Stock Prediction

TEAM A

Antony Alexos
Anton Evmorfopoulos
Tilemachos Tsiapras

Introduction to Stock Prediction

- Introduction to Stock Prediction
- Data Engineering

- Introduction to Stock Prediction
- Data Engineering
- Simple Models

- Introduction to Stock Prediction
- Data Engineering
- Simple Models
- More Data Engineering

- Introduction to Stock Prediction
- Data Engineering
- Simple Models
- More Data Engineering
- Simple Models but with more data

- Introduction to Stock Prediction
- Data Engineering
- Simple Models
- More Data Engineering
- Simple Models but with more data
- Feature Importance

- Introduction to Stock Prediction
- Data Engineering
- Simple Models
- More Data Engineering
- Simple Models but with more data
- Feature Importance
- Classification

- Introduction to Stock Prediction
- Data Engineering
- Simple Models
- More Data Engineering
- Simple Models but with more data
- Feature Importance
- Classification
- Future Work

Fundamental Analysis

Technical Analysis

Machine Learning

Data Engineering

Getting the Data

Yahoo API

```
df=pdr.get_data_yahoo(ticker,start,end)
```


Getting the Data

Yahoo API

```
df=pdr.get_data_yahoo(ticker,start,end)
```

• Provides values for Open, High, Low, Close, Volume and Date for the stock symbol.

Getting the Data

Yahoo API

```
df=pdr.get_data_yahoo(ticker,start,end)
```

- Provides values for Open, High, Low, Close, Volume and Date for the stock symbol.
- We chose to predict the price of Goldman Sachs.

Transforming the Data

• First we transform the data to a Time Series format

\$	GS_Open(t-1) \$	GS_High(t-1) \$	GS_Low(t-1) \$	GS_Close(t-1) \$	GS_Volume(t-1) \$	GS_Close(t) \$	Date \$
1	196.649994	196.830002	193.770004	193.830002	1566800.0	194.410004	2015-01-02
2	195.300003	195.729996	192.699997	194.410004	1877700.0	188.339996	2015-01-05
3	193.059998	194.039993	187.479996	188.339996	3413200.0	184.529999	2015-01-06
4	188.300003	188.660004	183.929993	184.529999	3429200.0	187.279999	2015-01-07
5	186.850006	187.990005	185.770004	187.279999	1896800.0	190.270004	2015-01-08

We assume that you trade daily without stop-losses or targets

- We assume that you trade daily without stop-losses or targets
- At Open you buy or sell according to the prediction we made for this day.

- We assume that you trade daily without stop-losses or targets
- At Open you buy or sell according to the prediction we made for this day.
- If you predict the same direction with the real one -> \$\$\$\$!

- We assume that you trade daily without stop-losses or targets
- At Open you buy or sell according to the prediction we made for this day.
- If you predict the same direction with the real one -> \$\$\$\$!
- If you predict the opposite -> you just lost money..:(

- We assume that you trade daily without stop-losses or targets
- At Open you buy or sell according to the prediction we made for this day.
- If you predict the same direction with the real one -> \$\$\$\$!
- If you predict the opposite -> you just lost money..:(
- The gain is the |Open-Close|

Simple Models

The simplicity of the model is based on the simplicity of the data

LSTM - Long Short Term Memory

Types of Models

- Our models are based on three things
 - a) passing the data through time-steps dimension
 - b) passing the data through feature dimension
 - c) making the model with memory between batches

Types of Models

- Our models are based on three things
 - a) passing the data through time-steps dimension
 - b) passing the data through feature dimension
 - c) making the model with memory between batches
- We implement dropout to the model that has produced the best results.

Types of Models

- Our models are based on three things
 - a) passing the data through time-steps dimension
 - b) passing the data through feature dimension
 - c) making the model with memory between batches
- We implement dropout to the model that has produced the best results.
- We predict the prices of 1.5 year (365 trading days)

LSTM - Long Short Term Memory

- [samples, time steps, features]
- X = (dataX, (len(dataX), seq_length, 1))

HERMES TEAM

Stacked LSTM - Stacked Long Short Term Memory

- Stacked LSTM with passing data as features
- Stacked LSTM with passing data as time steps
- Stacked LSTM with memory batches

HERMES TEAM

More Data Engineering

Technical Indicators, more symbols and other features

More Symbols

• NASDAQ, Hang Seng Index, NYSE, Nikkei 225

- NASDAQ, Hang Seng Index, NYSE, Nikkei 225
- Bank of America, Barclays, Credit Suisse, JPMorgan, Morgan Stanley

- NASDAQ, Hang Seng Index, NYSE, Nikkei 225
- Bank of America, Barclays, Credit Suisse, JPMorgan, Morgan Stanley
- VIX

- NASDAQ, Hang Seng Index, NYSE, Nikkei 225
- Bank of America, Barclays, Credit Suisse, JPMorgan, Morgan Stanley
- VIX
- We keep only Close

Moving Average 7 and 21

- Moving Average 7 and 21
- Exponential Moving Average(EMA)

- Moving Average 7 and 21
- Exponential Moving Average(EMA)
- Moving Average Convergence Divergence (MACD)

- Moving Average 7 and 21
- Exponential Moving Average(EMA)
- Moving Average Convergence Divergence (MACD)
- Bollinger Bands

- Moving Average 7 and 21
- Exponential Moving Average(EMA)
- Moving Average Convergence Divergence (MACD)
- Bollinger Bands
- Momentum

- Moving Average 7 and 21
- Exponential Moving Average(EMA)
- Moving Average Convergence Divergence (MACD)
- Bollinger Bands
- Momentum
- Log Momentum

Time Domain s(t)

Frequency Domain S(ω)

• We use fourier to smooth the time series.

- We use fourier to smooth the time series.
- Find patterns and trends.

- We use fourier to smooth the time series.
- Find patterns and trends.
- We basically denoise the data

```
def filter_signal10(signal, threshold=1e3):
    fourier = rfft(signal)
    frequencies = rfftfreq(signal.size, d=10e-3/signal.size) #change the number to change the plot
    fourier[frequencies > threshold] = 0
    return irfft(fourier)
```


HERMES TEAM

We try the same models but with more complicated Data

HERMES TEAM

Feature Importance

• XGBoost(eXtreme Gradient Boosting) is an implementation of gradient boosted decision trees designed for speed and performance.

- XGBoost(eXtreme Gradient Boosting) is an implementation of gradient boosted decision trees designed for speed and performance.
- Some key algorithm implementation features include:
 - a) Sparse Aware implementation with automatic handling of missing data values.
 - b) **Block Structure** to support the parallelization of tree construction.
 - c) **Continued Training** so that you can further boost an already fitted model on new data.

• Subsequent trees, they learn from their predecessors.

- Subsequent trees, they learn from their predecessors.
- Gradient Descent because we have a minimization problem.

- Subsequent trees, they learn from their predecessors.
- Gradient Descent because we have a minimization problem.
- It is a meta machine learning algorithm that builds a strong model based on many weaker ones sequently.

Training Vs Validation Error

Figure 6: Feature importance of the technical indicators.

• We reduce the dimensions from 30 to the 5 most important ones.

- We reduce the dimensions from 30 to the 5 most important ones.
- How it works:
 - a) Calculate the covariance matrix X of data points.

- We reduce the dimensions from 30 to the 5 most important ones.
- How it works:
 - a) Calculate the covariance matrix X of data points.
 - b) Calculate eigen vectors and corresponding eigen values.

- We reduce the dimensions from 30 to the 5 most important ones.
- How it works:
 - a) Calculate the covariance matrix X of data points.
 - b) Calculate eigen vectors and corresponding eigen values.
 - c) Sort the eigen vectors according to their eigen values in decreasing order.

- We reduce the dimensions from 30 to the 5 most important ones.
- How it works:
 - a) Calculate the covariance matrix X of data points.
 - b) Calculate eigen vectors and corresponding eigen values.
 - c) Sort the eigen vectors according to their eigen values in decreasing order.
 - d) Choose first k eigen vectors and that will be the new k dimensions.

- We reduce the dimensions from 30 to the 5 most important ones.
- How it works:
 - a) Calculate the covariance matrix X of data points.
 - b) Calculate eigen vectors and corresponding eigen values.
 - c) Sort the eigen vectors according to their eigen values in decreasing order.
 - d) Choose first k eigen vectors and that will be the new k dimensions.
 - e) Transform the original n dimensional data points into k dimensions.

HERMES TEAM

Classification

Classification

\$	GS_Open(t- 1) \$	GS_Close(t- 1) *	GS_Volume(t- 1) \$	^IXIC_Close ^{\$}	^VIX_Close [‡]	BAC_Close	BCS_Close \$	CS_Close [‡]	JPM_Close \$	MS_Close [♦]
2		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
3	0.0	0.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0
4	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	0.0	1.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0
7	1.0	0.0	1.0	1.0	0.0	1.0	1.0	0.0	1.0	1.0
8	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0
9	1.0	1.0	0.0	0.0	1.0	0.0	1.0	1.0	1.0	0.0
10	1.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
11	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
12	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
14	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0
15	1.0	0.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0
16	0.0	1.0	0.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0

Classification

More Complex models

- More Complex models
- GAN

- More Complex models
- GAN
- Tweets for classification(BERT)

- More Complex models
- GAN
- Tweets for classification(BERT)
- Predicting the change of price

- More Complex models
- GAN
- Tweets for classification(BERT)
- Predicting the change of price
- · Making a model to predict wether we do a trade or not.

- More Complex models
- GAN
- Tweets for classification(BERT)
- Predicting the change of price
- Making a model to predict wether we do a trade or not.
- Translate the code into MQL4

