Propozycja punktowania rozwiązań zadań

Uwaga1.

Łącznie uczeń może zdobyć 25 punktów.

Laureatem konkursu zostaje uczeń, który w etapie wojewódzkim uzyska co najmniej 80% punktów możliwych do zdobycia (co najmniej 20 punktów).

Finalistą konkursu zostaje uczeń, który w etapie wojewódzkim uzyska co najmniej 60% punktów możliwych do zdobycia (co najmniej 15 punktów).

Uwaga2.

Za każde poprawne rozwiązanie inne niż przewidziane w propozycji punktowania rozwiązań zadań przyznajemy **maksymalną** liczbę punktów.

Nr zadania	1.
Maks. liczba punktów	1 pkt
Odpowiedź poprawna	D

Zadanie 2. (*4 pkt*)

Znajdź wszystkie liczby całkowite x, dla których $\sqrt{4-4x+x^2}=2-x$ oraz $\sqrt{(-x)^2}=x$. Opisz sposób rozumowania.

Uczeń:	
poprawnie wyłącza pierwiastek w pierwszym wyrażeniu	1 p
wyznacza liczby całkowite spełniające pierwszy warunek	1 p
wyznacza liczby całkowite spełniające drugi warunek	1 p
wyciąga wnioski i podaje poprawną odpowiedź	1 p

Rozwiązanie:

1.
$$\sqrt{4-4x+x^2} = \sqrt{(2-x)^2} = |2-x|$$

2.
$$[2-x] = 2-x] \Leftrightarrow [2-x \ge 0] \Leftrightarrow [x \le 2]$$
$$[(x \le 2) \land (x \in C)] \Leftrightarrow x \in \{..., -2, -1, 0, 1, 2\}$$

3.
$$\left[\sqrt{(-x)^2} = x \right] \Leftrightarrow \left[x \ge 0 \right]$$
$$\left[(x \ge 0) \land (x \in C) \right] \Leftrightarrow x \in \{0,1,2,3,4...\}$$

4. Wniosek: liczby całkowite spełniające powyższe warunki to 0, 1 i 2.

Zadanie 3. (4 pkt)

Wyznacz wszystkie liczby całkowite m, dla których funkcja liniowa $f(x) = (3-m) \cdot x + |m-1| - 4$ jest rosnąca i jednocześnie wykres tej funkcji przecina oś OY w punkcie (0,2).

U	czeń:	
•	zapisuje warunek dla współczynnika kierunkowego funkcji liniowej rosnącej	1 p
•	zapisuje warunek dla wyrazu b we wzorze funkcji $f(x) = ax + b$	1 p
•	rozwiązuje zapisane nierówności	1 p
•	wskazuje liczby całkowite spełniające obie nierówności	1 p

Rozwiązanie:

1. funkcja liniowa rosnąca:

$$[(3-m>0) \land m \in C] \Leftrightarrow [(m<3) \land m \in C] \Leftrightarrow m \in \{...,-2,-1,0,1,2\}$$

2. wykres funkcji f przecina oś OY w punkcie (0,2):

$$[m-1]-4=2 \land m \in C$$
 \Leftrightarrow $[m-1]=6 \land m \in C$ \Leftrightarrow $(m=-5 \lor m=7)$

- 3. liczba *m* spełnia jednocześnie: $m \in \{..., -2, -1, 0, 1, 2\}$ i $(m = -5 \lor m = 7)$
- 4. Wniosek: funkcja f spełnia podane warunki dla m = -5.

Zadanie 4. (4 pkt)

Majster i dwaj robotnicy malują ściany w nowym budynku. W ciągu godziny pierwszy robotnik wykonuje $\frac{5}{6}$, a drugi $\frac{2}{3}$ pracy wykonywanej w tym samym czasie przez majstra. Gdyby majster pracował sam pomalowałby wszystkie ściany w ciągu 10 godzin. Ile godzin

Gdyby majster pracował sam pomalowałby wszystkie ściany w ciągu 10 godzin. Ile godzin potrzebuje trzyosobowa ekipa (majster + dwaj robotnicy) na pomalowanie wszystkich ścian w tym budynku?

U	Jczeń:	
•	ustala, jaką część pracy wykona ekipa w ciągu jednej godziny	1 p
•	układa zależność między ilością wykonanej pracy i czasem pracy	1 p
•	układa równanie wykorzystując proporcjonalność odwrotną	1 p
•	oblicza, po ilu dniach ekipa wykona pracę.	1 p

Rozwiązanie:

1. p - ilość pracy, jaką majster wykona w ciągu jednej godziny

$$p + \frac{5}{6}p + \frac{2}{3}p = \frac{5}{2}p$$
 – ilość pracy, jaką w ciągu jednej godziny wykona trzyosobowa ekipa

2.	ilość pracy wykonanej w ciągu godziny	czas na wykonanie całej pracy
majster	p	10 [godzin]
ekipa	2,5 p	x [godzin]

3. te dwie wielkości (ilość pracy i czas) są odwrotnie proporcjonalne, więc

$$p \cdot 10 = \frac{5}{2} p \cdot x$$

4.
$$x = 10p \cdot \frac{2}{5p}$$
$$x = 4[godziny]$$

Odp. Trzyosobowa ekipa potrzebuje 4 godzin na pomalowanie wszystkich ścian.

Zadanie 5. (4 pkt.)

W czworokącie ABCD przekątne AC i BD przecinają się w punkcie O pod kątem prostym w taki sposób, że $\frac{CO}{AO} = \frac{DO}{BO} = \frac{2}{3}$. Uzasadnij, że czworokąt ABCD jest trapezem. Oblicz pole tego czworokąta przyjmując: |AC| = 20cm, |BD| = 14cm.

Uczeń:	
 uzasadnia podobieństwo trójkątów AOB i COD, wskazując odpowiadające i kąt prosty 	boki 1 p
 wskazuje w trójkątach podobnych kąty przystające, które są jednocześnie kątami naprzemianległymi 	1 p
 z równości kątów naprzemianległych wnioskuje o równoległości pary przeciwległych boków czworokąta 	1 p
oblicza pole trapezu	1 p

Rozwiązanie:

1. trójkąty *AOB* i *COD* są podobne, ponieważ:

$$\frac{|AO|}{|BO|} = \frac{3x}{3y} = \frac{x}{y}$$

$$\frac{|CO|}{|DO|} = \frac{2x}{2y} = \frac{x}{y}$$

$$|\angle AOB| = 90^\circ = |\angle COD|$$

- 2. w trójkątach podobnych AOB i COD są kąty przystające: $\angle OAB \equiv \angle OCD$ (kąty naprzemianległe)
- przy dwóch prostych przeciętych trzecią prostą kąty naprzemianległe są równe ⇔ te proste są równoległe ⇔ czworokąt, który ma parę boków równoległych jest trapezem

4. pole trapezu jest równe sumie pól trójkątów: $\triangle ACD$ i $\triangle ACB$:

$$P_{ABCD} = \frac{|AC| \cdot |OD|}{2} + \frac{|AC| \cdot |OB|}{2} = \frac{|AC| \cdot |BD|}{2} = \frac{20 \cdot 14}{2} = 140cm^2$$

Zadanie 6. (4 pkt)

W ostrosłupie *ABCDS*, o podstawie kwadratowej *ABCD*, krawędź *DS* o długości 10 cm jest prostopadła do płaszczyzny podstawy. Kąty nachylenia ścian bocznych *ABS* i *BCS* do płaszczyzny podstawy są równe 45°. Oblicz sumę długości wszystkich krawędzi tego ostrosłupa oraz pole jego powierzchni bocznej.

Uczeń:	
 rysuje model (lub siatkę) ostrosłupa 	1 p
 zauważa, że trójkąty: ΔABS i ΔBCS są prostokątne 	1 p
oblicza długości krawędzi i ich sumę	1 p
oblicza pole powierzchni bocznej ostrosłupa	1 p

Rozwiązanie:

1. rysunek, np. z wykorzystaniem modelu graniastosłupa

2. w trójkącie BCS:
$$|BC|^2 = 100$$
, $|CS|^2 = 200$, $|BS|^2 = 300$

w trójkącie ABS:
$$|AB|^2 = 100$$
, $|AS|^2 = 200$, $|BS|^2 = 300$

 $\underline{\text{Wniosek:}}$ na podstawie twierdzenia odwrotnego do twierdzenia Pitagorasa trójkąty ΔABS i ΔBCS są prostokątne

3. w trójkącie prostokątnym *ADS*:
$$|AS| = \sqrt{10^2 + 10^2}$$
$$|AS| = 10\sqrt{2}$$

analogicznie:
$$|CS| = 10\sqrt{2}$$

w trójkącie prostokątnym *BDS*:
$$\frac{\left|BS\right|^2 = x^2 = 100 + 100 \cdot 2}{\left|BS\right| = x = 10\sqrt{3}}$$

Wniosek: suma długości wszystkich krawędzi ostrosłupa jest równa:

$$5 \cdot 10 + 20\sqrt{2} + 10\sqrt{3} = 10(5 + 2\sqrt{2} + \sqrt{3})$$
 [cm]

4. pole powierzchni bocznej ostrosłupa:

$$P_b = 2 \cdot \frac{10 \cdot 10}{2} + 2 \cdot \frac{10 \cdot 10\sqrt{2}}{2} = 100(1 + \sqrt{2})[cm^2]$$

Zadanie 7.

W sześcianie o krawędzi długości 1 dm wyznaczono punkty *K*, *L i M* , które są środkami trzech, parami skośnych, krawędzi sześcianu. Oblicz pole trójkąta *KLM*.

Uczeń:	
• rysuje model sześcianu i zaznacza na krawędziach parami skośnych punkty K, L, M	1 p
• uzasadnia, że trójkąt <i>KLM</i> jest równoboczny	1 p
oblicza długość boku trójkąta <i>KLM</i>	1 p
• oblicza pole trójkąta <i>KLM</i>	1 p

- Rysunek z zaznaczonymi punktami K, L, M na trzech parami skośnych krawędziach sześcianu
- 2. Trójkąt *KLM* to trójkąt równoboczny jego boki są przeciwprostokątnymi trójkątów prostokątnych *MAK*, *KC'L* i *LD'M*.
- 3. W trójkącie prostokątnym *ABK*:

$$|AK| = \sqrt{10^2 + 5^2} = 5\sqrt{5}$$

W trójkącie prostokątnym MAK:

$$|MK| = \sqrt{5^2 + (5\sqrt{5})^2} = \sqrt{25 + 125} = 5\sqrt{6}$$

4. Pole trójkąta równobocznego *KLM*:

$$P_{\Delta KLM} = \frac{(5\sqrt{6})^2 \sqrt{3}}{4} = \frac{75\sqrt{3}}{2}$$

Odp. Pole trójkąta *KLM* jest równe $\frac{75\sqrt{3}}{2}$ cm².