Licence (L3)

ALGÈBRE

Exercices sur les corps et la théorie de Galois

A. CHAMBERT-LOIR

EXERCICE 1

Soit *A* un anneau commutatif et soit *n* un entier ≥ 1 .

- Pour tout $\sigma \in \mathfrak{S}_n$, démontrer qu'il existe un unique automorphisme σ' de la A-algèbre $A[T_1,...,T_n]$ tel que $\sigma'(T_i)=T_i$. Vérifier que l'application $\sigma \mapsto \sigma'$ est un homomorphisme de groupes de \mathfrak{S}_n dans $\operatorname{Aut}_A(A[T_1,...,T_n])$.
- 2 On dit qu'un polynôme $P \in A[T_1,...,T_n]$ est symétrique si l'on a $\sigma'(P) = P$ pour tout $\sigma \in \mathfrak{S}_n$. Pour tout $p \in \{1,...,n\}$, on pose

$$S_p = \sum_{1 \leqslant i_1 < \dots < i_p \leqslant n} T_{i_1} \dots T_{i_p}.$$

Démontrer que les polynômes $S_1, ..., S_n$ sont symétriques.

- 3 Soit $P \in A[T_1,...,T_n]$ un polynôme symétrique. Démontrer que le polynôme $P_0 \in A[T_1,...,T_{n-1}]$ défini par $P_0 = P(T_1,...,T_{n-1},0)$ est symétrique. Que deviennent les polynômes $S_1,...,S_n$ lorsqu'on remplace T_n par 0?
- Soit $P \in A[T_1,...,T_n]$ un polynôme symétrique. Démontrer qu'il existe un unique polynôme $Q \in A[T_1,...,T_n]$ tel que $P = Q(S_1,...,S_n)$. (Pour l'existence, raisonner par récurrence sur n, puis sur $\deg(P)$; pour l'unicité, raisonner par récurrence sur n, puis sur $\deg(Q)$.)

EXERCICE 2 (Nullstellensatz combinatoire [?])

Soit K un corps commutatif, soit n un entier $\geqslant 1$, et soit $f \in K[T_1, ..., T_n]$. Pour $i \in \{1, ..., n\}$, soit A_i une partie de K et soit $g_i = \prod_{a \in A_i} (T_i - a)$.

- On suppose que f s'annule en tout point de $A_1 \times \cdots \times A_n$. On suppose que $Card(A_i) > \deg_{T_i}(f)$ pour tout i, alors f = 0. (Traiter d'abord le cas n = 1 puis raisonner par récurrence sur n.)
- On suppose encore que f s'annule en tout point de $A_1 \times \cdots \times A_n$. Démontrer qu'il existe des polynômes $h_1, \ldots, h_n \in K[T_1, \ldots, T_n]$ tels que $f = \sum_{i=1}^n g_i h_i$ et $\deg(g_i) + \deg(h_i) \leqslant \deg(f)$ pour tout i.
- Soit $m = (m_1, ..., m_n) \in \mathbb{N}^n$ tel que le coefficient de T^m dans f soit non nul et tel que $\deg(f) = m_1 + \cdots + m_n$. On suppose que $\operatorname{Card}(A_i) > m_i$ pour tout i. Démontrer qu'il existe $a \in A_1 \times \cdots \times A_n$ tel que $f(a) \neq 0$.

EXERCICE 3

Soit *p* un nombre premier.

- Soit C une partie de $\mathbb{Z}/p\mathbb{Z}$, distincte de $\mathbb{Z}/p\mathbb{Z}$, et soit $f_C \in (\mathbb{Z}/p\mathbb{Z})[X,Y]$ le polynôme $\prod_{c \in C} (X + Y c)$. Soit $m, n \in \mathbb{N}$ tels que $\operatorname{Card}(C) = m + n$. Démontrer que le coefficient de $X^m Y^n$ dans f n'est pas nul.
- 2 Soit A, B des sous-ensembles non vides de $\mathbb{Z}/p\mathbb{Z}$; on pose C = A + B. On suppose que $\operatorname{Card}(A) + \operatorname{Card}(B) > p$; démontrer que $C = \mathbb{Z}/p\mathbb{Z}$.
- 3 On suppose que $Card(A) + Card(B) \le p$. Observer que $f_C(a, b) = 0$ pour tout $(a, b) \in A \times B$. Utiliser le résultat de l'exercice 2 pour démontrer l'*inégalité de Cauchy–Davenport* :

$$Card(A + B) \geqslant Card(A) + Card(B) - 1$$
.

Soit E un corps fini, soit p sa caractéristique et soit q son cardinal. Pour tout polynôme $P \in E[T_1, ..., T_n]$, on pose $s(P) = \sum_{a \in E^n} P(a)$.

- 1 Calculer $s(T^m)$ pour tout entier m.
- **2** Soit $P \in E[T_1, ..., T_n]$ tel que deg(P) < n(q-1). Démontrer que s(P) = 0.
- Soit P_1, \ldots, P_r des polynômes de $E[T_1, \ldots, T_n]$. Soit $V = \{a \in E^n; P_1(a) = \cdots = P_r(a) = 0\}$. On pose $P = \prod_{i=1}^r (1 P_i^{q-1})$. Démontrer que $Card(V) \cdot 1_E = s(P)$. En déduire que Card(V) est multiple de p si $\sum_{i=1}^r \deg(P_i) < n$.
- Soit d un entier tel que $1 \le d < n$ et soit $P \in E[T_1, ..., T_n]$ un polynôme homogène de degré d. Démontrer qu'il existe $a \in E^n$ tel que $a \ne 0$ et P(a) = 0.

EXERCICE 5

Le but de l'exercice est de démontrer que le corps ${\bf C}$ des nombres complexes est algébriquement clos.

Si $P = a_n T^n + \dots + a_0 \in \mathbb{C}[T]$ est un polynôme à coefficients complexes, on note \overline{P} le polynôme conjugué défini par $\overline{P} = \overline{a_n} T^n + \dots + \overline{a_0}$.

- 1 Démontrer que tout nombre complexe a une racine carrée dans **C**. En déduire que toute équation du second degré à coefficients dans **C** a ses racines dans **C**.
- 2 Soit $P \in \mathbf{R}[T]$ un polynôme de degré impair. Démontrer qu'il a une racine dans \mathbf{R} .
- 3 Soit P un polynôme irréductible de $\mathbf{R}[T]$. Démontrer qu'il existe une extension finie Ω de \mathbf{C} dans laquelle P est scindé et séparable. On note $d = \deg(P)$ et a_1, \ldots, a_d les racines de P dans Ω .
- **4** Soit $c \in \mathbb{R}$. Démontrer que le polynôme de $\Omega[T]$ donné par

$$P_c = \prod_{1 \leqslant j < k \leqslant d} (T - (a_j + a_k + ca_j a_k))$$

appartient à $\mathbf{R}[T]$. (Utiliser le théorème sur les polynômes symétriques élémentaires.)

- On suppose que tout polynôme Q de $\mathbf{R}[T]$ tel que $v_2(\deg(Q)) < v_2(\deg(P))$ possède une racine dans \mathbf{C} . Démmontrer que pour tout $c \in \mathbf{R}$, le polynôme P_c a une racine dans \mathbf{C} . En choisissant convenablement plusieurs valeurs de c, montrer qu'il existe deux indices distincts j et k tels que $a_j + a_k$ et $a_j a_k$ appartiennent à \mathbf{C} . En déduire que a_j et a_k sont des éléments de \mathbf{C} .
- 6 Démontrer que tout polynôme non constant dans C[T] a une racine dans C.

Soit E un corps commutatif, soit F une extension finie de E et soit $a \in F$. On suppose que [E(a):E] est impair. Démontrer que $E(a^2)=E(a)$.

EXERCICE 7

Soit E un corps commutatif, soit p un nombre premier et soit $a \in E$. Soit F une extension de E dans laquelle le polynôme $T^p - a$ est scindé.

- 1 Quelles sont les racines du polynôme $T^p a$ dans F?
- Soit $P \in E[T]$ un polynôme unitaire qui divise P et soit $n = \deg(P)$. On suppose que $1 \le n < \deg(P)$ et on note b le terme constant de P. Démontrer que $(-1)^{np}b^p = a^n$.
- 3 En déduire que P est irréductible dans E[T] si et seulement s'il n'a pas de racine dans E.

EXERCICE 8

Soit *E* un corps commutatif.

- 1 On suppose que *E* est de caractéristique 0. Démontrer que tout polynôme irréductible est séparable.
 - On suppose dans la suite de cet exercice que p est un nombre premier et que E est de caractéristique p.
- Soit $a \in E$ un élément qui n'est pas la puissance p-ième d'un élément de E; démontrer que le polynôme $T^p a$ est irréductible dans E[T] mais n'est pas séparable.
- Soit $P \in E[T]$ un polynôme irréductible qui n'est pas séparable. Démontrer que P' = 0. En déduire qu'il existe un polynôme séparable $Q \in E[T]$ et un entier $n \ge 1$ tels que $P = Q(T^{p^n})$.
- 4 Prouver que tout polynôme irréductible de E[T] est séparable si et seulement si tout élément de E est une puissance p-ième.

EXERCICE 9

- Soit G un groupe et soit F un corps commutatif. Soit Σ un ensemble d'homomorphismes de groupes de G dans F^{\times} . Démontrer que les éléments de Σ sont linéairement indépendants dans le F-espace vectoriel F^G . (Considérer une relation de dépendance linéaire $a_1\sigma_1 + \cdots + a_n\sigma_n = 0$, où n est minimal.)
- 2 Soit E et F des corps commutatifs et soit Σ l'ensemble des homomorphismes de corps de E dans F. Démontrer que les éléments de Σ sont linéairement indépendants dans le F-espace vectoriel F^E .

- Soit E un corps commutatif et soit F une extension de degré 2 de E. Soit $x \in F E$ tel que $x^2 \in E$. Soit $a \in E$; on suppose que a est un carré dans E. Démontrer que a est un carré dans E, ou ax^2 est un carré dans E.
- 2 Soit $p_1, ..., p_n$ des nombres premiers distincts. On considère les deux propriétés :
 - a_n Le corps $\mathbf{Q}(\sqrt{p_1},...,\sqrt{p_n})$ est de degré 2^n sur \mathbf{Q} ;
 - \mathbf{b}_n Un élément $x \in \mathbf{Q}$ est un carré dans $\mathbf{Q}(\sqrt{p_1}, \dots, \sqrt{p_n})$ si et seulement s'il existe une partie I de $\{1, \dots, n\}$ telle que $x \prod_{i \in I}$ soit un carré dans \mathbf{Q} .
 - Démontrer que la conjonction de (a_n) et (b_n) implique (a_{n+1}) et que la conjonction de (a_n) et (b_{n-1}) implique (b_n) . En déduire que ces deux propriétés sont vraies pour tout entier n.
- 3 Démontrer que les racines carrées $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$,... des nombres premiers sont linéairement indépendantes sur \mathbf{Q} .

EXERCICE 11

Soit E un corps commutatif et soit F une extension finie de E. On dit qu'un élément de F est séparable sur E si son polynôme minimal est séparable.

Soit Ω une extension algébriquement close de E.

- 1 On suppose que *F* est une extension galoisienne de *E*. Démontrer que tout élément de *F* est séparable sur *E*.
 - On suppose dans la suite de l'exercice qu'il existe une partie A de F formée d'éléments séparables sur A telle que F = E(A).
- 2 Démontrer qu'il existe une extension F' de F qui est une extension galoisienne de E.
- 3 Démontrer que l'ensemble $\operatorname{Hom}_E(F,\Omega)$ est de cardinal [F:E]. Inversement, prouver que cette propriété entraı̂ne que tout élément de F est séparable sur E.
- 4 Démontrer que l'ensemble des sous-corps K tels que $E \subset K \subset F$ est fini.
- **5** Démontrer qu'il existe un élément $a \in F$ tel que F = K(a).

EXERCICE 12

Soit *E* le sous-corps de **C** engendré par i et $\sqrt{2}$.

- 1 Démontrer que $[E:\mathbf{Q}]=4$.
- **2** Démontrer que E est une extension galoisienne de \mathbf{Q} .
- 3 Soit *A* l'ensemble $\{\pm i, \pm \sqrt{2}\}$. Démontrer que pour tout $a \in A$ et tout $\sigma \in \operatorname{Gal}(E/\mathbb{Q})$, on a $\sigma(a) \in A$. Démontrer que l'homomorphisme de $\operatorname{Gal}(E/\mathbb{Q})$ dans \mathfrak{S}_A donné par $\sigma \mapsto \sigma|_A$ est injectif.
- 4 Quelle est l'image de cet homomorphisme? En déduire que $Gal(E/\mathbb{Q}) \simeq (\mathbb{Z}/2\mathbb{Z})^2$.
- 5 Déterminer un élément $a \in E$ tel que $E = \mathbf{Q}(a)$ et calculer son polynôme minimal.

EXERCICE 13

Soit E un corps commutatif, soit n un entier $\geqslant 1$ et soit F = E(a) une extension de E engendrée par un élément d'ordre n.

- 1 Démontrer que la caractéristique de E ne divise pas n et que le polynôme $T^n 1 \in E[T]$ est séparable.
- **2** Démontrer que F est une extension de décomposition du polynôme $T^n 1 \in E[T]$.
- **3** Soit $\sigma \in \text{Gal}(F/E)$. Démontrer qu'il existe un unique entier $d \in \{1, ..., n\}$ tel que $\sigma(a) = a^d$.
- 4 Construire un homomorphisme de groupes injectifs de Gal(F/E) dans $(\mathbf{Z}/n\mathbf{Z})^{\times}$. En déduire que Gal(F/E) est un groupe commutatif.

Soit $E \subset F$ une extension galoisienne et soit G son groupe de Galois. Soit H un sous-groupe de G et soit $K = F^H$. Démontrer qu'il existe une plus petite extension galoisienne L de E telle que $K \subset L \subset F$. Déterminer le sous-groupe de G qui lui est associé par la correspondance de Galois.

EXERCICE 15

Soit K un corps commutatif et soit $F = K(T_1, ..., T_n)$ le corps des fractions rationnelles en n indéterminées $T_1, ..., T_n$. Soit E le sous-corps de F engendré par les polynômes symétriques $S_1, ..., S_n$.

- 1 Démontrer que l'extension $E \subset F$ est galoisienne et que Gal(F/E) est isomorphe à \mathfrak{S}_n .
- **2** Soit $a = T_1 + 2T_2 + \cdots + nT_n$. Démontrer que F = E(a).

EXERCICE 16

Soit $E \subset F$ une extension finie galoisienne, soit G son groupe de Galois.

- Soit $a \in F$ et soit $G_a = \{ \sigma \in G; \sigma(a) = a \}$. Démontrer que l'extension E(a) est associée au sous-groupe G_a de G par la correspondance de Galois.
- **2** Démontrer que E(a) = F si et seulement si $G_a = \{id\}$.
- 3 Soit b un élément de F tel que $G_a \subset G_b$. Démontrer qu'il existe un polynôme $P \in E[T]$ tel que P(a) = b.

EXERCICE 17

Soit K un corps commutatif; soit Ω une extension de K et soit E, F deux extensions de K contenues dans Ω . On note EF le sous-corps de Ω engendré par $E \cup F$.

On suppose que l'extension $K \subset E$ est galoisienne.

- 1 Démontrer que l'extension $F \subset EF$ est galoisienne, de même que l'extension $E \cap F \subset E$.
- 2 Démontrer que l'on définit un homomorphisme de groupes φ: Gal(EF/F) → Gal(E/K) en posant $φ(σ) = σ|_E$ pour tout σ ∈ Gal(EF/F).
- **3** Démontrer que cet homomorphisme est injectif et que son image est $Gal(E/E \cap F)$.
- **4** En déduire que $[EF:F] = [E:E\cap F]$, et que [EF:K] = [E:K][F:K] si et seulement si $K = E\cap F$.

Dans la suite de cet exercice, on suppose aussi que l'extension $K \subset F$ est galoisienne.

5 Démontrer que les extensions $K \subset EF$ et $K \subset E \cap F$ sont galoisiennes.

6 Démontrer que l'on définit un homomorphisme de groupes

$$\varphi \colon \operatorname{Gal}(EF/K) \to \operatorname{Gal}(E/K) \times \operatorname{Gal}(F/K)$$

en posant $\varphi(\sigma) = (\sigma|_E, \sigma|_F)$ pour tout $\sigma \in \text{Gal}(EF/K)$.

- 7 Prouver que cet homomorphisme est injectif et que son image est le sous groupe de $Gal(E/K) \times Gal(F/K)$ formé des couples (σ, τ) tels que $\sigma|_{E \cap F} = \tau|_{E \cap F}$.
- 8 Si $K = E \cap F$, en déduire que Gal(EF/K) est isomorphe à $Gal(E/K) \times Gal(F/K)$.

EXERCICE 18

Soit K un corps commutatif, soit L une extension finie de K et soit E et F des extensions de K contenues dans L. On suppose que [E:K] et [F:K] sont premiers entre eux. Démontrer que [EF:K] = [E:K][F:K].

EXERCICE 19

Soit E un corps commutatif, soit $P \in E[T]$ un polynôme séparable (unitaire) et soit F une extension de décomposition de P. Soit A l'ensemble des racines de P dans F.

- 1 Démontrer que A est stable par Gal(F/E).
- 2 Démontrer que l'application $\sigma \mapsto \sigma|_A$ définit un homomorphisme injectif du groupe Gal(F/E) dans le groupe G_A des permutations de A.
- **3** Démontrer que P est irréductible si et seulement si Gal(F/E) agit transitivement sur A.
- 4 Plus généralement, construire une bijection entre l'ensemble des facteurs irréductibles (unitaires) de P et l'ensemble des orbites de Gal(F/E) dans A.

EXERCICE 20

Soit *E* l'extension de **Q** engendrée par $a = \sqrt{2 + \sqrt{3}}$.

- 1 Calculer le polynôme minimal *P* de *a* ? Quelles sont ses racines ?
- **2** En déduire que E est une extension de décomposition du polynôme P.
- 3 Prouver que $Gal(E/\mathbb{Q})$ est isomorphe à $\mathbb{Z}/4\mathbb{Z}$ et en déterminer un générateur.

EXERCICE 21

Soit $P \in \mathbf{Q}[T]$ un polynôme irréductible dont le degré est un nombre premier p. Soit A l'ensemble des racines de P dans \mathbf{C} ; on suppose que $\operatorname{Card}(A \cap \mathbf{R}) = p - 2$. Soit E le sous-corps de \mathbf{C} engendré par A.

- 1 Démontrer que l'extension E de \mathbf{Q} est galoisienne.
- **2** Démontrer que $Gal(E/\mathbb{Q})$ agit transitivement sur A.
- **3** Soit *G* l'image de l'homomorphisme injectif de $Gal(E/\mathbb{Q})$ dans \mathfrak{S}_A donné par $\sigma \mapsto \sigma|_A$.
- 4 Démontrer que *G* contient une transposition.
- **5** Démontrer que G contient un élément d'ordre p.
- **6** Démontrer que $G = \mathfrak{S}_A$.

Soit $Q_1 = (T^2 + 1) \prod_{a=1}^{p-2} (T - a)$ et soit $Q_2 \in \mathbf{Z}[T]$ un polynôme unitaire de degré p. On suppose que l'image de Q_2 dans $(\mathbf{Z}/2\mathbf{Z})[T]$ est irréductible. Démontrer que pour tout entier n assez grand, le polynôme $P = Q_2 + 2^n Q_1$ vérifie les conditions de l'exercice.

EXERCICE 22

Soit E le sous-corps de C engendré par les racines du polynôme $P = T^3 - 2$.

- 1 Démontrer que P est le polynôme minimal de $\sqrt[3]{2}$.
- **2** Démontrer que $E \neq \mathbf{Q}(\sqrt[3]{2})$.
- **3** En déduire que $[E: \mathbf{Q}] = 6$ et que $Gal(E/\mathbf{Q}) \simeq \mathfrak{S}_3$.

EXERCICE 23

Soit E un corps commutatif et soit F une extension finie de E.

- On suppose que F est une extension galoisienne de E. Soit $a \in F$. Expliciter à l'aide du groupe Gal(F/E) le polynôme minimal de a. En déduire qu'il est scindé dans F.
- 2 On suppose que pour tout $a \in F$, le polynôme minimal de a sur E est séparable et scindé dans F. Démontrer que l'extension F de E est galoisienne.

EXERCICE 24

Soit E un corps commutatif. Soit $P \in E[T]$ un polynôme unitaire, soit $n = \deg(P)$; on note $P = T^n + c_1 T^{n-1} + \cdots + c_n$. Soit A le quotient de l'anneau des polynômes $E[T_1, \ldots, T_n]$ par l'idéal engendré par les polynômes $S_p - (-1)^p c_p$, où S_1, \ldots, S_n sont les polynômes symétriques élémentaires.

- 1 Soit $a_1, ..., a_n$ les images de $T_1, ..., T_n$ dans A. Démontrer que l'on a l'égalité $P = \prod_{p=1}^n (T a_p)$ dans A[T].
- **2** Démontrer que A est un E-espace vectoriel de dimension n!.
- **3** Soit *M* un idéal maximal de *A*. Démontrer que *A/M* est une extension de décomposition de *P* sur *E*.
- Démontrer qu'il existe une action du groupe symétrique \mathfrak{S}_n dans A (par automorphismes de E-algèbres) tel que $\sigma(a_i) = a_{\sigma(i)}$.
- On suppose que P est séparable. Identifier le groupe de Galois de A/M sur E au stabilisateur de M dans \mathfrak{S}_n .
- On suppose toujours que P est séparable. Démontrer que l'ensemble des idéaux maximaux de A est fini. Si on les note M_1, \ldots, M_r , démontrer que A est isomorphe au produit des corps $A/M_1, \ldots, A/M_r$.