

Minimizing Maximum Response Time and Delay Factor in Broadcast Scheduling

CHANDRA CHEKURI*

SUNGJIN IM†

BENJAMIN MOSELEY

PRESENTED BY NIHARIKA GOLI R11854618

Overview

- The paper studies two related metrics called maximum response time and maximum delay factor and their weighted versions
- The results obtained from the competitive model are:
 - An online algorithm for maximum delay factor is $O(1/\mathbf{E}^2)$ competitive with (1- \mathbf{E}) speed
 - To show that first-in-first-out is 2 competitive even when page sizes differ.
 - To show that natural greedy algorithm is not O(1)-competitive for maximum delay factor.

Related Works

- Minimizing average flow time and maximizing throughput of satisfied requests when requests have deadlines.
- New Models and Algorithms for Throughput Maximization in Broadcast Scheduling
- Longest wait first for broadcast scheduling.
- This paper answers and provides algorithm for basic temporal constraints on the delivery of data when client requests for data from resources.

JUSTIFICATION

- When all pages are of unit size in broadcasting the paper considers algorithm SSF-W to find solution for minimizing the maximum delay factor.
- To calculate the highest weighted time of page request an algorithm BWF-W is proposed
- Lower bound for a natural greedy algorithm LF is given which achieves competitive ratio of c.

Technique and Solution

Algorithm: SSF-W

Let at be the maximum delay factor of any request in SSF-W's queue at time t.

At time t, let Q(t) = {Jp,i | Jp,i has not been satisfied and t-ap,i Sp,i \geq 1 c α t}.

If the machine is free at t, schedule the request in Q(t) with the smallest slack non-preemptively.

Figure 1: Broadcasts by **FIFO** satisfying requests in \mathcal{J}_I are shown in blue. Note that $a_{q,k}$ and $a_{q,k} + \rho^*$ are not necessarily contained in I.

FIFO For Minimizing Maximum Response Time When Page Sizes Are Different

Figure 2: Comparison of scheduling of group \mathcal{J}_k , \mathcal{J}_{k-1} , and \mathcal{J}_{k-2} by **LF** and OPT.

WE FORMALLY SAY THAT ALGORITHM LF ACHIEVES WAIT RATIO C, WHILE OPT HAS WAIT RATIO ATMOST 1 FOR GIVEN PROBLEM INSTANCE.

Limitations of Proposed Work

- The paper gives the algorithm for maximum delay factor with unit sized jobs with following dependency:
 - Algorithm explicity depends on the speed given to it. For different sized pages problem is open on whether a (1 + e) speed algorithm
- Algorithm for c-approximation for c<2, and minimizing the maximum response time offline.

Future Work

- Algorithm explicitly depends on the speed given to it. For different sized pages problem is open on whether there exists a (1 + e)-speed algorithm that is O(1) competitive.
- Algorithm for c-approximation for c<2, and minimizing the maximum response time offline.

Conclusion

- This paper has given an almost fully scalable algorithm for minimizing and maximum delay factor in broadcasting for unit sized jobs.
- It proved that FIFO is infact 2-competitive for varying sized jobs thus solving the problem for minimizing the maximum response time online in broadcasting scheduling.

References

 Minimizing maximum response time in scheduling broadcasts. By Yair Bartal and S. Muthukrishnan

https://faculty.ucmerced.edu/sim3/papers/MaxDelayArx.pdf