Descomposicion en Polígonos Monótonos comp-420

Triangulación de Polígonos

Teorema 1:

Todo polígono simple admite una triangulación, y cualquier triangulación de un polígono simple con n vértices consta de n-2 triángulos exactamente.

Prueba por inducción:

- * Para n=3 el polígono es un triángulo y el teorema es trivialmente verdadero.
- Sea n>3 y supongase el teorema cierto para toda m< n:
 - Empezamos por probar la existencia de una diagonal.

Triangulación de Polígonos

- \blacksquare cualquier diagonal corta \mathcal{P} en dos polígonos simples \mathcal{P}_1 y \mathcal{P}_2 .
- lacktriangle sea m_1 el número de vértices en \mathcal{P}_1 y m_2 el número de vértices en \mathcal{P}_2
- como $m_1, m_2 < n$, por inducción \mathcal{P}_1 y \mathcal{P}_2 se pueden triangular, entonces \mathcal{P} se puede triangular.
- Resta probar que cualquier triangulación de \mathcal{P} tiene n-2 triángulos.

acada triangulación de \mathcal{P}_i tendrá m_i-2 triángulos, lo que implica que consta de $(m_1-2)+(m_2-2)=n-2$ triángulos.

Triangulación de Polígonos

- Vimos un algoritmo recursivo de complejidad lineal para encontrar una diagonal en un polígono simple.
- Con esta estrategia la diagonal encontrada dividirá el polígono en dos, en un triángulo y en un polígono simple de n- l vértices. Este algoritmo será de complejidad cuadrática en el peor caso.
- Para un polígono convexo podemos encontrar un algoritmo lineal:

Poligonos Monótonos

- Una cadena polígonal \mathcal{C} es estrictamente monótona respecto a una línea l si cada l' ortogonal a l intersecta a \mathcal{C} en a lo más un punto:
- \bullet Esto es: $l' \cap C$ es vacío o un punto.
- *Una cadena es *monótona* si $l' \cap C$ tiene a lo más un componente conectado: es vacío, un punto o un segmento de recta.
- Un polígono \mathcal{P} es monótono respecto a la línea l, si $\partial \mathcal{P}$ se puede dividir en dos cadenas poligonales A y B tal que cada cadena sea monótona respecto a l. Ambas cadenas comparten un vértice en sus extremos.
- La estrategia para triangular el polígono \mathcal{P} es primero dividir \mathcal{P} en polígonos monótonos respecto a y y luego triangularlos.

Encontrar un vértice de giro (turn vertex) a partir del vértice más alto.

{0,4,5,7,13,17,18,21,23,24} {0,1,2,3,6,8,10,11,12,14,15,18,19,20,22,24}

- Eliminar los vértices de giro agregando diagonales.
 - si las dos aristas adyacentes al vértice de giro bajan y el interior del polígono está arriba del vértice: agregar una diagonal hacia arriba.
 - la diagonal dividirá el polígono en dos.

- Para definir los diferentes tipos de vértices de giro hay que establecer un orden.
 - \blacksquare Un punto p está abajo de otro punto q si $p_y < q_y$ o $p_y = q_y$ y $p_x > q_x$.
 - \blacksquare Un punto p está arriba de otro punto q si $p_y > q_y$ o $p_y = q_y$ y $p_x < q_x$.
- Distinguimos 5 tipos de vértices, donde 4 son vértices de giro:
 - de giro: inicio(start), fin (end), división (split), unión (merge);
 - regulares.

Tipos de vértices en un polígono

- \square start sus vecinos están ambos abajo y el ángulo interior de \vee es inferior a π .
- \triangle split sus vecinos están ambos abajo y el ángulo interior de \vee es superior a π .
- \blacksquare end sus vecinos están ambos arriba y el ángulo interior de \lor es inferior a π .
 - merge sus vecinos están ambos arriba y el ángulo interior de v es superior a π .

- Un polígono es monótono respecto al eje y si no tiene vértices de división (split) ni de unión (merge).
- El polígono se dividirá en partes monótonas insertando una diagonal hacia arriba por cada vértice split y una hacia abajo en cada vértice merge.
- Sea v_1, v_2, \ldots, v_n una enumeración en sentido contrario a las manecillas del reloj (ccw) de los vértices de \mathcal{P} .
- Sea e_1, e_2, \ldots, e_n el conjunto de aristas de \mathcal{P} donde $e_i = \overline{v_i v_{i+1}}$ para $1 \leq i < n \text{ y } e_n = \overline{v_n v_1}$.
- Una línea de barrido (sweep line) se moverá hacia abajo en el plano deteniendose en puntos evento (vértices de \mathcal{P}), no se crearán nuevos puntos evento durante el recorrido.

- \bullet Los puntos evento se almacenan en la cola de eventos $\mathcal Q$.
- Esta estructura será una cola de prioridad en su coordenada y. Si dos vértices tienen la misma coordenada y se tomará el que está a la izquierda como prioritario.
- La meta del barrido es agregar diagonales del vértice split a un vértice que se encuentre arriba de él. ¿ A qué vertice nos conviene conectarle?
 - \blacksquare a uno cercano para evitar intersecciones con \mathcal{P} .

helper (e_j) se define como el vértice más bajo sobre la línea de barrido tal que el segmento horizontal conectandolo con e_j está en el interior de \mathcal{P} .

- Una diagonal hacia abajo para eliminar vértices merge parece una tarea difícil, ¿por qué?
 - porque no se ha explorado el plano abajo de la línea de barrido.
 - lacktriangle cuando la línea llega al vértice v_i este se vuelve el nuevo $\mathrm{helper}(e_j)$.

lacktriangle conectaremos v_i al primer vértice que aparezca sobre la línea entre e_j y e_k .

diagonal will be added when the sweep line reaches v_m

- Necesitamos encontrar las aristas a la izquierda de cada vértice por lo que almacenamos las aristas de \mathcal{P} que instersecten a la línea de barrido en las hojas del árbol binario de búsqueda \mathcal{T} .
- Con cada arista en T almacenamos a su ayudante.
- \bullet El árbol Ty sus ayudantes almacenados con las aristas forma el estado de la línea de barrido.
- ullet El algoritmo divide a $\mathcal P$ en subpolígonos que deberán ser tratados en siguientes etapas. Para tener acceso a estos subpolígonos almacenaremos la subdivisión y las nuevas diagonales producidas en una lista doblemente ligada de aristas.
- ullet debe ser representado de la misma manera al inicio del algoritmo.

Algorithm MAKEMONOTONE(𝑃)

Input. A simple polygon \mathcal{P} stored in a doubly-connected edge list \mathcal{D} .

Output. A partitioning of \mathcal{P} into monotone subpolygons, stored in \mathcal{D} .

- 1. Construct a priority queue Q on the vertices of P, using their y-coordinates as priority. If two points have the same y-coordinate, the one with smaller x-coordinate has higher priority.
- 2. Initialize an empty binary search tree \mathcal{T} .
- 3. **while** Q is not empty
- 4. **do** Remove the vertex v_i with the highest priority from Q.
- 5. Call the appropriate procedure to handle the vertex, depending on its type.

HANDLESTARTVERTEX(v_i)

1. Insert e_i in \mathcal{T} and set $helper(e_i)$ to v_i .

HANDLEENDVERTEX(v_i)

- 1. **if** $helper(e_{i-1})$ is a merge vertex
- 2. **then** Insert the diagonal connecting v_i to $helper(e_{i-1})$ in \mathcal{D} .
- 3. Delete e_{i-1} from \mathfrak{T} .

HANDLESPLITVERTEX(v_i)

- 1. Search in T to find the edge e_j directly left of v_i .
- 2. Insert the diagonal connecting v_i to $helper(e_i)$ in \mathcal{D} .
- 3. $helper(e_j) \leftarrow v_i$
- 4. Insert e_i in \mathcal{T} and set $helper(e_i)$ to v_i .

HANDLEMERGEVERTEX(v_i)

- 1. **if** $helper(e_{i-1})$ is a merge vertex
- 2. **then** Insert the diagonal connecting v_i to $helper(e_{i-1})$ in \mathcal{D} .
- 3. Delete e_{i-1} from \mathfrak{T} .
- 4. Search in T to find the edge e_i directly left of v_i .
- 5. **if** $helper(e_j)$ is a merge vertex
- 6. **then** Insert the diagonal connecting v_i to $helper(e_i)$ in \mathcal{D} .
- 7. $helper(e_j) \leftarrow v_i$

```
HANDLEREGULARVERTEX(v_i)

1. if the interior of \mathcal{P} lies to the right of v_i

2. then if helper(e_{i-1}) is a merge vertex

3. then Insert the diagonal connecting v_i to helper(e_{i-1}) in \mathcal{D}.

4. Delete e_{i-1} from \mathcal{T}.

5. Insert e_i in \mathcal{T} and set helper(e_i) to v_i.

6. else Search in \mathcal{T} to find the edge e_j directly left of v_i.

7. if helper(e_j) is a merge vertex

8. then Insert the diagonal connecting v_i to helper(e_j) in \mathcal{D}.

helper(e_j) \leftarrow v_i
```


Partición de un polígono en partes monótonas: análisis

- *¿Tiempo de ejecución de MAKEMONOTONE(P)?
 - Construir la cola de prioridad Q de eventos (cada vértice): O(n)
 - Inicializar el estado T de la línea de barrido O(1)
 - Para manejar un evento de Q usamos a lo más:
 - \blacksquare una operación en Q: O(1)
 - una búsqueda, una inserción y una eliminación de T
 - inserción de a lo más dos diagonales en D: O(1)
 - Las colas de prioridad y los árboles de búsqueda balanceados permiten búsquedas y actualizaciones en tiempo: $O(\log n)$
 - \blacksquare El manejo de eventos toma $O(\log n)$ y el algoritmo completo: $O(n \log n)$

Partición de un polígono en partes monótonas: análisis

- El tamaño de la memoria necesaria el lineal
 - cada vértice se almacena a lo más una vez en Q.
 - cada arista se almacena a lo más una vez en T.

Teorema 4:

Un polígono simple $\mathcal P$ con n vértices se puede dividir en polígonos monótonos respecto a y en tiempo $O(n\log n)$ y usando O(n) memoria.