

4-1-2.직각삼각형의 합동_비상(김원경)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일: 2020-07-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[직각삼각형의 합동 조건]

(1) RHA 합동: 두 직각삼각형의 빗변의 길이와 한 예각의 크기가 같으면 두 직각삼각형은 합동이다.

 \Rightarrow $\angle C = \angle F = 90^{\circ}$, $\overline{AB} = \overline{DE}$, $\angle B = \angle E$ 이면 $\triangle ABC = \triangle DEF$

2) RHS 합동: 두 직각삼각형의 빗변의 길이와 다른 한 변의 길이가 같으면 두 직각삼각형은 합동이다.

 \Rightarrow \angle C = \angle F = 90°, AB= DE, AC= DF이면 \triangle ABC \equiv \triangle DEF

[각의 이등분선의 성질]

(1) 각의 이등분선 위의 한 점에서 그 각의 두 변에 이르는 거리는 같다.

 \Rightarrow ∠AOP = ∠BOPOIP $\overline{PQ} = \overline{PR}$

(2) 각의 두 변에서 같은 거리에 있는 점은 그 각의 이등분선 위에 있다.

 \Rightarrow $\overline{PQ} = \overline{PR}$ 이면 $\angle AOP = \angle BOP$

기본문제

[문제]

다음 <보기>의 직각삼각형 중에서 서로 합동인 것을 모두 고르면?

- ① ¬, ∟
- ② ∟, ≥
- ③ ∟, □
- ④ □. ⊇
- ⑤ ≥. □

[문제]

2. 다음 그림과 같이 $\angle XOY$ 의 이등분선 위의 점 P에서 \overrightarrow{OX} 와 \overrightarrow{OY} 에 내린 수선의 발을 각각 A, B라 고 할 때, 다음 빈 칸에 들어갈 것으로 옳지 않은 것은?

△OAP와 △OBP에서

 $\angle OAP = \boxed{(7)} = 90^{\circ} \cdots \bigcirc$

∠AOP= (나) …[_]

(다) 는 공통

 \bigcirc , \bigcirc , \bigcirc 에 의하여 $\triangle OAP \equiv \triangle OBP$ ($\boxed{(라)}$ 합동)

...(□)

따라서 PA= (마)

① (7}): ∠OBP

② (나): ∠BOP

③ (다): OP

④ (라): RHS

⑤ (마): PB

평가문제

[중단원 학습 점검]

3. 다음 $\triangle ABC$ 에서 \overline{BC} 의 중점을 M이라 하고, 점 M \overline{AB} , \overline{AC} \overline{M} \overline{M} 고 하자. $\overline{\rm DM} = \overline{\rm EM}$, $\angle {\rm BMD} = 31\,^{\circ}$ 일 때, $\angle {\rm BAC}$ 의 크기를 구하면?

① 60°

② 62°

 $\bigcirc 364$ °

(4) 66°

(5) 68°

[중단원 학습 점검]

4. 다음 그림과 같은 직각삼각형 ABC에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D라 하자. $\overline{AC} = 10 \text{cm}$, $\triangle ADC = 15 \text{cm}^2 \text{Q}$ M, $\overline{BD} \text{Q}$ ZO = 10 M구하면?

① 2cm

② 3cm

③ 4cm

4 5cm

⑤ 6cm

- [단원 마무리]
- **5.** 다음 그림과 같이 $\angle A = 90^{\circ}$ 이고 $\overline{AB} = \overline{AC}$ 인 직 각이등변삼각형 ABC의 꼭짓점 B, C에서 점 A를 지나는 직선 l에 내린 수선의 발을 각각 D, E라 하 자. 이때 사각형 BCED의 넓이를 구하면?

① $\frac{45}{2}$ cm²

② 23cm²

 $3 \frac{47}{2} \text{cm}^2$

4 24cm²

유사문제

직각삼각형이 〈보기〉 와 같을 때, 합동인 두 삼각 형과 삼각형(혹은 직각삼각형)의 합동 조건을 옳게 나타낸 것은?

- ① $\triangle ABC \equiv \triangle QRP$ (RHS 합동)
- ② $\triangle ABC \equiv \triangle QRP$ (RHA 합동)
- ③ $\triangle DEF \equiv \triangle JKL$ (RHS 합동)
- ④ $\triangle DEF \equiv \triangle JKL$ (SAS 합동)
- ⑤ $\triangle GHI = \triangle MON$ (RHS 합동)
- 7. 그림과 같은 두 직각삼각형 ABC와 DEF가 서로 합동이 될 수 있는 조건을 <보기>에서 고른 것은?

- \neg . $\overline{AC} = \overline{DF}$, $\overline{BC} = \overline{EF}$
- \bot . $\overline{AB} = \overline{DF}$, $\overline{BC} = \overline{EF}$
- \Box . $\overline{AB} = \overline{DE}$, $\angle A = \angle D$
- \exists . $\angle A = \angle D$, $\angle B = \angle E$
- \Box . $\angle B = \angle E$. $\overline{AC} = \overline{DF}$
- ① 7, ∟, ≥
- ② ¬, ⊏, □
- ③ 7, 2, 0
- ④ ∟, ⊏, ≥
- ⑤ ∟, ⊏, □

8. $\angle PAO = \angle PBO = 90^{\circ}$, $\overline{PA} = \overline{PB}$ 일 때, 옳지 않은 것은?

- ① $\overline{OA} = \overline{OB}$
- ② $\angle APO = \angle BPO$
- \bigcirc $\angle APO = 2 \angle AOP$
- $(4) \angle AOP = \angle BOP$
- 9. 다음 그림과 같이 $\angle C = 90$ 인 직각삼각형 ABC에서 \overline{AD} 는 $\angle A$ 의 이등분선이고 $\overline{AB} \perp \overline{DE}$ 일 때, △ABD의 넓이는?

- (1) $12cm^2$
- $\bigcirc 16cm^2$
- $(3) 18cm^2$
- $(4) 24cm^2$
- $(5) 36cm^2$
- **10.** 다음 그림과 같은 직각삼각형 ABC에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D라고 하자. $\triangle ABD$ 의 넓이가 $9cm^2$ 일 때, $\triangle EDC$ 의 넓이를 구 하면?

- \bigcirc 5cm²
- (2) $6cm^2$
- $3 7cm^2$
- (4) $8cm^2$
- (5) $9cm^2$

11. 다음 그림에서 $\triangle ABC$ 는 $\angle A = 90$ 이고 $\overline{AB} = \overline{AC}$ 인 직각이등변삼각형이다. 꼭짓점 B, C에 서 꼭깃점 A를 지나는 직선 l에 내린 수선의 발을 각각 D, E라 하고 $\overline{DB} = 6 \text{cm}$, $\overline{DE} = 10 \text{cm}$ 일 때, △ABC**의 넓이는?**

- ① 24cm²
- ② 26cm²
- 3 28cm²
- $40 32 cm^{2}$
- (5) 36cm²
- 12. 그림과 같은 직각삼각형 ABC에서 $\angle DAE = 25$ °, $\overline{EC} = 2$ 일 때, x + y의 값은?

- ① 27
- 28
- 3 42
- **4**3
- **⑤** 52
- **13.** 그림과 같은 직각삼각형 ABC에서 x+y의 값은?

- ① 34
- ② 36
- 3 38
- **4**0
- ⑤ 42

 $\overline{\bf 14.}$ $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC에서 밑변 BC의 중점 M에서 변 AB와 AC에 내린 수선의 발을 각 각 D, E라고 할 때, $\overline{MD} = \overline{ME}$ 이다. 이를 증명하는 데 사용되지 않는 것을 찾으면?

- ① $\overline{BM} = \overline{CM}$
- ② $\angle B = \angle C$
- \bigcirc $\triangle DBM \equiv \triangle ECM$
- $\textcircled{4} \ \overline{BD} = \overline{CE}$
- \bigcirc $\angle BDM = \angle CEM = 90^{\circ}$

정답 및 해설

1) [정답] ④

[해설] C. RHA합동 리. RHS합동

2) [정답] ④

[해설] ④ (라): RHA

3) [정답] ②

[해설] △BDM, △CEM에서

 $\overline{\text{MD}} = \overline{\text{ME}}, \ \overline{\text{MB}} = \overline{\text{MC}}, \ \angle \text{BDM} = \angle \text{CEM} = 90^{\circ}$ 그러므로 $\triangle BDM = \triangle CEM (RHS 합동)$ 이때 $\angle DBM = \angle ECM = 90 \degree - 31 \degree = 59 \degree$ 이므로 \triangle ABC에서 \angle BAC $+2 \times 59^{\circ} = 180^{\circ}$ $\therefore \angle BAC = 62^{\circ}$

4) [정답] ②

[해설] 다음 그림과 같이 점 D에서 \overline{AC} 에 내린 수선 의 발을 E라 하자.

△ABD, △AED에서

AD는 공통, ∠BAD = ∠EAD,

 $\angle ABD = \angle AED = 90^{\circ}$

그러므로 $\triangle ABD = \triangle AED$ (RHA 합동)

이때 △ADC의 넓이는

 $\frac{1}{2} \times \overline{\text{ED}} \times \overline{\text{AC}} = \frac{1}{2} \times \overline{\text{ED}} \times 10 = 15 \text{(cm}^2)$ 이므로

 $\overline{ED} = 3cm$

 $\therefore \overline{BD} = \overline{ED} = 3cm$

5) [정답] ⑤

[해설] $\triangle ABD에서 \angle DBA + \angle DAB = 90$ °

또한 ∠DAB+∠EAC=90°이므로

 $\angle DBA = \angle EAC$

 $\overline{BA} = \overline{AC}$, $\angle BDA = \angle AEC = 90^{\circ}$

그러므로 $\triangle ADB = \triangle CEA (RHA 합동)$

이때 $\overline{DB} = \overline{EA} = 3$ cm, $\overline{DA} = \overline{EC} = 4$ cm이므로

 $\overline{DE} = \overline{DA} + \overline{EA} = 7 \text{ cm}$

 $\therefore \Box BCED = \frac{1}{2} \times (3+4) \times 7 = \frac{49}{2} cm^2$

6) [정답] ①

[해설] $\triangle ABC \equiv \triangle QRP(RHS$ 합동) $\triangle EDF \equiv \triangle KJL(RHA$ 합동)

7) [정답] ②

[해설] ㄱ. SAS합동 ㄷ. RHA합동 ㅁ. ASA합동

8) [정답] ③

[해설] $\triangle OAP$ 와 $\triangle OBP$ 에서

 \overline{OP} 는 공통, $\overline{PA} = \overline{PB}$, $\angle A = \angle B = 90^{\circ}$ 이므로 $\triangle OAP = \triangle OBP(RHS$ 합동)이다.

따라서 $\overline{OA} = \overline{OB}$, $\angle APO = \angle BPO$,

 $\angle AOP = \angle BOP$, $\triangle AOP = \triangle BOP$ 가 성립한다.

9) [정답] ③

[해설] $\angle AED = \angle ACD = 90^{\circ}$, \overline{AD} 는 공통,

 $\angle EAD = \angle CAD$ 이므로

 $\triangle ADE \equiv \triangle ADC(RHA$ 합동)

 $\therefore \overline{DE} = \overline{DC} = 4cm$

 $\therefore \triangle ABD = \frac{1}{2} \times \overline{AB} \times \overline{DE} = \frac{1}{2} \times 9 \times 4 = 18(cm^2)$

10) [정답] ②

[해설] $\triangle ABD = \frac{1}{2} \times \overline{BD} \times 6 = 9$, $\overline{BD} = 3$

이때 $\triangle ABD = \triangle AED(RHA$ 합동)이므로 $\overline{DB} = \overline{DE} = 3$. $\overline{AB} = \overline{AE} = 6$. $\overline{CE} = 4$

 $\therefore \triangle EDC = \frac{1}{2} \times 3 \times 4 = 6$

11) [정답] ②

[해설] $\angle DBA + \angle DAB = 90$ ° 이고

 $\angle DAB + \angle CAE = 90$ °이므로

 $\angle DBA = \angle CAE$

따라서 $\triangle ABD \equiv \triangle CAE(RHA$ 합동)

대응변의 길이가 같으므로

 $\overline{DB} = \overline{EA} = 6cm$, $\overline{AD} = \overline{CE} = 4cm$

이제 $\triangle ABC = \square DBCE - 2\triangle ABD$

$$=\frac{1}{2}(6+4)\times 10-2\times \left(\frac{1}{2}\times 4\times 6\right)$$

= 26

12) [정답] ③

[해설] $\triangle ACE \equiv \triangle ADE(RHS$ 합동)이므로 x=2

 $\angle CAE = \angle DAE = 25$ ° 이므로

 $\angle y = 90^{\circ} - 50^{\circ} = 40^{\circ}$

 $\therefore x + y = 2 + 40 = 42$

13) [정답] ①

[해설] $\angle ADE = \angle ACE = 90^{\circ}$, \overline{AE} 는 공통,

 $\overline{AD} = \overline{AC}$ 이므로 $\triangle ADE \equiv \triangle ACE(RHS$ 합동)

 $\therefore x = \overline{DE} = \overline{CE} = 4$

또한 $\angle CAE = \angle DAE = 30$ ° 이므로

 $\angle CAD = 60^{\circ}$

따라서 $\triangle ABC$ 에서 $y^{\circ} = 90^{\circ} - 60^{\circ} = 30^{\circ}$

 $\therefore x + y = 4 + 30 = 34$

14) [정답] ④

[해설] $\angle MDB = \angle MEC = 90^{\circ}$, $\overline{BM} = \overline{CM}$, $\angle B = \angle C$ 이므로 $\triangle MDB \equiv \triangle MEC(RHA$ 합동) $\therefore \overline{MD} = \overline{ME}$

