VARIATIONAL PRINCIPLES

Jonathan Gai

4th May 2022

Contents

0.1	The Brachistochrone Problem	1
0.2	Geodesics	2

Lecture 1

29 Apr. 2022

Motivation

0.1 The Brachistochrone Problem

Problem. Particle slides on a wire under influence of gravity between two fixed points *A*, *B*. Which shape of the wire gives the shortest travel time, starting from rest?

The travel time is $T = \int_A^B \frac{d\ell}{v(x,y)}$, and by energy conservation, and by energy conservation

$$\frac{1}{2}mv^2 + mgy = 0 \implies v = \sqrt{-2gy}.$$

So

$$T[y] = \frac{1}{\sqrt{2g}} \int_0^{x_2} \frac{\sqrt{1 + (y')^2}}{\sqrt{-y}} dx$$

subject to y(0) = 0, $y(x_2) = y_2$.

0.2 Geodesics

Problem. What is the shortest path γ between two points A, B on a surface.

Take $\Sigma=\mathbb{R}^2.$ The distance along γ is

$$D[y] = \int_A^B d\ell = \int_{x_1}^{x_2} \sqrt{1 + (y')^2} dx,$$

and we want to minimize D by varying γ .