Gradient Descent for Linear Regression

CS 335

Dan Sheldon

Review: Supervised Learning

Observe list of training examples $(x^{(i)},y^{(i)})$, want to find a function h such that $y^{(i)}\approx h(x^{(i)})$ for all i

Variations:

- ▶ Type of x (real number, image, etc.)
- ▶ Type of y (real number, 0/1, $\{0,1,\ldots,k\}$)
- ► Type of *h*

Cost function paradigm

Define **parametric** function $h_{\theta}(x)$ with parameters $\theta_0, \dots, \theta_n$. E.g.:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Define cost function $J(\theta_0,\dots,\theta_n)$ to measure quality (lower is better) of different hypotheses. E.g.:

$$J(\theta_0, \theta_1) = \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Use a numerical **optimization algorithm** to find θ_0,\ldots,θ_n to minimize $J(\theta_0,\ldots,\theta_n)$. E.g., gradient descent.

Gradient descent in higher dimensions

Straightforward generalization to minimize a function $J(\theta_0,\dots,\theta_n)$ of many variables:

- lacktriangle Intialize $heta_j$ arbitrarily for all j
- ► Repeat until convergence

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$$
 for all j

(simultaneuous updates)

Getting started in Python

- 1. Interactive mode
- 2. Jupyter
- 3. Run a script
- 4. PyCharm