Лабораторная работаСИСТЕМА СТАБИЛИЗАЦИИ ВЫСОТЫ ПОЛЕТА

Пащенко А.Е. Зарубин Р.А. Вариант 3

Цель работы: Исследование методов математического моделирования системы стабилизации высоты на персональном компьюторе.

1 Теоретический минимум

Стабилизация высоты полёта может быть достигнута как воздействием на руль высоты, так и посредством изменениея тяги. Будем рассматривать наиболее распространённый случай, когда скорость полёта постоянна, а высота стабилизируется рулём высоты.

В общем виде при постоянной скорости полёта структурная схема высоты показана на рис. 1

Рис. 1: Структурная схема системы стабилизации высоты

Устойчивость такого контура может быть обеспечина двумя путями:

- 1) введением внутренней стабилизирующей обратной связи по сигналу угла тангажа ϑ , т.е. введением автопилота угла тангажа;
- 2) введением в закон управления $R_H(p)$ сигнала первой производной отклонения высоты для случая, если сервопривод имеет жёсткую обратную связь, и суммы сигналов первой и второй производных от сигнала отклонения высоты для случая, когда

сервопривод имеет скоростную или изодромную обратную связь.

На рис. 2 приведена структурная схема системы стабилизации высоты, содержащей автопилот угла тангажа.

Рис. 2: Структурная схема системы стабилизации высоты

Основным приемуществом такой системы является то, что устойчивость траекторного контура обеспечивается регулятором $R_H(p)=i_H$ за счёт сигнала угла тангажа, снимаемого с надёжного датчика – гировертикали, практически лишённого запаздывания. Система содержащая регулятор $R_H(p)=i_H$, называется статической системой т.к. этот регулятор не обеспечивает астатизм регулярования в отношении других возмущений.

$$\begin{cases} \Delta \dot{\alpha} = \Delta \omega_z - \bar{Y}_a^{\alpha} \Delta \alpha \\ \Delta \dot{\omega}_z = \bar{M}_z^{\alpha} \Delta \alpha + \bar{M}_z^{\omega_z} \Delta \omega_z + \bar{M}_z^{\delta_B} \Delta \delta_B \\ \Delta \dot{\vartheta} = \Delta \omega_z \\ \Delta \dot{V}_y = V_0 \bar{Y}_a^{\alpha} \Delta \alpha \\ \Delta \dot{H} = \Delta V_y \\ \Delta n_y = n_y^{\alpha} \Delta \alpha, \end{cases}$$
(1)

где система (1) – это система дифференциальных уравнений, используемая для маделирования движения самолёта в короткопериодическом движении.

$$\begin{cases} \Delta \delta_B = K_{\omega_z} \Delta \omega_z + K_{\vartheta} (\Delta \vartheta - \Delta \vartheta_{\text{зад}} + f) \\ \Delta \vartheta_{\text{зад}} = i_H (\Delta H_{\text{зад}} - \Delta H) + i_p \int_0^t (\Delta H_{\text{зад}} - \Delta H) dt \end{cases}$$
 (2)

2 Исходные данные

Таблица 1: Исходные данные

m_0	25000 кг
S	50 m^2
b_a	5м
J_z	$50000 \ {\rm Kr} \ {\rm M}^2$
H	1000 м
M	0.5

Таблица 2: Исходные данные

	таотпа 2. полодиве даниве				
$\bar{Y}_a^{\alpha} = a_{11}, 1/c$	0.642				
$Y_a^{\alpha} = a_{11}, 1/c M_z^{\alpha} = a_{21}, 1/c^2$	5.65				
$\bar{M}_z^{\omega_z} = a_{22}, 1/c$	0.468				
$\bar{M}_z^{\delta_B} = b_2$	4.5				
$V_0 = a_{46}, \text{M}/c$	168				
$n_y^{lpha} = a_{51}, 1/\mathrm{pag}$	11.0				
K_{ω_z}, c	0.4				
$K_{artheta}$	0.5, 1, 2				
i_H рад/м	$0.000875 \ 0.00175 \ 0.002625$				
i_p рад/м/с	0.0000875 0.000175 0.0002625				
\hat{t}_{cp}, c	8				
$\hat{\sigma}_{\Delta H},\%$	30				
$\hat{n}_{y_{max}}$	1.2				
$\hat{H}_{ ext{ct}}, ext{M}$	20				

3 Лабораторная работа №1. Исследование статической системы стабилизации высоты полета.

3.1 Выполнение работы

3.1.1 Ход работы

- 1. На персональном компьютере установить задачу 1, после чего в цикле для каждой пары коэффициентов заданных в табл. 1, определяются:
 - а) при отработке управляющего воздействия = 100м:
 - время срабатывания
 - максимальное значение высоты
 - максимальное значение перегрузки.
 - б) при отработке постоянного возмущения f = -0.035 рад:
 - статическую ошибку регулирования.

Результаты расчетов оформить в виде таблица 3.

Таблица 3: Результаты расчётов

K_{ϑ}	Показатель		$\overline{i_H}$, рад/м	[
	IIOKASAICAB	0.000875	0.00175	0.002625
	t_{cp}, c	15.82	9.5	7.3
	ΔH_{max} , M	115.1	131.3	141.5
0.5	$\sigma_{\Delta H},\%$	15.1	31.3	41.7
	$\Delta n_{y_{max}}$	0.27	0.54	0.809
	$\Delta H_{ m ct}$, m	40	20	13.3
	t_{cp}, c	15.4	8.25	6.2
	ΔH_{max} , M	106.2	120.3	130.5
1	$\sigma_{\Delta H},\%$	6.2	20.3	30.5
	$\Delta n_{y_{max}}$	0.441	0.88	1.317
	$\Delta H_{ m ct}$, m	40	20	13.3
	t_{cp}, c	17.1	7.7	5.55
2	ΔH_{max} , M	101.5	112.5	121.2
	$\sigma_{\Delta H},\%$	1.5	12.5	21.2
	$\Delta n_{y_{max}}$	0.576	1.145	1.707
	$\Delta H_{ m ct}$, m	40	20	13.3

2. Построить по данным табл. 3 графики следующих зависимостей:

$$t_{cp} = f_1(K_{\vartheta}, i_H); \sigma_{\Delta H} = f_2(K_{\vartheta}, i_H)$$
$$\Delta n_{y_{max}} = f_3(K_{\vartheta}, i_H); \Delta H_{cr} = f_4(K_{\vartheta}, i_H)$$

Нанести на графики прямые линии, соответствующие максимально допустимым величинам показателей качества переходных процессов t_{cp} .

$$\hat{\sigma}_{\Delta H};\!\Delta n_{y_{max}};\!\Delta\hat{H}_{ ext{cT}}(ext{смотри табл. }2)$$

Рис. 3: Время срабатывания t_{cp} , с

Рис. 4: Относительное перерегулирование $\sigma_{\Delta H},\,\%$

Рис. 5: Максимальное значение нормальной перегрузки $\Delta n_{y_{max}}$

Рис. 6: Статистическая ошибка по высоте ΔH_{cr} , м

3. Построить, используя зависимости п. 2, допустимую область изменения коэффициентов усиления $K_{\vartheta} = f(i_H)$ из условия $t_{cp} \leq \hat{t}_{cp}; \ \sigma_{\Delta H} \leq \hat{\sigma}_{\Delta H}; \ \Delta n_{y_{max}} \leq \Delta \hat{n}_{ymax}; \ \Delta H_{\rm cr} \leq \Delta \hat{H}_{\rm cr}$

Рис. 7: Область изменения коэффициента усиления

3.1.2 Переходные процессы

Рис. 8: График переходного процесса при $K_{\vartheta}=0.5, i_{H}=0,000875$ [рад/м], f=0

Рис. 9: График переходного процесса при $K_{\vartheta} = 1, i_H = 0,002$ [рад/м], f = 0

3.1.3 Выводы

- 1. Статическая ошибка, возникающая при наличии возмущений, уменьшается с увеличением коэффициентов стабилизации.
- 2. При увеличении K_{ϑ} и i_H , рад/м время срабатывания системы уменьшается.
- 3. При увеличении коэффициентов K_{ϑ} и i_H $\Delta n_{y_{max}}$ возрастает.
- 4. Относительное перерегулирование при увеличении коэффициента K_{ϑ} уменьшается, а при увеличении i_H увеличивается.

4 Лабораторная работа №2. Исследование астатической системы стабилизации высоты полета.

4.1 Выполнение работы

4.1.1 Ход работы

- 1. Установить на персональном компьютере задачу 2, после чего выставить значения коэффициентов K_{ϑ} , i_H , соответствующие центру допустимой области изменения коэффициентов усиления $K_{\vartheta} = f(i_H)$. Далее в цикле для каждого значения коэффициента i_p (см. табл. 2) определяются:
 - а) при отработке управляющего воздействия $\Delta H = 100$ м: максимальное значение высоты ;
 - б) при отработке постоянного возмущения f=-0.035 рад: время регулирования (время, по истечению которого переходный процесс входит в 5%-ную трубку установившегося значения относительно ΔH_{max}).

Результаты расчетов приведены в виде таблицы 4.

Таблица 4: Результаты расчётов при $K_{\vartheta}=2, i_{H}=0.00175, \, \mathrm{pag/c}$

i_p рад/м/с	0.0000875	0.000175	0.00035
$t_{ m per}, c$	42	37	86
ΔH_{max} , M	138.7	154.6	180.1
$\sigma_{\Delta H},\%$	38.7	154.6	80.1

- 2. Построить по данным табл. 4 графики следующих зависимостей:
 - $\sigma_H(i_p)$ при отработке управляющего воздействия $\Delta H_{\text{зад}}$;
 - ullet $t_{
 m per}(i_p)$ при отработке возмущения

Рис. 10: График зависимостей $\sigma_H(i_p)$ и $t_{\rm per}(i_p)$

4.1.2 Выводы

- 1. При увеличении i_p относительное перерегулирование возрастает.
- 2. Зависимость $t_{\rm per}(i_p)$ имеет минимум i_p^* до которого время регулирования уменьшается, а далее возрастает. В данной работе $i_p^*=0.00015$