ΔΙΑΔΙΚΤΥΟ ΚΑΤ' ΑΠΑΙΤΗΣΗ:ΓΕΩΓΡΑΦΙΚΗ ΕΠΕΚΤΑΣΗ ΤΟΥ

Χρήστος Νάτσης 6013

Η υλοποίηση του βασίζεται στον ήδη υπάρχον τηλεφωνικό κορμό

Ταχύτατη μετατροπή από μικρό επιστημονικό δίκτυο, σε παγκόσμιας εμβέλειας

Πολλαπλή και ταχύτατη ενσωμάτωση νέων συσκευών

Διαμόρφωση νέας κοινωνικής πραγματικότητας

ΤΟ ΔΙΑΔΙΚΤΥΌ ΣΗΜΕΡΑ

- Ο αριθμός των ενσωματωμένων συσκευών κατά το έτος 2025, θα προσεγγίσει τα 38.6 δισεκατομμύρια
- Μετάβαση στην εποχή τουΔιαδικτύου των Πραγμάτων (IoT)
- Ανάγκη μεταβολής της υπάρχουσας δικτυακής αρχιτεκτονικής

Πηγή: https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/

ΕΚΤΙΜΗΣΗ ΑΥΞΗΤΙΚΗΣ ΠΟΡΕΙΑΣ ΔΙΑΣΥΝΔΕΔΕΜΕΝΩΝ ΣΥΣΚΕΥΩΝ

INFORMATION CENTRIC NETWORKING

- ►Απαλείφει το βασιζόμενο στον εξυπηρετητή (server-based) μοντέλο χαρακτηρίζεται ανεπαρκές
- ►Η μετάβαση σε ένα πληροφοριο-κεντρικό μοντέλο αποτελεί αναγκαιότητα
- >Η ICN αρχιτεκτονική τροποποιεί την έως τώρα αγνωστική δομή του υπάρχοντος Διαδικτύου
- ►Η πληροφορία αποδεσμεύεται από την πηγή παραγωγής
- Ο εντοπισμός δύναται να συμβεί σε οποιοδήποτε σημείο του δικτύου

Πηγή: Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko and Lixia Zhang, "ndnSIM: NDN simulator for NS-3, Technical Report NDN-0028",2015

- Αποτελεί ερευνητική επέκταση του ICN
- Διατηρεί την υπάρχουσα σχεδιαστική δομή διαστρωμάτωσης κλεψύδρας (hourglass)
- Οδήγησε στην ονοματοδοσία των πακέτων
- Επιτρέπει την αποθήκευση και ανάκτηση των πακέτων από την προσωρινή μνήμη

NAMED DATA NETWORKING - NDN

- Διαχωρισμός σε πακέτα Ενδιαφέροντος και Δεδομένων Interest and Data Packets –
- Η ονοματολογία ενός πακέτου αναπαρίσταται λόγου χάριν από το /duth/videos/corona-outbreak.mpg
- Μοναδικό παγκόσμιο αναγνωριστικό Nonce σε έκαστο πακέτο Ενδιαφέροντος
- Η ενσωμάτωση του Content Store σε κάθε κόμβο, επιτρέπει τάχιστη ανάκτηση του πακέτου Δεδομένων, από τον πλησιέστερο χρήστη

ΠΕΡΑΙΤΕΡΩ ΕΠΕΞΕΓΗΣΗ ΤΟΥ NDN

```
christos@christos-Inspiron-5570:~/ndn/scenario$ ./waf --run "test1 --PrintHelp"
 af: Entering directory `/home/christos/ndn/scenario/build
af: Leaving directory `/home/christos/ndn/scenario/build'
test1 [Program Options] [General Arguments]
Program Options:
                      cachingStrategy(LRU,LFU,FIFO,RANDOM,nocache) [LRU]
    --csStrategy:
    --cacheEntries:
                      numCacheEntries [1000]
    --packetsize:
                      packetsize [5000]
    --interests:
                      interests pers second [900]
    --delayvalue:
                      channel in [ms] [10ms]
General Arguments:
    -- PrintGlobals:
                                   Print the list of globals.
                                   Print the list of groups.
    -- PrintGroups:
    --PrintGroup=[group]:
                                   Print all TypeIds of group.
                                   Print all TypeIds.
    --PrintTypeIds:
                                  Print all attributes of typeid.
    --PrintAttributes=[typeid]:
    --PrintHelp:
                                   Print this help message.
christos@christos-Inspiron-5570:~/ndn/scenario$
```

- Αξιοποίηση του ερευνητικού εργαλείου ndnSIM για εκτέλεση των προσομοιώσεων
- Αποτελεί επέκταση του ευρέως διαδεδομένου προσομοιωτή ns-3
- Επεξεργασία των εξαχθέντων δεδομένων στο προγραμματιστικό περιβάλλον της R

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΝΟΝSIM

- Διερεύνυση της επίδρασης των μεγάλων πακέτων δεδομένων στη συνολική αποδοτικότητα της δικτυακής τοπολογίας
- Μεταβολή των τιμών διαθέσιμου εύρους ζώνης για τιμές οριακής, έντονης και μη συμφόρησης
- Μεταβολή των τιμών καθυστέρησης διάδοσης για σταθερό μέγεθος πακέτου
- Χρήση τεσσάρων διαφορετικών πολιτικών επεξεργασίας ουράς – FIFO, LFU, LRU, RANDOM
- Χρήση dumbbell τοπολογίας

ΕΙΣΑΓΩΓΗ ΣΤΟ ΠΕΙΡΑΜΑΤΙΚΌ ΜΕΡΟΣ 1/2

- Αξιοποίηση δύο διαφορετικών εφαρμογών παραγωγής κίνησης ConsumerCbr και ConsumerZipfMandelbrot-
- Η εφαρμογή ConsumerCbr προβαίνει στην παραγωγή συνεχούς σταθερής κίνησης
- Η ConsumerZipfMandelbrot προσομοιώνει τον πραγματικό τρόπο ζήτησης πακέτων, βάσει της κατανομής Zipf
- Εξαγωγή στατιστικών δεδομένων για το συνολικό throughput, τη συνολική καθυστέρηση διάδοσης, τα ποσοστά επιτυχούς ανάκτησης πακέτων από την προσωρινή μνήμη και το μέσο χρόνο παραμονής του πακέτου στην προσωρινή μνήμη

ΕΙΣΑΓΩΓΗ ΣΤΟ ΠΕΙΡΑΜΑΤΙΚΌ ΜΕΡΟΣ 2/2

- Προσομοίωση σε συνθήκες μη συμφόρησης
- Διαθέσιμο Bandwidth κόμβων Καταναλωτών και Παραγωγών στα 40 [Mbps]
- Διαθέσιμο Bandwidth κόμβων Δρομολογητή στα 160 [Mbps]
- > Συνεχής μεταβολή και αύξηση του μεγέθους πακέτου Δεδομένων
- Επιλογή του βέλτιστου μεγέθους πακέτου Δεδομένων και περαιτέρω διερεύνηση σε περιβάλλον μεταβλητής καθυστέρησης διάδοσης

1° ΣENAPIO

- Η τοπολογία ανταποκρίνεται επαρκώς στην αύξηση του μεγέθους πακέτου
 Δεδομένων
- Για την εφαρμογή ConsumerCbr η πορεία εξέλιξης του Throughput είναι σταθερή
- Για την εφαρμογή ConsumerZipfMandelbrot εμφανίζεται μέγιστη αξιοποίηση του καναλιού κοντά στην τιμή των 120 [KB]
- Ο χρόνος παραμονής των πακέτων Δεδομένων στην προσωρινή μνήμη είναι μικρότερος, λόγω της ταχείας αντικατάστασης τους

ΜΕΤΑΒΟΛΗ ΤΗΣ ΚΑΘΥΣΤΕΡΗΣΗΣ ΔΙΑΔΟΣΗΣ ΓΙΑ ΣΤΑΘΕΡΟ ΜΕΓΕΘΟΣ ΠΑΚΕΤΟΥ ΔΕΔΟΜΕΝΩΝ

[Bandwidth]*[Delay]=[Packets]

Consumer1 Delay vs Variable Delay CosumerCbr

Consumer1 Delay vs Variable Delay ZipfMandelbrot

- Η συνεχής αύξηση της καθυστέρησης διάδοσης οδηγεί σε μείωση του αξιοποιήσιμου bandwidth και για τις δύο εφαρμογές
- ► Η ανάκτηση των πακέτων Δεδομένων από την προσωρινή μνήμη δεν παρουσιάζει μεγάλες διακυμάνσεις

- Προσομοίωση σε οριακές συνθήκες εύρους ζώνης
- Διαθέσιμο Bandwidth κόμβων Καταναλωτών και Παραγωγών στα 40 [Mbps]
- Διαθέσιμο Bandwidth κόμβων Δρομολογητή στα 80 [Mbps]
- ► Τα συνολικά αποτελέσματα δε διαφοροποιούνται ιδιαίτερα συγκριτικά με τα αποτελέσματα του 1^{ου} σεναρίου

2° ΣENAPIO

0,2

Consumer1 Delay

ConsumerZipfMandelbrot

- Προσομοίωση σε συνθήκες συμφόρησης
- Διαθέσιμο Bandwidth κόμβων Καταναλωτών και Παραγωγών στα 40 [Mbps]
- Διαθέσιμο Bandwidth κόμβων Δρομολογητή στα 60 [Mbps]

3° SENAPIO

Consumer2 Delay

ZipfMandelbrot

ΜΕΤΑΒΟΛΗ ΤΗΣ ΚΑΘΥΣΤΕΡΗΣΗΣ ΔΙΑΔΟΣΗΣ ΓΙΑ ΣΤΑΘΕΡΟ ΜΕΓΕΘΟΣ ΠΑΚΕΤΟΥ ΔΕΔΟΜΕΝΩΝ

- Σε συνθήκες έντονης συμφόρησης παρατηρείται προσαρμοστικότερη συμπεριφορά της εφαρμογής παραγωγής κίνησης ZipfMandelbrot
- Για σταθερή παραγωγή κίνησης μέσω της ConsumerCbr το δίκτυο αποκρίθηκε ανεπαρκώς
- Μικρή αύξηση στον αριθμό των πακέτων Ενδιαφέροντος για δεδομένο μέγεθος πακέτων Δεδομένων, ενδέχεται να οδηγεί σε ακαριαία κατάρρευση
- Αύξηση της συνολικής καθυστέρησης στην τοπολογία
- Η πολιτική επεξεργασίας ουράς διαδραματίζει καθοριστικό ρόλο στο χρόνο παραμονής ενός πακέτου δεδομένων στην προσωρινή μνήμη

ΣΥΜΠΕΡΑΣΜΑΤΑ 3ου ΣΕΝΑΡΙΟΥ

