Country: JP Japan

Kind:

Inventor(s):MIURA SADAHIKO MATSUBARA SHOGO MIYASAKA YOICHI SHOHATA NOBUAKI

Applicant(s):NEC CORP
News, Profiles, Stocks and More about this company

Issued/Filed Dates: Feb. 13, 1990 / Aug. 2, 1988

Application Number: JP1988000193816

IPC Class: H05K 1/03; C30B 29/32; H01L 39/02;

Abstract: Purpose: To obtain a superconducting film whose crystallinity is good and whose surface is flat by a method wherein a composition (x) of Ba in a dielectric film of BaxSr1-xTrO3 having a perovskite structure on an insulator film is set at 1 at an interface to the insulator film, is decreased continuously and is set at 0 at an interface to a superconducting compound.

Constitution: A dielectric film having a perovskite structure expressed by BaxSr1-xTiO3 if formed on an MgAl2O4 insulator film on a silicon single-crystal substrate. In this case, while it is utilized that BaxSr1-xTiO3 film is solidified in its whole region, the dielectric film is made as BaTiO3 at an interface to the MgAl2O4 film and as SrTiO3 at an interface to Y1Ba2Cu3O7-d; a lattice constant is made identical at an interface between the insulator film and a superconductor film and the dielectric film. In addition, a ratio of Ba to Sr is changed gradually inside the dielectric film in such a way that a strain does not remain inside the dielectric film. Thereby, a manufacturing cost of a device can be suppressed to be low; in addition, since a good-quality superconducting film is formed by using the Si substrate, this process can be harmonized with an Si semiconductor integrated circuit technology; it is possible to manufacture a superconducting device having a high function. COPYRIGHT: (C)1990,JPO&Japio

Other Abstract Info:DERABS C90-088216 DERC90-088216

Foreign References: Show the 1 patents that reference this one

®日本国特許庁(JP)

の特許出願公開

平2-42787 ⑫ 公 開 特 許 公 報 (A)

®Int. Cl. ⁵

識別記号

庁内整理番号

〇四公開 平成2年(1990)2月13日

1/03 H 05 K 29/32 39/02 C 30 B H 01 L

ZAA L

8727-5E

ZAA W 8518-4G 8728-5F

審査請求 未請求 請求項の数 3 (全4頁)

図発明の名称

電子デバイス用基板

浦

原

20特 頭 昭63-193816

220出 昭63(1988) 8月2日

個発 明 者 Ξ 貞 彦 東京都港区芝5丁目33番1号

日本電気株式会社内

四発 明 者 松 正 푬

東京都港区芝5丁目33番1号

日本電気株式会社内 日本電気株式会社内

明 坂 個発 者 宫

洋

東京都港区芝5丁目33番1号 東京都港区芝5丁目33番1号

日本電気株式会社内

正 畑 @発 明 者

伸 明

日本電気株式会社 願 勿出 人 例代 理 人 弁理士 内 原

東京都港区芝5丁目33番1号

明細書

発明の名称

電子デバイス用基板

特許請求の範囲

(1)シリコン単結晶基板上にMgAl2O4絶縁体膜が 形成され、該絶縁体膜上にBaxSr1-xTiOgで示され るペロプスカイト型結晶構造を有する誘電体膜が 形成され、該誘電体膜上に一般式が A1Ba2Cu3O7-8で表わされ、AとしてY及び希土類 元素の群から選ばれる一種の元素を含む層状ペロ ブスカイト型結晶構造を有する超伝導化合物層が 形成されている構造を備えた電子デバイス用基板 において、該誘電体膜BaxSr1_xTiO3のBa組成xが 該絶縁体膜との界面で1とし連続的に減少し該超伝 導化合物との界面で0となることを特徴とする電子 デバイス用基板。

(2)シリコン単結晶基板上にMgAl₂O₄絶縁体膜が 形成され、該絶縁体膜上にBaxSr1_xTiOaで示され るペロプスカイト型結晶構造を有する誘電体膜が 形成され、該誘電体膜上に一般式が A2B2Ca1Cu2Oxで表わされ、AとしてBi及びTIから 選ばれる一種の元素、BとしてSr及びBaから選ばれ る一種の元素を含む層状ペロプスカイト型結晶構 造を有する超伝導化合物層が形成されている機造 を備えた電子デバイス用基板において、該誘電体 膜BaxSr1_xTiO3のBa組成xが該絶縁体腹との界面 で1とし連続的に減少し該超伝導化合物との界面で 0となることを特徴とする電子デバイス用基板。

(3)シリコン単結晶基板上にMgAl2O4絶縁体膜が 形成され、該絶縁体膜上にBaxSr1-xTiO3で示され るペロブスカイト型結晶構造を有する誘電体膜が 形成され、該誘電体膜上に一般式が A2B2Ca2Cu3Oxで表わされ、AとしてBi及びTlから 選ばれる一種の元素、BとしてSr及びBaから選ばれ る一種の元素を含む層状ペロプスカイト型結晶構 遺を有する超伝導化合物層が形成されている構造 を備えた電子デバイス用基板において、該誘電体 膜BaxSr1-xTiO3のBa組成xが該絶縁体膜との界面

で1とし連続的に減少し該超伝導化合物との界面で 0となることを特徴とする電子デバイス用基板。

発明の詳細な説明

(産業上の利用分野)

本発明は半導体、絶縁体層、誘電体層及び超伝 導体層とからなる電子デバイス用基板に関するも のである。

(従来の技術)

Y₁Ba₂Cu₃O₇₋₈ 、Bi(Tl)₂Sr₂Ca₁Cu₂O_x 、Bi(Tl)₂Sr₂Ca₂Cu₃O_xに代表される層状ペロプスカイト構造を有する超伝導セラミックスは超伝導状態となる臨界温度Tcが液体窒素温度以上を示す高温超伝導材料で工業的実用化材料として注目されている。

これら高温超伝導材料を電子デバイスへ応用する場合にはパルク並みのTcを有し、かつ特性の信頼性を高めるために欠陥の少ない膜が必要である。これらの要求を満たすには、単結晶膜を作製する事が望ましい。単結晶膜を得る方法としては適当な単結晶基板上へエピタキシャル成長させる

L365~L368 頁所 載の 論文にあるごとく Bi₂Sr₂Ca₁Cu₂O_x、Bi₂Sr₂Ca₂Cu₃O_x、

Ti₂BaCa₁Cu₂O_x、Tl₂Ba₂Ca₂Cu₃O_x、が知られているが、単結晶薄膜化の公知例は未だない。

(発明が解決しょうとする問題点)

従来シリコン単結晶基板上にMgAl2O4絶縁体膜が形成され、その絶縁体膜上にBaTiO3あるいはSrTiO3で示される誘電体膜形成され、その誘電体膜上にY1Ba2Cu3O7-6超伝導体膜がエピタキシャル成長によって形成されている。しかし、誘電体膜としてBaTiO3を用いた場合BaTiO3を用いた場合とり、又誘電体膜との格子定数のずれにより、又誘電体膜としてSrTiO3を用いた場合MgAl2O4絶縁体膜とSrTiO3との格子定数のずれによりY1Ba2Cu3O7-6超伝導体膜の結晶性、表面平坦性に問題が生じる。本発明は上記従来技術の問題を解決するもので、良好な結晶性、表面平坦性を有するエピタキシャル成長した層状ペロブスカイト型結晶構造の超伝導膜を具備せる電子デバイス用基板を提供することを目的とする。

方法があり、従来、ジャパニーズ ジャーナル オブ アプライド フィジクス(Japanese Journal of Applied Physics)第27巻1号L91~L93頁に約90Kのゼロ抵抗 温度を有するY₁Ba₂Cu₃O_{7—8}単結晶膜を作製した報 告がある。

更に、Si基板上にこれらの単結晶膜を作製することにより、従来のSiデバイスと超伝導体との融合が可能となり、応用面での用途が拡大される。

この融合を可能とする技術としてシリコン単結晶基板上にMgAl₂O₄絶縁体膜が形成され、その絶縁体膜上にBaTiO₃あるいはSrTiO₃で示されるペロプスカイト型結晶構造を有する誘電体膜が形成され、その誘電体膜上に一般式がY₁Ba₂Cu₃O₇₋₅で表わされる層状ペロプスカイト型結晶構造を有する超伝導化合物が形成されている構造を提案されている(特願昭62-208708)。

又、臨界温度が80K~130Kを示す材料として ジャパニーズ ジャーナル オプ アプライド フィジクス(Japanese Journal of Applied Physics) 第27巻3号

(問題点を解決するための手段)

すなわち本発明は、シリコン単結晶基板上に MgAl₂O₄絶縁体膜が形成され、該絶縁体膜上に Ba_xSr_{1-x}TiO₃で示されるペロプスカイト型結晶構造を有する誘電体膜形成され、該誘電体膜上に層状ペロプスカイト型結晶構造を有する超伝導化合物層が形成されている構造において、該誘電体膜 Ba_xSr_{1-x}TiO₃のBa組成xが該絶縁体膜との界面で 1とし連続的に減少し該超伝導化合物との界面で 0となる事を特徴とする電子デバイス用基板である。

(作用)

従来シリコン単結晶基板上にMgAl₂O₄絶縁体膜が形成され、その絶縁体膜上にBaTiO₃あるいはSrTiO₃で示される誘電体膜が形成され、その誘電体膜上にY₁Ba₂Cu₃O₇₋₈超伝導体膜がエピタキシャル成長によって形成される。しかし誘電体膜としてBaTiO₃を用いた場合、BaTiO₃膜の結晶性、表面平坦性は良好であるが超伝導膜の結晶性、表面平坦性はBaTiO₃誘電体膜のそれらと比べかなり劣る

事がX線回折法、反射電子線回折法、走査型電子類 微鏡により確認された。一方誘電体膜として SrTiO3を用いた場合SrTiO3の結晶性、表面平坦性 は良好ではないが、超伝導膜の結晶性、表面平坦 性は、SrTiO3誘電体膜のそれらと同等である事が 上記評価手法により確認された。

これらの事実は、下地に用いた膜とその上にエピタキシャル成長した膜の格子定数のミスマッチにより説明できる。MgAl2O4、BaTiO3、SrTiO3、Y1Ba2Cu3O7-8の格子定数はは、それぞれ8.06Å(d/2=4.03Å)、3.99~4.01Å、3.90Å、3.82~3.90Åである。誘電体膜としてBaTiO3を用いた場合BaTiO3膜とY1Ba2Cu3O7-8膜との格子定数のミスマッチが大きく又誘電体膜としてSrTiO3を用いた場所MgAl2O4膜とSrTiO3膜との格子定数のミスマッチが大きくそれらの界面での結晶性の乱れが超伝導膜の結晶性、表面平坦性の劣化を引き起こしていると考えられる。

本発明では、BaxSrl-xTiO3膜が全域固溶する事 を利用しその誘電体膜をMgAl2O4膜との界面にお

ピタキシャル成長し、その上にY1Ba2Cu3O7-6をスパッタ法によって形成した。第1図(a),(b),(c)は本実施例の説明図で1はSi(100)単結晶基板、2は気相成長法で成長したMgAl2O4エピタキシャル膜、3は反応性蒸着法で成長したBaxSr1-xTiO3エピタキシャル膜である。4はスパッタ法で作製したY1Ba2Cu3O7-6単結晶膜である。MgAl2O4の気相成長はすでに提案(特願昭57-136051)されている方法で成長させた。すなわちMgAl2、AlとHClガスを反応させて生成したAlCl3,CO2,H2ガスの反応ガスとN2ガスのキャリアを用い、

 $MgCl_2+2AlCl_3+4CO_2+4H_2$

 \rightarrow MgAl₂O₄+4CO+8HCl

なる反応でMgAl₂O₄の生成が起こる。成長温度 950°Cで成長し膜厚は0.1µmとした。X線回折法で (100)方位のMgAl₂O₄がエピタキシャル成長してい る事を確認した。Ba_xSr_{1-x}TiO₃のエピタキシャル 膜は反応性共蒸着法により基板付近での酸素分圧 1~4×10-3(Torr)、基板温度600°Cで行った。その 誘電体膜作製初期には、Sr蒸着用のセルは用いず いてはBaTiO3に又Y1Ba2Cu3O7-6との界面においてSrTiO3にそれぞれし絶縁体膜及び超伝導体膜と誘電体膜との界面で格子定数の一致をはかり、又誘電体膜内部においては、膜内部にひずみが残留しない様に徐々にBaとSrの比率を変化させた。

本発明においてMgAl2O4単結晶膜の膜厚は1000Å程度でよく、かつ、基板として良質で大口径のものが安価に入手できるSiを用いるために、SrTiO3などの各種単結晶基板を用いる場合に比べてデバイス作製コストを低く抑える事ができる。しかもSi基板を用いて良質な超伝導膜を形成していることからSi半導体集積回路技術との融合化が計れ、高い機能を持つ超伝導デバイスを作製できる。例えば、超伝導膜をソース電極とドレイン電極に用いた電界効果型超伝導トランジスタや超伝導配線によるLSIの開発が可能となる等、本発明の波及効果は基大である。

(実施例1)

面方位が(100)のSi単結晶基板上にMgAl₂O₄をエ ピタキシャル成長し、その上にBa_xSr_{1-x}TiO₃をエ

Ba蒸着用のセル及びTi蒸着用E-gunのみで蒸着を行 い、時間の経過とともにTi蒸着速度は一定に保った まま徐々にSrの蒸着速度をはやめ、又Baの蒸着温 度をおそくし、成膜終了時にBa蒸着用のセルは用 いずSr蒸着用のセル及びTi蒸着用E-gunのみで蒸着 が行なわれている様、各元素の蒸着速度を制御し た。膜厚は0.4µmとした。MgAl₂O₄と同様にX線回 折法及び電子線回折法により(100)方位にエピタキ シャル成長した良質な結晶性の膜である事を確認 した。Y1Ba2Cu3O7-6エピタキシャル膜は高周波マ グネトロンスパッタ法で膜厚0.5μmのものを作製し た。上記Y1Ba2Cu3O7_8組成の膜を得る為に Y1Ba2.5Cu5.0Ox組成の950°Cで焼結させたセラミッ クターゲットを用いO2-Ar混合ガス中で基板温度 640℃で行った。X線回折法、電子線回折法及び走 査型電子顕微鏡により(001)方位に配向した層状ペ ロブスカイト構造を有する結晶性、表面平坦性に すぐれた良質なエピタキシャル膜であることを確 認した。又この膜の抵抗-温度特性を4端子法で測定 することによりゼロ抵抗温度が86kであることがわ かった。又Yの代わりに他の希土類元素を用いた場合でも同様なエピタキシャル成長することを確認した。

(実施例2)

実施例1においてY1Ba2Cu3O7-8の代わりにBi2Sr2Ca1Cu2Ox膜をエピタキシャル成長した。成長は実施例1と同様にマグネトロンスパッタ法により行った。基板温度は700°Cとした。X線回折法及び電子線回折法により(001)方向に配向した層状ペロプスカイト構造を有する結晶性、平坦性にすぐれた良質なエピタキシャル膜であることを確認した。この膜の抵抗-温度特性を4端子法で測定する事によりゼロ抵抗温度が85kである事がわかった。又Bi2Sr2Ca1Cu2Oxの代わりにTl2Ba2Ca1Cu2Oxを用いた場合も同様なエピタキシャル成長することを確認した。

(実施例3)

実施例1においてY₁Ba₂Cu₃O₇₋₈の代わりに Bi₂Sr₂Ca₂Cu₃O_x膜をエピタキシャル成長した。成 長は実施例1と同様にマグネトロンスパッタ法によ

- 1···Si単結晶基板
- 2···MgAl2O4膜
- 3···BaxSr1_xTiO3膜
- 4…Y1Ba2Cu3O7_8膜

代理人 弁理士 内原 晋

り行った。基板温度は750°Cとした。X線回折法及び電子線回折法により(001)方向に配向した層状ベトプスカイト構造を有する結晶性、表面平坦性にすぐれた良質なエピタキシャル膜であることを確認した。この腹の抵抗-温度特性を4端子法で測定することによりゼロ抵抗-温度特性を4端子法で測定することによりゼロ抵抗温度が107kであることがわかった。 又Bi2Sr2Ca2Cu3Ox の代わりにTl2Ba2Ca2Cu3Oxを用いた場合も同様なエピタキシャル成長することを確認した。

(発明の効果)

以上の様に本発明によって層状ペロブスカイト 構造を有する良質なエピタキシャル超伝導膜を容 易にSi単結晶基板上に形成することが可能となっ た。超伝導体機能素子とシリコンICとを一体化で きるという利点を考えれば本発明の工業的価値は 大きい。

図面の簡単な説明

第1図は本発明の実施例を説明する図。図において、

