A study on "The Harm of class imbalance corrections for risk prediction models"

From Journal of the American Medical Informatics Association, 29(9), 2022, 1525–1534 https://doi.org/10.1093/jamia/ocac093 Advance Access Publication Date: 10 June 2022 Research and Applications

Paolo Andriani

Statistics for Data Science A/A 22-23

Department of Computer Science, University of Pisa

Project workflow

Table of contents O1 O2 Topic presentation Original Experiments & Results

Our Dataset & Experiments

03

04 Comparisons

05 Performance analysis 06 Conclusions

01 - Topic presentation

Problem

Rebalance unbalanced dataset may worsen predictive model performances.

Minority class overestimation Risk of overtreatment.

Case study

Estimate ovarian cancer malignancy probability using an imbalanced dataset. Unbalance 20%.

Analisys of the performance and clinical utility.

02 - Original Experiments & Results

Dataset: from International Ovarian Tumor Analysis 1999 - 2012

Rebalance techniques

Uncorrected

Random Undersampling (RUS)

Random Oversampling (ROS)

SMOTE

Selected Predictors

Age

Maximum diameter of lesion

Number of papillary structures

Models

Standard Logistic Regression (SLR)

Penalized Ridge Logistic Regression (L2)

Performance Measures

Discrimination: AUROC

Calibration: Reliability of predictions

Classification: Accuracy, Sensitivity, Specificity

2 Clinical Utility: Net Benefit

02 - Original Experiments & Results

- Clinical utility of model in treatment decisions, while taking misclassification errors into account
- Net Benefit=

 Links and misclassification errors
- Risk Threshold : to select individuals for treatment
- Default strategies: treating none treating everyone

03 – Our Dataset & Experiments

Dataset: Framingham_heart disease 1948 - 2000s

Cardiovascular study on residents of Framingham, Massachusetts.

4,240 records, 15 attributes, public availability, approved by reliable bodies

Rebalance techniques

Uncorrected SMOTE RUS ADASYN

ROS

Selected Predictors (3,6,8)

Age Glucose CigsPerDay

Sys BP TotChol HeartRate

Dia BP BMI

Models

SLR

L2

Performance Measures

Calibration Classification Clinical Utility

03 – Imbalancing

Imbalancing

04 – Comparison

In ovarian cancer dataset, imbalance correction methods yield to overestimated probability estimates

The uncorrected dataset does not lead to overestimation, unlike rebalancing techniques

04 – Comparison

Our experiments, on coronary heart disease dataset, confirm the previous hypothesis.

As for the other rebalancing techniques, ADASYN also reports poor results in terms of calibration

05 – Performance analysis

Specificity

P(- | C)= TN/TN+FP

being sick varies. The model used for prediction was a Ridge classifier

05 – Performance analysis

The x axis represent the percentage of positive class in the test set.

The y axis represent the precision obtained in the different rebalancing percentage. The red curve represent the theoretical precision

The x axis represent the percentage of positive class in the test set.

The y axis represent the accuracy obtained in the different rebalancing percentage. The red line represent the theoretical accuracy

06 - Conclusion

Model	Sensitivity (0.5)	Specificity (0.5)	Sensitivity (0.18)	Specificity (0.18)
-Up	0.05	0.99	0.56	0.74
Down	0.62	0.68	0.99	0.10
	0.68	0.65	0.98	0.08
- Smote - RIDGE	0.65	0.64	0.95	0.22
- Up	0.05	0.99	0.55	0.77
- Down	0.69	0.65	0.98	0.03
Smote	0.71	0.65	0.98	0.02
Sinote	0.62	0.71	0.98	0.07

06 – Conclusions

- Our work confirmed the two hypothesis advanced in the study:
 - (1) Rebalancing techniques distort model calibration
 - (2) Using the "imbalance ratio" probability threshold & imbalance correction methods have the same impact on sensitivity and specificity
- The clinical utility of the classifier was studied as a function of the risk of overtreatment. It emphasized that inaccurate model decisions could lead to unjustified overtreatment.

It was also shown how precision and accuracy could vary according to the probability of being really sick

References

2,4,5. The harm of class imbalance corrections for risk prediction models: illustration and simulation using logistic regression. From Journal of the American Medical Informatics Association, 29(9), 2022, 1525–1534 https://doi.org/10.1093/jamia/ocac093 Advance Access Publication Date: 10 June 2022 Research and Applications. [2] Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi (2015). When is Undersampling

[1] Ruben van den Goorbergh1, Maarten van Smeden 1, Dirk Timmerman2,3, and Ben Van Calster

Effective in Unbalanced Classification Tasks? ECML/PKDD (1) 200-215. Lecture Notes in Computer Science, volume 9284. https://doi.org/10.1007/978-3-319-23528-8 13 [3] https://en.wikipedia.org/wiki/Framingham Heart Study

[4] https://www.kaggle.com/datasets/aasheesh200/framingham-heart-study-dataset