2022 年 10 月 25 日高中数学作业

一、单选题

1. 已知 $y_1 = \left(\frac{1}{3}\right)^x$, $y_2 = 3^x$, $y_3 = 10^{-x}$, $y_4 = 10^x$, 则在同一平面直角坐标系内,它们的

图象大致为()

2. 函数① $y = a^x$; ② $y = b^x$; ③ $y = c^x$; ④ $y = d^x$ 的图象如图所示,a, b, c, d 分别是下列四个数: $\frac{5}{4}$, $\sqrt{3}$, $\frac{1}{3}$, $\frac{1}{2}$ 中的一个,则 a, b, c, d 的值分别是(

A. $\frac{5}{4}$, $\sqrt{3}$, $\frac{1}{3}$, $\frac{1}{2}$

B. $\sqrt{3}$, $\frac{5}{4}$, $\frac{1}{3}$, $\frac{1}{2}$

C.
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\sqrt{3}$, $\frac{5}{4}$,

D.
$$\frac{1}{3}$$
, $\frac{1}{2}$, $\frac{5}{4}$, $\sqrt{3}$,

3. 定义在 R 上的函数 f(x) 满足: f(2+x) = f(2-x), 当 $x \ge 2$ 时,

$$f(x) = \begin{cases} 0, x = 2 \\ \lg(x-2), x > 2 \end{cases}$$
,则不等式 $f(x) > 0$ 的解集为()

- A. $(-\infty,1)$ B. $(-\infty,0) \cup (3,+\infty)$ C. $(-\infty,1) \cup (3,+\infty)$ D. $(3,+\infty)$

二、填空题

- 4. 已知函数 $f(x) = \frac{1}{3^x + 1} + a$ 为奇函数,则方程 $f(x) = \frac{1}{4}$ 的解是 $x = \underline{\qquad}$.
- 5. 已知函数 $f(x) = a^{x+1} 2(a > 0, a \neq 1)$, 的图象不经过第四象限,则 a 的取值范围为

三、解答题

6. 已知函数 $f(x) = 4^x + 4^{-x} + m(2^x - 2^{-x})$.

(1)若 $m = 2\sqrt{2}$, 求f(x)的值域;

(2)若f(x)在区间[0,1]上的最小值为1,求m的值.

参考答案:

1. A

【分析】根据指数函数的单调性及图像特征进行比较,即可判断.

【详解】 $y_2 = 3^x$ 与 $y_4 = 10^x$ 是增函数, $y_1 = \left(\frac{1}{3}\right)^x$ 与 $y_3 = 10^{-x} = \left(\frac{1}{10}\right)^x$ 是减函数,在第一象限内作直线 x = 1,

该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选 A.

故选: A

2. C

【分析】根据指数函数的性质,结合函数图象判断底数的大小关系.

【详解】由题图,直线 x = 1 与函数图象的交点的纵坐标从上到下依次为 c , d , a , b , 而 $\sqrt{3} > \frac{5}{4} > \frac{1}{2} > \frac{1}{3}$.

故选: C.

3. C

【分析】先考虑当 $x \ge 2$ 时不等式的解集,再根据图象的对称性可得 $x \le 2$ 时不等式的解集,从而得到正确的选项.

【详解】当
$$x \ge 2$$
时, $f(x) > 0$ 的解为 $\begin{cases} x = 2 \\ 0 > 0 \end{cases}$ $\begin{cases} x > 2 \\ \lg(x-2) > 0 \end{cases}$,解得 $x > 3$,

因为f(2+x) = f(2-x),故f(x)的图象关于直线x=2对称,

故当 $x \le 2$ 时,f(x) > 0的解为x < 1,

所以 f(x) > 0 的解集为: $(-\infty,1) \cup (3,+\infty)$.

故选: C.

【点睛】本题考查函数图象的对称性、分段函数构成的不等式的解,后者一般有两类处理方法: (1)根据范围分类讨论; (2)画出分段函数的图象,数形结合解决与分段函数有关的不等式或方程等,本题属于中档题.

4. -1

【分析】根据奇函数满足f(0)=0可得a, 再求解 $f(x)=\frac{1}{4}$ 即可

【详解】因为函数
$$f(x) = \frac{1}{3^x + 1} + a$$
 为奇函数,故 $f(0) = \frac{1}{3^0 + 1} + a = 0$,解得 $a = -\frac{1}{2}$,故 $f(x) = \frac{1}{4}$ 即 $\frac{1}{3^x + 1} - \frac{1}{2} = \frac{1}{4}$,故 $3(3^x + 1) = 4$,解得 $x = -1$

故答案为: -1

5. $[2,+\infty)$.

【解析】根据0 < a < 1和a > 1两种情况讨论,令 $f(x) \ge 0$,得出不等式,即可求解.

【详解】当0 < a < 1时,令 $f(x) \ge 0$,可得 $a - 2 \ge 0$,此时不等式的解集为空集,(舍去);

当a>1时,令 $f(x)\geq 0$,可得 $a-2\geq 0$,即 $a\geq 2$,即实数a的取值范围[2,+ ∞),

综上可得, 实数 a 的取值范围[2,+ ∞).

故答案为: [2,+∞).

6.
$$(1)[0,+\infty)$$

(2)-2

【分析】(1) 换元法令 $t = 2^x - 2^{-x}, t \in R$, $f(x) = t^2 + 2 + 2\sqrt{2}t$, 即可求解;

(2) 换元法分类讨论考虑函数 $g(t) = t^2 + mt + 2, t \in \left[0, \frac{3}{2}\right]$ 的最小值情况即可得解.

(1)

$$m = 2\sqrt{2}$$
, $f(x) = 4^{x} + 4^{-x} + 2\sqrt{2}(2^{x} - 2^{-x})$,

$$\Rightarrow t = 2^x - 2^{-x}, t \in R, \quad t^2 = 4^x + 4^{-x} - 2,$$

则
$$f(x) = t^2 + 2 + 2\sqrt{2}t = (t + \sqrt{2})^2 \in [0, +\infty)$$
,

所以 f(x) 的值域 $[0,+\infty)$;

(2)

$$\Leftrightarrow t = 2^{x} - 2^{-x}, x \in [0,1], t \in \left[0, \frac{3}{2}\right], \quad t^{2} = 4^{x} + 4^{-x} - 2,$$

则 $f(x)=t^2+2+mt$,

考虑函数 $g(t) = t^2 + mt + 2, t \in \left[0, \frac{3}{2}\right]$,

当
$$-\frac{m}{2} \le 0$$
时, $g(t) = t^2 + mt + 2, t \in \left[0, \frac{3}{2}\right]$ 单调递增,最小值 $g(0) = 2$ 不合题意,舍去;

当
$$-\frac{m}{2} \ge \frac{3}{2}$$
时, $g(t) = t^2 + mt + 2, t \in \left[0, \frac{3}{2}\right]$ 单调递减,最小值 $g(\frac{3}{2}) = \frac{9}{4} + \frac{3m}{2} + 2 = 1$,解得

$$m = -\frac{13}{6}$$
, 不合题意, 舍去;

$$g(-\frac{m}{2}) = \frac{m^2}{4} - \frac{m^2}{2} + 2 = 1$$
, $m^2 = 4$,

所以
$$m=-2$$