Retards de Vols

Projet OpenClassrooms

Par Xavier Montamat

Problématique

Le but du projet est de pouvoir estimer le retard probable d'un trajet en avion.

Nous possédons une base de données sur de nombreux vols américains de l'année 2016.

Il nous faut donc trouver une corrélation entre les données de vols disponibles et les retards constatés

Axe d'approche envisagé

- Identifier les raisons d'un retard
- Selectionner les plus pertinentes
- Appliquer un algorithme de régression
- Raffiner le modèle en fonction des résultats

Dangers à éviter

- Le Data Leak
- Overfitting du modèle

Contexte

- Travail pour une compagnie aérienne
- Accessible sous forme d'API

Plan de réalisation

Exploration

- Données disponibles
- Donnée cible
- Exploration des features
- Choix des features

Modélisation

- Test de modèle
- Transformations
- Amélioration du modèle
- Fitting des resultats

Modèle final

- Transformations effectuées
- Resultats scores et fitting
- API

Données

Données disponibles

- 5.6M de vols
- Année 2016 exclusivement
- Etats-Unis exclusivement
- 55 états & 316 aéroports
- 12 compagnies

Données manquantes

- Sur 10 features cruciales sélectionnées
- 80K lignes de données manquantes supprimées

(Soit 1.5% du total)

116K duplicates supprimés

5.44M de vols restants

Variable cible : le retard

26% des vols ont un retard de plus 5 minutes

Quelques valeurs extrêmes (>20H de retard)

Retard absolu à l'arrivée

- Retard au départ moins pertinent
- Retard négatif inutiles (=0)

Exploration - Compagnies aériennes

Distribution du retard par compagnie

Nombre de vols par compagnies

Retards par Aeroports

Retard moyen varie en fonction de l'aéroport

Départ / destination

Retard par heure de la journée

 Plus élevés en fin de journée et durant la nuit

Retards sur l'année

- Retards plus élevés en été
- Fort pic avant noel
- Variations importantes tout au long de l'année

Autres

Durée de vol pas vraiment corrélée au retard

Le code d'avion est une donnée intéressante si disponible

Causes possibles : Avion vieillissant / trop gros

Correlations

Aperçu rapide des corrélations (pearson) entre nos features

Et avec la variable cible

Resultats

Les corrélations au retard sont assez faibles

Entre 0.01 et 0.09

Modélisation de la régression

Après avoir sélectionné les données les plus pertinentes différentes lors de l'exploration

Je test différents modèles et compare les résultats

Certaines données doivent êtres transformées pour être exploitables par nos modèles

Méthode de test

Division du dataset

Séparation

- Données entrainement (75%)
- Données de test (25%)

Choix de l'hyper paramètre

Meilleur alpha trouvé par GridSearchCV (cv=5)

Modèles utilisés

Linéaire LASSO RIDGE

Scores

R squared Valeur moyenne absolue Erreur carré moyenne

Premiers tests

Régression linéaire	LASSO	Ridge
5-Folds CV score : 0.011	5-Folds CV score : 0.011	5-Folds CV score: 0.011
R squared: 0.0189	R squared: 0.0189	R squared: 0.0189
Valeur moyenne absolue : 17	Valeur moyenne absolue : 17	Valeur moyenne absolue : 17
RMSE: 38	RMSE: 38	RMSE: 38

Résultats identiques

Scores bas

Détail des résultats

Temps de vol inutile

Fitting non optimal sur certaines features

Améliorations

Filtrage des outliers

Retards extrêmes probablement non prédictibles

Sur 1.44 M de vols avec un retard > 5 min

99% quantile de ces vols = 290 min

Retard max limité à 290 min

Ordonnancement des jours année et semaine

Suppression du temps de vols

Nouveaux scores

Régression linéaire

5-Folds CV score : 0.04 (x4)

R squared: 0.047 (x3)

Valeur moyenne absolue: 17 (-0.8)

RMSE: 31.7 (-7.3)

Ridge et Lasso toujours identiques

Meilleur alpha ridge

Ridge

Recherche du meilleur alpha

GridSearchCV: Meilleur alpha de 1e-07

Scores

R squared: 0.0482

Mean absolute value: 16.16

RMSE:

Les scores sont donc les mêmes!

Recherche du meilleur alpha

Analyse du fitting

Jour de l'année

Encore trop linéaire par rapport à la valeur réelle

Heure d'arrivée

Fit assez bon entre prédiction et réalité

Modèle Final

Pour le modèle final nous allons à nouveau transformer nos features par degrés polynomiaux

Pour obtenir un meilleur fitting

Nous utiliserons ensuite le modèle de ridge et evaluerons les scores

Transformation des données

Transformation polynomiale

Analyse du score par degré de transformation

Degrés de transformation

- Heure départ = 3°
- Heure d'arrivée = 3°

Transformation des données

Données de catégories

(Ordonnées par la moyenne sur un train set)

Degrés choisis

- Code Avion = 3°
- Jour de l'année = 9°
- Jour semaine = 1°
- Aéroport Dest = 3°
- Aéroport Départ = 3°
- Compagnie = 3°

Fitting final

Jour de l'année

Fit bien meilleur

Heure d'arrivée

Fit légèrement meilleur

Performances final

31 features après transformation

Scores Ridge

5-Folds CV score: 0.49 (x1.2)

R squared: 0.0574 (x1.2)

Mean absolute value: 15.98 (-1.3)

RMSE: 31.5 (-0.2)

Scores en hausse

Recherche du meilleur ridge alpha

Conclusion

Bon fitting
Encore beaucoup de variations
Retard aléatoire

API du modèle

OpenClassroom Project 4 - Xavier Montamat

Choose your flight infos	
Date & Time of departure:	
20/11/2018 19:30	
Date & Time of arrival:	
21/11/2018 04:30	
Origin Aiport :	
King Salmon, AK: King Salmon Airport	•
Destination Aiport :	
White Plains, NY: Westchester County	•
Airline :	
Delta Air Lines Inc. ▼	
Aircraft number :	
N69059 ▼	
Submit	

Axes d'amélioration

Récupérer données différentes Données sur plus d'années Modèles plus complexes