FH OÖ - Hagenberg embedded systems design

RTO1 UE **WS 2020**

Protokoll

Übung 2: "Kochrezept" eines Echtzeitbetriebssystems

Simon Steindl S2010567025 Florian Hinterleitner S2010567014 Schritt 1 – Erste Strukturen und Funktionen anlegen

Schritt 2 – einfacher Round-Robin Scheduler

Schritt 3 – fertiger Round Robin Scheduler

Schritt 4 – Erweiterung APOS Critical Region

Schritt 5 – Erweiterung APOS Delay

Schritt 6 – Optimierung Scheduler und Messergebnisse

0.1 Debug-Unit

0.2 Laufzeit jedes Tasks

Task	Laufzeit in ms
Systick mit Mandelbrot	18.52s
Systick ohne Mandelbrot	29.39
Systick ohne GPIOs *)	29.38
Counter	6.135
Key	4.895
LED	4.894
Watch	7.346
Poti	6.115
Mandelbrot	18.49s

Tabelle 1: Laufzeiten des SysTicks, sowie der einzelnen Tasks

0.3 Overhead (Zyklen, µs) der Messung

Der Overhead, also das schalten der GPIOs, errechnet sich aus der Lauzeit des Systemzyklus mit und ohne*) GPIOs: 29.39ms - 29.38ms = 0.01ms = 10us. Der 8MHz-Quarz wird laut system-stm32f0xx.c per PLL auf eine SYSCLK von 48MHz hochgetaktet, somit entspricht der Overhead rund 480 Taktzyklen. Die Zeitdifferenz ist als grober Schätzwert zu betrachten, da die Auflösung in der 2ten Kommastelle schon sehr gering ausfällt.
*) jedoch mit SysTick GPIOs, ohne die gar keine Messung möglich wäre

0.4 Screenshots der Messungen

1 Übungsaufgabe B – Reaktionsgeschwindigkeit bei Superloops