Отчёт по внешнему курсу 3

Операционные системы

Луангсуваннавонг Сайпхачан

Содержание

1	Этап 3 внешнего курса (Продвинутые темы)		
	1.1	Текстовый редактор vim	5
	1.2	Скрипты на bash: основы	8
	1.3	Скрипты на bash: ветвления и циклы	10
	1.4	Скрипты на bash: разное	15
	1.5	Продвинутый поиск и редактирование	20
	1.6	Строим графики в gnuplot	24
	1.7	Разное	27

Список иллюстраций

1.1	адание 3.1	5
1.2	адание 3.1	6
1.3	адание 3.1	7
1.4	адание 3.1	7
1.5	адание 3.1	8
1.6	адание 3.2	8
1.7	адание 3.2	9
1.8	адание 3.2	9
1.9	адание 3.2	10
1.10	адание 3.3	11
1.11	адание 3.3	12
1.12	адание 3.3	13
1.13	адание 3.3	14
	адание 3.3	15
1.15	адание 3.4	16
1.16	адание 3.4	16
1.17	адание 3.4	17
1.18	адание 3.4	18
1.19	адание 3.4	19
1.20	адание 3.4	20
	адание 3.5	21
	адание 3.5	21
1.23	адание 3.5	22
1.24	адание 3.5	22
1.25	адание 3.5	23
1.26	адание 3.5	23
1.27	адание 3.5	24
1.28	адание 3.6	25
	адание 3.6	25
	адание 3.6	26
1.31	адание 3.6	27
	адание 3.7	28
	адание 3.7	29
	адание 3.7	29
	адание 3.7	30
	алание 3.7	30

Список таблиц

Этап 3 внешнего курса (Продвинутые темы)

1.1 Текстовый редактор vim

Для выхода из vim после открытия файла нужно ввести :q, затем нажать Enter. (рис. 1.1)

Рис. 1.1: Задание 3.1

На строке 9 слов, W перемещает по "большим словам", потому нужно меньше нажатий, чем с w. (рис. 1.2)

Рис. 1.2: Задание 3.1

Корректный результат достигается с помощью d2wywPp и d2wwypP, так как они заменяют нужное слово и вставляют его повторно. (рис. 1.3)

Рис. 1.3: Задание 3.1

Команда :%s/Windows/Linux заменяет слово Windows на Linux только один раз в каждой строке. (рис. 1.4)

Рис. 1.4: Задание 3.1

Режим Visual активируется клавишей v, поддерживает перемещения и команды d, y. Завершение — :q или дважды Esc. (рис. 1.5)

Рис. 1.5: Задание 3.1

1.2 Скрипты на bash: основы

История команд сохраняется только внутри текущей оболочки, поэтому отображаются только команды из последней оболочки С. (рис. 1.6)

Рис. 1.6: Задание 3.2

Файл будет создан в директории /home/bi/, несмотря на начальный запуск из

/home/bi/Documents. (рис. 1.7)

Рис. 1.7: Задание 3.2

В Bash корректные переменные: variable123, __variable, variable. (рис. 1.8)

Рис. 1.8: Задание 3.2

Скрипт примет два аргумента и выведет их в требуемом формате, используя символ "\$". (рис. 1.9)

Рис. 1.9: Задание 3.2

1.3 Скрипты на bash: ветвления и циклы

Выбранные выражения корректно возвращают True, поскольку соответствуют синтаксису условий [[...]]. (рис. 1.10)

Рис. 1.10: Задание 3.3

При var=3 срабатывает ветка $< 3 \rightarrow$ four, а при var=5 срабатывает первая ветка > 5 — тоже four. (рис. 1.11)

Рис. 1.11: Задание 3.3

Скрипт выводит сообщения в зависимости от количества учащихся, используя инструкции if-else (рис. 1.12)

Рис. 1.12: Задание 3.3

Слово finish не выводится при str > "c", потому итог: 5 раз "start" и 4 раза "finish". (рис. 1.13)

Рис. 1.13: Задание 3.3

Скрипт обрабатывает ввод имени и возраста, определяя группу (child, youth, adult). (рис. 1.14)

Рис. 1.14: Задание 3.3

1.4 Скрипты на bash: разное

Команды a=a+b, a+=\$b и let "a=a+b" корректно увеличивают а на значение b. (рис. 1.15)

Рис. 1.15: Задание 3.4

echo "pwd" выполняет команду pwd и выводит текущий путь — /home/bi. (рис. 1.16)

Рис. 1.16: Задание 3.4

Команды if /program, if [\$? -eq 0] и через промежуточную переменную

корректно проверяют код возврата. (рис. 1.17)

Рис. 1.17: Задание 3.4

После 10 вызовов функции counter, сумма параметров 1–10 даёт 55, и 2+1, 2+2, ... 2+10 даёт 110. (рис. 1.18)

Рис. 1.18: Задание 3.4

Для этой задачи я пишу функцию, которая находит наибольший общий делитель (GCD), а также проверяет наличие пустых входных данных, после чего выдает ответ (рис. 1.19)

Рис. 1.19: Задание 3.4

Скрипт проверяет валидность ввода чисел и операций, обрабатывает exit и арифметику. (рис. 1.20)

Рис. 1.20: Задание 3.4

1.5 Продвинутый поиск и редактирование

Команда find -iname "star*" найдёт файлы с учетом регистра, включая Star_Wars.avi. (рис. 1.21)

Рис. 1.21: Задание 3.5

-path может дать аналогичный результат как -name, но не всегда, особенно с учётом регистра. (рис. 1.22)

Рис. 1.22: Задание 3.5

Команда -mindepth 2 -maxdepth 3 исключает файлы на первом уровне, потому file3 не найден. (рис. 1.23)

Рис. 1.23: Задание 3.5

Так как word есть в каждой строке, любой вариант -A, -B, -C даст одинаковый размер файла. (рис. 1.24)

Рис. 1.24: Задание 3.5

Команда находит строки, заканчивающиеся на ubuntu, с учетом возможного префикса X, x, K и т.д. (рис. 1.25)

Рис. 1.25: Задание 3.5

Без -n sed выведет строку и результат команды, поэтому каждая строка выводится дважды. (рис. 1.26)

Рис. 1.26: Задание 3.5

Регулярное выражение заменяет аббревиатуры на "abbreviation", сохраняя пробелы. (рис. 1.27)

Рис. 1.27: Задание 3.5

1.6 Строим графики в gnuplot

Опция -p (-persist) предотвращает автоматическое закрытие окна с графиком после построения. (рис. 1.28)

Рис. 1.28: Задание 3.6

Пропущена первая строка с заголовками, поэтому построено 9 точек и в заголовке используется второе значение. (рис. 1.29)

Рис. 1.29: Задание 3.6

Команда set xtics формирует подписи точек по значениям переменных x1, x2, x3. (рис. 1.30)

Рис. 1.30: Задание 3.6

Используя скрипт, он отображает график, меняет направление вращения на противоположное и ускоряет его в 2 раза. (рис. 1.31)

Рис. 1.31: Задание 3.6

1.7 Разное

Подходящие команды корректно изменяют права файла на rwxrw-r-. (рис. 1.32)

- Первый предоставляет разрешение на запись группе и пользователю, а также разрешение на выполнение пользователю
- Во-вторых, он предоставляет разрешение на запись и выполнение всем, затем удаляет разрешение на запись и выполнение у других и удаляет разрешение на выполнение из группы
- Последняя команда даёт пользователю и группе право на запись, а также пользователю — право на выполнение.

Рис. 1.32: Задание 3.7

Команды sudo chown, sudo chmod дают группе возможность записывать в директорию. (рис. 1.33)

Рис. 1.33: Задание 3.7

wc позволяет подсчитать строки, слова и размер файла в байтах. (рис. 1.34)

Рис. 1.34: Задание 3.7

Команда du -s -h показывает размер текущей директории в удобном формате.

(рис. 1.35)

Рис. 1.35: Задание 3.7

Команда mkdir dir{1,2,3} — это самый короткий способ создания трёх директорий одновременно. (рис. 1.36)

Рис. 1.36: Задание 3.7