1.
$$\frac{dv}{dt} = -kv^2$$
 or $\frac{dv}{dt} = -kv^2$, $k > 0$
Separable: $-\frac{dv}{v^2} = k dt \Rightarrow \frac{1}{v} = kt + C \Rightarrow v = \frac{1}{kt + C} \Rightarrow 0$
 $\frac{dx}{dt} = \frac{1}{kt + C} \Rightarrow x = A + \frac{1}{k} \log(kt + C) \Rightarrow \infty$ as $t \to \infty$
2. Linear: $y' = \frac{1}{x}y = 3x$ IF: $p(x) = e^{\int -\frac{1}{x}dx} = x^{-1}$
 $x^{-1}v' - x^{-2}v = 3 \Rightarrow (x^{-1}v)' = 3$
 $\Rightarrow y = x(3x + C)$
 $1 = y(1) = 3 + C$, so $C = -2$.
3. $5I'' + 100I' + 1000I = 1000 \cos 10t$
or $I'' + 20I' + 200I = 200 \cos 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$
 $1 = a \cos 10t + b \sin 10t$

 $I_{5p} = \frac{2}{5} \cos 10t + \frac{4}{5} \sin 10t$ amplifude = $\sqrt{\left(\frac{2}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = \frac{120}{5} = \frac{2}{\sqrt{5}}$

5.
$$A^2 = \begin{cases} 0.040 \\ 0.004 \\ 0.000 \end{cases}$$
, $A^3 = \begin{cases} 0.008 \\ 0.000 \\ 0.000 \\ 0.000 \end{cases}$, $A^4 = 0$

(b)
$$e^{A} = I + A + \frac{1}{2}A^{2} + \frac{1}{6}A^{3} + 0 = \begin{cases} 1 & 2 & 2 & 4/3 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{cases}$$

6. Columns of
$$\begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & -2 \\ 2 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

3 lead variables

$$\lambda_1 = 2 \qquad \begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & -3 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \underline{X} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$$

$$\lambda_{z}=1 \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & -2 & 0 \end{bmatrix} \quad X = \lambda \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

$$\lambda_{3} = -1 \qquad \begin{cases} 3 & 2 & 1 & | & 0 \\ 0 & 2 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{cases} \qquad X = \times \begin{pmatrix} 1/3 \\ -1 \\ 1 \end{pmatrix} \qquad \begin{cases} \chi = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 3 \end{pmatrix} \end{cases}$$

Thuerse:
$$\begin{bmatrix} 1 & -2 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -3 & 6 & 1 & 0 \\ 0 & 0 & 3 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-3} \begin{bmatrix} 1 & -2 & 0 & | & 1 & 0 & -1/3 \\ 0 & 1 & 0 & | & 0 & 1 & 1 \\ 0 & 0 & 3 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-3} \begin{bmatrix} 1 & 0 & 0 & | & 1 & 2 & 1/3 \\ 0 & 1 & 0 & | & 0 & | & 1 \\ 0 & 0 & 3 & | & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & \frac{1}{3} \\ 0 & 1 & 1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

8. det(A) = det(L) det(U) (product) $= (1-1-1)(2\cdot(-1)\cdot 2)$ (triangular) = -4 $\neq 0 \quad \text{for all values of } C.$