Se også oppgaver på ekte.data.uib.no

0.0.1

#overslag #proporsjonalitet

Når det er lyn og torden kan du bruke følgende metode for å finne ut omtrent hvor langt unna du er uværet:

Start med å telle sekunder straks du ser et lyn. Stopp tellingen når du hører torden. Gang antall sekunder med 300, da har du et overslag på hvor mange meter du er unna uværet.

Bruk internett til undersøke hastigheten til lys (lyn) og lyd (torden) i luft, og forklar hva denne metoden baserer seg på.

0.0.2 (1PV22D1)

#programmering #prosentregning

```
1 startverdi = 2000
2 verdi = startverdi
3 vekstfaktor = 1.05
4 år = 0
5
6 while verdi < startverdi*2:
7  verdi = verdi*vekstfaktor
8 år = år + 1
9
10 print(verdi)
11 print(år)</pre>
```

En elev har skrevet programkoden ovenfor. Hva ønsker eleven å finne ut? Forklar hva som skjer når programmet kjøres.

0.0.3 (1PV22D1)

#prosentregning #statistikk #tallforståelse

Diagrammet viser antall elever ved en videregående skole de fire siste årene.

Når var det størst prosentvis økning i antall elever fra et år til det neste?

0.0.4

omgjøring av enheter # standardform # proporsjonale størrelser

Det har det blitt populært å regne ut hva det koster å ta seg en dusj. Til et slikt reknestykke kan man gjøre følgende antakelser:

- Energien som kreves er energien som må til for å varme opp vannet som gikk med til dusjingen fra 7° til 35°.
- For å øke temperaturen til 1 liter vann med 1°, kreves det $4.2\cdot 10^3\,\mathrm{J}.$

Ifølge vg.no var 395,41 øre/kWh den høyeste (gjennomsnittlige) strømprisen registrert i Oslo.

- a) Regn ut hva en dusj på 10 minutter ville kostet med denne prisen.
- b) Bruk internett til å finne strømprisene for din region i dag. Sjekk hva en 10 minutters dusj vil koste deg.

0.0.5

#algebra #modellering #andregradsfunksjon #omgjøring av enheter #proporsjonalitet

La F være summen av kreftene som virker i motsatt retning av en bils kjøreretning. Ifølge en rapport^1 fra SINTEF kan^2 F tilnærmes som

$$F(v) = mgC_r + \frac{1}{2}\rho v^2 D_m \qquad , \qquad v \ge 10$$

	${\bf betydning}$	verdi	enhet
\overline{v}	bilens hastighet	variabel	m/s
m	bilens masse^3	1409	$ m kg \ m/s^2$
g	tyngdeakselerasjonen	9.81	m/s^2
C_r	koeffisient for bilens rullemotstand	0.015	
ho	tettheten til luft	1.25	${ m kg/m^3}$
D_m	koeffisient for bilens luftmotstandsareal 4	0.74	

- a) Tegn grafen til F for $v \in [10, 35]$
- b) På intervallet gitt i oppgave a, for hvilken hastighet er det at
 - rullemotstanden gir det største bidraget til F?
 - luftmotstanden gir det største bidraget til F?

Oppgi svarene rundet av til nærmeste heltall og målt i km/h.

 $^{^{1}} https://sintef.brage.unit.no/sintef-xmlui/handle/11250/2468761$

 $^{^2\}mathrm{Det}$ er er her forutsatt flatt strekke, og sett vekk ifra motstand ved akselerasjon.

 $^{^3\}mathrm{Det}$ er tatt ugangspunkt i gjennomsnittsvekten til en norsk personbil.

 $^{^4}$ Verdien er hentet fra en.wikipedia.org/wiki/Automobile_drag_coefficient#Drag_area

- c) Med "energiforbruk" mener vi her den energien som må til for å motvirke F over en viss kjørelengde. Ved konstant hastighet er energiforbruket etter kjørt lengde proporsjonal med F. På norske motorveier er $90\,\mathrm{km/h}$ og $110\,\mathrm{km/h}$ vanlige fartsgrenser. Hvor stor økning i energiforbruk vil en økning fra $90\,\mathrm{km/h}$ til $110\,\mathrm{km/h}$ innebære?
- d) Lag en funksjon F_1 som gir F ut ifra bilens hastighet målt i km/h.

¹Den totale energimengden en bil bruker på en kjørelengde vil være høyere enn det vi har kalt "energiforbruket". Som regel vil den totale energimengden som kreves for å kjøre en strekning være høyere jo høyere hastighet man har. Slik kan man anta at differansen i energiforbruk vi finner i denne oppgaven er et minimum for den reelle differansen i total energimengde.