Gram-Schmidt Orthonormalization Process

= 0

If we have an orthonormal set of vectors $\overrightarrow{u_1}, \dots, \overrightarrow{u_{k_1}}$ then Wik = Vik - Eil Ui Vik x Wi Example 1. $A = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ Solution: Step 1: Normalize Vi 71 = 150 2/15-1 Step 2: $\vec{W_2} = \vec{V_2} - \vec{u_1} \cdot \vec{v_2} \times \vec{U_1}$ = \[\frac{2}{2} \\ \frac{1}{15} \\ \frac{2}{15} \\ \frac{2}{1 = \[\frac{1}{2} \] \[2 \] \[0 \] \[\frac{1}{2} \] \[\frac{1}{2 y te 1,2,..., k-1, Wk. Ut =0 if t = 1, Ui. IIt = 0 Proof: $(\overrightarrow{V_k} - \overrightarrow{\xi} | \overrightarrow{u_i} \cdot \overrightarrow{V_k} \times \overrightarrow{u_i}) \cdot \overrightarrow{u_t}$ if t = i, we get: $= \overrightarrow{V_k} \cdot \overrightarrow{u_t} - \overrightarrow{\xi} | (\overrightarrow{v_i} \cdot \overrightarrow{V_k}) \times (\overrightarrow{u_i} \cdot \overrightarrow{u_t}) \longrightarrow = (\overrightarrow{u_t} \cdot \overrightarrow{V_k}) \times (\overrightarrow{u_t} \cdot \overrightarrow{v_t})$ = (Ut-V/x 1

- Lit. Ve

Step 3: Normalize
$$\vec{W}_{2}$$
 and get
$$\vec{U}_{2} = \begin{bmatrix} \vec{V}_{2} \\ \vec{V}_{3} \\ \vec{V}_{3} \end{bmatrix}$$
Step 4: Compute U_{3} in terms of U_{1} and U_{2}

$$\vec{W}_{3} = \vec{V}_{3} - \vec{U}_{1} \cdot \vec{V}_{3} \times \vec{U}_{1} - \vec{U}_{2} \cdot \vec{V}_{3} \times \vec{U}_{2}$$

$$= \begin{bmatrix} v_{1} \\ q \\ -v_{1} \\ q \end{bmatrix}$$
Normalize \vec{V}_{3} :
$$\vec{U}_{3} = \begin{bmatrix} \vec{J}_{3} \\ -\dot{J}_{3} \\ 0 \\ -\ddot{J}_{3} \end{bmatrix}$$

Eigenvectors and Eigenvalues

Full/Reduced SVD

Amn = Umm Smn Vnn^T
The columns of U:
Orthonormal eigenvectors of AA^T
The columns of V:
Orthonormal eigenvectors of A^TA
S: O WTU=I @ VTV=I @USSTUT = AAT $\lambda = SS^T = \stackrel{E}{\Sigma} Si^2 (a scalar)$ $\Rightarrow \lambda uu^T = AA^T$ P VSTS V = ATA a diagonal matrix contains the square roots of eigenvalues from U or V in descending order