Quadratic Functions

Objectives

1 Determine the vertex, range, and intercepts of a quadratic function in standard form

2 Convert between standard and general form of quadratic functions

Quadratic Functions

A quadratic function is a function in the form

$$f(x) = ax^2 + bx + c$$

where a, b, and c are real numbers with $a \neq 0$.

The domain of a quadratic function is $(-\infty, \infty)$.

Graph of a Quadratic Function

For $f(x) = x^2$, the graph below is a parabola.

Graph of a Quadratic Function

The point (0,0) is called the vertex of the parabola and can be either a relative minimum or relative maximum point.

Graph of a Quadratic Function

The point (0,0) is called the vertex of the parabola and can be either a relative minimum or relative maximum point.

We can graph parabolas using transformations to the parent function $f(x) = x^2$.

Graph the following functions starting with the graph of $f(x) = x^2$ and using transformations. Find the vertex, state the range, and find the x- and y-intercepts, if any exist.

(a)
$$g(x) = (x+2)^2 - 3$$

Graph the following functions starting with the graph of $f(x) = x^2$ and using transformations. Find the vertex, state the range, and find the x- and y-intercepts, if any exist.

(a)
$$g(x) = (x+2)^2 - 3$$

Graph the following functions starting with the graph of $f(x) = x^2$ and using transformations. Find the vertex, state the range, and find the x- and y-intercepts, if any exist.

(a)
$$g(x) = (x+2)^2 - 3$$

Shift left 2 units

Shift down 3 units

(a)
$$g(x) = (x+2)^2 - 3$$

(a)
$$g(x) = (x+2)^2 - 3$$

Vertex at (-2, -3)

(a)
$$g(x) = (x+2)^2 - 3$$

Vertex at (-2, -3)

Range $[-3, \infty)$

(a)
$$g(x) = (x+2)^2 - 3$$

Vertex at
$$(-2, -3)$$

Range
$$[-3, \infty)$$

$$(x+2)^2 - 3 = 0$$

(a)
$$g(x) = (x+2)^2 - 3$$

Vertex at
$$(-2, -3)$$

Range
$$[-3, \infty)$$

$$(x+2)^2 - 3 = 0$$
$$(x+2)^2 = 3$$

(a)
$$g(x) = (x+2)^2 - 3$$

Vertex at
$$(-2, -3)$$

Range
$$[-3, \infty)$$

$$(x+2)^2 - 3 = 0$$

 $(x+2)^2 = 3$
 $x+2 = \pm \sqrt{3}$

(a)
$$g(x) = (x+2)^2 - 3$$

Vertex at
$$(-2, -3)$$

Range
$$[-3,\infty)$$

$$(x+2)^2 - 3 = 0$$
$$(x+2)^2 = 3$$
$$x+2 = \pm\sqrt{3}$$
$$x = -2 \pm \sqrt{3}$$

(a)
$$g(x) = (x+2)^2 - 3$$

Vertex at
$$(-2, -3)$$

Range
$$[-3,\infty)$$

$$(x+2)^2 - 3 = 0$$
$$(x+2)^2 = 3$$
$$x+2 = \pm\sqrt{3}$$
$$x = -2 \pm\sqrt{3}$$

$$(-2 \pm \sqrt{3}, 0)$$

y-intercept at (0,1)

(b)
$$h(x) = -2(x-3)^2 + 1$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

Reflect across x-axis

Vertical stretch by factor of 2

Shift right 3 units

Shift up 1 unit

(b)
$$h(x) = -2(x-3)^2 + 1$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

Vertex at (3,1)

(b)
$$h(x) = -2(x-3)^2 + 1$$

Vertex at (3,1)

Range $(-\infty, 1]$

(b)
$$h(x) = -2(x-3)^2 + 1$$

Vertex at (3,1)

Range $(-\infty, 1]$

$$-2(x-3)^2+1=0$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

Vertex at (3,1)

Range $(-\infty, 1]$

$$-2(x-3)^2 + 1 = 0$$
$$-2(x-3)^2 = -1$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

Vertex at (3,1)

Range
$$(-\infty, 1]$$

$$-2(x-3)^{2} + 1 = 0$$
$$-2(x-3)^{2} = -1$$
$$(x-3)^{2} = \frac{1}{2}$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

Vertex at (3,1)

Range
$$(-\infty, 1]$$

$$-2(x-3)^{2} + 1 = 0$$

$$-2(x-3)^{2} = -1$$

$$(x-3)^{2} = \frac{1}{2}$$

$$x-3 = \pm \sqrt{\frac{1}{2}}$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

$$x - 3 = \pm \sqrt{\frac{1}{2}}$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

$$x-3=\pm\sqrt{\frac{1}{2}}$$

$$x - 3 = \pm \frac{\sqrt{2}}{2}$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

$$x - 3 = \pm \sqrt{\frac{1}{2}}$$

$$x - 3 = \pm \frac{\sqrt{2}}{2}$$

$$x = 3 \pm \frac{\sqrt{2}}{2}$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

$$x - 3 = \pm \sqrt{\frac{1}{2}}$$

$$x - 3 = \pm \frac{\sqrt{2}}{2}$$

$$x = 3 \pm \frac{\sqrt{2}}{2}$$

$$\left(3 \pm \frac{\sqrt{2}}{2}, 0\right)$$

(b)
$$h(x) = -2(x-3)^2 + 1$$

$$x - 3 = \pm \sqrt{\frac{1}{2}}$$

$$x - 3 = \pm \frac{\sqrt{2}}{2}$$

$$x = 3 \pm \frac{\sqrt{2}}{2}$$

$$\left(3 \pm \frac{\sqrt{2}}{2}, 0\right)$$
y-intercept: $(0, -17)$

Objectives

Determine the vertex, range, and intercepts of a quadratic function in standard form

Convert between standard and general form of quadratic functions

Standard and General Form of Quadratic Functions

If f is a quadratic function:

• The general form is $f(x) = ax^2 + bx + c$

- The general form is $f(x) = ax^2 + bx + c$
 - a, b, and c are real numbers

- The general form is $f(x) = ax^2 + bx + c$
 - a, b, and c are real numbers
 - $a \neq 0$

- The general form is $f(x) = ax^2 + bx + c$
 - a, b, and c are real numbers
 - $a \neq 0$
- The standard form is $f(x) = a(x h)^2 + k$

- The general form is $f(x) = ax^2 + bx + c$
 - a, b, and c are real numbers
 - $a \neq 0$
- The standard form is $f(x) = a(x h)^2 + k$
 - Vertex is (h, k)

- The general form is $f(x) = ax^2 + bx + c$
 - a, b, and c are real numbers
 - a ≠ 0
- The standard form is $f(x) = a(x h)^2 + k$
 - Vertex is (h, k)
 - a ≠ 0

- The general form is $f(x) = ax^2 + bx + c$
 - a, b, and c are real numbers
 - $a \neq 0$
- The standard form is $f(x) = a(x h)^2 + k$
 - Vertex is (h, k)
 - a ≠ 0
 - a, h, and k are real numbers

Converting From General to Standard Form

To convert from general form $f(x) = ax^2 + bx + c$ to standard form $f(x) = a(x - h)^2 + k$

Converting From General to Standard Form

To convert from general form $f(x) = ax^2 + bx + c$ to standard form $f(x) = a(x - h)^2 + k$

- Find the vertex:
 - x-coordinate: $\frac{-b}{2a}$
 - y-coordinate: Evaluate function at x-coordinate
 - Or use graphing technology
- ② Use the same value of a

(a)
$$f(x) = x^2 - 4x + 3$$

Convert each to standard form.

(a)
$$f(x) = x^2 - 4x + 3$$

Convert each to standard form.

(a)
$$f(x) = x^2 - 4x + 3$$

$$x = \frac{-(-4)}{2(1)}$$

Convert each to standard form.

(a)
$$f(x) = x^2 - 4x + 3$$

$$x = \frac{-(-4)}{2(1)}$$

$$x = 2$$

Convert each to standard form.

(a)
$$f(x) = x^2 - 4x + 3$$

$$x = \frac{-(-4)}{2(1)}$$

$$x = 2$$

$$y = 2^2 - 4(2) + 3$$

Convert each to standard form.

(a)
$$f(x) = x^2 - 4x + 3$$

$$x=\frac{-(-4)}{2(1)}$$

$$x = 2$$

$$y = 2^2 - 4(2) + 3$$

$$y = -1$$

(a)
$$f(x) = x^2 - 4x + 3$$

Vertex:
$$(2,-1)$$

(a)
$$f(x) = x^2 - 4x + 3$$

Vertex:
$$(2,-1)$$

$$a = 1$$

(a)
$$f(x) = x^2 - 4x + 3$$

Vertex:
$$(2,-1)$$

$$a = 1$$

$$f(x) = (x-2)^2 - 1$$

(b)
$$g(x) = 6 - x - x^2$$

(b)
$$g(x) = 6 - x - x^2$$

$$g(x) = -x^2 - x + 6$$

(b)
$$g(x) = 6 - x - x^2$$

$$g(x) = -x^2 - x + 6$$

(b)
$$g(x) = 6 - x - x^2$$

$$g(x) = -x^2 - x + 6$$

Vertex:
$$\left(-\frac{1}{2}, \frac{25}{4}\right)$$

(b)
$$g(x) = 6 - x - x^2$$

$$g(x) = -x^2 - x + 6$$

Vertex:
$$\left(-\frac{1}{2}, \frac{25}{4}\right)$$

$$a = -1$$

(b)
$$g(x) = 6 - x - x^2$$

$$g(x) = -x^2 - x + 6$$

Vertex:
$$\left(-\frac{1}{2}, \frac{25}{4}\right)$$

$$a = -1$$

$$g(x) = -\left(x + \frac{1}{2}\right)^2 + \frac{25}{4}$$

Axis of Symmetry

The graphs of the parabolas have a line of symmetry called the axis of symmetry that is a vertical line through the *x*-coordinate of the vertex:

Axis of Symmetry

The graphs of the parabolas have a line of symmetry called the axis of symmetry that is a vertical line through the *x*-coordinate of the vertex:

$$x = -\frac{1}{2}$$

Converting From Standard to General Form

To convert from

$$f(x) = a(x - h)^2 + k$$

form to

$$f(x) = ax^2 + bx + c$$

form, just do the math.

Convert $g(x) = (x+2)^2 - 3$ to general form.

Convert
$$g(x) = (x + 2)^2 - 3$$
 to general form.
$$(x + 2)^2 - 3 = x^2 + 4x + 4 - 3$$

Convert
$$g(x) = (x+2)^2 - 3$$
 to general form.
$$(x+2)^2 - 3 = x^2 + 4x + 4 - 3$$

$$= x^2 + 4x + 1$$