# **Chapter 10: File System**



0----ti-- 0------ 0th E-titl--

lberschatz, Galvin and Gagne ©201

# Chapter 10: File System File Concept Access Methods Disk and Directory Structure File-System Mounting File Sharing Protection Operating System Concepts - 9th Edition It Sliberschaftz, Galvin and Gagne 62

# Objectives To explain the function of file systems To describe the interfaces to file systems To discuss file-system design tradeoffs, including access methods, file sharing, file locking, and directory structures To explore file-system protection









### **File Operations**

- File is an abstract data type
- Create
- Write at write pointer location
- Read at read pointer location
- Reposition within file seek
- Delete
- Truncate
- $Open(F_i)$  search the directory structure on disk for entry  $F_i$  and move the content of entry to memory
- Close  $(F_i)$  move the content of entry  $F_i$  in memory to directory structure on disk







### **Open Files**

- Several pieces of data are needed to manage open files:
  - Open-file table: tracks open files
  - File pointer: pointer to last read/write location, per process that has the file open
  - File-open count: counter of number of times a file is open to allow removal of data from open-file table when last processes closes it
  - Disk location of the file: cache of data access information
  - Access rights: per-process access mode information





### **Open File Locking**

- Provided by some operating systems and file systems
  - Similar to reader-writer locks
  - Shared lock similar to reader lock several processes can acquire concurrently
  - Exclusive lock similar to writer lock
- Mediates access to a file
- Mandatory or advisory:
  - Mandatory access is denied depending on locks held and
  - Advisory processes can find status of locks and decide what to





## File Types - Name, Extension

| file type      | usual extension             | function                                                                                       |  |
|----------------|-----------------------------|------------------------------------------------------------------------------------------------|--|
| executable     | exe, com, bin<br>or none    | ready-to-run machine-<br>language program                                                      |  |
| object         | obj, o                      | compiled, machine<br>language, not linked                                                      |  |
| source code    | c, cc, java, pas,<br>asm, a | source code in various<br>languages                                                            |  |
| batch          | bat, sh                     | commands to the command<br>interpreter                                                         |  |
| text           | txt, doc                    | textual data, documents                                                                        |  |
| word processor | wp, tex, rtf,<br>doc        | various word-processor formats                                                                 |  |
| library        | lib, a, so, dll             | libraries of routines for<br>programmers                                                       |  |
| print or view  | ps, pdf, jpg                | ASCII or binary file in a<br>format for printing or<br>viewing                                 |  |
| archive        | arc, zip, tar               | related files grouped into<br>one file, sometimes com-<br>pressed, for archiving<br>or storage |  |
| multimedia     | mpeg, mov, rm,<br>mp3, avi  | binary file containing<br>audio or A/V information                                             |  |





### **File Structure**

- None sequence of words, bytes
- Simple record structure
  - Lines
  - Fixed length
  - Variable length
- Complex Structures
  - Formatted document Relocatable load file
- Can simulate last two with first method by inserting appropriate control
- Who decides:
  - Operating system
  - Program





### **Sequential-access File**







### **Access Methods**

Seguential Access

read next write next no read after last write

■ Direct Access – file is fixed length logical records

write n position to n write next rewrite n

n = relative block number

- Relative block numbers allow OS to decide where file should be placed
  - See allocation problem in Ch 11





### **Simulation of Sequential Access on Direct-access File**

| sequential access | implementation for direct access |
|-------------------|----------------------------------|
| reset             | <i>cp</i> = 0;                   |
| read next         | read cp; $cp = cp + 1$ ;         |
| write next        | write $cp$ ; $cp = cp + 1$ ;     |





### **Other Access Methods**

- Can be built on top of base methods
- General involve creation of an index for the file
- Keep index in memory for fast determination of location of data to be operated on (consider UPC code plus record of data about that item)
- If too large, index (in memory) of the index (on disk)
- IBM indexed sequential-access method (ISAM)
  - Small master index, points to disk blocks of secondary index
  - File kept sorted on a defined key
  - All done by the OS
- VMS operating system provides index and relative files as another example (see next slide)











### **Directory Structure**

A collection of nodes containing information about all files



Both the directory structure and the files reside on disk



### **Disk Structure**

- Disk can be subdivided into partitions
- Disks or partitions can be RAID protected against failure
- Disk or partition can be used raw without a file system, or formatted with a file system
- Partitions also known as minidisks, slices
- Entity containing file system known as a volume
- Each volume containing file system also tracks that file system's info in device directory or volume table of contents
- As well as general-purpose file systems there are many special -purpose file systems, frequently all within the same operating system or computer





























## **General Graph Directory (Cont.)**

- How do we guarantee no cycles?
  - Allow only links to file not subdirectories
  - Every time a new link is added use a cycle detection algorithm to determine whether it is OK











- Sharing may be done through a protection scheme
- On distributed systems, files may be shared across a network
- Network File System (NFS) is a common distributed file-sharing method
- If multi-user system
  - User IDs identify users, allowing permissions and protections to be per Group IDs allow users to be in groups, permitting group access rights
  - Owner of a file / directory
  - Group of a file / directory



# File Sharing - Remote File Systems

- Uses networking to allow file system access between systems
  - Manually via programs like FTP
  - Automatically, seamlessly using distributed file systems
  - Semi automatically via the world wide web
- Client-server model allows clients to mount remote file systems from servers
  - Server can serve multiple clients
  - Client and user-on-client identification is insecure or complicated
  - NFS is standard UNIX client-server file sharing protocol
  - CIFS is standard Windows protocol
  - Standard operating system file calls are translated into remote calls
- Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active Directory implement unified access to information needed for remote computing

11.35





### **Protection**

- File owner/creator should be able to control:
  - what can be done
  - by whom
- Types of access
  - Read
  - Write
  - Execute Append
  - Delete
  - List









# **A Sample UNIX Directory Listing**

| -rw-rw-r   | 1 pbg | staff   | 31200 | Sep 3 08:30  | intro.ps      |
|------------|-------|---------|-------|--------------|---------------|
| drwx       | 5 pbg | staff   | 512   | Jul 8 09.33  | private/      |
| drwxrwxr-x | 2 pbg | staff   | 512   | Jul 8 09:35  | doc/          |
| drwxrwx    | 2 pbg | student | 512   | Aug 3 14:13  | student-proj/ |
| -rw-rr     | 1 pbg | staff   | 9423  | Feb 24 2003  | program.c     |
| -rwxr-xr-x | 1 pbg | staff   | 20471 | Feb 24 2003  | program       |
| drwxxx     | 4 pbg | faculty | 512   | Jul 31 10:31 | lib/          |
| drwx       | 3 pbg | staff   | 1024  | Aug 29 06:52 | mail/         |
| drwxrwxrwx | 3 pbg | staff   | 512   | Jul 8 09:35  | test/         |

Operating System Concepts – 9th Edition

11.39

