日期 科目 班级 姓名 学号

2022 年 10 月 9 日 泛函分析 强基数学 002 吴天阳 2204210460

第四次作业

题目 1. 在度量空间 l^2 中,证明: $A = \{\xi = \{x_n\} \in l^2 : n|x_n| \le 1\}$ 是 l^2 中的紧集.

证明. 只需证明 A 是自列紧集,设 $\{\xi_n\} \subset A$ 是 Cauchy 列,则 $\rho(\xi_n, \xi_m) \to 0$, $(n, m \to \infty)$,于是 $\sum_{i=1}^{\infty} |x_i^{(n)} - x_i^{(m)}|^2 \to 0$,所以 $\forall i \geqslant 1$, $\{x_i^{(n)}\}$ 为 $\mathbb R$ 中的 Cauchy 列,于是 $\exists x_i$ 使得 $\lim_{n \to \infty} x_i^{(n)} = x_i$.

令
$$\xi = \{x_1, x_2, \cdots\}$$
,则 $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$,有 $\sum_{i=1}^{\infty} |x_i^{(n_0)} - x_i|^2 < \varepsilon^2$,则 $|x_i^{(n_0)} - x_i| < \varepsilon$. 又由于 $\xi_{n_0} \in A$,则 $\exists N \geqslant [\frac{1}{\varepsilon}] + 1$ 使得 $\forall k \geqslant N$ 有 $|x_k^{(n_0)}| \leqslant \frac{1}{N} < \varepsilon$,于是

$$|x_i| \le |x_i - x_i^{(n_0)}| + |x_i^{(n_0)}| < 2\varepsilon$$

则 $\lim_{n\to\infty} \xi_n = \xi \in A$, 所以 A 是自列紧集, 故 A 是紧集.

题目 2. 用闭区间套定理证明压缩映射原理.

证明. 设度量空间为 (X, ρ) , T 为 X 上的压缩映射. 下面证明集列 $A_n = \{x \in X : \rho(x, Tx) < \frac{1}{n}\}$ 是单调递减直径趋于 0 的非空闭集列.

单调递减:
$$\forall x \in A_{n+1}$$
,则 $\rho(x, Tx) < \frac{1}{n+1} < \frac{1}{n}$,故 $x \in A_n$.
非空: 设 $x_0 \in A_n$ 且 $\rho(x_0, Tx_0) = C$,记 $x_1 = Tx_0, \dots, x_{n+1} = Tx_n$,则

$$\rho(x_n, Tx_n) \leqslant \alpha \rho(Tx_{n-1}, T^2x_{n-1}) \leqslant \dots \leqslant \alpha^n \rho(x_0, Tx_0) = \alpha^n C \to 0, \ (n \to \infty)$$

则 $A_n \neq \emptyset$.

闭集: $\forall m \in \mathbb{N}$,只需证 A_m 的对极限封闭,设 $\{x_n\} \subset A_m$ 收敛于 $x \in X$, $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n \geqslant N$ 有

$$\rho(x, Tx) \leqslant \rho(x, x_n) + \rho(x_n, Tx_n) + \rho(Tx_n, Tx) \leqslant (\alpha + 1)\varepsilon + \frac{1}{m}$$

由 ε 的任意性可知 $x \in A_m$,所以 A_m 是闭集.

直径趋于 0: $\forall x, y \in A_n$, 则

$$\rho(x,y) \leqslant \rho(x,Tx) + \rho(Tx,Ty) + \rho(Ty,y) \leqslant \frac{2}{(1-\alpha)n} \to 0, \quad (n \to \infty)$$

所以 $\lim_{n\to\infty} \dim A_n = 0$.

综上, $\{A_n\}$ 是直径趋于零的非空闭子集套,所以存在唯一的 $x_0\in\bigcap_{i=1}^\infty A_i$,则 $\rho(x_0,Tx_0)=0$,压缩映射原理得证.

题目 3. 设 $K(\cdot;\cdot) \in L^2([a,b] \times [a,b])$, 对于 $f \in L^2[a,b]$, 证明当 λ 充分小时, $x(t) = f(t) + \lambda \int_a^b k(t,s) x(s) \, \mathrm{d} s \, \mathrm{d} t \, L^2[a,b] \, \mathrm{中存在唯一解}.$

证明. 令 $Tx(t) = f(t) + \lambda \int_a^b k(t,s)x(s) \, ds$,则 $T: L^2([a,b]) \to L^2([a,b])$,于是

$$\rho(Tx_1, Tx_2) = \left(\int_a^b \left(\lambda \int_a^b k(t, s)(x_1(s) - x_2(s)) \, \mathrm{d}s \right)^2 \, \mathrm{d}t \right)^{\frac{1}{2}}$$

$$\leq |\lambda| \left(\int_a^b \, \mathrm{d}t \int_a^b k^2(t, s) \, \mathrm{d}s \right)^{\frac{1}{2}} \left(\int_a^b (x_1(s) - x_2(s))^2 \, \mathrm{d}s \right)^{\frac{1}{2}}$$

由于 $k(t,s) \in L^2([a,b]^2)$,则 $\exists M>0$ 使得 $\left(\int_a^b \mathrm{d}t \int_a^b k^2(t,s) \, \mathrm{d}s\right)^{\frac{1}{2}} \leqslant M < \infty$,取 $\lambda=\frac{1}{2M}$,所以

$$\rho(Tx_1, Tx_2) \leqslant |\lambda| M \rho(x_1, x_2) \leqslant \frac{1}{2} \rho(x_1, x_2)$$

故 T 为 $L^2([a,b])$ 中的压缩映射,则原方程在 $L^2([a,b])$ 中存在唯一解.

题目 4. 设 $K(\cdot\,;\cdot)\in C([a,b]\times[a,b])$, 对于 $f\in C([a,b])$, 证明 $\forall\lambda\in\mathbb{R}$,

$$x(t) = f(t) + \lambda \int_a^t k(t,s)x(s) ds$$
 在 $C([a,b])$ 中存在唯一解.

证明. 做变量代换 t'=t+a, 令 c=b-a, 只需证明原方程在 C([0,c]) 上存在唯一解. 设 $Tx(t)=f(t)+\lambda\int_0^t k(t,x)x(s)\,\mathrm{d} s$, 则 $T:C([0,c])\to C([0,c])$, 于是

$$\rho(T^nx_1,T^nx_2) = \max_{t \in [a,b]} \lambda^n \int_0^t k(t,t_1) \int_0^{t_1} k(t_1,t_2) \cdots \int_0^{t_{n-1}} k(t_{n-1},t_n) (x_1(t_n)-x_2(t_n)) \,\mathrm{d}t_n \mathrm{d}t_{n-1} \cdots \mathrm{d}t_1 \mathrm{d}t$$

由于 $f \in C[0,c]$,于是存在上界 $M \geqslant 0$ 使得 $\sup_{t \in [0,c]} |f(t)| \leqslant M$,于是

$$\rho(T^n x_1, T^n x_2) \leqslant \frac{(|\lambda| M t)^n}{n!} \max_{t \in [0, c]} \{x_1(t) - x_2(t)\}$$

由 Stirling 公式可知 $n! \sim \sqrt{2\pi n} \left(\frac{n}{\mathrm{e}}\right)^n, \ (n \to \infty)$,于是

$$\rho(T^n x_1, T^n x_2) \leqslant \frac{1}{\sqrt{2\pi n}} \left(\frac{e\lambda Mt}{n}\right)^n \to 0^+, (n \to \infty)$$

所以 T^n 是 C([0,c]) 上的压缩映射,故原问题存在唯一解.

题目 5. 设 $(X, ||\cdot||)$ 为赋范线性空间,且 $\dim X < \infty$,则 X 是 Banach 空间.

证明. 设 dim X=N,其中的一组基为 $\{l_1,l_2,\cdots,l_N\}$, $\forall \{x_n\}\subset X$ 为 Cauchy 列,令 $x_n=\sum_{i=1}^N x_i^{(n)}l_i$,则 $\exists c_1>0$ 使得

$$c_1 \left(\sum_{i=1}^N (x_i^{(n)} - x_i^{(m)})^2 \right)^{\frac{1}{2}} \le ||x_n - x_m|| \to 0, \quad (n, m \to \infty)$$

则 $|x_i^{(n)} - x_i^{(m)}| \to 0$, $(n, m \to \infty, \forall 1 \le i \le N)$, 则 $\{x_i^{(n)}\}$ 为 \mathbb{R} 中的 Cauchy 列,由于 \mathbb{R} 是完备的,所以 $\{x_i^{(n)}\}$ 收敛, $\exists x_i \in \mathbb{R}$ 使得 $x_i^{(n)} \to x_i$, $(n \to \infty)$,令 $x = \sum_{i=1}^N x_i l_i$,又由于 $\exists c_2 > 0$ 使得

$$||x_n - x|| \le c_2 \left(\sum_{i=1}^N (x_i^{(n)} - x_i)^2 \right)^{\frac{1}{2}} \to 0, \quad (n \to \infty)$$

则 $\{x_n\}$ 收敛于 x,则 X 是完备的,故 X 是 Banach 空间.

题目 6. 设 $(X, ||\cdot||)$ 为赋范线性空间,X 中的任何有限维子空间都是闭集.

证明. 设 $A \subset X$ 是 N 维子空间 $(N < \infty)$,其中一组基为 $\{l_1, \cdots, l_N\}$, $\forall \{x_n\} \in A$ 为收敛列,令 $x_n = \sum_{i=1}^N x_i^{(n)} l_i$,则 $\exists x \in X$,使得 $||x_n - x|| \to 0$, $(n \to \infty)$.假设 $x \notin A$,则 $x = \{l_1, \cdots, l_N\}$ 线性无关,则 $\{l_1, \cdots, l_N, x\}$ 构成 N+1 维空间的一组基,由于 $||\cdot||$ 与 N+1 维空间坐标对应 2-范数等价,于是

$$\left(\sum_{i=1}^{N} (x_i^{(n)})^2 + 1\right)^{\frac{1}{2}} \to 0, \quad (n \to \infty)$$

矛盾,所以 $x \in A$.

题目 7. 设 $(X, ||\cdot||)$ 为赋范线性空间,且 $\dim X < \infty$,则 X 中的有界集都是列紧集.

证明. 设 dim X=N, 其中的一组基为 $\{l_1,\cdots,l_N\}$, $\forall A\subset X$ 为有界集,则 $\exists C>0$,使得 $\forall x\in A$, ||x||< C,令 $x=\sum_{i=1}^N x_i l_i$,则 $\sum_{i=1}^N |x_i|\,||l_i||< C$,记 $M_1=\sup_{1\leqslant i\leqslant N}||l_i||$,则 $\sum_{i=1}^N |x_i|\leqslant C/M_1$,于是 $\{x_1,\cdots,x_N\}\in\mathbb{R}^N$ 有界. 任取 A 中的数列 $\{x_n\}$,令 $x_n=\sum_{i=1}^N x_i^{(n)}$,记 $S=\{(x_1^{(k)},\cdots,x_N^{(k)}):x_k\in\{x_n\}\}$,则 S 必有收敛子列 $\{(x_1^{(n_1)},\cdots,x_N^{(n_1)}),\cdots,(x_1^{(n_k)},\cdots,x_N^{(n_k)}),\cdots\}$,由于 $||\cdot||$ 与 \mathbb{R}^N 中 2-范数等价,于是 $\{x_{n_k}\}$ 是 $\{x_n\}$ 的收敛子列,所以 A 是列紧集.

题目 8. $1. X = \{f \in C[0,1]: f(0) = 0\}, \ ||f|| = \max_{x \in [0,1]} |f(x)|, \ 则 X$ 是 Banach 空间. $2. \ X_0 = \{f \in X: \int_{\hat{\Gamma}}^1 f(t) \, \mathrm{d}t = 0\}, \ \text{则 dim} \ X_0 = \infty, \ \text{证明 Riesz 引理中} \ \varepsilon \neq 0.$ 证明. 1. $\forall \{\varphi_n\} \subset X$ 是 Cauchy 列,则 $||\varphi_n - \varphi_m|| = \max_{x \in [0,1]} |\varphi_n(x) - \varphi_m(x)| \to 0$, $(n, m \to \infty)$, $\forall x_0 \in [0,1]$, 有 $|\varphi_n(x_0) - \varphi_m(x_0)| \to 0$, $(n, m \to \infty)$. 令 $x_n = \varphi_n(x_0)$, 则 $\{x_n\}$ 是 \mathbb{R} 中的 Cauchy 列, $\exists x \in \mathbb{R}$ 使得 $x_n \to x$, $(n \to \infty)$, 令 $\varphi(x_0) = x$, 由于 x_0 的任意性,有 $\lim_{n \to \infty} \varphi_n(x) = \varphi(x)$, 下证 φ 的连续性.

 $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}$ 使得 $\forall x \in [0,1]$ 有 $|\varphi_n(x) - \varphi(x)| < \frac{\varepsilon}{3}$,由于 $\varphi_n \in C([0,1])$,则 $\exists \delta > 0$,使 得 $\forall |x_1 - x_2| < \delta$ 有 $|\varphi_n(x_1) - \varphi_n(x_2)| < \frac{\varepsilon}{3}$ 则

$$|\varphi(x_1) - \varphi(x_2)| \le |\varphi(x_1) - \varphi_n(x_1)| + |\varphi_n(x_1) - \varphi_n(x_2)| + |\varphi_n(x_2) - \varphi(x_2)| < \varepsilon$$

所以 $\varphi \in C([0,1])$,且 $\varphi(0) = \lim_{n \to \infty} \varphi_n(0) = 0$,故 $\varphi \in X$, X 是 Banach 空间.

2. 反设, $\exists x_0 \in X$, $||x_0|| = 1$ 使得 $\rho(x_0, X_0) \geqslant 1$,则 $\exists b = \frac{\int_0^1 x \, dt}{\int_0^1 y \, dt}$ 使得 $x_0 - by \in X_0$,故 $||by|| \geqslant 1 \Rightarrow \left| \int_0^1 y \, dt \right| \leqslant ||y|| \left| \int_0^1 x \, dt \right|$,取 $y = t^{\frac{1}{n}}$,则

$$\left| \int_0^1 y \, \mathrm{d}t \right| = \frac{n}{n+1} \leqslant \left| \int_0^1 x \, \mathrm{d}t \right| \Rightarrow \left| \int_0^1 x \, \mathrm{d}t \right| \geqslant 1, \quad (n \to \infty)$$

与
$$||x_0|| = 1$$
 且 $x_0(0) = 0$ 矛盾.