# CSCI-C311 Programming Languages

**Dynamic Programming** 

Dr. Hang Dinh



1

# Outline and Reading

- After this lecture, you will learn
  - What dynamic programming is
  - How to apply dynamic programming
  - Where to apply dynamic programming
- Reference
  - Cormen et al., Introduction to Algorithms, 3<sup>rd</sup> Edition Section 15.1



# Divide and Conquer

- It's a method for solving problems by
  - dividing the problem into independent subproblems
  - conquering each subproblem.
- Example: the binary search algorithm
  - Search a sorted array by dividing the array into two halves and reducing the search to within one half



Easy to be implemented using recursion



3

#### **Dynamic Programming**

- Like the *divide-and-conquer* method
  - Solves problems by combining solutions to subproblems.
  - "Programming" in this context refers to a tabular method, not to writing code
- Unlike the divide-and-conquer method
  - Dynamic programming applies when the subproblems overlap, i.e., when subproblems share subsubproblems
  - In this context, a divide-and-conquer algorithm does more work than necessary, repeatedly solving the common subsubproblems
  - Dynamic programing solves each subsubproblem just once and saves its answer in a table.



### **Dynamic Programming**

- Typically apply to optimization problems
  - Such problems can have many possible solutions, each has a value
  - Wish to find a solution with the optimal (minimum or maximum) value.
  - There may be many such optimal solutions to the same problem.
- Steps to develop a dynamic programming algorithm:
  - 1. Characterize the structure of an optimal solution
  - 2. Recursively define the value of an optimal solution
  - 3. Compute the value of an optimal solution, typically in a bottom-up fashion
  - 4. Construct an optimal solution from computed information



5

#### Optimization Problem: Rod Cutting

- Background:
  - Serling Enterprises buys long steel rods and cuts them into shorter rods to sell
  - The management wants to know the best way to cut up the rods.
- Assumptions
  - Rod lengths are always an integral number of inches
  - Serling Enterprises charges  $p_i$  dollars for a rod of length i inches.

| Length <i>i</i> | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 |
|-----------------|---|---|---|---|----|----|----|----|----|----|
| Price $p_i$     | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

A sample price table for rods



### Optimization Problem: Rod Cutting

- The *rod-cutting problem* definition:
  - Input: a rod of length n inches and a table of price  $p_i$  for i = 1, 2, ..., n.
  - lacktriangle Output: the maximum revenue  $r_n$  obtainable by cutting up the rod and selling the pieces
- Note: if the price  $p_n$  for a rod of length n is large enough, an optimal solution may require no cutting at all.
- We can cut a rod of length n in  $2^{n-1}$  different ways
  - Since we have independent of option of cutting or not cutting at distance i inches from the left end, for each  $i=1,2,\ldots,n-1$





7



#### Representing Solutions to Rod Cutting

• Each solution to cutting a rod of length n that results in k pieces of lengths  $i_1, i_2, \ldots, i_k$  will be denoted using additive notation as:

$$n = i_1 + i_2 + \dots + i_k$$

- Example: 4 = 1 + 1+ 2 represents solution (e) on the right:
- If  $n=i_1+i_2+\cdots+i_k$  is an optimal solution, then the maximum revenue, denoted  $r_n$ , is



$$r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$$

- Subproblem: For each positive integer  $m \leq n$ 
  - Let  $r_m$  be the maximum revenue for the problem of cutting a rod of length m using the same price table of the original problem (cutting rod of length n)



C

# Determine Optimal Values of Subproblems for Rod Cutting

• Example n = 10:

| Length i    | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 |
|-------------|---|---|---|---|----|----|----|----|----|----|
| Price $p_i$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

- $r_1 = 1$  from solution 1 = 1 (no cut)
- $r_2 = 5$  from solution 2 = 2 (no cut)
  - No cut → revenue \$5
  - Cut into two 1-inch pieces → revenue \$2
- $r_3 = 8$  from solution 3 = 3 (no cut)
  - No cut → revenue \$8
  - First cut at length 1 →

max revenue =  $r_1 + r_2 = $6$ 

○ First cut at length 2 →

max revenue =  $r_2 + r_1 = $6$ 



# Determine Optimal Values of Subproblems for Rod Cutting

• Example n = 10:

| Length i    | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 |
|-------------|---|---|---|---|----|----|----|----|----|----|
| Price $p_i$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

- $r_1 = 1$  from solution 1 = 1 (no cut)
- $r_2 = 5$  from solution 2 = 2 (no cut)
- $r_3 = 8$  from solution 3 = 3 (no cut)
- $r_4 = 10$  from solution 4 = 2+2 • No cut  $\rightarrow$  revenue \$9

- First cut at length 1 → max revenue =  $r_1 + r_3 = $9$
- First cut at length 2  $\rightarrow$  max revenue =  $r_2 + r_2$  = \$10
- First cut at length 3  $\rightarrow$  max revenue =  $r_3 + r_1 = $9$



11

# Determine Optimal Values of Subproblems for Rod Cutting

• Example n = 10:

| Length i    | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 |
|-------------|---|---|---|---|----|----|----|----|----|----|
| Price $p_i$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

- $r_1 = 1$  from solution 1 = 1 (no cut)
- $r_2 = 5$  from solution 2 = 2 (no cut)
- $r_3 = 8$  from solution 3 = 3 (no cut)
- $r_4 = 10$  from solution 4 = 2+2
- $r_5 = 13$  from solution 5 = 2+3 or 5=3+2
  - $\circ$  No cut  $\rightarrow$  revenue \$10

- $\circ$  First cut at length 1  $\rightarrow$ 
  - max revenue =  $r_1 + r_4 = $11$
- First cut at length 2 →
  - max revenue =  $r_2 + r_3 = $13$
- First cut at length 3 →
  - max revenue =  $r_3 + r_2 = $13$
- First cut at length 4 →

max revenue =  $r_4 + r_1$  = \$11



# Determine Optimal Values of Subproblems for Rod Cutting

• Example n = 10:

| Length i    | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 |
|-------------|---|---|---|---|----|----|----|----|----|----|
| Price $p_i$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

- $r_1 = 1$  from solution 1 = 1 (no cut)
- $r_2 = 5$  from solution 2 = 2 (no cut)
- $r_3 = 8$  from solution 3 = 3 (no cut)
- $r_4 = 10$  from solution 4 = 2+2
- $r_5 = 13$  from solution 5 = 2+3
- $r_6 = 17$  from solution 6 = 6 (no cut)
- $r_7 = 18$  from solution 7 = 1+6 or
  - 7=2+2+3
- $r_8 = 22$  from solution 8 = 2+6
- $r_9 = 25$  from solution 9 = 3+6
- $r_{10} = 30$  from solution 10 = 10 (no cut)



13

# Recursively Define Optimal Values for Rod Cutting

• Generally, we can frame the values  $r_n$  for  $n \ge 1$  in terms of optimal revenue from shorter rods:

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

- The first argument of function max corresponds to no cuts at all
- The argument  $r_i + r_{n-i}$  for i = 1, 2, ..., n-1 corresponds to the optimal solution among strategies of making the first cut of the rod at length i inches.
- The rod-cutting problem exhibits *optimal substructure*:
  - Optimal solutions to a problem incorporate optimal solutions to related subproblems, which we may solve independently



### A Simpler Recursive Structure for Rod Cutting

- ullet View a decomposition of a rod of length n as consisting of
  - a first piece of length *i* from the left end
  - followed a decomposition of right-hand remainder of length n-i.
- The no-cut solution corresponds to the decomposition with the first piece of length n. By convention,  $r_0 = 0$ .
- Simpler version of recursive equation for  $r_n$ :

```
r_n = \max_{1 \le i \le n} (p_i + r_{n-i})
```

maximal revenue of all solutions whose first piece from the left end has length i



15

```
Naïve Recursive Implementation in C/C++ for Rod Cutting
```

```
int \operatorname{CutRod}(\inf p[], \inf n) {
    if (n==0)
        return 0;
    int q=-1;
    for(int i=1; i<=n; i++)
        q=\max(q, p[i] + \operatorname{CutRod}(p, n-i));
    return q;
}
```

#### Why is Naïve Recursion Inefficient?

- It solves the same subproblems repeatedly
  - CutRod(p,n) calls CutRod(p,n-i) for all i=1,2..., n
  - Equivalently, CutRod(p,n) calls CutRod(p,j) for all j=0, 1..,n-1
- Recursive tree for CutRod(p,4)
  - CutRod(p,3) is called 1 time
  - CutRod(p,2) is called 2 times
  - CutRod(p,1) is called 4 times
  - CutRod(p,0) is called 8 times



■ The number of nodes in the recursive tree for CutRod(p,n) is  $2^n$ 





17

# Using Dynamic Programming For Rod Cutting

- Arrange for each subproblem to be solved only **once**, saving its solution
  - If we need to refer to this subproblem's solution again later, we can just look it up, rather than recompute it.
  - Dynamic programming thus uses additional memory to save time.
- Two equivalent ways to implement dynamic programing
  - *Top-down with memorization*: write the procedure recursively in a natural manner, but modified to save the result of each subproblem.
  - Bottom-up method: sort the subproblems by size and solve them in size order, smallest first.



### Top-down with Memorization for Rod Cutting

19

### Top-down with Memorization for Rod Cutting

```
int MemorizedCutRod(int p[], int n){
    int* r = new int[n+1];
    for(int i=0; i<=n; i++)
        r[i]=-1;
    int q= MemorizedCutRod_Aux(p, n, r);
    delete r;
    r=NULL;
    return q;
}</pre>
```



# Bottom-Up Method for Rod Cutting

```
r_n = \max_{1 \le i \le n} (p_i + r_{n-i})
r_j = \max_{1 \le i \le j} (p_i + r_{j-i})
```



21

# Subproblem Graphs

- The subproblem graph for a dynamic programming problem shows how subproblems depend on one another.
  - It's a directed graph
  - Each vertex corresponds to a subproblem
  - Each directed edge (x, y) indicates solving subproblem x involves an optimal solution of subproblem y
- Example: Subproblem graph for rod cutting with n=4



### Reconstructing a Solution for Rod Cutting

 Extend the dynamic programming approach to also record a choice that led to the optimal value.

> s[j] saves the optimal length of the first piece to cut off from a rod of length j.

23

#### Print Optimal Solutions to Rod Cutting

- Example
  - Input: n=10
  - Output:

| Length  | i        | 1 | 2 | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|---------|----------|---|---|---|----|----|----|----|----|----|----|
| Price p | $\rho_i$ | 1 | 5 | 8 | 9  | 10 | 17 | 17 | 20 | 24 | 30 |
| j       | 0        | 1 | 2 | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| r[j]    | 0        | 1 | 5 | 8 | 10 | 13 | 17 | 18 | 22 | 25 | 30 |
| s[j]    | 0        | 1 | 2 | 3 | 2  | 2  | 6  | 1  | 2  | 3  | 10 |

```
void PrintSolution(int n, int s[]){
     while(n>0){
         printf("%d ", s[n]);
         n = n - s[n];
     }
}
```

If array s has values as above,

- PrintSolution(5,s) prints 23
- PrintSolution(6,s) prints 6
- PrintSolution(7,s) prints 16
- PrintSolution(9,s) prints 36