15-859 Algorithms for Big Data — Fall 2022 Problem Set 1

Due: Thursday, September 29, before class

Please see the following link for collaboration and other homework policies: http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall22/grading.pdf

Problem 1: Subspace Embeddings for Other Norms (13 points)

In class, we considered the notion of a $(1 + \epsilon)$ -approximation ℓ_2 -subspace embedding, which is random matrix S for which, with probability at least 9/10, $||SAx||_2^2 = (1 \pm \epsilon)||Ax||_2^2$ simultaneously for all x. In fact, we showed that if S is a random $s \times n$ Gaussian matrix, then this holds provided that S has $s = O(d/\epsilon^2)$ rows. Suppose we are instead interested in a p-norm subspace embedding, meaning $||SAx||_p^p = \sum_{i=1}^s |(SAx)_i|^p = (1 \pm \epsilon) \sum_{i=1}^n |(Ax)_i|^p = ||Ax||_p^p$ simultaneously for all x, with say probability at least 9/10. We will compute p-norm subspace embeddings for even integers $p \ge 2$ as follows:

- 1. For a vector $y \in \mathbb{R}^d$, let $y^{\otimes p} \in \mathbb{R}^{d^p}$ be the vector with (i_1, \ldots, i_p) -th entry equal to $y_{i_1} \cdot y_{i_2} \cdots y_{i_p}$, where $i_{\ell} \in \{1, 2, \ldots, d\}$ for each $\ell \in \{1, 2, \ldots, p\}$. Show that for any $x \in \mathbb{R}^d$, we have $\langle x^{\otimes p}, y^{\otimes p} \rangle = (\langle x, y \rangle)^p$.
- 2. For any even integer $p \geq 2$, construct an $n \times d^{p/2}$ matrix M satisfying for all $x \in \mathbb{R}^d$,

$$||Ax||_p^p = ||Mx^{\otimes p/2}||_2^2.$$

Prove that if S is an appropriately scaled Gaussian Matrix with $O(d^{p/2}\epsilon^{-2})$ rows, then with probability $\geq 9/10$, for all x,

$$||SMx^{\otimes p/2}||_2^2 = (1 \pm \epsilon)||Ax||_p^p.$$

For constant even p, your algorithm to construct the matrix M and compute the matrix product $S \cdot M$ should run in time $n \cdot \text{poly}(d)$.

3. An $n \times d$ matrix A is a Vandermonde matrix if for each row A_i , there is a $y_i \in \mathbb{R}$, for which $A_i = (1, y_i, y_i^2, y_i^3, \dots, y_i^{d-1})$. For a vector $x \in \mathbb{R}^d$, note that $\langle A_i, x \rangle = \sum_{j=0}^{d-1} x_j y_i^j$ is the degree-(d-1) polynomial with coefficient vector x and evaluated at the point y_i . Show that for the special case of a Vandermonde matrix and any constant even integer p, if S is an appropriately scaled Gaussian matrix with $O(dp/\epsilon^2)$ rows, then with probability $\geq 9/10$, for all x,

$$||SMx^{\otimes p/2}||_2^2 = (1 \pm \epsilon)||Ax||_p^p$$

Problem 2: Randomized Rounding for Sparsification (12 points)

Consider the following algorithm to sparsify an $n \times n$ input matrix A:

- 1. Let $\hat{A} = A$ and replace all entries of \hat{A} that are smaller in absolute value than $\epsilon/2n$ with 0. You can assume that A has at least one entry with absolute value $\geq \epsilon/2n$.
- 2. Set $s = O(\|A\|_F^2 \cdot n\epsilon^{-2} \ln n)$
- 3. For t = 1, ... s, randomly sample indices (i_t, j_t) of \hat{A} with for all i, j,

$$\Pr[(i_t, j_t) = (i, j)] = \frac{(\hat{A}_{i,j})^2}{\|\hat{A}\|_F^2} =: p_{i,j}.$$

4. Output $\tilde{A} = \frac{1}{s} \sum_{t=1}^{s} \frac{\hat{A}_{i_t,j_t}}{p_{i_t,j_t}} e_{i_t} e_{j_t}^T$, where e_i is the *i*-th standard unit vector in \mathbb{R}^n .

Argue that with probability at least 1 - 1/n,

$$||A - \tilde{A}||_2 \le \epsilon.$$

As a hint, it may help to bound $||A - \hat{A}||_2$ and $||\hat{A} - \tilde{A}||_2$ separately and apply the triangle inequality. It may also be helpful to apply the matrix Chernoff bound that we learned in class to bound $||\hat{A} - \tilde{A}||_2$. See the generalization of symmetric Chernoff bound we saw in class to the case of arbitrary rectangular random matrices here (https://en.wikipedia.org/wiki/Matrix_Chernoff_bound#Matrix_Bennett_and_Bernstein_inequalities).

Problem 3: Sparse Deterministic Matrix Product (13 points)

Given $n \times n$ matrices A and B, we define sparse matrices \bar{A} and \bar{B} as follows. For each row A_{i*} of A, for each entry $A_{i,k}$, if $|A_{i,k}| > \frac{\epsilon}{2} ||A_{i*}||_1$, then set $\bar{A}_{i,k} = A_{i,k}$, otherwise set $\bar{A}_{i,k} = 0$. Here for a vector y, $||y||_1 = \sum_{i=1}^d |y_i|$, where d is the dimension of y.

Similarly, for each column B_{*j} of B, for each entry $B_{k,j}$, if $|B_{k,j}| > \frac{\epsilon}{2} ||B_{*j}||_1$, then set $\bar{B}_{k,j} = B_{k,j}$, otherwise set $\bar{B}_{k,j} = 0$. Show that

$$||AB - \bar{A} \cdot \bar{B}||_1 \le \epsilon ||A||_1 \cdot ||B||_1,$$

where for an $n \times n$ matrix C, $||C||_1 = \sum_{i=1}^n ||C_{i*}||_1$.

As a hint, you may want to first establish a similar claim for vectors rather than matrices.

Problem 4: Computing the Best Cost Regression (12 points)

Given an $n \times d$ matrix A with $n \ge d$, as well as an $n \times m$ matrix B, you would like to estimate: $\min_{x,i} ||Ax - B_{*i}||_2$ up to a multiplicative factor of 2, where B_{*i} is the i-th column of B. Show how to solve this problem with probability $\ge 9/10$ in $(\operatorname{nnz}(A) + \operatorname{nnz}(B) + d^4)\operatorname{poly}(\log m)$ time.

As a hint, try to use one of the Sketching Distributions discussed in the class to approximate the optimal cost of one of the regression problems with high probability and then use a union bound to simultaneously approximate the optimal costs of all the regression problems. Your algorithm may have to compute column norms of a matrix that cannot be computed in the given time budget—think how to instead just approximate the column norms quickly.