Отчёт по работе 3.6.1

Спектральный анализ электрически сигналов Карташов Констанин Б04-005

I Анотация

Цель работы: Изучить спектральный состав периодических электрических сигналов.

Оборудование:

- ⊳ Цифровой анализатор спектра и осциллограф
- ⊳ Генератор сигналов

II Теоретическая часть

Спектральное разложение. Любую действительную функцию можно представить в виде спектрального разложения:

$$f(t) = \sum_{n=0}^{\inf} c_n e^{i\omega_n t}.$$

Для периодической функции верно:

$$f(t) = \sum_{n=0}^{\inf} c_n e^{in\omega_0 t}.$$

Из чего следует, что:

$$c_n = \frac{1}{T} \int_0^T f(t)e^{-in\omega_0 t} dt.$$

Таким образом можно найти спектр для периодический сигналов с известной формой, например для прямоугольных импульсов длиной τ и периодом T:

$$c_n = \frac{1}{T} \int_{-\tau/2}^{\tau/2} f(t)e^{-in\omega_0 t} dt = \frac{\tau}{T} \cdot \frac{\sin(n\omega_0 \tau/2)}{n\omega_0 \tau/2} = \frac{\sin(\pi n\tau/T)}{\pi n}.$$

III Экспериментальная часть

Исследование спектра периодической последовательности прямоугольных импульсов.

Подадим на анализатор спектра сигнал из прямоугольных импульсов с частотой повторения f_{Π} и длинной импульса τ .

При увеличении $\tau=100\to 200$ мкс вдове при неизменной $f_\Pi=1$ ГГц, вдвое уменьшается $\Delta\nu=10\to 5$ ГГц и вдвое увеличивается амплитуда a_1 первой гармоники. При увеличении вдвое $f_\Pi=1\to 2$ ГГц, вдове увеличивается $\delta\nu 1\to 2$ ГГц, при этом $\Delta\nu$ не меняется, и вдвое увеличивается амплитуда a_1 первой гармоники. (см. рис. 1)

Рис. 1: Изменение спектра при изменении au

При неизменном $f_{\Pi}=1$ $\Gamma\Gamma$ ц, будем изменять τ и наблюдать изменение $\Delta\nu$:

τ , MKC	40	70	100	130	160	190	200
$\Delta \nu$, $\Gamma \Gamma$ ц	25	14	10	8	6	5	5

Построив график зависимости $\Delta\nu(1/\tau)$, видим, что зависимость линейная. (см. рис. 2)

Измерим амплитуды гармоник сигнала с $f_\Pi=1$ ГГц и $\tau=50$ мкс, и с $f_\Pi=1$ ГГц и $\tau=100$ мкс.

n	1	2	3	4	5	6	7	8	9	10
A, MB	70.89	69.48	67.44	64.93	61.48	57.66	52.85	47.99	43.76	41.09
n	11	12	13	14	15	16	17	18	19	20
A, MB	37.48	33.72	25.72	23.49	21.33	17.1	12.55	8	4.39	0

Таблица 1: Амплитуды гармоник для последовательности прямоугольных импульсов с $f_{\Pi}=1$ $\Gamma\Gamma$ ц и $\tau=50$ мкс

Рис. 2: График зависимости $\Delta \nu(1/\tau)$ при $f_{\Pi}=1$ ГГц

n	1	2	3	4	5	6	7	8	9	10
A, мВ	139.6	131.3	120.2	104.5	86.31	67.03	47.97	30.25	14.33	0

Таблица 2: Амплитуды гармоник для последовательности прямоугольных импульсов с $f_{\Pi}=1$ $\Gamma\Gamma$ ц и $\tau=100$ мкс

ii Исследование спектра периодической последовательности цугов гармонических колебаний.

Подадим на анализатор спектра сигнал из цугов гармонических колебаний с несущей частотой ν_0 длительностью импульса τ , повторяющиеся с частотой f_{Π} .

При увеличении вдвое $\tau=100\to 200$ мкс, вдвое уменьшается $\Delta\nu=20\to 10$ ГГц. (см. рис. 3)

При неизменной длине импульса $\tau=100$ мкс. Посмотрим спектр для $\nu_0=10,25,40$ ГГц. Видим, что при $\nu_0=10$ ГГц максимальная амплитуда приходится на гармонику с частотой 10 ГГц, а при $\nu_0=25$ ГГц они приходится на гармонику с частотой 25 ГГц, аналогично при $\nu_0=40$ ГГц.

Меняя f_{Π} при неизменном τ и ν_0 видим, что меняется $\delta \nu$, причём $\delta \nu = f_{\Pi}$.

Рис. 3: Изменение спектра при изменении au

Запишем спектр цугов с $v_0=25$ ГГц с длинной импульса $\tau=100$ мкс и $f_\Pi=1$ ГГц, и $f_\Pi=2$ ГГц.

n	1	2	3	4	5	6	7	8	9	10
A, MB	4.7	8.9	12	14.36	14.85	14	11.95	8.5	4.39	0
n	11	12	13	14	15	16	17	18	19	20
A, MB	5	9.97	14.45	17.88	19.86	19.9	17.92	13.79	7.69	0
n	21	22	23	24	25	26	27	28	29	30
A, MB	8.96	18.62	28.2	37.35	45.12	51.32	57.29	62.9	66.37	67.92
n	31	33	33	34	35	36	37	38	39	40
A, MB	66.5	62.94	57.49	50.33	41.76	32.74	23.25	14.41	6.6	0

Таблица 3: Амплитуды гармоник для последовательности цугов с $\nu_0=25$ ГГц, длинной импульса $\tau=50$ мкс и $f_\Pi=1$ ГГц

iii Исследование спектра гармонических сигналов, модулированных по амплитуде.

Подадим на анализатор спектра сигнал с несущей частотой $\nu_0=25~\Gamma\Gamma$ ц, модулируемый сигналом с частотой модуляции $f_M=1~\Gamma\Gamma$ ц.

Меняя двойную амплитуду модулирующего сигнала от 0.2 до 2 В, измерим максимальную и минимальную амплитуду сигнала на осциллографе A_{\min} , A_{\max} и основную и боковую амплитуду спектральных компонент сигнала $A_{\text{бок}}$, $A_{\text{осн}}$. Также вычислим глубину модуляции M и отношение $A_{\text{бок}}/A_{\text{осн}}$.

Построим график зависимости $A_{\text{бок}}/A_{\text{осн}}(M)$. Видим, что зависимость линейная.

n	1	2	3	4	5	6	7	8	9	10
A, MB	17.67	28.39	28.17	17.1	0	20	35.73	39.73	29.91	0
\overline{n}	11	12	13	14	15	16	17	18	19	20
А, мВ	37.13	74.46	102.8	125.6	135.6	126	100.3	65	29	0

Таблица 4: Амплитуды гармоник для последовательности цугов с $\nu_0=25~\Gamma\Gamma$ ц, длинной импульса $\tau=50~{\rm mkc}$ и $f_\Pi=2~\Gamma\Gamma$ ц

A_M , B	0.2	0.5	0.8	1.2	1.5	1.8	2
A_{max} , мВ	548	627	686	799	883	942	989
A_{\min} , мВ	445	376	293	204	126	46	0
$A_{\text{осн}}, \text{мB}$	345	325	325	325	325	325	317
$A_{\text{бок}}, \text{ мВ}$	16	41	66	99	124	149	167
M, %	10	25	40	59	75	91	100
$A_{ m fok}/A_{ m och}$	0.05	0.12	0.2	0.3	0.38	0.46	0.53

IV Выводы

Воспользовавшись анализатором спектра мы получили спектральное разложение различных периодических сигналов, наглядно показав, что любой периодический сигнал можно представить в виде суммы гармоник с различными амплитудами.

Рис. 4: График зависимости $A_{\text{бок}}/A_{\text{осн}}(M)$ при $\nu_0=25$ ГГц и $f_M=1$ ГГц