Physics-based Animation: A Mathematical Perspective

Based on Ladislav Kavan's CS6660 with annotations from wxgopher May 12, 2019

Contents

1	Classical Mechanics	2
	1.1 Basics: a harmonic oscillator	2
2	Time Integration	2
3	Optimization	2
	3.1 Implicit Newmark	
	3.2 Optimization Problems	
	3.2.1 Solving unconstrained problems	
	3.2.2 Newton's method	3
	3.3 Numerical Linear Algebra	4
	3.3.1 Direct solvers	4
	3.3.2 Iterative solvers	5
4	Elastic Materials and Finite Element Simulation	6
5	Fluids and Partial Differential Equations	6
6	Something more	6
7	Papers and books	6

This lecture note is based on Dr. Ladislav Kavan's Physics-based Animation course CS6660, originally taught at the University of Utah. I also try to include some supplementary materials from other resources.

Warning: Although as I strive to make this material useful, there are certain bugs, use this material at your own risk. I would also be grateful to hear feedbacks.

.....

1 Classical Mechanics

1.1 Basics: a harmonic oscillator

2 Time Integration

3 Optimization

3.1 Implicit Newmark

$$x_{n+1} = x_n + \frac{h}{2}(v_n + v_{n+1}),$$
 (1a)

$$v_{n+1} = v_n = \frac{h}{2}(f_n + f_{n+1}),$$
 (1b)

where *x* and *v* are positions and velocities, and $f_n \equiv f(x_n)$. Thus we have

$$x_{n+1} - x_n - hv_n = \frac{h^2}{4} (f_n + f_{n+1}).$$
 (2)

Let $y = x_n + h_n v_n + \frac{h^2}{4} f_n$, $x_{n+1} = x$, note that $\nabla E = -f$, then (2) becomes

$$x - y = \frac{h^2}{4}f \Rightarrow x - y + \frac{h^2}{4}f\nabla E = 0.$$
(3)

Let $g(x) = \frac{1}{2}||x - y|^2 + \frac{h^2}{4}E$, then solving g equals to solve x for

$$\min_{x} \quad g(x). \tag{4}$$

3.2 Optimization Problems

Problem formulation:

$$\min_{x} g(x), \quad x \in \mathbb{R}^n, \quad g \in \mathbb{R}. \tag{5}$$

Optimization problems can be categorized into constrained or unconstrained problems, or convex or non-convex problems.

Theorem 1. For a convex problem (where both objective and feasible set are convex), if the objective is C^2 , then the Hessian $H \succeq 0$, and the local minimum is the global minimum.

Definition 1. A linear programming (LP) is a problem with linear objective and linear equality or inequality constraints. A quadratic programming (QP) is the same as LP except with a quadratic objective.

Note 1. Convex QP has polynomial time solver but non-convex QP is NP-hard.

Example 1. A non-convex QP:

$$\min_{x} \quad \frac{1}{2} ||Ax||^2, \tag{6a}$$

$$s.t. ||x||_2 = 1.$$
 (6b)

Note 2. Software package for solving non-convex problem: IpOPT, KNITRO, or NEOS-Guide

3.2.1 Solving unconstrained problems

There are two ways to solve an unconstrained problem: descent method or trust-region method.

Descent method refers to pick a descent direction d and do an exact or inexact line search (LS) to determine descent distance αd .

Definition 2. *Descent direction*: $\forall \alpha \in (0, \alpha_0), \alpha_0 > 0, g(x + \alpha d) < g(x).$

Definition 3. *Exact LS refers to solving the following problem:*

$$\underset{\alpha>0}{\arg\min}\,g(x+\alpha d).$$

Backtracking LS

3.2.2 Newton's method

A usual descent direction is called **gradient descent** (GD), denoted by $d = -\nabla g$. It doesn't work well sometime, for example:

Example 2.

$$\min_{x_1, x_2} g(x_1, x_2) = \frac{1}{2} (x_1^2 + \gamma x_2^2), \quad \gamma > 0.$$
 (7)

If we do exact LS, we get

$$x_1^k = \gamma (\frac{\gamma - 1}{\gamma + 1})^k,\tag{8a}$$

$$x_2^k = (-\frac{\gamma - 1}{\gamma + 1})^k. {(8b)}$$

If gamma becomes huge, we can tell GD converges slowly (as two GD directions are perpendicular).

Newton's method refers to do a quadratic approximation to problem (5), given by

$$g(x+p) = g(x) + \nabla g^{\mathsf{T}}(x)p + \frac{1}{2}p^{\mathsf{T}}\nabla^{2}g(x)p + O(\|p\|^{2}) \equiv \tilde{g}(x) + O.$$
 (9)

Thus we have

$$\frac{\partial \tilde{g}}{\partial p} = 0 \Longleftrightarrow \nabla g + \nabla^2 g p = 0.$$

The **Newton descent direction** is given by

$$p = -(\nabla^2 g)^{-1} \nabla g. \tag{10}$$

Note 3. Newton's method is affine invariant. Let x = Ty with T being a nonsingular matrix, so problem (5) is equivalent to problem

$$\min_{y} \tilde{g}(y). \tag{11}$$

We also have

$$\nabla \tilde{g} = T^2 \nabla g, \quad \nabla^2 \tilde{g} = T^T \nabla^2 g T.$$

Newton direction Δy of \tilde{g} and Δx of g is given by

$$\Delta y = -T^{-1}\nabla^2 g \nabla g = T^{-1}\Delta x.$$

Definition 4. Newton decrement: substitute Newton descent direction (10) into (9), we get the Newton decrement

$$\lambda^2 = g - \frac{1}{2} \nabla g^{\mathrm{T}} (\nabla^2 g)^{-1} \nabla g. \tag{12}$$

A stopping criteria for Newton's method would be

$$\frac{\lambda^2}{2} \le \epsilon$$
.

Note that Newton decrement is also affine invariant.

Convergence analysis of the Newton's method is given as follows:

Theorem 2. *Kantorovich*: if g is strictly convex and $\nabla^2 g$ is Lipschitz continuous, then $\exists \epsilon > 0, \eta > 0, \gamma > 0, s.t.$

Damped phase I *If*
$$\|\nabla g\| \ge \eta$$
, then $\|g^{k+1}\| \le \|g^k\| - \gamma$;

Quadratic phase II If $\|\nabla g\| < \eta$, then $\|g^{k+1}\| \le c\|g^k\|^2$.

Some cases where Newton's method doesn't work well:

- 1. If *g* is highly nonlinear, the damped phase will be long;
- 2. If *g* is non-convex, solution might not converge to a minimum.

In practical implementations, the Hessian might not always be positive definite. A possible Hessian modification is:

Note 4. Hessian modification: Consider $A = \nabla^2 g + cI$, where c > 0. It is shown that if $\nabla^2 g = Q\Lambda Q^T$ ($\nabla^2 g$ is symmetric, hence it is always diagonalizable), then $A = Q(\Lambda + cI)Q^T$, hence A is positive definite given sufficiently large c > 0.

Solving Newton's direction (10) refers to solving a linear system. We introduce several techniques to tackle this.

3.3 Numerical Linear Algebra

We consider solving a linear system Ax = b.

3.3.1 Direct solvers

We can prefactor A into $A = UV^{T}$, with U and V being low rank matrices.

Common factorization methods are

LU If A is nonsingular, then there exist L, P, U, where they are lower-triangular matrix, permutation matrix (hence orthogonal), and upper-triangular matrix, respectively, s.t. A = PLU.

Sparse LU $A = P_1LUP_2$, where P_1 and P_2 are permutations to utilize sparse information of A.

Cholesky For symmetric positive-definite matrix, we have $A = LL^{T}$ with unique L. Note that for positive semi-definite matrix, Cholesky is not unique.

LDLT

3.3.2 Iterative solvers

Iterative solvers includes:

- 1. Classical method: Jacobian, Gauss-Seidel, SOR (super over-relaxation), etc.;
- 2. Krylov subspace method: CG (conjugate gradient)¹, GMRES (generalized minimal residual), etc.;
- 3. multigrid method.

Classical method Suppose *P* is easy to invert, let A = P + A - P, then

$$Ax = b \Leftrightarrow Px = (P - A)x + b.$$

P = diag(A) gives us Jacobian method, and it's GPU-friendly; P = lower(A) gives us GS method; $P = diag(A) + w \cdot lower(A)$ gives us SOR method where w < 2.

The residual term follows

$$r_k \equiv A(x^* - x_k) = b - Ax_k \quad \Leftrightarrow \quad r_{k+1} = (I - P^{-1}A)r_k.$$

To make classical method converge, we need $\rho(I - P^{-1}A) < 1$, where $\rho(\cdot)$ is the spectrum radius.

Krylov subpace method Assuming $A^{T} = A$ and $A \succeq 0$, then

$$\arg\min_{x} g(x) = \frac{1}{2} x^{T} A x - x^{T} b \quad \Leftrightarrow \quad solve \ A x = b. \tag{13}$$

Let $\nabla g_k = Ax_k - b = -r_k^2$ as a descent direction, the line search for (13) is as follows:

- 1. Solve α from $\arg\min_{\alpha}(\frac{1}{2}(x+\alpha r)^{\mathrm{T}}A(x+\alpha r)-(x+\alpha r)^{\mathrm{T}}b\equiv\frac{1}{2}\|x+\alpha r\|_{A}^{2}-(x+\alpha r)^{\mathrm{T}}b)$ by letting $\frac{\partial E}{\partial \alpha}=0$, where E is the objective;
- 2. α follows $\alpha = -\frac{\|r\|^2}{\|r\|_A^2}$;
- 3. $x_{k+1} = x_k + \alpha_k r_k$.

This is the gist of CG from gradient descent.

CG Assuming solving problem (13).

Definition 5. A-conjugate A set of vectors $\{p_i\}$ are A-conjugate iff $\forall i, j, i \neq j, p_i^T A p_j = 0$.

The CG algorithm is as follows:

- 1. We define $r_k = Ax_k b$;
- 2. Let $p_1 = r_1^3$;

3.
$$p_k = r_k + \beta_k p_{k-1}, \beta_k = \frac{r_k^T A p_{k-1}}{p_{k-1}^T A p_{k-1}};$$

- 4. Do LS along direction p_k , we have $\alpha_k = \frac{r_k^T p_k}{p^T A p_k}$;
- 5. $x_{k+1} = x_k + \alpha_k p_k$.

¹A good reference on CG is [4].

 $^{{}^{2}}Ax$ is computed on-fly, we don't need the whole A.

 $^{^{3}}r_{1}$ is usually chosen as a GD step

Preconditioning CG If *A* is ill-conditioned, we consider adding preconditioner *M* to *A*, s.t. cond(MA) < cond(A).

The Jacobian preconditioner is given by $M = diag(A)^{-1}$. The incomplete Cholesky is given by prefactoring A into $L_a L_a^{\mathsf{T}}$ where L_a is an approximation of L of the Cholesky decomposition of A given by $A = L L^{\mathsf{T}}$.

- 4 Elastic Materials and Finite Element Simulation
- 5 Fluids and Partial Differential Equations
- 6 Something more...
- 7 Papers and books

Numerical optimization can refer to [2] [3].

[1] is a great reference for continuum mechanics and FEM.

References

- [1] Javier Bonet and Richard D Wood. *Nonlinear continuum mechanics for finite element analysis*. Cambridge university press, 1997.
- [2] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
- [3] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.
- [4] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the agonizing pain, 1994.