Object Recognition from Local Scale-Invariant Features

References:

- D. Lowe, Object recognition from local scale-invariant features.
 ICCV 1999.
- 2. M. Brown and D. Lowe, Recognising panoramas. ICCV 2003.

Motivation

- Recognizing planar patterns is an important and challenging task.
- Requires local image features that are unaffected by
 - Nearby clutter
 - Partial occlusion
 - Invariant to illumination
 - Scaling, translation, and rotation

Main Contributions

- A new feature generation method: SIFT.
- An unknown image is transformed into a collection of local feature vectors with invariant properties.
- Object models are represented as 2-D locations of the SIFT features that can undergo affine projection.

SIFT Feature Detection

- Goal: Identify locations in image scale space that are invariant to translation, scaling, rotation, and small distortions.
- Algorithm outline:

SIFT: Selecting "key" locations

Key locations are defined as maxima and minima of a difference-of-Gaussian function applied in scale space.

- Reference: F. Mokhtarian, A theory of multiscale, curvature-based shape representation for planar curves. PAMI, 92.
 - D. Lowe. Organization of smooth image curves at multiple scales. IJCV 89

Difference-of-Gaussian

- Difference-of-Gaussian (DoG) on image I
 - STEP 1. Convolve I with Gaussian kernel with $\sigma=\sqrt{2}$ --> A.
 - $_{V}$ STEP 2. Convolve A with Gaussian kernel with σ =√2 --> B.
 - v STEP 3. Define $f(\sqrt{2}) = DoG(I, \sigma) = A B$.
- To generate the next pyramid level
 - STEP 1. Interpolate B with a pixel spacing of 1.5 --> I'
 - STEP 2. Compute $f(2) = DoG(I', \sigma)$.
- The key location is defined to be an extremum location at all pyramid levels.

SIFT Key Stability

 Compute the gradient magnitude M and orientation R at each pixel.

$$M_{ij} = \sqrt{(A_{ij} - A_{i+1,j})^2 + (A_{ij} - A_{i,j+1})^2}$$
$$R_{ij} = \operatorname{atan2}(A_{ij} - A_{i+1,j}, A_{i,j+1} - A_{ij})$$

Assign a canonical orientation at each key location.

Local Image Description

- Obtain robust descriptor to local affine distortion.
 - For each detected keypoint, consider all pixels in the circle of radius 8 pixels.
 - 8 orientation planes, each sampled over a 2 by 2 grid.

Indexing and Matching

- Store SIFT keys in sample images and identify matching keys from new images.
 - Difficulty: Identifying most similar keys for high-dimensional vectors.
 - Solution: Best-Bin-First search method.

[3] Beis, el at., Shape indexing using approximate nearestneighbour search in high-dimensional space. CVPR 1997.

Indexing and Matching

- After each key in the new image is mapped to a key in the example image, use Hough transform to vote for model hypotheses.
- After highest clusters identified in the hash table of the Hough transform, a verification procedure is applied to estimate the affine parameters of the model.
 - One key location provides 2 constraints. Affine model contains 6 unknowns. Therefore, need at least 3 keys per object.

$$\left[\begin{array}{c} u \\ v \end{array}\right] = \left[\begin{array}{cc} m_1 & m_2 \\ m_3 & m_4 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] + \left[\begin{array}{c} t_x \\ t_y \end{array}\right]$$

Experiments

Application: Recognizing Panoramas

(d) SIFT matches 2

Panoramic Recognition Algorithm:

- STEP 1. SIFT feature extraction.
- STEP 2. Match SIFT features on k nearest images.
- STEP 3. Apply RANSAC to solve for the affine model.
- STEP 4. Bundle Adjustment optimization.
- STEP 5. Render panorama.

Advantages:

- Insensitive to the ordering, orientation, scale, and illuminations of the images.
- Insensitive to outlier images.

RANSAC and Bundle Adjustment

- RANSAC (Random Sample Consensus)
 - Goal: eliminate outlier effects by measuring the consensus of a minimal subsampling set.
 - Repeatedly subsample a subset of samples of minimal size.
 - Estimate an affine model per subset.
 - Measure the consensus of the estimated model.
 - Select the optimal model with the highest consensus.
- Bundle Adjustment on Affine Projection
 - Goal: refining a visual reconstruction to produce a jointly optimal structure across multiple images.

References:

Fischler and Bolles. Random sample consensus. Graphics and Image Processing, 1981. Triggs et al. Bundle adjustment. Vision Algorithms, 2000.

Results

THE END