Lecture 2: Markov Decision Processes

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/AI3601/index.html

Non-Deterministic Search

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

随机过程

- □ 随机过程是一个或多个事件、随机系统或者随机现象随时间发生演变的过程 $\mathbb{P}[S_{t+1}|S_1,...,S_t]$
 - 概率论研究静态随机现象的统计规律
 - 随机过程研究动态随机现象的发展规律

布朗运动 天气变化

随机过程

足球比赛

生态系统

城市交通

星系

马尔可夫过程

□ 马尔可夫过程 (Markov Process) 是具有马尔可夫性质的随机过程 "The future is independent of the past given the present"

□ 定义:

• 状态S_t是马尔可夫的, 当且仅当

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, ..., S_t]$$

□ 性质:

- 状态从历史 (history) 中捕获了所有相关信息
- 当状态已知的时候,可以抛开历史不管
- 也就是说, 当前状态是未来的充分统计量

马尔可夫决策过程

- □ 马尔可夫决策过程(Markov Decision Process, MDP)
 - 提供了一套为在结果部分随机、部分在决策者的控制下的决策过程建模的数学框架

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, \dots, S_t]$$

$$\mathbb{P}[S_{t+1}|S_t, A_t]$$

- □ MDP形式化地描述了一种强化学习的环境
 - 环境完全可观测
 - 即, 当前状态可以完全表征过程(马尔可夫性质)

Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions a ∈ A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon

Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Andrey Markov (1856-1922)

 This is just like search, where the successor function could only depend on the current state (not the history)

Policies

• In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

For MDPs, we want an optimal

policy
$$\pi^*: S \to A$$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Optimal Policies

R(s) = -0.01

$$R(s) = -0.4$$

$$R(s) = -0.03$$

$$R(s) = -2.0$$

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated

Example: Racing - Search Tree

MDP Search Trees

• Each MDP state projects an expectimax-like search tree

Utilities of Sequences: Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Reward now is better than later
 - Can also think of it as a 1-gamma chance of ending the process at every step
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

Utilities of Sequences: Stationary Preferences

• Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Counterexample

• Can $U_{\nu} + U_{\nu}$, define a stationary preference?

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots \qquad [a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

No!

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Example:
 - $(U_{0.9} + U_{0.5}) \left(\frac{3}{4}, 0, 0, \dots\right) > (U_{0.9} + U_{0.5})(0, 1, 0, \dots)$
 - $(U_{0.9} + U_{0.5}) \left(r, \frac{3}{4}, 0, \dots\right) < (U_{0.9} + U_{0.5})(r, 0, 1, 0, 0, \dots)$

Proof Sketch

• Theorem (F. Riesz) For any inner product space H, let f be a continuous linear functional, that is $f: H \to \mathbb{R}$ is continuous and satisfies $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$. Then f can be written as $f(x) = \langle z, x \rangle$

for some $z \in H$

- Then by $a_0+\gamma_1a_1>b_0+\gamma_1b_1\Leftrightarrow \gamma_1a_0+\gamma_2a_1>\gamma_1b_0+\gamma_2b_1$ which says $(a_0-b_0)+\gamma_1(a_1-b_1)>0\Leftrightarrow \gamma_1(a_0-b_0)+\gamma_2(a_1-b_1)>0$ Then there must have $\gamma_2=\gamma_1^2$
- Similarly for the rest

Quiz: Discounting

• Given: 10 1 1

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?

10 1

• Quiz 2: For γ = 0.1, what is the optimal policy?

10 1

• Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)

- Discounting: use $0 < \gamma < 1$ $U([r_0, \dots r_\infty]) = \sum_{t=0}^\infty \gamma^t r_t \le R_{\max}/(1-\gamma)$
 - Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

MDP的动态

□ MDP的动态如下所示:

- 从状态s₀开始
- 智能体选择某个动作 $a_0 \in A$
- ・智能体得到奖励 $R(s_0, a_0)$
- MDP随机转移到下一个状态 $s_1 \sim P_{s_0,a_0}$
 - 这个过程不断进行

$$S_0 \xrightarrow{a_0, R(s_0, a_0)} S_1 \xrightarrow{a_1, R(s_1, a_1)} S_2 \xrightarrow{a_2, R(s_2, a_2)} S_3 \cdots$$

- 直到终止状态s_T出现为止,或者无止尽地进行下去
- 智能体的总回报为

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots$$

MDP的动态性

- □ 在许多情况下, 奖励只和状态相关
 - 比如,在迷宫游戏中,奖励只和位置相关
 - 在围棋中, 奖励只基于最终所围地盘的大小有关
- □ 这时, 奖励函数为 $R(s): S \mapsto \mathbb{R}$
- □ MDP的过程为

$$S_0 \xrightarrow{a_0, R(s_0)} S_1 \xrightarrow{a_1, R(s_1)} S_2 \xrightarrow{a_2, R(s_2)} S_3 \cdots$$

□累积奖励为

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$

REVIEW: 在与动态环境的交互中学习

有监督、无监督学习

Model **←**

Fixed Data

强化学习

Agent +

Dynamic Environment

和动态环境交互产生的数据分布

- 给定同一个动态环境(即MDP),不同的策略采样出来的(状态-行动) 对的分布是不同的
- 占用度量 (Occupancy Measure)

$$\rho^{\pi}(s, a) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

占用度量和策略

• 占用度量 (Occupancy Measure)

$$\rho^{\pi}(s, a) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

• 定理1:和同一个动态环境交互的两个策略 π_1 和 π_2 得到的占用度量 ρ^{π_1} 和 ρ^{π_2} 满足

$$\rho^{\pi_1} = \rho^{\pi_2}$$
 iff $\pi_1 = \pi_2$

• 定理2:给定一占用度量 ρ ,可生成该占用度量的唯一策略是

$$\pi_{\rho}(a|s) = \frac{\rho(s,a)}{\sum_{a'} \rho(s,a')}$$

占用度量和策略

• 占用度量 (Occupancy Measure)

$$\rho^{\pi}(s, a) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

• 状态占用度量

$$\rho^{\pi}(s) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s | s_{0}, \pi)$$

$$= \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s | s_{0}, \pi) \sum_{a'} \pi(a_{t} = a | s_{t} = s)$$

$$= \sum_{a} \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

$$= \sum_{a} \rho^{\pi}(s, a)$$

U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship learning using linear programming. ICML 2008.

占用度量和累计奖励

• 占用度量 (Occupancy Measure)

$$\rho^{\pi}(s, a) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

□ 策略的累积奖励为

$$V(\pi) = \mathbb{E}_{(s_0,a_0,s_1,a_1,\dots)\text{is a trajactory}}[R(s_0,a_0) + \gamma R(s_1,a_1) + \gamma^2 R(s_2,a_2) + \dots]$$

$$= \sum_{s,a} \left[\sum_{t=0}^T \gamma^t \mathbb{P}(s_t = s, a_t = a | s_0, \pi) \right] R(s,a)$$

$$= \sum_{s,a} \rho^{\pi}(s,a) R(s,a) = \mathbb{E}_{\pi}[R(s,a)]$$
强化学习中的简写

Racing MDP

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated

Racing Search Tree

Racing Search Tree 2

Racing Search Tree 3

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$

Optimal Quantities

- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally

- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

- The optimal policy:
 - $\pi^*(s)$ = optimal action from state s

Gridworld V* Values

Gridworld Q* Values

Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

s, a

Time-Limited Values

• Key idea: time-limited values

• Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps

• Equivalently, it's what a depth-k expectimax would give from s

Time-Limited Values: Computing

Value Iteration

Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence, which yields V*
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Convergence

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
- Proof Sketch:
 - For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by y^k that far out
 - So V_k and V_{k+1} are at most γ^k max |R| different
 - So as k increases, the values converge

Convergence 2

- $V_1(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_0(s')]$ • $V_1'(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_0'(s')]$
- If $|V_0(s) V_0'(s)| \le \epsilon$, then $|V_1(s) V_1'(s)| \le \gamma \epsilon$
- Note $\left|V_1(s) = \max_{a} \sum_{s'} T(s, a, s') R(s, a, s')\right| \le R_{\max}$

that is
$$|V_1(s) - V_0(s)| \le R_{\max}$$
, then $|V_2(s) - V_1(s)| \le \gamma R_{\max}$ and

$$|V_{k+1}(s) - V_k(s)| \le \gamma^k R_{\text{max}}$$

Value Iteration (Revisited)

• Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values

Value Iteration - Implementation

s, a

- Init:
 - $\forall s$: V(s) = 0
- Iterate:
 - $\forall s$: $V_{new}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')]$
 - $V = V_{new}$

Note: can even directly assign to V(s), which will not compute the sequence of V_k but will still converge to V^*

同步 vs. 异步价值迭代

- □ 同步的价值迭代会储存两份价值函数的拷贝
 - 1. 对S中的所有状态s

$$V_{new}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P_{s,a}(s') [R(s,a,s') + \gamma V_{old}(s')]$$

- 2. 更新 $V_{old}(s) \leftarrow V_{new}(s)$
- □ 异步价值迭代只储存一份价值函数
 - 1. 对S中的所有状态s

$$V(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P_{s,a}(s') [R(s,a,s') + \gamma V(s')]$$

价值迭代例子: 最短路径

The Bellman Equations

$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$
₆₅

Policy Extraction: Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

 This is called policy extraction, since it gets the policy implied by the values

Policy Extraction: Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

 Important lesson: actions are easier to select from q-values than values!

Policy Methods

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy Improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is Policy Iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Evaluation: Fixed Policies

Do the optimal action

Do what π says to do

- Expectimax trees max over all actions to compute the optimal values
- If we fix some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Policy Evaluation: Utilities for a Fixed Policy

 Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

• Define the utility of a state s, under a fixed policy π : $V^{\pi}(s) = \text{expected total discounted rewards starting in s and following } \pi$

Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Evaluation: Implementation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

• Solve with MATLAB (or your favorite linear system solver)

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation 2

Always Go Right

Always Go Forward

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better (why? exercise) policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

策略迭代

- □ 策略评估
 - 估计V^π
 - 迭代的评估策略
- □ 策略改进
 - 生成 π' ≥ π
 - 贪心策略改进

举例:策略评估

- □ 非折扣MDP (*γ* = 1)
- □ 非终止状态: 1, 2, ...,14
- □ 两个终止状态 (灰色方格)
- □ 如果动作指向所有方格以外,则这一步不动
- □ 奖励均为-1, 直到到达终止状态
- □ 智能体的初始策略为均匀随机策略

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 1/4$$

举例:策略评估

举例:策略评估

Summary of Two Methods for Solving MDPs

Value iteration + policy extraction

- Step 1: Value iteration: calculate values for all states by running one ply of the Bellman equations using values from previous iteration until convergence
- Step 2: Policy extraction: compute policy by running one ply of the Bellman equations using values from value iteration

Policy iteration

- Step 1: Policy evaluation: calculate values for some fixed policy (not optimal values!) until convergence
- Step 2: Policy improvement: update policy by running one ply of the Bellman equations using values from policy evaluation
- Repeat steps until policy converges

Value Iteration vs. Policy Iteration

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

价值迭代 vs. 策略迭代

价值迭代

- 1. 对每个状态s, 初始化 V(s) = 0
- 2. 重复以下过程直到收敛 { 对每个状态,更新

$$V_{k+1}(s) = \max_{a} \sum_{s'} P_{s,a}(s') [R(s, a, s') + \gamma V_k(s')]$$

策略迭代

- 1. 随机初始化策略 π
- 2. 重复以下过程直到收敛 {
 - a) 让 $V \coloneqq V^{\pi}$
 - b) 对每个状态,更新

$$\pi(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{s,a}(s') [R(s, a, s') + \gamma V(s')]$$

备注:

- 1. 价值迭代是贪心更新法
- 2. 策略迭代中,用Bellman等式更新价值函数代价很大
- 3. 对于空间较小的MDP, 策略迭代通常很快收敛
- 4. 对于空间较大的MDP,价值迭代更实用(效率更高)
- 5. 如果没有状态转移循环,最好使用价值迭代

基于模型的强化学习

学习一个MDP模型

- 目前我们关注在给出一个已知MDP模型后: (也就是说, 状态转移 $P_{sa}(s')$ 和奖励函数R(s)明确给定后)
 - 计算最优价值函数
 - 学习最优策略
- □ 在实际问题中, 状态转移和奖励函数一般不是明确给出的
 - 比如,我们只看到了一些episodes

Episode1:
$$s_0^{(1)} \xrightarrow{a_0^{(1)}, R(s_0)^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}, R(s_1)^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}, R(s_2)^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode2:
$$S_0^{(2)} \xrightarrow{a_0^{(2)}, R(s_0)^{(2)}} S_1^{(2)} \xrightarrow{a_1^{(2)}, R(s_1)^{(2)}} S_2^{(2)} \xrightarrow{a_2^{(2)}, R(s_2)^{(2)}} S_3^{(2)} \cdots S_T^{(2)}$$

Recall: 强化学习系统要素

- □ 环境的模型 (Model) 用于模 拟环境的行为
 - 预测下一个状态

$$\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

预测下一个 (immediate 立即)
 奖励

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

学习一个MDP模型

Episode1:
$$s_0^{(1)} \xrightarrow{a_0^{(1)}, R(s_0)^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}, R(s_1)^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}, R(s_2)^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode2: $s_0^{(2)} \xrightarrow{a_0^{(2)}, R(s_0)^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}, R(s_1)^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}, R(s_2)^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$
 \vdots

- □ 从 "经验" 中学习一个MDP模型
 - 学习状态转移概率 $P_{sa}(s')$

$$P_{sa}(s') = \frac{Es 下采取动作a并转移到s'的次数}{Es 下采取动作a的次数}$$

• 学习奖励函数R(s), 也就是立即奖赏期望

$$R(s) = average\{R(s)^{(i)}\}$$

学习模型&优化策略

□算法

- 1. 随机初始化策略π
- 2. 重复以下过程直到收敛 {
 - a) 在MDP中执行π, 收集经验数据
 - b) 使用MDP中的累积经验更新对 P_{sa} 和 R的估计
 - c) 利用对 P_{sa} 和R的估计执行价值迭代,得到新的估计价值函数V
 - d) 根据V更新策略π为贪心策略

学习一个MDP模型

- □ 在实际问题中, 状态转移和奖励函数一般不是明确给出的
 - 比如,我们只看到了一些episodes

Episode1:
$$s_0^{(1)} \xrightarrow{a_0^{(1)}, R(s_0)^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}, R(s_1)^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}, R(s_2)^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode2:
$$s_0^{(2)} \xrightarrow{a_0^{(2)}, R(s_0)^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}, R(s_1)^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}, R(s_2)^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$$

- □ 另一种解决方式是不学习MDP, 从经验中直接学习价值函数和策略
 - 也就是模型无关的强化学习 (Model-free Reinforcement Learning)

马尔可夫决策过程总结

- MDP由一个五元组构成 $(S, A, \{P_{sa}\}, \gamma, R)$,其中状态转移P和奖励函数 R构成了动态系统
- 动态系统和策略交互的占用度量

$$\rho^{\pi}(s, a) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

- 一个白盒环境给定的情况下,可用动态规划的方法求解最优策略
 - 价值迭代和策略迭代
- 如果环境是黑盒的,可以根据统计信息来拟合出动态环境*P*和*R*,然后做动态规划求解最优策略

THANK YOU