A UNIMODULAR THEORY OF REDUCED & COMPLETE CONVEX BODIES

ANSGAR FREYER
TU WIEN

CONGRESO RSME, FEBRUARY 7, 2023

JOINT WORK WITH GIULIA CODENOTTI

BASICS

· Convex bodies = convex & compact C = IRd w/ non-empty interior

· Fuclidean diameter:

· Euclidean width ·

width
$$\mathbb{R}(C) = \min_{u \in S^{d-1}} \max_{a,b \in C} u \cdot (\alpha - b)$$

= minimum distance of two
parallel supporting hyperplanes

REDUCED & COMPLETE CONVEX BODIES!

· $C \in \mathbb{R}^d$ is reduced, if $V \widetilde{C} \notin C$ convex body: width $\mathbb{R}(\widetilde{C}) < \text{width}_{\mathbb{R}}(C)$

REDUCED & COMPLETE CONVEX BODIES!

- · $C \subseteq \mathbb{R}^d$ is reduced, if $\forall \widetilde{C} \subsetneq C$ convex body: width $\mathbb{R}(\widetilde{C}) < \text{width}_{\mathbb{R}}(C)$
- · C = Rd is complete, if

 V Č = C convex body: diamir (Č) > diamir (C)

REDUCED & COMPLETE CONVEX BODIES!

· $C \subseteq \mathbb{R}^d$ is reduced, if $\forall \widetilde{C} \subsetneq C$ convex body: width $\mathbb{R}(\widetilde{C}) < \text{width}_{\mathbb{R}}(C)$

· C = Rd is complete, if

V C = C convex body: diamir (C) > diamir (C)

FACT: C is complete, iff

Sd-1 -> 12, U -> max u.(a-b) is constant a, b ∈ C

~> "bodies of constant width"

REDUCED & COMPLETE CONVEX BODIES, I

Reduced Bodies are extremal in the "isominvieth-inequality", which asks for the maximum of widthout (C) among convex $C \subseteq \mathbb{R}^d$ with $vol(C) \subseteq I$.

Ly Pál: In \mathbb{R}^2 , the regular triangle is extremal.

Ly dy, 3: Still open...

REDUCED & COMPLETE CONVEX BODIES, I

Reduced Bodies are extremal in the "isominuieth - inequality", which asks for the maximum of widthing (C) among convex $C \subseteq \mathbb{R}^d$ with $vol(C) \subseteq I$.

Ly Pál: In \mathbb{R}^2 , the regular triangle is extremal.

Ly dy, 3: Still open...

· Reduced / Complete polytopes were also studied in non-Euclidean settings:

-> Spaces of constaint curvature (Bezdek, Birōczky & Sagmeister, Lassak, ...)

-> Minkowski spaces (González Morino et al., Groemer, Martini, ...)

THE DISCRETE SETTING

- · Lattices à discrete subgroups 1 stè
- Dual lattice : 1 = { ye Trd : x . y e Z, Yxe 1}

THE DISCRETE SETTING 1

- · Lattices à discrete subgroups 1 st
- Dual lattice : 1 = { ye Trd : x . y e 7, Vx e 1}
- · Lattice segments: I=[a,b] = IRd s.th. dim(/nspan(a-bl) = 1.

$$Vol_1(I) = \frac{vol_1(I)}{|V|}$$
, where v generates Λ aspan(or-b)

I Lattice diameter

- · Lattices à discrete subgroups 15 Rd
- Dual lattice : 1 = { ye Trd : x · y e 7, Vx e 1}
- · Lattice segments: I=[a,b] = IRd s.th. dim(/nspan(a-bl) = 1.

Vol, (I) = vol, (I), where v generates / rspan(or-b)

diam, (C) = max { Vol, (I): I = C lattice signent }

Îlattice diameter

Lattice width: width, (C) = min max y. (a-b)

= # (lattice planes orthogonal to y)

LATTICE REDUCED/COMPLETE CONVEX BODIES

- · C is lattice reduced w.r.t. 1, if

 Y \(\tilde{\cappa} \) \(\xi \) \(\tilde{\cappa} \) \(\cappa \) \(\tilde{\cappa} \) \(\tilde{
- · C is lattice complete W.r.t. 1, if

 VC = C convex body: diam, (2) > diam, (c)

LATTICE REDUCED/COMPLETE CONVEX BODIES

· C is lattice reduced w.r.t. 1, if

Y \(\widetilde{C} \) \(\wid

. C is lattice complete w.r.t. 1, if ∀ĉ ≥ C convex body: diam, (ĉ) > diam, (c)

- · C is reduced/ complete u.r.t. 1
 - => AC is reduced/complete w.r.t. A1

, VA EGLd(R)

- · C is reduced | complete w.r.t. Zd
 - => UC is reduced/complete w.r.t. Zed

, Vue Gld(2)

EXAMPLES

· Sy=conv { 1, -e, ..., -ed} is reduced and complete w.r.t. Zd.

For any lattice 1, its Voronoi cell $V_{M} = \{ x \in \mathbb{R}^{d} : |x| \leq |x-a|, \forall a \in \mathbb{N} \} \}$ is complete w.r.t. \mathbb{N} • $(M)^{*}$ is reduced w.r.t. \mathbb{N}^{*}

THE FLATNESS CONSTANT

anne man de la company de la c

. C⊆Rd is "hollow", if int C ∩ 1 = \$ Ly Hollow bodies coin have arbitrary large volume, but:

THM (Khinehine '48): C=Rd hellow => width, (C) =Fle(d),

where Flt(d) is independent of (Flatness constant)

THE FLATNESS CONSTANT

and man of the

. C⊆Rd is "hollow", if int C∩ N = \$ Ly Hollow bodies coin have arbitrary large volume, but:

THM (Khinehine '48): C=Rd hellow => width, (C) =Flt(d),
Where Flt(d) is independent of C (Flatness constant)

· How do realizers of Flt(d) look like? Lovász: Suffices to consider inclusion—maximal hollow bodies L> Polytopes with $\leq 2^d$ facets.

THE FLATNESS CONSTANT, I

Lovász: Suffices to consider inclusion-maximal hollow bodies

THE FLATNESS CONSTANT, II

Lovász: Suffices to consider inclusion-maximal hollow bodies

Alternatively:

THM (Codenatti, F. 'Z3+): For any convex body $C = \mathbb{R}^d$, there's a reduced body R = C with width, $(R) = \text{width}_{\Lambda}(C)$.

-veduced

THE FLATNESS CONSTANT, II

Lovász: Fltld) is attained by Ciuclusian-maximal hallow => C is a polytope with = 2d facets,

Alternatively:

THM (Codenetti, F, 'Z3+): For any convex body $C = \mathbb{R}^d$, there's a reduced body R = C with width, $(R) = \text{width}_{\Lambda}(C)$.

THM (Codenetti, F, '23+): Let SciRd be a local maximum seduced of widthy: {S = iRd hellow d-simplex} -> iR.

Then, Sis 1-reduced.

PROPERTIES OF REDUCED/COMPLETE BODIES

. Both reduced and complete bodies are polytopes.

-> At most Z.(2d-1) vertices

COMPLETE

-> At most 7.(2d-1) facets

PROPERTIES OF REDUCED/COMPLETE BODIES

. Both reduced and complete bodies are polytopes.

-> At most Z. (2d - 1) vertices

-> At most 7.(2d-1) facets

· How many independent width/diameter realizing directions are there?

-> dim { yE/1 width direction} > O(logd)

-> dim { vel diameter direction} > O((agd)

PROPERTIES OF REDUCED/COMPLETE BODIES

. Both reduced and complete bodies are polytopes.

-> At most Z.(2d-1) vertices

REDUCED

-> At most 7 (2d-1) facets

- · How many independent width diameter realizing directions are there?
- -> dim { yE/1 width direction} > O(logd)

-> dim { ve/ diameter direction} > O((agd)

- · Consider VA* = regular d-permutahedron
- . This is a complete polytope w.t. At, it has $2 \cdot (2^d 1)$ facets.

 Lifting the normals of $V_{A_a^a}$ into $\mathbb{R}^{2^d 1}$ gives a complete polytope with diameter directions

DUALITY (?)

PROPOSITION (Codenatti, F, '23+): Let P be origin-symmetric.

P is complete w.r.t. 1 (=) P* is reduced w.r.t. 1*

Morcover, the diameter directions of P are the width directions of P*

DUALITY (?)

PROPOSITION (Codenotti, F, '23+): Let P be origin-symmetric.

Pis complete w.r.t. 1 (=>) P* is reduced w.r.t. 1*

~> 1s there a "natural" duality in the general case?

PROPOSITION (Codenulli, F, '23+): Let SciRd be a complete simplex.

Then, dim { diameter directions of S} = d.

The dual statement for reduced simplices is false.

NCCUSION (3)

. Recall that, in the Euclidean case, "complète" is stronger than "reduced",

INCLUSION (3)

Recall that, in the Euclidean case, "complete" is stronger than "reduced".

THM (Codenotti, F. '23+): Any 22-complete triangle is also 22-reduced.

· This does not extend to polygens, or d-simplices.

INCCUSION (3)

· Recall that, in the Euclidean case, "complete" is stronger than "reduced".

THM (Codenotti, F. '23+): Any 22-complete triangle is also 22-reduced.

This does not extend to polygens, or d-simplices.

How do "reduced" and "complete" interact?]

THANK YOU FOR YOUR ATTENTION!