Российский Университет Дружбы Народов Факультет физико-математических и естественных наук

Реферат

Модель экономического роста Солоу

Математическое моделирование

Выполнил: Ильин Андрей Владимирович 1032201656 НФИбд-01-20

Содержание

Введение	3
Актуальность	
Цель	
Задачи	
Модель экономического роста Солоу	4
Экономический рост	
Неоклассические модели роста	4
Производственная функция Солоу	
Математическая модель Солоу	5
Вывод	
Источники	

Введение

Актуальность

Модель Солоу считают отправной точкой для всех современных моделей экономического роста, которым она дала необходимую математическую базу для анализа темпов изменения капитала. Модель оказала влияние на всю макроэкономическую теорию.

Цель

Изучить модель экономического роста Солоу, лежащую в основе современных моделей экономического роста и активно использующуюся по сей день.

Задачи

- 1. Изучить теорию модели экономического роста Солоу;
- 2. Изучить математическое описание модели экономического роста Солоу;

Модель экономического роста Солоу

Экономический рост

Начнем с того, что под экономическим ростом обычно понимаются не кратковременные взлеты и падения объема производства, а долговременные изменения уровня реального производства, связанные с развитием производительных сил на долгосрочном временном интервале.

Сущность реального экономического роста состоит в разрешении главного противоречия экономики: ограниченность производственных ресурсов при условии безграничности общественных потребностей.

Неоклассические модели роста

Основной посылкой неоклассических моделей экономического роста является положение о том, что каждый фактор производства создает определенную долю производимого продукта.

В свою очередь, основным инструментом неоклассического анализа экономического роста является производственная функция:

$$Y = F(K, L)$$

где У — потенциальный уровень производства; K, L — соответственно затраты труда и капитала.

Производственная функция Солоу

В частности, Солоу в производственную функцию вводит функцию технологического прогресса. Таким образом получается следующая производственная функция:

$$Y = A(t) \cdot F(K, L)$$

В качестве F(K,L) используется производственная функция Кобба - Дугласа:

$$F(K,L) = K^{\alpha} \cdot L^{1-\alpha}$$

где α — коэффициент эластичности по капиталу (доля капитала в совокупном продукте, то есть ВВП); $1-\alpha$ — коэффициент эластичности по труду (доля труда в совокупном продукте).

Таким образом, производственная функция Слоу принимает следующий вид:

$$Y = A(t) \cdot K^{\alpha} \cdot L^{1-\alpha},$$

где Y — выпуск продукции; A — многофакторная производительность труда (технический прогресс); K — объём используемого капитала; L — затраты живого труда.

Математическая модель Солоу

Состояние экономики в модели Солоу задается пятью показателями, которые со временем меняются:

- L число занятых (труд);
- К основные производственные фонды (капитал).
- Y выпуск или валовый внутренний продукт (ВВП).
- С потребление;
- I инвестиции;

В модели используются следующие показатели, которые со временем остаются неизменными:

- у годовой темп прироста занятых;
- μ доля выбывших за год основных производственных фондов, то есть норма выбытия капитала;
- ρ норма накопления, то есть доля инвестиций или норма сбережения.

Отметим, что инвестиции I связаны с выпуском Y равенством: $I = \rho Y$. Учтем, что доход от выпуска распределяется на потребление и сбережение (инвестиции), то есть равен Y = C + I, а также, что численность занятых L растет с постоянным темпом v, то есть $L = L_0 e^{\nu t}$.

Тогда можно составить систему уравнений, описывающую модель Солоу в абсолютных показателях:

$$\begin{cases} K'_t = -\mu K + I \\ L = L_0 e^{\nu t} \\ I = \rho Y \\ Y = I + C \\ Y = A(t) \cdot K^{\alpha} \cdot L^{1-\alpha} \end{cases}$$

Модель Солоу можно записать и в относительных показателях, нормировав все уравнения системы трудом L.

$$\begin{cases} \lambda = \mu + \nu \\ k'_t = -\lambda k + \rho y \\ k_0 = \frac{K_0}{L_0} \\ i = \rho y; \\ y = i + c \\ y = A(t) \cdot k^{\alpha} \end{cases}$$

$$i=rac{I}{L}$$
 — удельные инвестиции,
$$y=rac{Y}{L}$$
 — удельный продукт (производительность труда),
$$k=rac{K}{L}$$
 — удельный капитал или (удельная фондовооруженность),
$$c=rac{C}{L}$$
 — удельное потребление,

λ - норма потребления, ρ - норма накопления.

В соответствии с заданной системой уравнений в относительных показателях можно построить имитационную модель рассматриваемой экономической системы.

Вывод

Неоклассическая модель экономического роста Роберта Солоу основывается на производственной функции Кобба-Дугласа. Основное отличие модели Солоу от производственной функции заключается в том, что автор вводит технический прогресс как фактор экономического роста наравне с такими факторами производства как труд и капитал.

Модель описывает влияние трёх вышеупомянутых факторов на экономический рост и описывается системой уравнений: производственной функцией, составляющую основу модели, и рядом условий и ограничений.

Источники

- 1. http://en.wikipedia.org/wiki/Neoclassical_growth_model
- 2. https://mirec.mgimo.ru/upload/ckeditor/files/mirec-2016-4-prichtina.pdf