

Aprendizagem automática

Sessão 8 - T

Introdução à aprendizagem supervisionada

Ciência de Dados Aplicada 2023/2024

Aprendizagem não supervisionada vs. supervisionada

 Não supervisionado: envolve o trabalho com dados não rotulados, em que o algoritmo explora a estrutura e os padrões inerentes à entrada sem orientação explícita da saída.

• Supervisionado: o algoritmo é treinado num conjunto de dados rotulados, em que os dados de entrada são emparelhados com os rótulos de saída correspondentes. O objetivo é aprender um mapeamento das entradas para as saídas, permitindo que o algoritmo faça previsões sobre dados novos e não vistos.

Aprendizagem supervisionada

- Dado um conjunto de dados: $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$
 - o em que x_i representa as características de entrada e y_i representa as características correspondentes etiquetas.
- O objetivo é aprender uma função f(x)que **mapeia as entradas** para as saídas, ou seja, $y_i = f(x_i) + \epsilon_i$.
 - \circ Em que ϵ_i representa um termo de erro.

Minimizando o erro entre a saída prevista e os valores reais.

Conjuntos de dados para aprendizagem supervisiona da Tuguesa Braga

Contínuo Contínuo Discret

o Discreto

Introdução à aprendizagem

Classificação binária

Contínuo Discreto Discreto

Introdução à aprendizagem

Classificação multiclasse

Tipos de ———— S Contínuo Contínuo Contínuo característica

Discreto Discreto

Introdução à aprendizagem

Regressão

Tipos de — característ icas Contínuo Contínuo

Contínuo Discreto Contínua

Introdução à aprendizagem

Aprendizagem supervisionada ou não?

- 1. Prever a pontuação IMDB de um filme com base nas suas características.
- 2. Identificar a doença de um paciente com base nos seus sintomas.
- 3. Agrupar os doentes com base nos valores dos indicadores das suas análises bioquímicas.
- 4. Prever o tempo para outubro de 2023 com base no tempo dos meses anteriores.
- 5. Calcule a idade média dos alunos deste curso.
- 6. Escrever um programa para melhorar o seu desempenho ao jogar xadrez contra humanos.

Fluxo de trabalho de

PORTUGUESA

BRAGA

UNIVERSIDADE

CATOLICA

aprendiza

https://towardsdatascience.com/the-machine-learning-workflow-explained-557abf882079

Fluxo de trabalho de aprendizagem supervisionada Preparar os dados:

- Recolha de dados;
 - Limpeza de dados;
 - Pré-processamento de dados.

Construção de modelos:

- Seleção do modelo;
- Arquitetura do modelo;
- Selecionar os hiperparâmetros.

Treinar e avaliar o modelo:

- Treinar o modelo com os dados de treino para minimizar uma função de perda;
- Avaliar o desempenho do modelo num conjunto de validação separado para ajustar os hiperparâmetros e evitar o sobreajuste.
- Avaliar o desempenho do modelo no teste.

• Obter previsões do modelo:

Utilizar o modelo treinado para fazer previsões sobre dados novos e não vistos.

Fluxo de trabalho de aprendizagem supervisionada

Quilomet ragem	Motor	<u>Cavalos de</u> <u>potência</u>	Tipo de transmissão	Tipo de carro
25000	2.0	180	Manual	Sedan
30000	2.5	200	Automático	SUV
20000	1.8	160	Manual	Sedan
35000	3.0	250	Automático	SUV
28000	2.2	190	Automático	Sedan
32000	2.8	220	Manual	SUV
27000	2.0	170	Manual	Sedan

Quilomet ragem	Motor	Cavalos de potência	Tipo de transmissão	Tipo de carro
25000	2.0	180	Manual	?
30000	2.5	200	Automático	?
20000	1.8	160	Manual	?

Previsões Tipo de carro **SUV** SUV Sedan

Modelos baseados em árvores Modelos baseados em instâncias Modelos probabilísticos Modelos de conjuntos Redes

Avaliação de modelos: Métricas de erro

 A avaliação da qualidade de um modelo para uma tarefa específica envolve o cálculo de métricas de erro.

• Estas métricas fornecem informações sobre o desempenho do modelo num conjunto de exemplos (não utilizados durante a formação do modelo).

• A métrica a utilizar depende do **tipo de problema**: regressão ou classificação.

Métricas de

UNIVERSIDADE CATOLICA PORTUGUESA

BRAGA

clas · · · · · Matriz de

Predicted Class

Métricas de classificação Matriz de confusão:

Mais de 2 aulas

Confusion Matrix

BRCA	342	2	3	4	1	97.2%
	41.0%	0.2%	0.4%	0.5%	0.1%	2.8%
KIRC	3 0.4%	211 25.3%	0 0.0%	0 0.0%	0 0.0%	98.6% 1.4%
Output Class	4	1	54	13	3	72.0%
	0.5%	0.1%	6.5%	1.6%	0.4%	28.0%
Output	2	1	8	79	0	87.8%
Datu	0.2%	0.1%	1.0%	9.5%	0.0%	12.2%
UCEC	0	0	0	0	104	100%
	0.0%	0.0%	0.0%	0.0%	12.5%	0.0%
	97.4%	98.1%	83.1%	82.3%	96.3%	94.6%
	2.6%	1.9%	16.9%	17.7%	3.7%	5.4%
2.	BRCA	*IRC	LUAD	Liec	JCEC JCEC	

Target Class

Introdução à aprendizagem

Métricas de

Predicted Class

Métricas de classificação

Métricas de classificação

F1 Score =
$$\frac{\frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}}{\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}}$$

Coeficiente de correlação de Matthews
$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Métricas de

BRAGA

classificação

Curvas de características de funcionamento do recetor (ROC)

 Avalia graficamente a discriminação do modelo em diferentes limiares.

 Taxa de verdadeiros positivos vs. taxa de falsos positivos vs. taxa de falso positivos vs. ta para perfeito).

 Curvas de precisão-recuperação: Mais adequadas para dados desequilibrados, realçando os compromissos entre precisão e

Métricas de recuperação. classificação

Métricas de classificação: Qual escolher?

- Exatidão: medida geral utilizada quando as classes são equilibradas e os erros de classificação dos casos positivos e negativos são igualmente importantes;
- Sensibilidade/Recall: quando a identificação correcta de casos positivos é crucial (por exemplo, diagnóstico médico ou deteção de fraude);
- Especificidade: quando é importante identificar corretamente os casos negativos (por exemplo, rastreio de segurança ou controlo de qualidade);
- Precisão: quando queremos minimizar os falsos positivos (por exemplo, deteção de spam de correio eletrónico);
- Pontuação F1: quando se pretende um equilíbrio entre a precisão e a recuperação, especialmente em situações em que existe um desequilíbrio entre o número de casos positivos e negativos.
- MCC: quando se pretende uma métrica única que considere o desempenho global do modelo, especialmente em tarefas de

classificação binária em que as classes são desequilibradas.

Métricas de

regressão Erro médio absoluto (MAE):

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

Simples e interpretável medida de média previsão erro de previsão.
 Menos

sensível a valores anómalos.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

- Erro médio quadrático (MSE):
 - Penaliza mais fortemente os erros maiores. Sensível a valores anómalos devido ao quadrado dos erros.

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

- Raiz do erro quadrático médio (RMSE):
 - Métrica nas mesmas unidades que a variável-alvo. Fornece uma variável interpretável

como o MAE, mas que tem em conta erros maiores como o MSE.

Métricas de

* **Percentual Absoluto Médio (MAPE):** MAPE = $\frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}|}{y_i} * 100\%$ • Útil quando a escala da variável-alvo varia muito.

- Coeficiente de determinação (R-quadrado): $R^2 = 1 \frac{\sum (y_i \hat{y})^2}{\sum (y_i \bar{y})^2}$
 - Utilizado para avaliar em que medida as variáveis independentes explicam a variabilidade da variável dependente. Valores mais elevados indicam um melhor ajuste do modelo aos dados.

• R-quadrado ajustado:
$$R_{adj}^2 = 1 - \left[\frac{(1 - R^2)(n-1)}{n-k-1} \right]$$

- Ajusta o R-quadrado para o número de variáveis independentes (k), que reflecte de forma mais precisa o ajuste do modelo.
- n é o número de observações nos dados.

Métodos de estimativa de erros

• Objetivo: garantir uma avaliação credível do desempenho do algoritmo e da capacidade de generalização.

• As medidas de erro não devem ser aplicadas ao mesmo conjunto de dados que foi utilizado para a formação.

 Os conjuntos de validação e de teste são utilizados para avaliar o modelo treinado.

- Importância dos exemplos de testes:
 - o Crucial para avaliar o grau de generalização do modelo para dados não vistos.

o Assegura uma avaliação imparcial do desempenho do modelo.

Retençã

0

 Envolve a divisão do conjunto de dados em dois subconjuntos: o conjunto de treino e o conjunto de teste.

 O modelo é treinado no conjunto de treino e avaliado no conjunto de teste independente.

Retençã

0

- Por vezes, é necessário dividir os dados em três subconjuntos: o conjunto de treino, o conjunto de validação e o conjunto de teste.
- O modelo é treinado no conjunto de treino e avaliado no conjunto de validação para ajustar os hiperparâmetros.
- Por fim, o desempenho do modelo é avaliado no conjunto de teste para obter uma estimativa não enviesada da sua capacidade de generalização.

Retençã

0

Vantagens:

- Fácil de implementar.
- Fornece uma estimativa rápida do desempenho do modelo.
- Útil para grandes conjuntos de dados em que os recursos computacionais são limitados.

Limitações:

- A estimativa do desempenho pode variar consoante a divisão aleatória dos dados.
- Pode n\u00e3o ser adequado para pequenos conjuntos de dados devido ao potencial desequil\u00edbrio dos dados.

Validação

cruzada

 A validação cruzada é uma técnica robusta para estimar o erro de previsão, dividindo iterativamente o conjunto de dados em vários subconjuntos.

Validação

cruzada

- Tipos de validação cruzada:
 - K-Fold Cross-Validation: Divide os dados em k dobras, cada uma usada como uma conjunto de testes uma vez.
 - Validação cruzada de saída única (LOOCV): Cada observação é utilizada como um conjunto de teste uma vez, sendo o resto o conjunto de treino (k=número de amostras).

Vantagens:

 Fornece uma estimativa robusta do desempenho do modelo, calculando a média sobre múltiplas iterações.

Limitações:

Validação

cruza Conjuntos de dados ou complexos para grandes

modelos.

 Pode resultar em estimativas de variância mais elevadas devido à aleatoriedade na divisão dos dados.

Introdução à aprendizagem

Viés de aprendizagem

• Representa o **erro sistemático ou** o **desvio** das previsões do modelo em relação aos valores reais.

 O viés de aprendizagem pode surgir devido à complexidade do modelo, à insuficiência de dados ou a limitações inerentes ao algoritmo.

- Tipos de preconceitos de aprendizagem:
 - Subajuste (viés elevado)
 - Sobreajuste (viés baixo, variância elevada)

Desvio e variância

Preconceito:

- O viés refere-se ao erro introduzido pela aproximação de um problema do mundo real com um modelo simplificado.
- Os modelos de enviesamento elevado são demasiado simples e não conseguem captar os padrões subjacentes nos dados.

Desvio:

 A variância mede a sensibilidade do modelo a pequenas flutuações nos dados de treino.

Elevada	variância modelos	são	excessivamente	complexos
е	captam ruído	ou	flutuações aleatórias	nos dados.

Compensação de viés-variância:

- Encontrar uma solução de compromisso entre o enviesamento e a variância: a redução de um aumenta normalmente o outro.
- O objetivo é encontrar o equilíbrio certo que minimize o enviesamento e a variância, resultando num desempenho ótimo do modelo.

Subadaptação

 O subajuste ocorre quando um modelo de aprendizagem automática não consegue captar os padrões subjacentes nos dados, resultando num fraco desempenho tanto nos dados de treino como nos dados de teste.

Causas:

- A complexidade do modelo é demasiado baixa em relação à complexidade dos dados subjacentes.
- Características ou exemplos de formação insuficientes para captar a variabilidade dos dados.

• Estratégias de atenuação:

- Aumentar a complexidade do modelo, acrescentando mais características ou utilizando um algoritmo mais complexo.
- Afinar os hiperparâmetros para alcançar a melhor equilíbrio entre o enviesamento e variância.

Introdução à aprendizagem

Sobreajuste

 O sobreajuste ocorre quando um modelo de aprendizagem automática capta ruído ou padrões irrelevantes dos dados de treino, levando a uma fraca generalização em dados não vistos.

Causas:

- A complexidade do modelo é demasiado elevada em relação à quantidade de dados de treino disponíveis.
- São consideradas demasiadas características ou interacções, o que leva à captação de ruído em vez de sinal.

• Estratégias de atenuação:

- Simplificar o modelo reduzindo a complexidade, por exemplo, diminuindo o número de características ou utilizando técnicas de regularização.
- Aumentar os dados de formação para fornecer ao modelo exemplos mais diversificados.
- Utilizar técnicas como a validação cruzada para avaliar o desempenho do modelo e selecionar o modelo com melhor desempenho.

Recursos

 Kelleher, J. D., Namee, B. M., C D'Arcy, A. (2015). Fundamentos da aprendizagem automática para a análise preditiva de dados. Londres, Inglaterra: MIT Press.

 https://courses.washington.edu/me333afe/Bias_Variance_Tradeo_ ff.pdf