<pre># Standardize the features scaler = StandardScaler() X scaled = scaler.fit transform</pre>	n (X)				
<pre>x_scaled = scaler.fit_transform print(X_train.shape) print(y_train.shape) (40000, 17) (40000,)</pre>	n (X)				
Step 2: Data Splitting	st = train_test_split(X_scaled, y,	test_size=0.2, rando	m_state=42)		
Step 3: Building the AN model = Sequential() # Input layer (separate)	NN Model				
<pre># Input layer (separate) model.add(Input(shape=(17,))) # First hidden layer model.add(Dense(32, activation= # Additional hidden layer model.add(Dense(16, activation=</pre>					
<pre>model.add(Dense(len(y.unique()) model.summary()</pre>	l to the number of unique clusters,	using softmax			
Model: "sequential_4" Layer (type) dense_3 (Dense) dense_4 (Dense)	Output Shape (None, 32) (None, 16)		Param # 576 528	 	
dense_4 (Dense) dense_5 (Dense) Total params: 1,155 (4.51 KB Trainable params: 1,155 (4.55	1 KB)		528		
	0 B) loss='sparse_categorical_crossent	cropy', metrics=['acc	uracy'])		
Epoch 1/50 1000/1000 Epoch 2/50 1000/1000		cy: 0.8264 - loss: 0.	<pre>verbose=1) 4043 - val_accuracy: 0.9 0361 - val_accuracy: 0.9</pre>		
Epoch 3/50 1000/1000 Epoch 4/50 1000/1000 Epoch 5/50 1000/1000 Epoch 6/50	4s 3ms/step - accura	cy: 0.9937 - loss: 0.	0234 - val_accuracy: 0.9 0184 - val_accuracy: 0.9 0147 - val_accuracy: 0.9	9956 - val_loss: 0.0148	
1000/1000 Epoch 7/50 1000/1000 Epoch 8/50 1000/1000 Epoch 9/50	3s 2ms/step - accura 3s 2ms/step - accura	cy: 0.9961 - loss: 0.	0136 - val_accuracy: 0.9 0114 - val_accuracy: 0.9 0095 - val_accuracy: 0.9	9971 - val_loss: 0.0095 9965 - val_loss: 0.0090	
1000/1000 Epoch 10/50 1000/1000 Epoch 11/50 1000/1000 Epoch 12/50 1000/1000	3s 3ms/step - accura 4s 2ms/step - accura	cy: 0.9970 - loss: 0.	0092 - val_accuracy: 0.9 0087 - val_accuracy: 0.9 0080 - val_accuracy: 0.9 0076 - val_accuracy: 0.9	9977 - val_loss: 0.0071 9959 - val_loss: 0.0122	
Epoch 13/50 1000/1000 Epoch 14/50 1000/1000 Epoch 15/50 1000/1000	3s 2ms/step - accura 2s 2ms/step - accura	cy: 0.9971 - loss: 0.	0068 - val_accuracy: 0.9 0054 - val_accuracy: 0.9 0062 - val_accuracy: 0.9	9989 - val_loss: 0.0044 9970 - val_loss: 0.0059	
Epoch 16/50 1000/1000 Epoch 17/50 1000/1000 Epoch 18/50 1000/1000	3s 2ms/step - accura	cy: 0.9980 - loss: 0.	0047 - val_accuracy: 0.9 0054 - val_accuracy: 0.9 0051 - val_accuracy: 0.9	9992 - val_loss: 0.0031	
Epoch 19/50 1000/1000 Epoch 20/50 1000/1000 Epoch 21/50 1000/1000 Epoch 22/50	3s 3ms/step - accura	cy: 0.9985 - loss: 0.	0045 - val_accuracy: 0.9 0044 - val_accuracy: 0.9 0035 - val_accuracy: 0.9	9984 - val_loss: 0.0033	
1000/1000 Epoch 23/50 1000/1000 Epoch 24/50 1000/1000 Epoch 25/50	3s 2ms/step - accura 2s 2ms/step - accura	cy: 0.9986 - loss: 0.	0051 - val_accuracy: 0.9 0045 - val_accuracy: 0.9 0048 - val_accuracy: 0.9	9995 - val_loss: 0.0025 9977 - val_loss: 0.0049	
1000/1000 Epoch 26/50 1000/1000 Epoch 27/50 1000/1000 Epoch 28/50	4s 2ms/step - accura 3s 2ms/step - accura	cy: 0.9989 - loss: 0.	0051 - val_accuracy: 0.9 0036 - val_accuracy: 0.9 0059 - val_accuracy: 0.9	9992 - val_loss: 0.0022 9989 - val_loss: 0.0029	
1000/1000 Epoch 29/50 1000/1000 Epoch 30/50 1000/1000 Epoch 31/50 1000/1000	4s 3ms/step - accura 4s 2ms/step - accura	cy: 0.9980 - loss: 0.	0032 - val_accuracy: 0.9 0051 - val_accuracy: 0.9 0047 - val_accuracy: 0.9 0035 - val_accuracy: 0.9	9990 - val_loss: 0.0025 9979 - val_loss: 0.0040	
Epoch 32/50 1000/1000 — Epoch 33/50 1000/1000 — Epoch 34/50 1000/1000	2s 2ms/step - accura 3s 3ms/step - accura	cy: 0.9993 - loss: 0.	0035 - val_accuracy: 0.9 0027 - val_accuracy: 0.9 0043 - val_accuracy: 0.9 0040 - val_accuracy: 0.9	9969 - val_loss: 0.0080 9996 - val_loss: 0.0016	
Epoch 35/50 1000/1000 Epoch 36/50 1000/1000 Epoch 37/50 1000/1000 Frach 38/50	2s 2ms/step - accura	cy: 0.9990 - loss: 0.	0036 - val_accuracy: 0.9 0028 - val_accuracy: 0.9 0043 - val_accuracy: 0.9	9969 - val_loss: 0.0101	
Epoch 38/50 1000/1000 Epoch 39/50 1000/1000 Epoch 40/50 1000/1000 Epoch 41/50	3s 2ms/step - accura 3s 3ms/step - accura	cy: 0.9993 - loss: 0.	0027 - val_accuracy: 0.9 0023 - val_accuracy: 0.9 0057 - val_accuracy: 0.9	9966 - val_loss: 0.0080 9990 - val_loss: 0.0027	
1000/1000 Epoch 42/50 1000/1000 Epoch 43/50 1000/1000 Epoch 44/50	3s 2ms/step - accura 2s 2ms/step - accura	cy: 0.9994 - loss: 0.	0023 - val_accuracy: 0.9 0022 - val_accuracy: 0.9 0033 - val_accuracy: 0.9	9996 - val_loss: 0.0013 9998 - val_loss: 0.0012	
1000/1000 Epoch 45/50 1000/1000 Epoch 46/50 1000/1000 Epoch 47/50 1000/1000	2s 2ms/step - accura	cy: 0.9990 - loss: 0.	0034 - val_accuracy: 0.9 0029 - val_accuracy: 0.9 0028 - val_accuracy: 0.9 0030 - val_accuracy: 0.9	9996 - val_loss: 0.0015 9989 - val_loss: 0.0036	
Epoch 48/50 1000/1000 — Epoch 49/50 1000/1000 — Epoch 50/50 1000/1000	3s 2ms/step - accura 3s 2ms/step - accura	cy: 0.9994 - loss: 0.	0024 - val_accuracy: 0.9	9987 - val_loss: 0.0035 9999 - val_loss: 9.2421e-04	
<pre># Optional: Predict and display y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax() # Directly use y_test as it is</pre>					
<pre>y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax() # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classifif from sklearn.metrics import cor</pre>	already in the correct format Os 1ms/step	ort			
<pre>y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax() # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classification</pre>	<pre>os 1ms/step ication report ifusion_matrix, classification_report classes, y_pred_classes)) :")</pre>	ort			
<pre>y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax() # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classification Matrix:") print("Confusion Matrix:") print(confusion_matrix(y_test_confusion_matrix(y_test_confusion_matrix(y_test_confusion_matrix:") print(classification_report(y_test_confusion_matrix: [[1714</pre>	<pre>os 1ms/step ication report ifusion_matrix, classification_report classes, y_pred_classes)) :")</pre>	ort			
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax() # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classiff from sklearn.metrics import cor print("Confusion Matrix:") print(confusion_matrix(y_test_cor print("\nClassification_report(y_test_cor) print(classification_report(y_test_cor) [[1714	already in the correct format Os 1ms/step ication report ifusion_matrix, classification_report classes, y_pred_classes)) "") test_classes, y_pred_classes)) all f1-score support 00 1.00 1714 00 1.00 1369 00 1.00 6917 1.00 10000 00 1.00 10000	ort			
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax() # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classiff from sklearn.metrics import cor print("Confusion Matrix:") print(confusion_matrix(y_test_cor print("\nClassification_report(y_test_cor) print(classification_report(y_test_cor) [1714	already in the correct format Os 1ms/step ication report ifusion_matrix, classification_report classes, y_pred_classes)) "") test_classes, y_pred_classes)) all f1-score support 00 1.00 1714 00 1.00 1369 00 1.00 6917 1.00 10000	ort			
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax() # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classiff from sklearn.metrics import cor print("Confusion Matrix:") print (confusion_matrix(y_test_c) print("\nClassification_report(y_t) Confusion Matrix: [[1714	already in the correct format Os 1ms/step ication report ifusion_matrix, classification_report classes, y_pred_classes)) "") test_classes, y_pred_classes)) all f1-score support 00 1.00 1714 00 1.00 1369 00 1.00 6917 1.00 10000 00 1.00 10000				
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax() # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classiff from sklearn.metrics import cor print("Confusion Matrix:") print (confusion_matrix(y_test_c) print("\nClassification_report(y_t) Confusion Matrix: [[1714	os 1ms/step ication report ifusion_matrix, classification_report classes, y_pred_classes)) i") cest_classes, y_pred_classes)) i"1) cest_classes, y_pred_classes)) in 1 f1-score support in 1 f1-score sup				
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax(# Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classifi from sklearn.metrics import cor print("Confusion Matrix:") print(confusion_matrix(y_test_c) print("\nClassification_report(y_t) Confusion Matrix: [[1714	os 1ms/step ication report ifusion_matrix, classification_report classes, y_pred_classes)) i") cest_classes, y_pred_classes)) i"1) cest_classes, y_pred_classes)) in 1 f1-score support in 1 f1-score sup				
y_pred = model.predict (X_test) y_pred_classes = y_pred.argmax(# Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classifi from sklearn.metrics import cor print ("Confusion Matrix:") print (confusion_matrix(y_test_c print("\nclassification_report(y_t Confusion Matrix: [[1714	os lms/step ication report ifusion_matrix, classification_report classes, y_pred_classes)) iii) iest_classes, y_pred_classes)) iii) iest_classes, y_pred_classes)) iii) iiii) iiiiiiiiiiiiiiiiiiiii				
y_pred = model.predict (X_test) y_pred_classes = y_pred.argmax(# Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classiff from sklearn.metrics import cor print("Confusion Matrix:") print (confusion_matrix(y_test_c) print ("\nClassification Report: print (classification_report(y_t) Confusion Matrix: [[1714	Os lms/step ication report ifusion_matrix, classification_report itusion_matrix, classification_report itusion_matrix itusion_matrix, classification_report itusion_matrix	ner glorot_normal', 'ran 200])	dom_normal'])		
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax(# Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classifi from sklearn.metrics import cor print("Confusion Matrix:") print(confusion_matrix(y_test_c print("\nclassification Report:	Os lms/step ication report ifusion_matrix, classification_report ifusion_matrix, classification_report ifusion_matrix, classification_report ifusion_matrix, classification_report itusion_sesses, y_pred_classes)) interport classes,	ner [200]) [1] [200]) [200]) [200])	dom_normal'])		
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax(# Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classifi from sklearn.metrics import cor print("Confusion_matrix(y_test_c print("Confusion_matrix(y_test_c print("Nclassification Report: print(classification_report(y_t Confusion Matrix: [[1714	Os lms/step ication report ifusion_matrix, classification_report ifusion_matrix, classification_report ifusion_matrix, classification_report ifusion_matrix, classification_report itusion_sesses, y_pred_classes)) interport classes,	glorot_normal', 'ran 200]) ", "sigmoid"]) cializer)(seed=42))) cializer)(seed=42))) cializer)(seed=42))) cializer)(seed=42)))	dom_normal'])		
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax! # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classifi from sklearn.metrics import cor print("Confusion Matrix:") print(confusion matrix(y_test_c print("\nClassification Report: print(classification_report(y_t Confusion Matrix: [[1714	os lms/step ication report ifusion_matrix, classification_report classes, y_pred_classes)) interport interport interport classes, y_pred_classes)) interport	Iner Siglorot_normal', 'ran			
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classiff from sklearn.metrics import cor print("Confusion_matrix(y_test_c print("Confusion_matrix(y_test_c print("\nClassification_report(y_t Confusion Matrix: [[1714	os lms/step cation report fusion_matrix, classification_report classes, y_pred_classes)) classes, y_pred_classes) classes, y_pred_classes, y_pr	Iner Siglorot_normal', 'ran			
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classifi from sklearn.metrics import cor print("Confusion_matrix(y_test_c print("Confusion_matrix(y_test_c print("Nclassification Report:	os lms/step cation report fusion_matrix, classification_report classes, y_pred_classes)) classes, y_pred_classes) classes, y_pred_classes, y_pr	Iner Siglorot_normal', 'ran			
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classift from sklearn.metrics import cor print("Confusion matrix(y_test_c print(classification metrix: ([1714	Os ims/step idation report ifusion_matrix, classification_report ifusion_matrix, classification_report ifusion_matrix, classification_report ifusion_matrix, classification_report ifusion_matrix, classification_report ifusion_matrix, classification_report itusion_sequence in 1 fl-score support in 2 fl-score support in 2 fl-score support in 2 fl-score support in 3 fl-score support in 2 fl-score support in 2 fl-score support in 3 fl-score support in 2 fl-score support in 3 fl-score support in 2 fl-score support in 3 fl-score support in 4 fl-score support in 2 fl-score support in 3 fl-score support in 4 fl-score support in 5 fl-score support in 6 fl-score support i	Iner Siglorot_normal', 'ran			
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmax # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classiff from sklearn.metrics import cor print("Confusion Matrix:") print(confusion matrix(y_test_c print("Nclassification Report:	Os lms/step (cation report infusion_matrix, classification_report (color	Iner Siglorot_normal', 'ran			
y_pred = model.predict(X_test) y_pred_classes = y_pred_argmax; # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classiff from sklearn.metrics import cor print("Confusion Matrix:") print(confusion matrix(y_test_crint("\nclassification Report:	### Correct format ### Os Ims/step ### Coation report ### Stasses, y_pred_classes) ### Coation_matrix, classification_report ### Classes, y_pred_classes) ### Coation_matrix, classification_report ### Classes, y_pred_classes) ### Classes, y_pred_classes) ### Coation_matrix ### Classes, y_pred_classes) ### Coation_matrix #### Coation_matrix #### Coation_matrix #### Coation_matrix #### Coation_matrix #### Coation_matrix ##### Coation_matrix ####################################	Iner [glorot_normal', 'ran [200]) [", "sigmoid"]) [cializer)(seed=42))) [cializer)(seed=42))) [cializer)(seed=42))) [cializer)(seed=42))] [cializer)(seed=42))] [cializer)(seed=42))] [cializer)(seed=42))] [cializer)(seed=42))] [cializer)(seed=42)]]	curacy'])		
y_pred_classes = y_pred.argmaxi # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classiff from sklearn.metrics import cor print ("Confusion Matrix:") print (confusion matrix(y_test_c print ("\nclassification report (y_t Confusion Matrix: [17114 0 0] [0 1363 6] [3 3 6911]] Classification Report:	### Os lms/step Coation report	Iner [glorot_normal', 'ran [200]) ", "sigmoid"]) [alizer)(seed=42))) [alizer)(seed=42))) [alizer)(seed=42))) [alizer)(seed=42))) [blassification [alizer)(seed=42))) [clalizer)(seed=42))] [clalizer)(seed=42)) [clalizer)(seed=42)) [clalizer)(seed=42)) [clalizer)(seed=42))	curacy'])		
y_pred = model.predict (X_test) y_pred_classes = y_pred.argmax # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classification sklearn.metrics import corpint ("Confusion matrix") print (confusion matrix (Y_test_cprint ("Nclassification Report:	### Os lms/step Cation report	Iner [glorot_normal', 'ran [200]) ", "sigmoid"]) [alizer)(seed=42))) [alizer)(seed=42))) [alizer)(seed=42))) [alizer)(seed=42))) [blassification [alizer)(seed=42))) [clalizer)(seed=42))] [clalizer)(seed=42)) [clalizer)(seed=42)) [clalizer)(seed=42)) [clalizer)(seed=42))	curacy'])		
y_pred = model.predict(X_test) y_pred_classes = y_pred.argmaxi # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classification seleann.metrics import corprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint("Confusion_matrix(y_test_cprint(Os ims/step Os ims/step (cation report ffusion_matrix, classification_report ffusion_matrix, classification_report ffusion_matrix, classification_report classes, y_pred_classes)) (cation report ffusion_matrix, classification_report classes, y_pred_classes)) (cation report ffusion_matrix, classification_report classes, y_pred_classes)) (cation report classes, y_pred_classes) (cation 1.00	glorot_normal', 'ran (200]) ", "sigmoid"]) (1alizer) (seed=42))) (200]) ", "sigmoid"]) (1alizer) (seed=42))) (201) (201) (301) (301) (401) (501) (501) (501) (601) (701)	curacy'])		
y_pred = model.predict (X_test) y_pred_classes = y_pred.argmaxi # Directly use y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classifi from sklearn.metrics import cor print ("Confusion Matrix:") print(clonfusion Matrix:") print(classification Report: print(classification Report: print(classification Report: print(classification Report: precision reca 0 1.00 1. 1 0.00 1. 2 1.00 1. 2 1.00 1. 2 1.00 1. accuracy macro avq 1.00 1. # Meight initializer choice initializer = hp.Choice("in # First hidden layer num_units1 = hp.Choice("num activation1 = hp.Choice("num activation2 = hp.Choice("num activation1 = hp.Choice("num activation2 = hp.Choice("num activation1 = hp.Choice("num activation2 = hp.Choice("num activat	Os ims/step Os ims/step (cation report ffusion_matrix, classification_report ffusion_matrix, classification_report ffusion_matrix, classification_report classes, y_pred_classes)) (cation report ffusion_matrix, classification_report classes, y_pred_classes)) (cation report ffusion_matrix, classification_report classes, y_pred_classes)) (cation report classes, y_pred_classes) (cation 1.00	glorot_normal', 'ran (200]) ", "sigmoid"]) (1alizer) (seed=42))) (200]) ", "sigmoid"]) (1alizer) (seed=42))) (201) (201) (301) (301) (401) (501) (501) (501) (601) (701)	curacy'])		
y_pred = model.predict (X_test) y_pred_classes = y_pred.argmax y_pred_classes = y_pred.argmax y_pred_classes = y_test as it is y_test_classes = y_test 313/313 # Confusion matrix and classifi from sklearn.metrics import corprint (*Confusion matrix!") print (confusion_matrix) print (confusion_matrix) print (classification_report(y_t) Confusion Matrix: [11714 0 0] [1 0 136 0] [1 0 136 0] [1 0 1.00 1. 2 1.00 1. 2 1.00 1. 2 1.00 1. 2 1.00 1. 3 accuracy macro avy 1.00 1. weighted avy 1.00 1. weighted avy 1.00 1. weighted avy 1.00 1. weighted avy 1.00 1. # June tensorflow.keras import in import keras layers imfrom tensorflow.keras import from keras layers import from keras layers import keras layers import keras layers import from keras layers import initializer hp.Choice("numortist =	Os ims/step Os ims/step	glorot_normal', 'ran (200]) ", "sigmoid"]) (1alizer) (seed=42))) (200]) ", "sigmoid"]) (1alizer) (seed=42))) (201) (201) (301) (301) (401) (501) (501) (501) (601) (701)	curacy'])		
y_pred_classes = y_pred.argmax/ y_pred_classes = y_pred.argmax/ y_pred_classes = y_pred.argmax/ y_test_classes = y_test is y_test_classes = y_test 313/313 # Confusion matrix and classifi from aklearn.metrics import cor print ("Confusion Matrix:") print (confusion matrix (y_test_cprint ("Aclassification Report:	Os lms/step Os lms/step (cataion report (fusion_matrix, classification_report (plasses, y_pred_classes)) (classes, y_pred_classes)) (classes, y_pred_classes)) (classes, y_pred_classes) (classes, y_pred_classes)) (classes, y_pred_classes) (c	glorot_normal', 'ran (200]) ", "sigmoid"]) (1alizer) (seed=42))) (200]) ", "sigmoid"]) (1alizer) (seed=42))) (201) (201) (301) (301) (401) (501) (501) (501) (601) (701)	curacy'])		
y_pred_classes = y_pred.argmax.i pured_classes = y_pred.argmax.i pured_classes = y_pred.argmax.i pured_vee_classes = y_test as it is pured_vee_classes = y_test is	The model-building funct Stratement Stratement	glorot_normal', 'ran (200]) ", "sigmoid"]) (1alizer) (seed=42))) (200]) ", "sigmoid"]) (1alizer) (seed=42))) (201) (201) (301) (301) (401) (501) (501) (501) (601) (701)	curacy'])		
y_peed_classes = y_pred_argmax_i y_pred_classes = y_pred_argmax_i s_pred_classes = y_pred_argmax_i confusion Matrix_i confusion confus	The model-building funct Stratement Stratement	glorot_normal', 'ran (200]) ", "sigmoid"]) (1alizer) (seed=42))) (200]) ", "sigmoid"]) (1alizer) (seed=42))) (201) (201) (301) (301) (401) (501) (501) (501) (601) (701)	curacy'])		
y_pred_classes = y_pred_crymax' p_pred_classes = y_pred_crymax' p_pred_crymax' p_pre	Os imm/step Os imm/step (carfor report (insion_metrix, classification_report (insion_metrix, classificatio	glorot_normal', 'ran (200]) ", "sigmoid"]) (1alizer) (seed=42))) (200]) ", "sigmoid"]) (1alizer) (seed=42))) (201) (201) (301) (301) (401) (501) (501) (501) (601) (701)	curacy'])		
y_pred_pred_redict (X_rest). y_pred_plases = y_pred.argmax' % Directly use y_pred.argmax' from skienr.metrics import corporate ("Confusion matrix and classification apport.print(classification_report(y_t) print(classification_report(y_t) confusion Matrix: [[1714	Os ims/step Os ims/step (carion report (usion_matrix, classification_report (usion_matrix, classification_report classes, y_pred_classes)) (usion_matrix, classification_report classes, y_pred_classes)) (usion_matrix 1.00	glorot_normal', 'ran (00]) (", "sigmoid"]) (ializer)(seed=42))) (ializer)(seed=42))) (ializer)(seed=42))) (ializer)(seed=42))	curacy'])		
y_pred_clauses = y_pred_argmax; % Directly use y_test as it is y_test_classes = y_test 313/313 % Consion matchx and classifices all assess = y_test from sklearn.metrics import con print ("Confusion Matchx:") y_test_classes = y_test y_test_classes = y_test y_test_classes = y_test 1	Os ins/step Os ins/step Os ins/step Inside report Indian matrix, classification_rep Indian matrix Indian	glorot_normal', 'ran (00]) (", "sigmoid"]) (ializer)(seed=42))) (ializer)(seed=42))) (ializer)(seed=42))) (ializer)(seed=42))	curacy'])		
y_pred_leases = y_pred.ergnex/ # Directly use y_rest as in is y_test_leases = y_test # Directly use y_rest as in is y_test_cleases = y_test # Confavor matrix and cleavifi from extlearn metrics import cor print ("Confavion matrix ty_lest_" print.(confusion matrix ty_lest_")	Os imp/step (caction report (caction report (fusion_matrix, olassification_rep (caction report (fusion_matrix, olassification_rep (caction report (fusion_matrix, olassification_rep (caction_report (co	glorot_normal', 'ran (00]) (", "sigmoid"]) (ializer)(seed=42))) (ializer)(seed=42))) (ializer)(seed=42))) (ializer)(seed=42))	perparameters	ng and Validation Loca	
y_pred_classes = y_pred.orgnex/ pred_classes = y_pred.orgnex/ pred_classes = y_pred.orgnex/ pred_classes = y_test. ### Sirectly use y_test as if is y_test_classes = y_test. ### Confusion matrix and classifi from kklearn metrics import cor prion (Tondition Matrix) prion (Tondition Matrix) prion (Tondition Matrix) prion (Tondition Report) print ("According to the prior tondition report) print ("According tondition report)	Os ins/step Os ins/step (cotton report (roution _report	glorot_normal', 'ran (00]) (", "sigmoid"]) (ializer)(seed=42))) (ializer)(seed=42))) (ializer)(seed=42))) (ializer)(seed=42))	perparameters		ng Loss tion Loss

ANN Implementation

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential

In [23]: import pandas as pd