Homework 2: Artificial Neural Networks

Lecturer: Georgios P. Karagiannis georgios.karagiannis@durham.ac.uk

Instructions: For Formative assessment, submit the solutions all of the problems

Exercise 1. (*)Consider the multi-class classification problem, with a predictive rule $h_w : \mathbb{R}^d \to \mathcal{P}$, as a classification probability i.e, $h_{w,k}(x) = \Pr(x \text{ belongs to class } k)$, that receives values $x \in \mathbb{R}^d$ returns vales in $\mathcal{P} = \left\{ p \in (0,1)^q : \sum_{j=1}^q p_j = 1 \right\}$. Let $h_w = (h_{w,1}, ..., h_{w,q})^\top$, let $h_w(x)$ be modeled as an ANN

$$h_k(x) = \sigma_2 \left(\sum_{j=1}^c w_{2,k,j} \sigma_1 \left(\sum_{i=1}^d w_{1,j,i} x_i \right) \right)$$

for k = 1, ..., q, and let the associated activation functions be

$$\sigma_2(a_k) = \frac{\exp(a_k)}{\sum_{k'=1}^q \exp(a_{k'})}, \text{ for } k = 1, ..., q$$

(called softmax function) and $\sigma_1(a) = \arctan(a)$. Consider a loss

$$\ell(w, z = (x, y)) = -\sum_{k=1}^{q} y_k \log(h_{w,k}(x))$$

at w and example z=(x,y), where $x \in \mathbb{R}^d$ is the input vector (features), and $y=(y_1,...,y_q)$ is the output vector (labels) with $y \in \{0,1\}^q$ and $\sum_{k=1}^q y_k = 1$. Consider that d, c, and q are known integers.

Hint You may use

$$\frac{\mathrm{d}}{\mathrm{d}x}\arctan\left(x\right) = \frac{1}{1+x^2}$$

- 1. Perform the forward pass of the back-propagation procedure to compute the activations which may be denoted as $\{a_{t,i}\}$ and outputs which may be denoted as $\{o_{t,i}\}$ at each layer t.
- 2. Show that

$$\frac{\partial}{\partial a_k} \sigma_2(a_j) = \sigma_2(a_j) \left(1 \left(j = k \right) - \sigma_2(a_k) \right)$$

for
$$k = 1, ..., q$$
. Let $1 (j = k) = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$.

3. Perform the backward pass of the back-propagation procedure in order to compute the elements of the gradient $\nabla_w \ell(w,(x,y))$.