Работа 1.1.4 Измерение интенсивности радиационного фона

Работу выполнил Павлов Михаил Б01-109

Цель работы: применение методов обработки экспериментов для изучения статистических закономерностей при измерении интенсивности радиационного фона.

В работе используются: счётчик Гейгера-Мюллера (СГС-6), блок питания, компьютер с интерфейсом связи со счётчиком.

1. Аннотация

Поток космических частиц, которые составляют значительную часть радиационного фона, изменяется со временем случайным образом. Если изменения происходят около какого-либо значения, говорят, что величина флуктуирует. Тогда её характеристики - среднее значение и среднеквадратичное отклонение от него. Их интенсивность можно оценить по ионизации, которую они производят. Для этого используется специальный прибор счётчик Гейгера-Мюллера. Счётчик представляет собой наполненный газом сосуд с двумя электродами. Один электрод - металлический цилиндр, другой - тонкая нить, натянутая вдоль цилиндра. Для работы необходимо напряжение в 400В. Частицы космических лучей ионизируют газ, которым наполнен счётчик, а также выбивают электроны из его стенок.

Они ускоряются и выбивают новые. Образуется целая лавина электронов, и через счётчик резко увеличивается ток. В исходном состоянии электроды и конденсатор заряжены до 400В. Разделительный C_2 не пропускает постоянное напряжение источника питания в компьютер. При возникновении тока через счётчик заряд на СГС-6 и конденсаторе C_1 обеспечивают развитие электронной лавины. Если случайные события однородны во времени и каждое последующее событие не зависит от того, когда и как случались предыдущие события, то такой процесс называется пуассоновским и подчиняется Пуассоновскому распределению В таком случае средняя квадратичная ошибка равно $\sqrt{\overline{n}}$.

 $\overline{n}=\frac{1}{n}\sum_{i=1}^N n_i, \sigma=\sqrt{\frac{1}{N}*\sum_{i=1}^N \left(n_i-\overline{n}\right)^2}$. Величина \overline{n} не вполне совпадает с истинным значением. Стандартная ошибка её отклонения $\sigma_{\overline{n}}=\frac{\sigma}{\sqrt{N}}.\epsilon_{\overline{n}}=\frac{1}{\sqrt{N*\overline{n}}}$

Puc. 1. Схема включения счётчика

Работа 1.1.4

2. Проведение демонстрационного эксперимента Убедимся в том, что

- измеряемая величина флуктуирует
- флуктуации уменьшаются и среднее значение выходит на постоянную величину
- флуктуации величины погрешности отдельного измерения уменьшаются
- флуктуации величины погрешности среднего значения уменьшаются, а сама величина убывает
- 3. Результаты измерений и обработка данных
- 3.1 Измерение плотности потока космического излучения за 10с.

№ опыта	1	2	3	4	5	6	7	8	9	10
0	33	26	32	26	22	31	29	24	33	27
10	27	26	26	20	26	27	22	32	21	36
20	20	26	29	32	26	30	32	27	28	19
30	24	22	21	25	30	29	25	32	38	32
40	29	33	23	31	26	33	27	29	27	27
50	34	25	37	29	29	24	33	21	20	29
60	21	34	37	35	21	31	26	23	32	38
70	34	37	15	29	27	20	24	29	31	26
80	27	23	34	31	15	25	29	36	31	31
90	22	35	29	38	35	24	34	28	19	30
100	34	30	20	27	26	21	25	23	23	18
110	23	27	31	15	38	32	30	17	28	27
120	19	27	23	36	24	18	29	24	28	33
130	35	22	37	37	21	26	35	23	28	34
140	28	34	26	26	35	31	31	38	30	23
150	30	34	29	19	19	23	27	23	30	41
160	27	27	33	17	21	32	27	19	33	25
170	27	26	29	25	26	30	32	22	28	31
180	30	27	29	15	24	27	23	26	20	34
190	30	29	24	27	29	31	25	33	29	34

Таблица 1. Число срабатываний счётчика за 20с.

№ опыта	1	2	3	4	5	6	7	8	9	10
0	59	58	53	53	60	53	46	53	54	57
10	46	61	56	59	47	46	46	59	57	70
20	62	54	59	56	54	59	66	53	54	49
30	55	72	52	49	70	71	44	47	53	57
40	50	65	40	65	62	57	67	59	62	49
50	64	47	47	48	41	50	46	70	47	55
60	46	59	42	53	61	57	74	47	58	62
70	62	52	66	69	53	64	48	42	50	71
80	54	50	53	46	58	53	54	56	54	59
90	57	44	51	49	54	59	51	60	58	63

Таблица 2. Число срабатываний счётчика за 40с.

Число испульсов n_i	4	5	6	7	8	9	10
Число случаев	1	3	4	9	11	27	24
Доля случаев ω_n	0.0025	0.0075	0.01	0.0225	0.0275	0.0675	0.06

Число испульсов n_i	11	12	13	14	15	16	17
Число случаев	27	40	52	43	30	28	26
Доля случаев ω_n	0.0675	0.1	0.13	0.1075	0.075	0.07	0.065

$3.2\ \Pi$ остроение гистограммы для t=10c

Число испульсов n_i	18	19	20	21	22	23	24	25
Число случаев	24	19	16	8	3	2	1	2
Доля случаев ω_n	0.06	0.0475	0.04	0.02	0.0075	0.005	0.0025	0.005

Таблица 3 Данные для построения гистограммы распределения числа срабатываний счётчика за 10с

 $Puc.\ 2.\ \Gamma ucmorpamma\ для\ t=10\ c$

 $Puc.\ 3.\ \Gamma ucmorpamma\ для\ t=40\ c$

Работа 1.1.4

3.3 Среднее число срабатываний счётчика за 10с.

$$\overline{n_1} = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i = \frac{5539}{400} = 13.8475$$

3.4 Среднеквадратичная ошибка при t=10c.

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \overline{n_1})^2} = \sqrt{\frac{5388}{400}} = 3.67$$

Сравним $\sqrt{\overline{n_1}}$ и σ_1 $\sqrt{\overline{n_1}} \approx 3.8 \approx 3.82 = \sigma_1$ Получаем, что они равны.

3.5 Доля случаев, когда отклонения от среднего значения $\leq \sigma_1 \leq \sigma_2$

Ош	ибка	Число случаев	Доля случаев	Теоритическая оценка
士	:3.8	246	61%	68%
土	7.6	383	96%	95%

Таблица 4. Отклонения от среднего

3.6 Среднее число срабатываний счетчика за 40с

$$\overline{n_2} = \frac{1}{N_2} \sum_{i=1}^{N_2} n_i = \frac{5539}{100} = 55.39$$

3.7 Среднеквадратичная ошибка при t = 40c.

$$\sigma_2 = \sqrt{rac{1}{N_2}\sum_{i=1}^{N_2}(n_i-\overline{n_2})^2} = \sqrt{rac{4802}{100}} = 6.9$$
 Сравним $\sqrt{\overline{n_2}}$ и σ_2 $\sqrt{\overline{n_2}} pprox 7.2 pprox 6.9 = \sigma_2$

 $3.8 \; \text{Сравнение} \; \text{ошибок для} \; t = 10 \text{с} \; \text{и} \; t = 40 \text{с}$

$$\overline{n_1} = 12.9; \sigma_1 = 3.7; \frac{\sigma_1}{\overline{n_1}} = 29\%$$
 $\overline{n_2} = 51.6; \sigma_2 = 6.9; \frac{\sigma_2}{\overline{n_2}} = 13\%$

3.9 Стандартная ошибка среднего значения (выборочного) $\overline{n_1}$ $\sigma_{\overline{n_1}} = \frac{\sigma_1}{\sqrt{N_1}} \approx 0.18$

Найдём относительную ошибку $\epsilon_{\overline{n_1}} = \frac{\sigma_{\overline{n_1}}}{\overline{n_1}} \approx 1.3\%$ Такую относительную ошибку можно найти по формуле:

$$\epsilon_{\overline{n_1}} = \frac{1}{\sqrt{\overline{n_1}N_1}} \approx 1.4\%$$

 $\epsilon_{\overline{n_1}} = \frac{1}{\sqrt{\overline{n_1}N_1}} \approx 1.4\%$ Окончательный результат: 13.85 ± 0.18

3.10 Стандартная ошибка среднего значения (выборочно) $\overline{n_2}$

$$\sigma_{\overline{n_2}} = \frac{\sigma_2}{\sqrt{N_2}} \approx 0.67$$

Найдём относительную ошибку $\epsilon_{\overline{n_2}} = \frac{\sigma_{\overline{n_2}}}{\overline{n_2}} \approx 1.3\%$ Такую относительную ошибку можно найти по формуле:

$$\epsilon_{\overline{n_2}} = \frac{1}{\sqrt{\overline{n_2}N_2}} \approx 1.2\%$$

Окончательный результат: 55.4 ± 0.7

4. Вывод:

Ознакомились с счётчиком Гейгера, применили методы обработки экспериментальных данных, изучили статистические закономерности, проверили на правильность формулы из теории вероятности.