Brandon Amos

☑ bda@meta.com
 ● bamos.github.io
 ● in bdamos
 ● brandondamos
 ☑ bamos
 ● Last updated on June 23, 2022

Current Position

Research Scientist, Meta AI (FAIR), New York City

2019 - Present

Education

Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00)

2014 - 2019

Thesis: Differentiable Optimization-Based Modeling for Machine Learning

Advisor: J. Zico Kolter

B.S. in Computer Science, *Virginia Tech* (3.99/4.00)

2011 - 2014

Previous Positions

Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization)	2016 - 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision)	2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL)	2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems)	2014 - 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems)	2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization)	2013 - 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems)	2012 - 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers)	2012 - 2014
Software Intern, Snowplow (Scala development)	2013 - 2014
Software Intern , Qualcomm, San Diego (Python and C++ development)	2013
Software Intern , <i>Phoenix Integration</i> , Virginia (C++, C#, and Java development)	2012
Network Administrator Intern, Sunapsys, Virginia	2011

Honors & Awards

ICLR Outstanding Reviewer

2019

NSF Graduate Research Fellowship Nine undergraduate scholarships

2016 - 2019 2011 - 2014

Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John's, Scottish Rite of Freemasonry, VT Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar; 4853+ citations, h-index: 29+]

Representative publications that I am a primary author on are highlighted.

2022

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code] Brandon Amos arXiv 2022

Cross-Domain Imitation Learning via Optimal Transport [code]
 Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos ICLR 2022

- Semi-Discrete Normalizing Flows through Differentiable Tessellation Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel arXiv 2022
- Meta Optimal Transport [code]
 Brandon Amos, Samuel Cohen, Giulia Luise, and Ievgen Redko arXiv 2022
- Nocturne: a driving benchmark for multi-agent learning [code]
 Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, and Jakob Foerster arXiv 2022

2021

- 6. On the model-based stochastic value gradient for continuous reinforcement learning [code] [slides]

 Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson

 L4DC 2021 (Oral)
- 7. Riemannian Convex Potential Maps [code] [slides]
 Samuel Cohen*, Brandon Amos*, and Yaron Lipman
 ICML 2021
- 8. CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints [code] Anselm Paulus, Michal Rolínek, Vít Musil, **Brandon Amos**, and Georg Martius ICML 2021
- Scalable Online Planning via Reinforcement Learning Fine-Tuning
 Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart Russell, and Noam Brown NeurlPS 2021
- Aligning Time Series on Incomparable Spaces [code] [slides]
 Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, and Marc Peter Deisenroth AISTATS 2021
- Learning Neural Event Functions for Ordinary Differential Equations [code] Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel ICLR 2021
- Neural Spatio-Temporal Point Processes [code]
 Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel ICLR 2021
- 13. Improving Sample Efficiency in Model-Free Reinforcement Learning from Images [code]
 Denis Yarats, Amy Zhang, Ilya Kostrikov, **Brandon Amos**, Joelle Pineau, and Rob Fergus
 AAAI 2021
- 14. Neural Fixed-Point Acceleration for Convex Optimization [code] Shobha Venkataraman* and Brandon Amos* ICML AutoML Workshop 2021
- 15. Sliced Multi-Marginal Optimal Transport Samuel Cohen, Alexander Terenin, Yannik Pitcan, Brandon Amos, Marc Peter Deisenroth, and K S Sesh Kumar NeurIPS OTML Workshop 2021

Input Convex Gradient Networks
 Jack Richter-Powell, Jonathan Lorraine, and Brandon Amos
 NeurlPS OTML Workshop 2021

Imitation Learning from Pixel Observations for Continuous Control
 Samuel Cohen, Brandon Amos, Marc Peter Deisenroth, Mikael Henaff, Eugene Vinitsky, and Denis Yarats

NeurIPS DeepRL Workshop 2021

18. MBRL-Lib: A Modular Library for Model-based Reinforcement Learning [code] Luis Pineda, **Brandon Amos**, Amy Zhang, Nathan Lambert, and Roberto Calandra arXiv 2021

2020.....

19. The Differentiable Cross-Entropy Method [code] [slides]
Brandon Amos and Denis Yarats
ICML 2020

Objective Mismatch in Model-based Reinforcement Learning
 Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra L4DC 2020

QNSTOP: Quasi-Newton Algorithm for Stochastic Optimization [code]
 Brandon Amos, David Easterling, Layne T. Watson, William Thacker, Brent Castle, and Michael Trosset
 ACM TOMS 2020

22. Neural Potts Model

Tom Sercu, Robert Verkuil, Joshua Meier, **Brandon Amos**, Zeming Lin, Caroline Chen, Jason Liu, Yann LeCun, and Alexander Rives MLCB 2020

23. Deep Riemannian Manifold Learning
Aaron Lou, Maximilian Nickel, and Brandon Amos
NeurlPS Geo4dl Workshop 2020

2019

24. Differentiable Optimization-Based Modeling for Machine Learning [code]
Brandon Amos

Ph.D. Thesis 2019

25. Differentiable Convex Optimization Layers [code]
Akshay Agrawal*, Brandon Amos*, Shane Barratt*, Stephen Boyd*, Steven Diamond*, and
J. Zico Kolter*
NeurlPS 2019

The Limited Multi-Label Projection Layer [code]
 Brandon Amos, Vladlen Koltun, and J. Zico Kolter arXiv 2019

27. Generalized Inner Loop Meta-Learning [code] Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala arXiv 2019

2018.....

28. Learning Awareness Models

Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Sergio Gómez Colmenarejo, Alistair Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, and Misha Denil ICLR 2018

- 29. Differentiable MPC for End-to-end Planning and Control [code] Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J. Zico Kolter NeurlPS 2018
- 30. Depth-Limited Solving for Imperfect-Information Games
 Noam Brown, Tuomas Sandholm, and **Brandon Amos**NeurlPS 2018
- Enabling Live Video Analytics with a Scalable and Privacy-Aware Framework
 Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh, and
 Mahadev Satyanarayanan
 ACM TOMM 2018

2017.....

- 32. OptNet: Differentiable Optimization as a Layer in Neural Networks [code] [slides]
 Brandon Amos and J. Zico Kolter
 ICML 2017
- 33. Input Convex Neural Networks [code] [slides]
 Brandon Amos, Lei Xu, and J. Zico Kolter
 ICML 2017
- Task-based End-to-end Model Learning [code]
 Priya L. Donti, Brandon Amos, and J. Zico Kolter
 NeurlPS 2017
- 35. Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle Minghan Chen, Brandon Amos, Layne T. Watson, John Tyson, Yang Cao, Cliff Shaffer, Michael Trosset, Cihan Oguz, and Gisella Kakoti

IEEE/ACM TCBB 2017

- 36. You can teach elephants to dance: agile VM handoff for edge computing
 Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen, Wenlu Hu, **Brandon Amos**,
 Rohit Upadhyaya, Padmanabhan Pillai, and Mahadev Satyanarayanan
 SEC 2017
- 37. An Empirical Study of Latency in an Emerging Class of Edge Computing Applications for Wearable Cognitive Assistance

Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, **Brandon Amos**, Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, Daniel Siewiorek, and Mahadev Satyanarayanan

SEC 2017

A Scalable and Privacy-Aware IoT Service for Live Video Analytics [code]
 Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh, and Mahadev Satyanarayanan
 ACM MMSys 2017 (Best Paper)

2016

- 39. OpenFace: A general-purpose face recognition library with mobile applications [code] Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan CMU 2016
- 40. Collapsed Variational Inference for Sum-Product Networks
 Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos
 ICML 2016
- 41. Quantifying the impact of edge computing on mobile applications
 Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, **Brandon Amos**, Zhuo Chen, Padmanabhan Pillai,
 and Mahadev Satyanarayanan
 ACM SIGOPS 2016
- 42. Privacy mediators: helping IoT cross the chasm
 Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, and Brandon Amos
 HotMobile 2016

2015 and earlier

- 43. Edge Analytics in the Internet of Things
 Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha,
 Wenlu Hu, and **Brandon Amos**IEEE Pervasive Computing 2015
- 44. Bad Parts: Are Our Manufacturing Systems at Risk of Silent Cyberattacks?

 Hamilton Turner, Jules White, Jaime A. Camelio, Christopher Williams, Brandon Amos, and Robert Parker

 IEEE Security & Privacy 2015
- 45. Early Implementation Experience with Wearable Cognitive Assistance Applications
 Zhuo Chen, Lu Jiang, Wenlu Hu, Kiryong Ha, **Brandon Amos**, Padmanabhan Pillai,
 Alex Hauptmann, and Mahadev Satyanarayanan
 WearSys 2015
- 46. The Case for Offload Shaping

Wenlu Hu, **Brandon Amos**, Zhuo Chen, Kiryong Ha, Wolfgang Richter, Padmanabhan Pillai, Benjamin Gilbert, Jan Harkes, and Mahadev Satyanarayanan HotMobile 2015

47. Are Cloudlets Necessary?

Ying Gao, Wenlu Hu, Kiryong Ha, **Brandon Amos**, Padmanabhan Pillai, and Mahadev Satyanarayanan CMU 2015

- 48. Adaptive VM handoff across cloudlets
 - Kiryong Ha, Yoshihisa Abe, Zhuo Chen, Wenlu Hu, **Brandon Amos**, Padmanabhan Pillai, and Mahadev Satyanarayanan CMU 2015
- 49. Global Parameter Estimation for a Eukaryotic Cell Cycle Model in Systems Biology
 Tricity Andrew, **Brandon Amos**, David Easterling, Cihan Oguz, William Baumann, John Tyson, and
 Layne T. Watson
 SummerSim 2014

50. Applying machine learning classifiers to dynamic Android malware detection at scale [code] Brandon Amos, Hamilton Turner, and Jules White IWCMC 2013

Open Source Repositories

1. facebookresearch/amortized-optimization-tutorial ★119 Tutorial on amortized optimization	2022
2. facebookresearch/theseus ★262 Differentiable non-linear optimization library	2022
3. facebookresearch/meta-ot ★56 Meta Optimal Transport	2022
4. facebookresearch/rcpm ★56 Riemannian Convex Potential Maps	2021
5. facebookresearch/svg ★39 Model-based stochastic value gradient	2021
6. facebookresearch/mbrl-lib ★635 Model-based reinforcement learning library	2021
7. facebookresearch/dcem ★105 The Differentiable Cross-Entropy Method	2020
8. facebookresearch/higher ★1.4k PyTorch higher-order gradient and optimization library	2019
9. bamos/thesis ★271 Ph.D. Thesis LaTeX source code	2019
10. cvxgrp/cvxpylayers ★1.3k Differentiable Convex Optimization Layers	2019
11. locuslab/lml ★50 The Limited Multi-Label Projection Layer	2019
12. locuslab/mpc.pytorch ★568 Differentiable Model-Predictive Control	2018
13. locuslab/icnn ★238 Input Convex Neural Networks	2017
14. locuslab/optnet ★390 OptNet experiments	2017
15. locuslab/qpth ★528 Differentiable PyTorch QP solver	2017
16. bamos/densenet.pytorch ★753 PyTorch DenseNet implementation	2017
17. bamos/block ★268 Intelligent block matrix constructions	2017
18. bamos/setGPU ★101 Automatically use the least-loaded GPU	2017
19. bamos/dcgan-completion.tensorflow ★1.3k Image completion with GANs	2016
20. cmusatyalab/openface ★14.4k Face recognition with deep neural networks	2015
21. vtopt/qnstop ★10 Fortran package for Quasi-newton stochastic optimization	2014
22. bamos/snowglobe ★27 Haskell-driven, self-hosted web analytics with minimal configuration	2014
23. bamos/zsh-history-analysis ★184 Analyze and plot your zsh history	2014
24. bamos/beamer-snippets ★106 Beamer and TikZ snippets	2014
25. bamos/latex-templates ★356 LaTeX templates	2013
26. cparse/cparse \star 249 C++ expression parser using Dijkstra's shunting-yard algorithm	2013
27. bamos/cv ★362 Source for this CV: Creates LaTeX/Markdown from YAML/BibTeX	2013
28. bamos/python-scripts ★196 Short and fun Python scripts	2013
29. bamos/reading-list ★185 YAML reading list and notes system	2013
30. bamos/dotfiles ★239 ♥ Linux, xmonad, emacs, vim, zsh, tmux	2012

Invited Talks

Slides for my major presentations are open-sourced at bamos/presentations.

_		
1.	End-to-end model learning for control, ICML Workshop on Decision Awareness in RL	2022
2.	Differentiable optimization-based modeling for machine learning, CPAIOR Master Class	2022
3.	Amortized optimization and learning to optimize, ICCOPT	2022
4.	Modeling and learning paradigms for learning to optimize, SIAM MDS Minisymposium	2022
5.	Learning for control with differentiable optimization and ODEs, Columbia University	2021
6.	Differentiable optimization-based modeling for machine learning, IBM Research	2021
7.	Differentiable optimization for control, Max Planck Institute (Tübingen)	2020
8.	Differentiable optimization-based modeling for machine learning, Mila Seminar	2020
9.	Deep Declarative Networks, ECCV Tutorial	2020
LO.	On differentiable optimization for control and vision, CVPR Deep Declarative Networks Workshop	2020
l1.	Differentiable optimization-based modeling for machine learning, Caltech CS 159 (Guest Lecture)	2020

12. Unrolled optimization for learning deep energy models, SIAM MDS Minisymposium 13. Differentiable optimization-based modeling for machine learning, NYU CILVR Seminar 14. Differentiable optimization-based modeling for machine learning, INFORMS 15. Differentiable optimization-based modeling for machine learning, Facebook AI Research 16. Differentiable optimization-based modeling for machine learning, ISMP 17. Differentiable optimization-based modeling for machine learning, Google Brain 18. Differentiable optimization-based modeling for machine learning, Bosch Center for AI 19. Differentiable optimization-based modeling for machine learning, Waymo Research 20. Differentiable optimization-based modeling for machine learning, NVIDIA Robotics 21. Differentiable optimization-based modeling for machine learning, Salesforce Research 23. Differentiable optimization-based modeling for machine learning, OpenAI 24. Differentiable optimization-based modeling for machine learning, NNAISENSE 25. Differentiable optimization and control, UC Berkeley	2020 2019 2019 2019 2018 2018 2018 2018 2018 2018 2018 2018
Interns and Students	
Aaron Lou (visiting FAIR from Cornell and Stanford) Eugene Vinitsky (visiting FAIR from Berkeley) Arnaud Fickinger (visiting FAIR from Berkeley) Samuel Cohen (visiting FAIR from UCL) Ricky Chen (visiting FAIR from Toronto, now: scientist at FAIR) Paul Liang (visiting FAIR from CMU) Phillip Wang (at CMU, now: CEO at Gather)	2020 - 2022 2021 - 2022 2021 - 2022 2021 - 2022 2020 2020 2018
Professional Activities	
NeurIPS Learning Meets Combinatorial Optimization Workshop Organizer CVPR Deep Declarative Networks Workshop Organizer ECCV Deep Declarative Networks Tutorial Organizer CMU CSD MS Admissions	2020 2020 2020 2014 – 2015
Reviewing. Neural Information Processing Systems (NeurIPS) International Conference on Machine Learning (ICML) International Conference on Learning Representations (ICLR) IEEE Conference on Computer Vision and Pattern Recognition (CVPR) IEEE International Conference on Computer Vision (ICCV) IEEE International Conference on Robotics and Automation (ICRA) AAAI Conference on Artificial Intelligence Optimization Letters	
Teaching	

Graduate AI (CMU 15-780), TA	S2017
Distributed Systems (CMU 15-440/640), TA	S2016
Software Design and Data Structures (VT CS2114), TA	S2013

Skills

Programming C, C++, Fortran, Haskell, Java, Lua, Make, Mathematica, Python, R, Scala

Frameworks JAX, NumPy, Pandas, PyTorch, SciPy, TensorFlow, Torch7 Toolbox Linux, emacs, vim, evil, org, mu4e, xmonad, git, tmux, zsh