Robotic kinematics and dynamics

Autonomous robots, TME290

Ola Benderius

ola.benderius@chalmers.se

Applied artificial intelligence Vehicle engineering and autonomous systems Mechanics and maritime sciences Chalmers

Course orientation

Learning outcomes, mapping of this lecture

- Describe properties of common types of robotic hardware, including sensors, actuators, and computational nodes
- Apply modern software development and deployment strategies connected with autonomous robots
- Set up and use equations of motion of wheeled autonomous robots
- Apply basic sensor fusion
- Set up and use computer simulations of autonomous robots
- Apply global and local navigation of autonomous robots
- Apply the basics of behaviour-based robotics and evolutionary robotics
- Apply methods for decision making in autonomous robots
- Discuss the potential role of autonomous robots in society, including social, ethical, and legal aspects
- Discuss technical challenges with autonomous robots in society

Introduction

Kinematics and dynamics

- **Kinematics** is the study of motion (of rigid bodies) without regard to the forces that cause the motion
- Dynamics concerns the motion of bodies under the action of forces

Kinematics and dynamics

- **Kinematics** is the study of motion (of rigid bodies) without regard to the forces that cause the motion
- Dynamics concerns the motion of bodies under the action of forces

Why is it important?

- To determine the range of possible movements of a robot
- To make simulations of robots

Kinematics and dynamics

- **Kinematics** is the study of motion (of rigid bodies) without regard to the forces that cause the motion
- Dynamics concerns the motion of bodies under the action of forces

Why is it important?

- To determine the range of possible movements of a robot
- To make simulations of robots

Today we will look at differentially steered robots!

Real-world robots

Figure 1: Lawn mower (left), vacuum cleaner (right)

A differential steered robot has two independently driven wheels for combined propulsion and steering

Kinematics

Figure 2: A schematic representation

Figure 3: The combined speed (left), the rotation of the wheel (right)

• The robot's frame is a rigid body of radius *R*

Figure 3: The combined speed (left), the rotation of the wheel (right)

- The robot's frame is a rigid body of radius R
- The wheels, radius *r*, roll without slipping

Figure 3: The combined speed (left), the rotation of the wheel (right)

- The robot's frame is a rigid body of radius R
- The wheels, radius r, roll without slipping
- The wheels can only move in the direction perpendicular to the wheel axis

Figure 3: The combined speed (left), the rotation of the wheel (right)

- The robot's frame is a rigid body of radius R
- The wheels, radius r, roll without slipping
- The wheels can only move in the direction perpendicular to the wheel axis
- The wheels can rotate independently of each other

Figure 3: The combined speed (left), the rotation of the wheel (right)

- The robot's frame is a rigid body of radius R
- The wheels, radius r, roll without slipping
- The wheels can only move in the direction perpendicular to the wheel axis
- The wheels can rotate independently of each other
- The forward speed of the wheel is $v = \omega r$

• The yaw angle (heading) φ (θ in the figure) and position x and y form the robot's pose (state), relative an global coordinate system.

- The yaw angle (heading) φ (θ in the figure) and position x and y form the robot's pose (state), relative an global coordinate system.
- The **forward kinematics**, i.e. x(t), y(t), and $\varphi(t)$ are determined by the speeds of the wheels, v_L , v_R

Instantaneous centre of rotation (ICR)

For any values of v_L , v_R , the motion of the robot can be seen as a pure rotation around the ICR, with angular velocity $\dot{\varphi}$

Note that:

• The ICR is located at a distance L from the centre of the robot

Note that:

- The ICR is located at a distance L from the centre of the robot
- $v_L = \dot{\varphi}(L-R)$ and $v_R = \dot{\varphi}(L+R)$

Note that:

- The ICR is located at a distance L from the centre of the robot
- $v_L = \dot{\varphi}(L-R)$ and $v_R = \dot{\varphi}(L+R)$
- ullet The speed of the centre of the robot: $V=\dot{arphi}L\Leftrightarrow L=rac{V}{\dot{arphi}}$

Note that:

- The ICR is located at a distance L from the centre of the robot
- $v_L = \dot{\varphi}(L-R)$ and $v_R = \dot{\varphi}(L+R)$
- \bullet The speed of the centre of the robot: $V=\dot{\varphi}L\Leftrightarrow L=rac{V}{\dot{\varphi}}$

Thus, L can be eliminated:

- $v_L = \dot{\varphi}(\frac{V}{\dot{\varphi}} R) = V \dot{\varphi}R$
- $v_R = \dot{\varphi}(\frac{V}{\dot{\varphi}} + R) = V + \dot{\varphi}R$

Note that:

- The ICR is located at a distance L from the centre of the robot
- $v_L = \dot{\varphi}(L-R)$ and $v_R = \dot{\varphi}(L+R)$
- ullet The speed of the centre of the robot: $V=\dot{arphi}L\Leftrightarrow L=rac{V}{\dot{arphi}}$

Thus, L can be eliminated:

- $v_L = \dot{\varphi}(\frac{V}{\dot{\varphi}} R) = V \dot{\varphi}R$
- $v_R = \dot{\varphi}(\frac{V}{\dot{\varphi}} + R) = V + \dot{\varphi}R$

Next step is to solve for V and $\dot{\varphi}!$

1.
$$v_L = V - \dot{\varphi}R \Leftrightarrow \dot{\varphi}R = V - v_L \Leftrightarrow \dot{\varphi} = \frac{V - v_L}{R}$$

1.
$$v_L = V - \dot{\varphi}R \Leftrightarrow \dot{\varphi}R = V - v_L \Leftrightarrow \dot{\varphi} = \frac{V - v_L}{R}$$

2.
$$v_R = V + \dot{\varphi}R = [Ins.1] = V + \frac{V - v_L}{R}R = 2V - v_L \Leftrightarrow V = \frac{v_R + v_L}{2}$$

1.
$$v_L = V - \dot{\varphi}R \Leftrightarrow \dot{\varphi}R = V - v_L \Leftrightarrow \dot{\varphi} = \frac{V - v_L}{R}$$

2.
$$v_R = V + \dot{\varphi}R = [Ins.1] = V + \frac{V - v_L}{R}R = 2V - v_L \Leftrightarrow V = \frac{v_R + v_L}{2}$$

3.
$$v_L = V - \dot{\varphi}R \Leftrightarrow V = v_L + \dot{\varphi}R$$

1.
$$v_L = V - \dot{\varphi}R \Leftrightarrow \dot{\varphi}R = V - v_L \Leftrightarrow \dot{\varphi} = \frac{V - v_L}{R}$$

2.
$$v_R = V + \dot{\varphi}R = [Ins.1] = V + \frac{V - v_L}{R}R = 2V - v_L \Leftrightarrow V = \frac{v_R + v_L}{2}$$

3.
$$v_L = V - \dot{\varphi}R \Leftrightarrow V = v_L + \dot{\varphi}R$$

4.
$$v_R = V + \dot{\varphi}R = [Ins.3] = v_L + \dot{\varphi}R + \dot{\varphi}R = v_L + 2\dot{\varphi}R \Leftrightarrow \dot{\varphi} = \frac{v_R - v_L}{2R}$$

When simulating we normally want each velocity component separately:

•
$$\cos \varphi = \frac{V_x}{V} \Leftrightarrow \boxed{V_x = V \cos \varphi}$$

$$\bullet \ \sin\varphi = \frac{V_y}{V} \Leftrightarrow \boxed{V_y = V \sin\varphi}$$

It is then possible to obtain the pose (x_1, y_1, φ_1) of the robot at time t_1 , from a known state (x_0, y_0, φ_0) at time t_0 , by means of *integration*.

It is then possible to obtain the pose (x_1, y_1, φ_1) of the robot at time t_1 , from a known state (x_0, y_0, φ_0) at time t_0 , by means of *integration*.

•
$$x_1 = x_0 + \int_{t_0}^{t_1} V_x(t) dt = x_0 + \int_{t_0}^{t_1} \frac{v_R(t) + v_L(t)}{2} \cos \varphi(t) dt$$

•
$$y_1 = y_0 + \int_{t_0}^{t_1} V_y(t) dt = y_0 + \int_{t_0}^{t_1} \frac{v_R(t) + v_L(t)}{2} \sin \varphi(t) dt$$

•
$$\varphi_1 = \varphi_0 + \int_{t_0}^{t_1} \dot{\varphi}(t) dt = \varphi_0 + \int_{t_0}^{t_1} \frac{v_R(t) - v_L(t)}{2R} dt$$

The vehicle model of differential drive can be used for:

- Simulation environments
 - In each time step, translate actuation into movement in the global frame
 - Ground truth

The vehicle model of differential drive can be used for:

- Simulation environments
 - In each time step, translate actuation into movement in the global frame
 - Ground truth
- Online movement estimation (internal model)
 - To model the behaviour of the robot
 - Wheel speeds (v_L, v_R) are usually not given a priori. Instead, some estimates v̂_L, v̂_R must be used
 - Odometry is prone to errors!

- Given the constraints and the wheel speeds, the new state (pose: position, heading) can be determined using the kinematic model
- However, the kinematics does not say how the the motion is achieved.
- **Dynamics** by contrast considers the motion of the robot under the action of the forces and torques acting on it!

Dynamics

The differential drive: Dynamics

- Note that we assume a horizontal, flat surface $(-F_N = mg \text{ can be neglected})!$
- No rolling resistance
- The motors generate torque, which propel the wheels
- When the wheels turn they apply a force to the ground, in the horizontal plane
- Due to friction an opposite force F will drag the robot forward, according to Newton's third law
- Using Newton's second law, F = ma, the equations of motion of the robot can be derived

The differential drive: Dynamics

Consider a free-body diagram of the robot in order to determine the forces in action:

- ullet au is the torque from the motor
- F is the reaction force from the ground
- ullet ho is the reaction force from the robot body acting on the wheel, due to the moment of inertia I of the robot body
- ullet $\dot{\phi}$ is the angular velocity of the wheel
- $\bullet \ \varphi$ is the yaw angle of the robot

Note that angular momentum is defined as:

$$L = I\omega \tag{1}$$

and torque is defined as:

$$\tau = \frac{\mathrm{d}L}{\mathrm{d}t} \tag{2}$$

Therefore,

$$\tau = I \frac{\mathrm{d}\omega}{\mathrm{d}t} \tag{3}$$

where $\frac{\mathrm{d}\omega}{\mathrm{d}t}$ is the angular acceleration.

In the case of *circular motion* $\tau = I \frac{\mathrm{d}\omega}{\mathrm{d}t}$ can be interpreted as analogous to F = ma in the case of linear motion.

Using Newton's second law, the forces and torques acting on the wheels

Translation:

- $m\dot{v}_L = F_L \rho_L$
- $m\dot{v}_R = F_R \rho_R$

Rotation:

- $I_w \ddot{\phi}_L = \tau_L F_L r$
- $I_w\ddot{\phi}_R = \tau_R F_R r$

where, for the wheel, m is the mass, I_w is the moment of inertia, and r is the radius.

Correspondingly, for the robot body

Translation:

•
$$M\dot{V} = \rho_L + \rho_R$$

Rotation:

•
$$I\ddot{\varphi} = (\rho_R - \rho_L)R$$

where, for the robot body, M is the mass, I is the moment of inertia, and R is the radius.

Now, we have 6 equations:

•
$$m\dot{v}_L = F_L - \rho_L$$

•
$$m\dot{v}_R = F_R - \rho_R$$

•
$$I_w\ddot{\phi}_L = \tau_L - F_L r$$

•
$$I_w \ddot{\phi}_R = \tau_R - F_R r$$

•
$$M\dot{V} = \rho_L + \rho_R$$

•
$$I\ddot{\varphi} = (\rho_R - \rho_L)R$$

and 10 unknown variables: v_L , v_R , F_L , F_R , ρ_L , ρ_R , ϕ_L , ϕ_R , V, and φ

Now, we have 6 equations:

- $m\dot{v}_L = F_L \rho_L$
- $m\dot{v}_R = F_R \rho_R$
- $I_w\ddot{\phi}_L = \tau_L F_L r$
- $I_w \ddot{\phi}_R = \tau_R F_R r$
- $M\dot{V} = \rho_I + \rho_R$
- $I\ddot{\varphi} = (\rho_R \rho_L)R$

and 10 unknown variables: v_L , v_R , F_L , F_R , ρ_L , ρ_R , ϕ_L , ϕ_R , V, and φ

Four more equations are needed!

The kinematics constraints:

• Wheels should roll without slipping:

•
$$v_L = \dot{\phi}_L r$$

•
$$v_R = \dot{\phi}_R r$$

• The two kinematic equations:

•
$$V = \frac{v_L + v_R}{2}$$

•
$$\dot{\varphi} = \frac{v_R - v_L}{2R}$$

The kinematics constraints:

- Wheels should roll without slipping:
 - $v_L = \dot{\phi}_L r$
 - $v_R = \dot{\phi}_R r$
- The two kinematic equations:
 - $V = \frac{v_L + v_R}{2}$
 - $\bullet \ \dot{\varphi} = \frac{v_R v_L}{2R}$

Now we have what we need!

Eliminate F_L and F_R :

Two variables less!

Note that:

$$v_{L} = \dot{\phi}_{L}r \Leftrightarrow \dot{\phi}_{L} = \frac{v_{L}}{r} \Leftrightarrow [\textit{Differentiate}] \Leftrightarrow \ddot{\phi}_{L} = \frac{\dot{v}_{L}}{r}$$

$$v_{R} = \dot{\phi}_{R}r \Leftrightarrow \dot{\phi}_{R} = \frac{v_{R}}{r} \Leftrightarrow [\textit{Differentiate}] \Leftrightarrow \ddot{\phi}_{R} = \frac{\dot{v}_{R}}{r}$$

Note that:

$$\begin{aligned} v_L &= \dot{\phi}_L r \Leftrightarrow \dot{\phi}_L = \frac{v_L}{r} \Leftrightarrow [\textit{Differentiate}] \Leftrightarrow \ddot{\phi}_L = \frac{\dot{v}_L}{r} \\ v_R &= \dot{\phi}_R r \Leftrightarrow \dot{\phi}_R = \frac{v_R}{r} \Leftrightarrow [\textit{Differentiate}] \Leftrightarrow \ddot{\phi}_R = \frac{\dot{v}_R}{r} \end{aligned}$$

Eliminate $\ddot{\phi}_L$ and $\ddot{\phi}_R$ and solve for ρ_L and ρ_R :

$$m\dot{v}_L = \frac{\tau_L - I_w \ddot{\phi}_L}{r} - \rho_L \Leftrightarrow \left[\rho_L = \frac{\tau_L}{r} - \left(\frac{I_w}{r^2} + m \right) \dot{v}_L \right]$$

$$m\dot{v}_R = \frac{\tau_R - I_w\ddot{\phi}_R}{r} - \rho_R \Leftrightarrow \boxed{\rho_R = \frac{\tau_R}{r} - \left(\frac{I_w}{r^2} + m\right)\dot{v}_R}$$

Recall that the translation of the centre of mass of the robot is determined by (Newton II):

$$M\dot{V} = \rho_L + \rho_R$$

Recall that the translation of the centre of mass of the robot is determined by (Newton II):

$$M\dot{V} = \rho_L + \rho_R$$

Eliminate ρ_L and ρ_R using the previous results:

$$M\dot{V} = \frac{\tau_L}{r} - \left(\frac{I_w}{r^2} + m\right)\dot{v}_L + \frac{\tau_R}{r} - \left(\frac{I_w}{r^2} + m\right)\dot{v}_R$$
$$= \left[\frac{\tau_L + \tau_R}{r} - \left(\frac{I_w}{r^2} + m\right)(\dot{v}_L + \dot{v}_R)\right]$$

Recall that the translation of the centre of mass of the robot is determined by (Newton II):

$$M\dot{V} = \rho_L + \rho_R$$

Eliminate ρ_L and ρ_R using the previous results:

$$M\dot{V} = \frac{\tau_L}{r} - \left(\frac{I_w}{r^2} + m\right)\dot{v}_L + \frac{\tau_R}{r} - \left(\frac{I_w}{r^2} + m\right)\dot{v}_R$$
$$= \left[\frac{\tau_L + \tau_R}{r} - \left(\frac{I_w}{r^2} + m\right)(\dot{v}_L + \dot{v}_R)\right]$$

Note that:

$$V = \frac{v_L + v_R}{2} \Leftrightarrow v_L + v_R = 2V \Rightarrow [Differentiate] \Rightarrow v_L + \dot{v}_R = 2\dot{V} \Rightarrow v_L + \dot{v}_R = 2\dot{V}$$

$$\Rightarrow M\dot{V} = \frac{\tau_R + \tau_L}{r} - 2\left(\frac{I_w}{r^2} + m\right)\dot{V}$$

$$\Rightarrow M\dot{V} = \frac{\tau_R + \tau_L}{r} - 2\left(\frac{I_w}{r^2} + m\right)\dot{V}$$

Rearrange the terms:

$$M\dot{V}\left(1+2\left(\frac{I_{W}}{Mr^{2}}+\frac{m}{M}\right)\right)=\frac{1}{r}(\tau_{R}+\tau_{L})$$

$$\Rightarrow M\dot{V} = \frac{\tau_R + \tau_L}{r} - 2\left(\frac{I_w}{r^2} + m\right)\dot{V}$$

Rearrange the terms:

$$M\dot{V}\left(1+2\left(\frac{I_{w}}{Mr^{2}}+\frac{m}{M}\right)\right)=\frac{1}{r}(\tau_{R}+\tau_{L})$$

Thus:

$$M\dot{V} = \frac{1}{r} \left(1 + 2 \left(\frac{I_w}{Mr^2} + \frac{m}{M} \right) \right)^{-1} (\tau_R + \tau_L)$$

$$\Rightarrow M\dot{V} = \frac{\tau_R + \tau_L}{r} - 2\left(\frac{I_w}{r^2} + m\right)\dot{V}$$

Rearrange the terms:

$$M\dot{V}\left(1+2\left(\frac{I_{w}}{Mr^{2}}+\frac{m}{M}\right)\right)=\frac{1}{r}(\tau_{R}+\tau_{L})$$

Thus:

$$M\dot{V} = \frac{1}{r} \left(1 + 2 \left(\frac{I_w}{Mr^2} + \frac{m}{M} \right) \right)^{-1} (\tau_R + \tau_L)$$

or

$$M\dot{V} = A(\tau_R + \tau_L)$$

Similarly for the rotational motion (Newton II):

$$I\ddot{\varphi} = (\rho_R - \rho_L)R$$

Similarly for the rotational motion (Newton II):

$$I\ddot{\varphi} = (\rho_R - \rho_L)R$$

Recall the kinematic equation:

$$\dot{\varphi} = \frac{v_R - v_L}{2R} \Rightarrow [Differentiate] \Rightarrow \dot{v}_L - \dot{v}_R = -2R\ddot{\varphi}$$

Similarly for the rotational motion (Newton II):

$$I\ddot{\varphi} = (\rho_R - \rho_L)R$$

Recall the kinematic equation:

$$\dot{\varphi} = \frac{v_R - v_L}{2R} \Rightarrow [Differentiate] \Rightarrow \dot{v}_L - \dot{v}_R = -2R\ddot{\varphi}$$

(1) Eliminate ρ_L and ρ_R , and (2) insert the result for $(\dot{v}_L - \dot{v}_R)$

$$\Rightarrow I\ddot{\varphi} = \left(\frac{\tau_R}{r} - \left(\frac{I_w}{r^2} + m\right)\dot{v}_R - \frac{\tau_L}{r} + \left(\frac{I_w}{r^2} + m\right)\dot{v}_L\right)R$$

$$= (\tau_R - \tau_L)\frac{R}{r} + R\left(\frac{I_w}{r^2} + m\right)(\dot{v}_L - \dot{v}_R)$$

$$= (\tau_R - \tau_L)\frac{R}{r} - 2R^2\left(\frac{I_w}{r^2} + m\right)\ddot{\varphi} \Rightarrow$$

Rearrange the terms and solve for $I\ddot{\varphi}$:

$$\Rightarrow I\ddot{\varphi}\left(\frac{r}{R} + 2\left(\frac{I_{w}R}{Ir} + \frac{mRr}{I}\right)\right) = (\tau_{R} - \tau_{L})$$

Rearrange the terms and solve for $I\ddot{\varphi}$:

$$\Rightarrow I\ddot{\varphi}\left(\frac{r}{R} + 2\left(\frac{I_{w}R}{Ir} + \frac{mRr}{I}\right)\right) = (\tau_{R} - \tau_{L})$$

Thus,

$$I\ddot{\varphi} = \left(\frac{r}{R} + 2\left(\frac{I_wR}{Ir} + \frac{mRr}{I}\right)\right)^{-1} (\tau_R - \tau_L)$$

Rearrange the terms and solve for $I\ddot{\varphi}$:

$$\Rightarrow I\ddot{\varphi}\left(\frac{r}{R} + 2\left(\frac{I_wR}{Ir} + \frac{mRr}{I}\right)\right) = (\tau_R - \tau_L)$$

Thus,

$$I\ddot{\varphi} = \left(\frac{r}{R} + 2\left(\frac{I_wR}{Ir} + \frac{mRr}{I}\right)\right)^{-1} (\tau_R - \tau_L)$$

or

$$I\ddot{\varphi}=B(\tau_R-\tau_L)$$

Due to friction and limited strength of the motors, linear damping terms are introduced:

$$M\dot{V} + \alpha V = \frac{1}{r} \left(1 + 2 \left(\frac{l_w}{Mr^2} + \frac{m}{M} \right) \right)^{-1} (\tau_R + \tau_L)$$

$$I\ddot{\varphi} + \beta\dot{\varphi} = \left(\frac{r}{R} + 2\left(\frac{I_wR}{I_r} + \frac{mRr}{I}\right)\right)^{-1} (\tau_R - \tau_L)$$

where α and β are empirical constants.

The motor torques τ_L and τ_R can be controlled. Therefore, the motion of the robot can be determined by integration of the above equations.

However, assuming that $m \ll M$ and $I_w \ll I$:

$$M\dot{V} + \alpha V = \frac{1}{r} \left(1 + 2 \left(\frac{l_w}{Mr^2} + \frac{m}{M} \right) \right)^{-1} (\tau_R + \tau_L)$$

$$I\ddot{\varphi} + \beta\dot{\varphi} = \left(\frac{r}{R} + 2\left(\frac{I_wR}{I_r} + \frac{mRr}{I}\right)\right)^{-1} (\tau_R - \tau_L)$$

can be simplified to:

$$M\dot{V} + \alpha V = \frac{1}{r}(\tau_R + \tau_L)$$

$$I\ddot{\varphi} + \beta\dot{\varphi} = \frac{R}{r}(\tau_R - \tau_L)$$

which can be used as our final dynamic model of motion.

Integration

The differential drive: Euler integration

The robot motion can be obtained numerically obtained by a *solver*, for example the **Euler method**.

The differential drive: Euler integration

For each time step t_0 , t_1 , t_2 , ... of length Δt :

1. Compute V and $\ddot{\varphi}$ using

$$M\dot{V}_{n+1} + \alpha V_n = \frac{1}{r}(\tau_R + \tau_L)$$

$$M\dot{V}_{n+1} + \alpha V_n = \frac{1}{r}(\tau_R + \tau_L)$$
 $J\ddot{\varphi}_{n+1} + \beta \dot{\varphi}_n = \frac{R}{r}(\tau_R - \tau_L)$

2. Then update the velocities

$$V_{n+1} = V_n + \dot{V}_{n+1} \Delta t$$

$$V_{n+1} = V_n + \dot{V}_{n+1} \Delta t$$
 $\dot{\varphi}_{n+1} = \dot{\varphi}_n + \ddot{\varphi}_{n+1} \Delta t$

3. Then update the yaw angle

$$\varphi_{n+1} = \varphi_n + \dot{\varphi}_{n+1} \Delta t$$

4. Finally update the position

$$X_{n+1} = X_n + V_{n+1} \cos \varphi_{n+1} \Delta t$$

$$Y_{n+1} = Y_n + V_{n+1} \sin \varphi_{n+1} \Delta t$$