Signal Tandmobiel[®] Data Time to caries analysis using bayesBisurvreg

Arnošt Komárek

June 29, 2005

This document describes the analysis of the Signal Tandmobiel® data presented in

Komárek, A. and Lesaffre, E.

Bayesian semiparametric accelerated failure time model for paired doubly-interval-censored data.

This article will be referred as Komárek and Lesaffre (2006b)and can be found in the doc directory of the package bayesSurv as KomarekLesaffre2006b.pdf. All R commands presented in this document are available in the same directory as tandmobPA.R.

The model considered in this document is the following:

$$\log(U_{i,l} - 5.0) = \boldsymbol{\delta}' \boldsymbol{z}_{i,l} + \zeta_{i,l}, \quad i = 1, \dots, N, \quad l = 1, 2,$$
 (1)

$$\log(V_{i,l} - U_{i,l}) = \log(T_{i,l}) = \beta' x_{i,l} + \varepsilon_{i,l}, \qquad i = 1, \dots, N, \quad l = 1, 2,$$
(2)

where $U_{i,l}$ is the emergence age of the *l*th tooth and $V_{i,l}$ is the age when the *l*th tooth was attacked by caries for the first time.

In the initial model (which is not shown in this document but it is discussed by Komárek and Lesaffre, 2006b), the covariate vectors were composed of

- $z_{i,l}$... Girl, Girl:Maxilla;
- $x_{i,l}$... Girl, Brush, Plaque.1, Plaque.2, Seal, Prim5d, Prim5m, Prim5f, Girl:Maxilla, Brush:Maxilla, Plaque.1:Maxilla, Plaque.2:Maxilla, Seal:Maxilla, Prim5d:Maxilla, Prim5m:Maxilla, Prim5f:Maxilla.

In the final model, the following covariates were used:

- $z_{i,l}$... Girl;
- $x_{i,l}$... Girl, Brush, Plaque, Seal, Prim5;

See below for the explanation of the covariates.

1 Initial operations

• Set the directories.

```
> anadir <- "/home/komari/win/work/papers/gsplineTand/anaDMFsymm/"
> chaindir.PA <- paste(anadir, "chains/modelPA", c("1646", "2636"),
+    sep = "")
> initdir.PA <- paste(anadir, "chains/end_PA", c("1646", "2636"),
+    sep = "")
> plotdir.PA <- paste(anadir, "summPlots/modelPA/", sep = "")
> resultdir <- paste(anadir, "results/", sep = "")
> predCurvesdir <- paste(resultdir, "predCurves/", sep = "")
> figuredir <- "/home/komari/win/work/papers/gsplineTand/RforCRAN/figuresPA/"</pre>
```

• We load the package and the data.

```
> library(bayesSurv)
> data(tandmobRoos)
```

In the following we create two separate datasets. One dataset for a pair of teeth 16 and 46 (right first molars) and one dataset for a pair of teeth 26 and 36 (left first molars). In Komárek and Lesaffre (2006b), only the analysis of the right first molars is shown. In each dataset we will have one row per tooth and only children who have all covariate information non-missing for both considered teeth are included.

• Separate datasets for pairs 16-46 and 26-36 from the original data:

```
> pair <- list(pair1 = c(16, 46), pair2 = c(26, 36))
> dmfp <- list()</pre>
> for (pii in 1:length(pair)) {
      tt1 <- pair[[pii]][1]
      tt2 <- pair[[pii]][2]
      remove <- (is.na(tandmobRoos[, paste("FBEG.", tt1, sep = "")]) |
          is.na(tandmobRoos[, paste("FBEG.", tt2, sep = "")]) |
          (tandmobRoos[, paste("TOOTH.", tt1, sep = "")] == 0) |
          (tandmobRoos[, paste("TOOTH.", tt2, sep = "")] == 0) |
          is.na(tandmobRoos[, paste("T", tt1 + 39, "d", sep = "")]) |
          is.na(tandmobRoos[, paste("T", tt1 + 39, "m", sep = "")]) |
          is.na(tandmobRoos[, paste("T", tt1 + 39, "f", sep = "")]) |
          is.na(tandmobRoos[, paste("T", tt1 + 39, "s", sep = "")]) |
          is.na(tandmobRoos[, paste("T", tt2 + 39, "d", sep = "")]) |
          is.na(tandmobRoos[, paste("T", tt2 + 39, "m", sep = "")]) |
          is.na(tandmobRoos[, paste("T", tt2 + 39, "f", sep = "")]) |
          is.na(tandmobRoos[, paste("T", tt2 + 39, "s", sep = "")]) |
          is.na(tandmobRoos[, paste("SEAL.", tt1, sep = "")]) |
          is.na(tandmobRoos[, paste("SEAL.", tt2, sep = "")]) |
          is.na(tandmobRoos[, "FREQ.BR"]) | is.na(tandmobRoos[,
          paste("PLAQUE.", tt1, ".1", sep = "")]) | is.na(tandmobRoos[,
          paste("PLAQUE.", tt1, ".2", sep = "")]) | is.na(tandmobRoos[,
          paste("PLAQUE.", tt2, ".1", sep = "")]) | is.na(tandmobRoos[,
          paste("PLAQUE.", tt2, ".2", sep = "")]))
      dmfp[[pii]] <- tandmobRoos[!remove, ]</pre>
+ }
> names(dmfp) <- c("1646", "2636")
> n.sample <- sapply(dmfp, nrow)
> print(n.sample)
1646 2636
2827 2843
```

• Create datasets with one row per tooth. Subtract also 5 from each time variable (time zero in our analysis was 5 years of age).

```
> time.0 <- 5
• Emergence times:
> Ebeg <- list()
> Eend <- list()
> for (pii in 1:length(pair)) {
      tt1 <- pair[[pii]][1]
      tt2 <- pair[[pii]][2]
      Ebeg[[pii]] <- cbind(dmfp[[pii]][, paste("EBEG.", tt1, sep = "")],</pre>
           dmfp[[pii]][, paste("EBEG.", tt2, sep = "")])
      Eend[[pii]] <- cbind(dmfp[[pii]][, paste("EEND.", tt1, sep = "")],</pre>
           dmfp[[pii]][, paste("EEND.", tt2, sep = "")])
      Ebeg[[pii]] <- as.vector(t(Ebeg[[pii]])) - time.0</pre>
      Eend[[pii]] <- as.vector(t(Eend[[pii]])) - time.0</pre>
      Ebeg[[pii]] [Ebeg[[pii]] <= 0] <- NA</pre>
• Caries times:
> Fbeg <- list()
> Fend <- list()
> for (pii in 1:length(pair)) {
      tt1 <- pair[[pii]][1]</pre>
      tt2 <- pair[[pii]][2]
      Fbeg[[pii]] <- cbind(dmfp[[pii]][, paste("FBEG.", tt1, sep = "")],</pre>
          dmfp[[pii]][, paste("FBEG.", tt2, sep = "")])
      Fend[[pii]] <- cbind(dmfp[[pii]][, paste("FEND.", tt1, sep = "")],</pre>
```

dmfp[[pii]][, paste("FEND.", tt2, sep = "")])
Fbeg[[pii]] <- as.vector(t(Fbeg[[pii]])) - time.0
Fend[[pii]] <- as.vector(t(Fend[[pii]])) - time.0</pre>

• Covariates. These are:

+ }

- Idnr: identification number of a child;
- Maxilla: binary covariate, 1 = upper (maxillary) tooth, 0 = lower (mandibular) tooth;
- Girl: binary covariate, 1 = girl, 0 = boy;
- Gender: factor, girl/boy;
- Brush: binary covariate, 1 = brushing at least once a day, 0 = brushing less than once a day;
- fBrush: factor, daily = brushing at least once a day, not.daily = brushing less than once a day;
- Plaque: binary covariate, 1 = plaque either in pits and fissures or on total occlusal surface, 0 = no plaque;
- Plaque.1: dummy, 1 = plaque in pits and fissures, 0 = either no plaque or plaque on total occlusal surface;
- Plaque.2: dummy, 1 = plaque on total occlusal surface, 0 = either no plaque or plaque in pits and fissures;
- fPlaque: ordered factor, none = no plaque, pits.fiss = plaque in pits and fissures, total = plaque on total occlusal surface;

- Seal: binary covariate, 1 = pits and fissures sealing, 0 = no sealing;
- fSeal: factor, yes = pits and fissures sealing, no = no sealing;
- Prim5: binary covariate concerning the status of the adjacent primary second molar (tooth 55 is adjacent to 16, tooth 65 is adjacent to 26, tooth 75 is adjacent to 36, tooth 85 is adjacent to 46), 1 = either decayed or missing due to carries or filled, 0 = sound;
- Prim5d: dummy for the status of the adjacent primary second molar, $1 = \mathbf{decayed}$;
- Prim5m: dummy for the status of the adjacent primary second molar, 1 = missing due to caries;
- Prim5f: dummy for the status of the adjacent primary second molar, 1 = filled;
- fPrim5: factor for the status of the adjacent primary second molar, sound/decayed/filled/ missing.

```
> Idnr <- list()</pre>
> Maxilla <- list()</pre>
> Girl <- list()
> Gender <- list()</pre>
> Brush <- list()</pre>
> fBrush <- list()
> Plaque <- list()</pre>
> Plaque.1 <- list()
> Plaque.2 <- list()
> fPlaque <- list()
> Seal <- list()
> fSeal <- list()
> Prim5 <- list()
> Prim5d <- list()
> Prim5m <- list()
> Prim5f <- list()</pre>
> fPrim5 <- list()
> for (pii in 1:length(pair)) {
      tt1 <- pair[[pii]][1]
      tt2 <- pair[[pii]][2]
      Idnr[[pii]] <- rep(dmfp[[pii]][, "IDNR"], rep(2, dim(dmfp[[pii]])[1]))</pre>
      Maxilla[[pii]] \leftarrow rep(c(1, 0), dim(dmfp[[pii]])[1])
      Girl[[pii]] <- rep(dmfp[[pii]][, "GIRL"], rep(2, dim(dmfp[[pii]])[1]))</pre>
      Brush[[pii]] \leftarrow rep(dmfp[[pii]][, "FREQ.BR"], rep(2, dim(dmfp[[pii]])[1]))
      Plaque.1[[pii]] <- as.vector(t(cbind(dmfp[[pii]][, paste("PLAQUE.",</pre>
           tt1, ".1", sep = "")], dmfp[[pii]][, paste("PLAQUE.",
           tt2, ".1", sep = "")])))
      Plaque.2[[pii]] <- as.vector(t(cbind(dmfp[[pii]][, paste("PLAQUE.",</pre>
           tt1, ".2", sep = "")], dmfp[[pii]][, paste("PLAQUE.",
          tt2, ".2", sep = "")])))
      Seal[[pii]] <- as.vector(t(cbind(dmfp[[pii]][, paste("SEAL.",</pre>
           tt1, sep = "")], dmfp[[pii]][, paste("SEAL.", tt2, sep = "")])))
      Prim5d[[pii]] <- as.vector(t(cbind(dmfp[[pii]][, paste("T",</pre>
          tt1 + 39, "d", sep = "")], dmfp[[pii]][, paste("T", tt2 +
           39, "d", sep = "")])))
      Prim5m[[pii]] <- as.vector(t(cbind(dmfp[[pii]][, paste("T",</pre>
           tt1 + 39, "m", sep = "")], dmfp[[pii]][, paste("T", tt2 +
           39, "m", sep = "")])))
      Prim5f[[pii]] <- as.vector(t(cbind(dmfp[[pii])[, paste("T",</pre>
          tt1 + 39, "f", sep = "")], dmfp[[pii]][, paste("T", tt2 +
           39, "f", sep = "")])))
      Gender[[pii]] <- factor(1 * (Girl[[pii]] == 1), levels = 0:1,</pre>
           labels = c("boy", "girl"))
      fBrush[[pii]] \leftarrow factor(1 * (Brush[[pii]] == 1), levels = 0:1,
          labels = c("not.daily", "daily"))
```

```
fPlaque[[pii]] \leftarrow ordered(0 * (Plaque.1[[pii]] == 0 & Plaque.2[[pii]] == 0)
                 0) + 1 * (Plaque.1[[pii]] == 1 & Plaque.2[[pii]] == 0) +
                 2 * (Plaque.1[[pii]] == 0 & Plaque.2[[pii]] == 1), levels = 0:2,
                 labels = c("none", "pits.fiss", "total"))
          fSeal[[pii]] \leftarrow factor(1 * (Seal[[pii]] == 1), levels = 0:1,
                 labels = c("no", "yes"))
          fPrim5[[pii]] <- factor(0 * (Prim5d[[pii]] == 0 & Prim5f[[pii]] ==</pre>
                 0 & Prim5m[[pii]] == 0) + 1 * (Prim5d[[pii]] == 1 & Prim5f[[pii]] ==
                 0 & Prim5m[[pii]] == 0) + 2 * (Prim5d[[pii]] == 0 & Prim5f[[pii]] ==
                 1 & Prim5m[[pii]] == 0) + 3 * (Prim5d[[pii]] == 0 & Prim5f[[pii]] ==
                  0 & Prim5m[[pii]] == 1), levels = 0:3, labels = c("sound",
                  "decayed", "filled", "missing"))
          Plaque[[pii]] \leftarrow 0 * (fPlaque[[pii]] == "none") + 1 * (fPlaque[[p
                  "pits.fiss" | fPlaque[[pii]] == "total")
          Prim5[[pii]] <- 0 * (fPrim5[[pii]] == "sound") + 1 * (fPrim5[[pii]] ==</pre>
                  "decayed" | fPrim5[[pii]] == "filled" | fPrim5[[pii]] ==
                  "missing")
+ }
• Final data frames for the analysis:
> data.PA <- list()</pre>
> for (pii in 1:length(pair)) {
          data.PA[[pii]] <- data.frame(Idnr = Idnr[[pii]], Ebeg = Ebeg[[pii]],</pre>
                 Eend = Eend[[pii]], Fbeg = Fbeg[[pii]], Fend = Fend[[pii]],
                 Maxilla = Maxilla[[pii]], Girl = Girl[[pii]], Gender = Gender[[pii]],
                 Brush = Brush[[pii]], fBrush = fBrush[[pii]], Plaque = Plaque[[pii]],
                 Plaque.1 = Plaque.1[[pii]], Plaque.2 = Plaque.2[[pii]],
                 fPlaque = fPlaque[[pii]], Seal = Seal[[pii]], fSeal = fSeal[[pii]],
                 Prim5 = Prim5[[pii]], Prim5d = Prim5d[[pii]], Prim5m = Prim5m[[pii]],
                 Prim5f = Prim5f[[pii]], fPrim5 = fPrim5[[pii]])
+ }
> names(data.PA) <- c("1646", "2636")
> rm(list = c("dmfp", "Idnr", "Ebeg", "Eend", "Fbeg", "Fend", "Maxilla",
           "Girl", "Gender", "Brush", "fBrush", "Plaque", "Plaque.1",
          "Plaque.2", "fPlaque", "Seal", "fSeal", "Prim5", "Prim5d",
          "Prim5m", "Prim5f", "fPrim5"))
> rm(list = c("pii", "remove", "tt1", "tt2"))
• Show first few rows of the data frame for the left teeth 16 and 46.
> print(data.PA$"1646"[1:10, ])
     Idnr Ebeg Eend Fbeg Fend Maxilla Girl Gender Brush
                                                                                                   fBrush Plaque Plaque.1
1
          1 1.7 2.7 6.2 NA
                                                        1
                                                                           girl
                                                                                     0 not.daily
                                                                                                                     0
                                                                1
                                                                           girl
                                                                                                                        0
                                                                                                                                        0
2
          1 1.7 2.7 6.2
                                         NA
                                                           0
                                                                                           0 not.daily
                                                                    1
                                                                                                                        0
3
          2
               NA 2.4 2.4 3.4
                                                           1
                                                                    0
                                                                           boy
                                                                                           0 not.daily
                                                                                                                                        0
                                                                                                                        0
4
          2
               NA 2.4 2.4 3.4
                                                           0
                                                                   0
                                                                         boy
                                                                                           0 not.daily
          3 0.5 1.5 1.5 2.7
                                                                                                                        0
                                                                                                                                        0
5
                                                           1
                                                                   1
                                                                           girl
                                                                                           0 not.daily
6
          3
               NA 1.5 5.5
                                                           0
                                                                                                                        0
                                                                                                                                        0
                                         NA
                                                                   1
                                                                           girl
                                                                                           0 not.daily
7
          7
                 NA 1.9 6.3
                                          NA
                                                           1
                                                                   0
                                                                                                                        1
                                                                                                                                        0
                                                                            boy
                                                                                           1
                                                                                                     daily
                                         NA
8
          7
                 NA 1.9 6.3
                                                           0
                                                                   0
                                                                            boy
                                                                                                     daily
                                                                                                                        1
                                                                                                                                        0
                                                                                           1
               NA 2.1 6.5
                                         NA
9
          8
                                                           1
                                                                   0
                                                                            boy
                                                                                           0 not.daily
                                                                                                                        0
                                                                                                                                        0
              NA 2.1 6.5 NA
                                                           0
                                                                    0
                                                                                                                        0
                                                                                                                                        0
10
          8
                                                                            boy
                                                                                           0 not.daily
     Plaque.2 fPlaque Seal fSeal Prim5 Prim5d Prim5m Prim5f fPrim5
1
                 0
                                                           0
                                                                         0
                                                                                    0
                                                                                                 0
                                                                                                         sound
                         none
                                       1
                                              yes
                 0
                                                             0
                                                                         0
                                                                                     0
                                                                                                  0
2
                         none
                                               yes
                                                                                                         sound
                                        1
3
                 0
                         none
                                        0
                                                no
                                                             0
                                                                         0
                                                                                     0
                                                                                                 0
                                                                                                         sound
```

decayed	0	0	1	1	no	0	none	0	4
sound	0	0	0	0	no	0	none	0	5
sound	0	0	0	0	no	0	none	0	6
decayed	0	0	1	1	no	0	total	1	7
decayed	0	0	1	1	no	0	total	1	8
sound	0	0	0	0	no	0	none	0	9
sound	0	0	0	0	no	0	none	0	10

2 Initial estimates

In this section we compute initial estimates using the maximum-likelihood fits with correctly intervalcensored emergence times and the mid-point imputed caries times. A parametric log-logistic AFT model will be used. We will then use these estimates to start the MCMC.

Note that we have to include the main effect of Maxilla in both the initial emergence and caries models. In the subsequent Bayesian model, the main effect of Maxilla is implicitely included in different intercepts for the upper and lower tooth.

• Initial fit for the emergence.

```
> fit.aft <- function(data) {</pre>
      vbeg <- data[, "Ebeg"]</pre>
      vend <- data[, "Eend"]</pre>
      vbeg[vbeg <= 0] <- NA</pre>
      tfit <- survreg(Surv(vbeg, vend, type = "interval2") ~ Maxilla +
           Girl, dist = "loglogistic", data = data)
      return(tfit)
+ }
> emerg.PA.aft <- list()</pre>
> emerg.PA.aft$"1646" <- fit.aft(data = data.PA$"1646")
> emerg.PA.aft$"2636" <- fit.aft(data = data.PA$"2636")
• Initial fit for caries.
> fit.aft2 <- function(data) {</pre>
      vebeg <- data[, "Ebeg"]</pre>
      veend <- data[, "Eend"]</pre>
      vfbeg <- data[, "Fbeg"]</pre>
      vfend <- data[, "Fend"]</pre>
      vebeg[vebeg <= 0] <- NA
      left <- is.na(vebeg)</pre>
      interv <- !is.na(vebeg) & !is.na(veend)</pre>
      right <- is.na(veend)
      onset <- vebeg
      onset[left] \leftarrow 0.5 * (0 + veend[left])
      onset[right] <- vebeg[right]</pre>
      onset[interv] <- 0.5 * (vebeg[interv] + veend[interv])</pre>
      vfbeg2 <- vfbeg - onset
      vfbeg2[vfbeg2 < 0] <- NA
      vfend2 <- vfend - onset
      tfit <- survreg(Surv(vfbeg2, vfend2, type = "interval2") ~
           Maxilla + Girl + Brush + Plaque + Seal + Prim5, dist = "loglogistic",
           data = data)
      return(tfit)
+ }
> caries.PA.aft <- list()</pre>
> caries.PA.aft$"1646" <- fit.aft2(data = data.PA$"1646")</pre>
> caries.PA.aft$"2636" <- fit.aft2(data = data.PA$"2636")</pre>
• Results of the initial emergence fits.
> lapply(emerg.PA.aft, summary)
$"1646"
survreg(formula = Surv(vbeg, vend, type = "interval2") ~ Maxilla +
```

```
Girl, data = data, dist = "loglogistic")
             Value Std. Error z
(Intercept) 0.4259 0.00726 58.64 0.00000
Maxilla
           -0.0224 0.00851 -2.63 0.00843
Girl
           -0.0173 0.00849 -2.03 0.04216
Log(scale) -2.2881 0.02233 -102.47 0.00000
Scale= 0.101
Log logistic distribution
Loglik(model) = -2067.6
                       Loglik(intercept only) = -2073.1
        Chisq= 11.01 on 2 degrees of freedom, p= 0.0041
Number of Newton-Raphson Iterations: 5
n = 5654
$"2636"
survreg(formula = Surv(vbeg, vend, type = "interval2") ~ Maxilla +
    Girl, data = data, dist = "loglogistic")
              Value Std. Error
                                    Z
(Intercept) 0.41540 0.00725 57.279 0.000000
           -0.03204 0.00862 -3.718 0.000201
Maxilla
           -0.00692 0.00859 -0.806 0.420314
Girl
Log(scale) -2.28294 0.02248 -101.571 0.000000
Scale= 0.102
Log logistic distribution
Loglik(model) = -2037
                     Loglik(intercept only) = -2044.3
        Chisq= 14.57 on 2 degrees of freedom, p= 0.00069
Number of Newton-Raphson Iterations: 5
n = 5686
• Results of the initial caries fits.
> lapply(caries.PA.aft, summary)
$"1646"
survreg(formula = Surv(vfbeg2, vfend2, type = "interval2") ~
    Maxilla + Girl + Brush + Plaque + Seal + Prim5, data = data,
    dist = "loglogistic")
             Value Std. Error
(Intercept) 2.1913 0.0574 38.200 0.00e+00
            0.0106 0.0362 0.292 7.70e-01
Maxilla
                    0.0363 -1.961 4.99e-02
0.0484 6.583 4.62e-11
Girl
           -0.0712
Brush
           0.3185
                    0.0395 -5.176 2.27e-07
           -0.2046
Plaque
           0.0438 0.0412 1.062 2.88e-01
Seal
Prim5 -0.6108 0.0396 -15.441 8.66e-54
Log(scale) -0.5956 0.0253 -23.557 1.07e-122
Scale= 0.551
Log logistic distribution
Loglik(model) = -4768.7 Loglik(intercept only) = -4945.5
```

```
Chisq= 353.73 on 6 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n = 5654
$"2636"
Call:
survreg(formula = Surv(vfbeg2, vfend2, type = "interval2") ~
   Maxilla + Girl + Brush + Plaque + Seal + Prim5, data = data,
   dist = "loglogistic")
             Value Std. Error
                                  Z
(Intercept) 2.1709
                      0.0555 39.127 0.00e+00
                      0.0356 0.974 3.30e-01
           0.0347
Maxilla
                      0.0358 -1.944 5.19e-02
Girl
           -0.0696
                              7.140 9.34e-13
Brush
           0.3379
                      0.0473
Plaque
                      0.0388 -6.571 4.99e-11
           -0.2549
Seal
           0.0729
                   0.0409 1.785 7.43e-02
Prim5
           -0.6160 0.0390 -15.803 2.95e-56
                   0.0256 -24.304 1.78e-130
Log(scale) -0.6225
Scale= 0.537
Log logistic distribution
Loglik(model) = -4661.1 Loglik(intercept only) = -4852.3
       Chisq= 382.41 on 6 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
```

n= 5686

3 Prior distributions

In this section we specify the prior distributions.

3.1 Priors for the smoothed error distributions

In our model, we have two penalized Gaussian mixtures (G-splines) included. The first G-spline defines a distribution of the emergence error term $g_{\zeta}(\zeta_1, \zeta_2)$ and the second one a distribution of the time-to-caries error term $g_{\varepsilon}(\varepsilon_1, \varepsilon_2)$. Since we will not use any informative priors, the prior specifications for the two G-splines will be the same, namely

- $K_1 = K_2 = 15$;
- The middle knot is really in the middle, i.e. it is $\mu_{(0,0)}$;
- We use the univariate conditional autoregression prior (uniCAR) for the transformed mixture weights A with the differences of the 3rd order;
- The smoothing hyperparameters λ_1 and λ_2 are not forced to be equal;
- The distance between the two knots in each margin is equal to 1.5 times the basis standard deviation σ_1 and σ_2 , respectively, i.e. the basis standard deviation is equal to 2/3 times the distance between the two knots;
- Prior distribution for the smoothing hyperparameters λ_1 and λ_2 is Gamma(1, 0.005);
- Prior distribution for the intercept terms α_1 and α_2 is $\mathcal{N}(0, 100)$;
- Prior distribution for the scale parameters τ_1 and τ_2 is Gamma(1, 0.005) on τ^{-2} ;
- Position of the middle knot (γ_1, γ_2) is fixed (this corresponds to specification = 2);
- The basis standard deviations σ_1 and σ_2 are fixed (this corresponds to specification = 2).

```
> prior.PA.gspl.emerg <- list(specification = 2, K = c(15, 15),
+ izero = c(0, 0), neighbor.system = "uniCAR", order = 3, equal.lambda = FALSE,
+ c4delta = c(1.5, 1.5), prior.lambda = c("gamma", "gamma"),
+ prior.intercept = c("normal", "normal"), prior.scale = c("gamma",
+ "gamma"), prior.gamma = c("fixed", "fixed"), prior.sigma = c("fixed",
+ "fixed"), shape.lambda = c(1, 1), rate.lambda = c(0.005,
+ 0.005), mean.intercept = c(0, 0), var.intercept = c(100,
+ 100), shape.scale = c(1, 1), rate.scale = c(0.005, 0.005))
> prior.PA.gspl.caries <- prior.PA.gspl.emerg</pre>
```

3.2 Priors for the regression parameters

For all regression parameters we use $\mathcal{N}(0, 100)$ priors.

```
> prior.PA.beta.emerg <- list(mean.prior = 0, var.prior = 100)
> prior.PA.beta.caries <- list(mean.prior = rep(0, 5), var.prior = rep(100, + 5))</pre>
```

4 Initial values

In this section we specify the initial values for the MCMC sampling. Partially, we use the values obtained in Section 2. We specify separately initials for the right pair of teeth (16 and 46) and the left pair of teeth (26 and 36).

4.1 Emergence part of the model

The following initial values are used:

- $\lambda_1^{\zeta} = \lambda_2^{\zeta} = 3\,000;$
- $\alpha_1^{\zeta} = 0.40, \ \alpha_2^{\zeta} = 0.42;$
- $\tau_1^{\zeta} = \tau_2^{\zeta} = 0.10;$
- $\gamma_1^{\zeta} = \gamma_2^{\zeta} = 0$, i.e. the middle knot $\mu_{(0,0)}^{\zeta}$ is equal to (0,0). Note that this value remains the same during the whole MCMC;
- $\sigma_1^{\zeta} = \sigma_2^{\zeta} = 0.20$ (the basis standard deviations). These values remain the same during the whole MCMC as well;
- $\delta = (\delta_1) = (-0.01).$

```
> iinit.PA.emerg < -list(lambda = c(3000, 3000), intercept = c(0.4, + 0.42), scale = rep(0.1, 2), gamma = c(0, 0), sigma = c(0.2, + 0.2), beta = -0.01)
> init.PA.emerg < -list(iinit.PA.emerg, iinit.PA.emerg)
> names(init.PA.emerg) < -c("1646", "2636")
```

4.2 Caries part of the model

The following initial values are used:

- $\lambda_1^{\varepsilon} = \lambda_2^{\varepsilon} = 3000;$
- $\alpha_1^{\varepsilon} = \alpha_2^{\varepsilon} = 2.20;$
- $\tau_1^{\varepsilon} = \tau_2^{\varepsilon} = 0.55;$
- $\gamma_1^{\varepsilon} = \gamma_2^{\varepsilon} = 0$, i.e. the middle knot $\mu_{(0,0)}^{\varepsilon}$ is equal to (0,0). Note that this value remains the same during the whole MCMC;
- $\sigma_1^{\varepsilon} = \sigma_2^{\varepsilon} = 0.20$ (the basis standard deviations). These values remain the same during the whole MCMC as well;
- $\beta = (\beta_1, \dots, \beta_5)' = (-0.07, 0.32, -0.20, 0.04, -0.61)'.$

```
> iinit.PA.caries <- list(lambda = c(3000, 3000), intercept = c(2.2, + 2.2), scale = c(0.55, 0.55), gamma = c(0, 0), sigma = c(0.2, + 0.2), beta = c(-0.07, 0.32, -0.2, 0.04, -0.61))
> init.PA.caries <- list(iinit.PA.caries, iinit.PA.caries)
> names(init.PA.caries) <- c("1646", "2636")
```

4.3 Read initial values from files

If we wish to restart the MCMC from some specific point we can read the initial values from files. In the following, the initials are taken from the first row of each file (after skiping possible header). It is assumed that the files for the analysis of the pair of teeth 16 and 46 are in the directory initdir.PA[1] and the files for the analysis of the pair of teeth 26 and 36 in the directory initdir.PA[2]. Note how the function vecr2matr is used to transform stored allocation variables.

```
> init.PA.emerg <- list()</pre>
> init.PA.caries <- list()</pre>
> for (k in 1:2) {
      init.PA.emerg[[k]] <- list()</pre>
      init.PA.emerg[[k]]$iter <- scan(paste(initdir.PA[k], "/iteration.sim",</pre>
           sep = ""), skip = 1)
      init.PA.emerg[[k]]$lambda <- scan(paste(initdir.PA[k], "/lambda.sim",</pre>
           sep = ""), skip = 1)
      init.PA.gspline <- scan(paste(initdir.PA[k], "/gspline.sim",</pre>
           sep = ""), skip = 1)
      init.PA.emerg[[k]]$gamma <- init.PA.gspline[1:2]</pre>
      init.PA.emerg[[k]]$sigma <- init.PA.gspline[3:4]</pre>
      init.PA.emerg[[k]]$intercept <- init.PA.gspline[7:8]</pre>
      init.PA.emerg[[k]]$scale <- init.PA.gspline[9:10]</pre>
      init.PA.emerg[[k]]$beta <- scan(paste(initdir.PA[k], "/beta.sim",</pre>
           sep = ""), skip = 1)
      init.PA.emerg[[k]]$a <- scan(paste(initdir.PA[k], "/mlogweight.sim",</pre>
           sep = ""), skip = 0)
      init.PA.emerg[[k]]\$y <- \ matrix(scan(paste(initdir.PA[k],
           "/Y.sim", sep = ""), skip = 0), ncol = 2, byrow = TRUE)
      init.PA.r <- scan(paste(initdir.PA[k], "/r.sim", sep = ""),</pre>
           skip = 0)
      init.PA.emerg[[k]]$r <- vecr2matr(init.PA.r, prior.PA.gspl.emerg$K)</pre>
      init.PA.caries[[k]] <- list()</pre>
      init.PA.caries[[k]]$iter <- scan(paste(initdir.PA[k], "/iteration.sim",</pre>
           sep = ""), skip = 1)
      init.PA.caries[[k]]$lambda <- scan(paste(initdir.PA[k], "/lambda_2.sim",</pre>
           sep = ""), skip = 1)
      init.PA.gspline <- scan(paste(initdir.PA[k], "/gspline_2.sim",</pre>
           sep = ""), skip = 1)
      init.PA.caries[[k]]$gamma <- init.PA.gspline[1:2]</pre>
      init.PA.caries[[k]]$sigma <- init.PA.gspline[3:4]</pre>
      init.PA.caries[[k]]$intercept <- init.PA.gspline[7:8]</pre>
      init.PA.caries[[k]]$scale <- init.PA.gspline[9:10]</pre>
      init.PA.caries[[k]]$beta <- scan(paste(initdir.PA[k], "/beta_2.sim",</pre>
           sep = ""), skip = 1)
      init.PA.caries[[k]]$a <- scan(paste(initdir.PA[k], "/mlogweight_2.sim",</pre>
          sep = ""), skip = 0)
      init.PA.caries[[k]]$y <- matrix(scan(paste(initdir.PA[k],</pre>
           "/Y_2.sim", sep = ""), skip = 0), ncol = 2, byrow = TRUE)
      init.PA.r <- scan(paste(initdir.PA[k], "/r_2.sim", sep = ""),</pre>
      init.PA.caries[[k]]$r <- vecr2matr(init.PA.r, prior.PA.gspl.caries$K)</pre>
> names(init.PA.emerg) <- c("1646", "2636")</pre>
> names(init.PA.caries) <- c("1646", "2636")
```

• Show the initial values for the emergence process for the model with the right teeth (16 and 46) using the standard function str.

```
> str(init.PA.emerg$"1646")
```

```
List of 10
$ iter
          : num 250000
$ lambda : num [1:2] 47236 45559
$ gamma
         : num [1:2] 0 0
$ sigma : num [1:2] 0.2 0.2
$ intercept: num [1:2] 0.630 0.638
$ scale : num [1:2] 0.104 0.102
 $ beta
           : num -0.0219
$ a
          : num [1:961] 1.65 1.67 1.68 1.69 1.70 ...
          : num [1:2827, 1:2] 0.829 0.495 0.145 0.277 0.399 ...
 $у
           : num [1:2827, 1:2] 7 -4 -14 -11 -8 -8 0 -15 -10 -13 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : NULL
  .. ..$ : chr [1:2] "r1" "r2"
```

• Show the initial values for the caries process for the model with the right teeth (16 and 46) using the standard function str.

> str(init.PA.caries\$"1646")

```
List of 10
 $ iter
           : num 250000
$ lambda : num [1:2] 45937 43756
$ gamma
           : num [1:2] 0 0
         : num [1:2] 0.2 0.2
: num [1:2] 0.2 0.2
$ sigma
$ intercept: num [1:2] 6.69 6.31
$ scale : num [1:2] 1.39 1.33
          : num [1:5] 0.0550 0.1167 -0.2292 0.0782 -0.5739
$ beta
          : num [1:961] 2.81 2.96 3.07 3.14 3.17 ...
          : num [1:2827, 1:2] 5.406 0.413 0.384 1.608 2.795 ...
           : num [1:2827, 1:2] -4 -15 -14 -10 -9 -11 -6 -13 -8 -5 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : NULL
  .. ..$ : chr [1:2] "r1" "r2"
```

5 MCMC sampling - function bayesBisurvreg

In this section we start the MCMC sampling (separately for each pair of teeth). The chains for the right pair of teeth (16 and 46) are stored in the directory chaindir.PA[1], the chains for the left pair of teeth (26 and 36) are stored in the directory chaindir.PA[2].

• Specify the length of the simulation.

```
> nsimul.PA <- list(niter = 250000, nthin = 3, nburn = 225000,
      nwrite = 100)
• Sample.
> sides <- c("RIGHT", "LEFT")</pre>
> sample.PA <- list()</pre>
> for (k in 1:2) {
      cat("\nPerforming ", sides[k], " part of the mouth \n", sep = "")
      cat("=======
      data.now <- data.PA[[k]]</pre>
      sample.PA[[k]] <- bayesBisurvreg(formula = Surv(Ebeg, Eend,</pre>
          type = "interval2") ~ Girl + cluster(Idnr), formula2 = Surv(Fbeg,
          Fend, type = "interval2") ~ Girl + Brush + Plaque + Seal +
          Prim5 + cluster(Idnr), onlyX = FALSE, dir = chaindir.PA[k],
          nsimul = nsimul.PA, prior = prior.PA.gspl.emerg, prior2 = prior.PA.gspl.caries,
          prior.beta = prior.PA.beta.emerg, prior.beta2 = prior.PA.beta.caries,
          init = init.PA.emerg[[k]], init2 = init.PA.caries[[k]],
          store = list(a = FALSE, a2 = FALSE), data = data.now)
```

6 Posterior predictive survivor, density and hazard – function predictive2

Once the MCMC sampling is finished we can compute predictive survivor density and hazard functions for some specific combinations of covariates. In this section we show how the predictive quantities can be computed for the caries part of the model.

• Specify whether some sampled values should be skipped, how often will the information concerning the progress of computation be print on the screen. Further specify the grid of values in which the predictive quantities will be computed, specify probabilities of quantiles we want to compute.

```
> skip <- 0
> nwrite <- 5000
> pred.grid <- c(seq(0.1, 1.5, by = 0.05), seq(1.65, 6, by = 0.15))
> quants <- c(0.025, 0.5, 0.975)
> nquant <- length(quants)</pre>
```

6.1 Combinations of covariates

• Specify the combination of covariates for which the predictive quantities for each tooth will be computed.

```
> pGender <- factor(c("boy", "girl"))</pre>
> pBrush <- factor(c("not.daily", "daily"))</pre>
> pSeal <- factor(c("no", "yes"))</pre>
> pPlaque <- factor(c("none", "present"))</pre>
> pPrim5 <- factor(c("sound", "dmf"))</pre>
> pdata <- expand.grid(ffPrim5 = pPrim5, ffPlaque = pPlaque, fSeal = pSeal,
      fBrush = pBrush, Gender = pGender)
> pdata$Prim5 <- 1 * (pdata$ffPrim5 == "dmf")</pre>
> pdata$Plaque <- 1 * (pdata$ffPlaque == "present")</pre>
> pdata$Seal <- 1 * (pdata$fSeal == "yes")</pre>
> pdata$Brush <- 1 * (pdata$fBrush == "daily")</pre>
> pdata$Girl <- 1 * (pdata$Gender == "girl")</pre>
> ncov <- nrow(pdata)</pre>
> pred.data <- data.frame(Idnr = 1:(2 * ncov), Maxilla = c(rep(1,
      ncov), rep(0, ncov)), Dimension = c(rep(1, ncov), rep(2, ncov))
      ncov)))
> pred.data <- cbind(pred.data, rbind(pdata, pdata))
```

• Look at the data frame we use for the prediction. Note how the variable Dimension which actually corresponds to the variable Maxilla is specified.

> print(pred.data)

	${\tt Idnr}$	Maxilla	Dimension	ffPrim5	ffPlaque	fSeal	fBrush	Gender	Prim5	Plaque
1	1	1	1	sound	none	no	not.daily	boy	0	0
2	2	1	1	dmf	none	no	not.daily	boy	1	0
3	3	1	1	sound	present	no	not.daily	boy	0	1
4	4	1	1	dmf	present	no	not.daily	boy	1	1
5	5	1	1	sound	none	yes	not.daily	boy	0	0
6	6	1	1	dmf	none	yes	not.daily	boy	1	0
7	7	1	1	sound	present	yes	not.daily	boy	0	1
8	8	1	1	dmf	present	yes	not.daily	boy	1	1
9	9	1	1	sound	none	no	daily	boy	0	0
10	10	1	1	dmf	none	no	daily	boy	1	0
11	11	1	1	sound	present	no	daily	boy	0	1

12	12		1		1	\mathtt{dmf}	present	no	daily	boy	1	1
13	13		1		1	sound	none	yes	daily	boy	0	0
14	14		1		1	\mathtt{dmf}	none	yes	daily	boy	1	0
15	15		1		1	sound	present	yes	daily	boy	0	1
16	16		1		1	\mathtt{dmf}	present	yes	daily	boy	1	1
17	17		1		1	sound	none	no	not.daily	girl	0	0
18	18		1		1	\mathtt{dmf}	none	no	not.daily	girl	1	0
19	19		1		1	sound	present	no	not.daily	girl	0	1
20	20		1		1	dmf	present	no	not.daily	girl	1	1
21	21		1		1	sound	none	yes	not.daily	girl	0	0
22	22		1		1	\mathtt{dmf}	none	yes	not.daily	girl	1	0
23	23		1		1	sound	present	yes	not.daily	girl	0	1
24	24		1		1	\mathtt{dmf}	present	yes	not.daily	girl	1	1
25	25		1		1	sound	none	no	daily	girl	0	0
26	26		1		1	\mathtt{dmf}	none	no	daily	girl	1	0
27	27		1		1	sound	present	no	daily	girl	0	1
28	28		1		1	\mathtt{dmf}	present	no	daily	girl	1	1
29	29		1		1	sound	none	yes	daily	girl	0	0
30	30		1		1	dmf	none	yes	daily	girl	1	0
31	31		1		1	sound	present	yes	daily	_	0	1
32	32		1		1	dmf	present	yes	daily	_	1	1
33	33		0		2	sound	none	•	not.daily	boy	0	0
34	34		0		2	dmf	none		not.daily	boy	1	0
35	35		0		2	sound	present		not.daily	boy	0	1
36	36		0		2	dmf	present		not.daily	boy	1	1
37	37		0		2	sound	none		not.daily	boy	0	0
38	38		0		2	dmf	none	•	not.daily	boy	1	0
39	39		0		2	sound	present	•	not.daily	boy	0	1
40	40		0		2	dmf	present	•	not.daily	boy	1	1
41	41		0		2	sound	none	no	daily	boy	0	0
42	42		0		2	dmf	none	no	daily	boy	1	0
43	43		0		2	sound	present	no	daily	boy	0	1
44	44		0		2	dmf	present	no	daily	boy	1	1
45	45		0		2	sound	none	yes	daily	boy	0	0
46	46		0		2	dmf	none	yes	daily	boy	1	0
47	47		0		2	sound	present	yes	daily	boy	0	1
48	48		0		2	dmf	present	yes	daily	boy	1	1
49	49		0		2		-		not.daily		0	0
50	50		0		2	dmf	none		not.daily		1	0
51	51		0		2	sound	present		not.daily	_	0	1
52	52		0		2	dmf	present		not.daily		1	1
53	53		0		2	sound	none		not.daily		0	0
54	54		0		2	dmf	none	•	not.daily	_	1	0
55	55		0		2	sound	present		not.daily		0	1
56	56		0		2	dmf	present	-	not.daily	_	1	1
57	57		0		2	sound	none	no	daily	_	0	0
58	58		0		2	dmf	none	no	daily		1	0
59	59		0		2	sound		no	daily		0	1
60	60		0		2	dmf	present present	no	daily	•	1	1
61	61		0		2	sound	-		daily	_	0	0
62	62		0		2		none	yes	_	_		
63	63		0		2	dmf	none	yes	daily	_	1	0
64	64		0		2	sound dmf	present	yes	daily	_	0 1	1 1
04		Bruch		1	2	ami	present	yes	daily	girl	1	1
1		Brush										
1	0	0)								
2	0	0)								
3	0	0)								
4	0	0)								
5	1	0	()								

6	1	0 0	0
7 8	1 1	0	0 0 0 0 0 0
9	0	1	0
10	0	1	0
11	0	1	0
12	0	1	0
13	1	1	0
14	1	1	0
15	1	1	0
16	1	1	0
17	0	0	1 1 1
18	0	0 0	1
19	0	0	1
20	0	0	1
21	1	0	1
22	1 1	0	1 1
23	1	0	1
24	0	0 1	1
26	0	1	1
27	0	1	1
28	0	1	1
21 22 23 24 25 26 27 28 29	1	1	1
30	1	1	1
31	1	1	1
32	1	1	1
33	0	0	0
34	0	0	0
35	0	0	0
32 33 34 35 36 37 38	0	0 0 0 0 0	1 1 0 0 0 0 0 0 0 0
37	1	0	0
38	1	0	0
39 40 41	1	0	0
40	1 0	0 1	0
41	0	1	0
42	0	1	
43	0	1	0
44 45	0 1	1 1	0
46	1	1	0
47	1	1	0
48	1	1	0
49	0	0	1
50	0	0	1
51	0	0	1
52	0	0	1
53	1	0	1
54	1	0	1
55	1	0	1
56	1	0	1
57	0	1	1
58	0	1	1
59	0	1	1
60	0	1	1
61	1	1	1
62 63	1 1	1	1
64	1	1 1	1 1
04	Т	T	Т

6.2 Compute predictive quantities

- To avoid problems with memory (when the quantiles are asked, all predictive quantities during all the MCMC iterations must be at some moment stored in the memory which might often kill R due to memory problems), we compute predictive functions always only for two combinations of covariates at once and then put the results together.
- Here we define the combinations of covariates for which the predictive curves will be computed at once.

• Compute the predictive quantities using the function predictive2. The loop over k is the loop over the right and left pair of teeth, the loop over jj is the loop over the upper (maxillary) and lower (mandibular) tooth. The loop over ii is the loop over the sets of covariate combinations which are processed at once.

The list pred.PA will have four components (one per tooth) and each component will again be the list with each component corresponding to the set of covariate combinations that were processed at once.

```
> pred.PA <- list()</pre>
> for (k in 1:2) {
      cat("Performing ", side[k], " side\n", sep = "")
      for (jj in 1:2) {
          cat("Performing ", jaw[jj], " jaw\n", sep = "")
          pred.PA[[(k - 1) * 2 + jj]] <- list()
          for (ii in 1:length(start[[jj]])) {
              cat("Performing the covariate set number ", ii, "\n",
                  sep = "")
              pdata.now <- pred.data[start[[jj]][ii]:end[[jj]][ii],</pre>
              nr <- nrow(pdata.now)</pre>
              pred.PA[[(k-1)*2+jj]][[ii]] \leftarrow predictive2(Surv(rep(1,
                  nr), rep(1, nr)) ~ Girl + Brush + Plaque + Seal +
                  Prim5 + cluster(Idnr), obs.dim = pdata.now$Dimension,
                  grid = pred.grid, data = pdata.now, Gspline = list(dim = 2,
                    K = c(15, 15), quantile = quants, skip = skip,
                  by = 1, nwrite = nwrite, only.aver = FALSE, predict = list(density = TRUE,
                    Surv = TRUE, hazard = TRUE), dir = chaindir.PA[k],
                  extens = "_2")
          }
      }
+ }
> tnames <- c("16", "46", "26", "36")
> names(pred.PA) <- tnames
```

• With the following code we create the list predd.PA with four components (one per tooth). Each of its components will join the results for all sets of covariates that were separately processed. At the end we assign predd.PA to pred.PA.

```
> predd.PA <- list()
> for (tt in 1:4) {
+     predd.PA[[tt]] <- list()
+     predd.PA[[tt]]$grid <- pred.PA[[tt]][[1]]$grid
+     predd.PA[[tt]]$Surv <- pred.PA[[tt]][[1]]$Surv</pre>
```

```
predd.PA[[tt]]$hazard <- pred.PA[[tt]][[1]]$hazard</pre>
      predd.PA[[tt]]$density <- pred.PA[[tt]][[1]]$density</pre>
      predd.PA[[tt]]$quant.Surv <- pred.PA[[tt]][[1]]$quant.Surv</pre>
      predd.PA[[tt]]$quant.hazard <- pred.PA[[tt]][[1]]$quant.hazard</pre>
      predd.PA[[tt]]$quant.density <- pred.PA[[tt]][[1]]$quant.density</pre>
      for (ii in 2:length(start[[1]])) {
          predd.PA[[tt]]$Surv <- rbind(predd.PA[[tt]]$Surv, pred.PA[[tt]][[ii]]$Surv)</pre>
          predd.PA[[tt]]$hazard <- rbind(predd.PA[[tt]]$hazard,</pre>
               pred.PA[[tt]][[ii]]$hazard)
          predd.PA[[tt]]$density <- rbind(predd.PA[[tt]]$density,</pre>
               pred.PA[[tt]][[ii]]$density)
          templ <- length(predd.PA[[tt]]$quant.Surv)</pre>
          for (ij in 1:length(pred.PA[[tt]][[ii]]$quant.Surv)) {
               predd.PA[[tt]]$quant.Surv[[templ + ij]] <- pred.PA[[tt]][[ii]]$quant.Surv[[ij]]</pre>
               predd.PA[[tt]]$quant.hazard[[templ + ij]] <- pred.PA[[tt]][[ii]]$quant.hazard[[ij]]</pre>
               predd.PA[[tt]]$quant.density[[temp1 + ij]] <- pred.PA[[tt]][[ii]]$quant.density[[ij]]</pre>
          }
      }
+ }
> names(predd.PA) <- tnames
> pred.PA <- predd.PA
> rm(list = "predd.PA")
```

6.3 Store predictive quantities in files

We can also store predictive quantities in files for future use. We store them in the directory pred-Curvesdir.

• Posterior predictive means. In each file the first row is the grid in which the predictive functions are evaluated, the 2nd to 33rd rows are predictive functions for each combination of covariates specified by either pred.data[1:32,] or by pred.data[33:64]. We create one file per tooth.

```
> for (tt in 1:4) {
      sink(paste(predCurvesdir, "predDensCaries.", tnames[tt],
          ".PA.", "dat", sep = ""))
      cat(pred.PA[[tt]]$grid, "\n", sep = "
      for (j in 1:ncov) cat(pred.PA[[tt]]$density[j, ], "\n", sep = "
      sink()
      sink(paste(predCurvesdir, "predSurvCaries.", tnames[tt],
          ".PA.", "dat", sep = ""))
      cat(pred.PA[[tt]]\$grid, "\n", sep = "
      for (j in 1:ncov) cat(pred.PA[[tt]]Surv[j, ], "\n", sep = "
      sink()
      sink(paste(predCurvesdir, "predhazardCaries.", tnames[tt],
          ".PA.", "dat", sep = ""))
      cat(pred.PA[[tt]]$grid, "\n", sep = "
      for (j in 1:ncov) cat(pred.PA[[tt]]$hazard[j, ], "\n", sep = "
      sink()
+ }
```

• Posterior predictive quantiles. In each file the first row is the grid in which the predictive functions are evaluated, the 2nd to 4th row are 2.5%, 50% and 97.5% quantile for the first combination of covariates, the 5th to 7th row are 2.5%, 50% and 97.5% quantile for the second combination of covariates etc. Again, one file per tooth is created.

```
> for (tt in 1:4) {
+     sink(paste(predCurvesdir, "quantDensCaries.", tnames[tt],
+          ".PA.", "dat", sep = ""))
+     cat(pred.PA[[tt]]$grid, "\n", sep = " ")
```

```
for (j in 1:ncov) {
         for (jj in 1:nquant) cat(pred.PA[[tt]]$quant.density[[j]][jj,
             ], "n", sep = " ")
     }
     sink()
     sink(paste(predCurvesdir, "quantSurvCaries.", tnames[tt],
          ".PA.", "dat", sep = ""))
     cat(pred.PA[[tt]]\$grid, "\n", sep = "
     for (j in 1:ncov) {
         for (jj in 1:nquant) cat(pred.PA[[tt]]$quant.Surv[[j]][jj,
             ], "n", sep = " ")
     }
     sink()
     sink(paste(predCurvesdir, "quanthazardCaries.", tnames[tt],
          ".PA.", "dat", sep = ""))
     cat(pred.PA[[tt]]\$grid, "\n", sep = "
     for (j in 1:ncov) {
         for (jj in 1:nquant) cat(pred.PA[[tt]]$quant.hazard[[j]][jj,
             ], "n", sep = " ")
     sink()
+ }
```

6.4 Read the predictive quantities and plot them

We read the predictive quantities from files and plot some of them.

 \bullet Some useful variables.

```
> tnames <- c("16", "26", "36", "46")
> qnames <- c("2.5%", "50%", "97.5%")
> nquant <- length(qnames)
> ncov <- 32</pre>
```

• Read posterior predictive means.

```
> pred.PA <- list()
> for (tt in 1:4) {
      pred.PA[[tt]] <- list()</pre>
      pred.PA[[tt]]$grid <- scan(paste(predCurvesdir, "predDensCaries.",</pre>
           tnames[tt], ".PA.dat", sep = ""), nlines = 1)
      ngrid <- length(pred.PA[[tt]]$grid)</pre>
      pred.PA[[tt]]$density <- matrix(scan(paste(predCurvesdir,</pre>
          "predDensCaries.", tnames[tt], ".PA.dat", sep = ""),
          skip = 1), ncol = ngrid, byrow = TRUE)
      pred.PA[[tt]]$Surv <- matrix(scan(paste(predCurvesdir, "predSurvCaries.",</pre>
          tnames[tt], ".PA.dat", sep = ""), skip = 1), ncol = ngrid,
          byrow = TRUE)
      pred.PA[[tt]]$hazard <- matrix(scan(paste(predCurvesdir,</pre>
          "predhazardCaries.", tnames[tt], ".PA.dat", sep = ""),
          skip = 1), ncol = ngrid, byrow = TRUE)
+ }
> names(pred.PA) <- tnames
```

• Read posterior predictive quantiles.

```
> for (tt in 1:4) {
+    ngrid <- length(pred.PA[[tt]]$grid)</pre>
```

```
pred.PA[[tt]]$quant.density <- list()</pre>
      pred.PA[[tt]]$quant.Surv <- list()</pre>
      pred.PA[[tt]]$quant.hazard <- list()</pre>
      for (j in 1:ncov) {
          pred.PA[[tt]]$quant.density[[j]] <- matrix(scan(paste(predCurvesdir,</pre>
               "quantDensCaries.", tnames[tt], ".PA.dat", sep = ""),
              skip = nquant * (j - 1) + 1, nlines = nquant), ncol = ngrid,
              byrow = TRUE)
          pred.PA[[tt]]$quant.Surv[[j]] <- matrix(scan(paste(predCurvesdir,</pre>
              "quantSurvCaries.", tnames[tt], ".PA.dat", sep = ""),
              skip = nquant * (j - 1) + 1, nlines = nquant), ncol = ngrid,
              byrow = TRUE)
          pred.PA[[tt]]$quant.hazard[[j]] <- matrix(scan(paste(predCurvesdir,</pre>
              "quanthazardCaries.", tnames[tt], ".PA.dat", sep = ""),
              skip = nquant * (j - 1) + 1, nlines = nquant), ncol = ngrid,
              byrow = TRUE)
          rownames(pred.PA[[tt]]$quant.density[[j]]) <- qnames</pre>
          rownames(pred.PA[[tt]]$quant.Surv[[j]]) <- qnames</pre>
          rownames(pred.PA[[tt]]$quant.hazard[[j]]) <- qnames</pre>
      }
+ }
• Some parameters for the plots.
> pdfwidth <- 6
> pdfheight <- 9
> teeth <- c(16, 26, 36, 46)
• Combinations of covariates we have.
> pGender <- factor(c("boy", "girl"))</pre>
> pBrush <- factor(c("not.daily", "daily"))</pre>
> pSeal <- factor(c("no", "yes"))</pre>
> pPlaque <- factor(c("none", "present"))</pre>
> pPrim5 <- factor(c("sound", "dmf"))</pre>
> pdata <- expand.grid(ffPrim5 = pPrim5, ffPlaque = pPlaque, fSeal = pSeal,
      fBrush = pBrush, Gender = pGender)
> pdata$Prim5 <- 1 * (pdata$ffPrim5 == "dmf")</pre>
> pdata$Plaque <- 1 * (pdata$ffPlaque == "present")</pre>
> pdata$Seal <- 1 * (pdata$fSeal == "yes")</pre>
> pdata$Brush <- 1 * (pdata$fBrush == "daily")</pre>
> pdata$Girl <- 1 * (pdata$Gender == "girl")</pre>
> ncov <- nrow(pdata)</pre>
> print(pdata)
   ffPrim5 ffPlaque fSeal
                              fBrush Gender Prim5 Plaque Seal Brush Girl
1
     sound none no not.daily
                                        boy
                                                0
                                                   0
       dmf
                                                1
                                                       0
                                                             0
                                                                   0
                                                                         0
2
               none no not.daily
                                        boy
                                                      1
                                                             0
3
     sound present no not.daily
                                        boy
                                                0
                                                                   0
                                                                         0
       dmf present no not.daily
                                                             0
4
                                        boy
                                                1
5
               none yes not.daily
                                        boy
                                                0
                                                       0 1
                                                                   0
     sound
                                                       0 1
6
       dmf
               none yes not.daily
                                        boy
                                                1
                                                                   0
                                                                         0
7
     sound present
                      yes not.daily
                                        boy
                                                0
                                                        1
                                                            1
                                                                   0
                                                                         0
                     yes not.daily
8
                                        boy
                                                                   0
       dmf present
                                                1
                                                        1
                                                             1
                                                                         0
9
                                                0
                                                       0
                                                           0
                                                                   1
     sound
               none
                     no
                               daily
                                        boy
10
                                                       0 0
                                                                         0
       dmf
                                                                   1
               none
                     no
                               daily
                                        boy
                                                1
11
     sound present
                       no
                               daily
                                        boy
                                                0
                                                        1
                                                             0
                                                                   1
                                                                         0
12
       dmf present
                               daily
                                        boy
                                                1
                       no
```

```
13
                                             0
                                                    0
                                                                   0
    sound
              none
                    yes
                            daily
                                     boy
                                                         1
                                                              1
14
      dmf
                            daily
                                     boy
                                             1
                                                    0
                                                         1
                                                              1
                                                                   0
              none
                    yes
                                     boy
15
    sound present
                    yes
                            daily
                                             0
                                                    1
      dmf present
16
                            daily
                                     boy
                                             1
                                                    1
                                                        1
                                                                   0
                     yes
                                                              1
                                                    0
17
                                                        0
                                                              0
    sound
              none
                     no not.daily
                                    girl
                                             0
                                                                   1
18
      dmf
              none
                     no not.daily
                                    girl
                                             1
                                                    0
                                                        0
                                                              0
                                                                   1
19
                                                    1
                                                        0
                                                              0
    sound present
                    no not.daily
                                    girl
                                             0
20
                                             1
                                                    1
                                                        0
                                                              0
      dmf present
                    no not.daily
                                    girl
                                                                   1
21
                                             0
                                                    0
                                                         1
                                                              0
    sound
           none yes not.daily
                                    girl
                                                                   1
22
      dmf
              none yes not.daily
                                             1
                                                    0
                                                         1
                                                              0
                                    girl
23
    sound present yes not.daily
                                    girl
                                             0
                                                         1
                                                              0
                                                                   1
      dmf present
24
                    yes not.daily
                                    girl
                                             1
                                                    1
                                                         1
                                                              0
                                                                   1
25
                                                    0
    sound
              none
                     no
                            daily
                                    girl
                                             0
                                                         0
                                                              1
                                                                   1
26
      dmf
              none
                     no
                            daily
                                    girl
                                             1
                                                    0
                                                         0
                                                              1
27
    sound present
                    no
                            daily
                                    girl
                                             0
                                                    1
                                                         0
                                                              1
                                                                   1
28
                                                        0
      dmf present no
                                             1
                                                    1
                                                              1
                            daily
                                    girl
                                                                   1
                                                    0
29
                                             0
                                                       1
    sound
              none yes
                            daily
                                    girl
                                                              1
                                                                   1
30
      dmf
                                             1
                                                    0
                                                        1
                                                              1
              none
                    yes
                            daily
                                    girl
31
    sound present
                     yes
                            daily
                                    girl
                                             0
                                                    1
                                                         1
                                                              1
                                                                   1
32
                                                    1
                                                         1
      dmf
           present
                            daily
                                             1
                                                              1
                                                                   1
                     yes
                                    girl
```

• Predictive survivor functions, one covariate combination per plot and 95% confidence region. See Figure 1 for the plot of the tooth 16, boys and first 8 covariate combinations.

```
> sets <- list(set1 = 1:8, set2 = 9:16, set3 = 17:24, set4 = 25:32)
> label <- paste(pdata$Gender, ", brush: ", pdata$fBrush, ", seal: ",
      pdata$fSeal, ", plaq: ", pdata$ffPlaque, ", ", pdata$ffPrim5,
> pdf(paste(figuredir, "predSurvCI_PA.pdf", sep = ""), width = pdfwidth,
      height = pdfheight)
> for (tt in 1:4) {
      for (ss in 1:length(sets)) {
          par(mfrow = c(4, 2), bty = "n", lwd = 1.2)
          for (ii in sets[[ss]]) {
              plot(pred.PA[[tt]]$grid, pred.PA[[tt]]$Surv[ii, ],
                  type = "l", lty = 1, xlab = "Age (years)", ylab = "Caries free",
                  ylim = c(0, 1))
              lines(pred.PA[[tt]]$grid, pred.PA[[tt]]$quant.Surv[[ii]]["2.5%",
                  ], 1ty = 2)
              lines(pred.PA[[tt]]$grid, pred.PA[[tt]]$quant.Surv[[ii]]["97.5%",
                  ], 1ty = 2)
              title(main = paste("Tooth ", teeth[tt], sep = ""),
                  sub = label[ii])
          }
      }
+ }
> dev.off()
```

• Predictive hazard functions, one covariate combination per plot and 95% confidence region. See Figure 2 for the plot of the tooth 16, boys and first 8 covariate combinations.

• Posterior predictive means of the survivor functions. 16 covariate combinations per plot, 1 plot per tooth and gender. See Figure 3 for the plot of the tooth 16 and boys.

```
red = not.daily brushers and dmf;
orange = not.daily brushers and sound;
blue = daily brushers and dmf;
darkblue = daily brushers and sound;
```

Line type: $2 = no \ plaque$, no seal; $4 = present \ plaque$, no seal; $1 = no \ plaque$, sealed; $3 = present \ plaque$, sealed.

```
> col <- c(rep(c("orange", "red"), 4), rep(c("darkblue", "blue"),</pre>
> lty <- rep(c(2, 2, 4, 4, 1, 1, 3, 3), 2)
> glabel <- c("Boy", "Girl")</pre>
> ncov.gender <- ncov/2
> pdf(paste(figuredir, "predSurv_PA.pdf", sep = ""), width = pdfheight,
      height = pdfwidth)
> for (tt in 1:4) {
      for (gg in 1:2) {
          par(mfrow = c(1, 1), bty = "n", lwd = 1.2)
          plot(pred.PA[[tt]]$grid, pred.PA[[tt]]$Surv[(gg - 1) *
              ncov.gender + 1, ], type = "1", lty = lty[1], col = col[1],
              xlab = "Time since emergence (years)", ylab = "Caries free",
              ylim = c(0, 1))
          for (i in 2:ncov.gender) {
              lines(pred.PA[[tt]]$grid, pred.PA[[tt]]$Surv[(gg -
                  1) * ncov.gender + i, ], lty = lty[i], col = col[i])
          title(main = paste("Tooth ", teeth[tt], ", ", glabel[gg],
              sep = "")
          legend(0, 0.7, legend = c("No plaque, sealed", "No plaque, not sealed",
              "Plaque, sealed", "Plaque, not sealed"), lty = 1:4,
              bty = "n", y.intersp = 1.2, col = "black")
          legend(0, 0.3, legend = c("Daily brush, sound primary",
              "Daily brush, dmf primary", "Not daily brush, sound primary",
              "Not daily brush, dmf primary"), lty = 1, bty = "n",
              y.intersp = 1.2, col = c("darkblue", "blue", "orange",
                  "red"))
      }
+ }
> dev.off()
```

• Posterior predictive means of the hazard functions. 16 covariate combinations per plot, 1 plot per tooth and gender. See Figure 4 for the plot of the tooth 16 and boys. Format is the same as for the survivor functions.

```
> pdf(paste(figuredir, "predhazard_PA.pdf", sep = ""), width = pdfheight,
     height = pdfwidth)
> ylim <- c(0, 0.25)
> for (tt in 1:4) {
      for (gg in 1:2) {
          par(mfrow = c(1, 1), bty = "n", lwd = 1.2)
          plot(pred.PA[[tt]]$grid, pred.PA[[tt]]$hazard[(gg - 1) *
              ncov.gender + 1, ], type = "l", lty = lty[1], col = col[1],
              xlab = "Time since emergence (years)", ylab = "Hazard for caries",
              ylim = ylim)
          for (i in 2:ncov.gender) {
              lines(pred.PA[[tt]]$grid, pred.PA[[tt]]$hazard[(gg -
                  1) * ncov.gender + i, ], lty = lty[i], col = col[i])
          title(main = paste("Tooth ", teeth[tt], ", ", glabel[gg],
              sep = ""))
          legend(2.5, 0.27, legend = c("No plaque, sealed", "No plaque, not sealed",
              "Plaque, sealed", "Plaque, not sealed"), lty = 1:4,
              bty = "n", y.intersp = 1.2, col = "black")
          legend(2.5, 0.2, legend = c("Daily brush, sound primary",
              "Daily brush, dmf primary", "Not daily brush, sound primary",
              "Not daily brush, dmf primary"), lty = 1, bty = "n",
              y.intersp = 1.2, col = c("darkblue", "blue", "orange",
                  "red"))
      }
+ }
> dev.off()
```


Figure 1: Predictive survivor curves (posterior predictive means and 95% pointwise credible regions) for caries for tooth 16 of boys.

Figure 2: Predictive hazard curves (posterior predictive means and 95% pointwise credible regions) for caries for tooth 16 of boys.

Figure 3: Predictive survivor curves (posterior predictive means) for caries for tooth 16 of boys.

Figure 4: Predictive hazard curves (posterior predictive means) for caries for tooth 16 of boys.

7 Posterior predictive error densities – function bayesGspline

In this section we compute the estimates of the bivariate densities, store them in files and plot them. It is done separately for each pair of teeth (16-46 and 26-36). Computed estimates are stored in directories chaindir.PA[1] and chaindir.PA[2].

7.1 Compute and store the results

• Specify whether some sampled values are to be skipped and how often the progress information will be print on the screen.

```
> skip <- 0
> nwrite <- 5000
• Predictive error density for the emergence.
> grid1.emerg < seq(0, 0.8, length = 50)
> grid2.emerg <- seq(0, 0.8, length = 50)
> dens.emerg <- list()</pre>
> for (k in 1:2) {
      dens.emerg[[k]] <- bayesGspline(chaindir.PA[k], grid1 = grid1.emerg,</pre>
          grid2 = grid2.emerg, skip = skip, by = 1, nwrite = nwrite,
          only.aver = TRUE)
      sink(paste(chaindir.PA[k], "/densEmerg.dat", sep = ""), append = FALSE)
      cat(dens.emerg[[k]]\$grid1, "\n", sep = " ")
      cat(dens.emerg[[k]]$grid2, "\n", sep = " ")
      cat(dens.emerg[[k]]$average, "\n", sep = " ")
• Predictive error density for the caries.
> grid1.caries <- seq(-0.5, 8, length = 50)
> grid2.caries <- seq(-0.5, 8, length = 50)
> dens.caries <- list()</pre>
> for (k in 1:2) {
      dens.caries[[k]] <- bayesGspline(chaindir.PA[k], extens = "_2",</pre>
          grid1 = grid1.caries, grid2 = grid2.caries, skip = 0,
          by = 1, nwrite = 100, only.aver = TRUE)
      sink(paste(chaindir.PA[k], "/densCaries.dat", sep = ""),
          append = FALSE)
      cat(dens.caries[[k]]\$grid1, "\n", sep = " ")
      cat(dens.caries[[k]]$grid2, "\n", sep = " ")
      cat(dens.caries[[k]]$average, "\n", sep = " ")
```

7.2 Read the results and plot them

The plots are stored in the directory figuredir.

• Some parameters for the plots.

sink()

+ }

```
> pdfwidth <- 9
> pdfheight <- 6
> tname <- c(1646, 2636)
> tname2 <- c("16, 46", "26, 36")
> col <- "lightblue"</pre>
```

• Read computed error densities for emergence from files.

```
> dens.emerg <- list()</pre>
> for (k in 1:2) {
      dens.emerg[[k]] <- list()</pre>
      dens.emerg[[k]]$grid1 <- scan(paste(chaindir.PA[k], "/densEmerg.dat",</pre>
           sep = ""), nlines = 1)
      dens.emerg[[k]]$grid2 <- scan(paste(chaindir.PA[k], "/densEmerg.dat",</pre>
          sep = ""), skip = 1, nlines = 1)
      ngrid1 <- length(dens.emerg[[k]]$grid1)</pre>
      ngrid2 <- length(dens.emerg[[k]]$grid2)</pre>
      if (ngrid1 != ngrid2)
          stop("Different grid sizes read???")
      ngrid <- ngrid1
      dens.emerg[[k]]$average <- matrix(scan(paste(chaindir.PA[k],</pre>
           "/densEmerg.dat", sep = ""), skip = 2, nlines = 1), ncol = ngrid)
+ }
> names(dens.emerg) <- c("right", "left")</pre>
• Read computed error densities for caries from files.
> dens.caries <- list()</pre>
> for (k in 1:2) {
      dens.caries[[k]] <- list()</pre>
      dens.caries[[k]]$grid1 <- scan(paste(chaindir.PA[k], "/densCaries.dat",</pre>
          sep = ""), nlines = 1)
      dens.caries[[k]]$grid2 <- scan(paste(chaindir.PA[k], "/densCaries.dat",</pre>
          sep = ""), skip = 1, nlines = 1)
      ngrid1 <- length(dens.caries[[k]]$grid1)</pre>
      ngrid2 <- length(dens.caries[[k]]$grid2)</pre>
      if (ngrid1 != ngrid2)
           stop("Different grid sizes read???")
      ngrid <- ngrid1
      dens.caries[[k]]$average <- matrix(scan(paste(chaindir.PA[k],</pre>
           "/densCaries.dat", sep = ""), skip = 2, nlines = 1),
          ncol = ngrid)
+ }
> names(dens.caries) <- c("right", "left")</pre>
• Contour plot and three-dimensional plots from two different directions for the error density of the
emergence. See Figures 5 and 6.
> theta <- c(30, 300)
> phi <- c(30, 30)
> for (k in 1:2) {
      pdf(paste(figuredir, "errDensEmerg", tname[k], "_PA.pdf",
           sep = ""), width = pdfwidth, height = pdfheight)
      par(bty = "n", mfrow = c(2, 2), mar = c(4, 4, 4, 2) + 0.1)
      contour(dens.emerg[[k]]$grid1, dens.emerg[[k]]$grid2, dens.emerg[[k]]$average,
          lty = 1, main = paste("Emergence, teeth ", tname2[k],
               sep = ""), xlim = c(0, 1), ylim = c(0, 1))
      plot.new()
      par(mar = c(0, 0, 0, 0) + 0.1)
      for (i in 1:2) {
          persp(dens.emerg[[k]]$grid1, dens.emerg[[k]]$grid2, dens.emerg[[k]]$average,
               theta = theta[i], phi = phi[i], box = FALSE, xlab = "y1",
               ylab = "y2", zlab = "g(y1, y2)", col = col)
      }
```

```
+ dev.off()
+ }
```

• Contour plot and three-dimensional plots from two different directions for the error density of the caries See Figures 7 and 8.

```
> theta <- c(30, 300)
> phi <- c(30, 30)
> for (k in 1:2) {
      pdf(paste(figuredir, "errDensCaries", tname[k], "_PA.pdf",
          sep = ""), width = pdfwidth, height = pdfheight)
      par(bty = "n", mfrow = c(2, 2), mar = c(4, 4, 4, 2) + 0.1)
      contour(dens.caries[[k]]$grid1, dens.caries[[k]]$grid2, dens.caries[[k]]$average,
          lty = 1, main = paste("Caries, teeth ", tname2[k], sep = ""),
          xlim = c(-1, 9), ylim = c(-1, 9)
     plot.new()
     par(mar = c(0, 0, 0, 0) + 0.1)
     for (i in 1:2) {
          persp(dens.caries[[k]]$grid1, dens.caries[[k]]$grid2,
              dens.caries[[k]]$average, theta = theta[i], phi = phi[i],
              box = FALSE, xlab = "y1", ylab = "y2", zlab = "g(y1, y2)",
              col = col)
      }
      dev.off()
+ }
```


Figure 5: Estimate of the error density. Emergence of the right teeth 16 and 46.

Figure 6: Estimate of the error density. Emergence of the left teeth 26 and 36.

Figure 7: Estimate of the error density. Caries of the right teeth 16 and 46.

Figure 8: Estimate of the error density. Caries of the left teeth 26 and 36.

8 Read sampled chains

In this section we read the sampled chains. It is assumed that the chains for the model for the right teeth (16 and 46) are stored in the directory chaindir.PA[1] and the chains for the model for the left teeth (26 and 36) in the directory chaindir.PA[2].

• Numbers of regression parameters for the emergence and caries parts of the model.

```
> nbeta.emerg.PA <- 1
> nbeta.caries.PA <- 5</pre>
```

• Read the indeces of stored iterations and show the beginning using the standard function str.

8.1 Chains for the emergence part of the model

We read the sampled chains from the files mixmoment.sim, lambda.sim, logposter.sim and beta.sim and store them (or their transformations) in the lists error.emerg.PA, beta.emerg.PA, logposter.emerg.PA which have each two components, one component for the model with the right teeth 16 and 46 and one component for the model with the left teeth 26 and 36. Additionally we create the variable lambda.emerg.PA which will be a data frame with 4 columns.

Note how the main effect of the upper (maxillary) tooth is defined as the difference of the two intercept terms.

```
> mixmoment.emerg.PA <- list()</pre>
> error.emerg.PA <- list()</pre>
> lambda.emerg.PA <- list()</pre>
> logposter.emerg.PA <- list()</pre>
> beta.emerg.PA <- list()</pre>
> for (k in 1:2) {
      mixmoment.emerg.PA[[k]] <- matrix(scan(paste(chaindir.PA[k],</pre>
           "/mixmoment.sim", sep = ""), skip = 1, nlines = nlines),
          ncol = 6, byrow = TRUE)
      lambda.emerg.PA[[k]] <- matrix(scan(paste(chaindir.PA[k],</pre>
           "/lambda.sim", sep = ""), skip = 1, nlines = nlines),
          ncol = 2, byrow = TRUE)
      logposter.emerg.PA[[k]] <- matrix(scan(paste(chaindir.PA[k],</pre>
           "/logposter.sim", sep = ""), skip = 1, nlines = nlines),
          ncol = 4, byrow = TRUE)
      beta.emerg.PA[[k]] <- matrix(scan(paste(chaindir.PA[k], "/beta.sim",
           sep = ""), skip = 1, nlines = nlines), ncol = nbeta.emerg.PA,
           byrow = TRUE)
      colnames(mixmoment.emerg.PA[[k]]) <- scan(paste(chaindir.PA[k],</pre>
           "/mixmoment.sim", sep = ""), what = "character", nlines = 1)
      colnames(lambda.emerg.PA[[k]]) <- scan(paste(chaindir.PA[k],</pre>
           "/lambda.sim", sep = ""), what = "character", nlines = 1)
```

```
colnames(logposter.emerg.PA[[k]]) <- scan(paste(chaindir.PA[k],</pre>
          "/logposter.sim", sep = ""), what = "character", nlines = 1)
      colnames(beta.emerg.PA[[k]]) <- scan(paste(chaindir.PA[k],</pre>
          "/beta.sim", sep = ""), what = "character", nlines = 1)
      scale1 <- sqrt(mixmoment.emerg.PA[[k]][, "D.1.1"])</pre>
      scale2 <- \ sqrt(\texttt{mixmoment.emerg.PA[[k]][, "D.2.2"]})
      correl <- mixmoment.emerg.PA[[k]][, "D.2.1"]/(scale1 * scale2)</pre>
      error.emerg.PA[[k]] <- data.frame(Mean1 = mixmoment.emerg.PA[[k]][,</pre>
          "Mean.1"], Mean2 = mixmoment.emerg.PA[[k]][, "Mean.2"],
          Scale1 = scale1, Scale2 = scale2, Covar = mixmoment.emerg.PA[[k]][,
              "D.2.1"], Correl = correl)
      beta.emerg.PA[[k]] <- data.frame(Maxilla = error.emerg.PA[[k]]$Mean1 -</pre>
          error.emerg.PA[[k]]$Mean2, Girl = beta.emerg.PA[[k]][,
          "Girl"])
      logposter.emerg.PA[[k]] <- as.data.frame(logposter.emerg.PA[[k]])</pre>
      rm(list = c("scale1", "scale2", "correl"))
+ }
> rm(list = c("mixmoment.emerg.PA"))
> names(error.emerg.PA) <- c("right", "left")</pre>
> names(beta.emerg.PA) <- c("right", "left")</pre>
> names(logposter.emerg.PA) <- c("right", "left")</pre>
> lambda.emerg.PA <- data.frame(lambda16 = lambda.emerg.PA[[1]][,
      1], lambda26 = lambda.emerg.PA[[2]][, 1], lambda36 = lambda.emerg.PA[[2]][,
      2], lambda46 = lambda.emerg.PA[[1]][, 2])
• Show the beginning of each read and kept quantity for the right teeth using the standard function
> str(error.emerg.PA$right)
'data.frame':
                     25000 obs. of 6 variables:
 $ Mean1 : num 0.384 0.383 0.383 0.383 ...
 $ Mean2 : num 0.407 0.407 0.408 0.405 0.404 ...
 $ Scale1: num 0.166 0.168 0.167 0.167 0.167 ...
 $ Scale2: num 0.167 0.168 0.167 0.169 0.168 ...
 $ Covar : num  0.00144  0.00146  0.00145  0.00146  0.00145 ...
 $ Correl: num 0.0519 0.0518 0.0517 0.0517 0.0516 ...
> str(beta.emerg.PA$right)
'data.frame':
                     25000 obs. of 2 variables:
 $ Maxilla: num -0.0224 -0.0242 -0.0253 -0.0216 -0.0209 ...
 $ Girl : num -0.00871 -0.00748 -0.00794 -0.00776 -0.00790 ...
> str(logposter.emerg.PA$right)
'data.frame':
                     25000 obs. of 4 variables:
 $ loglik : num 1029 1043 1083 1076 1068 ...
 $ penalty1: num -0.00558 -0.00560 -0.00611 -0.00592 -0.00480 ...
 $ penalty2: num -0.00598 -0.00521 -0.00473 -0.00512 -0.00541 ...
 $ logprw : num -16979 -16968 -16973 -16969 -16954 ...
> str(lambda.emerg.PA)
'data.frame':
                     25000 obs. of 4 variables:
 $ lambda16: num 46454 41607 47311 46224 48807 ...
 $ lambda26: num 37408 41494 47822 42681 37662 ...
 $ lambda36: num 47569 47585 44614 47933 45743 ...
 $ lambda46: num 45224 50443 50059 46925 49661 ...
```

8.2 Chains for the caries part of the model

We read the sampled chains from the files mixmoment_2.sim, lambda_2.sim, logposter_2.sim and beta_2.sim and store them (or their transformations) in the lists error.caries.PA, beta.caries.PA, logposter.caries.PA which have each two components, one component for the model with the right teeth 16 and 46 and one component for the model with the left teeth 26 and 36. Additionally we create the variable lambda.caries.PA which will be a data frame with 4 columns.

Note how the main effect of the upper (maxillary) tooth is defined as the difference of the two intercept terms.

```
> mixmoment.caries.PA <- list()</pre>
> error.caries.PA <- list()
> lambda.caries.PA <- list()</pre>
> logposter.caries.PA <- list()</pre>
> beta.caries.PA <- list()</pre>
> for (k in 1:2) {
      mixmoment.caries.PA[[k]] <- matrix(scan(paste(chaindir.PA[k],</pre>
           "/mixmoment_2.sim", sep = ""), skip = 1, nlines = nlines),
          ncol = 6, byrow = TRUE)
      lambda.caries.PA[[k]] <- matrix(scan(paste(chaindir.PA[k],</pre>
           "/lambda_2.sim", sep = ""), skip = 1, nlines = nlines),
          ncol = 2, byrow = TRUE)
      logposter.caries.PA[[k]] <- matrix(scan(paste(chaindir.PA[k],</pre>
           "/logposter_2.sim", sep = ""), skip = 1, nlines = nlines),
          ncol = 4, byrow = TRUE)
      beta.caries.PA[[k]] <- matrix(scan(paste(chaindir.PA[k],</pre>
           "/beta_2.sim", sep = ""), skip = 1, nlines = nlines),
          ncol = nbeta.caries.PA, byrow = TRUE)
      colnames(mixmoment.caries.PA[[k]]) <- scan(paste(chaindir.PA[k],</pre>
           "/mixmoment_2.sim", sep = ""), what = "character", nlines = 1)
      colnames(lambda.caries.PA[[k]]) <- scan(paste(chaindir.PA[k],</pre>
           "/lambda_2.sim", sep = ""), what = "character", nlines = 1)
      colnames(logposter.caries.PA[[k]]) <- scan(paste(chaindir.PA[k],</pre>
           "/logposter_2.sim", sep = ""), what = "character", nlines = 1)
      colnames(beta.caries.PA[[k]]) <- scan(paste(chaindir.PA[k],</pre>
           "/beta_2.sim", sep = ""), what = "character", nlines = 1)
      scale1 <- sqrt(mixmoment.caries.PA[[k]][, "D.1.1"])</pre>
      scale2 <- sqrt(mixmoment.caries.PA[[k]][, "D.2.2"])</pre>
      correl <- mixmoment.caries.PA[[k]][, "D.2.1"]/(scale1 * scale2)</pre>
      error.caries.PA[[k]] <- data.frame(Mean1 = mixmoment.caries.PA[[k]][,</pre>
           "Mean.1"], Mean2 = mixmoment.caries.PA[[k]][, "Mean.2"],
          Scale1 = scale1, Scale2 = scale2, Covar = mixmoment.caries.PA[[k]][,
               "D.2.1"], Correl = correl)
      beta.caries.PA[[k]] <- data.frame(Maxilla = error.caries.PA[[k]]$Mean1 -
          error.caries.PA[[k]]$Mean2, Girl = beta.caries.PA[[k]][,
           "Girl"], Brush = beta.caries.PA[[k]][, "Brush"], Plaque = beta.caries.PA[[k]][,
           "Plaque"], Seal = beta.caries.PA[[k]][, "Seal"], Prim5 = beta.caries.PA[[k]][,
           "Prim5"])
      logposter.caries.PA[[k]] <- as.data.frame(logposter.caries.PA[[k]])</pre>
      rm(list = c("scale1", "scale2", "correl"))
> rm(list = c("mixmoment.caries.PA"))
> names(error.caries.PA) <- c("right", "left")</pre>
> names(beta.caries.PA) <- c("right", "left")</pre>
> names(logposter.caries.PA) <- c("right", "left")</pre>
> lambda.caries.PA <- data.frame(lambda16 = lambda.caries.PA[[1]][,
      1], lambda26 = lambda.caries.PA[[2]][, 1], lambda36 = lambda.caries.PA[[2]][,
      2], lambda46 = lambda.caries.PA[[1]][, 2])
```

• Show the beginning of each read and kept quantity for the right teeth using the standard function str.

> str(error.caries.PA\$right)

```
25000 obs. of 6 variables:
'data.frame':
$ Mean1 : num 2.96 2.95 2.96 2.96 2.97 ...
$ Mean2 : num 2.96 2.96 2.96 2.96 ...
$ Scale1: num 1.80 1.79 1.79 1.79 1.78 ...
$ Scale2: num 1.87 1.88 1.87 1.85 1.84 ...
$ Covar : num 0.0960 0.0957 0.0957 0.0939 0.0931 ...
$ Correl: num 0.0286 0.0285 0.0287 0.0283 0.0283 ...
> str(beta.caries.PA$right)
'data.frame':
                    25000 obs. of 6 variables:
$ Maxilla: num 0.00400 -0.00898 0.00453 -0.00346 0.01568 ...
$ Girl : num -0.00526 0.00735 0.01291 -0.02082 -0.04078 ...
$ Brush : num 0.178 0.175 0.167 0.182 0.179 ...
$ Plaque : num -0.215 -0.209 -0.237 -0.199 -0.175 ...
$ Seal : num 0.136 0.105 0.138 0.100 0.125 ...
$ Prim5 : num -0.503 -0.507 -0.508 -0.534 -0.529 ...
> str(logposter.caries.PA$right)
'data.frame':
                    25000 obs. of 4 variables:
$ loglik : num 1004 1121 1021 1044 972 ...
$ penalty1: num -0.00570 -0.00602 -0.00531 -0.00589 -0.00523 ...
$ penalty2: num -0.00591 -0.00499 -0.00525 -0.00472 -0.00500 ...
$ logprw : num -16046 -16055 -16048 -16058 -16062 ...
> str(lambda.caries.PA)
'data.frame':
                    25000 obs. of 4 variables:
$ lambda16: num 42103 45179 44100 42830 47974 ...
$ lambda26: num 49103 48016 47328 54919 51495 ...
$ lambda36: num 48598 44743 47487 44980 47512 ...
$ lambda46: num 42728 47288 46121 49685 51423 ...
```

9 Summary for some parameters – function give.summary

In this section we show how to compute some summary for the sampled chains.

```
• Compute the summary.
```

```
> summ.error.emerg.PA <- lapply(error.emerg.PA, give.summary)
> summ.error.caries.PA <- lapply(error.caries.PA, give.summary)
> summ.beta.emerg.PA <- lapply(beta.emerg.PA, give.summary)
> summ.beta.caries.PA <- lapply(beta.caries.PA, give.summary)
> summ.lambda.emerg.PA <- give.summary(lambda.emerg.PA)
> summ.lambda.caries.PA <- give.summary(lambda.caries.PA)</pre>
```

• Round the summary.

```
> rsumm.error.emerg.PA <- lapply(summ.error.emerg.PA, round, dig = 4)
> rsumm.error.caries.PA <- lapply(summ.error.caries.PA, round,
+ dig = 4)
> rsumm.beta.emerg.PA <- lapply(summ.beta.emerg.PA, round, dig = 4)
> rsumm.beta.caries.PA <- lapply(summ.beta.caries.PA, round, dig = 4)
> rsumm.lambda.emerg.PA <- round(summ.lambda.emerg.PA, dig = 4)
> rsumm.lambda.caries.PA <- round(summ.lambda.caries.PA, dig = 4)</pre>
```

• Print the summary for the emergence part of the model.

```
> print(rsumm.beta.emerg.PA)
```

\$right

```
Maxilla Girl
means -0.0171 -0.0172
50% -0.0170 -0.0172
2.5% -0.0315 -0.0327
97.5% -0.0027 -0.0028
p.value 0.0206 0.0178
```

\$left

```
Maxilla Girl
means -0.0188 -0.0039
50% -0.0188 -0.0039
2.5% -0.0348 -0.0187
97.5% -0.0040 0.0116
p.value 0.0127 0.5837
```

> print(rsumm.error.emerg.PA)

\$right

```
        Mean1
        Mean2
        Scale1
        Scale2
        Covar
        Correl

        means
        0.3919
        0.4089
        0.1700
        0.1705
        0.0011
        0.0385

        50%
        0.3920
        0.4091
        0.1700
        0.1704
        0.0011
        0.0371

        2.5%
        0.3794
        0.3972
        0.1626
        0.1642
        0.0009
        0.0297

        97.5%
        0.4043
        0.4206
        0.1781
        0.1772
        0.0015
        0.0505

        p.value
        0.0000
        0.0000
        0.0000
        0.0000
        0.0000
        0.0000
```

\$left

```
    Mean1
    Mean2
    Scale1
    Scale2
    Covar
    Correl

    means
    0.3784
    0.3973
    0.1650
    0.1708
    0.0010
    0.0345

    50%
    0.3783
    0.3976
    0.1649
    0.1707
    0.0010
    0.0341

    2.5%
    0.3658
    0.3839
    0.1579
    0.1637
    0.0008
    0.0269

    97.5%
    0.3919
    0.4098
    0.1725
    0.1784
    0.0012
    0.0431

    p.value
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
```

> print(rsumm.lambda.emerg.PA)

```
lambda16lambda26lambda36lambda46means44936.2241257.7345390.1345164.0950%44892.4941201.1045301.6845117.772.5%39508.6236341.8340110.7739848.7097.5%50545.6446581.8151070.3650770.34p.value0.000.000.000.00
```

• Print the summary for the caries part of the model.

> print(rsumm.beta.caries.PA)

\$right

```
      Maxilla
      Girl
      Brush
      Plaque
      Seal
      Prim5

      means
      -0.0262
      -0.0440
      0.2499
      -0.2281
      0.1092
      -0.4819

      50%
      -0.0243
      -0.0443
      0.2493
      -0.2281
      0.1097
      -0.4820

      2.5%
      -0.2183
      -0.1198
      0.1387
      -0.3129
      0.0188
      -0.5755

      97.5%
      0.1579
      0.0329
      0.3692
      -0.1412
      0.1946
      -0.3884

      p.value
      0.8155
      0.2674
      0.0000
      0.0000
      0.0218
      0.0000
```

\$left

	${\tt Maxilla}$	Girl	Brush	Plaque	Seal	Prim5
means	0.0399	-0.0504	0.2809	-0.2754	0.1076	-0.5344
50%	0.0416	-0.0501	0.2798	-0.2762	0.1086	-0.5345
2.5%	-0.2098	-0.1252	0.1672	-0.3646	0.0187	-0.6299
97.5%	0.2615	0.0238	0.3998	-0.1842	0.1921	-0.4397
p.value	0.7381	0.1868	0.0000	0.0000	0.0190	0.0000

> print(rsumm.error.caries.PA)

\$right

 Mean1
 Mean2
 Scale1
 Scale2
 Covar
 Correl

 means
 2.8433
 2.8695
 1.7385
 1.8140
 0.0734
 0.0233

 50%
 2.8465
 2.8696
 1.7371
 1.8119
 0.0731
 0.0234

 2.5%
 2.6455
 2.7063
 1.6309
 1.7216
 0.0575
 0.0182

 97.5%
 3.0428
 3.0401
 1.8551
 1.9177
 0.0901
 0.0278

 p.value
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000

\$left

 Mean1
 Mean2
 Scale1
 Scale2
 Covar
 Correl

 means
 2.9487
 2.9088
 1.8318
 1.8237
 0.0718
 0.0215

 50%
 2.9486
 2.9126
 1.8329
 1.8245
 0.0719
 0.0215

 2.5%
 2.7463
 2.7232
 1.7182
 1.7126
 0.0535
 0.0160

 97.5%
 3.1483
 3.0779
 1.9455
 1.9348
 0.0892
 0.0264

 p.value
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000

> print(rsumm.lambda.caries.PA)

 lambda16
 lambda26
 lambda36
 lambda46

 means
 47643.48
 48306.45
 48226.48
 48087.44

 50%
 47570.77
 48250.21
 48153.44
 48041.87

 2.5%
 42164.11
 42752.70
 42661.15
 42523.08

 97.5%
 53424.80
 54187.00
 54191.68
 53965.57

 p.value
 0.00
 0.00
 0.00
 0.00

10 Posterior densities and traceplots for some parameters – functions densplot2 and traceplot2

In this section we show how to draw traceplots and estimates of the posterior densities for some parameters.

10.1 Posterior densities

These can be drawn using the following code.

```
> plfun <- "densplot2"</pre>
> plname <- "dens"
> pdfwidth <- 9
> pdfheight <- 6
> tt <- c(16, 26, 36, 46)
• Effect of Maxilla and Girl on the emergence (see Figure 9).
> pdf(paste(figuredir, plname, "_emergBeta.pdf", sep = ""), width = pdfwidth,
      height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> eval(call(plfun, mcmc(beta.emerg.PA[[2]][, "Maxilla"]), main = "Maxilla (emerg), left"))
> title(sub = paste("Maxilla = ", rsumm.beta.emerg.PA[[2]][1, "Maxilla"],
      " (", rsumm.beta.emerg.PA[[2]][3, "Maxilla"], ", ", rsumm.beta.emerg.PA[[2]][4,
          "Maxilla"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.emerg.PA[[1]][, "Maxilla"]), main = "Maxilla (emerg), right"))
> title(sub = paste("Maxilla = ", rsumm.beta.emerg.PA[[1]][1, "Maxilla"],
      " (", rsumm.beta.emerg.PA[[1]][3, "Maxilla"], ", ", rsumm.beta.emerg.PA[[1]][4,
          "Maxilla"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.emerg.PA[[2]][, "Girl"]), main = "Girl (emerg), left"))
> title(sub = paste("Girl = ", rsumm.beta.emerg.PA[[2]][1, "Girl"],
      " (", rsumm.beta.emerg.PA[[2]][3, "Girl"], ", ", rsumm.beta.emerg.PA[[2]][4,
          "Girl"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.emerg.PA[[1]][, "Girl"]), main = "Girl (emerg), right"))
> title(sub = paste("Girl = ", rsumm.beta.emerg.PA[[1]][1, "Girl"],
      " (", rsumm.beta.emerg.PA[[1]][3, "Girl"], ", ", rsumm.beta.emerg.PA[[1]][4,
          "Girl"], ")", sep = ""))
> dev.off()
• Intercept for the emergence process (see Figure 10).
> pdf(paste(figuredir, plname, "_emergIntcpt.pdf", sep = ""), width = pdfwidth,
     height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> eval(call(plfun, mcmc(error.emerg.PA[[1]][, "Mean1"]), main = "Intcpt (emerg), tooth 16"))
> title(sub = paste("Intercept = ", rsumm.error.emerg.PA[[1]][1,
      "Mean1"], " (", rsumm.error.emerg.PA[[1]][3, "Mean1"], ", ",
      rsumm.error.emerg.PA[[1]][4, "Mean1"], ")", sep = ""))
> eval(call(plfun, mcmc(error.emerg.PA[[2]][, "Mean1"]), main = "Intcpt (emerg), tooth 26"))
> title(sub = paste("Intercept = ", rsumm.error.emerg.PA[[2]][1,
      "Mean1"], " (", rsumm.error.emerg.PA[[2]][3, "Mean1"], ", ",
      rsumm.error.emerg.PA[[2]][4, "Mean1"], ")", sep = ""))
> eval(call(plfun, mcmc(error.emerg.PA[[2]][, "Mean2"]), main = "Intcpt (emerg), tooth 36"))
> title(sub = paste("Intercept = ", rsumm.error.emerg.PA[[2]][1,
```

+ rsumm.error.emerg.PA[[2]][4, "Mean2"], ")", sep = ""))
> eval(call(plfun, mcmc(error.emerg.PA[[1]][, "Mean2"]), main = "Intcpt (emerg), tooth 46"))

"Mean2"], " (", rsumm.error.emerg.PA[[2]][3, "Mean2"], ", ",

```
> title(sub = paste("Intercept = ", rsumm.error.emerg.PA[[1]][1,
      "Mean2"], " (", rsumm.error.emerg.PA[[1]][3, "Mean2"], ", ",
      rsumm.error.emerg.PA[[1]][4, "Mean2"], ")", sep = ""))
> dev.off()
• Scale for the emergence (see Figure 11).
> pdf(paste(figuredir, plname, "_emergScale.pdf", sep = ""), width = pdfwidth,
      height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> eval(call(plfun, mcmc(error.emerg.PA[[1]][, "Scale1"]), main = "Scale (emerg), tooth 16"))
> title(sub = paste("Scale = ", rsumm.error.emerg.PA[[1]][1, "Scale1"],
      " (", rsumm.error.emerg.PA[[1]][3, "Scale1"], ", ", rsumm.error.emerg.PA[[1]][4,
          "Scale1"], ")", sep = ""))
> eval(call(plfun, mcmc(error.emerg.PA[[2]][, "Scale1"]), main = "Scale (emerg), tooth 26"))
> title(sub = paste("Scale = ", rsumm.error.emerg.PA[[2]][1, "Scale1"],
      " (", rsumm.error.emerg.PA[[2]][3, "Scale1"], ", ", rsumm.error.emerg.PA[[2]][4,
          "Scale1"], ")", sep = ""))
> eval(call(plfun, mcmc(error.emerg.PA[[2]][, "Scale2"]), main = "Scale (emerg), tooth 36"))
> title(sub = paste("Scale = ", rsumm.error.emerg.PA[[2]][1, "Scale2"],
      " (", rsumm.error.emerg.PA[[2]][3, "Scale2"], ", ", rsumm.error.emerg.PA[[2]][4,
          "Scale2"], ")", sep = ""))
> eval(call(plfun, mcmc(error.emerg.PA[[1]][, "Scale2"]), main = "Scale (emerg), tooth 46"))
> title(sub = paste("Scale = ", rsumm.error.emerg.PA[[1]][1, "Scale2"],
      " (", rsumm.error.emerg.PA[[1]][3, "Scale2"], ", ", rsumm.error.emerg.PA[[1]][4,
          "Scale2"], ")", sep = ""))
> dev.off()
• Covariance and correlation for the emergence (see Figure 12).
> pdf(paste(figuredir, plname, "_emergCovCor.pdf", sep = ""), width = pdfwidth,
      height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> eval(call(plfun, mcmc(error.emerg.PA[[2]][, "Covar"]), main = "Covar (emerg), tooth 26 vs. 36"))
> title(sub = paste("Covar = ", rsumm.error.emerg.PA[[2]][1, "Covar"],
      " (", rsumm.error.emerg.PA[[2]][3, "Covar"], ", ", rsumm.error.emerg.PA[[2]][4,
          "Covar"], ")", sep = ""))
> eval(call(plfun, mcmc(error.emerg.PA[[1]][, "Covar"]), main = "Covar (emerg), tooth 16 vs. 46"))
> title(sub = paste("Covar = ", rsumm.error.emerg.PA[[1]][1, "Covar"],
      " (", rsumm.error.emerg.PA[[1]][3, "Covar"], ", ", rsumm.error.emerg.PA[[1]][4,
          "Covar"], ")", sep = ""))
> eval(call(plfun, mcmc(error.emerg.PA[[2]][, "Correl"]), main = "Correl (emerg), tooth 26 vs. 36"))
> title(sub = paste("Correl = ", rsumm.error.emerg.PA[[2]][1, "Correl"],
      " (", rsumm.error.emerg.PA[[2]][3, "Correl"], ", ", rsumm.error.emerg.PA[[2]][4,
          "Correl"], ")", sep = ""))
> eval(call(plfun, mcmc(error.emerg.PA[[1]][, "Correl"]), main = "Correl (emerg), tooth 16 vs. 46"))
> title(sub = paste("Correl = ", rsumm.error.emerg.PA[[1]][1, "Correl"],
      " (", rsumm.error.emerg.PA[[1]][3, "Correl"], ", ", rsumm.error.emerg.PA[[1]][4,
          "Correl"], ")", sep = ""))
> dev.off()
• Smoothing parameters \lambda_1^{\zeta} and \lambda_2^{\zeta} for the emergence (see Figure 13).
> pdf(paste(figuredir, plname, "_emergLambda.pdf", sep = ""), width = pdfwidth,
      height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> for (i in 1:4) {
      eval(call(plfun, mcmc(lambda.emerg.PA[, i]), main = paste("Lambda (emergence), Tooth ",
          tt[i], sep = "")))
```

```
title(sub = paste("lambda = ", rsumm.lambda.emerg.PA[1, i],
          "(", rsumm.lambda.emerg.PA[3, i], ", ", rsumm.lambda.emerg.PA[4,
              i], ")", sep = ""))
+ }
> dev.off()
• Effect of Maxilla and Girl on the caries (see Figure 14).
> pdf(paste(figuredir, plname, "_cariesBeta1.pdf", sep = ""), width = pdfwidth,
     height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> eval(call(plfun, mcmc(beta.caries.PA[[2]][, "Maxilla"]), main = "Maxilla (caries), left"))
> title(sub = paste("Maxilla = ", rsumm.beta.caries.PA[[2]][1,
      "Maxilla"], " (", rsumm.beta.caries.PA[[2]][3, "Maxilla"],
      ", ", rsumm.beta.caries.PA[[2]][4, "Maxilla"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.caries.PA[[1]][, "Maxilla"]), main = "Maxilla (caries), right"))
> title(sub = paste("Maxilla = ", rsumm.beta.caries.PA[[1]][1,
      "Maxilla"], " (", rsumm.beta.caries.PA[[1]][3, "Maxilla"],
      ", ", rsumm.beta.caries.PA[[1]][4, "Maxilla"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.caries.PA[[2]][, "Girl"]), main = "Girl (caries), left"))
> title(sub = paste("Girl = ", rsumm.beta.caries.PA[[2]][1, "Girl"],
      " (", rsumm.beta.caries.PA[[2]][3, "Girl"], ", ", rsumm.beta.caries.PA[[2]][4,
          "Girl"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.caries.PA[[1]][, "Girl"]), main = "Girl (caries), right"))
> title(sub = paste("Girl = ", rsumm.beta.caries.PA[[1]][1, "Girl"],
      " (", rsumm.beta.caries.PA[[1]][3, "Girl"], ", ", rsumm.beta.caries.PA[[1]][4,
          "Girl"], ")", sep = ""))
> dev.off()
• Effect of Brush and Seal on the caries (see Figure 15).
> pdf(paste(figuredir, plname, "_cariesBeta2.pdf", sep = ""), width = pdfwidth,
     height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> eval(call(plfun, mcmc(beta.caries.PA[[2]][, "Brush"]), main = "Brush (caries), left"))
> title(sub = paste("Brush = ", rsumm.beta.caries.PA[[2]][1, "Brush"],
      " (", rsumm.beta.caries.PA[[2]][3, "Brush"], ", ", rsumm.beta.caries.PA[[2]][4,
          "Brush"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.caries.PA[[1]][, "Brush"]), main = "Brush (caries), right"))
> title(sub = paste("Brush = ", rsumm.beta.caries.PA[[1]][1, "Brush"],
      " (", rsumm.beta.caries.PA[[1]][3, "Brush"], ", ", rsumm.beta.caries.PA[[1]][4,
          "Brush"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.caries.PA[[2]][, "Seal"]), main = "Seal (caries), left"))
> title(sub = paste("Seal = ", rsumm.beta.caries.PA[[2]][1, "Seal"],
      " (", rsumm.beta.caries.PA[[2]][3, "Seal"], ", ", rsumm.beta.caries.PA[[2]][4,
          "Seal"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.caries.PA[[1]][, "Seal"]), main = "Seal (caries), right"))
> title(sub = paste("Seal = ", rsumm.beta.caries.PA[[1]][1, "Seal"],
      " (", rsumm.beta.caries.PA[[1]][3, "Seal"], ", ", rsumm.beta.caries.PA[[1]][4,
          "Seal"], ")", sep = ""))
> dev.off()
• Effect of Plaque and Prim5 on the caries (see Figure 16).
> pdf(paste(figuredir, plname, "_cariesBeta3.pdf", sep = ""), width = pdfwidth,
     height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> eval(call(plfun, mcmc(beta.caries.PA[[2]][, "Plaque"]), main = "Plaque (caries), left"))
> title(sub = paste("Plaque = ", rsumm.beta.caries.PA[[2]][1, "Plaque"],
```

```
" (", rsumm.beta.caries.PA[[2]][3, "Plaque"], ", ", rsumm.beta.caries.PA[[2]][4,
          "Plaque"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.caries.PA[[1]][, "Plaque"]), main = "Plaque (caries), right"))
> title(sub = paste("Plaque = ", rsumm.beta.caries.PA[[1]][1, "Plaque"],
      " (", rsumm.beta.caries.PA[[1]][3, "Plaque"], ", ", rsumm.beta.caries.PA[[1]][4,
          "Plaque"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.caries.PA[[2]][, "Prim5"]), main = "Prim5 (caries), left"))
> title(sub = paste("Prim5 = ", rsumm.beta.caries.PA[[2]][1, "Prim5"],
      " (", rsumm.beta.caries.PA[[2]][3, "Prim5"], ", ", rsumm.beta.caries.PA[[2]][4,
          "Prim5"], ")", sep = ""))
> eval(call(plfun, mcmc(beta.caries.PA[[1]][, "Prim5"]), main = "Prim5 (caries), right"))
> title(sub = paste("Prim5 = ", rsumm.beta.caries.PA[[1]][1, "Prim5"],
      " (", rsumm.beta.caries.PA[[1]][3, "Prim5"], ", ", rsumm.beta.caries.PA[[1]][4,
          "Prim5"], ")", sep = ""))
> dev.off()
• Intercept for the caries process (see Figure 17).
> pdf(paste(figuredir, plname, "_cariesIntcpt.pdf", sep = ""),
      width = pdfwidth, height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> eval(call(plfun, mcmc(error.caries.PA[[1]][, "Mean1"]), main = "Intcpt (caries), tooth 16"))
> title(sub = paste("Intercept = ", rsumm.error.caries.PA[[1]][1,
      "Mean1"], " (", rsumm.error.caries.PA[[1]][3, "Mean1"], ", ",
      rsumm.error.caries.PA[[1]][4, "Mean1"], ")", sep = ""))
> eval(call(plfun, mcmc(error.caries.PA[[2]][, "Mean1"]), main = "Intcpt (caries), tooth 26"))
> title(sub = paste("Intercept = ", rsumm.error.caries.PA[[2]][1,
      "Mean1"], " (", rsumm.error.caries.PA[[2]][3, "Mean1"], ", ",
      rsumm.error.caries.PA[[2]][4, "Mean1"], ")", sep = ""))
> eval(call(plfun, mcmc(error.caries.PA[[2]][, "Mean2"]), main = "Intcpt (caries), tooth 36"))
> title(sub = paste("Intercept = ", rsumm.error.caries.PA[[2]][1,
      "Mean2"], " (", rsumm.error.caries.PA[[2]][3, "Mean2"], ", ",
      rsumm.error.caries.PA[[2]][4, "Mean2"], ")", sep = ""))
> eval(call(plfun, mcmc(error.caries.PA[[1]][, "Mean2"]), main = "Intcpt (caries), tooth 46"))
> title(sub = paste("Intercept = ", rsumm.error.caries.PA[[1]][1,
      "Mean2"], " (", rsumm.error.caries.PA[[1]][3, "Mean2"], ", ",
      rsumm.error.caries.PA[[1]][4, "Mean2"], ")", sep = ""))
> dev.off()
• Scale for caries (see Figure 18).
> pdf(paste(figuredir, plname, "_cariesScale.pdf", sep = ""), width = pdfwidth,
      height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> eval(call(plfun, mcmc(error.caries.PA[[1]][, "Scale1"]), main = "Scale (caries), tooth 16"))
> title(sub = paste("Scale = ", rsumm.error.caries.PA[[1]][1, "Scale1"],
      " (", rsumm.error.caries.PA[[1]][3, "Scale1"], ", ", rsumm.error.caries.PA[[1]][4,
          "Scale1"], ")", sep = ""))
> eval(call(plfun, mcmc(error.caries.PA[[2]][, "Scale1"]), main = "Scale (caries), tooth 26"))
> title(sub = paste("Scale = ", rsumm.error.caries.PA[[2]][1, "Scale1"],
      " (", rsumm.error.caries.PA[[2]][3, "Scale1"], ", ", rsumm.error.caries.PA[[2]][4,
          "Scale1"], ")", sep = ""))
> eval(call(plfun, mcmc(error.caries.PA[[2]][, "Scale2"]), main = "Scale (caries), tooth 36"))
> title(sub = paste("Scale = ", rsumm.error.caries.PA[[2]][1, "Scale2"],
      " (", rsumm.error.caries.PA[[2]][3, "Scale2"], ", ", rsumm.error.caries.PA[[2]][4,
          "Scale2"], ")", sep = ""))
> eval(call(plfun, mcmc(error.caries.PA[[1]][, "Scale2"]), main = "Scale (caries), tooth 46"))
> title(sub = paste("Scale = ", rsumm.error.caries.PA[[1]][1, "Scale2"],
      " (", rsumm.error.caries.PA[[1]][3, "Scale2"], ", ", rsumm.error.caries.PA[[1]][4,
```

```
"Scale2"], ")", sep = ""))
> dev.off()
• Covariance and correlation for the caries (see Figure 19).
> pdf(paste(figuredir, plname, "_cariesCovCor.pdf", sep = ""),
      width = pdfwidth, height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> eval(call(plfun, mcmc(error.caries.PA[[2]][, "Covar"]), main = "Covar (caries), tooth 26 vs. 36"))
> title(sub = paste("Covar = ", rsumm.error.caries.PA[[2]][1, "Covar"],
      " (", rsumm.error.caries.PA[[2]][3, "Covar"], ", ", rsumm.error.caries.PA[[2]][4,
          "Covar"], ")", sep = ""))
> eval(call(plfun, mcmc(error.caries.PA[[1]][, "Covar"]), main = "Covar (caries), tooth 16 vs. 46"))
> title(sub = paste("Covar = ", rsumm.error.caries.PA[[1]][1, "Covar"],
      " (", rsumm.error.caries.PA[[1]][3, "Covar"], ", ", rsumm.error.caries.PA[[1]][4,
          "Covar"], ")", sep = ""))
> eval(call(plfun, mcmc(error.caries.PA[[2]][, "Correl"]), main = "Correl (caries), tooth 26 vs. 36"
> title(sub = paste("Correl = ", rsumm.error.caries.PA[[2]][1,
      "Correl"], " (", rsumm.error.caries.PA[[2]][3, "Correl"],
      ", ", rsumm.error.caries.PA[[2]][4, "Correl"], ")", sep = ""))
> eval(call(plfun, mcmc(error.caries.PA[[1]][, "Correl"]), main = "Correl (caries), tooth 16 vs. 46"
> title(sub = paste("Correl = ", rsumm.error.caries.PA[[1]][1,
      "Correl"], " (", rsumm.error.caries.PA[[1]][3, "Correl"],
      ", ", rsumm.error.caries.PA[[1]][4, "Correl"], ")", sep = ""))
> dev.off()
• Smoothing parameters \lambda_1^{\varepsilon} and \lambda_2^{\varepsilon} for the caries (see Figure 20).
> pdf(paste(figuredir, plname, "_cariesLambda.pdf", sep = ""),
      width = pdfwidth, height = pdfheight)
> par(mfrow = c(2, 2), bty = "n")
> for (i in 1:4) {
      eval(call(plfun, mcmc(lambda.caries.PA[, i]), main = paste("Lambda (caries), Tooth ",
          tt[i], sep = "")))
      title(sub = paste("lambda = ", rsumm.lambda.caries.PA[1,
          i], "(", rsumm.lambda.caries.PA[3, i], ", ", rsumm.lambda.caries.PA[4,
          i], ")", sep = ""))
+ }
> dev.off()
10.2
       Traceplots
```

These can be drawn using the same code with the only change at the beginning.

```
> plfun <- "traceplot2"
> plname <- "trace"
```


Figure 9: Estimate of the posterior distribution.

Figure 10: Estimate of the posterior distribution.

Figure 11: Estimate of the posterior distribution.

Figure 12: Estimate of the posterior distribution.

Figure 13: Estimate of the posterior distribution.

Figure 14: Estimate of the posterior distribution.

Figure 15: Estimate of the posterior distribution.

Figure 16: Estimate of the posterior distribution.

Figure 17: Estimate of the posterior distribution.

Figure 18: Estimate of the posterior distribution.

Figure 19: Estimate of the posterior distribution.

Figure 20: Estimate of the posterior distribution.