統計的モデリング基礎⑤ ~ 最尤推定(続き)~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

マーケティング分野への応用を対象とした参考書

マーケティングの統計モデル

出版社:朝倉出版 発刊年月: 2015.8 ISBN: 4254128533

A5判;192ページ

マーケティングを題材としながら、基本的な統計的モデリングの方法が 学べる

最尤推定:

データをもっともよく再現するパラメータを推定値とする

- n個のデータ $x_1, x_2, ..., x_n$ から確率モデル $f(x \mid \theta)$ のパラメータ θ を推定したい
- n個のデータが(互いに独立に)生成される確率(尤度):

$$L(\theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$

北度最大になるパラメータを推定値êとする

$$\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i=1}^{n} f(x_i \mid \theta) = \operatorname{argmax}_{\theta} \sum_{i=1}^{n} \log f(x_i \mid \theta)$$

–もっともデータを生成する確率が高い(「最も尤もらしい」)

実際には対数

尤度で扱うこと

が多い

最尤推定の利点: モデリングの自動化

- ■最尤推定の利点:確率モデルの形(データの生成プロセスの仮定)を決めればモデルパラメータが自動的に決まる
 - -ただし、最大化問題を解く必要がある
 - -離散分布、ポアソン分布、正規分布などは解析的に解が求まる
 - -線形回帰(正規分布でノイズが載る)は連立方程式(いちおう解析的な解)
 - 多くのモデルでは、最適化問題を数値的に解く必要がある

判別問題:

ダミー変数を従属変数として説明(予測)する問題

- データ (n 組の独立変数と従属変数)
 - -独立変数: $(\mathbf{x}^{(1)},\mathbf{x}^{(2)},...,\mathbf{x}^{(n)})$
 - (ダミー) 従属変数: $(y^{(1)}, y^{(2)}, ..., y^{(n)}), y^{(i)} \in \{+1, -1\}$

以降、表記上の利便性からダミー従属変数を {0,1}でなく{+1,-1}と表記する (本質的な違いはナシ)

ロジスティック回帰: ダミー変数を従属変数とするモデル

- 以前、重回帰モデルでダミー変数を従属変数とすると、厳密には少しおかしいという話だった → もっとちゃんと扱いたい
 - -重回帰モデル $y = \mathbf{\beta}^{\mathsf{T}}\mathbf{x}$ の従属変数の値域は実数全体
- 従属変数の値域が{-1,+1}もしくは、(0,1) (Y = +1となる確率) となるようにしたい
- ロジスティック回帰モデル:

$$P(Y = 1 | \mathbf{x}, \boldsymbol{\beta}) = \frac{1}{1 + \exp(-\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x})} = \sigma(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x})$$

 $-\sigma:$ ロジスティック関数 $(\sigma: \mathbb{R} \to (0,1))$

ロジスティック回帰モデルの対数尤度:

凸関数なので大局解が存在するが解析解はない

• 対数尤度: $L(\boldsymbol{\beta}) = -\sum_{i=1}^{n} \log(1 + \exp(-y^{(i)}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}^{(i)}))$

$$\left(=\sum_{i=1}^{n} \delta(y^{(i)}=1) \log \frac{1}{1+\exp(-\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)})} + \delta(y^{(i)}=-1) \log \left(1-\frac{1}{1+\exp(-\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)})}\right)\right)$$

- L(β)は凸関数:
 - -大局解がある
 - -解析解はない

ロジスティック回帰のパラメータ推定: 非線形最適化

■最尤推定の目的関数(最大化):

$$L(\boldsymbol{\beta}) = -\sum_{i=1}^{n} \log(1 + \exp(-y^{(i)}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}^{(i)}))$$

- -解析解は得られないが、凸関数(2階微分が≦0)
- 数値的な最適化手法を使う
 - -パラメータの更新をくりかえす: $\beta^{\text{NEW}} \leftarrow \beta + d$

$$\beta$$
 $\beta + d$

パラメータ更新:

目的関数をもっとも改善する更新を行う

■ 更新 $\beta^{\text{NEW}} \leftarrow \beta + d$ によって目的関数の値が変化する:

$$L_{\mathbf{w}}(\mathbf{d}) = -\sum_{i=1}^{n} \ln(1 + \exp(-y^{(i)}(\mathbf{\beta} + \mathbf{d})^{\mathsf{T}}\mathbf{x}^{(i)}))$$

• L_β(d)を最大化する更新分 d* を見つけよ:

$$-\mathbf{d}^* = \operatorname{argmax}_{\mathbf{d}} L_{\mathbf{\beta}}(\mathbf{d})$$

最良のパラメータ更新: 目的関数をテイラー展開で近似

■目的関数のテイラー展開:

3次以上の項

$$L_{\boldsymbol{\beta}}(\mathbf{d}) = L(\boldsymbol{\beta}) + \mathbf{d}^{\mathsf{T}} \nabla L(\boldsymbol{\beta}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \boldsymbol{H}(\boldsymbol{\beta}) \mathbf{d} + O(\mathbf{d}^{3})^{\mathsf{T}}$$

一勾配:
$$\nabla L(\boldsymbol{\beta}) = \left(\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_1}, \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_2}, \dots, \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_D}\right)^{\top}$$

• 目的関数が最も急な方向

ーへッセ行列:
$$[H(\mathbf{\beta})]_{i,j} = \frac{\partial^2 L(\mathbf{\beta})}{\partial \beta_i \partial \beta_j}$$

ニュートン法:

2次近似した目的関数を最小化する解を求める

■ テイラー展開で3次以降の項を無視する:

3次以上の項

$$L_{\beta}(\mathbf{d}) \approx L(\beta) + \mathbf{d}^{\mathsf{T}} \nabla L(\beta) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\beta) \mathbf{d} + O(\mathbf{d}^{3})^{\mathsf{L}}$$

- ■最大化するためにdで微分: $\frac{\partial L_{\beta}(\mathbf{d})}{\partial \mathbf{d}} \approx \nabla L(\mathbf{\beta}) + H(\mathbf{\beta})\mathbf{d}$
- これを= 0 とおいて解くと: d = −H(β)⁻¹∇L(β) < 実際には連立 方程式を解く

ニュートン法:

$$\boldsymbol{\beta}^{\text{NEW}} \leftarrow \boldsymbol{\beta} - \boldsymbol{H}(\boldsymbol{\beta})^{-1} \nabla L(\boldsymbol{\beta})$$

$$\beta - H(\beta)^{-1} \nabla L(\beta) \qquad \beta - H(\beta)^{-1} \nabla L(\beta)$$

線形探索付きニュートン法: 近似は必ずしも正しくないので線形探索と組み合わせる

■ ニュートン法の更新 $\beta^{\text{NEW}} \leftarrow \beta - H(\beta)^{-1} VL(\beta)$ は 2 次近似が正しいことを仮定している:

$$L_{\boldsymbol{\beta}}(\mathbf{d}) \approx L(\boldsymbol{\beta}) + \mathbf{d}^{\mathsf{T}} \nabla L(\boldsymbol{\beta}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \boldsymbol{H}(\boldsymbol{\beta}) \mathbf{d}$$

- -実際には正しくない
- そこで更新の向き $H(\beta)^{-1}\nabla L(\beta)$ のみを採用して: $\beta^{\text{NEW}} \leftarrow \beta \eta H(\beta)^{-1}\nabla L(\beta)$
- 学習率 η > 0 の決定法:
 - -適当にステップ数とともに適当に減衰

適当な初期値から始めて、 目的関数が改善しない間 は η を半分にしていく

-線形探索: $\eta^* = \operatorname{argmax}_{\eta} L(\boldsymbol{\beta} - \eta \boldsymbol{H}(\boldsymbol{\beta})^{-1} \nabla L(\boldsymbol{\beta}))$

最急降下法:

ヘッセ行列を使わずシンプルで軽い更新

- ヘッセ行列の逆行列(もしくは連立方程式を解く)は高コスト:
 - -ニュートン法の更新: $\beta^{\text{NEW}} \leftarrow \beta \eta H(\beta)^{-1} \nabla L(\beta)$
- ■最急降下法:
 - -ヘッセ行列の逆行列 $H(\beta)^{-1}$ を単位行列 I で置き換え: \mathbf{Q}^{NEW} \mathbf{Q} \mathbf{P}^{T} \mathbf{Q}^{O}

$$\boldsymbol{\beta}^{\text{NEW}} \leftarrow \boldsymbol{\beta} - \eta \nabla L(\boldsymbol{\beta})$$

「勾配

- $VL(\beta)$ は最も急な(目的関数が最も変化する)向き
- 学習率 η は線形探索で求める:

$$\beta \qquad \qquad \beta - \eta \nabla L(\beta) \qquad \beta - \eta \nabla L(\beta)$$

確率的最適化とミニバッチ:

データの部分集合を用いた効率的な推定

- 対数尤度は各データの対数尤度の和: $L(\mathbf{\beta}) = \sum_{i=1}^n \ell_{\sim}^{(i)}$
- 勾配 $\frac{\partial L(\mathbf{\beta})}{\partial \mathbf{\beta}} = \sum_{i=1}^{n} \frac{\partial \ell^{(i)}}{\partial \mathbf{\beta}}$ の計算は O(n) かかる

*、 i*番目のデータの 対数尤度

- 勾配をデータ1個で近似: $\frac{\partial L(\beta)}{\partial \beta} \approx n \frac{\partial \ell^{(i)}}{\partial \beta}$
 - -確率的最適化:毎回データをランダムに選ぶ
 - -オンライン推定も可能(時刻tのデータの $\ell^{(i)}$ を使う)
- ミニバッチ: 1 < m < n 個のデータで勾配を近似:

$$\frac{\partial L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \approx \frac{n}{m} \sum_{j \in \text{MiniBatch}} \frac{\partial \ell^{(i)}}{\partial \boldsymbol{\beta}}$$

ロジスティック回帰の場合の勾配: 比較的簡単に計算可能

■対数尤度: $L(\boldsymbol{\beta}) = -\sum_{i=1}^{n} \ln(1 + \exp(-y^{(i)}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}^{(i)}))$

$$\bullet \frac{\partial L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -\sum_{i=1}^{n} \frac{1}{1 + \exp(-y^{(i)}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}^{(i)})} \frac{\partial (1 + \exp(-y^{(i)}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}^{(i)}))}{\partial \boldsymbol{\beta}}$$

$$= \sum_{i=1}^{n} \frac{1}{1 + \exp(-y^{(i)}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}^{(i)})} \exp(-y^{(i)}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}^{(i)}) y^{(i)}\mathbf{x}^{(i)}$$

$$= \sum_{i=1}^{n} (1 - f(y^{(i)}|\mathbf{x}^{(i)}, \boldsymbol{\beta})) y^{(i)}\mathbf{x}^{(i)}$$
現在のパラメータでのモデルが与える確率

練習:

ポアソン回帰の最尤推定

- (前回出てきた)ポアソン回帰の最尤推定
 - -対数尤度:

$$L(\boldsymbol{\beta}) = \sum_{i=1}^{n} y^{(i)} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)} - \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)}) + \text{const.}$$

- -解析解は求まらない
- 最急勾配法の更新式を求めてみる

ニューラルネットワーク: (ざっくりいえば) ロジスティック回帰モデルを連結したもの

- ニューラルネットワークはロジスティック回帰モデルを連結したもの
 - -複数のロジスティック回帰モデルの出力が、別のロジスティック 回帰モデルの入力になる
 - -ロジスティック関数(非線形)によりモデルに非線形性を導入
 - -両者ともY = 1である確率 $f(\mathbf{x}; \boldsymbol{\beta})$ を出力するモデル

ニューラルネットワークのパラメータ推定: 最急降下法を適用するために勾配の計算が必要

パラメータ推定を最尤推定で行うとすると、目的関数は:L(β)

$$= -\sum_{i=1}^{n} \left(\delta(y^{(i)} = 1) \log f(x^{(i)}) + \delta(y^{(i)} = -1) \log \left(1 - f(x^{(i)}) \right) \right)$$

- $-L(oldsymbol{eta})$ の勾配 $\frac{\partial L(oldsymbol{eta})}{\partial oldsymbol{eta}}$ が計算できれば最急降下法を適用できる
 - -実際は確率的最適化やミニバッチを用いることが多い

ニューラルネットワークの勾配計算: 誤差逆伝播法によって計算する

- 誤差逆伝播法: $L(\mathbf{\beta})$ の勾配 $\frac{\partial L(\mathbf{\beta})}{\partial \mathbf{\beta}}$ を計算する方法
 - fから「後ろ向きに」遡っていく計算(微分の連鎖率)
- 1次元の場合で考える(多次元でもほぼそのまま):

$$-\frac{\partial L}{\partial \beta_2} = \frac{\partial L}{\partial f} \cdot \frac{\partial f}{\partial g_2} \cdot \frac{\partial g_2}{\partial \beta_2}$$

$$-\frac{\partial L}{\partial \beta_1} = \frac{\partial L}{\partial f} \cdot \frac{\partial f}{\partial g_2} \cdot \frac{\partial g_2}{\partial f_1} \cdot \frac{\partial f_1}{\partial g_1} \cdot \frac{\partial g_1}{\partial \beta_1}$$

$$+ \frac{\partial L}{\partial \beta_1} = \frac{\partial L}{\partial f} \cdot \frac{\partial f}{\partial g_2} \cdot \frac{\partial f}{\partial f_1} \cdot \frac{\partial f}{\partial g_1} \cdot \frac{\partial g_1}{\partial \beta_1}$$

$$x \xrightarrow{\beta_1} \xrightarrow{\beta_1} \xrightarrow{\beta_2} \xrightarrow{\beta_2} \xrightarrow{\beta_2} \xrightarrow{\beta_2} f$$

$$g_1 = \beta_1 x \qquad f_1 = \sigma(g_1) \qquad g_2 = \beta_2 f_1 \qquad f = \sigma(g_2)$$