Mini-project overview

Lecture 17

Changho Suh

January 29, 2024

Mini-project #2

Task: Weather prediction

Jena climate dataset

Data:

weather features collected from 2009 to 2016 $\in \mathbf{R}^{14}$

Example: pressure, humidity, ...

Label: celcius temperature $\in \mathbf{R}$

Measured in Jena, Germany, every 10 minutes:

420,551 samples

Visualization

Data organization

Load data in csv file using pandas.

Note: Time series data

Split dataset into train/val/test sets with:

7:2:1 (in *chronological* order)

To this end, will use train_test_split

from sklearn.model selection import train test split

Model selection

Will try two models:

DNN and **RNN**

Performance measure

Will use another measure instead of MSE:

Root-mean-square error (RMSE):

$$\sqrt{\frac{1}{m_{\text{test}}} \sum_{i=1}^{m_{\text{test}}} ||y^{(i)} - \hat{y}^{(i)}||^2}$$

Normalized RMSE:

RMSE

$$\sqrt{\frac{1}{m_{\text{test}}} \sum_{i=1}^{m_{\text{test}}} \|y^{(i)} - \mu\|^2} \leftarrow \sigma_{\text{test}}$$

Target performance

1. DNN: NRMSE ~ 0.09

2. RNN (LSTM): NRMSE ~ 0.08

Advanced techniques we will apply

Regularization, early stopping

Weight initialization

Learning rate decaying

Hyperparameter search:

T (window size), learning rate, ...

Hyperparameter: time window T

Will generate time series dataset according to *T:*

Saving

1. "loss" curves

2. log files

3. parameters of trained models