UNIVERSIDADE DE AVEIRO Departamento de Matemática

Exame Final de Matemática Discreta (2009/2010)

25 de Junho de 2010

Justifique devidamente as suas respostas.

(Duração: 2,5 horas)

1- Considere a relação \Re definida em $\{1, 2, 3, \ldots\}$ por

 $a\Re b$ se e só se b é múltiplo de a.

Indique, justificando, se a relação é

- (0.5) **1.1** Reflexiva.
- (0.5) **1.2** Simétrica.
- (0.5) 1.3 Anti-simétrica.
- (0.5) **1.4** Transitiva.
- (2.0) **1.5** Verifique se se trata de uma relação de ordem parcial ou de uma relação de equivalência.
- **2-** Num grupo de 13 pessoas, 5 têm camisola verde, 4 têm camisola amarela, 2 têm camisola azul e 2 têm camisola branca. Todas as camisolas são diferentes entre si.
- (2) 2.1 De quantas maneiras podemos constituir uma comissão de 4 representantes com 2 pessoas de camisola verde e 2 de camisola amarela?.
- (2) 2.2 De quantos maneiras podemos sentar estas 13 pessoas num banco corrido com 13 lugares de modo que as pessoas com camisola de mesma cor fiquem juntas?

3-

- (2) 3.1 Seja $f(x) = \frac{x}{1-5x+6x^2}$ a função geradora da sucessão $(a_n)_{n\geq 0}$. Determine uma fórmula não recursiva para a_n .
- (2) **3.2** Considerando a relação de recorrência $a_{n+2} = a_{n+1} + 6a_n 6$, $a_0 = 1$, $a_1 = 6$, determine uma fórmula não recursiva para a_n .
- **4-** Sabendo que os números de Stirling de primeira espécie, $\begin{bmatrix} n \\ k \end{bmatrix}$, com $n, k \ge 0$, determinam o número de permutações de de n elementos com exactamente k ciclos (admitindo-se por convenção que $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1$ e $\begin{bmatrix} 0 \\ k \end{bmatrix} = 0$, para k > 0), responda às seguintes questões:
- (2) **4.1** Demonstre que se $1 \le k \le n$, então

- (2) **4.2** Determine o número de Stirling $\begin{bmatrix} 6 \\ 3 \end{bmatrix}$.
- 5-(4) Considere um grafo G cuja matriz $W=[w_{ij}]$ relativa aos pesos w_{ij} associados às arestas $ij\in E(G)$ é a indicada

$$W = \begin{bmatrix} \infty & 3 & \infty & 4 & \infty & \infty \\ 3 & \infty & 2 & \infty & 2 & \infty \\ \infty & 2 & \infty & 4 & \infty & 1 \\ 4 & \infty & 4 & \infty & 3 & \infty \\ \infty & 2 & \infty & 3 & \infty & 6 \\ \infty & \infty & 1 & \infty & 6 & \infty \end{bmatrix},$$

e determine a árvore abrangente de custo mínimo, com recurso ao algoritmo de Kruskal.				