ECON 340 Economic Research Methods

Div Bhagia

Lecture 3
Variance, Standard Deviation, Z-Score

NYT Article: 2016 Election Predictions

- Summarize the main issue being discussed in the article.
- What were the three types of errors identified in the article? What is the common thread across these errors?
- One of the fixes suggested in the article was "education weighting". Which of the three errors would this fix and how?

NYT Article: 2016 Election Predictions

- Summarize the main issue being discussed in the article.
- What were the three types of errors identified in the article? What is the common thread across these errors?
- One of the fixes suggested in the article was "education weighting". Which of the three errors would this fix and how?
- In general, how can we pick a sample that is representative of the population to avoid having to reweight?

Another Example

- We want to estimate the average starting salary of students at a university that has only two majors
- Half of the students are Business majors, while the other half are Engineering majors
- Randomly select 100 Business students and 100 Engineering for a survey
- Response rate among Business students is 100%, while it 50% for engineering students

How can we use weighting to adjust for this?

Last Class

How to describe variables?

- Empirical Distribution
- Measures of central tendency: mean and median

 μ : population mean, \bar{X} : sample mean

Two equivalent formulas:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \qquad \qquad \bar{X} = \sum_{k=1}^{K} f_k X_k$$

Measures of central tendency are not enough!

Mushroom Kingdom

Mean = Median = \$50,000

Bowser's Kingdom

Mean = Median= \$50,000

- Even with identical mean and median, the two countries are not identical.
- There is certainly more *dispersion* or *variability* in income in Bowser's Kingdom.
- More observations are further from the mean in Bowser's Kingdom.
- What could be a potential statistic that could capture this?

One option: average deviations from the mean. Will this work?

Xi	$X_i - \mu$		
5			
5			
10			
10			
20			

Why does this not work? Remember from the last class:

$$\sum_{i=1}^{n} (X_i - \bar{X}) = \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \bar{X} \qquad (Why?)$$
$$= \sum_{i=1}^{n} X_i - n\bar{X}$$
$$= n\bar{X} - n\bar{X} = 0 \qquad (Why?)$$

Why does this not work? Remember from the last class:

$$\sum_{i=1}^{n} (X_i - \bar{X}) = \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \bar{X} \qquad (Why?)$$

$$= \sum_{i=1}^{n} X_i - n\bar{X}$$

$$= n\bar{X} - n\bar{X} = 0 \qquad (Why?)$$

Can you think of a way to construct a statistic that would capture variation around the mean?

Variance and Standard Deviation

Population Variance

$$\sigma_X^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu_X)^2$$

Sample Variance

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Standard Deviation

$$\sigma_X = \sqrt{\sigma_X^2}$$
 $S_X = \sqrt{S_X^2}$

Variance and Standard Deviation

Back to our example.

X_i	$(X_i - \mu)$	$(X_i - \mu)^2$
5	-5	
5	-5	
10	0	
10	0	
20	10	
50	0	

Variance with Grouped Data

Population Variance

$$\sigma_X^2 = \sum_{k=1}^K f_k (X_k - \mu_X)^2$$

Sample Variance

$$S_X^2 = \frac{n}{n-1} \sum_{k=1}^K f_k (X_k - \bar{X})^2$$

Variance with Grouped Data

In our example: 5, 5, 10, 10, 20. Present this as:

X_k	f_k	$f_k X_k$	$(X_k - \mu)^2$	$f_k(X_k-\mu)^2$
5	2/5			
10	2/5			
20	1/5			
Total				

Mushroom Kingdom

Mean = Median= \$50,000 SD= \$3.000

Bowser's Kingdom

Mean = Median=
$$$50,000$$

SD= $$5,000$ $_{13/18}$

- If we don't know where we will end up in the income distribution, some of us might prefer the Mushroom Kingdom since it is unlikely we would earn very little.
- For the same reason, some of us might like Bowser, as it is more likely that one could make a lot.
- But what if Luigi has a job for you as a plumber in both locations, and you will earn \$45,000 regardless of where you end up? Are you now indifferent between the two?

Mushroom Kingdom

Mean = Median= \$50,000 SD= \$3,000

Bowser's Kingdom

Z-Score

We can calculate the Z-Score to capture how many standard deviations (σ) away from the mean (μ) a specific observation is.

$$Z = \frac{X - \mu}{\sigma} \rightarrow X = \mu + Z.\sigma$$

Example: $\sigma_{MK} = 3000$, $\sigma_{BK} = 5000$

$$Z_{MK} = \frac{45000 - 50000}{3000} = -1.66$$
 $Z_{BK} = \frac{45000 - 50000}{5000} = -1$

Z-Score

- Someone who earns \$45,000 in the Mushroom Kingdom is 1.66 standard deviations below the mean.
- While someone who earns \$45,000 in the Bowser's Kingdom is 1 *standard deviation* below the mean.
- Here, Z-score is informative about how many people are there between someone who earns \$45,000 and the average person
- More generally, Z-score tells us the relative position of an observation in the distribution

Things to do next

- Let me know the members of your research group by the end of the day on Thursday
 - You can self-sign up on Canvas by going to People and then clicking on the Research Project Group tab
 - Or just send me an email
- Coming up: Problem Set 1 (Due next week on Tues, 09/05)