

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

LAPORAN FINAL PROJECT CLOUD COMPUTING

Sistem Akademik Menggunakan Load Balancing

Anggota Kelompok 6 (Anggrek Bulan):

5113100022 M. Syaiful Jihad Amrullah

5114100017 Nafia Rizky Yogayana

5114100032 Ahmad Ismail Harry Wicaksono

5114100121 Ahmad Bilal

JURUSAN TEKNIK INFORMATIKA, FAKULTAS TEKNOLOGI INFORMASI

Sistem Akademik

Pada final project untuk mata kuliah Cloud Computing, kami akan membuat Sistem Akademik untuk proses pengambilan mata kuliah dan kelas.

Spesifikasi sistem adalah sebagai berikut:

- 1. Terdapat user mahasiswa yang dapat mengambil matakuliah dan kelas
- 2. Mahasiswa login menggunakan username dan password
- 3. Sistem mampu menangani 1000 request secara bersamaan.

Sistem ini menggunakan load balancing dimana load balancer menggunakan Nginx, web server menggunakan Apache, dan database menggunakan MariaDB. Sistem ini juga di-monitoring menggunakan Collectd dan untuk menampilkan grafiknya digunakan Grafana.

Berikut ini adalah arsitektur sistem yang telah dibuat:

Gambar 1 Aristektur Sistem Akademik kelompok 6

User Interface Sistem Akademik

Di bawah ini adalah tampilan untuk Sistem Akademik kelompok 6:

Gambar 2 Login Page

Gambar 3 Halaman Ambil Mata Kuliah

Gambar 4 Halaman Lihat Peserta dalam suatu kelas

Mata Kuliah : Jarkom Kelas : A

Kelas: A	
#	NRP
1	5113100001
2	5114100081
3	5113100041
4	5112100161
5	5114100121
6	5113100081
7	5116100001
8	5115100041
9	5114100161
10	5113100121
11	5116100041
12	5115100081
13	5115100121
14	5115100161
15	5112100121
16	5116100121
17	5113100161
18	5114100001
19	5112100041
20	5114100041
21	5112100081
22	5116100161
23	5115100001
24	5112100001

Gambar 5 Tampilan Halaman Lihat Peserta setelah kelas dipilih

Hasil Pengujian

Kami menguji kemampuan sistem apakah berhasil menerima seribu request secara bersamaan atau tidak menggunakan JMeter, dimana terdapat 4 file .csv yang berisi masing-masing 250 data yang akan diinputkan ke dalam sistem. Kami mengujinya dengan empat PC, di mana masing-masing PC menginputkan satu file .csv .

Gambar 6 File untuk uji coba sistem

Hasil yang didapat adalah, sistem yang kami buat hanya mampu menerima paling banyak 975 inputan. Kami melakukan percobaan kurang-lebih 10 kali untuk menganalisa apa yang membuat sistem belum mampu menerima 1000 request. Pengujian dilakukan dengan mengubah cara load balancing dari roundrobin hingga ip hash. Juga pemindahan worker-worker dari yang tadinya hanya 1 laptop kemudian dibagi menjadi 2 laptop. Lalu, dicoba pula dengan menggunakan Wifi lantai 3 dan menggunakan kabel LAN.

Di bawah ini adalah gambar hasil pengujian terakhir kami menggunakan kabel LAN dan worker-worker ditempatkan di 1 laptop, serta load balancing menggunakan sistem round-robin.

Gambar 7 Hasil yang didapatkan dari JMeter dari salah satu PC

Gambar 8 Response data yang gagal

Dilihat dari response data di JMeter, bagian yang gagal requestnya disebabkan oleh "Read timed out".

Gambar 9 Hasil yang didapat dilihat dari database

Jumlah data yang berhasil diinputkan ke database pada percobaan terakhir adalah 954, seperti gambar di atas.

Hasil Monitoring

Seperti yang sudah disampaikan sebelumnya, kelompok kami melakukan monitoring sistem menggunakan Collectd dan menampilkannya di grafik dengan Grafana. Berikut ini adalah hasil dari monitoring terhadap balancer dan worker-workernya.

Gambar 10 Hasil pemantauan memory dan CPU terhadap balancer

Gambar 11 Hasil pemantauan memory dan CPU terhadap worker 1

Gambar 12 Hasil pemantauan memory dan CPU terhadap worker 2

Gambar 13 Hasil pemantauan memory dan CPU terhadap worker 3

Kesimpulan

Dari beberapa kali dilakukan pengujian, berikut ini adalah kesimpulan yang kami dapatkan:

- 1. Hasil terbaik (error yang ditampilkan pada JMeter lebih sedikit) adalah menggunakan roundrobin.
- 2. Penggunaan Wifi dan kabel LAN berpengaruh pada hasil pengujian. Wifi cenderung kurang stabil sehingga error lebih banyak.
- 3. Dibutuhkan satu worker tambahan agar sistem yang kami buat mampu menerima 1000 request secara bersamaan, sehingga jumlah worker seharusnya ada empat buah.
- 4. Jika sistem tidak terdapat session, maka gunakan ip hash agar sistem tidak berganti-ganti worker. Ini dilakukan saat menguji sistem secara fungsionalitas.

Referensi

- [1] Hasbiya, Thiar. 2017. Virtualization. Surabaya: ITS.
- [2] Hasbiya, Thiar. 2017. Load Balancing. Surabaya: ITS.
- [3] mariadb.com, "Getting Started with MariaDB Galera Cluster", diakses pada 17 Mei 2017. (Online). https://mariadb.com/kb/en/mariadb/getting-started-with-mariadb-galera-cluster/
- [4] digitalocean.com, "How to Configure a Galera Cluster with MariaDB 10.1 on Ubuntu 16.04 Servers", d4akses pada 17 Mei 2017. (Online).

https://www.digitalocean.com/community/tutorials/how-to-configure-a-galera-cluster-with-mariadb-10-1-on-ubuntu-16-04-servers

[5] medium.com, "MariaDB Galera Cluster 10.1 Installation on DigitalOcean Ubuntu 14.04", diakses pada 17 Mei 2017. (Online).

https://medium.com/@_wli/mariadb-galera-cluster-10-1-installation-on-digitalocean-ubuntu-14-04-65b7d18d06ec

- [6] stackexchange.com, "How to Restart MariaDB Galera Cluster", diakses pada 1 Juni 2017. (Online). https://dba.stackexchange.com/questions/151941/how-to-restart-mariadb-galera-cluster
- [7] grafana.com, "Plugins", diakses pada 2 Juni 2017. (Online). https://grafana.com/plugins
- [8] grafana.com, "Getting Start", diakses pada 2 Juni 2017. (Online). http://docs.grafana.org/guides/getting_started/