Postgraduate Course: Process Algebra

Communicating Sequential Process

Operational Semantics and Refinement

Huibiao Zhu

Software Engineering Institute, East China Normal University

Outline

- 1. Brief introduction of the operational semantics for GCL
- 2. Operational semantics for CSP in detail.
- 3. The relationship of simulation and refinement for CSP

Operational Semantics for GCL

1. Assignment

$$\langle x := e, \sigma \rangle \longrightarrow \langle \varepsilon, \sigma[e/x] \rangle$$

2. Sequential Composition

If
$$\langle P, \sigma \rangle \longrightarrow \langle \epsilon, \sigma' \rangle$$
, then $\langle P; Q, \sigma \rangle \longrightarrow \langle Q, \sigma' \rangle$

If
$$\langle P, \sigma \rangle \longrightarrow \langle P', \sigma' \rangle$$
, then $\langle P; Q, \sigma \rangle \longrightarrow \langle P'; Q, \sigma' \rangle$

3. Conditional

$$\langle P \lhd b \rhd Q, \, \sigma \rangle \, \longrightarrow \, \langle P, \, \sigma \rangle, \quad \text{if} \quad b(\sigma)$$

$$\langle P \lhd b \rhd Q, \sigma \rangle \longrightarrow \langle Q, \sigma \rangle, \quad \text{if} \quad \neg b(\sigma)$$

4. Iteration

$$\langle b * P, \sigma \rangle \longrightarrow \langle P ; b * P, \sigma \rangle,$$
 if $b(\sigma)$

$$\langle b * P, \sigma \rangle \longrightarrow \langle \mathbf{Skip}, \sigma \rangle, \quad \text{if } \neg b(\sigma)$$

Prefix and Choice

1. Event Prefix

$$(a \to P) \stackrel{a}{\longrightarrow} P$$

2. Choosing between Events

$$(x:A\to P(x))\stackrel{a}{\longrightarrow} P(a), \quad \text{Here, } a\in A$$

Input and Output

1. Input

$$(c!v \to P) \xrightarrow{c.v} P$$

2. Output

$$(c?x:T\to P(x)) \xrightarrow{c.v} P(v), \quad v\in T$$

Choice

1. Internal Choice

$$P \sqcap Q \xrightarrow{\tau} P$$

$$P \sqcap Q \xrightarrow{\tau} Q$$

2. Recursion

$$\mu X \bullet F(X) \stackrel{\tau}{\longrightarrow} F(\mu X \bullet F(X)/X)$$

3. External choice

(1) If
$$P \xrightarrow{\tau} P'$$
, then $P \square Q \xrightarrow{\tau} P' \square Q$

$$Q \square P \stackrel{\tau}{\longrightarrow} Q \square P'$$

(2) If
$$P \xrightarrow{a} P'$$
, then $P \square Q \xrightarrow{a} P'$

$$Q \square P \xrightarrow{a} P'$$

Parallel Composition

(1) If
$$P \xrightarrow{\tau} P'$$
, then $P_B||_C Q \xrightarrow{\tau} P'_B||_C Q$

(2) If
$$Q \xrightarrow{\tau} Q'$$
, then $P_B|_C Q \xrightarrow{\tau} P_B|_C Q'$

(3) If
$$P \xrightarrow{a} P'$$
, then $P_B|_C Q \xrightarrow{a} P'_B|_C Q (a \in B - C)$

(4) If
$$Q \xrightarrow{a} Q'$$
, then $P_B|_C Q \xrightarrow{a} P_B|_C Q'$ $(a \in C - B)$

(5) If
$$P \xrightarrow{a} P'$$
 and $Q \xrightarrow{a} Q'$
then $P_B|_C Q \xrightarrow{a} P_B|_C Q' \ (a \in B \cap C)$

Interleaving and Sequential Composition

1. Interleaving

If $P \xrightarrow{x} P'$, then $P|||Q \xrightarrow{x} P'|||Q$

If $Q \xrightarrow{x} Q'$, then $P|||Q \xrightarrow{x} P|||Q'$

2. Sequential Composition

If $P \xrightarrow{x} P'$, then $P ; Q \xrightarrow{x} P' ; Q (x \neq \sqrt{})$

If $\exists P' \bullet P \xrightarrow{\sqrt{}} P'$, then $P ; Q \xrightarrow{\sqrt{}} Q$

Concealment Renaming

1. Concealment

If
$$P \xrightarrow{x} P'$$
, then $P \setminus B \xrightarrow{x} P' \setminus B \ (x \notin B)$

If
$$P \xrightarrow{a} P'$$
, then $P \setminus B \xrightarrow{\tau} P' \setminus B \ (a \in B)$

2. Renaming

If
$$P \xrightarrow{x} P'$$
, then $f[P] \xrightarrow{y} f[P']$ $(y = f(x))$

If
$$P \xrightarrow{x} P'$$
, then $f^{-1}[P] \xrightarrow{y} f^{-1}[P']$ $(f(y) = x)$

Divergence

1. Definition of Divergence

A process P can diverge (denoted as $\uparrow P$) if it is infinitely often capable of τ transition.

$$P \xrightarrow{\tau} P_0 \xrightarrow{\tau} \dots \xrightarrow{\tau} P_n \xrightarrow{\tau} \dots$$

2. Definition of Stableness

A process P is called stable if it cannot perform τ transition currently.

$$Stable(P) =_{df} (\neg \exists P' \bullet P \xrightarrow{\tau} P')$$

Failure and Divergence Revisited (1)

(1) Some Definitions

(a)
$$P \xrightarrow{*} P' =_{df} P(\xrightarrow{\tau})^* P'$$

(b)
$$P \stackrel{a}{\Longrightarrow} P' =_{df} \exists P_1 \bullet P \stackrel{*}{\longrightarrow} P_1 \land P_1 \stackrel{a}{\longrightarrow} P'$$

(c) Assume $s = a_1 a_2 ... a_n$ and $s' = a_2 ... a_n$. Then

$$P \stackrel{s}{\Longrightarrow} P' =_{df} \exists P_1 \bullet P \stackrel{a_1}{\Longrightarrow} P_1 \land P_1 \stackrel{s'}{\Longrightarrow} P'$$

Failure and Divergence Revisited (2)

(2) Failure

failure(P)

$$=_{df} \{(s,X) \mid \exists P_1, P_2 \bullet P \xrightarrow{s} P_1 \land P_1 \xrightarrow{*} P_2 \land stable(P_2) \land \forall c \in X \bullet \neg (P_2 \xrightarrow{c}) \}$$

(3) Divergence

divergence(P)

$$=_{df} \{s \mid \exists P_1 \bullet P \stackrel{s}{\Longrightarrow} P_1 \land \uparrow P_1 \}$$

Simulation |

Definition

A simulation is defined as a binary relation \mathcal{R} satisfying that

(1) If $\uparrow P$, then $\uparrow Q$,

Otherwise,

- (2) If $P \mathcal{R} Q$ and $P \stackrel{a}{\Longrightarrow} U$, then there exists a process W such that $Q \stackrel{a}{\Longrightarrow} W$ and $U \mathcal{R} W$
- (3) If $P \xrightarrow{*} P_1$ and $stable(P_1)$ and $\neg(P \xrightarrow{a})$, then $\exists Q_1 \bullet Q \xrightarrow{*} Q_1$ and $stable(Q_1)$ and $\neg(Q \xrightarrow{a})$,

We use \leq to denote the largest simulation relation.

Compositional Properties

Theorem 1 If $P \leq Q$, then

- (a) $a \to P \le a \to Q$
- (b) $P \sqcap R \leq Q \sqcap R$
- (c) $P \square R \leq Q \square R$
- (d) $P||R \leq Q||R|$
- (e) $P ; R \leq Q ; R$ and $R ; P \leq R ; Q$

Theorem 2

For all $x \in B$, if $P(x) \leq Q(x)$, then $x : B \to P(x) \leq x : B \to Q(x)$

Relationship between Simulation and Refinement

(1) Refinement

$$P$$
 refine Q

$$=_{df} failue(P) \subseteq failure(Q) \land divergence(P) \subseteq divergence(Q)$$

(2) Theorem

If $P \leq Q$, then P refine Q