Шифрование методами замены

В криптографии рассматриваются четыре типа подстановки (замены): моноалфавитная, полиалфавитная, гомофоническая и полиграммная.

Далее всюду в примерах использовано кодирование букв русского алфавита, приведенное в табл. 1.

Таблица 1. Кодирование букв русского алфавита

10000	nya 1. 1	тодпро		Jaco PJ		W19 W211						
Буква	Α	Б	В	Г	Д	E	ж	3	И	И	К	Л
Код	00	01	02	03	04	05	06	07	08	09	10	11
Буква	М	Η	0	П	Р	С	Т	У	Ф	Х	ゴ	ਤ
Код	12	13	14	15	16	17	18	19	20	21	22	23
Буква	日	Щ	Ъ	Ы	Ь	Э	Ю	Я	D (пробел)			
Код	24	25	26	27	28	29	30	31	32			

При **моноалфавитной замене** каждой букве алфавита открытого текста ставится в соответствие одна буква шифртекста из этого же алфавита. Общая формула моноалфавитной замены выглядит следующим образом

$$y_i = k_1 x_i + k_2(modn),$$

где y_i — i-й символ алфавита k_1 и k_2 — константы, x_i — i-й символ открытого текста (номер буквы в алфавите), n — длина используемого алфавита

Основным недостатком рассмотренного метода является то, что статистические свойства открытого текста (частоты появления букв) сохраняются и в шифртексте

Пример 1. Открытый текст «ШИФРОВАНИЕ ЗАМЕНОЙ» Подстановка задана табл 2

Таблица 2 Подстановка алфавита для шифрования заменой

Алфавит исходного текста	Α	Б	В	Γ	Д	 Ь	Э	Ю	Я	Α
Алфавит шифртекста	D	Я	Ю	Э	Ь	 Д	Γ	В	Б	Α

Шифртекст «ИШМРТЮПУШЫАЩаФЫУТЧ» Шифр, задаваемый формулой

$$v_i = x_i + ki \pmod{n}$$

где ki — i- g буква ключа, в качестве которого используется слово или фраза a mod b = a - b × floor(a/b) (*)

называется шифром Вижинера

Пример 2. Открытый текст «ЗАМЕНА» Подстановка задана в табл 3

Таблица 3 Подстановка шифра Вижинера

	T	<u> </u>			
3	Α	М	E	н	Α
К	Л	Ю	Ч	К	Л

$$y_i = 8 + 11 \pmod{33} = 19 \rightarrow T,$$

 $y_3 = 1 + 12 \pmod{33} = 13 \rightarrow M,$
 $y_i = 13 + 31 \pmod{33} = 11 \rightarrow K,$
 $y_4 = 6 + 24 \pmod{33} = 30 \rightarrow 3,$
 $y_i = 14 + 11 \pmod{33} = 25 \rightarrow III,$
 $y_8 = 1 + 12 \pmod{33} = 13 \rightarrow M$

Шифртекст «ТМКЭШМ»

Шифры Бофора используют формулы

$$y_n = k_n - x_n \pmod{n}$$
 и $y = x_n - \text{fci}(\text{modn})$

Полиалфавитная замена использует несколько алфавитов шифртекста Пусть используется *k* алфавитов Тогда открытый текст

$$X = XiX-I...XkXk+ \cdots X2kX-2k+ \cdots$$

заменяется шифртекстом

$$Y = \frac{1(^1)}{2(^2)} \dots A(^fc)/1(a-t+1) \dots fk_{x'ik}fl(x_{2k+1}) \dots fk_{x'ik}fl(x_{2k+1})$$

где $fi[x^{\wedge})$ означает символ шифртекста алфавита г для символа открытого текста Xj.

Пример 3. Открытый текст: «ЗАМЕНА», k = 3. Подстановка задана таблицей 4 Шифртекст- «7б 31 61 97 84 48».

Гомофоническая замена одному символу открытого текста ставит в соответствие несколько символов шифртекста. Этот метод применяется для искажения статистических свойств шифртекста.

Пример 4. Открытый текст «ЗАМЕНА» Подстановка задана табл. 4.

Таблица .4- Подстановка алфавита гомофонической замены

Алфавит открытого	Α	Б	 E	Ж	3	 М	Н	
Алфавит шифртекста	17 31 48	23 44 63	 97 51 15	47 67 33	76 19 59	 32 28 61	55 84 34	

Шифртекст. «76 17 32 97 55 31»

Таким образом, при гомофонической замене каждая буква открытого текста заменяется по очереди цифрами соответствующего столбца.

Полиграммная замена формируется из одного алфавита с помощью специальных правил. В качестве примера рассмотрим шифр *Плэйфера*

В этом шифре алфавит располагается в матрице Открытый текст разбивается на пары символов $x^{\wedge}.x$, Каждая пара символов открытого текста заменяется на пару символов из матрицы следующим образом:

- если символы находятся в одной строке, то каждый из символов пары заменяется на стоящий правее его (за последним символом в строке следует первый),
- если символы находятся в одном столбце, то каждый символ пары заменяется на символ, расположенный ниже его в столбце (за последним нижним символом следует верхний),
- если символы пары находятся в разных строках и столбцах, то они считаются противоположными углами прямоугольника Символ, находящийся в левом углу, заменяется на символ, стоящий в другом левом углу, замена символа, находящегося в правом углу, осуществляется аналогично.
- если в открытом тексте встречаются два одинаковых символа подряд, то перед шифрованием между ними вставляется специальный символ (например тире)

Пример 5. Открытый текст. «ШИФР ПЛЭЙФЕРА» Матрица алфавита представлена в табл. 5.

Таблица. 5. Матрица алфавита шифра Плэйфера

Α	Ж	Б	М	ш	В
Ч	Г		Ш	Д	0
E	Ш	Ι	х	У	П
	3	Ъ	g	и	И
С	Ь		Э	т	Л
Ю	Я	а	Ы	ф	_

Шифртекст: «РДЫИ-СТ-И.ХЧС»

При рассмотрении этих видов шифров становится очевидным, что чем больше длина ключа (например в шифре Вижинера), тем лучше шифр Существенного улучшения свойств шифртекста можно достигнуть при использовании шифров с автоключом

Шифр, в котором сам открытый текст или получающаяся криптограмма используются в качестве ключа, называется шифром с автоключом. Шифрование в этом случае начинается с ключа, называемого первичным, и продолжается с помощью открытого текста или криптограммы, смещенной на длину первичного ключа

Пример 6. Открытый текст «ШИФРОВАНИЕ ЗАМЕНОЙ». Первичный ключ. «КЛЮЧ». Схема шифрования с автоключом при использовании открытого текста представлена в табл. 6.

Таблица. 6. Схема шифрования с автоключом при использовании открытого текста

Ш	И	Φ	Р	0	В	Α	Н	И	E	а	3	Α	М	E	Н	0	И
К	Л	Ю	Ч	Ш	и	Φ	Р	О	В	Α	Н	И	Е	а	3	Α	М

	36	21	52	41	40	12	22	31	24	09	34	22	10	19	39	22	16	23
ſ	В	Φ	Т	3	Ж	Л	Х	Ю	Ч	И	Α	Х	И	Т	Е	Х	П	Ц

Схема шифрования с автоключом при использовании криптограммы представлена в табл. 7.

Таблица .7. Схема шифрования с автоключом при использовании криптограммы

Ш	И	Φ	Р	0	В	Α	Н	И	E	а	3	Α	М	E	Н	0	И
К	Л	Ю	Ч	В	Φ	Т	3	C	Ч	У	Х	Ъ	Э	У	Э	Ы	И
36	21	52	41	18	24	20	22	27	30	53	30	24	43	26	44	39	20
В	Φ	Т	3	С	Ч	У	Х	Ъ	Э	У	Э	Ы	И	Щ	К	И	У

Для шифрования используются и другие методы перестановки символов открытого текста в соответствии с некоторыми правилами

Пример 7. Открытый текст «ШИФРОВАНИЕ ПЕРЕСТАНОВКОЙ»

Ключ (правило перестановки) группы из восьми букв с порядковыми номерами 1 2 8 переставить в порядок 38152764

Шифртекст «ФНШОИАВРПСИЕЕЕРПНИТВАОКО»

Можно использовать и усложненную перестановку Для этого открытый текст записывается в матрицу по определенному ключу А] Шифртекст образуется при считывании из этой матрицы по ключу *Ку*

Пример .8. Открытый текст «ШИФРОВАНИЕ ПЕРЕСТАНОВКОЙ»

Матрица из четырех столбцов приведена в табл 8, где запись по строкам в соответствии с ключом /\i 5 3 1 2 4 6. а чтение по столбцам в соответствии с ключом Кз 4231

Таблица 8. Матрица алфавита с перестановкой из четырех столбцов

1	И	Е	D	П
2	Е	P	Е	c
3	0	В	A	Н
4	T	A	Н	o
5	Ш	И	Φ	P
6	В	К	0	И
κ>^2	1	2	3	4

Шифртекст «ПСНОРЙЕРВАИКПЕАНФОИЕОТШВ»

Наиболее сложные перестановки осуществляются по гамильтоновым путям, которых в графе может быть несколько

Пример 9. Открытый текст «ШИФРОВАНИЕ ПЕРЕСТАНОВКОЙ» Ключ — гамильтонов путь на графе (рис 2)

Шифртекст «ШАОНИРФВИЕЕСЕППРТОВЙАОНК»

Рис. 2. Гамильтонов путь на графе

Чтение криптограммы (1-7-5-8-2-4-3-6)

Запись открытого текста (1-2-3-4-5-6-7-8)

Необходимо отметить, что для данного графа из восьми вершин можно предложить несколько маршрутов записи открытого текста и несколько гамильтоновых путей для чтения криптограмм.

В 1991 г В М Кузьмин предложил схему перестановки, основанную на кубике Рубика Согласно этой схеме открытый текст записывается в ячейки граней куба по строкам После осуществления заданного числа заданных поворотов слоев куба считывание шифртекста осуществляется по столбцам Сложность расшифрования в этом случае определяется числом ячеек на гранях куба и сложностью выполненных поворотов слоев. Перестановка, основанная на кубике Рубика, получила название объемной (многомерной) перестановки

В 1992—94 гг идея применения объемной перестановки для шифрования открытого текста получила дальнейшее развитие Усовершенствованная схема перестановок по принципу кубика Рубика, в которой наряду с открытым текстом перестановке подвергаются и функциональные элементы самого алгоритма шифрования, легла в основу секретной системы «Рубикон» В качестве прообразов пространственных многомерных структур, на основании объемных преобразований которых осуществляются перестановки, в системе «Рубикон» используются трехмерный куб и тетраэдр