Length chasing

Jongmin Lim

1 Tangents to a circle from a point are equal

- 1. Let the incircle of $\triangle ABC$ touch sides BC, CA, AB at D, E, F respectively.
 - (a) If AB = 9, BC = 10, CA = 11, what is the length of AE?
 - (b) Let P, Q be points on side AB, AC such that $PQ \parallel BC$ and $I \in PQ$ where I is the incentre. What is the length of PQ?
 - (c) Let the A-excircle touch BC, CA, AB at X, Y, Z respectively. Show that BX = CD.
 - (d) Show that $AY = AZ = \frac{AB + BC + CA}{2}$.
- 2. Quadrilaterals with circles
 - (a) Let a convex ABCD have an inscribed circle. Show that AB+CD=AD+BC.
 - (b) Let a concave ABCD have an inscribed circle. Show that AB+CD=AD+BC.
 - (c) Let a convex ABCD have an escribed circle with non-parallel sides. Show that AB + BC = AD + DC.
 - (d) Let a concave ABCD have an escribed circle with non-parallel sides. Show that AB + BC = AD + DC.
 - (e) Show that the converse of the statements above also hold.
- 3. Incircle of a right angle triangle
 - (a) Let the incircle of $\triangle ABC$ have radius r. Show that

Area
$$ABC = \frac{r}{2}(a+b+c)$$

- (b) Let $\triangle ABC$ have $\angle A = 90^{\circ}$. Show that the inradius $r = \frac{AB + AC BC}{2}$.
- (c) Hence or otherwise find all right angle triangles with integer side lengths whose area equals its perimeter.
- 4. Let ABCD be a parallelogram. Let the incircle of $\triangle ACD$ and $\triangle ABC$ touch AC at K, M. Let the incircle of $\triangle BCD$ and $\triangle ABD$ meet BD at L, N. Show that KLMN is a rectangle. (Hint: what defines a rectangle?)
- 5. Let D be an arbitrary point on side BC of a given triangle ABC and let E be the intersection of AD and the second external common tangent of the incircles of $\triangle ABD$ and $\triangle ADC$. As D moves along side BC show that the locus of E is a circle.

- 6. Let $\triangle ABC$ have three cevians AX, BY, CZ, meeting at point one D inside the triangle. Assume we have AZ + DY = AY + ZD and BZ + DX = BX + ZD. Show that CX + DY = CY + DX.
- 7. Let I be the incentre of $\triangle ABC$. Show that

$$\frac{AI^2}{bc} + \frac{BI^2}{ac} + \frac{CI^2}{ab} = 1$$

2 Menelaus and Ceva

Theorem 2.1. (Menelaus) A line ℓ intersects the sides BC, CA, AB of $\triangle ABC$ at X, Y, Z respectively. Then we have

$$\frac{AZ}{ZB} \times \frac{BX}{XC} \times \frac{CY}{YA} = 1$$

Theorem 2.2. (Ceva) Let P be a point inside $\triangle ABC$. Let $AP \cap BC = X$, $BP \cap AC = Y$, $CP \cap AB = Z$. Then we have

$$\frac{AZ}{ZB} \times \frac{BX}{XC} \times \frac{CY}{YA} = 1$$

Theorem 2.3. (Generalised angle bisector theorem) Let $D \in BC$ in $\triangle ABC$. We have

$$\frac{AB\sin BAD}{AC\sin CAD} = \frac{BD}{DC}$$

Theorem 2.4. (Sin lemma) For triangle ABC with a circumradius of r,

$$\frac{BC}{\sin(\angle BAC)} = \frac{CA}{\sin(\angle ABC)} = \frac{AB}{\sin(\angle CAB)} = 2r$$

- 1. Triangle centres
 - (a) Show that the medians of a triangle meet at one point. I.e. the centroid exists.
 - (b) Show that the angle bisectors of a triangle meet at one point. I.e. the incentre exists.
 - (c) Show that the altitudes of a triangle meet at one point. I.e. the orthocentre exists.
 - (d) Let the incircle of $\triangle ABC$ be tangent to BC, CA, AB at D, E, F. Show that AD, BE, CF are concurrent. I.e. the Gergonne point exists.
 - (e) Let M, N, L be the midpoint of sides BC, CA, AB. Let X be a point on BC such that $\angle BAM = \angle CAX$. Similarly, let $Y \in AC$ such that $\angle CBN = \angle ABY$, and $Z \in AB$ such that $\angle ACL = \angle BCZ$. Show that AX, BY, CZ are concurrent. I.e. the symmedian centre exists.
 - (f) Show that the internal angle bisector and two external angle bisectors meet at one point. I.e. the excentre exists.
 - (g) Show that the perpendicular bisectors of the triangle sides meet at one point. I.e. the circumcentre exists.

- 2. (Apollonius Circle) Let A, B be two points. Find the locus of X that satisfies |AX| = r|BX| for a given r > 0.
- 3. Consider $\triangle ABC$ where $\angle A = 60^{\circ}$, $\angle B = 45^{\circ}$, and AC = 2, what is AB?
- 4. Let convex quadrilateral ABCD have an inscribed circle tangent to AB, BC, CD, DA at P, Q, R, S. Show that PQ, RS, AC meet at one point.
- 5. Let $\triangle ABC$ have incircle touching the sides BC, CA, AB at D, E, F. Let $EF \cap BC = X$, $FD \cap CA = Y$, $DE \cap AB = Z$. Show that X, Y, Z are collinear.
- 6. Let $\triangle ABC$ have side lengths BC = a, CA = b, AB = c. Let I be the incentre of $\triangle ABC$ and $AI \cap BC = D$. Show that $\frac{AI}{ID} = \frac{b+c}{a}$.
- 7. Let M be the midpoint of side BC of $\triangle ABC$. Let I be the incentre, and let the incircle touch side BC at D. Let N be the midpoint of AD. Show that N, I, M collinear.
- 8. Let ABCDEF be a hexagon inscribed in a circle. Show that AD, BE, CF are concurrent if and only if $AB \times CD \times EF = BC \times DE \times FA$.
- 9. Consider a quadrilateral ABCD such that the incircle of ABD touches sides AB, BD, DA at P, X, Q and the incircle of CBD touches sides CB, BD, DC at R, X, S. Show that P, Q, R, S are cyclic.
- 10. Let ABC be a triangle with incentre I. A straight line through I intersects sides AB and AC at points P and Q, respectively. Let a=BC, b=AC, c=AB, $p=\frac{PB}{PA}$ and $q=\frac{QC}{QA}$. Prove that if $a^2=4bcpq$, then lines AI, BQ and CP are concurrent.

3 Power of a point

Theorem 3.1. (Power of a point) Let chords AB and CD of a circle γ intersect at X. Then

$$AX \times BX = CX \times DX$$

- 1. (Harmonic) Let D be a point inside $\triangle ABC$. Let $AD \cap BC = X$, $BD \cap AC = Y$, $CD \cap AB = Z$. Let $YZ \cap BC = W$. Show that
 - (a) BX/CX = BW/CW.
 - (b) Let M be the midpoint of BC. Show that $BM^2 = MX \times MW$.
 - (c) Show that $WB \times WC = WM \times WX$.
 - (d) Show that $XB \times XC = XM \times WX$.
- 2. Let $\triangle ABC$ have incircle touching the sides BC, CA, AB at D, E, F. Let $EF \cap BC = X$, $FD \cap CA = Y$, $DE \cap AB = Z$.
 - (a) Show that X, B, D, C is harmonic.
 - (b) Let M be the midpoint of BC. Show that $XM \times XD = XB \times XC$.
 - (c) Let P be the midpoint of XD. Show that $PD^2 = PB \times PC$.
 - (d) Similarly let Q be the midpoint of YE, and R is the midpoint of ZF. Show that P, Q, R collinear.