A Style Transfer Approach to Appearance Agnostic Agents

Sreeganesh Valathara Rajendran

CS/ECE 523 Deep Learning Project Boston University

Task

Sim2Real is the task of training an agent in simulation and deploying in a real-environment. One of the main methods of implementing Sim2Real is by **domain randomization**. In this project, we're investigating Neural Style Transfer as a domain randomization approach to implementing Sim2Real for autonomous navigation.

Why Sim2Real is important

- 1. Abundance of Data. We can simulate a variety of outlier scenarios.
- 2. Mistakes in simulation will not affect the real world. Important in the context of autonomous vehicles for very obvious reasons.

Related work

- 1. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P. (2017). Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. arXiv:1703.06907. [cs.RO]
- 2. So, J., Xie, A., Jung, S., Edlund, J., Thakker, R., Agha-mohammadi, A., Abbeel, P., & James, S. (2022). Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving Without Real Data (No. 2210.14721). arXiv.
- 3. Loquercio, A., Kaufmann, E., Ranftl, R., Dosovitskiy, A., Koltun, V., & Scaramuzza, D. (2020). Deep Drone Racing: From Simulation to Reality With Domain Randomization. IEEE Transactions on Robotics, 36(1), 1–14. http://dx.doi.org/10.1109/TRO.2019.2942989

Paper 1

Training

- 1. Aim: Enhance object localization using domain randomization.
- Context: Enable grasping by a robotic manipulation.
- 3. Characterics randomized
 - a. Position
 - b. Texture
 - c. Lighting
 - d. Colour
 - e. Random Noise
- 4. Disadvantage
 - a. Significant programming in simulation environment to create dataset.

Test

Paper 2

- 1. Aim: Enable Sim2Real for an autonomous off-road vehicle using segmentation
- 2. Method: Added a segmentation step in their perception-to-action pipeline
- 3. This allowed for the decision pipeline to perform zero-shot performance since all inputs are received as segment masks.
- 4. Disadvantage: Increased pipeline length. Increases latency.

Paper 3

- Aim: Enable Sim2Real
 Drone Flying/Racing with only Simulation Training
- 2. Method: Train agent with inputs where the followed are randomized
 - a. Colour
 - b. Texture
 - c. Background
 - d. Brightness
- Disadvantage: Significant Programming in simulation to create dataset.

Approach

- Obtain expert driving dataset. Obtained from Chitta, "Transfuser".
- 2. Style Transfer Dataset
- 3. Train conditional imitation learning agent.
 - a. RegNetY-002 Model + custom five-layer convolution neural network
 - b. RegNetY-004 Model + custom five-layer convolution neural network
- Offline evaluate agent on test expert data, from Aich, "Towards Closing The Generalization Gap In Autonomous Driving".
 - a. Indoor Dataset
 - b. Outdoor Dataset

Dataset (s)

- 1. Train Data: From expert agent in Transfuser by Chitta et al. 2023
- 2. Test Data: 200,000 frames of expert data. Stores RGB frames in addition to expert control instructions. Obtained from Aich, "Towards Closing The Generalization Gap In Autonomous Driving", Boston University 2024.
 - a. Indoor Dataset: A model city using a black-coloured mat with taped lanes to represent roads. Various obstacles, such as toys, robotic figures are strategically placed to mimic urban obstacles.
 - Outdoor Dataset: Obtained by an expert controlling an RC car equipped with camera, driven through narrow paths. (Marsh Plaza)

Style Transferred Inputs

Evaluation metric(s)

- Steer Mean Absolute Error
 - a. MAE between expert steer-input vs model's decision.
- 2. Speed Weighted Mean Absolute Error
- 3. Action Mean Absolute Error
 - MAE between expert steer-input and throttle-input vs model's steer-input and throttle-input.
- 4. Speed Weighted Mean Absolute Error

$$egin{aligned} \mathbf{L}_{MAE} &= ||a_i - \hat{a}_i||_1 \ \mathbf{L}_{SW-MAE} &= rac{1}{N} \sum_{i=0}^{N-1} ||v(a_i - \hat{a}_i)||_1 \ \mathbf{L}_{MAE} &= ||[a_i, s_i] - [\hat{a}_i, \hat{s}_i]||_1 \ \mathbf{L}_{SW-MAE} &= rac{1}{N} \sum_{i=0}^{N-1} ||v([a_i, s_i] - [\hat{a}_i, \hat{s}_i])||_1 \end{aligned}$$

Results: Indoor, RegnetY-002

RegnetY-002	Steer MAE	Speed-Weighted Steer MAE	Action MAE	Speed-Weighed Action MAE
RGB (Baseline)	0.294	0.391	0.319	0.85
RGB+Depth	0.276	0.383	0.331	0.812
SAM-Mask	0.295	0.397	0.304	0.955
SAM-Mask + Depth	0.308	0.405	0.332	0.861
Contour + Depth	0.324	0.414	0.347	0.876
SAM-Mask + Contour + Depth	0.284	0.377	0.312	0.853
RGB-NST04	0.27923	0.38324	0.28695	0.93556
RGB-NST05	0.27185	0.36734	0.28558	0.93269
RGB-NST06	0.27627	0.38895	0.29564	0.89651
RGB-NST07	0.26733	0.37641	0.28837	0.9218
RGB-NST08	0.23931	0.34121	0.2647	0.91443
RGB-NST09	0.59785	0.60309	0.60806	0.92599
RGB-NST10	0.30979	0.42027	0.31789	0.9683

Results: Indoor, RegnetY-004

RegnetY-004	Steer MAE	Speed-Weighted Steer MAE	Action MAE	Speed-Weighed Action MAE
RGB (Baseline)	0.278	0.376	0.296	0.935
RGB+Depth	0.304	0.407	0.321	0.945
SAM-Mask	0.253	0.355	0.278	0.888
SAM-Mask + Depth	0.321	0.418	0.331	0.892
Contour + Depth	0.296	0.397	0.33	0.838
SAM-Mask + Contour + Depth	0.3	0.392	0.317	0.909
RGB-NST04	0.26959	0.37282	0.28365	0.94059
RGB-NST05	0.23466	0.33212	0.28339	0.87438
RGB-NST06	0.26265	0.35814	0.29365	0.82078
RGB-NST07	0.35429	0.45833	0.39736	0.76461
RGB-NST08	0.25557	0.35246	0.27438	0.94198
RGB-NST09	1.2225	1.1184	0.8471	1.6286
RGB-NST10	0.29287	0.39248	0.33297	0.81092

Results: Outdoor, RegnetY-002

RegnetY-002	Steer MAE	Speed-Weighted Steer MAE	Action MAE	Speed-Weighed Action MAE
RGB (Baseline)	0.08	0.178	0.357	1.586
RGB+Depth	0.079	0.179	0.195	0.782
SAM-Mask	0.1	0.22	0.439	1.986
SAM-Mask + Depth	0.086	0.191	0.335	1.475
Contour + Depth	0.122	0.264	0.394	1.753
SAM-Mask + Contour + Depth	0.097	0.214	0.316	1.37
RGB-NST04	0.070168	0.16123	0.42705	1.9455
RGB-NST05	0.18072	0.39289	0.47923	2.1633
RGB-NST06	0.072733	0.16189	0.40775	1.8347
RGB-NST07	0.074743	0.17182	0.40871	1.8513
RGB-NST08	0.11071	0.24416	0.36804	1.6446
RGB-NST09	0.43561	0.93371	0.25707	0.9663
RGB-NST10	0.16737	0.37257	0.43696	1.9682

Results: Outdoor, RegnetY-004

RegnetY-004	Steer MAE	Speed-Weighted Steer MAE	Action MAE	Speed-Weighed Action MAE
RGB (Baseline)	0.093	0.205	0.481	2.199
RGB+Depth	0.082	0.19	0.242	1.015
SAM-Mask	0.082	0.194	0.435	1.977
SAM-Mask + Depth	0.116	0.251	0.37	1.641
Contour + Depth	0.097	0.214	0.338	1.486
SAM-Mask + Contour + Depth	0.102	0.223	0.365	1.611
RGB-NST04	0.077964	0.17797	0.41577	1.8774
RGB-NST05	0.071103	0.16338	0.3812	1.7169
RGB-NST06	0.082481	0.18936	0.34499	1.5261
RGB-NST07	0.068497	0.157	0.31122	1.3787
RGB-NST08	0.07926	0.18112	0.40725	1.8437
RGB-NST09	0.98152	2.1218	0.75437	3.2444
RGB-NST10	0.093697	0.21122	0.38808	1.7472

Results Summary

For Indoor,

- RegNetY-002 with NST produced an decrease of 20% in Steer-MAE, 12% in Steer-SW-MAE, 16% in Action-MAE.
- RegNetY-004 with NST produced an decrease of 14% in Steer-MAE, 11% in Steer-SW-MAE, 7% in Action-MAE and 18% in Action-SW-MAE.

For Outdoor,

- RegNetY-002 with NST produced an decrease of 12% in Steer-MAE, 9.5% in Steer-SW-MAE.
- RegNetY-004 with NST produced an decrease of 26.8% in Steer-MAE, 23.4% in Steer-SW-MAE.

Conclusion

So this project shows the promise of Neural Style Transfer as an approach to Sim2Real, specifically in the context of autonomous driving.

Advantage:

- 1. Empirically proven to improve performance
- 2. Ease of expanding existing dataset and thus avoid overfitting

Disadvantage:

- 1. Performance depends on the style images chosen.
- 2. Performance depends on parameters such as style-weight which implies manual tuning.

A future direction of this project is to test my hypothesis with a number of different models a number of different style transfer parameters to see how the parameters influence the performance of the models.

