Forth Recitation Class Linear Algebra

YAO Shaoxiong

UM-SJTU Joint Institute

April 3, 2019

Table of contents

Norm

Orthogonality

Gram-Schimit Algorithm

QR-factorization

Least-Square Approximation

Why Norm?

Motivation

In *infinite* dimensional linear space, we do not have *countable* basis.

Solution

We define *norm* as an *equivalent* relation. The infinite sum of countable elements is defined considered to be equivalent to a vector,

$$\|u-\sum_{n=1}^{\infty}v_n\|\to 0$$
, then $u=\sum_{n=1}^{\infty}v_n$.

Why Norm?

Solution(Contd.)

Even better, this representation satisfies,

$$u^{(1)} = \sum_{n=1}^{\infty} v_n^{(1)}, \quad u^{(2)} = \sum_{n=1}^{\infty} v_n^{(2)},$$

then

$$k_1 u^{(1)} + k_2 u^{(2)} = \sum_{n=1}^{\infty} k_1 v_n^{(1)} + k_2 v_n^{(2)}.$$

Problem

For arbitrary sequence, the summation may not exist! We can only allow reasonable summation. Those are *Cauthy sequences*.

Norm Induced by Inner Product

Inner Product

Inner product is conjugate symmetry, linear in the first component and positive-definite.

The Cauchy-Schwarz Inequality

For $x, y \in V$,

$$|(x,y)| \leq \sqrt{(x,x)}\sqrt{(y,y)}.$$

Comment:

From Cauchy-Schwarz inequality, the induced norm $||x|| = \sqrt{(x,x)}$ is actually a norm.

Banach Space and Hilbert Space

Completeness

A normed linear space X is called complete if any Cauchy sequence converges.

Banach Sapce

A complete normed linear space is called a *Banach space*.

Hilbert Sapce

A complete inner product linear space is called a *Hilbert space*.

Properties For Inner Product

Pythagoras's Theorem.

Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and M some subset of V. Let z = x + y, where $x \in M$ and $y \in M^{\perp}$. Then

$$||z||^2 = ||x||^2 + ||y||^2.$$

Parallelogram Rule

Let V be a real or complex vector space. Then every norm on V, if it is induced by some inner product, then it satisfies

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

for all $x, y \in V$.

Properties For Inner Product

Example

Check for vector space C([a, b]), the function defined as

$$(f,g)=\int_a^b f(x)g(x)dx,$$

is actually a inner product.

Solution

- (i) Linearity. For $\lambda, \mu \in \mathbb{R}$, $(\lambda f_1 + \mu f_2, g) = \lambda(f_1, g) + \mu(f_2, g)$ from the linearity of integral.
- (ii) Positive defined. If (f, f) = 0, we will have f(x) = 0 for $x \in [a, b]$. Why? f is a continuous function so that if there is $f(x_0) > 0$, there is an interval $(x_0 \epsilon, x_0 + \epsilon)$ such that f(x) > 0, so the integral will larger than $2\epsilon \inf_{x \in (a,b)} |f(x)|^2$.

Orthogonal and Orthonormal Elements

Definition

If for two elements $x, y \in X$, we have (x, y) = 0, then they are *orthogonal*.

Orthonormal Elements

For a tuple of elements $(v_1,...,v_n) \in X$, if

$$(v_j, v_k) =$$

$$\begin{cases} 1 & \text{for } j = k \\ 0 & \text{for } j \neq k \end{cases}$$
 $j, k = 1, ..., n,$

they are called *orthonormal* elements.

Theorem

Orthonormal elements are linearly independent.

Orthogonal Complements and Direct Sum

Question: If we know $V = \text{span}\{v_1, ..., v_m\}$, how to find V^{\perp} ?

Solution: Write $A = [v_1 \cdots v_m]$, find $\ker A^T$.

Example

For

$$V = \operatorname{\mathsf{span}} \left\{ egin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, egin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\},$$

find V^{\perp} .

Orthogonal Complements and Direct Sum

Question:

If $V \oplus V^{\perp} = X$, how to find $x = x_1 + x_2$ with $x_1 \in V$, $x_2 \in V^{\perp}$?

Solution:

We have an orthonormal basis $\mathcal{B}_1 = (u_1,...,u_m)$ for V,

$$x_1 = (u_1, x)u_1 + \cdots + (u_m, x)u_m,$$

then $x_2 = x - x_1$.

Note:

- (i) Note that $proj_V x = x_1$.
- (ii) If $x \in V$, $proj_V x = x$; if $x \in V^{\perp}$, $proj_V x = 0$.

Orthogonal Complements and Direct Sum

Question:

If
$$V_1 \oplus V_2 = X$$
,

- ▶ $V_1 \cap V_2 = \emptyset$? No. $V_1 \cap V_2 = \{0\}$. Why?
- ▶ $V_1 \cup V_2 = X$? No.
- ▶ How to find $f \notin V_1 \cup V_2$?

Relation for Dimension

For
$$V_1 \oplus V_2 = X$$
,

$$\dim V_1 + \dim V_2 = \dim X$$
.

Orthogonal Matrix

Definition

If the columns a matrix are orthonormal elements, matrix ${\it Q}$ is called an orthogonal matrix.

Properties

If a matrix Q is an orthogonal $n \times m$ matrix, we have

$$Q^TQ=I_m$$
.

Theorem

For $n \times n$ matrix Q. The matrix Q is orthogonal if and only if $Q^T = Q^{-1}$.

Orthogonal Matrix

Example

Check that

is an orthogonal matrix.

Gram-Schimit Algorithm

Quesiton:

Given $V \subset X$, how to find an orthonormal basis? Assume we define this subspace using $(v_1, ..., v_n)$ as a basis.

Solution

Gram: find $(u_1, ..., u_n)$ orthogonal to each other.

$$u_{1} := v_{1}$$

$$u_{2} := v_{2} - \frac{(u_{1}, v_{2})}{(u_{1}, u_{1})} u_{1}$$

$$u_{3} := v_{3} - \frac{(u_{1}, v_{3})}{(u_{1}, u_{1})} u_{1} - \frac{(u_{2}, v_{3})}{(u_{2}, u_{2})} u_{2}$$

Note:

Try to write one equation in matrix form!

Gram-Schimit Algorithm

Solution(Contd.)

Schimit: normalize each vector.

$$b_i = \frac{u_i}{\|u_i\|}, \quad i = 1, ..., n.$$

Note:

We can note that this process can be mixed.

$$u_1 = v_1,$$
 $b_1 = \frac{u_1}{\|u_1\|}$ $u_2 = v_1 - (b_1, v_1)b_1,$ $b_2 = \frac{u_2}{\|u_2\|}$

Gram-Schimit Algorithm

Note(Contd.)

Please note that the order is not **unique**, we can simplify calculation by rearranging elements.

Example

Find an orthonormal basis from,

$$\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 18 \\ 0 \\ 0 \end{bmatrix}.$$

Quesiton:

How to write this process in a matrix form?

Solution

This process can be recorded by QR.

For the basis $(v_1, ..., v_n)$, we write this basis as column vectors of a matrix. We assume we have found an orthonormal basis $(b_1, ..., b_n)$.

$$\begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix} \begin{bmatrix} (v_1, b_1) & (v_2, b_1) & \cdots & (v_n, b_1) \\ (v_1, b_2) & (v_2, b_2) & \cdots & (v_n, b_2) \\ \vdots & \vdots & \ddots & \vdots \\ (v_1, b_n) & (v_2, b_n) & \cdots & (v_n, b_n) \end{bmatrix}$$

Solution(Contd.)

Please note that $(b_1, ..., b_n)$ are produced from $(v_1, ..., v_n)$ in order, we have $b_j \perp \text{span}\{v_1, ..., v_{j-1}\}$, so that $(v_i, b_j) = 0$ for i < j. The matrix is supposed to be **upper triangular**.

$$\begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix} \begin{bmatrix} (v_1, b_1) & (v_2, b_1) & \cdots & (v_n, b_1) \\ 0 & (v_2, b_2) & \cdots & (v_n, b_2) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (v_n, b_n) \end{bmatrix}$$

Example

Find QR factorization of

$$A = \begin{bmatrix} 4 & 25 & 0 \\ 0 & 0 & -2 \\ 3 & -25 & 0 \end{bmatrix}$$

Solution

$$QR = \begin{bmatrix} 4/5 & 3/5 & 0 \\ 0 & 0 & -1 \\ 3/5 & -4/5 & 0 \end{bmatrix} \begin{bmatrix} 5 & 5 & 0 \\ 0 & 35 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Comment:

Please note that the number of elements usually **smaller** than dimension of the vector space.

Question:

For a $n \times m$ matrix A such that rankA < m, will it be possible to write

$$A = QR$$

where Q is an $n \times m$ matrix with orthonormal columns and R is upper triangular?

Example

Consider a block matrix

$$A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$$

with linearly independent columns.(A_1 is an $n \times m_1$ matrix and A_2 is an $n \times m_2$ matrix.) Suppose we know the QR factorization of A. Explain how to find QR factorization of A_1 .

Matrix Transpose

Definition

If A is an $n \times m$ matrix with each entry (a_{ij}) we define the **transpose** of A as an $m \times n$ matrix A^T , with each entry (a_{ji}) .

Note:

Please note that we have

$$\operatorname{im} A \oplus \ker A^{T} = \mathbb{R}^{n}$$

 $\ker A \oplus \operatorname{im} A^{T} = \mathbb{R}^{m}$

This is the reason to find V^{\perp} using ker A^{\perp} .

Question:

For equation Ax = b, if $b \notin \text{im } A$, then there is no solution. How to find a best approximation of b in im A?

Solution

We assume Ax^* corresponds to this best approximation. Then

$$Ax^* = proj_{im A}b,$$

or in other word

$$Ax^*-b\in (\operatorname{im} A)^{\perp},$$

equivalently

$$Ax^* - b \in \ker A^T$$
,

equivalently

$$A^T(Ax^*-b)=0.$$

Definition

For Ax = b, the **normal equaiton** of Ax = b is

$$A^T A x^* = A^T b.$$

Theorem

If A is an $n \times m$ matrix, then

$$\ker(A) = \ker(A^T A).$$

If $ker(A) = {\overline{0}}$, then $A^T A$ is invertible.

Question:

Why this theorem is helpful?

Theorem

If $ker(A) = {\overline{0}}$, then the linear system

$$Ax = b$$

has unique least-squares solution

$$x^* = (A^T A)^{-1} A^T b.$$

The Matrix of an Orthogonal Projection

If we have A contains a basis of V, we can find the orthogonal projection of b in im(A) is

$$A(A^TA)^{-1}A^Tb$$
.

Example

Find the least-squares solution x^* of the system

$$Ax = b$$
,

where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$