C R Package seatdist

This paper is accompanied by seatdist, an R package which implements a variety of apportionment algorithms and disproportionality measures. The seatdist package is developed from the SciencesPo (Marcelino 2016) package, but offers more apportionment algorithms and disproportionality measures and corrects some errors.

C.1 Seat Apportionment Methods in seatdist

Apportionment algorithms are accessible through a unified interface provided by seatdist::giveseats() which takes the following arguments

v a numeric vector of vote counts;

ns numeric, the number of seats to allocate;

method character, name of the method, see Table C.5 for divisor methods and

Table C.6 for largest remainder quotas;

thresh numeric, threshold of exclusion; if in [0,1], treated as a fraction; if

in (1, 100), treated as a percent; if larger than 100, treated as a vote

count;

quota character, quota for method="largest remainders"; see Table C.6,

defaults to NA;

divs numeric, divisors for method="custom", must be non-negative.

For the Largest Remainders method (method="lr" or "largest remainders") the Imperiali quota (quota="im") or Reinforced Imperiali (quota="rei") can assign in the first round more seats than available, in which case the function terminates its execution with an error message.

The seatdist::giveseats() function returns a named list with items method character, name of the apportionment method used;

seats numeric, vector with seats.

For illustration, 10 seats can be apportioned to parties with 60,000, 28,000, and 12,000 votes under a system with a 5% threshold with the Largest Remainders method and the Hagenbach-Bischoff quota in the following way

Table C.5: Divisor method implemented in seatdist::giveseats(). For background on the methods see e.g. Grilli di Cortona et al. (1999), Agnew (2008), Ichimori (2010), and Wada (2016).

Agnew "ag" $\frac{1}{e} \left(\frac{x^x}{(x-1)^{(x-1)}} \right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	Method	method	x^{th} Divisor	Sequence
Jefferson Hagenbach-Bischoff "hb" " " " " " " " Adams Smallest Divisors "sd" " " " " " " " " " " " " " " " " "	Plurality	"pl"	1	1, 1, 1, 1, 1,
Hagenbach-Bischoff "hb" " " " " " " " Adams Smallest Divisors "sd" " " " " " " " " " " " " " " " " "	D'Hondt			1, 2, 3, 4, 5,
Adams Smallest Divisors "ad" $x-1$ 0, 1, 2, 3, 4, " Nohlen "no" $x+1$ 2, 3, 4, 5, 6, Imperiali "im" $(x+1)/2$ 1, 1.5, 2, 2.5, 3, 3.5, Sainte-Laguë "sl" $2x-1$ 1, 3, 5, 7, 9, Swedish Sainte-Laguë "sw" $2x-1; x>1$ 1.2, 3, 5, 7, 9, Nepalese Sainte-Laguë "ne" $2x-1; x>1$ 1.4, 3, 5, 7, 9, Nepalese Sainte-Laguë "nor" " Hungarian Sainte-Laguë "hu" $2x-1; x>1$ 1.5, 3, 5, 7, 9, Modified Sainte-Laguë "wsl" $(2x-1)5/7; x>1$ 1, 2.14, 3.57, 5, 6.43, Danish "da" $3x-2$ 1, 4, 7, 10, 13, Huntington-Hill "hh" $\sqrt{x(x-1)}$ 0, 1.41, 2.45, 3.46, 4.47, Theil-Schrage "ts" $\frac{1}{\ln x-\ln(x-1)}$ 0, 1.44, 2.47, 3.48, 4.48, Agnew "ag" $\frac{1}{\epsilon}\left(\frac{x}{(x-1)^{(x-1)}}\right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	Jefferson	"je"	,,	,,
Nohlen "no" $x+1$ 2, 3, 4, 5, 6, Imperiali "im" $(x+1)/2$ 1, 1.5, 2, 2.5, 3, 3.5, Sainte-Laguë "st" $2x-1$ 1, 3, 5, 7, 9, Swedish Sainte-Laguë "sw" $2x-1; x>1$ 1.2, 3, 5, 7, 9, Nepalese Sainte-Laguë "ne" $2x-1; x>1$ 1.4, 3, 5, 7, 9, Nepalese Sainte-Laguë "nor" $2x-1; x>1$ 1.5, 3, 5, 7, 9, Hungarian Sainte-Laguë "hu" $2x-1; x>1$ 1.5, 3, 5, 7, 9, Modified Sainte-Laguë "mst" $(2x-1)5/7; x>1$ 1, 2.14, 3.57, 5, 6.43, Danish "da" $3x-2$ 1, 4, 7, 10, 13, Huntington-Hill "hh" $\sqrt{x(x-1)}$ 0, 1.41, 2.45, 3.46, 4.47, Equal Proportions "ep" $x(x-1)/(x-0.5)$ 0, 1.33, 2.4, 3.43, 4.44 Theil-Schrage "ts" $\frac{1}{\ln x-\ln(x-1)}$ 0, 1.44, 2.47, 3.48, 4.48, Agnew "ag" $\frac{1}{e}\left(\frac{x}{(x-1)^{(x-1)}}\right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	Hagenbach-Bischoff	"hb"	,,	"
Nohlen "no" $x+1$ 2, 3, 4, 5, 6, Imperiali "im" $(x+1)/2$ 1, 1.5, 2, 2.5, 3, 3.5, Sainte-Laguë "st" $2x-1$ 1, 3, 5, 7, 9, Swedish Sainte-Laguë "sw" $2x-1; x>1$ 1.2, 3, 5, 7, 9, Nepalese Sainte-Laguë "ne" $2x-1; x>1$ 1.4, 3, 5, 7, 9, Nepalese Sainte-Laguë "nor" $2x-1; x>1$ 1.5, 3, 5, 7, 9, Hungarian Sainte-Laguë "hu" $2x-1; x>1$ 1.5, 3, 5, 7, 9, Modified Sainte-Laguë "mst" $(2x-1)5/7; x>1$ 1, 2.14, 3.57, 5, 6.43, Danish "da" $3x-2$ 1, 4, 7, 10, 13, Huntington-Hill "hh" $\sqrt{x(x-1)}$ 0, 1.41, 2.45, 3.46, 4.47, Equal Proportions "ep" $x(x-1)/(x-0.5)$ 0, 1.33, 2.4, 3.43, 4.44 Theil-Schrage "ts" $\frac{1}{\ln x-\ln(x-1)}$ 0, 1.44, 2.47, 3.48, 4.48, Agnew "ag" $\frac{1}{e}\left(\frac{x}{(x-1)^{(x-1)}}\right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	Adams			0, 1, 2, 3, 4,
Imperiali "im" $(x+1)/2$	Smallest Divisors	"sd"	,,	"
Sainte-Laguë "sl"	Nohlen	"no"	x + 1	2, 3, 4, 5, 6,
Webster "we" " " " " " " " " " " " " " " " " "	Imperiali	"im"	(x + 1)/2	1, 1.5, 2, 2.5, 3, 3.5,
Webster "we" " " " " " " " " " " " " " " " " "	Sainte-Laguë	"c]"	2x - 1	13579
Swedish Sainte-Laguë "sw" $2x-1; \ x>1$ $1.2,3,5,7,9,\ldots$ Nepalese Sainte-Laguë "ne" $2x-1; \ x>1$ $1.4,3,5,7,9,\ldots$ Norwegian Sainte-Laguë "hu" $2x-1; \ x>1$ $1.5,3,5,7,9,\ldots$ Hungarian Sainte-Laguë "msl" $(2x-1)5/7; \ x>1$ $1,2.14,3.57,5,6.43,\ldots$ Modified Sainte-Laguë "msl" $(2x-1)5/7; \ x>1$ $1,2.14,3.57,5,6.43,\ldots$ Danish "da" $3x-2$ $1,4,7,10,13,\ldots$ Huntington-Hill "hh" $\sqrt{x(x-1)}$ $0,1.41,2.45,3.46,4.47,\ldots$ Equal Proportions "ep" " $(x-1)/(x-0.5)$ $(x-1)/(x-0.5)$ $(x-1)/(x-1)$ Dean "de" $(x-1)/(x-1)$ $(x-1)/(x-1)$ $(x-1)/(x-1)$ $(x-1)/(x-1)$ Theil-Schrage "ts" $(x-1)/(x-1)$ $(x-1)/(x-1)$ $(x-1)/(x-1)$ $(x-1)/(x-1)$ Agnew "ag" $(x-1)/(x-1)/(x-1)$ $(x-1)/(x-1)/(x-1)$ $(x-1)/(x-1)/(x-1)$	C			", ", ", ", ", ", ", ", ", ", ", ", ", "
Nepalese Sainte-Laguë "ne" $2x-1; x>1$ $1.4,3,5,7,9,$ Hungarian Sainte-Laguë "hu" $2x-1; x>1$ $1.5,3,5,7,9,$ Modified Sainte-Laguë "msl" $(2x-1)5/7; x>1$ $1.5,3,5,7,9,$ Modified Sainte-Laguë "msl" $(2x-1)5/7; x>1$ $1,2.14,3.57,5,6.43,$ Danish "da" $3x-2$ $1,4,7,10,13,$ Huntington-Hill "hh" $\sqrt{x(x-1)}$ $0,1.41,2.45,3.46,4.47,$ Equal Proportions "ep" " $(2x-1)/(x-0.5)$ $(2x-1)/(x-0.5)$ $(2x-1)/(x-0.5)$ $(2x-1)/(x-0.5)$ $(2x-1)/(x-1)/(x-0.5)$ $(2x-1)/(x-$	Websiel	WC		
Norwegian Sainte-Laguë "nor" " " " " " " " " " " " " " " " " " "	Swedish Sainte-Laguë	"SW"	2x - 1; $x > 1$	1.2, 3, 5, 7, 9,
Norwegian Sainte-Laguë "nor" " " " " " " " " " " " " " " " " " "	Manalana Calata I anni	U U	2 1 1	1 4 2 5 7 0
Hungarian Sainte-Laguë "hu" $2x-1; \ x>1$ $1.5,3,5,7,9,\dots$ Modified Sainte-Laguë "msl" $(2x-1)5/7; \ x>1$ $1,2.14,3.57,5,6.43,\dots$ Danish "da" $3x-2$ $1,4,7,10,13,\dots$ Huntington-Hill "hh" $\sqrt{x(x-1)}$ $0,1.41,2.45,3.46,4.47,\dots$ Equal Proportions "ep" $x(x-1)/(x-0.5)$ $0,1.33,2.4,3.43,4.44\dots$ Theil-Schrage "ts" $\frac{1}{\ln x-\ln(x-1)}$ $0,1.44,2.47,3.48,4.48,\dots$ Agnew "ag" $\frac{1}{e}\left(\frac{x^x}{(x-1)^{(x-1)}}\right)$ $0.37,1.47,2.48,3.49,4.49,\dots$				1.4, 3, 5, 7, 9,
Modified Sainte-Laguë "msl" $(2x-1)5/7; x > 1$ 1, 2.14, 3.57, 5, 6.43, Danish "da" $3x-2$ 1, 4, 7, 10, 13, Huntington-Hill "hh" $\sqrt{x(x-1)}$ 0, 1.41, 2.45, 3.46, 4.47, Equal Proportions "ep" $x(x-1)/(x-0.5)$ 0, 1.33, 2.4, 3.43, 4.44 Theil-Schrage "ts" $\frac{1}{\ln x - \ln(x-1)}$ 0, 1.44, 2.47, 3.48, 4.48, Agnew "ag" $\frac{1}{e}\left(\frac{x^x}{(x-1)^{(x-1)}}\right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	Norwegian Sainte-Lague	nor		
Danish "da" $3x - 2$ $1, 4, 7, 10, 13,$ Huntington-Hill "hh" $\sqrt{x(x-1)}$ $0, 1.41, 2.45, 3.46, 4.47,$ Equal Proportions "ep" " $x(x-1)/(x-0.5)$ $0, 1.33, 2.4, 3.43, 4.44$ Theil-Schrage "ts" $\frac{1}{\ln x - \ln(x-1)}$ $0, 1.44, 2.47, 3.48, 4.48,$ Agnew "ag" $\frac{1}{e}\left(\frac{x^x}{(x-1)^{(x-1)}}\right)$ $0.37, 1.47, 2.48, 3.49, 4.49,$	Hungarian Sainte-Laguë	"hu"	2x - 1; $x > 1$	1.5, 3, 5, 7, 9,
Danish "da" $3x-2$ $1,4,7,10,13,$ Huntington-Hill "hh" $\sqrt{x(x-1)}$ $0,1.41,2.45,3.46,4.47,$ Equal Proportions "ep" " $x(x-1)/(x-0.5)$ $0,1.33,2.4,3.43,4.44$ Theil-Schrage "ts" $\frac{1}{\ln x - \ln(x-1)}$ $0,1.44,2.47,3.48,4.48,$ Agnew "ag" $\frac{1}{e}\left(\frac{x^x}{(x-1)^{(x-1)}}\right)$ $0.37,1.47,2.48,3.49,4.49,$				
Huntington-Hill "hh" $\sqrt{x(x-1)}$ 0, 1.41, 2.45, 3.46, 4.47, " Dean "de" $x(x-1)/(x-0.5)$ 0, 1.33, 2.4, 3.43, 4.44 Theil-Schrage "ts" $\frac{1}{\ln x - \ln(x-1)}$ 0, 1.44, 2.47, 3.48, 4.48, Agnew "ag" $\frac{1}{e}\left(\frac{x^x}{(x-1)^{(x-1)}}\right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	Modified Sainte-Laguë	"msl"	(2x-1)5/7; x > 1	1, 2.14, 3.57, 5, 6.43,
Equal Proportions "ep" " Dean "de" $x(x-1)/(x-0.5)$ 0, 1.33, 2.4, 3.43, 4.44 Theil-Schrage "ts" $\frac{1}{\ln x - \ln(x-1)}$ 0, 1.44, 2.47, 3.48, 4.48, Agnew "ag" $\frac{1}{e}\left(\frac{x^x}{(x-1)^{(x-1)}}\right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	Danish	"da"	3x - 2	1, 4, 7, 10, 13,
Equal Proportions "ep" " Dean "de" $x(x-1)/(x-0.5)$ 0, 1.33, 2.4, 3.43, 4.44 Theil-Schrage "ts" $\frac{1}{\ln x - \ln(x-1)}$ 0, 1.44, 2.47, 3.48, 4.48, Agnew "ag" $\frac{1}{e}\left(\frac{x^x}{(x-1)^{(x-1)}}\right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	II	11 - 1 - 11		0 1 41 2 45 2 46 4 47
Dean "de" $x(x-1)/(x-0.5)$ 0, 1.33, 2.4, 3.43, 4.44 Theil-Schrage "ts" $\frac{1}{\ln x - \ln(x-1)}$ 0, 1.44, 2.47, 3.48, 4.48, Agnew "ag" $\frac{1}{e} \left(\frac{x^x}{(x-1)^{(x-1)}} \right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	•		$v_{x}(x-1)$	
Theil-Schrage "ts" $\frac{1}{\ln x - \ln(x-1)}$ 0, 1.44, 2.47, 3.48, 4.48, Agnew "ag" $\frac{1}{e} \left(\frac{x^x}{(x-1)^{(x-1)}} \right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	Equal Proportions	ер		
Theil-Schrage "ts" $\frac{1}{\ln x - \ln(x-1)}$ 0, 1.44, 2.47, 3.48, 4.48, Agnew "ag" $\frac{1}{e} \left(\frac{x^x}{(x-1)^{(x-1)}} \right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	Dean	"de"	x(x-1)/(x-0.5)	0. 1.33. 2.4. 3.43. 4.44
Agnew "ag" $\frac{1}{e} \left(\frac{x^x}{(x-1)^{(x-1)}} \right)$ 0.37, 1.47, 2.48, 3.49, 4.49,			(=)// (= ==)	0, 1, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
Agnew "ag" $\frac{1}{e} \left(\frac{x^x}{(x-1)^{(x-1)}} \right)$ 0.37, 1.47, 2.48, 3.49, 4.49,	Theil-Schrage	"ts"	$\frac{1}{\ln r - \ln(r-1)}$	0, 1.44, 2.47, 3.48, 4.48,
• • • • • • • • • • • • • • • • • • •	Agnew	"ag"	$\frac{1}{e}\left(\frac{x^x}{(x-1)^{(x-1)}}\right)$	0.37, 1.47, 2.48, 3.49, 4.49,
Ichimori 1/3 "ich" $\sqrt{x^2 + x + 1/3}$ 1.73, 2.65, 3.61, 4.58, 5.57,	Ichimori 1/3	"ich"	$\sqrt{x^2 + x + 1/3}$	$1.73, 2.65, 3.61, 4.58, 5.57, \dots$
Custom "custom" user-supplied in argument	Custom	"custom"		user-supplied in argument divs

Table C.6: Quotas implemented for the Largest Remainders method (method="lr") in seatdist::giveseats(). For background on the methods see e.g. Grilli di Cortona et al. (1999).

Quota	quota	Formula
Hare	"ha"	e
		$\frac{e}{l}$
Droop	"dr"	
		$\left\lfloor 1 + \frac{e}{l+1} \right\rfloor$
Hagenbach-Bischoff	"hb"	
		$\frac{e}{l+1}$
		<i>l</i> + 1
Imperiali	"im"	
		$\frac{e}{l+2}$
		l+2
Reinforced Imperiali	"rei"	
		$\frac{e}{l+3}$
		$\iota + J$

C.2 Measures of Disproportionality in seatdist

The seatdist package computes 24 disproportionality measures (Table C.7) accessible through a unified interface provided by the function seatdist::disproportionality().

The function takes the following arguments:

s a numeric vector of seat counts or fractions;

v a numeric vector of vote counts or fractions; for measure = "ortona"

this can alternatively be a vector with seats under the highest possible

proportionality

measure character, see Table C.7;

ignore_zeros logical: should parties with 0 votes and 0 seats be ignored?

k numeric, k for the Generalized Gallagher index, defaults to 2;

eta η for the Atkinson index, defaults to 2;

alpha α for the Generalized Entropy index, defaults to 2;

thresh numeric, threshold for the Fragnelli and the Gambarelli & Biella

indexes, defaults to "NULL";

powind character, power index for the Fragnelli and the Gambarelli & Biella

indexes, defaults to the Shapley-Shubik index, "shapley shubik".

no other power indexes implemented yet.

The function returns a named list with the following items

measure character, the measure used;

value numeric, value.

For illustration, the Gallagher index can be computed for parties with 60,000, 28,000, and 12,000 votes and 6, 3, and 1 seats in the following way:

```
> seatdist::disproportionality(v=c(60,28,12)*1e3, s=c(6,3,1),
```

measure="gallagher")

\$measure

[1] "Gallagher"

\$value

[1] 0.02

Table C.7: Disproportionality measures in the seatdist package. Values for the measure= argument in seatdist::disproportionality() below index names. For indexes without citations in the table see also Karpov 2008 and Chessa and Fragnelli 2012.

Index	Formula
D'Hondt (Gallagher 1991) "dhondt"	$\delta = \max_{i} \frac{s_i}{v_i}$
Monroe (1994) "monroe"	$I_{M} = \sqrt{\frac{\sum_{i}(s_{i} - v_{i})^{2}}{1 + \sum_{i}v_{i}^{2}}}$
Max. Abs. Dev. "maxdev"	$I_{MAD} = \max_{i} \left\{ s_i - v_i \right\}$
Rae (1967) "rae"	$I_{Rae} = \frac{1}{p} \sum_{i} s_i - v_i $
Loosemore & Hanby (1971) "loosemore hanby"	$I_{LH} = \frac{1}{2} \sum_{i} s_i - v_i $
Grofman "grofman"	$I_{Grof} = \frac{1}{e} \sum_{i} s_i - v_i ; \ e = \frac{1}{\sum_{i} v_i^2}$
Lijphart "lijphart"	$I_L = \frac{ s_a - v_a + s_b - v_b }{2}; \ v_a > v_b > \dots$
Gallagher (1991) "gallagher"	$I_{Gal} = \sqrt{\frac{1}{2} \sum_{i} (s_i - v_i)^2}$

Table C.8: Table C.7 continued from the previous page

Index	Formula
Generalized Gallagher "kindex"	$I_K = \sqrt[k]{\frac{1}{k} \sum_{i} (s_i - v_i)^k}$
Gatev "gatev"	$I_{Gat} = \sqrt{\frac{\sum_{i} (s_i - v_i)^2}{\sum_{i} (s_i^2 + v_i^2)}}$
Ryabtsev "ryabtsev"	$I_{Ryb} = \sqrt{\frac{\sum_{i} (s_{i} - v_{i})^{2}}{\sum_{i} (s_{i} + v_{i})^{2}}}$
Szalai (Stewart 2006) "szalai"	$I_{Sz} = \sqrt{\frac{1}{p} \sum_{i} \left(\frac{s_i - v_i}{s_i + v_i} \right)^2}$
Weighted Szalai (Stewart 2006) "weighted szalai"	$I_{WSz} = \sqrt{\frac{1}{2} \sum_{i} \frac{(s_i - v_i)^2}{s_i + v_i}}$
Aleskerov & Platonov "aleskerov"	$I_{AP} = \frac{\sum_{i} k_{i} \frac{s_{i}}{v_{i}}}{\sum_{i} k_{i}}; \ k_{i} = \mathbb{1} \left(\frac{s_{i}}{v_{i}} > 1 \right)$
Gini "gini" Atkinson "atkinson"	The Gini coefficient of inequality $I_A = 1 - \left[\sum_i v_i \left(\frac{s_i}{v_i} \right)^{(1-\eta)} \right]^{\frac{1}{1-\eta}}$

Table C.9: Table C.7 continued from the previous page

Index	Formula
Generalized Entropy "gen entropy"	$I_{GE} = \frac{1}{\alpha^2 - \alpha} \left[\sum_{i} v_i \left(\frac{s_i}{v_i} \right)^{\alpha} - 1 \right]$
Sainte-Laguë (1910) "sainte lague"	$I_{SL} = \sum_{i} \frac{(s_i - v_i)^2}{v_i}$
Cox & Shugart "cox shugart"	$I_{CS} = \frac{\sum_{i} (s_{i} - \bar{s})(v_{i} - \bar{v})}{\sum_{i} (v_{i} - \bar{v})^{2}}$
Farina (Kestelman 2005) "farina"	$I_{Far} = \arccos\left[\frac{\sum_{i} s_{i} v_{i}}{\sqrt{\sum_{i} s_{i}^{2} \sum_{i} v_{i}^{2}}}\right] \frac{10}{9}$
Ortona "ortona"	$I_O = \frac{\sum_{i} s_i - v_i }{\sum_{i} u_i - v_i }; \ u_i = \mathbb{1}(s_i = \max_{i} s_i)$
Fragnelli "fragnelli"	$I_{Frag} = \frac{1}{2} \sum_{i} \varphi_{i}(s) - \varphi_{i}(v) ;$
Gambarelli & Biella "gambarelli biella"	$I_{GB} = \max_{i} \{ s_i - v_i , \varphi_i(s) - \varphi_i(v) \}$
Cosine Dissimilarity "cosine"	$I_{CD} = 1 - \frac{\sum_{i} s_{i} v_{i}}{\sqrt{\sum_{i} s_{i}^{2}} \sqrt{\sum_{i} v_{i}^{2}}}$
Mixture D'Hondt a.k.a. Lebeda's RR "mixture"	$\pi_{DH}^* = 1 - \frac{1}{\max_i s_i / v_i}$

Table C.10: Table C.7 continued from the previous page

Index	Formula
Lebeda's ARR "arr"	$ARR = \frac{1}{p} \left(1 - \frac{1}{\max_{i} s_i / v_i} \right)$
Lebeda's SRR "arr"	$SRR = \sqrt{\sum_{i} \left(v_i - \frac{s_i}{\max_{i} s_i / v_i}\right)^2}$
Lebeda's WDRR "wdrr"	$WDRR = \frac{1}{3} \left(\left(\sum_{i} v_i - s_i \right) + \left(1 - \frac{1}{\max_{i} s_i / v_i} \right) \right)$
Kullback-Leibler Surprise "surprise"	$KL = \sum_{s_i > 0} s_i \ln \frac{s_i}{v_i}$
Likelihood Ratio Statistic "lrstat"	$G = 2\sum_{i} v_i \ln \frac{v_i}{s_i}$
Chi Squared "chisq"	$\chi^2 = \sum_{s_i > 0} \frac{(v_i - s_i)^2}{s_i}$
Hellinger Distance "hellinger"	$HD = \frac{1}{\sqrt{2}} \sqrt{\sum_{i} \left(\sqrt{s_i} - \sqrt{v_i}\right)^2}$

References

Agnew, Robert A. 2008. "Optimal Congressional Apportionment". *The American Mathematical Monthly* 115 (4): 297–303.

Chessa, Michela, and Vito Fragnelli. 2012. "A note on 'Measurement of disproportionality in proportional representation systems". *Mathematical and Computer Modelling* 55 (3): 1655–1660.

Eurostat. 2017. "Nomenclature of territorial units for statistics".

- Gallagher, Michael. 1991. "Proportionality, disproportionality and electoral systems". *Electoral Studies* 10 (1): 33–51.
- Grilli di Cortona, Pietro, et al. 1999. Evaluation and Optimization of Electoral Systems. SIAM.
- Ichimori, Tetsuo. 2010. "New apportionment methods and their quota property". *JSIAM Letters* 2:33–36.
- Jeworutzki, Sebastian. 2016. *cartogram: Create Cartograms with R*. R package version 0.0.2. https://CRAN.R-project.org/package=cartogram.
- Karpov, Alexander. 2008. "Measurement of disproportionality in proportional representation systems". *Mathematical and Computer Modelling* 48 (9): 1421–1438.
- Kestelman, Philip. 2005. "Apportionment and proportionality: A measured view". *Voting Matters* 20:12–22.
- Lebeda, Tomáš. 2006. "Teorie reálné kvóty, alternativní přístup k meření volební proporcionality [Real Quota Theory, an Alternative Approach to Measuring Electoral Proportionality]". *Czech Sociological Review* 42 (4): 657–681.
- Loosemore, John, and Victor J Hanby. 1971. "The theoretical limits of maximum distortion: some analytic expressions for electoral systems". *British Journal of Political Science* 1 (4): 467–477.
- Marcelino, Daniel. 2016. *SciencesPo: A tool set for analyzing political behavior data*. R package version 1.4.1. http://CRAN.R-project.org/package=SciencesPo.
- Monroe, Burt L. 1994. "Disproportionality and malapportionment: Measuring electoral inequity". *Electoral Studies* 13 (2): 132–149.
- Rae, Douglas W. 1967. *The Political Consequences of Electoral Laws*. New Haven: Yale University Press.
- Sainte-Laguë, André. 1910. "La représentation proportionnelle et la méthode des moindres carrés". In *Annales scientifiques de l'École Normale Supérieure*, 27:529–542.
- Stewart, Jay, et al. 2006. "Assessing alternative dissimilarity indexes for comparing activity profiles". *Electronic International Journal of Time Use Research* 3 (1): 49–59.
- Wada, Junichiro. 2016. "Apportionment behind the veil of uncertainty". *The Japanese Economic Review* 67 (3): 348–360.