

IIT JEE - 2021

Quiz 1 | Function | Mathematics

1.	The domain of definition of the function $f(x) = \frac{1}{x \log_{10} x}$ is:								
	(A)	$\big(0,1\big)\!\cup\!\big(1,\infty\big)$	(B)	$(0,\infty)$	(C)	$\left[0,\infty\right)$	(D)	$(0,1)\cup (1,\infty)$	
2.	If $f(x)$) is defined on (0, 1), th	en the doma	in of $g(x) =$	$f(e^x) + f(\log_e x)$	x is:		
	(A)					(-e,-1)		(-e,1)	
3.	The function $f(x) = \frac{\sqrt{\tan x + \tan x}}{\sqrt{3x}}$ is defined for:								
	(A)	R			(B)	$R - \left\{\frac{1}{3}\right\}$			
	(C)	$R^+ - \left\{ n\pi + \frac{\pi}{2} \right\}$	$\left n \in l^+\right $		(D)	None of t	hese		
4.	The minimum value of $f(x) = x-1 + x-2 + x-3 $ is equal to:								
	(A)	1	(B)	2	(C)	3	(D)	0	
5.	The do	The domain of the function: $f(x) = \log_3 \left[-(\log_3 x)^2 + 5\log_3 x - 6 \right]$ is:							
	(A)	$(0,9) \cup (27,\infty)$	(B)	[9, 27]	(C)	(9, 27)	(D)	None of these	
6.	Which of the following when simplified reduces to unity?								
	I.	$\log_{1.5}\log_4\log$	$\sqrt{3} 81$		II.	$\log_2 \sqrt{6} + \log$	$2\sqrt{\frac{2}{3}}$		
	III.	$-\frac{1}{6}\log_{\frac{\sqrt{3}}{2}}\left(\frac{64}{27}\right)$	$\left(\frac{1}{7}\right)$		IV.	$\log_{3.5}(1+2+$	3 ÷ 6)		
		orrect choice is:							

(A) I only (B) II and IV only (C) I and III only **(D)** All the above

If $\log_6 \log_2 \left[\sqrt{4x + 2} + 2\sqrt{x} \right] = 0$, then *x* is: 7.

> **(B)** None of these (A) 1/2 1/4 (C) 1/16 (D)

- 8. The domain of the function $f(x) = \sqrt{\log_{10} \left(\frac{5x x^2}{4}\right)}$ is $x \in$:
 - **(A)** [1, 4]
- **(B)** (1, 4)
- **(**0, 5)
- **(D)** [0, 5]

- 9. The domain of the function $f(x) = \frac{\sqrt{-\log_{0.3}(x-1)}}{\sqrt{-x^2 + 2x + 8}}$ is:
 - **(A)** (1, 4)
- **(B)** (-2, 4)
- **(C)** [2, 4)
- **(D)** None of these
- 10. The domain of the function $f(x) = \frac{\tan 2x}{6\cos x + 2\sin 2x}$ is:
 - (A) $R \left\{ \left(2n+1\right) \frac{\pi}{2} : n \in Z \right\}$
 - **(B)** $R \left\{ \left(2n+1\right) \frac{\pi}{4} : n \in Z \right\}$
 - (C) $R \left\{ \left\{ (2n+1)\frac{\pi}{2} : n \in Z \right\} \cup \left\{ (2n+1)\frac{\pi}{4} : n \in Z \right\} \right\}$
 - (D) None of these