1. 교과목 수강인원

 수업년도	수업학기	계열구분	수강인원	이수인원
	TUNI	ЛЕТЕ	тосе	시구한편
2014	1	공학	18	16
2015	1	공학	10	8
2016	1	공학	10	8
2017	1	공학	16	15
2018	1	자연과학	1	1
2018	1	공학	40	39

2. 평균 수강인원

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2018	1	39.54	61.09	35.36	41	
2017	2	37.26	63.09	32.32		
2017	1	38.26	65.82	33.5	16	
2016	2	37.24	72.07	31.53	12//	
2016	1	37.88	73.25	32.17	10	

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	1	3.44	3.02	3.58	3.43	
2016	1	3.52	3.29	3.61	3.69	
2015	1	3.49	2.94	3.64	3.31	

4. 성적부여현황(등급)

Α0

B0

C+

Α+

Α0

수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원	비율
2014	1	Α+	5	31.25	2017	1	B+	1	6.67
2014	1	B+	3	18.75	2017	1	ВО	3	20
2014	1	В0	2	12.5	2017	1	C0	3	20
2014	1	C+	2	12.5	2018	1	Α+	6	15
2014	1	C0	1	6.25	2018	1	Α0	6	15
2014	1	D+	2	12.5	2018	1	B+	12	30
2014	1	D0	1	6.25	2018	1	ВО	5	12.5
2015	1	Α+	2	25	2018	1	C+	6	15
2015	1	A0	1	12.5	2018	1	C0	5	12.5
2015	1	B+	2	25					
2015	1	ВО	1	12.5					
2015	1	C+	1	12.5					
2015	1	D0	1	12.5					
2016	1	Α+	3	37.5					
	1		:						

12.5

12.5

12.5

13.33

5. 강의평가점수

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2018	1	89.55	90.19	89.44	97	
2017	1	89.91	90.14	89.87	77	
2017	2	90.46	90.27	90.49		
2016	2	91.55	91.97	91.49	1/2//	
2016	1	91.26	91.81	91.18	95	

6. 강의평가 문항별 현황

			н оли						점수병	별 인원	년분포	
번호		평가문항	본인평 균 (가중 치적용)	소속 ⁵	학과,다 차 +초과,			매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
			5점 미만	학	과	대	학	· 1점	2점	3점	4점	5점
	교강사:	미단	미만	차이	평균	차이	평균	1.9	4 6	2.5	+7	2.5

No data have been found.

7. 개설학과 현황

학과	2018/1	2017/1	2016/1	2015/1	2014/1
기계공학부	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)

8. 강좌유형별 현황

강좌유형	2014/1	2015/1	2016/1	2017/1	2018/1
일반	1강좌(18)	1강좌(10)	1강좌(10)	1강좌(16)	1강좌(41)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2013 - 2015 교육과 정	서울 공과대학 기계공학부	열동력공학은 각종 열동력 원동소의 사이클 및 성능 해석, 증기 동력 및 터빈 플랜트, 가스 터빈 및 터빈 플랜트, 원자 동력 발생 시스템, 열병합 발전, 가스 동력 사이클 복합 시스템 등 각종 열 동력 발생 시스템의 이론 및 응용을 다룬다. 이 와 아울러 각종 에너지 변환 시스템의 에너지 변 환 이론 및 에너지 저장, 대체 에너지를 비롯한 새로운 에너지 이용 및 동력 변환 시스템에 관한 해석과 응용을 강의한다.	powerplants, general energy conversion	
학부 2009 - 2012 교육과 정	서울 공과대학 기계공학부	열동력공학은 각종 열동력 원동소의 사이클 및 성능 해석, 증기 동력 및 터빈 플랜트, 가스 터빈 및 터빈 플랜트, 원자 동력 발생 시스템, 열병합 발전, 가스 동력 사이클 복합 시스템 등 각종 열 동력 발생 시스템의 이론 및 응용을 다룬다. 이	THERMAL POWER PLANT ENGINEERING Thermodynamics review, Rankine cycle and steam turbines; fuels and combustion, fossil-fuel steam generators,	

교육과정	관장학과	국문개요	영문개요	수업목표
		와 아울러 각종 에너지 변환 시스템의 에너지 변환 이론 및 에너지 저장, 대체 에너지를 비롯한 새로운 에너지 이용 및 동력 변환 시스템에 관한 해석과 응용을 강의한다.	condensate-feedwater and circulating- water systems; combined cycles and gas turbines, principles of nuclear neergy, nuclear powerplants, general energy conversion systems, environmental aspects of power generation, alternative and new energy power oplant, and state-of-the-art technologies for clean energy.	
		MEE437 열동력공학	MEE437 THERMAL POWER PLANT ENGINEERING	
학부 2005 - 2008 교육과 정	서울 공과대학 기계공학부	열동력공학은 각종 열동력 원동소의 사이클 및 성능 해석, 증기 동력 및 터빈 플랜트, 가스 터빈 및 터빈 플랜트, 원자 동력 발생 시스템, 열병합 발전, 가스 동력 사이클 복합 시스템 등 각종 열 동력 발생 시스템의 이론 및 응용을 다룬다. 이 와 아울러 각종 에너지 변환 시스템의 에너지 변 환 이론 및 에너지 저장, 대체 에너지를 비롯한 새로운 에너지 이용 및 동력 변환 시스템에 관한 해석과 응용을 강의한다.	Thermodynamics review, Rankine cycle and steam turbines; fuels and combustion, fossil-fuel steam generators, condensate-feedwater and circulating-water systems; combined cycles and gas turbines, principles of nuclear neergy, nuclear powerplants, general energy conversion systems, environmental aspects of power generation, alternative and new energy power oplant, and state-of-the-art technologies for clean energy.	
학부 2001 - 2004 교육과 정	서울 공과대학 기계공학부	MEE437 열동력공학 열동력공학은 각종 열동력 원동요소의 사이클 및 성능 해석, 증기 동력 및 터빈 플랜트, 가스 터빈 및 터빈 원동요소, 원자 동력 발생 시스템, 열병합 발전, 가스 동력 사이클 복합 시스템 등 각종 열동력 발생 원동요소의 이론 및 응용을 다 룬다. 이와 아울러 각종 에너지 변환 시스템의 에너지 변환 이론 및 에너지 저장, 대체 에너지 이용 및 동력 변환에 관한 해석과 응용을 강의한 다.	MEE437 THERMAL POWER PLANT ENGINEERING (열동력공학) Thermodynamics review, Rankine cycle and steam turbines; fuels and combustion, fossil-fuel steam generators, condensate-feedwater and circulating-water systems; combined cycles and gas turbines, principles of nuclear neergy, nuclear powerplants, general energy conversion systems, environmental aspects of power generation, and state-of-the-art technologies for clean energy.	

10. CQI 등록내역	
No data have been found.	
No data flave been found.	

