Introducción

BASES DE DATOS

Profesor: Héctor Gómez Gauchía

Materiales: Mercedes García Merayo

Luis Garmendia

Ficheros vs. Bases de datos

- Fichero: almacenamiento persistente de datos usado para representar información: Ficheros de texto, documentos XML....
- Base de datos: colección de datos relacionados usada para representar información. También es persistente.

- Información almacenada en archivos del sistema operativo.
- Usuarios manipulan la información mediante programas de aplicación
 - Un programa para actualizar los datos
 - Un programa para añadir información
 - Un programa para generar informes...
- Estos programas de aplicación se desarrollan en respuesta a las necesidades.
 - Nuevos archivos
 - Nuevos programas de aplicación

Redundancia e inconsistencia de datos.

- Archivos y programas de aplicación creados por diferentes programadores en diferentes formatos y lenguajes.
- Información puede estar duplicada en diferentes archivos.
- Inconsistencia de datos: actualizaciones de ficheros no sincronizadas.
- Dificultad en el acceso a los datos.
 - Nuevas necesidades de acceso requieren nuevos desarrollos
- Aislamiento de datos.
 - Diferentes archivos con diferentes formatos.

Problemas de integridad

Restricciones de consistencia controladas en diferentes programas de aplicación. Difícil actualización o inclusión de nuevas restricciones que afectan a diferentes archivos.

Problemas de atomicidad

Transacciones que afectan a más de un archivo requieren asegurar la consistencia. Difícil en sistemas de archivos.

Problemas de acceso concurrente

 Acceso a los datos desde diferentes programas de aplicación que no han sido coordinados.

Seguridad

Diferentes niveles de acceso a los datos

Propiedades Bases de Datos: ACID

Volveremos durante el curso a ver estas propiedades

Atomicidad. Atomicity

Todas las operaciones de la transacción se realizan adecuadamente en la base de datos o ninguna de ellas.

Consistencia. Consistency

La ejecución aislada de la transacción conserva la consistencia de la base de datos.

Aislamiento. Isolation

Aunque se ejecuten varias transacciones concurrentemente, el sistema garantiza que para cada par de transacciones Ti y Tj, se cumple que para los efectos de Ti, o bien Tj ha terminado su ejecución antes de que comience Ti, o bien que Tj ha comenzado su ejecución después de que Ti termine.

Durabilidad. Durability

 Tras la finalización con éxito de una transacción, los cambios realizados en la base de datos

- Los Sistemas Gestores de Bases de Datos ofrecen una solución integral a todos estos problemas
- Los ficheros se prefieren a los SGBD cuando:
 - La base de datos considerada y las aplicaciones asociadas son simples, bien definidas y sin visos de cambio.
 - Requisitos de tiempo real que no pueden cubrir los SGBD.
 - No se requiere acceso concurrente.

¿Qué es una Base de Datos?

```
"Colección de datos → EJ: Universidad
... relacionados entre sí por su significado
... que modelan el mundo real (minimundo)
... con un propósito específico"
```

- Datos: Hechos conocidos que se pueden grabar y que tienen un significado implícito.
 - Agenda telefónica
 - Citas consulta médica
 - Referencias bibliográficas...

Ejemplo de Base de Datos Universidad

- Propósito. Mantener información de estudiantes, cursos y calificaciones.
- Minimundo. Diferentes aspectos de un entorno universitario
- Entidades (Elementos). Estudiantes, asignaturas, departamentos, profesores, calificaciones, requisitos...
- Relaciones entre los elementos del minimundo (ó universo de discurso).
 - Estudiantes se matriculan de una o varias asignaturas
 - Cada asignatura es ofertada por un departamento
 - Las asignaturas pueden tener ciertos requisitos.
 - Los profesores pertenecen a un único departamento

Ejemplo de Base de Datos

- La manipulación de la base de datos implica la consulta, creación, borrado y actualización ...
 - Listado de las asignaturas de las que se ha matriculado Luis López
 - Alumnos que se han matriculado en la asignatura de Bases de Datos
 - Nota media de la asignatura Teoría de Autómatas en la convocatoria de Septiembre
 - Cambiar la nota de Luis en la asignatura de Lógica Formal
 - Anular la matricula de Ana Álvarez
 - Dar de alta una nueva asignatura en un departamento

Sistema Gestor de Base de Datos

- Una base de datos debe reflejar los cambios que se producen en el "minimundo" (aspecto del mundo real) que representa.
- Sistema Gestor de Base de Datos (SGBD)
 - Colección de programas que permite a los usuarios crear y mantener una base de datos. Facilita las tareas de definición, construcción, manipulación y compartición de las bases de datos entre varios usuarios y aplicaciones.
- Sistema de base de datos: Base de Datos + SGBD

Sistema Gestor de Base de Datos

Un SGBD es un sistema software capaz de manejar grandes colecciones de datos relacionados, compartidos de forma consistente y segura.

Sistema Gestor de Bases de Datos

- Tienen como objetivo proporcionar un entorno práctico y eficiente para almacenamiento y recuperación de datos.
 - Debe garantizar fiabilidad ante caídas del sistema.
 - Congruencia de los datos ante accesos simultáneos.

Habitualmente están implementados mediante con una

Comportamiento del SGBD con los Datos

- Un SGBD es un sistema software capaz de manejar grandes colecciones de datos relacionados, compartidos de forma consistente y segura.
 - Independencia de datos. Proporciona una vista abstracta de los datos, omitiendo detalles de representación y almacenamiento.
 - Integridad y seguridad de los datos. Un SGBD permite establecer restricciones de integridad en la manipulación de los datos y controles de acceso para diferentes tipos de usuarios.
 - Acceso eficiente a los datos mediante el uso de diferentes técnicas de almacenamiento y recuperación.
 - Centralización de la administración de datos. Expertos que establecen la organización de los datos, los grupos de usuarios...
 - Acceso concurrente a los datos de forma transparente para los usuarios.

Pasos en el Diseño de una Base de Datos

I.- Recopilación y análisis de requisitos.
 Interactuar con los expertos del dominio para caracterizar los requisitos de los datos de los usuarios de la base de datos.

- 2.- Diseño Conceptual (Modelo Condeptual).
 Traducción de los requisitos a un modelo de datos.
 - Descripción de la estructura de la base de datos mediante los conceptos del modelo elegido.
 - La estructura son los tipos de datos, las relaciones y las restricciones.
 - No se especifican detalles de almacenamiento físico.

Pasos en el Diseño de una Base de Datos

3.- Diseño Lógico (Modelo Lógico).

Se traduce el esquema conceptual de la base de datos al modelo de implementación de datos del SGBD elegido.

> 3.1.- Normalización de relaciones.

Análisis de las relaciones para detectar posibles problemas.

4.- Diseño Físico (Modelo Interno)

Refinamiento del diseño de la base de datos para alcanzar un rendimiento óptimo (organización de archivos, índices...)

5.- Diseño de Seguridad.

Descripción de roles y accesos a los diferentes elementos de la base de datos.

Diseño de una Base de Datos

Modelo de Datos Entidad-Relación

- Existen diferentes modelos de datos, pero el más utilizado por su sencillez y eficiencia es el modelo Entidad-Relación.
- Este modelo representa la realidad a través de entidades, que son objetos que existen y que se distinguen de otros por sus características.
 - Un alumno se distingue de otro por sus características particulares como lo es el nombre, o el numero de control asignado al entrar a una institución educativa...
- Las características de las entidades se llaman atributos.
 - Nombre, dirección, teléfono, grado, grupo, etc. son atributos de la entidad alumno.
- A su vez una entidad se puede asociar o relacionar con más entidades a través de relaciones.

Volveremos durante el curso a ver el resto de transpas

Modelo de Datos Entidad-Relación

> Volveremos durante el curso a ver el resto de transpas

Modelo Relacional

- Codd propuso en 1970 el modelo relacional.
 - Esquema de una Base de Datos: diseño completo creado por el diseñador
 - Instancia de una Base de Datos: información almacenada en un instante
 - Una base de datos es una colección de relaciones
 - Cada relación es una tabla con filas y columnas

Dni	Apellidos	Nombre	Dirección	СС
08932583P	López Amor	María	Calle Loma 2	004024090248091245
74657235U	García Mancha	Luis	Plaza Retamar 4	857345784683639848
37651947T	Pozo Mares	Fernando	Calle Fernando el Santo 56	765736572365473483
78538465G	Salinas Pérez	Antonio	Calle Ferrocarril 14	376581248912481736

Structured Query Language (SQL)

- Lenguaje de definición de datos (DDL) para especificar el esquema de la base de datos
- Lenguaje de manipulación de datos (DML) para expresar las consultas y modificaciones de la base de datos.
- Lenguaje de Control de Datos (DCL) permite controlar el acceso a los datos contenidos en la base de datos.

Lenguaje de definición de datos (DDL)

- Los lenguajes de definición de datos sirven para crear y definir los esquemas de la BD.
- ▶ El SGBD utiliza un conjunto de tablas denominado diccionario de datos para almacenar:
 - Esquema de la base de datos
 - Estructura de almacenamiento y los métodos de acceso utilizados
 - Restricciones de integridad
 - □ Restricciones de dominio
 - □ Integridad referencial
 - Aserciones
 - Autorización

Ejemplo DDL

```
CREATE TABLE CITIES (
CITY_ID CHAR(6) NOT NULL,
CITY NAME CHAR(2) NOT NULL,
COUNTRY CODE CHAR(6) NOT NULL,
MILES TO LA SMALLINT,
POPULATION INT,
HEMISPHERE CHAR(1),
AVG_INCOME DECIMAL(9,2),
LAST_CENSUS DATE,
LAST UPDATED TIMESTAMP NOT NULL WITH DEFAULT,
CITY DESCRIPT VARCHAR (300),
PRIMARY KEY (CITY ID),
FOREIGN KEY (COUNTRY_CODE) REFERENCES COUNTRY
);
```

Ejemplo DDL

```
ALTER TABLE CITIES

ADD CONSTRAINT POP_MILES CHECK (
   POPULATION BETWEEN 1 AND 50000000

AND MILES_TO_LA >=-1 AND
   MILES_TO_LA <=13500
);

DROP TABLE CITIES;
```

Lenguajes de Manipulación de Datos (DML)

Los lenguajes de manipulación de datos sirven para la inserción (INSERT), eliminación (DELETE), consulta (SELECT) y modificación (UPDATE) de la información de la base de datos.

Lo utilizan los usuarios finales, los programas de aplicación y cualquiera que lo necesite.

```
SELECT NOMBRE, APES FROM ALUMNOS WHERE CALIF > 5;
```

Lenguaje de Control de Datos (DCL)

- El lenguaje de control de datos permite a los administradores de bases de datos
 - Imponer la seguridad de acceso a datos restringiendo el acceso a usuarios y grupos.
 - Definir las operaciones admitidas a cada usuario/rol.

```
GRANT REVOKE

SELECT, SELECT,

UPDATE (SALARY) UPDATE(LASTNAME, FIRSTNAME)

ON BLUEDEP ON TABLE EMPL

TO CLERK; FROM PETER;
```

Estructura Global de un SGBD

Usuarios de bases de datos

- Usuarios normales
 Usan la BD a través de aplicaciones.
- Programadores de aplicaciones.
 Interaccionan con la BD a través de llamadas que usan DML.
- Usuarios avanzados.
 Consultas en un lenguaje de consultas de bases de datos.
- Usuarios especializados
 Escriben aplicaciones de bases de datos especializadas.

Usuarios de bases de datos

- Administrador de la base de datos.
 - Definición del esquema.
 - Definición de la estructura de almacenamiento y del método de acceso.
 - Modificación del esquema y la organización física.
 - Concesión de derechos de acceso.
 - Mantenimiento

Gestión de transacciones y concurrencia

- Una transacción es una colección de operaciones que lleva a cabo una única función lógica en una aplicación de base de datos.
 - Unidad de atomicidad (todo o nada) y consistencia
 - Unidad de trabajo
- El gestor de transacciones asegura que la BD permanece en un estado consistente a pesar de fallos del sistema
- El gestor de control de concurrencia controla la interacción entre las transacciones concurrentes para garantizar la consistencia de la base de datos.

Gestor de Almacenamiento

- Módulo de programa que proporciona la interfaz entre los datos de bajo nivel de la BD y los programas de aplicación y las consultas remitidas al sistema.
- Es responsable de las siguientes tareas:
 - Interacción con el gestor de archivos
 - Almacenamiento, recuperación y actualización de los datos.
- Componentes:
 - Gestor de autorizaciones e integridad
 - Gestor de archivos
 - Gestor de la memoria intermedia

Procesamiento de consultas

- Traduce las actualizaciones y las consultas, en el nivel lógico, en una secuencia eficiente de operaciones en el nivel físico
- Intérprete del DDL
 - Registra las definiciones en el diccionario de datos
- Compilador del DML
 - Traducción de instrucciones DML a un plan de evaluación (puede haber varios) que consiste en instrucciones de bajo nivel que entiende el motor de evaluación de consultas
 - Optimización de consultas: plan de evaluación menor coste
- Motor de evaluación de consultas
 - Ejecuta las instrucciones de bajo nivel generadas por el compilador de DML

Evolución histórica

50-60	 Cintas magnéticas acceso secuencial Tarjetas perforadas. 	
60-70	 Discos magnéticos acceso directo a los datos Bases de datos jerárquicas y en red 1970: Codd define modelo relacional 	
80-90	 Prototipos de bases de datos relacionales evolucionan hacia sistemas comerciales (System R => SQL / DS (IBM)) SQL se convierte en el estándar industrial Sistemas de bases de datos paralelos y distribuidos Sistemas de bases de datos orientados a objetos 	
90	 Aplicaciones de minería de datos y de toma de decisiones Aparición del comercio electrónico en la Web 	
2000	 XML y XQuery como tecnologías de bases de datos Administración de bases de datos automática 	