Al/IML for prediction of biological properties of molecules

Module 1. Using AI models for drug discovery

Gemma Turon & Miquel Duran-Frigola Ersilia Open Source Initiative (<u>www.ersilia.io</u>) 18th - 27th of September, 2023

An applied example

Go to menti.com and introduce 1655 9573

The problem: introductory case

A scientist is working with two collections of ~400 compounds:

- Capacity to test 20 molecules
- Molecules must be easy to synthesize
- Nature-inspired chemistry is a plus
- Maximise chances of success in advanced stages

The ChEMBL database https://ebi.ac.uk/chembl

Ersilia

ChEMBL

Search in ChEMBL

1.3K Drug Warnings

2.4M Compounds

1.6M Assays

45K Indications

6.7K Mechanisms

1.5K Targets

.

Description: Shows a summary of the ChEMBL entities and quantities of data for each of them.

Instructions: Click on a bubble to explore a specific ChEMBL entity in more detail.

Browse all ChEMBL

See all visualisations

Current Release: ChEMBL 33

Provided under a Creative Commons Attribution-ShareAlike 3.0 Unported license

Last Update on 2023-05-31T00:00:00 | Release notes

15,398

Targets

2,399,743

Distinct compounds

20,334,684

Activities

88,630

Publications

215

Deposited Datasets

The COCONUT database https://coconut.naturalproducts.net

Find natural products

Name, InChl, formula, COCONUT id, SMILES, chemical class, bioactivity

Q Search

Structure Search | Advanced Search

Home

Browser *

Search *

Download

Documentation

There are 407,270 unique natural products in the database. They are sorted by their annotation level, starting with the best annotated.

CNP0320385

Calphostin B

Ersilia

Mol. formula C37H34O11

Mol. weight 654.66

NP-likeness 1.34

CNP0192622

Stemofuran A

Mol. formula C14H10O3

Mol. weight 226.23

NP-likeness 0.58

CNP0234206

Fexerol

Mol. formula C15H26O3

Mol. weight 254.37

NP-likeness 2.57

CNP0146144

Suspensolide E

Mol. formula C23H36O13

Mol. weight 520.53

NP-likeness 2.38

0

Marvin-js

Ersilia

https://marvinjs-demo.chemaxon.com

PubChem https://pubchem.ncbi.nlm.nih.gov

This is a conventional screenshot slide

Ersilia

Exercise 1. Download the datasets of the case-study

- Go to your email inbox
- Download the <u>chembl selected.csv</u> and coconut selected.csv files
- Open and explore these files
- You can draw examples of the molecules in MarvinJs
- Exercise 1
- What can we do to explore the data?

ChEMBL molecules

Ersilia

Coconut molecules

ChEMBL molecules

Ersilia

Coconut molecules

$$H_3C$$
 H_3C
 H_3C

Physicochemical properties

Analyse the chemical space

Ersilia

Exercise 1. Download the datasets of the case-study

- Go to your email inbox
- Download the <u>chembl.csv</u> and <u>coconut.csv</u> files
- Open and explore these files
- You can draw examples of the molecules in MarvinJs

Discussion 1

- What is the difference between both datasets?
- Which one do you think would be easier to work with?
- What are the advantages of using one or the other?

Al tools that could aid us

Exercise 2. Look for suitable models in the Ersilia Model Hub

- Go to: https://ersilia.io/model-hub
- Note down the Ersilia code (eos0abc) for Al models that could help in our task
 - Antimalarial activity
 - Broad spectrum antibiotic activity
 - Antihelminthic activity
 - Cytotoxicity
 - hERG cardiotoxicity
 - Solubility
 - Synthetic accessibility
 - Natural product score

Exercise 2. Look for suitable models in the Ersilia Model Hub

- Go to: https://ersilia.io/model-hub
- Note down the Ersilia code (eos0abc) for Al models that could help in our task

— Go to menti.com and add the code: 1655 9573

Selected models

Ersilia

- Antimalarial activity by MMV: eos4rta
- Antimalarial activity by Open Source Malaria: eos7yti
- ChemProp antibiotic: eos4e41
- Antischistosomiasis activity by SwissTPH: eos2l0q
- Cardiotoxicity: <u>eos4tcc</u>
- Cytotoxicity in HepG2 cells: <u>eos3le9</u>
- Solubility: <u>eos6oli</u>
- Synthetic accessibility: eos9ei3
- Natural product score: eos9yui

Exercise 3

- Go to the online inference available through the Ersilia Model Hub for the selected models: https://bit.ly/ eos4rta
- Run the predictions for both datasets for the model eos4rta
- Let's analyse the results together
- What relevant questions could we ask ourselves?
- What information can we gather about the model?

Our goal: to provide ready-to-use AI models

Welcome to the Ersilia Model Hub!

https://ersilia.io/model-hub

Antimalarial prediction with MMV data (eos4rta)

- Task: Classification
- Output: Probability of inhibiting the malaria parasite (strain NF54) in IC50 (threshold 1uM) and percentage of inhibition (50%, measured by LDH and Lum)
- Training set: MMV dataset

- Relevance to our problem?
- What value do we want to optimise?
- Can we make any assumptions about the applicability domain of the model?

Antimalarial prediction with MMV data (eos4rta)

1	key	input	NF54_IC50_72h_1uM	NF54_50PercInh_LDH	NF54_50PercInh_LU
2	HWGPBEQLDAATTP-UHFFFAOYSA-N	N#CC1CCCN(C(=0)CCC2=CC=CC(F)=C2)C1	0.19404025869214928	0.007060029655472325	0.02215968
3	VZEQMVMGOXXSDA-UHFFFAOYSA-N	CCC(=0)C1=CN=C2C=CC(C3=CC(Cl)=C(0)C(OC)=C3)=CC2=C1NC1=CC=C(CN(C)C)C=C1	0.37599067020623106	0.2687784437758614	0.56457806
4	XPDWCQMOAYLTHH-CCVNUDIWSA-N	C/C(=N\NC(=O)C1=NC2=C(C(=O)N1)C1CCCN1C(=O)N2C1=CC=CC=C1)C1=CC=C(Cl)C=C1	0.23471794699679766	0.15549179065885121	0.161725
5	WWAFZFZKTQQHTL-ILRYNQFESA-N	CC(=O)N[C@H]1[C@H](SCCCN2C=C(CN3C(=O)C4=CC=CC5=CC=CC(=C45)C3=O)N=N2)O[C@H](CO)[C@@H](O)[C@@H]1O	0.21402212125712888	0.13970746426092914	0.031084577
6	BSKQAAYIGGYUAZ-VGOFMYFVSA-N	OC1=C(/C=N/C2=NC=CS2)C2=CC=CC=C2N1	0.2693705165689197	0.2214959085993597	0.11503028
7	QSNBHLXYLHVCLT-QPPBQGQZSA-N	CC(=O)O[C@@H]1C(C)(C)OC(=O)[C@]12COC1=CC=C3C(=O)C=C(C4=CC=CC=C4)OC3=C21	0.21265540763595348	0.10763128810323211	0.06936009
8	NHCSOGQGYIMJJG-UHFFFAOYSA-N	COC1=CC(NC(=0)CN2N=C3C(SC4CCCCC4)=NC=CN3C2=O)=CC(OC)=C1	0.11331766446698903	0.07980804957251031	0.04113348
9	BUMLEIQSRWKWTF-UHFFFAOYSA-N	COC1=CC=CC=C1N1CCN(CCCCC(=O)NC2CCCC3=CC=CC(OC)=C23)CC1	0.16842902769078913	0.05639335168658563	0.10543706
10	YXYPAHMTJNXFTE-ZVHZXABRSA-N	COC1=CC(/C=C2/SC(N3N=C(C4=CC=CC=C4)CC3C3=CC=CC=C3O)=NC2=O)=CC(OC)=C1O	0.23464995544273506	0.1532669401132952	0.2107249
11	CMXZAXQUIAMXTH-UHFFFAOYSA-N	CC1=CC=C(C2=NOC(CNC(=0)N3CCC(C0)CC3)=C2)C=C1	0.224875905759012	0.01609998922995054	0.029294686
2	OOKWFQQDDHURHZ-UHFFFAOYSA-N	CC(=O)N1C(C2=CC=C(C)C=C2)SC(C)(C)C1C(=O)O	0.1421700090791356	0.006912590037419948	0.023652889
13	RPFGULHOFYSDAK-UHFFFAOYSA-N	CN(C)C(=0)CNCCC1=CC=CC(OCCCCC(F)(F)F)=C1	0.1361932078310655	0.0028507629099750495	0.04296503
4	MEEWKYUFROITOK-UHFFFAOYSA-N	CCC1=CC=CC2=C1C=CC1=C2OC(=O)C2=C1OC=C2C	0.2507538100341272	0.06487105965670041	0.053030923
15	KUFQYQWVZDXHJN-UHFFFAOYSA-N	COC1=CC(C(=O)N2N=C(C)C=C2C)=CC(OC)=C1OC	0.1846704496223233	0.03033886434156533	0.01774607
16	VCVQSRCYSKKPBA-UHFFFAOYSA-N	CC(C)(C)NCC(O)COC1=CC=CC=C1C#N	0.1266497485804591	0.08719589427013674	0.020389792
17	TXOGMSNEULUYAF-UHFFFAOYSA-N	Br.CC1N(C)C2CCCC1(C1=CC=CC(OC(=O)C3=CC=CN=C3)=C1)C2	0.17037676675418562	0.01929204116227353	0.037059054
8	LLQHRNDLBMDQHR-UHFFFAOYSA-N	CS(=O)(=O)N(CC(O)CN1C2=CC(F)=CC=C2C2=CC=C(F)C=C12)C1CC1	0.21495711025965167	0.18772608817362973	0.12503982
9	AEQYZGAQFDSQIR-UHFFFAOYSA-N	CN(CCCOCCOCC1=CC=CC=C1)CCC1=CC=C(0)C2=C1SC(0)=N2	0.220578258598462	0.21976090369785006	0.098191075
20	ULZOVHDYBVKSJL-HYARGMPZSA-N	COC1=CC(OC)=C(OC)C=C1/C=N/NC(=0)C1=CC=CC(S(=0)(=0)N2CCOCC2)=C1	0.1007243304226347	0.07429913961349913	0.049029544
21	WGHIRYPZICNFTM-UHFFFAOYSA-N	O=C(CC(CC1=CNC2=CC=CC=C12)(NC(=0)OC1C2CC3CC(C2)CC1C3)C(=0)NCCC1=CC=CC=C1)OCC1=CC=CC=C1	0.2563680639893735	0.09914915282881873	0.13676733
22	PBJIOVQCYBRCRK-UHFFFAOYSA-N	CN(CC1=CC=CO1)C1=NC=NC2=CC=C(C3=CC=C4C(=C3)OCO4)C=C12	0.47896541603871234	0.28667421280238103	0.093372725
3	XKIZIFRQOMJEGT-UHFFFAOYSA-N	CC1=CC(C)=C(CNC(=O)C2=CC(C3=CN(C)N=C3)=CC(N(C)C3CCCCC3)=C2C)C(=O)N1	0.2823441970109414	0.1934216569207105	0.18941434
24	UYNMHCOEYXEJMK-UHFFFAOYSA-N	CC1=CC(C)=C(NC2=NC(N)=NC(NC3=CC=C(C#N)N=C3)=N2)C(C)=C1.Cl	0.2635951400723174	0.3172307211761615	0.15022285
5	KCFIWGIFJLSTCC-UHFFFAOYSA-N	NCCCCCNC1=CC=C(NCCCCCN)C2=C1C(=0)C1=CC=NC=C1C2=O	0.14930099137258168	0.22184310934281415	0.121442325
26	VUYHQRNOICWQLK-RGCMKSIDSA-N	CC1=CN([C@@H]2O[C@H](COP(=0)(0)OP(=0)(0)OP(=0)(0)O)[C@@H](0)[C@H]2O)C(=0)C2=CC=CC=C12	0.20440955032358654	0.059101234839148746	0.029773388
27	YHPYKUDCFAWLRI-OAQYLSRUSA-N	COC1=CC=C(S(=O)(=O)NC2=CC=C(N[C@H](C(=O)O)C(C)(C)C)C3=CC=CC=C23)C=C1	0.09641623152644103	0.10141103840031902	0.16634862
8	UEGYOFFNGADXPX-UHFFFAOYSA-N	CC(C)(/N=C(\S)NC1=CC=C(NC(=0)C2=CC=CC=C2F)C=C1)C1=CC=CC=C1	0.15241632634371952	0.015270571433384577	0.26353943
9	OCHZNYFFBSVCIJ-VXKWHMMOSA-N	O=C(C1=CC=CC=N1)[C@@H]1CCCN1C(=O)[C@@H]1CCCN1C(=O)CCCC1=CC=CC=C1	0.24688721782694656	0.033307025324251185	0.03346359
0	XHRBNXOROUSHMG-UHFFFAOYSA-N	C=C(C(=O)C1=CC=C(C)C=C1)N1C=NC=N1	0.11227243173090821	0.0121530577075702	0.067444526
1	XPHIFDXVOGTFLO-UHFFFAOYSA-N	COC1=CC=C(CCNC(=0)CC2=CC=C(CI)C=C2)C=C1OC	0.06525940013158374	0.021986501972883946	0.067917645
2	KOGBUXRCFBDPLI-FLPBZWPXSA-N	O=C1NC(=O)N([C@H]2CO[C@H](CO)O2)C=C1/C=C/I	0.19131867013179316	0.025953917598287843	0.010016828
3	HJWGSRNLLRXEPX-UHFFFAOYSA-N	CC1=CC=CC=C1N1C(=0)C2=CC=CC=C2N2C(N3CCOCC3)=NN=C12	0.21108852014817692	0.031247588504776925	0.048215564
34	LDAQXINHLRVUBF-UHFFFAOYSA-N	COC1=CC(NC(C)CCCN(CC2=CC=C(Cl)C=C2)C(=O)NC2=CC=CC=C2F)=C2N=CC=CC2=C1	0.186221323861707	0.1196811102470078	0.19354615
5	DCAQIXBZZGJKTP-UHFFFAOYSA-N	O=[N+]([O-])C1=CC=C(C2=CN3C=C(F)SC3=N2)C=C1	0.1384919249078545	0.038394872347370844	0.08510643
6	ABSMFJVWTLRCJI-UHFFFAOYSA-N	CC1=NN(CC(=0)NCCCN2CCC(N3CCCCC3)CC2)C(=0)C2=CC(C3=CC=CC=C3)=NN12	0.367079751755813	0.16346366039185015	0.27601156

Antimalarial prediction with MMV data (eos4rta)

Top molecules

ChEMBL

Coconut

- Task: Classification
- Output: Probability of killing P.falciparum in vitro (IC50 < 1uM and 2.5uM, respectively)
- Training set: Open Source Malaria

- Relevance to our problem?
- What value do we want to optimise?
- Can we make any assumptions about the applicability domain of the model?

Antimalarial prediction with OSM data (eos7yti)

chembl_selected_eos7yti_predictions								
key	input	IC50_1uM	IC50_2.5uM					
OLGGEMHVMHDMBQ-CKJJVQESSA-N	C[C@H](C1=CC=CC=C1)N1CC2=C(OC(N)=C(C3=NC(C4=CC=C(CI)C=C4)=NO3)C2C2=CC=CC3=CC=CC23)/C(=C/C2=CC=CC3=CC=CC3)C1	0.0004378277290802	0.2171111233365295					
JDXKRKYSUPFHSI-UHFFFAOYSA-N	C=C(C1=CC=C(C2=CC=C2)C=C1)C1CCOC2(CCC(NC3=CC=C(C(F)(F)F)C=C3)CC2)OO1	2.214106131100807e-06	0.0029736285656708					
ITZCQKLMGVPQPT-ZLYZMSFYSA-N	CC(C)[C@@H]1CC[C@]2(CO)CC[C@]3(C)[C@H](CC[C@@H]4[C@@]5(C)CC6=C(ON=C6)C(C)(C)[C@@H]5CC[C@@]34C)[C@@H]12	7.752534626013493e-07	0.0006278432551692					
QVHOWIYXXSOEIV-GHXNOFRVSA-N	CC(NC1=NC2=C(/C=C3\NC(=O)NC3=O)C=NN2C(NC2CC2)=N1)C1=CC=CO1	6.140151853332196e-06	0.0004765144158255					
AJOIPROOJINBPD-UHFFFAOYSA-N	NCCCC(=O)NC1=NN=C(S(N)(=O)=O)S1	2.0708282359644947e-07	4.1798490204619994e-0					
GLNKQEUBUVUTNJ-UHFFFAOYSA-N	O=C1CC(C2=CC=C2)CC2=C1C1(CCCCC1)N=C(NC1=NC3=CC=CC=C3O1)N2	6.079850143390151e-07	0.0039926084967902					
WXXKIULLBFLFPW-DVWZZLGYSA-N	COC(=O)CC[C@@H](C)[C@H]1CC[C@H]2[C@@H]3C/C(=N/NC(=S)NC4=CC=C(C)C=C4)[C@@H]4C/C(=N/NC(=S)NC5=CC=C(C)C=C5)CC[C@]4(C)[C@H]3CC[C@]12C	9.185641243027404e-06	3.56490302632571e-05					
DVPYLGDJYYVKAJ-CWCCKSQSSA-N	CC(=O)O[C@H]1CC[C@@]2(C)[C@@H](CC[C@]3(C)[C@@H]2CC=C2[C@@H]4[C@@H](C)[C@H](C)CC[C@]4(C(=O)N(C)O)CC[C@@]32C)C1(C)C	5.055493847346875e-07	0.000144560547262					
SSZMRTAPOVWYHW-LKYMCVAFSA-N	C[C@H]1C[C@@H](N2C=NC3=C(N)N=CC(F)=C23)[C@H](O)[C@@H]1O	5.852887621547444e-07	0.0004649515449903					
NTCUGFMIELJXCS-UHFFFAOYSA-N	CCN1CCN(CCCNC2=C3C(=NC4=CC=C24)C=CC=C3)CC1	1.4935725365451757e-06	0.0015950373564847					
ZLXMEKUSNLBNSL-SVEHJYQDSA-N	CC1(C)CC2=NC(C3CCN(C4=NC=C(O)C=N4)CC3)=C([C@@H](F)C3=CC=C(C(F)(F)F)C=C3)C(C3CCC(F)(F)CC3)=C2[C@@H](O)C1	8.045653787310577e-05	0.0456071722231443					
BZMUHPHCPVKBAC-FNORWQNLSA-N	O=C(/C=C/C1=CC=CC2=C1N(CC1=CC=C(Cl)C=C1Cl)C(=O)C2)NS(=O)(=O)C1=CC(Cl)=C(Cl)S1	0.0001132368960172	0.0008238488948243					
BYCWLOQDZYMODR-DWXRJYCRSA-N	C[C@@H]1CCC[C@H](N2CCC(C3=C(C#N)C=CC(CI)=C3F)=CC2=O)C2=NC=CC(=C2)C2=CC=CC=C2NC1=O	2.154915507657875e-06	0.0197872593891658					
FUYDACWLMIPEJT-UHFFFAOYSA-N	COC1=CC=CC(C2=NC(CN3C=CN=C3C=O)=CO2)=C1	1.4274704509198098e-07	0.0008600318333556					
SRNYIEUASJEHNI-UHFFFAOYSA-N	CCCN1C(=0)C2=C(N=C(CCCC3=CC=CC=C3)N2)N(CCCOC)C1=O	8.679527861206315e-07	0.0004936922822348					
JHYNXXDQQHTCHJ-UHFFFAOYSA-M	CC[P+](C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.[Br-]	1.4971119654221377e-07	0.0060150355548496					
NQNMTRSTEYEOGI-UHFFFAOYSA-N	CCCCN1N=C(C(=0)C2=CC=CC2N)CC1C(=0)OCC	7.567228028676208e-07	2.3651568063984105e-0					
XEAKAWDCKUCKBY-AMWOSJAMSA-N	CC(C)C[C@H](NC(=O)OC(C1=CC=CC=C1)C1CCNCC1)C(=O)N[C@@H](CCCNC(=N)N)C(=O)C1=NC2=CC=CC=C2S1	9.66383499794039e-07	0.0012739788702609					
WFMZEOAASVEOPI-SPSPGWCGSA-N	CC1CCC2C(=O)N3C(CCC(C)[C@@H]3C3=CC=C(Br)C=C3)C(=O)N2C1C1=CC=C(Br)C=C1	1.8748294560469473e-08	0.0002468533268354					
YQGXBSXHFMPWQM-KLCAMILTSA-N	CCC(=O)O[C@H]1CC[C@@]2(C)[C@@H](CC[C@]3(C)[C@@H]2CC=C2[C@@H]4CC(C)(C)CC[C@]4(C(=O)NCCCC(=O)N[C@H](C(=O)O)C(C)C)CC[C@@]32C)C1(C)C	5.643365281574339e-07	2.0450477123839355e-0					
QDUPLBCEMNFINR-SOFGYWHQSA-N	O=C(O)/C=C/C1=CC=C2C(=C1)CC1(CC3=CC=C3C1)C2	1.1599784665818626e-07	0.0003513803311255					
XWMBNHQWCOHJQH-UHFFFAOYSA-N	FC1=CC=C(C2=C(C3=CC=NC(NCCN4CCSCC4)=N3)SC(C3CCNCC3)=N2)C=C1	1.5966185490990446e-06	0.0006289843175537					
DEZJLIXJXQEJDP-WEVVVXLNSA-N	O=C(O)CN1C(=O)S/C(=C/C2=CC=CC([N+](=O)[O-])=C2)C1=O	2.392214453133201e-07	5.505205797345498e-05					
YJMQHDDLZWBZTR-UHFFFAOYSA-N	O=C1N=C2C=CC=CN2C=C1CC1=CC=CC(OC2=CC=C2)=C1	4.157655309997209e-06	0.0055286656907683					
LSTDAQHMTQYRJL-UHFFFAOYSA-N	CI.O=C1CCN(CC2=CC=CC=C2F)CC1C(C1=CC=C(F)C=C1)C1=CC=C(F)C=C1	0.000208501589857	0.0081064388920074					
GZBJYWLKANIMIX-CDUMDVBJSA-N	C=C(C)[C@@H]1CC=C(CNC2=NC=NC3=C2N=CN3[C@@H]2O[C@H](CO)[C@@H](O)[C@H]2O)CC1	1.0027610436647369e-07	9.45650463370943e-05					
JYGCJRGDFNDTFE-UHFFFAOYSA-N	O=C(NC1=CC=CC=C1)N1C2CCC1CC(O)(C1=CC=CN=C1)C2	1.13581563132442e-06	0.0001498427109909					
SHLVDRLISHVGSO-ZSQFBXSQSA-N	O=C(NCC1=CC=CN=C1)NC[C@H]1CCC[C@H](OCC2=CC(C(F)(F)F)=CC(C(F)(F)F)=C2)[C@@H]1C1=CC=CC=C1	2.9846781027030165e-05	0.0042985627781289					
LJXCMWIXKXYBMH-IUHHBDENSA-N	CCCCCCC(=0)N(C)[C@@H](CC(C)C)C(=0)N[C@H](C(=0)N(C)[C@H](C(=0)N1C[C@@H](0)C[C@H]1C(=0)N1C(=0)C=C[C@@H]1C)C(C)C(C)C(C)C(C)=O	1.444113463165923e-06	3.486047505518835e-06					
AHQFRLVRGMRTIK-RPWUZVMVSA-N	COC1=CC=CC([C@@H]2OC3=CC=C(OC)C=C3C[C@H]2OC(=O)NS(=O)(=O)C2=CC=C(C)C=C2)=C1	5.41299661432453e-06	0.0009151132511432					
YBUPKAFNJNXZCU-UHFFFAOYSA-N	CC(C)CSC1=CC2=C(C=C1Cl)C=C(C(=O)O)C(C(F)(F)F)O2	1.4410015854032548e-06	6.016413145911683e-05					
OWNKDAHEOJCUPR-UHFFFAOYSA-N	O=S(=O)(CCC1=CC=CC=C1)C(F)F	1.1079218037000825e-06	0.0002231968955587					

Antimalarial prediction with OSM data (eos7yti)

OSM original data - comparison

Selected models

- Antimalarial activity by MMV: <u>eos4rta</u>
- Antimalarial activity by Open Source Malaria: eos7yti
- ChemProp antibiotic: eos4e41
- Antischistosomiasis activity by SwissTPH: eos2l0q
- Cardiotoxicity: <u>eos4tcc</u>
- Cytotoxicity in HepG2 cells: <u>eos3le9</u>
- Solubility: <u>eos6oli</u>
- Synthetic accessibility: eos9ei3
- Natural product score: eos9yui

Exercise 4

- Let's split up in pairs
- Take up a model and download the predictions for that model
- Look up the information about the model
- Look at the distribution of the activities for your model
- Select three molecules and explain why to the rest

This is an exercise, there is no right or wrong answer

Exercise 4 guidance

Step 1: Model prediction & interpretation

For each model, think about the following questions:

- What type of model is it (classification or regression)
- What is the training dataset? (refer to the original publication if possible)
- What is the interpretation of the model outcome?
- What cut-off, if any, we should use for that particular model?

In addition, think about the following concepts:

- Does the outcome of the model make sense? If it does not make sense, perhaps we have the wrong interpretation of the model output
- Is the cut-off I have selected too stringent (i.e, I am losing too many molecules and I should be more permissive?)
- Is this model very relevant for the current dataset (i.e., is malaria activity equally important as natural product likeness?)

Step 2: molecule selection

Use the predicted values to select the 20 molecules that you would take for experimental testing if you had to choose. To that end, you can think of:

- What are the most important activities you want to optimize
- What are strict no-go points
- What are activities that are easiest to optimize at lead stage

Step 3: prepare the presentation

Prepare a short presentation for the other group. This should cover:

- Which models did you choose and why
- What selection strategy did you decide
- Which were your selected molecules

Discussion

Ersilia

An applied example - final exercise

Go to menti.com and introduce 1655 9573

Virtual screening cascade

	Activity	Result	Hit values	Relevance
eos4rta	Malaria	Probability	High	High
eos7yti	Malaria	Probability	High	Low
eos4tcc	Cardiotox	Probability	Low	High
eos3le9	Cytotox	Probability	Low	High
eos6oli	Solubility	LogS	Average	Medium
eos9ei3	Synth.Acc	Score	High	Medium
eos9yui	NP-like	Score	Average	Low

Exercise 4

- Go to your email inbox
- Download the master file with all the predictions
- Let's prioritise some compounds:
 - Go back to small groups
 - Select 3 compounds that look good according to the predicted activities
 - Present them to the rest of the group, showing their predicted activities, structure...
 - Be critical! No compound will be perfect!

^{*} This exercise is intended solely for training exercises, it is not a real case-study. The molecules have been selected to facilitate discussion

