

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Analiza dyfrakcyjnych pomiarów mikrostruktury i naprężeń sieci krystalicznej dla materiałów polikrystalicznych

Amadeusz Filipek

Opiekun : dr inż. Marianna Marciszko

7.07.2017

Spis treści

- » Cel pracy
- » Podstawy teoretyczne
- » Metody pomiarowe
- » Badane próbki
- » Wykonane pomiary
- » Prezentacja wyników
- » Podsumowanie

Cel pracy

» Wyznaczenie przypowierzchniowych profili naprężeń badanych próbek

» Porównanie dwóch metod: standarowej oraz wielo-refleksowej

» Zweryfikowanie czy nowa metoda wielorefleksowa pozwala wyznaczyć profile naprężeń oraz parametry a_0 i c/a

Podstawy teoretyczne

» Prawo Bragga

$$n\lambda = 2d_{hkl}sin\theta_{hkl}$$

» Prawo Hooke'a

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$

$$\varepsilon_{ij} = S_{ijkl}\sigma_{kl}$$

Metody pomiarowe

standardowa z wykorzystaniem dyspersji energii

stałego kąta padania

Założenia:

- $\sigma_{33} = \sigma_{23} = \sigma_{13} = 0$
- Materiał kwazi-izotropowy

Heksagonalna:
$$a=d\sqrt{4/3(h^2+hk+k^2)+\frac{l^2}{(c/a)^2}}$$

Regularna: $a=d\sqrt{h^2+k^2+l^2}$

$$\langle a(\psi,\varphi)\rangle_{hkl} = \left[F_{ij}(\psi,\varphi)\sigma_{ij}^P\right]a^0 + a^0$$

Procedura dopasowywania metodą
najmniejszych kwadratów

Badane próbki

- » Wolfram struktura regularna, materiał izotropowy: $A^Z = 1.01, A^U = 10^{-7}$
- » Tytan, struktura heksagonalna, lekka anizotropia: $A^U = 0.035$
- » Obróbka mechaniczna:
 - Polerowanie: próbka W, Ti 5A
 - Szlifowanie: próbki Ti 1a (5 μm), 2a (20 μm)

Wykonane pomiary

- » Pomiary synchrotronowe (BESSY Berlin):
 - (geometria χ) $2\theta = 10^{\circ}$, 16°
 - $\varphi = 0^{\circ}, 90^{\circ}$
 - 128 widm

- » Pomiary dyfraktometrem rentgenowskim (ACMiN):
 - (geometria stałego kąta padania):

$$\alpha = 5^{\circ}, 10^{\circ}, 15^{\circ}, 20^{\circ}$$

- $\varphi = 0^{\circ}, 90^{\circ}$
- 8 widm

Próbka tytanowa 5A polerowana

Profil naprężeń σ_{11} w funkcji głębokości wnikania

Przed rozciąganiem

Po rozciąganiu

Profil naprężeń σ_{22} w funkcji głębokości wnikania

Przed rozciąganiem

Po rozciąganiu

Stała sieci a_0 w funkcji głębokości wnikania

Przed rozciąganiem

Po rozciąganiu

Parametr sieci c/a w funkcji głębokości wnikania

Przed rozciąganiem

Po rozciąganiu

Przed testem rozciągania

Przed testem rozciągania

Zestawienie wyników

		Średnie a ₀ [Å]	Odchylenie standardowe [Å]	Rozbieżność wzgl. Wooda [%]	Średnie c/a	Odchylenie standardowe	Rozbieżność wzgl. Wooda [%]
1a	przed	2.95039	0.00053	0.024	1.58744	0.00072	0.0048
	ро	2.94997	0.00025	0.039	1.58779	0.00092	0.0166
2a	przed	2.95010	0.00059	0.034	1.58798	0.00088	0.0229
	ро	2.95173	0.00066	0.021	1.58624	0.00110	0.0358
5A	przed	2.95107	0.00126	0.001	1.58742	0.00305	0.0041
	ро	2.95076	0.00064	0.012	1.58756	0.00212	0.0087

Rozbieżność < 0.04%

Podsumowanie

- » Większa liczba refleksów hkl pozwala lepiej wyznaczyć stałą sieci a_0 oraz parametr c/a
- » Metoda standardowa prowadzi do wyników obarczonych niepewnością gdy w próbce występuje gradient naprężeń
- » Metoda wielo-refleksowa pozwala wyznaczyć jednocześnie naprężenia, stałą sieci a_0 oraz parametr c/a dla materiałów o strukturze heksagonalnej

Dziękuję za uwagę