Peg Solitaire

Asmus Tørsleff qjv778@alumni.ku.dk (asmus.torsleff@gmail.com)

January 12, 2024

introduction

Let b be a board of size n, this can be represented as a n bit binary number. A 1 in the i'th position in b represents a peg in the i'th board position, a 0 represents a cavity.

$$b = b_0 b_1 \dots b_{n-2} b_{n-1}, \ b_i \in \{0, 1\}$$

definitions

Let p(b) = x where x is the number of ones in b, aka. the pop count.

Let a(b, i) = b' be the funtion negating the i'th bit and its neighbours. a(b, i) is only defined when $b_i = 1$ and $b_{i-1} \neq b_{i+1}$. Applying a equates to a move and removes a peg from the board p(b') = p(b) - 1.

We can apply a repeatedly to b until it is no longer defined for any i. The board, s, we get at the end we will call a solution. If we do this in every posible way we get a set S(b) of all solutions for b. The set of optimal solutions is $O(b) = \{s \in S(b) \mid \forall_{s' \in S(b)} \ p(s) \leq p(s')\}$

Let f(b, m) = b' be the function applying $a(b, i_j)$ m times, with each application taking b closer to an optimal solution. If a can not be applied m times before becoming undefined then f(b, m) = b', $b' \in O(b)$.

Let \cdot be the board concatenation operator. $b = x \cdot y = x_0 x_1 ... x_{n-1} y_0 y_1 ... y_{n-1}$.

Let $b^x = b^{x-1} \cdot b$, where $b^0 = id$ is the board such that $b = b \cdot id = id \cdot b$.

Let |b| be the board length operator. |b| = n.

Let
$$o(b) = f(b, |b|) \in O(b)$$

Let x_i be the position of the *i*'th 1 in *b*. Let $w(b) = x_{p(b)} - x_1$

Let r(b) be the function that reverses the board. $r(x \cdot y) = r(y) \cdot r(x), \ r(1) = 1, \ r(0) = 0$

Conjectures

- 1. $|b| \ge p(b)$
- 2. $p(b) \ge p \circ f(b, m)$
- 3. $p \circ f(b, m) \ge p(b) m$
- 4. $p(b) \le 1 \Rightarrow f(b, m) = b$
- 5. $p(b) = |b| \Rightarrow f(b, m) = b$
- 6. $p(b) \ge 0$
- 7. $w(b) \le |b|$
- 8. $p(b) = p \circ r(b)$
- 9. $w(b) = w \circ r(b)$
- 10. $p \circ o(b) = p \circ o \circ r(b)$
- 11. $b = b' \cdot 0^3 \cdot b''$, $p \circ o(b) = p \circ o(b') + p \circ o(b'')$
- 12. $b = b' \cdot b''$, $p \circ o(b) \le p \circ o(b') + p \circ o(b'')$
- 13. $w \circ f(b, x) \le w(b) + 2$
- 14. $b = 0 \cdot 1^n \cdot 0, \ p \circ o(b) = \frac{n+1}{2}$

Proofs

1 $|b| \ge p(b)$

There can never be more ones in b than there are bits.

 $2 \quad p(b) \ge p \circ f(b, m)$

Each application of a removes a one. Thus f can never add ones.

 $3 \quad p \circ f(b, m) \ge p(b) - m$

Each application of a removes a one. f(b,m) applies a m or less times. Thus f(b,m) can never remove more than m ones.

4
$$p(b) \le 1 \Rightarrow f(b, m) = b$$

If $p(b) \leq 0$ then there are not enough ones to apply a. Therefore f will apply a zero times, thus making no changes.

5
$$p(b) = |b| \Rightarrow f(b, m) = b$$

If p(b) = |b| then there are not enough zeroes to apply a. Therefore f will apply a zero times, thus making no changes.

6
$$p(b) \ge 0$$

We can never have a negative number of ones on a board.

7
$$w(b) \le |b|$$

Since $w(b) = x_{p(b)} - x_1$ where $0 \le x_1 \le x_{p(b)} \le |b|$ then w is maximized when $x_1 = 0$. Then we have $w(b) = x_{p(b)} \le |b|$.

8
$$p(b) = p \circ r(b)$$

Changing the order of the bits does not change the number of ones.

$$\mathbf{9} \quad w(b) = w \circ r(b)$$

$$w(b) = x_{p(b)} - x_1 = (|b| - x_1) - (|b| - x_{p(b)}) = w \circ r(b)$$

10
$$p \circ o(b) = p \circ o \circ r(b)$$

If we can apply a(b,i) then we can also apply a(r(b),|b|-i-1). So $f(b,m)=r\circ f(r(b),m)$ and then $o(b)=r\circ o\circ r(b)$ and by 8 we have $p\circ o(b)=p\circ r\circ o\circ r(b)=p\circ o\circ r(b)$.