

Cost of a failed clinical trial:

~ \$800 million

Cost of a failed clinical trial:

~ \$800 million

Pre-clinical reasons for clinical trial failure:

 Inadequate knowledge of disease mechanism

 Unknown drug mechanism of action

Insufficient knowledge of how drug interacts with the body

Cost of a failed clinical trial:

~ \$800 million

Pre-clinical reasons for clinical trial failure:

 Inadequate knowledge of disease mechanism

 Unknown drug mechanism of action

 Insufficient knowledge of how drug interacts with the body

Mechanism of action (MoA) experiments

Current paradigm:

Culture stacks of cells

Perform many assays

Determine MoA if correct assay was chosen

Mechanism of action (MoA) experiments

Current paradigm:

Culture stacks of cells

Perform many assays

Determine MoA if correct assay was chosen

Future paradigm:

Culture fewer cells

Perform one imaging experiment

Determine MoA based on deep learning models

Application of deep learning to cell imaging

Number of publications in 2020:

256

Application of deep learning to cell imaging

Article Open Access | Published: 06 August 2020

Tales of 1,008 small molecules: phenomic profiling through live-cell imaging in a panel of reporter cell lines

Michael J. Cox, Steffen Jaensch ⊡, Jelle Van de Waeter, Laure Cougnaud, Daan Seynaeve, Soulaiman Benalla, Seong Joo Koo, Ilse Van Den Wyngaert, Jean-Marc Neefs, Dmitry Malkov, Mart Bittremieux, Margino Steemans, Pieter J. Peeters, Jörg Kurt Wegner, Hugo Ceulemans, Emmanuel Gustin, Yolanda T. Chong & Hinrich W. H. Göhlmann

Number of publications in 2020:

256

Application of deep learning to cell imaging

Number of publications in 2020:

256

Article Open Access | Published: 06 August 2020

Tales of 1,008 small molecules: phenomic profiling through live-cell imaging in a panel of reporter cell lines

Michael J. Cox, Steffen Jaensch ⊡, Jelle Van de Waeter, Laure Cougnaud, Daan Seynaeve, Soulaiman Benalla, Seong Joo Koo, Ilse Van Den Wyngaert, Jean-Marc Neefs, Dmitry Malkov, Mart Bittremieux, Margino Steemans, Pieter J. Peeters, Jörg Kurt Wegner, Hugo Ceulemans, Emmanuel Gustin, Yolanda T. Chong & Hinrich W. H. Göhlmann

Focus on MoAs involving a GPCR

~33% of FDAapproved drugs target GPCRs

Approach

Manually annotate MoA Gather and process images Convolutions Neural network Output predictions

- Add convolutional layer
- Add dense layer
- Change activation function to leaky relu
- Transfer learning
 - o MobileNetV2
 - o ResNet50

Add convolutional layer

Add dense layer

- Change activation function to leaky relu
- Transfer learning
 - MobileNetV2
 - o ResNet50

Add convolutional layer

Add dense layer

 Change activation function to leaky relu

- Transfer learning
 - MobileNetV2
 - ResNet50

Test data loss 0.6283

Add convolutional layer

Add dense layer

 Change activation function to leaky relu

- Transfer learning
 - MobileNetV2
 - ResNet50

Test data loss 0.6283

Add convolutional layer

Add dense layer

 Change activation function to leaky relu

- Transfer learning
 - MobileNetV2
 - ResNet50

Test data loss 0.6283

Test data AUC precision-recall

0.0733

Confusion Matrix

Actual

Computationally slow ~350 sec/epoch

Use GPU instead of CPU

Use GPU instead of CPU

Non-obvious features to differentiate classes

Computationally slow ~350 sec/epoch

Use GPU instead of CPU

Non-obvious features to differentiate classes

Homogenize data by separately training different stain combinations

Computationally slow ~350 sec/epoch

Use GPU instead of CPU

Non-obvious features to differentiate classes

Homogenize data by separately training different stain combinations

Overfitting is happening almost immediately

Computationally slow _____ Use GPU instead of CPU ~350 sec/epoch

Non-obvious features to differentiate classes

Overfitting is happening almost immediately

Homogenize data by separately training different stain combinations

Add regularization methods