Answer Key 10

1

(1) Consider $\hat{\mu} = c_1 \overline{Y}_1 + c_2 \overline{Y}_2$. Then $E(\hat{\mu}) = (c_1 + c_2)\mu$. For $\hat{\mu}$ to be unbiased, we require

$$c_1 + c_2 = 1$$
. $V(\hat{\mu}) = \frac{\sigma_1^2}{n_1} c_1^2 + \frac{\sigma_2^2}{n_2} c_2^2$..

For $\hat{\mu}$ to be MVUE, minimize $V(\hat{\mu})$ s.t. $c_1 + c_2 = 1$.

The answer will be
$$c_1^* = \frac{\sigma_2^2/n_2}{\sigma_1^2/n_1 + \sigma_2^2/n_2}$$
, $c_1^* = \frac{\sigma_1^2/n_1}{\sigma_1^2/n_1 + \sigma_2^2/n_2}$.

(2) Let
$$A = \frac{\sigma_1^2}{n_1}$$
, $B = \frac{\sigma_2^2}{n_2}$. Then $A, B > 0$, and

$$V(T) = \left(\frac{B}{A+B}\right)^2 A + \left(\frac{A}{A+B}\right)^2 B = \frac{AB}{A+B} < A = \frac{A(A+B)}{(A+B)} = V(\overline{Y}_1).$$

And
$$V(T) = \frac{AB}{A+B} < B = \frac{B(A+B)}{(A+B)} = V(\overline{Y}_2)$$
.

2.
$$T = \hat{P}(Y \le c) = \frac{\# of Y_i \le c}{n}$$
.

(1)
$$X = \# of Y_i \le c = \sum_{i=1}^n Z_i$$
, where $Z_i = \begin{cases} 1 & for Y_i \le c \\ 0 & otherwise \end{cases}$

Then $X \sim B(n, \theta)$ and $Z_i \sim Bernoulli(\theta)$

Note that $E(X) = n\theta$, $V(X) = n\theta(1-\theta)$.

Therefore, $E(T) = \frac{1}{n}E(X) = \theta$; unbiased.

(2)
$$V(T) = \frac{1}{n^2}V(X) = \frac{\theta(1-\theta)}{n}$$
.

(3) Note that
$$T = \frac{1}{n} \sum_{i=1}^{n} Z_i = \overline{Z} \xrightarrow{p} E(Z) = \theta$$
, since $V(T) \to 0$.

(4) From Central Limit Theorem, $T \sim N(\theta, \theta(1-\theta)/n)$.

(5) From (4),
$$Asy.V(T) = \frac{\theta(1-\theta)}{n}$$
.

Since T is a consistent estimator of θ , propose $\hat{A}sy.V(T) = \frac{T(1-T)}{n}$.

Then, since
$$p \lim T = \theta$$
, $\hat{A}sy.V(T) = \frac{T(1-T)}{n} \xrightarrow{p} \frac{\theta(1-\theta)}{n} = Asy.V(T)$.

(6) From (4) and (5), 95% asymptotic confidence interval of
$$\theta$$
 is $\left[T \pm 1.96\sqrt{\frac{T(1-T)}{n}}\right]$.