novere la barra	(139)	ı barra	(140)	tenere v costante	il moto è smorzato				$\mathbf{u}_x \tag{141}$		(142)	co chiuso		(143)	e esterne il moto è	nante	(144)		$\tau = \frac{2mR}{E^{3-3}} \tag{145}$	B-r-	TICO		(146)	olo	(147)	B generato	$\mathbf{u}_r) - \mathbf{m} $ (148)		(140)		orodi (150)	(2)	(151)		B, (152)	ico generato dall'al-	0	$)\mathbf{m_2} + (\mathbf{m_2} \cdot \mathbf{u}_r)\mathbf{m_1} +$	·u-)(m·u-)n-	(153)		nella materia	(154)	\mathbf{B}_{0} (155)	zzione M	(156)	(157)		×	$=\frac{1}{k_m \mu_0} = \frac{158}{\chi_m}$
Lavoro fornito per muovere la barra $\dots (Bbv(t))^2$	$W = \frac{\langle \cdot \rangle}{R}$	Forza magnetica sulla barra	$F = m \frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{(Bb)^2 v(t)}{R}$	ATTENZIONE: per tenere v costante λ nocessuis una F octoma: altrimonti	essa è opposta a v e	esponenzialmente	Disco di Barlow	Campo elettrico	$\mathbf{E} = \frac{\mathbf{F}}{Q} = \mathbf{v} \times \mathbf{B} = \omega x B \mathbf{u}_x$	F.e.m. indotta	$\varepsilon = \frac{1}{2} \omega B r^2$	Z Corrente in un circuito chiuso	σBr^2	$I = \frac{1}{2R}$	Se nnon ci sono forze esterne il moto è smorzato	Momento torcente frenante	$\mathbf{M} = -\frac{\omega B r^4}{4R} \mathbf{u}_z$	Velocità angolare	$\omega(t) = \omega_0 e^{-\frac{t}{\tau}} \qquad \tau = 0$		■ DIPOLO MAGNETICO	· Momento di dipolo	$\mathrm{d}\mathbf{m} = I \mathrm{d} \Sigma \mathbf{u}_n$	· Potenziale del dipolo	$\mathbf{A} = \frac{\mu_0}{4\pi r^2} \left(\mathbf{m} \times \mathbf{u}_r \right)$	· Campo magnetico B generato	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{1 - \frac{2}{3}} \left[3\mathbf{u}_r (\mathbf{m} \cdot \mathbf{u}_r) - \mathbf{m} \right]$	$4\pi r^3$		M = M × D	• Forza agente sul dipolo $\mathbf{F} \equiv \nabla (\mathbf{m} \cdot \mathbf{B})$	Fromin del direle	. Energia del dipolo $U = -\mathbf{m} \cdot \mathbf{B}$	· Energia not. tra due dinoli	U = -m1 · B2 = -m2 · B1	Bèil campo magnet	tro dipolo	Forza tra dipoli $F(r) = \frac{3\mu_0}{4-4} \left[(m_1 \cdot u_r) m_2 + (m_2 \cdot u_r) m_1 + \right.$	$+(\mathbf{m}_1 \cdot \mathbf{m}_2)\mathbf{u}_r - 5(\mathbf{m}_1 \cdot \mathbf{u}_r)(\mathbf{m}_2 \cdot \mathbf{u}_r)\mathbf{u}_r$	(Turn) (■ MAGNETISMO	· Campo magnetico nella materia	$\mathbf{B} = \mu_0 (\mathbf{M} + \mathbf{H})$	$\mathbf{B} = k_m \mathbf{B}_0 = (1 + \chi_m) \mathbf{B}_0$	· Campo magnetizzazione M	$\mathbf{M} = n\mathbf{m} = \frac{d\mathbf{m}}{d\tau}$	$\mathbf{M} = \frac{\chi_m \mathbf{B}}{\chi_m \mathbf{B}}$	$(\chi_m + 1)\mu_0$. Campo magnetizzs	· Campo magnetizzante H	H = M = - = -
Moto ciclotrone Raggio	$R = \frac{mv}{qB} \tag{119}$	Periodo	$T = \frac{2\pi m}{L_D} \tag{120}$	Angolo deflessione elica $(v 2 \text{ dimensioni})$::// qBR	$\sin(\sigma) = \frac{mv}{m} \tag{121}$	Passo elica	$d = \frac{2\pi R}{\tan(\theta)} \tag{122}$		■ INDUZIONE	Coefficient mutua induzione $\Phi_{-} = ML$ (193)	7,7 - 1,7 - 1,7 - 1,7 - 7,1 - 7	ato da 1 attravers	$\Phi_{1,2} = N B_1 \Sigma_2 \tag{124}$	Induttanza	$\Phi(\mathbf{B}) = IL \tag{125}$	deale	$I = m_0 \frac{N^2}{N} \Sigma = m_0 m^2 T \Sigma \tag{196}$		Toroide $M_{\pi\pi} = M_{\pi\pi} = M_{\pi\pi}$	$L = \frac{\mu_0 t^{\Lambda/\Lambda/\alpha}}{2\pi} \ln \left(\frac{m+o}{R} \right) \tag{127}$	· Fem autoindotta	$\Phi = -L\frac{\mathrm{d}I}{}$		Fem indotta	$\varepsilon = -\frac{\mathrm{d}\Psi(\mathbf{D})}{\mathrm{d}t} = -L\frac{\mathrm{d}t}{\mathrm{d}t} \tag{129}$	Corrente indotta	$I = \frac{\varepsilon_i}{R} = -\frac{\mathrm{d}\Phi(\mathbf{B})}{R\mathrm{d}t} \tag{130}$	Energia dell'induttanza	Mutua (solo una volta ogni coppia):	$U_{1,2} = \frac{1}{2}MI_1I_2 + \frac{1}{2}MI_2I_1 \tag{131}$	Interna	$U_L = \frac{1}{2}LI^2 {132}$	In un circuito (conta una volta ogni	muuttanza eu una ogm coppia)	$U = \frac{1}{2} \sum_{i=1}^{N} (L_i I_i^2 + \sum_{i=1}^{N} M_{i,j} I_i I_j) i \neq j$	(133)	Legge di Felici	$Q(t) = \frac{\Phi(0) - \Phi(t)}{R} $ (134)	Circuito RL in DC	L si oppone alle variazioni di I smorzan-dole	Appena inizia a circolare corrente	$I(t) = \frac{V_0}{R} (1 - e^{-\frac{R}{L}t})$ (135)	Quando il circuito viene aperto	$I(t) = I_0 e^{-\frac{R}{L}t}$ (136)	Circuiti con barra mobile (b lunghezza barra)		$\varepsilon(t) = -Bbv(t) \tag{137}$	Corrente in un circuito chiuso $Bbv(t)$	$I(t) = \frac{Eoc(t)}{R} \tag{138}$
	(96)		(46)			(86)			(66)	•	. (100)		•		(101)		(102)	(103)	(104)	(104)		(105)		rso dipen-		(106)		(107)		(108)		(109)		(110)	$_{x}$ densità		(111)	n car/vol	(112)		ra s	(113)		(114)		•	(116)			(118)
· Resistori In serie	$R_{eq} = \sum_{i=1}^{n} R_i$	r=1 In parallelo	$B = \left(\sum_{n=1}^{n} \frac{1}{n} \right)^{-1}$	$\sum_{i=1}^{req} R_i$	· Generatore reale	$\Delta V = V_0 - r_i I$	· Leggi di Kirchhoff Legge dei nodi	N N	$\sum_{k=0} I_k = 0$	Legge delle maglie	$\sum_{i=1}^{N} \Delta V_{k} = 0$	k=0	■ MAGNETOSTATICA	· Forza di Lorentz	$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$	Prima legge di Laplace	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \oint \frac{\mathbf{ds} \times \mathbf{u}_r}{r^2}$	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J} \times \mathbf{u}_r}{\pi^2} d\tau$	$\mathbf{r}_{(-1)} = \mathbf{r}_{(-1)} + \mathbf{r}_{(-1)}$	$\mathbf{D}(\Gamma) = V_r \times \left(\frac{1}{4\pi} \int \frac{-d\tau}{r}\right)$	· Seconda legge di Laplace	$\mathbf{F} = \int I(\mathrm{d}\mathbf{s} \times \mathrm{d}\mathbf{B})$	· B di corpi notevoli (ATTE	viene indicata la direzione, il verso dipen- de dalla corrente I)	Asse di una spira	$\mathbf{B}(z) = \frac{\mu_0 I r^2}{2(z^2 + r^2)^{3/2}} \mathbf{u}_z$	Filo indefinito	$\mathbf{B}(\tau) = \frac{\mu_0 I}{2\pi \tau} \mathbf{u}_{\phi}$	Asse filo lungo 2a	$\mathbf{B}(r) = \frac{\mu_0 I a}{\sqrt{r_0 - r_0}} \mathbf{u}_{\phi}$	$2\pi r \sqrt{r^2 + a^2}$ Solenoide ideale	$\mathbf{B} = \mu_0 \frac{N}{r} I$	L Toroide	$\mathbf{B}(r) = \frac{\mu_0 NI}{2\pi r} \mathbf{u}_{\phi}$	Piano infinito su xy, con K \mathbf{u}_x	rente	$\mathbf{B} = \frac{r_0 \mathbf{T}}{2} \mathbf{u}_y$. Effetto Hall b spessore sonda, b // B, b \bot I, n car/vol	$V_H = \frac{IB}{C_1 - 11}$	a b u	· Forza di Ampere Corr. equiversa = for. attrattiva	$F = \frac{\mu_0}{2\pi} \frac{I_1 I_2 L}{d}$	· Potenziale vettore A	$\nabla \times \mathbf{A} = \mathbf{B}$	_	$A(1) = \frac{4\pi}{4\pi} \int \frac{\pi_{2,1}}{\tau_{2,1}} d\tau_2$ Invarianza di Gauge	$\mathbf{A}' = \mathbf{A} + \nabla \Psi$	Gauge di Coulomb	$\nabla \cdot \mathbf{A} = 0$	$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{j}$
l'esame!			(72)	(73)			(74)		(75)			(7b)		(77)		(78)		$[\mathbf{p_2} \cdot \mathbf{u}_r)]$	(62)			(80)		ttrico	(81)		(82)		(83)	rizzata	(84)	arizzata	(85)		(98)			(87)		(88)		(88)		(06)	(91)	(93)	(93)		(94)	(92)
ndo Baelish. Buona fortuna con		· Momento torcente	$\mathbf{M} = \mathbf{a} \times q\mathbf{E}(x, y, z)$	Se E uniforme $\mathbf{M} = \mathbf{n} \times \mathbf{E}$	Levono non minterlo	ρατιο bei τασατιο	$W = \int_{\theta_i} M \mathrm{d}\theta$	Se E uniforme	$W = pE[\cos(\theta_i) - \cos(\theta_f)]$	· Frequenza dipolo oscillante	be a costante e uniforme $1 \frac{pE}{pE}$	$\nu = \frac{\nu}{2\pi} \sqrt{\frac{I}{I}}$	· Energia del dipolo	$U = -\mathbf{p} \cdot \mathbf{E}$	· Forza agente sul dipolo	$\mathbf{F} = \nabla (\mathbf{p} \cdot \mathbf{E})$	· Energia pot. tra due dipoli	$U = \frac{1}{4\pi\varepsilon_0 r^2} \left[\mathbf{p_1} \cdot \mathbf{p_2} - 3(\mathbf{p_1} \mathbf{u_r})(\mathbf{p_2} \cdot \mathbf{u_r}) \right]$		· Forza tra dipoli	Dipon concord = \mathbf{r} repulsiva $3n_1n_2$	$\mathbf{F} = rac{GFLFL}{4\piarepsilon_0 r^4} \mathbf{u_r}$	■ DIELETTRICI	· Campo elettrico in un dielettrico	$\mathbf{E}_k = \frac{\mathbf{E}_0}{k}$	· Vettore P polarizzazione	$\mathbf{P} = \frac{dp}{d}$	dr . Dielettrici lineari	$\mathbf{P} = \varepsilon_0 \chi_{\mathbf{E}} \mathbf{E}_k = \varepsilon_0 (k-1) \mathbf{E}_k$	· Dens. superficiale di q polarizzata	$\sigma_p = \mathbf{P} \cdot \mathbf{u}_n = \frac{k-1}{k-1}\sigma_l$	k . Dens. volumetrica di a polarizzata	$\rho_p = -\nabla \cdot \mathbf{P}$	· Spostamento elettrico	$\mathbf{D} = \varepsilon_0 \mathbf{E}_k + \mathbf{P} = \varepsilon_0 k \mathbf{E}_k = \varepsilon_0 \mathbf{E}_0$	■ CORRENTI	· Lavoro del generatore	$W_{gen} = \int_{t_1}^{t_2} V \mathrm{d}q(t) = 2U_E$	· Densità di corrente	$\mathbf{J} = nq\mathbf{v} = \frac{Nq\mathbf{v}}{\tau}$	· Intensità di corrente	$I = \frac{\mathrm{d}q(t)}{\mathrm{d}t} = \int_{\Sigma} \mathbf{J} \cdot \mathrm{d}\Sigma$	· Leggi di Ohm	V = RI	$\mathrm{d}R = \int_{\Gamma} \frac{\rho}{\Sigma} \mathrm{d}l$	$\mathbf{E} = \rho \mathbf{J}$	$ \rho = \frac{1}{\sigma} $. Potenza conduttore ohmico $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$P = VI = RI^2 = \frac{V^2}{R}$	$dP = \mathbf{J}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) d\tau$
GitHub cercar			(53)	sempre su		(6.7)	(94)		(55)	Cono com	igurazione			(99)		(57)		(8 11)	(90)		(29)	,	-	(09)		(61)	re	(62)		(63)	(co)	(64)		(65)		materiale di	(99)		(29)			(89)			(69)		(02)			(71)
DI FISICA 2 usando il file sorgente in LaTe χ su (il potenziale è costante 	$\Delta V = 0$	Le cariche si distribuiscono s superfici, mai all'interno	Pressione elettrostatica	$\mathbf{r} = d\mathbf{F} = \sigma^2$ $\mathbf{r} = 1$ \mathbf{r}^2	$\mathbf{p} = \overline{d\Sigma} = \overline{2\varepsilon_0} \mathbf{u}_n = \overline{2}\varepsilon_0 \mathbf{E}$	· Capacità	$C = \frac{Q}{Q}$	ΔV . It will dello walto c^{ij} indusi	pleta e C dipende dalla configurazione	· Condensatori	Piano	$C = \frac{\varepsilon_0 \Sigma}{d}$	Sferico	$C = 4\pi\varepsilon_0 \frac{Rr}{}$	$C_{\rm ilindeico}$	$G = 2\pi \varepsilon_0 h$	$\frac{C}{\ln \frac{R}{r}}$	In serie	$C_{eq} = \left(\sum_{i=1}^{n} \frac{1}{\alpha}\right)^{-1}$	(i=1)	In parallelo "	$C_{eq} = \sum_{i=1}^{\infty} C_i$	Con dielettrico	$C_{diel} = k_e C_0$	Energia interna del condensatore	$U = \frac{Q^2}{2G} = \frac{1}{2}CV = \frac{1}{2}QV$	Differenziale circuito RC	$BO'(t) + \frac{Q(t)}{2} = V$	(Saries	$Q(t) = Q_0(1 - e^{-\frac{t}{RC}})$	Scarica	$Q(t) = Q_0 e^{-\frac{t}{RC}}$	· Condensatore pieno	Condensatore riempito di ma resistività ρ	$RC = \varepsilon_0 ho$	· Forza fra le armature	$F = \frac{Q^2}{\widetilde{\gamma}} \partial_x \left(\frac{1}{\widetilde{\gamma}} \right)$	2 - (C)	Condensatore piano $O_{\pi} = O_2^2$	$F = \frac{\sqrt[4]{5}}{2\epsilon_0} = \frac{\sqrt[4]{5}}{2\epsilon_0 \Sigma}$	■ DIPOLO ELETTRICO	· Momento di dipolo	$\mathbf{p} = q\mathbf{a}$	· Potenziale del dipolo	$V(r) = \frac{qa\cos\theta}{4\pi^2} = \frac{\mathbf{p} \cdot \mathbf{u}_r}{4\pi^2 \cdot m^2}$	4πεη" 4πεηι - Campa alottnica E generati	· Campo elettrico E generato $= ad (2\cos(\theta) \mathbf{u}_r + \sin(\theta) \mathbf{u}_\theta)$	$\mathbf{E} = \frac{4\alpha (2\cos(9)) \mathbf{d}r + \sin(9) \mathbf{d}\theta}{4\pi cm^3}$
FORMULARIO DI FISICA 2 correggi tu stesso usando il file s	}		(28)	(29)	(30)		(91)	(31)	(32)		(33)		IIIOIZIO III	(34)	(38)	(99)		. (36) R		R (37)	nente	(38)		(39)	ie λ	(40)		(41)	forme	(42)	(43)	ll'asse)	(44)	(45)		(46)		(47)	>> R)	(48)	(49)	e carico		(20)	(51)					(52)
FOR rso@studenti.unipd.it oppure corres	:	Potenziale scalare V	$V(\mathbf{r}) = \frac{U(\mathbf{r})}{q_0}$	$V(B) - V(A) = -\int^B \mathbf{E} \cdot d\mathbf{r}$	$\mathbf{E} = -\nabla V$	· Energia di E	1 (.()\(1/).	$U = \frac{1}{2} \int_{\mathbb{R}^3} \rho(\mathbf{r}) V(\mathbf{r}) d\tau$	$U = rac{1}{2} arepsilon_0 \int_{\mathbb{R}^3} \mathbf{E}^2 \mathrm{d} au$	· Equazione di Poisson	$\nabla^2 V = -\frac{\rho}{2}$	co	Carica puntiforme	$\mathbf{E} = \frac{q}{4\pi\varepsilon_c n^2} \mathbf{u}_r$	b = X	$V = \frac{V}{4\pi\epsilon_0 r}$	Siera carica uniformemente $\left(\frac{Qr}{r} - \frac{3\rho r}{r} \cos r < R\right)$	$\mathbf{E}(r) = \begin{cases} \frac{4\pi\varepsilon_0 R^3}{Q} & \varepsilon_0 \\ \frac{2Q}{4\pi\varepsilon_0 R^2} & \text{se r} \ge R \end{cases}$	$\int \frac{\rho(3R^2 - r^2)}{e} \qquad \text{se r} < R$	$V(r) = \begin{cases} \frac{Q}{Q} & \text{se } r \ge R \\ \frac{Q}{4\pi\epsilon_0 r} & \text{se } r \ge R \end{cases}$	Guscio sferico carico uniformemente			$V(r) = \begin{cases} \frac{Q}{4\pi\varepsilon_0 R} & \text{se r} < R \\ \frac{Q}{Q} & \text{se r} > R \end{cases}$	car	$\mathbf{E}(r) = \frac{\lambda}{\alpha_{r-\alpha}} \mathbf{u}_r$	$2\pi\varepsilon_0 r$ r	$V(r) = \frac{\Lambda}{2\pi\varepsilon} \ln\left(\frac{r_0}{r}\right)$	Piano Σ infinito con carica uniforme σ	$\mathbf{E} = \frac{\mathbf{C}}{2\varepsilon_0} \mathbf{u}_n$	$V(x) = \frac{\sigma}{2\varepsilon_0}(x - x_0)$	Anello con carica uniforme (sull'asse)	$\mathbf{E}(x) = \frac{\lambda Rx}{2\varepsilon_0(x^2 + R^2)^{3/2}} \mathbf{u}_x$	$V(x) = \frac{\lambda R}{2 - \frac{1}{2} - \frac{1}{2}}$	$2\varepsilon_0 \sqrt{x^2 + R^2}$ Disco carico uniformemente	$\mathbf{E}(x) = \frac{\sigma}{2} \left(1 - \frac{1}{2} \right) \mathbf{n}$	$2\varepsilon_0 \left(\frac{1}{x^2} \right) \frac{2\varepsilon_0}{\sqrt{1+\frac{R^2}{x^2}}} $	$V(x) = \frac{\sigma}{2\varepsilon_0} (x - \sqrt{x^2 + R^2})$	Disco carico uniformemente $(x \gt\gt R)$	$\mathbf{E}(x) = \frac{\sigma}{2\varepsilon_0} \frac{R^2}{x^2} \mathbf{u}_x$	$V(x) \equiv \frac{\sigma}{a} \frac{R^2}{a}$	$4\varepsilon_0 x$ Guscio cilindrico uniformemente carico	(0 ser <r< th=""><th>$\frac{Q}{\varepsilon_0 hr}$</th><th></th><th></th><th>■ CONDUTTORI</th><th>· Conduttori in equilibrio All'interno</th><th>— il campo è nullo</th><th>$\mathbf{E} = 0$</th></r<>	$\frac{Q}{\varepsilon_0 hr}$			■ CONDUTTORI	· Conduttori in equilibrio All'interno	— il campo è nullo	$\mathbf{E} = 0$
emanuele.ur						(1)			(2)		(3)		3	(4)		(A)	9	(9)	(7)	(8)	(6)	(6)	(10)	(11)	(12)		(13)	(14)	(15)	(16)		í	(17)	(19)	(20)	(21)		(22)		(23)		(24)			(25)	_	(26)			(27)
FORMULARIO DI FISICA 2 Per segnalare errori scrivimi alla mail emanuele.urso@studenti.unipd.it oppure correggi tu stesso usando il file sorgente in LaTey su GitHub cercando Baelish. Buona fortuna con l'esame!		NOME:	MATRICOLA:	■ FONDAMENTALI	· Teorema (divergenza)	$\int_{\Sigma} \mathbf{F} \cdot d\mathbf{\Sigma} = \int_{\tau} \nabla \cdot \mathbf{F} d\tau$. Teorema (Stokes)	. reorema (Stokes)	$\oint_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\Sigma} \nabla \times \mathbf{F} d\Sigma$	· Teorema (Gradiente)	$\phi_2 - \phi_1 = \int \nabla \phi \cdot d\mathbf{s}$	ormeo an ib cosn[3]	odinas di un campi	$\Phi_{\Sigma}(\mathbf{E}) = \oint_{\Sigma} \mathbf{E} \cdot d\Sigma$	· Equazioni di Maxwell	\square . $\mathbf{F} = \frac{\rho}{\rho}$	$\frac{\varepsilon_0}{\varepsilon}$	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\nabla \cdot \mathbf{B} = 0$	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{B}}{\partial t}$	$\oint_{\Sigma} \mathbf{E} \cdot d\mathbf{\Sigma} = \frac{Q_{int}}{\widehat{C}_{i}}$	\mathcal{J}_{Σ} ε_0 $d\Phi(\mathbf{B})$	$\int_{\Gamma} \mathbf{E} \cdot d\mathbf{s} = -\frac{dt}{dt}$	$\oint_{\Sigma} \mathbf{B} \cdot d\mathbf{\Sigma} = 0$	$\oint_{\Gamma} \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{conc} + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$	Nei mezzi:	$\nabla \cdot \mathbf{D} = \rho_{libere}$	$\nabla \times \mathbf{H} = \mathbf{J}_{C,lib} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint_{\Sigma} \mathbf{D} \cdot \mathrm{d} \mathbf{\Sigma} = Q_{int,lib}$	$\oint_{\Gamma} \mathbf{H} \cdot d\mathbf{s} = I_{conc,lib} + \frac{d\Phi_D}{J^4}$	$\frac{d}{dt}$ Discontinuità dei campi	Generali	$\Delta B_{\perp} = 0$ $\Delta F_{\parallel} = 0$	$\Delta D_{\perp} = \sigma_L$	$\Delta E_{_{ m L}} = rac{\sigma}{arepsilon_0}$	$\Delta H_\parallel = \mathbf{K}_c imes \mathbf{u}_n $	In ipotesi di linearità	$\frac{D_{1,\parallel}}{k_1} = \frac{D_{2,\parallel}}{k_2}$	Se $\sigma_L = 0$	$k_1 E_{1,\perp} = k_2 E_{2,\perp}$	Rifrazione linee di B $tan(\theta_0)$ u_0	$\frac{\cos(2z)}{\tan(\theta_1)} = \frac{F^2}{\mu_1}$	■ ELETTROSTATICA	· Forza di Coulomb	$\mathbf{F} = \frac{q_1 q_2}{4\pi\varepsilon_0 r^2} \mathbf{u}_{1,2}$	Definizione campo elettrico	$\mathbf{E} = \frac{\mathbf{F}(\mathbf{r}_0)}{\mathbf{r}_0}$	go Francisco due coniche	. En. potenziale due cariche $m=-\frac{q_1q_2}{r_1}$	$U = \frac{1}{4\pi \varepsilon \alpha r_1} + c$

A, B e φ si ricavano impostando le condizioni iniziali

RLC serie in AC forzato Forzante

(174)

 $I''(t) + 2\gamma I'(t) + \omega_0 I(t) = -\frac{\Omega \varepsilon_0}{L} \sin(\Omega t + \Phi)$

Equazione differenziale

 $\varepsilon(t) = \varepsilon_0 \cos(\Omega t + \Phi)$

(175)

(176)

 $I(t) = I_0(\Omega)\cos(\Omega t)$

Soluzione

(177)

Corrente massima $I_0(\Omega) = \frac{\varepsilon_0}{|Z|} = \frac{\varepsilon_0}{\sqrt{R^2 + (\omega L + \frac{1}{\omega C})^2}}$

(178)

 $\tan \Phi(\Omega) = \frac{L\Omega - \frac{1}{\Omega C}}{2}$

Sfasamento

NOTA: Lo sfasamento di Irispetto a ε è

(180)

(179)

 $Im(Z) = 0 \rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$

−Φ Risonanza

· Effetto Joule

 $\langle P_R \rangle = \frac{V_0}{2R}$

(181)

· Potenza media totale

 $\langle P \rangle = \frac{V_0 I_0}{2} \cos(\phi)$

V e I efficace

(182)

 $V_{eff} = \frac{\sqrt{2}}{2} V_0 \qquad I_{eff} = \frac{\sqrt{2}}{2} I_0$

(173)

Smorz. CRITICO $\gamma^2 = \omega_0^2$

 $I(t) = e^{-\gamma t} (A + Bt)$

 $I(t) = e^{-\gamma t} (Ae^{\omega} + Be^{-\omega})$

Smorz. FORTE $\gamma^2 > \omega_0^2$ $I(t) = I_0 e^{-\gamma t} \sin(\omega t + \varphi)$

(160)(161)

· Dens. SUPERFICIALE corrente MAGNETIZZATA

(159)

 $\mathbf{M} = M\mathbf{u}_z \qquad \mathbf{K_m} = K_m\mathbf{u}_\phi$

 $K_{\mathbf{m}}=\mathbf{M}\times\mathbf{u}_{r}$

· Dens. LINEARE di corrente sulla SUPERFICIE

(162) (163) (164)

 $\oint \mathbf{H} \cdot \mathrm{d}\mathbf{l} = I_{l,c}$

 $\mathbf{j_1} = \nabla \times \mathbf{H}$

 $\mathbf{j_1} \neq \mu_0 \mathbf{j}$

· Energia di B

Dens. SUPERFICIALE corrente LIBERA

 $\oint \mathbf{M} \cdot \mathbf{d} \mathbf{l} = I_{m,c}$

 $\mathbf{j_m} = \nabla \times \mathbf{M}$

(166)

 $U_B = \frac{1}{2} \int_{\mathbb{R}^3} \mathbf{j} \cdot \mathbf{A} \mathrm{d}\tau$ con N circuiti filiformi

(165)

 $U_B = \frac{1}{2\mu_0} \int_{\mathbb{R}^3} \mathbf{B}^2 \mathrm{d}\tau$

(167)

 $U_B = \frac{1}{2} \sum_{i=1}^{N} I_i \Phi_i$

· Impedenza La somma delle impedenze in serie e parallelo segue le regole dei resistori

CIRCUITI RLC

(169)

 $|Z| = \sqrt{R^2 + \left(\omega L + \frac{1}{\omega C}\right)}$

(168)

 $Z = R + i \left(\omega L + \frac{1}{\omega C} \right)$

(170)

 $I''(t) + 2\gamma I'(t) + \omega_0 I(t) = 0$

RLC serie in DC smorzato Equazione differenziale

(171)

Smorz. DEBOLE $\gamma^2 < \omega_0^2$ $\omega_0 = \frac{1}{\sqrt{LC}} \qquad \gamma = \frac{R}{2L}$ $\omega = \sqrt{\omega_0^2 - \gamma^2} \qquad \tau = \frac{1}{2}$

(172)

(237)		(238)	(000)	(239)		(240)	(241)	angolare	ngoraro	(242)		(949)	(c47)		(244)		(245)		(246)	(247)		(248)	(249)	interfe-	lei due	$\frac{1}{2}$	(250)		(251)		(252)		(253)		(254)	(271)	(272)	,	(273)	(274)		$\frac{x}{-}$ (275)
$I_{MAX} = N^2 I_0$ Massimi secondari	$m \in \mathbb{Z} - \{kN, kN - 1 \text{ con } k \in \mathbb{Z}\}$	$\delta = \frac{2m+1}{2N} \pi \to \sin \theta = \frac{2m+1}{2N} \frac{\lambda}{d}$	In I	$I_{SEC} = \frac{1}{\left(\sin\frac{\pi d\sin\theta}{\lambda}\right)^2}$	Minimi $m \in \mathbb{Z} - \{kN\}$	$\delta = \frac{2m}{N}\pi \to \sin\theta = \frac{m\lambda}{Nd}$	$I_{MTN} = 0$	e angolare (distanza	tra min. e max. adiacente)	$\Delta\theta \approx \frac{1}{1-\lambda}$	$N d \cos \theta$ Potere risolutore	$\delta\lambda_{-1}$	$\frac{\lambda}{\lambda} = \frac{Nn}{Nn}$	· Diffrazione Intensità	$I(\theta) = I_0 \left(\frac{\sin\left(\frac{\pi a \sin \theta}{\lambda}\right)}{\frac{\pi a \sin \theta}{\pi a \sin \theta}} \right)^2$	Massimo pincipale in $\theta = 0$	$I_{MAX} = I_0$	Massimi secondari $m \in \mathbb{Z} - \{-1, 0\}$. $2m + 1 \lambda$	$\sin \theta = \frac{2}{a} - \frac{1}{a}$	$I_{SEC} = \frac{I_0}{\left(\frac{\pi(2m+1)}{2}\right)^2}$	Minimi $m \in \mathbb{Z} - \{0\}$	$\sin \theta = \frac{m\lambda}{a}$	$I_{MIN} = 0$	• Reticolo di diffrazione Sovrapposizione di diffrazione e interfe-	renza, l'intensità è il prodotto d effetti	$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\sin(\frac{\lambda \pi d \sin \theta}{\lambda})} \right)^2$	$\frac{1}{\lambda}$ $\sin(\frac{\lambda}{\lambda})$	Dispersione	$D = \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{m}{d\cos\theta_m}$	Fattore molt. di inclinazione	$f(\theta) = \frac{1 + \cos \theta}{2}$	· Filtro polarizzatore Luce NON polarizzata	$I = \frac{I_0}{2}$	Luce polarizzata (Legge di Malus)	$I = I_0 \cos^2(\theta)$	$\int \frac{1}{(x^2 + r^2)^{3/2}} \mathrm{d}x = \frac{x}{r^2 \sqrt{r^2 + x^2}}$	$\int \frac{x}{-x} dx = \sqrt{r^2 + x^2}$	$\int \sqrt{x^2 + r^2}$	$\int \frac{x}{(x^2 + r^2)^{3/2}} \mathrm{d}x = -\frac{1}{\sqrt{r^2 + x^2}}$	$\int \frac{1}{\cos x} dx = \log \left(\frac{1 + \sin x}{\cos x} \right)$		$\int \sin^3 ax dx = -\frac{3a\cos ax}{4a} + \frac{\cos 3ax}{12}$
ZIO-			(220)		(221)		(222)		(223)		(224)		(225)		(226)	(227)	,		(228)		(229)		$n \in \mathbb{Z}$	(250) tile		(231)	(232)		(233)		(234)		(235)		(236)		(267)		(268)		(269)	(270)
■ INTERFERENZA e DIFFRAZIO-	NE · Interferenza generica	onda risultante	$f(\mathbf{r},t) = Ae^{i(kr_1-\omega t + \alpha)}$	Ampiezza	$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos \delta}$	Diff. cammino ottico	$\delta = \alpha_2 - \alpha_1 = \left(\Phi_2 - \Phi_1 + k(r_2 - r_1)\right)$	Intensità	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$	Fase risultante α	$\tan \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_2 \cos \alpha_2 + A_2 \cos \alpha_2}$	$A_1 \cos \alpha_1 + A_2 \cos \alpha_2$ Massimi	$\delta = 2n\pi$	Minimi	$\delta = (2n+1)\pi$. Condizione di Fraunhofer $\theta = \frac{\Delta y}{2}$	L L grande tale che tan $\theta \approx \theta$	· Interferenza in fase Diff. cammino ottico	$\delta = k(r_2 - r_1) = \frac{2\pi}{\lambda} d\sin\theta$	Costruttiva	$r_2 - r_1 = n\lambda \to \sin\theta = n\frac{\lambda}{d} n \in \mathbb{Z}$	Distruttiva	$r_2 - r_1 = \frac{2n+1}{2}\lambda \rightarrow \sin\theta = \frac{2n+1}{2}\frac{\lambda}{d}$	· Interf. riflessione su lastra sott	(n indice rifr., t spessore lastra) Diff. cammino ottico	$\delta = \frac{2\pi}{\lambda} \frac{2nt}{\cos \theta_t}$	Massimi $m \in \mathbb{N}$ $t = \frac{2m+1}{\lambda} \lambda \cos \theta,$	$4n$ Minimi $m \in \mathbb{N}$	$t = \frac{m}{2n}\lambda\cos\theta_t$	· Interferenza N fenditure Diff. cammino ottico	$\delta = \frac{2\pi}{\lambda} d\sin\theta$	Intensità	$I(\theta) = I_0 \left(\frac{\sin(N\frac{\delta}{2})}{\sin\frac{\delta}{2}} \right)^{\omega}$	Massimi principali $m \in \mathbb{Z}$	$\delta = 2m\pi \to \sin\theta = \frac{m\lambda}{d}$	· Attrito viscoso Equazione differenziale	$v' + \frac{v}{\tau} = K$	Soluzione	$v(t) = k\tau(1 - e^{-\frac{t}{\tau}})$	■ ANALISI MATEMATICA · Integrali ricorrenti	$\int \frac{1}{x^2 + r^2} dx = \frac{1}{r} \arctan \frac{x}{r}$	$\int \frac{1}{\sqrt{x^2 + r^2}} dx = \ln \sqrt{x^2 + r^2} + x$
l	(200)		(201)		(202)		(203)	,	(204)		(205)		(206)	(207)		(208)	= 1)	(209)		(210)	(211)	(919)	(212)	non oss	(213)	(214)	(215)		(216)		(217)		(218)		(219)	(961)	(707)	(262)	(263)	(264)	(265)	(266)
· Coefficienti di Fresnel Definizione	$r = \frac{E_r}{E_s} \qquad R = \frac{P_r}{P_s} = \frac{I_r}{I_s}$		$t = \frac{E_t}{E_i} \qquad T = \frac{P_t}{P_i} = \frac{I_t}{I_i}$	E.	$r_{-} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t - \theta_i)}$	$\sin(\theta_t + \theta_i)$	$r_{\pi} = \frac{\tan(\theta_t - \theta_i)}{2}$	$\tan(\theta_t + \theta_i)$	$R_{\sigma} = r_{\sigma}^2 \qquad R_{\pi} = r_{\pi}^2$	Raggio TRASMESSO polarizzato	$t_{\sigma} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_i \cos \theta_i}$	$n_i \cos \theta_i + n_t \cos \theta_t$	$t_p i = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$	$T_{\sigma} = 1 - R_{\sigma} \qquad T_{\pi} = 1 - R_{\pi}$	izza	$R = \frac{1}{2}(R_{\sigma} + R_{\pi}) \qquad T = \frac{1}{2}(T_{\sigma} + T_{\pi})$	Incidenza normale ($\cos \theta_i ? \cos \theta_t =$	$r = \frac{n_i - n_t}{n_1 + n_2}$	2 \	$R = \left(\frac{n_i - n_t}{n_i + n_t}\right)$	$t = \frac{2n_i}{n_i + n_t}$	$T - \frac{4n_in_t}{}$	$a = (n_i + n_t)^2$ A result of B December (i) morning with	Angolo di Drewster (u raggio rinesso non ha polar. parallela)	$\theta_i + \theta_t = \frac{\pi}{2} \to \theta_B = \theta_i = \arctan \frac{n_t}{n_i}$	$R = \frac{1}{2}\cos^2(2\theta_i)$	T = 1 - R	· Pressione di radiazione Superficie ASSORBENTE	$p = rac{I_i}{v}$	Superficie RIFLETTENTE	$p = \frac{I_i + I_t + I_r}{v}$	· Rapporto di polarizzazione	$\beta_R = \frac{P_R^{\sigma} - P_R^{\pi}}{P_{\sigma}^{\sigma} + P_{\pi}^{\pi}}$	$P_{\mu}^{\sigma} - P_{\pi}$	$\beta_T = \frac{T - T_T}{P_T^{\sigma} + P_T^{\pi}}$	· Lavoro	Moto circolare unif. accelerato	$v = \omega r$	$a = \frac{v^2}{r} = \omega^2 r$	$\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$. Moto armonico	Equazione differenziale $x'' + \omega^2 x = 0$	Soluzione $x(t) = A\sin(\omega t + \varphi)$
			(183)	(184)				(185)			(186)		(187)	di Σ		(188)		(189)		(190)	(191)		(192)		(193)		(194)	(195)		(196)	(197)		(198)		(199)		(255)	(256)	(257)	(258)		(260)
■ CAMPO EM e OTTICA	Campi in un'onda EM	(Nel vuoto $v = c$)	$E(x,t) = E_0 \cos(kx - \omega t)$	$B(x,t) = \frac{E_0}{v}\cos(kx - \omega t)$	$\omega = kv k = \frac{2\pi}{r} \lambda = \frac{v}{r}$	ν	· Vettore di Poynting	$\mathbf{S} = \frac{1}{\mathbf{E} \times \mathbf{B}}$	μ_0	· Intensità media onda	$I = \langle S \rangle = \langle E^2 \varepsilon v \rangle$	· Potenza	$P = I\Sigma$	L'intensità varia in base alla scelta di	· Equazioni di continuità Teorema di Poynting	$\nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{j} + \frac{\partial u}{\partial t} = 0$	Conservazione della carica	$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$	· Densità di en. campo EM	$u_{EM} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$	$U_{EM} = \int_{\mathbb{R}^3} u_{EM} \mathrm{d} au$	· Densità di quantità di moto	∞ ∞ ⊴	. Effetto Doppler	$\nu' = \nu \frac{v - v_{oss}}{v - v_{sorg}}$	Oscillazione del dipolo	$I(r,\theta) = \frac{I_0}{r^2} \sin^2(\theta)$	$P = \int \int I(r,\theta) dr d\theta = \frac{8}{3}\pi I_0$	Velocità dell'onda	$v^2 = \frac{1}{k_e \varepsilon_0 k_m \mu_0}$	$c^2 = \frac{1}{\varepsilon_{o.0.0}}$	oreo · Indice di rifrazione	$n = \frac{c}{v} = \sqrt{k_e k_m}$	· Legge di Snell-Cartesio	$n_1\sin\theta_1=n_2\sin\theta_2$	■ UNITÀ DI MISURA Wh c m²ka	$H = \frac{1}{A} = Tm^2 = \frac{10^{-13}}{A^2 s^2}$ $V = V^2 = \frac{10^{-13}}{10^{-13}}$	$\Omega = \frac{V}{A} = \frac{V}{W} = \frac{m \log y}{A^2 s^3}$	$T = \frac{N}{Am} = \frac{kg}{As^2}$	$V = \frac{J}{C} = \frac{W}{A} = \frac{m \log 3}{8^3 A}$ $F = \frac{C}{V} = \frac{C^2}{V} = \frac{A^2 s^4}{m \log 4 s}$	FISICA 1	. Momento torcente $M = \mathbf{r} \times \mathbf{F} = I \alpha$

· Differenziale di primo ordine	ne Soluzioni	oni	·	Identità vettoriali		· Identità geometriche	
Colma generale		0		$\nabla \cdot (\nabla \times \mathbf{A}) = 0$	(282)	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ (288)	3 (288)
y(t) + a(t)y(t) = b(t)	(2/0) $y(t) =$	$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$	(279)	$\nabla \times (\nabla f) = 0$	(283)		
Soluzione $a(t) = c^{-A(t)}(c+\int b(t)e^{A(t)}dt)$	Se $\Delta = 0$	0 =		$\nabla \cdot (f\mathbf{A} = f\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$		$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta (289)$	β (289)
g(t) = c Differentiale di secondo ordine omo-		$y(t) = c_1 e^{\lambda_1 t} + t c_2 e^{\lambda_2 t}$	(280)	$\nabla(\mathbf{A}\cdot\mathbf{B}) = \mathbf{B}\cdot(\nabla\times\mathbf{A}) - \mathbf{A}\cdot(\nabla\times\mathbf{B})$	$\mathbf{A} \cdot (\nabla \times \mathbf{B})$	$\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}}$	(290)
geneo	Se $\Delta < 0$	0 >			(285)		
Forma generale $y'' + ay' + by = 0$ $a, b \in \mathbb{R}$	(278) $y(t) =$	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) (281)$		$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$	(286)	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	(291)
$\lambda_{1,2} \in \mathbb{C}$ sono le soluzioni dell'equazione associata		$con \alpha = Re(\lambda) e \beta = Im(\lambda)$		$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$	(287)	$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$	(292)
		Cartesiane	S	Sferiche	Cilindriche		
	Gradiente $(\nabla f =)$	$\frac{\partial f}{\partial x} \mathbf{x} + \frac{\partial f}{\partial y} \mathbf{y} + \frac{\partial f}{\partial z} \mathbf{z}$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial}{\partial r}$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \phi$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{\partial f}{\partial z} \mathbf{z}$	s	
	Divergenza $(\nabla \cdot \mathbf{F} =)$	$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$\frac{1}{r^2} \frac{\partial r^2 F_r}{\partial r} + \frac{1}{r \sin \theta}$	$\frac{1}{r^2}\frac{\partial r^2F_r}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial F_\theta \sin\theta}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi}$	$\frac{1}{r}\frac{\partial F_r}{\partial r} + \frac{1}{r}\frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$	$\frac{F_z}{\partial z}$	
		$\left(\begin{array}{c} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \end{array}\right)$	$\left(\frac{1}{r\sin\theta}\left(\frac{\partial}{\partial x}\right)\right)$	$\frac{1}{r\sin\theta} \left(\frac{\partial F_{\phi} \sin\theta}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \right)$	$\left(\begin{array}{c} \left(\frac{1}{r}\frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z}\right) \end{array}\right)$		
	Rotore $(\nabla \times \mathbf{F} =)$	$\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}$	$\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\delta}{\theta} \right)$	$\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial (r F_{\phi})}{\partial r} \right)$	$\left(\frac{\partial F_r}{\partial z} - \frac{\partial (rF_z)}{\partial r}\right)$		
		$\left(\begin{array}{c} \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{array}\right)$	$\left(\frac{1}{r} \left(\frac{\partial (r)}{\delta} \right) \right)$	$\frac{1}{r} \left(\frac{\partial (r F_{\theta})}{\partial r} - \frac{\partial F_r}{\partial \theta} \right)$	$\left(\frac{1}{r} \left(\frac{\partial (rF_{\phi})}{\partial r} - \frac{\partial F_r}{\partial \phi} \right) \right)$		
		Il laplaciano di un cam	po scalare Φ , in qu	ll laplaciano di un campo scalare Φ , in qualunque coordinata, è $\nabla \cdot \nabla \Phi$	$\Phi \Delta$.		