Conrad Koziol, PhD

ckoziol@gmail.com

(7) cpk26

ckoziol.com

Vancouver, BC

Machine Learning

PyTorch, Scikit-Learn, OpenCV, PyMC3, Optuna

Programming / Geospatial

Python, NumPy, SciPy, Pandas, Anaconda, GDAL, Shapely, Xarray Computing

Linux, Bash, AWS, SQL, Docker, Git, QGIS

EXPERIENCE

Senior Data Scientist

Sep 2023 - Dec 2023

Floodbase

• Developed methodology for integrating satellite flood measurements with modelled time series of flooding.

Senior Machine Learning Scientist

Sep 2020 – Aug 2023

Computational Geosciences Inc

- Delivered deep-learning mineral prospectivity mapping, as well as tailored machine learning models across the mining and energy sectors, working collaboratively with clients and an internal geoscience team.
- Improved internal deep learning methods by testing developments in areas such as unsupervised image segmentation, graph neural networks, and data augmentation in collaboration with university partner.
- Developed deep learning systems from proof-of-concept to production; integrated with custom data fusion products assimilating geoscience data from local to continental scale.

Founder July 2018 – Sep 2021 Inlet Laboratories

- Independent consulting on projects such developing a Bayesian time series forecasting system for a medical school, business process mapping of personally identifiable information flow through a Fortune 500 company, and technology evaluation for a leading mining company.
- Handled all aspects of a small business including sales, legal, and finance.

Co-Founder July 2018 – Dec 2019 Prose Al

• Designed neural networks for real-time voice recognition in-browser and managed cloud infrastructure.

Postdoctoral Researcher

July 2017 – July 2018

University of Edinburgh

- Developed new ice-sheet model for uncertainty quantification of sea level rise due to ice sheet mass loss.
- Finite element modelling of ice flow using the FEniCS library leveraging automatic differentiation for solving inverse problems and error propagation.

PhD Candidate

Oct 2013 - July 2017

University of Cambridge

- Quantified the partitioning of Greenland ice sheet melt among flowpaths by developing a hydrology model.
- Determined impact of increased surface melting on the Greenland ice sheet on ice-mass loss by developing and applying a coupled finite difference ice-flow and hydrology model to the Paakitsoq Region, Greenland.

Project Geophysicist

May 2011 – July 2013

Scott Geophysics Ltd

• Lead field teams collecting geophysical data in remote areas across Canada.

EDUCATION

University of Cambridge

Oct 2013 - July 2017

• PhD in Polar Studies. Thesis: "Modelling the impact of surface melt on the hydrology and dynamics of the Greenland ice sheet"

University of British Columbia

Sep 2006 - May 2011

• B.Sc. Honours Geophysics with distinction.

PUBLICATIONS

- Koziol, C. P., & Haber, E. (2023). Semi-Automated Segmentation of Geoscientific Data Using Superpixels, arXiv
- Koziol, C. P., et al. (2021) fenics_ice 1.0: a framework for quantifying initialization uncertainty for time-dependent ice sheet models, Geoscientific Model Development
- Koziol, C. P., & Arnold, N. (2018). Modelling seasonal meltwater forcing of land-terminating margins of the Greenland Ice Sheet, The Cryosphere
- Koziol, C. P., & Arnold, N. (2017). Incorporating modelled subglacial hydrology into inversions for basal drag, The Cryosphere
- Koziol, C., et al. (2017). Quantifying supraglacial meltwater pathways in the Paakitsoq region, Journal of Glaciology

INVITED SEMINARS

BGC Engineering March 2020

How machine learning and data science are becoming important tools in the earth sciences

Simon Fraser University

Oct 2018

• Modelling hydrological forcing of ice sheet velocities and uncertainty quantification of ice sheet forecasts

University of Cambridge

March 2018

• Modelling seasonal acceleration of land terminating sectors of the Greenland ice sheet margin

University of Zurich

Feb 2018

Modelling hydrologically forced seasonal acceleration of the Greenland ice sheet margin

DATA STUDY GROUPS

University of Washington Waterhackweek

March 25 – 29, 2019

• Analyzed modelled past and future streamflows in the Pacific Northwest.

Alan Turing Institute Data Study Group

April 16 - 20, 2018

• Improved research group's understanding of language recovery after a stroke using data analysis.