2. Teoría

1. Demuestre que Focal Search retorna una solución w-óptima

Focal Search garantiza que la solución encontrada tendrá un costo total $g(n) \leq w \cdot C^*$, donde C^* es el costo de una solución óptima, y $w \geq 1$ es un parámetro de peso. La demostración se basa en el siguiente lema:

Lema: Si la heurística h utilizada para calcular f(n) = g(n) + h(n) es admisible (es decir, nunca sobreestima el costo real restante), entonces Focal Search encuentra una solución w-óptima, incluso si se utiliza una heurística alternativa h_{Focal} no admisible para priorizar los nodos dentro de la *focal list*.

Demostración:

 En cada iteración, Focal Search considera un subconjunto de la open list llamado focal list, definido como:

$$focal = \{ n \mid f(n) \le w \cdot f_{\min} \}$$

donde f_{\min} es el menor valor de f(n) en la open list.

■ Como h es admisible, se tiene que $f(n) \leq C^*$ para algún nodo n en la open list, y por lo tanto:

$$f_{\min} \le C^* \Rightarrow f(n) \le w \cdot C^*$$

- El nodo meta n_{goal} cumple que $h(n_{\text{goal}}) = 0$, y por tanto $f(n_{\text{goal}}) = g(n_{\text{goal}}) = c$.
- Como $f(n_{\text{goal}}) \leq w \cdot f_{\text{min}} \leq w \cdot C^*$, entonces:

$$c = g(n_{\text{goal}}) \le w \cdot C^*$$

Conclusión: Focal Search garantiza encontrar una solución w-óptima, independiente de la calidad o naturaleza de h_{Focal} , siempre que se mantenga la condición $f(n) \leq w \cdot f_{\text{mín}}$ en la focal list.

2. Interpretación de $\frac{c}{f_{\min}}$

Sea c el costo total de la solución encontrada por Focal Search, y f_{\min} el menor valor de f(n) = g(n) + h(n) observado en la open list al momento de encontrar la solución. Entonces:

$$\frac{c}{f_{\min}} = \frac{g(n_{\text{goal}})}{f_{\min}}$$

Como n_{goal} es el nodo solución y $h(n_{\text{goal}}) = 0$, se tiene que $f(n_{\text{goal}}) = g(n_{\text{goal}}) = c$, y como Focal Search garantiza que $f(n_{\text{goal}}) \leq w \cdot f_{\text{min}}$, se deduce:

$$\frac{c}{f_{\min}} \le w$$

Interpretación: El valor $\frac{c}{f_{\min}}$ es una estimación empírica del factor de suboptimalidad. Este valor cuantifica cuán lejos estuvo la solución encontrada respecto del límite inferior estimado en la open list. Se interpreta como sigue:

- \blacksquare Si $\frac{c}{f_{\min}}=1,$ la solución es óptima.
- \blacksquare Si $1<\frac{c}{f_{\min}}\leq w,$ la solución es subóptima, pero dentro del margen garantizado.

Conclusión: El cociente $\frac{c}{f_{\min}}$ actúa como una métrica útil para medir la eficiencia relativa de la solución hallada por Focal Search en función del parámetro w.