

Asymmetric encryption for integrity

Alice encrypts a message m with her private key KsA \rightarrow Everybody can decrypt m using Alice's public key Kp_A ✓ Authentication with non-repudiation (a.k.a Digital Signature)

Ks_A, Kp_A

 $D_{Kpa}(E_{Ksa}(m)) = m$

Asymmetric encryption for integrity

Alice encrypts a message m with her private key KsA

- Everybody can decrypt m using Alice's public key KpA
- ✓ Authentication with non-repudiation (a.k.a Digital Signature)

Digital Signature

Ksa Alice's Secret Key

Kpa, Kpb public keys

→ Use public cryptography to sign and verify

 $m \parallel SIG_{Ksa}(m)$

 $SIG_{Ksa}(m) = E_{Ksa}(H(m))$