Seminar course Confidential Cloud Computing

(aka "c3-seminar")
Preliminary meeting
https://dse.in.tum.de/

Dimitrios Stavrakakis, Dr. Masanori Misono, Patrick Sabanic, Prof. Pramod Bhatotia

Welcome to the c3 seminar!

Course instructors

Chair of Distributed Systems & Operating Systems

https://dse.in.tum.de/team/

PhD student

Dr. Masanori Misono

Patrick Sabanic
PhD student

Confidential cloud computing (c3): Seminar info

Communication:

Join us with TUM email address (@tum.de)

<u>ls1-courses-tum.slack.com</u>

#ws-24-c3-seminar

https://github.com/TUM-DSE/seminars/

Motivation & Context

Cloud & data centers

Scalable, flexible, and fault-tolerant computing substrate

Process and store sensitive data

Consumer devices

Manufacturing

Healthcare

Defense

How can we provide **security** guarantees for workloads deployed on untrusted cloud infrastructures?

Security properties

- Confidentiality
 - Unauthorized entities cannot "see" the computation/data
- Integrity
 - Unauthorized changes to the computation/data can be detected
- Freshness
 - Stateful computations are prone to rollback attacks (e.g., databases, storage)
- Authenticity
 - Remotely verify the authenticity of the remote party

Confidential computing

Confidential computing

- Cloud computing technology
- Isolates sensitive data in a protected CPU
 "enclave" during processing
- Even the cloud providers is out of the trusted computing base (Hypervisor)

- Hardware extensions
- Transparently encrypt/decrypt data in-use
- Process based & VM-based deployments

Confidential computing in the cloud

Hardware-assisted "secure enclaves"

- Keep the data encrypted in DRAM
- Special memory encryption engine for cache line data
- Caches are in the protection boundaries

Confidential VMs

- Full VM encryption technology
- Isolates from the untrusted cloud provider
- No trust in the cloud infrastructure or hypervisor

Commercially offered by cloud providers

- Google Cloud, Microsoft Azure, Alibaba Cloud

Prominent Confidential Computing Technologies

Intel SGX

AMD SEV

Arm Trustzone

Intel TDX

Arm CCA

Topics

Papers from top conferences: OSDI, EuroSys, ASPLOS, USENIX Security, IEEE S&P, ACM CCS, NDSS

Topics
Confidential Virtual Machines (CVMs)
Trusted computing in the cloud
Confidential computing primitives
Operating systems and hypervisors
Hardware-assisted memory safety & security
Microarchitectural & software-based attacks & mitigations

Format

Bird's eyes view

Team (2 students per team)

Research papers
(Top systems conferences)

Understand

Research ideas

1 presentation

1 short report

Peer-reviewing

Overview

Phase I

Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Phase I: Kick-off meeting

Format and motivation (all participants meeting)

2

Team formation (2 students per team)

Paper selection (Top systems conferences)

The first week

NOTE

- 1. A list of papers will be provided for FCFS bidding
- 2. Paper presentation guidelines will be provided for the next phase

Phase II: Understand & explore

Focus

- Understand the paper and related work
- 2. **Explore** a "laundry list" of research ideas/directions

Paper presentation

Focus

- Explain the work/related work ("why?" and "how?")
- 2. Explain and discuss all possible research directions
- 3. Pick a research direction

Phase III: Research

Research work

Focus:

Indepth research work to nail-down the problem and detailed approach to solve it!

Research prototype

Bonus:

(Optional)

"Build the system to solve it!" and show us the working idea and associated results

Phase IV: Report & review

Peer-review

END.

Focus

Prepare a single "short & sweet" report summarizing

- (a) Paper
- (b) Research work

Focus

Give constructive (positive and critical) feedback for

- (a) Paper summary
- (b) Research work

Overall timeline

Organization

- Format
 - Team-based seminar course (2 students per team)
- Communication
 - Slack for announcements and information sharing
 - Hotcrp for report submission and peer-reviewing
- Meetings (in-person, attendance is compulsory)
 - Meeting #1: Kick-off
 - Meeting #2: Paper presentation (Session 1)
 - Meeting #3: Paper presentation (Session 2)

Learning goals

- Learn about the cutting-edge research in computer systems
- Promote critical thinking
- Cultivate an environment for innovation
 - To push the boundaries by advancing the state-of-the-art
- Improve scientific skills
 - Presentation
 - Writing
 - Communication: discussion and arguing
 - Mentorship: giving feedback and moderating discussion
- Encourage system building and evaluation
 - Learn by building, breaking, and benchmarking systems
- Importantly, to have fun!

Code of conduct

University plagiarism policy

https://www.in.tum.de/en/current-students/administrative-matters/student-code-of-conduct/

Decorum

- Promote freedom of thoughts and open exchange of ideas
- Cultivate dignity, understanding and mutual respect, and embrace diversity
- Racism and bullying will not be tolerated

Interested?

Sign up on the TUM matching platform

Contacts

- Dimitrios Stavrakakis
 - <u>dimitrios.stavrakakis@tum.de</u>
- All seminar-related info: https://github.com/TUM-DSE/seminars

Workspace: http://ls1-courses-tum.slack.com/

Channel: #ws-24-c3-seminar

Join us with TUM email address (@tum.de)