Université de Thiès

UFR SES

Master en Science des Données et Applications / Options ES - AC

PROJET OPTIMISATION

PRESENTE PAR:

LASSANA BA

ISMAEL YODA

SOUHOUDE OUEDRAOGO

Développement écrit de la méthode résolvant le problème fourni

Dans notre problème, nous avons un système de neuf(09) fonctions linéaires représentant la somme des débits entrants - somme des débits sortants - C(i) pour chaque nœud i. Nous allons matérialiser théoriquement les fonctions dans le fichier fonction.m par le système suivant :

$$\begin{cases} f_1(h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9) = 0 \\ f_2(h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9) = 0 \\ f_3(h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9) = 0 \\ f_4(h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9) = 0 \\ f_5(h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9) = 0 \\ f_6(h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9) = 0 \\ f_7(h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9) = 0 \\ f_8(h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9) = 0 \\ f_9(h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9) = 0 \end{cases}$$

Nos variables ici sont h_1, \ldots, h_9 qui représentent les charges H aux nœuds du réseau. Nous cherchons à résoudre le système d'équations F(H) = 0.

La résolution d'un tel système est la généralisation naturelle de la formule de Newton unidimensionnelle

$$x_{n+1} = x_n - (f'(x_n))^{-1} f(x_n)$$

La différence est que cela fait intervenir la matrice Jacobienne de F:

$$F'(H) = \begin{pmatrix} \frac{\partial f_1}{\partial h_1} & \cdots & \frac{\partial f_1}{\partial h_9} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_9}{\partial h_1} & \cdots & \frac{\partial f_9}{\partial h_9} \end{pmatrix}$$

Toutes les dérivées partielles étant évaluées aux points du vecteur H, nous obtiendrons une matrice 9 ×9. La méthode de Newton Raphson dans notre cas s'écrit donc formellement :

$$H_{n+1} = H_n - (F'(H_n))^{-1} f(H_n)$$

Dans la pratique, on ne calcule pas explicitement l'inverse de la matrice Jacobienne, ce qui s'avèrerait trop coûteux, et on préfère écrire l'algorithme sous la forme suivante :

 $\begin{bmatrix} H_0 \ donn\'e \ pour \ n = 0, 1, \ldots, test \ d'arr\^et \ , faire \\ R\'esolution \ du \ syst\`eme \ lin\'e aire \ F^{'}(H)\delta_n = -F(H) \\ H_{n+1} = H_n + \delta_n \\ \end{bmatrix}$

Présentation des résultats