Model estymujący temperaturę Pieca Zawiesinowego

Mikołaj Piórczyński, Karol Rogoziński Mateusz Borowski, Jędrzej Chmiel, Jakub Sobolewski

Eksploracja danych

znajdowanie zależności, analiza rozkładów, analiza korelacji

Przygotowanie danych

- usunięcie danych, kiedy piec był wyłączaczy
- zmniejszenie wariancji danych -> lepszy opis zjawiska
- feature engineering, wybraliśmy najbardziej skorelowane dane
- dane pogodowe

Badania i brainstorming

- zaimplementowane 3 różne koncepcje
- analiza wpływu interpelacji
- duża liczba danych

Model - XGBoost

- wyjaśniany
- dokładny
- prosty koncepcyjnie
- szeregi czasowe (ale bez trendu i wariancji)
- nie patrzymy na dane z przyszłości (lookahead)

Przepływ danych

Walidacja

walidacja krzyżowa

Variable Importance

Wyjasnialność

Break Down

Wynik

RMSE: 4,5

godzina

Plany rozwój

- rozwinąć wykorzystanie pogody
- udoskonalony feature engineering
- dopracowanie hiper parametrów

