

connecting people with science

**Arporn Wangwiwatsin, PhD Training Team Member** 

Introduction to Cancer Genomics:

Foundation and Frontier of Cancer Medicine



## **Introduction to Cancer Genomics**

#### Foundation and Frontier of Cancer Medicine

Presented by:

**Arporn Wangwiwatsin** 

Assistant Professor

Department of Systems Biosciences and Computational Medicine

Faculty of Medicine, Khon Kaen University



arpowa@kku.ac.th

Cancer Genome Analysis – Asia 2025

With presentation content mostly made by Nyasha Chambwe (Feinstein Institutes for Medical Research)







# Overview and objectives

- Why cancer genomics matters
- How we decode cancer genomes
  - What to sequence types of tissues, types of genomes
  - How to sequence
  - Finding meanings
- From genome to clinic
- Forward look



## **A Brief Guide to Genomics**

NHGRI FACT SHEETS

genome.gov

 Biological field focused on studying all the DNA of an organism — that is, its genome

Includes *identifying* and *characterizing* all the genes and functional elements in an organism's genome as well as *how they interact* 

https://www.genome.gov/genetics -glossary/genomics



Image source: https://bit.ly/3AMuwok



# **Example of genomic alterations that give rise to cancer**



## Example of genomic alterations that give rise to cancer







#### **Disease outcomes**

- Cancer risk
   (heredity predisposition)
- Diagnosis and classification (molecular taxonomy)
- Therapeutic choice
- Prognosis and recurrence



## What we mean by "Cancer Genome"

Inherited (germline) genomics variants vs acquired (somatic) variants



## **Beyond chromosomal DNA**

mtDNA: mutations and heteroplasmy affect cell activities.



# **Beyond chromosomal DNA**

 eccDNA: amplified oncogenes or regulatory regions, linked to therapy resistance and relapse.





## **Beyond chromosomal DNA**

Viral DNA: integrated genomes as oncogenic drivers.



## Genomics is transforming how we study, diagnose and treat cancer



#### Evolution of genomics data acquisition and large-scale genome projects



#### **Evolution of genomics data acquisition and large-scale genome projects**



#### Long Read Sequencing Allows Resolution of Complicated Structural Variants



#### Long Read Sequencing Allows Resolution of Complicated Structural Variants



## Sequencing the genome: many options



#### Role of NGS Technology in Cancer Diagnosis, Prognosis, and Therapeutics



Satam H et. al. Biology (Basel). 2023

FFPE, formalin-fixed paraffin-embedded; Bx, biopsy; AI, artificial intelligence; MI, machine learning.

diagnosis &

therapeutics

analysis

analysis

analysis

#### Improved understanding of the cancer phenotypes that drive oncogenesis





#### Improved understanding of the cancer phenotypes that drive oncogenesis



Prioritise candidate target for drug development

#### COSMIC actionability

| 1 | Approved marketed drug with demonstrated efficacy at the mutation |
|---|-------------------------------------------------------------------|
| 2 | Phase 2/3 clinical results meet primary outcome measures          |
| 3 | Drug in ongoing clinical trials                                   |
| 0 | None                                                              |



Number

## Toward treatment guideline based on gene mutational profile



### Toward treatment guideline based on gene mutational profile



Vogel A et al. Ann Oncol. 2023

#### Toward treatment guideline based on gene mutational profile



#### Classification of cancer, prognosis, and response to treatments

#### Comprehensive molecular characterization of gastric adenocarcinoma













## Challenges and looking forward in cancer genomics



- Tumor heterogeneity
- High cost
- Turnaround time
- Unvalidated variants
- Complexity of data integration
- Genomics literacy
- Inconsistent reporting standards
- Data privacy

#### **Genomic Integration** Challenges

Complex, costly, and inequitable

#### **Equitable Patient Benefit**

Genomic discovery translates to care

# Where is cancer genomics in patient care

#### **Patient Tissue Clinical Data Genetics Counseling** Collection **Genomic Sequencing** Integration Patients receive Patient-derived tissues Samples undergo Genomic data is counseling for ethical are collected for genomic sequencing integrated with clinical and biological with quality checks. information. considerations. analysis. <u>Ф</u> **Pathology Analysis** Multidisciplinary **Data Interpretation Tumor Board** Tissues are analyzed Genomic data is for tumor content and interpreted against Data is presented to a curated references. tumor board for type. discussion.