

Overview on IRS electric and advanced electric propulsion activities

- Programmatic Overview (skipped, see slides)
- Overview IRS Thrusters
- Tools: Diagnostics and Codes (skipped, see slides)
- > PPT
- > AF MPD
- Arcjets
- > IEC
- ABEP
- > TIHTUS

G. Herdrich, T.Binder, A. Boxberger, A. Chadwick, Y.-A. Chan, M. Ehresmann, N. Harmansa, Ch. Montag, F. Romano, J. Skalden, St. Fasoulas, K. Komurasaki, T. Schönherr

Program Overview IRS Thrusters

Tools

PPT

AF MPD

Arcjets

IEC

ABEP

Programmatic Overview (current activities)

PPT

- Collaboration with Uo Tokyo and RIAME + Kurtschatov Institute
- Harware-in-the-loop set-up for ADD-SIMPLEX
- Pulsed Electrothermal Thruster 3 years program (ESA NPI in context of CAPE)
- Inter laboratory comparison between ESA and IRS (procurement of balance and Mini PPT)

Arcjets

- Arcjets TALOS and VELARC within cooperation with Airbus D & S
- ESA Standardization project "Electrostatic probes" (Arcjet as reference)
- IRAS: Application of advanced manufacturing processes to further improve arcjets (DLR/IRS)

AF-MPD

- AF MPD (ESA TRP in coop. with Alta, quasi finalized)
- AF MPD numerical simulation (DAAD)

Program

Overview IRS Thrusters

Tools

DDT

AF MPD

Arcjets

IEC

ABEP

Programmatic Overview (current activities)

IEC

- IEC experimental investigation in coop. with ESA-ACT (numerical investigation) and Airbus D & S
- NEAT (linear IEC thruster) in cooperation with Gradel (ESA-Luxinno)

TIHTUS

- Numerical Analysis and experimental Optimization of TIHTUS (DFG project)
- TIHTUS Alternative Propellants (U o Adelaide)

ABEP

• DISCOVERER: WP4 as main task of IRS → Atmosphere-Breathing Electric Propulsion

IEC

Arcjets

ABEP

TIHTUS

Water-based propulsion

Secondary EP system developed within cooperation with Airbus D & S

Program Overview IRS Thrusters Tools PPT AF MPD

Electric Propulsion at IRS:

Development of

- Thrusters and
- propulsion systems

- Thermal arcjet thrusters
- PPT (iMPD)
- Applied-field MPD thrusters

- thermal arcjet thrusters
- Self-field MPD thrusters
- Hybrid thruster TIHTUS

PPT

Water-based propulsion

Electric Propulsion at IRS:

Development of

Thrusters and

ABEP

propulsion systems

Secondary electric propulsion

Electrolyzer

Intake verification

Inductive thruster as

Intake design

- 1 N catalytic thruster
- Green propellant
- → Small satellites

Mini PPT

- PETRUS
- Thermal PPT

Exhaust

- Reliable, robust, cheap, ...
- → CubeSat application

DSMC simulation of adapted intake geometry

Program

Tools

AF MPD

Arcjets

IEC

ABEP

TIHTUS

PPT

Probe-type	Value measured
Heat Flux Probe	heat flux
Pitot Probe	total pressure
Mass Spectrometer Probe	plasma composition
Wedge Type Probe	static pressure, Mach number
Enthalpy Probe	enthalpy
Electrostatic Probes	T _e , T _i , v, n _e ,

Method	Measured quantity
Emission Spectroscopy (EMS)	T_{ex} , T_{rot} , T_{vib} , T_{e} , n_{e} , $(n_{Plasma}$?)
Laser-Induced Fluorescence (LIF)	T_{rot} , (T_{vib}) , T_{e} , n_{e} , n_{Plasma} , v_{Plasma}
Thompson Scattering	n _e , T _e
Fabry-Perot Interferometry (FPI)	T _{Trans} , v _{Plasma}
Laser Absorption Spectroscopy (LAS)	n_{Plasma} , T_{Trans} , V_{Plasma}

Program Overview IRS Thrusters PPT AF MPD Arcjets IEC **ABEP** TIHTUS **Tools**

Numerical Codes for EP Developement

URANUS (ATD)	SAMSA (ATD/EP)	SINA / ARCHE (ATD/EP)	PICLas (EP presently)	
	particle method			
continuum	rarefied plasmas, strong non- equilibrium			
re-entry	SF and AF MPD , magnetic probes			
2D rotational symm. / 3D	2D rotational symmetric		3D	
fully implicit	explicit			
fully coupled		loosely, iteratively coupled		
structured multiblock grids	unstructured, adaptive grids	structured multiblock grids	unstructured grids	
Air, CO ₂	Ar, air, CO ₂	air, N ₂ , H ₂	Presently mono- and diatomic species	
PARADE/HERTA gas- radiation coupling		HERTA gas-radiation coupling		
gaskinetic gas-surface interaction model with catalytic reaction schemes. CVCV mult. temperature gas-phase model		changeable chemical modules		

Program

Overview IRS Thrusters

Tools

PPT

AF MPD

Arcjets

IEC

ABEP

Performance Overview of PPTs at IRS

	ADD SIMP-LEX	PET	PETRA	PETRUS 2.0
Type	iMPD	Electro thermal	Electro thermal	Electro thermal / iMPD
Design	Parallel plate.	coaxial	coaxial	coaxial
Geometry	370 x 240 x 120 mm	Ø 32 x 55 mm	Ø 17 x 29.1 mm	Ø 12 x 50 mm
Mass	6.5 kg	489 g	180.72 g	≤ 500 g (incl. PPU)
Propellant	PTFE	PTFE	PTFE	PTFE
Propellant mass	Up to 43 kg	4 g	1.825 g	3.7 g
Capacitance	80 μF	1.5 μF	1.36 µF	4 μF
Charge voltage	1300 V	2500 V	2000 V	1600 V
Energy	67.6 J	3 J	2.72 J	5.12 J
Pulse frequency	1 Hz	1 Hz	1 Hz	0.25 - 1Hz
Mbit	53.38 µg	43.4 µg	47.76 µg	2.1 µg (theor.)
lbit	1373 μNs	61.7 μNs	72 μNs	26.5 μNs (theor.)
Number of pulses	More than 2 mio.	100000	38211 (theor.)	1761900 (theor.)
Isp	≤ 2718 s	140 s	154 s (theor.)	< 1282 s (theor.)
Thrust per pulse	1.373 mN	0.0617 mN	0.072 mN	0.0265 mN (theor.)
Power	~ 70 W	< 4 W	< 4 W	5 - 8 W

Program Overview IRS Thrusters

Tools PPT

AF MPD

Arcjets

IEC

ABEP

TIHTUS

12.10.2017

Design of PETRUS 2.0 and Preliminary Test Results of a Breadboard Model

Breadboard of PETRUS 2.0

Front view: 2 J and 5.12 J

Breadboard model after ~2000 pulses

Side view: 2 J and 5.12 J

Isom. view: 5.12 J

Final design of PETRUS 2.0

Program Overview IRS Thrusters PPT Arcjets **IEC ABEP TIHTUS** Tools AF MPD

12.10.2017 9

10

Steady State AF-MPD SX3 Thruster (100 kW class)

- Cost efficient laboratory model
- Applied field up to 400 mT, arc current up to 1kA
- Anode + cathode gas injection (argon)

Program Overview IRS Thrusters Tools PPT AF MPD Arcjets IEC ABEP TIHTUS

100 kW Class Applied-Field MPD SX3 Thruster: Performance

- 1. Geometric study
 - Dual-Cone Geometries
 - Optimal nozzle geometry for TALOS
- 2. Erosion reduced ignition
- 3. Scaling law to optimize nozzle geometry
- 4. System- & mission analyses
 - Synergies with existing sub-systems

 Chemical propulsion propellant feeding system, pressurization

 Manned spacecraft hydrogen from LSS

Program Overview IRS Thrusters Tools PPT AF MPD Arcjets IEC ABEP

Arcjet Activities at IRS: CleanSpace

Arcjet-based orbit raising and deorbit module

- Assessment of IRS developed arcjets for deorbit mission scenarios
- Design of hydrazine and ammonia standalone systems
- Design of hydrazine and green propellant dual-mode systems
- Performance estimation based on previous experiments at IRS
- It was shown that for a 800 kg and 1500 kg, 750 W and 1000 W arcjets can fulfill all requirements for an active deorbit module

©Spacejunk3D, LLC

TIHTUS

ABEP

Arcjet Activities: Langmuir based Standardization Approach for Inter laboratory comparison (ESA/IRS)

- Langmuir probe measurements with arcjets as plasma source
- Low-power arcjet VELARC as reference
 - Experiments at IRS successfully concluded with 5 identical Langmuir probes
 - Conclusions on reproducibility made e.g. electron densities follow enthalpy variations with systematical behavior
 - Statistical analyses performed

VELARC during operation

Overview IRS Thrusters PPT AF MPD **IEC ABEP TIHTUS** Program Tools **Arcjets**

- Selective laser sintering of tungsten
- Realization of design options that are impossible with conventional manufacturing
- New ALM-design of a medium power arcjet nozzle featuring:
 - Helix shaped regenerative cooling channels
 - Low wall thickness for lightweight design
- Lowering thermal losses for higher thrust efficiency

Evaluation of ALM-materials for arcjet operation currently conducted at IRS

Design of an ALM arcjet nozzle

Program Overview IRS Thrusters Tools PPT AF MPD Arciets IEC ABEP TIHTUS

Inertial Electrostatic Confinement: Plasma Extraction Modes

IEC Configuration:

- Longitude: 8 wires, Latitude: 5 wires
- D_{cathode}: 5 cm, D_{anode}: 15 cm

Tight jet mode:

- High energy electron beam (EB)
- Confined jet contour
- Lower current value (1 ~ 50 mA)

Spray jet mode:

- Diffused Ion plume
- Higher current value (> 50 mA)
- High luminosity from core region

Overview IRS Thrusters Program

Tools

PPT

AF MPD

Arciets

IEC

ABEP

Overview IRS Thrusters

TIHTUS

IEC

Arcjets

ABEP

Program

Inertial Electrostatic Confinement: Potential Thruster Concept and Application

AF MPD

PPT

Tools

MEO

AF MPD

ABEP

IEC

Arcjets

TIHTUS

PPT

Tools

Overview IRS Thrusters

This project has received funding from the European Union's Horizon 2020 research and innovation programme under agreement No 737183

Low drag, atomic oxygen resistant materials

Aerodynamic attitude and orbit control

Very Low Earth Orbit Satellite Concepts

IRS Main Task

Atmosphere-breathing electric propulsion

Combined system and business models

Program Overview IRS Thrusters Tools PPT AF MPD Arciets IEC ABEP TIHTUS

20

Atmosphere-Breathing Electric Propulsion (ABEP)

- Use of residual atmosphere as propellant for an electric thruster;
- Intake collects the atmosphere molecules and feeds the thruster;
- Thruster process and expel them through a nozzle to generate thrust.

Program Overview IRS Thrusters Tools PPT AF MPD Arcjets IEC ABEP TIHTUS

IRS is responsible to develop IPT and intake

IPT:

- Based on IPG6-S;
- Passively cooled;
- Optimized for ABEP related mass flow;
- Optimized for input power 0.5 to 5.5 kW.

IPG6-S operating with N₂

Intake:

- Based on verified DSMC in-house code;
- Analytical tool available;
- Molecular trapping;
- Optimized for IPT.

DSMC simulation of adapted intake geometry

Program Overview IRS Thrusters Tools PPT AF MPD Arcjets IEC ABEP TIHTUS 21

www.uni-stuttgart.de

TIHTUS: Thermal-Inductive Hybrid Thruster of U o Stuttgart

SINA - Simulation of plasma flows with discharges

Sequential Iterative Non-equilibrium Algorithm / Sequentieller Iterativer Nichtgleichgewichts-Algorithmus

SINA:

www.uni-stuttgart.d

→Viscous plasma flows in chemical and thermial Nonequilibrium under consideration of discharges

Anwendungen:

- Atmospheric Entry
 - Erde (N₂/O₂), Mars (CO₂), Jupiter (H_2/He)
- Electric propulsion / Plasma wind tunnels
 - TLT, IPG, MPD (in Entwicklung)
- Two-phase flows
 - Plasma coating
 - Atmospheric Entry incl. Dust particles (e.g. Mars)

Development of TIHTUS

(exp.) Geometric optimization, (num.) **Simulation**

Efficiency increase, **Improvement of** understanding

Deutsche Forschungsgemeinschaft

(exp.) **Alternative Propellants**

Systemic Synergies: 2nd stage operation with wastes (LSS), ISRU

Program

Overview IRS Thrusters

Tools

PPT

AF MPD

Arcjets

IEC

ABEP

T. Schönherr, A. Nawaz, G. Herdrich, H.-P. Röser, M. Auweter-Kurtz, *Influence of the electrode shape on the performance of the pulsed MPD thruster SIMPLEX*, Volume 25, Number 2, pp. 380-386, *Journal of Propulsion and Power*, Mar. – Apr. 2009.

G. Herdrich, U. Bauder, D. Bock, Ch. Eichhorn, M. Fertig, D. Haag, M. Lau, T. Schönherr, T. Stindl, H.-P. Röser, M. Auweter-Kurtz, *Activities in Electric Propulsion Development at IRS*, Invited Talk/Paper 2008-b-02, Selected papers from the 26th International Symposium on Space Technology and Science, *Transactions of Japan Society for Aeronautical and Space Sciences*, Space Technology Japan, Vol. 7, No. ists26, pp. Tb 5-Tb 14, (2009).

D. Petkow, G. Herdrich, R. Laufer, R. Gabrielli, O. Zeile, *Comparative Investigation of Fusion Reactions for Space Propulsion Applications*, 26th International Space Symposium on Technology and Science, Hamamatsu, Japan, 1.-8. Juni 2008, Selected papers from the 26th International Symposium on Space Technology and Science, Transactions of Japan Society for Aeronautical and Space Sciences, Space Technology Japan, Vol. 7, No.ists26, pp.Pb 59-Pb 63, (2009).

D. Haag, M. Auweter-Kurtz, M. Fertig, G. Herdrich, Numerical Simulations and Accompanying Experimental Investigations of Magnetoplasmadynamic Thrusters with Coaxial Applied Magnetic Field, 26th International Space Symposium on Technology and Science, Hamamatsu, Japan, 1.-8. Juni 2008, Selected papers from the 26th International Symposium on Space Technology and Science, Transactions of Japan Society for Aeronautical and Space Sciences, Space Technology Japan, Vol. 7, No. ists26, pp.Tb_19-Tb_28, (2009).

O. Troll, L. Conde, E. Criado, J. M. Donoso, G. Herdrich, Measurements of Plasma Properties Using Fast Sweep Langmuir Probes in Unmagnetized Weakly Ionized Plasmas, Contributions to Plasma Physics, Vol. 50, No. 9, Seiten 819-823, 2010 / DOI 10.1002/ctpp.201010138

T. Schönherr, K. Komurasaki, R. Kawashima*, Y. Arakawa*, and G. Herdrich**, *Effect of Capacitance on Discharge Behavior of Pulsed Plasma Thruster*, Department of Advanced Energy, The University of Tokyo, *Department of Aeronautics and Astronautics, The University of Tokyo, **Institute of Space Systems (IRS), Universität Stuttgart, Journal of IAPS, Vol. 18, Nr. 1, pp. 23-28, Juni 2010.

G. Herdrich, M. Fertig, D. Petkow, S. Kraus, S. Löhle, M. Auweter-Kurtz, *Operational behavior and application regime assessment of the magnetic acceleration plasma facility IMAX*, Vacuum 85 (2010) pp. 563-568, doi:10.1016/j.vacuum.2010.08.012.

H. Böhrk, M. Lau, G. Herdrich, H. Hald, H.-P. Röser, *A porous flow control element for pulsed plasma thrusters*, CEAS Space Journal, Springer, DOI: 10.1007/s12567-011-0019-5, Oktober 2011.

T. Schönherr, A. Nawaz, M. Lau, D. Petkow, and G. Herdrich, Review of pulsed plasma thruster development at IRS, Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, vol. 8, no. ists27, pp. Tb 11–Tb 16, 2010.

Overview Tools Low Power Thrusters High Power Thrusters Advanced Thrusters Summary

Summary: Thank you!

M. Pfeiffer, D. Petkow, G. Herdrich, S. Fasoulas, Assessment of a numerical approach suitable for the M2P2 problem, The Open Journal of Plasma Physics, Volume 4, pp. 24-33, April 2011.

D. Petkow, R. Gabrielli, G. Herdrich, R. Laufer, Generalized Lawson criterion for magnetic fusion applications in space, Fusion Engineering and Design, Volume 87, Issue 1, January 2012, pp. 30-38, doi:10.1016/j.fusengdes.2011.08.008

D. Petkow, G. Herdrich, M. Pfeiffer, A. Mirza, S. Fasoulas, M. Matsui, K. Komurasaki, On the probabilistic particle simulation of an arcjet flow expansion, Vacuum Journal, 02/2013; 88:58-62. DOI 10.1016/j.vacuum.2012.04.047

G. Herdrich, U. Bauder, A. Boxberger, R.A. Gabrielli, M. Lau, D. Petkow, M. Pfeiffer, Č. Syring, S. Fasoulas, Advanced plasma (propulsion) concepts at IRS, Vacuum Journal, 02/2013; 88:36-41. DOI:http://dx.doi.org/10.1016/j.vacuum.2012.02.032

Tierno, S.P.; Domenech-Garret, J.L.; Donoso, J.M.; Jennewein, D.; Herdrich, G.; Fasoulas, S.; Conde, L., "Emissive Langmuir Probes in the Strong Emission Regime for the Determination of the Plasma Properties," Plasma Science, IEEE Transactions on, vol.41, no.4, pp.695,700, April 2013, doi: 10.1109/TPS.2013.2243760

T. Schönherr, K. Komurasaki, G. Herdrich, Plasma front velocity and propellant utilization efficiency in a pulsed plasma thruster, submitted to the Journal of Propulsion and Power, Sept. 2012.

B. Wollenhaupt, Q.H. Le, G. Herdrich, S. Fasoulas, H.-P. Röser, An Overview about International Thermal Arcjet Thruster Development, eingereicht beim Journal of Propulsion and Power, Okt. 2012.

T. Schönherr, F. Nees, Y. Arakawa, K. Komurasaki, and G. Herdrich, Characteristics of plasma properties in an ablative pulsed plasma thruster, Phys. Plasmas 20, 033503 (2013); http://dx.doi.org/10.1063/1.4794198 (8 pages).

R. A. Gabrielli, D. Petkow, G. Herdrich, R. Laufer, H.-P. Roeser, Two Generic Concepts for Space Propulsion Based on Thermal Nuclear Fusion, Acta Astronautica 03/2014; 101:129.

M. Lau, S. Manna, G. Herdrich, T. Schönherr, K. Komurasaki. Investigation of the Plasma Current Density of a Pulsed Plasma Thruster, Journal of Propulsion and Power, doi: 10.2514/1.B35131

M. Lau, G. Herdrich, Plasma diagnostic with inductive probes in the discharge channel of a Pulsed Plasma Thruster, Vacuum, in Press, Available online 1 August 2014

Overview Tools Low Power Thrusters High Power Thrusters Advanced Thrusters Summary