I am Speed!

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 mebibytes

There are n roads (numbered from 1 to n) in the city of Radiator Springs and m available street race plans. The i'th race uses the roads from l_i to r_i (inclusive). Each road i has a toll c_i associated with it. If we want to arrange a race, we have to pay toll for all the roads it uses. We will arrange two races, one in the morning and one in the evening. Let's define s_{ij} as the total toll we need to pay if we arrange the race i in the morning and race j in the evening. Note that, if some road is used in both races, we have to pay toll for it **only once**. Also, we can arrange the same race both in the morning and evening. You have to calculate

$$\sum_{i=1}^{m} \sum_{j=1}^{m} s_{ij}$$

Input

The first line contains one integer t $(1 \le t \le 5)$ - the number of test cases.

Each case starts with two integers n and m in a line $(1 \le n, m \le 10^5)$ - the number of roads and races respectively. The next line contains n integers $c_1, c_2, ..., c_n$ $(1 \le c_i \le 10^5)$. Following m lines contains the description of the races, the i'th line contains two integers l_i and l_i $l_i \le l_i \le l_i$.

Output

For each case, print the value of the given function. If it is greater than 10^{18} , print "INF" (without the quotes) instead.

Scoring

• Subtask 1 (15 points): $1 \le n, m \le 100$.

• Subtask 2 (30 points): $1 \le m \le 1000$.

• Subtask 3 (55 points): No additional constraints.

Example

standard input	standard output
2	155
7 3	12
1 2 3 4 5 6 7	
1 3	
2 5	
6 7	
3 2	
1 1 1	
1 3	
1 3	

Explanation

In the second test case of the example, there can be 4 (morning, evening) race combinations, (1, 1), (1, 2), (2, 1) and (2, 2). Each combination uses all the roads 1, 2 and 3 and needs toll 1+1+1=3. So total summation = 3+3+3+3=12.

Note

Dataset is huge, use fast I/O.