Equivariant Chow Polynomials of Matroids

Nutan Nepal

North Carolina State University

Goal

Define the equivariant Chow polynomial $\underline{H}_{\mathsf{M}}^G(x) \in \mathrm{VRep}_G[x]$ of a matroid M :

$$H_{\mathsf{M}}^{G}(x) = P(A_0) + P(A_1)x + \cdots + P(A_{\mathsf{rk}(M)-1})x^{\mathsf{rk}(M)-1}$$

and describe some of its properties.

Introduction

A matroid M on the ground set E can be identified with a geometric lattice $\mathcal{L}(M) \subseteq 2^{[n]}$

Figure 1:Lattice of flats of the matroid on the complete graph K_4 .

Figure 2: Lattice of flats of the matroid U(3,4).

Chow rings of matroids

For a loopless matroid M on [n] the Chow ring \underline{CH}_M is defined as:

$$\underline{\mathrm{CH}}_{\mathsf{M}} := \mathbb{Z}\left[\{x_F\}_{F \in \mathcal{L}(\mathsf{M}) \setminus \{\varnothing\}}\right] / (I + J)$$

where I is the ideal $\langle x_F x_G : F, G \text{ are incomparable} \rangle$ and J is the ideal $\langle \sum_i x_F : F \ni i \rangle$ for $1 \le i \le n$. The ring is graded and has a basis given by the following **FY-monomials**:

$$x_{F_1}^{m_1} x_{F_2}^{m_2} \cdots x_{F_k}^{m_k} : \varnothing = F_0 \subset F_1 \subset \cdots \subset F_k;$$

 $0 \le m_i \le \operatorname{rk}(F_i) - \operatorname{rk}(F_{i-1}) - 1.$

The restriction on the exponents m_i of x_{F_i} ensures that there are exactly $\operatorname{rk}(M)$ graded pieces. The (non equivariant) Chow polynomial $\underline{\mathrm{H}}_{\mathsf{M}}$ is defined as the Hilbert series of $\underline{\mathrm{CH}}_{\mathsf{M}}$:

$$\underline{\mathbf{H}}_{\mathsf{M}}(x) = a_0 + a_1 x + \cdots + a_{\mathrm{rk}(M)-1} x^{\mathrm{rk}(M)-1}$$

where a_i is the rank of degree *i* piece in \underline{CH}_{M} .

The Chow ring of $M(K_4)$ above is

$$\mathbb{Z} \oplus \mathbb{Z}(x_{124}, x_{135}, x_{25}, x_{16}, x_{34}, x_{236}, x_{456}, x_{1234}) + \mathbb{Z}(x_{1234})$$

Augmented Chow rings of matroids

The **augmented Chow ring** CH_M can be defined as:

$$CH_{\mathsf{M}} := \frac{\mathbb{Z}\left[\{x_F\}_{F \in \mathcal{L}(\mathsf{M})\setminus[n]} \cup \{y_1, \dots, y_n\}\right]/(I+J)}{\langle y_i - \sum_{F:i \notin F} x_F \rangle_{i=1,2,\dots,n}}$$

where I is the ideal $\langle x_F x_G : F, G \text{ are incomparable} \rangle$ and J is the ideal $\langle y_i x_F : i \notin F \rangle$.

Lemma [Eur-Huh-Larson]

The ring CH_M has the following monomial basis:

$$x_{F_1}^{m_1} x_{F_2}^{m_2} \cdots x_{F_k}^{m_k} : \varnothing = F_0 \subset F_1 \subset \cdots \subset F_k; \ m_1 \le \operatorname{rk} F_1,$$

$$0 \le m_i \le \operatorname{rk}(F_i) - \operatorname{rk}(F_{i-1}) - 1.$$

The augmented Chow ring is itself a Chow ring some other matroid.

Equivariant Chow Polynomial

For a matroid M with an action of a group G, there is an induced action on the Chow ring of M. It can be shown that G acts on each graded piece of $\underline{\mathrm{CH}}_{\mathsf{M}}$ separately by permuting the FY-monomials of that degree. The **equivariant Chow polynomial** $\mathrm{H}_{\mathsf{M}}^G(x) \in \mathrm{VRep}_G[x]$ is defined as:

$$\mathrm{H}^G_\mathsf{M}(x) = P(FY^0) + P(FY^1)x + \cdots P(FY^{\mathrm{rk}(M)-1})x^{\mathrm{rk}(M)-1}$$
 where $P(FY^i)$ denotes the permutation representation of G on the set FY^i of degree i FY-monomials.

Properties

Theorem [Angarone-Nathanson-Reiner]

Let M be a simple matroid of rank r+1 with G a group of automorphisms of M. Then there exist

- G-equivariant bijections $\pi: FY^k \to FY^{r-k}$ for $k \leq r/2$, and
- G-equivariant injections $\lambda : FY^k \to FY^{k+1}$ for k < r/2.

Definition of τ_i

Example of CFT

Complete CFT example

Main conjecture (proof in progress)

The bijection T determines T on simple perverse sheaves; that is, $\mathbb{T}(IC(\mathcal{O}_{\lambda})) = IC(\mathcal{O}_{\mathsf{T}(\lambda)}).$

References

The bijection T determines T on simple perverse sheaves; that is, $\mathbb{T}(IC(\mathcal{O}_{\lambda})) = IC(\mathcal{O}_{\mathsf{T}(\lambda)}).$