Отчёт по лабораторной работе №7

Дисциплна: Научное программирование

Живцова Анна, 1132249547

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Параметрические функции 4.2 Функции, заданные в полярных координатах 4.3 Неявно заданные функции 4.4 Комплексные числа в виде векторов 4.5 Специальные функции	8 8 9 10 10
5	Выводы	12
6	Список литературы	13

Список иллюстраций

4.1	Циклоида	8
4.2	Улитка Паскаля в декартовых координатах	9
4.3	Улитка Паскаля в полярных координатах	9
4.4	Неявно заданная функция	9
4.5	Окружность	10
4.6	Изображение комплексных чисел на плоскости	10
4.7	Гамма функция и функция факториала	11
4.8	Гамма функция кусочно построенная	11

Список таблиц

1 Цель работы

Изучить способы использования Octave для построения графиков - Параметрических функций

- Функций, заданных в полярных координатах
- Неявно заданных функций
- Комплексных чисел в виде векторов
- Специальных функций

2 Задание

Используя Octave построить графики

- Параметрических функций
- Функций, заданных в полярных координатах
- Неявно заданных функций
- Комплексных чисел в виде векторов
- Специальных функций

3 Теоретическое введение

Octave предоставляет возможность для отрисовки широкого класса функций [1]. В данной работе мы рассмотрим - Функцию циклоиды, заданную параметрическим уравнением

$$\begin{cases} x(t) = r(t - \sin(t)) \\ y(t) = r(1 - \cos(t)) \end{cases}$$

- Функцию улитки Паскаля, заданную в полярных координатах уравеннием

$$r = 1 - 2\sin(\phi)$$

- Функцию окружности, заданную неявно уравнением

$$(x-2)^2 + y^2 = 25$$

- Комплексных чисел в виде векторов в комплексной плоскости
- Гамма функцию, определяемую уравнением

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt.$$

4 Выполнение лабораторной работы

4.1 Параметрические функции

Изобразим график двух витков циклоиды радиуса 2 с помощью Octave (см рис. 4.1).

Рис. 4.1: Циклоида

4.2 Функции, заданные в полярных координатах

Изобразим улитку Паскаля в помощью Octave с помощью преобразования к декартовым координатам (см рис. 4.2) и с помощью использования встроенной функции polar вместо plot.

```
>> theta = linspace(0, 2*pi, 100);

>> r = 1 - 2*sin(theta);

>> x = r.*cos(theta);

>> y = r.*sin(theta);

>> plot(x,y);

>> | -2 -1 0 1 2
```

Рис. 4.2: Улитка Паскаля в декартовых координатах

```
> theta = linspace(0, 2*pi, 100)
> r = 1 - 2*sin(theta);
> x = r.*cos(theta);
> y = r.*sin(theta);
> plot(x,y);
> polar(theta, r)
120-90.3
150
150
150
180
0
210
330
240
270 300
```

Рис. 4.3: Улитка Паскаля в полярных координатах

4.3 Неявно заданные функции

Используя встроенную функцию ezplot, изобразим график неявной функции, которую определим как анонимную с помощью следующего кода

```
>> f=@(x,y)(-x.^2-x.*y+x+y.^2-y-1);
>> ezplot(f).
```


Рис. 4.4: Неявно заданная функция

Далее с помощью этой функции изобразим окружность (см рис. 4.5) и добавим на график касательные.

Рис. 4.5: Окружность

4.4 Комплексные числа в виде векторов

Изобразим с помощью Octave вектора, соответствующие двум комплексным числам, и вектор, соответствующий их сумме (см рис. 4.6).

Рис. 4.6: Изображение комплексных чисел на плоскости

4.5 Специальные функции

Изобразим Гамма функцию и функцию факториала с помощью Octave (см рис. 4.7). А также построим Гамма функцию по отдельности на разных отрезках для получения детального вида (см рис. 4.8).

Рис. 4.7: Гамма функция и функция факториала

```
>> x1=linspace(-5,-4,500);
                                   25
>> x2=linspace(-4,-3,500);
                                    20
>> x3=linspace(-3,-2,500);
                                                                 gamma(n+1)
>> x4=linspace(-2,-1,500);
                                    15
>> x5=linspace(-1,5,500);
                                    10
>> plot(x1, gamma(x1+1))
>> hold on;
                                    5
>> plot(x2, gamma(x2+1))
>> plot(x3, gamma(x3+1))
                                     0
>> plot(x4, gamma(x4+1))
                                    -5
>> plot(x5, gamma(x5+1))
>> axis([-5 6 -10 25]);
                                   -10
>> legend('n!', 'gamma(n+1)')
                                        -4
                                               -2
                                                      0
                                                             2
                                                                    4
```

Рис. 4.8: Гамма функция кусочно построенная

5 Выводы

В данной работе я научилась эффективно использовать Octave для построения графиков параметрических функций, функций, заданных в полярных координатах, неявно заданных функций, специальных функций и комплексных чисел в виде векторов.

6 Список литературы

1. GNU Octave documentation. The Octave Project Developers, 2024.