Exercise1: examples of Schmidt decomposition

1-1: Random wave function (Sample code: Ex1-1.ipynb)

- Make a random vector
- SVD it and see singular value spectrum and EE

1-2: Ground state of the transverse field Ising model

$$\mathcal{H} = -\sum_{i=1}^{L-1} S_{i,z} S_{i+1,z} - \Gamma \sum_{i=1}^{L} S_{i,x}$$

(Sample code: Ex1-2.ipynb)

- Calculate GS by diagonalizing Hamiltonian
- SVD it and see singular value spectrum and EE

1-3: Picture image

(Sample code: Ex1-3.ipynb)

- Transform an image data to the vector in m^N dimension.
- SVD it and see singular value spectrum and EE
 - * Try to simulate different system size "N"
 - * You can simulate other S by changing "m"

Spectrum for N=16 $\vec{v} \in \mathbb{C}^{2^{16}}$

Ground state wave function has lower entanglement!

Scaling of the entanglement entropy

$$\vec{v} \in \mathbb{C}^{2^N}$$

Random vector: Volume low

Ground state: Area low

Exercises with Google Colab

I recommend you to use google colaboratory, https://colab.research.google.com where you can run .ipynb from your web browser.

When you use Google Colab, you need to also upload "ED.py"

for the case of "Ex1-2.ipynb", and

your image file (sample.jpg),

for the case of "Ex1-3.ipynb".

How to use Google Colab

- Open Ex1-3.ipynb in Google colab
 - Select "File/upload notebook"

By usin

Exercise 2: Make MPS and approximate it

2: Make exact MPS and approximate it by truncating singular values

Try MPS approximation for a random vector, GS of spin model, or a picture image.

Let's see how the approximation efficiency depends on the bond dimensions and vectors.

Sample code: Ex2-1, Ex2-2, Ex2-3. ipynb

These codes correspond to random vector, spin model and picture image, respectively.

*If you run them at Goole Colab, please upload MPS.py in addition to the *.ipynb.

*In the case of Ex2-2 you also need ED.py.

*In the case of Ex2-3 you also need picture file.

Exercise 2: Make MPS and approximate it

2¹⁶ dimensional vectors (=16-leg tensors)

Distance between the original and approximated vectors: $\| \vec{v}_{ex} - \vec{v}_{ap} \|$

Exercise 3: (TEBD and) iTEBD simulation (ITE)

3-1: TEBD simulation

Simulate small finite size system and compare energy with ED

Sample code: Ex3-1.py or Ex3-1.ipynb

3-2: iTEBD simulation

Simulate infinite system and calculate energy

Sample code: Ex3-2.py or Ex3-2.ipynb

* Try simulation with different "chi_max", "T_step"

*If you run them at Goole Colab, please upload ED.py and TEBD.py for Ex3-1.ipynb, and please upload TEBD.py and iTEBD.py for Ex3-2.ipynb.

3-1: Energy dynamics in TEBD

