### Data-Science 1

forecasting





### Inhoud

- voorbeeld
- op basis van het verleden
- betrouwbaarheid van voorspelling
- op basis van een model

### Voorbeeld

### Voorbeeld voor deze les

 gegeven: opbrengsten van een bedrijfje van de laatste 5 jaar (per kwartaal):

```
opbrengsten = [20, 100, 175, 13, 37, 136, 245, 26, 75, 155, 326, 48, 92, 202, 384, 82, 176, 282, 445, 181]
```

gevraagd: opbrengsten voor volgend jaar (volgende 4 waarden)

## Scatterplot



# Op basis van het verleden



### Inhoud

- naïeve forecasting
- gemiddelde
- voortschrijdend gemiddelde
- lineaire combinatie

### **Notatie**

- aantal waarden = n
- gemeten waarden =  $x_i$  (i = 0 tot n-1)
- voorspelde waarden = f<sub>i</sub> (i = n tot ...)
- voorbeeld: n = 3:  $x_0, x_1, x_2, f_3, f_4, ...$

### Naïeve forecasting

volgende waarde = laatste waarde

$$f_n = X_{n-1}$$

zie python

### Resultaat

### Naïeve forecasting



### Gemiddelde forecasting

 volgende waarde = gemiddelde van alle voorgaande waarden

$$f_n = \frac{1}{n} \sum_{i=0}^{n-1} x_i$$

zie python

### Resultaat

#### Gemiddelde forecasting



### Voortschrijdend gemiddelde

volgende waarde = gemiddelde van de laatste m waarden

$$f_n = \frac{1}{m} \sum_{i=n-m}^{n-1} x_i$$

- opm: als m=1, dan is dit naïeve forecasting, als m=n, dan is dit het gemiddelde van alle voorgaande waarden
- zie python

### Resultaat



### Lineaire combinatie

 volgende waarde = gewogen gemiddelde van m voorgaande waarden

$$f_n = \sum_{i=n-m}^{n-1} a_{i-n+m} \cdot x_i$$

- opm.: als  $a_i = 1/m$ , dan is dit het voortschrijdend gemiddelde
- men noemt dit een "lineaire combinatie" van de m voorgaande waarden
- je kan de waarden van a<sub>i</sub> berekenen aan de hand van de laatste 2m waarden (zie python)

### Resultaat

#### Lineaire combinatie forecasting



- hoe betrouwbaar is een voorspelling?
- moeilijk te bepalen: je kent de toekomst niet
- oplossing?

- gebruik de voorspellingsmethode in het verleden
- bepaal dus de f<sub>i</sub> voor i=1 tot n
- bepaal dan de fout e<sub>i</sub> = x<sub>i</sub> f<sub>i</sub>
- je kan nu de gemiddelde fout berekenen



- gebruik de voorspellingsmethode in het verleden
- bepaal dus de f<sub>i</sub> voor i=1 tot n
- bepaal dan de fout e<sub>i</sub> = x<sub>i</sub> f<sub>i</sub>
- je kan nu de gemiddelde fout berekenen

### Drie maten

• Mean Absolute Error:  $MAE = \frac{1}{n} \sum |e_i|$ 

- Root Mean Squared Error:  $RMSE = \sqrt{\frac{1}{n}\sum e_i^2}$
- Mean Absolute Percentage Error:  $MAPE = \frac{1}{n} \sum \left| \frac{e_i}{x_i} \right|$

### Resultaten

| voorspeller                | MAE      | RMSE     | MAPE      |
|----------------------------|----------|----------|-----------|
| naïef                      | 137,4211 | 158,6978 | 2,070257  |
| gemiddelde                 | 103,0048 | 130,8062 | 1,03622   |
| voortschrijdend gemiddelde | 92,90625 | 113,3213 | 0,77707   |
| lineaire combinatie        | 28,26923 | 32,7929  | 0,1742834 |

## In Python

• zie code

# Op basis van een model

### Inhoud

- trend
- seasonal decomposition
- (seasonal trend forecasting)

### Trend forecasting

- trend forecasting = (lineaire) regressie
- dus: zoek lijn door de punten en gebruik die als model
- in ons voorbeeld:

$$f_i = 49,3286 + 11,6496 \cdot i$$

• <u>het resultaat is dus een functie</u> (en niet een volgende waarde)

# Trend forecasting in Python

zie code



- verschil: we gebruiken nu het model om het verleden te voorspellen
- resultaten (zie python):
  - MAE = 85
  - RMSE = 100,6167 (dit is ook de s<sub>e</sub>!)
  - -MAPE = 1,149211

### Seasonal forecasting

- data bestaat dikwijls uit:
  - (lineaire) trend
  - weerkerend patroon ("seizoen")
  - ruis
- we kunnen de data terug ontleden en deze 3 factoren identificeren = seasonal decomposition

### Seasonal decomposition

- dus ("additief")
  - data = trend + seizoen + ruis
  - $x_i = T(i) + S(i) + R(i)$
- kan ook "multiplicatief"
  - $-x_i = T(i) \cdot S(i) \cdot R(i)$

## Bepalen vd seizoensgrootte

- om het seizoen te kunnen identificeren, moeten we weten hoe groot dit is (m)
- je kan dit visueel meestal zien
- ook mogelijk met "auto correlation function"

### **ACF**



### Bepalen van de trend

- trend = data seizoen ruis
- seizoen en ruis hebben een hoge frequentie
- filter de lage frequenties uit de data
  - dit doe je door het voortschrijdend gemiddelde te nemen van m waarden

## Bepalen van de trend



### Seizoen bepalen

- trek de trend af van de data
  - resultaat = enkel seizoen en ruis
  - data trend = seizoen + ruis
- seizoen is wederkerend patroon van steeds m punten

## Seizoen bepalen



### Ruis vinden

- ruis = data trend seizoen
- ruis kan je niet voorspellen in de toekomst
- de standaardafwijking van de ruis is wel een indicatie voor de kwaliteit van het model (dit is de RMSE als het model additief is!)
- we gebruiken daarom als model:

```
forecast = trend + seizoen
```

### Voorbeeld in Python

- zie code
  - in dit geval "multiplicatief"
  - data / trend = seizoen \* ruis
  - ruis = data / trend / seizoen

### Resultaat



### Voorspellingen maken

- zoek een formule voor de trend (bv met regressie)
- zet het patroon gewoon verder
- twee mogelijkheden
  - additief: voorspelde waarde = trend + patroon
  - multiplicatief: voorspelde waarde = trend \* patroon

## Voorspellingen maken



### Resultaat









- resultaat (zie python)
  - MAE = 24,29
  - RMSE = 41,81
  - MAPE = 0.229

## Oefeningen

## Oefeningen

- forecasting
  - populariteit app
  - pretpark
- call center