

Engenharia Física

TP2 Fonte de alimentação – Registo de resultados

Escola de Engenharia

Dep. Electrónica Industrial

1/6

ELECTRÓNICA FONTE DE ALIMENTAÇÃO

REGISTO DE RESULTADOS

GRUPO____

NOME ______NOME

1

Figura 1

2.1

 V_s (secundário transformador) e V_r (meia onda) (resistências)

Escala CANAL 1 =____/div

CANAL 2 =____/div

Base de Tempo =____/div

Vs (tensão do secundário) --- Amplitude =____ Frequência =____

Vr (meia onda) ---Valor máximo =_____ Frequência =____

Engenharia Física

TP2 Fonte de alimentação – Registo de resultados

Escola de Engenharia

Dep. Electrónica Industrial

2/6

2.2

Valor médio ((meia on	da no o	sciloscópio)	=
Valor médio ((meia on	da com	multímetro) =

3.1

V_r (onda completa)

Escala CANAL $1 = ____/div$ CANAL $2 = ____/div$

Base de Tempo =____/div

- Q: a) V_r (onda completa) ---- Componente contínua = _____ Frequência = _____
 - b) Valor médio (onda completa com multímetro) =_____

Compare o valor médio nos circuitos de meia e onda completa.

c) Não é possível observar simultaneamente no osciloscópio as formas das ondas da tensão no secundário do transformador e na carga. Porquê?

Engenharia Física

TP2 Fonte de alimentação – Registo de resultados

Escola de Engenharia

Dep. Electrónica Industrial

3/6

4.1

V_f (filtragem)

Escala CANAL 1 =____/div

CANAL 2 =____/div

Base de Tempo =____/div

Vf ----- Componente contínua = Frequência =

4.2.

Escala CANAL 1 =____/div

CANAL 2 =____/div

Base de Tempo =____/div

ELETRÓNICA TP2 Fonte de alimentação – Registo de resultados

Engenharia Física

Escola de Engenharia

Dep. Electrónica Industrial

4/6

V_f- Componente contínua =_____ Frequência =_____

Q: Explique as diferenças registadas no valor médio e ripple de V_f em relação a 4.1.

4.3.

Q: Explique as diferenças registadas no valor médio e ripple de Vf nas situações anteriores.

Engenharia Física

TP2 Fonte de alimentação – Registo de resultados

Escola de Engenharia

Dep. Electrónica Industrial

5/6

5.1.

Escala CANAL 1 =____/div

CANAL 2 =____/div

Base de Tempo =____/div

Vo - Componente contínua = ____ Frequência = ____

5.2. Sem efetuar registos tire conclusões quanto ao funcionamento do circuito.

Engenharia Física

TP2 Fonte de alimentação – Registo de resultados

Escola de Engenharia

Dep. Electrónica Industrial

6/6

5.3.

Escala CANAL 1 = ____/div CANAL 2 = ____/div

Base de Tempo =____/div

Q: Tire conclusões quanto ao funcionamento desta montagem.

CONCLUSÕES

- Q: Qual a finalidade de uma fonte de alimentação?
- Q: Retirando o bloco estabilizador, diga de que modo é afetado o ripple quando se varia os valores dos componentes (condensador de filtragem e carga)?