LinkedIn

Dataset

Paper/GitHub

Can Al Be Trusted? Evaluating Reliability in Retrieval-Augmented Generation Responses

Zheng Gu, Hejia Li, Mulei Ni | Supervised by Prof Yvonne Coady | Guided by Derek Jacoby

1. Background & Motivation

Royal British Columbia Museum (RBCM) Al Avatar Project

- The RBCM is using AI avatars powered by Retrieval-Augmented Generation (RAG) to enhance visitor interactions
- The challenge of evaluating the quality and accuracy of AI responses

Importance

- Enhance visitor experience
- Share cultural heritage
- Provide personalized tours
- Advance educational goals ...

2. Research Gaps & Objectives

RAG Evaluation Gaps

- Limited research
- Lack of standardized benchmark
- Insufficient data for evaluation
- Expensive human evaluation

How to evaluate RAG?

Human Evaluation vs. LLM as a Judge[16]

Objectives

- Introduce RAG evaluation pipeline
- Evaluate RAG responses
- Demonstrate "LLM-as-a-judge" as an effective methodology

3. Naive RAG Model & Dataset

Baseline Model & Factors: OpenAl models on LlamIndex framework [10]

Dataset/Knowledge Base:

HotpotQA with 113k Wikipedia-based question-answer (QA) pairs [21] **Evaluation Framework: RAGAS**

4. Methodology

Greenness Evaluation:

Method	Estimate carbon emission using tokens
	"People are currently paying per token, so less tokens, less cost,
Literature Evidence	less energy"[18] "This gives the gCO2e for the operations of GPT-4 to be 0.3 gCo2e for
Lvidelice	1k tokens"[18]

5. Experimental Results

Qualitative evidence analysis of pipeline feasibility:

Quantitative results of evaluation scores in naive models:

Mean Results	GPT-40	GPT-3.5-Turbo
Faithfulness	0.789	0.7875
Answer Relevancy	0.826	0.9185
Context Precision	0.9	0.9
Context Recall	0.9	0.96

Greenness:

Carbon Emission Estimation					
Model	Tokens	Carbon Emission			
GPT-40	231778	69.5334 grams			
GPT-3.5	234780	70.4340 grams			

Analysis

- ✓ LLM-as-a-judge aligns well with human evaluation for 3 out of the 4 metrics, demonstrating its feasibility.
- ✓ Naïve model selection affects RAG evaluation results.

6. Future Work

- ✓ Facilitate RBCM in selecting RAG evaluation methodology
- ⇒ Optimize RAG model based on RBCM Dataset
- Incorporate greenness considerations in model training