$S = \iiint \left(\frac{1}{6}\left(2\left(t_{1}-2\,t_{3}\right)\mathcal{A}^{\alpha_{1}}_{\alpha}\,\mathcal{A}^{\theta}_{,\,\theta}+6\,\mathcal{A}^{\alpha\beta\chi}_{\alpha}\,\sigma_{\alpha\beta\chi}+6\,f^{\alpha\beta}_{\alpha}\,\tau_{(\Delta+\mathcal{K})_{\alpha\beta}}-4\,t_{1}\,\mathcal{A}^{\theta}_{\alpha}\,\theta_{,f}^{\alpha_{1}}+8\,t_{3}\,\mathcal{A}^{\theta}_{\alpha}\,\theta_{,f}^{\alpha_{1}}+4\,t_{1}\,\mathcal{A}^{\theta}_{,\,\theta}\,\theta_{,f}^{\alpha_{1}}-8\,t_{3}\,\mathcal{A}^{\theta}_{,\,\theta}\,\theta_{,f}^{\alpha_{1}}+4\,t_{3}\,\theta_{,f}^{\alpha_{1}}\,\theta_{,g}^{\alpha_{1}}-2\,t_{1}\,\theta_{,f}^{\alpha_{1}}\,\theta_{,g}^{\alpha_{1}}\,\theta_{,g}^{\alpha_{1}}-4\,t_{1}\,\theta_{,g}^{\alpha_{1}}\,\theta_{,g}^{\alpha$

0° # 0° f | 0° f

PSALTer results panel

0° 0 0° 1 0° 1 0° 1 0° 0

Spin-parity form Covariant form

^{Θ+} τ [⊥] == Θ	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
$-2 i k \cdot 0^+ \sigma^{\parallel} + 0^+ \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
$1_{\bullet}^{-} \tau^{\parallel}^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau} \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
$i k \cdot 1^+ \sigma^{\perp}^{\alpha\beta} + \cdot 1^+ \tau^{\parallel}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\gamma} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$-2 i k \frac{2^{+}}{6} \sigma \ ^{\alpha \beta} + \frac{2^{+}}{6} \tau \ ^{\alpha \beta} = 0$	$-i\left(4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi}_{\ \chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{ \delta} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} +$	
	$ 6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \ \eta^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi\tau} \left(\Delta + \mathcal{K} \right)^{\chi\delta} - 2 \ \eta^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi} - 4 \ i \ \eta^{\alpha\beta} \ k^{\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0 $	
Total expected gauge generators:		16
		•

Multiplicities

<u>Massive</u> spectrum

Pole residue:	$\frac{1 \cdot 3 \cdot 1 \cdot 3 \cdot 5 \cdot 1 \cdot 3}{2r.(t.+t.)(-3t.t.+r.(t.+t.))} >$		
Square mass:	$-\frac{\frac{3t.t.}{13}}{2r.t.+2r.t.}_{51} > 0$		
Spin:	1		
Parity:	Odd		
Massless spectrum			

(There are no massless particles)

<u>Gauge symmetries</u>

(Not yet implemented in PSALTer)

<u>Unitarity</u> conditions

t. > 0 && t. < -t. && r. < 0 && r. < 03 5 2

<u>Validity</u> <u>assumptions</u>

(Not yet implemented in PSALTer)