高等代数第四章练习题

一 填空题

1. 读
$$A = \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$, 则 $2A - B^T =$ _______; $AB =$ _______.

2. 设
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
,则 $A^{-1} = \underline{\hspace{1cm}}$, $A^* = \underline{\hspace{1cm}}$, $A^n = \underline{\hspace{1cm}}$.

3. 设
$$A$$
 是一 4 阶可逆阵,若 $(A^*)^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & -1 & 4 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$,则 $A =$ ______.

4. 设
$$A = \begin{pmatrix} 2 & 1 & -2 \\ 6 & 2 & 0 \\ 3 & a & 4 \end{pmatrix}$$
, $B \neq 3$ 阶非零矩阵, 且 $AB = 0$, 则 $a =$ _____.

5. 设
$$A = (\beta_1, \beta_2, \beta_3)$$
 是 3 阶方阵, $|A| = -2$,则 $|\beta_1 + 2\beta_3, \beta_1 + 2\beta_2 + 3\beta_3, 3\beta_3| =$ ______.

7. 设
$$A, B$$
 均为 3 阶方阵, $|A| = 2, |B| = 3$,则 $|2AB| = _____, |2A|B| = _____, |(-2A)^{-1} - 3A^*| = _____.$

8. 设
$$A, B$$
均为3阶方阵,满足 $AB-3A+B=0$,若 $|A+E|=-1$,则 $|B-3E|=$ ______.

10. 方阵
$$A$$
 满足 $A^2 - A - 2E = 0$,则 $A^{-1} =$ _______, $(A + 2E)^{-1} =$ _______, $(A - 3E)^{-1} =$ ______.

11. 若
$$n$$
 阶方阵 A 满足 $A^3 = 0$,则 $(E - A)^{-1} =$ ______

13. 已知
$$A$$
 是 5 阶方阵, α_1 , α_2 是 $Ax = b$ 的不同的解,则 $r((A^*)^*) = _____.$

14. 设
$$A$$
是一个 n 阶矩阵,若 $r(A) = 1$,则 $r(A^*) = ______;$ 若 $r(A) = n - 1$,则 $r(A^*) = ______.$

15. 设矩阵
$$A = \begin{pmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end{pmatrix}$$
,且 $r(A) = 3$,则 $k =$ ______.

16. 设
$$A \in n(\geq 3)$$
 阶方阵, A 的各行元素之和为 0 , 而 $A^* \neq 0$, 则 $r(A) = _____$.

17. 设
$$A, B$$
 是 n 阶方阵,且 $r(A) = r$, $r(B) = s$ 则 $r(A, AB) = ______, r\begin{pmatrix} B \\ AB \end{pmatrix} = _____.$

- 18. 设A为n阶方阵,且|A| = 1,则r(A) = _____.
- 19. 设 n 维向量 $\alpha = (a,0,\dots,0,a)^T$, a < 0, E 为 n 阶单位矩阵, $A = E \alpha \alpha^T$, $B = E + \frac{1}{a} \alpha \alpha^T$, 若 A 的 逆矩阵为 B,则 $a = \underline{\hspace{1cm}}$.
- 20. (1) 设 A 是 3 阶可逆方阵,将 A 的第一行的 3 倍加到第三行,再互换第二行和第三行后得到矩阵 B ,则 BA^{-1} =
 - (2) 设 A 是 3 阶可逆方阵,将 A 的第一列的 -3 倍加到第三列,再将第一列的 -2 倍加到第二列,交换第一二列的位置后得到矩阵 B ,则 $A^{-1}B$ =
- 21. 设 2 阶矩阵 A = P(2(2))P(1,2)P(1,2(3)),则矩阵 $A = ______, \quad A^{-1} = _____.$
- 22. 分块矩阵 $\binom{A}{B}$ 经过一系列的初等列变换化为 $\binom{2E}{C}$,则 C=______.
- 23. 己知 m > n , $A \in P^{m \times n}$, $B \in P^{n \times m}$, 则 |AB| =______.
- 二. 计算题

1. 求
$$A = \begin{pmatrix} 2 & 1 & 5 & 7 \\ 3 & 2 & -1 & 3 \\ 0 & 0 & 1 & 8 \\ 0 & 0 & -1 & 6 \end{pmatrix}$$
与 $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$ 的逆矩阵.

2. 求满足
$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} X \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
的 X .

3. 求矩阵
$$X$$
 使之满足矩阵方程 $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ $X + \begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 2 \\ 0 & 4 & -3 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 0 & 3 \\ -2 & 4 & -1 \end{pmatrix}$.

4. 设矩阵
$$A$$
 的伴随矩阵 $A^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 2 & 2 & 8 \end{pmatrix}$, 且 $ABA^{-1} = BA^{-1} + 3E$, 求矩阵 B

6. 已知矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
,且矩阵 X 满足 $AXA + BXB = AXB + BXA + E$,求 X .

7. 设
$$n$$
 阶阵 A 可逆,且 $f(A) = 0$,其中 $f(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0$ 是一非零多项式,求 A^{-1} .

8. 设
$$X = AX - A^2 + E$$
, 其中 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$,求矩阵 X .

9. 设
$$A = \begin{pmatrix} 1 & -2 & 0 & 0 \\ 1 & -1 & 1 & 1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$
,求可逆矩阵 $P \ni Q$,使得 $PAQ = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$.

10. 设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & \lambda \\ 3 & 6 & 9 \end{pmatrix}$$
, $B \neq 3$ 阶非零方阵, $AB = 0$, 对 λ 的可能取值, 讨论矩阵 B 的秩 $r(B)$.

三. 证明题

- 1. 设 A 为 2 阶矩阵,且 $A^5 = 0$,证明 $(E A)^{-1} = E + A$.
- 2. 设 A 是一个 n 阶方阵,且 $A^2 = 2A$,证明 E A, E + A 都可逆,并求 $(E A)^{-1}$, $(E + A)^{-1}$.
- 3. 设 $A^2 = A$,但 $A \neq E$,证明A不可逆.
- 4. 任一秩为r的矩阵都可表示为r个秩为1的矩阵之和.
- 5. 设 $m \times n$ 矩阵 A 的秩为 r 证明
 - (a) 存在秩为n-r的n阶方阵B,使得AB=0. (b) 存在秩为n-r的 $n\times(n-r)$ 阵B,使得AB=0.
- 6. 若 $A^2 = B^2 = E$,且|A| + |B| = 0,证明|A + B| = 0.
- 7. 设 $A \to n$ 阶方阵,则 $A^2 = E$ 当且仅当秩 (A + E) +秩 (A E) = n.
- 8. 已知 A, B, C, D 为 n 级方阵,满足 AD = DA,且 $\left|A\right| \neq 0$,证明: $\begin{vmatrix}B & A \\ C & D\end{vmatrix} = (-1)^n \left|AC DB\right|.$
- 9. 已知n 阶方阵A 可逆,证明A 的伴随阵 A^* 也可逆,且 $(A^*)^{-1}=(A^{-1})^*$
- 10. 设A是方阵,且 $A^2 = A$,证明任给正整数k,都有 $(A + E)^k = E + (2^k 1)A$.
- 11. 设A, B为n阶方阵,证明: $\begin{vmatrix} A & B \\ B & A \end{vmatrix} = |A+B||A-B|.$
- 12. 已知 A 可逆,证明 $\begin{bmatrix} A & A \\ A & -A \end{bmatrix}$ 可逆,并其逆矩阵.
- 13. 设A, B 都是 $m \times n$ 矩阵,证明:若r(A) = r(B),则A, B 等价.
- 14. 设 $A_{m\times n}$, $B_{n\times m}$,其中 $m \le n$,若 $AB = E_m$,证明矩阵B列满秩.