Lab05_MC

Christophoros Spyretos

11/29/2021

Question 2

Task 1

Histogram of the Price variable


```
mean_value <- mean(data$Price)
mean_value</pre>
```

[1] 1080.473

Task 2

The non-parametric bootstrap estimator of bias is given by:

$$\hat{T} = 2T(D) - \frac{1}{B} \sum_{i=1}^{B} T(D_i^*)$$

The variance of estimator is given by:

$$\widehat{Var[T(\cdot)]} = \frac{1}{B-1} \sum_{i=1}^{B} (T(D_i^*) - \overline{T(D^*)})^2$$

Histogram of t

Task 3

```
normal_low <- ci$normal[, 3] - ci$normal[, 2]
percent_low <- ci$percent[, 5] - ci$percent[, 4]
bca_low <- ci$bca[, 5] - ci$bca[, 4]

normal_upper <- ci$normal[, 3] - normal_low/2
percent_upper <- ci$percent[, 5] - percent_low/2
bca_upper <- ci$bca[, 5] - bca_low/2

intervals <- data.frame(Normal = c(normal_low, normal_upper),
    Percentile = c(percent_low, percent_upper), BCa = c(bca_low, bca_upper))

rownames(intervals) <- c("Low Interval", "Upper Interval")
knitr::kable(intervals)</pre>
```

	Normal	Percentile	BCa
Low Interval	147.2226	152.4158	149.1939
Upper Interval	1079.0048	1084.3497	1086.7890

Task 4

The variance of the mean price using the jackknife is given by $\widehat{Var[T(.)]} = \frac{1}{n(n-1)} \sum_{i=1}^{n} ((\mathbf{T}_i^*) - \mathbf{J}(\mathbf{T}))^2$, where T_i^* is give by $T_i^* = nT(D)-(n-1)T(D_i^*)$ and J(T) is given by $J(T) = \frac{1}{n} \sum_{i=1}^{n} T_i^*$