Evolutionary Algorithms II

Ender Özcan

Lecture 6

- When does a genetic algorithm perform better than a memetic algorithm?
- Is the choice of meme (hill climbing/local search algorithm) important?
- Which meme does have a better performance in a memetic algorithm?
- Can we somehow combine several memes to obtain a synergy leading to improved performance?

Benchmark Functions

Why to use benchmark (test) functions for optimisation

- Benchmark functions serves as a testbed for performance comparison of (meta/hyper)heuristic optimisation algorithms
 - Their global minimum are known
 - They can be easily computed
 - Each function is recognised to have certain characteristics potentially representing a different real-world problem
 - E.g. ,separable vs non-separable
- <u>COmparing Continuous Optimisers</u> (COCO) provide benchmark function testbeds: http://coco.gforge.inria.fr/

Classification of benchmark (test) functions

- A common classification is:
 - Continuity (Differentiability)
 - Discontinuous vs continuous
 - Dimensionality
 - Scalability
 - Separability

```
\underset{x_1, \dots, x_p}{\operatorname{arg \; minimize}} f(x_1, \dots, x_p) = \left(\underset{x_1}{\operatorname{arg \; minimize}} f(x_1, \dots), \dots, \underset{x_p}{\operatorname{arg \; minimize}} f(\dots, x_p)\right)
```

- Modality
 - Unimodal
 - Multimodal with few local minima
 - Multimodal with exponential number of local minima

Example – unimodal function: Sphere function

- continuous
- differentiable
- separable
- scalable

Delta Evaluation in Function Optimisation

- Separable functions allows delta evaluation
- Example, sphere function

$$f(\boldsymbol{x}) = \sum_{i=1}^n x_i^2$$

Example – unimodal function: Step function

- discontinuous
- nondifferentiable
- separable
- scalable

Example – multimodal function Rastrigin's function

$$f(\mathbf{x}) = An + \sum_{i=1}^{n} \left[x_i^2 - A \cos(2\pi x_i)
ight]$$
 where: $A = 10$

- continuous
- differentiable
- separable
- scalable

Example – multimodal function Ackley's function

$$f(x,y) = -20 \exp \left(-0.2 \sqrt{0.5 \left(x^2 + y^2
ight)}
ight)
onumber \ -\exp(0.5 \left(\cos(2\pi x) + \cos(2\pi y)
ight)) + e + 20$$

- continuous
- differentiable
- non-separable
- non-scalable

Example – Sphere Function Optimisation

Objective:

• Find the set of integers x_i which maximize the function f given below.

Sphere Function Optimisation – Representation I

There are 1024 integers in the given interval

```
-512 < x_i \le 512
```

 In binary representation, 1024 different integers can be represented using 10 bits

Encoding of x_i

0 : 000000000 (-511)

1 : 000000001 (-510)

•••

1023 : 1111111111 (512)

Decoding of x_i

- Convert binary # into decimal, e.g., $x_i = (000000011) = 3$
- Subtract 511 from that value, e.g., 3-511 = -509

Sphere Function Optimisation – Representation II

- Function has 3 parameters: x_1 , x_2 , x_3
- Each parameter can be represented by 10 bits
- Chromosome consists of 30 bits
- Example

```
1100101010110000000000000000110\\
```

 x_1

 $\boldsymbol{x_2}$

 x_3

Sphere Function Optimisation – Fitness Evaluation (Decoding)

1100101010110000000000000000110

 $\boldsymbol{x_1}$

 $\boldsymbol{x_2}$

 x_3

$$f(x) = x_1^2 + x_2^2 + x_3^2$$

$$x_1 = (810 - 511) = 299$$

$$x_2 = (768 - 511) = 257$$

$$x_3 = (6 - 511) = -505$$

Fitness:
$$f(x) = (299)^2 + (257)^2 + (-505)^2$$

= 410425

- What if x_i were real numbers in the interval $-5.12 < x_i \le 5.12$
- Solution:
 - Use binary representation
 - with precision of 2 digits after decimal point
 - use 1024 different numbers
 - divide number by 100
 - Use other representation (e.g. real)
- What if the representation has redundancy?

e.g.
$$-5.40 < x_i \le 5.40$$

Case Studies:

Benchmark Function Optimisation

Travelling Salesman Problem

Ender Özcan, Burak Bilgin, Emin Erkan Korkmaz, A Comprehensive Analysis of Hyper-heuristics, Intelligent Data Analysis, 12:1, pp. 3-23, 2008. [PDF]

BENCHMARK FUNCTION OPTIMISATION

Benchmark Function

Separable

Label	Function name	lb	ub	opt	isC	Ssi	ish
F1	Sphere	-5.12	5.12	0	yes	yes	no
F2	Rosenbrock	-2.048	2.048	0	yes	yes	no
F3	Step	-5.12	5.12	0	yes	yes	no
F4	Quartic with noise	-1.28	1.28	1	yes	yes	yes
F5	Foxhole	-65.536	65.536	1	yes	no	yes
F6	Rastrigin	-5.12	5.12	0	yes	yes	yes
F7	Schwefel	-500	500	0	yes	yes	yes
F8	Griewangk	-600	600	0	yes	no	yes
F9	Ackley	-32.768	32.768	0	yes	no	yes
F10	Easom	-100	100	-1	yes	no	no
F11	Schwefel's Double Sum	-65.536	65.536	0	yes	no	no
F12	Royal Road	_	_	0	no	yes	n/a
F13	Goldberg	_	_	0	no	yes	n/a
F14	Whitley	_	_	0	no	yes	n/a

Benchmark Function Optimisation

log₁₀(f - f_{opt})

- Gray encoding ensures a Hamming distance of 1 for the adjacent numbers
- Shown to be useful in GAs empowering the algorithm to mutate a solution in the right direction

Dec		Binary	Gray		
	0	000	000		
	1	001	001		
	2	010	011		
	3	011	010		
	4	100	110		
	5	101	111		
	6	110	101		
	7	111	100		

Components of Evolutionary Algorithms and Settings

			Chrom.	Pop.	Max.	
Label	dim	bits	Len.	size	hcteps	
F1	10	30	300	60	600	
F2	10	30	300	60	600	
F3	10	30	300	60	600	
F4	10	30	300	60	600	
F5	2	30	60	20	120	
F6	10	30	300	60	600	
F7	10	30	300	60	600	
F8	10	30	300	60	600	
F9	10	30	300	60	600	
F10	6	30	180	36	360	
F11	10	30	300	60	600	
F12	8	8	64	20	128	
F13	30	3	90	20	180	
F14	6	4	24	20	48	

- Representation: Gray encoding
- Initialisation: random
- Mate selection: Tournament with tour size of 2
- Crossover: 1PTX (p_c =1.0)
- Traditional mutation based on bit-flip with mutation rate 1/(2 x chromosome_length)
- A trans-generational EA with a replacement method which keeps only two best individuals from the previous generation.

Components of Evolutionary Algorithms and Settings II

			Chrom.	Pop.	Max.	
Label	dim	bits	Len.	size	hcteps	
F1	10	30	300	60	600	
F2	10	30	300	60	600	
F3	10	30	300	60	600	
F4	10	30	300	60	600	
F5	2	30	60	20	120	
F6	10	30	300	60	600	
F7	10	30	300	60	600	
F8	10	30	300	60	600	
F9	10	30	300	60	600	
F10	6	30	180	36	360	
F11	10	30	300	60	600	
F12	8	8	64	20	128	
F13	30	3	90	20	180	
F14	6	4	24	20	48	

- Memes (using bit-flip):
 - GA: Genetic Algorithm (none)
 - MA0: MA with SDHC (best imp.)
 - MA1: MA with NDHC (first imp.)
 - MA2: MA with RMHC
 - MA3: MA with DBHC
- Expectedly, poor performing memes (using biased moves) are designed:
 - MA4: SDHC ⇒ neighborhood move: AND with 0
 - MA5: SDHC ⇒ neighborhood move: OR with 1
 - MA6: NDHC ⇒ neighborhood move: AND with 0
 - MA7: NDHC ⇒ neighborhood move: OR with 1

Termination and Performance Comparison Criteria

- Termination: Runs are terminated whenever the overall CPU time exceeds 600 sec., or an expected fitness (optimum) is achieved.
 - Pentium IV 2 GHz, machines with 256 MB RAM are used
- All runs are repeated 50 times.
- Performance indicators:
 - Success rate (effectiveness): The ratio of the number of runs returning the expected optimal solution to the total number of runs (50)
 - Average number of evaluations/configurations (efficiency)
 - Bar chart plots showing the average no. of evaluations in log scale for each algorithm, if the success rate is 100% (all 50 runs yield expected optimum), otherwise no bar is drawn.

Results

Results II

- MA0 (SDHC) is the best meme choice for F4, F13 and F14. (noisy + deceptive)
- MA1 (NDHC) is the best meme choice for F6-F8. (multimodal)
- MA3 is (DBHC) the best meme choice for F2, F3, F5, F10, F12. (functions with plateaus)
- For functions F1, F11 (unimodal) and F9, GA performs slightly better than the memetic algorithm with the meme MA1 (NDHC). The performance difference is insignificant.
- In the overall, MA2 (RMHC) and MA3 (DBHC) turn out to be the worst and the best meme, respectively, among MA0-MA3, considering the success rates and average number of evaluations.
- Different memes yield different performances, designing the right meme for the problem in hand is important.

E. Özcan, and M. Erenturk, A Brief Review of Memetic Algorithms for Solving Euclidean 2D Traveling Salesrep Problem, Proc. of the 13th Turkish Symposium on Artificial Intelligence and Neural Networks, pp. 99-108, June 2004. [PDF]

TRAVELLING SALESMAN PROBLEM

Binary Representation for Encoding Permutation

- Binary representation and classical random initialisation, cross-over and mutation operators are not suitable for encoding permutation
 - E.g., for TSP, could cause illegal tours to form
 - not all cities visited
 - undefined city codes
 - cities visited more than once
 - loops formed within the tour
 - needs repair algorithms

Given N=5 cities \Rightarrow 3 bits per city,

2 5 3 1 4

individual 1: 0|10101011001100

5 2 1 4 3

individual 2: 1 01010001100011

After applying 1-point crossover:

1 2 1 4 3

individual 1: 001010001100011

6 5 3 1 2

individual 2: 110101011001100

2 | 5 3 1 4

5 | 2 1 4 3

2 2 1 4 3

5 5 3 1 4

Generic Permutation based Genetic Operators

- Builds offspring by
 - choosing a subsequence of a tour from one parent
 - choose two random cut points to serve as swapping boundaries
 - swap segments between cut points
 - preserving the order and position of as many cities as possible from other parent
- Exploits important similarities in the value and ordering simultaneously

PMX

Example:

p1: (1 2 3 | 4 5 6 7 | 8 9)

p2: (4 5 2 | 1 8 7 6 | 9 3)

step 1: swap segments

o1: (x x x | 1 8 7 6 | x x)

o2: (x x x | 4 5 6 7 | x x)

this also defines mappings:

step 2: fill in cities from other parents if no conflict

o1: (x 2 3 | 1 8 7 6 | x 9)

o2: (x x 2 | 4 5 6 7 | 9 3)

step 3: use mappings for conflicted positions

o1: (**4** 2 3 | 1 8 7 6 | **5** 9)

o2: (**1 8** 2 | 4 5 6 7 | 9 3)

- Builds offspring by
 - choosing a subsequence of a tour from one parent
 - preserving relative order of cities from other parent
- Exploits the property that ordering of cities important, not positions

```
9-3-4-5-2-1-8-7-6 and 4-5-2-1-8-7-6-9-3 are identical
```


Example:

```
p1: (1 2 3 | 4 5 6 7 | 8 9)
```

p2: (4 5 2 | 1 8 7 6 | 9 3)

step 1: copy segments into offspring

o1: (x x x | 4 5 6 7 | x x)

o2: (x x x | 1 8 7 6 | x x)

step 2: starting from 2nd cut point of one parent, cities from other parent copied in same order, omitting symbols already present; if end of string reached, continue from beginning of string

sequence of cities in 2nd parent (from 2nd cut point) is

9-3-4-5-2-1-8-7-6 (remove 4,5,6,7 which are in 1st offspring)

9-3-2-1-8

place into first offspring o1: (2 1 8 | 4 5 6 7 | 9 3)

similarly the 2nd offspring o2: (3 4 5 | 1 8 7 6 | 9 2)

- Builds offspring by
 - choosing each city and its position from one of the parents
 - and when a cycle is completed, the remaining cities filled in from the other parent
- Preserves absolute positions of the elements in the parent sequence

o1:
$$(1 \times \times \times \times \times \times \times \times)$$

o1:
$$(1 \times 4 \times 4 \times 8 \times 8)$$

o1:
$$(1 \times 3 + 4 \times 2 \times 3 \times 3)$$

Randomly select a starting point(city) in p1: 1

Copy cities from p1 until a cycle is obtained while mapping from p1 to each corresponding city in p2

2 requires selection of 1 causing a cycle, so rest filled from other parent:

o1: (1 2 3 4 **7 6 9** 8 **5**)

similarly

o2: (**4 1 2 8** 5 6 7 **3** 9)

More Genetic Operators – Crossover for TSP

Operator Name	Date Authors
Alternating Position Crossover (AP)	(1999) Larranaga, Kuijpers, Poza, Murga
Cycle Crossover (CX)	(1987) Oliver, Smith and Holland
Distance Preserving Crossover (DPX)	(1996) Freisbein and Merz
Edge Assembly Crossover (EAX)	(1997) Nagata and Kobayashi
Edge Recombination Crossover (ER)	(1989) Whitley, Timothy, Fuquay
Heuristic Crossover (HEU)	(1987) Grefenstette
Inver-over Operator (IOO)	(1998) Tao and Michalewicz
Maximal Preservative Crossover (MPX)	(1988) Mühlenbein, Schleuter and Krämer
Position Based Crossover (POS)	(1991) Syswerda
Order Crossover (OX1)	(1985) Davis
Order Based Crossover (OX2)	(1991) Syswerda
Partially mapped Crossover (PMX)	(1985) Goldberg and Lingle
Voting Recombination Crossover (VR)	(1989) Mühlenbein
Natural Crossover (NX)	(2000) Jung and Moon
Voronoi Quantized Crossover (VQX)	(2002) Seo and Moon
<u>:</u>	

More Genetic Operators – Mutation for TSP

Operator Name	Date Authors
Displacement Mutation (DM)	(1992) Michalewicz
Exchange Mutation (EM)	(1990) Banzhaf
Insertion Mutation (ISM)	(1988) Fogel
Inversion Mutation (IVM)	(1990) Fogel
Scramble Mutation (SM)	(1991) Syswerda
Simple Inversion Mutation (SIM)	(1975) Holland

GA vs MA for Solving TSP Experiments - Components

- Representation: path representation (permutation)
 - For example, (1 3 5 2 6 4) represents a tour starting from city 1, visiting 3, 5, 2, 6, 4 in that order and returning back to 1.
- Fitness function: path length
- Crossover: PMX, 2PTX (with repair/patch-up), OX1
- Mutation Operators: ISM, EM,
- Mate Selection: RANK, TOUR
- Replacement: TG, SS
- Hill Climbing: RMHC using ISM, RMHC using EM
 A hill climbing step is applied, as long as, max. number of iterations is not exceeded and the indiv. is improved.

GA	D.L.	ISM		EM		
TYPE		α	β	α	β	
	C20	145.655	62.575	110.786	71.431	
	C30	147.590	62.716	142.798	62.716	
SSGA	C40	207.804	62.768	157.104	121.454	
	S21	116.598	60.000	98.714	60.000	
	F32	159.191	91.094	118.792	108.694	
	F41	207.856	77.609	151.658	120.573	
	C20	149.799	62.575	110.654	62.575	
	C30	186.314	62.716	131.118	88.975	
SSGA	C40	243.077	62.768	144.962	114.914	
HC	S21	129.523	60.000	99.411	60.000	
	F32	157.291	89.288	114.841	106.003	
	F41	205.571	68.168	134.152	92.426	
	C20	173.683	62.575	167.233	62.575	
	C30	236.148	62.716	213.842	60.000	
TGGA	C40	344.740	62.768	278.614	62.768	
	S21	169.553	60.000	151.198	60.000	
	F32	201.821	92.945	182.890	84.180	
	F41	287.101	68.168	241.825	68.168	
	C20	153.128	62.575	147.378	62.575	
	C30	198.448	62.716	187.580	62.716	
TGGA	C40	309.523	62.768	282.683	62.768	
HC	S21	149.920	60.000	133.237	60.000	
	F32	172.591	84.180	159.893	86.734	
	F41	239.901	68.168	241.260	68.168	

From the best to worst, considering the average fitness per generation at each run (100 runs)

- Crossover: **OX1**, 2PTX, PMX
- Mutation: EM, ISM (ISM is better in finding the best), 1/chromosomelenght
- Mate Selection: TOUR (tour-size:2), RANK
- Replacement: **TG** (keep top 2 and replace the rest with offspring, g=popSize-2), SS (replace the worst pair of individuals with the best pair among the offspring and parents)
- Approach: MA (Hill Climbing: EM, ISM), GA

α: avr. fitness per generation at each run

β: best fitness across 100 runs

A Classification of Memetic Algorithms

Adaptive Type		Adaptive Level				
		External	Local	Global		
Static		Basic meta- Lamarckian learning / Simplerandom				
Adaptive	Qualitative Adaptation		Randomdescent / Randompermdescent	Tabu-search		
	Quantitative Adaptation		Sub-Problem Decomposition/ Greedy	Straightchoice/ Rankedchoice/ Roulettechoice/ Decompchoice/ Biased Roulette Wheel		
Self-Adaptive		(Multi-memes/ Co-evolution MA			

Yew-Soon Ong; Meng-Hiot Lim; Ning Zhu; Kok-Wai Wong, "Classification of adaptive memetic algorithms: a comparative study," *Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on*, vol.36, no.1, pp.141,152, Feb. 2006 [PDF]

Multimeme Memetic Algorithms

- Self Adaptation: Deciding which operators and settings to use on the fly whenever needed receiving feedback during the evolutionary search process
- Davis used varying probabilities of applying different operators
 - Uses the performance of the operator within the last few generations to update probabilities
- Grefenstette, Kakuza, Friesleben, Hartfelder used subpopulations, each having different set of parameters and operators
- Spears used an additional bit to decide whether apply 2-PTX or UX to an individual (co-evolution)

- Introduce memetic material for each individual
 - Co-evolve genetic and memetic material
- Krasnogor formalised in his PhD thesis*.
- A meme encodes how to apply an operator (which one to apply, max. no. of iterations, acceptance criteria), when to apply, where to apply, and how frequent to apply
- Meme of each operator can be combined under a memeplex

^{*}Krasnogor N (2002) Studies on the theory and design space of memetic algorithms, PhD Thesis, University of the West of England, Bristol, UK

Grammar for a Memeplex–Compound of Memes

- Memeplex = <Meme>;<Meme>:<Memeplex>
- Meme = (< Where >, < When >, < How >, < Frequency >)
- Where = < Location > Crossover; < Location > Mutation;
- Location = *After*; *Before*
- When = < BooleanCondition >
- How = GeneralHillClimber < Move >< Strategy >< Iterations >;
 BoltzmanAdaptiveHillClimber < Move >< Strategy >< Iterations > ...
- Frequency = Always; For < Iterations >; Never ...
- Move = 2-exchange, 3-exchange
- Strategy = NextAscent; SteepestAscent; MiniMax < Size >; MaxiMin < Size >
- Size = < Num >
- Iterations = < Num >

Multimeme Memetic Algorithms – Features

- Memes represent instructions for self-improvement
 - Specify set of rules, programs, heuristics, strategies, behaviors, etc.
- Interaction between memes and genes are not direct
 - Mediated by individual (genetic and memetic material)
- Memes can evolve, change by means of nontraditional genetic transformations and metrics

genetic material memetic material

MAX-SAT: (1 0 0 0 1 + 2)

memeplex: Hc2 (Hc: meme and 2:meme option)

Hc (hill climbing operator)→ 0: RMHC, 1: SDHC, 2: NDHC

Mp2Mo1Cp1Co2W0Hc1Hs1I2

- TSP:(452187693+ 2 1 1 2 0 1 12)

 - Mo (mutation operator) → 0: Exchange, 1: Insertion,...

 - Co (crossover operator) \rightarrow 0: 1PTX+repair, 1: OX, 2: \underline{CX} ,...
 - W (where to apply HC) → 0: After Mutation, 1: After Crossover,...
 - Hc (strategy/how to apply HC) \rightarrow 0: first impr., 1: best improvement,...
 - Hs (move/HC step)→ 0: Exchange, 1: Adjacent interchange,...
 - I (frequency/number of HC iterations) \rightarrow 0: n, 1: 2n, 2: 4n, 3: 8n,...

 memes

 meme options


```
(1 0 0 0 1 + Hc1Hs1I2) f=2 (1 1 0 1 1 + Hc0Hs4I1) f=1
```

```
(1\ 1\ 0\ 0\ 1\ +\ HcOHs4I1)
(1\ 0\ 0\ 1\ 1\ +\ HcOHs4I1)
```

```
Individual_Level_Crossover(parent1, parent2)
BEGIN
IF(both parents carrie the same meme)
 Cross parents genetic material.
 Inherit common meme to offspring.
 ELSE-IF (parent1.fitness()==parent2.fitness())
 /* the two parents have different memes
  /* but their fitness are comparable hence
  /* a random choice is made
 Cross parents genetic material.
 Choose a meme randomly from any of the two parents.
 Inherit selected meme to offspring.
 ELSE
 /* parents don't share memes nor fitness values
 /* hence the fittest individual
 /* imposes its meme preference
 Cross parents genetic material.
 Choose meme from fittest parent.
  Inherit the chosen meme to offspring.
END
```

Krasnogor N, Smith JE (2001) Emergence of profitable search strategies based on a simple inheritance mechanism. In: Proc of the Genetic and Evolutionary Comp. Conf., pp 432–439

- Inovation rate (IR) ∈[0,1], is the probability of mutating the memes
- Mutation randomly sets the meme option to one of the other options
 - MAX-SAT: $(1\ 0\ 0\ 0\ 1\ +\ Hc2\) \rightarrow 0$: $(1\ 0\ 0\ 0\ 1\ +\ Hc0)$
 - TSP: (4 5 2 1 8 7 6 9 3 + Mp2Mo1Cp1Co2W0Hc1Hs1I2) → (4 5 2 1 8 7 6 9 3 + Mp0Mo2Cp0Co1W1Hc3Hs0I4)
- IR=0; no innovation, if a meme option is not introduced in the initial generation, it will not be reintroduced again
- IR=1; All different strategies implied by the available M memes might be equally used.

Measure for Evaluating Meme Performance

- Concentration of a meme $(c_i(t))$ is the total number of individuals that carry the meme i at a given generation t,
 - Crude measure of a meme success; gives no information about continual usage of a meme
- Evolutionary activity of a meme $(a_i(t))$ is the accumulation of meme concentration until a given generation, $a_i(t) = \begin{cases} \int_0^t c_i(t)dt, & \text{if } c_i(t) > 0 \\ 0, & \text{otherwise} \end{cases}$
 - Slope in a plot represents the rate of increase of a meme concentration

Memetic Algorithms (MAs)

Multimeme Memetic Algorithms (MMAs) Meme _ meme(plex) options h₄ 15.0 Generate Initial Population h₃ 28.0 h₂ 7.0 **Evaluate All Individuals** Select Mates (Parents) no ves h_2 Terminate? h₁ Crossover h_2 h₂ Mutate h₂ 16.0 h₃ 11.0 Evaluate All Children Hill Climbing h_2 6.0 Form Next Generation 7.0

9.0 10.0

Ender Özcan, Burak Bilgin, Emin Erkan Korkmaz, A Comprehensive Analysis of Hyper-heuristics, Intelligent Data Analysis, 12:1, pp. 3-23, 2008. [PDF]

BENCHMARK FUNCTION OPTIMISATION - REVISITED

MMA Experiments for Benchmark Function Optimisation – Additional Settings

- IR rate is fixed as 0.20
- Two sets of experiments are performed
 - MMA1. A single *good* meme and two *poor performing* memes are used to test the power of MMAs in identifying the *good* ones.
 - MMA2. Memes GA, MA0, MA1, MA2 and MA3 are used to observe whether MMA will provide some type of synergy between memes.

MMA 1.a

Good meme (GA) followed by two poor performing memes

11 21 31 41 51 61 71 81 91 101

MA0

MA3

MMA 1.b

MMA 1.c

MMA 2 Experiments – Synergy Between Memes

label	type	avr. no. of evals.	st.dev.	label	type	avr. no. of evals.	st.dev.
F1	MMA	17,580	2,226	F8	MMA	5,215,787	9,658,230
1,1	MA1	92,256	0	1.0	MA1	1,906,134	6,646,991
F2	MMA	23,605,004	24,364,979	F9	MMA	43,871	12,193
1.2	MA3	8,455,507	3,803,504	179	MA1	180,783	12,647
F3	MMA	72,252	11,772	F10	MMA	3,100,515	4,565,736
1.3	MA3	82,769	16,512	F10	MA3	1,340,811	988,971
F4	MMA	12,926,879	11,435,876	F11	MMA	17,580	2,226
1 4	MA0	9,494,844	10,332,574		MA1	36,060	0
F5	MMA	46,975	79,394	F12	MMA	31,297	14,961
13	MA3	11,619	2,293		MA3	29,246	4,936
F6	MMA	553,306	231,124	F13	MMA	7,667,352	2,832,376
	MA1	525,398	262,055		MA0	4,348,896	1,617,951
F7	MMA	349,250	324,544	F14	MMA	3,674,932	2,623,300
	MA1	167,799	60,577	1.14	MA0	1,072,117	1,111,825

Second entry for each function indicates the best performing hill climbing under the generic MA framework where HC is applied after mutation

MMA 2.a

MMA 2.b

MMA 2.c

MA0

- Average evolutionary activity plots show that the multimeme approach successfully identifies useful memes.
 - Even if there are useless operators in the system
- Any hill climber seems to attain the optimum fast for F1, F3 and F11 under any setting
- In all runs full success is achieved for all cases.

- MMA can identify the best meme or a meme that does not perform significantly better than the best meme for almost each benchmark function
- Comparing the experimental results obtained using MMA and MA with the best meme for each benchmark function indicate that MA with the best meme is superior based on the average number of evaluations, except for F1, F3, F9 and F11
 - Learning is time consuming hence there is a trade-off

- Limited theoretical and mathematical analyses this is a growing field of study
 - Schema theorem and building block hypothesis
 - Markov chain analysis
 - Chaos theory
 - Martingale theory (for convergence analysis)
 - Runtime analysis with respect various parameter settings (e.g., expected runtime analysis based on fitness levels/partitions, drift analysis)

Per Kristian Lehre and Pietro S. Oliveto, GECCO 2021, Runtime Analysis of Evolutionary Algorithms: Basic Introduction

- Considered slow for online applications and for some large offline problems
 - Speedy hardware
 - Parallel/distributed processing

- Genetic Algorithms represent a subclass of nature inspired Evolutionary Computation Techniques
 - GAs creates an initial population of individuals and performs the search by applying selection, crossover and mutation on individuals at each evolutionary cycle
 - GA components including the parameter settings require careful tailoring to the problem in hand
- Memetic Algorithms hybridise GAs with Hill Climbing
- There is a variety of benchmark functions used for performance comparison of search algorithms
- In general, a memetic algorithm performs better than a genetic algorithm
- Choice of meme (operators and their settings) along with the encoding influence the performance of a memetic algorithm

- Multimeme Algorithm can indeed learn how to choose an operator and relevant settings through the evolutionary process (co-evolution)
 - There is a trade-off as learning requires time and a memetic algorithm with a single setting could perform better
- If there is limited number of operators and settings MMA can be used. If the number of operators and settings are large then additional analyses and methods could be needed to reduce the number of options leading to an MMA with improved performance
- There is no single recipe for even choosing the set of memes while designing a memetic algorithm for solving a given problem.
- Synergy between memes/meme components could be possible

Thank you.

Ender Özcan ender.ozcan@nottingham.ac.uk

University of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham
NG8 1BB, UK
http://www.nottingham.ac.uk/~pszeo/