Optimization

Andrew An Bian, Francesco Locatello

23-24 March, 2017

Overview

Convex Sets

Convex Functions

Duality

Descent-based Minimization Methods

Optimization for Matrix Factorization

Convex Sets

A set ${\cal C}$ is convex if the line segment between any two points in ${\cal C}$ lies in ${\cal C}$

$$\forall \mathbf{x}_1, \mathbf{x}_2 \in C, \forall \lambda \in [0, 1] \implies \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in C$$

Convex Sets

A set ${\cal C}$ is convex if the line segment between any two points in ${\cal C}$ lies in ${\cal C}$

$$\forall \mathbf{x}_1, \mathbf{x}_2 \in C, \forall \lambda \in [0, 1] \implies \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in C$$

Convex Combination

 \mathbf{x} is a convex combination of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ if

$$\mathbf{x} = \lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 + \ldots + \ldots + \lambda_n \mathbf{x}_n$$

with
$$\lambda_1 + \lambda_2 + \ldots + \lambda_n = 1, \lambda_i \geq 0$$

Hyperplanes

A set of the form

$$\left\{\mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b\right\}$$

Hyperplanes

A set of the form

$$\left\{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \right\}$$

Is a hyperplane convex?

Hyperplanes

A set of the form

$$\left\{\mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b\right\}$$

Is a hyperplane convex?

Let x_1 and x_2 be the elements of the hyperplane

$$\mathbf{a}^{T}(\lambda \mathbf{x}_{1} + (1 - \lambda)\mathbf{x}_{2}) = \lambda \mathbf{a}^{T}\mathbf{x}_{1} + (1 - \lambda)\mathbf{a}^{T}\mathbf{x}_{2}$$
$$= \lambda b + (1 - \lambda)b = b$$

Balls

$$B(\mathbf{x}_c, r) = \{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}_c\|_2 \le r\}$$

Balls

$$B(\mathbf{x}_c, r) = \{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}_c\|_2 \le r\}$$

Is a ball convex?

Balls

$$B(\mathbf{x}_c, r) = \{ \mathbf{x} \mid \|\mathbf{x} - \mathbf{x}_c\|_2 \le r \}$$

Is a ball convex?

Let \mathbf{x}_1 and \mathbf{x}_2 be the elements of the ball : $\|\mathbf{x}_i - \mathbf{x}_c\|_2 \leq r$

$$\|\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 - \mathbf{x}_c\|_2 = \|\lambda(\mathbf{x}_1 - \mathbf{x}_c) + (1 - \lambda)(\mathbf{x}_2 - \mathbf{x}_c)\|_2$$

$$\leq \lambda \|\mathbf{x}_1 - \mathbf{x}_c\|_2 + (1 - \lambda)\|\mathbf{x}_2 - \mathbf{x}_c\|_2$$

$$\leq r$$

Convexity Preserving Operations

Intersection

If C_s is convex for every $s \in S$ then $\bigcap_{s \in S} C_s$ is convex

Convexity Preserving Operations

Intersection

If C_s is convex for every $s \in S$ then $\bigcap_{s \in S} C_s$ is convex

Affine transformations

If S is convex and $f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, $f(S) = \{f(\mathbf{x}) \mid \mathbf{x} \in S\}$ is convex

- ▶ Scaling $\alpha S = \{\alpha \mathbf{x} \mid \mathbf{x} \in S\}$
- ▶ Translation $S + \mathbf{a} = \{\mathbf{x} + \mathbf{a} \mid \mathbf{x} \in S\}$

Sum of two sets

$$S_1 + S_2 = \{ \mathbf{x} + \mathbf{y} \mid \mathbf{x} \in S_1, \mathbf{y} \in S_2 \}$$

Non Convex Sets

Union of two sets

Not convex. Let K=[-1,0] and L=[1,2]. Take one point in K and another in L and draw a line.

You will see that some points on the line fall outside of the union.

Non Convex Sets

Union of two sets

Not convex. Let K=[-1,0] and L=[1,2]. Take one point in K and another in L and draw a line.

You will see that some points on the line fall outside of the union.

Circle

Take two points on the circle and draw a line joining them.

There are some points on the line which are not on the circle.

Convex Functions

Definition

f is convex if $\forall \mathbf{x},\mathbf{y}$ and $\lambda \in [0,1]$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Convex Functions

Definition

f is convex if $\forall \mathbf{x}, \mathbf{y}$ and $\lambda \in [0,1]$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Epigraph

f is a convex function iff its epigraph is convex

$$\{(\mathbf{x},t) \mid \mathbf{x} \in domain(f), f(\mathbf{x}) \le t\}$$

Maximum

$$f(x) = \max(x_1, x_2)$$

Maximum

$$f(x) = \max(x_1, x_2)$$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \max(\lambda_1 x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2)$$

$$\leq \lambda \max(x_1, x_2) + (1 - \lambda) \max(y_1, y_2)$$

$$= \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Maximum

$$f(x) = \max(x_1, x_2)$$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \max(\lambda_1 x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2)$$

$$\leq \lambda \max(x_1, x_2) + (1 - \lambda) \max(y_1, y_2)$$

$$= \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

$$f(u,v) = uv$$

Maximum

$$f(x) = \max(x_1, x_2)$$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \max(\lambda_1 x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2)$$

$$\leq \lambda \max(x_1, x_2) + (1 - \lambda) \max(y_1, y_2)$$

$$= \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

$$f(u,v) = uv$$

Hint:

for a convex function we have:

$$f\left(\frac{\mathbf{x} + \mathbf{y}}{2}\right) \le \frac{f(\mathbf{x}) + f(\mathbf{y})}{2}$$

A Visual Proof

Formal Proof

▶ To prove convexity, the definition should hold for **ALL** \mathbf{x} , \mathbf{y} and λ

Formal Proof

- ▶ To prove convexity, the definition should hold for **ALL** \mathbf{x} , \mathbf{y} and λ
- ▶ To prove non-convexity, it is enough to find **ONE** set of x, y and λ which does not hold

Formal Proof

- ▶ To prove convexity, the definition should hold for **ALL** \mathbf{x} , \mathbf{y} and λ
- ▶ To prove non-convexity, it is enough to find **ONE** set of x, y and λ which does not hold
- ▶ Take $\lambda = \frac{1}{2}$, (u, v) = (-1, 1), (u', v') = (1, -1)

$$0 = f(0,0) \ge \frac{f(-1,1) + f(1,-1)}{2} = -1$$

The Lagrangian

We have an optimization problem (not necessarily convex).

minimize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \leq 0$
 $h_i(\mathbf{x}) = 0$

Take the constraints into account by augmenting the objective function

Lagrangian

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_{i} \lambda_{i} g_{i}(\mathbf{x}) + \sum_{i} \nu_{i} h_{i}(\mathbf{x})$$

The Lagrange Dual Function

Dual Function

$$d(\boldsymbol{\lambda},\boldsymbol{\nu}) = \inf_{\mathbf{x}} L(\mathbf{x},\boldsymbol{\lambda},\boldsymbol{\nu})$$

- Dual function is always concave!
- It is a lower bound on the optimal value p^* of the original problem for $\lambda \geq 0$:

$$d(\lambda, \nu) \le p^*$$

Proof of Lower Bound

Suppose $\tilde{\mathbf{x}}$ is a feasible point for the original problem and $\lambda \geq 0$.

• $g_i(\tilde{\mathbf{x}}) \leq 0$ and $h_i(\tilde{\mathbf{x}}) = 0$

Proof of Lower Bound

Suppose $\tilde{\mathbf{x}}$ is a feasible point for the original problem and $\lambda \geq 0$.

•
$$g_i(\tilde{\mathbf{x}}) \leq 0$$
 and $h_i(\tilde{\mathbf{x}}) = 0$

$$\sum_{i} \lambda_{i} g_{i}(\tilde{\mathbf{x}}) + \sum_{i} \nu_{i} h_{i}(\tilde{\mathbf{x}}) \leq 0$$

Proof of Lower Bound

Suppose $\tilde{\mathbf{x}}$ is a feasible point for the original problem and $\lambda \geq 0$.

• $g_i(\tilde{\mathbf{x}}) \leq 0$ and $h_i(\tilde{\mathbf{x}}) = 0$

$$\sum_{i} \lambda_{i} g_{i}(\tilde{\mathbf{x}}) + \sum_{i} \nu_{i} h_{i}(\tilde{\mathbf{x}}) \leq 0$$

$$L(\tilde{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\tilde{\mathbf{x}}) + \sum_{i} \lambda_{i} g_{i}(\tilde{\mathbf{x}}) + \sum_{i} \nu_{i} h_{i}(\tilde{\mathbf{x}}) \leq f(\tilde{\mathbf{x}})$$

$$d(\lambda, \nu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu) \le L(\tilde{\mathbf{x}}, \lambda, \nu) \le f(\tilde{\mathbf{x}})$$

Linear Programming Example

We have a Linear Programming problem

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge 0$,

The Lagrangian is defined by

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \mathbf{c}^T \mathbf{x} - \boldsymbol{\lambda}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

Linear Programming Example

We have a Linear Programming problem

$$\begin{array}{ll}
\text{minimize} & \mathbf{c}^T \mathbf{x} \\
\text{subject to} & A\mathbf{x} = \mathbf{b} \\
\mathbf{x} \ge 0,
\end{array}$$

The Lagrangian is defined by

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \mathbf{c}^T \mathbf{x} - \boldsymbol{\lambda}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

The dual function is

$$d(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = -\boldsymbol{\nu}^T \mathbf{b} + \inf_{\mathbf{x}} (\mathbf{c}^T - \boldsymbol{\lambda}^T + \boldsymbol{\nu}^T \mathbf{A}) \mathbf{x}$$
$$d(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases} -\boldsymbol{\nu}^T \mathbf{b} & \text{if } \mathbf{c}^T - \boldsymbol{\lambda}^T + \boldsymbol{\nu}^T \mathbf{A} = 0 \\ -\infty & \text{else} \end{cases}$$

Lagrange Dual Problem

- ▶ The dual function $d(\lambda, \nu)$ gives a lower bound for $\lambda \ge 0$ and ν
- ▶ What is the *best* lower bound?

Lagrange Dual Problem

- ▶ The dual function $d(\lambda, \nu)$ gives a lower bound for $\lambda \ge 0$ and ν
- ▶ What is the *best* lower bound?

Lagrange Dual Problem

$$\begin{array}{ll}
\text{maximize} & d(\lambda, \nu) \\
\lambda, \nu & \text{subject to} & \lambda \geq 0.
\end{array}$$

Note that this is a convex problem!

Gradient Descent

$$\min_{\mathbf{x} \in \mathbf{R}^d} f(\mathbf{x})$$

update rule:

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \gamma_t \nabla f(\mathbf{x}^t)$$

Gradient Descent: Interpretation

Remember first order Taylor expansion around x

$$f(\mathbf{y}) \sim f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

▶ Now consider parameter x⁺ which is obtained by one step of gradient descent.

$$\mathbf{x}^+ = \mathbf{x} - \gamma \nabla f(\mathbf{x})$$

▶ x⁺ minimizes a combination of Taylor expansion penalised by distant to x as:

$$\mathbf{x}^{+} \sim \underbrace{f(\mathbf{x}) + \nabla f(\mathbf{x})^{T} (\mathbf{y} - \mathbf{x})}_{\text{Linear w.r.t } \mathbf{y}} + \frac{1}{2\gamma} \underbrace{\|\mathbf{y} - \mathbf{x}\|^{2}}_{\text{Quadratic}}$$

Gradient Descent: Interpretation

$$\mathbf{x}^{+} = \arg\min_{\mathbf{y}} \underbrace{f(\mathbf{x}) + \nabla f(\mathbf{x})^{T} (\mathbf{y} - \mathbf{x})}_{\text{Linear w.r.t y}} + \frac{1}{2\gamma} \underbrace{\|\mathbf{y} - \mathbf{x}\|^{2}}_{\text{Quadratic}}$$

Question: Using the above interpretation of update rule, explain why choosing smaller step size γ slows down optimization process.

Gradient Descent: Interpretation

$$\mathbf{x}^{+} = \arg\min_{\mathbf{y}} \underbrace{f(\mathbf{x}) + \nabla f(\mathbf{x})^{T} (\mathbf{y} - \mathbf{x})}_{\text{Linear w.r.t y}} + \frac{1}{2\gamma} \underbrace{\|\mathbf{y} - \mathbf{x}\|^{2}}_{\text{Quadratic}}$$

Question: Using the above interpretation of update rule, explain why choosing smaller step size γ slows down optimization process.

Answer: Smaller step size γ leads to a larger weight for the quadratic term that indicates closeness to the current parameter.

Stochastic Gradient Descent

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$$

Update rule:

$$\mathbf{x}^t = \mathbf{x}^{t-1} - \gamma_t \nabla f_r(\mathbf{x}^t)$$
 r uniformly from $\{1, \dots, n\}$

Pen & Paper: Unbiased Estimation of Gradient

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$$

Prove

$$\nabla f(\mathbf{x}) = \mathbf{E}_r \left[\nabla f_r(\mathbf{x}) \right]$$

where r is chosen uniformly from $\{1, \ldots, n\}$.

Pen & Paper: Unbiased Estimation of Gradient

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$$

Prove

$$\nabla f(\mathbf{x}) = \mathbf{E}_r \left[\nabla f_r(\mathbf{x}) \right]$$

where r is chosen uniformly from $\{1, \ldots, n\}$. solution:

$$\mathbf{E}_r \left[\nabla f_r(\mathbf{x}) \right] = \sum_i P(r=i) \nabla f_i(\mathbf{x}) = \sum_i \frac{1}{n} \nabla f_i(\mathbf{x}) = \nabla f(\mathbf{x})$$

SGD: step size issue

SGD with a constant step size obtains a suboptimal solution.

SGD: step size issue

SGD with a constant step size obtains a suboptimal solution.

The choice $\gamma_t=1/t$ guarantees convergence, while it slows down optimization for large t.

Coordinate Descent

$$\min f(x_1, x_2, \dots, x_d)$$

Update rule:

$$\begin{aligned} x_1^{t+1} &= \arg\min_{x_1} f(x_1, x_2^t, \dots, x_d^t) \\ x_2^{t+1} &= \arg\min_{x_2} f(x_1^{t+1}, x_2, x_3^t, \dots, x_d^t) \\ \dots \\ x_d^{t+1} &= \arg\min_{x_d} f(x_1^{t+1}, x_2^{t+1}, \dots, x_d) \end{aligned}$$

Pen & Paper: Coordinate Descent

Consider regression problem with the following objective function.

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2$$

where $\mathbf{y} \in \mathbf{R}^n$, $\mathbf{A} \in \mathbf{R}^{n \times d}$ with columns \mathbf{A}_1 , \mathbf{A}_2 , ..., and \mathbf{A}_d .

Write update rule of coordinate descent

Pen & Paper: Coordinate Descent

Consider regression problem with the following objective function.

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2$$

where $\mathbf{y} \in \mathbf{R}^n$, $\mathbf{A} \in \mathbf{R}^{n \times d}$ with columns \mathbf{A}_1 , \mathbf{A}_2 , ..., and \mathbf{A}_d .

- Write update rule of coordinate descent
- Solution:

$$0 \stackrel{!}{=} \nabla_{i} f(\mathbf{x}) = \mathbf{A}_{i}^{T} (\mathbf{A} \mathbf{x} - \mathbf{y}) = \mathbf{A}_{i}^{T} (\mathbf{A}_{i} x_{i} + \mathbf{A}_{-i} \mathbf{x}_{-i} - \mathbf{y})$$

$$\Leftrightarrow x_{i} = \frac{\mathbf{A}_{i}^{T} (\mathbf{y} - \mathbf{A}_{-i} \mathbf{x}_{-i})}{\mathbf{A}_{i}^{T} \mathbf{A}_{i}}$$

Optimization for non-negative matrix factorization

For a given matrix

$$f(\mathbf{U}, \mathbf{V}) = \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{V}^T\|^2$$
 Subject to $u_{i,j}, v_{j,z} \geq 0$

where $\mathbf{X}_{D\times N}, \mathbf{U}_{D\times K}$ and $\mathbf{V}_{N\times K}$.

- $f(\mathbf{U}, \mathbf{V})$ is convex with respect to \mathbf{U} , and convex w.r.t. \mathbf{V} . (Why?)
- $f(\mathbf{U}, \mathbf{V})$ is **not** jointly convex with respect to both of \mathbf{U} and \mathbf{V} .
- Alternating minimization is used to optimize the above objective.

Pen & Paper: Collaborative Filtering and SGD

$$f(\mathbf{U}, \mathbf{V}) = \frac{1}{|\Omega|} \sum_{(d,n) \in \Omega} \underbrace{\frac{1}{2} \left[\mathbf{X}_{dn} - (\mathbf{U}\mathbf{V}^T)_{dn} \right]^2}_{f_{d,n}}$$

and
$$\mathbf{U} \in Q_1 := \mathbf{R}^{D \times K}$$
, $\mathbf{V} \in Q_2 := \mathbf{R}^{N \times K}$.

Pen & Paper: Collaborative Filtering and SGD

$$f(\mathbf{U}, \mathbf{V}) = \frac{1}{|\Omega|} \sum_{(d, n) \in \Omega} \underbrace{\frac{1}{2} \left[\mathbf{X}_{dn} - (\mathbf{U}\mathbf{V}^T)_{dn} \right]^2}_{f_{d, n}}$$

and $\mathbf{U} \in Q_1 := \mathbf{R}^{D \times K}$, $\mathbf{V} \in Q_2 := \mathbf{R}^{N \times K}$.

▶ Stochastic Gradient: For one fixed element (d,n) of the sum, we derive the gradient entry (d,k) of \mathbf{U} , that is $\frac{\partial}{\partial u_{d,k}} \sum_{d',n} f_{d',n}(\mathbf{U},\mathbf{V})$, and analogously for the \mathbf{V} part.

$$\frac{\partial}{\partial u_{d,k}} \sum_{d',n} f_{d',n}(\mathbf{U}, \mathbf{V}) = -\left[\mathbf{X}_{dn} - (\mathbf{U}\mathbf{V}^T)_{dn}\right] v_{n,k}$$

$$\frac{\partial}{\partial v_{n',k}} \sum_{\mathbf{J}, \mathbf{J}'} f_{d,n'}(\mathbf{U}, \mathbf{V}) = -\left[\mathbf{X}_{dn} - (\mathbf{U}\mathbf{V}^T)_{dn}\right] u_{d,k}$$