

DM816x/C6A816x/AM389x Evaluation Module

Technical Reference

Preliminary

DM816x/C6A816x/AM389x Evaluation Module Technical Reference

512875-0001 Rev. A October 2011

SPECTRUM DIGITAL, INC.
12502 Exchange Drive, Suite 440 Stafford, TX. 77477
Tel: 281.494.4505 Fax: 281.494.5310
sales@spectrumdigital.com www.spectrumdigital.com

IMPORTANT NOTICE

Spectrum Digital, Inc. reserves the right to make changes to its products or to discontinue any product or service without notice. Customers are advised to obtain the latest version of relevant information to verify that the data being relied on is current before placing orders.

Spectrum Digital, Inc. warrants performance of its products and related software to current specifications in accordance with Spectrum Digital's standard warranty. Testing and other quality control techniques are utilized to the extent deemed necessary to support this warranty.

Please be aware that the products described herein are not intended for use in life-support appliances, devices, or systems. Spectrum Digital does not warrant nor is Spectrum Digital liable for the product described herein to be used in other than a development environment.

Spectrum Digital, Inc. assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does Spectrum Digital warrant or represent any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of Spectrum Digital, Inc. covering or relating to any combination, machine, or process in which such Digital Signal Processing development products or services might be or are used.

WARNING

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures necessary to correct this interference.

Contents

1	Introduction to the DM816x/C6A816x/AM389x Evaluation Module	1-1
	Provides you with a description of the DM816x/C6A816x/AM389x Evaluation Module, key	
	features, and block diagram.	
	1.1 Key Features	1-2
	1.2 Functional Overview of the DM816x/C6A816x/AM389x EVM	1-4
	1.3 Basic Operation	1-5
	1.4 Memory Map	1-5
	1.5 Configuration Switch Settings	1-6
	1.6 Power Supply	1-8
2	Board Components	2-1
_	Describes the operation of the major board components on the DM816x/C6A816x/AM389x	
	Evaluation Module.	
		2-2
	2.1 EMIF-A Interfaces	
	2.1.1 EMIF-B SDRAM Memory Interface	2-2
	2.1.2 Memory Card Interface	2-2
	2.1.3 UART Interface	2-2
	2.1.4 USB Interface	2-2
	2.1.5 HDMI Interface	2-2
	2.1.6 Video DAC	2-2
	2.1.7 PCle	2-3
	2.2 AIC3106 Interface	2-3
	2.3 Ethernet Interface	2-4
	2.4 I ² C Interface	2-4
	2.5 SPI Flash	2-5
	2.6 Power Monitoring	2-5
	2.7 Daughter Card Interface	

3	Physical Specifications	3-1
	Describes the physical layout of the DM816x/C6A816x/AM389x EVM and its connectors.	
	3.1 Board Layout	3-3
	3.2 Connectors	3-5
	3.2.1 J1, 12V Power In	3-7
	3.2.2 J2, HD15 Connector	3-6
	3.2.3 J3, F Type Video Connector	3-7
	3.2.4 J4, Composite Video Out	3-7
	3.2.5 J5, Component Video , RCA Jack - Green	3-7
	3.2.6 J6, Component Video , RCA Jack - Blue	3-8
	3.2.7 J7, Component Video , RCA Jack - Red	3-8
	3.2.8 J8, Disk Drive Power Connector	3-8
	3.2.9 J9, SCART21 Connector	3-9
	3.2.10 J10, Ethernet Connector	3-10
	3.2.11 J11, SATA Header	3-10
	3.2.12 J12, SATA Header	3-11
	3.2.13 J13-1/J13-2, USB-A Connectors	3-12
	3.2.14 J14, MSP430 Programming Header	3-13
	3.2.15 J15, CTI JTAG Interface	3-14
	3.2.16 J16, VLYNQ/Transport Connector	3-15
	3.2.17 J17, Video/Transport Connector	3-16
	3.2.18 J18, GPMC Expansion Connector	3-18
	3.2.19 J19, MCASP/XXX Expansion Connector	3-20
	3.2.20 J20, Serial Expansion Connector	3-22
	3.2.21 P1, S-Video Connector	3-23
	3.2.22 P2, Headphone Out	3-24
	3.2.23 P3, Line Out	3-24
	3.2.24 P4, Line In	3-25
	3.2.25 P5, Mic In	3-25
	3.2.26 P6, HDMI Connector	3-26
	3.2.27 P7, DB9 Connector	3-27
	3.2.28 P8, PCIe Connector	3-28
	3.2.29 P9, SD/MMC Connector	3-29
	3.2.30 P10, DB9 Connector	3-30
	3.2.31 P11, Fan Connector	3-31
	3.3 LEDs	3-32
	3.4 Switches	3-32
	3.4.1 SW1, On/Off Power Switch	3-32
	3.4.2 SW2, User Readable Switches	3-33
	3.4.3 SW3, Boot Mode/Configuration Switch	3-34
	3.4.4 SW4, On Board Memory Enable Switch	3-37
	3.4.5 SW5, PCI/WDOG Reset Enable Switch	3-37
	3.4.6 SW6, Reset Switch	3-38
	3.5 Infra-red Receiver	3-38
	3.6 Test Points	3-39
Α	Schematics	A-1
	Contains the schematics for the DM816x/C6A816x/AM389x Evaluation Module	
В	Mechanical Information	B-1
	Contains the mechanical information about the DM816x/C6A816x/AM389x Evaluation Mod	lule

About This Manual

This document describes the board level operations of the DM816x/C6A816x/AM389x Evaluation Module (EVM). The EVM is based on the Texas Instruments DM816x/C6A816x/AM389x Processor.

The DM816x/C6A816x/AM389x Evaluation Module is a table top card that allows engineers and software developers to evaluate certain characteristics of the DM816x/C6A816x/AM389x processor to determine if the processor meets the designers application requirements. Evaluators can create software to execute on board or expand the system in a variety of ways.

Notational Conventions

This document uses the following conventions.

The DM816x/C6A816x/AM389x Evaluation Module will sometimes be referred to as the DM816x/C6A816x/AM389x EVM or EVM.

Program listings, program examples, and interactive displays are shown in a special italic typeface. Here is a sample program listing.

equations !rd = !strobe&rw;

Information About Cautions

This book may contain cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your software, or hardware, or other equipment. The information in a caution is provided for your protection. Please read each caution carefully.

Related Documents, Application Notes and User Guides

Information regarding the DM816x/C6A816x/AM389x can be found at the following Texas Instruments website:

http://www.ti.com

Table 1: Manual History

Revision		History
Α	Initial Release	

Chapter 1

Introduction to the DM816x/C6A816x/AM389x EVM

Chapter One provides a description of the DM816x/C6A816x/AM389x EVM along with the key features and a block diagram of the circuit board.

Topic Page 1.1 **Key Features** 1-2 Functional Overview of the DM816x/C6A816x/AM389x 1.2 1-4 **EVM Basic Operation** 1.3 1-5 1.4 **Memory Map** 1-6 **Boot Switch Settings** 1.5 1-7 **Power Supply** 1.6 1-8

1.1 Key Features

The DM816x/C6A816x/AM389x EVM is a standalone development platform that enables users to evaluate and develop applications for the DM816x/C6A816x/AM389x processor. Schematics and application notes are available to ease hardware development and reduce time to market. The block diagram for this EVM is shown below.

The EVM comes with a full complement of on board devices that suit a wide variety of application environments. Key features include:

- A Texas Instruments DM816x/C6A816x/AM389x device with a C674x DSP floating point processor and an ARM Cortex A8 processor operating up to 1 GHz.
- 2 Gigabyte DDR3 RAM soldered to the EVM
- 32 Megabit SPI Flash
- 2 gigabyte NAND Flash
- Composite video out
- Component video out
- Dual Host USB Interfaces
- Video/GPMC/MCASP/Serial Expansion Interfaces
- On-chip HDMI Interface
- 10/100/1000 Ethernet Interface
- · SD media card interface
- TLV320AlC3106 Stereo Codec (Line In/Out, Mic in, Headphone out)
- 2 SATA drive interfaces
- PCIe connector with 2 lanes
- RS-232 Interface
- Infra-red receiver
- On chip real time clock
- Configurable boot load options
- 4 user LEDs/4 position user DIP switch
- Single voltage power supply (+12V)
- 20 Pin CTI JTAG Interface
- On board power monitoring

1.2 Functional Overview of the DM816x/C6A816x/AM389x EVM

The DM816x/C6A816x/AM389x on the EVM interfaces to on-board peripherals through multiple on-chip interfaces. The DDR3 memory is soldered down onto the EVM. HDMI and video interfaces support up to 1080p resolution, along with gigabit ethernet and RS-232 interfaces which provide direct support for operating systems running on the EVM.

An on-board AlC3106 codec allows the DSP to transmit and receive analog audio signals. The I²C bus is used for the codec control interface, while the McASP controls the audio stream. Signal interfacing is done through 3.5mm audio jacks that correspond to microphone input, headphone output, line input, and line output.

The EVM includes 4 user LEDs, a 4 position user DIP switch, and on chip real time clock. On board connectors allows ease of interfacing to the daughter cards.

An included +12V external power supply is used to power the board. On-board switching voltage regulators provide the CPU core voltage, +3.3V, +1.8V for peripheral interfacing. The board is held in reset by the on board power controller until these supplies are within operating specifications.

Code Composer Studio communicates with the EVM through an 20 pin compact TI JTAG header.

1.3 Basic Operation

The EVM is designed to work with TI's Code Composer Studio IDETM, or Ubuntu/Code Sorcery tool environments. Code Composer communicates with the board through an on board JTAG emulator. This EVM is shipped with an EVM specific Code Composer Studio environment.

1.4 Memory Map

The DM816x/C6A816x/AM389x processor has a byte addressable address space. Program code and data can be placed anywhere in the unified address space. Addresses are multiple sizes depending on hardware implementation. Refer to the appropriate device data sheets for more details.

The part incorporates a triple EMIF interface. Two dedicated 32-bit wide DDR2 interface directly to the on board dual DIMM. GPMC (General Purpose Memory Controller) has multiple separate addressable regions called chip enable spaces. The EVM uses this interface as a peripheral interface to daughter card connectors and NAND Flash interfaces. The memory maps for both of the processors in the DM816x/C6A816x/AM389x device can be found in TI document SPRS680. The address ranges for the off chip DDR2 and NAND memory are shown in the table below.

Table 1: DDR2 and NAND Memory Ranges

Interface	Memory Type	Address Range	Size
DDR0	DDR2	0x8000 0000	0x2000 0000
DDR1	DDR2	0xC000 0000	0x2000 0000
GPMC	NAND	GPMC_CS0, see NAND controller information	2 Gigabyte

1.5 Boot Switch Settings

The EVM uses 9 positions of a 10 position DIP switch (SW3) to configure the operational state of the processor when it is released from reset and determine the source for processor booting. Five (5) positions indicate the boot mode and four (4) positions determine the memory configuration. By default as shipped the switches are configured to SD Card boot. The tables below shows the boot mode sources and their respective switch positions.

Table 2: Memory Boot Load Order

B MEM	BTMODE[3:0] Switch			
First	Second	Third	Fourth	Position[4:1]
XIP	UART	EMAC	SD	0 0 0 0
XIPWAIT	UART	EMAC	SD	0 0 0 1
NAND	NANDI2C	SPI	UART	0 0 1 0
NAND	NANDI2C	SD	UART	0 0 1 1
NAND	NANDI2C	SPI	EMAC	0 1 0 0
NANDI2C	SD	EMAC	UART	0 1 0 1
SPI	SD	UART	EMAC	0 1 1 0
SD	SPI	UART	EMAC	0 1 1 1
SPI	SD	PCIE_32	Reserved	1 0 0 0
SPI	SD	PCIE_32	Reserved	1 0 0 1
Reserved	Reserved	Reserved	Reserved	1 0 1 0
Reserved	Reserved	Reserved	Reserved	1 0 1 1
Reserved	Reserved	Reserved	Reserved	1 1 0 0
Reserved	Reserved	Reserved	Reserved	1 1 0 1
Reserved	Reserved	Reserved	Reserved	1 1 1 0
GP Fast External Boot	EMAC	UART	PCIE_32	1 1 1 1

Table 3: Peripheral Boot Load Order

B' PERIPH	BTMODE[3:0] Switch			
First	Second	Third	Fourth	Position[4:1]
Reserved	Reserved	Reserved	Reserved	0 0 0 0
UART	XIPWAIT	SD	SPI	0 0 0 1
UART	SPI	NAND	NANDI2C	0 0 1 0
UART	SPI	XIP	SD	0 0 1 1
EMAC	SPI	NAND	NANDI2C	0 1 0 0
Reserved	Reserved	Reserved	Reserved	0 1 0 1
Reserved	Reserved	Reserved	Reserved	0 1 1 0
EMAC	SD	SPI	XIP	0 1 1 1
PCIE_32	Reserved	Reserved	Reserved	1 0 0 0
PCIE_64	Reserved	Reserved	Reserved	1 0 0 1
Reserved	Reserved	Reserved	Reserved	1 0 1 0
Reserved	Reserved	Reserved	Reserved	1 0 1 1
Reserved	Reserved	Reserved	Reserved	1 1 0 0
Reserved	Reserved	Reserved	Reserved	1 1 0 1
Reserved	Reserved	Reserved	Reserved	1 1 1 0
GP Fast External Boot	UART	EMAC	PCIE_64	1 1 1 1

The photo below shows the switch settings for SD card boot.

An additional switch (SW4) enables the chip select for on board NAND and SPI Flash. This switch allows for daughter cards to override on board configurations. This switch must disable the on board NAND and SPI when SD card boot is selected. The photo below shows the default switch settings for SW4.

1.6 Power Supply

The EVM operates from a single +12V external power supply connected to the main power input (J1), a 2.5 MM. barrel-type plug. On the EVM, the +12V input is converted into core voltage (1 volt constant and 1 volt variable [AVS]), +1.5V, +1.8V, +3.3V and +5V using Texas Instruments controllers and regulators. The +3.3V supply is used for the CPU's I/O buffers.

Chapter 2

Board Components

This chapter describes the operation of the major board components on the DM816x/C6A816x/AM389x EVM.

Горіс		Page
2.1	EMIF-A Interfaces	2-2
2.1.1	EMIF-B SDRAM Memory Interface	2-2
2.1.2	Memory Card Interface	2-2
2.1.3	UART Interface	2-2
2.1.4	USB Interface	2-2
2.1.5	HDMI Interface	2-2
2.1.6	Video DAC	2-2
2.1.7	PCle	2-3
2.2	AIC3106 Interface	2-3
2.3	Ethernet Interface	2-4
2.4	I ² C0, I ² C1 Interfaces	2-4
2.5	SPI Flash	2-5
2.6	Power Monitoring	2-5
2.7	Daughter Card Interface	2-5

2.1 GPMC Interface

A separate 16 bit EMIF with multiple chip enables divide up the internal address space and allow for asynchronous memory accesses on the EVM. The EVM uses this interface for memory interfaces to the daughter card and on board NAND Flash.

2.1.1 DDR Memory Interfaces

The DM816x/C6A816x/AM389x device incorporates a dedicated 32 bit wide DDR3 memory interface. The EVM incorporates supports 2 gigabytes of memory for program, data, and video storage. The internal memory controller uses a PLL to control the memory timing. Memory refresh is handled automatically by the processor's internal controller.

2.1.2 Memory Card Interface

The EVM supports SD/MMC media card interfaces. This interface is directly supported via an on chip peripheral.

2.1.3 UART Interface

The internal UART2 on the DM816x/C6A816x/AM389x device is driven to connector P10. The UART's interface is routed to the RS-232 line drivers prior to being brought out to a DB-9 connector.

2.1.4 USB Interface

The DM816x/C6A816x/AM389x incorporates two on chip USB controllers. The two interfaces are brought out to dual host A type connector, J13.

2.1.5 HDMI Interface

The DM816x/C6A816x/AM389x has an on chip HDMI peripheral which supports up to 1080p @ 60 Hz. resolution. This interface is a direct interface to an HDMI connector, P6.

2.1.6 Video DAC

The EVM supports composite, S-video, Scart, and component output via internal video DACs. The interfaces are buffered via THS7360 and THS7375 video DACs to connectors J2, J9, J4, J5, J6, and J7.

2.1.7 PCle

The EVM provides a PCIe connector and supports 2 lanes of transmit and receive interfaces.

2.2 AIC3106 Interface

The EVM incorporates a Texas Instruments TLV320AIC3106 stereo codec for input and output of audio signals. The codec samples analog signals on the microphone or line inputs and converts them into digital data so it can be processed by the DSP. When the DSP is finished with the data it uses the codec to convert the samples back into analog signals on the line output so the user can hear the output.

The codec communicates using two serial channels, one to control the codec's internal configuration registers and one to send and receive digital audio samples. The I²C bus is used as the AIC3106's control channel. The control channel is generally only used when configuring the codec, it is typically idle when audio data is being transmitted,

McASP1 is used as the bi-directional data channel. All audio data flows through the data channel. Many data formats are supported based on the three variables of sample width, clock signal source and serial data format. The EVM examples generally use a 16-bit sample width with the codec in master mode so it generates the frame sync and bit clocks at the correct sample rate without effort on the DSP side.

The codec is clocked via a 24.576 Mhz oscillator. The internal sample rate generator subdivides the default system clock to generate common audio frequencies. The sample rate is set by a codec register. The figure below shows the codec interface on the DM816x/C6A816x/AM389x EVM.

2.3 Ethernet Interface

The DM816x/C6A816x/AM389x incorporates two ethernet MAC's that support 10/100/1000 Mbit interfaces. Ethernet 0 is interfaced to an external Phy and brought out to an RJ-45 standard ethernet connector, J10. The ethernet address is stored on chip within the CPU.

The RJ-45 jack has 2 LEDs integrated into the connector. The LEDs are green and yellow and provide link and transmit status from the ethernet controller.

2.4 I²C0, I²C1 Interfaces

The I^2C0 and I^2C1 bus on the DM816x/C6A816x/AM389x is ideal for interfacing to the control registers of many devices. On the DM816x/C6A816x/AM389x EVM the I^2C0 bus is used to configure the Codec, I^2C ROM, and bit addressable latch. The format of the bus is shown in the figure below.

The addresses of the on board peripherals are shown in the tables below.

Table 1: I²C0 Address Map

Device	Address	R/W	Function
TLV320AIC3106	0x18	R/W	CODEC
PCF8575	0x20	R/W	Bit I/O
MSP430	0x25	R/W	Power Monitor
I ² C EEPROM	0x50	R/W	I ² C EEPROM

Table 2: I²C1 Address Map

Device	Address	R/W	Function
PCF8575	0x20	R/W	Bit I/O

2.5 SPI Flash

The EVM has a 32 megabit SPI Flash that can be used for booting and/or storage. Note that the switch S2 enables the SPI chip select and must be set properly when using the device.

2.6 Power Monitoring

The EVM uses an MSP430 CPU connected to multiple INA2201DCN I²C power monitors to monitor the voltage and currents on the EVM. The MSP430 outputs this information in real time via its dedicated RS-232 port, P7.

2.7 Daughter Card Interfaces

The EVM provides expansion connectors that can be used to accept plug-in daughter cards. The daughter card allows users to build on their EVM platform to extend its capabilities and provide customer and application specific I/O. The expansion connectors are interfaces which include McASP, and serial I/O expansion. The EMIF-A signals are brought out as LCD, peripheral, or EMIF signals.

The daughter card connectors used on the EVM are shown in the table below.

Table 3: Daughter Card Connectors

Reference Designator	Part Numbers Used On EVM	Manufacturer
J16	QSH-030-01-L-D-A-K	Samtec
J17	QSH-060-01-L-D-A-K	Samtec
J18	QSH-060-01-L-D-A-K	Samtec
J19	QSH-060-01-L-D-A-K	Samtec
J20	QSH-030-01-L-D-A-K	Samtec

One of the compatible mating daughter card connectors used to interface to the EVM are shown in the table below (other heights are available).

Table 4: Mating Daughter Card Connectors

Reference Designator	Mating connector	Manufacturer
XJ16	QTH-030-02-L-D-A-K	Samtec
XJ17	QTH-060-02-L-D-A-K	Samtec
XJ18	QTH-060-02-L-D-A-K	Samtec
XJ19	QTH-060-02-L-D-A-K	Samtec
XJ20	QTH-030-02-L-D-A-K	Samtec

Chapter 3

Physical Description

This chapter describes the layout of the DM816x/C6A816x/AM389x EVM and its interfaces.

Topic		Page
3.1	Board Layout	3-3
3.2	Connectors	3-5
3.2.1	J1, 12V Power In	3-6
3.2.2	J2, HD15 Connector	3-6
3.2.3	J3, F Type Video Connector	3-7
3.2.4	J4, Composite Video Out	3-7
3.2.5	J5, Component Video, RCA Jack - Green	3-7
3.2.6	J6, Component Video, RCA Jack - Blue	3-8
3.2.7	J7, Component Video, RCA Jack - Red	3-8
3.2.8	J8, Disk Drive Power Connector	3-8
3.2.9	J9, SCART21 Connector	3-9
3.2.10	J10, Ethernet Connector	3-10
3.2.11	J11, SATA Header	3-10
3.2.12	J12, SATA Header	3-11
3.2.13	J13-1/13-2, USB-A Connectors	3-12
3.2.14	J14, MSP430 Programming Header	3-13
3.2.15	J15, CTI JTAG Interface	3-14
3.2.16	J16, VLYNQ/Transport Connector	3-15
3.2.17	J17, Video/Transport Connector	3-16
3.2.18	J18, GPMC Expansion Connector	3-18
3.2.19	J19, MCASP/XXX Expansion	3-20
3.2.20	J20, Serial Expansion Connector	3-22

T	opic	Page
3.2.21	P1, S-Video Connector	3-23
3.2.22	P2, Headphone Out	3-24
3.2.23	P3, Line Out	3-24
3.2.24	P4, Line In	3-25
	P5, Mic In	3-25
3.2.26	P6, HDMI Connector	3-26
3.2.27	P7, DB9 Connector	3-27
	P8, PCIe Interface	3-28
3.2.29	P9, SD/MMC Connector	3-29
3.2.30	P10, DB9 Connector	3-30
3.2.31	P11, Fan Connector	3-31
3.3	LEDs	3-32
3.4	Switches	3-32
3.4.1	SW1, On/Off Power Switch	3-32
3.4.2	SW2, User Readable Switches	3-33
3.4.3	SW3, Boot Mode/Configuration Switch	3-34
3.4.4	SW4, On Board Memory Enable Switch	3-37
3.4.5	SW5, PCI/WDOG Reset Enable Switch	3-37
3.4.5	SW6, Reset Switch	3-38
3.5	Infra-red Receiver	3-38
3.6	Test Points	3-39

3.1 Board Layout

The DM816x/C6A816x/AM389x EVM is a 12.5 x 8.4 inch six (6) layer printed circuit board which is powered by an external +5 volt only power supply. Figure 3-1 shows the layout of the top side of the DM816x/C6A816x/AM389x EVM.

0000000 (J19) 000 000 (J17 0 0 000 (J16) 0 00 0 (J18) 0 J20 0 M23 67% 00□ 000 000 00 00 , o o o 🗆 00 O ‱ O Figure 3-2, DM816x/C6A816x/AM389x EVM, Interfaces Bottom Side

Figure 3-2 shows the layout of the bottom side of the DM816x/C6A816x/AM389x EVM.

3.2 Connectors

The EVM has numerous connectors and option jumpers to control and provide connections to various peripherals. These connectors and jumpers are described in the following sections.

Table 1: Connectors

Connector	Size	Board Side	Schematic Page	Function
J1	2	Тор	56	12V Power In
J2	15	Тор	42	HD15 Connector
J3	2	Тор	42	F Type Video Connector
J4	2	Тор	42	Composite Video
J5	2	Тор	42	RCA Jack - Green
J6	2	Тор	42	RCA Jack - Blue
J7	2	Тор	42	RCA Jack - Red
J8	9	Тор	56	Drive Input Power Connector
J9	21	Тор	43	SCART21 Connector
J10	14	Тор	40	Ethernet Output Connector
J11	9	Тор	12	SATA Header
J12	9	Тор	12	SATA Header
J13-1	6	Тор	30	USB-A Connector
J13-2	6	Тор	30	USB-A Connector
J14	2 x 7	Тор	50	MSP430 Programming Header
J15	20	Тор	14	CTI JTAG Interface
J16	2 x 32	Bottom	45	VLYNQ/Transport Connector
J17	2 x 64	Bottom	44	Video/Transport Connector
J18	2 x 64	Bottom	46	GPMC Expansion Connector
J19	2 x 64	Bottom	48	MCASP/XXX Expansion
J20	2 x 32	Bottom	47	Serial I/O Expansion Connector
P1	7	Тор	42	S-video Connector
P2	4	Тор	41	Headphone Out
P3	4	Тор	41	Line Out
P4	4	Тор	41	Line In
P5	4	Тор	41	Mic In
P6	23	Тор	11	HDMI
P7	11	Тор	50	DB9 Connector
P8	2 x 32	Тор	28	PCIe Interface
P9	28	Тор	35	SD/MMC Connector
P10	11	Тор	33	DB9 Connector
P11	3	Тор	56	Fan Connector

3.2.1 J1, 12V Power In

Connector J1 is the input power connector. This connector brings in +12 volts to the EVM. This is a 2.5mm. jack. The inside of the jack is tied to through a fuse to EVM_12V. The other side is tied to ground and LED DS1. The figure below shows this connector as viewed from the card edge.

3.2.2 J2, HD15 Connector

Connector J2 is a 15 pin header that allows a high definition video device to be plugged into the EVM. The signals on this connector are shown in the table below.

Table 2: J2, HD15 Connector

Pins	Signal
1	U4, Pin 12, SF3_OUT
2	U4, Pin 14, SF1_OUT
3	U4, Pin 13, SF2_OUT
4	NC
5	Ground
6	Ground
7	Ground
8	Ground
9	NC
10	Ground
11	NC
12	NC
13	NC
14	NC
15	NC

3.2.3 J3, F Type Video Connector

Connector J3 provides an RF output (RFOUT) from the processor, U31, Pin AU21.

3.2.4 J4, Composite Video Out

J4 is an RCA jack used as a video output from the THS7360 driver. Do **NOT** plug into this connector with the power on. The figure below shows this connector as viewed from the card edge.

Table 3: J4, Composite Video Out, RCA Jack

Pin#	Signal Name
1	THS7360, Pin 20, SD1_OUT
2	GND

3.2.5 J5, Component Video, RCA Jack - Green

J5 is an RCA jack used to provide the Green component video output from the THS7360 driver, U4, pin 14, SF1_OUT. The pinout on this connector is shown in the figure below.

WARNING: Do **NOT** plug into this connector with the power on.

3.2.6 J6, Component Video, RCA Jack - Blue

J6 is an RCA jack used to provide the Blue component video output from the THS7360 driver, U4, pin 13, SF2_OUT. The pinout on this connector is shown in the figure below.

WARNING: Do NOT plug into this connector with the power on.

3.2.7 J7, Component Video, RCA Jack - Red

J7 is an RCA jack used to provide the Red component video output from the THS7360 driver, U4, pin 12, SF3_OUT. The pinout on this connector is shown in the figure below.

WARNING: Do **NOT** plug into this connector with the power on.

3.2.8 J8, Disk Drive Power Connector

Connector J8 provides power for a hard disk drive. This is the standard connector used on a personal computer. The signals on this connector are shown in the table below.

Pin#	Signal Name
1	EVM_12V, +12 volts
2,3	Ground
4	EVM_5V0, +5 volts
6,7,8,9	No connect

Table 4: J8, Disk Driver Power Connector

3.2.9 J9, SCART21 Connector

Connector J9 is a SCART21 video output connector. The signals on this connector are shown in the table below.

Table 5: J9, SCART21 Connector

Pin#	Signal Name	Pin#	Signal Name
1	SCART_AUDIO_OUT_R		
		2	No connect
3	SCART_AUDIO_OUT_L		
		4	Ground
5	Ground		
		6	No connect
7	U8, Pin 13, CH2_OUT		
		8	No connect
9	Ground		
		10	No connect
11	U8, Pin 14, CH1_OUT		
		12	No connect
13	Ground		
		14	Ground
15	U8, Pin 12, CH3_OUT		
		16	U8, Pin 11, CH4_OUT
17	Ground		
		18	No connect
19	SCART_COMPOSITE		
		20	No connect
21	Ground		

3.2.10 J10, Ethernet Connector

Connector J10 is an Ethernet connector that uses differential signals. The signals on this connector are shown below.

Table 6: J10, Ethernet Connector

Pins	Signal
1	Ground
2	PHY_VDD_2V5
3	TRD[3]P
4	TRD[3]N
5	TRD[2]P
6	TRD[2]N
7	TRD[1]P
8	TRD[1]N
9	TRD[0]P
10	TRD[0]N
11	Earth Ground
12	Earth Ground
D1	ENET_LED_LINK
D2	Ground
D3	ENET_LED_RX
D4	EVM_3V3

3.2.11 J11, SATA Header

J11 is a 9 pin SATA disk interface header. There are 2 pair of differential signals to interface to the processor, U31. This signals on this connector are shown below.

Table 7: J11, SATA Header

Pins	Signal
1	Ground
2	CON.SATA_TXP1, U31, Pin V33
3	CON.SATA_TXN1, U31, Pin U33
4	Ground
5	CON.SATA_RXN1, U31, Pin V35
6	CON.SATA_RXP1, U31, Pin W35
7	Ground
8	No connect
9	No connect

3.2.12 J12, SATA Header

J12 is a 9 pin SATA disk interface header. There are 2 pair of differential signals to interface to the processor, U31. This signals on this connector are shown below.

Table 8: J12, SATA Header

Pins	Signal
1	Ground
2	CON.SATA_TXP0, U31, Pin T32
3	CON.SATA_TXN0, U31, Pin T31
4	Ground
5	CON.SATA_RXN0, U31, Pin V37
6	CON.SATA_RXP0, U31, Pin V36
7	Ground
8	No connect
9	No connect

3.2.13 J13-1/13-2, USB-A Connectors

Connector J13-1, J13-2 are stacked USB connectors. The J13-1 connector is the lower connector in the stacked pair. The signals on each of these connectors are shown in the tables below.

Table 9: J13-1, USB-A Connector

Pin Name	Signal
MHX1/MH1	SHIELD USB0
VBUS/A1	USB0_VBUS_CONN
D-/A2	USB0_DM
D+/A3	USB0_DP
GND/A4	Ground
MH2	SHIELD USB0

Table 10: J13-2, USB-A Connector

Pin Name	Signal
MHX1/MH3	SHIELD USB1
VBUS/B1	USB1_VBUS_CONN
D-/B2	USB1_DM
D+/B3	USB1_DP
GND/B4	Ground
MHX2/MH4	SHIELD USB1

3.2.14 J14, MSP430 Programming Header

J14 is a 2 x 7 double row header used to program the MSP430 microcontroller, U38. This header is only to be used at the factory. The layout of this header is shown in the figure below.

The signals on the pins of this connector are shown bin the table below.

Table 11: J14, MSP430 Programming Header

Pin#	Signal	Pin#	Signal
1	430_TDO/TDI	2	No connect
3	No connect	4	EVM_3V3
5	No connect	6	No connect
7	MSP430_TCK	8	No connect
9	Ground	10	No connect
11	No connect	12	No connect
13	No connect	14	No connect

3.2.15 J15, CTI JTAG Interface

Connector J15 is a compact 20 pin TI JTAG header. The signals on the pins of this connector are shown in the table below.

Table 12: J15, CTI JTAG Interface

Pin#	Signal	Pin #	Signal
1	TMS	2	TRSTn
3	TDI	4	Ground
5	EVM_3V3	6	No connect (key)
7	TDO	8	Ground
9	RTCK	10	Ground
11	TCK	12	Ground
13	EMU0	14	EMU1
15	EMU_RSTn	16	Ground
17	EMU2	18	EMU3
19	EMU4	20	Ground

3.2.16 J16, VLYNQ/Transport Connector

Connector J16 is the VLYNQ/Transport interface located on the bottom side of the board. The signals on this connector are shown in the table below.

Table 13: J16, VLYNQ/Transport Connector

Pin	Signal	Pin	Signal
2	TSI3_PACVAL 1		TSI6_PACERR
4	Ground	3	Ground
6	TSI4_DCLK	5	TSI2_PACERR
8	TSI3_DATA	7	TSI0_PACVAL
10	Ground	9	Ground
12	TSI2_DCLK	11	TSI2_PACVAL
14	TSI2_DATA	13	TSI0_PACERR
16	Ground	15	Ground
18	TSI6_BYTSTRT	17	TSI0_DCLK
20	TSI6_PACVAL	19	TSO0_DCLK
22	Ground	21	Ground
24	TSI4_PACERR	23	TSI0_BYTSTRT
26	TSI4_BYTSTRT	25	TSO0_DATA
28	Ground	27	Ground
30	TSI3_PACERR	29	TSO0_BYTSTRT
32	VLYNQ_RXD1	31	TSO0_PACERR
34	Ground	33	Ground
36	VLYNQ_TXD1	35	VLYNQ_SCRUN
38	TSO1_PACERR	37	TSO0_PACVAL
40	Ground	39	Ground
42	VLYNQ_TXD3	41	VLYNQ_TXD2
44	VLYNQ_RXD2	43	VLYNQ_CLOCK
46	Ground	45	Ground
48	TSI4_PACVAL	47	TSI1_PACERR
50	VLYNQ_RXD3	49	TSI3_DCLK
52	Ground	51	Ground
54	VLYNQ_TXD0	53	VLYNQ_RXD0
56	No connect	55	No connect
58	Ground	57	Ground
60	No connect	59	No connect
62	Ground	61	Ground
64	Ground	63	Ground

3.2.17 J17, Video/Transport Connector

Connector J17 is the Video/Transport interface located on the bottom side of the board. This connector is in two sections. The signals on each section of this connector are shown in the tables below.

Table 14: J17, Video/Transport Connector, Section 1

Pin	Signal	Pin	Signal
2	VINO_D0	1	No connect
4	Ground	3	Ground
6	VIN0_D2	5	No connect
8	VINO_D9	7	VIN0_CLK1
10	Ground	9	Ground
12	VOUT0_G_Y_YC2	11	VIN0_D1
14	VOUT0_G_Y_YC6	13	VINO_D4
16	Ground	15	Ground
18	VOUT0_R_CR4	17	VIN0_D11
20	VINO_D6	19	VINO_D5
22	Ground	21	Ground
24	VINO_D8	23	VIN0_D12
26	VIN0_D3	25	VIN0_D10
28	Ground	27	Ground
30	VINO_D7	29	VIN0_D14
32	VOUT0_G_Y_YC4	31	VIN0_D13
34	Ground	33	Ground
36	VOUT0_B_CB_C8	35	VINO_D15
38	VOUT0_G_Y_YC5	37	VOUT0_CLK
40	Ground	39	Ground
42	VOUT0_B_CB_C6	41	VOUT0_G_Y_YC8
44	VOUT0_B_CB_C5	43	VOUT0_G_Y_YC7
46	Ground	45	Ground
48	EVM_12V	47	EVM_3V3
50	EVM_12V	49	EVM_3V3
52	Ground	51	Ground
54	EVM_12V	53	EVM_5V0
56	EVM_12V	55	EVM_5V0
58	Ground	57	Ground
60	VOUT0_B_CB_C3	59	VOUT0_B_CB_C9

Table 15: J17, Video/Transport Connector, Section 2

Pin	Signal	Pin	Signal
62	VOUT0_B_CB_C7	61	VOUT0_R_CR2
64	Ground	63	Ground
66	VOUT0_G_Y_YC3	65	VOUT0_R_CR6
68	VOUT0_G_Y_YC9	67	VOUT0_R_CR5
70	Ground	69	Ground
72	VIN0_CLK0	71	VOUT0_R_CR9
74	VOUT0_B_CB_C4	73	TSI5_BYTSTRT
76	Ground	75	Ground
78	VOUT0_B_CB_C2	77	TSI5_PACERR
80	VOUT0_R_CR3	79	TSI7_PACERR
82	Ground	81	Ground
84	TSI5_DATA	83	TSO1_DATA
86	TSI5_PACVAL	85	TSI7_PACVAL
88	Ground	87	Ground
90	TSI1_PACVAL	89	TSO1_PACVAL
92	TSI7_DATA	91	TSO1_DCLK
94	Ground	93	Ground
96	TSI5_DCLK	95	TSI6_DATA
98	VOUT0_R_CR7	97	TSI3_BYTSTRT
100	Ground	99	Ground
102	VOUT0_R_CR8	101	TSI2_BYTSTRT
104	TSI7_BYTSTRT	103	TSI4_DATA
106	Ground	105	Ground
108	TSI1_BYTSTRT	107	TSI0_DATA
110	TSI7_DCLK	109	TSI6_DCLK
112	Ground	111	Ground
114	TSI1_DCLK	113	MSP430_SCL
116	16 TSI1_DATA		MSP430_SDA
118	Ground	117	Ground
120	TSO1_BYTSTRT	119	No connect
122	Ground	121	Ground
124	Ground	123	Ground
126	Ground	125	Ground
128	Ground	127	Ground

3.2.18 J18, GPMC Expansion Connector

Connector J18 is the GPMC expansion connector located on the bottom side of the board. This connector is in two sections. The signals on each section of this connector are shown in the tables below.

Table 16: J18, GPMC Expansion Connector, Section 1

Pin	Signal	Pin	Signal
2	MSP430_SCL	1	No connect
4	Ground	3	Ground
6	MSP430_SDA	5	GPMC_CS3
8	No connect	7	GPMC_CS0
10	Ground	9	Ground
12	No connect	11	GPMC_CS2
14	No connect	13	GPMC_CS1
16	Ground	15	Ground
18	GPMC_CS4	17	GPMC_WEN
20	GPMC_A8	19	GPMC_CS5
22	Ground	21	Ground
24	GPMC_A7	23	GPMC_OEN_REN
26	GPMC_A3	25	GPMC_BE1N
28	Ground	27	Ground
30	GPMC_A2	29	GPMC_A5
32	GPMC_A1	31	GPMC_A4
34	Ground	33	Ground
36	GPMC_A0	35	GPMC_A9
38	GPMC_DIR	37	GPMC_A10
40	Ground	39	Ground
42	GPMC_WAIT	41	GPMC_A11
44	GPMC_WPN	43	GPMC_D0
46	Ground	45	Ground
48	EVM_12V	47	EVM_3V3
50	EVM_12V	49	EVM_3V3
52	Ground	51	Ground
54	EVM_12V	53	EVM_5V0
56	EVM_12V	55	EVM_5V0
58	Ground	57	Ground
60	GPMC_A6	59	GPMC_D2

Table 17: J18, GPMC Expansion Connector, Section 2

Pin	Signal	Pin	Signal
62	GPMC_BE0N_CLE	61	GPMC_D5
64	Ground	63	Ground
66	GPMC_D4	65	GPMC_D7
68	GPMC_D3	67	GPMC_D9
70	Ground	69	Ground
72	GPMC_D1	71	GPMC_D12
74	GPMC_A27	73	GPMC_D11
76	Ground	75	Ground
78	GPMC_ADVN_ALE	77	GPMC_D10
80	GPMC_D6	79	GPMC_CLK
82	Ground	81	Ground
84	GPMC_D8	83	GPMC_D15
86	GPMC_D13	85	No connect
88	Ground	87	Ground
90	No connect	89	No connect
92	No connect	91	No connect
94	Ground	93	Ground
96	No connect	95	No connect
98	No connect	97	No connect
100	Ground	99	Ground
102	GPMC_D14	101	SPI_CS0
104	No connect	103	SPI_SCLK
106	Ground	105	Ground
108	SPI_MOSI	107	SPI_CS3
110	SOI_MISO	109	SPI_CS1
112	Ground	111	Ground
114	UART0_RXD	113	UART1_RXD
116	UARTO_RTSN	115	UART1_TXD
118	Ground	117	Ground
120	UART0_TXD	119	UART2_RXD
122	Ground	121	Ground
124	Ground	123	Ground
126	Ground	125	Ground
128	Ground	127	Ground

3.2.19 J19, MCASP/XXX Expansion

Connector J19 is the MCASP/XXX expansion connector located on the bottom side of the board. This connector is in two sections. The signals on each section of this connector are shown in the tables below.

Table 18: J19, MCASP/XXX Expansion Connector, Section 1

Pin	Signal	Pin	Signal
2	IIC1_SDA	1	PM_I2C_SCL
4	Ground	3	Ground
6	IIC1_SCL	5	PM_I2C_SDA
8	IIC0_SDA	7	EXP_MCA2_AXR0
10	Ground	9	Ground
12	IIC0_SCL	11	EXP_MCA2_AMUTE
14	No connect	13	EXP_MCA2_AXR1
16	Ground	15	Ground
18	MCA0_AMUTE	17	EXP_MCA2_ACLKHX
20	MCA0_AXR3	19	EXP_MCA2_ACLKX
22	Ground	21	Ground
24	MCA0_AXR2	23	EXP_MCA2_AFSR
26	MCA1_AMUTE	25	EXP_MCA2_AFSX
28	Ground	27	Ground
30	MCA0_ACLKHX	29	EXP_MCA2_AHCLKR
32	MCA0_AFSR	31	EXP_MCA2_ACLKR
34	Ground	33	Ground
36	MCA0_ACLKX	35	MCA1_AXR1
38	MCA0_AFSX	37	MCA1_AXR0
40	Ground	39	Ground
42	MCA1_AFSX	41	MTSO_DATA1
44	MCA0_AXR1	43	MTSI_DATA5
46	Ground	45	Ground
48	EVM_12V	47	EVM_3V3
50	EVM_12V	49	EVM_3V3
52	Ground	51	Ground
54	EVM_12V	53	EVM_5V0
56	EVM_12V	55	EVM_5V0
58	Ground	57	Ground
60	MTSI_DATA7	59	MCA1_ACLKHX

Table 19: J19, MCASP/XXX Expansion Connector, Section 2

Pin	Signal	Pin	Signal
62	MCA0_AXR5	61	MDIO_MDIO
64	Ground		Ground
66	MCA0_AXR4	65	MDIO_MDCLK
68	MCA0_AXR0	67	MCA1_ACLKX
70	Ground	69	Ground
72	MCA1_ACLKR	71	MTSI_DCLK
74	MCA1_AHCLKR	73	MTSI_DATA0
76	Ground	75	Ground
78	MCA1_AFSR	77	MTSI_DATA2
80	MTSO_DATA0	79	MTSI_DATA1
82	Ground	81	Ground
84	MTSO_DATA6	83	MTSI_DATA4
86	MTCL_SDI	85	MTSI_DATA3
88	Ground	87	Ground
90	MTSO_DATA7	89	MTSI_DATA6
92	MCARD_MDET	91	MTSI_BYTSTRT
94	Ground	93	Ground
96	MTCL_SCTL	95	MTSO_DCLK
98	MCARD_CD2	97	MTSO_DATA2
100	Ground	99	Ground
102	MCARD_CD1	101	MTSO_DATA3
104	MCA0_ACLKR	103	MTSO_DATA5
106	Ground	105	Ground
108	MCA0_AHCLKR	107	MTSO_DATA4
110	MCARD_VS1	109	MCTL_SCLK
112	Ground	111	Ground
114	MTCL_SDO	113	MTSO_BYTSTRT
116	MCARD_VCCEN	115	MCARD_VPPEN
118	Ground	117	Ground
120	MCARD_VS2	119	MCARD_RESET
122	Ground	121	Ground
124	Ground	123	Ground
126	Ground	125	Ground
128	Ground	127	Ground

3.2.20 J20, Serial Expansion Connector

Connector J20 is the serial expansion connector located on the bottom side of the board. The signals on this connector are shown in the table below.

Table 20: J20, Serial Expansion Connector

Pin	Signal	Pin	Signal
2	UARTO_CTSN	1	UART1_RTSN
4	Ground	3	Ground
6	UART0_DTRN	5	UART2_TXD
8	UART0_DCDN	7	SC0_RST
10	Ground	9	Ground
12	UARTO_DSRN	11	SC1_RST
14	UART0_RIN	13	SC1_DET
16	Ground	15	Ground
18	SPI_SCS2	17	TIM6_OUT
20	UART1_CTSN	19	SC1_VPPEN
22	Ground	21	Ground
24	SC0_VPPEN	23	TIM7_OUT
26	SC0_VCCEN	25	SC1_VCCEN
28	Ground	27	Ground
30	SC1_CLK	29	CLK_OUT
32	SC0_C4	31	GP0_IO5
34	Ground	33	Ground
36	UART2_RTSN	35	TIM4_OUT
38	UART2_CTSN	37	No connect
40	Ground	39	Ground
42	SC0_DET	41	No connect
44	RSTOUTn	43	No connect
46	Ground	45	Ground
48	SC0_CLK	47	No connect
50	SC1_C4	49	GP0_IO7
52	Ground	51	Ground
54	SC0_DATA	53	GP0_IO4
56	SC1_DATA	55	EXP_WARM_RESET
58	Ground	57	Ground
60	GP0_IO6	59	TIM5_OUT
62	Ground	61	Ground
64	Ground	63	Ground

3.2.21 P1, S-Video Connector

Connector P1 is a four pin mini din S-video connector which interfaces to the THS7360. This connector brings out a video signal (LUMA). Do **NOT** plug into this connector with the power on. The figure below shows this connector as viewed from the card edge.

Table 21: P1, S-Video Connector

Pin#	# Signal Name	
1,2,5,6	Ground	
3	S-VIDEO_LUMA, U4, Pin 19, SD2_OUT	
4	U4, Pin 18, SD3_OUT	
7	No connect	

3.2.22 P2, Headphone Out

The P2 connector is a 3.5 mm. stereo headphone output from the TVL320AlC3106 on the EVM. The signals on the mating plug are shown in the figure below The signals present on this connector are defined in the following table.

Table 22: P2, Headphone Out Interface

Pin#	AIC3106 Signal
1(sleeve)	GND_AC
2(ring	U2, Pin 18, HPLOUT
3(tip)	U2, Pin 23,HPROUT
4	NC

3.2.23 P3, Line Out

The audio line out connector P3, is a stereo output. The output connector is a 3.5 mm stereo jack. The signals on the mating plug are shown in the figure below.

Table 23: P3, Audio Line Out Stereo Jack

Pin#	AIC3106 Signal
1 (sleeve)	GND_AC
2 (ring)	U2, Pin 29, LEFT_LO+
3 (tip)	U2, Pin 31, RIGHT_LO+
4 (sleeve)	NC

3.2.24 P4, Line In

Connector P4 is an stereo audio line input. The input connector is a 3.5 mm stereo jack. The signals on the mating plug are shown in the figure below.

Table 24: P4, Line In Interface

Pin#	AIC3106 Signal
1 (sleeve)	GND_AC
2 (ring)	U2, Pin 3, LINE1L+
3 (tip)	U2, Pin 5, LINE1R+
4 (sleeve)	GND_AC

3.2.25 P5, Mic In

Connector P5 is an stereo microphone line input. The input connector is a 3.5 mm stereo jack. The signals on the mating plug are shown in the figure below.

Table 25: P5, Microphone In Interface

Pin#	AIC3106 Signal		
1 (sleeve)	GND_AC		
2 (ring)	U2, Pin 11,14, MIC3L/MIC3R		
3 (tip)	U2, Pin 11/14, MIC3L/MIC3R		
4 (sleeve)	GND_AC		

3.2.26 P6, HDMI Connector

Connector P6 provides an HDMI interface for the processor card. The signals on this connector are shown below.

Table 26: P6, HDMI Connector

Pins	Signal		
1	HDMI_TMDSDP2		
2	Ground		
3	HDMI_TMDSDN2		
4	HDMI_TMDSDP1		
5	Ground		
6	HDMI_TMDSDN1		
7	HDMI_TMDSDP0		
8	Ground		
9	HDMI_TMDSDN0		
10	HDMI_TMDSCLKP		
11	Ground		
12	HDMI_TMDSCLKN		
13	U1, Pin 23,CE_REMOTE_OUT		
14	No connect		
15	U1, Pin 22, DDC_CLK_OUT		
16	U1, Pin 21, DDC_DAT_OUT		
17	Ground		
18	U1, Pin 38, 5V_OUT		
19	U1, Pin 20, HOTPLUG_DET_OUT		
MTG1	Ground		
MTG2	Ground		
MTG3	Ground		
MTG4	Ground		

3.2.27 P7, DB9 Connector

The P7 connector is a 9 pin male D-connector which provides a UART interface to the EVM. This connector interfaces to the MAX 3221 RS-232 line driver (U39) and is located on the top side of the board. A view of the connector from the card edge is shown in the figure below. The signals present on this connector are defined in the following table.

The pin numbers and their corresponding signals are shown in the table below. This corresponds to a standard dual row to DB-9 connector interface used on personal computers.

Table 27: P7, RS-232 Pinout

Pin#	Signal Name		
1	NC		
2	R_IN, U39, Pin 8		
3	T_OUT, U39, Pin 13		
4	NC		
5	GND		
6	NC		
7	Pin 8		
8	Pin 7		
9	NC		

3.2.28 P8, PCIe Interface

Connector P8 provides a PCIe interface on the processors board. The signals on this connector are shown in the table below.

Table 28: P8, PCIe Interface

Pin	Signal	Pin	Signal
B1	EVM_12V	A1	Pin B31
B2	EVM_12V	A2	EVM_12V
В3	EVM_12V	A3	EVM_12V
B4	Ground	A4	Ground
B5	No connect	A5	Ground
B6	No connect	A6	PCI_3V3
B7	Ground	A7	No connect
B8	PCI_3V3	A8	PCI_3V3
B9	Ground	A9	PCI_3V3
B10	No connect	A10	PCI_3V3
B11	No connect	A11	U43, Pin 4, U41, Pin 2,EVM_3V3
	KE	Ϋ́	
B12	No connect	A12	Ground
B13	Ground	A14	REFCLKp
B14	CON.PCIE_TXP0	A14	REFCLKn
B15	CON.PCIE_TXN0	A15	Ground
B16	Ground	A16	CON.PCIE_RXP0
B17	No connect	A17	CON.PCIE_RXN0
B18	Ground	A18	Ground
B19	CON.PCIE_TXP1	A19	No connect
B20	CON.PCIE_TXN1	A20	Ground
B21	Ground	A21	CON.PCIE_RXP1
B22	Ground	A22	CON.PCIE_RXN1
B23	No connect	A23	Ground
B24	No connect	A24	Ground
B25	Ground	A25	No connect
B26	Ground	A26	No connect
B27	No connect	A27	Ground
B28	No connect	A28	Ground
B29	Ground	A29	No connect
B30	No connect	A30	No connect
B31	Pin A1	A31	Ground
B32	Ground	A31	No connect

3.2.29 P9, SD/MMC Connector

The P92 MMC/SD connector is located on the top side of the board and is used to provide an interface to the following: MMC+, SD, and MMC. The pinout for the P9 connector is shown in the table below.

Table 29: P9, MMC/SD Connector

Pin#	Signal		
1	MMC_DAT3		
2	MMC_CMD		
3	Ground		
4	U66, Pin 2,3		
5	MMC_CLK		
6	Ground		
7	MMC_DAT0		
8	MMC_DAT1		
9	MMC_DAT2		
10	No connect		
11	No connect		
12	No connect		
13	No connect		
14	MMC_SD_WP		
15	MMC_SD_CD		
16	No connect		
17	No connect		
18	Ground		
19	No connect		
20	No connect		
21	Ground		
22	No connect		
23	No connect		
24	No connect		
25	No connect		
26	No connect		
27	Ground		
28	Ground		

3.2.30 P10, DB9 Connector

The P10 connector is a 9 pin male D-connector which provides a UART interface to the EVM. This connector interfaces to the MAX 3221 RS-232 line driver (U57) and is located on the top side of the board. A view of the connector from the card edge is shown in the figure below. The signals present on this connector are defined in the following table.

The pin numbers and their corresponding signals are shown in the table below. This corresponds to a standard dual row to DB-9 connector interface used on personal computers.

Table 30: P10, RS-232 Pinout

Pin#	Signal Name		
1	NC		
2	R_IN, U57, Pin 8		
3	T_OUT, U57, Pin 13		
4	NC		
5	GND		
6	NC		
7	Pin 8		
8	Pin 7		
9	NC		

3.2.31 P11, Fan Connector

Connector P11 provides power for a 12 volt DC fan. The layout of the connector is shown in the figure below.

The signals on the pins of this connector are shown bin the table below.

Table 31: P11, Fan Connector

Pin#	Signal	
1	Ground	
2	EVM_12V	
3	No connect	

3.3 LEDs

The EVM has five (5) LEDs which are located on the top side of the board. Information regarding the LEDs are shown in the table below.

Table 32: LEDs

LED#	Schematic Page	Use	Color
DS1	56	Power LED	Green
DS2	32	USER_LED1	Green
DS3	32	USER_LED2	Green
DS4	32	USER_LED3	Green
DS5	32	USER_LED4	Green

3.4 Switches

The EVM has six (6) switches. The function of these switches are shown in the table below.

Table 33: Switches

Switch	Schematic Page	Function	Туре
SW1	56	On/Off Power Switch	Toggle
SW2	32	User Readable Switches 4 Position D	
SW3	6	Boot Load Select	10 Position DIP
SW4	6	On Board Memory Enable 2 Position D	
SW5	28	PCI/WDOG Reset Enable 2 Position DI	
SW6	56	Reset Switch Push Button/Moment	

3.4.1 SW1, On/Off Power Switch

Switch SW1 is an on/off toggle switch that allows +12 volts from the J1 connector to be applied to the board.

3.4.2 SW2, User Readable Switches

Switch SW2 is a 4 position DIP switch that is read via the I²C bus. A board image of the switch is shown in the figure below.

The table below shows what signal each position appears on.

Table 34: SW3, User Readable 4 Position DIP Switch

Position	Signal	
1 - 8	USER_SW1	
2 - 7	USER_SW2	
3 - 6	USER_SW3	
4 - 5	USER_SW4	

3.4.3 SW3, Boot Mode/Configuration Switch

Switch SW3 is a 10 position DIP switch. Five (5) of the positions are used for selecting the boot load option. Four (4) positions are used for system configuration. The remaining switch position is a spare unused position. An image of the switch is shown in the figure below in the as shipped configuration.

The boot mode options are described in the table below.

Table 35: SW3, Boot Mode Select DIP Switch

Position	Label	Pins	Signal
1	BTM0	1-20	BTMODE0
2	BTM1	2-19	BTMODE1
3	BTM2	3-18	BTMODE2
4	BTM3	4-17	BTMODE3
5	BTM4	5-16	BTMODE4

The tables below shows the boot mode sources and their respective switch positions.

Table 36: Memory Boot Load Order

BTMODE[4] (Position5)= 1 MEMORY BOOTING PREFERRED				BTMODE[3:0] Switch	
First	Second	Third	Fourth	Position[4:1]	
XIP	UART	EMAC	SD	0 0 0 0	
XIPWAIT	UART	EMAC	SD	0 0 0 1	
NAND	NANDI2C	SPI	UART	0 0 1 0	
NAND	NANDI2C	SD	UART	0 0 1 1	
NAND	NANDI2C	SPI	EMAC	0 1 0 0	
NANDI2C	SD	EMAC	UART	0 1 0 1	
SPI	SD	UART	EMAC	0 1 1 0	
SD	SPI	UART	EMAC	0 1 1 1	
SPI	SD	PCIE_32	Reserved	1 0 0 0	
SPI	SD	PCIE_32	Reserved	1 0 0 1	
Reserved	Reserved	Reserved	Reserved	1 0 1 0	
Reserved	Reserved	Reserved	Reserved	1 0 1 1	
Reserved	Reserved	Reserved	Reserved	1 1 0 0	
Reserved	Reserved	Reserved	Reserved	1 1 0 1	
Reserved	Reserved	Reserved	Reserved	1 1 1 0	
GP Fast External Boot	EMAC	UART	PCIE_32	1 1 1 1	

Table 37: Peripheral Boot Load Order

PERIPH	BTMODE[3:0] Switch								
First	Second	Third	Fourth	Position[4:1]					
Reserved	Reserved Reserved Reserved		Reserved	0 0 0 0					
UART	XIPWAIT	SD	SPI	0 0 0 1					
UART	SPI	NAND	NANDI2C	0 0 1 0					
UART	SPI	XIP	SD	0 0 1 1					
EMAC	SPI	NAND	NANDI2C	0 1 0 0					
Reserved	Reserved	Reserved	Reserved	0 1 0 1					
Reserved	Reserved	Reserved	Reserved	0 1 1 0					
EMAC	SD	SPI	XIP	0 1 1 1					
PCIE_32	Reserved	Reserved	Reserved	1 0 0 0					
PCIE_64	PCIE_64 Reserved		Reserved	1 0 0 1					
Reserved Reserved		Reserved	Reserved	1 0 1 0					
Reserved	Reserved	Reserved	Reserved	1 0 1 1					
Reserved	Reserved	Reserved	Reserved	1 1 0 0					
Reserved	Reserved	Reserved	Reserved	1 1 0 1					
Reserved	Reserved	Reserved	Reserved	1 1 1 0					
GP Fast External UART Boot		EMAC	PCIE_64	1 1 1 1					

The configuration options are described in the table below.

Table 38: SW3, Configuration Switches

Position	Label	Pins	Signal	State	Function
6	CS0MUX0	5-16	CS0MUX0	Open	
0	CSUNDAU	5-16	CSUNUAU	Closed	
7	CS0MUX1	6-15	CS0MUX1	Open	
/		0-15	CSUNUXI	Closed	
0	CCODW	7-14	CS0BW	Open	
8	CS0BW	7-14	CSUBW	Closed	
9	CS0WAIT	0.40	CS0WAIT	Open	
	CSUVAII	8-13	CSUVAII	Closed	

3.4.4 SW4, On Board Memory Enable Switch

Switch SW4 is a 2 position DIP switch which allows the user to select which on board memory device to boot from. Only one device should be enabled at any given time. A board image of the switch is shown in the figure below in the as shipped configuration.

The table below shows what signal each position appears on.

Table 39: SW4, On Board Memory Enable Switch

Position	Signal
1 - 4	NAND_BOOTn
2 - 3	SPI_BOOTn

3.4.5 SW5, PCI/WDOG Reset Enable Switch

Switch SW5 is a 2 position DIP switch which allows the user to select two items; the PCI reset mode, and enable/disable the watchdog reset. A board image of the switch is shown in the figure below.

The table below shows what signal each position appears on.

Table 40: SW5, On Board Memory Enable Switch

Position	Signal
1 - 4	OPT_SW1, PCI reset mode IN or OUT
2 - 3	OPT_SW2, WDOG reset enabled

3.4.6 SW6, Reset Switch

Switch SW6 is a push button reset switch that will RESET the board.

3.5 Infra-red Receiver

The EVM has an infra-red receiver, U61. This is used to receive signals from a television remote control handset. The logic for this is shown on page 29 of the schematics.

3.6 Test Points

The EVM has 26 test points which appear on the top of the board. The following figure identifies the position of each test point. The next table lists each test point and the signal appearing on that test point.

Table 41: DM816x/C6A816x/AM389x EVM Test Points

Test Point #	Schematic Page	Signal
TP1	56	Ground
TP2	56	EVM_12V
TP3	41	U2, Pin 27, MONO_LO+
TP4	41	U2, Pin 28, MONO_LO-
TP5	56	Ground
TP6	56	Ground
TP7	55	U5, Pin 1, RESET, EVM_3V3
TP8	55	U10, Pin 7, SW, 1V8_DIGITAL
TP9	55	U10, Pin 5, PGn, EVM_5V0
TP10	55	U10, Pin 14, VDLO1, 1V8_ANALOG
TP11	55	U10, Pin 17, VLDO2, 0V9_A
TP12	54	EVM_1V0_AVS
TP13	52	Ground
TP14	54	EVM_1V0_AVS
TP15	13	U30, Pin 23, OSCOUT
TP16	56	Ground
TP17	56	Ground
TP18	54	Ground
TP19	52	U33, Pin 14, PWRGRD
TP20	52	U33, Pin 9, SS/TR
TP21	29	Ground
TP22	29	U56, Pin 9, SS/TR
TP23	56	Ground
TP24	53	U58, Pin 3, VO, VTT
TP25	56	Ground
TP26	56	Ground

Appendix A

Schematics

This appendix contains the schematics for the DM816x/C6A816x/AM389x EVM.

g l				٥			_	٥						20				4			. T	=
APPROVEL	RRP	RRP	RRP					SHEET	27	31	36			SHEET	27						ě	of 58
	02/15/2010	10/31/2010	5/15/2011				AP	DEVICE	PCF8575	I2C EEPROM	TLV320AIC3106	ıstified	A.P.	DEVICE	PCF8575	Right Justified		SPECTRUM DIGITAL INCORPORATED	NETRA EVM	TITLE PAGE	872-0001	Tuesday June 14, 2011
	Initial schematic for layout		. build				12CO ADDRESS MAP	HEX BASE (RJ)				RJ - Right Justified	12C1 ADDRESS MAP	HEX BASE (RJ)		RJ - Right Ju		SPEC	Title: N	Page Contents: TI		Date: Tuesda
	Initial sc	Beta build	Production build					BASE BINARY						BASE BINARY								
						31) 12C EEPROM 32) 12C EXPANDER 33) RS232 INTERPACE 34) IR RECIEVER		38) ETHERNET PHY 39) ETHERNET POWER				47) BERIAL IO EXPANSION CONNECTOR 48) MCARE EXPANSION CONNECTOR 51) POWER MONITORS 50) POWER MONITORS 51) POWER SOUTING 51) POWER SOUTING 52) POWER POTOR POTOR 52) POWER POTOR 54) POWER POTOR 56) POWER POTOR 57) POWER POT	53) POWER 54) POWER	55) POWER 56) POWER 57) POWER	28)			DATE 02/15/2010 DATE 02/15/2010	DATE 02/15/2010	DATE 02/15/2010 DATE	02/15/2010 DATE 02/15/2010	554 × 4
						33)	35)	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			45)	N 4 4 4 9) (1 5 1 0) (1 5 1 0) (1 5 1 0) (1 5 1 0) (1 5 1 0 0) (1 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	53) POWER 54) POWER	55) POWER 56) POWER 57) POWER	28)			В. R. P. 02/15/2010 Т W F 02/15/2010	R.R.P. 02/15/2	я. в. р.	C.M.D. 02/15/2010 DATE R.R.P. 02/15/2010	
A TOMED STEEDS V	RAM, POWER SUPPLY 65232 65232 65232 65232 65232 65232 65420 6041 7P86523 7P865232 655001 7P866233 6301 830 831 831 832 831 832 832 833 833 834 833 834 835 834 835 835 835 835 835 836 837 837 836 837 837 837 837 837 837 838 838 838 838					NETRA NETRA	SERDES	15) NETRA CLUCKS 16) NETRA POWER 1 17) NETRA POWER 2	NETRA			29) PCIE INTERFACE CONNECTOR 29) PCIE 3V3 POWER				DAN	ENGR	ACA CONTRACT	MFG USED ON			
NGGTVG MOGS THOM TION CL	12 VOLT INPUT FROM EXTERNAL, POWER SUPPLY 5.0 VOLT OUTPUT FROM TPS6523 1.8 VOLT ARALGG LD OUTPUT FROM TPS6501 1.8 VOLT ARALGG LD OUTPUT FROM TPS6501 1.1 VOLT OUTPUT FROM TPS6420 1.0 VOLT OUTPUT FROM TPS6501 1.0 VOLT OORE FROM TPS6501 1.0 VOLT OONE FROM TPS6501 1.0 VOLT OONE TROM TPS6501 0.9 VOLT OUTPUT FROM TPS6501 0.75 VOLT TERMINATOR DDR3 COLD METRA ARASPY COLD TERMINATOR DDR3 COLD METRA ARASPY COLD TERMINATOR DDR3 COLD METRA ARASPY COLD TROM TPS6501 COLD METRA ARASPY COLD TROM TPS6501 COLD METRA ARASPY COLD METRA ARBENTA COLD METRA ARBE															REVISION STATUS OF SHEETS	A	35 36 37 37 38 39 40	25 26 27 28 29 30	A A A A A	15 16 17 18 19 20 A A A A A A A	
INS		EVM_1V8_A EVM_1V8_D		EVM_1V0_CONN EVM_0V9 EVM_DDR_VTT												REVISION ST	51 52 53 54 A A A A A A A A A A A A A A A A A A	31 32 33 34 B	21 22 23 24	А	11 12 13 14 C A A A A	

Appendix B

Mechanical Information

This appendix contains the mechanical information about the DM816x/C6A816x/AM389x EVM produced by Spectrum Digital.

