

INT247 Machine Learning Foundations

Lecture #4.1

Ensemble learning, Bagging and AdaBoost classifier

Learning with ensembles

 The goal behind ensemble methods is to combine different classifiers into a meta-classifier that has a better generalization performance than each individual classifier alone.

•

ex. Voting Ensemble

Use: improve predictions

Ensemble learnings

Sequential Ensemble learning (Boosting)

Ex. Adaboost, Stochastic Gradient Boosting

Use: Reduce the bias

Parallel Ensemble learning

(Bagging)

Ex.Random Forest, Bagged Decision Trees, Extra Trees

Use: Decrease variance

Voting

Majority Voting Classifier

Majority Vote prediction

$$\hat{y} = mode\{C_1(x), C_2(x), ..., C_m(x)\}$$

For example, in a binary classification task where class1 = -1 and class2 = +1, we can write the majority vote prediction as follows:

$$C(\mathbf{x}) = sign\left[\sum_{j=0}^{m} C_{j}(\mathbf{x})\right] = \begin{cases} 1 & \text{if } \sum_{i=0}^{m} C_{j}(\mathbf{x}) \ge 0\\ -1 & \text{otherwise} \end{cases}$$

Error rate for ENSEMBLE Learner

$$P(y \ge k) = \sum_{k=0}^{n} \binom{n}{k} \varepsilon^{k} (1 - \varepsilon)^{n-k} = \varepsilon_{ensemble}$$

Here, $\binom{n}{k}$ is the binomial coefficient n *choose* k. In other words, we compute the probability that the prediction of the ensemble is wrong. Now let's take a look at a more concrete example of 11 base classifiers (n = 11) with an error rate of 0.25 ($\varepsilon = 0.25$):

$$P(y \ge k) = \sum_{k=6}^{n} {\binom{11}{k}} 0.25^{k} (1-\varepsilon)^{11-k} = 0.034$$

Ensemble Error V/s. Base Error

Bagging

 Building an ensemble of classifiers from bootstrap samples [Random Samples with Replacement].

Bootstrap samples

Random Forest classifier

Boosting

- Leveraging weak learners via adaptive boosting [AdaBoost]
- boosting is to <u>focus on training samples that</u>
 are hard to classify, that is, to let the weak
 learners subsequently learn from misclassifed
 training samples to improve the performance of the ensemble.

Boosting

- In contrast to bagging, the initial formulation of boosting, the algorithm uses random subsets of training samples drawn from the training dataset without replacement.
- The original boosting procedure is summarized in four key steps as follows:

Boosting

- Draw a random subset of training samples d1 without replacement from the training set D to train a weak learner C1.
- Draw second random training subset d2 without replacement from the training set and add 50 percent of the samples that were previously misclassified to train a weak learner C2.
- 3. Find the training samples d3 in the training set D on which C1 and C2 disagree to train a third weak learner C3.
- 4. Combine the weak learners C1, C2, and C3 via majority voting.

AdaBoost Classifier Algorithm

- 1. Set weight vector \mathbf{w} to uniform weights where $\sum_{i} w_{i} = 1$
- 2. For *j* in *m* boosting rounds, do the following:
- 3. Train a weighted weak learner: $C_i = train(X, y, w)$.
- 4. Predict class labels: $\hat{y} = \operatorname{predict}(C_i, X)$.
- 5. Compute weighted error rate: $\varepsilon = w \cdot (\hat{y} == y)$.
- 6. Compute coefficient: $\alpha_j = 0.5 \log \frac{1-\varepsilon}{\varepsilon}$.
- 7. Update weights: $\mathbf{w} := \mathbf{w} \times \exp(-\alpha_j \times \hat{\mathbf{y}} \times \mathbf{y})$.
- 8. Normalize weights to sum to 1: $\mathbf{w} := \mathbf{w} / \sum_{i} w_{i}$.
- 9. Compute final prediction: $\hat{\mathbf{y}} = \left(\sum_{j=1}^{m} \left(\boldsymbol{\alpha}_{j} \times \operatorname{predict}\left(C_{j}, \mathbf{X}\right)\right) > 0\right)$.

Bagging v/s. Boosting

Gradient Boosting

Generalization of AdaBoost as Gradient Boosting

- Gradient boosting involves three elements:
- 1. A loss function to be optimized.
- 2. A weak learner to make predictions.
- 3. An additive model to add weak learners to minimize the loss function.

Other Boosting Algorithms

- XGBoost
- CatBoost
- LightGBM

