Final Project Report

Implementation & Code Usage

The implementation that was performed was option 2: Deep Learning. The algorithm that was used was a convolutional neural network (CNN). From an abstract perspective, neural networks are much like a brain, where information comes into the brain, (This can stem from an outside stimulus or an internal stimuli) becomes processed, then the processed information can then be shared across many neurons to perform a response. Due to brain's natural interconnected architecture, neural networks try to mimic the behavior of the brain by channeling/processing the input to some sort of output using the notion of graph theory. Using graph theory and what knowledge we have so far of the brain, we can learn to detect patterns in data!

The image dataset that was used for the deep learning model was comprised of 18,632 images apple tree leaves that ranged from 12 different labels that were associated apple tree leaves. The labels were the following:

Rust Frog Eye Leaf Spot	
Rust	
Scab Frog Eye Leaf Spot Complex	

The objective was to diagnosed the condition of the apple tree based the morphologies the tree leaves were expressing in the images.

Libraries Used

The following libraries that were used was the following:

Libraries	Used For					
Numpy	Data frame Manipulations					
Pandas						
Matplotlib	Visualizations					
PIL						
os	Command Line usage for file					
pathlib	manipulations					
Tensorflow	Machine Learning					
Keras						
Sklearn	Classification Metrics					

```
Michael Woo
02 May 2021
Professor Yasser Abduallah
CS 634 104 Data Mining
```

Screenshots

Figure 1: Image Labels

Visualization of the images

```
n [274]: import matplotlib.pyplot as plt

plt.figure(figsize=(10, 15))
    for images, labels in train_ds.take(1):
        for i in range(9):
            ax = plt.subplot(3, 3, i + 1)
            plt.imshow(images[i].numpy().astype("uint8"))
            plt.title(class_names[labels[i]])
            plt.axis("off")
```


Figure 2: Sample Images from the training data with respect to their labels

Model: "sequential_2"			
Layer (type)	Output	Shape	Param #
sequential_1 (Sequential)	(None,	180, 180, 3)	0
rescaling_1 (Rescaling)	(None,	180, 180, 3)	0
conv2d (Conv2D)	(None,	180, 180, 16)	448
conv2d_1 (Conv2D)	(None,	180, 180, 16)	2320
max_pooling2d (MaxPooling2D)	(None,	90, 90, 16)	0
conv2d_2 (Conv2D)	(None,	90, 90, 32)	4640
max_pooling2d_1 (MaxPooling2	(None,	45, 45, 32)	0
conv2d_3 (Conv2D)	(None,	45, 45, 64)	18496
max_pooling2d_2 (MaxPooling2	(None,	22, 22, 64)	0
dropout (Dropout)	(None,	22, 22, 64)	0
flatten (Flatten)	(None,	30976)	0
dense (Dense)	(None,	128)	3965056
dense_1 (Dense)	(None,	12)	1548
Total params: 3,992,508 Trainable params: 3,992,508 Non-trainable params: 0			

Figure 3: Convolutional Neural Network layers

```
!7]: epochs = 15
 history = model.fit(
train ds,
  validation_data=val_ds,
  epochs=epochs
 Epoch 1/15
 466/466 [=============] - 464s 989ms/step - loss: 1.7361 - accuracy: 0.3468 - val_loss: 1.6476 - val_accurac
 y: 0.3854
 Epoch 2/15
 466/466 [==
       y: 0.5183
 Epoch 3/15
 y: 0.6170
 Epoch 4/15
       y: 0.6731
 Epoch 5/15
 y: 0.6903
 Epoch 6/15
 y: 0.7115
 Epoch 7/15
 Epoch 8/15
 y: 0.7383
 Epoch 9/15
 466/466 [==========] - 319s 685ms/step - loss: 0.7203 - accuracy: 0.7586 - val loss: 0.8495 - val accuracy
 y: 0.7169
 Epoch 10/15
         466/466 [===
 y: 0.7633
 Epoch 11/15
 466/466 [========] - 319s 684ms/step - loss: 0.6836 - accuracy: 0.7722 - val_loss: 0.7417 - val_accurac
 y: 0.7595
```

Figure 4 Training the model for each epoch the model will use 466 images to train and then cross-validate with a different set of images

Figure 5: Graphing the training and validation accuracy: This is a good fit!

Final Dataframe with all the statistical classification analysis

96]:	df_	if_stats												
96]:		label_name	true_neg	false_pos	false_neg	true_pos	accuracy	precision	tpr	tnr	fnr	fpr	f1_score	error_rate
	0	complex	3299	122	145	160	0.928341	0.567376	0.524590	0.964338	0.475410	0.035662	0.545145	0.071659
	1	frog_eye_leaf_spot	2902	195	71	558	0.928610	0.741036	0.887122	0.937036	0.112878	0.062964	0.807525	0.071390
	2	frog_eye_leaf_spot complex	3696	0	30	0	0.991948	0.000000	0.000000	1.000000	1.000000	0.000000	0.000000	0.008052
	3	healthy	2638	161	66	861	0.939077	0.842466	0.928803	0.942479	0.071197	0.057521	0.883530	0.060923
	4	powdery_mildew	3464	14	79	169	0.975040	0.923497	0.681452	0.995975	0.318548	0.004025	0.784223	0.024960
	5	powdery_mildew complex	3714	1	11	0	0.996779	0.000000	0.000000	0.999731	1.000000	0.000269	0.000000	0.003221
	6	rust	3236	127	18	345	0.961084	0.730932	0.950413	0.962236	0.049587	0.037764	0.826347	0.038916
	7	rust complex	3706	0	19	1	0.994901	1.000000	0.050000	1.000000	0.950000	0.000000	0.095238	0.005099
	8	rust frog_eye_leaf_spot	3699	0	27	0	0.992754	0.000000	0.000000	1.000000	1.000000	0.000000	0.000000	0.007246
	9	scab	2610	138	161	817	0.919753	0.855497	0.835378	0.949782	0.164622	0.050218	0.845318	0.080247
	10	scab frog_eye_leaf_spot	3545	35	124	22	0.957327	0.385965	0.150685	0.990223	0.849315	0.009777	0.216749	0.042673
	11	scab frog_eye_leaf_spot complex	3684	0	42	0	0.988728	0.000000	0.000000	1.000000	1.000000	0.000000	0.000000	0.011272

Figure 6: Overall Statistical Analysis of Classification

Classification Report

· We can see that this function from sklearn learn aligns up perfectly with the dataframe above!

```
298]: from sklearn.metrics import classification report
     print(classification_report(df['true_label'],df['pred_label']))
                                    precision recall f1-score
                                                                  support
                           complex
                                        0.57
                                                  0.52
                                                           0.55
                                                                      305
                 frog_eye_leaf_spot
                                        0.74
                                                  0.89
                                                           0.81
                                                                      629
                                                  0.00
                                                           0.00
          frog_eye_leaf_spot complex
                                        0.00
                                                                      30
                           healthy
                                        0.84
                                                 0.93
                                                           0.88
                                                                      927
                     powdery_mildew
                                        0.92
                                                0.68
                                                           0.78
                                                                      248
             powdery_mildew complex
                                        0.00
                                                 0.00
                                                           0.00
                                                                      11
                                        0.73
                                                 0.95
                                                           0.83
                                                                      363
                              rust
                      rust complex
                                        1.00
                                                 0.05
                                                           0.10
                                                                      20
            rust frog_eye_leaf_spot
                                        0.00
                                                  0.00
                                                           0.00
                                                                      27
                                                  0.84
                              scab
                                        0.86
                                                           0.85
                                                                      978
            scab frog_eye_leaf_spot
                                        0.39
                                                  0.15
                                                           0.22
                                                                      146
     scab frog eye leaf spot complex
                                        0.00
                                                  0.00
                                                           0.00
                                                                       42
                          accuracy
                                                           0.79
                                                                     3726
                         macro avg
                                         0.50
                                                  0.42
                                                           0.42
                                                                     3726
                       weighted avg
                                         0.76
                                                  0.79
                                                           0.76
                                                                     3726
```

Figure 7: Classification Report, notice how the precision, recall, and f1-score are well aligned with each other!!!

Figure 8: Overall Confusion Matrix for the Deep Learning Model

Other

The source code (.py file) and a sample dataset of images (25 images per label) will be attached to the zip file. I would recommend using the jupyter notebook file to view the results and the robust visualization. While using the .py file to see if my code runs.

Caution: Running the jupyter notebook file will use a lot of CPU utilization

Link to Git Repository

https://github.com/MichaelWoogit/Plant Pathology Apple Trees.git