Оглавление

ение		3
		5
Основ	ные положения	5
1.1.1.	Аксиома непрерывности (или полноты) действительных чисел	6
1.1.2.	Метод математической индукции	7
1.1.3.	Несчетность множества действительных чисел на отрезке [0, 1]	10
1.1.4.	Лемма Кантора о вложенных отрезках	12
	1.1.1. 1.1.2. 1.1.3.	Основные положения

Введение

Данный курс лекций по главам математического анализа предназначен для студентов первого курса.

Глава 1.

1.

1.0.1. Метод математической индукции

Метод математической индукции — это мощный и строгий метод доказательства утверждений, справедливых для всех натуральных чисел n (или для всех натуральных чисел, начиная с некоторого n_0). Он основан на аксиоме Архимеда.

Его суть заключается в том, чтобы доказать бесконечную серию утверждений $P(1), P(2), P(3), \ldots$, выполнив всего два шага.

Схема доказательства по индукции

Доказательство того, что утверждение P(n) верно для любого натурального $n \in \mathbb{N}$ (или для всех $n \ge n_0$), состоит из двух критически важных шагов:

1. База индукции.

Доказать, что утверждение P(n) верно для первого допустимого значения n (чаще всего для n=1).

2. Индукционный переход (шаг индукции).

Доказать, что если утверждение P(n) верно для некоторого произвольного натурального n=k (предположение индукции), то оно будет верно и для следующего значения n=k+1, то есть что из справедливости P(k) следует справедливость P(k+1).

Записывается это следующим образом:

- 1. P(1) истинно.
- 2. $\forall k \in \mathbb{N}: P(k) \Rightarrow P(k+1)$ истинно.

Если оба этих шага выполнены, то по принципу математической индукции утверждение P(n) считается доказанным для всех натуральных n.

Образная аналогия

Метод индукции часто сравнивают с домино. Если вы:

- 1. Повалите первое костяшку домино (база индукции).
- 2. Убедитесь, что падение любой k-ой костяшки гарантированно повалит следующую, (k+1)-ую (индукционный переход), то можно быть уверенным, что упадут все костяшки.

 Π ример. Утверждение: Сумма первых n нечётных чисел равна n^2 .

$$1+3+5+\ldots+(2n-1)=n^2$$

Доказательство по индукции:

- 1. База индукции. Проверим для n = 1.
- Левая часть: 1. Правая часть: $1^2 = 1$. 1 = 1 верно. База доказана.
- 2. Индукционный переход. Предположение индукции: Допустим, что формула верна для некоторого n=k, то есть

$$1+3+5+\ldots+(2k-1)=k^2$$
. (Это наше предположение)

Требуется доказать, что тогда формула верна и для n = k + 1, то есть

$$1+3+5+\ldots+(2k-1)+(2(k+1)-1)=(k+1)^2.$$

Упрощаем: 2(k+1)-1=2k+1. Значит, нужно доказать:

$$1+3+5+\ldots+(2k-1)+(2k+1)=(k+1)^2.$$

Доказательство: Возьмём левую часть и воспользуемся нашим предположением индукции:

$$(1+3+5+\ldots+(2k-1))+(2k+1)=k^2+(2k+1)=k^2+2k+1=(k+1)^2.$$

Мы получили правую часть. Индукционный переход доказан.

Вывод: По принципу математической индукции, данная формула верна для всех натуральных n. Вариации метода

Индукция с неединичной базой. Утверждение доказывается не для всех $n \in \mathbb{N}$, а для всех $n \geq n_0$ (например, $n \geq 5$). В этом случае база индукции проверяется для $n = n_0$.

Полная (сильная) индукция. В индукционном переходе предполагается, что утверждение P верно не только для n=k, но и для всех предыдущих значений $n=1,2,\ldots,k$, и из этого доказывается справедливость P(k+1).

1.0.1.1. Доказательство методом математической индукции обобщенного неравенства Бернулли.

Обобщённое неравенство Бернулли утверждает, что для любого действительного числа $x \ge 0, x \ne 0,$ и любого натурального числа $n \ge 2$ выполняется неравенство:

$$(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2.$$

База индукции. Проверим для n=2:

$$(1+x)^2 = 1 + 2x + x^2.$$

Сравним с правой частью:

$$1 + 2x + x^2 \ge 1 + 2x + \frac{2 \cdot 1}{2}x^2 = 1 + 2x + x^2.$$

Получаем равенство $1 + 2x + x^2 = 1 + 2x + x^2$, значит, неравенство выполняется (более того, обращается в равенство). База индукции доказана.

Предположение индукции. Предположим, что неравенство верно для некоторого натурального $n=k\geq 2$:

$$(1+x)^k \ge 1 + kx + \frac{k(k-1)}{2}x^2. \tag{1}$$

Индукционный переход. Требуется доказать, что неравенство верно для n=k+1:

$$(1+x)^{k+1} \ge 1 + (k+1)x + \frac{(k+1)k}{2}x^2. \tag{2}$$

Умножим обе части предположения индукции (1) на (1+x) (это положительное число, так как x > -1, поэтому знак неравенства сохраняется):

$$(1+x)^{k+1} \ge \left(1 + kx + \frac{k(k-1)}{2}x^2\right)(1+x).$$

Раскроем скобки в правой части:

$$\left(1 + kx + \frac{k(k-1)}{2}x^2\right)(1+x) = 1 \cdot (1+x) + kx \cdot (1+x) + \frac{k(k-1)}{2}x^2 \cdot (1+x).$$

Раскроем каждое слагаемое:

$$= 1 + x + kx + kx^{2} + \frac{k(k-1)}{2}x^{2} + \frac{k(k-1)}{2}x^{3}.$$

Сгруппируем подобные члены:

$$= 1 + (1+k)x + \left(k + \frac{k(k-1)}{2}\right)x^2 + \frac{k(k-1)}{2}x^3.$$

Упростим коэффициент при x^2 :

$$k + \frac{k(k-1)}{2} = \frac{2k}{2} + \frac{k(k-1)}{2} = \frac{2k + k(k-1)}{2} = \frac{2k + k^2 - k}{2} = \frac{k^2 + k}{2} = \frac{k(k+1)}{2}.$$

Таким образом, правая часть принимает вид:

$$1 + (k+1)x + \frac{k(k+1)}{2}x^2 + \frac{k(k-1)}{2}x^3.$$

Итак, мы получили:

$$(1+x)^{k+1} \ge 1 + (k+1)x + \frac{k(k+1)}{2}x^2 + \frac{k(k-1)}{2}x^3.$$
(3)

Сравним правую часть неравенства (3) с требуемой правой частью в (2):

$$1+(k+1)x+\frac{k(k+1)}{2}x^2+\frac{k(k-1)}{2}x^3 \quad \text{if} \quad 1+(k+1)x+\frac{(k+1)k}{2}x^2.$$

Они отличаются на слагаемое $\frac{k(k-1)}{2}x^3$. По условию $x\geq 0$, т.е. данное слагаемое неотрицательно, что и доказывает утверждение индукционного шага. Таким образом, по принципу математической индукции обобщённое неравенство Бернулли доказано для всех натуральных $n\geq 2$ и для всех $x\geq -1$.

1.0.1.2. Бином Ньютона

Формула бинома Ньютона утверждает, что для любых действительных (или комплексных) чисел a и b и для любого натурального числа n выполняется равенство:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k,$$

где $C_n^k = \frac{n!}{k!(n-k)!}$ — биномиальный коэффициент.

Доказательство методом математической индукции.

1. База индукции. Проверим для n = 1:

$$(a+b)^1 = a+b.$$

Правая часть:

$$\sum_{k=0}^{1} C_1^k a^{1-k} b^k = C_1^0 a^1 b^0 + C_1^1 a^0 b^1 = 1 \cdot a \cdot 1 + 1 \cdot 1 \cdot b = a + b.$$

База индукции верна.

2. Предположение индукции. Предположим, что формула верна для некоторого натурального n=m:

$$(a+b)^m = \sum_{k=0}^m C_m^k a^{m-k} b^k.$$
 (1)

3. Индукционный переход. Требуется доказать, что формула верна для n=m+1:

$$(a+b)^{m+1} = \sum_{k=0}^{m+1} C_{m+1}^k a^{m+1-k} b^k.$$
 (2)

Для доказательства умножим обе части предположения (1) на (a+b):

$$(a+b)^{m+1} = (a+b) \cdot \sum_{k=0}^{m} C_m^k a^{m-k} b^k.$$

Раскроем скобки:

$$(a+b)^{m+1} = a \cdot \sum_{k=0}^{m} C_m^k a^{m-k} b^k + b \cdot \sum_{k=0}^{m} C_m^k a^{m-k} b^k.$$

Преобразуем каждое слагаемое:

Первая сумма:

$$a \cdot \sum_{k=0}^{m} C_m^k a^{m-k} b^k = \sum_{k=0}^{m} C_m^k a^{m+1-k} b^k.$$

Сделаем замену индекса: пусть j = k. Тогда это сумма:

$$\sum_{j=0}^{m} C_{m}^{j} a^{m+1-j} b^{j}. \tag{3}$$

8 Глава 1. 1.

Вторая сумма:

$$b \cdot \sum_{k=0}^{m} C_{m}^{k} a^{m-k} b^{k} = \sum_{k=0}^{m} C_{m}^{k} a^{m-k} b^{k+1}.$$

Сделаем замену индекса: пусть j=k+1, тогда k=j-1, и при k=0 j=1, при k=m j=m+1. Получим:

$$\sum_{j=1}^{m+1} C_m^{j-1} a^{m-(j-1)} b^j = \sum_{j=1}^{m+1} C_m^{j-1} a^{m+1-j} b^j.$$
(4)

Теперь сложим (3) и (4):

$$(a+b)^{m+1} = \sum_{j=0}^{m} C_m^j a^{m+1-j} b^j + \sum_{j=1}^{m+1} C_m^{j-1} a^{m+1-j} b^j.$$

Выделим отдельно слагаемые при j=0 из первой суммы и при j=m+1 из второй суммы: При j=0: первая сумма даёт $C_m^0 a^{m+1} b^0 = a^{m+1}$. При j=m+1: вторая сумма даёт $C_m^m a^0 b^{m+1} = b^{m+1}$. Остальные слагаемые (для j=1 до j=m) можно объединить в одну сумму:

$$(a+b)^{m+1} = a^{m+1} + b^{m+1} + \sum_{j=1}^{m} \left(C_m^j + C_m^{j-1} \right) a^{m+1-j} b^j.$$

Вспомним свойство биномиальных коэффициентов (формула Паскаля):

$$C_m^j + C_m^{j-1} = C_{m+1}^j$$
.

Подставим это:

$$(a+b)^{m+1} = a^{m+1} + b^{m+1} + \sum_{j=1}^{m} C_{m+1}^{j} a^{m+1-j} b^{j}.$$

Заметим, что: $a^{m+1}=C^0_{m+1}a^{m+1}b^0,\, b^{m+1}=C^{m+1}_{m+1}a^0b^{m+1}.$ Тогда всю сумму можно записать как единую сумму от j=0 до j=m+1:

$$(a+b)^{m+1} = \sum_{j=0}^{m+1} C_{m+1}^j a^{m+1-j} b^j.$$

Это в точности совпадает с требуемой формулой (2) для n=m+1 (индекс j можно заменить на k).

4. Вывод. По принципу математической индукции формула бинома Ньютона доказана для всех натуральных n.