Properties of Least Square Estimates

DS 301

Iowa State University

Today's Agenda

• Implementation of multiple linear regression in R

• Properties of least square estimates

Multiple Linear Regression (Record)

Y=f(x)+8

If we assume a linear relationship btwn x 8 y

$$f(x) = Bo + B_1 x_1 + B_2 x_2 + \cdots + B_p x_p. \qquad x_1, x_2, \dots, x_p$$

Ly Y= Bo + B_1 x_1 + B_2 x_2 + \cdots + B_p x_p + E

(true population regression line)

Bo, B_1, B_2, \ldots, B_p are unknown parameters.

\[
\Rightarrow \text{estimate them From (training) data}
\]

\[
\Rightarrow \text{least squares criterion} \text{\find}
\]

\[
\text{Vi} = Bo + B_1 x_1 + B_2 x_2 + \cdots + \text{Bpxip} \text{let's find}
\]

\[
\text{yi} = Bo + B_1 x_1 + B_2 x_2 + \cdots + \text{Bpxip} \text{let's find}
\]

\[
\text{yi} = \text{that minimizes}
\]

\[
\text{True population regression line}
\]

Interpretation of least squares coefficients

$$\hat{Y_i} = \hat{Bo} + \hat{B_i} \times i + \cdots + \hat{B_p} \times i p$$
is an estimate for $E(Y)$, not Y .

 $\hat{\beta}_j$ can be interpreted as the average change in Y associated with a 1 unit change in X_j , holding all other predictors constant.

3

Assumptions

- there is a linear relationship by by X1, X2, ..., Xp and Y
- (2) E(2i) = 0
 - (3) var(2i) = 02
 - (4) li's are uncorrelated

Implementation in R

See R script IntroMLR.R

Properties of least square estimators

- Remember in real applications, the true parameters $\beta_0, \beta_1, \dots, \beta_p$ are unknown to us.
- Ideally, we hope our least square estimates $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ are close to the true values of $\beta_0, \beta_1, \dots, \beta_p$.
- We can quantify how 'close' our estimates are to the truth using the following concepts:
 - Bias
 - Standard error

Properties of least square estimators

```
How good are our estimates?
     The least 89. estimates Bos Bis..., Bp
       are unbiased estimates of Bo, Bi, ... , Bp
                                       (respectively).
conceptually, the property of unbiasedness
   says that if we took the average of Bo, Bin., Bp
     obtained over a huge number of
       datasets, then these averages would
      exactly equal the true parameters Bo, B,..., Bp
          E(Bo) = Bo, E(Bi) = B1,
formal
definition:
                            E(\hat{Bp}) = Bp
```

Properties of least square estimators

Accuracy of $\hat{oldsymbol{eta}}$

- The unbiasedness property tell us that the average of our estimates from many many datasets will be very close to the true population parameter β .
- But we don't have access to many many datasets. For a particular data set, the single estimates $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ may be a substantial underestimate or overestimate of the true $\beta_0, \beta_1, \dots, \beta_p$.
- How far off will our single estimate $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ be?

Accuracy of $\hat{\beta}$ (Standard error)

Accuracy of $\hat{\beta}$: How far off i's a single estimate?

Se (B₀) =
$$\int \frac{\sigma^2}{Z(x_1 - \bar{x})^2}$$

Se (B₁) = $\int \frac{\sigma^2}{(\bar{n} + \frac{\bar{x}}{Z(x_1 - \bar{x})^2})}$

or is a parameter. It represents the variance of Y,

$$Y = Bo + B_1X_1 + \mathcal{E}$$

$$ver(Y) = ver(Bo + B_1X_1 + \mathcal{E})$$

$$= var(Bo) + var(B_1X_1) + var(\mathcal{E})$$

$$0 \qquad 0 \qquad 0$$

by or needs to be estimated from data.