6.1 Sens de variation des modèles exponentiels

6.1.1 Sens de variation des suites géométriques

Soit (u_n) la suite géométrique de premier terme $u_0 > 0$ et de raison q > 0.

 $strictement\ croissante.$

Si q > 1 alors la suite (u_n) est Si q = 1 alors la suite (u_n) est constante.

Si 0 < q < 1 alors la suite (u_n) est strictement décroissante.

Exemple 1.6.

Déterminer le sens de variation de la suite géométrique définie pour tout entier naturel n par $u_n = 50 \times 1, 12^n.$

Sens de variation des fonctions exponentielles

Propriétés 1.6.

Soit a un réel strictement positif.

- Si a > 1 alors la fonction f définie sur $[0; +\infty[$ par $f(x) = a^x$ est strictement croissante sur
- Si 0 < a < 1 alors la fonction f définie sur $[0; +\infty[$ par $f(x) = a^x$ est strictement décroissante sur $[0; +\infty[$.
- Si a = 1 alors la fonction f définie sur $[0; +\infty[$ par $f(x) = 1^x = 1$ est constante sur $[0; +\infty[$.

Exemple 2.6.

Propriétés 2.6.

Soit k un réel non nul.

- Si k > 0 alors les fonctions f et g définies sur $[0; +\infty[$ par $f(x) = a^x$ et $g(x) = ka^x$ ont le $m \hat{e} m e$ sens de variation sur $[0; +\infty[$.
- Si k < 0 alors les fonctions f et g définies sur $[0; +\infty[$ par $f(x) = a^x$ et $g(x) = ka^x$ ont des sens de variation contraires sur $[0; +\infty[$.

$Exemple \ 3.6.$

Déterminer le sens de variation de la fonction f définie sur $[0; +\infty[$ par $f(x) = -4 \times 2, 6^x$.

6.2 Taux d'évolution moyen

6.2.1 Évolutions successives

Définition.

On appelle taux d'évolution tout nombre décimal positif. Généralement, un taux s'écrit sous la forme d'une fraction de dénominateur 100 ou sous forme d'un pourcentage.

Exemple 4.6.

$$\frac{7}{100} = 0,07 = 7\%.$$

Propriétés 3.6.

On considère une quantité Q et un taux d'évolution de t%.

• Lorsque Q subit n augmentations de t% alors la nouvelle valeur de Q est égale à :

$$Q \times \left(1 + \frac{t}{100}\right)^n$$

 \bullet Lorsque Q subit n diminutions de t% alors la nouvelle valeur de Q est égale à :

$$Q \times \left(1 - \frac{t}{100}\right)^n$$

Exemple	5.	6.

Soit une quantité Q coûtant 150 \in .

Cette quantité subit quatre diminutions de 8%.

Calculer le prix de cette nouveau quantité.

6.2.2 Taux d'évolution moyen

Propriétés 4.6.

Soit Q une quantité et t% un taux d'évolution.

• Q subit une augmentation de t% équivaut à Q subit n augmentations successives de taux constant égal à :

$$\left(1+\frac{t}{100}\right)^{\frac{1}{n}}-1.$$

• Q subit une diminution de t% équivaut à Q subit n diminutions successives de taux constant égal à :

$$1 - \left(1 - \frac{t}{100}\right)^{\frac{1}{n}}.$$

Exemple	6.6	5.
---------	-----	----

Un article a augmenté de 7% en quatre ans.

Calculer l'augmentation moyenne de cet article.

	·	·	