Математический анализ Раздел: дифференциальные уравнения

Тема: *Понятие устойчивости* решения ДУ и решения системы ДУ

Лектор Пахомова Е.Г.

§5. Понятие устойчивости решения

1. Предварительные замечания

TEOPEMA 1 (о непрерывной зависимости решения от начальных условий).

Пусть для уравнения y' = f(x,y) выполняются два условия: 1) f(x,y) непрерывна в некоторой области D плоскости xOy,

2) $f'_{v}(x,y)$ в области D ограничена.

Тогда для любой точки $M_0(x_0,y_0)\in D$ решение $y=\varphi(x)$, удовлетворяющее начальному условию $y_0=\varphi(x_0)$, непрерывно зависит от начальных данных на отрезке [a;b], содержащем x_0 .

Если решение задачи Коши ∃, единственно и непрерывно зависит от начальных данных, то говорят, что *задача Коши поставлена корректно*.

2. Устойчивость по Ляпунову

Pассмотрим д.у. y' = f(x,y), (1)

где 1) f(x,y) определена и непрерывна в некоторой области $D = \{(x;y) \mid x \in (a;+\infty), \ y \in D_1 \}$

2) $f_y'(x,y)$ ограничена в D

Пусть

- 1) $y = \varphi(x)$ решение (1), удовлетворяющее начальному условию $y(x_0) = y_0$ (где $y_0 \in D_1$, $x_0 \in (a; +\infty)$);
- 2) $y = \widetilde{y}(x)$ решение (1), удовлетворяющее начальному условию $y(x_0) = \widetilde{y}_0$.

Предполагается, что решения $\varphi(x)$ и $\widetilde{y}(x)$ определены для всех $x \ge x_0$ (говорят: «неограниченно продолжаемы вправо»)

ОПРЕДЕЛЕНИЕ. Решение $y = \varphi(x)$ уравнения y' = f(x,y) называется устойчивым по Ляпунову при $x \to +\infty$, если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для всякого решения $y = \tilde{y}(x)$ этого уравнения из неравенства

$$\left|\widetilde{y}(x_0) - \varphi(x_0)\right| = \left|\widetilde{y}_0 - y_0\right| < \delta \tag{2}$$

следует неравенство

$$\left| \widetilde{y}(x) - \varphi(x) \right| < \varepsilon \tag{3}$$

∂ля всех $x ≥ x_0$.

(т.е. решения, близкие по начальным значениям к решению $y = \varphi(x)$, остаются близкими и при всех $x \ge x_0$).

Геометрический смысл определения

Решение $y = \varphi(x)$ устойчиво, если для любой ε -полоски, содержащей кривую $y = \varphi(x)$, достаточно близкие к ней при $x = x_0$ интегральные кривые $y = \tilde{y}(x)$ целиком содержатся в указанной ε -полоске при всех $x \ge x_0$.

Если при сколь угодно малом $\delta > 0$ хотя бы для одного решения $y = \tilde{y}(x)$ уравнения (1) неравенство (3) не выполняется, то решение $y = \varphi(x)$ этого уравнения называется *неустойчивым*.

Неустойчивым следует считать и решение, не продолжаемое вправо при $x \to +\infty$.

ОПРЕДЕЛЕНИЕ. Решение $y = \varphi(x)$ уравнения (1) называется асимптотически устойчивым, если

- 1) решение $y = \varphi(x)$ устойчиво,
- 2) существует $\delta_1 > 0$ такое, что для любого решения $y = \tilde{y}(x)$ уравнения (1), удовлетворяющего условию

$$\left|\widetilde{y}(x_0)-\varphi(x_0)\right|<\delta_1,$$

имеем
$$\lim_{x \to +\infty} |\widetilde{y}(x) - \varphi(x)| = 0.$$
 (4)

(т.е. все решения $y = \tilde{y}(x)$, близкие по начальным условиям к асимптотически устойчивому решению $y = \varphi(x)$, не только остаются близкими к нему при $x \ge x_0$, но и неограниченно сближаются с ним при $x \to +\infty$).

ПРИМЕР 1. Исследовать на устойчивость тривиальное решение $y \equiv 0$ уравнения y' = 0.

ПРИМЕР 2. Исследовать на устойчивость тривиальное решение $y \equiv 0$ уравнения $y' = -a^2 y$ (a = const).

ПРИМЕР 3. Исследовать на устойчивость тривиальное решение $y \equiv 0$ уравнения $y' = a^2 y$ (a = const).

Рассмотрим систему д.у.

$$y'_i = f_i(x, y_1, y_2, ..., y_n), i = 1, 2, ..., n,$$
 (5)

где 1) $f_i(x, y_1, y_2, ..., y_n)$ определена и непрерывна в некоторой области

$$D = \{(x; y_1; ..., y_n) | x \in (a; +\infty), (y_1, ..., y_n) \in D_1 \subseteq \mathbf{R}^{(n)} \}$$

2) $(f_i)'_{y_i}(x, y_1, y_2, ..., y_n)$ $(j = 1, 2, ..., n)$ ограничена в D

Определение устойчивости и асимптотической устойчивости решения $y_i = \varphi_i(x)$ $(i = \overline{1,n})$ системы (5) дается так же как для уравнения (1).

При этом неравенства (2) заменяются на систему неравенств \sim

$$\left|\widetilde{y}_i(x_0) - \varphi_i(x_0)\right| < \delta \quad (i = \overline{1, n}),$$

неравенство (3) – на систему неравенств

$$\left|\widetilde{y}_{i}(x) - \varphi_{i}(x)\right| < \varepsilon \quad (i = \overline{1, n}),$$
 (6)

а условие (4) – на совокупность условий

$$\lim_{x \to +\infty} \left| \widetilde{y}_i(x) - \varphi_i(x) \right| = 0 \quad (i = \overline{1, n}),$$

Решение $y_i = \varphi_i(x)$ (i = 1, n) системы (5) называется *неус- тойчивым*, если при сколь угодно малом $\delta > 0$ хотя бы для одного решения $y = \widetilde{y}_i(x)$ ($i = \overline{1, n}$) хотя бы одно из неравенств (6) не выполняется.

Неустойчивым следует считать и решение, не продолжаемое вправо при $x \to +\infty$.

Замечание. Вопрос об устойчивости решения $y_i = \varphi_i(x)$ $(i=\overline{1,n})$ системы (5) сводится к вопросу об устойчивости тривиального решения системы, получаемой из данной заменой $z_i(x) = y_i(x) - \varphi_i(x)$, $(i=\overline{1,n})$.

Поэтому в дальнейшем мы будем считать, что на устойчивость исследуются именно тривиальные решения систем.

3. Устойчивость автономных систем. Типы точек покоя

Обобщив геометрическую терминологию, считаем, что *решение системы* ДУ

 $y_1 = \varphi_1(x), \ y_2 = \varphi_2(x), \ ..., \ y_n = \varphi_n(x)$ представляет собой интегральную кривую (n+1)-мерного пространства переменных $x, y_1, y_2, ..., y_n$.

Решению системы ДУ можно придать другой геометрический смысл.

Рассмотри систему
$$\begin{cases} y_1' = f_1(x, y_1, y_2), \\ y_2' = f_2(x, y_1, y_2). \end{cases}$$

Будем рассматривать переменную x как параметр (обычно подразумевают, что x – время).

Тогда $y_1 = \varphi(x), y_2 = \psi(x)$ — параметрические уравнения кривой на плоскости y_1Oy_2 .

Эту кривую называют траекторией системы (фазовой траекторией).

Плоскость y_1Oy_2 в этом случае называют фазовой плоскостью.

- С геометрической точки зрения фазовые траектории проекции интегральных кривых на фазовую плоскость.
- Аналогичную терминологию принято использовать и для нормальной системы *n* уравнений.
- ОПРЕДЕЛЕНИЕ. Нормальная система дифференциальных уравнений называется **автономной**, если ее правые части f_i не зависят явно от x, т.е. если она имеет вид

$$y'_i = f_i(y_1, y_2, ..., y_n)$$
 $(i = \overline{1, n}).$

Пусть имеем автономную систему:

$$y'_{i} = f_{i}(y_{1}, y_{2}, ..., y_{n}) \quad (i = \overline{1, n}).$$
 (8)

Пусть $(a_1, a_2, ..., a_n)$ – последовательность чисел такая, что $f_i(a_1, a_2, ..., a_n) = 0 \qquad (i = 1, 2, ...).$

Тогда:

- 1) функции $y_i \equiv a_i \ (i = 1, 2, ...)$ будут решением системы (8);
- 2) последовательность чисел $(a_1, a_2, ..., a_n)$ точка фазового пространства, в которую проецируется решение $y_i \equiv a_i$ (i = 1, 2, ...).

Точку $(a_1, a_2, ..., a_n)$ называют в этом случае **точкой покоя** (положением равновесия) автономной системы (8).

- Автономная система (8) всегда имеет тривиальное решение $y_i \equiv 0 \ (i = 1, 2, ...)$.
- Проекция на фазовое пространство решения $y_i \equiv 0 \ (i = 1, 2, ...)$ точка (0; 0; ...; 0)
 - \Rightarrow (0; 0; ...; 0) точка покоя автономной системы.
- Исследование тривиального решения автономной системы можно заменить исследованием соответствующей ему точки покоя (0; 0; ...; 0).

Обозначим

$$S(R) = \{(y_1, y_2, ..., y_n) \in \mathbb{R}^{(n)} | (y_1)^2 + (y_2)^2 + ... + (y_n)^2 \le R^2 \}.$$

- Т.е. S(R) замкнутая R-окрестность точки (0; 0; ...; 0) пространства $\mathbb{R}^{(n)}$.
- Будем называть S(R) *п-мерным шаром*.
- Будем считать, что для рассматриваемой системы в S(R) выполнены условия теоремы существования и единственности решения системы.

ОПРЕДЕЛЕНИЕ.

Будем говорить, что точка покоя (0; 0; ...; 0) системы (8) устойчива, если $\forall \varepsilon > 0$ $(0 < \varepsilon < R)$ $\exists \delta > 0$ такое, что любая траектория системы, начинающаяся в момент времени $x = x_0$ в точке $M_0 \in S(\delta)$ в дальнейшем остается в шаре $S(\varepsilon)$.

Точка покоя (0; 0; ...; 0) **асимптотически устойчива** если 1) она устойчива;

2) $\exists \delta_1 > 0$ такое, что любая траектория системы, начинающаяся в точке $M_0 \in S(\delta_1)$ стремится к началу координат (0; 0; ...; 0), когда время x неограниченно растет $(m.e. \ npu \ x \to +\infty)$.

Рассмотрим, например, линейную однородную систему

$$\begin{cases} y' = a_{11}y + a_{12}z, \\ z' = a_{21}y + a_{22}z, \end{cases}$$

где
$$a_{ij}$$
 – числа и $|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0$.

Изучив все возможные случаи решений, получим следующие расположения траекторий в окрестности точки покоя O(0; 0):

1) Если $\lambda_1, \lambda_2 \in \mathbf{R}$, $\lambda_1 \neq \lambda_2$, $\lambda_1 < 0$, $\lambda_2 < 0$ Точка покоя **асимптотически устойчива**. Точку покоя при таком расположении траекторий называют *устойчивым* узлом.

2) Если $\lambda_1, \lambda_2 \in \mathbf{R}$, $\lambda_1 \neq \lambda_2$, $\lambda_1 > 0$, $\lambda_2 > 0$. Точка покоя **неустойчивы**. Ее называют *неустойчивым узлом*.

3) Если $\lambda_1, \lambda_2 \in \mathbf{R}$, $\lambda_1 \neq \lambda_2$, $\lambda_1 > 0$, $\lambda_2 < 0$. Точка покоя **не- устойчива**. Ее называют *седлом*.

4) $\lambda_{1,2} = \alpha \pm \beta i$ ($\beta \neq 0$), $\alpha < 0$. Точка покоя асимптотически устойчива. Ее называют устойчивым фокусом.

5) $\lambda_{1,2} = \alpha \pm \beta i$ ($\beta \neq 0$), $\alpha > 0$. Точка покоя **неустойчива**. Ее называют **неустойчивым фокусом**.

6) $\lambda_{1,2} = \alpha \pm \beta i$ ($\beta \neq 0$), $\alpha = 0$. Точка покоя **устойчива**. Ее называют **центром**.

7) Если $\lambda_1, \lambda_2 \in \mathbf{R}$, $\lambda_1 = \lambda_2 < 0$ — рисунок 7 или 8. Точка покоя **асимптотически устойчива**. При таком расположении траекторий, как на рисунке 7, ее называют *устойчивым вырожденным узлом*. Если траектории располагаются как на рисунке 8 — *дикритическим узлом*.

Рисунок 7

Рисунок 8

8) Если $\lambda_1, \lambda_2 \in \mathbf{R}$, $\lambda_1 = \lambda_2 > 0$ – рисунок 9 или 10. Точка покоя неустойчива. Ее называют неустойчивым вырожденным узлом.

Рисунок 9

Рисунок 10

Удалось установить связь устойчивости <u>любого решения</u> системы *п* уравнений с постоянными коэффициентами с соответствующим решению характеристическим корнем матрицы системы.

Доказано, что:

- 1) Если все характеристические корни матрицы системы имеют отрицательную действительную часть, то все решения системы асимптотически устойчивы.
- 2) Если хотя бы один характеристический корень матрицы системы имеет положительную действительную часть, то все решения системы неустойчивы.
- 3) Если среди характеристических корней есть простые корни с нулевой действительной частью (т.е. чисто мнимые или равный нулю корень), а остальные корни, если они есть, имеют отрицательную действительную часть, то все решения устойчивы, но асимптотической устойчивости нет.

4. Устойчивость по первому (линейному) приближению

Пусть дана автономная система ДУ:

$$y'_i = f_i(y_1, y_2, ..., y_n) \quad (i = \overline{1, n}).$$
 (9)

и пусть (0; 0; ...; 0) – точка покоя системы (9).

Будем предполагать, что $f_i(y_1, y_2, ..., y_n)$ дифференцируемы в окрестности точки O достаточное число раз (два и более).

Тогда, по формуле Тейлора

$$\begin{split} f_i(y_1,...,y_n) &= f_i(0,...,0) + \frac{df_i(0,...,0)}{1!} + R_i(y_1,...,y_n), \\ \text{где} \quad df_i(0,...,0) &= \frac{\partial f_i(O)}{\partial y_1} \cdot \Delta y_1 + \frac{\partial f_i(O)}{\partial y_2} \cdot \Delta y_2 + ... + \frac{\partial f_i(O)}{\partial y_n} \cdot \Delta y_n, \\ R_i(y_1,...,y_n) &= o(\sqrt{(\Delta y_1)^2 + (\Delta y_2)^2 + ... + (\Delta y_n)^2} \,. \end{split}$$

По условию задачи $f_i(0, 0, ..., 0) = 0$,

$$f_i(0, 0, ..., 0) = 0$$

 $\Delta y_i = y_i - 0 = y_i$.

Обозначим:

$$\frac{\partial f_i(O)}{\partial y_j} = a_{ij} \quad (i = \overline{1, n}; \quad j = \overline{1, n}).$$

Тогда систему (9) можно переписать в виде

$$y_i = \sum_{j=1}^n a_{ij} x_j + R_i(y_1, ..., y_n) \quad (i = \overline{1, n}).$$

Рассмотрим систему

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 $(i = \overline{1,n}).$ (10)

Систему (10) называют системой первого (линейного) приближения системы (9).

TEOPEMA.

Справедливы следующие утверждения:

- 1) если все характеристические корни матрицы $\mathbf{A}=(a_{ij})$ системы (10) имеют отрицательные действительные части, то точка покоя $O(0;\ 0;\ ...;\ 0)$ системы (9) и (10) асимптотически устойчива;
- 2) если хотя бы один характеристический корень матрицы $\mathbf{A} = (a_{ij})$ системы (10) имеет положительную действительную часть, то точка покоя O(0; 0; ...; 0) системы (9) и (10) неустойчива;
- 3) если все действительные части характеристических корней матрицы $\mathbf{A} = (a_{ij})$ неположительны, причем действительная часть хотя бы одного корня равна нулю, то исследование устойчивости тривиального решения системы (9) по первому приближению невозможно.