INFO2 : INFORMATIQUE EMBARQUEE TD1 : Gestion des mémoires et interfaces

1) Rappels: les mémoires, notion de sortie 3 états.

Sur un circuit mémoire, on distingue les broches suivantes :

a₀ à a_{n-1}: n broches d'adresse (boitier hébergeant donc 2ⁿ octets).

 $D_0\,\grave{a}\,\,D_{m\text{-}1\,:}\,$ broches d'entrée ou sortie de la donnée

R/W : commande de lecture ou écriture
CS : commande de sélection de boîtier

2) ORGANISATION DE LA MEMOIRE CENTRALE POUR MICROPROCESSEUR 8 BITS (PRINCIPE)

Pour expliquer le principe de l'association des mémoires, on va raisonner avec des boîtiers de faible capacité. Le bus des microprocesseurs 8 bits est constitué de 8 fils de données (D₇ D₀)

Q9 Déterminer $\overline{S_0}$ = Fonction $(\overline{E}, \operatorname{In})$		$\overline{S_0}$ Fig. 3
Q10 Donner un schéma du décodeur ré	éalisé avec des opérateurs NANE)

Q8 Donner la table de vérité du décodeur D1 fig. 1

21) Extension de la mémoire

Si la capacité de la mémoire fig. 1 page 2 doit être doublée, il suffit de placer deux circuits supplémentaires B_2 et B_3 (cf. fig. 4.). Sur le schéma, les broches A0 à A2 du microprocesseur sont connectées aux broches a0 à a2 des boîtiers. **Remarque :** rajouter R/W entre μ P et boitiers mémoire car sur ce schéma il a été oublié.

Q13 Exemple d'application avec un Pic 18F4520 vu du coté mémoire des données

Quelle est la taille maximum de la mémoire de données que peut piloter ce Pic ? Donnez la capacité en octet de chaque boîtier ; donnez les adresses de base et de fin de chaque boîtier ; dressez la cartographie de la mémoire. Sur le schéma, les broches A0 à A7 du microprocesseur sont connectées aux broches a0 à a7 des boîtiers.

	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	adresse (hexa)
@base RAM0													
@fin RAM0													
@fin RAM5													

TABLE DE VERITE du décodeur de 1/16

Ē	a3	a2	al	a0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
0	1	0	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
0	1	0	1	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	X	X	X	X	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

X:0 ou 1