MAR – összefoglaló témakörök

1. Egy ágens **felépítése**

- a. Test (body), anyaga (könnyű, robosztus, funkcionális környezetfüggő)
- b. Járószerkezet (kerekes: 3-4-6 kerék, omni-direkcionális, több kerék konfigurációk; lánctalpas; lábak: 1,2,3,4, több láb; hajtócsavar (légcsavar), sugárhajtás légi, vízi robotok; egyéb, ritkább járószerkezetek: lengő robotok)
- c. Esetleges manipulátorok.
- d. **Vezérlőrendszer** (on board; off board; vegyes vezérlés; disztributív, centralizált; egy processzoros, multi-processzoros)
- e. **Elektronika** (tápfeszültségek, feszültségszintek előállítása és figyelése, akkumulátorok töltése)
- f. Kommunikáció (vezetékes (ide tartozó kommunikációs szabványokkal), vezeték nélküli (ide tartozó kommunikációs szabványokkal), rövid távú: BlueTooth; középtávú: WiFi, hosszú távú: RF;)
- g. **Szenzorika**, mobil ágensek szenzorfelszereltsége és távolságmérő eljárások (TOF, fázis eltolás) ismerete.
 - i. belső szenzorok beépített mérőfejek: gyorsulásmérő, giroszkóp, kompaszok (a föld mágneses terét mérő berendezések), billenésmérők, érintéses (tactile)szenzorok, összefoglalva: IMU-k
 - ii. Külső szenzorok fény (strukturált) alapú távolságmérő berendezések: LiDar, Laser; hang alapú távolságmérő berendezések:
 US; látórendszerek: sztereo kamera (szinkronizált, nem szinkronizált), hibrid (lézer+kamera) rendszerek (szinkronizált, nem szinkronizált).
- 2. Egy ágens és környezetének modellezése
 - a. Kinematikai (direkt/inverz) modellek:
 - i. differenciál hajtású, 3 kerekű, ackermann típusú konfigurációkra
 - ii. Lábakon (egy láb modellezése, súlypontfeltételek) járó mobilrobotokra
 - b. **Munkaterület modellezése** (konfigurált akadályok, lokalizációs hibák figyelembevétele, markerek elhelyezése-fajtái, marker-láthatóságok, **pontszerű ágens** ábrázolása (R))
 - c. **Térképkészítés** (SLAM) és térképek fajtái:
 - i. Szenzortérkép ebből képfeldolgozással ->
 - ii. Geometriai (metrikus) térkép -> ezt lehet konfigurálni illetve erre lehet elkészíteni a munkaterület hiba térképét; továbbá: szabad és foglalt területekre felosztani, majd ebből a szabad területek középpontjainak összekötésével ->
 - iii. Topológiai (gráf) térkép
 - d. Lokalizálás pozícionálás alapjai:
 - i. Tri-lateráció, tri-anguláció alapjai
 - ii. GPS lokalizálás alapjai
 - iii. Modell alapú (kamerás rendszerek) lokalizálás alapjai
 - e. **Munkaterületek felosztása,** környezet értelmezése az ágens számára:
 - i. **négyzethálós** felosztás
 - ii. négyes-fa (quadtree) felosztás
 - iii. BSP bináris szegmentáció
 - iv. Egzakt, pontos felsoztás

- 3. **Pályatervező eljárások,** lokális és globális (on-line, off-line) pályatervezések, elvárások, előfeltételek, definíciók, jelölések
 - a. Gráf alapján történő pályatervező eljárások:
 - Általános gráf készítés, élek, csomópontok súlyozása, KF számolás, optimális pályakiválasztás opt=min(KF)
 - ii. Láthatósági (visibility graph) gráf alapú pályatervezés
 - iii. Tangenciális (tangent graph) gráf alapú pályatervezés
 - iv. Voronoi diagramm
 - v. MAKLINK
 - Potenciálmező alapú útvonaltervezések. Alapvető matematikai összefüggések a potenciálmező építésére (repulzív (taszító) erők), dinamikus (multi-ágensű) környezetekben használatosak.
 - i. VFF virtuális erőtér módszer
 - ii. VFH vektortér hisztogram módszer
 - c. **Vonal alapú** pályatervező eljárások (sztatikus környezetekben alkalmazott)
 - i. BUG, BUG1, BUG2 algoritmusok
 - ii. Reeds-Shepp algoritmusok (geometriai primitívákon alapuló aljárások)
 - d. Globális pályatervező eljárások (off-line: learning fázis; on-line: query, realtime fázis) egyébként ebbe az eljárásba sorolhatók: reeds-shepp; hullámterjedéses módszerek, és a véletlenszerű (P-PPL) eljárások is.
 - i. hullámterjedéses módszerek:
 - 1. négyzethálós 1 hullám a START pozícióból
 - 2. négyzetrácsos 2 hullám egymással szemben
 - ii. véletlenszerű (P-PPL) pályatervező algoritmusok
 - e. Lágy görbéken alapuló pályatervező eljárások
 - i. Lagrange interpolációs görbéken alapuló eljárás
 - ii. Béziere approximációs görbén alapuló eljárás
 - iii. **B-Spline approximációs** görbén alapuló eljárások (C^1 , C^2 , C^3 folytonosságok)
- 4. MAR, bevezetés: előnyök, hátrányok, tulajdonságok összefoglalása
 - a. **Ágensek** definíciója
 - i. gyenge/erős ágensek
 - ii. autonóm, adaptív ágensek
 - iii. kooperatív, kollaboratív ágensek
 - iv. szingle- vs multi-ágensű rendszerek
 - b. Kooperatív rendszerek fejlesztési irányvonalai:
 - i. osztott rendszerek (DS Distributive Systems)
 - ii. osztott MI (DAI distributive AI)
 - iii. Biológiai rendszereken alapuló rendszerek (aant colony, SWARM technology)
 - c. Egyes alapvető rendszerek jellemzése
 - i. homogén, nem-kommunikáló rendszer
 - ii. heterogén, nem-kommunikáló rendszer
 - iii. heterogén, kommunikáló rendszer
- 5. MAR, tanulási algoritmusok, folyamatainak jellemzése, előnyeik, hátrányaik.
 - a. Megerősített tanulás, MA megerősített tanulás
 - b. Q-táblázatok, Q-funkciók
 - c. Viselkedés alapú rendszerek
 - d. Gráf alapú viselkedések, útvonalkeresések

- i. Dijsktra algoritmus
- ii. A*, A** algoritmusok
- e. Evolúciós algoritmusok, ide tartoznak a genetikus algoritmusok .
- f. Neurális háló alapú viselkedési algoritmusok
- g. **Biológiai alapokon** kifejlesztett algoritmusok
 - i. Hangyaboj (ant colony) algoritmusok
 - ii. Raj (swarm) elméletek
- h. **Egyéb önszerveződő** rendszerek