MA 201 Complex Analysis Lecture 11: Applications of Cauchy's Integral Formula

Cauchy's estimate

Cauchy's estimate: Suppose that f is analytic on a simply connected domain D and $\overline{B(z_0,R)} \subset D$ for some R>0. If $|f(z)| \leq M$ for all $z \in C(z_0,R)$, then for all $n \geq 0$,

$$|f^n(z_0)|\leq \frac{n!M}{R^n},$$

where $C(z_0, R) = \{z : |z - z_0| = R\}.$

Proof: From Cauchy's integral formula and *ML* inequality we have

$$|f^{n}(z_{0})| = \left| \frac{n!}{2\pi i} \int_{|z-z_{0}|=R} \frac{f(z)}{(z-z_{0})^{n+1}} dz \right|$$

$$\leq \frac{n!}{2\pi} M \frac{1}{R^{n+1}} 2\pi R = \frac{n! M}{R^{n}}.$$

Liouville's Theorem

Liouville's Theorem: If f is analytic and bounded on the whole $\mathbb C$ then f is a constant function.

Proof: By Cauchy's estimate for any $z_0 \in \mathbb{C}$ we have,

$$|f'(z_0)| \leq \frac{M}{R}$$

for all R > 0. This implies that $f'(z_0) = 0$. Since z_0 is arbitrary and hence $f' \equiv 0$. Therefore f is a constant function.

• $\sin z$, $\cos z$, e^z etc. can not be bounded. If so then by Liouville's theorem they are constant.

Liouville's Theorem

- Does there exists a non constant entire function f such that e^{f(z)} is bounded?
- Does there exists a non constant entire function f such that Re(f) is bounded?
- Does there exists a non constant entire function f such that Im(f) is bounded?
- Does there exists a non constant entire function f such that f(x) is bounded for all real x?
- Does there exists a non constant entire function f such that |f(z)| > 1 for all $z \in \mathbb{C}$?

Fundamental Theorem of Algebra

- Fundamental Theorem of Algebra: Every polynomial p(z) of degree $n \ge 1$ has a root in \mathbb{C} .
- **Proof:** Suppose $P(z) = z^n + a_{n-1}z^{n-1} + + a_0$ is a polynomial with no root in \mathbb{C} . Then $\frac{1}{P(z)}$ is an entire function.
- Since

$$\left| \frac{P(z)}{z^n} \right| = \left| 1 + \frac{\mathsf{a}_{n-1}}{z} + \ldots + \frac{\mathsf{a}_0}{z^n} \right| \to 1, \quad \text{as} \; ; \quad |z| \to \infty,$$

- It follows that $|p(z)| \to \infty$ and hence $|1/p(z)| \to 0$ as $|z| \to \infty$.
- Consequently $\frac{1}{p(z)}$ is a bounded function.
- Hence by Liouville's theorem $\frac{1}{p(z)}$ is constant which is impossible.

Morera's Theorem

Morera's Theorem: If f is continuous in a simply connected domain D and if

$$\int_C f(z)dz=0$$

for every simple closed contour C in D then f is analytic.

Proof: Fix a point $z_0 \in D$ and define

$$F(z)=\int_{z_0}^z f(w)dw.$$

Use the idea of proof of existence of antiderivative to show that F'=f. Now by Cauchy integral formula f is analytic.