HW8

王嵘晟 PB1711614

1.

对于这个由 **n** 个操作组成的操作序列,当且仅当 **i** 为 2^m , $m \in N$ 时第 **i** 个操作的代价为 **i**,其他代价为 **1**. 所以这个操作序列的总个数为 **n** 时,设 $2^k \le n < 2^{k+1}$,则执行 **n** 个操作的 序列的时间为 $(n-k) \times 1 + \frac{2 \times (1-2^k)}{1-2} = 2^{k+1} - 2 + n - k$,因为 $k = \lfloor log(n) \rfloor$,所以总时间为 O(n),即摊还代价为 O(n)/n = O(1)

2.

令每个操作的摊还代价为 3,令第一个操作的实际代价为 1,则信用为 2。假设执行第 2^i 个操作后的信用为非负的,接下来的 2^i-1 个操作的实际代价为 1,则可从每个操作获得的信用都为 2。总信用为 $2^{i+1}-2$ 。对于第 2^{i+1} 个操作,一开始设定的 3 个代价给了 $2^{i+1}+1$ 个信用来使用,而代价为 2^{i+1} ,仍然留下了一个信用。所以对于任意一个操作,信用都是非负的。所以对于每个操作来说,摊还代价为 O(1),n 个操作的总摊还代价为 O(n)。

3.

当操作序号 $i=2^k$ 时,令 $\Phi(D_i)=k+3$,否则 $k=\lfloor log(i)\rfloor$,令 $\Phi(D_i)=\Phi(D_{2^k})+2(i-2^k)$ 。令 $\Phi(D_0)=0$,则对于 $\forall i\geq 0$, $\Phi(D_i)\geq 0$ 。当 \mathbf{i} 或 $\mathbf{i-1}$ 都不等于 2^k 时, $\Phi(D_i)-\Phi(D_{i-1})=2$ 。当 $i=2^k$ 时, $\Phi(D_i)-\Phi(D_{i-1})=0$,所以 \mathbf{n} 个操作的总摊还代价为 $\sum_{i=1}^n \hat{c}_i=O(n)$ 。

4.

4.(a)

$$y_{k_1,k_2,\dots,k_d} = \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} \dots \sum_{j_d=0}^{n_d-1} a_{j_1,j_2,\dots,j_d} \omega_{n_1}^{j_1 k_1} \omega_{n_2}^{j_2 k_2} \dots \omega_{n_d}^{j_d k_d}$$

$$= \sum_{j_d=0}^{n_d-1} \dots \sum_{j_2=0}^{n_2-1} (\sum_{j_1=0}^{n_1-1} a_{j_1,j_2,\dots,j_d} \omega_{n_1}^{j_1 k_1}) \omega_{n_2}^{j_2 k_2} \dots \omega_{n_d}^{j_d k_d}$$

括号中的内容即为一维的 DFT,由于需要给求和的每一项都计算,所以一共要计算 $n_2n_3...n_d=n/n_1$ 次,由于每一项 **a** 的值可能不同,所以每计算一次,求和的总数目减一。通过这个方法可以继续减少维数,对第 **k** 维来说,需要计算 $n/(\prod_{i \le k} n_i)$ 个独立的一维 DFT。

4.(b)

对于求和,由于任何被求和的元素都没有出现在求和边界上。所以求和的顺序可以随意交换,维度的次序不会影响。

4.(c)

对运算每个 DFT 来说,第 k 维的时间为 $O(n_k log(n_k))$ 。只需要执行 $n/(\prod_{i \leq k} n_i)$ 次,所以总时间为 $O(n/(\prod_{i \leq k} n_i) log(n_k))$

$$\sum_{k=1}^{d} n/(\prod_{i \leq k} n_i) log(n_k) \leq lgn \sum_{k=1}^{d} n/(\prod_{i \leq k} n_i) \leq lgn \sum_{k=1}^{d} n/(2^{k-1}) < nlgn$$
 所以总时间为 $O(nlgn)$