Sisukord

1	Lie algebra		
	1.1	Maatriksrühmad ja bilineaarvorm	2
	1.2	Eksponentsiaalkujutus	6
2	Ind	${f utseeritud}$ $n ext{-Lie}$ algebra	8

1 Lie algebra

Matemaatika haru, mida me täna tunneme kui *Lie teooriat* kerkis esile geomeetria ja lineaaralgebra uurimisest. Lie teooria üheks keskseks mõisteks on *Lie algebra* - vektorruum, mis on varustatud mitteassotsiatiivse korrutamisega ehk nõndanimetatud *Lie suluga*. Lie algebrad ja nende uurimine on tihedalt seotud teise Lie teooria keskse mõistega, milleks on *Lie rühm*. Viimased on struktuurid, mis on korraga nii algebralised rühmad kui ka topoloogilised muutkonnad, kusjuures rühma korrutamine ja selle pöördtehe on mõlemad pidevad. Osutub, et igale Lie rühmale saab vastavusse seada Lie algebra, kuid üldjuhul kahjuks vastupidine väide ei kehti. Samas on võimalik näidata pisut nõrgem tulemus: suvalise lõplikumõõtmelise reaalsele või komplekssele Lie algebra jaoks leidub temale üheselt vastav sidus Lie rühm.[4] Just selle viimase, nõndanimetatud *Lie kolmanda teoreemi* tõttu on võimalik Lie rühmasid vaadelda Lie algebrate kontekstis ja see teebki Lie algebrad äärmiselt oluliseks.

Tähistagu kõikjal järgnevas K nullkarakteristikaga korpust ning V vektorruumi üle korpuse K. Ruumi kokkuhoiu ja mugavuse mõttes kasutame edaspidi vajaduse korral summade tähistamisel Einsteini summeerimiskokkulepet. Teisi sõnu, kui meil on indeksid i ja j, mis omavad väärtusi $1, \ldots, n$, kus $n \in \mathbb{N}$, siis jätame vahel summeerimisel summamärgi kirjutamata ning säilitame summeerimise tähistamiseks vaid indeksid. Einsteini summeeruvuskokkulepet arvestades kehtivad näiteks järgmised võrdused:

$$x^{i}e_{i} = \sum_{a=1}^{n} x^{i}e_{i} = x^{1}e_{1} + x^{2}e_{2} + \dots + x^{n}e_{n},$$

$$\lambda_{j}^{i}x^{j} = \sum_{j=1}^{n} \lambda_{j}^{i}x^{j} = \lambda_{1}^{i}x^{1} + \lambda_{2}^{i}x^{2} + \dots + \lambda_{n}^{i}x^{n},$$

$$\eta_{ij}u^{i}v^{j} = \eta_{11}u^{1}v^{1} + \eta_{12}u^{1}v^{2} + \dots + \eta_{1n}u^{1}v^{n} + \eta_{21}u^{2}v^{1} + \dots + \eta_{nn}u^{n}v^{n},$$

ja nii edasi.

Järgnevas teeme põgusa sissejuhatuse klassikalisse Lie teooriasse.

1.1 Maatriksrühmad ja bilineaarvorm

Meenutame, et lineaarkujutus $\phi: V_1 \to V_2$ vektorruumist V_1 vektorruumi V_2 säilitab vektorite liitmise ja skalaariga korrutamise, see tähendab

$$\phi(x+y) = \phi(x) + \phi(y),$$

ning

$$\phi(\lambda x) = \lambda \phi(x),$$

kus $x, y \in V_1$ ja λ on skalaar. Kui vektorruumid V_1 ja V_2 langevad kokku, siis ütleme me kujutuse ϕ kohta *lineaarteisendus*.

Algebrast on teada, et lineaarteisendusel eksisteerib pöördteisendus siis ja ainult siis, kui ta on nii üks-ühene kui ka pealeteisendus. Kõigi vektorruumi V pööratavate lineaarteisenduste rühma nimetatakse vektorruumi V pööratavate lineaarteisenduste rühmaks¹ ja tähistatakse GL(V). Selge, et selle rühma korrutamiseks on tavaline lineaarteisenduste kompositsioon.

Et lõplikumõõtmelise vektorruumi lineaarteisendus on pööratav parajasti siis kui tema determinant on nullist erinev, siis rühma $\operatorname{GL}(V)$ kuuluvad need ja ainult need lineaarteisendused, mille determinant pole null. Kui vaatleme vaid lineaarteisendusi, mille determinant on üks, saame olulise alamrühma $\operatorname{SL}(V)$, mida nimetatakse vektorruumi V spetsiaalsete lineaarteisenduste rühmaks.

Et igal vektorruumil leidub baas, siis võime vektorruumi V jaoks fikseerida mingi baasi. Sel juhul saame kõik lineaarteisendused esitada maatriksitena ning nõnda võime edaspidi lineaarteisenduste rühmade asemel rääkida maatriksrühmadest. Kui $\{e_1, e_2, \ldots, e_n\}$ moodustab vektorruumi V baasi ning $\phi: V \to V$ on mingi lineaarteisendus, siis talle vastav maatriks selle baasi suhtes on (a_j^i) , mis on määratud valemiga

$$\phi(e_j) = \sum_{i=1}^n a_j^i e_i.$$

Selge, et vaadeldes rühmi $\operatorname{GL}(V)$ ja $\operatorname{SL}(V)$ maatriksrühmadena on rühma tehteks juba tavaline maatriksite korrutamine. Ilmselt saab nimetatud maatriksrühmad defineerida suvalise korpuste jaoks, ja nii ka reaal- ning kompleksarvude korral. Sellest lähtuvalt kasutatakse sageli nullist erineva determinandiga $n \times n$ maatriksrühmade tähistuseks $\operatorname{GL}(n,\mathbb{R})$ või $\operatorname{GL}(n,\mathbb{C})$, ning neid rühmi nimetame vastavalt reaalsete pööratavate lineaarteisenduste rühmaks ja komplekssete pööratavate lineaarteisenduste rühmaks. Analoogiliselt on kasutusel tähistused $\operatorname{SL}(n,\mathbb{R})$ ja $\operatorname{SL}(n,\mathbb{C})$.

Rühmal $GL(n, \mathbb{C})$ on palju tuntud alamrühmi. Klassikaliseks näiteks on $n \times n$ ortogonaalsete maatriksite rühm $O(n, \mathbb{C})$, kuhu kuuluvad ortogonaalsed maatriksid, see tähendab sellised maatriksid A, mille korral $A^T = A^{-1}$. Teise näitena võib tuua unitaarsete maatriksite rühma U(n), mille elementideks on anti-Hermite'i maatriksid A, mis rahuldavad tingimust $A^{\dagger} = \overline{A}^T = -A$. Edasi on lihtne konstrueerida saadud alamrühmade spetsiaalsed variandid. Spetsiaalsete komplekssete ortogonaalmaatriksite rühm on

$$SO(n, \mathbb{C}) = O(n, \mathbb{C}) \cap SL(n, \mathbb{C}),$$

¹Inglise keeles general linear group.

ja spetsiaalsete unitaarsete maatriksite rühmaks on

$$SU(n) = U(n) \cap SL(n, \mathbb{C}).$$

Definitsioon 1.1. Olgu V vektorruum üle korpuse K. Kujutust $(\cdot, \cdot): V^2 \to K$ nimetatakse *bilineaarvormiks*, kui iga $x, y, z \in V$ ja skalaaride $\lambda, \mu \in K$ korral

- i. $(\lambda x + \mu y, z) = \lambda(x, z) + \mu(y, z)$,
- ii. $(x, \lambda y + \mu z) = \lambda(x, y) + \mu(x, z)$.

Kui vetorruumis V on antud baas $\{e_1, e_2, \ldots, e_n\}$, siis saab bilineaarvormi $(\cdot, \cdot): V^2 \to K$ esitada talle vastava maatriksi $B = (b_{ij})$ abil, kus $b_{ij} = (e_i, e_j)$. Tõepoolest, kui meil on antud vektorid $x = \sum_i \lambda^i e_i$ ja $y = \sum_j \mu^j e_j$, siis kasutades

 (\cdot,\cdot) lineaarsust mõlema muutuja järgi võime arvutada

$$(x,y) = \sum_{i,j} b_{ij} \lambda^i \mu^j.$$

Me ütleme, et bilineaarvorm $(\cdot, \cdot): V^2 \to K$ on sümmeetriline kui iga $x, y \in V$ korral (x, y) = (y, x). Selge, et sümmeetrilise bilineaarvormi maatriksi B korral kehtib võrdus $B = B^T$. Vormi (\cdot, \cdot) nimetatakse kaldsümmeetriliseks kui iga $x, y \in V$ korral kehtib võrdus (x, y) = -(y, x). Lihtne on veenduda, et kaldsümmeetrilise bilineaarvormi korral rahuldab talle vastav maatriks B seost $B^T = -B$.

Definitsioon 1.2. Olgu V vektorruum kus on fikseeritud mingi baas, olgu ϕ vektorruumi V lineaarteisendus ning olgu $A=(a_j^i)$ on lineaarteisenduse ϕ maatriks fikseeritud baasi suhtes. Lineaarteisenduse ϕ jäljeks nimetatakse kujutust $\text{Tr}_V \colon \operatorname{GL}(V) \to K$, kus

$$\operatorname{Tr}_V(A) = \sum_i a_i^i.$$

Näide 1.1. On hästi teada, et vektorruumi V kõigi lineaarteisenduste hulk Lin V on ise ka vektorruum, kusjuures kui vektorruumi V dimensioon on dim(V) = n, siis ruumi Lin V dimendsioon on dim $(\operatorname{Lin} V) = n^2$. Kasutades jälge Tr_V saame defineerida bilineaarvormi (\cdot, \cdot) : Lin $V \times \operatorname{Lin} V \to K$ järgmiselt:

$$(A, B) = \operatorname{Tr}_V(AB),$$

kus A ja B on maatriksid, mis vastavad vektorruumi LinV teisendustele mingi baasi suhtes. Selge, et selliselt defineeritud bilineaarvorm sümmeetriline.

Kasutades bilineaarvormi sümmeetrilisuse või kaldsümmeetrilisuse mõistet saame sisse tuua ortogonaalsuse mõiste. Me ütleme, et vektorid x ja y on bilineaarvormi (\cdot, \cdot) suhtes ortogonaalsed, kui (x, y) = 0. Selge, et ortogonaalsuse tingimus ise on sümmeetriline, see tähendab kui x on ortogonaalne vektoriga y, siis kehtib ka vastupidine, y on ortogonaalne vektoriga x. Kui vektor $x \neq 0$ on iseenesega ortogonaalne, see tähendab (x, x) = 0, siis nimetatakse vektorit x isotroopseks. Selge, et Eukleidilises geomeetrias selliseid vektoreid ei leidu, kuid üldisemates situatsioonides esinevad nad küllaltki sageli, näiteks Minkowski aegruumis.

Edasises vaatleme ortogonaaseid ja sümplektilisi rühmi ning selleks nõuame, et vaatluse all olevad bilineaarvormid oleksid mittesingulaarsed ehk regulaarsed, see tähendab kui (x,y)=0 iga $y\in V$ korral, siis järelikult x=0. Osutub, et bilineaarvorm (\cdot,\cdot) on regulaarne parajasti siis, kui temale vastav maatiks $B=(b_j^i)$ on pööratav, mis tähendab, et det $B\neq 0$.

Definitsioon 1.3. Me ütleme, et lineaarne operaator ϕ on *ortogonaalne* regulaarse sümmeetrilise bilineaarvormi (\cdot, \cdot) suhtes, kui

$$(\phi(x), \phi(y)) = (x, y)$$

kõikide x ja y korral vektorruumist V.

Kui x on ortogonaalse lineaarse operaatori ϕ tuumast, siis kehtib $\phi(x)=0$. Viimane aga tähendab, et iga $y\in V$ korral $(x,y)=(\phi(x),\phi(y))=(0,\phi(y))=0$. Kokkuvõttes, et (\cdot,\cdot) on regulaarne, siis järelikult x=0 ja ϕ on üks-ühene. Kui nüüd veel V on lõplikumõõtmeline, siis peab ϕ olema pööratav. Seda arutelu silmas pidades võime öelda, et ortogonaalsed lineaarsed operaatorid moodustavad rühma, mida me nimetame ortogonaalsete lineaarteisenduste rühmaks bilineaarvormi (\cdot,\cdot) suhtes. Võttes tarvitusele vektorruumi V baasi saame konstrueerida ka ortogonaalsete maatriksite rühma, mida tähistatakse komplekssel juhul kui $O(n,\mathbb{C})$, kus $n\in\mathbb{N}$ märgib, et tegu on $n\times n$ maatriksitega.

Sümplektiliste teisenduste tarvis tuleb vaadelda kaldsümmeetrilisi bilineaarvorme.

Definitsioon 1.4. Me ütleme, et lineaarne operaator ϕ on *sümplektiline* regulaarse kaldsümmeetrilise bilineaarvormi (\cdot, \cdot) suhtes, kui

$$(\phi(x), \phi(y)) = (x, y)$$

kõikide x ja y korral vektorruumist V.

Märgime, et sümplektilised lineaarteisendused leiduvad ainult sellistes vektorruumides, mille dimensioon on paarisarvuline, see tähendab dimV=2n, kus

 $n \in \mathbb{N}$. Sümplektilised teisendused moodustavad sümplektiliste rühma, mida tähistatakse kompleksel juhul $\operatorname{Sp}(n,\mathbb{C})$. Reaalsete sümplektiliste teisenduste rühma saame kui vaatleme ühisosa rühmaga $\operatorname{GL}(2n,\mathbb{R})$:

$$\operatorname{Sp}(n,\mathbb{R}) = \operatorname{Sp}(n,\mathbb{C}) \cap \operatorname{GL}(2n,\mathbb{R}).$$

1.2 Eksponentsiaalkujutus

Kõikide seni käsitluse all olnud maatriksrühmade esindajad peavad vastavatesse rühmadesse kuulumiseks rahuldama mingeid algebralisi tingimusi. Need tingimused võib kirja panna maatriksite elementide kaudu, mille tulemusel saaame me mittelineaarseid võrrandeid, mis määravad rühma kuulumise. Osutub, et need tingimused on võimalik asendada mingi hulga ekvivalentsete lineaarsete võrranditega ja selline üleminek mittelineaarselt süsteemilt lineaarsele ongi võtmetähtsusega idee üleminekul Lie rühmadest Lie algebratele.[2]

Klassikaliseks viisiks kuidas sellist üleminekut realiseeritakse on eksponentsiaal-kujutuse kasutuselevõtt. Nagu nimigi viitab, on tegu analüüsist tuttava kujutuse üldistusega. Et meil oli siiani tegemist vaid maatriksrühmadega, siis läheme siin ka edasi vaid eksponentsiaalkujutuse ühe tähtsa erijuhuga, maatrikseksponentsiaaliga, kuid olgu öeldud, et järgnevad väited kehtivad tegelikult ka üldisemas seades, nagu võib näha raamatus [4].

Olgu A mingi $n \times n$ maatriks, $k \in \mathbb{N}$ ning olgu I ühikmaatriksit. Tähistame $A^0 = I$ ning $A^k = \underbrace{A \cdot A \cdot \ldots \cdot A}_{k \cdot \text{korda}}$.

Definitsioon 1.5. Olgu X reaalne või kompleksne $n \times n$ maatriks. Maatriksi X eksponendiks, mida tähistatakse e^X või expX, nimetatakse astmerida

$$e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}.$$
(1.1)

Ilmselt tuleks definitsiooni korrektsuses veendumaks näidata, et suvalise maatriksi X korral rida (1.1) koondub. Selleks meenutame, et $n \times n$ maatriksi $X = (X_{ij})$ normi arvutatakse valemi

$$||X|| = \left(\sum_{i,j=1}^{n} |X_{ij}|^2\right)^{\frac{1}{2}} \tag{1.2}$$

järgi. Arvestades, et $\|XY\| \le \|X\| \|Y\|$, siis $\|X^k\| \le \|X\|^k$. Rakendades nüüd normi (1.2) rea (1.1) liikmetele saame

$$\sum_{k=0}^{\infty} \left\| \frac{X^k}{k!} \right\| \le \sum_{k=0}^{\infty} \frac{\|X\|^k}{k!} = e^{\|X\|} < \infty,$$

mis tähendab, et rida (1.1) koondub absoluutselt ja seega ta ka koondub. Märkamaks, et e^X on pidev funktsioon märgime esiteks, et X^k on argumendi X suhtes pidev funktsioon ja seega on rea (1.1) osasummad pidevad. Teisalt paneme tähele, et (1.1) koondub ühtlaselt hulkadel, mis on kujul $\{||X|| \leq R\}$, ja seega on rida kokkuvõttes pidev.

Seega on maatrikseksponentsiaal korrektselt defineeritud ning ka pidev. Järgmises lauses on toodud rida eksponentsiaalkujutuse põhilisi omadusi, mille võrdlemisi lihtsad tõestused võib huvi korral võib leida näiteks teosest [3].

Lause 1.1. Olgu X ja Y suvalised $n \times n$ maatriksid. Siis kehtivad järgmised väited:

1.
$$e^0 = I$$
,

2.
$$e^X$$
 on pööratav ning kehtib $(e^X)^{-1} = e^{X^{-1}}$,

3.
$$e^{(\lambda+\mu)X} = e^{\lambda X}e^{\mu X}$$
 suvaliste $\lambda, \mu \in \mathbb{C}$ korral,

4.
$$e^X e^{-X} = I$$
,

5.
$$kui XY = YX$$
, $siis e^{X+Y} = e^X e^Y = e^Y e^X$,

6. kui C on pööratav, siis
$$e^{CXC^{-1}} = Ce^XC^{-1}$$

7.
$$\det e^X = e^{\operatorname{Tr}_V X}$$
.

2 Indutseeritud n-Lie algebra

See peatükk tugineb artiklile [1]

Edasises eeldame, et kõik vektoruumid on üle vaadeldud üle 0-karakteristikaga korpuse \mathbb{K} .

Definitsioon 2.1 (Lie algebra). Vektorruumi A nimetatakse Lie algebraks, kui on määratud bilineaarvorm $[\cdot,\cdot]:A\times A\to A$, mis suvaliste $x,y,z\in A$ korral rahuldab tingimusi

- [x, y] = -[y, x],
- [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Bilineaarvormi $[\cdot, \cdot]$ Lie algebra definistioonis nimetatakse selle Lie algebra suluks. Edaspidi tähistame konkreetsuse mõttes sageli Lie suluga $[\cdot, \cdot]$ varustatud vektorruumi A paarina $(A, [\cdot, \cdot])$.

Definitsioon 2.2 (n-Lie algebra). Vektorruumi A nimetatakse n-Lie algebraks, kui on määratud n-lineaarne kaldsümmeetriline kujutus $[\cdot, \ldots, \cdot]: A^n \times A \to A$, mis suvaliste

$$x_1,\ldots,x_{n-1},y_1,\ldots,y_n\in A$$

korral rahuldab tingimust

$$[x_1, \dots, x_{n-1}, [y_1, \dots, y_n]] = \sum_{i=1}^n [y_1, \dots, [x_1, \dots, x_{n-1}, y_i], \dots, y_n].$$

Definitsioon 2.3 (Jälg). Olgu A vektorruum ning olgu $\phi: A^n \to A$. Me ütleme, et lineaarkujutus $\tau: A \to \mathbb{K}$ on ϕ -jälg, kui suvaliste $x_1, \ldots, x_n \in A$ korral $\tau(\phi(x_1, \ldots, x_n)) = 0$.

Olgu $\phi \colon A^n \to A$ n-lineaarne ja $\tau \colon A \to \mathbb{K}$ lineaarne kujutus. Defineerime nende kujutuste abil uue (n+1)-lineaarse kujutuste $\phi_\tau \colon A^{n+1} \to A$ valemiga

$$\phi_{\tau}(x_1, \dots, x_{n+1}) = \sum_{i=1}^{n+1} (-1)^{i-1} \tau(x_i) \phi(x_1, \dots, \hat{x_i}, \dots, x_{n+1}), \qquad (2.1)$$

kus \hat{x}_i tähistab kõrvalejäätavat elementi, see tähendab $\phi(x_1, \dots, \hat{x}_i, \dots, x_{n+1})$ arvutatakse elementidel $x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}$.

Rikastame defineeritud kujutust ühe näitega. Võttes n=2 saame valemi 2.1 põhjal kirjutada

$$\phi_{\tau}(x_1, x_2, x_3) = \tau(x_1)\phi(x_2, x_3) - \tau(x_2)\phi(x_1, x_3) + \tau(x_3)\phi(x_1, x_2).$$

Edasises toome ära mõningad kujutuse ϕ_{τ} tähtsamad omadused.

Lemma 2.1. Olgu A vektorruum ning $\phi: A^n \to A$ n-lineaarne kaldsümmeetriline kujutus ja $\tau: A \to \mathbb{K}$ lineaarne. Siis kujutus $\phi_{\tau}: A^{n+1} \to A$ on samuti kaldsümmeetriline. Lisaks, kui τ on ϕ -jälg, siis τ on ka ϕ_{τ} -jälg.

Teoreem 2.2. Olgu (A, ϕ) n-Lie algebra ning olgu τ lineaarkujutuse ϕ -jälg. Siis (A, ϕ_{τ}) on (n+1)-Lie algebra.

Teoreemis kirjeldatud viisil saadud (n+1)-Lie algebrat (A, ϕ_{τ}) nimetatakse n-Lie algebra (A, ϕ) poolt indutseeritud (n+1)-Lie algebraks.

Teoreemist 2.2 saame teha olulise järlduse:

Järeldus 2.3. Olgu $(A, [\cdot, \cdot])$ Lie algebra ning olgu antud $[\cdot, \cdot]$ jälg $\tau \colon A \to \mathbb{K}$. Siis ternaarne sulg $[\cdot, \cdot, \cdot] \colon A^3 \to A$, mis on defineeritud valemiga

$$[x, y, z] = \tau(x)[y, z] + \tau(y)[z, x] + \tau(z)[x, y],$$

määrab 3-Lie algebra struktuuri A_{τ} vektorruumil A.

Viited

- [1] Joakim Arnlind, Abdennour Kitouni, Abdenacer Makhlouf, and Sergei Silvestrov. Structure and cohomology of 3-lie algebras induced by lie algebras. 85:123–144, 2014.
- [2] Johan G. F. Belinfante and Bernard Kolman. A Survey of Lie Groups and Lie Algebra with Applications and Computational Methods. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 1989.
- [3] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Graduate Texts in Mathematics. Springer, 2003.
- [4] A. Kirillov. An Introduction to Lie Groups and Lie Algebras. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2008.