Complexity and Advanced Algorithms – Assignment 2

Siddharth Bhat (20161105)

August 22, 2018

1 Write appropriate quantified formulae

1.1 infinitely many primes

We create a predicate called $Prime : \mathbb{N} \to \mathbb{P}$ which is true when a number is prime. We use this to define the infinitude of primes.

```
\begin{aligned} & Prime: \mathbb{N} \ \rightarrow \mathbb{P} \\ & Prime(n) \equiv \forall k \in \mathbb{N} \ , 2 \leq k < n \implies n\%k \neq 0 \\ & Infitude \equiv \forall n \in \mathbb{N} \ , Prime(n) \implies \exists m \in \mathbb{N} \ , m > n \land Prime(m) \end{aligned}
```

Note that using the function Prime is nothing special — it is simply short-hand for substituting the expression of Prime into the expression for Infitude. I will continue to do this in the next question as well. This does not affect the correctness of the answer, since it can be converted into one large logical formula. Writing it this way simply makes it easier to reason about.

1.2 Every pair of positive integers have a unique GCD

We first define a predicate $CD: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{P}$, where CD(n, m, d) means that d is a common divisor of n, m.

This is used to define $GCD: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{P}$, where GCD(n, m, d) means that d is the GCD of n and m.

Finally, the definition of GCD is used to define the uniqueness of GCD.

```
\begin{split} CD: \mathbb{N} &\times \mathbb{N} \times \mathbb{N} \to \mathbb{P} \\ CD(n,m,d) &\equiv n\%d = 0 \land m\%d = 0 \\ \\ GCD: \mathbb{N} &\times \mathbb{N} \times \mathbb{N} \to \mathbb{P} \\ GCD(n,m,d) &\equiv CD(n,m,d) \land \forall d' \in \mathbb{N} \ , d' > d \implies \neg CD(n,m,d') \\ \\ Unique GCD &\equiv \forall n,m,d,d' \in \mathbb{N} \ , GCD(n,m,d) \land GCD(n,m,d') \implies d = d' \end{split}
```

$\mathbf{2}$ Sorting \in LOGSPACE

Assume we wish to sort in ascending order (The solution is symmetric in the descending order case).

Let us index the output list as $\langle o_1, o_2, o_3, \dots, o_N \rangle$

In the output list, the numbers indexed by the set $[1, k_1]$ numbers are smaller than all the others: that is, they are greater than 0 of the other numbers in the list.

The numbers in the range of $[k_1 + 1, k_0]$ numbers are greater than 1 of the other numbers.

If we generalize, the numbers $[k_i + 1, k_{i+1}]$ are greater than i - 1.

we can iterate over the count i-1 with a variable nums_greater_required, which represents the count of numbers the output must be greater than.

Next, for each nums_greater_required, we check each number in the list (indexed by cur_num_position) the count of numbers it is greater than (by walking the list using compare_num_position, and storing the count of numbers the current number is greater than in cur_nums_greater).

If this count is equal to nums_greater_required, we have the correct number.

```
def logsort_unique(input):
    # nums_greater_required := space O(log(|input|))
    for nums_greater_required in range(len(input)):

# cur_num_position := space(O(log(|input|)))
    for cur_num_position in range(len(input)):

# 0 <= cur_nums_greater <= nums_greater_required =>
     # cur_nums_greater := space O(log(|input|))
     cur_nums_greater = 0

# compare_num_position := space(O(log(|input|)))
    for compare_num_position in range(len(input)):
```

The time complexity of this is $O(|input| * |input| * |input|) = O(|input|^3)$

3 PSPACE is closed under union and intersection

Let L_1 and L_2 be languages in PSPACE . Let M_1 and M_2 be the turing machines which decide L_1 and L_2 respectively.

$3.1 \quad L_1 \cup L_2 \in \mathtt{PSPACE}$

We create a new machine M which accepts the language $L_1 \cup L_2$.

This machine first runs M_1 , and stores the output of M_1 in bit b_1 . Since $M_1 \in \texttt{PSPACE}$, M will not run out of space. Since M_1 is a decision procedure, we are guaranteed it will halt, so M waiting for M_1 to halt is legal.

Similarly, M then runs M_2 and stores b_2 . finally, M outputs $b_1 \vee b_2$.

M accepts only when either M_1 or M_2 accept, that is, M accepts if a string belongs to either language.

3.2 $L_1 \cap L_2 \in PSPACE$

Repeat the exact same construction, except change the output bit from $b_1 \vee b_2$ to $b_1 \wedge b_2$.

M accepts only when both M_1 and M_2 accept, that is, M accepts only if a string belongs to both languages.

4 Equivalence between NP as nondeterministic solver v/s deterministic verifier

4.1 nondeterministic solver \implies deterministic verifier

Consider a language L, which has a non-deterministic solver $S \in \mathbb{NP}$. We construct a verifier V, and a function $witness: L \to \{0,1\}^*$ which constructs the witness string y = witness(w) for a given string $w \in L$.

Consider a successful run of the non-deterministic solver S for a given $w \in L$. We create the witness string y by recording all of the values that the non-deterministic solver S quessed for a successful run.

So, y = collection of all guesses made by S

We create the verifier V by running S deterministically, and at every point S tries to use non-determinism, we use the *correct value* that is stored in y.

Thus, if a successful run exists for S (that is, $w \in L$), then the verifier V will have access to the right guesses. On the other hand, if $w \notin L$, the there are no right guesses, so V will reject.

4.2 deterministic verifier \implies nondeterministic solver

Consider a language L, with a deterministic verifier $V \in P$.

We design a nondeterministic solver $S \in \mathbb{NP}$, which on input string w, guesses the witness string y using nondeterminism and then querifies the verifier with V(w,y). That is,

 $S(w)=V(w,\overline{y})$ where \overline{y} is guessed using nondeterminism. This is in NP, since the verifier V runs in polynomial time, and the non-determinism is used to guess \overline{y} .