Problemes de Càlcul amb Vàries Variables. Full 3

Diferencia bilitat

- 1. Siguin $f(x,y)=\frac{x^2(x+y)}{x^2+y^2}$ i $g(x,y)=\frac{x^2-y^2+2x^3}{x^2+y^2}$ amb $(x,y)\neq 0$. Són funcions contínues a (0,0)? Què val f(0,0)? Són diferenciables?
- 2. Són diferenciables a l'origen les següents funcions?

(a)
$$f(x,y) = \sqrt{x} \cos y$$

(b) $g(x,y) = \sqrt{|xy|}$
(c) $h(x,y) = \begin{cases} \frac{2xy}{\sqrt{x^2 + y^2}} & (x,y) \neq \vec{0} \\ 0 & (x,y) = \vec{0} \end{cases}$

3. Estudieu la continuïtat i la diferenciabilitat de les següents funcions:

(a)
$$f(x,y) = \begin{cases} \frac{x}{y} & y \neq 0, \\ 0 & y = 0 \end{cases}$$
 (b) $g(x,y) = \frac{1}{x^2 - y^2}$ (c) $h(x,y) = \sqrt{x^2 + y^2}$ (d) $j(x,y) = \begin{cases} \sqrt{x^2 + y^2 - 1} & x^2 + y^2 > 1, \\ \sqrt{1 - x^2 - y^2} & x^2 + y^2 < 1 \end{cases}$

4. Definim

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq \vec{0}, \\ 0 & (x,y) = \vec{0}. \end{cases}$$

- (a) Proveu que $D_y f(x,0) = x$ per a tot x, i $D_x f(0,y) = -y$ per a tot y.
- (b) Proveu que $D_{xy}f(0,0) \neq D_{yx}f(0,0)$.

Estudieu la continuïtat i la diferenciabilitat de f(x, y).

5. (a) Sigui $f: \mathbb{R} \to \mathbb{R}$ definida per

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Proveu que f és diferenciable a x = 0 però f' no és contínua en aquest punt.

(b) Sigui $f: \mathbb{R}^2 \to \mathbb{R}$ definida per

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & \vec{x} \neq \vec{0} \\ 0 & \vec{x} = \vec{0} \end{cases}$$

Proveu que f és diferenciable a (0,0) encara que ni $D_x f$ ni $D_y f$ són contínues a (0,0).

6. Demostreu que el pla tangent a la superfície

$$a x^2 + b y^2 + c z^2 = 1$$

en el punt (x_0, y_0, z_0) és

$$a x_0 x + b y_0 y + c z_0 z = 1$$

7. Trobeu les expressions per a les derivades parcials de les següents funcions.

(a)
$$F(x,y) = f(g(x)k(y), g(x) + h(y))$$
 (b) $F(x,y,z) = f(g(x+y), h(y+z))$

(b)
$$F(x, y, z) = f(g(x + y), h(y + z))$$

(c)
$$F(x, y, z) = f(x^y, y^z, z^x)$$

(d)
$$F(x,y) = f(x,g(x),h(x,y))$$

8. Siguin

$$f: \mathbb{R}^3 \to \mathbb{R}^2 \qquad \qquad g: \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x, y, z) \to \left(\log\left(\frac{x^2 + y^2 + z^2}{2}\right), e^{x + y + z - 2}\right) \qquad (u, v) \to (u^2, v^2, u^2 - v^2).$$

Trobeu Df(1,0,1), Dg(0,1) i $D(g \circ f)(1,0,1)$

9. Sigui

$$f(x,y) = \begin{cases} x^2 \arctan \frac{y}{x} - y^2 \arctan \frac{x}{y} & x, y \neq 0 \\ 0 & x = 0 \text{ o } y = 0 \end{cases}$$

Demostreu que $D_{xy}f(0,0) \neq D_{yx}f(0,0)$.