B+ & 2-3 Trees

Kuan-Yu Chen (陳冠宇)

2018/10/29 @ TR-212, NTUST

Review

Multi-way Search Trees

- *M* is called the degree of the tree
- If *M*=2, each node in the M-way search tree has one value and two sub-trees
 - Binary Search Tree!

B Trees

- Every node in the B tree has at most (maximum) m children
- Every node in the B tree except the root node and leaf nodes has at least (minimum) $\left[\frac{m}{2}\right]$ children
 - Degree=4, at least 2 children, at least 1 key
 - Degree=5, at least 3 children, at least 2 key
- The root node has at least two children
- All leaf nodes are at the same level

B+ Trees

- A B+ tree is a variant of a B tree which stores sorted data in a
 way that allows for efficient insertion, retrieval, and removal
 of records, each of which is identified by a key
 - A B tree can store both keys and records in its interior nodes
 - A B+ tree stores all the records at the leaf level of the tree and keys are stored in the interior nodes
 - Typically, B+ trees are used to store large amounts of data that cannot be stored in the main memory
 - The leaf nodes of a B+ tree are often linked to one another in a linked list
 - All of the internal nodes are called index nodes or i-nodes

B+ Trees – Insertion.

- For inserting a new element in a B+ tree
 - A new element is simply added in the leaf node if there is space for it
 - If the data node in the tree is full, then that node is split into two nodes
- For a given B+ tree of order 4, please insert 33 in the tree

B+ Trees – Insertion...

• For a given B+ tree of order 4, please insert 33 in the tree

B+ Trees – Deletion.

- For a B+ tree, deletion is always done from a leaf node
 - 1. Delete the key and data from the leaves
 - 2. If the **leaf node underflows**, merge that node with the sibling and **delete** the key in between them
 - 3. If the **index node underflows**, merge that node with the sibling and **move down** the key in between them.

B+ Trees – Deletion..

• For a B+ tree of order 4, please delete node 15 from the tree

B+ Trees – Deletion...

• For a B+ tree of order 4, please delete node 15 from the tree

2-3 Trees

- In a 2-3 tree, each interior node has either two or three children
 - Nodes with two children are called 2-nodes
 - The 2-nodes have one data value and two children
 - Nodes with three children are called 3-nodes
 - The 3-nodes have two data values and three children
 - All the leaf nodes are at the same level

2-3 Trees – Searching

- The search operation is used to determine whether a data value is present in a 2-3 tree
 - Search for 63

2-3 Trees – Insertion.

- To insert a new value in the 2-3 tree, an appropriate position of the value is located in one of the leaf nodes
 - If after insertion of the new value, the properties of the 2-3 tree do not get violated then insertion is over
 - If any property is violated then the violating node must be split
 - A node is split when it has three data values and four children

2-3 Trees – Insertion...

2-3 Trees – Insertion...

2-3 Trees – Insertion....

2-3 Trees – Insertion.....

2-3 Trees – Insertion.....

2-3 Trees – Insertion.....

- To delete a value, it is replaced by its in-order successor and then removed
 - If a node becomes empty after deleting a value, it is then merged with another node to restore the property of the tree
- Given a 2-3 tree, please delete the values 69, 72, 99, 81

• Given a 2-3 tree, please delete the values 69, 72, 99, 81

To merge the node, pull down the lowest data value in the parent's node and merge it with its left sibling

Questions?

kychen@mail.ntust.edu.tw