Lecture 1: The Security Mindset

Ryan Cunningham
University of Illinois
ECE 422/CS 461 – Fall 2017

Security News

- Black Hat and DEFCON about 1 month ago
- Xerub releases decryption key for iOS secure enclave
- MalwareTech (Marcus Hutchins) pleads not guilty, faces 40 years in jail
- Chrome extensions hijacking on the rise
- Maersk Shipping reports \$300M loss from ransomare attack

COURSE POLICIES

WARNING!

- This class is hard.
- Requires comfort with:
- 1. Assembly code
- 2. Architecture
- 3. Operating systems
- 4. Networking
- 5. Scripting
- 6. Web programming

Course Websites

- Course website: wiki.illinois.edu/wiki/display/CS461ECE422fall 2017/
- Piazza:
 piazza.com/illinois/fall2017/cs461ece422
- Subversion: subversion.engr.illinois.edu/svn/fa17-cs461
- Append your netid to get to your personal svn directory

Grading

- 50% Programming Projects (MPs)
- 20% Midterm Exam (October 13th)
- 30% Final Exam (tentatively December 15th)

TO DO

- Register on Piazza
- Find an MP partner

SECURITY MINDSET

What is Computer Security?

- Security is a property (or more accurately a collection of properties) that hold in a given system under a given set of constraints
- Can also mean the measures and controls that ensure these properties
- Security is weird, as we don't explicitly study other properties

What's the Difference?

Meet the Adversary

"Computer security studies how systems behave in the presence of an adversary."

- The adversary
 - a.k.a. the attacker
 - a.k.a. the bad guy
- * An intelligence that actively tries to cause the system to misbehave.

Assets

Things we want to protect:

- Hardware
- Software
- Data
- Communication facilities

http://www.dailysuperhero.com/2014/08/infinity-stones-guardians-of-galaxy-orb.html

Adversary

Someone who attacks or threatens our assets

http://www.liveforfilms.com/wp-content/uploads/2014/07/star-lord-guardians-of-the-galaxy-movie-1920x1080.jpg

Vulnerabilities

- A flaw or weakness in a system. Can cause system to become
 - Corrupt
 - Leaky
 - Unavailable

http://star-lordfc.deviantart.com

Threats/attacks

- threat the potential to exploit a vulnerability
- attack exploiting a vulnerability to violate security of an asset

http://www.mtv.com/movies/photos/g/Guardians_Clip/Guardians_Ball.gif

Countermeasures

Things we do to reduce threats, vulnerabilities, or attacks by preventing, minimizing, or taking corrective action

http://tvtropes.org/pmwiki/pmwiki.php/Film/GuardiansoftheGalaxy

Risk

An expectation of loss, expressed as the probability that an adversary will exploit a vulnerability with a harmful result

http://www.pinoyexchange.com/forums/showthread.php?t=577743&page=25

Why Study Attacks?

- Identify vulnerabilities so they can be fixed.
- Create incentives for vendors to be careful.
- Learn about new classes of threats.
 - Determine what we need to defend against.
 - Help designers build stronger systems.
 - Help users more accurately evaluate risk.

Thinking Like an Attacker

Look for weakest links – easiest to attack.

- Identify assumptions that security depends on.
 Are they false?
- Think outside the box: Not constrained by system designer's worldview.

Practice thinking like an attacker:
For every system you interact with,
think about what it means for it to
be secure, and image how it could
be exploited by an attacker.

Exercise

How might we break into Siebel Center?

Thinking as a Defender

- Security policy
 - What are we trying to protect?
 - What properties are we trying to enforce?
- Threat model
 - Who are the attackers?
 - What are their Capabilities? Motivations?
- Risk assessment
 - What are the weaknesses of the system?
 - How likely?
- Countermeasures
 - Technical vs. nontechnical?
 - How much do they cost?

Challenge is to think rationally and rigorously about risk.

Rational paranoia.

CIA Triad

- 1. Confidentially
- 2. Integrity
- 3. Availability
- Additional objectives
 - Authenticity
 - Accountability

Security Policies

- What assets are we trying to protect?
- What properties are we trying to enforce?
- The CIA Triad:
 - Confidentiality
 - Integrity
 - Availability
- Additional properties:
 - Authenticity
 - Accountability

Threat Models

- Who are our adversaries?
 - Motives?
 - Capabilities?
- What kinds of attacks do we need to prevent? (Think like the attacker!)

Limits: Kinds of attacks we should ignore?

Assessing Risk

- What would security breaches cost us?
 - Direct costs: Money, property, safety, ...
 - Indirect costs: Reputation, future business, well being, ...
- How likely are these costs?
 - Probability of attacks?
 - Probability of success?
- Remember: *rational* paranoia

Countermeasures

- Technical countermeasures
- Nontechnical countermeasures
 - Law, policy (government, institutional),
 procedures, training, auditing, incentives, etc.

Security Costs

- No security mechanism is free
 - Direct costs: Design, implementation, enforcement, false positives
 - Indirect costs: Lost productivity, added complexity
- Challenge is rationally weigh costs vs. risk
 - Human psychology makes reasoning about high cost/low probability events hard

Design principles

- Economy of mechanism
- Fail-safe defaults
- Complete mediation
- Open design
- Separation of privilege
- Least privilege
- Least common mechanism

- Psychological acceptability
- Isolation
- Encapsulation
- Modularity
- Defense in depth
- Minimize attack surface
- Least astonishment

Exercise

- How should you secure your bike?
 - Assets?
 - Adversaries?
 - Risk assessment?
 - Countermeasures?
 - Costs/benefits?

Exercise

- How should you secure your home/apartment/dorm room?
 - Assets?
 - Adversaries?
 - Risk assessment?
 - Countermeasures?
 - Costs/benefits?

The Security Mindset

- Thinking like an attacker
 - Understand techniques for circumventing security.
 - Look for ways security can break, not reasons why it won't.
- Thinking like a defender
 - Know what you're defending, and against whom.
 - Weigh benefits vs. costs:
 No system is ever completely secure.
 - "Rational paranoia!"

To Learn More ...

- The Security Mindset.
 https://www.schneier.com/blog/archives/200

 8/03/the security mi 1.html
- https://freedom-totinker.com/blog/felten/security-mindset-andharmless-failures/
- https://cubist.cs.washington.edu/Security/200 7/11/22/why-a-computer-security-courseblog/

Questions?

