ASSIGNMENT – 2

MACHINE LEARNING

MACHINE ELAKINING
Q1 to Q11 have only one correct answer. Choose the correct option to answer your question. 1. Movie Recommendation systems are an example of: i) Classification ii) Clustering iii) Regression Options: a) 2 Only b) 1 and 2 c) 1 and 3 d) 2 and 3 Ans:- a) 2 Only
 2. Sentiment Analysis is an example of: i) Regression ii) Classification iii) Clustering iv) Reinforcement Options: a) 1 Only b) 1 and 2 c) 1 and 3 d) 1, 2 and 4 Ans:- d) 1, 2 and 4
3. Can decision trees be used for performing clustering?a) Trueb) FalseAns:- a) True
 4. Which of the following is the most appropriate strategy for data cleaning before performing clustering analysis given less than desirable number of data points i) Capping and flooring of variables ii) Removal of outliers Options: a) 1 only b) 2 only c) 1 and 2 d) None of the above Ans:- a) 1 only
5. What is the minimum no. of variables/ features required to perform clustering? a) 0 b) 1 c) 2 d) 3 Ans:- b) 1
6. For two runs of K-Mean clustering is it expected to get same clustering results?a) Yesb) NoAns:- b) No
7. Is it possible that Assignment of observations to clusters does not change between successive iterations in K-Means? a) Yes b) No c) Can't say d) None of these Ans:- a) Yes

- 8. Which of the following can act as possible termination conditions in K-Means?
 - i) For a fixed number of iterations.
- ii) Assignment of observations to clusters does not change between iterations. Except for cases witha bad local minimum.
 - iii) Centroids do not change between successive iterations.
 - iv) Terminate when RSS falls below a threshold. Options
 - a) 1, 3 and 4 b) 1, 2 and 3 c) 1, 2 and 4 d) All of the above

Ans:- d) All of the above

- 9. Which of the following algorithms is most sensitive to outliers?
 - a) K-means clustering algorithm
 - b) K-medians clustering algorithm
 - c) K-modes clustering algorithm
 - d) K-medoids clustering algorithm

Ans:- a) K-means clustering algorithm

- 10. How can Clustering (Unsupervised Learning) be used to improve the accuracy of Linear Regression model (Supervised Learning)
 - i) Creating different models for different cluster groups.
 - ii) Creating an input feature for cluster ids as an ordinal variable.
 - iii) Creating an input feature for cluster centroids as a continuous variable.
 - iv) Creating an input feature for cluster size as a continuous variable. Options:
 - a) 1 only b) 2 only c) 3 and 4 d) All of the above

Ans:- d) All of the above

- 11. What could be the possible reason(s) for producing two different dendrograms using agglomerative clustering algorithms for the same dataset?
 - a) Proximity function used
 - b) of data points used
 - c) of variables used
 - d) All of the above

Ans:- d) All of the above

Q12 to Q14 are subjective answers type questions, Answers them in their own words briefly

12. Is K sensitive to outliers?

Ans:- yes K-Means clustering algorithm is most sensitive to outliers as it uses the mean of cluster data points to find the cluster center. In detecting abnormal cases. In the k-means based outlier detection technique, the data are partitioned into k groups by assigning them to the closest cluster centers. Once assigned we can compute the distance or dissimilarity between each object.

13. Why is K means better?

Ans:- k-means is one of the simplest algorithm which uses unsupervised learning method to solve known clustering issues. It works really well with large datasets.

K-means clustering is a very famous and powerful unsupervised machine learning algorithm. It is used to solve many complex unsupervised machine learning problems.

14. Is K means a deterministic algorithm?

Ans:- No, K means a non – deterministic algorithm.

The **non-deterministic** nature of K-Means is due to its random selection of data points.