Киселёва А.Н. Губанов В. группа 211-324

Вариант 10-4

Изучение кинематической схемы и нумерация валов

Закрытая передача - редуктор цилиндрический одноступенчатый вертикальный (прямозубый)

Открытая передача - цепная, приводной роликовой цепью

Исходные данные

- *-Тяговое усилие на ленте* F ≔ 6 κH
- -Скорость движения ленты V = 0.9 м/c
- -Диаметр звездочки D = 0.4M
- -Нагрузка постоянная
- -Вид передач не реверсивные
- -Срок службы привода 10 лет при работе в одну смену
- -Срок службы подшипников = 20 000 часов

Кинематический расчет

Выбор электродвигателя

Общий КПД привода η_{Σ} = произведению частных КПД:

 $\eta_{\mathsf{3.n.}}\!\coloneqq\!0.97$ КПД закрытой передачи (цилиндрического редуктора)

 $\eta_{o.n.} \coloneqq 0.91$ КПД открытой передачи (цепной)

 $\eta_{\scriptscriptstyle M} \coloneqq 1$ КПД муфты

 $\eta_{n.n}$:= 0.99 КПД одной пары подшибгтков качения

 $\eta_{\boldsymbol{\Sigma}} \coloneqq \eta_{\text{a.n.}} \boldsymbol{\cdot} \eta_{\text{o.n.}} \boldsymbol{\cdot} \eta_{\text{M}} \boldsymbol{\cdot} \eta_{\text{n.n}}^{-3} = 0.856$

Требуемая мощность электродвигателя:

 $P_{p.e.} = F \cdot V = 5.4 \quad \kappa Bm$

 $P_{
m 90_mp}\!:=\!rac{P_{
m p.B.}}{\eta_{\Sigma}}\!=\!6.305~\left(\kappa{
m Bm}
ight)$

где P.р.в. - мощность на валу рабочего органа привода, кBm

Требуемая частота вращения вала электродвигателя:

$$\omega_{\textit{p.s.}}\!\coloneqq\!2\boldsymbol{\cdot}\frac{V}{D}\!=\!4.5\quad\!\left(c^{-\!1}\right)$$

 $u_{\scriptscriptstyle \Sigma}^{\scriptscriptstyle \; pe\kappa}$ - возможное среднее рекомендуемое передаточное число

привода:

 $u_{\mathsf{3.n.pe\kappa}}\coloneqq 4$

 $u_{\text{o.n.per}} \coloneqq 3$

 $u_{\Sigma pe\kappa} \coloneqq u_{\mathsf{3.n.pe\kappa}} \cdot u_{\mathsf{o.n.pe\kappa}} = 12$

$$\eta_{\ni\partial}(mp) \coloneqq \left(30 \cdot \omega_{p.s.} \cdot \frac{u_{\Sigma pe\kappa}}{\pi}\right) = 515.662$$

Определение общего передаточного числа $U_{_{\Sigma}}$ привода и разбивка его между отдельными ступенями

При известных характеристиках электродвигателя общее передаточное число:

$$\begin{split} n_{\text{3.d.}} &\coloneqq 727 \\ U_{\Sigma} &\coloneqq \boldsymbol{\pi} \cdot \frac{n_{\text{3.d.}}}{30} = 76.131 \quad (pad/c) \end{split}$$

$$U_{\Sigma} &\coloneqq \frac{\omega_{\text{3.d.}}}{\omega_{p.e.}} = 16.918 \end{split}$$

Также: Делаем вывод:

 $U_{\Sigma} = U_{\mathsf{3.n.}} \boldsymbol{\cdot} U_{\mathsf{o.n.}}$ Передаточное число закрытой передачи

$$u_{\scriptscriptstyle 3.n.}\!\coloneqq\!\frac{U_{\scriptscriptstyle \Sigma}}{u_{\scriptscriptstyle 0.n.{\rm pek}}}\!=\!5.639$$

$$u_{\scriptscriptstyle 3.n.} = 5.6$$

Определение угловых скоростей валов привода

Угловая скорость первого вала - $\omega_1 \coloneqq \omega_{3.\partial.} = 76.131$

(pao/c) Угловая скорость второго вала - $\omega_2 \coloneqq \frac{\omega_1}{u_{3.n.}} = 13.595 \ (pao/c)$

Vгловая скорость третьего вала - $\omega_3\coloneqq \frac{\omega_2}{u_{o.n.}}=4.5$ $(pao/c)=\omega_{p.s.}$

Определение частот вращения валов

$$n_1\!\coloneqq\!n_{\scriptscriptstyle 3.\partial.}\!=\!727\quad \left(\!\frac{\mathit{o6}}{\mathit{muH}}\!\right)$$

$$n_2 \coloneqq 30 \cdot \frac{\omega_2}{\pi} = 129.821 \, \left(\frac{\textit{o6}}{\textit{muh}} \right)$$

$$n_3 = 30 \cdot \frac{\omega_3}{\pi} = 42.972 \quad \left(\frac{\text{o6}}{\text{MUH}}\right)$$

Определение мощностей на валах привода

$$P_1 \coloneqq P_{\ni \partial_mp} = 6.305$$

$$P_2 \coloneqq P_1 \cdot \eta_{\text{3.n.}} \cdot \eta_{\text{n.n}} = 6.055$$

$$P_3 := P_2 \cdot \eta_{o.n.} \cdot \eta_{n.n} = 5.455$$

$$P_{p.s.} = 5.4$$

Определение вращающих моментов на валах привода (кН•м)

$$T_1 := \frac{P_1}{\omega_1} = 0.083$$
 $T_3 := F \cdot \frac{D}{2} = 1.2$

$$T_3 \coloneqq F \cdot \frac{D}{2} = 1.2$$

$$T_2 := \frac{P_2}{\omega_2} = 0.445$$
 $\frac{P_3}{\omega_3} = 1.212$

$$\frac{P_3}{\omega_3} = 1.212$$

Анализ результатов кинематического расчета привода

$$\omega_1 = \omega_{\it 3d} \quad \omega_1 \! \geq \! \omega_2 \! \geq \! \omega_3 \qquad \qquad \omega_{\it noch.sana} = \omega_{\it p.s.}$$

$$\omega_{nocn, gana} = \omega_{n, p}$$

$$\eta_1 = \eta_{\mathsf{a.d.}} \ \eta_1 \geq \eta_2 \geq \eta_3$$

$$P_{ extit{noc} extit{л.вала}} = P_{ extit{p.в.}}$$

$$P_1 = P_{3\partial_mp} \ P_1 \ge P_2 \ge P_3$$

$$T_2 \le T_3$$

$$T_{ extit{noc} extit{л.вала}} = T_{ extit{p.в.}}$$

Расчет закрытой передачи

Вращающий момент:

Угловая скорость:

$$T_1 = T_1 \cdot 10^6 = 8.282 \cdot 10^4$$
 $H \cdot MM$

$$\omega_1 = 76.131 \ H \cdot MM$$

$$T_2 = T_2 \cdot 10^6 = 4.454 \cdot 10^5$$
 $H \cdot MM$

$$\omega_2 = 13.595$$
 $H \cdot \text{MM}$

Частота вращения:

$$n_1 = 727 \quad \frac{\it o6}{\it muh}$$

$$n_2 = 129.821 \frac{o6}{MUH}$$

 $n_2 = 129.821$ — мин Передаточное число:

$$u_{12} \coloneqq \frac{n_1}{n_2} = 5.6$$

Выбор материала зубчатых колес, назначение упрочняющей обработки и определение допускаемых напряжений

Определяем размеры заготовок:

$$c \coloneqq 1$$
 $\frac{H}{MM^2}$

$$d_{1_{\it 3azom.}}\!:=\!3.0\! \cdot \!\!\!\!\sqrt{rac{T_2}{1\! \cdot \! u_{12}^{\ 2}}}\!=\!72.649 \ \ \left({\it MM}
ight)$$

$$d_{2_\mathit{3azom.}} \coloneqq d_{1_\mathit{3azom.}} \cdot u_{12} \!=\! 406.836 \pmod{\mathsf{MM}}$$

Твердость $HB_2 = 180$ Предел прочности $\sigma_{B2} = 520$ (МПа) Предел текучести $\sigma_{T2} = 290$ (МПа)

Допускаемое контактное напряжение для зубчатого колеса

$$\sigma_{H2} \coloneqq \frac{\left(2 \cdot HB_2 + 70\right)}{1.2} = 358.333 \quad (M\Pi a)$$

Допускаемое напряжение изгиба для зубчатого колеса

$$\sigma_{F2}\!\coloneqq\!1.8\boldsymbol{\cdot} HB_2\!=\!324$$

$$HB_1 \coloneqq HB_2 \cdot \sqrt[6]{u_{12}} = 239.867$$

Материал: Сталь 40, прокат,

$$\sigma_{\rm e} = 780$$

$$\sigma_m = 780$$

$$\overline{HB_1} \coloneqq 220$$

<u>Тер</u>мообработка - улучшение

Допускаемое контактное напряжение для зубчатого колеса

$$\sigma_{H1} \coloneqq \frac{\left(2 \cdot HB_1 + 70\right)}{1.2} \cdot 1 = 425$$

Допускаемое напряжение изгиба для зубчатого колеса

$$\sigma_{F1} = 1.8 \cdot \frac{HB_1}{1.8} \cdot 1^2 = 220$$

$$\sigma_H := \frac{\left(\sigma_{H1} + \sigma_{H2}\right)}{2} = 391.667$$

$\sigma_{H2} \cdot 1.25 = 447.917$
Коэффициент нагрузки
K_{H} := 1.1
Коэффициент ширины колеса по межосевому
расстоянию
$\Psi_{ba}\!\coloneqq\!0.315$
C. 210
C = 310
$a_{\omega} \coloneqq \left(u_{12} + 1\right) \boldsymbol{\cdot} \sqrt[3]{\left(\frac{C}{\sigma_H \boldsymbol{\cdot} u_{12}}\right)^2 \boldsymbol{\cdot} T_2 \boldsymbol{\cdot} \frac{K_H}{\Psi_{ba}}} = 207.481$
Ψ_{ba}
a_ω := 224
H ормальный модуль зацепления $cosB\coloneqq 1 \qquad B\coloneqq 0 \; \mathbf{deg}$
m_n := $(0.01) \cdot a_\omega$ = 2.24 округлим до
1.25
- 1.25
$[m_n] \coloneqq 1.25$
Суммарное число зубьев шестерни и колеса
$Z_c \coloneqq 2 \cdot \frac{a_\omega}{m_n} = 358.4$
$Z_1 := \frac{Z_c}{u_{12} + 1} = 54.303$ $\overline{Z_1} := \text{round}(Z_1) = 54$
u_{12} + 1 $\qquad \qquad $
$oldsymbol{Z}_2$
$Z_2 := Z_c - Z_1 = 304.4$ $Z_2 := \text{round}(Z_2) = 304$ $u := \frac{Z_2}{Z_1} = 5.63$
Расхождение
T designed critic
$((u-u_{12}))$
$U_{dif} \coloneqq \operatorname{abs}\left(\frac{\left(u - u_{12}\right)}{u}\right) \cdot 100 = 0.526$ %
$d_1 = m_n \cdot \frac{Z_1}{\cos B} = 67.5$ $d_1 = 68$
$a_1 = m_n \cdot \frac{}{\cos B} = 67.5$ $a_1 = 68$
$d_2 \coloneqq m_n \cdot \frac{Z_2}{\cos B} = 380$
- ··· cosB

$a_w \coloneqq \frac{(d_2 + d_1)}{2} = 224$ Диаметры окружностей и выступов $d_{a1} \coloneqq d_1 + 2 \cdot m_n = 70.5$ $d_{a2} \coloneqq d_2 + 2 \cdot m_n = 382.5$ Определим ишрину зубчатых колес $b_2 \coloneqq \Psi_{ba} \cdot a_w = 70.56$ $b_3 \coloneqq 70$ $b_1 \coloneqq b_2 + 5 = 75.56$ Проверочный расчёт $\psi_{bd} \coloneqq \frac{b_2}{d_1} = 1.029$ $\psi_{bd} \coloneqq \frac{b_2}{d_1} = 1.029$ $\psi_{bd} \coloneqq \frac{b_2}{d_1} = 1.029$ $\psi_{bd} \coloneqq \frac{b_2}{d_1} = 1.04$ $\psi_{bd} \coloneqq \frac{b_2}{d_1} = 1.09$ $\psi_{bd} \coloneqq \frac{b_2}{d_1}$	
и выступов впадин $d_{a1} \coloneqq d_1 + 2 \cdot m_n = 70.5 \qquad d_{f1} \coloneqq d_1 - 2.5 \cdot m_n = 64.875$ $d_{a2} \coloneqq d_2 + 2 \cdot m_n = 382.5 \qquad d_{f2} \coloneqq d_2 - 2.5 \cdot m_n = 376.875$ Oпределим ишрину зубчатых колес $b_2 \coloneqq \Psi_{ba} \cdot a_\omega = 70.56 \qquad b_2 \coloneqq 70$ $b_1 \coloneqq b_2 + 5 = 75.56 \qquad b_1 \coloneqq 75$ Проверочный расчёт $\psi_{bd} \coloneqq \frac{b_2}{d_1} = 1.029$ $\psi \coloneqq \omega_1 \cdot \frac{d_1}{2 \cdot 1000} = 2.588 \qquad -8 \text{ степеней точности}$ $K_{Hb} \coloneqq 1.09 \qquad K_{Ha} \coloneqq 1.04 \qquad K_{Hv} \coloneqq 1.05$ $K_{H} \coloneqq K_{Ha} \cdot K_{Hb} \cdot K_{Hv} = 1.19$ Проверим условие прочности $\sigma_{Hch} \coloneqq \frac{C}{a_w \cdot u} \cdot \sqrt{T_2 \cdot \frac{K_H}{b_2} \cdot (u+1)^3} = 365.171$	$\left rac{l_1}{l_1} ight = 224$
$d_{a2} \coloneqq d_2 + 2 \cdot m_n = 382.5$ $d_{f2} \coloneqq d_2 - 2.5 \cdot m_n = 376.875$ Определим ширину зубчатых колес $b_2 \coloneqq \Psi_{ba} \cdot a_\omega = 70.56$ $b_2 \coloneqq 70$ $b_1 \coloneqq b_2 + 5 = 75.56$ $D_1 \coloneqq 75$ Проверочный расчёт $\psi_{bd} \coloneqq \frac{b_2}{d_1} = 1.029$ $\psi_{ed} \coloneqq \frac{b_2}{d_1} = 1.029$ $\psi_{ed} \coloneqq \frac{b_2}{d_1} = 1.029$ $\psi_{ed} \coloneqq \frac{b_2}{d_1} = 1.04$ $\psi_{ed} \coloneqq \frac{b_2}{d_1} = 1.05$ $\psi_{ed} \coloneqq \frac{b_2}{d_1} = 1.04$ $\psi_{ed} \coloneqq \frac{b_2}{d_1} = 1.05$ $\psi_{ed} \coloneqq \frac{b_2}{d_1} = 1.04$ $\psi_{ed} \coloneqq \frac{b_2}{d_1} = 1.05$ $\psi_{ed} \coloneqq \frac{b_2}{d_1} = 1.04$ $\psi_{ed} \coloneqq \frac{b_2}{d_1} = 1.05$	
$d_{f2} := d_2 - 2.5 \cdot m_n = 376.875$ Определим ширину зубчатых колес $b_2 := \Psi_{ba} \cdot a_\omega = 70.56$ $b_1 := b_2 + 5 = 75.56$ Проверочный расчёт $\psi_{bd} := \frac{b_2}{d_1} = 1.029$ $\psi_{i} := \frac{b_2}{d_1} = 1.029$ $\psi_{i} := \omega_1 \cdot \frac{d_1}{2 \cdot 1000} = 2.588$ - 8 степеней точности $K_{Hb} := 1.09$ $K_{Ha} := 1.04$ $K_{Hv} := 1.05$ $K_{H} := K_{Ha} \cdot K_{Hb} \cdot K_{Hv} = 1.19$ Проверим условие прочности $\sigma_{Hch} := \frac{C}{a_w \cdot u} \cdot \sqrt{T_2 \cdot \frac{K_H}{b_2} \cdot (u+1)^3} = 365.171$	$d_{f1}\!:=\!d_{1}\!-\!2.5\!\cdot\!m_{n}\!=\!64.875$
Определим ширину зубчатых колес $b_2 \coloneqq \Psi_{ba} \cdot a_\omega = 70.56$ $b_2 \coloneqq 70$ $b_1 \coloneqq b_2 + 5 = 75.56$ $b_1 \coloneqq 75$ $\Pi posepovhый pacvëm$ $\psi_{bd} \coloneqq \frac{b_2}{d_1} = 1.029$ $V \coloneqq \omega_1 \cdot \frac{d_1}{2 \cdot 1000} = 2.588 - 8 \ cmeneheй movhocmu$ $K_{Hb} \coloneqq 1.09 K_{Ha} \coloneqq 1.04 K_{Hv} \coloneqq 1.05$ $K_H \coloneqq K_{Ha} \cdot K_{Hb} \cdot K_{Hv} = 1.19$ $\Pi posepum ycловие прочности$ $\sigma_{Hch} \coloneqq \frac{C}{a_w \cdot u} \cdot \sqrt{T_2 \cdot \frac{K_H}{b_2} \cdot (u+1)^3} = 365.171$	$m_n = 382.5$ $d_n := d_0 - 2.5 \cdot m_1 = 376.875$
$b_2 := 70$ $b_1 := b_2 + 5 = 75.56$ $D_1 := 75$ $D_2 := 75$ $D_3 := 75$ $D_4 := 75$ $D_5 := 75$ $D_6 := 75$ $D_6 := 75$ $D_7 := 75$ $D_8 := 75$ $D_$	лим ширину
Π роверочный расчёт $\psi_{bd} \coloneqq \frac{b_2}{d_1} = 1.029$ $V \coloneqq \omega_1 \cdot \frac{d_1}{2 \cdot 1000} = 2.588 - 8 \ cmene + e \ddot{u} \ mov + o c m u$ $K_{Hb} \coloneqq 1.09 K_{Ha} \coloneqq 1.04 K_{Hv} \coloneqq 1.05$ $K_{H} \coloneqq K_{Ha} \cdot K_{Hb} \cdot K_{Hv} = 1.19$ Π роверим условие прочности $\sigma_{Hch} \coloneqq \frac{C}{a_w \cdot u} \cdot \sqrt{T_2 \cdot \frac{K_H}{b_2} \cdot (u+1)^3} = 365.171$	$b_{\underline{2}} \coloneqq 70$
$\psi_{bd} := rac{b_2}{d_1} = 1.029$ $V := \omega_1 \cdot rac{d_1}{2 \cdot 1000} = 2.588 \qquad -8 \ cmene нe \ u \ mo \ u + oc m u$ $K_{Hb} := 1.09 \qquad K_{Ha} := 1.04 \qquad K_{Hv} := 1.05$ $K_{H} := K_{Ha} \cdot K_{Hb} \cdot K_{Hv} = 1.19$ $Проверим \ yc \ no \ u = npo \ u + oc m u$ $\sigma_{Hch} := rac{C}{a_w \cdot u} \cdot \sqrt{T_2 \cdot rac{K_H}{b_2} \cdot (u+1)^3} = 365.171$	$5 = 75.56$ $b_1 = 75$
$ar{V}:=\omega_1\cdotrac{d_1}{2\cdot 1000}=2.588$ — 8 степеней точности $K_{Hb}:=1.09$ $K_{Ha}:=1.04$ $K_{Hv}:=1.05$ $K_{H}:=K_{Ha}\cdot K_{Hb}\cdot K_{Hv}=1.19$ Проверим условие прочности $\sigma_{Hch}:=rac{C}{a_w\cdot u}\cdot\sqrt{T_2\cdotrac{K_H}{b_2}\cdot(u+1)^3}=365.171$	очный расчёт
K_{Hb} := 1.09 K_{Ha} := 1.04 K_{Hv} := 1.05 K_{H} := $K_{Ha} \cdot K_{Hb} \cdot K_{Hv} = 1.19$ $\Pi posepum y cлoвие прочности$ $\sigma_{Hch} := \frac{C}{a_w \cdot u} \cdot \sqrt{T_2 \cdot \frac{K_H}{b_2} \cdot (u+1)^3} = 365.171$	=1.029
$K_H:=K_{Ha} \cdot K_{Hb} \cdot K_{Hv}=1.19$ $ Проверим условие прочности $ $ \sigma_{Hch}:=\frac{C}{a_w \cdot u} \cdot \sqrt{T_2 \cdot \frac{K_H}{b_2} \cdot (u+1)^3}=365.171 $	$\frac{d_1}{2 \cdot 1000}$ = 2.588 - 8 степеней точности
Проверим условие прочности $\sigma_{Hch} \coloneqq \frac{C}{a_w \cdot u} \cdot \sqrt{T_2 \cdot \frac{K_H}{b_2} \cdot (u+1)^3} = 365.171$	09 $K_{Ha} := 1.04$ $K_{Hv} := 1.05$
$\sigma_{Hch} \coloneqq \frac{C}{a_w \cdot u} \cdot \sqrt{T_2 \cdot \frac{K_H}{b_2} \cdot (u+1)^3} = 365.171$	$_{a} \cdot K_{Hb} \cdot K_{Hv} = 1.19$
	им условие прочности
$abs(\sigma_{\mu} - \sigma_{Hob})$	$\frac{C}{w \cdot u} \cdot \sqrt{T_2 \cdot \frac{K_H}{b_2} \cdot (u+1)^3} = 365.171$
$koef_{ch} = \frac{\langle H Heh \rangle}{\sigma_{Heh}} \cdot 100 = 7.256 < 10\%$	$\frac{\mathrm{abs}\left(\sigma_{H}-\sigma_{Hch}\right)}{\sigma_{Hch}}$ • 100 = 7.256 < 10%
Условие выполнено	Условие выполнено

Расчет открытой передачи

Исходные данные

Т на меньшей звездочке

 $T_{10} = T_2 = 4.454 \cdot 10^5$

Частота вращения ведущей звездочки $n_{10} = n_2 = 129.821$

Мощность на ведущей звездочке

 $P_{10} = P_2 \cdot 1000 = 6.055 \cdot 10^3$

Передаточное число открытой цепной передачи

$$u_{12} \coloneqq u = 5.63$$

$$Z_{1o} := 31 - 2 \cdot u_{12} = 19.741$$
 $\overline{Z}_{1o} := \text{floor}(Z_{1o}) = 19$

$$\overline{Z_{1o}} := \text{floor}(Z_{1o}) = 19$$

Т на большей звездочке

 $T_{20} = T_3 \cdot 10^6 = 1.2 \cdot 10^6$

Частота вращения

Мощность на ведомой

 $P_{20} = P_3 \cdot 1000 = 5.455 \cdot 10^3$

ведомой звездочки

 $n_{20} = n_3 = 42.972$

звездочке

$$Z_{2o} := Z_{1o} \cdot u_{12} = 106.963$$
 $Z_{2o} := floor(Z_{2o}) = 106$

$$Z_{20} \coloneqq \operatorname{floor}(Z_{20}) = 106$$

$$uu_{12} = \frac{Z_{2o}}{Z_{1o}} = 5.579$$
 $delta_u = \frac{abs(u_{12} - uu_{12})}{u_{12}} \cdot 100 = 0.9$ <3%

$$p \coloneqq 29$$
 $m \coloneqq 1$ $K_f \coloneqq 1$

$$K_{\partial} \coloneqq 1.25 \quad K_{\mathit{H}} \coloneqq 1 \quad K_{\mathit{n}} \coloneqq 1.25 \quad K_{\mathit{CM}} \coloneqq 1.4 \quad K_{\mathit{p}} \coloneqq 1.25 \quad K_{\mathit{a}} \coloneqq 1$$

$$K_{\scriptscriptstyle \ni}\!:=\!K_{\scriptscriptstyle \partial}\!\boldsymbol{\cdot}\!K_{\scriptscriptstyle \partial}\!\boldsymbol{\cdot}\!K_{\scriptscriptstyle H}\!\boldsymbol{\cdot}\!K_{\scriptscriptstyle p}\!\boldsymbol{\cdot}\!K_{\scriptscriptstyle CM}\!\boldsymbol{\cdot}\!K_{\scriptscriptstyle n}\!=\!2.734$$

$$t \coloneqq 2.8 \cdot \sqrt[3]{T_{1o} \cdot \frac{K_{\mathfrak{z}}}{Z_{1o} \cdot p \cdot m}} = 36.472$$

Выбор цепи роликовой однорядной

$$\hat{t} = 38.10$$

$$d_1 := 22.23$$

$$d_{1-1} \coloneqq 22.23$$
 $F_{p} \coloneqq 124587$

$$B_{BH} = 25.4$$

$$h = 36.2$$

b = 58

$$h = 36.2$$
 $q = 5.5$

$$d = 11.1$$

$$S = 394$$

Проверим условие обеспечения износостойкости

 Π ри шаге цепи t = 38.1 мм -> $n_{1brack} = 500$

$$n_{1brack} > n_{1o} = 1$$

$$\widehat{V} := \frac{(Z_{1o} \cdot n_{1o} \cdot t)}{60000} = 1.566$$

$$F_t := \frac{P_{10}}{V} = 3.866 \cdot 10^3$$
 $p_p := F_t \cdot \frac{K_{3}}{S} = 26.827$

$$\bigcirc := 40 \cdot t = 1.524 \cdot 10^3$$

$$L_t \coloneqq 2 \cdot \frac{\alpha}{t} + \frac{\left(Z_{1o} + Z_{2o}\right)}{2} + \left(\frac{\left(Z_{2o} - Z_{1o}\right)}{2 \pi}\right)^2 \cdot \frac{t}{\alpha} = 147.293$$

$$L_t = 148$$

$$\alpha_{dif} \coloneqq \frac{t}{4} \cdot \left(L_t - \frac{\left(Z_{1o} + Z_{2o} \right)}{2} + \sqrt[2]{\left(L_t - \frac{\left(Z_{1o} + Z_{2o} \right)}{2} \right)^2 - 8 \cdot \left(\frac{\left(Z_{2o} - Z_{1o} \right)}{2 \cdot \pi} \right)^2} \right) = 1.538 \cdot 10^3$$

$$\alpha_{dif_2} \coloneqq 0.997 \cdot \alpha_{dif} = 1.534 \cdot 10^3$$

$$a'' \coloneqq 1521$$

Расчет и конструирование валов

На схеме видно, вал 1 - быстроходный; вал 2 - тихоходный

Быстроходный вал

 $T_6 := T_1 \cdot 1000000 = 8.282 \cdot 10^{10}$

 $d_6 := \sqrt[3]{\frac{T_6}{0.2 \cdot 25}} = 2.549 \cdot 10^3$

AUP160S8

Исполнение - ІМ1081 Мощность - 7.5 кВт

Частота вращения - 727 об/

мин

 $\frac{T_{max}}{T}$ =2.2

Диаметр вала - $d_{\ni \partial} = 48$ мм

 $d_{\partial} = 48$

 $0.8 \cdot d_{\theta} = 38.4$

Ближайшее значение по таблице:

 $d_6 = 40$ $L_6 = 82$

Диаметр под подшипник d_6 . $d_n := d_6 + 5 = 45$ MM

Диаметр заплечика примем

 $d_3 = d_n + 10 = 55$ MM

Зацепление через шпонку, шестерня отдельная $\partial e m aль d_{f1} = 64.875$ мм

$$\overline{d_{f1}} = \operatorname{round}(d_{f1}) = 65$$

$$l_{\mathit{C5}}\!\coloneqq\!b_1\!=\!75$$

Подшипники ГОСТ 8338-75 309

$$D_{\it B}\!\coloneqq\!100$$
 $d_{\it B\Pi}\!\coloneqq\!45$ $B_{\it \Pi1}\!\coloneqq\!25$ $r_{\it \Pi1}\!\coloneqq\!2.5$

$$B_{\pi_1} := 25$$

$$r_{\Pi_1} = 2.5$$

$$\frac{\left\langle D_{\mathcal{B}} - d_{\mathcal{B}\Pi} \right\rangle}{2} = 27.5$$
 $r_{\mathcal{B}} \coloneqq 0.4 \cdot \left\langle D_{\mathcal{B}} - d_{\mathcal{B}\Pi} \right\rangle = 22$

$$r_{\scriptscriptstyle B} \coloneqq 0.4 \cdot \left(D_{\scriptscriptstyle B} - d_{\scriptscriptstyle B \sqcap} \right) = 22$$

Длина участка под правым подшипником

$$l_{\Pi 1}\!\coloneqq\!B_{\Pi 1}\!+\!0\!=\!25$$

Рисунок 4 - Конструкция подшипника

Тихоходный вал

$$T_m := T_2 \cdot 1000000 = 4.454 \cdot 10^{11}$$

$$T_m \coloneqq T_2 \cdot 1000000 = 4.454 \cdot 10^{11}$$
 $d_m \coloneqq \sqrt[3]{\frac{T_m}{0.2 \cdot 15}} = 5.295 \cdot 10^3$

Примем $d_m \coloneqq 53$ мм $l_m \coloneqq 82$ мм

$$d_n = 60$$
 мм

$$d_c \coloneqq 65$$
 MM

$$d_{V6} = 75$$
 MM

$$l_c = b_2 = 70$$

Подшипник ГОСТ 8338-75 312

$$D_T = 130$$

$$d_{\tau \sigma} = 60$$

$$d_{\textit{T}\textit{\Pi}} \coloneqq 60$$
 $B_{\textit{\Pi}2} \coloneqq 31$ $r_{\textit{\Pi}2} \coloneqq 3.5$

$$r_{ extstyle extstyle 12} \coloneqq 3.5$$

$$\frac{\left(D_T - d_{T\Pi}\right)}{2} = 35$$

$$\frac{\left(D_T\!-d_{\it TII}
ight)}{2}\!=\!35$$
 $r_T\!\coloneqq\!0.4\,\left(D_T\!-d_{\it TII}
ight)\!=\!28$

Длина участка вала под ступицу

$$l_C = b_2 = 70$$

Длина участка вала под подшипник

$$l_{\Pi 2}\!:=\!B_{\Pi 2}\!+\!1\!=\!32$$

Рисунок 5 - Схема компоновки

Расчет зубчатого колеса

Параметры Значения

$$d_{cm} \coloneqq 1.6 \cdot d_c = 104$$

$$l_{cm} = 1.3 \cdot d_c = 84.5$$

$$\delta_0 \coloneqq 3 \cdot m_n = 3.75 \qquad \delta_0 \coloneqq 8$$

$$\delta_0 = 8$$

$$C = 0.3 \cdot b_2 = 21$$
 $b_2 = 70$

$$b_2 = 70$$

$$n \coloneqq 0.5 \cdot m_n = 0.625$$

$$D_0 := d_{a2} - (d_{a2} - d_{f2}) \cdot 2 - \delta_0 \cdot 2 - n \cdot 2 = 354$$

$$D_{ome} := 0.5 \cdot (D_0 + d_{cm}) = 229$$

$$d_{ome} := \frac{\left(D_0 - d_{cm}\right)}{4} = 62.5$$

$$s_{\kappa o ext{ iny neca}} \coloneqq 0.8 \cdot C = 16.8$$

$$h_{\kappa o \pi e c a} \coloneqq \frac{\left(l_{cm} - C\right)}{2} = 31.75$$

$$r := h_{\kappa o \pi e c a} \cdot 0.05 + 1 = 2.588$$

$$R := 2.5 \cdot r + 1 = 7.469$$

Выбор шпонок

Шпонка для зубчатого колеса, соединение с зубчатым колесом

T	Сечение шпонки	Глубина паза		Фаска	
Диаметр вала <i>d</i>	$b \times h$	Вала t1	Втулки t2	s×45°	
Св. 10 до 12	4 × 4	2,5	1,8	0,08-0,16	
Св. 12 до 17	5 × 5	3,0	2,3		
Св. 17 до 22	6 × 6	3,5	2,8	0,16-0,25	
Св. 22 до 30	8 × 7	4,0	3,3		
Св. 30 до 38	10 × 8	5,0	3,3		
Св. 38 до 44	12 × 8	5,0	3,3		
Св. 44 до 50	14 × 9	5,5	3,8	0,25-0,40	
Св. 50 до 58	16 × 10	6,0	4,3		
Св. 58 до 65	18 × 11	7,0	4,4		
Св. 65 до 75	20 × 12	7,5	4,9		
Св. 75 до 85	22 × 14	9,0	5,4	0,4, -0,60	
Св. 85 до 95	25 × 14	9,0	5,4		
Св. 95 до 110	28 × 16	10,0	6,4		

Шпонка для шестерни, соединение с шестерней

Пистемя по то	, Сечение шпонки	Глубі	Фаска		
Диаметр вала а	$b \times h$	Вала t_I Втулки		s×45°	
Св. 10 до 12	4 × 4	2,5	1,8	0,08-0,16	
Св. 12 до 17	5 × 5	3,0	2,3		
Св. 17 до 22	6 × 6	3,5	2,8	0,16-0,25	
Св. 22 до 30	8 × 7	4,0	3,3		
Св. 30 до 38	10 × 8	5,0	3,3		
Св. 38 до 44	12 × 8	5,0	3,3	1	
Св. 44 до 50	14 × 9	5,5	3,8	0,25-0,40	
Св. 50 до 58	16 × 10	6,0	4,3		
Св. 58 до 65	18 × 11	7,0	4,4		
Св. 65 до 75	20 × 12	7,5	4,9		
Св. 75 до 85	22 × 14	9,0	5,4	0,4, -0,60	
Св. 85 до 95	25 × 14	9,0	5,4	0,4, -0,60	
Св. 95 до 110	28 × 16	10,0	6,4		

Корпус редуктора Диаметр Толщина стенки редуктора фундаментальных болтов $l_{\omega T1} := 70$ $\delta = 10$ $d_{51} = 20$ Диаметр болтов у подшипников $d_{52} = 16$ Диаметр болтов на фланце корпуса Диаметр штифтов $d_{53} = 12$ $d_{\mathit{umu}\phi m} \coloneqq d_{\mathit{E}3} = 12$ Длина подшипниковых гнезд: Окружная скорость $L_{\text{zHe3}\partial a} := \delta + 37 + 3 = 50$ V = 1.5662.569 < 3 = 1

Крышки торцевые(накладные)

Рисунок 7 - Конструкция торцевых (накладных) крышек

Крышки быстроходного вала

$$\boxed{D_{\rm B}} \coloneqq 100 \qquad D_{\rm BK1} \coloneqq D_{\rm B} + 25 = 125 \qquad \qquad D_{\rm BK2} \coloneqq D_{\rm B} + 50 = 150 \qquad \qquad D_{\rm BK3} \coloneqq D_{\rm B} - 15 = 85$$

$$D_{\text{БK2}} = D_{\text{Б}} + 50 = 150$$

$$D_{5K3} = D_5 - 15 = 85$$

$$d_{\mathit{BK}} \coloneqq 11$$

$$d_{5K1} = 22$$
 $M_1 = 10$

$$M_1 = 10$$

$$n_{K1} \coloneqq 6$$
 $H_{K1} \coloneqq 15$

$$h_1$$
 - om $5 \partial o$ 30

$$S_{K1} = 7$$

Крышки для тихоходного вала

$$D_T \! = \! 130 \quad D_{TK1} \! := \! D_T \! + \! 25 \! = \! 155$$

$$D_{TK2} := D_T + 50 = 180$$
 $D_{TK3} := D_T - 15 = 115$

$$D_{TK3} := D_T - 15 = 115$$

$$d_{TK} = 11$$

$$d_{TK1} = 22$$

$$M_2 = 10$$

$$K_2 := 6$$

$$d_{T\!K}\!\coloneqq\!11 \qquad d_{T\!K1}\!\coloneqq\!22 \qquad M_2\!\coloneqq\!10 \qquad n_{\!K2}\!\coloneqq\!6 \qquad H_{\!K2}\!\coloneqq\!15$$

$$S_{K2} \coloneqq 7$$

+	/ ₋ - 2	_ 9 _ 6	M_{k2} :			
		_ "	$=6.295 \cdot 10^5$			
d_{npos} :=	$=\sqrt[3]{rac{M_{ m SKB}}{0.1\cdot 60}}$	-=47.165		$d_{c.m.} \coloneqq$	65	
$\delta := \frac{d_{c.}}{}$	$\frac{md_{npos}}{a}$.	100 = 27.4	$ \delta = 2$	27.439	70	
	$a_{c.m.}$					
	fy, мм	fx, мм	$fmax = \sqrt{f_x^2 + f_y^2}$	[f]		
	0,0104	0	0,0104	0,013	1,2	
	θΑνz. pað	θAxz. pað	$\theta A \Sigma = \sqrt{\theta_{Ayz}^2 + \theta_{Axz}^2}$	[\theta]	резерв (раз)	
	, , _F	, , ,	Ay2 Ax2	L ÷ J		
	0,00026	0,00261	0,002622918	0,005	1,91	
	ввуг, рад	вВуг, рад	$\theta B \sum = \int \theta_{\text{Byz}}^2 + \theta_{\text{Bxz}}^2$	[\theta]	резерв (раз)	
	-0,000073	-0,0007375	0,000741104	0,005	6,75	