VE414 Appendix 1

Jing Liu

UM-SJTU Joint Institute

May 14, 2019

Basic properties of probability

The set of all possible outcomes Ω is known as a sample space, and a subset \mathcal{A} of Ω is known as an event. The following properties holds for probability:

1. The numeric bound

$$0 \le \Pr(\mathcal{A}) \le 1$$

2. Th probability of the empty set

$$\Pr(\varnothing) = 0$$

3. Monotonicity

$$\Pr\left(\mathcal{A}\right) \leq \Pr\left(\mathcal{B}\right)$$
 where $\mathcal{A} \subset \mathcal{B}$

4. Additive Law

$$\Pr\left(\mathcal{A} \cup \mathcal{B}\right) = \Pr\left(\mathcal{A}\right) + \Pr\left(\mathcal{B}\right) - \Pr\left(\mathcal{A} \cap \mathcal{B}\right)$$

Conditional Probability

Definition

Let \mathcal{A} and \mathcal{B} be two events with

$$\Pr\left(\mathcal{B}\right) \neq 0$$

The conditional probability of A given B is defined to be

$$\Pr\left(\mathcal{A} \mid \mathcal{B}\right) = \frac{\Pr\left(\mathcal{A} \cap \mathcal{B}\right)}{\Pr\left(\mathcal{B}\right)}$$

• Note this is a definition, not a property of probability. The idea behind this definition is that if we are given that event $\mathcal B$ occurred, the relevant sample space becomes $\mathcal B$ rather than Ω , and conditional probability is a probability measure on the "new sample space" $\mathcal B$.

Conditional Probability and Multiplication Law

Law of Total Probability

Let \mathcal{B}_1 , \mathcal{B}_2 , ..., \mathcal{B}_n be such that $\bigcup_{i=1}^n \mathcal{B}_i = \Omega$ and $\mathcal{B}_i \cap \mathcal{B}_j = \emptyset$ for $i \neq j$, with

$$\Pr\left(\mathcal{B}_i\right) \neq 0$$
 for all i

Then, for any even A,

$$\Pr(\mathcal{A}) = \sum_{i=1}^{n} \Pr(\mathcal{A} \mid \mathcal{B}_i) \Pr(\mathcal{B}_i)$$

Proof

$$\Pr\left(\mathcal{A}\right) = \Pr\left(\mathcal{A} \cap \Omega\right) = \Pr\left(\mathcal{A} \cap \left(\bigcup_{i=1}^{n} \mathcal{B}_{i}\right)\right) = \Pr\left(\bigcup_{i=1}^{n} \left(\mathcal{A} \cap \mathcal{B}_{i}\right)\right)$$

$$\implies \Pr(\mathcal{A}) = \sum_{i=1}^{n} \Pr(\mathcal{A} \cap \mathcal{B}_i) = \sum_{i=1}^{n} \Pr(\mathcal{A} \mid \mathcal{B}_i) \Pr(\mathcal{B}_i)$$

Back