Due Date: <u>Webcampus</u> How to submit: <u>Webcampus</u>

HW2-1: Consider the training example shown in Table 1, for a binary classification of mammals.

Name	Body	Gives	Four-	Hibernates	Class
	Temperature	Birth	legged		Label
porcupine	warm-blooded	yes	yes	yes	yes
cat	warm-blooded	yes	yes	no	yes
bat	warm-blooded	yes	no	yes	yes
whale	warm-blooded	yes	no	no	yes
salamander	cold-blooded	no	yes	yes	no
komodo dragon	cold-blooded	no	yes	no	no
python	cold-blooded	no	no	yes	no
salmon	cold-blooded	no	no	no	no
eagle	warm-blooded	no	no	no	no
guppy	cold-blooded	yes	no	no	no

- a- What is the entropy of this collection of training set?
- b- What are the Information Gains of splitting "Body temperature" and "Give Birth"?
- c- Between "Give Birth", and "four legged" what is the best split according to the classification error rate?
- d- Between "Give Birth", and "four legged" what is the best split according to the Gini index?
- e- Use "Give Birth" as the first split parameter, and "four legged" as the second split parameter. Draw the tree then calculate information gain.

HW2-2. Model Overfitting

Consider the decision trees $(T_1 \text{ and } T_2)$ shown in Figures 1 and 2 respectively.

Figure 1: T₁

Figure 2: T₂

- a) Compute the generalization error rate of the trees using optimistic approach.
- b) Compute the generalization error rate of the trees using pessimistic approach. Use penalty term = 0.5, 0.75, and 1.
- c) Based on the generalization error from part (a) and (b), which tree is preferred and why?
- d) Based on Occam's Razor, which tree is better and why?

HW2-3. Model Overfitting

Generate the dataset as in slide 56 in Chapter 3. 10 % of the data is used for training and 90% of the data used for testing. Reproduce the right figure in slide 61 in Chapter 3 and submit your python code in ipynb format.