Laboratorium 08 - Rozwiązywanie równań nieliniowych

Błażej Naziemiec i Szymon Żuk

12 maja 2025

Wstęp

Celem laboratorium jest zapoznanie się z różnymi metodami rozwiązywania równań nieliniowych z użyciem metod iteracyjnych.

Zadanie 1

Celem tego zadania jest znalezienie miejsc zerowych opisanych poniżej funkcji nie wykorzystując metody Newtona.

Na początku zdefiniowaliśmy funkcje oraz estymację, gdzie przewidujemy, że funkcja ma jendo ze swoich miejsc zerowych:

$$\begin{split} f_a(x) &= x^3 - 5x, x_0 = 1 \\ f_b(x) &= x^3 - 3x + 1, x_0 = 1 \\ f_c(x) &= 2 - x^5, x_0 = 0.01 \\ f_d(x) &= x^4 - 4.28x^2 - 5.29, x_0 = 0.8 \end{split}$$

oraz ich pochodne pierwszego stopnia:

$$f'_a(x) = 3x^2 - 5$$

 $f'_b(x) = 3x^2 - 3$
 $f'_c(x) = -5x^4$
 $f'_d(x) = 4x^3 - 8.56x$

Wyznaczyliśmy je, ponieważ sądziliśmy, że pozwolą one na wyznaczenie miejsc zerowych tych funkcji metodą Newtona. Jednakże, w przypadku każdej z tych funkcji otrzymaliśmy błędy, które zostały wypisane dla każdej z funkcji.

Metoda Newtona dla $f_a(x)$:

Failed to converge after 50 iterations, value is 1.0.

Metoda Newtona dla $f_b(x)$:

Derivative was zero. Failed to converge after 1 iterations, value is 1.0.

Metoda Newtona dla $f_c(x)$:

Failed to converge after 50 iterations, value is 713.6238464957056.

Metoda Newtona dla $f_d(x)$:

Failed to converge after 50 iterations, value is 0.7876130494100906.

Analizując otrzymane wyniki, wykresy funkcji wygenerowane z pomocą programu Geogebra (zamieszczone niżej) oraz slajd z intro do labolatorium z przypadkami, dla których metoda Newtona nie działa, do każdej z funkcji przypisaliśmy jeden z przypadków:

 $f_a - > \text{flat spot}$

 $f_b - > \text{flat spot}$

 $f_c - > \text{flat spot}$

 $f_d - > \text{cycle}$

Aby znaleźć miejsca zerowe tych funkcji, wykorzystaliśmy metodę bisekcji. W tym celu użyliśmy funkcję bisect z biblioteki scipy.optimize. W tym celu wyznaczyliśmy dla każdej funkcji przedziały, w których dana funkcja posiada miejsca zerowe. Następnie, otrzymane wyniki przedstawiliśmy w poniższej tabeli:

	f	a	b	bisect(f, a, b)
a	x**3 - 5*x	-1.00	1	0.000000
b	$x^{**}3 - 3^*x + 1$	0.00	1	0.347296
\mathbf{c}	2 - x**5	0.01	100	1.148698
d	x**4 - 4.29*x**2 - 5.29	0.80	100	2.300000

Tabela 1. Miejsca zerowe wyliczone metodą bisekcji

Zgodnie z wytycznymi jakie dostaliśmy podczas konsultacji na zajęciach, dodaliśmy też rozwiązanie za pomocą metody Newtona. Wybraliśmy nowe punkty startowe, które były bliżej faktycznych miejsc zerowych. Otrzymane wyniki przedstawiliśmy w poniższej tabeli:

	f	x0	newton(f, x0, df)
a	x**3 - 5*x	0.1	0.000000
b	$x^{**}3 - 3^*x + 1$	0.4	0.347296
\mathbf{c}	2 - x**5	1.2	1.148698
d	x**4 - 4.29*x**2 - 5.29	2.1	2.300000

Tabela 2. Miejsca zerowe wyliczone metodą Newtona

W celu sprawdzenia poprawności otrzymanych wyników, porównaliśmy je z wykresami funkcji narysowanych w programie Geogebra.

 $Wykres\ 1.\ Wykres\ funkcji\ f_a(x)$

Wykres 2. Wykres funkcji $f_b(x)$

 $Wykres\ 3.\ Wykres\ funkcji\ f_c(x)$

Wykres 4. Wykres funkcji $f_d(x)$

Analizując wykresy, zauważamy, że otrzymane metodą biskecji miejsca zerowe są zgodne z miejscami zerowymi funkcji wyznaczonymi w programie Geogebra. W związku z tym, możemy stwierdzić, że otrzymane wyniki są poprawne.

Podsumowując, metoda Newtona nie była w stanie znaleźć miejsc zerowych zgodnie z przewidywaniami. Metoda bisekcji bez problemów znalazła miejsca zerowe, które są poprawne.

Zadanie 2

Na początku zdefiniowaliśmy funkcję

$$f(x) = x^2 - 3x + 2 = 0$$

oraz funkcje definujące rówanoważny schemat iteracyjny

$$\phi_1(x) = \frac{x^2 + 2}{3}$$

$$\phi_2(x) = \sqrt{3x - 2}$$

$$\phi_3(x) = 3 - \frac{2}{x}$$

$$\phi_4(x) = \frac{x^2 - 2}{2x - 3}$$

Następnie przeanalizowaliśmy zbieżność oraz rząd zbieżności schematów iteracyjnych odpowiadających funkcjom $\phi_i(x)$ dla pierwiastka $\alpha=2$ badając wartości $|\phi_i(2)|$. Otrzymane wyniki przedstawiliśmy w tabeli poniżej.

	phi_i(2)
phi1	1.333333
phi2	0.750000
phi3	0.500000
phi4	0.000000

Tabela 3. Wartości $|\phi i(2)|$ dla poszczególnych schematów iteracyjnych

Można zauważyć, że tylko dla schematu $\phi_1(x)$ mamy $|\phi_i'(2)| > 1$, co oznacza, że schemat ten nie jest zbieżny w punkcie. Wszystkie pozostałe schematy są zbieżne. Następnie, potwierdziliśmy to obliczając wartość miejsca zerowego funkcji f(x) dla każdego ze schematów $\phi_i(x)$. Wykonaliśmy 10 iteracji w celu jak najlepszego przybliżenia wartości miejsca zerowego. Otrzymane wyniki przedstawiliśmy w tabeli poniżej.

	phi1	phi2	phi3	phi4
0	3.000000e+00	3.000000	3.000000	3.000000
1	3.666667e+00	2.645751	2.333333	2.333333
2	5.148148e+00	2.436648	2.142857	2.066667
3	9.501143e+00	2.304332	2.066667	2.003922
4	$3.075724e{+01}$	2.216528	2.032258	2.000015
5	3.160026e+02	2.156289	2.015873	2.000000

	phi1	phi2	phi3	phi4
6	3.328655e + 04	2.113970	2.007874	2.000000
7	3.693315e+08	2.083725	2.003922	2.000000
8	4.546858e + 16	2.061838	2.001957	2.000000
9	6.891304e + 32	2.045853	2.000978	2.000000
10	1.583003e+65	2.034099	2.000489	2.000000

Tabela 4. Wartości przybliżające miejsce zerowe funkcji w kolejnych iteracjach

Jak widać na powyższej tabeli, wartości miejsc zeorwych są zgodne dla wszystkich funkcji ϕ poza $\phi_1(x)$, która nie jest zbieżna. Potwierdza to nasze wcześniejsze obliczenia odnośnie zbieżności poszczególnych funkcji $\phi_i(x)$. Następnie wyznaczyliśmy eksperymetalnie rząd zbieżności każdej metody iteracyjnej ze wzoru

$$r = \frac{\ln \frac{\varepsilon_k}{\varepsilon_{k+1}}}{\ln \frac{\varepsilon_{k-1}}{\varepsilon_k}}$$

Otrzymane wyniki przedstawiliśmy w tabeli poniżej.

	phi1	phi2	phi3	phi4
0	1.245021	0.894696	0.771244	1.464974
1	1.365183	0.922621	0.899495	1.760374
2	1.547766	0.942910	0.952498	1.958580
3	1.778874	0.957728	0.976872	1.998598
4	1.950815	0.968608	0.988585	NaN
5	1.997311	0.976632	0.994329	NaN
6	1.999987	0.982574	0.997173	NaN
7	2.000000	0.986987	0.998589	NaN
8	2.000000	0.990272	0.999295	NaN

Tabela 5. Wartości przybliżające rząd zbieżności schematów iteracyjnych

Dla schematu ϕ_4 wyniki od 4 iteracji są równe NaN, ponieważ kolejne wartości były bardzo zbliżone, co spowodowało dzielenie przez zero. Dla schematów ϕ_2 i ϕ_3 otrzymaliśmy liniowy rząd zbieżności, a dla ϕ_4 kwadratowy. Dla schematu ϕ_1 wynik wskazuje na kwadratowy rząd zbieżności, pomimo tego, że schemat ten nie jest zbieżny.

Następnie dla każdej z funkcji $\phi_i(x)$ obliczyliśmy wartość błędu bezwzględnego. Otrzymane wyniki przedstawiliśmy w postaci wykresu z użyciem skali logarytmicznej na osi y.

Wykres 1. Błąd względny każdej metody w zależności od numeru iteracji

Następnie wykonaliśmy wykres również dla błędu bezwzględnego, ale tylko dla funkcji zbieżnych. Wynik przedstawiliśmy poniżej.

Wykres 2. Błąd względny zbieżnych metod w zależności od numeru iteracji

Z pierwszego wykresu można zauważyć, że błąd dla funkcji $\phi_1(x)$ jest największy, co jest spowodowane tym, że funkcja ta nie jest zbieżna. Potwierdza to nasze wcześniejsze wnioski odnośnie zbieżności tej funkcji. Z drugiego wykresu można wywnioskować, że funkcja $\phi_4(x)$ daje najlepsze wyniki (posiada najmniejszy błąd), co sprawia, że uwidacznia się fakt, iż funkcja $\phi_4(x)$ ma rząd zbieżności większy niż liniowy. Funkcje $\phi_2(x)$ oraz $\phi_3(x)$ mają podobny rząd zbieżności, jednakże minimalnie lepsze wyniki zwracałą funkcja $\phi_3(x)$.

Zadanie 3

W tym zadaniu mieliśmy napisać schematy iteracji wg metody Newtona dla równań nieliniowych:

(a)
$$x^3 - 2x - 5 = 0$$

$$(b) \quad e^{-x} = x$$

$$(c)$$
 $x\sin(x) = 1.$

Następnie trzeba było ustalić ile iteracji należy wykonać, aby osiągnąć 24 i 53-bitową dokładność wyniku, jeśli początkowe przybliżenie pierwiastka x_0 ma dokładność 4 bitów.

Na początku zdefiniowaliśmy funkcje $f_1(x)=x^3-2x-5$, $f_2(x)=e^{-x}-x$, $f_3(x)=xsin(x)-1$ oraz ich pochodne. Następnie stworzyliśmy schematy iteracyjne metody Newtona dla każdej z funkcji, zgodnie ze wzorem:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Za pomocą tych schematów wyznaczyliśmy najpierw pierwiastki z dokładnością 4 bitów. W celu ustalenia dokładności porównywaliśmy różnicę wartości x w kolejnych iteracjach z $\epsilon=2^{-4}$:

	x0 4bit
f1	2.094568
f2	0.567143
f3	1.114157
_	

Tabela 6. Miejsca zerowe z 4-bitową dokładnością

Następnie wyznaczyliśmy przybliżenia z 24-bitową dokładnością:

	x0 24bit	Liczba iteracji
f1	2.094551	2
f2	0.567143	2
f3	1.114157	1

Tabela 7. Miejsca zerowe z 24-bitową dokładnością i liczba iteracji potrzebna do uzyskania ich

Jak widać w zamieszczonej powyżej tabelce, schematy iteracyjne Newtona bardzo szybko otrzymują wynik z wymaganą dokładnością, co pokazuje skuteczność tej metody.

Potem wyznaczyliśmy przybliżenia z 53-bitową dokładnością:

	x0 53bit	Liczba iteracji
f1	2.094551	3
f2	0.567143	3
f3	1.114157	1000

Tabela 8. Miejsca zerowe z 53-bitową dokładnością i liczba iteracji potrzebna do uzyskania ich

W tym przypadku liczba iteracji jest wciąż bardzo niska dla funkcji f_1 i f_2 , ale w przypadku f_3 nie udało się uzyskać wymaganej dokładności. Funkcja ta prawdopodobnie nie spełnia warunków zbieżności dla metody Newtona.

Zgodnie z wytycznymi otrzymanymi podczas konsultacji na zajęciach dodaliśmy teorytyczną analizę liczby iteracji potrzebnej do uzyskania danych dokładności. Metoda Newtona ma kwadratowy rząd zbieżności zatem liczba bitów uzyskanych z iteracji powinna podwajać się z każdą iteracją. Zaczynając z 4-bitowym przybliżeniem pierwiastka, otrzymujemy następujące liczby bitów w kolejnych iterajcach:

	Liczba bitów
x0	4
iteracja 1	8
iteracja 2	16
iteracja 3	32
iteracja 4	64

Tabela 9. Teorytyczna liczba bitów w danej iteracji

Dokładność 24-bitową powinniśmy uzyskać po 3 iteracjach, a 53-bitową po 4. Nie zgadza się to z wynikami uzyskanymi eksperymentalnie.

Zadanie 4

W tym zadaniu mieliśmy napisać schemat iteracji wg metody Newtona dla układu równań nieliniowych:

$$x_1^2 + x_2^2 = 1$$
$$x_1^2 - x_2 = 0.$$

Korzystajac z podanych wzorów na rozwiazania tego układu równań:

$$x_1 = \pm \sqrt{\frac{\sqrt{5}}{2} - \frac{1}{2}}$$

$$x_2 = \frac{\sqrt{5}}{2} - \frac{1}{2}$$

oraz obliczyć błąd względny rozwiązania znalezionego metodą Newtona.

Najpierw zdefiniowaliśmy funkcje $f_1(x_1,x_2)=x_1^2+x_2^2-1$, $f_2(x_1,x_2)=x_1^2-x_2$ oraz obliczyliśmy wartości rozwiązań podanych w treści zadania. Nastepnie skorzystaliśmy z Wikipedii, aby znaleźć wzór na wielowymiarowy schemat iteracyjny Newtona:

$$J_F(x_n)(x_{n+1} - x_n) = -F(x_n)$$

gdzie x_k jest wektorem przybliżającym rozwiązanie (x_1, x_2) w k-tej iteracji, $F(x_1, x_2) = (f_1(x_1, x_2), f_2(x_1, x_2)), J_F$ to jakobian funkcji F. Do wyznaczenia jakobianu wykorzystaliśmy funkcję scipy.differentiate.jacobian. Otrzymaliśmy następujące wyniki:

Dokładne rozwiązanie: x1 = 0.78615138, x2 = 0.61803399

Rozwiązanie znalezione metodą Newtona: x1 = 0.78615138, x2 = 0.61803399

Błąd względny dla x1: 0.00000000e+00 Błąd względny dla x2: 1.79637859e-16

Rozwiązanie znalezione metodą Newtona dało dokładny wynik dla x1 i bardzo zbliżony wynik dla x2. Metoda Newtona jest więc skuteczna w przypadku problemów wielowymiarowych.

Podsumowując całość labolatorium, metoda Newtona jest bardzo skuteczną metodą rozwiązywania równań nieliniowych. Wymaga ona niewielkiej liczby iteracji i działa też dla przypadków wielowymiarowych. Wadą jest to, że istnieją przypadki, w których metoda zawodzi. Wtedy trzeba użyć innej metody np. bisekcji, lub zmienić punkt startowy.

Bibliografia

- Materiały zamieszczone na platformie Microsoft Teams w zespole MOwNiT~2025 w zakładce Materiały~z~zajęć/lab08/lab8-intro.pdf
- Metoda Newtona w Wikipedii: https://pl.wikipedia.org/wiki/Metoda_Newtona
- Program Geogebra: https://www.geogebra.org/