Übungen zur Algebra II

Sommersemester 2021

Universität Heidelberg Mathematisches Institut PROF. DR. A. SCHMIDT DR. C. DAHLHAUSEN

Blatt 8

Abgabe: Freitag, 11.06.2021, 09:15 Uhr

Aufgabe 1 (Tor 1:0).

(6 Punkte)

Seien $m, n \in \mathbb{N}$ und $d, e \in \mathbb{N}$ Teiler von n. Ferner sei $i \in \mathbb{N}_0$.

- (a) Berechnen Sie $\operatorname{Tor}_{i}^{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$.
- (b) Bestimmen Sie $\operatorname{Tor}_{i}^{\mathbb{Z}/n\mathbb{Z}}(\mathbb{Z}/d\mathbb{Z},\mathbb{Z}/e\mathbb{Z})$. *Hinweis:* Verwenden Sie Blatt 6, Aufgabe 1.

Aufgabe 2 (Tor 2:0).

(6 Punkte)

Vermöge des Morphismus von \mathbb{C} -Algebren $\mathbb{C}[X,Y] \xrightarrow{\varepsilon} \mathbb{C}$, der durch $X \mapsto 0$ und $Y \mapsto 0$ gegeben ist, wird \mathbb{C} zu einem $\mathbb{C}[X,Y]$ -Modul. Zeigen Sie:

(a) Zeigen Sie, dass die Folge

$$0 \longrightarrow \mathbb{C}[X,Y] \xrightarrow{\alpha} \mathbb{C}[X,Y]^2 \xrightarrow{\beta} \mathbb{C}[X,Y] \xrightarrow{\varepsilon} \mathbb{C} \longrightarrow 0$$

eine projektive Auflösung von \mathbb{C} als $\mathbb{C}[X,Y]$ -Modul ist, wobei $\alpha(1)=(X,-Y)$ und $\beta(f,g)=Yf+Xg$.

- (b) Bestimmen Sie $\operatorname{Tor}_{i}^{\mathbb{C}[X,Y]}(\mathbb{C},\mathbb{C})$ für alle $i \in \mathbb{N}_{0}$.
- (c) Gibt es eine kürzere projektive Auflösung von $\mathbb C$ als $\mathbb C[X,Y]$ -Modul?

Aufgabe 3 (Injektive Auflösungen).

(6 Punkte)

Sei $n \in \mathbb{N}$. Nach Blatt 6, Aufgabe 1 ist $\mathbb{Z}/n\mathbb{Z}$ ist injektiv als Modul über sich selbst. Zeigen Sie, dass für einen Primteiler p von n eine undendliche periodische Auflösung

$$0 \longrightarrow \mathbb{Z}/p\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow \dots$$

von $\mathbb{Z}/p\mathbb{Z}$ als $\mathbb{Z}/n\mathbb{Z}$ -Modul existiert.

Aufgabe 4 (Offene und abgeschlossene Immersionen¹).

(6 Punkte)

Eine stetige Abbildung zwischen topologischen Räumen heißt *Homöomorphismus*, wenn sie eine stetige Umkehrabbildung hat.² Sei *A* ein kommutativer Ring mit Eins.

- (a) Sei $f \in A$. Zeigen Sie, dass die zu dem Lokalisierungshomomorphismus $\phi : A \to A_f$ assoziierte Abbildung ϕ^* : Spec $(A_f) \to$ Spec(A) der Spektren einen Homöomorphismus von Spec (A_f) auf die basisoffene Teilmenge D(f) induziert.
- (b) Sei $\mathfrak{a} \subset A$ ein Ideal. Zeigen Sie, dass die zur Projektion $\pi : A \to A/\mathfrak{a}$ assoziierte Abbildung π^* : Spec $(A/\mathfrak{a}) \to$ Spec(A) der Spektren einen Homöomorphismus von Spec (A/\mathfrak{a}) auf $V(\mathfrak{a})$ induziert.

¹Diese Aufgabe ist Teil einer Serie von Aufgaben über das Spektrum eines Ringes.

²D.h. ein Homöomorphismus ist ein Isomorphismus in der Kategorie der topologischen Räume mit stetigen Abbildungen.