Modeling of bending-torsion couplings in active-bending structures. Application to the design of elastic gridshell.

Thèse n. xxxxx présenté le 01 décembre 2017 à l'Ecole des Ponts ParisTech laboratoire Navier Université Paris-Est

pour l'obtention du grade de Docteur ès Sciences par

Lionel du Peloux

acceptée sur proposition du jury:

Prof Name Surname, président du jury Prof Name Surname, directeur de thèse

Prof Name Surname, rapporteur

Prof Name Surname, rapporteur

Prof Name Surname, rapporteur

Paris, Ecole des Ponts ParisTech, 2016

Contents

Co	onter	ets .	i
Li	st of	Figures	iii
Li	st of	Tables	v
В	Para	abolic interpolation	1
	B.1	Introduction	1
	B.2	Lagrange interpolating polynomial	1
	B.3	Reparametrization	2
	B.4	Characteristic values	2
	B 5	Extremum value	3

List of Figures

List of Tables

B Parabolic interpolation

B.1 Introduction

In this appendix, we give the required formulas to conduct a parabolic interpolation of a scalar or vector-valued function over an interval.

We look for a polynomial interpolation of order 2 of a continuous scalar or vector-valued function $\mathbf{V}: t \mapsto \mathbf{V}(t)$ over the interval $[t_0, t_2]$; supposing that the value of the function is known for three distinct parameters $t_0 < t_1 < t_2$:

$$V(t_0) = V_0 \tag{B.1a}$$

$$\boldsymbol{V}(t_1) = \boldsymbol{V}_1 \tag{B.1b}$$

$$\mathbf{V}(t_2) = \mathbf{V}_2 \tag{B.1c}$$

This interpolation method is employed several times in this thesis, for instance to evaluate the position of a kinetic energy peak during the dynamic relaxation process. It is also employed for evaluating the bending moment and the curvature of a discrete rod at mid-edge, knowing its values at vertices.

Note that this interpolation method is valid if the basis in which V is decomposed does not depend on the parameter t. Otherwise, the classical transportation term should be considered $(\omega \times V)$.

B.2 Lagrange interpolating polynomial

The Lagrange interpolation of order two is given by the following polynomial:

$$\mathbf{V}(t) = \mathbf{V}_0 \frac{(t-t_1)(t-t_2)}{(t_0-t_1)(t_0-t_2)} + \mathbf{V}_1 \frac{(t-t_0)(t-t_2)}{(t_1-t_0)(t_1-t_2)} + \mathbf{V}_2 \frac{(t-t_0)(t-t_1)}{(t_2-t_0)(t_2-t_1)}$$
(B.2)

B.3 Reparametrization

Lets introduce the distances l_0 and l_1 in the parametric space :

$$l_0 = t_1 - t_0$$
 (B.3a)

$$l_1 = t_2 - t_1$$
 (B.3b)

Lets introduce the change of variable $u = t - t_1$. The polynomial in eq. (B.2) can be rewritten in the form:

$$\mathbf{V}(u) = \mathbf{V}_0 \frac{u(u - l_1)}{l_0(l_0 + l_1)} - \mathbf{V}_1 \frac{(u + l_0)(u - l_1)}{l_0 l_1} + \mathbf{V}_2 \frac{u(u + l_0)}{l_1(l_0 + l_1)}$$
(B.4)

where:

$$u_0 = -l_0 \tag{B.5a}$$

$$u_1 = 0 ag{B.5b}$$

$$u_2 = l_1 \tag{B.5c}$$

The derivative of this polynomial is also required to determine the extremum value of V. Differentiating eq. (B.4) gives :

$$\mathbf{V}'(u) = \mathbf{V}_0 \frac{2u - l_1}{l_0(l_0 + l_1)} - \mathbf{V}_1 \frac{2u + (l_0 - l_1)}{l_0 l_1} + \mathbf{V}_2 \frac{2u + l_0}{l_1(l_0 + l_1)}$$
(B.6)

This expression can be factorized to give the more compact form:

$$\mathbf{V}'(u) = \left(\frac{\mathbf{V}_1 - \mathbf{V}_0}{l_0}\right) \frac{l_1 - 2u}{l_0 + l_1} + \left(\frac{\mathbf{V}_2 - \mathbf{V}_1}{l_1}\right) \frac{l_0 + 2u}{l_0 + l_1}$$
(B.7)

B.4 Characteristic values

Using eq. (B.4) the interpolated values of V at mid distance between t_0 and t_1 ($u = -l_0/2$), and at mid distance between t_1 and t_2 ($u = +l_1/2$) are given by :

$$\mathbf{V}_{01} = \mathbf{V}_0 \frac{l_0 + 2l_1}{4(l_0 + l_1)} + \mathbf{V}_1 \frac{l_0 + 2l_1}{4l_1} - \mathbf{V}_2 \frac{{l_0}^2}{4l_1(l_0 + l_1)}$$
(B.8a)

$$\mathbf{V}_{12} = -\mathbf{V}_0 \frac{{l_1}^2}{4l_0(l_0 + l_1)} + \mathbf{V}_1 \frac{2l_0 + l_1}{4l_0} + \mathbf{V}_2 \frac{2l_0 + l_1}{4(l_0 + l_1)}$$
(B.8b)

Using eq. (B.7) the interpolated values of V' at mid distance between t_0 and t_1 ($u = -l_0/2$), and at mid distance between t_1 and t_2 ($u = +l_1/2$) are given by:

$$V_{01}' = \frac{V_1 - V_0}{l_0} \tag{B.9a}$$

$$V_{12}' = \frac{V_2 - V_1}{l_1} \tag{B.9b}$$

Remark that this is an interesting result as at these parameters the evaluation of V' boils down to a finite difference scheme.

Using eq. (B.7) and introducing $\alpha = \frac{l_0}{l_0 + l_1}$ the interpolated values of V' at t_0 , t_1 and t_2 are given by:

$$V_0' = (1 + \alpha)V_{01}' - \alpha V_{12}'$$
(B.10a)

$$V_1' = (1 - \alpha)V_{01}' + \alpha V_{12}' \tag{B.10b}$$

$$\mathbf{V}_{2}' = (\alpha - 1)\mathbf{V}_{01}' + (2 - \alpha)\mathbf{V}_{12}'$$
(B.10c)

Lets rewrite eq. (B.8a) and (B.8b) with the help of α :

$$\mathbf{V}_{01} = \frac{1}{4} \left((2 - \alpha) \mathbf{V}_0 + \frac{2 - \alpha}{1 - \alpha} \mathbf{V}_1 - \frac{\alpha^2}{1 - \alpha} \mathbf{V}_2 \right)$$
(B.11a)

$$\mathbf{V}_{01} = \frac{1}{4} \left(-\frac{(1-\alpha)^2}{\alpha} \mathbf{V}_0 + \frac{1+\alpha}{\alpha} \mathbf{V}_1 + (1+\alpha) \mathbf{V}_2 \right)$$
(B.11b)

B.5 Extremum value

The extremum value of the parabola is obtained for $V'(u^*) = 0$. It's a minimum if $V'_{12} > V'_{01}$ and it's a maximum if $V'_{12} > V'_{01}$:

$$u^* = \frac{l_1 \mathbf{V}_{01}' + l_0 \mathbf{V}_{12}'}{2(\mathbf{V}_{01}' - \mathbf{V}_{12}')}$$
(B.12)

Remark that if $V'_{12} = V'_{01}$ it does not make sens to compute u^* as in this case the parabola degenerates into a line. The value of the function at this parameter is given by:

$$V(u^*) = V_1 + \frac{(l_1 V'_{01} + l_0 V'_{12})^2}{4(l_0 + l_1)(V'_{01} - V'_{12})}$$
(B.13)

The parabola in eq. (B.4) now writes:

$$\mathbf{V}(u) = -\frac{\mathbf{V}_{01}' - \mathbf{V}_{12}'}{l_0 + l_1} (u - u^*)^2 + \mathbf{V}(u^*)$$
(B.14)

The extremum is located in $[t_0, t_2]$ if the sign of V' changes on this interval. This condition is satisfied whenever $V'_{01} \cdot V'_{12} < 0$.

Finally, in the special case of a uniform discretization where $l_0 = l_1 = l$, eq. (B.12) and (B.13) become:

$$u^* = \frac{l}{2} \left(\frac{\mathbf{V}_0 - \mathbf{V}_2}{\mathbf{V}_0 - 2\mathbf{V}_1 + \mathbf{V}_2} \right) \tag{B.15a}$$

$$V(u^*) = V_1 - \frac{u^*}{4l}(V_2 - V_0)$$
 (B.15b)