运筹学第五次作业参考答案(20231025)

1. 用单纯形法求解以下线性规划问题,并从单纯形表中判断是否存在多个最优解。若存在,请将所有最优解用参数化形式表示。

max
$$2x_1 + 3x_2 + x_3$$

s.t. $x_1 + x_2 + x_3 \le 4$
 $x_1 + 2x_2 \le 7$
 $x_i \ge 0, i = 1,2,3$

解:

加入松弛变量,得到单纯形表

BV	x_1	x_2	x_3	x_4	x_5	RHS
x_4	1	1	1	1	0	4
x_5	1	2	0	0	1	7
	2	3	1	0	0	Z
BV	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS
x_1	1	1	1	1	0	4
x_5	0	1	-1	-1	1	3
	0	1	-1	-2	0	z-8
BV	x_1	x_2	x_3	x_4	x_5	RHS
x_1	1	0	2	2	-1	1
x_2	0	1	-1	-1	1	3

此时所有检验数都为非负数,已经得到一个最优解 $\mathbf{x}^{(1)} = (1,3,0)^{\mathsf{T}}$,最优值为 11. 但注意到 \mathbf{x}_3 检验数为 0,仍然可以继续进基,说明存在其他最优解。

-1

z-11

BV	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS
x_3	1/2	0	1	1	-1/2	1/2
x_2	1/2	1	0	0	1/2	7/2
	0	0	0	-1	-1	z-11

此时得到一个新的最优解 $\mathbf{x}^{(2)} = (0,7/2,1/2)^{\mathsf{T}}$,最优值仍然为 11.

综上,所有最优解可以表示为两个最优顶点之间的连线

$$x^* = \lambda x^{(1)} + (1 - \lambda)x^{(2)} = \left(\lambda, \frac{7 - \lambda}{2}, \frac{1 - \lambda}{2}\right)^{\mathsf{T}}, \ \lambda \in [0, 1]$$

2. 将以下线性规划问题转化为标准形式

$$\max 3x_1 + 2x_2 - x_3$$
s. t.
$$x_1 - 2x_2 + 3x_3 \ge 4$$

$$2x_1 + 5x_2 - x_3 \le 7$$

$$0 \le x_1 \le 3$$

$$-2 \le x_2 \le 6$$

解:

形式不唯一,但请尽量将变量全移到左边,常数全移到右边,目标函数不含常数。

$$\max 3x_1 + 2(x_2^+ - x_2^-) - (x_3^+ - x_3^-)$$
s.t.
$$x_1 - 2x_2^+ + 2x_2^- + 3x_3^+ - 3x_2^- - x_4 = 4$$

$$2x_1 + 5x_2^+ - 5x_2^- - x_3^+ + x_3^- + x_5 = 7$$

$$x_1 + x_6 = 3$$

$$x_2^+ - x_2^- + x_7 = 6$$

$$-x_2^+ + x_2^- + x_8 = 2$$

$$x_1, x_2^-, x_2^+, x_3^-, x_3^+, x_4, x_5, x_6, x_7, x_8 \ge 0$$

3. 把线性规划问题

$$\min x_1 + x_3$$
s. t.
$$x_1 + 2x_2 \leq 5$$

$$\frac{1}{2}x_2 + x_3 = 3$$

$$x_1, x_2, x_3 \geq 0$$

记为 P,

- (1) 用单纯形算法解 P:
- (2) 写出 P 的对偶 D;
- (3) 写出 P 的互补松紧条件,并利用它们解对偶 D。通过计算 P 和 D 的最优值,检查你的答案。

解:

(1) 先转换为标准形式

$$-\max -x_1 - x_3$$
s. t.
$$x_1 + 2x_2 + x_4 = 5$$

$$\frac{1}{2}x_2 + x_3 = 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

以 x_3, x_4 为初始可行基,画出单纯形表

BV	x_1	x_2	x_3	χ_4	RHS
x_4	1	2	0	1	5
x_3	0	1/2	1	0	3
	-1	1/2	0	0	z+3

BV	x_1	x_2	x_3	χ_4	RHS
x_2	1/2	1	0	1/2	5/2
x_3	-1/4	0	1	-1/4	7/4
	-5/4	0	0	-1/4	z+7/4

得到最优解与最优值为

$$x^* = \left(0, \frac{5}{2}, \frac{7}{4}, 0\right)^{\mathsf{T}}, z^* = -\left(-\frac{7}{4}\right) = \frac{7}{4}$$

(2) 对偶问题为

$$\max -5y_1 + 3y_2$$
s. t. $-y_1 \le 1$

$$-2y_1 + \frac{1}{2}y_2 \le 0$$

$$y_2 \le 1$$

$$y_1 \ge 0, y_2 \in \mathbb{R}$$

(3) 问题 P 的最优解 $x_2, x_3 \neq 0$,则在 D 中有

$$-2y_1 + \frac{1}{2}y_2 = 0$$

 $y_2 = 1$ 解得 $y^* = (1/4,1)^\mathsf{T}$,此时 D 的最优值为 $-5 \times 1/4 + 3 = 7/4$,与 P 的最优值相同。

4. 用单纯形法直接求解如下线性规划问题

$$\max z = 5x_1 + x_2 + 2x_3$$
s.t. $x_1 + x_2 + x_3 \le 6$

$$6x_1 + x_3 \le 8$$

$$x_2 + x_3 \le 2$$

$$x_j \ge 0, j = 1, 2, 3$$

其最优单纯形表如下:

BV	x_1	x_2	<i>x</i> ₃	X_4	x_5	X_6	RHS
\mathcal{X}_4	0	1/6	0	1	-1/6	-5/6	3
x_1	1	-1/6	0	0	1/6	-1/6	1
x_3	0	1	1	0	0	1	2
	0	-1/6	0	0	-5/6	-7/6	z-9

- 1) 从表中直接读出该问题对偶问题的最优解和最优值。
- 2) 若目标函数中 x_1 的系数变为 c_1 ,求能够使当前基保持最优的 c_1 的取值范围。

解:

- 1) 对偶问题的最优值为 9,最优解为 $(y_1, y_2, y_3) = (0, \frac{5}{6}, \frac{7}{6})^T$
- 2) 设目标函数变为 $\max z = C_1 x_1 + x_2 + 2x_3$, 则单纯形表变为

BV	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_4	0	1/6	0	1	-1/6	-5/6	3
x_1	1	-1/6	0	0	1/6	-1/6	1
x_3	0	1	1	0	0	1	2
	C_1	1	2	0	0	0	z-9

将目标函数中基变量的系数消去得到

BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	RHS
x_4	0	1/6	0	1	-1/6	-5/6	3
x_1	1	-1/6	0	0	1/6	-1/6	1
x_3	0	1	1	0	0	1	2
	0	-1+ <i>C</i> ₁ /6	0	0	- <i>C</i> ₁ /6	-	z-4- <i>C</i> ₁
						$2+C_1/6$	

若仍然保持当前基为最优,应有

$$\begin{cases} -1 + \frac{C_1}{6} \le 0 \\ -\frac{C_1}{6} \le 0 \\ -2 + \frac{C_1}{6} \le 0 \end{cases}$$

解得 $0 \le C_1 \le 6$

5. 请用切平面方法求解如下整数线性规划问题

$$\max 11y_1 + 4y_2$$

s. t. $-y_1 + 2y_2 \le 4$
 $5y_1 + 2y_2 \le 16$
 $2y_1 - y_2 \le 4$
 $y_1, y_2 \ge 0, y_1, y_2 \in \mathbb{Z}$

解:

原问题引入松弛变量 y_3, y_4, y_5 , 画出单纯形表

	, ,					
BV	y_1	y_2	y_3	y_4	y_5	RHS
y_3	-1	2	1	0	0	4
y_4	5	2	0	1	0	16
y_5	2	-1	0	0	1	4
	11	4	0	0	0	

BV	y_1	y_2	y_3	y_4	y_5	RHS
y_3	0	3/2	1	0	1/2	6
y_4	0	9/2	0	1	-5/2	6
y_1	1	-1/2	0	0	1/2	2
	0	19/2	0	0	-11/2	

BV	y_1	y_2	y_3	y_4	y_5	RHS
y_3	0	0	1	-1/3	4/3	4
y_2	0	1	0	2/9	-5/9	4/3
y_1	1	0	0	1/9	2/9	8/3
	0	0	0	-19/9	-2/9	

取上表中第3行的约束,即

$$y_1 + \frac{1}{9}y_4 + \frac{2}{9}y_5 = \frac{8}{3}$$
$$\Delta(y) = \frac{2}{3} - \left(\frac{1}{9}y_4 + \frac{2}{9}y_5\right)$$

添加割平面约束 $\Delta(y) \leq 0$,以及松弛变量 y_6 ,用对偶单纯形法,得到

BV	y_1	y_2	y_3	y_4	y_5	y_6	RHS
y_3	0	0	1	-1/3	4/3	0	4
y_2	0	1	0	2/9	-5/9	0	4/3
y_1	1	0	0	1/9	2/9	0	8/3
y_6	0	0	0	-1/9	-2/9	1	-2/3
	0	0	0	-19/9	-2/9	0	

BV	y_1	y_2	y_3	y_4	y_5	y_6	RHS
y_3	0	0	1	-1	0	6	0
y_2	0	1	0	1/2	0	-5/2	3
y_1	1	0	0	0	0	1	2
y_5	0	0	0	1/2	1	-9/2	3
	0	0	0	-2	0	-1	

此时得到最优解 $\mathbf{y}^* = (2,3,0,0,3,0)^\mathsf{T}$,最优值 $z_{\max} = 34$