

在 唐

CHONGQING

第十九章光的偏振
(自然光色含含有向光笑量 , 表示为两个垂直独定振幅, 挑衅的光振的
线偏振光和各户分偏振光
偏据片了二向色性 吸以纤维方向,似允许垂直方向
偏据作了二向色性 吸以纤维含为向,仅允许垂直为向 偏振化分向
马琨抢律反映偏振化的自出射光强的关系: I=Io cos2x
正交偏抗后片好岳为第三片?
众射→垂直→月射面的振动点低
与以布佛建分特有刀射,反邻于
双批射晶体分光为两车偏振光,为学常口兴有效,双村非常已光天线
关轴:此为向兴不发生又对h身中
尼科耳棱镜由双折射材料为解石制成,用起扁松偏
ho = 1.658 he = 1.486

有人

CHONGQING

- ONIVERSITY
第十八章 光的衍射
5 惠更斯:每一个波阵面都成为新的子波沿
菲涅尔:约射图强的布来自于波相干叠加,
单缝衍射 S 未破积的分射 $a sin \theta = k $ 暗纹 $sin \theta_k = \frac{k \lambda}{a}$
经验 的特 的外外
半波带法:将缝粉, 烙杆半波带, 分析单缝钉射中强度分布
中央明纹较多, 纷射角度增太见小纹笼溅水
国引行射
中心明亮敌王,一级暗环的射角日,21-22分期
最小分享作角 Gmin=1-22 0
光 和 约封
(a+b) sin = k A の発生 b 不発光
次明纹, 暗纹, 铁级

THONGQING

大

- UNIVERSITY
第十六章 畅致振荡和电磁波
里面经没任播连度 (= 1/20 tho
黄铅锋 黄红维导军
中强波为横波,电场和历经场的经量垂直于传播分局
400nm ~ 760nm
$W = \frac{1}{\sqrt{LC}} + \frac{1}{2\sqrt{L}}$
第十七章 光的形势
冷光: 化学能 电的 光能激发 (磷头: 经新历发
· 数光: 热能
光程=折射 × 几何强
光轻差 波轻着 相绝
女子等的对为女子会 游击 屏缝器
△7= Txx经程
谷子浅星经路
光强由不同长波的干涉贡献
$I = I_1 + I_2 + 2I_1I_2 \cos(\phi_2 - \phi_1)$
$\int \phi_z - \phi_i = 2k\pi + i $ 书特相长
φ ₂ - φ ₁ = (2K+1) / 干 汚 相消

CHONGQING UNIVERSITY
第十四章 挂动
运动分程 $\gamma(t) = A(os(wt + \phi_o))$
振幅 新华 初组股
· 速度 V(t)=-Awsin(wt+中の) W=デ
力难度 $a(t) = -Aw^2(os(wt+p_0))$
冷转矣量法
ま伝信40をか相: Xo=Alos(ゆo) Vo=-Awsin(do)
(ZHÁB EKIN = Z MW2 (A2-X2)
- \$66 Epot = 1 Kx2
第十五章 机械波
机械波要量是这些原金可到性介质
<u> </u>
" 波前, 次射线 (纵波) 代表能量传播的
没动为维护,往形式
$y(x,t) = A \cos(\omega t - kx + \phi)$
备精
了 <i>切受</i> 求美量
体变档量

CHONGQING

	第七章					
	绝热线 adiabat 和 等温线 is otherm					
	绝越线的斜车大手等温线的斜车					
→ (絕熱线做等温线度)						
\wedge	$A = \mu R T \left(n \frac{V_2}{V_1} \right) + \frac{A}{a} = \frac{a_1 - a_2}{a_1}$					
P	A V1 等温胀 V2 B 72 (nV3 (nV3 72					
P 经的 经方法制没机 的= 1-72 (A以 致冷药 了)						
	QI = MRTI (nVI					
	$(-)D Q_2 = MR7_2 \ln \frac{V_3}{V_4}$					
	$\beta \rightarrow C V_2^{Y+}\overline{I}_1 = V_3^{Y-1}\overline{I}_2$					
	$\begin{cases} D \rightarrow A V_1^{Y-1} \overline{I}_1 = V_4^{Y-1} \overline{I}_2 \end{cases}$					
	· · · · · · · · · · · · · · · · · · ·					
-						

ELVC UNIA	CHONGQING	UNIVERSITY	
大学的理学记·Grap	h		
第六章 气体动程给			
	铁分子磁壁平均作	AA A	
~ 温度: 纳体	对到分子 无规则运动,	剧烈程度平均和抗销	
平均平动动			
盖·科勒动角的	$\frac{1}{2k} = \frac{i}{2}kT$		
内部组成:	分球等 十分对新能		
	与理想气体内局	E = m/ 2 RT = 2 MRT	
连至分布函数	f(v) = dN (\$U附近分数(tt)	
$\mathcal{N} \int_{V_1}^{V_2} f(V)$	dv 间隔内分数	Svi Uf(U)du i引篇 Svif(U)dV分键	7年场值
历年接给年	Z= sz Tid²vn		
平均的程(本	的两次碰撞问下分	河科路经) 了一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	-
理想气体压强 P=fnmi		1. T	
平均平动场维克一点加口	$\sqrt{2} = \frac{3}{2} k \overline{1}$	理想了= 171112	
指导均分到的植物的	- k T		
麦科特 连约布色数	$f(v) = 4\pi / \frac{m}{2\pi l_1 r_1}$	1 2 - MV ² 2KT 2 ΦΗΜ. Vp	= ZRT Mmol
P=Po-e KT	M.气体分子屋 Z z	黄度大旗	12/27 Mmul
117 # 5 to the 11 0 (-mg z / k T)	为均根√V2	- SRT Mmol
10. 6 xxxxx -110.		CQ03. 32. 24	09

全 唐

CHONGQING

大学物理等记 6,7,14,15,16,17,18
第六章 气体动理论
玻点耳定律,查理定律,盖品移克定律: PV=NRT
(温度: 分子平均平文为文材能
为所: 理想气体主要基色平式方指6
遗传体经压强 金子 分报
$V = \frac{PV}{kT} \rightarrow ig$ 尔兹曼蒙兹
KT → E及尔兹曼棠教 ←
第七章 热力学基石出
准静态进程将有个瞬间近似为平便流
$\frac{dQ = dE + dA}{\not = \not =$
热、烙能工力
绝热过程为程 py 为学数 Y = Cp 比热客
PV 19 TEN TO CV 16 Kings
摩尔热智(物质的量) 比热智 (单位质量)