

The only app you need to prepare for

JEE MAIN

JEE ADV.

BITSAT

WBJEE

MHT CET

and more...

4.8

Rating on Google Play

50,000+

Students using daily

2,00,000+

With MARKS app you can do all these things for free **

- Solve Chapter-wise PYQ of JEE Main, JEE Advanced, NEET, BITSAT, WBJEE, MHT CET & more
- Create Unlimited Custom Tests for any exam
- Attempt Top Questions for JEE Main which can boost your rank
- Track your exam preparation with Preparation Trackers
- Complete daily goals, rank up on the leaderboard & compete with other aspirants

CIRCULAR MOTION

Motion along a circular path: when a body is moving along a circular path with constant speed called uniform circular motion, when speed is not constant, motion is said to be non-uniform circular motion.

$$\overset{\mathbf{r}}{F_c} = \frac{mv^2}{r} (-\hat{\mathbf{r}}) \; ; \; \hat{\mathbf{r}} = \text{unit vector along radially outward}$$

A force required to keep of body on circular path always acts in radially

inward direction called centripetal force whose magnitude is $\frac{mv^2}{r}\,.$

For non-uniform circular motion

$$\overset{\mathbf{I}}{F} = F_{c}(-\hat{\mathbf{r}}) + F_{t}(\hat{\mathbf{n}})$$

n = unit vector along direction of motion or velocity

$$F_c = \frac{mv^2}{r}$$
 and $F_t = m.\frac{dv}{dt}$

 $\overset{\Gamma}{a} = \text{Re sul tan t or net acceleration} = a_{c}(-\hat{r}) + a_{t}(\hat{n})$

$$=\frac{v^2}{r}\Big(-\hat{r}\Big)+\frac{dv}{dt}\Big(\hat{n}\Big)$$

$$\begin{vmatrix} \mathbf{r} \\ \mathbf{a} \end{vmatrix} = \sqrt{\left(\frac{\mathbf{v}^2}{\mathbf{r}}\right)^2 + \left(\frac{\mathbf{d}\mathbf{v}}{\mathbf{d}\mathbf{t}}\right)^2}$$

$$\alpha = \tan^{-1} \left(\frac{dv/dt}{v^2/r} \right)$$

Angle of banking: Angle by which an outer edge of circular track is raised to provide the necessary centripetal force through the horizontal component of normal reaction.

angle of banking
$$\theta = tan^{-1} \left(\frac{v^2}{rg} \right)$$

Motion of vehicle on a horizontal circular track:

$$\frac{mv^2}{r}$$
 is being provided by force of static friction i.e., $F_s = u_s N$ and $N = mg \implies v^2 = u_s rg$ or $v = \sqrt{u_s rg}$

Condition for no skidding on circular track

$$F_s \ge \frac{mv^2}{r}$$
 or $u_s mg \ge \frac{mv^2}{r}$ or $v \le \sqrt{u_s rg}$

Angle of bending of a cyclist on a rough horizontal circular track to move on is given

$$\tan \theta = \frac{v^2}{rg} \Rightarrow \theta = \tan^{-1} \left(\frac{v^2}{rg}\right)$$

 F_s provides necessary centripetal force $\frac{mv^2}{r}$ and N=mg. For safe turn there is a rotational equilibrium hence

no torque about A (Centre of gravity of cycle and cyclist).

Vertical Cricular Motion

u is the velocity imparted at the bottom of the vertical circle. At P, equation of motion

$$T - mg\cos\theta = \frac{mv^2}{r} \qquad ...(i)$$

and from mechanical energy conservation principle,

$$\frac{1}{2}mu^2 = mgl(1-\cos\theta) \Rightarrow v^2 = u^2 - 2gl(1-\cos\theta)$$

from (i) and (ii) $T = mg \cos \theta + \frac{m}{1} \left[u^2 - 2gl(1 - \cos \theta) \right]$

$$= \frac{m}{l} \left[u^2 - 2gl + 3gl \cos \theta \right] \qquad ...(iii)$$

from (ii) and (iii) we have velocity and tension at any point on the verticle circular path

For just to complete the verticle circle

$$u = \sqrt{5gl} = velocity$$

At A,
$$v_A = \sqrt{5gl}$$
; $T_A = 6mg = tension in string when block is at A$

At B,
$$V_B = \sqrt{3gl}$$
; $T_B = 3$ mg

At C,
$$V_C = \sqrt{gl}$$
; $T_C = mg$

$$F_s.h \le mga$$
 ;

$$\frac{mv^2}{r}.h \le mg \, a$$

h is the height of centre of gravity of automobile from surface of road.

$$v \le \sqrt{\frac{arg}{h}}$$

While toppding wheels nearer to centre of track loose the contact.

The only app you need to prepare for

JEE MAIN

JEE ADV.

BITSAT

WBJEE

MHT CET

and more...

4.8

Rating on Google Play

50,000+

Students using daily

2,00,000+

With MARKS app you can do all these things for free **

- Solve Chapter-wise PYQ of JEE Main, JEE Advanced, NEET, BITSAT, WBJEE, MHT CET & more
- Create Unlimited Custom Tests for any exam
- Attempt Top Questions for JEE Main which can boost your rank
- Track your exam preparation with Preparation Trackers
- Complete daily goals, rank up on the leaderboard & compete with other aspirants

