Bài 6: Biểu diễn tín hiệu và hệ thống rời rạc trong miền tần số

Nguyễn Hồng Thịnh Lâm Sinh Công

Nội dung

Nội dung

- Khai triển chuỗi Fourier (DTFS) cho tín hiệu tuần hoàn.
- Biến đổi Fourier (DTFT) cho tín hiệu không tuần hoàn.
- Biểu diễn tần số của hệ thống
- Phân tích tính chất hệ thống trong miền tần số.

Mục tiêu

- Xác định được biểu diễn tần số của tín hiệu rời rạc
- Vẽ được đồ thị phổ của tín hiệu.
- Phân tích tính chất hệ thống sử dụng biểu diễn tần số.

Biên đổi tín hiệu I

Biên đổi tín hiệu II

Xác định phương pháp biến đổi phù hợp cho các tín hiệu sau

- $x(t) = 1 \cos(2\pi t) + \sin(3\pi t)$
- **3** $x(t) = e^{-t} cos(2\pi t) u(t)$

Khai triển chuỗi Fourier

• Tín hiệu x[n] tuần hoàn với chu kỳ N được biểu diễn chính xác bằng chuỗi Fourier:

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{jk\omega_0 n} \tag{1}$$

trong đó $\omega_0=rac{2\pi}{N}$ là tần số cơ sở của x[n]

• Các hệ số X[k] được tính:

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\omega_0 n}$$
 (2)

• x[n], X[k] đều tuần hoàn với chu kỳ N.

Phổ biên độ và phổ pha

- Đồ thị của các hệ số khai triển chuỗi Fourier X[k] theo biến tần số $\omega_k = k\omega_0$ gọi là phổ Fourier của tín hiệu x[n].
- Biên độ:

$$|X[k]| = \sqrt{\text{Re}(X[k])^2 + \text{Im}(X[k])^2}$$

• Pha:

$$\phi(X[k]) = \arctan\left[\frac{\operatorname{Im}(X[k])}{\operatorname{Re}(X[k])}\right]$$

• Đồ thị của biên độ và pha của X[k] theo biến tần số ω_k gọi là phổ biên độ và phổ pha của tín hiệu x[n]

Ví dụ 1

Xác định biểu diễn tần số của tín hiệu trong hình sau

Ví dụ 1: Gợi ý

- Chu kỳ của tín hiệu N=5
- ② Tần số cơ sở $\omega_0 = \frac{2\pi}{5}$
- 3 Tín hiệu là tín hiệu lẻ

Biểu diễn tần số của x[n]

$$X[k] = \frac{1}{5} \sum_{n=-2}^{2} x[n] e^{-\frac{jk2\pi n}{5}}$$

$$= \frac{1}{5} \left[x[-2] e^{\frac{jk4\pi}{5}} + x[-1] e^{\frac{jk2\pi}{5}} + x[0] e^{j0} + x[1] e^{\frac{-jk2\pi}{5}} + x[2] e^{\frac{-jk4\pi}{5}} \right]$$

$$= \frac{1}{5} \left[1 + \frac{1}{2} e^{jk2\pi/5} - \frac{1}{2} e^{-jk2\pi/5} \right]$$

$$= \frac{1}{5} \left[1 + j \sin \left(\frac{k2\pi}{5} \right) \right]$$
(3)

Lưu ý

- ullet Việc lựa chọn khoảng của n để tính X[k] không làm thay đổi giá trị thu được
- ② Ví dụ nếu lấy $n \in [0, 4]$ thì ta có

$$X[k] = \frac{1}{5} \left[x[0]e^{j0} + x[1]e^{-\frac{jk2\pi}{5}} + x[2]e^{-jk4\pi} + x[3]e^{\frac{-jk6\pi}{5}} + x[2]e^{\frac{-jk8\pi}{5}} \right]$$
$$= \frac{1}{5} \left[1 + \frac{1}{2}e^{jk2\pi/5} - \frac{1}{2}e^{-jk8\pi/5} \right]$$

Lưu ý

$$e^{-jk8\pi/5} = e^{-j2k\pi}e^{jk2\pi/5} = e^{jk2\pi/5}$$

Ví dụ

Xác định phổ biên độ và phổ pha của tín hiệu:

$$x[n] = \sin(3\pi n/4)$$

Bài tập

Bài tập 3.2; 3.4; Ví dụ 3.3

Ví dụ biến đổi ngược

Ví dụ 2: Xác định miền thời gian của tín hiệu sau

Ví dụ biến đổi ngược

Ví dụ 2: Gợi ý

Lưu lý

$$X[k] = |X[k]|e^{j\phi}$$

- f O Các hệ số của biến đổi có chu kỳ f O, tần số cơ sở $m \omega_0=rac{\pi}{9}$
- ② Tính x[n] trong với $n \in [-4, 4]$ ta có

$$x[n] = \sum_{k=-4}^{k=4} X[k] e^{\frac{jk2\pi n}{9}}$$

$$= 0 + e^{\frac{-j6\pi n}{9}} e^{\frac{j2\pi n}{3}} + 2e^{\frac{j\pi n}{3}} e^{\frac{-j4\pi n}{9}} + 0 + e^{j0} e^{j\pi}$$

$$+ 0 + 2e^{\frac{-j\pi n}{3}} e^{\frac{j4\pi n}{9}} + e^{\frac{j6\pi n}{9}} e^{\frac{-j2\pi n}{3}} + 0$$

$$= 2\cos\left(\frac{6\pi n}{9} - \frac{2\pi}{3}\right) + 4\cos\left(\frac{4\pi n}{9} - \frac{\pi}{3}\right) - 1$$

(4)

Bài tập

Bài tập

Bài 3.4; 3.5;3.6 Ví dụ 3.6

Các tính chất của chuỗi Fourier

Tuyến tính:

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{jk\omega_0 n} \text{ and } y(t) = \sum_{k=0}^{N-1} Y(k) e^{jk\omega_0 n}$$

$$\to \alpha x[n] + \beta y(n) = \sum_{k=0}^{N-1} (\alpha X[k] + \beta Y(k)) e^{jk\omega_0 n}$$

• Dịch thời gian:

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{jk\omega_0 n}$$

$$\to x(n - n_0) = \sum_{k=0}^{N-1} \left(X[k] e^{-jk\omega_0 n_0} \right) e^{jk\omega_0 n}$$

Công suất

• Công thức Parseval:

$$\frac{1}{N} \sum_{k=0}^{N-1} |x[n]|^2 = \sum_{k=0}^{N-1} |X[k]|^2$$

- Giá trị $|X[k]|^2$ được coi như biểu diễn cho phần đóng góp của thành phần $e^{jk\omega_0t}$ vào công suất tổng cộng của tín hiệu x[n]
- Đồ thị của $|X[k]|^2$ theo biến tần số $\omega_k = k\omega_0$ biểu thị phân bố công suất của x[n] theo tần số và được gọi là **phổ công suất** của x[n].

Các tính chất của chuỗi Fourier

Tính chẵn lẻ

• Phổ biên độ và phổ công suất của x[n] là các hàm chẵn, nghĩa là:

$$\forall k : |X[k]| = |X(-k)| \text{ và } |X[k]|^2 = |X(-k)|^2$$

- Nếu x[n] là hàm thực thì $\forall k : X[k] = X(-k)^*$.
- Nếu x[n] là hàm thực và chẵn thì phổ Fourier của x[n] là hàm chẵn, nghĩa là $\forall k: X[k] = X(-k)$.
- Nếu x[n] là hàm thực và lẻ thì phổ Fourier của x[n] là hàm lẻ, nghĩa là $\forall k: X[k] = -X(-k)$.

Các tính chất của chuỗi Fourier

Nếu x[n] là hàm thực thì $\forall k : X[k] = X(-k)^*$

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\omega_0 n}$$
 (5)

Do đó

$$X(-k)^* = \left[\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{jk\omega_0 n}\right]^*$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\omega_0 n}$$

$$= X[k]$$
(6)

Biến đổi Fourier

Biến đổi Fourier

ullet $X(\omega)$ được gọi là biến đổi Fourier (biến đổi thuận) của tín hiệu x[n]:

$$X(\omega) = F(x[n]) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

• Ta cũng có công thức biến đổi Fourier nghịch:

$$x[n] = F^{-1}(x[n]) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(\omega) e^{j\omega n} d\omega$$

• Điều kiện tồn tại các biến đổi Fourier: x[n] là tín hiệu năng lượng.

Biến đổi Fourier

Biến đổi Fourier

• Một dạng khác của công thức biến đổi Fourier của x[n] sử dụng biến tần số f thay cho tần số góc ω :

$$X(f) = \sum_{n = -\infty}^{+\infty} x[n] e^{-j2\pi f n}$$

với công thức biến đổi Fourier nghịch tương ứng:

$$x[n] = \int_{-1/2}^{+1/2} X(f) e^{j2\pi f n} df$$

Phổ Fourier của tín hiệu

Phổ biên độ và phổ pha

- Đồ thị $X(\omega)$ theo tần số góc ω được gọi là phổ Fourier của tín hiệu x[n].
- Biên độ: $|X(\omega)| = \sqrt{\text{Re}[X(\omega)]^2 + \text{Im}[X(\omega)]^2}$
- Pha:

$$\phi(\omega) = \frac{\arctan[\operatorname{Im}[X(\omega)]}{\operatorname{Re}[X(\omega)]]}$$

• Đồ thị của biên độ và pha của $X(\omega)$ được gọi là phổ biên độ và pha của tín hiệu.

Bài tập

Xác định phổ biên độ và phổ pha tín hiệu sau đây:

$$\bullet x[n] = a^n u(n)$$

•
$$x[n] = 2(3)^n u(-n)$$

•
$$x[n] = \begin{cases} 1 & |n| \le M \\ 0 & otherwise \end{cases}$$

Xác định biến đổi Fourier nghịch:

$$\bullet \ X(\omega) = \begin{cases} 1 & |\omega| < W \\ 0 & W < |\omega| < \pi \end{cases}$$

Ví dụ $x[n] = a^{-n}u(t)$

Áp dụng công thức

$$X(\omega) = \sum_{n = -\infty}^{\infty} a^n u[n] e^{-j\omega n}$$
$$= \sum_{n = 0}^{\infty} a^n e^{-j\omega n}$$
(7)

Chuỗi $\sum_{n=0}^{\infty} a^n e^{-j\omega n}$ phân kỳ nếu $|a| \geq 1$ và chỉ hội tụ khi |a| < 1. Do đó

$$X(\omega) = \frac{1}{1 - ae^{-j\omega}}, \quad |a| < 1 \tag{8}$$

Nếu a là một số thực thì ta có

$$X(\omega) = \frac{1}{1 - a\cos\omega - ja\sin\omega}$$

$$= \frac{1 - a\cos\omega - ja\sin\omega}{(1 - a\cos\omega)^2 + (a\sin\omega)^2}$$

$$= \frac{1 - a\cos\omega}{1 + a^2 - 2\cos\omega} - j\frac{a\sin\omega}{1 + a^2 - 2\cos\omega}$$
(9)

ullet Phổ biên độ -> Vẽ $|X(\omega)|$

$$|X(\omega)| = \sqrt{\frac{1}{1 + a^2 - 2a\cos\omega}}$$

2 Phổ pha -> Vẽ $\phi(\omega)$

$$\phi(\omega) = -\arctan\left(\frac{a\sin\omega}{1 - a\cos\omega}\right)$$

Tính chất

Tính tuyến tính:

$$\mathcal{F}[\alpha x_1(n) + \beta x_2(n)] = \alpha X_1(\omega) + \beta X_2(\omega)$$

Dịch thời gian:

$$\mathcal{F}[x(n-n_0)] = X(\omega)e^{-j\omega n_0}$$

Dịch tần số:

$$\mathcal{F}[x[n]e^{j\gamma n}] = X(\omega - \gamma)$$

Tính chất

Tính chất của biến đổi Fourier

Tích chập:

$$\mathcal{F}[f(n) * g(n)] = F(\omega)G(\omega)$$

• Nhân tín hiệu:

$$\mathcal{F}[f(n)g(n)] = \frac{1}{2\pi}F(\omega) \circledast_{2\pi} G(\omega)$$

trong đó, ký hiệu $\circledast_{2\pi}$ biểu thị phép nhân chập trong phạm vi một chu kỳ 2π , nghĩa là:

$$F(\omega) \circledast_{2\pi} G(\omega) = \int_0^{2\pi} F(\theta) G(\omega - \theta) d\theta$$

Tích chập

Tính chất

Năng lượng - Công thức Parseval

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} |X(\omega)|^2 d\omega$$

- Đại lượng $|X(\omega)|^2$ biểu diễn cho đóng góp của thành phần $e^{j\omega n}$ vào năng lượng tổng cộng của tín hiệu x[n]
- Đồ thị của $|X(\omega)|^2$ theo tần số ω biểu thị mật độ năng lượng của x[n] trong miền tần số và được gọi là phổ năng lượng của x[n].

Tổng kết biểu diễn trong miền tần số cho tín hiệu

Fourier Series (FS)

For x(t) of duration T, set $\omega_0 = \frac{2\pi}{T}$.

$$x(t): 0 \le t \le T$$

 $X[k]: k = ..., -2, -1, 0, 1, 2, ...$

$$X[k] = \frac{1}{T} \int_{t=0}^{T} x(t) e^{-jk\omega_0 t} dt$$

$$x(t) = \sum_{k=-\infty}^{\infty} X[k] e^{jk\omega_0 t}$$

Discrete Fourier Transform (DFT)

For x[n] of length N, set $\omega_0 = \frac{2\pi}{N}$.

$$x[n]: n = 0, 1, ..., N-1$$

 $X[k]: k = 0, 1, ..., N-1$

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-jk\omega_0 n}$$

$$x[n] = \frac{1}{N} \sum_{i=1}^{N-1} X[k] e^{jk\omega_0 n}$$

Fourier Transform (FT)

$$x(t): -\infty < t < \infty$$

 $X(\omega): -\infty < \omega < \infty$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$x(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

Discrete-Time Fourier Transform (DTFT)

$$x[n]: n = ..., -2, -1, 0, 1, 2, ...$$

 $X(\omega): -\pi < \omega < \pi$

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{\omega=-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

Đáp ứng tần số

• Đáp ứng tần số $H(\omega)$ chính là biến đổi Fourier của đáp ứng xung h(n):

$$H(\omega) = \sum_{n=-\infty}^{+\infty} h(n)e^{-j\omega n}$$

- Để $H(\omega)$ tồn tại h(n) phải là tín hiệu năng lượng.
- $H(\omega)$ đặc trưng cho đáp ứng của hệ thống đối với tín hiệu vào dạng sin có tần số ω . Với tín hiệu vào $x[n]=e^{j\omega n}$, tín hiệu ra được tính như sau:

$$y(n) = h(n) * x[n] = \sum_{k=-\infty}^{+\infty} h(k) e^{j\omega(n-k)}$$

$$y(n) = e^{j\omega n} \sum_{k=-\infty}^{+\infty} h(k)e^{-j\omega k} = H(\omega)e^{j\omega n}$$

Biên độ và pha

Thay đổi về biên độ và pha của tín hiệu ra so với tín hiệu vào được đặc trưng bởi hai thành phần sau đây của $H(\omega)$:

• Đáp ứng biên độ:

$$|H(\omega)| = \sqrt{\operatorname{Re}[H(\omega)]^2 + \operatorname{Im}[H(\omega)]^2}$$

• Đáp ứng pha:

$$\phi(\omega) = \arctan \frac{\operatorname{Im}[H(\omega)]}{\operatorname{Re}[H(\omega)]}$$

• $H(\omega) = |H(\omega)| . e^{j\phi(\omega)}$

Đáp ứng tần số:

• Đối với tín hiệu vào dạng sin tần số ω , tín hiệu ra có thể biểu diễn được dưới dạng:

$$y(n) = |H(\omega)|e^{j\phi(\omega)}e^{j\omega n} = |H(\omega)|e^{j[\omega n + \phi(\omega)]}$$

điều đó có nghĩa là, tín hiệu ra có biên độ bằng $|H(\omega)|$ lần biên độ của tín hiệu vào và pha bị dịch một góc bằng $\phi(\omega)$ so với pha của tín hiệu vào.

 Ý nghĩa: Xem xét đáp ứng (ảnh hưởng) của hệ thống với từng tần số.

Đáp ứng tần số:

- $y(n) = x[n] * h(n) \rightarrow Y(\omega) = X(\omega).H(\omega)$
- Khi tín hiệu vào là một tín hiệu tuần hoàn, biểu diễn chuỗi Fourier là: $x[n] = \sum_{k=-\infty}^{\infty} X[k] e^{jk\omega_0 n}$ Đáp ứng của hệ thống với mỗi thành phần $e^{jk\omega_0 n}$ là $H(k\omega_0) e^{jk\omega_0 n}$

 \rightarrow đáp ứng của hệ thống với tín hiệu vào x[n] có dạng:

$$y(n) = \sum_{k=-\infty}^{\infty} X[k]H(k\omega_0)e^{jk\omega_0 n}$$

chính là biểu diễn chuỗi Fourier của y(n) với các hệ số là $\{X[k]H(k\omega_0)\}$.

Đáp ứng tần số:

• Khi tín hiệu vào là một tín hiệu không tuần hoàn x[n] có phố Fourier là $X(\omega)$, x[n] khi đó có thể biểu diễn dưới dạng sau đây, theo công thức biến đổi Fourier nghịch:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(\omega) e^{j\omega n} d\omega$$

• Đáp ứng của hệ thống với mỗi thành phần $e^{j\omega n}$ là $H(\omega)e^{j\omega n} \to \text{dáp}$ ứng của hệ thống với tín hiệu vào x[n] có dạng:

$$y(n) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(\omega) H(\omega) e^{j\omega n} d\omega$$

Đáp ứng tần số:

Cho hệ thống có đáp ứng tần số:

$$H(\omega) = \begin{cases} e^{-j\omega} & |\omega| < 0.4\pi \\ 0 & 0.4\pi < |\omega| < \pi \end{cases}$$

Xác định đáp ứng đầu ra của hệ thống với tín hiệu vào:

$$x[n] = 1.2\cos(0.3\pi n) + 1.5\cos(0.5\pi n)$$

Đáp ứng tần số:

Cho hệ thống có đáp ứng tần số có dạng:

 $H(\omega)$ là số thực, pha bằng 0.

Xác định đáp ứng đầu ra của hệ thống với tín hiệu vào:

$$x[n] = 1 + \cos(0.3\pi n)$$

III.Biểu diễn hệ thống liên tục trong miền tần số

Lowpass, Highpass, Bandpass filter

Lowpass filter (Bộ lọc thông thấp)

$$H(\omega) = egin{cases}
eq 0 & \omega < \omega_0 \\
0 & otherwise \end{cases}$$

• Highpass filter (Bộ lọc thông cao)

$$H(\omega) = egin{cases}
eq 0 & \omega > \omega_0 \\
0 & otherwise \end{cases}$$

Bandpass filter (Bộ lọc thông giải)

$$H(\omega) = egin{cases}
eq 0 & \omega_1 < \omega < \omega_2 \\
0 & otherwise
\end{cases}$$

III. Biểu diễn hệ thống liên tục trong miền tần số

Đáp ứng tần số:

Cho hệ thống có đáp ứng xung:

$$h(n) = 1/8(7/8)^n u(n)$$

Hệ thống là bộ lọc thông thấp, thông cao, thông dải hay không loại nào cả.

IV.Biểu diễn Fourier rời rạc

ullet Tín hiệu x[n] không tuần hoàn có biến đổi Fourier:

$$X(\omega) = F(x[n]) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

 $X(\omega)$ là hàm liên tục tuần hoàn với chu kỳ 2π .

ullet Để tiện cho việc lưu trữ, ta có thể rời rạc hoá $X(\omega)$ trong 1 chu kỳ.

$$X\left(\frac{2\pi}{N}k\right) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\frac{2\pi}{N}kn}$$

N là số lượng mẫu.

• $X\left(\frac{2\pi}{N}k\right)$ gọi là phổ Fourier rời rạc (DFT) của tín hiệu.

IV.Biểu diễn Fourier rời rạc

• Tín hiệu x[n] tuần hoàn, không có biến đổi Fourier, phổ Fourier rời rạc được định nghĩa dựa trên chuỗi Fourier:

$$DTF(x[n]) = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}$$

• Biến đổi ngược của DFT (IDFT) được định nghĩa:

$$x[n] = DFT^{-1}[X[k]] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi kn/N}$$

Xung lấy mẫu:

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

envelope of x(t)

Biểu diễn trong miền phổ:

$$P(\omega) = 2\pi/T$$
. $\sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k/T)$

Biểu diễn trong miền phổ:

$$x_p(t) = x(t).p(t)$$
 thì $X_p(\omega) = X(\omega) * P(\omega)$
Do đó:

Ý nghĩa của chu kỳ lấy mẫu T:

T nhỏ, T lớn?

T nhỏ, T lớn?

Phổ của tín hiệu lấy mẫu tương ứng:

Tốc độ lấy mẫu tối thiểu:

Tín hiệu x(t) có phổ hữu hạn, tức là $X(\omega)=0$ với $\forall \omega>|W|$. Khi đó tốc độ lấy mẫu tối thiểu $w_s=2\pi/T_s$ để đảm bảo tín hiệu được lấy mẫu không bị chồng phổ phải thoả mãn $w_s>2.W$

VD: Tín hiệu x có tấn số cực đại $f_{max}=40\,kHz$. Tốc độ lấy mẫu tối thiểu=?.

có
$$W = 2\pi . f = 80.10^3 \pi \text{ rad. } w_s = 2W = 160.10^3 \pi$$

Số hoá tín hiệu-Analog-Digital/ Digital-Analog

