

PRACOWNIA FIZYCZNA 1

Instytut Fizyki Centrum Naukowo Dydaktyczne

P1-O1. Wyznaczanie współczynnika załamania światła metodą pryzmatu

Zagadnienia

Zjawisko załamania światła. Prawo załamania światła. Względny i bezwzględny współczynnik załamania światła. Współczynnik załamania światła dla szkła, wody, diamentu. Pryzmat. Kąt łamiący pryzmatu. Bieg promienia w pryzmacie. Kąt minimalnego odchylenia pryzmatu.

1 Wprowadzenie

Na granicy ośrodków o różnej gęstości w związku ze zmianą prędkości światło ulega załamaniu. Prawo załamania ma postać

$$\frac{\sin \alpha}{\sin \beta} = \frac{v_1}{v_2} = n_{12},$$

gdzie n_{12} jest współczynnikiem załamania światła ośrodka 1 względem ośrodka 2, v_1 i v_2 są prędkościami światła w ośrodkach 1 i 2.

Pryzmat to przeźroczysta bryła, której płaszczyzny przecinają się pod $katem\ lamiącym\ \phi$, tworząc $krawędź\ lamiącą$. Przechodząc przez pryzmat, światło załamuje się dwukrotnie. Promień padający na ścianę pryzmatu pod kątem α_1 załamuje się pod kątem β_1 do normalnej. Promień załamany propaguje się przez materiał pryzmatu, pada na ściankę pod kątem β_2 , załamuje się i wychodzi z pryzmatu pod kątem α_2 do normalnej. Kąt, między kierunkiem promienia padającego i kierunkiem promienia odchylonego, oznaczony na rysunku jako δ , nazywa się $katem\ odchylenia\ pryzmatu$. Zależy on przede wszystkim od współczynnika załamania materiału z którego

Bieg promienia w pryzmacie

wykonany jest pryzmat, ale również od kąta padania α_1 . Kąt odchylenia o najmniejszej możliwej wartości nazywa się kątem minimalnego odchylenia.

Z obliczeń geometrycznych wynika zależność współczynnika załamania światła dla materiału, z którego wykonany jest pryzmat, a jego kątem łamiącym ϕ i kątem minimalnego odchylenia δ , jest następująca

$$n = \frac{\sin\frac{1}{2}(\varphi + \delta)}{\sin\frac{1}{2}\varphi}.$$
 (1)

Zatem, aby wyznaczyć współczynnik załamania światła dla materiału, z którego wykonany jest pryzmat, należy wyznaczyć (a) kat łamiący pryzmatu i (b) jego kat minimalnego odchylenia δ .

2 Układ pomiarowy

Układ pomiarowy składa się ze stolika goniometrycznego i oświetlacza. Źródłem światła monochromatycznego jest lampa sodowa. Stolik umożliwia pomiar kątów między promieniem padającym z kolimatora, a promieniem odbitym od pryzmatu, lub odchylonym po przejściu przez pryzmat. Najmniejsza podziałka stolika wynosi 20'.

3 Pomiary

Pomiar kąta łamiącego φ

- 1. Ustawić urządzenie tak, by w lunetce widać było wąską i wyraźną wiązkę światła padającego ze szczeliny kolimatora. Wiązka powinna być pionowa, krzyż pajęczy lunetki powinien pokrywać się z osią wiązki.
- 2. Zmierzyć szerokość kątową wiązki, trafiającej do lunetki, ustawiając linię krzyża pajęczego lunetki najpierw na prawej, a potem na lewej krawędzi wiązki.
- Badany pryzmat ustawić na stoliku tak, aby promień padał na jedną z jego dwóch płaszczyzn, tworzących kat łamiący, i był równoległy do dwusiecznej kata łamiącego.
- 4. Ustawić lunetkę tak, by promień odbity pokrywał się z linią krzyża pajęczego. Ze skali kątowej stolika odczytać położenie lunetki γ_1 . Przesunąć pryzmat równolegle, by wiązka padająca odbiła się od drugiej płaszczyzny pryzmatu. Odczytać położenie lunetki γ_2 .

Pomiar kata łamiącego

 \hookrightarrow W przypadku pryzmatu szklanego, którego krawędź łamiąca jest węższa niż wiązka, wystarczy postawić pryzmat kątem łamiącym na wprost wiązki i nie ruszając pryzmatu mierzyć kąty γ_1 i γ_2 . Przed następnym pomiarem, pryzmat należy ustawić na nowo.

szerol	kość w	viązki	
podziałka stolika			
Lp.	γ_1	γ_2	$\varphi = \frac{1}{2}(\gamma_1 - \gamma_2)$
1.			

- 5. Pomiary powtórzyć dziesieciokrotnie, za każdym razem na nowo ustawiając pryzmat.
- 6. Pomiary wykonać dla wszystkich pryzmatów znajdujących się w zestawie.

Pomiar kąta minimalnego odchylenia δ

- 1. Pryzmat ustawić na stoliku obrotowym tak, aby jego kąt łamiący znalazł się po prawej stronie osi kolimatora (rys. 1) i aby promień padający uległ odchyleniu w lewą stronę.
 - \hookrightarrow Uchwyt, służący do obracania stolika, powinien mieć w przybliżeniu kierunek dwusiecznej kąta łamiącego.

Rys. 1. Pomiar kata ε_1

Rys. 2. Pomiar kata ε_2

- 2. Znaleźć obraz wiązki w lunetce, a następnie obracając stolikiem w jedną stronę, znaleźć zwrotne położenie wiązki, odpowiadające minimalnemu odchyleniu promienia przechodzącego przez pryzmat. Odczytać pozycję lunetki ε_1 dla tego położenia.
- 3. Pryzmat ustawić na stoliku spektrometru tak, aby jego kąt łamiący znalazł się po lewej stronie osi kolimatora (rys. 2) i aby promienie na niego padające uległy odchyleniu w prawo.
- 4. Znaleźć zwrotne położenie wiązki, odpowiadające minimalnemu odchyleniu promienia przechodzącego przez pryzmat i odczytać jego położenie ε_2 .
- 5. Pomiar powtórzyć pięciokrotnie.

Lp.	ε_1	$arepsilon_2$	$\delta = \frac{1}{2}(\varepsilon_1 - \varepsilon_2)$
1.			

4 Opracowanie wyników pomiarów

Dla każdego z pryzmatów:

- 1. Obliczyć wartość kata łamiącego:
 - (a) Obliczyć kat łamiący dla każdej pary γ_1 i γ_2

$$\varphi = \frac{1}{2}(\gamma_1 - \gamma_2)$$

- (b) Obliczyć wartość średnią kąta łamiącego pryzmatu $\overline{\varphi}$ i odchylenie standardowe wartości średniej. Obliczyć niepewność statystyczną serii pomiarowej dla pomiaru kąta łamiącego $u_a(\overline{\varphi})$, uwzględniając współczynnik Studenta Fishera.
- (c) Obliczyć niepewność pomiarową kąta łamiącego $u_b(\varphi)$, uwzględniając podziałkę stolika i szerokość wiązki.
- (d) Obliczyć wartość niepewności całkowitej wyznaczenia wartości kąta łamiącego i zapisać wynik wraz z niepewnością w poprawnym formacie.
- 2. Obliczyć wartość kata minimalnego odchylenia:
 - (a) Obliczyć kąt minimalnego odchylenia dla każdej pary ε_1 i ε_2 .
 - (b) Obliczyć wartość średnią kąta minimalnego odchylenia $\bar{\delta}$ i odchylenie standardowe wartości średniej. Obliczyć niepewność statystyczną serii pomiarowej dla pomiaru kąta minimalnego odchylenia $u_a(\bar{\delta})$, uwzględniając współczynnik Studenta Fishera.
 - (c) Obliczyć niepewność pomiarową kąta minimalnego odchylenia $u_b(\delta)$, uwzględniając podziałkę stolika i szerokość wiązki.
 - (d) Obliczyć wartość niepewności całkowitej wyznaczenia wartości kąta minimalnego odchylenia i zapisać wynik wraz z niepewnością w poprawnym formacie.
- 3. Obliczyć wartość współczynnika załamania

$$n = \frac{\sin\frac{1}{2}(\varphi + \delta)}{\sin\frac{1}{2}\varphi}.$$

- 4. Korzystając z prawa propagacji niepewności obliczyć niepewność współczynnika załamania dla danego pryzmatu i zapisać wynik wraz z niepewnością w poprawnym formacie.
- 5. Skomentować zgodność otrzymanych wyników z danymi tablicowymi.