[Achtung: Verwenden Sie einen Sperrvermerk nur in sehr gut begründeten Fällen kekk mekk spek!]

[evtl. Sperrvermerk]

Die vorliegende Arbeit ist bis zum [DATUM] für die öffentliche Nutzung zu sperren. Veröffentlichung, Vervielfältigung und Einsichtnahme sind ohne meine ausdrückliche Genehmigung nicht gestattet. Der Titel der Arbeit sowie das Kurzreferat/Abstract dürfen veröffentlicht werden.

Dornbirn,

Unterschrift Verfasser*in

Classification of GPS Track Data Using Al Methods

A Case Study of Waste Collection Vehicles

Bachelor thesis for obtaining the academic degree

Bachelor of Science in Engineering (BSc)

Vorarlberg University of Applied Sciences Computer Science - Software and Information Engineering

Supervised by Dipl.-Ing. Dr. techn. Ralph Hoch

Submitted by Matthias Hefel Dornbirn, May 2025

Dedication

 $\begin{tabular}{ll} Dedicated\ to\ my\ younger\ self,\ who\ never\ stopped\ chasing\ his\ dream\ and\ never\ will! \end{tabular}$

 $And\ to\ my\ parents,\ who\ supported\ me\ throughout\ this\ journey.$

Thank you.

Kurzreferat

Klassifizierung von GPS-Spurdaten mit Unterstützung von Kl-Methoden am Beispiel von Abfallsammelfahrzeugen

In der Abfallwirtschaft ist die strategische Tourenplanung ein wichtiger Prozess, in dem durch optimale Gebietsaufteilung eine maximal effiziente Fuhrparkauslastung bei möglichst geringen Kosten ermittelt wird. Dies geschieht in Entsorgungsbetrieben sowohl für bestehende Auftragsgebiete, als auch bei der Kalkulation von neuen Ausschreibungen. Vor Allem bei Regionen, in denen keine Erfahrungswerte vorliegen müssen für eine robuste Tourenplanung zahlreiche unscharfe Annahmen getroffen und manchmal auch Schätzungen vorgenommen werden. Um diese Unsicherheiten durch die Analyse von geographischen Strukturen zur verringern soll eine Technologie in die bestehende Tourenplanungssoftware der Firma integriert werden, die folgende Aufgabenstellung automatisiert lösen kann: Anhand von bestehenden GPS-Aufzeichnungen sollen strukturelle Eigenschaften der jeweilige Sammelgebiete numerisch bewertet und klassifiziert werden. Gleichermaßen sollen anhand von geographischen (und möglichst frei verfügbaren Strukturdaten) aus noch unbekannten Gebieten erhoben werden können um diese auf die selbe Art und Weise klassifizieren zu können. Dadurch entsteht einerseits eine Referenzdatenmenge (von bestehenden Sammeltouren) und eine Vergleichsdatenmenge (aus den neuen Ausschreibungsgebieten). Dort wo die Klassifizierungsdaten übereinstimmen, kann davon ausgegangen werden, dass die planungsrelevanten Kennzahlen aus bestehenden Auftragsgebieten ohne gewagte Annahmen einfach übernommen werden können. Die Klassifizierung von GPS-Daten und geographischen Strukturdaten soll mit Hilfe von künstlicher Intelligenz automatisiert erstellt werden können. Auch die Überlegung, welche geographischen Strukturdaten denn überhaupt aussagekräftig sind um einen Vergleich anzustreben, sollen ggf. mit Hilfe von KI Technologien erfolgen.

Das Ziel der praktischen Arbeit ist es einen Sandbox-Service zu implementieren, der von der bestehenden Software der infeo aufgerufen und mit Daten befüllt werden kann um so "auf Knopfdruck" Klassifizierungen und Vergleiche von GPS-Daten und Ausschreibungs-Strukturdaten zu erstellen. Die Anwender:innen haben dadurch die Möglichkeit für neue Ausschreibungen entsprechend passende Planungsparameter aus ihren bestehenden Auftragsgebieten zu berechnen und somit die Unsicherheiten bei der Ausschreibungskalkulation deutlich zu reduzieren.

GPS-Datenklassifizierung, Abfallwirtschaft, Künstliche Intelligenz, Geografische Datenanalyse, Maschinelles Lernen, Automatisierung

Abstract

Classification of GPS Track Data Using Al Methods: A Case Study of Waste Collection Vehicles

In waste management, strategic route planning is a crucial process where optimal fleet utilization is determined through the efficient division of service areas, with the goal of minimizing costs. This process is applied by waste disposal companies both for existing service areas and when calculating bids for new tenders. Especially in regions where there is no prior experience, numerous uncertain assumptions and estimates must be made for robust route planning. To reduce these uncertainties through the analysis of geographical structures, a technology will be integrated into the company's existing route planning software, which can automatically solve the following task: Based on existing GPS records, the structural characteristics of the respective collection areas should be numerically evaluated and classified. Additionally, geographical structural data (preferably from freely available sources) from unknown areas should be collected and classified in the same way. This approach will create both a reference data set (from existing collection routes) and a comparison data set (from new tender areas). Where the classification data match, it can be assumed that planning-relevant parameters from existing service areas can be applied to the new areas without risky assumptions. The classification of GPS data and geographical structural data should be automated using artificial intelligence. Furthermore, the consideration of which geographical structural data are meaningful for comparison should, if necessary, also be supported by AI technologies.

The practical goal of this work is to implement a sandbox service that can be called and populated with data by the existing software of infeo, enabling the creation of classifications and comparisons of GPS data and tender structural data "at the push of a button." This will provide users with the ability to calculate appropriate planning parameters from their existing service areas for new tenders, thereby significantly reducing uncertainties in bid calculations.

GPS Data Classification, Waste Management, Artificial Intelligence, Geographic Data Analysis, Machine Learning, Automation

Preface

[Preface Text]

Contents

Li	st of	Figures	11
Li	st of	Tables	12
Li	st of	Abbreviations	13
1	1.1 1.2 1.3	Problem Statement	14 14 14
	1.4	Structure of the Work	14
2	Bac 2.1 2.2	kground and Related Work Technical Background	15 15 15 15 15
3	Prol 3.1	Description of the Dataset	16 16 16
	3.2	3.1.3 Structure of the Data	16 18 18 18
	3.3	Dataset Analysis	18 18
4	3.4	Solution Approach	22 23
7	4.1		23
		Implementation of the Big Picture	$\frac{23}{23}$
	4.4	THIVE LOUIVIL WITH EVIOURE SASTERIS	∠.•

5 Evaluation and Discussion				
	5.1	Definition of the data sets used for the evaluation	24	
	5.2	Evaluation of the results	24	
	5.3	Reflection on the results	24	
6	Con	clusion	25	
	6.1	Future Directions	25	
	6.2	Limitations	25	
Li	terat	urverzeichnis	26	
[e	vtl. A	Anhang]	27	
Αſ	fidav	it	28	

List of Figures

3.1	Pairplot of selected GPS route features grouped by area label .	19
3.2	Correlation Matrix of selected GPS route features grouped by	
	area label	20
3.3	Boxplot of point density grouped by area label	21

List of Tables

3.1	Structure of a Tracking Entry	17
3.2	Structure of a GPS Point Entry	17

List of Abbreviations

 ${f GPS}$ Global Positioning System

AI Artificial Intelligence

ML Machine Learning

 $\mathbf{API}\;$ Application Programming Interface

 \mathbf{CSV} Comma-Seperated Values

1 Introduction

"The world's most valuable resource is no longer oil, but data" [1]

In today's digital age, where electronic devices are a part of everyones daily lives, increasing amounts of data are being generating every day, and this trend shows no signs of slowing down. [2] With this increase in data, businesses ranging across all industries recognize the importance of leveraging it for decision-making and operational efficiency. This has lead to a growing demand for technologies that can gather insights from data and integrate seamlessly into strategic processes.

One industry in which data-driven decision-making is becoming increasingly important is the waste management industry.

1.1 Problem Statement

Companies operating in the waste collection business have trouble calculating accurate bids for new service areas when expaning their field of business. They often have to make assumptions and rough estimates on several paremters concerning the operation cost in new service areas. A data driven estimation can help create more accurate and less risky assessments for unknown collection locations. This can help reduce uncertainties and improve the accuracy of bid calculations.

1.2 Motivation

Notes: GPS Data is one of the most informative data and can lead to many insights, which infeo is interested in.

1.3 Solution Approach

1.4 Structure of the Work

2 Background and Related Work

- 2.1 Technical Background
- 2.2 Related Work
- 2.2.1 Comparison of GPS-Routes

3 Problem Definition and Solution Approach

3.1 Description of the Dataset

3.1.1 Overview

The dataset used is a collection of GPS tracking data collected by wastecollection vehicles from various wastecollection businesses and provided by infeo GmbH. It represents real-world data collected during regular wastecollection operation in the DACH region.

3.1.2 Source and Collection Method

The data was obtained by the onboard tracking systems installed by infeo GmbH, which collects GPS coordinates in regular intervals during regular operation. Each tracking represents a complete wastecollection route taken and includes metadata aswell as a list of GPS coordinates.

3.1.3 Structure of the Data

Each dataset entry represents a single recorded route refered to as tracking and contains metadata as well as a time ordered list of gps coordinates.

Each tracking contains the following fields:

Table 3.1: Structure of a Tracking Entry

Field	Type	Description
id	Integer	Unique identifier of the tracking entry.
name	String	Name of the tracking (randomized for
		anonymization) identification.
description	String	Route metadata, often includes internal
		codes.
recorded	DateTime	Start date and time of the tracking.
length	Float	Total length of the route in kilometers.
duration	Integer	Total duration of the tracking in nanosec-
		onds.
vehicleId	Integer / Null	ID of the vehicle (nullified for anonymiza-
		tion).
tourId	Integer / Null	ID of the associated tour (nullified for
		anonymization).
isExported	Boolean	Flag indicating if the tracking was exported.
editState	Integer	Edit state used by the system.

Each GPS point contains the following fields:

Table 3.2: Structure of a GPS Point Entry

Field	Type	Description
id	Integer	Unique identifier of the GPS point.
time	DateTime	Timestamp of when the point was recorded.
latitude	Float	Latitude coordinate.
longitude	Float	Longitude coordinate.
speed	Float	Instantaneous speed at the time (in km/h).
heading	Float	Direction of movement in degrees.
sequence Integer Position of the		Position of the point in the tracking se-
		quence.
metaTag	Integer	Custom metadata tag.
metaValue	String	Value associated with the metadata tag.
pointBaseType	Integer	Internal point type used by the system.

3.1.4 Size and Coverage

Formatvorlage für den Fließtext.

3.1.5 Limitations

Missing Values: GPS gaps etc, useless trackings etc.

3.2 Big Picture

Formatvorlage für den Fließtext.

3.3 Dataset Analysis

Formatvorlage für den Fließtext.

3.3.1 Sample Analysis

Formatvorlage für den Fließtext.
Pairplot
Correlation matrix
Boxplot

Figure 3.1: Pairplot of selected GPS route features grouped by area label

Figure 3.2: Correlation Matrix of selected GPS route features grouped by area label

Figure 3.3: Boxplot of point density grouped by area label

3.4 Solution Approach

4 Implementation

4.1 Implementation of the Big Picture

Formatvorlage für den Fließtext.

4.2 Integration with existing systems

5 Evaluation and Discussion

5.1 Definition of the data sets used for the evaluation

Formatvorlage für den Fließtext.

5.2 Evaluation of the results

Formatvorlage für den Fließtext.

5.3 Reflection on the results

6 Conclusion

6.1 Future Directions

Formatvorlage für den Fließtext.

6.2 Limitations

Bibliography

- [1] "The world's most valuable resource is no longer oil, but data," *The Economist*, ISSN: 0013-0613. [Online]. Available: https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data (visited on 04/06/2025).
- [2] T. Petroc, Data growth worldwide 2010-2028, en. [Online]. Available: https://www.statista.com/statistics/871513/worldwide-data-created/(visited on 04/11/2025).

[evtl. Anhang]

Affidavit

I hereby declare in lieu of oath that I have written this Bachelor thesis independently and without the use of aids other than those specified. The passages taken directly or indirectly from other sources directly or indirectly from other sources are marked as such. The thesis has not been neither in the same nor in a similar form to any other examination authority nor has it been published.

Dornbirn, on 15. May 2025

Matthias Hefel