Project 2

Part 1: Wrangling

Problem 1

```
import sqlite3
import sqlite3
import numpy as np
import numpy as numpy a
```

00001330		cuiiiib	yearib	total_payron_by_thousand	payron_mean	willing_percentage	igib	Hallelile	aivib	Italik		•••	-		Hame	puir	attendunce	D1 1		teaminobit	teambiamman-5	teambretro
	0	ATL	1985	14807.000	6.730455e+05	40.740741	NL	ATL	W	5	162		197.0	0.970	Atlanta Braves	Atlanta-Fulton County Stadium	1350137.0	105	106	ATL	ATL	ATL
	1	BAL	1985	11560.712	5.254869e+05	51.552795	AL	BAL	E	4	161		168.0	0.980	Baltimore Orioles	Memorial Stadium	2132387.0	97	97	BAL	BAL	BAL
	2	BOS	1985	10897.560	4.359024e+05	49.693252	AL	BOS	E	5	163		161.0	0.970	Boston Red Sox	Fenway Park I	1786633.0	104	104	BOS	BOS	BOS
	3	CAL	1985	14427.894	5.152819e+05	55.555556	AL	ANA	W	2	162		202.0	0.980	California Angels	Anaheim Stadium	2567427.0	100	100	CAL	CAL	CAL
	4	CHA	1985	9846.178	4.688656e+05	52.147239	AL	CHW	W	3	163		152.0	0.980	Chicago White Sox	Comiskey Park	1669888.0	104	104	CHW	CHA	CHA
	853	SLN	2014	120693.000	4.310464e+06	55.555556	NL	STL	С	1	162		145.0	0.985	St. Louis Cardinals	Busch Stadium II	3540649.0	101	100	STL	SLN	SLN
	854	TBA	2014	72689.100	2.907564e+06	47.530864	AL	TBD	Е	4	162		96.0	0.985	Tampa Bay Rays	Tropicana Field	1446464.0	97	97	TBR	TBA	TBA
	855	TEX	2014	112255.059	4.677294e+06	41.358025	AL	TEX	W	5	162		155.0	0.982	Texas Rangers	Rangers Ballpark in Arlingtor	2718733.0	101	101	TEX	TEX	TEX
	856	TOR	2014	109920.100	4.396804e+06	51.234568	AL	TOR	Е	3	162		130.0	0.985	Toronto Blue Jays	Rogers Centre	2375525.0	102	102	TOR	TOR	TOR
	857	WAS	2014	131983.680	4.399456e+06	59.259259	NL	WSN	Е	1	162		139.0	0.984	Washington Nationals	Nationals Park	2579389.0	104	102	WSN	MON	WAS

858 rows × 51 columns

There is missing data in team_table so I used an inner join to intersect the tables based on yearID and teamID after getting the data from the SQL query

Part 2: Exploratory Data Analysis

```
%matplotlib inline
result.sort values("yearID", ascending=True)
temp = result[result['yearID'] >= 1990]
temp = temp[temp['yearID'] <= 2014]</pre>
teams = temp['teamID'].drop_duplicates()
temp = temp[['yearID', 'teamID', 'total payroll by thousand']]
temp = temp.set index('teamID')
year = 1990
for t in teams:
    temp1 = temp.loc[lambda x: x.yearID == year, :]
   if t in temp1.index:
        num = temp1.loc[t]['total_payroll_by_thousand']
        plt.annotate(t, xy = (year, num))
        plt.plot(temp.loc[t]['yearID'], temp.loc[t]['total_payroll_by_thousand'],color=np.random.rand(3,))
        if (year < 2014):</pre>
           year+=1
        else:
           year = 1990
plt.xlabel('Years')
plt.ylabel('Total Payroll')
plt.rcParams["figure.figsize"] = (20,10)
```


Question 1

The payroll distribution seems to be trending upwards for all teams, but the magnitude of the increase is different for all the teams in the league with some teams doing better than others

Problem 3

```
mean_query = "SELECT yearID, sum(salary)/count(salary) as salary_mean FROM Salaries GROUP BY yearID"
mean_table = pd.read_sql(mean_query,conn)
result = pd.merge(result, mean_table, how='inner', on=['yearID'])

result.sort_values("salary_mean", ascending=True)
plt.ylot(result['yearID'], result['salary_mean'])
plt.xlabel('Years')
plt.ylabel('Mean Salary')
#shows the upward trend
```

Out[398... Text(0, 0.5, 'Mean Salary')


```
In [399-
    new_queryl = "SELECT teamID,yearID, sum(salary)/count(salary) as payroll_mean FROM Salaries GROUP BY teamID,yearID"
    new_queryl_table = pd.read_sql(new_queryl, conn)
    queryl_table = pd.read_sql(new_queryl, conn)
    group_table = pd.merge(queryl_table, query2_table, how='inner', on=['yearID','teamID'])

group_names = ['1990-1994','1995-1999','2000-2004','2005-2009','2010-2015']
    categories = pd.cut(group_table['yearID'],[1989,1994,1999,2004,2009,2015],labels=group_names)
    group_table['categories'] = pd.cut(group_table['yearID'], [1989,1994,1999,2004,2009,2015], labels=group_names)

catgroup = group_table.groupby('categories')
    group1 = catgroup.get_group('1990-1994')
```

```
group2 = catgroup.get_group('1995-1999')
group3 = catgroup.get_group('2000-2004')
group4 = catgroup.get_group('2005-2009')
group5 = catgroup.get_group('2010-2015')

def plotgroups(grp):
    teams = grp['teamID'].drop_duplicates()
    temp = grp[['teamID', 'winning_percentage', 'payroll_mean']]
    temp = temp.set_index('teamID')
    for t in teams:
        temp1 = grp.loc[lambda x: x.teamID == t, :]
        best_row * temp1.loc[temp1['winning_percentage'].idxmax()]
        plt.annotate(t, xy = (best_row['winning_percentage'], best_row['payroll_mean']))
        if t == 'OAK':
            plt.plot(temp.loc(t)[('winning_percentage'], temp.loc(t)[('payroll_mean'], color=np.random.rand(3,))
        plt.plot(temp.loc(t)[('winning_percentage'], temp.loc(t)['payroll_mean'], '*',color=np.random.rand(3,))
        plt.ylabel('Winning B')
        plt.ylabel('Winning B')
        plt.roParams["figure.figsize"] = (20,10)
```

In [400... #1990-94 plotgroups(group1)

In [401... #1995-99 plotgroups(group2)

In [403... #2005-09 plotgroups(group4)

Question 2

The New York Yankees is the standout across all the time periods when it comes to paying for wins. Oakland A's spending efficiency across these time periods seems to be around the mean as they don't really stand out in general.

Part 3: Data transformations

Problem 5

In [405... curr = 1985

```
payroll_list = []
payroll_avg = {}
payroll_std = {}
for index, row in queryl_table.iterrows():
    if curr != row['yearID']:
        avg = np.mean(payroll_list)
        std = np.std(payroll_list)
        payroll_avg[curr] = avg
        payroll_std[curr] = std
        curr = row['yearID']
        payroll_list= [row['payroll_mean']]
payroll_list.append(row['payroll_mean'])
payroll_std[curr] = np.std(payroll_list)
payroll_avg[curr] = np.mean(payroll_list)
stand_list = []
for index, row in queryl_table.iterrows():
    curr = row['yearID']
    payroll = row['payroll_mean']
    stand_list.append((payroll - payroll_avg[curr]) / payroll_std[curr])
queryl_table['Standardized_Payroll'] = stand_list
queryl_table
    teamID yearID payroll_mean Standardized_Payroll
```

1985 6.730455e+05 0 ATL 1.985378 BAL 1985 5.254869e+05 0.510155 1985 4.359024e+05 -0.385469 BOS CAL 1985 5.152819e+05 0.408131 CHA 1985 4.688656e+05 -0.055918 SLN 2014 4.310464e+06 -0.090724 855 856 2014 2.907564e+06 -0.516197 857 2014 4.677294e+06 0.020529 2014 4.396804e+06 -0.064538 WAS 2014 4.399456e+06 -0.063734

860 rows × 4 columns

Problem 6

```
group_table = pd.merge(query1_table, query2_table, how='inner', on=['yearID','teamID'])
           group_names = ['1990-1994','1995-1999','2000-2004','2005-2009','2010-2015']
           categories = pd.cut(group_table['yearID'],[1989,1994,1999,2004,2009,2015],labels=group_names)
           group_table['categories'] = pd.cut(group_table['yearID'], [1989,1994,1999,2004,2009,2015], labels=group_names)
           catgroup = group_table.groupby('categories')
           group1 = catgroup.get_group('1990-1994'
           group2 = catgroup.get_group('1995-1999'
           group3 = catgroup.get_group('2000-2004')
           group4 = catgroup.get_group('2005-2009')
           group5 = catgroup.get_group('2010-2015'
           def plotgroup(grp): #function for plotting
               teams = grp['teamID'].drop_duplicates()
               temp = grp[['teamID', 'winning_percentage', 'Standardized_Payroll']]
               temp = temp.set_index('teamID')
               for t in teams:
                   temp1 = grp.loc[lambda x: x.teamID == t, :]
                   best_row = templ.loc[templ['winning_percentage'].idxmax()]
                   plt.annotate(t, xy = (best_row['winning_percentage'], best_row['Standardized_Payroll']))
plt.plot(temp.loc[t,'winning_percentage'], temp.loc[t,'Standardized_Payroll'],'*',color=np.random.rand(3,))
               plt.xlabel('Standardized Payroll')
               plt.ylabel('Winning %')
               plt.rcParams["figure.figsize"] = (20,10)
In [407... | #1990-94
```

file:///Users/tunderockson/Downloads/Project 2.html

plotgroup(group1)

In [409... #2000-04 plotgroup(group3)

```
In [410- #2005-09 plotgroup(group4)
```



```
#2010-14
teams = group5['teamID'].drop_duplicates()
temp = group5[('teamID', 'winning_percentage', 'Standardized_Payroll']]
temp = temp.set_index('teamID')
group5 = group5.dropna();
for t in teams:
    temp1 = group5.loc[lambda x: x.teamID == t, :]
    if temp1['winning_percentage'].empty:
        print('')
    else:
        best_row = templ.loc[temp1['winning_percentage'].idxmax()]
        plt.annotate(t, xy = (best_row['winning_percentage'], best_row['Standardized_Payroll']))
```

```
plt.plot(temp.loc[t,'winning_percentage'], temp.loc[t,'Standardized_Payroll'],'*',color=np.random.rand(3,))
plt.xlabel('Standardized Payroll')
plt.ylabel('Winning %')
plt.roParams["figure.figsize"] = (20,10)
```


Question 3

Plots in Problem 6 are more even spaced out and the distribution seems to be clearer as well as compared to the ones in Problem 4.

```
group_table = group_table[np.isfinite(group_table['winning_percentage'])]
group_table = group_table[np.isfinite(group_table['Standardized_Payroll'])]

#regression line
a, b = np.polyfit(group_table['Standardized_Payroll'], group_table['winning_percentage'], 1)
x = np.linspace(group_table['Standardized_Payroll'].min(),group_table['Standardized_Payroll'].max(),100)
plt.plot(group_table['Standardized_Payroll'],group_table['winning_percentage'],'o')
plt.xlabel('Standardized_Payroll')
plt.xlabel('Standardized_Payroll')
plt.ylabel('Winning %')
plt.rcParams["figure.figsize"] = (20,10)
```


Question 4

The Teams that were good at paying for wins are more efficient. The New York Yankees exemplify this as they clearly spent the most money but also achieved great success as the graph shows. Oakland's efficiency over the Moneyball was definitely good as they seemed to have a higher efficiency than the majority of teams during that time. While they never really reached the heights of the Yankees, they were above average.