BUNDESRE JBLIK DEUTSCHIEND

REC'D 2 0 MAY 2003 WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 18 592.1

Anmeldetag:

26. April 2002

Anmelder/Inhaber:

Bayer CropScience AG, Monheim/DE

Erstanmelder: Bayer Aktiengesellschaft,

Leverkusen/DE

Bezeichnung:

Triazolopyrimidine

IPC:

C 07 D, A 01 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 27. Februar 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Waasmai@!

BEST AVAILABLE COPY

Triazolopyrimidine

5

10

15

20

Die Erfindung betrifft neue Triazolopyrimidine, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von schädlichen Organismen.

Es ist bereits bekannt geworden, dass bestimmte Triazolopyrimidine fungizide Eigenschaften besitzen (vergleiche z.B. vgl. EP-A-550113, WO 94/20501, EP-A-613900, US 5612345, EP-A-834513, FR-A-2784991, WO 98/46607 und WO 98/46608). Die Wirkung dieser Verbindungen ist jedoch in vielen Fällen unbefriedigend.

Es wurden neue Triazolopyrimidine der allgemeinen Formel (I) gefunden,

in welcher

- G für einen gegebenenfalls substituierten, mono- oder polycyclischen, gesättigten, ungesättigten oder aromatischen heterocyclischen Ring steht, der über ein Stickstoffatom gebunden ist und in direkter Nachbarschaft zu diesem Stickstoffatom ein weiteres Stickstoff- oder Sauerstoffatom, sowie an anderer Stelle gegebenenfalls bis zu zwei weitere Sauerstoff-, Stickstoff- oder Schwefelatome trägt, wobei zwei Sauerstoffatome in keinem Fall direkt benachbart stehen,
- 25 R³ für gegebenenfalls einfach bis fünffach substituiertes Aryl steht,
 - X für Halogen steht,

10

15

20

25

sowie Säureadditionssalze von denjenigen Verbindungen der Formel (I), in denen

einen gegebenenfalls substituierten, mono- oder polycyclischen, G für gesättigten oder ungesättigten heterocyclischen Ring steht, der über ein Stickstoffatom gebunden ist und in direkter Nachbarschaft zu diesem Stickstoffatom ein weiteres Stickstoffatom, sowie an anderer Stelle gegebenenfalls bis zu zwei weitere Sauerstoff-, Stickstoff- oder Schwefelatome trägt, wobei zwei Sauerstoffatome in keinem Fall direkt benachbart sind, steht.

Die erfindungsgemäßen Verbindungen können je nach Substitutionsmuster gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie z.B. E- und Z-, threo- und erythro-, sowie optischen Isomeren, gegebenenfalls aber auch von Tautomeren vorliegen. Ist R3 an beiden Atomen, die der Bindungsstelle benachbart sind, ungleich substituiert, können die betreffenden Verbindungen in einer besonderen Form der Stereoisometrie, als Atropisomere, vorliegen.

Weiterhin wurde gefunden, dass man die neuen Triazolopyrimidine der allgemeinen Formel (I) erhält, wenn man

Dihalogentriazolopyrimidine der allgemeinen Formel (II),

$$\mathbb{R}^3$$
 \mathbb{N}^{-N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

in welcher

R³ und X die oben angegebenen Bedeutungen haben und

 Y^1 für Halogen steht, mit einem Amin der allgemeinen Formel (III)

G-H

(III)

5 in welcher

G die oben angegebene Bedeutung hat,

oder mit Säureadditionssalzen von Aminen der allgemeinen Formel (III),

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors, umsetzt.

Schließlich wurde gefunden, dass sich die neuen Triazolopyrimidine der Formel (I) bzw. deren Säureadditions-Salze sehr gut zur Bekämpfung von unerwünschten Mikroorganismen eignen. Sie zeigen vor allem eine starke fungizide Wirksamkeit und lassen sich sowohl im Pflanzenschutz als auch im Materialschutz verwenden.

Überraschenderweise besitzen die erfindungsgemäßen Triazolopyrimidine der Formel (I) eine wesentlich bessere mikrobizide Wirksamkeit als die konstitutionell ähnlichsten, vorbekannten Stoffe gleicher Wirkungsrichtung.

steht bevorzugt für einen mono- oder bicyclischen, gesättigten, ungesättigten oder aromatischen heterocyclischen Ring mit insgesamt bis zu 12 Gliedern, der über ein Stickstoffatom gebunden ist und in direkter Nachbarschaft zu diesem Stickstoffatom ein weiteres Stickstoff- oder Sauerstoffatom, sowie an anderer Stelle gegebenenfalls bis zu zwei weitere Sauerstoff-, Stickstoff- oder Schwefelatome trägt, wobei zwei Sauerstoffatome in keinem Fall direkt benachbart stehen und der gegebenenfalls durch Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl mit bis zu neun Halogenatomen und C₁-C₄-Alkoxycarbonyl substituiert ist.

10

20

15

25

30

10

15

20

25

30

R³ steht bevorzugt für Phenyl, welches gegebenenfalls einfach bis vierfach gleich oder verschieden substituiert ist durch:

Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl;

jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 11 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Alkylsulfonyloxy, Hydroximinoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;

jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen und/oder geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen substituiertes, jeweils zweifach verknüpftes Alkylen oder Dioxyalkylen mit jeweils 1 bis 6 Kohlenstoffatomen oder

Cycloalkyl mit 3 bis 6 Kohlenstoffatomen.

- X steht bevorzugt für Fluor, Chlor oder Brom.
- G steht besonders bevorzugt für die Gruppierungen

10

15

5

wobei # für die Anknüpfstelle steht, und wobei die Gruppierungen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Cyano, Fluor, Chlor, Methyl, Ethyl, Methoxycarbonyl oder Ethoxycarbonyl substituiert sind.

10

15

20

25

30

 \mathbb{R}^3 steht besonders bevorzugt für Phenyl, welches gegebenenfalls einfach bis dreifach substituiert ist durch Fluor, Chlor, Brom, Cyano, Nitro, Formyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Allyl, Propargyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Allyloxy, Propargyloxy, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluor-Trifluorethinyloxy, methylsulfonyl, Trichlorethinyloxy, Chlorallyloxy. Iodpropargyloxy, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinoethyl, Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl,

jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Fluor, Chlor, Methyl, Trifluormethyl, Ethyl, n- oder i-Propyl substituiertes in 2,3-Position oder 3,4-Position verknüpftes Trimethylen (Propan-1,3-diyl), Methylendioxy oder Ethylendioxy,

X steht besonders bevorzugt für Brom oder Chlor.

R³ steht ganz besonders bevorzugt für durch Fluor, Chlor, Trifluormethyl, Trifluormethoxy und/oder Trifluormethylthio gleich oder verschiedenen 2,4,6-trisubstituiertes, 2,4-disubstituiertes, 2,6-disubstituiertes oder 2-substituiertes Phenyl.

Zu den Säuren, die addiert werden können, gehören vorzugsweise Halogenwasserstoffsäuren, wie z.B. die Chlorwasserstoffsäure und die Bromwasserstoffsäure, insbesondere die Chlorwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, mono- und bifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie z.B. Essigsäure, Male-

15

20

25

30

insäure, Bernsteinsäure, Fumarsäure, Weinsäure, Zitronensäure, Salicylsäure, Sorbinsäure und Milchsäure, sowie Sulfonsäuren, wie z.B. p-Toluolsulfonsäure, 1,5-Naphthalindisulfonsäure, Saccharin und Thiosaccharin.

Die zuvor genannten Reste-Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können auch einzelne Bedeutungen entfallen.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen angegebenen Restedefinitionen gelten sowohl für die Endprodukte der Formel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangsstoffe bzw. Zwischenprodukte.

Die zur Durchführung des erfindungsgemäßen Verfahrens a) als Ausgangsstoffe benötigten Dihalogentriazolopyrimidine sind durch die Formel (II) allgemein definiert. In dieser Formel (II) haben R³ und X vorzugsweise, bzw. insbesondere diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für R³ und X angegeben wurden. Y¹ steht für Halogen, vorzugsweise für Fluor, Chlor oder Brom, insbesondere für Fluor oder Chlor.

Die Dihalogentriazolopyrimidine der Formel (II) sind bekannt oder können nach bekannten Methoden hergestellt werden (vergleiche z.B. US 5612345).

Die weiterhin zur Durchführung des erfindungsgemäßen Verfahrens a) als Ausgangsstoffe benötigten Amine sind durch die Formel (III) allgemein definiert. In dieser Formel (III) hat G vorzugsweise, bzw. insbesondere diejenige Bedeutung, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für G angegeben wurde.

Die Amine der Formel (III) sind bekannt oder können nach bekannten Methoden hergestellt werden (vergleiche z. B. J. Chem. Soc. 1942, 432; Can. J. Chem. (1976), 54(6), 867-70; Tetrahedron Lett. (1993), 34(36), 5673-6; Tetrahedron Lett. (1973),

10

15

20

25

30

(30), 2859-62). Weiterhin kommen Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate infrage, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-methylat, Natriumethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat und Natriumhydrogencarbonat.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-Amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ester wie Essigsäuremethylester oder Essigsäureethylester; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan.

Das erfindungsgemäße Verfahren wird gegebenenfalls in Gegenwart eines geeigneten Säureakzeptors durchgeführt. Als solche kommen Ammoniak oder tertiäre Amine infrage, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU). Als Säureadditionssalze der Amine der Formel (III) kommen diejenigen infrage, die bereits in Zusammenhang mit den Verbindungen der allgemeinen Formel (I) als Säureadditionssalze genannt wurden. Bevorzugt sind die Hydrochloride und Acetate der Verbindungen der Formel (III).

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 0°C bis 80°C.

5

Zur Durchführung des erfindungsgemäßen Verfahrens zur Herstellung der Verbindungen der Formel (I) setzt man pro Mol des Dihalogentriazolopyrimidine der Formel (II) im allgemeinen 0,5 bis 10 Mol, vorzugsweise 0,8 bis 2 Mol Amin der Formel (III) ein.

10

Das erfindungsgemäße Verfahren wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck - im Allgemeinen zwischen 0,1 bar und 10 bar - zu arbeiten.

15

Zur Herstellung von Säureadditions-Salzen von Triazolopyrimidinen der Formel (I) kommen vorzugsweise diejenigen Säuren in Frage, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Säureadditions-Salze als bevorzugte Säuren genannt wurden.

20

Die Säureadditions-Salze der Verbindungen der Formel (I) können in einfacher Weise nach üblichen Salzbildungsmethoden, z.B. durch Lösen einer Verbindung der Formel (I) in einem geeigneten inerten Lösungsmittel und Hinzufügen der Säure, z.B. Chlorwasserstoffsäure, erhalten werden und in bekannter Weise, z.B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösungsmittel gereinigt werden.

25

Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

15

25

Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

- Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.
 - Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
 - Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;
 - Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;
 - Erwinia-Arten, wie beispielsweise Erwinia amylovora;
 - Pythium-Arten, wie beispielsweise Pythium ultimum;
- 20 Phytophthora-Arten, wie beispielsweise Phytophthora infestans;
 - Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder
 - Pseudoperonospora cubensis;
 - Plasmopara-Arten, wie beispielsweise Plasmopara viticola;
 - Bremia-Arten, wie beispielsweise Bremia lactucae;
- Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;

	Erysiphe-Arten, wie beispielsweise Erysiphe graminis;
	Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;
5	Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;
	Venturia-Arten, wie beispielsweise Venturia inaequalis;
10	Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea
10	(Konidienform: Drechslera, Syn: Helminthosporium);
	Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus
15	(Konidienform: Drechslera, Syn: Helminthosporium);
	Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;
20	Puccinia-Arten, wie beispielsweise Puccinia recondita;
20	Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum;
	Tilletia-Arten, wie beispielsweise Tilletia caries;
25	Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;
	Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;
30	Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;
	Fusarium-Arten, wie beispielsweise Fusarium culmorum;

15

20

25

30

Botrytis-Arten, wie beispielsweise Botrytis cinerea;

Septoria-Arten, wie beispielsweise Septoria nodorum;

Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;

Cercospora-Arten, wie beispielsweise Cercospora canescens;

10 Alternaria-Arten, wie beispielsweise Alternaria brassicae;

Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die erfindungsgemäßen Wirkstoffe weisen auch eine starke stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.

Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokolation mit unerwünschten Mikroorgansimen weitgehende Resistenz gegen diese Mirkroorganismen entfalten.

Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.

20

25

30

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispielsweise gegen Botrytis-, Venturia- und Alternaria-Arten, oder von Reiskrankheiten, wie beispielsweise gegen Pyricularia-Arten, einsetzen.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages.
Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen

15

20

25

30

gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeirnträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe

gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

5

Alternaria, wie Alternaria tenuis,

Aspergillus, wie Aspergillus niger,

10

Chaetomium, wie Chaetomium globosum,

Coniophora, wie Coniophora puetana,

Lentinus, wie Lentinus tigrinus,

15

Penicillium, wie Penicillium glaucum,

Polyporus, wie Polyporus versicolor,

20

Aureobasidium, wie Aureobasidium pullulans,

Sclerophoma, wie Sclerophoma pityophila,

Trichoderma, wie Trichoderma viride,

25

Escherichia, wie Escherichia coli,

Pseudomonas, wie Pseudomonas aeruginosa,

30

Staphylococcus, wie Staphylococcus aureus.

10

15

20

25

30

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Birms, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstengel. Als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

10

5

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin-farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

15

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

20

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

25

Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:

Fungizide:

30

Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,

Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,

- Calciumpolysulfid, Carpropamid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram,
- Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon,
- Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,

Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenhexamid, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox,

Guazatin,

25

30

20

Hexachlorobenzol, Hexaconazol, Hymexazol,

Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Iprovalicarb, Irumamycin, Isoprothiolan, Isovaledione,

0.

15

25

30

Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,

Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,

Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,

Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,

Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Picoxystrobin, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon, Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyraclostrobin, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Pyroxyfur,

Quinconazol, Quintozen (PCNB), Quinoxyfen

20 Schwefel und Schwefel-Zubereitungen, Spiroxamine

Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Trifloxystrobin, Triflumizol, Triforin, Triticonazol,

Uniconazol,
Validamycin A, Vinclozolin, Viniconazol,
Zarilamid, Zineb, Ziram sowie
Dagger G,
OK-8705,

OK-8801,

- α -(1,1-Dimethylethyl)- β -(2-phenoxyethyl)-1H-1,2,4-triazol-1-ethanol,
- α-(2.4-Dichlorphenyl)-β-fluor-b-propyl-1H-1,2,4-triazol-1-ethanol,
- α-(2,4-Dichlorphenyl)-β-methoxy-a-methyl-1H-1,2,4-triazol-1-ethanol,
- 5 α -(5-Methyl-1,3-dioxan-5-yl)- β -[[4-(trifluormethyl)-phenyl]-methylen]-1H-1,2,4-triazol-1-ethanol,
 - (5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(1H-1,2,4-triazol-1-yl)-3-octanon,
 - (E)-a-(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid,
 - 1-(2,4-Dichlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-ethanon-O-(phenylmethyl)-oxim,
- 1-(2-Methyl-1-naphthalenyl)-1H-pyrrol-2,5-dion,
 - 1-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion,
 - 1-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol,
 - 1-[[2-(2,4-Dichlorphenyl)-1,3-dioxolan-2-yl]-methyl]-1H-imidazol,
 - 1-[[2-(4-Chlorphenyl)-3-phenyloxiranyl]-methyl]-1H-1,2,4-triazol,
- 1-[1-[2-[(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-1H-imidazol,
 - 1-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,
 - 2',6'-Dibrom-2-methyl-4'-trifluormethoxy-4'-trifluor-methyl-1,3-thiazol-5-carboxanilid,
 - 2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
 - 2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
- 20 2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
 - 2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
 - 2-[(1-Methylethyl)-sulfonyl]-5-(trichlormethyl)-1,3,4-thiadiazol,
 - 2-[[6-Deoxy-4-O-(4-O-methyl-ß-D-glycopyranosyl)-a-D-glucopyranosyl]-amino]-4-methoxy-1H-pyrrolo[2,3-d]pyrimidin-5-carbonitril,
- 25 2-Aminobutan,
 - 2-Brom-2-(brommethyl)-pentandinitril,
 - 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamid,
 - 2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
 - 2-Phenylphenol(OPP),
- 30 3,4-Dichlor-1-[4-(difluormethoxy)-phenyl]-1H-pyrrol-2,5-dion,
 - 3,5-Dichlor-N-[cyan[(1-methyl-2-propynyl)-oxy]-methyl]-benzamid,

- 3-(1,1-Dimethylpropyl-1-oxo-1H-inden-2-carbonitril,
- 3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
- 4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazol-1-sulfonamid,
- 4-Methyl-tetrazolo[1,5-a]quinazolin-5(4H)-on,
- 5 8-Hydroxychinolinsulfat,
 - 9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid,
 - bis-(1-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat,
 - cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol,
 - cis-4-[3-[4-(1,1-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholin-
- 10 hydrochlorid,
 - Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat,
 - Kaliumhydrogencarbonat,
 - Methantetrathiol-Natriumsalz,
 - Methyl-1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat,
- 15 Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,
 - Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,
 - N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamid,
 - N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid,
 - N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid,
- N-(4-Cyclohexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
 - N-(4-Hexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
 - N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid,
 - N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid,
 - N-[2,2,2-Trichlor-1-[(chloracetyl)-amino]-ethyl]-benzamid,
- N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N-methoxy-methanimidamid,
 - N-Formyl-N-hydroxy-DL-alanin -Natriumsalz,
 - O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,
 - O-Methyl-S-phenyl-phenylpropylphosphoramidothioate,
 - S-Methyl-1,2,3-benzothiadiazol-7-carbothioat,
- spiro[2H]-1-Benzopyran-2,1'(3'H)-isobenzofuran]-3'-on,
 - 4-[3,4-Dimethoxyphenyl)-3-(4-fluorphenyl)-acryloyl]-morpholin

Bakterizide:

5

Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

- Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,
- Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis,
 Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb,
 Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin,
 Biopermethrin, Bistrifluron, BPMC, Bromophos A, Bufencarb, Buprofezin,
 Butathiofos, Butocarboxim, Butylpyridaben,
- Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap,
 Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron,
 Chlormephos, Chlorpyrifos, Chlorpyrifos M, Chlovaporthrin, Chromafenozide, Cis Resmethrin, Cispermethrin, Clocythrin, Cloethocarb, Clofentezine, Clothianidine,
 Cyanophos, Cycloprene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin,
 Cypermethrin, Cyromazine,

Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlorvos, Dicofol, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn,

Eflusilanate, Emamectin, Empenthrin, Endosulfan, Entomopfthora spp., Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,

Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenoxuron, Flumethrin, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathiocarb,

10 Granuloseviren

5

15

25

Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,

Imidacloprid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin,

Kernpolyederviren

Lambda-cyhalothrin, Lufenuron

Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methoprene, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, Monocrotophos,

Naled, Nitenpyram, Nithiazine, Novaluron

Omethoat, Oxamyl, Oxydemethon M

Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthoat,

Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A,

Pirimiphos M, Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothoat,

Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion, Pyrimidifen, Pyriproxyfen,

Quinalphos,

5

Ribavirin

Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Sulfotep, Sulprofos,

10

15

Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Tetradifon Thetacypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Triflumuron, Trimethacarb,

Vamidothion, Vaniliprole, Verticillium lecanii

YI 5302

20

Zeta-cypermethrin, Zolaprofos

(1R-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)-furanyliden)-methyl]-2,2-dimethylcyclopropancarboxylat

25

(3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat

1-[(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-1,3,5-triazin-2(1H)-imin

30

2-(2-Chlor-6-fluorphenyl)-4-[4-(1,1-dimethylethyl)phenyl]-4,5-dihydro-oxazol

- 2-(Acetlyoxy)-3-dodecyl-1,4-naphthalindion
- 2-Chlor-N-[[[4-(1-phenylethoxy)-phenyl]-amino]-carbonyl]-benzamid
- 5 2-Chlor-N-[[[4-(2,2-dichlor-1,1-difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid
 - 3-Methylphenyl-propylcarbamat
 - 4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-1-fluor-2-phenoxy-benzol
 - 4-Chlor-2-(1,1-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio]-3(2H)-pyridazinon
- 4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)methoxy]-3(2H)pyridazinon
 - 4-Chlor-5-[(6-chlor-3-pyridinyl)methoxy]-2-(3,4-dichlorphenyl)-3(2H)-pyridazinon Bacillus thuringiensis strain EG-2348
- 20 Benzoesäure [2-benzoyl-1-(1,1-dimethylethyl)-hydrazid
 - Butansäure 2,2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl-ester
- 25 [3-[(6-Chlor-3-pyridinyl)methyl]-2-thiazolidinyliden]-cyanamid
 - Dihydro-2-(nitromethylen)-2H-1,3-thiazine-3(4H)-carboxaldehyd
- Ethyl-[2-[[1,6-dihydro-6-oxo-1-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat

 N-(3,4,4-Trifluor-1-oxo-3-butenyl)-glycin

15

20

25

N-(4-Chlorphenyl)-3-[4-(difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-1H-pyrazol-1-carboxamid

N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin

N-Methyl-N'-(1-methyl-2-propenyl)-1,2-hydrazindicarbothioamid

N-Methyl-N'-2-propenyl-1,2-hydrazindicarbothioamid

10 O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat

N-Cyanomethyl-4-trifluormethyl-nicotinamid

3,5-Dichlor-1-(3,3-dichlor-2-propenyloxy)-4-[3-(5-trifluormethylpyridin-2-yloxy)-propoxy]-benzol

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachsturmsregulatoren ist möglich.

Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritz-

10

15

20

25

30

pulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert.

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konven-

10

15

20

25

30

tionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Emährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle,

Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders Eigenschaften ("Traits") hervorgehoben werden. Als werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").

10

5

15

20

25

30

Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.

Herstellungsbeispiele

Beispiel 1

5

10

180 mg (0,56 mMol) des 5,7-Dichlor-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin, 120 mg (0,97 mMol) 3-Methylisoxazolidin Hydrochlorid und 335 mg Kaliumcarbonat werden 18 Stunden unter Argon bei Raumtemperatur in 10 ml Acetonitril gerührt. Die Reaktionsmischung wird mit 10 ml Wasser versetzt, die organische Phase abgetrennt, mit 10 ml gesättigter Ammoniumchloridlösung gewaschen, über Natriumsulfat getrocknet und bei vermindertem Druck eingeengt. Der Rückstand wird mit Petrolether/Essigester (10:1) an Kieselgel chromatografiert. Man erhält 250 mg (49 % der Theorie) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(3-methyl-2-isoxazolidinyl)[1,2,4]triazolo[1,5-a]pyrimidin.

15

HPLC: logP = 2,76

Analog Beispiel 1, sowie entsprechend den Angaben in den allgemeinen Verfahrensbeschreibungen, werden auch die in der nachstehenden Tabelle 1 genannten Verbindungen der Formel (I) erhalten.

20

(I)

<u>Tabelle 1</u>

Bsp.	X	G	R	logP	FP.: (°C)
Nr.					
2	Cl	N-Isoxazolidinyl	2,6-Difluorphenyl	2,07	
3	Cl	#_N	2,6-Difluorphenyl	3,33	
4	Cl	4-Cyano-1-pyrazolyl	2,6-Dichlor-4- trifluormethoxyphenyl	3,68	
5	Cl	#\N_O	2,4,6-Trifluorphenyl	3,53	
6	Cl	1,2-Oxazinan-N-yl	2,4,6-Trifluorphenyl	2,92	
7	Cl	N-Isoxazolidinyl	2,4,6-Trifluorphenyl	2,4	
8	Cl	1,2-Oxazinan-N-yl	2-Chlor-4-fluorphenyl	3,11	
9	C1	1,2-Oxazinan-N-yl	2,4-Difluorphenyl	2,84	
10	Cl	Tetrahydro-pyridazin-1-yl	2,4,6-Trifluorphenyl	2,68	
11	Cl	4,5-Dihydro-pyrazol-1-yl	2,4,6-Trifluorphenyl	2,34	123-26
12	Cl	Tetrahydro-pyridazin-1-yl	2-Chlor-6-Fluorphenyl	2,67	183-5
13	Cl	Tetrahydro-pyridazin-1-yl	2,2-Difluor-1,3- benzodioxol-4-yl	2,97	160-6
14	Cl	Tetrahydro-pyridazin-1-yl	2-Chlor-5- trifluormethylthio- phenyl	3,72	178-80
15	C1	Tetrahydro-pyridazin-1-yl	2-Chlor-5- trifluormethylphenyl	3,25	196-8
16	Cl	Tetrahydro-pyridazin-1-yl	2-Chlor-3- trifluormethylphenyl	3,16	142-4

Bsp.	X	G	R	logP	ED · (°C)
	^	J	K	.lugr	FP.: (°C)
Nr.					
17	C1	N _N	2,4,6-Trifluorphenyl	2,82	
18	Cl	A P	2,4,6-Trifluorphenyl	2,75	
19	Cl	Tetrahydro-pyridazin-1-yl	2,6-Dichlor-4-	3,81	
			trifluormethoxyphenyl		
20	Cl	Tetrahydro-pyridazin-1-yl	2,6-Dichlor-3-fluor-5-	3,64	208-9
			trifluormethylphenyl		
21	C1	Tetrahydro-pyridazin-1-yl	2,6-Dichlorphenyl	2,88	185-7
22	C1	4-Fluor-4-methyl-pyrazolidin-1-yl	2,4,6-Trifluorphenyl	2,53	141-3
23	Cl	N-O-CH ₃	2,4,6-Trifluorphenyl	2,8	199-02
24	Br	Tetrahydro-pyridazin-1-yl	2,4,6-Trifluorphenyl	2,73	
25	Cl	N O CH ₃	2-Chlor-6-Fluorphenyl	2,73	192-94
26	Cl	3,6-Dihydro-2H-pyridazin-1-yl	2,4,6-Trifluorphenyl	2,53	201-03
27	Cl	NH N #	2,4,6-Trifluorphenyl	2,65	178-80

	'		······	 ,	
Bsp.	X	G	R	logP	FP.: (°C)
Nr.	-				
					/
28	C1	λ.	2-Chlor-6-Fluorphenyl	2,59	175-7
l i		NH			
		NH NH			
		N			
1		\ #			
29	C1	λ	2,6-Dichlorphenyl	2,78	
		NH		ı	
		NH NH			
i		Ŋ			
		\ #			
30	Cl	٨	2,6-Difluorphenyl	2,53	
1]				
1					
1		Ņ			
	ļ	#			
31	CI	1.2 Overines Ned	2 C D:G11	0.60	
	C1	1,2-Oxazinan-N-yl	2,6-Difluorphenyl	2,68	
32	C1		2,4,6-Trifluorphenyl	2,82	Öl
					1
1	1	N O CH ₃		i	
		1 7 11			
		# Ö			
33	Č1		2-Chlorphenyl	2,69	
"	~		2 Chrospholy	2,09	
ŀ		9			
1		N		l	
		#		ì	
		#		ļ	
34	C1	٨	2-Chlor-6-Fluorphenyl	2,74	
			1		
		1 7			
		Ň			1
1	1	1 1			
1	1	1 m			
		#			
35	Cl	3-Methyl-1,2-oxazinan-N-yl	2,4,6-Trifluorphenyl	3,23	

steht für die Anknüpfungsstelle

*) Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A8 durch HPLC (Gradientenmethode, Acetonitril/0,1 % wässrige Phosphorsäure)

Herstellung eines Vorproduktes der Formel (II)

Beispiel (II-1)

5

10

15

20

Zu einer Lösung von 1,6 g Kalium t-Butanolat in 40 ml t-Butanol gibt man 1,83 g (17,4 mMol) Ethylhydroxycarbamat und 1 g (4,6 mMol) 1,3-Dibrombutan und rührt 7 Stunden bei 65°C. Die Reaktionsmischung wird bei vermindertem Druck eingeengt, der Rückstand mit Ether und Wasser versetzt und die organische Phase abgetrennt. Die wässrige Phase wird noch zweimal mit Ether extrahiert, die vereinigten organischen Phasen über Natriumsulfat getrocknet und bei vermindertem Druck eingeengt. Man erhält 1 g rohes ca. 80 %iges N-Ethoxycarbonyl-3-methylisoxazolidin (II-1a) mit einem logP-Wert von 1,22.

950 mg davon werden in 10 ml 16 %iger Salzsäure 3 Stunden unter Rückfluss erhitzt. Das Gemisch wird bei vermindertem Druck eingeengt und dreimal mit 5 ml Methanol verrührt und jedes mal filtriert. Die vereinigten Filtrate werden bei vermindertem Druck eingeengt. Man erhält 560 mg 3-Methylisoxazolidin Hydrochlorid mit einem logP-Wert von 1.22

Anwendungsbeispiele

Beispiel A

5 Venturia - Test (Apfel) / protektiv

Lösungsmittel:

24,5 Gewichtsteile Aceton

24,5 Gewichtsteile Dimethylacetamid

Emulgator:

1,0 Gewichtsteile Alkyl-Aryl-Polyglykolether

10

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubations-kabine.

20

Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt.

25

10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

30

Bei diesem Test zeigen die in den Beispielen (5, 6, 8, 9, 12) aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von 96 % oder mehr.

Beispiel B

Botrytis - Test (Bohne) / protektiv

5 Lösungsmittel:

10

15

20

25

24,5 Gewichtsteile Aceton

24,5 Gewichtsteile Dimethylacetamid

Emulgator:

1,0 Gewichtsteile Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Ernulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit Botrytis einerea bewachsene Agarstücken aufgelegt. Die inokulierten Pflanzen werden in einer abgedunkelten Kammer bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.

2 Tage nach der Inokulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Bei diesem Test zeigen die in den Beispielen (5, 6, 8, 9, 10, 12) aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 500 g/ha einen Wirkungsgrad von 98 % oder mehr.

Beispiel C

Alternaria-Test (Tomate) / protektiv

5 Lösungsmittel:

10

15

20

49 Gewichtsteile

N, N - Dimethylformamid

Emulgator:

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Tomatenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Alternaria solani inokuliert und stehen dann 24h bei 100 % rel. Feuchte und 20°C. Anschließend stehen die Pflanzen bei 96 % rel. Luftfeuchtigkeit und einer Temperatur von 20°C.

7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Bei diesem Test zeigen die in den Beispielen (5, 6, 8, 11) aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 750 g/ha einen Wirkungsgrad von 95 % oder mehr.

Beispiel D

Pyricularia-Test (Reis) / protektiv

5 Lösungsmittel:

10

15

20

25

50 Gew.-Teile N,N-Dimethylformamid

Emulgator:

1 Gew.-Teil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und verdünnt das Konzentrat mit Wasser und der angegebenen Menge Emulgator auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Reispflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer wässrigen Sporensuspension von Pyricularia oryzae inokuliert. Anschließend werden die Pflanzen in einem Gewächshaus bei 100 % relativer Luftfeuchtigkeit und 25°C aufgestellt.

7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Bei diesem Test zeigen die in den Beispielen (8, 9, 12) aufgeführten erfindungsgemäßen Stoffe bei einer Aufwandmenge von 500 g/ha einen Wirkungsgrad von 98 % oder mehr.

Patentansprüche

1. Triazolopyrimidine der Formel

$$\mathbb{R}^3$$
 \mathbb{N}^{-N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

in welcher

5

10

15

20

25

- G für einen gegebenenfalls substituierten, mono- oder polycyclischen, gesättigten, ungesättigten oder aromatischen heterocyclischen Ring steht, der über ein Stickstoffatom gebunden ist und in direkter Nachbarschaft zu diesem Stickstoffatom ein weiteres Stickstoff- oder Sauerstoffatom, sowie an anderer Stelle gegebenenfalls bis zu zwei weitere Sauerstoff-, Stickstoff- oder Schwefelatome trägt, wobei zwei Sauerstoffatome in keinem Fall direkt benachbart stehen,
- R³ für gegebenenfalls einfach bis fünffach substituiertes Aryl steht,
- X für Halogen steht,

sowie Säureadditionssalze von denjenigen Verbindungen der Formel (I), in denen

G für einen gegebenenfalls substituierten, mono- oder polycyclischen, gesättigten oder ungesättigten heterocyclischen Ring steht, der über ein Stickstoffatom gebunden ist und in direkter Nachbarschaft zu diesem Stickstoffatom ein weiteres Stickstoffatom, sowie an anderer Stelle gegebenenfalls bis zu zwei weitere Sauerstoff-, Stickstoff- oder

Schwefelatome trägt, wobei zwei Sauerstoffatome in keinem Fall direkt benachbart sind, steht.

2. Verfahren zur Herstellung von Triazolopyrimidinen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass man

Dihalogentriazolopyrimidine der allgemeinen Formel (II),

$$\mathbb{R}^3$$
 \mathbb{N}^{-N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

in welcher

5

15

20

25

 R^3 und X die oben angegebenen Bedeutungen haben und

Y¹ für Halogen steht,

mit einem Amin der allgemeinen Formel (III)

G-H (III)

in welcher

G die oben angegebene Bedeutung hat,

oder mit Säureadditionssalzen von Aminen der allgemeinen Formel (III),

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors, umsetzt.

- 3. Mittel zur Bekämpfung von unerwünschten Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem Triazolopyrimidin der Formel (I) gemäß Anspruch 1 bzw. an einem Säureadditions-Salz davon neben Streckmitteln und/oder oberflächenaktiven Stoffen.
- 4. Verwendung von Triazolopyrimidinen der Formel (I) gemäß Anspruch 1 bzw. von deren Säureadditions-Salzen zur Bekämpfung von unerwünschten Mikroorganismen.
- 5. Verfahren zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Triazolopyrimidine der Formel (I) gemäß Anspruch 1 bzw. deren Säureadditions-Salze auf die unerwünschten Mikroorganismen und/oder deren Lebensraum ausbringt.
- 15 6. Verfahren zur Herstellung von Mitteln zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Triazolopyrimidine der Formel (I) gemäß Anspruch 1 bzw. deren Säureadditions-Salze mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.

Triazolopyrimidine

Zusammenfassung

Neue Triazolopyrimidine der Formel

in welcher

5

10

15

- G für einen gegebenenfalls substituierten, mono- oder polycyclischen, gesättigten, ungesättigten oder aromatischen heterocyclischen Ring steht, der über ein Stickstoffatom gebunden ist und in direkter Nachbarschaft zu diesem Stickstoffatom ein weiteres Stickstoff- oder Sauerstoffatom, sowie an anderer Stelle gegebenenfalls bis zu zwei weitere Sauerstoff-, Stickstoff- oder Schwefelatome trägt, wobei zwei Sauerstoffatome in keinem Fall direkt benachbart stehen,
- R³ für gegebenenfalls einfach bis fünffach substituiertes Aryl steht,
- X für Halogen steht,

Verfahren zur Herstellung dieser neuen Stoffe und deren Verwendung zur Bekämpfung von schädlichen Organismen.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

one in the motion of the first of the following of the first of the f
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
\square COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
\square reference(s) or exhibit(s) submitted are poor quality

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.