9. Оценки наименьших квадратов. Гауссовская линейная модель

1. Загрузите данные из набора Forest Fires о лесных пожарах в Португалии. Задача состоит в том, чтобы с помощью линейной регрессии научиться предсказывать координату area (площадь пожара) в виде линейной комбинации других данных.

Преобразование данных. Чтобы работать с числовыми координатами, нечисловые координаты (month, day) нужно перевести в числовые. Для простоты можно заменить координату month на индикатор летнего сезона, а координату day не использовать вообще. По желанию можете сделать преобразование другим способом. Так же желательно добавить координату, тождественно равную единице. Она будет отвечать свободному члену в линейной коомбинации.

Разбейте выборку на две части в соотношении 7:3. Перед этим желательно ее перемешать (random.shuffle). По первой части постройте регрессионную модель. Примените модель ко второй части выборки и посчитайте по ней среднеквадратичную ошибку.

Сделайте для агеа преобразование $f(x) = \ln(c+x)$ и постройте для нее регрессионную модель. Посчитайте среднеквадратичную ошибку для преобразованных значений по данному правилу и для исходных, применив в последнем случае к оценкам обратное к f преобразование. При каком c предсказания получаются лучше всего?

При выбраном c сделайте разбиение выборки в соотношении 7:3 разными способами (перемешивая каждый раз). Сильно ли зависит качество от способа разбиения? Сделайте выводы.

- 2. Пусть $X_i = \beta_1 + i\beta_2 + \varepsilon_0 + ... + \varepsilon_i, i = 0, 1, ..., n$ расстояния, которое проехал трамвай за i секунд по показанию датчика. Здесь β_1 начальное расстояние, β_2 скорость трамвая, ε_0 ошибка начального показания датчика. Трамвай едет с постоянной скоростью, и через каждую секунду датчик фиксирует расстояние, которое проехал трамвай. Отсчет времени идет от предыдущего замера, причем отсчет происходит с ошибкой. Для i=1,...,n величина ε_i есть ошибка приращения расстояния, то есть $\varepsilon_i=\varepsilon_i^t\beta_2$, где ε_i^t ошибка отсчета времени. Все ошибки ε_i независимы и распределены по закону $N(0,\sigma^2)$. Сведите задачу к линейной модели и найдите оценки наименьших квадратов для начального расстояния β_1 и скорости β_2 , а также несмещенную оценку для σ^2 , из которой выразите оценку дисперсии отсчета времени. Данные взять из файла на диске. Сделайте выводы.
- 3. Сгенерируйте выборку $X_1,...,X_{100}$ из стандартного нормального распределения. Постройте и визуализируйте точный доверительный интервал уровня доверия $\gamma=0.95$ для
 - (a) a при известном σ^2 ,
 - (b) σ^2 при известном a,
 - (c) a при неизвестном σ^2 ,
 - (d) σ^2 при неизвестном a,
 - (e) доверительную область для (a, σ^2) .

Сделайте выводы.