CH10, CH11 習題演練

陳家威 1

December 20, 2022

¹R10323045@ntu.edu.tw

複習

内生性

什麼時候(最需要)考慮內生性

- Y 跟 X 被共同因子決定
 - ▶ 薪資與工作決定— 能力
 - ▶ 嬰兒體重與母親抽菸 健康意識
 - ▶ 道路出事率與車種 使用者族群
- Y 跟 X 同時被決定
 - ▶ 價格與數量 需求 & 供給

工具變數與 2SLS

解決方法

- 1. 找一個影響 X 但不影響 Y 的變數
- 2. 做一次回歸把「乾淨的 X」過濾出來
- 3. 再一次回歸,把Y對「乾淨的X」做回歸

可以用 ivregress 指令輕鬆做到

ivregress 2sls y x1 x2 (x3 = z1 z2 z3), first

- 解釋變數為 y
- x3 為內生變數,有些因子共同影響 x3 與 y
- z1 z2 z3 影響 x3 但不影響 y

聯立模型

如果模型長這樣

$$q_i = \alpha_1 + \alpha_2 p_i + \alpha_3 A_i + \alpha_4 B_i + u_i$$
 供給

$$q_i = \beta_1 + \beta_2 p_i + \beta_3 C_i + \beta_4 D_i + v_i$$
 需求

則 p, q 被共同決定,所以也內生性問題。

- 1. 先估計縮減式 $p_i = A + B + C + D$ 得到第一階段預測 \hat{p}_i
- 2. 估計供給:

$$q_i = \alpha_1 + \alpha_2 \hat{p}_i + \alpha_3 A_i + \alpha_4 B_i + u_i$$

3. 估計需求:

$$q_i = \beta_1 + \beta_2 \hat{p}_i + \beta_3 C_i + \beta_4 D_i + v_i$$

聯立模型 — STATA

作法一、

```
1 ivregress 2sls q (p=C D) A B, first
2
3 ivregress 2sls q (p=A B) C D, first
```

作法二、用 3SLS 來估計聯立模型

1 reg3 (q p A B)(q p C D), endog(q p)

雞肉市場

考慮雞肉市場的供需

$$\ln(Q_t) = \alpha_1 + \alpha_2 \ln(P_t) + \alpha_3 \ln(Y_t) + \alpha_4 \ln(PB_t) + \alpha_5 POPGRO_t + e_t^d$$

$$\ln(QPROD_t) = \beta_1 + \beta_2 \ln(P_t) + \beta_3 \ln(PF_t) + \beta_4 TIME_t + \beta_5 \ln(QPROD_{t-1}) + e_t^s$$

■ 需求:

- ▶ 價錢
- ▶ 人均收入
- ▶ 牛肉價格
- ▶ 人口成長率

■ 供給:

- ▶ 價格
- ▶ 飼料價格
- ▶ 年份指數
- ▶ 上一期的供給量

Ļ

先看需求

内生變數:消費量、價格

內生變數

由模型決定出來的變數稱為內生變數。在這裡價格與數量,是市場供需調整後定下的。

非模型決定則為外生變數

一個反向思考的方式為,其他被認為是外生變數的,有沒有可能其 實有內生性?

例如有無可能「某些原因同時使雞肉供給數量減少,也造成出生率下降」?

先看需求

内生變數:消費量、價格

內生變數

由模型決定出來的變數稱為內生變數。在這裡價格與數量,是市場供需調整後定下的。

非模型決定則為外生變數

一個反向思考的方式為,其他被認為是外生變數的,有沒有可能其 實有內生性?

例如有無可能「某些原因同時使雞肉供給數量減少,也造成出生率 下降」?

内外生的判斷

內外生的判斷通常需要一些經濟理論模型與經濟直覺,也需要一些「故事」來 motivate 這樣的想法。本身並沒有一個絕對的對錯,但常常如果沒想到有哪些共同決定 Y 與 X 的故事,就會出現不正確的因果推論。

單純地進行估計

常見的錯誤:單純把結構式進行 OLS

需求線負斜率並不顯著

	In_q
ln_p	-0.156
	(0.0825)
In_y	0.987***
	(0.0630)
In_pb	-0.158
	(0.0897)
popgro	0.168***
	(0.0326)
_cons	-6.197***
	(0.635)

工具變數 IV

那些因素共同影響均衡需求量與價格?— 供給線!跟供給有關的有

- (價格)
- 飼料價格
- 年份指數
- 上一期的供給量

將這些變數作為工具變數,做兩階段估計

選定供給線中的外生變數當 Ⅳ 進 行兩階段估計

需求線負斜率顯著

	In_q	In_q
In_p	-0.156	-0.255*
	(0.0825)	(0.125)
ln_y	0.987***	0.932***
	(0.0630)	(0.0867)
In pb	-0.158	-0.0990
	(0.0897)	(0.0897)
popgro	0.168***	0.223***
1 10	(0.0326)	(0.0375)
_cons	-6.197***	-5.708***
	(0.635)	(0.876)

檢定 2SLS

用以下指令來檢定第一階段

1 estat firststage

First-stage	regression	summary	statistics
-------------	------------	---------	------------

Variable	R-sq.	Adjusted R-sq.	Partial R-sq.	F(4,31)	Prob > F
ln_p	0.9063	0.8852	0.3727	4.60547	0.0049

Minimum eigenvalue statistic = 4.60547

Critical Values	# of endogenous regressors:	1
Ho: Instruments are weak	# of excluded instruments:	4

2SLS relative bias	5% 16.85	10% 10.27	20% 6.71	30% 5.34
	10%	15%	20%	25%
2SLS Size of nominal 5% Wald test	24.58	13.96	10.26	8.31
LIML Size of nominal 5% Wald test	5.44	3.87	3.30	2.98

一般選用 F>10 作為好的 IV 的標準 — 無法拒絕是一個弱 IV

另類檢驗法

也可以土法煉鋼去檢驗

- ${\scriptstyle 1}$ reg ln_p ln_pf time qprod_l lexpts_l ln_y ln_pb popgro
- 2 test ln_pf time qprod_l lexpts_l

第一階段的變數

在進行第一階段估計時,除了工具變數以外,其他外生變數也要一併納入估計。

而檢驗則只需要做工具變數的聯合檢定。

時間序列上的現象

老師跳過了時間序列的部分,透過這題稍微補充。

Figure: 殘差項的折線圖

時間序列上面的變異數異質性

異質性

- $\bullet e_i \sim \mathcal{N}(0, \sigma_i^2), \sigma_i^2 = h(x_i \beta)$
- $\bullet e_t = \rho e_{t-1} + \nu_t$

兩種都違反 OLS 的假設,第二種 $cov(e_t,e_{t-1}) \neq 0$,稱為自相關 (autocorrelation)。這時模型出現了自相關誤差 (autoregressive error)。

自相關誤差解決方法

與一般異質性問題類似,可以兩種做法

- 1. 將錯就錯,但好好把有自相關時的變異數計算出來 Heteroskedasticity and Autocorrelation Consistent(HAC) Standard Error
- 2. 將變數做改變 GLS

以這題為例,示範計算兩階段估計時,遇到有自相關的時候的穩健 做法 — HAC 穩健標準誤差。

vce(hac nw 2) first

NEWEY-WEST HAC 標準誤差

- 指令中的 vce 告訴 Stata 要特別計算標準誤差。
- hac 表示要考慮異質性 (heteroskedasticity) 與自相關 (autocorrelation) 的問題
- nw 表示要用 Newey-West (1987) 的計算方法 (不用管)
- 2 表示在考慮自相關時,要考慮兩期的落後,也就是 $e_t = \rho_1 e_{t-1} + \rho_2 e_{t-2} + \nu_t$ 。期數選擇超出範圍
- 如果不指定數字,就是用 N-2 期 lag (容易 over fit)

視覺化殘差像之間的自相關

一般來說會有兩種

Autocorrelation function —

$$\frac{corr(y_t, y_{t+h})}{\sqrt{var(y_t)var(y_{t+h})}}$$
$$y_t = \hat{\rho}_{t-k}^{AC} y_{t-k} + \mu_t$$

■ Partial autocorrelation function —

$$\frac{corr(y_t, y_{t+h} \mid y_{t...t+h-1})}{\sqrt{var(y_t \mid y_{t...t+h-1})var(y_{t+h} \mid y_{t...t+h-1})}}$$

$$y_t = \alpha + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \dots + \hat{\rho}_{t-k}^{PAC} y_{t-k} + \mu_t$$

選不同的 h ,都有對應的 AC, PAC, 可以連同標準誤差畫出來

供給

$$\ln(QPROD_t) = \beta_1 + \beta_2 \ln(P_t) + \beta_3 \ln(PF_t) + \beta_4 TIME_t + \beta_5 \ln(QPROD_{t-1}) - \beta_5 \ln(QPROD_{t-1}) + \beta_5 \ln(QPROD$$

內生變數:供給量、價格 外生變數:

- 飼料價格
- 年份指數
- 上一期的供給量

單純地進行估計

跟前面一樣,先看看常見的錯誤: 單純把結構式進行 OLS

供給線斜率不顯著為正

	In_qprod
In_p	0.0252
	(0.0671)
ln_pf	-0.0999*
	(0.0421)
time	0.0113*
	(0.00503)
L.ln_qprod	0.727***
	(0.104)
_cons	2.154**
	(0.782)

第一階段的顯著性

工具變數:

- ■人均收入
- 牛肉價格
- 人口成長率
- 上一期的出口

第一階段聯合檢定

	ln_p
In_y	0.856
	(0.630)
ام ما	0.219
ln_pb	
	(0.234)
popgro	-0.0231
	(0.118)
	(**==*)
L.lexpts	2.322**
	(0.709)
	, ,
In_pf	0.177
	(0.108)
	, ,
time	-0.0505*
	(0.0216)
L.ln_qprod	-0.141
L.III_qprod	
	(0.327)
cons	-5.412
	(6.297)
	(0.201)

作法二

也可以直接在 ivregress

Critical Values

First-stage regression summary statistics

Variable	R-sq.	Adjusted R-sq.	Partial R-sq.	F(4,31)	Prob > F
ln_p	0.9063	0.8852	0.2594	2.71428	0.0478

of endogenous regressors:

Minimum eigenvalue statistic = 2.71428

Ho: Instruments are weak	# of excluded instruments: 4			
2SLS relative bias	5% 16.85	10% 10.27	20% 6.71	30% 5.34
	10%	15%	20%	25%

供給函數的 2SLS

```
1 eststo est_2SLS : ivregress 2sls ln_qprod ///
2 (ln_p = ln_y ln_pb popgro L.lexpts) ///
3 ln_pf time L.ln_qprod, first
```

	est_b	est_2SLS	est_2SLS_HAC
ln_p	0.0252	0.0446	0.0446
	(0.0671)	(0.123)	(0.0891)
In_pf	-0.0999*	-0.105*	-0.105
	(0.0421)	(0.0486)	(0.0571)
time	0.0113*	0.0120*	0.0120*
	(0.00503)	(0.00589)	(0.00599)
L.In_qprod	0.727***	0.718***	0.718***
— ···	(0.104)	(0.110)	(0.132)
_cons	2.154**	2.214**	2.214*
	(0.782)	(0.800)	(1.001)

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001