AE 737 - MECHANICS OF DAMAGE TOLERANCE

LECTURE 16

Dr. Nicholas Smith

Last Updated: March 24, 2016 at 12:57am

Wichita State University, Department of Aerospace Engineering

SCHEDULE

- · 24 Mar Stress based fatigue
- 29 Mar Influence of notches on fatigue, Homework 7 assigned, Homework 6 due
- · 31 Mar Strain based fatigue, project abstract due
- · 5 Apr Strain based fatigue, Homework 7 due

EXTRA CREDIT

- The extra credit opportunity is still open
- · There has been some confusion about the Google Sheets page
- The page numbers listed are already being worked on or have been completed
- If you want to digitize a plot, find a figure not listed on the Google Sheet and add it to the sheet
- Once you have e-mailed me the data, I will put an "x" in the completed column and record your extra credit points
- For now I do not have a due date for this project, but I may eventually allow students who have already completed a chart to complete a second one

OUTLINE

- 1. fatigue review
- 2. modeling real loads
- 3. mean stress effects
- 4. scatter
- 5. general stress

FATIGUE REVIEW

STRESS BASED FATIGUE

- One of the simplest assumptions we can make is that a load cycles between a constant maximum and minimum stress value
- This is a good approximation for many cases (axles, for example) and can also be easily replicated experimentally
- This is referred to as constant amplitude stressing

CONSTANT AMPLITUDE STRESSING

CONSTANT AMPLITUDE STRESSING

- $\Delta \sigma$ is known as the stress range, and is the difference between max and min stress
- σ_m is the mean stress, and can sometimes be zero, but this is not always the case
- \cdot σ_a is the stress amplitude, and is the variation about the mean
- We can express all of these in terms of the maximum and minimum stress

$$\Delta \sigma = \sigma_{max} - \sigma_{min} \tag{16.1}$$

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2} \tag{16.2}$$

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2} \tag{16.3}$$

DEFINITION AND NOTATION

- It is important to distinguish between the nominal (global) stress and the local stress at some point of interest
- We use σ for the stress at a point (local stress)
- We use S as the nominal (global) stress
- In simple tension, $\sigma = S$
- For many cases (bending, notches), $\sigma \neq S$ in general
- We must also be careful to note σ_y , in some cases $S<\sigma_y$ but at some locations $\sigma>\sigma_y$

SIMPLE TENSION

Figure 1: In this case $S=\sigma$

Figure 2: As long as $\sigma < \sigma_y$, σ varies linearly. If $\sigma > \sigma_y$ at any location, however, the relationship is non-linear

Figure 3: As long as $\sigma < \sigma_y$, σ varies linearly. If $\sigma > \sigma_y$ at any location, however, the relationship is non-linear

FATIGUE TESTS

- · The length of a fatigue test is determined by two factors
 - 1. How many cycles it takes for the specified load to cause failure
 - 2. The speed of the motor controlling the test
- · Servohydraulic machines generally have a speed of 10 100 Hz.
- At a speed of 100 Hz, it would take 28 hours for 10⁷ cycles, 12 days for 10⁸ cycles, and nearly 4 months for 10⁹ cycles
- While some machines can test at very high speeds, the inertia of the sample can interfere with results

- On a linear scale, the data appear not to agree well with any standard fit
- It is also very difficult to differentiate between low-cycle fatigue failure stresses
- Instead S-N curves are often plotted on a semi-log or log-log scale, so pay attention to the axes

CURVE FITS

 If the curve is nearly linear on a log-linear plot, we use the following form to fit the data

$$\sigma_a = C + D \log N_f \tag{16.4}$$

 When the data are instead linear on a log-log scale, the following form is generally used

$$\sigma_a = \sigma_f' \left(2N_f \right)^b \tag{16.5}$$

• σ_f' and b are often considered material properties and can often be looked up on a table (p. 235)

FATIGUE LIMIT

- The fatigue limit, or endurance limit, is a feature of some materials where below a certain stress, no fatigue failure is observed
- Below the fatigue limit, this material is considered to have infinite life
- This most notably occurs in plain-carbon and low-alloy steels
- \cdot In these materials, σ_e is considered to be a material property
- This phenomenon is not typical of aluminum or copper alloys, but is sometimes arbitrarily assigned using whatever the failure stress is at some large number of cycles (10⁷ or 10⁸)

FATIGUE LIMIT

HIGH AND LOW CYCLE FATIGUE

- Some other important terms are high cycle fatigue and low cycle fatigue
- "High cycle fatigue" generally is considered anything above 10³ cycles, but varies somewhat by material
- High cycle fatigue occurs when the stress is sufficiently low that yielding effects do not dominate behavior
- When yielding effects do dominate behavior, the strain-based approach is more appropriate

MODELING REAL LOADS

REAL LOADS

- Static loads are constant and do not vary. While they are not generally considered "fatigue" loads, they can be present during fatigue loads, which will change the response.
- Working loads change with time as a function of the normal operation of a component
- Vibratory loads occur at a higher frequency than working loads and may be caused by the environment or secondary effects of normal operation.
- Accidental loads can occur at a much lower frequency than working loads

REAL LOADS

REAL LOADS

EFFECT OF VARIABLE AMPLITUDE

- We know that variable loads can often occur in real scenarios, but how can we model the effect?
- Miner's Rule is often used to approximate the effect of variable amplitude load
- We consider each load amplitude (and the number of cycles at that amplitude) as having used up a percentage of a part's life

$$\frac{N_1}{N_{f1}} + \frac{N_2}{N_{f2}} + \frac{N_3}{N_{f3}} + \dots = \sum \frac{N_i}{N_{fi}} = 1$$
 (16.6)

EFFECT OF VARIABLE AMPLITUDE

- Often there are "blocks" of variable amplitude loads which repeat
- · A typical flight cycle is a good example of this
- A flight will have working loads, vibrations, as well as storms/turbulence, but each flight should have similar loading
- · If we call the number of "block" B then we have

$$B\left[\sum \frac{N_i}{N_{if}}\right]_{rep} = 1 \tag{16.7}$$

VARIABLE AMPLITUDE LOAD EXAMPLE

MEAN STRESS EFFECTS

- It is possible for each variable load case to have a different mean stress
- This would mean generating a different S-N curve for each potential mean stress
- Much work has been done to instead convert a zero-mean stress curve to different mean stress amplitudes

MEAN STRESS EFFECTS

MEAN STRESS

- Since mean stress has an effect on fatigue life, sometimes a family of S-N curves at varying mean stress values is created
- S-N curves for these are reported in different ways, but commonly σ_{max} replaces σ_a on the y-axis
- One useful way of representing these data, instead of many S-N curves, is a constant-life diagram
- It is created by taking points from the S-N curves and plotting a line through constant N_f values

S-N CURVES AT VARIABLE σ_m

CONSTANT LIFE DIAGRAM

NORMALIZING

- One very useful way to plot this data is to normalize the amplitude by the zero-mean amplitude
- \cdot We call the zero-mean amplitude as σ_{ar}
- Plotting σ_a/σ_{ar} vs. σ_m provides a good way to group all the data together on one plot with the potential to fit a curve

NORMALIZED AMPLITUDE-MEAN DIAGRAM

GOODMAN LINE

 The first work on this problem was done by Goodman, who proposed the line

$$\frac{\sigma_a}{\sigma_{ar}} + \frac{\sigma_m}{\sigma_u} = 1 \tag{16.8}$$

 This equation can also be used for fatigue limits, since they are just a point on the S-N curves

$$\frac{\sigma_e}{\sigma_{er}} + \frac{\sigma_m}{\sigma_u} = 1 \tag{16.9}$$

MODIFICATIONS

- While the Goodman line gives a good approximation to convert non-zero mean stress S-N curves, it is somewhat overly conservative at high mean stresses
- It is also non-conservative for negative mean stresses
- · An alternative fit is known as the Gerber Parabola

$$\frac{\sigma_a}{\sigma_{ar}} + \left(\frac{\sigma_m}{\sigma_u}\right)^2 = 1 \tag{16.10}$$

 In general, the Goodman line is a good fit for brittle materials (steels) while the Gerber parabola is a better fit for more ductile materials

MODIFICATIONS

• The Goodman line can also be improved by replacing σ_u with the corrected true fracture strength $\tilde{\sigma}_{fB}$ or the constant σ_f' from the S-N curve fit

$$\frac{\sigma_a}{\sigma_{ar}} + \frac{\sigma_m}{\sigma_f'} = 1 \tag{16.11}$$

- This is known as the Morrow Equation
- For steels, $\sigma_f' \approx \tilde{\sigma}_{fB}$, but for aluminums these values can be significantly different, and better agreement is found using $\tilde{\sigma}_{fB}$.

MODIFICATIONS

 One more relationship that has shown particularly good results with aluminum alloys is the Smith, Watson, and Topper equations (SWT)

$$\sigma_{ar} = \sqrt{\sigma_{max}\sigma_a} \tag{16.12}$$

- · In general, it is best to use a form that matches your data
- If data is lacking, the SWT (16.12) and Morrow (16.11) equations generally provide the best fit

VARIABLE AMPLITUDE LOAD WITH MEAN STRESS

FATIGUE SCATTER

- One of the challenges with fatigue is that there is generally considerable scatter in the data
- Quantifying this scatter requires many repetitions, which makes for time consuming tests
- In general, the scatter follows a lognormal distribution (or a normal distribution in $log(N_f)$)

S-N-P CURVE

GENERAL STRESS

- Often combined loads from different sources introduce stresses which are not uni-axial
- For ductile materials, good agreement has been found using an effective stress amplitude, similar to the octahedral shear yield criterion

$$\bar{\sigma}_a = \frac{1}{\sqrt{2}} \sqrt{(\sigma_{xa} - \sigma_{ya})^2 + (\sigma_{ya} - \sigma_{za})^2 + (\sigma_{za} - \sigma_{xa})^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2)}$$
(16.13)

The effective mean stress is given by

$$\bar{\sigma}_m = \bar{\sigma}_{xm} + \bar{\sigma}_{ym} + \bar{\sigma}_{zm} \tag{16.14}$$

EFFECTIVE STRESS

- This effective stress can be used in all other relationships, including mean stress relationships
- Note that mean shear stress has no effect on the effective mean stress
- · This is surprising, but agrees well with experiments