Using this, the first partial derivative is

$$l'(\theta) = n - 2 \sum_{i=1}^{n} \frac{\exp\{-(x_i - \theta)\}}{1 + \exp\{-(x_i - \theta)\}}.$$
 (6.1.9)

Setting this equation to 0 and rearranging terms results in the equation

$$\sum_{i=1}^{n} \frac{\exp\{-(x_i - \theta)\}}{1 + \exp\{-(x_i - \theta)\}} = \frac{n}{2}.$$
(6.1.10)

Although this does not simplify, we can show that equation (6.1.10) has a unique solution. The derivative of the left side of equation (6.1.10) simplifies to

$$(\partial/\partial\theta) \sum_{i=1}^{n} \frac{\exp\{-(x_{i}-\theta)\}}{1+\exp\{-(x_{i}-\theta)\}} = \sum_{i=1}^{n} \frac{\exp\{-(x_{i}-\theta)\}}{(1+\exp\{-(x_{i}-\theta)\})^{2}} > 0.$$

Thus equation (6.1.10) has a unique solution. Also, the second derivative of $l(\theta)$ is the left side of (6.1.10) approaches 0 as $\theta \to -\infty$ and approaches n as $\theta \to \infty$. Thus the left side of equation (6.1.10) is a strictly increasing function of θ . Finally, strictly negative for all θ ; so the solution is a maximum.

Having shown that the mle exists and is unique, we can use a numerical method to obtain the solution. In this case, Newton's procedure is useful. We discuss this in general in the next section, at which time we reconsider this example. \blacksquare

Example 6.1.3. In Example 4.1.2, we discussed the mle of the probability of success θ for a random sample X_1, X_2, \ldots, X_n from the Bernoulli distribution with

$$p(x) = \begin{cases} \theta^x (1-\theta)^{1-x} & x = 0, 1\\ 0 & \text{elsewhere} \end{cases}$$

Now suppose that we know in advance that, instead of $0 \le \theta \le 1$, $\dot{\theta}$ is restricted by the inequalities $0 \le \theta \le 1/3$. If the observations were such that $\bar{x} > 1/3$, then \overline{x} would not be a satisfactory estimate. Since $\frac{\partial l(\theta)}{\partial \theta} > 0$, provided $\theta < \overline{x}$, under the where $0 \le \theta \le 1$. Recall that the mle is \overline{X} , the proportion of sample successes. restriction $0 \le \theta \le 1/3$, we can maximize $l(\theta)$ by taking $\hat{\theta} = \min \{ \overline{x}, \frac{1}{3} \}$.

The following is an appealing property of maximum likelihood estimates.

Theorem 6.1.2. Let X_1, \ldots, X_n be iid with the pdf $f(x;\theta), \theta \in \Omega$. For a specified function g, let $\eta = g(\theta)$ be a parameter of interest. Suppose $\hat{\theta}$ is the mle of θ . Then $g(\widehat{\theta})$ is the mle of $\eta = g(\theta)$.

Proof: First suppose g is a one-to-one function. The likelihood of interest is L(g(heta)), but because g is one-to-one,

$$\max_{\eta = g(\theta)} L(g(\theta)) = \max_{\eta} L(g) = \max_{\eta} L(g^{-1}(\eta)).$$

But the maximum occurs when $g^{-1}(\eta) = \widehat{\theta}$; i.e., take $\widehat{\eta} = g(\widehat{\theta})$.

6.1. Maximum Likelihood Estimation

Suppose g is not one-to-one. For each η in the range of g, define the set (preim-

$$g^{-1}(\eta) = \{\theta : g(\theta) = \eta\}$$

The maximum occurs at $\hat{\theta}$ and the domain of g is Ω , which covers $\hat{\theta}$. Hence, $\hat{\theta}$ is in one of these preimages and, in fact, it can only be in one preimage. Hence to maximize $L(\eta)$, choose $\widehat{\eta}$ so that $g^{-1}(\widehat{\eta})$ is that unique preimage containing $\widehat{\theta}$. Then Consider Example 4.1.2, where X_1, \ldots, X_n are iid Bernoulli random variables Recall that in the large sample confidence interval for p, (4.2.7), an estimate of with probability of success p. As shown in this example, $\widehat{p} = \overline{X}$ is the mle of p. $\sqrt{p(1-p)}$ is required. By Theorem 6.1.2, the mle of this quantity is $\sqrt{\hat{p}(1-\hat{p})}$.

We close this section by showing that maximum likelihood estimators, under egularity conditions, are consistent estimators. Recall that $\mathbf{X}' = (X_1, \dots, X_n)$.

Theorem 6.1.3. Assume that X_1, \ldots, X_n satisfy the regularity conditions (R0, through (R2), where θ_0 is the true parameter, and further that $f(x;\theta)$ is differen tiable with respect to θ in Ω . Then the likelihood equation,

$$\frac{\partial}{\partial \theta} L(\theta) = 0,$$

or equivalently

$$\frac{\partial}{\partial \theta} l(\theta) = 0,$$

has a solution $\widehat{\theta}_n$ such that $\widehat{\theta}_n \xrightarrow{P} \theta_0$.

Proof: Because θ_0 is an interior point in Ω , $(\theta_0 - a, \theta_0 + a) \subset \Omega$, for some a > 0. Define S_n to be the event

$$S_n = \{\mathbf{X} : l(\theta_0; \mathbf{X}) > l(\theta_0 - a; \mathbf{X})\} \cap \{\mathbf{X} : l(\theta_0; \mathbf{X}) > l(\theta_0 + a; \mathbf{X})\}.$$

By Theorem 6.1.1, $P(S_n) \to 1$. So we can restrict attention to the event S_n . But on S_n , $l(\theta)$ has a local maximum, say, $\hat{\theta}_n$, such that $\theta_0 - a < \hat{\theta}_n < \theta_0 + a$ and $l'(\hat{\theta}_n) = 0$. That is,

$$S_n \subset \left\{ \mathbf{X} : |\widehat{\theta}_n(\mathbf{X}) - \theta_0| < a \right\} \cap \left\{ \mathbf{X} : l'(\widehat{\theta}_n(\mathbf{X})) = 0 \right\}.$$

$$1 = \lim_{n \to \infty} P(S_n) \le \overline{\lim}_{n \to \infty} P\left[\left\{ \mathbf{X} : |\widehat{\theta}_n(\mathbf{X}) - \theta_0| < a \right\} \cap \left\{ \mathbf{X} : l'(\widehat{\theta}_n(\mathbf{X})) = 0 \right\} \right] \le 1;$$

see Remark 5.2.3 for discussion on $\overline{\lim}$. It follows that for the sequence of solutions $\hat{\theta}_n$, $P[|\hat{\theta}_n - \theta_0| < a] \to 1$.

The only contentious point in the proof is that the sequence of solutions might depend on a. But we can always choose a solution "closest" to θ_0 in the following