THE REACTION OF KRYPTON DIFLUORIDE WITH XENON HEXAFLUORIDE IN NONAQUEOUS SOLVENTS

V. D. Klimov, V. N. Prusakov, and V. B. Sokolov

UDC 546:535.33/34:539.19

Krypton difluoride reacts with Lewis fluoro acids to form complexes with different compositions: $KrF_2 \cdot MF_5$, $KrF_2 \cdot MF_5$, $2KrF_2 \cdot MF_4$, $KrF_2 \cdot MF_3$ (M = As, Sb, Ta, Nb, Ti, Sn, B) [1, 2]. Infrared and Raman data [3, 4] indicate that, like the pseudoisoelectronic XeF_2 which reacts with the formation of the XeF^+ cation [5], krypton difluoride forms compounds containing the KrF^+ cation. These compounds can be considered to be ionic: KrF^+MF_6 , $KrF^+M_2F_{11}$, $[(KrF^+)_2][MF_6]^{2r}$, KrF^+MF_4 [1, 4]. Xenon hexafluoride enters into complex-forming reactions with similar fluoro acids, forming compounds containing XeF_5^+ and $Xe_2F_{11}^+$ cations [6, 7]. Moreover, XeF_6 displays amphoteric properties by acting as a fluoride-ion acceptor, forming the complex anions XeF_7^- and XeF_8^{2r} [9].

The present paper reports the preparation of a third type of complex, the molecular compound KrF_2 · XeF_6 , and considers the question of the relative tendency of KrF_2 to give up a fluoride ion. The krypton difluoride was synthesized in an electric discharge [1], and the xenon hexafluoride was prepared by heating a mixture of xenon and fluorine in a molar ratio of 1:10 at 300°C and a pressure of 30 atm [10]. KrF_2 · XeF_6 was synthesized by dissolving KrF_2 and XeF_6 in bromine pentafluoride or anhydrous hydrogen fluoride. The solubility of KrF_2 in BrF_5 at 20° is 16.5 moles per 1000 g of BrF_5 [11], while the solubility of xenon hexafluoride is about 11 moles. The solubilities of the two fluorides in HF are close to those in BrF_5 .

Solutions of KrF_2 and XeF_6 in a molar ratio of 2:1 were light yellow in color. The excess solvent and KrF_2 were evaporated under vacuum at -25° to constant weight. This left a solid with the stoichiometric composition (as indicated by gravimetric analysis and measurement of the decomposition products). The product was a color-less crystalline material with a saturated vapor pressure of about 1 mm Hg at -10° and 11 mm Hg at 20° . It distilled under vacuum in a molar ratio of 1:1. Through the use of a NaF column we were able to separate the components of the gas mixture and to confirm the assumption that KrF_2 has only basic properties:

$$(\mathrm{Kr}\mathrm{F}_{\mathtt{2}}\cdot\mathrm{Xe}\mathrm{F}_{\mathtt{6}})\underset{\mathtt{S}}{\to}\mathrm{Kr}\mathrm{F}_{\mathtt{2}(g)}+\mathrm{Xe}\mathrm{F}_{\mathtt{6}\cdot g)}\overset{\mathtt{n}\mathrm{NaF}}{\longrightarrow}\mathrm{Xe}\mathrm{F}_{\mathtt{6}}\cdot n\mathrm{NaF}+\mathrm{Kr}\mathrm{F}_{\mathtt{2}}(\mathrm{Kr}+\mathrm{F}_{\mathtt{2}})\,.$$

The melting point of the complex was determined in a quartz capillary and was found to be $40 \pm 2^{\circ}$. Melting was accompanied by considerable evolution of gas, but the material was stable below 0° . $KrF_2 \cdot XeF_6$ decomposes slowly at room temperature in accordance with the following equation (krypton diffuoride decomposes to the elements at room temperature, and the rate constant for decomposition of $KrF_2(g)$ at 20° is $3.1 \cdot 10^{-5}$ sec⁻¹ in a nickel reactor with 5 / V = 0.95 [1]):

$$K_rF_2 \cdot X_eF_6 \longrightarrow K_rF_2 + X_eF_6 \longrightarrow K_r + F_2 + X_eF_6$$
.

The IR spectrum of the complex was recorded at 77°K. The window of the cell was cooled with liquid nitrogen, and the components of the gas phase over KrF₂· XeF₆ at 20° were condensed on the window inside the cell. The low-temperature spectra of KrF₂ and XeF₆ were first recorded (Fig. 1).

(Presented by Academician I. V. Tananaev, March 18, 1974.) Translated from Doklady Akademii Nauk SSSR, Vol. 217, No. 5, pp. 1077-1079, August, 1974. Original article submitted February 20, 1974.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

Fig. 1. Low-temperature IR spectra: a) KrF₂· XeF₆; b) KrF₂; c) XeF₆, all at 77°K, and d) CsF· XeF₆ (Cs+XeF₇⁻) at 20°C. Broken lines are for the gaseous material at 20°C.

Fig. 2. IR spectra of $XeF_6 \cdot SbF_5(s)$ (a) and $KrF_2 \cdot SbF_5(s)$ (b).

The spectrum of solid krypton difluoride shows well-defined maxima at 520, 536, and 573 cm⁻¹. The intensities of the bands changed with an increase in temperature, which we attribute to polymerization of KrF₂ at 77°K. The band at 573 cm⁻¹ is assigned to Kr—F stretching in the monomer molecule, and the bands at 520 and 536 cm⁻¹ are assigned to polymeric forms of KrF₂.

The low-temperature spectrum of xenon hexafluoride contained bands of average intensity at 583 and 568 cm⁻¹ and a strong band at 616 cm⁻¹. This spectrum of XeF₆ agrees satisfactorily with the spectrum of XeF6 in an argon matrix at 4°K [12]. On the basis of the IR spectra, which are shown in Fig. 1. we can exclude the ionic form of the complex KrF+XeF₇ (Kr-F stretching in the diatomic cation KrF+ in complexes of KrF2 appear as bands in the region from 590 to 630 cm⁻¹[1, 4]).* The spectroscopic and physicochemical data obtained in the present work indicate weak association of KrF2 and XeF 6, which suggests formation of a molecular compound. Similar complexes of inert gases are known [13]: XeF2 · XeF4, XeF2 · IF5. $XeF_2 \cdot XeOF_4$, $XeF_2 \cdot (XeF_5 + AsF_6^-)$, etc. Linking of the components is via weak electrostatic interaction of the positively charged inert gas atom with the fluorine-containing ligands, which have a negative charge.

Since formation of the molecular compound $KrF_2 \cdot XeF_6$ was established, it seemed of interest to determine the location of krypton diffuoride in the xenon fluoride electron-donor series. With this aim, we synthesized complexes of KrF_2 with antimony pentafluoride. Figure 2 shows the IR spectra of the resulting compounds, $Kr_2 \cdot SbF_5$ and $XeF_6 \cdot SbF_5$.

The spectrum of $XeF_6 \cdot SbF_5$ exhibits strong absorption in the 600-700 cm⁻¹ region and narrow bands of average intensity at 420, 550, and 582 cm⁻¹. When the compound is described on the basis of an ionic model, the bands in the 600-700 cm⁻¹ region are assigned to Sb-F stretching in the distorted octahedral anion S-F, and the narrow bands are assigned to Xe-F stretching in the pseudooctahedral cation XeF_5 of C_{4V} . Similarly, the krypton difluoride compound can be assumed to be XeF_5 +SbF₆ (violation of the selection rules for anions of octahedral symmetry in solids cannot be accepted as proof of the absence of an ionic structure and can be attributed to a decrease in symmetry of the anion in the crystal [14]).

A solid of the composition $XeF_6 \cdot SbF_5$ was separated from a solution of KrF_2 , XeF_6 , and SbF_5 (1:1:1) in BrF_5 , which

indicates that XeF₆ has stronger donor properties than KrF₂, and this is confirmed by the fact that XeF₆ replaces KrF₂ in its complexes.

It is known that krypton difluoride fluorinates xenon and the lower xenon fluorides to the hexafluoride [1]. Therefore, it is not possible to determine experimentally the place of KrF₂ with respect to XeF₂ and XeF₄, as it is in the case of XeF₆. However, published data [4, 15] and our data permit the conclusion that compounds of xenon difluoride with AsF₅, BF₃, and GeF₄ are stable at higher temperatures than are the corresponding compounds of krypton difluoride.

^{*} The band at 687 cm⁻¹ in the KrF⁺Sb₂F₁₁ * spectrum was assigned to the KrFF vibration on the assumption that stretching frequencies are the same in the isoelectronic KrF+ and BrF [1].

Taking into account enthalpies of ionization of KrF₂ (232 kcal/mole), XeF₂ (211), XeF₄ (219), and XeF₆ (206) (calculated by the Bom-Haber cycle), the lattice energies of the compounds formed by these fluorides with antimony pentafluoride (estimated by the Kapustinskii method), and certain experimental data [16] on the complex-forming reactions of xenon tetrafluoride, it can be concluded that the relative tendency of inert gas fluorides to give up fluoride ions decreases in the following series:

 $XeF_6(XeF_5^+, Xe_2F_{11}^+) > XeF_2(XeF^+, Xe_2F_3^+) > KrF_2(KrF^+) > XeF_4(XeF_3^+)$.

LITERATURE CITED

- 1. V. N. Prusakov and V. B. Sokolov, At. Energ., 31, 259 (1971).
- 2. H. Selig and R. D. Peacock, J. Am. Chem. Soc., 86, 3895 (1964).
- 3. B. Liu and H. F. Schaefer, J. Chem. Phys., <u>55</u>, 2369 (1971).
- 4. B. Frlec and J. H. Holloway, J. Chem. Soc., Chem. Commun., 1973, 370.
- 5. F. O. Sladky, P. A. Bulliner, and N. Bartlett, J. Chem. Soc., A, 1969, 2179.
- 6. N. Bartlett, Endeavour, 31, 107 (1972).
- 7. K. Leary and N. Bartlett, J. Chem. Soc., Chem. Commun., 1973, 131.
- 8. R. D. Peacock, H. Selig, and J. Sheft, Proc. Chem. Soc., 1964, 285.
- 9. G. D. Moody and H. Selig, J. Inorg. and Nucl. Chem., 28, 2429 (1966).
- 10. J. G. Malm and E. H. Appelman, Atomic Energy Rev., 7, 3 (1969).
- 11. V. N. Prusakov and V. B. Sokolov, Zh. Fiz. Khim., 45, 2950 (1971).
- 12. H. Kim, Bull. Am. Phys. Soc., 13, 425 (1968).
- 13. N. Bartlett and M. Veschberg, Zs. Anorg. u. Allgem. Chem., 385, 5 (1971).
- 14. K. O. Christe and C. J. Schack, Inorg. Chem., 9, 2296 (1970).
- 15. N. Bartlett and F. O. Sladky, J. Am. Chem. Soc., 90, 5316 (1968).
- 16. R. J. Gillespie and B. Landa, J. Chem. Soc., Chem. Commun., 1971, 1543.