Université Mohammed V Faculté des Sciences Département d'Informatique

Cours M6 pour SMIA Introduction à l'Informatique

M. El Marraki N. El Khattabi 2020 – 2021

Cours N°6

V. Le codage Introduction Système d'énumération

Sommaire

- La Filière SMIA (SMI / SMA)
- II. Histoire de l'informatique et Structure des ordinateurs
- III. Histoires des Langages de programmation
- IV. Algèbre de Boole
- v. Le codage
 - Introduction
 - Système de numération décimale, binaire, octale et hexadécimale
 - Codage des nombres entiers
 - Codage des nombres réels
 - Codage des caractères
 - Codages des images et du son
- VI. Le langage HTML

2

Exemples de Système de numération

Numération décimale :

- C'est le système de numération le plus pratiqué actuellement.
- L'alphabet est composé de dix chiffres :

$$A = \{0,1,2,3,4,5,6,7,8,9\}$$

• Le nombre 10 est la base de cette numération

Système de numération positionnel pondéré à base b

• Un système de numérotation positionnel pondéré à base b est défini sur un alphabet de b chiffres :

$$A = \{c_0, c_1, ..., c_{b-1}\}$$
 avec $0 \le c_i < b$

- Soit N = a_{n-1} a_{n-2} ... a_1 $a_{0 (b)}$: représentation en base b avec les chiffres
 - a; : est un chiffre de l'alphabet de poids i (position i).
 - a₀: chiffre de poids 0 appelé le chiffre de poids faible
 - a_{n-1}: chiffre de poids n-1 appelé le chiffre de poids fort

Exemples de Système de numération

- C'est un système positionnel. Chaque position possède un poids.
- Par exemple, le nombre 4134 s'écrit comme :

$$4134 = 4 \times 10^3 + 1 \times 10^2 + 3 \times 10^1 + 4 \times 10^0$$

Système de numération positionnel pondéré à base b

$$(N)_b = (a_{n-1}a_{n-2}...a_0)$$

avec $a_i = \{0,1,...,b-1\}$

La valeur de N en base 10 est donnée par :

$$N_{10} = a_{n-1}.b^{n-1} + a_{n-2}.b^{n-2} + ... + a_0.b^0_{(10)}$$

Bases de numération (Binaire, Octale et Hexadécimale)

Système binaire (b=2) utilise deux chiffres : {0,1}

• C'est avec ce système que fonctionnent les ordinateurs

Avec 1 bit : 2 (21) possibilités

- **■** 0 ⇒ 0
- 1 ⇒ 1

9

Bases de numération (Binaire, Octale et Hexadécimale)

- •Système Octale (b=8) utilise huit chiffres :
- $\{0,1,2,3,4,5,6,7\}$
 - Utilisé il y a un certain temps en Informatique.
 - Elle permet de coder 3 bits par un seul symbole.

- Avec 3 bits : 8
 (2*2*2= 2³) possibilités
 - **■** 000 ⇒ 0
 - **■** 001 ⇒ 1
 - **■** 010 ⇒ 2
 - **■** 011 ⇒ 3
 - **■** 100 ⇒ 4
 - **■** 101 ⇒ 5
 - **110** ⇒ 6
 - **■** 111 ⇒ 7

Bases de numération (Binaire, Octale et Hexadécimale)

- Système binaire (b=4) utilise quatre chiffres : {0,1,2,3}
 - Avec 2 bits : 4 (2*2=2²) possibilités
 - **■** 00 ⇒ 0
 - **■** 01 ⇒ 1
 - 10 ⇒ 2
 - **■** 11 ⇒ 3

10

Bases de numération (Binaire, Octale et Hexadécimale)

Système Hexadécimale (b=16) utilise 16 chiffres :

$$\{0,1,2,3,4,5,6,7,8,9, A=10_{(10)}, B=11_{(10)}, C=12_{(10)}, D=13_{(10)}, E=14_{(10)}, F=15_{(10)}\}$$

- Cette base est très utilisée dans le monde de la micro informatique.
- Elle permet de coder 4 bits par un seul symbole.

Bases de numération (Binaire, Octale et Hexadécimale)

Avec 4 bits : 16 16(2*2*2*2= 24) possibilités

1 000 ⇒ 8
1 001 ⇒ 9
1 010 ⇒ A
1 011 ⇒ B
1 100 ⇒ C
1 101 ⇒ D
1 110 ⇒ E
1 111 ⇒ F

Transcodage (ou conversion de base)

 Le transcodage (ou conversion de base) est l'opération qui permet de passer de la représentation d'un nombre exprimé dans une base à la représentation du même nombre mais exprimé dans une autre base.

- Par la suite, on verra les conversions suivantes:
 - Décimale vers Binaire, Octale et Hexadécimale
 - Binaire vers Décimale, Octale et Hexadécimale

Techniques de conversion

Techniques pour convertir $(N)_b$ entre systèmes de numérotation bin-dec-hex:

Type de conversion	Technique de conversion
binaire → décimal	Somme pondérée des
hexadécimal → décimal	contributions
décimal → binaire	Division par la base
décimal → hexadécimal	
binaire → hexadécimal	Substitution hex-bits
hexadécimal → binaire	

Changement de base de la base 10 vers une base b

La règle à suivre est la division successive :

- On divise le nombre par la base **b**
- Puis divise le quotient par la base **b**
- Ainsi de suite jusqu'à l'obtention d'un quotient nul
- La suite des restes correspond aux symboles de la base visée.
- On obtient en premier le chiffre de poids faible et en dernier le chiffre de poids fort.

Exemple: décimale vers binaire

- Soit N le nombre d'étudiants d'une classe représenté en base décimale par : N = 73₍₁₀₎
- Représentation en Binaire?

Exemple : décimale vers octale

17 17

- Soit N le nombre d'étudiants d'une classe représenté en base décimale par : N = 73(10)
- Représentation en Octale?

$$73_{(10)} = 111_{(8)}$$

Décimale → Binaire

On prend les restes de la division successive de n par 2, **Exemple :**

Exemple: décimale vers Hexadécimale

- Soit N le nombre d'étudiants d'une classe représenté en base décimale par : N = 73₍₁₀₎
- Représentation en Hexadécimale?

Décimale → Hexadécimale

On prend les restes de la division successive de n par 16, Exemple:

Binaire → Décimale

On utilise la formule.

Exemple:

$$10011010_{2} = 1 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= 128 + 16 + 8 + 2$$

$$= 154_{10}$$

De la base binaire vers une base b

- Solution 1-

Première solution :

 convertir le nombre en base binaire vers la base décimale puis convertir ce nombre en base 10 vers la base b.

• Exemple:

- 10010₍₂₎ = ?₍₈₎
- $10010_{(2)} = 2^4 + 2_{(10)} = 18_{(10)} = 2^*8^1 + 2^*8^0_{(10)} = \frac{22_{(8)}}{2}$

22

De la base binaire vers une base b

Deuxième solution :

- Binaire vers décimale : par définition
- Binaire vers octale : regroupement des bit en des sous ensemble de trois bits puis remplacé chaque groupe par le symbole correspondant dans la base 8 (Table).
- Binaire vers Hexadécimale : regroupement des bit en des sous ensemble de quatre bits puis remplacé chaque groupe par le symbole correspondant dans la base 16 (Table)

Correspondance Octale ←→ Binaire

Table:

Symbole Octale	suite binaire
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Correspondance Hexadécimal ←→ Binaire

Table:

S. Hexad.	suite binaire	S. Hexad.	suite binaire
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

26

Les nombres en Hexadécimale

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23

Exemple : binaire vers décimale

- Soit N un nombre représenté en binaire par :
 N = 1010011101₍₂₎
- Représentation Décimale?

$$N=1.2^{9}+0.2^{8}+1.2^{7}+0.2^{6}+0.2^{5}+1.2^{4}+1.2^{3}+1.2^{2}+0.2^{1}+1.2^{0}$$

$$=512+0+128+0+0+16+8+4+0+1$$

$$=669_{(10)}$$

$$1010011101_{(2)}=669_{(10)}$$

2

On regroupe les bits par blocs de trois en allant vers la gauche (on complète par des zéro a gauche si nécessaire),

Exemple:

$$n = 101101011001112 = 010 110 101 100 111$$
$$= 2 6 5 4 7$$
$$= 265478$$

29

Binaire → Hexadécimale

On regroupe les bits par blocs de quatre en allant vers la gauche (on complète par des zéro a gauche si nécessaire),

Exemple:

$$n = 10110101100111_2 = 0010 1101 0110 0111$$

= 2 D 6 7
= 2D67₁₆

Exemple: binaire vers octale

 Soit N un nombre représenté en base binaire par :

 $N = 1010011101_{(2)}$

• Représentation Octale?

$$N = 001$$
 010 011 $101_{(2)}$
= 1 2 3 $5_{(8)}$
 $1010011101_{(2)} = 1235_{(8)}$

30

Binaire vers Hexadécimale

 Soit N un nombre représenté en base binaire par :

 $N = 1010011101_{(2)}$

• Représentation Hexadécimale?

$$N = 0010 \quad 1001 \quad 1101_{(2)}$$

$$= 2 \quad 9 \quad D_{(16)}$$

$$1010011101_{(2)} = 29D_{(16)}$$

Chaque chiffre sera remplacé par un bloc de quatre bits (l'inverse de la méthode précédente),

Exemple:

$$n = A17B_{16} = 1010 \ 0001 \ 0111 \ 1011$$
$$= 1010000101111011_{2}$$

Exercice

Décimal	Binaire	Hexadécimal	Octal
1	00000001	001	001
10			
	01100100		
		065	
			764

34

Correction de l'exercice

Décimale	Binaire	Héxa.	Octale
10	00001010	0A	012
100	01100100	064	144
101	01100101	065	145
500	111110100	1F4	764

Fin du cours