

Rasters

Nicolas Ribot - Licence GNU FDL - Version 1.0

- Présentation
- Chargement
- Fonctions
- Exemples/TP

Rasters: Présentation

- Un seul type: RASTER = matrice de valeurs en 2D
- Une table RASTER = une couverture
- Une ligne RASTER = une tuile ou un raster
- Represente une image, des valeurs physiques (altitude par ex), des données scientifiques...
- Stockage interne (WKB) ou externe (image)
- Pas de pyramides (nouvelle table pour cela)
- Nouveau:
 - Type: RASTER (cf.GEOMETRY/GEOGRAPHY)
 - fonctions
 - tables de catalogue
 - outils de chargement (basés sur GDAL)

Rasters: Présentation

- Conversion entre geometry et raster
 - ST_DumpToPolygons(raster)
 - => geometry set
- Fonctions gérant les deux types:
 - ST_Intersection(raster|geometry, raster|geometry, raster|geometry)
 - => raster/geometry
- Opérateurs « intelligents »:
 - raster geometry && raster geometry
 - => boolean
 - ST_Intersects(raster|geometry, raster|geometry)
 - => boolean

Rasters: Chargement dans PostGIS

- raster2pgsql (⇔ shp2pgsql)
- Aide: raster2pgsql -? ou raster2pgsql
- Formats supportés: raster2pgsql -G (ceux de GDAL)
- Paramètres importants:
 - c|a|d|p: create, append, drop, prépare (comme shp2pgsql)
 - C: création des contraintes
 - I: création index spatial
 - s: srid
 - b: band
 - t: taille des tuiles (tiles)
 - R: stockage externe: seuls les métadonnées et le chemin sont stockés
 - 1: création des overviews
 - N: valeur nodata

Rasters: Chargement dans PostGIS

- Chargement d'une couverture raster du monde
- Données: tp/raster/TrueMarble.8km.5400x2700.tif
- Table monde_raster
- Commande:
 - ♣ raster2pgsql -M -I -C -Y -s 4326 -t 100x100 -l 2,4,8
 TrueMarble.8km.5400x2700.tif monde_raster | psql
- Les tables suivantes sont crées:
 - monde_raster, o_2_monde_raster, o_4_monde_raster, o_8_monde_raster
- Enregistrement dans le catalogue:
 - select * from raster_colums;

Rasters: Contraintes

\d monde_raster

```
Indexes:
    "monde raster pkey" PRIMARY KEY, btree (rid)
    "monde raster rast gist" gist (st convexhull(rast))
Check constraints:
   "enforce height rast" CHECK (st height(rast) = 100)
   "enforce max extent rast" CHECK (st coveredby(st convexhull(rast), '0...
0'::geometry))
   "enforce_nodata_values_rast" CHECK (_raster_constraint_nodata_values(rast)::numeric
(16,10)[] = '{NULL,NULL}'::numeric(16,10)[])
    "enforce num bands rast" CHECK (st numbands(rast) = 3)
   "enforce out db rast" CHECK ( raster constraint out db(rast) = '{f,f,f}'::boolean
[])
    "enforce pixel types rast" CHECK ( raster constraint pixel types(rast) = '{8BUI,
8BUI,8BUI}'::text[])
   "enforce same alignment rast" CHECK (st samealignment(rast, '01...00'::raster))
    "enforce scalex rast" CHECK (st scalex(rast)::numeric(16,10) =
0.06666666666666667::numeric(16,10))
   "enforce_scaley_rast" CHECK (st_scaley(rast)::numeric(16,10) =
"enforce srid rast" CHECK (st srid(rast) = 4326)
"enforce_width_rast" CHECK (st_width(rast) = 100)
```

Rasters: Catalogue

- r_table_catalog: non usité: nom de la base par défaut
- r_table_schema: le schéma contenant la table raster
- r_table_name: le nom de la table raster
- r_raster_column : colonne contenant le raster (plusieurs colonnes de type RASTER possibles)
- Srid: le SRID
- scale_x : facteur X entre pixel et coordonnées terrain
- scale_y: facteur X entre pixel et coordonnées terrain
- blocksize_x: largeur d'un bloc en pixel
- blocksize_y : hauteur d'un bloc en pixel

Rasters: Catalogue

- same_alignment: vrai si toutes les tuiles ont le même alignement (TODO)
- regular_blocking: information indicative: pas de recouvrement, alignement identique, taille des pixel, srid.
- num_bands: nombre de bandes
- AddRasterConstraints : tableau des types de pixel pour chaque bande
- AddRasterConstraints : tableau des valeurs de NODATA pour chaque bande
- extent: l'extension spatiale de la table. (en cas d'ajout de données dans la table, utiliser DropRasterConstraints puis AddRasterConstraints!). Cela permet la visu des données

Rasters: overviews

- Version dégradée du raster pour affichage à des résolutions moins grandes
- Créé automatiquement lors du chargement (option –I)
- Enregistrés dans un catalogue: raster_overviews:
- o_table_catalog : catalogue de la table (= nom de la BD)
- o_table_schema: schéma de la table
- o_table_name: nom de la table overview
- o_raster_column: nom de la colonne
- r_*: les informations relatives à la table source
- overview_factor: le facteur de réduction, en puissance de 2

Rasters: Fonctions

http://postgis.org/documentation/manual-2.0/RT_reference.html

- Gestion (AddRasterConstraint, dropRasterConstraint...)
- Constructeurs (st_AddBand,st_asRaster, st_makeEmptyRaster...)
- Accesseurs (st_height, st_numBands, st_rotation)
- Accesseurs par bande (st_bandMetaData, st_bandPixelType, ...)
- Accesseurs par pixel (st_pixelAsPolygon, st_value, ...)
- Editeurs (st_setRotation, st_setSRID, st_resample, st_snapToGrid, ...)
- Editeurs de bandes (ST_SetBandNoDataValue, ST_SetBandIsNoData)
- Analyse et stats (st_count, st_histogram, st_quantile, ...)
- Sorties (st_asBinary, st_asGDALRaster, st_asTIFF, ...)
- Processing (st_clip, st_hillShade, st_slope, st_mapAlgebraExpr, ...)

Rasters: Fonctions

geomval	
histogram	
raster	
reclassarg	
summarystats	

AddRasterConstraints
DropRasterConstraints

PostGIS_Raster_Lib_Build_Date
PostGIS Raster Lib Version

ST_GDALDrivers

ST_AddBand ST_AsRaster

ST Band

ST_MakeEmptyRaster

ST_GeoReference

ST_Height
ST_MetaData
ST_NumBands
ST_PixelHeight
ST_PixelWidth

ST_ScaleX ST_ScaleY

ST_Raster2WorldCoordX
ST Raster2WorldCoordY

ST_Rotation

ST_SkewX

ST_SkewY ST_SRID

ST_UpperLeftX
ST UpperLeftY

ST_Width

ST_World2RasterCoordX
ST World2RasterCoordY

ST_IsEmpty

ST_BandMetaData

ST BandIsNoData

ST BandNoDataValue

ST_BandPath

ST_BandPixelType

ST_HasNoBand

ST_PixelAsPolygon

ST_PixelAsPolygons

ST Value

ST SetValue

ST_SetGeoReference

ST_SetRotation

ST_SetScale

ST SetSkew

ST_SetSRID

ST SetUpperLeft

ST_Resample

ST_Rescale

ST_Reskew

ST_SnapToGrid

ST_Transform

 ${\tt ST_SetBandNoDataValue}$

ST_SetBandIsNoData

ST_Count

ST_Histogram

ST_Quantile

ST_SummaryStats

ST_ValueCount

ST_AsBinary

ST_AsGDALRaster

ST_AsJPEG

ST_AsPNG ST_AsTIFF

Box3D

ST_Clip

ST_ConvexHull

ST_DumpAsPolygons

ST_Envelope

ST_HillShade

ST_Aspect

ST_Slope

ST Intersection

ST_MapAlgebraExpr

ST_MapAlgebraExpr

ST_MapAlgebraFct

ST_MapAlgebraFct

ST_MapAlgebraFctNgb

ST_Polygon

ST_Reclass

ST_Union

ST_Min4ma

ST_Max4ma

ST_Sum4ma

ST_Mean4ma

ST_Range4ma

ST_Distinct4ma

ST_StdDev4ma

&&

&<

&>

ST_Intersects

ST_SameAlignment

Exemples

- TP R1: introduction aux rasters
 - chargement d'une image dans PostGIS
 - vérification des données (contraintes, catalogue)
 - Affichage dans QGis
- TP R2: extraction et sortie locale
 - extraction spatiale d'une partie du raster
 - reconstruction d'un raster complet (3 bandes)
 - écriture d'une partie du raster en PNG sur le disque
- TP R3: croisements spatiaux: profil altimétrique à partir d'un MNT (également TP webmapping)

