

Hybrid Analysis 101

Beltrán Rivera Arias

¿Quién soy yo?

- Security researcher, developer, pentester
- +6 años autodidacta
- All things cyber
- Eterno estudiante del hacking

Índice

- ¿Análisis híbrido?
- Niveles de análisis
- Preanálisis
- Análisis automático
- Análisis estático
- Análisis dinámico
- Obervaciones
- Preguntas

¿Análisis híbrido?

- Preanálisis, automático, estático y dinámico
- Visión completa
- Contextualiza la investigación
- Útil contra antianálisis

Reversing manual del código

Análisis del comportamiento

Análisis estático de las propiedades

Análisis automático

Preanálisis

- QCCQ: Qué, Cómo, Cuándo y Quién ha infectado
- Añade contexto importante
- ¿Accidente o ataque?
- Ejecución en entorno aislado

Análisis automático

- Muy rápido
- Variedad de plataformas
- Rápida respuesta
- Poco fiable
- Potencialmente no decisivo

Análisis estático

- Relativamente rápido
- Información más fiable
- Útil contra antidebugging
- Potencialmente decisivo
- Poco útil contra ofuscación
- Requiere experiencia

Análisis dinámico

- Visión más completa
- Muy útil contra ofuscación
- Decisivo
- Largo y tedioso
- Inútil contra antidebugging/antivm

Caso de estudio: Surabaya

Muestra vieja Visual Basic 6 (anterior a .NET) Ausencia de disassemblers/decompilers Codename: Worm:Win32/SillyShareCopy.E

Formato: ISO

Laboratorio

WINDOWS 10

INSTALAR HERRAMIENTAS

Primera ejecución

- Detección a simple vista
- Fácil
- Ayuda con los siguientes pasos
- Configurar la MV lo mínimo

La cara

La cruz

- ¿Carpetas duplicadas?
- ¿Salvapantallas con iconos de carpeta?
- ¿Ejecutable para MS-DOS?

Ejecución

Suplanta carpetas

Suelta archivos

¿Qué sabemos?

Se ejecuta en segundo plano

Es malicioso

¿Qué **no** sabemos?

- ¿Cómo lo hace?
- ¿Hace algo más que no sepamos?
- ¿Establece persistencia?
- ¿Roba datos?
- Etcétera

Análisis automático

Objetivos del análisis automático

Determinar detalles técnicos Obtener una segunda impresión

Ante la duda, seguir con el análisis

Plataformas

Público
Fácil de usar
Sandboxes
Fiable, pero no decisivo
No soporta varios archivos

AnyRun

Más avanzado
Interactivo
Configurable
Potencialmente decisivo
Soporta varios archivos*

DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY 8

Join our Community and enjoy additional community insights and crowdsourced detections, plus an API key to **automate checks.**

Popular threat label (1) worm.ban	t/sillyshare Threat categories worm trojan		Family labels bant sillyshare sillysharecopy
Security vendors' analysis ① Do you want to automate checks?			
AhnLab-V3	Worm/Win32.AutoRun.R2381	Alibaba	Worm:Win32/vobfus.1030
AliCloud	(!) Worm:Win/SillyShareCopy.Gen	ALYac	Trojan.VB.NKU
Antiy-AVL	① Worm/Win32.AutoRun	Arcabit	! Trojan.VB.NKU
Arctic Wolf	! Unsafe	Avast	! Win32:VB-EIK
AVG	! Win32:VB-EIK	Avira (no cloud)	① TR/VB.aei
Baidu	(!) Win32.Trojan.VB.iy	BitDefender	Trojan.VB.NKU
Bkav Pro	(!) W32.QuvroBjngL.Trojan	ClamAV	! Win.Worm.VB-632

DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY 8

Join our Community and enjoy additional community insights and crowdsourced detections, plus an API key to automate checks.

Basic properties ①

MD5 20f1b63d80aca45206aedf66fe20a5aa

SHA-1 199b28914d4e95e165885fdce605f3d58f47e42f

SHA-256 97bfa55df8d6d8f94da54feb832ce5f7c27e934dacad6fb31f8fe92c1206b61b

Vhash 0440361d0f1"z

Authentihash d1d294cc5356dce209002e83c1e0e6b4ac2bb79510d75b32c23f35d50b6a79bc

 Imphash
 b52df0bbf59016bbef9115e588a0c6bd

 Rich PE header hash
 9fd14c40d4dca5e21aa54c626075766f

SSDEEP 384:CXWT1aHFF0yoltTrpsYbZWwBYmax1433EAE7tS+yvtzle/tfF17e/7e/KCe/+P:cWTkFFHbgtmaxmkAEBSLvL5nC6m

TLSH T1F603C402779351B6EBBB557909A1C24682B77C394F274D4B33452D7E3D30E922D2AB13

File type Win32 EXE executable windows win32 pe peexe
Magic PE32 executable (GUI) Intel 80386, for MS Windows

TrID Win64 Executable (generic) (37.3%) | Win16 NE executable (generic) (17.8%) | Win32 Executable (generic) (15.9%) | Windows Icons Library (generic) (7.3%) | OS/2 Exec...

DetectItEasy PE32 | Linker: Microsoft Linker (6.0)

Magika PEBIN

File size 40.00 KB (40960 bytes)

PEiD packer Microsoft Visual Basic v5.0/v6.0

History ®

 Creation Time
 2007-01-28 04:00:37 UTC

 First Submission
 2008-03-28 18:19:35 UTC

 Last Submission
 2025-03-03 19:34:18 UTC

 Last Analysis
 2025-03-03 19:34:30 UTC

Names ①

FractalSoundExplorer.scr

System Volume Information .scr

Thumbs.com

\$Recycle.Bin .scr

20f1b63d80aca45206aedf66fe20a5aa.vir

Adobe Online.com

\$AVG .scr

09 .scr

aa

SYYmMAqRz.caj

COMMUNITY 8 DETECTION **DETAILS RELATIONS BEHAVIOR** o Contacted Domains (2) ① Detections Registrar Domain Created res.public.onecdn.static.microsoft 0 / 94 MarkMonitor Inc. 2023-05-05 vboxsvr.ovh.net 5 / 94 1998-06-08 **OVH** sas Contacted IP addresses (9) ① o ΙP **Detections Autonomous System Country** 104.98.118.146 0 / 94 20940 US 104.98.118.163 0 / 94 20940 US 0 / 94 192.168.0.51 20.69.140.28 0 / 94 8075 US 0 / 94 US 20.99.133.109 8075 20.99.186.246 0 / 94 US 8075 23.213.37.172 0 / 94 16625 US 23.221.103.220 0 / 94 16625 US 23.32.75.39 0 / 94 20940 US Execution Parents (1) ① o **Detections** Type Name Scanned

2025-03-06

56 / 68

ZIP

AYANTE_USB.zip

File system actions ① Files Opened C:\WINDOWS\system32\imm32.dll C:\WINDOWS\system32\lpk.dll C:\WINDOWS\system32\psapi.dll C:\WINDOWS\system32\usp10.dll C:\WINDOWS\system32\winime32.dll C:\WINDOWS\system32\ws2_32.dll C:\WINDOWS\system32\ws2help.dll C:\Users\user\Desktop\program.exe C:\Windows\AppPatch\sysmain.sdb C:\Windows\SysWOW64\KERNEL32.DLL Files Deleted C:\Windows\System32\wbem\Performance\WmiApRpl.h C:\Windows\System32\wbem\Performance\WmiApRpl.ini Registry actions ① **Registry Keys Opened** REGISTRY\MACHINE\SOFTWARE\Policies\Microsoft\Windows\Safer\Codeldentifiers\TransparentEnabled REGISTRY\USER\S-1-5-21-1482476501-1645522239-1417001333-500\Software\Policies\Microsoft\Windows\Safer\Codeldentifiers Registry\MACHINE\System\CurrentControlSet\Control\SafeBoot\Option Registry\Machine\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\996E.exe \Registry\Machine\Software\Policies\Microsoft\Windows\Safer\CodeIdentifiers ₩ HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\MUI\UILanguages\en-US HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CustomLocale HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Segment Heap Process and service actions ① **Processes Created** %SAMPLEPATH%\97bfa55df8d6d8f94da54feb832ce5f7c27e934dacad6fb31f8fe92c1206b61b.exe C:\Users\user\AppData\Local\Temp\ea08d4a10990d91ee465cfa3c270e3a6.exe C:\Windows\system32\wbem\wmiprvse.exe -Embedding \??\C:\Windows\system32\conhost.exe -1047381220-1025366142-2600100401104419999118291342214609926921760871039-718809777 \??\C:\Windows\system32\conhost.exe -1361093184-996115534-591420690-1163420689-17531940171036378736243624531956921711 \??\C:\Windows\system32\conhost.exe -1377075561-20386330411607062238-20562689551362947076-16622522391590774337-1602150964 \??\C:\Windows\system32\conhost.exe -1433651241-432189305427563205639060018-18047634141397559176297602288-1883496784 \??\C:\Windows\system32\conhost.exe -156869107415401928351746869632-1798706562-19033898351572960895-1754845428-1355110895 \??\C:\Windows\system32\conhost.exe-1743272765-655294516465288594-608636042-339993225-159327858603278525-1772865788 \??\C:\Windows\system32\conhost.exe -17491780459634085391671686591-1783269839-821822246-16369388812144973389679128079

Nueva información

- Claves de registro
- Archivos
- Comandos
- Árbol de procesos

Nuevos desafíos

Asumimos falsos positivos y negativos

Demasiado ruido

Desconocemos el flujo de ejecución Desconocemos parte de las TTPs

Objetivos generales

ENCONTRAR IOCS

CONOCER TECNOLOGÍAS USADAS

DETERMINAR TÁCTICAS ANTIANÁLISIS

RECABAR DETALLES TÉCNICOS

Determinar librerías

- Habituales
- Poco habituales
- Desconocidas
- ¿Se usan habitualmente con fines maliciosos?

Determinar etapas posteriores de despliegue

- Código ofuscado
- Recursos empaquetados/comprimidos
- Recursos encriptados
- Otros recursos

Objetivos concretos

Funciones a cazar

- Funciones conocidas
 - **ShellExecute/ShellExecuteEx** Ejecuta comandos
 - CreateRemoteThread Usado para inyectar código
 - VirtualAllocEx Usado para inyectar código
 - ReadProcessMemory/WriteProcessMemory Usado para inyectar código
- Funciones... ¿desconocidas?
 - MS Docs
 - Internet
 - Google
 - Si Google falla → Yandex

Herramientas

- Software
 - PE Studio
 - Detect it Easy (DiE)
 - 7zip
- Máquinas Virtuales
 - Ubuntu/Kali/Otro Linux
 - Windows

DOS Header

Fuente: TryHackMe

DOS Stub

NT Headers

- PE signature
- File Header
- Optional Header

Section Table

Section 1

Section 2

Section 3

Section 4

Section n

¿Qué es un PE?

.text – Código

¿Qué son las secciones en un ejecutable?

Algunas secciones habituales:

.data – Datos inicializados (variables) – **int myNum = 6;**

.bss – Datos sin inicializar (variables)– int myNum;

.rdata – Datos inicializados (constantes) – *const int myNum = 6;*

.rsrc – Recursos (imágenes, audio, otros archivos)

Secciones

PEStudio

- Información del ejecutable
- Texto
- Dependencias
- Funciones importadas
- Funciones exportadas
- IOCs

Información del ejecutable

Strings

- Importaciones ocultas
- Scripts
- Pistas

Dependencias

Funciones

DiE

- Entropía
 - Detección de compresión/encriptación
- Detección de compilador y lenguaje
- Detección de archivos embebidos

Compilador y lenguaje

- Útil para reversing posterior
- Resuelve posibles dudas técnicas

Entropía, compresión y encriptación

• ¿Qué es?

- Medida del desorden
- Detecta compresión/encriptación

• ¿Cómo se usa?

- Rojo (7-8): Compresión/encriptación
- Verde (4-6): Texto
- Azul (o): Padding

Extracción de archivos

- Detecta archivos embebidos
- Etapas secundarias
- Utilidades del malware
- Otros archivos maliciosos

Nuevos datos

- ¿Hay más stages/etapas?
- Funciones habituales
- Otros recursos

Objetivos

- Comportamiento
- Registro/archivos precisos
- ¿Artefactos?
- ¿C2?

Herramientas

- ProcDOT
- Graphviz
- Windump
- Wireshark
- ProcMon (SysInternals)

Comenzar a capturar datos

IMPORTANTE VERIFICAR

Ejecutar malware

(dejarlo correr un rato)

Exportar datos

ProcDOT: CSV con todo incluido

Wireshark: K12 TXT

Detonación

¿Por qué importa ahora el análisis estático junto al dinámico?

- ¿Qué y cómo?
- ¿Nos hemos perdido algo?
- Análisis informado

Redacción de informe

- Obsidian/Visio/draw.io (gráficos)
- Obsidian/Word (redacción)

Detalles técnicos y TTPs

- ¿Cómo es el acceso inicial?
- ¿Persiste? ¿Cómo?
- ¿Se propaga? ¿Cómo?
- ¿Exfiltra datos? ¿Cuáles?
- ¿Alguna cosa más?

Mitigación y respuesta

- ¿Cómo se elimina?
- ¿Cómo se previene?
- ¿Pasos posteriores de respuesta?

¿Preguntas?

My reaction to that information:

