* $\mathcal{E}_A = \varnothing - \mathbf{пустое}$ отношение.

2 **Binary Relations Cheatsheet**

2.1 Терминология и обозначения

- $*A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ декартово произведение множеств A и B. Cartesian product
- $* A^2 = A \times A -$ **декартов квадрат** множества A. Cartesian square
 - Binary relation
- * $R \subseteq A \times B$ **бинарное отношение** R, определённое на паре множеств A и B. * $R \subseteq A^2$ — (гомогенное) бинарное отношение на множестве A. Homogeneous relation (endorelation)
- Ordered pair
- * a R b элементы a и b находятся в отношении R, т.е. $\langle a,b\rangle\in R$.

Empty relation

* id_A = { $\langle x, x \rangle \mid x \in A$ } — тождественное (диагональное) отношение.

Identity relation

* $\mathfrak{U}_A = A^2 = \{ \langle x, y \rangle \mid x, y \in A \}$ — полное (универсальное) отношение.

Universal relation

2.2 Операции над отношениями

* $R \cup S = \{\langle a, b \rangle \mid (a R b) \lor (a S b)\}$ — объединение отношений R и S.

Union of relations

* $R \cap S = \{\langle a, b \rangle \mid (a R b) \land (a S b)\}$ — пересечение отношений R и S.

- Intersection of relations Converse relation
- * $R^{-1} = \{\langle b, a \rangle \mid \langle a, b \rangle \in R\} \subseteq B \times A$ отношение, **обратное** к $R \subseteq A \times B$.

* $\overline{R} = \{\langle a, b \rangle \mid \langle a, b \rangle \notin R\}$ — дополнение отношения R.

- Complementary relation
- * R; $S = S \circ R = \{\langle x, y \rangle \mid \exists z : (x R z) \land (z S y)\}$ композиция отношений R и S. \circ Если $R \subseteq A \times B$ и $S \subseteq B \times C$, то $R ; S \subseteq A \times C$.
- Composition of relations
- * $R^{\circ i+1} = R \circ R^{\circ i}$ **«композитная» (функциональная) степень** отношения R. Functional power При этом $R^{\circ 1} = R$, $R^{\circ 0} = \mathrm{id}_A$. Чаще используется нотация R^i , совпадающая с нотацией Декартовой степени.
- * $R[M] = \{y \mid \exists x \in M : x \ R \ y\}$ применение отношения R ко множеству M.
- * Замыкание отношения R относительно свойства P минимальное (по включению) надмножество R, обладающее свойством P. Closure
 - $\circ~R^{=}=R^{r}=R\cup\mathrm{id}_{A}-\mathbf{pe}$ флексивное замыкание отношения $R\subseteq A^{2}.$

Reflexive closure

∘ $R^{\sim} = R^{s} = R \cup R^{-1}$ — симметричное замыкание отношения R.

- Symmetric closure
- $\circ R^+ = R^t = \bigcup R^n$ транзитивное замыкание отношения R, где $R^1 = R$, $R^{k+1} = R^k \circ R$.
- Transitive closure
- $\circ R^{\equiv} = ((R^r)^s)^t$ рефлексивное симметричное транзитивное замыкание отношения R. Минимальное отношение эквивалентности, содержащее R. Reflexive symmetric transitive closure
- * Сокращение отношения R- минимальное отношение, замыкание которого совпадает с замыканием R.
 - \circ Рефлексивное сокращение $R^{\neq} = R \setminus \mathrm{id}_A$ минимальное отношение, рефлексивное замыкание которого совпадает с рефлексивным замыканием R, то есть $(R^{\neq})^{=} = R^{=}$. Reflexive reduction
 - \circ Симметричное сокращение R^* минимальное отношение, симметричное замыкание которого совпадает с симметричным замыканием R, то есть $(R^{+})^{\sim} = R^{\sim}$.
 - \circ Транзитивное сокращение R^-- минимальное отношение, транзитивное замыкание которого совпадает с транзитивным замыканием R, то есть $(R^{-})^{+} = R^{+}$. Transitive reduction Транзитивное сокращение R^- отношения R без циклов (в том числе, без петель) можно найти, используя его транзитивное замыкание: $R_{\mathrm{DAG}}^- = R \setminus (R \circ R^+) = R \setminus \bigcup R^n$.

Для нахождения транзитивного сокращения отношения без циклов, но с петлями, необходимо запомнить существующие петли, убрать их, осуществить транзитивное сокращение (см. выше), а затем вернуть исходные петли: $R_{\text{loop-DAG}}^- = (R^{\neq})^- \cup \{(x, x) \mid x \ R \ x\}.$

Tolerance relation

Equivalence class

Order theory

Linear (total) order

Strict partial order

Strict total order

Quotient set

Preorder Partial order

Equivalence relation

2.3 Некоторые свойства гомогенных бинарных отношений

Возможные свойства гомогенного бинарного отношения $R \subseteq M^2$: Properties of homogeneous relations

Свойство		Формальное определение
Рефлексивность	Reflexive	$\forall x \in M : x R x$
Иррефлексивность	Irreflexive	$\forall x \in M : \neg(x R x)$
Корефлексивность	Coreflexive	$\forall x, y \in M : (x R y) \to (x = y)$
Симметричность	Symmetric	$\forall x, y \in M : (x R y) \to (y R x)$
Антисимметричность	Antisymmetric	$\forall x, y \in M : (x R y) \land (y R x) \rightarrow (x = y)$
Асимметричность	Asymmetric	$\forall x, y \in M : (x R y) \to \neg (y R x)$
Транзитивность	Transitive	$\forall x, y, z \in M : (x R y) \land (y R z) \rightarrow (x R z)$
Антитранзитивность	Antitransitive	$\forall x, y, z \in M : (x R y) \land (y R z) \rightarrow \neg (x R z))$
Евклидовость (правая)	Right Euclidean	$\forall x, y, z \in M : (x R y) \land (x R z) \rightarrow (y R z)$
Евклидовость (левая)	Left Euclidean	$\forall x, y, z \in M : (y R x) \land (z R x) \rightarrow (y R z)$
Связность	Semiconnex	$\forall x, y \in M : (x \neq y) \to (x R y) \lor (y R x)$
Сильная связность	Connex	$\forall x, y \in M : (x R y) \lor (y R x)$
Плотность	Dense	$\forall x, y \in M : (x R y) \to \exists z \in M : (x R z) \land (z R y)$

2.4 Отношения эквивалентности

- * Отношение толерантности рефлексивное и симметричное.
- * Отношение эквивалентности рефлексивное, симметричное и транзитивное.
- $*[x]_R = \{y \in A \mid x R y\}$ класс эквивалентности элемента $x \in A$.
- * $A/_R = [A]_R = \{[x]_R \mid x \in A\}$ разбиение множества A на классы эквивалентности.

2.5 Отношения порядка

- * Предпорядок (квазипорядок) рефлексивное и транзитивное отношение.
- * Частичный порядок рефлексивное, антисимметричное и транзитивное отношение.
- * Линейный (полный) порядок сильно-связный частичный порядок.
- * Строгий частичный порядок иррефл., антисимм. и транзитивное отношение.
- * Строгий линейный (полный) порядок связный строгий частичный порядок.
- * Частично упорядоченное множество упорядоченная пара $\langle M,R \rangle$, где M произвольное множество, $R \subseteq M^2$ отношение *частичного порядка* на M. Partially ordered set (Poset)
- * Элемент упорядоченного множества $\langle M,R \rangle$ называется **максимальным**, если он *не меньше других* элементов, то есть *не существует элемента больше*. Дуально, элемент называется **минимальным**, если он *не больше других*, то есть *нет элемента меньше*.

 Маximal and minimal elements
 - $a \in M$ is **maximal** $\leftrightarrow \forall b \neq a : \neg(a R b) \equiv \nexists b \neq a : (a R b) \equiv \forall b \in M : (a R b) \rightarrow (a = b)$ $a \in M$ is **minimal** $\leftrightarrow \forall b \neq a : \neg(b R a) \equiv \nexists b \neq a : (b R a) \equiv \forall b \in M : (b R a) \rightarrow (b = a)$
- * Элемент упорядоченного множества $\langle M,R \rangle$ называется **наибольшим**, если он *больше всех* элементов. Дуально, элемент называется **наименьшим**, если он *меньше всех* элементов. $a \in M$ is **maximum** (**greatest**) $\leftrightarrow \forall b : (b R a)$ $a \in M$ is **minimum** (**least**) $\leftrightarrow \forall b : (a R b)$
- * $(x \lessdot y) \leftrightarrow (x \lessdot y) \land \nexists z : ((x \lessdot z) \land (z \lessdot y))$ **отношение покрытия** $(y \lessdot nokpubaem \gt x)$. Covering relation $\circ \ll \gt = \mathsf{und}_{\mathsf{y}} \lor \mathsf$
- * Диаграмма Хассе визуализация частично упорядоченного множества $\langle M,R \rangle$ в виде графа *транзитивного сокращения R^-*. Вершины такого графа элементы множества M, а рёбра (изображаются по возможности направленными вверх) соответствуют *отношению покрытия*.

 Наsse diagram

2.6 Некоторые свойства гетерогенных бинарных отношений

Возможные свойства гетерогенного бинарного отношения $R \subseteq X \times Y$: Special ty

Special types of binary relations

Отношение	Формальное определение
Injective (left-unique)	$\forall x, z \in X \ \forall y \in Y : (x R y) \land (z R y) \rightarrow (x = z)$
Functional (right-unique)	$\forall x \in X \ \forall y, z \in Y : (x R y) \land (x R z) \rightarrow (y = z)$
One-to-One	Injective and Functional
One-to-Many	Injective and not Functional
Many-to-One	Not Injective and Functional
Many-to-Many	Not Injective and not Functional
Serial (left-total)	$\forall x \in X : \exists y \in Y : (x R y)$
Surjective (right-total)	$\forall y \in Y : \exists x \in X : (x R y)$

2.7 Функции как отношения

* Частичная функция $f: X \to Y -$ Functional бинарное отношение.

Partial function

* Функция $f: X \to Y$ — Functional и Serial бинарное отношение.

Function

2.8 Матричное представление отношений

Любое бинарное отношение $R \subseteq A \times B$, определённое на паре множеств $A = \{a_1, \dots, a_n\}$ и $B = \{b_1, \dots, b_m\}$ может быть представлено в виде матрицы $\|R\|$ размера $n \times m$, элементы которой — 0 или 1: Logical matrix

$$\|R\| = [r_{i,j}]$$
 $r_{i,j} = \begin{cases} 1 & \text{если } \langle a_i, b_j \rangle \in R \leftrightarrow a_i \ R \ b_j \\ 0 & \text{если } \langle a_i, b_j \rangle \notin R \leftrightarrow a_i \ R \ b_j \end{cases}$

Пусть $R \subseteq M^2$ — гомогенное бинарное отношение, определённое на множестве $M = \{m_1, \dots, m_4\}$. Примеры матриц отношений, обладающих некоторыми свойствами:

Легенда: