11

15

18

21

- A method of identifying agents that kill or arrest growth in a cell, comprising:

 (a) introducing an initial library of putative negative selection agents into a
- (a) introducing an initial library of putative negative selection agents into a
 cell population;
- 5 (b) propagating the cell population;
- 6 (c) re-isolating the library components from the propagated cell population;
 7 and
- 8 (d) subjecting the initial and re-isolated library components to quantitative
 9 comparison of the relative amounts of at least one specific library
 10 component.

The method of claim 1, further comprising as enrichment step (e), in which the library components from step (c) are subjected to one or more cycles of steps (a) through (c).

16 3. The method of claim 1, wherein the library of putative negative selection agents is a genetic library.

- The method of claim 3, wherein the library comprises inserts selected from the group consisting of genomic DNA, cDNA and random sequence DNA.
- The method of claim 3, wherein the genetic library comprises a plurality of inserts, the inserts comprising one or more sequences which, upon expression in a living cell, are capable of differentially altering the phenotype of the host

1		cell.
2		
3	6.	The method of claim 5, wherein expression of the sequences alters host cell
4		gene expression.
5		
6	7.	The method of claim 1, wherein step (d) further comprises:
7		(d1) differentially labeling nucleic acid samples derived from the initial and
8		propagated libraries to generate a first and second labeled nucleic acid sample;
9		(d2) generating a target pool comprising said first and second nucleic acid
10		samples,
11		(d3) contacting said target pool with a plurality of solid supports each having
12		attached thereto multiple capture oligonucleotides of a unique sequence under
13		conditions which promote the formation of perfectly matched duplexes
14		between said capture oligonucleotides and nucleic acid molecule components
15		within said target pool; and
16		(d4) sorting the solid supports according to the relative amount of said first
17		label and said second label.
18		
19	8.	The method of claim 7, wherein the unique capture oligonucleotides attached
20		to the solid supports have a length of from about 10 to about 100 nucleotides.
21		
22	9.	The method of claim 7, wherein the unique capture oligonucleotides attached
23		to the solid supports comprise a combination of from about 2 to about 6
24		sequence units in tandem configuration, each unit consisting of from about 7
25		to about 15 nucleotides.
26		
27	10.	The method of claim 7, wherein the target nucleic acid molecules have

1		attached thereto unique oligonucleotide identifier tags, each of said tags
2		comprising a combination of from about 2 to about 6 sequence units in tandem
3		configuration, each unit consisting of from about 7 to about 15 nucleotides.
4		
5	11.	The method of claim 10, wherein the capture oligonucleotides attached to said
6		solid supports comprise complements of said unique identifier tags.
7		
8	12.	The method of claim 7, wherein said first and said second label are
9		distinguishable fluorescent labels.
10		
11	13.	The method of claim 12, wherein said fluorescent labels are individually
12		selected from the group consisting of 6FAM, HEX, TET, TAMRA, ROX,
13		JOE, 5-FAM, phycoerythrin and R110.
14		
15	14.	The method of claim 12, wherein one of said fluorescent labels is FITC.
16		
17	15.	The method of claim 1, wherein the cell populations in step (a) differ in
18		phenotype.
19		
20	16.	The method of claim 1, wherein the cell populations in step (a) differ in
21		genotype.
22		
23	17.	The method of claim 1, wherein the cell populations in step (a) comprise cells
24		which differ in cell type, tissue type, physiological state, disease state or
25		developmental stage.
26		
27	18.	The method of claim 1, wherein the cell populations in step (a) comprise

1		cancerous and non-cancerous cells, respectively.
2		
3	19.	The method of claim 1, wherein the cell populations in step (a) comprise cells
4		before and after treatment with an agent, respectively.
5		
6	20.	The method of claim 19, wherein the agent is selected from the group
7	•	consisting of a naturally occurring growth factor, an immunologic factor, a
8		small molecule compound of interest, a putative therapeutic compound, a
9		therapeutic lead compound, and a growth-arresting substance.
10		•
11	21.	A method of identifying a negative selection agent that causes a member cf a
12		cell population to be lost from that population, comprising:
13		(a) providing a cell population with a tagged pre-passage library, each
14		member of said library comprising a sequence identifier tag and DNA
15		encoding a corresponding putative negative selection agent;
16		(b) passaging said cell population to generate a post-passage cell
17		subpopulation;
18		(c) isolating from said post-passage cell subpopulation a corresponding tagged
19		post-passage sublibrary;
20		(d) comparing sequence identifier tags in said pre-passage library to sequence
21		identifier tags in said post-passage sublibrary to identify an sequence
22		identifier tag of a lost library member; and
23		(e) identifying a negative selection agent that corresponds with said lost
24		library member sequence identifier tag.
25		
26	22.	The method of claim 21 wherein said sequence identifier tag comprises a
27		combination of from about 2 to about 6 sequence units in tandem

27

118

30. A method of identifying selective lethality agent that kills members of a first cell

1	population but not of a second cell population, comprising:
2	(f) providing both a first cell population and a second cell population with a
3	tagged pre-passage library, each member of said library comprising DNA
4	encoding an sequence identifier tag and a putative selective lethality agent;
5	(g) passaging said first and said second cell populations;
6	(h) collecting a first and a second post-passage cell subpopulation;
7	(i) isolating from said first and second post-passage cell subpopulations
8	corresponding first and second tagged post-passage sublibraries;
9	(j) comparing said first pre-passage library to said first post-passage
10	sublibrary to identify a first set of lost library members;
11	(k) comparing said second pre-passage library to said second post-passage
12	sublibrary to identify a second set of lost library members;
13	(1) identifying a cell-specific lost library member that is in said first set of lost
14	library members but not in said second set of lost library members; and
15	(m)correlating said cell-specific lost library member with a corresponding
16	selective lethality agent.
17	
18	31. The method of claim 21 or 30, wherein step (d) further comprises:
19	(d1) transcribing said sequence identifier tags in said pre-passage library and in
20	said post-passage sublibrary;
21	(d2) labeling said pre-passage sequence identifier tags with a first fluorochrome
22	and said post-passage sequence identifier tags with a second fluorochrome;
23	(d3) hybridizing all fluorochrome-labeled sequence identifier tags with a set of
24	support having attached capture oligonucleotides; and
25	(d4) isolating a subpopulation of supports that hybridized only to said first
26	fluorocrome.
27	
28	