Monte Carlo Simulations (MA323) Lab 1

Name - Kartikeya Singh Roll no - 180123021

Question 1

(Run python3 180123021_Kartikeya_Singh_q1.py, 2 CSV files containing the first 100 terms of each sequence is generated which could be opened by spreadsheet software like MS-Excel)

(If a CSV file with the same name (180123021_q1_part1_output.csv/ 180123021_q1_part2_output.csv) exists in the folder it must be deleted before running the command otherwise the data would be appended to the existing file)

Outputs

 $X_0 = 6$

```
Case 1: a = 6, b = 0, m = 11
X_0 = 0
Sequence - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
Repetition Period = 1
X_0 = 1
Sequence - 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, ...
Repetition Period = 10
X_0 = 2
Sequence - 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, ...
Repetition Period = 10
X_0 = 3
Sequence - 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, ...
Repetition Period = 10
X_0 = 4
Sequence - 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, ...
Repetition Period = 10
X_0 = 5
Sequence - 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, ...
Repetition Period = 10
```

Sequence - 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, ... Repetition Period = 10

 $X_0 = 7$

Sequence - 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, ... Repetition Period = 10

 $X_0 = 8$

Sequence - 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, ... Repetition Period = 10

 $X_0 = 9$

Sequence - 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, ... Repetition Period = 10

 $X_0 = 10$

Sequence - 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, ... Repetition Period = 10

Case 2: a = 3, b = 0, m = 11

 $X_0 = 0$

Sequence - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... Repetition Period = 1

 $X_0 = 1$

Sequence - 1, 3, 9, 5, 4, 1, 3, 9, 5, 4, 1, 3, ... Repetition Period = 5

 $X_0 = 2$

Sequence - 2, 6, 7, 10, 8, 2, 6, 7, 10, 8, 2, 6, 7, ... Repetition Period = 5

 $X_0 = 3$

Sequence - 3, 9, 5, 4, 1, 3, 9, 5, 4, 1, 3, 9, 5, ... Repetition Period = 5

 $X_0 = 4$

Sequence - 4, 1, 3, 9, 5, 4, 1, 3, 9, 5, 4, 1, 3, ... Repetition Period = 5

 $X_0 = 5$

```
Sequence - 5, 4, 1, 3, 9, 5, 4, 1, 3, 9, 5, 4, 1, ...
Repetition Period = 5
X_0 = 6
Sequence - 6, 7, 10, 8, 2, 6, 7, 10, 8, 2, 6, 7, 10, ...
Repetition Period = 5
X_0 = 7
Sequence - 7, 10, 8, 2, 6, 7, 10, 8, 2, 6, 7, 10, 8, ...
Repetition Period = 5
X_0 = 8
Sequence - 8, 2, 6, 7, 10, 8, 2, 6, 7, 10, 8, 2, 6, ...
Repetition Period = 5
X_0 = 9
Sequence - 9, 5, 4, 1, 3, 9, 5, 4, 1, 3, 9, 5, 4, ...
Repetition Period = 5
X_0 = 10
Sequence - 10, 8, 2, 6, 7, 10, 8, 2, 6, 7, 10, 8, 2, ...
Repetition Period = 5
```

Observations

- 1) Case 1 (a = 6, b = 0, m = 11) has a period of 1 for $X_0 = 0$ and a period of 10 for $X_0 \neq 0$
- 2) Case 2 (a = 3, b = 0, m = 11) has a period of 1 for $X_0 = 0$ and a period of 5 for $X_0 \neq 0$
- 3) Case 1 (a = 6) is preferred for the Linear Congruence Generator as it has a higher period, hence a higher degree of randomness

Question 2

(Run python3 180123021_Kartikeya_Singh_q2.py, a CSV file containing the frequencies in various ranges and 10 images containing the plots are generated, the images might not be same as the ones shown below as the seed(X_0) is randomly generated) (If a CSV file with the same name (180123021_q2_output.csv) exists in the folder it must be deleted before running the command otherwise the data would be appended to the existing file)

Outputs

a = 1597 and 51479 (5 values of X_0 each), b = 3436, m = 244944

5 distinct values of $X_{\scriptscriptstyle 0}$ are generated randomly and first 100000 elements of the sequence are generated and the frequencies between various ranges are plotted as a histogram.

 The frequency of elements in various ranges is almost equal indicating that the values generated are nearly uniformly distributed

Question 3 (Run python3 180123021_Kartikeya_Singh_q3.py, the plot shown below is generated)

Outputs

The first 10000 elements of the sequence (u_n) is generated for a = 1229, b = 1, m = 2048, and X_0 chosen randomly and the values of (u_{i-1}, u_i) are plotted on a scatter plot. The result obtained is -

Observations

- 1) The points (u_{i-1}, u_i) lie on parallel lines
- 2) This shows the fact that the numbers generated by a linear congruence generator are not completely random (had it been completely random the plot would be uniformly scattered over the 2-D plane