

Elektrische Kleinmaschinen

1. Grundlagen

magnetische Größen		
Durchflutung (magnetische Spannungsquelle)	Θ	[A]
Fluss	Φ	[Vs]
verketteter Fluss	Ψ	[Vs]
mag. Flussdichte	$ec{B}$	$\left[\frac{V_{S}}{2}\right]$
mag. Feldstärke	\vec{H}	$\begin{bmatrix} \mathbf{A} \end{bmatrix}$
magnetische Spannung	V_m	[m] [A]
magnetischer Widerstand	R_m	[<u>A</u>]
Streuziffer	σ	[Vs]
elektrische Größen		[+]
		ΓΔΊ
Stromdichte	<i>š</i> →	$\left[\frac{1}{m^2}\right]$
dielektrische Verschiebung	\vec{D}	$\left[\frac{As}{m^2}\right]$
el. Feldstärke	$ec{E}$	$\left[\frac{V}{m}\right]$
Strombelag	a	$\left[\frac{A}{m}\right]$
spezifischer Widerstand	ρ	$[\Omega \mathrm{m}]$
mechanische Größen		
Drehmoment	M	[Nm]
Massenträgheitsmoment	J	$\left[\mathrm{kg}\mathrm{m}^{2}\right]$
Spulenwindungszahl	w_{Sp}	[1]
effektive Windungszahl	w_{eff}	[1]
Luftspalthöhe	δ	[mm]
scheinbarer Luftspalt	δ'	[mm]
effektiver Luftspalt	$\delta^{\prime\prime}$	[mm]
Anzahl der Leiter pro Nut	Z_N	[1]
Zahl der Einzelspulen (Kommutatorsegmente)	Z_K	[1]
ideelle Eisenlänge bewickelbare Nutfläche	l_i	[m]
	A_N	$[m^2]$
magnetisch aktiver Winkel	β_M	[rad] [1]
Drehzahl	n	
Rotornutenzahl	N	[1]
Rotornutenzahl pro Pol Anzahl paralleler Zweige	Q	[1] [1]
	- u	[1]
Näherungsfaktoren		
Carterfaktor	k_C	[1]
Eleanfillfaller	$k_{Fe} \ k_{\mu}$	[1] [1]
Eisenfüllfaktor		I
Eisenfüllfaktor Eisenfaktor (Magnnetisierungsbedarf Eisen) Nutfüllfaktor	$k_{\mathcal{O}}$	[1]

1.1.1. Allgemeine Maschinenbegriffe - Durchmesser

Stator Außend.	D_{A1}
Stator Innend.	D_{11}
Rotor Außend.	D_{A2}
Rotor Innend.	D_{12}
Mittl. Luftspaltd.	D
Luftspalthöhe	δ

Maße

1.1.2. Allgemeine Maschinenbegriffe - Abmessungen

Nutzahl	N	[1]
Nutteilung	$ au_N$	[cm
Polpaarzahl	p	[1]
Polteilung	$ au_p$	[cm
Nuthöhe	h_N	[cm
Nutbreite	b_N	[cm
Jochhöhe	h_J	[cm

1.2. Grundlegende Gleichungen

1.2.1. Maxwell

$ rot \vec{H} = \vec{s} + \frac{\partial \vec{D}}{\partial t} rot \vec{H} = \vec{s} (< 10 \text{kHz}) $	$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
$\operatorname{div} \vec{B} = 0$	$\operatorname{div} \vec{D} = \gamma$

1.2.2. Durchflutungs- und Induktionsgesetz

Durchflutungsgesetz Induktionsgesetz	
$ \oint_{L_A} \vec{H} \mathrm{d}\vec{l} = \iint_{A_L} \vec{s} \mathrm{d}\vec{A} = \\ \Sigma i = \Theta $	$u_{i} = \frac{\partial \Psi(t)}{\partial t} = \frac{\partial}{\partial t} \left(\iint_{A} \vec{B} d\vec{A} \right)$ $\oint_{L} \vec{E} d\vec{l} + u_{i} = 0$

1.2.3. Kenngrößen

magnetische Größen	elektrische Größen
$\Phi = \iint \vec{B} d\vec{A}$ $V_m = \iint \vec{H} d\vec{l}$	$I = \iint \vec{s} \mathrm{d} \vec{A} \ U = \int \vec{E} \mathrm{d} \vec{l}$
$\Theta = w \cdot I$ $R_m = \frac{V_m}{\Phi} = \frac{l}{\mu \cdot A}$ $\vec{B} = \mu \cdot \vec{H}$ $\Psi = \Phi \cdot w = L \cdot i$	$R = \frac{U}{I} = \rho \frac{l}{A}$ $\vec{D} = \varepsilon \cdot \vec{E}$
$\bigoplus_{\substack{\Phi \\ \text{magnetisch wirksame Fläche} \\ A = k_{\text{Fe}} \cdot A_{\text{geometrisch}}} V$	

1.3. Entstehung des Drehmoments

1.3.1. Lorenzkraft

1.3.2. Drehmoment

1.3.3. Strombelag

$$\vec{F_{I_{\iota}}} = I \cdot (\vec{l} \times \vec{B})$$

$$\vec{r}_L = I \cdot (\vec{l} \times \vec{B})$$

 $M_D = F \cdot r = M_L + M_R + J \frac{d\omega}{dt}$

 $m_d(t) = \left(\frac{D}{2}\right)^2 \cdot \int_{-\frac{l_s}{d}}^{\frac{l_s}{2}} \int_{0}^{2\pi} a(\vartheta, z, t) B_{\delta}(\vartheta, z, t) \, \mathrm{d}\vartheta \, \mathrm{d}z$

 $a = \int \vec{s} \, d\vec{l} = \frac{\partial \sum i}{\partial l} = \frac{\partial}{\partial l} \left[\iint_A \vec{s} \, d\vec{A} \right] = -\frac{\partial \Theta}{\partial l}$

 $V(\vartheta) = \Theta(\vartheta) = -\frac{D}{2} \int a_{\text{ges}}(\vartheta) \, d\vartheta$

Magnetfeld wegen Nuten inhomogen. Ausgleich durch Carterfaktor k_C

 $k_C = k_{C1} \cdot k_{C2}$ $k_{C_i} = \frac{\tau_{N_i}}{\tau_{N_i} - \gamma_i \cdot \delta}$

 $a_{m} = \frac{b_{N}}{r_{N}} \cdot A_{\text{N}} = \frac{\sum \Theta_{N}}{r_{p}} \qquad \qquad A_{\text{N}} = \frac{Z_{N} \cdot i}{b_{N}} = \frac{\Theta_{N}}{b_{N}}$ 1.3.4. Felderregerkurve

 $P_{C_{II}} = R \cdot I^2$ 1.7.2. Reibungsverluste Ventilationsverluste (Verwirbelung Kühlmittel

Strömungsverluste)

1.7.1. Kupferverluste

1.7. Verluste

 Lagerreibung • Reibung an Kontaktflächen (z.B Schleifringe, Kommutator)

1.7.3. Hystereseverluste

 $P_{\mathsf{FeH}} = m_{\mathsf{Fe}} \cdot v_{15\mathsf{H}} \cdot \frac{f}{50\,\mathrm{Hz}} \cdot (\frac{B}{1.5\,\mathrm{T}})^2$

Verlustziffer: $v_{15\mathrm{H}}(f=15\mathrm{Hz},B=1.5\,\mathrm{T})\left[\frac{\mathrm{W}}{\mathrm{k}\sigma}\right]$ (Herstellerangabe)

1.7.4. Wirbelstromverluste

 $P_{\mathsf{FeW}} = m_{\mathsf{Fe}} \cdot v_{15\mathsf{W}} \cdot (\frac{f}{50\,\mathrm{Hz}})^2 \cdot (\frac{B}{1.5\,\mathrm{T}})^2$

Verlustziffer: $v_{15\mathrm{W}}(f=15\mathrm{Hz},B=1.5\,\mathrm{T})\left[\frac{\mathrm{W}}{\mathrm{k}\sigma}\right]$ (Herstellerangabe)

1.7.5. Gesamte Eisenverluste

$$P_{\mathsf{Fe}} = m_{\mathsf{Fe}} \cdot v_{\mathsf{Fe}15} \cdot \frac{f}{50 \, \mathsf{Hz}} \cdot (\frac{B}{1.5 \, \mathsf{T}})^2$$

1.8. Leistung

1.8.1. mechanische Leistung

$$P_m = 2\pi \cdot n \cdot M_i = \omega_m \cdot M_i$$

1.8.2. elektrische Leistung

$$P_{\rm el} = U \cdot I$$

$$\eta = \frac{P_{\mathsf{ab}}}{P_{\mathsf{auf}}}$$

$$\delta^{\prime\prime} = k_{\mu} \cdot k_{\mathsf{Abfl}} \cdot \delta^{\prime} \qquad \gamma_{i} = \frac{\left(\frac{bN_{i}}{\delta}\right)^{2}}{5 + \left(\frac{bN_{i}}{\delta}\right)} \qquad k_{\mu} = 1 + \frac{V_{m}\mathsf{Fe}}{2 \cdot V_{m}\delta^{\prime}} \qquad \eta_{\mathsf{Motor}} = \frac{P_{m}}{P_{\mathsf{el}}}$$

$$\eta_{\text{Generator}} = \frac{Pel}{Pm}$$

1.5. Streuung

1.5.1. Polstreuung

Φ_E: Gesamtfluss durch Polspule Φ_{Fh}: Hauptfluss

1.4. Effektiver Luftspalt

(ungenutet $k_{C_i} = 1$):

 $\delta' = k_C \cdot \delta$

$$\begin{split} & \Phi_{\mathsf{E}\sigma} \text{: Streufluss} \\ & \Phi_{\mathsf{E}} = \Phi_{\mathsf{Eh}} + \Phi_{\mathsf{E}\sigma} = (1 + \sigma_{\mathsf{E}}) \cdot \Phi_{\mathsf{Eh}} \end{split}$$

1.5.2. Nut- und Zahnkopfstreuung

ΦN: Gesamtfluss der in Nuten gebetteten Spulen

 $\Phi_{N\sigma}$: Streufluss (Nut- & Zahnkopfstreuung) $\Phi_{N} = \Phi_{Nh} + 2\dot{\Phi}_{N\sigma} = (1 + \sigma_{N}) \cdot \Phi_{Nh}$

1.5.3. Stirnstreuung

Φ_S: Gesamtfluss Stirnstreuung Φ_{Sh}: Hauptfluss Stirnstreuung

 $\Phi_{S\sigma}$: Streufluss Stirnstreuung

 $\begin{array}{l} \text{gesamte Streuziffer: } \sigma_{\text{ges}} = \frac{\Phi_{\sigma,\text{ges}}}{\Phi_{\text{Sh}}} \\ \Phi_{\text{S}} = \Phi_{\text{Sh}} + \Phi_{\sigma,\text{ges}} = (1 + \sigma_{\text{ges}}) \cdot \Phi_{\text{Sh}} \end{array}$

1.5.4. Induktivitäten

Hauptinduktivität: $L_h = \frac{\Psi_h}{i}$

Gesamte Streuinduktivität: $L_{\sigma} = \frac{\Psi_{\sigma}}{i} = \sigma \cdot L_{h}$

Totale Induktivität: $L_{\mathrm{ges}} = \frac{\Psi_{\mathrm{ges}}}{i} = (1+\sigma) \cdot L_h$

1.6. Spulen

 ${\sf Spulenwindungszahl}$

Wellenwicklung

Schleifenwicklung

 $\sigma_{\mathrm{N}} = \frac{2 \cdot \Phi_{\mathrm{N}\sigma}}{\Phi_{\mathrm{Nh}}}$

 $w_{\mathsf{Sp}} = \frac{Z_N}{2 \cdot u}$ $u = \frac{Z_K}{N}$ Nebeneinanderliegende Spulenseiten pro Nut

2. Permannentmagnete

2.1. Größen Remanenzflussdichte $\frac{A}{m}$ kritische Feldstärke (aus Kennlinie ablesen) $H_{\mathsf{M.krit}}$ Steigung Scherungsgerade k_{SG} [1] Luftspalthöhe Permanentmagnet δ_M [mm]Länge der Magnete l_{M} [m]Höhe Permanentmagnete h_M [m]Sicherheitsfaktor [1]

2.2. Allgemein D_{11} $D_{\mathsf{A}1}$

2.2.1. Flussdichte

 $B_{\delta} = -\mu_0 \frac{h_M}{\delta''} H_M = B_M \frac{A_M}{A_S} (1 - \sigma)$ Luftspalt $B_M = -\frac{h_M}{\delta''} \frac{A_\delta}{A_M} \frac{\mu_0}{1-\sigma} H_M = -k_{SG} \cdot H_M$ Permanentmagnet

2.2.2. Fluss

Luftspalt $\Phi_{\delta} = (1 - \sigma)\Phi_{M} = B_{\delta}A_{\delta}$ Permanentmagnet $\Phi_M = B_M A_M$

2.2.3. Fläche

 $\begin{aligned} A_{\delta} &= \beta_M \, \frac{D}{2} l_i = \beta_M \, \frac{D}{2} l_2 \cdot k_{\text{Fe}} \\ A_M &= \beta_M \, \frac{D_{11}}{2} l_M \\ A_L &= \frac{A_N \cdot k_Q}{Z \cdot k_L} \end{aligned}$ Luftspalt Permanentmagnet

Leiterquerschnitt

2.2.4. Materialgrößen

$$\sigma = k_{\sigma 1} \cdot k_{\sigma 2}$$

2.2.5. Effektiver Luftspalt

$$\begin{split} \delta' &= k_{C2} \cdot (\delta + \delta_M) \\ \delta'' &= (1 + k_\mu) \end{split} \qquad k_\mu = \frac{V_\mu}{2 \cdot H_\delta \cdot \delta'} \end{split}$$

2.3. Scherungsgerade

Arbeitspunktbestimmung

- 1. Scherungsgerade: $B_M = -k_{SG} \cdot H_M$
- 2. Materialkennlinie: $B_M = \mu_0 \mu_r H_M + B_r$
- 3. Schneiden von Materialkennlinie und Scherungsgerade
- 4. \Rightarrow Arbeitspunkt: $H_M = -\frac{1}{\mu_0 \mu_r + k_{SG}} B_r$

Luftspaltfluss im Arbeitspunkt:

$$\Phi_{\delta P} = (1 - \sigma) \cdot \frac{k_{\text{SG}}}{\mu_0 \mu_r + k_{\text{SG}}} \cdot B_r \cdot l_M \cdot \frac{D_{\text{I}1}}{2} \cdot \beta_M$$

Maximal zulässiger Ankerstrom

$$I_{2,\max} = \frac{2\pi \cdot (h_M + \delta^{\prime\prime})}{\omega_2 \cdot \beta_M} \cdot \left| (H_M^{\prime\prime} - H_M) \frac{\mu_0 \mu_r + k_{\rm SG}}{k_{\rm SG}} \frac{1}{1 + \frac{\delta^{\prime\prime}}{h_M}} \right|$$

Maximal zulässige Feldstärke: $H_M^{\prime\prime} = \gamma_{\mathsf{krit}} \cdot H_{\mathsf{M.krit}}$

3. Gleichstrommaschine

3.1. Größen Maschinenkonstante (Spannung) k_U [1] Maschinenkonstante (Drehmoment) [1] k_M $\frac{V_s}{A}$ Flusskonstante Erregerstromkonstante [1] [1] Ankerwindungszahl [V] Bürstenübergangsspannung Kommutatorsegmentspannung [V]

3.2. Systemgleichungen

$$\begin{split} U_A &= R_{A,\mathrm{res}} \cdot I_A + U_i + 2 \cdot U_B & \qquad w_2 = \frac{N_2 \cdot Z_N}{2a} \\ \Phi_E &= k_\Phi \cdot I_E & \qquad k_U = 4p \cdot w_2 \\ U_i &= k_U \cdot \Phi_E \cdot n & \qquad k_M = \frac{k_U}{2\pi} \\ M_i &= k_M \cdot \Phi_E \cdot I_A & & & \\ M_i &= M_R + M_L + J \frac{\mathrm{d}\omega}{\mathrm{d}t} \end{split}$$

3.3. Verhalten

3.4. Gleichstrom-Nebenschlussmaschine

3.4.1. ESB

3.4.2. Drehmoment-Drehzahl-Kennlinie

$$n = \frac{U_A - 2 \cdot U_B}{k_U \cdot \Phi_E} - \frac{2\pi \cdot R_{A, \mathrm{res}}}{(k_U \cdot \Phi_E)^2} \cdot M_i$$

3.4.3. Wichtige Betriebspunkte

$$\begin{aligned} & \text{Anlaufmoment: } (n=0) & M_{i,\text{An}} = k_M \cdot \Phi_E \cdot I_{A,\text{An}} \\ & \text{Leerlaufdrehzahl: } (M_i=0) & n_0 = \frac{U_A - 2 \cdot U_B}{k_U \cdot \Phi_E} \\ & \text{Anlaufstrom: } (n=0) & I_{A,\text{An}} = \frac{U_A - 2 \cdot U_B}{R_{A,\text{res}}} \\ & n = n_0 \cdot \left(1 - \frac{M_i}{M_{A,\text{An}}}\right) & M_i = M_{i,\text{An}} \cdot \left(1 - \frac{n}{n_0}\right) \end{aligned}$$

3.5. Gleichstrom-Reihenschlussmaschine

3.5.1. ESB

3.5.2. Systemgleichungen

$$\begin{split} I_E &= k_E \cdot I_A \quad \text{mit } k_E = \begin{cases} 1 & \text{für } R_P \to \infty \\ 0 & \text{für } R_P = 0 \end{cases} \\ \frac{R_p}{R_p + R_E} & \text{sonst} \end{cases} \\ \Phi_E &= k_\Phi \cdot I_E = k_\Phi \cdot k_E \cdot I_A \\ M_i &= k_M \cdot \Phi_E \cdot I_A = k_M \cdot k_\Phi \cdot k_E \cdot I_A^2 \\ U_i &= k_U \cdot \Phi_E \cdot n = k_U \cdot k_\Phi \cdot k_E \cdot I_A \cdot n \end{split}$$

3.5.3. Drehmoment-Drehzahl-Kennlinie

$$M_i = k_M \; k_\Phi \; k_E \cdot \frac{(U_A - 2 \cdot U_B)^2}{(k_U \; k_\Phi \; k_E \cdot n + R_{A, \mathrm{res}})^2}$$

Anlaufmoment: (n=0) $M_{i,\mathsf{An}} = k_M \; k_\Phi \; k_E \cdot \left(\frac{U_A}{R_{A,\mathsf{pro}}}\right)^2$

3.6. Permanenterregte Gleichstrommaschine

3.6.1. ESB

3.6.2. Systemgleichungen

Maximaler Ankerstrom: Maximale Ankerspannung: $I_{\mathsf{A.max}} = I_L \cdot a = S \cdot A_L \cdot a$ $U_{\text{A max}} = U_S \cdot \frac{Z_K}{2\pi}$

4. Wechselfeld - Drehfeld

4.1. Größen

Stator	Index 1	
Rotor	Index 2	
Ordnungszahl der Oberwellen	ν	[1]
elektrische Frequenz	f	[Hz
elektrische Kreisfrequenz	ω	rac
$\omega = 2\pi f$		
mechanische Kreisfrequenz	ω_m	rac
Phasenwinkel	φ	[rac
Strangachsenwinkel	ϑ	[rac
Strangspannung	U_1	[V
Strangstrom	I_1	[A
komplexe Scheinleistung	<u>S</u>	[VA
Wirkleistung	P	[W
Blindleistung	Q	[Va
Strangzahl	m	[1]
Windungszahl pro Strang	w_1	[1]
Lochzahl (Nuten pro Pol und Strang)	q	[1]
Nutwinkel	α_N	[rac
Spulenwinkel	α_{Sp}	[rac
Polwinkel	α_p	[rac
Spulenweite	W_{Sp}	[cm
Zonungsfaktor	ξ_Z	[1]
Sehnungsfaktor	ξ_S	[1]
Nutschlitzbreitenfaktor	ξ_N	[1]
Schrägungsfaktor	ξ_{Schr}	[1]

4.2. Stern & Dreieckschaltung

Sternschaltung	Dreiecksschaltung
$U_1 = \frac{U_N}{\sqrt{3}}$	$U_1 = U_N$
$I_1 = I_N$	$I_1 = \frac{I_N}{\sqrt{3}}$
	1

4.3. Allgemeines zu Wechselgrößen

$$\underline{a}^{\nu} = e^{j\nu} \frac{2\pi}{3} \qquad \underline{a}^{0} + \underline{a}^{1} + \underline{a}^{2} = 0$$
$$\underline{a}^{2} = \underline{a}^{*} = e^{j\frac{4\pi}{3}} = e^{-j\frac{2\pi}{3}}$$

$$x(t) = \sqrt{2} \cdot X \cdot \cos(\omega t + \varphi)$$

4.3.1. Wechselfeld

$$B(\vartheta, t) = \hat{B} \cdot \cos(\vartheta - \vartheta_0) \cdot \cos(\omega t - \varphi)$$

4.3.2. Drehfeld

$$B(\vartheta, t) = \hat{B} \cdot \cos((\vartheta - \vartheta_0) - (\omega t - \varphi))$$

4.4. Einfluss realer Luftspalt

Wicklungsfaktor: $\xi_{(\nu)} = \xi_{Z(\nu)} \cdot \xi_{S(\nu)} \cdot \xi_{N(\nu)}$

$$w_{\mathsf{eff}} = w_{\mathsf{Sp}} \cdot \xi_{(\nu)}$$

 $\alpha_N = \frac{2\pi}{N}$ $\alpha_{\mathsf{Sp}} = W_{\mathsf{Sp}}(\mathsf{absolut}) \cdot \alpha_N$ $\alpha_p = \frac{2\pi}{2\pi}$

4.4.1. Zonung

Erhöhung der Lochzahl q

(Beschränkt durch $N_{\rm max}=\frac{D\pi}{\tau_{N,\rm min}}$) mit $\tau_{N,\rm min}pprox 1~{
m cm}$

$$w_{\text{eff}} = q \cdot w_{\text{Sp}} \cdot \xi_{Z(\nu)}$$

$$\xi_{Z(\nu)} = \frac{\sin\left(q \cdot \nu \frac{\alpha_N}{2} p\right)}{q \cdot \sin\left(\nu \frac{\alpha_N}{2} p\right)} = \frac{\sin\left(\nu \frac{\pi}{2} \frac{q}{Q}\right)}{q \cdot \sin\left(\nu \frac{\pi}{2} \frac{1}{Q}\right)}$$

4.4.2. Sehnung

Kürzung der Spulenweite W_{Sp} (nicht bei Einschichtwicklung möglich)

$$\begin{aligned} w_{\text{eff}} &= q \cdot w_{\text{Sp}} \cdot \xi_{S(\nu)} \\ \xi_{S(\nu)} &= \sin \left(\nu \frac{\pi}{2} \frac{W_{\text{Sp}}}{\tau_{\text{p}}} \right) = \sin \left(\nu \frac{\alpha_{\text{Sp}}}{\alpha_{\text{p}}} \frac{\pi}{2} \right) \end{aligned}$$

5.1. Größen

$$w_{\rm eff} = w_{\rm Sp} \cdot \xi_{N(\nu)}$$

$$\sin\left(\nu \frac{b_N}{D}\right)$$

$$\xi_{N(\nu)} = \frac{\sin\left(\nu \frac{b_N}{D}\right)}{\nu \frac{b_N}{D}}$$

5. Synchronmaschine

Leerlaufkurzschlussverhältnis (LKV)

Verketteter Fluss Permanentmagnet

[A] Erregerstrom I_2 [V] induzierte Polradspannung $\underline{U}_{\mathsf{iP}}$ synchrone Reaktanz X_d $[\Omega]$ Selbstinduktivität L[H] [H] Koppelinduktivität (von Rotor nach Stator) M_{21} Polradwinkel θ [rad] Phasenwinkel von Z_1 [rad] φ_{Z1} Netzleistung (Wirkleistung) P_1 [W] [W] innere elektrische Leistung P_W [W] Drehfeldleistung P_{δ} P_{m} [W] mechanische Leistung [W] Erregerleistung P_{E} [A] Leerlaufkurzschlussstrom \underline{I}_{K0} Dreisträngiger Dauerkurzschlussstrom I_{KIII} [A]

5.2. ESB

$$\begin{split} & \underline{U}_1 = \underline{Z}_1 \cdot \underline{I}_1 + \underline{U}_{\mathsf{iP}} \\ & \underline{Z}_1 = R_1 + jX_d \\ & X_d = X_{1h} + X_{1\sigma} = 2\pi f \cdot (L_{1h} + L_{1\sigma}) \\ & |\underline{U}_{\mathsf{iP}}| = U_{\mathsf{iP}} = \omega M_{21} \sqrt{2} \cdot I_2 \\ & \sigma = \frac{L_{1\sigma}}{L_{1h}} \end{split}$$

5.3. Systemgleichungen

$$\begin{split} \vec{u}_1 &= R_1 \cdot \vec{i}_1(t) + \frac{\partial \vec{\Psi}_1(t)}{\partial t} \\ \vec{\Psi}_1 &= L_1 \cdot \vec{i}_1(t) + M_{21} \cdot \vec{i}_2'(t) \\ u_2 &= R_2 \cdot i_2(t) + \frac{\partial \Psi_2(t)}{\partial t} \\ \Psi_2 &= L_2 \cdot i_2(t) + 3 \cdot M_{21} \cdot (\vec{i}_1(t)e^{-jp\vartheta m} + \vec{i}_1^*(t)e^{jp\vartheta m}) \end{split}$$

5.4. Wichtige Gleichungen

5.4.1. Synchrone Drehzahl Luftspaltfeld

$$n_{\rm syn}\,=\,n_{\,N}\,=\,\frac{f_1}{p}$$

5.4.2. Drehmoment

$$M_K \sim \frac{U_1}{f_1}$$

$$M_{i} = -\frac{3p}{\omega_{1}} \cdot \left[\frac{U_{1} \cdot U_{\mathsf{iP}}}{Z_{1}} \cdot \sin\left(\vartheta - \varphi_{Z1}\right) + \frac{U_{\mathsf{iP}}^{2}}{Z_{1}} \cdot \sin\left(\varphi_{Z1}\right) \right]$$

Kippmoment:

$$M_K = \frac{3p}{\omega_1} \cdot \frac{U_1 \cdot U_{\mathsf{iP}}}{Z_1} = \frac{3p}{\omega_1} \cdot U_1 \cdot I_{K\mathsf{III}}$$

 $R_1 = 0 \Rightarrow \varphi_{Z1} = 0 \Rightarrow M_i = -M_K \cdot \sin(\vartheta)$

5.4.3. Leistung

$$\underline{S}_1 = m_1 \cdot \underline{U}_1 \cdot \underline{I}_1^*$$

$$P_1 = S_1 \cdot \cos(\varphi) = m_1 \cdot U_1 \cdot I_1 \cdot \cos(\varphi)$$

 $P_{W} = 3 \cdot U_{:D} \cdot I_1 \cdot \cos(\varphi)$

$$P_{\delta} = \omega_m \cdot M_i = P_W - 3 \cdot R_1 \cdot {I_1}^2$$

$$P_m = 2\pi \cdot n \cdot (M_i - M_R) = \omega_m \cdot (M_i - M_R) = P_\delta - P_R$$

$$P_E = U_2 \cdot I_2$$

$$q = \frac{P_m}{P_m + P_m}$$

5.5. Betriebsbereiche

Bei Leerlauferregung ($I_2 = I_{20}$): $\Rightarrow U_1 = U_{iP}$

Bei linearer Leerlaufkennlinie ($X_d = \text{const.}$): $I_2 = I_{20} \cdot \frac{U_{\text{iP}}}{U_{\text{const.}}}$

5.5.1. Leerlauf $(I_1 = 0)$

$$I_{20} = \frac{U_{\rm iP}}{\omega M_{21} \sqrt{2}} = \frac{U_1}{\omega M_{21} \sqrt{2}}$$

5.5.2. Kurzschluss $(U_1 = 0)$

$$\underline{I}_{K\text{III}} = \frac{\underline{U}_{\mathsf{iP}}}{\underline{Z}_1}$$

$$\underline{I}_{K0} = \underline{I}_{KIII}(I_{20}) = \frac{\underline{U}_1}{Z_1}$$

5.5.3. Betriebsarten

 ϑ zwischen dem Zeiger von \underline{U}_1 nach $\underline{U}_{\mathsf{iP}}$ φ zwischen dem Zeiger von $\overline{\underline{I}_1}$ nach $\underline{\underline{U}_1}$ \underline{I}_2 eilt $\underline{U}_{:D}$ um 90° nach

Phasenschieberbetrieb: $\vartheta = 0$ ($R_1 = 0$ VZS - Betrieb am starren Netz)

- Betrieb im Leerlauf
- · reine Blindleistungsabgabe bzw. -aufnahme
- $cos(\varphi) = 0 \Rightarrow$
 - untererregt: $\Rightarrow \varphi = 90^{\circ}$
 - übererregt: $\Rightarrow \varphi = -90^{\circ}$

Motorbetrieb: $\vartheta < 0$ ($R_1 = 0$ VZS - Betrieb am starren Netz)

untererregt $\varphi > 0$

übererregt $\varphi < 0$

Generatorbetrieb: $\vartheta > 0$ ($R_1 = 0$ VZS - Betrieb am starren Netz)

5.6. Zeigerdiagramm

5.7. Stromortskurve

$$\begin{split} \underline{I}_1 &= \underline{I}_{K0} - \underline{I}_{K\PiI} \\ \underline{I}_{K\PiI} &= \frac{U_{\text{iP}}}{U_1} \cdot \underline{I}_{K0} \cdot e^{j\vartheta} \\ \underline{I}_{K0} &= -\frac{U_1}{Z_1} \cdot j \, e^{j\varphi} Z^1 \end{split}$$

Stromortskurve

- 1. \underline{U}_1 auf reelle Achse legen
- 2. Richtung von \underline{U}_{iP} einzeichnen
- 3. \underline{I}_{K0} einzeichnen

bei $R_1=0$: \underline{I}_{K0} eilt \underline{U}_1 um 90° nach

- 4. konstante Erregung: Kreis um Spitze von \underline{I}_{K0} mit Radius I_{KIII}
- 5. Richtungen von \underline{I}_{KIII} und \underline{I}_1 festgelegt durch φ bzw. ϑ
- **6.** bei $R_1=0$: Verlängerung von $\underline{U}_{\mathsf{iP}}\perp\underline{I}_{K\mathsf{III}}$
- Motor $\operatorname{Re}(\underline{I}_1) = |\underline{I}_1| \cdot \cos(\varphi)$ Generator übererregt untererregt $I_{KIII} > I_{K0}$ $I_{KIII} < I_{K0}$

 $\frac{I_{K0}}{I_N}$

 Ψ_{PM}

[1]

[Vs]

5.8. dq-Darstellung

Zeigerdiagramm

- 1. \underline{U}_1 auf reelle Achse legen
- 2. I i einzeichnen
- 3. Richtung von U_{iP} legt d und q Achse fest $(\vartheta = \text{unbekannt} \Rightarrow \text{weiter bei Trick})$
- **4.** Zerlegung von \underline{I}_1 in \underline{I}_d und \underline{I}_a
- **5.** Spannungsabfall an $X_d = |X_d \cdot I_d|$
- **6.** Spannungsabfall an $X_q = |X_q \cdot I_q|$
- 7. $\underline{U}_{iP} = \underline{U}_1 jX_d \cdot \underline{I}_d jX_q \cdot \underline{I}_q$

- 1. $\vartheta = \arg(\underline{U}_1 jX_q \cdot \underline{I}_1) \Rightarrow \text{Richtungsgerade von}$ $U_{\mathsf{iP}}(||jX_d\underline{I}_d)$
- 2. $\underline{U}_{\mathrm{iP}} = \mathrm{Senkrechte} \ \mathrm{von} \ \underline{U}_1 j X_d \cdot \underline{I}_d \ \mathrm{auf} \ \mathrm{Richtungsgerade}$

5.8.1. Systemgleichungen

$$\begin{split} U_d &= R_1 \cdot I_d - \omega_1 L_q \cdot I_q \\ U_q &= R_1 \cdot I_q + \omega_1 L_d \cdot I_d + \sqrt{2} \cdot U_{\text{iP}} \\ U_{\text{iP}} &= \sqrt{2} \cdot \omega_1 M_{21} \cdot I_2 \\ U_2 &= R_2 \cdot I_2 \\ M_i &= 3 \cdot p \cdot M_{21} \cdot I_2 \cdot I_q \end{split}$$

5.8.2. Zeigerdiagramm

5.9. Schenkelpolläufer

5.9.1. Drehmoment $(R_1 = 0)$

$$\boldsymbol{M}_i' = -\frac{m_1 \cdot \boldsymbol{p}}{\omega_1} U_1 \left[\frac{U_{\mathrm{iP}}}{X_d} \sin(\vartheta) + \frac{U_1}{2} \left(\frac{1}{X_q} - \frac{1}{X_d} \right) \sin(2\vartheta) \right]$$

Reluktanzmoment (Reaktionsmoment):

$$M_r = -\frac{m_1 \cdot p}{\omega_1} \cdot \frac{{U_1}^2}{2} \left(\frac{1}{X_q} - \frac{1}{X_d} \right) \sin(2\vartheta)$$

Vollpolläufer entwickeln kein Reluktanzmoment wegen $L_d=L_q.$ Maximales Reluktanzmoment bei $|\vartheta| = 45^{\circ}$

5.9.2. Systemgleichungen

$$\begin{split} \underline{U}_1 &= \underline{U}_d + \underline{U}_q + \underline{U}_{\mathsf{iP}} \\ &= j X_d \cdot \underline{I}_d + j X_q \cdot \underline{I}_q + \underline{U}_{\mathsf{iP}} \\ \underline{I}_1 &= \underline{I}_d + \underline{I}_q \end{split}$$

5.10. Permanenterregte Synchronmaschine

5.10.1. Betriebsverhalten

$$\begin{split} \underline{\Psi}_1 &= L_1 \underline{I}_1 + \underline{\Psi}_{\text{PM}} & \qquad \Psi_{\text{PM}} &= \xi \cdot w_1 \cdot \hat{\Phi}_{\delta} \\ \Psi_d &= L_d I_d + \Psi_{\text{PM}} & \qquad \Psi_q &= L_q I_q \end{split}$$

$$U_{iP} = \sqrt{2}\omega_1 \cdot \Psi_{PM}$$

5.10.2. Drehmoment

$$M_D = \frac{m_1}{2} \cdot p \cdot \left[\Psi_{\text{PM}} \cdot I_q + (L_d - L_q) \cdot I_d \: I_q \right]$$

äguvalent zu M_D Schenkelpolläufer

- 5.10.3. Betriebsarten
- symetrischer Betrieb
- EC-Betrieb als BLDC

6. Asynchronmaschine

6.1. Größen

Übersetzungsverhältnis	\ddot{u}	[1]
Schlupf	s	[1]
Kippschlupf	s_K	[1]
Kippmoment	M_K	[Nm]
Bezogener Statorwiderstand	$ ho_1$	[1]
Bezogener Rotorwiderstand	$ ho_2$	[1]
Hilfsgröße	Δho_1	[1]
Rotor-Statorwärmeverluste	P_{Cu}	[W]
Magnetisierungsstrom	$\underline{I}_{1\mu}$	[A]
Rotor-Vorwiderstand	R_{2V}	$[\Omega]$

6.2. ESB

6.2.1. Übersetzungsverhältnis Bei Schleifring-ASM gilt: $M_{21}=M_{12}=M$

$$\ddot{u} = \frac{L_{1h}}{M} = \sqrt{\frac{m_1}{m_2}} \cdot \frac{w_1 \xi_1}{w_2 \xi_2} \cdot \frac{1}{\xi_{\mathsf{Schr}}} = \sqrt{\frac{m_1}{m_2}} \cdot \frac{w_1,\mathsf{eff}}{w_2,\mathsf{eff}} \cdot \frac{1}{\xi_{\mathsf{Schr}}}$$

$$\begin{array}{ll} R'_{2,\mathrm{ges}} = \ddot{u}^2 \cdot R_{2,\mathrm{ges}} & R'_{2,\mathrm{ges}} = R'_2 + R'_{2V} \\ \underline{U}_2 = \frac{1}{\ddot{u}} \cdot \underline{U}_{1i} & L'_{2\sigma} = \ddot{u}^2 \cdot (L_{2\sigma} + L_{\mathrm{2Schr}}) \\ \underline{I}'_2 = \frac{1}{\ddot{u}} \cdot \underline{I}_2 & \end{array}$$

6.3. Systemgleichungen

$$\begin{split} \vec{u}_1 &= R_1 \cdot \vec{i}_1 + \frac{\partial \vec{\Psi}_1}{\partial t}, & \vec{\Psi}_1 &= L_1 \cdot \vec{i}_1 + M \cdot \vec{i}_2 \cdot e^{jp\vartheta m} \\ 0 &= R_{2,\mathrm{ges}} \cdot \vec{i}_2 + \frac{\partial \vec{\Psi}_2}{\partial t}, & \vec{\Psi}_2 &= L_2 \cdot \vec{i}_2 + M \cdot \vec{i}_1 \cdot e^{-jp\vartheta m} \\ J \frac{\mathrm{d}\omega}{\mathrm{d}t} &= M_i - M_R - M_L \end{split}$$

6.4. Wichtige Größen

6.4.1. Schlupf

$$s = \frac{n_{\rm syn} - n}{n_{\rm syn}} = \frac{\omega_{\rm syn} - \omega_m}{\omega_{\rm syn}} = \frac{\omega_1 - p \cdot \omega_m}{\omega_1} = \frac{\omega_2}{\omega_1}$$

Gegenstrombremse s > 1

Motor 1 > s > 0 Generator s < 0

6.4.2. Drehzahl

synchrone Drehzahl $n_{\text{syn}} = \frac{f}{n}$

Nenndrehzahl

 $n_N = n_s (1 - s_N)$

6.4.3. Leistung

$$\begin{split} \underline{S}_1 &= m_1 \cdot \underline{U}_1 \cdot \underline{I}_1^* \\ P_1 &= S_1 \cdot \cos{(\varphi)} = m_1 \cdot U_1 \cdot I_1 \cdot \cos{(\varphi)} \\ P_{\mathsf{Netz}} &= m_1 \cdot U_1 \cdot I_1 \cdot \cos{(\varphi_N)} = P_1 + P_{\mathsf{Fe}} \\ P_{\delta} &= 2\pi \cdot n_{\mathsf{syn}} \cdot M_i = P_1 - P_{\mathsf{Cu}1} - P_{\mathsf{Fe}} \\ P_{mi} &= (1 - s)P_{\delta} = P_{\delta} - P_{\mathsf{Cu}2} - P_{2V} = \omega_m \cdot M_i \\ P_m &= 2\pi \cdot n \cdot (M_i - M_R) = \omega_m \cdot (M_i - M_R) = P_{mi} - P_R \\ P_{\mathsf{Cu}2} &= s \cdot P_{\delta} = m_2 \cdot R_2 \cdot I_2^2 \end{split}$$

6.4.4. Phase

ASM immer induktiv
$$\Rightarrow \varphi > 0$$

$$\begin{split} \varphi &= \varphi_{1Z} - \varphi_{1N} \\ \varphi &= \begin{cases} \arctan(\frac{b}{a}) & \text{für } a > 0 \\ \arctan(\frac{b}{a}) + \pi & \text{für } a < 0, b \geq 0 \\ \arctan(\frac{b}{a}) - \pi & \text{für } a < 0, b < 0 \end{cases} \end{split}$$

6.4.5. Weitere Parameter

$$\begin{split} L_{1\sigma} &= \sigma_1 \cdot L_{1h} & L_1 = L_{1h} + L_{1\sigma} \\ L'_{2\sigma} &= \sigma_2 \cdot L_{1h} & L'_2 = L_{1h} \cdot (1 + \sigma_2) \\ L_{\sigma} &= \sigma \cdot L_1 = L_{1\sigma} + \frac{\xi_{\text{Schr}}}{1 + \sigma_2} L'_{2\sigma} \\ \rho_1 &= \frac{R_1}{\omega_1 L_1} & \rho_2 = \frac{R_2_{,\text{ges}}}{w_1 L_2} = \frac{R'_{2,\text{ges}}}{\omega_1 L'_2} \\ \Delta \rho_1 &= \sqrt{1 + \left(\frac{\rho_1}{\sigma}\right)^2} \cdot \sqrt{1 + \rho_1^2} \\ \sigma &= 1 - \frac{1}{(1 + \sigma_1) \cdot (1 + \sigma_2)} = 1 - \frac{M^2}{L_1 L_2} \end{split}$$

6.5. Statorstrom

$$\underline{I}_1 = \frac{\underline{U}_1}{\omega_1 L_1} \cdot \frac{\rho_2 + js}{\rho_1 \cdot \rho_2 - \sigma \cdot s + j(\rho_2 + s \cdot \rho_1)}$$

$$I_{1A} = |\underline{I}_1|(s=1) = \frac{U_1}{\omega_1 L_\sigma} \sqrt{\frac{1 + \rho_2^{\ 2}}{\left(1 - \frac{\rho_1 \cdot \rho_2}{\sigma}\right)^2 + \left(\frac{\rho_1 + \rho_2}{\sigma}\right)^2}}$$

$$\begin{array}{c} \text{Ideeller Kurzschlussstrom:} \\ I_{1Ki} = |\underline{I}_1|(s \to \pm \infty) = \frac{U_1}{\omega_1 L_\sigma} \cdot \frac{1}{\sqrt{1 + \left(\frac{\rho_1}{\sigma}\right)^2}} \\ \end{array}$$

Leerlaufstrom:
$$I_{10} = |\underline{I}_1|(s=0) = \frac{U_1}{\omega_1 L_1} \cdot \frac{1}{\sqrt{1+\rho_1^2}}$$

6.5.1. Magnetisierungsstrom

$$\underline{I}_{\mu} = \frac{\rho_2 + j \cdot s \cdot (\sigma - \sigma_1 \cdot (1 - \sigma))}{\rho_1 \cdot \rho_2 - \sigma \cdot s + j \cdot (\rho_2 + s \cdot \rho_1)} \cdot \frac{\underline{U}_1}{\omega_1 L_1}$$

6.6. Zeigerdiagramm

Zeigerdiagramm

- 1. U_1 auf reelle Achse legen und I_1 einzeichnen
- 2. R_1I_1 (gleiche Phasenlage wie I_1) $j\omega_1L_{1\sigma}\underline{I}_1$ (eilt \underline{I}_1 um 90° voraus)
- 3. $\underline{U}_{1i} = \underline{U}_1 R_1\underline{I}_1 j\omega_1L_{1\sigma}\underline{I}_1$
- 4. $\underline{I}_{1\mu} = \frac{\underline{U}_{1i}}{i\omega_1 L_{1k}}$ (eilt \underline{U}_{1i} um 90° nach)
- 5. $\underline{I}'_2 = \underline{I}_{1\mu} \underline{I}_1$
- **6.** $R'_{2,\text{ges}}\underline{I}'_2$ (parallel zu \underline{I}'_2)
- 7. $j\omega_1 L'_{2\sigma} \underline{I'}_2$ (eilt $\underline{I'}_2$ um 90° voraus)
- 8. $R'_{2,\text{ges}} \cdot \frac{1-s}{s} \cdot \underline{I}'_2 = -\underline{U}_{1i} R'_{2,\text{ges}} \underline{I}'_2 j\omega_1 L'_{2\sigma} \underline{I}'_2$

6.7. Stromortskurve

bei $R_1 = 0$

 $tan(\mu) = s_K$

Stromortskurve $R_1 = 0 \wedge R_{\rm Fe} = 0$

- 1. U_1 auf reelle Achse legen $\Rightarrow \varphi_{1U} = 0$
- 2. $R_1=0\Rightarrow \underline{I}_{10}$ und \underline{I}_{1Ki} haben keinen Realteil
- 3. Kreismittelpunkt auf Im-Achse zwischen \underline{I}_{1Ki} und \underline{I}_{10}
- 4. μ zwischen P_0 und P_A

6.7.1. Schlupfgerade

Schlupfgerade $R_1 = 0 \wedge R_{\text{Fe}} \neq 0$

- 1. (Bei $R_{\mathsf{Fe}} = 0$) Mittelpunkt M auf -Im Achse
- 2. Schlupfgerade an beliebiger Stelle einzeichnen
- 3. gesuchtes s aus Längenverhältnis zu bekanntem Schlupf bestimmen

6.7.2. Maßstab

Strommaßstab Leistungsmaßstab $m_P = m_1 \cdot U_1 \cdot m_I$ $m_M = \frac{m_P}{2\pi \cdot n_{\text{SVII}}}$ Drehmomentmaßstab

6.7.3. Ablesbare Werte

$$R_1 \neq 0 \land R_{\mathsf{Fe}} \neq 0$$

 $P_1 = \overline{PD} \cdot m_P$ Aufgenommene elektrische Leistung $P_{\mathsf{Fe}} = \overline{CD} \cdot m_P$ Eisenverluste Stator Kupferverluste Stator $P_{Cu1} = \overline{BC} \cdot m_P$ $P_{\text{Cu}2} = \overline{AB} \cdot m_P$ $P_m = \overline{PA} \cdot m_P$ $M_i = \overline{PB} \cdot m_M$ Kupferverluste Rotor Abgegebene mechanische Leistung Inneres Drehmoment

Definition Punkt D: Orthogonale Projektion von P auf Im-Achse $R_1 = 0$ B = C und M auf Höhe von P_0

 $R_{\mathsf{Fe}} = 0$ C = D und P_0 auf -Im Achse

6.8. Drehmoment

$$M_K \sim \left(\frac{U_1}{f_1}\right)^2 \qquad M_N \sim \Phi_\delta \frac{U_1}{f_1}$$

$$M_i = M_R + M_L + J \frac{\partial \omega}{\partial t}$$

6.8.1. Drehmomentgleichung

$$M_i = 3p(1-\sigma)\frac{{U_1}^2}{{\omega_1}^2 L_\sigma} \frac{s \cdot s_K}{\Delta \rho_1 s_K{}^2 + 2\frac{\rho_1}{\sigma}(1-\sigma) s_K s + \Delta \rho_1 s^2}$$

$$M_K = M_i(s_K) = \frac{3}{2} p \cdot (1 - \sigma) \frac{U_1^2}{\omega_1^2 L_\sigma} \left(\frac{1}{\Delta \rho_1 + \frac{\rho_1}{\sigma} (1 - \sigma)} \right)$$

$$\begin{array}{l} (R_1=0): M_K = \frac{m_1 U_1 \frac{I_1 K_i - I_1 0}{2}}{2\pi \cdot n_s} \\ \text{Kippschlupf: } s_K = \frac{\rho_2}{\sigma} \sqrt{\frac{1 + \rho_1^{\,2}}{1 + \left(\frac{\rho_1}{2}\right)^{\,2}}} \end{array}$$

 $s_K > 0$ Motor

 $s_K < 0$ Generator

6.8.2. Klossche Gleichung (Annahme $R_1=0$)

$$\frac{M_i}{M_K} = \frac{2 \cdot s_K \cdot s}{s_K^2 + s^2}$$

$$s_{1,2} = s_K \frac{M_K}{M_i} \pm \sqrt{\left(s_K \frac{M_K}{M_i}\right)^2 - s_K^2}$$

Nur echte Lösung wenn gilt: $\ s < s_K$

6.9. Symmetrische Komponenten

6.9.1. Spannungen Mit- und Gegensystem

 $\begin{array}{lll} \text{Mitsystem} & \underline{U}_m = \frac{1}{3} \cdot (\underline{U}_u + \underline{a} \cdot \underline{U}_v + \underline{a}^2 \cdot \underline{U}_w) \\ \text{Gegensystem} & \underline{U}_m = \frac{1}{3} \cdot (\underline{U}_u + \underline{a}^2 \cdot \underline{U}_v + \underline{a} \cdot \underline{U}_w) \\ \text{Nullsystem} & \underline{U}_m = \frac{1}{3} \cdot (\underline{U}_u + \cdot \underline{U}_v + \cdot \underline{U}_w) \\ \text{Nullsystem verschwindet bei Dreiecksschaltung oder Sternschaltung ohne} \end{array}$

herausgeführten Sternpunkt

6.9.2. Drehmoment mit Kompensation (Kippschlupf ändert sich)

$$M_{ges} = M_m - M_q$$

$$M = 3p \cdot (1 - \sigma) \cdot \frac{{U_1}^2}{\omega^2 L_1} \cdot \frac{\rho_2 \cdot s}{(\rho_1 \cdot \rho_2 - \sigma \cdot s)^2 + (\rho_2 + s \cdot \rho_1)^2}$$

7. Universalmotor

7.1. Größen

Drehmoment zeitinvarianter Anteil M_D Pendelmoment (doppelte Speisefrequenz) m_p Phasenverschiebungswinkel Strom

7.2. ESB

7.3. Systemgleichungen

Vergleiche Systemgleichungen Gleichstrom-Reihenschlussmotor

$$\begin{split} & \underline{U} = (R_{\text{ges}} + jX_{\text{ges}}) \cdot \underline{I} + \underline{U}_i \\ & \Phi_{\delta} = k_{\Phi} \cdot i \\ & m_D = k_M \cdot \Phi_{\delta} \cdot i \\ & i = \sqrt{2} \cdot I \cdot \cos(\omega_1 t + \varphi_I) \\ & \underline{U}_i = \frac{n}{r_0} \cdot k_U' \cdot \underline{I} \end{split}$$

7.4. Drehmoment

$$m_D(t) = M_D + m_p(t) = k_M \; k_\Phi \cdot I^2 \cdot (\underbrace{1}_{M_D} + \underbrace{\cos\left(2\omega t + 2\varphi_I\right)}_{m_p})$$

7.4.1. Drehmoment-Drehzahl-Gleichung

$$M_D = k_M \; k_\Phi \cdot \frac{\left(U_1 - 2 \cdot U_B\right)^2}{\left(R_{\rm ges} + k_U' \cdot \frac{n}{n_{\rm syn}}\right)^2 + X_{\rm ges}^2}$$

Synchrone Drehzahl: $n_{syn} = \frac{f}{n}$

7.5. Zeigerdiagramm

7.6. Stromortskurve

7.6.1. Strom

[Nm]

[Nm]

[rad]

$$\underline{I} = \frac{\underline{U}}{\left(\frac{n}{n_{\text{Syn}}} \cdot k_U' + R_{\text{ges}}\right) + jX_{\text{ges}}}$$

Leerlaufstrom:

$$\underline{I}_0 = \underline{I}(n \to \infty) = 0$$

Anlaufstrom:

$$\underline{I}_{An} = \underline{I}(n=0) = \frac{\underline{U}}{R_{ges} + jX_{ges}}$$

7.6.2. Phase

$$\tan \varphi = \frac{X_{\text{ges}}}{\frac{n}{n_{\text{syn}}} \cdot k'_U + R_{\text{ges}}}$$