

Cálculo Diferencial

Guía teórica Funciones Hiperbólicas

Son combinaciones especiales de la función exponencial natural que surgen con frecuencia en la matemática.

Funciones Hiperbólicas				
Definición	Dominio / Rango	Representación Gráfica		
$senhx = \frac{e^x - e^{-x}}{2}$	Dominio: 究 Rango: 究	$\frac{e^{x}}{2}$		
$\cosh x = \frac{e^x + e^{-x}}{2}$	Dominio: ℜ Rango: [1, +∞)	$\frac{e^x}{2}$		
$\tanh x = \frac{senhx}{\cosh x}$	Dominio: ℜ Rango: (-1, 1)	x x		
$\coth x = \frac{\cosh x}{senhx}$	Dominio: ℜ - {0} Rango: (-∞, -1) U (1, +∞)	×		
$\sec hx = \frac{1}{\cosh x}$	Dominio: 究 Rango: (0, 1]	x x		
$\csc hx = \frac{1}{senhx}$	Dominio: ℜ - {0} Rango: ℜ - {0}	3 -2 -1 1 2 3 X		

Escuela de Ingeniería Centro de Ciencia Básica

Cálculo Diferencial

Guía teórica Funciones Hiperbólicas

Funciones Hiperbólicas Inversas				
Definición	Representación como logaritmo natural	Dominio / Rango	Representación Gráfica	
$y = senh^{-1}x$ $x = senhy$	$senh^{-1}x = Ln(x + \sqrt{x^2 + 1})$	Dominio: 究 Rango: 究	×	
$y = \cosh^{-1} x$ $x = \cosh y$ $x \ge 1$	$\cosh^{-1} x = Ln(x + \sqrt{x^2 - 1}); x \ge 1$	Dominio: [1, +∞) Rango: ℜ⁺ U {0}	×	
$y = \tanh^{-1} x$ $x = \tanh y$ $ x < 1$	$\tanh^{-1} x = \frac{1}{2} Ln \left(\frac{1+x}{1-x} \right); x < 1$	Dominio: (-1, 1) Rango: 究	-1 ×	
$y = \coth^{-1} x$ $x = \coth y$ $ x > 1$	$\coth^{-1} x = \frac{1}{2} Ln \left(\frac{x+1}{x-1} \right); x > 1$	Dominio: (-∞, -1) U (1, +∞) Rango: ℜ	x	
$y = \sec h^{-1} x$ $x = \sec h y$ $0 < x \le 1$	$\sec h^{-1} x = Ln \left(\frac{1 + \sqrt{1 - x^2}}{x} \right); 0 < x \le 1$	Dominio: (0, 1] Rango: ℜ⁺ U {0}	×	
$y = \csc h^{-1} x$ $x = \csc h y$ $x \neq 0$	$\csc h^{-1}x = Ln\left(\frac{1+\sqrt{1+x^2}}{x}\right); x \neq 0$	Dominio: 究 - {0} Rango: 究 - {0}	×	

Escuela de Ingeniería Centro de Ciencia Básica

Cálculo Diferencial

Guía teórica

Funciones Hiperbólicas

Aplicaciones:

- La gráfica de la función $f(x) = \frac{k}{2} (e^{cx} + e^{-cx}) = k \cosh(cx)$ donde k y c son constantes reales, se llama catenaria y representa la forma que adopta un cable flexible homogéneo e inelástico tendido entre dos puntos debido a la acción de su peso. En general: $y = a + k \cosh\left(\frac{x}{k}\right)$
- En la formulación de una ecuación que describa las olas del mar. En general: $v = \sqrt{\frac{gL}{2\pi}} \tanh\left(\frac{2\pi d}{L}\right)$ con: v: velocidad; L: longitud de la ola; d: profundidad; g: aceleración debida a la gravedad

Identidades:

•
$$\cosh^2 x - senh^2 x = 1$$

$$1 - \tanh^2 x = \sec h^2 x$$

$$\bullet \quad \coth^2 x - 1 = \csc h^2 x$$

•
$$senh(-x) = -senhx$$
 (función impar)

•
$$\cosh(-x) = \cosh x$$
 (función par)

•
$$\cosh x + senhx = e^x$$

•
$$\cosh x - senhx = e^{-x}$$

•
$$senh(x \pm y) = senhx \cosh y \pm \cosh x senhy$$

•
$$\cosh(x \pm y) = \cosh x \cosh y \pm senhxsenhy$$

•
$$senh(2x) = 2senhx \cosh x$$

•
$$\cosh(2x) = \cosh^2 x + senh^2 x = 1 + 2senh^2 x = 2\cosh^2 x - 1$$

•
$$senh\left(\frac{x}{2}\right) = \pm \sqrt{\frac{\cosh x - 1}{2}}$$

•
$$\cosh\left(\frac{x}{2}\right) = \pm \sqrt{\frac{\cosh x + 1}{2}}$$

Derivadas:

Si U es una función diferenciable de x:

•
$$\frac{d}{dx}(senhu) = \cosh uu'$$

•
$$\frac{d}{dx}(\cosh u) = senhuu'$$

•
$$\frac{d}{dx}(\tanh u) = \sec h^2 u u'$$

•
$$\frac{d}{dx}(\csc hu) = -\csc hu \coth uu'$$

•
$$\frac{d}{dx}(\sec hu) = -\sec hu \tanh uu'$$

$$\bullet \quad \frac{d}{dx}(\coth u) = -\csc h^2 u u'$$

•
$$\frac{d}{dx}(senh^{-1}u) = \frac{1}{\sqrt{1+u^2}}u'$$

•
$$\frac{d}{dx}\left(\cosh^{-1}u\right) = \frac{1}{\sqrt{u^2 - 1}}u'$$

•
$$\frac{d}{dx}(\tanh^{-1}u) = \frac{1}{1-u^2}u'$$

$$\bullet \quad \frac{d}{dx} \left(\csc h^{-1} u \right) = \frac{-1}{|u|\sqrt{u^2 + 1}} u'$$

$$\bullet \quad \frac{d}{dx} \left(\sec h^{-1} u \right) = \frac{-1}{u\sqrt{1-u^2}} u'$$

$$\bullet \quad \frac{d}{dx} \left(\coth^{-1} u \right) = \frac{1}{1 - u^2} u^2$$

Bibliografía:

Texto guía: Stewart, James. Cálculo. Trascendentes tempranas. Sexta edición.