Geocomputation Raster Data Analysis

Module outline

W1	Reproducible Spatial Analysis
W2	Spatial Queries and Geometric Operations
W3	Point Pattern Analysis
W4	Spatial Autocorrelation
W5	Spatial Models
W6	Raster Data Analysis
W6 W7	Raster Data Analysis Geodemographic Classification
	y
W7	Geodemographic Classification

Core Spatial Analysis

Applied Spatial Analysis

Data Visualisation

This week

- Raster GIS data model.
- Raster-specific functions and operations.
- Spatial data interpolation.

Before we start

- Go to <u>www.menti.com</u>
- Use code: 6108 5045

8	9	9	10	0	10	10	10	0	0	0	7	5	3	0	0	0	0	1
8	9	9	10	10	0	10	9	9	0	0	5	3	0	0	0	0	0	0
8	8	9	9	10	0	0	9	8	7	5	0	0	0	1	0	0	0	0
5	8	8	9	10	10	0	9	7	5	0	0	5	5	5	0	0	0	1
3	5	8	9	9	10	0	0	3	0	0	0	5	0	0	1	0	0	2
2	5	8	8	9	9	10	0	0	0	1	5	0	0	0	0	0	0	1
2	4	6	8	8	9	0	0	0		5	0	0	5	5	5	0	0	1
0	3	6\	8	8	0	0	0	0	5	0	5	5	5	5	5	0	0	0
2	2	5	8	0	0	0	0	0	0	5	5	5	5	5	5	3	0	0
0	2	5	0	0	1	2	3	4	4	4	4	4	4	4	5	0	0	0
0	0	0	0	1	1	1	1	4	4	4	4	4	4	4	5	0	0	0
0	0	1	1	2	2	2	2	3	3	3	3	3	3	3	4	0	3	0
1	1	1	1	2	2	3	3	3	3					1	2	3	4	3

- Unlike vector data, raster data represents features as continuous surfaces, showing gradients of change rather than discrete measurements.
- Raster data is organised as a matrix of pixels or grid cells, each containing a numeric or textual value representing a feature.
- It consists of rows and columns, with each pixel or grid cell defined by its resolution (height and width).

Vector versus raster

- Why not vectorise everything? After all, we can add as many attributes as needed?
- "Raster is faster, but vector is corrector" highlights the trade-offs between these data models.
- The choice between raster and vector data depends on your specific application and the type of analysis you intend to perform.

- Raster data are commonly found in applications where every location has one value.
- Variable can be continuous (temperature, elevation, air pollution), categorical (land use), or imagery (reflectance values).
- Cell size is constant across the raster surface.
- When do we encounter raster data:
 - Remote sensing
 - Outcome of spatial analysis

Raster versus vector

	Advantages	Disadvantages
Raster	Map Algebra with raster data is usually quick and easy to perform	Linear features and paths are difficult to display
	Some specific use cases can only be achieved with raster data (e.g. modeling water flow over the	Subject to a pixelated look and feel
	land surface)	Datasets can become very large because they record values for each cell
Vector	Graphical output is generally more aesthetically-pleasing	Continuous data is poorly stored and displayed
	Higher geographic accuracy because data isn't dependent on grid size	Needs a lot of work and maintenance to ensure that it is accurate and reliable

Continuous (numerical value of data)

Categorical (number represent category)

Population count

0 to 19,999 20,000 to 99,999 100,000 to 249,999 250,000 to 499,999 500,000 to 999,999 1,000,000 to 2,500,000

- Multiple data formats, including GeoTIFF, ASCII Grid, Esri Grid and GIF.
- Must be georeferenced (i.e. have a CRS) to plot properly.
- Using raster data also means we should use raster-specific functions and operations.

Global operations

- Local operations applied to each individual cell and only involve those cells

sharing the same location

- Focal operations assign to the output cells some summary value of the

neighbouring cells

Zonal operations computes a new summary value from aggregated cells

make use of some or all input cells when computing an

output cell

1	0	0	0	0	0
1	1	0	0	0	0
1	1	1	1	0	1
0	1	1	0	0	0
0	0	0	0	1	0

basic raster

Local operations and functions

1	0	0	0	0	0
1	1	0	0	0	0
1	1	1	1	0	1
0	1	1	0	0	0
0	0	0	0	1	0

multiplication * 2

2	0	0	0	0	0
2	2	0	0	0	0
2	2	2	2	0	2
0	2	2	0	0	0
0	0	0	0	2	0

1	0	0	0	0	0
1	1	0	0	0	0
1	1	1	1	0	1
0	1	1	0	0	0
0	0	0	0	1	0

1	0	0	0	0	0
1	2	0	0	0	0
1	2	1	1	0	1
0	2	1	0	0	0
0	0	0	0	1	0

addition

2	0	0	0	0	0
2	3	0	0	0	0
2	3	2	2	0	2
0	3	2	0	0	0
0	0	0	0	2	0

1	0	0	0	0	0
1	2	0	0	0	0
1	2	1	1	0	1
0	2	1	0	0	0
0	0	0	0	1	0

logical

0	0	0	0	0	0
0	2	0	0	0	0
0	2	0	0	0	0
0	2	0	0	0	0
0	0	0	0	0	0

1	0	0	0	0	0
1	1	0	0	0	0
1	1	1	1	0	1
0	1	1	0	0	0
0	0	0	0	1	0

1	0	0	0	0	0
1	2	0	0	0	0
1	2	1	1	0	1
0	2	1	0	0	0
0	0	0	0	1	0

Boolean AND

1	1	1	1	1	1
1	0	1	1	1	1
1	0	1	1	1	1
1	0	1	1	1	1
1	1	1	1	1	1

Boolean operators

Truth evaluation using Boolean operators

AND

Using AND, this search would only retrieve results with Peanut Butter and Jelly.

OR

Using OR, this search would retrieve results with peanut butter, with jelly, and with both.

NOT

Using NOT, this search would retrieve results with peanut butter, and exclude those with jelly or PB with jelly.

Focal operations and functions

1	0	0	0	0	0
1	2	0	0	0	0
1	2	1	1	0	1
0	2	1	0	0	0
0	0	0	0	1	0

focal (sum)

3	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

1	0	0	0	0	0
1	2	0	0	0	0
1	2	1	1	0	1
0	2	1	0	0	0
0	0	0	0	1	0

focal (sum)

3	0	0	0	0	0
6	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

1	0	0	0	0	0
1	2	0	0	0	0
1	2	1	1	0	1
0	2	1	0	0	0
0	0	0	0	1	0

focal (sum)

3	0	0	0	0	0
6	0	0	0	0	0
0	0	8	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Zonal operations and functions

1	0	0	0	0	0
1	2	0	0	0	0
1	2	1	1	0	1
0	2	1	0	0	0
0	0	0	0	1	0

1	0	0	0	0	0
1	2	0	0	0	0
1	2	1	1	0	1
0	2	1	0	0	0
0	0	0	0	1	0

zonal

11	11	11	0	0	0
11	11	11	0	0	0
11	11	11	3	3	3
11	11	11	3	3	3
11	11	11	3	3	3

1	0	0	0	0	0
1	2	0	0	0	0
1	2	1	1	0	1
0	2	1	0	0	0
0	0	0	0	1	0

zonal

Global operations and functions

Data interpolation

Spatial data interpolation

- Similar to 'regular' data interpolation, but in two dimensions, accounting for spatial relationships.
- Commonly used for phenomena that are difficult to measure directly, such as spatial concentrations.
- Utilises regularly distributed or sampled points to creates a continuous (predictive) surface from these sampled point values.
- There are various methods available to derive interpolated values, depending on the data and application.

Spatial data interpolation

Gimond, M. 2020. Geodesic geometry. [online] https://mgimond.github.io/

Spatial data interpolation

Deterministic methods

- These type of models have parameter values that are typically arbitrarily defined.

Geostatistical methods

- The parameter values for these models have to be estimated.

Spatial data interpolation: Nearest neighbour

Spatial data interpolation: Trend

Spatial data interpolation: IDW

- IDW: Inverse Distance Weighting ("Tobler's Law").
- Assumes near points are more alike than far points (distance decay).
- Spatial autocorrelation is the underlying assumption of IDW.

Spatial data interpolation: IDW

IDW with different power settings

$$z_{p} = \frac{\sum_{i=1}^{n} \left(\frac{z_{i}}{d_{i}^{p}}\right)}{\sum_{i=1}^{n} \left(\frac{1}{d_{i}^{p}}\right)}$$

Spatial data interpolation: IDW

Gimond, M. 2020. Geodesic geometry. [online] https://mgimond.github.io/

Spatial data interpolation: Kriging

- Considers both distance and degree of variation between known data points when estimating values in unknown areas.
- Kriging is a complex, multistep process starting with a semi-variogram.

Spatial data interpolation: Kriging

Spatial data interpolation: Kriging

Spatial data interpolation: IDW versus Kriging

- IDW (Inverse Distance Weighting) assumes that spatial autocorrelation between neighbouring points is inversely proportional to the distance between them, and this relationship can be defined by a distance-based function.
- Kriging assumes that both distance and directionality between sample points influence spatial autocorrelation. It fits functions to describe the correlation between points and explains the variation across the surface.

Conclusion

- Raster data model is essential for representing categorical and continuous data.
 Raster data come with their own set of functions and operations.
- Spatial data interpolation is the idea to estimate unknown values of a phenomenon. Spatial data interpolation creates a continuous surface, requiring the use of the raster data model.
- Multiple methods for interpolation (e.g., IDW, Kriging) that vary in assumptions.

Questions

Justin van Dijk j.t.vandijk@ucl.ac.uk

