Part IB Physics: Lent 2022

QUANTUM PHYSICS EXAMPLES II

Prof. C. Castelnovo

- 1. Consider the following operations, which act on f(x) as described below, where c is a constant:
 - (a) cf(x) vertical scaling;
 - (b) f(x) + c vertical displacement;
 - (c) $f^2(x)$ squaring;
 - (d) df/dx differentiation;
 - (e) g(x)f(x) multiplication by a function;
 - (f) f(df/dx);
 - (g) d^2f/dx^2 double differentiation;
 - (h) f(cx) horizontal scaling;
 - (i) $\sin f(x)$;
 - (j) f(-x) inversion.

Which of these operations are linear?

What are the eigenfunctions of the operations that are linear? (Note: some may not be normalizable.)

2. Which of the following operators are Hermitian, given that \widehat{A} and \widehat{B} are Hermitian?

$$\widehat{A} + \widehat{B}$$
 $c\widehat{A}$ $\widehat{A}\widehat{B}$ $\widehat{A}\widehat{B} + \widehat{B}\widehat{A}$

Show that in one dimension, for functions that tend to zero as $x \to \pm \infty$, the operator d/dx is not Hermitian, but the operator $-i\hbar d/dx$ is Hermitian. Is the operator d^2/dx^2 Hermitian?

- **3.** Show that any non-Hermitian operator \widehat{A} can be written as a linear combination of two Hermitian operators.
- **4.** Show that, in one dimension, the state functions e^{-x^2} , xe^{-x^2} and $(4x^2 1)e^{-x^2}$ are mutually orthogonal.
- **5.** ϕ_1 and ϕ_2 are normalised eigenfunctions of observable A which are degenerate, and hence not necessarily orthogonal. If $\langle \phi_1 | \phi_2 \rangle = c$ and c is real, find linear combinations of ϕ_1 and ϕ_2 which are normalised and orthogonal to: (a) ϕ_1 ; (b) $\phi_1 + \phi_2$.
- **6.** A space-domain wave function $\psi(x)$ is shifted by x_0 to give a new wave function $\psi(x-x_0)$. Calculate the corresponding momentum-domain operator. Show that the

momentum-domain wave function remains normalised even after the operator has been applied.

- 7. Write short notes on the following topics:
- (a) The position of a particle is measured, and it is found to lie within a region having width Δx . The momentum is then measured, immediately afterwards, and it is found to lie within the range Δp . If the order of the measurements is changed, so that momentum is measured first and then position, do the results have to be the same?
- (b) Suppose now that the position of a particle is measured, and it is found to lie within a region having width Δx , but then its position is measured again. What does quantum mechanics say about the positional uncertainty on the second measurement? For a free particle, find a lower bound estimate of the positional uncertainty as a function of time after the first measurement.
- 8. Observable A has eigenfunctions ψ_1 and ψ_2 with eigenvalues a_1 and a_2 . Observable B has eigenfunctions χ_1 and χ_2 with eigenvalues b_1 and b_2 , which can be expressed as

$$\chi_1 = (2\psi_1 + 3\psi_2)/\sqrt{13}$$
 $\chi_2 = (3\psi_1 - 2\psi_2)/\sqrt{13}$.

B is measured, and value b_1 is obtained. What would be the probabilities of getting a_1 and a_2 in a measurement of A immediately afterwards? After this measurement of A, B is again measured; what is the probability of getting b_1 again?

9. For a certain system, the observable A has eigenvalues ± 1 , with corresponding eigenfunctions u_+ and u_- . Another observable B also has eigenvalues ± 1 , but the corresponding eigenfunctions are:

$$v_{+} = (u_{+} + u_{-})/\sqrt{2}$$
 $v_{-} = (u_{+} - u_{-})/\sqrt{2}$

Show that $C \equiv A + B$ is an observable and find the possible results of a measurement of C.

Find the probability of obtaining each result when a measurement of C is performed on an atom in the state u_+ , and express the corresponding eigenstates w_{\pm} of the system immediately after the measurement in terms of u_+ and u_- .

- **10.** By writing \hat{x} and \hat{p} in terms of the raising and lowering operators \hat{a}^{\dagger} and \hat{a} , prove that, for the n^{th} excited state of a one-dimensional harmonic oscillator, $\Delta x \Delta p = (n + \frac{1}{2})\hbar$.
- 11. For a particle of mass m moving freely in one dimension, show that

$$\frac{\mathrm{d}\langle x^2 \rangle}{\mathrm{d}t} = \frac{1}{m} \left\langle \widehat{x}\widehat{p} + \widehat{p}\widehat{x} \right\rangle \quad \text{and} \quad \frac{\mathrm{d}^2 \langle x^2 \rangle}{\mathrm{d}t^2} = \frac{2}{m^2} \left\langle \widehat{p}^2 \right\rangle.$$

Show that, if $d\langle x^2\rangle/dt=0$ at t=0, then at later times t:

$$\langle x^2 \rangle_t = \langle x^2 \rangle_0 + \langle p^2 \rangle_0 \frac{t^2}{m^2}.$$

12. For a certain system, A has eigenvalues a_1 and a_2 corresponding to eigenfunctions:

$$\psi_1 = (u_1 + u_2)/\sqrt{2} \qquad \qquad \psi_2 = (u_1 - u_2)/\sqrt{2}$$

where u_1 and u_2 are stationary states with energies E_1 and E_2 . A is measured and found to have value a_1 . Find how $\langle A \rangle$ subsequently varies with time.

- 13. Suppose that \hat{H} is the Hamiltonian of a time-independent system. Using Dirac's bra-ket notation, and bearing in mind the definition of the function of an operator, show that \hat{H} and $\exp\left[i\hat{H}t\right]$ commute.
- 14. Explain why, when using state vectors, the shift operator introduced in question 6 can be written $\exp[-i\hat{p}x_0/\hbar]$. Show that the operators corresponding to two different shifts x_{01} and x_{02} commute.

ANSWERS:

- **1.** (a) any f(x); (d) $e^{\alpha x}$; (e) $\delta(x-x_0)$; (g) $e^{\alpha x}$ or $\cos(kx+\phi)$; (h) constant or x^b ; (j) $f(x)=\pm f(-x)$.
- **2.** The following are Hermitian: $\widehat{A} + \widehat{B}$; $c\widehat{A}$ if c is real; $\widehat{A}\widehat{B}$ if $[\widehat{A}, \widehat{B}] = 0$; $\widehat{A}\widehat{B} + \widehat{B}\widehat{A}$; d^2/dx^2 .
- **5.** (a) $\frac{c\phi_1 \phi_2}{\sqrt{1 c^2}}$; (b) $\frac{\phi_1 \phi_2}{\sqrt{2(1 c)}}$.
- **8.** 4/13; 9/13; 97/169.
- 9. $C = \pm \sqrt{2}$, with probabilities $\frac{(2 \pm \sqrt{2})}{4}$. And $w_{\pm} = \sqrt{\frac{1}{2} \left(1 \pm \frac{1}{\sqrt{2}}\right)} u_{+} \pm \sqrt{\frac{1}{2} \left(1 \mp \frac{1}{\sqrt{2}}\right)} u_{-}$.
- 12. $\langle A \rangle = a_1 \cos^2 \omega t + a_2 \sin^2 \omega t$, where $\omega = (E_1 E_2)/2\hbar$.