

VILNIUS UNIVERSITY SIAULIAI ACADEMY

PROGRAMŲ SISTEMOS BACHELOR STUDY PROGRAMME

Software engineering

ANNA KUTOVA

Programming of Embedded Systems

Laboratory work No.4

Virtual COM Port (VCP)

Laboratory Work Report

Table of Contents

1.	THE AIM OF THE LABORATORY WORK	2
2.	VARIANT NO AND DATA	. 2
3.	PROGRAM ALGORITHM	. 3
4.	PROGRAM BODY WITH COMMENTS	. 3
5.	PROGRAM SCREENSHOT	. 5
6	CONCLUSIONS	5

1. The Aim of the Laboratory Work

The purpose of this laboratory work is to study the Virtual COM Port (VCP) and implement data communication between a microcontroller and a PC via the USB-to-serial interface. The task involves developing a program that allowes:

- to turn ON / turn OFF LED_A
- to change the PWM signal duty cycle on LED_B (PWM frequency on your own choice)
- to receive the state of SW pin.

2. Variant No and Data

Variant No: 9

No.	LED_A	LED_B
9	LED2	LED1

Date: 04/03/2025

3. Program Algorithm

4. Program Body with Comments

```
1. from pyb import USB VCP, Pin, Timer
3. # Initialize button SW
4. pin SW = Pin("SW", Pin.IN, Pin.PULL DOWN)
5.
6. #----- LED A (on/off control)
7. vcp = USB VCP()
8. blue light = Pin("LED2", Pin.OUT) # LED A is LED2
9.
10. #----- LED B (PWM control on LED1)
11. p = Pin("LED1") # LED B is LED1
12.
13. # Set TIM3 frequency to 6000Hz
14. tim = Timer(3, freq=6000)
15.
16. # Configure PWM on Channel 3
17. ch = tim.channel(3, Timer.PWM, pin=p)
18.
19. # Initial PWM duty cycle
20. brightness = 0  # Start at 0%
21. step = 15
                     # Step for manual brightness change
22.
23. def fade led(timer):
24.
        global brightness, step
25.
        brightness += step
26.
        if brightness >= 100 or brightness <= 0:</pre>
27.
            step = -step # Reverse direction
28.
        ch.pulse width percent(brightness)
29.
30. # Use timer interrupt to change brightness
```

```
31. fade timer = Timer(5)
32. fade timer.init(freq=20, callback=fade led) # 20Hz \rightarrow period 50ms
33.
34. # Initialize the button state
35. prev state = pin SW.value()
36.
37. while True:
        cmd = vcp.recv(1, timeout=5000) # Expecting 1-character
  commands
39. if cmd: # Check if cmd is not None
            if cmd == b'y': # Turn LED A ON
40
41.
                blue light.high()
42.
                vcp.send("So bright! \r\n", timeout=5000)
43.
            elif cmd == b'n': # Turn LED A OFF
44.
                blue light.low()
45.
                vcp.send("It's dark in here( \r\n", timeout=5000)
46.
            elif cmd == b'u': # Increase LED B brightness
                if brightness + step <= 100:</pre>
47.
48.
                    brightness += step
49.
                ch.pulse width percent(brightness)
                vcp.send(f"Brightness: {brightness}%\r\n",
 timeout=5000)
           elif cmd == b'd': # Decrease LED B brightness
52.
                if brightness - step >= 0:
53.
                    brightness -= step
54.
                ch.pulse width percent(brightness)
                vcp.send(f"Brightness: {brightness}%\r\n",
 timeout=5000)
56.
            elif cmd == b's': # Get button state
57.
                state = "PRESSED" if pin SW.value() else "RELEASED"
58.
                vcp.send(f"Button state: {state}\r\n", timeout=5000)
59.
60.
        # Detect button state change
        current state = pin SW.value()
61.
62.
        if current state != prev state:
63.
            if current state:
64.
                print("BUTTON PRESSED")
65.
            else:
66.
                print("BUTTON RELEASED")
67.
            prev state = current state
```

5. Program screenshot

```
~— minicom « sudo — 102×16

~— minicom « sudo — minicom « sudo — minicom » sudo — t

Plus any modules on the filesystem
>R?<thonny>(2029, 12, 31, 0, 0, 0, 0, 365)

K

MPY: sync filesystems
MPY: soft reboot
raw REPL; CTRL-B to exit
>R?So bright!
It's dark in here(
Brightness: 90%
Brightness: 90%
Brightness: 90%
Brightness: 30%
Button state: RELEASED
Button state: PRESSED
BUTTON RELEASED
BUTTON RELEASED
```

6. Conclusions

- Virtual COM Port (VCP) allows communication between a microcontroller and a PC using a USB connection.
- The program receives commands from the PC to control LED_A and adjust the brightness of LED_B using PWM.
- Messages are sent back to the PC to confirm actions, such as turning LED_A on/off.
- The microcontroller detects button state changes and prints the updated state.
- Using PWM and timers, the LED brightness smoothly changes without continuous manual control.
- This lab demonstrates how VCP can be used for real-time control and feedback in embedded systems.