Conferencia 8 - Grafos Dirigidos

16 de mayo de 2025

Definición. Un grafo dirigido (digrafo) consiste en dos conjuntos V, el conjunto de los vértices, y E, el conjunto de aristas, formado ahora por pares ordenados del conjunto V.

Definición. Sean $v, w \in V(G)$ donde G es un digrafo, v, w son adayacentes si la arista $\langle v, w \rangle \in E(G)$. Se dice que la arista $\langle v, w \rangle$ es incidente desde v y que es incidente a w.

Definición. Sea G un digrafo $y \ v \in V(G)$:

- El grado exterior de v es el número de aristas incidentes desde v (exdeg(v) o outdeg(x))
- \blacksquare El grado interior de v es el número de aristas incidentes sobre v (indeq(v))

Teorema. En todo digrafo se cumple que:

- $\sum_{v \in V(G)} exdeg(v) + indeg(v) = 2|E|$
- $\sum_{v \in V(G)} exdeg(v) = \sum_{v \in V(G)} indeg(v) = |E|$

Definición. Un camino en un digrafo G es una secuencia de vértices de G $c = \langle v_1, v_2, \dots, v_k \rangle$ tal que:

- 1. k > 1
- 2. k > 1 implies que $\langle v_i, v_{i+1} \rangle \in E(G) \ (1 \le i \le k-1)$

Luego:

- El camino es simple si no se repiten vértices
- $Si \ v_1 = v_k \ el \ camino \ es \ cerrado$
- Un ciclo es un camino cerrado donde solo se repiten el primer y últino vértice

Definición. El grafo subyacente es el multigrafo que resulta de quitar la orientación de las aristas de un digrafo

Definición. Un digrafo D es conexo si el grafo subyacente de D es conexo

Definición. Un digrafo es **fuertemente conexo** si todo par de vértices del digrafo es mutuamente accesible, o sea si hay camino de uno al otro, y viceversa

Definición. Un grafo es **orientable** si es posible orientar sus aristas de modo que el digrafo resultanto sea fuertemente conexo

Teorema. Sea G un grafo conexo, entonces G es orientable si y solo si no tiene puentes

Demostración.

En el sentido directo, demostraremos que si G tiene puentes entonces G es no orientable (contrarecíproco).

Sea e una arista puente tal que $e = \langle u, v \rangle$.

Como e es un puente al removerla u y v quedan en componentes conexas distintas, lo que explica que no exista camino que los conecte, por tanto G no es fuertemente conexo luego G no es orientable.

En el otro sentido.

Vamos a utilizar el siguiente lema.

Lema. Una arista es puente (arista de corte) si y solo si no participa en ningún ciclo

Demostración. Demostración del lema

Demostremos que si participa en algún ciclo no es puente.

Sea $e = \{u, v\} \in E(G)$ tal que $e \in c$ de manera que c es el ciclo $c = \langle u, v, v_1, v_2, \ldots, v_k, u \rangle$ entonces $c_1 = \langle v, v_1, v_2, \ldots, v_k, u \rangle$ es un camino que contiene a los vértices u,v. Entre todo par de vértices de G, si el camino que los une contiene a la arista $\{u, v\}$, esta puede ser reemplazada por el camino c_1 , por tanto el grafo resultante de eliminar $\{u, v\}$ no varió en la cantidad de componentes conexas, entonces E no es una arista puente.

En el otro sentido, si no es una arista puente entonces participa en algún ciclo.

Sea $e = \{m, v\} \in E(G)$ tal que no es arista puente, por tanto existe otro camino que conecta a m con v que no contiene a e,

Sea este $< m, v_1, v_2, \dots, v_k, v >$ luego $c = < m, v_1, v_2, \dots, v_k, v, m >$ es un ciclo al que pertenece e.

Retornemos a la demostración del teorema.

Sea G' el mayor subgrafo orientable de G, suponga que hay vértices de G que no pertenecen a G'.

Sea entonces v tal que pertenece a G y no pertenece a G', note que existe u que pertenece a G' tal que que $\{u,v\} \in V(G)$ pues G es conexo.

Como G no tiene puentes, por el lema anterior entonces $\{u, v\}$ pertenece a algún ciclo. Sea este $c = \langle u, v, v_1, v_2, \dots, v_k, u \rangle$, sea w el primer vértice de c luego de v tal que pertenece a V(G'). Este existe debido a que u pertenece a G' y es el último vértice de c.

Entonces se tomará el camino no dirigido de u hacia w de la siguiente forma $c'=\langle u,v,\ldots,w\rangle$ tal que las aristas se dirijan en ese sentido.

Note que para todo vértice que pertenece a G' se puede acceder a todo vértice de c' (puesto que G' es orientable) y cada vértice de c' puede acceder a w, lo que implica que puede acceder a todo vértice de G' y por tanto G'+c' es un subgrafo de G que es orientable y es mayor que G' lo que es una contradicción, luego el mayor subgrafo de G que es orientable es el propio G.

Definición. Un torneo es un digrafo que tiene como grafo subyacente un grafo completo, o sea, un grafo completo orientado

Teorema. En todo torneo hay un camino de Hamilton.

Demostración. Demostración por inducción el número de vértices

Caso base: Si n=2 se cumple.

Paso inductivo

Demostremos que si se cumple para n
 se cumple para n+1 Sea T'=T-v

Note que T' es un torneo, pues tiene n vértices (hipótesis de inducción), y por tanto existe un camino de Hamilton en T'. Sea este $c = \langle v_1, v_2, \dots, v_n \rangle$. Ahora:

- Si exdeg(v) = 0 entonces indeg(v) = n luego el camino $\langle v_1, v_2, \dots, v_n, v \rangle$ es de Hamilton
- Si exdeg(v) = n entonces indeg(v) = 0 luego el camino $\langle v, v_1, v_2, \dots, v_n \rangle$ es de Hamilton

Sea exdeg(v) = k tal que $i \le k < n$, entonces existe v_i tal que

 $\langle v, v_i \rangle \in E(T)$ y $\langle v_{i-1}, v \rangle \in E(T)$, luego $\langle v_1, v_2, \dots, v_{i-1}, v, v_i, \dots, v_n \rangle$ es un camino de Hamilton. Este i debe existir pues todas las aristas consecutivas dentro del camino tendrán el mismo sentido, en algún momento deben cambiar pues el grado exterior es k, y por tanto el interior es n-k.

Teorema. En un digrafo D se cumple que existe un camino de longitud X(D)-1

Demostración.

Sea A un conjunto minimal de arcos tal que cuando se elimine el grafo resultante D-A sea acíclico.

Sea k la longitud del camino simple más lardo de D-A.

aplíquese la siguiente función de coloración para los vértices de D-A, f(v)=p si p-1 es la longitud del camino más largo desde v.

Note que para todo vértice v de D-A si $< v, w > \in E(D-A)$ entonces $f(v) \neq f(w)$

Probemos esto, supongamos lo contrario que el camino más largo desde v es igual al camino más largo desde w, ambos igual a p.

Como existe < v, w> entonces en el camino desde w no aparece v, pues D-A es acíclico. Luego, el camino $< v, w, \ldots, x>$ donde $< w, \ldots, x>$ es camino de mayor longitud desde w, tiene longitud p, y es más largo que desde v que era de longitud p-1, lo que es una contradicción.

Ahora volvamos, igualmente, se demuestra que para todo vértice v que pertenece a un camino simple se tiene colores distintos.

Como el camino de longitud máxima es de tamño k entonces para colorear a a D-A bastan k+1 colores.

Note que añadir una de A necesariamente crea un ciclo, puesto que A era minimal, por tanto si $e = \langle e, y \rangle$ entonces en D-A existía un camino desde x hasta a y, y por tanto sus colores son distintos.

Al añadir todas las aristas de A el grafo continúa siendo k+1 coloreable, entonces $X(D) \le k+1$ luego $k \ge X(D)-1$