

## Requirements of an MSc research project

- Understanding of knowledge

• Application of techniques

Original



Complex

 $\bigcirc$ 

Self-direction



Self-evaluation





## Significance to the discipline

- Machine learning for crime prediction has been explored academically, but does not have widespread adoption
- Potentially due to academic focus on model performance over practicalities of implementation
- Challenges include:
  - Insights are often not actionable
  - Lack of interpretability\*
  - Lack of computational efficiency
- Study seeks to combine performance, interpretability and computational efficiency metrics to evaluate true "usefulness"
- The "usefulness" metric would be applicable to domains outside of crime prediction



\*"A machine learning model is interpretable if you can inspect the actual model and understand why it got a particular answer for a given input" (Russel & Norvig, 2021: 739)

#### Research questions •

- Which metrics should be used to measure machine learning model performance, interpretability, and computational efficiency, to provide an overall blended score?
- Which machine learning models provide the best overall performance, interpretability and computational efficiency when predicting locations of crime?



### Aims and objectives.

#### Aims

Comparing machine learning performance for crime prediction is difficult due to different datasets and metrics. This study will define a methodology and use a single dataset to compare multiple solutions

#### **Objectives**

- Propose a methodology to measure machine learning model usefulness by incorporating performance, interpretability and computational efficiency metrics
- 2. Use the proposed methodology to assess the solutions from three papers using the same dataset to validate the methodology and recommend the best model for predicting crime



Key literature

- Literature review (Feaviour, 2024) identified various solutions
- Challenges (varied by paper) included:
  - Different performance metrics used
  - Lack of real-world applicability
  - Lack of attention to interpretability
  - Lack of attention to computational efficiency
- Three solutions selected with real-world applicability to test against each other

|                              | <b></b>                                                                                                                            |                                                                                                                                                                                                         |                                                                                        |                                                                                    |                                                                                                            |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| Reference                    | Machine learning model(s)                                                                                                          | Solution overview                                                                                                                                                                                       | Granularity Relevence to day-t day policing                                            |                                                                                    | Limitations                                                                                                |  |
| Jain et al.<br>(2017)        | K-Means                                                                                                                            | Cluster by crime type and location                                                                                                                                                                      | Variable; typically a few streets                                                      | Low                                                                                | Not a predictor. More appropriate for strategic resource planning                                          |  |
| lqbal et al.,<br>(2013)      | Decision Tree<br>Naïve Bayes                                                                                                       | Demographic data to predict if a<br>state has high, medium or low<br>violent crime                                                                                                                      | State                                                                                  | Low                                                                                | Predictions at state level<br>so limited use in day-to-<br>day policing                                    |  |
| Zaidi et al.,<br>(2020)      | Random Forest<br>Support Vector Machine                                                                                            | Demographic data to predict if a<br>state has high, medium or low<br>violent crime                                                                                                                      | State                                                                                  | Low                                                                                | Predictions at state level<br>so limited use in day-to-<br>day policing                                    |  |
| Ahishakiye et al.<br>(2017)  | Decision Tree                                                                                                                      | Demographic data to predict if a county has high, medium or low violent crime                                                                                                                           | County                                                                                 | Low                                                                                | Predictions at county<br>level so limited use in<br>day-to-day policing                                    |  |
| Safat et al.<br>(2021)       | Logistic regression Decision Tree Random Forest Multilayer Perceptron Naïve Bayes Suport Vector Machine GXBoost K Nearest Neigbour | Compare classifier algorithms using two datasets then test time series prediction using ARIMA                                                                                                           | District                                                                               | Potential to inform short-<br>term resource planning                               | Longer-term accuracy is questionable                                                                       |  |
| Sivaranjani et al.<br>(2016) | K Nearest Neighbour<br>K-Means<br>Agglomerative Clustering<br>DBSCAN                                                               | Classify crimes with KNN then cluster crimes of the same category to give each city a high/medium/low preopensity per crime type                                                                        | City                                                                                   | Potentially useful for city-<br>level planning                                     | Lacks granularity to inform day-to-day policing                                                            |  |
| Hajela et al.<br>(2020)      | K-Means<br>Naïve Bayes<br>Decision Tree                                                                                            | Cluster crime hot spots then classify<br>crime type at each hot spot                                                                                                                                    | Variable based on<br>cluster size; typicaly<br>district but centre<br>point is visible | Hot spots are based upon coordinates, so potential for targetted interventions     | Each cluster only has<br>one class, so<br>intervetions would be<br>based upon most<br>prevelent crime only |  |
| Cichosz (2020)               | Logistic Regression<br>Support Vector Machine<br>Decision Tree<br>Random Forest                                                    | Points of interest (POI) aggregated into cells in a geographic grid to predict hotpots of different crime types based upon POI atributes. Performed well when trained on one area and tested on another | 300m²                                                                                  | Predicting crime types<br>based upon POI could<br>enable targetted policing        | The grid doesn't give a precise prediction of where crime will occur                                       |  |
| Rummens et al.<br>(2017)     | Logistic Regression<br>Artificial Neural Network                                                                                   | Hotspots by crime type plotted in a grid, split by day and night. Predictions using rolling time window                                                                                                 | 200m²                                                                                  | Predictive patterns by<br>day and night could help<br>with proactive policing      | Only three crime types,<br>but more could be<br>added                                                      |  |
| Stalidis et al.<br>(2021)    | CNN<br>LSTM                                                                                                                        | Time series maps with crime plots<br>passed through CNN to create<br>feature vectors then LTSM to extract<br>feature vectors to predict emerging<br>crime hotspots                                      | 500m²                                                                                  | Predicted emerging<br>crime hotspots could be<br>used to target police<br>activity | Reliatively high compute<br>required in pre-<br>processing the maps<br>and running the<br>algorithms       |  |

Machine learning models for crime prediction (Feaviour, 2024)

## Research methodology

- Three solutions to be assessed from the literature review (Feaviour, 2024)
- Primary research and typical quantitative and qualitative analysis not required
- Machine learning performance metrics:
  - Accuracy
  - Precision
  - Recall
  - F1-score
  - Area Under Curve (AUC)
- Additional literature review to assess:
  - Interpretability
  - Computational efficiency



#### Ethical considerations

- Data used should not contain personal information
- Outcome will provide a more ethical model for machine learning model assessment due to inclusion of interpretability and computational efficiency metrics



#### Artefacts to be created

- Three datasets; one for each approach
- Seven trained and tested machine learning models, all available on GitHub
- One report comparing the results of the six solutions with a recommendation



# Schedule

|             |                                                                                                | Mar | Apr | May | Jun | Jul | Aug | Sep |
|-------------|------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| Research    | Literature review Select comparrison metrics Methodology based upon metrics                    |     |     |     |     |     |     |     |
| Model build | Data analysis and selection Data segmentation Feature engineering Build, train and test models |     |     |     |     |     |     |     |
| Evaluation  | Measure model performance<br>Write report                                                      |     |     |     |     |     |     |     |
| Defence     | Defend report                                                                                  |     |     |     |     |     |     |     |

#### References

Ahishakiye, E., Taremwa, D., Omulo, E.O. & Niyonzima, I. (2017) Crime prediction using decision tree (J48) classification algorithm. *International Journal of Computer and Information Technology*, 6(3): 188-195.

Cichosz, P. (2020) Urban crime risk prediction using point of interest data. ISPRS International Journal of Geo-Information, 9(7): 459. DOI: https://doi.org/10.3390/ijgi9070459

Feaviour, L (2024) Machine learning as a tool for police to reduce crime. MSc Literature review, University of Essex

Hajela, G., Chawla, M. & Rasool, A. (2020) A clustering based hotspot identification approach for crime prediction. *Procedia Computer Science*, 167: 1462-1470. DOI: https://doi.org/10.1016/j.procs.2020.03.357

Iqbal, R., Murad, M.A.A., Mustapha, A., Panahy, P.H.S. & Khanahmadliravi, N. (2013) An experimental study of classification algorithms for crime prediction. *Indian Journal of Science and Technology*, 6(3): 4219-4225. DOI: https://dx.doi.org/10.17485/ijst/2013/v6i3.6

Jain, V., Sharma, Y., Bhatia, A. & Arora, V. (2017) Crime prediction using K-means algorithm. GRD Journals-Global Research and Development Journal for Engineering, 2(5): 206-209.

Rummens, A., Hardyns, W. & Pauwels, L. (2017) The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context. *Applied geography*, 86: 255-261. DOI: https://doi.org/10.1016/j.apgeog.2017.06.011

Russell, S. & Norvig, P. (2021) Artificial Intelligence: A Modern Approach. 4th ed. Harlow: Pearson Education Limited.

Safat, W., Asghar, S. & Gillani, S.A. (2021) Empirical analysis for crime prediction and forecasting using machine learning and deep learning techniques. *IEEE access*, 9: 70080-70094. DOI: https://doi.org/10.1109/ACCESS.2021.307811

Stalidis, P., Semertzidis, T. & Daras, P. (2021) Examining deep learning architectures for crime classification and prediction. *Forecasting*, 3(4): 741-762. DOI: https://doi.org/10.3390/forecast3040046

Zaidi, N.A.S., Mustapha, A., Mostafa, S.A. & Razali, M.N. (2020) 'A classification approach for crime prediction'. *Applied Computing to Support Industry: Innovation and Technology*. Ramadi, Iraq,15–16 September. Switzerland: Springer International Publishing. 68-78.