MSO202A COMPLEX ANALYSIS Solutions-1

Exercise Problems:

- 1. For any $z, w \in \mathbb{C}$, show that (a) $\overline{z+w} = \overline{z} + \overline{w}$, (b) $\overline{zw} = \overline{z} \ \overline{w}$, (c) $\overline{\overline{z}} = z$, (d) $|\overline{z}| = |z|$ and (e) |zw| = |z||w|.
- 2. Show that $(a)|z+w|^2 = |z|^2 + |w|^2 + 2\text{Re}(z\overline{w})$

$$(b)|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2).$$

- (c)|z+w|=|z|+|w| if and only if either zw=0 or z=cw for some positive real number c.
- 3. Let α be any of the n th roots of unity except 1. Show that $1+\alpha+\alpha^2+\ldots+\alpha^{n-1}=0$.
- 4. Express in polar form: (a) 1+i (b) -1-i (c) $\sqrt{3}+i$ (d) $1+\cos\theta+i\sin\theta$. Determine the value of $\operatorname{Arg}(z^2)$ in each of the cases.
- 5. Let z be a nonzero complex number and n a positive integer. If $z = r(\cos \theta + i \sin \theta)$, show that $z^{-n} = r^{-n}(\cos n\theta \sin n\theta)$.
- 6. Find the roots of each of the following in the form x + iy. Indicate the principal root (a) $\sqrt{2i}$, (b) $(-1)^{1/3}$ and (c) $(-16)^{1/4}$.
- 7. Determine the values of the following:

(a)
$$(1+i)^{20} - (1-i)^{20}$$
.

(b)
$$\cos \frac{\pi}{4} + i \cos \frac{3}{4}\pi + \dots + i^n \cos \frac{2n+1}{4}\pi + \dots + i^{40} \cos \frac{81}{4}\pi$$
.

- 8. Find the roots of $z^4 + 4 = 0$. Use these roots to factor $z^4 + 4$ as a product of two quadratics with real coefficients.
- 9. Determine whether the following sets describe domains (open and connected sets) in \mathbb{C} : (a) Re z>1 (b) $0\leq \operatorname{Arg} z\leq \frac{\pi}{4}$ (c) Im (z)=1, (d) |z-2+i|<1 (e) |2z+3|>4.

Problem for Tutorial:

1. Give a geometric description of the following sets:

(a)
$$\{z \in \mathbb{C} : |z+i| \ge |z-i|\}$$

(b)
$$\{z \in \mathbb{C} : |z - i| + |z + i| = 2\}.$$

2. Discuss the convergence of the following sequences: (a) (z^n) , (b) $(\frac{z^n}{n!})$, (c) $(i^n \sin \frac{n\pi}{4})$ and (d) $(\frac{1}{n} + i^n)$.

1

- 3. Determine if the following series converge or diverge: (a) $\sum_{n=0}^{\infty} \left(\frac{1+i}{4}\right)^n$ (b) $\sum_{n=0}^{\infty} \left(\frac{1}{n+in^2}\right)$
- 4. Limit at infinity: Let $f: \mathbb{C} \to \mathbb{C}$ be a function. The limit of f at infinity is said to be l if, given any $\epsilon > 0$ there exists a R > 0 such that $|f(z) l| < \epsilon$ for all z such that |z| > R.
 - (a) Show that $\lim_{z\to\infty} \frac{1}{z^2} = 0$.

Infinite limit: Let $f: \tilde{D} \to \mathbb{C}$ be a function defined around z_0 (except possibly at z_0). The limit of f at z_0 is said to be ∞ if, given any R > 0 there exists a $\delta > 0$ such that |f(z)| > R for all z such that $0 < |z| < \delta$.

- (b) Show that $\lim_{z\to a} \frac{1}{z-a} = \infty$
- 5. Verify if the following functions can be given a value at z=0, so that they become continuous: (a) $f(z)=\frac{|z|^2}{z}$, (b) $f(z)=\frac{z+1}{|z|-1}$, (c) $f(z)=\frac{\bar{z}}{z}$, (d) $\frac{\mathrm{Im}\ (z^2)}{|z|}$, (e) $\frac{\mathrm{Im}\ z}{1-|z|}$.