Description of Numerical Approach

The governing equations for the strain probability density functions $p_1(s,t)$, $p_2(s,t)$, and $p_3(s,t)$ are

$$\frac{\partial p_{1}}{\partial t} + \frac{dL}{dt} \frac{\partial p_{1}}{\partial s} = k_{a} \delta(s) U_{NR} P - \tilde{k}_{d} \ p_{1} - \tilde{k}_{1} \ e^{-\alpha_{1} s} \ p_{1} + k_{-1} \ e^{+\alpha_{1} s} \ p_{2}
\frac{\partial p_{2}}{\partial t} + \frac{dL}{dt} \frac{\partial p_{2}}{\partial s} = \tilde{k}_{1} \ e^{-\alpha_{1} s} \ p_{1} - k_{-1} \ e^{+\alpha_{1} s} \ p_{2} - k_{2} \ e^{-\alpha_{2} s} \ p_{2} + \tilde{k}_{-2} \ p_{3}
\frac{\partial p_{3}}{\partial t} + \frac{dL}{dt} \frac{\partial p_{3}}{\partial s} = k_{2} \ e^{-\alpha_{2} s} \ p_{2} - \tilde{k}_{-2} \ p_{3} - \tilde{k}_{3} \ e^{\alpha_{3} (s+s_{3})^{2}} p_{3}.$$
(1)

These equations are simulated by discretizing the probability density variables on a grid

$$p_1(s,t)\approx P_1(n,t)$$

$$p_2(s,t) \approx P_2(n,t)$$

$$p_3(s,t) \approx P_3(n,t)$$

where $n \in (0, N)$ represents the index on the spatial grid and $P_1(n, t)$, $P_2(n, t)$, and $P_3(n, t)$ are discretized approximations of $p_1(s, t)$, $p_2(s, t)$, and $p_3(s, t)$. Since the velocities simulated in this study are always negative (associated with muscle shortening), the strain variable s is discretized over a range of negative values:

$$s = -nh$$
, $n = 0, 1, ..., N$

where h is the space step. Equation (1) is numerically integrated over a finite times step Δt by splitting the space and time operators into separate steps.

Specifically, the two operators are, an advection operator:

$$\frac{\partial P_1}{\partial t} + \frac{dL}{dt} \frac{\partial P_1}{\partial s} = 0$$

$$\frac{\partial P_2}{\partial t} + \frac{dL}{dt} \frac{\partial P_2}{\partial s} = 0$$

$$\frac{\partial P_3}{\partial t} + \frac{dL}{dt} \frac{\partial P_3}{\partial s} = 0$$
(2)

and an ordinary-differential equation operator:

$$\frac{dP_{1}(n,t)}{dt} = k_{a}\delta(s)U_{NR}P - \tilde{k}_{d}P_{1} - \tilde{k}_{1}e^{+\alpha_{1}nh}P_{1} + k_{-1}e^{-\alpha_{1}nh}P_{2}$$

$$\frac{dP_{2}(n,t)}{dt} = \tilde{k}_{1}e^{+\alpha_{1}nh}P_{1} - k_{-1}e^{-\alpha_{1}nh}P_{2} - k_{2}e^{+\alpha_{2}nh}P_{2} + \tilde{k}_{-2}P_{3}$$

$$\frac{dP_{3}(n,t)}{dt} = k_{2}e^{+\alpha_{2}nh}P_{2} - \tilde{k}_{-2}P_{3} - \tilde{k}_{3}e^{\alpha_{3}(-nh+s_{3})^{2}}P_{3}.$$
(3)

For a finite time step Δt , intermediate estimates of strain densities are first calculated by integrating Equation (2) using an upwind differencing approach, with the time step

$$P_1^*(n,t) = P_1(n+1,t)$$

$$P_2^*(n,t) = P_2(n+1,t)$$

$$P_3^*(n,t) = P_3(n+1,t)$$

where the time step is set to match the space step based on the constant velocity: $\Delta t = -h/(dL/dt)$. Next the ordinary differential equations of Equation (3) are integrated using a differential equation integrator package over the time interval $(0, \Delta t)$ with initial condition $P_1^*(n, t), P_2^*(n, t), P_3^*(n, t)$ to yield $P_1(n, t + \Delta t), P_2(n, t + \Delta t), P_3(n, t + \Delta t)$.