

Bruce M. Boghosian

Some loos ends

Appearance o chi squared distribution Sufficiency

Z tables and T tables

Interval estimation

Hypothesis testing

Interval estimation of the variance

Hypothesis testing with the variance

Analyzing normally distributed data when both μ and σ^2 are unknown

Bruce M. Boghosian

Department of Mathematics

Tufts University

Outline

Bruce M Boghosia

Some loos ends

Appearance of chi squared distribution Sufficiency

Z tables andT tables

Interval estimation

Hypothesis testing

Interval estimation of the variance

Hypothesis testing with the variance 1 Some loose ends

Appearance of chi squared distribution

Sufficiency

Z tables and T tables

3 Interval estimation

4 Hypothesis testing

5 Interval estimation of the variance

6 Hypothesis testing with the variance

7 Summary

Distribution of $\frac{(n-1)S^2}{\sigma^2}$

Bruce M. Boghosia

Some loos ends

chi squared distribution

Z tables and T tables

Interval estimation

testing

Interval estimation of the variance

Hypothesis testing with the variance

- Begin with *n* iid r.v.s in $N(\mu, \sigma)$, called Y_1, \ldots, Y_n .
- Standardize these variables to obtain $X_j = \frac{Y_j \mu}{\sigma}$.
- Recall that we made an orthogonal transformation $\vec{Z} = A\vec{X}$
- The last row of the orthogonal matrix A was $\left(\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right)$
- Hence $Z_n = \frac{1}{\sqrt{n}} (X_1 + \cdots + X_n) = \sqrt{n} \, \overline{X}$.
- And because the transformation is orthogonal, $\sum_{j}^{n} Z_{j}^{2} = \sum_{j}^{n} X_{j}^{2}$

$$\sum_{j=1}^{n} Z_{j}^{2} = \sum_{j=1}^{n-1} Z_{j}^{2} + n\overline{X}^{2} = \sum_{j=1}^{n} X_{j}^{2} = \sum_{j=1}^{n} (X_{j} - \overline{X})^{2} + n\overline{X}^{2}$$

$$\therefore \sum_{j=1}^{n-1} Z_j^2 = \sum_{j=1}^n \left(X_j - \overline{X} \right)^2 = \frac{1}{\sigma^2} \sum_{j=1}^n \left(Y_j - \overline{Y} \right)^2 = \frac{(n-1)S^2}{\sigma^2}$$

■ Hence $\frac{(n-1)S^2}{\sigma^2}$ is distributed as a chi squared distribution with n-1 df.

Definition of sufficiency

Bruce M Boghosia

Some loose ends Appearance chi squared distribution Sufficiency

Z tables andT tables

intervai estimatior

Interval

Interval estimation of the variance

Hypothesis testing with the variance Recall the definition: Let $X_j = k_j$ for j = 1, ..., n be a random sample of size n from $p_X(k;\theta)$. The statistic $\hat{\theta} = h(X_1, ..., X_n)$ is *sufficient* for θ if the likelihood function $L(\theta)$ factors into the product of the pdf for $\hat{\theta}$ and a constant that does not involve θ , i.e.,

$$L(\theta) = \prod_{j=1}^{n} p_{X}(k_{j}; \theta) = p_{\hat{\theta}}(\theta_{e}; \theta) \ b(k_{1}, \ldots, k_{n}).$$

lacksquare Similar statement for continuous random variables $Y_j=y_j$ for $j=1,\ldots,n$,

$$L(\theta) = \prod_{i=1}^n f_Y(y_j; \theta) = f_{\hat{\theta}}(\theta_e; \theta) \ b(y_1, \dots, y_n).$$

■ We used this definition for Bernoulli and binomial random variables, e.g.

A more general factorization criterion

Bruce M Boghosia

ends
Appearance
chi squared

distribution
Sufficiency

Z tables andT tables

Interval estimation

Interval estimation of

estimation of the variance

Hypothesis testing with the variance ■ **Thm:** Let $X_j = k_j$ for j = 1, ..., n be a random sample of size n from the discrete pdf $p_X(k; \theta)$. The statistic $\hat{\theta}$ is *sufficient* for θ iff there are functions $g[h(k_1, ..., k_n); \theta]$ and $b(k_1, ..., k_n)$ such that

$$L(\theta) = \prod_{j=1}^{n} p_X(k_j; \theta) = g[h(k_1, \ldots, k_n); \theta] b(k_1, \ldots, k_n)$$

lacksquare Similar statement for continuous random variables $Y_j=y_j$ for $j=1,\ldots,n$,

$$L(\theta) = \prod_{i=1}^n f_Y(y_i; \theta) = g[h(y_1, \dots, y_n); \theta] \ b(y_1, \dots, y_n)$$

A more general factorization criterion (continued)

Bruce M Boghosia

Appearance chi squared distribution Sufficiency

Z tables and T tables

Interval estimation

testing

Interval estimation of the variance

Hypothesis testing with the variance ■ **Pf (for discrete case):** First suppose that $\hat{\theta}$ is sufficient. Then, by definition, we can write

$$L(\theta) = p_{\hat{\theta}}(\theta_e; \theta) \ b(k_1, \ldots, k_n),$$

which is of the desired form if we identify

$$g[h(k_1,\ldots,k_n);\theta]=p_{\hat{\theta}}(h(k_1,\ldots,k_n);\theta).$$

Next suppose that

$$L(\theta) = \prod_{j=1}^{n} p_X(k_j; \theta) = g[h(k_1, \ldots, k_n); \theta] b(k_1, \ldots, k_n)$$

■ We need to show that $g[h(k_1,...,k_n);\theta]$ can always be rewritten in terms of the pdf of $\hat{\theta}$.

A more general factorization criterion (continued)

Bruce M. Boghosian

ends
Appearance
chi squared

Z tables and

T tables

estimation

testing

Interval estimation of the variance

Hypothesis testing with the variance

Need to show
$$g[h(k_1, \ldots, k_n); \theta]$$
 can always be rewritten in terms of pdf of $\hat{\theta}$.

Let c be some possible value of $h(k_1, \ldots, k_n)$, and let $A = \{\vec{k} \mid h(\vec{k}) = c\}$ be the inverse image of c, so we write $A = h^{-1}(c)$. Then

$$\therefore p_{\hat{\theta}}(c;\theta) = \sum_{\vec{k} \in A} p_{\vec{X}}(\vec{k}) = \sum_{\vec{k} \in A} \prod_{j=1}^{n} p_{X_j}(k_j) = \sum_{\vec{k} \in A} g(c;\theta)b(\vec{k}) = g(c;\theta) \left[\sum_{\vec{k} \in A} b(\vec{k}) \right]$$

It follows that

$$g(c;\theta) = \frac{p_{\hat{\theta}}(c;\theta)}{\sum_{\vec{k}\in A} b(\vec{k})}$$

$$\therefore L(\theta) = p_{\hat{\theta}}(h(\vec{k});\theta) \frac{b(\vec{k})}{\sum_{\vec{k}\in A} b(\vec{k})}$$

and hence
$$\hat{\theta}$$
 is sufficient by definition, as was to be shown.

Trifts From Z tables to T tables

■ The quantities z_{α} used in the tests described on the last slide are...

- tabulated, e.g., in Appendix A.1 of the Larsen & Marx textbook.
- given by intrinsic or library routines in many computer languages.
- defined so area under the std. normal pdf to the right of $z=z_{\alpha}$ is equal to α .
- In like fashion, the quantities $t_{\alpha,n}$ are...
 - tabulated, e.g., in Appendix A.2 of the Larsen & Marx textbook.
 - given by intrinsic or library routines in many computer languages.
 - defined so area under the Student T_n pdf to the right of $t = t_{\alpha,n}$ is equal to α .
 - symmetric so that $P(T_n \le -t_{\alpha,n}) = P(T_n \ge +t_{\alpha,n}) = \alpha$.

		10.		α			
df	.20	.15	.10	.05	.025	.01	.005
1	1.376	1.963	3.078	6.3138	12.706	31.821	63.657
2	1.061	1.386	1.886	2.9200	4.3027	6.965	9.9248
3	0.978	1.250	1.638	2.3534	3.1825	4.541	5.8409
4	0.941	1.190	1.533	2.1318	2.7764	3.747	4.6041
5	0.920	1.156	1.476	2.0150	2.5706	3.365	4.0321
6	0.906	1.134	1.440	1.9432	2.4469	3.143	3.7074
1			1				
30	0.854	1.055	1.310	1.6973	2.0423	2.457	2.7500
00	0.84	1.04	1.28	1.64	1.96	2.33	2.58

Z tables and T tables

Interval estimation of μ using the Z ratio

Bruce M. Boghosiar

Some loos ends

Appearance of chi squared distribution Sufficiency

Z tables andT tables

estimation

Interval estimation of

Hypothesis testing with the variance ■ We know that the Z ratio, $Z = \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}$ is distributed as a standard normal.

Hence we can write

$$P\left(-z_{\alpha/2} \le \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \le +z_{\alpha/2}\right) = 1 - \alpha$$

$$\therefore P\left(\overline{Y} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{Y} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Hence, if y_1, \ldots, y_n is a random sample of size n from a normal distribution with known standard deviation σ and unknown mean μ , then a $100(1-\alpha)\%$ confidence interval for μ is

$$\left(\overline{y}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{y}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

Interval estimation of μ using the T ratio

Bruce M Boghosia

Some loos ends

Appearance of chi squared distribution Sufficiency

Interval

estimation

Interval estimation of the variance

Hypothesis testing with the variance ■ We know that the T ratio, $T_{n-1} = \frac{\overline{Y} - \mu}{S/\sqrt{n}}$ is distributed as a Student T distribution with n-1 degrees of freedom.

Hence we can write

$$P\left(-t_{\alpha/2,n-1} \leq \frac{\overline{Y} - \mu}{S/\sqrt{n}} \leq +t_{\alpha/2,n-1}\right) = 1 - \alpha$$

$$\therefore P\left(\overline{Y} - t_{\alpha/2,n-1} \frac{S}{\sqrt{n}} \leq \mu \leq \overline{Y} + t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}\right) = 1 - \alpha.$$

■ Hence, if y_1, \ldots, y_n is a random sample of size n from a normal distribution with unknown mean μ , then a $100(1-\alpha)\%$ confidence interval for μ is

$$\left(\overline{y}-t_{lpha/2,n-1}rac{s}{\sqrt{n}},\overline{y}+t_{lpha/2,n-1}rac{s}{\sqrt{n}}
ight)$$

Example

Bruce M. Boghosian

Some loos ends

Appearance o chi squared distribution Sufficiency

Z tables and T tables

Interval estimation

Hypothesis testing

Interval estimation of the variance

Hypothesis testing with the variance ■ Distance between bat and insect at the moment bat first detects insect (cm)

$$62, 52, 68, 23, 34, 45, 27, 42, 83, 56, 40\\$$

- Note n = 11, $\overline{y} = 48.36$, and s = 18.08
- Taking $\alpha = 0.05$, note that $t_{0.05/2,11-1} = t_{0.025,10} = 2.2281$
- $lue{}$ Then the 95% confidence interval for μ is

$$\left(48.36 - 2.2281 \frac{18.08}{\sqrt{11}}, 48.36 + 2.2281 \frac{18.08}{\sqrt{11}}\right) = (36.21, 60.51)$$

Hypothesis testing with the Z ratio

Bruce M Boghosia

ends

Appearance of chi squared distribution

Sufficiency

Z tables and T tables

Hypothesis

Interval estimation of the variance

Hypothesis testing with the variance

- Given data Y_1, \ldots, Y_n , drawn from a distribution that is known to be normal with known standard deviation σ_Y , various null hypotheses can be tested by using the fact that the Z ratio, $Z = \frac{\overline{Y} \mu_0}{\sigma/\sqrt{n}}$ is normally distributed.
- So calculate $z = \frac{\overline{y} \mu_0}{\sigma / \sqrt{n}}$, and...
 - To test $H_0: \mu = \mu_0$ versus $H_1: \mu > \mu_0$ at the α level of significance, reject H_0 if $z \ge +z_{\alpha}$.
 - To test $H_0: \mu = \mu_0$ versus $H_1: \mu < \mu_0$ at the α level of significance, reject H_0 if $z \le -z_\alpha$.
 - To test $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ at the α level of significance, reject H_0 if z is either (a) $\leq -z_{\alpha/2}$, or (b) $\geq +z_{\alpha/2}$.
- Problem with this approach: We usually do not have a priori knowledge of the standard deviation σ_Y .

Hypothesis testing with the T ratio: The one-sample t test

Bruce M. Boghosiar

ends
Appearance
chi squared
distribution

Z tables and T tables

Interval estimation

Hypothesis testing

Interval estimation of the variance

Hypothesis testing with the variance

- Under the null hypothesis, we know that the T ratio, $T_{n-1} = \frac{\overline{Y} \mu_0}{S/\sqrt{n}}$ is distributed as a Student T distribution with n-1 degrees of freedom.
- So calculate $t = \frac{\overline{y} \mu_0}{s / \sqrt{n}}$, and...
 - To test $H_0: \mu = \mu_0$ versus $H_1: \mu > \mu_0$ at the α level of significance, reject H_0 if $t \ge +t_{\alpha,n-1}$.
 - To test $H_0: \mu = \mu_0$ versus $H_1: \mu < \mu_0$ at the α level of significance, reject H_0 if $t \le -t_{\alpha,n-1}$.
 - To test $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ at the α level of significance, reject H_0 if t is either (a) $\leq -t_{\alpha/2,n-1}$, or (b) $\geq +t_{\alpha/2,n-1}$.

Example

Bruce M. Boghosiar

ends
Appearance of chi squared distribution

Z tables and T tables

Interval

Hypothesis testing

Interval estimation of the variance

Hypothesis testing with the variance Corrosion of metal pipe for underground cables in one year

■ In the absence of plastic coating, average pit depth is 0.0042 inch

 \blacksquare n=10 tests with the plastic coating yield the numbers (in inches):

0.0039 0.0041 0.0038 0.0044 0.0040 0.0036 0.0034 0.0036 0.0046 0.0036

- Sample mean is $\mu_0 = 0.0039$ inch
- Sample standard deviation is s = 0.000383 inch
- Can we conclude, at the $\alpha=0.05$ level of significance, that the plastic coating is beneficial?

Example (continued)

Bruce M. Boghosiar

Appearance chi squared distribution

Z tables and T tables

Interval estimation

Hypothesis testing

Interval estimation of the variance

Hypothesis testing with the variance ■ H_0 : The plastic coating has no effect, so $\mu = \mu_0 = 0.0042$ inch

■ H_1 : The plastic coating has a beneficial effect, so $\mu < \mu_0 = 0.0042$ inch

■ Calculate $t = \frac{\overline{y} - \mu_0}{s/\sqrt{n}} = \frac{0.0039 - 0.0042}{0.000383/\sqrt{10}} = -2.47717$

■ We reject H_0 since $t < -t_{\alpha,n-1} = -t_{0.05,9} = -1.8331$.

■ Conclude that plastic coating has some beneficial effect with 95% confidence.

An important distinction

Bruce M Boghosia

Some loose ends Appearance of chi squared distribution Sufficiency

Z tables and T tables

Hypothesis

Interval estimation of the variance

Hypothesis testing with the variance

- Note z tests can be used on data that is not normally distributed, as long as it has finite variance and n is sufficiently large that the CLT can be invoked to claim that \overline{y} is normally distributed.
- To use t tests, one must be sure that each of the Y_j are normally distributed. The derivation of the Student T distribution depends on this assumption.
- Unfortunately, it is sometimes very difficult to know for sure the exact pdf of the data that you are measuring.
- Two heuristics for using the *T* test in such a situation
 - Histogram the quantity $\frac{\overline{Y} \mu}{S / \sqrt{n}}$ to make sure that it is not too skewed.
 - When *n* is sufficiently large, the pdf of $\frac{\overline{Y}-\mu}{S/\sqrt{n}}$ becomes similar to that of $f_{T_{n-1}}(t)$.
 - \blacksquare The t test is robust with respect to departures from normality, as is the z test.

Constructing confidence intervals for σ^2

Bruce M. Boghosiar

ends

Appearance of chi squared distribution

Sufficiency

Z tables and T tables

estimation

Interval estimation of

Hypothesis testing with the variance

- How do we construct a confidence interval for σ^2 ?
- This is something that does not even come up for the z test, for which σ^2 is fixed and assumed known.
- We begin with two facts about the sample variance S^2

•
$$S^2 = \frac{1}{n-1} \sum_{j=1}^n (Y_j - \overline{Y})^2$$
 is an unbiased estimator for σ^2

$$lacksquare rac{(n-1)S^2}{\sigma^2} = rac{1}{\sigma^2} \sum_{j=1}^n \left(Y_j - \overline{Y}
ight)^2$$
 is chi squared distributed with $n-1$ df

It follows that

$$P\left[\chi_{\alpha/2,n-1}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{1-\alpha/2,n-1}^2\right] = 1 - \alpha$$

$$\therefore P\left[\frac{(n-1)s^2}{\chi_{1-\alpha/2,n-1}^2} \le \sigma^2 \le \frac{(n-1)s^2}{\chi_{\alpha/2,n-1}^2}\right] = 1 - \alpha$$

Constructing confidence intervals for σ^2 (continued)

Bruce M. Boghosia

ends
Appearance
chi squared
distribution
Sufficiency

Z tables and T tables

Interval

Hypothes testing

Interval estimation of the variance

Hypothesis testing with the variance ■ It follows that the $100(1-\alpha)\%$ confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}\right)$$

Likewise the $100(1-\alpha)\%$ confidence interval for σ is

$$\left(\sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}},\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}}\right)$$

- Tables for $\chi^2_{1-\alpha/2,n-1}$ are in Appendix A.3, and follow the same conventions used for z and t tables; that is $P(\chi^2_n > \chi^2_{\alpha,n}) = \alpha$.
- NB: Chi squared is not a symmetric distribution, so $\chi^2_{1-\alpha,n} \neq -\chi^2_{\alpha,n}$

Example of interval estimation of σ^2

Bruce M. Boghosiar

Appearance chi squared distribution

Z tables and T tables

Interval estimatio

testing

Interval estimation of the variance

Hypothesis testing with the variance Recall example of measurements of bat proximity to insect (in cm)

$$62, 52, 68, 23, 34, 45, 27, 42, 83, 56, 40\\$$

- Recall n = 11, $\overline{y} = 48.36$, and s = 18.08
- Take $\alpha = 0.05$, note that

$$\chi^2_{0.05/2,11-1} = \chi^2_{0.025,10} = 3.247$$

$$\chi^2_{1-0.05/2,11-1} = \chi^2_{0.975,10} = 20.483$$

■ Then the 95% confidence interval for σ is

$$\left(\sqrt{\frac{10(18.08)^2}{20.483}}, \sqrt{\frac{10(18.08)^2}{3.247}}\right) = (12.63, 31.73)$$

Note that s = 18.08 is *not* in the center of this confidence interval.

Tufts Testing $H_0: \sigma^2 = \sigma_0^2$

testing with the variance Let s^2 denote the sample variance from n observations drawn from a normal distribution with unknown mean μ and unknown variance σ^2 . Let $\chi^2 = \frac{(n-1)s^2}{\sigma_s^2}$.

- To test $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 > \sigma_0^2$ at the α level of significance, reject H_0 if $\chi^2 \ge \chi^2_{1-\alpha, n-1}$.
- To test $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 < \sigma_0^2$ at the α level of significance, reject H_0 if $\chi^2 \leq \chi^2_{\alpha, n-1}$.
- To test $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 \neq \sigma_0^2$ at the α level of significance, reject H_0 if χ^2 is either (a) $\leq \chi^2_{\alpha/2,n-1}$ or (b) $\geq \chi^2_{1-\alpha/2,n-1}$.
- Note that we have limited our attention to t tests of Type I errors. It is possible to generalize tests for Type II errors, power curves, etc. for t tests.

Summary

Bruce M. Boghosia

Some loos ends

chi squared distribution Sufficiency

Z tables andT tables

estimation ...

Interval

Interval estimation of the variance

Hypothesis testing with the variance

- We have learned to work with Gaussian random variables with unknown μ and σ .
- We have shown how to do interval estimation with such variables.
- We have shown how to do hypothesis testing with such variables.
- We have contrasted this *t* testing with *z* testing, with which we were already familiar.
- We have extended this to confidence intervals and hypothesis testing for the variance.