Relación entre el diseño y el análisis

Gerardo Martín

2022-06-29

Tipos de estudios

Grado de control

Control de tratamientos (variables independientes, contínuas ó categóricas)

- 1. Experimentales
- 2. Observacionales
- 3. Híbridos

Características de las observaciones

Tiempo de exposición de las unidades experimentales a los tratamientos

- 1. Factorial
- 2. Cohorte

Experimentales

Características

- 1. Se controlan las variables independientes (tratamientos)
- 2. Más de una variables independiente ó variable con más de dos niveles

Ejemplo

Leer resumen de:

Influencia de tres regímenes de riego

Observacionales

Características

- 1. No hay control sobre variables independientes
- 2. Más de una variable categórica ó contínua
 - · Podría ser necesario reducir dimensiones con PCA

Ejemplos

Leer resumen de:

Efecto de la altitud, pendiente y exposición ...

Híbridos

Características

- 1. Control de algunos tratamientos o efectos
- 2. Más de una variable contínua ó categórica

Ejemplos

Leer resumen de:

Are dingoes a trophic regulator in arid Australia?

Clasificación por tiempo de

exposición

Factoriales

Observaciones sujetas al efecto de una variable con tres niveles

Ejemplo

Efecto del tipo de suelo sobre tiempo de germinación de semillas de palma:

- · Suelo A promedio de germinación 2 semanas
- · Suelo B promedio de germinación 2.2 semanas
- · Suelo C promedio de germinación 1.78 semanas

Cohorte

Se sigue por un largo período de tiempo a lxs individuos participantes y registran eventos clave, objeto de estudio

Ejemplo

En el experimento de germinación, se puede registrar

- 1. Fecha de inicio de experimento
- 2. Fecha de germinación
- 3. Fecha en que ocurrió primera floración
- 4. Fecha en que se detectó crecimiento de frutos
- 5. Número de frutos producidos
- 6. Número de descendientes en primera floración

Logística de los experimentos

Características de diseños experimentales

Cómo se asignan las unidades experimentales a los tratamientos

- 1. Aleatorizados
- 2. Replicados

Aleatorizados

- · Muestras seleccionadas al asar
- · Unidades experimentales asignadas al asar
- · Ubicación de unidades es aleatoria

Réplicas

- · Tratamientos experimentales
- · Unidades experimentales
- · Sitios de muestreo

Objetivo del diseño

- Repetitividad
 - · Que las hipótesis probadas sean predictivas a escalas comparables
 - · En otros experimentos
 - · En contextos más amplios que experimentales

Relación entre diseño e hipótesis

- · Diseño debe permitir probar hipótesis estadística
- Factorial
 - Factor = variable independiente
 - · Variables medidas = variable dependiente

Tipos

- 1. Completamente aleatorizado
- 2. Bloques aleatorizados
- 3. Cuadrado latino
- 4. Split Plot, o parcelas divididas
- 5. Rejilla
- 6. Aumentados

Aleatorizado

Bloques aleatorios

Cuadrado latino

Tratamiento 1	Tratamiento 2	Tratamiento 3
Tratamiento 3	Tratamiento 1	Tratamiento 2
Tratamiento 2	Tratamiento 3	Tratamiento 1

Split plot

Bloque 1	Bloque 2	
Tratamiento 1	Tratamiento 1	
Tratamiento 2	Tratamiento 2	
Tratamiento 3	Tratamiento 3	

Rejilla

Relación entre diseño y análisis

Tipos de variables observacionales

Numéricas:

- Regresión lineal
- ANOVA
- Modelos lineales generalizados

Variables contínuas

Positivas ó negativas

- Regresión lineal
- ANOVA

Variables independientes contínuas y/o categóricas:

- Regresión lineal

Variables independientes categóricas únicamente:

- Regreción lineal
- ANOVA

Variables contínuas

Estrictamente positivas (p. ej. precipitación, tiempo)

- Modelos lineales generalizados
 - log-normal
 - Gamma (más recomendado para tiempo)

Variables discretas

Variables discretas, sin decimales, p. ej. conteos poblacionales

- Modelos lineales generalizados
 - Poisson
 - Logística, binomial (también para binarias, 1, 0)

Factores de agrupamiento

Bloques

- · Tratamientos experimentales (Color de las bolitas)
- · Agrupamiento: bloques (Cajas de color gris)
- · Implicaciones para análisis:
 - Tratamientos: efectos fijos Factores cuyo efecto sobre objeto de estudio deseamos medir
 - Bloques: efectos aleatorios Factores no medidos, desconocidos que aumentan variabilidad

Ejemplo del efecto de los bloques

Ejemplo del efecto de los bloques

Efecto de bloques y tratamientos

- · Bloques afectan dispersión (varianza)
- · Tratamientos afectan promedio