Q1. Find the linear approximation to
$$y = 1/x$$
 near $a = 2$.

$$f(n) = \frac{1}{n} = n^{-1}$$

Def. Linear approx.
$$L(x)$$
 to $f(x)$ at $x=a$ is
$$L(x) = f'(a)(x-a) + f(a)$$

$$f(x) \approx L(x)$$

Soln 1) Find
$$f'(\alpha) = f'(\alpha)|_{\alpha=\alpha}$$

$$= \frac{-1}{\alpha^2}|_{\alpha=2}$$

$$f'(2) =$$

$$f'(2) = \frac{-1}{4}$$
2) Apply (*)
$$L(x) = f'(2)(x-2) + f(2)$$

$$= \frac{-1}{4}(x-2) + \frac{1}{2}$$

$$= \frac{-1}{4}(x-2) + \frac{1}{2} \quad \text{(ineas approx. of } f(a)$$

$$= \frac{1}{4}(x-2) + \frac{1}{2}$$

$$= \frac{1}{4}(x-2) + \frac{1}{2}$$
(inex approx. of $f(a) = \frac{1}{2}$
near $n=2$

Q2. Find the linear approximation to
$$y = \sin(x)$$
 near $a = \frac{\pi}{2}$.

$$= O(x - \frac{\pi}{2}) + \sin(\frac{\pi}{2})$$

$$\frac{2(n-2)}{2(n-2)} + \sin(\frac{\pi}{2})$$
linear approx.
of $f(x) = \sin x$
near $x = \frac{\pi}{2}$

Q3. When is the linear approximation constant?

$$L(x) = f(a)(x-a) + f(a)$$
constant o

in The line approis const. When slope at x is 0

Q4. Approximate $\cos(0.01)$ and determine the numerical error of the approximation. In this question, be sure to use radians on your calculator.

Q. OO. -

