Cryptography

- Data security
- Provides
 - Confidentiality
 - Integrity
 - Source authentication

Cryptography Uses

- Integrity and authentication
- File hashing
- E-mail digital signatures
- VPN network traffic
- Blockchain

Cryptography Uses

- Confidentiality
- File, folder, and disk volume encryption
- E-mail encryption
- VPN network traffic
- Mobile device encryption

Encryption

An encryption key is acquired

Key and data are fed into an encryption algorithm

The result is ciphertext

Hashing

- Provides file integrity
- Used to detect unauthorized modifications
- Can be used for digital evidence admissibility
- SHA-256 is commonly used

File Hashing

- Generate the hash in the future to detect changes from the original hash
- File hashing in Linux
 - md5sum <file>
- File hashing using Microsoft PowerShell
 - Get-FileHash <file> -Algorithm <algorithm>

Digital Signatures - Hashing

Uses a hashing algorithm to result in a hash value

Encrypted with the sender's private key

Verifies the signature with the related public key

Digital Signatures

- Message authenticity
 - The message came from who it says it came from
 - The sender cannot refute having sent the message
 - "Non-repudiation"
 - Only the sender possesses the private key
 - The signature is verified the related public key

Symmetric Encryption

- Data confidentiality
- Protects sensitive data through encryption
- Original data is plain text
- Encrypted data is ciphertext

The Encryption Process

Symmetric Encryption

- Uses one unique key
 - Encryption
 - Decryption
- Also called a "secret key"
- The problem: securely distributing the key over a network

Asymmetric Encryption

- Uses a public and private key pair
- The keys are mathematically related
- Also called "public key encryption"
- Requires a PKI certificate

Asymmetric Encryption

Secure key distribution

Not an issue

Public key can be made public

Private key must **not** be shared

Asymmetric Encryption

Encryption

- The sender requires the recipient's public key
- Decryption occurs with the recipient's related private key

Digital signature

- Created with a private key
- Verified with the related public key

PKI Hierarchy

- A hierarchy of digital security certificates
- Certificates are issued and managed by Certificate Authorities (CAs)
 - Private CAs
 - Public CAs

PKI Hierarchy

- The issuing CA digitally signs issued certificates
- Root CAs should be brought offline when possible
- A compromised root CA
 - All certificates are compromised
- A compromised subordinate CA
 - Certificates issued under that CA are compromised

PKI Certificates

- Issued to
 - User
 - Device
 - Software
- Issued for the purposes of
 - Encryption
 - Integrity
 - Authentication
- Stored in files and smartcards

PKI Certificate Contents

X.509 version number	CA signature	CA signature algorithm used	
Certificate serial number	Issued date	Expiry date	
Certificate intended use	Subject name	Public/private keys	

Public and Private Keys

Public

- Can be shared publicly with any user or device
- Recipient public key is used when encrypting message
- Used to verify digital signatures

Private

- Must be available only to the key owner
- Can be embedded in cards
- Encrypted messages are decrypted using this key
- Used to create digital signatures

Need	Solution
E-mail confidentiality	Encrypt message with recipient public key

Need	Solution
E-mail confidentiality	Encrypt message with recipient public key
E-mail authenticity and integrity	Generate message hash and encrypt with sender private key

Need	Solution
E-mail confidentiality	Encrypt message with recipient public key
E-mail authenticity and integrity	Generate message hash and encrypt with sender private key
Secure network communication to web server	Use a PKI certificate with TLS v1.1 or higher to enable HTTPS

Need	Solution
E-mail confidentiality	Encrypt message with recipient public key
E-mail authenticity and integrity	Generate message hash and encrypt with sender private key
Secure network communication to web server	Use a PKI certificate with TLS v1.1 or higher to enable HTTPS
Multifactor authentication to a VPN	Smartcards with embedded private key

Need	Solution
E-mail confidentiality	Encrypt message with recipient public key
E-mail authenticity and integrity	Generate message hash and encrypt with sender private key
Secure network communication to web server	Use a PKI certificate with TLS v1.1 or higher to enable HTTPS
Multifactor authentication to a VPN	Smartcards with embedded private key
Single card for facility and computer access	Common access card (CAC) with embedded private key

PKI Certificate Lifecycle

Certificate issuance controls

Key management controls

Certificate retirement controls

Certificate issuance

Certificate usage

Certificate renewal, expiry, and revocation

PKI Certificate Lifecycle Management

- Assign PKI administrative roles
- Enable auditing
- Monitor certificate expiry dates
- Mobile device remote wipe
 - Lost or stolen device containing certificates

Securing Network Traffic

- Secure Sockets Layer (SSL)
 - Deprecated due to many known vulnerabilities
 - Uses a PKI certificate
 - Disable in client app and server-side

Transport Layer Security (TLS)

Supersedes SSL

TLS v 1.0 (deprecated), 1.1, 1.2, 1.3 (August 2018)

Uses a PKI certificate

Configured client and server-side

Securing Network Traffic

- The use of TLS v1.1 or higher is sometimes mandated by laws, regulations, and to attain security accreditations such as PCI DSS
- Secure Multipurpose Internet Mail Exchange (S/MIME)
 - Uses a PKI certificate
 - Used to encrypt and digitally sign e-mail messages

Securing Network Traffic with IPSec

Used to secure any type of network traffic

Does not imply using a VPN

Encapsulating Security Payload (ESP)

Authentication Header (AH)

In this exercise, you will

- Distinguish the difference between symmetric and asymmetric encryption
- Describe the digital signing process
- Define the relationship between HTTPS and PKI certificates
- Use Microsoft PowerShell to generate a file hash

Symmetric and Asymmetric Encryption

- Symmetric
 - One key encrypts and decrypts
- Asymmetric
 - Public key of recipient encrypts
 - Private key of recipient decrypts

Digital Signing - Hashing

- The message content uses a hashing algorithm to result in a hash value
- The hash value is encrypted with the sender's private key
- The recipient verifies the signature with the related public key

HTTPS and PKI

- HTTPS
 - Configured on a web server
 - Standard port is TCP 443
 - Requires a PKI certificate to encrypt communications

