Tópicos en Matemáticas Discretas III - Online Algorithms and Scheduling

Professor: Andreas Wiese.

Teaching Assistant: Andrés Cristi.

Homework #3

P1. a) Show that the greedy algorithm for the k-server problem is not c-competitive for any constant c.

- b) A space (X, d) is called asymmetric if $d: X^2 \to [0, +\infty]$ satisfies the triangle inequality but not the symmetry condition. Show that the competitive ratio for k-server for such spaces cannot be bounded by a function of k.
- **P2.** Consider a uniform MTS on n states, i.e. a space (X, d) such that d(x, y) = 1 for every pair $x, y \in X$; in which the tasks take values only in $\{0, 1\}$.
 - a) Find a random instance on k tasks such that the expected cost of any deterministic algorithm is k/n.
 - b) Let c(k) be the expected cost of the optimal offline algorithm. Prove that $\lim_k \frac{c(k)}{k} = \frac{1}{nH_n}$, where H_n is the n-th harmonic number.
 - c) Conclude that no random algorithm can be better than H_n -competitive.
 - d) For a state s and a sequence of tasks $\hat{\tau}$, define $\rho(s,\hat{\tau}) = w(s,\hat{\tau}) \min_x w(x,\hat{\tau})$, where w is the work function of the MTS. Consider $\rho(\cdot,\hat{\tau})$ as a point in \mathbb{R}^X , and describe its possible values.
 - e) Consider now ρ as a description of the system after a secuence of tasks. Find a reasonable random algorithm that moves to a random state given by a distribution that depends only on ρ , that is H_n -competitive. **Hint:** Consider the potential $\Phi = H_m$, where $m = |\arg\min_{x \in X} \rho(x, \hat{\tau})|$.
- **P3.** k-server and paging.
- **P4.** SC 1/2.