1. Construct a truth table from the following logic circuit diagram. The table should have two columns for the inputs and a column for the output.

for input 00: AB = 0 and A+B=1, 50

Q = (AB) + (A+B) = 1

For input ol: AB=0, $\overline{A+B}=0 \Rightarrow Q=0$

For input 10: AB=0, A+B=0 = Q=0

For input 11: AB=1, A+B=0 = 0=1

2. From the previous problem, what single logic gate has an equivalent truth table?

Looking at the slides that list out of the 7 logic gates, the touth in Problem 1 matches the XNOR truth table.

3. Construct a truth table from the following Boolean expression, where '+' is OR and '*' is AND.

$$Q = (A+B)*(\overline{C}*A)$$

* Need A=1 and C=0 for Q=1. Value of B doesn't matter.

4. Design a logic circuit using SOP (sum of products) that will implement a window detector for a three-bit input such that the output is HIGH when the input is between 3 and 5 inclusive.

5. Design a logic circuit using POS (product of sums) that will implement a window detector for a three-bit input such that the output is HIGH when the input is between 2 and 6 inclusive.

Dec	ABC	
0	000	\bigcirc
)	00 [0
\overline{Z}	010	(
3	0/1	
4	100	(
	10(l
5	110	(
7	() ()	0
100		

 $Q = (A+B+C)(A+B+C)(\overline{A}+B+C)$

- * POS steps:

 Find rows with a zero in

 the output

 Create a sum from the inputs
- on each row
 Complement inputs equal to one
 on a given row