USB 转串口芯片 CH330

手册 版本: 1B <u>http://wch.cn</u>

1、概述

CH330 是 USB 转串口芯片, 用于为计算机扩展异步串口, 或者将普通的串口设备升级到 USB 总线。

2、特点

- 仿真标准串口,用于升级原串口外围设备,或者通过 USB 增加额外串口。
- 计算机端 Windows 操作系统下的串口应用程序完全兼容,无需修改。
- 硬件全双工串口,内置独立的收发缓冲区,支持通讯波特率 100bps~2Mbps。
- 支持 7 或 8 个数据位,支持奇校验/偶校验/标志校验/空白校验。
- 通过外加电平转换器件,提供 RS232、RS485 等接口。
- 支持 5V 电源电压和 3.3V 电源电压。

3、封装

封装形式	塑体宽度		引脚间距		封装说明	订货型号	
SOP-8	3. 9mm	150mil	1. 27mm	50mil	标准的8脚贴片	CH330N	

4、引脚

引脚号	引脚名称	类型	引脚说明		
5	VCC	电源	正电源输入端,需要外接 0. 1uF 电源退耦电容		
3	GND	电源	公共接地端,直接连到 USB 总线的地线		
8	V3	电源	在 3.3V 电源电压时连接 VCC 输入外部电源, 在 5V 电源电压时外接容量为 0.1uF 退耦电容		
1	UD+	USB 信号	直接连到 USB 总线的 D+数据线		
2	UD-	USB 信号	直接连到 USB 总线的 D-数据线		
6	TXD	输出	串行数据输出,空闲时为高电平		
7	RXD	输入	串行数据输入,内置上拉电阻,空闲时为高电平		
4	RTS#	输出	MODEM 联络输出信号,请求发送,低电平有效		

5、功能说明

CH330 芯片使用 5V 工作电压时, VCC 引脚输入外部 5V 电源, 并且 V3 引脚外接容量为 0. 1uF 的电源退耦电容。CH330 芯片使用 3. 3V 工作电压时, V3 引脚应该与 VCC 引脚相连接, 同时输入外部的 3. 3V

CH330 手册 2

电源,并且与 CH330 相连接的其它电路的工作电压不能超过 3.3V。
CH330 串口接收信号的允许波特率误差不小于 2%, 串口发送信号的波特率误差小于 1.2%。

6、参数

6.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-20	70	$^{\circ}\!\mathbb{C}$
TS	储存时的环境温度	-55	100	$^{\circ}\!\mathbb{C}$
VCC	电源电压(VCC 接电源,GND 接地)	-0. 5	6. 0	٧
V10	输入或者输出引脚上的电压	-0. 5	VCC+0. 5	V

6. 2. 电气参数 (测试条件: TA=25℃, VCC=5V, 不包括连接 USB 总线的引脚)

名称	参数说明			最小值	典型值	最大值	单位
VCC	电源电压 V3 引脚不连		车 VCC 引脚	4. 2	5	5. 3	V
	电源电压	V3 引脚连接 VCC 引脚		3. 1	3. 3	3. 5	
ICC	工作时总电源电流 VCC=5V VCC=3. 3V		VCC=5V		7	15	mA
				5	12	mA	
VIL	低电平输入电压			-0. 5		0. 7	٧
VIH	高电平输入电压			2. 0		VCC+0. 5	٧
VOL	低电平输出电压(6mA 吸入电流)					0. 5	٧
VOH	高电平输出电压(4mA 输出电流)			VCC-0. 5			٧
IUP	内置上拉电阻的输入端的输入电流			20	150	300	uA

7、USB 转 RS232 串口应用

下图是由 CH330 实现的 USB 转 RS232 串口。电平转换电路 U5(MAX232/ICL232/SP232 等)用于将 TTL 串口转换为 RS232 串口。

如果只需要实现 USB 转 TTL 串口, 那么可以去掉图中的 U5 及电容 C25/C26/C27/C28/C29。

P1 是 USB 端口。如果 CH330 芯片和低功耗的 USB 产品直接使用 USB 总线提供的 5V 电源,可以将图中 R1 换成保护电阻或者短路。如果 USB 产品通过其它供电方式提供常备电源,那么 CH330 也应该使用该常备电源,图中 R1 可以断开,并且两者的接地线直接相连接。

V3 引脚的电容 C2 容量为 0. 1μ F,用于 CH330 内部 3. 3V 电源节点退耦,C1 容量为 0. 1μ F,用于 外部电源退耦。退耦电容 C2 和 C1 应该尽量靠近 CH330 的相连引脚。

CH330 手册 3

8、连接单片机串口,各自供电

下图是双供电方式下 MCU 单片机通过 TTL 串口连接 CH330 芯片实现 USB 通讯的参考电路。CH330 由 USB 总线供电 VBUS,MCU 使用另一电源 VDD,VDD 支持 3V \sim 5V,图中二极管 D6 和 D7 用于缓解双电源方式下 CH330 与 MCU 之间通过 RXD 或 RX 内部二极管产生电流倒灌的问题。图中 MCU 的 RX 引脚应该启用内部上拉电阻,如没有,则建议对 RX 引脚外加 8K $\Omega\sim$ 30K Ω 的电阻。

二极管 D6 针对 CH330 无电但 MCU 有电且 TX 高电平通过 RXD 内部二极管向 CH330 倒灌电流的情形; 二极管 D7 针对 MCU 无电但 CH330 有电且 TXD 高电平通过 RX 内部二极管向 MCU 倒灌电流的情形。如果确定某个情形不会发生,则相应的二极管可以去掉,例如 MCU 有永久自备电源,那么 D7 可以短路。

二极管优先用小功率的 Schottky 肖特基二极管,但普通二极管例如 IN4148 通常也可以应用。

一般情况下,不建议 CH330 与 MCU 分开各自供电,仅在必要时使用。

