Conferencia 8 - Combinatoria

January 11, 2025

Binomio de Newton

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

 $\binom{n}{k}$ se conocen como coeficientes binomiales

Propiedades de los Coeficientes

1.
$$\binom{n}{k} = \binom{n}{n-k}$$

Demostración

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{n}{n-k} = \frac{n!}{(n-k)!(n-(n-k))!} = \frac{n!}{(n-k)!(n-n+k))!} = \frac{n!}{(n-k)!(k)!}$$

2.
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Demostración - 1

 $\binom{n}{k}$ es la cantidad de subconjuntos de tamaño k que pueden obtenerse de un conjunto con cardinalidad n.

Esta cantidad es también igual a la cantidad de subconjuntos de tamaño k en la que no aparece un elemento a_i más la cantidad de conjuntos del mismo tamaño en los que sí aparece.

La cantidad de conjuntos en los que no aparece a_i es igual a $\binom{n-1}{k}$

La cantidad de conjuntos en los que sí aparece a_i es igual a $\binom{n-1}{k-1}$

Luego
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Demostración - 2

Desarrollando tanto $\binom{n-1}{k}$ como $\binom{n-1}{k-1}$ y luego se suman y se tiene $\binom{n}{k}$

3.
$$\binom{n}{k}/\binom{n}{k-1} = \frac{n-k+}{k}$$
 para $1 \le k \le n$

o lo que es lo mismo $k \binom{n}{k} = (n-k+1) \binom{n}{k-1}$

Demostración

Se desarrolla $\binom{n}{k}$ y se desarrolla $\binom{n}{k-1}$ y se divide el primero entre el segundo y el resultado es $\frac{n-k+1}{k}$

1

4.
$$\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}$$

o lo que es lo mismo $\sum_{j=k}^{n} \binom{j}{k} = \binom{n+1}{k+1}$

Demostración

Se desarrolla $\binom{n+1}{k+1}$ como $\binom{n}{k} + \binom{n}{k+1}$ luego se desarrolla $\binom{n}{k+1}$ como $\binom{n-1}{k} + \binom{n-1}{k+1}$ y así sucesivamente hasta llegar al término $\binom{k+2}{k+1}$ que se desarrolla como $\binom{k+1}{k} + \binom{k+1}{k+1}$ y $\binom{k+1}{k+1}$ es igual a $\binom{k}{k}$

Ejemplo

¿De cuántas formas diferentes se puede escoger un grupo de 5 personas de un total de 10 donde una de las 5 es líder?

Vía 1:

Hay $\binom{10}{5}$ personas posibles conjuntos de 5 personas, y como en cada conjunto cada una de las personas puede ser líder, entonces se tiene $5\binom{10}{5}$

Vía 2:

Tomemos todos los subconjuntos posibles en los que no hay líderes aún $\binom{10}{4}$, entonces cada uno de ellos puede ser liderado por una de las personas que no está en el conjunto, que son 10-4 por lo que se tiene $6\binom{10}{4}$

Noten que si se generaliza el problema a un grupo de tamaño k de un total de n posibles dónde cada uno de los miembros puede liderar, entonces se tiene $k\binom{n}{k} = (n-k+1)\binom{n}{k-1}$

Definición. Un multiconjunto es el par A, m > donde A es un conjunto y m es una función $m : A \to \mathbb{N}$.

Se dice que para cada a de A la multiplicidad de a es el número m(a).

Si el conjunto A es finito entonces el tamaño o longitud del multiconjunto $\langle A, m \rangle$ es la suma de todas las multiplicidades de los elementos de A, o sea, $\sum_{a \in A} m(a)$

Un submulticonjunto $\langle B, n \rangle$ del multiconjunto $\langle A, m \rangle$ cumple que $B \subseteq A$ y $n : B \to \mathbb{N}$ tal que $n(x) \leq m(x)$ para todo $x \in B$

Teorema. Sea un multiconjunto N con n objetos donde hay n_1 objetos de tipo 1, n_2 objetos de tipo 2 y así hasta n_k objetos de tipo k donde $n = \sum_{i=1}^k a_i$ Entonces el número de permutaciones distintas de N es $\frac{n!}{n_1!n_2!...n_k!}$

Ejemplo

Pruebe que $k!^{(k-1)!}|(k!)!$

Si se tiene un conjunto de k! elementos donde hay (k-1)! tipos diferentes y de cada tipo hay k elementos entonces la cantidad de permutaciones distintas de este conjunto es

$$\frac{(k!)!}{k!k!...k!} = \frac{(k!)!}{k!^{(k-1)!}}$$

luego como el número de permutaciones es un número entero entonces $k!^{(k-1)!}|(k!)!$

Teorema. El número de formas de particionar un conjunto de n elementos distintos en k categorías diferentes de forma que haya n_1 objetos en la categoría 1, n_2 objetos en la categoría 2 y así hasta llegar a n_k objetos en la categoría k, donde $\sum_{i=1}^k n_i$ es $\frac{n!}{n_1!n_2!...n_k!}$

Demostración

 $\binom{n}{n_1}$ cantidad de formas de asignar n_1 objetos a las categoría 1 luego $\binom{n-n_1}{n_2}$ es la cantidad de formas de dar n_2 objetos a las categoría 2 por tanto $\binom{n}{n_1}\binom{n-n_1}{n_2}\binom{n-n_1-n_2}{n_3}\ldots\binom{n-n_1-n_2-\ldots-n_k-1}{n_k}$ sería el total de formas

Cuando se desarrolla esta expresión se llega a $\frac{n!}{n_1!n_2!...n_k!}$

Teorema. El número de formas de particionar n objetos iguales en k categorías diferentes es $\binom{n+k-1}{k-1}$

Demostración

Este problema es equivalemte a tener una secuencia de n+k-1 elementos iguales y convertir a k-1 de estos elementos en separadores. Luego, la solución tenemos el conjuntos de todas las posiciones que tiene tamaño n+k-1 habría que obtener todas las posibles combinaciones de k-1 posiciones y esto es $\binom{n+k-1}{k-1}$