Exercici 2: Demostra el següent corol·lari:

$$C(\mathcal{B}_2^*, \mathcal{B}_1^*) = (C(\mathcal{B}_1, \mathcal{B}_2))^t$$

On C és la matriu de canvi de base; i $\mathcal{B}_1, \mathcal{B}_2$ són dues bases de l'espai E de dimensió finita.

Recordem que si tenim l'aplicació lineal $f: E \longrightarrow F$ i definim $f^*: F^* \longrightarrow E^*$, aleshores

$$M_{\mathcal{B}_{F^*}\mathcal{B}_{E^*}}(f^*) = (M_{\mathcal{B}_E}\mathcal{B}_F(f))^t \tag{1}$$

Definim dues bases d'un espai E de dimensió finita i una base dual per cada base de E

$$\mathcal{B}_1 = \{v_1, \dots, v_n\}$$
 $\mathcal{B}_1^* = \{v_1^*, \dots, v_n^*\}$
 $\mathcal{B}_2 = \{u_1, \dots, u_n\}$ $\mathcal{B}_2^* = \{u_1^*, \dots, u_n^*\}$

Definim ara l'endomorfisme f de E de la següent manera:

$$f: E \longrightarrow E$$

 $f(v_i) \mapsto u_i, \forall i = 1, \dots, n$

D'aquesta manera, f és l'aplicació de canvi de base de \mathcal{B}_1 a \mathcal{B}_2 . Si aconseguim demostrar que f^* és la funció de canvi de base de \mathcal{B}_2^* a \mathcal{B}_1^* , per (1) haurem demostrat el corol·lari.

Per definició, f^* serà l'endomorfisme de E^* tal que

$$f^*: E^* \longrightarrow E^*$$
$$\omega \mapsto \omega \circ f$$

Per demostrar que f^* és la funció de canvi de base, hem de demostrar que

$$f^*(u_i^*) = v_i^*, \forall i = 1, ..., n$$

Per la definició de f^* sabem que

$$f^*(u_i^*)(v_j) = (u_i^* \circ f)(v_j) = u_i^*(f(v_j)) = u_i^*(u_j), \forall i, j = 1, \dots, n$$
(2)

I de la igualtat (2) podem veure que

$$(u_i^* \circ f)(v_j) = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases} \implies (u_i^* \circ f) = v_i^*, \forall i = 1, \dots, n$$

D'on concluïm que $f^*(u_i^*) = v_i^*, \forall i = 1, ..., n$; que significa que f^* és la funció de canvi de base \mathcal{B}_2^* a \mathcal{B}_1^* , demostrant així el corol·lari.