Accept-Reject Sampling

Important Sampling

Importance Sampling with Resampling

Sequential Monte

References

10: Introduction to Bayesian Computation

**Taylor** 

University of Virginia

Accept-Reject Sampling

Importance Sampling

Importance Sampling with Resampling

Sequential Monte Carlo

Accept-Rejer Sampling

Sampling Sampling

Sampling with Resampling

Sequential Monte

Poforoncoc

This chapter gives an overview for how to approximate intractable quantities such as posterior expectations and predictions.

Accept-Reject Sampling

Sampling Sampling

Sampling with Resampling

Sequential Monte

References

Numerical integration methods approximate integrals.

These methods can be loosely categorized as either **stochastic** or **deterministic** (e.g. quadrature methods).

Importance
Sampling with
Resampling

Sequential Monte

References

**Deterministic methods** don't draw samples, and instead approximate the integral by summing up approximate volumes:

$$E[h(\theta) \mid y] = \int h(\theta)p(\theta \mid y)d\theta \approx \frac{1}{S} \sum_{s=1}^{S} w_s h(\theta^s)p(\theta^s \mid y)$$

We used this method earlier for the rat tumor example!

Given that we can evaluate the unnormalized target  $p(\theta,y)=p(y\mid\theta)p(\theta)$ , we choose a nonrandom grid of points (think seq)  $\theta_1,\ldots,\theta_S$ , and then we approximate the the continuous posterior with a discrete random variable with pmf equal to

$$\tilde{p}(\theta_j \mid y) = \frac{p(y \mid \theta_j)p(\theta_j)}{\sum_{s=1}^{S} p(y \mid \theta_s)p(\theta_s)}$$

for any  $\theta_j \in \{\theta_1, \dots, \theta_S\}$ . Then

$$E[h(\theta) \mid y] \approx \sum_{j=1}^{S} h(\theta_j) \tilde{p}(\theta_j \mid y).$$

Tavlor

Introduction

Accept-Reject Sampling

Sampling

Resampling
Sequential Monte



Resampling
Sequential Monte

Carlo

References

**Stochastic methods** involve sample averages of simulated draws from some distribution. There are **many** ways to do this, but here are a couple examples that we've seen:

$$E[h(\theta) \mid y] = \int h(\theta)p(\theta \mid y)d\theta \approx \frac{1}{S} \sum_{s=1}^{S} h(\theta^{s})$$

with  $\theta^s \sim p(\theta \mid y)$ , or

$$E[h(\tilde{y}) \mid y] = \int h(\tilde{y})p(\tilde{y} \mid y)d\tilde{y} \approx \frac{1}{S} \sum_{s=1}^{S} h(\tilde{y}^{s})$$

with  $\tilde{y} \sim p(\tilde{y} \mid y)$ 

Accept-Reject Sampling

Importance Sampling

Importance Sampling with Resampling

Sequential Monte Carlo

- Drawing  $\tilde{y}$  samples can be done in a two-stage way:
  - 1. draw  $\theta^s \sim p(\theta \mid y)$
  - 2. draw  $\tilde{y}^s \sim p(\tilde{y} \mid \theta^s)$

Sampling

Sampling with Resampling

Sequential Monte Carlo

References

Drawing  $\tilde{y}$  samples can be done in a two-stage way:

- 1. draw  $\theta^s \sim p(\theta \mid y)$
- 2. draw  $\tilde{y}^s \sim p(\tilde{y} \mid \theta^s)$

If you can derive  $E(h(\tilde{y}) \mid \theta)$ , you should probably use a Rao-Blackwellized procedure:

$$E[h(\tilde{y}) \mid y] = E[E(h(\tilde{y}) \mid \theta) \mid y] \approx \frac{1}{S} \sum_{s=1}^{S} E(h(\tilde{y}) \mid \theta^{s})$$

with  $\theta^s \sim p(\theta \mid y)$ 

Resampling

Sequential Mont Carlo

References

From now on we will write the posterior in terms of an unnormalized density  $q(\theta \mid y)$ . In other words:

$$p(\theta \mid y) = \frac{q(\theta \mid y)}{\int q(\theta \mid y)d\theta}$$

Most (maybe all) of the sampling techniques will assume that we can't evaluate  $p(\theta \mid y)$ , but that we can evaluate  $q(\theta \mid y)$ 

Sampling with Resampling

> Sequential Monte Carlo

References

# Setup

- 1.  $p(\theta \mid y)$  the target, posterior
- 2.  $q(\theta \mid y) = p(y \mid \theta)p(\theta)$  the unnormalized target
- 3.  $g(\theta)$  the "instrumental" or "proposal" distribution
- 4. need  $q(\theta \mid y)/g(\theta) \leq M$  uniformly
- 5. need  $g \gg q$  i.e. the proposal "dominates" your target (won't divide by 0)

We are free to choose our own  $g(\theta)$ . For the time being, we assume that  $\int g(\theta) d\theta = 1$ .

## Accept-Reject Sampling

Importanc Sampling

Importance
Sampling with

equential Monte

- To (potentially) produce one draw:
  - 1. propose the draw  $\theta^s \sim g(\theta)$
  - 2. accept  $\theta^s$  with probability  $\frac{q(\theta^s|y)}{g(\theta^s)M}$

## Accept-Reject Sampling

To (potentially) produce one draw:

- 1. propose the draw  $\theta^s \sim g(\theta)$
- 2. accept  $\theta^s$  with probability  $\frac{q(\theta^s|y)}{q(\theta^s)M}$

Note this is the same as

- 1. propose the draw  $\theta^s \sim g(\theta)$
- 2. draw  $U \sim \text{Uniform}(0,1]$
- 3. accept  $\theta^s$  if  $U < q(\theta^s \mid y)/\{g(\theta^s)M\}$

Importance Sampling

Resampling
Sequential Monte

$$P\left(\theta \leq t \middle| U \leq \frac{q(\theta \mid y)}{Mg(\theta)}\right) = \frac{P\left(\theta \leq t, U \leq \frac{q(\theta \mid y)}{Mg(\theta)}\right)}{P\left(U \leq \frac{q(\theta \mid y)}{Mg(\theta)}\right)}$$

$$= \frac{\int_{-\infty}^{t} \int_{0}^{\frac{q(\theta \mid y)}{Mg(\theta)}} g(\theta) 1 du d\theta}{\int_{-\infty}^{\infty} \int_{0}^{\frac{q(\theta \mid y)}{Mg(\theta)}} g(\theta) 1 du d\theta}$$

$$= \frac{\int_{-\infty}^{t} g(\theta) \frac{q(\theta \mid y)}{Mg(\theta)} d\theta}{\int_{-\infty}^{\infty} g(\theta) \frac{q(\theta \mid y)}{Mg(\theta)} d\theta}$$

$$= \frac{\int_{-\infty}^{t} q(\theta \mid y) d\theta}{\int_{-\infty}^{\infty} q(\theta \mid y) d\theta}$$

$$= P(\theta \leq t \mid y).$$

Assume  $y \sim \text{Normal}(\theta, 1)$ , and  $p(\theta) = \frac{1}{\pi(1+\theta^2)}$ . Our goal is to draw from

$$\begin{aligned} p(\theta \mid y) &\propto q(\theta \mid y) \\ &= p(y \mid \theta) p(\theta) \\ &= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(y - \theta)^2\right] \frac{1}{\pi(1 + \theta^2)} \\ &\propto \exp\left[-\frac{(\theta - y)^2}{2} - \log(1 + \theta^2)\right], \end{aligned}$$

Taylor

Introduction

Accept-Reject Sampling

Importance Sampling

Importance Sampling with Resampling

Sequential Monte Carlo



$$\frac{q(\theta \mid y)}{g(\theta)} = \frac{p(y \mid \theta)p(\theta)}{p(\theta)}$$

$$= p(y \mid \theta)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(y - \theta)^2\right]$$

$$\leq \frac{1}{\sqrt{2\pi}} \stackrel{\text{def}}{=} M$$

Our acceptance probability for draw  $\theta^s$  is then

$$q(\theta^s \mid y)/\{g(\theta^s)M\} = p(y \mid \theta^s)/M = \exp\left[-\frac{1}{2}(y - \theta^s)^2\right]$$

Introduction

Accept-Reject Sampling

Importance Sampling

Importance
Sampling with
Resampling

Sequential Monte Carlo



Generally a good strategy is work with logarithms, and then exponentiate as late as possible.

```
Accept-Reject
Sampling
```

```
y <- 2 # fake data
num trials <- 1000
theta_proposals <- rt(num_trials, 1)
us <- runif(num_trials, min = 0, max = 1)
log_accept_prob <- function(theta){</pre>
  -.5*(y - theta)^2
}
probs <- exp(log_accept_prob(theta_proposals))</pre>
accepts <- us < probs
hist(theta_proposals[accepts]) # only the accepted draws
#hist(theta_proposals) # all draws!
```

Accept-Reject

# Importance Sampling

Importance Sampling with Resampling

Sequential Monte

References

**importance sampling** also involves ratios like the previous algorithm. However, instead of using those ratios to either accept or discard samples, it uses the ratios to weight samples.

# Importance Sampling



Original, unedited image is from https://www.springer.com/us/book/9780387402642 "10"

Taylor

Introduction

Accept-Reject

Importance Sampling

Importance Sampling with Resampling

Sequential Monte Carlo

# Setup

- 1.  $p(\theta \mid y)$  the target, posterior
- 2.  $q(\theta \mid y) = p(y \mid \theta)p(\theta)$  the unnormalized target
- 3.  $g(\theta)$  the "instrumental" or "proposal" distribution
- 4.  $g \gg q$  i.e. the proposal dominates your target

We are free to choose our own  $g(\theta)$ . For the time being, we assume that  $\int g(\theta) d\theta = 1$ .

Sampling with Resampling

Sequential Monte Carlo

Deferences

Algorithm: for each iteration s

- 1. draw  $\theta^s \sim g(\theta)$
- 2. calculate unnormalized weight  $\tilde{w}(\theta^s) = \frac{q(\theta^s|y)}{g(\theta^s)}$
- 3. calculate normalized weights  $w(\theta^s) = \tilde{w}(\theta^s) / \sum_r \tilde{w}(\theta^r)$  Final calculation:
  - $E_q[h(\theta) \mid y] \approx \sum_s w(\theta^s)h(\theta^s)$

# Importance Sampling

Motivation:

$$E_{q}[h(\theta) \mid y] = \int h(\theta)p(\theta \mid y)d\theta$$

$$= \frac{\int h(\theta)q(\theta \mid y)d\theta}{\int q(\theta \mid y)d\theta}$$

$$= \frac{\int h(\theta)\frac{q(\theta \mid y)}{g(\theta)}g(\theta)d\theta}{\int \frac{q(\theta \mid y)}{g(\theta)}g(\theta)d\theta}$$

Taylor

Importance Sampling

# Motivation:

$$E_{q}[h(\theta) \mid y] = \int h(\theta)p(\theta \mid y)d\theta$$

$$= \frac{\int h(\theta)q(\theta \mid y)d\theta}{\int q(\theta \mid y)d\theta}$$

$$= \frac{\int h(\theta)\frac{q(\theta \mid y)}{g(\theta)}g(\theta)d\theta}{\int \frac{q(\theta \mid y)}{g(\theta)}g(\theta)d\theta}$$

## Introduction

Accept-Reject

## Importance Sampling

Importance Sampling with Resampling

Sequential Monte Carlo

eferences

# So first:

$$\frac{1}{S} \sum_{s=1}^{S} \frac{q(\theta^{s} \mid y)}{g(\theta^{s})} \to E_{g} \left[ \frac{q(\theta \mid y)}{g(\theta)} \right] = \int \frac{q(\theta \mid y)}{g(\theta)} g(\theta) d\theta = \int q(\theta \mid y) d\theta$$

Importance
Sampling with
Resampling

sequential Mont Carlo

References

1. 
$$E_q[h(\theta) \mid y] = \frac{\int h(\theta)q(\theta|y)d\theta}{\int g(\theta|y)d\theta}$$

2. 
$$\frac{1}{5}\sum_{s=1}^{S} \frac{q(\theta^s|y)}{g(\theta^s)} \to \int q(\theta\mid y) \mathrm{d}\theta$$
 ( for the denominator)

And second:

$$\frac{1}{S} \sum_{s=1}^{S} h(\theta^{s}) \frac{q(\theta^{s} \mid y)}{g(\theta^{s})} \to E_{g} \left[ h(\theta) \frac{q(\theta \mid y)}{g(\theta)} \right] = \int h(\theta) q(\theta \mid y) d\theta$$

which converges to the numerator

# Importance Sampling

Taylor

1. 
$$E_q[h(\theta) \mid y] = \frac{\int h(\theta)q(\theta|y)d\theta}{\int q(\theta|y)d\theta}$$

2. 
$$\frac{1}{S} \sum_{s=1}^{S} \frac{q(\theta^s | y)}{g(\theta^s)} \rightarrow \int q(\theta | y) d\theta$$

3. 
$$\frac{1}{S} \sum_{s=1}^{S} h(\theta^s) \frac{q(\theta^s|y)}{g(\theta^s)} \to \int h(\theta) q(\theta \mid y) d\theta$$

So finally

$$\sum_{i=1}^{S} w(\theta^{s}) h(\theta^{s}) = \frac{\sum_{s=1}^{S} h(\theta^{s}) \frac{q(\theta^{s}|y)}{g(\theta^{s})}}{\sum_{r=1}^{S} \frac{q(\theta^{r}|y)}{g(\theta^{r})}} = \frac{\frac{1}{S} \sum_{s=1}^{S} h(\theta^{s}) \frac{q(\theta^{s}|y)}{g(\theta^{s})}}{\frac{1}{S} \sum_{r=1}^{S} \frac{q(\theta^{r}|y)}{g(\theta^{r})}} \rightarrow E[h(\theta) \mid y]$$

where  $w(\theta^s) = \frac{q(\theta^s|y)}{g(\theta^s)} / \sum_{r=1}^S \frac{q(\theta^r|y)}{g(\theta^r)}$  are the self-normalized weights

Importance Sampling

Assume  $y \sim \text{Normal}(\theta, 1)$ , and  $p(\theta) = \frac{1}{\pi(1+\theta^2)}$ . Approximate  $E_a[\theta \mid y]$  using proposal  $g(\theta) = p(\theta)$ .

Introduction

Accept-Reject

Importance Sampling

> Importance Sampling with Resampling

Sequential Monte

If we sample from  $g(\theta)=p(\theta)=\frac{1}{\pi(1+\theta^2)}$  then the unnormalized weights are

$$\widetilde{w}(\theta^{s}) = \frac{q(\theta^{s} \mid y)}{g(\theta^{s})}$$

$$= p(y \mid \theta^{s})$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(y - \theta^{s})^{2}\right]$$

Introduction

Accept-Reject Sampling

Importance Sampling

> Importance Sampling with Resampling

Sequential Monte Carlo

If we sample from  $g(\theta)=p(\theta)=\frac{1}{\pi(1+\theta^2)}$  then the unnormalized weights are

$$\tilde{w}(\theta^{s}) = \frac{q(\theta^{s} \mid y)}{g(\theta^{s})}$$

$$= p(y \mid \theta^{s})$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(y - \theta^{s})^{2}\right]$$

then normalize these...

Introduction

Accept-Reject Sampling

Importance Sampling

Importance
Sampling with
Resampling

Sequential Monte Carlo



Importance Sampling

Sampling with Resampling

Sequential Monte

```
y <- 2 # fake data
num_samples <- 1000000
theta_draws <- rt(num_samples , 1)
log_unnorm_weight <- function(theta){</pre>
  # can ignore sqrt(2pi) because it will cancel out
  -.5*(y - theta)^2
}
lunws <- log_unnorm_weight(theta_draws)</pre>
norm_weights <- exp(lunws)/sum(exp(lunws))</pre>
sum(norm_weights * theta_draws)
hist(norm_weights)
```

The choice of proposal is very important. In a HW problem, you will derive the following using the delta method:

Importance Sampling

 $\operatorname{Var}_g\left(\sum_{s=1}^S w(\theta^s)h(\theta^s)\right) \approx \frac{1}{S}E_g\left[\underbrace{\left(\frac{\tilde{w}(\theta)}{E_g[\tilde{w}(\theta)]}\right)^2}_{\text{I}}(h(\theta) - E_q[h(\theta)])^{2}\right]^{\text{See mential Monte Cardy}}$ 

Beware of proposals that have tails that are thin relative to the target!

## Importance Sampling





Sampling with Resampling

Sequential Monte Carlo

References

Beware of bad proposal distributions!

A sample estimator of this approximate variance is

$$\sum_{s=1}^{S} w(\theta^{s}) \left( h(\theta^{s}) - \hat{E}[h(\theta)] \right)^{2}$$

where 
$$\hat{E}[h(\theta)] = \sum_s w(\theta^s)h(\theta^s)$$
.

Note the weights aren't the same for each sample, like a "standard" estimation of the sample variance.

```
Taylor
y <- 2 # fake data
log_unnorm_weight <- function(theta){</pre>
  # can ignore sqrt(2pi) because it will cancel out Sampling
  -.5*(y - theta)^2
                                                        Importance
                                                        Sampling
getISEstimator <- function(num_samples){</pre>
  theta_draws <- rt(num_samples, 1)
  lunws <- log_unnorm_weight(theta_draws)</pre>
  norm_weights <- exp(lunws)/sum(exp(lunws))</pre>
  estimator <- sum(norm_weights * theta_draws)</pre>
  list("estimate" = estimator,
       "approx_var" =
       sum( norm_weights*(theta_draws - estimator)^2) ) }
# two ways to calculate standard errors
num_samps_per_estimate <- 10</pre>
sqrt(getISEstimator(num_samps_per_estimate)$approx_var)
sd(replicate(1000,
    getISEstimator(num_samps_per_estimate)$estimate))
```

◆□▶ ◆□▶ ◆三▶ ◆三 ◆○○○

Effective sample size calculations use a second order delta method.

Calculating

$$ESS = \frac{1}{\sum_{i=1}^{S} w_i^2}$$

will tell you, effectively, how many iid samples you have.

Taylor

land and the section

Accept-Reje

## Importance Sampling

Importance Sampling with Resampling

Sequential Monte Carlo

References

Importance Sampling gives you weighted draws  $(\theta^1, w(\theta^1)), (\theta^2, w(\theta^2)), \dots$ 

You can draw from these, with replacement. At the expense of more variance, it will give you unweighted draws from your target distribution:  $\tilde{\theta}^1, \tilde{\theta}^2, \dots$ 

This is known as **factored sampling** or **importance sampling with resampling** or **sampling importance resampling** (SIR).

# Adding Resampling



"10"

Taylor

Introduction

Accept-Rejec

Importance Sampling

Importance Sampling with Resampling

Sequential Monte Carlo

References

Original, unedited image is from https://www.springer.com/us/book/9780387402642

Importance Sampling

Importance Sampling with Resampling

Sequential Monte Carlo

References

Stage 1: do importance sampling to get  $\{\theta^i, w(\theta^i)\}_{i=1}^S$ .

Stage 2: for i = 1, ..., S, select

$$P[\tilde{\theta}^i = \theta^j \mid \theta^1, w(\theta^1), \dots, \theta^S, w(\theta^S)] = \frac{w(\theta^j)}{\sum_k w(\theta^k)}.$$

Sampling with Resampling

Sequential Monte Carlo

References

Another way to write it:

Stage 1: do importance sampling to get  $\{\theta^i, w(\theta^i)\}_{i=1}^S$ .

Stage 2: for i = 1, ..., S, select indexes

$$P[I^{i} = j \mid \theta^{1}, w(\theta^{1}), \dots, \theta^{S}, w(\theta^{S})] = \frac{w(\theta^{j})}{\sum_{k} w(\theta^{k})}$$

and then set

$$\tilde{\theta}^i = \theta^{I^i}.$$

```
y <- 2 # fake data
log_unnorm_weight <- function(theta){</pre>
  # can ignore sqrt(2pi) because it will cancel out
  -.5*(y - theta)^2
                                                        Importance
num_samples <- 10000
                                                        Sampling with
                                                        Resampling
theta_draws <- rt(num_samples , 1)
lunws <- log_unnorm_weight(theta_draws)</pre>
# note: prob arg automatically normalizes
random_indexes <- sample(x = num_samples,
                           size = num_samples,
                           replace = T,
                           prob = exp(lunws))
sort(random_indexes) # see there are repeats!
resampled_draws <- theta_draws[random_indexes]</pre>
hist(resampled_draws) # can't do this unless we resample
```

Importance Sampling

Resampling
Sequential Monte

Carlo

References

Resampling adds variance, so why do it?

It throws away bad samples, and duplicates promising ones.

When you're looking at a sequence of distribution targets, this can have a good effect on future samples.

It throws away bad samples, and duplicates promising ones.

When you're looking at a sequence of distribution targets, this can have a good effect on future samples.

**sequential monte carlo** or **particle filtering** methods are basically doing SIR over and over again.

At "time" t-1 you just resampled, so you have draws  $\tilde{\theta}^1_{t-1}, \tilde{\theta}^2_{t-1}, \ldots, \tilde{\theta}^S_{t-1}$ , and you want to turn them into draws for the next "time" period:

$$\tilde{\theta}_t^1, \tilde{\theta}_t^2, \dots, \tilde{\theta}_t^S$$
.

Taylor

Introduction

Accept-Rejec Sampling

Sampling

Resampling with

Sequential Monte Carlo

# Examples of sequences of distributions

## Data annealing<sup>1</sup>

$$p(\theta), p(\theta \mid y_1), p(\theta \mid y_{1:2}), \ldots, p(\theta \mid y_{1:n}),$$

### Temperature annealing<sup>2</sup>

$$p(y \mid \theta)^{a_0} p(\theta), p(y \mid \theta)^{a_1} p(\theta), \dots p(y \mid \theta)^{a_n} p(\theta)$$

with 
$$0 = a_0 < a_1 < \cdots < a_n = 1$$
.

### filtering and smoothing in state space models

$$p(x_1 \mid y_1, \theta), \ldots, p(x_n \mid y_{1:n}, \theta)$$

10

Taylor

Introduction

Accept-Reject
Sampling

Importan Sampling

mportance sampling with Resampling

Sequential Monte Carlo

<sup>&</sup>lt;sup>1</sup>Chopin, A Sequential Particle Filter Method for Static Models.

<sup>&</sup>lt;sup>2</sup>Neal, "Annealed Importance Sampling" □ ➤ ← □ ➤ ← □ ➤ ← □ ➤ → □ → へへ

# state space models



- .

Taylor

Introduction

Accept-Reject Sampling

Importance Sampling

Resampling
Sequential Monte

Carlo

Taylor

Introduction

Accept-Reject Sampling

Importance Sampling

Resampling

Sequential Monte

Carlo

References

Here's an example of a state space model.  $y_t$  is a univariate time series, and  $x_t$  is a hidden/unobserved/latent time series.

$$y_t = \exp(x_t/2)\epsilon_t \tag{1}$$

$$x_t = c + \phi x_{t-1} + v_t \tag{2}$$

We sometimes refer to (1) as  $g(y_t \mid x_t, \theta)$  or the observation equation, and (2) as the state transition equation or  $f(x_t \mid x_{t-1}, \theta)$ .

# Example: filtering in state space models

 $y_{1:t}$  observed,  $x_{1:t}$  hidden. Goal:  $p(x_t \mid y_{1:t})$  in real-time.



"10"

Taylor

Introduction

Accept-Reject Sampling

Importar Sampling

> mportance Sampling with Resampling

#### Sequential Monte Carlo





Introduction

Accept-Rejection Sampling

Importance Sampling

Importance Sampling with Resampling

#### Sequential Monte Carlo







Importance Sampling

Importance Sampling with Resampling

#### Sequential Monte Carlo





Sampling

Importance Sampling with Resampling

#### Sequential Monte Carlo







Sampling

Importance Sampling with Resampling

#### Sequential Monte Carlo





Sampling

Importance
Sampling with
Resampling

#### Sequential Monte Carlo





Sampling

Importance
Sampling with
Resampling

#### Sequential Monte Carlo







Importance Sampling

Importance Sampling with Resampling

#### Sequential Monte Carlo

Deferences







Importance Sampling

Importance Sampling with Resampling

#### Sequential Monte Carlo





Introduction

Accept-Rejection Sampling

Importance Sampling

Importance Sampling with Resampling

#### Sequential Monte Carlo





Importance Sampling

Importance Sampling with Resampling

#### Sequential Monte Carlo



Drop dependence on  $\theta$  from the notation...

$$p(x_{1:t}|y_{1:t}) = C_t^{-1} p(x_t, y_t \mid x_{t-1}) p(x_{1:t-1} \mid y_{1:t-1})$$

$$= C_t^{-1} \frac{p(x_t, y_t \mid x_{t-1})}{q_t(x_t \mid y_t, x_{t-1})} \times q_t(x_t \mid y_t, x_{t-1}) p(x_{1:t-1} \mid y_{1:t-1})$$

$$= C_t^{-1} \frac{g(y_t|x_t) f(x_t|x_{t-1})}{q_t(x_t|x_{t-1}, y_t)} \times q_t(x_t \mid x_{t-1}, y_t) p(x_{1:t-1} \mid y_{1:t-1})$$

### Repeat through time:

- 1. start with samples from  $p(x_{1:t-1} \mid y_{1:t-1})$
- 2. mutate/propogate/extend using  $q_t(x_t \mid x_{t-1}, y_t)$
- 3. adjust weights by multiplying by  $\frac{g(y_t|x_t)f(x_t|x_{t-1})}{q_t(x_t|x_{t-1},y_t)}$
- 4. resample, giving you particles distributed as  $p(x_{1:t} \mid y_{1:t})$

Taylor

Introduction

Accept-Reject

nportance

Sampling with Resampling

Sequential Monte Carlo

Importance Sampling

Importance
Sampling with
Resampling

Sequential Monte Carlo

References

Chopin, Nicolas. A Sequential Particle Filter Method for Static Models. 2000.

Neal, Radford M. "Annealed Importance Sampling". In: Statistics and Computing 11.2 (Apr. 2001), pp. 125–139.

ISSN: 0960-3174. DOI: 10.1023/A:1008923215028. URL:

https://doi.org/10.1023/A:1008923215028.