Image Segmentation

- After image enhancement and restoration, next step is segmentation of image
- Our aim is to understand the constituent parts of the image e.g. definition of vehicle and person present in the image.
- How?? There are different mechanism e.g. color based segmentations, texture based segmentation

Image segmentation

- The purpose of image segmentation is to partition an image into meaningful regions with respect to a particular application
- The segmentation is based on computations performed on the image and might be
 - grey level
 - Color: e.g. identification of grass based on green color, identification of roads based on dark gray color etc
 - Texture: usually in cloths there are textures. It's a combination of texons i.e. repeated patterns
 - Depth
 - Motion
- Image processing application has three steps:
 - Preprocessing
 - Feature extraction (segmentation is first step of the feature extraction)
 - Classification

Image segmentation

- Usually image segmentation is an initial and vital step in a series of processes aimed at overall image understanding.
- Applications of image segmentation include
 - Identifying objects in a scene for object-based measurements such as size and shape
 - Identifying objects in a moving scene for object-based video compression (MPEG4)
 - Identifying objects which are at different distances from a sensor using depth measurements from a laser range and enabling path planning for a mobile robots.
 This can be calculated using depth or motion.

Image Segmentation

- Segmentation is first step of object recognition but not the object recognition
- Segmentation attempts to partition the pixels of an image into groups that strongly correlate with the objects in an image.
- Typically the first step in any automated computer vision application

Edge Detection

- Image segmentation can be done using three scenarios
 - Points
 - Line
 - Edges
- Edges: An Edge is a set of connected pixels that lie on the boundary between the two regions

Edge

 An Edge is a set of connected pixels that lie on the boundary between the two regions

Edges and Derivatives

- Derivatives are used to find discontinuities
 - 1st derivative tells us where an edge
 - 2nd derivative can be used to show edge direction (either from black to white OR white to black)

We use both to detect edges

Derivatives and Noise

- Derivatives based edge detection methods are sensitive to the noise
- Usually derivative based operations are noisy operations
- Therefore we need to apply filter to remove such noise

Common Edge Detector Filters

 The following edge detection filters can be used

-1	a	0	-1	
0	t	1	0	

Roberts

Prewitt H

Prewitt V

Edge Detection Example

Robert

5obel

Detection of Discontinuities

- There are three basic types of grey level discontinuities which we are interested in digital images
 - Points
 - Lines
 - Edges
- We typically find discontinuities using masks and correlation

Points Detection

Point detection can be achieved simply using the mask

below:

-1	-1	-1		
-1	8	-1		
-1	-1	-1		

 This mask gives high weight to the center pixel and nullify the neighboring pixels. That means will find the points in the image

Point Detection Example

X-ray image of a turbine blade

Result of point detection

Result of thresholding

Line Detection

- The next level of complexity is to detect lines
- The masks given below extract lines that are one pixel thick and running in a particular direction

-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	~1	2	-1	-1	-1	2	-1	-1	-1	2
	arizant			. 150			(met)				

Line Detection-Example

After processing with -45° line detector

Result of thresholding filtering result