Uniwersytet Morski w Gdyni Katedra Automatyki Okrętowej

Automatyka i Robotyka

Rachunek operatorowy - Matlab

Mirosław Tomera

Rachunek operatorowy jest jednym z narzędzi matematycznych służących do rozwiązywania liniowych równań różniczkowych zwyczajnych. W porównaniu z metodą klasyczną, metoda transformaty operatorowej przekształca równanie różniczkowe zwyczajne w równanie algebraiczne, którego zmienną jest operator Laplace'a s. Wówczas, w celu uzyskania rozwiązania w dziedzinie operatora s przekształca się równanie algebraiczne przy użyciu prostych reguł matematycznych. Ostateczne rozwiązanie równania różniczkowego uzyskiwane jest poprzez zastosowanie odwrotnej transformaty Laplace'a. Podstawowe własności transformaty Laplace'a zebrane zostały w tabeli 1, natomiast transformaty operatorowe najpopularniejszych funkcji w tabeli 2.

1. ROZKŁAD FUNKCJI OPERATOROWEJ NA UŁAMKI ZWYKŁE

Rozważ następującą funkcję operatorową zapisaną w postaci ilorazu dwóch wielomianów B(s)/A(s):

$$\frac{B(s)}{A(s)} = \frac{\text{num}}{\text{den}} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0}$$
(1)

w których niektóre ze współczynników a_i oraz b_j mogą być równe zero. W MATLABIE wektory wierszowe num oraz den określają współczynniki licznika i mianownika transmitancji. Wobec tego

$$num = \begin{bmatrix} b_m & b_{m-1} & \dots & b_0 \end{bmatrix}$$
$$den = \begin{bmatrix} a_n & a_{n-1} & \dots & a_0 \end{bmatrix}$$

Polecenie

$$[r,p,k] = residue(num,den)$$
 (2)

wyznacza residua r, bieguny p oraz współczynniki stałe k rozkładu funkcji operatorowej na ułamki proste ilorazu dwóch wielomianów B(s)/A(s). Rozkład na ułamki proste ilorazu wielomianów B(s)/A(s) jest wówczas następujący:

$$\frac{B(s)}{A(s)} = \frac{\text{num}}{\text{den}} = \frac{r(1)}{s - p(1)} + \frac{r(2)}{s - p(2)} + \dots + \frac{r(n)}{s - p(n)} + k$$
(3)

Przykład 1

Dokonaj rozkładu na ułamki proste następującej funkcji operatorowej

$$G(s) = \frac{L(s)}{M(s)} = \frac{\text{num}}{\text{den}} = \frac{3s^2 + 12s + 42}{s^4 + 6s^3 + 22s^2 + 30s + 13}$$
(1.1)

Rozwiązanie: Dla tej funkcji operatorowej zapis w MATLABIE jest następujący

```
>> num = [3 12 42]
>> den = [1 6 22 30 13]
```

zastosowanie polecenia

daje następujące wyniki

(Zauważ, że residua zwracane są w wektorze kolumnowym r, położenia biegunów w wektorze kolumnowym p, a część całkowita w wektorze wierszowym k). Powyższy zapis w MATLABIE odpowiada następującemu rozkładowi na ułamki zwykłe funkcji operatorowej (1.1):

$$G(s) = \frac{2s^2 + 12s + 42}{s^4 + 6s^3 + 22s^2 + 30s + 13} = \frac{0.03 + j0.04}{s - (-2 + j3)} + \frac{0.03 - j0.04}{s - (-2 - j3)} + \frac{-0.06}{s + 1} + \frac{3.3}{(s + 1)^2}$$
(1.2)

Polecenie residue może być również używane do przekształcenia funkcji operatorowej rozłożonej na ułamki proste na postać ilorazu dwóch wielomianów (licznika i mianownika). Polecenie to jest następujące:

```
>> [num1, den1] = residue(r, p, k)
```

gdzie wektory r, p, k mają wartości uzyskane z powyższego rozkładu (1.2). Polecenie

```
>> printsys(num1, den1, 's')
```

wypisuje iloraz wielomianów w zależności od zmiennej s.

czyli ta funkcja operatorowa ma taką samą postać jak funkcja wyjściowa opisana wzorem (1.1).

2. ZNAJDOWANIE ODWROTNYCH TRANSFORMAT LAPLACE'A

Znajdowanie odwrotnych transformat Laplace'a odbywa się przez rozkład funkcji operatorowej na ułamki zwykłe i znalezienie odpowiadającej jej funkcji czasowej przez zastosowanie transformat funkcji znajdujących się w tabeli 2. Przykład 2ilustruje tę metodę.

Tabela 1. Podstawowe własności transformaty Laplace'a

1. Liniowość

$$\pounds \{ af_1(t) + bf_2(t) \} = aF_1(s) + bF_2(s), a, b - \text{state}$$

2. Całkowanie w dziedzinie rzeczywistej

$$\mathcal{L}\left\{\int_{-\infty}^{t} f(t)dt\right\} = \frac{F(s)}{s} + \frac{1}{s}\int_{-\infty}^{0} f(t)dt$$

3. Różniczkowanie w dziedzinie rzeczywistej

$$\mathcal{L}\left\{\frac{d^n f(t)}{dt^n}\right\} = s^n F(s) - \sum_{k=0}^{n-1} s^{n-k-1} f^{(k)}(0)$$

3.a. pierwsza pochodna

$$\mathcal{L}\left\{\frac{df(t)}{dt}\right\} = sF(s) - f(0)$$

3.b. druga pochodna

$$\mathcal{L}\left\{\frac{d^2 f(t)}{dt^2}\right\} = s^2 F(s) - sf(0) - f^{(1)}(0)$$

4. Całkowanie w dziedzinie zespolonej (zmiennej s)

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(s)ds$$

5. Różniczkowanie w dziedzinie zespolonej (zmiennej s)

$$\mathcal{L}\left\{t^n f(t)\right\} = \left(-1\right)^n \frac{d^n F(s)}{ds^n}$$

6. Przesuniecie w dziedzinie rzeczywistej

$$\mathcal{L}\{f(t-T)\}=e^{-sT}F(s)$$
, T jest stałą

7. Twierdzenie o wartości początkowej

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$$

8. Twierdzenie o wartości końcowej

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

9. Przesunięcie w dziedzinie zespolonej (zmiennej s)

$$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$$

10. Zmiana skali

$$\mathcal{L}{f(at)} = \frac{1}{a}F(\frac{s}{a})$$
, a jest stałą dodatnią

11. Splot funkcji (twierdzenie Borela)

$$\mathcal{L}\left\{f_1(t) * f_2(t)\right\} = F_1(s)F_2(s), \text{ gdzie } f_1(t) * f_2(t) = \int_{0^-}^t f_1(\tau)f_2(t-\tau)d\tau$$

Tabela 2. Wybrane transformaty Laplace'a

	f(t)	F(s)
1.	$\delta(t)$ (impuls jednostkowy)	1
2.	l(t) (skok jednostkowy)	$\frac{1}{s}$
3.	$\delta_T(t) = \sum_{k=0}^{\infty} \delta(t - kT) \cdot 1(t)$	$\frac{1}{1-e^{-Ts}}$
4.	$t\cdot 1(t)$	$\frac{1}{s^2}$
5.	$\frac{1}{2}t^2\cdot 1(t)$	$\frac{1}{s^3}$
6.	$\frac{1}{n!}t^n\cdot 1(t)$	$\frac{1}{s^{n+1}}$
7.	$e^{\sigma t} \cdot 1(t)$	$\frac{1}{s-\sigma}$
8.	$te^{\sigma t} \cdot 1(t)$	$\frac{1}{(s-\sigma)^2}$
9.	$\frac{1}{n!}t^ne^{\sigma t}\cdot 1(t)$	$\frac{1}{(s-\sigma)^{n+1}}$
10.	$\sin \omega t \cdot 1(t)$	$\frac{\omega}{s^2 + \omega^2}$
11.	$\cos \omega t \cdot 1(t)$	$\frac{s}{s^2 + \omega^2}$
12.	$t \sin \omega t \cdot 1(t)$	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$
13.	$t\cos\omega t\cdot 1(t)$	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$
14.	$e^{\sigma t} \sin \omega t \cdot 1(t)$	$\frac{\omega}{(s-\sigma)^2+\omega^2}$
15.	$e^{\sigma t}\cos\omega t\cdot 1(t)$	$\frac{(s-\sigma)}{(s-\sigma)^2+\omega^2}$
16.	$Ae^{\sigma t}\cos(\omega t+\phi)\cdot 1(t)$	$\frac{\frac{1}{2}Ae^{j\phi}}{s-(\sigma+j\omega)} + \frac{\frac{1}{2}Ae^{-j\phi}}{s-(\sigma-j\omega)}$

Przykład 2

Znajdź funkcję czasową następującej funkcji operatorowej

$$G(s) = \frac{0.03 + j0.04}{s - (-2 + j3)} + \frac{0.03 - j0.04}{s - (-2 - j3)} + \frac{-0.06}{s + 1} + \frac{3.3}{(s + 1)^2}$$
(2.1)

i wykreśl ją przy użyciu MATLABA.

Rozwiązanie: Funkcja operatorowa (2.1) jest już rozłożona na ułamki proste. W funkcji tej występują bieguny zespolone i dwa residua w postaci zespolonej oraz biegun dwukrotny. W celu zastosowania wzoru 16 z tabeli 2, residua zespolone należy przekształcić do postaci wykładniczej. Postać wykładniczą można znaleźć po zastosowaniu następujących poleceń:

Po znalezieniu postaci wykładniczej residuów zespolonych, funkcja operatorowa (2.1) może zostać zapisana w postaci

$$G(s) = \frac{0.05e^{j53^{\circ}}}{s+2-j3} + \frac{0.05e^{-j53^{\circ}}}{s+2+j3} + \frac{-0.06}{s+1} + \frac{3.3}{(s+1)^2}$$
(2.2)

Funkcja czasowa wyznaczana jest z postaci operatorowej przy użyciu odwrotnej transformaty Laplace'a

$$g(t) = \mathcal{L}^{-1}\{G(s)\}\tag{2.3}$$

czyli w tym przypadku

$$g(t) = \mathcal{L}^{-1} \left\{ \frac{\frac{1}{2} \frac{1}{10} e^{j53^{\circ}}}{s + 2 - j3} + \frac{\frac{1}{2} \frac{1}{10} e^{-j53^{\circ}}}{s + 2 - j3} \right\} - 0.06 \mathcal{L}^{-1} \left\{ \frac{1}{s + 1} \right\} + 3.3 \mathcal{L}^{-1} \left\{ \frac{1}{(s + 1)^{2}} \right\}$$
(2.4)

Po zastosowaniu wzorów (16) i (7) oraz (8) z tabeli 2, uzyskuje się następującą funkcję czasową

$$g(t) = 0.1e^{-2t}\cos(3t + 53^{\circ}) - 0.06e^{-t} + 3.3te^{-t} \quad dla \quad t \ge 0$$
 (2.5)

Wykres przebiegu czasowego funkcji (2.4) uzyskany zostanie po napisaniu następujących linii kodu programu.

```
t = [0:0.01:10];
y = 0.1*exp(-2*t).*cos(3*t+53*pi/180)-0.06*exp(-t)+3.3*t.*exp(-t);
plot( t, y, 'k-')
title('Rozwiązanie w dziedzinie czasu')
xlabel('t [s]')
ylabel('g(t)')
grid on
```

Uzyskany wykres funkcji czasowej (2.5) znajduje się na rysunku 2.1.

Rys. 2.1. Wykres czasowy funkcji 2.5.

3. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH

Zostanie tutaj przedstawione rozwiązywanie równań różniczkowych liniowych stacjonarnych przy użyciu metody transformaty operatorowej Laplace'a, która składa się z czterech kroków:

- 1. Transformowanie równania różniczkowego w dziedzinę zmiennej zespolonej s przy użyciu przekształcenia operatorowego Laplace'a.
- 2. Przekształcanie uzyskanego równania algebraicznego i wyznaczenie zmiennej wyjściowej.
- 3. Wykonanie rozkładu na ułamki proste funkcji operatorowej opisującej zmienną wyjściową.
- 4. Uzyskanie rozwiązania w dziedzinie czasu poprzez zastosowanie odwrotnej transformaty Laplace'a.

W celu szczegółowego wyjaśnienia metody rozwiązywania liniowych stacjonarnych równań różniczkowych przy użyciu transformaty operatorowej Laplace'a przedstawiony został poniższy przykład.

Przykład 3

Znajdź rozwiązanie y(t) poniższego równania różniczkowego (3.1.) z uwzględnieniem warunków początkowych i uzyskane rozwiązanie przedstaw w postaci przebiegu czasowego

$$\frac{d^2y(t)}{dt^2} + 2\frac{dy(t)}{dt} + y(t) = e^{-2t}\sin 3t,$$
 (3.1)

Warunki początkowe dla równania (3.1.)

$$y(0) = 0 \tag{3.2}$$

$$y^{(1)}(0) = 3 (3.3)$$

Rozwiązanie: Poddając równanie różniczkowe (3.1) obustronnemu przekształceniu Laplace'a, uzyskuje się dla każdego elementu następujące funkcje operatorowe:

$$\pounds\{y(t)\} = Y(s) \tag{3.4}$$

$$\pounds\left\{\frac{dy(t)}{dt}\right\} = sY(s) - y(0) \tag{3.5}$$

$$\mathcal{L}\left\{\frac{d^2y(t)}{dt^2}\right\} = s^2Y(s) - sy(0) - y^{(1)}(0)$$
(3.6)

$$\pounds\left\{e^{-2t}\sin 3t\right\} = \frac{3}{(s+2)^2 + 3^2} \tag{3.7}$$

Po podstawieniu wyrażeń (3.4), (3.5), (3.6) oraz (3.7) do równania (3.1) otrzymuje się

$$\left[s^{2}Y(s) - sy(0) - y^{(1)}(0)\right] + 2\left[sY(s) - y(0)\right] + Y(s) = \frac{3}{\left(s+2\right)^{2} + 3^{2}}$$
(3.8)

Podstawiając do równania (3.8) podane warunki poczatkowe

$$\left[s^{2}Y(s)-3\right]+2\,sY(s)+Y(s)=\frac{3}{\left(s+2\right)^{2}+3^{2}}\tag{3.9}$$

lub

$$(s^2 + 2s + 1)Y(s) = \frac{3}{s^2 + 4s + 13} + 3$$
(3.10)

Wyznaczając Y(s) z równania (3.8) uzyskuje się

$$Y(s) = \frac{3s^2 + 12s + 42}{\left(s^2 + 4s + 13\right)\left(s^2 + 2s + 1\right)} = \frac{3s^2 + 12s + 42}{\left(s^2 + 4s + 13\right)\left(s + 1\right)^2}$$
(3.11)

Sprawdzenia poprawności wyznaczenia funkcji operatorowej (3.11) można dokonać korzystając z twierdzenia o wartości początkowej (tabela 1, wzór 7), jednak poprawność tego sprawdzenia nie gwarantuje, że jest pewność iż uzyskana funkcja operatorowa jest poprawna, ale pozwala na wykrycie bardzo dużych błędów.

$$y(0) = \lim_{t \to 0} y(t) = \lim_{s \to \infty} sY(s) = \lim_{s \to \infty} \frac{\frac{3}{s} + \frac{12}{s^2} + \frac{42}{s^3}}{1 + \frac{6}{s} + \frac{22}{s^2} + \frac{30}{s^3} + \frac{13}{s^4}} = 0$$
(3.12)

Uzyskana wartość jest równa pierwszemu warunkowi początkowemu y(0) = 0, jednak obliczenie to nie pozwala stwierdzić czy poprawne są współczynniki funkcji operatorowej (3.11). Ciąg dalszy wyznaczania funkcji operatorowej (3.11) znajduje się w przykładzie 1, a następnie w przykładzie 2 i ostatecznie uzyskany wykres czasowy na rysunku 2.1. Kolejne sprawdzenie uzyskanego wyniku przeprowadza się na wykresie czasowym, wykres musi zaczynać się w punkcie określonym przez warunek początkowy y(0), natomiast wartość ustalona można wyznaczyć korzystając z twierdzenia o wartości końcowej (tabela 1, wzór 8), dla rozpatrywanego w tym przykładzie równania różniczkowego uzyskana funkcja czasowa ustala się na poziomie wyznaczonym w poniższym równaniu (3.13)

$$y(\infty) = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{3s^3 + 3s^2 + 42s}{s^4 + 6s^3 + 22s^2 + 30s + 13} = 0$$
 (3.13)

Czyli w tym przypadku rozwiązanie y(t) powinno zaczynać się i ustalać przy wartości zero.

ĆWICZENIA W MATLABIE

- **M1.** Dla poniższych transformowanych sygnałów, znajdź y(t) dla $t \ge 0$ i wykreśl w MATLABIE.
 - a) $Y(s) = \frac{s}{s+2}$
 - b) $Y(s) = \frac{2s+1}{s^2+3s+2}$
 - c) $Y(s) = \frac{4(s+1)}{(s+2)(s+3)^2}$
 - d) $Y(s) = \frac{10}{s^3 + 2s^2 + 5s}$
 - e) $Y(s) = \frac{3 6e^{-2s}}{s^2 + 5s + 6}$
- M2. Korzystając z oprogramowania narzędziowego MATLAB, dokonaj rozkładu na ułamki proste następujących funkcji operatorowych
 - a) $G(s) = \frac{10(s+1)}{(s+3)(s+4)(s+5)(s+6)}$
 - b) $G(s) = \frac{10(s+1)}{s^2(s+4)(s+6)}$
 - c) $G(s) = \frac{5(s+2)}{s^2(s+1)(s+5)}$
 - d) $G(s) = \frac{s^4 + 2s^3 + 2}{s^3(s^2 + 4)}$
 - e) $G(s) = \frac{100(s^2 + s + 3)}{s(s^2 + 5s + 3)}$
 - f) $G(s) = \frac{s+1}{s(s+2)(s^2+2s+2)}$
 - g) $G(s) = \frac{5e^{-2s}}{(s+1)(s^2+s+1)}$
 - h) $G(s) = \frac{1}{s(s^2 + 1)(s + 0.5)^2}$
 - i) $G(s) = \frac{100(s+2)}{s(s^2+4)(s+1)}e^{-s}$

j)
$$G(s) = \frac{2(s+1)}{s(s^2+s+2)^2}$$

- k) $G(s) = \frac{1}{(s+1)^3}$
- 1) $G(s) = \frac{2(s^2 + s + 1)}{s(s+1)(s^2 + 5s + 5)^2}$
- M3. Znajdź odwrotne transformaty Laplace'a dla funkcji operatorowych z zadania M2 i narysuj je w MATLABIE.
- **M.4.** Korzystając z metod transformaty Laplace'a rozwiąż następujące równania różniczkowe dla $t \ge 0$ z uwzględnieniem warunków początkowych i przedstaw uzyskane rozwiązania na wykresie czasowym:

a)
$$\frac{d^3 y(t)}{dt^3} + 5 \frac{d^2 y(t)}{dt^2} + 4 \frac{dy(t)}{dt} = 2 \delta(t)$$
$$y(0) = 1$$
$$y^{(1)}(0) = -1$$
$$y^{(2)}(0) = 1$$

b)
$$\frac{d^2 y(t)}{dt^2} + 5 \frac{dy(t)}{dt} + 6 y(t) = 2 e^{-t}$$

 $y(0) = 0$
 $y^{(1)}(0) = -2$

c)
$$\frac{dy(t)}{dt} + 2y(t) = 6\cos 2t$$
$$y(0) = 2$$

d)
$$\frac{d^3 y(t)}{dt^3} + 4 \frac{d^2 y(t)}{dt^2} + 3 \frac{dy(t)}{dt} = 3 \delta(t)$$
$$y(0) = 1$$
$$y^{(1)}(0) = -1$$
$$y^{(2)}(0) = 1$$

e)
$$\frac{dy(t)}{dt} + 2y(t) = \frac{1}{2}t^2$$

 $y(0) = -1$

f)
$$\frac{dy(t)}{dt} + 3y(t) = 4\sin 4t$$
$$y(0) = 1$$

g)
$$\frac{d^2 y(t)}{dt^2} + 4 \frac{dy(t)}{dt} + 5 y(t) = \cdot 1(t)$$

 $y(0) = -3$
 $y^{(1)}(0) = 2$

h)
$$\frac{d^2 y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2 y(t) = 3 e^{-3t}$$
$$y(0) = 0$$
$$y^{(1)}(0) = 1$$

i)
$$\frac{d^2 y(t)}{dt^2} + 2 \frac{dy(t)}{dt} + 2 y(t) = 3 \sin 2t$$
$$y(0) = 2$$
$$y^{(1)}(0) = -3$$

j)
$$\frac{d^2 y(t)}{dt^2} + 2 \frac{dy(t)}{dt} + y(t) = 5 e^{-3t} + t$$

 $y(0) = 2$
 $y^{(1)}(0) = 1$

k)
$$\frac{d^2 y(t)}{dt^2} + 4 y(t) = t^2$$

 $y(0) = 1$
 $y^{(1)}(0) = 2$

k)
$$\frac{d^2 y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 6y(t) = e^{-3t} \cos 2t$$

 $y(0) = 1$
 $y^{(1)}(0) = 2$

ODPOWIEDZI DO WYBRANYCH ĆWICZEŃ

M1.

a)
$$y(t) = \delta(t) - 2e^{-2t}$$

b)
$$y(t) = -e^{-t} + 3e^{-2t}$$

c)
$$y(t) = -4e^{-2t} + 4e^{-3t} + 8te^{-3t}$$

d)
$$y(t) = 2 \cdot 1(t) + 2.2361 \cdot e^{-t} \cos(2t + 153.4349^{\circ})$$

e)
$$y(t) = 3e^{-2t} - 3e^{-3t} - [6e^{-2(t-2)} - 6e^{-3(t-2)}] \cdot 1(t-2)$$

M2.

a)
$$G(s) = \frac{8.333}{s+6} - \frac{20}{s+5} + \frac{15}{s+4} - \frac{3.333}{s+3}$$

b)
$$G(s) = \frac{0.6944}{s+6} - \frac{0.9375}{s+4} + \frac{0.2431}{s} + \frac{0.4167}{s^2}$$

c)
$$G(s) = \frac{0.15}{s+5} + \frac{1.25}{s+1} - \frac{1.4}{s} + \frac{2}{s^2}$$

d)
$$G(s) = \frac{0.5625 - j0.5}{s - j2} + \frac{0.5625 + j0.5}{s + j2} - \frac{0.125}{s} + \frac{0.5}{s^3}$$

e)
$$G(s) = \frac{110.94}{s + 4.303} - \frac{110.94}{s + 0.697} + \frac{100}{s}$$

f)
$$G(s) = \frac{0.25}{s-2} - \frac{0.25}{s+1-i} - \frac{0.25}{s+1+i} + \frac{0.25}{s}$$

g)
$$G(s) = \left[\frac{5}{s+1} + \frac{-2.5 - j1.4434}{s+0.5 - j0.866} + \frac{-2.5 + j1.4434}{s+0.5 + j0.866}\right]e^{-2s}$$

h)
$$G(s) = \frac{0.24 + j0.32}{s - j} + \frac{0.24 - j0.32}{s + j} - \frac{4.48}{s + 0.5} - \frac{1.6}{(s + 0.5)^2} + \frac{4}{s}$$

i)
$$G(s) = \frac{-10 - j5}{s - j2} + \frac{-10 + j5}{s + j2} + \frac{20}{s + 1} + \frac{0}{s} + \left[\frac{-2.5 + j5}{s - j2} + \frac{-2.5 - j5}{s + j2} - \frac{20}{s + 1} + \frac{25}{s} \right] e^{-s}$$

j)
$$G(s) = \frac{-0.25 - j0.675}{s + 0.5 - j1.3229} + \frac{-0.25 + j0.675}{s + 0.5 + j1.3229} + \frac{-0.2143 + j0.1890}{\left(s + 0.5 - j1.3229\right)^2} + \frac{-0.2143 - j0.1890}{\left(s + 0.5 + j1.3229\right)^2} + \frac{0.5}{s}$$

k)
$$G(s) = \frac{0}{s+1} + \frac{2}{(s+1)^2} - \frac{1}{(s+1)^3}$$

l) $G(s) = \frac{0.4}{s} + \frac{-2}{s+1} + \frac{2.6}{s+1.38} - \frac{1}{s+3.62}$

M3.

a)
$$g(t) = 8.333 \cdot e^{-6t} - 20 \cdot e^{-5t} + 15 \cdot e^{-4t} - 3.333 \cdot e^{-3t}$$

b)
$$g(t) = 0.6944 \cdot e^{-6t} - 0.9375 \cdot e^{-4t} + 0.2431 \cdot 1(t) + 0.4167 \cdot t$$

c)
$$g(t) = 0.15 \cdot e^{-5t} + 1.25 \cdot e^{-t} - 1.4 \cdot 1(t) + 2 \cdot t$$

d)
$$g(t) = 1.505 \cdot \cos(2t + 318.4^{\circ}) - 0.125 \cdot 1(t) + 0.25 \cdot t^{2}$$

e)
$$g(t) = 110.94 \cdot e^{-4.303t} - 110.94 \cdot e^{-0.697t} + 100 \cdot 1(t)$$

f)
$$g(t) = 0.25 \cdot e^{-2t} - 0.5 \cdot e^{-t} \cos t + 0.25 \cdot 1(t)$$

g)
$$g(t) = 5.773 \cdot e^{-0.5(t-2)} \cos \left| 0.866(t-2) + 210^{\circ} \right| + 5 \cdot e^{-(t-2)}$$

h)
$$g(t) = 0.8 \cdot \cos(t + 53.1^{\circ}) - 4.48 \cdot e^{-0.5t} - 1.6 \cdot t \cdot e^{-0.5t} + 4 \cdot 1(t)$$

i)
$$g(t) = 22.3607 \cos(2t - 153.4^{\circ}) + 20e^{-t} + 11.1803 \cdot \cos[2(t - 1) + 116.5^{\circ}] - 20e^{-(t - 1)} + 25 \cdot 1(t - 1)$$

j)
$$g(t) = 0.5179 \cdot e^{-0.5t} \cos(1.3229t - 164.9^{\circ}) + 0.2590 \cdot te^{-0.5t} \cos(1.3229t + 164.9^{\circ}) + 0.5 \cdot 1(t)$$

k)
$$g(t) = 2 \cdot te^{-t} - 0.5 \cdot t^2 e^{-t}$$

$$|) \quad g(t) = 0.4 \cdot 1(t) - 2 \cdot e^{-t} + 2.6e^{-1.38t} - e^{-3.62t}$$

M4.

a)
$$Y(s) = \frac{s^2 + 4s + 2}{s(s+1)(s+4)} = \frac{0.5}{s} - \frac{0.3333}{s+1} + \frac{0.1667}{s+4}$$

$$y(t) = 0.5 \cdot 1(t) - 0.3333 \cdot e^{-t} + 0.1667 \cdot e^{-4t}$$

b)
$$Y(s) = \frac{-2s}{(s+1)(s+2)(s+3)} = \frac{1}{s+1} - \frac{4}{s+2} + \frac{3}{s+3}$$

 $v(t) = e^{-t} - 4 \cdot e^{-2t} + 3 \cdot e^{-3t}$

c)
$$Y(s) = \frac{2s^2 + 6s + 8}{(s+2)(s^2+4)} = \frac{0.5}{s+2} + \frac{0.75 - j0.75}{s-j2} + \frac{0.75 + j0.75}{s+j2} = \frac{0.5}{s+2} + \frac{1.0607e^{-j45^{\circ}}}{s-j2} + \frac{1.0607e^{-j45^{\circ}}}{s+j2}$$

$$y(t) = 0.5 \cdot e^{-2t} + 2.1213 \cdot \cos(2t - 45^{\circ})$$

d)
$$Y(s) = \frac{s^2 + 3s + 3}{s(s+1)(s+3)} = \frac{1}{s} - \frac{0.5}{s+1} + \frac{0.5}{s+3}$$

$$v(t) = 1(t) - 0.5 \cdot e^{-t} + 0.5 \cdot e^{-3t}$$

e)
$$Y(s) = \frac{-s^3 + 1}{s^3(s+2)} = -\frac{1.125}{s+2} + \frac{0.125}{s} - \frac{0.25}{s^2} + \frac{0.5}{s^3}$$

$$y(t) = -1.125 \cdot e^{-2t} + 0.125 \cdot 1(t) -0.25 \cdot t + 0.25 \cdot t^2$$

f)
$$Y(s) = \frac{s^2 + 32}{(s+3)(s^2+16)} = \frac{1.64}{s+3} + \frac{-0.32 - j0.24}{s-j4} + \frac{-0.32 + j0.24}{s+j4} = \frac{1.64}{s+3} + \frac{0.4e^{-j143.1301^{\circ}}}{s-j4} + \frac{0.4e^{-j143.13$$

$$\frac{0.4e^{j143.1301^{\circ}}}{s+i4}$$

$$y(t) = 1.64 \cdot e^{-3t} + 0.8 \cdot \cos(4t - 143.1301^{\circ})$$

g)
$$Y(s) = \frac{-3s^2 - 10s + 1}{s(s^2 + 4s + 5)} = \frac{0.2}{s} + \frac{-1.6 + j2.2}{s + 2 - j} + \frac{-1.6 - j2.2}{s + 2 - j} = \frac{0.2}{s} + \frac{2.7203e^{j/126.0274^{\circ}}}{s + 2 - j} + \frac{2.7203e^{-j/126.0274^{\circ}}}{s + 2 - j} + \frac{2.7203e^{-j/126.0274^{\circ}}}{s + 2 - j} + \frac{2.7203e^{-j/126.0274^{\circ}}}{s + 2 + 1 + j} + \frac{2.7203e^{-j/126.0274^{\circ}}}{s + j} + \frac{2.7203e^{-j/126.0274^{\circ}}}{s$$

LITERATURA

- 1. Amborski K., A. Marusak, Teoria sterowania w ćwiczeniach, PWN, Warszawa, 1978.
- 2. Nise N. S. ControlSystems Engineering, 3rd edn, John Wiley & Sons, 2000.
- 3. Próchnicki W., M. Dzida, Zbiór zadań z podstaw automatyki, Gdańsk, 1993.
- 4. Tomera M., Rachunek operatorowy Laplace'a, http://www.am.gdynia.pl/~tomera/teoria ster.htm.

