Assignment

2.3: 13,15,16,17; 2.4: 2(bef), 5, 17, 20; 2.5: 3(cd), 6(bc), 10, 13

Work

2.3

- 13. Let A and B be $n \times n$ matrices. Prove that tr(AB) = tr(BA) and $tr(A) = tr(A^t)$.
- 15. Let M and A be matrices for which the product matrix MA is defined. If the jth column of A is a linear combination of a set of columns of A, prove that the jth column MA is linear combination of the corresponding columns of MA with the same corresponding coefficients.
- 16. Let V be a finite-dimensional vector space, and let $T: V \to V$ be linear.
 - (a) If ${\rm rank}(T)={\rm rank}(T^2),$ prove that $R(T)\cap N(T)=\{0\}.$ Deduce that $V=R(T)\oplus N(T)$
 - (b) Prove that $V = R(T^k) \oplus N(T^k)$ for some positive integer k
- 17. Let V be a vector space. Determine all linear transformations $T: V \to V$ such that $T = T^2$.

2.4

- 2. For each of the following linear transformations T, determine whether T is invertible and justify your answer.
 - (b) T: $T^2 \to R^3$ defined by $T(a_1, a_2) = (3a_1 2a_2, a_2, 4a_1)$
 - (e) $T: \mathsf{M}_{2\times 2}(\mathbb{R}) \to \mathsf{P}_2(\mathbb{R})$ defined by $\mathsf{T} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2$
 - (f) $T: \mathsf{M}_{2\times 2}(\mathbb{R}) \to \mathsf{M}_{2\times 2}(\mathbb{R})$ defined by $\mathsf{T} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix}$.
- 5. Let A be invertible. Prove that A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$.
- 17. Let V and W be finite-dimensional vector spaces and $T \colon V \to W$ be an isomorphism. Let V_0 be a subspace of V.
 - (a) Prove that $\mathsf{T}(\mathsf{V}_o)$ is a subspace of $\mathsf{W}.$
 - (b) Prove that $\dim(V_0) = \dim(T(V_0))$.

2.5

20.

6.

10.

13. Let A and B be $n \times n$ matrices. Prove that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ and $\operatorname{tr}(A) = \operatorname{tr}(A^t)$.