

Distractor-aware Siamese Networks for Visual Object Tracking

Winning entry in VOT 2018 Real-time challenge

Speaker: Qiang Wang

Qiang Wang¹, Zheng Zhu¹, Bo Li², Wei Wu², Weiming Hu¹

¹Institute of Automation, Chinese Academy of Sciences ²Sensetime Group Limited

中国科学院自动化研究所 Institute of Automation, Chinese Academy of Sciences

Improvements

- Baseline experiments
 - 6.0% absolute and 18.5% relative improvement
- Realtime experiments
 - 17.1% absolute and 80.7% relative improvement

How to speed up your tracker?

Only verify each candidate?

Baseline: SiamRPN

- Data-driven
- One-shot Detection
- Simultaneous Identification and Localization
- Anchor
- Fully Convolutional Networks
- Without Online Learning
- Without Multi-scale Detection

Classfication Training

ImageNet

Classification v.s. Tracking

Classification	Tracking
Predefined Categories(1000)	General Object
Recognition	 Metric Learning +Bounding box Regression
Image Input	Video Input

Training Datasets for Visual Tracking

OxUvA long-term dataset & TrackingNet

	OxUvA 2018	OTB-100 2015 [35]	VOT 2017 [14]	UAV123 2016 [22]	DTB 2017 [16]	NUS-PRO 2016 [15]	TC 2015 [17]	ALOV 2013 [29]	NfS 2017 [11]
Frames	1.55M	59k	21k	113k	15k	135k	60k	152k	380k
Tracks	366	100	60	123	70	365	128	314	100
w/ absent labels	52 %	0%	0%	0%	0%	0%	0%	0%	0%
Avg length (min)	2.36	0.33	0.20	0.51	0.12	0.21	0.26	0.27	0.26
Median length (min)	1.46	0.22	0.17	0.49	0.10	0.17	0.22	0.15	0.17
Max length (min)	20.80	2.15	0.83	1.71	0.35	2.8	2.15	3.32	1.44
Min length (min)	0.50	0.04	0.02	0.06	0.04	0.08	0.04	0.01	0.01
Avg absent labels	2.2	0	0	0	0	0	0	0	0
Object classes	22	16	24	9	15	8	27	-	-

Motivation

Response Maps predicted by SiamFC

Non-semantic >> Semantic

Distractor-aware Training

- Diverse categories of positive pairs can promote the generalization ability.
- Semantic negative pairs can improve the discriminative ability.
- Customizing effective data augmentation for visual tracking

DaSiamRPN (ECCV2018)

State-of-the-art comparsions on VOT

Second Prize in VOT2018-LT

(a) scores and overlaps in SiamRPN (b) scores and overlaps in DaSiamRPN Zheng Zhu*, Qiang Wang*, Bo Li*, Wei Wu, Junjie Yan, and Weiming Hu. Distractor-aware Siamese Networks for Visual Object Tracking. *ECCV*, 2018

Zheng Zhu*, Qiang Wang*, Bo Li*, Wei Wu, Junjie Yan, and Weiming Hu. Distractor-aware Siamese Networks for Visual Object Tracking. ECCV, 2018

Results Ablation

	SiamRPN	Α	R	EAO	FPS
AlexNet 256C	CVPR'18	0.490	0.460	0.244	250

Baseline:

CVPR'18 Paper version of SiamRPN

Optimized Coding ++++

Results Ablation (Training)

SiamRPN		Α	R	EAO	FPS
AlexNet 256C	CVPR'18	0.490	0.460	0.244	250
	+ ImageNetDet&COCO	0.510	0.410	0.273	250
	+ train-pair aug.	0.560	0.340	0.326	250

200 synsets for Object detection

DaSiamRPN (ECCV2018)

Results Ablation (Backbone)

Kernel Size

SiamRPN	Lost	EAO
11+5+(3+3+3)	65	0.324
11+(3+3)+(3+3+3)	65	0.322
(9+3)+5+(3+3+3)	63	0.324
(7+5)+5+(3+3+3)	66	0.325
(7+3+3+3)+5+(3+3+3)	66	0.312
	•••	***
(3*5)+(3+3)+(3+3+3)	67	0.301

Channel Size

SiamRPN	Lost	EAO
256F+256R	65	0.324
512F+256R	62	0.342
512F+1024R	56	0.341
512F+512R+SE	62	0.344
512F+1024R+SE	64	0.322
1024F+512R	74	0.318
1024F+1024R	73	0.312
512F+512R	60	0.345

Results Ablation (Trick1)

	SiamRPN	Α	R	EAO	FPS
AlexNet 256C	CVPR'18	0.490	0.460	0.244	250

Results Ablation (Trick2)

	SiamRPN	Α	R	EAO	FPS
AlexNet 256C	CVPR'18	0.490	0.460	0.244	250

Results Ablation (Trick2)

	SiamRPN	Α	R	EAO	FPS
AlexNet 256C	CVPR'18	0.490	0.460	0.244	250

Results Ablation

SiamRPN		Α	R	EAO	FPS
AlexNet 256C	CVPR'18	0.490	0.460	0.244	250
	+ ImageNetDet&COCO	0.510	0.410	0.273	250
	+ train-pair aug.	0.560	0.340	0.326	250
AlexNet 512C	+ wider	0.570	0.330	0.345	100
	+ large search region	0.571	0.330	0.361	90
(final entry)	+ adaptive Search Region	0.588	0.320	0.383	90

- CVPR'18 Paper version of SiamRPN
- > ECCV'18 Paper version of DaSiamRPN

Performance Drop / No Effect

The backbone net is the engine of recognition!!!

- Modern networks: VGG, Inception or ResNet (padding? or training methods?)
- × Attention Network
- f x Ensemble (imes Average imes Max Win)
- × Focal Loss

Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for practical applications." arXiv 2016.

Visualizations

Conclusion

SiamRPN

- ✓ Simultaneous Identification and Localization
- ✓ Training Strategies
- ✓ Widen Backbone
- ✓ Adaptive Search Area

	Baseline	Training	Network	Adaptive
	$SiamRPN \Longrightarrow$	Strategy	\implies 512C \implies	Searching
EAO	0.244	0.326	0.361	0.383
Accuracy	0.490	0.560	0.571	0.588
Robustness	0.460	0.340	0.330	0.320
FPS	250	250	100	90

Thanks! Questions?

