4.3 Chi-Square Test of Independence: What Is It?

MBC 638

Data Analysis and Decision Making

13 of 32

Chi-Square Test for Independence

 χ² test for independence: a procedure used to determine if two variables are related or are statistically independent

Chi-Square Test for Independence

- x² test for independence: a procedure used to determine if two variables are related or are statistically independent
- Convention:
 - ∘ *H*₀:
 - ∘ *H*a:

15 of 32

Chi-Square Test for Independence

- x² test for independence: a procedure used to determine if two variables are related or are statistically independent
- Convention:
 - ∘ *H*₀:
 - H_a: Categorical Variable 1 and Categorical Variable 2 are not independent (i.e., there is a relationship).

16 of 32

Chi-Square Test for Independence

- x² test for independence: a procedure used to determine if two variables are related or are statistically independent
- Convention:
 - H₀: Categorical Variable 1 and Categorical Variable 2 are independent (i.e., there is *no* relationship).
 - H_a: Categorical Variable 1 and Categorical Variable 2 are not independent (i.e., there is a relationship).

Chi-Square Test for Independence

- x² test for independence: a procedure used to determine if two variables are related or are statistically independent
- Convention:
 - H₀: Categorical Variable 1 and Categorical Variable 2 are independent (i.e., there is *no* relationship).
 - H_a: Categorical Variable 1 and Categorical Variable 2 are not independent (i.e., there is a relationship).
- How it works:

18 of 32

Chi-Square Test for Independence

- χ² test for independence: a procedure used to determine if two variables are related or are statistically independent
- Convention:
 - H₀: Categorical Variable 1 and Categorical Variable 2 are independent (i.e., there is no relationship).
 - H_a: Categorical Variable 1 and Categorical Variable 2 are not independent (i.e., there is a relationship).
- How it works:
 - Compares "observed" counts and "expected" counts or frequencies

Chi-Square Test for Independence

 x² test for independence: a procedure used to determine if two variables are related or are statistically independent

Convention:

- H₀: Categorical Variable 1 and Categorical Variable 2 are independent (i.e., there is *no* relationship).
- H_a: Categorical Variable 1 and Categorical Variable 2 are not independent (i.e., there is a relationship).
- How it works:
 - Compares "observed" counts and "expected" counts or frequencies
 - Does not give kind (positive/negative) or intensity of relationship

 H_0 : Categorical Variable 1 and Categorical Variable 2 are independent.

 H_a : Categorical Variable 1 and Categorical Variable 2 are not independent.

Variable 2

Variable 1

22 of 32

Row

total Row total Grand

total

Setup for Analysis of Two-Way Tables

 H_0 : Categorical Variable 1 and Categorical Variable 2 are independent.

 H_a : Categorical Variable 1 and Categorical Variable 2 are not independent.

Variable 2

Variable 1

Put your data in a two-way table.

 H_0 : Categorical Variable 1 and Categorical Variable 2 are independent. H_a : Categorical Variable 1 and Categorical Variable 2 are not independent.

Variable 2 **Totals** Row Variable 1 total Row total Grand Col. Col. Col. Col. Col. Col. Col. **Totals** total total total total total total total total

- Put your data in a two-way table.
- Depending on the variables, use two or more columns or rows.

24 of 32

Setup for Analysis of Two-Way Tables

 H_0 : Categorical Variable 1 and Categorical Variable 2 are independent. H_a : Categorical Variable 1 and Categorical Variable 2 are not independent.

Example: Does day Variable 2 of week affect car sales? **Totals** Row Variable 1 total Row total Grand Col. Col. Col. Col. Col. Col. Col. Totals total total total total total total total total

- Put your data in a two-way table.
- Depending on the variables, use two or more columns or rows.

 H_0 : Categorical Variable 1 and Categorical Variable 2 are independent. H_a : Categorical Variable 1 and Categorical Variable 2 are not independent.

- Put your data in a two-way table.
- Depending on the variables, use two or more columns or rows.

26 of 32

Setup for Analysis of Two-Way Tables

- Put your data in a two-way table.
- Depending on the variables, use two or more columns or rows.

 H_0 : Categorical Variable 1 and Categorical Variable 2 are independent. H_a : Categorical Variable 1 and Categorical Variable 2 are not independent.

	Example: Does day of week affect car sales?		Variable 2							
			MON	TUES	WED	THUR	FRI	SAT	SUN	Totals
	Variable 1 Customer	Sale of car	Count data	Row total						
	lead resulting in:	Not selling a car	Count data	Row total						
		Totals	Col. total	Grand total						

- Put your data in a two-way table.
- Depending on the variables, use two or more columns or rows.

30 of 32

Setup for Analysis of Two-Way Tables

,	Example: Does day of week affect car		Variable 2							
sales?		MON	TUES	WED	THUR	FRI	SAT	SUN	Totals	
Variable 1 Customer	Sale of car	Count data	Row total							
lead resulting in:	Not selling a car	Count data	Row total							
	Totals	Col. total	Grand total							

- Put your data in a two-way table.
- Depending on the variables, use two or more columns or rows.
- In each cell, count the frequency of simultaneous occurrence.

Example: Does day of week affect car		Variable 2							
sales?			TUES	WED	THUR	FRI	SAT	SUN	Totals
Variable 1 Customer	Sale of car	Count data	Row total						
lead resulting in:	Not selling a car	Count data	Row total						
	Totals	Col. total	Grand total						

- Put your data in a two-way table.
- Depending on the variables, use two or more columns or rows.
- In each cell, count the frequency of simultaneous occurrence.
 - Discrete data: need a lot of data (> 5 counts per cell)

	Example: Does day of week affect car		Variable 2							
	sales?			TUES	WED	THUR	FRI	SAT	SUN	Totals
	Variable 1 Customer	Sale of car	Count data	Row total						
	lead resulting in:	Not selling a car	Count data	Row total						
		Totals	Col. total	Grand total						

- Put your data in a two-way table.
- Depending on the variables, use two or more columns or rows.
- In each cell, count the frequency of simultaneous occurrence.
 - Discrete data: need a lot of data (> 5 counts per cell)
 - No exact sample size specified