Chapter 1: Divisibility and Congruence

Definitions

- 1. Natural Numbers: $\{1, 2, 3, 4, ...\}$
- 2. Integers: $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- 3. Suppose a and d are integers. Then d divides a, denoted d|a, if and only if there is an integer k such that a = kd.
- 4. Suppose that a, b, and n are integers, with n > 0. We say that a and b are congruent modulo n if and only if n|(a-b). We denote this relationship as $a \equiv b \pmod{n}$ and read these symbols as a is congruent to b modulo n.

Exercises

1.1 Theorem. Let a, b, and c be integers. If a|b and a|c, then a|(b+c).

Proof: Suppose a, b, and c to be integers such that a|b and a|c. By definition of divides, b=ka for some $k \in \mathbb{Z}$ and c=la for some $l \in \mathbb{Z}$. By substitution, b+c=ka+la=a(k+l). Because integers are closed under addition, then $(k+l) \in \mathbb{Z}$. Therefore, by definition of divides, a|(b+c). \square

1.2 Theorem. Let a, b, and c be integers. If a|b and a|c, then a|(b-c).

Proof: Suppose a, b, and c to be integers such that a|b and a|c. By definition of divides, b=ka for some $k \in \mathbb{Z}$ and c=la for some $l \in \mathbb{Z}$. By substitution, b-c=ka-la=a(k-l). Because integers are closed under addition, then $(k-l) \in \mathbb{Z}$. Therefore, by definition of divides, a|(b-c). \square

1.3 Theorem. Let a, b, and c be integers. If a|b and a|c, then a|bc.

Proof: Suppose a, b, and c to be integers such that a|b and a|c. By definition of divides, b=ka for some $k \in \mathbb{Z}$ and c=la for some $l \in \mathbb{Z}$. By substition, $bc=(ka)\cdot(la)=a\cdot(akl)$. Because integers are closed under multiplication, then $akl \in \mathbb{Z}$. Therefore, by definition of divides, a|bc. \square

1.4a Question. Can you weaken the hypothesis of the previous theorem and still prove the conclusion?

Answer: Yes, a only needs to divide b or c instead of b and c.

1.4b Question. Can you keep the same hypothesis, but replace the conclusion by the stronger conclusion that $a^2|bc$ and still prove the theorem?

Answer: Yes, you can.

1.5 Theorem. Let a, b, and c be integers. If a|b and a|c, then $a^2|bc$.

Proof: Suppose a, b, and c to be integers such that a|b and a|c. By definition of divides, b=ka for some $k \in \mathbb{Z}$ and c=la for some $l \in \mathbb{Z}$. By substition, $bc=(ka)\cdot(la)=a^2\cdot(kl)$. Because integers are closed under multiplication, then $kl \in \mathbb{Z}$. Therefore, by definition of divides, $a^2|bc$. \square

1.6 Theorem. Let a, b, and c be integers. If a|b, then a|bc.

Proof: Suppose a, b, and c to be integers such that a|b. By definition of divides, b=ka for some $k \in \mathbb{Z}$. By substitution, $bc=(ka) \cdot c=a \cdot (kc)$. Because integers are closed under multiplication, then $kc \in \mathbb{Z}$. Therefore, by definition of divides, a|bc.

- 1.7 Exercise. Answer each of the following questions, and prove that your answer is correct.
- 1. Is $45 \equiv 9 \pmod{4}$? Yes, 4|(45-9).
- 2. Is $37 \equiv 2 \pmod{5}$? Yes, $5 \mid (37 2)$.
- 3. Is $37 \equiv 3 \pmod{5}$? No, $5 \not (37 3)$.
- 4. Is $37 \equiv -3 \pmod{5}$? Yes, $5 \mid (37 (-3))$.
- **1.8 Exercise.** For each of the following congruences, characterize all the integers m that satisfy that congruence.
- 1. $m \equiv 0 \pmod{3}$. m = 3k $k \in \mathbb{Z}$
- 2. $m \equiv 1 \pmod{3}$. m = 3k + 1 $k \in \mathbb{Z}$
- 3. $m \equiv 2 \pmod{3}$. $m = 3k + 2 \quad k \in \mathbb{Z}$
- 4. $m \equiv 3 \pmod{3}$. m = 3k $k \in \mathbb{Z}$
- 5. $m \equiv 4 \pmod{3}$. m = 3k + 1 $k \in \mathbb{Z}$
- **1.9 Theorem.** Let a and n be integers with n > 0. Then $a \equiv a \pmod{n}$.

Proof: Suppose a and n be integers with n > 0. By algebra, $a - a = 0 = n \cdot 0$. So, by definition of divides, $n \mid (a - a)$. Therefore, by definition of congruence, $a \equiv a \pmod{n}$

1.10 Theorem. Let a, b, and n be integers with n > 0. If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.

Proof: Suppose a and n be integers with n > 0 such that $a \equiv b \pmod{n}$. By definition of congruence, n|(a-b). By definition of divides, a-b=nk where $k \in \mathbb{Z}$. Multiplying both sides by -1, $b-a \equiv n(-k)$. Since integers are closed under multiplication, $(-k) \in \mathbb{Z}$. Hence, n|(b-a) by definition of divides. Therefore, $b \equiv a \pmod{n}$.

1.11 Theorem. Let a, b, c, and n be integers with n > 0. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Proof: Suppose a, b, c, and n to be integers with n > 0 such that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. By definition of congruence, n|(a-b) and n|(b-c). By definition of divides, a-b=kn where $k \in \mathbb{Z}$ and b-c=ln where $l \in \mathbb{Z}$. By substitution, a-c=(a-b)+(b-c)=kn+ln=n(k+l). Since integers are closed under addition, $(k+l) \in \mathbb{Z}$. Thus, by definition of divides, n|(a-c). Therefore, by definition of congruence, $a \equiv c \pmod{n}$.