Natural Language Processing (CS5803)

Lecture 5 (Language Modeling and Smoothing)

Language Modeling

- Assign probability to a text-segment/sentence
- Usage:
- Spell correction
 - P(Have you seen this before) vs P(Have you scene this before)
- Speech Recognition
 - P(The waiter came running) vs P(The water came running)
- Evaluating generated text
 - P(tallest person on earth) vs P(longest person on earth)
- Matching query to documents
 - Conditional query-likelihood model. To be discussed later
 - Which document is match according to the query's language model

Language Modeling

• How about these sentences?

- There are amazing ladies an gentlemen in this class
- I just had a delicious tea
- The tail of two cities
- Large winds tonight
- What is the mane of the person?

What probability to compute

- Sentence W=w₁, w₂, w₃, ..., w_n
 Language Model deals with finding the probability of
 - Observing the entire sentence, i.e. P(W), or
 - Seeing the next word given the previous words, i.e. $P(w_{n}|w_{1}, w_{2}, ..., w_{n-1})$
- How are these two connected?
- How to compute $P(w_n|w_1, w_2, ..., w_{n-1})$?

How to compute the probability?

- Chain Rule
- $P(w_1, w_2, w_3, ..., w_n)$ = $P(w_1)P(w_2|w_1)P(w_3|w_1w_2)...P(w_n|w_1, w_2, ..., w_{n-1})$

- P("go to school") =
 P("go")*P("to"|"go")*P("school"|"go", "to")
 How to compute these probabilities?

How to compute the probability?

- Chain Rule
- $P(w_1, w_2, w_3, ..., w_n)$ = $P(w_1)P(w_2|w_1)P(w_3|w_1w_2)...P(w_n|w_1, w_2, ..., w_{n-1})$

- P("go to school") =
 P("go")*P("to"|"go")*P("school"|"go", "to")
 How to compute these probabilities?

How to compute the probability?

w	Go	to	School
P(w)	0.03	0.08	0.01

w ₁ , w ₂	go	to	school
go	10-12	0.004	0.001
to	0.001	10^(-8)	0.002
school	0.0001	0.005	10^(-6)

$(w_1, w_2), w_3$	go	to	school
go, go	10^(-10)	10^(-8)	10^(-9)
go, to	10^(-6)	10^(-6)	0.0006
go, school	10^(-6)	10^(-9)	10^(-14)
to, go	10^(-6)	10^(-5)	10^(-6)
to, to	10^(-6)	10^(-13)	10^(-7)
to, school	10^(-7)	5*10^(-6)	10^(-8)
school, go	10^(-6)	10^(-7)	10^(-7)
school, to	10^(-8)	10^(-9)	2*10^(-6)
school, school	10^(-9)	10^(-7)	10^(-7)

P("go to school") = P("go")*P("to"|"go")*P("school"|"go", "to") = ?

How to find the probabilities?

Count-based estimates

```
P(w_1w_2) = (Count(Number of examples with the sequence <math>w_1w_2))/(Count(Number of examples with w_1))
```

Any issues with this scheme?

How to find the probabilities?

MLE Estimate:

- Estimate after add-1 smoothing:

- Similarly, another possibility is Add-k smoothing
- How to choose k?

Other Smoothing Techniques

Backoff

- Use (n-1)-gram statistics, if n-gram statistics is not available
- Keep doing this recursively

Interpolation

- Mix different n-gram statistics (probabilities)
- Context based interpolation weight λs
- $_{\circ}$ λ s are functions of $W_{n-2} W_{n-1}$

Absolute Discounting

- An experiment conducted by Church and Gale on AP newswire corpus
- Corpus segmented into two parts (seen/training and held-out) - each with 22M words
- From the seen corpus, group together bigrams with different frequencies
- For each group, count the average number of occurrences of those bigrams in the held-out corpus

Bigram count in	Bigram count in	
training set	heldout set	
0	0.0000270	
1	0.448	
2	1.25	
3	2.24	
4	3.23	
5	4.21	
6	5.23	
7	6.21	
8	7.21	
9	8.26	

Absolute discounting: subtract a fixed (absolute) discount 0<d<1 from each count

Absolute Discounting

- Good estimates already have high counts, so this discount is negligible
- For smaller counts, anyways the stats are unreliable. Discounting does not matter
- Different ways for fixing d
- One way is to set $d = n_1/(n_1+2n_2)$

$$P_{\text{AbsoluteDiscounting}}(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i) - d}{\sum_{v} C(w_{i-1}v)} + \lambda(w_{i-1})P(w_i)$$

Kneser-Ney discounting

- Similar to absolute discounting
- Only difference in how unigram probability P(w) is estimated
- P(w) is treated as P_{CONTINUATION}(w)
- Count the number of contexts (v) in which the unigram (w) occurs
 - Number of different words that precede w in the collection

$$P_{\text{CONTINUATION}}(w) = \frac{|\{v : C(vw) > 0\}|}{\sum_{w'} |\{v : C(vw') > 0\}|}$$

$$P_{KN}(w_i|w_{i-1}) = \frac{\max(C(w_{i-1}w_i) - d, 0)}{C(w_{i-1})} + \lambda(w_{i-1})P_{CONTINUATION}(w_i)$$

Good Turing Smoothing

 N_c : number of *event types* that occur c times (can be counted)

 N_l : number of event types that occur once

 $N = 1N_1 + ... + mN_m$: total number of observed event tokens

Idea behind Good Turing Smoothing

- Need to assign probability to unseen words
- Equivalent: Need to reserve probability to words with frequency 0
- Bin the words according to frequencies
- Transfer mass from one bin (c+1) to the previous one (c)
- Recalculate effective counts
- Re-estimate probabilities

Good Turing Smoothing

The probability mass of all words that appear k-1 times becomes:

$$\sum_{w:C(w)=k-1} P_{GT}(w) = \sum_{w':C(w')=k} P_{MLE}(w') = \sum_{w':C(w')=k} \frac{k}{N}$$

$$= \frac{k \cdot N_k}{N}$$

There are N_{k-1} words w that occur k-1 times in the training data. Good-Turing replaces the original count c_{k-1} of w with a new count $c*_{k-1}$:

$$c_{k-1}^* = \frac{k \cdot N_k}{N_{k-1}}$$

Simple Good Turing Estimate

frequency	frequency
	of frequency
r	N_r
1	268
2	112
3	70
4	41
5	24
6	14
7	15
400	1
1918	1

Simple Good Turing Estimate

- Many gaps (0 words with frequency r) as r increases
- GT estimate becomes useless
- From N_r , get Z_r O $Z_r = 2N_r/(t-q)$
- Use the $log(Z_r)$ -vs-r or $log(Z_r)$ -vs-r curve to get N_r intermediate values for r
- log(Nr) = a + b*log(r)
 - Use the fitted value (SGT) for large r
 - GT value for small r

