Relational Database Design

NORMALIZATION OF RELATIONAL DATABASES

Normal Forms Defined Informally

- 1st normal form
 - All attributes depend on the key
- 2nd normal form
 - All attributes depend on the whole key
- 3rd normal form
 - All attributes depend on nothing but the key

First Normal Form

Disallows

- o composite attributes
- multivalued attributes
- nested relations; attributes whose values for an individual tuple are non-atomic
- Considered to be part of the definition of a relation
- Most RDBMSs allow only those relations to be defined that are in First Normal Form

Normalization into 1NF

(a)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
A		A	A

(b)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

(c)

DEPARTMENT

Dname Dnumbe		Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

Second Normal Form

 A relation is in second normal form (2NF) if every non-key attribute is fully functionally dependent on the primary key.

Normalizing into 2NF and 3NF

Third Normal Form

 A relation is in third normal form (3NF) if it is in 2NF and no non-key attribute is transitively dependent on the primary key.

NOTE:

- In X -> Y and Y -> Z, with X as the primary key, we consider this a problem only if Y is not a candidate key.
- When Y is a candidate key, there is no problem with the transitive dependency.
- o E.g., Consider EMP (SSN, Emp#, Salary).
 - Here, SSN -> Emp# -> Salary and Emp# is a candidate key.

Normalizing into 2NF and 3NF

Normal Forms Defined

- 1st normal form
 - All attributes depend on the key
- 2nd normal form
 - All attributes depend on the whole key
- 3rd normal form
 - All attributes depend on nothing but the key

Informal Guidelines for Good Database Design

- GUIDELINE 1: Informally, each tuple in a relation should represent one entity or relationship instance.
 - Attributes of different entities (EMPLOYEEs, DEPARTMENTs, PROJECTs) should not be mixed in the same relation
 - Only foreign keys should be used to refer to other entities
- Bottom Line: Design a schema that can be explained easily relation by relation. The semantics of attributes should be easy to interpret.

An example relational database schema

Informal Guidelines for Good Database Design

GUIDELINE 2:

- Relations should be designed such that their tuples will have as few NULL values as possible
- Attributes that are NULL frequently could be placed in separate relations (with the primary key)