Design of Steel and Timber Structure

Course Objective:

- 1. Make students capable to design ordinary steel and timber structures.
- 2. Prepare students for advanced knowledge on design of complex steel and timber structures.
- 1. Steel Structures and their Analysis and Design [4 hours]
 - a.Introduction to Steel Structures
 - b. Structural Steel and Classification of Steel Sections
 - c.Method of Analysis and Design
 - d.Design Process and Basis for Design
- 2. Working Stress Design Method [2 hours]
 - a. Basic Assumptions in Working Stress Design
 - b. Service Load and Permissible Stresses
 - c.Design in Tension, Compression, Bending and Shear
- 3.Limit State Design Method [3 hours]
 - a. Safety and Serviceability Requirements of Structure
 - b. Different Limit States for Steel Design
 - c.Design Strength of Materials and Design Loads
 - d.Limit State of Strength
 - e.Limit State of Serviceability
- 4. Connections in Steel Structures [10 hours]
 - a. Types of Connections
 - b. Welded Connections
 - i. Welds and welding
 - ii. Design of simple welded connections
 - iii. Design of eccentric welded connections
 - c.Bolted Connections
 - i. Bolts and bolting
 - ii. Design of simple bolted connections
 - iii.Design of eccentric bolted connections
 - d.Introduction to Riveted Connection
- 5. Tension Members [4 hours]
 - a. Types of Tension Members
 - b. Sectional Area of Tension Member
 - c.Design of Tension Members of Simple and Built-Up Section
 - d. Design of Lug Angle
 - e. Tension Splice
- 6.Compression Members [10 hours]
 - a. Types of Compression Member
 - b. Buckling Behavior of Column
 - c.Design of Column of Simple and Built-Up Section
 - d.Design of Lateral Bracing of Compression Member
 - e.Design of Eccentrically Loaded Column

f. Design of Column Bases

- i. Axially loaded column bases
- ii. Eccentrically loaded column bases
- g. Design of Column Splices
- 7. Flexure Members [13 hours]
 - a. Types of Beams
 - b.Design of Simple Beam
 - c.Design of Built-Up Beam
 - d.Design of Plate Girder
 - i.Element of plate girders
 - ii.Preliminary design
 - iii. Design for bending, shear, deflection and lateral stability
 - iv.Curtailment of plate
 - v. Design of web and flange splice
- 8. Design of Roof Trusses [4 hours]
 - a. Types of Roof Truss and Components of Roof Truss
 - b.Loads on Roof Truss
 - c.Design of Roof Components

PART B: TIMBER STRUCTURES

- 1. Timber Structures and Design Methods [2 hours]
 - a.Introduction to Timber Structures
 - b. Structural Timber and Factors Affecting the Strength of Timber
 - c.Design Methods and Basis for Design
- 2. Joints in Timber Structures [2 hours]
 - a. Types of Joints
 - b.Design of Bolted Joints
 - c.Design of Nailed Joints
- 3. Design of Compression Members [3 hours]
 - a. Types of Timber Columns
 - b.Design of Timber Column
 - c.Introduction to Column Bases
- 4. Design of Flexure Member [3 hours]
 - a. Types of Beams
 - b.Design of Timber and Flitched Beam

Course Project:

1. A Course Project on integrated design of a building/industrial structure

Reference books:

- 1. "Limit State Design of Steel Structures" S.K. Duggal Tata McGraw-Hill Publishing Com.
- 2. "Design of Steel Structures" K.S. Sai Ram, PEARSON Education
- 3. "Design of Steel Structures" L.S. Negi, Tata McGraw-Hill Publishing Com.
- 4. "Design of Steel Structures" Ram Chandra, Standard Book House