FORSIDE MAT121

For obligatorisk inlevering i matematikkurset MAT121, våren 2013

KAND. NR:

(kandidatnummeret ditt finner du på semesterkortet. Det er **ikke** nummeret på studentkortet!)

Oppgaven:

- Kandidatnummeret ditt skal stå øverst i hjørne på alle sidene du leverer.
- Navnet ditt skal ikke stå på oppgaven.
- Oppgavearkene skal stiftes sammen (ikke bruk binders).
- Oppgaver uten denne forsiden blir ikke evaluert!
- Skriv stort og tydelig.
- Besvarelsen blir returnert.

Frist for innlevering:

- Torsdag 11. april før kl. 14.00.
- Lever gjerne oppgaven før innleveringsfristen.

Sted for innlevering:

• Skranken i Inforsenteret for realfagstudenter, Realfagbygget.

Veiledning til den obligatoriske oppgaven

- Settet består av 6 oppgaver. Alle skal besvares.
- Besvarelsen må være så detaljert at det er klart hvordan beregningene er utført. Eventuelle spørsmål om oppgavene kan stilles til gruppelederne under regneøvelsene.
- Der er tillatt å diskutere oppgavene i grupper, men hver student må formulere sin egen skriftlige besvarelse. Om to besvarelser er mistenkelig like, kan det betraktes som fusk.
- For å gjøre det litt enklere for alle er oppgavene gitt både på norsk og engelsk. Besvarelsen kan likedan leveres både på norsk og engelsk.
- Lykke til!

Oppgave 1.

a. La $A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \\ 1 & 2 & 1 & 3 \end{pmatrix}$ og $\overrightarrow{b} = \begin{pmatrix} 5 \\ 3 \\ 0 \\ 7 \end{pmatrix}$. Skriv redusert trappeform for den

utvidete matrisen $B=[A, \overrightarrow{b}]$ og vis pivotsøylene og pivotposisjonene. Løs ligningen $A\overrightarrow{x}=\overrightarrow{b}$.

- b. Finn basisene og dimensjone av Col(B), Row(B) and Null(B). Regn ut rangen av matrisen B.
- c. Er matrisen A inverterbar? Hvis ja, finn A^{-1} ved Gauss eliminasjon.

Oppgave 2.

a. La
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & -1 \\ -1 & 0 \\ 3 & -1 \end{pmatrix}$, $\overrightarrow{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Finn $\overrightarrow{y} = B\overrightarrow{x}$, $C = AB$, $A\overrightarrow{y}$, $C\overrightarrow{x}$, C^TB^T , $(A^T + B)C$.

b. Kan vi reine ut A^2 , A^{-1} ? Grunngi svaret ditt.

c. Finn den inverse matrisen til $\begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 1 \\ 2 & 3 & 3 \end{pmatrix}$. Bruk formelen for A^{-1} .

Oppgave 3.

- a. Finn volumet til parallelepiped utspent av (-1,0,2), (3,-1,3), (4,0,-1).
- b. Finn løsningen til systemet

$$\begin{cases} 2x_1 + x_2 + x_3 = 4 \\ -x_1 + 2x_3 = 2 \\ 3x_1 + x_2 + 3x_3 = -2 \end{cases}$$

ved bruk av Cramer regelen.

c. La S være en parallellogram utspent av vektorer

$$\overrightarrow{a} = (-3, 4), \quad \overrightarrow{b} = (2, 5),$$

og

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 6 \end{pmatrix}.$$

Finn arealet av bildet til S under den lineære avbildningen $\overrightarrow{x} \mapsto A \overrightarrow{x}$.

Oppgave 4.

a. Finn en lineært uavhengig delmengde

$$\begin{pmatrix} 4 \\ 1 \\ -3 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} -2 \\ 3 \\ 4 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ -1 \\ 2 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 2 \\ -5 \\ 2 \end{pmatrix}.$$

Grunngi svaret ditt.

- b. Anta at H_1 og H_2 er underrom av vektorrommet \mathbb{R}^n .
 - 1. Vis at $H = H_1 \cap H_2$ også er underrom av vektorrommet \mathbb{R}^n . Husk at snittet $H_1 \cap H_2$ består av de vektorene som er med i både H_1 og H_2 .
 - 2. Vis ved et eksempel at $R = H_1 \cup H_2$ ikke alltid er underrom av \mathbb{R}^n . Husk at unionen $H_1 \cup H_2$ består av de vektorene som er med i minst én av mengdene H_1 og H_2 .
- c. La $\alpha=\{\alpha_1,\alpha_2,\alpha_3\}$ og $\beta=\{\beta_1,\beta_2,\beta_3\}$ være baser for et vektorrom V og anta at

$$\beta_1 = 2\alpha_1 - \alpha_2 + \alpha_3$$
, $\beta_2 = 3\alpha_2 + \alpha_3$, $\beta_3 = -3\alpha_1 + 2\alpha_3$.

1. Finn koordinatskiftematrisen fra basis β til basis α .

- 2. Skriv vektoren $x = \beta_1 2\beta_2 + 2\beta_3$ i basis α .
- 3. Skriv vektoren $y = \alpha_2 3\alpha_3$ i basis β .

Oppgave 5.

a. Finn egenverdiene og egenvektorene til matrisen

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 0 & 1 & 1 \end{pmatrix}.$$

b. Finn diagonalmatrisen som er formlik (similar)

$$B = \begin{pmatrix} 0 & -4 & -6 \\ -1 & 0 & -3 \\ 1 & 2 & 5 \end{pmatrix}.$$

c. La $T: \mathbb{P}_2 \to \mathbb{P}_3$ være avbildningen (som virker fra vektorromet av polynomer av grad høyst 2 mot vektorromet av polynomet av grad høyst 3) slik at

$$\mathbb{P}_2 \ni p(x) \mapsto (x+10)p(x) \in \mathbb{P}_3.$$

- 1. Finn bilde av $p(x) = 5 + x 3x^2$.
- 2. Vise at T er lineær avbildning.

Oppgave 6.

a. Vis at dersom A og B er inverterbare, så er den inverse til $(AB)^T$ lik

$$(A^{-1})^T(B^{-1})^T$$
.

b. La $\overrightarrow{e_1}, \dots, \overrightarrow{e_n}$ være standardbasisen for \mathbb{R}^n og $\overrightarrow{v_1}, \dots, \overrightarrow{v_n}$ er en basis for et n-dimensjonalt vektorrom V. Den lineære avbildningen $\phi \colon \mathbb{R}^n \to V$, slik at

$$\phi(\overrightarrow{e_1}) = \overrightarrow{v_1}, \ldots, \phi(\overrightarrow{e_n}) = \overrightarrow{v_n}$$

kalles koordinatisomorfien. Vis at koordinatisomorfi er bijektiv lineæravbildning fra \mathbb{R}^n mot V.

c. La ${\mathcal T}$ være en trekant med hjørner

$$P_1 = (x_1, y_1), \quad P_2 = (x_2, y_2), \quad P_3 = (x_3, y_3).$$

Vise at arealet av trekanter lik

$$\frac{1}{2} |\det M|, \quad \det M = \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix}.$$