Prof. Stefano Bregni

II Appello d'Esame 2020-21 – 6 luglio 2021

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

NB: In ogni esercizio, ogni risposta non giustificata adeguatamente, anche con pochissime parole, avrà valore nullo.

Domanda 1

(svolgere su questo foglio nello spazio assegnato) (6 punti)

Bob adotta il sistema di firma elettronica di El Gamal e pubblica p = 107, $\alpha = 3$, $\beta = \alpha^a \mod p$, tenendo segreto l'esponente a = 23.

- a) Verificare la correttezza dei dati forniti, in base alle ipotesi del metodo di El Gamal. Se $\alpha = 3$ non risultasse una scelta valida, Bob userà invece un valore valido scelto nell'insieme $\alpha = 34$, 5}. Se nessuna di queste scelte risultasse valida, Bob rinuncerà a proseguire (e l'esercizio termina qui). Calcolare β .
- b) Bob estrae il numero casuale segreto (nonce) k = 33. Per questo valore di k, calcolare la firma di Bob A = (r, s) del messaggio P = 101.
- c) Verificare se anche la firma A' = (r', s') = (22, 25) è valida da Bob per lo stesso messaggio P = 101. Se è valida, calcolare il valore di k per cui è stata calcolata da Bob, scegliendo il metodo più veloce a disposizione.

Figure 2 inology $S = 22 \pmod{109}$ The property of the skill $S = 22 \pmod{109}$ $25 = 10 \pmod{100}$ $25 = 10 \pmod{100}$

Prof. Stefano Bregni

II Appello d'Esame 2020-21 – 6 luglio 2021

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 2

(svolgere su questo foglio nello spazio assegnato) (5 punti)

Bob adotta il *sistema di cifratura a chiave pubblica RSA*. Pubblica il modulo n = 16241 e un esponente di cifratura scelto tra $e_1 = 1517$, $e_2 = 2705$, $e_3 = 2841$.

- a) Verificare la correttezza dei dati forniti in base alle ipotesi del metodo RSA. Scegliere il valore corretto tra i tre esponenti e_1 , e_2 , e_3 .
- b) Alice trasmette a Bob il messaggio cifrato C = 31, calcolato utilizzando il valore corretto dell'esponente e. Decifrarlo e calcolare il corrispondente messaggio in chiaro P.

a)
$$m = 16241 = 100.140$$
 (partentation)

 $Q(m) = 109.14f = 159.84 = 2^4.3^3.34$
 $Q(q(m)) = 51.84$
 $100 (1517, 159.84) = 37$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84) = 1$
 $100 (1517, 159.84)$

Prof. Stefano Bregni

II Appello d'Esame 2020-21 – 6 luglio 2021

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 3

(svolgere su questo foglio nello spazio assegnato) (5 punti)

a) Ricavare la sequenza binaria pseudo-casuale $\{x_i\}$ generata dall'algoritmo *Blum-Blum-Shab* per p=19, q=43, x=20 e determinarne il periodo P.

$$M = p.q = 13.43 = 117$$
 $X_0 = X^2 \quad (med m)$
 $X_1 = X_{1-1} \quad (med m)$
 $19 \quad med \quad 4 = 3$
 $43 \quad med \quad 4 = 3$
 201917

b) In base alla teoria, quali sono i valori possibili che può assumere il periodo $P = \pi(x_0)$ del generatore precedente, per valori arbitrari del seme $x_0 = x^2 \in \mathbb{Z}_n$?

Si ricorda che $\pi(x_0)$ divide $\lambda(\lambda(n))$, dove $\lambda(n)$ è la Funzione di Charmichael, calcolabile come

$$\lambda(n) = \operatorname{mcm}(\left\{\lambda(p_i^{a_i})\right\}) \qquad \lambda(p^k) = \begin{cases} \frac{1}{2}\varphi(p^k) & \text{se } p = 2, k \ge 3\\ \varphi(p^k) & \text{altrimenti} \end{cases}$$

$$\lambda(m) = mcm(18,42) = 2.3^{2}.7 = 126$$

 $\lambda[\lambda(m)] = \lambda(126) = mcm(1,6,6) = 6$
 $\lambda[\lambda(m)] = \lambda(126) = mcm(1,6,6) = 6$

Domanda 4

(svolgere su questo foglio nello spazio assegnato) (7 punti)

a) Definire la proprietà di *unidirezionalità* di una funzione di *hash* h = h(x). Specificare per cosa tale definizione si distingue dalla proprietà di *non invertibilità* di una funzione generica y = y(x).

b) Definire la proprietà di resistenza forte alle collisioni di una funzione di hash h = h(x). Specificare per cosa tale definizione si distingue dalla proprietà di resistenza debole alle collisioni.

c) Avete letto che SHA-3 è ritenuta fortemente resistente alle collisioni. Desiderate diventare famosi provando che non è vero. Per cominciare, proverete a dimostrare che non è fortemente resistente, o debolmente resistente? Facendo cosa? (o tentando di fare cosa?) Che metodo pensate di seguire?

d) Avete scelto una funzione di *hash* che restituisce valori di lunghezza L = 64 bit. In una tabella, avete memorizzato i valori di *hash* calcolati su un miliardo di file diversi. Qual è la probabilità che almeno due file abbiano lo stesso hash in tabella?

Prof. Stefano Bregni

II Appello d'Esame 2020-21 – 6 luglio 2021

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 5

(rispondere su questo foglio negli spazi assegnati) (13 punti) (NB: ogni risposta non giustificata adeguatamente, anche con pochissime parole, avrà valore nullo).

1) Cos'è un *elemento primitivo* dell'insieme \mathbb{Z}_p^* ?

Cos'è un residuo quadratico dell'insieme \mathbb{Z}_p^* ?

Si calcolino tutti i residui quadratici dell'insieme \mathbb{Z}_{11}^* , partendo dalle potenze dell'elemento primitivo più piccolo di \mathbb{Z}_{11}^* . Esaminando i risultati ottenuti, si dica quali sono le radici quadrate di -2 (mod 11). (3 punti)

$$d = 2$$
 $2^{5} = 10$
 $2^{2} = 4$
 $(mod 11)$

$$2^{2} = 1 \pmod{1}$$
 $2^{2} = 4$
 $2^{4} = 5$
 $2^{6} = 9 \rightarrow 59 = 5-2 = \pm 2^{3} = \pm 8 = \{7,8\}$
 $2^{8} = 3$

²⁾ Spiegare perché il *Problema Computazionale di Diffie-Hellman* non può essere più difficile del *Problema del Logaritmo Discreto*, ma non è detto il viceversa. (2 punti)

3)	Un sedicente Stefano Bregni ti contatta, presentando il certificato "SUBJECT: Stefano Bregni" emesso da V Che procedura segui per sincerarti dell'autenticità del certificato? Se la validazione del certificato va a buon procedi dando per assodato di essere stato contattato da Stefano Bregni, oppure devi fare altro per esserne ce	
4)	Se utilizzo HTTPS con un browser web, l'Amministratore della rete attraverso cui mi collego a Internet con l'indirizzo IP del server a cui mi collego? Conosce i titoli delle pagine che visito?	osce (2 punti)
5)	Enunciare il Teorema Cinese del Resto generalizzato a K congruenze.	(2 punti)
6)	A invia in messaggio a B utilizzando PGP. Con che chiave A cifra il messaggio? Con che chiave A firma il messaggio? A deve trasmettere una chiave a B? Come?	(2 punti)