问题一:输入 URL 到页面渲染的整个流程

- 1. DNS解析
- 2. TCP握手
- 3. TLS握手
- 4. 浏览器开始解析文件
- 5. 构建 DOM 树、构建 CSSOM 树、解析JS
- 6. 生成 Render 树
- 7. 调用 GPU 绘制, 合成图层, 将内容显示在屏幕上了

当来这一过程远远不止这些内容, 你如果想了解更加详细的过程, 可以阅读这篇<u>文</u> 章。

DNS解析

DNS 的作用就是通过域名查询到具体的 IP。

因为 IP 存在数字和英文的组合(IPv6),很不利于人类记忆,所以就出现了域名。你可以把域名看成是某个 IP 的别名,DNS 就是去查询这个别名的真正名称是什么。在 TCP 握手之前就已经进行了 DNS 查询,这个查询是操作系统自己做的。当你在浏览器中想访问www. google. com时,会进行一下操作:

- 1. 操作系统会首先在本地缓存中查询 IP
- 2. 没有的话会去系统配置的 DNS 服务器中查询
- 3. 如果这时候还没得话,会直接去 DNS 根服务器查询,这一步查询会找出负责com这个一级域名的服务器
- 4. 然后去该服务器查询google这个二级域名
- 5. 接下来三级域名的查询其实是我们配置的,你可以给www这个域名配置一个
- IP, 然后还可以给别的三级域名配置一个 IP

以上介绍的是 DNS 迭代查询,还有种是递归查询,区别就是前者是由客户端去做请求,后者是由系统配置的 DNS 服务器做请求,得到结果后将数据返回给客户端。

TCP握手

接下来是 TCP 握手,应用层会下发数据给传输层,这里 TCP 协议会指明两端的端口号,然后下发给网络层。网络层中的 IP 协议会确定 IP 地址,并且指示了数据传输中

如何跳转路由器。然后包会再被封装到数据链路层的数据帧结构中,最后就是物理层面的传输了。

在这一部分中,可以详细说下 TCP 的握手情况以及 TCP 的一些特性。 当 TCP 握手结束后就会讲行 TLS 握手,然后就开始正式的传输数据。

TLS握手

数据在进入服务端之前,可能还会先经过负责负载均衡的服务器,它的作用就是将请求合理的分发到多台服务器上,这时假设服务端会响应一个 HTML 文件。

首先浏览器会判断状态码是什么,如果是 200 那就继续解析,如果 400 或 500 的话就会报错,如果 300 的话会进行重定向,这里会有个重定向计数器,避免过多次的重定向,超过次数也会报错。

浏览器开始解析文件

浏览器开始解析文件,如果是 gzip 格式的话会先解压一下,然后通过文件的编码格式知道该如何去解码文件。

构建 DOM 树、构建 CSSOM 树、解析JS

文件解码成功后会正式开始渲染流程,先会根据 HTML 构建 DOM 树,有 CSS 的话会去构建 CSSOM 树。如果遇到 script 标签的话,会判断是否存在 async 或者 defer,前者会并行进行下载并执行 JS,后者会先下载文件,然后等待 HTML 解析完成后顺序执行。

如果以上都没有,就会阻塞住渲染流程直到 JS 执行完毕。遇到文件下载的会去下载 文件,这里如果使用 HTTP/2 协议的话会极大的提高多图的下载效率。

生成 Render 树

CSSOM 树和 DOM 树构建完成后会开始生成 Render 树,这一步就是确定页面元素的布局、样式等等诸多方面的东西

调用 GPU 绘制,合成图层,将内容显示在屏幕上了

在生成 Render 树的过程中,浏览器就开始调用 GPU 绘制,合成图层,将内容显示在屏幕上了。

这一部分就是渲染原理中讲解到的内容,可以详细的说明下这一过程。并且在下载文件时,也可以说下通过 HTTP/2 协议可以解决队头阻塞的问题。