Contents

1	Intro	duction	2	
2	Basic Definitions			
		λ -calculus $\lambda 2$		
	2.2	first-order logic	3	
	2.3	$two\text{-}counter\ automaton\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	6	
	System P			
	3.1	Definitions	7	
	3.2	CONS is undecidable	9	

1 Introduction

2 Basic Definitions

2.1 λ -calculus $\lambda 2$

In the following let $\mathcal{V}_T = \{\alpha, a, \beta, b, ...\}$ be a countable set (of type-variables) and $\mathcal{V}_V = \{x_1, x_2, ...\}$ be a countable set (of value-variables).

Definition 1. The set of all $\lambda 2$ types over \mathcal{V}_T , denoted by $T_{\lambda 2}$, is the smallest set T satisfying the following conditions:

- $\mathcal{V}_T \subseteq \mathcal{T}$,
- if $t_1, t_2 \in T$ then $(t_1 \to t_2) \in T$, and
- if $t \in T$ and $\alpha \in \mathcal{V}_T$ then $\forall \alpha.t \in T$.

The set of all $\lambda 2$ terms over \mathcal{V}_T and \mathcal{V}_V , denoted by $\Lambda_{T_{\lambda 2}}$, is the smallest set Λ_T satisfying the following conditions:

- $\mathcal{V}_V \subseteq \Lambda_{\mathrm{T}}$,
- if $e_1, e_2 \in \Lambda_T$ then $e_1 e_2 \in \Lambda_T$,
- if $x \in \mathcal{V}_V$, $t \in T_{\lambda 2}$, and $e \in \Lambda_T$ then $\lambda x : t \cdot e \in \Lambda_T$,
- if $\alpha \in \mathcal{V}_T$ and $e \in \Lambda_T$ then $\Lambda \alpha.e \in \Lambda_T$, and
- if $e \in \Lambda_T$ and $t \in T_{\lambda 2}$ then $e \in \Lambda_T$.

Definition 2. Let $e \in \Lambda_{T_{\lambda_2}}$. The <u>free variables of e</u>, denoted by FV(e), are defined inductively as follows:

$$FV(e) = \begin{cases} \{x\} & \text{if } e = x \\ FV(e_1) \cup FV(e_2) & \text{if } e = e_1e_2 \\ FV(e') \setminus \{x\} & \text{if } e = \lambda x : t.e' \\ FV(e') & \text{if } e = \Lambda \alpha.e' \\ FV(e') & \text{if } e = e' t \end{cases}$$

Or is this definition better?

Definition 3. Let $e \in \Lambda_{T_{\lambda_2}}$. The <u>free variables of e</u>, denoted by FV(e), are defined inductively as follows:

$$FV(y) = \{x\}$$

$$FV(e_1e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(\lambda x : t.e') = FV(e') \setminus \{x\}$$

$$FV(\Lambda \alpha.e') = FV(e')$$

$$FV(e't) = FV(e')$$

Definition 4. Let $\mathcal{V} = \{x_1, \dots, x_n\}$ be a finite subset of \mathcal{V}_T and $t_1, \dots, t_n \in \Lambda_{T_{\lambda_2}}$. A $\underline{\lambda_2}$ -basis $\Gamma = \{(x_1 : t_1), \dots, (x_n : t_n)\}$ is a mapping from \mathcal{V} to T_{λ_2} . If the kind of basis is clear from the context we abbreviate λ_2 -basis to basis.

The free variables of a basis Γ , denoted by $FV(\Gamma)$, are $\bigcup \{FV(t) \mid (x:t) \in \Gamma\}$.

For a basis Γ , $x \in \mathcal{V}_V \setminus \text{dom}(\Gamma)$, and $t \in T_{\lambda 2}$ we will abbreviate $\Gamma \cup \{(x:t)\}$ to $\Gamma, x:t$.

Definition 5. Let e be in $\Lambda_{T_{\lambda_2}}$, t in T_{λ_2} , and Γ be a basis. A statement e:t is <u>derivable</u> from Γ , denoted by $\Gamma \vdash e:t$, if e:t can be produced using the following rules.

$$\begin{array}{ll} (\operatorname{Axiom}) & \Gamma, x: t \vdash x: t \\ \\ (\lambda\text{-Introduction}) & \frac{\Gamma, x: t_1 \vdash e: t_2}{\Gamma \vdash \lambda x: t_1.e: t_1 \to t_2} \\ \\ (\lambda\text{-Elimination}) & \frac{\Gamma \vdash e_1: t_1 \to t_2 \quad \Gamma \vdash e_2: t_1}{\Gamma \vdash e_1 e_2: t_2} \\ \\ (\forall\text{-Introduction}) & \frac{\Gamma \vdash e: t}{\Gamma \vdash \Lambda \alpha.e: \forall \alpha.t} \qquad \alpha \notin \operatorname{FV}(\Gamma) \\ \\ (\forall\text{-Elimination}) & \frac{\Gamma \vdash e: \forall \alpha.t}{\Gamma \vdash e\: t': t\: [\alpha:=t']} & t' \in \mathcal{T}_{\lambda 2} \end{array}$$

Definition 6. The inhabitation problem for $\lambda 2$, denoted by **INHAB**, is defined as follows. Given a $\lambda 2$ type t.

Is there a $\lambda 2$ term M such that $\emptyset \vdash M : t$?

But we can rephrase this problem so that it becomes more general: Given a basis Γ and a $\lambda 2$ type t.

Is there a $\lambda 2$ term M such that $\Gamma \vdash M : t$?

Obviously the second version is a special case of the first one. For the other direction consider a basis $\Gamma = \{(x_1 : t_1), \dots, (x_n : t_n)\}$ and a $\lambda 2$ type t. Clearly, for every term $M, \Gamma \vdash M : t$ holds iff $\emptyset \vdash \lambda x_1 : t_1 \dots \lambda x_n : t_n M : t_1 \to \dots \to t_n \to t$.

2.2 first-order logic

Definition 7. A <u>ranked set</u> is a tuple (Σ, rk) , where Σ is a countable set and $rk: \Sigma \to \mathbb{N}$ is a function that maps every symbol from Σ to a natural number (its rank).

If the function rk is understood we will just write Σ instead of (Σ, rk) . The set of all elements in Σ with a certain rank k, denoted by $\Sigma^{(k)}$, is defined as $\Sigma^{(k)} := rk^{-1}(k)$.

For the remainder of this subsection let $\mathcal{V} = \{y_1, y_2, \dots\}$ be a countable set (of variables), \mathcal{F} a ranked set (of function symbols), and \mathcal{P} a ranked set (of predicate symbols).

Definition 8. The set of <u>terms over V and \mathcal{F} , denoted by $\mathcal{T}_{(V,\mathcal{F})}$, is the smallest set \mathcal{T} satisfying the following conditions:</u>

- $\mathcal{V} \subset \mathcal{T}$, and
- for every $k \in \mathbb{N}$ if $f \in \mathcal{F}^{(k)}$ and $t_1, t_2, \dots, t_k \in \mathcal{T}$ then $f(t_1, t_2, \dots, t_k) \in \mathcal{T}$.

The set of first-order formulas over \mathcal{V} , \mathcal{F} , and \mathcal{P} , denoted by $\mathcal{L}_{(\mathcal{V},\mathcal{F},\mathcal{P})}$, is the smallest set \mathcal{L} satisfying the following conditions:

- for every $k \in \mathbb{N}$ if $P \in \mathcal{P}^{(k)}$ and $t_1, t_2, \dots, t_k \in \mathcal{T}_{(\mathcal{V}, \mathcal{F})}$ then $P(t_1, t_2, \dots, t_k) \in \mathcal{L}$.
- If $\varphi, \psi \in \mathcal{L}$ then $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $\neg \varphi \in \mathcal{L}$, and
- if $y \in \mathcal{V}$ and $\varphi \in \mathcal{L}$ then $\exists y.\varphi, \forall y.\varphi \in \mathcal{L}$.

We introduce an additional binary operation \to on formulas, where for some φ , $\psi \in \mathcal{L}_{(\mathcal{V},\mathcal{F},\mathcal{P})}$ the formula $(\varphi \to \psi)$ is defined as $(\neg \varphi \lor \psi)$. For nullary relation symbols P we will abbreviate P() to P. If a formula φ is of the form $Qx.(\psi)$ (where $Q \in \{\exists, \forall\}$, $x \in \mathcal{V}$, and $(\psi) \in \mathcal{L}_{(\mathcal{V},\mathcal{F},\mathcal{P})}$) we often drop the dot and write $Qx(\psi)$ instead. If a formula φ has multiple variables binded by the same quantifier (i.e. $\varphi = Qx_1.Qx_2...Qx_n.\psi$ for $Q \in \{\exists, \forall\}$, some $n \in \mathbb{N}, x_1, x_2, ..., x_n \in \mathcal{V}$, and $\psi \in \mathcal{L}_{(\mathcal{V},\mathcal{F},\mathcal{P})}$) we abbreviate φ to $Qx_1x_2...x_n.\psi$ or to $Q\vec{x}.\psi$ where $\vec{x} = (x_1, x_2, ..., x_n)^{\top}$.

Definition 9. The variables of a term $t \in \mathcal{T}_{(\mathcal{V},\mathcal{F})}$, denoted by V(t), are defined by:

$$V(t) = \begin{cases} \{y\} & \text{if } t = y \\ V(t_1) \cup V(t_2) \cup \dots \cup V(t_k) & \text{if } t = f(t_1, t_2, \dots, t_k) \end{cases}$$

The free variables of a formula $\varphi \in \mathcal{L}_{(\mathcal{V},\mathcal{F},\mathcal{P})}$, denoted by $FV(\varphi)$, are defined as follows:

$$\mathrm{FV}(\varphi) = \begin{cases} \mathrm{V}(t_1) \cup \mathrm{V}(t_2) \cup \cdots \cup \mathrm{V}(t_k) & \text{if } \varphi = P(t_1, t_2, \dots, t_k) \\ \mathrm{FV}(\psi) & \text{if } \varphi = \neg \psi \\ \mathrm{FV}(\varphi_1) \cup \mathrm{FV}(\varphi_2) & \text{if } \varphi = (\varphi_1 \wedge \varphi_2) \text{ or } \varphi = (\varphi_1 \vee \varphi_2) \\ \mathrm{FV}(\psi) \setminus \{y\} & \text{if } \varphi = \forall y. \psi \text{ or } \varphi = \exists y. \psi \end{cases}$$

Definition 10. Let y be in \mathcal{V} and $t, t' \in \mathcal{T}_{(\mathcal{V}, \mathcal{F})}$. The <u>substitution of y by t' in t, denoted by t[y := t'], is defined as follows:</u>

$$t[y := t'] = \begin{cases} t' & \text{if } t = y \\ z & \text{if } t = z \text{ and } z \neq y \\ f(t_1[y := t'], \dots, t_k[y := t']) & \text{if } t = f(t_1, \dots, t_k) \end{cases}$$

Now we can lift this definition to formulas, let φ be in $\mathcal{L}_{(\mathcal{V},\mathcal{F},\mathcal{P})}$. The <u>substitution of</u> y by t' in φ , denoted by $\varphi[y:=t']$, is defined as follows:

$$\varphi\left[y:=t'\right] = \begin{cases} P(t_1\left[y:=t'\right], \dots, t_k\left[y:=t'\right]) & \text{if } \varphi = P(t_1, \dots, t_k) \\ \neg(\psi\left[y:=t'\right]) & \text{if } \varphi = \neg\psi \\ \varphi_1\left[y:=t'\right] \circ \varphi_2\left[y:=t'\right] & \text{if } \varphi = (\varphi_1 \circ \varphi_2) \;, \; \circ \in \{\land, \lor\} \\ \varphi & \text{if } \varphi = \forall y.\psi \text{ or } \varphi = \exists y.\psi \\ Qz.(\psi\left[y:=t'\right]) & \text{if } \varphi = Qz.\psi, \; Q \in \{\forall, \exists\} \text{ and } z \neq y \end{cases}$$

Now we come to the semantics of first-order formulas.

Definition 11. An interpretation I over \mathcal{V} , \mathcal{F} , and \mathcal{P} is a triple $(\Delta, \cdot^I, \omega)$, where Δ is a nonempty set (which we call domain), \cdot^I is a function such that $f^I \colon \Delta^k \to \Delta$ is a function for every $k \in \mathbb{N}$, $f \in \mathcal{F}^{(k)}$ and $P^I \subseteq \Delta^k$ is a relation for every $k \in \mathbb{N}$, $f \in \mathcal{P}^{(k)}$ ω is a function from \mathcal{V} to Δ .

Let $I = (\Delta, \cdot^I, \omega)$ be an interpretation, $y \in \mathcal{V}$, and $d \in \Delta$ the interpretation $I[y \mapsto d]$ is defined as $(\Delta, \cdot^I, \omega[y \mapsto d])$ where

$$(\omega [y \mapsto d])(z) = \begin{cases} d & \text{if } z = y \\ \omega(y) & \text{otherwise.} \end{cases}$$

Definition 12. Let $I = (\Delta, \cdot^I, \omega)$ be an interpretation and t a term. The <u>interpretation</u> of t under I, denoted by t^I , is defined as follows:

$$t^{I} = \begin{cases} \omega(y) & \text{if } t = y\\ f^{I}(t_{1}^{I}, \dots, t_{k}^{I}) & \text{if } t = f(t_{1}, \dots, t_{k}) \end{cases}$$

Let φ be a formula. The <u>interpretation of φ under I, denoted by φ^I , is defined recursively as follows:</u>

$$\varphi^I = \begin{cases} \top & \text{if } \varphi = P(t_1, \dots, t_k) \text{ and } (t_1^I, \dots, t_k^I) \in P^I \\ \bot & \text{if } \varphi = P(t_1, \dots, t_k) \text{ and } (t_1^I, \dots, t_k^I) \notin P^I \\ \text{not } \psi^I & \text{if } \varphi = \neg \psi \\ \varphi_1^I \text{ and } \varphi_2^I & \text{if } \varphi = (\varphi_1 \land \varphi_2) \\ \varphi_1^I \text{ or } \varphi_2^I & \text{if } \varphi = (\varphi_1 \lor \varphi_2) \\ \text{exists } d \in \Delta \ \psi^{I[y \mapsto d]} & \text{if } \varphi = \exists y.\psi \\ \text{forall } d \in \Delta \ \psi^{I[y \mapsto d]} & \text{if } \varphi = \forall y.\psi \end{cases}$$

The interpretation I is a <u>model</u> of φ , denoted by $I \models \varphi$, if $\varphi^I = \top$.

When we define an interpretation I and we have a nullary predicate symbol P we write $P^I = \top$ instead of $P^I = \{()\}$ and $P^I = \bot$ for $P^I = \emptyset$ (this works because $P()^I = \top$ iff $() \in P^I$).

Definition 13. Let Γ be a finite set of first-oder formulas.

We say that an interpretation I is a <u>model</u> of Γ , denoted by $I \models \Gamma$, if $I \models \psi$ for every ψ in Γ .

The formula φ is a <u>semantic consequence</u> of Γ , denoted by $\Gamma \vdash \varphi$, if every model of Γ is also a model of φ .

The free variables of Γ , denoted by $FV(\Gamma)$, are $\bigcup \{FV(\varphi) \mid \varphi \in \Gamma\}$.

2.3 two-counter automaton

We will use a version of two-counter automaton which only has two types of transitions. First it can increment a register and second it can decrement a register or jump if the register is already zero. Formally:

Definition 14. A deterministic two-counter automaton is a 4-tuple $M = (\mathcal{Q}, Q_0, Q_f, R)$,

where Q is a finite set (of states),

 Q_0 is in \mathcal{Q} (the initial state),

 Q_f is in \mathcal{Q} (the final state), and

R is a function from $\mathcal{Q} \setminus \{Q_f\}$ to $\mathcal{R}_{\mathcal{Q}}$, where $\mathcal{R}_{\mathcal{Q}} = \{+(i,Q') \mid i \in \{1,2\}, Q' \in \mathcal{Q}\}$ $\cup \{-(i,Q_1,Q_2) \mid i \in \{1,2\}, Q_1, Q_2 \in \mathcal{Q}\}$

A <u>configuration</u> C of our automaton is a triple $\langle Q, m, n \rangle$, where $Q \in \mathcal{Q}$ and $m, n \in \mathbb{N}$. Let r be in $R(Q \setminus \{Q_f\})$, then \Rightarrow_M^r is a binary relation on the configurations of M such that two configurations $\langle Q, m, n \rangle$, $\langle \widehat{Q}, \widehat{m}, \widehat{n} \rangle$ of M are in the in the relation if all of the following conditions hold:

- $Q \neq Q_f$, r = R(Q),
- if r = +(1, Q') for some $Q' \in \mathcal{Q}$ then $\widehat{Q} = Q'$, $\widehat{m} = m + 1$, and $\widehat{n} = n$,
- if r = +(2, Q') for some $Q' \in \mathcal{Q}$ then $\widehat{Q} = Q'$, $\widehat{m} = m$, and $\widehat{n} = n + 1$,
- if $r = -(1, Q_1, Q_2)$ for some $Q_1, Q_2 \in \mathcal{Q}$ then if m = 0 then $\widehat{Q} = Q_2$, $\widehat{m} = 0$, and $\widehat{n} = n$, if $m \ge 1$ then $\widehat{Q} = Q_1$, $\widehat{m} = m - 1$, and $\widehat{n} = n$,
- if $r=-(2,Q_1,Q_2)$ for some $Q_1,Q_2\in\mathcal{Q}$ then if n=0 then $\widehat{Q}=Q_2,\,\widehat{m}=m,$ and $\widehat{n}=0,$ if $n\geq 1$ then $\widehat{Q}=Q_1,\,\widehat{m}=m,$ and $\widehat{n}=n-1.$

The <u>transition relation of M</u>, denoted by \Rightarrow_M , is defined as $\bigcup_{r \in R(Q \setminus \{Q_f\})} \Rightarrow_M^r$. We denote the transitive reflexive closure of \Rightarrow_M by \Rightarrow_M^*

Let m, n be in \mathbb{N} , we say that \underline{M} terminates on input (m, n) if there exist $\widehat{m}, \widehat{n} \in \mathbb{N}$ such that $\langle Q_0, m, n \rangle \Rightarrow_M^* \langle Q_f, \widehat{m}, \widehat{n} \rangle$ (It follows that there exists an $i \in \mathbb{N}$ and configurations D_1, \ldots, D_i of M such that $\langle Q_0, m, n \rangle = D_1 \Rightarrow_M \cdots \Rightarrow_M D_i = \langle Q_f, \widehat{m}, \widehat{n} \rangle$, we call this chain a computation with length i).

Definition 15. The halting problem for two-counter automaton, denoted by HALT, is defined as follows. Given a two-counter automaton M.

Does M terminate on input (0,0)?

It is well known that **HALT** is undecidable.

3 System P

3.1 Definitions

In the following let $\mathcal{V}_P = \{\alpha, a, \beta, b, ...\}$ be a countably infinite subset of \mathcal{V}_T (of variables). Let $\mathcal{P}_P = \{P, Q, ...\}$ be a set (of predicate symbols) and \mathcal{P} a ranked set such that $\mathcal{P}^{(0)} = \{\mathbf{false}\}$, $\mathcal{P}^{(2)} = \mathcal{P}_P$, and $\mathcal{P}^{(k)} = \emptyset$ for all $k \in \mathbb{N} \setminus \{0, 2\}$. A first-order logic formula φ over $(\mathcal{V}_P, \emptyset, \mathcal{P})$ is an

atomic formula if $\varphi =$ false or $\varphi = P(a,b)$ for some $P \in \mathcal{P}_P$ and $a,b \in \mathcal{V}_P$.

universal formula if $\varphi = \forall \vec{\alpha}(A_1 \to A_2 \to \cdots \to A_n)$ for some $n \in \mathbb{N}$ and where A_i is an atomic formula for $i \in \{1, \dots, n\}$, $A_i \neq \mathbf{false}$ for $i \in \{1, \dots, n-1\}$ and for each $\alpha \in \mathrm{FV}(\varphi) \cap \mathrm{FV}(A_n)$ there exists an $i \in \{1, \dots, n-1\}$ such that $\alpha \in \mathrm{FV}(A_i)$.

existential formula if there exists an $n \in \mathbb{N}$, atomic formulas $A_i \neq \mathbf{false}$ for $i \in \{1, \dots, n\}$ such that $\varphi = \forall \vec{\alpha}(A_1 \to A_2 \to \dots \to A_{n-1} \to \forall \beta(A_n \to \mathbf{false}) \to \mathbf{false})$.

The set of formulas of System \mathbf{P} (= set of \mathbf{P} -formulas) over \mathcal{V}_P and \mathcal{P}_P is the set of all first-order formulas in $\mathcal{L}_{(\mathcal{V}_P,\emptyset,\mathcal{P})}$ that are either an atomic, universal or existential formula.

Definition 16. A finite set of **P**-formulas Γ is called **P**-basis, or basis if it is clear from the context whether a **P**-basis or a $\lambda 2$ -basis is meant.

For a **P**-basis Γ and a **P**-formula A we will abbreviate $\Gamma \cup \{A\}$ to Γ , A (c.f. $\lambda 2$ -basis).

Definition 17. Let A be a **P**-formula, and Γ be a basis. The formula A is a semantic consequence of Γ if A can be produced using the following deduction rules.

$$\begin{array}{ll} (\operatorname{Axiom}) & \Gamma, A \vdash A \\ \\ (\to \operatorname{-Introduction}) & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \\ \\ (\to \operatorname{-Elimination}) & \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \\ \\ (\forall \operatorname{-Introduction}) & \frac{\Gamma \vdash B}{\Gamma \vdash \forall \alpha B} & \alpha \notin \operatorname{FV}(\Gamma) \\ \\ (\forall \operatorname{-Elimination}) & \frac{\Gamma \vdash \forall \alpha B}{\Gamma \vdash B \ [\alpha := b]} & b \in \mathcal{V}_P \end{array}$$

We define a more general consequence relation in which we demand that **false** is interpreted with \bot . In this relation existential formulas will behave like the name suggests. Formally:

Definition 18. Let Γ be a basis. The **P**-formula A is a sematic consequence with falsity of Γ , denoted by $\Gamma \vdash_f A$, if for every interpretation I

$$I \models \Gamma$$
 and $\mathbf{false}^I = \bot$ implies $I \models A$.

This allows us to add the following deduction rule.

$$(\exists \text{-Introduction}) \quad \frac{\Gamma, A [\alpha := a] \vdash_{\mathsf{f}} B}{\Gamma, A' := \forall \alpha (A \to \mathbf{false}) \to \mathbf{false} \vdash_{\mathsf{f}} B} \quad a \notin \mathit{FV}(\Gamma, A', B)$$

Proof. Let $I = (\Delta, \cdot^I, \omega)$ be a model of $\Gamma, \forall \alpha(A \to \mathbf{false}) \to \mathbf{false}$ with $\mathbf{false}^I = \bot$ and $a \in \mathcal{V}_P$ a variable such that $a \notin FV(\Gamma, A', B)$.

$$\begin{split} I &\models \Gamma, \forall \alpha (A \to \mathbf{false}) \to \mathbf{false} \Rightarrow I \models \forall \alpha (A \to \mathbf{false}) \to \mathbf{false} \\ &\Rightarrow (\forall \alpha (A \to \mathbf{false}))^I \to \mathbf{false}^I \\ &\Rightarrow (\forall \alpha (A \to \mathbf{false}))^I \to \bot \\ &\Rightarrow \neg (\forall \alpha (A \to \mathbf{false}))^I \\ &\Rightarrow \neg (\forall d \in \Delta \colon (A \to \mathbf{false})^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta \colon \neg (A^{I[\alpha \mapsto d]} \to \mathbf{false}^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta \colon \neg (\neg A^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta \colon \neg (\neg A^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta \colon A^{I[\alpha \mapsto d]} \end{split}$$

Together with $a \notin FV(\Gamma, A')$, it follows that $I[a \mapsto d]$ is a model of $\Gamma, A[\alpha := a]$. Which implies $I[a \mapsto d] \models B$. Since a is not free in B we conclude that I is also a model of B.

Definition 19. The problem to decide whether a given set of **P**-formulas is consistent, denoted by **CONS**, is defined as follows. Given a set of **P**-formulas Γ .

Does $\Gamma \vdash$ **false** not hold?

3.2 CONS is undecidable

We will show that $\mathbf{HALT} \leq \mathbf{CONS}$ then the undecidability of \mathbf{CONS} directly follows from the undecidability of \mathbf{HALT} . For a given two-counter automaton M we will effectively construct a \mathbf{P} -basis Γ_M such that

M terminates on input (0,0) iff $\Gamma_M \vdash \mathbf{false}$ holds in System \mathbf{P} .

Let $M = (\mathcal{Q}, Q_0, Q_f, R)$ be a two-counter automaton, w.l.o.g. $S, P, R_1, R_2, E, D \notin \mathcal{Q}$. In the following we will consider **P**-formulas over \mathcal{V}_P and \mathcal{P}_P , where $\mathcal{P}_P = \mathcal{Q} \uplus \{S, P, R_1, R_2, E, D\}$. We will abbreviate P(a, a) to P(a), note that this way we can use binary predicate symbols as unary ones.

Intuitively Q(a) stands for "a is in state Q", $R_i(a, m)$ stands for "in a the value of register i is m" for $i \in \{1, 2\}$, S(a, b) states that "b is a successor of a", P(a, b) states that "b is a predecessor of a", E(a) marks "a as the end of chain", and D(a) states that "a is not the end of a chain".

For a configuration $C = \langle Q, m, n \rangle$ of M we define a set of **P**-formulas Γ_C . It contains the following formulas:

- \bullet Q(a)
- $R_1(a, a_0), P(a_{i-1}, a_i)$ for $i \in \{1, \dots, m\}$
- $R_2(a,b_0), P(b_{i-1},b_i)$ for $i \in \{1,\ldots,n\}$
- $D(a), D(a_i), D(b_j)$ for $i \in \{0, ..., m-1\}$ and $j \in \{0, ..., n-1\}$
- $E(a_m), E(b_n)$

Next we need sets of **P**-formulas for all possible transitions. For every $Q \in \mathcal{Q} \setminus \{Q_f\}$ and $r \in \mathcal{R}_{\mathcal{Q}}$ we define $\Gamma_{Q,r}$. If r = +(1,Q') for some $Q' \in \mathcal{Q}$ then $\Gamma_{Q,+(1,Q')}$ contains the following formulas:

- $\forall \alpha \beta(Q(\alpha) \to S(\alpha, \beta) \to Q'(\beta))$ change of state
- $\forall \alpha \beta \gamma \delta(Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to R_1(\beta, \delta) \to P(\delta, \gamma))$ increment register 1

- $\forall \alpha \beta \delta(Q(\alpha) \to S(\alpha, \beta) \to R_1(\beta, \delta) \to D(\delta))$ prevent zero in register 1
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_2(\alpha, \gamma) \to R_2(\beta, \gamma))$ do not change the value register 2

If $r=-(1,Q_1,Q_2)$ for some $Q_1,Q_2\in\mathcal{Q}$ then $\Gamma_{Q,-(1,Q_1,Q_2)}$ contains the following formulas:

- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to E(\gamma) \to Q_2(\beta))$ jump to Q_2 if register 1 is zero
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to E(\gamma) \to R_1(\beta, \gamma))$ if register 1 is zero it stays zero
- $\forall \alpha \beta \gamma(Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to D(\gamma) \to Q_1(\beta))$ change state to Q_1 if register 1 is greater zero
- $\forall \alpha \beta \gamma \delta(Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to D(\gamma) \to P(\gamma, \delta) \to R_1(\beta, \delta))$ decrement register 1
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_2(\alpha, \gamma) \to R_2(\beta, \gamma))$ do not change register 2 in both cases

For r = +(2, Q') for some $Q' \in \mathcal{Q}$ or $r = -(2, Q_1, Q_2)$ for some $Q_1, Q_2 \in \mathcal{Q}$ the sets $\Gamma_{Q,r}$ are defined analogously.

We also need a set Γ_1 to ensure that our representation works correctly. The following formula are in Γ_1 :

- $\forall \alpha \beta(S(\alpha, \beta) \to D(\beta))$ no successor is the end of a chain
- $\forall \alpha(D(\alpha) \to \forall \beta(R_1(\alpha, \beta) \to \mathbf{false}) \to \mathbf{false})$ every element that represents a configuration has a value for register 1
- $\forall \alpha(D(\alpha) \to \forall \beta(R_2(\alpha, \beta) \to \mathbf{false}) \to \mathbf{false})$ every element that represents a configuration has a value for register 2
- $\forall \alpha (\forall \beta (S(\alpha, \beta) \rightarrow \mathbf{false}) \rightarrow \mathbf{false})$ every element has a successor

We define $\Gamma_{\overline{M}}$ as $\bigcup_{Q \in \mathcal{Q} \setminus \{Q_f\}} \Gamma_{Q,R(Q)} \cup \{ \forall \alpha (Q_f(\alpha) \to \mathbf{false}) \} \cup \Gamma_1$. Finally we can define Γ_M as $\Gamma_{C_1} \cup \Gamma_{\overline{M}}$, where $C_1 = \langle Q_0, 0, 0 \rangle$ is the initial configuration.

Claim 20.

 $\Gamma_M \vdash \mathbf{false} \ holds \ in \ system \ P \implies M \ terminates \ on \ input \ (0,0)$

Proof. Assume M does not terminate then there is an infinite chain $C_1 \Rightarrow_M C_2 \Rightarrow_M C_3 \Rightarrow_M \dots$ $(C_i = \langle Q_i, m_i, n_i \rangle \text{ for } i \in \mathbb{N}^+)$. Now we construct a model of Γ_M which interprets **false** with \bot this contradicts $\Gamma_M \vdash \mathbf{false}$.

To illustrate the idea we will use a graphical notation for an interpretation I. By $d_1 \stackrel{\mathrm{R}}{\to} d_2$ we say that $(d_1, d_2) \in R^I$. And we use $\frac{P}{d}$ to say that $(d, d) \in P^I$ for predicate symbols that are used as unary predicate symbols. As domain for our interpretation we will use the natural numbers. Every number will have two tasks: firstly it will represent itself as a possible value for register 1 or 2 and secondly every number i greater than zero will also represent the i^{th} configuration of our infinite computation. Now the idea for our model of Γ_M looks like this:

We have $0 \in E^I$ and all other numbers are in D^I . Here is the more formal definition of our model $I = (\mathbb{N}, \cdot^I, \omega)$.

$$P^{I} = \{(i+1,i) \mid i \in \mathbb{N}\} \qquad \qquad R_{1}^{I} = \{(i,m_{i}) \mid i \in \mathbb{N}\} \qquad R_{2}^{I} = \{(i,n_{i}) \mid i \in \mathbb{N}\}$$

$$Q^{I} = \{(i,i) \mid i \in \mathbb{N}^{+}, Q = Q_{i}\} \qquad D^{I} = \{(i,i) \mid i \in \mathbb{N}^{+}\} \qquad E^{I} = \{(0,0)\}$$

$$S^{I} = \{(i,i+1) \mid i \in \mathbb{N}\} \qquad \mathbf{false}^{I} = \bot$$

$$a^{I} = 1$$
 $a_{0}^{I} = 0$ $b_{0}^{I} = 0$

Since there are no free variables in Γ_M we can just set $\omega(x) = 0$ for every $x \in \mathcal{V}_P$. It is easy to see that I is indeed a model of Γ_M .

We proof the other direction by induction on the length of the computation. But to be able to use the induction hypothesis we need a slightly more general statement.

Claim 21. Let $C = \langle Q, m, n \rangle$ be a configuration of M. If a final configuration (i.e. a configuration $\langle Q_f, \widehat{m}, \widehat{n} \rangle$ for some $\widehat{n}, \widehat{m} \in \mathbb{N}$) is reachable from C then $\Gamma_C \cup \Gamma_{\overline{M}} \vdash \mathbf{false}$.

Proof. By induction on the length i of the computation.

Induction Base: i = 0

Since a final configuration is reachable in 0 steps C must be this final configuration. So $C = \langle Q_f, m, n \rangle$ for some $n, m \in \mathbb{N}$. Hence, $Q_f(a)$ is in Γ_C for some $a \in \mathcal{V}_P$ and $\forall \alpha (Q_f(\alpha) \to \mathbf{false})$ is in $\Gamma_{\overline{M}}$, we can easily deduce false.

$$\frac{\Gamma_C \cup \Gamma_{\overline{M}} \vdash \forall \alpha (Q_f(\alpha) \to \mathbf{false})}{\Gamma_C \cup \Gamma_{\overline{M}} \vdash Q_f(a) \to \mathbf{false}} \qquad \Gamma_C \cup \Gamma_{\overline{M}} \vdash Q_f(a)}{\Gamma_C \cup \Gamma_{\overline{M}} \vdash \mathbf{false}}$$

Induction Step: i = i' + 1

Since $I \models \mathbf{false}$ holds trivially if I interprets \mathbf{false} with \top we only need to consider models of $\Gamma_C \cup \Gamma_{\overline{M}}$ that interpret \mathbf{false} with \bot (note that there are no such models if M terminates which is exactly what we want to proof). As result of this observation we can use the \exists -Introduction rule.

From the fact that a final configuration is reachable from C in i steps we can deduce that there exists a configuration $D = \langle \widehat{Q}, \widehat{m}, \widehat{n} \rangle$ such that $C \Rightarrow_M^r D$ for some $r \in \mathcal{R}_{\mathcal{Q}}$ and a final configuration is reachable from D in i' steps. We also know that $C = \langle Q, m, n \rangle$ for some $Q \in \mathcal{Q} \setminus \{Q_f\}$ and some $m, n \in \mathbb{N}$. The set Γ_C contains the formulas:

$$R_1(a, a_0), P(a_{i-1}, a_i) \text{ and } D(a_{i-1}) \text{ for } i \in \{1, \dots, n\},$$

 $R_2(a, b_0), P(b_{i-1}, b_i) \text{ and } D(b_{i-1}) \text{ for } i \in \{1, \dots, m\},$
 $Q(a), D(a), E(a_n) \text{ and } E(b_m).$

And Γ_D contains the formulas:

$$R_1(\widehat{a}, \widehat{a}_0), P(\widehat{a}_{i-1}, \widehat{a}_i) \text{ and } D(\widehat{a}_{i-1}) \text{ for } i \in \{1, \dots, \widehat{n}\},$$

 $R_2(\widehat{a}, \widehat{b}_0), P(\widehat{b}_{i-1}, \widehat{b}_i) \text{ and } D(\widehat{b}_{i-1}) \text{ for } i \in \{1, \dots, \widehat{m}\},$
 $Q(\widehat{a}), D(\widehat{a}), E(\widehat{a}_{\widehat{n}}) \text{ and } E(\widehat{b}_{\widehat{m}}).$

The basic idea is to deduce Γ_D from $\Gamma_C \cup \Gamma_{\overline{M}}$ and then apply the induction hypothesis to $\Gamma_D \cup \Gamma_{\overline{M}}$.

$$\frac{\frac{\text{Induction Hypothesis}}{\Gamma_C \cup \Gamma_{\overline{M}} \cup \Gamma_D \vdash_{\mathbf{f}} \mathbf{false}} \qquad \Gamma_C \cup \Gamma_{\overline{M}} \vdash_{\mathbf{f}} \Gamma_D}{\Gamma_C \cup \Gamma_{\overline{M}} \vdash_{\mathbf{f}} \mathbf{false}}$$

We achieve this by looking at the four possible cases for the type of the rule r. We will only consider the cases r = +(1, Q') and $r = -(1, Q_1, Q_2)$, the two remaining cases r = +(2, Q') and $r = -(2, Q_1, Q_2)$ follow by exchanging the roles of register 1 and register 2 in the first two cases.

First we need a new free variable representing the configuration D. Also the value in register 2 does not change, because in both cases we are only concerned with register 1. For the succeeding tableau proofs we will abbreviate **false** by **f** and we will drop $\Gamma_C \cup \Gamma_{\overline{M}}$ and only write new formulas on the left side of $\vdash_{\mathbf{f}}$.

We first introduce a new variable representing D (let $b \in \mathcal{V}_P \setminus \text{FV}(\Gamma_C \cup \Gamma_{\overline{M}})$).

$$\begin{array}{c} \vdots \\ \hline S(a,b),D(b)\vdash_{\mathrm{f}}\mathbf{f} \\ \hline S(a,b)\vdash_{\mathrm{f}}D(b)\to\mathbf{f} \end{array} \\ \hline \begin{array}{c} S(a,b)\vdash_{\mathrm{f}}\forall\alpha\beta(S(\alpha,\beta)\to D(\beta)) \\ \hline S(a,b)\vdash_{\mathrm{f}}D(b) \to \mathbf{f} \end{array} \\ \hline \hline S(a,b)\vdash_{\mathrm{f}}\mathbf{f} \\ \hline \hline \forall\beta(S(a,\beta)\to\mathbf{f})\to\mathbf{f} \vdash_{\mathrm{f}}\mathbf{f} \\ \hline \vdash_{\mathrm{f}}(\forall\beta(S(a,\beta)\to\mathbf{f})\to\mathbf{f})\to\mathbf{f} \end{array} \\ \hline \begin{array}{c} F(a,b)\vdash_{\mathrm{f}}\mathbf{f} \\ \hline \vdash_{\mathrm{f}}\forall\beta(S(a,\beta)\to\mathbf{f})\to\mathbf{f} \\ \hline \vdash_{\mathrm{f}}(\forall\beta(S(a,\beta)\to\mathbf{f})\to\mathbf{f}) \to \mathbf{f} \end{array} \\ \hline \vdash_{\mathrm{f}}\mathbf{f} \end{array} \\ \hline \begin{array}{c} F(a,b)\vdash_{\mathrm{f}}\mathbf{f} \\ \hline \vdash_{\mathrm{f}}\forall\beta(S(a,\beta)\to\mathbf{f})\to\mathbf{f} \\ \hline \vdash_{\mathrm{f}}\forall\beta(S(a,\beta)\to\mathbf{f})\to\mathbf{f} \\ \hline \vdash_{\mathrm{f}}\mathbf{f} \end{array} \\ \hline \end{array}$$

Since register 2 should not change we need $R_2(b, b_0)$. Again we will just drop S(a, b) and D(b) on the left side for comprehensibility.

$$\begin{array}{c} D(b) \text{ on the left side for comprehensibility.} \\ & \underbrace{\frac{\vdash_{\mathbf{f}} \forall \alpha \beta \gamma(Q(\alpha) \to S(\alpha,\beta) \to R_2(\alpha,\gamma) \to R_2(\beta,\gamma))}{\vdash_{\mathbf{f}} Q(a) \to S(a,b) \to R_2(a,b_0) \to R_2(b,b_0)} }_{\vdots} \underbrace{\frac{\vdash_{\mathbf{f}} Q(a) \to S(a,b) \to R_2(a,b_0) \to R_2(b,b_0)}{\vdash_{\mathbf{f}} S(a,b) \to R_2(a,b_0) \to R_2(b,b_0)} }_{\vdash_{\mathbf{f}} R_2(b,b_0) \to \mathbf{f}} \underbrace{\frac{\vdash_{\mathbf{f}} R_2(a,b_0) \to R_2(b,b_0)}{\vdash_{\mathbf{f}} R_2(b,b_0)}}_{\vdash_{\mathbf{f}} R_2(b,b_0)} \\ \\ \vdash_{\mathbf{f}} \mathbf{f} \end{array}$$

For the case that r = +(1, Q'), we have that $\hat{Q} = Q'$, $\hat{m} = m + 1$, and $\hat{n} = n$. So we need to increment register 1 and ensure that the state of b is Q'.

$$\frac{\vdots}{Q'(b) \vdash_{\mathbf{f}} \mathbf{f}} \xrightarrow{\vdash_{\mathbf{f}} \forall \alpha \beta (Q(\alpha) \to S(\alpha, \beta) \to Q'(\beta))} \xrightarrow{\vdash_{\mathbf{f}} Q(a) \to S(a, b) \to Q'(b)} \vdash_{\mathbf{f}} Q(a)} \xrightarrow{\vdash_{\mathbf{f}} Q'(b) \to \mathbf{f}} \xrightarrow{\vdash_{\mathbf{f}} Q'(b) \to \mathbf{f}} \xrightarrow{\vdash_{\mathbf{f}} \mathbf{f}}$$

To increment register 1 we need a new free variable as anchor for register 1 (let $d \in \mathcal{V}_P \setminus \text{FV}(\Gamma_C \cup \Gamma_{\overline{M}})$ and $d \neq b$).

$$\frac{\vdots}{R_{1}(b,d) \vdash_{\mathbf{f}} \mathbf{f}} \\
\frac{\forall \beta(R_{1}(b,\beta) \to \mathbf{f}) \to \mathbf{f} \vdash_{\mathbf{f}} \mathbf{f}}{\forall \beta(R_{1}(b,\beta) \to \mathbf{f}) \to \mathbf{f}) \to \mathbf{f}} \\
\vdash_{\mathbf{f}} (\forall \beta(R_{1}(b,\beta) \to \mathbf{f}) \to \mathbf{f}) \to \mathbf{f}} \\
\vdash_{\mathbf{f}} \mathbf{f}$$

$$\frac{\vdash_{\mathbf{f}} \forall \alpha(D(\alpha) \to \forall \beta(R_{1}(\alpha,\beta) \to \mathbf{f}) \to \mathbf{f})}{\vdash_{\mathbf{f}} D(b) \to \forall \beta(R_{1}(b,\beta) \to \mathbf{f}) \to \mathbf{f}} \vdash_{\mathbf{f}} D(b)}
\vdash_{\mathbf{f}} \mathbf{f}$$

Now we need to connect d with a_0 (the anchor of a for register 1).

$$\underbrace{ \begin{array}{c} \vdash_{\mathbf{f}} \forall \alpha \beta \gamma \delta(Q(\alpha) \rightarrow S(\alpha,\beta) \rightarrow R_1(\alpha,\gamma) \rightarrow R_1(\beta,\delta) \rightarrow P(\delta,\gamma)) \\ \vdash_{\mathbf{f}} Q(a) \rightarrow S(a,b) \rightarrow R_1(a,a_0) \rightarrow R_1(b,d) \rightarrow Q'(b) \quad \vdash_{\mathbf{f}} Q(a) \\ \vdots \\ \hline P(d,a_0) \vdash_{\mathbf{f}} \mathbf{f} \\ \vdash_{\mathbf{f}} P(d,a_0) \rightarrow \mathbf{f} \\ \end{array} \underbrace{ \begin{array}{c} \vdash_{\mathbf{f}} S(a,b) \rightarrow R_1(a,a_0) \rightarrow R_1(b,d) \rightarrow Q'(b) \quad \vdash_{\mathbf{f}} S(a,b) \\ \hline \vdash_{\mathbf{f}} R_1(a,a_0) \rightarrow R_1(b,d) \rightarrow Q'(b) \quad \vdash_{\mathbf{f}} R_1(a,a_0) \\ \hline \vdash_{\mathbf{f}} R_1(b,d) \rightarrow Q'(b) \quad \vdash_{\mathbf{f}} R_1(b,d) \\ \hline \vdash_{\mathbf{f}} P(d,a_0) \\ \hline \vdash_{\mathbf{f}} \mathbf{f} \end{array} }$$

At last we have to make sure that we do not get an artificial zero. We achieve this by deducing D(d).

$$\underbrace{ \begin{array}{c} \vdash_{\mathbf{f}} \forall \alpha \beta \delta(Q(\alpha) \to S(\alpha,\beta) \to R_1(\beta,\delta) \to D(\delta)) \\ \vdash_{\mathbf{f}} Q(a) \to S(a,b) \to R_1(b,d) \to D(d) & \vdash_{\mathbf{f}} Q(a) \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline D(d) \vdash_{\mathbf{f}} \mathbf{f} & \vdots & \vdots & \vdots \\ \hline \vdash_{\mathbf{f}} D(d) \to \mathbf{f} & \underbrace{\vdash_{\mathbf{f}} R_1(b,d) \to D(d) & \vdash_{\mathbf{f}} R_1(b,d)}_{\vdash_{\mathbf{f}} D(d)} \\ & \vdots & \vdots & \vdots & \vdots \\ \hline P_{\mathbf{f}} Q(a) \to S(a,b) \to R_1(b,d) \to D(d) & \vdash_{\mathbf{f}} S(a,b) \\ \hline \vdash_{\mathbf{f}} D(d) \to \mathbf{f} & \vdots & \vdots & \vdots \\ \hline \vdash_{\mathbf{f}} D(d) \to \mathbf{f} & \vdots & \vdots & \vdots \\ \hline \end{array}$$

Now we already have deduced Γ_D , to see why define $\widehat{a} := b$, $\widehat{b}_i := b_i$ for $i \in \{0, \ldots, m\}$, $\widehat{a}_0 := d$, and $\widehat{a}_{i+1} := a_i$ for $i \in \{0, \ldots, n\}$. Hence we can deduce **false** by induction hypothesis.

The other case, that $r = -(Q, 1, Q_1, Q_2)$, has to be split into two cases again. If m = 0 then $\hat{Q} = Q_2$, $\hat{m} = 0$, and $\hat{n} = n$. We only need to ensure that the successor state is Q_2 and that register 1 is still zero.

$$\begin{array}{c} \underbrace{ \begin{array}{c} \vdash_{\mathbf{f}} \forall \alpha \beta \gamma(Q(\alpha) \rightarrow S(\alpha,\beta) \rightarrow R_1(\alpha,\gamma) \rightarrow E(\gamma) \rightarrow Q_2(\beta)) \\ \hline \vdash_{\mathbf{f}} Q(a) \rightarrow S(a,b) \rightarrow R_1(a,a_0) \rightarrow E(a_0) \rightarrow Q_2(b) & \vdash_{\mathbf{f}} Q(a) \\ \hline \vdots & \underbrace{ \begin{array}{c} \vdash_{\mathbf{f}} S(a,b) \rightarrow R_1(a,a_0) \rightarrow E(a_0) \rightarrow Q_2(b) & \vdash_{\mathbf{f}} S(a,b) \\ \hline \vdash_{\mathbf{f}} R_1(a,a_0) \rightarrow E(a_0) \rightarrow Q_2(b) & \vdash_{\mathbf{f}} R_1(a,a_0) \\ \hline \hline \vdash_{\mathbf{f}} Q_2(b) \rightarrow \mathbf{f} & \underbrace{ \begin{array}{c} \vdash_{\mathbf{f}} E(a_0) \rightarrow Q_2(b) & \vdash_{\mathbf{f}} E(a_0) \\ \hline \vdash_{\mathbf{f}} Q_2(b) & \hline \\ \hline \vdash_{\mathbf{f}} \mathbf{f} \end{array} }_{\vdash_{\mathbf{f}} \mathbf{f}} \\ \hline \end{array} }$$

Register 1 stays zero.

$$\frac{ \begin{array}{c} \vdash_{\mathbf{f}} \forall \alpha \beta \gamma(Q(\alpha) \rightarrow S(\alpha,\beta) \rightarrow R_1(\alpha,\gamma) \rightarrow E(\gamma) \rightarrow R_1(\beta,\gamma)) \\ \hline \vdash_{\mathbf{f}} Q(a) \rightarrow S(a,b) \rightarrow R_1(a,a_0) \rightarrow E(a_0) \rightarrow R_1(b,a_0) & \vdash_{\mathbf{f}} Q(a) \\ \hline \vdots & \frac{\vdash_{\mathbf{f}} S(a,b) \rightarrow R_1(a,a_0) \rightarrow E(a_0) \rightarrow R_1(b,a_0) & \vdash_{\mathbf{f}} S(a,b)}{\hline \vdash_{\mathbf{f}} R_1(b,a_0) \rightarrow \mathbf{f} & \frac{\vdash_{\mathbf{f}} E(a_0) \rightarrow R_1(b,a_0) & \vdash_{\mathbf{f}} E(a_0)}{\hline \vdash_{\mathbf{f}} R_1(b,a_0) & \vdash_{\mathbf{f}} E(a_0) \\ \hline \hline \vdash_{\mathbf{f}} R_1(b,a_0) \rightarrow \mathbf{f} & \frac{\vdash_{\mathbf{f}} E(a_0) \rightarrow R_1(b,a_0) & \vdash_{\mathbf{f}} E(a_0)}{\hline \vdash_{\mathbf{f}} R_1(b,a_0) & \vdash_{\mathbf{f}} E(a_0) \\ \hline \end{array} }$$

If we define $\widehat{a} := b$, $\widehat{b}_i := b_i$ for $i \in \{0, ..., m\}$, and $\widehat{a}_0 := a_0$ then it is clear that we have deduced all formulas required for Γ_D . So we can use the induction hypothesis to deduce **false**.

In the last case m > 0, so $\widehat{Q} = Q_1$, $\widehat{m} = m - 1$, and $\widehat{n} = n$. First we ensure that b is in state Q_1 .

$$\begin{array}{c|c} \frac{\vdash_{\mathbf{f}} \forall \alpha \beta \gamma(Q(\alpha) \rightarrow S(\alpha,\beta) \rightarrow R_1(\alpha,\gamma) \rightarrow D(\gamma) \rightarrow Q_1(\beta))}{\vdash_{\mathbf{f}} Q(a) \rightarrow S(a,b) \rightarrow R_1(a,a_0) \rightarrow D(a_0) \rightarrow Q_1(b)} & \vdash_{\mathbf{f}} Q(a) \\ \vdots & \frac{\vdash_{\mathbf{f}} S(a,b) \rightarrow R_1(a,a_0) \rightarrow D(a_0) \rightarrow Q_1(b)}{\vdash_{\mathbf{f}} R_1(a,a_0) \rightarrow D(a_0) \rightarrow Q_1(b)} & \vdash_{\mathbf{f}} R_1(a,a_0) \\ \hline Q_1(b) \vdash_{\mathbf{f}} \mathbf{f} & \frac{\vdash_{\mathbf{f}} D(a_0) \rightarrow Q_1(b)}{\vdash_{\mathbf{f}} Q_1(b)} & \vdash_{\mathbf{f}} D(a_0) \\ \hline \vdash_{\mathbf{f}} \mathbf{f} & & \vdash_{\mathbf{f}} Q_1(b) & \\ \hline & \vdash_{\mathbf{f}} \mathbf{f} \end{array}$$

Now we decrement register 1 by taking a_1 (the predecessor of a_0) as anchor of b for register 1.

$$\begin{array}{c|c} \vdash_{\mathbf{f}} \forall \alpha \beta \gamma \delta(Q(\alpha) \rightarrow S(\alpha,\beta) \rightarrow R_1(\alpha,\gamma) \rightarrow D(\gamma) \rightarrow P(\gamma,\delta) \rightarrow R_1(\beta,\delta)) \\ \hline \vdash_{\mathbf{f}} Q(a) \rightarrow S(a,b) \rightarrow R_1(a,a_0) \rightarrow D(a_0) \rightarrow P(a_0,a_1) \rightarrow R_1(b,a_1) & \vdash_{\mathbf{f}} Q(a) \\ \hline & \vdash_{\mathbf{f}} S(a,b) \rightarrow R_1(a,a_0) \rightarrow D(a_0) \rightarrow P(a_0,a_1) \rightarrow R_1(b,a_1) & \vdash_{\mathbf{f}} S(a,b) \\ \vdots & \hline \vdash_{\mathbf{f}} R_1(a,a_0) \rightarrow D(a_0) \rightarrow P(a_0,a_1) \rightarrow R_1(b,a_1) & \vdash_{\mathbf{f}} R_1(a,a_0) \\ \hline \vdots & \hline \vdash_{\mathbf{f}} D(a_0) \rightarrow P(a_0,a_1) \rightarrow R_1(b,a_1) & \vdash_{\mathbf{f}} D(a_0) \\ \hline \hline \vdash_{\mathbf{f}} R_1(b,a_1) \rightarrow \mathbf{f} & \hline \vdash_{\mathbf{f}} P(a_0,a_1) \rightarrow R_1(b,a_1) & \vdash_{\mathbf{f}} P(a_0,a_1) \\ \hline \vdash_{\mathbf{f}} R_1(b,a_1) & \vdash_{\mathbf{f}} \mathbf{f} \\ \hline \vdash_{\mathbf{f}} \mathbf{f} \end{array}$$

Again it is obvious that we have deduced Γ_D ($\widehat{a} := b$, $\widehat{b}_i := b_i$ for $i \in \{0, \dots, m\}$, and $\widehat{a}_{i-1} := a_i$ for $i \in \{1, \dots, n\}$). Hence, by induction hypothesis, we can deduce **false**. \square

Lemma 22.

M terminates on input (0,0) iff $\Gamma_M \vdash \mathbf{false} \text{ holds in system } P$.

Proof. The \Leftarrow directions is proven in Claim 20. And the \Rightarrow direction is a direct consequence of Claim 21 with $C = \langle Q_0, 0, 0 \rangle$.

Theorem 23. CONS is undecidable.

Proof. Since by Lemma 22 for a given two-counter automaton M we can effectively construct a set of **P**-formulas Γ_M such that M terminates on input (0,0) iff Γ_M is not consistent. It follows that $\mathbf{HALT} \leq \mathbf{CONS}$. Since \mathbf{HALT} is undecidable we have shown that \mathbf{CONS} is undecidable too.

References

[1] H.P. Barendregt, 1993. Lambda Calculi with Types, Handbook of Logic in Computer Science, Volume II, 34-68.