7/24/2019 StackEdit

Paxos@SIGACT2001

Paxos Made Simple. Leslie Lamport, SIGACT News, 2001.

Overview

It explains the Paxos protocol and the Multi-Paxos protocol.

Paxos (with Voting Set)

Protocol

- 每个 acceptor 维护它所接受的 ballot 集合
- Phase1b: 在对 prepare(n) 的回复 ack(n,b,v) 中, b < n. ("The proposal with the highest number **less than** n that it has accepted, if any.")

Correctness Proof

只需要证明 Consistent 性质.

证明思路: Paxos protocol => $P2^c$ => $P2^b$ => $P2^a$ => P2 => Consistent

- Paxos protocol => P2^c
 - 。 根据 "Make Promise 规则", Original Paxos 显然满足该性质。
 - 。 难点: 如何证明优化版本满足该性质?
- $P2^c => P2^b$
 - 。使用强数学归纳法
 - 。 Quorum 的相交性 + Make Promise 规则
- $P2^b => P2^a$
 - 。 先"issue"后"accept"
- $P2^a => P2$
 - 。 先"accept"后"chosen"

https://stackedit.io/app# 1/3

7/24/2019 StackEdit

- P2 => Consistent
 - 。 proposals 的全序性

Optimizations (with Largest Vote)

Protocol

- 每个 acceptor 只需要维护它所接受过的**最大**的 ballot。
- Phase1b: "*..., then it responds to the request with a promise ... and with the highest-numbered proposal (if any) that it has accepted.**"
- Phase2a: "v is the value of the highest-numbered proposal among the responses, ..."

Optimized Paxos vs. Original Paxos

关于 Phase 1b 消息 ack(n, b, v)

显然, original Paxos 满足: n > b。

但是, optimized Paxos 并不满足n>b。(TLA+ 已验证)

■ TLA+ 给出的反例

关于 Phase 2b 中的 accept(n)

*acceptor 接受的 ballot 的序号并不是严格递增的。(TLA+ 已验证)

■ TLA+ 给出的反例

关于 $P2^c$

Optimized Paxos 不再满足 $P2^c$ 。(TLA+ 已验证)

■ TLA+ 给出的反例

失败的场景:

2 \uparrow Proposers p_1, p_2 , 3 \uparrow Acceptors a_1, a_2, a_3 :

https://stackedit.io/app# 2/3

7/24/2019 StackEdit

• p_2 提议 Prop(2), 与 a_1, a_2 完成了 Phase1a, Phase1b, Phase2a。 p_2 发送消息 $Accept(2, v_2)$ 给 a_3, a_3 接受 *但是没有 make promise。*

• p_1 提议 Prop(1), 与 a_1 , a_3 完成了 Phase1a, Phase1b,分别收到 $(a_1,2,-1,\bot)$ 与 $(a_3,1,2,v_2)$ 。按照 Phase2a, p_1 选择 $v=v_2$ 。 但是 v_2 并不是<1 中最大的ballot 对应的值。实际上,没有<1 的,所以 $v=v_1$ 。

尽管 $P2^c$ 不满足,但由于 p_2 已经完成 Phase2a, p_1 的消息 $Accept(1,v_1)$ 一定不会被 decided,所以不破坏 Consistency 性质。

这种场景下, p_1 在收到 $(a_3,1,2,v_2)$ 时,可以 abort。 更一般地,如果收到的 Phase1b 消息 a_i,m,b,v_b 中, b>m,该 proposer 可以 abort。

对 Optimized Paxos 的修改 (Research)

参考 PaxosStore@VLDB2016 与 DiskPaxos@DC2003, 将 Phase1b 与 Phase2b 合并: 有什么好处???

Phase 1b

允许 accept ballot

Phase 2b

允许 make promise

Multi-Paxos

Written with StackEdit.

https://stackedit.io/app# 3/3