# Automated Mouse Behavior Recognition using LSTM and TCN Networks.

#### Xavier de Juan Pulido

Fundamental Principles of Data Science Master's Thesis

Facultat de Matemàtiques i Informàtica Universitat de Barcelona

July 15, 2022



### Índex

- Introduction
- Related Work
- Methodology
- 4 Results
- Conclusions

### Introduction

#### Motivation

- Project initiated by Dr. Mercè Masana, Professor of the Department of Biomedicine from the Faculty of Medicine and Health Sciences in the University of Barcelona.
- Research studies in neurosciences employ mice for their experiments.
- These trials require a significant amount of behavior analysis.
- Main goal: automate the frame tagging by using computer vision and deep learning.

### Introduction

#### The Problem



- Label images by their content.
- Animal motion recognition task
- In Computer Vision: multiclass video classification on frame level
- Sequence processing many to many problem.

### Related Work

### Architectures already applied

- Kopaczka et al., 2019: Two-Stream Convolutional Networks.
- Bohnslav et al., 2020: 3D Convolutional Networks.
- Ngoc Giang et al., 2019: Two-Stream I3D Convolutional Networks.
- Zhang, Yang, and Wu, 2019: CNN+LSTM architecture.

### Methodology

#### Data

• 17 mice recordings with the annotated behaviors: grooming, mid rearing and wall rearing.



(a) Grooming



(b) Mid Rearing



(c) Wall Rearing

#### **Data Transformations**

- Cropping using DeepLabCut<sup>™</sup>software.
- Reduce the video length in smaller sequences.

### Methodology

#### Methods

- ResNet + LSTM
- InceptionResNet + LSTM
- ResNet + TCN
- InceptionResNet + TCN

### Training Strategy

 Neural Architecture and Hyperparameter search: cross-validation across each video.



### Methodology

#### **Evaluation Metrics**

- Confusion Matrix: True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN)
- Binary Accuracy:  $\frac{TP+TN}{TP+TN+FP+FN}$
- Precision:  $\frac{TP}{TP+FP}$ . Proportion of positive identifications that were actually correct.
- Recall:  $\frac{TP}{TP+FN}$ . Proportion of actual positives that were identified correctly.
- Area under the precision-recall curve.

### Results: Grooming

|                 | ResNet+LSTM | Inc.ResNet+LSTM | ResNet+TCN | Inc.ResNet+TCN |
|-----------------|-------------|-----------------|------------|----------------|
| Binary Accuracy | 0.902       | 0.909           | 0.950      | 0.942          |
| Precision       | 0.412       | 0.426           | 0.681      | 0.577          |
| Recall          | 0.946       | 0.876           | 0.537      | 0.635          |
| AUC PRC         | 0.679       | 0.690           | 0.588      | 0.586          |









### Results: Mid Rearing

|                 | ResNet+LSTM | Inc.ResNet+LSTM | ResNet+TCN | Inc.ResNet+TCN |
|-----------------|-------------|-----------------|------------|----------------|
| Binary Accuracy | 0.897       | 0.902           | 0.887      | 0.912          |
| Precision       | 0.518       | 0.535           | 0.415      | 0.592          |
| Recall          | 0.797       | 0.748           | 0.104      | 0.596          |
| AUC PRC         | 0.702       | 0.691           | 0.201      | 0.602          |









### Results: Wall Rearing

|                 | ResNet+LSTM | Inc.ResNet+LSTM | ResNet+TCN | Inc.ResNet+TCN |
|-----------------|-------------|-----------------|------------|----------------|
| Binary Accuracy | 0.918       | 0.914           | 0.840      | 0.888          |
| Precision       | 0.671       | 0.667           | 0.433      | 0.569          |
| Recall          | 0.785       | 0.737           | 0.570      | 0.739          |
| AUC PRC         | 0.792       | 0.770           | 0.411      | 0.716          |









### Results: Discussion

### Groomings

|                 | ResNet+LSTM | Inc.ResNet+LSTM | ResNet+TCN | Inc.ResNet+TCN |
|-----------------|-------------|-----------------|------------|----------------|
| Binary Accuracy | 0.902       | 0.909           | 0.950      | 0.942          |
| Precision       | 0.412       | 0.426           | 0.681      | 0.577          |
| Recall          | 0.946       | 0.876           | 0.537      | 0.635          |
| AUC PRC         | 0.679       | 0.690           | 0.588      | 0.586          |

### Mid Rearings

|                 | ResNet+LSTM | Inc.ResNet+LSTM | ResNet+TCN | Inc.ResNet+TCN |
|-----------------|-------------|-----------------|------------|----------------|
| Binary Accuracy | 0.897       | 0.902           | 0.887      | 0.912          |
| Precision       | 0.518       | 0.535           | 0.415      | 0.592          |
| Recall          | 0.797       | 0.748           | 0.104      | 0.596          |
| AUC PRC         | 0.702       | 0.691           | 0.201      | 0.602          |

### **Wall Rearings**

|                 | ResNet+LSTM | Inc.ResNet+LSTM | ResNet+TCN | Inc.ResNet+TCN |
|-----------------|-------------|-----------------|------------|----------------|
| Binary Accuracy | 0.918       | 0.914           | 0.840      | 0.888          |
| Precision       | 0.671       | 0.667           | 0.433      | 0.569          |
| Recall          | 0.785       | 0.737           | 0.570      | 0.739          |
| AUC PRC         | 0.792       | 0.770           | 0.411      | 0.716          |

### Conclusions

- Different architectures have been reviewed from the current literature.
- Main Goal: four different models to automatically tag the videos.
- Experimentation using LSTM and TCN networks.
- Each behavior has a different best model.
- Results show that the model that best suits and generalizes the problem is ResNet + LSTM

### Conclusions

#### **Future Work**

- Try to use Transformers on this problem.
- Build the model together and perform a two stage training.
- Record the videos from different points of view.
- Try to use an ensemble method to combine the four models trained.
- Use the computational time as another metric.
- Increase the hyperparameter space to search and use other techniques.
- Test the models in public datasets to compare with other researchers.

## Questions?