

Chromatic Correlation Clustering

Francesco Bonchi

Aristides Gionis

Francesco Gullo

Antti Ukkonen

Yahoo! Research – Barcelona {bonchi,gionis,gullo,aukkonen}@yahoo-inc.com

- > We study a novel clustering problem in which the pairwise relations between objects are categorical. This problem can be viewed as clustering the vertices of a graph whose edges have different types (colors).
- > Applications: social networks, protein-to-protein interaction networks, bibliographic networks, and more.

Problem definition:

from Correlation Clustering...

Given a set of objects V and a pairwise similarity function sim: $V \times V \rightarrow [0,1]$, find a clustering $\mathcal{C}: V \rightarrow \mathbb{N}$ that minimizes the cost

$$cost(\mathcal{C}) = \sum_{\substack{(x,y) \in V \times V \\ \mathcal{C}(x) = \mathcal{C}(y)}} (1 - sim(x,y)) + \sum_{\substack{(x,y) \in V \times V \\ \mathcal{C}(x) \neq \mathcal{C}(y)}} sim(x,y).$$

... to Chromatic Correlation Clustering

Given a set V of objects, a set L of labels, a special label l_0 , and a pairwise labeling function $\ell: V \times V \to L \cup \{l_0\}$, find a clustering $C: V \to \mathbb{N}$ and a cluster labeling function $c\ell: \mathcal{C}[V] \to L$ so to minimize the cost

$$cost(\mathcal{C}, c\ell) = \sum_{\substack{(x,y) \in V \times V, \\ \mathcal{C}(x) = \mathcal{C}(y)}} (1 - I[\ell(x,y) = c\ell(\mathcal{C}(x))]) + \sum_{\substack{(x,y) \in V \times V, \\ \mathcal{C}(x) \neq \mathcal{C}(y)}} I[\ell(x,y) \neq l_0].$$

Solutions:

> Randomized approximation algorithm (CB) with approximation guarantee proportional to the maximum degree in the graph:

$$r(G) \le 6\left(2D_{max} - 1\right)$$

> Lazy CB (LCB) algorithm. The random choices are "guided" by heuristic considerations

37000

32000

27000

S 22000

17000

- B ■ CB × LCB × AM ★ AM* 0.35 0.25 0.15 0.025 0.03 0.035 0.04 0.045

> AM heuristic algorithm that allows to choose the number of output clusters.

It finds a local optimum of the objective function based on the alternating minimization paradigm.

	$\cos t$			
dataset	В	CB	LCB	AM
String	163305	160060	155881	156976
Youtube	23550213	18956000	22644858	19670899
DBLP	2260065	1633149	1678714	2018952

Cost of algorithms on real datasets in different domains: biological (String), social network (Youtube) and bibliographic (DBLP)