Условные матожидание и дисперсия.

Базовый

- 1. Доказать, что энтропия $H(f(\xi)|\xi) = 0$.
- 2. Пусть ξ случайная величина, отвечающая за кубик. Посчитайте $E\xi$ и $D\xi$ при условии, что у на кубике выпало или 3 или 4.
- 3. Пусть ξ случайная величина, отвечающая за кубик. Посчитайте функции $E(\xi|H)$ и $D(\xi|H)$, где образующее разбиение равно $H=(\{1\},\{2,3\},\{4,5,6\}).$
- 4. Посчитать индикатор $P(1_{1,2}|H)$ для выпадения 1 или 2 на кубике для разбиения H из предыдущей задачи.
- 5. Двумерное распределение пары целочисленных случайных величин ξ и η задаётся с помощью таблицы

	$\xi = -1$	$\xi = 0$	$\xi = 1$
$\eta = -1$	1/8	1/12	7/24
$\eta = 1$	5/24	1/6	1/8

где в пересечении столбца $\xi=i$ и строки $\eta=j$ находится вероятность $P\{\xi=i,\eta=j\}$. Найти:

- (a) Таблицу условной вероятности. В каждой клетке которой находится $p_{ij}=(\xi=i|\eta=j).$
- (b) Мат. ожидание $E(\xi|\eta)$
- (c) Дисперсия $D(\xi|\eta)$
- 6. Доказать свойство:

$$E(f(\eta)\xi|\eta) = f(\eta)E(\xi|\eta)$$

Условные матожидание и дисперсия.

Базовый

- 1. (1б)Пусть ξ случайная величина, отвечающая за неправильный кубик с вероятностями выпадения значений (по порядку) $(\frac{1}{12}, \frac{1}{12}, \frac{1}{3}, \frac{1}{3}, \frac{1}{12}, \frac{1}{12})$. Посчитайте функции $E(\xi|H)$ и $D(\xi|H)$, где образующее разбиение равно $H = (\{1\}, \{2,3\}, \{4,5,6\})$.
- 2. Двумерное распределение пары целочисленных случайных величин ξ и η задаётся с помощью таблицы

	$\xi = -1$	$\xi = 0$	$\xi = 1$
$\eta = -1$	1/8	1/12	7/24
$\eta = 1$	5/24	1/6	1/8

где в пересечении столбца $\xi=i$ и строки $\eta=j$ находится вероятность $P\{\xi=i,\eta=j\}$. Найти:

- (a) (0.5)Мат. ожидание $E(\eta|\xi)$
- (b) (0.5)Дисперсия $D(\eta|\xi)$
- 3. (0.56)Имеется n пронумерованных писем и n пронумерованных конвертов. Письма случайным образом раскладываются по конвертам (все n! способов равновероятны). Найдите математическое ожидание числа совпадений номеров письма и конверта (письмо лежит в конверте с тем же номером), при условии, в первые n/3 конвертов точно попали нужные письма письма.
- 4. (0.56)Денис играет в дартс, на котором отмечены области для всех результатов от 1 до 20. Меткость Дениса линейно возрастает с 0 для выбивания 1 и достигает максимума в 10ке, а потом линейно опускается до 0 в значении 20. Каково матожидание результата 4 бросков, если за все 4 броска Денис:
 - (а) ни разу не выбил больше 8
 - (b) выбивал от 9 до 14
 - (с) только от 15 и более