

Your tutor

- Winn Chow (Senior Tutor)
- winn.chow1@unimelb.edu.au
- Office: Doug McDonell 9.23
- Here, you can find my workshop slides:
- https://github.com/winnchow/COMP90042-Workshops

Python 3

- Familiarise yourself with Python 3
- https://trevorcohn.github.io/comp90042/workshops/week1-python-01.pdf
- Canopy: https://store.enthought.com/downloads/
- NLTK: https://www.nltk.org/install.html using Canopy Command Prompt

Text Processing

- Natural Language Processing (NLP)
- https://medium.com/@bytecubed/naturallanguage-processing-for-everyday-peopled6d0e4baf313
- Language-aware applications are ones that can:
- "Leverage natural language processing techniques to understand human-generated text and audio data... [and] curate the myriad of human-generated information on the web specifically on our behalf, offering new and personalized mechanisms of human-computer interaction" (Bengfort, Bilbro and Ojeda, 2016).

Google Duplex

- A.I. Assistant Calls Local Businesses To Make Appointments
- https://youtu.be/D5VN56jQMWM?t=59

Tokenization

http://blog.xnextcon.com/?p=233

```
from nltk.tokenize import word_tokenize

sentence = "Hello Aswathi How are you doing today"
sentence_token = word_tokenize(sentence)
sentence_token
['Hello', 'Aswathi', 'How', 'are', 'you', 'doing', 'today']
```

Tokenization

- https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
- A token is an instance of a sequence of characters in some particular document that are grouped together as a useful semantic unit for processing.
- A type is the class of all tokens containing the same character sequence.
- E.g. he says he he

Stemming and Lemmatisation

http://blog.xnextcon.com/?p=233

```
from nltk.stem.porter import PorterStemmer
stem = PorterStemmer()

word = "mulitplying"
stem.stem(word)

'mulitpli'

from nltk.stem.wordnet import WordNetLemmatizer
lem = WordNetLemmatizer()

word = "multiplying"
lem.lemmatize(word, "v")

'multiply'
```

– Which one is simpler? Which one will give you back a valid word (using a lexicon e.g. a dictionary)?

Stemming and Lemmatisation

- In linguistics, morphology is the study of words.
- Inflectional morphology
- https://semanticsmorphology.weebly.com/inflectional-and-derivationalmorphemes.html
 - Conform to grammatical constraints
 - Do not really alter the meaning
 - Both stemming and lemmatization
 can handle it

English Inflectional Morphemes		Added to	Examples	
5	plural	Nouns	She has got two guitars.	
- 'S	possessive	Nouns	Zeynep's hair is long.	
-e1	comparative	Adjectives	Zeynep has longer hair than Derya.	
-est	superlative	Adjectives	Zeynep has the longest hair.	
S	3rd person singular present tense	Verbs	Zeynep plays the guitar.	
-ed	past tense	Verbs	She played the guitar at the party.	
-ing	progressive	Verbs	She is playing the guitar at the party	
-en	past participle	Verbs	She has taken the guitar to the party	

Stemming and Lemmatisation

Some English derivational affixes

Affix	Change	Examples
Suffixes		
-able	$V \rightarrow A$	fix-able, do-able
-(at)ion	$V \rightarrow N$	realiz-ation
-ing	$V \rightarrow N$	the shoot-ing, the
-ing	$V \rightarrow A$	danc-ing
-ive	$V \rightarrow A$	the sleep-ing giant assert-ive
-al	$V \rightarrow N$	refusal
-ment	$V \rightarrow N$	treat-ment
-ful	$N \rightarrow A$	hope-ful

- Derivational morphology
- https://www.slideshare.net/FirraBannie/morphology-derivation
- One class to another e.g. Verb (teach) -> Noun (teacher)
- Alter the meaning
- Stemming?
- Lemmatisation?

Term-document matrix

doc1 Two for tea and tea for two doc2 Tea for me and tea for you

doc3 You for me and me for you

How about?

Query: two

Inverted index

doc1 Two for tea and tea for two doc2 Tea for me and tea for you doc3 You for me and me for you

Term	Postings list			
tea	\rightarrow	1:1.4 ; 3:1.0 ; 6:1.7 ;		
two	\rightarrow	2:2.3 ; 3:1.0 ; 4:1.7 ;		
me	\rightarrow	1:1.0 ; 2:1.4 ;		

weights listed are the normalised TF*IDF values

TF*IDF similarity score

$tf_{d,t} \times idf_t$

Distribution of terms in a document:

- $tf_{d,t}$ = term frequency of a document (count of a term t in a document d)

How specific is the term? Does it appear only in a few documents?

- df_t = document frequency of a term (count of documents that contain the term
 t)
- Idf_t = inverse document frequency (the *fewer* the documents the better. It must be a *very specific term*.)
- N = total number of documents

$idf_t = log \frac{N}{df_t}$

TF*IDF similarity score for a Query

 Compute for a query Q and for each document that contains at least one of the terms in the query

$$S_{\text{TF-IDF}}(d, Q) = \sum_{t \in Q} t f_{d,t} \times \log \frac{N}{df_t}$$

$$S_{\text{TF-IDF}}(d,Q) = \sum_{t \in Q} t f_{d,t} \times \log \frac{N}{df_t}$$

Q4:

Query: "apple ibm"

tf _{d,t}		apple	ibm	lemon	sun
	D_1	4	0	1	1
	D_2	5	0	5	0
	D_3	2	5	0	0
	D_4	1	0	1	7
	D_5	0	1	3	0

$$- N = ?$$

$$- df_{t} = ?$$

	apple		lemon	sun
idf	$\log \frac{5}{4} = 0.22$	$\log \frac{5}{2} = 0.92$	$\log \frac{5}{4} = 0.22$	$\log \frac{5}{2} = 0.92$

Q4: TF*IDF similarity scores

	apple	ibm	lemon	sun
$\overline{D_1}$	0.89	0	0.22	0.92
D_2	1.12	0	1.12	0
D_3	0.45	4.58	0	0
D_4	0.22	0	0.22	6.41
D_5	0	0.92	0.67	0

What happens?

- $k_1 = 0$ (binary model or term frequency)
- $k_3 = 0$ (binary model or term frequency)
- b = 1 (scaling by document length)

$$w_t = \log \frac{N - f_t + 0.5}{f_t + 0.5} \times \frac{(k_1 + 1)f_{d,t}}{k_1((1 - b) + b\frac{L_d}{L_{avg}}) + f_{d,t}} \times \frac{(k_3 + 1)f_{q,t}}{k_3 + f_{q,t}}$$

where f_t is the document frequency of term t, $f_{d,t}$ is the term frequency of term t in document d and $f_{q,t}$ is the term frequency of term t in query q. k_1 , k_3 and b are parameters with $0 \le k_1 < \infty$, $0 \le k_3 < \infty$ and $0 \le b \le 1$. L_d is the length of document d and L_{avg} is the average document length in the collection.

- TF (Document)? TF (Query)?
- IDF?

Very Useful Online Resources

- https://web.stanford.edu/~jurafsky/
- 2012 NLP MOOC w/Chris Manning:
 - Youtube channel lecture videos
 - Slides