Fundamentals of Information Systems

Python Programming (for Data Science)

Master's Degree in Data Science

Gabriele Tolomei

gtolomei@math.unipd.it
University of Padua, Italy
2018/2019
December, 3 2018

Lecture 11: A Machine Learning Primer

What is Machine Learning?

- There exist several definitions of what is Machine Learning (ML):
 - 1. "A computer program is said to **learn from experience** *E* with respect to some class of tasks *T* and performance measure *P* if its performance at tasks in *T*, as measured by *P*, improves with experience *E*." (Tom Mitchell)
 - 2. "ML is an application of artificial intelligence (AI) that provides systems the ability to **automatically learn** and improve from experience (i.e., *observed data*) **without being explicitly programmed**" (source).

•••

Just Take a Step Back

- Traditionally, we design computer programs to solve specific tasks which would otherwise require a huge human effort.
- For example, consider the task of creating a vocabulary of words from a collection of text documents.
- To do so, we need to be able to build an **algorithm** which solves the task we aim to perform.
- In other words, we have to *mathematically encode* our task into a **computable function** which takes some **input** (e.g., a collection of text documents) and returns some **output** (e.g., a vocabulary of words).

Different Types of Tasks

- Some tasks, however, simply **cannot** be pinpointed down mathematically, as the function they encode to is just too hard to be implemented in a traditional computer program.
- Consider how would you possibly write a computer program, which given as input an image gets as output a boolean answer that tells whether the image contains or not a bird...
- Idea: Access to a collection of, say, 1M images each one with a label associated (e.g., bird/no_bird) and output a computer program that detects birds in images.

xkcd Tells Us Better!

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

(Image Source)

Taxonomy of ML

- Roughly speaking there are two main categories of ML tasks:
 - 1. **Supervised Learning**: Given a set of **labeled** examples, **predict** the labels of *new and unseen* examples
 - 2. **Unsupervised Learning**: Given a set of examples, **find structure** in the data (e.g., *clusters*, *subspaces*, *manifolds*)

Supervised Learning

- We can further divide supervised learning into two sub-categories, depending on the **label** we want to predict.
 - Regression: if the label takes on continuous values
 - Classification: if the label takes on discrete values

Supervised Learning: Regression vs. Classification

• Regression:

- value of a house
- probability of click on a link to a web page

Classification:

- spam vs. non-spam emails (binary classification)
- movie ratings on a 1 to 5 scale (k-ary or multiclass classification)

The General (Supervised) ML Pipeline

- 0) Be sure your problem needs actually to be tackled using ML!
- 1) **Data Collection**: Get **labeled data** from the domain of your interest (may be the hardest part!)
- 2) Feature Engineering: Represent your data with a "machine-friendly" format
- 3) Model Training: Build one (or more) learning models (more on this later)
- 4) **Model Selection/Evaluation**: Pick the best-performing model according to some **quality metrics**

1. Data Collection

Motivation

- Any ML technique requires data to operate on!
- Supervised Learning, in particular, needs labeled data, which may be even harder to get (e.g., a set of emails with spam/non_spam tags).
- Most of the time, this step involves combining multiple and possibly heterogeneous data sources.

2. Feature Engineering

Motivation

- Collected data must be encoded to a machine-readable format.
- Each object of our problem domain is transformed into an *n*-dimensional **feature vector**.
- Each **feature** captures a specific property of the object we believe it is useful to "separate" different objects.
- In the following, we refer to **instance** (or **example**) to identify the feature vector of an object **and** its associated label.

Characteristics of Features

- Feature values can be either **categorical** (e.g., *gender*) or **continuous** (e.g., *weight*).
- A feature can be derived *locally* from a single object (e.g., the *annual salary* of a person)
- Or it can result from more complex computation on the whole data collection (e.g., the *tf-idf* score of a word in a document computed against a corpus of documents).

Example: spam vs. non-spam emails

Challenges and Solutions

- Problem: Collected data is far from being perfect!
- Many challenges need to be addressed before moving down to next stages of the ML pipeline.
- Overall, this is accomplished with an intermediate **Data Preprocessing** step.

Handling Missing Values

Challenge	Description	Solution
Missing values	A feature value may not be available for one or more instances	Replace missing values with the median (continuous) or the mode (categorical) of the existing values

Managing Data Sparsity

Challenge	Description	Solution
Sparsity	Most of the instances contain just a small subset of the features	Use "sparse-friendly" data structures (e.g., DOK)

Handling Outliers

Challenge	Description	Solution
Outliers	One or more instances have out-of-range values for one or more features	

Mixing Categorical and Continuous Feature Values

Challenge	Description	Solution
Mix of continuous and discrete values	Feature set contains both numerical and categorical values	Transform categorical features using one-hot encoding

Different Feature Scales

Challenge	Description	Solution
Multiple feature magnitudes	Feature set contains very wide range of values	Standardization (min- max, z-scores)

Managing Imbalance

Challenge	Description	Solution
Class imbalance	Instances labeled with the class of interest represents a tiny fraction of the total	Over-/Under-sampling, cost-sensitive learning

Relationship between Features

Challenge	Description	Solution
Strong multicollinearity	Linear relationship between one or more features	Dimensionality reduction (PCA)

A Bit of Notation

- We denote by $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_m, y_m)\}$ our resulting labeled dataset.
- This is made of m instances; the i-th instance is represented by the tuple (\mathbf{x}_i, y_i) , where:
 - $\mathbf{x}_i \in \mathbb{R}^n$ is an n-dimensional feature vector, i.e., $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n})^T$
 - $y_i \in \mathbb{R}$ if the label is **continuous** (**regression**) or $y_i \in \{1, 2, ..., k\}$ if the label is **categorical** and takes on k values (**k-ary classification**)

Labeled Dataset

A Bit of Notation

- We indicate by $X \in \mathbb{R}_{m,n}$ the m-by-n feature matrix resulting from the m n-dimensional feature vectors.
- Similarly, we denote by Y the m-dimensional vector containing instance labels.

Labeled Dataset

3. Model Training

Intuition

• Idea: There exists an unknown target function f, which maps element of X to elements of Y.

$$f = X \mapsto Y$$

- Unfortunately, we cannot just write down an algorithm that implements f.
- Still, we can try to *learn* f, namely to find another function h^* which approximates the truef ($h^* \approx f$) using the data $\mathcal D$ we observed.
- We refer to h^* as our **hypothesis** (used to approximate f).

How Do We Select h^* From?

- We choose h^* from a family of functions \mathcal{H} , called the **hypothesis space**.
- ullet To actually pick h^* , we need to further specifying two components:
 - ullet the loss function (a.k.a. cost function) denoted by ${\mathscr C}$
 - ullet the **learning algorithm** denoted by ${\cal A}$

The Loss Function ℓ

- Measures the error we would make if a hypothesis h is used instead of the true f.
- Such an error can be computed *only* on the data we observed (i.e., on \mathcal{D}).
- Therefore, it depends on the hypothesis *and* the dataset, i.e., $\ell: \mathcal{H} \times \mathcal{D} \mapsto \mathbb{R}$.
- We should use this in-sample error (a.k.a. empirical loss) as an estimate of the out-of-sample error (a.k.a. expected loss or risk).

The Learning Algorithm \mathcal{A}

- Defines the strategy we use to search the hypothesis space \mathcal{H} for picking our **best** hypothesis $h^* \in \mathcal{H}$.
- Here, "best" means the hypothesis that minimizes the loss function on the observed data (Empirical Risk Minimization).
- In other words, among all the hypotheses specified by \mathcal{H} , the learning algorithm will pick the one that minimizes ℓ .

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} \ell(h, \mathcal{D})$$

One-Slide ML

The Hypothesis Space ${\mathcal H}$

- Intuitively, the larger the hypothesis space:
 - the larger will be the set of functions that can be represented (+)
 - the harder will be for the learning algorithm to pick the best h^* (-)
- Trade-off: Put some constraints on \mathcal{H} , e.g., limit the search space \mathcal{A} has to explore only to linear functions.

Example of \mathcal{H} : Linear Models

• The underlying assumption here is that there exists a linear relationship between X (features) and Y (class label/value).

$$\mathcal{H} = \{ h_{\boldsymbol{\theta}} : X \longmapsto Y \mid h_{\boldsymbol{\theta}}(\mathbf{x}) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n \}$$

- θ is called the **vector of parameters** (of the linear model).
- $x_0 = 1$ by convention.
- Among all the possible instantiations of θ , the learning algorithm will pick θ^* as the one which minimizes the loss function ℓ computed on \mathcal{D} .

A Possible Loss Function: Mean Squared Error (MSE)

- **MSE** is just a possible (mathematically convenient) choice of loss function ℓ .
- MSE measures the average error when the true target f is replaced with a hypothesis $h_{\theta} \in \mathcal{H}$ on the observed data \mathcal{D} .

$$\ell(h_{\theta}, \mathcal{D}) = \mathsf{MSE}(h_{\theta}, \mathcal{D})$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(\mathbf{x}_i) - f(\mathbf{x}_i) \right)^2$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i \right)^2$$

• Each term of the above summation, i.e., $\left(h_{\theta}(\mathbf{x}_i) - y_i\right)^2$, represents the squared error w.r.t. a single instance in \mathcal{D} .

The Learning Algorithm (Revisited)

- Reduces the learning problem to an optimization problem.
- Among all the possible $h_{\theta} \in \mathcal{H}$, it picks $h^* = h_{\theta^*}$, so as to minimize the loss function.

$$h^* = \operatorname{argmin}_{\theta} \{ \ell(h_{\theta}, D) \}$$

• In particular, if $\ell = MSE$:

$$h^* = \operatorname{argmin}_{\theta} \{ \mathsf{MSE}(h_{\theta}, \mathcal{D}) \} = \operatorname{argmin}_{\theta} \left\{ \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(\mathbf{x}_i) - y_i \right)^2 \right\}$$

Minimum and Maximum of a Function: First Derivative

- Whenever we want to find the minimum (maximum) of a real-valued function $f: \mathbb{R} \longrightarrow \mathbb{R}$, we look for **stationary points**, i.e., the set of points $S = \{(x, f(x)) | f'(x) = 0\}$ where the first derivative is 0.
- Note that depending on the shape of the function f, a stationary point doesn't necessarily correspond to a local minimum (maximum) but it may be a **point of inflection**.
- To investigate better what happens at a specific stationary point, we need to check the second derivative f''(x).

Minimum and Maximum of a Function: Second Derivative

- Given a stationary point $(x_s, f(x_s)) \in S$:
 - if $f''(x_s) > 0$ then $(x_s, f(x_s))$ is a local minimum
 - if $f''(x_s) < 0$ then $(x_s, f(x_s))$ is a local maximum
 - if $f''(x_s) = 0$ then $(x_s, f(x_s))$ may be an inflection point

Minimum and Maximum of a Convex/Concave Function

- Any local minimum (maximum) of a **convex** (**concave**) function is also a **global** minimum (maximum).
- If we know the function is **convex** (**concave**) finding the minimum (maximum) can be done just by computing the first derivative and set it to 0.
- In the case of a multivariate function, this generalizes to compute the gradient (∇) of the function and set it to 0.

The Gradient ∇

• The gradient of a multivariate function $f: \mathbb{R}^n \longmapsto \mathbb{R}$ is the ndimensional vector of the **partial derivatives** of the function w.r.t. each of its variable.

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

• Solving $\nabla f = \mathbf{0}$ means finding an n-dimensional vector resulting from the following:

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right) = (0, 0, \dots, 0) = \mathbf{0}$$

$\mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D})$ is a Convex Function

- Each term of the summation of $MSE(h_{\theta}, \mathcal{D})$ is a multivariate linear function of the model parameters $\boldsymbol{\theta} = (\theta_0, \theta_1, \dots, \theta_n)$.
- Linear functions are **convex**, and so does the square of a convex function; also, the sum of convex functions is again convex.
- Convex functions have a unique local minimum, which therefore happens to be the global minimum.

Visualize The Optimization Problem

Computing the Gradient of MSE

• The following is the expression of the gradient of $\mathsf{MSE}(h_{\theta}, \mathcal{D})$:

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i \right)^2 \right]$$

Computing the Gradient of MSE

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i \right)^2 \right]$$

• Due to the scalar multiple rule and sum rule of the derivative, i.e.,

$$\frac{\partial f}{\partial t}(\alpha t) = \alpha \frac{\partial f}{\partial t}$$
 ($\alpha \in \mathbb{R}$, constant) and $\frac{\partial f}{\partial t} \left(\sum t \right) = \sum \left(\frac{\partial f}{\partial t} \right)$, we can

rewrite the above as follows:

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{1}{m} \left[\sum_{i=1}^{m} \nabla \left(h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i \right)^2 \right]$$

• To make things easier, let's consider for a moment the special case where \mathcal{D} contains just a **single** instsance, i.e., $\mathcal{D} = \{(\mathbf{x}, y)\}$. Therefore:

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \nabla \Big(h_{\boldsymbol{\theta}}(\mathbf{x}) - y \Big)^2$$

• Due to the power rule and chain rule of the derivative, i.e.,

$$\frac{\partial f(t^{\alpha})}{\partial t} = \alpha t^{\alpha - 1} \frac{\partial f(g(t))}{\partial t} = \frac{\partial f(g(t))}{\partial g(t)} \cdot \frac{\partial g(t)}{\partial t}, \text{ we can rewrite the above as follows:}$$

$$= 2\Big(h_{\boldsymbol{\theta}}(\mathbf{x}) - y\Big)\nabla\Big(h_{\boldsymbol{\theta}}(\mathbf{x}) - y\Big)$$

$$\nabla \left(h_{\theta}(\mathbf{x}) - y\right) = \nabla \left(\theta_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n} - y\right)$$

$$= \left(\frac{\partial(\theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n} - y)}{\partial\theta_{0}}, \frac{\partial(\theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n} - y)}{\partial\theta_{1}}, \dots\right)$$

$$\frac{\partial(\theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n} - y)}{\partial\theta_{n}}\right) = \left(x_{0}, x_{1}, \dots, x_{n}\right) = \mathbf{x}$$

Overall:

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = 2 \underbrace{\left(h_{\boldsymbol{\theta}}(\mathbf{x}) - y\right)}_{\text{scalar}} \cdot \underbrace{\mathbf{x}}_{(n+1)\text{-dimensional vector}}$$

- We can rewrite the formula above using **vectorized notation**, noticing that $h_{\theta}(\mathbf{x}) = \theta_0 x_0 + \theta_1 x_1 + \dots \theta_n x_n = \boldsymbol{\theta}^T \mathbf{x}$.
- $\theta^T \mathbf{x}$ is obviously a scalar which results from the dot product of a 1-by-(n+1) row vector $\boldsymbol{\theta}^T$ and an (n+1)-by-1 column vector \mathbf{x} .

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = 2(\boldsymbol{\theta}^T \mathbf{x} - \mathbf{y}) \cdot \mathbf{x}$$

• The product of a vector by a scalar is applied element-wise, therefore:

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \begin{bmatrix} 2(\boldsymbol{\theta}^T \mathbf{x} - y) \cdot x_0 \\ 2(\boldsymbol{\theta}^T \mathbf{x} - y) \cdot x_1 \\ \vdots \\ 2(\boldsymbol{\theta}^T \mathbf{x} - y) \cdot x_n \end{bmatrix} = \begin{bmatrix} 2(\boldsymbol{\theta}^T \mathbf{x} - y) \\ 2(\boldsymbol{\theta}^T \mathbf{x} - y) \cdot x_1 \\ \vdots \\ 2(\boldsymbol{\theta}^T \mathbf{x} - y) \cdot x_n \end{bmatrix}$$

as we set $x_0 = 1$.

• Note that $\nabla \mathsf{MSE}(h_{\theta}, \mathcal{D})$ is an (n+1)-dimensional vector, as expected.

Setting the Gradient of MSE to 0 (single instance)

• To find the local minimum (which is also global) of $\mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D})$, we set:

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \begin{bmatrix} 2(\boldsymbol{\theta}^T \mathbf{x} - y) \\ 2(\boldsymbol{\theta}^T \mathbf{x} - y) \cdot x_1 \\ \vdots \\ 2(\boldsymbol{\theta}^T \mathbf{x} - y) \cdot x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$$

• Therefore, we have to solve a system of n+1 linear equations of n+1 variables, each equation of the form $2(\boldsymbol{\theta}^T\mathbf{x}-y)\cdot x_j=0$, $j\in\{0,1,\ldots,n\}$

• Going back to the overall **MSE** in the general case where \mathcal{D} contains m instances:

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{1}{m} \left\{ \left[2 \Big(h_{\boldsymbol{\theta}}(\mathbf{x}_1) - y_1 \Big) \nabla \Big(h_{\boldsymbol{\theta}}(\mathbf{x}_1) - y_1 \Big) \right] + \right.$$

$$+ \left[2 \left(h_{\boldsymbol{\theta}}(\mathbf{x}_m) - y_m \right) \nabla \left(h_{\boldsymbol{\theta}}(\mathbf{x}_m) - y_m \right) \right] \right\}$$

$$= \frac{2}{m} \left[\sum_{i=1}^{m} \left(h_{\theta}(\mathbf{x}_i) - y_i \right) \nabla \left(h_{\theta}(\mathbf{x}_i) - y_i \right) \right]$$

Putting all together:

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{2}{m} \left[\sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i \right) \cdot \underbrace{\mathbf{x}_i}_{(n+1)\text{-dimensional vector}} \right]$$

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \begin{bmatrix} \frac{2}{m} (\boldsymbol{\theta}^T \mathbf{x_1} - y_1) \cdot x_{1,0} + \ldots + \frac{2}{m} (\boldsymbol{\theta}^T \mathbf{x_m} - y_m) \cdot x_{m,0} \\ \frac{2}{m} (\boldsymbol{\theta}^T \mathbf{x_1} - y_1) \cdot x_{1,1} + \ldots + \frac{2}{m} (\boldsymbol{\theta}^T \mathbf{x_m} - y_m) \cdot x_{m,1} \\ \vdots \\ \frac{2}{m} (\boldsymbol{\theta}^T \mathbf{x_1} - y_1) \cdot x_{1,n} + \ldots + \frac{2}{m} (\boldsymbol{\theta}^T \mathbf{x_m} - y_m) \cdot x_{m,n} \end{bmatrix}$$

- Note that we have introduced a second subscript to be able to index each feature's instance within \mathcal{D} , i.e., $x_{i,j}$.
- Moreover, we have set all $x_{i,0} = 1 \ (i \in \{1, ..., m\})$.

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{2}{m} \begin{bmatrix} (\boldsymbol{\theta}^T \mathbf{x_1} - y_1) + \dots + (\boldsymbol{\theta}^T \mathbf{x_m} - y_m) \\ (\boldsymbol{\theta}^T \mathbf{x_1} - y_1) \cdot x_{1,1} + \dots + (\boldsymbol{\theta}^T \mathbf{x_m} - y_m) \cdot x_{m,1} \\ \vdots \\ (\boldsymbol{\theta}^T \mathbf{x_1} - y_1) \cdot x_{1,n} + \dots + (\boldsymbol{\theta}^T \mathbf{x_m} - y_m) \cdot x_{m,n} \end{bmatrix}$$

Setting the Gradient of MSE to 0 (m instances)

$$\frac{2}{m} \begin{bmatrix} (\boldsymbol{\theta}^{T} \mathbf{x_{1}} - y_{1}) + \dots + (\boldsymbol{\theta}^{T} \mathbf{x_{m}} - y_{m}) \\ (\boldsymbol{\theta}^{T} \mathbf{x_{1}} - y_{1}) \cdot x_{1,1} + \dots + (\boldsymbol{\theta}^{T} \mathbf{x_{m}} - y_{m}) \cdot x_{m,1} \\ \vdots \\ (\boldsymbol{\theta}^{T} \mathbf{x_{1}} - y_{1}) \cdot x_{1,n} + \dots + (\boldsymbol{\theta}^{T} \mathbf{x_{m}} - y_{m}) \cdot x_{m,n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$$

$$\nabla MSE(h_{\theta}, D)$$

• Again, we have to solve a system of n+1 linear equations of n+1 variables, each equation of the form

$$\frac{2}{m} \left[(\boldsymbol{\theta}^T \mathbf{x_1} - y_1) \cdot x_{1,j} + \dots + (\boldsymbol{\theta}^T \mathbf{x_m} - y_m) \cdot x_{m,j} \right] = 0,$$

$$j \in \{0, 1, \dots, n\}$$

Vectorized Form of the Gradient of MSE

$$\begin{bmatrix} x_{1,0}, x_{1,1}, \dots, x_{1,n} \\ x_{2,0}, x_{2,1}, \dots, x_{2,n} \\ \vdots \\ x_{m,0}, x_{m,1}, \dots, x_{m,n} \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
parameter vector θ label vector $\mathbf{y}_{m,1}$

Vectorized Form of the Gradient of MSE

$$\nabla \mathsf{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y})$$

$$\frac{2}{m}\mathbf{X}^{T}(\mathbf{X}\cdot\boldsymbol{\theta}-\mathbf{y})=\mathbf{0}$$

$$\mathbf{X}^T \cdot \mathbf{X} \cdot \boldsymbol{\theta} = \mathbf{X}^T \cdot \mathbf{y}$$

 $\theta = \mathbf{X}^{\dagger} \cdot \mathbf{y}$, where $\mathbf{X}^{\dagger} = (\mathbf{X}^{T} \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^{T}$ is the pseudo-inverse of \mathbf{X}

Additional Notes

- Luckily, there exists a closed-form solution to the convex optimization problem above (i.e., to minimize **MSE**).
- However, other choices of loss functions (even if convex) may need an **iterative** approach to get to a (local) minimum.
- For example, **gradient descent** use the gradient to **iteratively** converge to a local minimum (guaranteed for convex loss functions).
- We should use gradient descent as the size of our problem increases because computing the inverse of a large matrix is generally a very costly task ($O(n^3)$, where $n \times n$ is the size of the matrix).

Gradient Descent

- A generic iterative algorithm used to find an approximate solution to an optimization problem.
- It consists of 3 parameters:
 - $heta_0 \in \mathbb{R}^n$ as the initial (random) guess
 - $\epsilon > 0$ stopping criterion
 - α step size

Gradient Descent: The Algorithm

- $1.\boldsymbol{\theta}^* = \boldsymbol{\theta}_0;$
- 2. while $\|\nabla f\|_2 > \epsilon$: // replace f with the function of interest, e.g., $MSE(h_{\theta}, \mathcal{D})$

$$m{ heta}^* = m{ heta}^* - \underbrace{\alpha}_{\text{step size}} \nabla f(m{ heta}^*);$$
 // the direction of greatest decrease of f is

opposite to the gradient vector

3. return θ^* ;

Gradient Descent: The Choice of $oldsymbol{ heta}_0$

- The starting point θ_0 can be chosen arbitrarily, though for non-convex function f the output of gradient descent can vary with its choice.
- For convex f, gradient descent will converge toward the **same point**, i.e., the global minimum, independently of the starting point.
- The choice of starting point can still affect the number of iterations until convergence.
- In practice, one should choose θ_0 according to our best guess as to where the global minimum is likely to be.

Gradient Descent: The Choice of ϵ

- The parameter ϵ determines the stopping criterion.
- Note that since $\epsilon > 0$, gradient descent generally does not halt at an **actual** local minimum, but rather at some kind of "approximate local minimum".
- Smaller values of ϵ mean more iterations before stopping but a higher-quality solution at termination.
- In practice, one tries various values of ϵ to achieve the right balance between computation time and solution quality.

Gradient Descent: The Choice of α

- The final parameter α , the "step size", is perhaps the most important.
- While gradient descent is flexible enough that different values of α can be used in different iterations, in practice one typically sets α in advance and stick to it over all iterations.
- The "best" value of α is typically chosen by experimentation. For example, we can run the entire gradient descent algorithm with a few different choices of α to see which run gives us the best results.

Overfitting (High Variance)

- Minimizing the loss function considering the whole dataset ${\cal D}$ just limits the in-sample error.
- Our ultimate goal is to pick a hypothesis h^* which is able to **generalize** to unseen instances (i.e., minimize the **out-of-sample error**).
- Note that if we pick a hypothesis that just memorizes all the instances in \mathcal{D} , this will have a 0 in-sample error but this is not learning!
- Overfitting: h^* is not learning the true f but just mimic random noise
- ullet High Variance: h^* does not generalize, as it strongly depends on ${\mathcal D}$

Underfitting (High Bias)

- Anyway, we don't want h^* to perform poorly on \mathcal{D} .
- Underfitting: h^* has a very high in-sample error
- ullet High Bias: h^* does not take advantage of ${\mathcal D}$

Bias-Variance Tradeoff

Splitting the Dataset ${\cal D}$

- To prevent overfitting, split the dataset into (at least) two separate random samples:
 - Training Set ($\mathcal{D}_{\text{train}}$) used to learn h^* , such that $|\mathcal{D}_{\text{train}}| = 0.8 |\mathcal{D}|$
 - Test or Held-out Set ($\mathcal{D}_{\text{test}}$) used to evaluate h^* , such that $|\mathcal{D}_{\text{test}}|$ = $|\mathcal{D}| |\mathcal{D}_{\text{train}}|$
- Note that the (offline or online) metrics we use to evaluate h^{*} do not necessarily have to be the same of that we optimize at training time.

Splitting the Dataset ${\mathcal D}$

How Much Data Do We Need?

- In general, the more data we have the better we learn.
- Even if the datasets we operate on are not so big, we can still take advantage of ML.
- For example, we can use a technique called k-fold cross validation (e.g., k=10) instead of just splitting \mathcal{D} in two datasets.

k-fold Cross Validation

- ullet (Optional) Split the dataset in $\mathcal{D}_{ ext{train}}$ and $\mathcal{D}_{ ext{test}}$, as discussed above.
- Repeat for k iterations the following step:
 - Randomly select a proportion of 1/k instances from $\mathcal{D}_{\text{train}}$ which will be used for testing, whilst the remaining (k-1)/k proportion of the dataset is used for training.
 - Compute the error on the test proportion.
- Eventually, compute the **cross validation** error as the average of the individual errors obtained in each of the k runs.

4. Model Selection/Evaluation

Which Model Should I Use?

- Several learning models are designed to achieve the same tasks.
- Each learning model has its own set of parameters, a.k.a. hyperparameters (e.g., the number k of neighbors in kNN).

Validation Set

- It is crucial not to mix model training with hyperparameter sweeping.
- Another portion of the original dataset (Validation Set) should be reserved for this task.
- This can be also done within each step of a k-fold cross validation.

Example

Suppose we want to select which value of $k \in \{2, 5, 10\}$ of a kNN gives the best performance.

- 1. Train a separate model for each value of k on the training set (e.g., 70%)
- 2. Measure the error of each model on the validation set (e.g., 10%)
- 3. Select the model whose value of k gives the best performance on the validation set (e.g., k=5)
- 4. Re-train only this model on the training + validation sets
- 5. Measure the performance on the test set (e.g., 20%)

Example Using Cross Validation

- 1. For each cross validation run:
 - Train a separate model for each value of k on the training set portion of that run
 - Measure the error of each model on the validation set portion of that run
- 2. Select the model whose value of k gives the best performance on the 10 averaged validation sets (e.g., k=5)
- 3. Re-train only this model on the whole training set (e.g., 80%)
- 4. Measure the performance on the test set (e.g., 20%)