AI5002: Assignment 5

Pradyumn Sharma AI21MTECH02001

latex codes from

https://github.com/96143/Assignment-5/blob/main/ Assignment%205.tex

1 Problem

Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the variance and standard deviation of X

2 Solution

When two fair dice are rolled, $6 \times 6 = 36$ observations are obtained.

Let X denote the sum of the numbers obtained when two fair dice are rolled.

So, X may have values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12

Now we have to find the variance.

$$Var(X) = E[X^2] - (E[X])^2$$
 (2.0.1)

Finding E[X]

$$E[X] = \sum_{i=1}^{n} x_i p_i$$
 (2.0.2)

$$E[X] = 2 \times \frac{1}{36} + 3 \times \frac{1}{18} + 4 \times \frac{1}{12} + 5 \times \frac{1}{9}$$

$$+6 \times \frac{5}{36} + 7 \times \frac{1}{6} + 8 \times \frac{5}{36} + 9 \times \frac{1}{9}$$

$$+10 \times \frac{1}{12} + 11 \times \frac{1}{18} + 12 \times \frac{1}{36}$$

$$\implies E[X] = 7$$

X	Outcomes	No of Outcomes	Probability
2	(1,1)	1	1/36
3	(1,2),(2,1)	2	2/36
4	(1,3),(2,2),(3,1)	3	3/36
5	(1,4),(2,3),(3,2),(4,1)	4	4/36
6	(1,5),(2,4),(3,3),(4,2),(5,1)	5	5/36
7	(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)	6	6/36
8	(2,6),(3,5),(4,4),(5,3),(6,2)	5	5/36
9	(3,6),(4,5),(5,4),(6,3)	4	4/36
10	(4,6),(5,5),(6,4)	3	3/36
11	(5,6),(6,5)	2	2/36
12	(6,6)	1	1/36

Thus,
The probability distribution table is

X	2	3	4	5	6	7	8	9	10	11	12
P(X)	1/36	1/18	1/12	1/9	5/36	1/6	5/36	1/9	1/12	1/18	1/36

Finding $E[X^2]$

$$E[X^{2}] = \sum_{i=1}^{n} (x_{i})^{2} p_{i}$$

$$(2.0.3)$$

$$E[X^{2}] = 2^{2} \times \frac{1}{36} + 3^{2} \times \frac{1}{18} + 4^{2} \times \frac{1}{12} + 5^{2} \times \frac{1}{9}$$

$$+6^{2} \times \frac{5}{36} + 7^{2} \times \frac{1}{6} + 8^{2} \times \frac{5}{36} + 9^{2} \times \frac{1}{9}$$

$$+10^{2} \times \frac{1}{12} + 11^{2} \times \frac{1}{18} + 12^{2} \times \frac{1}{36}$$

$$\implies E[X^{2}] = \frac{329}{6}$$

Using (2.0.1) Variance is given by

$$Var(X) = \frac{329}{6} - (7)^2$$
$$Var(X) = \frac{35}{6} = 5.83$$

Standard Deviation is given by

$$\sigma_x = \sqrt{Var(X)}$$

$$\sigma_x = \sqrt{5.83} = 2.415$$
(2.0.4)