

AUTOMATED IMAGING WITH PHOSPHORESCENT IMAGING TARGETS

Richard L. Gardner
2204 41st Avenue
Greeley, Colorado 80634
Citizenship: U.S.A.

Paul C. Coffin
1816 Serramonte Drive
Fort Collins, Colorado 80524
Citizenship: U.S.A.

Michael J. Chaloner
1813 Hull Street
Fort Collins, Colorado 80526
Citizenship: U.K.

TECHNICAL FIELD

The present invention relates in general to automated imaging devices and, more specifically, to imaging targets for automated imaging systems.

BACKGROUND

Improvements in robotic technologies has increased the level of automation in many industries. From the automobile industry to the semiconductor manufacturing industry, robotic technology has automated many of the repetitive tasks formerly performed by humans. A benefit of the mechanical automation is the precision achievable by computer-controlled automated systems. For automated alignment or operational robotic systems, the programming of such robots is typically extensive, with much of the physical processing of the automated systems tied to the precise locations and measurements of the automated system and the objects on which it operates.

In order to maintain precision, an automated alignment system is usually either (a) locked into a rigid positional frame of reference or (b) capable of “seeing” the objects and adjusting its positioning and processing to the objects’ orientation. Because maintaining a rigid frame of reference as a sole imaging or alignment method typically requires considerable effort, “sight”- automated systems, which typically have a combination of a fixed frame of reference and sighting means, are generally more reliable and economical to employ.

One successful method for building a “sight”- automated system has been to provide an automated system, such as an autochanger for large-scale computer storage, with an illumination source and optical sensing components. Imaging targets are typically affixed to the objects to provide a reflection point for the illumination source and image sensors of the system. The imaging targets are normally white in order to maximize the contrast between the background equipment and the target. As the illumination source shines or radiates over the white imaging target, optical sensors pick up the change in the reflected light based on the large contrast between the target and the background. In some applications, the imaging targets may also include bar codes, thereby providing an intelligence to the optical sensing.

Still other applications may take advantage of a combination of both plain imaging targets and bar codes. Such systems use the plain imaging target to align with the object. The optical sensors are then generally able to read the bar code to determine whether the object is the correct target object. Furthermore, the bar codes may provide an initial reference

to the automated system that indicates a general area of the system to which the automated sensor must generally move.

For example, multiple tapes of electronic information may be stored in magazines cataloged by bar code and stacked in racks or shelves. Each shelving unit generally has an imaging target used by the automated system to pinpoint different locations on the shelf. In such systems, a single illumination source and optical sensor is used to lock onto both the imaging target and the bar codes. This combination generally simplifies the design of the automated system and reduces operating costs. However, problems generally arise as the illumination source is positioned farther from the imaging target. Because only a single illumination source and optical sensor are used to image both elements, it may be positioned in such a manner to image one element more easily than the other or in such a manner to read both elements with the same, but non-optimal, difficulty. In typical embodiments, the illumination source and optical sensors are normally positioned to provide accurate reading of each individual tape's bar code. Thus, the greater distance between the illumination source and the general imaging target may sometimes cause failed or inaccurate detection by the optical sensing device. This problem could be alleviated by manufacturing a dual illumination source and optical sensor, or by increasing the size and intensity of the illumination source and/or the size and sensitivity of the optical sensor. However, both of these options add cost and complexity to the automated systems.

Furthermore, the white imaging targets frequently fail to provide adequate return radiation to register on the optical sensor. This failure may be caused by a background material that is glossy or shiny, creating a reflection comparable to the white imaging target. The failure to may also be caused by the particular shape of the object at the point on which the imaging target is affixed. If the object's facing is curved or angles away from the illumination source, the optical sensor may not register sufficient light reflection or contrast from the imaging target.

SUMMARY OF THE INVENTION

Because of the problems found in the current systems, it would be advantageous to have an imaging target capable of providing a high degree of return radiation. The present invention is directed to a system and method for providing an automated imaging system comprising an illumination source, a phosphorescent imaging target, and an optical imaging sensor for receiving luminance information emitted from the phosphorescent imaging target.

BRIEF DESCRIPTION OF THE DRAWING

FIGURE 1A is a block diagram illustrating a prior art autochanger;

FIGURE 1B is a detailed block diagram illustrating the picking mechanism and the imaging system of the autochanger of FIGURE 1A used with the colored imaging targets;

FIGURE 2A is a close-up diagram of a phosphorescent imaging target configured according to a preferred embodiment of the present invention;

FIGURE 2B is a close-up diagram of a prior art colored imaging target;

FIGURE 3 is a block diagram illustrating an autochanger configured according to a preferred embodiment of the present invention; and

FIGURE 4 is a block diagram illustrating an auto-mechanical alignment system configured according to a preferred embodiment of the present invention.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
231000
231001
231002
231003
231004
231005
231006
231007
231008
231009
231010
231011
231012
231013
231014
231015
231016
231017
231018
231019
231020
231021
231022
231023
231024
231025
231026
231027
231028
231029
231030
231031
231032
231033
231034
231035
231036
231037
231038
231039
231040
231041
231042
231043
231044
231045
231046
231047
231048
231049
231050
231051
231052
231053
231054
231055
231056
231057
231058
231059
231060
231061
231062
231063
231064
231065
231066
231067
231068
231069
231070
231071
231072
231073
231074
231075
231076
231077
231078
231079
231080
231081
231082
231083
231084
231085
231086
231087
231088
231089
231090
231091
231092
231093
231094
231095
231096
231097
231098
231099
231100
231101
231102
231103
231104
231105
231106
231107
231108
231109
231110
231111
231112
231113
231114
231115
231116
231117
231118
231119
231120
231121
231122
231123
231124
231125
231126
231127
231128
231129
231130
231131
231132
231133
231134
231135
231136
231137
231138
231139
231140
231141
231142
231143
231144
231145
231146
231147
231148
231149
231150
231151
231152
231153
231154
231155
231156
231157
231158
231159
231160
231161
231162
231163
231164
231165
231166
231167
231168
231169
231170
231171
231172
231173
231174
231175
231176
231177
231178
231179
231180
231181
231182
231183
231184
231185
231186
231187
231188
231189
231190
231191
231192
231193
231194
231195
231196
231197
231198
231199
231200
231201
231202
231203
231204
231205
231206
231207
231208
231209
231210
231211
231212
231213
231214
231215
231216
231217
231218
231219
231220
231221
231222
231223
231224
231225
231226
231227
231228
231229
231230
231231
231232
231233
231234
231235
231236
231237
231238
231239
231240
231241
231242
231243
231244
231245
231246
231247
231248
231249
231250
231251
231252
231253
231254
231255
231256
231257
231258
231259
231260
231261
231262
231263
231264
231265
231266
231267
231268
231269
231270
231271
231272
231273
231274
231275
231276
231277
231278
231279
231280
231281
231282
231283
231284
231285
231286
231287
231288
231289
231290
231291
231292
231293
231294
231295
231296
231297
231298
231299
231300
231301
231302
231303
231304
231305
231306
231307
231308
231309
231310
231311
231312
231313
231314
231315
231316
231317
231318
231319
231320
231321
231322
231323
231324
231325
231326
231327
231328
231329
231330
231331
231332
231333
231334
231335
231336
231337
231338
231339
231340
231341
231342
231343
231344
231345
231346
231347
231348
231349
231350
231351
231352
231353
231354
231355
231356
231357
231358
231359
231360
231361
231362
231363
231364
231365
231366
231367
231

DETAILED DESCRIPTION

FIGURE 1A illustrates a prior art autochanger typically used for mass computer storage of memory tapes and/or optical disks. Autochanger 10 comprises mechanical picker 100 which travels in a 'U'-shaped path on track 101. The storage media units are housed in shelves 102, which may be stacked one on top of the other, or may be housed in single story units. As mechanical picker 100 selects the desired storage media units, the media units are placed into drives 103 to provide access to the data stored thereon. Mechanical picker 100 retrieves storage media units from shelves 102 at many possible positions, such as positions 100 and 100''. The retrieved media units would then typically be placed into one of drives 103 at several possible positions, such as position 100''. With the setup illustrated in autochanger 10, mechanical picker 100 moves across track 101 to pick the targeted storage units and then insert them into drives 103, or to retrieve the units from drives 103 and return them to their designated positions in shelves 102.

FIGURE 1B provides a more detailed illustration of mechanical picker 100 and shelving unit 102 of autochanger 10, from FIGURE 1A. In the prior art embodiment shown, the auto-changing system uses both a positional imaging target, target 110, and an informational imaging target, bar codes 1025. Shelf 102 is shown with a capacity for holding storage media units, three of which, 1021-1023, are filled with storage media units, and two of which, 1020 and 1024, are empty. Target 110 is affixed to shelf 102 to provide mechanical picker means for calculating its relative position in front of shelf 102.

It should be noted that while shelf 102 is shown here with a five tape capacity, the present invention is not limited to such types of storage shelves. Alternative embodiments of the present invention may preferably operate with any number of different automated systems including other large-scale storage systems with varying storage capacities.

Mechanical picker 100 includes illumination source 1001, which typically comprise light emitting diodes (LEDs) or the like, to shine light onto target 110 and/or bar codes 1025. Optical sensor 1002, which comprises lens 1002-1 and optical sensor array 1002-2, receives reflected light from any of target 110 and/or bar codes 1025. Optical sensor array 1002-2 may comprise charge coupled devices (CCDs), contact image sensors (CISs), or other known optical imaging sensors. Optical sensor 1002 acts as a bar code reader to read the information

from bar codes 1025. It also reads target 110 to determine machine picker 100's relative position at shelf 102.

In the prior art system depicted in FIGURE 1B, target 110 is a right triangle. The locations of each tape or media unit in shelf 102 are generally known to be a certain distance from the apex of the triangle of target 110. Thus, if the position of the apex is known, 5 mechanical picker 100 is typically capable of locating any tape or storage unit in shelf 102, simply by performing measured movements. The location process begins by performing vertical scans of the triangle to obtain its changes in height from one point to the next. After at least two such scans, the slope can be calculated using the known changes in triangle 10 height. The system then uses the slope to predict and find the position of the triangle apex of target 110.

As shown in FIGURE 1B, target 110 is typically placed at the edge of the range of optical sensor 1002. Lens 1002-1 has a limited field of vision, shown by periphery 1003. The light reflected into periphery 1003 generally is focused onto optical sensor array 1002-2 for detection. Illumination from illumination source 1001 begins to fade at the edges of periphery 1003. Using the colored targets of target 110 and bar codes 1025, the fading illumination at the edge of periphery 1003 generally causes little light to reflect back from target 110. Furthermore, the typical angle of incidence of light hitting target 110 also contributes to the diminished level of light typically reflected into periphery 1003. With a 15 low amount of reflected light re-entering periphery 1003, system 10 often has a difficult time determining whether the reflected light is from target 110 or from the background shelf 102.

FIGURE 2A is a detailed illustration of a phosphorescent imaging target according to a preferred embodiment of the present invention. Phosphorescent target 20 is preferably affixed to object 21, which may be an item such as shelf 102 of FIGURES 1A or 1B. As 25 phosphorescent target 20 is illuminated with light photons 200, the phosphor material of phosphorescent target 20 absorbs some of the light energy, which, in turn, preferably excites atoms 201 within phosphorescent target 20. As a result of the phosphorescence of the material, some of the light energy radiated at phosphorescent target 20 is preferably re-radiated out of phosphorescent target 20. The re-radiated photonic illumination 202, thus, 30 preferably creates a temporary illumination source out of phosphorescent target 20.

In contrast, FIGURE 2B illustrates an example prior art colored imaging target. The colored target is typically white to maximize contrast against the background. White target 22 is affixed to object 21, which may be an item such as shelf 102 of FIGURES 1A or 1B. In contrast to phosphorescent target 20 (FIGURE 2A), as white target 22 is illuminated with light photons 200, some of the light energy is absorbed into white target 22. However, without the ability to have its atoms 204 excited to the same level as the phosphorescent material of the present invention, light is merely reflected or redirected from white target 22 in dispersive light patterns 203. While re-radiated photonic illumination 202 of phosphorescent target 20 (FIGURE 2A) provides relatively strong, relatively coherent re-radiated light energy, dispersive light patterns 203 (FIGURE 2B) provide a much weaker aggregate of reflected light. Because of the phosphorescent attributes of phosphorescent target 20, a strong return signal is beneficially produced, thus, making it easier for an optical sensor to register the re-radiated light.

FIGURE 3 is a detailed illustration showing components of an autochanger configured according to a preferred embodiment of the present invention. Similar to the autochanger depicted in FIGURE 1B, the autochanger of FIGURE 3 comprises shelf 102 with storage columns 1020 - 1024 and mechanical picker 100. However, the imaging targets of the autochanger according to this preferred embodiment of the present invention incorporate phosphorescent triangle 300 and phosphorescent bar codes 3000. Using the phosphorescent characteristics of triangle 300 and bar codes 3000, optical sensor 302 may preferably be comprised of less sensitive, smaller, and, thus, less expensive components. Optical sensor 302 would preferably comprise modified lens 3020 and modified sensor array 3021. Similarly, modified illumination source 301 may preferably be smaller or may preferably comprise a light source of smaller intensity.

In operation, as mechanical picker 100 performs its initial vertical scans of triangle 300, the stronger re-radiated photonic illumination emitted from triangle 300 is more easily registered by modified sensor array 3021 through periphery 1003. Because the surrounding background material does not fluoresce, modified sensor array 3021 may preferably differentiate the strong luminance information re-radiated from triangle 300 from the less-

intense reflected light from the background material of shelf 102, even with a smaller, modified illumination source 301 and less-sensitive optical sensor 302.

Operating in this manner, optical sensor 302 would preferably be capable of not only reading bar codes 3000, but may also preferably be capable of detecting the presence of any given tapes, on which bar codes 3000 may be disposed. Thus, as mechanical picker 100 is directed to a tape located in shelf 1021, the luminance information reflected from bar code 3000 on the tape signals the presence of the tape in shelf 1021. Additionally, as mechanical picker 100 is directed to a location of another particular tape, for example shelf 1024, the lack of luminance information reflected from one of bar codes 3000 would preferably indicate that the desired tape is not resident in the designated location of shelf 1024.

Optical sensor 302 would also preferably be capable of reading bar codes 3000 more easily because of their phosphorescent material. However, it should be noted that bar codes 3000 are not required to be constructed with phosphorescent material. It should also be noted that phosphorescent imaging targets may be used with any number of different automated systems. Systems such as robotic welders, automated conveyor systems, and/or automated counters may also benefit from a preferred embodiment of the present invention.

It should also be noted that while FIGURE 3 illustrates an autochanger utilizing the right triangle for determining the mechanical pickers positional relationship to the storage shelve, the present invention is not limited to automated systems which employ such methods of positional orientation determination. Many different means, including additional bar codes may be used along with alternative embodiments of the present invention.

FIGURE 4 illustrates an auto-mechanical optical alignment system. Unlike the autochangers of FIGURES 1A, 1B, and 3, auto-alignment system 40 of FIGURE 4 moves the targeted object over the imaging equipment. Object 41 is held on maneuvering arm 42 with bracket 422. Object 41 includes phosphorescent imaging targets 43 located in known positions. Maneuvering arm 42 moves object 41 across stationary optical sensor 45. Optical sensor 45 comprises lens 46 and optical array 47. Illumination sources 44 provide the seed light energy for phosphorescent imaging targets 43. As object 41 passes over optical sensor 45, light energy from illumination sources 44 passes through window 48. The light energy is absorbed by phosphorescent imaging targets 43 and re-radiated out from each target as object

41 continues over the sensing area. Controller unit 49 receives the luminance information from optical array 47 through memory 490. Memory 490 supplies the luminance information to processor 491 in order to calculate object 41's positional orientation.

One application of auto-alignment system 40 could be to provide laser etching of a pre-milled putter head. As a block of solid metal, such as titanium, aluminum, and/or steel passes over optical sensor 45, phosphorescent imaging targets 43 preferably provide controller unit 49 with luminance information to calculate object 41's positional orientation. Controller unit 49 then preferably controls maneuvering arm 42 to position object 41 in the appropriate orientation over an etching laser (not shown). Once correctly positioned, the etching laser would preferably etch a design or name onto the pre-milled block of metal.

It should be noted that alternative embodiments of the present invention may also be used in a variety of automated systems. For example, and not by way of limitation, simple counters may preferably use the phosphorescent imaging targets of the present invention to count the number of objects passed over the optical sensors. Referring to FIGURE 4, as object 41 is moved over optical sensor 45 the light energy re-radiated from imaging targets 43 is preferably detected and received by processor 491 as re-radiated photonic illumination from optical array 47 through memory 490. In response to the received re-radiated photonic illumination, processor 491 may preferably increment a counter for detecting the number of objects that have passed over optical sensor 45. Such an alternative embodiment will, therefore, be capable of keeping track of the number of objects processed through the system.

10
15
20