

Ενσωματωμένο Σύστημα Αντί-Μπλοκαρίσματος Τροχών (ABS)

Σταυρόπουλος Σπύρος, Συμεωνίδης Θεόδωρος

Τμήμα Μηχανικών Η/Υ΄ Πληροφορικής, Πανεπιστήμιο Πατρών

30 Ιανουαρίου 2021

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Eniversity of Patras

- Σύνθετο σύστημα
- Αποτελείται από υδραυλικά, μηχανικά και ηλεκτρικά μέρη.
- Προσφέρει:
 - Περισσότερο έλεγχο του τιμονιού στη πέδηση
 - Συνήθως μειώνει το χρόνο πέδησης

Teves Mark IV Hydraulic System (Two Solenoids/Two Valves per Channel)

Περιγραφή προβλήματος

- **•** Κίνηση χωρίς ολίσθηση $V = \omega \times R$
- lacktriangle Σε συνθήκες απότομης πέδησης έχω ολίσθηση δηλ. $V>\omega imes R$
- Τότε εμφανίζεται τριβή ολίσθησης αντίρροπη του V που τείνει να εξαλείψει την ανισορροπία, δηλ. να μειώσει το V και να αυξήσει το ω
- Κατά τη διαδικασία αυτή χάνει ενέργεια το σύστημα
- Θέλουμε τη μέγιστη απώλεια ενέργειας που επιτυγχάνεται για διαφορετικό συντελεστή ολίσθησης S σε κάθε επιφάνεια.

Λειτουργικές απαιτήσεις χρήστη

- Να ενεργοποιείται μόνο σε καταστάσεις πολύ απότομης πέδηση καθώς προκαλεί ολίσθηση που φθείρει τα ελαστικά
- Να αποκρίνεται στον ελάχιστο δυνατό χρόνο
- Αξιόπιστο, προβλέψιμο, να μπορεί να λειτουργείσε εύρος συνθηκών
- Να προσφέρει κατά τοδυνατό περισσότερο έλεγχο του τιμονιού

Προδιαγραφές συστήματος

- Μεγάλη αξιοπιστία σε μεγάλο εύρος συνθηκών οδοστρώματος
- Επεξεργαστές υψηλής συχνότητας λειτουργίας και δειγματοληψίας
- Δυνατότητα λήψης αποφάσεων τουλάχιστον 10 φορές το δευτερόλεπτο
- Δυνατότητα για κάθε τροχό να μπορούμε ξεχωριστά1να αποκόπτουμε/ελευθερώνουμε την πίεση των υδραυλικών
- Εύκολη τοποθέτηση και συντήρηση

Προσέγγιση λογισμικού

Προσέγγιση υλικού

Αλγόριθμος

- Βαθιά μελετημένο πρόβλημα τις θεωρίας ελέγχου
- Καθορίζει :
 - Πότε και κατά πόσο θα πρέπει να αυξάνεται/μειώνεται η πέδηση των τροχών και κατά συνέπεια
 - Πότε θα ενεργοποιούνται/απενεργοποιούνται τα επιμέρους υποσυστήματα που το κάνουν πράξη
- Επιλέχθηκε ένας αλγόριθμος ασαφούς ελέγχου που προτάθηκε από τον G. F. Mauer και απαιτεί:
 - Γωνιακή ταχύτητα (δηλ. αισθητήρες γωνιακής ταχύτητας στους τροχούς)
 - Επιτάχυνση οχήματος (δηλ. επιταχυνσιόμετρο στο όχημα)
 - Μνήμη (δηλ. χρονικά μεταβαλλόμενο σύστημα)

Αρχιτεκτονική συστήματος

Τμήμα Μηχανικών Η/Υ Πληροφορικής, Πανεπιστήμιο Πατρών

Η αναλυτική αρχιτεκτονική του συστήματος βρίσκεται εδώ

	ABS System			
<u>г</u>	ABS ECU .			
		Sensors	<u> </u>	<u> </u>
		Pedal Offset	Accelerometer	Angular Velocity per wheel
			7	Pump
		Valves		
		Inlet valve	Outlet valve	
		;		

Αρχιτεκτονική λογισμικού

Αρχιτεκτονική υλικού

Σχεδιασμός υποσυστημάτων

Τμήμα Μηχανικών Η/Υ΄ Πληροφορικής, Πανεπιστήμιο Πατρών

Ο σχεδιασμός υποσυστημάτων περιλαμβάνει το:

- Υποσύστημα δίαυλου επικοινωνίας
- Υποσύστημα αισθητήρα τροχού
- Υποσύστημα πεντάλ φρένου
- Υποσύστημα βαλβίδων
- Υποσύστημα αντλίας
- Υποσύστημα ABS ECU

Υποσύστημα διαύλου επικοινωνίας

Τμήμα Μηχανικών Η/Υ Πληροφορικής, Πανεπιστήμιο Πατρών

Επιλέχθηκε το σύνολο πρωτοκόλλων CAN

Υποσύστημα αισθητήρα τροχού

Υποσύστημα πεντάλ φρένου

- Το υποσύστημα αποτελείται από τα παρακάτω:
 - Αισθητήρας φρένου
 - Μετατροπέας ADC σήματος αισθητήρα
 - Μικροελεγκτής

Υποσύστημα βαλβίδων-αντλιών

- Το υποσύστημα βαλβίδων αποτελείται από:
 - Βαλβίδες
 - Μικροελεγκτής
- Το υποσύστημα αντλιών αποτελείται από:
 - Αντλία
 - Ελεγκτής αντλίας
 - Μικροελεγκτής

Υποσύστημα ABS ECU

Τμήμα Μηχανικών Η/Υ΄ Πληροφορικής, Πανεπιστήμιο Πατρών

■ Το υποσύστημα κεντρικής μονάδας επεξεργασίας:

Πειραματική υλοποίηση

- Επιλέχθηκε το επιταχυνσιόμετρο που περιέχεται στον MPU-9250
- Ελέγχθηκε η καταλληλότητα του σχετικά με τις σχεδιαστικές απαιτήσεις και διαπιστώθηκε ότι είναι ακατάλληλος
- Προγραμματίστηκε με χρήση ESP32 το οποίο επικοινωνούσε με τον αισθητήρα μέσω ${\sf I}^2{\sf C}$
- Παραμετροποιήθηκε ως εξής :
 - Κλίμακα μέτρησης 4g (8 LSB/g)
 - LPF με bandwidth 42Hz και sample rate 200Hz και
 - LPF με bandwidth 5Hz και sample rate 30Hz

Πειραματική υλοποίηση

Τμήμα Μηχανικών Η/Υ Πληροφορικής, Πανεπιστήμιο Πατρών

Πειραματικές μετρήσεις επιβράδυνσης/χρόνου απότομης πέδησης από τελική ταχύτητα 40 km/h με 42KHz LPF (αριστερά) και με 5KHz LPF (δεξιά)

Τμήμα Μηχανικών Η/Υ Πληροφορικής, Πανεπιστήμιο Πατρών

- Ελέγχθηκε η λειτουργία self-test που έχει ενσωματωμένη το επιταχυνσιόμετρο
- Χρήσιμη σε πιθανές βελτιώσεις του συστήματος

Έξοδος προγράμματος 1: Αποτυχημένο self-test για τον Υ άξονα

```
regularBias: +7835 | regularBiasGravity: +0.48
selfTestBias: +8941 | selfTestBiasGravity: +0.55
shiftCode: +99
shiftProduction: +0.42
shiftResponse: +0.07
shiftVariation: -0.84
Accel self-test: [Y=FAIL]
```

Έξοδος προγράμματος 2: Επιτυχημένο self-test για τον X άξονα

```
regularBias: +137 | regularBiasGravity: +0.01
selfTestBias: +7297 | selfTestBiasGravity: +0.45
shiftCode: +101
shiftProduction: +0.43
shiftResponse: +0.44
shiftVariation: +0.01
Accel self-test: [X=OK]
```

Βελτιστοποιήσεις και προτάσεις

- Υποστήριξη ενδείξεων κακής λειτουργίας ή φθοράς μερών του συστήματος.
 - Εκτέλεση ελέγχου κάθε φορά που τείθεται σε λειτουργία το αμάξι.
 - Απλό πρωτόκολλο επικοινωνίας μεταξύ ABS ECU και υπόλοιπων υποσυστημάτων
 - Υποστήριξη προτύπων διάγνωσης σφαλμάτων OBD από την ABS ECU
- Χρήση ξεχωριστού διαύλου μόνο για την επικοινωνία μεταξύ της ABS ECU (π.χ. PSI-5)
 - Βελτίωση στη περίπτωση οχημάτων με υπερφορτωμένο δίαυλο CAN

Τμήμα Μηχανικών Η/Υ΄ Πληροφορικής, Πανεπιστήμιο Πατρών

Ευχαριστούμε