Diszkrét matematika

3. gyakorlat:

Relációk kompozíciója

(A diasort készítette Németh Gábor Árpád, Koch-Gömöri Richárd feladait, Gonda János néhány megoldását, Nagy Gábor előadás diasorában lévő definíciókat (aki Mérai László előadás diasorát használta fel) is felhasználva)

Legyen A = $\{1, 2, 3\}$, B = $\{a, b, c, d, e, f\}$, C = $\{2, 4, 6, 8\}$ továbbá R \subseteq A \times B, S \subseteq B \times C, R = $\{(1, a), (1, b), (2, c), (2, f), (3, d), (3, e), (3, f)\}$ és S = $\{(a, 2), (a, 4), (c, 6), (c, 8), (d, 2), (d, 4), (d, 6), (f, 8)\}$.

Határozza meg S • R kompozíciót.

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x,y) \mid \exists z : (x,z) \in S, (z,y) \in R\}.$$

…tehát S ∘ R –nek az 1. eleme S reláció 1. eleme, 2. eleme R reláció 2. eleme lesz (úgy, hogy S 2. eleme és R. 1. eleme közös)

De itt most S o R a kérdés, aminek...

- az 1. eleme R releáció 1. eleme,
- 2. eleme S reláció 2. eleme lesz

Legyen A = $\{1, 2, 3\}$, B = $\{a, b, c, d, e, f\}$, C = $\{2, 4, 6, 8\}$ továbbá R \subseteq A \times B, S \subseteq B \times C,

 $R = \{(1, a), (1, b), (2, c), (2, f), (3, d), (3, e), (3, f)\}$ és

 $S = \{(a, 2), (a, 4), (c, 6), (c, 8), (d, 2), (d, 4), (d, 6), (f, 8)\}.$

Határozza meg S • R kompozíciót.

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, y) \mid \exists z : (x, z) \in S, (z, y) \in R\}.$$

Tehát R és S relációkkal lefedett irányított utat keresünk...

- R első elemeiből (A halmaz),
- S második elemeibe (C halmaz)...

 $S \circ R = \{(1, 2), (1, 4), (2, 6), (2, 8), (3, 2), (3, 4), (3, 6), (3, 8)\}$

Legyen A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, S,R \subseteq A \times A. Határozza meg S \circ R kompozíciót. (a) R = $\{(1, 2), (1, 3), (2, 2), (3, 3), (3, 4), (4, 1)\}$ és S = $\{(1, 6), (2, 3), (2, 4), (3, 1)\}$

Legyen A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, S,R \subseteq A \times A. Határozza meg S \circ R kompozíciót. (a) R = $\{(1, 2), (1, 3), (2, 2), (3, 3), (3, 4), (4, 1)\}$ és S = $\{(1, 6), (2, 3), (2, 4), (3, 1)\}$

 $S \circ R=\{(1, 3), (1, 4), (1, 1), (2, 3), (2, 4), (3, 1), (4, 6)\}$

Legyen A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, S,R \subseteq A \times A. Határozza meg S \circ R kompozíciót. (a) R = $\{(1, 2), (1, 3), (2, 2), (3, 3), (3, 4), (4, 1)\}$ és S = $\{(1, 6), (2, 3), (2, 4), (3, 1)\}$

 $S \circ R=\{(1, 3), (1, 4), (1, 1), (2, 3), (2, 4), (3, 1), (4, 6)\}$

Legyen A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, S,R \subseteq A \times A. Határozza meg S \circ R kompozíciót. (a) R = $\{(1, 2), (1, 3), (2, 2), (3, 3), (3, 4), (4, 1)\}$ és S = $\{(1, 6), (2, 3), (2, 4), (3, 1)\}$

 $S \circ R=\{(1, 3), (1, 4), (1, 1), (2, 3), (2, 4), (3, 1), (4, 6)\}$

Kommutatív-e a kompozíció?

Egy frászt! $R \circ S = \{(2,1), (2,3), (2,4), (3,2), (3,3)\}$

Legyen A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, S,R \subseteq A \times A. Határozza meg S \circ R kompozíciót. (b) R = $\{(1,3),(1,4),(2,2),(2,4),(3,5),(5,6),(6,7)\}$ és S = $\{(1,2),(1,4),(2,3),(3,1),(3,2),(4,2),(4,6),(5,6),(7,2)\}$

Legyen A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, S,R \subseteq A \times A. Határozza meg S \circ R kompozíciót. (b) R = $\{(1,3),(1,4),(2,2),(2,4),(3,5),(5,6),(6,7)\}$ és S = $\{(1,2),(1,4),(2,3),(3,1),(3,2),(4,2),(4,6),(5,6),(7,2)\}$

 $S \circ R=\{(1,1),(1,2),(1,6),(2,3),(2,2),(2,6),(3,6),(6,2)\}$

Legyen A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, S,R \subseteq A \times A. Határozza meg S \circ R kompozíciót. (b) R = $\{(1,3),(1,4),(2,2),(2,4),(3,5),(5,6),(6,7)\}$ és S = $\{(1,2),(1,4),(2,3),(3,1),(3,2),(4,2),(4,6),(5,6),(7,2)\}$

 $S \circ R=\{(1,1),(1,2),(1,6),(2,3),(2,2),(2,6),(3,6),(6,2)\}$

Legyen A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, S,R \subseteq A \times A. Határozza meg S \circ R kompozíciót. (b) R = $\{(1,3),(1,4),(2,2),(2,4),(3,5),(5,6),(6,7)\}$ és S = $\{(1,2),(1,4),(2,3),(3,1),(3,2),(4,2),(4,6),(5,6),(7,2)\}$

 $S \circ R=\{(1,1),(1,2),(1,6),(2,3),(2,2),(2,6),(3,6),(6,2)\}$

Kommutatív-e a kompozíció?

NEM

R
$$\circ$$
 S ={(1,2),(1,4),(2,5),(3,3),(3,4),(3,2), (4,2),(4,4),(4,7),(5,7),(7,2),(7,4)}

Legyen A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, S,R \subseteq A \times A. Határozza meg S \circ R kompozíciót. Kommutatív-e a kompozíció?

(c) $R = \{(2, 2), (2, 4), (3, 1), (3, 4), (4, 4), (5, 3)\}$ és $S = \{(2, 6), (3, 7), (5, 1), (5, 6), (5, 8), (6, 2), (7, 7)\}$ (d) $R = \{(6, 1), (6, 2), (7, 3), (8, 7)\}$ és $S = \{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 3), (5, 5), (7, 1), (7, 2)\}$

Legyenek R, S \subseteq A \times A szimmetrikus relációk. Bizonyítsuk be, hogy R \circ S szimmetrikus akkor és csak akkor, ha R \circ S = S \circ R.

```
R=R<sup>-1</sup> és S=S<sup>-1</sup>-ből (tehát R és S relációk szimmetrikusak):
R \circ S = (R \circ S)^{-1} \text{ iff } R \circ S = (R \circ S)^{-1} = (S^{-1} \circ R^{-1}) = S \circ R
Tehát igaz
```

Megjegyzés: Az S és R reláció felcserélhető, ha $R \circ S = S \circ R$.

Legyen R reláció X-en. Ekkor azt mondjuk, hogy R szimmetrikus, ha $\forall x,y\in X:xRy\Rightarrow yRx;$ Legyenek R és S binér relációk. Ekkor az $R\circ S$ kompozíció (összetétel, szorzat) reláció: $R\circ S=\{(x,y)\mid \exists z:(x,z)\in S,(z,y)\in R\}.$ Def.: R reláció inverze: $R^{-1}=\{(y,x):(x,y)\in \rho\}$

Legyen R, S $\subseteq \mathbb{R} \times \mathbb{R}$. Határozza meg az S \circ R és R \circ S kompozíciót! (a) R = {(x, y) $\in \mathbb{R} \times \mathbb{R} \mid 4x = y^2 + 6$ } és S = {(x, y)) $\in \mathbb{R} \times \mathbb{R} \mid x - 1 = y$ } • S \circ R:

A kettőből: $4x = (y+1)^2 + 6 = y^2 + 2y + 7$ $S \circ R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 4x = y^2 + 2y + 7\}$

• R • S:

A kettőből:
$$4x-4=y^2+6$$

 $4x=y^2+10$
R • S = { $(x, y) \in \mathbb{R} \times \mathbb{R} \mid 4x = y^2+10$ }

Legyen R, S $\subseteq \mathbb{R} \times \mathbb{R}$. Határozza meg az S \circ R és R \circ S kompozíciót! (b) R = {(x, y) $\in \mathbb{R} \times \mathbb{R} \mid x = 2y$ } és S = {(x, y) $\in \mathbb{R} \times \mathbb{R} \mid y = x^3$ }

• S • R:

A kettőből: $x^3 = 8y$ $S \circ R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^3 = 8y\}$

• R • S:

A kettőből: $x^3 = 2y$ $R \circ S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^3 = 2y\}$

Legyen R, S $\subseteq \mathbb{R} \times \mathbb{R}$. Határozza meg az S \circ R és R \circ S kompozíciót! (d) R = {(x, y) $\in \mathbb{R} \times \mathbb{R} \mid x^2-6x+5=y$ } és S = {(x, y) $\in \mathbb{R} \times \mathbb{R} \mid x^2=y \land 2y=x$ } • S \circ R:

Kettőből együtt:

 $x^2-6x+5=z=0$ vagy $x^2-6x+5=z=1/2$

- $x^2-6x+5=z=0$ esetén: x=1 és x=5
- $x^2-6x+5=z=1/2$ esetén: $x^2-6x+9/2=0 \rightarrow x=3\pm(3\sqrt{2})/2$

$$S \circ R = \left\{ (1,0), (5,0), \left(3 + \frac{3\sqrt{2}}{2}, \frac{1}{4}\right), \left(3 - \frac{3\sqrt{2}}{2}, \frac{1}{4}\right) \right\}$$

• R • S:

Legyen R, S $\subseteq \mathbb{R} \times \mathbb{R}$. Határozza meg az S \circ R és R \circ S kompozíciót! (c) R = {(x, y) $\in \mathbb{R} \times \mathbb{R} \mid 1/x = y^2$ } és S = {(x, y) $\in \mathbb{R} \times \mathbb{R} \mid \sqrt{x - 2} = 3y$ }

Tekintsük a következő relációkat:

```
R = \{(x, y) \in \mathbb{N} \times \mathbb{N} | y = x + 7\};

S = \{(x, y) \in \mathbb{N} \times \mathbb{N} | y = x - 3\};

T = \{(x, y) \in \mathbb{N} \times \mathbb{N} | x - y \in \{3,5\}\}
```

Határozza meg a következő kompozíciókat:

- a) S o R
- b) R o S
- c) $R^{-1} \circ R$
- d) R o R⁻¹
- e) R³
- f) T o R
- g) RoT
- h) T²
- i) T ∘ T⁻¹
- j) T⁻¹ ∘ T

Tekintsük a következő relációkat:

$$R = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x + 7\};$$

 $S = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x - 3\};$
 $T = \{(x,y) \in \mathbb{N} \times \mathbb{N} | x - y \in \{3,5\}\}$
Határozza meg a következő kompozíciókat:

• S • R

Az 1. eleme (x) R reláció 1. eleme, 2. eleme (y) S reláció 2. eleme lesz (úgy, hogy R 2. eleme és S 1. eleme közös: z)

Az előző két egyenletből: y=x+4

$$S \circ R = \{(x, y) \in \mathbb{N} \times \mathbb{N} | y = x + 4\}$$

Tekintsük a következő relációkat:

$$R = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x + 7\};$$

 $S = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x - 3\};$
 $T = \{(x,y) \in \mathbb{N} \times \mathbb{N} | x - y \in \{3,5\}\}$
Határozza meg a következő kompozíciókat:

• R⁻¹ ∘ R

Az 1. eleme (x) R reláció 1. eleme, 2. eleme (y) R-1 reláció 2. eleme lesz

Az előző két egyenletből: y=x

$$R^{-1} \circ R = \{(x, y) \in \mathbb{N} \times \mathbb{N} | y = x\}$$

Tekintsük a következő relációkat:

$$R = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x + 7\};$$

 $S = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x - 3\};$
 $T = \{(x,y) \in \mathbb{N} \times \mathbb{N} | x - y \in \{3,5\}\}$
Határozza meg a következő kompozíciókat:

• R^3 $R^3=(R \circ R) \circ R$

Tekintsük a következő relációkat:

$$R = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x + 7\};$$

 $S = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x - 3\};$
 $T = \{(x,y) \in \mathbb{N} \times \mathbb{N} | x - y \in \{3,5\}\}$
Határozza meg a következő kompozíciókat:

T

R

Az 1. eleme (x) R reláció 1. eleme, 2. eleme (y) T reláció 2. eleme lesz

Az előző két egyenletből: y=x+4 vagy y=x+2

$$T \circ R = \{(x, y) \in \mathbb{N} \times \mathbb{N} | y = x + 4 \lor y = x + 2\}$$

Tekintsük a következő relációkat:

$$R = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x + 7\};$$

 $S = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x - 3\};$
 $T = \{(x,y) \in \mathbb{N} \times \mathbb{N} | x - y \in \{3,5\}\}$
Határozza meg a következő kompozíciókat:

• T²

Az 1. eleme (x) T reláció 1. eleme, 2. eleme (y) T reláció 2. eleme lesz

Az előző két egyenletből: y=x-6 vagy y=x-8 vagy y=x-10

$$T^{2}=\{(x,y) \in \mathbb{N} \times \mathbb{N} | x-y = \in \{6,8,10\}\}\$$

Tekintsük a következő relációkat:

$$R = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x + 7\};$$

 $S = \{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x - 3\};$
 $T = \{(x,y) \in \mathbb{N} \times \mathbb{N} | x - y \in \{3,5\}\}$
Határozza meg a következő kompozíciókat:

• T o T⁻¹

Az 1. eleme (x) T-1 reláció 1. eleme, 2. eleme (y) T reláció 2. eleme lesz

Az előző két egyenletből: y=x vagy y=x-2 vagy y=x+2

$$T \circ T^{-1} = \{(x, y) \in \mathbb{N} \times \mathbb{N} | x - y = \in \{-2, 0, 2\}\}\$$

Tekintsük a következő relációkat:

$$R = \{(x, y) \in \mathbb{N} \times \mathbb{N} | y = x + 7\};$$

$$S = \{(x, y) \in \mathbb{N} \times \mathbb{N} | y = x - 3\};$$

$$T = \{(x, y) \in \mathbb{N} \times \mathbb{N} | x - y \in \{3,5\}\}$$

Határozza meg a következő kompozíciókat:

- R S
- R ∘ R⁻¹
- R T
- T⁻¹ ∘ T

Tekintsük a következő relációkat:

$$\rho = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | |x-y| \le 3\};$$

$$\varphi = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 6x-1 = 4y+5\};$$

$$\lambda = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 4|2x+3y\};$$

$$\alpha = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 1,5x-1,5 \le y\}.$$
Határozza meg a következő kompozíciókat

Határozza meg a következő kompozíciókat:

a)
$$\rho \circ \varphi$$

Olyan z egész számot keresünk, melyre...

A kettőből:
$$| 6x-6-4y | \le 12$$

 $| 3x-3-2y | \le 6$
 $\rho \circ \varphi = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | | 3x-3-2y | \le 6 \}$

Tekintsük a következő relációkat:

$$\rho = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | |x-y| \le 3\};$$

$$\varphi = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 6x-1 = 4y+5\};$$

$$\lambda = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 4|2x+3y\};$$

$$\alpha = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 1,5x-1,5 \le y\}.$$
Határozza meg a következő kompozíciókat

Határozza meg a következő kompozíciókat:

d)
$$\alpha \circ \rho$$

Olyan z egész számot keresünk, melyre...

A kettőből származva teljesülnie kell:
$$x-3 \le z \le 1,5y+1$$

 $1,5x-6 \le y$

ha egy (x,y) pár teljesíti a fentieket, akkor a $z \le x + 3$ is teljesül, tehát: $\alpha \circ \rho = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | 1.5x - 6 \le y \}$

Tekintsük a következő relációkat:

$$\rho = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | |x-y| \le 3\};$$

$$\varphi = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 6x - 1 = 4y + 5\};$$

$$\lambda = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 4| 2x + 3y\};$$

$$\alpha = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 1,5x - 1,5 \le y\}.$$
Határozza meg a következő kompozíciókat

Határozza meg a következő kompozíciókat:

e)
$$\rho \circ \alpha$$

Olyan z egész számot keresünk, melyre...

A kettőből származva teljesülnie kell:
$$1,5x-1,5 \le z \le y+3$$
 $1,5x-4,5 \le y$

ha egy (x,y) pár teljesíti a fentieket, akkor a $y-3 \le z$ is teljesül, tehát: $\rho \circ \alpha = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | 1.5x - 4.5 \le y \}$

Tekintsük a következő relációkat:

```
\rho = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | |x-y| \leq 3\};
\varphi = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 6x-1 = 4y+5\};
\lambda = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 4|2x+3y\};
\alpha = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | 1,5x-1,5 \leq y\}.
Határozza meg a következő kompozíciókat:
b) \ \varphi \circ \lambda
c) \ \varphi^3
```

