# TRIGONOMETRY Chapter 16





RAZONES TRIGONOMÉTRICAS DE

UN ÁNGULO EN POSICIÓN

O SACO OLIVEROS

NORMAL II

#### **MOTIVATING STRATEGY**

#### DESCARTES, LA MOSCA Y LAS COORDENADAS CARTESIANAS

Debido a enfermedades que padecía desde niño, René Descartes pasó

muchas horas en camas de estancias y hospitales.

Cierta vez tenía su mirada perdida en el techo de un hospital mientras seguía a una mosca inquieta.

Entonces pensó en : ¿ cómo se podría determinar en cada instante la posición que tenía el insecto en el techo? Esto lo hizo idear que bastaba determinar las distancias de la mosca a dos superficies perpendiculares entre sí ( en este

caso la pared y el techo ).

Luego se levantó de la cama y en un trozo de papel dibujó dos rectas perpendiculares: cualquier punto de la hoja quedaba determinado por su distancia a los dos ejes.- A estas distancias las llamó coordenadas del punto: Acababan de nacer las Coordenadas Cartesianas, y con ellas, la Geometría Analítica.

# **ÁNGULO EN POSICIÓN NORMAL**

# **DEFINICIÓN**:

Es aquel ángulo trigonométrico ubicado sobre el plano cartesiano, posee :

- Vértice : Origen de coordenadas.
- Lado inicial : Semieje X positivo.
- Lado final : Se ubica en cualquier cuadrante o semieje del plano.

**OBSERVACIÓN:** 



#### Representación gráfica:



La posición del lado final de un ángulo en posición normal, determina el cuadrante o semieje al cual pertenece dicho ángulo.

# RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL II



α: ángulo en posición normal.

x: abscisa del punto P.

y: ordenada del punto P.

r: radio vector del punto P.

$$r = \sqrt{x^2 + y^2}$$
 (r > 0)

# **DEFINICIONES**:



| cotα | secα | cscα     |
|------|------|----------|
| X    | r    | r        |
| y    | X    | <u>y</u> |



Complete los casilleros en blanco.



$$\csc \theta = \boxed{\frac{10}{8}} = \boxed{\frac{5}{4}}$$

# **RESOLUCIÓN**

Según gráfico: x = -6; y = 8

#### Luego:

$$r = \sqrt{(-6)^2 + (8)^2} = \sqrt{36 + 64}$$

$$r = \sqrt{100} \implies r = 10$$



**RECORDAR**: 
$$r = \sqrt{x^2 + y^2}$$



| cotθ       | secθ | csc0     |
|------------|------|----------|
| X          | r    | r        |
| _ <b>y</b> | X    | <u>y</u> |

Del gráfico, calcule  $\cot^2 \beta$ .



# **RESOLUCIÓN**

Según gráfico: 
$$x = \sqrt{2}$$
;  $y = -1$ 

**Luego:** No es necesario calcular la medida del radio vector.

# **Efectuamos** $\cot^2 \beta$ :

$$\cot^2\beta = \left(\frac{\sqrt{2}}{-1}\right)^2 = \frac{2}{1}$$

$$\therefore \cot^2 \beta = 2$$

Del gráfico, efectúe  $N = \csc\beta - \cot\beta$ .





| cscβ | cotβ     |
|------|----------|
| r    | X        |
| y    | <u>y</u> |

# **RESOLUCIÓN**

Según gráfico: x = 9; y = 12

Luego: 
$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{(9)^2 + (12)^2} = \sqrt{81 + 144}$$

$$\mathbf{r} = \sqrt{225} \implies \mathbf{r} = \mathbf{15}$$

Efectuamos:  $N = \csc \beta - \cot \beta$ 

$$N = \frac{15}{12} - \frac{9}{12} = \frac{6}{12}$$

$$\therefore N = \frac{1}{2}$$

Si el punto P(-4; -3) pertenece al lado final del ángulo  $\alpha$  en posición normal; calcule E=9 cot $\alpha-16$  sec $\alpha$ 

# **RESOLUCIÓN**

Según datos : 
$$x = -4$$
 ;  $y = -3$ 

#### Luego calculamos r:

$$r = \sqrt{x^2 + y^2} = \sqrt{(-4)^2 + (-3)^2}$$

$$\mathbf{r} = \sqrt{16 + 9} = \sqrt{25} \implies \mathbf{r} = \mathbf{5}$$

#### Finalmente calculamos E:

$$\mathsf{E} = 9\left(\frac{\mathsf{x}}{\mathsf{y}}\right) - 16\left(\frac{\mathsf{r}}{\mathsf{x}}\right)$$

$$E = 9\left(\frac{-4}{-3}\right) - 16\left(\frac{5}{-4}\right)$$

$$E = 3(4) - 4(-5)$$

$$E = 12 + 20$$

$$\therefore \mathbf{E} = \mathbf{32}$$

Del gráfico, halle el valor de a si cot $\alpha = -\frac{3}{4}$ .



# **RESOLUCIÓN**

Según gráfico:

$$x = a ; y = 2 - a$$

Luego:  $\cot \alpha = \cot \alpha$  (gráfico) (dato)

$$\frac{a}{2-a} = \frac{-3}{4}$$

$$4a = -6 + 3a$$

$$a = -6$$

La nota del examen mensual de Camila en el curso de Trigonometría es A + 6.

Para calcularla deberás resolver :



¿Cuál es dicha calificación?

# **RESOLUCIÓN**

Calculamos coordenadas de M

(punto medio)

$$X = \frac{-10-2}{2} = \frac{-12}{2} \implies X = -6$$

$$y = \frac{-8-10}{2} = \frac{-18}{2} \implies y = -9$$

#### Luego:

$$A = \frac{2}{18} \left( \frac{-6}{-9} \right) = 2 (6) \implies A = \frac{12}{12}$$

Nota = 
$$A + 6 = 12 + 6$$

∴ Camila obtuvo nota = 18

En el gráfico mostrado, OS = 8 y RS = ST; además las coordenadas del punto T son (2;-6).

A partir de la información brindada, escriba verdadero (V) o falso (F), según corresponda.

- a) Las coordenadas del punto R son(-16; 6)
- **b** )  $\cot \alpha = -3$
- c)  $\sqrt{10}$  .  $\sec \alpha = 60$



# **RESOLUCIÓN**



a) Las coordenadas del punto

$$-8 = \frac{x+2}{2} \implies -16 = x+2 \implies x = -18$$

$$\mathbf{x} = -18$$

$$0 = \frac{y-6}{2}$$
  $\Rightarrow$   $0 = y-6$   $\Rightarrow$   $y = 6$ 

$$0 = y - 6$$

$$y = 6$$

b) 
$$\cot \alpha = -3$$
 **VERDADERO**

$$\cot \alpha = \frac{x}{y} = \frac{-18}{6} \Rightarrow \cot \alpha = -3$$

c) 
$$\sqrt{10}$$
 .  $\sec \alpha = 60$ 

$$r = \sqrt{(-18)^2 + 6^2} = \sqrt{324 + 36}$$

$$r = \sqrt{360} \quad \Rightarrow \quad r = 6\sqrt{10}$$

$$r = 6\sqrt{10}$$

$$\sqrt{10} \cdot \sec \alpha = \sqrt{10} \cdot \left(\frac{6\sqrt{10}}{-18}\right)$$

$$\sqrt{10}$$
.  $\sec \alpha = -\frac{10}{3}$ 

