## Applied Statistical Analysis

EDUC 6050 Week 13

Finding clarity using data

## Today/

# Categorical Outcomes

#### Categorical Outcomes

#### General Requirements

1. One or more categorical variables

Test of Independence

Goodness of Fit

| ID  | X | Y |
|-----|---|---|
| 1   | 0 | 0 |
| 2   | 2 | 1 |
| 3   | 1 | 0 |
| 4   | 2 | 1 |
| 5   | 0 | 1 |
| 5   | 0 | 1 |
| nce | 2 | 0 |
| 8   | 1 | 0 |

## Hypothesis Testing with Chi Square (Independence)

#### The same 6 step approach!

- 1. Examine Variables to Assess Statistical Assumptions
- 2. State the Null and Research Hypotheses (symbolically and verbally)
- 3. Define Critical Regions
- 4. Compute the Test Statistic
- 5. Compute an Effect Size and Describe it
- 6. Interpreting the results

- 1. Independence of data
- 2. Appropriate measurement of variables for the analysis
- 3. Expected frequency 5+

#### **Basic Assumptions**

- 1. Independence of data

2. Appropria Individuals are independent of each other (one person's scores does not affect another's)

#### **Basic Assumptions**

- 1. Independence of data
- 2. Appropriate measurement of variables for the analysis
- 3. Expeted frequency 5+

Here we need interval/ratio outcome

#### **Basic Assumptions**

1. Independen Variance around the line should 2. Appropulate be roughly equal across the whole line

3. Expected frequency 5+

#### Examining the Basic Assumptions

- 1. Independence: random sample
- 2. Appropriate measurement: know what your variables are
- 3. Expected frequency 5+: Check expected frequencies

#### State the Null and Research Hypotheses (symbolically and verbally)

| Hypothesis<br>Type     | Symbolic     | Verbal                                                   | Difference between means created by: |
|------------------------|--------------|----------------------------------------------------------|--------------------------------------|
| Research<br>Hypothesis | $OF \neq EF$ | Observed frequency is not equal to expected frequency    | True relationship                    |
| Null<br>Hypothesis     | OF = EF      | Observed frequency is the same as the expected frequency | Random chance (sampling error)       |

## B Define Critical Regions

How much evidence is enough to believe the null is not true?

generally based on an alpha = .05

Use software's p-value to judge if it is below .05

## Compute the Test Statistic

# Jamovi Tutorial

## Compute an Effect Size and Describe it

$$\phi = \sqrt{\frac{\chi^2}{n}}$$
 Cramer's  $\phi = \sqrt{\frac{\chi^2}{n(df)}}$ 

| φ           | Cramer's φ | Estimated Size of the Effect |
|-------------|------------|------------------------------|
| Close to .1 | Depends    | Small                        |
| Close to .3 | on df      | Moderate                     |
| Close to .5 | (pg 557)   | Large                        |

## Interpreting the results

"The voters' opinions of the president's policies were associated with the voters' political affiliations,  $\chi^2(2, N = 58) = 16.40$ , p = .02,  $\phi = .53$ . More democrats and fewer republicans approved of the president's policies than would be expected by chance." - pg 577.

#### Intro to Logistic Regression

So far, we have always wanted continuous outcome variables

But what if our outcome is a categorical variable??

Logistic Regression is just like linear regression but works with binary (dichotomous) outcomes

- Substance Use or Not
- Cancer or Not
- Buy it or Not

#### Logic of Logistic Regression



We are trying to find the best fitting S curve

#### Logic of Logistic Regression



#### Simple

- Only one predictor in the model
- Tells you if that one predictor is associated with the odds of Y = 1

#### Multiple

- More than one variable in the model
- Tells you if, while holding the other variables constant, if that predictor is associated with the odds of Y = 1

 Logistic does what regression does but with a little bit of mathematical

$$logit(Y) = \beta_0 + \beta_1 X + \epsilon$$

 Logistic does what regression does but with a little bit of mathematical

slope

$$logit(Y) = \beta_0 + \beta_1 X + \epsilon$$

intercept

 Logistic does what regression does but with a little bit of mathematical



$$logit(Y) = \beta_0 + \beta_1 X + \epsilon$$

#### **Example**

We have two variables, X and Y. X is continuous, Y is binary. We want to know if increases/decreases in X are associated (or predict) changes in the chance of Y equaling 1.

- It is trying to predict the outcome accurately using the information from the predictor
- Better prediction tells us that the predictor(s) is/are more strongly related to the outcome

#### General Requirements

- 1. Two or more variables,
- 2. Outcome needs to be binary
- 3. Others can be continuous or categorical

| ID                                                | X | Y |
|---------------------------------------------------|---|---|
| 1                                                 | 8 | 0 |
| 2                                                 | 6 | 1 |
| 3                                                 | 9 | 1 |
| <ul><li>3</li><li>4</li><li>5</li><li>6</li></ul> | 7 | 1 |
| 5                                                 | 7 | 0 |
| 6                                                 | 8 | 0 |
| 7                                                 | 5 | 1 |
| 8                                                 | 5 | 0 |

### Hypothesis Testing with Logistic Regression

#### The same 6 step approach!

- 1. Examine Variables to Assess Statistical Assumptions
- 2. State the Null and Research Hypotheses (symbolically and verbally)
- 3. Define Critical Regions
- 4. Compute the Test Statistic
- 5. Compute an Effect Size and Describe it
- 6. Interpreting the results

- 1. Independence of data
- 2. Appropriate measurement of variables for the analysis
- 3. Normality of distributions
- 4. Homoscedastic

- 1. Independence of data
- 2. Appr pria Individuals are independent of each other (one person's scores does not affect another's)
- 4. Homoscedastic

- 1. Independence of data
- 2. Appropriate measurement of variables for the analysis
- 3. Norm lity of distributions
- 4. Homo Here we need nominal outcome

- 1. Independ Residuals should be normally
- 2. Appropria distributed he analysis
- 3. Normality of distributions
- 4. Homoscedastic

- 1. Independence of data
- 2. Appropriation and the line should for the be roughly equal across the 3. Normality whole line
- 4. Homoscedastic

- 1. Independence of data
- 2. Appropriate measurement of variables for the analysis
- 3. Normality of distributions
- 4. Homoscedastic
- 5. Logistic Relationship
- 6. No omitted variables

- 1. Independence of data
- 2. Appropriate "S-shaped" curve should fit to the data
  3. Nor and the data
- 4. Homescedastic
- 5. Logistic Relationships
- 6. No omitted variables

#### **Basic Assumptions**

- 1. Independence of data
- 2. Appropriate measurement of vanishles for the Any variable that is related to

3. Normalit both the predictor and the

4. Homoupoutcome should be included in

5. Logistic the regression model

6. No omitted variables

#### Examining the Basic Assumptions

- 1. Independence: random sample
- 2. Appropriate measurement: know what your variables are
- 3. Normality: Histograms, Q-Q, skew and kurtosis
- 4. Homoscedastic: Scatterplots
- 5. Logistic: Scatterplots
- 6. No Omitted: check correlations, know the theory

#### State the Null and Research Hypotheses (symbolically and verbally)

| Hypothesis<br>Type     | Symbolic       | Verbal                                | Difference between means created by: |
|------------------------|----------------|---------------------------------------|--------------------------------------|
| Research<br>Hypothesis | $\beta \neq 0$ | X predicts Y                          | True relationship                    |
| Null<br>Hypothesis     | $\beta = 0$    | There is no <i>real</i> relationship. | Random chance (sampling error)       |

# B Define Critical Regions

How much evidence is enough to believe the null is not true?

generally based on an alpha = .05

Use software's p-value to judge if it is below .05

4

Compute the Test Statistic



#### Compute the Test Statistic



# Continuous Predictor

#### **Model Coefficients**

|          |        |               |                    |                          | 95% Confidence<br>Interval     |                                                                                                                                                                 |
|----------|--------|---------------|--------------------|--------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimate | SE     | Z             | р                  | Odds ratio               | Lower                          | Upper                                                                                                                                                           |
| 2.1381   | 1.3809 | 1.55          | 0.122              | 8.483                    | 0.566                          | 127.060                                                                                                                                                         |
| -0.0805  | 0.0333 | -2.42         | 0.016              | 0.923                    | 0.864                          | 0.985                                                                                                                                                           |
|          | 2.1381 | 2.1381 1.3809 | 2.1381 1.3809 1.55 | 2.1381 1.3809 1.55 0.122 | 2.1381 1.3809 1.55 0.122 8.483 | Estimate         SE         Z         p         Odds ratio         Lower           2.1381         1.3809         1.55         0.122         8.483         0.566 |

Note. Estimates represent the log odds of "subs = 1" vs. "subs = 0"

Estimate in "log-odds" units

The odds ratio is below 1 so as income increases, the odds of using substances decreases by ~1 - .923 = .077 (7.7% decrease)

OF0/ C - - f: - - - -

#### Continuous Predictor



How well can we predict substance use with just income?

Classification Table – subs

|          | Pred | licted |           |
|----------|------|--------|-----------|
| Observed | 0    | 1      | % Correct |
| 0        | 29   | 1      | 96.7      |
| 1        | 5    | 3      | 37.5      |

Note. The cut-off value is set to 0.5

### Categorical Predictor

#### **Model Coefficients**

|                               |          |       |        |       |            | 95% Confidence<br>Interval |       |
|-------------------------------|----------|-------|--------|-------|------------|----------------------------|-------|
| Predictor                     | Estimate | SE    | Z      | р     | Odds ratio | Lower                      | Upper |
| Intercept<br>Show:            | -1.504   | 0.553 | -2.721 | 0.007 | 0.222      | 0.0752                     | 0.657 |
| The Office –<br>Parks and Rec | 0.405    | 0.799 | 0.507  | 0.612 | 1.500      | 0.3131                     | 7.186 |

Note. Estimates represent the log odds of "subs = 1" vs. "subs = 0"

Estimate in "log-odds" units

The odds ratio is above 1 so individuals on The Office have an odds of using substances 50% (1.5 - 1 = .5 = 50%) higher than PR

Not Significant

#### Categorical Predictor



# Compute an Effect Size and Describe it

One of the main effect sizes for regression is  $R^2\,$ 

```
Odds \ Ratio = \frac{Odds \ of \ Y \ when \ X \ is \ one \ unit \ higher}{Odds \ of \ Y \ when \ X \ is \ not \ one \ unit \ higher}
```

# Interpreting the results

The logistic regression analysis showed that income significantly predicted the odds of substance use (OR = -.923, p = .016). As income increased by \$1000, the odds of using substances decreased by 7.7%.

### Multiple Logistic Regression

#### Multiple Logistic Regression

More than one predictor in the same model This change the interpretation just a little:

Slope is now the change in the odds of Y = 1 for a one unit change in X, while holding the other predictors constant.

#### Multiple Regression

Provides us with a few more things to think about

- 1. Variable Selection
- 2. Assumption Checks (much more difficult in logistic regression)
- 3. Multi-collinearity
- 4. Interactions

#### Variable Selection

#### Several Approaches

- 1. Forward
- 2. Backward
- 3. Lasso
- 4. Covariates then predictor of interest

### Variable Selection when theory isn't clear

Several Approaches

- 1. Forward
- 2. Backward
- 3. Lasso
- 4. Covariates then predictor of interest

I'd recommend these two

#### **Assumption Checks**

Difficult (we won't cover it in this class)

Jamovi doesn't provide many checks (only collinearity)

#### Multi-Collinearity

When two or more predictors are very related to each other or are linear combinations of each other

Check correlations

Dummy codes are correct (Jamovi does this automatically)

#### Interactions

Just as we do in linear models

Can have 2+ variables in the interaction



#### Interactions



# Questions?

# Please post them to the discussion board before class starts

## In-class discussion slides



### Application

Example Using
The Office/Parks and Rec Data Set

Hypothesis Test with Logistic Regression