Preparing Thermal States of Quantum Systems by Dimension Reduction

Ersen Bilgin

Institute for Quantum Information California Institute of Technology Joint work with Sergio Boixo

Outline

- Introduction
 - Motivation
 - Main Results
- 2 The Algorithm
 - Overview
 - How it works
- Summary

- Very few quantum systems have analytical solutions.
- Have to resort to numerical simulations in many cases
 - Brute force calculations take $\mathcal{O}(e^N)$ time and memory for N-particle systems.
 - Classical algorithms to approximate solutions (DMRG, PEPS, BP, etc) only work for specific cases.
- What about quantum computers?

- Very few quantum systems have analytical solutions.
- Have to resort to numerical simulations in many cases
 - Brute force calculations take O(e^N) time and memory for N-particle systems.
 - Classical algorithms to approximate solutions (DMRG, PEPS, BP, etc) only work for specific cases.
- What about quantum computers?

- Very few quantum systems have analytical solutions.
- Have to resort to numerical simulations in many cases
 - Brute force calculations take O(e^N) time and memory for N-particle systems.
 - Classical algorithms to approximate solutions (DMRG, PEPS, BP, etc) only work for specific cases.
- What about quantum computers?

- Very few quantum systems have analytical solutions.
- Have to resort to numerical simulations in many cases
 - Brute force calculations take $\mathcal{O}(e^N)$ time and memory for N-particle systems.
 - Classical algorithms to approximate solutions (DMRG, PEPS, BP, etc) only work for specific cases.
- What about quantum computers?

- Very few quantum systems have analytical solutions.
- Have to resort to numerical simulations in many cases
 - Brute force calculations take $\mathcal{O}(e^N)$ time and memory for N-particle systems.
 - Classical algorithms to approximate solutions (DMRG, PEPS, BP, etc) only work for specific cases.
- What about quantum computers?

- Feynman suggested quantum machines to simulate quantum systems.
- Quantum computers are very good at simulating unitary evolutions (Lloyd).
- Initial state preparation is still a difficult problem.
- Several Proposals:
 - Evolving with a bath (Terhal and DiVincenzo)
 - Quantum Metropolis Sampling (Temme et al., Yung and Aspuru-Guzik)
 - Thermalization algorithm (Poulin and Wocjan)

- Feynman suggested quantum machines to simulate quantum systems.
- Quantum computers are very good at simulating unitary evolutions (Lloyd).
- Initial state preparation is still a difficult problem.
- Several Proposals:
 - Evolving with a bath (Terhal and DiVincenzo)
 - Quantum Metropolis Sampling (Temme et al., Yung and Aspuru-Guzik)
 - Thermalization algorithm (Poulin and Wocjan)

- Feynman suggested quantum machines to simulate quantum systems.
- Quantum computers are very good at simulating unitary evolutions (Lloyd).
- Initial state preparation is still a difficult problem.
- Several Proposals:
 - Evolving with a bath (Terhal and DiVincenzo)
 - Quantum Metropolis Sampling (Temme et al., Yung and Aspuru-Guzik)
 - Thermalization algorithm (Poulin and Wocjan)

- Feynman suggested quantum machines to simulate quantum systems.
- Quantum computers are very good at simulating unitary evolutions (Lloyd).
- Initial state preparation is still a difficult problem.
- Several Proposals:
 - Evolving with a bath (Terhal and DiVincenzo)
 - Quantum Metropolis Sampling (Temme et al., Yung and Aspuru-Guzik)
 - Thermalization algorithm (Poulin and Wocjan)

- Feynman suggested quantum machines to simulate quantum systems.
- Quantum computers are very good at simulating unitary evolutions (Lloyd).
- Initial state preparation is still a difficult problem.
- Several Proposals:
 - Evolving with a bath (Terhal and DiVincenzo)
 - Quantum Metropolis Sampling (Temme et al., Yung and Aspuru-Guzik)
 - Thermalization algorithm (Poulin and Wocjan)

- Feynman suggested quantum machines to simulate quantum systems.
- Quantum computers are very good at simulating unitary evolutions (Lloyd).
- Initial state preparation is still a difficult problem.
- Several Proposals:
 - Evolving with a bath (Terhal and DiVincenzo)
 - Quantum Metropolis Sampling (Temme et al., Yung and Aspuru-Guzik)
 - Thermalization algorithm (Poulin and Wocjan)

- Feynman suggested quantum machines to simulate quantum systems.
- Quantum computers are very good at simulating unitary evolutions (Lloyd).
- Initial state preparation is still a difficult problem.
- Several Proposals:
 - Evolving with a bath (Terhal and DiVincenzo)
 - Quantum Metropolis Sampling (Temme et al., Yung and Aspuru-Guzik)
 - Thermalization algorithm (Poulin and Wocjan)

Main Results

	Poulin-Wocjan	Dimension Reduction
1D systems	$\mathcal{O}(\pmb{e}^{lpha \pmb{N}})$	$\mathcal{O}(\pmb{N}^{eta h })$
D-dimensions	$\mathcal{O}(\exp(\alpha N^D))$	$\mathcal{O}(\exp(N^{D-1}))$

- e.g. For 5x5 lattice, $e^{25} \to e^5$ (10¹⁰ \to 150).
- We exploit the geometry of the underlying system.

Main Results

Introduction

	Poulin-Wocjan	Dimension Reduction
1D systems	$\mathcal{O}(\pmb{e}^{lpha \pmb{N}})$	$\mathcal{O}(\pmb{N}^{eta h })$
D-dimensions	$\mathcal{O}(\exp(\alpha N^D))$	$\mathcal{O}(\exp(N^{D-1}))$

- e.g. For 5x5 lattice, $e^{25} \to e^5$ (10¹⁰ \to 150).
- We exploit the geometry of the underlying system.

Main Results

	Poulin-Wocjan	Dimension Reduction
1D systems	$\mathcal{O}(\pmb{e}^{lpha \pmb{N}})$	$\mathcal{O}(\pmb{N}^{eta h })$
D-dimensions	$\mathcal{O}(\exp(\alpha N^D))$	$\mathcal{O}(\exp(N^{D-1}))$

- e.g. For 5x5 lattice, $e^{25} \to e^5$ (10¹⁰ \to 150).
- We exploit the geometry of the underlying system.

• Given $H = \sum_{a} E_{a} |a\rangle\langle a|$, we want $\rho \propto \sum_{a} e^{-\beta E_{a}} |a\rangle\langle a|$.

$$|a\rangle$$
 $|a\rangle$ $|a\rangle$ $|E_a\rangle$ $|B_a\rangle$ $|B$

• Now, instead of $|a\rangle$, we input $I = \sum_{a} |a\rangle\langle a|$

$$\rightarrow \sum_{a} e^{-\beta E_a} |a\rangle\langle a| \otimes |E_a\rangle\langle E_a| \otimes |0\rangle\langle 0| + \dots$$

• Projecting onto $|0\rangle\langle 0|$ gives ρ and succeeds with $p\sim e^{-\beta||H||}$.

• Given $H = \sum_{a} E_{a} |a\rangle\langle a|$, we want $\rho \propto \sum_{a} e^{-\beta E_{a}} |a\rangle\langle a|$.

$$|a\rangle \qquad |a\rangle \\ |0\rangle \qquad |E_a\rangle \\ |0\rangle \qquad U \qquad e^{-\beta E_a/2} |0\rangle + \dots |1\rangle$$

• Now, instead of $|a\rangle$, we input $I = \sum_{a} |a\rangle\langle a|$

$$\rightarrow \sum_{a} e^{-\beta E_a} |a\rangle \langle a| \otimes |E_a\rangle \langle E_a| \otimes |0\rangle \langle 0| + \dots$$

• Projecting onto $|0\rangle\langle 0|$ gives ρ and succeeds with $p\sim e^{-\beta||H||}$.

• Given $H = \sum_{a} E_a |a\rangle\langle a|$, we want $\rho \propto \sum_{a} e^{-\beta E_a} |a\rangle\langle a|$.

$$|a\rangle$$
 $|a\rangle$ $|a\rangle$ $|E_a\rangle$ $|0\rangle$ $|0$

• Now, instead of $|a\rangle$, we input $I = \sum_{a} |a\rangle\langle a|$

$$\rightarrow \ \sum_a e^{-\beta E_a} |a\rangle\langle a| \otimes |E_a\rangle\langle E_a| \otimes |0\rangle\langle 0| + \dots$$

• Projecting onto $|0\rangle\langle 0|$ gives ρ and succeeds with $p \sim e^{-\beta||H||}$.

• Given $H = \sum_{a} E_a |a\rangle\langle a|$, we want $\rho \propto \sum_{a} e^{-\beta E_a} |a\rangle\langle a|$.

$$|a\rangle$$
 $|a\rangle$ $|a\rangle$ $|E_a\rangle$ $|0\rangle$ $|0$

• Now, instead of $|a\rangle$, we input $I = \sum_{a} |a\rangle\langle a|$

$$\rightarrow \sum_{a} e^{-\beta E_a} |a\rangle \langle a| \otimes |E_a\rangle \langle E_a| \otimes |0\rangle \langle 0| + \dots$$

• Projecting onto $|0\rangle\langle 0|$ gives ρ and succeeds with $\rho\sim e^{-\beta||H||}.$

- Projecting everything in one step costs $\mathcal{O}(e^{\beta||H||}) \sim \mathcal{O}(e^N)$.
- We want to break up the projections so that only a small section needs to be restarted after a failure.
- e.g. For one-dimensional systems, $H = \sum_{i} h_{i,j+1}$.

- Projecting everything in one step costs $\mathcal{O}(e^{\beta||H||}) \sim \mathcal{O}(e^{N})$.
- We want to break up the projections so that only a small section needs to be restarted after a failure.
- e.g. For one-dimensional systems, $H = \sum_{i} h_{i,j+1}$.

- Projecting everything in one step costs $\mathcal{O}(e^{\beta||H||}) \sim \mathcal{O}(e^{N})$.
- We want to break up the projections so that only a small section needs to be restarted after a failure.
- e.g. For one-dimensional systems, $H = \sum_{i} h_{i,j+1}$.

- Projecting everything in one step costs $\mathcal{O}(e^{\beta||H||}) \sim \mathcal{O}(e^N)$.
- We want to break up the projections so that only a small section needs to be restarted after a failure.
- e.g. For one-dimensional systems, $H = \sum_{j} h_{j,j+1}$.

- Projecting everything in one step costs $\mathcal{O}(e^{\beta||H||}) \sim \mathcal{O}(e^{N})$.
- We want to break up the projections so that only a small section needs to be restarted after a failure.
- e.g. For one-dimensional systems, $H = \sum_{j} h_{j,j+1}$.

$$e^{-eta h_{1,2}} \; , \; e^{-eta h_{3,4}} \; , \; e^{-eta h_{5,6}} \; , \; e^{-eta h_{7,8}}$$

- Projecting everything in one step costs $\mathcal{O}(e^{\beta||H||}) \sim \mathcal{O}(e^{N})$.
- We want to break up the projections so that only a small section needs to be restarted after a failure.
- e.g. For one-dimensional systems, $H = \sum_{i} h_{j,j+1}$.

$$e^{-\beta(h_{1,2}+h_{2,3}+h_{3,4})}$$
 . $e^{-\beta(h_{5,6}+h_{6,7}+h_{7,8})}$

$$p \sim e^{-\beta \|h\|}$$

- Projecting everything in one step costs $\mathcal{O}(e^{\beta||H||}) \sim \mathcal{O}(e^{N})$.
- We want to break up the projections so that only a small section needs to be restarted after a failure.
- e.g. For one-dimensional systems, $H = \sum_{i} h_{j,j+1}$.

$$e^{-\beta(h_{1,2}+h_{2,3}+h_{3,4}+h_{4,5}+h_{5,6}+h_{6,7}+h_{7,8})}$$

 $p \sim e^{-\beta \|h\|}$, Total cost: $\mathcal{O}(N^{\beta ||h||})$

Perturbative Hamiltonian Update

- We need the map $e^{-\beta H} \rightarrow e^{-\beta (H+h)}$.
- Defining $\rho^{(\epsilon)} \propto e^{-\beta(H+\epsilon h)}$, we want the sequence:

$$\rho^{(0)} \to \rho^{(\epsilon)} \to \rho^{(2\epsilon)} \to \cdots \to \rho^{(1)}$$

• Each step is correct up to an error of $\mathcal{O}(\epsilon^2)$, resulting an overall error of $\mathcal{O}(\epsilon)$.

Perturbative Hamiltonian Update

- We need the map $e^{-\beta H} \rightarrow e^{-\beta (H+h)}$.
- Defining $\rho^{(\epsilon)} \propto e^{-\beta(H+\epsilon h)}$, we want the sequence:

$$\rho^{(0)} \to \rho^{(\epsilon)} \to \rho^{(2\epsilon)} \to \cdots \to \rho^{(1)}$$

• Each step is correct up to an error of $\mathcal{O}(\epsilon^2)$, resulting an overall error of $\mathcal{O}(\epsilon)$.

Perturbative Hamiltonian Update

- We need the map $e^{-\beta H} \rightarrow e^{-\beta (H+h)}$.
- Defining $\rho^{(\epsilon)} \propto e^{-\beta(H+\epsilon h)}$, we want the sequence:

$$\rho^{(0)} \to \rho^{(\epsilon)} \to \rho^{(2\epsilon)} \to \cdots \to \rho^{(1)}$$

• Each step is correct up to an error of $\mathcal{O}(\epsilon^2)$, resulting an overall error of $\mathcal{O}(\epsilon)$.

• Update the eigenvalues using QPE:

$$ho
ightarrow e^{-\epsilon eta h/2}
ho e^{-\epsilon eta h/2}$$

with probability $p > e^{-\epsilon \beta \|h\|}$.

Update the eigenvalues using QPE:

with probability $p \geq e^{-\epsilon\beta||h||}$.

Update the eigenvalues using QPE:

with probability $p \ge e^{-\epsilon\beta \|h\|}$.

Update the eigenvalues using QPE:

with probability $p \ge e^{-\epsilon\beta \|h\|}$.

- We dephase in the eigenbasis of the new Hamiltonian, $H + \epsilon h$.
- After the QPE circuit, we had $\rho_{\text{prob}} \propto e^{-\epsilon \beta h/2} \rho e^{-\epsilon \beta h/2}$.
- After dephasing, we get

$$\sum_{k^{\epsilon}} P_{k^{\epsilon}} \rho_{\text{prob}} P_{k^{\epsilon}} = e^{-\beta(H+\epsilon h)} + \mathcal{O}(\epsilon^{2})$$

- We dephase in the eigenbasis of the new Hamiltonian, $H + \epsilon h$.
- After the QPE circuit, we had $\rho_{\text{prob}} \propto e^{-\epsilon \beta h/2} \rho e^{-\epsilon \beta h/2}$.
- After dephasing, we get

$$\sum_{k^{\epsilon}} P_{k^{\epsilon}} \rho_{\text{prob}} P_{k^{\epsilon}} = e^{-\beta(H+\epsilon h)} + \mathcal{O}(\epsilon^{2})$$

- We dephase in the eigenbasis of the new Hamiltonian, $H + \epsilon h$.
- After the QPE circuit, we had $\rho_{\text{prob}} \propto e^{-\epsilon \beta h/2} \rho e^{-\epsilon \beta h/2}$.
- After dephasing, we get

$$\sum_{k^{\epsilon}} P_{k^{\epsilon}} \rho_{\text{prob}} P_{k^{\epsilon}} = e^{-\beta(H+\epsilon h)} + \mathcal{O}(\epsilon^{2})$$

• We can now implement the map $e^{-\beta H} o e^{-\beta (H+h)}$ using the sequence:

$$\rho^{(0)} \to \rho^{(\epsilon)} \to \rho^{(2\epsilon)} \to \cdots \to \rho^{(1)}$$

• This succeeds with probability $\sim (e^{-\epsilon\beta\|h\|})^{1/\epsilon} \sim e^{-\beta\|h\|}$.

• We can now implement the map $e^{-\beta H} o e^{-\beta (H+h)}$ using the sequence:

$$\rho^{(0)} \to \rho^{(\epsilon)} \to \rho^{(2\epsilon)} \to \cdots \to \rho^{(1)}$$

• This succeeds with probability $\sim (e^{-\epsilon\beta\|h\|})^{1/\epsilon} \sim e^{-\beta\|h\|}$.

$$\tau(k) = \alpha \, 2 \, \tau(k-1) + m$$

- For an error $\bar{\epsilon}$, running time for 1D: $\tau \sim \beta N^{\beta \|h\|}/\bar{\epsilon}^2$
- For D-dimensions: $au \sim \beta e^{2\beta \|h\|DN^{D-1}}/\bar{\epsilon}^2$

$$\tau(k) = \alpha \, 2 \, \tau(k-1) + m$$

- For an error $\bar{\epsilon}$, running time for 1D: $\tau \sim \beta N^{\beta \|h\|}/\bar{\epsilon}^2$
- For D-dimensions: $au \sim \beta e^{2\beta \|h\|DN^{D-1}}/\bar{\epsilon}^2$

$$\tau(k) = \alpha \, 2 \, \tau(k-1) + m$$

- For an error $\bar{\epsilon}$, running time for 1D: $\tau \sim \beta N^{\beta \|h\|}/\bar{\epsilon}^2$
- For D-dimensions: $au \sim eta e^{2eta \|h\|DN^{D-1}}/ar\epsilon^2$

$$\tau(k) = \alpha \, 2 \, \tau(k-1) + m$$

- For an error $\bar{\epsilon}$, running time for 1D: $\tau \sim \beta N^{\beta \|h\|}/\bar{\epsilon}^2$
- For D-dimensions: $\tau \sim \beta e^{2\beta \|h\|DN^{D-1}}/\bar{\epsilon}^2$

Summary

• With dimension reduction, we get:

	Poulin-Wocjan	Dimension Reduction
1D systems	$\mathcal{O}(e^{lpha N})$	$\mathcal{O}(\pmb{N}^{eta \pmb{h} })$
D-dimensions	$\mathcal{O}(\exp(\alpha N^D))$	$\mathcal{O}(\exp(N^{D-1}))$

Summary

With dimension reduction, we get:

	Poulin-Wocjan	Dimension Reduction
1D systems	$\mathcal{O}(e^{lpha N})$	$\mathcal{O}(\pmb{N}^{eta \pmb{h} })$
D-dimensions	$\mathcal{O}(\exp(\alpha N^D))$	$\mathcal{O}(\exp(N^{D-1}))$

 Made possible by recursively merging smaller regions using QPE and dephasing

arXiv:1008.4162; Phys. Rev. Lett. 105, 170405 (2010)

