Добавление внешней информации для улучшения векторных представлений в моделях последовательностей событий

Мария Дмитриевна Ковалева Научный руководитель: к.ф.-м.н. А. А. Зайцев

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 03.04.01 Прикладные математика и физика

Data Science, Skolkovo Institute of Science and Technology

Внешняя информация

Основная задача: постоение векторных представлений \mathbf{h}_t для последовательностей событий

Недостатки: существующие решения не учитывают внешнюю информацию

Идея: внешняя информация содержится в самих последовательностях и может быть представлена в виде их агрегации

Добавление внешней информации для улучшения векторных представлений

Цель работы:

Улучшить векторные представления для моделей последовательностей событий, используя агрегации для учета внешней информации

Задачи:

- 1. Разработка методов агрегации для учета внешней информации
- 2. Валидация разработанных методов на данных банковских транзакций

Постановка задачи и базовые методы

$$D = \left\{S^i
ight\}_{i=1}^n$$
 — выборка последовательностей событий $S^i = \left\{\left(t_j^i, \mathbf{Z}_j^i
ight)
ight\}_{j=0}^{T^i}$ — последовательность событий $t_j^i \in [0, T^i]$ — время события; $\mathbf{Z}_j^i \in \mathbb{R}^d$ — описание события

Построение векторных представлений: $e\left(S^{i}\right)=H^{i}$

- е энкодер: обычно полносвязная сети для кодирования описания событий + рекурентная сеть
- $lackbox{f H}^i = \left\{ \left(t^i_j, {f h}^i_j
 ight)
 ight\} -$ векторные представления

Контрастивное обучение для энкодера:

$$L_{km} = I_{k=m} d \left(\mathbf{h}^k, \mathbf{h}^l \right)^2 + \frac{1}{2} \left(1 - I_{k=m} \right) \max \left\{ 0, \rho - d \left(\mathbf{h}^k, \mathbf{h}^l \right) \right\}^2,$$
 где d - расстояние между векторными представлениями, ho — гиперпараметр

Авторегрессионное обучение для энкодера: Функция потерь состоит из кросс-энтропии для категориальных признаков и MSE для непрерывных признаков.

Получение представлений внешней информации и таксономия методов агрегации

Построение вектора внешней информации

Таксономия методов агрегации

При построении методов агрегации можно использовать близость текущей последовательности и последовательностей из обучающего набора.

Близость последовательностей:

- 1. по векторным представлениям
- 2. по времени

Общая формула построения агрегации:
$$\mathbf{b}_{ au}^{c}=f\left(H,f_{e}\left(H,\mathbf{h}_{t< au}^{c}\right),f_{t}\left(au,T
ight)
ight)$$

Здесь $H = \left[\mathbf{h}_{t<\tau}^1, \dots, \mathbf{h}_{t<\tau}^n\right]$ — матрица с векторными представлениями всех последовательностей в данный момент времени в столбцах, $T = \left[t_{t<\tau}^1, \dots, t_{t<\tau}^n,\right]$ — вектор составленный из времен последних на данный момент событий для всех последовательностей; f_e и f_t — функции учитывающие близость по векторам и по времени, f - функция агрегации, обычно взвешенная сумма векторов из H.

Предложенные методы агрегации

Классические:

- 1 Mean: $\mathbf{b}_{\tau}^c = \frac{1}{n} \sum_{i=1}^n \mathbf{h}_{t<\tau}^i$
- 2 Max: $\mathbf{b}_{\tau}^{c} = \max(H)$

Вдохновленные процессом Хоукса*:

3 Exp Hawkes:

$$\mathbf{b}_{\tau}^{c} = H \exp\left(-\left(\tau \mathbf{1} - T\right)\right)$$

- 4 Exp learnable Hawkes: $\mathbf{b}_{\tau}^{c} = \phi_{NN} \left(\operatorname{concat} \left(H, \mathbf{h}_{\tau}^{c} \right) \right) \exp \left(\left(\tau \mathbf{1} T \right) \right)$
- 5 Attention Hawkes: $\mathbf{b}_{\tau}^{c} = H\left(\operatorname{softmax}\left(H^{T}\mathbf{h}_{\tau}^{c}\right) \odot \exp\left(-\left(\tau\mathbf{1} T\right)\right)\right)$

Основанные на внимании:

- 6 Attention: $\mathbf{b}_{\tau}^{c} = H \text{softmax} \left(H^{T} \mathbf{h}_{\tau}^{c} \right)$
- 7 Learnable attention: $\mathbf{b}_{\tau}^{c} = H \text{softmax} \left(H^{T} A \mathbf{h}_{\tau}^{c} \right)$
- 8 Symmetrical attention: $\mathbf{b}_{\tau}^{c} = H \text{softmax} \left(H^{T} S^{T} S \mathbf{h}_{\tau}^{c} \right)$
- 9 Kernel attention: $\mathbf{b}_{\tau}^{c} = H \text{softmax} \left(\phi \left(H^{T} \right) \phi \left(\mathbf{h}_{\tau}^{c} \right) \right)$

Здесь A и S — матрицы с обучаемыми параметрами, ϕ и ϕ_{NN} — обучаемые преобразования (двухслойный перцептрон).

^{*}Laub P. J., Taimre T., Pollett P. K. Hawkes processes. arXiv preprint arXiv:1507.02822. - 2015.

Валидация предложенных методов

Данные банковских транзакций:

- 1. Последовательность S^i : последовательность транзакций одного пользователя банка
- 2. Событие \mathbf{Z}_{i}^{i} : транзакция (merchant category code + amount)
- 3. Таргет: ушел ли клиент из банка

Валидация:

- 1. Глобальная: исследует последовательность как единое целое
 - а Задача бинарной классификации
 - ь Для предсказания используется модель бустинга
- 2. Локальная: исследуюет локальные свойства последовательностей используя плавающее окно
 - а Предсказание типа следующей транзакции
 - Локальная бинарная классификация
 - с Для предсказания используется MLP голова

Результаты: улучшение метрик при добавлении внешней информации в векторные представления

Лучшие модели находятся правее и выше.

- 1. Добавление внешней информации улучшает метрики
- 2. Метод Exp Hawkes лучший по локальным свойствам
- Классические и основанные на внимании методы лучшие по глобальным свойствам

Выносится на защиту

- 1. Предложено использование агрегации векторых представлений для учета внешней информации в последовательностях событий.
- 2. Предложена таксономия методов агрегации для учета внешней информации и реализованы конкретные методы.
- 3. Показано что добавление внешней информации повышает качество векторных представлений при использовании их в разлиных прикладных задачах с реальными данными.

Публикации

1. Bazarova, A.*, Kovaleva, M.[†]*, Kuleshov, I.*, Romanenkova, E.*, Stepikin, A.*, Yugay, A.*, Mollaev, D., Kireev, I., Savchenko, A., and Zaytsev, A. Universal representations for financial transactional data: embracing local, global, and external contexts. arXiv preprint arXiv:2404.02047 (2024)

^{*}Равный вклад

[†]Вклад: исследование добавления внешней информации

Дополнительные слайды. Результаты.

	Global target			
	Contrastive learning		Autoregressive learning	
	ROC-AUC	PR-AUC	ROC-AUC	PR-AUC
Without contex	0.743 ± 0.009	0.792 ± 0.014	0.692 ± 0.025	0.734 ± 0.032
Mean	0.773 ± 0.004	0.828 ± 0.003	0.722 ± 0.007	0.776 ± 0.005
Max	0.774 ± 0.021	0.818 ± 0.032	0.725 ± 0.005	0.777 ± 0.002
Attention	0.760 ± 0.014	0.808 ± 0.017	0.696 ± 0.014	0.744 ± 0.017
Learn. attention	0.777 ± 0.013	0.830 ± 0.013	0.704 ± 0.026	0.751 ± 0.020
Sym. attention	0.785 ± 0.010	0.835 ± 0.005	0.722 ± 0.010	0.769 ± 0.004
Kernel attention	0.775 ± 0.003	0.824 ± 0.002	0.709 ± 0.019	0.760 ± 0.003
Exp Hawkes	0.765 ± 0.008	0.814 ± 0.009	0.716 ± 0.005	0.767 ± 0.013
Exp learn. Hawkes	0.764 ± 0.008	0.812 ± 0.008	0.714 ± 0.025	0.758 ± 0.020
Attention Hawkes	0.761 ± 0.007	0.796 ± 0.009	0.717 ± 0.014	0.751 ± 0.023
	Local target			
Without contex	0.569 ± 0.008	0.321 ± 0.003	0.535 ± 0.008	0.299 ± 0.011
Mean	0.592 ± 0.005	0.342 ± 0.005	0.543 ± 0.006	0.312 ± 0.006
Max	0.640 ± 0.005	0.400 ± 0.006	0.621 ± 0.006	0.256 ± 0.008
Attention	0.600 ± 0.009	0.348 ± 0.010	0.534 ± 0.016	0.301 ± 0.007
Learn. attention	0.583 ± 0.007	0.330 ± 0.008	0.590 ± 0.035	0.338 ± 0.025
Sym. attention	0.583 ± 0.007	0.329 ± 0.007	0.605 ± 0.027	0.350 ± 0.020
Kernel attention	0.582 ± 0.007	0.329 ± 0.007	$\overline{0.572 \pm 0.021}$	0.330 ± 0.023
Exp Hawkes	0.649 ± 0.000	0.366 ± 0.003	0.638 ± 0.001	0.351 ± 0.001
Exp learn. Hawkes	0.581 ± 0.012	0.322 ± 0.013	0.539 ± 0.034	0.293 ± 0.025
Attention Hawkes	0.635 ± 0.004	0.359 ± 0.005	0.598 ± 0.003	0.331 ± 0.001

Результаты валидации для различных методов. Лучшие значения выделены **жирным**, вторые значения <u>подчеркнуты</u>, третьи подчеркнуты дважды.