

정지영 허필원+

광주과학기술원

Email: wjd123ap@gm.gist.ac.kr

서론

- **기술 개요:** 최근 착용형 로봇 기술은 하지 절단자 및 보행 장애인이 다양한 지형에서 원활하게 이동할 수 있도록 크게 발전했습니다.
- 기존 연구의 한계: 기존의 기술들은 여러 환경에 대해 정상 상태의 보행일 때에 초점을 맞춰 개발을 했고, 환경 전환 보행에 대한 제어 기술들은 아직 미흡하다.

환경 전환 보행 의도 인지 시스템

그림 1. 보행 의도 인지 시스템

관절 궤적 생성 방법

- 평지에서 계단을 오르는 보행에서 ProMPs(Probabilistic Movement Primitives)[2] 모델을 활용하여 유각기의 보행 궤적을 생성한다.
- 관절 궤적 생성 모델에 사용된 ProMPs은 식 (1)과 같이 weight w와 basis function Φ 으로 표현된다.
- 그림 2와 같이 관절 궤적의 최종 값을 설정하고, 조건화하여 식 (2) 와 식 (3)을 통해 w를 업데이트하여 관절 궤적을 생성한다.

$$y_t = \begin{bmatrix} q_t \\ \dot{q}_t \end{bmatrix} = \Phi_t^{\top} \mathbf{w} + \epsilon_{y_t}, \quad p(\tau | \mathbf{w}) = \prod_t \mathcal{N} \left(y_t | \Phi_t^{\top} \mathbf{w}, \Sigma_y \right),$$
 (1)

$$\mu_w^{[\text{new}]} = \mu_w + \Sigma_w \Phi_t \left(\Sigma_y^* + \Phi_t^T \Sigma_w \Phi_t \right)^{-1} \left(y_t^* - \Phi_t^T \mu_w \right), \tag{2}$$

$$\Sigma_w^{[\text{new}]} = \Sigma_w - \Sigma_w \Phi_t \left(\Sigma_y^* + \Phi_t^T \Sigma_w \Phi_t \right)^{-1} \Phi_t^T \Sigma_w. \tag{3}$$

그림 2. 관절 궤적 생성을 위한 역운동학 조건화

실험 장비 및 실험 환경

그림 3. 실험 장비: 실험실 내 (왼쪽), 실험실 밖 (오른쪽)

그림 4. 실험 환경: 실험실 내 (왼쪽), 실험실 밖 (오른쪽)

환경 인지 시스템 분류 결과

그림 5. 환경 인지 시스템의 confusion matrix

환경 전환 보행 의도 인지 결과

	Curb	Stair 1	Stair 2	Obstacle 1	Obstacle 2
Leading foot	96.22%	94.56%	72.55%	74.54%	94.68%
Trailing foot	97.14%	100.00%	100.00%	87.805%	94.23%
Total	96.59%	94.56%	84.27%	80.20%	95.23%

표 1. 환경 전환 의도 인지의 정확도

Obstacle	Tread Depth (cm)	Height (cm)
20 cm Stair	1.24	0.87
16 cm Stair	1.64	1.29
4.6 cm Obstacle	_	0.8
8.6 cm Obstacle	_	0.92
Curb	_	1.14

표 2. 환경 특징에 대한 RMSE(Root Mean Square Error)

보행 관절 궤적 시뮬레이션 검증

- 실제 허벅지의 각도 궤적를 사용한 **경우** 1와 모델을 통해 생성된 허벅지 각도 궤적을 사용한 **경우** 2로 나눠 검증한다.
- 경우 1에서 71.875%, 경우 2은 97.916% 성공율을 보였다.

그림 6. 시뮬레이션 실패 상황(왼쪽), 성공 상황(오른쪽)

References

- [1] Péter Fankhauser, Michael Bloesch, Christian Gehring, Marco Hutter, and Roland Siegwart. Robot-centric elevation mapping with uncertainty estimates. In International Conference on Climbing and Walking Robots (CLAWAR), 2014.
- [2] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Probabilistic movement primitives.

 Advances in neural information processing systems, 26, 2013.
- [3] He Zhang and Cang Ye.
 Dui-vio: Depth uncertainty incorporated visual inertial odometry based on an rgb-d camera.
 In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5002–5008. IEEE, 2020.