Universität Salzburg Florian Graf

Machine Learning

Übungsblatt 6 24 Punkte

Aufgabe 1. MAP Schätzer – Gauß Prior

12 P.

Es sei $\mathcal{D} = \{x_1, \dots, x_n\} \in \mathbb{R}$ eine Stichprobe einer univariaten Normalverteilung mit bekannter Varianz σ^2 und unbekanntem Mittelwert μ . Außerdem nehmen wir eine A-priori-Verteilung für $\mu \sim \mathcal{N}(m, s^2)$ an, wobei $m \in \mathbb{R}$ und $s^2 > 0$ bekannt und fest sind.

(a) Zeigen Sie, dass der Logarithmus der A-posteriori-Verteilung durch

$$\log p(\mu|\mathcal{D}) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{1}{2s^2} (\mu - m)^2 + \text{const}$$

gegeben ist, wobei const einen Term beinhaltet, der nicht von μ abhängt.

(b) Zeigen Sie, dass

$$\hat{\mu}_{\text{MAP}} = \frac{ns^2}{ns^2 + \sigma^2} \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{\sigma^2}{ns^2 + \sigma^2} m$$

ein Maximum (der Dichte) der A-posteriori Verteilung ist.

- (c) Zeigen Sie, dass für m=0 die Ungleichung $|\hat{\mu}_{\text{MAP}}| \leq |\hat{\mu}_{\text{MLE}}|$ gilt.
- (d) Zeigen Sie dass für beliebiges $m \in \mathbb{R}$ gilt, dass $\hat{\mu}_{MAP} = \hat{\mu}_{MLE}$ falls $\hat{\mu}_{MLE} = m$. Zeigen Sie auch, dass für $\hat{\mu}_{MLE} < m$ gilt dass $\hat{\mu}_{MAP} \in (\hat{\mu}_{MLE}, m)$, bzw. $\hat{\mu}_{MAP} \in (m, \hat{\mu}_{MLE})$ falls $\hat{\mu}_{MLE} > m$. (Es genügt, wenn Sie einen Fall aufschreiben.)
- (e) Zeigen Sie, dass mit zunehmendem Stichprobenumfang n, der MAP-Schätzer für μ gegen dessen MLE-Schätzer $\hat{\mu}_{\text{MLE}}$ konvergiert.
- (f) Wogegen konvergiert der MAP-Schätzer mit zunehmender a priori Varianz s^2 (für festes n).
- (g) Wogegen konvergiert der MAP-Schätzer mit abnehmender a priori Varianz s^2 (für festes n).
- (h) Interpretieren Sie die Ergebnisse von (d) bis (h). Fassen Sie sich kurz (jeweils 2 bis 3 Sätze).

Aufgabe 2. Laplace Verteilung

4 P.

Die Laplaceverteilung mit Parametern $\mu \in \mathbb{R}$ und $\sigma > 0$ ist definiert über die Dichte

$$p(x|\mu, \sigma) = \text{Laplace}(x|\mu, \sigma) = \frac{1}{2\sigma} \left(-\frac{|x - \mu|}{\sigma} \right)$$
.

- (a) Zeigen Sie zunächst, dass $\mathbb{E}[X] = 0$ wenn $X \sim \text{Laplace}(0, \sigma)$. Folgern Sie daraus, dass $\mathbb{E}[X] = \mu$ wenn $X \sim \text{Laplace}(x|\mu, \sigma)$. Sie dürfen dazu ohne Beweis verwenden, dass $\Pr[X \in \mathbb{R}] = 1$.
- (b) Skizzieren Sie die Funktionsgraphen der Wahrscheinlichkeitsdichten von $X \sim \text{Laplace}(0,1)$ und $Y \sim \mathcal{N}(0,1)$ in einer handschriftlichen Zeichnung. Achten Sie dabei besonders auf das Verhalten der Dichten in der Nähe von 0.

Tipp: Visualisieren Sie zunächst die Dichten mit einer Software (z.B. WolframAlpha).

Wir sind erneut in dem Setting von Aufgabe 1 (d.h. Stichprobe $\mathcal{D} = \{x_1, \dots, x_n\} \in \mathbb{R}$ sei eine Stichprobe einer univariaten Normalverteilung mit bekannter Varianz σ^2 und unbekanntem Mittelwert μ). Allerdings nehmen wir nun einen Laplace Prior $\mu \sim \text{Laplace}(0, s)$ an, wobei s > 0 bekannt und fest ist.

(a) Zeigen Sie, dass der Logarithmus der A-posteriori-Verteilung durch

$$\log p(\mu|\mathcal{D}) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{1}{s} |\mu| + \text{const}$$

gegeben ist, wobei const einen Term beinhaltet, der nicht von μ abhängt.

(b) Es sei $\hat{\mu}_{\text{MLE}}$ der MLE Schätzer von μ . Zeigen Sie, dass

$$\frac{d\log p(\mu|\mathcal{D})}{d\mu} = \begin{cases} \frac{n}{\sigma^2}(\hat{\mu}_{\text{MLE}} - \mu) + \frac{1}{s} & \mu < 0 \\ \frac{n}{\sigma^2}(\hat{\mu}_{\text{MLE}} - \mu) - \frac{1}{s} & \mu > 0 \end{cases}$$

(c) Es sei $\epsilon = \frac{\sigma^2}{ns}$. Folgern Sie aus (b), dass

$$\hat{\mu}_{\text{MAP}} = \begin{cases} \hat{\mu}_{\text{MLE}} - \epsilon \, \text{sign}(\hat{\mu}_{\text{MLE}}), & \text{falls } |\hat{\mu}_{\text{MLE}}| > \epsilon \\ 0 & \text{sonst} \end{cases}.$$

Sie dürfen dafür ohne Beweis annehmen, dass die Funktion $\mu \mapsto \log p(\mu|\mathcal{D})$ ein Maximum besitzt.

(d) Interpretieren Sie das Resultat aus (c).