openRocket_flight Documentation

UTAT Rocketry

June 2021

1 Inputs

1.1 Files

To successfully run the simulation, two files are needed: the main open rocket file ending with .ork and the respective engine file ending with .rse. By default, both files should be placed in a folder named Simulation, which is in the same directory as the code.

The file structure should be as follows:

1.2 Class Constructor

```
openRocket_flight(simulation, engine=None, folder='Simulation')
```

Parameters

• simulation : str The name of the rocket file, with the extension.

- engine: str

 The name of the motor file, with the extension. By default, there is no custom motor attached.
- folder : str Name of the folder where both simulation files are stored. The default location is in the Simulation folder.

2 Output

Warning: Remember to call the function run() before retriving the outputs.

State Vector It can be accessed via flight_run.state_vector. The vector is a numpy array in this form:

 $\begin{array}{c} s_x \\ s_y \\ s_z \\ v_x \\ v_y \\ v_z \\ a_x \\ a_y \\ a_z \\ q_w \\ q_z \\ \omega_{x_1} \\ \omega_{x_2} \\ \omega_{x_3} \\ \alpha_{x_1} \\ \alpha_{x_2} \\ \alpha_{x_3} \end{array}$

Note, in this vector, x, y, z are the principle axis of the launch site, while x_1, x_2, x_3 are the principle axis of the rocket, which changes as the rocket rotates.

Each variable in the vector is a numpy array containing data collected through the simulation.

In addition, flight_run.euler_axis and flight_run.quaternion are also available as the stand-alone vectors for convenience.

Parachute Deploy The exact second of the first parachute being deployed after launch can be accessed by flight_run.recovery_time.

Raw Data All the raw data are organized into their respective family shown in Table 1. The data can be accessed by flight_run.<FAMILY>.<TYPE>

Table 1: List of all raw data available.

Family	Type
$ae rodynamic_coefficients$	TYPE_FRICTION_DRAG_COEFF
	TYPE_PRESSURE_DRAG_COEFF
	TYPE_BASE_DRAG_COEFF
	TYPE_NORMAL_FORCE_COEFF
	TYPE_PITCH_MOMENT_COEFF
	TYPE_YAW_MOMENT_COEFF
	TYPE_SIDE_FORCE_COEFF
	TYPE_ROLL_MOMENT_COEFF
	TYPE_ROLL_FORCING_COEFF
	TYPE_ROLL_DAMPING_COEFF
	TYPE_PITCH_DAMPING_MOMENT_COEFF
	TYPE_YAW_DAMPING_MOMENT_COEFF
	TYPE_DRAG_COEFF
	TYPE_AXIAL_DRAG_COEFF
$atmospheric_conditions$	TYPE_WIND_VELOCITY
	TYPE_AIR_TEMPERATURE
	TYPE_AIR_PRESSURE
	TYPE_SPEED_OF_SOUND
forces	TYPE_GRAVITY
	TYPE_THRUST_FORCE
	TYPE_DRAG_FORCE
	TYPE_AOA
	TYPE_ROLL_RATE
	TYPE_PITCH_RATE
	TYPE_YAW_RATE
	TYPE_MACH_NUMBER
	TYPE_REYNOLDS_NUMBER
	TYPE_CORIOLIS_ACCELERATION
	TYPE_POSITION_X
$kine matics_dynamics$	TYPE_POSITION_Y
	TYPE_POSITION_XY
	TYPE_POSITION_DIRECTION
	TYPE_VELOCITY_XY
	TYPE_ACCELERATION_XY
	TYPE_LATITUDE
	TYPE_LONGITUDE

	TYPE_ORIENTATION_THETA
	TYPE_ORIENTATION_PHI
	TYPE_VELOCITY_TOTAL
	TYPE_ACCELERATION_TOTAL
	TYPE_ALTITUDE
	TYPE_VELOCITY_Z
	TYPE_ACCELERATION_Z
${ m rocket_properties}$	TYPE_REFERENCE_LENGTH
	TYPE_REFERENCE_AREA
	TYPE_MASS
	TYPE_MOTOR_MASS
	TYPE_LONGITUDINAL_INERTIA
	TYPE_ROTATIONAL_INERTIA
	TYPE_CP_LOCATION
	TYPE_CG_LOCATION
	TYPE_STABILITY
	TYPE_PROPELLANT_MASS
$simulation_information$	TYPE_TIME_STEP
	TYPE_COMPUTATION_TIME
	TYPE_TIME