ENGG 5781: Matrix Analysis and Computations

2016-17 Second Term

Lecture 5: Singular Value Decomposition

Instructor: Wing-Kin Ma

In this note we give the detailed proof of some results in the main slides.

1 Proof of SVD

Recall the SVD theorem:

Theorem 5.1 Given any $\mathbf{A} \in \mathbb{R}^{m \times n}$, there exists a 3-tuple $(\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}) \in \mathbb{R}^{m \times m} \times \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times n}$ such that

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T.$$

 \mathbf{U} and \mathbf{V} are orthogonal, and $\mathbf{\Sigma}$ takes the form

$$[\mathbf{\Sigma}]_{ij} = \left\{ egin{array}{ll} \sigma_i, & i = j \\ 0, & i
eq j \end{array} \right.,$$

with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$ and with $p = \min\{m, n\}$.

The proof is as follows. First, consider the matrix product $\mathbf{A}\mathbf{A}^T$. Since $\mathbf{A}\mathbf{A}^T$ is real symmetric and PSD, by eigendecomposition we can express $\mathbf{A}\mathbf{A}^T$ as

$$\mathbf{A}\mathbf{A}^{T} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{T} = \begin{bmatrix} \mathbf{U}_{1} & \mathbf{U}_{2} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{\Lambda}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{1}^{T} \\ \mathbf{U}_{2}^{T} \end{bmatrix} = \mathbf{U}_{1}\tilde{\mathbf{\Lambda}}\mathbf{U}_{1}^{T}, \tag{1}$$

where we assume that the eigenvalues are ordered such that $\lambda_1 \geq \ldots \geq \lambda_r > 0$ and $\lambda_{r+1} = \ldots = \lambda_p = 0$, with r being the number of nonzero eigenvalues; $\mathbf{U} \in \mathbb{R}^{m \times m}$ denotes a corresponding orthogonal eigenvector matrix; we partition \mathbf{U} as $\mathbf{U} = [\mathbf{U}_1 \ \mathbf{U}_2]$, with $\mathbf{U}_1 \in \mathbb{R}^{m \times r}$ and $\mathbf{U}_2 \in \mathbb{R}^{m \times (m-r)}$; $\tilde{\mathbf{\Lambda}} = \mathrm{Diag}(\lambda_1, \ldots, \lambda_r)$. It is easy to verify from the decomposition above that

$$\mathbf{U}_2^T \mathbf{A} = \mathbf{0}. \tag{2}$$

To see this, we note from $\mathbf{U}_2^T \mathbf{U}_1 = \mathbf{0}$ that $\mathbf{U}_2^T \mathbf{A} (\mathbf{U}_2^T \mathbf{A})^T = \mathbf{0}$. By the simple result that $\mathbf{B} \mathbf{B}^T = \mathbf{0}$ implies $\mathbf{B} = \mathbf{0}$ (which is easy to show and whose proof is omitted here), we conclude that $\mathbf{U}_2 \mathbf{A} = \mathbf{0}$. Second, construct the following matrices

$$\tilde{\mathbf{\Sigma}} = \tilde{\mathbf{\Lambda}}^{1/2} = \mathrm{Diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_r}), \qquad \mathbf{V}_1 = \mathbf{A}^T \mathbf{U}_1 \tilde{\mathbf{\Sigma}}^{-1} \in \mathbb{R}^{n \times r}.$$

One can easily see from (1) that

$$\mathbf{V}_1^T\mathbf{V}_1=\mathbf{I}.$$

Furthermore, let $\mathbf{V}_2 \in \mathbb{R}^{n \times (n-r)}$ be a matrix such that $\mathbf{V} = [\mathbf{V}_1 \mathbf{V}_2]$ is orthogonal; we know from Lecture 1 that such a matrix always exists. It can be verified that

$$\mathbf{U}_1^T \mathbf{A} \mathbf{V}_1 = \tilde{\mathbf{\Sigma}}, \qquad \mathbf{U}_1^T \mathbf{A} \mathbf{V}_2 = \mathbf{0}. \tag{3}$$

Third, consider the matrix product $\mathbf{U}^T \mathbf{A} \mathbf{V}$. We have

$$\mathbf{U}^{T}\mathbf{A}\mathbf{V} = \begin{bmatrix} \mathbf{U}_{1}^{T}\mathbf{A}\mathbf{V}_{1} & \mathbf{U}_{1}^{T}\mathbf{A}\mathbf{V}_{2} \\ \mathbf{U}_{2}^{T}\mathbf{A}\mathbf{V}_{1} & \mathbf{U}_{2}^{T}\mathbf{A}\mathbf{V}_{2} \end{bmatrix}$$
$$= \begin{bmatrix} \tilde{\boldsymbol{\Sigma}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

where (2) and (3) have been used. By multiplying the above equation on the left by **U** and on the right by \mathbf{V}^T , we obtain the desired result $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$. The proof is complete.

2 Sensitivity Analysis of the Linear System Solution

Recall the perturbed linear system problem: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be nonsingular and $\mathbf{y} \in \mathbb{R}^n$, and denote \mathbf{x} as the solution to the linear system $\mathbf{y} = \mathbf{A}\mathbf{x}$. The actual \mathbf{A} and \mathbf{y} we deal with are perturbed. To be specific, we have

$$\hat{\mathbf{A}} = \mathbf{A} + \Delta \mathbf{A}, \qquad \hat{\mathbf{y}} = \mathbf{y} + \Delta \mathbf{y},$$

where $\Delta \mathbf{A}$ and $\Delta \mathbf{y}$ are errors. Let $\hat{\mathbf{x}}$ denote a solution to the perturbed linear system

$$\hat{\mathbf{y}} = \hat{\mathbf{A}}\hat{\mathbf{x}}.$$

The problem is to analyze how the solution error $\hat{\mathbf{x}} - \mathbf{x}$ scales with $\Delta \mathbf{A}$ and $\Delta \mathbf{y}$.

This analysis problem can be tackled via SVD. To put into context, define

$$\kappa(\mathbf{A}) = \frac{\sigma_{\max}(\mathbf{A})}{\sigma_{\min}(\mathbf{A})},$$

which is called the *condition number* of **A**. Note that if **A** is close to singular, then $\sigma_{\min}(\mathbf{A})$ will be very small and we would expect a very large $\kappa(\mathbf{A})$. We have the following result.

Theorem 5.2 Let $\varepsilon > 0$ be a constant such that

$$\frac{\|\Delta \mathbf{A}\|_2}{\|\mathbf{A}\|_2} \le \varepsilon, \qquad \frac{\|\Delta \mathbf{y}\|_2}{\|\mathbf{y}\|_2} \le \varepsilon.$$

If ε is sufficiently small such that $\varepsilon \kappa(\mathbf{A}) < 1$, then

$$\frac{\|\hat{\mathbf{x}} - \mathbf{x}\|_2}{\|\mathbf{x}\|_2} \le \frac{2\varepsilon\kappa(\mathbf{A})}{1 - \varepsilon\kappa(\mathbf{A})}.$$

Theorem 5.2 suggests that for a sufficiently small error level ε , the relative solution error $\|\hat{\mathbf{x}} - \mathbf{x}\|_2/\|\mathbf{x}\|_2$ tends to increase with the condition number $\kappa(\mathbf{A})$. In particular, if $\varepsilon\kappa(\mathbf{A}) \leq 1/2$, we may simplify the relative solution error bound in Theorem 5.2 to

$$\frac{\|\hat{\mathbf{x}} - \mathbf{x}\|_2}{\|\mathbf{x}\|_2} \le 4\varepsilon\kappa(\mathbf{A}),$$

where we can see that the error bound above scales linearly with $\kappa(\mathbf{A})$.

Proof of Theorem 5.2: For notational convenience, denote $\Delta \mathbf{x} = \hat{\mathbf{x}} - \mathbf{x}$. The perturbed linear system can be written as

$$(\mathbf{A} + \Delta \mathbf{A})(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{y} + \Delta \mathbf{y}.$$

The above equation can be re-organized as

$$\mathbf{A}\Delta\mathbf{x} = \Delta\mathbf{y} - \Delta\mathbf{A}\mathbf{x} - \Delta\mathbf{A}\Delta\mathbf{x},$$

and then

$$\Delta \mathbf{x} = \mathbf{A}^{-1}(\Delta \mathbf{y} - \Delta \mathbf{A} \mathbf{x} - \Delta \mathbf{A} \Delta \mathbf{x}).$$

Let us take 2-norm on the above equation:

$$\|\Delta \mathbf{x}\|_{2} \leq \|\mathbf{A}^{-1}\|_{2} \|\Delta \mathbf{y} - \Delta \mathbf{A} \mathbf{x} - \Delta \mathbf{A} \Delta \mathbf{x}\|_{2}$$

$$\leq \|\mathbf{A}^{-1}\|_{2} (\|\Delta \mathbf{y}\|_{2} + \|\Delta \mathbf{A} \mathbf{x}\|_{2} + \|\Delta \mathbf{A} \Delta \mathbf{x}\|_{2})$$

$$\leq \|\mathbf{A}^{-1}\|_{2} (\|\Delta \mathbf{y}\|_{2} + \|\Delta \mathbf{A}\|_{2} \|\mathbf{x}\|_{2} + \|\Delta \mathbf{A}\|_{2} \|\Delta \mathbf{x}\|_{2})$$
(4)

where we have used the norm inequality $\|\mathbf{A}\mathbf{x}\|_2 \le \|\mathbf{A}\|_2 \|\mathbf{x}\|_2$ and the triangle inequality $\|\mathbf{x}+\mathbf{y}\|_2 \le \|\mathbf{y}\|_2 + \|\mathbf{y}\|_2$ to obtain (4).

Next, we apply the assumptions $\|\Delta \mathbf{A}\|_2/\|\mathbf{A}\|_2 \leq \varepsilon$ and $\|\Delta \mathbf{y}\|_2/\|\mathbf{y}\|_2 \leq \varepsilon$ to (4). We have

$$\|\Delta \mathbf{y}\|_{2} \le \varepsilon \|\mathbf{y}\|_{2} = \varepsilon \|\mathbf{A}\mathbf{x}\|_{2} \le \varepsilon \|\mathbf{A}\|_{2} \|\mathbf{x}\|_{2},\tag{5}$$

and substituting (5) and $\|\Delta \mathbf{A}\|_2 \le \varepsilon \|\mathbf{A}\|_2$ into (4) results in

$$\|\Delta \mathbf{x}\|_{2} \leq \|\mathbf{A}^{-1}\|_{2} \|\mathbf{A}\|_{2} (2\varepsilon \|\mathbf{x}\|_{2} + \varepsilon \|\Delta \mathbf{x}\|_{2})$$
$$= 2\varepsilon \kappa(\mathbf{A}) \|\mathbf{x}\|_{2} + \varepsilon \kappa(\mathbf{A}) \|\Delta \mathbf{x}\|_{2},$$

where the result $\|\mathbf{A}^{-1}\|_2 = \max_{i=1,\dots,n} 1/\sigma_i(\mathbf{A}) = 1/\sigma_{\min}(\mathbf{A})$ has been used. The above inequality can be rewritten as

$$(1 - \varepsilon \kappa(\mathbf{A})) \|\Delta \mathbf{x}\|_2 \le 2\varepsilon \kappa(\mathbf{A}) \|\mathbf{x}\|_2$$

and if $1 - \varepsilon \kappa(\mathbf{A}) > 0$ we can further rewrite

$$\frac{\|\Delta \mathbf{x}\|_2}{\|\mathbf{x}\|_2} \le \frac{2\varepsilon\kappa(\mathbf{A})}{1 - \varepsilon\kappa(\mathbf{A})},$$

as desired.