Lipides et Lipoprotéines

- Généralités Classification
- Acides gras et eicosanoïdes
- Glycérides et lipases
- Lipides complexes et phospholipases
- Stérols et stéroïdes
- Lipoprotéines
- Principales voies du métabolisme des lipides

4. Glycérides

Esters de glycérol et d'acide(s) gras
 _{H-}

glycérol

- Mono, di ou tri-acylglycérol
 - nomenclature: sn
 - homogène ou hétérogène

1,2-Di(cis-9-octadécénoyl)-3-hexadécanoyl-sn-glycérol
NE PAS DIFFUSER SANS L'ACCORD DE L'ENSEIGNANT

4. Glycérides

Propriétés physiques

- dans l'eau: forment des microémulsions, stabilisées par agents tensio-actifs (sels biliaires)
 - solubles dans solvants organiques

Propriétés chimiques

hydrolyse alcaline: saponification

hydrolyse acide

- oxydation: rancissement

4. Glycérides

Distribution - Localisation

- extracellulaire: transport (lipoprotéines)
- intracellulaire: cytosol, lysosomes

Hydrolyse par lipases:

- lipases digestives (gastrique + pancréatique)
- lipases circulantes (lipoprotéine lipase)
- lipases intracellulaires
 - lipase hormono-sensible
 - lipase acide NE PAS DIFFUSER SANS L'ACCORD DE L'ENSEIGNANT

Esters de l'acide L-α-glycérophosphorique

sn-glycérol 3-phosphate

- Diacyl-glycérophospholipides
- Monoacyl-glycérophospholipides
- Ether-glycérophospholipides

= lipides (essentiellement) membranaires

5.1. Diacyl-glycérophospholipides

- Structure générale

nature du substituant X:

acide phosphatidique (PA)
phosphatidylcholine (PC)
phosphatidyléthanolamine (PE)
phosphatidylsérine (PS)
phosphatidylinositol (PI)
phosphatidylglycérol (PG)

5.1. Diacyl-glycérophospholipides

phosphatidylinositol (PI) et phosphoinositides

5.1. Diacyl-glycérophospholipides

- Propriétés

extraits par solvants
 (type CHCl₃: CH₃OH)
 séparables par CCM (TLC)

. lipides amphiphiles (certains zwitterioniques)

. forment bicouches, liposomes et membranes

5.1. Diacyl-glycérophospholipides

- Propriétés
- . hydrolysables par méthanolyse alcaline douce
- . hydrolysables par des phospholipases

5.2. Monoacyl-glycérophospholipides

ou Lysophospholipides

1-palmitoyl-2-hydroxy-sn-glycéro-3-phosphocholine

- . forment des micelles
- . hydrolysables par des lysophospholipases

5.3. Ether-phospholipides

- alkylphospholipides

Ex: PAF-acéther
(Platelet-Activating Factor)
(1-hexadécyl-2-acétyl-sn-glycéro-3-phosphocholine

alkénylphospholipides (plasmalogènes)

Ex: 1-hexadécényl-2-acyl-sn-glycéro-3-phosphoéthanolamine

- résistants à la méthanolyse alcaline douce

Cours de L1 - T. Levade NE PAS DIFFUSER SANS L'ACCORD DE L'ENSEIGNANT

6. Sphingolipides

6.1. Structure générale

- Base sphingoïde

$$H_2N$$
 H

Sphingénine ou D-érythro-sphingosine (2S, 3R, 4E) 2-amino-octadéc-4-ène-1,3-diol

- N-acylée → céramide

Cours de L1 - T. Levade Liaison amide¹³
NE PAS DIFFUSER SANS L'ACCORD DE L'ENSEIGNANT

6. Sphingolipides

6.1. Structure générale

- Sphingophospholipides

Sphingomyéline

(ex: N-stéaroyl-sphingosyl-phosphocholine)

- Glycosphingolipides

6. Sphingolipides

6.2. Propriétés

- lipides amphiphiles
 céramide + hydrophobe
 glycolipides acides (sulfatides, gangliosides)
 très polaires
- constituants membranaires
- résistants à la méthanolyse alcaline douce
- hydrolysés par des enzymes spécifiques

Lipides et membranes biologiques

Membrane: association lipides + protéines

- Organisation des lipides en bicouche
- Fluidité membranaire
- Mobilité des lipides

 NE PAS DIFFUSER SANS L'ACCORD DE L'ENSEIGNANT

Lipides et membranes biologiques

Certains lipides sont distribués de façon

asymétrique:

- asymétrie transverse

- microdomaines (enrichis en sphingolipides et cholestérol)
- Certains lipides ancrent des protéines
- Certains lipides sont des seconds messagers