

## **PHYS 8750**

CLASS #18
ATMOSPHERIC
MODELS

Class #17 (Chapter 5.5)

Finite Volume Method

Flux limiters

## **Outline**

- 1. Atmospheric Models
- 2. Model types

**Empirical models** 

Physics models

Data assimilative models

- 3. NRLMSIS and IRI
- 4. GSWM and CTMT

### ATMOSPHERIC MODELS

• Empirical Models (data based, mathematical, statistical)

Good for climatology and background atmosphere NRLMSIS, IRI, HWM

- Physics Models (physical models)
- Steady-state (external forcing or boundary condition)
   GSWM, CTMT, Stationary Planetary Waves (week of Nov 17, 19)
- Time-evolving (initial condition)

  General circulation models (TIEGCM, CESM, KMCM, CTIPe)

  Barotropic/baroclinic planetary wave model (week of Nov 17, 19)

  Gravity wave models (MAGIC)
- Data Assimilative Models

Underlying Physics models + data assimilation WACCM-DART, ECMWF, MERRA

#### **NRLMSIS**



## NAVAL RESEARCH LAB MASS SPECTROMETER INCOHERENT SCATTER MODEL

## NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities

J. T. Emmert<sup>1</sup>, D. P. Drob<sup>1</sup>, J. M. Picone<sup>2</sup>, D. E. Siskind<sup>1</sup>, M. Jones Jr.<sup>1</sup>, M. G. Mlynczak<sup>3</sup>, P. F. Bernath<sup>4,5</sup>, X. Chu<sup>6,7</sup>, E. Doornbos<sup>8</sup>, B. Funke<sup>9</sup>, L. P. Goncharenko<sup>10</sup>, M. E. Hervig<sup>11</sup>, M. J. Schwartz<sup>12</sup>, P. E. Sheese<sup>13</sup>, F. Vargas<sup>14</sup>, B. P. Williams<sup>15</sup>, and T. Yuan<sup>16</sup>

NRLMSIS 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the **average observed behavior** of temperature, 8 species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity.

## NRLMSIS



#### PARAMETRIC ANALYTIC FORMULATION + FITTING USING DATA

$$\frac{1}{T(\zeta)} = \begin{cases} \left\{ T_{ex} - (T_{ex} - T_B) \exp\left[-\sigma(\zeta - \zeta_B)\right] \right\}^{-1} & ; \zeta \ge \zeta_B \\ \sum_{i=0}^{N_S - 1} \alpha_i S_i(\zeta) & ; \zeta < \zeta_B \end{cases}$$

Temperature profile as a function of geopotential height

= 122.5 kmBates profile reference height and joining height

Exospheric temperature (fitting parameter)

 $T_{\scriptscriptstyle R} = T(\zeta_{\scriptscriptstyle B})$ Temperature at  $\zeta_R$  (fitting parameter)

 $\sigma = T_B' / (T_{ex} - T_B)$  Shape parameter

Temperature gradient at  $\zeta_R$  (fitting parameter)

 $N_s = 24$  Number of B-spline basis functions  $\alpha_i$  Coefficients on B-spline basis functions (fitting parameters)  $S_i$  Cubic B-splines with nodes at heights  $\zeta_{s,i}$ ; i = 0 to  $N_s + 3$   $\zeta_{s,i} = \{-15, -10, -5, 0, 5, ..., 80, 85, 92.5, 102.5, 112.5, 122.5, 132.5, 142.5, 152.5\}$  km

$$\ln n(\zeta) = \ln n_0 - \frac{g_0}{k} \int_{\zeta_0}^{\zeta} \frac{M(\zeta')}{T(\zeta')} d\zeta' - \ln \frac{T(\zeta)}{T(\zeta_0)} - Ce^{-(\zeta - \zeta_C)/H_C} + R \left[ 1 + \tanh \left( \frac{\zeta - \zeta_R}{\gamma(\zeta)H_R} \right) \right]$$

 $n(\zeta)$ Number density of a particular species

 $n_0 = n(\zeta_0)$ Reference density (defined below)

Reference geopotential height

Reference gravitational acceleration (see equation (A3))  $g_0$ 

k Boltzmann constant

 $M(\zeta)$ Effective mass profile (defined below)

 $C, \zeta_C, H_C$ Chemical loss term parameters

Chemical/dynamical correction parameters

$$\gamma(\zeta) = \frac{1}{2} \left\{ 1 + \tanh\left(\frac{\zeta - \zeta_{\gamma}}{H_{\gamma}}\right) \right\}$$

 $H_{v} = 40 \text{ km}$ 

## **OUTPUTS OF NRLMSIS**



#### **DENSITY OF SPECIES**

#### $\phi$ =60°N $\lambda$ =90°E DOY 172 1.5 UTC LT = 7.5 Hr F10.7 = 150 F10.7A = 150 sfu AP(1)=4 2nT 1000 0 900 N2 02 800 700 Altitude [km] 600 Anomalous Oxygen 500 400 300 200 100 10<sup>-10</sup> 10<sup>-5</sup> 10<sup>0</sup> 10<sup>5</sup> 10<sup>10</sup> 10<sup>15</sup> 10<sup>20</sup> Density [particles/cm<sup>3</sup>]

# DENSITY & TEMPERATURE



## IRI (INTERNATIONAL REFERENCE IONOSPHERE)

7

The International Reference Ionosphere (IRI) is an international project sponsored by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI).

#### **PARAMETERS:**

Ne, Te, Ti, ion composition (O<sup>+</sup>, H<sup>+</sup>, He<sup>+</sup>, N<sup>+</sup>, NO<sup>+</sup>, O<sup>+</sup><sub>2</sub>, Cluster ions), equatorial VI, vertical TEC (vTEC), spread-F probability, auroral boundaries, effects of ionospheric storms on F and E peak densities.

#### **INPUTS:**

<u>Required:</u> solar indices (F10.7), ionospheric index (ionosonde-based IG index 12-month running mean), magnetic index (ap).

## IRI OUTPUTS

8



#### PHYSICS MODELS



## Steady-State

Mean values or waves amplitude do not change with time.

## Large-scale Wave models

Tides: GSWM, CTMT

Planetary Waves: stationary wave model

## GLOBAL SCALE WAVE MODEL

(2)

$$\frac{\partial u}{\partial t} - 2\Omega \sin \theta v + \frac{1}{a \cos \theta} \frac{\partial \Phi}{\partial \lambda} = 0 \tag{1}$$

By assuming the wave form

$$\frac{\partial v}{\partial t} + 2\Omega \sin \theta u + \frac{1}{a} \frac{\partial \Phi}{\partial \theta} = 0$$

$$\{u, v, w, \Phi\} = \{\hat{u}, \hat{v}, \hat{w}, \hat{\Phi}\} \exp[i(s\lambda - \sigma t)]$$
 (5)

$$\frac{\partial}{\partial t}\Phi_z + N^2 w = \frac{\kappa J}{H} \tag{3}$$

Then 4D problem becomes 2D

$$\frac{1}{a\cos\theta} \left[ \frac{\partial u}{\partial \lambda} + \frac{\partial}{\partial \theta} (v\cos\theta) \right] + \frac{1}{\rho_o} \frac{\partial}{\partial z} (\rho_o w) = 0 \quad (4)$$

$$\frac{\partial}{\partial t} = -i\sigma, \frac{\partial}{\partial \lambda} = is$$

where

u eastward velocity

v northward velocity

w upward velocity

 $\Phi$  perturbation geopotential

 $N^2$  buoyancy frequency squared =  $\kappa q/H$ 

 $\Omega$  angular velocity of Earth

 $\rho_o$  basic state density  $\propto e^{-z/H}$ 

z altitude

 $\lambda$  longitude

 $\theta$  latitude

 $\kappa R/c_p \approx 2/7$ 

J heating per unit mass

a radius of Earth

g acceleration due to gravity

H constant scale height

t time

Forbes,

1995

Separation of variable and solve for latitude and altitude directions

$$\hat{J} = \sum_{n} \dot{\Theta}_{n}(\theta) J_{n}(z) \tag{7}$$

$$\hat{\Phi} = \sum_{n} \Theta_n(\theta) G_n(z) \tag{6}$$

## GLOBAL SCALE WAVE MODEL

Equation along altitude (z direction)

$$i\sigma H\left[\frac{1}{\rho_o}\frac{\partial}{\partial z}\rho_o\frac{\partial}{\partial z}G_n\right] + \frac{1}{\rho_o}\frac{\partial}{\partial z}(\rho_o\kappa J_n) = -\frac{i\sigma\kappa}{h_n}G_n$$
 (12)

Equation along latitude (y direction)

$$\frac{d}{d\mu} \left[ \frac{(1-\mu^2)}{(f^2-\mu^2)} \frac{d\Theta_n}{d\mu} \right] - \frac{1}{f^2-\mu^2}$$

$$\left[ -\frac{s}{f} \frac{(f^2 + \mu^2)}{(f^2 - \mu^2)} + \frac{s^2}{1 - \mu^2} \right] \Theta_n + \epsilon \Theta_n = 0$$
 (14)

For each tidal component, decompose heating term into different Hough modes, and solve for the tidal responses in different modes. The full solution is the superposition of all the Hough modes.

### GLOBAL SCALE WAVE MODEL

## **Hough Modes**







Fig. 6. Normalized expansion functions for the solar diurnal tide. Top: Hough Function. Middle: Eastward wind expansion function. Bottom: Northward wind expansion function. Solid line, (1,1); dashed, (1,-1); dashed-double dot, (1,2); dashed, (1,-2); dashed-dot, (1,-4). From Forbes [1982a].

Forbes, 1995

## Temperature DW1



## Spherical coordinate: Legendre functions

# CLIMATOLOGICAL TIDAL MODEL OF THE THERMOSPHERE (CTMT)

## **Hough Mode Extensions**

Generalized form of Hough Modes; account for dissipation

## Model concept

- Fit HMEs to TIMED tides in the MLT region;
   2002-2008 averages
- Use fit coefficients to reconstruct the tides in the thermosphere, F10.7 = 110 sfu

Oberheide, J., J. M. Forbes, X. Zhang, and S. L. Bruinsma, Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere, *J. Geophys. Res.*, 116, A11306, doi:10.1029/2011JA016784, 2011.

# CLIMATOLOGICAL TIDAL MODEL OF THE THERMOSPHERE (CTMT)

