Theoretical simulation of second harmonic generation from metal-dielectric biresonant nanoantenna

A. Goncharov

Scientific advisor: Dr. M. Petrov

Second harmonic generation by BaTiO₃ particle

$$P_{i} = \chi_{ij}^{(1)} E_{j} + \chi_{ijk}^{(2)} E_{j} E_{k} + \dots$$

$$E_{j} = (E_{0j} e^{i(\mathbf{kr} - wt)} + c.c.) \Rightarrow P_{i}^{(2)} \sim E_{0}^{2} e^{i2(\mathbf{kr} - wt)} + E_{0}^{*2} e^{-i2(\mathbf{kr} - wt)} + 2E_{0} E_{0}^{*}$$

Au: inversion symmetry $\leftrightarrow \chi_{ijk}^{(2)} = 0$

BaTiO $_3$:

$$\begin{pmatrix} P_x^{(2)} \\ P_y^{(2)} \\ P_z^{(2)} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & \chi_{15} & 0 \\ 0 & 0 & 0 & \chi_{15} & 0 & 0 \\ \chi_{31} & \chi_{31} & \chi_{33} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} E_x^2 \\ E_y^2 \\ E_z^2 \\ 2E_y E_z \\ 2E_x E_z \\ 2E_x E_y \end{pmatrix}$$

(Robet W. Boyd, Nonlinear optics, 2008)

Nonlinear optics applications

Second harmonic generation in macrocrystals is widely used in laser technique.

Nonlinear optics applications

Second harmonic generation in macrocrystals is widely used in laser technique.

Bioimaging:

(Delphine Débarre, et. al., Nature, 2005)

Hybrid nanosystems for second harmonic generation

(Toshihiko Shibanuma, et. al., ACS Publications 2017)

Explored system

 $\lambda_{\textit{inc}} = 1200$ нм $ightarrow \lambda_{\textit{scat}} = 600$ нм

Determine nanoantenna configuration for effective second harmonic generation at $\lambda=600$ nm wavelength and evaluate generation efficiency.

Determine nanoantenna configuration for effective second harmonic generation at $\lambda=600$ nm wavelength and evaluate generation efficiency.

Problems to solve:

1) Adjust dielectric particle for effective light emission at λ =600 nm wavelength and evaluate qualitatively second harmonic generation from separate BaTiO $_3$ particle.

Determine nanoantenna configuration for effective second harmonic generation at $\lambda=600$ nm wavelength and evaluate generation efficiency.

Problems to solve:

- 1) Adjust dielectric particle for effective light emission at λ =600 nm wavelength and evaluate qualitatively second harmonic generation from separate BaTiO₃ particle.
- 2) Adjust matal nanoparticles for incident field enhancement in infrared region near 1200 nm.

Determine nanoantenna configuration for effective second harmonic generation at $\lambda=600$ nm wavelength and evaluate generation efficiency.

Problems to solve:

- 1) Adjust dielectric particle for effective light emission at λ =600 nm wavelength and evaluate qualitatively second harmonic generation from separate BaTiO₃ particle.
- 2) Adjust matal nanoparticles for incident field enhancement in infrared region near 1200 nm.
- 3) Adjust the whole system for incident field enhancement at $\lambda=1200$ nm and scattered field enhancement on 600 nm. Evaluate qualitatively second harmonic generation by hybrid system and compare it with the case of separate BaTiO $_3$.

Problem № 1

(S.H. Wemple, et. al., 1968) $\varepsilon \approx 5$

Electrostatic approximation r = 10 nm

$$\mathbf{p} = r^3 rac{arepsilon - 1}{arepsilon + 2} \mathbf{E}$$
 $\sigma_{scat} \sim (\ddot{p})^2 = -w^2 p^2$

Electrostatic approximation r = 10 nm

$$\mathbf{p} = r^3 rac{\varepsilon - 1}{\varepsilon + 2} \mathbf{E}$$
 $\sigma_{scat} \sim (\ddot{p})^2 = -w^2 p^2$

Precise solution (Mie theory): $r \sim \lambda$

Scattering on BaTiO₃ particle with radius r=120 nm

Magnetic quadrupole resonance Magnetic dipole resonance

Second harmonic generation by $BaTiO_3$ particle with radius r=120 nm

(Robert W. Boyd, "Nonlinear optics 2008)

Light scattering on gold nanosphere

Problem № 2

2.1

Light scattering on gold nanosphere

Light scattering on gold parallelepiped

2.2

Light scattering on two gold parallelepipeds

2.3

Field enhancement in the gap between parallelepipeds:

(Biagioni P., et. al., NCBI, 2012)

Light scattering on two gold parallelepipeds

I=240 nm Scattering cross section dependence on the gap width(g):

(Biagioni P., et. al., NCBI, 2012) Scattering cross section dependence on parallelepiped length: (O. L. Muskens, et al., NCBI, 2007)

Scattering on the system of $BaTiO_3$ particle and two gold parallelepipeds

Problem № 3

$$r(BaTiO_3)=120 \text{ nm}$$

 $l=240 \text{ nm}; g=40 \text{ nm}$

Scattering on the system of $BaTiO_3$ particle and two gold parallelepipeds

Energy inside BaTiO₃ for different configurations

Second harmonic generation by the whole hybrid system

Conclusions

- 1)BaTiO₃ particle optimal size determined for effective second harmonic generation on λ =600 nm wavelength.
- 2) Gold dimer configuration adjusted for incident field enhancement in infrared region, near λ =1200 nm wavelength.
- 3) First configuration of the whole system for effective second harmonic generation on $\lambda=\!600$ nm revealed. Demonstrated second harmonic generation enhancement regarding separate BaTiO $_3$ particle.

Thank you for your attention

Second harmonic generation (additional frame)

$$\begin{cases} \mathbf{E}_{f} \sim \int d\mathbf{r}' \frac{\partial}{\partial t} \mathbf{j}(\mathbf{r}', t - \mathbf{r}/c) \\ \mathbf{j} = \mathbf{j}_{C} + \mathbf{j}_{D} = \mathbf{j}_{C} + \frac{1}{4\pi} \frac{\partial \mathbf{D}}{\partial t} = \mathbf{j}_{C} + \frac{1}{4\pi} \frac{\partial \mathbf{E}}{\partial t} + \frac{\partial \mathbf{P}}{\partial t} \end{cases}$$