CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF APPLIED SCIENCES DEPARTMENT OF MATHEMATICAL SCIENCES SEMESTER 3 B.Tech. CE, IT, CSE DISCRETE MATHEMATICS AND ALGEBRA

MA253

UNIT 1
PREDICATE CALCULUS

OUTLINE OF UNIT 1 – PREDICATE CALCULUS

- > PROPOSITION, TYPES OF PROPOSITION, TAUTOLOGY, CONTRADICTIONS.
- > CONNECTIVES, TYPES OF CONNECTIVES AND ITS PROPERTIES.
- > LOGICAL EQUIVQLENCE, VERIFICATION USING TRUTH TABLE.
- > CONVERSE, INVERSE AND CONTRAPOSITIVE.
- > MINIMAL FUNCTIONALLY COMPLETE SET OF CONNECTIVES.
- > NORMAL FORMS: DNF, CNF, PDNF, PCNF.
- **LOGIC IN PROOF.**

SENTENCE:

A collection of words making a complete grammatical structure with meaning and sense is known as sentence.

PROPOSITION:

A declarative sentence which can be either true or false is known a Proposition. It is also known as statement.

Consider, for example, the following sentences in English

- 1. New Delhi is a capital of India.
- 2. The square of 4 is 16.
- 3. Bring me coffee.
- 4. Where are you going?
- 5. This statement is false.

The statement 1-2 is proposition as the sentence 1 and 2 are true. To sentence 3 we cannot decide whether it is true or false as it is not a declarative sentence (Command). Sentence 4 is a question so its not a proposition. Sentence 5 has both true as well as false value so 4 is not a proposition.

Propositions are denoted by p, q, r... or P, Q, R... and also known as propositional variables.

TRUTH VALUE:

The truth or falsity of a statement is known as its truth value. (True or False)

COMPOUND STATEMENT:

A proposition which is combination of two or more propositional variables is known as compound statement. It is also known as **molecular** or **composite statement**.

ATOMIC STATEMENT:

A proposition consisting of only a single propositional variable or a single propositional constant is known as atomic statement. It is also known as **primary** or **primitive proposition.**

TRUTH TABLE:

A truth table is a table that shows the truth value of a compound proposition for all possible value.

CONNECTIVES (Basic logical operations):

The words or phrases which are used to form a proposition are known as connectives. There are five basic connectives: Conjunction, Disjunction, Negation, Conditional and Bi-conditional.

CONJUNCTION: (AND)

If p and q are two statements then conjunction of p and q is the compound statement of the form "p and q" and it is denoted by $p \land q$, which is true when both p and q are true.

p	$oldsymbol{q}$	$p \wedge q$
T	T	Т
T	F	F
F	T	F
F	F	F

DISJUNCTION: (OR)

If p and q are two statements then disjunction of p and q is the compound statement of the form "p or q" and it is denoted by $p \lor q$, which is false when both p and q are false.

p	\boldsymbol{q}	$p \lor q$
T	T	T
T	F	T
F	T	T
F	F	F

NEGATION: (NOT)

If p is any proposition, the negation of p is denoted by $\sim p$ or $\neg p$, is a proposition which is false when p is true and true when p is false. It is also known as <u>unary operator</u>.

CONDITIONAL:

If p and q are two statement then conditional statement of p and q is the compound statement of the form "if p then q" and it is denoted by $p \rightarrow q$, which is false when p is true and q is false.

p	\boldsymbol{q}	$p \rightarrow q$
T	T	T
T	F	F
F	T	Т
F	F	T

Remark:

In $p \rightarrow q$, the proposition p is called **antecedent or hypothesis** and proposition q is called **consequent or conclusion**.

The connective **if......then** can be also read as follows:

p implies q.

- p is sufficient for q.
- \triangleright p only if q.
- > q is necessary for p.
- > q if p.
- q follows from p.
- > q is consequence of p.

BI-CONDITIONAL:

If p and q are two statement then bi-conditional statement of p and q is the compound statement of the form "if p only if q" and it is denoted by $p \leftrightarrow q$, which true when either p and q both are true or false simultaneously.

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

CONVERSE, CONTRA POSITIVE AND INVERSE OF AN IMPLICATION:

There are some related implication. They are as follows

- When $p \to q$ an implication, then converse of $p \to q$ is an implication $q \to p$.
- When $p \to q$ an implication, then contra positive of $p \to q$ is an implication $\sim q \to \sim p$.
- When $p \to q$ an implication, then inverse of $p \to q$ is an implication $\sim p \to \sim q$.

Remark: A conditional proposition and its converse or inverse are not logically equivalent. On other hand, a conditional proposition and its contra positive are logically equivalent (Can be check using the truth table).

•

The importance of the contra positive derives from the fact that mathematical theorems in the form $p \to q$ can sometimes be proved easily when restarted in the form $\sim q \to \sim p$.

Example

Prove that if x^2 is divisible by 4, then x is even.

Solution:

Let p: x^2 is divisible by 4 and q: x is even.

The implication is of the form $p \to q$. The contra positive is $\sim q \to \sim p$, which state in words: If x is odd, then x^2 is not divisible by 4.

The proof of contra positive is easy.

Since x is odd, x=2k+1, for some integer k.

Hence, $x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k + 1/4)$.

Since $k^2 + k$ is an integer, $k^2 + k + 1/4$ is not integer therefore x^2 is not divisible by 4.

<u>Example:</u> State Converse, Contra positive and Inverse of the following statement:

1) If it rain then the crop will grow.

Solution: *p*: It rains and *q*: The crop will grow.

Converse ($q \rightarrow p$) If the crop grow, then there has been rain.

Contra positive ($\sim q \rightarrow \sim p$): If the crop do not grow, then there has been no rain.

Inverse ($\sim p \rightarrow \sim q$): If it does not rain, then crop will not grow.

2)If a triangle is not isosceles then it is not equilateral.

Solution:

p: A triangle is not isosceles

q: It is not equilateral.

Converse $(q \rightarrow p)$: If a triangle is not equilateral, then it is not isosceles.

Contra positive ($\sim q \rightarrow \sim p$): If the triangle is equilateral, then it is isosceles.

Inverse ($\sim p \rightarrow \sim q$): If a triangle is isosceles then it is equilateral.

PRATICE EXAMPLE

<u>Example</u>: State Converse, Contra positive and Inverse of the following statement:

- 1) If a triangle is isosceles, then two of its sides are equal.
- 2) If there is no unemployment in India, then the Indian's won't go to the USA for employment.