogram ให้เป็นคลื่นเสียง

*ใช้ใน ขั้นตอนสุดท้ายของระบบ TTS

* เติมข้อมูลเฟส (Phase Information) ที่ขาดหายไปจาก Spectrogram

ช่วยให้เสียงพูดที่สร้างขึ้น ฟังดูเป็นธรรมชาติขึ้น

WaveNet

HiFi-GAN

WaveRNN

vocode

WaveNet

- * WaveNet คือ vocoder แบบ auto-regressive
- *ใช้ dilated causal CNN ทำนายเสียงที่ละตัวจากข้อมูล ก่อนหน้า
- * คุณภาพเสียงสูงแต่ ช้ามาก $(RTF = 100 \longrightarrow 1 \ \Im u \cdot n \ \Pi \cdot d \ u \cdot n \ \Pi \cdot d \ u \cdot n \ u \cdot n$

ข้อดี

• WaveNet ให้เสียงสมจริง

ข้อจำกัด

• ช้ามาก ใม่เหมาะกับ real-time TTS

vocode

HiFi-GAN

- * ที่เร็วกว่า WaveNet 10,000 เท่า
- * GAN-based training แทน Auto- Regressive → เร็ว ขึ้น (RTF = 0.01)
- * Scale & Period Discriminators เพื่อตรวจจับเสียง ปลอม

ข้อถื

- เร็ว เหมาะสำหรับ real-time TTS
- ใช้ Feature Matching Loss เพื่อให้เสียงสมจริง

ข้อจำกัด

• ต้องใช้พลังการคำนวณสูงกว่าบางโมเดล

vocode

WaveRNN

Figure 1. The architecture of the WaveRNN with the dual softmax layer. \mathbf{c} represents the coarse (high 8-bits) of the sample and \mathbf{f} represents the fine (low 8-bits) of the sample. The multiplication by \mathbf{R} happens for both the coarse and fine bits simultaneously, then output of the gates is evaluated for the coarse bits only and \mathbf{c}_t is sampled. Once \mathbf{c}_t has been sampled from $P(\mathbf{c}_t)$, the gates are evaluated for the fine bits and \mathbf{f}_t is sampled.

- * WaveRNN คือ vocoder ที่ใช้ RNN
- * ออกแบบให้ เล็กและใช้พลังงานต่ำ เหมาะกับ on-device

TTS

* ใช้ Softmax แบบแยกส่วน, Subscaling, และ Sparse Training เพื่อลดภาระการคำนวณ

ข้อถื

- ประหยัดพลังงาน
- Inference เร็วกว่า WaveNet

ข้อจำกัด

• ยังช้ากว่า HiFi-GAN

Compare WaveNet, HiFi-GAN, and WaveRNN

คุณสมบัติ	WaveNet	HiFi-GAN	WaveRNN
	(Auto-Regressive)	(Non-Auto-Regressive)	(RNN-Based)
โครงสร้างโมเดล	Dilated Causal CNN	GAN-Based (Generator + Discriminators)	Recurrent Neural Network (RNN)
Auto-Regressive?	ใช่ (ช้าแต่แม่นยำ)	ไม่ใช่ (Parallel, เร็วกว่า)	ใช่ แต่ปรับปรุงให้เร็วขึ้น
Inference Speed	ช้ามาก (RTF ≈ 100)	เร็วมาก (RTF ≈ 0.01, 10,000x เร็วกว่า WaveNet)	เร็วกว่า WaveNet แต่ช้ากว่า HiFi- GAN
คุณภาพเสียง	แม่นยำและสมจริง	เร็ว และ สมจริงที่สุด	ดีแต่ไม่เท่า GAN-based models
ขนาคโมเคล	ใหญ่ (ต้องใช้ GPU)	ขนาดกลาง (เหมาะกับ real-time TTS)	ขนาดเล็ก (เหมาะสำหรับ on- device TTS)
การใช้งานที่เหมาะสม	คุณภาพสูงแต่ต้องการพลัง ประมวลผลมาก	Real-Time TTS, ใช้งานจริงได้ดี	เหมาะกับอุปกรณ์พลังงานต่ำ (Edge/On-device)

Model Evaluation

- * ไม่มีตัวชี้วัดเชิงตัวเลขที่ชัดเจน สำหรับ TTS
- * คุณภาพมักถูกวัดโดย ความคิดเห็นของมนุษย์ (Human Perception) ผ่านแบบสำรวจ

วิธีการประเมินที่นิยม

Mean Opinion Score (MOS) : ให้ผู้ฟังให้คะแนนคุณภาพเสียงจาก 1 ถึง 5

MUSHRA: ให้ผู้ใช้ฟัง เสียงต้นฉบับ (Ground Truth) แล้วให้คะแนน TTS

ที่สร้างขึ้น เปรียบเทียบกับต้นฉบับ

NVIDIA NeMo

NeMo Framework

End-to-end, cloud-native framework to build, customize, and deploy generative Al models

Multi-modality support

Build language, image, generative Al models

Data Curation @ Scale

Extract, deduplicate, filter info from large unstructured data @

Optimized Training

Parallelize model and the training data across 1,000s of nodes.

Model Customization

Easily customize with P-tuning, SFT, Adapters, RLHF, AliBi

Run optimized inference at-scale anywhere

Deploy at-scale

Anywhere

Model Evaluation

Model evaluation harness to speed up development process

Guardrails

Keep applications aligned with safety and security requirements using NeMo Guardrails

Support

NVIDIA AI Enterprise and experts by your side to keep projects on track

General availability with NVIDIA AI Enterprise

THANK YOU