URI Online Judge I 2071

Banco do Faraó

Por XIV Maratona de Programação IME-USP, 2010 ■ Brazil

Timelimit: 1

Pouca gente sabe, mas foi no Antigo Egito que surgiram os primeiros bancos, de uma forma muito semelhante ao que conhecemos hoje. O principal banco era do faraó, que decidia, de tempos em tempos, tomar para o Estado o conteúdo de algumas contas. Isso ocorria da seguinte forma. Dado N, o número de correntistas do Banco do Faraó (era esse o nome do banco), cada conta podia ter uma quantia em menés (moeda do Antigo Egito) que podia ser, inclusive, negativa (indicando que a pessoa devia aquela quantia ao banco), ou seja, o estado de cada conta era um inteiro a_i. O objetivo do faraó era fazer diversas consultas nas contas de seus súditos. Dado um intervalo [A;B] (correspondente as contas a_A; a_{A+1}; ...; a_{B-1}; a_B) o faraó desejava encontrar um subintervalo de soma máxima, ou seja, cujo sequestro pelo Estado renderia ao Faraó a maior quantia de dinheiro. Isso era explicado aos correntistas como sendo uma oferenda a Amon-Ahcid, o Deus egípcio do dinheiro. Fazendo regularmente tais oferendas o deus ficava satisfeito e permitia que o sistema econômico funcionasse perfeitamente. Isso durou surpreendentemente mais de 500 anos, até que num desses sequestros os correntistas se rebelaram, tomaram o palácio e mataram o faraó. O banco foi saqueado e o sistema ruiu. Só se ouviu falar de bancos novamente centenas de anos depois.

Sua tarefa é dado um registro de contas e uma série de consultas, determinar para cada consulta um intervalo de soma máxima.

Entrada

A entrada é composta por diversas instâncias. A primeira linha da entrada contém um inteiro \mathbf{T} indicando o número de instâncias. A primeira linha de cada instância contém um inteiro \mathbf{N} , indicando o número de contas no Banco do Faraó, onde $1 \le \mathbf{N} \le 100~000$. A segunda linha de cada instância contém \mathbf{N} inteiros, entre -10 000 até 10 000, indicando os saldos nas contas dos correntistas. A terceira linha contém um inteiro \mathbf{Q} , onde $1 \le \mathbf{Q} \le 100~000$, indicando o número de consultas que serão feitas. Cada uma das \mathbf{Q} linhas seguintes contém dois inteiros \mathbf{A} e \mathbf{B} , onde $1 \le \mathbf{A}$, $\mathbf{B} \le \mathbf{N}$, indicando o intervalo que deve ser consultado.

Saída

Para cada instância seu programa deve produzir **Q** linhas na saída, sendo uma para cada consulta. Cada uma dessas linhas deve conter dois inteiros: o primeiro representa a soma do intervalo com maior soma, e o segundo, o número de elementos desse intervalo. Caso haja mais de um intervalo com maior soma, imprima o número de elementos naquele com maior número de elementos.

Exemplo de Entrada	Exemplo de Saída
3	-1 1
3	3 2
-1 -2 -3	6 4
1	14 4
1 1	2 1
8	0 3
1 2 -1 4 9 8 -1 2	
4	
1 3	
1 4	
2 5	
7 8	
3	

0 0 0	
1	
1 3	

XIV Maratona de Programação IME-USP, 2010