Metrics Vector Spaces Banach Spaces Hilbert Space Matrices

Linear Algebra Review

Leila Wehbe

January 29, 2013

Table of contents

Metrics

Vector Spaces

Banach Spaces

Hilbert Space

Matrices

Metric

Given a space \mathcal{X} , then $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_0^+$ is a metric is for all \mathbf{x} , \mathbf{y} and \mathbf{z} in \mathcal{X} if:

- $d(\mathbf{x}, \mathbf{y}) = 0$ is equivalent to $\mathbf{x} = \mathbf{y}$
- $b d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
- $b d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$

Example of a metric

Euclidean Distance:

Given
$$\mathcal{X} = \mathbb{R}^n$$
, $d(\mathbf{x}, \mathbf{y}) := (\sum_{i=1}^n (x_i - y_i)^2)^{\frac{1}{2}}$

- $d(\mathbf{a}, \mathbf{b}) = 0$ is equivalent to $\mathbf{a} = \mathbf{b}$
- $d(\mathbf{a},\mathbf{b}) = d(\mathbf{b},\mathbf{a})$
- ▶ $d(\mathbf{a}, \mathbf{b}) \le d(\mathbf{a}, \mathbf{c}) + d(\mathbf{c}, \mathbf{b})$ (this is the triangle inequality)

Vector Space

A vector space is a space $\mathcal X$ such that for all $\mathbf x, \mathbf y \in \mathcal X$ and for all $\alpha \in \mathbb R$:

- ightharpoonup $\mathbf{x} + \mathbf{y} \in \mathcal{X}$
- $\alpha \mathbf{x} \in \mathcal{X}$

Examples of vector spaces

Real Numbers: given $x, y \in \mathbb{R}$, and $\alpha \in \mathbb{R}$:

- $x + y \in \mathbb{R}$
- $\quad \quad \alpha x \in \mathbb{R}$

 $\mathbb{R}^{\mathbf{n}}$: given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}$:

- $\mathbf{x} + \mathbf{y} \in \mathbb{R}^n$
- $\mathbf{A} \mathbf{x} \in \mathbb{R}^n$

Examples of vector spaces

Polynomials: given $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{i=0}^{n} b_i x^i$, and $\alpha \in \mathbb{R}$:

- $f(x) + g(x) = \sum_{i=0}^{n} (a_i + b_i)x^i$, i.e. polynomial of order n
- $ightharpoonup \alpha f(x) = \sum_{i=0}^{n} \alpha a_i x^i$, i.e. polynomial of order n

Cauchy Series

Given a space \mathcal{X} , a Cauchy series is a series $x_i \in \mathcal{X}$ for which for every $\epsilon > 0$ there exist an n_0 such that for all $m, n \geq n_0$, $d(\mathbf{x}_m, \mathbf{x}_n) \leq \epsilon$

Completeness

A space $\mathcal X$ is complete if the limit of every Cauchy series $\in \mathcal X$.

For example, (0,1) is not complete but [0,1] is.

The set $\mathbb Q$ of rational numbers is not complete: you can construct a sequence that converges to $\sqrt{2}$ but $\sqrt{2}$ is not in $\mathbb Q$.

Norm

Given a vector space \mathcal{X} , a norm is a mapping $||.||: \mathcal{X} \to \mathbb{R}_0^+$ that satisfies, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and for all $\alpha \in \mathbb{R}$:

- $|\mathbf{x}|| = 0$ if and only if $\mathbf{x} = 0$
- $|\alpha \mathbf{x}| = |\alpha| |\mathbf{x}|$
- $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$ (triangle inequality)

A norm is also a metric: $d(\mathbf{x}, \mathbf{y}) := ||x - y||$

Banach Space

A Banach Space is a complete vector space $\mathcal X$ together with a norm ||.||.

$$\ell_p^m$$
 Spaces: \mathbb{R}^m with the norm $||\mathbf{x}|| := \left(\sum\limits_{i=1}^m |x_i|^p\right)^{\frac{1}{p}}$

$$\ell_p$$
 Spaces: These are subspaces of $\mathbb{R}^\mathbb{N}$ with $||\mathbf{x}|| := \left(\sum\limits_{i=1}^\infty |x_i|^p\right)^{\frac{1}{p}}$

Function Spaces
$$L_p(\mathcal{X})$$
: Over \mathcal{X} , $||f|| := \left(\int_{\mathcal{X}} |f(x)|^p dx\right)^{\frac{1}{p}}$.

Dot Product

Given a vector space \mathcal{X} , a dot product is a mapping $\langle . , . \rangle : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that satisfies, for all \mathbf{x}, \mathbf{y} and $\mathbf{z} \in \mathcal{X}$ and for all $\alpha \in \mathbb{R}$:

- Symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
- ▶ Linearity: $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$
- Additivity: $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$

Hilbert Space

A Hilbert Space is a complete vector space \mathcal{X} together with a dot product $\langle ., . \rangle$.

The dot product automatically generates a norm: $||\mathbf{x}|| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

Hilbert spaces are special cases of Banach spaces.

Examples of Hilbert Spaces

Euclidean spaces and the standard dot product for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{m} x_i y_i$$

Function spaces $(L_2(\mathcal{X}))$: functions on \mathcal{X} with $f: \mathcal{X} \to \mathbb{C}$ for all $f, g \in \mathcal{F}$, with the dot product: $\langle f, g \rangle = \int_X \overline{f(x)} g(x) dx$

 ℓ_2 series of real numbers (infinite), $\in \mathbb{R}^N$:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{\infty} x_i y_i$$

Matrices

A matrix $M \in \mathbb{R}^{m \times n}$ corresponds to a linear map from \mathbb{R}^m to \mathbb{R}^n .

A symmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{ij} = M_{ji}$.

An anti-symmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{ij} = -M_{ji}$.

Rank: Denote by I the image of \mathbb{R}^m under M. rank(M) is the smallest number of vectors that span I.

Matrices: orthogonality

A matrix $M \in \mathbb{R}^{m \times m}$ is orthogonal if $M^T M = \mathbf{I}$. This means $M^T = M^{-1}$.

An orthogonal matrix consists of mutually orthogonal rows and columns.

Matrix Norms

The norm of a linear operator between two Banach spaces $\mathcal X$ and $\mathcal Y$:

$$||A|| := \max_{x \in \mathcal{X}} \frac{||Ax||}{||x||}$$

- $||\alpha A|| = \max_{\mathbf{x} \in \mathcal{X}} \frac{||\alpha A\mathbf{x}||}{||\mathbf{x}||} = |\alpha|||A||$
- $||A + B|| = \max_{\mathbf{x} \in \mathcal{X}} \frac{||(A + B)x||}{||x||} \le \max_{x \in \mathcal{X}} \frac{||Ax||}{||x||} + \max_{x \in \mathcal{X}} \frac{||Bx||}{||x||} = ||A|| + ||B||$
- ▶ ||A|| = 0 implies $\max_{x \in \mathcal{X}} \frac{||Ax||}{||x||}$ and thus $A\mathbf{x} = 0$ for all \mathbf{x} , i.e. A = 0.

Matrix Norms

Frobenius norm: (in analogy with vector norm)

$$||M||_{Frob}^2 = \sum_{i=1}^m \sum_{j=1}^m M_{ij}^2$$

Eigen Systems

Given M in $\mathbb{R}^{m \times m}$, then $\lambda \in \mathbb{R}$ is an eigenvalue and $\mathbf{x} \in \mathbb{R}^m$ is an eigenvector if:

$$M\mathbf{x} = \lambda \mathbf{x}$$

Eigen Systems, symmetric matrices

For symmetric matrices all eigenvalues are real and the matrix is fully diagonalizable (i.e. m eigenvectors).

All eigenvectors with different eigenvalues are mutually orthogonal: Proof, for two eigenvectors ${\bf x}$ and ${\bf x}'$ with respective eigenvalues λ and λ' :

$$\lambda \mathbf{x}^T \mathbf{x}' = (M\mathbf{x})^T \mathbf{x} = \mathbf{x}^T (M^T \mathbf{x}') = \mathbf{x}^T (M\mathbf{x}') = \lambda' \mathbf{x}^T \mathbf{x}' \text{ so } \lambda' = \lambda \text{ or } \mathbf{x}^T \mathbf{x} = 0.$$

We can decompose $M = O^T \Lambda O$.

Eigen Systems, symmetric matrices

We also have the operator norm:

$$||M||^{2} = \max_{\mathbf{x} \in \mathbb{R}^{m}} \frac{||M\mathbf{x}||^{2}}{||\mathbf{x}||^{2}}$$

$$= \max_{\mathbf{x} \in \mathbb{R}^{m} \text{and } ||\mathbf{x}|| = 1} ||M\mathbf{x}||^{2}$$

$$= \max_{\mathbf{x} \in \mathbb{R}^{m} \text{and } ||\mathbf{x}|| = 1} \mathbf{x}^{T} M^{T} M \mathbf{x}$$

$$= \max_{\mathbf{x} \in \mathbb{R}^{m} \text{and } ||\mathbf{x}|| = 1} \mathbf{x}^{T} O \Lambda O^{T} O \Lambda O^{T} \mathbf{x}$$

$$= \max_{\mathbf{x} \in \mathbb{R}^{m} \text{and } ||\mathbf{x}'|| = 1} \mathbf{x}^{T} \Lambda^{2} \mathbf{x}^{T}$$

$$= \max_{\mathbf{x} \in \mathbb{R}^{m} \text{and } ||\mathbf{x}'|| = 1} \mathbf{x}^{T} \Lambda^{2} \mathbf{x}^{T}$$

$$= \max_{\mathbf{x} \in \mathbb{R}^{m} \text{and } ||\mathbf{x}'|| = 1} \mathbf{x}^{T} \Lambda^{2} \mathbf{x}^{T} \Lambda^{2} \mathbf{x}^{T}$$

Eigen Systems, symmetric matrices

Frobenius norm:

$$||M||_{Frob}^2 = tr(MM^T) = tr(O\Lambda O^T O\Lambda O^T)$$
$$= tr(\Lambda O^T O\Lambda O^T O) = tr(\Lambda^2) = \sum_{i=1}^m \lambda_i^2$$

Matrices: Invariants

Trace:
$$tr(M) = \sum_{i=1}^{m} M_{ii}$$
.

$$tr(AB) = tr(BA).$$

For symmetric matrices:

$$tr(M) = tr(O^T \Lambda O) = tr(\Lambda O O^T) = tr(\Lambda) = \sum_{i=1}^{m} \lambda_i$$

Determinant:

$$det(M) = \prod_{i=1}^{m} \lambda_i$$

Positive Matrices

A Positive Definite Matrix is a matrix $M \in \mathbb{R}^{m \times m}$ for which for all $\mathbf{x} \in \mathbb{R}^m$:

$$\mathbf{x}^T M \mathbf{x} > 0$$
 if $\mathbf{x} \neq 0$

This matrix has only positive eigenvalues:

$$\mathbf{x}^T M \mathbf{x} = \lambda \mathbf{x}^T \mathbf{x} = \lambda ||\mathbf{x}|| > 0$$

Induced norm: $||\mathbf{x}||_M^2 = \mathbf{x}^T M \mathbf{x}$

Singular Value Decomposition

Want to find similar thing for arbitrary matrix $M \in \mathbb{R}^{m \times n}$ where $m \ge n$:

$$M = U \Lambda O$$

$$U \in \mathbb{R}^{m \times n}, \ U^T U = \mathbf{I}$$

 $O \in \mathbb{R}^{n \times n}, \ O^T O = \mathbf{I}$

$$\Lambda = diag(\lambda_1, \lambda_2, ... \lambda_n)$$