PHYS 225 Fundamentals of Physics: Mechanics

Prof. Meng (Stephanie) Shen Fall 2024

Lecture 18: Force and motion II

Learning goals for today

- Calculating two types of friction force on flat and inclined surfaces:
 - Static friction, \vec{f}_S
 - Kinetic friction, $\vec{f_k}$

Magnitude of the two types of friction

Metron's laws are needed.

Static friction: Tendency to slide, but no sliding.

Magnitude
$$|f_{s}| \leq \mu_{s} |N|$$
 μ_{s} : Static friction coefficient $|f_{s,max}| = M_{s} |N|$

• Kinetic friction: Sliding.

$$|f_k| = \mu_k |N|$$

 μ_k : Kinetic friction coefficient

Normal force

Question: Will it move?

A box of weight 100 N in magnitude is at rest on a horizontal floor where $\mu_s = 0.4$. A rope is attached to the box and pulled horizontally with tension. What's the static friction force of maximum magnitude on the box (include the sign)?

Question: Will it move?

A box of weight 100 N in magnitude begins at rest on a horizontal floor where $\mu_s = 0.4$. A rope is attached to the box and pulled horizontally with tension $T = 30 \text{ N } \hat{\imath}$. Which way does the box move?

Clicker question 3 Sept. [7] > Isrnex

Question: Will it move?

A box of weight 100 N in magnitude begins at rest on a horizontal floor where $\mu_s = 0.4$. A rope is attached to the box and pulled horizontally with tension $T = 30 \text{ N } \hat{\iota}$. What's the friction force on the box?

A box of weight 100 N in magnitude is at rest on a horizontal floor where $\mu_s = 0.4$ and $\mu_\kappa = 0.2$. A rope is attached to the box and pulled horizontally with tension T = 60 N. What's the friction force on the box after the pulling force is applied?

Static friction

 $(\mu_{\rm S} = 0.4)$

Step 4:
$$f = f_k = -2011i$$

Step 3: | f = 1/k | N |

Static friction and kinetic friction: Takeaway messages

- Static friction, \vec{f}_s :
 - Tendency to slide, but no sliding

$$-|\vec{f_S}| \leq \mu_S |\vec{N}|$$

- $-|\vec{f}_{S,max}| = \mu_S |\vec{N}|$
- Kinetic friction, \vec{f}_k :
 - Sliding

$$-|\vec{f_k}| = \mu_k |\vec{N}|$$

Steps to calculate a friction force

- Step 1: Determine whether it's static friction or kinetic friction
 - Static friction: Tendency to slide over each other, but don't actually slide
 - Kinetic friction: Slide over each other

 $\frac{1}{V_{rel}} \neq 0$ $\frac{1}{V_{rel}} \neq 0$ $\frac{1}{V_{rel}} \neq 0$

- Step 2: Direction
 - The direction of friction force oppresses sliding or the tendency of sliding
- Step 3: Magnitude
 - Static friction: $|\vec{f}_S| \leq \mu_S |\vec{N}|$ and Newton's laws

$$\left[\frac{1}{5}, \max\left(\frac{1}{5}, N\right)\right]$$

- Kinetic friction: $|\vec{f}_k| = \mu_k |\vec{N}|$

Clicker question 5 Assumptions St. Fk

Question 4.21 Going Sledding

Your little sister wants you to give her a ride on her sled. On level Horizontal ground, what is the easiest way to

Pushing her slightly downward from behind [1]

Both [1] and [2] are equivalent

Newton 2nd law $|\overrightarrow{Y} - \overrightarrow{F} \sin \theta \widehat{j} - mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{f}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{F}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{F}| = |\overrightarrow{F}| \sin \theta + mg \widehat{j} = 0$ $|\overrightarrow{F}| = |\overrightarrow{F}| =$ | fk | = Mk (mg-Fsine) < Mkmg

• A box of mass m=40 kg is pulled by a force of magnitude F at $\theta=30^\circ$ above the horizontal. The static friction coefficient is $\mu_s = 0.650$. Which of the following is the free body diagram of the box?

• A box of mass m=40kg is pulled by a force of magnitude F at $\theta=30^\circ$ above the horizontal. The static friction coefficient is $\mu_S=0.650$.Which of the following is true about the static friction force, \vec{f}_S , before the box moves?

$$\vec{f}_S + \vec{F}_\chi = 0$$

$$|\vec{f_S}| \leq |\mu_S \vec{N}|$$

Both A & B

• A box of mass m = 40 kg is pulled by a force of magnitude |F| at $\theta = 30^{\circ}$ above the horizontal. The static friction coefficient is $\mu_S=0.650$.What is the maximum F before the

Homework 5.4 reminder

• As a friendly reminder, Homework 5.4 was released last Tuesday, and due this Thursday.