Let A be an $m \times n$ matrix (where $m, n \in \mathbb{N}$) and let A' be a matrix obtained by performing a row operation on A.

Choose the true statement from the following:

- I If A has linearly independent rows then A' must have linearly independent rows.
- 2 If A' has linearly independent rows then A must have linearly independent rows.
- 3 A has linearly independent rows if and only if A' has linearly independent rows.
- 4 None of the above.

Correct Answers: 1, 2 and 3

Let v_1, v_2 and v_3 be three non-collinear vectors in \mathbb{R}^3 . Let

$$S = \{c_1v_1 + c_2v_2 + c_3v_3 \mid c_1, c_2, c_3 \in (0, 1), c_1 + c_2 + c_3 = 1\}$$

Choose any correct statement from the following:

- **11** S is a plane in \mathbb{R}^3 which passes through the origin
- $S = \text{Span}\{v_1, v_2, v_3\}$
- **3** Span $\{v_1, v_2, v_3\} \subset S$
- 4 S is the interior of a triangle whose vertices are v_1 , v_2 and v_3
- 5 is the interior of a triangle which passes through the origin and whose vertices are v_1 , v_2 and v_3
- **6** $S \subseteq \operatorname{Span}\{v_1, v_2, v_3\}$
- **7** $S \not\subset \text{Span}\{v_1, v_2, v_3\}$

Correct Answers: 4 and 6

Let A be an $m \times n$ matrix (where $m, n \in \mathbb{N}$). Identify the correct contrapositive and converse of the following statement (upto logical equivalence): If $A\mathbf{x} = 0$, for every $\mathbf{x} \in \mathbb{R}^n$, then A = 0.

- **1** Contrapositive: If $A \neq 0$ then there exists a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \neq 0$.
 - Converse: If there exists a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \neq 0$, then $A \neq 0$.
- 2 Converse: If $A \neq 0$ then there exists a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \neq 0$.
 - Contrapositive: If A = 0 then $A\mathbf{x} = 0$ for every $\mathbf{x} \in \mathbb{R}^n$.
- Contrapositive: If $A \neq 0$ then $A\mathbf{x} \neq 0$ for every $\mathbf{x} \in \mathbb{R}^n$. Converse: If there exists a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \neq 0$, then $A \neq 0$.
- 4 Converse: If $A \neq 0$ then $A\mathbf{x} \neq 0$ for every $\mathbf{x} \in \mathbb{R}^n$. Contrapositive: If there exists a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \neq 0$, then $A \neq 0$.

Answer to Q3

 ${\sf Option}\ 1$

Let A be an $m \times n$ matrix (where $m, n \in \mathbb{N}$). Let A' be the RREF of A.

Decide whether the following statement is true or false:

If one of the entries of A' is a number which is other than 0 or 1 then the columns of A must be linearly dependent.

Answer: True