PLP - 7

TOPIC 7 —STATEMENT TYPES AND SOME DEFINITIONS

Demirbaş & Rechnitzer

AFTER LOGIC BUT BEFORE PROOFS

TYPES OF STATEMENTS

axiom

Statements we accept as true without proof.

fact

Statements we accept as true, but we won't bother proving for this course

AXIOM 1.

Let m,n be integers then -n,m+n,m-n and $m\cdot n$ are also integers.

FACT:

Let $x \in \mathbb{R}$. Then $x^2 \geq 0$.

TYPES OF STATEMENTS

theorem

An important true statement — Pythagorous' theorem

corollary

A true statement that follows from a previous theorem

lemma

A true statement that helps us prove a more important result

result, proposition

True statements we prove (esp as exercises) we'll call results, or propositions (if more important)

USEFUL DEFINITIONS

DEFINITION: EVEN AND ODD NUMBERS.

An integer n is **even** if n=2k for some $k\in\mathbb{Z}$.

An integer n is odd if $n=2\ell+1$ for some $\ell\in\mathbb{Z}$.

If two integers are both even or both odd odd, then they have the same parity, else opposite parity.

Note:

- The use of *if* in a definition is really *iff*.
 - We mean "n is even" if and only if "n=2k for some $k\in\mathbb{Z}$ "
- The number 0 is even (some students are taught otherwise).

SOME MORE USEFUL DEFINITIONS

DEFINITION: (DIVISIBILITY).

Let $n,k\in\mathbb{Z}$. We say k divides n if there is $\ell\in\mathbb{Z}$ so that $n=\ell k$.

In this case we write $k \mid n$ and say that k is a divisor of n and that n is a multiple of k.

DEFINITION: (PRIME, COMPOSITE AND 1).

Let $n \in \mathbb{N}$. We say that n is **prime** when it has *exactly* two positive divisors, 1 and itself.

If n has more than two positive divisors then we say that it is composite.

Finally, the number 1 is neither prime nor composite.

GCD, LCM AND EUCLID

DEFINITION: (GCD AND LCM).

Let a, b be integers

- The greatest common divisor of a, b is the largest positive integer that divides both a, b
- The least common multiple of a,b is the smallest positive integer divisible by both a,b
- We denote these $\gcd(a,b)$ and $\operatorname{lcm}(a,b)$

FACT: (EUCLIDEAN DIVISION).

Let $a,b\in\mathbb{Z}$ with b>0, then there exist unique $q,r\in\mathbb{Z}$ so that

$$a = bq + r$$
 with $0 \le r < b$

CONGRUENCE MODULO n

DEFINITION:

Let $a,b\in\mathbb{Z}$ and $n\in\mathbb{N}$.

We say that a is congruent to b modulo n when $n \mid (a - b)$.

The "n" is referred to as the modulus and we write the congruence as $a \equiv b \pmod{n}$.

When $n \nmid (a - b)$ we say that a is not congruent to b modulo n, and write $a \not\equiv b \pmod{n}$.

For example:

$$5\equiv 1\ (\mathrm{mod}\ 4)$$
 $17\equiv 1\ (\mathrm{mod}\ 4)$ $3\not\equiv 9\ (\mathrm{mod}\ 4)$

P(·) > open centences (d) Number 1729 is not a cube; it's however sum of two cubes p: 1729 ?s a cube q: 1729 ?s the sum of two rubes ~P / Q ner e the sequence (nn) converges to n, then L'/nn) (on verges to 1/n. a(n) λ b(n,n) \Rightarrow c(n,n) \Rightarrow c(n,n) \Rightarrow c(n,n) \Rightarrow c(n,n) \Rightarrow c(n,n) \Rightarrow c(n,n) \Rightarrow c(n,n) (B2) If an gut n is divisible by 6 & 10, thon it's / by2. 71°. 6] n y 2010 | n Z:2 | n $\alpha(n) \vee y(n) \Rightarrow z(n)$ (0) Prove the stml that - Af n2+4n+5 is odd n is even, then Let n= 2m where 7 m E Z. so, for n2+hn+S (2m) 2+4(2m)+S an2+ Pm+S $21 2(2m^2+4m+2)+1$ is of the form 2j+1 for any $j=2m^2+4m+2$ where $3j \in \mathbb{Z}$ n^2+4n+5 is odd.