

United States Patent [19]

Giddings et al.

[56]

[11] Patent Number:

5,596,282

Date of Patent:

Jan. 21, 1997

[54]	TESTER	FOR INTEGRATED CIRCUITS	5,047,71
-			5,066,90
[75]	Inventors:	James N. Giddings, Mesquite, Tex.;	5,220,28
,		Robert P. Howell, San Jose, Calif.	5,227,71
		1100011 11 110 1101, Out 2000, Cum.	5,247,24
[73]	Assignee:	Texas Instruments Incorporated,	5,247,25
		Dallas, Tex.	5,317,25
		Dallas, TCX.	5,323,10
			5,325,05
[21]	Appl. No.	: 502,590	5,347,21
[22]	Filed:	Jul. 14, 1995	Primary Ex
		· · · · · · · · · · · · · · · · · · ·	Assistant E
	Attorney, Ap		
		ated U.S. Application Data	Brady, III;
[63]	Continuatio	• • •	
	doned.	[57]	
[51]	Int. Cl.6	G01R 31/02	The present
1 - 4 1	VII .		F

[63]	doned.	on ot	Scr.	No.	165,226,	Dec.	10,	1993,	aban-
[51]	Int. Cl.6				•••••	••••••	G	01R	31/02

324/758, 158.1, 540, 755, 756, 757

References Cited

U.S. PATENT DOCUMENTS

4,112,363 4,362,991 4,471,298 4,818,933 4,870,354	12/1976 9/1978 12/1982 9/1984 4/1989 9/1989	Waltz 209/573 Luther 324/754 Morrison et al. 324/758 Carbine 324/754 Frohlich 324/72.5 Kerschner et al. 324/754 Davaut 324/761
5,003,254	3/1991	Hunt et al 324/754

5,047,714	9/1991	Maeno	. 324/758
5,066,907	11/1991	Tarzwell et al	324/754
5,220,285	6/1993	Cerda	. 324/540
5,227,717	7/1993	Tsurishima et al	324/754
5,247,246	9/1993	Van Loan et al	324/761
5,247,250	9/1993	Rios	. 324/754
5,317,255	5/1994	Suyama et al	324/754
5,323,106	6/1994	Saegusa	. 324/758
5,325,052	6/1994	Yamashita	. 324/754
5,347,215	9/1994	Armstrong et al	324/158.1

xaminer-Ernest F. Karlsen

Examiner-Russell M. Kobert

gent, or Firm-W. Daniel Swayze, Jr.; W. James Richard L. Donaldson

ABSTRACT

at invention relates to the field of programming, testing, or burn-in integrated circuits. A testing device is disclosed whereby contact with the leads of an integrated circuit is made while the integrated circuit is in the shipping tray. Contact is made from a jig which is lowered onto the integrated circuit and makes contact at the shoulder of the leads of the integrated circuit, thereby contacting the integrated circuit at the strongest point of the lead and insuring good contact to the desired lead. The testing mechanism may include one jig or more jigs up to one jig for each integrated circuit in an integrated circuit storage tray. The invention allows for the testing of integrated circuits with a minimum of physical movement and manipulation of the integrated circuits.

19 Claims, 3 Drawing Sheets

US-PAT-NO:

5596282

DOCUMENT-IDENTIFIER: US 5596282 A

TITLE:

Tester for integrated circuits

US Patent No. - PN (1):

5596282

Brief Summary Text - BSTX (4):

Before an integrated circuit is placed in a final product, electrical testing must be performed to insure that the integrated circuit is not defective. With the increase in complexity of integrated circuits, the time required to perform the necessary testing has increased exponentially. The complexities of the testing process have become so great that testing has become a bottleneck in the manufacturing process. This is particularly true with custom integrated circuits such as programmable arrays and application specific integrated circuits (ASICs). For these custom circuits, specific, carefully designed testing programs must be performed to insure that the customized integrated circuit meets the customer's specifications.

10/3/05, EAST Version: 2.0.1.4