Homework & quiz

• Read pages 115-116

• Solve 5.1, 5.2, 5.3 and 5.6

Quiz on Saturday, 25 Jan 2014 (?tentatively?)

Example 5.1

Illustration 5.1 A wetted-wall absorption tower, 1 in (2.54 cm) ID, is fed with water as the wall liquid and an ammonia-air mixture as the central-core gas. At a particular level in the tower, the ammonia concentration in the bulk gas is 0.80 mole fraction, that in the bulk liquid 0.05 mole fraction. The temperature = 80° F (26.7°C), the pressure 1 std atm. The rates of flow are such that the local mass-transfer coefficient in the liquid, from a correlation obtained with dilute solutions, is $k_L = 0.34 \text{ mol/ft}^2 \cdot \text{h} \cdot (\text{lb mol/ft}^3) = 2.87 \times 10^{-5} \text{ kmol/m}^2 \cdot \text{s} \cdot (\text{kmol/m}^3)$, and the local Sherwood number for the gas is 40. The diffusivity of ammonia in air = $0.890 \text{ ft}^2/\text{h} = 2.297 \times 10^{-5} \text{ m}^2/\text{s}$. Compute the local mass-transfer flux for the absorption of ammonia, ignoring the vaporization of water.

$$N_{A} = \frac{N_{A}}{\sum N} F_{G} \ln \frac{N_{A}/\sum N - y_{A,i}}{N_{A}/\sum N - y_{A,G}} = \frac{N_{A}}{\sum N} F_{L} \ln \frac{N_{A}/\sum N - x_{A,i}}{N_{A}/\sum N - x_{A,i}}$$

Liquid
$$\frac{N_A/\Sigma N - y_{A,i}}{N_A/\Sigma N - y_{A,G}} = \left(\frac{N_A/\Sigma N - x_{A,L}}{N_A/\Sigma N - x_{A,i}}\right)^{F_L/F_G}$$

Table 3.1 Relations between mass-transfer coefficients

Rate equation Diffusion of Units of coefficient Equimolal A through $c = 1000/18 = 55.5 \,\mathrm{kmol/m^3}$ nondiffusing B Moles transferred $N_A = k'_L \Delta c_A$ $N_{A} = k_{I} \Delta c_{A}$ (Area)(time)(mol/vol) Moles transferred $N_A = k'_r \Delta x_A$ $N_A = k_x \Delta x_A$ (Area)(time)(mole fraction) Conversions: $F = k_x x_{B,M} = k_L x_{B,M} c = k'_L c = k'_L \frac{\rho}{M} = k'_x$

$$F_L = (2.87 \times 10^{-5})(1.0)(55.5) = 1.590 \times 10^{-3} \,\mathrm{kmol/m^2 \cdot s}$$

Gas

$$d = 0.254 \text{ m}$$

Sh =
$$\frac{F_G d}{cD_A}$$
 = 40 $C = \frac{1}{22.41} \frac{273}{273 + 26.7} = 0.04065 \text{ kmol/m}^3$

$$D_{\rm A} = 2.297 \times 10^{-5} \,\rm m^2/s$$

$$F_G = \frac{40cD_A}{d} = \frac{40(0.04065)(2.297 \times 10^{-5})}{0.0254} = 1.471 \times 10^{-3} \text{ kmol/m}^2 \cdot \text{s}$$

Equilibrium data

18 21 1	NH ₃ partial pressure		
NH_3 mole fraction x_A	lb _f /in²	$N/m^2 = \bar{p}_A$	$y_A = \frac{1}{1.01}$
0	0	0	0
0.05	1.04	7 171	0.0707
0.10	1.98	13 652	0.1347
0.25	8.69	59 917	0.591
0.30	13.52	93 220	0.920

0.2

 x_A = mole fraction NH₃ in liquid

0.3

Mass transfer flux

$$\frac{N_{A}/\Sigma N - y_{A,i}}{N_{A}/\Sigma N - y_{A,G}} = \left(\frac{N_{A}/\Sigma N - x_{A,L}}{N_{A}/\Sigma N - x_{A,i}}\right)^{F_{L}/F_{G}}$$

$$y_A = 1 - (1 - y_{A,G}) \left(\frac{1 - x_{A,L}}{1 - x} \right)^{F_L/F_G}$$

Read pages 115-116

$$x_{A,i} = 0.274, y_{A,i} = 0.732.$$

$$N_A = 1(1.590 \times 10^{-3}) \ln \frac{1 - 0.05}{1 - 0.274}$$

 $_{\rm c} = 4.30 \times 10^{-4} \, {\rm kmol \, NH_3 \, absorbed/m^2 \cdot s, \, local \, flux}$ Slide 82

Homework & quiz

• Read pages 115-116

• Solve 5.1, 5.2, 5.3 and 5.6

Quiz on Saturday, 25 Jan 2014 (?tentatively?)

Operating line

$$R_1 x_1 + E_1 y_1 = R_2 x_2 + E_2 y_2$$

$$R_1 x_1 - R_2 x_2 = E_2 y_2 - E_1 y_1$$

Steady-state concurrent process

 $R_1 x_1 = R_S \frac{x_1}{1 - x_1} = R_S X_1$

Transfer from phase R to E

