			DI2SA-02
DTC	P0325/52	Knock Sensor 1 Circuit Malfunction	
DTC	P0330/55	Knock Sensor 2 Circuit Malfunction	

CIRCUIT DESCRIPTION

Knock sensors are fitted one to the right bank and left bank of the cylinder block to detect engine knocking. This sensor contains a piezoelectric element which generates a voltage when it becomes deformed, which occurs when the cylinder block vibrates due to knocking. If engine knocking occurs, ignition timing is retarded to suppress it.

DTC No.	DTC Detecting Condition	Trouble Area
P0325/52	No knock sensor 1 signal to engine ECU with engine speed between 1,600 rpm and 5,200 rpm	Open or short in knock sensor 1 circuit Knock sensor 1 (looseness) engine ECU
P0330/55	No knock sensor 2 signal to engine ECU with engine speed between 1,600 rpm and 5,200 rpm	Open or short in knock sensor 2 circuit Knock sensor 2 (looseness) engine ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- Read[freeze[frame[data]]using[hand-held[tester.]Because[freeze[frame]]ecords[the]engine[conditions when[the]]nalfunction[is[detected,]]when[troubleshooting][t][s][useful[for[determining]]whether[the]]vehicle was[funning[]]r[stopped,[the]]engine[]warmed[]up[]pr[]hot,[the]]atio[]ean[]pr[]ich,[]etc.[at[]]he[]ime of[]the[]nalfunction.
 - 1 Check[continuity[between[terminal[KNK1,[KNK2]of[engine[ECU[and[body ground.

PREPARATION:

- (a) Remove the engine oom engine ECU hood and cover.
- (b) Disconnect the E2 connector from the engine ECU.

CHECK:

HINT:

- •□ Connect[]erminal[KNK1[]o[knock[\$ensor[]].
- •□ Connect[]erminal[KNK2[]o[knock[\$ensor[2].

OK:

Resistance: 1[M\(\Omega\)[or[higher

Reference: INSPECTION USING OSCILLOSCOPE

With[the@engine[acing[]4,000[]pm)[]measure[between[terminal[]KNK1,[]KNK2[]pf[]the[engine[]ECU[]connector[]and body[]ground.

HINT:

The correct waveforms are as shown.

•□ Spread[]he[]ime[]on[]he[]horizontal[]axis,[]and[]confirm[]hat period[]of[]]he[]wave[]s[]0.141m[]\$ec.
(Normal[]mode[]vibration[]]requency[]of[]knock[]\$ensor:

7.1 kHz)

HINT:

If normal mode vibration frequency is not 7.1 kHz, the sensor is malfunctioning.

Go to step 3.

NG

2∏

Check[knock[sensor[See[page[FI-59]).

NG□

Replace[knock[sensor.

OK

3 Check[for[open[and[short]]n[harness[and[connector[between[engine]ECU[and knock[sensor[See[page]N-29]).

NG□

Repair or replace harness or connector.

OK

4 Does malfunction disappear when a good knock sensor is installed?

YES

Replace[knock[sensor.

NO

Check_and_replace_engine_ECU_(See_page IN-29).