Esame di Algebra e Geometria del 28/1/2020

Si risolvano i seguenti esercizi, <u>motivando tutti i passaggi e scrivendo le definizioni</u> che si ritengono opportune:

- [.../7] 1. Sia $A = \{a, b, c\}$ e denotiamo con $A^{(4)}$ l'insieme delle parole di lunghezza 4 sull'alfabeto A.
 - (a) Quanti elementi ha $A^{(4)}$? E quanti elementi ha $\mathcal{P}(A \times A^{(4)})$?
 - (b) Consideriamo la funzione $f:A^{(4)}\to \mathcal{P}(A)$ tale che, per ogni parola $u\in A^{(4)},\ f(u)$ è l'insieme delle lettere presenti nella parola u. Dire se f è una funzione iniettiva e/o suriettiva e motivare bene la risposta.
 - (c) Si consideri la relazione \mathcal{R} su $A^{(4)}$ tale che due parole sono in relazione se hanno lo stesso numero di lettere b, cioè per ogni $u, v \in A^{(4)}$:

$$u \mathcal{R} y$$
 se e solo se $\#(b, u) = \#(b, v)$.

Dire se \mathcal{R} è una relazione d'equivalenza e descrivere le classi d'equivalenza, motivando la risposta.

[.../5] 2. Provare per induzione che, per $n \ge 1$:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

[.../5] 3. Sull'insieme $X = \{a, b, c, d\}$ si consideri l'operazione * determinata dalla seguente tabella:

*	a	b	c	d
a	a	a	a	a
b	a	b	c	d
c	a	c	a	c
d	a	d	c	b

Dire se esiste un elemento neutro e quali elementi sono invertibili (simmetrizzabili).

Si consideri la funzione $f: X \to \mathbb{Z}_4$ tale che $f(a) = [0]_4$, $f(b) = [1]_4$, $f(c) = [2]_4$ e $f(d) = [3]_4$. Si dica se f è un omomorfismo tra (X, *) e (\mathbb{Z}_4, \cdot) .

[.../5] 4. Dire se il seguente sistema di 2 equazioni in 3 incognite ha soluzioni e quante ne ha, e calcolarle nel caso in cui esistano:

$$\begin{cases} x & -2y & -z = 1 \\ -2x & +4y & +2z = -2 \end{cases}$$

[.../7] 5. Si consideri l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da

$$f(x, y, z) = (4x - y, 2x + y, x + z)$$
.

- Trovare la dimensione di Im f e Ker f.
- Trovare gli autovalori di f, e per ogni autovalore calcolare la molteplicità algebrica e geometrica e l'autospazio corrispondente. Scegliere un autospazio tra quelli calcolati e mostrare che è un sottospazio vettoriale di \mathbb{R}^3 .
- Dire se esiste una base di \mathbb{R}^3 formata da autovettori di f.