Data Quality

Visualizzazione dell'Informazione Quantitativa

https://softeng.polito.it/courses/VIQ

Licensing Note

This work is licensed under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

You are free: to copy, distribute, display, and perform the work

Under the following conditions:

- **Attribution**. You must attribute the work in the manner specified by the author or licensor.
- Non-commercial. You may not use this work for commercial purposes.
- No Derivative Works. You may not alter, transform, or build upon this work.
 - For any reuse or distribution, you must make clear to others the license terms of this work.
 - Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Software Qualities

Adapted from ISO/IEC 25020

Target entities

Target entities vs. Qual Models

Software Product Quality

- ISO/IEC 9126: Issued 1991, revised 2001
 - Being retired
- ISO/IEC 250xx SQuaRE
 - Software product Quality Requirements and Evaluation
 - Family of standards
 - in development

ISO SQuaRE - Standard Family

	2501 <i>x</i> Quality Model	
2503 <i>x</i>	2500 <i>x</i>	2504 <i>x</i>
Quality Requirements	Quality Management	Quality Evaluation
	2502 <i>x</i> Quality Measurement	

7

Relationships among standards

Quality conceptual model

Adapted from ISO/IEC 25010-1

9

Model structure

- Characteristic
 - Main aspects, e.g., usability
- Sub-Characteristic
 - ◆ Specific aspects, e.g. accessibility
- Measure
 - Measurement function to evaluate a specific (sub)-characteristic
- Measure element
 - Fundamental

DATA QUALITY

11

Data Quality Model

Quality characteristics

Inherent: facts

- Accuracy
- Completeness
- Consistency
- Currency
- Credibility
- Accessibility
- Compliance
- Confidentiality
- Efficiency

- UnderstandabilityPrecision
- Traceability

- Availability
- Portability

Recoverability

System dependent: artefacts

Quality characteristics

- Accuracy
- Completeness
- Consistency
- Accessibility
- Compliance
- Confidentiality
- Efficiency
- Availability
- Portability

- Currency
- Credibility
- Understandability
- Precision
- Traceability
- Recoverability

Accuracy

- Correspondence between data and reality
 - Syntactic
 - It belongs to a set of validated information
 - Semantic
 - The meaning (the content) corresponds to the reality

15

Open vs. Closed World

- Closed World (CWA):
 - The knowledge represented in the data (and its schema) is complete
 - E.g., if a code appears in the list of valid codes it is correct, otherwise it is wrong
- Open World (OWA):
 - The knowledge represented in the data is (knowingly) incomplete
 - E.g., if a code appears in the list of valid codes it is correct, otherwise it is not possible to judge

CWA - Accuracy : Genomics

- Human genes are known and coded, each has a predefined symbol
- Any code not included in those predefined represents a syntactic accuracy error
- E.g. code 'SEPT2'(Septin-2) when imported into III is automatically turned into 'February 2'

17

OWA – Accuracy

How to decide what is accurate?

- Rules that define what is syntactically correct
 - ◆ E.g. regular expressions
- Constraints to define what values are semantically acceptable
 - E.g. validity interval

Where do rules come from?

- Standard
- Domain knowledge
- Similar data
- Past data

19

OWA: Email per RFC-5322

```
\A(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*

| "(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]

| \\[\x01-\x09\x0b\x0c\x0e-\x7f])*")

@ (?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?

| \[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}

(?:25[0-5]|2[0-4][0-9]|[01]?[0-9]?|[a-z0-9-]*[a-z0-9]:

(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]

| \\[\x01-\x09\x0b\x0c\x0e-\x7f])+)

\])\z
```

OWA: Email per RFC-5322

Completeness

- Computer: presence of all necessary values
 - Both to entity occurrences and to attributes of a single occurrence
 - Note: not all missing values constitute a completeness issue
- User: how much the available data is capable of satisfying the needs

22

Completeness

Sum of percentages: 83.5% We miss the remaining 16.5%

Also consistency: expected 100%

23

Completeness

Consistency

- Absence of contradictions in the data
 - Referential integrity
 - Often guaranteed in RDBMS
 - Duplication
 - Increase the risk of inconsistency on update
 - Semantic
 - E.g. birth date must be before death date

25

Consistency in graph data

- Values in a series of data encoded with visual attributes must be comparable
 - Consistent aggregation level
 - Consistent time frame
 - Consistent target entities
 - Consistent measurement method

Aggregation level

Number of windshield-wiper-related patents issued per decade. 20 years 394 years

Count on of events on periods of different length are not comparable

A possible hypothesis, another one considered earlier

Source: http://www.nytimes.com/2014/09/14/magazine/who-made-that-windshield-wiper.html?_r=0

27

Aggregation level

Period	Duration [years]	Patents	Pat. per year
1920s	20	430	21.5
1940s	20	260	13.0
1960s	20	650	32.5
1980s	20	410	20.5
2000s	10	660	66.0
2010 to present	4	390	97.5

When comparing values corresponding to entities or categories with different *size*, normalized values (i.e. densities) are comparable, absolute values are not!

Aggregation level

5 years 5 years 10 years 10 years 10 years

Source: Corriere della Sera, 09 Settembre 2017

29

Aggregation level

Range	Size	Count	Density	
31-35	5	235	47.0	
36-4	5	3109	621.8	
41-50	10	16455	1645.5	
51-60	10	18093	1809.3	
Over 60	10	10989	1098.9	
	Ratios:	5.3	2.6 ~	
		Lie factor = 2		

30

Consistent timeframe

Fonte: Dipartimento della Pubblica sicurezza

31

Consistent timeframe

Year	Months	Value	Normalized
2016	12.0	181 436	15119.7
2017	12.0	119 369	9947.4
2018	6.3	16 935	2688.1

Ratios: 7.0

3.7

Lie factor = 1.9

Consistent target entities

Sources: Moviepilot; IMDb

*From "The Lego Movie", not to scale

Economist.com

33

Consistent target

Consistent target

 Proportions computed on different reference wholes

$$Undecided = \frac{n_{undec} + n_{NA}}{N_{sample}}$$

$$P_i = \frac{n_p i}{N_{sample} - n_{undec} - n_{NA}}$$

35

Consistent method

- A series of values that are not measured using the same method might not be directly comparable
 - estimate vs. actual, projection vs. final
 - periodic samples collected at different possibly nonequivalent times
 - e.g. different period of year, week, day

Currency

- Currency is the extent to which data is up-to-date
 - With reference to the reality and
 - With reference to the task at hand
- Lack of information to establish currency is an Understandability issue

37

Credibility

- The extent to which data are regarded as true and credible by users
- What is the source of the data showed in the graph?

Understandability

- The extent to which data can be read and interpreted by users
- How is data measured? Is there a track of how values are collected, measured or estimated?
 - If multiple multiple methods are used that might represent an inconsistency issue.

39

Understandability

Data from 2016 including values for 2017. Undeclared mix of projections and final data.

Precision

- The capability to provide the degree of information needed in a stated context of use
 - Enough information to allow discriminate
 - Not too much to overload reader
 - Related to "Utility"

4

Precision

Precision

Precision and uncertainty

Accessibility

 The capability of data to be accessed, particularly by people who need supporting technology or special configuration because of some disability

https://www.color-blindness.com/coblis-color-blindness-simulator/

45

References

- ISO/IEC 25010 System and software quality models
- ISO/IEC 23012 Data Quality model
- ISO/IEC 25024 Measurement of data quality