

	REP	ORT DOCUME	ENTATION PAGE			
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED			16. RESTRICTIVE MARKIN	GS	111	
UNCLASSIFIED			3. DISTRIBUTION/AVAILAE	SILITY OF REPO		
			Approved for public	release: dist	ribution is	
AD-A209 040	>ULE		unlimited.			
, 12 , 1200 0 10	BER(S)		5. MONITORING ORGANIZ	ATION REPOR	T NUMBER(S)	TIC
6a. NAME OF PERFORMING ORGANIZATION		66. OFFICE SYMBOL	7a. NAME OF MONITORIN	G ORGANIZAT	10N	CTE
Naval Ocean Systems Center		(# applicable) NOSC			LANGE E	2 1089
6c. ADDRESS (City, State and ZIP Code)			7b. ADDRESS (City, State and Z	IP Code)	11.0	1. I. a 1200
San Diego, CA 92152-5000					i salagan Tanggalan	No 🙄
8a. NAME OF FUNDING/SPONSORING ORGAN	JIZATION	8b. OFFICE SYMBOL	9. PROCUREMENT INSTR	UMENT IDENTI	FICATION NUMBE	R EA
Civil Engineering Lab		(If applicable)				
8c. ADDRESS (City, State and ZIP Code)		<u></u>	10. SOURCE OF FUNDING			
[PROGRAM ELEMENT NO.	PROJECT NO	. TASK NO.	AGENCY ACCESSION NO.
Construction Battalion Center			nchoosent	MEGG	RM 335	DN 888
Port Hueneme, CA 93043 11. TITLE (include Security Classification)			0602233N	MEO2	80	573
MARINE INVERTEBRATE GLUTA	ATHIO	NE-S-TRANSFERA	ASES: PURIFICATION	, CHARACT	ERIZATION,	AND
12. PERSONAL AUTHOR(S)						
G.V. Pickwell, R.F. Lee, W.S. Keers	an					
13a, TYPE OF REPORT 13b. TIME	COVERED		14. DATE OF REPORT ()	(ear, Month, Day)	15. PAGE COU	NT
professional paper FROM 16. SUPPLEMENTARY NOTATION		то	May 1989		L	
17. COSATI CODES		8. SUBJECT TERMS (Continue on reverse if necessary and ide	ntily by block number)		
FIELD GROUP SUB-GRO	OUP		conmental Programs			
		CIVAPP: Marin CIVAPP: Analy	ne Biology /tical Chemistry			
19. ABSTRACT (Continue on reverse if necessary and identify						
High glutathione—S-transferas	•	•	d in henetonencrees en	d aill autocol	of the blue cm	ah (Callinactor
sapidus) and the digestive gland cytoso						
Purification of GST from crab	honoto	namamaa hu Canha	dow C 900 DEAE Sool	hasal and abs		land in the
isolation of two isoenzymes with isoelec						
two isoenzymes and the two forms cross			. The two transferases	had similar	molecular weig	ghts, amino
acid compositions, substrate specifities	and kin	etic parameters.				
Crab gill cytosol showed one is						
of N. obsoletus was a basic form while of with antibodies to crab GST. The present						
shrimp (Penaeus aztecus) resulted in h	igh hepa	atic GST activity.	River			
			•	٠٠ ٢ لتمر		
j						
 	.	. 04 (4000)		·* +/*		. 48 6
Published in Marine Environmental 1	Kesearci	r 24 (1988).	89			33
20. DISTRIBUTION/AVAILABILITY OF ABSTRAC)T		21. ABSTRACT SECURITY			
UNCLASSIFIED/UNLIMITED SAME A	S RPT	DTIC USERS	UNCLASSIFIED			
22a. NAME OF RESPONSIBLE PERSON			22b. TELEPHONE (Include Are	ne Code)	22c. OFFICE 8Y	
G.V. Pickwell			(619) 553–2789		Code 521	

INCLASSIFIED	/Marc Data Entre A		
CURITY CLASSIFICATION OF THIS PAGE	(When Dale Entered)		
	•		
	•		

Marine Invertebrate Glutathione-S-transferases: Purification, Characterization and Induction

Richard F. Lee, Willard S. Keeran

Skidaway Institute of Oceanography, P.O. Box 13687. Savannah, Georgia 31416, USA

&

G. V. Pickwell

Marine Sciences Division, Code 521, Naval Ocean Systems Center, San Diego, California 92152, USA

High glutathione-S-transferase (GST) activity was found in hepatopancreas and gill cytosol of the blue crab (Callinectes sapidus) and the digestive gland cytosol of two marine gastropods (Nassarius obsoletus and Cerithium floridanum).

Purification of GST from crab hepatopancreas by Sephadex G-200. DEAE-Sephacel and chromofocusing resulted in the isolation of two isoenzymes with isoelectric points of 5.9 and 5.7 (GST 5.9 and GST 5.7). Antibodies were prepared to these two isoenzymes and the two forms cross-reacted immunologically. The two transferases had similar molecular weights, amino acid compositions, substrate specifities and kinetic parameters.

Crab gill cytosol showed one isoenzyme which reacted with antibodies to GST 5-9 and GST 5-7. The major isoenzyme of N. obsoletus was a basic form while C. floridanum showed a homodimer acidic form. The gastropod GST forms did not react with antibodies to crab GST. The presence of the phenolic antioxidant, butylated hydroxytoluene, in the diet of blue crab or shrimp (Penaeus aztecus) resulted in high hepatic GST activity.

Glutathione-S-transferase (GST) catalyzes the conjugation of glutathione with foreign compounds containing electrophilic centers. It is essential for animals to deal with active electrophiles since they can react with macromolecules controlling cell growth such as RNA, DNA and proteins.

97

Marine Environ. Res. 0141-1136/88/\$03-50 © 1988 Elsevier Applied Science Publishers Ltd, England. Printed in Great Britain

Many, if not all, chemical carcinogens are electrophiles. Thus, GST plays an important role in detoxifying strong electrophiles having toxic, mutagenic and carcinogenic properties. The enzyme has been found in all animals that have been assayed, including a number of marine invertebrates. Our studies were on the GST isoenzymes from a crab (blue crab, Callinectes sapidus) and two gastropods (mud snail, Nassarius obsoletus, and Florida cerith, Cerithium floridanum). Additional studies were carried out to determine the effect of a known GST inducer, butylated hydroxytoluene, on GST activity of C. sapidus and shrimp, Penaeus aztecus.

We recently carried out the purification and characterization of GST from the hepatopancreas of C. sapidus.⁴ The purification steps involved Sephadex G-200, DEAE Sephacel and chromofocusing. Similar procedures were used to purify C. sapidus gill GST and digestive gland GST of N. obsoletus and C. floridanum. Antibodies to GST isoenzymes of C. sapidus hepatopancreas were prepared by inoculating New Zealand white rabbits with the purified GST isoenzymes. The immunological reactivity was determined by Ouchterlony double-immunodiffusion to observe if the antiserum gave a precipitation line with its own antigen (C. sapidus hepatopancreas GST) and against C. sapidus gill GST, N. obsoletus GST and C. floridanum GST.⁶ The effect of the antioxidant, 2,6-ditertiary-butyl-4-hydroxytoluene (BHT), on GST activity was determined by adding BHT (1 mg/g food) to prepared food given to C. sapidus and the penaeid shrimp (Penaeus aztecus).

In earlier studies we found high GST activity in the cytosol of F-cells from the hepatopancreas of the C. sapidus.⁴ Purification of GST from crab hepatopancreas extracts resulted in the isolation of two isoenzymes with isoelectric points of 5.9 and 5.7 (GST 5.9 and GST 5.7), as determined by analytical isoelectric focusing. The two transferases had similar molecular weights, amino acid compositions, substrate specifications and kinetic parameters (V_{max} and K_{m}). Also, GST 5.9 and GST 5.7 cross-reacted immunologically. GST 5.9 was a homodimer (monomer molecular weight—22 300) while GST 5.7 was a heterodimer (monomer weights—22 300 and 22 400). The two isoenzymes could also be distinguished by different inhibitor mechanisms with hematin and bromosulfophthalein. GST purified from blue crab gill extracts gave one isoenzyme which reacted with antibodies raised against GST 5.9 and GST 5.7.

A purification of GST from the digestive gland of two gastropods (Nassarius obsoletus and Cerithium floridanum) was carried out. The major GST isoenzyme of N. obsoletus did not bind to DEAE and had an isoelectric point in the basic range (pH 8·1). Minor isoenzymes were in the acid range. C. floridanum had no basic transferase isoenzymes and had one acidic homodimer isoenzyme (monomer weight—22 900) with an isoelectric point

TABLE I
Properties of Crab and Gastropod Glutathione-S-Transferases

(The cytosol from blue crabs (Callinectes sapidus) hepatopancreas and gastropods (Nassarius obsoletus and Cerithium floridanum) digestive glands was used to purify glutathione-S-transferase (GST) isoenzymes. The substrate for the reported GST activity was 1-chloro-2.4-dinitrobenzenc. The cytosol activity is the mean \pm standard deviation (n = 4).)

Property.	Animal						
	C. sapid	us	N. obsoletus	C. floridanum			
	Hepatopancreas	Gill					
Number of isoenzymes	2	t	1 (major) 1 (minor) 4 (trace amounts)	1			
Cytosol GST activity (μmoles product formed/min-mg protein)	0·8 ± 0·1	0·2 ± 0·05	2·9 ± 0·3	10·7 ± 1·1			
GST activity of purified isoenzymes (µmoles product formed/min-mg protein)	222, 182	110	264 479	369			
Isoelectric points of isoenzymes	5.9, 5.7	5-9	5-2, 8-1	5 ·5			
Molecular weight of monomers	22 300 (GST 5·9) 22 300, 22 400 (GST 5·7)		-	22 900			
Precipitin reaction with C. sapidus (GST 5-9) anti-sera	+	+	_	_			

of 5.5. The purified GST from the two gastropods did not react with antibodies to GST 5.9 and GST 5.7 from blue crab hepatopancreas. Thus, there appears to be major differences between the crab GST and mollusks GST that we have examined to date (summarized in Table 1).

GST activity in crab and shrimp showed a significant increase after exposure to the phenolic antioxidant, butylated hydroxytoluene (Table 2). This compound is a strong inducer of hepatic GST activity in mammals. In recent work, we have found very active GST activity in mollusks feeding on certain toxic green algae. Certain unsaturated aldehydes, which account for the toxicity of these algae, should serve as substrates of GST. We hypothesize that toxic unsaturated aldehydes induce specific isoenzymes in mollusks which feed on toxic algae.

TABLE 2

Increase of Glutathione-S-Transferase Activity in Crabs and Shrimp After Exposure to 2,6-Ditertiary-Butyl-4-Hydroxy-toluene (BHT)

(A prepared food containing BHT (1 mg/g food) was fed daily for 3 days to brown shrimp (*Penaeus aztecus*) and blue crabs (*Callinectes sapidus*). A second group of animals was fed untreated food. Cytosol from the hepatopancreas was assayed for glutathione-S-transferase activity using 1-chloro-2,4-dinitrobenzene as the substrate. Each activity listed in the table is the average of four animals assayed separately ± standard deviation.)

Glutathione-S-transferase activity (µmoles product formed/min-mg protein)		
0.8 ± 0.2		
3.1 ± 0.5		
0.21 ± 0.07		
0.8 ± 0.2		

ACKNOWLEDGEMENT

This work was partially supported by NOAA Office of Sea Grant, US Department of Commerce (Grant NS84AA-D-0072).

REFERENCES

- 1. Miller, J. A. & Miller, E. C. In *Environmental Carcinogenesis* (P. Emmelot & E. Kriek, eds), Elsevier/North Holland, Amsterdam, pp. 25-50, 1979.
- 2. Balakaskan, S., Chen, S. & Segaran, M. Comp. Biochem. Physiol., 85B, 189-92 (1986).
- 3. James, M. O., Bowen, E. R., Dansette, P. M. & Bend, J. R. Chem.-Biol. Interactions, 25, 321-44 (1979).
- 4. Keeran, W. S. & Lee, R. F. Arch. Biochem. Biophys., 255, 233-43 (1987).
- 5. Tate, L. G. & Herf, D. A. Comp. Biochem. Physiol., 61C, 165-9 (1978).
- 6. Ouchterlony, O. Handbook of Immunodiffusion and Immunoelectrophoresis, Ann Arbor Science Publishers, Ann Arbor, MI, 215 pp., 1968.
- 7. Schramm, H., Robertson, L. W. & Oesch, F. Biochem. Pharmacol., 34, 3735-9 (1985).

GV-PICKWELL

Marine Environmental Research

VOL. 24 1988

SPECIAL ISSUE

Responses of Marine Organisms to Pollutants

Editors
G. ROESIJADI & R. B. SPIES

Guest Editors
JOHN J. STEGEMAN
&
MICHAEL N. MOORE

ELSEVIER APPLIED SCIENCE