Memory System Characteristics

Computer Organization and architecture By William Stallings

Memory Capacity

Number of bytes that can be stored

Term	Normal Usage	Usage as Power of 2
K (Kilo)	10^{3}	$2^{10} = 1,024$
M (Mega)	10 ⁶	$2^{20} = 1,048,576$
G (Giga)	10 ⁹	$2^{30} = 1,073,741,824$
T (Tera)	10^{12}	$2^{40} = 1,099,511,627,776$

Memory System Characteristics

1. Location

- CPU
- Internal (main)
- External (secondary)

2. Capacity

- Word size
- Number of words

3. Unit of transfer

- Word
- Block

4. Access methods

- Sequential access
- Direct access
- Random access
- Associative access

5. Performance

- Access time
- Cycle time
- Transfer rate

Key Characteristics contd.,

6. Physical Type

- Semiconductor
- Magnetic surface
- Optical

7. Physical Characteristics

- Volatile / Non-Volatile
- Erasable / Non-erasable

8. Organization

1. Location

- Three locations of memories
 - CPU
 - Registers used by CPU as its local memory
 - Internal memory
 - Main memory
 - Cache memory
 - External memory
 - Peripheral devices disk, tape accessible to CPU via
 I/O controllers

2. Capacity

- Internal memory capacity is expressed in terms of bytes or words.
- External memory capacity is expressed in terms of bytes (depends on words in memory)
- Total memory = number of words \times word length
- Number of words = $2^{address bus width}$
- Word length = Data bus width

3. Unit of transfer

- Internal memory
 - number of data lines into and out of the main memory module
- External memory
 - blocks
 - longer units than a word

4. Access Methods

- Four types
 - Sequential Access
 - Shared read/write head is used, and this must be moved its current location to the desired location, passing and rejecting each intermediate record.
 - Access time is variable
 - Accesses the memory in predetermined sequence
 - Slower than random access memory
 - Ex: Magnetic Tapes Prof.S.Meenatchi, SITE, VIT

4. Access Methods contd.,

From Computer Desktop Encyclopedia © 1998 The Computer Language Co. Inc.

Direct access

- Also referred as semi random access memory
- Shared read/write head is involved.
- Access time is variable
- The track is accessed randomly but access within each track is serial
- Ex: Magnetic Disk

Prof.S.Meenatchi,

4. Access methods contd.,

Random Access

- Each addressable location in memory has unique, physically wired – in addressing mechanism
- Time to access a location is independent of the sequences of prior access and is constant.
- Main memory systems are a random access.
- Storage locations can be accessed in any order.
- Semi conductor memories

4. Access Methods contd.,

Associate Access

- Word is retrieved based on portion of its contents rather than its address
- Has own addressing mechanism.
- Retrieval time is constant.
- Access time is independent of location or prior access patterns.
- Cache memories.

5. Performance

Access time

- Time required to read/write the data from/into desired record.
- Depends on the amount of data to be read/write.
- Random access memory
 - Time from the instant that an address is presented to the memory to the instant that data have been stored or made available for use.
- Non-random access memory
 - Time it takes to position read-write head at the desired track (seek time) + transfer time + to position read-write head at the desired sector (rotational latency)

Memory Cycle time

- Access time + time required before a second access can commence
- Access + latency

5. Performance cont..,

- Transfer rate
 - Rate at which the data can be transferred into or out of a memory unit
 - Random access memory
 - 1/cycle time
 - Non-Random access memory
 - $T_n = T_a + (N/R)$, where
 - $-T_n$ average time to read or write N bits
 - T_a average access time
 - N Number of bits
 - R Transfer rate, in bits per second (BPS)

6. Physical characteristics

- Volatile memory
 - Information decays naturally or lost when electrical power is switched off
- Non-volatile memory
 - Once recorded is retained until deliberately changed
 - No electrical power is needed to retain information
 - Magnetic surface memories
- Semiconductor memories may be either volatile or nonvolatile
- Non-erasable memory
 - Cannot be altered, except by destroying the storage unit (ROM)
 - A practical non-erasable memory must also be non-volatile

Characteris tics	CPU (Registers)	Main Memory (RAM)	Storage device (Hard disk)
Physical type	Semiconductor (Fixed)	Semiconductor (expandable)	Magnetic (expandable)
Capacity	< 2KB	256 MB to 8 GB+	40 GB to 500 GB+
Speed (access time)	< 1 ns	2 ns	5 – 10 ms
Volatility	Contents lost	Contents lost	Contents not lost

7. Organization

- Physical arrangement of bits to form words
- 2 types
 - 1 dimensional
 - 2 dimensional

8. Byte Storage Methods

• Big-Endian

- Assigns MSB to least address and LSB to highest address.
- Sun SPARC
- IBM 360 / 370
- Motorola 68000
- Motorola 88000

• Little Endian

- Assigns MSB to highest address and LSB to least address
- Intel x 86 family
- Digital equipment corporation architectures (PDP 11, VAX, Alpha)