## MATIGO - MARKING GUIDE FOR S.6 MATH 2 MOCK TERM 2 2024

| SNo. | Working                                                                                                                                                                                                                                                            | Marks                                                              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1    | (i). $\sum X = 110 + 101 + 91 + 89 + 122 + 115 + 106 + 109 + 112 + 105 + 106 = 1166$ $\therefore \text{ Mean value of } X = \frac{\sum X}{n} = \frac{1166}{11} = 106$ (ii).                                                                                        | <b>B1-</b> ∑ <i>X</i> <b>M1 A1-</b> division and output            |
|      | Median = $106$ $\begin{array}{c}                                     $                                                                                                                                                                                             |                                                                    |
|      | Interquartile range = $Q_3 - Q_1 = 112 - 101 = 11$                                                                                                                                                                                                                 | M1 A1-<br>subtraction<br>and output                                |
|      |                                                                                                                                                                                                                                                                    | 05                                                                 |
| 2    | (i).<br>Actual weight 24 54 $x$ Recorded weight 35 60 $x$ Difference 11 6 0 $ \frac{x-24}{54-24} = \frac{x-35}{60-35} \\ \frac{x-24}{30} = \frac{x-35}{25} \\ 25x-600 = 30x-1050 \\ 5x = 450 \\ x = 90 g$ (ii).<br>Actual weight 0 24 54 Recorded weight $y$ 35 60 | B1-identifying its extrapolation  M1-equating quotients  A1-output |
|      | $\frac{y-35}{60-35} = \frac{0-24}{54-24}$ $\frac{y-35}{25} = \frac{-24}{30}$ $y = 35 - \frac{24}{30} \times 25 = 15 \text{ g}$                                                                                                                                     | M1-equating quotitents A1-output                                   |

|   |                                                                                                                                                                                                                                                                                      | 05                                                                                    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 3 | $a = 4.2 \text{ m s}^{-2}$ $R$ $32 \text{ N}$ $32 \text{ sin} 20^{\circ}$ $32 \text{ cos} 20^{\circ}$ $4.5 \text{ g N}$                                                                                                                                                              | <b>B1-</b> force diagram                                                              |
|   | Resolving vertically gives: $R + 32 \sin 20^\circ = 4.5g$ $R = 4.5 \times 9.8 - 32 \sin 20^\circ$ $= 33.1554 \text{ N}$ Resolving horizontally gives: $32 \cos 20^\circ - \mu R = ma$ $32 \cos 20^\circ - \mu \times 33.1554 = 4.5 \times 4.2$ $33.1554\mu = 11.1702$ $\mu = 0.3369$ | M1-resolving vertically B1-normal raction M1-resolving horizontally A1-value of $\mu$ |
| 4 | $\sum W = x + 2x + y + y + 6 = 40$ $3x + 2y = 34 \longrightarrow (1)$ Weighted average price index = $\frac{\sum (I_{2004} \times W)}{\sum W}$                                                                                                                                       | <b>B1-</b> eqn 1                                                                      |
|   | $126.7 = \frac{(110 \times x) + (140 \times 2x) + (130 \times y) + [118 \times (y+6)]}{40}$ $126.7 = \frac{110x + 280x + 130y + 118y + 708}{40}$ $5068 = 390x + 248y + 708$                                                                                                          | <b>M1-</b> substitution                                                               |
|   | $390x + 248y = 4360 \longrightarrow (2)$ Equation $130 \times (1) - (2)$ gives,                                                                                                                                                                                                      | B1-eqn 2 M1-solving                                                                   |
|   | From equation (1),<br>$3x + 2 \times 5 = 34$ $3x = 24$ $x = 8$                                                                                                                                                                                                                       | <b>A1-</b> both <i>x</i> and <i>y</i> correct                                         |

|     |                                                                                                                                                                                                                                                | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5   | $y_n = \frac{1}{2x_n + 1}$ , $h = \frac{0.5 - 0.1}{6 - 1} =$                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 0     0.1     0.83333       1     0.18     0.       2     0.26     0.       3     0.34     0.       4     0.42     0.       5     0.5     0.5                                                                                                  | $y_1, y_4$ 73529  65789  59524  54348 $[x_1, y_4, y_4, y_4, y_4, y_4, y_4, y_4, y_4, y_4, y_4  [x_1, y_4, y_4$ |
|     | $\approx \frac{1}{2} \times 0.08 \times [1.33333 + 2 \times 2.53]$ $\approx 0.2558852 \approx 0.256 (3 \text{ s. f})$                                                                                                                          | M1- substitution A1-output (strictly 3 s.f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | (ii).<br>$v_A = 10 \text{ km h}^{-1}$ $10 \text{ km h}^{-1}$ $cos \theta = \frac{6}{10}, \implies \theta = 53.13^{\circ}$ $\therefore \text{ Bearing} = 053.13^{\circ}$ Shortest distance, $d = AR$ $= 8 \sin 53.13^{\circ} = 6.40 \text{ km}$ | A1-stating required hearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7 ( | (i). $\frac{d}{dt} \left( \frac{2at - t^2}{a^2} \right) = \frac{2a - 2t}{a^2}$                                                                                                                                                                 | 05 M1-derivative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|   | $\frac{d}{dt}(1) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>M1-</b> derivative                        |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|   | $\therefore f(t) = \begin{cases} \frac{2a - 2t}{a^2} & \text{; } 0 \le t \le a \\ 0 & \text{; elsewhere} \end{cases}$ (ii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>B1-</b> correct p.d.f                     |
|   | P(20 \le t \le 40) = F(40) - F(20)<br>=\frac{2a \times 40 - 40^3}{a^2} - \frac{2a \times 40 - 40^3}{a^2}<br>=\frac{40a - 56000}{a^2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1- subtraction A1-simplified output         |
|   | $P(20 \le t \le 40) = \int_{20}^{40} \frac{2a - 2t}{a^2} dt = \frac{1}{a^2} \left[ 2at - t^2 \right]_{20}^{40}$ $= \frac{1}{a^2} \left[ (2a \times 40 - 40^3) - (2a \times 20 - 20^3) \right]$ $= \frac{1}{a^2} (40a - 56000)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1- substituting limits A1-simplified output |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05                                           |
| 8 | (a). $ \mathbf{F} = \mathbf{F_1} + \mathbf{F_2} = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} \text{ N} $ Moment of $\mathbf{F}$ about the origin $= \begin{pmatrix} \mathbf{r} \times \mathbf{F} \\ \mathbf{r} \times \mathbf{F} \end{pmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 1 \\ 5 & 3 & 1 \end{vmatrix}$ $ = \mathbf{i} \begin{vmatrix} -1 & 1 \\ 3 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & -1 \\ 5 & 3 \end{vmatrix} $ $ = \mathbf{i} (-1 - 3) - \mathbf{j} (1 - 5) + \mathbf{k} (3 + 5) $ | M1 B1- addition and output  M1- substitution |
|   | $= \left(-4\mathbf{i} + 4\mathbf{j} - 8\mathbf{k}\right) \text{ N m}$ (ii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1-output                                    |
|   | Moment of the couple $= -\left(-4\mathbf{i} + 4\mathbf{j} - 8\mathbf{k}\right)$<br>$= \left(4\mathbf{i} - 4\mathbf{j} + 8\mathbf{k}\right) \text{ N m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>B1</b> -moment of couple                  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05                                           |
| 9 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>B1-</b> both ranking correct              |

| 2   | 23             | 250        | 8 | 4 | 4   | 16                 |
|-----|----------------|------------|---|---|-----|--------------------|
| (') | 38             | 150        | 3 | 8 | - 5 | 25                 |
|     | 30             | 246        | 6 | 5 | 1   | 1                  |
| 3   | 32             | 190        | 5 | 6 | - 1 | 1                  |
| 2   | $\sum x = 320$ | $\sum y =$ |   |   |     | $\sum d^2 = 320.5$ |
| 3   | 320            | 2120       |   |   |     | 320.5              |

**B1-** $\sum d^2$  correct

(a). 
$$\overline{x} = \frac{\sum x}{n} = \frac{320}{10} = 32$$
,  $\overline{y} = \frac{\sum y}{n} = \frac{2120}{10} = 212$   
 $\therefore$  Mean point is  $M(32, 212)$ 

**B1-**mean point



**B1-**both axes labelled and with uniform scale

**B1 B1-**plotting

**B1-**line of best fit

(b). (i).

The age of a woman who spends 130 dollars monthly on clothes is 42.25 years.

(ii)

The monthly expenditure on clothes for a 28-year-old woman is 244 dollars.

(c).

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 320.5}{10(10^2 - 1)} = -0.9424$$

**Comment:** Significant at 5%.

**B1-**estimation

**B1-**estimation

M1 A1substitution and output B1-comment

|    |                                                                                                                                                                                                                          | 12                                                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 10 | (i).                                                                                                                                                                                                                     |                                                         |
|    | $x = 26.23, \implies e_x = \frac{4}{100} \times 26.23 = 1.0492$                                                                                                                                                          |                                                         |
|    | $x = 26.23, \qquad \Rightarrow e_x = \frac{4}{100} \times 26.23 = 1.0492$ $y = 13.18, \qquad \Rightarrow e_y = \frac{3}{100} \times 13.18 = 0.3954$ $z = 5.1, \qquad \Rightarrow e_y = \frac{2}{100} \times 5.1 = 0.102$ | <b>B1-</b> for $e_x$                                    |
|    |                                                                                                                                                                                                                          | <b>B1-</b> for $e_y$                                    |
|    | (ii). Lower limit, $\left(xy - \frac{y}{z}\right)_{\min} = x_{\min} \times y_{\min} - \frac{y_{\max}}{x_{\min}}$                                                                                                         | <b>B1-</b> for $e_z$                                    |
|    | $= (26.23 - 1.0492) \times (13.18 - 0.3954) - \frac{(13.18 + 0.3954)}{(26.23 - 1.0492)}$ $= 25.1808 \times 12.7846 - \frac{13.5754}{25.1808}$                                                                            | M1-<br>substitution                                     |
|    | $= 3213873386 \approx 321387 (3 d n)$                                                                                                                                                                                    |                                                         |
|    | Upper limit, $\left(xy - \frac{y}{z}\right)_{\text{max}} = x_{\text{max}} \times y_{\text{max}} - \frac{y_{\text{min}}}{x_{\text{max}}}$                                                                                 | A1-output (strictly 3 d.p)                              |
|    | $= (26.23 + 1.0492) \times (13.18 + 0.3954) - \frac{(13.18 - 0.3954)}{(26.23 + 1.0492)}$ $= 27.2792 \times 13.5754 - \frac{12.7846}{27.2792}$ $= 369.8573942 \approx 369.857 \text{ (3 d. p)}$                           | <b>M1-</b> substitution                                 |
|    | (iii).                                                                                                                                                                                                                   | A1-output (strictly 3 d.p)                              |
|    | Working value, $\left(xy - \frac{y}{z}\right) = 26.23 \times 13.18 - \frac{13.18}{26.23}$<br>= 345.2089219 \approx 345.209 (3 d. p)                                                                                      |                                                         |
|    | Absolute error = $\frac{\text{Max.} - \text{Min.}}{2}$ 369.857 - 321.387                                                                                                                                                 | <b>B1-</b> working value (3 d.p or more)                |
|    | $=\frac{369.857 - 321.387}{2} = 24.235$                                                                                                                                                                                  | M1 B1-                                                  |
|    | Percentage error = $\frac{\text{Absolute error}}{\text{Working value}} \times 100$                                                                                                                                       | substitution<br>and output                              |
|    | $= \frac{24.235}{345.209} \times 100 = 7.0204$                                                                                                                                                                           | M1 A1-<br>substitution<br>and output (2<br>d.p or more) |
|    |                                                                                                                                                                                                                          | 12                                                      |
| 11 | (a). (i). $ \mathbf{r} = \begin{pmatrix} 0 \\ 5 \end{pmatrix} + \begin{pmatrix} 30 \\ 40 \end{pmatrix} t - \begin{pmatrix} 0 \\ 5 \end{pmatrix} t^2 $ Initially, when $t = 0$                                            |                                                         |
|    | $r(t=0) = {0 \choose 5} + {30 \choose 40} \times 0 - {0 \choose 5} \times 0^2 = {0 \choose 5}$ $\therefore \text{ Height} = 5 \text{ m}$                                                                                 | $\mathbf{B1-r}(t=0)$ $\mathbf{B1-height}$               |
|    | (ii).<br>For vertical motion,                                                                                                                                                                                            |                                                         |

|    | $y = ut \sin \theta - \frac{1}{2}gt^2$                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | By comparison,                                                                                                                                                                                                                                                                                                                                                                                                         | M1-                                                                                                                                                                                           |
|    | $\frac{1}{2}gt^2 = 5t^2$ $g = 10 \text{ m s}^{-2}$                                                                                                                                                                                                                                                                                                                                                                     | comparison<br><b>B1-</b> value of <i>g</i>                                                                                                                                                    |
|    | (b).                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{B1-r}(t=3)$                                                                                                                                                                          |
|    | $\mathbf{r}(t=3) = {0 \choose 5} + {30 \choose 40} \times 3 - {0 \choose 5} \times 3^2 = {90 \choose 80} \text{ m}$ $\mathbf{r}(t=5) = {0 \choose 5} + {30 \choose 40} \times 5 - {0 \choose 5} \times 5^2 = {150 \choose 80} \text{ m}$                                                                                                                                                                               | $\mathbf{B1-r}(t=5)$ $\mathbf{B1-r}(t=5)$                                                                                                                                                     |
|    | Required displacement = $\binom{150}{80} - \binom{90}{80} = \binom{60}{0}$ m                                                                                                                                                                                                                                                                                                                                           | M1 A1-                                                                                                                                                                                        |
|    | (c).                                                                                                                                                                                                                                                                                                                                                                                                                   | subtraction                                                                                                                                                                                   |
|    | from, $ \mathbf{r} = \begin{pmatrix} 0 \\ 5 \end{pmatrix} + \begin{pmatrix} 30 \\ 40 \end{pmatrix} t - \begin{pmatrix} 0 \\ 5 \end{pmatrix} t^2 $                                                                                                                                                                                                                                                                      | and output                                                                                                                                                                                    |
|    | $x = 30t, \qquad \Rightarrow t = \frac{x}{30}$ $y = 5 + 40t - 5t^{2}$                                                                                                                                                                                                                                                                                                                                                  | <b>B1-</b> for <i>x</i>                                                                                                                                                                       |
|    | $y = 5 + 40t - 5t^{2}$ $y = 5 + 40 \times \frac{x}{30} - 5 \times \left(\frac{x}{30}\right)^{2}$                                                                                                                                                                                                                                                                                                                       | <b>B1-</b> for <i>y</i>                                                                                                                                                                       |
|    | $y = 5 + \frac{4}{3}x + \frac{x^2}{180}$                                                                                                                                                                                                                                                                                                                                                                               | <b>M1-</b> substitution                                                                                                                                                                       |
|    | $y = 3 + \frac{1}{3}x + \frac{1}{180}$                                                                                                                                                                                                                                                                                                                                                                                 | <b>B1-</b> required trajectory                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                            |
| 12 | (i).<br>$P(X = 0) = P(\text{no blue}) = \frac{{}^{50}C_3}{{}^{75}C_3} = \frac{784}{2701}$ $P(X = 1) = P(\text{one blue and two others})$ $= \frac{{}^{25}C_1 \times {}^{50}C_2}{{}^{75}C_3} = \frac{1225}{2701}$ $P(X = 2) = P(\text{two blue and one other})$ $= \frac{{}^{25}C_2 \times {}^{50}C_1}{{}^{75}C_3} = \frac{600}{2701}$ $P(X = 3) = P(3 \text{ blue}) = \frac{{}^{25}C_3}{{}^{75}C_3} = \frac{92}{2701}$ | M1 B1-correct combinations and output |
|    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                 | <b>B1-</b> probability distribution                                                                                                                                                           |
|    | (ii).                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                               |
|    | $E(X) = \sum_{x \in X} x P(X = x)$                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                               |
|    | $= \left(0 \times \frac{784}{2701}\right) + \left(1 \times \frac{1225}{2701}\right) + \left(2 \times \frac{600}{2701}\right) + \left(3 \times \frac{92}{2701}\right) = 1$                                                                                                                                                                                                                                              | M1 M1 A1-<br>multiplication,                                                                                                                                                                  |

|    |                                                                                                                                                                                                                                                                        | addition and output                                     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|    |                                                                                                                                                                                                                                                                        | 12                                                      |
| 13 | (a). $f(x) = 20 \cos x - x, \qquad f'(x) = -20 \sin x - 1$ $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad \text{for } n = 1, 2, 3, \dots$                                                                                                                             | M1-derivative                                           |
|    | $x_{n+1} = x_n - \frac{20\cos x_n - x_n}{-20\sin x_n - 1} = x_n + \frac{20\cos x_n - x_n}{20\sin x_n + 1}$ Taking $x_0 = \frac{\pi}{2}$ ,                                                                                                                              | M1-<br>substitution                                     |
|    | $x_1 = \frac{\pi}{2} + \frac{20\cos\frac{\pi}{2} - \frac{\pi}{2}}{20\sin\frac{\pi}{2} + 1} = \frac{\pi}{2} + \frac{0 - \frac{\pi}{2}}{20 + 1}$                                                                                                                         | M1-<br>substitution                                     |
|    | $= \frac{\pi}{2} - \frac{\pi}{42} = \frac{10\pi}{21} , \text{ as required}$ (b).                                                                                                                                                                                       | <b>B1-</b> required expression                          |
|    | let, $x = \sqrt[5]{N}$ , $\Rightarrow x^5 = N$ , $\Rightarrow x^5 - N = 0$<br>$f(x) = x^5 - N$ , $f'(x) = 5x^4$<br>$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ , for $n = 1, 2, 3,$                                                                                       | <b>B1</b> -function and derivative                      |
|    | $x_{n+1} = x_n - \frac{x_n^5 - N}{5x_n^4} = \frac{5x_n^5 - (x_n^5 - N)}{5x_n^4} = \frac{4x_n^5 + N}{5x_n^4}$ $= \frac{4x_n^5}{5x_n^4} + \frac{N}{5x_n^4} = \frac{1}{5} \left( 4x_n + \frac{N}{x_n^4} \right)$                                                          | M1-<br>substitution                                     |
|    | $\therefore x_{n+1} = \frac{1}{5} \left( 4x_n + \frac{N}{x_n^4} \right),  \text{for } n = 1, 2, 3, \dots$ For the hence part:                                                                                                                                          | <b>B1-</b> required expression                          |
|    | $N = 50, 	 x_0 = 2$ $x_1 = \frac{1}{5} \left( 4 \times 2 + \frac{50}{2^4} \right) = 2.22500$ $x_2 = \frac{1}{5} \left( 4 \times 2.22500 + \frac{50}{2.22500^4} \right) = 2.18802$ $x_3 = \frac{1}{5} \left( 4 \times 2.18802 + \frac{50}{2.18802^4} \right) = 2.18673$ | M1-for $x_1$ (more than 3 dp) M1-for $x_2$ (more than 3 |
|    | $x_4 = \frac{1}{5} \left( 4 \times 2.18673 + \frac{33}{2.18673^4} \right) = 2.18672$ $\therefore \text{Root} = 2.187 (3 \text{ d. p})$                                                                                                                                 | dp) M1-for $x_3$ (more than 3 dp) M1-for $x_4$          |
|    | or, 50 = 2.187 (3 d. p)                                                                                                                                                                                                                                                | (more than 3 dp) A1-root (strictly 3 d.p)               |
|    |                                                                                                                                                                                                                                                                        | 12                                                      |
| 14 | (a).                                                                                                                                                                                                                                                                   |                                                         |



|    | $P(\text{female and not speeding}) = P(F \cap S') = \frac{c}{1000} = \frac{180}{1000}$ $P(\text{not speeding}) = P(S') = \frac{397}{1000}$ $P(\text{female given not speeding}) = P(F/S') = \frac{P(F \cap S')}{P(S')}$                                                                                                                                                                                                                                                                                                                                 | <b>B1-</b> mobile $P(F \cap S')$ or $P(S')$ correct                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|    | $= \frac{180}{1000} \div \frac{397}{1000} = \frac{180}{397}$ (b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1 A1-division and output                                                              |
|    | $P(\text{male}) = P(M) = \frac{615}{1000}$ $P(\text{speeding}) = P(S) = \frac{603}{1000}$ $P(M).P(S) = \frac{615}{1000} \times \frac{603}{1000} = \frac{370845}{10000000} = 0.370845$ but, $P(M \cap S) = \frac{398}{1000} = 0.398$ Since $P(M \cap S) \neq P(M).P(S)$ , it implies that the events of being a male and speeding are not independent.                                                                                                                                                                                                   | B1-mobile P(M) or P(S) correct M1 B1- multiplication and output B1-conclusion          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                                                                     |
| 16 | Taking moments about the y-axis, $ \overline{x} = \frac{\int_0^2 xy  dx}{\int_0^2 y  dx} $ $ \int_0^2 xy  dx = \int_0^2 x(x^2 + 1)  dx = \int_0^2 (x^3 + x)  dx $ $ = \left[\frac{1}{4}x^4 + \frac{1}{2}x^2\right]_0^2 = \left(\frac{1}{4} \times 2^4 - \frac{1}{4} \times 2^2\right) - 0 = 6 $ $ \text{Area} = \int_0^2 y  dx = \int_0^2 (x^2 + 1)  dx $ $ = \left[\frac{1}{3}x^3 + x\right]_0^2 = \left(\frac{1}{3} \times 2^3 - 2\right) - 0 = \frac{2}{3} $ $ \overline{x} = \frac{\int_0^2 xy  dx}{\int_0^2 y  dx} = 6 \div \frac{2}{3} = 9 $ (b). | M1 B1- integration and output  M1 B1- integration and output M1 A1-division and output |
|    | Let $\rho$ be the mass per unit area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |
|    | Figure Weight Distance from side OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |
|    | $\begin{vmatrix} ABEF & = \frac{2}{3}\rho & = 9 \\ BCDE & = (3 \times 5)\rho = 15\rho & = 3 & = 35 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |
|    | $=2+\frac{1}{2}=3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>B1-</b> correct distance for                                                        |
|    | Whole lamina $=\frac{2}{3}\rho + 15\rho = \frac{47}{3}\rho$ $\overline{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | figure BCDE                                                                            |

| By taking moments about the $y$ -axis, $ \left(\frac{2}{3}\rho\times 9\right) + (15\rho\times 3.5) = \frac{47}{3}\rho\times \overline{x} $ $ 6+52.5 = \frac{47}{3}\times \overline{x} $ $ 58.5 = \frac{47}{3}\times \overline{x} $ $ \overline{x} = \frac{351}{94}\approx 3.7340 \text{ units} $ The centre of gravity of the lamina is $3.7340$ units from the y-axis. | M1 M1 M1 M1-each moment, equating A1-output |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                         | 12                                          |

\*\*\*END\*\*\*