Topologie

Andriy Haydys

1/19

QUESTIONS ORGANISATIONNELLES

Note finale = 80% pour l'examen écrit + 20% pour des devoirs;

Les devoirs : 6 (2+2+2) exercices toutes les trois semaines; Chaque troisième semaine : on choisira 1 de ces 6 exercices au hasard et vous devrez écrire une solution en présence.

MATH-F211 → Differential geometry I

Géométrie riemannienne
Riemann surfaces
Géométrie symplectique
Global analysis
Algebraic topology

MOTIVATION: LA CONTINUITÉ

f = f(x) est continue si un petit changement de x entraîne un petit changement de f(x). Ainsi,

$$y \approx x \implies f(y) \approx f(x).$$

Par exemple, $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ est continue mais f(x) = sign x est discontinue.

L'objectif du cours est de trouver un langage efficace pour discuter la notion de la continuité.

3/19

LA CONTINUITÉ EN PHYSIQUE

En physique, presque (?) toutes les quantités ne sont connues qu'approximativement.

Une question fondamentale : Supposons qu'une application f décrive un modèle physique. Si y est une valeur approximative de x, est-ce que f(y) est une valeur approximative de f(x)? Autrement dit, est-ce que f est continue?

Exemple

- La force d'attraction entre deux planètes dépend continûment de leurs masses : $F = G \frac{m_1 m_2}{d^2}$;
- La période de petites oscillations du pendule $T=2\pi\sqrt{\frac{l}{g}}$ est une fonction continue de l.

LA CONTINUITÉ EN MATHÉMATIQUE

Pour les applications $f: \mathbb{R}^n \to \mathbb{R}^m$, le slogan

$$y \approx x \implies f(y) \approx f(x)$$

peut être précisé comme suit :

Définition

Une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$ est dite *continue* si $\forall x \in \mathbb{R}^n \ \forall \varepsilon > 0 \ \exists \delta = \delta(x, \varepsilon) > 0$ tq

$$||y-x|| < \delta \implies ||f(y)-f(x)|| < \varepsilon$$

ou
$$||h|| = (\sum_{i=1}^{n} h_i^2)^{1/2}, h = (h_1, \dots, h_n) \in \mathbb{R}^n.$$

5/19

Q: Pourquoi les fonctions continues sont-elles importantes?

Parce qu'elles ont des propriétés importantes, e.g. :

- Si $f: [a,b] \to \mathbb{R}$ est continue, f est bornée et $\exists x_0 \in [a,b]$ et $\exists x_1 \in [a,b]$ tq $\forall x \in [a,b]$ $f(x_0) \le f(x) \le f(x_1)$.
- (Théorème des valeurs intermédiaires) Si $f: [a,b] \to \mathbb{R}$ est continue, l'équation $f(x) = y, \quad y \in \mathbb{R}$ a une solution ssi $f(x_0) \le y \le f(x_1)$.

Défi: le cas $f: \mathbb{R}^n \to \mathbb{R}^m$ ne suffit pas pour les applications.

Exemple (Le pendule : approche non rigoureuse)

Les oscillations d'un pendule sont décrites par l'équation $\ddot{\theta}=-\omega^2\sin\theta$, ou $\omega^2=\frac{g}{l}$. Si θ est petit, $\sin\theta\approx\theta$, alors l'équation approximative devient

$$\ddot{\theta} = -\omega^2 \theta$$

qui peut être résolue de manière explicite :

$$\theta(t) = a\cos\omega t + b\sin\omega t. \tag{*}$$

On peut déterminer les constantes a et b à partir des conditions initiales, e.g. : $\theta(0) = \theta_0$ et $\dot{\theta}(0) = 0 \implies a = \theta_0$ et b = 0, ainsi $\theta(t) = \theta_0 \cos \omega t$.

NB.
$$\theta(t + \frac{2\pi}{\omega}) = \theta(t) \implies T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{l}{q}}.$$

Alors, (*) décrit les oscillations d'un pendule approximativement.

Mais pourquoi? Que veut-on dire par « deux fonctions sont proches »?

En résumé, on a besoin d'une notion de continuité pour les applications définies sur des ensembles plus généraux que \mathbb{R}^n .

7/19

Pour trouver une forme plus générale, retournons au cas $f: \mathbb{R}^n \to \mathbb{R}^m$. Désignons $B_r(x) := \{ y \in \mathbb{R}^n \mid ||y - x|| < r \}$ où r > 0 et $x \in \mathbb{R}^n$.

Définition

On dit que $U \subset \mathbb{R}^n$ est ouvert si $\forall x \in U \quad \exists r > 0 \quad \text{tq} \quad B_r(x) \subset U$.

Exemple

 $B_r(x)$ est ouvert $\forall x \in \mathbb{R}^n$ et $\forall r > 0$.

 $\mathfrak{T}_{\mathbb{R}^n}$ désigne la collection de tous les ouverts de \mathbb{R}^n , alors $U \in \mathfrak{T}_{\mathbb{R}^n} \iff \mathbb{R}^n \supset U$ est ouvert.

Proposition

- (T1) \mathbb{R}^n , $\emptyset \in \mathfrak{T}_{\mathbb{R}^n}$.
- (T2) $Si\ U_1, \ldots, U_k \in \mathcal{T}_{\mathbb{R}^n}$, alors $U_1 \cap \cdots \cap U_k \in \mathcal{T}_{\mathbb{R}^n}$.
- (T3) Si $\{U_i : i \in I\}$ est une collection quelconque d'éléments de $\mathfrak{T}_{\mathbb{R}^n}$, alors $\bigcup_{i \in I} U_i \in \mathfrak{T}_{\mathbb{R}^n}$.

Démonstration.

- (T1) Évident.
- (T2) Soit $x \in U_1 \cap \cdots \cap U_k$, alors $x \in U_j \quad \forall j \in \{1, \dots, k\}$. U_j est ouvert $\Longrightarrow \exists r_j > 0 \text{ tq } B_{r_j}(x) \subset U_j$. Posons $r := \min\{r_1, \dots, r_k\} > 0$. Donc $B_r(x) \subset U_j \forall j \Longrightarrow B_r(x) \subset U_1 \cap \cdots \cap U_k$.
- (T3) Soit $x \in \bigcup_{i \in I} U_i \implies \exists i \in I \text{ tq } x \in U_i;$ $U_i \text{ est ouvert } \implies \exists r > 0 \text{ tq } B_r(x) \subset U_i \subset \bigcup_{i \in I} U_i.$

9/19

Définition

Pour un sous-ensemble $A \subset \mathbb{R}^m$ quelconque et pour une application $f: \mathbb{R}^n \to \mathbb{R}^m$ quelconque, l'image inverse est définie par

$$f^{-1}(A) := \{ y \in \mathbb{R}^n \mid f(y) \in A \}.$$

Proposition

$$f: \mathbb{R}^n \to \mathbb{R}^m \text{ est continue } \iff \forall U \in \mathfrak{T}_{\mathbb{R}^n} \qquad f^{-1}(U) \in \mathfrak{T}_{\mathbb{R}^n}.$$

Démonstration.

$$(\longleftarrow) : \operatorname{Soit} x \in \mathbb{R}^{n} \text{ et } \varepsilon > 0; z := f(x).$$

$$B_{\varepsilon}(z) \in \mathfrak{T}_{\mathbb{R}^{m}} \implies f^{-1}(B_{\varepsilon}(z)) \in \mathfrak{T}_{\mathbb{R}^{n}}$$

$$\Longrightarrow \quad \exists \delta > 0 \text{ tq } B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(z))$$

$$\Longrightarrow \quad \operatorname{Si} y \in B_{\delta}(x), \text{ alors } f(y) \in B_{\varepsilon}(z)$$

$$\Longrightarrow \quad \operatorname{Si} \|y - x\| < \delta, \text{ alors } \|f(y) - f(x)\| < \varepsilon.$$

Ainsi, *f* est continue.

Proposition

$$f: \mathbb{R}^n \to \mathbb{R}^m \text{ est continue } \iff \forall U \in \mathfrak{T}_{\mathbb{R}^n} \qquad f^{-1}(U) \in \mathfrak{T}_{\mathbb{R}^n}.$$

Démonstration.

$$(\Longrightarrow) : \operatorname{Soit} x \in \mathbb{R}^n \text{ et } \varepsilon > 0.$$

$$f \operatorname{est continue} \implies \|f(y) - f(x)\| < \varepsilon \operatorname{lorsque} \|y - x\| < \delta$$

$$\implies f(y) \in B_{\varepsilon}(f(x)) \operatorname{lorsque} y \in B_{\delta}(x)$$

$$\implies y \in f^{-1}(B_{\varepsilon}(x)) \operatorname{lorsque} y \in B_{\delta}(x)$$

$$\implies B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(x)).$$

$$\operatorname{Alors}, x \in f^{-1}(U) \iff f(x) \in U; \ U \in \mathfrak{T}_{\mathbb{R}^m} \implies \exists \varepsilon > 0 \operatorname{tq} B_{\varepsilon}(f(x)) \subset U$$

$$\implies B_{\delta}(x) \subset f^{-1}(U) \operatorname{et donc} f^{-1}(U) \in \mathfrak{T}_{\mathbb{R}^n}.$$

En résume, on peut définir la continuité uniquement en termes d'ensembles ouverts.

11/19

TOPOLOGIE

Soit *X* un ensemble non-vide quelconque.

Définition

Une collection \mathfrak{T}_X de sous-ensembles de X est une topologie sur X si

- (T1) $X, \emptyset \in \mathcal{T}_X$.
- (T2) Si $U_1, \ldots, U_k \in \mathcal{T}_X$, alors $U_1 \cap \cdots \cap U_k \in \mathcal{T}_X$.
- (T3) Si $\{U_i : i \in I\}$ est une collection quelconque d'éléments de \mathcal{T}_X , alors $\bigcup_{i \in I} U_i \in \mathcal{T}_X$.

Le couple (X, \mathcal{T}_X) est *un espace topologique*. Les éléments $U \in \mathcal{T}_X$ s'appelent *les ouverts* de la topologie.

Exemple

- 0) X quelconque, $\mathfrak{T}_X := \{\emptyset, X\}$; La topologie $grossi\`{e}re$.
- 1) X quelconque, $\mathfrak{T}_X := \{U \subset X\}$ (tous sous-ensembles); La topologie discrète.
- 2) $X = \mathbb{R}^n$, $\mathfrak{T}_{\mathbb{R}^n}$; La topologie standard de \mathbb{R}^n .

Remarque

• Pour démontrer (T2), il suffit de montrer que

$$U_1, U_2 \in \mathfrak{T}_X \implies U_1 \cap U_2 \in \mathfrak{T}_X.$$

• Pour un ensemble X quelconque et sous-ensembles U_i , $i \in I$, on a

$$X \setminus \bigcap_{i \in I} U_i = \bigcup_{i \in I} (X \setminus U_i)$$
 et $X \setminus \bigcup_{i \in I} U_i = \bigcap_{i \in I} (X \setminus U_i)$.

Proposition

Pour X quelconque, $\mathfrak{T}_X := \{ U \subset X \mid X \setminus U \text{ est fini ou } U = \emptyset \}$ est une topologie sur X. Elle s'appelle la topologie cofinie.

Démonstration.

$$(T2) \ X \setminus (U_1 \cap U_2) = (X \setminus U_1) \cup (X \setminus U_2) \text{ est fini} \implies U_1 \cap U_2 \in \mathfrak{T}_X.$$

(T3)
$$X \setminus \bigcup_{i \in I} U_i = \bigcap_{i \in I} X \setminus U_i$$
 est fini $\Longrightarrow \bigcup_{i \in I} U_i \in \mathfrak{T}_X$.

13/19

L'ESPACE TOPOLOGIQUE N'EST PAS SEULEMENT UN ENSEMBLE!

Ainsi, chaque ensemble *X* admet au moins 3 topologies différentes (si *X* est infini) : grossière, cofinie et discrète.

- grossière \neq cofinie : $X \setminus \{x_0\} \in \mathcal{T}_X^{cofin}$ et $X \setminus \{x_0\} \notin \mathcal{T}_X^{gros}$.
- grossière \neq discrète : $\{x_0\} \in \mathcal{T}_X^{discr}$ et $\{x_0\} \notin \mathcal{T}_X^{gros}$.
- cofinie \neq discrète : $\{x_0\} \in \mathcal{T}_X^{discr}$ et $\{x_0\} \notin \mathcal{T}_X^{cofin}$.

Attention

On dit souvent que *X* est un espace topologique si la topologie est connue. Dans ce cas, il faut bien comprendre de quelle topologie il s'agit!

DES APPLICATIONS CONTINUES

Définition

Soit $f:(X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ une application entre deux espaces topologiques. Elle est dite continue ou $(\mathfrak{T}_X,\mathfrak{T}_Y)$ -continue si pour tout $U \in \mathfrak{T}_Y, f^{-1}(U) \in \mathfrak{T}_X$.

Attention

La notion de continuité dépend des topologies choisies.

Exemple

- 0) $id: (X, \mathcal{T}_X) \to (X, \mathcal{T}_X)$ est toujours continue.
- 1) $f: (\mathbb{R}^n, \mathcal{T}_{\mathbb{R}^n}) \to (\mathbb{R}^m, \mathcal{T}_{\mathbb{R}^m})$ est continue ssi f est continue dans le sens de l'analyse (ici, $\mathfrak{T}_{\mathbb{R}^n}$ est la topologie standard de \mathbb{R}^n !).
- 2) $f:(X, \mathcal{T}_X^{gros}) \to (\mathbb{R}^m, \mathcal{T}_{\mathbb{R}^m})$ est continue ssi f est constante : si $z \in \text{im } f$, $f^{-1}(B_{\varepsilon}(z)) \neq \emptyset$, alors $f^{-1}(B_{\varepsilon}(z)) = X \Leftrightarrow f(X) \subset B_{\varepsilon}(z)$. Puisque $\varepsilon > 0$ est arbitraire, alors $f(X) \subset \{z\}$.

Ainsi, $f: (\mathbb{R}^n, \mathfrak{T}^{gros}_{\mathbb{R}^n}) \to (\mathbb{R}^m, \mathfrak{T}_{\mathbb{R}^m})$ est continue $\Longrightarrow f$ est constant!

15/19

Exemple (suite)

- 3) Chaque application $f: (X, \mathcal{T}_X^{discr}) \to (Y, \mathcal{T}_Y)$ est continue parce que chaque sous-ensemble de X est ouvert (dans \mathfrak{T}_X^{discr} !).
- 4) Une fonction constante est toujours continue. Par contre, la fonction

$$\chi(x) = \begin{cases} 1 & \text{si } x \ge 0, \\ 0 & \text{sinon,} \end{cases}$$

n'est pas continue parce que $\chi^{-1}\left(\left(\frac{1}{2},2\right)\right)=\left[0,+\infty\right)$ n'est pas ouvert dans \mathbb{R} (la topologie standard).

5) Si X contient au moins 2 points, id: $(X, \mathcal{T}^{gros}) \to (X, \mathcal{T}^{discr})$ n'est pas continue parce que $id^{-1}(\{x_0\}) = \{x_0\}$ mais $\{x_0\}$ n'est pas ouvert dans $(X, \mathcal{I}^{gros}).$

Par contre, id: $(X, \mathcal{T}^{discr}) \rightarrow (X, \mathcal{T}^{gros})$ est continue!

Lemme

Soient (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) , (Z, \mathcal{T}_Z) des espaces topologiques et $f: X \to Y$, $g: Y \to Z$ des applications continues. Alors la composition $g \circ f: X \to Z$ est aussi continue.

Démonstration.

La démonstration découle du fait suivant : pour toutes les applications $f: X \to Y, g: Y \to Z$ et pour tout sous-ensemble $U \subset Z$ on a

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)).$$

Ainsi, si f, g sont continues et U est ouvert, $g^{-1}(U)$ est ouvert et donc $f^{-1}(g^{-1}(U))$ est ouvert aussi.

17/19

Corollaire

 $f = (f_1, f_2): X \to \mathbb{R}^2$ est continue ssi $f_1, f_2: X \to \mathbb{R}$ sont continues.

Démonstration.

Supposons que $f: X \to \mathbb{R}^2$ est continue. Puisque $\pi_1, \pi_2 : \mathbb{R}^2 \to \mathbb{R}$ définies par

$$\pi_1(x,y) = x$$
 et $\pi_2(x,y) = y$

sont continues, $\pi_1 \circ f = f_1$ et $\pi_2 \circ f = f_2$ sont continues par le lemme.

Supposons que f_1 et f_2 sont continues. Soit $U \in \mathfrak{T}_{\mathbb{R}^2}$ et $p = (p_1, p_2) \in U$.

$$U \in \mathfrak{T}_{\mathbb{R}^2} \implies \exists r > 0 \text{ tq } B_{2r}(p) \subset U \implies$$

$$R_p := (p_1 - r, p_1 + r) \times (p_2 - r, p_2 + r) \subset B_{2r}(p)$$
. Alors,

 $f^{-1}(R_p) = f_1^{-1}((p_1 - r, p_1 + r)) \cap f_2^{-1}((p_2 - r, p_2 + r))$ est ouvert comme l'intersection des ouverts et $f^{-1}(R_p) \subset f^{-1}(U)$. Ainsi,

$$f^{-1}(U) = \bigcup_{p \in U} f^{-1}(R_p)$$

est ouvert comme la réunion des ouverts.