

RED-EMC Test Report

For

MAXIIOT LTD

LoRaWAN

Model No.: GL5712-EX, GL5712-EA

Prepared For : MAXIIOT LTD

Address : No.60, Zhongshan Rd., Tucheng Dist, New Taipei, Taiwan 23680

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180830005-01E

Date of Receipt : Aug. 30, 2018

Date of Test : Aug. 30~Nov. 13, 2018

Date of Report : Nov. 13, 2018

Contents

1. General Information	
1. General Information	Ann
1.2. Description of Device (EUT)	Mbo.
1.3. Auxiliary Equipment Used During Test	
1.4. Description of Test Modes)
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test	
1.6. Description of Test Facility	{
1.7. Performance Criteria	
Summary of Test Results Emission Test	1
3. Emission Test	12
3.1. Conducted Emission Test at Main Ports	12
3.1.1. Test Standard and Limit	12
3.1.2. Test Setup	12
3.1.3. Test Procedure	13
3.1.4. Test Data	13
3.2. Radiated Emission Test.	10
3.2. Radiated Emission Test	16
3.2.2. Test Setup	17
3.2.3. Test Procedure	17
3.2.4. Test Data	18
4. Immunity Test	22
3.2.3. Test Procedure 3.2.4. Test Data 4. Immunity Test 4.1. Electrostatic Discharge Test	2
4.1.1. Test Standard and Specification	
4.1.2. Test Setup	23
4.1.3. Test Procedure	24
4.1.4. Test Data	25
4.2. Radiated, RF Electromagnetic Fields Test.	20
4.2.1. Test Standard and Specification	26
4.2.2. Test Setup	20
4.2.3. Test Procedure	26
4.2.3. Test Procedure	27
APPENDIX I TEST SETUP PHOTOGRAPH	28
APPENDIX II EXTERNAL PHOTOGRAPH	
APPENDIX III INTERNAL PHOTOGRAPH	3

TEST REPORT

Applicant : MAXIIOT LTD

Manufacturer : MAXIIOT LTD

Product Name : LoRaWAN

Model No. : GL5712-EX, GL5712-EA

Trade Mark : MAXIIOT

Rating(s) : Input: 3.3V == 2A

Test Standard(s) : Draft ETSI EN 301 489-1 V2.2.0 (2017-03)

EN 55032: 2015 EN 55035: 2017

Final draft ETSI EN 301 489-3 V2.1.1 (2017-03)

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the EN 301 489-1, EN 301 489-3 & EN 55032 and EN 55035 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test		Aug. 30~Nov. 13,	2018	
Prepared By	ek Anbotek Anb	olivay la	Anbotek	
1 Tepared by	nboten Anbo	- No.	Ant stek	dna
IFICA	Anbotek Anbot	(Engineer / Oliay Y	(ang)	tek b
abotek Anbote K otek				
		Snavy M	eng	
Reviewer	Her Anbo Lek	O	no otek	
ek anbore Ans	tek Joo	Supervisor / Snowy	Meng)	Anbo
		hotek Ar		
		Sally Zhou	ng otolic Miles	
Approved & Authorized Signer		rek Apolek	Aupor An	
Anbotek Anbote Anb	tek Anbotek Anbi	(Manager / Sally Z	hang)	Annabotek

1. General Information

1.1. Client Information

Applicant	:	MAXIIOT LTD
Address		No.60, Zhongshan Rd., Tucheng Dist, New Taipei, Taiwan 23680
Manufacturer		MAXIIOT LTD
Address	:	No.60, Zhongshan Rd., Tucheng Dist, New Taipei, Taiwan 23680
Factory	:	MAXIIOT LTD
Address		No.60, Zhongshan Rd., Tucheng Dist, New Taipei, Taiwan 23680

1.2. Description of Device (EUT)

Product Name	:	LoRaWAN	ak Anbotek Anbotek Anbotek	
Model No.	:	GL5712-EX, GL5712-EA (Note: All samples are the same of "GL5712-EX" for test only.)	except the different connectors, so we prepare	
Trade Mark	:	MAXIIOT	Anbotek Anbotek Anbotek Anbote	
Test Power Supply	:	TX & RX: DC 5V via USB Port	Anbotek Anbotek Anbotek Anb	
Test Sample No.	:	S1(Normal Sample), S2(Enginee	ering Sample)	
		Operation Frequency:	868.1-868.5MHz	
		Number of Channel:	5 Channels	
		Modulation Type:	OOK Anbotek Anbotek	
Product Description	:	Software Version:	V1.0	
			Hardware Version:	V1.0
		Antenna Type:	Cylindrical Antenna	
		Antenna Gain(Peak):	5 dBi Anbotek Anbotek Anbotek	

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

PC		Manufacturer: DELL
PC	:	poter And K sotek Anbor An lek spoten Anbo
		M/N: Optiplex 3020 MT S/N: CN-079V51-70163-44 D-089K-400
		M/N: Optiplex 3020 MT S/N: CN-079V51-70163-4AD-089K-A00 Input Rating: AC 100-240V, 50-60Hz 5.4A
		Input Rating: AC 100-240V, 50-60Hz 5.4A
		ak anbote, And ak potek Anbot. All tek abotek
MONITOR		Manufacturer: DELL
		M/N: E1914Hf
		C/NL CN 024H2D 72072 410 AEID
		Input: 100V-240V 1 5A 50/60Hz
		Input:100V-240V, 1.5A, 50/60Hz TUV-GS, FCC, CE, KCC, VCCI
		k Anbote And tek abotek Anbot K antek Anboten
KEYBOARD	:	Manufacturer: DELL
		M/N: SK-8120
		S/N: CN-0DJ303-71010-49J-0M1V K-A00
		Input Rating: DC 5V, 0.05A
		LCE, FCC, VCCL KCC, TUV-GS
		lek bote And stek upor All k boten
MOUSE	:	Manufacturer: DELL
		$1 M/N \cdot MSIII_T$
		S/N: CN-0KW2YH-71616-488-1CBJ
		Input Rating: DC 5V, 0.1A
		Coblet 1 8m unchielded
		OF FOR MORE WOR FEW OR
		CE, FCC, VCCI, KCC, TUV-GS
WU	DV.	16.

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode			Description			
hotek	Mode 1	Aupor	tek abotek	TX Mode	otek Anbotek	Anb

	For Conducted Emission	
Final Test Mode	Description	
Mode 1	TX Mode	hotek Anboth

3	A 1.0, P.1,	For Radiated E	mission					
	Final Test Mode		D	escription				
	Mode 1	Anbor Air	ek T	ΓX Mode	Aupo	40.	h.	notek

1.5. Test Equipment List

Conducted Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
otek 1.	L.I.S.N. Artificial Mains	Rohde & Schwarz	ENV216	100055	Nov. 26, 2018	1 Year
unbotek	Network	Nonde & Sellwarz	Anboto	100033	1404. 20, 2016	Anbi Teal p
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 05, 2018	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
4.	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A

Radiated Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.0	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 05, 2018	1 Year
2.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
3.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
4.	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A
5.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year
6.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
7. ^{Anl}	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 19, 2018	1 Year

Electrostatic Discharge Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1. _K	ESD Simulators	3Ctest	ESD-30T	ES0131505	Nov. 26, 2018	1 Year

R/S Immunity Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
e¥1	Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
0°2	Amplifier	Amplifier Research	150W1000M3	309410	N/A	N/A
3	Amplifier	Amplifier Research	60S1G3	309433	N/A	N/A
4	Log-Periodic Antenna	Schwarzbeck	VULP9118E	00992	Aug. 17, 2018	3 Year
5	Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 19, 2018	3 Year
6	Power Sensor	Agilent	E9301A	MY41498906	Nov. 05, 2018	1 Year
7ote	Power Sensor	Agilent	E9301A	MY41498088	Nov. 05, 2018	1 Year
8	Power Meter	Agilent	E4419B	GB40202909	Nov. 05, 2018	1 Year
9	Field Probe	ETS-Lindgren	HI-6006	00212747	Apr. 20, 2017	3 Year
10	software	EMtrace	EM 3	N/A	N/A	N/A

1.6. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

1.7. Performance Criteria

1.7.1. For EMS Test:

- \sqrt{A} : Normal performance within the specification limits;
- $\sqrt{}$ B: Temporary degradation or loss of function or performance which is self-recoverable;
- $\sqrt{}$ C: Temporary degradation or loss of function or performance which requires operator intervention or system reset;
- $\sqrt{}$ D: Degradation or loss of function which is not recoverable due to damage of equipment (components) or software, or loss of data

Note: The manufacturer's specification may define effects on the EUT which may be considered insignificant, and therefore acceptable.

This classification may be used as a guide in formulating performance criteria, by committees responsible for generic, product and product-family standards, or as a framework for the agreement on performance criteria between the manufacturer and the purchaser, for example where no suitable generic, product or product-family standard exists.

1.7.2. For EN 301 489-3:

The performance criteria are:

- performance criteria A for immunity tests with phenomena of a continuous nature;
- performance criteria B for immunity tests with phenomena of a transient nature;
- performance criteria C for immunity tests with power interruptions exceeding a certain time.

The equipment shall meet the minimum performance criteria as specified in the following clauses.

			•. •
Lable	1: P	erformance	e criteria

Criteria	During test	After test
Α	Shall operate as intended.	Shall operate as intended.
	(see note 1).	Shall be no degradation of performance (see note 3).
	Shall be no loss of function.	Shall be no loss of function.
	Shall be no unintentional transmissions.	Shall be no loss of stored data or user programmable functions.
В	May show loss of function (one or more).	Functions shall be self-recoverable.
	May show degradation of performance	Shall operate as intended after recovering.
	(see note 2).	Shall be no degradation of performance (see note 3).
	Shall be no unintentional transmissions.	Shall be no loss of stored data or user programmable
		functions.
С	May be loss of function (one or more).	Functions shall be recoverable by the operator.
		Shall operate as intended after recovering.
NOTE 4	On another one interested of decisions the Area allows a lev	Shall be no degradation of performance (see note 3).
		vel of degradation not below a minimum performance
		of the apparatus as intended. In some cases the
		eplaced by a permissible degradation of performance. sible performance degradation is not specified by the
		ed from the product description and documentation
		e user may reasonably expect from the apparatus if
1	used as intended.	doci may reasonably expect from the apparatus if
		nderstood as a degradation to a level not below a
		anufacturer for the use of the apparatus as intended. In
		e level may be replaced by a permissible degradation
	of performance.	- · · · · · · · · · · · · · · · · · · ·
		sible performance degradation is not specified by the
		ed from the product description and documentation
		user may reasonably expect from the apparatus if
	used as intended.	
		understood as no degradation below a minimum
		er for the use of the apparatus as intended. In some
		I may be replaced by a permissible degradation of
		operating data or user retrievable data is allowed.
		sible performance degradation is not specified by the
		ed from the product description and documentation
		e user may reasonably expect from the apparatus if
	used as intended.	

Performance criteria for Continuous phenomena applied to Transmitters (CT)

The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an ACKnowledgement (ACK) or Not ACKnowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Transient phenomena applied to Transmitters (TT)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Continuous phenomena applied to Receivers (CR)

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the

transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Transient phenomena applied to Receivers (TR)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Continuous phenomena applied to Transmitters (CT)

A communication link shall be established at the start of the test, and maintained during the test, see clauses 4.2.3 and 4.2.4.

During the test, the uplink speech output level shall be at least 35 dB less than the previously recorded reference levels, when measured through an audio band pass filter of width 200 Hz, centred on 1 kHz (audio breakthrough check).

NOTE: When there is a high level background noise present the filter bandwidth can be reduced down to a minimum of 40 Hz.

At the conclusion of the test, the EUT shall operate as intended with no loss of user control functions or stored data, and the communication link shall have been maintained. In addition to confirming the above performance during a call, the test shall also be performed in idle mode, and the transmitter shall not unintentionally operate.

Performance criteria for Transient phenomena applied to Transmitters (TT)

A communications link shall be established at the start of the test, see appropriate clauses 4.2 to 4.2.4.

At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link. At the conclusion of the total test comprising the series of individual exposures, the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained. In addition to confirming the above performance during a call, the test shall also be performed in idle mode, and the transmitter shall not unintentionally operate.

Performance criteria for Continuous phenomena applied to Receivers (CR)

A communications link shall be established at the start of the test, see appropriate clauses 4.2 to 4.2.6. During the test, the RXQUAL of the downlink shall not exceed the value of three, measured during each individual exposure in the test sequence.

During the test, the downlink speech output level shall be at least 35 dB less than the previously recorded reference levels, when measured through an audio band pass filter of width 200 Hz, centred on 1 kHz (audio breakthrough check).

NOTE: When there is a high level background noise present the filter bandwidth can be reduced down to a minimum of 40 Hz. At the conclusion of the test, the EUT shall operate as intended with no loss of user control functions or stored data, and the communication link shall have been maintained.

Performance criteria for Transient phenomena applied to Receivers (TR)

A communications link shall be established at the start of the test, see appropriate clauses 4.2. to 4.2.6. At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link. At the conclusion of the total test comprising the series of individual exposures, the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained.

2. Summary of Test Results

Γest Items	Standard	Basic Standard	Limit	Results
Conducted Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.3 & 8.4	EN 55032: 2015	Class B	PASS
Radiated Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.2	EN 55032: 2015	Class B	PASS
Harmonic Current Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.5	EN 61000-3-2: 2014	Class A	N/A
Voltage Fluctuations& Flicker	ETSI EN 301 489-1 V2.2.0 Clause 8.6	EN 61000-3-3: 2013	ek Aphotek	N/A
Anbotek Anbotel	EMC In	nmunity	notek Anbot	
Test Items	Standard	Basic Standard	Performance Criteria	Results
Electrostatic Discharge	ETSI EN 301 489-1 V2.2.0 Clause 9.3	EN 61000-4-2 :2009	Anbotek B hotek	PASS
RF Electromagnetic Field	ETSI EN 301 489-1 V2.2.0 Clause 9.2	EN 61000-4-3: 2006 +A1: 2008+A2: 2010	ek Anbotek	PASS
Fast transients,	ETSI EN 301 489-1 V2.2.0 Clause 9.4	EN 61000-4-4: 2012	potek B Anbox	N/A
Surges	ETSI EN 301 489-1 V2.2.0 Clause 9.8	EN 61000-4-5: 2014+A1: 2017	Aup B.k	N/A
Radio frequency,	ETSI EN 301 489-1 V2.2.0 Clause 9.5	EN 61000-4-6: 2014	Anbotek A	N/A
Volt. Interruptions Volt. Dips	ETSI EN 301 489-1 V2.2.0 Clause 9.7	EN 61000-4-11: 2004	B/C/C NOTE(3)	N/A
OTE:	notek Anbotek Anbo	ok spotek	Anbores Anb	rek
(2) Alternatively,	s test is not applicable in this for equipment intended to be ationcentre, the class A limits	be used exclusively in an	industrial envir	conment or
19 ¹ / ₂	00% reduction – Performance	V45	K Vupos	VIII

Voltage Interruption: 0% Interruption - Performance Criteria C

3. Emission Test

3.1. Conducted Emission Test at Main Ports

3.1.1. Test Standard and Limit

Test Standard	Draft ETSI EN 301	489-1 V2.2.0	Clause 8.3 & 8	3.4	Anbotek	Aupor
Basic Standard	EN 55032: 2015	nbotek	Anbore	Andhotek	Anbotek	Anbo

Limits for conducted emissions

	F	Maximum RF Line	e Voltage (dBuV)
	Frequency	Quasi-peak Level	Average Level
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
	500kHz~5MHz	56	46
	5MHz~30MHz	60	50

Limits for conducted emissions of equipment intended to be used in telecommunication centres and industrial environment

	Ema avv am avv	Maximum RF Line Voltage (dBuV)				
T4 I ::4	Frequency	Quasi-peak Level	Average Level			
Test Limit	150kHz~500kHz	79 Hotek	Anboten 66			
	500kHz~30MHz	Anbou 73 Am abotek	Anboten 60 Anbo otek			

3.1.2. Test Setup

3.1.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ETSI EN 301 489-1 V2.2.0 & EN 55032: 2015 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

For the actual test configuration, please refer to the related Item EUT Test Photos.

3.1.4. Test Data

PASS

The EUT should be compliance to the limit of Class B

Only the worst case data was showed in the report, please to see the following pages

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: TX & RX: DC 5V via USB Port

Comment: Live Line

Tem.: 24.6℃ Hum.: 45%

12

0.7300

20.05

34.23

46.00

-11.77

AVG

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: TX & RX: DC 5V via USB Port

Comment: Neutral Line

Tem.: 24.6℃ Hum.: 45%

3.2. Radiated Emission Test

3.2.1. Test Standard and Limit

Test Standard	Draft ETSI EN 30	1 489-1 V2	.2.0 Clause 8.2	hotek	Anbotek	Anbo	be
Basic Standard	EN 55032: 2015	Anbotek	Anbore	An	Anbotek	Anbo	

Radiated Emission Test Limit (Below 1000MHz)

	Limit	$t (dB\mu V/m)$			
Frequency (MHz)	Quasi-peak Level				
(MITIZ)	Class B	Class A			
30MHz~230MHz	ek abotek 40 Anbot	anbot 50 Anbo			
230MHz~1000MHz	47	57° Anbou			

Radiated Emission Test Limit (Above 1000MHz)

E.		Limit (dBμV/m)					
Frequency (MHz)	Clas	s B	Class A				
(MITZ)	Peak	Average	Peak	Average			
1000 MHz -3000 MHz	70	50	76	56			
3000 MHz -6000 MHz	Anbote 74	54 oo ^{tek}	80	60			

Radiated Emission Test Limit for FM Receivers

Frequency		(dBμV/m) -peak Level		
(MHz)	Fundamental	Harmonics		
30MHz~230MHz	A 60	el anboten 52 nb		
230MHz~300MHz	60	tek nbotek 52 Anbotek		
300MHz~1000MHz	60	56		

Frequency Range of Radiated Measurement

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower

3.2.2. Test Setup

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

3.2.3. Test Procedure

- 1) The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- 2) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 3) The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold

mode when the test frequency is below 1GHz.

The test receiver/spectrum was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.

6) For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak/Average detection at frequency above 1GHz.

3.2.4. Test Data

PASS

The EUT should be compliance to the limit of Class B

Only the worst case data was showed in the report, please to see the following pages

Test Results (30~1000MHz)

Job No.: SZAWW180830005-01E Temp.(℃)/Hum.(%RH): Tem.: 24.3℃ Hum.: 55%

Standard: EN301489_Class B_3m Power Source: TX & RX: DC 5V via USB Port

Test Mode: Mode 1 Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: SZAWW180830005-01E Temp.(℃)/Hum.(%RH): Tem.: 24.3℃ Hum.: 55%

Standard: EN301489_Class B_3m Power Source: TX & RX: DC 5V via USB Port

Test Mode: Mode 1 Polarization: Vertical

Test Results (1GHz~6GHz)

Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
1624.51	54.03	-2.35	51.68	70.00	-18.32	$\mathbf{H}_{\rho_{O_{\ell}}}$	PEAK
2068.01	53.17	-2.75	50.42	70.00	-19.58	HAnb	PEAK
2041.63	54.36	-3.99	50.36	70.00	-19.64	ek H P	PEAK
3963.56	52.99	-4.56	48.43	74.00	-25.57	poteH	PEAK
4387.64	49.25	-5.22	44.03	74.00	-29.97	"upH _{SK}	PEAK
4875.75	45.54	-5.68	39.86	74.00	-34.14	Hotel	PEAK
1624.51	40.65	-2.35	38.30	50.00	-11.70	H	AVG
2068.01	43.47	-2.75	40.72	50.00	-9.28	ek H	AVG
2041.63	39.68	-3.99	35.69	50.00	-14.31	Н	AVG
3963.56	43.89	-4.56	39.33	54.00	-14.67	H	AVG
4387.64	40.07	-5.22	34.84	54.00	-19.16	Anbou	AVG
4875.75	37.45	-5.68	31.77	54.00	-22.23	PH	AVG
1487.17	53.24	-3.15	50.09	70.00	-19.91	VAnbo	PEAK
2127.54	50.08	-3.06	47.02	70.00	-22.98	V N	PEAK
1982.31	45.43	-3.82	41.61	70.00	-28.39	otek	PEAK
4164.52	55.08	-5.02	50.06	74.00	-23.94	NapoVK	PEAK
4518.81	51.82	-4.58	47.23	74.00	-26.77	Votek	PEAK
4930.49	46.48	-5.49	40.99	74.00	-33.01	Vabo	PEAK
1487.17	38.32	-3.15	35.17	50.00	-14.83	V	AVG
2127.54	44.40	-3.06	41.34	50.00	-8.66	V	AVG
1982.31	37.72	-3.82	33.90	50.00	-16.10	V	AVG
4164.52	40.30	-5.02	35.28	54.00	-18.72	Viek	AVG
4518.81	42.22	-4.58	37.64	54.00	-16.36	A V	AVG
4930.49	40.10	-5.49	34.61	54.00	-19.39	\mathbf{V}_{Upo}	AVG

Remark:

1. Level = Receiver Read level + Antenna Factor

4. Immunity Test

General Performance Criteria

◆ Performance criteria for continuous phenomena applied to transmitters and receivers (CT/CR)

During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

◆ Performance criteria for transient phenomena applied to transmitters and receivers (TT/TR)

After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

Performance criteria for equipment which does not provide a continuous communication link

For radio equipment which does not provide a continuous communication link, the performance criteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in CT/CR and TT/TR.

◆ Performance criteria for ancillary equipment tested on a stand alone basis

If ancillary equipment is intended to be tested on a stand alone basis, the performance criteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in CT/CR and TT/TR.

4.1. Electrostatic Discharge Test

4.1.1. Test Standard and Specification

Test Standard	Draft ETSI EN 301 489-1 V2.2.0 Clause 9.3/ EN 55035 Clause 4.2.1
Basic Standard	EN 61000-4-2: 2009
Discharge Impedance:	330 ohm / 150 pF
Performance Criterion:	CT/CR
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV Contact Discharge: 2kV/4kV (Direct/Indirect)
Polarity:	Positive & Negative
Number of Discharge:	Air Discharge: min. 20 times at each test point Contact Discharge: min. 200 times in total
Discharge Mode:	Single Discharge
Discharge Period:	1 second minimum

4.1.2. Test Setup

Note:

TABLE-TOP EQUIPMENT:

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940kohm total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT:

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

4.1.3. Test Procedure

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

1) Contact discharge was applied to conductive surfaces and coupling planes of the EUT.

During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions $0.5m \times 0.5m$, is placed parallel to, and positioned at a distance 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

2) Air discharges at insulation surfaces of the EUT.

It was at least ten single discharges with positive and negative at the same selected point.

- 3) When applying direct discharges to a portable or handheld battery-powered EUT with a display screen, it may not be possible to observe the screen for a given EUT orientation. If observation of the screen is necessary during this test, the EUT may be mounted vertically using non-metallic supports.
- 4) For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.4. Test Data

Job No.: SZAWW180830005-01E Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: EN 61000-4-2 Power Source: TX & RX: DC 5V via USB Port

Test Mode: Mode 1

Item	Contact Discharge to coupli	Air Discharge at insulating		
Anbotek	Direct Contact Discharge	Indirect Contact Discharge	surfaces	
Test Voltage	Reaction of EUT / Result	Reaction of EUT / Result	Reaction of EUT / Result	
+2kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS	
-2kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS	
+4kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS	
-4kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS	
+6kV	Anbote Ant botek	Anbotek Anbot Atek	n.r.r. PASS	
-6kV	Anbote And Abotek	Anbotek Anbot A	n.r.r. PASS	
+8kV	ek Anbote And abotek	Anbotes Anbo	n.r.r. PASS	
-8kV	botek Anbourtek Anbot	ek Anboten Anbo	n.r.r. PASS	

Remarks: n.r.r. = no reaction recognized

Performace Criteria A observed and No any function degraded during the tests.

4.2. Radiated, RF Electromagnetic Fields Test

4.2.1. Test Standard and Specification

Y** W	Or VIII				
Test Standard	Draft ETSI EN 301 489-1 V2.2.0 Clause 9.2/ EN 55035 Clause 5				
Basic Standard	EN 61000-4-3: 2006+A1: 2008+A2: 2010				
Required Performance	And otek Anbotek Anbotek Anbotek Anbotek Anbotek				
Frequency Range	80MHz to 6GHz				
Field Strength	3 V/m Anbotek Anbotek Anbotek Anbotek Anbotek				
Modulation	1kHz Sine Wave, 80%, AM Modulation				
Frequency Step	1 % of preceding frequency value				
Polarity of Antenna	Horizontal and Vertical				
Test Distance	3 m nbot Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek				
Antenna Height	1.5 mAnbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek				
Dwell Time	at least 0.5 seconds				
7.11.					

4.2.2. Test Setup

4.2.3. Test Procedure

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber. The testing distance from antenna to the EUT was 3 meters.

- 1) The field strength level was 3V/m
- 2) The frequency range is swept from 80 MHz to 6000 MHz with the signal 80% amplitude modulated with a 1kHz sine wave.
- 3) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond, but shall in no case be less than 0.5s.

4) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

4.2.4. Test Data

Job No.: SZAWW180830005-01E Temp.(℃)/Hum.(%RH): 21.6℃/54.2%RH

Standard: EN 61000-4-3 Power Source: TX & RX: DC 5V via USB Port

Test Mode: Mode 1

Y. V.		100	Dr.	16,
Frequency Range (MHz)	Antenna Polarity	Field Strength	Azimuth	Result
Anbotek Anbotek	ek Anbotek	3 V/m (rms)	Front	otek Anbotek
80~6000	ootek H/Vooten	AM Modulated 1000Hz, 80%	Left	ØA □B □C □D
botek Anbotek	Anbotek Anb	abotek Anbotek	Right	otek Anbotek
Ambotek Anbot				
tek Anbotek				

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

Photo of Electrostatic Discharge Test

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

----- End of Report -----