PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 25

MAT1106 — Introducción al Cálculo Fecha: 2020-12-03

Problema 1:

Dado una función $f:A\subseteq\mathbb{R}\to\mathbb{R}$ y un $c\in A$ demuestre que las siguientes definiciones son equivalentes:

- 1) Para todo abierto $N(f(c)) \subseteq \mathbb{R}$ que contiene a f(c) existe un abierto $N(c) \subseteq A$ que contiene a c tal que para todo $x \in N(C)$ se tiene que $f(x) \in N(f(c))$.
- 2) Para toda sucesión $\{x_n\}_{n\in\mathbb{N}}\subseteq A$ que converge a c se tiene que $\lim_{n\to\infty} f(x_n)=f(c)$.
- 3) Para todo $\varepsilon > 0$ existe un $\delta > 0$ tal que para todo $x \in D |x c| < \delta$ implica que $|f(x) f(c)| < \varepsilon$.

Solución problema 1:

Problema 2:

Dado una función $f:A\subseteq\mathbb{R}\to\mathbb{R}$ demuestre que las siguientes definiciones son equivalentes:

- 1) Para todo abierto $V \subseteq \mathbb{R}$ se tiene que $f^{-1}(V)$ es abierto.
- 2) Para todo cerrado $V \subseteq \mathbb{R}$ se tiene que $f^{-1}(V)$ es cerrado.
- 3) Para toda sucesión convergente $\{x_n\}_{n\in\mathbb{N}}\subseteq A$ se tiene que $\lim_{n\to\infty}f(x_n)=f(\lim_{n\to\infty}x_n)$.

Solución problema 2: