Precondición más débil de ciclos

Algoritmos y Estructuras de Datos I

Repaso: Precondición más débil

- ▶ **Definición.** La precondición más débil de un programa S respecto de una postcondición Q es el predicado P más débil posible tal que $\{P\}S\{Q\}$.
- ▶ Notación. wp(S, Q).
- ► Ejemplo:

$$\{wp(x := x+1, Q)\}$$
$$x := x + 1$$
$$\{Q : x \ge 7\}$$

- ▶ ¿Cuál es la precondición más débil de x:=x+1 con respecto a la postcondición $x \ge 7$?

Repaso: Triplas de Hoare

► Consideremos la siguiente tripla de Hoare:

$$\{P\} \ S \ \{Q\}.$$

- ► Esta tripla es válida si se cumple que:
 - 1. Si el programa S comienza en un estado que cumple P ...
 - 2. ... entonces termina luego de un número finito de pasos ...
 - 3. ... Y además en un estado que cumple Q.

Repaso: Lenguaje SmallLang

- ▶ Definimos un lenguaje imperativo basado en variables y las siguientes instrucciones:
 - 1. Nada: Instrucción skip que no hace nada.
 - 2. Asignación: Instrucción x := E.
- ► Además, tenemos las siguientes estructuras de control:
 - 1. Secuencia: **S1**; **S2** es un programa, si **S1** y **S2** son dos programas.
 - 2. Condicional: if B then S1 else S2 endif es un programa, si B es una expresión lógica y S1 y S2 son dos programas.
 - 3. Ciclo: while B do S endwhile es un programa, si B es una expresión lógica y S es un programa.

Repaso: Axiomas wp

- ▶ Axioma 1.wp(x := E, Q) \equiv def(E) $\wedge_L Q_E^{\times}$.
- ▶ Axioma 2. $wp(skip, Q) \equiv Q$.
- ▶ Axioma 3. $wp(S1; S2, Q) \equiv wp(S1, wp(S2, Q)).$
- ▶ Axioma 4.wp(if B then S1 else S2 endif, Q) \equiv

$$def(B) \wedge_L \quad \Big((B \wedge wp(\mathbf{S1}, Q)) \vee (\neg B \wedge wp(\mathbf{S2}, Q)) \Big)$$

▶ **Observación**: $wp(b[i] := e, Q) \equiv wp(b := (b; i : e), Q)$

Corrección y wp

Definición. Decimos que $\{P\}$ **S** $\{Q\}$ es válida sii $P \Rightarrow_L wp(\mathbf{S}, Q)$

¿Cuál es la precondición más débil?

```
\{???\}
while (x>0) do
x := x - 1
endwhile
\{x = 0\}
wp(while ..., x = 0) \equiv x \ge 0
```

¿Cuál es la precondición más débil?

```
\{???\}

i := 0;

while (x<5) do

x := x + 1;

i := i + 1

endwhile

\{x = 5 \land i = 5\}

wp(i := 0; while ..., x = 5 \land i = 5) \equiv x = 0
```

¿Cuál es la precondición más débil?

```
{???}

while (x==5) do

x := 5

endwhile

\{x \neq 5\}

wp(while ..., x \neq 5) \equiv x \neq 5
```

Precondición más débil de un ciclo

- ► Supongamos que tenemos el ciclo while B do S endwhile.
- ▶ **Definición.** Definimos $H_k(Q)$ como el predicado que define el conjunto de estados a partir de los cuales la ejecución del ciclo termina en exactamente k iteraciones:

$$H_0(Q) \equiv \operatorname{def}(B) \wedge \neg B \wedge Q,$$

 $H_{k+1}(Q) \equiv \operatorname{def}(B) \wedge B \wedge wp(S, H_k(Q))$ para $k \geq 0$.

▶ **Propiedad:** Si el ciclo realiza a lo sumo *k* iteraciones, entonces

$$wp(\text{while B do S endwhile}, Q) \equiv \bigvee_{i=0}^{k} H_i(Q)$$

¿Es válida la siguiente tripla de Hoare?

```
\{n \geq 0 \land i = 1 \land s = 0\}
while (i <= n) do
s := s + i;
i := i + 1
endwhile
\{s = \sum_{k=1}^{n} k\}
```

Ejemplo

```
{???}
while (0<i && i<3) do
   i := i +1
endwhile
{i = 3}</pre>
```

- ▶ A lo sumo, se va a ejecutar 2 veces el cuerpo del ciclo
- ▶ ¿Cuál es la precondición más débil?

$$wp(\mathbf{while}\ 0 < i < 3\ \mathbf{do\ i:=i+1}\ \mathbf{endwhile}, i = 3)$$

$$\equiv \quad \bigvee_{i=0}^{2} H_{i}(i = 3)$$

$$\equiv \quad H_{0}(i = 3) \lor H_{1}(i = 3) \lor H_{2}(i = 3)$$

$$\equiv \quad i = 1 \lor i = 2 \lor i = 3$$

Otro ejemplo

```
 \begin{tabular}{ll} \{???\} \\ & \text{while (0<i \&\& i<n) do} \\ & i := i + 1 \\ & \text{endwhile} \\ & \{i \geq 0\} \\ \end{tabular}
```

- ▶ ¿Cuántas veces se va a ejecutar el cuerpo del ciclo?
- ▶ ¿Podemos usar la propiedad anterior para conocer la precondición más débil?
- ▶ ¡No! Porque no podemos fijar a priori una cota superior a la cantidad de iteraciones que va a realizar el ciclo.

Precondición más débil de un ciclo

► Ahora tratemos de usar el **Axioma 5**:

$$wp(\textbf{while B do S endwhile}, Q)$$

$$\equiv (\exists_{i\geq 0})H_i(Q)$$

$$\equiv H_0(Q) \vee H_1(Q) \vee H_2(Q) \vee \dots$$

$$\equiv \vee_{i=0}^{\infty}(H_i(Q))$$
¡Es una fórmula infinitaria!

▶ Por lo tanto, no podemos usar mecánicamente el **Axioma 5** para demostrar la corrección de un ciclo con una cantidad no acotada a priori de iteraciones :(

Precondición más débil de un ciclo

- ▶ Intituivamente: wp(while B do S endwhile, Q) tiene que ser una fórmula lógica capaz de capturar todos los estados tales que, luego de ejecutar el ciclo una cantidad arbitraria de veces, vale Q.
- Axioma 5:

```
wp(\text{while B do S endwhile}, Q) \equiv (\exists_{i>0})(H_i(Q))
```

Recap: Teorema del Invariante

- ▶ **Teorema.** Si def(B) y existe un predicado I tal que
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$,

... y **el ciclo termina**, entonces la siguiente tripla de Hoare es válida:

$$\{P_C\}$$
 while B do S endwhile $\{Q_C\}$

- ► Esta observación es un teorema que se deduce de la definición anterior.
- ► Las condiciones 1-3 garantizan la corrección parcial del ciclo (la hipótesis de terminación es necesaria para garantizar corrección).

Ejemplo: suma de índices

- ▶ $\{n \ge 0 \land i = 1 \land s = 0\}$ while (i <= n) do s = s + i; i = i + 1; endwhile $\{s = \sum_{k=1}^{n} k\}$
- ► En la clase anterior identificamos los predicados necesarios para aplicar el Teorema del Invariante:

$$P_C \equiv n \ge 0 \land i = 1 \land s = 0$$

$$Q_C \equiv s = \sum_{k=1}^n k$$

$$\triangleright$$
 $B \equiv i < n$

$$I \equiv 1 \le i \le n + 1 \land s = \sum_{k=1}^{i-1} k$$

$I \wedge \neg B \Rightarrow Q_C$

$$I \wedge \neg B \equiv 1 \leq i \leq n + 1 \wedge s = \sum_{k=1}^{i-1} k \wedge \neg (i \leq n)$$

$$\equiv 1 \leq i \leq n + 1 \wedge s = \sum_{k=1}^{i-1} k \wedge i > n$$

$$\Rightarrow 1 \leq i \leq n + 1 \wedge s = \sum_{k=1}^{i-1} k \wedge i = n + 1$$

$$\Rightarrow 1 \leq i \leq n + 1 \wedge s = \sum_{k=1}^{n+1-1} k \wedge i = n + 1$$

$$\Rightarrow s = \sum_{k=1}^{n} k \equiv Q_C$$

Por lo tanto, podemos concluir que $I \wedge \neg B \Rightarrow Q_C$.

$$P_C \Rightarrow I$$

$$P_{C} \equiv n \geq 0 \land i = 1 \land s = 0$$

$$\Rightarrow 1 \leq i \leq n + 1 \land s = 0$$

$$\Rightarrow 1 \leq i \leq n + 1 \land s = \sum_{k=1}^{0} k$$

$$\Rightarrow 1 \leq i \leq n + 1 \land s = \sum_{k=1}^{i-1} k$$

$$\equiv l$$

Por lo tanto, podemos afirmar que $P_C \Rightarrow I$.

$\{I \wedge B\} S \{I\}$

Para demostrar $\{I \land B\} S \{I\}$ tenemos que probar que

$$I \wedge B \Rightarrow wp(S, I)$$

$$wp(s := s + i; i := i + 1, 1 \le i \le n + 1 \land s = \sum_{k=1}^{i-1} k)$$

$$\equiv wp(s := s + i, wp(i := i + 1, 1 \le i \le n + 1 \land s = \sum_{k=1}^{i-1} k))$$

$$\equiv wp(s := s + i, def(i + 1) \land_{L} (1 \le i + 1 \le n + 1 \land s = \sum_{k=1}^{i+1-1} k))$$

$$\equiv wp(s := s + i, 1 \le i + 1 \le n + 1 \land s = \sum_{k=1}^{i+1-1} k)$$

$$\equiv def(s + i) \land_{L} (1 \le i + 1 \le n + 1 \land s + i = \sum_{k=1}^{i+1-1} k)$$

$$\{I \wedge B\} S \{I\}$$

$$\equiv 0 \le i \le n \land s + i = \sum_{k=1}^{i} k \equiv 0 \le i \le n \land s = \sum_{k=1}^{i-1} k$$

► Nos falta probar que

$$\left(\underbrace{1 \leq i \leq n+1 \land s = \sum_{k=1}^{i-1} k \land \underbrace{i \leq n}_{B}}\right) \Rightarrow \underbrace{\left(0 \leq i \leq n \land s = \sum_{k=1}^{i-1} k\right)}_{wp(S,I)}$$

- Esto es cierto ya que $i \le n$ y = $\sum_{k=1}^{i-1} k$ son parte del antecedente y además $1 \le i$ implica $0 \le i$.
- ▶ Por lo tanto podemos concluir que $\{I \land B\}$ S $\{I\}$ es una tripla de Hoare válida (i.e., verdadera)

Teorema de terminación de un ciclo

- **Teorema.** Sea $\mathbb V$ el producto cartesiano de los dominios de las variables del programa y sea I un invariante del ciclo **while B do S endwhile**. Si existe una función $fv : \mathbb V \to \mathbb Z$ tal que
 - 1. $\{I \land B \land v_0 = fv\}$ **S** $\{fv < v_0\}$, 2. $I \land fv < 0 \Rightarrow \neg B$,

... entonces la ejecución del ciclo **while B do S endwhile** siempre termina.

- La función fv se llama función variante del ciclo.
- ► El Teorema de terminación nos permite demostrar que un ciclo termina (i.e. no se cuelga).

Ejemplo: suma de índices

- ▶ $\{n \ge 0 \land i = 1 \land s = 0\}$ while (i <= n) do s = s + i; i = i + 1; endwhile $\{s = \sum_{k=1}^{n} k\}$
- ► Con las hipótesis que probamos podemos decir que si el ciclo siempre termina, entonces la tripla de Hoare es válida.
- ▶ **Pero** ..., ¡no probamos que el ciclo termina!
- ¿Cómo podemos probar si dada una precondición, un ciclo siempre termina?
 - ▶ Para eso tenemos el Teorema de terminación.

Ejemplo: Suma de índices

- ▶ $\{n \ge 0 \land i = 1 \land s = 0\}$ while (i <= n) do s = s + i; i = i + 1; endwhile $\{s = \sum_{k=1}^{n} k\}$
- ➤ Ya probamos que el siguiente predicado es un invariante de este ciclo.

$$I \equiv 1 \le i \le n+1 \land \mathsf{s} = \sum_{k=1}^{i-1} k$$

¿Cúal sería una buena función variante para este ciclo?

▶ Ejecutemos el ciclo con n = 6.

Iteración	i	S	n	n+1-i
0	1	0	6	6
1	2	1	6	5
2	3	3	6	4
3	4	6	6	3
4	5	10	6	2
5	6	15	6	1
6	7	21	6	0

- ▶ Una función variante representa una cantidad que se va reduciendo a lo largo de las iteraciones. En este caso es la cantidad de índices que falta sumar.
- ▶ Proponemos entonces fv = n+1-i.

Ejemplo: Suma de índices

- ▶ Veamos que se cumplen las dos condiciones del teorema.
- 2. Verifiquemos que $I \wedge fv \leq 0 \Rightarrow \neg B$

$$I \land fv \le 0 \equiv 1 \le i \le n+1 \land s = \sum_{k=1}^{i-1} k \land n+1-i \le 0$$

$$\Rightarrow i \le n+1 \land n+1-i \le 0$$

$$\Rightarrow i \le n+1 \land n+1 \le i$$

$$\Rightarrow i = n+1$$

$$\Rightarrow \neg(i \le n)$$

$$\Rightarrow \neg B$$

Ejemplo: Suma de índices

- ▶ Veamos que se cumplen las dos condiciones del teorema.
- 1. Para verificar que $\{I \land B \land fv = v_0\}$ S $\{fv < v_0\}$ para todo v_0 , calculamos $wp(S, fv < v_0)$.

$$\begin{aligned} ℘(s:=s+1;i:=i+1,fv< v_0)\\ &\equiv wp(s:=s+1;i:=i+1,(n+1-i)< v_0)\\ &\equiv wp(s:=s+1,wp(i:=i+1,(n+1-i)< v_0))\\ &\equiv wp(s:=s+1,def(i+1)\wedge_L(n+1-(i+1))< v_0))\\ &\equiv wp(s:=s+1,(n+1-(i+1))< v_0))\\ &\equiv def(s+1)\wedge_L n-i< v_0\\ &\equiv n-i< v_0 \end{aligned}$$

► Es trivial verificar que $fv = n + 1 - i = v_0$ implica $n - i < v_0$, luego este punto queda verificado.

Ejemplo: Suma de índices

Recapitulando, sean

▶
$$I \equiv 1 \le i \le n + 1 \land s = \sum_{k=1}^{i-1} k$$

Ya habíamos probado que el ciclo es parcialmente correcto dado que:

1.
$$P_C \Rightarrow I$$

2.
$$\{I \wedge B\}$$
 S $\{I\}$

3.
$$I \wedge \neg B \Rightarrow Q_C$$

Y además también acabamos de probar que el ciclo siempre termina ya que:

4.
$$\{I \wedge B \wedge v_0 = fv\}$$
 S $\{fv < v_0\}$,

5.
$$I \wedge fv < 0 \Rightarrow \neg B$$
.

Por lo tanto, por (1)-(5) tenemos (finalmente) que ...

Ejemplo: Suma de índices

▶ Que la siguiente tripla de Hoare:

```
\begin{aligned} &\{P_C: n \geq 0 \wedge i = 1 \wedge s = 0\} \\ &\text{while (i <= n) do} \\ &s = s + i; \\ &i = i + 1; \\ &\text{endwhile} \\ &\{Q_C: s = \sum_{k=1}^n k\} \end{aligned}
```

jes una tripla de Hoare válida!

- ► Esto significa que:
 - 1. Si el ciclo comienza en un estado que cumple P_C
 - 2. ... entonces termina luego de un número finito de pasos
 - 3. y además en un estado que cumple Q_C

$$\{n \ge 0 \land k = 0\}$$
while((k+1) * (k+1) <= n) do
 k:=k+1
endwhile
$$\{k^2 \le n < (k+1)^2\}$$

$$P_C \equiv k = 0 \land n \ge 0,$$

$$Q_C \equiv k^2 \le n < (k+1)^2.$$

$$B \equiv (k+1)^2 \le n$$

$$I \equiv ?$$

$$B \equiv (k+1)^2 \le n$$

$$\neg B \equiv n < (k+1)^2 \le n$$

Para que se cumpla Q_C al final de ciclo, ¿qué se debe cumplir siempre?

$$I \equiv 0 < k \wedge k^2 < n$$

Otro ejemplo: Aproximación de la raíz cuadrada

- ▶ ¿Es válida la siguiente tripla de Hoare?
- ▶ $\{n \ge 0 \land k = 0\}$ while((k+1) * (k+1) <= n) do k:=k+1 endwhile $\{k^2 \le n < (k+1)^2\}$
- ▶ Por ejemplo, con n = 15:

Iteración	n	k	k^2	$(k+1)^2$
0	15	0	0	1
1	15	1	1	4
2	15	2	4	9
3	15	3	9	16

Otro ejemplo: Aproximación de la raíz cuadrada

- ► Sean los siguientes predicados:
 - $P_C \equiv k = 0 \land n > 0$
 - $Q_C \equiv k^2 \le n < (k+1)^2$.
 - $B \equiv (k+1)^2 \le n$
 - $I \equiv 0 \le k \wedge k^2 \le n$
- ▶ Volviendo a los valores para n = 15:

Iteración	n	k	k^2	$(k+1)^2$	$0 \le k \wedge k^2 \le n$
0	15	0	0	1	V
1	15		1	4	V
2	15	2	4	9	V
3	15	3	9	16	V

Por lo tanto, parece que $I \equiv 0 \le k \wedge k^2 \le n$ es un buen candidato a invariante.

Otro ejemplo: Aproximación de la raíz cuadrada

▶ Para probar que se cumplen las condiciones del Teorema del Invariante tenemos que demostrar formalmente que se cumple:

1.
$$P_C \Rightarrow I$$

2.
$$\{I \land B\} \ S \ \{I\}$$

3.
$$I \wedge \neg B \Rightarrow Q_C$$

Otro ejemplo: Aproximación de la raíz cuadrada

3.
$$I \wedge \neg B \Rightarrow Q_C$$
?
$$I \wedge \neg B = 0 < k \wedge k^2$$

$$I \wedge \neg B \equiv 0 \le k \wedge k^2 \le n \wedge \neg ((k+1)^2 \le n)$$

 $\Rightarrow k^2 \le n < (k+1)^2$

▶ $I \land \neg B \Rightarrow Q_C$ también es directo.

Otro ejemplo: Aproximación de la raíz cuadrada

1.
$$P_C \Rightarrow I$$
?

$$P_C \equiv n \ge 0 \land k = 0$$

$$\Rightarrow n \ge 0 \land k = 0 \land k^2 = 0$$

$$\Rightarrow 0 \le k \land k^2 \le n$$

$$\equiv I$$

▶ $P_C \Rightarrow I$ es trivial, recordando que la precondición dice $n \ge 0$, y que podemos usar esta información en cualquier momento dado que n es constante en el algoritmo:

Otro ejemplo: Aproximación de la raíz cuadrada

2. Finalmente, tenemos que demostrar que $\{I \land B\}$ S $\{I\}$, para lo cual debemos probar que:

$$I \wedge B \Rightarrow wp(S, I).$$

Calculamos:

$$wp(\mathbf{k} := \mathbf{k+1}, I) \equiv def(k+1) \wedge I_{k+1}^{k}$$

$$\equiv true \wedge 0 \leq (k+1) \wedge (k+1)^{2} \leq n$$

$$\equiv 0 \leq (k+1) \wedge (k+1)^{2} \leq n$$

► Ahora tenemos que probar que:

$$\underbrace{0 \leq k \wedge k^2 \leq n}_{I} \wedge \underbrace{(k+1)^2 \leq n}_{B} \Rightarrow \underbrace{0 \leq (k+1) \wedge (k+1)^2 \leq n}_{wp(S,I)}$$

... y lo cual es trivialmente cierto ya que el consecuente está en el antecedente.

Otro ejemplo: Aproximación de la raíz cuadrada

- ► Ya que probamos
 - $P_C \Rightarrow I$
 - \blacktriangleright $\{I \land B\}S\{I\}$
 - ▶ $I \land \neg B \Rightarrow Q_C$
- usando el teorema del invariante pudimos probar que (si el ciclo termina), se cumple Q_C .
- ▶ Ya probamos que $I \equiv 0 \le k \land k^2 \le n$ es un invariante del ciclo.
- ▶ ¡Pero no probamos todavía que la ejecución del ciclo termina!

Otro ejemplo: Aproximación de la raíz cuadrada

▶ Sea la siguiente función candidato a función variante:

$$fv = n - (k+1)^2 - 1$$

ightharpoonup Veamos como evoluciona con los valores para n=15

Iteración	n	k	k^2	$(k+1)^2$	$fv = n - (k+1)^2 + 1$
0	15	0	0	1	15-1+1=15
1	15	1	1	4	15-4+1=12
2	15	2	4	9	15-9+1=7
3	15	3	9	16	15-16+1=0

Otro ejemplo: Aproximación de la raíz cuadrada

- ► La función variante representa una cantidad que se va reduciendo.
- ► En este caso se va reduciendo la distancia entre *k* y el resultado esperado. Pero... ¿Cuál la condición para que se detenga el ciclo?
 - $B \equiv (k+1)^2 \le n$
 - Necesitamos que $fv \le 0$ implique $\neg((k+1)^2 \le n)$
- ▶ Por lo que proponemos entonces:

$$fv = n - (k+1)^2 + 1$$

Otro ejemplo: Aproximación de la raíz cuadrada

- ► Con esta definición de fv, veamos si se cumplen las dos condiciones del Teorema de Terminación:
 - 1. $\{I \land B \land fv = v_0\} \ S \ \{fv < v_0\}$
 - 2. $I \wedge fv \leq 0 \Rightarrow \neg B$

Otro ejemplo: Aproximación de la raíz cuadrada

▶ ${I \land B \land fv = v_0} S {fv < v_0}$?

Para demostrarlo tenemos que probar que:

$$I \wedge B \wedge fv = v_0 \Rightarrow wp(S, fv < v_0)$$

Partimos de la definición de la wp:

$$wp(\mathbf{k} := \mathbf{k+1}, n - (k+1)^2 + 1 < v_0)$$

$$\equiv def(k+1) \wedge n - (k+1+1)^2 + 1 < v_0$$

$$\equiv n - (k+2)^2 + 1 < v_0$$

... como $\mathit{fv} = \mathit{v}_0$ equivale a $\mathit{n} - (\mathit{k} + 1)^2 + 1$, reemplazamos v_0 con esa expresión

$$\equiv n - (k+2)^2 + 1 < n - (k+1)^2 + 1$$

$$\equiv -(k+2)^2 < -(k+1)^2$$

Lo cual es verdadero ya que $k \ge 0$. Por lo tanto, demostramos que $I \land B \land fv = v_0 \Rightarrow wp(S, fv < v_0)$.

Otro ejemplo: Aproximación de la raíz cuadrada

- ► Finalmente, probamos que:
 - 1. $P_C \Rightarrow I$
 - 2. $\{I \wedge B\}S\{I\}$
 - 3. $I \wedge \neg B \Rightarrow Q_C$
 - 4. $\{I \wedge v_0 = fv\} S \{fv < v_0\}$
 - 5. $I \wedge fv < 0 \Rightarrow \neg B$
- ► Entonces, por (1)-(5) , se cumplen las hipótesis de ambos teoremas (teorema del invariante + teorema de terminación).
- ▶ Por lo tanto, la tripla de Hoare es válida (i.e., dada P_C , el ciclo siempre termina y vale Q_C)

Otro ejemplo: Aproximación de la raíz cuadrada

2. $I \wedge fv < 0 \Rightarrow \neg B$?

$$I \wedge fv \leq 0 \equiv 0 \leq k \wedge k^{2} \leq n \wedge n - (k+1)^{2} + 1 \leq 0$$

$$\equiv 0 \leq k \wedge k^{2} \leq n \wedge n \leq (k+1)^{2} - 1$$

$$\Rightarrow k^{2} \leq n \wedge n \leq (k+1)^{2} - 1 < (k+1)^{2}$$

$$\Rightarrow n < (k+1)^{2}$$

$$\equiv \neg B$$

- ▶ Por lo tanto, probamos que $I \land fv \le 0 \Rightarrow \neg B$
- ➤ Ya que se cumplen sus hipótesis, por el teorema de terminación podemos concluir que el ciclo siempre termina.

Recap #1: Teorema del invariante

- ► **Teorema.** Si def(B) y existe un predicado I tal que
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$

... y **el ciclo termina**, entonces la siguiente tripla de Hoare es válida:

 $\{P_C\}$ while B do S endwhile $\{Q_C\}$

Recap #2: Teorema de terminación de un ciclo

▶ **Teorema.** Sea $\mathbb V$ el producto cartesiano de los dominios de las variables del programa y sea I un invariante del ciclo **while B do S endwhile**. Si existe una función $fv : \mathbb V \to \mathbb Z$ tal que

1.
$$\{I \land B \land v_0 = fv\}$$
 S $\{fv < v_0\}$,
2. $I \land fv < 0 \Rightarrow \neg B$,

... entonces la ejecución del ciclo **while B do S endwhile** siempre termina.

La función fv se llama función variante del ciclo.

Teorema de corrección de un ciclo

- ▶ El **teorema de corrección de un ciclo** nos permite demostrar la validez de una tripla de Hoare cuando el programa es un ciclo.
- ▶ Por definición, si probamos que:

$$\{P_C\}$$
 while B do S endwhile $\{Q_C\}$

... entonces probamos que:

$$P_C \Rightarrow wp(\text{ while B do S endwhile }, Q_C)$$

▶ ¡Cuidado! Probar lo anterior no significa haber obtenido un predicado que caracteriza a la precondición más débil del ciclo:

wp(while B do S endwhile, Q_C)

Teorema de corrección de un ciclo

▶ **Teorema.** Sean un predicado I y una función $fv : \mathbb{V} \to \mathbb{Z}$ (donde \mathbb{V} es el producto cartesiano de los dominios de las variables del programa), y supongamos que $I \Rightarrow \text{def}(B)$. Si

```
1. P_C \Rightarrow I,

2. \{I \land B\} S \{I\},

3. I \land \neg B \Rightarrow Q_C,

4. \{I \land B \land v_0 = fv\} S \{fv < v_0\},

5. I \land fv < 0 \Rightarrow \neg B,
```

... entonces la siguiente tripla de Hoare es válida:

 $\{P_C\}$ while B do S endwhile $\{Q_C\}$

Programas con ciclos

- ► En general, no se puede definir un mecanismo efectivo para obtener una fórmula cerrada que represente la precondición más débil de un ciclo.
- ► Entonces, ¿cómo hacemos para probar la corrección y terminación de un programa que incluye ciclos intercalados con otras instrucciones?

Programas con ciclos

► Supongamos que tenemos la siguiente tripla de Hoare:

```
\{Pre: n \ge 0\}

s := 0;

i := 1;

while i \le n do

s := s + i;

i := i + 1

endwhile;

result := s

\{Post: result = \sum_{k=1}^{n} k\}
```

Para demostrar que es válida necesitamos probar que es válida la fórmula:

$$\underbrace{n \geq 0}_{Pre} \Rightarrow wp(s := 0; i := 1; while \dots; result := s, result = \sum_{k=1}^{n} k)$$

Recap: Suma de índices

► Antes probamos que la siguiente tripla es válida:

```
\{P_C: n \ge 0 \land i = 1 \land s = 0\} while (i <= n) do s = s + i; i = i + 1; endwhile \{Q_C: s = \sum_{k=1}^n k\}
```

▶ Por lo tanto, sabemos que se cumple que:

$$\underbrace{\left(n \geq 0 \land i = 1 \land s = 0\right)}_{P_C} \Rightarrow wp(while \dots, s = \sum_{k=1}^{n} k)$$

Demostrando programas con ciclos

$$n \ge 0 \implies wp(s := 0; i := 1; while \dots; result := s, result = \sum_{k=1}^{n} k)$$

$$\equiv wp(s := 0; i := 1; while \dots, wp(result := s, result = \sum_{k=1}^{n} k))$$

$$\equiv wp(s := 0; i := 1; wp(while \dots, s = \sum_{k=1}^{n} k))$$

Como no podemos aplicar el Axioma 5 (no está acotado el número de iteraciones), ¿qué podemos hacer entonces?

Demostrando programas con ciclos

► Para poder usar que:

$$\underbrace{\left(n \geq 0 \land i = 1 \land s = 0\right)}_{P_C} \Rightarrow wp(while \dots, s = \sum_{k=1}^{n} k)$$

- ... necesitamos probar que efectivamente el programa cumple $n \ge 0 \land i = 1 \land s = 0$ antes de que comience la ejecución del while.
- ► En otras palabras, necesitamos probar que:

$$\underbrace{n \geq 0}_{Pre} \Rightarrow wp(s := 0; i := 1, \underbrace{n \geq 0 \land i = 1 \land s = 0}_{P_C})$$

▶ ; Es esto verdadero?

Demostrando programas con ciclos

$$n \ge 0$$
 \Rightarrow $wp(s := 0; i := 1, n \ge 0 \land i = 1 \land s = 0)$
 \equiv $wp(s := 0, wp(i := 1, n \ge 0 \land i = 1 \land s = 0))$
 \equiv $wp(s := 0, n \ge 0 \land 1 = 1 \land s = 0)$
 \equiv $wp(s := 0, n \ge 0 \land s = 0)$
 \equiv $n \ge 0 \land 0 = 0$
 \equiv $n \ge 0$
Verdadero

Recap: Corolario de la monotonía de la wp

- ► Corolario: Si
 - $P \Rightarrow wp(S1, Q),$
 - $ightharpoonup Q \Rightarrow wp(S2, R),$

entonces

 $P \Rightarrow wp(S1; S2, R).$

Demostrando programas con ciclos

Por lo tanto, ya demostramos que:

$$\underbrace{n \geq 0}_{Pre} \Rightarrow wp(s := 0; i := 1, \underbrace{n \geq 0 \land i = 1 \land s = 0}_{P_C})$$

► A esto llamémoslo Lema 1

Y además probamos que:

$$\underbrace{\left(n \geq 0 \land i = 1 \land s = 0\right)}_{P_C} \Rightarrow wp(while \dots, s = \sum_{k=1}^{n} k)$$

► A esto otro llamémoslo Lema 2

Entonces, ¿qué propiedad que vimos la clase pasada podemos usar?

¡Corolario de la monotonía de la wp!

Lema 3

- ► Tenemos que:
 - 1. $n > 0 \Rightarrow wp(s := 0; i := 1, n > 0 \land i = 1 \land s = 0)$
 - 2. $(n \ge 0 \land i = 1 \land s = 0) \Rightarrow wp(while \dots, s = \sum_{k=1}^{n} k)$.
- ► Entonces, por el corolario de la monotonía de la wp podemos concluir que:

$$n \ge 0 \Rightarrow wp(s := 0; i := 1; while \dots, s = \sum_{k=1}^{n} k)$$

Demostrando programas con ciclos

▶ Volviendo a lo que habíamos desarrollado anteriormente:

$$n \ge 0 \implies wp(s := 0; i := 1; while ...; result := s, result = \sum_{k=1}^{n} k)$$
 $n \ge 0 \implies wp(s := 0; i := 1; while ..., wp(result := s, result = \sum_{k=1}^{n} k))$
 $n \ge 0 \implies wp(s := 0; i := 1; wp(while ..., s = \sum_{k=1}^{n} k))$

- ▶ Ahora, por **Lema 3**, esto es verdadero.
- ▶ Por lo tanto, probamos que es verdadero que:

$$\underbrace{n \geq 0}_{Pre} \Rightarrow wp(s := 0; i := 1; while \dots; result := s, result = \sum_{k=1}^{Post} k)$$

Guía para demostrar programas con ciclos

Cuando tenemos programas con ciclos: S1; while...; S3

- 1. Aplicamos los axiomas de wp hasta que que no podemos aplicar ninguno y obtenemos Q_C .
- 2. Probamos que la tripla de Hoare que contiene al ciclo es verdadera. Esto nos permite concluir que $P_C \Rightarrow wp(while..., Q_C)$.
- 3. Utilizamos el corolario de la monotonía de wp para concluir que $Pre \Rightarrow wp(S1; while \dots, Q_C)$ es verdadero.
- 4. Esto finalmente nos permite demostrar que $Pre \Rightarrow wp(S1, while ...; S3, Post)$ es verdadera.

Programas con ciclos

```
De este modo, probamos que la siguiente tripla de Hoare es válida:  \{ Pre : n \geq 0 \}   s := 0;   i := 1;   while i <= n do   s := s + i;   i := i + 1   endwhile;   result := s   \{ Post : result = \sum_{k=1}^{n} k \}
```

Recap: SmallLang

- ▶ Para las demostraciones de corrección, introdujimos un lenguaje sencillo y con menos opciones (mucho más simple que C++). Llamemos **SmallLang** a este lenguaje.
- ► SmallLang tiene únicamente:

```
Nada: skip
Asignación: x := E
Secuencia: S1;S2
Condicional: if B then S1 else S2 endif
Ciclo: while B do S endwhile
```

▶ No posee memoria dinámica (punteros), aliasing, llamados a función, estructura for, etc.

$C++ \rightarrow SmallLang$

Pero dado un programa en C++ podemos traducirlo a SmallLang preservando su semántica (comportamiento). Por ejemplo:

Ambos programas tienen el mismo comportamiento.

Bibliografía

- ► David Gries The Science of Programming
 - ▶ Part II The Semantics of a Small Language
 - ► Chapter 11 The Iterative Command

Corrección de programas en C++

Para demostrar la corrección de un programa en C++ con respecto a una especificación, podemos:

- 1. Traducir el programa C++ a SmallLang preservando su comportamiento.
- 2. Demostrar la corrección del programa en SmallLang con respecto a la especificación.
- 3. Entonces, probamos la corrección del comportamiento del programa original.