DATENBANK-ARCHITEKTUR FÜR FORTGESCHRITTENE

Speicherstruktur von Tabellen

Dani Schnider

Struktur einer Tabelle

- Pro Tabelle wird ein physisches Segment angelegt
- Ein Segment besteht aus einem oder mehreren Extents
- Extents bestehen aus mehreren Data Blocks (typischerweise 8 KB)

(contains directory of extents)

High-Water Mark

- Im ersten Block jedes Segments ist "High-Water Mark" (HWM) gespeichert, d.h. Pointer auf den letzten beschriebenen Block
- Beim Lesen der Tabelle wird nur auf die Blöcke bis zur HWM zugegriffen
- Bei INSERT am Ende der Tabelle wird HWM erhöht
- Bei DELETE bleibt HWM unverändert!
- Zurücksetzen von High-Water Mark nur mit DDL-Befehlen möglich:
 - **TRUNCATE TABLE**
 - DROP / CREATE TABLE
 - ALTER TABLE ... SHRINK SPACE
 - ALTER TABLE ... SHRINK SPACE CASCADE
 - ALTER TABLE ... MOVE

Full Table Scan

- Lesen der ganzen Tabelle
- Es werden nur die Blöcke bis zur HWM gelesen
- Full Table Scans werden verwendet
 - Wenn ein grosser Anteil der Tabelle gelesen wird
 - Wenn kein passender Index vorhanden ist
- Beim Lesen wird Multi-block Read Mechanismus verwendet
 - Parameter db_file_multiblock_read_count
 - Maximale I/O Grösse: db_block_size * db_file_multiblock_read_count

```
SELECT * FROM customers

| Id | Operation | Name |
| 0 | SELECT STATEMENT | |
| 1 | TABLE ACCESS FULL| CUSTOMERS |
```


Table Compression – Grundprinzip

Table Compression

CREATE TABLE addresses (...) COMPRESS

ALTER TABLE addresses MOVE COMPRESS

- Wird nur bei Direct-Load INSERT angewendet
 - CREATE TABLE ... AS SELECT ...
 - INSERT /*+ append */ ...
 - Parallel INSERT Statements
- UPDATEs vermeiden!
 - Row Migration, Platzbedarf "explodiert"
 - Schlechte Zugriffsperformance bei Indexzugriffen
- Typische Kompressionsrate: ~ 2:1 bis 4:1
 - Kleiner CPU-Overhead

Grundidee von Partitionierung

FS23

7

Gründe für Partitionierung

- Abfrageperformance
 - Partition Pruning: Zugriff nur auf relevante Partitionen
 - Partition-wise Join (Full oder Partial Partition-wise Join)
- Rollende Zeitfenster ("Information Lifecycle Management", ILM)
 - Erstellen neuer Partitionen für periodische Intervalle
 - Löschen von alten Partitionen für nicht mehr benötigte Daten
- Vereinfachte Datenbankadministration
 - Backups nur von aktuellen Partitionen
 - Komprimieren von historischen Partitionen

Praxisbeispiel für effizientes Löschen von alten Daten:

https://danischnider.wordpress.com/2022/07/02/housekeeping-in-oracle-how-to-get-rid-of-old-data/

Partitionierungsmethoden

Quelle: Oracle Database Documentation, VLDB and Partitioning Guide

https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/partition-concepts.html#GUID-6CE884AF-84A4-4E6A-A3EF-DCCEBCAB2DB2

Composite Partitioning

Quelle: Oracle Database Documentation, VLDB and Partitioning Guide

https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/partition-concepts.html#GUID-6CE884AF-84A4-4E6A-A3EF-DCCEBCAB2DB2

Interval Partitioning

- Erweiterung von RANGE Partitioning ⇒ INTERVAL Partitioning
- Beim Einfügen von neuen Daten wird bei Bedarf neue Partition erstellt

```
CREATE TABLE sales

(time_id DATE NOT NULL
,prod_id NUMBER(6) NOT NULL
,cust_id NUMBER(6) NOT NULL
,quantity NUMBER(3) NOT NULL
,amount NUMBER(10,2) NOT NULL)

PARTITION BY RANGE (time_id)

INTERVAL (NUMTOYMINTERVAL (1, 'MONTH'))

(PARTITION p0 VALUES LESS THAN (TO_DATE('01.01.2020','DD.MM.YYYY')))
```

Reference Partitioning

- Parent Table: Partitioniert nach einer der vorgestellten Methoden (z.B. RANGE)
- Child Table: wird gleich partitioniert wie Parent Table
 - Bedingung: Foreign Key Constraint zu Parent Table vorhanden

Praxisbeispiel: Effiziente Speicherverwaltung mit Partitionierung und Compression

- 1. Set next tablespace to read-write
- 2. Drop oldest partition
- 3. Create new partition for next month
- 4. Compress current partition
- 5. Set tablespace to read-only

ALTER TABLESPACE ts_21 READ ONLY;

Dec 08
TS 24
TS 24
10_24
Dec 06
TS_36
Dec 07

Praxisbeispiel: Effiziente Speicherverwaltung mit Partitionierung und Compression

- 1. Set next tablespace to read-write
- ALTER TABLESPACE ts_22
 READ WRITE;

- 2. Drop oldest partition
- 3. Create new partition for next month
- 4. Compress current partition
- 5. Set tablespace to read-only

TS_01	TS_02	TS_03	TS_04	TS_05	TS_06	TS_07	TS_08	TS_09	TS_10	TS_11	TS_12
Jan 08	Feb 08	Mar 08	Apr 08	Mai 08	Jun 08	Jul 08	Aug 08	Sep 08	Oct 08	Nov 08	Dec 08
TS_13	TS_14	TS_15	TS_16	TS_17	TS_18	TS_19	TS_20	TS_21	TS_22	TS_23	TS_24
Jan 09	Feb 09	Mar 09	Apr 09	Mai 09	Jun 09	Jul 09	Aug 09	Sep 09	0 1 00	Nov 06	Dec 06
									Oct 09		
TS_25	TS_26	TS_27	TS_28	TS_29	TS_30	TS_31	TS_32	TS_33	TS_34	TS_35	TS_36
Jan 07	Feb 07	Mar 07	Apr 07	Mai 07	Jun 07	Jul 07	Aug 07	Sep 07	Oct 07	Nov 07	Dec 07

Praxisbeispiel: Effiziente Speicherverwaltung mit Partitionierung und Compression

1. Set next tablespace to read-write

ALTER TABLESPACE ts 22 READ WRITE;

2. Drop oldest partition

ALTER TABLE sales DROP PARTITION p_oct_2006;

3. Create new partition for next month

ALTER TABLE sales
ADD PARTITION p_oct_2009
VALUES LESS THAN

(TO_DATE('01-NOV-2009', 'DD-MON-YYYY'))
TABLESPACE ts_22;

4. Compress current partition

ALTER TABLE sales MOVE PARTITION p_sep_2009 COMPRESS;

5. Set tablespace to read-only

ALTER TABLESPACE ts 21 READ ONLY;