Algebraic Number Theory

Ikhan Choi

July 22, 2022

Contents

Ι	Algebraic numbers	2
II	Class field theory	3
1	Local class field theory 1.1 Lubin-Tate theory	4
2	1.2 Kronecker-Weber theorem	4 5
III	Arithmetic geometry	6
IV	Langlands program	7
3	L-functions	8
	3.1 Dirichlet L-functions	Q

Part I Algebraic numbers

Part II Class field theory

Chapter 1

Local class field theory

- 1.1 Lubin-Tate theory
- 1.2 Kronecker-Weber theorem

Chapter 2

Global class field theory

Part III Arithmetic geometry

Part IV Langlands program

Chapter 3

L-functions

Riemann $\zeta(s)$ Dedekind $\zeta_K(s)$ Hasse-Weil $\zeta_X(s)$

3.1 Dirichlet *L*-functions

3.1 (Hecke character). Dirichlet character can be understood as a group homomorphism $\chi: \widehat{\mathbb{Z}}^{\times} \to \mathbb{C}$ of finite order, which means that there is n such that χ factors through $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

In order to construct an L-function from a character, we need to extend a character as a function of ideals. We interpret $(\mathbb{Z}/n\mathbb{Z})^{\times}$ as the ray class group modulo \mathfrak{m} .

To extend the order of a character to possibly infinite cases, Hecke character is defined a character of an idele class group $C_K := \mathbb{A}_K^\times/K^\times$.

Dirichlet (Hecke) *L*-functions for ray-class characters $\chi:C_K\to\mathbb{C}$:

$$L(\chi,s) = \sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{ prime}} \frac{1}{1 - \chi(\mathfrak{p})N(\mathfrak{p})^{-s}}$$

Artin *L*-functions for a Galois representation $\rho : Gal(L/K) \to GL_n(\mathbb{C})$:

$$L(\rho,s) = \prod_{\mathfrak{p} \text{ prime}} \frac{1}{\det(1 - \rho(\operatorname{Frob}_{\mathfrak{p}})N(\mathfrak{p})^{-s})}$$

Elliptic curves L(E,s)Modular forms L(f,s)