Differential Geometry Notes of 03/03/2013

Pramook Khungurn

April 1, 2013

1 Self-Adjoint Linear Maps and Quadratic Forms

- Let V denote a real vector space of dimension 2 endowed with an inner product \langle , \rangle .
- We say that a linear map $A: V \to V$ is **self-adjoint** if $\langle Av, w \rangle = \langle v, Aw \rangle$ for all $v, w \in V$.
- If $\{e_1, e_2\}$ is an orthonormal basis for V and a_{ij} for i, j = 1, 2 is the matrix for A in this basis, then

$$a_{ii} = \langle Ae_i, e_i \rangle = \langle e_i, Ae_i \rangle = a_{ii}.$$

So, if A is self-adjoint, then it is represented by a symmetric matrix in any orthonormal basis.

• To each self-adjoint linear map, we associate a map $B: V \times V \to \mathbb{R}$ defined by

$$B(v, w) = \langle Av, \rangle.$$

We have that B is bilinear; that is, it is linear in both v and w. Moreover, the fact that A is self-adjoint means that B(v, w) = B(w, v). So, B is a symmetric bilinear form.

- If B is a symmetric bilinear form in V, we can define a linear map $A: V \to V$ by $\langle Av, w \rangle = B(v, w)$. (That is, you can get the coefficients of the matrix of A by computing $B(e_i, e_j)$) Because B is symmetric, it implies that A is self-adjoint.
- A quadratic form is a polynomial $Q: \mathbb{R}^2 \to \mathbb{R}$ such that

$$Q(x,y) = ax^2 + 2bxy + cy^2$$

for some $a, b, c \in Real^2$.

• For each symmetric bilinear form, B in V, there corresponds a quadratic form Q in V given by:

$$Q(v) = B(v, v).$$

• Q determines B completely because

$$B(v + w, v + w) = B(v + w, v) + B(v + w, w)$$

= $B(v, v) + B(w, v) + B(v, w) + B(w, w)$
= $B(v, v) + 2B(v, w) + B(w, w)$.

So,

$$B(v, w) = \frac{1}{2} (Q(v + w) - Q(v) - Q(w)).$$

- ullet As a result, there's a one-to-one correpons dence between quadratic forms and self-adjoint linear maps in V.
- Given a self-adjoint linear map $A: V \to V$, there exists an orthonormal basis for V such that, relative to the basis, the matrix of A is a diagonal matrix.

Furthermore, the elements of the diagonal are the maximum and the minimum of the corresponding quadratic form restricted to the unit circle of V.

• Lemma 1.1. If the function $Q(x,y) = ax^2 + 2bxy + cy^2$, restricted to the unit circle $x^2 + y^2 = 1$, as a maximum at the point (1,0), then b=0.

Proof. Parametermize the circle $x^2 + y^2 = 1$ by $x = \cos t$ and $y = \sin t$. Write Q as a function of t. Differentiate and set equal to 0. Substitute t = 0, and you'll get b = 0.

• Proposition 1.2. Given a quadratic form Q in V, there exists an orthonormal basis $\{e_1, e_2\}$ of V such that, if $v \in V$ is given by $v = xe_1 + ye_2$, then

$$Q(v) = \lambda_1 x^2 + \lambda_2 y^2$$

where λ_1 and λ_2 are the maximum and minimum, respectively, of Q on the unit circle |v|=1.

Proof. Let λ_1 be the maximum of Q on the unit circle |v| = 1, and let e_1 be the unit vector with $Q(e_1) = v$. Such e_1 exists by continuity of Q on the compact set |v| = 1. Let e_2 be a unit vector orthogonal to e_1 and set $\lambda_2 = Q(e_2)$. We will show that the basis $\{e_1, e_2\}$ satisfies the conditions of the proposition.

Let B be the symmetric bilinear form that is associated to Q. Let $v = xe_1 + ye_2$.

$$Q(v) = B(v, v) = B(xe_1 + ye_2, xe_1 + ye_2)$$

$$= B(xe_1, xe_1) + 2B(xe_1, ye_2) + B(ye_2, ye_2)$$

$$= x^2B(e_1, e_1) + 2xyB(e_1, e_2) + y^2B(e_2, e_2)$$

$$= \lambda_1 x^2 + 2bxy + \lambda_2 y^2$$

where $b = B(e_1, e_2)$. By the lemma, b = 0, and it only remains to prove that λ_2 is the minimum of Q in the circle |v| = 1. However,

$$Q(v) = \lambda_1 x^2 + \lambda_2 y^2 \ge \lambda_2 (x^2 + y^2) = \lambda_2$$

since $\lambda_2 \leq 1$. So, λ_2 is the minimum.

• Theorem 1.3. Let $A: V \to V$ be a self-adjoint linear map. Then, there exists an orthonormal basis $\{e_1, e_2\}$ of V such that $A(e_1) = \lambda_1 e_1$, $A(e_2) = \lambda_2 e_2$. In the basis $\{e_1, e_2\}$, the matrix of A is clearly diagonal and the elements λ_1, λ_2 with $\lambda_1 \geq \lambda_2$ on the diagonals are the maximum and the minimum, respectively, of the quadratic form $Q(v) = \langle Av, v \rangle$.

Proof. Consider the quadratic form $Q(v) = \langle Av, v \rangle$. By the proposition above, there exists an orthonormal basis $\{e_1, e_2\}$ of V with $Q(e_1) = \lambda_1$, and $Q(e_2) = \lambda_2 \leq \lambda_1$, where λ_1 and λ_2 are the maximum and the minimum, respectively, of Q in the unit circle. It remains to show that $A(e_1) = \lambda_1 e_1$ and $A(e_2) = \lambda_2 e_2$.

Since $B(e_1, e_2) = \langle Ae_1, e_2 \rangle = 0$ (by the lemma) and $e_2 \neq \mathbf{0}$, we have that either Ae_1 is parallel to e_1 or $Ae_1 = 0$. If Ae_1 is parallel to e_1 , then $Ae_1 = \alpha e_1$, and since $\langle Ae_1, e_1 \rangle = \lambda_1 = \lambda \alpha e_1, e_1 = \alpha$, we conclude that $Ae_1 = \lambda_1 e_1$. If $Ae_1 = \mathbf{0}$, then $Ae_1 = \langle Ae_1, e_1 \rangle = 0$. So, $Ae_1 = \mathbf{0} = \lambda_1 e_1$. In any case, we have that $Ae_1 = \lambda_1 e_1$.

Using the same argument, we can show that $Ae_2 = \lambda_2 e_2$.