TOPOLOGY QUALIFYING EXAM MAY 2015

There are seven questions. Answer exactly six. If you answer more, we will count only the *lowest* six. Any theorems that you use should be stated precisely.

- (1) Let X be a topological space.
 - (a) Define what it means for X to be connected.
 - (b) Define what it means for X to be path-connected.
 - (c) Using, for example, the least upper bound property of \mathbb{R}^1 , show that the interval $I = [0,1] \subset \mathbb{R}^1$ is both connected and path-connected.
- (2) (a) Let $\{A_{\lambda} \mid \lambda \in \Lambda\}$ be a family of connected subsets of a topological space X. Assume there is a connected $A \subset X$ so that for each $\lambda \in \Lambda$, $A_{\lambda} \cap A \neq \emptyset$. Show that $A \cup (\cup_{\lambda} A_{\lambda})$ is connected.
 - (b) Show that a topological space X is path-connected if and only if
 - X is connected and
 - each $x \in X$ has a path-connected neighborhood.

Note: If you have not done the previous problem, be sure to state the appropriate definitions.

- (3) (a) For topological spaces X and Y give a careful definition of the product topology on $X \times Y$.
 - (b) Show that a topological space X is Hausdorff if and only if the diagonal of $X \times X$ is closed in the product topology.
 - (c) Let X be a Hausdorff topological space and suppose $f: X \to X$ is continuous. Show that the set of fixed points for f is a closed subset of X.
 - (d) Prove or disprove the following claim: any infinite Hausdorff space contains an infinite isolated set (i.e. an infinite set with the discrete topology).

- (4) Let X be a compact topological space and \mathcal{F} be a set of continuous functions $X \to \mathbb{R}$ with these two properties:
 - If $f, g \in \mathcal{F}$ then so is their pointwise multiplication $f \cdot g$ (defined as $(f \cdot g)(x) := f(x) \cdot g(x)$).
 - For each $x \in X$ there is a neighborhood U(x) of x in X and a function $f \in \mathcal{F}$ so that $f^{-1}(0) = U(x)$.

Prove that \mathcal{F} contains the function $f \equiv 0$.

- (5) For (M,d) a metric space and $\emptyset \neq A \subset M$, define the diameter of A to be $\delta(A) = \sup\{d(x,y) \mid x,y \in A\}$ if the supremum exists, and ∞ if it does not. Show that for any $A, B \subset M$:
 - (a) $\delta(A) = 0 \iff A \text{ contains at most one point.}$
 - (b) If $A \subset B$ then $\delta(A) \leq \delta(B)$.
 - (c) $\delta(closure(A)) = \delta(A)$.
 - (d) If $A \cap B \neq \emptyset$ then $\delta(A \cup B) \leq \delta(A) + \delta(B)$.
- (6) Show the following:
 - (a) A closed subspace of a compact space is compact.
 - (b) A compact subspace of a Hausdorff space is closed.
 - (c) If $f: X \to Y$ is a continuous bijection, X is compact and Y is Hausdorff, then f is a homeomorphism.
- (7) Let X be a topological space.
 - (a) Define what it means for X to be simply connected.
 - (b) Define what it means for X to be locally path connected.
 - (c) Suppose X is both simply connected and locally path connected. Using covering space theory, show that any continuous function from X to the torus $S^1 \times S^1$ is null-homotopic.
 - (d) Is the same true if the torus is replaced by S^2 ? (Prove it, or give a convincing counterexample.)