Applications of Differential Geometry to Physics

Part III Lent 2019 Lectures by Maciej Dunajski

Report typos to: uco21@cam.ac.uk
More notes at: uco21.user.srcf.net

January 22, 2020

Contents

	0.1 Kepler / Newton Orbits	2
1	Manifolds	4
2	Vector Fields	8
	2.1 Integral curves	9

0.1 Kepler / Newton Orbits

$$\ddot{\mathbf{r}} = -\frac{GMv}{r^3}\mathbf{r} \quad \leftrightarrow \quad \text{conic sections} \tag{1}$$

General conic section is

$$ax^{2} + by^{2} + cxy + dx + ey + f = 0$$
 (2)

This is nowadays more generally studied in what we now call *algebraic geometry* rather than differential geometry.

Apolonius of Penge (?) asked 'what is the unique conic thorugh five points, no three of which are co-linear?'

The space of conics is $\mathbb{R}^6 - \{0\} / n = \mathbb{RP}^5$ (projective 5-space).

$$[a, b, c, d, e, f] \sim [\gamma a, \gamma b, \gamma c, \gamma d, \gamma c, \gamma f], \gamma \in \mathbb{R}^*$$
(3)

This is an application of geometry, rather than an application of differential geometry.

Remark: Apolonius proved this geometrically.

In this course however, we will look at the following.

1) Hamiltonian mechanics (mid 19th). This is an elegant way of reformulating Newton's mechanics, turning second order differential equations into first order differential equations with the use of a function H(p,q). The system of ODEs is

$$\dot{q} = \frac{\partial H}{\partial p} \qquad \dot{q} = -\frac{\partial H}{\partial q}$$
 (4)

This led to the development of symplectic geometry (1960s). The connection is that the phase-space to which p and q belong has a 2-form $dp \wedge dq$. Using the Hamiltonian function, one can find a vector field

$$X_{H} = \frac{\partial H}{\partial p} \frac{\partial}{\partial q} - \frac{\partial H}{\partial q} \frac{\partial}{\partial p} \tag{5}$$

and looks for a one-parameter group of transformations, called symplectomorphisms, generated by this vector field. Under these symplectomorphisms, the 2-form is unchanged meaning that the area illustrated in F2 is preserved. Details of this are going to come within the course.

2) General Relativity (1915) ← Riemannian Geometry (1850)

Figure 1

3) Gauge theory (Maxwell, Yang Mills) \leftrightarrow Connection on Principal Bundle (U(1) (Maxwell), SU(2), SU(3))

$$A_{+} = A_{-} + dg \qquad g = \psi_{+} - \psi_{-} \qquad \omega = \begin{cases} A_{+} + d\psi_{+} \\ A_{-} + d\psi_{-} \end{cases}$$
 (6)

Figure 2

This course: cover 1, 2, 3 in some detail. Unifying feature: Lie groups.

- Prove some theorems, *lots of* examples (often instead of proofs)
- Want to be able to do calculations; compute characteristic classes etc.

We will assume that you took either Part III General Relativity, or Part III Differential Geometry, or some equivalent course.

1 Manifolds

Definition 1 (manifold): An n -dimensional *smooth manifold* is a set M and a collection² of open sets U_{α} , labelled by $\alpha=1,2,3,...$, called *charts* such that

- U_{α} cover M
- \exists 1-1 maps $\phi_{\alpha}: U_{\alpha} \to V_{\alpha} \in \mathbb{R}^n$ such that

$$\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

$$\tag{1.1}$$

is a smooth map from \mathbb{R}^n to \mathbb{R}^n .

Figure 1.1: Manifold

As such, manifolds are topological spaces with additional structure, allowing us to do calculus.

Example $(M = \mathbb{R}^n)$: There is the *trivial manifold*, which can be covered by only one open set. There are other possibilities. In fact, there are infinitely many smooth structures on \mathbb{R}^4 (Proof by Donaldson in 1984 in his PhD. He used Gauge theory).

 $^{^2}$ In all examples that we will look at, there will be finitely α .

Example (sphere $S^n = \{ \mathbf{r} \in \mathbb{R}^{n+1}, |\mathbf{r}| = 1 \}$): Have two open sets

$$U = S^{n}/\{0, 0, 0, \dots, 0, 1\} \qquad \widetilde{U} = S^{n}/\{0, 0, 0, \dots, 0, -1\}$$
(1.2)

We then define charts, where $\mathbb{R}^n = (x_1, ..., x_n)$:

Figure 1.2

$$\phi(r_1, \dots, r_{n+1}) = \left(\frac{r_1}{1 - r_{n+1}}, \dots, \frac{r_n}{1 - r_{n+1}}\right)$$
on \widetilde{U} , $\widetilde{\phi}(r_1, \dots, r_{n+1}) = \left(\frac{r_1}{1 - r_{n+1}}, \dots, \frac{r_n}{1 - r_{n+1}}\right) = (\widetilde{x}_1, \dots, \widetilde{x}_n).$ (1.3)

On $U \cap \widetilde{U}$,

$$\frac{r_k}{1+r_{n+1}} = \frac{1-r_{n+1}}{1+r_{n+1}} \frac{r_k}{1-r_{n+1}}, \qquad k = 1, \dots, n$$
(1.4)

$$\frac{r_k}{1+r_{n+1}} = \frac{1-r_{n+1}}{1+r_{n+1}} \frac{r_k}{1-r_{n+1}}, \qquad k = 1, \dots, n$$

$$\frac{1-r_{n+1}}{1+r_{n+1}} = \frac{(1-r_{n+1})^2}{r_1^2+r_2^2+\dots+r_n^2} = \frac{1}{x_1^2+x_2^2+\dots+x_n^2}$$
(1.4)

So on $\phi(U \cap \widetilde{U})$,

$$(\widetilde{x}_1, \dots, \widetilde{x}_n) = \left(\frac{x_1}{x_1^2 + \dots + x_n^2}, \dots, \frac{x_n}{x_1^2 + \dots + x_n^2}\right)$$
 (1.6)

are smooth maps from $\mathbb{R}^n \to \mathbb{R}^n$

Example: A Cartesian product of manifolds is a manifold, for example we have the *n*-torus $T^n = T^n$ $S^1 \times S^1 \times \cdots \times S^1$.

Definition 2 (surface): Let $f_1, \ldots, f_k : \mathbb{R}^N \to \mathbb{R}$ be smooth functions. A surface $f_1 = 0, \ldots, f_k = 0$ is a manifold of dimension $\dim n = N - k$ if the rank of the matrix $\frac{\partial f_{\alpha}}{\partial x^i}$, $\alpha = 1, \ldots, k$ and $i = 1, \ldots, N$ is maximal and equal to k at all points of \mathbb{R}^N ..

Example: The *n*-sphere S^n is a surface in \mathbb{R}^{n+1} with $f_1 = 1 - |\mathbf{r}|^2$.

Theorem 1 (Whitney): Every smooth manifold of dimension n is an embedded surface in \mathbb{R}^N , where $N \leq 2n$.

If you enjoy using geometrical intuition and looking at surfaces, this theorem ensures that you can always do that and not loose generality.

Definition 3 (real projective space): The *n*-dimensional *real projective space* is defined as the quotient

$$\mathbb{RP}^n = (\mathbb{R}^{n+1} \setminus \{0\}) / \sim, \tag{1.7}$$

where we quotient out the equivalence classes $[X_1, \dots, X_n + 1] \sim [cX_1, \dots, cX_{n+1}]$ for all $c \in \mathbb{R}^*$. The $[X_1, \dots, X_{n+1}]$ are called *homogeneous coordinates*.

In other words, this is the space of all lines through the origin in \mathbb{R}^{n+1} .

Claim 1: \mathbb{RP}^n is a smooth manifold of dimension n with (n + 1) open sets.

Proof. Let us define our open sets with respect to the homogeneous coordinates. We define the set U_{α} : $[X] \in \mathbb{RP}^n$ such that $X_{\alpha} \neq 0$ $\alpha = 1, ..., n+1$. We can now find local coordinates on ϕ_{α} : $U_{\alpha} \to V_{\alpha} \in \mathbb{R}^n$

$$x_1 = \frac{X_1}{X_{\alpha}}$$
 ... $x_{\alpha-1} = \frac{X_{\alpha-1}}{X_{\alpha}}$ $x_{\alpha+1} = \frac{X_{\alpha+1}}{X_{\alpha}}$... $x_n = \frac{X_n}{X_{\alpha}}$. (1.8)

Exercise 1.1: Prove smoothness of $\phi_{\beta} \circ \phi_{\alpha}^{-1}$.

Now it turns out that this manifold is equivalent to $\mathbb{RP}^n = S^n/\mathbb{Z}^2$. From quantum mechanics, we know that this means in particular $\mathbb{RP}^3 = SO(3)$. This is illustrated in 1.3.

Figure 1.3: Real projective space \mathbb{RP}^n is isomorphic to S^n/\mathbb{Z}^n , identifying antipodal points.

2 Vector Fields

Let M, \widetilde{M} be smooth manifolds of dimension n, \tilde{n} .

Definition 4 (smooth map): A map $f: M \to \widetilde{M}$ is *smooth* if $\widetilde{\phi}_{\beta} \circ f \circ \phi_{\alpha}^{-1}$ is a smooth map from \mathbb{R}^n to $\widetilde{\mathbb{R}}^n$ for all α, β . We call $f: M \to \mathbb{R}$ a *function*, whereas we call $f: \mathbb{R} \to M$ a *curve*.

Let $\gamma: \mathbb{R} \to M$ be a curve. For some $U \in M$, $U \simeq \mathbb{R}^n$, we can define local coordinates $(x^1, ..., x^n)$

Figure 2.1

.

Definition 5 (tangent vector): A tangent vector V to γ at p is

$$V|_{p} = \frac{\mathrm{d}\psi}{\mathrm{d}\varepsilon}\Big|_{\varepsilon=0} \in T_{p}M,\tag{2.1}$$

where T_pM is the *tangent space* to M at p.

Definition 6 (tangent bundle): We define the *tangent bundle* as $TM := \bigcup_{p \in M} T_p M$.

Definition 7 (vector field): A *vector field* assigns a tangent vector to all $p \in M$.

Let $f: M \to \mathbb{R}$. The rate of change of f along γ is

$$\frac{\mathrm{d}}{\mathrm{d}\epsilon} f(x^a(\epsilon))|_{\epsilon=0} = \sum_a \dot{x}^a \frac{\partial f}{\partial x^a}$$
 (2.2)

$$= \sum_{a} V^{a} \left. \frac{\partial f}{\partial x^{a}} \right|_{\epsilon=0}, \tag{2.3}$$

whee $V^a := \dot{x}^a|_{\epsilon=0,\dots,x_n}$.

Vector fields are first order differential operators

$$V = \sum_{a} V^{a}(\mathbf{x}) \frac{\partial}{\partial x^{a}}.$$
 (2.4)

The derivatives $\left\{\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n}\right\}\Big|_p$ form a basis of T_pM .

2.1 Integral curves

Definition 8 (integral curve): An integral curve (a flow) of a vector field is defined by

$$\dot{\gamma}(\epsilon) = V|_{\gamma(\epsilon)},\tag{2.5}$$

where the dot denotes differentiation with respect to ϵ .

On *n* first order ODEs: $\dot{x}^a = V^a(x)$.

There exists a unique solution given initial data $X^a(0)$. Given a solution $X^a(\varepsilon)$, we can expand it in a Taylor series as

$$X^{a}(\epsilon) = X^{a}(0) + V^{a} \cdot \epsilon + O(\epsilon^{2}). \tag{2.6}$$

Up to first order in ϵ , the vector field determines the flow. We call V a generator of its flow.

The following example illustrates how you get from a vector field to its flow.

Example $(M = \mathbb{R}^2, x^a = (x, y))$: Consider the vector field $V = x \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$. The system of ODEs we solve is $\dot{x} = x$ and $\dot{y} = 1$. This gives us the integral curve $(x(\varepsilon), y(\varepsilon)) = (x(0)e^{\varepsilon}, y(0) + \varepsilon)$. From this we can see that $x(\varepsilon) \cdot \exp(-y(\varepsilon))$ is constant along γ . Using this we can draw the unparametrised integral curve in Fig. 2.2.

This example motivates the following definition.

Definition 9 (invariant): An *invariant* of a vector field V is a function f constant along the flow of V.

$$f(x^{a}(0)) = f(x^{a}(\epsilon)) \quad \forall \epsilon.$$
 (2.7)

Equivalently, V(f) = 0.

Let us now consider an example that goes the other way: from flow to vector field.

Figure 2.2

Example: Consider the 1 -parameter group of rotations of a plane.

$$(x(\epsilon), y(\epsilon)) = (x_0 \cos \epsilon - y_0 \sin \epsilon, x_0 \sin \epsilon + y_0 \cos \epsilon). \tag{2.8}$$

The associated vector field is

$$V = \left. \left(\frac{\partial y(\varepsilon)}{\partial \varepsilon} \frac{\partial}{\partial y} + \frac{\partial x(\varepsilon)}{\partial \varepsilon} \frac{\partial}{\partial x} \right) \right|_{\varepsilon = 0} = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial y}. \tag{2.9}$$

Now you can add vector fields, but there is also another operation.

Definition 10 (Lie bracket): A *Lie bracket* [V, W] of two vector fields V, W is a vector field defined by

$$[V, W](f) = V(W(f)) - W(V(f)) \quad \forall f.$$
 (2.10)

This is indeed another vector field since the commutator of two first order operators is another first order operator.

Example: Let $V=x\frac{\partial}{\partial x}+\frac{\partial}{\partial y}$ and $W=\frac{\partial}{\partial x}$. We then have [V,W]=-W.

This is not always the case but sometimes the Lie bracket reproduces some of the vector fields. There is an interesting algebraic structure to this.

Definition 11 (Lie algebra): A *Lie algebra* is a vector space \mathfrak{g} with an anti-symmetric, bilinear operation $[\ ,\]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, called a *Lie bracket*, which satisfies the *Jacobi identity*

$$[V, [U, W]] + [W, [V, U]] + [U, [W, V]] = 0 \qquad \forall U, V, W \in \mathfrak{g}. \tag{2.11}$$