Ayudantía 2 CC 2023-2

Javier Pérez

August 20, 2023

1 Perdida de importancia

- Considerando una representación de punto flotante de 8 bits, con uno para el signo, 3 para el exponente y 4 bits para la mantisa. El shift es definido como $2^{3-1}-1$
 - 1. calcule ϵ_{mach} para esta representación considerando la cantidad de bits disponibles para la mantisa, el ϵ_{mach} será = 2^{-4}
 - 2. Considerando representación subnormal. ¿Cuál es el número más pequeño que se puede representar? siguiendo las reglas de representación subnormal tendremos que será el mínimo exponente, además de tener un 0 en el inicio de la representación, y un 1 en el final de la mantisa, quedando así $2^{-4} \cdot 2^{-2} = 2^{-6}$
 - 3. El número 0.9 en binario es $(.11100)_2$ determine fl(0.9) y verifique si el error relativo de redondeo es menor que $\frac{\epsilon_{mach}}{2}$. tendremos que normalizadamente el 0.9 se escribirá como $2^{-1} \cdot 1.110011001100...$ pero tenemos solo cuatro bits de mantisa, por lo que tendremos que seguir las reglas de redondeo, teniendo así $1.1100|1100...\cdot 2^{-1}$ ahora viendo esto podemos determinar que el cuarto bit sera 1, por las reglas de redondeo mencionadas anteriormente.

Ahora debemos calcular a que equivale este valor, teniendo

$$2^{-1} + 2^{-2} + 2^{-3} + 2^{-5} = \frac{29}{32} = 0.90625$$

teniendo esto usamos la formula del error relativo, quedando

1

$$\frac{|0.9 - 0.90625|}{|0.9|} = \frac{0.00625}{0.9} = \frac{1}{144} \le \frac{1}{32} = 2^{-5} = \frac{1}{2} \cdot \epsilon_{mach}$$

Por lo que vemos que se cumple que el error relativo de redondeo es menor que $\frac{\epsilon_{mach}}{2}$.

4. dado los algoritmos d_1 y d_2 , calcule el **out** de cada uno y explique si existe alguna diferencia entre ellos, considerando a = 1/2, b = 1/16 v $\sqrt{1+2^{-4}} \approx 1+2^{-4}$

primero anotemos que hace cada algoritmo.

para el algoritmo numero uno tendremos que calcula lo siguiente:

$$\sqrt{a^2+b^2}$$

para el segundo algoritmo tendremos que se calcula lo siguiente (asumiendo a como el numero mas grande entre los dos):

$$a\sqrt{\frac{b^2}{a^2}+1}$$

notemos que ambos algoritmos hacen lo mismo, solo que uno factoriza por a^2 , mientras que el otro no.

teniendo esto en cuenta desarrollemos cada algoritmo, revisando que almacena cada uno.

para d_1 :

 $-l_1 = 1/2 \cdot 1/2 = 1/4$

podemos notar que podemos almacenar perfectamente 1/4 en la notación punto flotante que tenemos, quedando así: $+1.0000\cdot 2^{-2}$

 $- l_2 = 1/16 \cdot 1/16 = 1/256 = 2^{-8}$

dado que el numero mas pequeño representable es el 2^{-6} este numero quedara almacenado como un 0.

 $-l_3 = 1/4 + 0 = 1/4$

como ya vimos este numero si se podía almacenar sin ningún problema

- **out** = $\sqrt{1/4} = 1/2$

tampoco nos genera ningún problema almacenar 1/2, quedando $+1.0000 \cdot 2^{-1}$

para d_2 :

-M = 1/2

no había problemas almacenando 1/2

-m = 1/16

no hay problemas almacenando 1/16 siempre que usemos notacvion subnormal, quedando $+0.0100 \cdot 2^{-2}$.

 $-l_3 = 2/16 = 1/8$

al igual que antes usamos la notación subnormal $+0.1000 \cdot 2^{-2}$.

 $-l_4 = 1/8 \cdot 1/8 = 1/64 = 2^{-6}$

este es el numero mas pequeño que podemos representar, quedando $+0.0001 \cdot 2^{-2}$

- $l_5 = 1 + 2^{-6}$
 - acá tendremos un problema, dado que al 1 sumarle un numero que es mucho mas pequeño (considerando la precisión que tenemos), el 2^{-6} no se considerará, quedando así solo el 1, aca la suma especifica: $1.000000+0.000001=1.000001\to1.00000|01$, como vemos el redondeo hará que el 2^{-6} desaparezca
- $l_6 = \sqrt{1} = 1$ almacenar el uno tampoco supone ningún problema, quedando así: +1.0000⋅2⁰
- **out** = $1/2 \cdot 1 = 1/2 = 2^{-1}$

como vemos, ambos algoritmos dan lo mismo, a pesar de ser un proceso distinto, esto se debe a que ambos tienen problemas con la perdida de significancia, el primero al almacenar un numero demasiado pequeño y el otro al intentar sumar números de muy distintas magnitudes para la representación, perdiendo así precisión.

Algorithm 1 d_1	
1: $l_1 = a \times a$	▷ =
$2: l_2 = b \times b$	▷ =
3: $l_3 = l_1 + l_2$	▷ =
4: $\mathbf{out} = \sqrt{l_3}$	

$\overline{\textbf{Algorithm 2} \ d_2}$	
1: $M = max(a, b)$	> =
2: m = min(a, b)	▷ =
3: $l_3 = m/M$	▷ =
4: $l_4 = l_3 \times l_3$	▷ =
5: $l_5 = 1 + l_4$	▷ =
6: $l_6 = \sqrt{l_5}$	▷ =
7: $\mathbf{out} = M \times l_6$	▷ =

- En la próxima pelicula de los Avengers (Avengers: Age of Ultron), Tony Stark no ha podido perfeccionar su nueva armadura llamada Hulkbuster, la cual la necesita para enfrentar a Hulk. El único problema que le queda por resolver es la siguiente ecuacón de 4to grado: $x^4 ax^2 m = 0$, donde a, m > 0. Para la cual necesita de su ayuda.
 - 1. Implemente un algoritmo que calcule las 2 raíces reales de la ecuación de 4to grado y que no sufra de pérdida de significancia.
 - 2. Obtenga las raíces reales cuando a = 10 y m = 1.
 - 3. Obtenga las raíces reales cuando a = 10^8 y m = 10^{-4} . ¿Es 0 una raíz?.

Este ejercicio queda propuesto al igual que en la guía anterior.