Sujet d'étude

Exercice 1 Construction de \mathbb{R} par les sections commençantes

On appelle section commençante ouverte s, toute partie de \mathbb{Q} possédant les propriétés suivantes

- La partie s est une partie **propre** de \mathbb{Q} , c'est-à-dire $s \neq \emptyset$ et $s \neq \mathbb{Q}$.
- Si $x \in s$ et $y \in \mathbb{Q}$ est tel que $y \le x$, alors $y \in s$:

$$\forall x \in s, \forall y \in \mathbb{Q}, y \leq x \implies y \in s.$$

• La partie s n'a pas de plus grand élément.

On désigne par S l'ensemble des sections commençantes ouvertes.

1. On note i(a) l'ensemble des rationnels strictement inférieurs à un rationnel a:

$$i(a) = \{ x \in \mathbb{Q} \mid x < a \}.$$

Montrer que i(a) est une section commençante ouverte.

Partie A Un ordre sur S

A1. Démontrer que la relation ≤ définie par

$$s_1 \leq s_2 \iff s_1 \subset s_2$$

est une relation d'ordre totale sur S.

A2. Soit $(s_i)_{i\in I}$ une famille d'éléments de S majorés par s_0 . Démontrer que

$$s = \bigcup_{i \in I} s_i$$

est une section commençante ouverte et que cette section est la plus petite contenant chaque s_i . En déduire que dans l'ensemble S totalement ordonné par \leq , toute partie non vide majorée admet une borne supérieure.

A3. Démontrer qu'étant donné $s_1, s_2 \in S$, $s_1 < s_2$, il existe un rationnel x tel que

$$s_1 < i(x) < s_2$$
.

Partie B L'addition sur S

Soit s_1 et s_2 deux éléments de S. On note $s_1 + s_2$ la partie de $\mathbb Q$ définie par

$$s_1 + s_2 = \{ x_1 + x_2 \mid x_1 \in S_1 \text{ et } x_2 \in S_2 \}.$$

1

- **B1.** Montrer que l'addition ainsi définie sur S est commutative et associative.
- **B2.** Montrer que pour tous $x_1, x_2 \in \mathbb{Q}$, on a $i(x_1) + i(x_2) = i(x_1 + x_2)$.

- **B3.** Montrer que i(0) est l'élément neutre de cette addition.
- **B4.** Étant donné $s \in S$, démontrer que l'ensemble

$$s' = \{ x \in \mathbb{Q} \mid s < i(-x) \}$$

est une section commençante ouverte vérifiant s + s' = i(0).

B5. Soit s, s_1, s_2 trois éléments de S. Montrer que si $s_1 \le s_2$, alors $s_1 + s \le s_2 + s$.

Partie C Plongement de \mathbb{Q} dans S

- **C1.** Montrer que l'application $i: \mathbb{Q} \to S$ définie par $i: x \mapsto i(x)$ est un morphisme du groupe additif $(\mathbb{Q}, +)$ dans le groupe additif (S, +).
- C2. Montrer que i est strictement croissante, c'est-à-dire

$$\forall (x_1, x_2) \in \mathbb{Q}^2, x_1 < x_2 \implies i(x_1) < i(x_2).$$

Ce morphisme permet d'identifier \mathbb{Q} à une partie de S, que l'on notera encore \mathbb{Q} .

Partie D Les nombres réels

Dans la suite, on appellera nombres réels les éléments de S, et l'on désignera par \mathbb{R} (et non plus S) l'ensemble des nombres réels. Les éléments de $\mathbb{R} \setminus \mathbb{Q}$ s'appelleront irrationnels.

D1. Démontrer que pour tous réels a > 0 et b > 0, il existe $n \in \mathbb{N}$ tel que

$$na > b$$
;

la notation na désignant comme d'habitude $a + a + \dots a$ avec n termes. On dit que l'ordre défini sur \mathbb{R} est archimédien.

- **D2.** Montrer qu'entre deux réels quelconques, il existe un rationnel.
- **D3.** Montrer que, pour tout entier $n \in \mathbb{N}^{+}$, l'ensemble

$$s_n = \left\{ x \in \mathbb{Q} \mid x \le 0 \text{ ou } (nx)^2 < 2 \right\}$$

définit un réel irrationnel.

On désigne par $\sqrt{2}/n$ ce réel.

- **D4.** Montrer que pour tout $n \in \mathbb{N}^*$, $0 < \sqrt{2}/n < 2/n$.
- **D5.** En déduire qu'entre deux rationnels distincts, il existe toujours un irrationnel.

Partie E La multiplication sur \mathbb{R}

Soit s un réel strictement positif $(0 \le s \text{ et } s \ne 0)$. On pose

$$s_+ = s \cap \mathbb{Q}_+^*$$

qui n'est plus une section commençante.

E1. Soit s_1 et s_2 deux réels strictement positifs. On définit l'ensemble $s_1 \times s_2$ de la manière suivante

$$s_1 \times s_2 = \{ x_1 \times x_2 \mid x_1 \in s_{1+} \text{ et } x_2 \in s_{2+} \} \cup Q_-.$$

Montrer que $s_1 \times s_2$ est un réel strictement positif.

Dans la suite, on notera simplement $s_1 s_2$ le réel $s_1 \times s_2$.

- **E2.** Montrer que la multiplication ainsi définie sur \mathbb{R}_+^* est commutative, associative et distributive par rapport à l'addition.
- E3. Vérifier que si x_1 et x_2 sont des rationnels strictement positifs

$$i(x_1) \times i(x_2) = i(x_1 x_2).$$

- **E4.** Démontrer que pour tout $s \in \mathbb{R}_+^*$, $s \times i(1) = s$.
- **E5.** Démontrer que la réunion de \mathbb{Q}_{-} et du complémentaire dans \mathbb{Q}_{+}^{\star} de

$$\left\{ \left. x^{-1} \; \right| \; x \in s \cap \mathbb{Q}_+^{\star} \; \right\}$$

est une section commençante ouverte s'' vérifiant $s \times s'' = i(1)$.

Dans la suite, on désignera s'' par s^{-1} .

E6. Étendre à \mathbb{R} la multiplication définie sur \mathbb{R}_+^* , en lui imposant la condition d'être distributive par rapport à l'addition.

Prouver la règle des signes et démontrer que pour tout réel s, on a $s \times i(0) = i(0)$.

E7. En déduire que \mathbb{R} est un corps ordonné archimédien dans lequel toute partie non vide majorée possède une borne supérieure.

Partie F \mathbb{R} est complet

Nous montrons dans cette partie que \mathbb{R} est complet, c'est-à-dire que toute suite de Cauchy est convergente. Pour cela, on commence par munir \mathbb{R} de la valeur absolue |*| définie par

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{sinon.} \end{cases}$$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy de réels, c'est-à-dire

$$\forall \varepsilon \in \mathbb{R}_+^\star, \exists N \in \mathbb{N}, \forall (p,q) \in \mathbb{N}^2 \left(p \geq N \text{ et } q \geq N \implies |r_q - r_p| \leq \varepsilon \right).$$

- **F1.** Montrer que la suite (u_n) est bornée.
- **F2.** Pour tout *n*, on pose

$$v_n = \inf \{ u_m \mid m \ge n \}$$
 et $w_n = \sup \{ u_m \mid m \ge n \}$.

Justifier l'existence des réels v_n et w_n .

Montrer que les suites (v_n) et (w_n) sont respectivement croissante et décroissante.

Prouver que ces suites convergent (dans \mathbb{R}).

F3. En utilisant la définition d'une suite de Cauchy, montrer que, pour tout $\varepsilon > 0$, il existe n_0 tel que

$$\forall n \geq n_0, |w_n - v_n| \leq \varepsilon.$$

En déduire que les suites (v_n) et (w_n) ont la même limite.

F4. Montrer que, pour tout $n \in \mathbb{N}$, $v_n \le u_n \le w_n$ et conclure.