Information Theoretic Privacy in Electric Grids with Smart Meters

Ashish Khisti

Department of Electrical and Computer Engineering University of Toronto

Joint work with:

Simon Li (U-Toronto) and Aditya Mahajan (McGill)

Stanford University, IT-Forum, 28th Oct. 2016

Electric Grid with Smart Meters

Real-Time Information of Energy Consumption

Advantages

- Demand-Response Systems
- Reduce energy consumption

Disadvantages

- User Privacy
- Safety Hazards

Non-Intrusive Load Monitoring

G. Hart, "Nonintrusive appliance load monitoring". Proceedings of the IEEE, 1992

User Energy Consumption Profile Leaks Sensitive Information

Rechargeable Battery for Information Masking

G. Kalogridis et al. Privacy for Smart Meters: Towards Undetectable Appliance Load Signatures, 2010

Rechargeable Battery for Information Masking

G. Kalogridis et al. Privacy for Smart Meters: Towards Undetectable Appliance Load Signatures, 2010

Rechargeable Battery for Information Masking

G. Kalogridis et al. Privacy for Smart Meters: Towards Undetectable Appliance Load Signatures, 2010

Variables

- User Load: X_t
- ullet Output Load: Y_t
- Battery State: S_t

Constraints

Battery Update:

$$S_{t+1} = S_t - X_t + Y_t$$

• Storage: $S_t \in [0, B_{\max}]$

Literature Review

Rechargeable Battery based Solutions

- G. Kalogridis, C. Efthymiou, et. al , Privacy for smart meters: Towards undetectable appliance load signatures, IEEE SmartGridComm, 2010
- S. McLaughlin, P. McDaniel, and W. Aiello, "Protecting Consumer Privacy from Electric Load Monitoring," IEEE CCS 2011
- L. Yang, et. al, Cost-effective and privacy preserving energy management for smart meters, IEEE Trans. on Smart Grid, Jan. 2015.
- D. Egarter, C. Prokop, and W. Elmenreich, Load hiding of household's power demand, IEEE SmartGridComm 2014
- G. Giaconi and D. Gunduz, Smart Meter Privacy with Renewable Energy and a Finite Capacity Battery 2016
- D. Varodayan and A. Khisti, Smart meter privacy using a rechargeable battery: Minimizing the rate of information leakage, ICASSP 2011
- S. Li, A. Khisti and A. Mahajan, Information-Theoretic Privacy for Smart Metering Systems with a Rechargeable Battery, Trans-IT 2016 (Submitted)

Literature Review

Inaccurate Readings

- L. Sankar, S. R. Rajagopalan, S. Mohajer, and H. V. Poor, Smart meter privacy: A theoretical framework, IEEE Trans. Smart Grid, 2013.
- Z. Zhang et. al, Cost-friendly Differential Privacy for Smart Meters: Exploiting the Dual Roles of the Noise, IEEE Trans. Smart Grid, 2016

Experimental Studies:

- M. Lisovich, D. Mulligan, and S. Wicker, Inferring personal information from demand-response systems IEEE Security & Privacy, 2010
- Kim et. al. Unsupervised Disaggregation of Low Frequency Power Measurements, SIAM Int'l Conf. on Data Mining, Mesa, AZ, Apr. 2011.

Policy Issues:

- Ann Cavoukian, Operationalizing Privacy by Design: The Ontario Smart Grid Case Study, Ontario Information & Privacy Commissioner 2011
- E. L. Quinn, Smart metering and privacy: Existing laws and competing policies, Colorado Public Utilities Commission, Tech. Rep., 2009.

Information Theoretic Model

- Input Load: $X_t \stackrel{iid}{\sim} P_X(\cdot)$, $X_t \in \mathcal{X}$.
- Output Load: $Y_t \in \mathcal{Y}$, $\mathcal{X} \subseteq \mathcal{Y}$.
- Battery State: $S_t \in \mathcal{S}$, $S_1 \sim P_S(\cdot)$
- Battery Update: $S_{t+1} = S_t X_t + Y_t$
- Battery Charging Policy:

$$\mathbf{q} = \left(q_1(y_1|x_1, s_1), q_2(y_2|x_1^2, s_1^2, y_1), \dots, q_t(y_t|x_1^t, s_1^t, y_1^{t-1}), \dots\right)$$

- Feasible Policy
 - Causal
 - Storage Constraint:

$$\sum_{y \in \mathcal{Y}: s_t + y - x_t \in \mathcal{S}} q_t(y | x_1^t, s_1^t, y_1^{t-1}) = 1$$

• Set of Feasible Policies: $Q_A = \{ \mathbf{q} : \mathbf{q} \text{ is feasible.} \}$

Information Theoretic Model

- Input Load: $X_t \stackrel{iid}{\sim} P_X(\cdot)$, $X_t \in \mathcal{X}$.
- Output Load: $Y_t \in \mathcal{Y}$, $\mathcal{X} \subseteq \mathcal{Y}$.
- Battery State: $S_t \in \mathcal{S}$, $S_1 \sim P_S(\cdot)$
- Battery Update: $S_{t+1} = S_t X_t + Y_t$
- Battery Charging Policy:

$$\mathbf{q} = \left(q_1(y_1|x_1, s_1), q_2(y_2|x_1^2, s_1^2, y_1), \dots, q_t(y_t|x_1^t, s_1^t, y_1^{t-1}), \dots\right)$$

• Leakage Rate:

$$L(\mathbf{q}) = \limsup_{n \to \infty} \frac{1}{n} I^{\mathbf{q}}(X_1^n, S_1; Y^n)$$

Optimal Leakage:

$$L^{\star} = \inf_{\mathbf{q} \in \mathcal{Q}_A, P_{S_1}} L(\mathbf{q})$$

Information Theoretic Model

- Input Load: $X_t \stackrel{iid}{\sim} P_X(\cdot)$, $X_t \in \mathcal{X}$.
- Output Load: $Y_t \in \mathcal{Y}$, $\mathcal{X} \subseteq \mathcal{Y}$.
- Battery State: $S_t \in \mathcal{S}$, $S_1 \sim P_S(\cdot)$
- Battery Update: $S_{t+1} = S_t X_t + Y_t$
- Battery Charging Policy:

$$\mathbf{q} = \left(q_1(y_1|x_1, s_1), q_2(y_2|x_1^2, s_1^2, y_1), \dots, q_t(y_t|x_1^t, s_1^t, y_1^{t-1}), \dots\right)$$

Communication Channel Viewpoint

$$\underbrace{X_t \overset{iid}{\sim} P_x(\cdot)}_{\text{pt}} \underbrace{\begin{array}{c} \text{Battery System} \\ q_t(Y_t|X^t,S^t,Y^{t-1}) \\ S_{t+1} = S_t + Y_t - X_t \end{array}}_{\text{pt}} Y_t$$

$$L(\mathbf{q}) = \limsup_{n \to \infty} \frac{1}{n} I^{\mathbf{q}}(X_1^n,S_1;Y^n)$$

i.i.d. X_t + "Memoryless Channel" \implies i.i.d. Y_t

$$\mathcal{X} = \mathcal{Y} = \mathcal{S} = \{0, 1\}, P_X(\cdot) = P_{S_1}(\cdot) = \mathsf{Ber}(0.5)$$

$$S_t = 0$$
 $S_t = 1$ $X_t = 0$ $Y_t = 0$ $X_t = 1$ $X_t = 1$ $X_t = 1$ $Y_t = 1$ $Y_t = 1$ $Y_t = 1$ $Y_t = 1$

$$X_{t} = 0, Y_{t} = 0$$
 $X_{t} = 0, Y_{t} = 0$ $X_{t} = 0, Y_{t} = 0$ $X_{t} = 1, Y_{t} = 0$ $X_{t} = 1, Y_{t} = 1$ $X_{t} = 1, Y_{t} = 1$

$$\mathcal{X} = \mathcal{Y} = \mathcal{S} = \{0, 1\}, P_X(\cdot) = P_{S_1}(\cdot) = \mathsf{Ber}(0.5)$$

Policy 1:
$$Y_t = X_t$$

$$S_t = 0$$

$$S_t = 1$$

$$X_t = 0 Y_t = 0 X_t = 0$$

$$X_t = 1$$
 $Y_t = 1$ $X_t = 1$

$$L(\mathbf{q}) = \frac{1}{n}I(X^n; Y^n) = 1$$

$$\mathcal{X} = \mathcal{Y} = \mathcal{S} = \{0, 1\}, P_X(\cdot) = P_{S_1}(\cdot) = \mathsf{Ber}(0.5)$$

Policy 2:
$$Y_t = \bar{S}_t$$

$$S_t = 0$$
 $S_t = 1$ $X_t = 0$ $X_t = 0$ $X_t = 1$ $X_t = 1$

$$L(q) = ??$$

Recall: $S_{t+1} = S_t - X_t + Y_t$

$$\mathcal{X} = \mathcal{Y} = \mathcal{S} = \{0, 1\}, P_X(\cdot) = P_{S_1}(\cdot) = \mathsf{Ber}(0.5)$$

Policy 3: Best Effort Algorithm (G. Kalogridis, C. Efthymiou)

$$q(y_t|y_{t-1},x_t,s_t) = \begin{cases} \mathbb{I}_{y_t}(y_{t-1}), & y_{t-1}+s_t-x_t \in \{0,1\} \\ \mathbb{I}_{y_t}(\bar{y}_{t-1}), & \text{else.} \end{cases}$$

Varodayan-Khisti (2011):

$$L(\mathbf{q}) \approx 0.68$$

(Numerical Evaluation using BCJR Algorithm)

$$\mathcal{X} = \mathcal{Y} = \mathcal{S} = \{0, 1\}, P_X(\cdot) = P_{S_1}(\cdot) = \mathsf{Ber}(0.5)$$

Policy 4: Randomized Equiprobable Policy (Varodayan-Khisti 2011)

$$S_t = 0$$

$$S_t = 1$$

$$X_t = 0$$

$$0.5$$

$$Y_t = 0$$

$$X_t = 0$$

$$X_t = 1$$

$$X_t = 0$$

$$0.5$$

$$X_t = 1$$

$$X_t = 0$$

$$0.5$$

$$Y_t = 1$$

$$L(\mathbf{q}) = ??$$

$$\mathcal{X} = \mathcal{Y} = \mathcal{S} = \{0, 1\}, P_X(\cdot) = P_{S_1}(\cdot) = \mathsf{Ber}(0.5)$$

Policy 4: Randomized Equiprobable Policy (Varodayan-Khisti 2011)

$$S_t = 0$$

$$S_t = 1$$

$$X_t = 0$$

$$0.5$$

$$0.5$$

$$X_t = 1$$

$$X_t = 1$$

$$L(\mathbf{q}) = 0.5$$

$$\mathcal{X} = \mathcal{Y} = \mathcal{S} = \{0, 1\}, P_X(\cdot) = P_{S_1}(\cdot) = \mathsf{Ber}(0.5)$$

Key Properties: Randomized Equiprobable Policy

$$\begin{array}{c|c} X_t \stackrel{iid}{\sim} Ber(1/2) \\ \hline \text{Input} \end{array} \begin{array}{c|c} \mathsf{Battery}(S_t) & Y_t \stackrel{iid}{\sim} Ber(1/2) \\ \hline q(Y_t|X_t,S_t) \end{array}$$

- State Invariance: $S_t \perp Y_1^{t-1}$, $S_t \sim \text{Ber}(0.5)$, $\forall t \geq 1$
- \bullet $(X_t, S_t, Y_t) \perp Y_1^{t-1}$, $(X_t, S_t, Y_t) \sim (X_1, S_1, Y_1)$
- $Y^n \stackrel{\text{iid}}{\sim} \text{Ber}(0.5)$
- $\frac{1}{n}I(S_1, X^n; Y^n) = I(S_1, X_1; Y_1) = \frac{1}{2}$.

Main Result

Li-Khisti-Mahajan, IT-Trans (Submitted)

Theorem

For the case of iid inputs $X_t \sim P_X(\cdot)$, the optimal leakage rate is given by the following:

$$L^{\star} = \min_{P_S(\cdot)} I(S - X; X), \quad S \in \mathcal{S}, \ S \perp X$$

Main Result

Li-Khisti-Mahajan, IT-Trans (Submitted)

Theorem

For the case of iid inputs $X_t \sim P_X(\cdot)$, the optimal leakage rate is given by the following:

$$L^* = \min_{P_S(\cdot)} I(S - X; X), \quad S \in \mathcal{S}, \ S \perp X$$

The leakage rate is achieved via the following:

- Initial State: $S_1 \sim P_S^{\star}(\cdot)$ (the optimizing distribution for L^{\star})
- Battery Policy:

$$q^{\star}(y|x,s) = \frac{P_X(y)P_S^{\star}(y+s-x)}{\sum_{y\in\mathcal{Y}} P_X(y)P_S^{\star}(y+s-x)}, \quad y+s-x\in\mathcal{S}$$

Furthermore $I^q(S-X;X) = I^q(S,X;Y)$.

Achievability

Battery Policy:

$$q(y|x,s) = \frac{P_X(y)P_S(y+s-x)}{\sum_{y \in \mathcal{Y}} P_X(y)P_S(y+s-x)}, \quad y+s-x \in \mathcal{S}$$

• State Invariance: $S_t \perp Y_1^{t-1}$, $S_t \sim P_S(\cdot)$

$$P_S^{\star}(s_2)P_X(y_1) = \sum_{s_1 \in \mathcal{S}, x_1 \in \mathcal{X}} \mathbb{I}_{s_2}(s_1 - x + y_1) \cdot q(y_1|x_1, s_1) \cdot P_X(x_1) \cdot P_S^{\star}(s_1)$$

Achievability

Battery Policy:

$$q(y|x,s) = \frac{P_X(y)P_S(y+s-x)}{\sum_{y \in \mathcal{Y}} P_X(y)P_S(y+s-x)}, \quad y+s-x \in \mathcal{S}$$

1 State Invariance: $S_t \perp Y_1^{t-1}$, $S_t \sim P_S(\cdot)$

$$P_S^{\star}(s_2)P_X(y_1) = \sum_{s_1 \in \mathcal{S}, x_1 \in \mathcal{X}} \mathbb{I}_{s_2}(s_1 - x + y_1) \cdot q(y_1|x_1, s_1) \cdot P_X(x_1) \cdot P_S^{\star}(s_1)$$

- $(X_t, S_t, Y_t) \perp Y^{t-1}$, $(X_t, S_t, Y_t) \sim (X_1, S_1, Y_1)$
- Y^n is i.i.d. $\sim P_X(\cdot)$.
- Single-Letter Leakage $\frac{1}{n}I(S_1,X_1^n;Y_1^n)=I(S_1,X_1;Y_1)$
- **2** Sufficiency of X-S: q(y|x,s)=q(y|w=x-s)
- **3** Optimality: $q^*(\cdot)$ minimizes I(S, X; Y) subject to State-Invariance.

Converse

Claim

For any $\mathbf{q} \in \mathcal{Q}_A$ we have that:

$$\lim_{n \to \infty} \frac{1}{n} I^{\mathbf{q}}(S_1, X^n; Y^n) \ge L^{\star} \triangleq \min_{P_S(\cdot)} I(S - X; X)$$

Converse

Claim

For any $\mathbf{q} \in \mathcal{Q}_A$ we have that:

$$\lim_{n \to \infty} \frac{1}{n} I^{\mathbf{q}}(S_1, X^n; Y^n) \ge L^* \triangleq \min_{P_S(\cdot)} I(S - X; X)$$

Additive Cost

$$I(S_1, X^n; Y^n) \ge \sum_{i=1}^n I(X_i, S_i; Y_i | Y^{i-1})$$

Telescoping Sum Lemma

$$\sum_{i=1}^{n} I(X_i, S_i; Y_i | Y^{i-1}) \ge \sum_{i=2}^{n} I(S_i - X_i; X_i | Y^{i-1}) + H(S_1 - X_1) - H(S_n - X_n | Y^{n-1})$$

Converse

Claim

For any $\mathbf{q} \in \mathcal{Q}_A$ we have that:

$$\lim_{n \to \infty} \frac{1}{n} I^{\mathbf{q}}(S_1, X^n; Y^n) \ge L^* \triangleq \min_{P_S(\cdot)} I(S - X; X)$$

Term by Term Lower Bound

$$\sum_{i=2}^{n} I(S_i - X_i; X_i | Y^{i-1}) \ge \sum_{i=2}^{n} \min_{p(s_i | y^{i-1})} I(S_i - X_i; X_i | Y^{i-1})$$

$$= (n-1) \min_{P_S(\cdot)} I(S - X; X)$$

$$= (n-1)L^*$$

Further Remarks: IID Case

Optimal Policy:

- State Invariance: $S_t \perp Y_1^{t-1}$
- Y^n is i.i..d. with distribution $P_X(\cdot)$

$$L^{\star} = \min_{P_S(\cdot)} I(S - X; X)$$

- I(S-X;X) is a convex function in $P_S(\cdot)$ for a fixed $P_X(\cdot)$ \Rightarrow Blahut-Arimoto Algorithm.
- ullet For the optimal policy it suffices to have $\mathcal{X} = \mathcal{Y}$.
- For binary case with equiprobable inputs, Randomized Equiprobale policy is optimal.
- Extends to Continuous Valued Random Variables.

Numerical Example

- $X_t \sim \text{Bin}(N, 0.5)$
- ullet Corresponds to N devices, each device is on/off with prob. 0.5
- N=6, $\mathcal{X}=\mathcal{Y}$
- $L^{\star} = \min_{P_S(\cdot)} I(S X; X)$
 - $S = \{0, 1, ...6\}$
 - $L^{\star} = 0.1638$
 - $\bullet \ P_S^{\star}(\cdot) \!\!=\!\! \{0.0586, 0.1332, 0.1972, 0.2220, 0.1972, 0.1332, 0.0586\}$

Numerical Example

- $X_t \sim \text{Bin}(N, 0.5)$
- ullet Corresponds to N devices, each device is on/off with prob. 0.5
- N=6, $\mathcal{X}=\mathcal{Y}$
- $L^{\star} = \min_{P_S(\cdot)} I(S X; X)$

Numerical Example

- $X_t \sim \text{Bin}(N, 0.5)$
- ullet Corresponds to N devices, each device is on/off with prob. 0.5
- N=6, $\mathcal{X}=\mathcal{Y}$
- $L^{\star} = \min_{P_S(\cdot)} I(S X; X)$

Markovian Demands

First Order Markov Source:

$$X^n \sim P_X(x_1) \prod_{t=2}^n Q(x_t | x_{t-1})$$

- Belief State: $\pi_t(x,s) = \Pr(X_t = x, S_t = s | Y^{t-1} = y^{t-1})$
- ullet Optimal Policy is of the form: $q(y|x,s,\pi_t)$

Dynamic Programming Decomposition:

- State: Posterior Distribution $\pi_t(x,s)$
- Action: Battery Policy $q(y|x,s,\pi_t)$

Dynamic Programming Decomposition

Similar to Permuter-Cuff-Van Roy and Weissman (2007), Tatikonda-Mitter (Trans-IT 2009)

(First Order) Markovian Source:

$$L^{\star} = \min_{\mathbf{q} \in \mathcal{Q}_a} \left[\limsup_{n \to \infty} \frac{1}{n} I^{\mathbf{q}}(S_1, X^n; Y^n) \right]$$

- ullet State Space: $P_{X,S}(x,s)$
- ullet Action Space: $\Big\{ a(y|x,s) : {\sf Battery Storage Constraint Satisfied} \Big\}$
- State: $\pi_t(x,s) = \Pr(X_t = x, S_t = s | Y^{t-1} = y^{t-1})$
- Dynamics: $\pi_{t+1} = \Phi(\pi_t, a_t, y_t)$
- Per step cost: $I(\pi_t, a_t)$

$$I(X_t, S_t; Y_t | y^{t-1}) = \sum_{x, s, y} \pi_t(x, s) a_t(y | x, s) \log \frac{a_t(y | x, s)}{\sum_{x, s} \pi_t(x, s) a_t(y | x, s)}$$

Dynamic Programming Decomposition

Similar to Permuter-Cuff-Van Roy and Weissman (2007), Tatikonda-Mitter (Trans-IT 2009)

(First Order) Markovian Source:

- State: $\pi_t(x,s) = \Pr(X_t = x, S_t = s | Y^{t-1} = y^{t-1})$
- Dynamics: $\pi_{t+1} = \Phi(\pi_t, a_t, y_t)$
- Per step cost: $I(\pi_t, a_t)$

Infinite Horizon Average Cost DP

Let $J^{\star} \in \mathbb{R}$ and $v : \mathcal{P}_{X,S}(\cdot) \to \mathbb{R}$ be such that:

$$J^{\star} + v(\pi) = \inf_{a \in \mathcal{A}} \left[I(a; \pi) + \sum_{x, s, y} \pi(x, s) a(y|x, s) v(\Phi(\pi, a, y)) \right], \forall \pi$$

- ullet J^{\star} is the optimal leakage rate
- $q(y|x, s, \pi) = a^{\pi}(y|x, s)$ is the optimal policy

- Input $X_t \stackrel{iid}{\sim} P_X(\cdot)$, $X_t \in \mathcal{X}$
- ullet Battery A State: $S_{A,t} \in \mathcal{S}$, Output $W_t \in \mathcal{W}$
 - ullet State Update: $S_{A,t+1} = S_{A,t} X_t + W_t$
 - ullet Battery Policy: $q_t^{A}(w_t|x^t,s_{A,1}^tw_1^{t-1})$

- Input $X_t \stackrel{iid}{\sim} P_X(\cdot)$, $X_t \in \mathcal{X}$
- ullet Battery A State: $S_{A,t} \in \mathcal{S}$, Output $W_t \in \mathcal{W}$
 - State Update: $S_{A,t+1} = S_{A,t} X_t + W_t$
 - Battery Policy: $q_t^A(w_t|x^t, s_{A,1}^tw_1^{t-1})$
- ullet Battery B State: $S_{B,t} \in \mathcal{S}$, Output $Y_t \in \mathcal{Y}$
 - ullet State Update: $S_{B,t+1}=S_{B,t}-W_t+Y_t$
 - \bullet Battery Policy: $q_t^B(y_t|w^t,s_{B,1}^t,y_1^{t-1})$

- Input $X_t \stackrel{iid}{\sim} P_X(\cdot)$, $X_t \in \mathcal{X}$
- ullet Battery A State: $S_{A,t} \in \mathcal{S}$, Output $W_t \in \mathcal{W}$
 - State Update: $S_{A,t+1} = S_{A,t} X_t + W_t$
 - Battery Policy: $q_t^A(w_t|x^t, s_{A,1}^tw_1^{t-1})$
- ullet Battery B State: $S_{B,t} \in \mathcal{S}$, Output $Y_t \in \mathcal{Y}$
 - State Update: $S_{B,t+1} = S_{B,t} W_t + Y_t$
 - Battery Policy: $q_t^B(y_t|w^t, s_{B,1}^t, y_1^{t-1})$
- Leakage Rate

$$L(\mathbf{q}^A, \mathbf{q}^B) = \lim_{n \to \infty} \frac{1}{n} I(S_{A,1}, S_{B,1}, X^n; Y^n)$$

- Input $X_t \stackrel{iid}{\sim} P_X(\cdot)$, $X_t \in \mathcal{X}$
- ullet Battery A State: $S_{A,t} \in \mathcal{S}$, Output $W_t \in \mathcal{W}$
 - State Update: $S_{A,t+1} = S_{A,t} X_t + W_t$
 - Battery Policy: $q_t^A(w_t|x^t,s_{A,1}^tw_1^{t-1})$
- ullet Battery B State: $S_{B,t} \in \mathcal{S}$, Output $Y_t \in \mathcal{Y}$
 - State Update: $S_{B,t+1} = S_{B,t} W_t + Y_t$
 - Battery Policy: $q_t^B(y_t|w^t, s_{B,1}^t, y_1^{t-1})$
- Leakage Rate

$$L(\mathbf{q}^A, \mathbf{q}^B) = \lim_{n \to \infty} \frac{1}{n} I(S_{A,1}, S_{B,1}, X^n; Y^n)$$
$$L^* = \inf_{\mathbf{q}^A, \mathbf{q}^B} L(\mathbf{q}^A, \mathbf{q}^B)$$

Liu-Lee-Khisti (2016, Submitted) $\mathcal{X} = \mathcal{Y} = \mathcal{W} = \mathcal{S}_A = \mathcal{S}_B = \{0,1\}, \ P_X(\cdot) = P_{S_A}(\cdot) = P_{S_B}(\cdot) = \mathrm{Ber}(0.5)$

User
$$X_t$$
 Battery A W_t Battery B Y_t Grid $X_t = 0, W_t = 0$ $X_t = 0, W_t = 0$ $X_t = 0, W_t = 1$ $X_t = 0, W_t = 0$ $X_t = 1, W_t = 0$ $X_t = 1, W_t = 0$ $X_t = 1, W_t = 1$ $X_t = 1, W_t = 1, W_t = 1$ $X_t = 1, W_t = 1, W_t = 1, W_t = 1$ $X_t = 1, W_t = 1, W_t = 1$ $X_t = 1, W_t =$

Liu-Lee-Khisti (2016, Submitted) $\mathcal{X} = \mathcal{Y} = \mathcal{W} = \mathcal{S}_A = \mathcal{S}_B = \{0,1\}, \ P_X(\cdot) = P_{S_A}(\cdot) = P_{S_B}(\cdot) = \mathrm{Ber}(0.5)$

Cooperation Based Lower Bound

- $S = \{0, 1, 2\}$
- $P_S^{\star}(\cdot) \approx \{0.275, 0.45, 0.275\}$
- $L^* = \min I(S X; X) \approx 0.306$

Upper Bound

- \mathcal{Q}_A^{\star} : Invariant Policies for battery A
- ullet \mathcal{Q}_B^{\star} : Invariant Policies for battery B

Theorem (Upper Bound)

For any $\mathbf{q}^A \in \mathcal{Q}_A^{\star}$ and $\mathbf{q}^B \in \mathcal{Q}_B^{\star}$ the following leakage rate is achievable:

$$L^{+} \leq I(S_A, X; W) + I(S_B, W; Y) - I(S_A, S_B, X, Y; W)$$

Numerical Results

 $\mathcal{X} = \mathcal{Y} = \{0, 1\}, P_X(\cdot) = [0.5, 0.5]$

Conclusions

Information Theoretic Framework for Privacy in Smart-Metering Systems

- Privacy Metric: Mutual Information
- IID Inputs
 - Explicit Battery Policy and Single-Letter Leakage Rate
 - State Invariance
- Markov Inputs: Dynamic Programming
- Cascaded Batteries: Single-Letter Achievability
- Our results extend to:
 - Continuous Valued Variables (Input/Output/State)
 - Higher Order Markov Process
- Future Work: Time Varying Input Distribution