Testing Statistical Tests

Anne M. Archibald (archibald@astron.nl)

ASTRON

2015 April 23

Statistical tests

A statistical test is a procedure that takes data as input and reports whether that data contains a feature of interest. Examples:

- K-S, Kuiper, or Anderson-Darling test for whether samples have the same distribution
- \bullet χ^2 test for whether data is well-fit by a model
- H test for whether circular data is uniform

All yield a number describing the amount of deviation from the null hypothesis.

Testing statistical tests

Understanding the test:

- How significant is the result?
- How sensitive is the test?
- Is the implementation correct?

If there is a detection:

• How confident can we be?

If it's a null result:

• What upper limits can we place?

The demo problem

PSR J1023 \pm 0038 in radio pulsar and X-ray binary states

The demo problem

PSR J1023+0038 is an X-ray source in both MSP and LMXB states

- Based on radio timing we can compute pulse phase for each photon
- Period is 1.7 ms, so rotational coverage is uniform
- Much brighter in LMXB than radio state

LMXB: 542871 photons

Radio: 3746 photons

Are these photons pulsed?

The demo problem

PSR J1023+0038 is an X-ray source in both MSP and LMXB states

- Based on radio timing we can compute pulse phase for each photon
- Period is 1.7 ms, so rotational coverage is uniform
- Much brighter in LMXB than radio state

LMXB: 542871 photons

Radio: 3746 photons

Are these photons pulsed?

The H test

The H test is based on the "empirical Fourier coefficients":

$$c_m = \sum_{k=1}^N e^{2\pi i m \phi_k}$$

It chooses an optimal number n of coefficients to represent the profile and reports the total power in those n coefficients:

$$H = \max_{n} \sum_{m=1}^{n} 2|c_{m}|^{2}/N - 4$$

False positive probability

To evaluate the significance of a particular value of H, we need to know the probability of obtaining a value of H this large for photons that are actually uniformly distributed (null hypothesis): the false positive probability.

For the plain H test this can be computed analytically:

$$FPP = e^{-0.398405H}$$

Experimentally testing the FPP

Fortunately such tests are pretty easy to run:

Experimentally testing the FPP

You can also build an automated test:

Experimentally determining the FPP

Sometimes you have the "best-fit" H vaue obtained by fitting for a parameter

- Analytic FPP wrong!
- Roughly: multiply by number of independent trials
- Experimentally:
 - Repeat the fitting process on null data
 - Determine how often the null H is more significant than the observed
 - Use the binomial probability distribution to account for the limited number of simulations

Sensitivity

In the LMXB state, the PSR J1023+0038 light curve shows modes:

Are there pulsations in the low mode?

Sensitivity

The H-test false positive probability for the low mode is 0.52

- Definitely a non-detection
- But how strong could the pulsations be?
- In particular, could they be at the same fractional level as in the observation overall?

Sensitivity

Make fake data by choosing photon phases from the whole observation:

So the low mode cannot be as pulsed as the observation as a whole.

Actual upper limits

- Can generate weaker pulsations by mixing in uniformly-distributed phases
- Adjust fraction until 95% of fake data have a higher FPP than observed

Practical concerns

Or, why haven't you written a package to just do this?

- It's slow. Really slow if you have to adjust parameters.
 - Embarrassingly parallel. Ipython parallel notebooks can do it well: http://lighthouseinthesky.blogspot.ca/2014/ 10/parallel-ipython-notebooks.html
- There are often analytical speedups.
 - For the H test you can often work with ~20 Fourier coefficients rather than photons.
- It's very observation-dependent.
 - Your simulations should include all relevant fitting from your data analysis.
- Part of a more general approach to statistics.
 - If you don't understand the behaviour of your analysis procedure (or if you do but want to check), simulate.

What about Bayesian methods?

More complex and less standard:

- Hypothesis testing: null model versus family of signal models
- Need explicit priors
- Computation often (not always) needs an MCMC step
- Result: probability/log-odds of having a signal

Testing is challenging:

- Can draw fake data sets from the prior, then fit
- Obtain a list of (real/fake, claimed probability)
 - Complicated to effectively test whether the probabilities match the truth values