Circuitos combinatórios

João Canas Ferreira

Outubro de 2017

Tópicos

1 Álgebra de Boole

Representação abstrata do processamento binário Especificação algébrica Representações canónicas

2 Portas lógicas

Portas elementares Descrição hierárquica de circuitos

3 Circuitos padrão

Multiplexadores
Descodificadores
Codificadores

1 Álgebra de Boole

Representação abstrata do processamento binário Especificação algébrica Representações canónicas

2 Portas lógicas

Portas elementares Descrição hierárquica de circuitos

3 Circuitos padrão

Multiplexadores
Descodificadores
Codificadores

Tratamento de informação binária

Como definir e representar o tratamento de informação binária?

- Modelo concetual mais simples: "caixa negra" que tem *n* entradas e 1 saída. O valor binário da saída depende da **combinação** de valores binários presentes nas entradas.
- Como definir a função F das n entradas binárias?

Definição exaustiva

Como as combinações de valores de entrada são finitas, podemos fazer uma lista (tabela) exaustiva do valor de saída correspondente a cada uma. Exemplo:

<i>X</i> ₂	<i>X</i> ₁	<i>x</i> ₀	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- Tabela de verdade (considerando 1 como verdadeiro e 0 como falso)
- Para uma função de *n* variáveis binárias, quantas linhas tem a tabela?
- Como calcular a **composição de funções**? (Quando um valor de entrada é, por sua vez, função de outros valores?)

Expressão algébrica

- A especificação e composição das funções de variáveis binárias pode ser simplificada com a introdução de expressões algébricas.
- Em 1938, Claude Shannon propôs a utilização de um método de cálculo inventado no século XIX (1854) pelo Reverendo George Boole para expressar as "leis do raciocínio".

Nota: Esse método é equivalente ao cálculo da lógica proposicional.

A formalização das operações associadas designa-se por **Álgebra de Boole** e pode ser feita sem requerer uma interpretação como "leis do raciocínio".

George Boole

Claude Shannon

Axiomas de Álgebra de Boole

- Uma **álgebra de Boole** é constituída por um conjunto A, dotado de duas operações binárias + e ●, uma operação unária (complemento) e tendo (pelo menos) dois elementos distintos 0 e 1.
- Para quaisquer $x, y, z \in A$, valem os seguintes axiomas (Huntington, 1904)

$$x + 0 = x$$
 $x \cdot 1 = x$ (identidade)
 $x + y = y + x$ $x \cdot y = y \cdot x$ (comutatividade)
 $x + (y \cdot z) = (x + y) \cdot (x + z)$ $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ (distributividade)
 $x + \overline{x} = 1$ $x \cdot \overline{x} = 0$ (complemento)

- **™** Notações alternativas: \vee para + \wedge para $\neg x$ para \overline{x} .
- Princípio da dualidade: A uma igualdade verdadeira corresponde outra igualdade verdadeira obtida pelas trocas seguintes:

$$+\leftrightarrow \bullet$$
 0 \leftrightarrow 1 (Porquê?)

Para circuito digitais:

álgebra de Boole com $A = \{0, 1\}$ (apenas dois elementos: 0 e 1)

Alguns teoremas úteis

Precedência decrescente: negação, e-lógico (●), ou-lógico (+).

1 variável	
x + x = x	$x \cdot x = x$
x + 1 = 1	$x \cdot 0 = 0$
$\overline{\overline{x}} = x$	
2 variáveis	
$x + x \cdot y = x$	$x\cdot(x+y)=x$
$x + \overline{x} \cdot y = x + y$	$x\cdot(\overline{x}+y)=x\cdot y$
$(x+y)+(\bar{x}\cdot\bar{y})=1$	$(x\cdot y)\cdot (\overline{x}+\overline{y})=0$
$(x+y)\cdot(\overline{x}\cdot\overline{y})=0$	$(x\cdot y)+(\overline{x}+\overline{y})=1$
$\overline{x+y} = \overline{x} \cdot \overline{y}$	$\overline{x \cdot y} = \overline{x} + \overline{y}$
3 variáveis	
$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	x + (y+z) = (x+y) + z
$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$	$(x+y)\cdot(\overline{x}+z)\cdot(y+z)=(x+y)\cdot(\overline{x}+z)$

leis de de Morgan (não é gralha!)

Para a álgebra de Boole (de 2 elementos), os teoremas podem ser demonstrados construindo as tabelas de verdade das expressões de ambos os lados da igualdade e confirmando que as colunas dos resultados são iguais.

Simplificação de expressões

Axiomas e teoremas podem ser usados na simplificação de expressões.

Exemplo (por convenção, pode omitir-se o operador ●):

$$\overline{AB}(\overline{A} + B)(\overline{B} + B) = \overline{AB}(\overline{A} + B)$$

$$= (\overline{A} + \overline{B})(\overline{A} + B) \text{ lei de de Morgan}$$

$$= \overline{A} + \overline{B}B \text{ distributividade}$$

$$= \overline{A}$$

Alternativas:

- mapas de Karnaugh (método gráfico; até 6 variáveis)
- método Quine-McClusky (Karma3 em http://bit.ly/boolmin) expressões mínimas de dois níveis (pode demorar muito tempo)
- métodos heurísticos (Logic Friday em http://www.sontrak.com/)
 programa original: Espresso

(http://bit.ly/espresso-sources)

Teorema de expansão de Boole (Shannon)

Para qualquer função booleana vale sempre:

$$F(x_1, x_2, \ldots, x_n) = x_1 \cdot F(1, x_2, \ldots, x_n) + \overline{x_1} \cdot F(0, x_2, \ldots, x_n)$$

A aplicação repetida da expansão permite escrever qualquer função na **forma** canónica disjuntiva (soma de produtos).

Exemplo para duas variáveis:

$$F(x_1, x_2) = x_1 \cdot F(1, x_2) + \overline{x_1} \cdot F(0, x_2) = x_1 x_2 \cdot F(1, 1) + x_1 \overline{x_2} \cdot F(1, 0) + \overline{x_1} x_2 \cdot F(0, 1) + \overline{x_1} \overline{x_2} \cdot F(0, 0)$$

A expressão corresponde à tabela de verdade:

<i>X</i> ₁	<i>x</i> ₂	$F(x_1,x_2)$
0	0	F(0,0)
0	1	F(0,1)
1	0	F(1,0)
1	1	<i>F</i> (1, 1)

Forma canónica disjuntiva

Uma função booleana de *n* variáveis pode ser expressa por uma soma de produtos (termos), em que cada produto inclui **uma só vez cada uma das variáveis ou o seu complemento**.

<i>X</i> ₂	<i>X</i> ₁	<i>X</i> ₀	F	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	1	$F(x_2,x_1,x_0)=(\overline{x_2}\overline{x_1}\overline{x_0})+(\overline{x_2}x_1x_0)+(x_2\overline{x_1}\overline{x_0})+(x_2x_1\overline{x_0})$
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	

- Cada um destes termos designa-se por **termo mínimo** ou *minterm*.
- Existe uma correspondência direta entre a forma canónica disjuntiva de uma função booleana e a sua tabela de verdade (considerando as variáveis pela mesma ordem).

Somas de produtos mínimas

- A forma canónica disjuntiva mostra que é possível representar qualquer função booleana com **expressões de dois níveis**.
- A forma canónica disjuntiva é uma soma de produtos (SOP), mas não é, geralmente, a expressão desse tipo com o menor número de termos ou os termos mais simples (com menos variáveis).
- Mapas de Karnaugh ou o método de Quine-McCluskey permitem obter SOPs mínimas de forma sistemática.
- Também se pode usar simplificação algébrica.

$$F(x_2, x_1, x_0) = (\overline{x_2} \overline{x_1} \overline{x_0}) + (\overline{x_2} x_1 x_0) + (x_2 \overline{x_1} \overline{x_0}) + (x_2 x_1 \overline{x_0})$$

$$= (\overline{x_2} \overline{x_1} \overline{x_0}) + (\overline{x_2} x_1 x_0) + x_2 \overline{x_0} (\overline{x_1} + x_1)$$

$$= (\overline{x_2} \overline{x_1} \overline{x_0}) + (\overline{x_2} x_1 x_0) + x_2 \overline{x_0}$$

Forma canónica conjuntiva

Devido ao princípio da dualidade, uma função booleana de *n* variáveis também pode ser expressa por um produto de somas (termos), em que cada soma inclui **uma só vez cada uma das variáveis ou o seu complemento**.

<i>X</i> ₂	<i>X</i> ₁	<i>x</i> ₀	F	
0	0	0	1	
		1		
0	1	0	0	
0	1	1	1	$F(x_2, x_1, x_0) = (x_2 + x_1 + \overline{x_0}) \cdot (x_2 + \overline{x_1} + x_0)$
1	0	0	1	$\cdot \left(\overline{x_2} + x_1 + \overline{x_0}\right) \cdot \left(\overline{x_2} + \overline{x_1} + \overline{x_0}\right)$
1	0	1	0	
1	1	0	1	
1	1	1	0	

- Cada um destes termos designa-se por **termo máximo** ou *maxterm*.
- Fixada a ordem das variáveis, existe uma correspondência direta entre a forma canónica conjuntiva de uma função booleana e a sua tabela de verdade.
- A forma canónica conjuntiva é um **produto de somas** (POS), mas não é, geralmente, a expressão mais simples desse tipo.

1 Álgebra de Boole

Representação abstrata do processamento binário Especificação algébrica Representações canónicas

2 Portas lógicas

Portas elementares Descrição hierárquica de circuitos

3 Circuitos padrão
Multiplexadores

Descodificadores

Codificadores

Elementos para processamento lógico de informação

- Para realizar fisicamente o processamento da informação, são usados circuitos eletrónicos que realizam as funções lógicas elementares: **portas lógicas**.
- Quando não interessam os detalhes de implementação, usam-se símbolos para representar cada porta lógica.

Também existem portas lógicas que combinam a negação com outras operações lógicas.

Existem versões destas portas com mais entradas (3, 4, ...) [exceto inversor].

As portas lógicas XOR e XNOR

 \blacksquare OU-exclusivo: $F = A \oplus B = \overline{A}B + A\overline{B}$

OU-exclusivo negado: $F = A \odot B = AB + \overline{A} \overline{B}$

Α	В	$A \oplus B$	$A \odot B$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

- OU-exclusivo é igual a 1 quando as entradas são diferentes.
- OU-exclusivo negado é igual a 1 quando as entradas são iguais.

$$A \oplus (B \oplus C) = (A \oplus B) \oplus C$$
 $A \odot (B \odot C) = (A \odot B) \odot C$

$$A \odot (B \odot C) = (A \odot B) \odot C$$

$$A \oplus O = A$$
 $A \oplus 1 = \overline{A}$ $A \oplus A = O$ $A \oplus \overline{A} = 1$

$$A \oplus 1 = \overline{A}$$

$$A \oplus A = 0$$

$$A \oplus \overline{A} = 1$$

$$A \oplus \overline{B} = \overline{A} \oplus B = \overline{(A \oplus B)} = A \odot B$$

Circuitos com portas lógicas

Existe uma correspondência direta entre uma função lógica e o circuito de portas lógicas elementares que a realiza.

Exemplo:

- Quanto mais simples for a expressão, mais pequeno é o circuito.
- Circuitos diferentes podem realizar a mesma função lógica (correspondem a expressões equivalentes).

Complexidade e modularidade

- Circuitos lógicos podem ser muito complexos ⇒ como projetá-los?
- Dividir e conquistar: usar uma abordagem modular e hieráquica:
 - Portas lógicas são usadas para descrever funções lógicas mais complexas, implementadas por "módulos".
 - Os módulos pode ser usados na definição de circuitos lógicos mais complexos.

Função lógica $M(I_2, I_1, I_0) = \overline{\overline{I_0 I_1} I_2}$

Descrição hierárquica

Módulos podem ser combinados com outros módulos e portas lógicas.

Exemplo de módulo hierárquico Z(A, B, C) = ?:

Este processo pode ser repetido um número arbitrário de vezes.

Circuitos iterativos

Circuitos **iterativos** são constituídos por repetições de um mesmo módulo.

- 1 Identificar e projetar o módulo de base;
- 2 Interligar uniformemente instâncias do módulo base (eventualmente com portas lógicas).
- Este tipo de circuito pode ser facilmente expandido.

Somador do tipo ripple-carry

- O somador do tipo *ripple-carry* é um bom exemplo de um circuito iterativo.
- Exemplo: somar dois números de 4 bits $\mathbf{a_3}\mathbf{a_2}\mathbf{a_1}\mathbf{a_0}$ e $\mathbf{b_3}\mathbf{b_2}\mathbf{b_1}\mathbf{b_0}$ usando um módulo que calcula a soma de 2 bits (FA: *full adder*). Resultado: $\mathbf{s_3}\mathbf{s_2}\mathbf{s_1}\mathbf{s_0}$ e **c**

Simplificar diagramas usando barramentos

Um "barramento" é um grupo de sinais que interessa tratar como uma unidade. O seu uso simplifica muito os diagramas (comparar as duas figuras).

1 Álgebra de Boole

Representação abstrata do processamento binário Especificação algébrica Representações canónicas

2 Portas lógicas

Portas elementares Descrição hierárquica de circuitos

3 Circuitos padrão

Multiplexadores
Descodificadores
Codificadores

Funções lógicas comuns

- A experiência mostrou que existe um conjunto de funções lógicas que encontram utilização em muitos sistemas digitais.
- Essas funções são realizadas por **circuitos padrão** de "média complexidade" (i.e., mais complexos que simples portas lógicas).
- A sua utilização facilita o projeto de sistemas digitais

O circuito *full adder* estudado anteriormente pode ser considerado uma dessas funções.

- Outras funções incluem comparadores, des/codificadores de vários tipos, de/multiplexadores.
- Circuitos padrão estão disponíveis no mercado
- Existem normas para alguns símbolos "padrão" (ex.: IEEE Graphic Symbols for Logic Functions IEEE-91)

Mais simples: usar um retângulo com entradas (à esquerda) e saídas (à direita).

Multiplexador de 2 entradas

Um multiplexador (multiplexer. mux) 2:1 é um circuito que permite selecionar uma de duas entradas de dados.

- Existem multiplexadores 4:1, 8:1, ..., 2^N :1
- Um multiplexador 2^N:1 tem N entradas de controlo $S_{N-1}, \ldots, S_1, S_0$
- Todas as expressões lógicas podem ser implementadas com multiplexadores 2:1. (Porquê?)
- Expressões de *n* variáveis podem ser realizadas com um multiplexador de *n* entradas de dados.

0

Combinar multiplexadores

Como construir um multiplexador de 4:1?

Descodificador binário

- Descodificador (*decoder*) de N-para-M (geralmente N < M) transforma um código noutro com mais bits.
- Descodificador binário de N-para-2^N

- A entrada EN designa-se por entrada de habilitação (enable).
- Descodificador binário seguido de porta lógica OU permite realizar todas as funções de N variáveis. (Como?)

Desmultiplexador

■ Um desmultiplexador (demultipler, demux) de 1:2^N tem 1 entrada de dados, N entradas de controlo (endereço) e 2^N saídas.

O valor da saída selecionada é igual ao da entrada de dados (entrada I).

Exemplo: desmultiplexador 1:2 (N=1)

EN	S_0	I	<i>Y</i> ₁	Y_0
0	X	X	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

- Um desmultiplexador pode ser considerado como um descodificador binário com uma entrada adicional que define o valor da saída selecionada.
- Como construir um desmultiplexador 1:4 usando circuitos padrão?

Codificador binário

- Um codificador (*encoder*) transforma um código de X bits num código de Y bits, com X > Y.
- O codificador binário tem 2^N entradas e N saídas (e sinais de controlo).

Para as restantes combinações de valores de entrada, as saídas não estão definidas!

Codificador de prioridade

A saída de um codificador de prioridade é definida pela entrada de maior prioridade que estiver a "1".

Exemplo: codificador de prioridade 4:2 (I₃ tem a maior prioridade; I₀ a menor)

EI: (enable input) circuito habilitado;

EO: (enable output) para habilitar circuito de menor prioridade;

GS: (got something) está a "1" se EI=1 e alguma entrada de dados está a "1"

Como fazer um codificador de prioridade 8:3 com dois codificadores 4:2 e portas lógicas?

Referências

COD4 D. A. Patterson & J. L. Hennessey, Computer Organization and Design, 4 ed.

COD3 D. A. Patterson & J. L. Hennessey, Computer Organization and Design, 3 ed.

Alguns dos tópicos tratados nesta apresentação são descritos nas seguintes secções de [COD4]:

■ apêndice C, secções C.1–C.3

Também são tratados nas seguintes secções de [COD3]:

■ apêndice B, secções B.1–B.3