Module 4 Quiz

10/10 points (100%)

Quiz, 10 questions

~	Congra	atulations! You passed! Next Iter	m
	~	1/1 points	
	1. Which	of the following is FALSE:	
	0	A human gene can express at most 12 splice variants.	
	Corr	ect	
		Genes form discrete units along the genome.	
		Eukaryotic genes are interrupted, generally consisting of multiple exons.	
		More than 90% of human genes are alternatively spliced.	
	~	1 / 1 points	
	2. Which gene:	of the following is FALSE about the organization of a eukaryotic	
	0	The length of an intron cannot be a multiple of 3.	
	Corr	ect	
		The number of introns in a transcript is one less than the number of exons.	
		Some eukaryotic gene transcripts can consist of a single exon.	

Genes that have only one exon are not alternatively spliced.

Module 4 Quiz

10/10 points (100%)

Quiz, 10 questions

1/1 points

3.

What programs could you use to align RNA-seq reads to: i) a reference genome, and ii) a transcript database?

)	tophat,	sp	li1

Correct

	cufflinks,	bowtie
--	------------	--------

1/1 points

4.

Which of the following is FALSE:

()	Spliced reads can be used to determine the introns in a gene
	Spliced reads can be ased to determine the introlls in a gene

Correct

RNA-seq analyses can reveal known genes and their splice
variants, as well as novel genes.

'Transfrag' stands for 'transcript fragments', a reference to the fact than transcript assemblers cannot always reconstruct full-length splice variants.

1/1 points

points

5.

What programs could be used to: i) assemble transcripts from RNA-seq reads, and ii) identify potentially novel transcripts and genes

Module 4 Qi Quiz, 10 questions	uiz	cuffdiff, cuffdiff	10/10 points (100%)
		bowtie, tophat	
	0	cufflinks, cuffcompare	
	Corr	ect	
		igv, cuffdiff	
	~	1/1 points	
		of the following is FALSE about the gene annotations in the ng GTF snippet:	
	1 2 3 4 5 6 7 8 9 10	chr1 MGF gene 3413609 3671498 gene_id "MG051951"; chr1 MGF transcript 3413609 3416344 gene_id "MG051951"; transcript "MT162897"; chr1 MGF exon 3413609 3416344 gene_id "MG051951"; transcript_"MT162897"; chr1 MGF transcript 3421702 3671498 gene_id "MG051951"; transcript_"MT070533"; chr1 MGF exon 3670552 3671498 gene_id "MG051951"; transcript_"MT070533"; chr1 MGF CDS 3670552 3671348 0 gene_id "MG051951"; transcript_id; chr1 MGF exon 3421702 3421901 gene_id "MG051951"; transcript_"MT070533"; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id "MG051951"; transcript_id; chr1 MGF CDS 3421792 3421901 1 gene_id	id script_id id d "MT070533" id
	Corr	ect	
		Transcript MT070533 is designated as coding.	
		Gene MG051951 is protein-coding.	

7. Module 4 Quizat does the following code NOT do:

10/10 points (100%)

Quiz, 10 questions

```
1
    BWT2IDX=/home/me/genomes/hg20/hg20
    ANNOT=/home/me/genomes/hg20/myannot.gtf
    ANNOTIDX=/home/me/genomes/hg20/myannot/myannot
    mkdir -p /home/me/SRR100000
    tophat2 -o /home/me/SRR100000 -p 10 --max-multihits 10 \
8
            -r 26 --mate-std-dev 25 \
9
            -a 6 \
            -G $ANNOT --transcriptome-index $ANNOTIDX \setminus
10
11
            $BWT2IDX \
            /home/me/SRR100000_1.fastq.gz /home/me/SR100000_2.fastq.gz
12
13
    Use information about the insert size distribution, e.g. its
    average (26) and standard deviation (25)
    Load the gene annotations index from
    /home/me/genomes/hg20/myannot/myannot
    Report spliced reads with at most 6 mismatches in the anchor
```

Correct

site

Use known gene annotations in the first mapping stage

1/1 points

8.

What does the following code NOT do:

```
1 '``
2 TOPHATDIR=/home/florea/Tophat/
3
4 mkdir -p Test1
5 cd Test1
6 ln -s $TOPHATDIR/accepted_hits.bam .
7 cufflinks -L Test1 -p 8 -j 0.10 -F 0.05 accepted_hits.bam
```

Run cufflinks to assemble transcripts

Create a soft link to the BAM read alignment file in the Test1 directory

Label cufflinks transcripts with the prefix 'Test1'

Use the default reference transcript annotation to guide assembly

Correct

Module 4 Quiz

10/10 points (100%)

Quiz, 10 questions

1/1 points

9.

Which of the following is NOT described in the following summary file produced by tophat:

```
2
     Left reads:
                           : 60586968
                Input
                          : 58163843 (96.0% of input)
 4
                 Mapped
                  of these: 6832240 (11.7%) have multiple alignments (359075 have
 5
                    >10)
     Right reads:
                           : 60586968
                Input
                             55969290 (94.0% of input)
6668479 (11.7%) have multiple alignments (358573 have
 8
                 Mapped
                  of these:
 9
                    >10)
10
     95.0% overall read mapping rate.
11
     Aligned pairs: of these:
                      55880048
12
                       6491876 (11.6%) have multiple alignments
13
14
                       2795712 (5.0%) are discordant alignments
15
     87.6% concordant pair alignment rate.
16
```

- Of the mapped mate 2 reads, 5.0% had multiple matches on the genome
- Of the mapped mate 1 reads, 11.7% had multiple matches on the genome
- The library was strand-specific

Correct

94.0% of the mate 2 reads were mapped

1/1 points

10.

Which of the following is NOT TRUE about the output below, obtained from a cuffdiff differential expression analysis:

Module 4 Q	U1Z		points (100%)
Quiz, 10 questions	1 2 3 4	XLOC_000002 XLOC_000002 AT1G01020 1:5927-8737 q1 q2 0K 1.13032 3.48406 1 .62404 0.694576 0.5277 0.998846 no XLOC_000004 XLOC_000004 AT1G01073 1:44676-44787 q1 q2 NOTEST 0 0 0 0 1 1 XLOC_000042 XLOC_000042 AT1G01580 1:209394-213041 q1 q2 0K 1.59512 0 -inf nan 5e-05 0.0096703 yes	
	0	Locus XLOC_000042 is novel	
	Cori	rect	
		Locus XLOC_000042 is not expressed (FPKM is '0') in condition 2 sample(s)	
		Locus XLOC_000002 is differentially expressed between the two conditions	
		The log fold change for locus XLOC_000042 is '-inf'	

