Homework 02 Joseph Blubaugh jblubau1@tamu.edu STAT 641-720 1. a)

$$f(y) = P(Y = y) = p(1 - p)^{y}$$

$$F(y) = \sum_{k=0}^{y} P(Y = k)$$

$$= P \sum_{k=0}^{y} (1 - p)^{k}$$

$$= P \frac{1 - (1 - p)^{y+1}}{1 - (1 - p)}$$

$$= 1 - (1 - p)^{y+1}$$

b)

$$F(y) = 1 - (1 - p)^{y+1} \ge q$$

$$1 - q \ge (1 - p)^{y+1}$$

$$log(1 - q) \ge (y + 1)log(1 - p)$$

$$\frac{log(1 - q)}{log(1 - p)} \ge (y + 1)$$

$$\frac{log(1 - q)}{log(1 - p)} - 1 \ge y$$

2. a) The cdf of z is not affected by α and θ

$$F_{Z}(z) = P(Z \le z) = P(\frac{y - \theta}{\alpha} \le z)$$

$$= P(y \le \alpha z + \theta)$$

$$= Fy(\alpha z + \theta)$$

$$= 1 - exp\left[-\left(\frac{\alpha z + \theta - \theta}{\alpha}\right)^{\gamma}\right]$$

$$= 1 - exp\left[-z^{\gamma}\right]$$

b)

$$F_Z = 1 - exp\left(-\frac{y-\theta}{\alpha}\right)^{\gamma} \ge q$$

$$1 - q \ge exp\left(-\frac{y-\theta}{\alpha}\right)^{\gamma}$$

$$log(1-q) \ge \left(-\frac{y-\theta}{\alpha}\right)^{\gamma}$$

$$log(1-q)^{\frac{1}{\gamma}} \ge -\frac{y-\theta}{\alpha}$$

$$-a(-log(1-q))^{\frac{1}{\gamma}} \ge y - \theta$$

$$\frac{a(-log(1-q))^{\frac{1}{\gamma}}}{\theta} \ge y = y$$

c)

$$y = 30$$
; theta = 10; gamma = 2; alpha = 25
1 - $exp(-(y - theta)/alpha)^gamma$

[1] 0.7981035

d)

$$q = .4$$
; theta = 10; gamma = 2; alpha = 25 (alpha * $(-\log(1 - q))^{(1/gamma)}$) / theta

[1] 1.786802

3. a)

$$F_{Z}(z) = P(Z \le z) = P(\frac{Y}{B} \le z)$$

$$= P(y \le z\beta)$$

$$= F_{y}(z\beta)$$

$$= 1 - exp\left(-\frac{(z\beta)^{\gamma}}{\beta}\right)$$

$$= 1 - exp\left(-z^{\gamma}\beta^{\gamma-1}\right)$$

b)

$$Z = \frac{y}{\beta^{y\gamma}}$$

$$F_Z(z) = P(\frac{Y}{\beta^{y\gamma}})$$

$$= P(y \le z\beta^{y\gamma})$$

$$= 1 - exp\left[-\left(\frac{z\beta^{y\gamma}}{\beta}\right)^{\gamma}\right]$$

$$= 1 - exp\left[-z\frac{\beta}{beta}\right]$$

$$= 1 - e^{-z}$$

- 4. a) Expected value of the probability function, λ = .25
 - b) 52 weeks in a year with a λ = .25, so it is certain at least one event will occur in any give year.

ppois(52, .25)

[1] 1

- 5. a) Chi-square(6)
 - b) t(6)
 - c) F(1,7)
 - d) Cauchy(0,1)
 - e) F(2,3)
- 6. a) W = Weibull(γ = 4, α = 1.5)

$$38 = 1 - exp - \left(\left(\frac{y}{1.5}\right)^4\right)$$

$$1 - .38 = e^{\left(\frac{y}{1.5}\right)^4}$$

$$-\left(\frac{y}{1.5}\right)^4 = log(.62)$$

$$\frac{y}{1.5} = \left(-log(.62)\right)^{\frac{1}{4}}$$

$$y = 1.5\left[-log(.62)\right]^{.25}$$

$$y = 1.24$$

b) N = NegBin(r = 8, p = .7), C = 2

pnbinom(1, 8, .7); pnbinom(2, 8, .7)

c)
$$B = Bin(20, .4), C = 7$$

d)
$$P = Poisson({\lambda = 3}, C = 2$$

e)
$$U = Uniform(.3, 2.5)$$

$$.38 = \frac{1}{b-a}$$

$$Q = a + p(b-a)$$

$$= .3 + .38(2.5 - .3)$$

$$= 1.36$$

- 7. a) Cauchy, because its the ratio of 2 standard normal distributions
 - b) Gamma, because T is the length of time between events
 - c) Uniform, the probability is equally likely
 - d) Weibull, because we are measuring the time it takes for an event to occur
 - e) Bernoulli, the possible values are 1/0, pass/fail
 - f) Poisson, because the interval of time is fixed
 - g) Double Exponential, a cubic function would have a very steep incline
 - h) Binomial, because known probability of failure with fixed n
 - i) Hypergeometric, sampling without replacement would make most sense
 - j) Normal, 68 & 95 percent are the 1st and 2nd standard deviations of the normal distribution
 - k) Negative Binomial, because the interviews will continue until the 50th success
 - 1) Poisson, because the space of the wing is fixed and we are counting events
 - m) Exponential, because we are measuring the time till an event occurs based on a poisson distribution
 - n) Chi-square, because of the small sample size, it should be normal as the samples increase
 - o) F, right skewed distribution