7. Differential Amplifiers

Sedra & Smith Sec. 2.1.3 and Sec. 8 (MOS Portion)

(S&S 5th Ed: Sec. 2.1.3 and Sec. 7 MOS Portion & ignore frequency-response)

Common-Mode and Differential-Mode Signals & Gain

Differential and Common-Mode Signals/Gain

Consider a <u>linear</u> circuit with TWO inputs

By superposition:

$$v_o = A_1 \cdot v_1 + A_2 \cdot v_2$$

Define:

$$v_d = v_2 - v_1$$

$$v_c = \frac{v_1 + v_2}{2}$$

Difference (or differential) Mode

Common Mode

$$v_1 = v_c - \frac{v_d}{2}$$

$$v_d$$

$$v_2 = v_c + \frac{v_d}{2}$$

Substituting for $v_1 = v_c - \frac{v_d}{2}$ and $v_2 = v_c + \frac{v_d}{2}$ in the expression for v_o :

$$v_o = A_1 \cdot \left(v_c - \frac{v_d}{2}\right) + A_2 \cdot \left(v_c + \frac{v_d}{2}\right) = \left(A_1 + A_2\right) \cdot v_c + \left(\frac{A_2 - A_1}{2}\right) \cdot v_d$$

$$v_o = A_c \cdot v_c + A_d \cdot v_d$$

Differential and common-mode signal/gain is an alternative way of finding the system response

Differential Gain:

Common Mode Gain:

Common Mode Rejection Ratio (CMRR)*:

^{*} CMRR is usually given in dB: CMRR(dB) = 20 log ($|A_d|/|A_c|$)

To find v_o , we can calculate/measure either $A_1 \ A_2$ pair or $A_c \ A_d$ pair

Superposition (finding $oldsymbol{A}_1$ and $oldsymbol{A}_2$):

- 1. Set $v_2 = 0$, compute A_1 from $v_0 = A_1 v_1$
- 2. Set v_1 = 0, compute A_2 from $v_{\rm o}$ = A_2 v_2
- 3. For any v_1 and v_2 : $v_0 = A_1 \, v_1 + A_2 \, v_2$

Difference Method (finding \boldsymbol{A}_d and \boldsymbol{A}_c):

- 1. Set $v_{\rm c}$ = 0 (or set v_1 = -0.5 v_d & v_2 = +0.5 v_d) compute A_d from $v_{\rm o}$ = A_d v_d
- 2. Set $v_{\rm d}$ = 0 (or set v_1 = + v_c & v_2 = + v_c) compute A_c from $v_{\rm o}$ = A_c v_c
- 3. For any v_1 and v_2 : $v_0 = A_{\rm d} \, v_{\rm d} + A_{\rm c} \, v_{\rm c}$ $v_d = v_2 v_1 \quad v_c = 0.5 (v_1 + v_2)$
- \succ Both methods give the same answer for v_o (or A_v).
- > The choice of the method is driven by application:
 - Easier solution
 - More relevant parameters

Caution

 \succ In Chapter 2.1.3, Sedra & Smith defines $v_{
m d} = v_2 - v_1$

$$v_1 = v_c - \frac{v_d}{2}$$
 $v_2 = v_c + \frac{v_d}{2}$

 \succ But in Chapter 8, Sedra & Smith uses $v_{
m d} = v_1 - v_2$

$$v_1 = v_c + \frac{v_d}{2}$$
 $v_2 = v_c - \frac{v_d}{2}$

While keeping $v_o = v_{o2} - v_{o1}$ as before (this is inconsistent)

ightarrow Here we use $v_{
m d}$ = v_2 – v_1 and v_o = v_{o2} – v_{o1} throughout

$$v_1 = v_c - \frac{v_d}{2}$$
 $v_2 = v_c + \frac{v_d}{2}$

- ightharpoonup Therefore, A_d (lecture slides) = $-A_d$ (Sedra & Smith) for difference Amplifiers.
- Use Lecture Slides Notation!

Differential Amplifiers: Fundamental Properties

Differential Amplifier

- Identical transistors.
- > Circuit elements are symmetric about the mid-plane.
- ightharpoonup Identical bias voltages at Q1 & Q2 gates ($V_{\rm G1}$ = $V_{\rm G2}$).
- ightharpoonup Signal voltages & currents are different because $v_1 \neq v_2$.

Q1 & Q2 are in CS-like configuration (input at the gate, output at the drain) but with sources connected to each other.

o For now, we keep track of "two" output, v_{o1} and v_{o2} , because there are several ways to configure "one" output from this circuit.

Differential Amplifier – Bias

Since
$$V_{G1} = V_{G2} = V_G$$

and $V_{S1} = V_{S2} = V_S$

$$\begin{aligned} V_{GS1} &= V_{GS2} = V_{GS} \\ V_{OV1} &= V_{OV2} = V_{OV} \\ I_{D1} &= I_{D2} = I_{D} \\ V_{DS1} &= V_{DS2} = V_{DS} \end{aligned} \right]$$

Also:
$$g_{m1} = g_{m2} = g_m$$

 $r_{o1} = r_{o2} = r_o$

This is correct even if channel-width modulation is included because

$$I_{D1}R_D + V_{DS1} = I_{D2}R_D + V_{DS2}$$

Differential Amplifier – Gain

- Signal voltages & currents are different because $v_1 \neq v_2$
- We cannot use fundamental amplifier configuration <u>for</u> arbitrary values of v_1 and v_2 .
- We have to replace each NMOS with its small-signal model.

Differential Amplifier – Gain

$$v_{gs1} = v_1 - v_3$$
$$v_{gs2} = v_2 - v_3$$

Node Voltage Method:

Node
$$v_{o1}$$
: $\frac{v_{o1}}{R_D} + \frac{v_{o1} - v_3}{r_o} + g_m(v_1 - v_3) = 0$

Node
$$v_{o2}$$
: $\frac{v_{o2}}{R_D} + \frac{v_{o2} - v_3}{r_o} + g_m(v_2 - v_3) = 0$

Node
$$v_3$$
: $\frac{v_3}{R_{SS}} + \frac{v_3 - v_{o2}}{r_o} + \frac{v_3 - v_{o1}}{r_o} - g_m(v_1 - v_3) - g_m(v_2 - v_3) = 0$

Above three equations should be solved to find v_{o1} , v_{o2} and v_{3} (lengthy calculations)

➤ Because the circuit is symmetric, differential/common-mode method is the preferred method to solve this circuit (and we can use fundamental configuration formulas).

Differential Amplifier – Common Mode (1)

Common Mode: Set $v_d = 0$ (or set $v_1 = + v_c$ and $v_2 = + v_c$)

Because of summery of the circuit and input signals*:

$$v_{o1} = v_{o2}$$
 and $i_{d1} = i_{d2} = i_d$

We can solve for v_{o1} by node voltage method but there is a simpler and more elegant way.

* If you do not see this, set $v_1=v_2=v_c$ in node equations of the previous slide, subtract the first two equations to get $v_{o1}=v_{o2}$. Ohm's law on R_D then gives $i_{d1}=i_{d2}=i_d$

Differential Amplifier – Common Mode (2)

> Because of the symmetry, the common-mode circuit breaks into two identical "half-circuits".

^{*} V_{ss} is grounded for signal

Differential Amplifier - Common Mode (3)

The common-mode circuit breaks into two identical half-circuits.

CS Amplifiers with Rs

$$\frac{v_{o1}}{v_c} = \frac{v_{o2}}{v_c} = -\frac{g_m R_D}{1 + 2g_m R_{SS} + R_D/r_o}$$

Differential Amplifier – Differential Mode (1)

Differential Mode: Set $v_c = 0$ (or set $v_1 = -v_d/2$ and $v_2 = +v_d/2$)

$$v_{gs1} = -0.5v_d - v_3$$

$$v_{gs2} = +0.5v_d - v_3$$

Node Voltage Method:

Node
$$v_{o1}$$
: $\frac{v_{o1}}{R_D} + \frac{v_{o1} - v_3}{r_o} + g_m(-0.5v_d - v_3) = 0$

Node
$$v_{o2}$$
: $\frac{v_{o2}}{R_D} + \frac{v_{o2} - v_3}{r_o} + g_m(+0.5v_d - v_3) = 0$

Node
$$v_3$$
: $\frac{v_3}{R_{SS}} + \frac{v_3 - v_{o2}}{r_o} + \frac{v_3 - v_{o1}}{r_o} - g_m(-0.5v_d - v_3) - g_m(+0.5v_d - v_3) = 0$

$$\begin{aligned} \text{Node } v_{o1} + \text{Node } v_{o2} : & \left(\frac{1}{R_D} + \frac{1}{r_o} \right) (v_{o1} + v_{o2}) - \left(\frac{2}{r_o} + 2g_m \right) v_3 = 0 \\ \text{Node } v_3 : & -\frac{1}{r_o} \left(v_{o1} + v_{o2} \right) + \left(\frac{1}{R_{SS}} + \frac{2}{r_o} - 2g_m \right) v_3 = 0 \end{aligned}$$

Only possible solution:

$$v_{o1} + v_{o2} = 0 \implies v_{o1} = -v_{o2}$$

 $v_3 = 0$

Differential Amplifier – Differential Mode (2)

$$v_3 = 0$$
 and $v_{o1} = -v_{o2} \implies i_{d1} = -i_{d2}$

 $\frac{v_{o1}}{-0.5v_d} = -g_m(r_o || R_D) , \frac{v_{o2}}{+0.5v_d} = -g_m(r_o || R_D)$

> Because of the symmetry, the differential-mode circuit also breaks into two identical half-circuits.

Concept of "Half Circuit"

For a symmetric circuit, differential- and common-mode analysis can be performed using "half-circuits."

Common-Mode "Half Circuit"

Common Mode circuit

Common Mode Half-circuit

- 1. Currents about symmetry line are equal.
- 2. Voltages about the symmetry line are equal (e.g., $v_{o1} = v_{o2}$)
- 3. No current crosses the symmetry line.

Differential-Mode "Half Circuit"

Differential Mode circuit

Differential Mode Half-circuit

- 1. Currents about the symmetry line are equal in value and opposite in sign.
- 2. Voltages about the symmetry line are equal in value and opposite in sign.
- 3. Voltage at the summery line is zero

Constructing "Half Circuits"

Step 1:

Divide **ALL elements** that $\underline{\text{cross}}$ the symmetry line (e.g., R_L) and/or $\underline{\text{are located on}}$ the symmetry line (current source) such that we have a symmetric circuit (only wires should cross the symmetry line, nothing should be located on the symmetry line!)

Constructing "Half Circuit" – Common Mode

Step 2: Common Mode Half-circuit

- 1. Currents about symmetry line are equal (e.g., $i_{d1} = i_{d2}$).
- 2. Voltages about the symmetry line are equal (e.g., $v_{o1} = v_{o2}$).
- 3. No current crosses the symmetry line.

Constructing "Half Circuit" – Differential Mode

Step 3: Differential Mode Half-Circuit

- 1. Currents about symmetry line are equal but opposite sign (e.g., $i_{d1} = -i_{d2}$)
- 2. Voltages about the symmetry line are equal but opposite sign (e.g., $v_{o1} = -v_{o2}$)
- 3. Voltage on the symmetry line is zero.

"Half-Circuit" works only if the circuit is symmetric!

- > Half circuits for common-mode and differential mode are different.
- Bias circuit is similar to Half circuit for common mode.
- Not all difference amplifiers are symmetric. Look at the load carefully!

- We can still use half circuit concept if the deviation from <u>prefect</u> symmetry is small (i.e., if one transistor has R_D and the other R_D + ΔR_D with ΔR_D << R_D).
 - However, we need to solve BOTH half-circuits (see slide 30)

Why are Differential Amplifiers popular?

- They are much less sensitive to noise (CMRR >>1).
- Biasing: Relatively easy direct coupling of stages:
 - \circ Biasing resistor (R_{SS}) does not affect the differential gain (and does not need a by-pass capacitor).
 - No need for precise biasing of the gate in ICs
 - o DC amplifiers (no coupling/bypass capacitors).
- **>** ...

Why is a large CMRR useful?

- A major goal in circuit design is to minimize the noise level (or improve signal-to-noise ratio). Noise comes from many sources (thermal, EM, ...)
- > A regular amplifier "amplifies" both signal and noise.

However, if the signal is applied between two inputs and we use a difference amplifier with a large CMRR, the signal is amplified a lot more than the noise which improves the signal to noise ratio.*

Source
$$v_2$$
 v_0 $v_1 = -0.5v_{sig} + v_{noise}$ & $v_2 = +0.5v_{sig} + v_{noise}$ $v_1 = -0.5v_{sig} + v_{noise}$ $v_2 = v_{noise}$

$$v_o = A_d \cdot v_d + A_c \cdot v_c = A_d \cdot v_{sig} + \frac{A_d}{CMRR} \cdot v_{noise}$$

^{*} Assuming that noise levels are similar to both inputs.

Comparing a differential amplifier two identical CS amplifiers (perfectly matched)

Differential Amplifier

Two CS Amplifiers

Comparison of a differential amplifier with two identical CS amplifiers – Differential Mode

Differential amplifier

Two CS amplifiers

$$\begin{aligned} v_{o1,d} &= -g_m(r_o || R_D) (-0.5v_d) \\ v_{o2,d} &= -g_m(r_o || R_D) (+0.5v_d) \\ v_{od} &= v_{o2,d} - v_{o1,d} = -g_m(r_o || R_D) v_d \\ A_d &= v_{od} / v_d = -g_m(r_o || R_D) \end{aligned}$$

 $m{ ilde{arphi}} \; v_{o1,d}$, $v_{o2,d}$, v_{od} , and differential ${f gain}$, ${m A_d}$, are identical.

Comparison of a differential amplifier with two identical CS amplifiers – Common Mode

Differential amplifier

Two CS amplifiers

$$v_{o1,c} = v_{o2,c} = -\frac{g_m R_D}{1 + 2g_m R_{SS} + R_D / r_o} v_c$$

$$v_{oc} = v_{o2,c} - v_{o1,c} = 0$$

$$A_c = v_{oc} / v_c = 0$$

$$v_{o1,c} = v_{o2,c} = -g_m(r_o || R_D)v_c$$

$$v_{oc} = v_{o2,c} - v_{o1,c} = 0$$

$$A_c = v_{oc} / v_c = 0$$

 $\sim v_{o1,c}$ & $v_{o2,c}$ are different! But $v_{oc} = 0$ and CMMR = ∞ .

Comparison of a differential amplifier with two identical CS amplifiers – Summary

Differential Amplifier

$$A_d = \frac{v_{od}}{v_d} = -g_m(r_o || R_D) , A_c = \frac{v_{oc}}{v_c} = 0$$

$$CMRR = \infty$$

Two CS Amplifiers

$$A_d = \frac{v_{od}}{v_d} = -g_m(r_o || R_D) , A_c = \frac{v_{oc}}{v_c} = 0$$

CMRR - ∞

- For perfectly matched circuits, there is no difference between a differential amplifier and two identical CS amplifiers.
 - But one can never make <u>perfectly</u> matched circuits!

Consider a "slight" mis-match in the load resistors

 \succ We will ignore r_o in the this analysis (to make equations simpler)

"Slightly" mis-matched loads - Differential Mode

$$\begin{aligned} v_{o1,d} &= -g_m(R_D) (-0.5v_d) \\ v_{o2,d} &= -g_m(R_D + \Delta R_D) (+0.5v_d) \\ v_{od} &= v_{o2,d} - v_{o1,d} = -g_m(R_D + 0.5\Delta R_D) v_d \\ A_d &= v_{od} / v_d = -g_m(R_D + 0.5\Delta R_D) \end{aligned}$$

 v_{o1} , v_{o2} , v_{od} , and differential gain, A_d , are identical.

"Slightly" mis-matched loads - Common Mode

Differential amplifier

Two CS amplifiers

$$\begin{aligned} v_{o1,c} &= -\frac{g_m R_D}{1 + 2g_m R_{SS}} v_c \ , \ v_{o2,c} &= -\frac{g_m (R_D + \Delta R_D)}{1 + 2g_m R_{SS}} v_c \\ v_{oc} &= v_{o2,c} - v_{o1,c} = -\frac{g_m \Delta R_D}{1 + 2g_m R_{SS}} v_c \\ A_c &= \frac{v_{oc}}{v_c} = -\frac{g_m \Delta R_D}{1 + 2g_m R_{SS}} \end{aligned}$$

$$\begin{aligned} v_{o1,c} &= -g_m R_D v_c \\ v_{o2,c} &= -g_m (R_D + \Delta R_D) v_c \\ v_{oc} &= v_{o2,c} - v_{o1,c} = +g_m \Delta R_D v_c \\ A_c &= \frac{v_{oc}}{v_c} = +g_m \Delta R_D \end{aligned}$$

 v_{o1} and v_{o2} are different. In addition, $v_{oc} \neq 0$ and CMMR $\neq \infty$.

A differential amplifier increases CMRR substantially for a slight mis-match ($\Delta R_D \neq 0$)

Two CS Amplifiers

$$A_d = -g_m(R_D + 0.5\Delta R_D)$$

$$A_c = +g_m \Delta R_D$$

$$CMRR \approx \frac{1}{\Delta R_D / R_D}$$

Differential Amplifier

$$A_d = -g_m(R_D + 0.5\Delta R_D)$$

$$A_c = -\frac{g_m \Delta R_D}{1 + 2g_m R_{SS}}$$

$$CMRR \approx \frac{1 + 2g_m R_{SS}}{\Delta R_D / R_D}$$

- Differential amplifier reduces A_c and increases CMRR substantially (by a factor of: $1+2\ g_mR_{SS}$).
 - \triangleright The common-mode half-circuits for a differential amplifier are CS amplifiers with R_S (thus common mode gain is much smaller than two CS amplifiers).
 - We should use a large R_{SS} in a differential amplifier!

^{*} Exercise: Compare a differential amplifier and two CS amplifiers with a mis-match in g_m