Progetto Manuzio

Vito Volterra

Variazioni e fluttuazioni del numero d'individui in specie animali conviventi

www.liberliber.it

Questo e-book è stato realizzato anche grazie al sostegno di:

Editoria, Web design, Multimedia http://www.e-text.it/

QUESTO E-BOOK:

TITOLO: Variazioni e fluttuazioni del numero d'individui in specie animali conviventi

AUTORE: Volterra, Vito

TRADUTTORE: CURATORE:

NOTE:

DIRITTI D'AUTORE: no

LICENZA: questo testo è distribuito con la licenza specificata al seguente indirizzo Internet: http://www.liberliber.it/biblioteca/licenze/

TRATTO DA: Opere matematiche: memorie e note / Vito Volterra; pubblicate a cura dell'Accademia nazionale dei Lincei col concorso del Consiglio nazionale delle ricerche; 5: 1926-1940 / Vito Volterra; corredato dall'Elenco cronologico generale delle pubblicazioni - Roma: Accademia nazionale dei Lincei, 1962. - 538 p.: ill.; 27 cm.

CODICE ISBN: non disponibile

1a EDIZIONE ELETTRONICA DEL: 1 gennaio 2011

INDICE DI AFFIDABILITA': 1

- 0: affidabilità bassa
- 1: affidabilità media
- 2: affidabilità buona
- 3: affidabilità ottima

ALLA EDIZIONE ELETTRONICA HANNO CONTRIBUITO: Catia Righi, catia righi@tin.it

REVISIONE:

Paolo Alberti, paoloalberti@iol.it

PUBBLICAZIONE:

Catia Righi, catia righi@tin.it

Informazioni sul "progetto Manuzio"

Il "progetto Manuzio" è una iniziativa dell'associazione culturale Liber Liber. Aperto a chiunque voglia collaborare, si pone come scopo la pubblicazione e la diffusione gratuita di opere letterarie in formato elettronico. Ulteriori informazioni sono disponibili sul sito Internet: http://www.liberliber.it/

Aiuta anche tu il "progetto Manuzio"

Se questo "libro elettronico" è stato di tuo gradimento, o se condividi le finalità del "progetto Manuzio", invia una donazione a Liber Liber. Il tuo sostegno ci aiuterà a far crescere ulteriormente la nostra biblioteca. Qui le istruzioni: http://www.liberliber.it/sostieni/

VARIAZIONI E FLUTTUAZIONI DEL NUME-RO D'INDIVIDUI IN SPECIE ANIMALI CON-VIVENTI^{1*}

«Memorie del R. Comitato talassografico italiano», Mem. CXXXI, 1927.

Per evitare ripetizioni, i lavori sopra citati non sono stati inscritti in queste «Opere». Le poche pagine della detta Memoria dei Lincei che l'Autore ha omesse in questa Memoria del Comitato talassografico vengono qui riportate, alla fine, in un'Appendice.

Sempre per evitare ripetizioni, non si pubblicano in queste «Opere» vari lavori dell'Autore che possono considerarsi riassunti di questa Memoria. [N.d.R.].

¹* In questa Memoria, fino al termine della parte III, l'Autore ha riordinato e arricchito di varie aggiunte quanto aveva già pubblicato, con lo stesso titolo, nelle «Memorie della R. Acc. dei Lincei» (ser. VI, vol. II, 1926, pp. 31-113); nella parte IV ha riprodotto tre Note già pubblicate nei «Rend. Acc. dei Lincei» (ser. VI, vol. V, 1927, pp. 3-10, pp. 61-67 pp. 465-470) rispettivamente con i titoli: *Sulle fluttuazioni biologiche; Leggi delle fluttuazioni biologiche; Sulla periodicità delle fluttuazioni biologiche*.

CONSIDERAZIONI PRELIMINARI.

1. Mi permetto presentare alcuni studi sulla coabitazione di specie in un medesimo ambiente. Ordinariamente esse si disputano un medesimo nutrimento o si nutrono le une delle altre; nulla esclude però che esse possano anche mutuamente giovarsi².

Per poter trattare la questione matematicamente conviene partire da ipotesi che, pure allontanandosi dalla realtà, ne diano una immagine approssimata. Anche se la rappresentazione sarà, almeno in un primo momento, grossolana, pure, se essa sarà semplice, vi si potrà appli-

Ciò può giustificare se mi sono permesso di pubblicare queste ricerche, semplici dal punto di vista analitico, ma che per me riuscivano nuove.

² Il Dott. Umberto D'Ancona mi aveva più volte intrattenuto di statistiche che stava facendo sulla pesca nel periodo della guerra e in periodi anteriori e posteriori ad essa, chiedendomi se fosse possibile dare una spiegazione matematica dei risultati che veniva ottenendo sulla percentuale delle varie specie in questi diversi periodi. Questa richiesta mi ha spinto ad impostare il problema come è fatto in queste pagine ed a risolverlo stabilendo varie leggi che si trovano enunciate alla fine del § 2 della I^a parte e nel § 5 della 2ª parte. Tanto il D'Ancona quanto io che lavoravamo in maniera indipendente fummo soddisfatti nel comunicarci dei risultati che ci erano rispettivamente rivelati col calcolo e colla osservazione i quali concordavano fra loro; così quello che l'uomo colla pesca, perturbando lo stato naturale di variazione di due specie, una delle quali si nutre dell'altra, fa diminuire il quantitativo della specie mangiante ed aumentare quello della specie mangiata.

care il calcolo e verificare o quantitativamente o anche qualitativamente se i risultati che si ottengono corrispondono ai dati statistici e quindi saggiare la giustezza delle ipotesi di partenza e avere il terreno preparato per nuovi risultati. Quindi conviene, per facilitare l'applicazione del calcolo, schematizzare il fenomeno isolando le azioni che si vogliono esaminare, supponendole funzionare da sole e trascurando le altre. Ora, per esempio, le fluttuazioni del numero di pesci viventi in un certo ambiente dipendono dalle condizioni degli animali e da quelle ambientali. Io ho cominciato dallo studiare il *fenomeno puro interno* dovuto solamente alla voracità delle specie coabitanti ed alla loro potenza riproduttiva, ponendomi nelle condizioni ideali in cui queste sole cause agiscano e tutte le altre possano trascurarsi.

Successivamente (Parte seconda, § 8) ho considerato anche la sovrapposizione di queste azioni ad azioni ambientali periodiche.

2. Prima di trattare casi generali ho desiderato considerare dei casi particolari che permettessero di orientarsi in un campo che, almeno per me, riusciva del tutto nuovo³ ed ho trattato in modo speciale nella prima parte due

³ Il lavoro è stato da me pubblicato dapprima nelle «Memorie della R. Accademia Nazionale dei Lincei», Classe di Scienze fisiche, matematiche e naturali, Serie VI, vol. II, fasc. III, 1926. Dopo la pubblicazione di questa Memoria ho avuto notizia che nelle questioni parassitologiche relative alla malaria esistevano le equazioni del Ross, ed ho saputo che il dott. Lotka nel volume *Elements of physical Biology*, New York 1925, aveva considerato

casi particolari. L'uno di due specie che si trovano da sole in uno stesso ambiente e si contendono il medesimo nutrimento (§ 1); l'altro di due specie, una delle quali si accrescerebbe continuamente perché trova sufficiente nutrimento, l'altra che da sola si esaurirebbe per mancanza di nutrimento, ma che unita alla prima vive a spese di questa in quanto si nutre degli individui di essa (§ 2).

Ho poi considerato nel § 4 della prima parte tutti i casi che possono presentarsi quando due specie convivono e le azioni scambievoli sono ad esse favorevoli o sfavorevoli.

Nei due casi trattati nei §§ 1 e 2, ponendo convenientemente la questione, si trovano equazioni differenziali di cui si possono dare degli integrali che indicano le leggi colle quali si accrescono o diminuiscono le due specie. Nel secondo caso il calcolo prevede il prodursi di fluttuazioni periodiche delle due specie di cui può determinarsi il periodo; fluttuazioni che la statistica della pe-

il caso di due specie da me svolto nel § 2 della I^a parte, giungendo con altro metodo all'integrale ed al suo diagramma ed al periodo delle piccole oscillazioni. Però le leggi generali da me ottenute nello stesso paragrafo, i vari casi svolti negli altri paragrafi della I^a parte, come pure tutte le altre parti della mia Memoria, nelle quali considero le applicazioni delle leggi suddette e la convivenza di *n* specie nella ipotesi di associazioni conservative e dissipative, sono nuove e per la prima volta trattate. Spiacemi di non aver potuto citare nella detta Memoria l'interessante opera del dott. Lotka la quale contiene applicazioni diverse delle matematiche a questioni chimiche e biologiche.

sca sembra dimostrare effettivamente esistenti. Queste fluttuazioni e i loro periodi dipendono da tre leggi generali. La terza legge regola anche la perturbazione prodotta nelle quantità medie delle due specie da un'azione esterna che cerchi distruggere gl'individui di esse e fa prevedere un accrescimento medio della specie mangiata ed una diminuzione media dell'altra. Anche questo risultato sembra in accordo colle statistiche della pesca, se si assume come azione perturbatrice quella prodotta artificialmente dall'uomo colla pesca.

Ottenuto questo risultato era naturale domandarsi fino a che punto tale distruzione riesce favorevole alla specie mangiata, giacché è intuitivo che proseguendo nella distruzione delle due specie deve raggiungersi un limite oltre il quale ambedue le specie debbono esaurirsi. Perciò nel § 5 della prima parte ho studiato specialmente questo *limite ottimo* ed ho riconosciuto che esso ha piuttosto il carattere di un limite superiore che di un massimo, cioè avvicinandosi ad esso cresce continuamente la quantità media della specie mangiata, ma raggiuntolo, mentre la specie mangiante si esaurisce, l'altra tende verso un valore che è inferiore alle medie precedentemente raggiunte.

3. I due casi svolti nei primi due paragrafi presentano un andamento essenzialmente diverso. Mentre nel primo l'andamento è di tipo assintotico nel secondo è di tipo ciclico-periodico. Perciò essi possono considerarsi come due casi tipici distinti. Confrontato poi il 2° caso, che è un caso di stabilità, con quelli trattati nel § 4 questi ultimi si rivelano d'indole instabile.

L'introduzione di nuovi principii permette d'impostare il problema nel caso generale, il che vien fatto nella seconda parte della presente Memoria.

In essa, dopo aver posto le equazioni generali corrispondenti ad un'associazione biologica di più specie le quali si nutrono le une delle altre, riconosco l'esistenza delle fluttuazioni ed estendo le tre leggi generali precedentemente trovate pel caso delle associazioni biologiche di due specie. Distinguo poi le associazioni biologiche in *conservative* e *dissipative*, e studio la sovrapposizione di fluttuazioni libere (dovute alle sole azioni riproduttive e a quelle delle voracità delle varie specie) a fluttuazioni forzate (dovute ad azioni ambientali periodiche); esamino infine la perturbazione prodotta in un'associazione biologica dall'aggiunta d'una nuova specie.

L'appendice che segue, contiene un'applicazione della teoria generale al caso in cui in un ambiente limitato coabitino tre specie, la prima delle quali si nutre della seconda e questa della terza, mentre l'ultima trova il nutrimento nell'ambiente stesso, come sarebbe se si avesse il parassita d'una specie ed un parassita del parassita. Vi si è in ultimo aggiunto lo studio del caso ereditario che conduce ad equazioni integro-differenziali.

4. Quanto ai metodi matematici adoperati dirò che non sono i procedimenti fondati sul calcolo delle probabilità, che primi potrebbero presentarsi alla mente, i quali conducono allo scopo. Ecco come può impostarsi la questione: cerchiamo di esprimere con parole come procede all'ingrosso il fenomeno; quindi traduciamo queste parole in linguaggio matematico. Questa traduzione conduce ad equazioni differenziali. Se allora ci lasciamo guidare dai metodi dell'analisi siamo condotti molto più lontani di quanto potrebbero portarci il linguaggio ed il ragionamento ordinario e possiamo formulare delle leggi precise matematiche. Queste non contraddicono i risultati dell'osservazione. Anzi la più importante di esse sembra in perfetto accordo con i risultati statistici⁴

Dal punto di vista analitico è da notare che lo studio delle fluttuazioni o oscillazioni del numero di individui di specie conviventi, come viene fatto in questa Memoria, esce dal quadro dello studio ordinario delle oscillazioni, giacché nelle presenti ricerche abbiamo dovuto trattare in generale equazioni non lineari, mentre lo schema classico della teoria delle oscillazioni si svolge nell'ambito delle equazioni lineari.

⁴ Per tutti gli studi statistici vedi la Memoria CXXVI pubblicata in questa stessa raccolta dal dott. Umberto D'Ancona: *Dell'influenza della stasi peschereccia nel periodo 1914-18 sul patrimonio ittico dell'Alto Adriatico*, nella quale si esaminano le conseguenze teoriche e pratiche dei risultati raggiunti (cfr. § 2, N. 9).

Ed infatti le fluttuazioni studiate non sono in generale piccole fluttuazioni. Solo quando abbiamo fatto l'ipotesi di piccole fluttuazioni e le abbiamo studiate approssimativamente, trascurando i termini del 2° ordine, abbiamo potuto valerci del sussidio delle equazioni differenziali o integro-differenziali lineari.

5. In base alle idee esposte di sopra, per semplificare la trattazione, ammetteremo che le specie si accrescano o diminuiscano in modo continuo, cioè ammetteremo che il numero che misura la quantità di esseri di una specie non sia un numero intero, ma un numero reale e positivo qualunque che varia per gradi continui. In generale le nascite hanno luogo in determinate epoche, a distanza di tempo le une dalle altre; noi trascureremo queste circostanze, ammettendo che esse avvengano con continuità in ogni istante e che, a parità di tutte le altre condizioni, esse si verifichino proporzionalmente al numero degli individui esistenti della specie. Lo stesso si dica delle morti e, secondo che prevalgono le nascite sulle morti, o viceversa, avverrà aumento o diminuzione degli individui. Così ammetteremo la omogenità degli individui di ciascuna specie trascurando le variazioni di età e grandezza.

Se una specie è sola o le altre non influiscono su di essa, finché le circostanze di nascita e di morte non si muteranno, avremo, se N indica il numero degli individui,

$$\frac{dN}{dt} = nM - mN = (n - m)N$$

essendo t il tempo, n il coefficiente di natalità e m quello di mortalità, ambedue costanti. Posto $n-m=\varepsilon$ avremo

(I)
$$\frac{dN}{dt} = \varepsilon N$$
, (II) $N = N_0 e^{\varepsilon t}$

ove N_o denota il numero degli individui al tempo 0. Si chiamerà ϵ il coefficiente di accrescimento della specie e, se esso sarà positivo, si avrà vero accrescimento, altrimenti esaurimento. Se le circostanze di nascita e di morte cambieranno, ϵ sarà variabile col tempo o con N o con altri elementi. In tal caso la (I) sussisterà sempre, ma evidentemente non avremo più la (II).

PARTE PRIMA

Associazione biologica di due specie.

§ 1. – DUE SPECIE CHE SI DISPUTANO UNO STESSO NUTRIMENTO.

1. Supponiamo di avere due specie viventi in uno stesso ambiente: i numeri degli individui rispettivi siano N_1 e N_2 e siano ε_1 e ε_2 i valori che avrebbero i loro coefficienti di accrescimento se il nutrimento comune fosse in quantità sempre tale da soddisfare pienamente la loro voracità. Avremo

$$\frac{dN_1}{dt} = \varepsilon_1 N_1 \quad , \quad \frac{dN_2}{dt} = \varepsilon_2 N_2 \qquad (\varepsilon_1 > 0, \varepsilon_2 > 0)$$

Si ammetta ora che gl'individui continuamente crescenti di numero delle due specie diminuiscano la quantità di nutrimento di cui ciascun individuo può disporre. Supponiamo che la presenza degli N_1 individui della prima specie diminuisca questa quantità nella misura h_1N_1 , e la presenza degli N_2 individui della seconda specie la diminuisca nella misura h_2N_2 , onde per l'insieme delle due la diminuzione avvenga nella misura $h_1N_1 + h_2N_2$ e perciò, in virtù del diverso bisogno di nutrimento delle due specie, i due coefficienti di accrescimento vengano ridotti a

(1)
$$\varepsilon_1 - \gamma_1 (h_1 N_1 + h_2 N_2), \quad \varepsilon_2 - \gamma_2 (h_1 N_1 + h_2 N_2)$$

Avremo allora le equazioni differenziali

(2₁)
$$\frac{dN_1}{dt} = (\varepsilon_1 - \gamma_1 (h_1 N_1 + h_2 N_2))N_1$$

(2₂)
$$\frac{dN_2}{dt} = (\varepsilon_2 - \gamma_2 (h_1 N_1 + h_2 N_2))N_2$$

nelle quali dovremo supporre ε_1 , ε_2 , h_1 , h_2 , γ_1 , γ_2 costanti positive.

2. Dalle equazioni precedenti segue

(3₁)
$$\frac{d \log N_1}{dt} = \epsilon_1 - \gamma_1 (h_1 N_1 + h_2 N_2)$$

(3₂)
$$\frac{d \log N_2}{dt} = \varepsilon_2 - \gamma_2 (h_1 N_1 + h_2 N_2)$$

e quindi

(4)
$$\gamma_2 \frac{d \log N_1}{dt} - \gamma_1 \frac{d \log N_2}{dt} = \varepsilon_1 \gamma_2 - \varepsilon_2 \gamma_1$$

cioè

(5)
$$\frac{d \log \frac{N_1^{\gamma_2}}{N_2^{\gamma_1}}}{dt} = \varepsilon_1 \gamma_2 - \varepsilon_2 \gamma_1$$

e integrando e passando dai logaritmi ai numeri

(6)
$$\frac{N_1^{\gamma_2}}{N_2^{\gamma_1}} = Ce^{(\varepsilon_1 \gamma_2 - \varepsilon_2 \gamma_1)t}$$

ove C è una quantità costante.

3. Se il binomio

$$\varepsilon_1 \gamma_2 - \varepsilon_2 \gamma_1 = 0$$

ossia

$$\frac{\varepsilon_1}{\gamma_1} = \frac{\varepsilon_2}{\gamma_2} = K$$

avremo

(7)
$$\frac{N_1^{\gamma_2}}{N_2^{\gamma_1}} = C$$

da cui

$$N_2 = \frac{1}{C^{\frac{1}{\gamma_1}}} = N_1^{\frac{\gamma}{2}/\gamma_1}$$

sostituendo nella (2₁)

$$\frac{dN_1}{N_1 \left\{ \varepsilon_1 - \gamma_1 \left(h_1 N_1 + \frac{h_2}{C^{\frac{1}{\gamma_1}}} N_1^{\frac{\gamma_2}{\gamma_1}} \right) \right\}} = dt.$$

Le variabili sono dunque separate e

(8)
$$t - t_0 = \int_{N_1^0}^{N_1} \frac{dN_1}{N_1 \left\{ \varepsilon_1 - \gamma_1 \left(h_1 N_1 + \frac{h_2}{C_{\gamma_1}} N_1^{\gamma_2/\gamma_1} \right) \right\} }$$

ove N₁⁰ è il numero di individui della prima specie al tempo iniziale t_0

Tre casi potranno presentarsi (se i valori iniziali di N₁ e N_2 sono N_1^0 e N_2^0) e cioè

1° caso
$$K > h_1 N_1^0 + h_2 N_2^0$$
,

allora N₁ e N₂ cresceranno a partire dai valori iniziali conservando la proporzione (7), cioè

$$\frac{N_1^{\gamma_2}}{N_2^{\gamma_1}} = \frac{N_1^{0\gamma_2}}{N_2^{0\gamma_1}}$$

e tenderanno assintoticamente verso i valori per cui

(9)
$$h_1N_1 + h_2N_2 = K$$

senza mai raggiungerli;

$$2^{\circ}$$
 caso $K < h_1 N_1^0 + h_2 N_2^0$

 N_1 e N_2 diminuiranno a partire dai valori iniziali conservando la proporzione (7) tendendo assintoticamente ai valori per cui è soddisfatta la (9);

3° caso
$$h_1 N_1^0 + h_2 N_2^0 = K$$

allora N₁ e N₂ si manterranno costanti.

Ma è evidente che la condizione (7) ha un grado infinitesimo di probabilità.

4. Se il binomio $\varepsilon_1\gamma_2 - \varepsilon_2\gamma_1$ non è nullo potremo supporlo positivo, perché se non fosse tale, basterebbe scambiare la specie 1 colla specie 2 per ridurlo positivo.

In questo caso

$$\lim_{t=\infty} \frac{N_1^{\gamma_2}}{N_2^{\gamma_1}} = \infty.$$

Per N₁ uguale o superiore a $\varepsilon_1/\gamma_1h_1$, in virtù della (2₁), il coefficiente differenziale dN_1/dt è negativo, quindi N₁ non può sorpassare un certo limite

È dunque necessario che N₂ tenda a zero.

È facile calcolare l'espressione assintotica di N₁.

Infatti quando N_2 sarà così piccolo da ritenersi trascurabile, l'equazione (2_1) si scriverà

$$\frac{dN_1}{dt} = (\varepsilon_1 - \gamma_1 h_1 N_1) N_1$$

ossia, separando le variabili

$$dt = \frac{dN_1}{N_1(\varepsilon_1 - \gamma_1 h_1 N_1)}$$

e integrando e passando dai logaritmi ai numeri

$$\frac{N_1}{\varepsilon_1 - \gamma_1 h_1 N_1} = C_0 e^{\varepsilon_1 t}$$

essendo C₀ una costante. Quindi

$$N_1 = \frac{C_0 \varepsilon_1 e^{\varepsilon_1 t}}{1 + \gamma_1 h_1 C_0 e^{\varepsilon_1 t}} = \frac{C_0 \varepsilon_1}{e^{-\varepsilon_1 t} + \gamma_1 h_1 C_0}.$$

Perciò N_1 tende assintoticamente al valore $\varepsilon_1/\gamma_1 h_1$ per valori crescenti o decrescenti secondo che C_0 è positivo o negativo.

Possiamo riassumere i risultati ottenuti nella proposizione seguente: Se $\varepsilon_1/\gamma_1 > \varepsilon_2/\gamma_2$ la seconda specie tende ad esaurirsi e la prima tende a raggiungere il numero di individui $\varepsilon_1/\gamma_1 h_1$.

5. In generale il problema non è ridotto alle quadrature, ma vi è un caso particolare in cui ciò può ottenersi facilmente.

Se possiamo supporre approssimativamente $\gamma_1 = \gamma_2 = \gamma$ ponendo $C^{-1/\gamma} = c$ avremo

$$N_2 = cN_1 e^{(\varepsilon - \varepsilon)t}$$

ossia

$$N_2 e^{-\varepsilon_1 t} = c N_1 e^{-\varepsilon_1 t}$$

cioè ponendo

Variazioni e fluttuazioni del numero d'individui....

$$N_1 e^{-\varepsilon_1 t} = M_1$$
 $N_2 e^{-\varepsilon_2 t} = M_2$

sarà

$$M_2 = cM_1$$

e la equazione (3₁) diverrà

$$\frac{d \log M_{1}}{dt} = -\gamma (h_{1}N_{1} + h_{2}N_{2}) = -\gamma (h_{1}e^{\epsilon_{1}t}M_{1} + h_{2}e^{\epsilon_{2}t}M_{2}) =$$

$$= -\gamma M_{1} (h_{1}e^{\epsilon_{1}t} + h_{2}ce^{\epsilon_{2}t})$$

vale a dire

$$\frac{d\mathbf{M}_1}{\mathbf{M}_1^2} = -\gamma (h_1 e^{\varepsilon_1 t} + h_2 c e^{\varepsilon_2 t}) dt$$

e integrando

$$\frac{1}{M_1} = \gamma \left(\frac{h_1}{\varepsilon_1} e^{\varepsilon_1 t} + \frac{h_2 c}{\varepsilon_2} e^{\varepsilon_2 t} \right) + C'$$

ove C' è una costante. Ouindi

$$\mathbf{M}_{1} = \frac{1}{\gamma \left(\frac{h_{1}}{\varepsilon_{1}} e^{\varepsilon_{1}t} + \frac{h_{2}c}{\varepsilon_{2}} e^{\varepsilon_{2}t} \right) + \mathbf{C}'}, \quad \mathbf{M}_{2} = \frac{c}{\gamma \left(\frac{h_{1}}{\varepsilon_{1}} e^{\varepsilon_{1}t} + \frac{h_{2}c}{\varepsilon_{2}} e^{\varepsilon_{2}t} \right) + \mathbf{C}'}$$

da cui

$$N_{1} = \frac{e^{\varepsilon_{1}t}}{\gamma \left(\frac{h_{1}}{\varepsilon_{1}}e^{\varepsilon_{1}t} + \frac{h_{2}c}{\varepsilon_{2}}e^{\varepsilon_{2}t}\right) + C'}, \qquad N_{2} = \frac{ce^{\varepsilon_{2}t}}{\gamma \left(\frac{h_{1}}{\varepsilon_{1}}e^{\varepsilon_{1}t} + \frac{h_{2}c}{\varepsilon_{2}}e^{\varepsilon_{2}t}\right) + C'}$$

È facile verificare in questo caso particolare, nel quale tutte le quadrature sono eseguite completamente, la proposizione precedente. Infatti se $\varepsilon_1 > \varepsilon_2$ avremo

$$\lim_{t=\infty} N_1 = \frac{\epsilon_1}{\gamma_1 h_1} \qquad , \qquad \lim_{t=\infty} N_2 = 0.$$

6. Abbiamo supposto che la presenza di N₁ individui della prima specie e di N2 della seconda riduca i coefficienti di accrescimento ε_1 e ε_2 nella misura indicata dalle (1), nelle quali formule N_1 e N_2 compaiono linearmente. Ma noi possiamo supporre molto più generalmente che i detti coefficienti divengano

$$\epsilon_1 - \gamma_1 F(N_1 \;,\; N_2) \quad \; , \qquad \; \epsilon_2 - \gamma_2 F(N_1 \;,\; N_2) \label{eq:epsilon}$$

ove $F(N_1, N_2)$ è una funzione continua, positiva, che si annulla per $N_1 = N_2 = 0$ ed è crescente tanto rispetto ad N₁ che ad N₂ ed inoltre cresce indefinitamente col crescere indefinito di ciascuna di queste due variabili. Del resto $F(N_1, N_2)$ può essere comunque.

Allora le (2_1) e (2_2) vanno sostituite con

$$\frac{dN_1}{dt} = (\varepsilon_1 - \gamma_1 F(N_1, N_2))N_1$$

$$\frac{dN_2}{dt} = (\varepsilon_2 - \gamma_2 F(N_1, N_2))N_2$$

Le equazioni (4), (5), (6) valgono sempre e perciò tutte le loro conseguenze; in particolare, se $\varepsilon_1 \gamma_2 - \varepsilon_2 \gamma_1 = 0$, N₂ tende a zero col crescere indefinito del tempo, cioè la seconda specie tende a esaurirsi.

Il comportamento assintotico della prima specie sarà dato dalla formula

$$dt = \frac{dN_1}{N_1(\varepsilon_1 - \gamma_1 F(N_1, 0))}$$

Se in questa formula partiamo dalla coppia di valori N_1^0 , 0, e supponiamo

$$\varepsilon_1 - \gamma_1 F(N_1^0, 0) > 0$$

poiché $\epsilon_1 - \gamma_1 \ F(\infty \ , \ 0) \leq 0$ dovranno esistere radici N_1 della equazione

(10)
$$\epsilon_1 - \gamma_1 F(N_1, 0) = 0$$

superiori a N_1^0 . Allora N_1 crescerà tendendo assintoticamente verso la minima di esse. Se invece sarà $\varepsilon_1 - \gamma_1$ F(N_1^0 , 0) < 0 poiché $\epsilon_1 - \gamma_1 F(0, 0) > 0$ dovranno esistere radici della (10) minori di N₁⁰. In tal caso N₁ decrescerà tendendo assintoticamente verso la massima di esse.

§ 2. – DUE SPECIE UNA DELLE QUALI SI NUTRE DELL'ALTRA

1. Siano N₁ e N₂ i numeri degli individui delle due specie. Il coefficiente di accrescimento che avrebbe la prima, se l'altra non esistesse, sia $\varepsilon_1 > 0$. Supponiamo che la seconda si esaurirebbe per mancanza di nutrimento se fosse sola; sia perciò negativo il suo coefficiente di accrescimento ed eguale a $-\epsilon_2$ (ϵ_2 può considerarsi come il coefficiente di esaurimento). Se ciascuna delle due specie fosse sola si avrebbe

(11₁)
$$\frac{dN_1}{dt} = \varepsilon_1 N_1$$
, (11₂) $\frac{dN_2}{dt} = -\varepsilon_2 N_2$

Ma se esse sono insieme e la seconda specie si nutre della prima, ε_1 diminuirà $e - \varepsilon_2$ crescerà e evidentemente ε_1 diminuirà tanto più quanto più numerosi saranno gli individui della seconda specie $e - \varepsilon_2$ crescerà tanto più quanto più numerosi saranno gli individui della prima specie. Per rappresentare questo fatto nella maniera più semplice supponiamo che ε_1 diminuisca proporzionalmente a N_2 cioè nella misura $\gamma_1 N_2$, $e - \varepsilon_2$ cresca proporzionalmente a N_1 cioè nella misura γ_2 N_1 .

Avremo allora le due equazioni differenziali

(A₁)
$$\frac{dN_1}{dt} = (\epsilon_1 - \gamma_1 N_2) N_1$$
 (A₂) $\frac{dN_2}{dt} = (-\epsilon_2 + \gamma_2 N_1) N_2$

Assumere i coefficienti di accrescimento e di esaurimento rispettivamente lineari rispetto a N_2 e a N_1 può sembrare molto grossolano; ma si giustifica, come vedremo nel \S 5, se noi computiamo questi coefficienti mediante il numero probabile di incontri degli individui delle due specie. Del resto anche se prendiamo i due coefficienti funzioni qualunque di N_2 e N_1 rispettivamente, il procedimento di integrazione usato in questo

paragrafo, in cui essi si suppongono lineari, riesce lo stesso.

2. Mentre le costanti ε_1 e ε_2 riassumono le condizioni di natalità e di mortalità delle due specie, i coefficienti γ_1 e γ_2 misurano numericamente l'attitudine a proteggersi della prima specie ed i mezzi di offesa della seconda specie. Infatti crescendo questi ultimi dovranno aumentare γ_1 e γ_2 mentre aumentando i mezzi di protezione della prima specie questi coefficienti dovranno diminuire.

Per avere il modo di misurare ε_1 e ε_2 basterà integrare le (11₁), (11₂); si avrebbe, se ciascuna delle due specie fosse sola,

$$N_1 = C_1 e^{\varepsilon_1 t}$$
 , $N_2 = C_2 e^{-\varepsilon_2 t}$

ove C_1 e C_2 sono rispettivamente i valori di N_1 e N_2 per t = 0. Poniamo $N_1 = 2$ C_1 , $N_2 = C_2/2$ e denotiamo con t_1 e t_2 i tempi necessari rispettivamente perché si raddoppi la prima specie e si riduca a metà la seconda.

Avremo

$$\varepsilon_1 = \frac{\log_{e^2}}{t_1} = \frac{0.693}{t_1}$$
, $\varepsilon_2 = \frac{\log_{e^2}}{t_2} = \frac{0.693}{t_2}$

Ne segue che ε_1 e ε_2 sono di dimensioni – 1 rispetto al tempo. Sarebbe sempre possibile prendere le unità di tempo in modo che $\varepsilon_1 = 1$. Infatti se prendiamo come unità di tempo il tempo necessario affinché la prima specie cresca nel rapporto e = 2,728 sarà $e = e^{\varepsilon_1}$ e quindi $\varepsilon_1 = 1$. Analogamente si dica per ε_2 .

Posto

(12)
$$\frac{\varepsilon_2}{\gamma_2} = K_1, \qquad \frac{\varepsilon_1}{\gamma_1} = K_2$$

le equazioni (A_1) e (A_2) ci dicono che se

$$N_1 = K_2 \qquad N_2 = K_2 \qquad \frac{dN_1}{dt} = \frac{dN_2}{dt} = 0$$

cioè le due specie sono in uno stato stazionario.

Avremo dunque

$$\gamma_1 = \frac{\varepsilon_1}{K_2}$$
, $\gamma_2 = \frac{\varepsilon_2}{K_1}$

Passiamo adesso alla integrazione della equazioni $(A_1) e (A_2).$

Dalle (A_1) e (A_2) segue

(13)
$$\frac{d \frac{N_1}{K_1}}{dt} = \varepsilon_1 \left(1 - \frac{N_2}{K_2} \right) \frac{N_1}{K_1} , \frac{d \frac{N_2}{K_2}}{dt} = -\varepsilon_2 \left(1 - \frac{N_1}{K_1} \right) \frac{N_2}{K_2}$$

onde ponendo

(14)
$$N_1 = K_1 n_1 N_2 = K_2 n_2$$

le equazioni precedenti si scriveranno

$$(A'_1)$$
 $\frac{dn_1}{dt} = \varepsilon_1(1 - n_2)n_1$, (A'_2) $\frac{dn_2}{dt} = -\varepsilon_2(1 - n_1)n_2$

Moltiplicando rispettivamente queste equazioni per ε_1 e ε₂ e sommando si ha

Variazioni e fluttuazioni del numero d'individui....

(15)
$$\frac{d}{dt}(\varepsilon_2 n_1 + \varepsilon_1 n_2) = \varepsilon_1 \ \varepsilon_2 (n_1 - n_2).$$

Moltiplicando rispettivamente per ε_2/n_1 e ε_1/n_2 e sommando si trova

$$\frac{\varepsilon_2}{n_1} \frac{dn_1}{dt} + \frac{\varepsilon_1}{n_2} \frac{dn_2}{dt} = \varepsilon_1 \varepsilon_2 (n_1 - n_2)$$

cioè

(16)
$$\frac{d}{dt} (\log n_1^{\varepsilon_2} + \log n_2^{\varepsilon_1}) = \varepsilon_1 \varepsilon_2 (n_1 - n_2)$$

Eguagliando fra loro i primi membri delle (15) e (16) segue

$$\frac{d}{dt}(\varepsilon_2 n_1 + \varepsilon_1 n_2) = \frac{d}{dt}(\log n_1^{\varepsilon_2} + \log n_2^{\varepsilon_1})$$

e integrando e passando dai logaritmi ai numeri

$$n_1^{\varepsilon_2} n_2^{\varepsilon_1} = C e^{\varepsilon_2 n_1 + \varepsilon_1 n_2}$$

essendo C una costante positiva. Donde

(17)
$$\left(\frac{n_1}{e^{n_1}}\right)^{\epsilon_2} = C\left(\frac{n_2}{e^{n_2}}\right)^{-\epsilon_1}.$$

Dalle (A'₁) e (A'₂) segue

$$dt = \frac{dn_1}{\varepsilon_1(1-n_2)n_1} = \frac{dn_2}{-\varepsilon_2(1-n_1)n_2}.$$

Se per mezzo dell'integrale (17) esprimiamo n_2 per mezzo di n_1 o n_1 per mezzo di n_2 e sostituiamo rispettivamente questi valori nelle equazioni precedenti le variabili restano separate, onde la integrazione è ridotta alle quadrature.

4. Ma noi vogliamo discutere direttamente la soluzione e specialmente l'integrale (17).

Poniamo perciò

(18)
$$x = \left(\frac{n_1}{e^{n_1}}\right)^{\epsilon_2} = C\left(\frac{n_2}{e^{n_2}}\right)^{-\epsilon_1}$$

e consideriamo la curva Γ_1 , che ha per ascissa e ordinata n_1 e x e quella Γ_2 , che ha per ascissa e ordinata n_2 e x (fig. 1).

Avremo

(19)
$$\frac{d}{dn_1} \left(\frac{n_1}{e^{n_1}} \right) = e^{-n_1} (1 - n_1)$$

che è positivo per $n_1 < 1$ e negativo per $n_1 > 1$. Dunque, mentre n_1 varia tra 0 e ∞ , x partendo da 0 raggiunge il massimo $\left(\frac{1}{e}\right)^{\frac{e}{2}}$ per $n_1 = 1$ e poi tende a 0 per n_1 crescente indefinitamente. Invece mentre n_2 varia tra 0 e ∞ , x_1 , decresce da ∞ fino al valore minimo Ce^{ϵ_1} per $n_2=1$, quindi cresce indefinitamente divenendo ∞ per $n_2 = \infty$. L'andamento delle curve Γ_1 e Γ_2 risulta perciò immediato come lo dimostra la fig. 1.

La costante C è determinata dalla (17), quando siano noti i valori iniziali di n_1 e n_2 , ed è

$$C \leq e^{-(\varepsilon_1+\varepsilon_2)}$$
.

Se $C < e^{-(\epsilon_1+\epsilon_2)}$ ossia $e^{-\epsilon_2} > Ce^{\epsilon_1}$, ad ogni valore di x compreso tra Ce^{ϵ_1} ed $e^{-\epsilon_2}$ corrispondono due valori per n_1 e due per n_2 eccettuati i due valori corrispondenti ai punti C_1 e C_2 di massimo e di minimo delle ordinate delle due curve Γ_1 e Γ_2 . Avendo disposto le due curve come nella fig. 1, cioè con gli assi delle ascisse l'uno sul prolungamento dell'altro, tiriamo per i vertici C_1 e C_2 le normali ad x e consideriamo le porzioni A_1 C_1 B_1 , A_2 C_2 B_2 delle due curve comprese fra queste due parallele. Siano $a_1 < 1$ e $b_1 > 1$ le ascisse di A_1 e B_1 , $a_2 < 1$, $b_2 > 1$ le ascisse di A_2 e B_2 .

Cerchiamo allora di costruire la curva λ avente per ascissa n_1 e ordinata n_2 . Supponiamo dapprima di far

corrispondere al punto C_1 il punto A_2 e di percorrere col punto G_1 l'arco C_1 B_1 . Nella curva Γ_2 percorriamo allora l'arco A_2 C_2 ed a G_1 su Γ_1 corrisponderà G_2 su Γ_2 che si trova sulla stessa perpendicolare ad x. Quindi al valore $n_1 = g_1$ corrisponderà $n_2 = g_2$, essendo g_1 e g_2 rispettivamente le ascisse di G_1 e G_2 . Dunque mentre n_1 crescerà da n_2 a n_3 0 crescerà da n_3 1 a n_4 3 crescerà da n_4 3 a n_5 4 crescerà da n_5 5 a n_5 6 crescerà da n_5 7 crescerà da n_5 8 a n_5 9 crescerà da n_5 9 a n_5 9 a n_5 9 crescerà da n_5 9 a n_5 9

drà nella figura 2 dal punto R_2 di coordinate $(1, a_2)$ al punto S_1 di coordinate $(b_1, 1)$. Di seguito, mentre n_1 decrescerà da b_1 a 1, n_2 crescerà da 1 a b_2 , ossia ci muoveremo nella figura 2 dal punto S_1 di coordinate $(b_1, 1)$ al punto S_2 , di coordinate $(1, b_2)$. Di seguito, mentre n_1 decrescerà da 1 a a_1 , a_2 decrescerà da a_2 a 1, ossia ci muoveremo nella fig.2 dal punto a_1 di coordinate a_2 di coordinate a_3 di coordinate a_4 a 1, a_4 decrescerà da 1 a a_4 e nella fig. 2 andremo dal punto a_1 di coordinate a_2 e nella fig. 2 andremo dal punto a_1 di coordinate a_2 e nella fig. 2 andremo dal punto a_1 di coordinate a_2 e nella fig. 2 andremo dal punto a_1 di coordinate a_2 e nella fig. 2 di coordinate a_4 di coordinate

Quando saremo ritornati al punto di partenza si ricomincerà a percorrere periodicamente il ciclo chiuso della fig. 2, e in virtù della (18) (come anche risulta dalla

- fig. 1), quando n_1 e n_2 riprenderanno gli stessi valori anche x riprenderà lo stesso valore.
- 5. Dalla (18) segue log $x = \varepsilon_2$ (log $n_1 n_1$), quindi, derivando rispetto a t e tenendo conto della (A'₁)

$$\frac{1}{x}\frac{dx}{dt} = \varepsilon_2 \left(\frac{1}{n_1} - 1\right) \frac{dn_1}{dt} = \varepsilon_1 \varepsilon_2 (1 - n_1)(1 - n_2),$$

cioè

$$dt = \frac{dx}{\varepsilon_1 \varepsilon_2 x (1 - n_1)(1 - n_2)}.$$

Ne segue che ogni qual volta si percorrerà con n_1 e n_2 il ciclo chiuso della fig. 2, t crescerà di una quantità costante T. Ne viene che n_1 e n_2 e, in virtù delle (14), anche N₁ e N₂ saranno funzioni periodiche del tempo col periodo T. La curva A della fig. 3 ottenuta dalla fig. 2 moltiplicando le ascisse per K₁ e le ordinate per K₂, cioè la curva che ci dà il diagramma del ciclo che lega N₁ a N_2 si chiamerà il ciclo di fluttuazione e K_1 ($b_1 - a_1$), K_2 $(b_2 - a_2)$ le ampiezze delle fluttuazioni delle due specie. In generale il ciclo di fluttuazione non avrà un centro di simmetria, però il punto Ω di coordinate K_1 e K_2 si troverà internamente a tutti i possibili cicli Φ , Λ , Ψ , X... di fluttuazione dipendenti da tutte le possibili condizioni iniziali delle due specie come è indicato nella fig. 3. Al punto Ω si potrà quindi dare il nome di centro di fluttuazione. Tutte le curve del diagramma 3 si otterranno mantenendo costanti ε_1 , ε_2 , γ_1 , γ_2 , e facendo cambiare la costante C. Queste curve non si incontrano tra loro, ma sono interne le une alle altre.

Abbiamo dunque in questo caso una *fluttuazione periodica del numero degli individui delle due specie col periodo* T, ossia il fenomeno avrà il carattere ciclico periodico.

6. Per calcolare il periodo T noi dovremo calcolare l'integrale

$$\int \frac{dx}{\varepsilon_1 \varepsilon_2 x (1-n_1)(1-n_2)}$$

estendendolo successivamente al percorso dei quattro archi R_2S_1 , S_1S_2 , S_2R_1 , R_1R_2 .

La somma dei quattro integrali ci darà il periodo T.

La funzione sotto il segno d'integrazione diviene infinita ai quattro vertici R_1 , R_2 , S_1 , S_2 , ma, come si riconosce facilmente, l'ordine degl'infiniti è tale che gli integrali sono convergenti.

L'integrale precedente prova che il periodo T dipende solamente da ε_1 , ε_2 e C.

Nel seguente paragrafo noi calcoleremo approssimativamente questo periodo supponendo che le fluttuazioni siano piccole^{5*}

7. Il caso approssimato nel quale le fluttuazioni sono piccole può trattarsi facilmente partendo dalle equazioni $(A_1) e (A_2).$

Infatti ponendo

(20)
$$n_1 = 1 + v_1$$
, $n_2 = 1 + v_2$

avremo

(21)
$$N_1 = K_1(1 + v_1)$$
 , $N_2 = K_2(1 + v_2)$

Le (A'_1) , (A'_2) diverranno

$$(A''_1) \frac{dv_1}{dt} = -\varepsilon_1 v_2 - \varepsilon_1 v_1 v_2, \qquad (A''_2) \frac{dv_2}{dt} = \varepsilon_2 v_1 + \varepsilon_2 v_1 v_2.$$

Se le fluttuazioni sono piccole v_1 e v_2 potranno considerarsi come quantità piccole del 1° ordine, onde, se nelle equazioni precedenti trascuriamo i termini del 2° ordine, avremo

$$\frac{dv_1}{dt} = -\varepsilon_1 v_2 \qquad , \qquad \frac{dv_2}{dt} = \varepsilon_2 v_1$$

⁵ Per il calcolo esatto del periodo T rimando alla Memoria già citata della R. Accademia dei Lincei, Parte I^a, § 3, N. 5.

^{*}Il calcolo di T, pubblicato nella Memoria dell'Acc. dei Lincei, è riportato nel N. 1 dell'appendice che si è aggiunta alla fine di questa Memoria [N. d. R.].

le quali si integrano mediante le formule

$$v_1 = L\sqrt{\varepsilon_1}\cos(\sqrt{\varepsilon_1\varepsilon_2}t + a)$$
, $v_2 = L\sqrt{\varepsilon_2}\sin(\sqrt{\varepsilon_1\varepsilon_2}t + a)$

ove L ed a sono due costanti.

Avremo quindi, tenendo conto delle (12), (14), (20), e ponendo

$$L \frac{\varepsilon_1 \varepsilon_2}{\gamma_1 \gamma_2} = E$$

(22)
$$\begin{cases} N_{1} = \frac{\varepsilon_{2}}{\gamma_{2}} + \frac{\gamma_{1}}{\sqrt{\varepsilon_{1}}} E \cos\left(\sqrt{\varepsilon_{1}\varepsilon_{2}}t + \alpha\right) \\ N_{2} = \frac{\varepsilon_{1}}{\gamma_{1}} + \frac{\gamma_{2}}{\sqrt{\varepsilon_{2}}} E \sin\left(\sqrt{\varepsilon_{1}\varepsilon_{2}}t + \alpha\right) \end{cases}$$

onde N_1 e N_2 risultano periodiche col periodo $2\pi/\sqrt{\epsilon_1\epsilon_2}$.

A questo stesso valore si sarebbe giunti calcolando direttamente l'integrale T del paragrafo precedente e trascurando termini di ordine infinitesimo.

Potremo dunque assumere approssimativamente il periodo del ciclo di fluttuazione delle due specie dato da

$$T = \frac{2\pi}{\sqrt{\epsilon_1 \epsilon_2}}.$$

Se chiamiamo, come nell'Art. 2, t_1 e t_2 i due tempi nei quali rispettivamente la prima specie si raddoppia e l'altra si riduce a metà, avremo

Variazioni e fluttuazioni del numero d'individui....

$$T = \frac{2\pi\sqrt{t_1t_2}}{0.693} = 9.06\sqrt{t_1t_2} .$$

Il ciclo di fluttuazione diverrà una ellisse avente per centro il centro di fluttuazione e avente per semiassi

$$E\frac{\gamma_1}{\sqrt{\epsilon_1}}$$
 , $E\frac{\gamma_2}{\sqrt{\epsilon_2}}$

onde le ampiezze delle fluttuazioni saranno

$$f_1 = 2E \frac{\gamma_1}{\sqrt{\varepsilon_1}}$$
, $f_2 = 2E \frac{\gamma_2}{\sqrt{\varepsilon_2}}$.

Il rapporto delle ampiezze delle due fluttuazioni risulterà

$$\frac{f_1}{f_2} = \frac{\gamma_1}{\gamma_2} \sqrt{\frac{\varepsilon_2}{\varepsilon_1}}$$

La famiglia dei cicli di fluttuazione sarà formata in questo caso di un insieme di ellissi omotetiche aventi per centro comune il centro di fluttuazione (vedi fig. 4.).

8. Occupiamoci ora del numero medio di individui delle due specie durante un ciclo.

Riprendiamo perciò le equazioni (A'₁), (A'₂). Dividendo ambo i membri rispettivamente per n_1 e n_2 avremo

$$\frac{d \log n_1}{dt} = \varepsilon_1 (1 - n_2) \qquad , \qquad \frac{d \log n_2}{dt} = -\varepsilon_2 (1 - n_1)$$

e integrando fra due tempi t' e t'' nei quali n_1 e n_2 assumono rispettivamente i valori n'_1 , n''_1 ; n'_2 , n''_2 , si otterrà

$$\log \frac{n''_1}{n'_1} = \varepsilon_1 \left[(t'' - t') - \int_{t'}^{t''} n_2 dt \right] \quad , \quad \log \frac{n''_2}{n'_2} = -\varepsilon_2 \left[(t'' - t') - \int_{t'}^{t''} n_1 dt \right].$$

Se estendiamo gli integrali ad un periodo T i primi membri si annulleranno e avremo

$$T = \int_{0}^{T} n_{1}dt = \int_{0}^{T} n_{2}dt$$

vale a dire

$$\frac{1}{T} \int_{0}^{T} n_{1} dt = \frac{1}{T} \int_{0}^{T} n_{2} dt = 1.$$

Le medie dei valori di n_1 e n_2 in un periodo sono dunque eguali ad 1 e in virtù delle (14)

$$\frac{1}{T} \int_{0}^{T} N_{1} dt = K_{1} = \frac{\varepsilon_{2}}{\gamma_{2}}, \qquad \frac{1}{T} \int_{0}^{T} N_{2} dt = K_{2} = \frac{\varepsilon_{1}}{\gamma_{1}},$$

Cioè le coordinate del centro di fluttuazione sono i valori medi dei numeri di individui delle specie durante un ciclo. Ne segue che se ε_1 , ε_2 , γ_1 , γ_2 , si mantengono costanti, le medie degli individui delle due specie durante un ciclo di fluttuazione saranno sempre le stesse comunque siano i numeri iniziali di individui delle due specie.

Vediamo adesso come cambiano queste medie col cambiare di ε_1 e ε_2 , supponendo γ_1 e γ_2 costanti. Si vede subito che la media della prima specie cresce proporzionalmente ad ε_2 e quella della seconda specie decresce

proporzionalmente ad ε_1 finché questa quantità si mantiene positiva. Ora far crescere ε_2 significa distruggere uniformemente individui della seconda specie in quantità proporzionale al loro numero e far decrescere ε_1 significa distruggere uniformemente individui della prima specie in quantità proporzionale al loro numero; ne viene che, se cerchiamo di distruggere contemporaneamente individui di ambedue le specie nella maniera anzidetta, mantenendo però ε_1 sempre positivo, si accrescerà la media degli individui della prima specie (ossia di quella mangiata), mentre si diminuirà la media del numero degli individui della seconda specie (quella mangiante). Nella fig. 5 abbiamo rappresentato il passaggio da un ciclo Λ corrispondente ai parametri ε_1 , ε_2 ad un ciclo Λ' corrispondente ai parametri $\epsilon'_1 < \epsilon_1, \epsilon'_2 > \epsilon_2$, (i parametri γ_1 e γ_2 si sono supposti invariabili ed $\epsilon'_1 > 0$). Si può immaginare che questo passaggio avvenga in un istante corrispondente al punto P di incontro di due cicli, cioè senza che in quell'istante avvenga un sensibile mutamento nel numero degli individui delle due specie, mutamento però che coll'andar del tempo si manifesterà in virtù dell'azione costante dovuta al cambiamento dei parametri ε_1 , ε_2 . Il centro Ω' della Λ' è spostato a destra ed in basso rispetto ad Ω , il che accenna ad una diminuzione del valore medio di N₂, ed un aumento del valore medio di N₁.

Aumentare la protezione della specie mangiata dalla voracità dell'altra significa diminuire γ_1 e γ_2 ; e ciò corri-

sponde ad un aumento delle quantità medie delle due specie^{6*}.

- 9. Noi possiamo riassumere i diversi risultati ottenuti nelle leggi seguenti che chiameremo le *leggi fondamentali delle fluttuazioni* di due specie conviventi:
- 1^a) Legge del ciclo periodico. Le fluttuazioni delle due specie sono periodiche ed il periodo dipende soltanto da ε_1 , ε_2 , C, (cioè dai coefficienti di accrescimento e di esaurimento e dalle condizioni iniziali).
- $2^{\rm a}$) Legge della conservazione delle medie. Le medie dei numeri di individui delle due specie sono costanti qualunque siano i valori iniziali dei numeri di individui delle due specie finché si mantengono costanti i coefficienti di accrescimento e di esaurimento delle due specie e quelli di protezione e di offesa $(\varepsilon_1, \varepsilon_2, \gamma_1, \gamma_2)$.
- 3^a) Legge della perturbazione delle medie. Se si cerca di distruggere uniformemente e proporzionalmente al loro numero gli individui delle due specie, cresce la media del numero di individui della specie mangiata e diminuisce quella degli individui della specie mangiante⁷.

^{6*} Nel N. 2 dell'appendice a questa Memoria si riporta quanto, a questo punto, è contenuto nella già citata Memoria dell'Acc. dei Lincei (N. 9 del § 3 di tale Memoria) e che qui è stato omesso dall'autore. [N. d. R.].

 $^{^{7}}$ Si intende che questa legge vale entro certi limiti, come è esplicitamente detto nel N. 8, cioè finché il coefficiente di accrescimento ϵ_{1} si conserva positivo. Nel § 5 verrà particolarmente studiato il limite entro cui una causa distruttrice di due specie favorisce la specie mangiata.

L'aumento di protezione della specie mangiata aumenta invece ambedue le medie.

Nel caso in cui le fluttuazioni sono piccole abbiamo le seguenti leggi approssimate:

- 1^a) Le piccole fluttuazioni sono isocrone, cioè il loro periodo non risente sensibilmente né del numero iniziale di individui, né delle condizioni di protezione e di offesa.
- 2ª) Il periodo di fluttuazione è in ragione composta delle radici quadrate dei tempi nei quali la prima specie da sola si raddoppierebbe e la seconda da sola si ridurrebbe a metà ($T = 9.06 \sqrt{t_1 t_2}$).
- 3ª) La distruzione uniforme di individui della specie mangiante accelera le fluttuazioni e la distruzione di individui della specie mangiata le rallenta.

Se si distruggono contemporaneamente e uniformemente individui delle due specie cresce il rapporto dell'ampiezza della fluttuazione della specie mangiata all'ampiezza della fluttuazione della specie mangiante.

Sembra che le specie animali per le quali nel loro stato naturale le verifiche di queste leggi sono le più facili ad eseguirsi siano i pesci, dei quali appunto esistono specie che si nutrono le une delle altre. La pesca continua costituisce una distruzione uniforme di individui delle varie specie.

La cessazione della pesca durante il periodo della guerra e la ripresa nel dopo guerra costituiscono passaggi paragonabili a quelli considerati di sopra da uno ad un altro ciclo. Inoltre la maggiore o minore abbondanza di pesca delle varie specie determinata colle statistiche dà una misura dell'abbondanza degli individui delle varie specie; quindi le statistiche della pesca forniscono dei dati sulle fluttuazioni.

I risultati delle statistiche si mostrano in accordo colle previsioni matematiche⁸.

§ 3. – DIAGRAMMI DI FLUTTUAZIONE.

I. Per costruire i diagrammi che danno n_1 e n_2 in funzione del tempo parto dalla equazione (A'₁) cioè

Una intuizione dei fenomeni connessi alla legge della perturbazione delle medie l'ebbe Carlo Darwin quando, parlando della lotta per l'esistenza, disse:

«The amount of food for each species of course gives the extreme limit to which each can increase; but very frequently it is not the obtaining food, but the serving as prey to other animals which determines the average numbers of a species. Thus, there seems to be little doubt that the stock of partridges, grouses and hares on any large estate depends chiefly on the destruction of vermin. If not one head of game were shot during the next twenty years in England, and, at the same time, if no vermin were destroyed, there would, in all probability, be less game than at present, although hundreds of thousands of game animals are now annually shot».

Ved. Ch. Darwin, *The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life*. Sixth edition, with corrections to 1871. London, John Murray, 1882 (pp. 53-54).

⁸ Cfr. la nota al 1° paragrafo in cui si parla delle statistiche del dott. D'Ancona.

$$\frac{dn_1}{dt} = \varepsilon_1 (1 - n_2) n_1$$

e suppongo per semplicità $\varepsilon_1 = 1$.

La A della fig. 6 riproduce la fig. 1; da essa posso ricavare $1-n_2$ per mezzo di n_1 quindi con un processo

grafico posso ottenere il prodotto dei due segmenti ($1-n_2$) e n_1 . Dividiamo perciò il segmento 1.7 (vedi A della fig. 6 che rappresenta la escursione di n_1 nelle parti 1.2, 2.3, 3.4, 4.5, 5.6, 6.7 e riportiamo la divisione 0, 1, 2, 3, 4, 5, 6, 7 sull'asse delle ascisse della B della fig. 6, sul quale pure riportiamo il segmento arbitrario OP = p. Sull'asse delle ordinate riporteremo i segmenti positivi Oa, Ob, Oc, e i segmenti negativi Od, Oe, Of, ricavati dalla A della fig. 6. Proiettiamo nella B della fig. 6 i punti a, b, c, d, e, f dal punto P e conduciamo dai punti 2, 6 rispettivamente le parallele a Pa e a Pd dai punti 3, 5 le parallele a Pb e a Pe dal punto 4 le parallele a Pc e a Pf e determiniamo le loro intersezioni coll'asse delle ordinate. Otterremo così nella B della fig. 6 i punti 2', 3', 4', 5', 6' e 2", 3", 4", 5", 6". Le loro distanze dall'origine 0, contate col loro segno, moltiplicate per p daranno i valori di dn_1/dt corrispondentemente ai valori di n_1 eguali a 02, 03, 04, 05, 06. La quantità dn_1/dt risulterà positiva per n_1 crescente e negativa per n_1 decrescente; sarà zero per n_1 eguale a 01 e 07. Se noi costruiamo la curva che ha per ascissa n_1 e per ordinata dn_1/dt otterremo la curva B (fig. 6) che dà la velocità con cui varia n_1 in funzione di n_1 stesso.

2. Noi vogliamo ora costruire la curva che ha n_1 per ordinata t per ascissa.

Da un punto M (vedi B della fig. 6) sull'asse delle ascisse (OM = m) proiettiamo i punti 2', 3', 4', 5', 6', e 2", 3", 4", 5", 6". Scegliendo convenientemente l'unità di tempo queste rette potranno assumersi come parallele

alle tangenti della curva cercata nei punti le cui ordinate hanno rispettivamente le grandezze 02, 03, 04, 05, 06. Nei punti le cui ordinate sono uguali a 01 e 07 le tangenti saranno parallele all'asse dei tempi. Riportiamo ora sulla retta AA parallela all'asse delle ordinate della B (vedi C della fig. 6) la divisione 0, 1, 2, 3, 4, 5, 6, 7 e per i punti di divisione tiriamo un fascio di rette ortogonali ad AA che denotiamo con gli stessi numeri. Se assumiamo la retta AA come asse delle ordinate nella C, le rette di questo fascio ci denoteranno le varie altezze a cui si troveranno i punti della curva che dobbiamo costruire. Prendiamo ad arbitrio (vedi C della fig. 6) sulla retta 2 il punto corrispondente di questa curva e da esso tiriamo la parallela alla retta M2' della B fino ad incontrare la retta 3. Assumiamo il punto d'incontro come punto della curva cercata che si trova su questa retta. Nel passaggio dalla retta 2 alla retta 3, n_1 , ossia l'ordinata del punto della curva cercata, è cresciuto di $(\Delta n)_{23}$ = 23. Se indichiamo con $(\overline{\Delta t})_{23}$ l'incremento dell'ascissa avremo in virtù della costruzione

$$\frac{\left(\Delta n\right)_{23}}{\left(\overline{\Delta t}\right)_{23}} = \frac{02'}{m}.$$

Ma se denotiamo con $(\Delta t)_{23}$ l'incremento del tempo, per quello che è stato detto nel n. 1, avremo approssimativamente

$$\frac{\left(\Delta n\right)_{23}}{\left(\Delta t\right)_{23}} = 02! \cdot p$$

quindi

$$\frac{\left(\overline{\Delta n}\right)_{23}}{\left(\Delta t\right)_{23}} = m \cdot p.$$

Ciò significa che con $(\overline{\Delta t})_{23}$ si è intesa la misura di $(\Delta t)_{23}$ nella scala della B della fig. 6.

Dal punto ottenuto sulla retta 3 tiriamo la parallela alla retta M3' ad incontrare la retta 4. Il punto che si ottiene si potrà considerare approssimativamente come punto della curva cercata che giace sulla retta 4.

Infatti n_1 è cresciuto di $(\Delta n)_{34} = 34$ e se l'ascissa è cresciuta di $(\overline{\Delta t})_{34}$ dalla costruzione si deduce

$$\frac{\left(\Delta n\right)_{34}}{\left(\overline{\Delta t}\right)_{34}} = \frac{03'}{m}$$

mentre se $(\Delta t)_{34}$ è il corrispondente incremento del tempo si deve avere (vedi n. 1)

$$\frac{(\Delta n)_{34}}{(\Delta t)_{34}} = 03' p$$

d'onde

$$\frac{\left(\overline{\Delta t}\right)_{34}}{\left(\Delta t\right)_{34}} = m \cdot p;$$

la scala dei tempi si è quindi conservata inalterata.

Così si può procedere innanzi e trovare approssimativamente i punti immediatamente successivi della curva cercata che giacciono sopra le rette 5 e 6. Ma quale sarà il punto della curva cercata che giace sopra la retta 1, e quale sarà quello che giace sulla retta 7? Siccome in questi punti le tangenti hanno la direzione dell'asse delle ascisse così si vede che per questi punti non si può procedere come per gli altri.

Converrà quindi ricorrere a speciali artifizi per ottenere le ascisse di questi punti.

3. Supponiamo approssimativamente che l'arco C_2 G_2 nella A della fig. 6 sia un arco di parabola in modo che la sua equazione possa scriversi

$$1-n_2=\sqrt{2q\zeta},$$

essendo q il parametro della parabola, ζ la differenza fra l'ordinata d'un punto generico e l'ordinata del vertice C_2 .

Avremo, in virtù della (A'₁), essendo $\varepsilon_1 = 1$,

$$\frac{dn_1}{dt} = n_1 \sqrt{2q\zeta}$$

e supponendo rettilineo il tratto A₁ G'₁ sarà

$$\zeta = \alpha (n_1 - a_1)$$

scrivendo $Oa_1 = a_1$ ed essendo α costante.

Poniamo

(25)
$$n_1 = a_1 + \xi^2$$
;

sarà in virtù delle (24) e (25)

$$\frac{dn_1}{dt} = 2\xi \frac{d\xi}{dt} = (a_1 + \xi^2) \sqrt{2q\alpha \xi^2}$$

ossia

$$2\frac{d\xi}{dt} = \sqrt{2q\alpha} \left(a_1 + \xi^2 \right)$$

da cui si ricava

$$dt = \frac{2d\xi}{\sqrt{2q\alpha} \left(a_1 + \xi^2\right)}$$

e quindi

$$t - t_1 = \frac{2}{\sqrt{2q\alpha}} \frac{1}{\sqrt{a_1}} \operatorname{arcotg} \frac{\xi}{\sqrt{a_1}}$$

ove t_1 denota il tempo corrispondente all'ordinata 01 nella A della fig. 6.

Se dunque t_2 è il tempo corrispondente all'ordinata 02 (fig. 6, A), avremo

$$t_2 - t_1 = \frac{2}{\sqrt{2q\alpha}} \frac{1}{\sqrt{a_1}} \operatorname{arcotg} \frac{\xi_{12}}{\sqrt{a_1}}$$

posto

$$\xi_{12} = \sqrt{x_1}$$

ove x_1 è la distanza 1 2 nella A della fig. 6. Ora posto 1 $-a = x_2$ sarà $x_2^2 = 2q\zeta_1$ essendo ζ_1 il valore di ζ corrispondente al punto G_2 . Quindi a cagione delle (24) e (25),

Variazioni e fluttuazioni del numero d'individui....

$$\sqrt{2q\alpha} = x_2 \sqrt{\frac{\alpha}{\zeta_1}} = \frac{x_2}{\sqrt{x_1}}$$

e per conseguenza

$$t_2 - t_1 = \frac{2}{\left(\frac{x_2}{\sqrt{x_1}}\right)\sqrt{a_1}} \operatorname{arcotg} \sqrt{\frac{x_1}{a_1}} = \frac{2}{x_2}\sqrt{\frac{x_1}{a_1}} \operatorname{arcotg} \sqrt{\frac{x_1}{a_1}}.$$

Siccome $\sqrt{x_1/a_1}$ è piccolo, prenderemo approssimativamente

arco tg
$$\sqrt{\frac{x_1}{a_1}} = \sqrt{\frac{x_1}{a_1}}$$

e quindi

$$t_2 - t_1 = \frac{2x_1}{x_2 a_1}.$$

Chiamiamo $\overline{t_2 - t_1}$ il $t_2 - t_1$ misurato nella scala colla quale si misurano i tempi nella C della fig. 6. Tenendo conto dei risultati del numero 2, avremo

$$\frac{\overline{t_2-t_1}}{t_2-t_1}=m\cdot p.$$

Dunque

$$\overline{t_2 - t_1} = \frac{2x_1}{x_2 a_1} mp = 2x_1 \frac{m}{a_1} \cdot \frac{p}{x_2}.$$

Il segmento $\overline{t_2}$ - $\overline{t_1}$ sarà la differenza delle ascisse di punti della curva cercata, i quali si trovano nella C della fig. 6 rispettivamente sulle rette 1 e 2.

La costruzione grafica del $\overline{t_2}$ - $\overline{t_1}$ è fatta, in base alla formula precedente, nella D della fig. 6. Con procedimento analogo conviene costruire altri segmenti che sono in condizioni simili del $\overline{t_2}$ - $\overline{t_1}$ che ci daranno le posizioni dei vertici della curva in relazione ai punti adiacenti, e questo è pure fatto in D della fig. 6. I rimanenti punti s'ottengono col procedimento del n. 2. Tenendo presente la periodicità potremo prolungare la curva che ha per ordinata n_1 e per ascissa t. Siccome dalla A della fig. 6 possiamo ottenere n_2 per mezzo di n_1 , così potremo subito costruire la curva che ha per ascissa t, per ordinata n_2 .

I due diagrammi che danno n_1 e n_2 mediante t sono stati riprodotti in scala diversa nella fig. 7 prolungandoli a tre periodi.

§ 4. – EFFETTI DELLE DIVERSE AZIONI CHE POS-SONO SCAMBIEVOLMENTE ESERCITARSI DUE SPECIE CONVIVENTI.

1. Supponiamo di avere due specie conviventi e siano N₁ e N₂ i numeri di individui di ciascuna rispettivamente. Il numero di incontri di individui della prima specie con individui della seconda, che avvengono nell'unità di tempo, sarà proporzionale a N₁ N₂ e si potrà quindi assumere uguale a $\alpha N_1 N_2$, essendo α una costante. Siano λ_1 e λ_2 i coefficienti di accrescimento positivi o negativi delle due specie quando ciascuna è sola. Nel caso che abbiamo trattato precedentemente λ_1 è positivo e λ_2 è negativo. Inoltre gli incontri sono sfavorevoli alla prima specie (specie mangiata), mentre sono favorevoli alla seconda specie (specie mangiante). Indichiamo con β₁ l'incremento di individui della prima specie e con β₂ l'incremento di individui della seconda specie dovuto ad un certo numero d'incontri, per esempio n. Nel caso precedente dovrebbe prendersi β_1 negativo e β_2 positivo. Nel tempo dt gli incrementi delle due specie saranno rispettivamente

$$dN_1 = \lambda_1 N_1 dt + \frac{\beta_1}{n} \alpha N_2 N_1 dt$$

$$dN_2 = \lambda_2 N_2 dt + \frac{\beta_2}{n} \alpha N_1 N_2 dt.$$

Posto

$$\frac{\beta_1}{n}\alpha = \mu_1$$
 , $\frac{\beta_2}{n}\alpha = \mu_2$

le equazioni precedenti diverranno

(26)
$$\begin{cases} \frac{dN_1}{dt} = N_1(\lambda_1 + \mu_1 N_2) \\ \frac{dN_2}{dt} = N_2(\lambda_2 + \mu_2 N_1) \end{cases}$$

e se poniamo in evidenza i segni, quali si presentano nel caso precedente, scrivendo

$$\lambda_1 = \epsilon_1 \qquad \qquad \lambda_2 = - \, \epsilon_2$$

$$\mu_1 = - \, \gamma_1 \qquad \qquad \mu_2 = \gamma_2$$

ritroviamo le equazioni (A₁), (A₂) del § 2, cioè

$$\frac{dN_1}{dt} = N_1 (\varepsilon_1 - \gamma_1 N_2)$$

$$\frac{dN_2}{dt} = N_2 (-\varepsilon_{2+} \gamma_2 N_1)$$

In tal modo resta giustificato (come è detto nel n. 1 del § 2) l'aver preso i coefficienti di accrescimento lineari rispetto a N₂ e a N₁.

2. Prendiamo adesso le (26) senza preoccuparci dei segni dei coefficienti, ammettendo cioè che essi possano prendere valori positivi o negativi; potremo assumerle come rappresentanti le leggi di accrescimento di due specie conviventi per le quali λ_1 e λ_2 sono i *coefficienti di accrescimento*, mentre μ_1 e μ_2 sono i *coefficienti incrementali d'incontro*. I segni di λ_1 e λ_2 ci dicono se le specie si accrescono o si esauriscono da sole, mentre i segni dei coefficienti μ_1 e μ_2 ci indicano se gli incontri sono favorevoli o sfavorevoli all'una e all'altra specie rispettivamente. Per esempio se λ_1 e λ_2 saranno positivi e μ_1 e μ_2 negativi ciò significherà che le specie si accrescono da sole, e gl'incontri sono sfavorevoli ad ambedue le specie. Noi potremo considerare tutti i casi possibili⁹.

3. Dalle equazioni (26) segue

$$\mu_2 \frac{dN_1}{dt} - \mu_1 \frac{dN_2}{dt} = \lambda_1 \mu_2 N_1 - \lambda_2 \mu_1 N_2$$

Circa le possibilità di alcuni di questi casi vedi i nn. 8 e 9 di questo paragrafo.

⁹ È certo che molti fatti interessanti per la medicina possono farsi rientrare nei fenomeni che dipendono dagli incontri e dalle reciproche azioni fra specie diverse (specie umane e germi patogeni; specie parassitata e specie parassita) e quindi le fluttuazioni delle epidemie possono aver rapporto colle teorie qui svolte. Cfr. Sir Ronald Ross, *The prevention of Malaria*, Second edition 1911; Martini, *Berechnungen und Beobachtungen zur Epidemiologie der Malaria* (Gente, Hamburg, 1921); A. J. Lotka and F. R. Sharpe, *Contribution to the Analysis of Malaria Epidemiologie* («American Journ. of Hygiene», Vol. III); Lotka, op. cit.

$$\lambda_2 \frac{d \log N_1}{dt} - \lambda_1 \frac{d \log N_2}{dt} = \lambda_2 \mu_1 N_2 - \lambda_1 \mu_2 N_1$$

e sommando membro a membro

$$\mu_2 \frac{dN_1}{dt} + \lambda_2 \frac{d \log N_1}{dt} = \mu_1 \frac{dN_2}{dt} + \lambda_1 \frac{d \log N_2}{dt}.$$

Integrando e passando dai logaritmi ai numeri

(27)
$$N_1^{\lambda_2} e^{\mu_2 N_1} = C N_2^{\lambda_1} e^{\mu_1 N_2}$$

ove C è una costante positiva.

Per studiare l'andamento del fenomeno, ossia la curva che ha per equazione la (27), converrà costruire le due curve

$$x = C' N_1^{\lambda_2} e^{\mu_2 N_1}$$
, $x = C'' N_2^{\lambda_1} e^{\mu_1 N_2}$

(ove C' e C" sono due costanti tali che C"/C' = C) prendendo rispettivamente per ascissa e ordinata N_1 , x e N_2 , x e accoppiare le due curve ponendole cogli assi delle ascisse l'uno sul prolungamento dell'altro come nella fig. 1. Operando come si è fatto nel § 2 si potrà costruire la curva che ha per ascissa N_1 e ordinata N_2 .

4. I tipi della curva (C denota una costante positiva)

$$x = CN^{\lambda}e^{\mu N}$$
,

secondo i segni di λ e μ , sono quattro: figg. 8, 9, 10, 11.

Le curve I e II sono incontrate in un solo punto dalle normali ad *x* e la III e la IV in due punti reali o nessuno.

Per considerare tutti i casi possibili basterà accoppiare una curva di un tipo con una dello stesso tipo o di un altro tipo, quindi avremo 10 casi tipici cioè quante sono le combinazioni di 4 cose due a due con ripetizione. Questi casi possono individuarsi con i simboli

Per esempio con (II, III) intendiamo la curva ottenuta coll'accoppiamento della curva

$$x = C' N_1^{\lambda'} e^{\mu' N_1}$$
 (nella quale $\lambda' < 0, \, \mu' < 0$)

colla curva

$$x = C'' N_2^{\lambda''} e^{\mu'' N_2}$$
 (nella quale $\lambda'' > 0$, $\mu'' < 0$);

C' e C" denotano due costanti; dunque la curva (II, III) ha per equazione

$$N_{_{1}}^{\lambda'}e^{\mu'N_{_{1}}} = CN_{_{2}}^{\lambda''}e^{\mu''N_{_{2}}} \quad (\lambda' < 0, \, \mu' < 0, \, \lambda'' > 0, \, \mu'' < 0)$$

essendo C una quantità costante.

5. Ora osserviamo che per passare dal caso (I, I) al caso (II, II) basta cambiare nella equazione (27) i segni dei quattro coefficienti λ_1 , λ_2 , μ_1 , μ_2 , il che equivale a cambiare in questa formula C in 1/C, onde dal punto di vista tipico della curva che lega N_1 a N_2 non si alterano le cose. Lo stesso si dica di

Riducendosi dunque alle sole curve tipicamente differenti, restano i casi

Ma l'ultimo è stato già trattato nel § 2 in maniera particolare. Lasciandolo da parte restano solo i casi nuovi

$$(I, I) (I, II) (I, III) (II, III) (III, III).$$

Essi sono rappresentati nelle figure seguenti: figg. 12, 13, 14, 15, 16, 16', 16". Le ultime tre corrispondono al caso (III, III).

6. La curva corrispondente al caso (III, III) consta di due rami disposti come nella fig. 16, quando si supponga che il massimo di *x* nella curva (N₁, *x*) sia minore del massimo di *x* nella curva (N₂, *x*). Se avesse luogo il contrario i due rami sarebbero disposti come nella fig. 16' il che equivarrebbe a scambiare N₁ con N₂ nella precedente. Se i due massimi fossero uguali allora le due curve si attraverserebbero in un punto doppio formando un angolo come nella fig. 16". Per calcolare quest'angolo dividiamo membro a membro le equazioni (26), avremo

$$\frac{dN_2}{dN_1} = \frac{\mu_2}{\mu_1} \frac{N_2}{N_1} \left[\frac{\frac{\lambda_2}{\mu_2} + N_1}{\frac{\lambda_1}{\mu_1} + N_2} \right].$$

Il punto doppio verrà raggiunto quando

$$N_1 = -\frac{\lambda_2}{\mu_2} \qquad , \qquad N_2 = -\frac{\lambda_1}{\mu_1},$$

quindi quando ciò avverrà avremo

$$\lim \frac{dN_{2}}{dN_{1}} = \frac{\mu_{2}}{\mu_{1}} \frac{\lambda_{1}\mu_{2}}{\lambda_{2}\mu_{1}} \lim \frac{\frac{\lambda_{2}}{\mu_{2}} + N_{1}}{\frac{\lambda_{1}}{\mu_{1}} + N_{2}} = \frac{\mu_{2}}{\mu_{1}} \frac{\lambda_{1}\mu_{2}}{\lambda_{2}\mu_{1}} \lim \frac{dN_{1}}{dN_{2}}$$

e quindi

$$\left(\lim \frac{dN_2}{dN_1}\right)^2 = \frac{\mu_2^2}{\mu_1^2} \frac{\lambda_1}{\lambda_2}$$

ossia

$$lim\frac{dN_2}{dN_1} = \pm \frac{\mu_2}{\mu_1} \sqrt{\frac{\lambda_1}{\lambda_2}}.$$

Dunque la tangente trigonometrica dell'angolo formato dalle due tangenti nel punto doppio sarà

$$\frac{2\mu_{\scriptscriptstyle 1}\mu_{\scriptscriptstyle 2}\sqrt{\lambda_{\scriptscriptstyle 1}\gamma_{\scriptscriptstyle 2}}}{\mu_{\scriptscriptstyle 1}^2\lambda_{\scriptscriptstyle 2}-\mu_{\scriptscriptstyle 2}^2\lambda_{\scriptscriptstyle 1}}.$$

7. Volendo valersi delle figure precedenti per esaminare tutti i casi possibili (eccettuati quelli studiati nel \S 2) osserviamo che, se nelle (26) cambiamo i segni dei quattro coefficienti, ciò equivale a cambiare t in -t, onde basterà cambiare il senso in cui col variare del tempo si deve percorrere la figura corrispondente.

Possiamo riassumere questi risultati nella tabella seguente

fig. 12	(I, (II,	I) II)	s.d. d.s.	$\begin{vmatrix} \lambda_1 > 0, \ \mu_1 > 0, \ \lambda_2 > 0, \ \mu_2 > 0 \\ \lambda_1 < 0, \ \mu_1 < 0, \ \lambda_2 < 0, \ \mu_2 < 0 \end{vmatrix}$
fig. 13	(I,	II)	d.s.	$\lambda_1 < 0, \mu_1 < 0, \lambda_2 > 0, \mu_2 > 0$
	(II,	I)	s.d.	$\lambda_1 > 0, \mu_1 > 0, \lambda_2 < 0, \mu_2 < 0$
fig. 14	(III,	I)	s.d.	$\lambda_1 > 0, \mu_1 > 0, \lambda_2 > 0, \mu_2 < 0$
	(IV,	II)	d.s.	$\lambda_1 < 0, \mu_1 < 0, \lambda_2 < 0, \mu_2 > 0$
fig. 15	(III,	II)	d.s.	$\lambda_1 < 0, \mu_1 < 0, \lambda_2 > 0, \mu_2 < 0$
	(IV,	I)	s.d.	$\lambda_1 > 0, \mu_1 > 0, \lambda_2 < 0, \mu_2 > 0$

-			a d	10 2020	
fig. 16	(III,	III)		1° ramo	$\lambda_1 > 0, \ \mu_1 < 0, \ \lambda_2 > 0, \ \mu_2 < 0$
			a.s.	2° ramo	
	(IV,	IV)	d.s.	1° ramo	$\lambda_1 < 0, \mu_1 > 0, \lambda_2 < 0, \mu_2 > 0$
			s.d.	2° ramo	
fig. 16'	(III,	III)	b.a.	1° ramo 2° ramo	$\lambda_1 > 0, \mu_1 < 0, \lambda_2 > 0, \mu_2 < 0$
			a.b.	2° ramo	
	(IV,		a.b.	1° ramo	$\lambda_1 < 0, \ \mu_1 > 0, \ \lambda_2 < 0, \ \mu_2 > 0$
			in a	z ramo	
fig. 16"	(III,	III)	s.d.	1° ramo,	$\lambda_1 > 0, \ \mu_1 < 0, \ \lambda_2 > 0, \ \mu_2 < 0$
				2° ramo	
			d.s.	3°ramo,	
				4° ramo	
	(IV,	IV)	d.s.	1° ramo.	
				2° ramo	$\lambda_1 < 0, \mu_1 > 0, \lambda_2 < 0, \mu_2 > 0$
			s.d.	20	
				3°ramo,	
				4° ramo	

Nella tabella precedente s.d. significa che col crescere del tempo la curva va percorsa da sinistra a destra, d. s. da destra a sinistra, a. b. dall'alto al basso e b. a. dal basso all'alto.

8. I soli casi nei quali possa raggiungersi l'equilibrio sono i casi (III, IV) (III, III) e (IV, IV) e questi due ultimi nelle condizioni infinitamente poco probabili in cui i due massimi o i due minimi delle curve accoppiate di tipo III o di tipo IV sono uguali. Il primo è un equilibrio di natura stabile, perché, spostato il sistema dallo stato di equilibrio, avvengono intorno ad esso delle fluttuazioni che possono ridursi tanto piccole quanto ci piace (vedi il § 2). Se si cerca di raggiungere nel caso (III, III) o nel caso (IV, IV) l'equilibrio attraverso uno qualunque

dei quattro rami che nella figura 16" fanno capo al punto doppio, si vede che esso non si otterrebbe che dopo un tempo infinitamente lungo. D'altra parte postici nello stato di equilibrio (il che non può presentarsi che con un grado infinitesimo di probabilità) una piccola perturbazione può allontanarci infinitamente da esso.

In tutti gli altri casi le due specie tendono ad esaurirsi, o i numeri di individui di una delle specie o di ambedue tendono all'∞ e quindi si presentano condizioni di instabilità.

Noi abbiamo considerato tutti i casi possibili riguardo ai segni dei coefficienti λ_1 , λ_2 , μ_1 , μ_2 .

Converrebbe ancora trattare i casi nei quali alcuni di questi coefficienti si annullano. Sono evidentemente casi infinitamente poco probabili, non di meno presentano interesse perché segnano i passaggi tra un tipo ed un altro di quelli considerati sopra. Noi non li tratteremo; ma nel paragrafo seguente tratteremo il caso in cui λ_1 = 0 (essendo $\lambda_2 < 0$, $\mu_1 < 0$, $\mu_2 > 0$) come passaggio fra il tipo (III, IV) e il tipo (IV, II) giacché è necessario svolgerlo per esaminare una questione di speciale interesse. Questo caso potrà servire di guida per lo svolgimento degli altri.

Riassumendo e riandando su tutti i diversi casi considerati nella prima parte del presente scritto (se si eccettuano quelli infinitamente poco probabili) si può asserire che la convivenza delle due specie in un modo stabile e permanente non può aversi che nel caso considerato nel § 2. In tutti gli altri una delle due specie distrugge

l'altra, o ambedue si distruggono, o ve ne è almeno una che cresce indefinitamente. Evidentemente questo risultato è puramente teorico giacché praticamente il crescere di una delle due specie non può avvenire al di là di un certo limite.

Quest'ultima condizione sarà discussa ed approfondita nella seconda parte § 6.

9. Fin qui ci siamo occupati della equazione o della curva che lega N_1 a N_2 , ma abbiamo trascurato l'equazione del tempo.

L'annullarsi dei binomi $\lambda_1 + \mu_1 N_2$ o $\lambda_2 + \mu_2 N_1$ (escludiamo che ciò avvenga contemporaneamente) corrisponde a massimi o minimi rispettivamente di N_1 o N_2 (che assumeremo eguali a M_1 e M_2). Perciò i binomi stessi sono infinitesimi d'ordine 1/2 rispetto a $N_1 - M_1$, $N_2 - M_2$.

Ne viene che

$$\int \frac{dN_1}{N_1(\lambda_1 + \mu_1 N_2)} \qquad , \qquad \int \frac{dN_2}{N_2(\lambda_2 + \mu_2 N_1)}$$

non divengono infiniti nei detti punti di massimo o di minimo.

Vediamo ciò che avviene quando N_1 , N_2 divengono ∞ .

Osservando i risultati precedenti (vedi figg. 12-16") si riconosce che quando uno dei numeri diviene ∞ , l'altro diviene zero o ∞ . Nel primo caso t diviene ∞ , nell'altro caso N_1 e N_2 divengono ∞ dello stesso ordine. Infatti

dalle (26) si ricava, allorché N_1 e N_2 tendono ambedue all' ∞ ,

$$\lim \frac{dN_{1}}{dN_{2}} = \lim \frac{\frac{\lambda_{1}}{N_{2}} + \mu_{1}}{\frac{\lambda_{2}}{N_{1}} + \mu_{2}} = \frac{\mu_{1}}{\mu_{2}}.$$

Dunque, come ce lo rivelano i due precedenti integrali, in questo secondo caso t rimane finito. Per conseguenza i numeri di individui delle due specie N_1 e N_2 raggiungono il valore ∞ dopo decorso un tempo finito; in altri termini la curva che lega N_1 a N_2 è percorsa, a partire da un punto iniziale *fino a*l punto $N_1 = N_2 = \infty$, in un tempo finito.

In tutti gli altri casi contemplati in questo paragrafo le curve sono percorse in un tempo ∞ , ed infatti ciascun estremo corrisponde all'annullarsi di uno almeno dei numeri N_1 e N_2 .

Se noi ritorniamo alla tabella del n. 7 confrontandola colle figg. 12-16" si vede che N_1 , N_2 divengono contemporaneamente ∞ nei casi

fig. 12 (I, I); fig. 15 (IV, I); fig. 16 (IV, IV) 2° ramo; fig. 16' (IV, IV) 2° ramo; fig. 16" (IV, IV) 3° ramo.

Tutti questi casi, nei quali ogni incontro è favorevole ad ambedue le specie (cioè μ_1 e μ_2 sono ambedue positivi), non sembrano praticamente realizzabili.

§ 5. LIMITI ENTRO CUI UNA CAUSA DISTRUT-TRICE DI DUE SPECIE FAVORISCE LA SPECIE MANGIATA.

1. Noi abbiamo mostrato (§ 2, n. 8) che diminuendo ε_1 , cioè il coefficiente di accrescimento della specie mangiata, ed aumentando ε_2 ossia il coefficiente d'esaurimento della specie mangiante, cresce la media degli individui della prima specie e diminuisce quella degli individui della seconda specie, onde abbiamo enunciato nel n. 9 la legge: Se si cerca di distruggere uniformemente e proporzionalmente al loro numero individui delle due specie, cresce la media del numero di individui della specie mangiata e diminuisce quella degli individui della specie mangiante.

Ma abbiamo aggiunto che questa legge è valida entro certi limiti, cioè finché ε_1 si mantiene positivo.

2. Si tratta ora di studiare come avviene il fenomeno nei suoi particolari. Denotiamo con $\alpha\lambda$ il rapporto fra il numero n_1 di individui della prima specie che si distruggono, vale a dire che si sottraggono alla associazione biologica nella unità di tempo, ed il numero totale di individui di essa, e con $\beta\lambda$ l'analogo rapporto per la seconda specie. Durante il tempo dt si tolgono alla associazione biologica rispettivamente

$$n_1 dt = \alpha \lambda N_1 dt$$
 e $n_2 dt = \beta \lambda N_2 dt$

individui delle due specie, onde le equazioni (A_1) , (A_2) dovranno modificarsi sostituendo in esse ϵ_1 , ϵ_2 rispettivamente con

$$\varepsilon_1 - \alpha \lambda$$
 , $\varepsilon_2 + \beta \lambda$.

Il rapporto anarmonico fra i quattro numeri n_2 , N_2 , n_1 , N_1 cioè

$$(n_2: N_2): (n_1: N_1) = \frac{\beta}{\alpha} = \vartheta$$

ci darà il rapporto delle percentuali di distruzione o sottrazione delle due specie che si può supporre dipendere solo dal modo con cui avviene la detta distruzione o sottrazione, mentre la intensità della distruzione o sottrazione si può far dipendere da λ . L'ingrandire di λ mantenendo costanti α e β significherà quindi intensificare la sottrazione procedendo sempre nello stesso modo per eseguirla, mentre cambiare il rapporto $\vartheta = \beta/\alpha$ vorrà dire mutare il procedimento con il quale si consegue la distruzione o sottrazione.

Per riferirsi ad un esempio concreto, consideriamo due specie di pesci conviventi, la seconda delle quali si nutre della prima. Accrescere λ senza variare né α né β vuol dire intensificare la pesca valendosi sempre dello stesso mezzo di pesca, mentre cambiare $\vartheta = \beta/\alpha$ vuol dire cambiare il metodo di pesca.

3. Le equazioni (A₁) e (A₂) diverranno dunque

(28)
$$\frac{dN_1}{dt} = (\varepsilon_1 - \alpha\lambda - \gamma_1 N_2) N_1$$

(28')
$$\frac{dN_2}{dt} = (-\varepsilon_2 - \beta\lambda + \gamma_2 N_1) N_2.$$

Se $\varepsilon'_1 = \varepsilon_1 - \alpha \lambda > 0$ avverrà la fluttuazione con un periodo T (§ 2, n. 5). Il numero di individui della prima specie sottratti nel tempo dt sarà

$$\alpha \lambda N_1 dt$$

e durante il periodo T

$$\int_{0}^{T} \alpha \lambda N_{1} dt,$$

onde la media di individui sottratti nella unità di tempo sarà

$$P = \frac{1}{T} \int_{0}^{T} \alpha \lambda N_{1} dt = \frac{\alpha \lambda}{T} \int_{0}^{T} N_{1} dt.$$

Ma per quanto risulta dal § 2, n. 8

$$\frac{1}{T} \int_{0}^{T} N_{1} dt = \frac{\varepsilon_{2} + \beta \lambda}{\gamma_{2}} = \frac{\varepsilon'_{2}}{\gamma_{2}},$$

quindi

$$P = \frac{\alpha \lambda (\varepsilon_2 + \beta \lambda)}{\gamma_2}.$$

Siccome $\varepsilon_1 - \alpha \lambda > 0$, così il limite superiore di λ sarà ε_1/α e in conseguenza il limite superiore di P risulterà

$$P_{m} = \frac{\varepsilon_{1}(\varepsilon_{2} + \vartheta \varepsilon_{1})}{\gamma_{2}}.$$

Se ci riferiamo all'esempio concreto della pesca potremo concludere che mantenendo lo stesso metodo di pesca (cioè ϑ costante), la quantità media della prima specie, pescata nella unità di tempo, durante un ciclo di fluttuazione, non potrà superare P_m potendo avvicinarsi a questo numero tanto quanto ci piace.

Potremo anche dire che P_m sarà tanto più grande quanto più grande sarà il rapporto anarmonico ϑ .

4. Se λ oltrepasserà il valore ε_1/α , tanto che

$$\varepsilon_1 - \alpha \lambda < 0$$
,

allora cesserà di sussistere la fluttuazione, ambedue le specie tenderanno ad esaurirsi (vedi § 4, n. 5) e saremo nel caso denotato nel § 4 come il tipo (IV, II) (fig. 14) in cui il percorso della curva è da destra a sinistra.

È interessante esaminare il caso limite nel quale λ raggiunge il valore ϵ_1/α . Si perviene allora al punto di passaggio dal tipo (III, IV) al tipo (IV, II). Come è detto nel \S 4, noi non abbiamo considerati i diversi casi di passaggio fra i vari tipi; ma esamineremo qui questo perché lo richiede il soggetto che stiamo trattando. Esso potrà servire, come fu detto alla fine del \S 4, quale esempio della trattazione dei diversi altri casi di passaggio da uno ad un altro tipo.

Se $\lambda = \varepsilon_1/\alpha$ le (28), (28') diventano

(29)
$$\frac{dN_1}{dt} = -\gamma_1 N_1 N_2,$$

(29')
$$\frac{dN_2}{dt} = \left(-\varepsilon''_2 + \gamma_2 N_1\right) N_2,$$

dove

$$\varepsilon''_2 = \varepsilon_2 + \varepsilon_1 \vartheta$$
.

Queste equazioni ammettono l'integrale (cfr. § 4, n. 2)

(30)
$$N_1^{\epsilon_2} e^{-\gamma_2 N_1} = C e^{\gamma_1 N_2},$$

ove C è una costante positiva.

Posto

$$x = N_1^{\epsilon''_2} e^{-\gamma_2 N_1} = C e^{\gamma_1 N_2},$$

le due curve Γ_1 , e, Γ_2 che hanno rispettivamente per ascissa e ordinata (N_1, x) e (N_2, x) vengono rappresentate nella fig. 17:

onde, impiegando lo stesso procedimento che abbiamo tenuto nel § 2, n. 4. (cfr. fig. 1 e fig. 2), potremo disegnare la curva che ha per equazione la (30) (vedi fig. 18).

I valori minimo e massimo a_1 , b_1 di N_1 daranno le due radici reali dell'equazione

(30')
$$N_1^{\epsilon''_2} e^{-\gamma_2 N_1} = C$$

Il massimo b_2 di N_2 corrisponderà al valore c_1 di N_1 e dato che

$$c_1 = \frac{\varepsilon''_2}{\gamma_2}$$

sarà

$$b_2 = \frac{\varepsilon''_2(\log c_1 - 1) - \log C}{\gamma_1}.$$

Ma abbiamo

$$\log C = \varepsilon''_2 \left(\log a_1 - \frac{a_1}{c_1} \right)$$

Variazioni e fluttuazioni del numero d'individui....

quindi

$$b_2 = \frac{-\varepsilon''_2 \left(\log \frac{a_1}{c_1} + \frac{c_1 - a_1}{c_1} \right)}{\gamma_1} = \frac{\varepsilon''_2}{\gamma_1} \left(\frac{1}{2} \left(\frac{c_1 - a_1}{c_1} \right)^2 + \frac{1}{3} \left(\frac{c_1 - a_1}{c_1} \right)^3 + \dots \right).$$

Dalle (29), (29') segue

$$tg\phi = \frac{dN_2}{dN_1} = \frac{\gamma_2 N_1 - \epsilon''_2}{\gamma_1 N_1} = \frac{\gamma_2}{\gamma_1} \frac{N_1 - c_1}{N_1}$$

denotando con φ l'angolo che la tangente generica alla curva fa con l'asse N_1 . Chiamando rispettivamente φ_{a_1} e φ_{b_1} i valori di φ agli estremi a_1 b₁, avremo

$$tg\phi_{b_1} = \frac{\gamma_2}{\gamma_1} \frac{b_1 - c_1}{b_1}$$
, $tg\phi_{a_1} = \frac{\gamma_2}{\gamma_1} \frac{a_1 - c_1}{a_1}$.

Col crescere di t la curva sarà percorsa da destra a sinistra, ossia la N_1 andrà continuamente diminuendo. Calcoliamo il tempo necessario affinché il numero N_1 di individui della prima specie si riduca da N_1^0 a N_1^1 essendo

$$a_1 < N_1^0 < b_1$$
 , $a_1 < N_1^1 < N_1^0$.

Applicando la (29) questo tempo risulterà

$$t = \int_{N_1}^{N_1^0} \frac{dN_1}{\gamma_1 N_1 N_2} = \int_{N_1^0}^{N_1^1} \frac{-dN_1}{\gamma_1 N_1 N_2}.$$

Ma dalla (30) si ricava

Variazioni e fluttuazioni del numero d'individui....

$$\gamma_1 N_2 = \varepsilon''_2 \left(\log N_1 - \frac{N_1}{c_1} \right) - \log C = \varepsilon''_2 \left(\log \frac{N_1}{a_1} - \frac{N_1 - a_1}{c_1} \right);$$

quindi γ_1 N_2 per $N_1 = a_1$ si annulla dello stesso ordine di $N_1 - a_1$. Sarà dunque

$$\int_{a_1}^{N_1^0} \frac{dN_1}{\gamma_1 N_1 N_2} = \infty.$$

Ciò prova che, da qualunque punto della curva Λ (fig. 18) si parta, ci si avvicina indefinitamente al punto a_1 senza mai raggiungerlo. In altri termini da qualunque stato iniziale si parta, il numero degli individui della prima specie tende assintoticamente verso

$$a_1 < \mathbf{c}_1 = \frac{\mathbf{\epsilon''}_2}{\gamma_2},$$

mentre la seconda specie tende ad esaurirsi.

Quando $\varepsilon'_1 = \varepsilon_1 - \alpha \lambda$ si annulla, le curve cicliche della fig. 3 assumono al limite la forma della curva della fig. 18. La parte appiattita in basso delle prime tende verso il tratto rettilineo $a_1 b_1$ della fig. 18. Ma mentre le curve della fig. 3 sono totalmente e periodicamente percorse, il che costituisce il fenomeno della fluttuazione, il tratto rettilineo $a_1 b_1$ non può mai venire percorso perché per raggiungere il punto a_1 occorre un tempo infinitamente lungo. Se ci mettiamo poi in un punto qualunque del tratto rettilineo $a_1 b_1$ si ha N_1 costante e $N_2 = 0$.

Nella fig. 19 sono rappresentate tre curve I, II, III, che escono da un medesimo punto P. Esse hanno rispettivamente per equazioni:

$$\begin{array}{lll} I. & N_{1}^{\epsilon_{2}^{\prime}} & e^{-\gamma_{2}N_{1}} = C' & N_{2}^{-\epsilon_{1}^{\prime}}e^{\gamma_{1}N_{2}} \\ III. & N_{1}^{\epsilon_{2}^{\prime}} & e^{-\gamma_{2}N_{1}} = C'' & e^{\gamma_{1}N_{2}} \\ IIII. & N_{1}^{\epsilon_{2}^{\prime}} & e^{-\gamma_{2}N_{1}} = C''' & N_{2}^{h}e^{\gamma_{1}N_{2}}. \end{array}$$

La I è una curva di fluttuazione che corrisponde quindi a $\varepsilon'_1 > 0$ (è perciò del tipo (III, IV)), la II è una curva del tipo di quelle della fig. 18 (curva di passaggio dal tipo (III, IV) al tipo (IV, II)), la III è una curva del tipo (IV, II) e corrisponde a $\varepsilon_1 - \alpha\lambda$ negativo e eguale a -h. Abbiamo inoltre

$$0 < \varepsilon'_2 < \varepsilon''_2 < \varepsilon'''_2$$
.

Le dette curve si riferiscono rispettivamente ai tre casi in cui l'intensità della distruzione delle specie non raggiunge il limite ε_1/α , o lo eguaglia, o lo sorpassa (cfr. § 4, n. 5).

Nello studio delle fluttuazioni corrispondenti alle diverse curve del tipo I, troviamo un esempio tipico di un limite superiore che non è un massimo. Infatti, man mano che colla intensità λ della distruzione ci si avvicina al limite ε_1/α , la media ε'_2/γ_2 degli individui della prima specie cresce tendendo verso $C_1 = \varepsilon''_2/\gamma_2$, ma non può raggiungere questo valore perché se λ raggiunge il limite ε_1/α , la fluttuazione cessa di avvenire e il numero di individui della prima specie tende verso a_1 (inferiore alle medie precedentemente raggiunte), mentre la seconda specie tende ad esaurirsi.

Oltrepassato colla intensità della distruzione il detto limite, ambedue le specie tenderanno ad esaurirsi.

I tratti continui delle tre curve e le relative frecce indicano come si producono le variazioni nei tre casi.

È da osservare per ultimo che, mentre ci si avvicina ad ϵ_1/α colla intensità della distruzione, la media degli individui della prima specie aumenterà, ma il tempo nel quale bisognerà computare questa media, cioè il periodo di una fluttuazione, andrà continuamente ed indefinitamente crescendo.

PARTE SECONDA

Associazione biologica di più specie.

- § 1. CASO DI UN NUMERO QUALUNQUE DI SPECIE CHE SI DISPUTANO UNO STESSO NUTRI-MENTO.
- I. È facile estendere ciò che è stato fatto nel caso di due specie conviventi che si contendono lo stesso nutrimento al caso di un numero qualunque di specie.

Ammettiamo che il numero delle specie sia n e che i coefficienti di accrescimento siano $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ supposta ciascuna specie sola. Denotiamo con F (N₁, N₂, . . . , N_n) dt la diminuzione della quantità di nutrimento nel tempo dt, quando i numeri di individui delle varie specie sono rispettivamente N₁, N₂, . . . , N_n. Questa funzione si annullerà per N₁ = N₂ = . . . N_n = 0; sarà positiva e crescente e crescerà indefinitamente col crescere indefinito di ciascuna N_r. Per semplicità potremmo prendere F lineare cioè

$$F(N_1, N_2, ... N_n) = \alpha_1 N_1 + \alpha_2 N_2 + ... + \alpha_n N_n$$

ove i coefficienti α_r sono positivi. Ma noi lasceremo F generale.

La presenza di N_1 individui della prima specie, N_2 della seconda ecc. influirà allora sui coefficienti di accrescimento riducendo le ε_r a $\varepsilon_r - \gamma_r F(N_1, ..., N_n)$ ove il

coefficiente positivo γ_r misura l'influenza che ha sull'accrescimento della specie la diminuzione del nutrimento.

Avremo quindi le equazioni differenziali

(31)
$$\frac{dN_r}{dt} = N_r(\varepsilon_r - \gamma_r F(N_1, ..., N_n)), \qquad r = 1, 2, ..., n$$

da cui segue

$$\frac{1}{\gamma_r N_r} \frac{dN_r}{dt} - \frac{1}{\gamma_s N_s} \frac{dN_s}{dt} = \frac{\varepsilon_r}{\gamma_r} - \frac{\varepsilon_s}{\gamma_s}$$

e integrando e passando dai logaritmi ai numeri

$$\frac{N_r^{\frac{1}{\gamma_r}}}{N_r^{\frac{1}{\gamma_s}}} = Ce^{\left(\frac{\varepsilon_r}{\gamma_r} - \frac{\varepsilon_s}{\gamma_s}\right)t}$$

ove C denota una costante positiva.

2. Disponiamo i rapporti ε_r/γ_r in ordine di grandezza, supponiamo cioè¹⁰

$$\frac{\varepsilon_1}{\gamma_1} > \frac{\varepsilon_2}{\gamma_2} > \frac{\varepsilon_3}{\gamma_3} ... > \frac{\varepsilon_n}{\gamma_n}$$

avremo allora se r < s

$$\lim_{t=\infty} \frac{N_r^{\frac{1}{\gamma_r}}}{N_s^{\frac{1}{\gamma_s}}} = \infty.$$

¹⁰ Escludiamo i casi di eguaglianza come infinitamente poco probabili.

Questo risultato porta come conseguenza che o N_r può prendere col crescere del tempo valori tanto grandi quanto ci piace o

$$\lim_{t=\infty} N_s = 0$$

Ma il primo caso è da escludersi, perché F cresce indefinitamente col crescere indefinito di N_r quindi nella (31) il secondo membro diviene negativo allorché N_r oltrepassa un certo limite; onde il limite superiore di N_r è finito. Dovrà dunque verificarsi il secondo caso. Da ciò segue che tutte le specie tendono a sparire eccettuata la prima.

Per avere l'andamento assintotico di N_1 basterà ripetere quanto si è fatto nel caso di due specie sole.

§ 2. - CASO DI UN NUMERO QUALUNQUE DI SPECIE CHE SI NUTRONO LE UNE DELLE ALTRE.

I. Consideriamo il caso di n specie e supponiamo che l'incontro di due individui di specie diverse porti sempre un risultato favorevole alla specie a cui appartiene l'uno e sfavorevole a quella a cui appartiene l'altro, oppure un risultato nullo per ambedue. Se N_r è il numero di individui della specie r e N_s il numero di individui della specie s la probabilità di un incontro di un individuo dell'una con un individuo dell'altra sarà proporzionale a N_rN_s , onde potremo assumere uguale a $m_{rs}N_rN_s$ il numero di incontri che avvengono nell'unità di tempo. Supponiamo che ad ogni incontro vengano distrutti p_{rs} individui (p_{rs}

sarà evidentemente una frazione) di una delle due specie per esempio della specie r, allora nell'unità di tempo verranno distrutti $m_{rs}p_{rs}N_rN_s$ individui di questa specie. Vediamo come si può calcolare l'influenza che ciò ha sul numero di individui dell'altra specie.

Un calcolo grossolano può farsi in questo modo: Denotiamo con β_1 , β_2 , . . . , β_n i pesi medi degli individui delle n specie e con P_1 , P_2 , . . . , P_n i pesi totali di tutti gli individui appartenenti a ciascuna specie. Per avere i numeri di individui di ciascuna specie basterà che prendiamo

$$N_1 = \frac{P_1}{\beta_1},...,N_r = \frac{P_r}{\beta_r},...N_n = \frac{P_n}{\beta_n}.$$

Ora se un individuo della specie r viene mangiato da individui della specie s il peso P_r diverrà $P_r - \beta_r$, mentre il peso P_s diverrà $P_s + \beta_r$ e perciò i numeri rispettivi di individui delle due specie diverranno all'ingrosso

$$\frac{P_r - \beta_r}{\beta_r} = N_r - 1 \qquad , \qquad \frac{P_s - \beta_r}{\beta_s} = N_s + \frac{\beta_r}{\beta_s}.$$

Dunque in modo grossolano potremo dire che nell'unità di tempo, in virtù degli incontri di individui della specie r con individui della specie s, la diminuzione di individui della specie r sarà data da

$$m_{rs} p_{rs} N_r N_s$$

e l'aumento di individui della specie s, pure nell'unità di tempo, sarà dato da

$$m_{rs}p_{rs}N_rN_s\frac{\beta_r}{\beta_s}$$
.

Posto $m_{rs} p_{rs} \beta_r = a_{rs}$ avremo che la diminuzione di individui della specie r sarà

$$\frac{1}{\beta_r} a_{rs} N_r N_s$$

e l'aumento d'individui della specie s sarà

$$\frac{1}{\beta_s} a_{rs} N_r N_s$$

o anche posto $a_{rs} = -a_{sr}$ (supposto a_{sr} sia negativo) potremo dire che i numeri di individui della specie r e della specie s crescono nella unità di tempo in virtù dei loro incontri, rispettivamente di

$$\frac{1}{\beta_r}a_{sr}N_rN_s \qquad , \qquad \frac{1}{\beta_s}a_{rs}N_rN_s$$

e quindi nel tempo dt crescono per i loro incontri rispettivamente di

$$\frac{1}{\beta_r} a_{sr} N_r N_s dt \qquad , \qquad \frac{1}{\beta_s} a_{rs} N_r N_s dt$$

Lo stesso potrà dirsi per ogni altra coppia di specie. In altri termini i numeri $1/\beta_1$, $1/\beta_2$, . . ., $1/\beta_n$ sono stati assunti come gli *equivalenti* degli individui delle varie specie. Infatti ammettere che $1/\beta_r$ individui della specie r possa trasformarsi in $1/\beta_s$ individui della specie s, si-

gnifica che $1/\beta_r$ individui di specie r sono equivalenti a $1/\beta_s$ individui della specie s. Come equivalenti noi abbiamo così presi, in prima approssimazione molto grossolana, le inverse dei pesi medi, ma ci basterà ammettere come *ipotesi la esistenza di numeri equivalenti*, anche se questi non coincidano con gl'inversi dei pesi medi, per ottenere lo stesso risultato che abbiamo ora avuto.

2. Chiamiamo ε_r il coefficiente di accrescimento della specie r allorché questa è sola, avremo allora, se tutte le n specie vivono insieme, che nel tempo dt l'aumento degli individui N_r sarà

$$dN_r = \varepsilon_r N_r dt + \frac{1}{\beta_r} \sum_{1}^{n} {}_{s} a_{sr} N_r N_s dt,$$

onde avremo le equazioni differenziali

$$\frac{dN_r}{dt} = \left(\varepsilon_r + \frac{1}{\beta_r} \sum_{1}^{n} s a_{sr} N_s\right) N_r, \qquad (r = 1, 2, ..., n)$$

o anche

(B)
$$\beta_r \frac{dN_r}{dt} = \left(\varepsilon_r \beta_r + \sum_{1=s}^n a_{sr} N_s\right) N_r, \qquad (r = 1, 2, ..., n)$$

nelle quali

$$a_{rs} = -a_{sr}$$
 , $a_{rr} = 0$, $\beta_1, \beta_2, ..., \beta_n > 0$.

Nel caso di due sole specie, una delle quali si nutra dell'altra noi abbiamo considerato le equazioni (§ 2, n. 1)

$$\frac{dN_1}{dt} = (\varepsilon_1 - \gamma_1 N_2) N_1 \qquad , \qquad \frac{dN_2}{dt} = (-\varepsilon_2 + \gamma_2 N_1) N_2$$

Se noi poniamo

$$\gamma_1 = \frac{a_{12}}{\beta_1} \qquad , \qquad \gamma_2 = \frac{a_{12}}{\beta_2}$$

queste equazioni assumono la forma (B), basta che noi scriviamo ε_2 invece di $-\varepsilon_2$ e intendiamo ε_2 negativo. Noi vediamo dunque che in questo caso non vi è bisogno di un'ipotesi speciale.

Così pure supponiamo di avere n specie e supponiamo che gl'individui della prima si nutrano di quelli della seconda; questi degl'individui della terza, i quali alla loro volta si nutrano degl'individui della quarta specie e così di seguito fino alla n^{esima} .

Avremo allora le equazioni

$$\begin{split} \frac{dN_1}{dt} &= \left(\varepsilon_1 + \gamma'_1 N_2\right) N_1 \qquad , \quad \frac{dN_2}{dt} &= \left(\varepsilon_2 - \gamma_2 N_1 + \gamma'_2 N_3\right) N_2, \\ \frac{dN_3}{dt} &= \left(\varepsilon_2 - \gamma_3 N_2 + \gamma'_3 N_4\right) N_3, \dots, \frac{dN_n}{dt} &= \left(\varepsilon_n - \gamma_n N_{n-1}\right) N_n, \end{split}$$

in cui le $\gamma_2, \ldots, \gamma_n$, e $\gamma'_1 \gamma'_2, \ldots, \gamma'_{n-1}$ sono numeri positivi. Potremo quindi scegliere i numeri $a_{21}, a_{32}, a_{43}, \ldots, a_{n-1,n}, \beta_1, \beta_2, \ldots, \beta_n$ in modo che

$$\gamma'_1 = \frac{a_{21}}{\beta_1}, \quad \gamma_2 = \frac{a_{21}}{\beta_2}, \quad \gamma'_2 = \frac{a_{32}}{\beta_2}, \quad \gamma_3 = \frac{a_{32}}{\beta_3}, \quad \gamma'_3 = \frac{a_{43}}{\beta_3}, \dots, \quad \gamma_n = \frac{a_{n,n-1}}{\beta_n}$$

mentre si ammettono nulle tutte le altre a_{sr} , quindi le equazioni precedenti assumeranno la forma (B).

Un altro esempio potrebbe aversi considerando quattro specie e supponendo che gl'individui della prima specie si nutrano di quelli della seconda e questi siano mangiati anche dagl'individui della terza specie i quali si nutrano pure di quelli della quarta.

In questo caso si otterrebbero le equazioni

$$\frac{dN_1}{dt} = \left(\varepsilon_1 + \gamma_1 N_2\right) N_1 \quad , \quad \frac{dN_2}{dt} = \left(\varepsilon_2 - \gamma_2 N_1 - \gamma'_2 N_3\right) N_2$$

$$\frac{dN_3}{dt} = \left(\varepsilon_3 + \gamma_3 N_2 + \gamma'_3 N_4\right) N_3 \quad , \quad \frac{dN_4}{dt} = \left(\varepsilon_4 + \gamma_4 N_3\right) N_4$$

nelle quali le γ_1 , γ_2 , γ_3 , γ_4 , γ'_2 , γ'_3 sono numeri positivi. Esse possono scriversi sotto la forma (B)

$$\begin{split} \frac{dN_1}{dt} &= \left(\varepsilon_1 + \frac{a_{21}}{\beta_1} N_2 \right) N_1 \qquad , \quad \frac{dN_2}{dt} = \left(\varepsilon_2 + \frac{a_{12}}{\beta_2} N_1 + \frac{a_{32}}{\beta_2} N_3 \right) N_2 \\ \frac{dN_3}{dt} &= \left(\varepsilon_3 + \frac{a_{23}}{\beta_3} N_2 + \frac{a_{43}}{\beta_3} N_4 \right) N_3 \qquad , \quad \frac{dN_4}{dt} = \left(\varepsilon_4 + \frac{a_{34}}{\beta_4} N_3 \right) N_4 \end{split}$$

scegliendo convenientemente β_1 , β_2 , β_3 , β_4 , a_{12} , a_{23} , a_{34} , e prendendo nulle tutte le altre a_{sr} .

In tutti questi casi, come in molti altri che si possono immaginare, nessun'altra ipotesi è necessaria di fare e i numeri $\beta_1, \beta_2, \dots, \beta_n$ possono senz'altro ottenersi.

3. Le equazioni (B) ci danno subito alcuni teoremi generali:

Basta che uno almeno dei coefficienti di accrescimento sia positivo perché le specie non si esauriscano tutte.

Infatti supponiamo $\varepsilon_r > 0$ e

$$N_1, N_2, \dots N_n < \eta$$
 , $\frac{1}{\beta_r} \sum_{s=1}^n |a_{sr}| = p_r$

avremo

$$\frac{1}{N_r}\frac{dN_r}{dt} > \varepsilon_r - p_r \eta.$$

Se le *n* specie si esaurissero, $N_1, N_2, ..., N_n$ tenderebbero a zero, quindi potrebbe trovarsi un valore t_0 del tempo tale che, per $t \ge t_0$, si potrebbe ammettere

$$\eta < \frac{\varepsilon_r}{p_r}$$

quindi

$$\varepsilon_r - p_r \eta = l > 0$$

e per conseguenza

$$N_r > N_r^0 e^{l(t-t_0)}$$

essendo N_r^0 il valore di N_r per $t = t_0$. Ne segue che, col crescere indefinito di t, N_r diverrebbe tanto grande quanto ci piace, il che sarebbe in contraddizione con $N_r < \eta$.

Se tutti i coefficienti di accrescimento sono negativi, le specie si esauriscono, mentre, se tutti sono positivi, il numero totale d'individui di tutte le specie cresce indefinitamente.

Infatti nelle (B) supponiamo

$$\varepsilon_r < -\varepsilon$$
 $(r = 1, 2, \ldots, n)$

essendo ε una quantità positiva. Sommando membro a membro le (B) si avrà

$$\sum_{1}^{n} {}_{r}\beta_{r} \frac{dN_{r}}{dt} < -\varepsilon \sum_{1}^{n} {}_{r}\beta_{r}N_{r},$$

ossia

$$\frac{d}{dt}\log\sum_{1}^{n} {}_{r}\beta_{r}N_{r} < -\varepsilon,$$

e integrando e passando dai logaritmi ai numeri:

$$\sum_{1}^{n} {}_{r} \beta_{r} N_{r} < \sum_{1}^{n} {}_{r} \beta_{r} N_{r}^{0} e^{-\varepsilon t}$$

ove si è denotato con N_r^0 il valore iniziale di N_r . Questa diseguaglianza dimostra che le N_r tendono a zero. Analogamente, se si avesse

$$\varepsilon_r > \varepsilon$$
 $(r = 1, 2, \ldots, n)$

essendo ε positivo, si otterebbe

$$\sum_{1}^{n} {}_{r}\beta_{1}N_{r} > \sum_{1}^{n} {}_{r}\beta_{r}N_{r}^{0}e^{\varepsilon t}$$

onde tutte le N_r non potrebbero conservarsi inferiori ad un numero finito. È interessante non disgiungere questo enunciato dal teorema precedente.

Ambedue uniti ci conducono alla proposizione seguente: Condizione necessaria e sufficiente perché tutte le specie si esauriscano è che tutti i coefficienti di accrescimento siano negativi.

4. Affinché N_1, N_2, \ldots, N_n siano costanti dovranno essere soddisfatte le equazioni

$$\frac{dN_1}{dt} = \frac{dN_2}{dt} = \dots \frac{dN_n}{dt} = 0$$

onde le equazioni (B) diverranno

(B')
$$\varepsilon_r \beta_r + \sum_{1}^{n} a_{sr} N_s = 0.$$

Chiameremo queste equazioni le *equazioni della stazionarietà*. Il loro determinante

(C)
$$\begin{vmatrix} 0, a_{21}, a_{31}, \dots, a_{n1} \\ a_{12}, 0, a_{32}, \dots, a_{n2} \\ a_{13}, a_{23}, 0, \dots, a_{n3} \\ \dots \\ a_{1n}, a_{2n}, a_{3n}, \dots, 0 \end{vmatrix}$$

che si chiamerà il *determinante fondamentale*, sarà *emi-simmetrico*, quindi sarà un quadrato se n è pari e sarà nullo se n è dispari.

Ci converrà dunque distinguere il caso in cui il numero delle specie è *pari* da quello in cui il numero delle specie è *dispari*.

§ 3. – NUMERO PARI DI SPECIE CONVIVENTI.

1. Abbiamo distinto alla fine del paragrafo precedente due casi secondo che *n* è pari o dispari. Cominciamo dal primo caso.

Poiché $a_{sr} = -a_{rs}$ avremo

(32)
$$\sum_{1}^{n} {}_{r}\beta_{r} \frac{dN_{r}}{dt} = \sum_{1}^{n} {}_{r}\epsilon_{r}\beta_{r}N_{r}$$

(33)
$$\beta_r \frac{d \log N_r}{dt} - \varepsilon_r \beta_r = \sum_s a_{sr} N_s, \quad (r = 1, 2, \dots, n)$$

Il determinante fondamentale emisimmetrico

(C)
$$\begin{vmatrix} 0, a_{21}, a_{31}, \dots, a_{n1} \\ a_{12}, 0, a_{32}, \dots, a_{n2} \\ a_{13}, a_{23}, 0, \dots, a_{n3} \\ \dots \\ a_{1n}, a_{2n}, a_{3n}, \dots, 0 \end{vmatrix}$$

sarà in generale diverso da zero, perché di grado pari. Noi lo ammetteremo sempre *positivo*, essendo esso un quadrato ed essendo infinitamente poco probabile che esso si annulli.

Chiamiamo A_{sr} l'elemento coniugato di a_{sr} , cioè tale che

$$\sum_{1}^{n} A_{hr} a_{sr} \begin{cases} = 0, h \neq s \\ = 1, h = s \end{cases}$$

Si otterrà dalle (33)

Variazioni e fluttuazioni del numero d'individui....

$$N_h = \sum_{1}^{n} {}_{r} A_{hr} \left(\beta_r \frac{d \log N_r}{dt} - \varepsilon_r \beta_r \right).$$

Avremo per conseguenza

$$\sum_{1}^{n} {}_{h} \varepsilon_{h} \beta_{h} N_{h} = \sum_{1}^{n} {}_{h} \varepsilon_{h} \beta_{h} \sum_{1}^{n} {}_{r} A_{hr} \left(\beta_{r} \frac{d \log N_{r}}{dt} - \varepsilon_{r} \beta_{r} \right).$$

Ma $A_{hr} = -A_{rh}$, quindi

$$\sum_{1}^{n} {}_{h} \varepsilon_{h} \beta_{h} \sum_{1}^{n} {}_{r} A_{hr} \varepsilon_{r} \beta_{r} = 0,$$

onde l'equazione precedente diverrà

$$\sum_{1}^{n} {}_{h} \varepsilon_{h} \beta_{h} N_{h} = \sum_{1}^{n} {}_{h} \sum_{1}^{n} {}_{r} A_{hr} \beta_{h} \beta_{r} \varepsilon_{h} \frac{d \log N_{r}}{dt} = \sum_{1}^{n} {}_{r} q_{r} \beta_{r} \frac{d \log N_{r}}{dt}$$

ove si è posto

(34)
$$q_r \sum_{1}^{n} {}_{h} A_{hr} \beta_h \varepsilon_h$$

e a cagione della (32)

$$\sum_{1}^{n} {}_{r}\beta_{r} \frac{dN_{r}}{dt} = \sum_{1}^{n} {}_{r}q_{r}\beta_{r} \frac{d \log N_{r}}{dt}$$

ossia

$$\frac{d}{dt} \sum_{r=1}^{n} {}_{r} \beta_{r} (N_{r} - q_{r} \log N_{r}) = 0.$$

Integrando e passando dai logaritmi ai numeri si ha l'integrale

Variazioni e fluttuazioni del numero d'individui....

$$\left(\frac{e^{N_1}}{N_1^{q_1}}\right)^{\beta_1} \left(\frac{e^{N_2}}{N_2^{q_2}}\right)^{\beta_2} ... \left(\frac{e^{N_n}}{N_n^{q_n}}\right)^{\beta_n} = C$$

ove C è una costante positiva.

Questa equazione può scriversi ancora, nella ipotesi che le *q* siano tutte diverse da zero,

$$\left(\frac{e^{N_1/q_1}}{N_1}\right)^{q_1\beta_1} \left(\frac{e^{N_2/q_2}}{N_2}\right)^{q_2\beta_2} \dots \left(\frac{e^{N_n/q_n}}{N_n}\right)^{q_n\beta_n} = C'$$

ove C'= $Cq_1^{q_1\beta_1}q_2^{q_2\beta_2}...Cq_n^{q_n\beta_n}$, cioè è una nuova costante positiva. Posto

$$n_r = \frac{N_r}{q_r}$$

sarà

(35)
$$\left(\frac{e^{n_1}}{n_1}\right)^{q_1\beta_1} \left(\frac{e^{n_2}}{n_2}\right)^{q_2\beta_2} \dots \left(\frac{e^{n_n}}{n_n}\right)^{q_n\beta_n} = C'.$$

Se $q_1, q_2, ..., q_n$ sono numeri positivi, $n_1, n_2, ..., n_n$ saranno pure positivi e quindi

$$\frac{e^{n_r}}{n_r} \ge e$$

onde

$$\left(\frac{e^{n_r}}{n_r}\right)^{q_r\beta_r} \leq \frac{C'e^{q_r\beta_r}}{e^{\sum_h q_h\beta_h}} = Ke^{q_r\beta_r}$$

avendo posto

$$K = \frac{C'}{e^{\sum_{h} q_h \beta_h}}$$

quindi

$$\frac{e^{n_r}}{n_r} \le e^{\mathbf{K}^{1/(q_r\beta_r)}}.$$

Ciò prova che n_r deve mantenersi compreso fra due

numeri positivi, l'uno maggiore l'altro minore dell'unità, il che si può riconoscere geometricamente in modo molto semplice. Riprendiamo infatti la curva avente per equazione (vedi fig. 20):

$$y = \frac{e^x}{x} \quad \begin{cases} 0 < x < \infty \\ e < y < \infty \end{cases}$$

La ordinata y assumerà il valore minimo e per x = 1 e diverrà infinita per x = 0 e $x = \infty$. Tiriamo la parallela all'asse x che dista da questa

retta di $y_0 > e$, e che taglia la curva in due punti A, e B di ascisse x^0 , x'.

Se
$$(e^x/x) < y_0$$
, sarà $0 < x^0 < 1 < x' < \infty$; $x^0 < x < x'$.

Dalla (36) si deduce dunque $n_r^0 < n_r < n'_r$, essendo n_r^0 e n'_r due numeri positivi, il primo minore, l'altro maggiore dell'unità. Ponendo

$$n_r^0 q_r = N_r^0$$
, $n'_r q_r = N'_r$

sarà $N_r^0 < N_r < N'_r$ ove N_r^0 e N'_r sono due numeri positivi l'uno minore l'altro maggiore di q_r .

Vediamo ora che cosa significa essere le q_r positive.

Dalle (B) segue che condizione necessaria e sufficiente perché le N_r assumano valori costanti, è che possa aversi (vedi \S 2, n. 4)

(B')
$$\varepsilon_r \beta_r + \sum_{1}^{n} {}_s a_{sr} N_s = 0,$$

$$(r = 1, 2, \dots, n)$$

cioè che queste equazioni risolute rispetto alle N_s diano soluzioni positive. Queste soluzioni sono (vedi (34))

(34')
$$N_s = -\sum_{1}^{n} {}_{r} A_{sr} \varepsilon_{r} \beta_{r} = \sum_{1}^{n} {}_{r} A_{rs} \varepsilon_{r} \beta_{r} = q_s.$$

Ne viene che condizione necessaria e sufficiente perchè esista uno stato stazionario è che le q_s siano positive.

Con questo noi escludiamo il caso che lo stato stazionario si raggiunga coll'esaurimento di qualcuna delle specie.

Possiamo dunque enunciare il teorema:

Se esiste uno stato stazionario, ponendo le specie in uno stato iniziale qualunque diverso da questo stato stazionario, il numero di individui di ciascuna specie si manterrà limitato fra due numeri positivi.

2. Ciò premesso ci conviene stabilire delle definizioni onde enunciare alcune proposizioni senza ambiguità.

Se N(t) indica il numero di individui di una specie e resta sempre compreso fra due numeri positivi, si dirà che la specie ha *variazione limitata fra numeri positivi*.

Se N(t) tende a zero ciò significa che la specie si esaurisce o anche che la sua variazione consiste in un esaurimento.

Se N(t) è limitato fra due numeri positivi si dirà che N(t) ha delle *fluttuazioni* se per $t > t_0$ (per quanto grande sia t_0) N ha massimi e minimi.

Si dirà che le *fluttuazioni sono smorzate* se l'oscillazione (differenza fra il limite superiore e il limite inferiore) di N(t) per $t > t_0$ può rendersi tanto piccola quanto ci piace ingrandendo sufficientemente t_0 . In questo caso e solo in questo caso, le fluttuazioni permettono che N tenda verso un limite determinato e finito per $t = \infty$.

Si dirà che N(t) varia assintoticamente e tende assintoticamente al limite q, se N(t) non ha fluttuazioni e tende al limite determinato e finito q per $t = \infty$.

3. Possiamo ora enunciare la proposizione:

Se esiste uno stato stazionario, ponendo le specie in uno stato iniziale qualunque diverso da quello stazionario si avranno sempre fluttuazioni delle specie le quali non potranno smorzarsi.

Per dimostrare questo teorema osserviamo che due casi possono presentarsi: o tutte le N_1, N_2, \ldots, N_n tendono verso dei limiti determinati e finiti col crescere indefinito del tempo¹¹ o qualcheduna di esse deve oscillare con ampiezze di oscillazioni che debbono mantenersi superiori ad un numero positivo, e quindi si avranno fluttuazioni, che non tutte si smorzeranno. Ora N_1, N_2, \ldots , N_n non possono tendere tutte verso q_1, q_2, \ldots, q_n , ossia le n_1, n_2, \ldots, n_n non possono tendere tutte verso 1, perché il più piccolo valore che può assumere la costante C' è

$$m = e^{q_1\beta_1 + q_2\beta_2 + ... + q_n\beta_n}$$

valore che prende quando tutte le n_r sono eguali ad 1. Basta che una almeno di queste quantità sia positiva e diversa da 1 perché C' sia maggiore di m. Quindi se lo stato iniziale non coincide con quello nel quale n_1 , n_2 , . . . , n_n sono tutte eguali ad 1 (nel qual caso esse conserverebbero sempre questo valore) sarà C' > m. Ma se n_1, n_2, \ldots, n_n tendessero tutte verso 1 il primo membro della (35) dovrebbe tendere verso m, mentre si conserva sempre uguale a C' > m.

Le N_1, N_2, \ldots, N_n non possono nemmeno tendere tutte verso altri limiti q'_1, q'_2, \ldots, q'_n , qn in tutto o in parte diversi da q_1, q_2, \ldots, q_n .

 $^{^{11}}$ Rientrerebbe in questo caso quello in cui qualcuna delle N_r fosse costante.

Infatti in tal caso le $\beta_r dN_r/dt$ tenderebbero verso i limiti determinati e finiti

$$\left(\varepsilon_r \beta_r + \sum_{1=s}^n a_{sr} q'_s\right) = q'_r.$$

Ma se N_r e dN_r/dt tendono verso limiti determinati e finiti per $t = \infty$ le dN_r/dt tendono tutte verso zero, onde dovremo avere

$$\varepsilon_r \beta_r + \sum_{1}^n a_{sr} q'_s = 0.$$

Risolvendo queste equazioni rispetto alle q'_s e tenendo presente che il determinante (C) è diverso da zero, troviamo (vedi 34))

$$q'_{s} = q_{s},$$
 $s = 1, 2, ..., n$

il che è contrario alla ipotesi fatta.

È dunque necessario che qualcheduna delle N_1 , N_2 , . . . , N_n conservi delle oscillazioni non smorzate col crescere indefinito del tempo e perciò il teorema è dimostrato.

Riprendiamo ora le (B) e integriamo fra due tempi t_0 e t. Si avrà

$$\frac{\beta_r}{T} \log \frac{N_r}{N_r^0} = \varepsilon_r \beta_r + \sum_{1}^{n} {}_{s} a_{sr} \frac{1}{T} \int_{t_0}^{t} N_s dt$$

ove N_r^0 è il valore di N_r per $t = t_0$, e $T = t - t_0$. Posto

$$\frac{1}{T}\int_{t_0}^t N_s dt = \mathfrak{N}_s$$

ossia chiamando \mathfrak{N}_s la media dei valori N_s nell'intervallo (t_0, t) di tempo, le equazioni precedenti si scriveranno

$$\frac{\beta_r}{T}\log\frac{N_r}{N_r^0} = \varepsilon_r \beta_r + \sum_{1}^n s_s a_{sr} \mathfrak{N}_s.$$

Prendendo T sufficientemente grande, poichè N_r e N_r^0 sono compresi fra numeri positivi determinati, si potrà rendere

$$\frac{\beta_r}{T} \log \frac{N_r}{N_r^0} = \sigma_r$$

tanto piccolo quanto ci piace. I valori delle \mathfrak{N}_s che verificano le precedenti equazioni si potranno perciò rendere tanto vicini ai valori q_s quanto ci pare, vale a dire

$$\lim_{T=\infty}\mathfrak{N}_r=q_r.$$

Abbiamo dunque il teorema:

Ferme le condizioni dei teoremi precedenti, i limiti delle medie delle N_r in un intervallo di tempo (t_0, t) tendono verso le q_r per $t = \infty$.

Questi limiti si chiameranno le medie assintotiche.

Dal teorema precedente segue come corollario:

Le medie assintotiche delle N_r sono indipendenti dai valori iniziali delle N_r stesse (cfr. con il teorema della costanza delle medie del § 2, n. 9).

Riassumendo questi vari risultati possiamo enunciare la proposizione generale:

I) Se esiste uno stato stazionario per l'associazione biologica, i numeri d'individui di ciascuna specie sono limitati fra numeri positivi, sussistendo sempre fluttuazioni che non possono smorzarsi, e le medie assintotiche dei valori dei numeri d'individui di tutte le singole specie sono i valori corrispondenti allo stato stazionario¹².

Come abbiamo veduto sopra, ai valori n_1, n_2, \ldots, n_n eguali ad 1 corrispondono i valori $N_1 = q_1, N_2 = q_2, \ldots, N_n = q_n$ e reciprocamente.

Prendendo nella (35) i valori iniziali di n_1, n_2, \ldots, n_n abbastanza vicini ad 1, potremo rendere C' vicino a $e^{\sum_{h}q_h\beta_h}$ tanto quanto ci piace e quindi K vicino ad 1 tanto quanto ci piace. Ma in un istante qualunque, a cagione della (36), abbiamo

$$e \leq \frac{e^{n_r}}{n_r} \leq e K^{\frac{1}{(q_r \beta_r)}}.$$

Potremo quindi far sì che n_r si conservi vicino ad 1 tanto quanto ci piace.

Possiamo dunque concludere:

II) Gli scostamenti dallo stato stazionario potranno ridursi tanto ristretti quanto ci piace, purché lo stato iniziale sia sufficientemente vicino a quello stazionario.

In altri termini:

¹² Lo studio delle piccole fluttuazioni svolto nel n. 4 dà una chiara idea di queste fluttuazioni e ne mostra l'andamento.

Lo stato stazionario è sempre uno stato stabile¹³.

4. Le piccole oscillazioni vicine allo stato stazionario possono studiarsi facilmente. Infatti a cagione della (34) avremo

(34")
$$\varepsilon_r \beta_r = -\sum_{1}^n {}_s a_{sr} q_s,$$

onde le (B) diverranno

$$\beta_r \frac{dN_r}{dt} = \sum_{s=1}^{n} a_{sr} (N_s - q_s) N_r$$

cioè

$$\beta_r \frac{dn_r}{dt} = \sum_{s=1}^{n} {}_s a_{sr} q_s (n_s - 1) n_r.$$

Posto $n_r = 1 + v_r$ le equazioni precedenti assumeranno la forma

$$\beta_r \frac{dv_r}{dt} = \sum_{1}^{n} {}_{s} a_{sr} q_{s} v_{s} (1 + v_r).$$

Se nell'istante iniziale le v_r sono sufficientemente piccole, pel teorema della stabilità dello stato stazionario, esse si conserveranno tanto piccole quanto ci piace.

Trascurando nelle equazioni precedenti i termini di 2° ordine nelle v_r esse diverranno

¹³ La stabilità qui, come precedentemente (cfr. I^a parte, § 2), è intesa in senso analogo alla stabilità dell'equilibrio in meccanica.

Variazioni e fluttuazioni del numero d'individui....

(37)
$$\beta_r \frac{dv_r}{dt} = \sum_{s=1}^{n} {}_{s} a_{sr} q_s v_s.$$

Poniamo $v_1...A_r e^{-xt}$ Le (37) si scriveranno

(38)
$$\beta_r A_r x + \sum_{1}^{n} {}_{s} a_{sr} q_{s} A_{s} = 0, \quad r = 1, 2, \dots, n$$

da cui eliminando le A_r si ricaverà l'equazione

(39)
$$\begin{vmatrix} \frac{\beta_{1}}{q_{1}}x, a_{21}, a_{31}, \dots, a_{n1} \\ a_{12}, \frac{\beta_{2}}{q_{2}}x, a_{32}, \dots, a_{n2} \\ a_{13}, a_{23}, \frac{\beta_{3}}{q_{3}}x, \dots, a_{n3} \\ \dots \\ a_{1n}, a_{2n}, a_{3n}, \dots, \frac{\beta_{n}}{q_{n}}x \end{vmatrix}$$

Questa equazione ha tutte le radici puramente immaginarie.

Infatti se esistesse una radice reale x, si potrebbero assumere le A_r reali e dalle (38) si ricaverebbe

$$x\sum_{1}^{n} {}_{r}\beta_{r}q_{r}A_{r}^{2} + \sum_{1}^{n} {}_{r}\sum_{1}^{n} {}_{s}a_{sr}q_{r}q_{s}A_{s}A_{r} = 0;$$

ma il doppio sommatorio è nullo, dunque

$$x\sum_{1}^{n} {}_{r}\beta_{r}q_{r}A_{r}^{2} = 0$$

e siccome β_r e q_r sono positive si avrebbe x = 0, mentre la equazione (39) non può ammettere la radice nulla avendo fatta l'ipotesi che il determinante (C) sia diverso da zero.

Se la (39) avesse la radice complessa a + ib dovrebbe avere la radice coniugata a - ib. Le A_r corrispondenti alla prima radice sarebbero in generale numeri complessi. Chiamiamo A'_r i numeri complessi coniugati. Essi corrisponderanno alla seconda radice onde avremo

$$(a+ib)\beta_r A_r + \sum_{1}^{n} {}_s a_{sr} q_s A_s = 0$$

$$(a-ib)\beta_r A'_r + \sum_{s=1}^n a_{sr} q_s A'_s = 0,$$

d'onde

$$(a+ib) + \sum_{1}^{n} {}_{r}\beta_{r}q_{r}A_{r}A'_{r} + \sum_{1}^{n} {}_{r}\sum_{1}^{n} {}_{s}a_{sr}q_{r}q_{s}A_{s}A'_{r} = 0$$

$$(a-ib) + \sum_{1}^{n} {}_{r}\beta_{r}q_{r}A'_{r}A_{r} + \sum_{1}^{n} {}_{r}\sum_{1}^{n} {}_{s}a_{sr}q_{r}q_{s}A'_{s}A_{r} = 0$$

e sommando membro a membro

$$2 a \sum_{1}^{n} {}_{r} \beta_{r} q_{r} A_{r} A'_{r} + \sum_{1}^{n} {}_{r} \sum_{1}^{n} {}_{s} (a_{sr} + a_{rs}) q_{r} q_{s} A_{s} A'_{r} = 0$$

cioè

$$a\sum_{1}^{n} {}_{r}\beta_{r}q_{r}A_{r}A'_{r} = 0$$

e quindi a = 0.

Ciò dimostra che le radici sono puramente immaginarie.

Il cambiare nella (39) x in -x equivale a cambiare le linee in colonne. Dunque se la (39) ammette la radice x, ammette la radice -x.

Supponiamo tutte le radici disuguali. Esse potranno indicarsi con

$$ib', ib'', \ldots, ib^{(n/2)}, -ib', -ib'', \ldots, -ib^{(n/2)}$$

e evidentemente potremo scrivere

$$ib^{(h)} = \frac{2\pi i}{\mathbf{T}^{(h)}}.$$

Scriviamo come segue i coefficienti A_r corrispondenti a questa radice:

$$M_r^{(h)} e^{\frac{2\pi i}{T^{(h)}} a_r^{(h)}}.$$

Denotiamone cioè con $M_r^{(h)}$ i moduli e con $2\pi a_r^{(h)}/T^{(h)}$ gli argomenti.

I coefficienti A_r corrispondenti alla radice $-ib^{(h)} = -2\pi i/T^{(h)}$ saranno

$$M_r^{(h)} e^{-\frac{2\pi i}{T^{(h)}} a_r^{(h)}},$$

onde avremo le soluzioni delle equazioni (37) date da

$$v_r^{(h)} = M_r^{(h)} e^{-\frac{2\pi i}{T^{(h)}} (t - a_r^{(h)})}, \qquad r = 1, 2, \dots, n$$

e quelle coniugate da

$$v_r^{(h)} = M_r^{(h)} e^{\frac{2\pi i}{T^{(h)}} (t - a_r^{(h)})}, \qquad r = 1, 2, \dots, n$$

Accoppiandole colle costanti moltiplicative coniugate

$$\frac{1}{2}C^{(h)}e^{\frac{2\pi i}{T^{(h)}}\alpha^{(h)}}, \qquad \frac{1}{2}C^{(h)}e^{-\frac{2\pi i}{T^{(h)}}\alpha^{(h)}}$$

otterremo una prima soluzione reale delle (37) con due costanti arbitrarie $C^{(h)}$ e $\alpha^{(h)}$ cioè

$$v_r^{''(h)} = C^{(h)} M_r^{(h)} \cos \frac{2\pi}{C^{(h)}} (t - a_r^{(h)} - \alpha^{(h)}).$$

Questa funzione è periodica col periodo $T^{(h)}$. Le ampiezze e le fasi dipenderanno dalle due costanti arbitrarie $C^{(h)}$ e $\alpha^{(h)}$.

Se ne deduce l'integrale generale della (37)

(III)
$$v_r = \sum_{1}^{n/2} {}_{h}C^{(h)}M_r^{(h)}\cos\frac{2\pi}{T^{(h)}}(t-a_r^{(h)}-\alpha_r^{(h)}), \quad r=1, 2, \ldots,$$

colle *n* costanti arbitrarie

$$C', C'', \ldots, C^{(n/2)}$$
; $\alpha', \alpha'', \ldots, \alpha^{(n/2)}$.

Possiamo quindi enunciare il teorema generale:

III) Le piccole fluttuazioni delle n specie conviventi possono ottenersi mediante la sovrapposizione di n/2 fluttuazioni non smorzate e ciascuna delle quali ha un periodo proprio.

Siccome in generale i periodi T^(h) saranno fra loro incommensurabili, così la fluttuazione risultante in generale non sarà periodica. Si osservi che il numero dei periodi T^(h) è uguale alla metà del numero delle specie conviventi, ma si ricordi che le leggi delle fluttuazioni adesso ottenute valgono nel caso in cui il numero delle specie conviventi è pari.

Riassumendo, i tre teoremi che abbiamo designato con I, II, III, possono considerarsi come tre *leggi generali delle variazioni di un numero pari di specie conviventi*.

5. Dallo svolgimento precedente possono ricavarsi varie proposizioni sugli stati stazionari e quindi sulle fluttuazioni che ne conseguono. Così dalla (34") segue

(34"')
$$\varepsilon_r = \frac{1}{\beta_r} \sum_{s=1}^{n} a_{rs} q_s.$$

Le a_{rs}/β_r . (vedi n. 1 del § 2) individuano le azioni scambievoli dovute agli incontri degli individui delle varie specie conviventi. Prendendo per le q_s dei numeri positivi arbitrari le (34") determinano tutti i possibili coefficienti di accrescimento delle singole specie compatibili colla esistenza di stati stazionari e colle conseguenti fluttuazioni delle specie stesse.

Dalla equazione (32) si ricava

$$\sum_{1}^{n} {}_{r}\beta_{r}N_{r} - \sum_{1}^{n} {}_{r}\beta_{r}N_{r}^{0} = \sum_{1}^{n} {}_{r}\varepsilon_{r}\beta_{r}\int_{0}^{t} N_{r}dt,$$

ove N_r^0 denotano i valori iniziali (cioè per t = 0) delle N_r . Se esiste uno stato stazionario ciascuna delle N_r deve mantenersi compresa fra due numeri positivi. Sia g un numero positivo inferiore al minimo di essi. Avremmo allora, se ε_r fossero tutte positive,

$$\sum_{1}^{n} {}_{r}\beta_{r}N_{r} > \sum_{1}^{n} {}_{r}\beta_{r}N_{r}^{0} + \left(\sum_{1}^{n} {}_{r}\epsilon_{r}\beta_{r}\right)gt$$

e se le ε_r fossero tutte negative

$$\sum_{1}^{n} {}_{r}\beta_{r}N_{r} < \sum_{1}^{n} {}_{r}\beta_{r}N_{r}^{0} + \left(\sum_{1}^{n} {}_{r}\varepsilon_{r}\beta_{r}\right)gt.$$

Ora ambedue queste diseguaglianze non potrebbero sussistere giacché, mentre i primi membri sarebbero sempre limitati, i secondi membri, col crescere del tempo, tenderebbero rispettivamente verso $+\infty$ e $-\infty$.

Possiamo dunque enunciare la proposizione: affinché esistano uno stato stazionario e le conseguenti fluttuazioni, alcuni dei coefficienti ε_r di accrescimento debbono essere positivi ed altri negativi, ossia:

Se da sole tutte le specie crescono o tutte si esauriscono non è possibile l'esistenza di uno stato stazionario né delle conseguenti fluttuazioni.

Quindi le equazioni (B') non possono avere radici tutte positive se le ε_r hanno lo stesso segno; ciò può vedersi anche direttamente, infatti dalle (B') segue

$$\sum_{1}^{n} {}_{r} \varepsilon_{r} \beta_{r} q_{r} = 0$$

e questa equazione non potrà essere verificata se tutte le q_r sono positive e le ε_r dello stesso segno.

§ 4. – NUMERO DISPARI DI SPECIE CONVIVENTI.

1. Passiamo ora al caso in cui il numero delle specie conviventi è dispari. Il determinante fondamentale emisimmetrico (cfr. § 2, n. 4):

(C)
$$\begin{vmatrix} 0, a_{21}, a_{31}, \dots, a_{n1} \\ a_{12}, 0, a_{32}, \dots, a_{n2} \\ a_{13}, a_{23}, 0, \dots, a_{n3} \\ \dots \\ a_{1n}, a_{2n}, a_{3n}, \dots, 0 \end{vmatrix}$$

di ordine dispari è nullo ed i minori di ordine n-1 corrispondenti ad una sua colonna qualunque sono proporzionali alle radici quadrate dei minori corrispondenti agli elementi in diagonale, i quali minori essendo determinanti emisimmetrici d'ordine pari sono quadrati. Noi supporremo che essi non siano nulli e quindi li supporremo positivi.

Chiamiamo R_1, R_2, \ldots, R_n queste radici quadrate. Siccome esse si assumono proporzionali ai minori di ordine n-1, avremo che, fissato arbitrariamente il segno di una di esse, restano fissati i segni di tutte le altre. Ora

$$\sum_{1}^{n} {}_{h} a_{rh} R_{h} = 0, \qquad (r = 1, 2, ..., n)$$

quindi dalle (B) si ricaverà

$$\sum_{1}^{n} r \frac{\beta_r}{N_r} R_r \frac{dN_r}{dt} = \sum_{1}^{n} r \epsilon_r \beta_r R_r$$

e integrando e passando dai logaritmi ai numeri

(40)
$$N_1^{\beta_1 R_1} N_2^{\beta_2 R_2} \dots N_n^{\beta_n R_n} = C e^{Lt}$$

ove C è una costante positiva, e L = $\sum_{1}^{n} {}_{r} \epsilon_{r} \beta_{r} R_{r}$.

È infinitamente poco probabile che L sia zero e quindi potrà ritenersi una costante positiva o negativa e perciò col crescere indefinito del tempo il secondo membro tenderà a zero o a ∞ .

Noi non conosciamo a *priori* il segno delle R_h , quindi potremo solo concludere che almeno una delle N_h , dovrà assumere valori piccoli oppure valori grandi quanto ci piace, senza escludere che una o più di esse possano divenire infinitamente piccole mentre altre divengono infinitamente grandi.

La proposizione che ne deriva (escludendo l'ipotesi L = 0) è la seguente:

Se il numero delle specie è dispari non è possibile che il numero di individui di ciascuna specie resti limitato fra due numeri positivi.

Per ben comprendere il significato di questo teorema, bisogna considerarlo come un risultato puramente teorico. Osserviamo intanto che, se una delle specie tenderà a esaurirsi, il numero delle specie tenderà a divenire pari e quindi rientreremo nel caso svolto nel paragrafo precedente

Ma se il numero di individui di una delle specie crescerà indefinitamente si può riconoscere che le equazioni (B) finiranno col non essere più valide. Noi abbiamo infatti supposto le ε_r costanti, cioè indipendenti dal numero di individui presenti, il che può ammettersi se questo numero non oltrepassa un certo limite, ma al di là la cosa non sarà più vera, onde le equazioni si modificheranno, almeno per il valore mutato che dovrà attribuirsi alle costanti ε_r , in modo da arrestare l'accrescimento di quella specie che aumenterebbe indefinitamente (cfr. § 6).

2. Riprendiamo le equazioni generali (B) nel caso d'un numero dispari di specie

(B)
$$\beta_r \frac{dN_r}{dt} = \left(\varepsilon_r \beta_r + \sum_{1}^n s a_{sr} N_s \right) N_r$$

e supponiamo che il sistema di equazioni in numero di n-1

$$\varepsilon_r \beta_r + \sum_{s=2}^{n} a_{sr} N_s = 0, \qquad (r = 2, 3, ..., n)$$

abbia le radici positive

$$Q_2, Q_3, \ldots, Q_n$$
.

Potremo scrivere le (B) sotto la forma

$$\beta_r \frac{dN_1}{dt} = \left(\varepsilon_1 \beta_1 + \sum_{s=1}^{n} a_{s1} N_s \right) N_1$$

Vito Volterra

Variazioni e fluttuazioni del numero d'individui....

$$\beta_r \frac{dN_r}{dt} = \left(\sum_{s=1}^n a_{sr}(N_s - Q_s) + a_{1r}N_1\right)N_r, \qquad (r = 2, 3, \dots, n)$$
e ponendo

$$N_1 = Q_1 v_1$$
, $N_r = Q_r (1 + v_1)$, $(r = 2, 3, ..., n)$

ove Q, è una costante positiva, e trascurando inoltre i termini di 2° grado nelle v_1, v_2, \ldots, v_n si avrà

(41)
$$\beta_1 \frac{dv_1}{dt} = \left(\varepsilon_1 \beta_1 + \sum_{s=1}^{n} a_{s1} Q_s \right) v_1$$

(42)
$$\beta_r \frac{dv_r}{dt} = \sum_{s=2}^{n} a_{sr} Q_s v_s + a_{1r} Q_1 v_1, \qquad (r = 2, 3, ..., n).$$

3. Prendiamo il determinante emisimmetrico di ordine pari

$$(D') = \begin{vmatrix} 0, a_{23}, a_{24}, \dots, a_{2n} \\ a_{32}, 0, a_{34}, \dots, a_{3n} \\ a_{42}, a_{43}, 0, \dots, a_{3n} \\ \dots \\ a_{n2}, a_{n3}, a_{n4}, \dots, 0 \end{vmatrix}$$

sarà

$$Q_s = -\frac{\sum_{r=1}^{n} \epsilon_r \beta_r D'_{rs}}{D'}$$

ove D' $_{rs}$ è l'elemento reciproco di a_{rs} nel precedente determinante. Quindi:

$$\sum_{s=1}^{n} a_{sl} Q_{s} = -\frac{\sum_{s=1}^{n} \varepsilon_{r} \beta_{r} \sum_{s=1}^{n} a_{sl} D'_{rs}}{D'}.$$

Consideriamo ora il determinante fondamentale emisimmetrico di ordine dispari

$$D = \begin{bmatrix} 0, a_{12}, a_{13}, \dots, a_{1n} \\ a_{21}, 0, a_{23}, \dots, a_{2n} \\ a_{31}, a_{32}, 0, \dots, a_{3n} \\ \dots \\ a_{n1}, a_{n2}, a_{n3}, \dots, 0 \end{bmatrix}$$

e sia D_{rs} l'elemento coniugato di a_{rs} . Avremo

$$D' = D_{11}$$

$$\sum_{s=1}^{n} a_{s1} D'_{rs} = -\sum_{s=1}^{n} a_{1s} D'_{rs} = -D'_{r1}$$

e perciò

$$\sum_{2}^{n} {}_{s} a_{s1} Q_{s} = \frac{\sum_{r=2}^{n} {}_{r} \varepsilon_{r} \beta_{r} D_{r1}}{D_{11}}$$

$$\varepsilon_1\beta_1 + \sum_{s=1}^n a_{s1}Q_s = \frac{\sum_{s=1}^n \varepsilon_r \varepsilon_r \beta_r D_{r1}}{D_{11}}.$$

Ma

$$D_{r1} = \sqrt{D_{rr}} \sqrt{D_{11}},$$

Variazioni e fluttuazioni del numero d'individui....

quindi

$$\varepsilon_{1}\beta_{1} + \sum_{s=1}^{n} a_{s1}Q_{s} = \frac{1}{R_{1}}\sum_{s=1}^{n} \varepsilon_{r}\beta_{r}R_{r}....\frac{L}{R_{1}}$$

ponendo, come nel n. 1, $\sum_{1}^{n} {}_{r} \varepsilon_{r} \beta_{r} R_{r} = L$ e chiamando R_{r} la $\sqrt{D_{rr}}$.

Secondo quanto è ivi detto, i segni delle R_r sono determinati quando si fissa il segno di una; prendiamo perciò $R_1 > 0$.

4. Supponiamo L negativo e scriviamo L/ $(\beta_1 R_1) = -m$ allora l'equazione (41) si integra mediante la formula

$$v_1 = A_1 e^{-mt}$$
.

Ciò giustifica l'avere trascurato precedentemente i termini del 2° ordine. Ma se L fosse positivo, allora *a posteriori* si riconosce che i detti termini potevano trascurarsi. Integriamo le equazioni

$$\beta_r \frac{dv_r}{dt} = \sum_{s=2}^{n} a_{sr} Q_s v_s, \qquad (r = 2, 3, \dots, n)$$

che hanno forma identica alle (37). Le soluzioni u_r avranno la forma degli integrali (III) ottenuti nel § 3, n. 4. Gli integrali delle (42) saranno dunque dati da

$$v_r = u_r + A_r e^{-mt}$$

ove i coefficienti A_r si calcolano facilmente colle ben note regole della teoria delle equazioni differenziali lineari.

Dunque allorchè $R_1 > 0$, L < 0 (cfr. n. 1) la variazione dell'associazione biologica si otterrà sovrapponendo una variazione corrispondente ad un esaurimento di tutte le specie alle fluttuazioni delle specie $2, 3, \ldots, n$. In altri termini, la prima specie tende assintoticamente ad un esaurimento, mentre le rimanenti n-1 specie tendono alle fluttuazioni delle associazioni con un numero pari di specie¹⁴, vicine al loro stato stazionario.

§ 5. – ESTENSIONE DELLE TRE LEGGI FONDA-MENTALI SULLE FLUTTUAZIONI

1. Nel § 2 della I^a parte sono state enunciate tre leggi fondamentali sulle fluttuazioni di due specie conviventi. Quale è la loro estensione al caso generale di *n* specie?

Nel § 3 della 2ª parte è stato dimostrato che, nel caso di un numero pari di specie, se il determinante fondamentale è diverso da zero e se esiste uno stato stazionario senza esaurimento di specie, le variazioni dei numeri degli individui delle diverse specie sono limitate fra numeri positivi e esistono sempre delle fluttuazioni che non si smorzano. Così si enuncia la estensione della prima legge relativa a due specie. Con questa estensione evidentemente si perde la proprietà della periodicità mentre rimane quella della fluttuazione.

¹⁴ Le associazioni qui considerate sono *conservative* (ved. § 7, n. 6).

- 2. Ammettiamo verificate le suddette ipotesi e cominciamo dall'osservare riguardo alla estensione della seconda legge (cioè quella della invariabilità delle medie dei numeri degli individui), che mancando la periodicità non può individuarsi la durata del tempo nel quale debbono prendersi le medie. Ma noi sappiamo che, prendendo le medie per durate di tempo infinitamente lunghe, queste tendono verso le radici delle equazioni di stazionarietà. Ora queste radici sono indipendenti dalle condizioni iniziali onde la 2ª legge resta inalterata quando si prendano come medie (cfr. 2ª parte, § 3) dei numeri di individui delle singole specie, i limiti delle medie stesse per durate di tempo infinitamente lunghe (medie assintotiche).
- 3. Si tratta ora di vedere che forma assumerà in generale la terza legge, quella cioè della perturbazione delle medie, sempre ammettendo verificate le suddette ipotesi. Come medie dei numeri degli individui delle diverse specie assumeremo sempre quelle assintotiche.

Nella terza legge (1ª parte, § 2, n. 9) si fa una distinzione fra specie mangiata e specie mangiante. Quando si passa ad un numero di specie più grande di 2, può darsi che gli individui di una stessa specie siano mangiati da quelli di un'altra e si nutrano degli individui di una terza specie. Volendo dunque conservare la distinzione fra specie mangianti e specie mangiate bisogna ammettere che, se una specie A si nutre di un'altra, non vi sia alcuna specie che si nutra di A e quindi che, se una specie B

è mangiata da un'altra, essa non si nutra di nessuna specie dell'associazione biologica.

4. Dimostriamo ora il teorema che, mantenendo le precedenti ipotesi, *il numero delle specie mangianti deve essere uguale al numero delle specie mangiate*.

Infatti supponiamo che il numero delle prime sia diverso da quello delle seconde. Assumiamo come specie mangianti le specie 1, 2, ..., p e come specie mangiate le specie p + 1, p + 2, ..., p + q con $q \neq p$.

Avremo come equazioni di stazionarietà (cfr. § 3, n. 4):

$$\begin{cases} \beta_{1}\varepsilon_{1} = a_{1,p+1} N_{p+1} + a_{1,p+2} N_{p+2} + \dots + a_{1,p+q} N_{p+q} \\ \beta_{2}\varepsilon_{2} = a_{2,p+1} N_{p+1} + a_{2,p+2} N_{p+2} + \dots + a_{2,p+q} N_{p+q} \\ \dots \\ \beta_{p}\varepsilon_{p} = a_{p,p+1} N_{p+1} + a_{p,p+2} N_{p+2} + \dots + a_{p,p+q} N_{p+q} \\ \end{cases}$$

$$\begin{cases} \beta_{p+1}\varepsilon_{p+1} = a_{p+1,1} N_{1} + a_{p+1,2} N_{2} + \dots + a_{p+1,p} N_{p} \\ \beta_{p+2}\varepsilon_{p+2} = a_{p+2,1} N_{1} + n_{p+2,2} N_{2} + \dots + a_{p+2,p} N_{p} \\ \dots \\ \beta_{p+q}\varepsilon_{p+q} = a_{p+q,1} N_{1} + a_{p+q,2} N_{2} + \dots + a_{p+q,p} N_{p} \end{cases}$$

nelle quali $a_{1,p+1},\ldots,a_{p,p+q}$ sono negative, mentre $a_{p+1,1},\ldots$, $a_{p+q,p}$ sono positive e quindi $\varepsilon_1, \varepsilon_2,\ldots,\varepsilon_p$ sono negative e $\varepsilon_{p+1}, \varepsilon_{p+2},\ldots,\varepsilon_{p+q}$ sono positive, escludendo il caso che esse possano essere nulle.

Per $q \neq p$ il determinante emisimmetrico delle a_{rs} , come facilmente si verifica, risulterebbe nullo, contro

l'ipotesi fatta. Dunque deve aversi q = p ossia il numero delle specie mangiate è uguale a quello delle specie mangianti.

5. Ora aumentiamo

$$| \varepsilon_1 |, | \varepsilon_2 |, \ldots, | \varepsilon_p |$$

e diminuiamo

$$| \varepsilon_{p+1} |$$
, $| \varepsilon_{p+2} |$, ..., $| \varepsilon_{p+q} |$,

ossia distruggiamo tanto le une quanto le altre specie in proporzione del numero di individui che esse hanno rispettivamente. Dovrà qualcuna delle

$$N_{p+1}$$
, N_{p+2} , ..., N_{p+q}

soddisfacenti alle equazioni di stazionarietà aumentare e qualcuna delle

$$N_1, N_2, \ldots, N_n$$

soddisfacenti alle stesse equazioni diminuire. Reciprocamente, se nessuna delle N_{p+1} , ..., N_{p+q} decresce, ma tutte o alcune crescono; se nessuna delle N_1 , ..., N_p cresce, ma tutte o alcune diminuiscono, debbono diminuire $| \varepsilon_{p+1} |$, $| \varepsilon_{p+2} |$, ..., $| \varepsilon_{p+q} |$ e aumentare $| \varepsilon_1 |$, $| \varepsilon_2 |$, ..., $| \varepsilon_p |$, ossia si debbono distruggere individui tanto delle specie mangianti quanto delle specie mangiate proporzionalmente al loro numero.

In questo consiste la estensione della terza legge, la quale (ricordando il significato delle radici delle equazioni di stazionarietà) potrà così enunciarsi: In un'associazione d'ordine pari¹⁵, con determinante diverso da zero, per la quale esiste uno stato stazionario e si possono distinguere le specie mangianti da quelle mangiate, se si distruggono uniformemente e proporzionalmente al numero dei loro individui tutte le specie, le medie assintotiche dei numeri degli individui di qualcuna delle specie mangiate (se non di tutte) cresceranno e le medie assintotiche dei numeri degli individui di qualcuna delle specie mangianti (se non di tutte) diminuiranno.

Naturalmente questa proposizione vale fino ad un certo limite di distruzione (cfr. I^a parte, §§ 4, 5) e se le radici delle equazioni di stazionarietà sono positive.

§ 6. – CASO IN CUI IL COEFFICIENTE D'ACCRESCIMENTO DI OGNI SINGOLA SPECIE DIPENDE DAL NUMERO DI INDIVIDUI DELLA STESSA SPECIE.

1. Varie volte nei paragrafi precedenti abbiamo avuto occasione di considerare dei casi nei quali il calcolo condurrebbe ad un accrescimento indefinito del numero di individui di una o più specie. Tale risultato va considerato come teorico e non abbiamo mancato di avvertirlo esplicitamente, come nel n. 1 del § 4, osservando che col crescere del numero degli individui, le equazioni fondamentali debbono cessare di essere valide, e in particolare i coefficienti di accrescimento debbono subire

¹⁵ Le associazioni qui considerate sono *conservative* (ved. § 7, n. 6).

delle modificazioni in virtù dell'indefinito crescere del numero degli individui.

Ciò rende necessario di considerare l'influenza che il numero di individui di una specie ha sul suo coefficiente d'accrescimento. È evidente che si potrà trascurare questo effetto finché il numero di individui non oltrepassi certi limiti, ma quando il calcolo condurrebbe ad un accrescimento infinito di individui è necessario tenerne conto. Vediamo come ciò può farsi.

Nel caso in cui esiste una specie sola e si ammette il coefficiente d'accrescimento costante ed eguale ad ϵ , avremo

$$\frac{dN}{dt} = \varepsilon N$$

ove N denota il numero di individui, quindi

$$N = N_0 e^{\varepsilon t}$$

ove N_0 è il numero iniziale di individui. Se ϵ è positivo, N crescerà indefinitamente.

Ora supponiamo che il coefficiente di accrescimento non sia costante, ma sia dato da $\varepsilon - \lambda N$ ove ε e λ sono costanti positive, avremo in tal caso

$$\frac{dN}{dt} = (\varepsilon - \lambda N)N,$$

d'onde

$$\varepsilon dt = \frac{\varepsilon dN}{N(\varepsilon - \lambda N)} = \frac{dN}{N} + \frac{\lambda dN}{\varepsilon - \lambda N},$$

e integrando e passando dai logaritmi ai numeri

$$Ce^{\varepsilon t} = \frac{N}{\varepsilon - \lambda N}$$

ove C è una costante. Quindi

$$N = \frac{C \varepsilon e^{\varepsilon t}}{1 + C \lambda e^{\varepsilon t}}$$

e per conseguenza

$$\lim_{t=\infty} N = \frac{\epsilon}{\lambda}.$$

Se chiamiamo N₀ il numero iniziale di individui della specie avremo

$$C = \frac{N_0}{\varepsilon - N_0 \lambda}$$

e quindi

$$N = \frac{\varepsilon N_0 e^{\varepsilon t}}{\varepsilon + N_0 \lambda \left(e^{\varepsilon t} - 1 \right)}.$$

Dunque il numero di individui si mantiene sempre compreso fra N_0 e ϵ/λ e non può crescere indefinitamente.

Supponiamo ora, nel caso di n specie conviventi, che i coefficienti di accrescimento, anziché essere le costanti ε_r , siano

$$\varepsilon_r - \lambda_r N_r$$

Variazioni e fluttuazioni del numero d'individui....

ove le λ_r sono costanti positive o nulle. Le (B) diverranno

(D)
$$\beta_r \frac{dN_r}{dt} = \left(\varepsilon_r \beta_r - \lambda_r \beta_r N_r + \sum_{1}^n s a_{sr} N_s \right) N_r$$

e se le equazioni

$$\varepsilon_r \beta_r - \lambda_r \beta_r N_r + \sum_{1=s}^n a_{sr} N_s = 0$$

avranno le radici positive $N_r = q_r$, potremo scrivere le (D)

$$\beta_r \frac{dN_r}{dt} = \left(-\lambda_r \beta_r (N_r - q_r) + \sum_{1=s}^n a_{sr} N_s - q_s\right) N_r,$$

d'onde, posto $N_r = q_r n_r$,

$$\beta_r \frac{dn_r}{dt} = \left(-\lambda_r \beta_r q_r (n_r - 1) + \sum_{s=1}^n a_{sr} q_s (n_s - 1)\right) n_r$$

e

$$\beta_r \frac{d \log n_r}{dt} = -\lambda_r \beta_r q_r n_r + \lambda_r \beta_r q_r + \sum_{s=1}^{n} a_{sr} q_s n_s - \sum_{s=1}^{n} a_{sr} q_s$$

dalle quali segue

$$\sum_{1}^{n} {}_{r}\beta_{r}q_{r} \frac{dn_{r}}{dt} = -\sum_{1}^{n} {}_{r}\lambda_{r}\beta_{r}q_{r}^{2}n_{r}^{2} + \sum_{1}^{n} {}_{r}\lambda_{r}\beta_{r}q_{r}^{2}n_{r} - \sum_{1}^{n} {}_{r}\sum_{1}^{n} {}_{s}a_{sr}q_{r}q_{s}n_{r}$$

$$\sum_{1}^{n} {}_{r}\beta_{r}q_{r} \frac{d\log n_{r}}{dt} = -\sum_{1}^{n} {}_{r}\lambda_{r}\beta_{r}q_{r}^{2}n_{r} + \sum_{1}^{n} {}_{r}\lambda_{r}\beta_{r}q_{r}^{2} - \sum_{1}^{n} {}_{r}\sum_{1}^{n} {}_{s}a_{sr}q_{s}q_{r}n_{r}$$
e sottraendo membro a membro

$$\frac{d}{dt} \sum_{1}^{n} {}_{r} \beta_{r} q_{r} (n_{r} - \log n_{r}) = -\sum_{r} \lambda_{r} \beta_{r} q_{r}^{2} (n_{r}^{2} - 2n_{r} + 1) = \sum_{r} \lambda_{r} \beta_{r} q_{r}^{2} (n_{r} - 1)^{2}$$
Integrando e passando dai logaritmi ai numeri risulta

$$\left(\frac{e^{n_1}}{n_1}\right)^{\beta_1 q_1} \left(\frac{e^{n_2}}{n_2}\right)^{\beta_2 q_2} \dots \left(\frac{e^{n_n}}{n_n}\right)^{\beta_n q_n} = C_e^{-\int_0^t \sum_r \lambda_r \beta_r q_r^2 (n_r - 1)^2 dt}$$

ove C è una costante positiva.

Da questa equazione segue (cfr. 2^a parte, § 3, n. 1)

$$\frac{e^{n_r}}{n_r} \leq e^{\int_{(q_r\beta_r)}^{1}},$$

ove

$$G = \frac{C}{e^{\sum_{h} \beta_{h} q_{h}}} e^{-\int_{0}^{t} \sum_{r} \lambda_{r} \beta_{r} q_{r}^{2} (n_{r}-1)^{2} dt}$$

2. Di qui noi possiamo trarre varie conseguenze:

1° Ciascuna delle n_1, n_2, \ldots, n_n e quindi ciascuna delle N_1, N_2, \ldots, N_n dovrà mantenersi compresa fra due numeri positivi.

La dimostrazione può farsi come nel n. 1 del § 3, 2ª parte, osservando che dovrà sostituirsi G al K di quel paragrafo. Ora il G è ottenuto moltiplicando un fattore analogo al K per una potenza di *e* (avente esponente negativo) inferiore ad 1. Osserviamo inoltre che dovendo essere

$$e \le \frac{e^{n_r}}{n_r} \le eG^{\frac{1}{q_r\beta_r}}$$

G non può tendere a zero al crescere indefinito di t.

 2° Se λ_r è diversa da zero, N_r , se non coincide con q_r , dovrà tendere verso q_r e, se non vi tende assintoticamente, la fluttuazione corrispondente alla specie r dovrà smorzarsi.

In altri termini preso σ positivo piccolo ad arbitrio dovrà esistere un tempo t, a partire dal quale si ha $|n_r|$. -1 $|<\sigma|$. Infatti, se esistessero valori di t tanto grandi quanto ci piace, per i quali si avesse $|n_r|$. -1 $|\geq\sigma|$ (siccome dn_r/dt in virtù delle (D') è una quantità limitata, cioè può determinarsi un numero ϑ tale che $\vartheta>|dn_r/dt|$), dovrebbero trovarsi degli intervalli di tempo, corrispondenti a valori di t superiori a ogni numero tanto grande quanto ci piace, di ampiezza superiore a $\sigma/(2\vartheta)$ nei quali $|n_r-1|\geq\sigma/2$ e questo condurrebbe alla conseguenza che

$$\int_{0}^{t} \sum_{1}^{n} {}_{r} \lambda_{r} \beta_{r} q_{r}^{2} (n_{1} - 1)^{2} dt$$

potrebbe rendersi superiore a qualunque quantità assegnata prendendo *t* sufficientemente grande, il che è assurdo perchè G non può tendere indefinitamente a zero.

Osservando che i valori q_r delle N_r corrispondono ad uno stato stazionario, ed escludendo, come nel n. 1 del § 3, i casi nei quali esso si raggiunga coll'esaurimento di qualche specie, potremo enunciare il teorema:

Se esiste uno stato stazionario e se i coefficienti di accrescimento di una o più specie decrescono linearmente col crescere del numero dei rispettivi individui, mentre i coefficienti di accrescimento delle altre specie sono costanti, partendo da uno stato iniziale qualunque diverso da quello stazionario si avranno sempre per le prime, o variazioni assintotiche, o fluttuazioni che andranno smorzandosi. Se tutti i coefficienti decresceranno nel modo suddetto lo stato del sistema tenderà verso quello stazionario 16.

In certo modo le azioni che tendono a smorzare gli accrescimenti di ciascuna specie col crescere del numero di individui di essa producono un effetto analogo a quello degli attriti interni in un sistema materiale, e smorzano le fluttuazioni.

3. Riprendiamo le equazioni (D) e poniamo $\lambda_r \beta_r = a_{rr}$ invece che $a_{rr} = 0$ ma conserviamo la condizione $a_{rs} = -a_{sr}$ quando $s \neq r$. Le (D) si scriveranno

$$\beta_r \frac{dN_r}{dt} = \varepsilon_r \beta_r N_r - \sum_{1}^n s a_{rs} N_s N_r.$$

Consideriamo la forma quadratica

(43)
$$F(N_1, N_2, ..., N_n) = \sum_{j=1}^{n} \sum_{r=1}^{n} a_{sr} N_s N_r = \sum_{j=1}^{n} a_{rr} N_r^2;$$

avremo

¹⁶ Anche se alcuni coefficienti λ_r sono nulli lo stato del sistema può tendere verso quello stazionario (cfr. § 5, n. 4).

È facile persuadersi con esempi particolari che a seconda dei casi possono aversi variazioni assintotiche e fluttuazioni smorzate.

$$\frac{d}{dt}\sum_{1}^{n} {}_{r}\beta_{r}N_{r} = -F(N_{1}, N_{2}, ..., N_{n}) + \sum_{1}^{n} {}_{r}\epsilon_{r}\beta_{r}N_{r}.$$

Se supponiamo che, a partire da un certo istante, cessino le cause costanti di accrescimento o di decremento delle singole specie, cioè se le ε_r si annullano allora

$$\sum_{1}^{n} {_{r}} \epsilon_{r} \beta_{r} N_{r}$$

sarà trascurabile, quindi F misurerà il decremento rispetto al tempo di $\sum_{r=1}^{n} {_{r}} \beta_{r} N_{r}$.

Per esempio se ci riferiamo al primo significato grossolano delle β_r (vedi § 2, n. 1) F misurerebbe il decremento rispetto al tempo del peso totale degli individui appartenenti a tutte le specie, se cessassero di agire le cause costanti di accrescimento o di decremento delle singole specie.

§ 7. – ASSOCIAZIONI BIOLOGICHE CONSERVATIVE E DISSIPATIVE

1. Le considerazioni svolte nel paragrafo precedente possono essere notevolmente estese; saremo così condotti ad una classificazione fondamentale delle associazioni biologiche.

A tal fine supponiamo che i coefficienti di accrescimento dipendano linearmente ed in un modo qualunque dal numero di individui, non di ciascuna specie soltanto, ma delle varie specie e gli effetti degli incontri degl'individui di specie diverse vengano risentiti in un modo qualunque, purché costante, dalle specie stesse, proporzionalmente al numero degli incontri, senza più preoccuparci se è soddisfatta o meno l'ipotesi del § 2, n. 1, 2^a parte.

Le equazioni (B) e (D) assumeranno allora la forma generale

(E)
$$\frac{dN_r}{dt} = \left(\varepsilon_r - \sum_{1}^n {}_s p_{rs} N_s\right) N_r$$

ove le ε_r e le p_{rs} sono coefficienti costanti qualunque.

Potremo considerare le ε_r come dipendenti dalle cause costanti di accrescimento o decremento delle specie e gli altri termini come dipendenti dalle azioni reciproche degl'individui. Con ciò evidentemente si dà una estensione molto più grande al concetto di azione reciproca fra i vari individui di quello che non sia stato fatto sin qui.

Se ciascuna specie fosse sola le ε_r sarebbero i loro coefficienti di accrescimento, mentre le

$$\varepsilon_r - \sum_{1}^n {}_s p_{rs} N_s$$

sono i coefficienti d'accrescimento delle specie stesse come risultano in virtù della loro coabitazione. Chiameremo questi ultimi i *coefficienti veri di accrescimento*, e le ε_r i *coefficienti bruti di accrescimento* o anche li chiameremo semplicemente *coefficienti d'accrescimento*

quando non potrà nascere confusione fra gli uni e gli altri coefficienti.

2. Prima di tutto potremo ripetere qui quanto è stato dimostrato nel n. 3 del § 2 e cioè: basta che uno almeno dei coefficienti di accrescimento sia positivo, perché le specie non si esauriscano tutte.

Siano poi $\alpha_1, \alpha_2, \ldots, \alpha_n$ delle quantità positive e poniamo

$$F(N_1, N_2, ..., N_n) = \sum_{1}^{n} \sum_{1}^{n} \alpha_r p_{rs} N_s N_r.$$

Si avrà il teorema:

Se la forma F è definita positiva, esisterà un numero N a cui nessuno dei numeri N_1, N_2, \ldots, N_n potrà conservarsi superiore a partire da un certo istante.

Infatti dalle (E) segue

$$\sum_{1}^{n} r \alpha_{r} \frac{dN_{r}}{dt} = \sum_{1}^{n} r \alpha_{r} \varepsilon_{r} N_{r} - F(N_{1}, N_{2}, ..., N_{n}).$$

Posto $N_r = 1$ denotiamo con m_r il limite inferiore dei valori di F per tutti i possibili valori di $N_1, N_2, \ldots, N_{r-1}, N_{r+1}, \ldots, N_n$. Sarà $m_r > 0$. Sia m il minore dei numeri m_1, m_2, \ldots, m_n . Sia inoltre

$$\sum_{1}^{n} |\alpha_{r} \epsilon_{r}| < E.$$

Supponiamo che N_r a partire da un certo istante t_1 si conservi superiore a

$$\frac{E+1}{m} = N.$$

Denotiamo con M (t_2) il maggiore dei numeri N₁ (t_2), N₂ (t_2), . . . , N_n (t_2) essendo $t_2 > t_1$.

Sarà

$$F(N_1, N_2, ..., N_n)_{t=t_2} > mM^2(t_2)$$

$$\sum_{1}^{n} {_{r}\alpha_{r}\epsilon_{r}N_{r}(t_2)} < EM(t_2)$$

onde avremo

$$\left(\sum_{1}^{n} {_{r}\alpha_{r}} \frac{dN_{r}}{dt}\right)_{t=t_{2}} < \left(E - mM(t_{2})\right)M(t_{2}).$$

Ora

$$M(t_2) > \frac{E+1}{m}$$

quindi

$$\left(\sum_{1}^{n} {_{r}\alpha_{r}} \frac{dN_{r}}{dt}\right)_{t=t_{2}} < -\frac{E+1}{m}, \qquad (t_{2} > t_{1})$$

ciò che porterebbe come conseguenza che, a partire da un certo istante, qualcuna delle N_1, N_2, \ldots, N_n dovrebbe diventare negativa il che è assurdo giacché le N_r non possono essere che positive come segue anche dalle (E). Infatti da queste equazioni si ricava

$$\mathbf{N}_{r} = \mathbf{N}_{r}^{0} e^{\int_{0}^{t} (\varepsilon_{r} - \Sigma_{s} p_{rs} \mathbf{N}_{s}) dt}$$

ove N_r^0 è il valore di N_r per t = 0, onde essendo N_r^0 positivo tale si manterrà N_r . Dunque esiste il numero N = (E + 1)/m a cui ogni N_r non può conservarsi superiore a partire dall'istante t_1 .

Riunendo i due teoremi ora dimostrati potremo enunciare la proposizione: Se uno almeno dei coefficienti di accrescimento è positivo e la forma F è definita positiva l'associazione biologica sarà stabile.

La *stabilità* consiste nel fatto che l'intera associazione non tende ad esaurirsi e nessuna specie può crescere indefinitamente (cfr. 1^a parte § 4, nn. 8, 9; 2^a parte § 2, n. 3).

Siccome le N_i sono sempre positive, così il teorema precedente può estendersi al caso in cui la forma F non si annulla che per tutte le $N_i = 0$ ed è positiva per tutti i valori positivi delle N_i .

3. Noi possiamo facilmente riconoscere che, se la forma F è definita positiva, il determinante formato colle p_{rs} non può annullarsi¹⁷. Infatti supponiamo che esso si annulli. Allora esisterebbero dei numeri N_1, N_2, \ldots, N_n (positivi, negativi o nulli, ma non tutti nulli) per i quali si avrebbe

$$\sum_{1}^{n} {}_{s} p_{rs} N_{s} = 0$$

e quindi

 $^{^{17}}$ Nel n. 6 del § 1 della $3^{a'}$ parte verrà dimostrato che nel caso in cui la forma F è positiva il detto determinante è positivo.

$$0 = \sum_{1}^{n} \sum_{r=1}^{n} \alpha_{r} p_{rs} N_{s} N_{r} = F(N_{1}, N_{2}, ..., N_{n})$$

il che è in contraddizione colla ipotesi che la forma F sia definita positiva.

Ciò premesso supponiamo che le equazioni

(E')
$$\varepsilon_r - \sum_{s=1}^{n} p_{rs} N_s = 0$$

risolute rispetto alle N_s diano le soluzioni q_s diverse da zero. Sarà identicamente

$$\varepsilon_r = \sum_{1}^{n} {}_{s} p_{rs} q_{s}$$

onde le (E) diverranno

$$\frac{dN_r}{dt} = -\sum_{1}^{n} {}_{s} p_{rs} (N_s - q_s) N_r$$

ossia, posto

$$\frac{N_r}{q_r} = n_r,$$

avremo

$$\frac{dn_r}{dt} = -\sum_{1}^{n} {}_{s} p_{rs} q_s (n_s - 1) n_r.$$

Da queste equazioni segue

$$\frac{1}{n_r}\frac{dn_r}{dt} = -\sum_{1}^{n} {}_{s}p_{rs}q_s(n_s - 1).$$

Denotiamo con α_r delle quantità costanti positive; risulterà:

$$\sum_{1}^{n} {}_{r}\alpha_{r}q_{r}\frac{n_{r}-1}{n_{r}}\frac{dn_{r}}{dt} = -\sum_{1}^{n} {}_{r}\sum_{1}^{n} {}_{s}p_{rs}\alpha_{r}q_{r}q_{s}(n_{s}-1)(n_{r}-1).$$

Poniamo

(45)
$$\frac{1}{2}(p_{rs}\alpha_{r} + p_{sr}\alpha_{s}) = m_{rs} = m_{sr},$$

(46)
$$F(x_1, x_2, \dots, x_n) = -\sum_{r} \sum_{s} m_{rs} x_r x_s,$$

l'equazione precedente si scriverà

$$\frac{d}{dt}\sum_{r}\alpha_{r}q_{r}(n_{r}-\log n_{r})=-F(x_{1},x_{2},\ldots,x_{n})$$

ove

$$x_r = (n_r - 1) q_r.$$

Integrando e passando dai logaritmi ai numeri, avremo

$$\left(\frac{e^{n_1}}{n_1}\right)^{\alpha_1 q_1} \left(\frac{e^{n_2}}{n_2}\right)^{\alpha_2 q_2} \dots \left(\frac{e^{n_n}}{n_n}\right)^{\alpha_n q_n} = \mathbf{C} e^{-\int_0^1 F dt}$$

ove C è una costante positiva.

Se le q_1, q_2, \ldots, q_n sono positive, ossia *se esiste uno stato stazionario* e se si possono scegliere le costanti positive $\alpha_1, \alpha_2, \ldots, \alpha_n$ in modo da annullare identicamente

la forma quadratica $(46)^{18}$ (come è stato calcolato nel § 3, 2^a parte, n. 1), i numeri di individui delle singole specie saranno limitati fra numeri positivi e dovranno sussistere fluttuazioni le quali non si smorzano. Se esiste uno stato stazionario e se le constanti positive $\alpha_1, \alpha_2, \ldots$, α_n potranno prendersi in modo che la forma (46) sia positiva, potremo asserire che la variabilità dei numeri d'individui delle singole specie è limitata fra numeri positivi¹⁹; ma se la forma sarà definita positiva oltre a ciò avremo che tutte le variazioni delle singole specie saranno assintotiche o saranno futtuazioni smorzale che faranno tendere l'associazione biologica verso lo stato stazionario.

La dimostrazione di questa proposizione si fa in modo analogo a quello seguito nel n. 2 del § 6 (2ª parte).

Avremo poi che ogni qual volta la forma (46) sarà positiva i limiti delle medie di N_1, N_2, \ldots, N_n in intervalli di tempo infinitamente crescenti saranno q_1, q_2, \ldots, q_n .

La espressione F può scriversi

(47)
$$F = \sum_{1}^{n} \sum_{r=1}^{n} \alpha_{r} p_{rs} (N_{r} - q_{r}) (N_{s} - q_{s}).$$

 $^{^{18}}$ In questo caso, affinché il determinante delle p_{rs} sia diverso da zero, dovrà essere n pari.

¹⁹ Questa proprietà conduce subito a riconoscere che anche in questo caso, come in quello precedente (§ 3, 2^a parte, n.3) i limiti delle medie di N_1, N_2, \ldots, N_n in intervalli di tempo infinitamente crescenti sono q_1, q_2, \ldots, q_n .

Nel n. 2 del § 6 l'azione smorzatrice delle fluttuazioni è stata paragonata ad un attrito interno. Come misura di questa azione smorzatrice può prendersi la forma precedente F, la quale caratterizza *la tendenza verso lo stato stazionario dell'insieme di tutte le specie*. Ed infatti, *se essa è nulla l'associazione biologica non tenderà verso uno stato limite*, mentre *se essa è definita positiva, tenderà verso lo stato stazionario*.

Noi chiameremo la forma F $(x_1, x_2, ..., x_n)$ la forma fondamentale e le equazioni (E') al pari delle (B') le equazioni della stazionarietà. Come nel n. 2 del § 3 (2^a parte) escludiamo il caso che queste abbiano radici nulle, ossia che lo stato stazionario possa raggiungersi coll'esaurimento di qualcuna delle specie.

4. Sono facili a trovarsi le condizioni necessarie e sufficienti a cui debbono soddisfare le p_{rs} affinché la forma (46) si riduca nulla identicamente.

Infatti dalla (45) segue

$$\frac{p_{rs}}{p_{sr}} = -\frac{\alpha_s}{\alpha_r}$$

d'onde

$$(48) p_{rs}p_{sg}p_{gr} + p_{rg}p_{gs}p_{sr} = 0$$

per tutte le combinazioni a tre a tre degli indici $1, 2, \ldots, n$.

Queste condizioni, insieme ad essere la p_{rs} e la p_{sr} di segno opposto (e quindi le $p_{rr} = 0$) giacché le α_r sono

tutte positive, sono *condizioni necessarie*. È facile verificare che esse sono pure *sufficienti*.

Infatti dalla (48) si deduce

$$\left(-\frac{p_{rs}}{p_{sr}}\right) = \left(-\frac{p_{rg}}{p_{gr}}\right) : \left(-\frac{p_{sg}}{p_{gs}}\right)$$

onde posto

$$-\frac{p_{rs}}{p_{sr}} = w_{rs}$$

sarà $w_{rs} = w_{rg}$: w_{sg} e siccome il primo membro è indipendente da g si avrà

$$\frac{W_{rg}}{W_{sg}} = \frac{W_r}{W_s}$$

ove w_r e w_s dipendono rispettivamente solo da r e s. Quindi

$$W_{rg} = \frac{W_r}{\left(\frac{W_s}{W_{sg}}\right)}$$

da cui segue che w_s/w_{sg} deve essere indipendente da s. Si potrà dunque porre

$$W_{rg} = \frac{\alpha_g}{\alpha_r}$$
.

Se ogni p_{rg} è di segno opposto a p_{gr} , le w_{rg} saranno positive e quindi le α_r potranno prendersi positive e avremo

$$-\frac{p_{rg}}{p_{gr}} = \frac{\alpha_g}{\alpha_r}$$

ossia $\alpha_r p_{rg} + \alpha_g p_{gr} = 0$. Le condizioni sono dunque anche sufficienti²⁰.

5. Le piccole variazioni assintotiche e le piccole fluttuazioni smorzate, supposto che esista uno stato stazionario e F sia definita positiva, si possono studiare ponendo nelle (44) $n_s = 1 + v_s$ e trascurando i termini di secondo ordine. Si hanno così le equazioni:

$$\frac{dv_r}{dt} = -\sum_{1}^{n} {}_{s} p_{rs} q_{s} v_s.$$

Ponendo $v_r = \gamma_r e^{xt}$ si trovano le equazioni

$$(49') \qquad \qquad \gamma_r x + \sum_{1}^{n} {}_{s} p_{rs} q_{s} \gamma_{s} = 0$$

e l'equazione in x

²⁰ Come ha osservato la Sig.^{na} dott. Elena Freda e come risulta dal modo di dimostrazione, queste condizioni sono valide nella ipotesi che tutte le p_{rs} ($r \neq s$) siano diverse da zero. Quando ve ne sono alcune nulle le equazioni di condizione cessano di essere a tre termini, come con alcuni esempi ha veduto la Sig.^{na} Freda.

Variazioni e fluttuazioni del numero d'individui.... Vito Volterra

$$\begin{vmatrix} p_{11} + \frac{x}{q_1} & p_{12} & p_{13} & \dots & p_{1n} \\ p_{21} & p_{22} + \frac{x}{q_2} & p_{23} & \dots & p_{2n} \\ p_{31} & p_{32} & p_{33} + \frac{x}{q_3} & \dots & p_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & p_{n3} & \dots & p_{nn} + \frac{x}{q_n} \end{vmatrix} = 0$$
Le radici di questa equazione hanno le parti reali pega

Le radici di questa equazione hanno le parti reali negative. Infatti se

$$x = x' + ix''$$

è una radice e
$$x' - ix''$$
 la sua coniugata e $(\gamma'_r + i\gamma''_r)e^{(x'+ix'')t}, \qquad (\gamma'_r + i\gamma''_r)e^{(x'-ix'')t}, \qquad (r = 1, 2, ..., n)$ soddisfano le (49') și avrà

soddisfano le (49') si avrà

listano le (49') si avrà
$$\sum_{r} \alpha_{r} q_{r} (\gamma_{r}^{2} + \gamma_{r}^{2}) x' + F(q_{1}\gamma_{1},...,q_{n}\gamma_{n}) + F(q_{1}\gamma_{1},...,q_{n}\gamma_{n}) = 0$$

il che dimostra che x' è negativo.

Il caso generale per ultimo trattato abbraccia colla sua analisi tutti quelli prima esaminati e mostra da un punto di vista sintetico l'insieme dei metodi adoperati.

6. Noi possiamo anche ritornare sopra l'ipotesi del § 2 n. 1, e vederne più profondamente il significato.

Supponiamo di dare ad ogni individuo della specie r, un valore positivo α_r .

Il valore dell'intera associazione biologica sarà $V = \sum_{r=1}^{n} r^{\alpha} r^{N_r}$ onde dalle uguaglianze (E) seguirà

$$dV = \sum_{1}^{n} {_{r}\alpha_{r}\epsilon_{r}N_{r}dt} - \sum_{1}^{n} {_{r}\sum_{1}^{n} {_{s}p_{rs}\alpha_{r}N_{r}N_{s}dt}}.$$

L'aumento di valore dell'associazione biologica in un tempuscolo dt consta quindi di due parti

$$d\mathbf{V}_1 = \sum_{1}^{n} _{r} \alpha_{r} \varepsilon_{r} \mathbf{N}_{r} dt$$

$$dV_2 = -\sum_{1}^{n} \sum_{r=1}^{n} p_{rs} \alpha_r N_r N_s dt.$$

La prima è dovuta alle cause costanti di accrescimento e di decremento di ciascuna specie (individuate dalle ε_r), l'ultima è dovuta alle azioni reciproche dei vari individui nel senso generale precedentemente inteso.

Se si potranno scegliere le α_r in modo che dV_2 sia nullo, comunque siano le N_1, N_2, \ldots, N_n , il valore della associazione biologica non muterà in conseguenza delle azioni reciproche degli individui. *Un'associazione biologica di questa natura, vale a dire nella quale è possibile assegnare ai singoli individui valori tali che le loro azioni reciproche conservino costante il valore della intera associazione, si dirà conservativa.* Per un sistema conservativo è evidentemente soddisfatta la ipotesi del § 2, n. 1 (2^a parte). Reciprocamente se è verificata quella

ipotesi e sono trascurabili le azioni reciproche fra individui della stessa specie, l'associazione biologica sarà conservativa.

Le associazioni biologiche assolutamente conservative sono probabilmente enti ideali che possono solo approssimarsi a quelli effettivi della natura. Nondimeno ricordiamo che il caso di due specie svolto nel § 3 della 1^a parte si riferisce ad un sistema conservativo. Così pure esempi speciali di sistemi conservativi si hanno in tutti i casi considerati nel n. 2 del § 2 (Parte II).

Allorquando potranno assegnarsi ai singoli individui dei valori (eguali per quelli della stessa specie) tali che *la forma fondamentale* F *sia definita positiva*, le azioni reciproche fra gl'individui stessi tenderanno a diminuire il valore dell'intera associazione che potrà quindi chiamarsi *dissipativa*. In molti casi reali le associazioni biologiche sembra debbano approssimarsi ad associazioni dissipative.

Come abbiamo veduto nel n. 4, le condizioni necessarie e sufficienti perché un sistema sia conservativo sono:

$$p_{rs}p_{sg}p_{gr}+p_{rg}p_{gs}p_{sr}=0,$$

per tutte le combinazioni tre a tre degli indici, mentre p_{rs} e p_{sr} hanno segno opposto e $p_{rr} = 0^{21}$.

²¹ Ricordiamo che le precedenti condizioni valgono nel caso in cui le p_{rs} ($r \neq s$) sono diverse da zero.

Se un'associazione sarà dissipativa le p_{rr} dovranno essere positive. Quindi un'associazione dissipativa è nettamente distinta da un'associazione conservativa.

Se invece, ferme restando le precedenti condizioni o le precedenti equazioni per tutte le combinazioni tre a tre senza ripetizione degl'indici, le p_{rr} fossero tutte positive, l'associazione sarebbe dissipativa. Questo caso ha uno speciale interesse, perché corrisponde al verificarsi dell'ipotesi enunciata nel n. 1 del \S 2 per le azioni reciproche fra individui di specie diversa, mentre il crescere del numero d'individui di ciascuna specie diminuisce il corrispondente coefficiente d'accrescimento (cfr. i nn. 2, 3 del paragrafo precedente).

PARTE TERZA

Svolgimento ed applicazioni della teoria generale.

§ 1. - TEOREMI GENERALI SULLE ASSOCIAZIONI BIOLOGICHE CONSERVATIVE E DISSIPATIVE.

1. Una proposizione contenuta nel n. 3 del § 2 (2ª parte) può enunciarsi dicendo che *il valore di una associazione biologica conservativa*: 1°) tende a zero, se tutti i coefficienti di accrescimento sono negativi e solo quando tutti sono negativi; 2°) tende all'infinito se sono tutti positivi²².

La prima parte di questa proposizione può estendersi ai sistemi dissipativi.

Infatti dalle (E), tenendo conto delle (45), segue

$$\sum_{1}^{n} r \alpha_{r} \frac{dN_{r}}{dt} = \sum_{1}^{n} r \alpha_{r} \varepsilon_{r} N_{r} - \sum_{1}^{n} r \sum_{1}^{n} s m_{rs} N_{r} N_{s}.$$

Se la forma

$$\sum_{1}^{n} \sum_{r=1}^{n} m_{rs} N_{r} N_{s}$$

è una forma positiva (definita o meno) sarà

²² È escluso in questo enunciato il caso di annullamento dei coefficienti di accrescimento e la stessa esclusione manterremo nell'estensione della proposizione.

$$\sum_{1}^{n} r\alpha_{r} \frac{dN_{r}}{dt} \leq \sum_{1}^{n} r\alpha_{r} \epsilon_{r} N_{r}$$

e se

$$\varepsilon_r < -\varepsilon$$
, $(r=1, 2, \ldots, n)$

essendo ε una quantità positiva, risulterà come nel n. 3 del $\S 2$ (2^a parte)

$$\sum_{1}^{n} {_{r}\alpha_{r}N_{r}} < \sum_{1}^{n} {_{r}\alpha_{r}N_{r}^{0}} e^{-\varepsilon t}$$

il che prova che il valore dell'associazione biologica tende a zero se tutti i coefficienti di accrescimento sono negativi; basta poi che uno solo di essi sia positivo, perché l'associazione biologica non si esaurisca (2ª parte, § 7, n. 2)

Quanto alla *seconda parte* della precedente proposizione, in virtù di ciò che è stato dimostrato nel n. 2 del § 7 (2ª parte) essa dovrà sostituirsi con: *il valore di una associazione biologica dissipativa si mantiene limitato*.

2. Riprendiamo le equazioni (B) che valgono nel caso di sistemi conservativi (vedi § 2, n. 2, 2ª parte).

$$\beta_r \frac{dN_r}{dt} = \left(\epsilon_r \beta_r + \sum_{1}^{n} {}_{s} a_{sr} N_s \right) N_r, \qquad (r = 1, 2, \dots, n)$$

$$a_{rs} = -a_{sr}$$
 , $a_{rr} = 0$

Da esse segue:

$$\sum_{1}^{n} {}_{r}\beta_{r} \frac{dN_{r}}{dt} = \sum_{1}^{n} {}_{r}\epsilon_{r}\beta_{r}N_{r}.$$

Se ρ è maggiore della più grande delle $|\varepsilon_r|$, avremo:

$$-\rho\sum_{1}^{n} {}_{r}\beta_{r}N_{r} < \sum_{1}^{n} {}_{r}\beta_{r}\frac{dN_{r}}{dt} < =\rho\sum_{1}^{n} {}_{r}\beta_{r}N_{r}$$

e quindi:

$$-\rho < \frac{\frac{d}{dt} \left(\sum_{1}^{n} {}_{r} \beta_{r} N_{r} \right)}{\sum_{1}^{n} {}_{r} \beta_{r} N_{r}} < \rho$$

d'onde

$$\sum_{1}^{n} {}_{r} \beta_{r} N_{r}^{0} e^{-\rho t} < \sum_{1}^{n} {}_{r} \beta_{r} N_{r} < \sum_{1}^{n} {}_{r} \beta_{r} N_{r}^{0} e^{\rho t}$$

denotando con N_r^0 i valori delle N_r per t = 0.

Di qui segue il teorema: Un'associazione conservativa non può esaurirsi né crescere indefinitamente che in un tempo ∞ .

3. Ma noi possiamo dimostrare ancora di più e cioè che nessuna singola specie può divenire ∞ né esaurirsi in un tempo finito.

La prima parte della proposizione segue immediatamente dal teorema ora enunciato; quanto alla seconda parte, osserviamo prima di tutto, in virtù dei teoremi generali sulle equazioni differenziali, che partendo da valori iniziali finiti delle N_1, N_2, \ldots, N_n queste risultano

funzioni analitiche del tempo e perciò in un intorno qualunque di un valore t_0 di t nel quale N_1, N_2, \ldots, N_n assumono valori finiti esse sono sviluppabili in serie di potenze di $t - t_0$.

Ora si può dimostrare il teorema:

Se in un certo istante t_0 nel quale N_1, N_2, \ldots, N_n sono finite si ha $N_h = 0$ la N_h in tutti i tempi successivi sarà nulla e sarà stata nulla in tutti i tempi precedenti.

Infatti se
$$(N_h)_{t=t_0} = 0$$
 dalle (B) si ricava $\left(\frac{dN_h}{dt}\right)_{t=t_0} = 0$,

da cui derivando successivamente si ottiene

$$\left(\frac{d^2N_h}{dt^2}\right)_{t=t_0}=0 \qquad , \qquad \left(\frac{d^3N_h}{dt^3}\right)_{t=t_0}=0,\ldots,$$

cioè tutte le derivate di N_h rispetto a t nell'istante t_0 sono nulle e perciò la funzione analitica N_h sarà costantemente nulla.

Se dunque una specie, per esempio la h^{esima} , si esaurisse dopo un tempo finito, cioè partendo da un numero positivo di individui giungesse in un istante t_0 ad averne un numero nullo, si avrebbe $(N_h)_{t=t_0} = 0$, mentre le altre specie avrebbero, come inizialmente, un numero finito d'individui, quindi N_h dovrebbe essere stato sempre nullo, contro l'ipotesi fatta. Dunque anche la seconda parte della proposizione resta dimostrata^{23*}.

²³* Nel n. 3 dell'appendice a questa Memoria si riportano alcune considerazioni sulle associazioni coniugate che l'autore fa, a questo punto, nella già citata Memoria dei Lincei (nn. 3 e 4 del § 10 di tale Memoria) e che qui ha omesse. [N.d.R.].

4. Passiamo al caso delle associazioni dissipative:

Per queste sappiamo che il numero di individui di ciascuna specie è limitato, ma si può provare che non può nemmeno annullarsi in un tempo finito e perciò basta ripetere una dimostrazione analoga alla precedente.

La conclusione sarà:

In una associazione dissipativa nessuna specie può esaurirsi in un tempo finito, mentre il numero di individui di ogni specie è limitato.

5. Possiamo poi dimostrare il teorema: se il numero di individui di ciascuna specie di una associazione (dissipativa o conservativa di ordine pari a determinante diverso da zero) si mantiene compreso fra numeri positivi, le equazioni della stazionarietà non possono avere radici negative né radici nulle.

Infatti prendiamo le equazioni generali:

(E)
$$\frac{dN_r}{dt} = \left(\varepsilon_r - \sum_{1}^n s p_{rs} N_s\right) N_r$$

da cui segue:

$$\frac{d\log N_r}{dt} = \varepsilon_r - \sum_{1}^n {}_s p_{rs} N_s.$$

Integrando fra zero e T e tenendo presente che $N_r(0)$ = N_r^0 avremo

$$\log \frac{N_r}{N_r^0} = \varepsilon_r T - \sum_{1}^{n} {}_{s} p_{rs} \int_{0}^{T} N_s dt$$

ossia

$$\frac{1}{T}\log\frac{N_r}{N_r^0} = \varepsilon_r - \sum_{1}^{n} {}_{s}p_{rs} \frac{1}{T} \int_{0}^{T} N_s dt.$$

Se le N_r restano comprese fra limiti positivi, facendo crescere T indefinitamente, i primi membri tendono a zero, dunque esisterà

$$\lim_{t=\infty} \frac{1}{T} \int_{0}^{T} N_{s} dt = \mathfrak{N}_{s}$$

e avremo

$$0 = \varepsilon_r - \sum_{1}^n s p_{rs} \mathfrak{N}_s$$

Le \mathfrak{N}_s sono dunque radici delle equazioni della stazionarietà. Ma le \mathfrak{N}_s essendo ottenute come medie delle N_s sono numeri positivi e quindi le radici delle equazioni della stazionarietà non possono essere nulle né negative.

Da questo risultato e da ciò che è stato dimostrato nella 2^a parte, § 3 e § 7, possiamo dedurre la seguente proposizione:

Condizione necessaria e sufficiente affinché in un'associazione dissipativa o in un'associazione conservativa di ordine pari (a determinante diverso da zero) il numero di individui di ciascuna specie resti compreso fra numeri positivi è che le radici delle equazioni della stazionarietà siano positive.

6. Nel caso che il sistema sia conservativo abbiamo enunciato esplicitamente la condizione che il suo deter-

minante sia diverso da zero; ciò non è necessario nel caso di un sistema dissipativo.

Se il sistema è dissipativo, ossia se

$$F = \sum_{1}^{n} \sum_{r=1}^{n} \alpha_{r} p_{rs} N_{r} N_{s},$$

nella quale $\alpha_1, \alpha_2, \ldots, \alpha_n$ sono quantità positive, è una forma definita positiva, il determinante delle p_{rs} è sempre positivo.

Noi abbiamo dimostrato nel n. 3 del § 7 (2ª parte) che esso è diverso da zero; dimostriamo ora che non può essere nemmeno negativo. Poniamo infatti

$$\frac{1}{2}(\alpha_r p_{rs} + \alpha_s p_{sr}) = m_{rs} = m_{sr},$$

$$\omega_{rs} = \frac{m_{rs} + h_{rs}}{\alpha_r},$$

ove

$$h_{rs} = -h_{sr}$$

Avremo

$$F = \sum_{1}^{n} {}_{r} \sum_{1}^{n} {}_{s} \alpha_{r} p_{rs} N_{r} N_{s} = \sum_{1}^{n} {}_{r} \sum_{1}^{n} {}_{s} \alpha_{r} \frac{m_{rs}}{\alpha_{r}} N_{r} N_{s} = \sum_{1}^{n} {}_{r} \sum_{1}^{n} {}_{s} \alpha_{r} \omega_{rs} N_{r} N_{s};$$

quindi le costanti m_{rs}/α_r e le costanti ω_{rs} corrisponderanno come le p_{rs} a sistemi dissipativi.

Per far passare le ω_{rs} dai valori m_{rs}/α_r ai valori p_{rs} basterà far variare le h_{rs} da zero fino a certi valori $H_{rs} = -H_{sr}$. Se il determinante delle p_{rs} fosse negativo, poiché il

determinante delle m_{rs} (e quindi quello delle m_{rs}/α_r) è positivo, le h_{rs} dovrebbero attraversare certi valori per i quali il determinante delle ω_{rs} dovrebbe risultare nullo, il che, per quanto precedentemente si è dimostrato, è in contraddizione col fatto che le costanti ω_{rs} corrispondono ad un sistema dissipativo.

7. Nel n. 1 del § 2 (1ª parte) abbiamo osservato che il procedimento d'integrazione usato in quel paragrafo poteva anche servire nel caso in cui i coefficienti di accrescimento perturbati dalla convivenza delle due specie anziché essere lineari e della forma

$$\varepsilon_1 - \gamma_1 N_2$$
 , $-\varepsilon_2 + \gamma_2 N_1$

fossero delle funzioni qualunque F_1 (N_2) e F_2 (N_1) rispettivamente di N_2 e N_1 . Ci si può proporre ora di estendere le equazioni (E) (2^a parte, § 7, n. 1) colla condizione che si conservi un integrale analogo all'integrale che abbiamo trovato nel § 3, n. 1 per le associazioni conservative d'un numero pari di specie.

8. A tal fine sostituiamo nelle equazioni (E) ai polinomi

$$\varepsilon_r - \sum_{1}^n {}_s p_{rs} N_s$$

le funzioni

$$f_r(N_1, N_2, \ldots, N_n);$$

ciò significherà che ammettiamo cangiati in una maniera generale arbitraria i coefficienti di accrescimento di ciascuna specie in virtù della convivenza delle specie stesse.

Le equazioni (E) diverranno

(F)
$$\frac{dN_r}{dt} = f_r(N_1, N_2, ..., N_n)N_r.$$

Se si potranno trovare φ_1 (N_1), φ_2 (N_2), . . . , φ_n (N_n) tali che sia soddisfatta la condizione

$$\sum_{1}^{n} {}_{r} \varphi_{r}(N_{r}) f_{r}(N_{1}, N_{2}, ..., N_{n}) = 0$$

si avrà

$$\sum_{1}^{n} r \frac{\varphi_{r}(N_{r})}{N_{r}} dN_{r} = 0$$

e integrando

$$\sum_{r=1}^{n} \int_{r} \frac{\phi_{r}(N_{r})}{N_{r}} dN_{r} = C$$

ove C è una costante. Quest'integrale potrà anche scriversi

$$e^{\Psi_1(N_1)}e^{\Psi_2(N_2)}...e^{\Psi_n(N_n)} = \text{cost.}$$

posto

$$\psi_r(N_r) = \int \frac{\phi_r(N_r)}{N_r} dN_r.$$

Affinché la condizione di cui sopra sia soddisfatta è necessario e sufficiente che

$$f_r(N_1, N_2, ..., N_n) = \sum_{1}^{n} {}_{s} F_{rs}(N_1, N_2, ..., N_n) \varphi_s(N_s)$$

ove le funzioni F_{rs} ($N_1, N_2, ..., N_n$) godono della proprietà

$$F_{rs} = -F_{sr} \qquad , \qquad F_{rr} = 0.$$

Le (F) diventano dunque

$$\frac{dN_r}{dt} = N_r \sum_{1}^{n} {}_{s}F_{rs}(N_1, N_2, ..., N_n) \varphi_s(N_s)^{24*}.$$

Supponiamo che il limite inferiore di ψ_r sia finito e

$$\lim_{N_r=0} \psi_r(N_r) = \infty, \quad \lim_{N_r=\infty} \psi_r(N_r) = \infty, \quad (r=1, 2, \ldots, n)$$

allora, ripetendo il ragionamento del $\S 3$, n. 1 (2^a parte) si riconosce che ciascuna N_r ha variazione limitata fra numeri positivi.

Potremo dunque enunciare, come estensione di una proprietà dei sistemi conservativi, la proposizione seguente:

Se la convivenza delle specie rende i loro coefficienti di accrescimento della forma

²⁴* Da questo punto fino alla fine del paragrafo, la trattazione differisce da quella che è contenuta nella già citata Memoria dei Lincei (cfr. i nn. 2 e 3 del § 11 di tale Memoria) e che si riporta nel n. 4 dell'appendice più volte menzionata [N.d.R.].

$$\sum_{1}^{n} {}_{s}F_{rs}(N_{1}, N_{2}, \dots, N_{n}) \varphi_{s}(N_{s})$$

ove

$$F_{rs} = -F_{sr}$$
 , $F_{rr} = 0$

le equazioni differenziali delle variazioni del numero d'individui appartenenti alle singole specie

$$\frac{dN_r}{dt} = N_r \sum_{1}^{n} {}_{s} F_{rs}(N_1, N_2, \dots, N_n) \varphi_s(N_s),$$

avranno l'integrale

$$\sum_{1}^{n} {}_{r} \psi_{r}(N_{r}) = cost.$$

ove $\psi_r = \int (\phi_r(N_r)/N_r)dN_r$ e, se il limite inferiore delle ψ_r è finito, e

$$\lim_{N_r=0} \psi_r(N_r) = \infty \quad , \quad \lim_{N_r=\infty} \psi_r(N_r) = \infty,$$

ciascuna N_r avrà variazione limitata fra numeri positivi.

§ 2. – FLUTTUAZIONI PROPRIE E FORZATE E PRINCIPIO DELLA LORO SOVRAPPOSIZIONE.

1. Nelle equazioni (E) del § 7, 2^a parte che possono considerarsi come le più generali e come quelle che riassumono tutte le precedenti, abbiamo supposto che i coefficienti di accrescimento ε_r fossero costanti; ma in realtà essi cambiano ed i loro cambiamenti sono in generale periodici o dovuti alla sovrapposizione di più termini periodici. Certo in tutti i casi pratici dovremo con-

siderare un periodo annuale in connessione coll'alternarsi delle stagioni e delle condizioni meteorologiche. Ma nulla esclude che altri periodi possano sussistere.

Cerchiamo di tener conto di queste perturbazioni periodiche dei coefficienti d'accrescimento, perciò ad ε_r sostituiamo

$$\varepsilon_r + g_r \cos kt + g_r \sin kt$$

ove g'_r , g''_r e k sono quantità costanti.

Le equazioni (E) diverranno

(G)
$$\frac{dN_r}{dt} = \left(\varepsilon_r + g_r \cos kt + g_r \sin kt - \sum_{1}^{n} sp_{rs}N_s\right)N_r$$

e le (44)

$$\frac{dn_r}{dt} = \left(g_r \cos kt + g_r \sin kt - \sum_{s=1}^{n} p_{rs} q_s (n_s - 1) \right) n_r,$$

nelle quali supporremo le q_s positive.

Studiamo le piccole fluttuazioni ponendo

$$n_s = 1 + v_s$$

e consideriamo $g_r^{'}$, $g_r^{''}$ e v_r come quantità infinitesime del 1° ordine.

Se si trascurano i termini d'ordine superiore al 1°, le (49) prenderanno la forma

(51)
$$\frac{dv_r}{dt}g_r^{\prime}\cos kt + g_r^{\prime\prime}\sin kt - \sum_{s=1}^{n} sp_{rs}q_s v_s.$$

Poniamo

$$g_r' - ig_r'' = G_r$$

sarà

$$G_r e^{ikt} = g_r \cos kt + g_r \sin kt + i(g_r \sin kt - g_r \cos kt),$$

quindi se scriviamo le equazioni differenziali

(52)
$$\frac{dv_r}{dt} = G_r e^{ikt} - \sum_{1}^{n} {}_{s} p_{rs} q_{s} v_s$$

basterà prendere le parti reali degl'integrali delle (52) per integrare le (51). Scriviamo

$$V_r = A_r e^{ikt} + \gamma_r e^{xt}$$

ove $\gamma_r e^{xt}$ denotano gl'integrali delle (49).

Avremo

$$(54) ikA_r + \sum_{1}^{n} {}_{s}p_{rs}q_{s}A_s = G_r.$$

Il determinante dei coefficienti delle A_r nelle equazioni precedenti sarà

$$\begin{vmatrix} ik \\ q_1 + p_{11} \\ p_{21} \\ p_{21} \\ p_{21} \\ p_{22} + p_{22} \\ p_{23} \\ p_{23} \\ p_{2n} \\ p_{2n}$$

Se dunque ik non coincide con alcuna radice della equazione (50), potremo calcolare le A_r dalle equazioni (54) e quindi avere gl'integrali (53) nei quali potremo separare le parti reali dalle immaginarie.

I termini $\gamma_r e^{xt}$ corrispondono alle *variazioni proprie* dell'associazione biologica, e i termini $A_r e^{ikt}$ alle *fluttuazioni forzate*.

Tenendo presente che le ε_r sono i valori medi dei coefficienti di accrescimento durante il periodo 2 π/k , potremo enunciare il teorema:

Se i coefficienti di accrescimento sono periodici ed i loro valori medi differiscono poco dai valori variabili e se, prendendo come coefficienti d'accrescimento questi valori medi, si ottengono variazioni assintotiche, o fluttuazioni smorzate o non smorzate vicine ad uno stato stazionario (variazioni proprie), per le piccole fluttuazioni corrispondenti ai coefficienti di accrescimento periodici varrà il principio della sovrapposizione delle variazioni proprie alle fluttuazioni forzate, cioè esse si otterranno sovrapponendo alle variazioni proprie quelle forzate aventi il periodo dei coefficienti d'accrescimento, quando esso non coincida con alcuno dei periodi delle eventuali fluttuazioni proprie.

§ 3. VARIAZIONI FRA LIMITI POSITIVI SOVRAP-POSTE AD UN ESAURIMENTO.

1. Riprendiamo le equazioni (E) nelle quali abbiamo considerato

1° le
$$\varepsilon_r$$
 , 2° le ε_r - $\sum_{s=1}^{n} p_{rs} N_s$,

Le prime sono i coefficienti di accrescimento propri di ciascuna specie, se si trascurano tutte le azioni reciproche dei vari individui, ossia i *coefficienti bruti di accrescimento*. Le seconde sono i coefficienti di accrescimento quali risultano dal tener conto delle azioni reciproche dei vari individui. Li abbiamo precedentemente chiamati *coefficienti veri di accrescimento* (2ª parte, § 7, n. 1).

Ma supponiamo che delle n specie manchino le prime m, cioè si abbia $N_1 = N_2 = \dots, N_m = 0$. Allora i coefficienti veri di accrescimento per le rimanenti n - m specie saranno

$$\varepsilon_r - \sum_{m+1}^n {}_s p_{rs} N_s, \qquad (r = m+1, \ldots, n).$$

Per le prime *m* specie i coefficienti di accrescimento non hanno alcun senso, giacché esse non hanno possibilità di accrescimento o di diminuzione. Però, le espressioni

$$\varepsilon_r - \sum_{m=1}^n {}_{s} p_{rs} N_s$$
 $(r = 1, 2, ..., m),$

hanno dei valori determinati. Possono chiamarsi i *coef*ficienti virtuali di accrescimento delle prime m specie.

2. Dimostreremo ora il teorema seguente:

Se per un insieme di n-m specie (facente parte di un'associazione di n specie conservativa o dissipativa)

esiste uno stato stazionario al quale corrispondono, per le m rimanenti, coefficienti virtuali di accrescimento negativi, le piccole variazioni dell'intera associazione risulteranno di variazioni fra limiti positivi delle n-m specie sovrapposte ad un esaurimento di tutte le specie.

Infatti supponiamo che lo stato stazionario delle n-m specie sia individuato dai valori positivi q_{m+1}, \ldots, q_n delle N_{m+1}, \ldots, N_n .

Posto

$$N_r = q_r + v_r$$
, $(r = m + 1, \ldots, n)$.

le equazioni (E) potranno scriversi

$$\frac{(55)}{dt} \frac{dN_i}{dt} = \left(\varepsilon_i - \sum_{1}^{n} {}_{s} p_{is} N_s - \sum_{m+1}^{n} {}_{l} p_{il} (q_l + v_l) \right) N_i, \ (i = 1, 2, ..., m)$$

(56)
$$\frac{dv_r}{dt} = \left(-\sum_{m+1}^{n} {}_{l}p_{rl} - \sum_{1}^{n} {}_{s}p_{rs}N_s\right)(q_r + v_r), \quad (r = m+1, ..., n)$$

e tenendo conto dei soli termini del 1° ordine

(57)
$$\frac{dN_i}{dt} = \left(\varepsilon_i - \sum_{m=1}^n p_{il} q_i\right) N_i, \qquad (i = 1, 2, \dots, m)$$

(58)
$$\frac{dv_r}{dt} = -\sum_{m+1}^{n} l_r p_{rl} q_r v_l - \sum_{1}^{m} s_s p_{rs} N_s, \qquad (r = m+1, ..., n)$$

I coefficienti virtuali di accrescimento

$$\varepsilon_i - \sum_{m+1}^n p_{ils} q_l = -n_1,$$
 $(r = 1, 2, ..., m)$

sono negativi il che giustifica l'aver trascurato i termini del 2° ordine. Avremo quindi

$$N_i = N_i^0 e^{-n_i t},$$
 $(i = 1, 2, ..., m)$

ove N_i^0 denotano i valori iniziali delle N_i e le equazioni (58) diverranno

(59)
$$\frac{dv_r}{dt} = -\sum_{m=1}^{n} p_{rl} q_r v_l - \sum_{1}^{m} p_{rs} q_r N_s^0 e^{-n_s t}, \qquad (r = m+1, ..., n)$$

Siccome l'intera associazione biologica è conservativa o dissipativa, così tale dovrà essere l'associazione delle n - m specie da sole, quindi se $v_r = f_r(t)$ sono soluzioni delle equazioni

$$\frac{dv_r}{dt} = -\sum_{m+1}^n p_{rl} q_r v_l, \qquad (r = m+1, \dots, n)$$

 $q_r + f_r$ ci daranno fluttuazioni smorzate o meno, o variazioni assintotiche di queste n - m specie vicino al loro stato stazionario.

Ma le soluzioni delle equazioni (59) hanno la forma

e, poiché $N_r = q_r + v_r$, il teorema precedente resta dimostrato.

Quindi la variazione considerata *condurrà assintoti*camente all'esaurimento delle prime specie ed alle variazioni delle rimanenti vicino alloro stato stazionario. 3. Se per la intera associazione biologica conservativa o dissipativa esiste uno stato stazionario, le variazioni non possono consistere che in variazioni comprese fra limiti positivi, restano quindi esclusi gli esaurimenti di una o più specie.

Ma cerchiamo di dimostrare direttamente che, se esistono uno stato stazionario per l'intera associazione ed uno stato stazionario parziale per una parte di essa, i valori dei coefficienti di accrescimento virtuali delle specie rimanenti non possono essere tutti negativi nello stato stazionario.

Infatti siano q_1, q_2, \ldots, q_n i valori positivi di N_1, N_2, \ldots, N_n nello stato stazionario della intera associazione e $q'_{m+1}, q'_{m+2}, \ldots, q'_n$ i valori positivi di N_{m+1}, \ldots, N_n nello stato stazionario delle specie $m+1, \ldots, n$. Avremo

$$\varepsilon_{i} - \sum_{1}^{n} {}_{s} p_{is} N_{s} = \sum_{1}^{n} {}_{s} p_{is} (q_{s} - N_{s}), \qquad (i = 1, 2, ..., n)$$

$$\varepsilon_{r} - \sum_{l=1}^{n} {}_{s} p_{rs} N_{s} = \sum_{l=1}^{n} {}_{s} p_{rs} (q_{s} - N_{s}) = \sum_{m+1}^{n} {}_{l} p_{rl} (q_{l} - N_{l}) - \sum_{l=1}^{m} {}_{s} p_{rs} N_{s},$$

$$(r = m + 1, ..., n)$$

onde ponendo

$$F(x_1, x_2, ..., x_n) = \sum_{i=1}^{n} \sum_{i=1}^{n} p_{is} \alpha_i x_i x_s,$$

ove le α_i sono positive, avremo

Variazioni e fluttuazioni del numero d'individui....

$$F(q_{1}-N_{1},...,q_{n}-N_{n}) = \sum_{i=1}^{m} \alpha_{i} \left(\epsilon_{i} - \sum_{i=1}^{n} p_{is} N_{s} \right) (q_{i}-N_{i}) + \sum_{i=1}^{n} \alpha_{r} \left[\sum_{m=1}^{n} p_{ri} (q_{i}-N_{i}) - \sum_{i=1}^{m} p_{rs} N_{s} \right] (q_{r}-N_{r}).$$

Prendendo $N_1 = N_2 = N_m = 0$, $N_{m+1} = q'_{m+1} = \dots$, $N_n = q'_n$ si otterrà

$$F = \sum_{1}^{m} \alpha_{i} \left(\varepsilon_{i} - \sum_{m+1}^{n} {}_{s} p_{is} q'_{s} \right) q_{i}.$$

Se la forma F è nulla o positiva, siccome le q_i sono positive, segue che i coefficienti virtuali di accrescimento

$$\varepsilon_{i} - \sum_{m+1}^{n} {}_{s} p_{is} q'_{s}, \qquad (i = 1, 2, ..., m)$$

non possono essere tutti negativi, il che dimostra il teorema.

§ 4. – PERTURBAZIONE PRODOTTA IN UN'ASSOCIAZIONE BIOLOGICA AVENTE UNO STATO STAZIONARIO DALL'AGGIUNTA DI UNA NUOVA SPECIE.

1. Consideriamo N_1, N_2, \ldots, N_n come incognite nelle equazioni della stazionarietà

$$\varepsilon_r - \sum_{s=1}^{n} p_{rs} N_s = 0,$$
 $(r = 1, 2, ..., n)$

e supponiamo che le radici siano

$$q_1, q_2, \ldots, q_n$$

e che si abbia $q_1 < 0$.

Prendiamo le equazioni

$$\varepsilon_r - \sum_{s=1}^{n} p_{rs} N_s = 0$$
 $(r = 2, 3, ..., n)$

e, considerando come incognite N_2, N_3, \ldots, N_n , abbiansi le radici positive

$$q'_2, q'_3 ..., q'_n$$
.

Supponiamo poi che la forma

$$F(x_1, x_2, ..., x_n) = \sum_{1}^{n} \sum_{r=1}^{n} m_{rs} x_r x_s$$

sia definita positiva, nell'ipotesi che sia

$$m_{rs} = \frac{1}{2} \left(p_{rs} \alpha_r + p_{sr} \alpha_s \right)$$

e che $\alpha_1, \alpha_2, \ldots, \alpha_n$ siano quantità positive.

Avremo

$$\varepsilon_r - \sum_{1}^{n} {}_{s} p_{rs} N_s = \sum_{1}^{n} {}_{s} p_{rs} (q_s - N_s), \qquad (r = 1, 2, ..., n)$$

$$\varepsilon_r - \sum_{s=1}^{n} p_{rs} N_s = \sum_{s=1}^{n} p_{rs} (q'_s - N_s), \qquad (r = 2, 3, ..., n)$$

quindi

$$\epsilon_{r} - \sum_{1}^{n} {}_{s} p_{rs} N_{s} = \sum_{2}^{n} {}_{s} p_{rs} (q'_{s} - N_{s}) - p_{r1} N_{1} = \sum_{1}^{n} {}_{s} p_{rs} (q_{s} - N_{s}),$$

$$(r = 2, 3, ..., n)$$

$$\epsilon_{1} - \sum_{1}^{n} {}_{s} p_{1s} N_{s} = \sum_{1}^{n} {}_{s} p_{1s} (q_{s} - N_{s})$$

e per conseguenza

$$\sum_{1}^{n} {}_{r} \sum_{1}^{n} {}_{s} p_{rs} (q_{s} - N_{s}) (q_{r} - N_{r}) \alpha_{r} = F(q_{1} - N_{1}, ..., q_{n} - N_{n}) =$$

$$= \sum_{2}^{n} {}_{r} \left(\sum_{2}^{n} {}_{s} p_{rs} (q'_{s} - N_{s}) - p_{r1} N_{1} \right) (q_{r} - N_{r}) \alpha_{r} + \left(\varepsilon_{1} - \sum_{1}^{n} {}_{s} p_{1s} N_{s} \right) (q_{1} - N_{1}) \alpha_{1}$$

2. Prendiamo ora

$$N_1 = 0$$
, $N_2 = q'_2$, ..., $N_n = q'_n$

sarà

$$F(q_1, q_2 - q'_2, ..., q_n - q'_n) = \left(\epsilon_1 - \sum_{s=2}^n p_{1s} q'_s\right) \alpha_1 q_1 > 0.$$

Ma $q_1 < 0$ mentre il primo membro è positivo. Segue dunque

$$\varepsilon_1 - \sum_{s=1}^{n} p_{1s} q'_{s} < 0.$$

Tenendo conto dei risultati del paragrafo precedente possiamo quindi enunciare il seguente teorema:

Se esiste uno stato stazionario per una certa associazione biologica, ma associando ad essa una nuova specie si perde la possibilità dello stato stazionario, perché le equazioni della stazionarietà hanno una radice negativa per il numero di individui della specie aggiunta, le piccole variazioni dell'associazione totale (supposta dissipativa) consisteranno in una variazione della primitiva associazione vicina al suo stato stazionario sovrapposta ad un esaurimento delle specie²⁵.

²⁵ È opportuno mettere in relazione questo teorema con quello del § 1, n. 5.

Perciò la specie aggiunta tenderà ad esaurirsi e le altre tenderanno ad una variazione vicina allo stato stazionario, quindi l'aggiunta della nuova specie produrrà una perturbazione che tenderà a dissiparsi.

§ 5. – STUDIO DI UNA PARTICOLARE ASSOCIAZIONE BIOLOGICA DI TRE SPECIE.

1. Come esempio della trattazione svolta precedentemente esaminiamo un caso particolare che, in virtù delle teorie esposte innanzi, può trattarsi matematicamente in modo completo.

Supponiamo tre specie viventi in un ambiente limitato, per esempio un'isola. Di queste tre specie la prima mangi la seconda e questa la terza e non viceversa. Come esempio possiamo prendere una specie di animali carnivori che si nutre di una specie di erbivori e questa a sua volta di una specie vegetale, ammettendo che per quest'ultima possa valere la stessa trattazione usata per gli animali. Tale caso può applicarsi anche agl'insetti parassiti delle piante e ai parassiti di essi.

2. Ammettiamo dapprima che l'associazione biologica sia *conservativa* (cfr. 2ª parte, § 7).

Se indichiamo il numero di individui delle tre specie con N_1 , N_2 , N_3 avremo le equazioni (vedi (B), 2^a parte, \S 2, n. 2)

$$\beta_1 \frac{dN_1}{dt} = (\beta_1 \varepsilon_1 + a_{21} N_2 + a_{31} N_3) N_1$$

$$\beta_2 \frac{dN_2}{dt} = (\beta_2 \varepsilon_2 + a_{12} N_1 + a_{32} N_3) N_2$$

$$\beta_3 \frac{dN_3}{dt} = (\beta_3 \varepsilon_3 + a_{13} N_1 + a_{23} N_2) N_3.$$

Nel nostro caso dovremo prendere

$$\varepsilon_{1} = -l < 0$$
, $a_{21} = a > 0$
, $a_{31} = 0$
 $\varepsilon_{2} = -m < 0$
, $a_{12} = -a < 0$
, $a_{32} = b > 0$
 $\varepsilon_{3} = k > 0$
, $a_{13} = 0$
, $a_{23} = -b < 0$

ove β_1 , β_2 , β_3 , α , l, m, k sono quantità costanti; quindi

$$(\mathbf{H}_1) \qquad \qquad \beta_1 \frac{d\mathbf{N}_1}{dt} = (-\beta_1 l + a\mathbf{N}_2)\mathbf{N}_1$$

(H₂)
$$\beta_2 \frac{dN_2}{dt} = (-\beta_2 m - aN_1 + bN_3)N_2$$

(H₃)
$$\beta_3 \frac{dN_3}{dl} = (\beta_3 k - bN_2)N_3.$$

Poiché il numero delle specie è dispari, potremo fare uso dell'integrale (40) (2^a parte, § ,4, n. 1) e avremo

(61)
$$N_1^{\beta_1 b} N_3^{\beta_3 a} = C e^{(\beta_3 ka - lb)t}.$$

Distinguiamo due casi che si presentano secondo che il binomio

$$\beta_3 ka - \beta_1 lb$$

è positivo o negativo.

3. Supponiamolo dapprima negativo. Il caso in cui N₃ tende a zero è da escludere perché, in virtù della (H₂),

 N_2 dovrebbe decrescere indefinitamente. Ma quando N_2 fosse divenuto inferiore ad un numero inferiore a β_3 k/b, N_3 crescerebbe indefinitamente contro l'ipotesi di partenza.

Dunque N₁ col crescere indefinito del tempo dovrà prendere valori positivi inferiori a qualunque numero positivo assegnabile.

Poniamo

$$\frac{\beta_1 l}{a} = Q_1; \frac{\beta_3 k}{b} = Q_2; \frac{\beta_2 m}{b} = Q_3.$$

In forza della ipotesi che il binomio (52) sia negativo, sarà $Q_1 > Q_2$ e le equazioni (H_1) , (H_2) , (H_3) si scriveranno

$$\beta_{1} \frac{dN_{1}}{dt} = -a(Q_{1} - N_{2})N_{1}$$

$$\beta_{2} \frac{dN_{2}}{dt} = (-aN_{1} + b(N_{3} - Q_{3}))N_{2}$$

$$\beta_{3} \frac{dN_{3}}{dt} = -b(N_{2} - Q_{2})N_{3}.$$

Poniamo

$$N_1 = Q_1 v_1$$
; $N_2 = Q_2 (1 + v_2)$; $N_3 = Q_3 (1 + v_3)$.

Avremo le equazioni

$$\beta_{1} \frac{dv_{1}}{dt} = -a(Q_{1} - Q_{2})v_{1} + aQ_{2}v_{2}v_{1}$$

$$\beta_{2} \frac{dv_{2}}{dt} = -aQ_{1}v_{1} + bQ_{3}v_{3} - aQ_{1}v_{1}v_{2} + bQ_{3}v_{2}v_{3}$$

$$\beta_3 \frac{dV_3}{dt} = -bQ_2V_2 - bQ_2V_2V_3.$$

Se trascuriamo le parti del secondo ordine, queste equazioni diverranno

$$\beta_{1} \frac{dv_{1}}{dt} = -a(Q_{1} - Q_{2})v_{1}$$

$$\beta_{2} \frac{dv_{2}}{dt} = -aQ_{1}v_{1} + bQ_{3}v_{3}$$

$$\beta_{3} \frac{dv_{3}}{dt} = -bQ_{2}v_{2}.$$

L'integrale generale di questo sistema di equazioni differenziali è

$$v_{1} = \frac{\beta_{2}(\rho^{2} + km)}{\beta_{1}l}C_{1}e^{-\rho t}$$

$$v_{2} = \rho C_{1}e^{-\rho t} + C_{2}\sqrt{m} \operatorname{sen}(\sqrt{km} t + C_{3})$$

$$v_{3} = kC_{1}e^{-\rho t} + C_{2}\sqrt{k} \operatorname{cos}(\sqrt{km} t + C_{3})$$

ove $\rho = a (Q_1 - Q_2)/\beta_1$ e C_1 , C_2 , C_3 sono tre costanti.

L'esponente negativo – ρt giustifica l'aver trascurato i termini del secondo ordine.

Posto

$$v'_{1} = \frac{\beta_{2}(\rho^{2} + km)}{\beta_{1}l}C_{1}e^{-\rho t} , \quad v'_{2} = \rho C_{1}e^{-\rho t} , \quad v'_{3} = kC_{1}e^{-\rho t}$$

$$v''_{1} = 0, , v''_{2} = C_{2}\sqrt{m} \operatorname{sen}(\sqrt{km} t + C_{3}) , v''_{3} = C_{2}\sqrt{k} \operatorname{cos}(\sqrt{km} t + C_{3})$$

$$N'_1=Q_1\nu'_1$$
 , $N'_2=Q_2\nu'_2$, $N'_3=Q_3\nu'_3$
$$N''_1=0$$
 , $N''_2=Q_2\left(1+\nu''_2\right)$, $N''_3=Q_3\left(1+\nu''_3\right)$

avremo

$$N_1 = N_1' + N_1''$$
, $N_2 = N_2' + N_2''$, $N_3 = N_3' + N_3''$.

La variazione dell'associazione biologica consiste quindi nella sovrapposizione della variazione N_1^i , N_2^i , N_3^i alla variazione N_1^i , N_2^i , N_3^i . La prima conduce ad un esaurimento delle tre specie, la seconda consiste in fluttuazioni non smorzate della 2^a e della 3^a specie.

Ciò prova che, in questo caso, la prima specie tende assintoticamente ad esaurirsi mentre le altre due specie tendono allo stato di fluttuazione non smorzata studiato nel § 2 della prima parte.

La condizione che il binomio (62) sia negativo sta ad indicarci che la quantità di nutrimento fornita dal vegetale ai carnivori, attraverso gli erbivori, non è sufficiente a compensare l'esaurimento naturale della specie carnivora. Poiché la specie vegetale si mantiene entro limiti costanti e non può crescere indefinitamente, così la ipotesi fatta che k sia costante ossia che l'associazione sia *conservativa*, resta pienamente giustificata.

4. Ben diverso si presenta il caso in cui il binomio (62) è positivo. Che N₃ possa mantenersi finito è da escludere. Infatti in tale ipotesi, in virtù della (61), N₁ dovrebbe crescere indefinitamente e quindi per la

(H₂)N₂ dovrebbe decrescere indefinitamente, onde per la (H)₃N₃ crescerebbe indefinitamente contro l'ipotesi di partenza.

Ora N₃ non potrà prendere valori superiori ad un certo limite perchè l'isola, una volta coperta interamente della vegetazione costituita dalla terza specie, non potrà più produrre piante della specie stessa. In questo caso dunque l'ipotesi fatta che l'associazione sia *conservativa*, ossia che *k* sia costante diviene assurda. Bisognerà dunque ricorrere alla ipotesi che il coefficiente di accrescimento della specie vegetale dipenda dal numero di individui di questa specie e che il sistema sia *dissipativo* e converrà applicare i calcoli del §6 (2ª parte).

Quindi nella equazione (H₃) sostituiamo $\beta_3 k - \lambda N_3$ a $\beta_3 k$ ove λ è una quantità positiva. Otterremo allora le equazioni:

(63')
$$\beta_1 \frac{dN_1}{dt} = (-\beta_1 l + aN_2)N_1$$

(63")
$$\beta_2 \frac{dN_2}{dt} = (-\beta_2 m - aN_1 + bN_3)N_2$$

(63"')
$$\beta_3 \frac{dN_3}{dt} = (\beta_3 k - \lambda N_3 - bN_2) N_3.$$

Risolvendo le equazioni

$$-\beta_1 l + aN_2 = 0$$

- \beta_1 m - aN_1 + bN_3 = 0
\beta_3 k - \lambda N_3 - bN_2 = 0

si trovano per N₁, N₂, N₃ i valori

$$q_{1} = \frac{ab\beta_{3}k - b^{2}\beta_{1}l - a\lambda\beta_{2}m}{a^{2}\lambda} = \frac{b(a\beta_{3}k - b\beta_{1}l) - a\lambda\beta_{2}m}{a^{2}\lambda}$$

$$q_{2} = \frac{\beta_{1}l}{a}$$

$$q_{3} = \frac{a\beta_{3}k - b\beta_{1}l}{a\lambda}.$$

Se poniamo la condizione

$$ab\beta_3k - b^2\beta_1l - a\lambda\beta_2m > 0$$

avremo che le radici q_1 , q_2 , q_3 saranno positive e quindi esisterà uno stato stazionario.

Poniamo

$$N_1 = q_1 (1 + v_1)$$

 $N_2 = q_2 (1 + v_2)$
 $N_3 = q_3 (1 + v_3)$

e trascuriamo i termini del secondo ordine nelle (63'), (63"), (63"). Queste assumeranno la forma

$$\beta_1 \frac{dv_1}{dt} = aq_2 v_2$$

(63"₁)
$$\beta_2 \frac{dv_2}{dt} = -aq_1 v_1 + bq_3 v_3$$

(63'''₁)
$$\beta_3 \frac{dv_3}{dt} = -bq_2 v_2 - \lambda q_3 v_3.$$

Posto nelle (63'₁), (63"₁), (63"'₁)

$$v_1 = A_1 e^{xt}$$

 $v_2 = A_2 e^{xt}$
 $v_3 = A_3 e^{xt}$

esse diverranno

$$A_1\beta_1 x = aq_2A_2$$

 $A_2\beta_2 x = -aq_1A_1 + bq_3A_3$
 $A_3\beta_3 x = -bq_2A_2 + \lambda q_3A_3$

Eliminando A₁, A₂, A₃, si otterrà l'equazione

$$\begin{vmatrix} -\beta_1 x & , aq_2 & , 0 \\ -aq_1 & , -\beta_2 x & , bq_3 \\ 0 & , -bq_2 & , -\lambda q_3 - \beta_3 x \end{vmatrix} = 0$$

Questa equazione non può avere che radici reali negative o complesse con la parte reale negativa.

Infatti sia x' il coniugato di x; A'_1 , A'_2 , A'_3 , i numeri complessi coniugati di A_1 , A_2 , A_3 ; avremo:

A'₁
$$\beta_1 x' = aq_2 A'_2$$

A'₂ $\beta_2 x' = -aq_1 A'_1 + bq_3 A'_3$
A'₃ $\beta_3 x' = -bq_2 A'_2 - \lambda q_3 A'_3$

da cui segue

$$(A_1A'_1\beta_1q_1 + A_2A'_2\beta_1q_2 + A_3A'_3\beta_3q_3)(x+x') = -2\lambda q_3^2A_3A'_3.$$

Dunque x + x' è negativo a meno che non si abbia $A_3 = 0$, ma ciò porterebbe alla conseguenza $A_1 = A_2 = 0$. La precedente equazione in x non può dunque avere che radici reali negative o complesse colla parte reale negativa. Ciò prova che le *variazioni saranno assintotiche o saranno fluttuazioni smorzate, quindi lo stato del sistema tenderà a quello stazionario*²⁶.

5. Resta da esaminare il caso in cui il binomio (62) è positivo e

$$(64) ab\beta_3 k - b^2 \beta_1 l - a\lambda \beta_2 m < 0.$$

Scriviamo l'espressione precedente sotto la forma

$$a(b\beta_3k - \lambda\beta_2m) - b^2\beta_1l$$

e distinguiamo due sottocasi

I. (65)
$$b\beta_3 k - \lambda \beta_2 m < 0$$

il che porta come conseguenza la diseguaglianza (64)

II. (66)
$$b\beta_3k - \lambda\beta_2m > 0$$

insieme a $(64)^{27}$

$$ab\beta_3k - b^2\beta_1l - a\lambda\beta_2m < 0.$$

I. Poniamo

$$b\beta_3 k - \lambda \beta_2 m = 0$$

$$ab\beta_3 k - b^2 \beta_1 l - a\lambda \beta_2 m = 0.$$

²⁶ Cfr. la nota del § 6, n. 3, parte 2^a.

²⁷ Non abbiamo considerato i casi

$$\frac{\beta_3 k}{\lambda} = g$$

$$N_3 = g(1 + v_3).$$

Le equazioni (63'), (63"), (63") si scriveranno

$$\beta_{1} \frac{dN_{1}}{dt} = -\beta_{1} l N_{1} + a N_{1} N_{2}$$

$$\beta_{2} \frac{dN_{2}}{dt} = (-\beta_{2} m + bg) N_{2} - a N_{1} N_{2} + bg N_{2} V_{3}$$

$$\beta_{3} \frac{dV_{3}}{dt} = (-\lambda_{2} g V_{3} - b N_{2}) (1 + V_{3})$$

Trascurando i termini del secondo ordine, si ha

$$\frac{dN_1}{dt} = -lN_1$$

$$\frac{dN_2}{dt} = -\omega N_2$$

$$\frac{dV_3}{dt} = \frac{-b}{\beta_3} N_2 - \frac{\lambda g}{\beta_3} V_3$$

ove

$$\omega = \frac{\beta_2 m - bg}{\beta_2} > 0$$

in virtù della diseguaglianza (65).

L'integrale generale di questo sistema di equazioni differenziali è

$$N_1 = C_1 e^{-lt}$$

$$N_2 = C_2 e^{-\omega t}$$

$$V_3 = C_2 \frac{b}{\beta_3(\omega - k)} e^{-\omega t} + C_3 e^{\frac{-\lambda g}{\beta_3}t}.$$

Gli esponenti negativi giustificano di avere trascurato i termini del secondo ordine. In questo caso dunque tanto la prima che la seconda specie si esauriscono e il numero d'individui della specie vegetale tende verso il valore $g = \beta_3 k/\lambda$.

II. Poniamo $\beta_2 m/b = f_3$, e

(67)
$$\frac{\beta_3 k - \frac{\lambda \beta_2 m}{b}}{b} = f_2 > 0$$

in virtù della diseguaglianza (66).

Poniamo inoltre $N_2 = f_2 (1 + v_2)$, $N_3 = f_3 (1 + v_3)$. Le equazioni (63'), (63"), (63") diverranno

$$\beta_{1} \frac{dN_{1}}{dt} = (-\beta_{1}l + af_{2})N_{1} + af_{2}v_{2}N_{1}$$

$$\beta_{2} \frac{dv_{2}}{dt} = (bf_{3}v_{3} - aN_{1})(1 + v_{2})$$

$$\beta_{3} \frac{dv_{3}}{dt} = (-\lambda f_{3}v_{3} - bf_{2}v_{2})(1 + v_{3}).$$

Trascurando i termini del secondo ordine si avrà

$$\frac{dN_1}{dt} = -\frac{\rho_1}{\beta_1} N_1$$

$$\frac{dv_2}{dt} = -\frac{a}{\beta_2} N_1 + \frac{bf_3}{\beta_2} v_3$$

$$\frac{dv_3}{dt} = -\frac{bf_2}{\beta_3} v_2 - \frac{\lambda f_3}{\beta_3} v_3$$

ove

$$-\rho_{1} = -\beta_{1}l + af_{2} = \frac{ab\beta_{3}k - a\lambda\beta_{2}m - b_{2}\beta_{1}l}{b^{2}} < 0$$

in virtù della diseguaglianza (64). I segni dei coefficienti giustificano i termini trascurati. Senza ripetere la stessa analisi svolta precedentemente, si riconosce subito che N_1 tende assintoticamente a zero, mentre v_2 e v_3 tendono assintoticamente ad una fluttuazione smorzata che alla sua volta tende ad uno stato stazionario.

6. Riassumendo tutti i casi possibili si ha il seguente quadro.

1)
$$\beta_3 ka - \beta_1 lb < 0$$

Anche se ammettiamo che i vegetali possano aumentare indefinitamente, il nutrimento che giunge ai carnivori attraverso gli erbivori non è sufficiente a mantenere la specie carnivora e questa si esaurisce, mentre gli erbivori e i vegetali tendono ad una fluttuazione periodica non smorzata.

$$\beta_3 ka - \beta_1 lb > 0$$

Se il coefficiente di accrescimento della specie vegetale fosse costante, il numero di individui di essa crescerebbe indefinitamente, quindi conviene supporre che il detto coefficiente decresca proporzionalmente al numero degl'individui.

$$b\beta_3k - \lambda\beta_2m < 0$$

Il nutrimento fornito dai vegetali non è sufficiente a mantenere gli erbivori, quindi la specie erbivora e la specie carnivora si esauriscono, mentre il numero d'individui della specie vegetale tende ad un valore costante.

$$2_b) b\beta_3 k - \lambda \beta_2 m > 0$$
$$ab\beta_3 k - b^2 \beta_1 m - a\lambda \beta_2 m < 0$$

Le piante sono sufficienti a mantenere gli erbivori, ma non vi è sufficiente nutrimento per i carnivori attraverso gli erbivori, quindi la specie carnivora si esaurisce, mentre erbivori e piante tendono ad una fluttuazione smorzata, e finalmente ad uno stato stazionario.

$$(2c)$$
 $ab\beta_3k - b^2\beta_1l - a\lambda\beta_2m > 0$

Il nutrimento è sufficiente perché tutte le specie vivano ed esse, attraverso variazioni assintotiche o fluttuazioni smorzate, tendono verso uno stato stazionario.

Restano così discriminati e discussi tutti i casi possibili²⁸.

²⁸ Naturalmente eccettuati quegli intermedi nei quali, invece di disuguaglianze, si hanno eguaglianze, casi che sono del resto infinitamente poco probabili.

PARTE QUARTA

Studio delle azioni ereditarie.

§ 1. – ESTENSIONE DELLA PRIMA LEGGE DEL-LE FLUTTUAZIONI AL CASO EREDITARIO.

I. Il carattere dei fenomeni biologici è in generale ereditario, giacché nella maggior parte dei casi il passato influisce sullo stato presente e sulla evoluzione futura.

L'analisi che ho svolto in varie occasioni²⁹ sui fenomeni di carattere ereditario appartiene al campo delle equazioni integro-differenziali e a quello delle equazioni alle derivate funzionali. Ma nelle parti precedenti di questa Memoria ho trattato il problema delle fluttuazioni biologiche, col semplice sussidio delle equazioni differenziali. Debbo ora notare che l'assenza di carattere ereditario nella precedente trattazione è dovuta all'aver fatto solo un primo esame approssimativo della questione. Volendo, per dir così, stringer da vicino la realtà e fare un passo ulteriore, conviene ricorrere ad equazioni integro-differenziali, anche se si voglia conservare allo svolgimento il suo carattere schematico³⁰.

²⁹ Cfr. Volterra, *Leçons sur les fonctions de lignes*, Paris, Gauthier-Villars 1913, e *Saggi scientifici*, Bologna, Zanichelli 1920.

³⁰ Il dott. Lotka accenna, nella sua opera citata, nel caso di malattie, alla possibilità di ritardi (lag) nelle azioni ed anche alla possibilità di azioni in precedenza (lead) senza farne applicazioni

2. Nel caso di due specie conviventi, che da sole avrebbero i coefficienti di accrescimento $\varepsilon_1 > 0$, $-\varepsilon_2 < 0$, e tali che gl'individui della seconda si nutrono di quelli della prima, vennero scritte le equazioni differenziali (cfr. 1ª parte, §§ 2 e 4).

(A₁)
$$\frac{dN_1}{dt} = N_1 (\epsilon_1 - \gamma_1 N_2)$$
 , (A₂) $\frac{dN_2}{dt} = N_2 (-\epsilon_2 + \gamma_2 N_1)$

ove N_1 e N_2 denotano i numeri d'individui delle due specie e γ_1 , γ_2 due costanti positive.

Riprendiamo il ragionamento fatto nella 1ª parte, § 4, n. 1 per giustificare queste equazioni: Se la prima specie fosse sola, il numero dei suoi individui crescerebbe nel tempo dt di ε_1 N_1 dt. Ma in questo intervallo di tempo il numero di incontri degli individui delle due specie sarà proporzionale a N_1 N_2 dt, ed a questo stesso numero sarà proporzionale il numero d'individui della prima specie che verranno mangiati nel tempo dt. Chiamando γ_1 questo rapporto di proporzionalità, potremo dunque scrivere

$$d N_1 = \varepsilon_1 N_1 dt - \gamma_1 N_1 N_2 dt,$$

d'onde l'equazione (A1).

Riguardo alla seconda specie osserviamo che, se essa fosse sola, il numero dei suoi individui varierebbe nel

matematiche. Però nella sua Memoria: Contribution to the Analysis of Malaria epidemiology. IV Incubation lag, la maniera come egli considera i ritardi e come imposta la questione matematica mostra che i suoi concetti e la sua trattazione sono completamente al difuori della mia analisi ereditaria e delle equazioni integro differenziali.

tempo dt di $-\varepsilon_2 N_2 dt$. Siccome la seconda specie si rifornisce di nutrimento negl'incontri dei suoi individui con quelli della prima specie, così l'incremento del numero d'individui della seconda specie nel tempo dt si assume approssimativamente proporzionale al numero degli incontri, e perciò, chiamando γ_2 il coefficiente di proporzionalità, abbiamo

$$dN_2 = -\varepsilon_2 N_2 dt + \gamma_2 N_1 N_2 dt,$$

da cui segue l'equazione (A₂).

Ora, se per la (A_1) il ragionamento, per quanto schematico, non offre difficoltà, una grave obiezione può muoversi al ragionamento da cui discende la (A_2) , giacché i due casi non presentano quella simmetria che può apparire a primo aspetto.

Infatti la distruzione degl'individui della prima specie durante il tempo *dt* può ritenersi opera degl'individui della seconda esistenti in questo istante, ma il nutrimento che ricevono gl'individui della seconda specie durante lo stesso intervallo di tempo non è quello che produce l'incremento della specie nell'istante stesso; sarà invece il nutrimento a sua disposizione nei tempi precedenti che influirà sull'incremento della specie.

Supponiamo, in virtù delle ipotesi generali, che la percentuale degl'individui distribuiti per età si conservi inalterata col volger del tempo. Denotiamo con φ (ξ) $d\xi$ il rapporto fra gl'individui aventi l'età compresa fra ξ e $\xi+d\xi$ ed il numero totale, allora il rapporto fra il numero

degl'individui aventi un'età superiore a $t - \tau$ ed il numero totale sarà:

$$\int_{t-\tau}^{\infty} \varphi(\xi) d\xi = f(t-\tau).$$

Ne segue che la frazione degli $N_2(t)$ individui esistenti al tempo t che già esisteva al tempo τ , anteriore a t, sarà data da $f(t-\tau)N_2(t)$ e la quantità di nutrimento da essi ingerita nell'intervallo di tempo $(\tau, \tau + d\tau)$ potrà esprimersi mediante la formula

$$\gamma f(t-\tau)N_2(t)N_1(\tau)d\tau$$

ove γ è una costante positiva.

Tale nutrimento influirà sull'accrescimento degli individui della seconda specie al tempo t, in misura diversa secondo la grandezza dell'intervallo di tempo $t - \tau$; quindi potremo misurare questa influenza moltiplicando la precedente espressione per una funzione positiva $\psi(t - \tau)$, onde avremo

$$\gamma \psi(t-\tau) f(t-\tau) N_2(t) N_1(\tau) d\tau = F(t-\tau) N_2(t) N_1(\tau) d\tau.$$

Sommando queste quantità per tutti gl'intervalli di tempo che precedono l'istante *t*, otterremo

$$\int_{-\infty}^{t} F(t-\tau) N_2(t) N_1(\tau) dt.$$

Perciò alla equazione (A2) dovremo sostituire l'altra

$$\frac{dN_2}{dt} = N_2(t) \left(-\varepsilon_2 + \int_{-\infty}^t F(t-\tau) N_1(\tau) d\tau \right).$$

Avremo dunque, anziché le (A_1) e (A_2) , le equazioni simultanee

(IV)
$$\frac{dN_1}{dt} = N_1(t) (\varepsilon_1 - \gamma_1 N_2(t)),$$

(V)
$$\frac{dN_2}{dt} = N_2(t) \left(-\varepsilon_2 + \int_{-\infty}^t F(t-\tau) N_1(\tau) d\tau \right),$$

la prima delle quali è un'equazione differenziale e l'altra un'equazione integro-differenziale.

Quanto alla funzione $F(t - \tau)$ noi dovremo supporre che, quando il suo argomento cresce indefinitamente, essa divenga infinitesima di ordine tale che l'integrale nel quale comparisce sia convergente.

Ma noi potremo senz'altro supporre che essa si annulli per un certo valore T_0 del suo argomento e per tutti i valori ad esso superiori.

3. Per rendere simmetrica la trattazione matematica sostituiamo alle equazioni (IV) e (V) le due altre (a cui può darsi anche significato biologico)

(K)
$$\frac{dN_1}{dt} = N_1(t) \left(\varepsilon_1 - \gamma_1 N_2(t) - \int_{-\infty}^t F_1(t-\tau) N_2(\tau) d\tau \right),$$

(L)
$$\frac{dN_2}{dt} = N_2(t) \left(-\varepsilon_2 + \gamma_2 N_1(t) + \int_{-\infty}^t F_2(t-\tau) N_1(\tau) d\tau \right),$$

ove γ_1 e γ_2 sono due costanti positive (γ_2 può essere anche nulla) e F_1 , F_2 sono due funzioni finite, continue, po-

sitive che si annullano per valori dell'argomento eguali o superiori a $T_0 > 0$ (F_1 può essere anche nulla).

Prendiamo arbitrariamente le funzioni $N_1(t)$ e $N_2(t)$ nell'intervallo $(t_0 - T_0, t_0)$ ma tali che siano finite continue e positive. Noi potremo prolungarle in modo da essere finite e da soddisfare le equazioni (K) e (L) per $t_0 \le t < t_1$, impiegando per esempio il metodo delle approssimazioni successive. I valori di $N_1(t)$ e $N_2(t)$ corrispondenti all'intervallo $(t_0 - T_0, t_0)$ si riattaccheranno con continuità per $t = t_0$ a quelli corrispondenti all'intervallo (t_0, t_1) ma questo in generale non avverrà per le loro derivate.

4. TEOREMA I. – *Gl'integrali delle* (K), (L) sono positivi per $t_0 \le t < t_1$. Infatti, posto $N_1(t_0) = N_1^0$, $N_2(t_0) = N_2^0$, sarà

$$N_1(t) = N_1^0 e^{P_1(t)}$$
, $N_2(t) = N_2^0 e^{P_2(t)}$, $t_0 \le t < t_1$,

ove

$$P_{1}(t) = \int_{t_{0}}^{t} \left(\varepsilon_{1} - \gamma_{1} N_{2}(\theta) - \int_{-\infty}^{\theta} F_{1}(\theta - \tau) N_{2}(\tau) d\tau \right) d\theta ,$$

$$P_{2}(t) = \int_{t_{0}}^{t} \left(-\varepsilon_{2} + \gamma_{2} N_{1}(\theta) + \int_{-\infty}^{\theta} F_{2}(\theta - \tau) N_{1}(\tau) d\tau \right) d\theta ,$$

e siccome gli esponenziali sono positivi, così N_1 e N_2 si conserveranno sempre positivi.

Teorema II. – $Per t_0 \le t \le t_1 \ avremo$

(68)
$$N_1(t) < N_1^0 e^{\varepsilon_1(t-t_0)} < N_1^0 e^{\varepsilon_1(t_1-t_0)} = \mathfrak{N}_1(t_1-t_0)$$

(68')
$$N_2(t) < N_2^0 e^{\frac{\gamma_2 + \Gamma_2}{\varepsilon_1} N_1^0 e^{\varepsilon_1(t-t_0)}} < N_2^0 e^{\frac{\gamma_2 + \Gamma_2}{\varepsilon_1} N_1^0 e^{\varepsilon_1(t_1-t_0)}} = \mathfrak{N}_2(t_1 - t_0)$$

(69)
$$\left| \frac{dN_1(t)}{dt} \right| < \mathfrak{N}_1(t_1 - t_0) \left(\varepsilon_1 + (\gamma_1 + \Gamma_1) \, \mathfrak{N}_2(t_1 - t_0) \right)$$

(69')
$$\left|\frac{dN_2(t)}{dt}\right| < \mathfrak{N}_2(t_1 - t_0) \left(\varepsilon_2 + (\gamma_2 + \Gamma_2) \mathfrak{N}_1(t_1 - t_0)\right)$$

ove

(70)
$$\begin{cases} \Gamma_{1} = \int_{0}^{T_{0}} F_{1}(\xi) d\xi &, \quad \Gamma_{2} = \int_{0}^{T_{0}} F_{2}(\xi) d\xi \\ \mathfrak{N}_{1}(t) = N_{1}^{0} e^{\epsilon_{1} t} &, \quad \mathfrak{N}_{2}(t) = \frac{\gamma_{2} + \Gamma_{2}}{N_{2}^{0} e^{\epsilon_{1} t}} N_{1}^{0} e^{\epsilon_{1} t} \end{cases}.$$

Infatti, in virtù del teorema precedente, sarà $P_1(t) < \epsilon_1$, d'onde la (68) e quindi

$$P_{2}(t) < \int_{t_{0}}^{t} \left(\gamma_{2} N_{1}^{0} e^{\varepsilon_{1}(\theta - t_{0})} + e^{\varepsilon_{1}(\theta - t_{0})} \int_{-\infty}^{\theta} F_{1}(\theta - \tau) d\tau \right) d\theta.$$

Ma

$$\int_{-\infty}^{\theta} F_1(\theta - \tau) d\tau = \int_{0}^{\infty} F_1(\xi) d\xi = \int_{0}^{T_0} F_1(\xi) d\xi = \Gamma_1,$$

segue dunque facilmente la (68'). Le (K) e (L) conducono poi immediatamente dalle (68) e (68') alle (69) e (69').

TEOREMA III. – Se t tende verso t_1 , $N_1(t)$ e $N_2(t)$, dN_1/dt e dN_2/dt tendono verso dei limiti determinati e finiti.

A cagione delle (68) e (68') e del teorema I i limiti superiori dei valori assoluti di N_1 e N_2 nell'intervallo (t_0 , t_1) sono finiti, quindi per $t = t_1$, N_1 e N_2 non possono tendere all' ∞ . Se mancassero di limite per $t = t_1$ i limiti superiori dei valori assoluti di dN_1/dt e dN_2/dt dovrebbero essere ∞ ; giacché le oscillazioni di N_1 e N_2 in intervalli ($t_1 - \alpha$, t_1) dovrebbero mantenersi superiori a un certo valore $\sigma > 0$, per quanto piccolo fosse α . Si avrebbe dunque una contraddizione colle formule (69) e (69'). Il teorema resta quindi dimostrato.

TEOREMA IV. – Se esistono gl'integrali delle (K) e (L) per $t_0 \le t \le t_1$ potrà trovarsi $t_2 \ge t_1$ in modo che gl'integrali esistano per $t_0 \le t \le t_2$.

Infatti gl'integrali stessi e le loro derivate tenderanno verso limiti determinati e finiti per $t = t_1$, onde operando a partire da t_1 come si è fatto a partire da t_0 potremo estendere gl'integrali ad un intervallo (t_1, t_2) ove $t_2 > t_1$ e nel punto t_1 gl'integrali stessi e le loro derivate, prima individuati negli intervalli (t_0, t_1) e (t_1, t_2) , si riattaccheranno con continuità, il che dimostra il teorema.

Si può di qui ricavare, con speciali osservazioni sulle approssimazioni successive, che *gl'integrali delle equazioni* (K) e (L) si possono estendere per $t_0 < t < \infty$, restando sempre positivi.

5. Teorema V. – Esistono dei valori costanti di N_1 e N_2 che soddisfano le (K) e (L).

Basterà infatti prendere

$$N_1 = K_1$$
 , $N_2 = K_2$

tali che

$$\varepsilon_1 - K_2 \left(\gamma_1 + \int_0^{T_0} F_1(\xi) d\xi \right) = 0$$

$$\varepsilon_2 - K_1 \left(\gamma_2 + \int_0^{T_0} F_2(\xi) d\xi \right) = 0$$

e quindi

$$\mathbf{K}_1 = \frac{\varepsilon_2}{\gamma_2 + \Gamma_2}$$
, $\mathbf{K}_2 = \frac{\varepsilon_1}{\gamma_1 + \Gamma_1}$.

Teorema VI. – Se α è una quantità positiva qualunque, non potrà aversi per tutti i valori del tempo superiori a un certo limite,

$$(71) N_1 > K_1 + \alpha$$

oppure

(71')
$$N_1 < K_1 - \alpha;$$

ed analogamente non potrà aversi, per tutti i valori del tempo superiori ad un certo limite,

$$(72) N_2 > K_2 + \alpha$$

oppure

(72')
$$N_2 < K_2 - \alpha$$
.

Supponiamo che, a partire un certo valore t_1 di t, sia sempre soddisfatta la (71). Avremo allora, per la (K), se $t > t_1 + T_0$,

$$\frac{dN_2}{dt} > N_2(t)(\gamma_2 + \Gamma_2)\alpha ,$$

quindi chiamando N'_2 il valore di N_2 al tempo t_1 , sarà

$$N_{2}(t) > N_{2}' e^{\alpha (\gamma_{2} + \Gamma_{2})(t-t_{1})}$$

cioè N₂ (t) crescerà indefinitamente col tempo.

Esisterà dunque un valore t_2 del tempo, tale che, per $t > t_2$,

$$N_2(t) > K_2 + \alpha$$

e quindi, per la (K), se $t > t_2 + T_0$, sarà

$$\frac{dN_1}{dt} < -N_1(t)\alpha \left(\gamma_1 + \Gamma_1\right)$$

da cui segue, ponendo $N_1(t_2) = N_1^{"}$,

$$N_1(t) < N_1'' e^{-\alpha (\gamma_1 + \Gamma_1)(t-t_2)},$$

cioè N₁ tenderà a zero col crescere indefinito del tempo.

Esisterà dunque un valore del tempo t, superiore a t_1 , per il quale

$$N_1(t) > K_1 + \alpha$$

il che è in contraddizione coll'ipotesi di partenza.

In modo analogo si dimostrano le altre parti del teorema.

Corollario. — N_1 non potrà tendere verso un valore qualunque diverso da K_1 , né N_2 potrà tendere verso un valore qualunque diverso da K_2 .

Dunque i numeri di individui delle due specie non possono in particolare né tendere a zero, né tendere all' ∞ .

6. TEOREMA VII. – N_1 non potrà tendere assintoticamente verso K_1 né N_2 potrà tendere assintoticamente verso K_2 .

Supponiamo che N_1 tenda assintoticamente verso K_1 , continuamente decrescendo a partire da un certo valore del tempo, e quindi attraversando valori più grandi di K_1 . Siccome la (L) può scriversi

$$\frac{dN_2}{dt} = N_2(t) \left(\gamma_2 (N_1(t) - K_1) + \int_{-\infty}^{t} F_2(t - \tau) (N_1(\tau) - K_1) dt \right),$$

così sarà, almeno per t sufficientemente grande,

$$\frac{dN_2}{dt} > 0$$
,

onde N_2 , a partire da un certo valore del tempo, crescerà continuamente e, in virtù del precedente corollario, dovrà tendere verso K_2 attraversando valori più piccoli di K_2 . Ma la (K) può scriversi

$$\frac{dN_{1}}{dt} = N_{1}(t) \left(\gamma_{1}(K_{2} - N_{2}(t)) + \int_{-\infty}^{t} F_{1}(t - \tau)(K_{2} - N_{2}(\tau)) dt \right),$$

ne segue

$$\frac{dN_1}{dt} > 0$$
,

onde N_1 crescerà a partire da un certo valore del tempo, e ciò è contrario all'ipotesi di partenza. Similmente si dimostra che N_1 non può tendere verso K_1 crescendo e pure si dimostrano per N_2 le analoghe proposizioni.

Corollario. $-N_1$ e N_2 dovranno oscillare passando, col crescere indefinitamente del tempo, per infiniti massimi e minimi.

Teorema VIII. – N_1 e N_2 dovranno rispettivamente traversare infinite volte i valori K_1 e K_2 per valori del tempo superiori a qualunque limite assegnato.

Infatti, se N_1 restasse, a partire da un certo istante, sempre superiore a K_1 ,

$$-\varepsilon_{2} + \gamma_{2}N_{1} + \int_{-\infty}^{t} F_{2}(t-\tau)N_{1}(\tau)d\tau$$

si manterrebbe positivo, e per conseguenza non si potrebbe annullare, quindi N_2 non avrebbe più massimi né minimi il che è contrario al corollario precedente. Nello stesso modo si prova che N_1 non può, a partire da un certo valore del tempo, restare inferiore a K_1 . Dunque N_1 deve traversare questo valore infinite volte col crescere del tempo. Similmente si prova l'analoga proposizione per N_2 .

7. I precedenti teoremi estendono, anche nel caso ereditario, la prima legge delle *infinite fluttuazioni delle* due specie attorno agli stati stazionari senza però che risulti la periodicità (cfr. I^a parte, § 2, n. 9).

§ 2. – ESTENSIONE DELLA SECONDA E DELLA TERZA LEGGE DELLE FLUTTUAZIONI AL CASO EREDITARIO.

- 1. Se passiamo al caso ereditario, la seconda, e la terza legge delle fluttuazioni si mantengono, nella loro essenza, inalterate, e quindi conservano la loro forma semplice. Però l'analisi che conduce a dimostrarle, come vedremo in questo paragrafo, è più complessa di quella impiegata nel caso non ereditario.
- 2. Riprendiamo le equazioni (K) e (L) del paragrafo precedente, le quali tenendo conto che, per

$$\tau > T_0$$
, $F_1(\tau) = F_2(\tau) = 0$,

possono scriversi

(K')
$$\frac{dN_1}{dt} = N_1(t) \left(\varepsilon_1 - \gamma_1 N_2(t) - \int_0^{T_0} F_1(\tau) N_2(t - \tau) d\tau \right)$$

(L')
$$\frac{dN_2}{dt} = N_2(t) \left(-\varepsilon_2 + \gamma_2 N_1(t) - \int_0^{T_0} F_2(\tau) N_1(t - \tau) d\tau \right)$$

o anche

(K")
$$\frac{dN_1}{dt} = N_1(t) \left(\varepsilon_1 - \gamma_1 N_2(t) - \int_{t-T_0}^t F_1(t-\tau) N_2(\tau) d\tau \right)$$

(L")
$$\frac{dN_2}{dt} = N_2(t) \left(-\varepsilon_2 + \gamma_2 N_1(t) - \int_{t-T_0}^t F_2(t-\tau) N_1(\tau) d\tau \right),$$

nelle quali ε_1 e ε_2 sono diverse da zero e positive e γ_1 , γ_2 , F_1 , F_2 non sono mai negative.

Da esse si deduce, se una almeno delle quantità γ_1 , Γ_1 è diversa da zero, e una almeno delle quantità γ_2 , Γ_2 è pure diversa da zero, siccome N_1 e N_2 sono sempre positive,

$$\varepsilon_{1} > \frac{1}{N_{1}} \frac{dN_{1}}{dt} > -\gamma_{1} N_{2}(t) - \int_{0}^{T_{0}} F_{1}(\xi) N_{2}(t - \xi) d\xi$$
$$-\varepsilon_{2} < \frac{1}{N_{2}} \frac{dN_{2}}{dt} < \gamma_{2} N_{1}(t) + \int_{0}^{T_{0}} F_{2}(\xi) N_{1}(t - \xi) d\xi$$

e, integrando fra τ e t, essendo $\tau < t$,

(73)
$$e^{-\varepsilon_1(t-\tau)} < \frac{N_1(\tau)}{N_1(t)} < e^{\frac{\gamma_1 \int_{\tau}^{t} N_2(\xi) d\xi + \int_{\tau}^{t} d\xi \int_{0}^{\tau_0} F_1(\eta) N_2(\xi-\eta) d\eta}$$

(73')
$$e^{+\epsilon_{2}(t-\tau)} > e^{-\gamma_{2}\int_{\tau}N_{1}(\xi)d\xi - \int_{\tau}^{t}d\xi\int_{0}^{\tau_{0}}F_{2}(\eta)N_{1}(\xi-\eta)d\eta}$$

A cagione della (73') sarà

Variazioni e fluttuazioni del numero d'individui....

$$\gamma_{1} \int_{\tau}^{t} N_{2}(\xi) d\xi + \int_{\tau}^{t} d\xi \int_{0}^{T_{0}} F_{1}(\eta) N_{2}(\xi - \eta) d\eta <$$

$$< N_{2}(t) \int_{\tau}^{t} e^{\epsilon_{2}(t - \xi)} d\xi \left(\gamma_{1} + \int_{0}^{T_{0}} F_{1}(\eta) e^{\epsilon_{2}\eta} d\eta \right) <$$

$$< N_{2}(t) \frac{e^{\epsilon_{2}(T_{0} + t - \tau)}}{\epsilon_{2}} (\gamma_{1} + \Gamma_{1}).$$

Le equazioni (73) e (73') potranno dunque scriversi

(74)
$$N_{1}(t)e^{-\varepsilon_{1}(t-\tau)} < N_{1}(\tau) < N_{1}(t)e^{N_{2}(t)} \frac{e^{\varepsilon_{2}(\tau_{0}+t-\tau)}}{\varepsilon_{2}} (\gamma_{1}+\Gamma_{1})$$

$$(74') \quad N_{2}(t)e^{\varepsilon_{2}(t-\tau)} > N_{2}(\tau) > N_{2}(\tau)e^{-\gamma_{2}\int_{\tau}^{t}N_{1}(\xi)d\xi - \int_{\tau}^{t}d\xi\int_{0}^{T_{0}}F_{2}(\eta)N_{1}(\xi-\eta)d\eta} \ .$$

Se $t - \tau \le T_0$, dalle equazioni precedenti seguirà:

(75)
$$N_1(t)e^{-\varepsilon_1 T_0} < N_1(\tau) < N_1(t)e^{N_2(t)\frac{e^{2\varepsilon_2 T_0}}{\varepsilon_2}(\gamma_1 + \Gamma_1)},$$

(75')
$$N_2(t)e^{\epsilon_2 T_0} > N_2(\tau) > 0$$
.

Se poi $t - \tau \le T_0$ e nello stesso tempo $N_2 < K_2 = \varepsilon_1/(\gamma_1 + \Gamma_1)$ si avrà in conseguenza della (75)

(76)
$$N_1(t)e^{-\varepsilon_1 T_0} < N_1(\tau) < N_1(t)e^{\varepsilon_1 m}$$

ove

$$m = \frac{1}{\varepsilon_2} e^{2\varepsilon_2 T_0}.$$

3. Supponiamo che al valore t del tempo corrisponda un massimo o un minimo di N_1 , a cagione della (K') avremo

$$\varepsilon_1 - \gamma_1 N_2(t) - \int_0^{T_0} F_1(\tau) N_2(t-\tau) d\tau = 0$$

e, in virtù della (75') se $F_1 > 0$,

$$\varepsilon_1 - \gamma_1 N_2(t) > 0$$

$$\varepsilon_1 - \gamma_1 N_2(t) - N_2(t) e^{\varepsilon_2 T_0} \int_0^{T_0} F_1(\tau) d\tau < 0$$

quindi, se $\gamma_1 > 0$, $\Gamma_1 > 0$, sarà

(77)
$$\frac{\varepsilon_1}{\gamma_1 + \Gamma_1 e^{\varepsilon_2 T_0}} < N_2(t) < \frac{\varepsilon_1}{\gamma_1}$$

mentre se $\gamma_1 > 0$, $\Gamma_1 = 0$ sarà $N_2(t) = \varepsilon_1/\gamma_1$.

Osserviamo, ora che, in virtù del teorema VIII del paragrafo precedente debbono esistere, col crescere indefinito del tempo, infiniti minimi di N_1 inferiori a K_1 ed infiniti minimi di N_2 inferiori a K_2 ; supponiamo che uno di questi minimi di N_2 corrisponda al valore t del tempo.

A cagione della equazione (L') sarà

$$\varepsilon_2 - \gamma_2 N_1(t) - \int_0^{T_0} F_2(\tau) N_1(t - \tau) d\tau = 0$$

e in conseguenza delle (76), se $F_2 > 0$,

$$\varepsilon_{2} - \gamma_{2} N_{1}(t) - N_{1}(t) e^{-\varepsilon_{1} T_{0}} \Gamma_{2} > 0$$

$$\varepsilon_2 - \gamma_2 N_1(t) - N_1(t) e^{\varepsilon_1 m} \Gamma_2 < 0$$

d'onde

(77')
$$\frac{\varepsilon_2}{\gamma_2 + e^{-\varepsilon_1 T_0} \Gamma_2} > N_1(t) > \frac{\varepsilon_2}{\gamma_2 + e^{\varepsilon_1 m} \Gamma_2}.$$

Noi potremo dunque enunciare le proposizioni seguenti:

Lemma I. – Se $\gamma_1 > 0$, ai massimi e minimi di N_1 corrispondono valori di N_2 compresi fra i limiti seguenti

$$\frac{\varepsilon_1}{\gamma_1 + \Gamma_1 \varepsilon^{\varepsilon_2 T_0}} \leq N_2 \leq \frac{\varepsilon_1}{\gamma_1};$$

i segni superiori corrispondono a $\Gamma_1 > 0$, gl'inferiori a $\Gamma_1 = 0$.

Lemma II. – Se uno almeno dei numeri γ_2 , Γ_2 è maggiore di zero, ai minimi di N_2 inferiori a K_2 corrispondono valori di N_1 compresi fra i limiti seguenti

$$\frac{\varepsilon_2}{\gamma_2 + e^{-\varepsilon_1 T_0} \Gamma_2} \ge N_1 \ge \frac{\varepsilon_2}{\gamma_2 + e^{\varepsilon_1 m} \Gamma_2};$$

i segni superiori corrispondono a $\Gamma_2 > 0$, gl'inferiori a $\Gamma_2 = 0$.

Lemma III. – Se $N_1(t_1)$ e $N_2(t_2)$ sono minimi di $N_1(t)$ e $N_2(t)$ rispettivamente inferiori a K_1 e K_2 avremo

$$(t_1-T_0\leq \tau\leq t_1 \quad , \quad N_1(\tau)\leq p_1K_1 \quad , \quad p_1=e^{\left(\frac{\varepsilon_1}{\varepsilon_2}\frac{\gamma_1+\Gamma_1}{\gamma_1}e^{2\varepsilon_2T_0}\right)},$$

$$(t_2-T_0 \le \tau \le t_2$$
 , $N_2(\tau) < p_2K_2$, $p_2 = e^{\varepsilon_2T_0}$

supponendo $\gamma_1 > 0$ e uno almeno dei numeri γ_2 , Γ_2 maggiore di zero.

4. Passiamo adesso a dimostrare il Teorema: $Se \gamma_1 > 0$ e uno almeno dei numeri γ_2 e Γ_2 è maggiore di zero, il valore medio di N_1 , fra un istante iniziale qualunque e un istante in cui raggiunge un minimo inferiore a K_1 , tende verso K_1 , col crescere indefinito del tempo nel quale il minimo viene raggiunto; ed il valore medio di N_2 , fra un istante iniziale qualunque e un istante nel quale raggiunge un minimo inferiore a K_2 , tende verso K_2 col crescere indefinito del tempo nel quale il minimo viene raggiunto.

Osserviamo prima di tutto che le due equazioni (K") e (L") possono scriversi sotto una forma unica mediante l'equazione:

(M)
$$\left(-1\right)^{i+1} \frac{dN_i}{dt} = N_i(t) \left(\varepsilon_i - \gamma_i N_{i+1}(t) - \int_{t-T_0}^t F_i(t-\tau) N_{i+1}(\tau) d\tau \right)$$

facendo la convenzione di sostituire i e i+1 con i numeri 1, o 2 secondoché essi sono dispari o pari.

Ciò premesso dividiamo ambo i membri della (M) per $N_i(t)$ e integriamo fra il tempo iniziale t_0 e il tempo $t_{i+1} > t_0 + T_0$. Avremo:

(78)
$$(-1)^{i+1} \log \frac{N_i(t_{i+1})}{N_i(t_0)} = \varepsilon_i(t_{i+1} - t_0) - \gamma_i \int_{t_0}^{t_{i+1}} N_{i+1}(t) dt - \int_{t_0}^{t_{i+1}} dt \int_{i-T_0}^{t} F_i(t-\tau) N_{i+1}(\tau) d\tau.$$

L'ultimo integrale può scriversi

$$I_{i} = \int_{t_{0}}^{t_{i+1}} dt \int_{t_{0}-T_{0}}^{t_{0}} F_{i}(t-\tau) N_{i+1}(\tau) d\tau + \int_{t_{0}}^{t_{i+1}} dt \int_{t_{0}}^{t} F_{i}(t-\tau) N_{i+1}(\tau) d\tau.$$

Applicando al secondo di questi integrali il principio di Dirichlet³¹ si avrà

$$\begin{split} & I_{i} = \int_{t_{0}}^{t_{i+1}} dt \int_{t_{0}-T_{0}}^{t_{0}} F_{i}(t-\tau) N_{i+1}(\tau) d\tau + \int_{t_{0}}^{t_{i+1}} N_{i+1}(\tau) dt \int_{\tau}^{t_{i+1}} F_{i}(t-\tau) dt = \\ & = \int_{t_{0}-T_{0}}^{t_{0}} N_{i+1}(\tau) d\tau \int_{t_{0}}^{t_{i+1}} F_{i}(t-\tau) dt + \int_{t_{0}}^{t_{i+1}} N_{i+1}(\tau) d\tau \int_{0}^{t_{i+1}-\tau} F_{i}(\xi) d\xi = \\ & = \int_{t_{0}-T_{0}}^{t_{0}} N_{i+1}(\tau) d\tau \int_{t_{0}}^{t_{i+1}} F_{i}(t-\tau) dt + \int_{t_{0}}^{t_{i+1}-T_{0}} N_{i+1}(\tau) d\tau \int_{0}^{t_{i+1}-\tau} F_{i}(\xi) d\xi + \\ & + \int_{t_{i+1}-T_{0}}^{t_{i+1}} N_{i+1}(\tau) d\tau \int_{0}^{t_{i+1}-\tau} F_{i}(\xi) d\xi . \end{split}$$

Ora osserviamo che nel primo termine e nel terzo termine della espressione precedente abbiamo

$$\int_{t_0}^{t_{i+1}} F_i(t-\tau) dt \le \Gamma_i \qquad , \qquad \int_{0}^{t_{i+1}-\tau} F_i(\xi) d\xi \le \Gamma_i$$

mentre nel secondo termine

$$\int_{a}^{b} dx \int_{a}^{x} F(x, y) dy \qquad \int_{a}^{b} dy \int_{y}^{b} F(x, y) dx.$$

³¹ Con «principio di Dirichlet» si intende qui la nota trasformazione di integrali doppi

$$\int_{0}^{t_{i+1}-\tau} F_{i}(\xi) d\xi = \int_{0}^{T_{0}} F_{i}(\xi) d\xi = \Gamma_{i}$$

giacché in questo termine il più piccolo valore di t_{i+1} – τ è T_0 e $F_i(\xi)$ zero per $\xi > T_0$.

Si avrà dunque

$$I_{i} = \Gamma_{i} \left\{ \theta' \int_{t_{0}-T_{0}}^{t_{0}} N_{i+1}(\tau) d\tau + \theta'' \int_{t_{i+1}-T_{0}}^{t_{i+1}} N_{i+1}(\tau) d\tau + \int_{t_{0}}^{t_{i+1}-T_{0}} N_{i+1}(\tau) d\tau \right\},\,$$

ove θ' e θ'' denotano numeri compresi fra 0 e 1.

Potremo ancora scrivere

(79)
$$I_{i} = \Gamma_{i} \left\{ \theta' \int_{t_{0}-T_{0}}^{t_{0}} N_{i+1}(\tau) d\tau - (1-\theta'') \int_{t_{i+1}-T_{0}}^{t_{i+1}} N_{i+1}(\tau) d\tau + \int_{t_{0}}^{t_{i+1}} N_{i+1}(\tau) d\tau \right\}.$$

Supponiamo che al tempo t_{i+1} , N_{i+1} raggiunga un minimo inferiore a K_{i+1} , in virtù del Lemma III, sarà

$$\int_{t_{i+1}^{-}T_0}^{t_{i+1}} N_{i+1}(\tau) d\tau < p_{i+1} K_{i+1} T_0.$$

Denotiamo poi con M_{i+1} il massimo valore raggiunto da N_{i+1} (τ) nell'intervallo di tempo ($t_0 - T_0$, t_0); esso sarà un valore finito indipendente da t_{i+1} , e avremo

$$\int_{t_0-T_0}^{t_0} N_{i+1}(\tau) d\tau < M_{i+1} T_0.$$

Se dunque θ''' e θ^{IV} sono due numeri rispettivamente compresi fra 0 e θ' , e 0 e $1-\theta''$ l'equazione (79) potrà sostituirsi con

$$1_{i} = \Gamma_{i} \left\{ \theta''' M_{i+1} T_{0} - \theta^{IV} p_{i+1} K_{i+1} T_{0} + \int_{t_{0}}^{t_{i+1}} N_{i+1}(\tau) d\tau \right\}.$$

Ponendo nella (78) quest'ultimo valore trovato per l'integrale 1_i si avrà

$$(-1)^{i+1} \log \frac{N_{i}(t_{i+1})}{N_{i}(t_{0})} = \varepsilon_{i}(t_{i+1} - t_{0}) - (\gamma_{i} + \Gamma_{i}) \int_{t_{0}}^{t_{i+1}} N_{i+1}(\tau) d\tau - T_{0}\Gamma_{i} \{\theta'''M_{i+1} - \theta^{IV}p_{i+1}K_{i+1}\},$$

e quindi

$$\begin{split} &\frac{1}{t_{i+1}-t_{0}}\int_{t_{0}}^{t_{i+1}} N_{i+1}(\tau) d\tau = \frac{\varepsilon_{i}}{\gamma_{i}+\Gamma_{i}} + \frac{1}{(\gamma_{i}+\Gamma_{i})(t_{i+1}-t_{0})} \\ &\left\{ (-1)^{i} \log \frac{N_{i}(t_{i+1})}{N_{i}(t_{0})} - T_{0}\Gamma_{i}(\theta^{"}M_{i+1}-\theta^{TV}p_{i+1}K_{i+1}) \right\}. \end{split}$$

Consideriamo ora minimi inferiori a K_{i+1} che si hanno in tempi sempre più lontani, ossia facciamo crescere indefinitamente t_{i+1} .

In virtù dei Lemma I e II, $N_i(t_{i+1})$ si manterrà compreso fra due limiti positivi indipendenti da t_{i+1} onde $log[Ni(t_{i+1})/(N_i(t_0))]$ si manterrà sempre inferiore ad un limite finito, e la equazione precedente ci darà

$$\lim_{t_{i+1}=\infty} \frac{1}{t_{i+1}-t_0} \int_{t_0}^{t_{i+1}} N_{i+1}(\tau) d\tau = \frac{\varepsilon_i}{\gamma_i + \Gamma_i} = K_{i+1}$$

il che dimostra il teorema.

5. Le equazioni che regolano le fluttuazioni biologiche ereditarie sono le (IV) e (V) del § 1, n. 2, le quali si possono ricavare dalle (K) e (L) facendo rispettivamente $F_1 = 0$, e $\gamma_2 = 0$, mentre si mantengono diverse da zero e positive γ_1 e F_2 , quindi anche Γ_2 . Saranno dunque soddisfatte nel caso ereditario le condizioni di validità del teorema precedente.

Noi potremo intendere per *valore medio assintotico* o media asintotica del numero N di individui di una specie oscillante attorno ad un valore costante K, corrispondente ad uno stato stazionario, il limite della media di N calcolata per un periodo di tempo compreso fra un istante iniziale qualunque ed un istante di minimo di N inferiore a K, quando il suddetto periodo di tempo cresce indefinitamente (cfr. 2ª parte, § 3)

Le medie assintotiche dei numeri N_1 e N_2 d'individui delle due specie saranno perciò, in virtù del teorema enunciato, K_1 e K_2 .

Riassumendo dunque ciò che è stato ottenuto nel paragrafo precedente e ciò che è stato ora ottenuto, avremo che le tre leggi fondamentali delle fluttuazioni assumeranno, nel caso ereditario, la forma seguente:

- 1ª (Legge delle fluttuazioni). I numeri di individui delle due specie oscillano indefinitamente attorno ai valori corrispondenti allo stato stazionario passando, col crescere indefinito del tempo, per infiniti massimi e minimi.
- 2^{a} (Legge della conservazione delle medie). I valori medi assintotici dei numeri di individui delle due specie sono indipendenti dallo stato iniziale e coincidono con i valori corrispondenti allo stato stazionario.

3ª (Legge della perturbazione delle medie). – Se si cerca di distruggere uniformemente e proporzionalmente al loro numero gl'individui delle due specie cresce la media assintotica del numero d'individui della specie mangiata e diminuisce quella del numero d'individui della specie mangiante.

Infatti le medie assintotiche dei numeri d'individui delle due specie coincidendo con i valori corrispondenti allo stato stazionario ϵ_2/Γ_2 , e ϵ_1/γ_1 (giacché $\gamma_2 = \Gamma_1=0$) sono indipendenti dalle condizioni iniziali. Inoltre distruggere uniformemente e proporzionalmente al loro numero gl'individui delle due specie equivale ad aumentare ϵ_2 ed a diminuire ϵ_1 lasciando inalterati Γ_2 e γ_1 , quindi il primo valore medio cresce ed il secondo diminuisce

§ 3. – NON PERIODICITÀ DELLE PICCOLE FLUTTUAZIONI NEL CASO EREDITARIO.

1. Nel presente paragrafo mi propongo di dimostrare che *nel caso ereditario non possono sussistere piccole fluttuazioni periodiche intorno allo stato stazionario*.

Riprendiamo perciò le equazioni fondamentali sotto la forma (K'), (L') (cfr. § 2, n. 2), cioè

(K')
$$\frac{dN_1}{dt} = N_1(t) \left(\varepsilon_1 - \gamma_1 N_2(t) - \int_0^{T_0} F_1(\tau) N_2(t - \tau) d\tau \right)$$

Variazioni e fluttuazioni del numero d'individui....

(L')
$$\frac{dN_2}{dt} = N_2(t) \left(-\varepsilon_2 + \gamma_2 N_1(t) + \int_0^{T_0} F_2(\tau) N_1(t-\tau) d\tau \right).$$

Lo stato stazionario corrisponde a

$$N_{1} = K_{1} = \frac{\varepsilon_{2}}{\gamma_{2} + \Gamma_{2}} , \quad N_{2} = K_{2} = \frac{\varepsilon_{1}}{\gamma_{1} + \Gamma_{1}}$$

$$\Gamma_{1} = \int_{0}^{T_{0}} F_{1}(\tau) d\tau , \quad \Gamma_{2} = \int_{0}^{T_{0}} F_{2}(\tau) d\tau$$

(cfr. formule 70 e teorema V del § 1).

Poniamo

$$N_1 = K_1 + n_1$$
 , $N_2 = K_2 + n_2$

Le (K') e (L') assumeranno la forma

$$\frac{dn_1}{dt} = -\left(K_1 + n_1\right) \left(\gamma_1 n_2(t) + \int_0^{T_0} F_1(\tau) n_2(t-\tau) d\tau\right)$$

$$\frac{dn_2}{dt} = \left(K_2 + n_2\right) \left(\gamma_2 n_1(t) + \int_0^{T_0} F_2(\tau) n_1(t-\tau) d\tau\right).$$

Scrivasi

$$\frac{n_1}{K_1} = V_1 , \quad \frac{n_2}{K_2} = V_2 , \quad \gamma_1 K_2 = \alpha_1 , \quad \gamma_2 K_1 = \alpha_2$$

$$K_2 F_1(t) = \Phi_2(t) , \quad K_1 F_2(t) = \Phi_2(t).$$

Se i termini di secondo grado in v_1 e v_2 sono trascurabili le equazioni precedenti divengono

(80)
$$\frac{dv_1}{dt} + \alpha_1 v_2(t) + \int_0^{T_0} \Phi_1(\tau) v_2(t-\tau) d\tau = 0$$

(80')
$$\frac{dv_2}{dt} + \alpha_2 v_1(t) + \int_0^{T_0} \Phi_2(\tau) v_1(t-\tau) d\tau = 0.$$

2. Supponiamo ora che le equazioni precedenti ammettano soluzioni periodiche rispetto al tempo aventi lo stesso periodo. Sviluppandole in serie di Fourier, potremo scrivere³².

$$v_{1} = \sum_{1}^{\infty} {}_{m} (a'_{m} \operatorname{sen} m \lambda t + b'_{m} \operatorname{cos} m \lambda t)$$

$$v_{2} = \sum_{1}^{\infty} {}_{m} (a''_{m} \operatorname{sen} m \lambda t + b''_{m} \operatorname{cos} m \lambda t).$$

Ammettendo di potere applicare a queste serie la derivazione termine a termine, eseguendola e sostituendo nelle precedenti equazioni si otterrà

$$\sum_{1}^{\infty} {}_{m} \{ [a'_{m} m \lambda + \alpha_{1} b''_{m} - a''_{m} \int_{0}^{T_{0}} \Phi_{1}(\tau) \operatorname{sen} m \lambda \tau d\tau + b''_{m} \int_{0}^{T_{0}} \Phi_{1}(\tau) \operatorname{cos} m \lambda \tau d\tau] \operatorname{cos} m \lambda t +$$

$$+ [-b'_{m} m \lambda + \alpha_{1} a''_{m} + a''_{m} \int_{0}^{T_{0}} \Phi_{1}(\tau) \operatorname{cos} m \lambda \tau d\tau +$$

$$+ b''_{m} \int_{0}^{T_{0}} \Phi_{1}(\tau) \operatorname{sen} m \lambda \tau d\tau] \operatorname{sen} m \lambda t \} = 0$$

 $^{^{32}}$ I termini corrispondenti a m = 0 debbono mancare.

$$\sum_{1}^{\infty} {}_{m} \{ [a''_{m} m \lambda + \alpha_{2} b'_{m} - a'_{m} \int_{0}^{T_{0}} \Phi_{2}(\tau) \operatorname{sen} m \lambda \tau d\tau - b'_{m} \int_{0}^{T_{0}} \Phi_{2}(\tau) \operatorname{cos} m \lambda \tau d\tau] \operatorname{cos} m \lambda t +$$

$$+ [-b''_{m} m \lambda - \alpha_{2} a'_{m} + a'_{m} \int_{0}^{T_{0}} \Phi_{2}(\tau) \operatorname{cos} m \lambda \tau d\tau - b'_{m} \int_{0}^{T_{0}} \Phi_{2}(\tau) \operatorname{sen} m \lambda \tau d\tau] \operatorname{sen} m \lambda t \} = 0.$$

Da queste equazioni si ricava

$$a'_{m}m\lambda - a''_{m}M_{11}^{(m)} + b''_{m}(\alpha_{1} + M_{12}^{(m)}) = 0,$$

$$-b'_{m}m\lambda + a''_{m}(\alpha_{1} + M_{12}^{(m)}) + b''_{m}M_{11}^{(m)} = 0,$$

$$a'_{m}M_{21}^{(m)} - b'_{m}(\alpha_{2} + M_{22}^{(m)}) + a''_{m}m\lambda = 0,$$

$$-a'_{m}(\alpha_{2} + M_{22}^{(m)}) - b'_{m}M_{21}^{(m)} - b''_{m}m\lambda = 0,$$

ove si è posto

$$\mathbf{M}_{11}^{(m)} = \int_{0}^{T_{0}} \Phi_{1}(\tau) \operatorname{sen} m\lambda \tau d\tau \qquad , \qquad \mathbf{M}_{12}^{(m)} = \int_{0}^{T_{0}} \Phi_{1}(\tau) \operatorname{cos} m\lambda \tau d\tau$$

$$\mathbf{M}_{21}^{(m)} = \int_{0}^{T_{0}} \Phi_{2}(\tau) \operatorname{sen} m\lambda \tau d\tau \qquad , \qquad \mathbf{M}_{22}^{(m)} = \int_{0}^{T_{0}} \Phi_{2}(\tau) \operatorname{cos} m\lambda \tau d\tau .$$

Eliminando fra le quattro equazioni lineari precedenti a'_m , b'_m , a''_m , b''_m , si trova, se queste non sono tutte eguali a zero,

$$(M) \begin{vmatrix} m\lambda & , 0 & , -M_{11}^{(m)} & , \alpha_1 + M_{12}^{(m)} \\ 0 & , -m\lambda & , \alpha_1 + M_{12}^{(m)} & , M_{11}^{(m)} \\ M_{21}^{(m)} & , -\alpha_2 + M_{22}^{(m)} & , m\lambda & , 0 \\ -\alpha_2 + M_{22}^{(m)} & , -M_{21}^{(m)} & , 0 & , -m\lambda \end{vmatrix} = 0.$$

e, sviluppando questo determinante, si ottiene

(M')
$$\begin{bmatrix} m^2 \lambda^2 - (\alpha_1 + M_{12}^{(m)})(\alpha_2 + M_{22}^{(m)}) \end{bmatrix}^2 + M_{11}^2 (\alpha_2 + M_{22}^{(m)})^2 + \\ + M_{21}^2 (\alpha_1 + M_{12}^{(m)})^2 + M_{11}^{(m)^2} M_{21}^{(m)^2} + 2m^2 \lambda^2 M_{11}^{(m)} M_{21}^{(m)} = 0.$$

3. Ora, con un'analisi che abbiamo già impiegata in altra occasione per questioni ereditarie³³, si può riconoscere che - $M_{11}^{(m)}$ e $M_{21}^{(m)}$ sono quantità positive, se $\Phi_1(\tau)$ e $\Phi_2(\tau)$ sono funzioni positive decrescenti per $0 \le \tau < T_0$. Supponiamo infatti

$$\frac{2(h-1)\pi}{m\lambda} < T_0 \le \frac{2h\pi}{m\lambda}$$

ove h è un numero intero e positivo, e poniamo $2\pi/m\lambda$ = 0. Avremo

$$\int_{0}^{\omega} \Phi_{i}(\tau) \operatorname{sen} m \lambda \tau d\tau > 0 , \int_{\omega}^{2\omega} \Phi_{i}(\tau) \operatorname{sen} m \lambda \tau d\tau > 0,...$$

$$\dots \int_{(h-1)\omega}^{T_{0}} \Phi_{i}(\tau) \operatorname{sen} m \lambda \tau d\tau > 0 ,$$

³³ Vibrazioni elastiche nel caso delle eredità, «Rend. della R. Acc. dei Lincei», vol. XXI, serie 5^a, 2° sem., fasc. 1°, luglio 1912.

essendo i = 1, 2. Da qui segue:

$$\mathbf{M}_{11}^{(m)} = \int_{0}^{T_0} \Phi_1(\tau) \operatorname{sen} m\lambda \tau d\tau > 0$$
 , $\mathbf{M}_{21}^{(m)} = \int_{0}^{T_0} \Phi_2(\tau) \operatorname{sen} m\lambda \tau d\tau > 0$.

Basterà dunque che sia soddisfatta, per $0 \le \tau < T_0$, una delle tre condizioni seguenti

(VI)
$$\Phi_1(\tau) > 0$$
 e decrescente, $\Phi_2(\tau) > 0$ e decrescente

(VII)
$$\Phi_1(\tau) = 0, \Phi_2(\tau) > 0$$
 e decrescente, $\alpha_1 \neq 0$

(VIII)
$$\Phi_2(\tau) = 0, \Phi_1(\tau) > 0$$
 e decrescente, $\alpha_2 \neq 0$,

perché il primo membro della equazione (M'), ossia il determinante che costituisce il primo membro della (M), sia positivo. In questi tre casi le equazioni (M) e (M') non possono essere soddisfatte, ed in conseguenza a'_m , b'_m , a''_m , b''_m , debbono esser tutte nulle, ossia soluzioni periodiche non possono sussistere.

Le equazioni che regolano le fluttuazioni biologiche sono le equazioni (IV) e (V) del § 1, le quali si possono ricavare dalle (K') e (L') (vedi il n. 2 del presente paragrafo) facendo $F_1 = 0$, $\gamma_2 = 0$, mentre $\gamma_1 > 0$, $\varepsilon_1 > 0$, e, se si ammette che l'azione ereditaria vada continuamente decrescendo di intensità, $F_2 > 0$ e decrescente.

È dunque verificata la condizione precedente (VII) che esclude l'esistenza nel caso ereditario di piccole fluttuazioni periodiche.

4. Noi possiamo dimostrare il teorema per altra via senza ricorrere allo sviluppo in serie di Fourier.

Dalle equazioni (80) e (80') segue

Variazioni e fluttuazioni del numero d'individui....

$$\left(\alpha_{2}V_{1}(t) + \int_{0}^{T_{0}} \Phi_{2}(\tau)V_{1}(t-\tau)d\tau\right) \frac{dV_{1}}{dt} + \left(\alpha_{1}V_{2}(t) + \int_{0}^{T_{0}} \Phi_{1}(\tau)V_{2}(t-\tau)d\tau\right) \frac{dV_{2}}{dt} = 0,$$

equazione che si può scrivere

$$\frac{d}{dt} \left(\frac{1}{2} \alpha_{2} v_{1}^{2}(t) + v_{1}(t) \int_{0}^{T_{0}} \Phi_{2}(\tau) v_{1}(t-\tau) d\tau + \frac{1}{2} \alpha_{1} v_{2}^{2}(t) + v_{2}(t) \int_{0}^{T_{0}} \Phi_{1}(\tau) v_{2}(t-\tau) d\tau \right) =$$

$$= v_{1}(t) \int_{0}^{T_{0}} \Phi_{2}(\tau) \frac{d}{dt} v_{1}(t-\tau) d\tau +$$

$$+ v_{2}(t) \int_{0}^{T_{0}} \Phi_{1}(\tau) \frac{d}{dt} v_{2}(t-\tau) dt =$$

$$= -v_{1}(t) \int_{0}^{T_{0}} \Phi_{2}(\tau) \frac{d}{d\tau} \left[v_{1}(t-\tau) - v_{1}(t) \right] d\tau -$$

$$- v_{2}(t) \int_{0}^{T_{0}} \Phi_{1}(\tau) \frac{d}{d\tau} \left[v_{2}(t-\tau) - v_{2}(t) \right] d\tau.$$

Mediante una integrazione per parti, tenendo conto che (cfr. § 1, n. 3)

$$\Phi_2(T_0) = \Phi_1(T_0) = 0$$

l'ultimo membro diverrà

$$v_{1}(t)\int_{0}^{T_{0}} \Phi'_{2}(\tau) [v_{1}(t-\tau)-v_{1}(t)]d\tau + v_{2}(t)\int_{0}^{T_{0}} \Phi'_{1}(\tau) [v_{2}(t-\tau)-v_{2}(t)]d\tau,$$
 onde l'equazione precedente si scriverà

Variazioni e fluttuazioni del numero d'individui....

$$\begin{cases}
\frac{d}{dt} \left(\frac{1}{2} \alpha_{2} v_{1}^{2}(t) + v_{1}(t) \int_{0}^{T_{0}} \Phi_{2}(\tau) v_{1}(t-\tau) d\tau + \frac{1}{2} \alpha_{1} v_{2}^{2}(t) + v_{2}(t) \int_{0}^{T_{0}} \Phi_{1}(\tau) v_{2}(t-\tau) d\tau \right) \\
= \int_{0}^{T_{0}} \Phi'_{2}(\tau) \left[v_{1}(t) v_{1}(t-\tau) - v_{1}^{2}(t) \right] d\tau + \int_{0}^{T_{0}} \Phi'_{1}(\tau) \left[v_{2}(t) v_{2}(t-\tau) - v_{2}^{2}(t) \right] d\tau.
\end{cases}$$

Osserviamo ora che

$$\frac{1}{2} \frac{d}{dt} \left(\int_{0}^{T_{0}} \Phi_{2}(\tau) v_{1}^{2}(t-\tau) d\tau + \int_{0}^{T_{0}} \Phi_{1}(\tau) v_{2}^{2}(t-\tau) d\tau \right) =$$

$$= -\frac{1}{2} \int_{0}^{T_{0}} \Phi_{2}(\tau) \frac{d}{d\tau} \left[v_{1}^{2}(t-\tau) - v_{1}^{2}(t) \right] d\tau -$$

$$-\frac{1}{2} \int_{0}^{T_{0}} \Phi_{1}(\tau) \frac{d}{d\tau} \left[v_{2}^{2}(t-\tau) - v_{2}^{2}(t) \right] d\tau =$$

$$= \frac{1}{2} \int_{0}^{T_{0}} \Phi'_{2}(\tau) \left[v_{1}^{2}(t-\tau) - v_{1}^{2}(t) \right] d\tau +$$

$$+\frac{1}{2} \int_{0}^{T_{0}} \Phi'_{1}(\tau) \left[v_{2}^{2}(t-\tau) - v_{2}^{2}(t) \right] d\tau.$$

Sottraendo membro a membro l'equazione precedente dall'equazione (81), si trova

$$\frac{1}{2} \frac{d}{dt} \left\{ \alpha_{2} v_{1}^{2} + \alpha_{1} v_{2}^{2} + \int_{0}^{T_{0}} \left[\Phi_{2}(\tau) v_{1}(t - \tau) (2v_{1}(t) - v_{1}(t - \tau)) + \Phi_{1}(\tau) v_{2}(t - \tau) (2v_{2}(t) - v_{2}(t - \tau)) \right] d\tau \right\} =$$

$$= -\frac{1}{2} \int_{0}^{T_{0}} \left[\Phi'_{2}(\tau) (v_{1}(t - \tau) - v_{1}(t))^{2} + \Phi'_{1}(\tau) (v_{2}(t - \tau) - v_{2}(t))^{2} \right] d\tau.$$

Poniamo

$$\mathbf{A}_{1} = \int_{0}^{T_{0}} \Phi_{1}(\tau) d\tau \qquad , \qquad \mathbf{A}_{2} = \int_{0}^{T_{0}} \Phi_{2}(\tau) d\tau ,$$

$$\mathbf{H} = (\alpha_{2} + \mathbf{A}_{2}) v_{1}^{2}(t) + (\alpha_{1} + \mathbf{A}_{1}) v_{2}^{2}(t) - \int_{0}^{T_{0}} [\Phi_{2}(\tau)(v_{1}(t) - v_{1}(t - \tau))^{2} + \Phi_{1}(\tau)(v_{2}(t) - v_{2}(t - \tau))^{2}] d\tau .$$

L'equazione precedente potrà scriversi

$$\frac{dH}{dt} = -\int_{0}^{T_{0}} \left[\Phi'_{2}(\tau) (v_{1}(t) - v_{1}(t - \tau))^{2} + \Phi'_{1}(\tau) (v_{2}(t) - v_{2}(t - \tau))^{2} \right] d\tau.$$

Se una delle funzioni Φ_1 , Φ_2 è decrescente e l'altra è pure decrescente o nulla, il secondo membro dell'ultima equazione sarà positivo, quindi H sarà una funzione sempre crescente. Ma se v_1 e v_2 fossero funzioni periodiche collo stesso periodo anche H dovrebbe essere periodica e quindi non potrebbe crescere sempre; dunque resta esclusa la periodicità di v_1 e v_2 collo stesso periodo, e perciò viene dimostrata la proposizione enunciata al principio di questo paragrafo.

5. Applicando i risultati dei teoremi VI, VII, VIII del § 1, oppure direttamente applicando alle equazioni (80)

e (80') i procedimenti usati per dimostrare quei teoremi, e tenendo inoltre conto di quanto adesso è stato ottenuto, si può giungere al

Teorema I. – Gli integrali v_1 (t) e v_2 (t) delle equazioni (80) e (80'), col crescere indefinito del tempo, oscillano attorno al valore zero attraversandolo infinite volte e passando per infiniti massimi e minimi; nondimeno se una delle due funzioni Φ_1 e Φ_2 è decrescente e l'altra è pure decrescente o nulla, la espressione H formata con v_1 e v_2 varierà sempre nello stesso senso, cioè crescerà continuamente.

Abbiamo poi l'altra proposizione:

Teorema II. – Se in un istante H è positivo le oscillazioni di v_1 e v_2 non potranno entrambe smorzarsi.

Infatti se v_1 (t) e v_2 (t) tendessero a zero col crescere indefinito di t, anche H dovrebbe tendere a zero, mentre esso deve continuamente crescere a partire dal valore positivo assunto.

INDICE

Considerazioni preliminari

PARTE PRIMA

Associazione biologica di due specie.

- § 1. Due specie che si disputano uno stesso nutrimento
- § 2. Due specie una delle quali si nutre dell'altra
- § 3. Diagrammi di fluttuazione
- § 4. Effetti delle diverse azioni che possono scambievolmente esercitarsi due specie conviventi
- § 5. Limiti entro cui una causa distruttrice di due specie favorisce la specie mangiata

PARTE SECONDA

Associazione biologica di giù specie.

- § 1. Caso di un numero qualunque di specie che si disputano uno stesso nutrimento
- § 2. Caso di un numero qualunque di specie che si nutrono le une delle altre
- § 3. Numero pari di specie conviventi
- § 4. Numero dispari di specie conviventi
- § 5. Estensione delle tre leggi fondamentali sulle fluttuazioni
- § 6. Caso in cui il coefficiente d'accrescimento d'ogni singola specie dipende dal numero di individui della stessa specie

§ 7. Associazioni biologiche conservative e dissipative

PARTE TERZA

Svolgimento ed applicazioni della teoria generale.

- § 1. Teoremi generali sulle associazioni biologiche conservative e dissipative
- § 2. Fluttuazioni proprie e forzate e principio della loro sovrapposizione
- § 3. Variazioni fra limiti positivi sovrapposte ad un esaurimento
- § 4. Perturbazione prodotta in un'associazione biologica avente uno stato stazionario dall'aggiunta di una nuova specie
- § 5. Studio di una particolare associazione biologica di tre specie

PARTE QUARTA

Studio delle azioni ereditarie.

- § 1. Estensione della prima legge delle fluttuazioni al caso ereditario
- § 2. Estensione della seconda e della terza legge delle fluttuazioni al caso ereditario
- § 3. Non periodicità delle piccole fluttuazioni nel caso ereditario

APPENDICE^{34*}

1.

Per calcolare il periodo poniamo

$$n_1 = 1 + v_1$$
 , $n_2 = 1 + v_2$.

Le equazioni (18) diverranno

$$v_1^2 \left(\frac{1}{1 \cdot 2} - \frac{2v_1}{1 \cdot 2 \cdot 3} + \frac{3v_1^2}{1 \cdot 2 \cdot 3 \cdot 4} - \dots \right) = 1 - ex^{\frac{1}{2}}$$

$$v_2^2 \left(\frac{1}{1 \cdot 2} - \frac{2v_2}{1 \cdot 2 \cdot 3} + \frac{3v_2^2}{1 \cdot 2 \cdot 3 \cdot 4} - \dots \right) = 1 - e \left(\frac{x}{C} \right)^{-\frac{1}{2} \epsilon_1}$$

onde scrivendo

$$S(v) = \frac{1}{1 \cdot 2} - \frac{2v}{1 \cdot 2 \cdot 3} + \frac{3v^2}{1 \cdot 2 \cdot 3 \cdot 4} - \dots$$

sarà, prendendo convenientemente i segni dei radicali,

$$n_1 - 1 = v_1 = \sqrt{1 - ex^{\frac{1}{\epsilon_2}}} \frac{1}{\sqrt{S(v_1)}}$$

³⁴* Cfr. la nota con asterisco in corrispondenza al titolo della precedente Memoria. Per i nn. 1, 2, 3, 4 di questa appendice, cfr. rispettivamente le note con asterisco contenute nel n. 6, § 2, parte I; nel n. 8, § 2, parte I; nel n. 3, § 1, parte III; nel n. 8, § 1, parte III. [N.d.R.].

$$n_2 - 1 = v_2 = \sqrt{1 - e \left(\frac{x}{C}\right)^{-\frac{1}{\ell_1}}} \frac{1}{\sqrt{S(v_2)}}$$

e ciascuno dei 4 integrali si scriverà

$$\int_{x_1}^{x_2} \frac{dx}{\varepsilon_1 \varepsilon_2 x \sqrt{\left(1 - ex^{1/\varepsilon_2} \right) \left(1 - e\left(\frac{x}{C}\right)^{-1/\varepsilon_1}\right)}} \sqrt{S(v_1)S(v_2)}$$

ove si è posto

$$x_1 = Ce^{\varepsilon_1}$$
 , $x_2 = e^{-\varepsilon_2}$

ossia

$$\int_{x_{1}}^{x_{2}} \frac{dx}{\varepsilon_{1}\varepsilon_{2}x\sqrt{\left(1-\left(\frac{x}{x_{2}}\right)^{1/\varepsilon_{2}}\right)\left(1-e^{\left(\frac{x}{x_{1}}\right)^{-1/\varepsilon_{1}}}\right)}}\sqrt{S(v_{1})S(v_{2})}$$

Ma come è noto

$$1 - \left(\frac{x}{x_2}\right)^{1/\epsilon_2} = \sum_{1}^{\infty} {}_{m} (-1)^{m-1} \left(\frac{1}{\epsilon_2}\right)_{m} \left(1 - \frac{x}{x_2}\right)^{m}$$
$$1 - \left(\frac{x}{x_1}\right)^{-1/\epsilon_1} = \sum_{1}^{\infty} {}_{m} (-1)^{m-1} \left(-\frac{1}{\epsilon_1}\right)_{m} \left(1 - \frac{x}{x_1}\right)^{m}$$

ove

$$\left(\frac{1}{\varepsilon_2}\right)_m$$
 e $\left(\frac{-1}{\varepsilon_1}\right)_m$

denotano coefficienti binomiali.

Avremo dunque che l'integrale precedente potrà scriversi

$$\int_{x_{1}}^{x_{2}} \frac{\sqrt{S(v_{1})S(v_{2})}dx}{\varepsilon_{1}\varepsilon_{2}x\sqrt{\left\{\sum_{1=m}^{\infty}(-1)^{m-1}\left(\frac{1}{\varepsilon_{2}}\right)_{m}\left(1-\frac{x}{x_{2}}\right)^{m}\right\}\left\{\sum_{1=m}^{\infty}(-1)^{m-1}\left(-\frac{1}{\varepsilon_{1}}\right)_{m}\left(1-\frac{x}{x_{1}}\right)^{m}\right\}}}$$

Supponiamo che le fluttuazioni siano piccole in modo da poter trascurare in $S(v_1)$, $S(v_2)$ e nelle serie che figurano al denominatore della formula precedente tutti i termini eccettuati i primi. L'integrale precedente diverrà

$$\int_{x_{1}}^{x_{2}} \frac{dx}{2\epsilon_{1}\epsilon_{2}x\sqrt{\frac{1}{\epsilon_{1}\epsilon_{2}}\left(1-\frac{x}{x_{2}}\right)\left(\frac{x}{x_{1}}-1\right)}} = \frac{1}{2\sqrt{\epsilon_{1}\epsilon_{2}}} \int_{x_{1}}^{x_{2}} \frac{dx}{x\sqrt{\left(1-\frac{x}{x_{2}}\right)\left(\frac{x}{x_{1}}-1\right)}}$$

e coi noti metodi del calcolo integrale si trasformerà in

$$\frac{1}{\sqrt{\varepsilon_1 \varepsilon_2}} \int_0^\infty \frac{dt}{1+t^2} = \frac{\pi}{2\sqrt{\varepsilon_1 \varepsilon_2}}.$$

Dunque approssimativamente i quattro integrali estesi agli archi R_2 S_1 , S_1 S_2 , S_2 R_1 , R_1 R_2 sono uguali e quindi sarà

$$T = 4 \frac{\pi}{2\sqrt{\epsilon_1 \epsilon_2}} = \frac{2\pi}{\sqrt{\epsilon_1 \epsilon_2}}.$$

2.

Noi possiamo seguire ancora meglio un cambiamento di ciclo del genere considerato precedentemente se consideriamo il caso di piccole fluttuazioni giovandoci della soluzione approssimata (22) e supponendo inoltre che le variazioni di ε_1 , ε_2 , γ_1 , γ_2 , siano piccole.

Dalle (22) segue, chiamando con N'₁, N'₂ i valori variati di N₁ e N₂ quando variano ε_1 , ε_2 , γ_1 , γ_2 , E, α di $\delta\varepsilon_1$, $\delta\varepsilon_2$, $\delta\gamma_1$, $\delta\gamma_2$, δE , $\delta\alpha$ e tenendo conto solo delle parti del 1° ordine,

$$(22_{1}) \quad N'_{1} = \frac{\varepsilon_{2}}{\gamma_{2}} + \frac{\gamma_{1}}{\sqrt{\varepsilon_{1}}} E \cos\theta' + \frac{1}{\gamma_{2}} \delta \varepsilon_{2} - \frac{\varepsilon_{2}}{\gamma_{2}^{2}} \delta \gamma_{2} + \\ + \left(-\frac{1}{2} \frac{\gamma_{1}}{\varepsilon_{1}^{3/2}} E \delta \varepsilon_{1} + \frac{1}{\sqrt{\varepsilon_{1}}} E \delta \gamma_{1} + \frac{\gamma_{1}}{\sqrt{\varepsilon_{1}}} \delta E \right) \cos\theta' - \frac{\gamma_{1}}{\sqrt{\varepsilon_{1}}} E \delta \alpha \sin\theta',$$

$$(22_{2}) \quad N'_{2} = \frac{\varepsilon_{1}}{\gamma_{1}} + \frac{\gamma_{2}}{\sqrt{\varepsilon_{2}}} E \sin\theta' + \frac{1}{\gamma_{1}} \delta \varepsilon_{1} - \frac{\varepsilon_{1}}{\gamma_{1}^{2}} \delta \gamma_{1} + \\ + \left(-\frac{1}{2} \frac{\gamma_{2}}{\varepsilon_{2}^{3/2}} E \delta \varepsilon_{2} + \frac{1}{\sqrt{\varepsilon_{2}}} E \delta \gamma_{2} + \frac{\gamma_{2}}{\sqrt{\varepsilon_{2}}} \delta E \right) \sin\theta' + \frac{\gamma_{2}}{\sqrt{\varepsilon_{2}}} E \delta \alpha \cos\theta'$$

ove

$$\Theta = \sqrt{(\varepsilon_1 + \delta \varepsilon_1)(\varepsilon_2 + \delta \varepsilon_2)} t + \alpha$$
.

Non abbiamo potuto evidentemente calcolare $\cos\Theta'$ e $\sin\Theta'$ prendendo le parti del 1° ordine nelle $\delta\epsilon_1$, $\delta\epsilon_2$ perché t può assumere valori infinitamente grandi. Supponiamo ora che il cambiamento nelle ϵ_1 , ϵ_2 , . . . abbia luo-

go al tempo 0 e che in questo istante N'₁ e N'₂ siano eguali a

$$N_1 = \frac{\varepsilon_2}{\gamma_2} + \frac{\gamma_1}{\sqrt{\varepsilon_1}} E \cos \theta$$
 , $N_2 = \frac{\varepsilon_1}{\gamma_1} + \frac{\gamma_2}{\sqrt{\varepsilon_2}} E \sin \theta$

ove

$$\Theta = \sqrt{\varepsilon_1 \varepsilon_2} t + \alpha.$$

Osservando che per t = 0 si ha $\Theta = \Theta' = \alpha$, avremo le equazioni

$$\begin{split} &\frac{\gamma_2}{\sqrt{\epsilon_2}} \big(sen\alpha \, \delta \, E \, + \, cos\alpha \, \, E \, \, \delta \, \alpha \, \big) = \, - \, \frac{1}{\gamma_1} \delta \, \epsilon_1 \, + \, \frac{\gamma_2}{2\epsilon_2^{3/2}} \, E \, sen\alpha \, \delta \, \epsilon_2 \, + \, \frac{\epsilon_1}{\gamma_1^2} \delta \, \gamma_1 \, - \, \frac{E \, sen\alpha}{\sqrt{\epsilon_2}} \delta \, \gamma_2 \, , \\ &\frac{\gamma_1}{\sqrt{\epsilon_1}} \big(cos\alpha \, \delta \, E \, - \, sen\alpha \, \, E \, \, \delta \, \alpha \, \big) = \, - \, \frac{1}{\gamma_2} \delta \, \epsilon_2 \, + \, \frac{\gamma_1}{2\epsilon_1^{3/2}} \, E \, cos\alpha \, \delta \, \epsilon_1 \, + \, \frac{\epsilon_2}{\gamma_2^2} \delta \, \gamma_2 \, - \, \frac{E \, cos\alpha}{\sqrt{\epsilon_1}} \delta \, \gamma_1 \, , \end{split}$$

da cui si ricava

(22₃)
$$\delta E = \left(\frac{1}{2} \frac{E}{\epsilon_{1}} - M_{1} \operatorname{sen} \alpha\right) \delta \epsilon_{1} + \left(\frac{1}{2} \frac{E}{\epsilon_{2}} - M_{2} \cos \alpha\right) \delta \epsilon_{2} + \left(-\frac{E}{\gamma_{1}} + P_{1} \operatorname{sen} \alpha\right) \delta \gamma_{1} + \left(+\frac{E}{\gamma_{2}} + P_{2} \cos \alpha\right) \delta \gamma_{2}$$

(224) $\mathbb{E} \delta \alpha = -\mathbb{M}_1 \cos \alpha \delta \epsilon_1 + \mathbb{M}_2 \sin \alpha \delta \epsilon_2 + \mathbb{P}_1 \cos \alpha \delta \gamma_1 - \mathbb{P}_2 \sin \alpha \delta \gamma_2$ ove

$$\begin{split} M_{1} &= \frac{\sqrt{\epsilon_{2}}}{\gamma_{1}\gamma_{2}} + \frac{1}{2}\frac{E}{\epsilon_{1}} sen \alpha \qquad ; \qquad M_{2} &= \frac{\sqrt{\epsilon_{1}}}{\gamma_{1}\gamma_{2}} + \frac{1}{2}\frac{E}{\epsilon_{2}} cos \alpha ; \\ P_{1} &= \left(\frac{\sqrt{\epsilon_{2}}}{\gamma_{1}\gamma_{2}} + \frac{E}{\epsilon_{1}} sen \alpha\right) \frac{\epsilon_{1}}{\gamma_{1}} \quad ; \qquad P_{2} &= \left(\frac{\sqrt{\epsilon_{1}}}{\gamma_{1}\gamma_{2}} + \frac{E}{\epsilon_{2}} cos \alpha\right) \frac{\epsilon_{2}}{\gamma_{2}} \, . \end{split}$$

Sostituendo i valori (22₃), (22₄) nelle (22₁), (22₂) otteniamo i valori perturbati dei numeri di individui delle due specie se immaginiamo che nell'istante 0 principi e poi si conservi la perturbazione. Se prendiamo le medie di N'₁, N'₂ durante un periodo, spariscono evidentemente tutti i termini che contengono $\cos\Theta'$ e $\sin\Theta'$ e restano come valori medi

$$\frac{\varepsilon_2}{\gamma_2} + \frac{\delta \varepsilon_2}{\gamma_2} - \frac{\varepsilon_2 \delta \gamma_2}{\gamma_2^2}$$
, $\frac{\varepsilon_1}{\gamma_1} + \frac{\delta \varepsilon_1}{\gamma_1} - \frac{\varepsilon_1 \delta \gamma_1}{\gamma_1^2}$

espressioni che conducono alle stesse leggi trovate precedentemente.

3.

Il processo di variazione dei numeri di individui delle specie gode una particolare *invertibilità* che è opportuno mettere in evidenza.

Cambiamo nelle equazioni (B) t in 2 $t_0 - t$. Ponendo

(50*)
$$N_r(2 t_0 - t) = N'_r(t)$$

otterremo le equazioni

$$\beta_r \frac{dN'_r}{dt} = \left(-\epsilon_r \beta_r + \sum_{1}^n {}_s a_{rs} N'_s\right) N'_r.$$

Queste equazioni corrispondono alle variazioni di un'associazione biologica per la quale le ε_r sono cambiate in $-\varepsilon_r$ e le a_{rs} in $-a_{rs}$ (cfr. 1^a parte, § 4, n. 7). Essa potrà

chiamarsi *l'associazione biologica coniugata* della primitiva.

Il teorema fondamentale sulle associazioni biologiche coniugate è il seguente:

Al tempo t_0 i due sistemi coniugati coincidono, cioè

$$N_1(t_0) = N'_1(t_0)$$
, $N_2(t_0) = N'_2(t_0)$, ..., $N_n(t_0) = N'_n(t_0)$;

ed inoltre

$$N_r(t_0 - t) = N'_r(t_0 + t)$$
 , $N_r(t_0 + t) = N'_r(t_0 - t)$

ossia uno dei due sistemi coniugati assume col progredire del tempo tutti i valori presi dall'altro nei tempi anteriori ed in ordine inverso.

Ciò si dimostra immediatamente ponendo nella (50*) $t = t_0$, oppure $t_0 + t$ in luogo di t, oppure $t_0 - t$ in luogo di t.

Possiamo dunque dire che le *variazioni dei due siste*mi coniugati sono simmetriche rispetto al tempo t_0 o anche che l'una si specchia nell'altra.

Un altro teorema che si può enunciare e la cui dimostrazione è pure immediata è il seguente: *Il sistema co*niugato di un sistema conservativo è conservativo.

(Per un'associazione dissipativa se prenderemo in esame il sistema coniugato questo non risulterà né conservativo, né dissipativo in quanto che la corrispondente forma fondamentale sarà negativa).

La considerazione dei sistemi coniugati ci dà modo di dimostrare con altre parole (senza alterare l'essenza del procedimento) la seconda parte della proposizione del n. 3 (§ 1 della 3ª parte).

Ammettiamo infatti che, partendo da uno stato iniziale in cui tutte le N_1, N_2, \ldots, N_n sono finite e diverse da zero (chiamo i loro valori C_1, C_2, \ldots, C_n), un'associazione conservativa possa giungere, dopo un tempo finito T, ad uno stato in cui la specie h sia esaurita, vale a dire in cui $N_h = 0$.

Prendiamo l'associazione coniugata, la quale coincide nell'istante iniziale t = 0 con l'associazione data. All'istante -T dovevano N'_1, N'_2, \ldots, N'_n essere uguali ai valori di N_1, N_2, \ldots, N_n al tempo T. Quindi, per un teorema precedente, N'_1, N'_2, \ldots, N'_n saranno finiti; inoltre per l'ipotesi fatta, N'_h dovrà essere nullo. Trasportiamo l'origine dei tempi in -T, avremo allora che all'origine dei tempi N'_1, N'_2, \ldots, N'_n saranno finiti e $N'_h = 0$. Ora per un teorema precedentemente dimostrato N'_h dovrà conservarsi sempre nullo, quindi dopo decorso il tempo T dovrà mantenersi nullo. Ma in questo istante esso deve coincidere col valore C_h che è diverso da zero. Si giunge dunque ad una contraddizione, la quale prova l'assurdità dell'ipotesi che la specie h possa esaurirsi dopo un tempo finito.

Dunque: In un'associazione biologica conservativa nessuna specie può esaurirsi dopo un tempo finito.

4.

Poniamo

$$\varphi_r(N_r) = q_r - N_r \, \psi_r \, (N_r)$$

ove le q_r sono costanti.

Si avrà

$$\int \frac{\phi_r dN_r}{N_r} = q_r \log N_r - \int \psi_r(N_r) dN_r = q_r \log N_r - \theta_r(N_r).$$

Quindi, passando dai logaritmi ai numeri, l'integrale precedentemente trovato si scriverà:

$$\left(\frac{e^{\theta_{1}(N_{1})}}{N_{1}^{q_{1}}}\right)\left(\frac{e^{\theta_{2}(N_{2})}}{N_{2}^{q_{2}}}\right)...\left(\frac{e^{\theta_{n}(N_{n})}}{N_{n}^{q_{n}}}\right) = C$$

essendo C una costante positiva.

Possiamo quindi enunciare il teorema:

Se la convivenza delle specie rende i loro coefficienti di accrescimento della forma

$$\sum_{1}^{n} {}_{s} F_{rs}(N_{1}, N_{2}, ..., N_{n}) (q_{s} - N_{s} \theta'_{s} (N_{s}))$$

$$(F_{rs} = -F_{sr}, F_{rr} = 0)$$

le equazioni differenziali delle variazioni dei numeri d'individui appartenenti alle singole specie

$$\frac{dN_{r}}{dt} = N_{r} \sum_{1}^{n} {}_{s} F_{rs}(N_{1}, N_{2}, ..., N_{n}) (q_{s} - N_{s} \theta'_{s}(N_{s}))$$

avranno l'integrale

$$\left(\frac{e^{\theta_1(N_1)}}{N_1^{q_1}}\right)\left(\frac{e^{\theta_2(N_2)}}{N_2^{q_2}}\right)\ldots\left(\frac{e^{\theta_n(N_n)}}{N_n^{q_n}}\right) = C$$

ove C è una costante positiva.

Nel caso di due sole specie l'integrale precedente diviene

$$\left(\frac{e^{\theta_1(N_1)}}{N_1^{q_1}}\right)\left(\frac{e^{\theta_2(N_2)}}{N_2^{q_2}}\right) = C$$

quindi si può separare il tempo e ridurre il problema alle quadrature. Limitando convenientemente la forma delle funzioni f_r le teorie svolte nella Parte I e nella Parte II possono quindi generalizzarsi.

Ma è da osservare che la scelta delle F_{rs} costanti e delle $\theta'(N_r)$ pure costanti, come viene fatto in tutto lo svolgimento della presente teoria, resta giustificata dal fatto che conviene supporre che le conseguenze, in dato tempo, delle azioni fra individui di due specie differenti siano proporzionali al numero dei loro incontri nel medesimo tempo. Ora il numero incontri, in un dato tempuscolo, fra gl'individui della specie r e quelli della specie s è proporzionale a N_r N_s (cfr. 2^a parte, § 2, n. 1) donde la linearità delle f_r . Nondimeno non è da trascurarsi la generalizzazione indicata.