### **SPRINT DELIVERY – 4**

| TEAM ID      | PNT2022TMID12914                                     |
|--------------|------------------------------------------------------|
| Project Name | Smart Farmer - IOT Enabled Smart Farming Application |

5.5 Receiving commands from IBM cloud using Python program import time import sys import ibmiotf.application

import ibmiotf.device import random

```
#Provide your IBM Watson Device Credentials
organization = "jztdcw"

deviceType = "NodeMCU"

deviceId = " node-mcu-4321 "

authMethod = "use-token-auth"

authToken = "987654321"
```

### # Initialize GPIO

```
status == "motoroff": print ("motor is off")
    print ("please send proper command")
try:
 deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
   #.....
except Exception as e:
  print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud
as an event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
data = { 'temp' : temp, 'Humid':
Humid , 'Mois': Mois}
    #print data
                   def
```

# myOnPublishCallback():

print ("Published Temperature = %s C" % temp, "Humidity =
%s %%" % Humid, "Moisture = %s deg c" % Mois "to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on\_publish=myOnPublishCallback) if not success:
print("Not connected to IoTF")

time.sleep(10)

deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "157uf3"
deviceType = "abcd"
deviceId = "7654321"
authMethod = "token"
authToken = "87654321"
# Initialize GPIO
def myCommandCallback(cmd):
    print ("Command received: %s" % cmd.data['command'])
    status=cmd.data['command']
    if status=="motoron":
    print ("motor is on")
elif status == "motoroff":
    print ("motor is off")
else:
         print ("please send proper command")
try:
         deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMe
         deviceCli = ibmiotf.device.Client(deviceOptions)
                                                                                                                         Ln: 22 Col: 21
```

```
← C | File Edit Shell Debug Options Window Help | Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD6 ^
                                                                                                                                           ··· 🚇 👚
4)] on win32
Type "copyright", "credits" or "license()" for more information.
                                                                                                                                           Other favorites
= FARMII >>>
             ----- RESTART: C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py ------
            2022-11-07 20:01:24,074 ibmiotf.device.Client lly: d:157uf3:abcd:7654321
                                                                                         INFO
                                                                                                     Connected successfu
            Published Moisture = 90 deg C Temperature = 96 C Humidity = 76 % to IBM Watson Published Moisture = 102 deg C Temperature = 110 C Humidity = 68 % to IBM Watson Published Moisture = 45 deg C Temperature = 99 C Humidity = 100 % to IBM Watson
            Command received: motoron
            motor is on
            Published Moisture = 77 deg C Temperature = 91 C Humidity = 85 % to IBM Watson Published Moisture = 73 deg C Temperature = 94 C Humidity = 86 % to IBM Watson
            Command received: motoroff
            motor is off
            Published Moisture = 101 deg C Temperature = 104 C Humidity = 87 % to IBM Watson
```

### Flow Chart



## **Observations & Results**

```
Python 3.7.0 (v3.7.0:lbf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD6 4)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

======= RESTART: C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py =======

2022-11-07 20:01:24,074 ibmiotf.device.Client INFO Connected successfully: d:157uf3:abcd:7654321

Published Moisture = 90 deg C Temperature = 96 C Humidity = 76 % to IBM Watson Published Moisture = 102 deg C Temperature = 110 C Humidity = 68 % to IBM Watson Command received: motoron motor is on

Published Moisture = 77 deg C Temperature = 91 C Humidity = 85 % to IBM Watson Published Moisture = 73 deg C Temperature = 94 C Humidity = 86 % to IBM Watson Command received: motoroff motor is off

Published Moisture = 101 deg C Temperature = 104 C Humidity = 87 % to IBM Watson
```









## Advantages & Disadvantages

### Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

### Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

#### Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.

# **Bibliography**

IBM cloud reference: https://cloud.ibm.com/

IoT simulator: https://watson-iot-sensor-simulator.mybluemix.net/

OpenWeather: https://openweathermap.org/