10.4 Areas and lengths in polar coordinates

- 1. area 面積 $A = \int \frac{1}{2}r^2 d\theta$

0.1 Area

The area A of the region bounded by a polar curve $r = f(\theta)$ and two rays $\theta = a$ and $\theta = b$, where $f(\theta) \ge 0$ for $a \le \theta \le b$ and $0 < b - a \le 2\pi$, is

$$A = \int_a^b \frac{1}{2} r^2 \ d\theta$$

Proof. 分成 n 等角, 再用扇形面積去逼近:

 $\Delta \theta = \frac{b-a}{n}$ and $\theta_i = a + i\Delta \theta$, $\theta_i^* \in [\theta_{i-1}, \theta_i]$ (sample point).

$$A \approx \sum_{i=1}^{n} A_i = \sum_{i=1}^{n} \frac{1}{2} [f(\theta_i^*)]^2 \Delta \theta,$$

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2} [f(\theta_i^*)]^2 \Delta \theta$$

$$= \int_a^b \frac{1}{2} [f(\theta)]^2 d\theta$$

$$= \int_a^b \frac{1}{2} r^2 d\theta.$$

The area A of the region bounded by polar curves $r = f(\theta)$ and $r = g(\theta)$ and two rays $\theta = a$ and $\theta = b$, where $f(\theta) \ge g(\theta) \ge 0$ and $0 < b - a \le 2\pi$, is

$$A = \int_{a}^{b} \frac{1}{2} [f(\theta)]^{2} d\theta - \int_{a}^{b} \frac{1}{2} [g(\theta)]^{2} d\theta$$

$$r = f(\theta)$$

$$r = g(\theta)$$

$$0$$

$$x$$

Question: Why $0 < b - a \le 2\pi$? 超過一圈會重疊, 重疊部分會重複計算!

怎麼算? 減掉重複的部分: $\int_a^b \frac{1}{2} r^2 d\theta - \int_a^{b-2\pi} \frac{1}{2} r^2 d\theta = \int_{b-2\pi}^b \frac{1}{2} r^2 d\theta$.

Question: Why $f(\theta) \ge 0$? 想想看: $f(\theta) < 0$ 時的意義, 它的黎曼和是什麼, 要怎麼算。

Skill: 1. 常用到半角公式:

$$\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta), \quad \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta).$$

$$\int \sin^2 \theta \ d\theta = \frac{\theta}{2} - \frac{\sin 2\theta}{4} + C, \quad \int \cos^2 \theta \ d\theta = \frac{\theta}{2} + \frac{\sin 2\theta}{4} + C.$$

- 2. 書圖可以幫助認淸邊界。
- 3. 善用對稱性可以簡化計算。
- 4. 要注意誰大誰小。

Example 0.1 Find the area enclosed by one loop of the four-leaved rose $r = \cos 2\theta$.

(找出積分上下限) $r = \cos 2\theta = 0 \iff \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4} \text{ or } \frac{7\pi}{4} = -\frac{\pi}{4}.$

Choose $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$.

$$A = \int_{-\pi/4}^{\pi/4} \frac{1}{2} r^2 d\theta$$

$$= \int_{-\pi/4}^{\pi/4} \frac{1}{2} \cos^2 2\theta d\theta$$

$$= \int_{0}^{\pi/4} \cos^2 2\theta d\theta \qquad (對稱性)$$

$$= \int_{0}^{\pi/4} \frac{1}{2} (1 + \cos 4\theta) d\theta \qquad (半角)$$

$$= \left[\frac{\theta}{2} + \frac{\sin 4\theta}{8} \right]_{0}^{\pi/4} = \frac{\pi}{8}.$$

3

Example 0.2 Find the area of the region that lies inside the circle $r = 3 \sin \theta$ and outside the cardioid $r = 1 + \sin \theta$.

$$r = 3\sin\theta = 1 + \sin\theta \iff \theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}.$$

$$3\sin\theta \ge 1 + \sin\theta \ge 0 \text{ for } \frac{\pi}{6} \le \theta \le \frac{5\pi}{6}.$$

$$A = \int_{\pi/6}^{5\pi/6} \frac{1}{2} (3\sin\theta)^2 d\theta - \int_{\pi/6}^{5\pi/6} \frac{1}{2} (1+\sin\theta)^2 d\theta$$

$$= \frac{1}{2} \int_{\pi/6}^{5\pi/6} (9\sin^2\theta - 1 - 2\sin\theta - \sin^2\theta) d\theta \qquad (\text{mbg}-\text{k})$$

$$= \int_{\pi/6}^{\pi/2} (8\sin^2\theta - 1 - 2\sin\theta) d\theta \qquad (\text{mbg}+\text{k})$$

$$= \int_{\pi/6}^{\pi/2} (3 - 4\cos 2\theta - 2\sin\theta) d\theta \qquad (\text{mbg}+\text{k})$$

$$= \left[3\theta - 2\sin 2\theta + 2\cos\theta \right]_{\pi/6}^{\pi/2}$$

$$= \left[3(\frac{\pi}{2}) - 2\sin\pi\theta + 2\cos\frac{\pi}{2} \right]_{\pi/6}^{0} - \left[3(\frac{\pi}{6}) - 2\sin\frac{\pi}{3} + 2\cos\frac{\pi}{6} \right]$$

$$= \frac{3\pi}{2} - \frac{\pi}{2} + \sqrt{3} - \sqrt{3} = \pi.$$

Example 0.3 Find all points of intersection of the curves $r = \cos 2\theta$ and $r = \frac{1}{2}.$

 $r = \cos 2\theta = \frac{1}{2} \iff \theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}.$ Four points: $(\frac{1}{2}, \frac{\pi}{6}), (\frac{1}{2}, \frac{5\pi}{6}), (\frac{1}{2}, \frac{7\pi}{6}) \text{ and } (\frac{1}{2}, \frac{11\pi}{6}).$

:· 極座標表示法不唯一, $r=\frac{1}{2}$ 與 $r=-\frac{1}{2}$ 同一條, 要解 $r=\cos 2\theta=-\frac{1}{2}$.

Another four: $(\frac{1}{2}, \frac{\pi}{3})$, $(\frac{1}{2}, \frac{2\pi}{3})$, $(\frac{1}{2}, \frac{4\pi}{3})$ and $(\frac{1}{2}, \frac{5\pi}{3})$.

Skill: 只解 $r = f(\theta) = g(\theta)$ 是解出 (同時) *collision* 碰撞; 要一起解 $f(\theta) = -g(\theta)$ 才會解出所有 (可以不同時) *intersection* 交點。

0.2Arc length

The arc length of the curve of polar equation $r = f(\theta)$, $a \le \theta \le b$, where $f(\theta)$ is smooth $(f'(\theta))$ is continuous on [a,b], is

$$L = \int_{a}^{b} \sqrt{r^2 + \left(rac{dr}{d heta}
ight)^2} \; d heta$$

Proof. Parametric equations:

$$x = r \cos \theta = f(\theta) \cos \theta,$$
 $y = r \sin \theta = f(\theta) \sin \theta.$

Use Product Rule (注意, 這裡 $r = f(\theta)$, $\frac{dr}{d\theta} = f'(\theta)$.)

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta, \quad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta,
\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \left(\frac{dr}{d\theta}\cos\theta - r\sin\theta\right)^2 + \left(\frac{dr}{d\theta}\sin\theta + r\cos\theta\right)^2
= \left(\frac{dr}{d\theta}\right)^2\cos^2\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^2\sin^2\theta
+ \left(\frac{dr}{d\theta}\right)^2\sin^2\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^2\cos^2\theta
= \left(\frac{dr}{d\theta}\right)^2\left(\cos^2\theta + \sin^2\theta\right) + r^2\left(\sin^2\theta + \cos^2\theta\right)
= \left(\frac{dr}{d\theta}\right)^2 + r^2.$$

Arc length formula:

Arc length formula:
$$L = \int ds$$

$$= \int_a^b \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta$$

$$= \int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

Attention: 弧長公式算出來的 L 是里程數, 是實際走的距離。 如果有重複繞,可以算完再除以繞的圈數,或是找到繞一圈的範圍積分。

Note: $\sqrt{[f(x)]^2} = |f(x)|$, 積分時從 f(x) = 0 的地方分開積分。

Example 0.4 Find the length of the cardioid $r = 1 + \sin \theta$.

$$L = \int_{0}^{2\pi} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} \, d\theta$$

$$= \int_{0}^{2\pi} \sqrt{(1 + \sin \theta)^{2} + (\cos \theta)^{2}} \, d\theta$$

$$= \int_{0}^{2\pi} \sqrt{2 + 2 \sin \theta} \, d\theta$$

$$= \int_{0}^{2\pi} \sqrt{2 + 2 \sin \theta} \, d\theta$$

$$(Sol 1) \sqrt{2 + 2 \sin \theta} = \sqrt{2 + 2 \sin \theta} \cdot \frac{\sqrt{2 - 2 \sin \theta}}{\sqrt{2 - 2 \sin \theta}} = \frac{\sqrt{4 - 4 \sin^{2} \theta}}{\sqrt{2 - 2 \sin \theta}}$$

$$= \frac{\sqrt{4 \cos^{2} \theta}}{\sqrt{2 - 2 \sin \theta}} = \frac{2|\cos \theta|}{\sqrt{2 - 2 \sin \theta}}, \cos \theta \le 0 \text{ when } \frac{\pi}{2} \le \theta \le \frac{3\pi}{2}.$$

$$L = \int_{0}^{2\pi} \frac{2|\cos \theta|}{\sqrt{2 - 2 \sin \theta}} \, d\theta$$

$$= \int_{0}^{\pi/2} \frac{2 \cos \theta}{\sqrt{2 - 2 \sin \theta}} \, d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2 \cos \theta}{\sqrt{2 - 2 \sin \theta}} \, d\theta + \int_{3\pi/2}^{2\pi} \frac{2 \cos \theta}{\sqrt{2 - 2 \sin \theta}} \, d\theta$$

$$(Let u = 2 - 2 \sin \theta, du = -2 \cos \theta \, d\theta, \theta = 0, \frac{\pi}{2}, \frac{3\pi}{2}, 2\pi, u = 2, 0, 4, 2.)$$

$$= \int_{2}^{0} \frac{-1}{\sqrt{u}} \, du + \int_{0}^{4} \frac{1}{\sqrt{u}} \, du + \int_{4}^{2} \frac{-1}{\sqrt{u}} \, du$$

$$= \int_{0}^{2} \frac{1}{\sqrt{u}} \, du + \int_{0}^{4} \frac{1}{\sqrt{u}} \, du + \int_{2}^{4} \frac{1}{\sqrt{u}} \, du = 2 \int_{0}^{4} \frac{1}{\sqrt{u}} \, du \quad (improper)$$

$$= \lim_{t \to 0^{+}} 2 \int_{t}^{4} \frac{1}{\sqrt{u}} \, du = \lim_{t \to 0^{+}} 2 \left[2\sqrt{u} \right]_{t}^{4} = 8 - \lim_{t \to 0^{+}} 4\sqrt{t} = 8;$$

$$(Or \ let \ v = \sqrt{2 - 2 \sin \theta}, \ dv = \frac{-\cos \theta}{\sqrt{2 - 2 \sin \theta}} \, d\theta, \ v = \sqrt{2}, 0, 2, \sqrt{2}.)$$

$$= \int_{\sqrt{2}}^{0} -2 \, dv + \int_{0}^{2} 2 \, dv + \int_{2}^{\sqrt{2}} -2 \, dv$$

$$= 2 \int_{0}^{0} dv + 2 \int_{0}^{2} dv + 2 \int_{\sqrt{2}}^{2} dv = 4 \int_{0}^{2} dv = 8.$$

Note: $2 - 2 \sin \theta = 0$ when $\theta = \frac{\pi}{2}$, $\Pi \cup \mathbb{R}$ $\frac{\theta}{0}$? No! $\frac{\Phi}{\theta} \otimes \mathbb{R}$ $\frac{\Phi}{\theta}$

$$(Sol 2) [變型成眞積分]$$

$$\because \sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}, \sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} = 1,$$

$$\sqrt{2 + 2 \sin \theta} = \sqrt{2} \sqrt{(\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} + 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2})}$$

$$= \sqrt{2} \sqrt{(\cos \frac{\theta}{2} + \sin \frac{\theta}{2})^2}$$

$$= \sqrt{2} \left| \cos \frac{\theta}{2} + \sin \frac{\theta}{2} \right|,$$

 $\cos \frac{\theta}{2} + \sin \frac{\theta}{2} \le 0 \text{ when } \frac{3\pi}{2} \le \theta \le 2\pi.$

$$L = \sqrt{2} \int_{0}^{2\pi} |\cos\frac{\theta}{2} + \sin\frac{\theta}{2}| d\theta$$

$$= \sqrt{2} \int_{0}^{3\pi/2} (\cos\frac{\theta}{2} + \sin\frac{\theta}{2}) d\theta + \sqrt{2} \int_{3\pi/2}^{2\pi} -(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}) d\theta$$

$$= 2\sqrt{2} \left[\sin\frac{\theta}{2} - \cos\frac{\theta}{2} \right]_{0}^{3\pi/2} - 2\sqrt{2} \left[\sin\frac{\theta}{2} - \cos\frac{\theta}{2} \right]_{3\pi/2}^{2\pi}$$

$$= 2\sqrt{2} \left[\left(\frac{1}{\sqrt{2}} - \frac{-1}{\sqrt{2}} \right) - (0 - 1) \right] - 2\sqrt{2} \left[(0 - (-1)) - \left(\frac{1}{\sqrt{2}} - \frac{-1}{\sqrt{2}} \right) \right]$$

$$= 4 + 2\sqrt{2} - 2\sqrt{2} + 4$$

(Try yourself: integration for
$$\theta$$
 from $-\frac{\pi}{2}$ to $\frac{3\pi}{2}$: $L = \int_{-\pi/2}^{3\pi/2} \cdots d\theta$, or from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$ then double it by symmetry: $L = 2 \int_{-\pi/2}^{\pi/2} \cdots d\theta$.)