PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-239669

(43) Date of publication of application: 11.09.1998

(51)Int.CI.

G02F 1/1333 G02F 1/1335

G02F 1/137

(21)Application number: 09-041795

(71)Applicant:

SHARP CORP

(22)Date of filing:

26.02.1997

(72)Inventor:

MITSUI SEIICHI

OKAMOTO MASAYUKI

UEKI TAKASHI

(54) REFLECTION TYPE LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To eliminate reflection and parallax and coloration and to obtain a wide field angle and sufficient lightness by making linearly polarized light incident for light display, and obtaining scattered light on a projection surface by passing the same polarized component with the incident light.

SOLUTION: When no voltage is applied, liquid crystal 14 and a liquid crystal high polymer 15 which has set are nearly equal in refractive index to ordinary light and extraordinary light. Consequently, a light transmission state with set retardation is entered and there is no scatter. At this time, the same operation with only normal liquid crystal is obtained and circularly polarized light is obtained. When a voltage is applied, only the liquid crystal is oriented at right angles to electrodes 10 and 7, so the refractive index of the liquid crystal becomes nearly equal to the ordinary light refractive index, the refractive index difference from the liquid crystal polymer increases, and the display element enters unscattered light (linearly polarized component) and scattered state, so that the scattered light is held in a polarized state. Therefore, the majority of unscattered light and scattered light can pass through the polarizing element 4, so that the display state of this device will be a light state.

LEGAL STATUS

[Date of request for examination]

28.07.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Date of registration]

3310569

24.05.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-239669

(43)公開日 平成10年(1998) 9月11日

(51) Int.CL.*		識別記号	FΙ	
G02F	1/1333		G 0 2 F	1/1333
	1/1335			1/1335
	1/137			1/137

		審査請求	未請求 請求項の数11 OL (全 13 頁)
(21)出願番号	特顧平 9-41795	(71)出顧人	000005049 シャープ株式会社
(22)出廣日	平成9年(1997)2月26日		大阪府大阪市阿倍野区長池町22番22号
		(72)発明者	三ツ井 精一
			大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
		(72)発明者	岡本 正之
			大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
		(72)発明者	植木 峻
			大阪府大阪市阿倍野区長池町22番22号 シ
			ャープ株式会社内
		(74)代理人	弁理士 梅田 勝

(54) 【発明の名称】 反射型被晶表示装置

(57)【要約】

電圧の印加により吸収状態と散乱状態を制御 【課題】 できる新しい液晶表示モードを用いることにより、視差 がなく、高精彩で表示品位の高い反射型液晶表示装置を 提供する。

【解決手段】 液晶素子の光の入射側に配置された少な くとも1枚の偏光板と、透明電極を形成した絶縁性基板 と、当該一方表面に光反射面が形成された光反射部材 と、当該絶縁性基板と当該反射部材との間に封入され、 液晶分子と液晶性高分子が共に同じ角度にツイスト配向 された液晶層とを具備し、暗表示には直線偏光した入射 光が入り、反射面では円偏光となり、反射後出射面では 入射光と90度偏波面が回転した直線偏光となり、明表 示には直線偏光した入射光が入り、出射面では入射光と 同じ偏光成分のみ通過した散乱光となることを特徴とす る。

【特許請求の範囲】

【請求項1】 液晶素子の光の入射側に配置された少なくとも1枚の偏光板と、透明電極を形成した絶縁性基板と、当該一方表面に光反射面が形成された光反射部材と、当該絶縁性基板と当該反射部材との間に封入され、液晶分子と液晶性高分子が共に同じ角度にツイスト配向された液晶層とを具備し、暗表示には直線偏光した入射光が入り、反射面では円偏光となり、反射後出射面では入射光と90度偏波面が回転した直線偏光となり、明表示には直線偏光した入射光が入り、出射面では入射光と同じ偏光成分のみ通過した散乱光となることを特徴とする反射型液晶表示装置。

【請求項2】 前記液晶層の液晶分子と液晶性高分子のそれぞれの異常光屈折率と常光屈折率がほぼ同じであることを特徴とする請求項1記載の反射型液晶表示装置。 【請求項3】 前記光反射部材の光反射面の表面が滑らかな凹凸を有するかもしくはフラットな鏡面性を示すことを特徴とする請求項1記載の反射型液晶表示装置。

【請求項4】 前記光反射部材の光反射面を形成する光 反射膜が、前記液晶層側に配置されることを特徴とする 20 請求項1~3のいずれかに記載の反射型液晶表示装置。 【請求項5】 前記光反射面が、前記絶縁性基板上に形

【請求項5】 的記元及射面が、的記紀移往基板上に形成された透明電極に対向する電極面も兼ねることを特徴とする請求項1~4のいずれかに記載の反射型液晶表示装置。

【請求項6】 前記偏光板の透過軸と入射側の液晶分子の配向方法とのなす角度をほぼ90度またはほぼ平行に配置することを特徴とする請求項1~5のいずれかに記載の反射型液晶表示装置。

【請求項7】 前記偏光板の透過軸と上下基板の間で前 30 記ツイストした液晶層のほぼ1/2の位置の液晶分子とのなす角度を±15°以内に配置することを特徴とする請求項1~6のいずれかに記載の反射型液晶表示装置。 【請求項8】 前記偏光子と液晶素子との間に少なくとも1枚の光学位相補償部材が配設されることを特徴とする請求項1~7のいずれかに記載の反射型液晶表示装

【請求項9】 前記光学位相補價部材が、高分子延伸フィルムもしくはUVキュアラブル液晶性高分子であることを特徴とする請求項8記載の反射型液晶表示装置。 【請求項10】 前記光反射部材の反射面の上、もしくは前記絶縁性基板上に光吸収型カラーフィルタ層を形成したことを特徴とする請求項1~9のいずれかに記載の反射型液晶表示装置。

【請求項11】 前記光反射部材上の反射面の代わりに、有機あるいは無機の反射型カラーフィルタ層を形成し、その背面に吸収層を形成した特徴とする請求項1~9のいずれかに記載の反射型液晶表示装置。

【発明の詳細な説明】

[0001]

置。

【産業上の利用分野】本発明は、直視式のバックライトを用いない反射型液晶表示装置に関し、さらに詳しくはワードプロセッサやいわゆるノート型パーソナルコンピュータなどのオフィスオートメーション機器や、各種映像機器およびゲーム機器など適用される反射型液晶表示装置に関する。

2

[0002]

【従来の技術】液晶表示装置の中でも、特に、外部から 入射した光を反射させて表示を行う反射型液晶表示装置 は、光源となるバックライトが不要であるため更に消費 電力が低く、かつ薄型、軽量化が可能となることで注目 されている。

【0003】そこで、従来よりのTN方式あるいはSTN方式の液晶表示素子を反射型液晶表示装置に適用すると、液晶表示素子を一対の偏光板で挟む構成にし、その外側に反射板を設置する必要がある。このため、液晶表示素子に用いられるガラス基板の厚さのために、使用者がガラス基板を見る角度、すなわちガラス基板の法線方向と前記使用者が液晶表示素子を見る方向とのなす角度によって視差が生じ、表示が二重に認識されるという問題点がある。

【0004】また、カラー化に関しては、従来より液晶セル内部の表示1画素毎に例えば、3ドット(赤、緑、青)のマイクロカラーフィルタを設け、加法混合によりマルチカラー表示やフルカラー表示が行われる。しかし、上記液晶表示モードは偏光板を2枚用いるので、非常に暗く、さらに上記視差の発生により加法混色が良好に行われないため、反射型カラー表示装置には適用されなかった。

【0005】そこで、近年、偏光板1枚と反射板1枚を 組み合わせた液晶表示素子が開発され、例えば、ツイス ト配列させた液晶層を微細な凹凸を形成した反射板(セ ル内面に配置)と偏光板の間に配置した直視型の反射型 液晶表示素子が特開平3-223715号公報に開示さ れている。図16は、前記公報記載の反射型液晶表示装 置1の構成を示す断面図である。反射型液晶表示装置1 00は、透光性基板101、102と、ツイストした液 晶層103と、透明電極108、凹凸反射電極105 と、配向膜106、107により構成される。例えば、 40 ガラスから成る透光性基板101、102間には、誘電 率異方性が正であるツイスト液晶層103が介在され る。透光性基板101、102に形成された透明電極1 08および凹凸反射電極105上には、配向膜106、 107がそれぞれ形成されている。この配向膜の表面 は、液晶層103の液晶分子が基板に対して平行に配向 するように、たとえばラビング処理などの配向処理が施 されている。このとき、電圧無印加状態で、液晶のツイ スト角は、一例として63度に設定される。

【0006】表示原理を図17を用いて説明する。明状 50 態の場合、透光性基板101側から偏光板104通過し

た直線偏光がツイストした液晶層に入射する。この直線 偏光はツイスト液晶層を通過して直線偏光に変換され、 反射板105で散乱反射され、そのまま直線偏光とな る。続いて、ツイストした液晶層を通過することによっ て偏波面が入射時と同一の方向の直線偏光となり、偏光 板をそのまま出射し、明表示が可能となる。

【0007】一方、電圧印加状態において液晶層はツイスト配向を解き、電界方向に沿って配向する。透光性基板101側から偏光板を通過した直線偏光が液晶層に入射する。入射した直線偏光は、液晶層103を通過し、右回り円偏光となり、反射板105で左回り円偏光となり散乱反射し、再び液晶層103に入射する。ここで、左回り円偏光が入射時と90度変換した直線偏光になり、偏光板104で吸収され、暗表示が可能となる。この構成では、偏光板を2枚用いる構成に比べて視差が無くなり、反射率が高くなる。

【0008】さらに、一方、光の入射側から、1枚の偏 光板、1/4波長板、高分子分散型液晶、鏡面反射板の 順に構成される反射型液晶表示装置が、特開平7-28 054号公報に開示されている。この反射型液晶表示装 20 置は、透光性基板の一方の面に形成された透光性電極 と、基板の一方の面に形成された反射電極とで、高分子 分散液晶層を挟持すると共に、透光性基板の他方の面側 に、1/4波長板及び偏光子を順に積層状態に配してな るものである。高分子分散液晶層の液晶は、電圧無印加 時にはランダム配向され、この中を透過した光は偏光解 消することとなり表示状態は、明状態となる。一方、電 圧印加時において液晶は透光性電極と反射電極に対して 垂直に配向されるために、垂直入射光に対して複屈折効 果は生ずることがなく、そのため、外部から入射して再 30 び外部へ出射される光は、1/4波長板を2回通過する ので、実質1/2波長分の位相変化を生ずることとな り、偏光面が90度回転する結果、出射時、偏光子にお いて吸収されて表示状態は暗表示となるものである。 [0009]

【発明が解決しようとする課題】しかしながら、上記特開平3-223715号公報記載の反射型液晶表示素子では、液晶素子の透過状態と吸収状態を電圧で制御して表示を行うため、白色表示には、液晶層の背面に散乱反射膜を欠くことはできない。つまり、散乱反射板の性能が表示品位を決定する。例えば、上記表示原理に用いる反射板が入射光の偏光性を保持しない場合には、前述したような右回りの円偏光から左回りの円偏光への変換、またはこの逆の変換が効率的に行われなくなり、暗表示の際に、光が漏れコントラストが低下する原因となる。【0010】また、偏光性を保持する反射部材としては平坦な鏡面反射部材があるが、これは外部の物体がそのまま表面に映るため、明状態の時に周囲の情報が表示に映り込み視認性が著しく低下するという問題が生じるため、反射板には光拡散性を有することが望ましい。50

1

【0011】そこで、このような光拡散性を保ちながら 個光性を制御できる反射板として、滑らかな感光性樹脂 より成る凹凸部の上にアルミ膜を形成する方法が、特開 平7-218906号公報に開示されている。この中で コントラスト4以上を達成するためには個光性保時度が 50%以上、さらに7以上を達成するためには偏光性保持度が 70%以上必要であることが報告されている。 偏光性保持度を高くするとコントラストは高くなるが視野 角が狭くなり、表示が見にくくなる問題点を有し、一 10 方、偏光性保持度を低くして、散乱性を大きくし、視野 角を広くするとコントラストが極端に低下するという問 題点があった。即ち、完全な偏光性の保持と拡散性を両立した特性を兼ね備える反射板を得ることはできず、コントラストの高い、見易い白黒表示は実現出来なかった。

【0012】また、特開平7-28054号公報の反射型表示装置では、散乱の無い暗状態が実現される。しかしながら、明状態の時には、偏光板で入射光の1/2が吸収され、高分子分散層でランダムな偏光解消状態となるため、出射時に偏光板でさらに1/2となり、結局、明るさが1/4以下となって、暗くなるという欠点があった。

【0013】そこで、本発明はかかる課題を解決するために、電圧の印加により吸収状態と散乱状態を制御できる全く新しい液晶表示モードにより、視差がなく、高精彩で表示品位の高い反射型液晶表示装置を提供することを目的とする。

[0014]

【課題を解決するための手段】上記目的を達成するために、本発明のうち請求項1記載の反射型液晶表示装置は、液晶素子の光の入射側に配置された少なくとも1枚の偏光板と、透明電極を形成した絶縁性基板と、当該一方表面に光反射面が形成された光反射部材と、当該絶縁性基板と当該反射部材との間に封入され、液晶分子と液晶性高分子が共に同じ角度にツイスト配向された液晶層とを具備し、暗表示には直線偏光した入射光が入り、反射面では円偏光となり、反射後出射面では入射光と90度偏波面が回転した直線偏光となり、明表示には直線偏光した入射光が入り、因射流には直線偏光となり、明表示には直線偏光した入射光が入り、出射面では入射光と同じ偏光成分のみ通過した散乱光となることを特徴とする。

【0015】そして、前記液晶層の液晶分子と液晶性高分子の屈折率において、本発明の請求項2に記載のように、それぞれの異常光屈折率と常光屈折率がほぼ同じであることを特徴とする。

【0016】また、光反射部材の光反射面の表面は、例えば、本発明の請求項3に記載のように、滑らかな凹凸を有するかもしくはフラットな鏡面性を示すことが好ましく、光反射部材の光反射面を形成する光反射膜の配置においては、本発明の請求項4に記載のように、前記液50 晶層側に配置されることを特徴とする。そして、光反射

面が、前記絶縁性基板上に形成された透明電極に対向す る電極面も兼ねても良い。

【0017】さらに、偏光板や液晶分子の配置について は、請求項6に記載のように、偏光板の透過軸と入射側 の液晶分子の配向方法とのなす角度をほぼ90度または ほぼ平行に配置することを特徴とし、より好ましくは偏 光板の透過軸と入射側の液晶分子の配向方法とのなす角 度を75から105度に、または165から195度に 配置するすることを特徴とする。また、請求項7に記載 のように、偏光板の透過軸と上下基板の間で前記ツイス 10 トした液晶層のほぼ1/2の位置の液晶分子とのなす角 度を±15°以内に配置することを特徴とする。

【0018】さらに、請求項8記載の発明は、請求項1 記載の構成に加え、偏光子と液晶素子との間に少なくと も 1 枚の光学位相補償部材が配設されることを特徴とす る。このように構成することにより、短波長側および長 波長側の反射をより小さくすることができる。そして、 その光学位相補償部材は、請求項9に記載のように、高 分子延伸フィルムもしくはUVキュアラブル液晶性高分 子であることを特徴とする。

【0019】また、反射型液晶表示装置のカラー化に対 しては、例えば、請求項10に記載のように、前記光反 射部材の反射面の上、もしくは前記絶縁性基板上に光吸 収型カラーフィルタ層を形成しても、請求項11に記載 のように、前記光反射部材上の反射面の代わりに、有機 あるいは無機の反射型カラーフィルタ層を形成し、その 背面に吸収層を形成するように構成しても良い。

[0020]

【発明の実施の形態】以下に、本発明の実施形態につい て、図面を用いて詳細に説明する。

<実施形態1>図1は本発明にかかる第1の実施形態の 反射型液晶表示装置1の断面図である。液晶表示装置1 は、一対の透明なガラス基板2、3を備え、ガラス基板 2上にはアルミニウム、ニッケル、クロムあるいは銀な どの金属材料からなる反射金属膜7が形成され、光反射 部材である反射板8を構成する。反射膜7の上には、液 晶層を配向させる配向膜9が形成される。

【0021】前記ガラス基板2と対向するガラス基板3 の表面には、ITO(インジウムスズ酸化物)などから なる透明電極10が形成される。反射金属膜7と透明電 40 極10とで液晶層13に電界が印加される。透明電極1 0が形成されたガラス基板3を被覆して配向膜11が形 成され、相互に対向するガラス基板2、3の周縁部は後 述するシール材12で封止される。配向膜9、11間 は、液晶層13が63度ツイスト配向となるようにラビ ング処理されている。液晶層13は液晶14と液晶性高 分子15から構成される。前記ガラス基板3の液晶層1 3と反対側には、単体透過率48%の偏光板4を配置す **5.**

手順を示す工程図である。工程1では、基板2の表面上 に反射膜7を形成する。反射電極7は、例えば、A1、 Ag等の高反射率で低抵抗な金属部材をスパッタリング 法や蒸着法により成膜するが、偏光解消性を有しないよ うにするために、成膜温度、成膜速度等を制御して、そ の表面が鏡面に形成されたものであることが必要であ る。また、その膜厚は十分な反射率で且つ低抵抗となる 範囲に設定される必要があり、O. 5乃至2μm程度が 好適である。本実施形態の場合、反射膜が液晶に電界を 印加する電極と入射光を反射する反射膜としての両方の 機能を持つ。

【0023】 工程2では、前記反射膜7上にポリイミド 樹脂から成る配向膜9を形成し、ラビング処理する。基 板2上に、ボリイミド樹脂膜を印刷法にて形成し、20 0℃で1時間焼成する。例えば、液晶を基板に平行に配 向させるSE150(日産化学社製)を用い、これによ り配向膜9が形成される。この後、液晶層を配向させる ためのラビング処理を行う。

【0024】工程3では、基板3の表面に透明電極10 20 を形成する。本実施形態ではITO(インジウムスズ酸 化物) などからなる透明電極10をスパッタリング法に より形成する。工程4では、前記透明電極10上に配向 膜11を形成する。配向膜11は、前記工程2と同様に して形成する。上下基板2と3の間で、例えば63度ツ イスト配向させるようにラビング処理方向を定める。工 程5では、基板2と基板3とを貼合わせる。基板2と基 板3とを組み合わせるに際して、基板2、3間に直径 1. 5μmのスペーサを散布し、液晶層の層厚の規制を 行う。前記液晶層13は、ガラス基板2、3を対向し 30 て、前記シール材12で貼り合わせる。

【0025】工程6では、貼り合わせたセルを真空脱気 することにより、液晶層13を封入する。封入後、紫外 線を照射し、液晶層13を作製した。液晶層13には、 例えば、誘電異方性 $\Delta \epsilon$ が正であるネマティック液晶1 4として、メルク社製(商品名2LI1565)を用い た。これに混合する液晶性高分子材料15としては、重 合する前のUVキュアラブル液晶を用いた。このUVキ ュアラブル液晶は常温で液晶層を示し、通常の液晶材料 と同じく配向し、紫外線を照射することで液晶分子の配 列を保持したまま重合硬化し、液晶性高分子となる。以 下、UV照射前がUVキュアラブル液晶、UV照射後を 液晶性高分子と称す。液晶14とUVキュアラブル液晶 を重量比85:15で混合し、工程5にて作製したセル 厚1.5ミクロンのセルに真空注入し、強度10mW/ cm²の紫外線を300秒照射し、UVキュアラブル液 晶のみ硬化させ、63度ツイストした液晶層13を作製 した。ネマティック液晶のツイスト角は63度、液晶の 複屈折と液晶層厚の積(μm単位、以下△n dと略す る) は0.205である。液晶とUVキュアラブル液晶 【0022】図2は、反射型液晶表示装置1を作成する 50 の異常光屈折率と 常光屈折率はほとんど同じものを選 択している。ただし、作製条件によっては、異なる屈折 率を用いてもほぼ同様な効果が発揮されることを確認し ている。

【0026】工程7では、基板3の光入射面に偏光板4を貼りつけ、反射型液晶表示装置31を作製した。上記工程により作製された液晶表示装置における偏光板、光学位相補償フィルム、液晶層の光学的構成を図3に示すように規定する。なお、図3は反射型液晶表示装置1を図1の上方向から観察した図である。すなわち、液晶層13における上部基板3側の液晶分子の配向方向をR1とし、偏光板の偏光軸(透過軸)の軸方向P0が、前記配向方向R1に対して反時計回りに成る角度をβとする。また、配向方向R1(矢印の方向がラビング方向)と反射面7側の液晶分子の配向方向R2(矢印の方向がラビング方向)とのねじれ角を、反時計回りを正としてのとする。本実施形態ではβを0度、θを63度に設定している。

【0027】次に、動作回路について、図4を用いて説明する。前記反射金属膜7および透明電極10には、それぞれ走査回路16およびデータ回路17の一方が接続20される。走査回路16およびデータ回路17は、マイクロプロセッサなどの制御回路18の制御により、表示内容に対応する表示データに基づいて、液晶表示装置の反射金属膜7および透明電極10を走査し表示を実現する。

【0028】図5は、本実施形態の液晶表示装置1の電圧/反射率特性を示すグラフであり、図6にはその測定光学系を示す。液晶表示装置1の法線方向に関して角度30度だけ傾斜した方向から、入射した光に対する前記法線方向の反射率を測定した。なお、この測定における30反射率とコントラスト比を決定するための基準となる部材として、酸化マグネシウムMgOの標準白色板を用いた。図5には比較のために、偏光板4が無い場合の特性をも併記する。

【0029】図5によれば、電圧を印加した場合、液晶表示装置1の法線方向に関して角度30度だけ傾斜した方向から入射した光に対する前記法線方向の反射率は最大170%であり、最大コントラスト比は30であった。一方、偏光板の無い時の明るさは285%であり、偏光板がある時には170%を示す。この結果は、液晶 40層13は入射側ラビング配向方向に平行に偏光入射した場合に散乱し、さらに偏波面をある程度保持していることを示している。即ち、単純に偏光板を配置するというだけで1/2以下にはならず、明るい表示を実現できることが明白である。

【0030】上記結果により、その散乱の模式図を図7に示す。図7(a)に示す電圧無印加状態では、液晶14と硬化した液晶性高分子15の常光及び異常光屈折率がそれぞれ同程度になっているので、設定のリターデーションを持った光透過状態となり、散乱は見られない。

この場合には、通常の液晶のみと同様な作用をし、後述するように円偏光となる。

8

【0031】一方、図7(b)に示す電圧印加時、液晶のみは電極10、7に対して垂直に配向されるために、液晶の屈折率は常光屈折率に近い値となって、液晶性高分子との屈折率差が大きくなり表示素子は非散乱光(直線偏光成分)と散乱状態となり、その散乱光は偏光保持することとなり、そのため、非散乱光と散乱光のほとんどの光は偏光子4を通過でき、本装置の表示状態はいわゆる明状態となる。この明状態においては、液晶層13は白色散乱状態であるので、反射電極7が鏡面ミラーであっても、周囲からのいわゆる映り込みが生じる可能性は小さく、いわゆる視認性を低下させることが殆どなくなる。この非散乱光と散乱光の割合は、液晶とUVキュアラブル液晶の混合比あるいは両者の屈折率差により制御が可能である。

【0032】そこで、図7の散乱モデルにより構成され る液晶表示装置1の動作原理を図8により説明する。電 圧無印加時(図8(a))、偏光により直線偏光となっ た入射光は、入射側の液晶分子のダイレクターに沿って 入射するように角度が設定されている。つまり、透光性 基板2側から偏光板4を通過した直線偏光が上下の基板 間で63度ツイストした液晶層13に入射する。この直 線偏光は63度ツイスト液晶層を通過することによっ て、反射膜7では円偏光に変換され、さらに反射される ことによって逆回りの円偏光となる。 続いて、再び63 度ツイストした液晶層を通過することによって、偏波面 が90度変換した直線偏光となり、偏光板4によって吸 収される。このため、反射型液晶表示装置1の表示は散 乱のない黒色表示となる。また、反射面には鏡面ミラー を用いているのでほぼ完全に偏光は保持し、良好な散乱 の無い黒状態を示す。

【0033】このような偏光の変化を生じるのは限られた条件の基であり、これについてはJAPAN DISPAY89 P.192に詳しく報告されている。この液晶層に求められる光学的な性質は、直線偏光の入射に対し、通過後円偏光となること、反射面で位相が180度シフトし、液晶層を再び通過した時に90度偏波面が回転していることの2つである。本発明者らは、鋭意検討した結果、液晶とUVキュアラブル液晶マトリックスの混合系で上記条件を満たすことを確認した。即ち、UVキュアラブル液晶は液晶と同じ角度でツイスト配向を保持したまま、UV照射により高分子液晶となる。このことにより、散乱が無い良好な黒状態を示す。

【0034】一方、電圧印加時、液晶のみは電極10、 7に対して垂直に配向されるために、液晶の屈折率は常 光屈折率に近い値となって、UVキュアラブル液晶との 屈折率差が大きくなり、表示素子は非散乱光(直線偏光 成分)と散乱状態となり、その散乱光は偏光保持するこ 50ととなる。そのため、非散乱光と散乱光のほとんどの光 は偏光子4を通過でき、本装置の表示状態はいわゆる明 状態となる。一方、硬化した液晶性高分子は電圧に応答 しない。この明状態においては、液晶層13は白色散乱 状態であるので、反射電極7が鏡面ミラーであっても、 周囲からのいわゆる映り込みが生じる可能性は小さく、 いわゆる視認性を低下させることが殆どないようになっ ている。この非散乱光と散乱光の割合は、液晶とUVキ ュアラブル液晶の混合比あるいは両者の屈折率差により 制御が可能である。即ち、本発明者らは従来の散乱反射 膜の散乱する機能を液晶層に持たせることに成功し、さ 10 らに散乱性を電圧により制御することができた。

【0035】〈実施形態2〉図9は本発明の第2の実施 形態の反射型液晶表示装置41の断面図である。反射型 液晶表示装置41は、第1の実施形態である反射型液晶 表示装置1とほぼ同様の構成であるが、基板2になめら かな凹凸部を具備することを特徴とする。液晶表示装置 41は、一対の透明なガラス基板2、3を備え、ガラス 基板2上には後述する合成樹脂材料からなる大突起42 および小突起43がそれぞれ多数形成される。大突起4 2および小突起43の底部直径D1、D2は、それぞれ 20 例えば5μmおよび3μmに定め、D1とD2との間隔 は、少なくとも2μm以上とする。

【0036】これらの突起42、43を被覆し、突起4 2、43の間の凹所を埋めて平滑化膜44が形成され る。平滑化膜44の表面は、突起42、43の影響を受 け、滑らかな曲面状に形成される。平滑化膜44上には アルミニウム、ニッケル、クロムあるいは銀などの金属 材料からなる反射金属膜7を形成する。これらガラス基 板2に突起42と43、平滑化膜44および反射金属膜 7が、光反射部材である反射板45を構成する。前記反 30 射金属膜7上には、配向膜9を形成する。

【0037】前記ガラス基板2と対向するガラス基板3 の表面には、ITO (インジウムスズ酸化物) などから なる透明電極10を形成し、反射金属膜7と透明電極1 0とで電極構造を形成する。透明電極10が形成された ガラス基板3を被覆して配向膜11を形成し、相互に対 向するガラス基板2、3の周縁部は後述するシール材1 2で封止する。配向膜9、11間には、実施形態1と同 じ構成の液晶層13を封入する。前記ガラス基板3の液 晶層13と反対側には、単体透過率48%の偏光板4を 40 配置する。

【0038】図10は図9に示す反射板45の製造工程 を説明する断面図である。図10(a)に示すように、 ガラス基板(コーニング社製、商品名7059)2上 に、感光性樹脂材料(例えば東京応化社製、商品名OF PR-800&E) & 500rpm~3000rpm でスピンコートし、レジスト層21を形成する。本実施 形態では、好適には2500rpmで30秒間スピンコ ートし、厚さ1.5µmのレジスト膜21を成膜した。 【0039】次に、レジスト膜21が成膜されたガラス 50 り、最大コントラスト比は20であった。このときの反

10

基板2を90℃で30分間焼成し、図10(b)に示す ように、後述する大小2種類の円形のパターンが多数形 成されたフォトマスク22を配置して露光し、現像液 (例えば、東京応化社製、商品名NMD-3の2.38 %溶液) で現像を行い、図10(c)に示すようにガラ ス基板2の表面に、高さの異なる大突起部42および小 突起部43を形成した。このように、高さの異なる2種 類以上の突起を形成するのは、突起の頂上と谷とで反射 した光の干渉による反射光の色付きを防ぐためである。 前記フォトマスク22は、直径D1(例えば5μm)

と、直径D2(例えば3µm)の円がランダムに配置さ れた構成であり、D1とD2との間隔は少なくとも2µ m以上であるように選択する。

【0040】次に、図10(c)に示すガラス基板2を 200℃で1時間加熱し、図10(d)に示すように突 起42と43の頂部を若干程度溶融して円弧状に形成し た。 さらに、 図10(e)に示すように、 図10(d) に示すガラス基板2上に、前記感光性樹脂材料と同一の 材料を1000rpm~3000rpmでスピンコート する。本実施形態では、2000 r p m でスピンコート を行った。これにより、各突起42と43の間の凹所が 埋められ、形成された平滑化膜44の表面を比較的緩や かでかつ滑らかな曲面状に形成することができた。

【0041】さらに、図10(f)に示すように、平滑 化膜44の表面にアルミニウム、ニッケル、クロムある いは銀などの金属薄膜を、例えば0.01~1.0µm 程度の膜厚で形成する。本実施形態ではアルミニウムを スパッタリングして、反射金属膜7を形成する。以上の ようにして反射部材45を形成する。

【0042】図10に示す工程により作製された反射部 材を用いて、次に、液晶素子を作製する。前記各ガラス 基板2、3上に、ポリイミド樹脂膜を形成し、200℃ で1時間焼成する。この後、液晶層13を配向させるた めのラビング処理を行う。これにより配向膜9、11を 形成する。これらのガラス基板2、3間を封止するシー ル材12は、例えば、直径2.0 μmのスペーサを混入 した接着性シール材をスクリーン印刷することによって 形成する。反射部材を有するガラス基板2と透明電極1 0および配向膜11が形成されたガラス基板3とを組み 合わせる際に、ガラス基板2、3間に直径1.5µmの スペーサを散布し、液晶層の層厚の規制を行う。前記液 晶層13に実施形態1と同じ構成の材料を適用した。そ の後、紫外線照射を行い、液晶と液晶性高分子の相分離 を行う。以上のようにして、図9に示す液晶表示装置4 1を作製した。

【0043】本実施形態により作製された液晶表示素子 に対して、電圧を印加した場合、液晶表示装置1の法線 方向に関して角度30度だけ傾斜した方向から入射した 光に対する前記法線方向の反射率は最大120%であ

射率とコントラスト比を決定するための基準部材として 酸化マグネシウムMgOの標準白色板を用いた。実施形 態1と液晶層13の動作原理は同じである。本実施形態 の場合、反射膜の散乱性に加えて、液晶層の散乱も明る い表示に寄与するため、凹凸の高さを0.5ミクロン以 下と従来の反射板よりも高さを小さくできるメリットが ある。実施形態1と比較すると明るさとコントラストは 低くなるものの、視野角が広くなるメリットがある。

【0044】本実施形態の反射型液晶表示装置41で は、反射板45の反射金属膜7を形成した面が液晶層1 3個に配置されているので、液晶表示装置41を観測す る場合の視差が解消され、良好な表示画面が得られる。 さらに液晶表示装置41がアクティブマトリクス駆動さ れる構成の場合に、スイッチング素子として用いられる 薄膜トランジスタやMIM(金属-絶縁膜-金属)構造 の非規形素子などに接続される絵素電極として用いられ る場合も、前述したように良好な表示品位が実現できる ことを確認した。

【0045】また、本実施形態におけるガラス基板2に 代えて、他にシリコン基板のような不透明基板でも同様 20 な効果が発揮できることを確認した。このようなシリコ ン基板を前述の実施形態におけるガラス基板2として用 いる場合には、前述した走査回路16、データ回路1 7、制御回路18などの回路素子を、シリコン基板上に 集積化して形成できる利点を有する。

【0046】<実施形態3>次に、ガラス基板2、3の 間で193度ツイストしたネマティック液晶(例として **・チッソ株式会社製、商品名SD-4107)を液晶層と して用いた実施形態について説明する。他の構成要素は -150 (日産化学社製) からなる上下配向膜9、11 を形成し、ラビング配向処理を行う。両基板2、3間に 左ねじれカイラル剤S-811(メルクジャパン社製) を適量添加した誘電異方性が正のネマティック液晶14 である、商品名SD-4107 (チッソ株式会社製)と UVキュアラブル液晶からなる液晶層を充填し、層厚 2. 2μmの液晶層13として挟持し、液晶表示装置を 作製した。液晶層13は電圧無印加時には左ねじれ19 3度ツイスト配向になる。

【0047】このようにして得た液晶表示素子を1/4 40 80デューティでマルチプレックス駆動したところ、ノ ーマリーブラックモードとなり、正面でコントラスト比 が30対1が得られ、また、上下方向、左右方向ともに 入射角20°以下にてコントラスト比が5対1以上と極 めて広い視角依存性が得られた。前記構成による液晶表 示装置では、電気光学特性が急峻性が増加し、単純マト リックス駆動が可能となった。実施形態1と同様に、本 実施形態においても、散乱無しの暗状態と散乱状態の明 状態が実現される。また、印加電圧が選択画案に該当す る電圧にて反射率を測定したところ、132%と極めて 50

高い反射率であることがわかった。反射膜には、鏡面ミ ラーを用いているため、液晶層厚は均一で、単純マトリ ック駆動に適している。

【0048】 〈実施形態4〉さらに、ガラス基板2、3 の間で45度ツイストしたネマティック液晶 (例として 商品名乙LI-1565、メルクジャパン社製)を液晶 層として用いる実施形態4について説明する。ここで、 セル厚を2.0µmにし、他の構成要素は図1に示す構 成と同様である。基板2、3の表面にSE-150(日 産化学社製)からなる上下配向膜9、11を形成し、ラ ビング配向処理を行う。両基板2、3間に左ねじれカイ ラル剤S-811 (メルクジャパン社製)を適量添加し た誘電異方性が正のネマティック液晶14である、商品 名乙LI-1565 (メルクジャパン社製) とUVキュ アラブル液晶からなる液晶層を充填し層厚2μmの液晶 層13として挟持し、液晶表示装置を作製した。液晶層 13は電圧無印加時には左ねじれ45度ツイスト配向に なる。本実施形態では、図3示す光学配置図において、 β を22.5度、 θ を45度に設定した。

【0049】このようにして得た液晶表示素子を図6に 示す光学系を用いて、面内α方向の明状態の反射率を測 定した結果を図11に示す。ただし、αが0度方向を上 方向のラビング軸R1と直交する方向に定め、電圧を1 OV印加した。 偏光板を配置した時と 偏光板無い時の2 つの場合を示す。このようにねじれ角45のほぼ1/2 にあたるαが22.5のところで明るさが最大になるこ とが判る。また、単純に偏光板を配置するというだけで は、反射率は1/2以下にはならず、明るい表示を実現 できることを見いだした。よって、この方向を観察者の 図1に示す構成と同様である。基板2、3の表面にSE 30 位置とすることにより格段に明るい表示が可能となる。 【0050】この液晶表示装置を駆動したところ、ノー マリーブラック表示となり、正面でコントラスト比が3 0対1が得られた。実施形態1と同様な原理により、散 乱無しの暗状態と散乱状態の明状態が実現された。

> 【0051】<実施形態5>次に、ガラス基板2、3の 間で80度から95度ツイストしたネマティック液晶 (例として商品名ZLI-1565、メルクジャパン社 製)とUVキュアラブル液晶を液晶層として用い、偏光 板と液晶層の間に光学補償板72を挿入した実施形態に ついて説明する。その他の構成は実施形態1と同じであ る。

【0052】本実施形態の液晶表示装置71を図12に 示す。透光性基板2、3間に左ねじれカイラル剤S-8 11 (メルクジャパン社製)を適量添加した誘電異方性 が正のネマティック液晶である乙LI-1565とUV キュアラブル液晶を85:15の重量比で混合し、液晶 組成物を充填し層厚2μmとして挟持した。その後紫外 線を照射し、液晶と液晶性ポリマーを相分離し、液晶層 13を作製した。

【0053】ここで、例えば、液晶層13が左ねじれ8

0度ツイストおよび95度ツイストの場合について説明する。液晶層の作製方法は実施形態1と同じである。こうして得た駆動セルの上基板2上にポリカーボネイトを一定方向に延伸して延伸軸(遅相軸)とした位相差板72(R=160nm及び150nm)を組み合わせて、液晶表示装置71を作製した。80度ツイストおよび95度ツイストの場合の液晶層の条件を、以下に示す。ここで、このように構成された液晶表示装置における偏光板、光学位相補償フィルム、液晶層の光学的構成を図13に示すように調整する。

[0054]

【表1】

A:80度ツイスト

液晶層のAnd 0.202 μm

光学位相差フィルムの△nd 0. 160 μm

β 0度

у 8度

8:95度ツイスト

液晶層の△nd

0. 200 µm

光学位相差フィルムのAnd

0. 150 µm

β 0度

γ 15度

【0055】図14は、反射型液晶表示装置71の電圧無印加時および電圧印加時の正面方向の分光特性を示すグラフであって、液晶層13が左ねじれ80度ツイストおよび95度ツイストの場合の結果を示す。このグラフ 30より、光学補償フィルムを挿入することにより、短波長及び長波長側の反射が小さくなり、良好な明暗表示が実現できた。一方電圧印加時には実施形態1と同様な原理により良好な散乱性を示すことを確認している。

【0056】本実施形態では光学補償板72としてポリカーボネイト製の延伸フィルムを用いたが、本発明はこれに限定されるものではなく、例えば、ポリビニルアルコール (PVA) あるいはポリメチルメタアクリレート (PMMA) などの延伸フィルムも使用することができる。さらに、厚さ方向に屈折率を変化させた二軸性フィ 40ルム、あるいは高分子液晶フィルムも本発明に適用可能である。

【0057】このようにして得た液晶表示素子をスタティック駆動したところ、ノーマリーブラックモードとなり、正面でコントラスト比が30対1が得られた。本実施形態の反射型液晶表示装置71では、反射板の反射金属膜7を形成した面が液晶層13側に配置されているので、液晶表示装置71を観測する場合の視差が解消され、良好な表示画面が得られる。

【0058】また、本実施形態では、液晶層13に80 50 000、CK2000を同じプロセスにて、緑、青、黒

14

度ツイストおよび95度ツイストした液晶と光学位相差 補償フィルムを用いたが、本発明はこれに限定されるも のではなく、どのようなツイスト角の液晶材料であって も、電界によりリターデーションを制御できる特性を有 する液晶層であれば、本発明に適用可能である。

【0059】また、本実施形態におけるポリカーボネー ト位相差板72のかわりに、液晶分子をスプレイ状に配 列させたネマティック補償用液晶セルを位相差板として 用いても良い。ここで用いた補償用液晶セルはガラスの 10 上下基板にSiOを斜方蒸着して配向膜としたもので、 上下基板のプレチルト角はともに45°であり、上下基 板のチルト方向 (基板平面方向) は、上下で180° 異 ならせており、ここに、液晶層として誘電異方性が正の ネマティック液晶である乙LI-2293(メルクジャ パン社製)を挟持したものである。液晶層厚は約2.5 μmである。また、この補償用液晶セルのセル法線方向 に対するリタデーション値を干渉法を用いて測定したと ころ、160nmであった。また、この補償用液晶セ ル、液晶分子のチルト方位(基板平面方位)が図13に 20 おける位相差板の遅延軸と等しい方向になるように配置 した。また、液晶性高分子をツイスト配向させたフィル ムも本発明に適用可能である。

【0060】 〈実施形態6〉次に、図15の反射型液晶 表示装置81に示すように、ガラス基板2の反射膜7の 上に赤、緑、青の光を透過するカラーフィルタ層82を 有する実施形態について説明する。反射型液晶表示装置 81は、実施形態1である反射型液晶表示装置31とほ ぼ同じように構成されるが、ガラス基板2の反射膜7の 上に赤、緑、青の光を透過する顔料分散方式のカラーフ ィルタ層82を形成することを特徴とする。 カラーフィ ルター層82は、赤のカラーフィルタ83、緑のカラー フィルタ84及び青のカラーフィルタ85がそれぞれ1 絵素中の単一の画素に対応し、その間にブラックマトリ ックス86を並置し、さらに赤、緑、青のカラーフィル タがストライプ状に配列されている。そして、カラーフ ィルター層82の上に平坦化膜87を形成し、その上に 透明電極88を形成し、表示電極とした。液晶層13に は実施形態1と同じ構成を用いた。

【0061】本実施形態ではカラーフィルタ層82には 顔料分散法を適用し、以下のようにして作製した。まず、透明な感光性樹脂の中に赤色の顔料が均一に分散された感光性着色レジストを、ガラス基板2上の反射面7が形成された上に塗布した。ここでは、富士ハントエレクトロニクステクノロジー(株)社製のCR2000をスピンコート法により650回転で2.0μm形成した。その後、80℃でプリベークし、所定のマスクを用いて露光、現像し、最後に220度で30分ベークし赤のパターンを形成した。さらに、富士ハントエレクトロニクステクノロジー(株)社製のCG2000、CB2000 CK2000を同じプロセスにて、最、青、里

のパターンを形成し、カラーフィルタ層82を形成し た。

【0062】本実施形態によると、一方の基板にカラー フィルタ層を形成することにより、色再現性範囲の広い マルチカラーあるいはフルカラー表示が可能となる。ま た、本実施形態では吸収型のカラーフィルターの例を記 越したが、反射面7の代わりに、光反射タイプのカラー フィルターとして有機の体積ホログラム光学カラーフィ ルターあるいは無機ダイクロイックミラーも適用可能で ある。ただし、この場合には光反射タイプのカラーフィ 10 ルターの背面に吸収層を設けることが必要である。ま た、光吸収型のカラーフィルター82を上基板3に形成 した構成にしても同様な効果が発揮されることを確認し た。

[0063]

【発明の効果】以上、述べたように、本発明によれば、 1枚の偏光板と反射膜の間に挟持された液晶層に液晶と 液晶性高分子の複合体を用いるように構成することによ り、駆動電圧が比較的低く、しかも電極の一方が反射電 極であっても、明状態における高分子分散液晶の白濁状 20 31、41、71、81、100 液晶表示装置 態により、周囲のいわゆる映り込みを生ずることがな く、視差がなく、その上、視野角が広く、着色がない十 分な明るさを有する液晶表示装置を得ることができる。 【0064】また、上述のように駆動電圧が比較的低 く、バックライトが不要であるので、バックライトを備 えた液晶表示装置と比較して低消費電力で且つ視認性に 優れるという効果をも奏する。

【図面の簡単な説明】

- 【図1】本発明の第1の実施形態の液晶表示装置1の断 面図である。
- 【図2】液晶表示装置1の作製工程図である。
- 【図3】液晶表示装置1の光学的配置の説明図である。
- 【図4】液晶表示装置1の駆動システムの説明図であ る。
- 【図5】液晶表示装置1の電圧-反射率特性を示すグラ フである。
- 【図6】液晶表示装置1の光学特性測定方法の説明図で ある。

16

- 【図7】液晶層13の模式図である。
- 【図8】液晶表示装置1の表示動作の説明図である。
- 【図9】本発明の第2の実施形態の液晶表示装置41の 断面図である。
- 【図10】液晶表示装置41の凹凸反射膜45の作製工 程図である。
- 【図11】液晶表示装置の明状態の面内方向依存性を示 すグラフである。
- 【図12】液晶表示装置71の断面図である。
- 【図13】液晶表示装置71の光学的配置の説明図であ
 - 【図14】液晶表示装置7.1の波長--反射率特性を示す グラフである。
 - 【図15】液晶表示装置81の断面図である。
 - 【図16】従来例の液晶表示装置100の断面図であ 3.
 - 【図17】従来例の液晶表示装置の表示動作の説明図で ある。

【符号の説明】

- 2、3、101、102 透明基板
 - 4、104 偏光板
 - 7、105 反射面
 - 8、45 反射部材
 - 9、11、106、107 配向膜
 - 10、88、108 透明電極
 - 12 シール材
 - 1.3、103 液晶層
 - 14 液晶
- 30 15 液晶性高分子
 - 21 レジスト層
 - 22 フォトマスク
 - 42、43 突起部
 - 44、87 平坦化膜
 - 72 光学補償板
 - 82、83、84、85 カラーフィルター
 - 86 ブラックマトリックス

