ARQUITECTURA DE COMPUTADORES. Huelva, 17 de Diciembre de 2021

Apellidos .				Nombre		
	Valor de cada:	Respuesta correcta	+ 0.1		TEST →	

Respuesta incorrecta - 0.05 No respuesta - 0.05

TIEMPO REALIZACIÓN EXAMEN: 45 minutos

$TEST \to$	
P1 →	
P2 →	
P3 →	
NOTA →	

	Según la clasificación de Flynn, dónde encajaría un array sistólico y u					
1		n MIMD ambos	A			
		n MIMD el sistólico y en MISD el de frente de onda				
_	Considerando una arquitectura escalar multihebra (o multihilo) con d		ъ			
2		onmuta a otra hebra después de cada detención	D			
		onmuta a otra hebra después de cada ciclo				
	En el diseño de una arquitectura de computador, indique la afirmació					
_		El repertorio de instrucciones es más completo y eficaz	_			
3		tas más instrucciones tiene	D			
	B) La frecuencia de procesamiento no condiciona el tiempo de D) E					
		ucción pueden necesitar más de un ciclo				
	Comparando dos sistemas, uno con memoria caché partida y otro con					
4	A) El de caché unificada necesita un controlador de caché más C) El	l de caché partida es siempre más lento	A			
-	sencillo que el de la partida					
		inguna de las afirmaciones anteriores es correcta				
	En relación a la M. Principal y M. Caché, indique la afirmación que e					
5		a MP tiene menor tamaño que la M. Caché	В			
		a trasferencia de información se hace a nivel de palabra				
	En relación a las técnicas de mejora de rendimiento de la memoria pr	rincipal:				
6		La memoria principal más ancha reduce el tiempo de	C			
U	única posición pero no el acceso a un bloque penal	lización por fallo en la M. Caché	C			
		inguna de las afirmaciones anteriores es correcta				
	Sea un sistema computador A que dedica 10 segundos a un proceso, s					
7		l computador A dedica 3 segundos más que el B	В			
	B) El computador B dedica 13 segundos al mismo proceso D) El	l computador A dedica 0,3 segundos menos que el B				
	En un sistema computador con frecuencia de procesamiento de 1 GHz	z, dedica 30 ns a ejecutar 6 instrucciones:				
8	A) Equivale a 5 CPI C) Ed	quivale a 1 ns por instrucción	A			
	B) Equivale a 180 CPI D) Equivale a 180 CPI	quivale a 0.5 ns por instrucción				
	En relación a los MIPS, ¿qué afirmación es correcta?:					
9		ueden variar entre programas en el mismo computador	C			
	B) Máquinas más rápidas significan menos MIPS D) N	inguna de las afirmaciones anteriores es correcta				
	Sea un sistema computador con rendimiento valorado en 1 MIPS, ¿	cuánto tiempo dedicará a la ejecución de un programa				
10	formado por 1000 instrucciones?:		n			
10	A) 100 ms C) 10) μs	В			
	B) 1 ms					
	De las funciones de correspondencia de la M. Caché:					
1.		a asociativa por conjuntos necesita una circuitería menos				
11		bleja que la directa	A			
		as tres comparten el mismo formato de dirección				
	Para localizar el bloque donde se encuentra la palabra solicitada po					
	conjuntos, necesita:					
12	A) Tantos elementos comparadores como bloques formen el C) Ta	antos elementos comparadores como bloques tiene en total	\mathbf{A}			
	conjunto	•				
	ļ	n solo elemento comparador				
	Sea una memoria caché de dos niveles L1 y L2, si de 200 referencias					
12	100 aciertos y L2 40 aciertos:	•				
13		a tasa global de fallos de L2 es del 60%	A			
		a tasa global de aciertos de L2 es del 90%				
	Sea la secuencia de instrucciones LOAD A, ADD B, STORE C, con A					
	A) En un computador basado en acumulador, Suma dos valores de C) E					
14		oria y almacena el resultado	A			
	B) En una máquina basada en banco de registros, suma dos D) N					
	valores y almacena el resultado	5				
	Sea el esquema de computador basado en la arquitectura Von Neum	ann estudiada, para realizar una operación de escritura				
	en memoria:	, para a sum operation at societatia				
		e necesita algunas veces definir el valor del registro de	В			
15			В			
15		ciones D				
15	direc					

	Sea un computador con unidad de control microprogramada con secuenciamiento explícito, repertorio de 512 instrucciones y	
16	Memoria de Control de 2 Kpos: A) No necesita etapa traductora C) La etapa traductora ROM es de 512 pos x 11 bits	A
	A) No necesita etapa traductora C) La etapa traductora ROM es de 512 pos x 11 bits B) La etapa traductora ROM es de 9 pos x 11 bits D) Ninguna de las afirmaciones anteriores es correcta	
	Sea un computador con unidad de control microprogramada con secuenciamiento implícito, y Memoria de Control de 2	
	Kpos:	
17	A) El firmware lo conforman 2 ¹¹ microinstrucciones C) El firmware lo conforman 11 microinstrucciones	A
	B) El repertorio está formado por 2 K instrucciones D) Faltan datos para conocer el nº de microinstrucciones	
	Sea un sistema con arquitectura von Neumann, indica la/s instrucción/es que implica/n acceso de lectura en pila:	
18	A) La instrucción RETI C) ADD .2, .4 con trap por desbordamiento	A
	B) CALL y BZ D) RET y CALL	
	Comparando las arquitecturas de un procesador segmentado y uno superescalar:	
19	A) Ambas son arquitecturas segmentadas C) Ambas son arquitecturas serie	A
1)	B) El procesador segmentado alcanza un nivel de paralelismo D) El procesador superescalar es siempre menos eficiente que el	11
	superior segmentado	
	Sea la instrucción LF F0, 10(R1) ejecutada en una arquitectura DLX:	
20	A) La fase de ejecución pasa por la unidad funcional de enteros C) La fase de ejecución requiere de una unidad funcional de tipo	A
	flotante	
	B) No puede ejecutarse porque R1 debe ser de tipo float D) No puede ejecutarse porque F0 = 0	
	Sea la arquitectura DLX estudiada con unidades funcionales de tipo float multiciclo:	
21	A) Puede presentar riesgos de tipo WAW C) No puede ejecutar una fase WB una instrucción, antes que otra anterior en la secuencia	A
	B) Únicamente puede presentar riesgos de tipo RAW Sea el conjunto de MULTF F2, F0, F1 ejecutadas sobre una arquitectura DLX con una unidad funcional	
	instrucciones: DIVF F3, F0, F1 de Multiplicación/División flotante de 5 ciclos segmentada:	
22	A) Ninguna de las afirmaciones siguientes puede ser correcta C) Presenta un riesgo de tipo RAW	D
	B) Las fases de ejecución durarán 10 ciclos en total D) Las fases de ejecución durarán 6 ciclos en total	
	Sea la secuencia de instrucciones LW R1, 10(R2) ST 20(R3), R1:	
23	A) Se beneficia si existe adelantamiento MEM-MEM C) Se beneficia si existe adelantamiento ALU-MEM	Α
	B) Se beneficia si existe adelantamiento ALU-ALU D) Se beneficia si existe adelantamiento MEM-ALU	1.
	Para implementar la operación vectorial F0*V1, siendo F0 un registro tipo float y V1 un vector de 64 elementos:	
	A) No se puede multiplicar registros float por un registro vectorial C) Se emplearía la instrucción vectorial MULTV de la	
24	arquitectura DLX escalar	В
	B) Se emplearía la instrucción vectorial MULTV de la D) Se debe emplear la instrucción MULTV y repetirla en un	
	arquitectura DLXV bucle un total de 64 veces en la arquitectura DLXV	
	Sea X un vector de 130 elementos sobre el que se realiza una operación vectorial en una arquitectura DLXV con longitud	
	máxima de vector MVL = 64:	
25	A) El vector se divide en 3 secciones de 64 elementos y una C) El vector se divide en 2 secciones	D
	última de 2	
	B) El vector se opera en su totalidad sin seccionamiento D) El vector se divide en 3 secciones	
	Sea un bucle con sentencia S: $B(i) = B(i-1)*K$; $B(0)=2$; $i=164$:	
26	A) La sentencia es vectorizable porque se multiplica por una C) La sentencia es vectorizable porque B(0)=2 constante K	В
	B) La sentencia S no es vectorizable D) Ninguna de las afirmaciones anteriores es correcta Sea la arquitectura DLXV con 16 bancos de memoria, si la CPU solicita la dirección 136 y siguientes:	
27	A) Ésta se ubicará en el Banco 1 C) Ésta se ubicará en el Banco 0	A
<i>L I</i>	B) Ésta se ubicará en el Banco 15 D) Ésta se ubicará en el Banco 14	A
	¿Qué secuencia de instrucciones sería correcta en un computador basado en banco registros, con modelos de ejecución Reg-	
	Reg y Reg-Mem, para realizar la suma de dos posiciones de memoria, A y B, dejando el resultado en la dirección de memoria	
28	A?	A
_0	A) LD R1, A; ADD R1, B; ST A, R1 C) LD R1, A; LD R2, B; ADD R1, R2	1.
	B) ADD A, B D) Ninguna de las afirmaciones anteriores es correcta	
	Sea la operación vectorial MULTV V2, V1, V0 (vectores de 64 elementos) con tiempo de arranque de 6 ciclos y tasa de	
30	iniciación de 1 ciclo/resultado, el tiempo de operación vectorial es de:	_
29	A) (64x6) ciclos C) (3x64x6) ciclos	В
	B) 70 ciclos D) (6+1) ciclos	
	En base a la clasificación de Flynn sobre los sistemas computadores, en una arquitectura de tipo MISD:	
	En base a la clasificación de Flynn sobre los sistemas computadores, en una arquitectura de tipo 14115D.	
30	A) Hay un flujo de instrucciones por cada procesador C) No hay memoria para las instrucciones	A

EXAMEN DE ARQUITECTURA DE COMPUTADORES

2º Curso Grado en Ingeniería Informática Convocatoria Ordinaria II

28 de Junio de 2021

PROBLEMA 1. (2,5 ptos.). Un sistema computador (sin memoria virtual) tiene una Memoria Principal de 4 GBytes con ancho de palabra de 1 Byte, dividida en bloques de 1024 palabras; y una Memoria Caché organizada en 4 conjuntos de 4 bloques/conjunto.

- 1. Indicar el número de palabras que conforman la Memoria Principal.
- 2. Indicar la capacidad en bits de la Memoria Caché.
- 3. Indicar el número de bloques de la Memoria Principal y el número de bloques de la Memoria Caché.
- 4. Indicar el formato de la dirección que define la unidad central de proceso en base a la función de correspondencia empleada, definiendo cada uno de los campos en los que se divide.
- 5. Se supone que, después de haber estado la memoria caché "vacía", a continuación, en el *instante 1* se encuentran en la memoria caché los bloques de memoria principal B5, B7, B12, B13, B2, B3, B4, B9 y B41, leídos en ese orden y todas sus direcciones ordenadamente una vez. Suponer que el algoritmo de reemplazamiento de bloques es el LRU (Least Recently Used). Mostrar el contenido de la memoria caché en el *instante 1*.
- 6. Identificar cuántos fallos de caché se han producido y de qué tipo y cuántos aciertos hasta ese instante 1.
- 7. A continuación, la CPU lee la secuencia de direcciones de memoria: 5120, 6150, 6200, 15370, 7170, 8200, 9217 y 1025 (*instante 2*), según el orden marcado en la misma. Indicar el contenido de la memoria caché en el *instante 2*.
- 8. En ese *instante 2,* indicar cuántos fallos, de qué tipo y con la lectura de qué direcciones de MP se han producido y cuántos aciertos y con la lectura de qué direcciones de MP se han producido en total.
- 9. Indicar el formato de dirección, en binario, de la dirección de memoria que al leerla provoca el último fallo.
- 10. Indicar la frecuencia de uso del bloque al que pertenece la dirección 6.200 respecto del total de referencias a todos los bloques desde el instante 0.

PROBLEMA 2. (2,5 ptos.). Para el sistema computador representado en la figura, y para la secuencia de instrucciones siguiente:

Dirección de Memoria (en	Instrucción
hexadecimal)	(en ensamblador)
A0000h	BZ A0002h
A0001h	MOVE .2, 120(.3)
A0002h	CALL A0004h
A0003h	MOVE .2, #24
A0004h	RET

- 1. Mostrar los formatos de las instrucciones.
- 2. Definir la secuencia de operaciones elementales y el solapamiento posible de las mismas. Especificar el cronograma según el flujo marcado por el programa propuesto, y considerando una sola vez la ejecución de cada instrucción.
- 3. Definir el valor de las señales de control correspondiente a la secuencia ordenada de operaciones elementales PC, D ← R4 + RI (Desplaz.) y R7 ← RA, realizadas en el menor tiempo posible. Mostrar únicamente el valor de las señales que intervienen directamente en dicha operación.

Teniendo en cuenta:

- a) PRIMERA INSTRUCCIÓN: La instrucción de bifurcación condicional BZ, con direccionamiento directo absoluto a memoria, para el caso en que el bit Z esté a "1".
- b) SEGUNDA INSTRUCCIÓN: La instrucción de transferencia MOVE, con modo de direccionamiento directo absoluto a registro para el primer operando y directo relativo a registro base para el segundo operando.
- c) TERCERA INSTRUCCIÓN: La instrucción de llamada a subrutina CALL, con modo de direccionamiento directo absoluto a memoria.
- d) CUARTA INSTRUCCIÓN: La instrucción MOVE, con modo de direccionamiento directo absoluto a registro para el primer operando y direccionamiento inmediato para el segundo.
- e) QUINTA INSTRUCCIÓN: La instrucción RET de retorno de subrutina.
- f) Las operaciones con la unidad aritmético-lógica se realizan en un periodo.
- g) Los cálculos de las direcciones de los operandos en memoria especificados con direccionamiento relativo, se realizarán de manera automática en el periodo de decodificación.
- h) El resultado de una operación o el operando destino va a ser siempre el especificado en primer lugar en la instrucción de ensamblador.
- i) Las operaciones de L/E en memoria se realizan durante dos periodos.
- j) La pila, que se implementa en el sistema con el registro SP (puntero de pila), funciona de la siguiente forma: 1) La pila crece hacia direcciones decrecientes. 2) El registro puntero de pila indica la dirección de memoria principal en la que se introdujo el último dato en la pila.
- k) Para cuando hay que salvar el contenido de SR y el de PC, siempre se almacenará primero el de PC.

PROBLEMA 3. (2 ptos.). El siguiente fragmento de código se ejecuta en un procesador con arquitectura DLX. Las latencias (en ciclos de reloj) de las unidades funcionales son las siguientes: Sumador/restador entero: 1; Sumador/restador flotante: 2; y Multiplicador/Divisor: 4 (las unidades funcionales están **segmentadas**).

SUB R1, R1, R2

ADDI R2, R2, #4

LF F7, 15(R1)

FMULT F6, F7, F8

FADD F6, F2, F5

LF F2, 20(R1)

LF F3, 10(R5)

SF 30(R0), F2

- a) Suponiendo que la **memoria caché** está **unificada** y no existe **ningún tipo de adelantamiento**, indicar el estado de cada instrucción durante los ciclos de ejecución del código; calcular el número de ciclos necesarios para ejecutar este código; indicar si existen detenciones en la cadena, qué tipo de detención y a qué se debe.
- b) Suponiendo que la memoria caché está partida (caché de datos y caché de instrucciones) y existe adelantamiento generalizado, indicar el estado de cada instrucción durante los ciclos de ejecución del código; calcular el número de ciclos necesarios para ejecutar este código; indicar si existen detenciones en la cadena y a qué se deben e indicar los adelantamientos que se realizan y entre qué etapas actúan.

Etapa	Instrucción ALU	Carga/Almacenamiento	Salto/Bifurcación
IF	$IR \leftarrow M[PC]$	$IR \leftarrow M[PC]$	$IR \leftarrow M[PC]$
	PC ← PC+4	PC ← PC+4	PC ← PC+4
ID	$A \leftarrow Rs1; B \leftarrow Rs2$	$A \leftarrow Rs1; B \leftarrow Rs2$	$A \leftarrow Rs1; B \leftarrow Rs2$
	PC1 ← PC	PC1 ← PC	PC1 ← PC
	IR1 ← IR	IR1 ← IR	IR1 ← IR
EX	ALU _{output} ← A op (B or (IR1 ₁₆) ¹⁶ ##IR1 ₁₆₃₁)	$MAR \leftarrow A+(IR1_{16})^{16}##IR1_{1631}$ $SMDR \leftarrow B$	Salto $ALU_{output} \leftarrow PC1 + IR1_{16})^{16} \# IR1_{1631})$ $Cond \leftarrow (Rs1 \text{ op 0});$ $Bifurcación$ $ALU_{output} \leftarrow PC1 + IR1_{26})^{6} \# IR1_{631})$
MEM	ALU _{output} 1 ← ALU _{output}	$LMDR \leftarrow M[MAR]$ o $M[MAR] \leftarrow SMDR$	If (cond): PC ← ALU _{output}
WB	$Rd \leftarrow ALU_{output}1$	Rd ← LMDR	

Tabla. Eventos en cada etapa de la segmentación de DLX diferenciados según el tipo de instrucción.

Apellidos:	
1) FORMATOS	3) SEÑALES DE CONTROL

Apellidos:												Non	nbre:																	
Apartado a)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
SUB R1, R1, R2	_	_																												
ADDI R2, R2, #4																														
LF F7, 15(R1)																														
FMULT F6, F7, F8																														
FADD F6, F2, F5																														
LF F2, 20(R1)																														
LF F3, 10(R5)																														
SF 30(R0), F2																														
Apartado b)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
SUB R1, R1, R2																														
ADDI R2, R2, #4																														
LF F7, 15(R1)																														
FMULT F6, F7, F8																														
FADD F6, F2, F5																														
LF F2, 20(R1)																														
LF F3, 10(R5)																														
SF 30(R0), F2																														
Detenciones			1			1	Dete	nciones	;	<u> </u>			<u> </u>				Adela	ntamie	entos		1			Adela	intamie	entos				