Rapport

Projet Validation numérique

Réalisé par :

Dekkal Dyhia

Année universitaire : 2022/2023

1.1 Coder les algorithmes

Que déduire sur les algorithmes?

 $\textbf{Data1:} \quad \text{Pour Data 1: Pour les quatres algorithmes SOC,SR,SP,SI la courbe croit jusqu'à 2.33141} \times \\$

Figure 1.1 - Data1

 10^{15} on voit bien qu'on perd des chiffres significatis à partir de la valeur de cond $\geq 10^{15}$ On déduit que l'algorithme de sommation par ordre décroissant est bien meilleur par rapport aux autres vu que l'erreur converge vers 0

Data2:

FIGURE 1.2 - Data2

On déduit que l'algorithme de sommation par insertion est bien meilleur par rapport aux autres vu que l'erreur croit jusqu'à 8.09041×10^{15} puis décroit

Pour les quatres algorithmes SOC, SR,SP,SOD la courbe croit jusqu'à 8.09041×10^{15} on voit bien qu'on perd des chiffres significatis à partir de la valeur de cond $\geq 10^{15}$

Data3

FIGURE 1.3 – Data3

on déduit que pour tout les algorithmes qu'on perd des chiffres significatis à partir de la valeur de cond $\geq 10^{15}$ La courbe croit jusqu'à 2.36939×10^{15}

Data4:

FIGURE 1.4 - Data4

Pour Data 4:

Pour les quatres algorithmes SOC, SR,SP,SI la courbe croit jusqu'à 4.02298×10^{15} on voit bien qu'on perd des chiffres significatis à partir de la valeur de cond $\geq 10^{15}$

1.2 Conclusion

Il n'existe pas d'algorithme qui calcule la somme universsellement meilleur qu'un autre