Genome Analysis Lectorial

Atefeh Taherian Fard

Australian Institute for Bioengineering and Nanotechnology

The University of Queensland

BINF6000 | SCIE2100 | Bioinformatics | – Introduction

Summary from the Two Genome Analysis lectures

• Lecture 1:

- Overview genome sequencing and sequencing technologies
- Genome re-sequencing
- De-novo genome assembly

Lecture 2:

- Gene features in prokaryotes
- Gene features in eukaryotes
- Computational approaches for gene prediction
- Functional genome annotation

Outline for today's Lectorial

- Overview of De novo and genome re-sequencing
- Identifying structural variations
- Gene feature in prokaryote and eukaryotes
- Computational approaches for gene finding
 - Support Vector Machine (SVM)
 - Hidden Markov model
- Past exam questions

Why Do We Sequence Genomes?

Genome resequencing:

- Characterise genotype-phenotype associations
- Understand genetics of complex diseases
- Genome-based diagnosis; non-invasive prenatal testing
- Personalised medicine, genome-based prediction of optimal treatment (e.g. targetable mutations in cancer) and side-effects. Future: optimal diet, metabolic deficiencies, disease risk, ...

De-novo sequencing

 Understand molecular biology of organisms, identify genes, gene functions, encoded pathways, metabolic capabilities, gene regulation and genome evolution

Isolate genomic DNA

This approach is called 'Shot Gun' sequencing

CCTGCATAGATA
GCATAGATAATTG
TAGATAATTGCAT
AATTGCATGAC

TAATTGCATGA
CATGACAAT
ACAATTGCCT

TGACAATTGCCTT
TGCCTTGTCCCT
TGTCCCTGCTGA

CTTGTCCCTGC TCCCTGCTGAA TGCTGAATGTGC

TGCTGAATGTGCTCT
ATGTGCTCTGGGG
GCTCTGGGGTCT

Genome $\verb|AAGCTTCTCACCCTGTTCCTGCATAGATAATTGCATGACAATTGCCTTGTCCCTGCATAGATGGTCTCTGGGGTCT...|$ (multiple copies) Genome fragment AAGCTTCTCACCCTGTTCCTGCATAGAT Sequencing reads AAGCTT single end paired end (separate reads, created from same fragment) - ATAGAT AAGCTT → Distance between pairs is known (approximately) mate pair AAGCTT - GGGTCT Distance between pairs is known (approximately) Genome ${\tt AAGCTTCTCACCCTGTTCCTGCATAGATAATTGCATGACAATTGCCTTGTCCCTGCTGAATGTGATAGATGGTCTCTGGGGTCT...}$ (multiple copies) Genome fragment AAGCTTCTCACCCTGTTCCTGCATAGAT Sequencing reads ATAGAT AAGCTT -

Genome (multiple copies)	AAGCTTCTCACCCTGTTCCTGCATAGATAATTGCATGACAATTGCCTTGTCCCTGCTGAATGTGATAGATGGTCTCTGGGGTCT		
Genome fragment	AAGCTTCTCACCCTGTTCCTGCATAGAT		
Sequencing reads	AAGCTT	single end	
	AAGCTT — ATAGAT Distance	paired end (separate reads, created from same fragment) between pairs is known (approximately)	
	AAGCTT	Distance between pairs is known (approximately)	

Structural Variations

Structural Variations

Deletion

Duplications

Duplications

Translocations

Translocation of region B from chr1 to chr2 in target genome

Translocations

Translocation of region B from chr1 to chr2 in target genome

Using computational methods, find all genes (or other elements) in a long, unannotated string of nucleotides.

Aim: To identify transcriptional unit What do we know? Know only approximately what they look like How? Find their locations and boundaries as accurately as possible, overlook as few as possible, and report as few non-genes as possible.

Summary: Gene features in Prokaryotics vs Eukaryotes

- Codon bias and GC rich regions
- Transcriptional start and stop sites
- ORFs: Start and stop codons
- 5' UTR: Ribosomal Binding Sequence site
- 3'UTR

- Codon bias and GC rich regions
- Promoter regions
- Intro and Exon splice site
- ORFs: Start and Stop codons
- 5' UTR: 5' Cap (G cap site)
- 3' UTR: PolyAs

Gene finding Approaches

- Physical, genetic or other *experimental approaches*
 - e.g. Genetic knockouts
- Computational approaches
- 1) Identity search
- 2) Similarity search Homology based
- 3) Ab initio approaches

Machine learning approach to ab initio gene finding

Features of known protein-coding genes:

Presence of one or more ORF
ORFs in G+C islands
Promoter-element motif scores & positions
Transcriptional start site in CpG island
Codon bias & correspondence with ORF
Splice-site motif scores & positions
Poly(A) signal motif scores & positions

(...)

 (\dots)

Support vector machine
Artificial neural network
Genetic algorithm
Bayesian network

Machine-learning model

Training or conditioning

Machine learning approach to ab initio gene finding

With the result that...

Genes are found!

Hidden Markov Models

The dishonest casino:

Known information:

- Casino has 2 die, fair dice, loaded dice
- Casino player switches back & forth between dies
- Once either of the dice is used, it will continue to be used for a while

Observations:

• Sequence of roles:

3531363644162...

Question:

Which dice used for each role?

	Probability	
Number	Fair	Loaded
1	1/6	1/10
2	1/6	1/10
3	1/6	1/10
4	1/6	1/10
5	1/6	1/10
6	1/6	1/2

Dishonest Casino Example

	Probability		
Number	Fair	Loaded	
1	1/6	1/10	
2	1/6	1/10	
3	1/6	1/10	
4	1/6	1/10	
5	1/6	1/10	
6	1/6	1/2	

Dishonest Casino Example

Observation:

Sequence of roles:

Obs: 316252313636646626 ...

Hidden information:

Sequence of states, e.g.

S1: FFFFFFFFLLLLLLLLL....

S2: FFFFFFFFFFFFFF....

S3: LLLFFFFFFLLLLLLLLLL.....

Probability				
Number	Fair	Loaded		
1	1/6	1/10		
2	1/6	1/10		
3	1/6	1/10		
4	1/6	1/10		
5	1/6	1/10		
6	1/6	1/2		

Dishonest Casino Example

Obs: 3 1 6 2 5 2 3 1 3 6 3 6 6 4 6 6 2 6

S1: FFFFFFFFLLLLLLLLL

Transition to L state

$$P(Obs|S2) = 4.1e-15$$

••••

Aim: Identify most likely path through model, which is S1 in this case, 9 roles fair dice, 9 roles loaded dice

	Probabilit	
Nl.	y	
Number	Fair	Loaded
1	1/6	1/10
2	1/6	1/10
3	1/6	1/10
4	1/6	1/10
5	1/6	1/10
6	1/6	1/2

Simple HMM for Gene Identification in Prokaryotes

Training: Train model to learn codon frequencies of coding and non-coding sequences

Classification: Given observed DNA sequence, find most likely path through model to divide sequence into coding and non-coding regions

More Complex HMM for Gene Identification in Prokaryotes

Include signal for ribosomal binding site

A/G-rich region about 10 bases upstream of the start codon Helps recruit ribosome to mRNA

Gene Prediction in Eukaryotic Genomes

 A Simple HMM for Modeling Eukaryotic Genes

hmmlearn() Python package. https://github.com/hmmlearn/hmmlearn

