Data Mining:

Concepts and Techniques

(3rd ed.)

— Chapter 1 —

Slides based on Textbook

Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, 3rd ed., Morgan Kaufmann, 2011

Data and Information Systems (DAIS:) Course Structures at CS/UIUC

- Coverage: Database, data mining, text information systems, Web and bioinformatics
- Data mining
 - Intro. to data mining (CS412: Han—Fall)
 - Data mining: Principles and algorithms (CS512: Han—Spring)
 - Seminar: Advanced Topics in Data mining (CS591Han—Fall and Spring. 1 credit unit)
 - Independent Study: Only open to Ph.D./M.S. on data mining
- Database Systems:
 - Introd. to database systems (CS411: Kevin Chang + Saurabh Sinha: Spring and Fall)
 - Advanced database systems (CS511: Kevin Chang Fall)
- Text information systems
 - Text information system (CS410 ChengXiang Zhai: Spring)
 - Advanced text information systems (CS598CXZ (future CS510) Cheng Zhai: Fall)
- Bioinformatics (Saurabh Sinha)
- Yahoo!-DAIS seminar (CS591DAIS—Fall and Spring. 1 credit unit)

CS 412. Course Page & Class Schedule

- Class Homepage: https://wiki.cites.illinois.edu/wiki/display/cs412fa15
- Course Website
 - Course Information
 - Staff
 - Newsgroup (Piazza)
 - Grading
 - Schedule
 - Lecture Media
 - Assignments
 - Exams
 - Extra Projects
 - Feedback

Teaching Staff: The Front-End

Long, Jia, Xiaolong, Carl, Hongkun

Teaching Staff: The Back-End

- Kevin C. Chang
- Research interest:
 - Database systems, Web integration and mining
 - Research projects:
 - MetaQuerier, WISDM, Big Social, and we are recruiting!
- Hobbies:
 - Ocean diving, mountain climbing.
- Brief history
 - Taiwan (BS in EE from National Taiwan University)
 - California (MS in CS, PhD in EE from Stanford)
 - Illinois (associate professor in CS, UIUC)
 - "Data mining": what can you predict? East or west? CS or EE?

You Tell Me --

- Why are you taking this course?
- It enables many possibilities:
 - Using data mining systems.
 - Building data mining systems.

Project 1. MetaQuerier: Exploring and Integrating the Deep Web

MetaExplorer

- source discovery
- source modeling
- source indexing

MetaIntegrator

- source selection
- schema integration
- query mediation

Project 2. WISDM: Data-aware Search over the Web

Demo: Entity Search—

Warning weith a first life wais #10 coling/

"university of california #location"	
Entity Search	
university of california #location Advanced Search	
⊕ Un-ordered	
Web	
W (0.00000000000) 455	
california (9.8620000000001) 455counts	
http://129.171.53.1/blantonw/5dClhse/publications/concept/Gallego-Rueda.html 0.053 -university of california, san diego r.rueda-university of southern california l.moll	
http://142.165.212.219/ 0.053	
the university of california berkeley for add and dyslexic students.it has won numerous e- learning awards	
http://128.200.145.43/news_release.asp 0.053	
at university of california, irvine medical center oct 4 \$ 26 million award expands uc irvine 's	
berkeley (8.9920000000017) 203counts	
http://149.166.220.15/library/SNAL/july04.asp 0.052	
university of california press, c 2004.k 487.e 3 s 38 2004 (40	
http://1865.br.ogarnij.pl/en/antimatter 0.051	
of california, berkeley.since then the antiparticles of many other subatomic particles have been created in 1955 at the university of california, berkeley.	Kele
san diego (3.17900000000001) 89counts	
http://129.171.53.1/blantonw/5dClhse/publications/concept/Gallego-Rueda.html 0.051	
university of california, san diego r.rueda-university of southern california l.moll-university of	
http://155.158.103.58/zfcst/wspolpraca.htm 0.051	
university of california, san diego, usa university karlsruhe, niemcy texas christian university, fort worth, usa	
http://avianbrain.org/nomen/links_location.html 0.051	
university of california, san diego (e-mail only) mark konishi at caltech, pasadena diane lee at california	
los angeles (2.9919999999997) 97counts	
http://216.119.80.44/Programs/RoleOfWomensOrganizationsInSocialAndPoliticalAffairs.aspx 0.051	
university of california in los angeles (ucla).learn more about mr.boamah join the alumni community	
http://atlantictrust.com/approach/denver.html 0.051	
university of california at los angeles.donald c.ogle, cfa managing director don ogle is a managing	
http://autismsocietycanada.ca/approaches to treatment/resources/index e.html 0.051	
university of california, los angeles (august 2nd, 2000): http://www.psych	
san francisco (2.65299999999995) 101counts	
http://library.sonoma.edu/regional/subject/subeducation.html 0.052	
northern california university of san francisco-northbay campus vocational schools/general education lifelong learning institute-courses for	
http://128.218.167.104/residencies/ 0.051	
university of california, san francisco c. 152, hoy 0622,521 parpassus avenue san francisco, ca 94143.	

santa barbara (1.90899999999999) 43counts

http://138.110.28.9/acad/misc/profile/Immorgan.shtml 0.051

university of california, san francisco, ph.d., m.a.columbia university, b...

Project BigSocial: Social Data Analytics

Social Data Analytics

What is Data Mining?

Chapter 1. Introduction

Why Data Mining?

- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube
- We are drowning in data, but starving for knowledge!
- "Necessity is the mother of invention"—Data mining—
 Automated analysis of massive data sets

Chapter 1. Introduction

Why Data Mining?

- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously</u>
 <u>unknown</u> and <u>potentially useful</u>) patterns or knowledge from
 huge amount of data
 - Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - (Deductive) expert systems

Knowledge Discovery (KDD) Process

Example: A Web Mining Framework

- Web mining usually involves
 - Data cleaning
 - Data integration from multiple sources
 - Warehousing the data
 - Data cube construction
 - Data selection for data mining
 - Data mining
 - Presentation of the mining results
 - Patterns and knowledge to be used or stored into knowledge-base

Data Mining in Business Intelligence

KDD Process: A Typical View from ML and Statistics

This is a view from typical machine learning and statistics communities

Which View Do You Prefer?

- Which view do you prefer?
 - KDD vs. ML/Stat. vs. Business Intelligence
 - Depending on the data, applications, and your focus
- Data Mining vs. Data Exploration
 - Business intelligence view
 - Warehouse, data cube, reporting but not much mining
 - Business objects vs. data mining tools
 - Supply chain example: mining vs. OLAP vs. presentation tools
 - Data presentation vs. data exploration

Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining

- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Multi-Dimensional View of Data Mining

Data to be mined

 Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, timeseries, sequence, text and web, multi-media, graphs & social and information networks

Knowledge to be mined (or: Data mining functions)

- Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
- Descriptive vs. predictive data mining
- Multiple/integrated functions and mining at multiple levels

Techniques utilized

 Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.

Applications adapted

 Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?

- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Data Mining: On What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
 - Object-relational databases, Heterogeneous databases and legacy databases
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and information networks
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web

Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?

- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Data Mining Function: (1) Generalization

- Information integration and data warehouse construction
 - Data cleaning, transformation, integration, and multidimensional data model
- Data cube technology
 - Scalable methods for computing (i.e., materializing)
 multidimensional aggregates
 - OLAP (online analytical processing)
- Multidimensional concept description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics,
 e.g., dry vs. wet region

Data Mining Function: (2) Association and Correlation Analysis

- Frequent patterns (or frequent itemsets)
 - What items are frequently purchased together in your Walmart?
- Association, correlation vs. causality
 - A typical association rule
 - Diaper → Beer [0.5%, 75%] (support, confidence)
 - Are strongly associated items also strongly correlated?
- How to mine such patterns and rules efficiently in large datasets?
- How to use such patterns for classification, clustering, and other applications?

Data Mining Function: (3) Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
 - Predict some unknown class labels
- Typical methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, patternbased classification, logistic regression, ...
- Typical applications:
 - Credit card fraud detection, direct marketing, classifying stars, diseases, web-pages, ...

Data Mining Function: (4) Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity & minimizing interclass similarity
- Many methods and applications

Data Mining Function: (5) Outlier Analysis

- Outlier analysis
 - Outlier: A data object that does not comply with the general behavior of the data
 - Noise or exception? One person's garbage could be another person's treasure
 - Methods: by product of clustering or regression analysis, ...
 - Useful in fraud detection, rare events analysis

Time and Ordering: Sequential Pattern, Trend and Evolution Analysis

- Sequence, trend and evolution analysis
 - Trend, time-series, and deviation analysis: e.g., regression and value prediction
 - Sequential pattern mining
 - e.g., first buy digital camera, then buy large SD memory cards
 - Periodicity analysis
 - Motifs and biological sequence analysis
 - Approximate and consecutive motifs
 - Similarity-based analysis
- Mining data streams
 - Ordered, time-varying, potentially infinite, data streams

Structure and Network Analysis

- Graph mining
 - Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)
- Information network analysis
 - Social networks: actors (objects, nodes) and relationships (edges)
 - e.g., author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 - A person could be multiple information networks: friends, family, classmates, ...
 - Links carry a lot of semantic information: Link mining
- Web mining
 - Web is a big information network: from PageRank to Google
 - Analysis of Web information networks
 - Web community discovery, opinion mining, usage mining, ...

Evaluation of Knowledge

- Are all mined knowledge interesting?
 - One can mine tremendous amount of "patterns"
 - Some may fit only certain dimension space (time, location, ...)
 - Some may not be representative, may be transient, ...
- Evaluation of mined knowledge → directly mine only interesting knowledge?
 - Descriptive vs. predictive
 - Coverage
 - Typicality vs. novelty
 - Accuracy
 - Timeliness
 - **...**

Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Data Mining: Confluence of Multiple Disciplines

Why Confluence of Multiple Disciplines?

- Tremendous amount of data
 - Algorithms must be scalable to handle big data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social and information networks
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?

- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Applications of Data Mining

- Web page analysis: from web page classification, clustering to PageRank & HITS algorithms
- Collaborative analysis & recommender systems
- Basket data analysis to targeted marketing
- Biological and medical data analysis: classification, cluster analysis (microarray data analysis), biological sequence analysis, biological network analysis
- Data mining and software engineering
- From major dedicated data mining systems/tools (e.g., SAS, MS SQL-Server Analysis Manager, Oracle Data Mining Tools) to invisible data mining

Summary

- Data mining: Discovering interesting patterns and knowledge from massive amount of data
- A natural evolution of science and information technology, in great demand, with wide applications
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Mining can be performed in a variety of data
- Data mining functionalities: characterization, discrimination, association, classification, clustering, trend and outlier analysis, etc.
- Data mining technologies and applications
- Major issues in data mining

Major Issues in Data Mining (1)

- Mining Methodology
 - Mining various and new kinds of knowledge
 - Mining knowledge in multi-dimensional space
 - Data mining: An interdisciplinary effort
 - Boosting the power of discovery in a networked environment
 - Handling noise, uncertainty, and incompleteness of data
 - Pattern evaluation and pattern- or constraint-guided mining
- User Interaction
 - Interactive mining
 - Incorporation of background knowledge
 - Presentation and visualization of data mining results

Major Issues in Data Mining (2)

- Efficiency and Scalability
 - Efficiency and scalability of data mining algorithms
 - Parallel, distributed, stream, and incremental mining methods
- Diversity of data types
 - Handling complex types of data
 - Mining dynamic, networked, and global data repositories
- Data mining and society
 - Social impacts of data mining
 - Privacy-preserving data mining
 - Invisible data mining

A Brief History of Data Mining Society

- 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD'95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- ACM SIGKDD conferences since 1998 and SIGKDD Explorations
- More conferences on data mining
 - PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001),
 WSDM (2008), etc.
- ACM Transactions on KDD (2007)

Conferences and Journals on Data Mining

- KDD Conferences
 - ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
 - SIAM Data Mining Conf. (SDM)
 - (IEEE) Int. Conf. on Data Mining (ICDM)
 - European Conf. on Machine Learning and Principles and practices of Knowledge Discovery and Data Mining (ECML-PKDD)
 - Pacific-Asia Conf. on Knowledge
 Discovery and Data Mining (PAKDD)
 - Int. Conf. on Web Search and Data Mining (WSDM)

- Other related conferences
 - DB conferences: ACM SIGMOD,
 VLDB, ICDE, EDBT, ICDT, ...
 - Web and IR conferences: WWW, SIGIR, WSDM
 - ML conferences: ICML, NIPS
 - PR conferences: CVPR,
- Journals
 - Data Mining and Knowledge Discovery (DAMI or DMKD)
 - IEEE Trans. On Knowledge and Data Eng. (TKDE)
 - KDD Explorations
 - ACM Trans. on KDD

Where to Find References? DBLP, CiteSeer, Google

Data mining and KDD (SIGKDD: CDROM)

- Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD, PAKDD, etc.
- Journal: Data Mining and Knowledge Discovery, KDD Explorations, ACM TKDD

Database systems (SIGMOD: ACM SIGMOD Anthology—CD ROM)

- Conferences: ACM-SIGMOD, ACM-PODS, VLDB, IEEE-ICDE, EDBT, ICDT, DASFAA
- Journals: IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM, VLDB J., Info. Sys., etc.

AI & Machine Learning

- Conferences: Machine learning (ML), AAAI, IJCAI, COLT (Learning Theory), CVPR, NIPS, etc.
- Journals: Machine Learning, Artificial Intelligence, Knowledge and Information Systems, IEEE-PAMI, etc.

Web and IR

- Conferences: SIGIR, WWW, CIKM, etc.
- Journals: WWW: Internet and Web Information Systems,

Statistics

- Conferences: Joint Stat. Meeting, etc.
- Journals: Annals of statistics, etc.

Visualization

- Conference proceedings: CHI, ACM-SIGGraph, etc.
- Journals: IEEE Trans. visualization and computer graphics, etc.

Recommended Reference Books

- E. Alpaydin. Introduction to Machine Learning, 2nd ed., MIT Press, 2011
- S. Chakrabarti. Mining the Web: Statistical Analysis of Hypertex and Semi-Structured Data. Morgan Kaufmann, 2002
- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2ed., Wiley-Interscience, 2000
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003
- U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and Data Mining.
 AAAI/MIT Press, 1996
- U. Fayyad, G. Grinstein, and A. Wierse, Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann,
 2001
- J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011
- T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, 2009
- B. Liu, Web Data Mining, Springer 2006
- T. M. Mitchell, Machine Learning, McGraw Hill, 1997
- Y. Sun and J. Han, Mining Heterogeneous Information Networks, Morgan & Claypool, 2012
- P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005
- S. M. Weiss and N. Indurkhya, Predictive Data Mining, Morgan Kaufmann, 1998
- I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 2nd ed. 2005