19CSE456

NEURAL NETWORKS AND DEEP LEARNING

L-T-P-C: 2-0-3-3

Pre-Requisite(s):19MAT111 Multivariable Calculus, 19MAT112 Linear Algebra, 19MAT205 Probability and Random Processes, 19CSE305 Machine Learning

Course Objectives

- This course provides an introduction to deep neural network models, and surveys some of the applications of these models in areas where they have been particularly successful.
- The course covers feedforward networks, convolutional networks, recurrent and recursive networks, as well as general topics such as input encoding and training techniques.

Course Outcomes

- **CO1:** Understand the learning components of neural networks and apply standard neural network models to learning problems.
- **CO2:** Analyze the learning strategies of deep learning regularization, generalization, optimization, bias and variance.
- CO3: Analyze regular deep learning models for training, testing and validation in standard datasets.
- **CO4:** Apply neural networks for deep learning using standard tools.
- **CO5:** Understand the mathematics for Deep learning.

CO-PO Mapping

PO/PSO	PO1	PO2	PO3	PO4	DO5	PO6	DO7	PO8	PO9	PO10	DO11	DO12	DCO1	DCO2
СО	FUI	PO2	103	104	103	100	FO/	PO8	PO9	FO10	FOII	FO12	F301	1302
CO1	3	2	2	3									3	2
CO2	3	2	3	2	2								3	2
CO3	3	2	3	2	3								3	2
CO4	3	1	2	1	2								3	2
CO5	3	1	2	1									3	2

Syllabus

Unit 1

Perceptrons – classification - limitations of linear nets and perceptrons - multi-Layer Perceptrons (MLP)- activation functions - linear, softmax, tanh, ReLU; error functions - feed-forward networks - Backpropagation - recursive chain rule (backpropagation) - Learning weights of a logistic output -Loss functions - learning via gradient descent - optimization – momentum method; Adaptive learning rates – RmsProp - mini-batch gradient descent - bias-variance trade off, regularization - overfitting - inductive bias – regularization - drop out - generalization.

Unit 2

Probabilistic Neural Network - Hopfield Net, Boltzman machine, RBMs, Sigmoid net, Autoencoders; Conditional Random Fields - Linear chain, partition function, Markov network, Belief propagation, Training CRFs, Hidden Markov Model, Entropy.

Unit 3

Introduction to deep learning - Deep neural networks - convolutional nets - case studies using Keras/Tensorflow - neural nets for sequences - Recurrent Nets - Long-Short-Term-memory; Introduction to Deep unsupervised learning - PCA to autoencoders.

Text Book(s)

Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning, MIT Press, Second Edition; 2016.

Reference(s)

Duda, R.O., Hart, P.E., and Stork, D.G. Pattern Classification. Wiley-Interscience. Second Edition; 2001.

Theodoridis, S. and Koutroumbas, K. Pattern Recognition. Fourth Edition. Academic Press; 2008.

Russell, S. and Norvig, N. Artificial Intelligence: A Modern Approach. Prentice Hall Series in Artificial Intelligence; 2003.

Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press; 1995.

Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Springer;2001.

Koller, D. and Friedman, N. Probabilistic Graphical Models. MIT Press;2009.

Evaluation Pattern

Assessment	Internal	External
Periodical 1	10	
Periodical 2	10	
*Continuous Assessment (Theory) (CAT)	10	
Continuous Assessment (Lab) (CAL)	40	
End Semester		30

^{*}CA – Can be Quizzes, Assignment, Projects, and Reports.