15-410 "...Everything old is new again..."

Scheduling Feb. 25, 2011

Dave Eckhardt

Garth Gibson

Roger Dannenberg

Outline

Chapter 5: Scheduling

- Scheduling-people/textbook terminology note
 - "Waiting time" means "time spent runnable but stuck in a scheduler queue"
 - Not "time waiting for the actual event to awaken you"
 - "Task" means "something a scheduler schedules" (we say "thread" or sometimes "runnable")

CPU-I/O Cycle

Process view: 2 states

- Running
- Blocked on I/O

Life Cycle:

I/O (loading executable), CPU, I/O, CPU, .., CPU (exit())

System view

- Running
- Blocked on I/O
- Runnable (i.e. Waiting) not enough processors right now

Running ⇒ blocked mostly depends on program

How long do processes run before blocking?

CPU Burst Lengths

Overall

Exponential fall-off in CPU burst length

CPU Burst Lengths

"CPU-bound" program

- Batch job
- Long CPU bursts

CPU Burst Lengths

"I/O-bound" program

- Copy, Data acquisition, ...
- Tiny CPU bursts between system calls

Preemptive?

Four opportunities to schedule

- A running process blocks (I/O, page fault, wait(), ...)
- A running process exits
- A blocked process becomes runnable (I/O done)
- Other interrupt (clock)

Multitasking types

- Fully Preemptive: All four cause scheduling
- "Cooperative": only first two

Preemptive *kernel*?

Preemptive multitasking

All four cases cause context switch

Preemptive kernel

- All four cases cause context switch in kernel mode
- This is a goal of Project 3
 - System calls: interrupt disabling only when really necessary
 - Clock interrupts should suspend system call execution
 - So fork() should appear atomic, but not execute that way

CPU Scheduler

Invoked when CPU becomes idle and/or time passes

- Current task blocks
- Clock interrupt

Select next task

- Quickly
- PCB's in: FIFO, priority queue, tree, ...

Switch (using "dispatcher")

Your term may vary

Dispatcher

Set down running task

- Save register state
- Update CPU usage information
- Store PCB in "run queue"

Pick up designated task

- Activate new task's memory
 - Protection, mapping
- Restore register state
- "Return" to whatever the task was previously doing

Consider...

Who goes first? Last?

Consider...

Who goes first? Last? Now who goes first? Last?

15-410, S'11

Consider...

Who goes first? Last?
Now who goes first? Last?
Does this change things?

13 15-410, S'11

Scheduling Criteria

System administrator view

- Maximize/trade off
 - CPU utilization ("busy-ness")
 - Was important when buying computers was expensive
 - Now heat and power often cost more than silicon
 - Throughput ("jobs per second")

Process view

- Minimize
 - Turnaround time (everything, fork() to exit())
 - Waiting time (runnable but not running)

User view (interactive processes)

- Minimize response time (input/output latency)
- Predictable response time ("Why is it slow today??")

Algorithms

Don't try these at home

- FCFS
- SJF
- Priority

Reasonable

- Round-Robin
- Multi-level (plus feedback)

Multiprocessor

- Load balancing
- Processor affinity

Real-time

FCFS- First Come, First Served

Basic idea

- Run task until it relinquishes CPU
- When runnable, place at end of FIFO queue

Waiting time very dependent on mix

Some processes run briefly, some much longer

"Convoy effect"

- N tasks each make 1 I/O request, stall (e.g., file copy)
- 1 task executes very long CPU burst
 - All I/O tasks become runnable during this time
- Lather, rinse, repeat
 - Result: N "I/O-bound tasks" can't keep I/O devices busy!

SJF- Shortest Job First

Basic idea

- Choose task with shortest next CPU burst
- Will give up CPU soonest, be "nicest" to other tasks
- Provably "optimal"
 - Minimizes average waiting time across tasks
- Practically impossible (oh, well)
 - Could predict next burst length...
 - Text suggests averaging recent burst lengths
 - Does not present evaluation (Why not? Hmm...)
 - Sometimes applications can state their remaining work

Priority

Basic idea

- Choose "most important" waiting task
 - (Nomenclature: does "high priority" mean p=0 or p=255?)

Priority assignment

- Static: fixed property (engineered?)
- Dynamic: function of task behaviour

Big problem: Starvation

- "Most important" task gets to run often
- "Least important" task may never run
- Common hack: priority "ageing"

Round-Robin

Basic idea

- Run each task for a fixed "time quantum"
- When quantum expires, append to FIFO queue

"Fair"

But not "provably optimal"

Choosing quantum length

- Infinite (until process does I/O) = FCFS
- Infinitesimal (1 instruction) = "Processor sharing"
 - A technical term used by theory folks
- Balance "fairness" vs. context-switch costs

True "Processor Sharing"

CDC Peripheral Processors Memory latency

- Long, fixed constant
- Every instruction has a memory operand

Solution: round robin

Quantum = 1 instruction

Memory

Processor Core

Register Set

Register Set

Register Set

Register Set

Register Set

True "Processor Sharing"

CDC Peripheral Processors Memory latency

- Long, fixed constant
- Every instruction has a memory operand

Solution: round robin

- Quantum = 1 instruction
- One "process" running
- N-1 "processes" waiting on memory

Memory

Processor Core

Register Set

Register Set

Register Set

Register Set

Register Se

True "Processor Sharing"

Each instruction

- "Brief" computation
- One load or one store
 - Sleeps process N cycles

Steady state

- Run when you're ready
- Ready when it's your turn

Memory

Processor Core

Register Set

Kegister Set

Register Set

Register Se

Everything Old Is New Again

Intel "hyperthreading"

- N register sets
- M functional units
- Switch on long-running operations
- Sharing less regular
- Sharing illusion more lumpy
 - Good for some application mixes
 - Awful for others
 - "Hyperthreading Hurts Server Performance, Say Developers"
 - ZDNet UK, 2005-11-18

Memory

Processor Core

Register Set

Register Set

Register Set

Register Set

Multi-level Queue

N independent process queues

- One per priority
- Algorithm per-queue

Multi-level Queue

Inter-queue scheduling?

- Strict priority
 - Pri 0 runs before Pri 1, Pri 1 runs before batch every time
- Time slicing (e.g., weighted round-robin)
 - Pri 0 gets 2 slices
 - Pri 1 gets 1 slice
 - Batch gets 1 slice

Multi-level Feedback Queue

N queues, different quanta

Block/sleep before quantum expires?

Added to end of your queue ("good runnable")

Exhaust your quantum?

- Demoted to slower queue ("bad runnable!")
 - Lower priority, typically longer quantum

Can you be promoted back up?

- Maybe I/O promotes you
- Maybe you "age" upward

Popular "time-sharing" scheduler

Multiprocessor Scheduling

Common assumptions

- Homogeneous processors (same speed)
- Uniform memory access (UMA)

Goal: Load sharing / Load balancing

"Easy": single global ready queue – no false idleness

But: "Processor Affinity"

- Some processor may be more desirable or necessary
 - Special I/O device
 - Fast thread switch
 - Resuming onto most-recent CPU may find some stuff still cached
 - 1/Nth of memory may be faster "NUMA"

Multiprocessor Scheduling

Asymmetric multiprocessing

- Also known as "master/slave"
- One processor is "special"
 - Executes all kernel-mode instructions
 - Schedules other processors
- "Special" aka "bottleneck"
- Obsolete

Symmetric multiprocessing - "SMP"

- All CPUs execute kernel code
- Tricky to avoid contending on locks
- Typically each CPU has a local scheduler, periodically shares work with others
 - Decreases contention; processor affinity "for free"

Scheduler Evaluation Approaches

"Deterministic modeling"

aka "hand execution"

Queueing theory

- Often gives fast and useful approximations
- Math gets big fast
- Math sensitive to assumptions
 - May be unrealistic (aka "wrong")

Simulation

- Workload model or trace-driven
- GIGO hazard (either way)

Real-Time Scheduling

What's a computation worth?

"Real Time": No (extra) value if early (or in some cases, curve just falls off fast)

"Hard Real-Time" = ?

Multiple definitions are used

- "Very fast response time" 10µs?
- "No value" if results are late
- "Very costly" if late
- "Never" late

Hard Real-Time Scheduling

Designers must describe task requirements

Worst-case execution time of instruction sequences

"Prove" system response time

Argument or automatic verifier

Cannot use indeterminate-time technologies

Disks... Networks...

Solutions often involve

- Simplified designs
- Over-engineered systems
- Dedicated hardware
- Specialized OS

Soft Real-Time Scheduling

Computation still has value after deadline

- Think "User Interface"
- Many control systems
 - (if the fly-by-wire system doesn't move the elevator within 50ms, probably still good to to it within 100ms)

Performance is not critical (no one will die)

- YouTube video
- Skype
 - Note that late packets cause audio drop-out.
- CD-R writing software
 - Resulting CD can be corrupted

Soft Real-Time Scheduling

Now commonly supported in generic OS

POSIX real-time extensions for Unix

Priority-based Scheduler

Preemptible kernel implementation

Summary

Round-robin is ok for simple cases

- Certainly 80% of the conceptual weight
- Certainly good enough for P3
 - Speaking of P3...
 - Understand preemption, don't evade it

"Real" systems

- Some multi-level feedback
- Probably some soft real-time

Real-Time Systems Concepts

- Terminology: soft, hard, deadline
- Key issue: "priority inversion"