Significance tables

Standard Reco	Jets	and	MET	and	Standard	Reco	leptons.	
Single Lepton!								
Sample	e	e.	lecti	cons				
		77	and made	1.0	CT ont	1 /	CT o	_

udie rebrout:					
Sample	electrons				
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2	
LM0	83.6766	111.075	114.214	114.394	
LM1	9.58411	12.9456	13.7438	13.7859	
QCD 250-500	0	0	0	0	
QCD 500-1000	0	0	2.99489	2.99489	
QCD 1000-Inf	0.62144	0.764849	0.908258	1.05167	
BB	0	0	0	0	
WJets	314.937	402.42	402.42	402.42	
TT Bar Jets	124.005	153.266	156.027	156.135	
Sig LMO	3.99074	4.70874	4.81635	4.82283	•
Sig LM1	0.45709	0.548793	0.579566	0.581214	

Standard Reco Jets and MET and Standard Reco leptons. Same Sign Double Lepton!!

Sample	electron el	lectron		
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2
LM0	1.39012	2.17487	2.28698	2.28698
LM1	0.222037	0.376619	0.404725	0.404725
QCD 250-500	0	0	0	0
QCD 500-1000	0	0	0	0
QCD 1000-Inf	0	0	0	0
BB	0	0	0	0
WJets	0	0	0	0
TT Bar Jets	0.0541384	0.324831	0.433107	0.433107
Sig LMO	5.97449	3.81597	3.47508	3.47508
Sig LM1	0.954271	0.660806	0.614982	0.614982

PF elTight

Particle Flow Jets and MET and Particle Flow leptons. Single Lepton!!

single Leptonii				
Sample	electrons			
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2
LM0	83.542	74.9322	76.9053	76.995
LM1	9.53633	9.24122	9.88766	9.91857
QCD 250-500	0	0	0	0
QCD 500-1000	0	0	0	0
QCD 1000-Inf	0.430228	0.334622	0.430228	0.430228
BB	0	0	0	0
WJets	209.958	192.462	192.462	192.462
TT Bar Jets	75.3065	68.2685	69.7844	69.9386
Sig LMO	4.94258	4.63761	4.74511	4.75015
Sig LM1	0.564196	0.571946	0.610075	0.611919
-				

Particle Flow Jets and MET and Particle Flow leptons. Same Sign Double Lepton!!

00	me sign bouble	repronti			
	Sample	electron el	lectron		
		V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2
	LM0	1.5695	1.18833	1.30044	1.30044
	LM1	0.269817	0.241711	0.269817	0.269817
1	QCD 250-500	0	0	0	0
	QCD 500-1000	0	0	0	0
	QCD 1000-Inf	0	0	0	0
4	BB	0	0	0	0
	WJets	0	0	0	0
	TT Bar Jets	0	0.0541384	0.0541384	0.0541384
	Sig LMO	inf	5.10723	5.58904	5.58904
	Sig LM1	inf	1.03883	1.15962	1.15962

PF 0.85 < mva < 0.9 and H over E < 0.002

Particle Flow Jets and MET and Particle Flow leptons. Single Lepton!!

single Depton:									
Sampl	le	electro	ons						
		V+j pt	10 SL	opt::pt10	SL	opt::pt5	SL	opt::pt2	
L	10	80.3	325	108.488		111.806		112.291	
Li	41	11.1	596	14.4019		15.4503		15.5646	
QCD 250-50	00		0	0		0		0	
QCD 500-100	0.0		0	2.59185		2.59185		2.59185	
QCD 1000-In	n.f	0.579	179	1.11699		1.28247		1.48932	
I	BB		0	0		0		0	
WJet	g	181.	703	211.986		211.986		211.986	
TT Bar Jet	ts	12.6	971	17.476		18.5068		18.9348	
Sig L	10	5.75	304	7.10465		7.30324		7.32657	
Sig L	(1	0.799	201	0.943156		1.00922		1.01553)
		-							

Particle Flow Jets and MET and Particle Flow leptons. Same Sign Double Lepton!!

Sample	electron e	ectron electron						
-	V+j pt 10	<pre>SL opt::pt10</pre>	SL opt::pt5	SL opt::pt2				
LM0	1.41649	2.60013	2.83298	2.85238				
LM1	0.296747	0.479173	0.535117	0.552144				
QCD 250-500	0	0	0	0				
QCD 500-1000	0	0	0	0				
QCD 1000-Inf	0	0	0	0				
ВВ	0	0	0	0				
WJets	0	0	0	0				
TT Bar Jets	0	0.0937053	0.140558	0.515379				
Sig LMO	inf	8.49402	7.55642	3.97324				
3ig LMl	inf	1.56535	1.42732	0.76911				

Standard Reco Jets	and MET	and	Standard	Reco	leptons.	
Single Lepton!!						
Sample	electr	ons				
	77 t d m t	1.0	CT ont	1 6	07 00	

					ingle repton::
				electrons	Sample
t2	SL opt::pt	SL opt::pt5	SL opt::pt10	V+j pt 10	
94	114.39	114.214	111.075	83.6766	LMO
59	13.785	13.7438	12.9456	9.58411	LM1
0		0	0	0	QCD 250-500
89	2.9948	2.99489	0	0	QCD 500-1000
67	1.0516	0.908258	0.764849	0.62144	QCD 1000-Inf
0		0	0	0	BB
42	402.4	402.42	402.42	314.937	WJets
35	156.13	156.027	153.266	124.005	TT Bar Jets
83	4.8228	4.81635	4.70874	3.99074	Sig LMO
14	0.58121	0.579566	0.548793	0.45709	Sig LM1

Standard Reco Jets and MET and Standard Reco leptons. Same Sign Double Lepton!!

oume origin beable :	e-p								
Sample	electron el	electron electron							
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2					
LM0	1.39012	2.17487	2.28698	2.28698					
LM1	0.222037	0.376619	0.404725	0.404725					
QCD 250-500	0	0	0	0					
QCD 500-1000	0	0	0	0					
QCD 1000-Inf	0	0	0	0					
BB	0	0	0	0					
WJets	0	0	0	0					
TT Bar Jets	0.0541384	0.324831	0.433107	0.433107					
Sig LMO	5.97449	3.81597	3.47508	3.47508					
Sig LM1	0.954271	0.660806	0.614982	0.614982					

PF elTight

Particle Flow Jets and MET and Particle Flow leptons.

Single Lepton!!					
Sample	electrons				
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2	
LM0	83.542	74.9322	76.9053	76.995	
LM1	9.53633	9.24122	9.88766	9.91857	
QCD 250-500	0	0	0	0	
QCD 500-1000	0	0	0	0	
QCD 1000-Inf	0.430228	0.334622	0.430228	0.430228	
BB	0	0	0	0	
WJets	209.958	192.462	192.462	192.462	
TT Bar Jets	75.3065	68.2685	69.7844	69.8386	
Sig LMO	4.94258	4.63761	4.74511	4.75015	
Sig LM1	0.564196	0.571946	0.610075	0.611919	ノ

Particle Flow Jets and MET and Particle Flow leptons. Same Sign Double Lepton!!

Sample	electron el	lectron		
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2
LMO	1.5695	1.18833	1.30044	1.30044
LM1	0.269817	0.241711	0.269817	0.269817
QCD 250-500	0	0	0	0
QCD 500-1000	0	0	0	0
QCD 1000-Inf	0	0	0	0
BB	0	0	0	0
WJets	0	0	0	0
TT Bar Jets	Ö	0.0541384	0.0541384	0.0541384
Sig LMO	inf	5.10723	5.58904	5.58904
Sig LM1	inf	1.03883	1.15962	1.15962

PF 0.85 < mva < 0.9 and H over E < 0.06

Particle Flow Jets and MET and Particle Flow leptons. Single Lepton!!

:						
le elec	trons					
V+j	pt 10 31	Lopt::pt10	SL opt::	pt5 SL o	pt::pt2	
10 15	.9307	22.237	25.4	192	27.2238	
11 2.	15506	2.93828	3.65	096 :	3.93554	
00	0	0		0	0	
00	0	0		0	0	
£ 0.	12411	0.413699	0.786	028	1.40658	
В	0	0		0	0	
s 45	.4256	45.4256	45.4	256	45.4256	
:s <u>12</u>	.5097	17.2886	18.3	194	18.6474	
10 2.	09073	2.79875	3.1	.643	3.36431	•
11 0.2	82829	0.369813	0.454	1488 0	.486353	•
	1e elect 74-j 10 15 11 2.00 10 15 11 0.00 15 15 15 10 2.00 17 18 18 10 2.00 18 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00 19 10 2.00	le electrons	le electrons	le electrons V+j pt 10	le electrons V+j pt 10	le electrons

Particle Flow Jets and MET and Particle Flow leptons. Same Sign Double Lepton!!

Sample	electron electron				
-	V+j pt 10	<pre>3L opt::pt10</pre>	SL opt::pt5	<pre>SL opt::pt2</pre>	
LM0	0.271656	0.853775	1.28066	1.9404	
LM1	0.0826999	0.145941	0.257829	0.340529	
QCD 250-500	0	0	0	0	
QCD 500-1000	0	0	0	0	
QCD 1000-Inf	0	0	0.0413699	0.12411	
BB	0	0	0	0	
WJets	0	0	0	0	
TT Bar Jets	0	0.0937053	0.140558	0.515370	
Sig LMO	inf	2.78908	3.00251	2.42647	
Sig LMl	inf	0.476755	0.604481	0.425831	

Standard Reco Jets	and MET and	Standard Reco	leptons.	
Single Lepton!!				
Sample	electrons			
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2
LMO	83.6766	111.075	114.214	114.394
LM1	9.58411	12.9456	13.7438	13.7859
QCD 250-500	0	0	0	0
QCD 500-1000	0	0	2.99489	2.99489
QCD 1000-Inf	0.62144	0.764849	0.908258	1.05167
BB	0	0	0	0
WJets	314.937	402.42	402.42	402.42
TT Bar Jets	124.005	153.266	156.027	156 135
Sig LM0	3.99074	4.70874	4.81635	4.82283

0.548793

0.579566

0.610075

Standard Reco Jets and MET and Standard Reco leptons.

Same Sign Double Lepton!!

Sample electron electron

Sample	electron el	electron		
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2
LM0	1.39012	2.17487	2.28698	2.28698
LM1	0.222037	0.376619	0.404725	0.404725
QCD 250-500	0	0	0	0
QCD 500-1000	0	0	0	0
QCD 1000-Inf	0	0	0	0
BB	0	0	0	0
WJets	0	0	0	0
TT Bar Jets	0.0541384	0.324831	0.433107	0.433107
Sig LMO	5.97449	3.81597	3.47508	3.47508
Sig LM1	0.954271	0.660806	0.614982	0.614982

PF elTight

0.581214

Particle Flow Jets and MET and Particle Flow leptons. Single Lepton!! electrons Sample SL opt::pt2 V+j pt 10 SL opt::pt10 SL opt::pt5 LM0 83.542 74.9322 76.9053 76.995 LM1 9.53633 9.24122 9.88766 9.91857 QCD 250-500 0 0 QCD 500-1000 0 0 0.430228 0.334622 0.430228 0.430228 QCD 1000-Inf WJets 209.958 192.462 192.462 192,462 68.2685 69.7844 TT Bar Jets 4.94258 4.63761 4.74511 4.75015 Sig LM0

0.571946

Particle Flow Jets and MET and Particle Flow leptons. Same Sign Double Lepton!!

Sample	electron el	lectron		
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2
LMO	1.5695	1.18833	1.30044	1.30044
LM1	0.269817	0.241711	0.269817	0.269817
QCD 250-500	0	0	0	0
QCD 500-1000	0	0	0	0
QCD 1000-Inf	0	0	0	0
BB	0	0	0	0
WJets	0	0	0	0
TT Bar Jets	0	0.0541384	0.0541384	0.0541384
Sig LMO	inf	5.10723	5.58904	5.58904
Sig LM1	inf	1.03883	1.15962	1.15962

PF 0.85 < mva and H over E < 0.06

0.611919

Particle Flow Jets and MET and Particle Flow leptons. Single Lepton!!

0.564196

0.45709

Sig LM1

Sig LM1

Sample	electrons V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2
LM0	29.5717	40.5155	45.1919	48.0054
LM1	3.7969	5.07145	6.15141	6.52843
QCD 250-500	0	0	0	0
QCD 500-1000	0	0	0	0
QCD 1000-Inf	0.12411	0.661918	1.40658	2.1926
ВВ	0	0	0	0
WJets	121.135	121.135	121.135	121.135
TT Bar Jets	24.8319	32.0941	33.6402	34,2961
3ig LMO	2.4466	3.26599	3.61614	3.82366
Sig LMl	0.314136	0.408814	0.492221	0.519993

Particle Flow Jets and MET and Particle Flow leptons. Same Sign Bouble Lepton!!

Sample	electron el	lectron		
	V+j pt 10	<pre>3L opt::pt10</pre>	SL opt::pt5	<pre>SL opt::pt2</pre>
LM0	0.679139	1.74636	2.48371	3.64795
LM1	0.145941	0.250532	0.40377	0.537549
QCD 250-500	0	0	0	0
QCD 500-1000	0	0	0	0
QCD 1000-Inf	0	0	0.0413699	0.16548
BB	0	0	0	0
WJets	15.1419	15.1419	15.1419	15.1419
TT Bar Jets	0	0.281116	0.468526	1.21817
Sig LMO	0.174529	0.444681	0.627796	0.897369
Sig LMl	0.0375049	0.0637939	0.102059	0.132233

Wednesday, 31 March 2010 4

Standard Reco Jets	and MET as	d Standard	Reco	leptons.
Single Lepton!!				
Sample	electro	ıs		

rudie rebrou::					
Sample	electrons				
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2	
LMO	83.6766	111.075	114.214	114.394	
LM1	9.58411	12.9456	13.7438	13.7859	
QCD 250-500	0	0	0	0	
QCD 500-1000	0	0	2.99489	2.99489	
QCD 1000-Inf	0.62144	0.764849	0.908258	1.05167	
BB	0	0	0	0	
WJets	314.937	402.42	402.42	402.42	
TT Bar Jets	124,003	153.266	156.027	156 135	
Sig LMO	3.99074	4.70874	4.81635	4.82283	•
Sig LM1	0.45709	0.548793	0.579566	0.581214	,
_					

Standard Reco Jets and MET and Standard Reco leptons. Same Sign Double Lepton!!

Dame Dign Double .	ecpeom			
Sample	electron el	lectron		
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2
LM0	1.39012	2.17487	2.28698	2.28698
LM1	0.222037	0.376619	0.404725	0.404725
QCD 250-500	0	0	0	0
QCD 500-1000	0	0	0	0
QCD 1000-Inf	0	0	0	0
BB	0	0	0	0
WJets	0	0	0	0
TT Bar Jets	0.0541384	0.324831	0.433107	0.433107
Sig LMO	5.97449	3.81597	3.47508	3.47508
Sig LM1	0.954271	0.660806	0.614982	0.614982

PF elTight

Particle Flow Jets and MET and Particle Flow leptons.

Single Lepton!!					
Sample	electrons				
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2	
LM0	83.542	74.9322	76.9053	76.995	
LM1	9.53633	9.24122	9.88766	9.91857	
QCD 250-500	0	0	0	0	
QCD 500-1000	0	0	0	0	
QCD 1000-Inf	0.430228	0.334622	0.430228	0.430228	
BB	0	0	0	0	
WJets	209.958	192.462	192.462	192.462	
TT Bar Jets	75.3065	68.2685	69.7844	69.8386	
Sig LMO	4.94258	4.63761	4.74511	4.75015	
Sig LM1	0.564196	0.571946	0.610075	0.611919	ノ
_					

Particle Flow Jets and MET and Particle Flow leptons. Same Sign Double Lepton!!

Sample	electron el	lectron		
	V+j pt 10	SL opt::pt10	SL opt::pt5	SL opt::pt2
LMO	1.5695	1.18833	1.30044	1.30044
LM1	0.269817	0.241711	0.269817	0.269817
QCD 250-500	0	0	0	0
QCD 500-1000	0	0	0	0
QCD 1000-Inf	0	0	0	0
BB	0	0	0	0
WJets	0	0	0	0
TT Bar Jets	Ö	0.0541384	0.0541384	0.0541384
Sig LMO	inf	5.10723	5.58904	5.58904
Sig LM1	inf	1.03883	1.15962	1.15962

PF 0.6 < mva < I and H over E < 0.06

Particle Flow Jets and MET and Particle Flow leptons. Single Lepton!!

ingie impronii:				
Sample	electrons			
	V+j pt 10	SL opt::pt10	3L opt::pt5	SL opt::pt2
LM0	62.9659	92.0719	108.449	121.876
LM1	8.86105	12.405	16.0268	17.868
QCD 250-500	0	0	0	0
QCD 500-1000	0	2.59185	5.1837	5.1837
QCD 1000-Inf	0.330959	1.98575	5.25398	10.7975
ВВ	0	0	0	0
WJets	196.844	242.27	257.412	257.412
TT Bar Jets	12 5097	17.2886	18.3194	18 .6474
Sig LMO	4.34832	5.66517	6.41082	7.13178
Sig LMl	0.61193	0.763277	0.947402	1.04558
-				

Particle Flow Jets and MET and Particle Flow leptons. Same Sign Double Lepton!!

Sample	electron electron				
-	V+j pt 10	<pre>3L opt::pt10</pre>	SL opt::pt5	SL opt::pt2	
LM0	1.55232	4.26887	6.79139	9.97364	
LM1	0.367285	0.678626	1.10429	1.52752	
QCD 250-500	0	0	0	0	
QCD 500-1000	0	0	0	2.59185	
QCD 1000-Inf	0	0.0413699	0.248219	1.11699	
BB	0	0	0	0	
WJets	15.1419	15.1419	15.1419	15.1419	
TT Bar Jets	*	0.0937053	0.140558	8.515379	
3ig LMO	0.398925	1.09218	1.72331	2.26638	
3ig LMl	0.0943872	0.173625	0.280212	0.347108	

For all pt bins (0 to 3 Gev, 3 to 6, 6 to 9, ..., 27 to 30) the behaviour is almost identical, at lower pt lower statistics.

Fakes are decreasing when mva is closer to I, however prompts seems to have the biggest acceptancy in between 0.7 to 0.95, I'm making a guess just looking at the plot.

0.85 < mva < 0.9

0.6 < mva < I and H/E

