JUL 1 6 ZON 25

PTO/SB/08a/b (08-03)
Approved for use through 07/31/2006. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known Substitute for form 1449A/B/PTO 10/787,121 Application Number INFORMATION DISCLOSURE Filing Date February 27, 2004 STATEMENT BY APPLICANT First Named Inventor John T. Moore Art Unit 2812 (Use as many sheets as necessary) Not Yet Assigned **Examiner Name** Attorney Docket Number M4065.0564/P564-A Sheet 1 of 3

U.S. PATENT DOCUMENTS					
Examiner Initials*	Cite No.1	Document Number Number-Kind Code ² (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
$ \sqrt{N} $	·A	US 2004/0035401	2/2004	Ramachandran et al.	<u> </u>
	B	US 2003/0212724	11/2003	Ovshinsky et al.	
	C	US 2003/0048744	3/2003	Ovshinsky et al.	-
_	Ď	US 2003/0212725	11/2003	Ovshinsky et al.	1 -
	E	US RE 37,259E	7/2001	Ovshinsky	
	F	US 3,271,591	9/1966	Ovshinsky	- \
	G	US 3,961,314	6/1976	Klose et al.	
	H	US 3,966,317	6/1976	Wacks et al.	
	i	US 3,983,542	11/1976	Ovshinsky	1
	J	US 3,988,720	10/1976	Ovshinsky	
-	K	US 4,177,474	12/1979	Ovshinsky	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	<u>L</u>	US 4,267,261	5/1981	Hallman et al.	\
	М	US 4,597,162	7/1986	Johnson et al.	
	N	US 4,608,296	8/1986	Keem et al.	
	0	US 4,637,895	1/1987	Ovshinsky et al.	
	P	US 4,646,266	2/1987	Ovshinsky et al.	/\
	Q	US 4,664,939	5/1987	Ovshinsky	
 - 	R	US 4,668,968	5/1987	Ovshinsky et al.	
	s	US 4,670,763	6/1987	Ovshinsky et al.	
- 	T	US 4,673,957	6/1987	Ovshinsky et al.	
	Ü	US 4,678,679	7/1987	Ovshinsky	
	V	US 4,696,758	9/1987	Ovshinsky et al.	- - - - - - - - - -
- -	w	US 4,698,234	10/1987	Ovshinsky et al.	
- 1 -	X	US 4,710,899	12/1987	Young et al.	
	Ŷ	US 4,728,406	3/1988	Banerjee et al.	
	Ż	US 4,737,379	4/1988	Hudgens et al.	
	A1	US 4,766,471	8/1988	Ovshinsky et al.	
-+	B1	US 4,769,338	9/1988	Ovshinsky et al.	\-
_	C1	US 4,775,425	10/1988	Guha et al.	
-	D1	US 4,775,425	11/1988	Ovshinsky et al.	
	E1	US 4,788,394 US 4,809,044	2/1989	Pryor et al.	- - - \
	F1	US 4,818,717	4/1989	Johnson et al.	-
	G1	US 4,818,717 US 4,843,443	6/1989	Ovshinsky et al.	
	H1	US 4,845,533	7/1989	Pryor et al.	
	11	US 4,853,785	8/1989	Ovshinsky et al.	
] 	US 4,891,330	1/1990	Guha et al.	
	K1	US 5,128,099	7/1992	Strand et al.	- -
	L1	US 5,159,661	10/1992	Ovshinsky et al.	
	M1	US 5,166,758	11/1992	Ovshinsky et al.	
	N1	US 5,177,567	1/1993	Klersy et al.	
	01	US 5,298,716	3/1994	Ovshinsky et al.	
	P1	US 5,335,219	8/1994	Ovshinsky et al.	
\overline{A}	Q1	US 5,359,205	10/1994	Ovshinsky	
	R1	US 5,341,328	8/1994	Ovshinsky et al.	
$\overline{\wedge}$	S1	US 5,406,509	4/1995	Ovshinsky et al.	

PTO/SB/08a/b (08-03)

Approved for use through 07/31/2006. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Sub	stitute for form 1449A/E	VPTO		Complete if Known		
				Application Number	10/787,121	
IN	FORMATIC	ON DIS	SCLOSURE	Filing Date	February 27, 2004	
S	TATEMEN1	BY A	PPLICANT	First Named Inventor	John T. Moore	
				Art Unit	2812	
	(Use as many	sheets as	necessary)	Examiner Name	Not Yet Assigned	
Sheet	2	of	3	Attorney Docket Number	M4065.0564/P564-A	

<u>U1</u> V1	US 5,534,711	7/1996	10	
V1			Ovshinsky et al.	
	US 5,534,712	7/1996	Ovshinsky et al.	
W1	US 5,536,947	7/1996	Klersy et al.	
X1	US 5,543,737	8/1996	Ovshinsky	
Y1	US 5,591,501	1/1997	Ovshinsky et al.	
Z1	US 5,596,522	1/1997	Ovshinsky et al.	
A2	US 5,687,112	11/1997	Ovshinsky	
B2	US 5,694,054	12/1997	Ovshinsky et al.	
C2	US 5,714,768	2/1998	Ovshinsky et al.	
D2	US 5,825,046	10/1998	Czubatyj et al.	
E2	US 5,912,839	6/1999	Ovshinsky et al.	
F2	US 5,933,365	8/1999	Klersy et al.	
G2	US 6,011,757	1/2000	Ovshinsky	
		7/2000		
	US 6,141,241	10/2000	Ovshinsky et al.	
J2	US 6.339,544	1/2002	Chiang et al.	
K2	US 6,404,665	6/2002	Lowery et al.	
L2	US 6,429,064	8/2002	Wicker	
M2	+	8/2002	Xu	
	· · · · · · · · · · · · · · · · · · ·			1
				1
				
				
				
				
				
				· · · · · · · · · · · · · · · · · · ·
				
				
				
				
				
				
				
				
				
				
				
	Z1 A2 B2 C2 D2 E2 F2 G2 H2 I2 J2 K2	Z1 US 5,596,522 A2 US 5,687,112 B2 US 5,694,054 C2 US 5,714,768 D2 US 5,825,046 E2 US 5,912,839 F2 US 5,933,365 G2 US 6,011,757 H2 US 6,087,674 I2 US 6,141,241 J2 US 6,339,544 K2 US 6,404,665 L2 US 6,429,064 M2 US 6,429,064 M2 US 6,487,113 Q2 US 6,501,111 R2 US 6,501,111 R2 US 6,501,111 R2 US 6,501,111 R2 US 6,511,862 T2 US 6,511,867 U2 US 6,514,805 W2 US 6,534,781 Y2 US 6,545,287 Z2 US 6,545,287 Z2 US 6,545,907 A3 US 6,563,164 C3 US 6,569,705 F3 US 6,570,784 G3 US 6,570,784 G3 US 6,589,714 J3 US 6,597,009 M3 US 6,657,099 M3 US 6,651,095 P3 US 6,621,095 P3 US 6,625,054	Z1 US 5,596,522 1/1997 A2 US 5,687,112 11/1997 B2 US 5,694,054 12/1997 C2 US 5,714,768 2/1998 D2 US 5,825,046 10/1998 E2 US 5,912,839 6/1999 F2 US 5,933,365 8/1999 G2 US 6,011,757 1/2000 H2 US 6,087,674 7/2000 I2 US 6,141,241 10/2002 I2 US 6,339,544 1/2002 K2 US 6,404,665 6/2002 L2 US 6,429,064 8/2002 M2 US 6,437,383 8/2002 M2 US 6,482,984 10/2002 O2 US 6,482,984 10/2002 O2 US 6,487,113 11/2002 P2 US 6,501,111 12/2002 R2 US 6,511,862 1/2003 T2 US 6,514,805 2/2003 W2 US 6,545,287 4/2003 X2 US 6,545,907 4/2003	Z1 US 5,596,522 1/1997 Ovshinsky et al. A2 US 5,687,112 11/1997 Ovshinsky B2 US 5,694,054 12/1997 Ovshinsky et al. C2 US 5,714,768 2/1998 Ovshinsky et al. D2 US 5,825,046 10/1998 Czubatyj et al. E2 US 5,912,839 6/1999 Ovshinsky et al. F2 US 5,913,365 8/1999 Klersy et al. G2 US 6,011,757 1/2000 Ovshinsky H2 US 6,087,674 7/2000 Ovshinsky et al. I2 US 6,141,241 10/2000 Ovshinsky et al. I2 US 6,404,665 6/2002 Lowery et al. K2 US 6,404,665 6/2002 Wicker M2 US 6,429,064 8/2002 Wicker M2 US 6,462,984 10/2002 Xu N2 US 6,462,984 10/2002 Xu et al. Q2 US 6,487,113 11/2002 Park et al. R2 US 6,501,111 1

Approved for use through 07/31/2006. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Sub	stitute for form 1449A/B/	PTO	-	Complete if Known		
				Application Number	10/787,121	
- 11	NFORMATIC	N DIS	CLOSURE	Filing Date	February 27, 2004	
S	TATEMENT	BY A	PPLICANT	First Named Inventor	John T. Moore	
_				Art Unit	2812	
	(Use as many	sheets as n	ecessary)	Examiner Name	Not Yet Assigned	
Sheet	3	of	3	Attorney Docket Number	M4065.0564/P564-A	

74	R3	US 6,646,297	11/2003	Dennison	
	S3	US 6,649,928	11/2003	Dennison	
	T3	US 6,667,900	12/2003	Lowery et al.	
	U3	US 6,671,710	12/2003	Ovshinsky et al.	
	V3	US 6,673,648	1/2004	Lowrey	
l	W3	US 6,673,700	1/2004	Dennison et al.	
	Х3	US 6,674,115	1/2004	Hudgens et al.	X
	Y3	US 6,687,427	2/2004	Ramalingam et al.	
	Z3	US 6,690,026	2/2004	Peterson	
V	A4	US 6,696,355	2/2004	Dennison	
	B4	US 6,687,153	2/2004	Lowery	
	C4	US 6,707,712	3/2004	Lowery	
7	D4	US 6,714,954	3/2004	Ovshinsky et al.	

	FOREIGN PATENT DOCUMENTS								
Examiner Initials*	Cite No.¹	Foreign Patent Document Country Code ³ -Number ⁴ -Kind Code ⁵ (If known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	₽			

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ² See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

NON PATENT LITERATURE DOCUMENTS							
Examiner Initials	Cite No.1	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T²				
			=				

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

'Applicant's unique citation designation number (optional). ²Applicant is to place a check mark here if English language Translation is attached.

A- Jeg Tand 5/4/05

PTC/SB/08A (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Sut	estitute for form 1449A/PTO			Complete if Known		
				Application Number	Not Yet Assigned 10/787, 121	
	NFORMATION			Filing Date	March 1, 2004	
S	STATEMENT I	BY A	APPLICANT	First Named Inventor	John T. Moore	
	(use as many sh	eels as	necessary)	Art Unit	Not Yet Assigned	
	(100 10 11.01.)		,,,	Examiner Name	Not Yet Assigned	
Sheet	1	of	8	Attorney Docket Number	M4065.0564/P564-A	

-	U.S. PATENT DOCUMENTS							
Examiner	Cite	Document Number	Publication Date		Pages, Columns, Lines, Where Relevant			
nitials*	No.1	Number-Kind Code ² (if known)	MM-DD-YYYY	of Cited Document	Passages or Relevant Figures Appear			
2	AA	5,761,115	06/02/1998	Kozicki et al. **				
11	AB	6,084,796	07/04/2000	Kozicki et al. **				
	AC	5,914,893	06/22/1999	Kozicki et al. **				
	AD	5,896,312	04/20/1999	Kozicki et al. **				
	AE	6,388,324	05/14/2002	Kozicki et al. **				
	AF	US 2002/0000666	01/03/2002	Kozicki et al. **				
	AG	5,500,532	03/19/1996	Kozicki et al. **				
	AH	6,418,049	07/09/2002	Kozicki et al. **				
	Al	5,751,012	05/12/1998	Wolstenholme et al. **				
	AJ	5,789,277	08/04/1998	Zahorik et al. **				
- 17	AK	6,348,365	02/19/2002	Moore et al. **				
	AL	US 2002/0168820	11/14/2002	Kozicki et al. **				
$\overline{\mathcal{M}}$	AM	6.469.364	10/22/2002	Kozicki **				

	FOREIGN PATENT DOCUMENTS							
Examiner	Cite	Foreign Patent Document	Publication Date	Name of Patentee or	Pages, Columns, Lines, Where Relevant			
Initials*	No.1	Country Code ³ -Number ⁴ -Kind Code ⁵ (if known)	MM-DD-YYYY	Applicant of Cited Document	Passages or Relevant Figures Appear	T°		
	BA.	WO-02/21542	03/14/2002-	Kozicki et al. **				
	88	WO_00/48196	08/17/2000-	Kozicki et al. **				
	BC_	WO 97/48032	12/18/1997_	Kozicki et al. **				
	BD-	WO 99/28914	06/10/1999	Kozicklet al. **				
	-טטין	WU 99/20914	00/10/1999	NOZICKI CI BI.				

Examiner Signature	4-Jer TeA!	Date Considered	5/4/01-
Signature	1900	Considered	4 1/2

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

Applicant's unique citation designation number (optional). ² See attached Kinds Codes of USPTO Patent Documents at www.usoto.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ⁵Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0851-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Su	bstitute for form 1449B	VPTO		Complete if Known			
				Application Number	Not Yet-Assigned 18 7, 12		
IN	NFORMATI	ON DISC	LOSURE	Filing Date	March 1, 2004		
S	TATEMEN	T BY AP	PLICANT	First Named Inventor	John T. Moore		
_				Group Art Unit	Not Yet Assigned		
	(use as man	y sheets as nec	essary)	Examiner Name	Not Yet Assigned		
Sheet	2	of	8	Attorney Docket Number	M4065.0564/P564-A		

		OTHER PRIOR ART – NON PATENT LITERATURE DOCUMENTS Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the	
Examiner Initials	Cite No.1	include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the interest (sook, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume issue number(s), publisher, city and/or country where published.	Τ²
	CA	Abdel-All, A.; Elshafie,A.; Elhawary, M.M., DC electric-field effect in bulk and thin-film Ge5As38Te57 chalcogenide glass, Vacuum 59 (2000) 845-853. **	
	СВ	Adler, D.; Moss, S.C., Amorphous memories and bistable switches, J. Vac. Sci. Technol. 9 (1972) 1182-1189. **	
	cc	Adler, D.; Henisch, H.K.; Mott, S.N., The mechanism of threshold switching in amorphous alloys, Rev. Mod. Phys. 50 (1978) 209-220. **	
	CD	Afifi, M.A.; Labib, H.H.; El-Fazary, M.H.; Fadel, M., Electrical and thermal properties of chalcogenide glass system Se75Ge25-xSbx, Appl. Phys. A 55 (1992) 167-169. **	Γ
	CE	Afifi,M.A.; Labib, H.H.; Fouad, S.S.; El-Shazly, A.A., Electrical & thermal conductivity of the amorphous semiconductor GexSe1-x, Egypt, J. Phys. 17 (1986) 335-342. **	
	CF	Alekperova, Sh.M.; Gadzhieva, G.S., Current-Voltage characteristics of Ag2Se single crystal near the phase transition, Inorganic Materials 23/1987) 137-139. **	
	CG	Alekslejunas, A.; Cesnys, A., Switching phenomenon and memory effect in thin-film heterojunction of polycrystalline selenium-silver selenide, Phys. Stat. Sol. (a) 19 (1973) K169-K171.	
	СН	Angell, C.A. Mobile ions in amorphous solids, Annu. Rev. Phys. Chem. 43 (1992) 693-717. **	Т
	CI	Aniya, M., Average electronegativity, medium-range-order, and ionic conductivity in superionic glasses, Solid state Ionics 136-137 (2000) 1085-1089. **	Γ
	CI	Asahara, Y.; Izumitani, T., Voltage controlled switching in Cu-As-Se compositions, J. Non-Cryst. Solids 11 (1972) 97-104. **	
	СК	Asokan, S.; Prasad, M.V.N.; Parthasarathy, G.; Gopal, E.S.R., Mechanical and chemical thresholds in IV-VI chalcogenide glasses, Phys. Rev. Lett. 62 (1989) 808-810	
	CL	Baranovskii, S.D.; Cordes, H., On the conduction mechanism in ionic glasses, J. Chem. Phys. 111 (1999) 7546-7557. **	Γ
	СМ	Belin, R.; Taillades, G.; Pradel, A.; Ribes, M., Ion dynamics in superionic chalcogenide glasses: complete conductivity spectra, Solid state Ionics 136-137 (2000) 1025-1029. **	
	CN	Belin, R.; Zerouale, A./ Pradel, A.; Ribes, M., Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra, Solid State Ionics 143 (2001) 445-455.	
	СО	Benmore, C.J.; Selmon, P.S., Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73 (1994) 264-267. **	
	СР	Bernede, J.C. /Influence du metal des electrodes sur les caracteristiques courant-tension des structures M/Ag2Se-M, Thin solid films 70 (1980) L1-L4. **	
	cq	Bernede, J.C., Polarized memory switching in MIS thin films, Thin Solid Films 81 (1981) 155-160. **	
	CR	Bernede, J.C., Switching and silver movements in Ag2Se thin films, Phys. Stat. Sol. (a) 57 (1980) K101-K104. **	
	cs	Bernede, J.C.; Abachi, T., Differential negative resistance in metal/insulator/metal structures with an apper bilayer electrode, Thin solid films 131 (1985) L61-L64.	
	СТ	Bernede, J.C.; Conan, A.; Fousenan't, E.; El Bouchairi, B.; Goureaux, G., Polarized memory switching effects in Ag2Se/Se/M thin film sandwiches, Thin solid films 97 (1982) 165-171.	Γ
	cu /	Bernede, J.C.; Khelil, A.; Kettaf, M.; Conan, A., Transition from S- to N-type differential negative resistance in Al-Al2O3-Ag2-xSe1+x thin film structures, Phys. Stat. Sol. (a) 74 (1982) 217-224.	
	cy/	Bondarev, V.N.; Pikhitsa, P.V., A dendrite model of current instability in RbAg4l5, Solid State lonics 70/71 (1994) 72-76. **	Γ
	ćw	Boolchand, P., The maximum in glass transition temperature (Tg) near x=1/3 in GexSe1-x	

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0851-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Su	bstitute for form 1449B	/PTO		Complete if Known			
				Application Number	Not Yet Assigned 10/787,12		
11	VFORMATI	ON DIS	CLOSURE	Filing Date	March 1, 2004		
S	STATEMENT BY APPLICANT		PPLICANT	First Named Inventor	John T. Moore		
				Group Art Unit	Not Yet Assigned		
	(use as many sheets as necessary)			Examiner Name	Not Yet Assigned		
Sheet	3	of	8	Attorney Docket Number	M4065.0564/P564-A		

Glasses, Asian Journal of Physics (2000) 9, 709-72. ** CX Boolchand, P.; Bresser, W.J., Mobile silver ions and glass formation in solid electrolytes, Nature 410 (2001) 1070-1073. ** CY Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in Chalcogenide Glasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703 ** CZ Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F. Thorpe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp.47-132. ** Boolchand, P.; Broweller, R.N.; Tenhover, M.; Structural ordering of evaporated afhorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. ** CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyl, P., Structural ordering of evaporated afhorphous order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. ** CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C.; Broken chemical order and phase separation in Ges/91-x glasses, Solid state comm. 45 (1983) 183-185. ** CD1 Boolchand, P.; Bresser, W.J.; Compositional trends in glass trapsition temperature (Tg), network connectivity and nanoscale chemical phase separation in chafcogenides, Dept. of ECECS, Univ. Cincinnat/ October 28, 1999) 45221-0030. ** CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Melt/Quenched Ge-Se2 and Ge-S2 glasses compared, Phys., Int. Conf. Phys., Semiconol. (Eds. Chadi and Harrison) 177" (1985) 383-36. ** CF1 Bresser, W.J.; Bolchand, P.; Suranyl, P.; Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CF1 Bresser, W.J.; Bolchand, P.; Suranyl, P.; de Meurinie, J.P., Intrinsically broken chalcogen chemical order in solichiometric glasses, Joyfial de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Bolchand, P.; Suranyl, P.; Appl. Phys. D. Appl. Phys. 27 (1994) 2624-2627. ** CH2 Gran, D.; Gilet,	<u> </u>	
CX Boolchand, P.; Bersser, W.J., Mobile silver ions and glass formation in solid electrolytes, Nature 410 (2001) 1070-1073. " CY Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in Chalcogenide Glasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703. " CB Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F. Thorpe and Tichy, L. (eds.) Klluver, Academic Publishers, the Netherlands, 2001, pp. 97-132. " Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data vol. 53-54 (1987) 415-420. " CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyl, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. " CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in Gex.91-x. glasses, Solid state comm. 45 (1983) 183-185. " CD1 Boolchand, P.; Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in charcogenides, Dept. of ECECS, Univ. Cincinnat/Voctober 28, 1999) 45221-0030. " CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Meltouenched GeSe2 and GeS2 glasses compared, Phoc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17 th (1985) 833-36. " CF1 Bresser, W.J.; Boolchand, P.; Suranyl, P.; Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2498. " CB1 Bresser, W.J.; Boolchand, P.; Suranyl, P.; Hermandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. " CC1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 217-274. " CJ1	7	Glasses, Asian Journal of Physics (2000) 9, 709-72. **
CY Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in Chalcogenide Giasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703 C2 Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, Mf. Thorpe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132. CA1 Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated anorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in Gesx'e 1-x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnat/October 28, 1999) 4522-10030. CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared Phoc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2498. CG1 Bresser, W.; Boolchand, P.; Suranyi, P.; de j\(\) Meurinile J.P., Intrinsically broken chalcogen chemical order in stylichiometric glasses, Joyfnal de Physique 42 (1981) C4-193-C4-196. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hennandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Inferactions 27 (1986) 389-392. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hennandez, J.G., Molecular phase separation and memory switching in bulk Ast Phys. Schmitz, C.; Ghernyak, L.; Gartsman, K.;	CX	Boolchand, P.; Bresser, W.J., Mobile silver ions and glass formation in solid electrolytes, Nature
CZ Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F. Thorpe and Tichy, L. (eds.), Kluwer Academic Publishers, the Netherlands, 2001, pp.97-132. " Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated anorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. " CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. " CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. " CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnat/October 28, 1999) 45221-0030. " CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Ptor. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17" (1985) 833-36. " CF1 Bresser, W.; Boolchand, P.; Suranyi, P.; Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. " CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de pléufville, J.P., Intrinsically broken chalcogen chemical order in solichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. " CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de pléufville, J.P., Intrinsically broken chalcogen chemical order in solichiometric glasses, Journal, and Physique 42 (1981) C4-193-C4-196. " CC1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. " CL1 Chen, G.; Cheng, J., Rohe of nitrogen in the crystallization of silicon nitride-doped chalcog	CY	Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in
steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, Mr. Thorpe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132. " Boolchand, P.; Enzweller, R.N.; Tenhover, M., Structural ordering of evaporated anforphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data vol. 53-54 (1987) 415-420. " CB1 Spolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin or broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. " CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in Gexbe1-x glasses, Solid state comm. 45 (1983) 183-185. " CD1 Boolchand, P.; Grothaus, J., Phillips, J.C., Broken chemical order and phase separation in Gexbe1-x glasses, Solid state comm. 45 (1983) 183-185. " CD1 Boolchand, P.; Grothaus, J., Molecular Structure of Melty Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. " CF1 Bresser, W. Boolchand, P.; Surranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. " CG1 Bresser, W. J.; Boolchand, P.; Surranyi, P.; de Meufville, J.P., Intrinsically broken chalcogen chemical order in slopichiometric glasses, Joyfnal de Physique 42 (1981) C4-193-C4-196. " CH1 Bresser, W. J.; Boolchand, P.; Surranyi, P.; Hermandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. " CC1 Cahen, D.; Gilet, JM.; Schmitz, C.; Offernyak, L.; Garlsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. " CJ1 Chaterjee, R.; Asokan, S.; Tiblé, S. S.K., Current-controlled negative-resistance behavior and memory switching in bulk As 1-8, Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. " CN1 Chen, G.; Cheng, J., Role of nitroge-high the crystallization of silicon nitride-doped chalcogenid	 	
Thorpe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132. ** Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated antorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data vol. 53-54 (1987) 415-420. ** CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. ** CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. ** CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnat/Qctober 28, 1999) 45221-0030. ** CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadid and Harrison) 17th (1985) 833-36. ** CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Alemandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Inferanctions 27 (1986) 389-392. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Alemandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Inferanctions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Ofemyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in culnise 2 Crystals, Science 258 (1992) 271-274. ** CX1 Chen, G.; Cheng, J.; Diole of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999),2934-2936. ** CX1 Chen, G.; Cheng, J.; Diole of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Non-Cryst. Solids 8-10 (1972) 781-7	\\^	Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in
chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data vol. 53-54 (1987) 415-420. ** CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. ** CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order any phase separation in Gex.§1-x glasses, Solid state comm. 45 (1983) 183-185. ** CD1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order any phase separation in Gex.§1-x glasses, Solid state comm. 45 (1983) 183-185. ** CD1 Boolchand, P.; Bresser, W.J., Compositional trends in glass transition temperature (Tg), network conneckity and nanoscale chemical phase separation in chafcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. ** CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Phoc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. ** CF1 Bresser, W.; Boolchand, P.; Suranyi, P.; Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Meufville, J.P., Intrinsically broken chalcogen chemical order in shoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hermandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Offernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field funduced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Tilys, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te\Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whišker glowth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077.		
CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. ** CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. ** CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in charcogenides, Dept. of ECECS, Univ. Cincinnat/October 28, 1999) 45221-0030. ** CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Phyc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. ** CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Meufville, J.P., Intrinsically broken chalcogen chemical order in slociholmetric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Inferactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Ofernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Tibyś, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te/Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker glowth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1996) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2938. ** CN1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide gla	CAN	
order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. ** CC1 Bodichand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. ** CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in charcogenides, Dept. of ECECS, Univ. Cincinnal (October 28, 1999) 45221-0030. ** CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Ploc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. ** CF1 Bresser, W.; Byolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P, Intrinsically broken chalcogen chemical order in stoichiometric glasses, Joyfnal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 class, Hyperfine Inferactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Offernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Title, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te/Se glasses, J. Phys. D. Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1990) 1075-1077. ** CL1 Chen, G.; Cheng, J., Bole of nitrogen\() in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CN1 Chen, G.; Cheng, J., Electrical properties of beta-AgXe and beta-Ag2Se from 4.2 to 300K, J. Appl/ Phys. 38 (1967) 753-756. ** CN2 Davies, E.A., Semiconductors without form, Search 1 (1970) 152-15		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
CC1 Bootchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in Gex9e1-x glasses, Solid state comm. 45 (1983) 183-185. ** CD1 Bootchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chacogenides, Dept. of ECECS, Univ. Cincinnat/October 28, 1999) 45221-0030. ** CE1 Bootchand, P.; Grothaus, J., Molecular Structure of MeltyGuenched GeSe2 and GeS2 glasses compared, Phoc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. ** CF1 Bresser, W. Bootchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CG1 Bresser, W.J.; Bootchand, P.; Suranyi, P.; de Meufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Johnal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Bootchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chemyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CuInSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Tityé, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te/Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen/in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999),2934-2936. ** CM1 Chen, G.; Cheng, J., Role of nitrogen/in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999),2934-2936. ** CM1 Chen, G.; Cheng, J., Role of nitrogen/in the crystallization of silicon nitride-doped chalcogenide glass, J. Non-Cryst.	CB1	
CD1 Bootchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in charcogenides, Dept. of ECECS, Univ. Cincinnatly (October 28, 1999) 45221-0030. ** CE1 Bootchand, P.; Grotthaus, J., Molecular Structure of Melty Quenched GeSe2 and GeS2 glasses compared, Phoc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. ** CF1 Bresser, W.; Bootchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CG1 Bresser, W.J.; Bootchand, P.; Suranyi, P.; de Néufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Bootchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 (lass. Hyperfine Inferactions 27 (1986) 389-392. ** C11 Cahen, D.; Gilet, JM.; Schmitz, C.; Ofiernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titys, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/16\Se glasses, J. Phys. D. Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whijsker glowth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-10/7. ** CL1 Chen, G.; Cheng, J., Rôle of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Cerpm. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Paskin, A., A molet for an amorphous semiconductor memory device, J. Ngn-Cryst. Solids 8-10 (1972) 885-891. ** CN1 Cohen, M.H.; Meale, R.G.; Paskin, A., A molet for an amorphous semiconductor memory device, J. Ngn-Cryst. Solids 8-10 (1972) 885-891. ** CN1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Xe and beta-Ag2Xe from 4.2 to 300K, J. App/Phys. 38 (1967) 753-756. ** CN	CC1	
connectivity and nanoscale chemical phase separation in charcogenides, Dept. of ECECS, Univ. Cincinnat (October 28, 1999) 45221-0030. ** CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt Quenched GeSe2 and GeS2 glasses compared, Phoc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17 th (1985) 833-36. ** CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Néufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; dernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Ofiernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titys, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As 16-Se glasses, J. Phys. D. Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-10/7. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Nan-Cryst. Solids 8-10 (1972) 885-891. ** CM1 Cohen, M.H.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, N. Non-Cryst. Solids 8-10 (1972) 781-786. ** CM1 Dalvey, R.; Gill, R., Electrica		
connectivity and nanoscale chemical phase separation in charcogenides, Dept. of ECECS, Univ. Cincinnat (October 28, 1999) 45221-0030. ** CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt Quenched GeSe2 and GeS2 glasses compared, Phoc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17 th (1985) 833-36. ** CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Néufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; dernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Ofiernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titys, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As 16-Se glasses, J. Phys. D. Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-10/7. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Nan-Cryst. Solids 8-10 (1972) 885-891. ** CM1 Cohen, M.H.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, N. Non-Cryst. Solids 8-10 (1972) 781-786. ** CM1 Dalvey, R.; Gill, R., Electrica	CD1	Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network
CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. ** CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Néufville, J.P., Intrinsically broken chalcogen chemical order in shoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titys, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te/Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1990) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Nan-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalvey R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl/ Phys. 38 (1967) 753-756. ** CR1 Deemaley, G.; Stoneham, A.M.; Morgan, D.V.	ŀ	connectivity and nanoscale chemical phase separation in charcogenides, Dept. of ECECS, Univ.
compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chedi and Harrison) 17th (1985) 833-36. ** CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. ** CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Tilus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-To-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tal, K.L., Whisker glowth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect on Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telniò, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-AgaTe and beta-AgaSe from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CR1 Deemaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,		Cincinnat October 28, 1999) 45221-0030. **
CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. 7 CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Meufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titys, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te/Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker glowth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitroge\(\text{in}\) in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Meale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalvey, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl/ Phys. 38 (1967) 753-756. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CE1	
glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Meufville, J.P, Intrinsically broken chalcogen chemical order in soichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 class, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titye, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As Te Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Nøn-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telniò, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, N. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Pearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	<u> </u>	
CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P, Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Tityé, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As 16-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1990) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A motel for an amorphous semiconductor memory device, J. Nøn-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R.; Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl/ Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Pearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CF1	
chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. ** CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titye, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te/Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A movel for an amorphous semiconductor memory device, J. Nøn-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CR1 Devanley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	L	
CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 class, Hyperfine Interactions 27 (1986) 389-392. ** CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CuInSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titys, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te/Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Pearmaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CG1	
Cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. ** Cl1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CuInSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As 16-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker glowth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnio, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl/ Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Pearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,		
Temperature, electric field induced creation of stable devices in CuInSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titos, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te/Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Meale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Ngn-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CH1	
Temperature, electric field induced creation of stable devices in CuInSe2 Crystals, Science 258 (1992) 271-274. ** CJ1 Chatterjee, R.; Asokan, S.; Titos, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te/Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Meale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Ngn-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CI1	
CJ1 Chatterjee, R.; Asokan, S.; Titys, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As/Te/Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telniò, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Øearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,		Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258
memory switching in bulk As Texas glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. ** CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Meale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Øearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,		(1992) 271-274. **
CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telniò, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Øearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CJ1	Chatterjee, R.; Asokan, S.; Titys, S.S.K., Current-controlled negative-resistance behavior and
Appl. Phys. Lett. 37 (1980) 1075-1077. ** CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, V. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Pearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,		memory switching in bulk As/Te/Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. **
CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, N. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Pearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CK1	
glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. ** CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, N. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Pearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,		
CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, N. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CL1	Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide
Non-Cryst. Solids 220 (1997) 249-253. ** CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, N. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalvey, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CM1	
CN1 Cohen, M.H.; Meale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, V. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,		
device, J. Non-Cryst. Solids 8-10 (1972) 885-891. ** CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, N. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CN1	
CO1 Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, N. Non-Cryst. Solids 8-10 (1972) 781-786. ** CP1 Dalvey, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,		device, J. Nøn-Cryst. Solids 8-10 (1972) 885-891. **
CP1 Dalver, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CO1	Croitoru, M.; Lazarescu, M.; Popescu, C.; Telnio, M.; and Vescan, L., Ohmic and non-ohmic
Appl/Phys. 38 (1967) 753-756. ** CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,		conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. **
CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. ** CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,	CP1	
CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films,		
/ Kep. Prog. Phys. 33 (1970) 1129-1191. " \	CR1	
CCC Daine D. L. Cuerren, C. Velin, K. L. Montenue, D. C. Daine, D. L. Churchine of Viterania An Co.	 	/ Rep. Prog. Phys. 33 (1970) 1129-1191.
CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-		Dejus, K.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, B.L., Structure of Vitreous Ag-Ge-
Se, J. Non-Cryst. Solids 143 (1992) 162-180. ** (CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40	OT4	den Boer W. Threshold switching in hydrogenated amerikaus stican. Anni. Phys. Lett. 40
(1982) 812-813. **		(1982) 812-813. **
CU1 Drusedau, T.P.; Panckow, A.N.; Klabunde, F., The hydrogenated amorphous	CU1	

Complete if Known

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

						Application Number	Not Yet Assigned (6) 787(6	չ
	INF	FORI	MATION	l Di	SCLOSURE	Filing Date	March 1, 2004	1
	ST	ATE	MENT E	3Y A	APPLICANT	First Named Inventor	John T. Moore	
				-4-		Group Art Unit	Not Yet Assigned	
416		(US	se as many she	ets as	necessary)	Examiner Name	Not Yet Assigned	
P	Sheet		4	of	8	Attorney Docket Number	M4065.0564/P564-A	
2					erse metal (SIMAL) syst 1996) 829-832. **	em-Films of unique el	ectronic properties, J. Non-Cryst.	/
Danens		CV1	El Bouchair Films 110 (i, B.; i 1983)	Bernede, J.C.; Burgaud 107-113. **	·	2-xSe1+x/n-Si diodes, Thin Solid	_
		CW1	El Gharras, photocondu	Z.; B	ourahla, A.; Vautier, C., , J. Non-Cryst. Solids 1	155 (1993) 171-179. *	d defects in amorphous Gex8e1-x	
4.		CX1	El Ghrandi, chalcogenio	R.; C	alas, J.; Galibert, G.; A films, Thin Solid Films	verous, M., Silver pho 218 (1992)259-273.	todissolution in amorphous	
Nos			El Ghrandi, trom "in-situ	R.; C	alas, J.; Galibert, G., Agstance measurements	g dissolution kinetics investing time, Phys. Stat. So	n amorphous GeSé5.5 thin films ol. (a) 123 (1994) 451-460.	
١٩		CZ1	70A (1996)	507-5	516. **		s Ge21Se177e62, Indian J. Phys.	
J.		CA2	materials, J	. Non	-Cryst. Solids 130 (199	1) 85-97. **	n amorphous chalcogenide	
F.		CB2	Cryst. Solid	s 137	<u>-138 (1991) 1031-1034</u>	. **	es: A unified mechanism, J. Non-	
13		CC2	of thin films	conta	aining Te As Ge Si, Vac	uum 46 (1995) 701-70	hanism in the pre-switching state 07. **	
*		CD2	Ge20BixSe	80-x f	ilms, Thin Solid Films 3	76 (2000) <u>2</u> 36-240.	electrical and optical properties of	
not		CE2	chalcogenic	de gla	ss, Vacuum 44 (1993)	851-855. <u>**</u>	<u>·</u>	
ani		CF2	(1992) 253-	257.	••		rties of Se75Ge7Sb18, Vacuum 43	
		CG2	glasses, Ph	ys. R	ev. Lett. 78 (1997) 4422	2-4425. **	ffness threshold in Chalcogenide	
કુ		CH2	on the elast	tic, pla	astic and thermal behav	ior of covalent glasses	, P., Role of network connectivity s, J. Non-Cryst. Solids 222 (1997)	
3		CI2	Fischer-Col	brie, <i>i</i> ed am	lorphous∕Ag-GeSe2 thi≀	n films, Phys. Rev. B 3	A., Structure and bonding in 38 (1988) 12388-12403. **	
The	>	CJ2	selenium, P	hys. \$	Stat /Sol. (a) 64 (1981)	31\ <u>1-316</u> . **	crystallization of amorphous	
~		CK2	Solids 6 (19	71) 4	9 -71. **		semiconductors, J. Non-Cryst.	
		CL2	Science 2 (1,972)	697-744. **		uctors, Annual Review of Materials	
		CM2	Gates, B.; X synthesized ASAP. /**	Vu, Y i by te	.; Yin, Y.; Yang, P.; Xia emplating against nanov	wires of trigonal Se, J.	nanowires of Ag2Se can be Am. Chem. Soc. (2001) currently	
		CN2	Gosain, D.F reversible p 1018. **	hase	transition phenomena i	n telluride glasses, Va	S., Nonvolatile memory based on p. J. Appl. Phys. 28 (1989) 1013-	
		CO2	Ge-Se chal Solids 298	coger (2002	nide glasses below Tg:	elastic recovery and r	N: Lucas, J., Indentation creep of non-Newtonian flow, J. Non-Cryst.	
		CP2	scratchabili 1545-52. **	ty of g	germanium-selenium ch	alcogenide glasses, J	, J., Hardness, toughness, and J. Am. Ceram. Soc. 85 (2002)	
	7	CQ2	Gupta, Y.P.	, On e	electrical switching and 0) 148-154. **	memory effects in am	norphous chalsogenides, J. Non-	
•								

Substitute for form 1449B/PTO

PTO/SB/08B (10-01)

Approved for use through 10/31/2002.OMB 0651-0031

U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Sub	stitute for form 1449B/P	то		Complete if Known				
-		. •		Application Number	Not Yet Assigned 6 787,12			
١N	IFORMATIO	N DI	SCLOSURE	Filing Date	March 1, 2004			
S	STATEMENT BY APPLICANT			First Named Inventor	John T. Moore			
_				Group Art Unit	Not Yet Assigned			
(use as many sheets as necessary) Group An Unit Not Yet Assigned Examiner Name Not Yet Assigned				Not Yet Assigned				
Sheet	5	of	8	Attorney Docket Number	M4065.0564/P564-A			

	(0:	se as many sne	#13 #3	necessary)		Examiner Name	Not Yet Assigned
Sheet		5	of		8	Attorney Docket Number	M4065.0564/P564-A
	CR2					riments on the charge st. Solids 8-10 (1972)	-controlled switching effect in 408-414. **
	CS2	Haifz, M.M.;	Ibrai	him, M.M.;	Dongol, M.; I	Hammad, F.H., Effect	of composition on the structure 54 (1983) 1950-1954. **
,	СТ2	effects in me	etal/a	-Si:H/meta	I devices, Int	. J. Electronics 73 (19	
	QU2	Si:H/metal r 1058-1061.	oom	temperatur	e quantised i	resistance devices, J.	measurements on metal/a- Non-Cryst. Solids 266-269 (2000)
	CV2	effects in me	etal-a	i-Si:H-meta	ıl thin film str	uctures, J. Non-Cryst.	temperature quantized resistance Solids 198-200 (1996) 825-828.
	CW2	electron effe	ects i	n metal-am	orphous silio	on structures, Phil. Ma	., Apalogue memory and ballistic ag. 8 63 (1991) 349-369. **
	CX2	Japan. J. Ar	pl. P	hys. 13 (19	974) 1163-11	64. **	witching in amorphous Se film,
=	CY2	semiconduc	tors,	Vacuum 45	5 (1994) 459-	-462. **	mena in thin films of chalcogenide
	CZ2	photodoped	amo	nghous As2	2S3 films, J. /	Appl. Phys. 47 (1976)	nd behavior of Ag dendrite in Ag- 2767-2772. **
	CA3	Non-Cryst.	Solids	s 116 \ (1990)) 191 - 200. *	• /	phous semiconductor systems, J.
	СВЗ	threshold co	mpo	sition, J. 💩	otoelectronic	sand Advanced Mate	Se1-x around the stiffness rials 3 (2001) 199-214. **
	ССЗ	devices, J. I	Non-C	Cryst. Solid	s 227-230 (1	998) 1187-1191. **	ning in Cr/p+a-/Si:H/V thin film
	CD3	metal transit	tion is	n Cr-hydrog	genated amo	rphous Si-V thin-film o	nce anomaly near the metal-non- devices, Phil. Mag. B. 74 (1996)
	CE3	devices, Phi	il. Ma	g. B 80 (20	ĺ00) 29-43. * '	• 🖊	ability in Cr-p+a-Si:H-V thin film
	CF3	lizima, S.; S	ugi, I	И.; Kikuehi,	, M.; Tanaka,	K., Electrical and the (1970) 153-155. **	rmal properties of semiconducting
	CG3					tudy on the photo-enh t. Solids 35 & 36 (198	anced diffusion of Ag in 0) 1061-1066. **
	СНЗ	clustering of	f Ag a	toms, J. N	on-Cryst. Sol	lids 262 (2000) 135-1-	ion in Ag/Ge/Se glasses:
	CI3	Films 40 (19	977) L	_15-L18. **			films under pulsed bias, Thin Solid
	C13					ectrical conduction of K105-K109. **	amorphous As2Se7 before
	СКЗ	Joullie, A.M 8 (1973) 43	.; Ma	rucchi, J., E	Electrical pro	perties of the amorpho	ous alloy As2Se5, Mat. Res. Bull.
-	CL3	Kaplan, T.; Solids 8-10				tching in amorphous s	emiconductors J. Non-Cryst.
	СМЗ	Kawaguchi, amorphous	T.; N Ag-G	laruno, S.; e-S and Aç	Elliott, S.R., g-Ge-Se films	s and comparison of p	d structural properties of shotoinduced and thermally
	CN3	Kawaguchi,	T.; N	lasui, K., A	nalysis of ch	Appl. Phys. 79 (1996) ange in optical transm J. Appl. Phys. 26 (198	nission spectra resulting from Ag
-	CO3	Kawasaki, N	<u>/ Κ</u> ε	wamura, J	.; Nakamura	, Y.; Aniya, M., Ionic o	conductivity of Agx(GeSe3)1-x

- 1	Subst	tute for fo	m 1449B/PTO			Complete ir rolown			
	00000					Application Number	Not Yet Assigned @ 787,12	J	
,	INF	ORN	MATION	I DI	SCLOSURE	Filing Date	March 1, 2004	T	
X	ST	ATE	MENT E	3Y A	APPLICANT	First Named Inventor	John T. Moore		
H						Group Art Unit	Not Yet Assigned		
4		(us	e as many she	els as	necessary)	Examiner Name	Not Yet Assigned		
31	Sheet		6	of	8	Attorney Docket Number	M4065.0564/P564-A		
וֹ לַ			(0<=x<=0.5	71) g	lasses, Solid state Ionic	s 123 (1999) 259-269	. **	\equiv	
Ma		CP3	Kluge, G.; 7 GexSe100-	Thoma x, J. N	as, A.; Klabes, R.; Grotz Non-Cryst. Solids 124 (1	schel, R., Silver photo 1990) 186-193. **	odiffusion in amorphous	_	
3		CQ3	Solids 198-	200 (°	1996) 728-731. **		us chalcogenides, J. Non-Cryst.		
, ३		CR3	138 (1991)	1027	-1030. **		de films, J. Non-Cryst. Solids 137-		
		C23	Non-Cryst.	Solids	s 194 (1996) 256-259. *	•	ation and the type of contacts, J.		
ググ		стз \	amorphous	GeS	eTI chalcogenide semic	onductor films, Thin S	r, M.M., Memory switching in olid Films 240 (1994) 143-146. **		
4/4		CU3	devices: m 16-19, **	emor	y and switching mechar	nism, J. Instn Electron	r, A., Amorphous semiconductor ics & Telecom. Engrs 27 (1981)		
		CV3	chalcogenic	de gla	sses, Indian Journal of	pure & appl. phys. 29	ory and threshold switching (1991) 303-304. **		
Notthe		CW3	Leimer, F.; with blockir K129-K132	ıg \ AJ o	el, H.; Kottwitz, A., Isoth contacts influenced by F	nermal electrical polari Poole-Frenkel conduct	sation of amorphous GeSe films ion, Phys. Stat. Sol. (a) 29 (1975)		
, 3		СХЗ	Appl. Phys.	Lett.	46 (1985) 543-545. **		sion of Ag in GexSe1-x glass,		
3		CY3	system, Jaj	o. J. A	ppl. Phys. 11 (1972) 16	557-166 2 . **	effect observed on Se-SnO2		
		CZ3	Matsushita, selenium th	, T.; Y iin film	'amagahgi, T.; Okuda, M ns, Jpn. J. Appl. Phys. 1	1., Polárized memory (11 (/1972) 606. **	effect observed on amorphous		
Luces		CA4	Mazurier, F V2O5 base	.; Lev d glas	y, M.; Souquet, J.L, Resses, Journal de Physiq	versible and irreversibue IV 2 (1992) C2-185	ole electrical switching in TeO2- 5 - C2-188. **		
3		CB4	Messoussi, M/Se struct	R.; B	ernede, J.C.; Benhida, (M=Ni,Bi), Mat. Chem. /	S.; Abachi, T.; Latef, And Phys. 28 (1991) 2	A., Electrical characterization of		
7	>	CC4	Mitkova, M.	: Boo	lchand, P., Microscopic eory, J. Non-Cryst. Soli	origin of the glass for	ming tendency in chalcogenides		
8		CD4	Mitkova, M.	; Koz	icki, M.N., Silver incorpidevices, J. Non-Cryst.	gration in Ge-Se glass	ses used in programmable		
	-	CE4	Mitkova, M	; War	ng, Y.; Boolchand, P., D ev. Lett. 83 (1999) 384	ual chemical role of A	g as an additive in chalcogenide		
		CF4	Miyatani, S (1973) 423	y., E	lectronic and ionic cond	duction in (AgxCu1-x)2	2Se, J. Phys. Soc. Japan 34		
		CG4	Miyatani, S	y.,Æ	lectrical properties of A	g2Se, J. Phys. Soc. J	apan 13 (1958) 317. **	_	
		CH4	(1959) 996	Á002	••		Se, Journal Phys. Soc. Japan 14		
		CI4	1-17. */				ons, J. Non-Cryst. Solids 1 (1968)		
		CJ4	Nakayama, transitions	K.; K	iitagawa, T.; Ohmura, M Ilcogenide thin films, Jp	1.; Suzuki, M., Nonvola n. J. Appl. Phys. 32 (1	atile memory based on phase 993) 564-569. **		
	_	CK4	Makayama, nonvolatile	K.; K	ojima, K.; Hayakawa, F	.; Imai, Y.; Kitagawa,	A.; Suzuki, M., Submicron in chalcogenide glasses, Jpn. J.		
		CL4	Nang, T.T.;	Okuc	da, M.; Matsushita, T.; Yorphous thin films, Jap.	okota, S.; Suzuki, A., J. App. Phvs. 15 (197	Electrical and optical parameters (6) 849-853. **		
	$\overline{}$	CM4	Narayanan	, R.A.	; Asokan, S.; Kumar, A.	, Evidence concerning	g the effect of topology on ev. B 54 (1996) 4413-4415.**		
•									

PTO/SB/08B (10-01)

Approved for use through 10/31/2002.OMB 0651-0031

U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

	Subst	itute for fo	m 1449B/PTO		Complete if Known			
					Application Number .	Not Yet Assigned 10 1787, k		
	l ini	FORM	MATION	I DISCLOSURE	Filing Date	March 1, 2004		
(d)	i			BY APPLICANT	First Named Inventor	John T. Moore		
D)	"	Λ· L		31 / W 1 E10/ W 1	Group Art Unit	Not Yet Assigned		
7	1	(us	e as many she	eets as necessary)	Examiner Name	Not Yet Assigned		
3	Sheet		7	of 8	Attorney Docket Number	M4065.0564/P564-A		
3	0		·		<u> </u>			
Bu		CN4	IEEE trans	actions on electron dev. Ed-2	0 (1973) 195-209. **	erials to computer memories,		
	- /	CO4	Ovshinsky	S.R.; Fritzsche, H., Reversibl	e structural transform	ations in amorphous		
Fa		CP4	Ovebineky	ctors for memory and logic, M	vitching chenomens i	n disordered structures, Phys. Rev.		
	l `	N' -		68) 1450 <u>-1453. **</u>	moning phonomena ii	disordered suddiares, i hydryfor,		
13		ĊQ4	Owen, A.E.	; LeComber, P.G.; Sarrabayr				
	ļ			programmable nonvolatile sw				
7		CR4		.; Firth, A.P.; Ewen, P.J.S., Pi us chalcogenide semiconduc		al and physico-chemical changes		
5	<u> </u>	CS4		; Le Comber, P.G.; Hajto, J.;				
3	<u> </u>		devices, In	t. J. Electronics 73 (1992) 897	7-906. **			
The fleron		CT4			conduction in semicor	nducting glass diodes, App. Phys.		
٦		CU4	Pinto R. F	69) 280-282. ** tamanathan, K.V., Electric fie	ld induced memory sy	witching in thin films of the		
73			chalcogeni	de system Ge-As-Se, Appl. P	hys. Lett. 19 (1971) 2	21-223. **		
7		CV4	Popescu, C	The effect of local non-unif	formities on thermal s	witching and high field behavior of		
7	 -	CW4	Structures v	with chalcogenide glasses, Soc.; Croitoru, N., The contributi	on of the lateral them	r8 (1975) 671-681.		
Last			phenomeno	on, J. Non-Cryst. Solids 8-10	(1972) 531-537			
3		CX4		; Geller, I.KH.; Shemetova, V selenium, Phys. Stat. Sol. (a				
9		CY4	Prakash, S	.; Asokan, S.; Ghare, D.B., E. Appl. Phys 29 (1996) 2004-	asily reversible memo	ry switching in Ge-As-Te glasses,		
2		CZ4	Rahman, S	.; Sivarama Sastry, G., Electr 1992) 219-222. **	ronic switching in Ge-	Bi-Se-Te glasses, Mat. Sci. and		
grences		CA5	Ramesh, K	.; Asokan, S.; Sangunni, K.S. asses doped with Co and Ag,	Gopal, E.S.R., Elect	trical Switching in germanium		
2		CB5	Rose,M.J.;	Hajto,J.;Lecomber,P.&.;Gege ogue memory devices, A. No	S.M.;Choi,W.K.;Snel	I,A.J.;Owen,A.E., Amorphous		
$\mathscr{A}_{\mathcal{T}}$	<u> </u>	CC5	Rose,M.J.:	Snell,A.J.;Lecomber,P.G.;Haj	ito,J.;Fitzgerald,A.G.;(Owen,A.E., Aspects of non-		
3			volatility in	a -Si:H memory dexices, Màt	, Res. Soc. Symp. Pro	oc. V 258, 1992, 1075-1080. **		
		CD5	Non-Cryst.	Solids 29 (1976) 397-407. *1	• \	alcogenide switching devices, J.		
		CE5	Sharma, A.	K.; Singh, B., Electrical cond oc. Indian Natn. Sci. Acad. 4	uctivity measurement 6, A, (1980) 362-368.	s of evaporated selenium films in		
		CF5	Sharma, P.	, Structural, electrical and op 1 phys. 35 (1997) 424-427.	tical properties of silve	er selenide films, Ind. J. Of pure		
		CG5	Snell, A.J.;	Lecomber, P.G.; Hajto, J.; Ro	ose, M.J.; Οwèη, A.E.	; Osborne, I.L., Analogue memory Solids 137-138 (1991) 1257-1262.		
		CH5	Analogue n V 297, 199	3, 1017-1021. **	H/metal thin film struct	tures, Mat. Res. Soc. Symp. Proc.		
		CI5	Phys. 8 (19	75) L120-L122. **		memory devices, J. Phys. D: Appl.		
		CJ5	Steventon, Non-Cryst.	A.G., The switching mechani Solids 21 (1976) 319-329. **	•	alcogenide memory devices, J.		
		OK5	Stocker, H.	J., Bulk and thin film switchin	g and memory effects	in semiconducting chalcogenide		
		CL5	Tanaka, K.	lonic and mixed conductions	s in Aa photodopina p	rocess, Mod. Phys. Lett B 4 (1990)		

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

. 1 € Su	bstitute for f	orm 1449B/PTO)		1	Complete if Known			
f .					Application Number	Not-Yet-Assigned	787.		
.	NFOR	MATION	DIS	SCLOSURE	Filing Date	March 1, 2004			
) I				PPLICANT	First Named Inventor	John T. Moore			
3					Group Art Unit	Not Yet Assigned			
	(u:	se as many she	ets as	necessary)	Examiner Name	Not Yet Assigned			
Sheet		8	of	8	Attorney Docket Number	M4065.0564/P564-A			
Z	<u> </u>	1373-1377.	**		<u> </u>		71		
	CM5	Tanaka, K., phenomeno 389. **	; lizima on in c	nalcogenide amorphou	us semiconductors, So	nal effects on switching liid State Comm. 8 (1970) 387-			
	CN5	3-15. **				alcogenide, J. Elect Mat. 2 (197	73)		
	CO5 \	(1,972) 113	-120. °	••		elenide, J. Non Cryst. Solids 11	_		
	CP5	in amorpho	us ars	enic triselenide, Journ	al(??) (1972) 4609-46				
	CQ5	Tichy, L.: Ticha, H., Remark on the glass-forming ability in GexSe1-x and AsxSe1-x systems, J. Non-Cryst Solids 261 (2000) 277-281. **							
	CR5	Titus, S.S.K., Chatterjee, R.; Asokan, S., Electrical switching and short-range order in As-Te glasses, Phys. Rev. B 48 (1993) 14650-14652.							
8	CS5	glasses Ag relations in 9-13 Septe	-Ge-Se fast io mber 1	e: lanic conduction and n and mixed conducto 985.	d exafs structural investrs Proceedings of the	arde,J.P., Silver chalcogenide stigation, Transport-structure 6th Riso International symposium of the control o	m.		
<u>}</u>	CU5	effects, Thi	n Solid	Films 57 (1979) 49-5	nerts in Ag2Te thin films: switching and memory				
}∟		Ge0.4Se0.6	3, J. N	on-Cryst. Solids 13/7-1	118 (1990) 219-221. **				
3	CV5	filament for	mation	in As-Te-Ge glass, J.	H.; Griener, J.D.; Raghavan, K.S., Electric field induced ss, J. Non-Cryst. Solids 2 (1970) 358-370. **				
{	CD5	Viger, C.; Lefrancois, G.; Fleury, G., Anomalous behaviour of amorphous selenium films, J. Non-Cryst. Solids 33 (1976) 287-272. **							
3	CX5	system, Ma	t. Che	m. And Phys. 21 (1989	9) 447-454. **	urrents in the thin-film M-GeSe-	M		
3	CY5	Metal/silicid	le antif	use, IEEE electron de	v. Lett. 13 (1992)471-		_		
1	CZ5	Phys. Lett.	16 (19	70) 72-73. **		amorphous semiconductors, Ap	р.		
	CA6	Ag As0.245 145 (1998)	0.36A 2971-	g0.40 Ag System prep 2974 **	ared by photodissolut	lent circuit modeling of the ion of Ag. J. Electrochem. Soc.			
	CB6	multifractal	aggre	ates, Ph.D. Dissertati	on, ASU 1998 **	trochemical deposition of	\perp		
	ØC6	Zhang, M.; Mancini, S.; Bresser, W.; Boolchand, P., Variation of glass transition temperature, Tg, with average coordination number, <m>, In network glasses: evidence of a threshold behavior in the slope [dTg/d<m> at the rigidity percolation threshold (<m>=2.4), J. Non-Cryst. Solids 151 (1992) 149-154. **</m></m></m>							
_	iner .					Date Clo	`		

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹Applicant's unique citation designation number (optional). ²Applicant is to place a check mark here if English language Translation is attached.