PyInSAR

Generated by Doxygen 1.8.13

Contents

1	Nam	nespace	Index													1
	1.1	Packa	ges								 	 	 	 	 	1
2	Hier	archica	l Index													3
	2.1	Class	Hierarchy								 	 	 	 	 	3
3	Clas	s Index														5
	3.1	Class	List								 	 ٠.	 	 	 	5
4	File	Index														7
	4.1	File Lis	st								 	 	 	 	 	7
5	Nam	nespace	Docume	ntation												g
	5.1	pyinsa	r Namespa	ace Refer	ence .						 	 	 	 	 	ç
	5.2	pyinsa	r.data_imp	ort Name	space F	Referen	ice .				 	 	 	 	 	9
	5.3	pyinsa	r.data_imp	ort.impor	t_geora	ster Na	ımespa	ice Re	eferer	ice	 	 	 	 	 	ç
		5.3.1	Function	Documer	ntation						 	 	 	 	 	10
			5.3.1.1	get_geo	raster_a	array()					 	 	 	 	 	10
			5.3.1.2	get_geo	raster_c	extent()					 	 	 	 	 	10
			5.3.1.3	open_ge	eoraster	r()					 	 	 	 	 	11
			5.3.1.4	print_ge	oraster_	_info()					 	 	 	 	 	11
	5.4	pyinsa	r.data_imp	ort.impor	t_raster	Names	space I	Refere	ence		 	 	 	 	 	11
		5.4.1	Function	Documer	ntation						 	 	 	 	 	12

ii CONTENTS

		5.4.1.1	open_gacos_tropospheric_delays()	12
		5.4.1.2	open_sgems_file()	12
		5.4.1.3	open_sgems_file_from_url()	12
		5.4.1.4	read_rsc_header_file()	13
5.5	pyinsa	r.data_imp	ort.import_srcmod Namespace Reference	13
	5.5.1	Function	Documentation	13
		5.5.1.1	read_srcmod_data()	13
5.6	pyinsa	r.data_imp	ort.import_utils Namespace Reference	14
	5.6.1	Function	Documentation	14
		5.6.1.1	download_file()	14
5.7	pyinsa	r.data_imp	ort.sentinel Namespace Reference	15
	5.7.1	Function	Documentation	15
		5.7.1.1	download_precise_orbits()	15
		5.7.1.2	download_products()	15
		5.7.1.3	get_url_precise_orbit()	16
		5.7.1.4	parse_satellite_data()	۱6
5.8	pyinsa	r.data_imp	ort.uavsar Namespace Reference	17
	5.8.1	Function	Documentation	17
		5.8.1.1	read_uavsar_metadata()	17
5.9	pyinsa	r.output Na	amespace Reference	17
5.10	pyinsa	r.output.ex	port_georaster Namespace Reference	17
	5.10.1	Function	Documentation	18
		5.10.1.1	create_georaster_from_array()	18
5.11	pyinsa	r.output.plo	ot_raster Namespace Reference	18
	5.11.1	Function	Documentation	19
		5.11.1.1	average_minmax_slices()	19
		5.11.1.2	plot_interactive_multiple_slicing()	19
		5.11.1.3	plot_interactive_slicing()	19

CONTENTS

5.12	pyinsai	r.processing	y Namespace Reference	 	 	20
5.13	pyinsai	r.processin	g.corrections Namespace Reference	 	 	20
5.14	pyinsa	r.processing	g.corrections.topography Namespace Reference	 	 	20
	5.14.1	Function I	Documentation	 	 	20
		5.14.1.1	ellipsoidal_earth_slant_ranges()	 	 	20
5.15	pyinsai	r.processin	g.corrections.troposphere Namespace Reference	 	 	21
	5.15.1	Function I	Documentation	 	 	21
		5.15.1.1	compute_delays()	 	 	21
		5.15.1.2	N()	 	 	22
		5.15.1.3	N_h()	 	 	22
		5.15.1.4	vapor_pressure()	 	 	22
5.16	pyinsai	r.processin	g.data_fetcher Namespace Reference	 	 	22
5.17	pyinsai	r.processin	g.data_fetcher.gdal Namespace Reference	 	 	23
5.18	pyinsai	r.processin	g.data_fetcher.hdf_retriever Namespace Reference	 	 	23
5.19	pyinsai	r.processin	g.data_fetcher.okada Namespace Reference	 	 	23
5.20	pyinsa	r.processin	g.deformation Namespace Reference	 	 	23
5.21	pyinsa	r.processin	g.deformation.elastic_halfspace Namespace Reference	 	 	23
5.22	pyinsa	r.processin	g.deformation.elastic_halfspace.fault Namespace Reference	 	 	24
5.23	pyinsai	r.processin	g.deformation.elastic_halfspace.mogi Namespace Reference	 	 	24
	5.23.1	Function I	Documentation	 	 	24
		5.23.1.1	compute_mogi_source_displacement()	 	 	24
5.24	pyinsai	r.processin	g.deformation.elastic_halfspace.okada Namespace Reference	 	 	24
	5.24.1	Function I	Documentation	 	 	26
		5.24.1.1	chinnerys_notation()	 	 	26
		5.24.1.2	chinnerys_notation_int()	 	 	26
		5.24.1.3	compute_fault_internal_displacement_type()	 	 	27
		5.24.1.4	compute_okada_displacement()	 	 	27
		5.24.1.5	compute_okada_internal_displacement()	 	 	27

iv CONTENTS

5.24.1.6 f_x_dip()
5.24.1.7 f_x_strike()
5.24.1.8 f_x_tensile()
5.24.1.9 f_y_dip()
5.24.1.10 f_y_strike()
5.24.1.11 f_y_tensile()
5.24.1.12 f_z_dip()
5.24.1.13 f_z_strike()
5.24.1.14 f_z_tensile()
5.24.1.15 fA_1()
5.24.1.16 fA_1_dip()
5.24.1.17 fA_1_strike()
5.24.1.18 fA_1_tensile()
5.24.1.19 fA_2()
5.24.1.20 fA_2_dip()
5.24.1.21 fA_2_strike()
5.24.1.22 fA_2_tensile()
5.24.1.23 fA_3()
5.24.1.24 fA_3_dip()
5.24.1.25 fA_3_strike()
5.24.1.26 fA_3_tensile()
5.24.1.27 fB_1()
5.24.1.28 fB_1_dip()
5.24.1.29 fB_1_strike()
5.24.1.30 fB_1_tensile()
5.24.1.31 fB_2()
5.24.1.32 fB_2_dip()
5.24.1.33 fB_2_strike()

CONTENTS

	5.24.1.34 fB_2_tensile()	35
	5.24.1.35 fB_3()	35
	5.24.1.36 fB_3_dip()	35
	5.24.1.37 fB_3_strike()	35
	5.24.1.38 fB_3_tensile()	36
	5.24.1.39 fC_1()	36
	5.24.1.40 fC_1_dip()	36
	5.24.1.41 fC_1_strike()	36
	5.24.1.42 fC_1_tensile()	37
	5.24.1.43 fC_2()	37
	5.24.1.44 fC_2_dip()	37
	5.24.1.45 fC_2_strike()	37
	5.24.1.46 fC_2_tensile()	38
	5.24.1.47 fC_3()	38
	5.24.1.48 fC_3_dip()	38
	5.24.1.49 fC_3_strike()	38
	5.24.1.50 fC_3_tensile()	39
	5.24.1.51 l1()	39
	5.24.1.52 l1_int()	39
	5.24.1.53 I2()	10
	5.24.1.54 I2_int()	10
	5.24.1.55 l3()	10
	5.24.1.56 l3_int()	ŀ1
	5.24.1.57 l4()	ŀ1
	5.24.1.58 I4_int()	l 1
	5.24.1.59 l5()	! 1
5.25 p	car.processing.deformation.elastic_halfspace.pipe Namespace Reference	12
5	1 Function Documentation	12

vi CONTENTS

5.25.1.1 compute_closed_pipe_displacement()	42
5.25.1.2 compute_open_pipe_displacement()	43
5.26 pyinsar.processing.deformation.elastic_halfspace.surface_load Namespace Reference	43
5.26.1 Function Documentation	44
5.26.1.1 compute_uniform_disk_load_displacement()	44
5.27 pyinsar.processing.discovery Namespace Reference	44
5.28 pyinsar.processing.discovery.classify_cnn Namespace Reference	45
5.29 pyinsar.processing.discovery.coherence Namespace Reference	45
5.30 pyinsar.processing.discovery.coregister Namespace Reference	45
5.31 pyinsar.processing.discovery.deburst Namespace Reference	45
5.32 pyinsar.processing.discovery.deformation_to_phase Namespace Reference	46
5.33 pyinsar.processing.discovery.flat_earth Namespace Reference	46
5.34 pyinsar.processing.discovery.interferogram Namespace Reference	46
5.35 pyinsar.processing.discovery.los_deformation Namespace Reference	46
5.36 pyinsar.processing.discovery.rotate_squares Namespace Reference	46
5.36.1 Function Documentation	47
5.36.1.1 rotateSquare()	47
5.37 pyinsar.processing.discovery.shown_cnn_classes Namespace Reference	47
5.38 pyinsar.processing.discovery.temporal_decorrelation Namespace Reference	47
5.39 pyinsar.processing.discovery.train_cnn Namespace Reference	47
5.40 pyinsar.processing.discovery.wrap_phase Namespace Reference	48
5.41 pyinsar.processing.geography Namespace Reference	48
5.42 pyinsar.processing.geography.coordinates Namespace Reference	48
5.42.1 Function Documentation	49
5.42.1.1 compute_x_and_y_coordinates_maps()	49
5.42.1.2 extract_subgeoarray()	49
5.42.1.3 find_utm_area()	50
5.42.1.4 georaster_vertical_datum_shift()	50

CONTENTS vii

		5.42.1.5	reproject_georaster()	. 51
		5.42.1.6	reproject_point()	. 51
		5.42.1.7	sample_2d_array()	. 52
		5.42.1.8	sample_2d_multiarray()	. 52
		5.42.1.9	sample_nd_array()	. 52
		5.42.1.10	transform_to_geographic_coordinates()	. 53
		5.42.1.11	transform_to_pixel_coordinates()	. 53
	5.42.2	Variable [Documentation	. 54
		5.42.2.1	nogil	. 54
		5.42.2.2	nopython	. 54
		5.42.2.3	parallel	. 55
		5.42.2.4	True	. 55
5.43	pyinsar	processing	g.geography.geodesy Namespace Reference	. 55
	5.43.1	Function	Documentation	. 55
		5.43.1.1	compute_great_circle_distance_and_bearing()	. 56
		5.43.1.2	compute_lonlat_from_distance_bearing()	. 56
		5.43.1.3	compute_point_to_line_distance_for_array()	. 56
		5.43.1.4	compute_point_to_line_distance_on_ellipsoid()	. 57
		5.43.1.5	direct_vincenty_formula()	. 57
		5.43.1.6	direct_vincenty_formula_for_array()	. 57
		5.43.1.7	inverse_vincenty_formula()	. 57
		5.43.1.8	inverse_vincenty_formula_for_array()	. 58
		5.43.1.9	update_lambda()	. 58
	5.43.2	Variable [Documentation	. 58
		5.43.2.1	nopython	. 58
5.44	pyinsar	processin	g.geography.geomorphometry Namespace Reference	. 58
	5.44.1	Function	Documentation	. 59
		5.44.1.1	add_symmetric_border()	. 59

viii CONTENTS

		5.44.1.2 compute_gradient_at_cell()
		5.44.1.3 compute_horne_slope()
	5.44.2	Variable Documentation
		5.44.2.1 nopython
5.45	pyinsar	processing.instruments Namespace Reference
5.46	pyinsar	processing.instruments.sentinel Namespace Reference
	5.46.1	Function Documentation
		5.46.1.1 find_overlapping_valid_lines()
		5.46.1.2 get_sentinel_extents()
		5.46.1.3 get_valid_lines()
		5.46.1.4 read_geolocation()
		5.46.1.5 retrieve_azimuth_time()
		5.46.1.6 select_valid_lines()
		5.46.1.7 transform_slc()
		5.46.1.8 update_geolocation_lines()
5.47	pyinsar	processing.isce Namespace Reference
5.48	pyinsar	processing.isce.input_file Namespace Reference
	5.48.1	Function Documentation
		5.48.1.1 create_product_xml()
		5.48.1.2 create_topsApp_xml()
		5.48.1.3 prepare_topsApps()
5.49	pyinsar	processing.machine_learning Namespace Reference
5.50	pyinsar	processing.machine_learning.geostatistics Namespace Reference
5.51	pyinsar	processing.machine_learning.geostatistics.direct_sampling Namespace Reference 67
	5.51.1	Function Documentation
		5.51.1.1 compute_continuous_distance()
		5.51.1.2 compute_discrete_distance()
		5.51.1.3 compute_neighborhood_lag_vectors()

CONTENTS ix

		5.51.1.4 compute_neighborhoods()	9
		5.51.1.5 find_closest_cell_in_training_image()	39
		5.51.1.6 is_any_equal()	39
		5.51.1.7 is_any_nan()	39
		5.51.1.8 prepare_training_image()	'0
		5.51.1.9 run_ds()	'0
		5.51.1.10 run_parallel_ds()	'0
		5.51.1.11 simulate_ds_realization()	'1
	5.51.2	Variable Documentation	'1
		5.51.2.1 nopython	'1
5.52	pyinsar	processing.machine_learning.geostatistics.geostatistics_utils Namespace Reference	'3
	5.52.1	Function Documentation	'4
		5.52.1.1 normalize()	'4
		5.52.1.2 standardize()	'4
		5.52.1.3 unflatten_index()	'5
	5.52.2	Variable Documentation	'5
		5.52.2.1 nogil	'5
		5.52.2.2 nopython	'5
		5.52.2.3 True	'6
5.53		processing.machine_learning.geostatistics.sequential_gaussian_simulation Namespace Refer-	'6
	5.53.1	Function Documentation	7
		5.53.1.1 compute_averaged_cumulative_distribution_from_array()	7
		5.53.1.2 compute_axis_aligned_ellipse_range()	7
		5.53.1.3 compute_axis_aligned_neighborhood_shape()	7
		5.53.1.4 compute_euclidean_distance()	'7
		5.53.1.5 compute_neighborhood_template()	'8
		5.53.1.6 get_data_to_data_matrix()	'8

x CONTENTS

		5.53.1./ get_data_to_unknown_matrix()
		5.53.1.8 get_neighborhood()
		5.53.1.9 get_values_matrix()
		5.53.1.10 inverse_standard_normal_cdf()
		5.53.1.11 merge_secondary_data()
		5.53.1.12 normal_score_tranform()
		5.53.1.13 run_parallel_sgs()
		5.53.1.14 run_sgs()
		5.53.1.15 simulate_sgs_realization()
		5.53.1.16 solve_kriging_system()
	5.53.2	Variable Documentation
		5.53.2.1 nogil
		5.53.2.2 nopython
		5.53.2.3 True
5.54	pyinsar	processing.machine_learning.geostatistics.variogram Namespace Reference
	5.54.1	Function Documentation
		5.54.1.1 compute_experimental_variogram()
		5.54.1.2 compute_range_variogram()
		5.54.1.3 compute_variogram()
		5.54.1.4 exponential_variogram()
		5.54.1.5 gaussian_variogram()
		5.54.1.6 map_2D_variogram()
		5.54.1.7 nugget_variogram()
		5.54.1.8 spherical_variogram()
		5.54.1.9 vectorized_exponential_variogram()
		5.54.1.10 vectorized_gaussian_variogram()
		5.54.1.11 vectorized_spherical_variogram()
	5.54.2	Variable Documentation

CONTENTS xi

	5.54.2.1	nogil	87
	5.54.2.2	nopython	87
	5.54.2.3	True	89
5.55 pyinsa	ar.processin	g.utilities Namespace Reference	89
5.56 pyinsa	ar.processin	g.utilities.ann Namespace Reference	90
5.56.1	Function	Documentation	90
	5.56.1.1	buildCNN()	90
	5.56.1.2	classify()	91
	5.56.1.3	length_after_valid_window()	91
	5.56.1.4	restoreGraph()	92
	5.56.1.5	shuffleTrainingData()	92
	5.56.1.6	train()	92
5.57 pyinsa	ar.processin	g.utilities.deformations Namespace Reference	93
5.57.1	Function	Documentation	93
	5.57.1.1	calc_bounding_box()	93
	5.57.1.2	determine_deformation_bounding_box()	94
	5.57.1.3	determine_x_y_bounds()	94
5.58 pyinsa	ar.processin	g.utilities.generic Namespace Reference	94
5.58.1	Function	Documentation	95
	5.58.1.1	coherence()	96
	5.58.1.2	find_closest_time()	96
	5.58.1.3	find_data_asf()	97
	5.58.1.4	find_earthquake_pairs()	97
	5.58.1.5	generateMatplotlibRectangle()	98
	5.58.1.6	get_image_extents()	98
	5.58.1.7	keypoints_align()	98
	5.58.1.8	match_data()	99
	5.58.1.9	phase_shift()	99

xii CONTENTS

	5.58.1.10	proj4StringToDictionary()
	5.58.1.11	project_insar_data()
	5.58.1.12	2 rotate()
	5.58.1.13	B scale_image()
	5.58.1.14	select_max_matched_data()
	5.58.1.15	5 sorted_alphanumeric()
	5.58.1.16	S subarray_slice()
	5.58.1.17	⁷ translate()
5.59 pyinsa	r.processin	ng.utilities.insar_simulator_utils Namespace Reference
5.59.1	Function	Documentation
	5.59.1.1	calc_bounding_box()
	5.59.1.2	change_in_range_to_phase()
	5.59.1.3	crop_array_from_center()
	5.59.1.4	crop_nans()
	5.59.1.5	determine_deformation_bounding_box()
	5.59.1.6	determine_x_y_bounds()
	5.59.1.7	generate_interferogram_from_deformation()
	5.59.1.8	mask_deformation()
	5.59.1.9	old_generate_interferogram_from_deformation()
	5.59.1.10	phase_to_change_in_range()
	5.59.1.11	retrieve_bounds()
	5.59.1.12	2 wrap()
5.60 pyinsa	r.processin	ng.utilities.machine_learning Namespace Reference
5.60.1	Function	Documentation
	5.60.1.1	divide_into_squares()
	5.60.1.2	generate_minimum_ground_range_limits()
	5.60.1.3	generate_phase_samples()
	5.60.1.4	generate_phase_samples_from_looks_and_ranges()
	5.60.1.5	rotate_image_list()

CONTENTS xiii

6	Clas	es Documentation 115				
	6.1	pyinsar.processing.discovery.ClassifyCNN Class Reference				
		6.1.1	Detailed Description	16		
		6.1.2	Constructor & Destructor Documentation	16		
			6.1.2.1init()	16		
		6.1.3	Member Function Documentation	16		
			6.1.3.1 process()	16		
		6.1.4	Member Data Documentation	17		
			6.1.4.1 batch_size	17		
			6.1.4.2 cnn_network_dir	17		
			6.1.4.3 compare_labels	17		
			6.1.4.4 config	17		
			6.1.4.5 size	17		
			6.1.4.6 stride	18		
	6.2	pyinsa	r.processing.discovery.Coherence Class Reference	18		
		6.2.1	Detailed Description	18		
		6.2.2	Constructor & Destructor Documentation	18		
			6.2.2.1init()	18		
		6.2.3	Member Function Documentation	19		
			6.2.3.1 process()	19		
		6.2.4	Member Data Documentation	19		
			6.2.4.1 pairing	19		
			6.2.4.2 use_progress_bar	19		
			6.2.4.3 window	20		
	6.3	pyinsa	r.processing.discovery.Coregister Class Reference	20		
		6.3.1	Detailed Description	20		
		6.3.2	Constructor & Destructor Documentation	20		
			6.3.2.1init()	20		

xiv CONTENTS

	6.3.3	Member Function Documentation
		6.3.3.1 process()
6.4	pyinsa	r.processing.data_fetcher.okada.DataFetcher Class Reference
	6.4.1	Detailed Description
	6.4.2	Constructor & Destructor Documentation
		6.4.2.1init()
	6.4.3	Member Function Documentation
		6.4.3.1 output()
6.5	pyinsa	r.processing.data_fetcher.hdf_retriever.DataRetriever Class Reference
	6.5.1	Detailed Description
	6.5.2	Constructor & Destructor Documentation
		6.5.2.1init()
	6.5.3	Member Function Documentation
		6.5.3.1 output()
		6.5.3.2 perturb()
6.6	pyinsa	r.processing.utilities.machine_learning.DataRetriever Class Reference
	6.6.1	Detailed Description
	6.6.2	Constructor & Destructor Documentation
		6.6.2.1init()
	6.6.3	Member Function Documentation
		6.6.3.1 get_images()
		6.6.3.2 get_num_images()
	6.6.4	Member Data Documentation
		6.6.4.1 chunk_size
		6.6.4.2 data_file_dict
		6.6.4.3 dtype
		6.6.4.4 label_list
		6.6.4.5 size

CONTENTS xv

6.7	pyinsa	processing.discovery.deburst.Deburst Class Reference
	6.7.1	Detailed Description
	6.7.2	Constructor & Destructor Documentation
		6.7.2.1init()
	6.7.3	Member Function Documentation
		6.7.3.1 process()
6.8	pyinsa	processing.discovery.DeformationToPhase Class Reference
	6.8.1	Detailed Description
	6.8.2	Constructor & Destructor Documentation
		6.8.2.1init()
	6.8.3	Member Function Documentation
		6.8.3.1 process()
6.9	pyinsa	r.processing.deformation.elastic_halfspace.fault.Fault Class Reference
	6.9.1	Detailed Description
	6.9.2	Constructor & Destructor Documentation
		6.9.2.1init()
	6.9.3	Member Function Documentation
		6.9.3.1 generateDeformation()
	6.9.4	Member Data Documentation
		6.9.4.1 cell_centroids
		6.9.4.2 cell_length
		6.9.4.3 cell_width
		6.9.4.4 depth
		6.9.4.5 dip
		6.9.4.6 length
		6.9.4.7 poisson_ratio
		6.9.4.8 strike
		6.9.4.9 unrotated_x

xvi CONTENTS

	6.9.4.10 unrotated_y
	6.9.4.11 width
	6.9.4.12 x_center
	6.9.4.13 y_center
6.10 pyinsa	r.processing.utilities.generic.FindNearestPixel Class Reference
6.10.1	Detailed Description
6.10.2	Constructor & Destructor Documentation
	6.10.2.1init()
6.10.3	Member Function Documentation
	6.10.3.1call()
6.11 pyinsa	r.processing.discovery.FlatEarth Class Reference
6.11.1	Detailed Description
6.11.2	Constructor & Destructor Documentation
	6.11.2.1init()
6.11.3	Member Function Documentation
	6.11.3.1 process()
6.11.4	Member Data Documentation
	6.11.4.1 k
6.12 pyinsa	r.processing.data_fetcher.gdal.GDAL_DataFetcher Class Reference
6.12.1	Detailed Description
6.12.2	Constructor & Destructor Documentation
	6.12.2.1init()
6.12.3	Member Function Documentation
	6.12.3.1 output()
6.13 pyinsa	r.processing.discovery.interferogram.Interferogram Class Reference
6.13.1	Detailed Description
6.13.2	Constructor & Destructor Documentation
	6.13.2.1init()

CONTENTS xvii

	6.13.3	Member Function Documentation
		6.13.3.1 process()
6.14		processing.machine_learning.geostatistics.sequential_gaussian_simulation.KrigingMethod
	6.14.1	Member Data Documentation
		6.14.1.1 nopython
		6.14.1.2 ORDINARY
		6.14.1.3 SIMPLE
6.15	pyinsar	processing.discovery.LOS_Deformation Class Reference
	6.15.1	Detailed Description
6.16	pyinsar	processing.utilities.generic.OrbitInterpolation Class Reference
	6.16.1	Detailed Description
	6.16.2	Constructor & Destructor Documentation
		6.16.2.1init()
	6.16.3	Member Function Documentation
		6.16.3.1call()
		6.16.3.2 get_start_date()
6.17	pyinsar	processing.machine_learning.geostatistics.geostatistics_utils.PathType Class Reference 146
	6.17.1	Member Data Documentation
		6.17.1.1 LINEAR
		6.17.1.2 RANDOM
6.18	pyinsar	processing.instruments.sentinel.RampPolynomial Class Reference
	6.18.1	Detailed Description
	6.18.2	Constructor & Destructor Documentation
		6.18.2.1init()
	6.18.3	Member Function Documentation
		6.18.3.1call()
6.19	pyinsar	processing.discovery.RotateSquares Class Reference

xviii CONTENTS

	6.19.1	Detailed Description	148
	6.19.2	Constructor & Destructor Documentation	148
		6.19.2.1init()	148
	6.19.3	Member Function Documentation	149
		6.19.3.1 process()	149
6.20	pyinsar	processing.instruments.sentinel.SentinelRamp Class Reference	149
	6.20.1	Detailed Description	150
	6.20.2	Constructor & Destructor Documentation	150
		6.20.2.1init()	150
	6.20.3	Member Function Documentation	150
		6.20.3.1call()	151
	6.20.4	Member Data Documentation	151
		6.20.4.1 modulation	151
6.21	pyinsar	processing.discovery.shown_cnn_classes.ShowCNNClasses Class Reference	151
	6.21.1	Detailed Description	152
	6.21.2	Constructor & Destructor Documentation	152
		6.21.2.1init()	152
	6.21.3	Member Function Documentation	152
		6.21.3.1 process()	153
	6.21.4	Member Data Documentation	153
		6.21.4.1 class_name	153
		6.21.4.2 colors	153
6.22	pyinsar	processing.discovery.TemporalDecorrelation Class Reference	153
	6.22.1	Detailed Description	154
	6.22.2	Constructor & Destructor Documentation	154
		6.22.2.1init()	154
	6.22.3	Member Function Documentation	155
		6.22.3.1 process()	155

CONTENTS xix

6.23	pyinsar	processing.discovery.TrainCNN Class Reference	155
	6.23.1	Detailed Description	156
	6.23.2	Constructor & Destructor Documentation	156
		6.23.2.1init()	156
	6.23.3	Member Function Documentation	156
		6.23.3.1 process()	156
	6.23.4	Member Data Documentation	157
		6.23.4.1 batch_size	157
		6.23.4.2 cnn_network_dir	157
		6.23.4.3 config	157
6.24	pyinsar	processing.machine_learning.geostatistics.geostatistics_utils.VariableType Class Reference	157
	6.24.1	Member Data Documentation	158
		6.24.1.1 CONTINUOUS	158
		6.24.1.2 DISCRETE	158
6.25	pyinsar	processing.machine_learning.geostatistics.variogram.VariogramModel Class Reference	158
	6.25.1	Detailed Description	158
	6.25.2	Member Data Documentation	159
		6.25.2.1 EXPONENTIAL	159
		6.25.2.2 GAUSSIAN	159
		6.25.2.3 NUGGET	159
		6.25.2.4 SPHERICAL	159
6.26	pyinsar	processing.discovery.WrapPhase Class Reference	159
	6.26.1	Detailed Description	160
	6.26.2	Member Function Documentation	160
		6.26.2.1 process()	160

XX CONTENTS

7	File	Documentation	161
	7.1	data_import/import_georaster.py File Reference	161
	7.2	data_import/import_raster.py File Reference	161
	7.3	data_import/import_srcmod.py File Reference	162
	7.4	data_import/import_utils.py File Reference	162
	7.5	data_import/uavsar.py File Reference	162
	7.6	output/export_georaster.py File Reference	163
	7.7	output/plot_raster.py File Reference	163
	7.8	processing/corrections/topography.py File Reference	163
	7.9	processing/corrections/troposphere.py File Reference	164
	7.10	processing/data_fetcher/gdal.py File Reference	164
	7.11	processing/data_fetcher/hdf_retriever.py File Reference	164
	7.12	processing/deformation/elastic_halfspace/fault.py File Reference	165
	7.13	processing/deformation/elastic_halfspace/mogi.py File Reference	165
	7.14	processing/deformation/elastic_halfspace/okada.py File Reference	165
	7.15	processing/data_fetcher/okada.py File Reference	167
	7.16	processing/deformation/elastic_halfspace/pipe.py File Reference	167
	7.17	processing/deformation/elastic_halfspace/surface_load.py File Reference	168
	7.18	processing/discovery/classify_cnn.py File Reference	168
	7.19	processing/discovery/coherence.py File Reference	168
	7.20	processing/discovery/coregister.py File Reference	168
	7.21	processing/discovery/deburst.py File Reference	169
	7.22	processing/discovery/deformation_to_phase.py File Reference	169
	7.23	processing/discovery/flat_earth.py File Reference	169
	7.24	processing/discovery/interferogram.py File Reference	170
	7.25	processing/discovery/los_deformation.py File Reference	170
	7.26	processing/discovery/rotate_squares.py File Reference	170
	7.27	processing/discovery/shown_cnn_classes.py File Reference	171

CONTENTS xxi

7.28	processing/discovery/temporal_decorrelation.py File Reference	171
7.29	processing/discovery/train_cnn.py File Reference	171
7.30	processing/discovery/wrap_phase.py File Reference	171
7.31	processing/geography/coordinates.py File Reference	172
7.32	processing/geography/geodesy.py File Reference	173
7.33	processing/geography/geomorphometry.py File Reference	173
7.34	processing/instruments/sentinel.py File Reference	174
7.35	data_import/sentinel.py File Reference	174
7.36	processing/isce/input_file.py File Reference	175
7.37	processing/machine_learning/geostatistics/direct_sampling.py File Reference	175
7.38	processing/machine_learning/geostatistics/geostatistics_utils.py File Reference	176
7.39	processing/machine_learning/geostatistics/sequential_gaussian_simulation.py File Reference	177
7.40	processing/machine_learning/geostatistics/variogram.py File Reference	178
7.41	processing/utilities/ann.py File Reference	179
7.42	processing/utilities/deformations.py File Reference	180
7.43	processing/utilities/generic.py File Reference	180
7.44	processing/utilities/insar_simulator_utils.py File Reference	181
7.45	processing/utilities/machine_learning.py File Reference	182
Index		185

Chapter 1

Namespace Index

1.1 Packages

Here are the packages with brief descriptions (if available):

pyinsar
pyinsar.data_import
pyinsar.data_import.import_georaster
pyinsar.data_import.import_raster
pyinsar.data_import.import_srcmod
pyinsar.data_import.import_utils
pyinsar.data_import.sentinel
pyinsar.data_import.uavsar
pyinsar.output
pyinsar.output.export_georaster
pyinsar.output.plot_raster
pyinsar.processing
pyinsar.processing.corrections
pyinsar.processing.corrections.topography
pyinsar.processing.corrections.troposphere
pyinsar.processing.data_fetcher
pyinsar.processing.data_fetcher.gdal
pyinsar.processing.data_fetcher.hdf_retriever
pyinsar.processing.data_fetcher.okada
pyinsar.processing.deformation
pyinsar.processing.deformation.elastic_halfspace
pyinsar.processing.deformation.elastic_halfspace.fault
pyinsar.processing.deformation.elastic_halfspace.mogi
pyinsar.processing.deformation.elastic_halfspace.okada
pyinsar.processing.deformation.elastic_halfspace.pipe
pyinsar.processing.deformation.elastic_halfspace.surface_load
pyinsar.processing.discovery
pyinsar.processing.discovery.classify_cnn
pyinsar.processing.discovery.coherence
pyinsar.processing.discovery.coregister
nyingar processing discovery deburgt

Namespace Index

$pyins ar. processing. discovery. deformation_to_phase \\ \ldots \\ $
pyinsar.processing.discovery.flat_earth
pyinsar.processing.discovery.interferogram
pyinsar.processing.discovery.los_deformation
pyinsar.processing.discovery.rotate_squares
pyinsar.processing.discovery.shown_cnn_classes
pyinsar.processing.discovery.temporal_decorrelation
pyinsar.processing.discovery.train_cnn
pyinsar.processing.discovery.wrap_phase
pyinsar.processing.geography
pyinsar.processing.geography.coordinates
pyinsar.processing.geography.geodesy
pyinsar.processing.geography.geomorphometry
pyinsar.processing.instruments
pyinsar.processing.instruments.sentinel
pyinsar.processing.isce
pyinsar.processing.isce.input_file
pyinsar.processing.machine_learning
pyinsar.processing.machine_learning.geostatistics
pyinsar.processing.machine_learning.geostatistics.direct_sampling
$pyins ar. processing. machine_learning. geostatistics_ utils \\ \dots \dots \\ \dots \dots \\ \dots \dots \\ \dots \dots \dots \\ \dots \dots \dots \dots \dots $
$pyins ar. processing. machine_learning. geostatistics. sequential_gaussian_simulation \\ \dots \dots \\ \dots \dots \\ $
$pyins ar. processing. machine_learning. geostatistics. variogram \\ \dots \\ $
pyinsar.processing.utilities
pyinsar.processing.utilities.ann
pyinsar.processing.utilities.deformations
pyinsar.processing.utilities.generic
pyinsar.processing.utilities.insar_simulator_utils
pyinsar.processing.utilities.machine_learning110

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

object	
pyinsar.processing.deformation.elastic_halfspace.fault.Fault	
pyinsar.processing.instruments.sentinel.RampPolynomial	
pyinsar.processing.instruments.sentinel.SentinelRamp	
pyinsar.processing.utilities.generic.FindNearestPixel	35
pyinsar.processing.utilities.generic.OrbitInterpolation	44
pyinsar.processing.utilities.machine_learning.DataRetriever	24
DataFetcherBase	
pyinsar.processing.data_fetcher.gdal.GDAL_DataFetcher	39
pyinsar.processing.data_fetcher.hdf_retriever.DataRetriever	23
pyinsar.processing.data fetcher.okada.DataFetcher	21
Enum	
pyinsar.processing.machine learning.geostatistics.geostatistics utils.PathType	46
pyinsar.processing.machine learning.geostatistics.geostatistics utils.VariableType	57
pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.KrigingMethod 1	42
pyinsar.processing.machine_learning.geostatistics.variogram.VariogramModel	
PipelineItem	
pyinsar.processing.discovery.ClassifyCNN	15
pyinsar.processing.discovery.Coherence	
pyinsar.processing.discovery.Coregister	
pyinsar.processing.discovery.deburst.Deburst	
pyinsar.processing.discovery.DeformationToPhase	
pyinsar.processing.discovery.FlatEarth	
pyinsar.processing.discovery.interferogram.Interferogram	
pyinsar.processing.discovery.LOS Deformation	
pyinsar.processing.discovery.RotateSquares	
pyinsar.processing.discovery.shown cnn classes.ShowCNNClasses	
pyinsar.processing.discovery.TemporalDecorrelation	
pyinsar.processing.discovery.TrainCNN	
pyinsar.processing.discovery.WrapPhase	

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

pyinsar.processing.discovery.ClassifyCNN
Train a CNN
pyinsar.processing.discovery.Coherence
Calculate coherence between single-look complex SAR images
pyinsar.processing.discovery.Coregister
*** In Devolopment *** Pipeline item to coregister images
pyinsar.processing.data_fetcher.okada.DataFetcher
Generates data from an Okada model
pyinsar.processing.data_fetcher.hdf_retriever.DataRetriever
Data fetcher for retrieving hdf image data made for training in convolutional neural networks 12
pyinsar.processing.utilities.machine_learning.DataRetriever
Class for retrieving data from an hdf file
pyinsar.processing.discovery.deburst.Deburst
Debursts Sentinel-1 TOPSAR data
pyinsar.processing.discovery.DeformationToPhase
Convert deformation to phas
pyinsar.processing.deformation.elastic_halfspace.fault.Fault
*** In Development *** Model a fault as a collection of small okada faults
pyinsar.processing.utilities.generic.FindNearestPixel
Find the nearest given a time
pyinsar.processing.discovery.FlatEarth
*** In Development *** Remove flat Earth contribution from interferogram
pyinsar.processing.data_fetcher.gdal.GDAL_DataFetcher
Data fetcher for loading Images produced compatiable with GDAL
pyinsar.processing.discovery.interferogram.Interferogram
Create Inteferogram from SLC data
pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.KrigingMethod 14
pyinsar.processing.discovery.LOS_Deformation
*** In Development ***
pyinsar.processing.utilities.generic.OrbitInterpolation
Class for interpolating satellite positions

6 Class Index

pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.PathType	1 6
pyinsar.processing.instruments.sentinel.RampPolynomial	
Polynomial used for quantities relating to deramping sentinel	1 6
pyinsar.processing.discovery.RotateSquares	
Generate new images by rotating subsections of data defined by Shapely squares	18
pyinsar.processing.instruments.sentinel.SentinelRamp	
Calcuate the combined ramp and modulated phase in Sentinel	19
pyinsar.processing.discovery.shown_cnn_classes.ShowCNNClasses	
Dispay CNN Classifications on segments of an image	51
pyinsar.processing.discovery.TemporalDecorrelation	
Pipeline item to add temporal decorrelation to some phase	53
pyinsar.processing.discovery.TrainCNN	
Train a CNN	55
pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.VariableType	57
pyinsar.processing.machine_learning.geostatistics.variogram.VariogramModel	
2D theoretical variogram	58
pyinsar.processing.discovery.WrapPhase	
Pipeline Item that wraps phase	59

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

data_import/import_georaster.py
data_import/import_raster.py
data_import/import_srcmod.py
data_import/import_utils.py
data_import/sentinel.py
data_import/uavsar.py
output/export_georaster.py
output/plot_raster.py
processing/corrections/topography.py
processing/corrections/troposphere.py
processing/data_fetcher/gdal.py
processing/data_fetcher/hdf_retriever.py
processing/data_fetcher/okada.py
processing/deformation/elastic_halfspace/fault.py
processing/deformation/elastic_halfspace/mogi.py
processing/deformation/elastic_halfspace/okada.py
processing/deformation/elastic_halfspace/pipe.py
processing/deformation/elastic_halfspace/surface_load.py
processing/discovery/classify_cnn.py
processing/discovery/coherence.py
processing/discovery/coregister.py
processing/discovery/deburst.py
processing/discovery/deformation_to_phase.py
processing/discovery/flat_earth.py
processing/discovery/interferogram.py
processing/discovery/los_deformation.py
processing/discovery/rotate_squares.py
processing/discovery/shown_cnn_classes.py
processing/discovery/temporal_decorrelation.py
processing/discovery/train_cnn.py
processing/discovery/wrap, phase by

8 File Index

processing/geography/coordinates.py
processing/geography/geodesy.py
processing/geography/geomorphometry.py
processing/instruments/sentinel.py
processing/isce/input_file.py
processing/machine_learning/geostatistics/direct_sampling.py
processing/machine_learning/geostatistics/geostatistics_utils.py
processing/machine_learning/geostatistics/sequential_gaussian_simulation.py
processing/machine_learning/geostatistics/variogram.py
processing/utilities/ann.py
processing/utilities/deformations.py
processing/utilities/generic.py
processing/utilities/insar_simulator_utils.py
processing/utilities/machine_learning.py 18

Chapter 5

Namespace Documentation

5.1 pyinsar Namespace Reference

Namespaces

- data_import
- output
- · processing

5.2 pyinsar.data_import Namespace Reference

Namespaces

- · import_georaster
- · import_raster
- · import_srcmod
- import_utils
- sentinel
- uavsar

5.3 pyinsar.data_import.import_georaster Namespace Reference

Functions

- def open_georaster (georaster_path, read_only=True)
- Open a georaster with GDAL.

 def get_georaster_array (gdal_georaster, remove_ndv=True, as_float=True)
 - Get a NumPy array from a georaster opened with GDAL.
- def get_georaster_extent (gdal_georaster)
 - Get the extent of a georaster opened with GDAL.
- def print_georaster_info (gdal_georaster)

Print some information about the GDAL georaster.

5.3.1 Function Documentation

5.3.1.1 get_georaster_array()

Get a NumPy array from a georaster opened with GDAL.

Parameters

gdal_georaster	A georaster opened with GDAL
remove_ndv	Replace the no-data value as mentionned in the label by np.nan
as_float	Transform the array to a float array

Returns

The array

5.3.1.2 get_georaster_extent()

Get the extent of a georaster opened with GDAL.

Parameters

gdal_georaster	A georaster opened with GDAL

Returns

The georaster extent

5.3.1.3 open_georaster()

Open a georaster with GDAL.

Parameters

georaster_path	Location of the georaster
read_only	Determine if the georaster can be modified

Returns

The georaster as a GDAL data set

5.3.1.4 print_georaster_info()

```
\begin{tabular}{ll} \tt def pyinsar.data\_import.import\_georaster.print\_georaster\_info \ ( \\ \tt gdal\_georaster \ ) \end{tabular}
```

Print some information about the GDAL georaster.

Parameters

gdal_georaster	A georaster opened with GDAL
----------------	------------------------------

5.4 pyinsar.data_import.import_raster Namespace Reference

Functions

def read_rsc_header_file (file_path)

Import GACOS runs.

def open_gacos_tropospheric_delays (tropodelay_header_path)

Open a topospheric delay map computed by the Generic Atmospheric Correction Online Service for InSAR (GACOS)

def open_sgems_file (file_location)

Import SGEMS files.

def open_sgems_file_from_url (file_url)

Open an SGEMS file containing one or several variables in an array from the file's URL.

5.4.1 Function Documentation

5.4.1.1 open_gacos_tropospheric_delays()

Open a topospheric delay map computed by the Generic Atmospheric Correction Online Service for InSAR (GACOS)

Parameters

```
tropodelay_header_path  Path to the header file (.ztd.rsc or .dztd.rsc)
```

Returns

A NumPy array containing the topospheric delay in meters and a tuple containing the extent of the array

5.4.1.2 open_sgems_file()

Import SGEMS files.

Open an SGEMS file containing one or several variables in an array

```
@param file_location: The location of the file
@return A NumPy array
```

5.4.1.3 open_sgems_file_from_url()

Open an SGEMS file containing one or several variables in an array from the file's URL.

Parameters

```
file_url The URL of the file
```

Returns

A NumPy array

5.4.1.4 read_rsc_header_file()

Import GACOS runs.

Read the rsc header file from GACOS data

```
@param file_location: The path to the file
@return A dictionary containing the header's information
```

5.5 pyinsar.data_import.import_srcmod Namespace Reference

Functions

def read_srcmod_data (srcmod_data, dtype=np.float64, skip_sanity_check=False)
 *** In Development *** Generate faults of okada sources from src mod mat files.

5.5.1 Function Documentation

5.5.1.1 read_srcmod_data()

*** In Development *** Generate faults of okada sources from src mod mat files.

Note

Only single segment models with a single time window are currently supported

Parameters

srcmod_data	src mod data read in from the .mat file
dtype	Data type to use
skip_sanity_check	Skip checks to ensure data was interpreted properly (Used for debugging)

Returns

List of faults objects, list of slips, list of rakes

5.6 pyinsar.data_import.import_utils Namespace Reference

Functions

• def download_file (url, folder_path, username=None, password=None, filename=None)

Download a file from a URL.

5.6.1 Function Documentation

5.6.1.1 download_file()

Download a file from a URL.

Parameters

url	The URL where the file is	
folder_path	Path to the folder where the downloaded file will be stored	
username	username for authentification, if needed	
password	Password for authentification, if needed	
filename	Change the filename, if needed	

Returns

The file path if download was succesful, none otherwise

5.7 pyinsar.data_import.sentinel Namespace Reference

Functions

• def parse_satellite_data (in_satellite_file)

Parse Sentinel satellite data.

- def get_url_precise_orbit (product_name)
- def download_precise_orbits (product_folder, orbit_folder, username, password)

Download the precise orbits for all the Sentinel-1 products in a folder.

def download_products (product_names, product_folder, base_url='https://datapool.asf.alaska.edu/SLC', use_
 vertex=True, username=None, password=None)

Download Sentinel-1 products in a folder.

5.7.1 Function Documentation

5.7.1.1 download_precise_orbits()

Download the precise orbits for all the Sentinel-1 products in a folder.

Parameters

product_folder	The folder where the Sentinel-1 products are
orbit_folder	The folder where to put the orbit files
username	The username for authentification on Earthdata
password	The password for authentification on Earthdata

Returns

The paths of the orbit files, none if a file couldnot be downloaded

5.7.1.2 download_products()

```
product_folder,
base_url = 'https://datapool.asf.alaska.edu/SLC',
use_vertex = True,
username = None,
password = None )
```

Download Sentinel-1 products in a folder.

Parameters

product_names	List of Sentinel-1 product names
product_folder	The folder where to put the product files
base_url	Base url from where to download the files (default is from the Alaska Satellite Facility)
use_vertex True if the base url is that of the Alaska Satellite Facility	
username	The username for authentification on Earthdata
password	The password for authentification on Earthdata

Returns

The paths of the orbit files, none if a file couldnot be downloaded

5.7.1.3 get_url_precise_orbit()

5.7.1.4 parse_satellite_data()

```
\label{like_data} \mbox{def pyinsar.data\_import.sentinel.parse\_satellite\_data (} \\ in\_satellite\_file \mbox{)}
```

Parse Sentinel satellite data.

Parameters

in satellite file	Satellite orbit filename
III_SateIIIte_IIIe	Satellite orbit illeriarile

Returns

DataFrame of orbit information

5.8 pyinsar.data_import.uavsar Namespace Reference

Functions

def read_uavsar_metadata (in_file)
 Parse UAVSAR metadata.

5.8.1 Function Documentation

5.8.1.1 read_uavsar_metadata()

```
\label{lem:continuous} \mbox{def pyinsar.data\_import.uavsar.read\_uavsar\_metadata (} $$in\_file )$
```

Parse UAVSAR metadata.

Parameters

in_file | String of Metadata filename or file object (file should end in .ann)

Returns

OrderedDict of metadata

5.9 pyinsar.output Namespace Reference

Namespaces

- · export_georaster
- plot_raster

5.10 pyinsar.output.export_georaster Namespace Reference

Functions

def create_georaster_from_array (georaster_array, geotransform, projection, file_type='MEM', file_path=", data
_type=gdal.GDT_Float64, no_data_value=-99999., scale=1., offset=0., options=[])

Create a GDAL georaster from a Numpy array.

5.10.1 Function Documentation

5.10.1.1 create_georaster_from_array()

Create a GDAL georaster from a Numpy array.

Parameters

georaster_array	The Numpy array
geotransform	The extent and cell spacing of the georaster
projection	The projection of the georaster
file_type	Type to save the file (default is memory)
file_path	Where to store the new georaster (default is memory)
data_type	Data type of the georaster
no_data_value	No data value for the georaster
scale	Scaling factor for the georaster
offset	Offset factor for the georaster
options	List of options for compression

Returns

The GDAL georaster

5.11 pyinsar.output.plot_raster Namespace Reference

Functions

- def average_minmax_slices (array, axis=0)
- def plot_interactive_slicing (array, slice_index, model_array=None, axis=0, cmap='viridis', extent=None, clabel=", xlabel=", figsize=None, update_colorbar=False)
- def plot_interactive_multiple_slicing (array, axes, slice_indexes, model_array=None, cmap='viridis', update_
 colorbar=False, vmin=0., vmax=1., extent=None, clabel=", ylabel=", ylabel=", figsize=None)

5.11.1 Function Documentation

5.11.1.1 average_minmax_slices()

5.11.1.2 plot_interactive_multiple_slicing()

5.11.1.3 plot_interactive_slicing()

5.12 pyinsar.processing Namespace Reference

Namespaces

- · corrections
- · data_fetcher
- deformation
- discovery
- geography
- · instruments
- isce
- · machine_learning
- · utilities

5.13 pyinsar.processing.corrections Namespace Reference

Namespaces

- topography
- · troposphere

5.14 pyinsar.processing.corrections.topography Namespace Reference

Functions

def ellipsoidal_earth_slant_ranges (azimuth_time, latlon, orbit_interp, start_x, end_x, start_y, end_y)
 Compute slant ranges assuming no topography.

5.14.1 Function Documentation

5.14.1.1 ellipsoidal_earth_slant_ranges()

Compute slant ranges assuming no topography.

Parameters

azimuth_time	Pandas time series data conatining the time of each azimuth line
latlon	Function to compute latitude and longitude for each pixel coordinate
orbit_interp	Function to compute satellite positions
start_x	Starting x pixel
end_x	Ending pixel x pxiel
start_y	Starting y pixel
end_y	Endying y pixel

Returns

Slant range distance to each pixel

5.15 pyinsar.processing.corrections.troposphere Namespace Reference

Functions

```
• def vapor_pressure (T)
```

Under development.

• def N (P, T, RH, k1=77.6, k2=23.3, k3=3.75E5)

Under development.

def N_h (h, P, T, RH, k1=77.6, k2=23.3, k3=3.75E5)

Under development.

• def compute_delays (h, P, T, RH)

Under development.

5.15.1 Function Documentation

5.15.1.1 compute_delays()

```
def pyinsar.processing.corrections.troposphere.compute_delays ( h, \\ P, \\ T, \\ RH )
```

Under development.

5.15.1.2 N()

```
def pyinsar.processing.corrections.troposphere.N ( P, T, RH, k1 = 77.6, k2 = 23.3, k3 = 3.75E5 )
```

Under development.

5.15.1.3 N_h()

```
def pyinsar.processing.corrections.troposphere.N_h ( h, P, T, RH, k1 = 77.6, k2 = 23.3, k3 = 3.75E5 )
```

Under development.

5.15.1.4 vapor_pressure()

```
def pyinsar.processing.corrections.troposphere.vapor_pressure ( \ensuremath{\textit{T}} )
```

Under development.

5.16 pyinsar.processing.data_fetcher Namespace Reference

Namespaces

- gdal
- hdf_retriever
- okada

5.17 pyinsar.processing.data_fetcher.gdal Namespace Reference

Classes

class GDAL DataFetcher

Data fetcher for loading Images produced compatiable with GDAL.

5.18 pyinsar.processing.data_fetcher.hdf_retriever Namespace Reference

Classes

· class DataRetriever

Data fetcher for retrieving hdf image data made for training in convolutional neural networks.

5.19 pyinsar.processing.data_fetcher.okada Namespace Reference

Classes

· class DataFetcher

Generates data from an Okada model.

5.20 pyinsar.processing.deformation Namespace Reference

Namespaces

• elastic_halfspace

5.21 pyinsar.processing.deformation.elastic_halfspace Namespace Reference

Namespaces

- fault
- mogi
- okada
- pipe
- · surface load

5.22 pyinsar.processing.deformation.elastic_halfspace.fault Namespace Reference

Classes

· class Fault

*** In Development *** Model a fault as a collection of small okada faults

5.23 pyinsar.processing.deformation.elastic_halfspace.mogi Namespace Reference

Functions

def compute_mogi_source_displacement (source_x, source_y, source_depth, source_radius, poisson_ratio, pressurization, shear modulus, xx array, yy array)

5.23.1 Function Documentation

5.23.1.1 compute_mogi_source_displacement()

5.24 pyinsar.processing.deformation.elastic_halfspace.okada Namespace Reference

Functions

```
    def f_x_tensile (xi, eta, q, delta, nu)

    def f_y_strike (xi, eta, q, delta, nu)

• def f_y_dip (xi, eta, q, delta, nu)
• def f_y_tensile (xi, eta, q, delta, nu)

    def f z strike (xi, eta, q, delta, nu)

    def f_z_dip (xi, eta, q, delta, nu)

• def f_z_tensile (xi, eta, q, delta, nu)
• def chinnerys_notation (f, x, p, q, L, W, delta, nu)

    def compute_okada_displacement (fault_centroid_x, fault_centroid_y, fault_centroid_depth, fault_strike, fault_dip,

  fault_length, fault_width, fault_rake, fault_slip, fault_open, poisson_ratio, xx_array, yy_array)

    def I1 int (xi, eta, z, y, delta, c, d, q, R)

       Okada's internal displacement.

    def I2 int (xi, eta, z, y, delta, c, d, q, R)

    def I3 int (xi, eta, z, y, delta, c, d, q, R)

    def I4_int (xi, eta, z, y, delta, c, d, q, R)

    def fA 1 strike (xi, eta, z, y, delta, c, alpha)

    def fA_2_strike (xi, eta, z, y, delta, c, alpha)

• def fA_3_strike (xi, eta, z, y, delta, c, alpha)
• def fB_1_strike (xi, eta, z, y, delta, c, alpha)

    def fB 2 strike (xi, eta, z, y, delta, c, alpha)

• def fB_3_strike (xi, eta, z, y, delta, c, alpha)

    def fC_1_strike (xi, eta, z, y, delta, c, alpha)

    def fC 2 strike (xi, eta, z, y, delta, c, alpha)

• def fC_3_strike (xi, eta, z, y, delta, c, alpha)

    def fA 1 dip (xi, eta, z, y, delta, c, alpha)

    def fA 2 dip (xi, eta, z, y, delta, c, alpha)

    def fA 3 dip (xi, eta, z, y, delta, c, alpha)

    def fB_1_dip (xi, eta, z, y, delta, c, alpha)

    def fB 2 dip (xi, eta, z, y, delta, c, alpha)

    def fB_3_dip (xi, eta, z, y, delta, c, alpha)

    def fC_1_dip (xi, eta, z, y, delta, c, alpha)

    def fC 2 dip (xi, eta, z, y, delta, c, alpha)

    def fC 3 dip (xi, eta, z, y, delta, c, alpha)

    def fA_1_tensile (xi, eta, z, y, delta, c, alpha)

    def fA 2 tensile (xi, eta, z, y, delta, c, alpha)

• def fA_3_tensile (xi, eta, z, y, delta, c, alpha)
• def fB_1_tensile (xi, eta, z, y, delta, c, alpha)

    def fB_2_tensile (xi, eta, z, y, delta, c, alpha)

    def fB 3 tensile (xi, eta, z, y, delta, c, alpha)

• def fC_1_tensile (xi, eta, z, y, delta, c, alpha)
• def fC 2 tensile (xi, eta, z, y, delta, c, alpha)

    def fC_3_tensile (xi, eta, z, y, delta, c, alpha)

    def fA_1 (displacement_type, xi, eta, z, y, delta, c, alpha)

    def fA 2 (displacement type, xi, eta, z, y, delta, c, alpha)

    def fA 3 (displacement type, xi, eta, z, y, delta, c, alpha)

    def fB 1 (displacement type, xi, eta, z, y, delta, c, alpha)

    def fB 2 (displacement type, xi, eta, z, y, delta, c, alpha)

    def fB 3 (displacement type, xi, eta, z, y, delta, c, alpha)

    def fC_1 (displacement_type, xi, eta, z, y, delta, c, alpha)

    def fC 2 (displacement type, xi, eta, z, y, delta, c, alpha)

    def fC 3 (displacement type, xi, eta, z, y, delta, c, alpha)
```

- def chinnerys_notation_int (f, displacement_type, x, y, z, L, W, delta, c, alpha)
- def compute_fault_internal_displacement_type (displacement_type, c, L, W, delta, U, alpha, xxx_array, yyy_array, zzz_array)
- def compute_okada_internal_displacement (fault_centroid_x, fault_centroid_y, fault_centroid_depth, fault_strike, fault_dip, fault_length, fault_width, fault_rake, fault_slip, fault_open, poisson_ratio, xxx_array, yyy_array, depth_← array)

5.24.1 Function Documentation

5.24.1.1 chinnerys_notation()

5.24.1.2 chinnerys_notation_int()

5.24.1.3 compute_fault_internal_displacement_type()

5.24.1.4 compute_okada_displacement()

5.24.1.5 compute_okada_internal_displacement()

```
5.24.1.6 f_x_dip()
```

```
def pyinsar.processing.deformation.elastic_halfspace.okada.f_x_dip ( xi, eta, q, delta, nu)
```

5.24.1.7 f_x_strike()

```
def pyinsar.processing.deformation.elastic_halfspace.okada.f_x_strike ( xi, eta, q, delta, nu)
```

5.24.1.8 f_x_tensile()

```
def pyinsar.processing.deformation.elastic_halfspace.okada.f_x_tensile ( xi, eta, q, delta, nu)
```

5.24.1.9 f_y_dip()

```
def pyinsar.processing.deformation.elastic_halfspace.okada.f_v_dip ( xi, eta, q, delta, nu)
```

```
5.24.1.10 f_y_strike()
```

```
def pyinsar.processing.deformation.elastic_halfspace.okada.f_y_strike ( xi, eta, q, delta, nu)
```

5.24.1.11 f_y_tensile()

```
def pyinsar.processing.deformation.elastic_halfspace.okada.f_y_tensile ( xi, eta, q, delta, nu)
```

5.24.1.12 f_z_dip()

```
def pyinsar.processing.deformation.elastic_halfspace.okada.f_z_dip ( xi, eta, q, delta, nu)
```

5.24.1.13 f_z_strike()

```
def pyinsar.processing.deformation.elastic_halfspace.okada.f_z_strike ( xi, eta, q, delta, nu)
```

5.24.1.14 f_z_tensile()

```
def pyinsar.processing.deformation.elastic_halfspace.okada.f_z_tensile ( xi, eta, q, delta, nu)
```

5.24.1.15 fA_1()

5.24.1.16 fA_1_dip()

```
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_1_dip ( xi, eta, z, y, delta, c, alpha )
```

5.24.1.17 fA_1_strike()

```
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_1_strike ( xi, eta, z, y, delta, c, alpha)
```

```
5.24.1.18 fA_1_tensile()
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_1_tensile (
               хi,
               eta,
               z,
               Y,
               delta,
               c,
               alpha )
5.24.1.19 fA_2()
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_2 (
               displacement_type,
               хi,
               eta,
               z,
               y_{\prime}
               delta,
               c,
               alpha )
5.24.1.20 fA_2_dip()
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_2_dip (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.21 fA_2_strike()
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_2_strike (
               хi,
               eta,
               Z,
               У,
               delta,
```

```
5.24.1.22 fA_2_tensile()
```

```
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_2_tensile (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.23 fA_3()
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_3 (
               displacement_type,
               хi,
               eta,
               z,
               y_{\prime}
               delta,
               C,
               alpha )
5.24.1.24 fA_3_dip()
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_3_dip (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.25 fA_3_strike()
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_3_strike (
               хi,
               eta,
               Z,
               У,
               delta,
```

```
5.24.1.26 fA_3_tensile()
def pyinsar.processing.deformation.elastic_halfspace.okada.fA_3_tensile (
               хi,
               eta,
               z,
               Y,
               delta,
               c,
               alpha )
5.24.1.27 fB_1()
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_1 (
               displacement_type,
               хi,
               eta,
               z,
               y_{\prime}
               delta,
               c,
               alpha )
5.24.1.28 fB_1_dip()
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_1_dip (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.29 fB_1_strike()
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_1_strike (
               хi,
               eta,
               Z,
               У,
               delta,
```

```
5.24.1.30 fB_1_tensile()
```

```
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_1_tensile (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.31 fB_2()
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_2 (
               displacement_type,
               хi,
               eta,
               Z,
               y_{\prime}
               delta,
               C,
               alpha )
5.24.1.32 fB_2_dip()
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_2_dip (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.33 fB_2_strike()
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_2_strike (
               хi,
               eta,
               Z,
               У,
               delta,
```

```
5.24.1.34 fB_2_tensile()
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_2_tensile (
               хi,
               eta,
               z,
               Y,
               delta,
               c,
               alpha )
5.24.1.35 fB_3()
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_3 (
               displacement_type,
               хi,
               eta,
               z,
               y_{\prime}
               delta,
               c,
               alpha )
5.24.1.36 fB_3_dip()
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_3_dip (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.37 fB_3_strike()
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_3_strike (
               хi,
```

Generated by Doxygen

eta, z, y, delta,

```
5.24.1.38 fB_3_tensile()
```

```
def pyinsar.processing.deformation.elastic_halfspace.okada.fB_3_tensile (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.39 fC_1()
def pyinsar.processing.deformation.elastic_halfspace.okada.fC_1 (
               displacement_type,
               хi,
               eta,
               Z,
               y_{\prime}
               delta,
               C,
               alpha )
5.24.1.40 fC_1_dip()
def pyinsar.processing.deformation.elastic_halfspace.okada.fC_1_dip (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.41 fC_1_strike()
\tt def \ pyinsar.processing.deformation.elastic\_halfspace.okada.fC\_1\_strike \ (
               хi,
               eta,
               Z,
               у,
               delta,
               alpha )
```

```
5.24.1.42 fC_1_tensile()
def pyinsar.processing.deformation.elastic_halfspace.okada.fC_1_tensile (
               хi,
               eta,
               z,
               Y,
               delta,
               c,
               alpha )
5.24.1.43 fC_2()
def pyinsar.processing.deformation.elastic_halfspace.okada.fC_2 (
               displacement_type,
               хi,
               eta,
               z,
               y_{\prime}
               delta,
               c,
               alpha )
5.24.1.44 fC_2_dip()
def pyinsar.processing.deformation.elastic_halfspace.okada.fC_2_dip (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.45 fC_2_strike()
def pyinsar.processing.deformation.elastic_halfspace.okada.fC_2_strike (
               хi,
               eta,
               Z,
               У,
```

delta,

```
5.24.1.46 fC_2_tensile()
```

```
def pyinsar.processing.deformation.elastic_halfspace.okada.fC_2_tensile (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.47 fC_3()
def pyinsar.processing.deformation.elastic_halfspace.okada.fC_3 (
               displacement_type,
               хi,
               eta,
               Z,
               y_{\prime}
               delta,
               C,
               alpha )
5.24.1.48 fC_3_dip()
def pyinsar.processing.deformation.elastic_halfspace.okada.fC_3_dip (
               хi,
               eta,
               z,
               Y,
               delta,
               С,
               alpha )
5.24.1.49 fC_3_strike()
\tt def \ pyinsar.processing.deformation.elastic\_halfspace.okada.fC\_3\_strike \ (
               хi,
               eta,
               Z,
               у,
               delta,
               С,
```

```
5.24.1.50 fC_3_tensile()
```

5.24.1.51 I1()

Okada's surface displacement.

```
5.24.1.52 I1_int()
```

Okada's internal displacement.

5.24.1.53 I2()

```
def pyinsar.processing.deformation.elastic_halfspace.okada.I2 ( xi, eta, q, delta, nu, R, y\_tild, d\_tild)
```

5.24.1.54 I2_int()

5.24.1.55 I3()

R)

5.24.1.57 I4()

5.24.1.58 I4_int()

5.24.1.59 I5()

5.25 pyinsar.processing.deformation.elastic_halfspace.pipe Namespace Reference

Functions

def compute_closed_pipe_displacement (closed_pipe_x, closed_pipe_y, closed_pipe_depth_1, closed_pipe_
 depth_2, closed_pipe_radius, poisson_ratio, pressurization, shear_modulus, xx_array, yy_array)

Compute the surface displacements for a closed pipe.

• def compute_open_pipe_displacement (open_pipe_x, open_pipe_y, open_pipe_depth_0, open_pipe_depth_1, open_pipe_depth_2, open_pipe_radius, poisson_ratio, pressurization, shear_modulus, xx_array, yy_array)

Compute the surface displacements for an open pipe.

5.25.1 Function Documentation

5.25.1.1 compute_closed_pipe_displacement()

Compute the surface displacements for a closed pipe.

Parameters

closed_pipe_x	x cooordinate for the pipe's center
closed_pipe_y	y cooordinate for the pipe's center
closed_pipe_depth←	Pipe's top depth
_1	
closed_pipe_depth←	Pipe's bottom depth
_2	
closed_pipe_radius	Pipe's radius
poisson_ratio	Poisson's ratio
pressurization	Change of pressure applied to the pipe
shear_modulus	Shear modulus
xx_array	x cooordinate for the domain within a 2D array
yy_array	y cooordinate for the domain within a 2D array

Returns

The surface displacement field

5.25.1.2 compute_open_pipe_displacement()

Compute the surface displacements for an open pipe.

Parameters

open_pipe_x	x cooordinate for the pipe's center
open_pipe_y	y cooordinate for the pipe's center
open_pipe_depth↔ _0	Pipe's top depth with minimal pressurization
open_pipe_depth↔ _1	Pipe's top depth with maximal pressurization
open_pipe_depth↔ _2	Pipe's bottom depth
open_pipe_radius	Pipe's radius
poisson_ratio	Poisson's ratio
pressurization	Change of pressure applied to the pipe
shear_modulus	Shear modulus
xx_array	x cooordinate for the domain within a 2D array
yy_array	y cooordinate for the domain within a 2D array

Returns

The surface displacement field

5.26 pyinsar.processing.deformation.elastic_halfspace.surface_load Namespace Reference

Functions

def compute_uniform_disk_load_displacement (disk_x, disk_y, disk_radius, poisson_ratio, pressure, shear_
 modulus, xx_array, yy_array)

Compute the surface displacements for a uniform disk load.

5.26.1 Function Documentation

5.26.1.1 compute_uniform_disk_load_displacement()

```
\label{load_point} $\operatorname{displacement}$ ( & \operatorname{disk}_{x}, & \operatorname{disk}_{y}, & \operatorname{disk}_{radius}, & \operatorname{poisson}_{ratio}, & \operatorname{pressure}, & \operatorname{shear}_{modulus}, & \operatorname{xx}_{array}, & \operatorname{yy}_{array} )
```

Compute the surface displacements for a uniform disk load.

Parameters

disk_x	x cooordinate for the disk's center
disk_y	y cooordinate for the disk's center
disk_radius	Disk's radius
poisson_ratio	Poisson's ratio
pressure	Pressure applied by the disk
shear_modulus	Shear modulus
xx_array	x cooordinate for the domain within a 2D array
yy_array	y cooordinate for the domain within a 2D array

Returns

The surface displacement field

5.27 pyinsar.processing.discovery Namespace Reference

Namespaces

classify_cnn

- coherence
- · coregister
- deburst
- deformation_to_phase
- · flat_earth
- · interferogram
- · los deformation
- rotate_squares
- shown_cnn_classes
- · temporal_decorrelation
- train_cnn
- · wrap_phase

5.28 pyinsar.processing.discovery.classify_cnn Namespace Reference

Classes

· class ClassifyCNN

Train a CNN.

5.29 pyinsar.processing.discovery.coherence Namespace Reference

Classes

class Coherence

Calculate coherence between single-look complex SAR images.

5.30 pyinsar.processing.discovery.coregister Namespace Reference

Classes

· class Coregister

*** In Devolopment *** Pipeline item to coregister images

5.31 pyinsar.processing.discovery.deburst Namespace Reference

Classes

class Deburst

Debursts Sentinel-1 TOPSAR data.

5.32 pyinsar.processing.discovery.deformation_to_phase Namespace Reference

Classes

· class DeformationToPhase

Convert deformation to phas.

5.33 pyinsar.processing.discovery.flat_earth Namespace Reference

Classes

class FlatEarth

*** In Development *** Remove flat Earth contribution from interferogram

5.34 pyinsar.processing.discovery.interferogram Namespace Reference

Classes

· class Interferogram

Create Inteferogram from SLC data.

5.35 pyinsar.processing.discovery.los_deformation Namespace Reference

Classes

• class LOS_Deformation

*** In Development ***

5.36 pyinsar.processing.discovery.rotate_squares Namespace Reference

Classes

• class RotateSquares

Generate new images by rotating subsections of data defined by Shapely squares.

Functions

• def rotateSquare (image, square, angle, order)

Rotate a subsection of an image defined by a shapely square.

5.36.1 Function Documentation

5.36.1.1 rotateSquare()

Rotate a subsection of an image defined by a shapely square.

Parameters

image	Full image containing subsection to be rotated
square	Shapely square
angle	Angle of rotation
order	Order of spline interpolation

5.37 pyinsar.processing.discovery.shown_cnn_classes Namespace Reference

Classes

• class ShowCNNClasses

Dispay CNN Classifications on segments of an image.

5.38 pyinsar.processing.discovery.temporal_decorrelation Namespace Reference

Classes

• class TemporalDecorrelation

Pipeline item to add temporal decorrelation to some phase.

5.39 pyinsar.processing.discovery.train_cnn Namespace Reference

Classes

class TrainCNN

Train a CNN.

5.40 pyinsar.processing.discovery.wrap_phase Namespace Reference

Classes

class WrapPhase

Pipeline Item that wraps phase.

5.41 pyinsar.processing.geography Namespace Reference

Namespaces

- · coordinates
- geodesy
- · geomorphometry

5.42 pyinsar.processing.geography.coordinates Namespace Reference

Functions

- def transform_to_pixel_coordinates (x, y, x_min, x_max, y_min, y_max, array_width, array_height)

 Array coordinates.
- def transform_to_geographic_coordinates (u, v, x_min, x_max, y_min, y_max, array_width, array_height)
 Transform some pixel coordinates in an array to geographic coordinates.
- def compute_x_and_y_coordinates_maps (x_min, x_max, y_min, y_max, array_width, array_height)

 Compute an array of x and y coordinates based on an extent and array shape.
- def extract_subgeoarray (georaster_array, georaster_extent, x_min, x_max, y_min, y_max, center_extent=False)
- def sample nd array (array, subarray shape, steps=(1, 1))
- def sample_2d_array (array, subarray_shape, steps=(1, 1), is_shape_centered=False)
- def sample_2d_multiarray (array, subarray_shape, steps=(1, 1))
- def reproject_point (lon, lat, old_projection_EPSG=None, old_projection_wkt=None, old_projection_utm=None, new_projection_EPSG=None, new_projection_wkt=None, new_projection_utm=None)

Projection.

• def find_utm_area (longitude, latitude)

Find the UTM code and hemisphere from the longitude and latitude of a point.

def reproject_georaster (georaster, new_cell_sizes, new_projection_EPSG=None, new_projection_wkt=None, new_projection_utm=None, new_extent=None, interpolation_method=gdal.GRA_Cubic, file_type='MEM', file_type='MEM', file_type=gdal.GDT_Float64, no_data_value=-99999., scale=1., offset=0., options=[])

Change the projection of a GDAL georaster.

def georaster_vertical_datum_shift (georaster, old_datum_proj4='+proj=longlat+datum=WGS84+no_
defs+geoidgrids=egm96_15.gtx', new_datum_proj4='+proj=longlat+datum=WGS84+no_defs', file_type='MEM', file_path=", data_type=gdal.GDT_Float64, no_data_value=-99999., scale=1., offset=0.)

Variables

nopython

Extract all the possible sub-arrays that do not contain any NaN.

- True
- nogil
- · parallel

5.42.1 Function Documentation

5.42.1.1 compute_x_and_y_coordinates_maps()

```
def pyinsar.processing.geography.coordinates.compute_x_and_y_coordinates_maps (  x\_min, \\ x\_max, \\ y\_min, \\ y\_max, \\ array\_width, \\ array\_height )
```

Compute an array of x and y coordinates based on an extent and array shape.

Parameters

x_min	Minimal coordinate along the x axis (along the cell border)
x_max	Maximal coordinate along the x axis (along the cell border)
y_min	Minimal coordinate along the y axis (along the cell border)
y_max	Maximal coordinate along the y axis (along the cell border)
array_width	Width of the array (i.e., along the x axis)
array_height	Height of the array (i.e., along the y axis)

Returns

The coordinates' arrays

5.42.1.2 extract_subgeoarray()

```
\begin{tabular}{ll} \tt def pyinsar.processing.geography.coordinates.extract\_subgeoarray ( \\ & georaster\_array, \\ & georaster\_extent, \end{tabular}
```

```
x_min,
x_max,
y_min,
y_max,
center_extent = False )
```

5.42.1.3 find_utm_area()

```
def pyinsar.processing.geography.coordinates.find_utm_area ( longitude, \\ latitude \;)
```

Find the UTM code and hemisphere from the longitude and latitude of a point.

Parameters

longitude	A float for the longitude
latitude	A float for the latitude

Returns

A tuple with the code of the UTM zone and the hemisphere (1: northern hemisphere; 0: southern hemisphere)

5.42.1.4 georaster_vertical_datum_shift()

5.42.1.5 reproject_georaster()

Change the projection of a GDAL georaster.

Parameters

georaster	The GDAL georaster
new_cell_sizes	Sizes (x, y) for cells of the georaster in the new projection
new_projection_EPSG	EPSG code of the new projection
new_projection_wkt	WKT code of the new projection (can be used instead of the new_projection_EPSG)
new_projection_utm	Tuple with the UTM zone code and if it's northern or not
new_extent	Tuple with the minimal x, maximal x, minimal y, maximal y for the new georaster
interpolation_method	Interpolation method used during the projection
file_type	Type to save the file (default is memory)
file_path	Where to store the new georasterEPSG_code (default is memory)
data_type	Data type of the georaster
no_data_value	No data value for the georaster
scale	Scaling factor for the georaster
offset	Offset factor for the georaster
options	List of options for compression

Returns

The GDAL georaster

5.42.1.6 reproject_point()

```
\begin{tabular}{l} \tt def pyinsar.processing.geography.coordinates.reproject\_point ( \\ \tt lon, \end{tabular}
```

```
lat,
old_projection_EPSG = None,
old_projection_wkt = None,
old_projection_utm = None,
new_projection_EPSG = None,
new_projection_wkt = None,
new_projection_utm = None)
```

Projection.

Reproject a single point

5.42.1.7 sample_2d_array()

5.42.1.8 sample_2d_multiarray()

5.42.1.9 sample_nd_array()

5.42.1.10 transform_to_geographic_coordinates()

Transform some pixel coordinates in an array to geographic coordinates.

Parameters

и	Pixel coordinate along the x axis to transform
V	Pixel coordinate along the y axis to transform
x_min	Minimal coordinate of the array along the x axis (along the cell border)
x_max	Maximal coordinate of the array along the x axis (along the cell border)
y_min	Minimal coordinate of the array along the y axis (along the cell border)
y_max	Maximal coordinate of the array along the y axis (along the cell border)
array_width	Width of the array (i.e., along the x axis)
array_height	Height of the array (i.e., along the y axis)

Returns

The geographic coordinates at the center of the pixel

5.42.1.11 transform_to_pixel_coordinates()

Array coordinates.

Transform some geographic coordinates to pixel coordinates in an array

```
@param x: Coordinate along the x axis to transform
@param y: Coordinate along the y axis to transform
@param x_min: Minimal coordinate of the array along the x axis (along the cell border)
@param x_max: Maximal coordinate of the array along the x axis (along the cell border)
@param y_min: Minimal coordinate of the array along the y axis (along the cell border)
@param y_max: Maximal coordinate of the array along the y axis (along the cell border)
@param array_width: Width of the array (i.e., along the x axis)
@param array_height: Height of the array (i.e., along the y axis)
```

@return The pixel coordinates

5.42.2 Variable Documentation

5.42.2.1 nogil

pyinsar.processing.geography.coordinates.nogil

5.42.2.2 nopython

pyinsar.processing.geography.coordinates.nopython

Extract all the possible sub-arrays that do not contain any NaN.

Parameters

array	A 2D NumPy array
subarray_shape	The shape of the sub-arrays
steps	The step between each sub-array for each axis, to avoid sampling all the possible sub-arrays
is_shape_centered	True if the sub-arrays should be defined from their central cell, false if they should be defined from their top-left corner

Returns

The sub-arrays as a 3D NumPy array

Parameters

array	A 3D NumPy array. The first dimension represents the variables, the other two the x and y axis.
subarray_shape	The 2D shape of the sub-arrays
steps	The step between each sub-array for each axis, to avoid sampling all the possible sub-arrays

Returns

The sub-arrays as a 4D NumPy array

5.42.2.3 parallel

pyinsar.processing.geography.coordinates.parallel

5.42.2.4 True

pyinsar.processing.geography.coordinates.True

5.43 pyinsar.processing.geography.geodesy Namespace Reference

Functions

Geodesy on a sphere.

- def compute_lonlat_from_distance_bearing (rad_longitude_1, rad_latitude_1, distance, rad_bearing, planet_
 radius)
- def direct_vincenty_formula (rad_lon_1, rad_lat_1, distance, rad_bearing_1, a, f, eps=1e-12)
- def direct_vincenty_formula_for_array (rad_longitude_1_array, rad_latitude_1_array, distance_array, rad_
 bearing_1, a, f, eps=1e-12)
- def update_lambda (Lambda, reduced_rad_lat_1, reduced_rad_lat_2, diff_lon, f)
- def inverse_vincenty_formula (rad_lon_1, rad_lat_1, rad_lon_2, rad_lat_2, a, f, eps=1e-12, max_iter=200)
- def inverse_vincenty_formula_for_array (rad_longitude_1, rad_latitude_1, rad_longitude_2_array, rad_latitude
 —2_array, a, f, eps=1e-12, max_iter=200)
- def compute_point_to_line_distance_on_ellipsoid (rad_point_lon, rad_point_lat, rad_geodesic_origin_lon, rad
 __geodesic_origin_lat, rad_geodesic_bearing, a, f, eps=1e-12, max_iter=200)
- def compute_point_to_line_distance_for_array (rad_longitude_1, rad_latitude_1, rad_longitude_2_array, rad_
 — latitude_2_array, rad_bearing, a, f, eps=1e-12, max_iter=200)

Variables

nopython

Geodesy on an oblate spheroid.

5.43.1 Function Documentation

5.43.1.1 compute_great_circle_distance_and_bearing()

Geodesy on a sphere.

Compute the distance and initial bearing between two points on a sphere

```
@param rad_longitude_1: Longitude of the first point (in radian)
@param rad_latitude_1: Latitude of the first point (in radian)
@param rad_longitude_2: Longitude of the second point (in radian)
@param rad_latitude_2: Latitude of the second point (in radian)
@param planet_radius: Radius of the considered planet (same unit as the distance)
@return The Haversine distance and the initial bearing (in radian)
```

5.43.1.2 compute_lonlat_from_distance_bearing()

5.43.1.3 compute_point_to_line_distance_for_array()

5.43.1.4 compute_point_to_line_distance_on_ellipsoid()

5.43.1.5 direct_vincenty_formula()

5.43.1.6 direct_vincenty_formula_for_array()

5.43.1.7 inverse_vincenty_formula()

5.43.1.8 inverse_vincenty_formula_for_array()

5.43.1.9 update_lambda()

5.43.2 Variable Documentation

5.43.2.1 nopython

```
pyinsar.processing.geography.geodesy.nopython
```

Geodesy on an oblate spheroid.

Update the parameter lambda of Vincenty's inverse formula.

5.44 pyinsar.processing.geography.geomorphometry Namespace Reference

Functions

- def add_symmetric_border (array, border_size=1)
- def compute_gradient_at_cell (array, j, i, grid_yx_spacing, axis=1)
- def compute_horne_slope (array, grid_yx_spacing)

Variables

• nopython

Add a symmetric border to a 2D array.

5.44.1 Function Documentation

5.44.1.1 add_symmetric_border()

5.44.1.2 compute_gradient_at_cell()

5.44.1.3 compute_horne_slope()

```
def pyinsar.processing.geography.geomorphometry.compute_horne_slope (  array, \\ grid\_yx\_spacing )
```

5.44.2 Variable Documentation

5.44.2.1 nopython

pyinsar.processing.geography.geomorphometry.nopython

Add a symmetric border to a 2D array.

Compute Horn's slope of a 2D array with a fixed cell size.

Compute Horn's gradient for a given cell of an array.

Parameters

array	The array
border_size	The size of the border

Returns

The expended array

Parameters

array	The array
j	The index of the cell along the y axis
i	The index of the cell along the x axis
grid_yx_spacing	The cell size, which is considered fixed for the entire array
axis	the axis along which the gradient is computed (0: y; 1: x)

Returns

The gradient value for the cell

Parameters

array	The array
grid_yx_spacing	The cell size, which is considered fixed for the entire array

Returns

The slope (in degree)

5.45 pyinsar.processing.instruments Namespace Reference

Namespaces

· sentinel

5.46 pyinsar.processing.instruments.sentinel Namespace Reference

Classes

• class RampPolynomial

Polynomial used for quantities relating to deramping sentinel.

class SentinelRamp

Calcuate the combined ramp and modulated phase in Sentinel.

Functions

- def transform slc (slc, deramped phase, transformation matrix)
- def find_overlapping_valid_lines (metadata_tree)

Determine which lines between bursts overlap.

def get_valid_lines (metadata_tree, per_burst=False)

Retrieve all lines that contain some valid data.

def select_valid_lines (data, tree, cut=True)

Extract burst information from SLC.

def retrieve_azimuth_time (in_tree)

Retrieves the zero azimuth time for all the lines in the data.

def read_geolocation (tree)

Read in geolocation data.

def update_geolocation_lines (tree, azimuth_times, geolocation_data)

Update which line is associated with geolocation data using azimuth times.

def get_sentinel_extents (geolocation, offset=0.0)

Get the extents (latitude and longitude) of a sentinel-1 image given its geolocation information.

5.46.1 Function Documentation

5.46.1.1 find_overlapping_valid_lines()

```
\label{lines} \begin{tabular}{ll} def pyinsar.processing.instruments.sentinel.find\_overlapping\_valid\_lines \ ( \\ metadata\_tree \ ) \end{tabular}
```

Determine which lines between bursts overlap.

Parameters

```
metadata_tree | Sentinel metadata XML tree
```

Returns

List of overlapping index ranges

5.46.1.2 get_sentinel_extents()

```
def pyinsar.processing.instruments.sentinel.get_sentinel_extents ( geolocation, \\ offset = 0.0 \; )
```

Get the extents (latitude and longitude) of a sentinel-1 image given its geolocation information.

Parameters

geolocation	Geolocation data read in by read_geolocation
offset	Extra offset to add to the extent

Returns

Latitude and longitude extents of a sentinel-1

5.46.1.3 get_valid_lines()

Retrieve all lines that contain some valid data.

Parameters

metadata_tree	Sentinel XML metadata tree
per_burst	Retrieve the burst data as seperate arrays

Returns

Sentinel data for all lines that are valid

5.46.1.4 read_geolocation()

```
def pyinsar.processing.instruments.sentinel.read_geolocation ( tree\ )
```

Read in geolocation data.

Parameters

tree	Sentinel metadata as an ElementTree
------	-------------------------------------

Returns

Geolocation metadata

5.46.1.5 retrieve_azimuth_time()

```
def pyinsar.processing.instruments.sentinel.retrieve_azimuth_time ( in\_tree )
```

Retrieves the zero azimuth time for all the lines in the data.

Parameters

```
in_tree | SLC Metadata as an ElementTree
```

Returns

Pandas series of azimuth times for each line

5.46.1.6 select_valid_lines()

Extract burst information from SLC.

Parameters

data	Input SLC data	
tree	Metadata as an ElementTree	
cut	Remove invalid lines	

Returns

A list containing individual images of each burst

5.46.1.7 transform_slc()

```
def pyinsar.processing.instruments.sentinel.transform_slc ( slc, \\ deramped\_phase, \\ transformation\_matrix )
```

Parameters

slc	Input slc
deramped_phase	Phase to be removed before the transformation and to be readded afterwards
transformation_matrix	A 2x3 transformation matrix to be used by warpAffine by opencv

Returns

transformed slc

5.46.1.8 update_geolocation_lines()

Update which line is associated with geolocation data using azimuth times.

Parameters

tree	Sentinel XML metadata
azimuth_times	Azimuth times
geolocation_data	Geolocation data read in by read_geolocation

Returns

New lines for the geolocation data

5.47 pyinsar.processing.isce Namespace Reference

Namespaces

• input_file

5.48 pyinsar.processing.isce.input_file Namespace Reference

Functions

def create_product_xml (xml_path, product_path, product_type='master', product_output_path=None, product_output_path=None, product_auxiliary_data_path=None, do_add=True)

Create the xml file defining a Sentinel-1 product for processing with ISCE.

def create_topsApp_xml (xml_folder_path, master_path, slave_path, master_output_path=None, slave_output
 _path=None, master_orbit_path=None, slave_orbit_path=None, master_auxiliary_data_path=None, slave_
 auxiliary_data_path=None, do_unwrap=True, unwrapper_name='snaphu_mcf', xml_filename='topsApp.xml')

Create the topsApp.xml file for processing Sentinel-1 data with ISCE.

def prepare_topsApps (product_paths, result_folder_path, orbit_path=None, auxiliary_data_path=None, do_
 unwrap=True, unwrapper_name='snaphu_mcf')

5.48.1 Function Documentation

5.48.1.1 create_product_xml()

Create the xml file defining a Sentinel-1 product for processing with ISCE.

Parameters

xml_path	Path to the xml file
product_path	Path to the Sentinel-1 product
product_type	Master or slave product
product_output_path	Path for the processing outputs of this product
product_orbit_path	Path to the folder containing orbit files
product_auxiliary_data_path	Path to the folder containing auxiliary data
do_add	True if the component is added to an already existing xml file, false otherwise

5.48.1.2 create_topsApp_xml()

```
master_orbit_path = None,
slave_orbit_path = None,
master_auxiliary_data_path = None,
slave_auxiliary_data_path = None,
do_unwrap = True,
unwrapper_name = 'snaphu_mcf',
xml_filename = 'topsApp.xml')
```

Create the topsApp.xml file for processing Sentinel-1 data with ISCE.

Parameters

xml_folder_path	Path to the folder that will contain the xml file
master_path	Path to the master Sentinel-1 product
slave_path	Path to the slave Sentinel-1 product
master_output_path	Path for the processing outputs of the master product
slave_output_path	Path for the processing outputs of the slave product
master_orbit_path	Path to the folder containing orbit files for the master product
slave_orbit_path	Path to the folder containing orbit files for the slave product
master_auxiliary_data_path	Path to the folder containing auxiliary data for the master product
slave_auxiliary_data_path	Path to the folder containing auxiliary data for the slave product
do_unwrap	True to unwrap the created interferogram, false otherwise
unwrapper_name	Name of the unwrapper when do_unwrap is true
xml_filename	Name of the topsApp.xml file to create

Returns

The path to the created topsApp.xml file

5.48.1.3 prepare_topsApps()

5.49 pyinsar.processing.machine_learning Namespace Reference

Namespaces

· geostatistics

5.50 pyinsar.processing.machine_learning.geostatistics Namespace Reference

Namespaces

- · direct sampling
- · geostatistics utils
- sequential_gaussian_simulation
- variogram

5.51 pyinsar.processing.machine_learning.geostatistics.direct_sampling Namespace Reference

Functions

- def compute_neighborhood_lag_vectors (neighborhood_shape, grid_yx_spacing, delta)
- def compute_neighborhoods (simulation_array, data_weight_array, cell_j, cell_i, lag_vectors, lag_distances, max_number_data, max_density_data, neighborhood_shape, rotation_angle_rad, scaling_factor, no_data_value)
- def compute_continuous_distance (training_image_array, ti_j, ti_i, ti_ranges_max, neighbor_indexes, neighbor—values, neighbor_numbers, min_distances, var_k, max_non_matching_proportion, no_data_value)
- def compute_discrete_distance (training_image_array, ti_j, ti_i, neighbor_indexes, neighbor_values, neighbor_walues, neighbor_wa
- def find_closest_cell_in_training_image (training_image_array, ti_ranges_max, ti_indices, ti_index, neighbor_
 indexes, neighbor_values, neighbor_numbers, distance_thresholds, max_non_matching_proportion, ti_fraction, no_data_value)
- def prepare training image (array, variable types)
- def is_any_equal (list_1, value)
- def is_any_nan (list_1)
- def run_ds (data_array, training_image_array, variable_types, distance_thresholds, ti_fraction, max_number
 __data, max_density_data, neighborhood_shape=(math.inf, math.inf), grid_yx_spacing=(1., 1.), delta=0.,
 conditioning_data_weight=1., max_non_matching_proportion=1., start_parameter_reduction=1, reduction_←
 factor=1, rotation_angle_array=np.empty((1, 1)), scaling_factor_array=np.empty((1, 1, 1)), number_postproc=0,
 postproc_factor=1, number_realizations=1, path_type=PathType.RANDOM, seed=100, no_data_value=-99999)
- def simulate_ds_realization (data_array, data_weight_array, training_image_array, ti_ranges_max, ti_
 indices, distance_thresholds, ti_fraction, max_number_data, max_density_data, lag_vectors, lag_distances,
 neighborhood_shape, max_non_matching_proportion, start_parameter_reduction, reduction_factor, rotation_
 angle_array, scaling_factor_array, number_postproc, postproc_factor, path_type, seed, no_data_value)
- def run_parallel_ds (data_array, training_image_array, variable_types, distance_thresholds, ti_fraction, max_
 number_data, max_density_data, neighborhood_shape=(math.inf, math.inf), grid_yx_spacing=(1., 1.), delta=0.,
 conditioning_data_weight=1., max_non_matching_proportion=1., start_parameter_reduction=1, reduction_
 factor=1, rotation_angle_array=np.empty((1, 1)), scaling_factor_array=np.empty((1, 1, 1)), number_postproc=0,
 postproc factor=1, number_realizations=1, path_type=PathType.RANDOM, seed=100, no_data_value=-99999)

Variables

nopython

Compute the lag vectors for the neighborhood, assuming a regular grid.

5.51.1 Function Documentation

5.51.1.1 compute_continuous_distance()

5.51.1.2 compute_discrete_distance()

5.51.1.3 compute_neighborhood_lag_vectors()

```
def pyinsar.processing.machine_learning.geostatistics.direct_sampling.compute_neighborhood_lag_\leftrightarrow vectors ( neighborhood\_shape, \\ grid\_yx\_spacing, \\ delta )
```

5.51.1.4 compute_neighborhoods()

5.51.1.5 find_closest_cell_in_training_image()

5.51.1.6 is_any_equal()

```
def pyinsar.processing.machine_learning.geostatistics.direct_sampling.is_any_equal ( list\_1, \\ value \ )
```

5.51.1.7 is_any_nan()

```
def pyinsar.processing.machine_learning.geostatistics.direct_sampling.is_any_nan ( list\_1 \ )
```

5.51.1.8 prepare_training_image()

```
def pyinsar.processing.machine_learning.geostatistics.direct_sampling.prepare_training_image (  array, \\ variable\_types \ )
```

5.51.1.9 run_ds()

```
def pyinsar.processing.machine_learning.geostatistics.direct_sampling.run_ds (
              data_array,
              training_image_array,
              variable_types,
              distance_thresholds,
              ti_fraction,
              max_number_data,
              max_density_data,
              neighborhood_shape = (math.inf, math.inf),
              grid_yx_spacing = (1., 1.),
              delta = 0.,
              conditioning_data_weight = 1.,
              max_non_matching_proportion = 1.,
              start_parameter_reduction = 1,
              reduction_factor = 1,
              rotation_angle_array = np.empty((1, 1)),
              scaling_factor_array = np.empty((1, 1, 1)),
              number\_postproc = 0,
              postproc_factor = 1,
              number_realizations = 1,
              path_type = PathType.RANDOM,
              seed = 100,
              no_data_value = -99999)
```

5.51.1.10 run_parallel_ds()

```
max_non_matching_proportion = 1.,
start_parameter_reduction = 1,
reduction_factor = 1,
rotation_angle_array = np.empty((1, 1)),
scaling_factor_array = np.empty((1, 1, 1)),
number_postproc = 0,
postproc_factor = 1,
number_realizations = 1,
path_type = PathType.RANDOM,
seed = 100,
no_data_value = -99999)
```

5.51.1.11 simulate_ds_realization()

```
\tt def\ pyinsar.processing.machine\_learning.geostatistics.direct\_sampling.simulate\_ds\_realization\ (
              data_array,
              data_weight_array,
              training_image_array,
              ti_ranges_max,
              ti_indices,
              distance_thresholds,
              ti_fraction,
              max_number_data,
              max_density_data,
              lag_vectors,
              lag_distances,
              neighborhood_shape,
              max_non_matching_proportion,
              start_parameter_reduction,
              reduction_factor,
              rotation_angle_array,
              scaling_factor_array,
              number_postproc,
              postproc_factor,
              path_type,
              seed.
              no_data_value )
```

5.51.2 Variable Documentation

5.51.2.1 nopython

 $\verb"pyinsar.processing.machine_learning.geostatistics.direct_sampling.nopython$

Compute the lag vectors for the neighborhood, assuming a regular grid.

Check if there is any NaN in a list (or tuple, or 1D NumPy array)

Check if there is a given value in a list (or tuple, or 1D NumPy array)

Compute the distance between two neighborhoods for a discrete variable.

Compute the distance between two neighborhoods for a continuous variable.

Parameters

neighborhood_shape	The maximal coverage of the neighborhood along each axis	
grid_yx_spacing	The cell size along each axis (y, x)	
delta	A weight for the neighboring cells during simulation, a high delta giving more influence to	
	the cells closer to the cell to simulate	

Returns

The closest cells to the center cell of the neighborhood and the corresponding weighted distance

Parameters

training_image_array	A NumPy array containing the training image, from which the simulated values are borrowed. It should be a 3D array, with one dimension for the variable(s), and two spatial dimensions
ti_j	Index along the y axis of the initial cell to visit in the training image
ti_i	Index along the x axis of the initial cell to visit in the training image
ti_ranges_max	Squared difference between the min and max value of each variable
neighbor_indexes	Indexes of the neighborhood from the cell to simulate
neighbor_values	Values of the neighborhood in the simulation grid
neighbor_numbers	Number of neighbors for each variable
min_distances	The minimal distance of each variable found so far
var_k	Index of the variable
max_non_matching_proportion	Authorized proportion of non-matching nodes, i.e., whose distance is below the threshold for the variable
no_data_value	The no-data value, which defines the cell to simulate

Returns

The distance

Parameters

training_image_array	A NumPy array containing the training image, from which the simulated values are borrowed. It should be a 3D array, with one dimension for the variable(s), and two spatial dimensions
ti_j	Index along the y axis of the initial cell to visit in the training image
ti_i	Index along the x axis of the initial cell to visit in the training image

Parameters

neighbor_indexes	Indexes of the neighborhood from the cell to simulate
neighbor_values	Values of the neighborhood in the simulation grid
neighbor_numbers	Number of neighbors for each variable
min_distances	The minimal distance of each variable found so far
var_k	Index of the variable
max_non_matching_proportion	Authorized proportion of non-matching nodes, i.e., whose distance is below the
	threshold for the variable
no_data_value	The no-data value, which defines the cell to simulate

Returns

The distance

Parameters

list⊷	The list
_1	
value	The value

Returns

True if there is the value, false otherwise

Parameters

list⇔	The list
1	

Returns

True if there is a NaN, false otherwise

5.52 pyinsar.processing.machine_learning.geostatistics.geostatistics_utils Namespace Reference

Classes

- class PathType
- class VariableType

Functions

- def unflatten_index (flattened_index, array_shape)
- def standardize (x)

Reduce and center a float or array.

• def normalize (x)

Reduce and center a float or array.

Variables

nopython

Unflatten an index for a 2D array.

- True
- nogil

5.52.1 Function Documentation

5.52.1.1 normalize()

```
def pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.normalize ( \boldsymbol{x} )
```

Reduce and center a float or array.

Parameters

```
x The float or array
```

Returns

A float or array

5.52.1.2 standardize()

```
def pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.standardize ( \boldsymbol{x} )
```

Reduce and center a float or array.

Parameters

Returns

A float or array

5.52.1.3 unflatten_index()

```
def pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.unflatten_index (  flattened\_index, \\ array\_shape \ )
```

5.52.2 Variable Documentation

5.52.2.1 nogil

pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.nogil

5.52.2.2 nopython

 $\verb"pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.nopython$

Unflatten an index for a 2D array.

Parameters

flattened_index	The flattened index (i.e., a single integer)
array_shape	The shape of the array for the two dimensions (j, i)

Returns

The 2D index (j, i)

5.52.2.3 True

pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.True

5.53 pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation Namespace Reference

Classes

· class KrigingMethod

Functions

Merging secondary data.

- def compute_euclidean_distance (cell_1, cell_2)
- · def compute axis aligned ellipse range (neighborhood range, neighborhood azimuth rad)
- def compute_neighborhood_template (neighborhood_range, grid_yx_spacing, vario_models, vario_sills, vario← ranges, vario azimuth rad, rotation matrix, eps=0.0001)
- def get_neighborhood (cell_index, simulation_array, neighborhood_template, max_number_data, no_data_value)
- def get_values_matrix (neighborhood, simulation_array)
- def get_data_to_data_matrix (kriging_method, cell_index, neighborhood, correlation_template, secondary_
 data_weight)
- def get_data_to_unknown_matrix (kriging_method, cell_index, neighborhood, correlation_template, secondary
 data weight)
- def solve_kriging_system (cell_index, neighborhood, simulation_array, primary_mean, primary_variance, correlation template, secondary data weight, secondary data mean, secondary data array)
- def run_sgs (data_array, grid_yx_spacing, vario_models, vario_sills, vario_azimuth, vario_ranges, number
 _realizations=1, path_type=PathType.RANDOM, kriging_method=KrigingMethod.SIMPLE, neighborhood_
 range=(math.nan, math.nan), max_number_data=12, secondary_data_weight=math.nan, secondary_data_
 array=np.empty((1, 1)), seed=100, no_data_value=-99999.)
- def simulate_sgs_realization (data_array, path_type, primary_mean, primary_variance, neighborhood_template, correlation_template, max_number_data, secondary_data_weight, secondary_data_array, seed, no_data_value)
- def run_parallel_sgs (data_array, grid_yx_spacing, vario_models, vario_sills, vario_azimuth, vario_
 ranges, number_realizations=1, path_type=PathType.RANDOM, kriging_method=KrigingMethod.SIMP

 LE, neighborhood_range=(math.nan, math.nan), max_number_data=12, secondary_data_weight=math.nan, secondary_data_array=np.empty((1, 1)), seed=100, nb_threads=4, no_data_value=-99999.)
- def inverse_standard_normal_cdf (x)

Data transform.

- def compute_averaged_cumulative_distribution_from_array (value_array)
- def normal score tranform (value array)

Transform the values of an array to a normal distribution.

Variables

- nopython
 - Sequential Gaussian Simulation (SGS)
- True
- nogil

5.53.1 Function Documentation

5.53.1.1 compute_averaged_cumulative_distribution_from_array()

```
def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.compute_\leftarrow averaged_cumulative_distribution_from_array ( value\_array )
```

5.53.1.2 compute_axis_aligned_ellipse_range()

5.53.1.3 compute_axis_aligned_neighborhood_shape()

5.53.1.4 compute_euclidean_distance()

```
def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.compute_\leftarrow euclidean_distance ( cell\_1, \\ cell\_2)
```

5.53.1.5 compute_neighborhood_template()

5.53.1.6 get_data_to_data_matrix()

5.53.1.7 get_data_to_unknown_matrix()

5.53.1.8 get_neighborhood()

5.53.1.9 get_values_matrix()

```
def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.get_values_\leftarrow matrix ( neighborhood, \\ simulation_array )
```

5.53.1.10 inverse_standard_normal_cdf()

Data transform.

Compute the inverse of a normal cumulative distribution

```
@param x: A float or array
@return The values normally distributed
```

5.53.1.11 merge_secondary_data()

Merging secondary data.

Merge several secondary data (see Babak and Deutsch, 2009, doi:10.1016/j.petrol.2009.08.001)

5.53.1.12 normal_score_tranform()

```
def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.normal_ \leftarrow score_tranform ( value\_array )
```

Transform the values of an array to a normal distribution.

Parameters

```
value_array An array
```

Returns

An array with its values normally distributed

5.53.1.13 run_parallel_sgs()

```
\tt def\ pyinsar.processing.machine\_learning.geostatistics.sequential\_gaussian\_simulation.run\_parallel \leftarrow
_sgs (
              data_array,
              grid_yx_spacing,
              vario_models,
              vario_sills,
              vario_azimuth,
              vario_ranges,
              number_realizations = 1,
              path_type = PathType.RANDOM,
              kriging_method = KrigingMethod.SIMPLE,
              neighborhood_range = (math.nan, math.nan),
              max_number_data = 12,
              secondary_data_weight = math.nan,
              secondary_data_array = np.empty((1, 1)),
              seed = 100,
              nb\_threads = 4,
              no_{data\_value} = -999999. )
```

5.53.1.14 run_sgs()

```
def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.run_sgs (
              data_array,
              grid_yx_spacing,
              vario_models,
              vario_sills,
              vario_azimuth,
              vario_ranges,
              number_realizations = 1,
              path_type = PathType.RANDOM,
              kriging_method = KrigingMethod.SIMPLE,
              neighborhood_range = (math.nan, math.nan),
              max_number_data = 12,
              secondary_data_weight = math.nan,
              secondary_data_array = np.empty((1, 1)),
              seed = 100,
              no_{data_value} = -999999. )
```

5.53.1.15 simulate_sgs_realization()

5.53.1.16 solve_kriging_system()

5.53.2 Variable Documentation

5.53.2.1 nogil

pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.nogil

5.53.2.2 nopython

 $\verb"pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.nopython$

Sequential Gaussian Simulation (SGS)

Get the matrices of the kriging system and solve it.

Get the matrix of variogram values between the cells with already a value.

Get the matrix of already simulated values around the cell to estimate.

Compute the shape (in cells) of an ellipse along the y and x axes.

Compute the extent of an ellipse along the y and x axes.

Compute the 2D Euclidean distance

```
@param cell_1: The first point
@param array_shape: The second point
@return The distance
```

Parameters

neighborhood_range	The major and minor axis length of the ellipse
neighborhood_azimuth_rad	The azimuth giving the orientation of the major axis

Returns

The extent

Parameters

neighborhood_range	The major and minor axis length of the ellipse
neighborhood_azimuth_rad	The azimuth giving the orientation of the major axis (in radian)
grid_yx_spacing	The cell size along each axis (y, x)

Returns

The shape

Parameters

neighborhood	The data around the cell to estimate
simulation_array	The simulation grid

Returns

The matrix

Parameters

kriging_method	The kriging method to use (see KrigingMethod)
cell_index	The cell to estimate
neighborhood	The data around the point to estimate
correlation_template	The variogram values in the neighborhood
secondary_data_weight	The weight for the secondary data (math.nan if no secondary data)

Returns

The matrix

Parameters

cell_index	The cell to estimate
neighborhood	The data around the point to estimate
simulation_array	The simulation grid
primary_mean	Mean for the variable to estimate (if using a simple kriging, math.nan if using an ordinary kriging)
primary_variance	Variance for the variable to estimate
correlation_template	The variogram values in the neighborhood
secondary_data_weight	The weight for the secondary data (math.nan if no secondary data)
secondary_data_mean	Mean for the secondary data
secondary_data_array	The secondary data

Returns

The estimation of the mean and variance for the cell

5.53.2.3 True

 $\verb"pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.True$

5.54 pyinsar.processing.machine_learning.geostatistics.variogram Namespace Reference

Classes

· class VariogramModel

2D theoretical variogram

Functions

- def compute_experimental_variogram (value_array, grid_yx_spacing, number_of_lags, lag_unit_distance, toler-ance=None, sampling=1., no_data_value=-99999)
- def nugget_variogram (reduced_distance, variance_contribution)
- def gaussian variogram (reduced distance, variance contribution)
- def spherical_variogram (reduced_distance, variance_contribution)
- def exponential variogram (reduced distance, variance contribution)
- def compute_variogram (delta_y, delta_x, vario_models, vario_sills, vario_ranges, rotation_matrix)
- def vectorized_gaussian_variogram (distance, vario_range, variance_contribution)

Vectorized theoretical variogram.

• def vectorized_spherical_variogram (distance, vario_range, variance_contribution)

Compute the value of a variogram with a spherical model.

• def vectorized_exponential_variogram (distance, vario_range, variance_contribution)

Compute the value of a variogram with an exponential model.

- def compute_range_variogram (deltas_y, deltas_x, vario_models, vario_sills, vario_ranges, vario_azimuth=0.)

Variables

· nopython

2D experimental variogram

- True
- nogil

5.54.1 Function Documentation

5.54.1.1 compute_experimental_variogram()

```
5.54.1.2 compute_range_variogram()
```

5.54.1.3 compute_variogram()

5.54.1.4 exponential_variogram()

```
def pyinsar.processing.machine_learning.geostatistics.variogram.exponential_variogram ( reduced\_distance, \\ variance\_contribution )
```

5.54.1.5 gaussian_variogram()

```
def pyinsar.processing.machine_learning.geostatistics.variogram.gaussian_variogram ( reduced\_distance, \\ variance\_contribution )
```

5.54.1.6 map_2D_variogram()

5.54.1.7 nugget_variogram()

```
def pyinsar.processing.machine_learning.geostatistics.variogram.nugget_variogram ( reduced\_distance, \\ variance\_contribution )
```

5.54.1.8 spherical_variogram()

5.54.1.9 vectorized_exponential_variogram()

Compute the value of a variogram with an exponential model.

Parameters

distance	The distance between the two points
vario_range	The variogram range
variance_contribution	The variance for this variogram model

Returns

The value of the variogram

5.54.1.10 vectorized_gaussian_variogram()

Vectorized theoretical variogram.

Compute the value of a variogram with a Gaussian model

```
@param distance: The distance between the two points
@param vario_range: The variogram range
@param variance_contribution: The variance for this variogram model
@return The value of the variogram
```

5.54.1.11 vectorized_spherical_variogram()

Compute the value of a variogram with a spherical model.

Parameters

distance	The distance between the two points
vario_range	The variogram range
variance_contribution	The variance for this variogram model

Returns

The value of the variogram

5.54.2 Variable Documentation

5.54.2.1 nogil

pyinsar.processing.machine_learning.geostatistics.variogram.nogil

5.54.2.2 nopython

 $\verb"pyinsar.processing.machine_learning.geostatistics.variogram.nopython$

2D experimental variogram

Compute the variogram values for a range of distances.

Utilities.

Compute the value of a (possibly nested) 2D variogram.

Compute the value of a variogram with an exponential model.

Compute the value of a variogram with a spherical model.

Compute the value of a variogram with a Gaussian model.

Compute the value of a variogram with a pure nugget effect.

Compute the isotropic experimental variogram on a regular grid

Parameters

reduced_distance	The distance between the two points divided by the variogram range
variance_contribution	The variance for this variogram model

Returns

The value of the variogram

Parameters

delta_y	The distance between the two points along the y axis	
delta_x	The distance between the two points along the x axis	
vario_models	The models for the variogram	
vario_sills	The sills for the variogram	
vario_ranges	The major and minor ranges for the variogram	
rotation_matrix	The 2D rotation matrix	

Returns

The value of the variogram

Map the variogram values in a 2D neighborhood

deltas_y	A 1D array of distances between the two points along the y axis	
deltas_x	A 1D array of distances between the two points along the x axis	
vario_models	The models for the variogram	
vario_sills	The sills for the variogram	
vario_azimuth	The azimuth of the variogram's major axis (in degree)	
vario_ranges	The major and minor ranges for the variogram	

Returns

The variogram values as a 1D array

5.54.2.3 True

pyinsar.processing.machine_learning.geostatistics.variogram.True

5.55 pyinsar.processing.utilities Namespace Reference

Namespaces

- ann
- deformations
- generic
- insar_simulator_utils
- machine_learning

5.56 pyinsar.processing.utilities.ann Namespace Reference

Functions

• def buildCNN (image_height, image_width, model_dir, rate=0.01, config=None)

def train (image_data, image_labels, model_dir, batch_size, num_epochs, max_batches=None, status_line_
 rate=50, target=", shuffle=True, config=None)

Train neural network.

def classify (image_data, model_dir, batch_size=2000, config=None)
 Classify data.

• def length_after_valid_window (length, window, stride)

Length of dimension after convolving using the padding type 'valid' or using max pooling.

• def shuffleTrainingData (data, labels)

Build a convolutional neural network.

Shuffles data.

• def restoreGraph (model_dir)

Restore a network.

5.56.1 Function Documentation

5.56.1.1 buildCNN()

Build a convolutional neural network.

image_height	Height of image in pixels
image_width	Width of image in pixels
model_dir	Directory to save network too
rate	Learning rate
config	Config to pass to tf.Session

5.56.1.2 classify()

Classify data.

Parameters

image_data	Input data	
model_dir	Directory where network is stored	
batch_size	Batch size to use for classifying data	
config	Config to pass on to tf. Session	

Returns

Predicted labels for input data

5.56.1.3 length_after_valid_window()

Length of dimension after convolving using the padding type 'valid' or using max pooling.

Parameters

length	Initial length	
window	Size of convolution window	
stride	Stride used	

Returns

New size after using convolution with 'valid' padding type or from max pooling

5.56.1.4 restoreGraph()

```
def pyinsar.processing.utilities.ann.restoreGraph ( model\_dir \ )
```

Restore a network.

Parameters

model_dir	Directory containing network
-----------	------------------------------

Returns

graph, operation dictionary, and checkpoint

5.56.1.5 shuffleTrainingData()

```
def pyinsar.processing.utilities.ann.shuffleTrainingData ( data, labels )
```

Shuffles data.

Parameters

data	Input data
labels	Input labels

5.56.1.6 train()

Train neural network.

image_data	Image data to train (shape [:,image_width, image_height])	
image_labels	Corresponding labels	
model_dir	Directory where network is stored	
batch_size	Batch size	
num_epochs	Number of epochs	
max_batches	Max number of patches (Typically used for testing)	
status_line_rate	Number of batches between outputting training information	
target	Unused	
shuffle	Whether or not to shuffle the training data	
config	Config to pass to tf.Session	

5.57 pyinsar.processing.utilities.deformations Namespace Reference

Functions

• def calc bounding box (image)

Calculate bounding box of an object in an image.

• def determine_deformation_bounding_box (deformations)

Determine bounds around a deformation.

• def determine_x_y_bounds (deformations, x_array, y_array, offset=5000)

Determine the x and y positions that bound a deformation.

5.57.1 Function Documentation

5.57.1.1 calc_bounding_box()

```
def pyinsar.processing.utilities.deformations.calc_bounding_box ( image \ ) \\
```

Calculate bounding box of an object in an image.

image	Input image

Extent of deformation in image (x_start, x_end, y_start, y_end)

5.57.1.2 determine_deformation_bounding_box()

```
def pyinsar.processing.utilities.deformations.determine_deformation_bounding_box ( deformations )
```

Determine bounds around a deformation.

Parameters

deformations	Input deformations
--------------	--------------------

Returns

Bounding box large enough to include deformation in all directions (x_start, x_end, y_start, y_end)

5.57.1.3 determine_x_y_bounds()

Determine the x and y positions that bound a deformation.

Parameters

deformations	Input deformations
x_array	X coordinates
y_array	Y coordinates
offset	Extra padding around measured bounds

Returns

Bounds in units of x_array and y_array with padding (x_start, x_end, y_start, y_end)

5.58 pyinsar.processing.utilities.generic Namespace Reference

Classes

· class FindNearestPixel

Find the nearest given a time.

class OrbitInterpolation

Class for interpolating satellite positions.

Functions

def get_image_extents (geotransform, shape)

Get extents of in projection coordinates.

def proj4StringToDictionary (proj4_string)

Convert a proj4 string into a dictionary.

def sorted_alphanumeric (I)

Sort a list of strings with numbers.

def phase_shift (data, phase)

Apply a phase shift to data.

· def find closest time (time, date)

Find the closest time to a date.

def rotate (col_vectors, az, ay, ax, dtype=np.float64)

Rotate 3 dimensional column vectors.

def translate (col_vectors, delta_x, delta_y, delta_z)

Translate 3 dimensional column vectors.

def coherence (s1, s2, window, topo phase=0)

This function computes the coherence between two SLCs.

- def scale_image (input_data, vmin=None, vmax=None)
- def keypoints_align (img1, img2, max_matches=40, invert=True)

*** In Development *** Determine transformation matrix for aligning images

def subarray_slice (index, num_items)

Returns a slice that selects for selecting a chunk out of an array.

def find_data_asf (lat, lon, processingLevel='SLC', platform='Sentinel-1A, Sentinel, B, kwargs)

Search Alaska Satellite Facility for data.

def select_max_matched_data (sentinel_data_list)

Select the data that can be combined into an interferogram.

def match_data (sentinel_data_list)

Seperate into sets of overlapping data.

def find_earthquake_pairs (organized_data, date)

Select image pairs around a specified date.

def generateMatplotlibRectangle (extent, kwargs)

Generate a matplotlib rectangle from a extents.

def project_insar_data (in_dataset, lon_center, lat_center, interpolation=gdal.GRA_Cubic, no_data_value=np.
 — nan, data_type=gdal.GDT_Float64)

Project InSAR data using GDAL.

5.58.1 Function Documentation

5.58.1.1 coherence()

```
def pyinsar.processing.utilities.generic.coherence ( s1, s2, window, topo\_phase = 0 )
```

This function computes the coherence between two SLCs.

The coherence is estimated using an equation presented in InSAR a practical approach, equation 2.7

Parameters

s1	The first single look complex image
s2	The second single look complex image
window	Tuple specifing y, and x window size
topo_phase	Change in phase due to topography

Returns

Numpy array of the coherence

5.58.1.2 find_closest_time()

Find the closest time to a date.

Parameters

time	Pandas series of datetimes
date	Input date

Returns

Index of closest time to date

5.58.1.3 find_data_asf()

Search Alaska Satellite Facility for data.

Parameters

lat	Latitude
lon	Longitude
processingLevel	Processing level of data
platform	Instrument to search
kwargs	All additional kwargs will be used to search ASF See
	https://www.asf.alaska.edu/get-data/learn-by-doing/

Returns

: List of available data matching the search criteria

5.58.1.4 find_earthquake_pairs()

Select image pairs around a specified date.

Parameters

organized_data	Dictionary of information about data that has been organized into overlapping images
date	Date of the event of interest

Returns

Dictionary containing lists of pairs of images around the specified event

5.58.1.5 generateMatplotlibRectangle()

```
def pyinsar.processing.utilities.generic.generateMatplotlibRectangle (  extent, \\ kwargs \ )
```

Generate a matplotlib rectangle from a extents.

Parameters

extent	Container holding the extent (x_min, x_max, y_min, y_max)
kwargs	Extra keyword arguments passed to matplotlib.patches.Rectangle

Returns

Matplotlib rectangle

5.58.1.6 get_image_extents()

Get extents of in projection coordinates.

Parameters

geotransform	Geo transform for converting between pixel and projected coordinates	
shape	Shape of image	

5.58.1.7 keypoints_align()

*** In Development *** Determine transformation matrix for aligning images

img1	First image
img2	Second image
max_matches	Maximum number of matches between the two images
invert	Invert the transformation matrix

Returns

: Transformation matrix that connects two images

5.58.1.8 match_data()

```
\begin{tabular}{ll} \tt def pyinsar.processing.utilities.generic.match\_data & ( \\ & sentinel\_data\_list & ) \end{tabular}
```

Seperate into sets of overlapping data.

Seperates based on relative orbit, track, and frame

Parameters

tinel_data_list List of info	rmation for different images
--------------------------------	------------------------------

Returns

: Dictionary of lists of overlapping data

5.58.1.9 phase_shift()

```
def pyinsar.processing.utilities.generic.phase_shift ( \label{eq:data} \textit{data,} \\ \textit{phase} \;)
```

Apply a phase shift to data.

data	Input data
phase	Input phase

data shifted by phase

5.58.1.10 proj4StringToDictionary()

```
def pyinsar.processing.utilities.generic.proj4StringToDictionary ( proj4\_string \ )
```

Convert a proj4 string into a dictionary.

Statements with no value are given a value of None

Parameters

```
proj4_string Proj4 string
```

Returns

Dictionary containing proj4 parameters as a OrderedDict

5.58.1.11 project_insar_data()

Project InSAR data using GDAL.

in_dataset	GDAL data set to be projected
lon_center	Longitude center of projecting
lat_center	Latitude center of projecting
interpolation	What kind of interpolation to use (GDAL Flags)
no_data_value	What value to use in the case of no data
data_type	Resulting data type (GDAL flag)

array containing projected data

5.58.1.12 rotate()

Rotate 3 dimensional column vectors.

Parameters

col_vectors	Array of column vectors
az	Angle for rotation about the z axis
ay	Angle for rotation about the y axis
ax	Angle for rotation about the x axis
dtype	Data type to use
return	Rotated vectors

5.58.1.13 scale_image()

5.58.1.14 select_max_matched_data()

Select the data that can be combined into an interferogram.

The particular frame and track that maximizes the number of useable data is chosen

```
sentinel_data_list
```

Returns

:

5.58.1.15 sorted_alphanumeric()

```
def pyinsar.processing.utilities.generic.sorted_alphanumeric ( ^{7} )
```

Sort a list of strings with numbers.

Parameters

```
/ The list
```

Returns

The sorted list

5.58.1.16 subarray_slice()

Returns a slice that selects for selecting a chunk out of an array.

Parameters

index	Which chunk to select
num_items	Number of items in a chunk

Returns

A slice for selecting index*num_items to (index+1)*num_items

5.58.1.17 translate()

Translate 3 dimensional column vectors.

Parameters

col_vectors	Array of column vectors
delta_x	Move this many units in the x direction
delta_y	Move this many units in the y direction
delta_z	Move this many units in the z direction

Returns

Translated vectors

5.59 pyinsar.processing.utilities.insar_simulator_utils Namespace Reference

Functions

• def wrap (x, to_2pi=False)

Wrap a float or an array.

• def crop_array_from_center (array, crop_shape)

Crop an array along its borders.

• def mask_deformation (deformation, threshold_function=threshold_li)

Mask image using a threshold function.

• def calc_bounding_box (image, threshold_function=threshold_li)

Calcluate the bounding box around an image using the li threshold.

• def retrieve_bounds (thresh_image)

Retrieve the bounds of an image that has been thesholded.

def crop_nans (image)

Shrink image by removing nans.

• def determine_deformation_bounding_box (deformations, largest_box=True, kwargs)

Calculate the extent of the deformation in image coordinates.

• def determine_x_y_bounds (deformations, x_array, y_array, offset=5000, kwargs)

Determine the x and y coordinates of the extent of the deformation.

- def generate_interferogram_from_deformation (track_angle, min_ground_range_1, height_1, is_right_looking, wavelength, k, deformation, xx, yy, projected_topography=None, min_ground_range_2=None, height_2=None)
 - Generate an interferogram from deformations.
- def old_generate_interferogram_from_deformation (track_angle, min_ground_range, height, is_right_looking, wavelength, k, deformation, xx, yy, projected topography=None)

Generate an interferogram from deformations.

• def change_in_range_to_phase (los_deformation, wavelength, k=2)

Compute phase from change in range.

• def phase_to_change_in_range (phase, wavelength, k=2)

Compute change in range from phase.

5.59.1 Function Documentation

5.59.1.1 calc_bounding_box()

Calcluate the bounding box around an image using the li threshold.

Parameters

image	Input image
threshold_function	Threshold function to use

Returns

Extents of a bounding box around the contents in the image (x_min, x_max, y_min, y_max)

5.59.1.2 change_in_range_to_phase()

```
def pyinsar.processing.utilities.insar_simulator_utils.change_in_range_to_phase ( los\_deformation, \\ wavelength, \\ k = 2 )
```

Compute phase from change in range.

los_deformation	Change in distance along line of site
wavelength	Wavelength of radar
k	Number of passes

phase due to change in

5.59.1.3 crop_array_from_center()

Crop an array along its borders.

Parameters

array	The array
crop_shape	The number of cells to remove along the y and x axes

Returns

The cropped array

5.59.1.4 crop_nans()

```
def pyinsar.processing.utilities.insar_simulator_utils.crop_nans ( image \ ) \\
```

Shrink image by removing nans.

Parameters

image	Input image

Returns

: Image cropped around valid data

5.59.1.5 determine_deformation_bounding_box()

```
\label{lem:deformation_bounding_box (deformation, bounding_box (deformations, deformations, deformations). } \\
```

```
largest_box = True,
kwarqs )
```

Calculate the extent of the deformation in image coordinates.

Parameters

deformations	Input deformations
largest_box	Choose a bounding max that encomposses all selected values in all dimensions
kwargs	Any additional keyword arguments passed to calc_bounding_box

Returns

Extents deformations (x_min, x_max, y_min, y_max)

5.59.1.6 determine_x_y_bounds()

Determine the x and y coordinates of the extent of the deformation.

Parameters

deformations	Input deformations
x_array	x coordinates
y_array	y coordinatse
offset	Size to extend the extents of the box
kwargs	Any additional keyword arguments passed to determine_deformation_bounding_box

Returns

Extents of the deformation plus the offset (x_min, x_max, y_min, y_max)

5.59.1.7 generate_interferogram_from_deformation()

```
\label{lem:condition} \begin{tabular}{ll} def pyinsar.processing.utilities.insar_simulator_utils.generate_interferogram_from_deformation ( \\ track_angle, \end{tabular}
```

```
min_ground_range_1,
height_1,
is_right_looking,
wavelength,
k,
deformation,
xx,
YY,
projected_topography = None,
min_ground_range_2 = None,
height_2 = None )
```

Generate an interferogram from deformations.

Parameters

track_angle	Satellite track angle
min_ground_range↔ _1	Minimum ground range to deformations for first pass
height_1	Height of satellite for first pass
is_right_looking	The satellite is looking to the right
wavelength	Wavelength of the signal
k	number of passes (1 or 2)
deformation	map of deformation
XX	x coordinates of deformation
уу	y coordinates of deformation
projected_topography	Elevation data
min_ground_range↔ _2	Minimum ground range to deformations for second pass
height_2	Height of satellite for second pass

Returns

Inteferogram due to the deformations

5.59.1.8 mask_deformation()

```
\label{lem:deformation} \begin{tabular}{ll} deformation. & deformation, \\ threshold\_function = threshold\_li \end{tabular} \begin{tabular}{ll} hold=li \end{tabular}
```

Mask image using a threshold function.

deformation	Deformation to mask
threshold_function	Function to calculate the threshold value

Masked image

5.59.1.9 old_generate_interferogram_from_deformation()

Generate an interferogram from deformations.

Parameters

track_angle	Satellite track angle
min_ground_range	Minimum ground range to deformations
height	Height of satellite
is_right_looking	The satellite is looking to the right
wavelength	Wavelength of the signal
k	number of passes (1 or 2)
deformation	map of deformation
XX	x coordinates of deformation
уу	y coordinates of deformation
projected_topography	Elevation data

Returns

Inteferogram due to the deformations

5.59.1.10 phase_to_change_in_range()

```
def pyinsar.processing.utilities.insar_simulator_utils.phase_to_change_in_range ( phase, \\ wavelength, \\ k = 2 \ )
```

Compute change in range from phase.

phase Input phase	
wavelength	Wavelength of radar
k	Number of passes

Returns

Change in range

5.59.1.11 retrieve_bounds()

```
def pyinsar.processing.utilities.insar_simulator_utils.retrieve_bounds ( thresh\_image \ )
```

Retrieve the bounds of an image that has been the sholded.

Parameters

thresh_image	Image filled with ones for valid and zeros for invalid
--------------	--

Returns

: Extents of a rectangle around valid data (x_start, x_end, y_start, y_end)

5.59.1.12 wrap()

```
def pyinsar.processing.utilities.insar_simulator_utils.wrap (  x, \\ to\_2pi \ = \ False \ )
```

Wrap a float or an array.

Х	The float or array	
to_2pi	If True, wrap to [0, 2pi) instead of [-pi, pi]	

The wrapped array (in radian between -pi and pi)

5.60 pyinsar.processing.utilities.machine_learning Namespace Reference

Classes

class DataRetriever

Class for retrieving data from an hdf file.

Functions

def divide_into_squares (image, size, stride)

Create many patches from an image.

def generate_minimum_ground_range_limits (satellite_height, incidence_ranges, image_size)

Determine the limits of minimum ground ranges of a satellite pass.

• def generate_phase_samples_from_looks_and_ranges (deformation_list, xx, yy, satellite_height, track_angles, minimum_ground_ranges, size=(100, 100), dtype=np.float32)

Generates different possible phases from a list of deformations due to different track angles and groud ranges.

• def generate_phase_samples (deformation, satellite_height, radar_wavelength, cell_size, image_size, stride=20)

In Development Generate phase samples by tiling an array of deformations

• def rotate_image_list (in_image_extents, in_image_list, progress=True)

Rotate input images 0, 90, 180, and 270 degrees.

5.60.1 Function Documentation

5.60.1.1 divide_into_squares()

Create many patches from an image.

Will drop any patches that contain NaN's

image	Source image	
size	Size of one side of the square patch	
stride	Spacing between patches (must be an integer greater than 0)	

List containing the extent of each patch and a list of the patches

5.60.1.2 generate_minimum_ground_range_limits()

Determine the limits of minimum ground ranges of a satellite pass.

Parameters

satellite_height	Height of satellite
incidence_ranges	Range of valid incidence angles (shape of [:,2])
image_size	Length of image

Returns

range of possible minimum ground ranges

5.60.1.3 generate_phase_samples()

In Development Generate phase samples by tiling an array of deformations

deformation	Array containing deformation
satellite_height	Height of Satellite
radar_wavelength	Wavelength of radar
cell_size	Size of cell (length of one side of the cell)
image_size	Ignored?
stride	Distance between tiles

5.60.1.4 generate_phase_samples_from_looks_and_ranges()

Generates different possible phases from a list of deformations due to different track angles and groud ranges.

Parameters

deformation_list	List of deformations
XX	x coordinates
уу	y coordinates
satellite_height	Height of satellite
track_angles	Iterable of track angles
minimum_ground_ranges	Iterable of minimum ground ranges
size	Tuple giving the size of each deformation in deformation_list
dtype	Data type

Returns

array containing paramaters and and array containing phases

5.60.1.5 rotate_image_list()

Rotate input images 0, 90, 180, and 270 degrees.

in_image_extents	List of the extents of the images being rotated
in_image_list	List of images to rotate
progress	Show a progress bar

Returns

array of image extents, and array of rotated images

Chapter 6

Class Documentation

6.1 pyinsar.processing.discovery.ClassifyCNN Class Reference

Train a CNN.

Inheritance diagram for pyinsar.processing.discovery.ClassifyCNN:

Public Member Functions

 def __init__ (self, str_description, cnn_network_dir, batch_size=2000, config=None, compare_labels=False, stride=None, size=None)

Initialize TrainCNN item.

• def process (self, obj_data)

Classify data using a CNN using data in Image wrapper.

Public Attributes

- cnn_network_dir
- batch_size
- · config
- compare_labels
- stride
- size

116 Class Documentation

6.1.1 Detailed Description

Train a CNN.

6.1.2 Constructor & Destructor Documentation

Initialize TrainCNN item.

Parameters

str_description	String describing item
cnn_network_dir	Strining containing the directiory where the CNN is stored
batch_size	Batch size to use when classifying with Tensorflow
config	Additional session configuration dictionary
compare_labels	
stride	Distance between images if it necessary to cut image into tiles
size	Size of images to feed into CNN

6.1.3 Member Function Documentation

6.1.3.1 process()

Classify data using a CNN using data in Image wrapper.

obj_data	Image wrapper
----------	---------------

6.1.4 Member Data Documentation

6.1.4.1 batch_size

pyinsar.processing.discovery.ClassifyCNN.batch_size

6.1.4.2 cnn_network_dir

pyinsar.processing.discovery.ClassifyCNN.cnn_network_dir

6.1.4.3 compare_labels

 $\verb"pyinsar.processing.discovery.ClassifyCNN.compare_labels"$

6.1.4.4 config

pyinsar.processing.discovery.ClassifyCNN.config

6.1.4.5 size

pyinsar.processing.discovery.ClassifyCNN.size

118 Class Documentation

6.1.4.6 stride

```
pyinsar.processing.discovery.ClassifyCNN.stride
```

The documentation for this class was generated from the following file:

· processing/discovery/classify_cnn.py

6.2 pyinsar.processing.discovery.Coherence Class Reference

Calculate coherence between single-look complex SAR images.

Inheritance diagram for pyinsar.processing.discovery.Coherence:

Public Member Functions

- def __init__ (self, str_description, window, pairing='neighbor', use_progress_bar=False)
 Initialize coherence pipeline item.
- def process (self, obj_data)
 Compute the coherency between two.

Public Attributes

- window
- pairing
- · use progress bar

6.2.1 Detailed Description

Calculate coherence between single-look complex SAR images.

6.2.2 Constructor & Destructor Documentation

Initialize coherence pipeline item.

str_description	Short string describing item	
window	Tuple indicating the y and x window size	
pairing	How to pair slc images. "neighbor" computes coherence between neighboring images	
use_progress_bar	Display progress using a progress bar	

6.2.3 Member Function Documentation

6.2.3.1 process()

```
def pyinsar.processing.discovery.Coherence.process ( self, obj\_data )
```

Compute the coherency between two.

Parameters

obi data	Data wrapper
0.0 <u>j_</u> uata	– ataappo.

6.2.4 Member Data Documentation

6.2.4.1 pairing

pyinsar.processing.discovery.Coherence.pairing

6.2.4.2 use_progress_bar

 $\verb"pyinsar.processing.discovery.Coherence.use_progress_bar"$

120 Class Documentation

6.2.4.3 window

```
pyinsar.processing.discovery.Coherence.window
```

The documentation for this class was generated from the following file:

• processing/discovery/coherence.py

6.3 pyinsar.processing.discovery.Coregister Class Reference

```
*** In Devolopment *** Pipeline item to coregister images
```

Inheritance diagram for pyinsar.processing.discovery.Coregister:

```
PipelineItem

pyinsar.processing.discovery.coregister.Coregister
```

Public Member Functions

- def __init__ (self, str_description, ap_paramList, image_limits=None, num_iterations=3)
 Initialize Coregister pipeline item.
- def process (self, obj_data)
 Coregister images.

6.3.1 Detailed Description

```
*** In Devolopment *** Pipeline item to coregister images
```

6.3.2 Constructor & Destructor Documentation

Initialize Coregister pipeline item.

Parameters

str_description	String describing item
ap_paramList[reg_type]	Registration method (currently supports 'imreg_translation', imreg_affine' and 'keypoints'
image_limits	Limits of image to use when comparing for coregistration
num_iterations	Number of iterations (Only used with 'imreg_translation')

6.3.3 Member Function Documentation

6.3.3.1 process()

Coregister images.

Parameters

obj_data	Image data wrapper
----------	--------------------

The documentation for this class was generated from the following file:

• processing/discovery/coregister.py

6.4 pyinsar.processing.data_fetcher.okada.DataFetcher Class Reference

Generates data from an Okada model.

Inheritance diagram for pyinsar.processing.data_fetcher.okada.DataFetcher:

Public Member Functions

- def __init__ (self, ap_paramList, xx_array, yy_array, verbose=False)
 Initialize Okada DataFetcher.
- def output (self)

Output deformation in an image wrapper.

6.4.1 Detailed Description

Generates data from an Okada model.

6.4.2 Constructor & Destructor Documentation

Initialize Okada DataFetcher.

Parameters

ap_paramList[fault_centroid_x]	x centroid
ap_paramList[fault_centroid_y]	y centroid
ap_paramList[fault_centroid_depth]	Fault depth
ap_paramList[fault_strike]	Fault strike
ap_paramList[fault_dip]	Fault dip
ap_paramList[fault_length]	Fault Length
ap_paramList[fault_width]	Fault width
ap_paramList[fault_rake]	Fault rake
ap_paramList[fault_slip]	Fault slip
ap_paramList[fault_open]	Fault open
ap_paramList[poisson_ratio]	Poisson ratio
xx_array	Array of x coordinates
yy_array	Array of y coordinates
verbose	Print out extra information

6.4.3 Member Function Documentation

6.4.3.1 output()

```
def pyinsar.processing.data_fetcher.okada.DataFetcher.output ( self \ )
```

Output deformation in an image wrapper.

Returns

Deformation in an Image wrapper

The documentation for this class was generated from the following file:

processing/data_fetcher/okada.py

6.5 pyinsar.processing.data_fetcher.hdf_retriever.DataRetriever Class Reference

Data fetcher for retrieving hdf image data made for training in convolutional neural networks. Inheritance diagram for pyinsar.processing.data_fetcher.hdf_retriever.DataRetriever:

Public Member Functions

- def __init__ (self, filename_list, label_list, size, dtype, num_chunks, num_training_items, num_validation_items, num_testing_items)
 - Initialize TrainCNN item.
- def perturb (self)
- def output (self)

6.5.1 Detailed Description

Data fetcher for retrieving hdf image data made for training in convolutional neural networks.

6.5.2 Constructor & Destructor Documentation

```
6.5.2.1 __init__()
```

Initialize TrainCNN item.

Parameters

filename_list	List of hdf retriever files
label_list	Label for each file
size	Image shape
dtype	Data type to return
num_chunks	Number of chunks to read in at at time. This is necessary due to a performance issue with
	h5py
num_training_items	Number of items in each dataset to use for training
num_validation_items	Number of items from each dataset to use for validation
num_testing_items	Number of items in each dataset to use for testing

6.5.3 Member Function Documentation

6.5.3.1 output()

```
def pyinsar.processing.data_fetcher.hdf_retriever.DataRetriever.output ( self \ )
```

6.5.3.2 perturb()

```
def pyinsar.processing.data_fetcher.hdf_retriever.DataRetriever.perturb ( self \ )
```

The documentation for this class was generated from the following file:

· processing/data fetcher/hdf retriever.py

6.6 pyinsar.processing.utilities.machine_learning.DataRetriever Class Reference

Class for retrieving data from an hdf file.

Inheritance diagram for pyinsar.processing.utilities.machine_learning.DataRetriever:

Public Member Functions

- def __init__ (self, file_name_list, label_list, size, dtype=np.float32, chunk_size=1000)
 Initilaize DataRetriever object.
- def get_num_images (self)

Get the number of images for each label.

• def get_images (self, index)

Retrieve images given by index.

Public Attributes

- · label list
- size
- dtype
- chunk_size
- · data_file_dict

6.6.1 Detailed Description

Class for retrieving data from an hdf file.

6.6.2 Constructor & Destructor Documentation

Initilaize DataRetriever object.

file_name_list	List of hdf filenames
label_list	List of labels
size	Tuple containing the size of the images
dtype	Data type of images
chunk_size	Size of chunks to use when reading data

6.6.3 Member Function Documentation

6.6.3.1 get_images()

```
def pyinsar.processing.utilities.machine_learning.DataRetriever.get_images ( self, \\ index \ )
```

Retrieve images given by index.

Parameters

index Array with shape [:,2], first column label, second column index

Returns

Requested images

6.6.3.2 get_num_images()

```
def pyinsar.processing.utilities.machine_learning.DataRetriever.get_num_images ( self )
```

Get the number of images for each label.

Returns

Number of images associated with each label

6.6.4 Member Data Documentation

6.6.4.1 chunk_size

 $\verb|pyinsar.processing.utilities.machine_learning.DataRetriever.chunk_size|\\$

6.6.4.2 data_file_dict

pyinsar.processing.utilities.machine_learning.DataRetriever.data_file_dict

6.6.4.3 dtype

pyinsar.processing.utilities.machine_learning.DataRetriever.dtype

6.6.4.4 label_list

 $\verb|pyinsar.processing.utilities.machine_learning.DataRetriever.label_list|$

6.6.4.5 size

pyinsar.processing.utilities.machine_learning.DataRetriever.size

The documentation for this class was generated from the following file:

• processing/utilities/machine_learning.py

6.7 pyinsar.processing.discovery.deburst.Deburst Class Reference

Debursts Sentinel-1 TOPSAR data.

Inheritance diagram for pyinsar.processing.discovery.deburst.Deburst:

Public Member Functions

- def __init__ (self, str_description, cut_on_master=True)
 Initialize Deburst item.
- def process (self, obj_data)

Preprocesses sentinel 1 data.

6.7.1 Detailed Description

Debursts Sentinel-1 TOPSAR data.

6.7.2 Constructor & Destructor Documentation

Initialize Deburst item.

Parameters

str_description	String description of item
cut_on_master	Use the master burst cut on slave

6.7.3 Member Function Documentation

6.7.3.1 process()

Preprocesses sentinel 1 data.

Parameters

obj_data	Data wrapper
----------	--------------

The documentation for this class was generated from the following file:

• processing/discovery/deburst.py

6.8 pyinsar.processing.discovery.DeformationToPhase Class Reference

Convert deformation to phas.

Inheritance diagram for pyinsar.processing.discovery.DeformationToPhase:

```
PipelineItem

pyinsar.processing.discovery.deformation_to_phase.DeformationToPhase
```

Public Member Functions

```
    def __init__ (self, str_description, ap_paramList, xx, yy)
    Initialize Deformation to Phase pipeline item.
```

• def process (self, obj_data)

Convert deformations in a data wrapper to phases.

6.8.1 Detailed Description

Convert deformation to phas.

6.8.2 Constructor & Destructor Documentation

Initialize Deformation to Phase pipeline item.

str_description	String description of item
ap_paramList[track_angle]	= Auto param of the track angle
ap_paramList[min_ground_range↔ _1]	= Auto param of min_ground_range_1
ap_paramList[height_1]	= Auto param of height_1
Gଲ୍ଲ୍ୟୁଗ୍ରେମ୍ପ୍ରାମ୍ପ୍ୟାୟ୍ୟ୍ୟୁଟ୍ର_right_looking]	= Auto param of is_right_looking (boolean)
ap_paramList[wavelength]	= Auto param of the wavelength for converting deformation to phase
ap_paramList[k]	= Auto param of k
XX	= x coordinates

6.8.3 Member Function Documentation

6.8.3.1 process()

```
def pyinsar.processing.discovery.DeformationToPhase.process ( self, \\ obj\_data \ )
```

Convert deformations in a data wrapper to phases.

Parameters

```
obj_data Image data wrapper
```

The documentation for this class was generated from the following file:

• processing/discovery/deformation_to_phase.py

6.9 pyinsar.processing.deformation.elastic_halfspace.fault.Fault Class Reference

*** In Development *** Model a fault as a collection of small okada faults

Inheritance diagram for pyinsar.processing.deformation.elastic_halfspace.fault.Fault:

Public Member Functions

def __init__ (self, x_center, y_center, depth, length, width, strike, dip, num_elements_length, num_elements_
width, poisson_ratio=0.25, dtype=np.float32)

Initialize Fault object.

def generateDeformation (self, slip, rake, x_coords, y_coords, simple=True)

Generate surface deformations from fault.

Public Attributes

- · x center
- y_center
- · depth
- length
- width
- strike
- dip
- · poisson_ratio
- cell_width
- cell_length
- unrotated x
- unrotated_y
- · cell_centroids

6.9.1 Detailed Description

*** In Development *** Model a fault as a collection of small okada faults

6.9.2 Constructor & Destructor Documentation

```
6.9.2.1 __init__()
```

Initialize Fault object.

x_center	x centroid of fault
y_center	y centroid of fault
depth	Depth to centroid of fault

Parameters

length	Length of fault (along strike)
width	Width of fault (along dip)
strike	Angle from north of the fault direction
dip	Dip angle
num_elements_length	Number of elements in the length direction
num_elements_width	Number of elements in the widht direction
poisson_ratio	Poisson ratio
dtype	Data type to use in calculations

6.9.3 Member Function Documentation

6.9.3.1 generateDeformation()

Generate surface deformations from fault.

Parameters

slip	2d array of slip with size (num_elements_width, num_elements_length)
rake	Scalar Rake value
x_coords	2d array of x coordinates
y_coords	2d array of y coordinates
simple	If multiple slips per cell are given, just apply calculate deformation from a combined slip

Returns

Surface deformations at specificed coordinates

6.9.4 Member Data Documentation

6.9.4.1 cell_centroids

pyinsar.processing.deformation.elastic_halfspace.fault.Fault.cell_centroids

6.9.4.2 cell_length

 $\verb|pyinsar.processing.deformation.elastic_halfspace.fault.Fault.cell_length|$

6.9.4.3 cell_width

 $\verb|pyinsar.processing.deformation.elastic_halfspace.fault.Fault.cell_width|\\$

6.9.4.4 depth

pyinsar.processing.deformation.elastic_halfspace.fault.Fault.depth

6.9.4.5 dip

 $\verb"pyinsar.processing.deformation.elastic_halfspace.fault.Fault.dip"$

6.9.4.6 length

 $\verb"pyinsar.processing.deformation.elastic_halfspace.fault.Fault.length$

6.9.4.7 poisson_ratio

 $\verb|pyinsar.processing.deformation.elastic_half space.fault.Fault.poisson_ratio|\\$

6.9.4.8 strike

pyinsar.processing.deformation.elastic_halfspace.fault.Fault.strike

6.9.4.9 unrotated_x

 $\verb|pyinsar.processing.deformation.elastic_halfspace.fault.Fault.unrotated_x| \\$

6.9.4.10 unrotated_y

 $\verb"pyinsar.processing.deformation.elastic_halfspace.fault.Fault.unrotated_y$

6.9.4.11 width

 $\verb"pyinsar.processing.deformation.elastic_halfspace.fault.Fault.width$

6.9.4.12 x_center

 $\verb|pyinsar.processing.deformation.elastic_halfspace.fault.Fault.x_center|\\$

6.9.4.13 y_center

pyinsar.processing.deformation.elastic_halfspace.fault.Fault.y_center

The documentation for this class was generated from the following file:

• processing/deformation/elastic_halfspace/fault.py

6.10 pyinsar.processing.utilities.generic.FindNearestPixel Class Reference

Find the nearest given a time.

Inheritance diagram for pyinsar.processing.utilities.generic.FindNearestPixel:

Public Member Functions

6.10.1 Detailed Description

Find the nearest given a time.

6.10.2 Constructor & Destructor Documentation

Initialize FindNearestPixel.

aztime	Input azimuth time series
start_date	The starting date to use when compting the nearest pixel

6.10.3 Member Function Documentation

Find the pixel closest to in_time.

The time is converted to a datetime based on the start_date used to create this object

Parameters

```
in_time Input time
```

Returns

: Pixel that is closest to the input time

The documentation for this class was generated from the following file:

· processing/utilities/generic.py

6.11 pyinsar.processing.discovery.FlatEarth Class Reference

*** In Development *** Remove flat Earth contribution from interferogram

Inheritance diagram for pyinsar.processing.discovery.FlatEarth:

Public Member Functions

def __init__ (self, str_description, x_range=None, y_range=None, k=2, remove_topography=False, save_← correction=False)

Initialize Flat Earth item.

• def process (self, obj_data)

Remove flat earth contribution.

Public Attributes

• k

6.11.1 Detailed Description

*** In Development *** Remove flat Earth contribution from interferogram

6.11.2 Constructor & Destructor Documentation

Initialize Flat Earth item.

Parameters

str_description	String describing item	
x_range	x pixel range to process (None for entire range)	
y_range	y pixel range to process (None for entire range)	
k	Number of satellite or aircraft passes used to generate the interferogram (1 or 2)	
remove_topography	Not implemented	
save_correction	Save the image used to correct the interferogram	

6.11.3 Member Function Documentation

6.11.3.1 process()

Remove flat earth contribution.

Parameters

6.11.4 Member Data Documentation

6.11.4.1 k

```
pyinsar.processing.discovery.FlatEarth.k
```

The documentation for this class was generated from the following file:

processing/discovery/flat_earth.py

pyinsar.processing.data_fetcher.gdal.GDAL_DataFetcher Class Reference

Data fetcher for loading Images produced compatiable with GDAL.

 $Inheritance\ diagram\ for\ pyinsar.processing.data_fetcher.gdal.GDAL_DataFetcher:$

Public Member Functions

- def __init__ (self, filename_list, label_list, verbose=False) Initialize ISCE data fetcher.
- def output (self)

Load GDAL data.

6.12.1 Detailed Description

Data fetcher for loading Images produced compatiable with GDAL.

6.12.2 Constructor & Destructor Documentation

Initialize ISCE data fetcher.

Parameters

filename_list	List of filenames of ISCE interferograms	
label_list	List of strings containing names for the interferograms	
verbose	Print extra information	

6.12.3 Member Function Documentation

6.12.3.1 output()

```
def pyinsar.processing.data_fetcher.gdal.GDAL_DataFetcher.output ( self )
```

Load GDAL data.

Returns

Image data wrapper

The documentation for this class was generated from the following file:

• processing/data_fetcher/gdal.py

6.13 pyinsar.processing.discovery.interferogram.Interferogram Class Reference

Create Inteferogram from SLC data.

Inheritance diagram for pyinsar.processing.discovery.interferogram.Interferogram:

Public Member Functions

- def __init__ (self, str_description, pairing='neighbor')
 Initialize Interferogram item.
- def process (self, obj_data)

Create interferograms from SLC images in an image wrapper.

6.13.1 Detailed Description

Create Inteferogram from SLC data.

6.13.2 Constructor & Destructor Documentation

Initialize Interferogram item.

str_description	String describing item	
pairing	How to pair SLC images. Currently only 'neighbor' is accepted'	

6.13.3 Member Function Documentation

6.13.3.1 process()

Create interferograms from SLC images in an image wrapper.

Parameters

Image wrapper containing SLC images

The documentation for this class was generated from the following file:

· processing/discovery/interferogram.py

6.14 pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation. KrigingMethod Class Reference

 $Inheritance\ diagram\ for\ pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.Kriging \leftarrow Method:$

Static Public Attributes

- int SIMPLE = 0
- int ORDINARY = 1
- nopython

6.14.1 Member Data Documentation

6.14.1.1 nopython

 $\label{lem:pyinsar} pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.KrigingMethod. \\ \leftarrow nopython \quad [static]$

6.14.1.2 ORDINARY

int pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.Kriging \leftarrow Method.ORDINARY = 1 [static]

6.14.1.3 SIMPLE

int pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.Kriging←
Method.SIMPLE = 0 [static]

The documentation for this class was generated from the following file:

processing/machine_learning/geostatistics/sequential_gaussian_simulation.py

6.15 pyinsar.processing.discovery.LOS_Deformation Class Reference

```
*** In Development ***
```

Inheritance diagram for pyinsar.processing.discovery.LOS_Deformation:

6.15.1 Detailed Description

*** In Development ***

ap_paramList[]

def process(self, obj_data):

The documentation for this class was generated from the following file:

processing/discovery/los deformation.py

6.16 pyinsar.processing.utilities.generic.OrbitInterpolation Class Reference

Class for interpolating satellite positions.

Inheritance diagram for pyinsar.processing.utilities.generic.OrbitInterpolation:

Public Member Functions

```
    def __init__ (self, orbit_data, time_name='UTC')
    Initilaize orbit interpolation object.
```

def get_start_date (self)

Get starting date used in the interpolation.

• def __call__ (self, in_time, in_datetime=True, interp='position')

Compute the satellites position or velocity.

6.16.1 Detailed Description

Class for interpolating satellite positions.

6.16.2 Constructor & Destructor Documentation

Initilaize orbit interpolation object.

orbit_data	Orbit position data
time_name	Name of time column name in Orbit position data. Set this to None to use the data frame index

6.16.3 Member Function Documentation

Compute the satellites position or velocity.

Parameters

in_time	Time of interest
in_datetime	Input is a datetime object (otherwise it's assumed its seconds from start date)
interp	Interpolate "position" or "velocity"

Returns

Satellite position or velocity at in_time

6.16.3.2 get_start_date()

```
def pyinsar.processing.utilities.generic.OrbitInterpolation.get_start_date ( self )
```

Get starting date used in the interpolation.

Returns

Starting date

The documentation for this class was generated from the following file:

· processing/utilities/generic.py

6.17 pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.PathType Class Reference

Inheritance diagram for pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.PathType:

Static Public Attributes

- int LINEAR = 0
- int RANDOM = 1

6.17.1 Member Data Documentation

6.17.1.1 LINEAR

int pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.PathType.LINEAR = 0
[static]

6.17.1.2 RANDOM

int pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.PathType.RANDOM = 1
[static]

The documentation for this class was generated from the following file:

· processing/machine_learning/geostatistics/geostatistics_utils.py

6.18 pyinsar.processing.instruments.sentinel.RampPolynomial Class Reference

Polynomial used for quantities relating to deramping sentinel.

Inheritance diagram for pyinsar.processing.instruments.sentinel.RampPolynomial:

Public Member Functions

```
    def __init__ (self, t0, coeff_list, slant_range_time_interval, slant_range_time)
        Initialize Deramp Polynomial object.

    def __call__ (self, t)
        Evaluate the polynomial.
```

6.18.1 Detailed Description

Polynomial used for quantities relating to deramping sentinel.

6.18.2 Constructor & Destructor Documentation

Initialize Deramp Polynomial object.

Parameters

t0	Starting time
coeff_list	List of coefficients
slant_range_time_interval	Time between range samples
slant_range_time	Two way slant range time

6.18.3 Member Function Documentation

Evaluate the polynomial.

Parameters

t Input time

Returns

Value of polynomial at time t

The documentation for this class was generated from the following file:

· processing/instruments/sentinel.py

6.19 pyinsar.processing.discovery.RotateSquares Class Reference

Generate new images by rotating subsections of data defined by Shapely squares.

Inheritance diagram for pyinsar.processing.discovery.RotateSquares:

Public Member Functions

- def __init__ (self, str_description, ap_paramList, square_result_name, angles, clean=True)
 Initialize RotateSquares object.
- def process (self, obj_data)

Generate rotated images based on Shapely squares.

6.19.1 Detailed Description

Generate new images by rotating subsections of data defined by Shapely squares.

6.19.2 Constructor & Destructor Documentation

Initialize RotateSquares object.

Parameters

str_description	String describing class
ap_paramList[SplineOrder]	Spline order used in interpolation
square_result_name	Name of pipeline item that contains the Shapely squares
angles	Angles used when rotating squares
clean	Remove any squares that contain NaN's

6.19.3 Member Function Documentation

6.19.3.1 process()

```
def pyinsar.processing.discovery.RotateSquares.process ( self, \\ obj\_data \ )
```

Generate rotated images based on Shapely squares.

Parameters

obj_data	Image data wrapper
----------	--------------------

The documentation for this class was generated from the following file:

· processing/discovery/rotate_squares.py

6.20 pyinsar.processing.instruments.sentinel.SentinelRamp Class Reference

Calcuate the combined ramp and modulated phase in Sentinel.

Inheritance diagram for pyinsar.processing.instruments.sentinel.SentinelRamp:

Public Member Functions

```
    def __init__ (self, metadata, modulation=True)
        Initialize Sentiel Ramp.

    def __call__ (self, lines, samples, index)
        Calculate the phase change from the Sentinel ramp and modulation.
```

Public Attributes

· modulation

6.20.1 Detailed Description

Calcuate the combined ramp and modulated phase in Sentinel.

This class was created following the guide at: https://sentinel.esa.int/documents/247904/1653442/ \leftarrow Sentinel-1-TOPS-SLC_Deramping

6.20.2 Constructor & Destructor Documentation

Initialize Sentiel Ramp.

Parameters

metadata	ElemenTree containing the SLC metadata
modulation	Whether to include modulation in the ramp

6.20.3 Member Function Documentation

Calculate the phase change from the Sentinel ramp and modulation.

Parameters

lines	Index of lines
samples	Index of samples
index	Burst index (starts at 0)

Returns

Phase due to ramp and modulation

6.20.4 Member Data Documentation

6.20.4.1 modulation

 $\verb"pyinsar.processing.instruments.sentinel.SentinelRamp.modulation"$

The documentation for this class was generated from the following file:

· processing/instruments/sentinel.py

6.21 pyinsar.processing.discovery.shown_cnn_classes.ShowCNNClasses Class Reference

Dispay CNN Classifications on segments of an image.

Inheritance diagram for pyinsar.processing.discovery.shown_cnn_classes.ShowCNNClasses:

Public Member Functions

```
    def __init__ (str_description, class_name, colors)
        Initialize ShowCNNClassesItem.
```

• def process (self, obj_data)

Show the images with classifications.

Public Attributes

- · class_name
- colors

6.21.1 Detailed Description

Dispay CNN Classifications on segments of an image.

6.21.2 Constructor & Destructor Documentation

Initialize ShowCNNClassesItem.

Parameters

str_description	String name of item
class_name	Name of classes
colors	List of colors containing a color for each class

6.21.3 Member Function Documentation

6.21.3.1 process()

Show the images with classifications.

Parameters

obj_data	Image data wrapper
----------	--------------------

6.21.4 Member Data Documentation

6.21.4.1 class_name

pyinsar.processing.discovery.shown_cnn_classes.ShowCNNClasses.class_name

6.21.4.2 colors

pyinsar.processing.discovery.shown_cnn_classes.ShowCNNClasses.colors

The documentation for this class was generated from the following file:

· processing/discovery/shown_cnn_classes.py

6.22 pyinsar.processing.discovery.TemporalDecorrelation Class Reference

Pipeline item to add temporal decorrelation to some phase.

Inheritance diagram for pyinsar.processing.discovery.TemporalDecorrelation:

Public Member Functions

- def __init__ (self, str_description, ap_paramList, grid_yx_spacing, wavelength, seed=None, save_noise=False)

 Initialize Temporal Decorrelation pipeline item.
- def process (self, obj_data)

Add temporal decorrelation to a phase image.

6.22.1 Detailed Description

Pipeline item to add temporal decorrelation to some phase.

6.22.2 Constructor & Destructor Documentation

Initialize Temporal Decorrelation pipeline item.

str description	String description of item
ap_paramList[vario_models]	= Auto list of SGS models
ap_paramList[vario_sills]	= Auto list of SGS sills
ap_paramList[vario_azimuth]	= Auto param of SGS azimuth
ap_paramList[vario_ranges]	= Auto list of SGS ranges
ap_paramList[max_num_data]	= Auto param of the max size of the neighborhood
ap_paramList[decorrelation_mean]	= Auto param of the decorrelation mean in the same units as the wavelength
ap_paramList[decorrelation_std]	= Auto param of decorrelation standard deviation in the same units as the wavelength
grid_yx_spacing	The y,x grid spacing
wavelength	Wavelength for converting to phase (from path length)
seed	Seed to use when generating noise
save_noise	Boolean indicating whether or not to save a copy of the noise in the results

6.22.3 Member Function Documentation

6.22.3.1 process()

Add temporal decorrelation to a phase image.

Parameters

obj_data	Image data wrapper
----------	--------------------

The documentation for this class was generated from the following file:

processing/discovery/temporal_decorrelation.py

6.23 pyinsar.processing.discovery.TrainCNN Class Reference

Train a CNN.

Inheritance diagram for pyinsar.processing.discovery.TrainCNN:

Public Member Functions

- def __init__ (self, str_description, cnn_network_dir, batch_size, config=None)
 Initialize TrainCNN item.
- def process (self, obj_data)

Training CNN using data in Image wrapper.

Public Attributes

- · cnn_network_dir
- · batch size
- config

6.23.1 Detailed Description

Train a CNN.

6.23.2 Constructor & Destructor Documentation

Initialize TrainCNN item.

Parameters

str_description	String describing item
cnn_network_dir	Strining containing the directiory where the CNN is stored
batch_size	Batch size to use when training data
config	Dictinoary of extra options to use with the tensorflow session

6.23.3 Member Function Documentation

6.23.3.1 process()

Training CNN using data in Image wrapper.

obj_data	Image wrapper

6.23.4 Member Data Documentation

6.23.4.1 batch_size

pyinsar.processing.discovery.TrainCNN.batch_size

6.23.4.2 cnn_network_dir

pyinsar.processing.discovery.TrainCNN.cnn_network_dir

6.23.4.3 config

pyinsar.processing.discovery.TrainCNN.config

The documentation for this class was generated from the following file:

processing/discovery/train_cnn.py

pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.VariableType **Class Reference**

Inheritance diagram for pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.VariableType:

Static Public Attributes

- int DISCRETE = 0
- int CONTINUOUS = 1

158 Class Documentation

6.24.1 Member Data Documentation

6.24.1.1 CONTINUOUS

int pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.VariableType.CONTINUOUS
= 1 [static]

6.24.1.2 DISCRETE

int pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.VariableType.DISCRETE =
0 [static]

The documentation for this class was generated from the following file:

processing/machine_learning/geostatistics/geostatistics_utils.py

6.25 pyinsar.processing.machine_learning.geostatistics.variogram.VariogramModel Class Reference

2D theoretical variogram

Inheritance diagram for pyinsar.processing.machine_learning.geostatistics.variogram.VariogramModel:

Static Public Attributes

- int NUGGET = 0
- int GAUSSIAN = 1
- int SPHERICAL = 2
- int EXPONENTIAL = 3

6.25.1 Detailed Description

2D theoretical variogram

6.25.2 Member Data Documentation

6.25.2.1 EXPONENTIAL

int pyinsar.processing.machine_learning.geostatistics.variogram.VariogramModel.EXPONENTIAL = 3
[static]

6.25.2.2 GAUSSIAN

int pyinsar.processing.machine_learning.geostatistics.variogram.VariogramModel.GAUSSIAN = 1 [static]

6.25.2.3 NUGGET

int pyinsar.processing.machine_learning.geostatistics.variogram.VariogramModel.NUGGET = 0 [static]

6.25.2.4 SPHERICAL

int pyinsar.processing.machine_learning.geostatistics.variogram.VariogramModel.SPHERICAL = 2 [static]

The documentation for this class was generated from the following file:

processing/machine_learning/geostatistics/variogram.py

6.26 pyinsar.processing.discovery.WrapPhase Class Reference

Pipeline Item that wraps phase.

Inheritance diagram for pyinsar.processing.discovery.WrapPhase:

160 Class Documentation

Public Member Functions

```
    def process (self, obj_data)
    Wrap phase of images.
```

6.26.1 Detailed Description

Pipeline Item that wraps phase.

6.26.2 Member Function Documentation

6.26.2.1 process()

Wrap phase of images.

Parameters

obj_data	Image data wrapper
----------	--------------------

The documentation for this class was generated from the following file:

• processing/discovery/wrap_phase.py

Chapter 7

File Documentation

7.1 data_import/import_georaster.py File Reference

Namespaces

• pyinsar.data_import.import_georaster

Functions

- def pyinsar.data_import.import_georaster.open_georaster (georaster_path, read_only=True)

 Open a georaster with GDAL.
- def pyinsar.data_import.import_georaster.get_georaster_array (gdal_georaster, remove_ndv=True, as_← float=True)

Get a NumPy array from a georaster opened with GDAL.

- def pyinsar.data_import.import_georaster.get_georaster_extent (gdal_georaster)
 - Get the extent of a georaster opened with GDAL.
- def pyinsar.data_import.import_georaster.print_georaster_info (gdal_georaster)

Print some information about the GDAL georaster.

7.2 data_import/import_raster.py File Reference

Namespaces

pyinsar.data_import.import_raster

Functions

def pyinsar.data_import.import_raster.read_rsc_header_file (file_path)
 Import GACOS runs.

• def pyinsar.data_import.import_raster.open_gacos_tropospheric_delays (tropodelay_header_path)

Open a topospheric delay map computed by the Generic Atmospheric Correction Online Service for InSAR (GACOS)

- def pyinsar.data_import.import_raster.open_sgems_file (file_location)

 Import SGEMS files.
- def pyinsar.data_import.import_raster.open_sgems_file_from_url (file_url)

Open an SGEMS file containing one or several variables in an array from the file's URL.

7.3 data_import/import_srcmod.py File Reference

Namespaces

· pyinsar.data import.import srcmod

Functions

*** In Development *** Generate faults of okada sources from src mod mat files.

7.4 data_import/import_utils.py File Reference

Namespaces

· pyinsar.data import.import utils

Functions

def pyinsar.data_import_import_utils.download_file (url, folder_path, username=None, password=None, file-name=None)

Download a file from a URL.

7.5 data_import/uavsar.py File Reference

Namespaces

· pyinsar.data import.uavsar

Functions

def pyinsar.data_import.uavsar.read_uavsar_metadata (in_file)

Parse UAVSAR metadata.

7.6 output/export_georaster.py File Reference

Namespaces

· pyinsar.output.export georaster

Functions

def pyinsar.output.export_georaster.create_georaster_from_array (georaster_array, geotransform, projection, file_type='MEM', file_path=", data_type=gdal.GDT_Float64, no_data_value=-99999., scale=1., offset=0., options=[])

Create a GDAL georaster from a Numpy array.

7.7 output/plot_raster.py File Reference

Namespaces

pyinsar.output.plot_raster

Functions

- def pyinsar.output.plot_raster.average_minmax_slices (array, axis=0)
- def pyinsar.output.plot_raster.plot_interactive_slicing (array, slice_index, model_array=None, axis=0, cmap='viridis', extent=None, clabel=", xlabel=", ylabel=", figsize=None, update_colorbar=False)
- def pyinsar.output.plot_raster.plot_interactive_multiple_slicing (array, axes, slice_indexes, model_array=None, cmap='viridis', update_colorbar=False, vmin=0., vmax=1., extent=None, clabel=", xlabel=", ylabel=", fig-size=None)

7.8 processing/corrections/topography.py File Reference

Namespaces

pyinsar.processing.corrections.topography

Functions

def pyinsar.processing.corrections.topography.ellipsoidal_earth_slant_ranges (azimuth_time, latlon, orbit_interp, start_x, end_x, start_y, end_y)

Compute slant ranges assuming no topography.

7.9 processing/corrections/troposphere.py File Reference

Namespaces

· pyinsar.processing.corrections.troposphere

Functions

- def pyinsar.processing.corrections.troposphere.vapor_pressure (T)
 Under development.
- def pyinsar.processing.corrections.troposphere.N (P, T, RH, k1=77.6, k2=23.3, k3=3.75E5)
 Under development.
- def pyinsar.processing.corrections.troposphere.N_h (h, P, T, RH, k1=77.6, k2=23.3, k3=3.75E5)
 Under development.
- def pyinsar.processing.corrections.troposphere.compute_delays (h, P, T, RH)
 Under development.

7.10 processing/data_fetcher/gdal.py File Reference

Classes

class pyinsar.processing.data_fetcher.gdal.GDAL_DataFetcher
 Data fetcher for loading Images produced compatiable with GDAL.

Namespaces

· pyinsar.processing.data_fetcher.gdal

7.11 processing/data_fetcher/hdf_retriever.py File Reference

Classes

• class pyinsar.processing.data_fetcher.hdf_retriever.DataRetriever

Data fetcher for retrieving hdf image data made for training in convolutional neural networks.

Namespaces

· pyinsar.processing.data_fetcher.hdf_retriever

7.12 processing/deformation/elastic_halfspace/fault.py File Reference

Classes

· class pyinsar.processing.deformation.elastic_halfspace.fault.Fault

*** In Development *** Model a fault as a collection of small okada faults

Namespaces

pyinsar.processing.deformation.elastic halfspace.fault

7.13 processing/deformation/elastic_halfspace/mogi.py File Reference

Namespaces

· pyinsar.processing.deformation.elastic_halfspace.mogi

Functions

7.14 processing/deformation/elastic_halfspace/okada.py File Reference

Namespaces

pyinsar.processing.deformation.elastic halfspace.okada

Functions

- def pyinsar.processing.deformation.elastic_halfspace.okada.l1 (xi, eta, q, delta, nu, R, X, d_tild)
 Okada's surface displacement.
- def pyinsar.processing.deformation.elastic halfspace.okada.l2 (xi, eta, q, delta, nu, R, y tild, d tild)
- def pyinsar.processing.deformation.elastic halfspace.okada.l3 (xi, eta, q, delta, nu, R, y tild, d tild)
- def pyinsar.processing.deformation.elastic_halfspace.okada.l4 (xi, eta, q, delta, nu, R, d_tild)
- def pyinsar.processing.deformation.elastic_halfspace.okada.l5 (xi, eta, q, delta, nu, R, X, d_tild)
- def pyinsar.processing.deformation.elastic halfspace.okada.f x strike (xi, eta, q, delta, nu)
- def pyinsar.processing.deformation.elastic_halfspace.okada.f_x_dip (xi, eta, q, delta, nu)
- def pyinsar.processing.deformation.elastic halfspace.okada.f x tensile (xi, eta, q, delta, nu)
- def pyinsar.processing.deformation.elastic_halfspace.okada.f_y_strike (xi, eta, q, delta, nu)
- def pyinsar.processing.deformation.elastic_halfspace.okada.f_y_dip (xi, eta, q, delta, nu)
- def pyinsar.processing.deformation.elastic halfspace.okada.f y tensile (xi, eta, q, delta, nu)
- def pyinsar.processing.deformation.elastic halfspace.okada.f z strike (xi, eta, q, delta, nu)
- def pyinsar.processing.deformation.elastic halfspace.okada.f z dip (xi, eta, q, delta, nu)
- def pyinsar.processing.deformation.elastic_halfspace.okada.f_z_tensile (xi, eta, q, delta, nu)
- def pyinsar.processing.deformation.elastic halfspace.okada.chinnerys notation (f, x, p, q, L, W, delta, nu)
- def pyinsar.processing.deformation.elastic_halfspace.okada.l1_int (xi, eta, z, y, delta, c, d, q, R)
 Okada's internal displacement.
- def pyinsar.processing.deformation.elastic_halfspace.okada.l2_int (xi, eta, z, y, delta, c, d, q, R)
- def pyinsar.processing.deformation.elastic halfspace.okada.l3 int (xi, eta, z, y, delta, c, d, q, R)
- def pyinsar.processing.deformation.elastic_halfspace.okada.l4_int (xi, eta, z, y, delta, c, d, q, R)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fA_1_strike (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fA_2_strike (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fA_3_strike (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fB_1_strike (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fB_2_strike (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fB_3_strike (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fC_1_strike (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fC_2_strike (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fC 3 strike (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fA 1 dip (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fA 2 dip (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fA 3 dip (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fB_1_dip (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fB_2_dip (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fB_3_dip (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fC_1_dip (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fC 2 dip (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fC 3 dip (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fA 1 tensile (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fA_2_tensile (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fA 3 tensile (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fB 1 tensile (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fB 2 tensile (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fB 3 tensile (xi, eta, z, y, delta, c, alpha)
- de pyritadi.processing de l'entre l'alle pare l'entre l'entre
- def pyinsar.processing.deformation.elastic_halfspace.okada.fC_1_tensile (xi, eta, z, y, delta, c, alpha)

- def pyinsar.processing.deformation.elastic_halfspace.okada.fC_2_tensile (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fC_3_tensile (xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fA 1 (displacement type, xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fA_2 (displacement_type, xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fA_3 (displacement_type, xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fB_1 (displacement_type, xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fB_2 (displacement_type, xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fB 3 (displacement type, xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fC 1 (displacement type, xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic halfspace.okada.fC 2 (displacement type, xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.fC_3 (displacement_type, xi, eta, z, y, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.chinnerys_notation_int (f, displacement_type, x, y, z, L, W, delta, c, alpha)
- def pyinsar.processing.deformation.elastic_halfspace.okada.compute_fault_internal_displacement_type (displacement
 type, c, L, W, delta, U, alpha, xxx array, yyy array, zzz array)

7.15 processing/data_fetcher/okada.py File Reference

Classes

class pyinsar.processing.data_fetcher.okada.DataFetcher
 Generates data from an Okada model.

Namespaces

pyinsar.processing.data_fetcher.okada

7.16 processing/deformation/elastic_halfspace/pipe.py File Reference

Namespaces

· pyinsar.processing.deformation.elastic halfspace.pipe

Functions

def pyinsar.processing.deformation.elastic_halfspace.pipe.compute_closed_pipe_displacement (closed_pipe_
 x, closed_pipe_y, closed_pipe_depth_1, closed_pipe_depth_2, closed_pipe_radius, poisson_ratio, pressurization, shear_modulus, xx_array, yy_array)

Compute the surface displacements for a closed pipe.

• def pyinsar.processing.deformation.elastic_halfspace.pipe.compute_open_pipe_displacement (open_pipe_x, open_pipe_y, open_pipe_depth_0, open_pipe_depth_1, open_pipe_depth_2, open_pipe_radius, poisson_ratio, pressurization, shear_modulus, xx_array, yy_array)

Compute the surface displacements for an open pipe.

7.17 processing/deformation/elastic_halfspace/surface_load.py File Reference

Namespaces

• pyinsar.processing.deformation.elastic_halfspace.surface_load

Functions

• def pyinsar.processing.deformation.elastic_halfspace.surface_load.compute_uniform_disk_load_displacement (disk_x, disk_y, disk_radius, poisson_ratio, pressure, shear_modulus, xx_array, yy_array)

Compute the surface displacements for a uniform disk load.

7.18 processing/discovery/classify_cnn.py File Reference

Classes

class pyinsar.processing.discovery.ClassifyCNN
 Train a CNN.

Namespaces

• pyinsar.processing.discovery.classify_cnn

7.19 processing/discovery/coherence.py File Reference

Classes

• class pyinsar.processing.discovery.Coherence

Calculate coherence between single-look complex SAR images.

Namespaces

· pyinsar.processing.discovery.coherence

7.20 processing/discovery/coregister.py File Reference

Classes

• class pyinsar.processing.discovery.Coregister

*** In Devolopment *** Pipeline item to coregister images

Namespaces

· pyinsar.processing.discovery.coregister

7.21 processing/discovery/deburst.py File Reference

Classes

class pyinsar.processing.discovery.deburst.Deburst
 Debursts Sentinel-1 TOPSAR data.

Namespaces

· pyinsar.processing.discovery.deburst

7.22 processing/discovery/deformation_to_phase.py File Reference

Classes

class pyinsar.processing.discovery.DeformationToPhase
 Convert deformation to phas.

Namespaces

pyinsar.processing.discovery.deformation_to_phase

7.23 processing/discovery/flat_earth.py File Reference

Classes

class pyinsar.processing.discovery.FlatEarth

*** In Development *** Remove flat Earth contribution from interferogram

Namespaces

· pyinsar.processing.discovery.flat_earth

7.24 processing/discovery/interferogram.py File Reference

Classes

• class pyinsar.processing.discovery.interferogram.Interferogram

Create Inteferogram from SLC data.

Namespaces

· pyinsar.processing.discovery.interferogram

7.25 processing/discovery/los_deformation.py File Reference

Classes

class pyinsar.processing.discovery.LOS_Deformation
 *** In Development ***

Namespaces

• pyinsar.processing.discovery.los_deformation

7.26 processing/discovery/rotate_squares.py File Reference

Classes

class pyinsar.processing.discovery.RotateSquares
 Generate new images by rotating subsections of data defined by Shapely squares.

Namespaces

• pyinsar.processing.discovery.rotate_squares

Functions

• def pyinsar.processing.discovery.rotateSquare (image, square, angle, order)

Rotate a subsection of an image defined by a shapely square.

7.27 processing/discovery/shown_cnn_classes.py File Reference

Classes

class pyinsar.processing.discovery.shown_cnn_classes.ShowCNNClasses
 Dispay CNN Classifications on segments of an image.

Namespaces

· pyinsar.processing.discovery.shown_cnn_classes

7.28 processing/discovery/temporal_decorrelation.py File Reference

Classes

class pyinsar.processing.discovery.TemporalDecorrelation
 Pipeline item to add temporal decorrelation to some phase.

Namespaces

• pyinsar.processing.discovery.temporal_decorrelation

7.29 processing/discovery/train_cnn.py File Reference

Classes

class pyinsar.processing.discovery.TrainCNN
 Train a CNN.

Namespaces

• pyinsar.processing.discovery.train_cnn

7.30 processing/discovery/wrap_phase.py File Reference

Classes

• class pyinsar.processing.discovery.WrapPhase Pipeline Item that wraps phase.

Namespaces

pyinsar.processing.discovery.wrap phase

7.31 processing/geography/coordinates.py File Reference

Namespaces

pyinsar.processing.geography.coordinates

Functions

def pyinsar.processing.geography.coordinates.transform_to_pixel_coordinates (x, y, x_min, x_max, y_min, y_
 max, array_width, array_height)

Array coordinates.

def pyinsar.processing.geography.coordinates.transform_to_geographic_coordinates (u, v, x_min, x_max, y_min, y_max, array_width, array_height)

Transform some pixel coordinates in an array to geographic coordinates.

 def pyinsar.processing.geography.coordinates.compute_x_and_y_coordinates_maps (x_min, x_max, y_min, y← _max, array_width, array_height)

Compute an array of x and y coordinates based on an extent and array shape.

- def pyinsar.processing.geography.coordinates.extract_subgeoarray (georaster_array, georaster_extent, x_min, x_max, y_min, y_max, center_extent=False)
- def pyinsar.processing.geography.coordinates.sample nd array (array, subarray shape, steps=(1, 1))
- def pyinsar.processing.geography.coordinates.sample_2d_array (array, subarray_shape, steps=(1, 1), is_shape
 _centered=False)
- def pyinsar.processing.geography.coordinates.sample_2d_multiarray (array, subarray_shape, steps=(1, 1))
- def pyinsar.processing.geography.coordinates.reproject_point (lon, lat, old_projection_EPSG=None, old_
 projection_wkt=None, old_projection_utm=None, new_projection_EPSG=None, new_projection_wkt=None,
 new_projection_utm=None)

Projection.

def pyinsar.processing.geography.coordinates.find utm area (longitude, latitude)

Find the UTM code and hemisphere from the longitude and latitude of a point.

def pyinsar.processing.geography.coordinates.reproject_georaster (georaster, new_cell_sizes, new_projection
 _EPSG=None, new_projection_wkt=None, new_projection_utm=None, new_extent=None, interpolation_
 method=gdal.GRA_Cubic, file_type='MEM', file_path=", data_type=gdal.GDT_Float64, no_data_value=-99999., scale=1., offset=0., options=[])

Change the projection of a GDAL georaster.

def pyinsar.processing.geography.coordinates.georaster_vertical_datum_shift (georaster, old_datum_← proj4='+proj=longlat+datum=WGS84+no_defs+geoidgrids=egm96_15.gtx', new_datum_proj4='+proj=longlat+datum=W← GS84+no_defs', file_type='MEM', file_path=", data_type=gdal.GDT_Float64, no_data_value=-99999., scale=1., offset=0.)

Variables

pyinsar.processing.geography.coordinates.nopython

Extract all the possible sub-arrays that do not contain any NaN.

- · pyinsar.processing.geography.coordinates.True
- pyinsar.processing.geography.coordinates.nogil
- · pyinsar.processing.geography.coordinates.parallel

7.32 processing/geography/geodesy.py File Reference

Namespaces

· pyinsar.processing.geography.geodesy

Functions

- def pyinsar.processing.geography.geodesy.compute_great_circle_distance_and_bearing (rad_longitude_1, rad
 _latitude_1, rad_longitude_2, rad_latitude_2, planet_radius)
 Geodesy on a sphere.
- def pyinsar.processing.geography.geodesy.compute_lonlat_from_distance_bearing (rad_longitude_1, rad_
 —
 latitude 1, distance, rad bearing, planet radius)
- def pyinsar.processing.geography.geodesy.direct_vincenty_formula (rad_lon_1, rad_lat_1, distance, rad_
 bearing_1, a, f, eps=1e-12)
- def pyinsar.processing.geography.geodesy.direct_vincenty_formula_for_array (rad_longitude_1_array, rad_
 —
 latitude 1 array, distance array, rad bearing 1, a, f, eps=1e-12)
- def pyinsar.processing.geography.geodesy.update_lambda (Lambda, reduced_rad_lat_1, reduced_rad_lat_
 2, diff_lon, f)
- def pyinsar.processing.geography.geodesy.inverse_vincenty_formula (rad_lon_1, rad_lat_1, rad_lon_2, rad_lat ← 2, a, f, eps=1e-12, max_iter=200)
- def pyinsar.processing.geography.geodesy.inverse_vincenty_formula_for_array (rad_longitude_1, rad_latitude ← 1, rad_longitude 2 array, rad_latitude 2 array, a, f, eps=1e-12, max_iter=200)
- def pyinsar.processing.geography.geodesy.compute_point_to_line_distance_on_ellipsoid (rad_point_lon, rad_
 point_lat, rad_geodesic_origin_lon, rad_geodesic_origin_lat, rad_geodesic_bearing, a, f, eps=1e-12, max_
 iter=200)
- def pyinsar.processing.geography.geodesy.compute_point_to_line_distance_for_array (rad_longitude_1, rad_
 — latitude_1, rad_longitude_2_array, rad_latitude_2_array, rad_bearing, a, f, eps=1e-12, max_iter=200)

Variables

· pyinsar.processing.geography.geodesy.nopython

Geodesy on an oblate spheroid.

7.33 processing/geography/geomorphometry.py File Reference

Namespaces

· pyinsar.processing.geography.geomorphometry

Functions

- def pyinsar.processing.geography.geomorphometry.add symmetric border (array, border size=1)
- def pyinsar.processing.geography.geomorphometry.compute_gradient_at_cell (array, j, i, grid_yx_spacing, axis=1)
- def pyinsar.processing.geography.geomorphometry.compute horne slope (array, grid yx spacing)

Variables

· pyinsar.processing.geography.geomorphometry.nopython

Add a symmetric border to a 2D array.

7.34 processing/instruments/sentinel.py File Reference

Classes

· class pyinsar.processing.instruments.sentinel.RampPolynomial

Polynomial used for quantities relating to deramping sentinel.

· class pyinsar.processing.instruments.sentinel.SentinelRamp

Calcuate the combined ramp and modulated phase in Sentinel.

Namespaces

· pyinsar.processing.instruments.sentinel

Functions

- def pyinsar.processing.instruments.sentinel.transform slc (slc, deramped phase, transformation matrix)
- def pyinsar.processing.instruments.sentinel.find_overlapping_valid_lines (metadata_tree)

Determine which lines between bursts overlap.

def pyinsar.processing.instruments.sentinel.get_valid_lines (metadata_tree, per_burst=False)

Retrieve all lines that contain some valid data.

def pyinsar.processing.instruments.sentinel.select_valid_lines (data, tree, cut=True)

Extract burst information from SLC.

• def pyinsar.processing.instruments.sentinel.retrieve_azimuth_time (in_tree)

Retrieves the zero azimuth time for all the lines in the data.

def pyinsar.processing.instruments.sentinel.read geolocation (tree)

Read in geolocation data.

def pyinsar.processing.instruments.sentinel.update_geolocation_lines (tree, azimuth_times, geolocation_data)

Update which line is associated with geolocation data using azimuth times.

def pyinsar.processing.instruments.sentinel.get sentinel extents (geolocation, offset=0.0)

Get the extents (latitude and longitude) of a sentinel-1 image given its geolocation information.

7.35 data_import/sentinel.py File Reference

Namespaces

· pyinsar.data import.sentinel

Functions

- def pyinsar.data_import.sentinel.parse_satellite_data (in_satellite_file)
 - Parse Sentinel satellite data.
- def pyinsar.data_import.sentinel.get_url_precise_orbit (product_name)
- def pyinsar.data_import.sentinel.download_precise_orbits (product_folder, orbit_folder, username, password)
 - Download the precise orbits for all the Sentinel-1 products in a folder.

Download Sentinel-1 products in a folder.

7.36 processing/isce/input_file.py File Reference

Namespaces

· pyinsar.processing.isce.input_file

Functions

- def pyinsar.processing.isce.input_file.create_product_xml (xml_path, product_path, product_type='master', product_output_path=None, product_orbit_path=None, product_auxiliary_data_path=None, do_add=True)
 - Create the xml file defining a Sentinel-1 product for processing with ISCE.
- def pyinsar.processing.isce.input_file.create_topsApp_xml (xml_folder_path, master_path, slave_path, master __output_path=None, slave_output_path=None, master_orbit_path=None, slave_orbit_path=None, master_ _ auxiliary_data_path=None, slave_auxiliary_data_path=None, do_unwrap=True, unwrapper_name='snaphu_mcf', xml_filename='topsApp.xml')

Create the topsApp.xml file for processing Sentinel-1 data with ISCE.

 def pyinsar.processing.isce.input_file.prepare_topsApps (product_paths, result_folder_path, orbit_path=None, auxiliary data path=None, do unwrap=True, unwrapper name='snaphu mcf')

7.37 processing/machine_learning/geostatistics/direct_sampling.py File Reference

Namespaces

pyinsar.processing.machine learning.geostatistics.direct sampling

Functions

 def pyinsar.processing.machine_learning.geostatistics.direct_sampling.compute_neighborhood_lag_vectors (neighborhood_shape, grid_yx_spacing, delta)

- def pyinsar.processing.machine_learning.geostatistics.direct_sampling.compute_neighborhoods (simulation
 _array, data_weight_array, cell_j, cell_i, lag_vectors, lag_distances, max_number_data, max_density_data,
 neighborhood shape, rotation angle rad, scaling factor, no data value)
- def pyinsar.processing.machine_learning.geostatistics.direct_sampling.compute_continuous_distance (training
 _image_array, ti_j, ti_i, ti_ranges_max, neighbor_indexes, neighbor_values, neighbor_numbers, min_distances,
 var_k, max_non_matching_proportion, no_data_value)
- def pyinsar.processing.machine_learning.geostatistics.direct_sampling.compute_discrete_distance (training_
 image_array, ti_j, ti_i, neighbor_indexes, neighbor_values, neighbor_numbers, min_distances, var_k, max_
 non matching proportion, no data value)
- def pyinsar.processing.machine_learning.geostatistics.direct_sampling.find_closest_cell_in_training_image (training_image_array, ti_ranges_max, ti_indices, ti_index, neighbor_indexes, neighbor_values, neighbor_walues, neighbo
- def pyinsar.processing.machine_learning.geostatistics.direct_sampling.prepare_training_image (array, variable
 __types)
- · def pyinsar.processing.machine learning.geostatistics.direct sampling.is any equal (list 1, value)
- · def pyinsar.processing.machine learning.geostatistics.direct sampling.is any nan (list 1)
- def pyinsar.processing.machine_learning.geostatistics.direct_sampling.run_ds (data_array, training_image_
 array, variable_types, distance_thresholds, ti_fraction, max_number_data, max_density_data, neighborhood
 _shape=(math.inf, math.inf), grid_yx_spacing=(1., 1.), delta=0., conditioning_data_weight=1., max_non_
 matching_proportion=1., start_parameter_reduction=1, reduction_factor=1, rotation_angle_array=np.empty((1, 1)), scaling_factor_array=np.empty((1, 1, 1)), number_postproc=0, postproc_factor=1, number_realizations=1, path_type=PathType.RANDOM, seed=100, no_data_value=-99999)
- def pyinsar.processing.machine_learning.geostatistics.direct_sampling.simulate_ds_realization (data_array, data_weight_array, training_image_array, ti_ranges_max, ti_indices, distance_thresholds, ti_fraction, max
 __number_data, max_density_data, lag_vectors, lag_distances, neighborhood_shape, max_non_matching_
 proportion, start_parameter_reduction, reduction_factor, rotation_angle_array, scaling_factor_array, number_
 postproc, postproc_factor, path_type, seed, no_data_value)
- def pyinsar.processing.machine_learning.geostatistics.direct_sampling.run_parallel_ds (data_array, training
 _image_array, variable_types, distance_thresholds, ti_fraction, max_number_data, max_density_data,
 neighborhood_shape=(math.inf, math.inf), grid_yx_spacing=(1., 1.), delta=0., conditioning_data_weight=1.,
 max_non_matching_proportion=1., start_parameter_reduction=1, reduction_factor=1, rotation_angle_
 array=np.empty((1, 1)), scaling_factor_array=np.empty((1, 1, 1)), number_postproc=0, postproc_factor=1,
 number_realizations=1, path_type=PathType.RANDOM, seed=100, no_data_value=-99999)

Variables

pyinsar.processing.machine_learning.geostatistics.direct_sampling.nopython

Compute the lag vectors for the neighborhood, assuming a regular grid.

7.38 processing/machine_learning/geostatistics/geostatistics_utils.py File Reference

Classes

- class pyinsar.processing.machine learning.geostatistics.geostatistics utils.VariableType
- class pyinsar.processing.machine learning.geostatistics.geostatistics utils.PathType

Namespaces

· pyinsar.processing.machine learning.geostatistics.geostatistics utils

Functions

- def pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.unflatten_index (flattened_index, array shape)
- def pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.standardize (x)

Reduce and center a float or array.

def pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.normalize (x)

Reduce and center a float or array.

Variables

- pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.nopython

 Unflatten an index for a 2D array.
- · pyinsar.processing.machine learning.geostatistics.geostatistics utils.True
- · pyinsar.processing.machine_learning.geostatistics.geostatistics_utils.nogil

7.39 processing/machine_learning/geostatistics/sequential_gaussian_simulation.py File Reference

Classes

class pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.KrigingMethod

Namespaces

• pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation

Functions

- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.merge_secondary_data (secondary_data_array, correlations_with_primary, correlations_between_secondary)
 - Merging secondary data.
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.compute_euclidean_

 distance (cell 1, cell 2)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.compute_axis_aligned
 —ellipse_range (neighborhood_range, neighborhood_azimuth_rad)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.compute_axis_aligned
 neighborhood_shape (neighborhood_range, neighborhood_azimuth, grid_yx_spacing)

def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.compute_neighborhood
 _template (neighborhood_range, grid_yx_spacing, vario_models, vario_sills, vario_ranges, vario_azimuth_rad,
 rotation matrix, eps=0.0001)

- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.get_neighborhood (cell
 index, simulation_array, neighborhood_template, max_number_data, no_data_value)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.get_values_matrix (neighborhood, simulation_array)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.get_data_to_data_matrix (kriging_method, cell_index, neighborhood, correlation_template, secondary_data_weight)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.get_data_to_unknown
 —matrix (kriging_method, cell_index, neighborhood, correlation_template, secondary_data_weight)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.solve_kriging_system
 (cell_index, neighborhood, simulation_array, primary_mean, primary_variance, correlation_template, secondary
 _data_weight, secondary_data_mean, secondary_data_array)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.run_sgs (data_array, grid_yx_spacing, vario_models, vario_sills, vario_azimuth, vario_ranges, number_realizations=1, path_
 type=PathType.RANDOM, kriging_method=KrigingMethod.SIMPLE, neighborhood_range=(math.nan, math.
 nan), max_number_data=12, secondary_data_weight=math.nan, secondary_data_array=np.empty((1, 1)), seed=100, no_data_value=-99999.)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.simulate_sgs_realization (data_array, path_type, primary_mean, primary_variance, neighborhood_template, correlation_template, max
 _number_data, secondary_data_weight, secondary_data_array, seed, no_data_value)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.run_parallel_sgs (data
 _array, grid_yx_spacing, vario_models, vario_sills, vario_azimuth, vario_ranges, number_realizations=1, path
 _type=PathType.RANDOM, kriging_method=KrigingMethod.SIMPLE, neighborhood_range=(math.nan, math.
 nan), max_number_data=12, secondary_data_weight=math.nan, secondary_data_array=np.empty((1, 1)), seed=100, nb_threads=4, no_data_value=-99999.)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.inverse_standard_
 — normal_cdf (x)

Data transform.

- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.compute_averaged_
 cumulative distribution from array (value array)
- def pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.normal_score_tranform (value array)

Transform the values of an array to a normal distribution.

Variables

- pyinsar.processing.machine_learning.geostatistics.sequential_gaussian_simulation.True
- · pyinsar.processing.machine learning.geostatistics.sequential gaussian simulation.nogil

7.40 processing/machine_learning/geostatistics/variogram.py File Reference

Classes

class pyinsar.processing.machine_learning.geostatistics.variogram.VariogramModel
 2D theoretical variogram

Namespaces

• pyinsar.processing.machine_learning.geostatistics.variogram

Functions

- def pyinsar.processing.machine_learning.geostatistics.variogram.nugget_variogram (reduced_distance, variance
 contribution)
- def pyinsar.processing.machine_learning.geostatistics.variogram.gaussian_variogram (reduced_distance, variance_contribution)
- def pyinsar.processing.machine_learning.geostatistics.variogram.spherical_variogram (reduced_distance, variance contribution)
- def pyinsar.processing.machine_learning.geostatistics.variogram.exponential_variogram (reduced_distance, variance_contribution)
- def pyinsar.processing.machine_learning.geostatistics.variogram.compute_variogram (delta_y, delta_x, vario_
 models, vario_sills, vario_ranges, rotation_matrix)
- def pyinsar.processing.machine_learning.geostatistics.variogram.vectorized_gaussian_variogram (distance, vario_range, variance_contribution)

Vectorized theoretical variogram.

def pyinsar.processing.machine_learning.geostatistics.variogram.vectorized_spherical_variogram (distance, vario range, variance contribution)

Compute the value of a variogram with a spherical model.

def pyinsar.processing.machine_learning.geostatistics.variogram.vectorized_exponential_variogram (distance, vario_range, variance_contribution)

Compute the value of a variogram with an exponential model.

- def pyinsar.processing.machine_learning.geostatistics.variogram.map_2D_variogram (vario_models, vario_sills, vario_azimuth, vario_ranges, neighborhood_range, map_shape, grid_spacing)
- def pyinsar.processing.machine_learning.geostatistics.variogram.compute_range_variogram (deltas_y, deltas_x, vario_models, vario_sills, vario_ranges, vario_azimuth=0.)

Variables

- pyinsar.processing.machine_learning.geostatistics.variogram.nopython
 - 2D experimental variogram
- pyinsar.processing.machine_learning.geostatistics.variogram.True
- · pyinsar.processing.machine_learning.geostatistics.variogram.nogil

7.41 processing/utilities/ann.py File Reference

Namespaces

· pyinsar.processing.utilities.ann

Functions

- def pyinsar.processing.utilities.ann.buildCNN (image_height, image_width, model_dir, rate=0.01, config=None) Build a convolutional neural network.
- def pyinsar.processing.utilities.ann.train (image_data, image_labels, model_dir, batch_size, num_epochs, max
 _batches=None, status_line_rate=50, target=", shuffle=True, config=None)

Train neural network.

- def pyinsar.processing.utilities.ann.classify (image_data, model_dir, batch_size=2000, config=None)
 Classify data.
- def pyinsar.processing.utilities.ann.length_after_valid_window (length, window, stride)

Length of dimension after convolving using the padding type 'valid' or using max pooling.

def pyinsar.processing.utilities.ann.shuffleTrainingData (data, labels)

Shuffles data.

def pyinsar.processing.utilities.ann.restoreGraph (model dir)

Restore a network.

7.42 processing/utilities/deformations.py File Reference

Namespaces

· pyinsar.processing.utilities.deformations

Functions

- def pyinsar.processing.utilities.deformations.calc_bounding_box (image)
 - Calculate bounding box of an object in an image.
- def pyinsar.processing.utilities.deformations.determine_deformation_bounding_box (deformations)

Determine bounds around a deformation.

def pyinsar.processing.utilities.deformations.determine_x_y_bounds (deformations, x_array, y_array, off-set=5000)

Determine the x and y positions that bound a deformation.

7.43 processing/utilities/generic.py File Reference

Classes

· class pyinsar.processing.utilities.generic.OrbitInterpolation

Class for interpolating satellite positions.

class pyinsar.processing.utilities.generic.FindNearestPixel

Find the nearest given a time.

Namespaces

· pyinsar.processing.utilities.generic

Functions

def pyinsar.processing.utilities.generic.get image extents (geotransform, shape)

Get extents of in projection coordinates.

• def pyinsar.processing.utilities.generic.proj4StringToDictionary (proj4_string)

Convert a proi4 string into a dictionary.

def pyinsar.processing.utilities.generic.sorted_alphanumeric (I)

Sort a list of strings with numbers.

def pyinsar.processing.utilities.generic.phase_shift (data, phase)

Apply a phase shift to data.

def pyinsar.processing.utilities.generic.find_closest_time (time, date)

Find the closest time to a date.

def pyinsar.processing.utilities.generic.rotate (col_vectors, az, ay, ax, dtype=np.float64)

Rotate 3 dimensional column vectors.

def pyinsar.processing.utilities.generic.translate (col_vectors, delta_x, delta_y, delta_z)

Translate 3 dimensional column vectors.

def pyinsar.processing.utilities.generic.coherence (s1, s2, window, topo_phase=0)

This function computes the coherence between two SLCs.

- def pyinsar.processing.utilities.generic.scale_image (input_data, vmin=None, vmax=None)
- def pyinsar.processing.utilities.generic.keypoints align (img1, img2, max matches=40, invert=True)

*** In Development *** Determine transformation matrix for aligning images

def pyinsar.processing.utilities.generic.subarray_slice (index, num_items)

Returns a slice that selects for selecting a chunk out of an array.

 def pyinsar.processing.utilities.generic.find_data_asf (lat, lon, processingLevel='SLC', platform='Sentinel-1A, Sentinel, B, kwargs)

Search Alaska Satellite Facility for data.

• def pyinsar.processing.utilities.generic.select_max_matched_data (sentinel_data_list)

Select the data that can be combined into an interferogram.

def pyinsar.processing.utilities.generic.match_data (sentinel_data_list)

Seperate into sets of overlapping data.

• def pyinsar.processing.utilities.generic.find_earthquake_pairs (organized_data, date)

Select image pairs around a specified date.

def pyinsar.processing.utilities.generic.generateMatplotlibRectangle (extent, kwargs)

Generate a matplotlib rectangle from a extents.

def pyinsar.processing.utilities.generic.project_insar_data (in_dataset, lon_center, lat_center, interpolation=gdal.
 GRA_Cubic, no_data_value=np.nan, data_type=gdal.GDT_Float64)

Project InSAR data using GDAL.

7.44 processing/utilities/insar_simulator_utils.py File Reference

Namespaces

· pyinsar.processing.utilities.insar simulator utils

Functions

def pyinsar.processing.utilities.insar_simulator_utils.wrap (x, to_2pi=False)

Wrap a float or an array.

def pyinsar.processing.utilities.insar_simulator_utils.crop_array_from_center (array, crop_shape)

Crop an array along its borders.

def pyinsar.processing.utilities.insar_simulator_utils.mask_deformation (deformation, threshold_function=threshold
 ii)

Mask image using a threshold function.

- def pyinsar.processing.utilities.insar_simulator_utils.calc_bounding_box (image, threshold_function=threshold_li)

 Calcluate the bounding box around an image using the li threshold.
- def pyinsar.processing.utilities.insar_simulator_utils.retrieve_bounds (thresh_image)

Retrieve the bounds of an image that has been the sholded.

def pyinsar.processing.utilities.insar_simulator_utils.crop_nans (image)

Shrink image by removing nans.

def pyinsar.processing.utilities.insar_simulator_utils.determine_deformation_bounding_box (deformations, largest_box=True, kwargs)

Calculate the extent of the deformation in image coordinates.

def pyinsar.processing.utilities.insar_simulator_utils.determine_x_y_bounds (deformations, x_array, y_array, off-set=5000, kwargs)

Determine the x and y coordinates of the extent of the deformation.

def pyinsar.processing.utilities.insar_simulator_utils.generate_interferogram_from_deformation (track_
 angle, min_ground_range_1, height_1, is_right_looking, wavelength, k, deformation, xx, yy, projected_
 topography=None, min_ground_range_2=None, height_2=None)

Generate an interferogram from deformations.

- def pyinsar.processing.utilities.insar_simulator_utils.old_generate_interferogram_from_deformation (track_angle, min_ground_range, height, is_right_looking, wavelength, k, deformation, xx, yy, projected_topography=None)
 Generate an interferogram from deformations.
- def pyinsar.processing.utilities.insar_simulator_utils.change_in_range_to_phase (los_deformation, wavelength, k=2)

Compute phase from change in range.

• def pyinsar.processing.utilities.insar_simulator_utils.phase_to_change_in_range (phase, wavelength, k=2)

Compute change in range from phase.

7.45 processing/utilities/machine_learning.py File Reference

Classes

· class pyinsar.processing.utilities.machine_learning.DataRetriever

Class for retrieving data from an hdf file.

Namespaces

pyinsar.processing.utilities.machine learning

Functions

- def pyinsar.processing.utilities.machine_learning.divide_into_squares (image, size, stride)
 - Create many patches from an image.
- def pyinsar.processing.utilities.machine_learning.generate_minimum_ground_range_limits (satellite_height, incidence_ranges, image_size)
 - Determine the limits of minimum ground ranges of a satellite pass.
- def pyinsar.processing.utilities.machine_learning.generate_phase_samples_from_looks_and_ranges (deformation
 — list, xx, yy, satellite_height, track_angles, minimum_ground_ranges, size=(100, 100), dtype=np.float32)
 - Generates different possible phases from a list of deformations due to different track angles and groud ranges.
- def pyinsar.processing.utilities.machine_learning.generate_phase_samples (deformation, satellite_height, radar_wavelength, cell_size, image_size, stride=20)
 - In Development Generate phase samples by tiling an array of deformations
- def pyinsar.processing.utilities.machine_learning.rotate_image_list (in_image_extents, in_image_list, progress=True)

 Rotate input images 0, 90, 180, and 270 degrees.

Index

call	pyinsar::processing::utilities::generic::OrbitInterpolation,
pyinsar::processing::instruments::sentinel::Ramp Polynomial 147	
Polynomial, 147	pyinsar::processing::utilities::machine_learning::←
pyinsar::processing::instruments::sentinel::Sentinel ← Ramp, 150	DataRetriever, 125
pyinsar::processing::utilities::generic::FindNearest Pixel, 136	add_symmetric_border pyinsar::processing::geography::geomorphometry,
pyinsar::processing::utilities::generic::OrbitInterpolation	
145	average_minmax_slices
init	pyinsar::output::plot_raster, 19
pyinsar::processing::data_fetcher::gdal::GDAL_←	
DataFetcher, 140	batch_size
pyinsar::processing::data_fetcher::hdf_retriever::← DataRetriever, 123	pyinsar::processing::discovery::classify_cnn::← ClassifyCNN, 117
pyinsar::processing::data_fetcher::okada::Data← Fetcher, 122	pyinsar::processing::discovery::train_cnn::TrainCNN,
pyinsar::processing::deformation::elastic_halfspace←	buildCNN
::fault::Fault, 131	pyinsar::processing::utilities::ann, 90
pyinsar::processing::discovery::classify_cnn::←	pymoan proceeding nationality, ev
ClassifyCNN, 116	CONTINUOUS
pyinsar::processing::discovery::coherence::Coherence,	
pyinsar::processing::discovery::coregister::Coregister,	calc_bounding_box
120	pyinsar::processing::utilities::deformations, 93
pyinsar::processing::discovery::deburst::Deburst, 128	pyinsar::processing::utilities::insar_simulator_utils,
pyinsar::processing::discovery::deformation_to_←	104
phase::DeformationToPhase, 129	cell centroids
pyinsar::processing::discovery::flat_earth::FlatEarth, 137	pyinsar::processing::deformation::elastic_halfspace ← ::fault::Fault, 132
pyinsar::processing::discovery::interferogram::←	cell_length
Interferogram, 141	pyinsar::processing::deformation::elastic_halfspace←
pyinsar::processing::discovery::rotate_squares::←	::fault::Fault, 133
RotateSquares, 148	cell_width
pyinsar::processing::discovery::shown_cnn_← classes::ShowCNNClasses, 152	_ pyinsar::processing::deformation::elastic_halfspace ← ::fault::Fault, 133
pyinsar::processing::discovery::temporal_decorrelation	
::TemporalDecorrelation, 154	pyinsar::processing::utilities::insar_simulator_utils,
pyinsar::processing::discovery::train_cnn::TrainCNN,	104
156	chinnerys notation
pyinsar::processing::instruments::sentinel::Ramp←	pyinsar::processing::deformation::elastic_halfspace↔
Polynomial, 147	::okada, 26
pyinsar::processing::instruments::sentinel::Sentinel ←	chinnerys_notation_int
Ramp, 150	pyinsar::processing::deformation::elastic_halfspace ←
pyinsar::processing::utilities::generic::FindNearest↔	::okada, 26
Pixel, 135	chunk_size

pyinsar::processing::utilities::machine_learning::← DataRetriever, 126	compute_horne_slope pyinsar::processing::geography::geomorphometry,
class_name	59
pyinsar::processing::discovery::shown_cnn_← classes::ShowCNNClasses, 153	compute_lonlat_from_distance_bearing pyinsar::processing::geography::geodesy, 56
classify	compute_mogi_source_displacement
pyinsar::processing::utilities::ann, 90 cnn_network_dir	pyinsar::processing::deformation::elastic_halfspace ← ::mogi, 24
pyinsar::processing::discovery::classify_cnn::	compute_neighborhood_lag_vectors
ClassifyCNN, 117 pyinsar::processing::discovery::train_cnn::TrainCNN,	pyinsar::processing::machine_learning::geostatistics:direct_sampling, 68
157	compute_neighborhood_template
coherence	pyinsar::processing::machine_learning::geostatistics-
pyinsar::processing::utilities::generic, 95	::sequential_gaussian_simulation, 77
colors	compute_neighborhoods
pyinsar::processing::discovery::shown_cnn_←	pyinsar::processing::machine_learning::geostatistics-
classes::ShowCNNClasses, 153	::direct_sampling, 68
compare_labels	compute_okada_displacement
pyinsar::processing::discovery::classify_cnn::←	pyinsar::processing::deformation::elastic_halfspace
ClassifyCNN, 117	::okada, 27
compute_averaged_cumulative_distribution_from_array	compute_okada_internal_displacement
pyinsar::processing::machine_learning::geostatistics ::sequential_gaussian_simulation, 77	pyinsar::processing::deformation::elastic_halfspace ← ::okada, 27
compute_axis_aligned_ellipse_range	compute_open_pipe_displacement
pyinsar::processing::machine_learning::geostatistics ← ::sequential_gaussian_simulation, 77	pyinsar::processing::deformation::elastic_halfspace ← ::pipe, 43
compute_axis_aligned_neighborhood_shape	compute_point_to_line_distance_for_array
pyinsar::processing::machine_learning::geostatistics↔	pyinsar::processing::geography::geodesy, 56
::sequential_gaussian_simulation, 77	compute_point_to_line_distance_on_ellipsoid
compute_closed_pipe_displacement	pyinsar::processing::geography::geodesy, 56
pyinsar::processing::deformation::elastic_halfspace	compute_range_variogram
::pipe, 42	pyinsar::processing::machine_learning::geostatistics-
compute_continuous_distance	::variogram, 84
pyinsar::processing::machine_learning::geostatistics↔	
::direct_sampling, 68	pyinsar::processing::deformation::elastic_halfspace
compute_delays	::surface_load, 44
pyinsar::processing::corrections::troposphere, 21	compute_variogram
compute_discrete_distance	pyinsar::processing::machine_learning::geostatistics-
pyinsar::processing::machine_learning::geostatistics↔	::variogram, 85
::direct_sampling, 68	compute x and y coordinates maps
compute_euclidean_distance	pyinsar::processing::geography::coordinates, 49
pyinsar::processing::machine learning::geostatistics↔	
::sequential_gaussian_simulation, 77	pyinsar::processing::discovery::classify_cnn::
compute_experimental_variogram	ClassifyCNN, 117
pyinsar::processing::machine_learning::geostatistics← ::variogram, 84	pyinsar::processing::discovery::train_cnn::TrainCNN, 157
compute_fault_internal_displacement_type	create_georaster_from_array
pyinsar::processing::deformation::elastic_halfspace←	pyinsar::output::export_georaster, 18
::okada, <mark>26</mark>	create_product_xml
compute_gradient_at_cell	pyinsar::processing::isce::input_file, 65
pyinsar::processing::geography::geomorphometry,	create_topsApp_xml
59	pyinsar::processing::isce::input_file, 65
compute_great_circle_distance_and_bearing	crop_array_from_center
pyinsar::processing::geography::geodesy, 55	pyinsar::processing::utilities::insar_simulator_utils,

105	
105	extract_subgeoarray
crop_nans	pyinsar::processing::geography::coordinates, 49
pyinsar::processing::utilities::insar_simulator_utils,	
105	f_x_dip
DISCRETE	pyinsar::processing::deformation::elastic_halfspace ←
pyinsar::processing::machine_learning::geostatistics↔	::okada, 27
::geostatistics_utils::VariableType, 158	1_X_3trike
data_file_dict	pyinsar::processing::deformation::elastic_halfspace ←
pyinsar::processing::utilities::machine_learning::	::okada, <mark>28</mark>
DataRetriever, 126	f_x_tensile
data_import/import_georaster.py, 161	pyinsar::processing::deformation::elastic_halfspace ←
data_import/import_raster.py, 161	::okada, <mark>28</mark>
data_import/import_srcmod.py, 162	f_y_dip
data_import/import_utils.py, 162	pyinsar::processing::deformation::elastic_halfspace ←
	::okada, 28
data_import/sentinel.py, 174	f_y_strike
data_import/uavsar.py, 162	pyinsar::processing::deformation::elastic_halfspace ←
depth	::okada, 28
pyinsar::processing::deformation::elastic_halfspace ←	f_y_tensile
::fault::Fault, 133	pyinsar::processing::deformation::elastic_halfspace ←
determine_deformation_bounding_box	::okada, 29
pyinsar::processing::utilities::deformations, 94	f_z_dip
pyinsar::processing::utilities::insar_simulator_utils,	pyinsar::processing::deformation::elastic_halfspace←
105	::okada, 29
determine_x_y_bounds	f_z_strike
pyinsar::processing::utilities::deformations, 94	pyinsar::processing::deformation::elastic_halfspace ←
pyinsar::processing::utilities::insar_simulator_utils,	::okada, 29
106	f z tensile
dip	pyinsar::processing::deformation::elastic_halfspace ←
pyinsar::processing::deformation::elastic_halfspace ←	::okada, 29
::fault::Fault, 133	fA_1
direct_vincenty_formula	 pyinsar::processing::deformation::elastic_halfspace↔
pyinsar::processing::geography::geodesy, 57	::okada, 30
direct_vincenty_formula_for_array	fA 1 dip
pyinsar::processing::geography::geodesy, 57	iii aip
	nvinsar::nrocessing::deformation::elastic_halfsnace
divide_into_squares	pyinsar::processing::deformation::elastic_halfspace ←
divide_into_squares pyinsar::processing::utilities::machine_learning, 110	::okada, 30
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file	::okada, 30 fA_1_strike
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace↔
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace↔ ::okada, 30
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace↔
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15 download_products	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace↔
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace↔
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15 download_products pyinsar::data_import::sentinel, 15 dtype	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15 download_products pyinsar::data_import::sentinel, 15	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15 download_products pyinsar::data_import::sentinel, 15 dtype	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15 download_products pyinsar::data_import::sentinel, 15 dtype pyinsar::processing::utilities::machine_learning::←	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15 download_products pyinsar::data_import::sentinel, 15 dtype pyinsar::processing::utilities::machine_learning::	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15 download_products pyinsar::data_import::sentinel, 15 dtype pyinsar::processing::utilities::machine_learning::	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15 download_products pyinsar::data_import::sentinel, 15 dtype pyinsar::processing::utilities::machine_learning::←	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace
divide_into_squares	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15 download_products pyinsar::data_import::sentinel, 15 dtype pyinsar::processing::utilities::machine_learning::←	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace
divide_into_squares	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace
divide_into_squares pyinsar::processing::utilities::machine_learning, 110 download_file pyinsar::data_import::import_utils, 14 download_precise_orbits pyinsar::data_import::sentinel, 15 download_products pyinsar::data_import::sentinel, 15 dtype pyinsar::processing::utilities::machine_learning::←	::okada, 30 fA_1_strike pyinsar::processing::deformation::elastic_halfspace

fA_3	fC 1 strike
pyinsar::processing::deformation::elastic_halfspace↔ ::okada, 32	pyinsar::processing::deformation::elastic_halfspace ← ::okada, 36
fA_3_dip	fC_1_tensile
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 32	pyinsar::processing::deformation::elastic_halfspace ← ::okada, 36
fA_3_strike	fC_2
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 32	pyinsar::processing::deformation::elastic_halfspace ← ::okada, 37
fA_3_tensile	fC_2_dip
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 32	pyinsar::processing::deformation::elastic_halfspace ← ::okada, 37
fB_1	fC_2_strike
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 33	pyinsar::processing::deformation::elastic_halfspace ← ::okada, 37
fB_1_dip	fC_2_tensile
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 33	pyinsar::processing::deformation::elastic_halfspace ← ::okada, 37
fB_1_strike	fC_3
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 33	pyinsar::processing::deformation::elastic_halfspace ← ::okada, 38
fB_1_tensile	fC_3_dip
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 33	pyinsar::processing::deformation::elastic_halfspace← ::okada, 38
fB_2	fC_3_strike
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 34	pyinsar::processing::deformation::elastic_halfspace ← ::okada, 38
fB_2_dip	fC_3_tensile
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 34	pyinsar::processing::deformation::elastic_halfspace ← ::okada, 38
fB_2_strike	find_closest_cell_in_training_image
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 34	pyinsar::processing::machine_learning::geostatistics← ::direct_sampling, 69
fB_2_tensile	find_closest_time
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 34	pyinsar::processing::utilities::generic, 96 find_data_asf
fB_3	pyinsar::processing::utilities::generic, 96
$pyins ar :: processing :: deformation :: elastic_half space \hookleftarrow$	
::okada, 35	pyinsar::processing::utilities::generic, 97
fB_3_dip	find_overlapping_valid_lines
pyinsar::processing::deformation::elastic_halfspace	pyinsar::processing::instruments::sentinel, 61
::okada, 35	find_utm_area pyinsar::processing::geography::coordinates, 50
fB_3_strike pyinsar::processing::deformation::elastic_halfspace ←	pyllisalprocessinggeographycoordinates, 50
::okada, 35	GAUSSIAN
fB_3_tensile	pyinsar::processing::machine_learning::geostatistics↔
pyinsar::processing::deformation::elastic_halfspace ← ::okada, 35	::variogram::VariogramModel, 159 gaussian_variogram
fC_1	pyinsar::processing::machine_learning::geostatistics↔
pyinsar::processing::deformation::elastic_halfspace	::variogram, 85
::okada, 36	generate_interferogram_from_deformation
fC_1_dip	pyinsar::processing::utilities::insar_simulator_utils,
 pyinsar::processing::deformation::elastic_halfspace ←	106
::okada, 36	generate minimum ground range limits

pyinsar::processing::utilities::machine_learning, 111 generate_phase_samples	pyinsar::processing::deformation::elastic_halfspace↔ ::okada, 39
pyinsar::processing::utilities::machine_learning, 111	I2_int
generate_phase_samples_from_looks_and_ranges	pyinsar::processing::deformation::elastic_halfspace←
pyinsar::processing::utilities::machine_learning, 112	::okada, 40
generateDeformation	13
pyinsar::processing::deformation::elastic_halfspace←	pyinsar::processing::deformation::elastic_halfspace←
::fault::Fault, 132	::okada, 40
generateMatplotlibRectangle	I3_int
pyinsar::processing::utilities::generic, 97	_ pyinsar::processing::deformation::elastic_halfspace←
	::okada, 40
georaster_vertical_datum_shift	14
pyinsar::processing::geography::coordinates, 50	pyinsar::processing::deformation::elastic_halfspace←
get_data_to_data_matrix	::okada, 41
pyinsar::processing::machine_learning::geostatistics ←	I4_int
::sequential_gaussian_simulation, 78	pyinsar::processing::deformation::elastic_halfspace
get_data_to_unknown_matrix	::okada, 41
pyinsar::processing::machine_learning::geostatistics ←	15
::sequential_gaussian_simulation, 78	
get_georaster_array	pyinsar::processing::deformation::elastic_halfspace← ::okada, 41
pyinsar::data_import::import_georaster, 10	
get_georaster_extent	inverse_standard_normal_cdf
pyinsar::data_import::import_georaster, 10	pyinsar::processing::machine_learning::geostatistics
get_image_extents	::sequential_gaussian_simulation, 79
pyinsar::processing::utilities::generic, 98	inverse_vincenty_formula
get_images	pyinsar::processing::geography::geodesy, 57
pyinsar::processing::utilities::machine_learning::←	inverse_vincenty_formula_for_array
DataRetriever, 126	pyinsar::processing::geography::geodesy, 57
get_neighborhood	is_any_equal
pyinsar::processing::machine_learning::geostatistics↔	pyinsar::processing::machine_learning::geostatistics
::sequential_gaussian_simulation, 78	::direct_sampling, 69
get_num_images	is_any_nan
pyinsar::processing::utilities::machine_learning::↔	pyinsar::processing::machine_learning::geostatistics
DataRetriever, 126	::direct_sampling, 69
get sentinel extents	I.
- -	k
pyinsar::processing::instruments::sentinel, 61	pyinsar::processing::discovery::flat_earth::FlatEarth,
get_start_date	139
pyinsar::processing::utilities::generic::OrbitInterpolation	
145	pyinsar::processing::utilities::generic, 98
get_url_precise_orbit	LINEAR
pyinsar::data_import::sentinel, 16	pyinsar::processing::machine_learning::geostatistics ←
get_valid_lines	
pyinsar::processing::instruments::sentinel, 62	::geostatistics_utils::PathType, 146
get_values_matrix	label_list
pyinsar::processing::machine_learning::geostatistics ←	pyinsar::processing::utilities::machine_learning::←
::sequential_gaussian_simulation, 78	DataRetriever, 127
	length
l1	pyinsar::processing::deformation::elastic_halfspace ←
pyinsar::processing::deformation::elastic_halfspace	::fault::Fault, 133
	length_after_valid_window
::okada, 39	pyinsar::processing::utilities::ann, 91
I1_int	man 2D variagram
pyinsar::processing::deformation::elastic_halfspace ::elada_30	map_2D_variogram
::okada, 39	pyinsar::processing::machine_learning::geostatistics —
12	::variogram, 85

mask_deformation pyinsar::processing::utilities::insar_simulator_utils, 107	pyinsar::processing::machine_learning::geostatistics↔ ::sequential_gaussian_simulation::Kriging↔ Method, 143
match_data pyinsar::processing::utilities::generic, 99	old_generate_interferogram_from_deformation pyinsar::processing::utilities::insar_simulator_utils,
merge_secondary_data	108
pyinsar::processing::machine_learning::geostatistics	open gacos tropospheric delays
::sequential_gaussian_simulation, 79	pyinsar::data_import::import_raster, 12
modulation	open_georaster
pyinsar::processing::instruments::sentinel::Sentinel ←	pyinsar::data_import::import_georaster, 10
Ramp, 151	open_sgems_file
Trainp, 101	pyinsar::data_import::import_raster, 12
N	open_sgems_file_from_url
	pyinsar::data_import::import_raster, 12
pyinsar::processing::corrections::troposphere, 21	
N_h	output
pyinsar::processing::corrections::troposphere, 22	pyinsar::processing::data_fetcher::gdal::GDAL_←
NUGGET	DataFetcher, 140
pyinsar::processing::machine_learning::geostatistics	pyinsar::processing::data_fetcher::hdf_retriever::
::variogram::VariogramModel, 159	DataRetriever, 124
nogil	pyinsar::processing::data_fetcher::okada::Data←
pyinsar::processing::geography::coordinates, 54	Fetcher, 122
pyinsar::processing::machine_learning::geostatistics←	
::geostatistics_utils, 75	output/plot_raster.py, 163
pyinsar::processing::machine_learning::geostatistics ←	
::sequential_gaussian_simulation, 81	pairing
pyinsar::processing::machine_learning::geostatistics ←	pyinsar::processing::discovery::coherence::Coherence,
::variogram, 87	119
nopython	parallel
pyinsar::processing::geography::coordinates, 54	pyinsar::processing::geography::coordinates, 55
pyinsar::processing::geography::geodesy, 58	parse_satellite_data
pyinsar::processing::geography::geomorphometry,	pyinsar::data_import::sentinel, 16
59	perturb
pyinsar::processing::machine_learning::geostatistics	pyinsar::processing::data_fetcher::hdf_retriever::-
::direct_sampling, 71	DataRetriever, 124
pyinsar::processing::machine_learning::geostatistics	phase shift
::geostatistics_utils, 75	pyinsar::processing::utilities::generic, 99
pyinsar::processing::machine_learning::geostatistics	
::sequential_gaussian_simulation, 81	pyinsar::processing::utilities::insar_simulator_utils,
pyinsar::processing::machine_learning::geostatistics	108
::sequential_gaussian_simulation::Kriging↔	plot_interactive_multiple_slicing
Method, 142	pyinsar::output::plot_raster, 19
pyinsar::processing::machine_learning::geostatistics	
::variogram, 87	pyinsar::output::plot_raster, 19
normal_score_tranform	poisson_ratio
pyinsar::processing::machine_learning::geostatistics	pyinsar::processing::deformation::elastic_halfspace
::sequential_gaussian_simulation, 79	::fault::Fault, 133
normalize	prepare_topsApps
pyinsar::processing::machine_learning::geostatistics↔	pyinsar::processing::isce::input_file, 66
::geostatistics_utils, 74	prepare_training_image
nugget_variogram	pyinsar::processing::machine_learning::geostatistics ←
pyinsar::processing::machine_learning::geostatistics	::direct_sampling, 69
::variogram, 85	_ · ·
vanogiani, oo	print_georaster_info
ODDINADV	pyinsar::data_import::import_georaster, 11
ORDINARY	process

pyinsar::processing::discovery::classify_cnn::← ClassifyCNN, 116	processing/machine_learning/geostatistics/geostatistics- _utils.py, 176
	, processing/machine_learning/geostatistics/sequential_← gaussian_simulation.py, 177
pyinsar::processing::discovery::coregister::Coregister, 121	processing/machine_learning/geostatistics/variogram.py, 178
pyinsar::processing::discovery::deburst::Deburst, 128	processing/utilities/ann.py, 179
pyinsar::processing::discovery::deformation_to_←	processing/utilities/deformations.py, 180
phase::DeformationToPhase, 130	processing/utilities/generic.py, 180
pyinsar::processing::discovery::flat_earth::FlatEarth,	processing/utilities/insar_simulator_utils.py, 181
137	processing/utilities/machine_learning.py, 182
pyinsar::processing::discovery::interferogram::←	proj4StringToDictionary
Interferogram, 142	pyinsar::processing::utilities::generic, 100
pyinsar::processing::discovery::rotate_squares::←	project_insar_data
RotateSquares, 149	pyinsar::processing::utilities::generic, 100
pyinsar::processing::discovery::shown_cnn_←	pyinsar, 9
classes::ShowCNNClasses, 152	pyinsar.data_import, 9
pyinsar::processing::discovery::temporal_decorrelation	epyinsar.data_import.import_georaster, 9
::TemporalDecorrelation, 155	pyinsar.data_import.import_raster, 11
pyinsar::processing::discovery::train_cnn::TrainCNN,	pyinsar.data_import.import_srcmod, 13
156	pyinsar.data_import.import_utils, 14
pyinsar::processing::discovery::wrap_phase::Wrap⊷	pyinsar.data_import.sentinel, 15
Phase, 160	pyinsar.data_import.uavsar, 17
processing/corrections/topography.py, 163	pyinsar.output, 17
processing/corrections/troposphere.py, 164	pyinsar.output.export_georaster, 17
processing/data_fetcher/gdal.py, 164	pyinsar.output.plot_raster, 18
processing/data_fetcher/hdf_retriever.py, 164	pyinsar.processing, 20
processing/data_fetcher/okada.py, 167	pyinsar.processing.corrections, 20
processing/deformation/elastic_halfspace/fault.py, 165	pyinsar.processing.corrections.topography, 20
processing/deformation/elastic_halfspace/mogi.py, 165	pyinsar.processing.corrections.troposphere, 21
processing/deformation/elastic_halfspace/okada.py, 165	pyinsar.processing.data_fetcher, 22
processing/deformation/elastic_halfspace/pipe.py, 167	pyinsar.processing.data_fetcher.gdal, 23
processing/deformation/elastic_halfspace/surface_load. \hookleftarrow py, 168	pyinsar.processing.data_fetcher.gdal.GDAL_DataFetcher, 139
processing/discovery/classify_cnn.py, 168	pyinsar.processing.data_fetcher.hdf_retriever, 23
processing/discovery/coherence.py, 168	pyinsar.processing.data_fetcher.hdf_retriever.Data ←
processing/discovery/coregister.py, 168	Retriever, 123
processing/discovery/deburst.py, 169	pyinsar.processing.data_fetcher.okada, 23
processing/discovery/deformation_to_phase.py, 169	pyinsar.processing.data_fetcher.okada.DataFetcher, 121
processing/discovery/flat_earth.py, 169	pyinsar.processing.deformation, 23
processing/discovery/interferogram.py, 170	pyinsar.processing.deformation.elastic_halfspace, 23
processing/discovery/los_deformation.py, 170	pyinsar.processing.deformation.elastic_halfspace.fault, 24
processing/discovery/rotate_squares.py, 170	pyinsar.processing.deformation.elastic_halfspace.fault.←
processing/discovery/shown_cnn_classes.py, 171	Fault, 130
processing/discovery/temporal_decorrelation.py, 171	pyinsar.processing.deformation.elastic_halfspace.mogi,
processing/discovery/train_cnn.py, 171	24
processing/discovery/wrap_phase.py, 171	pyinsar.processing.deformation.elastic_halfspace.okada,
processing/geography/coordinates.py, 172	24
processing/geography/geodesy.py, 173	pyinsar.processing.deformation.elastic_halfspace.pipe, 42
processing/geography/geomorphometry.py, 173	pyinsar.processing.deformation.elastic_halfspace.←
processing/instruments/sentinel.py, 174	surface_load, 43
processing/isce/input_file.py, 175	pyinsar.processing.discovery, 44
processing/machine_learning/geostatistics/direct_←	pyinsar.processing.discovery.classify_cnn, 45
sampling.py, 175	pyinsar.processing.discovery.ClassifyCNN, 115

pyinsar.processing.discovery.Coherence, 118	$pyins ar.processing.machine_learning.geostatistics. \hookleftarrow$
pyinsar.processing.discovery.coherence, 45	variogram, 83
pyinsar.processing.discovery.Coregister, 120	pyinsar.processing.machine_learning.geostatistics.←
pyinsar.processing.discovery.coregister, 45	variogram.VariogramModel, 158
pyinsar.processing.discovery.deburst, 45	pyinsar.processing.utilities, 89
pyinsar.processing.discovery.deburst.Deburst, 127	pyinsar.processing.utilities.ann, 90
pyinsar.processing.discovery.deformation_to_phase, 46	pyinsar.processing.utilities.deformations, 93
pyinsar.processing.discovery.DeformationToPhase, 129	pyinsar.processing.utilities.generic, 94
pyinsar.processing.discovery.flat_earth, 46	pyinsar.processing.utilities.generic.FindNearestPixel, 135
pyinsar.processing.discovery.FlatEarth, 136	pyinsar.processing.utilities.generic.OrbitInterpolation, 144
pyinsar.processing.discovery.interferogram, 46	pyinsar.processing.utilities.insar_simulator_utils, 103
pyinsar.processing.discovery.interferogram.Interferogram,	pyinsar.processing.utilities.machine_learning, 110
141	pyinsar.processing.utilities.machine_learning.Data — Datrin or 124
pyinsar.processing.discovery.LOS_Deformation, 143	Retriever, 124
pyinsar.processing.discovery.los_deformation, 46	pyinsar::data_import::import_georaster
pyinsar.processing.discovery.rotate_squares, 46	get_georaster_array, 10
pyinsar.processing.discovery.RotateSquares, 148	get_georaster_extent, 10
pyinsar.processing.discovery.shown_cnn_classes, 47	open_georaster, 10
pyinsar.processing.discovery.shown_cnn_classes.Show ←	print_georaster_info, 11
CNNClasses, 151	pyinsar::data_import::import_raster
pyinsar.processing.discovery.temporal_decorrelation, 47	open_gacos_tropospheric_delays, 12 open_sgems_file, 12
pyinsar.processing.discovery.TemporalDecorrelation, 153	• - • -
pyinsar.processing.discovery.train_cnn, 47	open_sgems_file_from_url, 12 read_rsc_header_file, 13
pyinsar.processing.discovery.TrainCNN, 155	pyinsar::data_import::import_srcmod
pyinsar.processing.discovery.wrap_phase, 48	read_srcmod_data, 13
pyinsar.processing.discovery.WrapPhase, 159	pyinsar::data_import::import_utils
pyinsar.processing.geography, 48	download_file, 14
pyinsar.processing.geography.coordinates, 48	pyinsar::data_import::sentinel
pyinsar.processing.geography.geodesy, 55	download_precise_orbits, 15
pyinsar.processing.geography.geomorphometry, 58	download_products, 15
pyinsar.processing.instruments, 60	get_url_precise_orbit, 16
pyinsar.processing.instruments.sentinel, 60	parse_satellite_data, 16
pyinsar.processing.instruments.sentinel.RampPolynomial,	pyinsar::data_import::uavsar
146	read_uavsar_metadata, 17
pyinsar.processing.instruments.sentinel.SentinelRamp,	pyinsar::output::export_georaster
149	create_georaster_from_array, 18
pyinsar.processing.isce, 64	pyinsar::output::plot raster
pyinsar.processing.isce.input_file, 64	average_minmax_slices, 19
pyinsar.processing.machine_learning, 66	plot_interactive_multiple_slicing, 19
pyinsar.processing.machine_learning.geostatistics, 67	plot_interactive_slicing, 19
pyinsar.processing.machine_learning.geostatistics.←	pyinsar::processing::corrections::topography
direct_sampling, 67	ellipsoidal_earth_slant_ranges, 20
pyinsar.processing.machine_learning.geostatistics.←	pyinsar::processing::corrections::troposphere
geostatistics_utils, 73	compute_delays, 21
pyinsar.processing.machine_learning.geostatistics.←	N, 21
geostatistics_utils.PathType, 146	N_h, 22
pyinsar.processing.machine_learning.geostatistics.←	vapor_pressure, 22
geostatistics_utils.VariableType, 157	pyinsar::processing::data_fetcher::gdal::GDAL_Data←
pyinsar.processing.machine_learning.geostatistics.←	Fetcher
sequential_gaussian_simulation, 76	init, 140
pyinsar.processing.machine_learning.geostatistics.←	output, 140
$sequential_gaussian_simulation. Kriging Method,$	pyinsar::processing::data_fetcher::hdf_retriever::Data↔
142	Retriever

init, 123	fB_1_dip, 33
output, 124	fB_1_strike, 33
perturb, 124	fB_1_tensile, 33
pyinsar::processing::data_fetcher::okada::DataFetcher	fB_2, 34
init, 122	fB_2_dip, 34
output, 122	fB_2_strike, 34
pyinsar::processing::deformation::elastic_halfspace←	fB_2_tensile, 34
::fault::Fault	fB_3, 35
init, 131	fB_3_dip, 35
cell_centroids, 132	fB_3_strike, 35
cell_length, 133	fB_3_tensile, 35
cell_width, 133	fC_1, 36
depth, 133	fC_1_dip, 36
dip, 133	fC_1_strike, 36
generateDeformation, 132	fC_1_tensile, 36
length, 133	fC_2, 37
poisson_ratio, 133	fC 2 dip, 37
strike, 133	fC_2_strike, 37
unrotated_x, 134	fC_2_tensile, 37
	fC_3, 38
unrotated_y, 134	
width, 134	fC_3_dip, 38
x_center, 134	fC_3_strike, 38
y_center, 134	fC_3_tensile, 38
pyinsar::processing::deformation::elastic_halfspace::mogi	11, 39
compute_mogi_source_displacement, 24	I1_int, 39
pyinsar::processing::deformation::elastic_halfspace ←	12, 39
::okada	I2_int, 40
chinnerys_notation, 26	13, 40
chinnerys_notation_int, 26	I3_int, 40
compute_fault_internal_displacement_type, 26	14, 41
compute_okada_displacement, 27	l4_int, 41
compute_okada_internal_displacement, 27	I5, 41
f_x_dip, 27	pyinsar::processing::deformation::elastic_halfspace::pipe
f_x_strike, 28	compute_closed_pipe_displacement, 42
f_x_tensile, 28	compute_open_pipe_displacement, 43
f_y_dip, 28	pyinsar::processing::deformation::elastic_halfspace←
f_y_strike, 28	::surface_load
f_y_tensile, 29	compute_uniform_disk_load_displacement, 44
f_z_dip, 29	pyinsar::processing::discovery::classify_cnn::ClassifyCNN
f_z_strike, 29	init, 116
f_z_tensile, 29	batch_size, 117
fA_1, 30	cnn_network_dir, 117
fA_1_dip, 30	compare_labels, 117
fA_1_strike, 30	config, 117
fA_1_tensile, 30	process, 116
fA_2, 31	size, 117
fA_2_dip, 31	stride, 117
fA_2_strike, 31	pyinsar::processing::discovery::coherence::Coherence
fA_2_tensile, 31	init, 118
fA_3, 32	pairing, 119
fA_3_dip, 32	process, 119
fA_3_strike, 32	use_progress_bar, 119
fA_3_tensile, 32	window, 119
fB_1, 33	pyinsar::processing::discovery::coregister::Coregister
_ :	

init, 120 process, 121	transform_to_pixel_coordinates, 53 True, 55
pyinsar::processing::discovery::deburst::Deburst	pyinsar::processing::geography::geodesy
init, 128	compute_great_circle_distance_and_bearing, 55
process, 128	compute_lonlat_from_distance_bearing, 56
pyinsar::processing::discovery::deformation_to_phase::	compute_point_to_line_distance_for_array, 56
DeformationToPhase	compute_point_to_line_distance_on_ellipsoid, 56
init, 129	
process, 130	direct_vincenty_formula, 57
pyinsar::processing::discovery::flat_earth::FlatEarth	direct_vincenty_formula_for_array, 57
init, 137	inverse_vincenty_formula, 57
k, 139	inverse_vincenty_formula_for_array, 57
process, 137	nopython, 58
pyinsar::processing::discovery::interferogram::Interferogram	update_lambda, 58
init, 141	pymea inproceeding ingregicapity ingremies y
process, 142	add_symmetric_border, 59
pyinsar::processing::discovery::rotate_squares	compute_gradient_at_cell, 59
rotateSquare, 47	compute_horne_slope, 59
pyinsar::processing::discovery::rotate_squares::Rotate ↔	nopython, 59
Squares	pyinsar::processing::instruments::sentinel
init , 148	find_overlapping_valid_lines, 61
process, 149	get_sentinel_extents, 61
pyinsar::processing::discovery::shown_cnn_classes::↔	get_valid_lines, 62
ShowCNNClasses	read_geolocation, 62
init, 152	retrieve_azimuth_time, 62
	select_valid_lines, 63
class_name, 153	transform_slc, 63
colors, 153	update_geolocation_lines, 64
process, 152	pyinsar::processing::instruments::sentinel::Ramp←
pyinsar::processing::discovery::temporal_decorrelation ←	Polynomial
::TemporalDecorrelation	call, 147
init, 154	init, 147
process, 155	pyinsar::processing::instruments::sentinel::SentinelRamp
pyinsar::processing::discovery::train_cnn::TrainCNNinit, 156	call, 150
batch_size, 157	init, 150
	modulation, 151
cnn_network_dir, 157	pyinsar::processing::isce::input_file
config, 157 process, 156	create_product_xml, 65
•	create_topsApp_xml, 65
pyinsar::processing::discovery::wrap_phase::WrapPhase	prepare_topsApps, 66
process, 160	pyinsar::processing::machine_learning::geostatistics←
pyinsar::processing::geography::coordinates	::direct_sampling
compute_x_and_y_coordinates_maps, 49	compute_continuous_distance, 68
extract_subgeoarray, 49	compute_discrete_distance, 68
find_utm_area, 50	compute_neighborhood_lag_vectors, 68
georaster_vertical_datum_shift, 50	compute neighborhoods, 68
nogil, 54	find_closest_cell_in_training_image, 69
nopython, 54	is_any_equal, 69
parallel, 55	
reproject_georaster, 50	is_any_nan, 69
reproject_point, 51	nopython, 71
sample_2d_array, 52	prepare_training_image, 69
sample_2d_multiarray, 52	run_ds, 70
sample_nd_array, 52	run_parallel_ds, 70
transform_to_geographic_coordinates, 52	simulate_ds_realization, 71

pyinsar::processing::machine_learning::geostatistics	nugget_variogram, 85
::geostatistics_utils	spherical_variogram, 86
nogil, 75	True, 89
nopython, 75	vectorized_exponential_variogram, 86
normalize, 74	vectorized_gaussian_variogram, 86
standardize, 74	vectorized_spherical_variogram, 87
True, 75	pyinsar::processing::machine_learning::geostatistics↔
unflatten_index, 75	::variogram::VariogramModel
pyinsar::processing::machine_learning::geostatistics←	EXPONENTIAL, 159
::geostatistics_utils::PathType	GAUSSIAN, 159
LINEAR, 146	NUGGET, 159
RANDOM, 146	SPHERICAL, 159
pyinsar::processing::machine_learning::geostatistics ←	pyinsar::processing::utilities::ann
::geostatistics_utils::VariableType	buildCNN, 90
CONTINUOUS, 158	classify, 90
DISCRETE, 158	length_after_valid_window, 91
pyinsar::processing::machine_learning::geostatistics ←	restoreGraph, 91
::sequential_gaussian_simulation	shuffleTrainingData, 92
compute_averaged_cumulative_distribution_from_	train, 92
array, 77	pyinsar::processing::utilities::deformations
compute_axis_aligned_ellipse_range, 77	calc_bounding_box, 93
compute_axis_aligned_neighborhood_shape, 77	determine_deformation_bounding_box, 94
compute_euclidean_distance, 77	determine_x_y_bounds, 94
compute_neighborhood_template, 77	pyinsar::processing::utilities::generic
get_data_to_data_matrix, 78	coherence, 95
get_data_to_unknown_matrix, 78	find_closest_time, 96
get_neighborhood, 78	find_data_asf, 96
get_values_matrix, 78	find_earthquake_pairs, 97
inverse_standard_normal_cdf, 79	generateMatplotlibRectangle, 97
merge_secondary_data, 79	get_image_extents, 98
nogil, 81	keypoints_align, 98
nopython, 81	match_data, 99
normal_score_tranform, 79	phase_shift, 99
run_parallel_sgs, 80	proj4StringToDictionary, 100
run_sgs, 80	project_insar_data, 100
simulate_sgs_realization, 80	rotate, 101
solve_kriging_system, 81	scale_image, 101
True, 83	select_max_matched_data, 101
pyinsar::processing::machine_learning::geostatistics↔	sorted_alphanumeric, 102
::sequential_gaussian_simulation::Kriging	subarray_slice, 102
Method	translate, 102
nopython, 142	pyinsar::processing::utilities::generic::FindNearestPixel
ORDINARY, 143	
	call, 136
SIMPLE, 143	init, 135
pyinsar::processing::machine_learning::geostatistics ::variogram	pyinsar::processing::utilities::generic::OrbitInterpolation
::variogram	call, 145
compute_experimental_variogram, 84	init, 144
compute_range_variogram, 84	get_start_date, 145
compute_variogram, 85	pyinsar::processing::utilities::insar_simulator_utils
exponential_variogram, 85	calc_bounding_box, 104
gaussian_variogram, 85	change_in_range_to_phase, 104
map_2D_variogram, 85	crop_array_from_center, 105
nogil, 87	crop_nans, 105
nopython, 87	determine_deformation_bounding_box, 105

determine_x_y_bounds, 106	pyinsar::processing::machine_learning::geostatistics↔
generate_interferogram_from_deformation, 106	::direct_sampling, 70
mask_deformation, 107	run_parallel_ds
old_generate_interferogram_from_deformation, 108 phase_to_change_in_range, 108	pyinsar::processing::machine_learning::geostatistics ::direct_sampling, 70
retrieve_bounds, 109	run_parallel_sgs
wrap, 109	pyinsar::processing::machine_learning::geostatistics
pyinsar::processing::utilities::machine_learning	::sequential_gaussian_simulation, 80
divide_into_squares, 110	run_sgs
generate_minimum_ground_range_limits, 111	pyinsar::processing::machine_learning::geostatistics
generate_phase_samples, 111	::sequential_gaussian_simulation, 80
generate_phase_samples_from_looks_and_ranges,	
112	SIMPLE
rotate_image_list, 112	pyinsar::processing::machine_learning::geostatistics↔
pyinsar::processing::utilities::machine_learning::Data←	::sequential_gaussian_simulation::Kriging↔
Retriever	Method, 143
init, 125	SPHERICAL
chunk_size, 126	pyinsar::processing::machine_learning::geostatistics
data_file_dict, 126	::variogram::VariogramModel, 159
dtype, 127	sample_2d_array
get_images, 126	pyinsar::processing::geography::coordinates, 52
get_num_images, 126	sample_2d_multiarray
label_list, 127 size, 127	pyinsar::processing::geography::coordinates, 52
5126, 127	sample_nd_array
RANDOM	pyinsar::processing::geography::coordinates, 52
pyinsar::processing::machine_learning::geostatistics↔	scale_image
::geostatistics_utils::PathType, 146	pyinsar::processing::utilities::generic, 101
read_geolocation	select_max_matched_data
pyinsar::processing::instruments::sentinel, 62	pyinsar::processing::utilities::generic, 101
read_rsc_header_file	select_valid_lines
pyinsar::data_import::import_raster, 13	pyinsar::processing::instruments::sentinel, 63
read_srcmod_data	shuffleTrainingData
pyinsar::data_import::import_srcmod, 13	pyinsar::processing::utilities::ann, 92
read_uavsar_metadata	simulate_ds_realization
pyinsar::data_import::uavsar, 17	pyinsar::processing::machine_learning::geostatistics ←
reproject_georaster	::direct_sampling, 71
pyinsar::processing::geography::coordinates, 50	simulate_sgs_realization
reproject_point	pyinsar::processing::machine_learning::geostatistics↔
pyinsar::processing::geography::coordinates, 51	::sequential_gaussian_simulation, 80
restoreGraph	size pyinsar::processing::discovery::classify_cnn::↔
pyinsar::processing::utilities::ann, 91	ClassifyCNN, 117
retrieve_azimuth_time	pyinsar::processing::utilities::machine_learning::
pyinsar::processing::instruments::sentinel, 62	DataRetriever, 127
retrieve_bounds pyinsar::processing::utilities::insar_simulator_utils,	solve_kriging_system
109	pyinsar::processing::machine_learning::geostatistics↔
rotate	::sequential_gaussian_simulation, 81
pyinsar::processing::utilities::generic, 101	sorted_alphanumeric
rotate_image_list	pyinsar::processing::utilities::generic, 102
pyinsar::processing::utilities::machine_learning, 112	spherical_variogram
rotateSquare	pyinsar::processing::machine_learning::geostatistics
pyinsar::processing::discovery::rotate_squares, 47	::variogram, 86
run ds	standardize

```
pyinsar::processing::machine_learning::geostatistics ← vectorized_spherical_variogram
          ::geostatistics utils, 74
                                                                  pvinsar::processing::machine learning::geostatistics
stride
                                                                       ::variogram, 87
     pyinsar::processing::discovery::classify cnn::
                                                             width
          ClassifyCNN, 117
                                                                  pyinsar::processing::deformation::elastic_halfspace ~
strike
                                                                       ::fault::Fault, 134
     pyinsar::processing::deformation::elastic halfspace 

                                                             window
          ::fault::Fault, 133
                                                                  pyinsar::processing::discovery::coherence::Coherence,
subarray slice
     pyinsar::processing::utilities::generic, 102
                                                             wrap
train
                                                                  pyinsar::processing::utilities::insar simulator utils,
     pyinsar::processing::utilities::ann, 92
transform slc
                                                             x_center
     pyinsar::processing::instruments::sentinel, 63
                                                                  pyinsar::processing::deformation::elastic halfspace <--
transform to geographic coordinates
                                                                       ::fault::Fault, 134
     pyinsar::processing::geography::coordinates, 52
transform to pixel coordinates
                                                             y center
     pyinsar::processing::geography::coordinates, 53
                                                                  pyinsar::processing::deformation::elastic halfspace <--
translate
                                                                       ::fault::Fault, 134
     pyinsar::processing::utilities::generic, 102
True
     pyinsar::processing::geography::coordinates, 55
     pyinsar::processing::machine learning::geostatistics
          ::geostatistics_utils, 75
     pyinsar::processing::machine_learning::geostatistics
          ::sequential_gaussian_simulation, 83
     pyinsar::processing::machine learning::geostatistics
          ::variogram, 89
unflatten index
     pyinsar::processing::machine_learning::geostatistics
          ::geostatistics_utils, 75
unrotated x
     pyinsar::processing::deformation::elastic halfspace -
          ::fault::Fault, 134
unrotated y
     pyinsar::processing::deformation::elastic_halfspace ←
          ::fault::Fault, 134
update geolocation lines
     pyinsar::processing::instruments::sentinel, 64
update lambda
     pyinsar::processing::geography::geodesy, 58
use progress bar
     pyinsar::processing::discovery::coherence::Coherence,
          119
vapor_pressure
     pyinsar::processing::corrections::troposphere, 22
vectorized_exponential_variogram
     pyinsar::processing::machine learning::geostatistics
          ::variogram, 86
vectorized gaussian variogram
     pyinsar::processing::machine learning::geostatistics
          ::variogram, 86
```