PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS

DEPARTAMENTO DE MATEMATICA

Segundo semestre 2020

Ayudantía 8 - MAT1610

- 1. (a) Determine el polinomio de Taylor de grado 2 centrado en π de la función $f(x) = e^{\sin(x)}$.
 - (b) Al construir el polinomio de Taylor grado 3, centrado en 1, de cierta función f se obtuvo $T_3(x) = x^2 2x + 3$. Detremine los valores f'''(1), f''(1) y la ecuación de la recta tangente a f en el punto (1, f(1)).
 - (c) Determine una fórmula para el polinomio de Taylor de grado n centrado en 0 de la función $f(x) = e^{2x}$.
- 2. Para la función f cuya gráfica está dada en la figura, determine:
 - (a) Los números o valores críticos de f.
 - (b) El mínimo y el máximo en cada uno de los siguientes intervalos: [1,4]; [1,5]; [-9,-2]; [-1,3];.

- 3. Determine los valores críticos de la función f en cada caso:
 - (a) $f(x) = 8\cosh(x) 2\sinh^2(x)$.
 - (b) f(x) es una función derivable en \mathbb{R} tal que $e^{1+x^2}f(x) + \frac{(f(x))^5}{5} + \pi (f(x) + 1) = \pi$.
 - (c) $f(x) = \sqrt[3]{2ax^2 x^3}$, con $a \in \mathbb{R}$.
- 4. Determine, el máximo y el mínimo de la función $f(x) = \frac{1}{1+|x|} + \frac{1}{1+|x-1|}$ en el intervalo [-1,3].
- 5. Si a y b son números positivos, encuentre el valor máximo de $f(x) = x^a (1-x)^b$ en el intervalo [0,1].