भारतीय सूचना प्रौद्योगिकी संस्थान कोटा INDIAN INSTITUTE OF INFORMATION TECHNOLOGY KOTA

B.Tech. (ECE), Semester – IV Mid Term Examination, Even Semester 2023-24

Measurement and Instrumentation Technology (ECT204)

Marks: 30 (Weightage - 30%) Time: 90 minutes Date: March 19, 2024

Note: Attempt all questions in sequence.

Q1. Answer in brief.

 $[2\times7=14 \text{ Marks}]$

- a. Define measurement. Write the importance of measurement as per Lord Kelvin.
- b. What is instrumentation? With reason, mention at least four industries that are world famous.
- c. Mention the application of following instruments: Accelerometer, Chronometer, Gyroscope, Hygrometer, Manometer, Pyranometer, Tachometer, Venturi meter.
- d. Using four important and distinct points, differentiate between theoretical and experimental methods of engineering analysis.
- e. Draw the functional block diagram of generalized measurement system.
- f. Briefly explain four different methods of correction of interfering and modifying inputs.
- g. Explain following terms: threshold, repeatability, reproducibility, instrument drift.
- Q2. For a certain type of computers, the length of time between charging of battery is normally distributed with a mean of 50 hrs and a standard deviation of 15 hrs.
 - (a) What is the probability of charging battery after 30 hrs?
 - (b) What is the probability of charging battery after 90 hrs?

Consult probability table given on Page 2 of 2.

[2+2=4 Marks]

- Q3. A temperature measurement system consist of linear elements and has an overall steady-state sensitivity of unity, the dynamics of the system are determined by the first-order transfer function of the sensing element. At time t = 0 sec, the sensing element is suddenly transferred from air at 30°C to boiling water. One minute later, the element is suddenly transferred back to air. Calculate the sensor temperature at t = 20 sec and t = 100 sec (assume time constant of sensor in water = 20 sec and in air = 20 sec). [6 Marks]
- Q4. A first-order system (static sensitivity = 1 and time-constant = 200 ms) is excited by signal shown in Figure 1. Calculate the output of the system at following time instants t (in seconds) = 0.5, 1, 1.5. [6 Marks]

Figure 1

1

Probability Table: Values of Area under Gaussian Distribution Curve

		Second Decimal Place in Z									
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
0.0	0.0000	0.0040	0.0000	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359	
0.1	0.0396	0.0438	0.0478	2.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753	
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141	
0.5	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517	
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879	
									~~		
0.5	0.1915	0.1950	0.1985	2019	0.2054	0.2088	0.2123	0 2157	0.2190	0.2224	
0.6	0.2257	0.2291	0.2324	2357	0.2389	0 2422	0.2454	0.2486	0.2517	0.2549	
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0 2794	0.2823	0.2852	
0.6	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133	
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0 3289	0.3315	0 3340	0.3365	0.3389	
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3593	0.3621	
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0 3770	0.3790	0 3810	0.3830	
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3960	0.3997	0.4015	
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	04115	0.4131	0.4147	0.4162	0.4177	
1.4	0.4192	0.4207	0.4222	0.4236	0 4251	0.4265	0.4279	0 4292	0,4306	0.4319	
•••	* MAN 100 T TO										
	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0 4418	0.4429	0.4441	
1.5			0.4474	0.4484	0.4495	0 4505	0.4515	0.4525	0.4535	0.4545	
1.5	0.4452		0.4573	0.4582	0.4591	0 4599	0.4608	0 4616	0.4825	0.4633	
1.7	0.4554	20	0.4656	0.4664	0.4671	0.4678	0.4696	0.4693	0.4699	0.4706	
1.8	0.4641	80 30	0.4726	0.4732	0.4738	0.4744	0 4750	0 4756	0.4761	0.4767	
1.9	[0.4713	y.4713	0.4720	W102	•						
-	1		0.4202	0.4788	0.4793	0.4798	0 4803	0 4806	0 4812	0 4817	
20	0.4772		0.4783	0.4834	0.4838	0 4842	0 4846	0 4850	0 4854	0 4857	
21	0.4821			0.4871	0.4875	0.4878	0.4881	0 4884	0.4887	0.4890	
2.2	0.4861		0.4868	0.4901	0.4904	0.4906	0 4909	0.4911	0.4913	0.4916	
23	0.4893		0.4898	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936	
24	0.4918	0.4920	0.4922	U.4823	0.4827	V. 7525		•			
	1				100 0 000			0.4040	0.4951	0.4952	
2.5	0.4934	0.4940		0.4943	0.4945	0.4946	0.4948	0.4949	0 4963	0.4964	
2.6	0.495	3 0 4955	0.4956	0.4957	0.4959	0 4960	0 4961	0.4972	0.4973	0.4974	
2.7	0.496			0.4968	0.4969	0.4970	0 4979	0.4979	0.4980	0 4981	
2.6	0.497	4 0 4975		0.4977	0.4977	0 4978 0 4984	0.4985	0.4985	0.4986	0 4966	
2.9	0.498	1 0.4962	0.4982	0.4983	0.4984	0 4804	0.4903	0.4500			
								0 4989	0.4990	0.4990	
3.0	0.498	7 0.498	7 0.4987	0 4988					11 2 2 2	0.00 FEBRUARY	
3.1			1 0.4991	0.4991				5 5	212	5 24-15 1-132-11-24	
3.2	1. (E)		3 0.4994	0.4994							
3.3	200	751 05414	5 0.4995			5	100 (000)		0.000		
3.4		10 53674	7 0.4997	0.4997	0.499	7 0.499	7 0 499	7 04997	U331	0 -000	
3.0	1 0.44										
	Ĭ		<u> </u>		0.4998	3 0.4996	0 4996	0 4998	0.4998	0.4998	
3.	5 0.49	98 0499	200 200020-0-0-				50 B		740 000000	0.4999	
3.	6 0.49		122 102322	222	n (3)	5 (2000)			0.4999	0 4999	
3.				50000				0 4999	0.4999	0.4999	
3.			9 0.4999	, 0.433	,						
	9 0.50	00*									

*** Be Good, Do Good ***