# Algorithmique et Structures de données II

Chargé du cours : Dr. Ilhem Abdelhedi Abdelmoula

Ilhem.abdelhedi@cristal.rnu.tn

1 INF ING

ESTI - Ecole Supérieure des Technologies et de l'Informatique

Semestre: Il Année universitaire: 2012-2013

# Chapitre 2 les pointeurs et les listes chaînées

## Partie 1: Les Pointeurs

#### Pourquoi les pointeurs?

Pour utiliser les adresses mémoires des variables à la place des variables elles-mêmes

#### I - Pointeurs

#### Définition

- Une variable pointeur est une variable qui pointe sur une variable
- Sa valeur est l'adresse de cette variable (variable pointée)
   10000 2000 p pointeur contient l'adresse d'une autre case
   20000 12 case correspondant à la valeur pointée

#### Utilisation

- 1 Création de la variable
- 2 Initialisation de la variable pointeur et de la variable pointée
- 3 Utilisation de la variable pointée

#### Déclaration d'une variable Pointeur

#### Var

```
nom_pointeur : ↑ type_valeur_pointée
nom_pointeur : pointeur sur type_valeur_pointée
```

Ex. Var pentier : \tag{entier}

=>Crée une variable pointeur pentier de type pointeur sur entier qui pointera sur une variable de *type entier* 

#### Var:

cpt: entier

 $pInt: \uparrow entier$ 

Txt : chaîne

*Ptxt:* ↑ *chaîne* 

#### Accès au contenu de la variable pointée

- Utilisation de l'objet pointé
  - Nom\_pointeur ↑ (de type\_valeur\_pointée)
  - Nom\_pointeur ^
  - \*Nom\_pointeur

```
Var:
    var_i : entier
    pi: \tentier
Début
    var_i ← 38
    Nouveau(pi)
    pi ← #var_i
    Écrire pi↑
                    'afficher 38
    pi ↑ ← pi ↑ +2
    Écrire pi ↑
                'afficher 40
    Écrire var_i
                   'afficher 40
```

# Opérations sur les pointeurs

- Pas de lecture, écriture ou opérations sur les pointeurs
- Le type pointeur supporte
  - Les initialisations
    - Appel de nouveau
    - ∽Affectation de NIL à un pointeur p ←NIL
    - Affectation de la valeur d'un pointeur à un autre
  - Les comparaisons
    - STest = et ≠ entre pointeurs de même type et entre un pointeur et nil

# Pointeurs et allocation dynamique

- Dans certains cas, la taille de l'espace à allouer (taille d'un tableau) diffère selon le type de la variable
- On connait pas l'adresse
- Il est parfois nécessaire d'allouer de la mémoire dynamiquement
- Solution : Réserver un emplacement mémoire pour une donnée pointée directement

## Pointeur et allocation dynamique

 Créer un pointeur sur un type de donnée (ex. entier)

```
nouveau(Pointeur) ou allouer(Pointeur)
```

Pointeur ← nouveau (type )

Libérer la mémoire utilisée !!!
 Libérer (Pointeur) ou disposer(Pointeur)
 Pointeur ← NIL

```
Var:
  pEntier: pointeur sur entier
  x: entier
Début
  pEntier ← nouveau (Entier) ou nouveau (pentier)
pEntier↑ ←12345
Écrire pEntier↑
pEntier ← NIL
                        réserver un espace mémoire qui contiendra
pEntier ←#x
                        cet entier, sur lequel la variable pointeur
                        pointera
x←5
Écrire pEntier↑ affiche 5
Libérer (pEntier)
```

# Exemple

```
Algorithme avec_des_pointeurs
      var p,q:↑entier
       début
      nouveau(p) p o
      p\uparrow \leftarrow 123
                                        l'adresse de p est recopiée dans q
      q \leftarrow p
    nouveau(q)
     q \uparrow \leftarrow p \uparrow
affectation entre variables pointées
```

# Pointeur sur enregistrement

```
Type tarticle = Enregistrement
  ref: chaine
  libellé: chaine
  prix : réel
finEnregistrement
Var:
                            Déclaration d'un pointeur de variable
  art: tarticle
                            structurée
part: \(\frac{1}{2}\)tarticle
                                    part ↑.ref ← « refo1235 »
Début
                                    011
                                    part →ref ← « ref01235 »
art.ref ← « refo122435 »
nouveau (part)
part← #art pointe sur l'adresse de la variable art
Écrire part ref Accès aux champs de la structure
```

## Partie 2 : les listes chaînées

### Tableau vers liste chaînée

- Une liste chaînée est une structure de données dans laquelle les objets sont arrangés linéairement. L'ordre linéaire est déterminé par des pointeurs sur les éléments.
  - A la différence du tableau, les éléments n'ont aucune raison d'être contigus ni ordonnés en mémoire.



## Les listes chaînées

- Une liste chainée est une structure de données, similaire aux tableaux, qui contient des éléments d'un même type.
- L'ajout et la suppression d'un élément se font de manière très rapide,
- En revanche, l'accès à un élément est un peu plus long que sur un tableau.
- Elle est dynamique : sa taille n'est pas figée et n'est pas limitée (contrairement aux tableaux).
- Elle repose essentiellement sur les pointeurs.

# Description d'une liste chaînée

• C'est un ensemble de cellules ou maillons joint les uns aux autres par le biais de pointeurs



## Représentations d'une liste linéaire

- Plusieurs représentations des listes linéaires ont été proposées.
- La plupart consistent à enregistrer chaque valeur dans une cellule de la mémoire et à chaîner ces cellules entre elles.
- Elles se différencient principalement par :
  - le mode de mémorisation des cellules : dans un tableau ou bien dans une zone mémoire allouée dynamiquement,
  - le mode de de marquage du début ou de la fin de la liste,
  - le mode de chaînage des cellules : unidirectionnel ou bidirectionnel.

### Définition d'une liste linéaire

- Une liste linéaire est une chaîne de maillons composée :
  - d'un maillon de début,
  - d'une suite éventuellement vide de maillons internes,
  - d'un maillon de fin.
- Chaque maillon a un identifiant.
- Le maillon de début contient l'identifiant du 1er maillon interne.
- Le ième maillon interne contient la ième valeur de la liste linéaire et l'identifiant du maillon contenant la (i + 1)ème valeur.
- Le maillon de fin a un identifiant nul.
- Le maillon suivant du maillon de début d'une liste linéaire vide est le maillon de fin.
- Une liste est identifiée par l'identifiant de son maillon de début

### Définition de la classe Liste

- Les attributs de la classe Liste doivent permettre:
  - le positionnement sur les différents maillons de la liste
  - la définition du type d'information enregistrée dans un maillon
- Il faut rajouter trois pointeurs pour faciliter le repérage dans une liste chaînée:
  - 1. un pointeur premier qui pointe vers le premier maillon de la liste,
  - 2. un pointeur dernier qui pointe vers le dernier maillon
  - 3. un pointeur courant qui pointe sur un maillon quelconque de la liste

# Repérage d'un maillon



#### La structure d'un maillon

- Un maillon est constitué de :
- 1. La valeur à stocker dans le maillon
- 2. Un pointeur *suivant* qui pointe vers le maillon suivant.
- Un pointeur précédent qui pointe vers le maillon précédent
- Pour le cas d'une *chaîne simple*, le pointeur *précédent* est omis de la structure du maillon

Le pointeur suivant pointe sur NIL et désigne la fin de la liste valeur suivant

### Définition d'un maillon

Type

Structure Maillon

valeur: info

suivant: ↑Maillon

Précédent : ^Maillon

Fin structure

• Info: le type de l'information stockée; peut-être un type de base (ex: entier) ou bien un type complexe (un agrégat)

# Liste chaînée simple

- Si une liste chaînée est **simple**, on omet le pointeur précédent de chaque maillon
- Structure:



## liste doublement chaînée

• Sa structure:



### Définition de la classe Liste



#### Attributs:

- premier ou tête: pointeur sur la cellule tête de liste
- Courant : pointeur sur la cellule courante
- dernier ou queue: pointeur sur la cellule queue de liste



# En Algorithmique

Type

Structure Maillon

valeur: entier

suivant: ↑Maillon

Fin structure

Var: cell1,cell2, cell3, cell4,

cell5: Maillon

**DEBUT** 

cell1.valeur ← 4

cell1.suivant←#cell2

cell2.valeur←17

cell2.suivant←#cell3

cell3.valeur←21

cell3.suivant←#cell4

•••••

cell5.valeur ←5

cell5.suivant ← NIL

**FIN** 

# Créer\_liste

Fonction créer\_liste(): \(^1\)Maillon

Var tête : ↑Maillon

Début

tête ← nouveau (Maillon)

Ecrire (donner une valeur entière:)

Lire (tête ↑.val)

tête →suivant ←NIL

Renvoyer (tête)

Fin





# Liste\_vide



# Fin\_liste





# Suivant (m)





# Valeur (m)



# D'autres types de listes chaînées

- Une liste peut prendre différentes formes: chaînée, ou doublement chainée, triée ou non, circulaire ou non.
  - Si une liste est *triée*, l'ordre linéaire de la liste correspond à l'ordre linéaire des valeurs stockées dans les éléments de la liste: la tête est le minimum et la queue est le maximum.
  - Si une liste est *circulaire*, le pointeur précédent de la tête de liste pointe sur la queue et le pointeur suivant de la queue de la liste pointe sur la tête

#### Traitements sur les listes

#### Relatifs à la composition structurelle de la liste :

- -Positionnement sur la première cellule de la structure
- -Positionnement sur la dernière cellule de la structure
- -Calcul de la longueur d'une liste (nombre de cellules)
- -Reconnaissance d'une liste vide
- -Déplacement du positionnement courant sur la cellule suivante

#### Traitements sur les listes

#### Relatifs à l'information enregistrée dans une liste:

- -Enregistrement de données jusqu'à épuisement du flot de données
- -Visualisation de l'information enregistrée dans une cellule, quelle que soit sa place dans la liste
- -Visualisation de l'ensemble des informations enregistrées dans la liste
- -Suppression d'une cellule; ajout d'une cellule

#### Parcourir les éléments d'une liste

```
Procedure Parcours (E/S 1: liste)
Var courant : ↑Maillon
Debut
courant ← L → premier
tant que courant < > NIL
courant ← courant→ suivant
fintantque
fin
```

#### Rechercher un élément dans une liste

```
Fonction Rechercher1 (Liste L, x: entier): booleen
Var courant: ↑Maillon
B:booleen
Début
courant ← L→premier
B ←faux
Tant que (courant < >NIL et B = faux )faire
Si courant↑.val = x alors B←vrai
Sinon
B←faux
courant ← courant → suivant
Finsi
Fin tantque
Renvoyer B
Fin
```

#### Recherche dans une liste chainée

```
Fonction Recherche2 (L: liste, x : entier):↑maillon
Var trouve: booleen
   courant: \( \text{maillon} \)
Début
courant ← L→premier
Trouve ← faux
Tant que courant <>NIL et trouve = faux faire
  Si courant \uparrow.valeur = x Alors trouve \leftarrow vrai
   Sinon courant ← courant → suivant
fin tantque
Si trouve =vrai alors Renvoyer courant
Sinon Renvoyer NIL
Finsi
Fin
```

#### L'insertion dans une liste chaînée

- Le cas de listes chaînées simples et non ordonnées
- 1. Créer un élément de type maillon et ensuite changer les pointeurs.
- 2. L'insertion peut se faire
  - -en tête de liste,
  - -en fin de liste,
  - -après l'élément courant
  - -avant l'élément courant.

#### Insertion / Suppression d'une cellule



## En Algorithmique

Type

Structure Maillon

valeur: entier

suivant: †Maillon

Finstructure

Structure liste

Premier: \(^1\)Maillon

Dernier: \(^1\)Maillon

Finstructure

ou var liste : \(^1\)Maillon

#### Insertion en tête d'une liste L

```
Procedure Insertion_tete (E/S L:Liste)
Var element : ↑Maillon
Début
Nouveau(element)
Lire (element↑.val)
Si L→premier = NIL alors L→premier← element
                       L→dernier← element
                       element →suivant ← NIL
Sinon element→suivant ← L→premier
      L→premier ← element
Finsi
Fin
```

#### Insertion en fin de liste

```
Procédure Insert_fin (E/S L:Liste)
Var element : ↑Maillon
Début
Nouveau(element)
Lire (element↑.val)
L→dernier→suivant ← element
  Element \rightarrow Suivant \leftarrow NIL
  L \rightarrow dernier \leftarrow element
Fin
```

## Exercice: Insérer après?



### Suppression de l'élément courant

- Trois cas sont possibles :
- 1.soit le pointeur courant est égal au pointeur premier: on supprime l'élément de tête avec l'algorithme associé.
- 2.soit le pointeur courant est le pointeur de queue : supprimer le dernier élément avec l'algorithme précédent.
- 3.Sinon: on procède comme suit:

## Supprimer\_suivant



m

#### Intérêts des listes chaînées?

- Elle fournit une représentation simple et souple pour les ensembles dynamiques, supportant toutes les opérations (recherche, insertion, suppression, min, max., successeur, prédécesseur)
- Permettre l'allocation de mémoire en fonction des besoins, de façon dynamique
- Faciliter la gestion de la mémoire occupée en cas d'insertion ou de suppression de nouvelles données
- Simulation de phénomènes du monde physique mal représentés par la structure en tableaux

Ex. File d'attente à un guichet; Urgences d'un hôpital ;Gestion des dossiers empilés sur un bureau

## Avantages et Inconvénients

- On peut avoir autant d'éléments que la mémoire le permet.
- Pour déclarer une liste il suffit de créer le pointeur qui va pointer sur le premier élément de la liste. Aucune taille n'est à spécifier.
- ©Il est possible d'ajouter, de supprimer, d'intervertir des éléments d'une liste chaînée sans recréer la liste en entier, mais en manipulant simplement leurs pointeurs.
- ☼Il est impossible d'accéder directement à l'élément i de la liste. Il faut traverser les i − 1 éléments précédents de la liste.

#### Les listes vs. Les tableaux

- Avantages sur les tableaux
  - Taille variable
  - Réarrangement efficace des éléments
- Inconvénients sur les tableaux
  - Impossibilité d'accéder directement à un élément quelconque

# Cycle de vie de la variable pointée

- Lors du lancement de l'algorithme: seule la variable pointeur est créée. Aucun espace mémoire n'est affecté à la variable pointée qui n'existe pas encore.
- Au cours de l'exécution de l'algorithme:
  - création de variable pointée (nouveau)
  - Libérer cet espace mémoire
  - L'associer à une nouvelle variable pointée ...
- => Créer un grand nombre de variables pointées et les associées toutes à une seule variable pointeur.

# Implémentation d'une liste à l'aide d'une représentation contigue

Type position = entier Liste = tableau [1..N]d'éléments

## Chapitre 4: les piles et les files

#### Définition

- Les piles et les files sont des structures de données.
- Chacune de ces structures offre trois opérations élémentaires :
- 1. Tester si la structure est vide.
- 2. Ajouter un élément dans la structure.
- 3. Retirer un élément de la structure.
- Une pile, ou une file, est une structure qui se modifie au cours du temps!

#### Les piles et les files

- Elles se distinguent par la relation entre éléments ajoutés et éléments retirés.
- 1. Dans le cas des piles :
  - C'est le dernier élément ajouté qui est retiré.
  - La pile est une structure LIFO.
- 2. Dans le cas des files :
  - C'est le premier élément ajouté qui est retiré.
  - La file est une structure FIFO.



#### Une pile

- Une structure de données mettant en œuvre le principe (LIFO), appelées aussi liste LIFO (Last In First Out)
  - <u>Ex</u>: pile de documents, pile d'assiettes ...
- Une liste particulière dont les insertions et les suppressions ne se font qu'à une seule extrémité appelée sommet de la pile.

#### Les piles

• Les piles sont souvent nécessaires pour rendre itératif un algorithme récursif.



# Représentation de la pile



# Opération sur les piles

Structure nœud

val:entier

Suivant: \(\)nœud

Finstructure

Procédure Creér\_Pile(E/S sommet: ↑nœud)

Début

Sommet ←NIL

Fin





# Pile\_vide(p)



# Sommet(p)





## Opérations de base sur les piles

- 1. Insérer un élément dans une pile : Empiler(élément)
- 2. Supprimer un élément d'une pile : Dépiler()
  - L'élément supprimé est celui le plus récemment inséré.
- 3. Créer une pile (toujours vide) : creerPile()
- 4. Récupérer l'index du haut de la pile: sommet()
- 5. Connaître la taille courante de la pile : longueur()

# Empiler(p,v)







## $V \leftarrow D\acute{e}piler(p)$





#### Manipulation des piles





■ Dépiler() → La pile renvoie 1

■ Dépiler() → La pile renvoie 6

■ Dépiler() → La pile renvoie 3



# Implémentation à l'aide d'une représentation contigue

```
Type pile = structure
```

element: tableau [1..N] d'entiers

sommet : entier

nb\_elt:entier

Fin

Var p: pile



e2

e1

# Opérations avec la représentation contiguë

```
Procedure Pile_vide(S p:pile)
p.Sommet ←null
p.nb_elt ←o
Fin
```

```
Fonction est_vide(p: pile):booleen
Debut
Renvoyer (nb_elt = 0)
Fin
```

# Opérations avec la représentation contiguë

Procedure empiler(E x: entier; E/S p: pile)

Var courant : ↑entier

Debut

Allouer(courant)

Courant.val ←x

Courant → suivant ← p.sommet

p.sommet ←courant

p.nb\_elt ←p.nb\_elt +1

Fin

#### Les files



- Une file est une liste particulière dans laquelle les éléments sont insérés à une extrémité, la queue, et retirés à une autre extrémité, la tête.
- Une file est appelée liste FIFO (First In First Out)
- Ex : file d'attente





### Représentation d'une file





# Opération sur les files

Structure nœud

val:entier

Suivant: ↑nœud

Finstructure

Procédure CreérFile(E/S sommet, queue: ↑nœud)

Début

Sommet ←NIL

Queue ←NIL

Fin





## File\_vide



# Tête(f)





# Queue(f)





## Opérations de base sur les files

- 1. Créer une file (toujours vide) : creerFile()
- 2. Insérer un élément dans une file : Enfiler(élément)
- 3. Supprimer un élément d'une file : Défiler()
  - L'élément supprimé est celui le plus ancien dans la file.
- 4. Récupérer l'index du premier élément de la file: tete()
- 5. Connaître la taille courante de la pile : longueur()
- 6. Récupérer l'index du dernier élément de la file: queue()

## Enfiler(f,v)







## Défiler(f)







## Manipulation des files









■ Défiler() → La file renvoie 6



# Implémentation d'une file à l'aide d'une représentation contiguë

```
Type file = structure
val : tableau [1..N] d'entiers
nb_elt : entier
tete : entier
fin : entier

Var f: file
```

# Opérations avec la représentation contiguë

```
Procedure file_vide (S f: file)
Debut
f.Tete ←null
f.Fin ←null
f.nb elt ←o
Fin
Fonction est_vide (E/S f: file): booleen
Debut
Renvoyer (f.nb_elt = 0)
Fin
```

# Opérations avec la représentation contiguë

```
Procedure enfiler (E x: entier; E/S f: file)
Var courant : ↑entier
Debut
Nouveau (courant)
Courant \rightarrow val \leftarrow x
Courant → suivant ← NULL
Si f.tete = NULL alors f.tete ← courant
                                   f.fin ←courant
Sinon (f.fin) \rightarrow suivant \leftarrow courant
        f.fin \leftarrow courant
Finsi
f.nb elt \leftarrow f.nb elt +1
Fin
```

## Calcul arithmétique

- Une application courante des piles se fait dans le calcul arithmétique:
  - l'ordre dans la pile permet d'éviter l'usage des parenthèses.
- La notation postfixée consiste à placer les opérandes devant l'opérateur.
- La notation infixée (parenthèsée) consiste à entourer les opérateurs par leurs opérandes.

## Exemple

- La notation usuelle, comme (3 + 5) \* 2, est dite infixée.
   Elle s'écrira en notation postfixée : 3 5 + 2 \*
- La notation infixée 3 + (5 \* 2) s'écrira: 3 5 2 \* +
- Notation infixe: A \* B/C, qui s'écrira en notation postfixe est: AB \* C/.
- Forme infixe: A/B \*\* C + D \* E A \* C
- Forme postfixe: ABC \*\* /DE \* + AC \* -
- Ecrire un algorithme qui transforme une expression infixe en une notation postfixe.

Principe

```
initialise la pile et l'output postfixe à vide;
Tant que (pas la fin de l'expression infixe)
prendre le prochain item infixe
Si (item est une valeur) alors
     concaténer item à postfixe
Sinon si (item == '(') alors
        empiler item
         tant que (x !=')')
          {empiler item
Sinon si (item == ')') {
         dépiler sur x
         tant que (x != '(')
         concaténer x à postfixe
         dépiler sur x
```

```
Sinon {
Tant que(precedence(sommet) >=
   precedence(item))
   dépiler sur x
   concaténer x à postfixe;
   empiler item;
   }
}
Tant que (pile non vide)
dépiler sur x
concaténer x à postfixe;
```

Précédence des opérateurs :
4 : '(' – dépiler seulement si une ')' est trouvée
3 : tous les opérateurs unaires
2 : / \*

, 1 • 1

1:+-

## **Application**

• considérons la forme infixe de l'expression





## Algorithme du postfixe au calcul

```
Initialiser la pile à vide;
Tant que (ce n'est pas la fin de
  l'expression postfixée)
  prendre l'item prochain de postfixe;
  Si (item est une valeur) alors
     empiler;
  Sinon si (item operateur binaire )
     dépiler dans x;
     dépiler dans y;
     effectuer y operateur x;
     empiler le résultat obtenu;
```

```
Sinon si (item opérateur
  unaire)
{
  dépiler dans x;
  effectuer opérateur(x);
  empiler le résultat obtenu;
  }
}
```

La seule valeur qui reste dans la pile est le résultat recherché

Opérateur binaire: +, -, \*, /, etc., Opérateur unaire: moins unaire, racine carrée, sin, cos, exp, ... etc.

## **Application**

Considérons l'expression en postfixe suivante:

- Le premier item est une valeur (6); elle est empilée.
- Le deuxième item est une valeur (5); elle est empilée.
- Le prochain item est une valeur (2); elle est empilée.
- Le prochain item est une valeur (3); elle est empilée.
- La pile devient

3

2

5

6

- Les items restants à cette étape sont: + 8 \* + 3 + \*
- Le prochain item lu est '+' (opérateur binaire): 3 et
  2 sont dépilés et leur somme '5' est ensuite empilée:



• Ensuite 8 est empilé et le prochain opérateur \*:



#### • Ensuite l'opérateur + suivi de 3:



40, 5 sont dépilés ; 45 pushed, 3 est empilé 45

45

3

6

Ensuite l'opérateur +: 3 et 45 sont dépilés et 45+3=48 est empilé



6

Ensuite c'est l'opérateur \*: 48 et 6 sont dépilés et 6\*48=288 est empilé



Il n'y plus d'items à lire dans l'expression postfixée et il n'y a qu'une seule valeur dans la pile représentant la réponse finale: 288.

# Chapitre 5 : les arbres

#### Introduction

- La structure d'arbre est l'une des plus importantes et des plus spécifiques en informatique.
- Elle est utilisée pour l'organisation des fichiers dans le SE, la représentation d'une table des matières, d'un arbre généalogique, etc...
- Dans ce cours nous intéressons aux arbres binaires

# Exemple 1 : arbre généalogique



## Exemple 2 : arborescence de fichiers



### Exemple 3 : mise en page d'un texte



#### Définitions

- **Père** de x = prédécesseur du nœud x
- **Fils** de x = le ou les nœuds accrochés sous x; son successeur
  - FG Fils Gauche de x = un nœud accroché à sa gauche
  - FD Fils Droit de x = un nœud accroché à sa droite
- **Frère** de x = le fils du même père que x
- Un nœud x est **descendant** du nœud N s'il existe une succession de fils de N à x où N est l'ancêtre de x
- sous-arbre est un nœud avec tous ses descendants
- Une arête est un segment entre un nœud et son succ/préd

#### Définitions

- racine de l'arbre = <u>ancêtre commun</u> de tous les nœuds de l'arbre (le seul qui n'a pas de père).
- Nœud interne = un nœud qui a au moins un fils
- **Feuille** = nœud qui n'a pas de fils
- Chemin = une séquence d'arêtes successives
- **Branche** = chemin qui se termine par une feuille
  - Branche gauche = la branche de fils gauche en fils gauche
  - Branche droite = la branche de fils droit en fils droit

#### Définitions ...

- Niveau du fils = niveau du père +1
  - La racine est au niveau o
  - Les fils de la racine sont au niveau 1
- **Profondeur d'un nœud N** = <u>longueur du chemin de la racine au nœud N = nombre max de nœuds dans une branche = nombre d'arêtes = nbre nœuds -1</u>
  - Profondeur de la racine est o
- **Hauteur d'un nœud N** = <u>longueur</u> (nombre d'arêtes) <u>du</u> <u>chemin le plus long de N à une feuille</u>
- Hauteur d'un arbre = hauteur de la racine = la profondeur maximale de ses nœuds = dernier niveau (niveau feuille) +1
- Un arbre complet de hauteur h a 2h+1-1 nœuds

## Exemple

- Exemple d'arbre binaire avec hauteur et profondeur des nœuds

### Arbres binaires AB



- Est un ensemble de nœuds qui est :
  - soit vide,
  - soit composé d'une racine et d'au plus deux sous –arbres binaires disjoints (un sous-arbre droit et un sous-arbre gauche)
- Où chaque nœud a au plus 2 fils
  - ofils
  - □ 1 fils FG/FD
  - 2 fils FG et FD

## Exemple



## Arbres binaires complets

- C'est un arbre binaire où tous ses niveaux (à l'exception du dernier niveau) comportent le nombre maximum de nœuds
- Au niveau N → 2<sup>N</sup> nœuds

## Représentation d'un AB

- Un arbre binaire non vide de racine *v est* représenté par un **nœud qui contient :** 
  - □ la valeur *v*,
  - l'identifiant du sous-arbre gauche,
  - l'identifiant du sous-arbre droit.
- Un arbre binaire a un identifiant qui est :
  - l'identifiant nul, si cet arbre est vide
  - l'identifiant du nœud qui contient sa racine, si cet arbre n'est pas vide,

#### Déclaration d'un arbre

- On indique ici une représentation par pointeur.
- Il en existe d'autres, par pointeurs, ou des représentations par tableaux.

```
Type
Structure Nœud
```

Val: info

FG: ↑Nœud

FD: \( \) Nœud

Fin structure

Structure Arbre

Racine: \(^1\)Nœud

Finstructure

Fonction est\_vide (B : arbre) :booleen

Fonction Racine (B: arbre): ↑ nœud

Fonction est\_feuille (B : arbre; f :noeud) :booleen

Fonction fils\_gauche (B : arbre; x: noeud) : ↑ nœud

Fonction valeur(B : arbre; x: noeud) :entier

Fonction fils\_droit(B : arbre; x: noeud) : ↑ nœud

```
Fonction est_vide (B : arbre) :booleen
Debut
Renvoyer (B.racine = NIL)
Fin
Fonction Racine (B : arbre) : ↑ noeud
Debut
  Si B.racine <> NIL alors Renvoyer B.racine
  Sinon renvoyer NIL
  Finsi
Finsi
Fin
Fonction est feuille (B: arbre; f:noeud):booleen
Debut
  Renvoyer (f.FG=NIL ET f.FD = NIL)
Fin
```

```
Fonction fils_gauche (B : arbre; x: noeud) : ↑ noeud
Debut
Fin
Fonction valeur(B : arbre; x: noeud) :entier
Debut
Fin
Fonction fils_droit(B : arbre; x: noeud) : ↑ noeud
Debut
Fin
```

```
Fonction fils_gauche (B : arbre; x: noeud) : ↑ noeud
Debut
Renvoyer x \rightarrow FG
Fin
Fonction valeur(B : arbre; x: noeud) :entier
Debut
Renvoyer x \rightarrow val
Fin
Fonction fils droit(B : arbre; x: noeud) : ↑ noeud
Debut
Renvoyer x \rightarrow FD
Fin
```

#### Nombre de sommets d'un arbre binaire

```
    Cas particulier : arbre vide : résultat = 0
    Cas général : 1 (sommet de l'arbre courant)

            + nb sommets dans FG
            + nb sommets dans FD
```

```
Fonction compteSommets(B: Arbre): entier début si B→sommet = NIL alors Renvoyer o sinon Renvoyer (1 + compteSommets (B→sommet→gauche) + compteSommets (B→sommet→droit)) finsi fin
```

```
Fonction Père(B: arbre; x: ↑ nœud): ↑ nœud
Var tmp, p : ↑ nœud
Debut
Si est_vide(B) alors renvoyer NIL
  Sinon p \leftarrow B.racine
     Si p = x alors renvoyer NIL
       Sinon
         Si (p \rightarrow FG = x \text{ ou } p \rightarrow FD = x) alors renvoyer p
           Sinon
               tmp \leftarrow pere(p \rightarrow FG, x)
               Si tmp = NIL alors tmp \leftarrow père(p\rightarrowFD,x)
               finsi
          Renvoyer tmp
       Finsi
    Finsi
Finsi
Fin
```

```
Fonction Père(B: arbre; x: entier): entier
Var tmp, p : ↑ nœud
Debut
Si est_vide(B) alors renvoyer NULL
  Sinon p \leftarrow B.racine
     Si valeur(racine(B)) = x alors renvoyer NULL
        Sinon
        Si (p\rightarrowFG\rightarrowvaleur = x ou p\rightarrowFD\rightarrowvaleur = x ) alors
                 Renvoyer p →valeur
           Sinon tmp\rightarrowvaleur \leftarrowpère(p\rightarrowFG, x)
                 Si tmp →valeur = NULL alors
                          tmp \rightarrow valeur \leftarrow pere(p \rightarrow FD,x)
                 Finsi
        Renvoyer tmp→valeur
       Finsi
    Finsi
Finsi
Fin
```

#### Arbre binaire de recherche

- Sert à mémoriser de l'information qui a la propriété d'être ordonnée et à réaliser ainsi des recherches rapides => structure de données plus performante que les listes
- C'est un arbre binaire tels que pour tout nœud v de cet arbre:
  - Les éléments associés à tout nœud du sous-arbre gauche sont inférieurs ou égaux à l'élément associé à v
  - Les éléments associés à tout nœud du sous-arbre droit sont supérieurs à l'élément associé à v

### Exemple d'arbre binaire de recherche



Exercice: Dessiner les arbres binaires de recherche possibles avec les valeurs suivantes: {1,2, 3}

#### Arbres binaires de recherche

- Un arbre binaire de recherche est un arbre binaire dans lequel les valeurs sont placées relativement à une relation d'ordre ≤ , de la façon suivante.
- Pour tout sous-arbre de racine *r* :
  - les valeurs contenues dans le sous-arbre gauche, sont les valeurs v telles que  $v \leqslant r$ ,
  - les valeurs contenues dans le sous-arbre droit sont les valeurs v telles que v > r.
- La recherche d'une valeur ne nécessite que le parcours de la branche à laquelle appartient cette valeur.



≤ est la relation ≤ sur les entiers

#### Création d'un arbre de recherche binaire

```
Procédure Construire(E/S B: arbre, E: entier)
Var element : ↑noeud
Début
Si (B.racine=NIL) alors nouveau(element)
                   element↑.valeur ←E
                    element→gauche ←NIL
                    elment→droit ←NIL
Sinon si (E = \langle B \rightarrow sommet \uparrow .valeur) alors Construire (E, 
 B→sommet→gauche)
Sinon Construire (E, B→sommet→droit)
Finsi
Finsi
Fin
```

#### Parcours d'un arbre binaire

- Un arbre est une structure non linéaire : une fois entrée par la racine, il est possible de visiter ses nœuds de plusieurs façons puisqu'il y a plusieurs parcours possibles de visite.
- Deux tu types de parcours:
  - 1. En largeur
  - 2. En profondeur

## Parcours en profondeur

- On examine complètement un chemin et passer au chemin suivant tant qu'il en reste
- Pour traiter un nœud n, on traite d'abord tous ses descendants et on remonte ensuite pour traiter le père de n et son autre fils.
  - 1. Parcours pré-ordre ou préfixe
  - 2. Parcours ordre ou infixe
  - 3. Parcours post-ordre ou postfixe

### Affichage: Préordre préfixe

- On commence par la racine, puis son 1er fils, puis le 1er fils du 1er fils,
- ... Quand on arrive à une feuille, il faut revenir en arrière jusqu'à trouver un fils non encore parcouru.
- Si arbre non vide alors
   Traiter la racine
   Parcourir en préordre le sous-arbre gauche de la racine
   Parcourir en préordre le sous-arbre droit de la racine

Affiche les valeurs portées par les sommets de l'arbre binaire, en affichant la valeur portée par la racine **avant les valeurs portées par les sous-arbres** gauche et droit

### Procédure Préordre préfixe

#### Procédure ParcoursPréfixe(B: arbre)

début

si B.racine <>NIL alors

écrire (B.racine↑.valeur) affichePréfixe (B.racine↑.gauche) affichePréfixe (B.racine↑.droite)

Finsi fin

#### Exercice

• Donner la trace d'exécution de cet algorithme pour l'affichage de l'arbre binaire suivant :



0 1 2 3 4 5 6

### Exemple d'affichage: Préordre Préfixe

Soit l'arbre binaire suivant :



#### <u>Affichage</u>

- ordre <u>préfixe</u>: 3 3 7 4 8 0 1 5 2 6 7 9 (racine d'abord)

## Affichage: Ordre Infixe

- Traite d'abord le sous-arbre gauche, puis le nœud racine puis son sous-arbre droit
- Si arbre non vide alors
  - Parcourir en ordre le sous-arbre gauche de la racine
  - Traiter la racine
  - Parcourir en ordre le sous-arbre droit de la racine
- Affiche les valeurs portées par les sommets de l'arbre binaire, en affichant la valeur portée par la racine entre les valeurs portées par les sous-arbres gauche et droit

# Affichage: Ordre Infixe

#### Procédure afficheInfixe (B: arbre)

début

si B.racine <>NIL alors

afficheInfixe (B.racine↑.gauche)

ecrire (B.racine \backslash.valeur)

afficheInfixe (B.racine↑.droite)

Finsi fin

#### Exercice

• Donner la trace d'exécution de cet algorithme pour l'affichage de l'arbre binaire suivant :



2 1 3 0 5 4 6

### Exemple d'Affichage: Ordre Infixe



#### **Affichage**

- ordre <u>infixe</u>: 4 7 8 3 3 1 0 6 2 7 5 9 (racine au milieu)

## Affichage: Postordre ou Postfixe

- Affiche les valeurs portées par les sommets de l'arbre binaire, en affichant la valeur portée par la racine après les valeurs portées par les sous-arbres gauche et droit
- Si arbre non vide alors
  - Parcourir en post-fixe du sous-arbre gauche
  - Parcourir en postfixe du sous-arbre droit
  - Traiter la racine
- traite d'abord le sous-arbre gauche, puis le sous-arbre droit, puis le noud courant.

## Procédure Postfixe ou post-ordre

```
Procédure affichePostfixe (B: arbre)
```

début

si B.racine <>NIL alors

affichePostfixe (B.racine \cap .gauche) affichePostfixe (B.racine \cap .droite) Ecrire (B.racine \cap .valeur)

Finsi fin

#### Exercice

• Donner la trace d'exécution de cet algorithme pour l'affichage de l'arbre binaire suivant :



2 3 1 5 6 4 0

# Affichage: Post-ordre ou postfixe



#### Affichage

- ordre postfixe 4 8 7 3 1 6 7 2 9 5 0 3 (racine en dernier)

# Une autre représentation



Type

structure Nœud

Parent:↑ Nœud

FG: \( \) Nœud

FD: ↑ Nœud

Valeur: entier

Fin structure





## Une autre représentation

Représentation d'un nœud

parent
donnée (élément)
premier fils frère droit

Type

structure Nœud

Parent:↑ Nœud

Fils: ↑ Nœud

frère: \tau Nœud

Valeur: entier

Fin structure

Un exemple d'arbre



Arbre binaire correspondant



Sa représentation



### Parcours en largeur

- On examine les valeurs des nœuds niveau par niveau,
- On commence par la racine, puis on énumère les valeurs des nœuds qui sont a la distance 1 de la racine,
- puis les valeurs des nœuds qui sont a la distance 2 de la racine, etc.
- La distance entre deux nœuds est le nombre d'arcs entre ces deux nœuds.

### Parcours en largeur d'un arbre binaire

On commence par la racine, puis tous ses fils, puis les fils des fils...



Parcours en largeur niveau par niveau

```
parcours-en-largeur(a) =
```

- •si ¬arbre-vide(a) alors
- •f = file-vide
- •entrer(f, a)
- •faire
  - a = sortir(f)
  - traiter racine(a)
  - g = gauche(a)
  - d = droit(a)
  - si ¬arbre-vide(g) alors
  - entrer(f, g)
  - si ¬arbre-vide(d) alors
  - entrer(f, d)
     jusqu'à file-vide(f)

## Parcours par niveaux ou en largeur

```
Procedure pracours_largeur (B: arbre)
Var f: file, Pt noeud: ↑noeud
Début
Si B.racine <>Nil alors
Pt noeud ←B.racine
file_vide(f)
Enfiler(f, Pt_noeud)
Tant que non file_vide(f) faire
   Pt noeud ←Défiler(f)
   Écrire Pt noeud \(^1\).valeur
   Si Pt noeud →FG <>NIL alors enfiler (Pt_noeud →FG)
   Finsi
    Si Pt noeud \rightarrowFD <>NIL alors enfiler (Pt noeud \rightarrowFD)
    Finsi
Fintantque
Fin
```

#### Recherche d'une valeur



Rechercher 3:  $5 \rightarrow 2 \rightarrow 3$ 

Rechercher 6:  $5 \rightarrow 7 \rightarrow 6$ 

#### Recherche dans un AB ordonné

```
Fonction Rechercher(x:entier; B:arbre):booléen
Début
Si B.racine= NIL Alors Renvoyer Faux
 Sinon Si x = B.racine↑.valeur <u>Alors</u> Renvoyer Vrai
            Sinon Si x < B.racine↑.valeur Alors
                        Rechercher(x, B.racine → gauche)
                  Sinon Rechercher(x, B.racine→droite)
                 Finsi
        Finsi
 Finsi
```

# Ajout d'un sous arbre



# Suppression d'un sous-arbre



#### Modification d'un arbre binaire

- On notera qu'il n'y a pas de primitives d'insertion ou de suppression de sous-arbres, ou bien de remplacement de la valeur de la racine, comme c'est le cas pour les maillons d'une liste linéaire :
- Il n'est donc pas possible de modifier une arbre « en place » .
- La solution est de construire, à partir de l'arbre à modifier, un nouvel arbre comportant qui peut partager des sous-arbres avec l'arbre initial.

### Modification par reconstruction

 $cons\_arbre(racine(a), gauche(a), cons\_arbre(racine(droit(a)), droit(droit(a)), arbre\_vide()));$ 

