

My work with the ECAL DCS software and a Non-invasive isolation damage system for the preshower detector

Jakub Wieczorek

02/12/2019

Presentation plan

- A few words about ECAL DCS
 - What is that
 - My participation
- Isolation damages detection project
 - Problem definition
 - Solution proposal
 - Constructed systems
 - Outcome

ECAL Detector Control System

ECAL DCS

- Detector Control System
- ECAL DCS one of the nodes of CMS DCS
- SCADA systems which allows controling and operating the detector

My participation:

- Panel development
- Integration test for interlocks with final report
- Parts of technical documentation

Temperature sensors plot widget

- Shows readouts from temperature sensors in real time
- Plot can be checked and unchecked by user
- When sensor is disabled there is no plot available for that sensor

12/2/2019

Conditions monitoring widget

- Partition conditions in real time
- When one of the temperature sensors exceeds threshold, then alarm and suitable automatic actions for the partition is perfored
- Cooling status
- Water leakage available only for endcap partitions

Interlock status widget

- Interlocks for current partition
- Temperature sensor exceeds limit, then high voltage, low voltage and low voltage cut interlocks are set
- Cooling interlock for water leakage sensors in endcaps
- Interlocks can be set manually

Interlock status widget

- Crucial values for every sensor
- Wire connection
- Current value
- Warning status if value two degrees lower than overheating limit
- Crossing overheating limit causes partition interlocks
- Crossing critical overheating causes general DSS interlock, which turns off the detector

DSS Interlocks Threshold Partition Interlocks Threshold FSM DCS Automatic Action Threshold					
Air temperature sensors inside partition EBP10 Sensor	Wire	Value	Warning	Limit	C. Limit
TK_PLCS/ESS/crate05/module07/channel_read_08	Ok	17.30	29.68	31.68	35.64
TK_PLCS/ESS/crate04/module07/channel_read_08	Ok	17.50	29.64	31.64	35.67
TK_PLCS/ESS/crate05/module07/channel_read_07	Ok	17.56	31.48	33.48	37.45
TK_PLCS/ESS/crate04/module07/channel_read_07	Ok	16.92	31.36	33.36	37.38
TK_PLCS/ESS/crate05/module07/channel_read_06	Ok	17.39	33.24	35.24	39.24
TK_PLCS/ESS/crate04/module07/channel_read_06	Ok	17.23	33.33	35.33	39.36
TK_PLCS/ESS/crate05/module07/channel_read_05	Ok	17.15	30.02	32.02	36.07
TK_PLCS/ESS/crate04/module07/channel_read_05	Ok	17.71	29.75	31.75	35.79

Integration test for interlocks

```
/08/02 17:55:49: ### Test for partitions EBP01
    /08/02 17:55:54: ACTION: Setting 415 value for sensor System1:TK PLCS/ESS/crate14/module03/channel read 01.: 700 -> 415 OK
                       EVENT: Interlock LV HV LVCut set for the partition EBP01, OK
    /08/02 17:55:59:
                              Setting 700 value for sensor System1:TK PLCS/ESS/crate14/module03/channel read 01.: 415 -> 700 OK
    /08/02 17:56:04: ACTION:
                              Acknowladging interlock LV HV LVCut for EBP01: success after 1 attemps OK
2019/08/02 17:56:10: ACTION:
2019/08/02 17:56:15: ACTION: Setting 410 value for sensor System1:TK PLCS/ESS/crate15/module03/channel read 01.: 700 -> 410 OK
                       EVENTY Interlock LV HV LVCut set for the partition EBP01, OK
2019/08/02 17:56:20:
                              Setting 700 value for sensor System1:TK PLCS/ESS/crate15/module03/channel read 01.: 410 -> 700 OK
2019/08/02 17:56:25: ACLION:
                              Acknowladging interlock LV HV LVCut _for EBP01: success after 1 attemps OK
2019/08/02 17:56:31: ACTION:
   .9/08/02 17:59:04: ACTION: _Setting 100 value for sensor System1:TK PLCS/ESS/crate15/module03/channel read 01.: 700 -> 100 OK
   9/08/02 17:59:09:
                       EVENT: Interlock LV HV LVCut set for the partition EBP01, OK
                       EVENT: General interlock DSS CRITICAL Overheating set OK
   9/08/02 17:59:09:
                              Setting 700 value for sensor System1:TK_PLCS/ESS/crate15/module03/channel_read_01.: 100 -> 700 OK
   9/08/02 17:59:14: ACTION:
   9/08/02 17:59:20: ACTION:
                              Acknowladging interlock LV HV LVCut for EBP01: success after 1 attemps OK
2019/08/02 17:59:20:
                       EVENT: General interlock acknowledged OK
2019/08/02 17:59:25: ACTION:
                              Setting 100 value for sensor System1:TK PLCS/ESS/crate14/module03/channel read 02.: 700 -> 100 OK
   9/08/02 17:59:30:
                       EVENT: Interlock LV HV LVCut set for the partition EBP01, OK
                       EVENT: General interlock DSS CRITICAL Overheating set OK
   9/08/02 17:59:30:
                              Setting 700 value for sensor System1:TK PLCS/ESS/crate14/module03/channel read 02.: 100 -> 700 OK
   9/08/02 17:59:35: ACTION:
                              Acknowladging interlock LV HV LVCut for EBP01: success after 1 attemps OK
   9/08/02 17:59:41: ACTION:
2019/08/02 17:59:41:
                       EVENT: General interlock acknowledged OK
                              Setting 3500 value for sensor System1:TK PLCS/ESS/crate09/module09/channel read 01.: 4500 -> 3500 OK
    /08/02 21:18:50: ACTION:
                       EVENT: Interlock COOL  set for the partition EEP01, OK
    /08/02 21:19:01:
    /08/02 21:19:06: ACTION:
                              Setting 4500 value for sensor System1:TK PLCS/ESS/crate09/module09/channel read 01.: 3500 -> 4500 OK
                              Acknowladging interlock COOL for EEP01: success after 1 attemps OK
    /08/02 21:19:12: ACTION:
                                                                                                                                      Problems with 2
2019/08/02 22:04:33: ### Test for partition: EEM04 finished with OK
2019/08/02 22:04:33: INFO: Interlocks test for all partitions were successfully completed, OK
2019/08/02 22:04:33: *** Sensors remove
                                                                                                                                      sensors detected!
2019/08/02 22:04:33: ACTION: delete 352 temperature sensors and 8 WLD
```


Isolation damages detection project

Introduction and problem definition

- The CMS Preshower detector is cooled down to -20°C by C6F14 based liquid
- Pipes are isolated using Armaflex
- Armaflex is subjected to ageing and damage
- Air gets inside an isolation and condensates on the pipes
- Energy dissipation

Solution proposal #1

- Cut the isolation
- Mount humidity and temperature sensors
- Connect sensors to PLC
- Build SCADA system
- Detect isolation damages
- Replace damaged isolation

What are the problems?

Solution proposal #2

- Use simple sensors, radiation resistant pair of needles
- Stick them into isolation and measure resistance
- Measuring infinite resistance isolation not broken
- Measuring something else potential isolation damage

What are the problems?

Hardware and electronics

- Pair of needles
 - 100% radiation resistant
 - Potentially subject to rust
- High valued resistor
- Voltage divider

Microcontroller

- ARM Cortex M3
- STM32F103RBT6 on the Nucleo board
 - Price 10chf on Digi-Key
 - Community
 - Very fast microcontroller with many periphals 2xADC 16 channels each
- HAL Library, no CUBE MX code generation
- C++
- Few words about logic
 - · ADC readout using DMA every second
 - Average of 20 readouts
 - Transfer data by UART using DMA

12/2/2019

Raspberry OPC UA Server

- Raspberry PI 4
- Ubuntu Docker image
 - docker-compose
 - Very easy to configure and run server one comand
- OPC UA Server
 - Generic industrial protocol
 - Easy to transfer data to SCADA
 - Python 3.7 implementation using opcua library

Why raspberry?

Impossible to deploy OPC Server on microcontroller

SCADA

- Front-end part of the system
- Panel (widget) to visualize data
- Alarms
- WinCC OA 3.16 Patch 15, JCOP 8.4.0 Beta

- Simple instalation of the component
 - Adding managers
 - Configuring addresses
 - Establishing connection with OPC UA Server

12/2/2019

Project outcome

Few about measurements

- It matters where needles are stuck
- Really difficult to measure something between no water and water
- Water typically several hundreds of kΩ
- Dry isolation typically dozen $M\Omega$

Future work

- Test system in real operational environment
- Adapt to the new conditions change resistors, change thresholds
- Add more set of needles and measure over a whole length

https://gitlab.cern.ch/jawieczo/isolationverifier jakub.lukasz.wieczorek@cern.ch