CKANAPHO MPOUSBELEHUE HA два Вектора

$$\vec{\alpha} \neq \vec{o}$$
, $\vec{\theta} \neq \vec{o}$
 $\Omega_{np}:(\vec{\alpha}.\vec{\theta}) = |\vec{\alpha}|.|\vec{\theta}|. \cos 4 (\vec{\alpha},\vec{\theta})e \rightarrow 4ucno$

1)
$$(\vec{a}.\vec{b}) = (\vec{b}.\vec{a});$$

2)
$$(\vec{a} + \vec{b}) \cdot \vec{c} = (\vec{a} \cdot \vec{c}) + (\vec{b} \cdot \vec{c})$$

3)
$$(\lambda.\vec{\alpha})\cdot\vec{\beta} = \lambda.(\vec{\alpha}\cdot\vec{\delta});$$

4)
$$(\vec{a}.\vec{a}) = |\vec{a}|.|\vec{a}|. \cos D = |\vec{a}|^2 \Rightarrow \vec{a}^2 = |\vec{a}|^2$$

$$|\vec{a}| = |\vec{a}|^2$$

5)
$$\cos 4(\vec{a}, \vec{b}) = \frac{(\vec{a}.\vec{b})}{|\vec{a}|.|\vec{b}|}$$

6)
$$(\vec{\alpha} \cdot \vec{\beta}) = 0 \iff \vec{\alpha} \perp \vec{\beta}$$

$$K = 0 \vec{e}_{1} \vec{e}_{2} \vec{e}_{3} - DKC, ako;$$
 $|\vec{e}_{1}| = |\vec{e}_{2}| = |\vec{e}_{3}| = 1 = > \vec{e}_{1}^{2} = \vec{e}_{2}^{2} = \vec{e}_{3}^{2} = 1$
 $|\vec{e}_{1}| = |\vec{e}_{2}| = |\vec{e}_{3}| = 1 = > (\vec{e}_{1} \cdot \vec{e}_{2}) = (\vec{e}_{2} \cdot \vec{e}_{3}) = (\vec{e}_{3} \cdot \vec{e}_{1}) = 0$
Scanned with Camber

* Hexa $\vec{a}(a_1, a_2, a_3)$ cmp, $K = \vec{a} = a_1 \cdot \vec{e}_1 + \vec{a}_2 \cdot \vec{e}_2 + a_3 \cdot \vec{e}_3$ $\vec{b}(b_1, b_2, b_3)$ cmp. $K = \vec{b} = b_1 \cdot \vec{e}_1 + b_2 \cdot \vec{e}_2 + b_3 \cdot \vec{e}_3$

$$(\vec{\alpha}, \vec{6}) = \alpha_1 \cdot \theta_1 + \alpha_2 \cdot \theta_2 + \alpha_3 \cdot \theta_3$$

 $\vec{\alpha}^2 = |\vec{\alpha}|^2 = \alpha_1^2 + \alpha_2^2 + \alpha_3^2$

* Pascmoghue Methys ABE moyku:

 $A_1(X_1, Y_1, Z_1)$ cnp. OKC $K = \widehat{DA}_1 = X_1, \widehat{e_1} + Y_1, \widehat{e_2} + Z_1, \widehat{e_3}$ $A_2(X_2, Y_2, Z_2)$ cnp. OKC $K = \widehat{DA}_2 = X_2, \widehat{e_1} + Y_2, \widehat{e_2} + Z_2, \widehat{e_3}$

Задачи:

/1 зад. Далени са векторите ã, в и с : 121=1, 181=2, 1c1= V2

$$\vec{p} = \vec{\alpha} + \vec{b} - \vec{c}$$

$$\vec{q} = 2\vec{\alpha} - 3\vec{b} + \vec{c}$$

Pemerne: $\vec{\alpha} = 1$, $\vec{b} = 4$, $\vec{c} = 2$, $(\vec{\alpha} \cdot \vec{b}) = 0$, $(\vec{b} \cdot \vec{c}) = 0$, $(\vec{a} \cdot \vec{c}) = 1$

- a) $|\vec{q}|^2 = \vec{q}^2 = (2\vec{\alpha} 3\vec{b} + \vec{c})^2 = 4\vec{\alpha}^2 + 9 \cdot \vec{b}^2 + \vec{c}^2 12(\vec{a} \cdot \vec{b}) + 4(\vec{c} \cdot \vec{c}) 6 \cdot (\vec{b} \cdot \vec{c}) = 4 \cdot 1 + 9 \cdot 4 + 2 0 + 4 \cdot 1 6 \cdot 0 = 46$ $|\vec{p}|^2 = \vec{q}^2 = (2\vec{\alpha} 3\vec{b} + \vec{c})^2 = 4\vec{\alpha}^2 + 9 \cdot \vec{b}^2 + \vec{c}^2 12(\vec{a} \cdot \vec{b}) + 4(\vec{c} \cdot \vec{c}) 6 \cdot (\vec{b} \cdot \vec{c}) = 4 \cdot 1 + 9 \cdot 4 + 2 0 + 4 \cdot 1 + 6 \cdot 0 = 46$ $|\vec{p}|^2 = \vec{q}^2 = (2\vec{\alpha} 3\vec{b} + \vec{c})^2 = 4\vec{\alpha}^2 + 9 \cdot \vec{b}^2 + \vec{c}^2 12(\vec{a} \cdot \vec{b}) + 4(\vec{c} \cdot \vec{c}) 6 \cdot (\vec{b} \cdot \vec{c}) = 4 \cdot 1 + 9 \cdot 4 \cdot 1 + 2 0 + 4 \cdot 1 + 6 \cdot 0 = 46$
- 5) $(\vec{p},\vec{q}) = (\vec{\alpha} + \vec{b} \vec{c}) \cdot (2\vec{\alpha} 3\vec{b} + \vec{c}) = 2.\vec{\alpha}^2$

$$\cos 4(\vec{p}, \vec{q}) = \frac{(\vec{p}, \vec{q})}{|\vec{p}| \cdot |\vec{q}|}$$

6)
$$(\vec{p},\vec{r}) = (\vec{\alpha} + \vec{b} - \vec{c}).(\vec{\alpha} + \lambda.\vec{b} - \vec{c}) = \vec{\alpha}^2 + \lambda.(\vec{\alpha}\vec{b}) - (\vec{\alpha}.\vec{c}) + (\vec{\alpha}\vec{b}) + \lambda.\vec{b}^2 - (\vec{b}.\vec{c}) - (\vec{\alpha}.\vec{c}) - \lambda(\vec{b}.\vec{c}) + \vec{c}^2 = 0$$

r)
$$\vec{c}^2 = 5$$

 $(\vec{a} + \vec{j} \cdot \vec{b} - \vec{c})^2 = 5$

/2 sag. Jagethe ca bekropure à, Bnc-143. Aagen e Bekrop pla, ple, plc. La ce gokathe, re $\vec{p} = \vec{o}$. A-60: P= d. 2+B. 8+X. 2 1. P P= J.(a,p)+B,(B,p)+ y.(c.p) $\vec{P} = 0$ /3 3ag. $\vec{a}, \vec{b}, \vec{c}$: $|\vec{a}| = 2$, $|\vec{b}| = 1$, |c| = 3*(a, b)e= *(b, c)e= *(c, a)= = Tetpalelop DABC: $\overrightarrow{DA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{C}$ a) AKO T. D SZBC , да се изрази op ypes à, buc; $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD}$ BD 11 BC → 7! X: BD = X. BC $\overrightarrow{BD} = X.(\overrightarrow{c} - \overrightarrow{b})$ $\overrightarrow{DD} = \overrightarrow{e} + \chi.(\overrightarrow{c} - \overrightarrow{e})$ $\overrightarrow{OD} \perp \overrightarrow{BC} \Rightarrow (\overrightarrow{DD} \cdot \overrightarrow{BC}) = 0$ $(\vec{c}\vec{D} \cdot \vec{B}\vec{C}) = [\vec{c} + \chi \cdot (\vec{c} - \vec{b})] \cdot (\vec{c} - \vec{b}) = 0$ $\vec{\theta} \cdot (\vec{c} - \vec{\theta}) + \chi \cdot (\vec{c} - \vec{\theta})^2 = 0$ (B.O)- 62+x.(22-2(B.O)+62)=0

Scanned with CamScanner

δ) Hexa T. A1: { E(BOC) (AA1 L (BOC) La ce uspasu DA1=? ypes a, b, c OÀ,, Buc ca Komnahaphu => 7! yucha (B; je): DA, = B. 6+yl. 2 AÃ, = DÃ, -DÃ = B. B+ y. c- à $|(\vec{A}\vec{A}_1.\vec{e})| = 0$ $|(\vec{B}.\vec{e}+\vec{g}.\vec{c}-\vec{a}).\vec{e}| = 0$ $|(\vec{A}\vec{A}_1.\vec{c})| = 0$ $|(\vec{B}.\vec{e}+\vec{g}.\vec{c}-\vec{a}).\vec{e}| = 0$ | $\beta \cdot \vec{b}^2 + \chi \cdot (\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{b}) = 0$ | $\beta \cdot (\vec{b} \cdot \vec{c}) + \chi \cdot \vec{c}^2 - (\vec{a} \cdot \vec{c}) = 0$ $\beta + \frac{3}{2} \cdot 1 - 1 = 0$ B.(3)+yl.9-3=0 $\vec{D}\vec{A}_1 = \vec{b} + \vec{c}$

3a rnp. 10/1=?

Scanned with CamScanner