Двойственные задачи ЛП в общей форме. Основные теоремы теории двойственности.

Определение 1. Рассмотрим задачу ЛП в общей форме:

$$F=c_1x_1+\ldots+c_nx_n o \max$$
 $\left\{egin{array}{l} a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n\leq b_1\ dots\ a_{k1}x_1+a_{k2}x_2+\ldots+a_{kn}x_n\leq b_k\ dots\ a_{k1}x_1+a_{k2}x_2+\ldots+a_{kn}x_n\leq b_k\ dots\ a_{k1}x_1+a_{k2}x_2+\ldots+a_{kn}x_n=b_m\ dots\ a_{k1}x_1+a_{k2}x_1+a_{k2}x_2+\ldots+a_{kn}x_n=b_m\ dots\ a_{k1}x_1+a_{k2}x_1+$

Задача

$$F = b_1 y_1 + \ldots + b_m y_m \to \min$$

$$\begin{cases} a_{11} y_1 + a_{21} y_2 + \ldots + a_{m1} y_m \ge c_1 \\ \vdots \\ a_{1l} y_1 + a_{2l} y_2 + \ldots + a_{ml} y_m \ge c_l \\ \vdots \\ a_{1n} y_1 + a_{2n} y_2 + \ldots + a_{mn} y_m = c_n \end{cases}$$

$$i = \overline{1, k}, \quad k \le m$$

называется двойственной к исходной задаче ЛП.

	Прямая задача	Двойственная задача
1	<i>п</i> — переменных	<i>т</i> — переменных
2	m — ограничений	n — ограничений
3	Ищется тах	Ищется min
4	c — вектор коэффициентов це-	b — вектор коэффициентов це-
	левой функции	левой функции
5	b — вектор свободных членов	c — вектор свободных членов
	системы ограничений	системы ограничений
6	А — матрица коэффициентов	A^T — матрица коэффициентов
	системы ограничений	системы ограничений
7	$x_i \ge 0, j = \overline{1, k}$	j -ое ограничение \geq , $j = \overline{1, k}$
8	x_{j} — не ограничена в знаке,	j-ое ограничение =,
	$j = \overline{k+1, n}$	$j = \overline{k+1, n}$
9	i -ое ограничение \leq , $i = \overline{1, l}$	$y_i \ge 0, i = \overline{1, l}$
10	i -ое ограничение =, $i = \overline{l+1,m}$	y_i — не ограничена в знаке, $i =$
		$\overline{l+1,m}$

Теорема 1. Если одна из пары двойственных задач имеет оптимальное решение, то и другая имеет оптимальное решение, причём значения целевых функций задач при их оптимальных планах равны между собой: $F(x^*) = F^*(y^*)$. Если же целевая функция одной из пары двойственных задач не ограничена, то другая задача вообще не имеет планов (ОДР пуста).

Теорема 2. $x^* = (x_1^*, \dots, x_n^*)$ u $y^* = (y_1^*, \dots, y_m^*)$ – оптимальные решения прямой и двойственной задач \iff

$$\left(\sum_{j=1}^{n} a_{ij} x_{j}^{*} - b_{i}\right) y_{i}^{*} = 0, \quad i = \overline{1, m}$$

$$\left(\sum_{i=1}^{m} a_{ij} y_i^* - c_j\right) x_j^* = 0, \quad j = \overline{1, n}$$

Теорема 3. $y^* = C_b A_B^{-1}$

Доказательство. Пусть прямая задача:

$$F = \langle c, x \rangle \to \max, \quad Ax = b, \ x \ge 0$$

Тогда двойственная:

$$F^* = \langle y, b \rangle \to \min, \quad A^T y \ge c$$

Пусть x^* — оптимальное решение прямой. Тогда:

$$A_B x_b^* = b$$
, $A_B^{-1} A_B x_b^* = A_B^{-1} b$, $x_b^* = A_B^{-1} b$.

Подставим x^* в целевую функцию:

$$F = \langle c, x^* \rangle = c_b x_b^* = C_b A_B^{-1} b, \quad C_b A_B^{-1} b = y^* b \Rightarrow y^* = C_b A_B^{-1},$$

где:

- C_b коэффициенты при базисных переменных;
- A_B^{-1} обратная матрица к матрице, составленной из компонент векторов, вошедших в оптимальный базис (расположена в первых m строках последней (оптимальной) симплекс-таблицы, в столбцах векторов, представляющих начальный базис).

При этом $y^* = C_b A_B^{-1}$ находится в строке Δ .

Установим соответствие между переменными прямой и двойственной задач в симплекс-таблице:

- основные $X_1 \dots X_n$
- дополнительные $X_{n+1} \dots X_{n+m}$
- дополнительные $Y_{m+1} \dots Y_{m+n}$
- основные $Y_1 \dots Y_n$