Thời gian làm bài	150 phút (không kể thời gian phát đề)
Ngày thi	18/02/2024 – Ngày thi thứ thứ bảy
Đề thi gồm	05 câu, 05 trang

Tổng quan đề thi

	Tiêu đề	Mã nguồn	Dữ liệu vào	Dữ liệu ra
Câu 1	Bộ ba	TRIPLE.*	TRIPLE.inp	TRIPLE.out
Câu 2	Số đẹp	BEAUTY.*	BEAUTY.inp	BEAUTY.out
Câu 3	Xóa số	REMOVE.*	REMOVE.inp	REMOVE.out
Câu 4	Sinh số	GENNUM.*	GENNUM.inp	GENNUM.out
Câu 5	Xếp bi	MARBLE.*	MARBLE.inp	MARBLE.out

Dấu * được thay thế bởi PAS, CPP hoặc PY tương ứng với ngôn ngữ lập trình Pascal, C++ hoặc Python

Lập trình giải quyết các bài toán sau

Câu 1. Bộ ba (5 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
TRIPLE.*	TRIPLE.inp	TRIPLE.out	1 giây	1024 MB

Một bộ ba số (a, b, c) được gọi là cấp số cộng khi và chỉ khi tồn tại một số nguyên không âm d sao cho a + d = b và b + d = c.

Yêu cầu: Cho một dãy A_1, A_2, \dots, A_n , đếm số bộ ba chỉ số $1 \le i, j, k \le N$, sao cho i, j, k là đôi một khác nhau và (A_i, A_j, A_k) lập thành một bộ ba cấp số cộng. Lưu ý, (i, j, k) và (i, k, j) được tính là hai bộ khác nhau.

Dữ liệu vào: Nhập từ file TRIPLE.inp:

- Dòng đầu tiên gồm một số nguyên dương N ($1 \le N \le 10^5$).
- Dòng tiếp theo gồm N số nguyên dương $A_1, A_2, ..., A_n$ $(1 \le A_i \le 5000)$.
- Các số trên cùng một dòng cách nhau một dấu cách.

Dữ liệu ra: Ghi ra file TRIPLE.out:

- Một số duy nhất là số bộ ba (i, j, k) tìm được.

Ràng buộc bổ sung:

- $32\% \text{ số điểm có } N \leq 100.$
- $24\% \text{ số điểm khác có } N \leq 2000.$

- $16\% \text{ số điểm khác có } A_i = 1.$
- $16\% \text{ số điểm khác có } A_i \leq 3.$
- 12% số điểm còn lai không có giới han gì thêm.

Ví dụ:

TRIPLE.inp	TRIPLE.out	Giải t	thích				
5	4	Các	bộ	(i,j,k)	thỏa	mãn	là:
1 2 3 2 3		(1, 2,	3), (1, 2	2,5),(1,4,5	5), (1, 4, 3	3).	

Câu 2. Số đẹp (4 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
BEAUTY.*	BEAUTY.inp	BEAUTY.out	1 giây	1024 MB

Một số nguyên dương n được gọi là đẹp khi và chỉ khi biểu diễn thập phân của nó chỉ gồm các chữ số 6 và 9.

Yêu cầu: Xác định một số nguyên dương n có phải là số đẹp hay không. Nếu có, đếm xem có bao nhiều số đẹp nhỏ hơn n.

Dữ liệu vào: Nhập từ file BEAUTY.inp:

- Một dòng duy nhất gồm một số nguyên dương n có không quá 10^5 chữ số.

Dữ liệu ra: Ghi ra file BEAUTY.out:

Nếu n không phải số đẹp, in ra -1. Ngược lại, in ra phần dư của phép chia số lượng số đẹp nhỏ hơn n cho 24022007.

Ràng buộc bổ sung:

- $48\% \text{ số điểm có } n \leq 10^5.$
- 28% số điểm khác có $n \le 10^{18}$.
- 24% số điểm còn lại không có giới hạn gì thêm.

Ví dụ:

BEAUTY.inp	BEAUTY.out	Giải thích
666	6	Các số đẹp nhỏ hơn 666 là 6, 9, 66, 69, 96, 99.

Câu 3. Xóa số (4 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
REMOVE.*	REMOVE.inp	REMOVE.out	1 giây	1024 MB

Có n+1 số từ 0 đến n được cho vào một dãy a_0,a_1,\ldots,a_n . Thực hiện liên tục các thao tác sau cho đến khi dãy không còn phần tử nào:

- Loại bỏ lần lượt các phần tử có thứ tự chia hết cho k $(a_0, a_k, a_{2k}, a_{3k}, ...)$.
- Đánh số lại các phần tử trong dãy.

Yêu cầu: Xác định thứ tự bị loại của các số.

Dữ liệu vào: Nhập từ file REMOVE.inp:

- Một dòng duy nhất gồm hai số nguyên dương $n, k \ (1 \le n, k \le 10^6)$.

Dữ liệu ra: Ghi ra file REMOVE.out:

- Các số bị loại theo thứ tự thời gian, viết cách nhau một khoảng trắng.

Ràng buộc bổ sung:

- $50\% \text{ số điểm có } n \leq 1000.$
- $30\% \text{ số điểm khác có } n \leq 10^5.$
- 20% số điểm còn lại không có giới hạn gì thêm.

Ví dụ:

REMOVE.inp	REMOVE.out	Giải thích
5 3	0 3 1 5 2 4	$(0, 1, 2, 3, 4, 5) \rightarrow (1, 2, 4, 5) \rightarrow (2, 4)$
		→ (4)
6 2	0 2 4 6 1 5 3	$(0,1,2,3,4,5,6) \rightarrow (1,3,5) \rightarrow (3)$
8 4	0 4 8 1 6 2 3 5 7	$(0, 1, 2, 3, 4, 5, 6, 7, 8) \rightarrow (1, 2, 3, 5, 6, 7)$
		\rightarrow (2, 3, 5, 7) \rightarrow (3, 5, 7)
		$\rightarrow (5,7) \rightarrow (7)$

Câu 4. Sinh số (4 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
GENNUM.*	GENNUM.inp	GENNUM.out	1 giây	1024 MB

Từ một số a ta có thể sinh ra một số b bằng cách cộng a với tổng các chữ số của a. Khi này ta nói số b được sinh ra từ số a, hay a là một nguồn của b.

Hiển nhiên, với mỗi số u ta chỉ sinh được một số v nhưng một số y có thể được sinh ra từ nhiều số x.

Yêu cầu: Gọi f(x) là số lượng nguồn của x, bạn cần tính $f(l) + f(l+1) + \cdots + f(r)$.

Dữ liệu vào: Nhập từ file GENNUM. inp:

- Dòng đầu tiên gồm một số nguyên dương q ($q \le 2 \times 10^5$) – số truy vấn bạn cần xử lý.

- q dòng tiếp theo, dòng thứ i gồm hai số nguyên dương l_i , r_i ($1 \le l_i \le r_i \le 10^{18}$) - hai tham số cho truy vấn thứ i.

Dữ liệu ra: Ghi ra file GENNUM.out:

- Gồm q dòng, dòng thứ i là kết quả của truy vấn thứ i.

Ràng buộc bổ sung:

- $20\% \text{ số điểm có } q \leq 10 \text{ và } r_i \leq 1000.$
- 20% số điểm khác có $r_i \le 1000$.
- 16% số điểm khác có $r_i \le 10^5$.
- 16% số điểm khác có $q \le 10$ và $r_i l_i \le 10^5$.
- 12% số điểm khác có $r_i \le 10^7$.
- 8% số điểm khác có $q \le 2 \times 10^4$.
- 8% số điểm còn lại không có giới hạn gì thêm.

Ví dụ:

GENNUM.inp	GENNUM.out	Giải th	ích		
2	5	Số	Nguồn	Số	Nguồn
11 15	4	11	10	29	19
29 33		12	6	30	24
		13	11	31	
		14	7	32	25
		15	12	33	30
2	5		2, 4, 6, 8, 10		
1 10	979	1, 2, 3,	4, 5 (mỗi số	có đúng	một nguồn).
1 1000					

Câu 5. Xếp bi (3 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
MARBLE.*	MARBLE.inp	MARBLE.out	1 giây	1024 MB

Có n viên bi màu đỏ (R), n viên bi màu xanh lá (G) và n viên bi màu xanh dương (B). Một cách xếp n viên bi thành một đường thẳng được gọi là đẹp nếu:

- Hai viên bi ở cạnh nhau phải có màu khác nhau.
- Thỏa mãn k ràng buộc, trong đó mỗi ràng buộc yêu cầu viên bi thứ u phải có màu v.

Yêu cầu: Đếm số cách xếp n viên bi thành một đường thẳng đẹp.

Dữ liệu vào: Nhập từ file MARBLE.inp:

- Dòng đầu tiên gồm hai số nguyên dương n, k $(1 \le n \le 10^{18}, 0 \le k \le 2 \times 10^5)$ - lần lượt là số viên bi trên hàng và số ràng buộc.

- k dòng tiếp theo, mỗi dòng gồm một số nguyên dương u và một ký tự v $(1 \le u \le n, v \in \{R, G, B\})$ - mô tả một ràng buộc ở vị trí thứ u phải có màu v.

Dữ liệu ra: Ghi ra file MARBLE.out:

- Một dòng duy nhất gồm kết quả bài toán. Vì kết quả có thể rất lớn nên bạn chỉ cần in ra phần dư của kết quả khi chia cho 24022007.

Ràng buộc bổ sung:

- $10\% \text{ số điểm có } n \leq 14.$
- $10\% \text{ số điểm khác có } n \leq 20.$
- 12% số điểm khác có k = 0.
- 15% số điểm khác có $n \le 7 \times 10^6$.
- 15% số điểm khác có $|u_i u_{i+1}| \le 20$ với u_i là giá trị u trong yêu cầu thứ i.
- 16% số điểm khác có $|u_i u_{i+1}| \le 10^5$ với u_i là giá trị u trong yêu cầu thứ i.
- 22% số điểm còn lại không có giới hạn gì thêm.

Ví dụ:

MARBLE.inp	MARBLE.out	Giải thích
3 0	12	Các cách xếp thỏa mãn là: RGR, RGB.
		RBR. RBG. BRB, BRG, BGB, BGR,
		GRG, GRB, GBG, GBR.
3 1	4	Các cách xếp thỏa mãn là: RGR, RGB,
2 G		BGR, BGB.
5 2	6	Các cách xếp thỏa mãn là: RGRGR,
2 G		RGBGR, RGRBR, BGRGR, BGBGR,
5 R		BGRBR.