OBSERVATIONS OF TEMPERATURE FINESTRUCTURE IN THE GULF OF CALIFORNIA MBT D.. (U) SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA C A PADEN ET AL. MAR 85 SIO-REF-86-14 N80814-85-C-8184 F/G 8/18 AD-A171 920 1/3 UNCLASSIFIED NL

MICROCOPY RESOLUTION (251 FILL)

CALLES OF CALLES OF CONTROL OF CONTROL OF CONTROL OF CALLES

OBSERVATIONS OF TEMPERATURE FINESTRUCTURE IN THE GULF OF CALIFORNIA

OBSERVATIONS OF TEMPERATURE FINESTRUCTURE IN THE GULF OF CALIFORNIA

XBT Data Report

November 1984 / March 1985

Cynthia A. Paden

M. C. Hendershott

QUALITY NEW ECTED

SIO Reference Series #86-14

COLOR BENEVIA BENEVIA DE LA COLOR BENEVIA DE LA COLOR DE LA COLOR

This document has been appliered for public release and which is distribution is unlimited.

Table of Contents

List of Figures	i
List of Tables	iii
Abstract	iv
Acknowledgements	v
Introduction	1
Data Acquisition	1
Data Processing	3
Data Calibration	5
Report Format	12
XBT Data	19
A. Pichicuco VI - November 1984	19
1. Guaymas Basin	21
a. MXO Section	25
b. MX1A Section	43
c. MX1B Section	53
c. MX1C Section	63
e. MX2A Section	75
f. MX2B Section	89
2. Ballenas Channel	105
a. AXBT1 Section	109
b. AXBT2 Section	125
3. San Esteban Sill	147
a. CAP1 Section	151
b. CAP2 Section	185
c. Tiburon Section	211
B. Pichicuco VII - March 1985	217
1. San Esteban Sill	219
a. MX3 Section	223
b. CAP3 Section	231
References	255
Appendices	257
A. Program XBTFS.FTN	259
B. Program DIGSCL.F77	265
C. Sea Level Elevations for the Northern Gulf of California	271

List of Figures

Figure 1.	Gulf of California	2
Figure 2.	XBT Drop 138	6
Figure 3.	XBT Drop 139	7
Figure 4.	CTD Station PC6114	8
Figure 5.	Temperature Differences: XBT versus Bucket and SAIL Calibration Temperatures for November 1984.	10
Figure 6.	Temperature Differences: XBT versus Bucket and SAIL Calibration Temperatures for March 1985.	11
Figure 7.	Bottom Pressure at San Francisquito Bay. 20-21 November 1984.	23
Figure 8.	MX0 Section: XBT Station Locations	25
Figure 9.	MX1A Section: XBT Station Locations	43
Figure 10.	MX1B Section: XBT Station Locations	53
Figure 11.	MX1C Section: XBT Station Locations	63
Figure 12.	MX2A Section: XBT Station Locations	75
Figure 13.	MX2B Section: XBT Station Locations	89
Figure 14.	Bottom Pressure at San Francisquito Bay. 22-23 November 1984.	107
Figure 15.	AXBT1 Section: XBT Station Locations	109
Figure 16.	AXBT2 Section: XBT Station Locations	125
Figure 17.	Bottom Pressure at San Esteban Island. 24-25 November 1984 - Spring Tides	149
Figure 18.	CAP1 Section: XBT Station Locations	151

Figure 19.	Miscellaneous Sill XBT Stations	153
Figure 20.	Bottom Pressure at San Esteban Island. 28-29 November 1984 - Neap Tides.	183
Figure 21.	CAP2 Section: XBT Station Locations	185
Figure 22.	Tiburon Section: XBT Station Locations	211
Figure 23.	Bottom Pressure at San Esteban Island. 8-9 March 1985.	221
Figure 24.	MX3 Section: XBT Station Locations	223
Figure 25.	CAP3 Section: XBT Station Locations	231

List of Tables

Table 1.	Statistics for Calibration Temperature Differences	13
Table 2.	XBT Station List	15
Table 3.	Missing and Incomplete XBT Stations	18

ABSTRACT

This report contains XBT data collected in the Gulf of California as part of a cooperative research program between Scripps Institution of Oceanography (SIO) and Centro de Investigación Cientifica y de Educación Superior de Ensenada (CICESE). Data were collected during November 1984 (Pichicuco VI) and March 1985 (Pichicuco VII) on board R/V New Horizon. XBT drops were made primarily in three locations: near a ridge at the northern end of Guaymas Basin and near the sills located at the southern end of Ballenas Channel and between the islands of San Lorenzo and San Esteban. Stations at these locations were repeated during various phases of the tide to observe changes in temperature finestructure and to describe the evolution of a frontal system near San Esteban Island.

Acknowledgements

The data presented in this report are in part the result of experiments designed and conducted by Dr. A. Badan-Dangon of Centro de Investigación Cientifica y de Educación Superior de Ensenada (CICESE).

The successful completion of this work was made possible with the help of many individuals: Roger VanWyckhouse of NORDA, Mississippi, lent the XBT recording equipment. His generosity in assisting us in the preparation and execution of this experiment was greatly appreciated. Thanks also go to the watch standers during the field experiment: Dave Muus, Walt Waldorf, Jim Wells, Janet Becker, David Stadille, Geoff Hargreaves, Pedro Calderon, and Juan Gaviño; the captain and crew of the R/V New Horizon who skillfully maneuvered the ship through 5 knot currents: Ana Carrasco for help in digitizing the XBT traces; Lynn Abbott, Jim Charters and Tom Hylas of the SIO Shipboard Computer Group for their assistance in the operation and maintenance of the digitizing system; Jennifer Davis and Vanessa Cunningham for help in shipping the XBT equipment; and especially to Nan Bray with whom we had many helpful discussions about the data processing.

The collection and processing of this data was funded by NASA/JPL Contract 956559.

ONR Contract N00014-85-C-0104, NSF Grant No. OCE83-18288, and UC ship funds. The text was typed by Joan Semler and the graphics were done by Mike Clark.

INTRODUCTION

During November 1984 and March 1985. XBT surveys were made in the northern Gulf of California from the R/V New Horizon. These data, in conjunction with CTD, current, bottom pressure, and meteorological data (Bray et al., 1986a,b: Merrifield et al., 1986; Candela et al., 1984, 1985) were collected by Scripps Institution of Oceanography (SIO) and Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) as part of the joint physical oceanography field program, Pichicuco.

The XBT drops were made in three locations: near a ridge at the northern end of Guaymas Basin. and near the sills located at the southern end of Ballenas Channel (Salsipuedes Sill)
and between the islands of San Lorenzo and San Esteban (San Esteban Sill) (Figure 1). This
system of sills separates the deep waters of the northern and southern gulf. permitting exchange
primarily in the upper 500 m. Restriction of the flow, in conjunction with the large tidal ranges
in the gulf, results in amplified tidal currents of up to 5 knots during spring tides (Bray and
Robles, 1986).

XBT transects were made during spring and neap tides to look for changes in vertical temperature finestructure relative to both the semidiurnal and fortnightly tidal cycles. Surveys were also made through a cold temperature anomaly near San Esteban Sill to describe any changes in the size and horizontal temperature gradients of the frontal system which delineated this region of particularly strong mixing.

DATA ACQUISITION

Temperature profiles were obtained using Sippican T-7 and T-4 Expendable Bathythermograph (XBT) probes with nominal depths of 760 and 460 meters respectively. These probes contain a thermistor, with a time constant of approximately 110 m/sec, whose resistance is a nonlinear function of temperature (Sippican Corporation, 1973b). Output voltages were recorded simultaneously on a Sippican MK-2A strip-chart recorder and a Bathy Systems digital

Figure 1. Gulf of California

recorder (Model SD-783-C).

During the November 1984 cruise the signal to the digitizer failed after XBT drop 45. The remaining stations for that cruise, XBT046-XBT176, were hand-digitized on a Bendix digitizer interfaced to the VAX-750 maintained by the SIO Shipboard Computer Group. In March, this problem had been corrected and Stations XBT201-XBT227 were digitized on the Bathy Systems digital recorder. The processing of the two data types is discussed separately below.

DATA PROCESSING

A. Bathy Systems Digitized XBT Data

Data acquired by the Bathy Systems Digital Recorder (Bathy Systems Inc., 1979) were written at 10 Hz to a BASF digital cassette. The data were decoded and scaled to obtain the station header information and corresponding time and voltage measurements (see Program XBTFS.FTN, Appendix A). Time is measured in tenths of seconds elapsed since the XBT probe entered the water. With an average fall rate of 6.3 m/s (Sippican Corporation, 1973b), this time interval corresponds to a depth resolution of approximately 0.6 m. Time is converted to depth by considering the fall-rate characteristics of the probe, the fall rate decreasing as the copper telemetry wire is unspooled upon descent. This change in fall rate is accounted for in the depth equation (Bathy Systems Inc., 1979):

$$Z = 6.472 \cdot t - 2.16E - 03 \cdot t^2 \tag{1}$$

where Z is depth in meters and t is time in seconds.

The output from the analog signal conditioning board of the Sippican recorder has a range of +0 to +5 volts corresponding to temperatures of -2.2 °C to +35.5 °C. To first order the temperature is a linear function of voltage. In actuality a small, nearly sinusoidal, correction must also be applied to account for the non-linear temperature-resistance characteristics of the XBT thermistor (Sippican Corp., 1973a). This is reflected in the equation for conversion of voltage to

temperature (Bathy Systems Inc., 1979):

$$T = A + B * V + C * V^{2} + D * V^{3} + E * V^{4}$$

$$A = -1.97539$$

$$B = 8.46492$$

$$C = -5.76449 \text{ E-01}$$

$$D = 8.31771 \text{ E-02}$$

$$E = -1.18495 \text{ E-03}$$

where T is temperature in degrees Celsius and V is volts.

B. Hand-Digitized XBT Data

The output voltage also drives the pen of the strip-chart recorder. After calibration of the recorder, voltage is a linear function of distance along the X-axis of the chart paper. The chart paper is scaled such that the nonlinear relationship between temperature and resistance is taken into account and temperature/depth pairs can be read directly from the plot. Hand-digitization of the XBT traces is equivalent to deriving a voltage (after appropriate scaling) and nonlinearities must be accounted for separately.

Since the Bathy Systems digitized data could also be hand-digitized, an independent measure of the voltage range for the chart paper could be calculated. Voltages at particular depths for several stations were regressed against corresponding hand-digitized distances along the X-axis. The resulting conversion was 0.6995 volts, inch ± .004 with an offset of 0.032 volts ± .011 at the 95% confidence interval.

Provided the electronics of the XBT recorder are stable, the voltage scale should remain constant. However, drift in the mechanical components can cause the +0 volt pen position to change. To correct for this offset in the hand-digitized XBT traces, the data are always referenced to the center calibration line. Distance along the X-axis is then scaled as volts using the

slope calculated in the regression analysis, and a voltage offset appropriate for referencing to the calibration position (CALIB):

$$V = (X - CALIB) * 0.6995 + 2.476$$
 (3)

Distances along the Y-axis were converted to time using the known chart paper roll-rate of 1/15 inch per second:

time (secs) =
$$y * 15$$

Temperature and depth were then calculated using equations (1) and (2) (see Program DIGSCL.F77, Appendix B). The depth resolution for the hand-digitized data varied from 0.5 meters to 3 meters depending on the digitization.

DATA CALIBRATION

Several XBT drops were made near or during CTD casts away from the sills for intercalibration purposes. Temperatures were compared at approximately 25 depths below the thermocline in 3 corresponding CTD and Bathy Systems digitized XBT drops. Temperature differences had a mean of 0.0 °C and a standard deviation of 0.2 °C.

Since the collection of XBT data can involve a variety of electrical problems (i.e. instrument noise, cable leakage, short circuits to the ship's hull, etc.), care must be taken in deciding whether a trace is in fact a reflection of the actual temperature structure in the water column. Both CTD and XBT data taken near the sills show a high degree of vertical structure. XBT drops 138 and 139 (Figures 2 and 3) were made during the down- and upcast of CTD Station PC6114 (Figure 4, [Bray et al., 1986b]). Significant changes in temperature finestructure occur on a time scale of minutes. Some CTD casts near the sill show apparent overturning events of approximately 50 meters with temperature inversions of 1 °C and greater. Since, in most cases, the possibility of water mass intrusions and/or large overturns could not be eliminated, only

Figure 2. XBT Drop 138

marketing the contract of the

Figure 3. XBT Drop 139

Day: 330.16 SST: 16.1 Tdry: 99.9 Twet: 99.9 Wapd: 8.8 CTD #: 3 CAP1—16 REREAD ON NH 7 MAR 85 BWW 22 JAN 86 ANC CH:LTMIN,LGMIN,CW. POS:CRAD

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.6	16.600	35.079	25.688	90.0	15.855	35.038	25.831
10.0	15.771	35.037	25.847	100.0	15.831	35.037	25.836
20.0	15.792	35.035	25.841	120.0	15.783	35.033	25.845
30. 0	15.770	35.038	25.848	140.0	15.619	35.023	25.875
40.0	15.780	35.038	25.846	160.0	15.263	35.001	25.938
50.0	15.769	35.037	25.849	180.0	14.616	34.976	26.061
60.0	15.789	35.037	25.844	200.0	14.629	34.960	26.047
70.0	15.757	35.037	25.852	300.0	14.505	34.951	26.070
80.0	15.771	35.037	25.849	400.0	12.388	34.830	26.411

Figure 4. CTD Station PC6114

those stations with high frequency noise or atypical temperatures were deleted from the report.

Calibration of near surface temperatures were made for all XBT drops. Sea surface temperature measurements were made using a bucket thermometer and subsurface measurements were made by diverting water from the ship's uncontaminated sea water line through a chamber containing a platinum resistance thermometer (PRT). These 2-meter temperatures were recorded continuously on a SAIL system (Serial ASCII Instrumentation Loop). Comparison of the SAIL 2-meter temperatures to the XBT 2-meter temperatures must take into account possible warming affects while water is pumped the full extent of the ship to the sensor location as well as the lag in arrival time. In areas of large horizontal temperature gradients there will be discrepancies between XBT derived SST's and the calibration SSTs. Both temperatures, however, provide an approximate measure of the correct temperature to expect for the XBT surface temperature.

There are two sources of error in obtaining an accurate measure of sea surface temperatures with XBTs: 1) the pen slew rate, and 2) thermal adjustment of the probe's thermistor. With a thermistor time constant of 110 m/sec and an average fall rate of 6.3 m/sec. XBT derived temperatures would not be expected to accurately represent in situ temperatures until after 0.6 secs or 3-4 m below the surface. The biggest source of error, however, when using an analog recorder is the delay in pen response to changes in temperature. At the start of a drop, the pen is located at the calibration temperature position at 16.7 °C. If the surface temperatures are warm, as they are over most of the Gulf of California during spring and summer, it will take some time for the pen to arrive at the appropriate chart position corresponding to the SST. This effect can occur anywhere in the water column where there are strong vertical temperature gradients but is most pronounced at the surface.

Differences between XBT-derived 2-meter temperatures and the bucket (BKT) or SAIL temperatures for Pichicuco VI and VII are plotted in Figures 5 and 6. Outlying points (dark-

Figure 5. Temperature Differences: XBT versus Bucket and SAIL Calibration Temperatures for November 1984.

Figure 6. Temperature Differences: XBT versus Bucket and SAIL Calibration Temperatures for March 1985.

ened) present in both plots are attributable to errors in the XBT surface temperature and were deleted from the statistical analysis. Statistics of the temperature differences are presented in Table 1. Errors for Pichicuco VI are within the expected range of ± 0.2 °C, however, errors for Pichicuco VII are slightly larger than expected with a considerable offset in mean temperatures. Significant offsets can occur if the digitized data are sampled too soon after the start of the drop. Approximately 0.6 seconds are required for the thermistor probe to come into equilibrium with in situ temperatures. This time interval corresponds to a depth of 4 meters. XBT-derived temperatures are in better agreement with the calibration temperatures if these 4-meter temperatures are used in the statistical comparison (Table 1).

The bottom depth for each drop was measured by the ship's acoustic Precision Depth Recorder (PDR). Comparisons of PDR- versus XBT-derived bottom depths show differences on the order of 0-40 m. Changes in fall-rate from that predicted by the depth equation can lead to depth errors of up to 2% of the depth (Stegan et al., 1975). Discrepancies greater than the expected error are most likely due to the presence of highly variable bathymetry. In areas of steep topography, an XBT may hit bottom at a different location than that predicted from the PDR sounding. In areas of strong currents, such as near the sills, this problem is amplified.

REPORT FORMAT

The following temperature profiles are presented according to cruise and transect location. The first section includes stations taken during November 1984 (Pichicuco VI). Within this section the data are divided according to geographical location: Guaymas Basin, Ballenas Channel, and San Esteban Sill. The various transects made in each of these areas are presented separately, and are preceded by a map of the station positions. This map is an enlargement of the area marked in Figure 1. Tidal phase information for each of these regions is presented at the beginning of each geographical subsection. Bottom pressure sensors deployed during the Pichicuco field experiment provided the first tidal data for this area of the gulf. Hourly

Table 1. Statistics for Calibration Temperature Differences (°C).

Pichicuco VI

ΔT	\overline{X}	σ
XBT2-BKT	.1	.2
XBT2-SAIL	.0	.2

Pichicuco VII

ΔT	\overline{X}	σ
XBT2-BKT	.3	.2
XBT2-SAIL	.4	.3
XBT4-BKT	1	.1
XBT4-SAIL	.1	.2

XBT2 = XBT-derived 2-meter temperature XBT4 = XBT-derived 4-meter temperature

BKT = Bucket thermometer SST

SAIL = SAIL System PRT 2-meter temperature

averages of bottom pressure (mbars) for San Francisquito (Northern Guaymas Basin and Ballenas Channel), and San Esteban are plotted for each period during which XBT data were collected (Merrifield et al., 1986). Additional tidal information for the northern gulf is given in Appendix C. The second section of the report contains data for March 1985 (Pichicuco VII), and is organized in the same manner as Section 1.

Each data page contains a plot of the XBT trace plus a subsample of the data at 10 meter intervals. Across the top of each page are the XBT drop number, latitude and longitude, and local date and time (Mountain Standard Time, MST). Below each plot additional station information is listed as follows: 1) XBT drop number, 2) XBT probe type, 3) radar point*, range and bearing (if available), 4) distance in km from 27 °N. 111 °W perpendicular to and parallel to Gulf axis (324 °T), 5) Julian day, 6) GMT, 7) PDR bottom depth/XBT depth of failure, 8) bucket thermometer SST (°C), 9) SAIL SST (°C), 10) XBT 2M temperature (°C), and 11) station header: location, name and tidal phase.

The XBT stations presented in this report are listed in Table 2. A number of drops failed due to wire breakage, fouling on the ship, or some other electrical problem. The relatively high failure rate is a result of using XBT probes which had been stored for some time. XBT stations were numbered consecutively, so failed drops will be evident as a missing number in the sequence. Missing stations are listed in Table 3, along with stations which are missing data as a result of some failure at depth. The station names, i.e. MX0-3, listed in the header below each plot are in numerical order, corresponding only to successful drops within each transect.

TOTAL PROPERTY OF THE PROPERTY OF THE PROPERTY OF

CARACA BUCKARA

^{*}SE = SW tip of Isla San Esteban
WL = Punta Willard on Isla Tiburon
PSWL = Point South of Punta Willard

Table 2. XBT Station List

P	I	СН	I	a	Ю	0	٧	I
---	---	----	---	---	---	---	---	---

Station	L	at	Lo	ng		Date	•	MST	Depth	Across Gulf	Along Gulf
XBT001	28	40.2N	112	40 . SW	15	NOV		1333L	550m	-24.20km	247.00 km
XBT002	27	43.5N	112	2.7W	20	NOV		511L	1500m	-36.10km	125.80km
XBT003 XBT004	27 27	44.7N 45.7N	112 112	5.1W 7.6W	20 20	NOV		531L 545L	1500m 1500m	-38 . 00 km -39 . 40 km	129.90km 133.20km
XBT005	27	47.4N	112	9.7W	20	NOV		600L	1380m	-41.10km	138.40km
XBT006	27	48.4N	112	12.2W	20	NOV		615L	1214m	~43.40km	142.30km
XBT007 XBT008	27 27	49.9N 56.9N	112 112	15.1W 17.5W	20 20	NOV		630L 645L	1260m 1158m	-45 . 60 km -47 . 70 km	147.30km 151.10km
XBT009	27	52.5N	112	21.2W	20	NOV		706L	1092m	-50.80km	157.10km
XBT010	27	54.8N	112	22.7W	20	NOV		720L	809m	-50 . 30 km	162.00km
XBT011 XBT012	27 27	56.9N 59.2N	112 112	24.1W 25.6W	20 20	NOV		735L 750L	982n 859n	~49 . 90 km ~49 . 30 km	166 . 50 km 171 . 40 km
XBT015	28	2.8N	112	28.0W	20	NOV		813L	982m	-48 . 60 km	179.00km
XBT017	28	6.2N	112	30.0W	20	NOV		834L	825m	-47.50km	186.00 km
XBT019 XBT020	28 28	6.9N 7.8N	112 112	29.4W 29.1W	20 20	NOV		935L 943L	805m 768m	-45 . 90 km -44 . 50 km	186.50 km 187.60 km
XBT021	28	9.3N	112	28.6W	20	NOV		951L	642m	-42.20km	189.30km
XBT022	28	10.6N	112	28.2W	20	NOV		959L	568m	-40.30km	190.90km
XBT023 XBT024	28 28	11.9N 13.6N	112 112	27.8W 27.4W	20 20	NOV		1007L 1015L	459m 551m	-38 . 30 km -35 . 90 km	192.40km 194.60km
XBTe25	28	14.8N	112	27.0W	20	NOV		1023L	720m	-34.10km	196.00km
XBT026	28	16.3N	112	26.6W	20	NOV		1031L	840m	-31.90km	197.80km
XBT027 XBT028	28 28	16.9N 15.9N	112 112	25.1W 25.3W	20 20	NOV		1224L 1232L	982m 810m	-29.20km	197.30km 196.00km
XBT029	28	14.8N	112	25.7W	20	NOV		1232L	648m	-30 . 60 km -32 . 30 km	194.70km
XBT030	28	13.2N	112	26.3W	20	NOV	84	1248L	514m	-34.90km	192.90km
XBT031 XBT032	28	11.7N 10.2N	112 112	26.9W	20	NOV		1256L	660m	-37.30km	191.30km
XBT033	28 28	8.6N	112	27.4W 28.0W	20 20	NOV		1304L 1312L	796n 885n	-39 . 60 km -42 . 20 km	189.50km 187.70km
XBT034	28	7.1N	112	28.4W	20	NOV	84	132 0 L	910m	-44.40km	185.80 km
XBT035 XBT036	28	9.4N	112	26.8W	20	NOV	84	1525L	909m	~39.70km	187.70km
XBT037	28 28	10.6N 11.3N	112 112	26.5W 26.4W	20 20	NOV		1533L 1537L	892m 804m	-38.00 km -37.10 km	189.20km 190.20km
XBT038	28	12.6N	112	26.1W	20	NOV		1545L	694m	-35.30km	191.80km
XBT040	28	14.6N	112	25.6W	20	NOV		1557L	520m	-32 . 40 km	194.30km
XBT042 XBT043	28 28	15.4N 16.4N	112 112	25.8W 25.5W	2 0 20	NOV	-	1608L 1616L	579m 767m	31.80km 30.30km	195.70km 196.90km
XBT044	28	18.0N	112	25.0W	20	NOV	84	1624L	900m	-27.90km	198.80km
XBT045 XBT046	28	19.0N	112	24.5W	20	NOV		1629L	1010m	-26.10km	199.80km
XBT047	28 28	23.0N 21.5N	112 112	32.0W 29.8W	21 21	NOV		818L 830L	787m 874m	—31 . 70 km —30 . 40 km	213.00 km 208.70 km
XBT048	28	20.2N	112	28.6W	21	NOV	84	842L	904m	-30.30km	205.60 km
XBT049 XBT050	28 28	18.9N 17.2N	112 112	27.0W	21	NOV		852L 906L	932m 869m	-29.60km	202.10km 198.10km
XBT053	28	15.0N	112	25.5W 21.6W	21 21	NOV		926L	823m	-29 . 40 km -26 . 70 km	191.10km
XBT054	28	13.7N	112	20.2W	21	NOV	84	938L	827m	-26.20km	187.80km
XBT056 XBT057	28 28	11.5N 10.1N	112 112	17.9W 16.5W	21 21	NOV		958L 1011L	799m 752m	-25.60 km -25.30 km	182.30km 178.80km
XBT058	28	8.7N	112	15.2W	21	NOV		1023L	741m	-25.10km	175.50km
XBT059	28	7.1N	112	14.0W	21	NOV	84	1035L	767m	-25.30 km	172.00km
XBT060 XBT062	28 28	10.9N 13.9N	112	13.2W 16.8W	21	NOV		1446L	860m 915m	−20.00km −21.50km	176.90km 184.80km
XBT063	28	11.4N	112 112	18.1W	21 21	NOV		1507L 1522L	860m	-21.50km -26.00km	182.30km
XBT065	28	8.8N	112	18.6W	21	NOV	84	1541L	433m	-29.50km	178.90km
XBT066 XBT067	28	10.3N	112	21.7W	21	NOV		1556L	590m	-32.00km	184.20km
X81067	28 28	12.3N 14.2N	112 112	24.3W 26.5W	21 21	NOV		1611L 1625L	723m 850m	−33.20km −34.10km	189.60km 194.60km
XBT069	28	17.3N	112	28.6W	21	NOV	84	1642L	1005m	-33.40km	201.30km
XBT070 XBT072	28	18.5N	112	30.3W	21	NOV		1653L	950m	-34.40km	204.70km
XBT073	28 28	20.5N 22.8N	112 112	33.9W 34.8W	21 21	NOV		1710L 1725L	810m 623m	−37.00 km −35.60 km	211.10km 215.40km
XBT074	28	24.7N	112	36.6W	21	NOV	84	1740L	429m	-35.90km	220.00km
XBT075 XBT077	28	25.9N	112	36.3W	21	NOV		1754L	281m	-34.20km	221.50km
XBT079	28 28	30.0N 21.8N	112 112	41.3W 35.6W	22 23	NOV NOV		2318L 416L	328m 342m	-36.40km -37.80km	232.40km 214.70km
XBT080	28	22.0N	112	36.8W		NOV		427L	224m	-39.20km	216.20km

PICHICUCO VI, Contd.

Station	L	at	Lo	ng		Date	•	MST	Depth	Across Gulf	Along Gulf
XBT681	28	23.5N	112	38.0W	23	NOV	84	439L	200m	-39.10km	219.60km
XBT082	28	24.8N	112	39.8W		NOV		451L	165m	-41.00km	222.00km
XBT083	28	25.4N	112	41.1W		NOV	84	503L	208m	-41.10km	225 . 40 km
XBT984	28	26.9N	112	42.5W			84	515L	400m	-41.30km	229 . 00 km
XBT086	28	28.6N	112	44.4W			84	532L	654m	-42.70km	232.40 km
XBT087	28	29.5N	112	45.5W		NOV	-	544L	936m	-42.50km	235.70km
XBT089	28	31.7N	112	47.5W		NOV		600L	9 69m	-42.70km	240.90km
XBT090	28	33.4N	112	48.1W	23 23	NOV		615L 630L	929m 812m	-41.60km -43.20km	244 . 10km 246 . 80km
XBT091 XBT093	28 28	34.1N 39.4N	112 112	49.9W 56.6W	23	NOV		700L	1300m	-46.30km	261.20km
XBT094	28	38.5N	112	55.5W	23	NOV		903L	1265m	-45.80km	258.80 km
XBT095	28	33.0N	112	55.3W	23	NOV		1905L	453m	-51.60km	250.40km
XBT097	28	35.9N	112	52.5W	23	NOV	84	1930L	1223m	-44.70km	252 . 00 km
X8T098	28	34.6N	112	51.7W			_	1942L	965m	-45.10km	249 . 30 km
XBT099	28	33.9N	112	50.5W		NOV		1954L	914m	-44 . 30 km	247.10km
XBT161	28	31.5N	112	48.0W		NOV		2010L	969m	-43.60km	241.10km
XBT102 XBT103	28	30.0N 28.0N	112	48.0W 49.5W		NOV		2022L 2034L	351m 294m	—45 . 20km —49 . 40km	238 . 90 km 237 . 40 km
XBT105	28 28	31.5N	112 112	44.8W		NOV		2107L	980m	-39 . 30 km	238.00 km
XBT167	28	32.7N	112	42.1W		NOV		2119L	244m	-34 . 40km	237.20km
XBT108	28	33.8N	112	41.6W	23	NOV		2131L	259m	-32.60km	238.40km
XBT109	28	31.6N	112	39.5W	23	NOV	84	2150L	247m	-32 . 20 km	233.10km
XBT111	28	28.6N	112	42.1W		NOV		2214L	634m	-38.90 km	231 . 10km
XBT112	28	27.0N	112	43.8W		NOV		2226L	231m	-43 . 00 km	230.40 km
XBT113	28	26. ON	112	45.8W		NOV		2238L	250m	-46.70km	230.80km
XBT114 XBT115	28	24.0N	112 112	44.0W 41.9W	23 23	NOV		2306L 2318L	224m 111m	-46 . 50 km -42 . 50 km	226 . 10 km 225 . 70 km
XBT116	28 28	25.1N 27. 0 N	112	40.0W		NOV		2330L	454m	-37.90km	226.70km
XBT118	28	29.1N	112	36.5W	23	NOV		2354L	424m	-31 . 00 km	226.50km
XBT120	28	34.2N	112	34.4W	24	NOV		339L	573m	-22.60km	232.10km
XBT121	28	34.6N	112	34.1W	24	NOV	84	353L	542m	-21.80km	232 . 40 km
XBT122	28	35.2N	112	34.8W	24	NOV		405L	558m	-22 . 00 km	233.90km
XBT123	28	36.0N	112	35.1W		NOV		412L	558n	-21.50km	235.40km
XBT124	28	36.2N	112	35.8W	24	NOV		421L	555m	-22.20km	236.40km
XBT125 XBT126	28 28	36.1N 36.4N	112 112	36.2W 36.4W	24 24	NOV		427L 433L	511m 503m	-22.90 km -22.80 km	236 . 60 km 237 . 30 km
XBT127	28	36.5N	112	36.9W	24	NOV		439L	493n	-23.40km	237.90km
XBT128	28	36.9N	112	37.1W	24			445L	488m	-23.20km	238.70km
XBT129	28	37.2N	112	37.6W	24			457L	298m	-23.50km	239.60km
XBT130	28	38.5N	112	38.6W	24			514L	145m	-23 . 40 km	242.50km
XBT131	28	40.0N	112	39.4W	24			532L	345m	-22.80 km	245.50km
XBT132	28	41.4N	112	40.2W	24	NOV		544L	390m	-22.40 km	248.40km
XBT133 XBT134	28 28	42.9N 43.3N	112 112	41.4W 41.8W	24 24			556L 602L	452m 435m	—22 . 30 km —22 . 40 km	251 . 80 km 252 . 70 km
XBT135	28	44.9N	112	42.5W	24			614L	408m	-22.60km	254.50km
XBT137	28	34.1N	112	43.6W	24			1508L	611m	-34.90km	240.80km
XBT138	28	39.1N	112	39.5W	24	NOV	_	1954L	468m	-24.40km	244.60km
XBT139	28	37.8N	112	39.2W	24			1957L	498m	-25.00km	242.00 km
XBT140	28	35.7N	112	42.6W	25			942L	428m	-31.80km	242.20km
XBT141	28	36.1N	112	42.4W		NOV		948L	488m	-31.10km	242.60km
XBT142 XBT143	28	36.5N 37.1N	112	41.8W 40.8W		NOV		952L 958L	567m 538m	-29.90km -27.90km	242.60km 242.50km
XBT144	28 28	37. IN	112 112	40.5W	25 25			1002L	481m	-27.00km	242.40km
XBT145	28	37.8N	112	39.3W	25			1008L	221m	-25.10km	242.10km
XBT146	28	38.0N	112	38.2W		NOV		1014L	120m	-23.50km	241.40km
XBT147	28	38.1N	112	37.8W	25	NOV	84	1017L	111m	-22.80km	241.10km
XBT148	28	43.1N	112	41.1W	28			1335L	419m	-21.70km	251.80km
XBT149	28	42.2N	112	40.2W	28			1341L	382m	-21.50km	249.60km
XBT150	28	41.0N	112	39.6W	28	NOV		1347L 1351L	348m 317m	−22 . 00 km −22 . 20 km	247 . 20 km 245 . 80 km
XBT151 XBT152	28 28	40.3N 39.5N	112 112	39.2W 39.0W	28 28			1355L	227m	-22.20km	244.40km
X8T153	28	39.6N	112	38.6W	28			1359L	115m	-22.90km	243.30 km
XBT154	28	38.4N	112	38.3W	28		84	1403L	111m	-23.10km	242.10km
XBT155	28	37.5N	112	37.6W	28	NOV	84	1408L	219m	-23 . 20 km	240.10km
XBT156	28	37. ON	112	37.2W	28	NOV	84	1413L	319m	-23 . 20 km	238.90km
XBT157	28	36.2N	112	36.2W	28	NOV	84	1418L	444m	-22.80 km	236.80km

PICHICUCO VI, Contd.

Station	L	at	Lo	ng		Date	MST	Depth	Across Gulf	Along Gulf
XBT158	28	35.6N	112	35.6W	28	NOV 84	1423L	539m	-22.60km	235.30km
XBT159	28	35.1N	112	34.9W	28	NOV 84	1428L	555m	-22.30km	233.90km
XBT160	28	34.4N	112	34.6W	28	NOV 84	1433L	545m	-22.60km	232.50km
XBT161	28	34.6N	112	43.2W	29	NOV 84	1814L	120m	-33.80km	241.10km
XBT162	28	35.0N	112	42.5W	29	NOV 84	1822L	474m	-32.40km	241.00km
XBT163	28	35.5N	112	41.9W	29	NOV 84	1828L	487m	-31.10km	241 . 20km
XBT164	28	35.7N	112	41.2W	29	NOV 84	1834L	557m	-30.00km	240.80km
XBT165	28	36.3N	112	40.4W	29	NOV 84	1840L	568m	-28.20km	241.00km
XBT166	28	37.6N	112	39.8W	29	NOV 84	1846L	520m	-26.70km	241.40km
XBT167	28	37.2N	112	39.1W	29	NOV 84	1851L	407m	-25.50km	241.10km
XBT168	28	37.4N	112	38.4W	29	NOV 84	1855L	284m	-24.40km	240.70km
XBT169	28	37.8N	112	38.1W	29		1900L	141m	-23.50km	241.00km
XBT170	28	38.3N	112	37.2W	29		1905L	113m	-21.80km	240.90km
XBT171	28	38.6N	112	36.6W	29		1911L	86m	-20.70km	240.70km
XBT172	28	46.0N	112	36.7W		NOV 84	103L	214m	-12.70km	251.90km
XBT173	28	47.0N	112	35.0W	30		114L	497m	-9.30km	251.70km
XBT175	28	48.6N	112	32.5W		NOV 84	130L	506m	-4.30km	251.70km
XBT176	28	50.4N	112	39.0W		NOV 84	210L	575m	-10.90km	260.60km

PICHICUCO VII

Station	L	.a t	Lo	ng		Date	MST	Depth	Across Gulf	Along Gulf
XBT201	28	17.5N	112	26.7W	9	MAR 85	652L	961m	-30.70km	199.70km
XBT202	28	20.6N	112	30.1W	9	MAR 85	717L	760m	-31.80km	207 . 60 km
XBT203	28	28.3N	112	36.9W	9	MAR 85	806L	330m	-32,40km	225.70 km
XBT204	28	31.0N	112	38.5W	9	MAR 85	828L	282m	-31.50km	231.20km
XBT205	28	34.2N	112	38.6W	9	MAR 85	849L	612m	-28.20km	236.10km
XBT206	28	36.0N	112	38.7W	9	MAR 85	901L	567m	-26.30 km	238.90km
XBT208	28	44.3N	112	42.1W	9	MAR 85	2105L	410m	-21.70km	254.50km
XBT209	28	43.5N	112	41.5W	9		2119L	449m	-21.80km	252.80km
XBT210	28	42.4N	112	40.6W	9		2125L	456m	-21.80km	250.20km
XBT211	28	41.4N	112	40.0W	9		2132L	394m	-22.10km	248.20km
X8T212	28	40.6N	112	40.0W	9		2138L	396m	-23.00 km	247.00km
XBT213	28	39.6N	112	39.0W	9	MAR 85	2145L	220m	-22.80km	244.50km
XBT214	28	38.8N	112	39.5W	9		2150L	170m	-24.30 km	243.80km
XBT215	28	37.6N	112	38.5W	9		2159L	300m	-24.30 km	241.10km
XBT216	28	36.6N	112	38.0W	ğ		2204L	390m	-24.70km	239.10km
X8T217	28	35.9N	112	37.5W	9		2210L	539m	-24.80km	237.60km
XBT218	28	35.4N	112	37.0W	9		2216L	519m	-24.70km	236.30km
XBT219	28	34.5N	112	36.0W	9	MAR 85	2222L	485m	-24.40km	234.00 km
XBT220	28	33.7N	112	35.5W	9		2228L	489m	-24.60km	232.40km
XBT221	28	33.0N	112	34.6W	9		2234L	520m	-24.20km	230.50km
XBT222	28	32.3N	112	34.0W	9		2240L	574m	-24.10km	228.80km
X8T223	28	31.0N	112	33.0W	9		2248L	627m	-24.20km	225.90km
XBT224	28	29.0N	112	31.1W	9		2306L	828m	-23.90km	221.10km
XBT225	28	26.4N	112	28.7W	9		2324L	970m	-23.60km	214.90km
XBT226	28	24.0N	112	26.8W	9		2339L	653m	-23.70km	209.50km
Y9T227	28	22 KM	112	25 AW	_	MAP 85	23541	988	-23 40km	206 10km

Table 3. Missing and Incomplete XBT Stations

Missing	Incomplete
XBT013	XBT001
XBT014	XBT036
XBT016	XBT044
XBT018	XBT048
XBT039	XBT058
XBT041	XBT065
XBT051	XBT093
XBT052	XBT094
XBT055	XBT106
XBT061	
XBT064	
XBT071	
XBT076	
XBT078	
XBT085	
XBT088	
XBT092	
XBT096	
XBT100	
XBT104	
XBT105	
XBT110	
XBT117	
XBT119	
XBT136	
XBT174	
XBT207	
XBT228	

Pichicuco VI

November 1984

Guaymas Basin

Figure 7. Bottom Pressure at San Francisquito Bay. 20-21 November 1984.

Figure 8. MX0 Section: XBT Station Locations

A CONTRACTOR OF THE PARTY OF TH

XBT DROP 603 T-7 RADAR: none GULF COURDS: -38.0 129.9 JDAY 325 1231Z DEPTH 1500m/760m SST 23.20 2M TEMPS: SAIL 23.48 XBT GULF OF CALIFORNIA: MX0-2, SPRING TIDE (NO DATA UNTIL 35 M)

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
40	23.4	230	12.2	420	8.5	610	6.4
50	23.4	240	12.0	430	8.3	620	6.4
60	21.3	250	11.8	440	8.2	630	6.3
70	20.1	260	11.4	450	8.1	640	6.3
80	18.8	270	11.1	460	8.0	650	6.2
90	17.5	280	10.9	470	7.9	660	6.1
100	16.9	290	10.8	480	7.8	670	6.1
110	16.2	300	10.7	490	7.7	689	6.0
120	15.5	310	10.4	500	7. 6	690	5.9
130	15.1	320	10.1	510	7.5	700	5.8
140	14.4	330	10.0	520	7.4	710	
							5.8
150	14.3	340	9.6	530	7.3	720	5.7
160	14.0	350	9.4	540	7.1	730	5.7
170	13.9	360	9.3	550	7.1	740	5.6
180	13.5	370	9.2	560	7.0	750	5.5
190	13.2	380	9.0	570	6.9	760	5.5
200	13.0	390	8.9	580	6.7		
210	12.7	400	8.9	590	6.6		
220	12.5	410	8.8	600	6.6		

XBT DROP 007 T-7 RADAR: none GULF COORDS: -45.6 147.3 JDAY 325 1330Z DEPTH 1260m/760m SST 22.55 2M TEMPS: SAIL 22.90 XBT 22.80 GULF OF CALIFORNIA: MX0-6, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	22.8	200	13.1	390	8.9	580	6.7
20	22.8	210	12.8	400	8.7	590	6.5
30	22.7	220	12.6	410	8.6	500	6.5
40	20.6	230	12.4	420	8.4	610	6.4
50	19.9	240	12.2	430	8.2	620	6.3
60	19.0	250	11.7	440	8.1	630	6.2
70	18.1	260	11.4	450	8.1	640	6.2
80	17.6	270	11.0	460	8.0	650	6.1
90	17.3	280	10.7	470	7.9	660	6.1
100	16.4	290	19.6	480	7.7	670	6.0
110	15.9	300	10.2	490	7.6	680	6.0
120	15.6	310	10.1	500	7.4	690	5.9
130	15.3	320	10.0	510	7.2	700	5.8
140	14.9	330	9.9	520	7.2	710	5.7
150	14.4	340	9.7	530	7.1	720	5.7
160	13.9	350	9.7	540	7.0	730	5.6
170	13.5	360	9.4	550	6.9	740	5.6
180	13.3	370	9.3	560	6.9	750	5.5
190	13.2	380	9.0	570	6.8	760	5.4

8.8

8.7

380

6.8

6.7

6.6

750

760

5.5

5.4

560

570

170

180

190

13.4

12.9

520 530

540

550

560 570

8.6

8.3

8.1

8.0 7.8

6.5 6.4 6.3 6.2

15.6 15.2 14.9 14.6 14.4 14.3

180

380

10.0

9.9 9.9 9.7

9.7

THE PROPERTY OF THE PROPERTY O

DESCRIPTION OF THE PROPERTY AND PROPERTY AND

XBT DROP 619 T-7 RADAR: none GULF COORDS: -45.9 186.5
JDAY 325 1635Z DEPTH 805m/760m SST 20.05 2M TEMPS: SAIL 19.94 XBT 19.96
GULF OF CALIFORNIA: END MXO LINE, MXO-14, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP	z	TEMP
10	19.6	200	12.8	390	8.7	580	7.3
20	19.5	210	11.8	400	8.6	590	7.2
30	19.3	220	11.3	410	8.5	600	7.2
40	19.1	230	11.2	420	8.3	610	6.9
50	19.6	240	11.1	430	8.3	629	6.7
60	18.4	250	11.1	440	8.3	630	6.6
70	16.5	260	10.7	450	8.1	640	
80	15.8	270	10.6	460	8.1	650	6.4
90	15.6	280	10.6	470	7.9		6.2
100	15.3	290	10.4	480		660	6.1
110	15.0	300			7.8	670	6.1
120	14.5	310	9.8	490	7.7	680	6.0
130	13.5		9.7	500	7.7	690	5.8
140		320	9.7	510	7.6	700	5,8
	13.4	330	9.6	520	7.5	710	5.7
150	13.3	340	9.5	530	7.5	720	5.7
160	13.3	350	9.2	540	7.4	730	5.5
170	13.2	360	8.9	550	7.4	740	5.5
180	13.2	370	8.8	560	7.4	750	5.5
190	12.9	380	8.7	570	7.3	760	5.4

Figure 9. MX1A Section: XBT Station Locations

XBT DROP 020 T-7 RADAR: none GULF COORDS: -44.5 187.6
JDAY 325 1643Z DEPTH 768m/760m SST 20.20 2M TEMPS: SAIL 20.14 XBT 20.27
GULF OF CALIFORNIA: GUAYMAS BASIIN, BEGIN MX1A LINE; MX1A-1, SPRING TIDE

Z	TEMP	Z	TEMP	Ź	TEMP	Z	TEMP
10	20.1	200	11.7	390	8.6	580	6.4
20	20.0	210	11.3	400	8.4	590	6.2
30	19.3	220	11.2	410	8.1	600	6.2
40	19.2	230	11.0	420	7.9	610	6.2
50	18.9	240	10.9	430	7.8	620	6.1
60	18.5	250	10.8	440	7.7	630	6.1
70	16.7	260	10.7	450	7.7	640	6.0
80	15.7	270	10.6	460	7.7	650	5.9
90	15.6	280	10.4	470	7.6	660	5.9
100	15.5	290	10.4	480	7.6	679	5.9
110	15.5	300	10.4	490	7.6	680	5.8
120	15.3	310	10.1	500	7.6	690	5.9
130	14.5	320	10.0	510	7.5	700	5.7
140	14.1	330	9.8	520	7.5	710	5.6
150	13.1	340	9.6	530	7.5	720	5.6
160	13.0	350	9.5	540	7.1	730	5.6
170	12.9	360	9.4	550	7.0	740	5.5
180	12.7	370	8.9	560	6.9	750	5.4
190	12.1	380	8.7	570	6.8	760	5.4

consiste materials variables

THE PROPERTY OF THE PROPERTY O

Z	TEMP	Z	TEMP	Z	TEMP
10	20.1	200	12.7	390	8.8
20	19.5	216	12.4	400	8.6
30	19.1	220	11.8	410	8.4
40	19.0	230	11.5	420	8.1
50	18.9	240	11.2	430	7.8
60	18.7	250	11.1	440	7.7
70	17.9	260	11.1	450	7.7
80	15.9	270	11.0	460	7.7
90	15.7	280	11.0	470	7.6
100	15.6	290	10.7	480	7.6
110	15.6	300	10.2	490	7.6
120	15.4	310	10.1	500	7.1
130	14.7	320	10.1	510	7.0
140	14.2	330	10.0	520	6.8
150	13.3	340	9.8	530	6.7
160	13.1	350	9.6	540	6.5
170	12.8	360	9.6	550	6.3
180	12.8	370	9.5	560	6.1
190	12.7	389	9.0	570	6.0

XBT DROP 022 T-7		GULF COORDS: -40.3	
JDAY 325 1659Z	DEPTH 568m/566m SST 20.30	2M TEMPS: SAIL 20.24	XBT 20.42
GULF OF CALIFORNIA:	GUAYMAS BASIN, MX1A-3		

Z	TEMP	Z	TEMP	Z	TEMP
10	20.1	200	12.4	390	8.1
20	19.9	210	12.4	400	8.1
30	18.9	220	12.3	410	7.9
40	18.6	230	12.2	420	7.9
50	18.4	240	11.8	430	7.9
60	18.0	250	11.6	440	7.8
70	16.1	260	11.4	450	7.7
80	15.8	270	11.0	460	7.5
90	15.7	280	10.7	470	7.3
100	15.6	290	10.5	480	6.9
110	15.2	300	10.4	490	6.7
120	14.8	310	10.7	500	6.6
130	14.6	320	10.1	510	
140	14.3				6.3
		330	9.7	520	6.0
150	13.9	340	9.4	530	5.5
160	13.7	350	9.1	540	5.3
170	13.5	360	8.6	550	5.3
180	12.7	370	8.4	560	5.3
190	12.6	380	8.2	-	

14.3 14.2 13.9 13.5

370

380

180

XBT DROP 024 T-7	RADAR: none	GULF COORDS: -35.9	194.6
JDAY 325 1715Z	DEPTH 551m/551m SST 20.20	2M TEMPS: SAIL 20.16	XBT 20.22
GULF OF CALIFORNIA:	GUAYMAS BASIN, MX1A-5, SPR	ING TIDE	

Z	TEMP	Z	TEMP	z	TEMP
10	20.0	200	12.7	390	9.1
20	20.0	210	12.4	400	8.9
30	19.9	220	12.0	410	8.9
40	19.1	230	12.0	420	8.8
50	18.9	240	11.1	430	8.7
60	17.8	250	10.5	440	8.7
70	17.3	260	10.4	450	8.3
80	16.0	270	10.3	460	8.1
90	15.7	280	10.3	470	8.0
100	15.5	290	10.2	480	8.0
110	15.5	300	10.2	490	7.9
120	15.5	310	10.2	500	7.9
130	15.4	320	10.1	510	7.9
140	15.3	330	9.9	520	7.8
150	14.2	340	9.9	530	7.8
160	14.0	350	9.9	540	7.8
170	13.8	360	9.7	550	7.8
180	13.3	370	9.5	550	
100	13.0	190	0.0		

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
_							
10	20.0	200	11.8	390	8.9	580	7.7
20	19.8	210	11.6	400	8.8	590	7.7
30	18.6	220	11.5	410	8.8	600	7.6
40	16.8	230	11.5	420	8.8	610	7.6
50	18.2	240	11.4	430	8.8	620	7.6
60	15.6	250	11.2	440	8.5	630	7.2
70	15.6	260	11.0	450	8.6	640	7.2
80	15.4	270	10.8	460	8.5	650	7.0
90	15.1	280	10.5	470	8.4	660	6.9
100	14.6	290	10.4	480	8.4	670	6.8
110	14.3	300	10.4	490	8.3	680	6.7
120	14.0	310	10.1	500	8.2	690	6.7
130	13.9	320	9.8	510	8.0	700	6.7
140	13.8	330	9.5	520	8.0	710	6.6
150	13.8	340	9.3	530	7.9	720	6.6
160	13.6	350	9.1	540	7.9		
170	13.3	360	9.1	550	7.8		
180	13.1	370	9.1	560	7.7		
190	12.7	380	9.1	570	7.7		

XBT DROP 026 T-7 RADAR: none GULF COORDS: -31.9 197.8

JDAY 325 1731Z DEPTH 840m/760m SST 20.25 2M TEMPS: SAIL 20.21 XBT 20.50

GULF OF CALIFORNIA: GUAYMAS BASIN, END MX1A LINE, MX1A-7, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP	z	TEMP
10	20.1	200	11.8	390	9.3	580	
20	20.0	210					7.7
			11.8	400	9.3	590	7.6
30	19.8	220	11.4	410	9.3	600	7.4
40	18.6	230	11.3	420	9.2	610	7.3
50	18.3	240	11.2	430	9.2	620	7.3
60	17.6	250	11.1	440	8.9	630	7.2
70	16.6	260	10.7				
				450	8.7	640	7.1
80	16.3	270	10.5	460	8.6	650	7.1
90	15.9	280	10.4	470	8.6	660	7.0
100	15.7	290	10.3	480	8.6	670	6.8
110	15.2	300	10.3	490	8.4	689	6.8
120	14.2	310	10.1	500	8.4	690	6.7
130	14.1	320	9.7	510	8.4	700	6.7
140	13.4	330	9.6	520	8.2	710	6.6
150	12.2	340	9.4	530	8.2	720	6.6
160	12.1	350	9.4	540	8.0	730	6.6
170	12.0	360	9.4	550	7.8	740	6.6
180	11.9	370	9.3	560	7.8	750	6.6
190	11.9	380	9.3	570	7.7	750	6.6

Figure 10. MX1B Section: XBT Station Locations

XBT DROP 027 T-7		GULF COORDS: -29.2 197.3
JDAY 325 1924Z	DEPTH 982m/760m SST 26	0.05 2M TEMPS: SAIL 20.16 XBT 20.49
GULF OF CALIFORNIA:	GUAYMAS BASIN, BEGIN N	IX1B LINE; MX18-1, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	19.7	200	12.0	390	9.0	580	7.2
20	19.4	210	12.0	400	9.0	590	7.0
30	18.8	220	11.8	410	9.0	600	6.8
40	16.9	230	11.5	420	8.9	610	6.8
50	16.5	240	11.3	430	8.9	620	6.8
60	16.1	250	11.2	440	8.8	630	6.8
70	15.5	260	10.5	450	8.5	640	6.8
80	15.3	279	19.5	460	8.2	650	6.8
90	14.7	280	10.2	470	8.2	660	6.7
100	14.2	290	10.0	480	8.1	670	6.7
110	14.1	300	9.4	490	8.0	680	6.5
120	14.1	310	9.2	500	7.9	690	6.5
130	13.7	320	9.2	510	7.9	700	6.4
140	13.4	330	9.1	520	7.8	710	6.4
150	13.2	340	9.1	530	7.8	720	6.4
160	12.8	350	9.1	540	7.8	730	6.4
170	12.6	360	9.1	550	7.6	740	6.3
180	12.4	370	9.0	560	7.4	750	6.3
190	12.3	380	9.0	570	7.3	760	6.3

_		_		_		_	
Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	19.9	200	12.3	390	8.7	580	7.0
20	19.7	210	11.9	400	8.7	590	7.0
30	19.3	220	11.8	410	8.6	600	6.8
40	17.3	230	11.7	420	8.6	610	6.7
50	16.5	240	11.4	430	8.5	620	6.7
60	15.7	250	11.1	440	8.3	630	6.6
70		260		450			
	15.5		10.8		8.1	640	6.6
80	15.4	270	10.6	460	8.1	650	6.6
90	15.3	280	10.4	470	7.9	660	6.5
100	14.9	290	10.3	480	7.9	670	6.5
110	14.3	300	9.8	490	7.7	680	6.4
120	14.1	310	8.9	500	7.5	690	6.4
130	13.8	320	8.9	510	7.4	700	6.4
140	13.6	330	8.9	520	7.4	710	6.4
150	13.5	340	8.9	530	7.4	720	6.4
160	13.2	350	8.8	540	7.4	730	6.4
170	12.9	360	8.8	550	7.3	740	6.4
180	12.6	370	8.8	560	7.1	750	6.4
198	12.4	380	8.8	570	7 0	760	R A

THE PROPERTY OF THE PROPERTY O

XBT DROP 029 T-7 RADAR: none GULF COORDS: -32.3 194.7 JDAY 325 1946Z DEPTH 648m/648m SST 20.25 2M TEMPS: SAIL 20.18 XBT 20.43 GULF OF CALIFORNIA: GUAYMAS BASIN, MX1B-3, SPRING TIDE

TEMP 7.0 7.0 7.0 6.9 6.9 6.9

Z	TEMP	Z	TEMP	Z	TEMP
10	20.0	200	12.0	390	8.7
20	20.0	210	11.7	400	8.6
30	19.7	220	11.6	410	8.6
40	19.6	230	11.3	420	8.5
50	18.5	240	11.0	430	8.4
60	17.2	250	10.5	440	8.0
70	16.7	260	10.3	450	8.0
80	15.5	270	10.1	460	8.0
90	15.5	280	10.0	470	7.9
100	15.4	290	9.8	480	7.3
110	14.7	300	9.6	490	7.2
120	14.2	310	9.4	500	7.2
130	14.0	320	9.5	510	7.1
140	13.9	330	9.5	520	7.0
150	13.5	340	9.2	530	7.0
160	13.1	350	9.2	540	6.9
170	12.8	360	9.0	550	6.9
180	12.7	370	8.9	560	6.9
190	12.4	380	8.8	570	7.0

estation comments.

property decreases received between reserves

XBT DROP 030 T-7 RADAR: none GULF COORDS: -34.9 192.9
JDAY 325 1948Z DEPTH 514m/508m SST 20.12 2M TEMPS: SAIL 20.26 XBT 20.43
GULF OF CALIFORNIA: GUAYMAS BASIN, MX18-4, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP
10	20.0	200	11.8	390	9.5
20	18.6	210	10.8	400	9.4
30	17.8	220	10.5	410	9.1
40	17.1	230	10.4	420	8.8
50	16.1	240	10.4	430	8.7
60	15.8	250	10.4	440	8.6
70	15.7	260	10.4	450	8.1
80	15.6	270	10.3	460	7.8
90	15.6	280	10.3	470	7.7
100	15.5	290	10.3	480	7.7
110	15.4	300	10.1	490	7.3
120	15.0	310	10.2	500	6.2
130	14.1	320	10.2	•	• • •
140	14.0	330	10.1		
150	13.0	340	10.1		
160	12.9	350	9.9		
170	12.8	360	9.6		
180	12.6	370	9.5		
190	12.3	380	9.5		

XBT DROP 031 T-7 RADAR: none GULF COORDS: -37.3 191.3
JDAY 325 1956Z DEPTH 660m/632m SST 20.25 2M TEMPS: SAIL 20.31 XBT 20.24
GULF OF CALIFORNIA: GUAYMAS BASIN, MX18-5, SPRING TIDE

TEMP 6.5 6.5 6.5 6.5 6.3 6.0

TEMP	Z	TEMP	Z	TEMP	Z
20.1	200	11.8	390	9.2	580
			400	9.0	590
					600
					610
					620
					630
					050
15.4	270	11.0	460	8.3	
14.8	289	10.8	470	8.2	
	290	10.6	480	8.2	
			490	8.1	
13.0	340	9.7			
12.7	350	9.7	540	6.9	
			550	6.9	
			560	6.7	
	20.1 19.7 18.4 17.8 16.0 15.8 15.6 15.4 14.8 14.3 14.0 13.3 14.0 13.3 12.7 12.5	20.1 200 19.7 210 18.4 220 17.8 230 16.0 240 15.8 250 15.6 260 15.4 270 14.8 280 14.3 290 14.3 300 14.0 310 13.3 320 13.1 330 13.0 340 12.7 350 12.5 360	20.1 200 11.8 19.7 210 11.6 18.4 220 11.4 17.8 230 11.3 16.0 240 11.2 15.8 250 11.1 15.6 260 11.1 15.4 270 11.0 14.8 280 10.8 14.3 290 10.6 14.3 300 10.5 14.0 310 10.5 13.3 320 10.4 13.1 330 10.2 13.0 340 9.7 12.7 350 9.4	20.1 200 11.8 390 19.7 210 11.6 400 18.4 220 11.4 410 17.8 230 11.3 420 16.0 240 11.2 430 15.8 250 11.1 440 15.6 250 11.1 450 15.4 270 11.0 460 14.8 280 10.8 470 14.3 290 10.6 480 14.3 300 10.5 490 14.0 310 10.5 500 13.3 320 10.4 510 13.1 330 10.2 520 13.0 340 9.7 540 12.7 350 9.7 540 12.5 360 9.4 550	20.1 200 11.8 390 9.2 19.7 210 11.6 400 9.0 18.4 220 11.4 410 8.8 17.8 230 11.3 420 8.8 16.0 240 11.2 430 8.7 15.8 250 11.1 440 8.6 15.6 260 11.1 450 8.4 15.4 270 11.0 460 8.3 14.8 280 10.8 470 8.2 14.3 290 10.6 480 8.2 14.3 300 10.5 490 8.1 14.0 310 10.5 500 7.9 13.3 320 10.4 510 7.8 13.1 330 10.2 520 7.7 13.0 340 9.7 530 7.4 12.7 350 9.7 540 6.9 12.5

140

190

13.4 13.2

12.9

12.4

12.0

370

380

9.7

9.6 9.2 9.2 9.0

8.9

8.7

690

700

710

720

7.5 7.3 7.2 7.1

7.0 7.0

6.9

510

560

5.7

5.7

5.6 5.6

XBT DROP 033 T-7 RADAR: none GULF COORDS: -42.2 187.7
JDAY 325 2012Z DEPTH 885m/760m SST 20.35 2M TEMPS: SAIL 20.42 XBT 20.56
GULF OF CALIFORNIA: GUAYMAS BASIN, MX1B-7, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	20.3	200	11.7	390	8.8	580	6.8
20	19.4	210	11.5	400	8.6	590	6.7
30	19.2	220	11.4	410	8.5	600	6.1
40	19.1	230	11.3	420	8.4	610	6.0
50	19.0	240	11.3	430	8.3	620	5.9
60	17.0	250	11.1	440	8.2	630	5.9
70	16.0	260	10.6	450	8.1	640	5.6
80	15.7	270	10.5	460	8.0	650	5.6
90	15.7	280	10.3	470	8.0	660	5.6
100	15.4	290	10.1	480	7.9	670	5.5
110	15.3	300	9.8	490	7.9	680	5.5
120	14.5	310	9.7	500	7.8	690	5.5
130	13.9	320	9.7	510	7.8	700	5.4
140	13.7	330	9.3	520	7.8	710	5.3
150	13.4	340	9.2	530	7.7	720	5.2
160	13.3	350	9.1	540	7.5	730	5.2
170	12.9	360	9.0	550	7.3	740	5.0
180	12.4	370	8.8	560	7.1	750	5.0
190	12.0	380	8.8	570	6.9	760	4.9

XBT DROP 634 T-7			
JDAY 325 2020Z	DEPTH 910m/760m	SST 20.27 2M TEMPS: SAIL 20.32	XBT 20.53
		END MX18 LINE; MX18-8, SPRING TIDE	

z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	20.1	200	11.6	390	8.8	580	6.5
20	19.7	210	11.4	400	8.8	590	6.5
30	19.4	220	11.3	410	8.6	600	6.5
40	19.3	230	11.3	420	8.5	610	6.5
50	19.1	240	11.1	430	8.4	620	6.5
60	18.6	250	10.8	440	8.3	630	6.2
70	16.7	260	10.6	450	8.3	640	6.2
80	16.0	270	10.6	460	8.2	650	6.2
90	15.7	280	10.5	470	8.0	669	6.2
100	15.4	290	10.1	480	8.0	670	6.1
110	15.0	300	9.9	490	7.9	680	5.6
120	14.1	310	9.8	500	7.9	690	5.6
130	13.8	320	9.7	510	7.8	700	5.6
140	13.6	330	9.7	520	7.8	710	5.6
		340	9.3	530	7.4	720	5.6
150	13.5			540	7.4	730	5.6
160	13.4	350	9.2			740	5.6
170	13.1	360	9.1	550	7.3		5.6
180	12.4	370	9.0	560	7.1	750	
190	11.8	380	8.9	570	6.6	760	5.6

Figure 11. MX1C Section: XBT Station Locations

XBT DROP 035 T-7 RADAR: none GULF COORDS: -39.7 187.7 JDAY 325 2225Z DEPTH 909m/760m SST 20.25 2M TEMPS: SAIL 20.34 XBT 20.44 GULF OF CALIFORNIA: GUAYMAS BASIN, BEGIN MX1C LINE; MX1C-1, SPRING TIDE

Z	TEMP	Z	TEMP	z	TEMP	Z	TEMP
10	20.1	200	12.2	390	9.2	580	7.7
20	18.9	210	12.1	400	9.1	590	7.5
30	18.7	220	11.9	410	8.9	600	7.5
40	18.6	230	11.5	420	8.8	610	7.4
50	17.7	240	11.4	430	8.7	620	7.1
60	15.7	250	11.3	440	8.5	630	
70	15.5	260	11.1	450	8.3		6.9
80	15.5	270	10.8	460		640	6.9
90	15.4	280			8.3	650	6.9
100	15.0		10.7	470	8.2	660	6.B
		290	10.6	480	8.0	670	6.6
110	14.4	300	10.5	490	8.0	680	6.3
120	13.7	310	10.4	500	7.9	690	6.2
130	13.3	320	10.1	510	8.0	700	6.1
140	13.1	330	9.8	520	7.9	710	5.9
150	12.8	340	9.7	530	7.9	720	5.9
160	12.6	350	9.6	540	7.9	730	5.9
170	12.5	360	9.5	550	7.9	740	5.8
180	12.4	370	9.4	560	7.8	750	5.8
190	12.4	380	9.3	570	7.7	76 0	5.7

Z	TEMP	Z	TEMP	Z	TEMP
10	20.1	200	12.1	390	9.4
20	20.0	210	11.6	400	9.5
30	19.0	220	11.3	410	9.5
40	18.4	230	11.0	420	9.5
50	18.1	240	10.9	430	9.3
60	18.1	250	10.7	440	9.2
70	18.0	260	10.6	450	9.1
80	17.0	270	10.4	460	9.1
90	15.7	280	10.3	470	9.0
100	15.5	290	10.3	480	8.9
110	15.0	300	10.0	490	8.9
120	14.4	310	9.8	500	8.7
130	13.4	320	9.7	510	8.7
140	13.7	330	9.7	520	8.6
150	13.0	340	9.7	530	8.5
160	12.8	350	9.6		
170	12.6	360	9.6		
180	12.3	370	9.3		
198	12 2	380	9.3		

TEMP TEMP TEMP 20.1 19.8 200 11.6 390 8.8 580 210 220 230 240 250 260 270 280 290 300 310 11.4 400 8.6 590 20 30 40 50 60 70 80 90 18.3 17.9 410 420 430 8.4 8.3 600 610 11.4 11.0 16.2 8.3 620 10.6 15.9 15.8 15.7 15.7 15.6 10.5 10.4 10.3 10.0 10.0 9.8 9.8 9.5 9.5 9.5 9.2 9.3 440 450 8.2 8.2 8.1 8.1 630 640 650 660 460 470 480 670 15.5 15.4 15.1 14.2 14.1 8.1 110 490 680 120 130 140 150 160 170 500 8.2 690 320 330 340 350 360 370 510 520 530 540 700 710 720 730 740 8.0 5.0 7.9 7.8 7.6 7.4 12.8 12.4 12.0 550 6.5 180 560 750 380 190 570

XBT DROP 038 T-7 RADAR: none GULF COORDS: -35.3 191.8
JDAY 325 2245Z DEPTH 694m/682m SST 20.12 2M TEMPS: SAIL 20.17 XBT 20.22
GULF OF CALIFORNIA: GUAYMAS BASIN, MX1C-4, SPRING TIDE

TEMP 7.6 7.5 7.3 7.3 7.2 7.2 7.2 7.3 7.3 7.3

Z	TEMP	Z	TEMP	Z	TEMP	
10	19.9	200	12.8	390	9.4	
20	19.3	210	12.7	400	8.9	
30	18.4	220	12.7	410	8.7	
40	18.2	230	12.2	420	8.6	
50	17.2	240	11.5	430	8.6	
60	15.8	250	11.3	440	8.5	
70	15.4	260	11.0	450	8.5	
80	15.2	270	10.3	460	8.5	
90	14.9	280	10.1	479	8.5	
100	14.8	290	9.9	480	8.5	
110	14.8	300	9.9	490	8.5	
120	14.8	310	9.8	500	8.6	
130	14.1	320	9.8	510	8.6	
140	13.9	330	9.7	520	8.6	
150	13.7	340	9.6	530	8.4	
160	13.5	350	9.6	540	8.3	
170	13.2	360	9.6	550	8.2	
180	12.9	370	9.6	560	8.1	
190	12.8	380	9.5	570	7.8	

XBT DROP 040 T-7 RADAR: none GULF COORDS: -32.4 194.3

JDAY 325 2257Z DEPTH 520m/506m SST 20.18 2M TEMPS: SAIL 20.11 XBT 20.23

GULF OF CALIFORNIA: GUAYMAS BASIN, OVER RIDGE; MX1C-5, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP
10	20.0	200	12.5	390	8.7
20	19.8	210	11.7	400	8.5
30	18.9	220	11.3	410	8.2
40	18.2	230	11.2	420	8.1
50	17.5	240	11.1	430	7.7
60	16.7	250	10.8	440	7.5
70	15.7	260	10.8	450	7.5
80	15.5	270	10.4	460	7.3
90	15.5	280	10.4	470	7.3
100	15.4	290	10.3	480	6.9
110	15.3	300	10.2	490	6.8
120	14.7	310	9.9	500	6.6
130	14.1	320	9.9		
140	13.9	330	9.7		
150	13.8	340	9.5		
160	13.5	350	9.4		
170	13.3	360	9.5		
180	13.0	370	9.2		
190	12.8	380	8.9		

escensia accessore secucione actividade decoccos coccosore passendo coccosore

8.8

8.6

180

190

6.1

XBT DROP 043 T-7 RADAR: none GULF COORDS: -30.3 196.9

JDAY 325 2316Z DEPTH 767m/750m SST 20.11 2M TEMPS: SAIL 20.16 XBT 20.28

GULF OF CALIFORNIA: GUAYMAS BASIN, MX1C-7, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	20.0	200	12.6	390	8.5	580	6.5
20	19.0	210	12.4	400	8.4	590	6.5
30	18.4	220	12.2	410	8.4	600	6.5
40	17.9	230	11.8	420	8.0	610	6.5
50	17.1	240	11.3	430	7.9	629	6.5
60	16.1	250	10.9	440	7.8	630	6.4
70	15.7	260	10.8	450	7.6	640	6.3
80	15.6	270	10.6	460	7.5	650	6.3
90	15.5	280	10.5	470	7.3	660	6.2
100	15.2	290	10.4	480	7.3	670	6.2
110	14.7	300	10.4	490	7.1	680	6.2
		310	9.8	500	7.0	690	6.2
120	14.3			510	6.9	700	6.1
130	14.1	320	9.6			710	6.1
140	13.9	330	9.3	520	6.8		
150	13.6	340	9.2	530	6.7	720	6.1
160	13.6	350	9.1	540	6.6	730	6.1
170	13.5	360	8.9	550	6.6	740	6.0
180	13.5	370	8.6	560	6.5	750	6.0
100	13 3	380	8.5	570	6.5		

Charles lever the best of the country

9.9

9.9

9.9

9.9

9.7

380

540 550 560

570

13.9 13.7 13.2 12.7

12.4

190

XBT DROP 045 T-7	RADAR: none		COORDS: -26.1	199.8
JDAY 325 2329Z	DEPTH 1010m/760m	SST 19.78 2M TEMPS:	SATI 19 97	YRT 19 76
GULF OF CALIFORNIA:	GUAYMAS BASIN.	END MX1C LINE: MX1C-9	SPRING TIDE	ADI 13.70

Z	TEMP	Z	TEMP	Z	TEMP	z	TEMP
10	19.3	200	12.1	390	9.1	580	6.9
20	19.2	210	11.8	400	8.8	590	6.8
30	18.3	220	11.2	410	8.6	600	6.6
40	16.7	230	11.0	420	8.4	610	6.6
50	16.4	240	10.6	430	8.3	620	
60	16.4	250	10.4	440	8.3		6.5
70	16.2	260	10.5			630	6.5
80	15.8	270		450	8.3	640	6.5
			10.4	460	8.3	650	6.5
90	15.6	280	10.3	470	8.1	660	6.5
100	15.4	290	10.2	480	7.9	670	6.5
110	15.1	300	9.7	490	7.7	680	6.5
120	14.5	310	9.5	500	7.6	690	6.5
130	14.1	320	9.4	510	7.6	700	6.5
140	13.9	330	9.3	520	7.6	710	6.5
150	13.8	340	9.3	530	7.7	720	6.4
160	13.1	350	9.3	540	7.5	730	6.3
170	12.3	360	9.2	550	7.3 7.3		
180	12.2	370				740	6.3
190			9.2	560	7.1	750	6.3
130	12.2	380	9.2	570	7.0	760	6.3

Figure 12. MX2A Section: XBT Station Locations

Z	TEMP	Z	TEMP	z	TEMP	z	TEMP
10	18.9	200	11.1	388	9.1	580	7.5
20	18.6	210	10.7	400	9.1	590	7.2
30	18.4	220	10.6	409	9.1	600	7.1
40	18.0	230	10.6	420	9.0	610	6.7
50	17.6	240	10.6	431	8.9	620	6.5
60	17.2	250	10.6	439	8.8	630	6.4
70	16.8	259	10.4	450	8.8	640	6.3
80	16.0	270	10.4	460	8.8	650	6.2
90	14.7	280	10.3	470	8.7	660	6.1
100	14.4	290	10.2	480	8.7	670	6.0
110	14.3	300	9.9	490	8.6	679	6.0
120	14.1	310	9.8	501	8.6	690	5.9
130	13.7	320	9.7	511	8.6	700	5.8
140	13.1	330	9.6	519	8.5	710	5.8
150	12.9	340	9.5	531	8.5	720	5.8
160	12.4	350	9.3	540	8.5	730	5.8
170	11.8	360	9.2	551	8.4	741	5.8
180	11.4	370	9.2	559	8.4	750	5.8
190	11.2	380	9.2	570	8.2	759	5.8

resultation property indicates transfers property property in the property of the property of

Z	TEMP	z	TEMP	Z	TEMP	z	TEMP
10	18.7	200	12.0	390	9.4	580	7.0
20	18.6	210	11.9	400	9.2	590	6.8
30	18.6	219	12.0	410	9.1	600	6.8
40	18.2	230	11.8	421	9.6	619	6.8
50	18.0	239	11.1	429	8.8	620	6.7
60	17.7	250	11.0	440	8.6	630	
70	17.3	260	10.9	450			6.7
80	15.0				8.4	640	6.7
		271	10.9	460	8.3	650	6.7
90	14.4	279	10.7	469	8.2	659	6.5
100	14.1	290	10.7	480	8.1	670	6.5
110	14.0	300	10.6	489	8.1	680	6.5
120	13.4	310	10.6	500	7.4	689	6.4
130	13.4	320	10.3	510	7.3	699	6.4
140	13.3	329	10.2	520	7.3	710	6.3
150	13.3	340	10.1	530	7.3	721	6.3
160	13.3	350	9.8	540			
170					7.1	730	6.3
	13.3	360	9.6	550	7.1	739	6.2
180	13.0	370	9.6	560	7.0	750	6.2
190	12.4	380	9.5	570	7 A	750	8 2

XBT DROP 048 T-7 RADAR: none GULF COORDS: -30.3 205.6

JDAY 326 1542Z DEPTH 904m/752m SST 18.60 2M TEMPS: SAIL 18.58 XBT 18.60

GULF OF CALIFORNIA: GUAYMAS BASIN, MX2A-3, SPRING TIDE

z	TEMP	z	TEMP	z	TEMP	Z	TEMP
10	18.5	200	12.5	390	10.0	580	7.5
20	18.4	210	12.4	400	9.8	590	7.9
30	18.4	220	12.3	410	9.7	600	8.2
40	18.3	230	12.2	420	9.6	610	8.2
50	18.1	240	11.4	430	9.3	620	7.9
60	17.7	250	11.1	440	9.1	630	7.8
70	17.1	259	11.1	450	8.7	641	7.6
80	15.8	271	11.1	460	8.6	650	7.5
90	14.8	280	11.1	470	8.2	660	7.4
100	14.2	291	11.1	480	8.0	670	7.1
111	14.1	299	11.1	489	8.0	681	6.9
121	14.1	310	11.0	500	7.7	690	6.8
130	14.1	320	10.9	510	7.6	700	6.7
140	13.9	329	10.8	521	7.6	710	6.7
150	13.9	341	10.7	530	7.6	720	6.5
160	13.7	350	10.6	540	7.6	731	6.5
170	13.4	359	10.6	550	7.6	738	6.5
180	13.1	371	10.5	560	7.6	749	6.5
190	12.9	381	10.5	570	7.5		

posterio minimi establi

Z	TEMP	Z	TEMP	Z	TEMP	z	TEMP
10	18.9	200	13.0	390	10.1	580	6.9
20	18.8	210	12.8	400	9.8	590	6.8
30	18.6	220	12.5	410	9.5	601	6.7
40	18.4	230	12.1	420	9.3	609	6.6
50	18.1	241	12.1	429	9.2	620	6.6
60	17.7	250	12.0	441	9.2	630	6.5
70	17.6	260	11.6	450	9.1	640	6.3
80	17.3	270	11.1	460	8.8	650	6.3
90	15.6	281	11.0	470	8.3	660	6.2
100	15.5	289	11.0	480	8.0	669	6.2
109	15.0	300	11.0	490	7.8	681	6.2
120	14.6	309					
			10.9	499	7.7	690	6.2
129	14.4	320	10.9	509	7.8	700	6.1
141	14.4	330	11.0	520	7.8	711	6.0
150	14.3	340	10.9	530	7.7	721	6.0
160	14.2	350	10.9	540	7.6	731	6.1
170	13.8	360	10.8	550	7.4	739	6.0
180	13.4	370	10.5	560	7.3	749	6.0
190	13.2	379	10.2	570	7.1	758	6.1

ناوي يونون والموارية والموارية والمراوية والمراوية والموارية والموارية والموارية والموارية والموارية والمراوية والموارية والموارية

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	20.0	200	13.2	390	9.2	58 0	6.6
20	19.6	210	12.9	400	9.1	590	6.4
29	19.3	218	12.7	411	9.1	600	6.3
40	19.1	230	12.6	420	9.1	611	6.3
50	18.9	240	12.5	430	9.0	619	6.3
60	18.8	250	12.4	440	8.8	629	6.2
70	18.7	260	12.3	451	8.4	641	6.2
80	17.1	270	12.2	460	8.2	649	6.1
90	16.8	280	11.9	470	8.1	659	6.1
100	16.5	290	11.4	480	8.0	669	6.1
110	15.9	300	11.3	490	8.0	679	6.1
120	14.8	310	11.1	500	7.6	689	6.1
130	14.5	321	11.0	510	7.3	701	6.1
141	14.4	330	10.9	520	6.9	711	6.0
151	14.2	340	10.8	531	6.9	720	6.1
160	13.9	350	10.6	540	6.8	731	6.0
170	13.6	369	10.4	550	6.6	739	6.0
180	13.5	370	10.0	560	6.6	750	6.0
189	13.3	380	9.4	571	6.6	760	6.0

anderson andreson designated assessment assessment assessment assessment assessment

XBT DROP 053 T-7 RADAR: none GULF COORDS: -26.7 191.1 JDAY 326 1626Z DEPTH 823m/760m SST 20.45 2M TEMPS: SAIL 20.29 XBT 20.24 GULF OF CALIFORNIA: GUAYMAS BASIN, MX2A-6, SPRING TIDE

Z	TEMP	z	TEMP	Z	TEMP	Z	TEMP
10	20.1	200	12.7	390	10.0	580	6.7
20	20.0	211	12.5	400	9.6	589	6.6
30	20.0	221	12.4	409	9.2	600	6.5
40	19.6	230	12.4	419	9.1	610	6.5
50	18.3	240	12.2	430	9.0	621	6.4
60	17.2	249	12.1	440	7.9	630	6.4
70	16.4	260	12.1	450	7.8	640	6.4
80	16.2	270	11.9	460	7.8	650	6.4
90	16.0	280	11.6	470	7.6	660	6.3
100	15.4	290	11.3	480	7.2	670	6.2
110	14.5	300	11.1	490	7.2	689	6.2
119	14.4	310	11.0	499	7.1	690	6.2
130	14.4	320	10.9	511	6.9	701	6.1
140	14.2	331		520	6.9	709	6.1
			10.9				
150	13.9	340	10.8	530	6.7	720	6.1
160	13.8	351	10.7	540	6.7	729	6.1
170	13.3	361	10.5	550	6.7	740	6.1
180	13.0	370	10.3	560	6.7	750	6.0
190	12.9	380	10.2	571	6.6	760	6.0

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	20.1	200	12.5	390	10.0	580	7.1
20	19.7	210	12.5	400	10.0	590	7.0
30	18.7	220	12.5	410	10.0	600	6.9
40	17.5	230	12.4	419	9.9	610	6.9
51	16.8	240	12.0	430	9.3	620	6.8
60	16.4	250	11.8	440	9.0	630	6.6
70	16.3	259	11.8	450	9.0	641	6.6
80	16.1	270	11.5	460	8.8	650	6.5
90	16.0	280	11.4	470	8.3	660	6.5
100	15.5	289	11.1	481	8.1	670	6.4
110	14.7	300	11.0	490	8.1	680	6.3
120	14.6	311	10.9	501	7.9	690	6.3
130	14.5	320	10.8	510	7.8	700	6.3
141	14.3	330	10.8	520	7.6	711	6.3
150	13.7	340	10.7	531	7.5	719	6.2
160	13.6	350	10.7	540	7.4	729	6.2
170	13.1	359	10.6	550	7.3	740	6.1
180	12.6	370	10.5	560	7.2	750	6.2
190	12.5	380	10.3	570	7.1	759	6.1
	14.3	300	14.3	3/0		/33	

MANAGE WASHING PROPERTY

XBT DROP 057 T-7 RADAR: none GULF COORDS: -25.3 178.8 JDAY 326 1711Z DEPTH 752m/752m SST 20.25 2M TEMPS: SAIL 20.26 XBT 20.20 GULF OF CALIFORNIA: GUAYMAS BASIN, MX2A-9, SPRING TIDE

Z	TEMP	Z	TEMP	z	TEMP	z	TEMP
10	20.2	200	12.9	392	8.4	581	6.8
19	20.0	210	12.5	400	8.2	590	6.9
30	19.8	219	12.1	410	8.1	601	6.8
41	19.7	229	12.0	420	8.0	609	6.8
51	19.7	241	11.4	430	7.9	619	6.8
60	19.4	251	11.2	440	7.6	631	6.7
70	18.4	261	11.2	450	.7.5	640	6.7
80	17.0	269	11.1	460	7.4	652	6.6
90	16.7	280	10.7	471	7.2	659	6.4
100	16.4	291	10.6	480	7.2	670	6.4
110	15.6	300	10.1	491	7.2	680	6.4
120	15.3	310	9.9	500	7.1	689	6.1
130	14.7	320	9.7	510	7. i	701	6.1
140	14.7	329	9.6	520	7.1	710	6.2
151	14.6	340	9.4	530	7.1	721	6.2
160	14.6	350	9.0	540	7.0	730	6.1
170	14.3	358	8.9	549	7.0	740	6.1
180	13.2	369	8.7	559	7.0	750	5.9
198	13 A	380	8 5	570	6 9		

XBT DROP 058 T-7 RADAR: none GULF COORDS: -25.1 175.5

JDAY 326 1723Z DEPTH 741m/370m SST 20.50 2M TEMPS: SAIL 20.53 XBT 20.53

GULF OF CALIFORNIA: GUAYMAS BASIN, MX2A-10, SPRING TIDE (BAD BELOW 370M)

Z	TEMP	Z	TEMP
10	20.3	200	12.6
21	20.2	210	12.5
30	20.2	220	11.9
40	19.6	230	11.7
50	19.4	240	11.3
60	19.3	250	11.0
70	17.1	260	10.6
80	16.5	279	10.4
90	15.6	280	10.1
100	15.2	290	10.0
110	14.9	301	9.8
120	14.8	310	9.8
130	14.7	320	9.8
140	14.5	330	9.5
150	14.2	340	9.4
161	13.3	350	9.1
170	13.2	360	8.6
181	13.2	370	8.4
100	12 0		

Betydan yran yran gan dan dan gan gan gan gan betydan dan dan dan dan dan gan gan gan gan gan gan dan dan dan d

569

190

Figure 13. MX2B Section: XBT Station Locations

		060 T-7	RADAR: none		GULF COORDS: -20.0 176.9	
		2146Z	DEPTH 860m/760m	SST 22.55	2M TEMPS: SAIL 22.73 XBT 21	.85
GULF	OF (CALIFORNIA:	GUAYMAS BASIN:,	BEGIN MX2B	LINE; MX2B-1, SPRING TIDE	

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	20.9	200	13.2	391	8.1	589	6.4
20	20.8	210	12.9	400	8.1	590	6.4
30	20.7	220	12.7	411	7.9	600	6.3
40	20.3	230	12.1	420	7.8	610	6.3
50	20.1	240	11.9	430	7.8	620	6.3
60	20.1	250	11.5	440	7.6	630	6.3
70	20.1	259	11.4	450	7.5	640	6.1
80	19.3	270	11.2	460	7.5	649	6.1
90	19.0	280	10.9	470	7.4	660	6.1
100	18.8	290	10.5	479	7.3	669	5.9
110	18.1	300	9.8	490	7.2	680	5.8
120	16.9	310	9.3				
				500	7.0	690	5.8
130	15.8	320	9.2	510	7.0	700	5.6
140	15.3	330	8.8	521	6.9	709	5.6
150	15.0	340	8.8	529	6.6	720	5.5
160	14.8	350	8.7	540	6.4	731	5.5
170	14.1	360	8.5	550	6.4	739	5.5
180	13.8	370	8.2	560	6.4	749	5.5
190	13.5	380	8.1	571	6.4	, 40	J.0

the second seconds (deposes the seconds the seconds

XBT DROP 063 T-7 RADAR: none GULF COORDS: -26.0 182.3
JDAY 326 2222Z DEPTH 860m/760m SST 20.20 2M TEMPS: SAIL 20.24 XBT 19.90
GULF OF CALIFORNIA: GUAYMAS BASIN, MX2B-3, SPRING TIDE

TEMP	Z	TEMP	Z	TEMP	Z	TEMP
19.7	200	12.5	390	9.6	579	7.1
19.3	210	12.4	400	9.5	590	7.1
19.0	220	12.2	410	9.5	599	7.1
18.4			420		610	7.1
						7.1
						7.0
						6.9
						6.9
						6.7
						6.6
						6.5
						6.5
						6.4
						6.4
						6.3
						6.2
						6.1
						6.1
						6.1
	19.7 19.3	19.7 200 19.3 210 19.0 220 18.4 230 17.6 240 16.6 250 16.4 260 16.3 270 16.3 280 15.4 290 14.8 300 14.7 310 14.7 320 14.6 330 14.7 320 14.6 330 14.1 350 14.3 340 14.1 350 13.9 360 13.3 370	19.7 200 12.5 19.3 210 12.4 19.0 220 12.2 18.4 230 12.1 17.6 240 11.9 16.6 250 11.8 16.4 260 11.7 16.3 270 11.7 16.3 280 11.6 15.4 290 11.4 14.8 300 11.2 14.7 310 10.7 14.7 320 10.3 14.6 330 10.2 14.3 340 10.2 14.3 350 10.1 13.9 360 9.8 13.3 370 9.7	19.7 200 12.5 390 19.3 210 12.4 400 19.0 220 12.2 410 18.4 230 12.1 420 17.6 240 11.9 430 16.6 250 11.8 440 16.4 260 11.7 450 16.3 270 11.7 460 16.3 280 11.6 470 15.4 290 11.4 480 14.8 300 11.2 490 14.7 310 10.7 500 14.7 320 10.3 510 14.6 330 10.2 520 14.1 350 10.1 540 13.9 360 9.8 550 13.3 370 9.7 560	19.7 200 12.5 390 9.6 19.3 210 12.4 400 9.5 19.0 220 12.2 410 9.5 18.4 230 12.1 420 9.3 17.6 240 11.9 430 9.0 16.6 250 11.8 440 8.8 16.4 260 11.7 450 8.7 16.3 270 11.7 460 8.4 16.3 280 11.6 470 8.1 15.4 290 11.4 480 8.1 15.4 290 11.4 480 7.9 14.7 310 10.7 500 7.8 14.7 310 10.7 500 7.8 14.7 320 10.3 510 7.7 14.6 330 10.2 520 7.5 14.3 340 10.2 530 7.4 14.1 <td>19.7 200 12.5 390 9.6 579 19.3 210 12.4 400 9.5 590 19.0 220 12.2 410 9.5 599 18.4 230 12.1 420 9.3 610 17.6 240 11.9 430 9.0 621 16.8 250 11.8 440 8.8 630 16.4 260 11.7 450 8.7 640 16.3 270 11.7 460 8.4 650 16.3 280 11.6 470 8.1 650 15.4 290 11.4 480 8.1 670 14.8 300 11.2 490 7.9 680 14.7 310 10.7 500 7.8 690 14.7 320 10.3 510 7.7 699 14.6 330 10.2 530 7.4 720<!--</td--></td>	19.7 200 12.5 390 9.6 579 19.3 210 12.4 400 9.5 590 19.0 220 12.2 410 9.5 599 18.4 230 12.1 420 9.3 610 17.6 240 11.9 430 9.0 621 16.8 250 11.8 440 8.8 630 16.4 260 11.7 450 8.7 640 16.3 270 11.7 460 8.4 650 16.3 280 11.6 470 8.1 650 15.4 290 11.4 480 8.1 670 14.8 300 11.2 490 7.9 680 14.7 310 10.7 500 7.8 690 14.7 320 10.3 510 7.7 699 14.6 330 10.2 530 7.4 720 </td

Constitution described accountable constitutions

Z	TEMP	Z	TEMP	Z	TEMP
10	20.5	200	13.0	390	8.5
20	20.1	211	12.5	399	8.4
30	20.0	220	12.0	•	
40	19.6	230	11.5		
50	17.8	240	11.1		
60	16.9	250	10.9		
70	16.5	260	10.7		
81	16.4	269	10.5		
90	16.2	280	10.6		
100	15.7	290	10.5		
110	14.8	300	10.5		
120	14.8	310	10.5		
130	14.7	320	10.4		
140	14.7	330	10.0		
150	14.5	341	9.4		
160	14.4	350	9.1		
170	14.3	360	8.8		
180	14.2	370	8.8		
190	13.6	380	8.7		
			•••		

XBT DROP 066 T-7 RADAR: none GULF COORDS: -32.0 184.2
JDAY 326 2256Z DEPTH 590m/575m SST 20.26 2M TEMPS: SAIL 20.51 XBT 20.18
GULF OF CALIFORNIA: GUAYMAS BASIN, MX2B-5, SPRING TIDE

Z	TEMP	Z	TEMP	z	TEMP
10	20.0	200	11.6	390	8.4
20	18.9	210	11.2	399	8.1
30	17.1	220	11.0	410	7.8
40	16.6	229	11.0	420	7.7
50	16.4	240	11.0	430	7.6
60	16.3	250	10.4	441	7.5
70	15.9	260	10.3	450	7.4
80	15.5	271	10.2	460	7.4
90	15.1	280	9.7	469	7.3
100	14.7	289	9.4	480	7.2
110	14.2	300	9.3	490	7.2
120	14.0	309	9.2	499	7.1
130	13.6	321	9.1	510	6.9
140	12.9	330	9.0	520	6.7
149	12.7	341	8.5	530	6.5
160	12.5	349	8.5	540	6.2
170	12.2	361	8.4	550	6.1
180	12.0	370	8.4	561	5.9
101	11.8	179	R 4	580	5.8

1000000

1000 CA 1000

STATES COCCUSE CONTRACTOR

SAME MADDINGS SERVICED BASES OF PASSAGES TO SAME TO SACRES

XBT DROP 068 T-7 RADAR: none GULF COORDS: -34.1 194.6
JDAY 326 2326Z DEPTH 850m/760m SST 20.05 2M TEMPS: SAIL 20.24 XBT 19.96
GULF OF CALIFORNIA: GUAYMAS BASIN, MX2B-7, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	19.8	200	12.2	390	7.3	580	6.2
20	19.0	210	11.9	400	7.3	590	6.2
30	17.6	229	11.4	409	7.3	599	6.1
40	17.3	230	11.1	419	7.3	610	6.1
50	16.9	239	11.1	430	7.1	620	6.0
60	16.4	250	10.9	440	7.1	630	5.9
70	16.2	260	10.2	451	6.9	640	5.9
80	15.7	279	10.0	460	6.9	652	5.9
90	15.7	280	9.1	470	6.9	660	5.9
100	15.6	290	9.0	481	6.9	670	5.8
110	15.0	300	9.0	490	6.9	679	5.8
120	14.6	309	9.0	500	6.8	690	5.9
130	14.5	320	8.6	510	6.6	701	5.9
140	14.3	329	8.5	520	6.5	711	5.8
150	14.1	340	8.1	530	6.4	719	5.9
160	13.9	350	7.8	541	6.4	730	5.9
170	13.6	360	7.7	550	6.4	739	5.9
186	12.6	376	7.6	560	6.4	751	5.9
190	12.4	380	7.4	579	6.4	758	5.9

XBT DROP 069 T-7 RADAR: none GULF COORDS: -33.4 201.3 JDAY 326 2342Z DEPTH 1005m/760m SST 20.02 2M TEMPS: SAIL 20.23 XBT 19.43 GULF OF CALIFORNIA: GUAYMAS BASIN, MX2B-8, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	18.9	200	12.3	391	8.9	579	6.5
20	18.3	210	12.1	399	8.9	590	8.4
30	17.6	220	11.2	410	8.9	600	6.2
39	17.0	230	11.0	420	8.8	610	6.1
50	16.2	240	10.9	430	8.1	620	6.1
60	15.9	250	10.8	440	7.9	631	6.1
70	15.8	260	10.7	450	7.8	640	6.1
80	15.2	271	10.6	460	7.8	650	6.0
90	15.1	281	10.5	470	7.8	661	6.1
100	14.8	290	10.3	480	7.7	670	6.1
110	14.6	300	10.1	490	7.6	679	6.0
120	14.3	310	9.6	499	7.6	690	6.0
130	14.2	320	9.2	510	7.5	700	6.0
140	14.6	330	9.2	520	7.2	711	6.0
150	13.8	339	9.2	529	7.1	719	6.1
160	13.6	350	9.1	541	7.1	730	6.0
170	12.5	360	9.0	550	6.9	741	6.0
180	12.4	371	9.1	560	6.6	751	6.0
190	12.4	381	9.0	570	6.5	759	5.9

XBT DROP 070 T-7	RADAR: none	•	GULF COORDS:	-34.4	204.7
JDAY 326 2353Z	DEPTH 950m/950m	SST 19.95	2M TEMPS: SAIL	20.09	XBT 19.66
GULF OF CALIFORNIA:	GUAYMAS BASIN,	MX2B-9, SPRIN	G TIDE		

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	19.3	200	13.2	390	9.2	580	6.9
20	18.5	210	12.9	400	9.2	591	6.6
30	18.1	220	12.6	411	9.2	601	6.6
40	17.8	230	12.5	420	9.1	610	6.6
50	17.3	240	12.4	430	8.9	620	6.5
60	17.2	250	12.2	440	8.1	630	6.4
70				450			
	17.1	260	11.9		8.2	640	6.2
80	16.4	270	11.1	460	7.6	650	6.1
90	15.8	280	11.0	470	7.5	660	6.1
100	15.4	290	11.0	480	7.5	670	6.0
110	15.2	299	10.9	490	7.4	680	6.1
120	14.7	310	10.8	500	7.4	690	6.0
130	14.4	320	10.8	510	7.4	700	6.0
140	14.2	330	10.6	520	7.4	710	5.9
151	14.0	343	10.4	530	7.4	720	5.9
160	13.9	350	10.1	541	7.3	729	5.9
170	13.8	360	9.3	550	7.1	740	5.8
180	13.7	370	9.3	561	7.0	749	5.8
190	13.5	380	9.3	569	7.0	760	5.8

XBT DROP 073 T-7 RADAR: none GULF COORDS: -35.6 215.4

JDAY 327 25Z DEPTH 623m/623m SST 19.04 2M TEMPS: SAIL 19.12 XBT 20.38

GULF OF CALIFORNIA: GUAYMAS BASIN, MX2B-11, SPRING TIDE

TEMP 6.7 6.6

6.4 6.2 6.1

610

Z	TEMP	Z	TEMP	Z	TEMP
11	19.0	199	12.9	389	10.7
20	18.8	210	12.9	401	10.6
30	18.2	220	12.7	410	10.6
40	18.0	231	12.5	421	10.5
50	17.8	239	12.5	431	10.4
60	17.7	250	12.3	439	10.4
70	17.5	260	12.1	451	10.3
80	17.1	270	12.0	459	10.2
90	16.8	280	12.0	469	10.1
100	16.6	291	12.0	480	10.0
110	15.4	299	11.9	490	9.6
121	15.1	309	11.9	500	9.3
129	15.0	319	11.9	509	9.1
140	14.9	329	11.9	520	8.9
151	14.7	339	11.7	531	8.4
160	14.4	350	11.7	540	8.2
170	13.1	359	11.7	550	7.6
179	13.0	370	11.4	560	7.2
190	12.9	380	10.8	571	7.1

UNCLASSIFIE	OCEANOG SIO-REF	PURNIH X RAPHY LA -86-14 N	BI D Jolla 90014 -8	ATURE FI U> SCRIP CA C A 5-C-0104	PS INST PADEN E	T AL.	N OF MAR 8: F/G	5 8/1 9	NL
		╂═╂	\dashv		\vdash				
			\neg						
				_	 				
		+		_	-				

MICROCOPY RESULTION (CS)

XBT DROP 074 T-7 RADAR: none GULF COORDS: -35.9 220.0

JDAY 327 40Z DEPTH 429m/429m SST 19.08 2M TEMPS: SAIL 19.12 XBT 18.93

GULF OF CALIFORNIA: GUAYMAS BASIN, MX2B-12, SPRING TIDE

TEMP 11.4 11.3 11.2 10.2 9.1

Z	TEMP	Z	TEMP	
10	18.8	200	13.1	
20	18.6	211	12.7	
30	18.4	220	12.6	
40	18.2	230	12.5	
50	17.9	240	12.5	
60	17.4	250	12.6	
69	17.1	260	12.6	
81	17.1	271	12.6	
90	16.8	280	12.5	
100	16.6	291	12.4	
110	14.8	300	12.3	
120	13.6	310	12.3	
131	13.6	320	12.2	
141	13.5	330	11.8	
150	13.5	340	11.7	
	13.5		11.7	
161		350		
171		359	11.8	
180	13.2	370	11.6	
190	13.1	379	11.4	

XBT DROP 075 T-7 RADAR: none GULF COORDS: -34.2 221.5
JDAY 327 54Z DEPTH 281m/271m SST 18.82 2M TEMPS: SAIL 18.78 XBT 18.71
GULF OF CALIFORNIA: GUAYMAS BASIN, END MX2B LINE; MX2B-13, SPRING TIDE

Z	TEMP	Z	TEMP
7	18.6	200	11.7
20	18.0	210	11.7
30	17.5	221	11.6
40	16.5	230	11.6
50	16.1	240	11.5
60	15.8	250	11.4
70	15.4	261	11.4
80	15.1	270	11.4
70	14.9		
100	14.8		
110	14.8		
120	14.7		
130	14.5		
141	14.6		
150	13.4		
160	12.9		
170	12.4		
180	12.1		
190	12.0		

Ballenas Channel

THE PROPERTY OF THE PROPERTY O

Figure 14. Bottom Pressure at San Francisquito Bay. 22-23 November 1984.

Figure 15. AXBT1 Section: XBT Station Locations

and the first contraction of the first of th

Z	TEMP	Z	TEMP
10	18.2	200	14.0
20	18.3	211	14.0
30	18.0	219	14.0
40	17.0	230	14.0
50	16.9	240	14.0
60	16.6	250	14.0
70	16.2	260	14.8
80	15.8	270	14.0
90	15.6	280	13.9
100	14.9		
		290	13.8
110	14.7	301	13.8
121	14.7	310	13.3
130	14.6	320	13.3
140	14.6	327	13.3
151	14.6		
160	14.3		
170	14.3		
180	14.2		
196	14 1		

XBT DROP 679 T-7 RADAR: none GULF COORDS: -37.8 214.7 JDAY 328 1116Z DEPTH 342m/342m SST 17.86 2M TEMPS: SAIL 18.61 XBT 18.66 GULF OF CALIFORNIA: BEGIN AXBT1 LINE, AXBT1-1, SPRING TIDE

Z	TEMP	Z	TEMP
10	18.6	200	14.5
20	18.5	210	14.2
30	18.6	220	14.1
40	18.4	230	14.1
50	18.3	240	13.4
60	18.3	250	13.0
70	18.1	260	12.8
80	18.0	270	12.6
90	17.9	280	12.2
100	17.7	291	12.1
110	17.6	301	12.1
120	17.5	309	12.1
129	17.4	320	12.1
140	17.3	330	12.0
151	16.9	340	10.4
160	16.5		
170	16.2		
180	15.3		
189	14.5		

XBT DROP 686 T-7 RADAR: none GULF COORDS: -39.2 216.2
JDAY 328 1127Z DEPTH 224m/224m SST 17.95 2M TEMPS: SAIL 18.43 XBT 17.74
GULF OF CALIFORNIA: AXBT1-2, SPRING TIDE

Z	TEMP	Z	TEMP
10	17.4	200	13.7
20	17.1	210	13.6
30	16.8	220	13.2
41	16.8		
53	16.8		
60	16.8		
71	16.8		
81	16.8		
90	16.6		
100	16.5		
110	15.8		
120	15.7		
130	15.6		
140	15.6		
150	15.4		
160	14.9		
170	14.1		
180	13.9		
190			
130	13.7		

Z TEMP Z TEMP 10 18.5 199 13.3 20 18.1 31 17.0 40 15.7 50 15.2 60 15.2 60 15.1 80 14.9 90 14.8 100 14.5 110 14.4 120 14.3 130 14.2 140 14.0 151 13.9 160 13.8 170 13.7 180 13.4 190 13.3

CONTRACTOR CONTRACTOR

COCCOCC STRANGE COCCOCC

the sections of the section of the section is

Z TEMP 10 18.0 20 18.0 30 18.4 40 18.2 50 18.3 60 18.3 70 17.8 90 15.5 100 15.1 110 14.8 120 14.3 130 13.3 140 13.3 150 13.1 Research to the second of the

XBT DROP 084 T-4 RADAR: none GULF COORDS: -41.3 229.0 JDAY 328 1215Z DEPTH 400m/400m SST 18.74 2M TEMPS: SAIL 18.90 XBT 18.89 GULF OF CALIFORNIA: AXBT1-6, SPRING TIDE

Z TEMP 390 12.0 399 12.0

_		-	
Z	TEMP	Z	TEMP
10	18.9	200	13.0
20	19.0	210	12.9
30	18.1	220	12.9
40	17.8	230	12.9
50	16.8	240	12.8
60	16.5	250	12.7
69	16.0	260	12.7
81	15.9	270	12.6
90	15.3	280	12.6
100	14.7	290	12.6
110	14.5	300	12.4
119	14.4	309	12.4
130	14.3	320	12.4
141	14.0	330	12.2
150	14.0	340	12.2
160	13.6	350	12.1
170	13.0	359	12.0
180	13.0	370	12.0
190	13.0	381	12.0

Second Sections are secretary Reserved

System describe provided provided provided scores provided between

والأمار والمراجع والأواج أوار والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

z	TEMP	Z	TEMP	z	TEMP	Z	TEMP	
10	18.2	200	12.0	389	11.6	582	11.3	
20	17.6	210	12.0	401	11.6	590	11.3	
30	17.4	221	11.9	410	11.6	599	11.3	
40	16.0	230	12.0	420	11.6	609	11.3	
50	15.3	240	11.9	430	11.5	620	11.3	
59	14.6	251	11.8	440	11.5		11.2	
70	14.4	260	11.8	451	11.4	641	11.2	
80	13.9	270	11.7		11.5	652	11.2	
90	13.6	279	11.7	468	11.5	661	11.2	
100	13.5	289	11.6	479	11.5	670	11.1	
110	13.2	299	11.6	491	11.5	689	11.1	
121	13.1	309	11.6	501	11.5	692	11.1	
130	12.8	320	11.6	510	11.4	701	11.0	
141	12.6	329	11.6	521	11.4	710	11.1	
150	12.6	339	11.6	530	11.4	720	11.0	
160	12.4	349	11.6		11.3	731	11.0	
170	12.2	361		550	11.3	740	11.0	
			11.6					
180	12.1	371	11.6	559	11.3	750	11.0	
189	12.1	379	11.6	571	11.3	769	11.0	

PROCESSOR SANDONES PROPERTY PROCESSES SANDON

CONTRACT CONTRACT CONTRACTOR

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
9	19.5	20 0	13.1	390	15.2	58 0	15.6
20	19.1	210	13.3	400	15.3	591	15.6
30	18.2	220	14.2	411	15.4	600	15.6
40	17.2	230	14.8	420	15.4	609	15.7
50	16.3	240	15.1	430	15.7	621	15.8
60	16.1	250	14.6	440	15.8	630	15.7
70	15.5	260	14.1	450	15.8	640	15.6
80	15.2	270	14.6	460	15.7	650	15.6
89	14.5	280	14.9	469	15.7	660	15.9
100	14.1	290	15.1	480	15.6	670	15.6
110	13.4	300	15.3	490	15.5	681	15.7
120	13.3	309	15.5	500	15.5	689	15.9
130	13.2	329	15.5	510	15.4	700	15.9
140	13.2	330	15.7	519	15.4	710	16.0
149	13.2	340	15.7	530	15.5	720	16.0
159	13.2	350	15.4	540	15.7	730	15.9
169	13.2	360	15.4	550	15.7	741	15.9
180	13.2	369	15.2	560	15.7	750	15.9
190	13.1	380	15.2	570	15.7	760	15.7

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
		_					
10	18.5	201	13.4	391	12.0	579	11.3
20	18.3	210	13.4	400	12.0	590	11.3
30	18.1	220	13.3	410	11.9	601	11.3
40	17.4	230	13.3	420	11.8	610	11.3
50	17.0	240	13.2	431	11.7	619	11.3
60	16.7	250	13.0	441	11.7	630	11.2
70	16.5	261	12.9	451	11.7	639	11.2
80	16.4	268	12.8	461	11.6	651	11.2
90	15.3	282	12.8	468	11.6	659	11.3
100	15.0	292	12.8	481	11.6	671	11.2
110	14.9	300	12.7	491	11.6	689	11.2
120	14.2	310	12.6	501	11.5	690	11.3
130	14.0	321	12.6	509	11.6	698	11.2
139	13.9	331	12.6	519	11.5	710	11.2
149	13.9	341	12.6	531	11.5	720	11.2
160	13.9	351	12.3	541	11.4	730	11.3
170	13.8	360	12.1	549	11.5	741	11.2
180	13.6	370	12.1	559	11.5	749	11.2
100	13.5	391	12 6	560	11 4	761	11 2

Z TEMP Z TEMP	•
390 11.6 580 11.1	
	390 11.6 580 11.1

Figure 16. AXBT2 Section: XBT Station Locations

with the transfer of the control of

OF CALIFO	RNIA:	UPCAST P	C6086 (B	AD BELOW	620M)			
Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP	
10	20.5	201	13.2	391	11.7	580	11.2	
20	19.0	209	13.2	401	11.7	589	11.2	
30	18.1	220	12.9	411	11.7	602	11.2	
40	17.4	230	12.7	420	11.7	609	11.2	
50	16.9	239	12.5	431	11.6	620	11.1	
60	16.8	250	12.4	441	11.6			
70	16.7	261	12.3	451	11.6			
80	16.4	271	12.2	460	11.6			
91	16.1	280	12.2	470	11.4			
100	16.0	290	12.1	481	11.5			
110	15.8	300	12.1	490	11.4			
120	15.8	310	12.0	499	11.4			
130	15.6	318	11.9	510	11.4			
139	15.5	331	12.0	520	11.4			
150	15.4	343	12.0	529	11.4			
160	15.0	349	11.9	540	11.4			
171	15.0	360	11.9	551	11.3			
180	14.0	371	11.7	560	11.3			
100	47.0	700	11.7	570	11.5			

11.2

11.9 11.7

15.0 14.0 13.5

XBT DROP 095 T-7 RADAR: none GULF COORDS: -51.6 250.4
JDAY 329 205Z DEPTH 453m/453m SST 19.95 2M TEMPS: SAIL 20.32 XBT 20.44
GULF OF CALIFORNIA: START AXBT2 LINE, AXBT2-1, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP
16	20.6	2 00	13.8	390	12.3
20	20.7	210	13.7	400	12.2
30	20.5	220	13.4	410	12.2
39	19.9	230	13.4	420	12.2
50	18.9	240	13.2	430	12.2
60	18.6	249	13.1	441	12.2
70	18.4	261	12.9	450	12.2
80	18.2	269	12.8		
90	17.7	280	12.8		
100	17.1	289	12.8		
110	17.0	300	12.8		
120	16.5	310	12.6		
130	16.4	320	12.6		
140	15.9	330	12.4		
150	14.7	340	12.4		
160	14.4	350	12.4		
170	14.4	360	12.4		
181	14.1	370	12.3		
190	13.9	379	12.3		
		0.0			

<u>ٵؙڝٷڲڐٷڴڐٷ</u>ڟڔۅٵ؋ڔۼڴؠۼڐڝٷٷٳٷٷڂؠۼڂۻٷۻۄٷۻۿڰۼڰڰ

510

522 529

541

549

560

11.1

11.1

11.1

11.1

11.1

700

751

760

11.0

11.0

10.9

10.9

10.9

10.9

10.9

320

330

341 350 361

370

380

12.0 11.8

11.7

11.5

140 150

160 170

180

190

14.7

14.6 14.5 13.9 13.6

Z	TEMP	Z	TEMP	Z	TEMP	Z	TEMP
10	19.0	199	12.1	391	11.5	579	11.3
20	17.3	209	12.1	400	11.4	591	11.2
30	16.9	220	12.0	409	11.4	599	11.3
40	15.8	229	11.9	421	11.4	610	11.3
50	14.6	241	11.9	430	11.4	619	11.3
60	13.9	250	11.8	440	11.5	630	11.3
69	13.8	260	11.8	451	11.4	638	11.2
80	13.5	270	11.8	459	11.4	650	11.2
90	13.4	280	11.8	470	11.4	660	11.3
100	13.2	290	11.8	480	11.4	668	11.2
110	13.1	301	11.8	491	11.4	681	11.2
120	12.9	310	11.8	499	11.4	690	11.2
130	12.4	319	11.7	510	11.4	699	11.2
140	12.3	329	11.7	519	11.4	710	11.2
150	12.2	340	11.6	529	11.3	720	11.1
160	12.2	349	11.5	540	11.3	731	11.2
171	12.1	360	11.6	551	11.3	739	11.1
181	12.1	369	11.5	561	11.3	748	11.1
189	12.1	380	11.5	570	11.3	760	11.1

CONTRACTOR STATEMENT STATEMENT STATEMENT CONTRACTOR

-	TD-0	-	***
Z	TEMP	Z	TEMP
10	20.2	200	13.2
20	20.0	209	12.9
30	19.1	220	13.0
40	16.7	230	13.0
50	16.0	240	13.7
60	15.4	250	13.7
70	15.2	260	13.6
80	14.9	271	13.4
90	14.5	280	13.2
100	14.1	290	13.1
110	13.6	301	13.0
120	13.5	310	12.9
130	13.3	320	12.9
140	13.2	330	12.8
150	13.2	340	12.8
160	13.3	350	12.7
170	13.2		
180	13.1		
190	13.2		

CANAL SERVICE CONTROL OF CONTROL OF CARACTER CONTROL OF CONTROL OF

Z	TEMP	Z	TEMP	Z	TEMP
10	18.4	201	12.2	390	11.4
20	17.4	210	12.2	400	11.4
30	16.9	220	12.1	411	11.4
40	16.3	230	12.1	420	11.4
50	14.9	240	12.1	430	11.4
60	13.9	250	11.9	439	11.4
70	13.7	259	11.9	450	11.4
80	13.4	270	11.8	461	11.4
90	13.3	280	11.8	470	11.4
100	13.2	290	11.7	481	11.4
110	12.9	300	11.7	489	11.4
120	12.8	310	11.7	500	11.4
130	12.7	320	11.6	510	11.3
141	12.6	329	11.6		
150	12.6	340	11.7		
160	12.4	350	11.6		
169	12.4	359	11.6		
179	12.4	370	11.6		
190	12.3	380	11.5		

THE SECOND SECON

XBT DROP 107 T-7 RADAR: none GULF COORDS: -34.4 237.2

JDAY 329 419Z DEPTH 244m/244m SST 19.42 2M TEMPS: SAIL 19.14 XBT 19.56

GULF OF CALIFORNIA: AXBT2-8, SPRING TIDE

TEMP	Z	TEMP	Z
12.8	200	18.1	10
12.9	210	16.9	-
		- 1 1 1 E	20
12.8	220	16.7	31
12.7	231	16.7	40
12.7	241	16.6	50
		16.2	60
		15.6	70
		15. 0	80
		14.2	90
		13.9	99
		13.4	10
		13.4	20
		13.1	30
		13.0	140
		12.7	150
		·	
		. —	
		. —	
		15.6 15.0 14.2 13.9 13.4 13.4	70 80 90 100 10 120

_		_	
Z	TEMP	Z	TEMP
10	18.2	200	12.7
20	17.3	210	12.6
30	17.1	220	12.6
41	16.9	231	12.7
49	16.8	238	12.6
60	16.6		
70	15.6		
80	15.3		
91	14.5		
100	14.4		
110	14.2		
120	13.7		
130	13.7		
140	13.6		
150	13.5		
160	13.3		
171	12.9		
180	12.8		
190	12.8		

ていて こうかいい かいかい かいかい かんけんしょ しょう かんしょう はいじょう はんしょう かんかん

Z TEMP Z TEMP
10 18.2 200 13.1
20 17.5 210 12.8
30 17.3 220 12.6
40 16.9 230 12.5
50 16.1
60 15.4
70 15.4
81 15.2
90 15.3
100 14.6
110 14.0
121 13.9
130 13.9
140 13.9
150 13.9
161 13.4
170 13.2
180 13.3
190 13.1

Z TEMP Z TEMP
10 18.2 200 13.7
20 17.9 209 13.7
30 17.5
40 17.2
50 17.2
60 17.0
70 16.9
80 16.7
90 16.3
100 16.0
110 14.8
120 14.6
130 14.5
140 14.2
150 14.0
160 13.7
180 13.7
180 13.6

Z TEMP 10 17.0 20 14.9 30 14.5 40 13.9 50 13.9 70 13.9 80 13.5 90 13.4 100 12.9 110 12.7

Z	TEMP	z	TEM	Z	TĐ
		_	TEMP		
10	17.2	199	13.9	389	11.
20	17.2	210	13.8	399	- 11.
30	16.8	220	13.7	410	11
40	16.3	230	13.6	420	11
50	15.4	240	13.2	429	11
60	15.4	250	13.2	441	11.
70	15.1	260	13.2		
80	15.0	271	13.2		
90	14.9	281	13.1		
99	14.9	290	13.2		
110	14.7	300	13.0		
120	14.6	309	12.9		
130	14.4	320	12.7		
140	14.4	330	12.5		
150	14.4	340	12.2		
160	14.3	350	12.1		
170	14.3	360	12.0		
180	14.2	370	11.8		
190	14.1	380	11.7		

XBT DROP 118 T-7 RADAR: none GULF COORDS: -31.0 226.5

JDAY 329 654Z DEPTH 424m/424m SST 17.92 2M TEMPS: SAIL 17.93 XBT 17.98

GULF OF CALIFORNIA: END AXBT2 LINE, AXBT2-17, SPRING TIDE

TEMP 8.7 8.7 8.7 8.7

Z	TEMP	Z	TEMP	Z
_	_			
9	18.0	200	11.2	390
20	17.9	210	10.9	400
30	17.7	220	10.7	410
40	17.7	230	10.5	420
50	17.5	239	10.3	
60	17.4	250	10.3	
70	17.2	260	10.2	_
80	17.2	270	9.9	
90	16.3	280	9.7	
100	14.9	290	9.6	
110	14.1	300	9.5	
120	13.3	310	9.5	
130	13.2	321	9.3	
140	13.0	330	9.3	
150	12.7	340	8.8	
160	12.5	349	8.7	
170	12.1	360	8.7	
180	11.6	370	8.7	
190	11.3	380	8.7	

San Esteban Sill

Figure 17. Bottom Pressure at San Esteban Island. 24-25 November 1984 - Spring Tides

goral bosooos seeesee represe persona lessoos soooso escenta

Figure 18. CAP1 Section: XBT Station Locations

Figure 19. Miscellaneous Sill XBT Stations

Control of the Cont

TEMP 17.9 17.9 Z 10 20 29 41 50 60 70 80 Z 200 210 220 230 240 250 270 279 290 300 310 321 TEMP Z TEMP 13.0 12.9 12.8 12.6 12.5 12.7 9.4 9.3 9.1 8.3 7.5 390 400 17.9 410 17.9 17.9 17.9 17.9 420 430 440 450 11.4 11.3 11.2 17.7 460 6.8 17.4 17.1 16.9 16.7 470 480 490 6.0 6.0 5.9 90 100 110 11.0 5.9 5.9 5.9 5.9 5.8 120 130 498 16.0 10.5 510 15.0 14.1 13.9 13.8 330 341 350 359 10.5 10.4 10.4 520 530 540 549 140

160 170 13.4 13.3 369 10.0 560 5.8 190 380 9.7 5.8

181

10.1

5.8

. 00

Z	TEMP	Z	TEMP	Z
10	17.9	200	12.7	391
19	17.9	210	12.4	400
30	17.9	220	12.4	410
39	17.9	230	12.3	420
50	17.9	240	12.1	430
60	17.7	251	11.9	441
70	17.4			
		260	11.6	451
80	17.2	270	11.3	460
90	17.1	280	11.1	470
100	16.6	290	10.9	480
110	16.4	300	10.8	
120	16.2	310	10.3	
130	15.8	320	10.2	
140	15.2	330	10.0	
150	14.8	340	9.9	
160	14.4	350	9.7	
171	13.4	360	9.3	
180	13.2	369	9.1	
190	13.1	380	8.7	

Z	TEMP	Z	TEMP	Z	TEMP
10	17.5	200	12.3	389	8.1
20	17.4	210	12.3	401	8.1
30	17.1	220	12.2	409	8.1
39	16.9	230	12.3	420	8.1
50	16.8	240	12.2	430	8.1
60	16.3	250	11.9	441	8.1
70	15.6	260	11.6	450	8.0
80	15.2	270	11.2	460	7.8
90	15.2	280	11.0	470	7.8
100	14.9	291	10.9	480	7.6
110	14.6	300	10.9	490	7.6
120	14.3	310	9.8	500	
					7.4
130	14.1	320	9.2	510	7.3
139	13.8	330	8.9	520	7.2
150	13.3	340	8.5	530	7.0
160	13.1	350	8.2	540	7.0
170	12.9	360	8.1	550	6.7
180	12.8	370	8.1	558	6.6
190	12.5	380	8.1		

Z	TEMP	Z	TEMP	Z	TEMP
10	16.7	201	11.8	396	8.1
20	16.7	210	11.7	400	8.1
29	16.6	220	11.6	410	8.1
41	16.6	239	11.2	420	8.0
49	16.6	241	11.1	430	8.0
60	16.6	250	11.0	441	8.0
71	16.6	261	11.0	451	7.9
80	16.2	270	11.0	461	7.9
90	15.8	280	10.5	471	7.8
100	15.7	291	9.8	480	7.8
110	15.1	300	9.8	490	7.8
120	14.3	310	9.2	500	7.8
130	14.1	320	9.1	510	7.6
140	13.8	330	9.0	521	7.5
150	13.8	340	8.8	529	7.4
160	13.3	350	8.3	540	7.4
170	12.4	360	8.2	549	7.3
179	12.1	370	8.1	558	7.2
190	12.0	380	8.1		

Z	TEMP	Z	TEMP	Z	TEMP
10	17.7	200	13.7	390	8.3
20	17.5	210	13.0	400	8.3
30	16.3	220	12.5	411	8.3
39	16.3	230	12.3	421	8.3
50	16.3	240	11.5	431	8.2
60	16.3	250	11.1	440	8.2
71	16.3	260	11.0	450	8.3
80	16.3	270	10.9	460	8.2
89	16.3	280	10.6	470	8.3
99	16.3	290	10.4	480	8.1
110	16.1	300	10.7	490	8.1
120	16.1	310	9.7	500	8.1
130	16.0	321			
			9.5	510	8.1
140	16.0	330	9.4	520	8.0
150	16.0	340	9.4	530	8.0
160	15.8	350	9.1	541	7.9
170	14.9	361	8.7	550	7.9
181	14.8	370	8.5	333	
191	14.4	380	8.4		

XBT DROP 125 T-7 RADAR: none GULF COORDS: -22.9 236.6
JDAY 329 1127Z DEPTH 511m/511m SST 17.63 2M TEMPS: SAIL 17.99 XBT 17.70
GULF OF CALIFORNIA: SILL LINE, CXP1-6

Z	TEMP	Z	TEMP	Z	TEMP
10	17.8	201	15.1	390	8.4
20	17.3	209	15.1	400	8.4
30	16.9	221	15.0	410	8.3
40	16.1	230	14.5	420	8.3
50	15.8	240	13.5	429	8.3
59	15.7	250	13.2	439	8.3
70	15.6	260	12.0	451	8.2
81	15.6	270	11.4	460	8.2
90	15.5	279	11.3	470	8.1
100	15.5	290	11.2	480	8.1
111	15.4	304	10.9	490	8.1
120	15.3	310	10.5	500	8.0
129	15.2	320	10.1	509	7.8
140	15.2	330	9.7		
150	15.2	340	9.5		
160	15.1	350	9.2		
170	15.1	360	9.0		
180	15.2	370	8.7		
189	15 1	380	8 5		

Z	TEMP	Z	TEMP	Z	TEMP
10	17.4	200	14.7	390	9.3
20	17.4	209	14.8	400	8.9
30	17.3	220	14.9	410	8.8
40	17.2	231	14.8	420	8.7
50	17.2	240	14.8	430	8.6
60	16.8	250	14.9	439	8.6
70	16.5	261	14.9	450	8.5
80	16.1	270	14.9	460	8.5
90	15.7	281	14.9	470	8.4
100	15.7	291	14.9	481	8.4
110	15.6	300	14.1	491	8.2
120	15.6	310	14.1	501	8.2
130	15.6	320	13.4	• • • • • • • • • • • • • • • • • • • •	
141	15.4	330	13.0		
150	15.4	340	12.5		
160	15.4	351	11.6		
170	15.4	360	11.4		
180	15.2	370	10.8		
198	15.2 15 A	370	9.0		

11.1

11.1

380

191

11.9

XBT DROP 129 T-7 RADAR: none GULF COORDS: -23.5 239.6

JDAY 329 1157Z DEPTH 298m/298m SST 17.20 2M TEMPS: SAIL 17.28 XBT 17.19

GULF OF CALIFORNIA: SILL LINE, CXP1-10 (DATA QUALITY UNCERTAIN)

Z	TEMP	Z	TEMP
11	17.2	200	15.8
20	16.9	210	15.6
30	15.8	220	15.7
40	14.9	230	15.8
50	14.7	240	14.2
60	14.7	250	15.1
70	14.7	260	15.1
89	14.9	270	13.9
90	16.1	280	14.2
100	16.4	290	11.2
110	16.4	298	11.2
120	16.4		
130	16.3		
140	16.0		
150	15.5		
160	16.0		
170	15.6		
180	16.3		
190	16.2		

Z TEMP 10 15.9 20 14.9 30 13.7 40 12.7 50 12.0 60 11.3 70 11.1 80 10.7 90 10.4 100 10.3 110 10.3 119 10.2 130 10.2 141 10.2

XBT DROP 131 T-7 RADAR: none GULF COORDS: -22.8 245.5
JDAY 329 1232Z DEPTH 345m/345m SST 16.70 2M TEMPS: SAIL 17.05 XBT 16.76
GULF OF CALIFORNIA: SILL LINE, CXP1-12

Z	TEMP	Z	TEMP
10	16.2	200	10.0
20	15.3	209	10.0
30	14.8	220	10.0
40	14.4	229	9.9
50	14.3	240	9.9
60	14.2	250	9.9
70	13.6	260	9.9
80	13.4	270	9.9
90	13.1	280	9.9
100	12.9	290	9.7
110	12.1	300	9.7
120	11.8	310	9.6
130	11.6	320	9.8
140	11.6	331	9.8
150	11.3	339	9.8
161	10.7		
170	10.6		
180	10.2		
198	10 1		

XBT DROP 132 T-7 RADAR: none GULF COORDS: -22.4 248.4

JDAY 329 1244Z DEPTH 390m/390m SST 17.40 2M TEMPS: SAIL 17.66 XBT 17.49

GULF OF CALIFORNIA: SILL LINE, CXP1-13

Z TEMP 389 10.1

Z	TEMP	Z	TEMP
10	16.4	200	11.4
20	16.2	210	11.0
30	16.1	220	10.8
40	15.7	230	10.8
50	15.4	241	10.7
60	15.2	250	10.6
70	15.1	260	10.4
80	14.9	270	10.1
90	14.4	280	10.1
100	14.0	291	10.1
110	13.8	300	10.1
120	13.4	311	10.1
130	12.9	320	10.1
140	12.6	330	10.1
150	12.4	340	10.1
160	12.4	351	10.1
170	12.3	360	10.1
180	11.9	370	10.0
198	11.8	380	10.1

10.6 10.5 10.4 10.4 10.3 10.2

10.1

10.1 10.1

299

12.6 12.4 12.4 12.4 12.3 12.3

180

RADAR: none GULF COORDS: -22.4 252.7

DEPTH 435m/434m SST 20.61 2M TEMPS: SAIL 21.12 XBT 20.94

: SILL LINE, CXP1-15 XBT DROP 134 T-7 JDAY 329 1302Z GULF OF CALIFORNIA:

Z	TEMP	Z	TEMP	Z	TEMP
10	20.2	200	13.1	390	10.2
20	19.8	211	13.0	400	10.2
30	19.3	220	12.8	410	10.2
40	17.3	229	12.7	420	10.1
50	16.9	239	12.7	430	9.5
60	16.7	250	12.7		-
70	16.4	260	12.7		
80	16.3	271	12.7		
90	16.2	280	12.6		
100	16.0	290	12.5		
110	15.1	300	11.8		
120	14.8	310	11.5		
131	14.8	320	11.2		
140	14.4	330	10.9		
150	14.1	340	10.5		
160	13.9	350	10.3		
170	13.7	360	10.2		
180	13.4	371	10.2		
191	13.3	380	10.3		

Control of the contro

Z	TEMP	Z	TEMP
10	20.6	200	13.2
20	18.9	211	13.3
29	18.3	220	13.3
40	18.1	230	13.2
50	17.1	240	13.0
60	16.2	250	12.4
70	15.6	260	12.3
79	15.3	270	11.8
90	15.2	280	11.5
100	15.2	290	11.4
110	15.2	299	11.2
120	15.0	309	11.2
130	14.9	319	11.2
140	14.6	330	11.2
150	14.2	340	11.1
160	13.3	350	10.4
170	13.2	360	10.7
181	13.2		
		370	9.9
190	13.3	380	9.9

XBT DROP 137 T-7	RADAR: none	GULF COORDS: -34.9	240.8
JDAY 329 2208Z	DEPTH 611m/610m SST 18.95	2M TEMPS: SAIL 18.80	XBT 18.87
GULF OF CALIFORNIA:	SILL REGION, NEAR FRONT		

z	TEMP	Z	TEMP	z	TEMP
10	17.8	200	11.9	390	10.4
20	16.9	209	11.8	400	9.9
31	16.8	221	11.8	410	9.5
40	16.7	231	11.6	420	8.9
50	16.7	240	11.6	430	8.9
60	16.6	250	11.5	439	8.8
70	16.2	260	11.5	450	8.8
80	15.5	270	11.4	460	8.8
90	15.0	280	11.3	470	8.6
100	14.4	290			
			11.2	480	8.2
110	14.3	300	11.2	489	8.4
120	13.8	310	11.2	500	8.3
13 0	13.6	321	11.2	510	8.2
140	13.5	330	11.1	520	8.1
150	13.1	341	11.1	530	8.1
160	13.1	351	11.1	540	8.1
170	13.0	360	11.0	550	8.2
180	12.9	370	10.3	569	8.1
190	12.3	380	10.2	569	8.1

XBT DROP 138 T-7 RADAR: none GULF COORDS: -24.4 244.6
JDAY 330 254Z DEPTH 468m/468m SST 16.25 2M TEMPS: SAIL 16.30 XBT 16.13
GULF OF CALIFORNIA: SILL REGION, DOWNCAST OF CTD STATION PC6114

Z	TEMP	Z	TEMP	Z	TEN
10	16.2	200	14.6	390	12.
20	16.1	210	15.0	399	12.
30	16.1	220	15.1	410	12.
40	16.0	230	15.1	420	11.
50	15.9	239	15.2	430	11.
60	15.9	250	15.1	440	10.
70	15.7	260	15.1	450	10.
80	14.8	270	14.8	460	9.
90	14.8	280	14.4	468	9.
100	14.6	290	14.3	400	.
110	14.5	299	14.1		
119	14.5				
		309	14.1		
130	14.5	320	14.1		
140	14.4	330	13.7		
15 0	14.6	340	13.4		
160	14.6	350	13.1		
169	14.6	359	12.8		
179	14.6	370	12.7		
198	14 6	379	12 5		

XBT DROP 139 T-7 RADAR: none GULF COORDS: -25.0 242.0 JDAY 330 257Z DEPTH 498m/498m SST 16.24 2M TEMPS: SAIL 16.32 XBT 16.26 GULF OF CALIFORNIA: SILL REGION, UPCAST OF CTD STATION PC6114

Z	TEMP	Z	TEMP	Z	TEMP
10	16.3	200	14.6	390	13.8
20	16.1	211	14.5	400	13.3
31	15.9	220	14.5	410	13.1
40	15.8	230	14.4	420	12.9
50	15.4	240	14.4	430	12.3
60	15.4	250	14.4	440	12.2
70	14.6	260	14.4	450	11.7
80	14.7	270	14.4	460	10.8
90	14.5	280	14.4	470	10.8
100	14.5	290	14.4	480	10.0
110	14.5	300	14.4	490	9.7
120	14.6	310	14.4	498	9.3
130	14.8	320	14.4	,,,,	
140	14.7	330	14.4		
150	14.8	340	14.4		
160	14.7	351	14.4		
170	14.7	360	14.3		
180	14.6	369	14.3		
190	14.5	380	14.2		
130	17.5	360	17.4		

XBT DROP 140 T-7 RADAR: SE 7.1nm 048T GULF COORDS: -31.8 242.2 JDAY 330 1642Z DEPTH 428m/423m SST 19.38 2M TEMPS: SAIL 19.65 XBT 19.72 GULF OF CALIFORNIA: BEGIN CAP SL/SE LINE, CXP1-21, SPRING TIDE

z	TEMP	Z	TEMP	Z	TEM
10	19.1	200	14.1	390	9.
20	18.6	210	13.9	400	9.
30	17.1	220	13.8	410	9.
40	16.7	230	13.6	420	9.
50	16.6	240	13.2	720	•
60	16.7	250	12.9		
78	16.6	260	12.5		
80	16.2	270	12.0		
90	16.1	280	11.2		
100	16.1	289	11.1		
110	15.9	300	10.9		
121	15.3	310	10.3		
130	15.2	320	10.1		
140	15.1	330	9.7		
150	14.9	340	9.5		
160	14.4	350	9.5		
170	14.1				
180	14.0	360	9.5		
190	14.0	370 379	9.3		
190	19.0	3/9	M 2		

XBT DROP 141 T-7 RADAR: SE 6.4nm 050T GULF COORDS: -31.1 242.6

JDAY 330 1648Z DEPTH 488m/488m SST 19.47 2M TEMPS: SAIL 19.61 XBT 19.50

GULF OF CALIFORNIA: CAP SL/SE SILL LINE, CXP1-22

Z	TEMP	Z	TEMP	Z	TEMP
10	19.1	200	14.6	390	9.4
20	18.2	210	14.4	400	9.3
30	17.7	220	14.1	410	9.0
40	17.3	230	13.8	420	8.9
50	16.8	240	13.8	430	8.9
60	16.4	250	13.5	440	8.7
70	16.3	260	13.0	450	8.8
80	16.2	276	12.2	460	8.7
90	16.0	280	11.5	470	8.7
100	15.5	290	11.4	480	8.8
110	15.3	299	11.3	488	8.7
120	15.2	310	11.2		
131	15.2	320	11.1		
140	15.1	330	11.0		
150	15.0	340	10.9		
160	15.0	350	10.9		
170	15.0	360	10.6		
181	14.8	370	10.4		
190	14.7	380	9.7		

XBT DROP 142 T-7	RADAR: SE 5.	.8nm 050T	GULF COORDS: -29.9	242.6
JDAY 330 1652Z	DEPTH 567m/477m	SST 18.20	2M TEMPS: SAIL 18.69	XBT 17.45
GULF OF CALIFORNIA:	CAP SL/SE SILL I	LINE, CXP1-2	3	

Z	TEMP	Z	TEMP	Z	TEMP
10	17.4	200	14.9	390	10.9
20	16.4	210	14.9	400	10.5
30	16.3	220	14.5	411	10.2
40	16.2	230	13.5	420	9.8
50	16.1	240	12.5	431	9.7
60	16.1	251	12.3	440	9.7
70	16.1	261	12.0	450	9.3
80	16.0	270	12.0	460	9.2
90	15.9	279	11.9	470	9.0
101	15.7	289	11.9		
110	15.6	300	11.9		
120	15.6	311	11.8		
130	15.6	320	11.8		
140	15.5	331	12.0		
150	15.4	340	11.9		
159	15.4	350	11.8		
170	15.4	360	11.6		
180	15.2	369	11.4		
190	15.1	380	11.3		

 Z
 TEMP
 Z
 TEMP
 Z
 TEMP

 10
 16.4
 200
 13.6
 390
 11.4

 20
 16.2
 210
 13.6
 400
 10.8

 29
 15.4
 220
 13.4
 410
 10.7

 41
 15.5
 230
 13.2
 420
 10.6

 50
 15.5
 240
 13.1
 430
 10.4

 60
 15.5
 250
 13.0
 440
 10.3

 71
 15.5
 260
 12.9
 450
 10.3

 80
 15.5
 270
 12.7
 460
 9.8

 90
 15.5
 280
 12.8
 470
 9.7

 99
 15.5
 290
 12.8
 480
 9.5

 110
 15.4
 300
 12.6
 490
 9.6

 120
 15.5
 310
 12.5
 500
 9.4

 129
 15.4
 320
 12.4
 509
 9.2

XBT DROP 144 T-7 RADAR: SE 4.3nm 054T GULF COORDS: -27.0 242.4

JDAY 330 1702Z DEPTH 481m/259m SST 17.60 2M TEMPS: SAIL 16.34 XBT 16.19

GULF OF CALIFORNIA: CAP SL/SE SILL LINE, CXP1-25

Z	TEMP	Z	TEM
10	16.4	200	15.1
20	16.1	210	15.6
30	15.9	220	13.8
40	15.8	230	13.7
50	15.8	239	13.7
60	15.7	251	13.7
70	15.6	201	
80	15.6		
90	15.6		
100	15.5		
110	15.5		
120	15.4		
130	15.4		
140	15.4		
151	15.3		
161	15.3		
170	15.3		
180	15.2		
190	15.2		
130	13.4		

XBT DROP 145 T-7 RADAR: SE 3.3nm 057T GULF COORDS: -25.1 242.1 JDAY 330 1708Z DEPTH 221m/221m SST 16.58 2M TEMPS: SAIL 16.19 XBT 16.37 GULF OF CALIFORNIA: CAP SL/SE SILL LINE, CXP1-26

Z	TEMP	Z	TEM
10	16.3	20 0	14.8
20	16.2	210	14.
30	16.2	220	14.
40	16.2		
51	16.2		
60	15.7		
70	15.2		
80	15.3		
89	15.0		
100	15.1		
110	15.1		
121	15.1		
130	15.0		
140	15.1		
150	15.1		
160	14.9		
170	15.0		
179	15.0		
191	14.9		
	-		

consists appears appeared balance respects.

reserved reserved westered therebyes business

Z TEMP 10 17.0 20 16.7 29 18.5 40 16.2 50 15.8 70 15.2 80 15.2 90 15.1 100 15.0 110 15.0 120 13.5 pagagas deservate services and activity

XBT DROP 147 T-7 RADAR: SE 2.1nm 061T GULF COORDS: -22.8 241.1 JDAY 330 1717Z DEPTH 111m/111m SST 16.50 2M TEMPS: SAIL 16.54 XBT 16.53 GULF OF CALIFORNIA: END CAP SL/SE SILL LINE, CXP1-28, SPRING TIDE

Z TEMP 10 16.4 20 16.3 29 16.2 40 16.1 50 14.9 60 14.6 70 14.4 81 14.4 90 14.4 101 14.4 connect connect theorem

READ BUSINESS WESSELL GARAGES

Figure 20. Bottom Pressure at San Esteban Island. 28-29 November 1984 - Neap Tides.

Figure 21. CAP2 Section: XBT Station Locations

ASSESSA COCCORD RECOGNER ANDROSA SONGARIO COCCORD

XBT DROP 148 T-7 RADAR: SE 5.5nm 126T GULF COORDS: -21.7 251.8

JDAY 333 2035Z DEPTH 419m/417m SST 19.75 2M TEMPS: SAIL 19.98 XBT 19.84

GULF OF CALIFORNIA: BEGIN CAP N/S SILL LINE, CXP2-1, NEAP TIDE

TEMP 8.8 8.7 8.7

Z	TEMP	z	TEMP	
10	19.8	200	12.7	
20	19.2	210	12.7	
30	17.9	220	12.6	
40	16.9	230	12.2	
50	16.2	240	11.9	
60	15.9	250	11.8	
70	15.6	260	11.7	
81	15.4	270	11.7	
90	15.4	280	11.2	
101		290	10.8	
110	14.9	300	10.5	
120		310	10.3	
130	14.0	320	9.4	
140	13.6	330	9.0	
150		340	9.0	
160	13.2	350	8.9	
			8.9	
170		361		
180		369	8.9	
190	12.8	381	8.8	

XBT DROP 149 T-7 RADAR: SE 4.5nm 122T GULF COORDS: -21.5 249.6 JDAY 333 2041Z DEPTH 382m/382m SST 19.70 2M TEMPS: SAIL 19.99 XBT 19.90 GULF OF CALIFORNIA: SILL LINE, CXP2-2

Z	TEMP	Z	TEMP
10	19.8	200	12.3
20	17.9	211	12.3
30	17.5	219	12.3
40	17.4	230	12.3
50	17.0	249	12.2
60	16.2	251	11.9
70	15.7	269	11.8
80	15.4	279	11.7
90	15.2	279	11.3
100	15.1	289	11.3
110	14.9	299	11.3
120	14.6	311	11.3
130	14.1	320	11.3
140	13.9	330	11.3
150	13.7	340	10.6
160	13.4	350	10.5
170	13.2	360	10.0
180	13.1	370	9.7
100	12.5	380	9.7

TSSSSSSS ACCESSES RESISSSSS

XBT DROP 150 T-7 RADAR: SE 3.5nm 111T GULF COORDS: -22.0 247.2 JDAY 333 2047Z DEPTH 348m/348m SST 19.70 2M TEMPS: SAIL 19.90 XBT 19.71 GULF OF CALIFORNIA: SILL LINE, CXP2-3

Z	TEMP	Z	TEMP
10	19.7	200	12.8
20	18.3	210	12.4
30	17.5	220	12.4
40	16.8	230	12.3
50	16.7	240	12.1
60	16.3	250	12.1
70	15.6	260	12.1
80	15.3	270	12.1
90	15.0	280	12.1
99	15.6	290	12.1
111	15.0	300	12.0
120	14.8	310	11.8
130	14.6	320	11.8
140	14.1	330	11.6
150	14.1	340	11.4
159	14.0	348	11.3
170	13.9	• • •	
180	13.8		
190	13.0		

XBT DROP 151 T-7 RADAR: SE 3.0nm 102T GULF COORDS: -22.2 245.8

JDAY 333 2051Z DEPTH 317m/317m SST 19.40 2M TEMPS: SAIL 19.75 XBT 19.16

GULF OF CALIFORNIA: SILL LINE, CXP2-4 (CROSSED VISIBLE FRONT)

Z	TEMP	Z	TEMP
10	18.4	199	15.7
20	17.8	210	15.7
30	17.0	220	15.6
40	16.5	231	15.5
50	16.4	240	15.4
61	16.4	250	15.4
70	18.2	260	15.5
79	16.1	270	15.4
90	16.0	280	15.2
100	15.9	290	15.1
110	16.0	301	15.1
120	15.9	310	14.9
131	15.7		
140	15.6		
150	15.6		
160	15.5		
170	15.5		
180	15.5		
196	15.6		
130	13.0		

XBT DROP 152 T-7 RADAR: SE 2.6nm 090T GULF COORDS: -22.9 244.4 JDAY 333 2055Z DEPTH 227m/225m SST 19.14 2M TEMPS: SAIL 19.46 XBT 19.24 GULF OF CALIFORNIA: SILL LINE, CXP2-5

Z	TEMP	Z	TEMP
10	18.8	200	14.4
20	18.0	210	14.4
30	17.1	220	14.2
40	16.5		
50	16.1		
59	16.0		
70	16.1		
81	16.0		
90	16.1		
100	16.0		
110	15.9		
120	15.6		
130	15.5		
149	15.3		
150	15.1		
161	14.9		
170	14.9		
180	14.9		
190	14.7		

Z TEMP 10 16.8 20 16.7 30 16.5 40 16.4 50 16.3 60 16.2 70 15.9 80 15.9 100 15.9 110 15.9

XBT DROP 154 T-7 RADAR: SE 2.3nm 060T GULF COORDS: -23.1 242.1 JDAY 333 2103Z DEPTH 111m/104m SST 16.86 2M TEMPS: SAIL 16.88 XBT 16.76 GULF OF CALIFORNIA: SILL LINE, CXP2-7 (IN SURFACE CHOP)

Z TEMP 11 16.7 20 16.5 30 16.3 40 15.8 51 15.4 60 15.4 70 15.4 80 15.4 91 15.3 100 15.2

Z TEMP
10 16.4 200 12.7
20 16.1 210 12.6
30 16.0 218 12.4
40 15.8
50 15.5
60 15.1
70 14.9
80 14.6
90 14.3
100 14.3
111 14.2
119 14.3
130 14.2
139 14.3
150 14.1
160 14.1
171 14.1
180 14.0
190 13.6

XBT DROP 156 T-7 RADAR: SE 2.8nm 025T GULF COORDS: -23.2 238.9
JDAY 333 2113Z DEPTH 319m/317m SST 15.84 2M TEMPS: SAIL 16.03 XBT 15.85
GULF OF CALIFORNIA: SILL LINE, CXP2-9

Z	TEMP	Z	TEMP
11	15.8	200	11.7
21	15.9	210	11.5
30	15.8	220	11.4
40	15.6	230	11.1
50	15.5	240	11.0
60	15.3	250	11.0
70	15.2	261	10.8
80	14.6	271	10.8
90	13.7	280	10.5
100	13.2	290	10.0
110	12.8	300	9.8
120	12.5	310	9.7
130	12.5		
140	12.5		
150	12.4		
160	12.3		
170	12.1		
180	12.1		
104	11 0		

XBT DROP 157 T-7 RADAR: SE 3.3nm 008T JDAY 333 2118Z DEPTH 444m/443m SST 16.03 GULF OF CALIFORNIA: SILL LINE, CXP2-10 GULF COORDS: -22.8 236.8 2M TEMPS: SAIL 16.18 XBT 16.13

Z TEMP Z TEMP Z 10 16.0 200 12.4 389 20 16.0 210 12.4 400 30 15.9 220 12.1 410	TEMP 8.8 8.6 7.9 7.4 7.0
20 16.0 210 12.4 400	8.6 7.9 7.4 7.0
2 .0 (2.1	7.9 7.4 7.0
	7.4 7.0
40 15.8 230 11.7 420	7.0
50 15.8 240 11.4 430	
60 15.7 250 11.4 440	6.6
70 15.4 260 11.1	•••
80 15.2 270 11.0	
90 15.1 280 10.8	
100 15.0 290 10.7	
110 14.7 300 10.6	
120 14.6 310 10.0	
130 14.2 320 9.9	
140 14.0 330 9.4	
150 13.6 341 9.3	
160 13.3 350 9.3	
170 13.1 360 9.2	
180 12.8 370 9.0	
190 12.5 380 8.9	

XBT DROP 158 T-7 RADAR: SE 3.9nm 357T GULF COORDS: -22.6 235.3 JDAY 333 2123Z DEPTH 539m/528m SST 16.24 2M TEMPS: SAIL 16.32 XBT 16.17 GULF OF CALIFORNIA: SILL LINE, CXP2-11

Z	TEMP	Z	TEMP	Z	TEMP
10	16.2	200	13.1	390	7.5
19	16.2	210	12.7	399	7.4
30	16.2	220	12.4	410	7.4
39	16.2	230	12.2	421	7.0
50	16.2	240	11.9	430	6.9
60	16.2	250	11.7	440	6.8
70	16.2	260	11.2	451	6.8
80	16.1	270	11.0	460	6.8
90	15.0	279	10.9	470	6.7
100	14.9	290	10.9	480	6.6
109	14.9	300	10.8	490	6.5
120	14.4	310	9.9	501	6.5
130	14.4	320	9.4	510	6.4
140	14.1	330	9.1	520	6.4
150	13.9	340	9.1	020	0.4
160	13.7	351	8.9		
171	13.7	360	8.7		
180	13.6	370	8.1		
198	13.4	380	7.7		

The second of the second secon

Z	TEMP	Z	TEMP	Z	TEMP
10	16.3	200	13.4	390	7.4
19	16.2	210	13.0	401	7.3
30	16.3	220	12.3	410	7.2
41	16.3	230	12.0	420	7.1
50	16.2	240	12.0	430	7.0
60	16.2	250	11.5	440	6.9
69	16.2	260	11.2	450	6.7
80	16.0	271	11.1	461	6.6
89	15.8	280	11.1	470	6.6
100	15.4	290	10.8	479	6.5
110	15.3	300	9.9	490	6.5
120	14.7	311	9.3	500	6.4
130	14.2	320	9.2	510	6.3
141	14.1	330	9.2	521	6.2
150	14.1	340	8.6	531	6.2
160	13.9	350	8.3	541	6.2
170	13.9	360	7.9	550	6.2
180	13.8	370	7.8		
190	13.8	380	7.6		

XBT DROP 160 T-7 RADAR: SE 5.4nm 345T GULF COORDS: -22.6 232.5 JDAY 333 2133Z DEPTH 545m/545m SST 16.54 2M TEMPS: SAIL 16.51 XBT 16.51 GULF OF CALIFORNIA: END CAP N/S SILL LINE, CXP2-13, NEAP TIDE

Z	TEMP	Z	TEMP	Z	TEMP
10	16.4	200	13.0	390	7.6
21	16.3	210	12.8	400	7.5
30	16.3	220	12.7	410	7.2
41	16.2	230	12.5	421	7.1
50	16.2	240	12.4	431	7.0
60	15.9	250	12.2	440	6.9
70	15.6				
		260	12.1	450	6.7
80	15.1	27 0	11.8	460	6.6
91	15.0	281	11.3	471	6.5
100	14.5	290	11.1	479	6.5
110	14.4	300	10.4	490	6.4
120	14.0	310	9.6	500	6.4
130	14.0	320	9.3	510	6.4
140	14.0	331	9.2	520	6.3
150	14.0	340	9.0	531	6.3
160	13.9	350	8.6	540	6.2
170	13.8	360	8.1	040	7.2
179	13.7	369	7.9		
190	13.5	380	7 A		

Z TEMP 10 20.6 20 20.8 30 20.1 40 19.4 50 18.0 60 17.5 70 17.1 80 16.8 91 16.7 110 16.7 111 16.5 118 16.0

CARLOS CARROSA PRINCIPIO ESCRIPCIO COSTOSOS CONTROLOS CO

COLOR MERCESSES COMMENTS CONTRACTOR

		162 T-7					ORDS: -32.4	
JDAY	335	122Z	DEPTH 474m/474	m SST	20.28	2M TEMPS:	SAIL 20.58	XBT 20.37
GULF	OF (CALIFORNIA:	CAP SL/SE SIL	L LINE;	CXP2-1	5		

10 20.4 200 13.5 390 7 20 20.3 210 13.4 401 7 30 18.6 219 13.2 411 7 40 17.9 230 13.1 420 7 50 17.2 239 12.9 430 6 60 16.7 250 12.6 440 6 70 16.2 260 12.3 450 6 80 16.0 271 12.2 460 6 90 15.7 280 12.1 469 6 100 15.5 290 11.2 110 15.4 300 10.7 120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1	Z	TEMP	Z	TEMP	Z	TE
20 20.3 210 13.4 401 7 30 18.6 219 13.2 411 7 40 17.9 230 13.1 420 7 50 17.2 239 12.9 430 6 60 16.7 250 12.6 440 6 70 16.2 260 12.3 450 6 80 16.0 271 12.2 460 6 90 15.7 280 12.1 469 6 100 15.5 290 11.2 10.7 10.7 10.7 10.7 10.7 10.6 10.7 10.6 10.7 10.6 1	10	20.4				
30 18.6 219 13.2 411 7 40 17.9 230 13.1 420 7 50 17.2 239 12.9 430 6 60 16.7 250 12.6 440 6 70 16.2 260 12.3 450 6 80 16.0 271 12.2 460 6 90 15.7 280 12.1 469 6 100 15.5 290 11.2 110 15.4 300 10.7 120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
40 17.9 230 13.1 420 7 50 17.2 239 12.9 430 6 60 16.7 250 12.6 440 6 70 16.2 260 12.3 450 6 80 16.0 271 12.2 460 6 90 15.7 280 12.1 469 6 100 15.5 290 11.2 110 15.4 300 10.7 120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
50 17.2 239 12.9 430 6 60 16.7 250 12.6 440 6 70 16.2 260 12.3 450 6 80 16.0 271 12.2 460 6 90 15.7 280 12.1 469 6 100 15.5 290 11.2 110 15.4 300 10.7 120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
60 16.7 250 12.6 440 6 70 16.2 260 12.3 450 6 80 16.0 271 12.2 460 6 90 15.7 280 12.1 469 6 100 15.5 290 11.2 110 15.4 300 10.7 120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
70 16.2 260 12.3 450 6 80 16.0 271 12.2 460 6 90 15.7 280 12.1 469 6 100 15.5 290 11.2 110 15.4 300 10.7 120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
80 16.0 271 12.2 450 6 90 15.7 280 12.1 469 6 100 15.5 290 11.2 110 15.4 300 10.7 120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
90 15.7 280 12.1 469 6 100 15.5 290 11.2 110 15.4 300 10.7 120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
100 15.5 290 11.2 110 15.4 300 10.7 120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
110 15.4 300 10.7 120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1					703	U
120 15.2 310 10.6 130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
130 15.1 320 10.6 140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
140 14.6 330 9.9 150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1						
150 14.4 340 7.8 160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1	130	15.1	320	10.6		
160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1	140	14.6	330	9.9		
160 14.2 350 7.6 170 13.7 360 7.2 180 13.6 369 7.1	150	14.4	340	7.8		
170 13.7 360 7.2 180 13.6 369 7.1	160	14.2				
180 13.6 369 7.1						
	190	13.6	380	7.1		

XBT DROP 163 T-7 RADAR: SE 6.6nm 052T GULF COORDS: -31.1 241.2 JDAY 335 128Z DEPTH 487m/487m SST 20.25 2M TEMPS: SAIL 20.64 XBT 20.55 GULF OF CALIFORNIA: CAP SL/SE SILL LINE; CXP2-16

Z	TEMP	Z	TEMP	Z	TEMP
10	20.5	201	13.4	390	8.5
20	20.4	210	13.3	400	8.4
30	18.0	221	13.1	410	7.5
40	17.3	230	13.0	420	7.4
50	17.1	240	12.9	430	7.2
60	16.9	250	12.1	440	7.1
70	16.8	260	10.9	451	7.0
80	16.5	270	10.5	460	7.0
90	15.6	280	10.1	469	6.9
101	15.5	290	9.8	479	7.0
109	15.5	300	9.6	7/3	7.0
	15.4				
120		311	9.3		
130	15.2	320	9.1		
141	14.6	330	9.1		
150	14.2	340	9.0		
160	14.0	349	8.9		
170	13.8	361	8.9		
180	13.6	370	8.6		
189	13.4	381	8.5		

XBT DROP 164 T-7 RADAR: SE 5.9nm 051T GULF COORDS: -30.0 240.8

JDAY 335 134Z DEPTH 557m/556m SST 20.10 2M TEMPS: SAIL 20.56 XBT 20.46

GULF OF CALIFORNIA: CAP \$L/SE SILL LINE; CXP2-17

Z	TEMP	Z	TEMP	Z	TEMP
9	20.4	200	13.2	391	7.6
20	20.1	209	13.1	400	7.6
30	18.3	220	13.1	410	7.3
40	17.4	230	13.0	420	7.1
50	17.0	240	12.0	430	7.1
61	16.8	250	11.2	440	7.1
70	16.7	260	11.0	450	6.7
80	16.3	270	10.8	469	6.6
90	15.9	280	10.7	471	6.6
99	15.3	290	10.6	479	6.6
110	15.2	300	10.4	490	6.5
120	14.7	310	10.2	500	6.5
130	14.4	320	9.8	510	6.5
141	14.3	330	9.7	520	6.5
150	14.1	340	9.1	530	6.3
160	14.0	350	8.8	540	6.3
171	13.9	360	8.3	550	6.2
180	13.7	370	7.8		
198	13.5	380	7 8		

XBT DROP 165 T-7 RADAR: SE 5.2nm 051T GULF COORDS: -28.2 241.0 JDAY 335 140Z DEPTH 568m/568m SST 20.05 2M TEMPS: SAIL 20.46 XBT 20.30 GULF OF CALIFORNIA: CAP SL/SE SILL LINE; CXP2-18

Z	TEMP	Z	TEMP	Z	TEMP
10	19.9	200	13.0	390	7.6
20	18.3	210	12.6	400	7.3
30	17.3	220	12.3	411	7.1
40	17.1	230	10.9	420	6.9
50	16.8	241	10.8	429	6.9
60	16.2	250	10.7	441	6.9
71	15.8	260	10.6	450	6.9
80	15.7	270	10.6	460	6.9
90	15.4	280	10.3	471	6.7
100	14.9	290	10.0	480	6.5
110	14.7	300	9.7	490	6.4
120	14.5	310	9.6	500	6.2
130	14.4	320	9.2	510	6.2
140	14.2	330	9.1	521	6.1
150	14.1	341	9.0	530	6.1
160	14.0	350	8.9	540	6.1
170	13.3	360	8.6	549	6.0
180	13.1	370	8.3	560	6.0
				200	0.0
190	13.0	381	7.8		

AD-R171 920 OBSERVATIONS OF TEMPERATURE FINESTRUCTURE IN THE GULF 3/3
OF CALIFORNIA X8T D. (U) SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA CA PADEN ET AL. MAR 85
UNCLASSIFIED SID-REF-86-14 N00014-85-C-0104

F/G 9/10
NL

MICROCOPY RESCRIBION TEST STORE

XBT DROP 166 T-7 RADAR: SE 4.4nm 051T GULF COORDS: -26.7 241.4 JDAY 335 146Z DEPTH 520m/520m SST 19.88 2M TEMPS: SAIL 20.37 XBT 20.23 GULF OF CALIFORNIA: CAP SL/SE SILL LINE, CXP2-19

Z	TEMP	Z	TEMP	Z	TEMP
10	20.2	200	12.6	390	7.6
20	19.4	210	12.4	400	7.4
30	18.4	220	12.0	411	7.3
40	17.2	230	11.5	420	7.2
50	16.7	240	11.1	430	7.2
60	16.5	250	10.9	440	7.1
				451	7.1
					7.1
					6.9
				480	6.9
				490	6.9
					6.6
					6.6
					6.4
50 70 80 90 100 110 120 141 150 161 170 180	16.5 16.3 16.1 15.6 14.6 14.2 14.2 14.1 13.9 13.8 12.9 12.8	250 260 270 289 300 311 320 331 340 350 371 380	10.9 10.7 10.4 10.9 9.5 9.5 9.5 9.6 8.9 8.7.8	451 460 470	7. 7. 6. 6. 6. 6.

Contraction of the Contraction o

XBT DROP 167 T-7 RADAR: SE 3.8nm 049T GULF COORDS: -25.5 241.1 JDAY 335 151Z DEPTH 407m/407m SST 19.30 2M TEMPS: SAIL 20.13 XBT 19.19 GULF OF CALIFORNIA: CAP SL/SE SILL LINE; CXP2-20

Z 391 399 TEMP 7.6 7.6

Z	TEMP	Z	TEMP
10	19.2	200	12.6
20	18.1	210	12.5
30	17.4	220	12.2
48	16.3	236	11.9
50	15.8	248	11.1
60	15.6	250	10.8
70	15.5	260	10.6
80	15.3	270	9.7
98	14.7	280	9.5
100	14.3	290	9.3
110	14.0	300	9.2
120	14.0	310	9.2
130	14.0	329	8.6
140	13.7	334	8.5
150	13.4	341	8.0
160	13.3	350	7.8
170	13.3	359	7.8
179	13.2	371	7.8
190	12.8	380	7.8

the first production of the control of the production of the control of the contr

XBT DROP 168 T-7 RADAR: SE 3.3nm 049T GULF COORDS: -24.4 240.7 JDAY 335 155Z DEPTH 284m/284m SST 18.86 2M TEMPS: SAIL 18.45 XBT 19.05 GULF OF CALIFORNIA: CAP SL/SE SILL LINE, CXP2-21

Z	TEMP	Z	TEMP
10	18.3	200	12.4
21	17.6	209	12.2
31	17.6	220	12.1
40	17.5	230	11.1
50	17.5	240	10.9
61	17.5	250	10.8
70	17.1	260	10.5
80	16.1	270	10.1
90	15.2	280	9.8
100	14.6	200	•••
110	14.4		
120	14.0		
130	13.8		
140	13.5		
150	13.3		
	13.0		
160			
170	12.7		
180	12.6		
19 0	12.4		

Z TEMP 10 18.6 20 17.6 30 17.4 40 17.4 51 17.3 60 17.3 70 17.3 80 16.4 90 16.0 100 15.6 110 15.0 120 14.3 130 13.9 140 13.7

SASSASSA SECRETARIA KARARRAS SASSAS SASSAS CARRARA SASSASA

XBT DROP 170 T-7 RADAR: SE 1.9nm 050T GULF COORDS: -21.8 240.9 JDAY 335 205Z DEPTH 113m/113m SST 17.81 2M TEMPS: SAIL 19.02 XBT 17.27 GULF OF CALIFORNIA: CAP SL/SE SILL LINE, CXP2-23

Z TEMP 10 17.2 20 17.2 30 17.2 40 17.0 50 16.8 60 16.7 70 16.3 80 16.2 90 15.2 110 15.2 CONTRACTOR CONTRACTOR SCHOOLS

research control actions system systems

FULF OF CALIFORNIA: END CAP SL/SE SILL LINE, CXP2-24, NEAP TIDE

Z TEMP 10 18.1 20 17.6 30 17.2 40 16.9 50 16.6 60 16.5 70 16.3 80 15.9

Figure 22. Tiburon Section: XBT Station Locations

16.4 16.3 16.1 15.7 15.4 14.9 14.4 14.0 13.5 12.9 12.9 12.8

180

was accessed accessed sourcess surviving totalistic surviving

XBT DROP 175 T-7	RADAR: SWL 1.				
JDAY 335 830Z	DEPTH 506m/506m	SST 18.61	2M TEMPS: SAIL	19.19	XBT 18.90
GULF OF CALIFORNIA:	TIBURON CHANNEL				

Z	TEMP	Z	TEMP	Z	TEMP
10	18.9	200	12.4	390	9.4
20	18.3	210	12.2	400	9.4
30	16.8	220	11.9	411	9.4
40	16.2	230	11.8	420	9.3
49	16.0	240	11.6	430	9.3
60	15.8	250	11.4	441	9.3
70	15.5	260	11.1	450	9.2
80	15.4	269	10.8	460	9.1
90	15.2	281	10.6	470	9.1
100	15.1	290	10.4	480	9.1
110	14.6	300	10.3	489	9.1
120	14.1	310	9.9	500	9.1
130	13.9	320	9.7	•	
141	13.8	330	9.6		
150	13.6	340	9.6		
160	13.3	350	9.6		
170	12.9	360	9.5		
179	12.6	371	9.5		
100	12.6	388	9.5		

Pichicuco VII

March 1985

2500 Londono 17555555 (piorenelli 2000) 1800006 (contrate 1700) 1800000 (contrate 1700) 18000000 (contrate 1700)

San Esteban Sill

Figure 23. Bottom Pressure at San Esteban Island. 8-9 March 1985.

Figure 24. MX3 Section: XBT Station Locations

XBT DROP 201 T-7 RADAR: SE 23.4nm 340T GULF COORDS: -30.7 199.7 JDAY 68 1352Z DEPTH 961m/760m SST .00 2M TEMPS: SAIL 14.68 XBT 15.62 GULF OF CALIFORNIA: BEGIN MX3; MX3-1, SPRING TIDE

TEMP	Z	TEMP	Z	TEMP	Z	TEMP
15.2	200	11.2	390	7.9	580	7.0
15.1	210	10.7	400	7.9	590	6.9
15.0	220	10.1	410	7.9	600	6.9
			420	7.7	610	6.9
				7.6	620	6.9
				7.5	630	6.9
					640	6.8
			460		650	6.8
			470		660	6.8
					670	6.8
					680	6.8
						6.8
						6.7
			520		710	6.7
					720	6.7
					730	6.7
						6.6
						6.6
_					760	6.6
	15.2	15.2 200 15.1 210 15.0 220 15.0 230 14.9 240 14.8 250 14.7 260 14.3 270 14.2 280 14.1 290 13.8 300 13.6 310 13.4 320 13.3 330 13.0 340 12.9 350 12.1 360 11.8 370	15.2 200 11.2 15.1 210 10.7 15.0 220 10.1 15.0 230 9.9 14.9 240 9.9 14.8 250 9.7 14.7 260 9.1 14.3 270 9.1 14.2 280 8.9 14.1 290 8.9 14.1 290 8.9 13.8 300 8.8 13.6 310 8.5 13.4 320 8.4 13.3 330 8.4 13.0 340 8.4 12.9 350 8.2 12.1 360 8.0 11.8 370 8.0	15.2 200 11.2 390 15.1 210 10.7 400 15.0 220 10.1 410 15.0 230 9.9 420 14.9 240 9.9 430 14.8 250 9.7 440 14.7 260 9.1 450 14.3 270 9.1 460 14.1 290 8.9 470 14.1 290 8.9 480 13.8 300 8.8 490 13.6 310 8.5 500 13.4 320 8.4 510 13.3 330 8.4 520 13.0 340 8.4 530 12.9 350 8.2 540 12.1 360 8.0 550 11.8 370 8.0 560	15.2 200 11.2 390 7.9 15.1 210 10.7 400 7.9 15.0 220 10.1 410 7.9 15.0 230 9.9 420 7.7 14.9 240 9.9 430 7.6 14.8 250 9.7 440 7.5 14.7 260 9.1 450 7.5 14.3 270 9.1 460 7.3 14.1 290 8.9 470 7.2 14.1 290 8.9 480 7.1 13.8 300 8.8 490 7.1 13.6 310 8.5 500 7.1 13.4 320 8.4 510 7.1 13.3 330 8.4 520 7.1 13.0 340 8.4 530 7.0 12.1 360 8.0 550 7.0 11.8 <t< td=""><td>15.2 200 11.2 390 7.9 580 15.1 210 10.7 400 7.9 590 15.0 220 10.1 410 7.9 600 15.0 230 9.9 420 7.7 610 14.9 240 9.9 430 7.6 620 14.8 250 9.7 440 7.5 630 14.7 260 9.1 450 7.5 640 14.3 270 9.1 460 7.3 650 14.1 290 8.9 470 7.2 660 14.1 290 8.9 480 7.1 670 13.8 300 8.8 490 7.1 680 13.4 320 8.4 510 7.1 700 13.3 330 8.4 520 7.1 710 13.0 340 8.4 520 7.1 710 </td></t<>	15.2 200 11.2 390 7.9 580 15.1 210 10.7 400 7.9 590 15.0 220 10.1 410 7.9 600 15.0 230 9.9 420 7.7 610 14.9 240 9.9 430 7.6 620 14.8 250 9.7 440 7.5 630 14.7 260 9.1 450 7.5 640 14.3 270 9.1 460 7.3 650 14.1 290 8.9 470 7.2 660 14.1 290 8.9 480 7.1 670 13.8 300 8.8 490 7.1 680 13.4 320 8.4 510 7.1 700 13.3 330 8.4 520 7.1 710 13.0 340 8.4 520 7.1 710

12. C. C. C. C.

アスカスカイ まきないとと

THE CASSAGE REPRESENT

CONTRACT SECRETARY CONTRACTORY

Reserve assesses processes

XBT DROP 203 T-7 RADAR: SE 11.2nm 005T GULF COORDS: -32.4 225.7 JDAY 68 1506Z DEPTH 330m/330m SST 13.44 2M TEMPS: SAIL 13.24 XBT 14.09 GULF OF CALIFORNIA: MX3-3, SPRING TIDE

Z	TEMP	Z	TEMP
10	13.3	200	12.8
20	13.2	210	12.7
30	13.2	220	12.8
40	12.9	230	12.7
50	13.0	240	12.7
60	13.0	250	12.8
70	13.0	260	12.7
80	13.0	270	12.6
90	13.0	280	12.6
100	13.0	290	12.5
110	13.0	300	12.5
120	12.9	310	12.5
130	12.9	320	12.5
140	12.9	330	12.5
150	12.9	-	
160	12.8		
170	12.8		
180	12.8		
198	12.9		

XBT DROP 204 T-7 RADAR: SE 8.8nm 016T GULF COORDS: -31.5 231.2 JDAY 68 1528Z DEPTH 282m/282m SST 14.35 2M TEMPS: SAIL 14.02 XBT 14.45 GULF OF CALIFORNIA: MX3-4, SPRING TIDE

7	TEMP	Z	TEMP
Z			
10	14.2	200	12.0
20	14.0	210	11.9
30	13.9	220	11.3
40	13.6	230	11.0
50	13.6	240	10.6
60	13.5	250	10.4
70	13.4	260	10.3
80	13.4	270	10.0
90	13.4	280	10.1
		200	
100	13.3		
110	13.3		
120	13.3		
130	13.2		
140	13.2		
150	13.2		
160	13.1		
170	13.0		
180	12.8		
190	12.4		

XBT DROP 205 T-7 RADAR: SE 5.7nm 025T GULF COORDS: -28.2 236.1 JDAY 68 1549Z DEPTH 612m/612m SST 13.20 2M TEMPS: SAIL 13.12 XBT 13.41 GULF OF CALIFORNIA: MX3-5, SPRING TIDE

TEMP 8.7 8.7 8.7 8.7

z	TEMP	Z	TEMP	Z	TEMP	
10	13.4	200	12.6	390	11.7	
20	13.0	210	12.7	400	11.7	
30	12.9	220	12.5	410	11.7	
40	12.8	230	12.5	420	11.7	
50	12.8	240	12.4	430	11.7	
60	12.7	250	12.5	440	11.6	
70	12.8	260	12.0	450	11.6	
80	12.8	270	11.7	460	11.3	
90	12.8	280	11.7	470	10.8	
100	12.8	290	11.7	480	10.8	
110	12.8	300	11.7	490	10.7	
120	12.7	310	11.7	500	10.6	
130	12.7	320	11.7	510	10.6	
140	12.5	330	11.7	520	10.6	
150	12.4	340	11.7	530	10.3	
160	12.8	350	11.7	540	9.7	
170	12.6	360	11.7	550	9.5	
180	12.6	370	11.7	560	8.8	
190	12.6	380	11.7	570	8.8	

XBT DROP 206 T-7 RADAR: SE 4.3nm 037T GULF COORDS: -26.3 238.9
JDAY 68 1601Z DEPTH 567m/567m SST 12.93 2M TEMPS: SAIL 12.78 XBT 13.11
GULF OF CALIFORNIA: END MX3; MX3-6, SPRING TIDE

Z	TEMP	Z	TEMP	Z	TEMP
10	12.7	200	10.7	390	11.0
20	12.7	210	10.7	400	11.0
30	12.7	220	10.8	410	11.1
40	12.2	230	11.0	420	11.1
50	12.1	240	11.1	430	11.2
60	11.5	250	11.0	440	11.1
70	11.0	260	11.0	450	11.1
80	11.0	270	10.7	460	11.2
90	11.0	280	10.7	470	10.8
100	11.0	290	10.7	480	10.3
110	10.9	300	10.6	490	10.3
120	10.8	310	10.8	500	10.2
130	10.8	320	10.8	510	10.1
140	10.8	330	10.7	520	9.9
150	10.8	340	11.1	530	9.8
160	10.8	350	11.0	540	9.8
170	10.8	360	11.0	550	9.8
180	10.8	370	11.0	560	9.8
198	10.0	390	11.0	300	5.0

Figure 25. CAP3 Section: XBT Station Locations

scores assessed appropria

5. 我也没有的人,我也没有了,你不是我们的我们的我们就是我的人,我们就没有的人,我们也不是有什么的人,我们也是我们的人,我们也会会会会会会会,他们也会会会会会 第一章

THE RESERVE OF THE PARTY OF THE

XBT DROP 208 T-7 RADAR: SE 7.2nm 131T GULF COORDS: -21.7 254.5 JDAY 69 405Z DEPTH 410m/390m SST 15.39 2M TEMPS: SAIL 15.16 XBT 15.48 GULF OF CALIFORNIA: BEGIN CAP SILL LINE, CX3-1, SPRING TIDE

Z TEMP 390 10.4

Z	TEMP	Z	TEMP	
10	15.1	200	11.5	
20	14.9	210	11.3	
30	14.6	220	11.2	
40	14.2	230	11.0	
50	13.4	240	11.0	
60	13.1	250	10.9	
70	12.7	260	10.9	
80	12.5	270	10.9	
90	. —	280		
100		290	10.9	
110	12.0	300	10.8	
120		310	10.8	
130		320	10.7	
140		330	10.6	
150		340	10.5	
160		350	10.5	
170	11.6	360	10.5	
180	11.6	370	10.5	
190	11.5	380	10.4	

expected processor topological statement statement continued topological

XBT DROP 209 T-7 RADAR: SE 6.2nm 127T GULF COORDS: -21.8 252.8 JDAY 69 419Z DEPTH 449m/449m SST .00 2M TEMPS: SAIL 15.07 XBT 15.67 GULF OF CALIFORNIA: SILL LINE, CX3-2

TEMP 10.3 10.2 10.1 10.0 9.6 9.5

Z	TEMP	Z	TEMP
10	15.2	200	11.7
20	14.9	210	11.3
30	14.1	220	11.2
40	13.7	230	11.1
50	13.3	240	11.1
60	13.2	250	11.1
70	13.2	260	11.0
80	13.1	270	
90	12.9	280	
100	12.9	290	10.9
110		300	
120		310	-40.9
130		320	
140	12.2	330	
150	12.1	340	
160	12.1	350	
170		360	
180		370	
190	11.8	380	
190	11.8	380	10.5

TEMP 11.2 11.2 11.1 TEMP 10.1 10.1 10.0 9.9 9.8 9.8 Z 10 TEMP 15.1 14.1 13.2 13.1 12.9 12.8 12.7 12.4 12.2 12.1 Z 390 Z 200 210 220 230 240 250 270 280 290 300 310 400 410 420 430 440 20 30 40 50 60 70 80 11.1 11.1 11.1 11.1 90 100 110 11.1 12.1 12.0 12.0 12.0 11.8 11.6 11.1 120 130 140 150 11.1 320 11.0 330 340 350 360 370 11.0 11.0 10.9 10.8 160 170 180 11.2 10.5 11.2 190 380 10.3

A SA PARA CONTRACTOR OF THE SAME OF THE SA

XBT DROP 211 T-7 RADAR: SE 4.0nm 116T GULF COORDS: -22.1 248.2 JDAY 69 432Z DEPTH 394m/390m SST 15.17 2M TEMPS: SAIL 15.01 XBT 15.18 GULF OF CALIFORNIA: SILL LINE, CX3-4

TEMP 8.8

Z	TEMP	Z	TEMP	z
10	15.1	200	11.3	390
20	15.0	210	11.3	•••
30	14.4	220	11.3	
40	13.1	230	11.3	
50	13.0	240	11.3	
60	12.9			
		250	11.3	
70	12.7	260	11.3	
80	12.7	270	11.3	
90	12.5	280	11.2	
100	12.2	290	11.0	
110	12.1	300	10.7	
120	12.0	319	10.5	
130	12.0	320	10.5	
140	11.8	330	10.4	
150	11.7	340	10.3	
160	11.6	350	9.7	
170	11.4	360	9.2	
180	11.4	370	8.9	
190	11.4	380	8.9	

XBT DROP 212 T-7 RADAR: SE 3.7nm 105T GULF COORDS: -23.0 247.0 JDAY 69 438Z DEPTH 396m/396m SST 15.00 2M TEMPS: SAIL 14.79 XBT 15.10 GULF OF CALIFORNIA: SILL LINE, CX3-5

Z 390

Z	TEMP	Z	TEMP
10	15.0	200	11.4
20	14.9	210	11.5
30	13.8	220	11.4
40	13.0	230	11.4
50	13.0	240	11.3
60	13.0	250	11.2
70	12.7	260	11.0
80	12.6	270	10.9
90	12.4	280	10.9
100	12.3	290	10.8
110	12.2	300	10.7
120	12.0	310	10.6
130	11.9	320	10.5
140	11.7	330	10.0
150	11.5	340	9.7
160	11.5	350	9.6
170	11.5	360	9.3
180	11.5	370	9.2
190	11.5	380	9.0

ACCERTED BESSELES SEPTION SOCIOSOS CHESTER NOTOTOR CONTROL

XBT DROP 213 T-7 RADAR: SE 3.7nm 085T GULF COORDS: -22.8 244.5 JDAY 69 445Z DEPTH 220m/220m SST 14.98 2M TEMPS: SAIL 14.78 XBT 15.14 GULF OF CALIFORNIA: SILL LINE, CX3-6

Z	TEMP	Z	TEMP
10	14.6	200	11.0
20	13.0	210	11.1
30	12.8	220	10.8
48	12.7		
50	12.7		
60	12.5		
70	12.3		
80	11.7		
90	11.6		
100	11.6		
110	11.5		
120	11.5		
130	11.5		
140	11.5		
150	11.4		
160	11.3		
170	11.3		
180	11.2		
196	11.1		

XBT DROP 214 T-7 RADAR: SE 3.2nm 070T JDAY 69 450Z DEPTH 170m/170m SST 14.79 GULF OF CALIFORNIA: SILL LINE, CX3-7

XBT DROP 215 T-7 RADAR: SE 3.0nm 047T GULF COORDS: -24.3 241.1 JDAY 69 459Z DEPTH 300m/300m SST 13.29 2M TEMPS: SAIL 13.33 XBT 13.71 GULF OF CALIFORNIA: SILL LINE, CX3-8

Z TEMP Z TEMP
10 12.8 200 10.3
20 12.9 210 10.5
30 12.9 220 9.8
40 12.9 230 9.8
50 12.7 250 9.8
60 12.7 250 9.8
70 12.7 260 9.7
80 12.7 270 9.8
100 12.6 290 9.6
110 12.6 290 9.6
120 12.6 300 9.6
120 12.6 300 9.6
120 12.6 300 9.6
120 12.6 300 9.6
120 12.6 300 9.6
120 12.6 300 9.6
120 12.6 300 9.6
120 12.6 300 9.6
120 12.6 300 9.6

XBT DROP 216 T-7 RADAR: SE 3.4nm 031T GULF COORDS: -24.7 239.1 JDAY 69 504Z DEPTH 390m/390m SST 12.65 2M TEMPS: SAIL 12.43 XBT 13.48 GULF OF CALIFORNIA: SILL LINE, CX3-9

TEMP

8.1

TEMP 12.5 12.3 TEMP 11.1 Z 10 Z Z 390 200 210 220 230 240 250 260 270 280 290 300 20 30 40 50 60 70 80 10.9 12.2 12.0 10.1 9.7 11.9 11.6 8.9 8.9 8.9 8.8 8.5 8.5 8.4 8.4 8.4 11.6 90 11.5 100 11.5 110 11.4 120 130 140 150 11.4 310 320 330 340 350 11.4 11.4 160 11.4 170 11.3 360 180 11.3 370 11.2 190 8.1

XBT DROP 217 T-7 RADAR: SE 3.7nm 021T GULF COORDS: -24.8 237.6 JDAY 69 510Z DEPTH 539m/539m SST 11.75 2M TEMPS: SAIL 11.69 XBT 11.69 GULF OF CALIFORNIA: SILL LINE, CX3-10

Z	TEMP	Z	TEMP	Z	TEMP
10	11.5	200	10.5	390	9.1
20	11.4	210	10.4	400	9.0
30	11.4	220	10.4	410	8.9
40	11.3	230	10.3	420	8.7
50	11.2	240	10.2	430	8.5
60	10.8	250	10.2	440	8.4
70	10.9	260	10.1	450	8.0
80	10.8	279	10.2	460	7.9
90	10.9	280	10.0	470	7.9
100	10.8	290	10.0	480	7.9
110	10.9	300	9.9	490	7.9
120	10.8	310	9.8	500	7.9
130	10.5	320	9.8	510	7.8
140	10.5	330	9.9	520	7.9
150	10.5	340	9.7	530	7.7
160	10.6	350	9.7	330	,
170	10.6	360	9.6		
180	10.5	370	9.3		
100	10.5	376	3.3		

XBT DROP 218

Z	TEMP	Z	TEMP	Z	TEMP
10	11.0	200	10.4	390	8.4
20	11.1	210	10.4	400	8.5
30	11.1	220	10.3	410	8.3
40	11.1	230	10.3	420	8.2
50	11.1	240	10.3	430	8.3
60	11.0	250	9.8	440	8.1
70	10.9				
		260	9.8	450	7.9
80	11.0	270	9.7	460	7.6
90	11.0	280	9.6	470	7.7
100	11.0	290	9.5	480	7.5
110	11.0	300	9.2	490	7.5
120	11.1	310	9.0	500	7.3
130	10.9	320	8.6	510	7.3
140	10.9	330	8.8		
150	10.9	340	8.6		
160	10.8	350	8.5		
170	10.8	360	8.4		
180	10.6	370	8.5		
198	10 4	380	8 5		

XBT DROP 219 T-7 RADAR: SE 4.9nm 001T GULF COORDS: -24.4 234.0 JDAY 69 522Z DEPTH 485m/485m SST 12.17 2M TEMPS: SAIL 11.89 XBT 12.69 GULF OF CALIFORNIA: SILL LINE, CX3-12

Z	TEMP	Z	TEMP	Z	TEMP
10	12.0	200	11.3	_	10.4
				390	
20	12.0	210	11.2	400	10.3
30	12.0	220	11.2	410	10.3
40	11.9	230	11.2	420	10.3
50	12.0	240	11.2	430	9.6
60	12.0	250	11.1	440	8.9
70	12.0	260	10.9	450	8.8
80	12.0	270	10.9	460	9.4
90	11.9	280	10.6	470	8.2
100	11.7	290	10.5	480	7.5
110	11.5	300	10.5		
120	11.5	310	10.4		
130	11.4	320	10.3		
140	11.4	330	10.3		
150	11.4	340	10.1		
160	11.4	350	10.2		
170	11.4	360	10.2		
180	11.3	370	10.3		
198	11 3	388	10 4		

テープ・プライン とうしょう (m) とうしょ

Z	TEMP	Z	TEMP	Z	TEM
10	12.3	200	11.5	390	9.
20	12.2	210	11.4	400	9.
30	12.1	220	11.3	410	9.
40	12.1	230	11.1	420	9.
50	12.0	240	10.8	430	9.
60	12.1	250	10.7	440	
70	12.1				9.3
		260	10.6	450	9.2
80	12.0	270	10.6	460	9.1
90	12.1	289	10.4	470	9.6
100	12.0	290	10.3	480	7.6
110	12.0	300	10.2		
120	11.9	319	10.1		
130	11.8	320	9.9		
140	11.8	330	9.6		
150	11.7	340	9.3		
160	11.7	350	9.3		
170	11.6	360	9.3		
180	11.6	370	9.3		
190	11.5	380	9.3		

THE THE PROPERTY OF THE PROPER

XBT DROP 221 T-7 RADAR: SE 6.6nm 350T GULF COORDS: -24.2 230.5 JDAY 69 534Z DEPTH 520m/520m SST 12.18 2M TEMPS: SAIL 11.96 XBT 12.37 GULF OF CALIFORNIA: SILL LINE, CX3-14

Z	TEMP	Z	TEMP	Z	TEMP
10	12.0	200	10.9	390	9.6
20	12.0	210	10.8	400	9.6
30	11.9	220	10.8	410	9.5
40	11.9	230	10.6	420	9.4
50	11.9	240	10.6	430	9.2
60	11.9	250	10.6	440	9.0
70	11.8	260	10.4	450	8.8
	–				
80	11.7	270	10.4	460	8.5
90	11.6	280	10.4	470	8.0
100	11.6	290	10.3	480	7.8
110	11.6	300	10.3	490	7.5
120	11.5	310	9.9	500	7.3
130	11.4	320	9.8	510	7.3
140	11.3	330	9.8	520	7.3
150	11.3	340	9.7	020	,,,
160	11.1	350	9.8		
170	11.0	36 0	9.8		
180	10.9	370	9.8		
190	10.9	380	9.8		
		300	. .0		

XBT DROP 222 T-7 RADAR: SE 7.5nm 346T GULF COORDS: -24.1 228.8

JDAY 69 540Z DEPTH 574m/574m SST 12.52 2M TEMPS: SAIL 12.28 XBT 12.66

GULF OF CALIFORNIA: SILL LINE, CX3-15

Z	TEMP	Z	TEMP	Z	TEMP
10	12.3	200	11.2	390	10.1
20	12.2	210	11.2	400	9.9
30	12.2	220	11.1	410	9.9
40	12.1	230	11.1	420	9.8
50	12.1	240	11.1	430	9.7
60	12.1	250	11.1	440	9.4
70	11.9	260	11.0	450	9.1
80	11.9	270	10.7	460	9.0
90	11.9	280	10.5	470	8.7
100	11.9	290	10.4	480	8.3
110	11.9	300	10.4	490	8.0
120	11.9	310	10.3	500	7.7
130	11.8	320	10.3	510	7.6
140	11.7	330	10.3	520	7.6
150	11.5	340	10.3	530	7.4
160	11.4	350	10.3	540	7.4
170	11.4	360	10.3	550	7.3
180	11.4	370	10.2	560	7.2
190	11.3	380	10.2	570	7.2

XBT DROP 223 T-7	RADAR: SE 8.8nm	344T	GULF COORDS: -24.2	225.9
	DEPTH 627m/627m SST	12.89	2M TEMPS: SAIL 12.62	XBT 13.43
GULF OF CALIFORNIA:	SILL LINE, CX3-16			

_		_		_		
Z	TEMP	Z	TEMP	Z	TEMP	
10	12.8	200	11.9	390	10.3	
20	12.8	210	11.8	400	10.2	
30	12.7	220	11.8	410	10.1	
40	12.5	230	11.8	420	9.8	
50	12.5	240	11.7	430	9.5	
60	12.4	250	11.7	440	9.1	
70	12.4	260	11.7	450	8.3	
80	12.4	270	11.5	460	7.5	
90	12.4	280	11.3	470	7.5	
100	12.3	290	11.3	480	7.4	
110	12.3	300	11.2	490	7.4	
120	12.3	310	11.1	50 0	7.4	
130	12.3	320	10.9	510	7.4	
140	12.2	330	10.5	520	7.4	
150	12.2	340	10.5	530	7.3	
160	12.2	350	10.5	540	7.3	
170	12.2	360	10.4	550	7.3	
180	12.2	370	10.4	560	7.3	
100	12 1	180	10 4	870	7 2	

CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

28 29.0N 112 31.1W

11.2

10.9

370

380

540

550

560

570

7.2

6.6

6.5 6.5 6.5

740 750 760

160 170

180

190

12.3

12.4 12.3 12.2

9.3 9.2 9.1 8.8

8.6

8.6

8.3

560

370

380

12.9 12.7 12.4 12.2 12.2 12.2

160 170

180

190

de la constante de la constant

XBT DROP 227 T-7 RADAR: none GULF COORDS: -23.4 206.1
JDAY 69 654Z DEPTH 900m/760m SST 14.49 2M TEMPS: SAIL 14.63 XBT 14.40
GULF OF CALIFORNIA: SILL LINE, CX3-20

z	TEMP	z	TEMP	Z	TEMP	z	TEMP
10	14.4	200	11.1	390	8.0	580	7.0
20	14.4	210	11.1	400	8.0	590	6.9
30	14.4	220	11.0	410	7.9	600	6.9
40	14.4	230	11.0	420	8.0	619	6.8
50	14.4	240	11.0	430	7.9	620	6.8
50	14.4	250	11.0	440	7.9	630	6.8
70	13.6	260	10.9	450	7.9	640	6.7
80	13.4	270	10.5	460	7.9	650	6.7
90	13.3	280	10.2	470	7.8	660	6.7
100	13.2	290	9.9	480	7.8	670	6.7
110	13.1	300	9.8	490	7.8	680	6.5
120		310		500	7.7	690	6.5
	12.3		9.1		7.7	700	6.5
130	12.1	320	8.8	510			
140	11.9	330	8.6	520	7.5	710	6.5
150	11.8	340	8.4	530	7.5	720	6.5
160	11.6	350	8.3	540	7.4	730	6.4
170	11.3	360	8.2	550	7.3	740	6.4
180	11.2	370	8.0	560	7.1	750	6.3
190	11.2	380	8.0	570	7.0	760	6.3

REFERENCES

- Bathy Systems Inc., 1979. Operations Manual. XBT digital recording system, Model SD-783-C.
- Bray, N. A., J. M. Robles. 1986. The general circulation of the Gulf of California, The Gulf and Peninsular Province of the Californias, Memoir of the American Association of Petroleum Geologists.
- Bray, N. A., J. M. Robles, A. C. Carrasco. 1986a. Pichicuco VII: Gulf of California. CTD Data Report. SIO Reference Series # 86-4, 207 pp.
- Bray, N. A., M. C. Hendershott, J. M. Robles, A. C. Carrasco. 1986b. Pichicuco VI: Gulf of California. CTD Data Report. SIO Reference Series # 86-5, 254 pp.
- Candela, J., A. Badan-Dangon, C. D. Winant. 1984. Spatial distribution of lower atmospheric physical variables over the Gulf of California. A data report. Vol. 1, Summer 1983. SIO Reference Series # 84-33. 222 pp.
- Candela, J., A. Badan-Dangon, C. D. Winant. 1984. Spatial distribution of lower atmospheric physical variables over the Gulf of California. A data report. Vol. 2, Winter 1984. SIO Reference Series # 85-11. 303 pp.
- Merrifield, M. A., C. D. Winant, J. M. Robles, R. T. Guza, N. A. Bray, J. Garcia, A. Badan-Dangon, N. Christensen, Jr. 1986. Observations of currents, temperature, pressure, and sea level in the Gulf of California: A Data Report. SIO Reference Series # 86-11, 153 pp.
- Sippican Corporation, 1971. R-603G Instruction Manual for the expendable bathythermograph.
- Sippican Corporation, 1973a. Ocean Engineering Bulletin No. 1: XBT System Linearity Equations. (unpublished manuscript).
- Sippican Corporation, 1973b. Ocean Engineering Bulletin No. 2: Applications Note computer interface options for XBT recorder. (unpublished manuscript).
- Stegan, G. R., D. P. Delisi, R. C. VonColln, 1975. A portable, digital-recording, expendable bathythermograph (XBT) system. DSR 222, 447-453.

APPENDICES

Appendix A Program XBTFS.FTN

```
PROGRAM XBTFS
                          THIS PROGRAM MODIFIES DATA OUTPUT OF BATHY SYSTEMS

XBT DIGITAL CASSETTE RECORDER. THE PADDED DATA

ARE FIRST STRIPPED OF THE MOST SIGNIFICANT BYTE OF THE

INTEGER*2 HEX YARIABLE (STRIPS OFF FIRST TWO CHARACTERS

USING 'ICBYTE'). NEXT, THE INDIVIDUAL DATA CHARACTERS

ARE RECOVERED BY SHIFTING BITS AROUND. FINALLY. THE DATA

RECONSTRUCTED BY SCALING AND WRITTEN TO A FORMATTED FILE.
                          THIS PROGRAM PROCESSES THE WHOLE DATA CASSETTE AT ONCE. IT OPENS NEW STATION FILES AS THEY ARE ENCOUNTERED AND DELETES GAPS IN DATA BY FRAME SYNCHING (SUBROUTINE FSCAN). PROGRAM NOW NUMBERS STATIONS CONSECUTIVELY, SO DOES NOT READ STATION NUMBER AND ASSIGN TO FILE NAME.
                          C.A. PADEN, 6 AUGUST 1985: WRITTEN FOR SIO CCS PERKIN-ELMER COMPUTER
                                 HDR(J,1)=FLAG BIT
HDR(J,2)=JULIAN DAY
HDR(J,3)=HOUR
HDR(J,4)=MIN
HDR(J,5)=XBT PROBE TYPE
HDR(J,6)=XBT DROP NUMBER
HDR(J,6)=ELAPSED TIME IN SECONDS
                                  XVAR(J,I)-CONVERSION OF HEX REPRESENTATION OF VOLTAGE MEASUREMENT TO INTEGER FORMAT
                                                        DATA(2400), SBYT(100,48), JBLK(10)

HDR(100,7), XVAR(100,10), M

JUNK(800)

IBLK(5)

TE(100,10), TI(100,10), Z(100,10), V(100,10)
          C
                          EQUIVALENCE
                                                             (IBLK(1), JBLK(1))
                          OPEN(12, FILE='XBT1.DTA', FORM='BINARY', IOSTAT=IOST)
OPEN(13, FILE='XB6001.DTA', FORM='FORMATTED', STATUS='RENEW',
'RECL=80)
OPEN(14, FILE='CHKRUN', FORM='FORMATTED', STATUS='RENEW')
                        WRITE(0,3)IOST
FORMAT(1X,215)
CALL SYSIO(IBLK,88,12,JUNK(1),1600,0)
WRITE(0,2)JBLK(2)
FORMAT(1X,24)
                          CALL SYSIO(IBLK, 88, 12, DATA(N), 1600, 0)
                                   CALL FSCAN(J,N,DATA,SBYT)
CALL HEADER(J,SBYT,HDR)
CALL CONDAT(J,SBYT,XVAR)
CALL DEPTH(J,HDR(J,7),TI,Z)
CALL TEMP(J,XVAR,V,TE)
                  40
           C
                                           IF(HDR(J,1).EQ.1.AND.HDR(J-1,1).EQ.4) THEN CALL OPENF(J,HDR(J,6),M)
ENDIF
                                  CALL PRINT(J, HDR, TI, V, Z, TE)
                          IF(IOST)10,20,30
GO TO 50
GO TO 40
WRITE(0,*) 'ERRO
                                                       'ERROR DETECTED, IOST- ', IOST
                          CONTINUE WRITE(0,*)'END OF FILE'
```

```
END
C
PROG FSCAN
          SUBROUTINE FSCAN(J,N,DATA,SBYT)
C
                               DATA(800), FSBYT(800), JBLK(10)
BYT(100,24), SBYT(100,48)
IBLK(8)
C
          EQUIVALENCE (IBLK(1), JBLK(1))
          CHECK FOR BEGINNING OF DATA FRAME (FB--)
                        -DATA(N)
-ISHFT(FSBYT(N),-8)
BYTE(FSBYT(N),0)
F(N).EQ.251)THEN
                  BYT(N)...

J+1

(J.EQ.101) J-1

) 20 J-1 24

EYT(J,1)-DATA(N)

CALL ICBYTE(BYT(J,I),0)

K-2*I-1

K)-ISHFT(BYT(J,I
                            (J,K)=ISHFT(BYT(J,I),-4)
(J,K+1)=IAND(BYT(J,I),X'000F')
          CALL SYSIO(IBLK, 88, 12, DATA(N), 1600, 0)

ENDIF
CONTINUE
ELSE
                          1F(N.EQ.801)THEN
                         CALL SYSIO(IBLK,88,12,DATA(N),1600,0)
ENDIF
TO 10
C
PROG HEADER
          SUBROUTINE HEADER(J, SBYT, HDR)
          RECONSTRUCT STATION HEADER INFORMATION BY SCALING RELATIVE BYTES AND SUMMING
                              SBYT(100,48),HDR(100,7)
                          SBYT(J,3)
SBYT(J,4)*100+SBYT(J,5)*10+SBYT(J,6)
SBYT(J,7)*10+SBYT(J,8)
SBYT(J,9)*10+SBYT(J,10)
SBYT(J,11)
SBYT(J,12)*100+SBYT(J,13)*10+SBYT(J,13)
SBYT(J,15)*1000+SBYT(J,13)*10+SBYT(J,13)
$PROG CONDAT
          SUBROUTINE CONDAT(J, SBYT, XVAR)
C
          RECONSTRUCT OUTPUT VOLTAGE BY SCALING APPROPRIATE DATA BYTES AND SUMMING
          INTEGER*2
                                SBYT(100,48), XVAR(100,10)
           K-19
DO 10 I-1,10
KVAR(J,I)-SBYT(J,K)*256+SBYT(J,K+1)*16+SBYT(J,K+2)
K-K+3
```

```
C
SPROG DEPTH
                       ISEC
TI(100,10),Z(100,10)
                 -1,10
-FLOAT(ISEC-1)+0.1*(I)
.EQ.0)THEN
J.1)-0.
             Î)=(6.472*TI(J,I))-0.00216*(TI(J,I)**2)
$PROG
C
Ç
        CALCULATE TEMPERATURE IN DEGREES CELCIUS FROM OUTPUT VOLTAGE USING SIPPICAN EQUATION
                       XVAR(100,10)
TE(100,10),V(100,10)
        SUBROUTINE PRINT(J, HDR, TI, V, Z, TE)
C
C
        WRITE HEADER AND DATA TO OUTPUT FILE
                       HDR(100,7)
TE(100,10),TI(100,10),Z(100,10),V(100,10)
                 =1,10
3,5)(HDR(J,K),K=1,6),TI(J,I),V(J,I),Z(J,I),TE(J,I)
615,4F10.3)
$PROG OPENE
        SUBROUTINE OPENF(J, NDROP, M)
C
Ç
C
        CLOSE PREVIOUS FILE
        CLOSE(13)
C
        CONSTRUCT XET NUMBER AS A CHARACTER STRING
        M=M+1
```

```
IF(M.EQ.46) THEN
WRITE(O,*)'FIRST 45 FILES WRITTEN TO DISK'
STOP
ENDIP

WRITE(MM.2)M
FORMAT(13)
IF(M.LT.10)MM(1:2)='00'
IF(M.GE.10.AND.M.LT.100)MM(1:1)='0'

C CONSTRUCT FILENAME

FNAME(1:3)='XB6'
FNAME(1:3)='XB6'
FNAME(7:10)='.DTA'

C OPEN NEXT FILE AND TYPE HEADINGS
OPEN(13,FILE-FNAME,FORM-'FORMATTED',STATUS='RENEW',
*RECL-60)

WRITE(14,3)FNAME,NDROP
IF(M.ME.NDROP) THEN
WRITE(14,3)FNAME,NDROP
IF(M.ME.NDROP) THEN
WRITE(14,4)FNAME
FORMAT(10X,'STATION/DROP* MISMATCH AT ',A10)

WRITE(13,5)FNAME,NDROP
5 FORMAT(A10,': XBT *',I5,', GULF OF CALIFORNIA, NOV 84')

WRITE(13,6)
6 **ORMAT(1X,FILAG',1X,'JDAY',3X,'HR',2X,'MIN',2X,'TYP',
*3X,'NO',5X,'SECS',6X,'VOLTS',5X,'DEPTH',5X,'TEMP')

*BEND

**BEND
```

 $\begin{array}{c} \textbf{Appendix B} \\ \textbf{Program DIGSCL.F77} \end{array}$

```
C
                       PROGRAM DIGSCL
                      THIS PROGRAM SCALES AND CORRECTS HAND-DIGITIZED SIPPICAN TO MET TRACES, ACCOUNTING FOR OFFSETS IN MET CHART PLACEMENT VOLTAGE CALIBRATION POINTS, AS WELL AS NON-LINEARITIES IN DEPTH AND TEMPERATURE. THE PROGRAM FOR DIGITIZING TRACES ASSIGNS PLOT ORIGIN AS DATA(1), M-LIMIT OF PLOT AS DATA(2) Y-LIMIT OF PLOT AS DATA(3), AND BEGINS SCANNING AT DATA(4) FOR THIS DATA SET, DATA(4) GIVES M-Y OFFSET, AND DATA(5) BEGINS SCANNING MODE.
DISTANCES IN DIGITIZER UNITS(INCHES) ARE CALCULATED RELATIVE TO A PRE-LAUNCH CALIBRATION LINE WHICH CORRESPONDS TO AN AVERAGE VOLTAGE OF 2.476V FOR THE INSTRUMENTS USED. FORTY-FIVE OF THE 205 XBT DROPS WERE ELECTRONICALLY DIGITIZED ON A BATHY SYSTEMS DIGITIZED. SEVERAL OF THESE STATIONS WERE ALSO HAND DIGITIZED TO CALCULATE THE VOLTAGE SCALE FOR THE ANALOG RECORDER. X-POSITIONS FROM THE CHART RECORDER ARE CONVERTED TO VOLTAGES USING A SLOPE OF 0.6995V/IN CALCULATED FROM REGRESSING CORRESPONDING VOLTAGES AGAINST PARTICULAR CHART POSITIONS AND ADDING A CALIBRATION VOLTAGE OF 2.476V WHICH IS EQUIVELENT TO REPOSITIONING TRACE SO THAT CALIBRATION LINE IS AT 3.495 INCHES FROM CHART ORIGIN AS EXPECTED FOR NORMAL CALIBRATION.
                        C.A. PADEN. 5 MAR 1986
PROGRAM WRITTEN TO RUN ON SIO SHORE PROCESSES DATA GENERAL
COMPUTER
                                                                             INFIL,OUTFIL,EDTFIL,ERRFIL
HDRFIL
NDROP,PNT,MO
B(1500),LATDEG,LNGDEG,ZPDR,ZXBT,TIME,BRG,GMT
X(1500),Y(1500),XP(1500),YP(1500)
V(1500),Z(1500),SECS(1500),TE(1500)
XSCALE,YSCALE,CALIB,YOFF,LATMIN,LNGMIN
                        CHARACTER*28
CHARACTER*18
CHARACTER*3
INTEGER
REAL
        WRITE (*,*)'ENTER 3-DIGIT KBT DROP NUMBER (1.e., 003)'
READ(* 1)N
FORMAT(13)
WRITE(NDROP, 1)N
WRITE(* 111)NDROP
111 FORMAT(Å3)
                        IF(N.LT.10)NDROP(1:2)='00'
IF(N.GE.10.AND.N.LT.100)NDROP(1:1)='0'
                        INFIL(1:18)-':CAPDAT:DIGDAT:XBT'
INFIL(19:21)-NDROP
INFIL(22:28)-'
WRITE(*,*)INFIL
                        EDTFIL(1:18)=':CAPDAT:DIGDAT:XBT'
EDTFIL(19:21)=NDROP
EDTFIL(22:28)='.EDT '
WRITE(*,*)EDTFIL
                        HDRFIL(1:11) - 'HEADERS: XBT'
HDRFIL(12:14) - NDROP
HDRFIL(15:18) - '.HDR'
WRITE(*,*) HDRFIL
                        OUTFIL(1:18)=':CAPDAT:DIGDAT:XBT'
OUTFIL(19:21)=NDROP
OUTFIL(22:28)='.SCL'
WRITE(*,*)OUTFIL
                        OPEN(13, FILE-HDRFIL, FORM-'FORMATTED', STATUS-'OLD')
OPEN(16, FILE-INFIL, FORM-'FORMATTED', STATUS-'OLD', IOSTAT-ISTAT)
OPEN(16, FILE-EDTFIL, STATUS-'FRESH', IOSTAT-IOST)
OPEN(17, FILE-OUTFIL, STATUS-'FRESH')
                        REWRITE DIGITZED DATA FILE TO ONE-DIMENSIONAL ARRAY FOR EDITING
  Ç
                         IF(ISTAT.GE.O)THEN
```

```
READ(15,2,END=70) (X(I),Y(I),B(I),I=1,5)
FORMAT(5(2F7.3,I2))
DO 10 1=1,5
WRITE(16,3) X(I),Y(I),B(I)
FORMAT(2F7.3,I2)
CONTINUE
GO TO 60
60
2
10
       WRITE(*,*)'EDTFIL CREATED'
       CLOSE(15)
CLOSE(16)
       WRITE HEADER TO OUTPUT FILE
       OPEN(13, FILE-HDRFIL, FORM-'FORMATTED', STATUS-'OLD')
READ(13, 11)NDROP, ITYPE, IDAY, MO, IYR, TIME, JDAY, GMT
READ(13, 12)LATDEG, LATMIN, LNGDEG, LNGMIN, PNT, RNG, BRG
READ(13, 13)XR, YR, ZPDR, SST, TSAIL
FORMAT(A3, 12, 13, A4, 13, 315)
FORMAT(12, F5, 1, 14, F5, 1, A4, F5, 1, 14)
FORMAT(F5, 1, F6, 1, 15, F6, 2, F6, 2)
  WRITE(17,7) NDROP, ITYPE, IDAY, MO, IYR, TIME, JDAY, GMT, *LATDEG, LATMIN, LNGDEG, LNGMIN, PNT, RNG, BRG, XR, YR, *ZPDR, SST, TSAIL
7 FORMAT('DROP', A3,' T', I1, 3X, I2, 1X, A3, 1X, I2, 2X, I4, 13, 2X, 14, 2', /, I2, 1X, F4, I1, N, 2X, I3, 1X, F4, I1, W: A3, 2X, F4, I1, NM, @ , I3, 'T', /, 2F5, I1, 2X, I4, 'M', 2X, 'SS' *F5, 2, 2X, '2MT', F5, 2)
                                  OP , A3, ' T', I1, 3X, I2, IX, A3, IX, I2, 2X, I4, 'L
Z', /, I2, IX, F4, I1, N, 2X, I3, IX, F4, I1, W; '3X,
MM, Q , I3, 'T', /, 2F5, I, 2X, I4, 'M', 2X, 'SST',
MT', F5, 2)
       WRITE(*.*)'WROTE HEADER TO OUTPUT FILE'
       CALIB-O
YOFF-O
       CALCULATE SCALING AND ORIENTATION OF GRID
       OPEN(16, FILE-EDTFIL, FORM-'FORMATTED')
DO 15 J=1,4
READ(16.3)X(J),Y(J),B(J)
WRITE(*.3)X(J),Y(J),B(J)
15 CONTINUE
WRITE(*,*)'READ FIRST 4 POINTS'
       ROTATE REFERENCE FRAME OF DIGITIZER GRID INTO THAT FOR XET TRACE
       THETA-ATAN(Y(2)/X(2))
WRITE(*,*) CALCULATED THETA- ', THETA
20 CONTINUE
       SET CONSTANTS FOR FOURTH-ORDER POLYNOMIAL EQUATION FOR CALCULATING TEMPERATURE FROM VOLTAGE
               ALPHA=-1.97539
BETA=8.46492
GAMMA=-5.76449E-01
DELTA=8.31771E-02
EPSI=-1.18495E-03
       SET SLOPE AND OFFSET CALCULATED FROM REGRESSION OF CHART POSITION VERSUS CORRESPONDING VOLTAGE REGISTERED ON BATHY SYSTEMS DIGITIZER.
               SLOPE-0.6995
OFFSET-0.032
```

```
CALIB-XP(4)
YOFF-YP(4)
             RESET REFERENCE FRAME OF PLOT TO APPROPRIATE POSITION AS A FUNCTION OF CHART POSITION
             REF-CALIB
         WRITE(*,*)CDIFF CALIB REF
CALCULATE CALIBRATION POINT TEMPERATURE AS CHECK
             TEMP=0
WRITE(*,*)CALIB.REF
XP(4)=XP(4)-CALIB
V(4)=SLOPE*XP(4)+SLOPE*REF+OFFSET
V(4)=SLOPE*XP(4)+SLOPE*REF+OFFSET
TEMP=ALPHA+BETA*V(4)+GAMMA*V(4)**2+DELTA*V(4)**3+EPSI*V(4)**4
         WRITE(*,*)'CALIB VOLTAGE= ',V(4), 'CALIBRATION TEMP= ',TEMP
    24 READ(16.3)X(I),Y(I),B(I)
IF(B(I).NE.3.)GOTO 24
                    (I).EQ.X(I-1).AND.Y(I).EQ.Y(I-1)) GOTO 25
(I).EQ.3) CALL EDIT(I,XP,YP,B)
(I).EQ.4) THEN
              GO TO 30
         CONVERT X-POSITION IN INCHES GIVEN BY DIGITIZER TO TEMPERATURE USING CALIBRATION POINT AS REFERENCE
              XP(I)=XP(I)-CALIB
V(I)=SLOPE*XP(I)+SLOPE*REF+OFFSET
TE(I)=ALPHA+BETA*V(I)+GAMMA*V(I)**2+DELTA*V(I)**3+EPSI*V(I)**4
         CONVERT Y-POSITION IN INCHES GIVEN BY DIGITIZER TO TIME USING CHART SPEED OF 1 INCH PER 15 SECONDS. SINCE Y-POSITION IS NEGATIVE AS READ BY DIGITIZER, MULTIPLY BY -15 TO GET POSITIVE SECONDS.
              SECS(I)=(YP(I)-YOFF)*(-15)
C
         CONVERT TIME TO DEPTH USING SIPPICAN EQUATION FOR T-7'S
            Z(I)=6.472*SECS(I)-0.00216*(SECS(I)**2)
         I=I+1
         WRITE TO FILE
           RITE(17,4)CALIB, YOFF
'ORMAT(/,'CALIB_LINE_(INCHES): ',F5.3,'
                                                                              Y-OFFSET: '.F5.3)
      WRITE(17'8)SLOPE OFFSET
5 FORMAT('SLOPE(V/IN): ',F5.4,2X,' CALIB OFFSET(V): ',F5.3,/)
         DO 40 J=1 I
WRITE(17,6) YP(J), XP(J), V(J), Z(J), TE(J)
```

```
FORMAT (3F8.3,F8.1,F8.2)

CONTINUE
WRITE(*,*)'END OF FILE'
STOP
END

C
SUBROUTINE EDIT(I, XP, YP, B)

Takes first point after stop sampling signal (button 3)
and moves up in data array to position where sampling
was resumed (button 1), so that the data which follows

Writes over bad data in array.

INTEGER I, B(1500), YP(1500)

N-I
WRITE(*,*)'IN EDIT, I= ',N

IF(YP(I).LT, YP(K), AND.YP(I).GT.YP(K+1))THEN
YP(K+1)=YP(I)
IP(Y+1)=B(I)
I=K+1
GO TO 20

ENDIF

OCCUMENTAL

CONTINUE
WRITE(*,*)'EXITING EDIT, I= ',I
```

Appendix C

Sea Level Elevations for the Northern Gulf of California

NOVIEMBRE/NOVEMBER 1984

(from: 1984 Tide Calendar for the Northern Gulf of California, University of Arizona)

MARZO/MARCH 1985

(from: 1985 Tide Calendar for the Northern Gulf of California, University of Arizona)