L10: Basi di spazi vettoriali (16-17)

Argomenti lezione:

- Dipendenza e indipendenza lineare
- Basi
- Dimensione
- Una base per Sol(SO)
- Dimensioni di sottospazi vettoriali
- Calcolo di dimensioni e basi

Introduzione

Esempio:

$$A_1 \coloneqq \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \quad A_2 \coloneqq \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_3 \coloneqq \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

 A_2 è <u>combinazione lineare</u> di A_1 e A_3 : $A_2 = 3A_1 - \frac{5}{2}A_3$

Segue che $k_1A_1 + k_2A_2 + k_3A_3$ si può scrivere:

$$k_1 A_1 + k_2 \left(3A_1 - \frac{5}{2}A_3 \right) + k_3 A_3 = (k_1 + 3k_2)A_1 + \left(k_3 - \frac{5}{2}k_2 \right) A_3$$

Da cui si ha: $L(A_1, A_2, A_3) \subseteq L(A_1, A_3)$

Inoltre sappiamo che $L(A_1, A_3) \subseteq L(A_1, A_2, A_3)$

Segue che: $L(A_1, A_3) = L(A_1, A_2, A_3)$

Introduzione

Osservazione: In qualunque spazio vettoriale V, se un vettore v_{r+1} è combinazione lineare dei vettori v_1, v_2, \dots, v_r allora si ha:

$$L(v_1, v_2, ..., v_r) = L(v_1, v_2, ..., v_r, v_{r+1})$$

<u>Interpretazione</u>: Se uno spazio vettoriale V è <u>generato</u> dai vettori $v_1, v_2, \dots, v_r, v_{r+1}$ e <u>uno di essi è combinazione lineare degli altri,</u> allora *lo possiamo scartare* e ottenere r vettori che generano V.

<u>Idea</u>: Potremmo applicare lo stesso ragionamento agli r vettori che generano V individuando r-1 vettori generatori. Iterando il processo, a una certa iterazione non possiamo più scartare vettori.

<u>Definizione</u>: I vettori $v_1, v_2, ..., v_r$ sono **linearmente dipendenti** se esistono $k_1, k_2, ..., k_r$ <u>non tutti nulli</u> tali che: $\sum_{i=1}^r k_i v_i = 0$

Dipendenza lineare

<u>Definizione</u>: I vettori $v_1, v_2, ..., v_r$ sono **linearmente dipendenti** se esistono $k_1, k_2, ..., k_r$ non tutti nulli tali che: $\sum_{i=1}^r k_i v_i = 0$

Esempi:

$$A_1 \coloneqq \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \quad A_2 \coloneqq \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_3 \coloneqq \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

 A_2 è <u>combinazione lineare</u> di A_1 e A_3 : $A_2 = 3A_1 - \frac{5}{2}A_3$

$$3A_1 - A_2 - \frac{5}{2}A_3 = 0$$

Segue che le matrici A_1 , A_2 e A_3 sono <u>linearmente dipendenti</u>.

Dipendenza lineare

<u>Definizione</u>: I vettori $v_1, v_2, ..., v_r$ sono **linearmente dipendenti** se esistono $k_1, k_2, ..., k_r$ <u>non tutti nulli</u> tali che: $\sum_{i=1}^r k_i v_i = 0$

Esempi:

I vettori $v_1 := (2, 4, 4, 2), v_2 := (1, 2, 2, 1)$ e $v_3 := (1, 2, 3, 3)$ di \mathbb{R}^4 sono linearmente dipendenti.

Infatti si ha: $1v_1 - 2v_2 + 0v_3 = 0$

Osservazione: Si noti che nella definizione di vettori linearmente dipendenti non si richiede che <u>tutti</u> i coefficienti siano diversi da 0, ma solo che qualcuno di essi (<u>almeno uno</u>) sia diverso da 0.

Indipendenza lineare

<u>Definizione</u>: I vettori $v_1, v_2, ..., v_r$ sono **linearmente indipendenti** se $\sum_{i=1}^r k_i v_i = 0$ è verificata solo quando $k_1 = k_2 = ... = k_r = 0$

Esempio: I polinomi $f_1(x) := 1$, $f_2(x) := 1 + x$, $f_3(x) := 1 + x + x^2$, $f_4(x) := 1 + x + x^2 + x^3$ di R[x] sono linearmente indipendenti ?

Scriviamo una loro combinazione lineare e poniamola = 0:

$$k_1 1 + k_2 (1+x) + k_3 (1+x+x^2) + k_4 (1+x+x^2+x^3) = 0$$
$$(k_1 + k_2 + k_3 + k_4) + (k_2 + k_3 + k_4)x + (k_3 + k_4)x^2 + k_4 x^3 = 0$$

Dobbiamo risolvere questo sistema:

Il sistema ammette solamente la soluzione banale $k_1=k_2=k_3=k_4=0$ Quindi $f_1(x), f_2(x), f_3(x)$ e $f_4(x)$ sono linearmente indipendenti!

$$k_1 + k_2 + k_3 + k_4 = 0$$

$$k_2 + k_3 + k_4 = 0$$

$$k_3 + k_4 = 0$$

$$k_4 = 0$$

Esercizio: $v_1 := (1, 2, 1, 0), v_2 := (2, 3, 0, 1), v_3 := (1, 5/2, 2, -1/2)$

di R^4 sono linearmente dipendenti o indipendenti?

Scriviamo una loro combinazione lineare e poniamola = 0:

$$k_1(1,2,1,0) + k_2(2,3,0,1) + k_3\left(1,\frac{5}{2},2,-\frac{1}{2}\right) = (0,0,0,0)$$

$$\left(k_1 + 2k_2 + k_3, 2k_1 + 3k_2 + \frac{5}{2}k_3, k_1 + 2k_3, k_2 - \frac{1}{2}k_3\right) = (0, 0, 0, 0)$$

Dobbiamo risolvere questo sistema:

Pertanto v_1 , v_2 e v_3 sono linearmente dipendenti! Ad esempio:

$$-2v_1 + \frac{1}{2}v_2 + v_3 = 0$$

sistema:
$$\begin{cases} & k_1 + 2k_2 + k_3 = 0 \\ & \text{Soluzione:} \\ & k_1 = -2t \\ & k_2 = \frac{1}{2}t \\ & k_3 = t \end{cases}$$

$$\begin{cases} k_1 + 2k_2 + k_3 = 0 \\ & 2k_1 + 3k_2 + \frac{5}{2}k_3 = 0 \\ & k_1 + 2k_3 = 0 \\ & k_2 - \frac{1}{2}k_3 = 0 \end{cases}$$

Esercizio: $v_1 := (1, 2, 1, 0), v_2 := (2, 3, 0, 1), v_3 := (1, 5/2, 2, -1/2)$ di R^4 sono linearmente dipendenti o indipendenti ?

Scriviamo una loro combinazione lineare e poniamola = 0:

$$k_1(1,2,1,0) + k_2(2,3,0,1) + k_3\left(1,\frac{5}{2},2,-\frac{1}{2}\right) = (0,0,0,0)$$

$$\left(k_1 + 2k_2 + k_3, 2k_1 + 3k_2 + \frac{5}{2}k_3, k_1 + 2k_3, k_2 - \frac{1}{2}k_3\right) = (0, 0, 0, 0)$$

Potevamo evitare di risolvere il sistema:

$$\begin{cases} k_1 + 2k_2 + k_3 = 0 \\ 2k_1 + 3k_2 + \frac{5}{2}k_3 = 0 \\ k_1 + 2k_3 = 0 \\ k_2 - \frac{1}{2}k_3 = 0 \end{cases}$$

Esercizio: $v_1 := (1, 2, 1, 0), v_2 := (2, 3, 0, 1), v_3 := (1, 5/2, 2, -1/2)$ di R^4 sono linearmente dipendenti o indipendenti?

Scriviamo una loro combinazione lineare e poniamola = 0:

$$k_1(1,2,1,0) + k_2(2,3,0,1) + k_3\left(1,\frac{5}{2},2,-\frac{1}{2}\right) = (0,0,0,0)$$

$$\left(k_1 + 2k_2 + k_3, 2k_1 + 3k_2 + \frac{5}{2}k_3, k_1 + 2k_3, k_2 - \frac{1}{2}k_3\right) = (0, 0, 0, 0)$$

In alternativa studiamo la matrice:

Poiché il rango è 2, mentre il numero delle incognite è 3, il sistema ha soluzioni non banali.

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & \frac{5}{2} \\ 1 & 0 & 2 \\ 0 & 1 & -\frac{1}{2} \end{pmatrix}$$

la matrice:
$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & \frac{5}{2} \\ 1 & 0 & 2 \\ 0 & 1 & -\frac{1}{2} \end{pmatrix} \begin{cases} k_1 + 2k_2 + k_3 = 0 \\ 2k_1 + 3k_2 + \frac{5}{2}k_3 = 0 \\ k_1 & + 2k_3 = 0 \\ k_2 - \frac{1}{2}k_3 = 0 \end{cases}$$

<u>Teorema</u>: Un singolo vettore v di uno spazio vettoriale V è linearmente indipendente se e solo se $v \neq 0$.

<u>Teorema</u>: Dati i vettori $v_1, v_2, ..., v_r$ (con r > 1). Se <u>uno di essi è combinazione lineare dei rimanenti</u>, allora i vettori $v_1, v_2, ..., v_r$ sono linearmente dipendenti.

Dimostrazione:

Uno dei vettori, detto v_i , è <u>combinazione lineare</u> dei rimanenti. Dunque esistono scalari $h_1, h_2, ..., h_{i-1}, h_{i+1}, ..., h_r$ tali che:

$$\mathbf{v}_i = h_1 \mathbf{v}_1 + h_2 \mathbf{v}_2 + h_{i-1} \mathbf{v}_{i-1} + h_{i+1} \mathbf{v}_{i+1} + \dots + h_r \mathbf{v}_r$$

 $h_1 \mathbf{v}_1 + h_2 \mathbf{v}_2 + h_{i-1} \mathbf{v}_{i-1} + (-1) \mathbf{v}_i + h_{i+1} \mathbf{v}_{i+1} + \dots + h_r \mathbf{v}_r = \mathbf{0}$

Abbiamo $h_i \neq 0$. Pertanto $v_1, v_2, ..., v_r$ sono linear. dipendenti.

<u>Teorema</u>: Dati i vettori $v_1, v_2, ..., v_r$ (con r > 1). Se abbiamo $\sum_{i=1}^{r} k_i v_i = 0$ con $k_i \neq 0$ allora v_i è combinazione lineare dei rimanenti.

Dimostrazione:

$$k_1 v_1 + k_2 v_2 + \cdots + k_r v_r = 0$$
, con $k_i \neq 0$

$$k_i \mathbf{v}_i = -k_1 \mathbf{v}_1 - k_2 \mathbf{v}_2 - \dots - k_{i-1} \mathbf{v}_{i-1} - k_{i+1} \mathbf{v}_{i+1} - \dots - k_r \mathbf{v}_r$$

$$\mathbf{v}_i = -k_i^{-1}k_1\mathbf{v}_1 - k_i^{-1}k_2\mathbf{v}_2 - \dots - k_i^{-1}k_{i-1}\mathbf{v}_{i-1} - k_i^{-1}k_{i+1}\mathbf{v}_{i+1} - \dots - k_i^{-1}k_r\mathbf{v}_r$$

 \boldsymbol{v}_i è combinazione lineare di $\boldsymbol{v}_1, \, \boldsymbol{v}_2, \, \dots, \, \boldsymbol{v}_{i-1}, \, \boldsymbol{v}_{i+1}, \, \dots, \, \boldsymbol{v}_r$.

Osservazione: Se $v_1, v_2, ..., v_r$ sono linearmente dipendenti allora **almeno uno** è combinazione lineare dei rimanenti.

Esempio: Consideriamo i seguenti polinomi:

$$f_1(x) := 1 + x$$
, $f_2(x) := x^2$, $f_3(x) := 2 + 2x - x^2$ e $f_4(x) := 2x - x^3$.

Notiamo che $2 f_1(x) - f_2(x) - f_3(x) + 0 f_4(x) = 0$

Dunque, i polinomi sono linearmente dipendenti.

Ora $f_3(x)$ è combinazione lineare di $f_1(x)$, $f_2(x)$ e $f_4(x)$:

$$f_3(x) = 2 f_1(x) - f_2(x) - 0 f_4(x)$$

Ma $f_4(x)$ non è combinazione lineare di $f_1(x)$, $f_2(x)$ e $f_3(x)$! (le loro combinazioni lineari possono avere al più grado 2)

Osservazione: Due vettori v_1 e v_2 sono linearmente dipendenti se e solo se uno di essi è **multiplo** dell'altro.

Esempi:

```
v_1 := (2, 1, 3) e v_2 := (1, 1, 2) sono linearmente dipendenti ?
No, perchè nessuno è multiplo dell'altro. Quindi: \mathbf{0}v_1 - \mathbf{0}v_2 = 0 v_1 := (4, 2, 6) e v_2 := (6, 3, 9) sono linearmente dipendenti ?
Sì, perchè (4, 2, 6) è multiplo di (6, 3, 9). Infatti: \mathbf{3}v_1 - \mathbf{2}v_2 = 0 v_1 := (0, 0, 0) e v_2 := (1, 1, 2) sono linearmente dipendenti ?
Sì, perchè (0, 0, 0) è multiplo di (1, 1, 2). Infatti: \mathbf{1}v_1 + \mathbf{0}v_2 = 0
```

<u>Teorema</u>: Se $v_1, v_2, ..., v_r$ sono linearmente dipendenti allora $v_1, v_2, ..., v_r, v_{r+1}$ sono linearm. dipendenti qualunque sia v_{r+1} .

Dimostrazione:

Dobbiamo trovare una combinazione lineare non banale di $v_1, v_2, ..., v_r, v_{r+1}$ che dia come risultato il vettore nullo.

Sappiamo che esiste una combinazione lineare di $v_1, v_2, ..., v_r$ con coefficienti <u>non tutti nulli</u> che è uguale al vettore nullo:

$$k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r = \mathbf{0}$$

$$k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r + 0 \mathbf{v}_{r+1} = \mathbf{0}$$

<u>Teorema</u>: Se i vettori $v_1, v_2, ..., v_r$ sono linearmente indipendenti, e v_{r+1} è un vettore che <u>non</u> è combinazione lineare di $v_1, v_2, ..., v_r$, allora $v_1, v_2, ..., v_r$, v_{r+1} sono linearmente indipendenti.

Dimostrazione:

Dobbiamo mostrare che se abbiamo una combinazione lineare di $v_1, v_2, ..., v_r, v_{r+1}$ uguale al vettore nullo:

$$k_1 v_1 + k_2 v_2 + \dots + k_r v_r + k_{r+1} v_{r+1} = 0$$

allora <u>tutti</u> i coefficienti k_i sono nulli.

Per ipotesi: $v_1, v_2, ..., v_r$ sono linearmente indipendenti, da cui abbiamo che $k_1 = k_2 = ... = k_r = 0$.

Anche $k_{r+1} = 0$, altrimenti v_{r+1} sarebbe combinazione lineare di $v_1, v_2, ..., v_r$.

Basi di uno spazio vettoriale

<u>Definizione</u>: I vettori $v_1, v_2, ..., v_r$ di uno spazio vettoriale V costituiscono una **base** di V se sono verificate entrambe le proprietà: **1.** $V = L(v_1, v_2, ..., v_r)$; **2.** $v_1, v_2, ..., v_r$ sono linearmente indipendenti.

Esempio: Verificare che $f_1(x) := 1$, $f_2(x) := 1 + x$, $f_3(x) := 1 + x + x^2$, $f_4(x) := 1 + x + x^2 + x^3$ costituiscono una base di $R^4[x]$.

 $f(x) := a + bx + cx^2 + dx^3$ (ovvero un generico polinomio di grado < 4)

$$f(x) = k_1 f_1(x) + k_2 f_2(x) + k_3 f_3(x) + k_4 f_4(x)$$

$$a + bx + cx^{2} + dx^{3} = (k_{1} + k_{2} + k_{3} + k_{4}) + (k_{2} + k_{3} + k_{4})x + (k_{3} + k_{4})x^{2} + k_{4}x^{3}$$

Il sistema è *Crameriano* e, quindi, ammette un'unica soluzione (prop. 1).

Nel caso a=b=c=d=0, la soluzione è quella banale $k_1=k_2=k_3=k_4=0$ (prop. 2).

$$\begin{cases} k_1 + k_2 + k_3 + k_4 = a \\ k_2 + k_3 + k_4 = b \\ k_3 + k_4 = c \\ k_4 = d \end{cases}$$

<u>Teorema</u>: Se $v_1, v_2, ..., v_r$ costituiscono una <u>base</u> di uno spazio V, allora ogni vettore v di V equivale a <u>un'unica</u> combinazione lineare <u>dei vettori</u> $v_1, v_2, ..., v_r$ (ovvero $v = \sum_{i=1}^r k_i v_i$).

 $\rightarrow k_1, k_2,..., k_r$ sono le r componenti di v rispetto alla base $v_1, v_2,..., v_r$

Osservazione 1: Quando parliamo di componenti di un vettore dobbiamo sempre specificare <u>rispetto a quale base ci riferiamo</u>, perchè le componenti dello stesso vettore rispetto a basi diverse sono (in generale) diverse.

Osservazione 2: Le componenti dell'*i*-esimo vettore v_i rispetto alla base $v_1, v_2, ..., v_r$ sono (0, ..., 0, 1, 0, ..., 0) (dove l'unico 1 compare al posto *i*-esimo). In particolare, il vettore 0 ha componenti (0, ..., 0).

<u>Teorema</u>: Se $v_1, v_2, ..., v_r$ costituiscono una <u>base</u> di uno spazio V, allora ogni vettore v di V equivale a <u>un'unica</u> combinazione lineare <u>dei vettori</u> $v_1, v_2, ..., v_r$ (ovvero $v = \sum_{i=1}^r k_i v_i$).

 $\rightarrow k_1, k_2,..., k_r$ sono le r componenti di v rispetto alla base $v_1, v_2,..., v_r$

Dimostrazione:

 v_1, v_2, \dots, v_r generano V, per ogni v segue: $v = k_1 v_1 + k_2 v_2 + \dots + k_r v_r$

Supponiamo di scrivere v tramite due diverse combinazioni lineari:

$$\mathbf{v} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r$$

 $\mathbf{v} = h_1 \mathbf{v}_1 + h_2 \mathbf{v}_2 + \dots + h_r \mathbf{v}_r$

Dobbiamo dimostrare che $h_i = k_i$ per ogni i.

$$\mathbf{0} = (k_1 - h_1)\mathbf{v}_1 + (k_2 - h_2)\mathbf{v}_2 + \dots + (k_r - h_r)\mathbf{v}_r$$

Dato che v_1, v_2, \dots, v_r sono <u>linear</u>. <u>indip</u>. si ha $h_1 = k_1, h_2 = k_2, \dots, h_r = k_r$

Esempi: Base canonica

I seguenti vettori costituiscono una base per lo spazio vettoriale R^n :

$$e_1 \coloneqq (1, 0, 0, \dots, 0), e_2 \coloneqq (0, 1, 0, \dots, 0), \dots, e_n \coloneqq (0, 0, \dots, 0, 1).$$

Caso n = 2:

Dimostriamo che $e_1 := (1,0)$ ed $e_2 := (0,1)$ formano una base di \mathbb{R}^2 :

I vettori e_1 ed e_2 generano R^2 : $(a_1, a_2) = a_1 e_1 + a_2 e_2$

I vettori e_1 ed e_2 sono <u>linear</u>. <u>indip</u>. : $a_1e_1 + a_2e_2 = 0$

Allora si ha: $a_1 e_1 + a_2 e_2 = (0, 0)$

Da cui segue $a_1 = 0$ e $a_2 = 0$.

Quindi i vettori e_1 ed e_2 costituiscono una base (canonica) di \mathbb{R}^2 .

Esempi: Base canonica

Consideriamo lo spazio vettoriale M(3, 2, R) e le seguenti matrici:

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \qquad E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \qquad E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix},$$

$$E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad E_{31} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad E_{32} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Data una generica matrice di
$$M(3, 2, R)$$
: $A := \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}$

$$A = aE_{11} + bE_{12} + cE_{21} + dE_{22} + eE_{31} + fE_{32}$$

Segue che le sei matrici di cui sopra sono generatori di M(3, 2, R).

Le sei matrici sono <u>linear</u>. <u>indip</u>. e formano una <u>base</u> di M(3, 2, R).

Basi canoniche

I seguenti vettori costituiscono una base per lo spazio vettoriale R^n : $e_1 := (1, 0, 0, \dots, 0), e_2 := (0, 1, 0, \dots, 0), \dots, e_n := (0, 0, \dots, 0, 1).$

<u>Particolarità</u>: Le componenti del vettore $(x_1, x_2, ..., x_n)$ relative a questa base sono esattamente $x_1, x_2, ..., x_n$.

Una base per M(p, q, R) è formata dalle pq matrici E_{ij} , dove E_{ij} è la matrice i cui elementi sono tutti 0 tranne quello di posto (i, j) = 1.

<u>Particolarità</u>: Le componenti di un vettore (cioè una matrice) relative ad esso sono **gli elementi della matrice stessa**.

Una base per $R^n[x]$, n naturale, è formata dai polinomi $1, x, x^2, ..., x^{n-1}$.

<u>Particolarità</u>: Il vettore $p(x) = a_0 + a_1x + a_2x^2 + ... + a_{n-1}x^{n-1}$ ha come componenti relative ad essa i suoi coefficienti $(a_0, a_1, a_2, ..., a_{n-1})$.

Esempio: Abbiamo già verificato che $f_1(x) := 1$, $f_2(x) := 1 + x$, $f_3(x) := 1 + x + x^2$, $f_4(x) := 1 + x + x^2 + x^3$ costituiscono una base di $R^4[x]$.

Determinare le <u>componenti</u> di $f(x) = 2x - 3x^2$ rispetto alla base data.

$$f(x) = k_1 f_1(x) + k_2 f_2(x) + k_3 f_3(x) + k_4 f_4(x)$$

$$2x - 3x^2 = (k_1 + k_2 + k_3 + k_4) + (k_2 + k_3 + k_4)x + (k_3 + k_4)x^2 + k_4 x^3$$

$$\begin{cases} k_1 + k_2 + k_3 + k_4 = 0 \\ k_2 + k_3 + k_4 = 2 \end{cases}$$

$$k_3 + k_4 = -3$$

$$k_4 = 0$$

$$\begin{cases} k_1 = -2 \\ k_2 = 5 \\ k_3 = -3 \\ k_4 = 0 \end{cases}$$

Da cui le <u>componenti</u> di f(x) rispetto alla base data sono (-2, 5, -3, 0). Si dimostra che $1, x, x^2, x^3$ formano un'altra base (canonica) per $R^4[x]$. Le <u>componenti</u> di f(x) relative a tale base di $R^4[x]$ sono (0, 2, -3, 0).

Dimensioni di sottospazi vettoriali

Esempio: Abbiamo visto che dati tre punti A, B e C dello spazio tali che O, A, B e C siano non complanari, allora i vettori di $V^3(O)$ $v_1 := \overrightarrow{OA}$, $v_2 := \overrightarrow{OB}$ e $v_3 := \overrightarrow{OC}$ di $V^3(O)$ sono linear. indipendenti. Ogni vettore v è uguale a una combinazione lineare di v_1 , v_2 e v_3 . Pertanto v_1 , v_2 e v_3 costituiscono una base per $V^3(O)$.

Dato che qualsiasi base di $V^3(O)$ è formata da tre vettori, si dice che la <u>dimensione</u> di $V^3(O)$ è uguale a **3**.

In generale chiamiamo dimensione di uno spazio vettoriale il numero di vettori che compongono una sua base.

<u>Teorema del completamento</u>: Sia V uno spazio vettoriale avente una base formata dai vettori e_1, e_2, \ldots, e_n . Siano poi assegnati r vettori linearmente indipendenti v_1, v_2, \ldots, v_r di V, con $r \le n$. Si dimostra che è possibile scegliere opportunamente r vettori tra quelli della base e_1, e_2, \ldots, e_n e sostituirli con i vettori v_1, v_2, \ldots, v_r in modo tale da ottenere una base di V.

<u>Teorema</u>: Sia *V* uno spazio avente <u>una base formata da *n* vettori</u>. Allora assegnati comunque *n* vettori di *V* linearmente indipendenti, si dimostra che questi formano una base di *V*.

<u>Teorema</u>: In uno spazio *V* avente <u>una base formata da *n* vettori</u> non vi possono essere più di *n* vettori linearmente indipendenti.

Teorema: In uno spazio V avente <u>una base formata da n vettori</u> non vi possono essere più di n vettori linearmente indipendenti.

<u>Teorema</u>: Sia *V* uno spazio avente <u>una base formata da *n* vettori</u>. Allora ogni altra base di *V* è formata da *n* vettori.

<u>Definizione</u>: Se uno spazio V ha <u>una base formata da n vettori</u>, si dice che V ha **dimensione** uguale a n : dim V = n.

<u>Definizione</u>: Se uno spazio vettoriale V è formato dal solo vettore nullo ($dim\ V = 0$) o ha una base formata da n vettori ($dim\ V = n$) diciamo che V ha **dimensione finita**.

Se uno spazio vettoriale <u>non</u> è dotato di una base formata da un numero finito di vettori, allora lo spazio ha **dimensione** *infinita*.

Teorema: Si può dimostrare che:

1.
$$dim V^2(O) = 2$$

2.
$$dim V^3(O) = 3$$

3.
$$dim R^n = n$$

4.
$$dim M(p, q, R) = pq$$

5.
$$dim R^n[x] = n$$

6. R[x] ha dimensione *infinita*

<u>Teorema</u>: Se V è uno spazio vettoriale di dimensione n allora:

- 1. non esistono piu di *n* vettori linearmente indipendenti;
- 2. dati comunque r vettori con r < n (anche se linear. indipendenti), essi non possono essere generatori (tantomeno una base) di V;
- 3. dati *n* vettori linear. indipendenti, essi formano una base di *V*;
- 4. dati comunque *n* generatori, essi formano una base di *V*.

Osservazione: Dati *n* vettori di uno spazio vettoriale di dim. *n*, per individuare se essi formano una <u>base</u>, possiamo controllare:

- che gli <u>n vettori siano generatori</u>, oppure
- che gli *n* vettori siano linearmente indipendenti.

<u>Teorema</u>: Se V è uno spazio vettoriale di dimensione n allora:

- 1. non esistono piu di *n* vettori linearmente indipendenti;
- 2. dati comunque r vettori con r < n (anche se linear. indipendenti), essi non possono essere generatori (tantomeno una base) di V;
- 3. dati *n* vettori linear. indipendenti, essi formano una base di *V*;
- 4. dati comunque *n* generatori, essi formano una base di *V*.

Esempio: Stabilire se i vettori $v_1 := (1, 2, 1), v_2 := (1, 1, 1),$ $v_3 := (0, 1, 2), v_4 := (1, 1, 3)$ di R^3 sono linearmente indipendenti. Sappiamo che $dim R^3 = 3$.

Segue 4 vettori di R^3 comunque scelti sono linearmente dipendenti. In particolare v_1 , v_2 , v_3 , v_4 sono linearmente dipendenti.

<u>Teorema</u>: Se V è uno spazio vettoriale di dimensione n allora:

- 1. non esistono piu di *n* vettori linearmente indipendenti;
- 2. dati comunque r vettori con r < n (anche se linear. indipendenti), essi non possono essere generatori (tantomeno una base) di V;
- 3. dati *n* vettori linear. indipendenti, essi formano una base di *V*;
- 4. dati comunque *n* generatori, essi formano una base di *V*.

Esempio: Stabilire se le seguenti matrici generano M(2, 2, R):

$$A_1 \coloneqq \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad A_2 \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}, \quad A_3 \coloneqq \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

Sappiamo che dim M(2, 2, R) = 4.

Segue per generare M(2, 2, R) sono necessari almeno 4 vettori.

Dunque A_1 , A_2 , A_3 non generano M(2, 2, R).

Basi per le soluzioni di un sistema lineare omogeneo

Una base per Sol(SO)

<u>Teorema</u>: Consideriamo un sistema lineare omogeneo SO: AX = 0 di p equazioni in q incognite x_1, x_2, \dots, x_q .

Sia rk A = r, allora lo spazio delle soluzioni Sol(SO) ha dim q - r.

Una <u>base per SO</u> può essere determinata nel modo seguente:

- Si determinano le soluzioni del sistema con il metodo che si preferisce (Rouchè-Capelli o Gauss): sappiamo che q-r incognite scelte opportunamente fungeranno da $h_1, h_2, \ldots, h_{q-r}$ parametri;
- Il primo vettore della base si ottiene assegnando a h_1 il valore 1 e agli altri parametri il valore 0;
- Il secondo vettore della base si ottiene assegnando a h_2 il valore 1 e agli altri parametri il valore 0;
- ... L'ultimo vettore della base si ottiene assegnando ad h_{q-r} il valore 1 e agli altri parametri il valore 0.

Una base per Sol(SO)

<u>Esempio</u>: Sia dato il seguente sistema lineare omogeneo SO:

$$\begin{cases} 2x - 4y + z - w - 2t = 0 \\ x - 2y - 2z + w = 0 \\ 3x - 6y - z - 2t = 0 \end{cases}$$

Possiamo trasformare il sistema nel seguente sistema equivalente:

$$\begin{cases} 2x - 4y + z - w - 2t = 0 \\ -\frac{5}{2}z + \frac{3}{2}w + t = 0 \\ 0 = 0 \end{cases}$$

$$z + \frac{3}{2}w + t = 0$$

$$0 = 0$$
Assegniamo ora a y, w, t dei valori parametrici:
$$x = 2h_1 + \frac{1}{5}h_2 + \frac{4}{5}h_3$$

$$y = h_1$$

$$z = \frac{3}{5}h_2 + \frac{2}{5}h_3$$

$$w = h_2$$

$$t = h_3$$

Una base per Sol(SO)

Esempio: Scriviamo ora le soluzioni come matrici di M(5, 1, R):

$$\operatorname{Sol}(SO) = \left\{ \begin{pmatrix} 2h_1 + \frac{1}{5}h_2 + \frac{4}{5}h_3 \\ h_1 \\ \frac{3}{5}h_2 + \frac{2}{5}h_3 \\ h_2 \\ h_3 \end{pmatrix} \mid h_1 \in \mathbb{R}, h_2 \in \mathbb{R}, h_3 \in \mathbb{R} \right\}$$

$$Sol(SO) = \left\{ h_1 \begin{pmatrix} 2\\1\\0\\0\\0 \end{pmatrix} + h_2 \begin{pmatrix} \frac{1}{5}\\0\\\frac{3}{5}\\1\\0 \end{pmatrix} + h_3 \begin{pmatrix} \frac{4}{5}\\0\\\frac{2}{5}\\0\\1 \end{pmatrix} \mid h_1 \in \mathbb{R}, h_2 \in \mathbb{R}, h_3 \in \mathbb{R} \right\}$$

Sol(
$$SO$$
) è generato dai vettori S_1 , S_2 e S_3 :

$$S_3$$
: $S_1 \coloneqq \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad S_2 \coloneqq \begin{pmatrix} \frac{1}{5} \\ 0 \\ \frac{3}{5} \\ 1 \\ 0 \end{pmatrix}, \quad S_3 \coloneqq \begin{pmatrix} \frac{4}{5} \\ 0 \\ \frac{2}{5} \\ 0 \\ 1 \end{pmatrix}$

Una base per Sol(SO)

Esempio: Sol(SO) è generato dai vettori S_1 , S_2 e S_3 :

$$S_1 \coloneqq \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad S_2 \coloneqq \begin{pmatrix} \frac{1}{5} \\ 0 \\ \frac{3}{5} \\ 1 \\ 0 \end{pmatrix}, \quad S_3 \coloneqq \begin{pmatrix} \frac{4}{5} \\ 0 \\ \frac{2}{5} \\ 0 \\ 1 \end{pmatrix}$$

Per stabilire se S_1 , S_2 e S_3 formano una base per Sol(SO), verifichiamo se sono <u>linear</u>. <u>indipendenti</u>: $h_1S_1 + h_2S_2 + h_3S_3 = 0$

$$\begin{pmatrix} 2h_1 + \frac{1}{5}h_2 + \frac{4}{5}h_3 \\ h_1 \\ \frac{3}{5}h_2 + \frac{2}{5}h_3 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 Questa uguaglianza si verifica solo quando $h_1 = h_2 = h_3 = 0$.
$$S_1, S_2 \in S_3 \text{ sono una base di Sol}(SO)$$
 she ha dimensione 3

che ha dimensione 3.

Una base per Sol(SO)

Esempio: Determinare una base per il seguente sottospazio E di \mathbb{R}^4

$$E := \{(x_1, x_2, x_3, x_4) \mid 2x_1 - 3x_3 + 2x_4 = 0\}$$

$$x_1 = \frac{3}{2}x_3 - x_4$$
 $h_1 = x_2, h_2 = x_3, h_3 = x_4$

$$E = \left\{ \left(\frac{3}{2}h_2 - h_3, h_1, h_2, h_3 \right) \mid h_1 \in \mathbb{R}, h_2 \in \mathbb{R}, h_3 \in \mathbb{R} \right\}$$

Per ottenere dei generatori di E poniamo:

$$h_1 := 1, h_2 := 0$$
 e $h_3 := 0$ ottenendo il vettore $(0, 1, 0, 0)$;

$$h_1 := 0, h_2 := 1 \text{ e } h_3 := 0 \text{ ottenendo il vettore } (3/2, 0, 1, 0);$$

$$h_1 := 0, h_2 := 0$$
 e $h_3 := 1$ ottenendo il vettore $(-1, 0, 0, 1)$.

<u>Teorema</u>: Sia V uno spazio vettoriale di dimensione finita e sia E un sottospazio di V. Allora E ha dimensione finita e $\dim E \leq \dim V$

<u>Teorema</u>: Sia V uno spazio vettoriale e dim V = n. Allora:

- Esiste un sottospazio E con dim E = 0, formato dal vettore nullo.
- Esiste un sottospazio di dim. uguale a n, formato da V stesso.

Esempi: Abbiamo visto che $V^2(\mathbf{0})$ ha dim. uguale a 2.

Pertanto i suoi sottospazi possono avere dim. uguale a 0, 1 o 2:

- L'unico sottospazio di dimensione 0 consiste nel vettore nullo;
- I sottospazi di dimensione 1 sono quelli del tipo $\{\overrightarrow{OP} \mid P \in r\}$;
- L'unico sottospazio di dimensione 2 è $V^2(O)$ stesso.

<u>Teorema</u>: Sia V uno spazio vettoriale di dimensione finita e sia E un sottospazio di V. Allora E ha dimensione finita e $\dim E \leq \dim V$

<u>Teorema</u>: Sia V uno spazio vettoriale e dim V = n. Allora:

- Esiste un sottospazio E con dim E = 0, formato dal vettore nullo.
- Esiste un sottospazio di dim. uguale a n, formato da V stesso.

Esempi: Abbiamo visto che $V^3(0)$ ha dim. uguale a 3.

Pertanto i suoi sottospazi possono avere dim. uguale a 0, 1, 2 o 3:

- L'unico sottospazio di dimensione 0 consiste nel vettore nullo;
- I sottospazi di dimensione 1 sono quelli del tipo $\{\overrightarrow{OP} \mid P \in r\}$;
- I sottospazi di dimensione 2 sono quelli del tipo $\{\overrightarrow{OP} \mid P \in \pi\}$;
- L'unico sottospazio di dimensione 3 è $V^3(O)$ stesso.

Esercizio(1): Sia S(2, R) il sottospazio vettoriale M(2, 2, R) formato dalle matrici simmetriche. Vogliamo determinarne una base.

Consideriamo il sottospazio V_1 avente come base $S_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 $V_1 \neq S(2, R)$, perchè c'è almeno un'altra base $S_2 := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Consideriamo il sottospazio V_2 avente come basi S_1 e S_2 :

$$V_2 = \left\{ \begin{pmatrix} a & b \\ b & 0 \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\}$$

 $V_2 \neq S(2, R)$ perchè c'è almeno un'altra base $S_3 := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

Consideriamo il sottospazio V_3 avente come basi S_1 , S_2 e S_3 .

 V_3 coincide con S(2, R), perché dim S(2, R) < dim M(2, 2, R) = 4.

Esercizio(1): Verifichiamo che le matrici S_1 , S_2 e S_3 generano S(2, R):

$$S_1 \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad S_2 \coloneqq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad S_3 \coloneqq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Dobbiamo stabilire se esistono k_1 , k_2 e k_3 tali che:

$$S := \begin{pmatrix} a & b \\ b & c \end{pmatrix} = k_1 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + k_3 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} k_2 & k_1 \\ k_1 & k_3 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

Basta porre $k_1 = b$, $k_2 = a$ e $k_3 = c$.

Tutte le matrici simmetriche sono combinazioni lineari di S_1 , S_2 , S_3 . Per cui S_1 , S_2 , S_3 generano S(2, R).

<u>Teorema</u>: Sia V uno spazio vettoriale e v_1, v_2, \dots, v_n una sua base.

Siano u_1, u_2, \dots, u_s dei vettori che generano il sottospazio U di V.

Decomponiamo $u_1, u_2, ..., u_s$ rispetto alla base formata da $v_1, v_2, ..., v_n$:

$$\mathbf{u}_{1} = a_{11}\mathbf{v}_{1} + a_{21}\mathbf{v}_{2} + \dots + a_{n1}\mathbf{v}_{n}
\mathbf{u}_{2} = a_{12}\mathbf{v}_{1} + a_{22}\mathbf{v}_{2} + \dots + a_{n2}\mathbf{v}_{n}
\vdots
\mathbf{u}_{s} = a_{1s}\mathbf{v}_{1} + a_{2s}\mathbf{v}_{2} + \dots + a_{ns}\mathbf{v}_{n}$$

$$\begin{vmatrix}
a_{11} & a_{12} & \dots & a_{1s} \\
a_{21} & a_{22} & \dots & a_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \dots & a_{ns}
\end{vmatrix}$$

Si dimostra che rk A = dim U

Inoltre il teorema e il calcolo del rango di A ci dicono anche come possiamo **estrarre una base di** U da $u_1, u_2, ..., u_s$.

Vediamo come possiamo estrarre una base di U da u_1, u_2, \dots, u_s :

$$\mathbf{u}_{1} = a_{11}\mathbf{v}_{1} + a_{21}\mathbf{v}_{2} + \dots + a_{n1}\mathbf{v}_{n}
\mathbf{u}_{2} = a_{12}\mathbf{v}_{1} + a_{22}\mathbf{v}_{2} + \dots + a_{n2}\mathbf{v}_{n}
\vdots
\mathbf{u}_{s} = a_{1s}\mathbf{v}_{1} + a_{2s}\mathbf{v}_{2} + \dots + a_{ns}\mathbf{v}_{n}$$

$$\begin{vmatrix}
a_{11} & a_{12} & \dots & a_{1s} \\
a_{21} & a_{22} & \dots & a_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \dots & a_{ns}
\end{vmatrix}$$

- Se abbiamo calcolato rk A usando i <u>determinanti dei minori</u>: Sia M un minore di A di ordine r avente determinante non nullo. Gli r vettori relativi alle colonne di M formano una **base** di U.
- Invece, se abbiamo calcolato rk A riducendo la matrice a scalini: Sia B la matrice con r scalini ottenuta dalla matrice A.

 Una **base** di U si ottiene prendendo tra i vettori $u_1, u_2, ..., u_s$ quei vettori le cui posizioni corrispondono agli scalini di B.

Esercizio(2): Sia E il sottospazio di R[x] generato da $f_1(x) := 1 + x - 2x^2$, $f_2(x) := x + 3 x^4$, $f_3(x) := 1 - 2 x^2 - 3 x^4$. Calcolare dim E e una base.

La base canonica di $R^5[x]$ è formata dai polinomi 1, x, x^2 , x^3 , x^4 . La matrice relativa ai 3 polinomi rispetto alla base canonica di $R^5[x]$:

$$A \coloneqq \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 3 & -3 \end{pmatrix} \qquad A \coloneqq \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 3 & -3 \end{pmatrix}$$

$$A \coloneqq \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 3 & -3 \end{pmatrix}$$

Un minore di ordine 2 con determinante $\neq 0$

Concludiamo che dim E = 2 e una **base** di E è formata da $f_1(x)$ e $f_3(x)$.

Esercizio(3): Verificare che $v_1 := (1, 2, 1, 0), v_2 := (2, 3, 0, 1)$ e $v_3 := (1, 5/2, 2, -1/2)$ di R^4 sono linearmente dipendenti.

La matrice A relativa ai 3 vettori rispetto alla base canonica di R^4 :

$$A := \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & \frac{5}{2} \\ 1 & 0 & 2 \\ 0 & 1 & -\frac{1}{2} \end{pmatrix} \quad \Box \qquad \begin{pmatrix} \boxed{1} & 2 & 1 \\ \boxed{0} & -1 & \frac{1}{2} \\ \boxed{0} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad rk A = 2$$

Dato che rk A = 2, il sottospazio generato da v_1 , v_2 , v_3 ha dim. 2. Segue che i vettori v_1 , v_2 , v_3 sono linearmente dipendenti.

Gli scalini sono in prima e seconda posizione nella matrice A.

Dunque una **base** per $L(v_1, v_2, v_3)$ è formata dai vettori v_1 e v_2 .

Esercizio(4): Verificare che $v_1 := x + x^3$ e $v_2 := 3 + 2x + x^3$ di $R^4[x]$ sono linearmente indipendenti tramite la base canonica di $R^4[x]$.

Base canonica di $R^4[x]$: $e_0 := 1$, $e_1 := x$, $e_2 := x^2$, $e_3 := x^3$.

Prendiamo la matrice B avente come colonne le componenti dei vettori v_1 e v_2 relativamente alla base canonica (e_0, e_1, e_2, e_3) .

$$B \coloneqq \begin{pmatrix} 0 & 3 \\ 1 & 2 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

rk B = 2 \Rightarrow $v_1 e v_2$ sono linearmente indipendenti.

Teorema: Sia A una matrice a n righe e s colonne.

Lo spazio generato dalle <u>colonne</u> di A ha dimensione uguale a rk A. Lo spazio generato dalle <u>righe</u> di A ha dimensione uguale a rk A.

(dato che $rk A = rk {}^tA$)

<u>Teorema</u>: Sia *A* una matrice a *n* righe e *s* colonne.

Lo spazio generato dalle <u>colonne</u> di A ha dimensione uguale a rk A. Lo spazio generato dalle <u>righe</u> di A ha dimensione uguale a rk A.

Osservazione 1: Non è detto che i sottospazi del teorema coincidano. Se *A* ha *n* righe e *s* colonne:

le sue righe generano un sottospazio di M(1, s, R), mentre le sue colonne generano un sottospazio di M(n, 1, R).

Osservazione 2: Anche nel caso in cui la matrice sia *A* quadrata: I sottospazi generati da righe e colonne hanno la stessa dimensione, ma <u>non</u> è detto che questi due sottospazi coincidano.

Esercizi

Esercizio(5): Stabilire se i vettori $v_1 := (1, 3, 2, 1), v_2 := (1, 0, 1, 0),$ $v_3 := (1, 0, 2, 0)$ sono linearmente dipendenti o indipendenti. Calcolare una base e la dimensione per lo spazio $L(v_1, v_2, v_3)$.

Consideriamo la matrice A le cui colonne corrispondono alle componenti dei vettori v_1 , v_2 e v_3 rispetto alla base canonica di \mathbb{R}^4 :

$$A := \begin{pmatrix} 1 & 1 & 1 \\ 3 & 0 & 0 \\ 2 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix} \quad \begin{array}{l} \bullet & rk \, A = 3 \\ \bullet & dim \, L(v_1, v_2, v_3) = 3 \\ \bullet & v_1, v_2, v_3 \text{ costituis cono una base} \\ \text{per } L(v_1, v_2, v_3) \end{array}$$

- $per L(v_1, v_2, v_3)$

Oss.: Se poniamo $k_1v_1 + k_2v_2 + k_3v_3 = 0$, il sistema lineare nelle incognite k_1 , k_2 , k_3 ha A come matrice dei coefficienti.

Esercizi

Esercizio(6): Stabilire se i vettori $v_1 := (1, 0, 1, 0), v_2 := (2, 0, 2, 0),$ $v_3 := (2, 0, 2, 0)$ sono linearmente dipendenti o indipendenti. Calcolare una base e la dimensione per lo spazio $L(v_1, v_2, v_3)$.

Consideriamo la matrice A le cui colonne corrispondono alle componenti dei vettori v_1 , v_2 e v_3 rispetto alla base canonica di R^4 :

$$A := \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Gauss}} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \bullet \begin{array}{c} rk A = 2 \\ \bullet & dim \ L(v_1, v_2, v_3) = 2 \\ \bullet & \text{Una base è formata} \\ \text{da } v_1 \text{ e } v_3 \text{ (vedi scalini)} \end{array}$$

• Se osserviamo che $v_2 = 2v_1$, concludiamo che v_1 e v_2 sono linearmente dipendenti. Dunque, e.g., $L(v_1, v_2, v_3) = L(v_1, v_3)$.

Esercizi

Esercizio(7): Stabilire se i vettori (1,-1,0), (0,1,-1), (-1,0,1)formano una base per R^3 .

Consideriamo la matrice A le cui colonne corrispondono alle componenti dei tre vettori dati rispetto alla base canonica di R^3 :

$$A \coloneqq \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \bullet det A = 0$$

$$\bullet rk A < 3$$

$$\bullet dim. del sottospazio generato < 3$$

$$\bullet sappiamo che dim R^3 = 3$$

- segue i tre vettori <u>non</u> generano R^3 e non sono una sua base