# Conceitos Básicos

FRANCISCO PAULO DE FREITAS NETO

F.FREITAS@IFPB.EDU.BR

# Sistemas de Informação Geográfica

São sistemas que realizam o tratamento computacional de dados geográficos

Diferem dos sistemas convencionais pelo fato de permitirem manipular além de atributos descritivos, as **geometrias**.

### A partir de um SIG é possível:

- Integrar em uma base de dados diversos tipos de informações espaciais
- Oferecer mecanismos para manipular dados geográficos

# Sistemas de Informação Geográfica

A arquitetura básica de um SIG é semelhante à figura abaixo:



# Bancos de Dados Geográfico

Também chamados de Bancos de Dados Espaciais.

Permite o armazenamento de informações geométricas nas tabelas, possibilitando a realização de análises e consultas espaciais.

A maioria dos SGBDs, como PostgreSQL, MySQL e Oracle possuem extensões para trabalhar com dados geográficos.

## Conceitos Básicos

### Informação geográfica:

- Apresentam duas características para representar uma entidade do mundo real:
  - Localização geográfica: coordenadas em um espaço
  - Atributos descritivos: informações que descrevem essa entidade.



## Conceitos Básicos

### Informação Geográfica

 Um banco de dados geográfico manipula os dados descritivos associados a uma localização geográfica através da Análise Espacial das coordenadas e do Relacionamento Espacial entre elas.



A US National Digital Cartografic Standart padronizou os principais termos utilizados na área:

- Elementos modelados em um BD geográfico têm duas identidades: **Entidade** (Realidade) e **Objeto** (banco)
- Entidade: Qualquer fenômeno, geográfico da natureza, ou resultante da ação do homem, que é interessante para o domínio de uma aplicação.
- Objeto: Representação digital da entidade, ou parte dela. Varia de acordo com a escala utilizada.

Cada tipo de entidade em um BD Geográfico é representado de acordo com um tipo de objeto espacial apropriado.

Esses objetos são classificados pelas suas dimensões espaciais:

| Dimensão | Tipo   | Descrição                                                                      |
|----------|--------|--------------------------------------------------------------------------------|
| OD       | Ponto  | Objeto com posição no espaço, mas sem comprimento                              |
| 1D       | Linha  | Objeto com comprimento, composto por um ou mais pontos                         |
| 2D       | Área   | Objeto com comprimento e largura, limitado por pelo menos 3 objetos 1D         |
| 3D       | Volume | Objeto com comprimento, largura e altura, limitado por pelo menos 4 objetos 2D |

#### **Ponto**

- São objetos de dimensão zero, representados por um par de coordenadas x,y
- Pode ser utilizado para representar entidades cuja forma não seja significativa.
- Pode variar segundo a escala utilizada.



### Linha

- · Objetos de dimensão um, que possuem distribuição espacial linear.
- Possui comprimento.



### Polígono

- Entidade com características bidimensionais
- Utilizado para representar entidades cuja área é relevante
- Possui área



# Representação - OGC

Nos bancos de dados, as entidades possuem uma forma própria de representação criada pelo OGC (Open Spatial Consortium).

- Foi criado em 1994
- Missão: "conduzir o desenvolvimento global, a disseminação e a compatibilização de padrões abertos e arquiteturas que viabilizem a integração de dados geográficos e serviços com as mais diversas aplicações e incentivem a geração de negócios na área de geotecnologias"
- Conhecido antigamente como OpenGIS



# Representação OGC



# Representação - OGC

| Geometria             | SQL                                                                          | Descrição                                         |
|-----------------------|------------------------------------------------------------------------------|---------------------------------------------------|
| Ponto                 | POINT (10 10)                                                                | Um ponto                                          |
| Linha                 | LINESTRING(10 10, 20 20)                                                     | Uma linha com dois pontos                         |
| Polígono              | POLYGON((10 10, 20 30, 30 10, 10 10))                                        | Um polígono com três pontos                       |
| Múltiplos pontos      | MULTIPOINT(10 10, 20 20)                                                     | Um multipoint com dois pontos                     |
| Múltiplas linhas      | MULTILINESTRING((10 10, 20 20), (20 20, 30 30))                              | Um multilinestring com duas linhas                |
| Múltiplos polígonos   | MULTIPOLYGON(((10 10, 20 30, 30 10, 10 10)), ((60 60, 70 70, 80 60, 60 60))) | Um multipolygon com dois polígonos                |
| Coleção de geometrias | GEOMETRYCOLLECTION(POINT(10 10),<br>LINESTRING(15 15, 20 20))                | Uma coleção de geometria com um ponto e uma linha |

# Relacionamentos Espaciais

As entidades do mundo real são caracterizadas pelos seus atributos espaciais, não espaciais e no relacionamento entre outras entidades

Existem diversos relacionamentos possíveis, dentre eles:

| Tipo         | Descrição   | Exemplo                                                     |
|--------------|-------------|-------------------------------------------------------------|
| Entre pontos | Vizinhança  | Quais as cidades distantes até 50 km de Cajazeiras?         |
| Entre linhas | Cruza       | Quais ruas cruzam a avenida<br>Julio Marques do Nascimento? |
| Entre áreas  | É adjacente | Quais bairros são adjacentes ao Jardim Oásis?               |

# Persistência e Manipulação

### Existem basicamente duas soluções:

- Arquivo: Além das operações de Entrada e Saída, todas as rotinas de manipulação dos dados terão que ser implementadas na aplicação
- Banco de Dados: Além de abstrair as operações de Entrada e Saída, todas as rotinas já estão implementadas. Outra vantagem é que o processamento passa a ser realizado no banco, desafogando a aplicação.

## Persistência em arquivos

A Environment Systems Research Institute (**ESRI**) comercializa um conjunto de sistemas para processamento de informações geográficas chamado ArcGIS;

O ArcGIS possui um formato proprietário chamado **Shapefile**.



# Persistência em arquivos

O shapefile é um arquivo vetorial que pode ser utilizado em diversas aplicações.

### É composto basicamente por:

- Arquivo .shp: Dados vetoriais
- Arquivo .bdf: Informações sobre os vetores contidos no shapefile
- Arquivo .shx: Determina o vínculo entre o .shp e o .bdf

# Persistência em arquivos

### E onde podemos encontrar shapefiles?

- O site do IBGE possui diversos arquivos
- ftp://geoftp.ibge.gov.br/malhas digitais/

### Índice de /malhas\_digitais/

| Nome                  | Tamanho | Data da modificação |  |
|-----------------------|---------|---------------------|--|
| [diretório pai]       |         | •                   |  |
| censo_2000/           |         | 05/01/12 21:00:00   |  |
| censo_2007/           |         | 19/03/14 21:00:00   |  |
| censo_2010/           |         | 01/09/15 10:23:00   |  |
| municipio_2000/       |         | 10/08/15 14:20:00   |  |
| municipio_2001/       |         | 06/01/12 21:00:00   |  |
| municipio_2005/       |         | 05/01/12 21:00:00   |  |
| municipio_2007/       |         | 05/01/12 21:00:00   |  |
| municipio_2010/       |         | 28/07/15 10:16:00   |  |
| municipio_2013/       |         | 11/08/15 17:56:00   |  |
| municipios_1872_1991/ |         | 27/11/13 21:00:00   |  |

## Persistência em BD

Existem soluções livres e proprietárias

Um SGBD geográfico permite a recuperação de informações segundo critérios de natureza espacial e não espacial.

Para realizar as consultas são necessários tipos especiais de dados e um conjunto de operadores espaciais.

Os objetos elementares são: ponto, linha e superfície. Outros TAD podem ser definidos pelo usuário.

# Consultas Espaciais

As operações podem ser realizadas tanto com primitivos, quanto com derivados.

As consultas podem ser:

- Unárias
- Binárias

As consultas unárias podem ser:

| Resultado | Descrição                   | Exemplo                                       |  |  |
|-----------|-----------------------------|-----------------------------------------------|--|--|
| Booleano  | Verificar uma propriedade   | Testar se uma geometria é fechada             |  |  |
| Escalar   | Determinação de comprimento | Determinar a área de uma geometria            |  |  |
| Espacial  | Transformação do objeto     | Mínimo retângulo envolvente, Centroid, Buffer |  |  |

# Consultas Espaciais

As consultas binárias podem ser:

| Resultado | Descrição                  | Exemplo                                                                                       |
|-----------|----------------------------|-----------------------------------------------------------------------------------------------|
| Booleano  | Predicados espaciais       | Topológicos (contém, disjunto, intercepta, adjacente) direcionais (acima, abaixo, à esquerda) |
| Escalar   | Distância entre objetos    | Distância entre dois polígonos                                                                |
| Espacial  | Gerar novo objeto espacial | Interseção, União, Diferença                                                                  |

# Consultas Espaciais

A maioria dos bancos geográficos utiliza um modelo formal chamado: "The dimensionally extended 9 intersection model"

Esse formalismo é uma definição matemática dos relacionamentos especiais binários, através de uma matriz de interseção.

# The dimensionally extended 9 intersection model

| Tipo         | Matriz de Interseção |       |      |      | Representação<br>Visual |
|--------------|----------------------|-------|------|------|-------------------------|
|              |                      | I (A) | F(A) | E(A) |                         |
| A disjoint B | I(B)                 | F     | F    | V    |                         |
| B disjoint A | F(B)                 | F     | F    | V    |                         |
|              | E(B)                 | V     | V    | V    |                         |
|              |                      | I (A) | F(A) | E(A) |                         |
| B contains A | I(B)                 | V     | V    | V    |                         |
| A inside B   | F(B)                 | F     | F    | V    |                         |
|              | E(B)                 | F     | F    | V    |                         |
|              |                      | I (A) | F(A) | E(A) |                         |
| A contains B | I(B)                 | V     | F    | F    |                         |
| B inside A   | F(B)                 | V     | F    | F    |                         |
|              | E(B)                 | V     | V    | V    |                         |

# The dimensionally extended 9 intersection model

| Tipo                        | Matriz de Interseção |       |      |      | Representação<br>Visual |
|-----------------------------|----------------------|-------|------|------|-------------------------|
|                             |                      | I (A) | F(A) | E(A) |                         |
| A equals B                  | I(B)                 | V     | F    | F    |                         |
| B equals A                  | F(B)                 | F     | V    | F    |                         |
|                             | E(B)                 | F     | F    | V    |                         |
|                             |                      | I (A) | F(A) | E(A) |                         |
| A meets B                   | I(B)                 | F     | F    | V    |                         |
| B meets A                   | F(B)                 | F     | V    | V    |                         |
|                             | E(B)                 | V     | V    | V    |                         |
|                             |                      | I (A) | F(A) | E(A) |                         |
| B coveredBy A<br>A covers B | I(B)                 | ٧     | F    | F    |                         |
|                             | F(B)                 | V     | V    | F    |                         |
|                             | E(B)                 | V     | V    | V    |                         |

# The dimensionally extended 9 intersection model

| Tipo                                    | Matriz de Interseção |       |      |      | Representação<br>Visual |
|-----------------------------------------|----------------------|-------|------|------|-------------------------|
|                                         | _                    | I (A) | F(A) | E(A) |                         |
| B covers A                              | I(B)                 | V     | V    | V    |                         |
| A coveredBy B                           | F(B)                 | F     | V    | V    |                         |
| 220010000000000000000000000000000000000 | E(B)                 | F     | F    | V    |                         |
|                                         |                      | I (A) | F(A) | E(A) |                         |
| A overlaps B<br>B overlaps A            | I(B)                 | V     | V    | V    |                         |
|                                         | F(B)                 | V     | ٧    | V    |                         |
|                                         | E(B)                 | V     | V    | V    |                         |