clove 1017:0.376

INGENIERÍA INFORMÁTICA EXAMEN DE MATEMÁTICA DISCRETA

23 de junio de 2003

Problema 1 (2.5 puntos)

- (a) Tenemos cinco documentos que debemos clasificar en un archivador con diez carpetas. Calcular de cuántas formas posibles se pueden clasificar estos documentos si
 - (a.1) todos los documentos son distintos y sólo cabe un documento en cada carpeta;
 - (a.2) todos los documentos son distintos y en cada carpeta caben tantos documentos como se desee;
 - (a.3) los documentos son idénticos y sólo cabe un documento en cada carpeta.
- (b) ¿Cuántas soluciones enteras no negativas hay de la ecuación

$$x_1 + x_2 + x_3 + x_4 + x_5 = 21$$

tales que $x_1 \ge 1$? ¿Cuántas hay tales que $x_i \ge 2$ para i = 1, 2, 3, 4, 5?

Problema 2 (2.5 puntos)

(a) Sea R la relación definida sobre $A=\{1,2,3,4\}$ cuyo grafo dirigido asociado es el siguiente

Se pide:

- (a.1) verificar que (A, R) es un conjunto parcialmente ordenado y construir su diagrama de Hasse.
- (a.2) construir un orden topológico y determinar, de forma razonada, cuántas aristas adicionales se necesitan para extender el orden R hasta un orden total.
- (b) Sea B el conjunto de las palabras de 5 bits. Se llama *peso* de una palabra $b \in B$, y se denota por $\pi(b)$, al número de unos que contiene (por ejemplo, $\pi(10010) = 2$). Demuéstrese que la relación

$$aRb \Leftrightarrow \pi(a) = \pi(b), \quad a, b \in B$$

es una relación de equivalencia. Obténganse las clases de equivalencia y el conjunto cociente $B/R = \{[b] : b \in B\}$.

(Continúa detrás)

Problema 3 (2.5 puntos)

- (a) Hallar un inverso de 237 módulo 44
- (b) Hallar un inverso de 44 módulo 237
- (c) Usar los resultados anteriores para resolver el sistema

$$x \equiv 3 \pmod{237}$$
$$x \equiv 2 \pmod{44}$$

(d) Demostrar que para todo entero positivo n se verifica: $mcd(n, n^2 + 1) = 1$

Problema 4 (2.5 puntos)

(a) Dado un conjunto de intervalos de la recta real se puede construir un grafo asociado, llamado grafo de intervalos, de la siguiente manera: cada intervalo es un vértice del grafo, y dos vértices son adyacentes si y sólo si los intervalos correspondientes tienen intersección no vacía. Por ejemplo, a los intervalos $\{(0,3), (1,4), (1,7), (2,5), (4,9)\}$ les corresponde el grafo de la figura.

Se pide:

(a.1) Calcular el grafo de intervalos G asociado al conjunto de intervalos

$$\{(1,9), (7,8), (0,3), (4,10), (2,6), (5,11)\}.$$

- (a.2) Analizar, justificando la respuesta, si el grafo G obtenido en el apartado (a.1) es o no hamiltoniano, euleriano y bipartito. Construir, caso de que existan, un circuito o recorrido euleriano y un ciclo hamiltoniano para el grafo.
- (b) Decídase la veracidad o falsedad de las siguientes afirmaciones, justificando adecuadamente la respuesta:
 - (b.1) No hay ningún grafo euleriano que tenga un número impar de aristas
 - (b.2) Sea T un árbol cualquiera. Entonces T tiene más puentes que puntos de corte.
 - (b.3) Un arbol recubridor mínimo siempre contiene las dos aristas de menor peso

Problema 1

(a)

(a1) Son las posibles permutaciones de 5 carpetas tomadas de un conjunto de 10. Una forma de verlo es fijar un orden para los documentos (1-2-3-4-5) y ver todos los posibles conjuntos de 5 carpetas que se les pueden asociar biyectivamente, tendiendo en cuenta que el orden importa.

$$p(10,5) = \frac{10!}{(10-5)!} = 30240$$
 posibilidades

(a2) El primer documento se puede archivar en 10 posiciones. Para cada una de estas clasificaciones, como no hay restricciones, el segundo, se puede archivar en 10 posiciones también, puesto que al ser distinto su clasificación es independiente de la anterior. Así todos, (permutaciones con repetición), por lo que tenemos

$$10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5 = 100,000$$
 posibilidades

(a3) Los documentos son indistinguibles y en cada carpeta solo cabe un documento. Son combinaciones sin repetición.

Son combinaciones de 10 elementos tomados en conjuntos de 5:

$$C(10,5) = {10 \choose 5} = {10! \over 5! \cdot 5!} = 252 \text{ posibilidades}$$

(b)

El número de soluciones generales se obtiene calculado las posibles distribuciones de 21 elementos idénticos en 5 casillas. Es el caso típico de combinaciones de 21 asteriscos y 5-1 barras separadoras. Pero si se exige que $x_1 \ge 1$, uno de los elementos está fijo en la primera posición, por lo que hay que distribuir solo 20 elementos. Así, las posibles soluciones son:

$$C(20+5-1, 20) = \frac{24!}{20! \cdot 4!} = 10626$$
 posibilidades

En el caso en que todos los $x_i \ge 2$, tenemos fijados 2 + 2 + 2 + 2 + 2 = 10 elementos de los 21. Serán las posibles distribuciones de los 11 restantes en 5 casillas, o sea:

$$C(11+5-1,11) = \frac{15!}{11! \cdot 4!} = 1365$$
 posibilidades

Flución del pr. Nº 2. (exame de punis).

a)
$$A = \{1,2,3,4\}$$
 $R = \{(1,1), (2,2), (3,3), (4,4), (1,4), (3,4)$
 $(3,1), (3,2)\}$.

a) les reflexiva, porque todas $(a,a) \in R$, $\forall a \in A$
b) R es asimetrice, porque no existen existes
e) R es transitiva, porque si a R b y b R c =>
 $\Rightarrow aRc$, $\forall a,b,c \in R$.

(3,1), $(1,4) \Rightarrow (3,4)$
 $(1,4)$, $(4,4) \Rightarrow (1,4)$
 $(3,4)$, $(4,4) \Rightarrow (3,4)$
 $(3,1)$, $(1,1) \Rightarrow (3,1)$
 $(3,2)$, $(2,2) \Rightarrow (3,2)$.

Deducimos, que $(1,R)$ es un conjunto pareialmente ordenada.

En diagrama de Hosse:

4

Orden topologico: $3 \leq 2 \leq 1 \leq 4$
Sería orden total, si aRx , $\forall a,x \in R$.

Entoaces, al añadiz dos aristas $(2,4)$, $(2,4)$
interpologico obtenimos el orden total:

b)

a. $\Pi(a) = \Pi(a) \Rightarrow a R a - eeflexiva$ b. Si $\Pi(a) = \Pi(b) \Rightarrow \pi(b) = \Pi(a) \Rightarrow b R a - simetrica$

c. Si $\Pi(a) = \Pi(b) = \Lambda \Pi(b) = \Pi(c) = >$ => $\Pi(a) = \Pi(c)$ y arc - transitiva.

Por la définición es una relación de equivalencia.

Clases de equivalencia.

las clases están formadas por las cadenas de pesos ignales: 0,1,2,3,4,5.

[00000] = {00000}

[11111] = f 111113

[10000] = { 1,0000,01000, ... } - total C(4) elemento

[11000] = {11000,01100,... 3 - total C(2) elementos

[11100] = {11100,01110,...} - total C(3) elementos

[11110] = {11110,01111, ... } - total ((4) elementos

El conjunto cociente:

B/R = {[00000], [11111], [10000], [11000], [11100], [11100],

Problema

- a) Hallar un inverso de 237 modulo 44
- b) Hallar un inverso de 44 modulo 237
- c) Usar los resultados anteriores para resolver el sistema

 $x \equiv 3 \mod (237)$ $x \equiv 2 \mod (44)$

d) Demostrar que para todo entero positivo n se verifica: $mcd(n, n^2+1)=1$

Solución

a) Usando el algoritmo de Euclides verificamos que mcd(237,44)=1 para asegurarnos que exista inverso.

237=5 x 44 +17 44= 2 x 17 +10 17= 10 +7 10=7+3 7=2 x 3 +1

si existe. Recurriendo el algoritmo al revés:

$$1 = 7 - 2 \times 3 = 7 - 2 \times (10 - 7) = \dots = 13 \times 237 - 70 \times 44$$

indicando que el inverso buscado es 13.

- b) evidentemente desde el anterior apartado es: -70
- c) usando la nomenclatura estándar del teorema chino del resto tenemos: m1=237, m2= 44, a1=3 y a2=2 y por tanto M1=44 y M2=237. De los apartados anteriores y1=-70 e y2=13 Usando el teorema chino del resto:

x = a1 M1 y1 + a2 M2 y2 mod (237 x 44) x = -3078 mod (10428) o bienx = 7350 mod (10428)

d) simplemente usando Euclides: $n^2 + 1 = n \times n + 1$ que implica que son primos relativos

PROBLEMA 4

(a) La posición relativa de la intervalos d(1,9), (7,8), (0,3), (4,10), (2,6), (5,11) y

es la sofriente:

(9.1) Pur tants, el compondiente perso de intervalos es

(a.2) Claramente, el grefo NO es bipartito, ye que contiene cides de longitud tres (por grepo, (1,9) \rightarrow (2,6) \rightarrow (0,3) \rightarrow \rightarrow (1,9).

El grefo 6 es hamiltoniano, ya que existen cidos hamiltonianos, esto os, cidos que pasan por todos los veirtres del grefo. Por gepto,

 $(0,3) \rightarrow (1,a) \rightarrow (7,8) \rightarrow (4,10) \rightarrow (5,11) \rightarrow (2,6) \rightarrow (0,3)$

El grefo 6 no es euleriano, ya que no todos sus vértices tienen gredo par. Al hobor dos vértices de gredo impar,

g((1,9)) = 5, g((7,8)) = 3

no preden existr circuito enlarianas. No obstante, sí que existe un recorrido enlariano, anyos extranos son necesariamente lo dos récties de geodo impar.

Pare construirlo partinas de mo avelguére de esos dos vértices y formamos un ciclo tan largo como de possible.

Por geps, partous de (1,9) y formanos

 $(1,9) \rightarrow (5,11) \rightarrow (2,6) \rightarrow (4,0) \rightarrow (7,8) \rightarrow (1,9)$

Si borrauos la aristes recorrides, nos queda el grefo

Volvemos a formar otro cido particula de (19)

$$(1,a) \rightarrow (2,6) \rightarrow (0,3) \rightarrow (1,a)$$

y la interclamas en el anterno, per apple al final

$$(1,9) \rightarrow (5,11) \rightarrow (2,6) \rightarrow (4,10) \rightarrow (7,8) \rightarrow (1,9) \rightarrow (2,6) \rightarrow (0,3) \rightarrow (1,9)$$

Como auto, borravos les aristes que acebanos de utilitar, así amo d reirtre (0,3) y el (2,6) ya que hemos apotado las anistas correspondientes a ambos. La silo quedan las anistes

Per tanto, un recorrido enleviano con orifar en (1A) y find en (7,8) es

$$(1,a) \rightarrow (5,11) \rightarrow (2,6) \rightarrow (4,10) \rightarrow (7,8) \rightarrow (1,9) \rightarrow (2,6) \rightarrow (0,3) \rightarrow (4,a) \rightarrow (4,10) \rightarrow (5,11) \rightarrow (7,8)$$
.

(6.1) FALSO. Per gemple, el seprente grefo

es entenano (un avanto entenano es ABCA) y time 3 avistas.

(b.2) VERDADERO. Le Tun dibol con n vertius. Ontimes true n-1 aristes. Como Tes aciclico, cada una de sus avistes es ma ariste puente. Per tanto T trave n-1 aristes puente.

Por ôtre parte, los vinicos vértices de m élbol que NO son poutro de corte son las hoses, es decr los vertices de grado 1. Cudquier élbol tiene como virtices de grado 1. Cudquier élbol tiene como minimo 2 hoses. Por tauto, hay a lo sumo n-2 puntos de corte.

(b.3) VERDADERO. Solvo que el cibol sea frival (= B), cuelquier cibol recubridir minimo trene que contaver les dos aristes de per minimo. La vinica rasión pare que no estuvienn es que formesen cido, pero los anistes no sm reficientes pare frimar un cido.

6