

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Aula de Hoje

Roteiro

- o Revisão
 - o Circuitos Combinacionais Circuitos de Apoio
 - Codificadores/Decodificadores
- o Circuitos Combinacionais Circuitos de Apoio
 - Multiplexadores/Demultiplexadores
 - o Gerador de Paridade/Verificador de Paridade
- Aritmética Computacional
 - o Somador

Revisão

Circuitos Combinacionais - Circuitos de Apoio

Exemplo de Aplicação de Codificação e Decodificação

Exemplo de Aplicação de Decodificação

Decodificador de Endereços para Memória

Decodificador de Endereços

Entradas

Saídas

S ₁	S ₀	D ₀	D_1	D ₂	D ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$D0 = \overline{51.50}$$

$$D1 = 51.50$$

$$D2 = 51.50$$

Decodificador de Endereços

Código BCD - Binary Coded Decimal

Decimal Codificado em Binário: Cada Dígito Decimal é representado por seu equivalente binário

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

100001110100_{BCD}

Código BCD - Binary Coded Decimal

Decimal Codificado em Binário: Cada Dígito Decimal é representado por seu equivalente binário

Decodificador BCD para Decimal

BCD	S ₉	5 ₈	S ₇	5 ₆	S ₅	S ₄	5 ₃	S ₂	S ₁	S ₀
0000	0	0	0	0	0	0	0	0	0	1
0001	0	0	0	0	0	0	0	0	1	0
0010	0	0	0	0	0	0	0	1	0	0
0011	0	0	0	0	0	0	1	0	0	0
0100	0	0	0	0	0	1	0	0	0	0
0101	0	0	0	0	1	0	0	0	0	0
0110	0	0	0	1	0	0	0	0	0	0
0111	0	0	1	0	0	0	0	0	0	0
1000	0	1	0	0	0	0	0	0	0	0
1001	1	0	0	0	0	0	0	0	0	0
•••	X	X	X	X	X	X	X	X	X	X
1111	X	X	X	X	X	X	X	X	X	Х

- Para definir o decodificador: simplificar expressões de S₀ a S₉ por Mapa de Karnaugh
- 9 Mapas: um para cada saída

Exercícios

1. Faça o diagrama de portas lógicas do circuito Decodificador BCD-Decimal

$$S_5 = B\overline{C}D$$

1. Faça o diagrama de portas lógicas do circuito Decodificador BCD-Decimal A A B B C C P P

S₉=**AD**

S₈=AD

S7=BCD

S₆=**BCD**

 $S_5 = B\overline{C}D$

S4=BCD

 $S_3 = \overline{B}CD$

S₂=BCD

S₁=ABCD

S₀=ABCD

Exercícios

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

Figure 2.39 Seven-segment display: (a) connections of inputs to segments, (b) input values for numbers 0, 1, and 2, and (c) a pair of real seven-segment display components.

Exercícios

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

BCD	Display	a	Ь	C	d	e	f	9
0000		1	1	1	1	1	1	0
0001		0	1	1	0	0	0	0
0010		1	1	0	1	1	0	1
0011		1	1	1	1	0	0	1
0100		0	1	1	0	0	1	1
0101		1	0	1	1	0	1	1
0110		1	0	1	1	1	1	1
0111		1	1	1	0	0	0	0
1000		1	1	1	1	1	1	1
1001		1	1	1	1	0	1	1
1111		X	X	X	X	X	X	X

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

a=A+C+BD+BD

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

b=B+CD+CD

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

c=B+C+D

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

d=A+BD+BC+CD+BCD

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

e=BD+CD

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

f=A+CD+BC+BD

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

g=A+BC+BC+CD

Aula de Hoje

Circuitos Combinacionais Especiais:

- Multiplexadores/Demultiplexadores
- o Gerador de Paridade/Verificador de Paridade

Aritmética Computacional:

o Somador

Multiplexador

<u>Multiplexador ou Seletor de Dados:</u> É um circuito lógico que tem diversas entradas e apenas uma saída. MUX seleciona uma única entrada para transmitir para a saída.

Entradas de Controle: permitem selecionar a entrada a ser transmitida.

Exemplo MUX 4x1

Demultiplexador

<u>Demultiplexador:</u> É um circuito lógico que realiza a função inversa à do MUX. Tem apenas uma única entrada que é enviada para uma de suas saídas.

Entradas de Controle: permitem selecionar para qual das saídas a entrada será enviada.

Exemplo DEMUX 1x4

Expansão da Capacidade

- A partir de circuitos <u>multiplexadores</u> de baixa capacidade pode-se formar um MUX de maior capacidade
- Exemplo: projetar um MUX 4x1 a partir de MUXes 2x1

Expansão da Capacidade

- A partir de circuitos <u>demultiplexadores</u> de baixa capacidade pode-se formar um DEMUX de maior capacidade
- Exemplo: projetar um DEMUX 1x4 a partir de DEMUXes 1x2

Formas de Onda

Exemplo: A partir dos sinais de entrada e de controle abaixo, desenhe o sinal multiplexado na saída do MUX.

Exercícios

1. Projete um circuito multiplexador de 16x1 utilizando circuitos MUXes 8x1.

2. A partir do DEMUX 1x2 e dos sinais de entrada (E) e de controle (A) desenhe os sinais de saída demultiplexados.

din

1. Projete um circuito multiplexador de 16x1 utilizando circuitos MUXes 8x1.

2. A partir do DEMUX 1x2 e dos sinais de entrada (E) e de controle (A) desenhe os sinais de saída demultiplexados.

Paridade

- Paridade: indica se a quantidade de dígitos "1" num número binário é par ou ímpar
- Paridade Par: indica que a quantidade de dígitos "1" do número binário é par
- o Paridade Ímpar: indica que a quantidade de dígitos "1" do número binário é ímpar
- Exemplo: 11001100 tem 4 dígitos "1" ⇒ paridade Par
 11101100 tem 5 dígitos "1" ⇒ paridade Ímpar

Paridade

Aplicação: Detecção de erro na transmissão de dados

Gerador e Verificador de Paridade

Gera a paridade do dado a ser transmitido e verifica a paridade na recepção do dado

Símbolo da Porta XOR

Gerador-Verificador de Paridade Par

Gerador-Verificador de Paridade Par

Gerador-Verificador de Paridade Par

Aritmética Computacional

<u>Circuitos Aritméticos</u>: circuitos utilizados para construir a ULA (Unidade Lógica e Aritmética)

<u>Adição</u>

Exemplo de adição em decimal (dígitos de 0 a 9):

Cada posição só pode representar um dígito, por isso, gera um carry (vai um)

Aritmética Computacional

Adição em Binário:

Exemplo

Cada posição só pode representar um dígito, por isso, gera um carry

	intrada	Saíg	das	
A	В	C _{in}	5	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

E	ntrada	IS	Saíg	das												
A	В	C _{in}	5	C _{out}												
0	0	0	0	0												
0	0	1	1	0	ABCin											
0	1	0	1	0	A B C _{in}											
0	1	1	0	1												
1	0	0	1	0	A B C _{in}	$S = \overline{A}$	B C _{in} +	4	В	B C _{in} +	$\overline{A} B \overline{C_{in}} + A \overline{B}$	$\overline{A} B \overline{C_{in}} + A \overline{B} \overline{C_{in}}$	$\overline{A} B \overline{C_{in}} + A \overline{B} \overline{C_{in}} + A$	$\overline{A} B \overline{C_{in}} + A \overline{B} \overline{C_{in}} + A B$	$\overline{A} B \overline{C_{in}} + A \overline{B} \overline{C_{in}} + A B$	$\overline{A} B \overline{C_{in}} + A \overline{B} \overline{C_{in}} + A B C$
1	0	1	0	1												
1	1	0	0	1												
1	1	1	1	1	A B C _{in}											

E	ntrada	S	Saí	das	
A	В	C _{in}	5	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	A B C _{in}
1	0	0	1	0	
1	0	1	0	1	$ A \overline{B} C_{in} C_{out} = \overline{A} B C_{in} + A \overline{B} C_{in} + A B \overline{C_{in}} + A B C_{in} $
1	1	0	0	1	A B C _{in}
1	1	1	1	1	A B C _{in}

Exercício

- 1. Simplifique as expressões de S e $C_{\rm out}$
- 2. Desenhe o circuito para $S \in C_{\text{out}}$

$$S = \overline{A} \overline{B} C_{in} + \overline{A} B \overline{C_{in}} + A \overline{B} \overline{C_{in}} + A B C_{in}$$

$$C_{\text{out}} = \overline{A} B C_{\text{in}} + A \overline{B} C_{\text{in}} + A B \overline{C_{\text{in}}} + A B C_{\text{in}}$$

Solução

Simplificando as expressões

$$S = \overline{A} \overline{B} C_{in} + \overline{A} \overline{B} \overline{C_{in}} + \overline{A} \overline{B} \overline{C_{in}} + \overline{A} \overline{B} \overline{C_{in}}$$

$$S = \overline{A} (\overline{B} C_{in} + \overline{B} C_{in}) + A (\overline{B} C_{in} + \overline{B} C_{in})$$
 \longrightarrow $A \in \overline{A}$ em evidência

Como B
$$+$$
 $C_{in} = \overline{B} C_{in} + \overline{B} C_{in}$ e B $\bullet C_{in} = \overline{B} C_{in} + \overline{B} C_{in}$

e
$$B \odot C_{in} = B C_{in} + B C_{in}$$

$$S = \overline{A} (B \oplus C_{in}) + A (B \odot C_{in})$$

Fazendo
$$X = B \oplus C_{in} e \overline{X} = B \odot C_{in}$$

$$S = \overline{A} X + A \overline{X}$$

$$S = A \oplus B \oplus C_{in}$$

Simplificando as expressões

Somador de 4 bits

Somador Bit Slice

Somador de 4 bits

Somador Ripple-Carry

- · Ripple-Carry: Ondulação ou Propagação do Carry. <u>Carry-Out</u> de um estágio se transforma no <u>Carry-In</u> do estágio seguinte.
- · A_i e B_i "alimentam" os somadores em paralelo, mas o circuito deve esperar a propagação dos <u>Carries</u> para concluir a operação.

Exercícios

1. Verifique se o circuito abaixo executa a função de um somador

1 P1 P2 P3 P4 P5 P6 P7 P9

$$C_{\text{out}} = \overline{ABC_{\text{in}}} + AB\overline{C_{\text{in}}} + A\overline{BC_{\text{in}}} + ABC_{\text{in}}$$

$$S = P4+P5+P6+P7$$

$$S = ABC_{in} + \overline{ABC_{in}} + \overline{ABC_{in}} + \overline{ABC_{in}}$$

1 $S = ABC_{in} + \overline{ABC}_{in} + \overline{ABC}_{in} + A\overline{BC}_{in}$

Tabela Verdade S

Tubela Teradae e								
A	В	C _{in}	5)					
0	0	0						
0	0	1	1					
0	1	0	1					
0	1	1						
1	0	0	1					
1	0	1						
1	1	0						
1	1	1	1					

Tabela para S é igual à Tabela do S do slide 54, que é a TV do Somador

1

$$C_{\text{out}} = \overline{ABC_{\text{in}}} + AB\overline{C_{\text{in}}} + AB\overline{C_{\text{in}}} + ABC_{\text{in}}$$

Tabela Verdade Cout

			oui
A	В	C _{in}	Cout
0	0	0	
0	0	1	
0	1	0	
0	1	1	1
1	0	0	
1	0	1	1
1	1	0	1
1	1	1	1

Tabela para $C_{\rm out}$ é igual à Tabela do $C_{\rm out}$ do slide 55, que é a TV do Somador

Exercícios

2. Considere um somador ripple-carry de 4 bits. Considere que as portas lógicas têm um atraso de 1ns. Qual é o atraso causado pelo somador ripple-carry para propagar o carry por todos os somadores?

Somador Ripple-Carry

2

Para gerar:

 C_1 consome-se 2ns

 C_2 consome-se 4ns

 C_3 consome-se 6ns

 C_4 consome-se 8ns

Quanto maior o número de bits do somador, maior o atraso para gerar o carry final

Resumo da Aula de Hoje

Tópicos mais importantes:

- o Circuitos Combinacionais Especiais
 - Multiplexadores/Demultiplexadores
 - o Gerador de Paridade/Verificador de Paridade
 - o Circuitos Aritméticos
 - o Somador

