

ICDA-4

4th International Conference on Dosimetry and its Applications

Data Science Pipeline for Development of Patient-Specific Phantoms and S-value Calculation in Radiopharmaceutical Therapy

Jorge Borbinha¹, Ana Cravo Sá^{1,2}, Durval Costa³, Paulo Ferreira³, Pedro Vaz¹, Salvatore Di Maria¹

¹ C2TN, Instituto Superior Técnico, University of Lisbon, Portugal ² Escola Superior de Saúde, Polytechnic Institute of Porto, Portugal ³ Champalimaud Foundation, Lisboa, Portugal

INTRODUCTION

Radiopharmaceutical Therapy (RPT) is a cancer treatment modality that uses:

Targeting molecule

Radionuclide

To deliver damaging ionizing radiation (IR) to tumor cells.

- RPT presents advantages such as:
 - More localized tumor irradiation (including metastases)
 - Higher tumor cell specificity.

Fig. 1 – Cell schematic of Radiopharmaceutical Therapy.

INTRODUCTION

- Tumors and patients often display heterogeneity at the time of diagnosis.
- Often overlooked during treatment planning in RPT.

• Different tumor phenotypes may exhibit different resistance/sensitivity to the same therapy.

Use of functional and anatomical imaging to identify tumor phenotypes (i.e. sub-volumes) inside a tumor mass.

Fig. 2 – Identification of tumor phenotypes based on radiomics methods, such as CT number, hypoxia and vascularity [Even et al. 2017].

INTRODUCTION

- Tumors and patients often display heterogeneity at the time of diagnosis.
- Often overlooked during treatment planning in RPT.

• Different tumor phenotypes may exhibit different resistance/sensitivity to the same therapy.

Use of functional and anatomical imaging to identify tumor phenotypes (i.e. sub-volumes) inside a tumor mass.

Fig. 2 – Identification of tumor phenotypes based on radiomics methods, such as CT number, hypoxia and vascularity [Even et al. 2017].

Improved Individual Dosimetry → tailor the radiation–absorbed dose to the individual, to maximize efficacy of tumor treatment, while minimizing healthy tissue toxicity

PURPOSE

MAIN AIM:

 Develop a Patient-Specific Phantom (PSP) and perform dosimetric calculations by comparing results with the ICRP reference adult female voxel phantom (ICRP-AF).

SECONDARY AIMS:

- Segment clinical functional and anatomical images.
- Develop a Data Science pipeline able to streamline the development of PSP for Monte Carlo (MC) simulation.
- Create PSP from acquired clinical images.
- Validate the created PSP, by performing MC simulations and comparing dosimetric results with the ICRP-AF.
 e.g. SAF, S-value

• RPT with ¹⁷⁷Lu-DOTATATE of neuroendocrine tumor in the liver.

Image Acquisition and Segmentation

EXAMPLE OF TREATMENT (1 CYCLE):

- Pre-treatment: PET-CT using ⁶⁸Ga-DOTANOC
- 24h post-treatment: SPECT + CT using ¹⁷⁷Lu-DOTATATE
- 168h post-treatment: SPECT using ¹⁷⁷Lu-DOTATATE

Image Acquisition and Segmentation

EXAMPLE OF TREATMENT (1 CYCLE):

- RPT with ¹⁷⁷Lu-DOTATATE of neuroendocrine tumor in the liver.
- Pre-treatment: PET-CT using ⁶⁸Ga-DOTANOC
- 24h post-treatment: SPECT + CT using ¹⁷⁷Lu-DOTATATE
- 168h post-treatment: SPECT using ¹⁷⁷Lu-DOTATATE

WORK FLOW:

Segment pre-treatment CT in Pinnacle TPS

Tumor segmentation from ¹⁷⁷Lu SPECT post 24h performed in Slicer

Combined full segmentation

Imported into Slicer and exported as labelmap (.nrrd)

Data Science Pipeline

Spyder

5.4.3

- Pipeline developed using Python, employing data science libraries/modules.
- Pipeline analyzes image data and produces voxel phantom file for Monte Carlo (MC) dosimetric calculations using the peanEasy2020/PENELOPE2018 program.
- Specific Absorbed Fractions (SAF) and S-value calculated in ICRP-AF and segmented phantom (MARIA).

RESULTS AND DISCUSSION

ICRP-AF SAF Comparison with Literature

- SAF(Liver<-Liver), SAF(Stomach W.<-Liver), SAF(Lungs<-Liver) calculated and compared to literature (10, 50, 100 keV).
- Photons → **6.2**%
- Electrons \rightarrow 2.3%

L Hadid et al 2010 Phys. Med. Biol. 55 3631

Table 1 – Organ mass in ICRP-AF and MARIA and relative difference [ICRP, 2009. ICRP Publication 110. Ann. ICRP 39 (2)].

Organ	Mass (kg)		Relative
	ICRP-AF	MARIA	Difference (%)
Lung	0.941	0.835	11%
Breast, glandular	0.200	0.054	73%
Liver	1.400	3.019	116%
Spleen	0.130	0.089	32%
Stomach	0.140	0.096	32%
Kidneys	0.275	0.395	44%
Bladder	0.040	0.043	7%

MEAN RELATIVE DIFFERENCE: 44%

RESULTS AND DISCUSSION

ICRP-AF SAF Comparison with Literature

- SAF(Liver<-Liver), SAF(Stomach W.<-Liver), SAF(Lungs<-Liver) calculated and compared to literature (10, 50, 100 keV).
- Photons → **6.2**%
- Electrons \rightarrow 2.3%

L Hadid et al 2010 Phys. Med. Biol. 55 3631

Table 1 – Organ mass in ICRP-AF and MARIA and relative difference [ICRP, 2009. ICRP Publication 110. Ann. ICRP 39 (2)].

Organ	Mass (kg)		Relative
Organ	ICRP-AF	MARIA	Difference (%)
Lung	0.941	0.835	11%
Breast, glandular	0.200	0.054	73%
Liver	1.400	3.019	116%
Spleen	0.130	0.089	32%
Stomach	0.140	0.096	32%
Kidneys	0.275	0.395	44%
Bladder	0.040	0.043	7%

MEAN RELATIVE DIFFERENCE: 44%

Fig. 3 - Patient-specific Phantom segmented from clinical images (obtained in Slicer).

RESULTS AND DISCUSSION

Fig. 4 – S-value in the Lung, Breast, Liver, Spleen, Stomach, Kidneys and Bladder Wall, with Liver as source organ, calculated in the ICRP-AF, MARIA and their relative difference. The emissions of ¹⁷⁷Lu were considered, namely beta, internal conversion auger electrons, as well as X-ray and gamma photons.

S-value mean relative difference: **74%**

• As expected, the differences obtained between the two phantoms reflect the unequal patient individual anatomy, e.g. MARIA has much higher liver mass than ICRP-AF.

CONCLUSION

- The PSP created (MARIA) is considered validated, by comparison of calculated S-values to ICRP-AF.
- The developed Pipeline is efficient, versatile and user-friendly, able to work with any CT image or labelmap.

Home PC → Pipeline runs in ~ 7 min for 25 million voxel phantom

Efficient for research!

CONCLUSION

- The PSP created (MARIA) is considered validated, by comparison of calculated S-values to ICRP-AF.
- The developed Pipeline is efficient, versatile and user-friendly, able to work with any CT image or labelmap.

Home PC → Pipeline runs in ~ 7 min for 25 million voxel phantom

Efficient for research!

Tumor Heterogeneity Interpatient Variability

Heterogenous radiopharmaceutical distribution in tumor

Unpredictable Therapeutic Index and Clinical Outcome

Commitment to

Image-based

Personalized Dosimetry

ICDA-4

4th International Conference on Dosimetry and its Applications

Thank you for your attention!

ACKNOWLEDGEMENTS

• Fundação para a Ciência e Tecnologia (FCT) and European Social Fund for PhD grant no. 2020.05908.BD.

CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

EURADOS Young Scientist Conference Support Financing.

Authors and Institutions:

Jorge Borbinha¹, Ana Cravo Sá^{1,2}, Durval Costa³, Paulo Ferreira³, Pedro Vaz¹, Salvatore Di Maria¹

- ¹ C2TN, Instituto Superior Técnico, University of Lisbon, Portugal
- ² Escola Superior de Saúde, Polytechnic Institute of Porto, Portugal
- ³ Champalimaud Foundation, Lisboa, Portugal

SUMPPLEMENTARY SLIDES

¹⁷⁷Lu emissions [ICRP Publication nº 109, 2007]

Emitted Particle	Energy (eV)	Yield (/nt)
Beta	133300	1
IC	87370	0.1548
Auger	1014	1.117
X-ray	2576	1.374
Gamma	175000	0.1803

FUTURE WORK

Segmentation of clinical PET-CT images.

Therapeutic Index (TI) = -

 $\frac{\textit{Voxel Intensity}_{\textit{before treatment}}}{\textit{Voxel Intensity}_{\textit{after treatment}}}$

Patient-specific Voxel
 Phantom: MC simulations
 using PENELOPE

Correlate dose in tumor phenotypes to therapy outcome observed in clinical images

Week 5

FDG-PET

Example of PET-CT images acquired before and after treatment. Bentzen SM et al. Semin Radiat Oncol 2011;21:101–10

 Pre-treatment CT images and 24h posttreatment SPECT images segmented using state-of-the-art specialized software, i.e. Pinnacle TPS and Slicer, respectively.

 Automatic, semi-automatic and manual segmentation methods employed.

MC Simulations

- Pipeline developed using data science methods to create simulation voxel phantom.
- MC simulations performed using penEasy2020/PENELOPE2018.
- Specific Absorbed Fractions (SAF) and S-value calculated in ICRP-AF and segmented phantom (MARIA).

Segment pre-treatment CT in Pinnacle TPS

Tumor segmentation from ¹⁷⁷Lu SPECT post 24h performed in Slicer

Combined full segmentation

Imported into Slicer and exported as labelmap (.nrrd)