Metrics

TOTAL POINTS 6

1.	Suppose we solve a binary classification task and our solution is scores with logloss. What predictions are more preferable
	in terms of logloss if true labels are y true = [0, 0, 0, 0].

1 point

- y_pred = [0.5, 0.5, 0.5, 0.5]
- y_pred = [0, 0, 0, 1]
- y_pred = [0.4, 0.5, 0.5, 0.6]

Suppose we solve a regression task and we optimize MSE error. If we managed to lower down MSE loss on either train set or test set, how did we change <u>Pearson correlation</u> coefficient between target vector and the predictions on the same set?

1 point

- The correlation was also lowered.
- Any behavior is possible.
- The correlation did not change.
- The correlation became larger.

3.	What would be a best constant prediction for a following multi-class classification task with 4 classes? The solution is scored with multi-class logloss. The number of objects of each class in train set is: 18, 3, 15, 24.	1 point
	Enter four comma separated values. Round each to two decimal places and use a leading zero before a fractional part (e.g. "0.50"; not ".5").	
	0.30, 0.05, 0.25, 0.40	
4.	What is the best constant predictor for R-squared metric?	1 point
	Log of target mean) + 1	
	□ 0.5	
	✓ Target mean	
	Target mean divided by target variance	
	One minus target mean	

5.	Select the correct statements.	1 point
	Optimization loss can different to target metric.	
	Optimization loss is always different to target metric.	
	Optimization loss is always the same as target metric.	
	Optimization loss can be the same as target metric.	
6.	Suppose the target metric is M1 , and optimization loss is M2 . We train a model and monitor its quality on a <i>holdout set</i> using metrics M1 and M2 .	1 point
	Select the correct statements.	
	O If the best M1 score is attained at iteration N, then the best M2 score is always attained after N-th iteration.	
	Of the best M1 score is attained at iteration N, then the best M2 score is always attained before N-th iteration.	
	Of the best M1 score is attained at iteration N, then the best M2 score is always attained also at the iteration N.	
	There is no definite relation between the best iterations for M1 score and M2 score.	Upgrade to submit