intro sur l'ACP

Jerome Mathieu

Le problème

données "brutes" (p x k)

tableau "souhaité" (p x $\underline{2}$)

1 point = 1 vecteur

solution simple...

Réduction de dimension

Réduction de dim 2D -> 1D

solution simple...

2D -> 1D version acp

comment trouver la transfo?

Transformation = multiplication matricielle

Transfo totale

$$\overrightarrow{i}$$
. $\begin{bmatrix} 1 \\ -2 \end{bmatrix} \overrightarrow{+j}$. $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1*1 + 3*1 \\ -2*1 + 0*1 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
transfo x \overrightarrow{Y}

$$\overrightarrow{Y}_{t}$$

interprétation

Application d'une transfo sur un vecteur quelconque

transfo

 $\begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix}$

$$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
 x transfo = ?

Application d'une transfo

$$\begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} =$$

Application d'une transfo

$$\begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{1*-1+3*2}{-2*-1+0*2} = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$$

```
> matrix(c(1,-2,3,0),2,2)%*%c(-1,2)
[,1]
[1,] 5
[2,] 2
```

Comment trouver la matrice de transfo pour l'acp?

· On décompose la matrice de variance covariance des données centrées

Comment trouver la matrice de transfo pour l'acp?

· On décompose la matrice de variance covariance des données centrées

ACP

· On décompose la matrice de variance covariance des données centrées

ACP

