

FACULTY OF ENGINEERING

Building a better VHDL testing environment

Joren Guillaume

FEA Ghent University

Thesis presentation

- Situating
 - Testing VHDL
 - Proposed solution
- 2 The framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work
- Demo

- Situating
 - Testing VHDL
 - Proposed solution
- 2 The framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work
- 4 Demo

Testing VHDL

VHDL

- VHSIC Hardware Description Language
- Develop hardware
- Tested with test benches
 - Output tracking

Problems

- Non-standardized process
- Single point of failure
- Time consuming

Software development techniques

Unit testing

- Unit = smallest behaviour in code
- Test failure → exact location

Test First Development

- Create test before the code
- How the code will behave?

Test Driven Development

- TFD & short development cycle
- Proven to significantly reduce errors

- Situating
 - Testing VHDL
 - Proposed solution
- 2 The framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work
- 4 Demo

VHDL testing framework

Python script

- Identify and group tests
- Separate groups into new test benches
- Compile sources
- Ompile and execute new test benches
- Oapture and process results

Preparing test benches

- Use Bitvis utility library
 - ► Faster coding
 - Improved readability
- Separate independent tests
 - ► Line by line
 - Start/Stop
 - Partitioned
- Create commands file

Modified test bench example

D flip-flop

• Old test bench:

```
assert q = '0'
    report "Wrong output value at startup" severity FAILURE;
d <= '1';
WAIT FOR clk_period;
assert q = '1'
    report "Wrong output value at first test" severity FAILURE;</pre>
```

Modified test bench:

```
-- Test 1
check_value(q = '0', FAILURE, "Wrong output value at startup");
write(d, '1', "DFF");
check_value(q = '1', FAILURE, "Wrong output value at first test");
...
-- End 1
```


Processing and compilation

Python script:

- Read command line arguments
- Read modified test bench
- Group tests into new test benches

ModelSim:

- Compile source code
- Ompile test benches

Execution and results

ModelSim:

Execute separated test benches

Python script:

- Capture ModelSim output
- Process results
 - Text report
 - XML report

Automation

Hudson-CI

- Source at revision control system
- Create job per project
- Get latest version from RC
- Timed script execution
- Result progress (XML)

- Situating
 - Testing VHDL
 - Proposed solution
- 2 The framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- 3 Concluding
 - Results
 - Future work
- 4 Demo

Results

• Multiple open-source projects converted

S	W	Job ↓	Last Success	Last Failure	Last Duration	Console	
	<i>-</i>	VHDL-AES	1 min 15 sec (<u>#30</u>)	3 mo 4 days (<u>#16</u>)	41 sec	_	\bigcirc
Q	77		38 sec (<u>#35</u>)	, ,,			O O O O
	offin.		3 mo 1 day (<u>#12</u>)				(2)
	<i>-</i>	VHDL-SHA	N/A	52 sec (<u>#5</u>)	6,2 sec		(2)

Future work

- Wider, better tool support
- Lexical analysis
 - ► Automated partitioning
 - Smart test bench generation
- Adapted CI tool
 - Specific needs of hardware development

Thanks for your attention

Questions?

- Situating
 - Testing VHDL
 - Proposed solution
- 2 The framework
 - Utility library
 - Continuous Integration
 - Python script
 - Using the framework
- Concluding
 - Results
 - Future work
- Demo

Demo

Demo

