```
1 Since u=sin((k+0.5)\pi x); u'=(k+0.5)\pi*cos((k+0.5)\pi x); So u(0)=sin(0)=0 U'(1)=(k+0.5)\pi*cos((k+0.5)\pi)=(k+0.5)\pi*0=0 u''=-(k+0.5)^2*\pi^2*sin((k+0.5)\pi x); So f=-u''=(k+0.5)^2*\pi^2*sin((k+0.5)\pi x);
```

2_a:

Notations: -u''(x) = f(x) $u=sin[(k+0.5)\pi * x]$ $f=(k+0.5)^2 * \pi^2 * u$

h=1/n

Ritz-Galerkin Approximation of error: (Upper bound)

E0=0.5*h²*||f||;

Errors:

k	1	2	4	8	16	32
n	f =15.7	f =43.6	f =141.3	f =504.2	f =1900.0	f =7371.4
5	Error:	Error:	Error:	Error:	Error:	Error:
	5.62*10 ⁻²	0.151	0.432	0.950	0.840	0.910
	Upper Bound:	Upper Bound:				
	0.314	0.872	2.82	10.1	38.0	147
10	Error:	Error:	Error:	Error:	Error:	Error:
	1.43*10 ⁻²	3.93*10 ⁻²	0.123	0.393	0.932	0.826
	Upper Bound:	Upper Bound:				
	7.85*10 ⁻²	0.218	0.707	2.52	9.50	36.9
20	Error:	Error:	Error:	Error:	Error:	Error:
	3.58*10 ⁻³	9.92*10 ⁻³	3.19*10 ⁻²	0.111	0.373	0.922
	Upper Bound:	Upper Bound:				
	1.96*10 ⁻²	5.45*10 ⁻²	0.177	0.630	2.37	9.21
40	Error:	Error:	Error:	Error:	Error:	Error:
	8.95*10 ⁻⁴	2.49*10 ⁻³	8.04*10 ⁻³	2.85*10 ⁻²	0.104	0.364
	Upper Bound:	Upper Bound:				
	4.91*10 ⁻³	1.36*10 ⁻²	4.42*10 ⁻²	0.158	0.594	2.31
80	Error:	Error:	Error:	Error:	Error:	Error:
	2.24*10 ⁻⁴	6.22*10 ⁻⁴	2.01*10 ⁻³	7.17*10 ⁻³	2.69*10 ⁻²	0.101
	Upper Bound:	Upper Bound:				
	1.23*10-3	3.41*10 ⁻³	1.10*10-2	3.93*10 ⁻²	0.148	0.576

The error is going down by approximately 1/4 (as expected), when we half h and $h^{2*}||f||$ is small enough. The error behaves like h^2 . (If we fit error and h^2 , we can see they can fit into straight line quite well.)

The error is also growing with the growth of ||f||. But I can't show the linearity. That probably is due to the function is quite smooth and the error is too far away from the estimate.

Pictures: (We only show k=1, k=2, k=4 here. Please refer to the code for the rest.)

2_b:

Notations: -u''(x) = f(x)

h=1/n

Ratio: error/upper_bound

Func	$F = \sin(\pi * x)$	$F = 24x (x < 0.5) F \text{ is } C^0$	$F = 4.4 (x \le 0.5)$ F is discont	
tion	$u = \pi^2 * \sin(\pi * x)$	$24(1-x) (x \ge 0.5) F = 6.93$	8.8 (x>0.5) F =6.96	
	F is C^{∞} ; $ F =6.98$;	$u = -(4x^3-3x)$ $(x<0.5)$	$u = -2.2x^2 + 2.75x \qquad (x \le 0.5)$	
n	7 11 11 7	$-[4(1-x)^3+3x-3] (x \ge 0.5)$	$-4.4x^2+4.95x-0.45 (x>0.5)$	
5	Error:	Error:	Error:	
	2.53*10 ⁻²	2.53*10-2	2.52*10 ⁻²	
	Upper Bound:	Upper Bound:	Upper Bound:	
	0.140	0.139	0.139	
	Ratio:	Ratio:	Ratio:	
	0.181	0.181	0.181	
10	Error:	Error:	Error:	
	6.35*10 ⁻³	6.29*10-3	6.35*10 ⁻³	
	Upper Bound:	Upper Bound:	Upper Bound:	
	3.50*10-2	3.46*10-2	3.48*10-2	
	Ratio:	Ratio:	Ratio:	
	0.182	0.182	0.182	
20	Error:	Error:	Error:	
	1.59*10 ⁻³	1.58*10 ⁻³	1.59*10-3	
	Upper Bound:	Upper Bound:	Upper Bound:	
	8.72*10 ⁻³	8.66*10-3	8.70*10 ⁻³	
	Ratio:	Ratio:	Ratio:	
	0.182	0.182	0.182	
40	Error:	Error:	Error:	
	3.98*10 ⁻⁴	3.95*10 ⁻⁴	3.95*10-4	
	Upper Bound:	Upper Bound:	Upper Bound:	
	2.18*10 ⁻³	2.17*10-3	2.17*10 ⁻³	
	Ratio:	Ratio:	Ratio:	
	0.182	0.182	0.182	
80	Error:	Error:	Error:	
	9.96*10 ⁻⁵	9.88*10 ⁻⁵	101*10 ⁻⁴	
	Upper Bound:	Upper Bound:	Upper Bound:	
	5.45*10-4	5.41*10-4	5.44*10-4	
	Ratio:	Ratio:	Ratio:	
	0.183	0.183	0.187	

Here we look into F is C^{∞} , C^0 , discontinuous respectively. Therefore, u is C^{∞} , C^2 , C^1 respectively. It seems that the smoothness doesn't affect much on the error.

Pictures:

Func	$F = \sin(\pi * x)$	$F = 24x (x < 0.5) F \text{ is } C^1$	F= 4.4 (x≤0.5) F is discont
tion	$u = \pi^2 * \sin(\pi * x)$	24(1-x) (x≥0.5) F =6.93	8.8 (x>0.5) F =6.96
	F is C^{∞} ; $ F =6.98$;	$u = 4x^3 - 3x$ $(x < 0.5)$	$u = -2.2x^2 + 2.75x$ $(x \le 0.5)$
n	u is C∞	$4(1-x)^3+3x-3 (x \ge 0.5)$	$-4.4x^2+4.95x-0.45$ (x>0.5)
5	Approximation Oil	Approximation Osginal Oscillation Original Oscillation Osginal Oscillation Oscillation Osginal Oscillation Oscilla	Approximation Ospinal Oscillation Ospinal Oscillation Ospinal Oscillation Osci
10	0.8 Ageroximation Citymal 0.6 Citymal 0.7 Citymal 0.8 Citymal 0.8 Citymal 0.9 Citymal 0.0 Citymal 0.0 Citymal 0.0 Citymal 0.0 Citymal	Approximation One	
20	0.8 Approximation 0.6 Citignal 0.4 0.2 0.0 0.1 0.2 0.3 0.4 0.6 0.8 0.9 1	0.8 Approximation 0.6 Onglinal 0.4 O.2 O.3 O.4 O.5 O.8 O.7 O.8 O.9 1	0.8 Approximation Original 0.4 0.2 0 0.2 0.4 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
40	Approximation 08 04 04 02 0-02 -0.04 -0.06 -0.08 -0.01 0.01 0.02 0.03 0.04 0.05 0.05 0.07 0.08 0.09 1	Approximation 0.6 0.4 0.2 0 0 0.0 0.1 0.2 0.0 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	Agroximation 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
80	Approximation 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	Approximation Onginal 0.4 0.2 0.4 0.2 0.4 0.6 0.8 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	Agourination Original 0.4 0.2 0.4 0.6 0.4 0.6 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1