CONVOLUTIONAL NEURAL NETWORKS: DISCRETE CONVOLUTIONS

Convolution
operations first
published by
D'Alembert in 1754

Discrete convolutions are matrix operations that can be used to apply **filters** to a matrix or array

The convolutional neural network architecture was first described by Kunihiko Fukushima in 1980

pre-defined filters

Discrete convolutions
are matrix operations
that can be used to
apply **filters** to a
matrix or array

$$C[m,n] = \sum_{j=-\omega}^{\infty} \sum_{i=-\omega}^{\infty} h[i+\omega,j+\omega] * A[m+i,n+j]$$

1	0	1	0	0	0	0	0							
0	1	1	0	0	0	0	0				5			
0	0	1	0	0	0	0	0							
0	0	1	1	0	0	0	0		0	1				
0	0	1	0	1	0	0	0)	1	1				
1	1	1	1	1	1	1	1)	0	1				
0	0	1	0	0	0	1	0							
0	0	1	0	0	0	0	1							

Discrete Convolutions $C = A \otimes h$

Discrete Convolutions $C = A \otimes h$

Blurring Filter

Line Detection / Extraction

Photograph

Photograph

Filter (101x101)

N-D Discrete Convolutions

$$C[m,n] = \sum_{i=-\omega}^{\omega} h[i+\omega] * A[m+i]$$

N-D Discrete Convolutions

0.5 0.5 0.5 0.5 0.5

Discrete Convolutions

Discrete convolutions apply to **array** or **matrix**-like data

Discrete convolutions are matrix operations that can be used to apply **filters** to a matrix or array

These filters can **extract features** or transform the input