Cryptanalysis of mCrypton

<Team Mitnick>

Department of <Computer Science Engineering>
Indian Institute of Technology Bhilai

November 28, 2020

Outline

- Introduction
- 2 mCrypton cipher
- Attacks on mcrypton and its complexity

Introduction

Increasing demand of resource-constrained and compact devices

- 1.Low consumption of power
- 2.Compact size
- 3. Security for data exchanges

Introduction to light weight Cryptography

- \rightarrow As the demand increased, to solve the problems and make things easy lightweight cryptography came into action.
- \rightarrow There are multiple ciphers in the market are introduced such as SEA, PRESENT, mCrypton, KATAN, etc.
- \rightarrow mCrypton is one of the best devices overall and its hardware complexity stands at the top of the chain.

Introduction

Short details of mCrypton:

- 1.It name refers as miniature of Crypton
- 2.It is a 64-bit block cipher which is also an SPN network with 12 rounds
- 3.It is available in three key sizes 64, 96, 128 bits for minimal, moderate, standard Securities, respectively.

Some areas in usage of RFID tags

- 1.Medical
- 2.logistics
- 3. Maintenance
 - 4.Railways

Outline

- 1 Introduction
- 2 mCrypton cipher
- 3 Attacks on mcrypton and its complexity
- 4 Brownie Point Nominations
- Conclusion

Specs of mCrypton

Properties of Cipher

- → mCrypton is a SPN based block cipher.
- → mCrypton is a 64-bit block cipher.
- \rightarrow It has three Key sizes 64, 96, 128.
- \rightarrow The input message for encryption is in the form of 4x4 matrix.

S-box of mCrypton

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$S_0(x)$	4	f	3	8	d	a	c	0	b	5	7	e	2	6	1	9
$S_1(x)$	1	c	7	a	6	d	5	3	f	b	2	0	8	4	9	e
$S_2(x)$	7	e	c	2	0	9	d	a	3	f	5	8	6	4	b	1
$S_3(x)$	b	0	a	7	d	6	4	2	c	e	3	9	1	5	f	8

Encryption Algorithm of mCrypton

 \rightarrow There are 12 rounds in mCrypton

There are four major transformations in each round:

- 1. Nonlinear substitution γ
- 2.Bit permutation π
- 3.Column-to-row transposition au
- 4. Key addition σ

Pictorial representation of a single round

Key-scheduling

- Initially we should give a user key, U.
 U = (U[0], U[1], U[2], U[3], U[4], U[5])
- $T \leftarrow S(U[0]) \oplus C[r], T_i \leftarrow T \bullet M_i$ (S(U[0]) is nibble wise sbox substitution) $i = 0, 1, 2, 3, M_0 = 0 \times 6000, M_1 = 0 \times 0000, M_2 = 0 \times 0000, M_3 = 0 \times 0000f$
- $K_r \leftarrow (U[1] \oplus T_0, U[2] \oplus T_1, U[3] \oplus T_2, U[4] \oplus T_3),$
- $U \leftarrow (U[5], U[0]^{<<3}, U[1], U[2], U[3]^{<<8}, U[4])$ (<<3 denotes bits are left rotated by 3 places)

Pictorial representation of Key Scheduling

Outline

- 2 mCrypton cipher
- Attacks on mcrypton and its complexity

Various attacks

Some attacks on mCrypton:

- 1.Biclique Cryptanalysis
- 2. Related-key Rectangle attack
- 3. Related-key impossible differential attack
- 4. Collision attacks

Various attacks on mcrypton

I mentioned 4 attacks. In which, I will explain more about the related-key impossible differential attack

- 1. Short note on Related-key impossible differential attack
- 2.In this attack, we are going to analyse on 6-round and 9-round mCrypton-96.
- 3. The attack procedure is similar for 6-round and 9-round mCrypton-128

Pictorial representation of 6-round related-key differential on mcrypton-96

6-round related-key differential on mcrypton-96

6-round related-key differential

Assume the two related key differences to be;

$$\Delta K = K \oplus K^1 = (0000|0000|0000|a000|0000|0000)$$

- 1. A 4.5-round related key differential
- 2. A 1.5-round related key differential

Table 1:Sub Key Differences of 9 rounds

Round(i)	$\Delta K_{(i,row(0))}$	$\Delta K_{(i,row(1))}$	$\Delta K_{(i,row(2))}$	$\Delta K_{(i,row(3))}$
0	(0000)	(0000)	(a000)	(0000)
1	(0000)	(0000)	(0000)	$(00a \ 0)$
2	(0000)	(0000)	(0000)	(0000)
3	(0000)	(0000)	(00b0)	(0000)
4	(a000 < < 11)	(0000)	(0000)	(0000)
5	(0000)	(a000 < < 11)	(0000)	(0000)
6	(0000)	(0000)	$(a000^{<<11})$	(0000)
7	(0000)	(0000)	(0000)	(a000 < <3)
8	(0000)	(0000)	(0000)	(0000)
9	(b'000)	(0000)	(0000)	(000b'')
7	1 . 1 .	C 1/ 1 1//	.1 1 1 1.	œ

a, b and at least one of b' and b'' are non-zero nibble differences.

Pictorial representation of 9-round related-key impossible differential attack on mcrypton-96

- Using the 6-round distinguisher from the previous slides, we present a related-key impossible differential attack on 9-round mCrypton-96.
- To reduce Time complexity, in rounds 7-9 we changed the order from σ , τ , π to τ , π , σ .
- Due to change in order, K_i key of ith round changes, as its equivalent key(k_i^{eq}) is $\pi(\tau(k_i))$.
- In this we use 16 related-keys $K^0,...,K^{15}$, having a relation $K_i \oplus$ $K_i = (0000|0000|0000(i \oplus j)000|0000|0000)$

9-round related-key impossible differential attack on mcrypton-128

- The attacker can choose the value of a, values of b' and b" in round 9 are from s-boxes which are unknown.
- The attack is briefly explained in the term paper

Complexity of the attack

There are a total of 7 steps in calculating the complexity which are explained in the term paper. Following are the complexities involved in the 7 steps:

- step 1: $2^{n+20} = 2^{59.9}$
- step 2: $1/8 \times 2^{n+19} \times (4x64 + 8) \approx 2^{63.9}$
- step 3: $2^{n+11}x2^8 = 2^{58.9}$
- step 4: $2 \times 1/9 \times 1/4 \times 2^{n+11} \times 2^{8+16} \approx 2^{70.7}$
- \bullet step 5: 2 \times 1/9 \times 1/4 \times 2 $^{n-1}\times$ 2 $^{24+16}\approx$ 2 $^{74.7}$
- \bullet step 6: 2 \times 1/9 \times 1/4 \times 2 $^{n-13}\times$ 2 $^{40+8}$ \approx 2 $^{70.7}$
- step 7: $2 \times 2^{n-19.4} \times 2^{48} = 2^{69.5}$

Complexity of the attack

- In the 7 steps, step 4, 5, 6 are dominant part of the time complexity as the total complexity will be the sum of these 3 steps.
 - $2^{70.7} + 2^{74.7} + 2^{70.7} \approx 2^{74.9}$ encryptions.
- The memory required for step 2 is dominant over all other steps as it is $2^{74.7}$
- The above attack procedure is similar for mCrypton-128.

- 2 mCrypton cipher
- Attacks on mcrypton and its complexity
- Brownie Point Nominations

Brownie points

- Visualizations like Encryption algorithm and Key Scheduling were added for better understanding
- Secure against differential and linear cryptanalysis
- Properties like S-box and Bit-permutation are analyzed
- It has a better hardware architecture than most of the other lightweight cryptography

Outline

- 2 mCrypton cipher
- Attacks on mcrypton and its complexity
- Conclusion

Conclusion

- Lightweight cryptography
- Advantages of Lightweight Cryptography
- Encryption Algorithm of mCrypton
- Various attacks on mCrypton
- Explained the related-key impossible differentiable attack on 6-round and 9-round mCrypton-96
- Complexities of the related-key impossible differential attack
- Explained Uniqueness of mCrypton over other lightweight cryptographic ciphers

Thanking You

Team Members

- Tumma Manohar Sai, 11841170
- Goolla Abhijith, 11840510
- Anugu Rakesh Reddy, 11840200

Implementation Info

• Github Link: github.com/Manohar-Sai/mCrypton—lightweight-block-cipher