Besag model for spatial effects

Parametrization

The besag model for random vector $\mathbf{x} = (x_1, \dots, x_n)$ is defined as

$$x_i|x_j, i \neq j, \tau \sim \mathcal{N}(\frac{1}{n_i} \sum_{i \sim j} x_j, \frac{1}{n_i \tau})$$
 (1)

where n_i is the number of neighbours of node i, $i \sim j$ indicates that the two nodes i and j are neighbours.

Hyperparameters

The precision parameter τ is represented as

$$\theta_1 = \log \tau$$

and the prior is defined on θ_1 .

Specification

The besag model is specified inside the f() function as

```
f(<whatever>,model="besag",graph=<graph>,
  hyper=<hyper>, adjust.for.con.comp = TRUE,
  scale.model = FALSE)
```

The neighbourhood structure of x is passed to the program through the graph argument.

If the option adjust.for.con.comp=TRUE then the model is adjusted if the graph has more than one connected component. This adjustment can be disabled setting this option to FALSE. If adjust.for.con.comp=TRUE then constr=TRUE is interpreted as a sum-to-zero constraint on each connected component in the graph and the rankdef parameter is set to the number of connected components.

The logical option scale.model determine if the model should be scaled to have an average variance (the diagonal of the generalized inverse) equal to 1. This makes prior spesification much easier. Default is FALSE so that the model is not scaled.

Hyperparameter spesification and default values

hyper

theta

```
name log precision
short.name prec
prior loggamma
param 1 5e-05
initial 4
fixed FALSE
to.theta function(x) log(x)
from.theta function(x) exp(x)
```

constr TRUE

nrow.ncol FALSE

augmented FALSE

aug.factor 1

aug.constr

n.div.by

n.required TRUE

set.default.values TRUE

 \mathbf{pdf} besag

Example

For examples of application of this model see the Bym, Munich, Zambia or Scotland examples in Volume I.

Notes

The besag model intrinsic with rankdef 1.

The term $\frac{1}{2}\log(|R|^*)$ of the normalisation constant is not computed, hence you need to add this part to the log marginal likelihood estimate, if you need it. Here R is the precision matrix with a unit precision parameter.