

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

•		
•	•	
,	•	
•		
	·	
	·	
·		

. •

ASTRONOMICAL PAPERS

PREPARED FOR THE USE OF THE

AMERICAN EPHEMERIS AND NAUTICAL ALMANAC

UNDER THE DIRECTION OF

SIMON NEWCOMB, Ph.D., LL.D.

PROFESSOR UNITED STATES NAVY

SUPERINTENDENT

VOL. I.

 $\begin{array}{c} \text{W A S H I N G TO N} \\ \text{BUREAU OF NAVIGATION, NAVY DEPARTMENT} \\ 1882 \end{array}$

•		·	
	-	•	
•			
•			
•			
		•	•
	•		

PREFATORY NOTE.

The objects of the series of papers of which the publication is commenced in the present volume, are, a systematic determination of the constants of astronomy from the best existing data, a re-investigation of the theories of the celestial motions, and the preparation of tables, formulæ, and precepts for the construction of ephemerides, and for other applications of the results. The adopted policy, which is more fully set forth in the Introduction, contemplates the subdivision of the work and the publication of each part as soon as completed, in such a way as to render easy the subsequent combination of the whole.

It is not intended to include any papers in the series but such as conduce to the objects in view.

• • • • , ·

CONTENTS.

Introduction	Page. VII
I. On the recurrence of Solar Eclipses, with tables of Eclipses from B C. 700 to A. D. 2300, by Simon Newcomb	I
II. A transformation of Hansen's Lunar Theory, compared with the Theory of Delaunay, by Simon Newcomb, aided by John Meier	57
III. Experimental determination of the velocity of light made at the United States Naval Academy, Annapolis, by Albert A. Michelson	109
IV. Catalogue of 1098 Standard Clock and Zodiacal Stars, prepared under the direction of Simon Newcomb	147
V. On GAUSS'S method of computing secular perturbations, with an application to the action of Venus on Mercury, by George W. Hill	315
V1 Discussion of Observed Transits of Mercury, 1677-1881, by Simon Newcomb.	363

INTRODUCTION.

It is well known to all astronomers who have given attention to the subject that meridian observations of the moon and planets are not completely represented by any of the existing tables, and that the deviation of prediction from observation is constantly increasing. It is true that, so far as the current requirements of astronomy are concerned, the state of the case may be considered as not unsatisfactory. Not only may the planets be found and eclipses predicted for many years to come by the present tables, but, with the exception of the moon, there is every reason to suppose that the tabular positions will serve the purposes for which they are immediately required in navigation and practical astronomy. But when we take a wider view and consider the general wants of science both now and in the future, we find that in the increasing discordance between theory and observation there is a field which greatly needs to be investigated.

If mutual gravitation according to the law of Newton is the only cause which changes the motions of the planets, then it is mathematically possible to construct tables which shall represent observations with the last degree of precision and through any period of time. It is quite possible that the discordances alluded to proceed solely from the imperfections in the mathematical theory, and do not indicate any unknown cause affecting the celestial motions. But when we investigate more closely, and seek to ascertain the cause of such discordances, we find a state of things which renders it impossible to draw any definite conclusions respecting the ultimate possibility of representing observations by existing physical and mathematical theories. This state of things has its origin in the comparative brevity of the period during which accurate observations have been made, and in the difficulty of conducting, on a systematic plan, mathematical investigations having in view the perfection of astronomy.

One point in which the requirements of astronomy differ from those of physics is that the element of time enters into the former much more than into the latter. The experimental investigation of forces which act on the surface of the earth requires only the time necessary to make and perfect the experiments. There is no one research of which we can say that it will necessarily require a definite number of years or centuries for its completion. But since astronomical generalizations rest, not upon experiments, but upon observations, it is always necessary to wait for the recurrence of the phenomena on which the conclusions are to depend. The main object of investigation being the forces which change the motions of the planets we must observe these motions during a sufficient period to make evident the action of the forces. The longer the time which elapses the more material we have for reaching conclusive results. It is generally considered that accurate observations commenced with Bradley in the

middle of the last century. The period during which they have continued is therefore about a century and a third. But there are many exceptions in the case of different classes of observations. The places of the moon have been traced backward with a nearly modern precision through the century preceding Bradley's observations, while the observations of the Babylonians and the Arabs are still of the greatest value in the lunar theory. On the other hand none of Bradley's instruments fulfill the requirements of the present time, and his observations were in many cases extremely defective as compared with our own. If, therefore, we attempt to learn what conclusions can be reached in the present state of astronomy we must consider each object of observation separately with reference to its general place in a comprehensive scheme.

But time is not the only element which comes in. If we are to determine what unknown causes affect the motions of the planets the first step is to prove that there is really a discordance between the results of observations and the results of the theory of gravitation. The first step towards establishing such a discordance is the construction of tables and formulæ of which we can say that they are beyond reasonable doubt the results and the only results of the gravitation of the known bodies of the solar system. The necessary conditions which such tables and formulæ must satisfy are that they shall be founded upon uniform elements and data, and that the results of employing the adopted elements shall be carried out with all necessary precision. Now, not only has this requirement never been fulfilled, but the effect of recent advances in exact astronomy has rather been to carry us away from its fulfillment.

It is scarcely possible for a year to pass without some new investigation or series of observations which shall materially add to the precision with which we can determine some astronomical constant. Each astronomer who finds material to be used in this way is naturally desirous of utilizing it to its fullest extent, and is therefore under a temptation to introduce each new improvement into his investigations without respect to their consistency with the investigations of others which have been made with the older data. Sometimes, too, the object of constructing an astronomical formula is to correct it from time to time, and the very object of the constructor may tend to destroy its consistency. A brief glance at some features of the existing planetary tables will illustrate the point in question.

LAPLACE, in the third volume of his *Mécanique Céleste*, constructs, by the most rigorous and complete methods then known to science, a complete theory of the planetary perturbations, founded on elements and masses which are quoted in Chapter VI of his work. From his results tables were constructed by LINDENAU and BOUVARD during the early years of the present century.

In order to give the tables the required precision it was necessary to correct the elements by a comparison with observation. Thus, the new tables no longer corresponded to the original formulæ of Laplace. Moreover, the theory was in many respects so imperfect that no certain conclusion could be drawn from a comparison with observation. This was notably the case with the perturbations of the second order. It was therefore necessary to make a complete reconstruction of the theory. Nevertheless, such was the labor and difficulty of constructing new tables that those of

LINDENAU and BOUVARD remained the standards for use in the preparation of ephemerides during nearly half a century.

The next complete reconstruction of the theories and tables of the planetary motions was that of Leverrier. His work on this subject forms the most important part of the fourteen volumes which he published under the title *Annales de l'Observatoire de Paris*. The first of these volumes appeared in 1855, the last in 1877.

Some consideration of the circumstances under which this great work was carried out and of the objects at which it aimed may not be out of place as showing how it happens that more remains to be done in the same direction. When LEVERRIER commenced his work, the most striking feature which presented itself was the imperfections of the tables of LINDENAU and BOUVARD. The formulæ on which they were constructed, though fully up to the science of the time in which they were formed, was far behind modern requirements in generality and rigor. Better tables and formulæ constituted one of the most pressing wants of exact astronomy. Both his position and his previous works marked Leverrier as the one to undertake the work of constructing such tables and formulæ. Naturally desirous of beginning to reap the results of his labor as soon as possible, he investigated the elements of the planets and published the corresponding tables one or two at a time. This course did not detract from from his main object, that of constructing improved planetary tables. But there was another object, the desirableness of which was not immediately felt, but which must be more and more felt in the not distant future, namely, the attainment of uniformity in adopted astronomical data. So far was Leverrier from aiming at this object, in its entirety, that his tables do not, in all cases, embody his final results. The consequence is, that notwithstanding that his work makes a greater epoch in astronomy than any of his immediate successors can hope to make, it does not wholly supply the wants of science in the immediate future. In many of his tables large and increasing deviations from observation already exhibit themselves. This is most notably the case with the planet Saturn, the theory of which he did not succeed in bringing to a satisfactory conclusion. The geocentric places of Mars and Venus are also largely in error at the time of nearest approach to the earth. The earlier tables, those of the Sun and Mercury, are the only ones which can be regarded as entirely satisfactory in their agreement with observations, with the possible exception of Uranus and Neptune.

What has been said of Leverrier's tables applies with yet greater force to the tables of Uranus and Neptune by the present writer. Their main object was to supply an immediate astronomical want. The data on which they were found could not be regarded in any respect as definitive, nor were the adopted masses absolutely uniform. The formulæ of perturbations on which they depend are also such that we cannot say with certainty whether the deviations from observations which they exhibit arise from any other cause than the imperfections of the theories on which they are founded.

Now, the material available for the accurate determinations of the fundamental elements of astronomy has increased many fold since the conclusion of LEVERRIER'S work on the four inner planets. The recurrence of transits of Venus and Mercury, the perfection of astronomical instruments, the employment of improved places of the fixed stars, the introduction of more systematic methods of research, and the rein-

1

vestigation of older observations have all combined to bring precise astronomy to a higher plane than it ever before occupied. Supposing that their mutual gravitation is really the only cause which disturbs the elliptic motion of the planets around the sun, it is now theoretically possible to construct tables of all the large planets, except Neptune, from exact data, which shall represent observations within their probable errors until the middle of the next century. The desirableness of having such tables founded on one consistent and fully elaborated theory, hardly needs to be insisted on. Only in this way can it be decided whether deviations from theory arise from its imperfections, or from the action of unknown and, perhaps, unsuspected causes.

A more detailed survey of the field will bring to light other reasons for placing the results of past observations and researches in such a form that they may be utilized in the future.

We first remark that the existing data in the form of observations lie in great part unused, and are in danger of never being used, unless discussed and condensed in such a way as to render them manageable. Long series of observations made during the present century by eminent astronomers, and with the best appliances, lie idle in the volumes which embody them, never having appeared in any of the existing tables. In order to be utilized to the best extent they need to be rediscussed by modern methods and with modern places of the fixed stars. The labor of doing this is such that we only find it performed in sporadic cases by individual astronomers. One of two courses must now be adopted. We must either suffer this great mass of material, collected in many cases by the life labors of eminent observers, and published at great expense, to go to utter waste, or we must speedily put it in a shape to be utilized for present and future purposes. It is true that if nothing were to be added to the mass we might safely leave it in confidence that future astronomers would give it more attention than we have. But so rapidly does it increase that it is even now entirely beyond the power of individual management, and the longer it is left the less hope there is that it ever will be managed. The required work must be that of an organization rather than that of an individual. All that the head of an organization can do is to plan the work, investigate the formulæ and data by which it is to be done, devise the checks which are to guard against error, discuss the results, arrange them for the press, and see that every operation is conducted on correct principles and by the best methods.

Not only should the work be founded on all the observations which it is practicable to employ as its basis, but a necessary feature is a utilization, so far as possible, of all discussions by other astronomers. Although the work may become less individual in character, it has greater claims to consideration on the score of embodying the labors of the leading astronomers of the time.

On assuming the superintendency of the American Ephemeris in 1877, the writer determined to employ the resources at his disposal to carry out, or at least to enter upon, a long cherished plan of executing the work in question. No published announcement of his programme was, however, made, owing to the ease of making such a programme alongside the difficulty of executing it. There are, however, two reasons for no longer maintaining this reserve. One is that although what has been done is

only a commencement, the prospects of being able to carry it through are fairly good. Both Congress and the Navy Department have supplied all the assistance which has been asked for, and a force of from eight to twelve computers, some of the highest order of mathematical ability, has been actually employed during the past year, and may, if necessary, be increased in the future. Another and more cogent reason for announcing the programme is that much duplication of work may thus be avoided. Astronomers in other parts of the world are from time to time undertaking investigations already in hand and sometimes announce their intention in private correspondence where nothing has appeared in print.

This remark is not made to discourage such attempts, because, owing to the magnitude of the work, it is desirable to utilize all investigations, wherever made, which will in any way contribute to its completion. It is, however, essential that such investigations should be made in such a way as to adapt themselves to the general plan, and that they should be completed so far as practicable. With a view of enabling those interested to form the best judgment of the situation a statement of the unpublished work now in hand, with a general programme for its continuance, is here presented.

The theories of the four inner planets naturally claim the first attention as embodying most of the fundamental elements of astronomy. This branch of the work includes not only the masses of the planets and the elements of the respective orbits, but the constants connected with the rotation of the earth on its axis, namely, the annual precession, the obliquity of the ecliptic and its secular variation, the position of the equinox among the stars, and, indirectly, the positions of the fundamental stars. To these may be added the solar parallax and the mass of the moon, as well as a number of quantities connected with those already mentioned. In the determination of these constants the plan, as already mentioned, contemplates the utilization and combination of all valuable data.

Besides what is found on the general subject in the present volume the following works are finished or in progress:

LEVERRIER'S tables of the Sun, Mercury, Venus, and Mars have been partially reconstructed with a view of making them more convenient in use. His theory, however, remains unaltered in the manuscript tables. A comparison of the Greenwich, Paris, and Washington meridian observations of Mercury with those tables has been commenced and is approaching completion. Similar comparisons for the Sun, Venus, and Mars have not been seriously commenced, but it is expected to commence them in the course of the year 1883.

A discussion of the corrections required by the older Greenwich observations up to 1830, as published by Professor Airy, in order to reduce the results to a uniform system, is nearly completed, and is expected to appear as Volume II, Part I, of these Papers.

General tables and formulæ for forming the differential coefficients for correcting the elements of the inner planets have been prepared, and it is intended to publish them in the next volume.

Although the final completion of the theories of the other planets must follow the work on the interior planets, it is advisable to begin it without delay, owing to the great labor which it involves. The general perturbations of Jupiter and Saturn were

therefore taken up by Mr. George W. Hill in 1877, but they are still unfinished. It is now expected that Mr. Hill's work will be completed about the end of 1883. The computation has been made principally by the methods of Hansen.

Much attention has also been paid to the subject of the moon's motion. The first object has been the continuance of the discussion of eclipses and occultations previous to 1750 up to the present time. The reason for laying so much stress upon occultations is that notwithstanding the irregularity with which they are observed, their considerable accidental errors, and the labor of reducing them, they constitute the only observations of the moon which are free from systematic error, and which can therefore be used with safety to compare the mean longitudes of the moon at wide intervals of time.

Tabular positions of the moon, as well as those of the fixed stars, are now complete for all the more important occultations since 1750, and the reductions for parallax are in progress. Should the work not be intentionally delayed in order to bring it up to the date at which new tables of the moon shall be actually constructed, it may be expected that this particular discussion will be terminated by the end of 1884.

Although the theory of Jupiter's satellites does not form an essential part of the proposed investigations, the motions of the first satellite are intimately connected with the general subject, owing to the light which they may throw upon the question of the uniformity of the earth's rotation. All the observed and recorded eclipses of the satellites have, therefore, been computed from Damoiseau's tables up to the early part of the present century. The work is discontinued for the present, owing to the difficulty of introducing and discussing the various corrections which will be required to the observations on account of different apertures of telescopes employed, the different distances of the planet from Jupiter, etc. It is a matter of regret to me, as it must be to all astronomers interested in this matter, that Mr. Glasenapp has not continued the very thorough discussion of observations of these satellites which he published some six years ago.

An essential and very laborious and difficult part of the work is that of preparing formulæ and tables for computing the general perturbations of all the planets. A problem which has taxed the powers of the greatest mathematicians of modern times, and the solution of which is still, after all their work, in an unsatisfactory state, is one which the writer feels most hesitation in approaching. He has, however, devised a method which he hopes may prove convenient in practice for the general development of the disturbing function and its derivatives. Whether any improvements can be devised in the method of integrating must be left to the future.

In the future work it is intended to combine the data in a way different from that generally adopted. When all four of the inner planets are considered together it is possible greatly to strengthen the results on special points. An example of this is afforded by the relation of observations on Mercury and Venus to the obliquity of the ecliptic and the position of the equinox. Hitherto these quantities have been made to depend solely upon observations of the sun. Were the sun a point of light which could be observed in the same way as a fixed star, the results from this method would be so far beyond doubt that we should have no occasion to look further. But there are

several causes which diminish the value of solar observations. In the first place, the sun being a round body and not a point of light, it is well known that large personal differences exist in the observations of its position by different observers. Again, it has always to be observed at mid-day, when the atmosphere is most disturbed by its rays, and when the roof of the observing-room is heated from the same cause. Moreover, there is always more or less danger of systematic deformation of the instrument produced by the concentration of the solar rays in the focus. It is therefore impossible to view observations of the sun without a strong suspicion of systematic errors existing among them.

Now, geometrically considered, observations of Mercury may be utilized for determining the position of the earth's orbit relative to the equator almost as well as observations of the sun itself. If we supposed the elements of the orbit of Mercury perfectly known it would be easy to reduce each observation of Mercury to the center of motion. But since the elements of the planet are to be considered unknown, the question arises whether these elements and those of the earth's motion can be independently determined. That they can, to a certain extent, will be evident by the following considerations.

Let us imagine the observer to be in any fixed position on the orbit of the earth, and to observe Mercury from time to time through several revolutions around the sun. It is evident that from these observations the orbit of the planet, and the position of the observer relative to it, could both be determined. By supposing him to move around the earth's orbit to different positions, and to repeat the determinations, we see that any number of separate determinations of the elements of the planet could be made. The several determinations would then be combined and reconciled by attributing suitable elements to his own motion around the earth's orbit.

This is substantially the actual case except that the observations from any one point of the earth's orbit do not embrace the whole orbit of Mercury, but only those portions of it not very near the points of conjunction with the sun. Although this circumstance detracts from the completeness of the determinations it does not detract from the accuracy with which the main problem, that of the obliquity of the ecliptic and position of the equinox, can be solved. It is therefore possible, from meridian observations of Mercury alone, to obtain the principal elements of the earth's orbit around the sun, including the absolute longitude of the sun itself, and hence a separate determination for the position of the equinox. It is true that some of the elements, especially the eccentricity and longitude of the perihelion, may prove to have small weight, but this is because what is most accurately given by the observations will be a linear function of the corrections to these elements. But even such a result will furnish valuable data for the final values of the necessary quantities.

Nearly the same remarks apply to the meridian observations of Venus, and, to a limited extent, to those of Mars. Indeed it is evident that what is given by planetary observations generally is not the absolute position of the planet but the direction of the line joining the earth and planet, which direction is equally available for the determination of the elements of either of the two bodies. Whether it is advisable to employ it in determining both sets of elements must depend upon circumstances. If it

were possible to determine the solar elements by observations of the sun with an accuracy far exceeding the joint determination by observations of the planet, the latter might be entirely omitted. But, for reasons already pointed out, this is far from being the case. It seems better, therefore, under the circumstances, to ascertain what functions of the corrections to the two sets of elements can best be determined from observations of the planets, and to supply whatever is weak in the combination by observations of the sun itself.

In theory, observations of the moon might also be utilized for an absolutely independent determination of the equinox and of the obliquity of the ecliptic. In fact the mean orbit of the moon during a period of one revolution of the node is the ecliptic itself, and therefore exact observations of its position through one period will give the position of the ecliptic. But the rapid motion of the moon in declination when near either equinox introduces a large probable systematic error into the measures made upon it at any definite moment. No weight can therefore properly be assigned to a position of the equinox by meridian observations of the moon. The obliquity derived from such observations may, however, be worthy of more consideration.

The position of the sun among the stars may, however, be determined through the aid of the moon with a considerable approach to precision. The direct comparison of the sun and stars through the sidereal clock is uncertain, from the causes already pointed out, namely, the effect of the sun's rays in disturbing the air and instruments, and personality in observing a limb. Now, by observations of eclipses, especially at the beginning and ending of totality, the exact moment when the sun and moon are in conjunction is determined with great precision. By observations of occultations the mean position of the moon among the stars is determined with yet greater precision. Hence, by a combination of the two we have a result for the position of the sun among the stars which may possibly be entitled to considerable weight. It is, however, a drawback to the method that few observations of eclipses having any claim to precision were made between 1720 and 1800, while those made before 1720 are of course subject to more or less suspicion of systematic error.

It is worthy of note that this method of determining the position of the sun among the stars is, in principle, that adopted by HIPPARCHUS and PTOLEMY.

The above are the leading features in which the plan of the proposed work differs from that hitherto followed. The objects are also somewhat different, in that they include a basis for future conclusions as well as the determination of astronomical constants and the construction of new tables. It is hoped, should the work be completed on the proposed plan, that for a miscellaneous and frequently inconsistent combination of astronomical constants there will be substituted a consistent set, and that the result of this substitution will be to make it easy to determine, from any future deviation between theory and observation which may show itself, in what direction we are to look for the cause.

SIMON NEWCOMB.

ON THE

RECURRENCE OF SOLAR ECLIPSES

WITH

TABLES OF ECLIPSES

FROM B.C. 700 TO A.D. 2300

BY

SIMON NEWCOMB

PROFESSOR, U. S. NAVY
SUPERINTENDENT OF THE AMERICAN EPHEMERIS AND NAUTICAL ALMANAC

WASHINGTON
BURBAU OF NAVIGATION, NAVY DEPARTMENT
1879

·				
			•	
•	,			
,				
	·			

PREFACE.

The following paper presents a new theory of the recurrence of solar eclipses, founded on some hitherto unnoticed properties of the 18-year eclipse cycle. This theory has been utilized in the formation of tables whereby the solar eclipses of any class which have occurred during the past twenty-five centuries, or are to occur during the next five centuries, may be determined and approximately computed with great rapidity. The tables are founded on the mean motions and other elements of the sun and moon given in Hansen's Tables, the mean motion of the moon and of its nodes being corrected to accord with the results deduced in the author's Researches on the Motion of the Moon.

In the concluding section, the eclipses most remarkable for the duration of total phase are pointed out, and the conditions for their occurrence briefly discussed.

A considerable part of the work of constructing the tables has been performed by Mr. John Meier, assistant in this office.

							•
•							
						·	
٠							
		•					
	•			·		•	•
			·				

TABLE OF CONTENTS.

age.
1
2
2
5

•	•			·	·
			•		
	. •				
	·				
•				-	
	·	·			
				·	
	•				
					·
			•		
				·	

THE RECURRENCE OF SOLAR ECLIPSES.

≬ 1.

GENERAL THEORY.

It has been known from ancient times that eclipses both of the sun and moon generally repeat themselves in a cycle of 18 years and 11 or 12 days, known as the Saros. This cycle is due to the circumstance that 242 revolutions of the moon relatively to either of its nodes require nearly the same period with 19 revolutions of the sun relatively to the same node. The time required for either of these returns is $6585\frac{1}{3}$ days. Hence, if we note the relative positions of the sun and moon at any moment, and then count forward through this period, we shall, at the end of it, find them in nearly the same position, both relative to each other and relative to the node. If we start from the centre of an eclipse, when the two bodies are nearly in the same straight line, we shall, at the end of the period, find another eclipse very similar in its character. This relation affords a very simple and easily applied method of finding the series of eclipses which occur during any period of 18 years, from those which occurred during the cycle previous

There are, however, two remarkable chance relations connected with the Saros, which, so far as I know, have never been remarked, and without which the period would not have served the purpose of foreseeing eclipses so well as it actually does. The cycle takes account only of the mean motions of the sun and moon. But in consequence of the eccentricity of the orbits, the sun may be 2 degrees on either side of its mean place and the moon 5 degrees. The relative position of the two bodies may therefore vary 7 degrees from their mean position at any time; this extreme variation would change the time of an eclipse by half a day and the distance from the node at which it occurred about 2 degrees. If the corresponding eclipses in two successive cycles were subject to these independent variations, their circumstances might differ so widely that the recurring eclipse would differ considerably from its predecessor, and might be nearly a day later or earlier than the mean length of the cycle in its recurrence. A partial eclipse might fail entirely to recur, and a total one might become partial at the first recurrence and then total again at the second one. But, as a matter of fact, the irregularities of this class are reduced almost to nothing by two other remarkable relations. At the end of a Saros, not only are the sun, the moon, and the node found nearly in their original relation, but the mean anomaly of the moon has also the same value to less than 3 degrees, and the mean anomaly of the sun to some 12 degrees. There is no a priori reason that this should be the case: it arises only from the fact that 18 years is a close multiple, not only of the times of revolution of the sun and moon, but also of the times of revolution of the moon's node and perigee. The following is a more exact statement of the changes at the end of the Saros. Taking as a period the time required for 223 lunations, the changes in the elements at the end of the period will be as follows:—

In the argument of latitude, - - - - - - - - - 28'.6

In the moon's mean anomaly, - - - - - - - - - 2°.831

In the sun's mean anomaly, - - - - - - - + 10°.494

In the distance of the lunar perigee from the node, - + 2°.353

In the distance of the solar perigee from the node, - - 10°.971

In consequence of the minuteness of these changes, not only the mean place of the moon, but all its larger inequalities, will return nearly to their original values at the end of the period. This will hold true, not only with respect to the time of the eclipse, but also with respect to its character, since the parallax and semi-diameter of the moon must also return nearly to their original values. If the eclipse is of a remarkable character with respect to duration, the corresponding ones of succeeding cycles will be of the same character.

An interesting illustration of this fact is found in a series of total eclipses now in progress, namely, those of 1850, 1868, 1886, etc., in which the duration of totality is greater than in any others which have occurred for several centuries. This series will be investigated in the course of the present paper.

Owing to the mean retrocession of 28' from the node in each cycle, the corresponding eclipses in successive cycles are subject to a progressive change. A series of such eclipses commences with a very small eclipse near one pole of the earth. Gradually increasing for about eleven recurrences, it will become central near the same pole. Forty or more central eclipses will then recur, the central line moving slowly toward the other pole. The series will then become partial, and finally cease entirely. The entire duration of the series will be more than a thousand years. A new series commences, on the average, at intervals of thirty years.

It follows from this that all eclipses may be divided into sets, the separate eclipses of each set being separated by intervals of one 18-year cycle, and extending through sixty or seventy cycles. Moreover, from the elements of the central eclipse of each set, those of any other of the same set may be readily found by applying the changes corresponding to the number of intervals which separate it from the central one. It is now proposed to utilize this circumstance by the formation of a series of tables, by which the approximate elements of any solar eclipse between the years B. C. 700 and A. D. 2300 may be found with a few minutes' calculation, and by which any such eclipse occurring during this period may be promptly identified. The principles on which the most important of these tables are constructed may be readily comprehended by a conception of movable conjunction points reached in the following manner.

Let us suppose the mean motions, n and n', of two bodies, planets for instance, revolving round a common centre, to be so related that

$$i' n - i n' = 0$$

i and i' being integers. Then, i' revolutions of the first will require the same period as i revolutions of the second, so that at the end of this period, which we may call P, they will have returned to their original positions. During the period P they will have been in conjunction i-i' times at the same number of equidistant points of either orbit. Every subsequent mean conjunction will occur at these same points. We shall call them *conjunction points*, and shall represent their number, i-i', by ν .

If we suppose these points to be numbered, in the order of longitude, 0, 1, 2 cdots cdots cdot cdots cdots

$$i'x - iy = \pm p$$
.

x will then be the entire number of revolutions of the one planet and y that of the other before the required conjunction will occur; that is, the one planet will then have passed over vx + p intervals between the conjunction points, and the other over vy + p. The condition that these two quantities shall be in the ratio i:i' gives the above indeterminate equation. In order to avoid the ambiguous sign, we may suppose n > n', which will make i > i'. This will make the equation

$$i' x - i y \equiv p$$
.

In what precedes, we have supposed the mean motions of the two bodies to be exactly in the ratio of the entire numbers i and i'. This is never the case in nature, if we reckon the mean longitudes from a fixed point of departure; but we may always assign such a uniform progressive motion to this point that the condition shall be fulfilled. Let us put k for the progressive motion required. The mean motions relative to the moving departure point will then be n-k and n'-k respectively. The condition that these shall be in the ratio i:i', or

$$\frac{n-k}{n'-k}=\frac{i}{i'},$$

gives

$$k \equiv \frac{i \, n' - i' \, n}{i - i'} \equiv \frac{i \, n' - i' \, n}{\nu}.$$

The conjunction points, being fixed relatively to the departure point, will have this same mean motion k; that is:—

By assigning to the ν conjunction points the uniform mean motion k, the conjunctions of the two bodies will always take place at these points.

This conception of movable conjunction points is of great assistance in representing and investigating the relations of the two bodies through many revolutions. For instance, in the case of Jupiter and Saturn, taking $i \equiv 5$ and $i' \equiv 2$, there will be three conjunction points having a direct mean motion of 489" per annum relative to a fixed equinox. Their successive passages through a fixed point occur at intervals of

883 years, and we may consider the great inequality between the two planets as depending on the position of the conjunction points relative to their perihelia.

Theoretically, the values of *i* and *i'* may be regarded as entirely arbitrary. But to obtain the advantage of the conception, we take them as nearly as practicable in the ratio of the mean motions. Even with this limitation we have a choice of systems, an increase in the assumed values of *i* and *i'* having the disadvantage of increasing the number of points to be considered, and the advantage of diminishing their mean motion. The most advantageous systems will of course be found by developing the ratio of the mean motions as a continued fraction, and taking the successive converging fractions which approach to the ratio. Between two such successive systems the following relation subsists:—

The interval between the successive transits of the conjunction points of one system over any one of the next higher, and therefore more slowly moving system, is equal to the time required for the conjunctions to occur at all the points of this latter system.

Commencing with the higher system, and supposing the mean motions n and n' to be counted from a point of this system, and to be in the ratio j:j', we shall have

$$j'n-jn'\equiv 0.$$

The mean motion of the points of the next lower system relatively to the higher one will then be,

$$k \equiv \frac{i \, n' - i' \, n}{i - i'};$$

the time required for a complete revolution of the lower system will be,

$$\frac{2\pi}{k} = \frac{360^{\circ}(i-i')}{i\,n'-i'\,n};$$

and the intervals between successive passages of its i - i' points over a fixed point of the other system will be,

$$\frac{2\pi}{vk} = \frac{360^{\circ}}{i\,n'-i'\,n}.$$

Since n and n' are in the ratio j:j', we may put

$$n \equiv \alpha j,$$

$$n' \equiv \alpha j',$$

which will make

$$i n' - i' n = (i j' - i' j) \alpha$$
.

But, by the properties of continued fractions, the value of the coefficient of α in this expression is ± 1 . Hence, the sign being indifferent, as expressing only the direction of the motion, the interval between successive passages of the conjunction points becomes

$$\frac{360^{\circ}}{\alpha}$$

In order that the conjunctions may occur at all points of the higher system, it is necessary that the one planet should make j and the other j' revolutions. The time required for this will be,

$$\frac{j}{n}360^{\circ} = \frac{j'}{n'}360^{\circ} = \frac{360^{\circ}}{\alpha}$$

the same as the interval just found.

Let us now apply these methods to the problem now under consideration, that of the recurrence of solar eclipses. Let us put

- g, the mean anomaly of the moon;
- g', that of the sun;
- ω , the distance of the lunar perigee from the node;
- ω' , that of the solar perigee from the moon's node;
- T, the number of Julian centuries after 1800.

Applying to the elements given by Hansen (Tables de la Lune, p. 15) the corrections to the mean longitude and the longitude of the node given in my Researches on the Motion of the Moon, p. 268 and p. 274, the numerical expressions for g, ω , g', and ω' will become:—

$$g = 110^{\circ} 19' 32''.50 + (1325^{\circ} + 715807''.98) T + 45''.58 T^{2} + 0''.050 T^{3}$$

 $\omega = 192^{\circ} 7' 21''.91 + (16^{\circ} + 875512''.07) T - 44''.32 T^{2} - 0''.044 T^{3}$
 $g' = 0^{\circ} 24' 28''.22 + (100^{\circ} - 3392''.18) T - 0''.56 T^{2}$
 $\omega' = 246^{\circ} 13' 50''.28 + (5^{\circ} + 489\dot{0}88''.09) T - 6''.52 T^{2} - 0''.007 T^{3}$.
Epoch, + 1800.0, Jan. o, Greenwich mean noon.

In dealing with a subject of this kind, the entire revolution is a more convenient unit than the angular denominations usually adopted. We therefore transform these angles into revolutions and fractions, with the following results:—

$$g = ^{r}.30646026 + 1325^{r}.55232097 T$$

$$+ o^{r}.00003517 T^{2}$$

$$+ o^{r}.00000039 T^{3}$$

$$\omega = ^{r}.53367431 + 16^{r}.67554944 T$$

$$- o^{r}.00003420 T^{2}$$

$$- o^{r}.00000034 T^{3}$$

$$g' = ^{r}.00113289 + 99^{r}.99738258 T$$

$$- o^{r}.00000043 T^{2}$$

$$\omega' = ^{r}.68397398 + 5^{r}.37738278 T$$

$$- o^{r}.00000503 T^{2}$$

$$- o^{r}.000000005 T^{3}.$$

In the construction of the present tables we shall use the Julian calendar, it being more convenient to change the dates from this calendar to the Gregorian than to take account of the complexities of the latter. We shall therefore take, as our fundamental epoch,

1800, Jan. 1, Greenwich mean noon of the Julian calendar, = 1800, Jan. 12, Greenwich mean noon of the Gregorian calendar.

Transferring to this epoch, the constants of the four principal elements will become,

$$g_{\circ} = 0^{r}.74196000,$$

 $\omega_{\circ} = 0^{r}.53915294,$
 $g'_{\circ} = 0^{r}.03398624,$
 $\omega'_{\circ} = 0^{r}.68574068,$

while the coefficients of the powers of T will remain unaltered.

We shall count the time from this epoch in Julian centuries or in equal Julian years of 365.25 days each. This reckoning of time will hereafter be called a fictitious one to distinguish it from the civil reckoning. The expression for the mean distance of the two bodies from the ascending node of the moon's orbit, which we shall represent by u and u', putting

$$u = g + \omega,$$

 $u' = g' + \omega',$

will now be

$$u = 0^{7}.281112.94 + 1342^{7}.227870.41 T + 0.96 T^{2} + 0.005 T^{3},$$

 $u' = 0^{7}.719726.92 + 105^{7}.374765.36 T - 5.46 T^{2} - 0.005 T^{3}.$

The comma in these expressions is used to cut off six places of decimals.

If we differentiate these expressions with respect to T, and then put T = 0 and T = -25, we have the following expressions for the mean motions from the node at the epochs -700.0 and +1800.0:—

Epoch,
$$-700.0$$
, $+1800.0$,

Mean motion of $u = \mu$, $1342^{r}.227832$ $1342^{r}.227870,41$

Mean motion of $u' = \mu'$, $105^{r}.375028$ $105^{r}.374765,36$.

Developing the ratios of these two quantities into a continued fraction, we have,

For -700.0, For + 1800.0,
$$\frac{\mu}{\mu'} = 12 + \frac{1}{1} + \frac{1}{2} + \frac{1}{1} + \frac{1}{4} + \frac{1}{3} + \frac{1}{3} + \frac{1}{7}.$$

The several converging fractions, so far as it is worth while to carry them, are :-

For
$$-700.0$$
: $\frac{12}{1}$, $\frac{13}{1}$, $\frac{38}{3}$, $\frac{51}{4}$, $\frac{242}{19}$, $\frac{777}{61}$, $\frac{2573}{202}$, etc.
For $+1800.0$: $\frac{12}{1}$, $\frac{13}{1}$, $\frac{38}{3}$, $\frac{51}{4}$, $\frac{242}{19}$, $\frac{777}{61}$, $\frac{4127}{324}$, $\frac{4904}{385}$, etc.

Of these systems the one which offers the greatest advantages is $\frac{242}{19}$, which will give us 223 conjunction points, each having (relative to the node) a retrograde motion such that it would, if constant, make a revolution in about 14,000 years. This time, however, varies with the mean motion of the moon and its node. From the formulæ for k, already given, we find,

Epoch,
$$-$$
 700.0: $k = -.0007050$,
Epoch, $+$ 1800.0: $k = -.0007338$.

The distance apart of two consecutive conjunction points is,

$$K = \frac{I^r}{223} = 0^r.004484304 = I^0.614350;$$

and they pass the node at the following intervals:—

At the epoch
$$-$$
 700.0, interval $=$ 63 y .607 $=$ 785 lunations. At the epoch $+$ 1800.0, interval $=$ 61 y .111 $=$ 756 lunations.

Between these two fundamental epochs there will be 40 passages of conjunction points through the node.

We next investigate the positions of the conjunction points at the first of these epochs. We note that a conjunction (new moon) occurred 7^d.01670 before the first epoch, when

$$u = u' = 0^{r}.327024$$

= 73 K - 0^r.000330
= $\left(73 - \frac{1}{14}\right)$ K.

We conclude that the node is very near the 73d conjunction point back from that at which the new moon just found occurred, and that this point passed the node about $\frac{1}{14}$ th of an interval, or $4\frac{1}{2}$ years before the epoch. We shall take this as the zero conjunction point, and count the others in the order of longitude. Their successive passages across the ascending node will then occur at the times shown in the left-hand half of the following table. The intervals between consecutive passages, as just shown, will diminish from $63^{y}.607$ at -700.0 to $61^{y}.111$ at +1800.0.

Passages of Conjunction Points through Nodes.

Conj. Point.	Ascend. Node.	Conj. Point.	Ascend. Node.	Conj. Point.	Descend. Node.	Conj. Point.	Descend. Node.
	у.		у.	·	у.	: !	y.
0	- 704.82	25	865.93	112	- 673.03	137	896.94
I	- 641.25	26	927.96	113	– 609.50	138	958.94
2	— 577·74	27	989.92	114	- 546.02	1 39	1020.87
3	- 514.29	28	1051.82	115	- 482.60	140	1082.74
4	- 450.90	29	1113.66	116	- 419.24	141	1144.55
5	- 387.58	30	1175.44	117	— 355.95	142	1206.30
6	- 324.32	31	1237.15	118	- 292.72	143	1267.97
7	- 261.12	32	1298.80	119	- 229.55	144	1329.59
8	- 197.98	33	1360.39	120	- 166.44	145	1391.15
9	- 134.91	34	1421.92	121	- 103.40	146	1452.66
10	- 71.90	35	1483.39	122	40.42	147	1514.09
11	- 8.95	36	1544.79	123	22.50	148	1575.46
12	53.94	37	1606.13	124	85.36	149	1636.77
13	116.77	38	1667.41	125	148.16	150	1698.02
14	179.54	39	1728.63	126	210.90	151	1759.20
15	242.25	40	1789.78	127	273.58	152	1820.32
16	304.90	41	1850.87	128	336.20	153	1881.38
17	367.49	42	1911.90	129	398.75	154	1942.39
18	430.01	43	1972.87	130	461.24	155	2003.32
19	492.47	44	2033.77	131	523.67	156	2064.19
20	554.87	45	2094.61	132	- 586.04	157	2125.00
21	617.21	46	2155.39	133	648.34	158	2185.75
22	679.48	47	2216.11	134	710.59	159	2246.42
23	741.69	48	2276.77	135	772.76	160	2307.03
24	803.84	49	2337.37	136	834.88	161	2367.58

At the first of the above epochs the descending node will fall between the IIIth and the II2th conjunction point, and the passages will occur midway between those of the ascending node. These times are shown in the right-hand portion of the table.

A new moon occurs at each conjunction point at equal intervals of 223 lunations; and, according to the system adopted, eclipses are classified according to the conjunction point at which they occur, those of each series being separated by intervals of 223 lunations. The middle eclipse of each series will be that which occurs nearest the time when the conjunction passes the node; and we now wish to find when these successive middle eclipses occur. We have just seen that the sun and moon were together at the 73d conjunction point on the 7th day before — 700.0. We wish to find when they were together at the zero point, which is 150 points farther advanced. Each new moon occurs at an interval of 19 conjunction points past the preceding one; therefore, if be the number of lunations required, we must have

This gives:—
$$i \equiv 150 \pmod{223}$$
.
 $i \equiv 137$, or $i = -86$.

The required conjunctions at the zero point are therefore the 137th following and the 86th preceding that of -700° -7° , from which we started. The latter, of course, is nearest the node.

The number of lunations between a conjunction at any point and the first following conjunction at the next point in order is given by the congruence,

$$19 i \equiv 1 \pmod{232}$$

the solution of which is,

$$i = 47.$$

We shall therefore have a conjunction at point n + 1 at an interval of 47 lunations after any conjunction at point n, whatever be n. The intervals between consecutive middle eclipses must therefore be of the form,

$$223 x + 47,$$

x being an integer. The mean interval must be the same as that between two passages of the node over a conjunction point; that is, 785 lunations about the epoch - 700.0 and 756 lunations about the epoch + 1800.0. The actual intervals are there fore found by putting x = 3 and x = 4, so that they must be either

716 or 939 lunations.

§ 2.

DATA FOR TABLES OF ECLIPSES.

When the possible solar eclipses which may have occurred during any period are to be investigated, it is convenient to have tables by which we can at once find the limits of time within which their occurrence is possible. A central eclipse can occur only within eleven or twelve days of the time when the sun passes the moon's node, and therefore only at the new moon nearest such passage. A partial eclipse may occur at any time within eighteen days of such passage: there may, therefore, be two partial eclipses; one at the new moon preceding, and the other at the new moon following, the passage of the sun through the node. Our first problem is, therefore, to find the dates of passage of the sun through the nodes of the moon's orbit, which gives us at once the middle of what we may call an eclipse season. This is effected by two tables, of which the first gives the dates at which the ascending node has the same longitude that the sun has at the beginning of the fictitious Julian year, and the second the changes in the times of passage for the 19 years following these dates.

The data for the construction of the first table are as follows. Hansen's longitude of the node, corrected, is,

$$\theta = 33^{\circ}$$
 16' 31".15 — 6962929".61 T + 8".19 T² + 0".007 T³,
Epoch, + 1800.0, Gregorian calendar.

Reduced to the Julian epoch, 12 days later, it becomes approximately,

$$\theta = 32^{\circ} 38'.47 - 116048'.827 T + 0'.136 T^{2}$$

The sun's mean longitude at the beginning of the fictitious Julian year is,

291° 44′ + 46′.13 T + 0′.021
$$T^2$$
.

The distance of the node from the chosen departure point is,

$$100^{\circ}$$
 54' — 116094'.96 T + 0'.116 T².

The annual motion and period are,

Epoch,
$$-$$
 700.0, $m = -$ 116100'.76; Period $=$ 18^y.60453: Epoch, $+$ 1800.0, $m = -$ 116094'.96; Period $=$ 18^y.60546.

The first passage through the departure point after + 1800.0 is at the epoch

The 135th passage preceding is at the epoch

Table II gives the days of the fictitious year at which conjunctions of the mean sun with either node occur. The argument is the interval which must elapse after the beginning of the year under examination before the next following conjunction in Table I. The units of the argument are on the left hand, and the tenths on the top of the table. Eclipses can occur only near one of the two or three epochs found in this table, unless a conjunction has occurred near the end of the year preceding or shortly after the beginning of the year following.

Table III, on the same page, gives the reduction from the time of mean to that of true conjunction of the sun with the node, which reduction arises from the eccentricity of the earth's orbit. This table is used only to make more definite the eclipse limits by enabling us to decide whether an eclipse could or could not occur at a given conjunction in cases where the mean values of the argument might leave the question doubtful.

Table IV enables us to find the moon's mean age at any fictitious Julian date. To the fictitious day of the year we add the value of D corresponding to the century, and that corresponding to the year, and subtract the greatest multiple of Period. We may also subtract the next greatest multiple, and thus obtain a negative value of D, counted backward from the next following conjunction.

By taking, for the required date, that of conjunction of the mean or true sun with the node, we are enabled to judge whether an eclipse of given character could or could not have occurred at the preceding or following new moon.

Tables V and VI give the approximate arguments for the central eclipse of each series from —.700.0 to + 2300.0, a period of thirty centuries. To understand its construction we call to mind that, on the system adopted, the moon's orbit is conceived as divided into 223 equal parts by that number of conjunction points; that this whole system of points has a very slow retrograde motion relative to the moon's nodes, such that 61 years elapse between the passages of two consecutive points; that all mean new moons occur at some one of these 223 points; that those at any one point are separated by intervals of 223 lunations, or one Saros or cycle; that if we isolate every 47th lunation, we shall find these isolated lunations to occur at consecutive conjunction points in the order of longitude.

When a conjunction point, by the slow motion already described, approaches within about 18° of the node, there will be an eclipse of the sun at every new moon which occurs at that conjunction point. The series of eclipses will become central within 10° or 12° of the node, and will continue unbroken until the conjunction point has got 18° beyond the node. We shall thus have a series of central eclipses, generally between 45 and 50 in number, with about 15 partial eclipses on each side of it. The total number will generally range between 75 and 80. Since the conjunction point moves about 0°.48 between the consecutive eclipses of each series, some one eclipse must occur within 0°.24 of the node. This nearest eclipse we have sought to take as the central eclipse of the series; but, in some cases, that chosen is not absolutely the nearest. The numbers in Tables V and VI correspond to the eclipse of each series chosen as the central one.

The intervals between the passages of consecutive conjunction points through the node are about 61 years at the present time, and were 63.6 years 25 centuries ago. This must be the mean interval between consecutive central eclipses. But it has been shown that this interval, expressed in lunations, is necessarily of the form 223 x + 47, x being an integer, and must be either 716 or 939 lunations, the former being the more frequent value.

From the mean motions already given we derive the following numbers and periods for the two fundamental epochs, — 700.0 and + 1800.0, which have served as the basis of Tables V and VI.

	Epoch, — 700.0;	+ 1800.0.
One mean lunation, in days,	29.53059562	29.53058844
Length of Saros, in Julian years,	18.02963127	18.02962689
Length of Saros, in days,	6585.322823	6585.321222
Annual motion of mean anomaly, in rev., -	13.25550638	13 25552321
Motion of mean anom. in one Saros, in rev., -	238.9918923	238.9921377
Change of the same, in degrees,	- 2.9188	- 2.8304
Centennial motion of conj. points, in rev., -	- .0.007050	- 0.007338
Centennial motion of conj. points, in degrees,	- 2.5380	- 2.6417
Motion of conj. points in one Saros, in degrees,	0.45758	— 0.47628
Motion of O's mean anomaly in one Saros, in		
· degrees,	+ 10.4980	+ 10.4947
Motion of ⊙'s mean long. in one Saros, in deg.,	+ 10.8025	+ 10.8037
A R3		

The necessary explanation of the principal columns in Tables V and VI will next be given. The conjunction point at which the new moon of — 689, January 20th, occurred, is arbitrarily taken as the zero one. The others are counted from it in the order of longitude. The slow retrograde motion of the whole system relatively to the node causes them to cross the node in the same order.

In column T is found the fictitious Julian date of the central eclipse of each series, already described. Any one of these dates being found, the next following is derived by adding to it the time either of 716 or 939 lunations; such intervals being chosen as would keep the dates near the times of passages of the corresponding conjunction point through the node. A table of these passages has already been given. Near the beginning and end of the table, the regular order has been deviated from, for the reason that it was supposed that there would be no occasion to use the tables for epochs outside the limiting dates, — 700.0 and + 2300.0, while it was desirable to be able to compute all the partial or total eclipses within these dates. Many of these eclipses would, however, take place at conjunction points the central eclipse of which might take place several centuries without the limits. Instead of choosing the central eclipse of the series, one occurring near the limiting epoch was chosen in each case.

It may also be noted that the years before Christ are reckoned in the usual astronomical way; the year immediately preceding the first of the Christian era being considered as zero, the next preceding being — 1, etc. The days are, however, considered as positive; so that if we express any one of these dates in years and fractions, the integer number of years would be one less than in the table.

The reckoning of fictitious time throughout the table is that already explained, namely, taking Greenwich mean noon of 1800, January 12th, as the epoch, we call this epoch 1800.0, and count backward and forward by years of $365\frac{1}{4}$ days each. The days are, therefore, not always reckoned from noon, but from noon, 6 hours, 12 hours, or 18 hours, according to the number of the year. A correction is therefore required to reduce to the time of noon, and, since 1582, a still further correction to reduce from the Julian to the Gregorian calendar. These corrections are shown in Table XIII b.

The times of mean conjunction correspond to Hansen's mean motion and secular variation, with the corrections given in my Researches on the Motion of the Moon, page 268,* the periodic terms being omitted.

The times of mean conjunction, as given, are generally accurate to one or two units in the last place of decimals, or to 8" or 10" of arc in the relative positions of the sun and moon. Their errors, therefore, fall far within the necessary uncertainty of the lunar theory in past and future centuries.

The moon's mean anomaly, g, has been divided from -180° to $+180^{\circ}$, for greater convenience in the selection of total eclipses. It is derived from Hansen's tables, applying the same correction as to the mean longitudes.

The sun's mean anomaly, g', and the mean longitude, L, do not seem to require any special explanation.

The moon's mean argument of the latitude, u_o , has been derived from the difference between the date of each central eclipse and the passage of the conjunction point

^{*} Washington Observations for 1875, Appendix II.

through the node, and is equal to the motion of the conjunction points during this interval.

Table VI, which gives the mean elements for eclipses at the descending node, is constructed on the same principles. Here the argument of latitude, $u_o - 180^\circ$, is of course counted from the descending node.

Table VII gives the reduction of the arguments in Tables V and VI for other eclipses of the same series. In the use of the tables for calculating a particular eclipse, it is necessary to find the date of the central eclipse of the series to which the one under consideration belongs, as given in Tables V and VI. This is readily done by the precepts given in the tables. Having found the central eclipse, the elements for the required eclipse are deduced by adding the corrections for the number of periods elapsed, as given in Table VII. Owing to the secular changes in the motion of the arguments, these motions are given for three epochs, namely, the year 0, the year 1000, and the year 2000 of our era. For greater facility in the use of the tables, the change in the last place of decimals for intervening centuries is added wherever it is necessary. In using these tables, the number must be taken out for an epoch midway between that of the central eclipse and that of the eclipse to be computed.

Having found the arguments for the moment of mean conjunction, the next step is to deduce the elements for the moment of true conjunction. The theory of this process has been fully developed by Hansen in his Analyse der ecliptischen Tafeln.* The same author has given tables for the approximate computation of eclipse elements, which are of direct application to the problem as here presented. These tables are, however, rather meagre, and can only be used in connection with the author's tables of the moon. On the other hand, the formulæ in the later paper are developed with such fullness that it is not necessary to go over them. I shall, therefore, accept Hansen's results, with such modifications as are necessary to make them applicable to the form of tables now proposed. The following are the modified expressions.

A general remark, applicable to the tables, is, that the quantities required are given for the moment of true conjunction in ecliptic longitude, but are expressed in terms of the values of g, g', etc., at the moment of mean conjunction.

(1) Reduction from time of mean conjunction to that of true ecliptic conjunction.

$$\delta T = -o^{d}.4089 \sin g$$

$$+ o^{d}.0161 \sin 2 g$$

$$- o^{d}.0004 \sin 3 g$$

$$+ o^{d}.1743 \sin g'$$

$$+ o^{d}.0021 \sin 2 g'$$

$$- o^{d}.0051 \sin (g + g')$$

$$+ o^{d}.0075 \sin (g - g')$$

$$+ o^{d}.0104 \sin 2 u.$$

(2) True argument of latitude, reduced to the ecliptic, for the moment of true conjunction.

In the special form of tables adopted, it is necessary to reduce the mean longitudes of the two bodies at the moment of mean conjunction to their true longitudes at the

^{*} Berichte über die Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften, Bd. XV, Leipzig, 1863, and Bd. IX, 1857.

moment of true conjunction. If the expression for the elapsed time between mean and true conjunction is correct, this reduction ought to be the same for both bodies. Hansen gives its expression for the moon; the corresponding correction for the sun is,

Mean motion during interval + Equation of centre for true conjunction.

Putting δT for the elapsed interval, and g', for the mean anomaly at the moment of true conjunction, the required reduction will be,

$$n'\delta T + 1^{\circ}.922 \sin g'_1 + 0^{\circ}.020 \sin 2g'_1$$

where we must put

$$g' = g' + n' \delta T$$
.

Substituting this value, and developing, the expression will be,

$$n'\delta T (1 + 0.0335 \cos g') + 1^{\circ}.922 \sin g' + 0^{\circ}.020 \sin 2g'$$
.

Substituting the value of $n\delta T$ just given, we find the following expression for the true ecliptic distance of both bodies, counted from the node, at the moment of true conjunction, u being the mean distance at the moment of mean conjunction:—

$$u_1 = u - 0^{\circ}.403 \sin g$$

$$+ 0^{\circ}.016 \sin 2g$$

$$+ 2^{\circ}.094 \sin g'$$

$$+ 0^{\circ}.027 \sin 2g'$$

$$+ 0^{\circ}.012 \sin (g+g')$$

$$+ 0^{\circ}.010 \sin 2u$$

$$= u - .00703 \sin g$$

$$+ .00028 \sin 2g$$

$$+ .00047 \sin 2g'$$

$$- .00021 \sin (g+g')$$

$$+ .00017 \sin 2u.$$

(3) Vertical distance of the axis of the moon's shadow from the centre of the earth at. the moment of ecliptic conjunction.

The expression for this element is,

$$y_2 = \frac{\sin \int s \, \text{latitude}}{\sin (\pi - \pi')}$$
.

Hansen puts it into the form,

$$B = P \cos u + Q \sin u = y_s$$

Its numerical expression will, however, be a little more simple by substituting u_i , the true argument of latitude, for u, the mean argument. Hansen's expressions for P and Q are nearly as follows, some very small terms being omitted:—

$$P = -.0392 \sin g$$

$$+.0116 \sin 2g$$

$$+.2080 \sin g'$$

$$+.0024 \sin 2g'$$

$$-.0073 \sin (g+g')$$

$$+.0067 \sin (g-g')$$

$$+.0118 \sin 2u$$

$$Q = + 5.2207$$

$$-0.3299 \cos g$$

$$+0.0020 \cos g'$$

$$+0.0020 \cos 2g'$$

$$-0.0060 \cos (g+g')$$

$$+0.0041 \cos (g-g')$$

If we suppose

$$y_z = P_x \cos u_x + Q_x \sin u_x$$

we shall have,

$$P_{r} \equiv P \cos (u_{r} - u) - Q \sin (u_{r} - u),$$

 $Q_{r} \equiv Q \cos (u_{r} - u) + P \sin (u_{r} - u).$

From the preceding expression for u, we find,

$$\cos (u_1 - u) = 1 - .00036$$
 $- .00034 \cos 2 g'$
 $+ .00014 \cos (g + g')$
 $- .00014 \cos (g - g')$

while we may suppose

$$\sin(u_1-u)\equiv u_1-u$$
.

We then find,

$$Q \sin (u_1 - u) = -0386 \sin g \qquad Q \cos (u_1 - u) = Q - .0019 + .0025 \sin 2 g \qquad - .0018 \cos 2 g' + .1917 \sin g' \qquad + .0007 \cos (g + g') + .0022 \sin 2 g' \qquad - .0007 \cos (g - g'). - .0070 \sin (g + g') + .0060 \sin (g - g').$$

$$P \sin (u_{1} - u) = +.0039 \qquad P \cos (u_{1} - u) = P.$$

$$-.0002 \cos 2 g$$

$$-.0038 \cos 2 g'$$

$$+.0014 \cos (g + g')$$

$$-.0014 \cos (g - g').$$

$$P_{1} = -.0006 \sin g \qquad Q_{1} = +5.2227$$

$$+.0091 \sin 2 g \qquad -0.3299 \cos g$$

$$+.0163 \sin g' \qquad -0.0048 \cos g'$$

$$+.0002 \sin 2 g' \qquad -0.0036 \cos 2 g'$$

$$-.0003 \sin (g + g') \qquad -0.0039 \cos (g + g')$$

$$+.0007 \sin (g - g') \qquad +0.0020 \cos (g - g').$$

$$+.0118 \sin 2 u.$$

The value of P_i is so small that we may suppose $\cos u_i = \pm 1$ in multiplying it by this quantity. In a total eclipse, the value of u_i can differ from 0° or 180° by only about 11° , and that of u by only about 16° . We shall, therefore, obtain a result nearly accurate to the third place of decimals by replacing $0.0118 \sin 2 u$ by $0.022 \sin u_i$. A sufficiently accurate expression for y_i will therefore be,

$$y_z = P_x + Q_x \sin u_x;$$

or, omitting terms which will not change y_2 by .001,

$$y_2 = \pm (-.0006 \sin g + .0091 \sin 2g + .0163 \sin g') + (5.245 - 0.330 \cos g) \sin u_1$$

the upper sign being used at the ascending and the lower at the descending node. An error of a unit in the third place of decimals corresponds to one of about 5' in the position of the shadow-path on the earth's surface; the probable error of the shadow-path, on account of the quantities neglected in y_2 , will therefore not exceed 10 or 15 miles.

(4) For the hourly motion of the axis of the shadow along the fundamental plane,*
Hansen's expression is equivalent to

$$x'_{2} = \frac{dx_{2}}{dt} = + 0.5410 \qquad y'_{2} = \frac{dy_{2}}{dt} = (.0540 + .0034 \cos g) \cos u_{1}.$$

$$+ 0.0397 \cos g$$

$$- 0.0010 \cos g'$$

$$+ 0.0006 \cos (g + g')$$

$$- 0.0004 \cos (g - g').$$

We may, without an error exceeding 0.001, regard $\frac{dy_2}{dt}$ as equal to $\frac{1}{10} \cdot \frac{dx_2}{dt}$.

(5) The radius of the shadow on the fundamental plane and the angle of the shadow-cone are given by the formulæ,

$$\rho = +0.0059 \qquad \sin f = +0.004653 +0.00078 \cos g' +0.0005 \cos (g+g').$$

When ρ is positive, the eclipse will be annular; when negative, total.

The value of ρ for external contact may be found by increasing the above by 0.5460, which will make the constant term 0.5519. The same value of sin f may be used in the two cases.

Circumstances of an Eclipse on the Earth's Surface.—Our next step is to find the relation of any point on the earth's surface to the shadow. Several systems of co-ordinates may be adopted for this purpose, which vary with the adopted direction of the axis of X on the fundamental plane. We have the choice of three systems, depending on the following three positions of this axis of X in the fundamental plane:—

- (1) The intersection of the earth's equator with the fundamental plane;
- (2) The intersection of the ecliptic with the same plane;
- (3) A line in the same plane parallel to the path of the axis of the shadow along it. The first system is that of Bessel, while the second and third have been used by Hansen.

^{*}It will be remembered that the fundamental plane in the theory of eclipses passes through the centre of the earth perpendicular to the axis of the shadow.

Let us put

- O, the sun's true longitude, or, more exactly, the longitude of the sun as seen from the moon;
- ε, the obliquity of the ecliptic;
- a, d, the right ascension and declination of the sun as seen from the moon, for which, in the present case, we may take the geocentric direction of the sun;
- α , the angle of the shadow-path along the fundamental plane with the intersection of the ecliptic with the same plane;

 $h = \rho \cos \varphi'$ ρ being here the earth's radius and φ' the geocentric latitude $k = \rho \sin \varphi'$ of any point on its surface.

For the present we shall represent the co-ordinates corresponding to these various systems by subscript numbers. It will be remarked that in all the systems the axis of Z passes through the centre of the earth parallel to the line joining the centres of the moon and sun.

The value of the equation of the centre by which \odot is found may be obtained from Table XXVI. The expression is, $\odot = L + \text{Equation}$ of centre.

For the relations between systems (1) and (2), we determine the angle p from any or all of the equations,

$$\cos d \sin p \equiv \sin \epsilon \cos \odot$$
,
 $\cos d \cos p \equiv \cos \epsilon$,
 $\sin d \equiv \sin \epsilon \sin \odot$.

The required relations will then be,

$$x_z \equiv x_1 \cos p + y_2 \sin p,$$

 $y_z \equiv -x_1 \sin p + y_2 \cos p,$
 $z_z \equiv z_1;$

or, reversing them,

$$x_1 \equiv x_2 \cos p - y_2 \sin p$$
,
 $y_1 \equiv x_2 \sin p + y_2 \cos p$.

For the use of the third system, it will be sufficiently accurate to suppose that the axis of x_3 makes an angle of 5° 30' with that of x_2 . With a little greater probable accuracy we may determine the angle α by the condition, $\alpha = \pm 5^{\circ}$.7 cos u_1 , this angle being positive at the ascending and negative at the descending node. Then, putting

$$p' = p + \alpha$$

we shall have,

$$x_3 \equiv x_1 \cos p' + y_1 \sin p' \equiv x_2 \cos \alpha + y_2 \sin \alpha,$$

 $y_3 \equiv -x_1 \sin p' + y_1 \cos p' \equiv -x_2 \sin \alpha + y_2 \cos \alpha.$

Tables XVIII to XX give the value of y_2 for the shadow-axis at the moment of conjunction in longitude, when $x_2 = 0$; and Tables XXI and XXII give the hourly

variation of x_2 , from which that of y_2 may be obtained by multiplying by $\tan \alpha$ or by $\cos u_1 \tan (5^{\circ} 42')$. The expressions for x_2 and y_2 will therefore be,

$$x_1 \equiv x'_2 t$$
,
 $y_2 \equiv y^\circ + x'_2 t \tan \alpha \equiv y_2^\circ + y'_2 t$.

Here t is the time after true conjunction, T, expressed in hours as the unit.

To refer the shadow-axis to either of the other systems, we shall then have,

$$x_3 \equiv y_2^{\circ} \sin \alpha + x' t \sec \alpha,$$

$$y_3 \equiv y_2^{\circ} \cos \alpha,$$

$$x_1 \equiv -y_2^{\circ} \sin p + x'_2 t (\cos p - \tan \alpha \sin p),$$

$$\equiv -y_2^{\circ} \sin p + x'_2 t \sec \alpha \cos (p + \alpha),$$

$$y_1 \equiv y_2^{\circ} \cos p + x'_2 t (\sin p + \tan \alpha \cos p),$$

$$\equiv y_2^{\circ} \cos p + x'_2 t \sec \alpha \sin (p + \alpha).$$

The values of the coefficients for x_i and y_i may be taken from Table XXVIII, where we have put

$$a \equiv -\sin p,$$

 $a' \equiv \cos p,$
 $b \equiv \sec \alpha \cos (p \pm \alpha),$
 $b' \equiv \sec \alpha \sin (p \pm \alpha);$

so that the expressions for x_i and y_i are,

$$x_1 = a \ y_2^{\circ} + b \ x'_2 t,$$

 $y_1 = a' \ y_2^{\circ} + b' \ x'_2 t.$

We now require the corresponding co-ordinates for the point on the earth's surface, expressed by the quantities h and k. If we represent these by ξ , η , and ξ , Bessel's eclipse formulæ give,

$$\xi_1 \equiv h \sin H,$$

 $\eta_1 \equiv k \cos d - h \sin d \cos H,$

H being the hour-angle of the sun, or, to speak more exactly, the hour-angle of that point of the sphere representing the direction of the sun as seen from the moon. The other co-ordinates of the place will then be,

$$\mathcal{E}_{2} \equiv k \cos d \sin p + h (\cos p \sin H - \sin d \sin p \cos H),$$

 $\eta_{2} \equiv k \cos d \cos p - h (\sin p \sin H + \sin d \cos p \cos H),$
 $\mathcal{E}_{3} \equiv k \cos d \sin p' + h (\cos p' \sin H - \sin d \sin p' \cos H),$
 $\eta_{3} \equiv k \cos d \cos p' - h (\sin p' \sin H + \sin d \cos p' \cos H).$

The angle H is expressed in terms of t, as follows:—From the conjunction tables V-VII we have, by the corrections from Tables VIII-XII and by correcting for the fictitious date, the fraction of a day of Greenwich mean time at the moment of true

ecliptic conjunction. Multiplying this fraction by 360° (Table XIV), we have the hourangle of the mean sun for the meridian of Greenwich at the moment of conjunction.

Let us put

Ho, this hour-angle;

λ, the longitude of the place west from Greenwich;

E, the equation of time, to be *added* to apparent time in order to obtain mean time, expressed in arc.

Then, at conjunction, the hour-angle of the mean sun will be $H_o - \lambda$, and that of the apparent sun will be $H_o - \lambda - E$. The expression for H, as a function of t, will then be

$$H = H_{\circ} - \lambda - E + 15^{\circ} \times t$$
.

We have now all the data for proceeding with the computation of the eclipse in any of the usual ways.

The data of the present tables are of such accuracy that we may generally expect to predict the phases of an eclipse, by means of them, within one or two minutes of time, and to determine the shadow-path in total or annular eclipses to coarse fractions of a degree. In fact, supposing the tables perfect to the last place of decimals, the probable error of this path should not exceed two or three tenths of a degree, unless near the north or south pole of the earth; but small errors of theory are possible, leading to larger errors in the shadow-path.

The following are the formulæ for the computation of the path of a central eclipse. They are applied by computing the longitude and latitude of the point in which the axis of the shadow intersects the earth's surface at any assumed moment of Greenwich mean time.

Compute the values of x_i and y_i for the assumed moment. Table XXVIII is designed to facilitate this computation.

If it is desired to take into account the ellipticity of the earth, the neglect of which will introduce a probable error of perhaps 10' in the point required (which amount, however, is hardly greater than the necessary uncertainty of the results from the preceding tables), we compute ρ_r and d_r from the formulæ,

$$\rho_{1} \sin d_{1} = \sin d,$$

$$\rho_{1} \cos d_{1} = \sqrt{1 - e^{2}} \cos d = [9.99855] \cos d,$$

$$y'_{1} = \frac{y_{1}}{\rho_{1}}.$$

The values of ρ_1 and d_2 may be taken at once from Table XXIX with the argument $\bigcirc = L + \text{Equation}$ of centre. If, however, we neglect the ellipticity, we put d for d_1 , y_1 for y'_1 , and φ for φ_1 in the following formulæ, which are a continuation of the preceding ones.

From

$$c \sin C = y'_{i},$$

$$c \cos C = \sqrt{1 - x_{i}^{2} - y'_{i}^{2}},$$

find c and C. The last quantity may be computed by the auxiliary angle β , thus:—

$$\sin \beta \sin \gamma \equiv x_i$$
,
 $\sin \beta \cos \gamma \equiv y'_i$,
 $c \cos C \equiv \cos \beta$.

Then, from the equations,

$$\cos \varphi_i \sin H \equiv x_i,$$

 $\cos \varphi_i \cos H \equiv c \cos (C + d_i),$
 $\sin \varphi_i \equiv c \sin (C + d_i),$
 $\tan \varphi \equiv [0.00145] \tan \varphi_i,$

find φ and H. The former will be the latitude of the point required, and the latter the local hour-angle of the shadow-axis. The Greenwich hour-angle is found by the formula,

$$H_1 \equiv H_0 - E + 15^{\circ} t$$
;

H_o being the Greenwich mean time of true conjunction in longitude, expressed in arc; E, the equation of time (Tables XXVI and XXVII); t, the interval of the assumed time after that of true conjunction, expressed in hours The west longitude of the point sought will then be:—

$$\lambda = H_1 - H_2$$

§ 3.

RECURRENCE OF REMARKABLE ECLIPSES.

The occurrence of eclipses approaching the maximum length of totality is a subject of astronomical interest. We have already shown that the successive eclipses at the same conjunction point, occurring at intervals of 18 years, are nearly of the same character. Consequently, if we have at any time an eclipse in which the duration of totality approaches the maximum, we shall have a similar one after a lapse of one period, and the duration will vary but slowly from period to period. We shall therefore search in our tables, not for single eclipses with long duration of totality, but for series of such eclipses, the distinctive mark of each series being the conjunction point at which it occurs.

The conditions necessary to the greatest duration of totality, considered individually, are the following:—

- I. The moon must be near its perigee at the time of conjunction. In other words, its mean anomaly, positive or negative, must be small in absolute value.
- II. The sun must be near its apogee in order that its semi-diameter may be small; hence its mean anomaly must differ little from 180°. It is, however, to be remarked that a deviation of the sun's mean anomaly from 180° will produce only about one fourth the effect of an equal deviation of the moon's anomaly from 0°.

III. The preceding two conditions give the maximum breadth of shadow on the fundamental plane, passing through the centre of the earth at right angles to the axis of the shadow. But, the shadow being conical, its diameter increases as we approach the moon. The observer should therefore be as near the moon as possible. In other words, at the moment of central eclipse, the sun and moon should be near his zenith. The diameter of the shadow at his station will then be nearly one third greater than on the fundamental plane. In order that these conditions may be fulfilled, it is necessary that the observer should be within the tropics and that the conjunction should take place near the node. For, the two bodies being in the zenith, the effect of parallax is zero, and the eclipse must be central at the centre of the earth, which can only occur when the conjunction coincides with the node. These conditions will be most nearly fulfilled by the central eclipses, the dates of which are given in Tables V and VI.

IV. The diurnal motion of the observer must be as great as possible, because by this motion he is carried along in the same direction with the axis of the shadow, and thus the time which he remains within it is increased. This condition is best fulfilled when he is upon the equator.

V. The direction in which the observer is carried by the diurnal motion must be parallel to the direction of the shadow. This condition demands that the direction of the axis of the shadow shall be near the great circle joining the pole of the earth and the pole of the moon's orbit. This condition can be fulfilled only when the sun's longitude is near 90° or 270°; in other words, near the times of the two solstices.

It is impossible that all the preceding conditions can be simultaneously fulfilled, owing to the obliquity of the ecliptic. The 4th condition can be fulfilled only at the equinoxes, and the 5th only at the solstices. Also, since the sun's apogee has, during each century, a nearly definite longitude (at present about 90°), it is only near 90° of the sun's longitude that the 2d condition can at present be fulfilled. In former ages, the case was somewhat different. But the distance of the epoch from these solstices was only about 20° at the beginning of the Christian era. We may see, therefore, that during historic times, and for several centuries to come, the solar eclipses of greatest duration can occur only near the summer solstice. If the eclipse at this time occurs also exactly at the node it will be central in the zenith of the Tropic of Can-Conditions 3d and 5th will therefore be fulfilled, but condition 4th will not. If the latitude of the moon be north at the moment of conjunction, conditions 3d and 4th will both be less favorable. If the latitude be south, condition 4th may be more favorable, because the shadow will then be thrown further towards the equator, but condition 3d will be less favorable. Condition 4th will be best fulfilled by south latitude of about 24', or by an argument of latitude of -4° or -5° near the ascending node and +4° or +5° near the descending node. Beyond these points of latitude, both conditions are unfavorable. We conclude, therefore, that when the two first conditions are properly fulfilled, the most favorable eclipses will be the ten or twelve which follow the central one of each series at the ascending node and the ten or twelve which precede it at the descending node. The most favorable will generally fall between the fourth and the seventh from the central eclipse; and the first two conditions require

that we should then have g = 0 and g' = 0. In order that these conditions should be fulfilled at the sixth eclipse, we should have, near the time of central eclipse, the following system of values of g, g', and L :=

Ascending Node.	Descending Node.
$g = 17^{\circ}$	$g = - 17^{\circ}$
g' \equiv 120 $^{\circ}$	<i>g</i> ′= 240°
$L = 25^{\circ}$	$L = 155^{\circ}$

An examination of Table V will now enable us to select series of remarkable total eclipses almost by inspection. We see that the moon's mean anomaly is repeated within 12° or 15° at every third conjunction point. Considering, first, eclipses at the ascending node, we perceive that the moon's mean anomaly is small at the 10th, 13th, 15th, etc., conjunction points, and that the condition, $g = 17^{\circ}$, is most nearly fulfilled at the 16th and 19th points. The conditions, $g' = 120^{\circ}$ and $L = 25^{\circ}$, though not fulfilled at either point, are so near fulfillment that there were then two series of total eclipses nearer the maximum duration than any which occurred for several subsequent centuries. The last of the most favorable series were in the years 663, 681, 699, etc.

To find other series approaching the maximum of totality, we have to pass over more than a thousand years, until the 42d and 45th conjunction points approach the node. To the 42d conjunction point belong the series of great eclipses of 1832, 1850, 1868, 1886, etc., of which the maximum was that of 1832 or 1850. The position of the solar perigee is unfavorable at this point; otherwise the duration would have gone on increasing through the next century. But at the 45th conjunction point, the conditions are more nearly fulfilled than they have been for at least twenty centuries, and we shall therefore have a series of eclipses approaching within a very few seconds of the maximum duration of totality. These will occur in the years 2150, 2168, etc.

Passing now to the descending node, we see that in a general way the series occur in the same order. The favorable conjunction points near the present epoch seem to be the 149th, 152d, 155th, etc. In the first two of these, the sun's mean anomaly is not favorable except when the moon's is unfavorable. The conditions are better fulfilled at the 155th conjuction point, the central eclipse of which takes place in the year 2009. The eclipses of maximum duration will occur two or three periods before the central eclipse, namely, in the years 1955 and 1973. To this series belong the total eclipses of 1865, 1883, etc. The successive eclipses of this series will therefore increase in duration for five or six periods to come, when the duration will probably be greater than that of any that have preceded them during the past thousand years.

TABLES OF SOLAR ECLIPSES.

B. C. 700 TO A. D. 2300.

			•	
	·		•	
·		•		
·				
				•
		•		
			•	
				·

TABLE I.—Dates at which the Moon's Ascending Node has the same Longitude that the Sun has at the Beginning of the Fictitious Year.

Year.	Year.	Year.	Year.	Year.
—780.878	-148.321	+484.244	+1116,818	+1749.398
-762.273	-129.716	502.849	1135.423	1768.004
—743.6 59	-111.112	521.454	1154.028	1786.609
-725.064	- 92.507	540.059	1172.633	1805.215
-706.460	- 73.902	558.664	1191.239	1823.820
-687.855	- 55.297	577.269	1209.844	1842.426
-669.251	— 36.693	595.874	1228.450	1861.031
-650.646	- 18.088	614.479	1247.055	1879.637
-632.042	+ 0.517	633.084	1265.660	1898.242
-613.437	19.122	651.689	1284.266	1916.848
-594.832	37 · 727	670.294	1302.871	1935 - 453
-576.228	56.332	688.899	1321.476	1954.059
-557.623	74.936	707.504	1340.080	1972.664
-539.019	93.541	726.109	1358.686	1991.270
-520.414	112.146	744.714	1377.291	2009.875
-501.809	130.751	763.319	1395.896	2028.481
-483.2 05	149.356	781.924	1414.502	2047.086
-464.600	167.961	800.529	1433.107	2065.692
-445.996	186.566	819.135	1451.712	2084.298
-427.391	205.171	837.740	1470.318	2102.903
-408.786	223.775	856.345	1488.923	2121.509
-390.182	242.380	874.950	1507.528	2140.114
-371.577	260.985	893.555	1526.134	2158.720
-352.972	279.590	912.160	1544.739	2177.326
—334.368	298.195	930.765	1563.344	2195.931
-315.763	316.800	949.370	1581.950	2214.537
-297.158	335.404	967.976	1600.555	2233.142
-27 8.554	354.009	986.581	1619.160	2251.748
-2 59.949	372.614	1005.186	1637.766	2270.354
-241.344	391.219	1023.792	1656.371	2288.959
-222.740	409.824	1042.397	1674.977	2307.565
-204.135	428.429	1061.002	1693.582	2326.170
-185.530	447.034	1079.607	1712.187	2344.776
-166.g26	+465.639	+1098.212	+1730.793	+2363.381

TABLE I.

The use of this and the next table is as follows:—Subtract the number of the year, neglecting fractions, from the next larger number (algebraically) in the table. With the excess enter Table II, the entire number being on the side and the tenths at the top. The corresponding number will be the day and tenths of a day of the fictitious Julian year at which the mean sun was in conjunction with the node indicated in the second column. Should the number be negative it will indicate days before the beginning of the year, and should it exceed 365.25 it will indicate a conjunction after the end of the year.

In general, a central eclipse of the sun can only occur within ten or twelve days of the times thus found, and a partial eclipse within eighteen or twenty days. It is to be remarked, however, that an eclipse may occur when the corresponding conjunction takes place near the end of the year preceding, or during the first seventeen days of the year following.

TABLE II.—Days of the Fictitious Year when the Mean Sun is in Conjunction with either Node.

Year.	Node.	.•	.1	.2		.4	.5	.6	.7	.8	.9	For hund of a ye	
		<i>d</i> ,	d.	d.	d.	d.	d.			d.	ď.		d.
	Asc.	0.0	1.9	3.7	5.6	7.4	9.3	11.2	13.0	14.9	16.8	<i>y</i> .	
•	Desc.	173.3	175.2	177.0	178.9	180.7	182.6	184.5	186.3	188.2	190.1	0.01	0.2
	Asc.	346.6	348.5	350.3	352.2	354.0	355.9	357.8	359.6	361.5	363.4	0.02	0.4
	A	18.6				26.0		20.				0.03	0.6
1	Asc. Desc.	191.9	20.5 193.8	22.3 195.6	24.2 197.5	20.0 199.4	27.9 201.3	29.7 203. I	31.6 205.0	33·5 206.9	35·4 208.7	0.04	0.7
	1	.99	193.0	195.0	197.5	199.4	201.5	203.1	205.0	200.9	200.7	0.05	-
2	Asc.	37.3	39.2	41.0	42.9	44.7	46.6	48.4	50.3	52.2	54.0	•	0.9
- 1	Desc.	210.6	212.5	214.3	216.2	218.0	219.9	221.7	223.6	225.5	227.3	0.06	1.1
_ !	Asc.		57.8	***	61.5	63.3	65.2	67.0	60 - '	70.8		0.07	1.3
3 ;	Desc.	55·9 : 229.2	231.I	59.6 232.9	234.8	236.6	238.5	240.3	68.9 242.2	244.I	72.7 246.0	. 0.08	1.5
1	2000.	9	-3	-3-19	-54.0	230.0	-30.3	240.5	-4	-44	240.0	0.09	1.7
4	Asc.	74.5	76.4	78.2	8o. 1	82.0	83.9	85.7	87.6	89.5	91.3		
- i	Desc.	247.8	219.7	251.5	253.4	255.3	257.2	259.0	260.9	262.8	2 64.6	0.10	1.9
_	A		A	-6 -	-0 0	6				0			
5	Asc. Desc.	93.2 266.5	95.1 268.4	96.9 270.2	98.8 272.1	100.6 273.9	275.8	104.3 277.6	106.2	108.1	109.9 283.2		
1	Desc.	200.5	200.4	270.2	2/2.1	2/3.9	2/5.0	2//.0	279.5	201.4	203.2		
6	Asc.	111.8	113.7	115.5	117.4	119.2	121.1	122.9	124.8	126.7	128.5		
i	Desc.	285.1	287.0	288.8	290.7	292.5	291.4	296.2	298.1	300.0	301.9	İ	
		!				1	0					'	
7	Asc. Desc.	130.4	132.3	134.1	136.0	137.9	139.8	141.6	143.5	145.4	147.2		
i	Desc.	303.7	305.6	307.4	309.3	311.1	313.0	314.9	316.8	318.7	320.5		
8	Asc.	149.0	150.9	152.8	154.7	156.5	158.4	160.2	162.1	164.0	165.8	1	
•	Desc.	322.3	324.2	326.1	328.0	329.8	331.7	333.5	335.4	337.3	339.1		
				_ !		1	ļ			1		!	
9	Desc.	-5.6	-3.7	-1.9	0.0	1.8	3.7	5.5	7.4	9.3	11.1	1	
•	Asc. Desc.	167.7	169.6	171.4	173.3	175.1	177.0	178.8	180.7	182.6	184.4	i	
i	Desc.	341.0	342.9	344 - 7	346.6	348.4	350.3	352.1	354.0	355-9	357.7		
_ ;	Desc.	13.0	14.9	16.7	18.6	20.4	22.3	24.1	26.0	27.9	29.8		
10 '	Asc.	186.3	188.2	190.0 i	191.9	193.7	195.6	197.4	199.3	201.2	203.1	1	
	Desc.	359.6	361.5	363.3	365.2	367.0	368.9	370.7	372.6	374-5	376.4		
'	Desc.	31.6	22.5		07.0	20.	41.0	42.8		46.6	48.4		
11,	Asc.	204.9	33·5 206.7	35·3 208.6	37.2 210. 5	39. I 212.4	214.3	216.1	44.7 218.0	219.9	221.7		
	1	204.9	2001,	200.0	210, 3		4.5	!	210.0	9.9		:	
12	Desc.	50.2	52.I	54.0	55.9	57.7	59.6	61.4	63.3	65.2	67.0		
-~ .	Asc.	223.6	225.5	227.3	229.2	231.0	232.9	234.7	236.6	238.5	240.3		
	Desc.	68.8	70.7	70 6	~	-6 -	78.2	80.0 E	0	90 0	0-6		
13	Asc.	242.2	70.7 244.1	72.6 · 245.9	74·5 247.8	76.3 249.7	251.6	253.4	81.9	83.8 257.2	85.6		
!		-4	-44.	-45.9	247.0	249. /	232.0	-33.4	255.3	23/.2	259.0	!	
14	Desc.	87.5	89.4	91.2	93.1	94.9	96.8	98.6	100.5	102.4	104.3	1	
	Asc.	26 0.8	262.7	264.5	266.4	268.3	270.2	272.0	273.9	275.8	277.6	į	
	D	• • •		•••	0	6	'	· · · · · ·				ļ	
15	Desc.	106. I 279. 4	108.0 281.3	109.9 283.2	111.8 285.1	113.6 286.9	288.8	117.3 290.6	119.2	121.1	122.9		
- 1	Asc.	2/9.4	201.3	203.2	205.1	200.9	200.0	290.0	292.5	291.4	296.2	j	
16	Desc.	124.7	126.6	128.4	130.3	132.1	134.0	135.8 1	137.7	139.6	141.5		
10	Asc.	298.1	300.0	301.8	303.7	305.5	307.4	309.2	311.1	313.0	314.8	(i	
ļ	Des	• • •			• • • •					0 -	-6	•	
17	Desc.	143.4	145.3 318.6	147.1	149.0	150.8	152.7 326.0	154.5	156.4	158.3	160.2	ż	
i	Asc.	316.7	، 10.0	320.4	322.3	324.1	J20.0 .	327.8	329.7	331.6	333.5	li	
	Desc.	162.0	163.8	165.7	167.5	169.4	171.2	173.1	175.0	176.9	178.8	ľ	
18 '	Asc.	335.3	337.2	339.1	341.0	342.8	344.7	346.5	348.4	350.3	352.1		

TABLE III.—Reduction to Time of True Conjunction of Sun with Node.

	Days.	d.	Days.	d.	Days.	d.	Days.	d.	Days.	d.	Days.	d.	Days.	d.	Days.	d.
	o	-0.4	50	-1.6	· 100	-1.8	150	-o.7	200	+ 1.0	250	+ 1.9	300	+ 1.5	350	+0.1
- [10 20	0.7	60 70	1.8	110 120	1.7	160 170	-0.3 0.0	210 220	1.2	260 270	1.9	310 320	1.2	360 370	-0.3 -0.5
	30	1.2	80	1.9	130	1.2	180	+0.3	230	1.7	280	1.9	330	0.7	3/0	-0.5
	40	-1.5	90	-1.9	140	-1.0	190	+0.6	240	+ 1.8	290	+ 1.7	340	+ 0.4		

TABLE IV .- To find the Age of the Moon at any Fictitious Julian Date.

Century.	D.	Year.	D.	Year.	D.	Year.	D,	Year.	D.	Multipl	es of Period
	d.	-,			·		•			-	
– 800	6.8	o	4.6	25	10.9	50	17.2	75	23.5	1	29.5
- 700	. 2.5	1	15.5	26	21.8	51	28.1	76	4.8	2	59. I
- 600	27.6	2	26.3	27	· 3.1	52	9.4	77	15.7	. 3	88.6
– 500	23.3	3	7.7	28	14.0	53	20.3	78	26.6	4	118.1
- 400	18.9	4	18.6	29	24.9	54	1.6	79	7.9	5	147.7
- 300	14.6							1			
- 200	10.3	1		·		1		i '			
- 100	5.9	5	29.4	30	6.2	55	12.5	8o	18.8	6	177.2
o	1.6	6	10.8	31	17.1	56	23.4	81	0.2	7	206.7
+ 100	26.7	7	21.7	32	28.0	57	4.8	82	11.1	8	236.2
200	22.4	8	3.0	33	9.3	58	15.6	83	21.9	9	265.8
300	18.0	9	13.9	34	20.2	59	26.5	84	3.3	10	295.3
400	13.7							i '		,l	
500	9.4		- · · · · ·		- 4		_	0-			
600	5.0	10	24.8	35	1.6	60	7.9	85	14.2	11	324.8
700	0.7	11	6.2	36	12.5	61	18.8	86	25. I	12	354.4
800	25.9	12	17.0	37	23.3	62	0.1	87	6.4	13	383.9
900	21.5	13	27.9	38	4.7	63	11.0	88	17.3	14	413.4
1000	17.2	14	9.3	39	15.6	64	21.9	89	28.2	15	443.0
1100	12.8	ļ						1 :		1	
1200	8.5	15	20.2	40	26.5	65	3.2	90	9.5	i	
1300	4.2	16	1.5	41	7.8	66	14.1	91	20.4	1	
1400	29.4	17	12.4	42	18.7	67	25.0	92	1.8	1	
1500	25.0	18	23.3	43	0.1	68	6.4	93	12.6		
1600	20.7		4.6	44	10.9	69	17.2	94	23.5		
1700	16.3	19	4.5	""	.0.9	l og	-/	94	-3.3	1	
1800	12.0	1								1	
1900	7.7	20	15.5	45	21.8	70	28.1	95	4.9		
2000	3.3	21	26.4	46	3.2	71	9.5	96 I	15.8	1	
2100	28.5	22	7.8	47	14.1	72	. 20.5	97	26.7	Ί.	
2200	24.2	23	18.6	48	24.9	73	1.7	98	8.0		
2300	19.9	24	0.0	49	6.3	74	12.6	99	18.9	1	

The age (D) of the mean moon at any time is found by taking the sum of the values of D corresponding to the century and to the year of the century, adding the fictitious Julian date and subtracting the greatest multiple of the period. Generally it will be better to subtract the multiple next smaller and next greater than the sum. The first remainder will then indicate the days which have elapsed since the preceding mean new moon, and the second those before the next following. The limits of D for a central eclipse will then be,

D between \pm 14^d.2: an eclipse certain. D between \pm 20^d.8: an eclipse possible.

D between \pm 8d.o: a central eclipse certain. D between \pm 14d.3: a central eclipse possible.

If the occurrence of the eclipse is still doubtful, the limits may be narrowed by applying to D the further correction taken from Table III, of which the argument is the day of the fictitious year, already found from Table II. This table only holds good within two or three centuries of the present time; but it may be used for other centuries by simply increasing the argument by one day for each century before the nineteenth. Using the corrected values of D, the limits will be,

 \pm 16^d.1: an eclipse certain. \pm 18^d.9: an eclipse possible.

 \pm 9^d.9: a central eclipse certain. \pm 12^d 4: a central eclipse possible.

To find the central eclipse of the series to which the required one belongs, take one of the values of P corresponding most nearly to D in the following table:-

1	1			1				l		-				1	:	ı		
D	0.5	1.0	1.4	1.9	2.4	2.9	3.4	3.8	4.3	4.8	5 · 3	5.8	6.2	6.7	7.2	7.7	8.2	8.6
P	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
T	18	36	54	72	90	108	126	111	162	180	198	216	234	252	270	258	307	325
D	9.1	9.6	10.1	10.6	11.1	11.5	12.0	12.5	13.0	13.5	13.9	14.4	14.9	15.4	15.8	16.3	16.8	17.3
P	19	20	21	22	23	2.1	25	26	27	28	29	30	31	32	33	34	35	36
T	3+3	361	379	397	415	433	451	469	487	505	523	541	539	577	596	614	632	650
,	_		!		!		l	-		!	l	l		l	l	l	i	i

If D is positive, subtract one of the nearest values of T from the number of the year; if negative, add it, and we shall hit very nearly upon the date of central eclipse found in Table V or VI, according to the node, or upon a date differing by a multiple of 15 years. The corresponding value of P will be the number of periods of 18 114 between the date in Table V or VI and the date of the eclipse sought.

It is to be noted that if the value of T thus found carries the central date without the limits - 770 and + 2360, a value of P and T small

enough to bring the date within these limits will be necessary.

TABLE V.—Mean Elements of Eclipses at Ascending Node.

•			T	l g	g'	L	u,			T	g	g'	L	u _o
Conj. Point.	of	f Cent	ous Date ral Mean inction.	Moon's Mean Ano- maly.	Sun's Mean Ano maly.	Sun's Mean Lon- gitude.	Moon's Mean Arg Lat.	Conj. Point.	of Cen	ous Date tral Mean unction	Moon's Mean Ano- maly.	Sun's Mean Ano- maly.	Sun's Mean Lon- gitude.	Moon's Mean Ai Lat.
					ļ						ļ <u> </u>	ļ		
	ļ	<i>y</i> .	d,			٠	0		y.	d.	į c	•	•	
214	_	724	313.2334	+ 68.73	344.67	221.25	-14.052	25	866	166.7316	+ 49.43	185.37	88.92	- 0.013
215	_	720	240.1713	- 157.00	272.63	149.27	-12.536	26	924	126.1349	+ 174.22	141.78	49.33	+ 0.094
216	-	716	167.1093	- 21.52	200.60	77.30	-11.021	27	1000	96.3598	- 63.83	114.75	20.57	— 0.26 9
217	-	712	94.0473	+ 108.85	128.54	5.30	- 9.505	28	1058	55.7627	+ 60.98	74.18	341.00	— 0.165
218	_	708	20.9853	- 117.77	56.48	293.33	- 7.988	29	1116	15.1656	- 174.20	33.63	301.43	— O.062
219	_	705	313.1733	+ 15.61	344-43	221.35	- 6.472	30	1173	339.8183	- 49.37	353.08	261.87	+ 0.040
220	–	701	240.1112	+ 148.98	272.38	149.37	- 4.955	31	1249	310.0425	+ 72.61	323.02	233.10	- o.333
221	-	697	157.0492	- 77.64	200.33	77.37	- 3.439	32	1307	269.4450	- 162.55	282.45	193.53	- 0.234
222	-	693	93.9872	+ 55.73	128.28	5.38	- 1.921	33	1365	228.8473	- 37.70	241.87	153.95	- O.137
0	-	689	20.9252	- 170.89	56.25	293.40	- 0.403	31	1423	188.2496	+ 87.16	201.28	114.37	- 0.042
I	_	632	345.5815	46.27	15.67	253.82	- 0.259	35	1481	147.6517	- 147.98	160.75	74.80	+ 0.052
2	-·	574	304.9679	+ 78.36	335.13	211.28	- o.116	36	1539	107.0536	- 23.11	120.20	35.23	+ 0.145
3	-	516	264.3940	- 157.00	294.57	174.68	+ 0.025	37	1615	77.2768	+ 98.93	90.17	6.48	- 0.239
4	-	410	234.6227	- 35.27	264.52	145.93	- v.291	38	1673	36.6783	- 136.19	49.58	326.90	- 0.150
5	-	382	194.0285	+ 89.38	223.97	106.35	- 0.156	39 :	1730	361.3299 .	- 11.29	9.02	287.33	- o.o62
6	_	324	153.4343	- 145.96	183.43	66.78	- 0.019	40	1788	320.7313	+ 113.60	328.47	247.77	+ 0.024
7	-	248	123.6626	- 21.20	153.35	38.00	- o.345	41	1846	280.1325	- 121.49	287.88	208.19	+ 0.108
8	-	190	83.0682	+ 100.47	112.82	358.43	- 0.210	42	1904	239 - 5337	+ 3.42	247.32	168.62	+ 0.192
9	-	132	42.4736	- 134.85	72.25	318.85	- 0.078	43	1980	209.7557	+ 125.51	217.27	139.87	- 0.201
10	-	74	1.8789	- 10.17	31.73	279.30	+ 0.051	44	2038	169.1565	- 109.56	176.68	100.28	- 0.124
11	+	I	337 - 3564	+ 111.63	1.67	250.52	- o.279	45	2096	129.5573	+ 15.37	136.13	60.72	— 0.046
12		59	296.7615	- 123.67	321.08	210.93	- 0.151	46	2154	87.9579	+ 140.32	95.60	21.15	+ 0.031
13		117	256.1664	+ 1.01	280.53	171.35	- 0.021	47 ,	2212	47.3584	- 94.73	55.03	341.58	+ 0.106
14		175	215.5712	+ 125.75	239.97	131.78	+ 0.102	48	2270	6.7587	+ 30.22	14.43	302.00	+ 0.180
15.		251	185.7981	- 112.41	209.93	103.03	- 0.239	49	. 2327	331.4091	+ 155.19	333.87	262.43	+ 0.252
16		309	145.2026	+ 12.31	169.40	63.47	- 0.116	50	2331	258.3466	- 71.42	261.83	190.45	+ 1.763
17		367	104,6069	+ 137.04	128.85	23.90	+ 0.005	51	2335	185.2842	+ 61.98	189.79	118.47	+ 3.275
18	1	425	64.0112	- 98.21	88.28	344.30	+ 0.125	52	2339	112.2218	- 164.62	117.75	46.50	+ 4.787
19		501	34.2375	+ 23.66	58 23	315.55	- o 223	53	2343	39.1593	- 31.22	45.70	334.52	+ 6.298
20	{ 	558	358.8915	+ 148.41	17.65	275.97	0.106	54 ;	2346	331.3468	+ 102.18	333.65	262.53	+ 7.809
21		616	318.2953	86.83	337.10	236.40	+ 0.008	55	2350	258.2844	- 121.12	261.60	190.55	+ 9.321
22		674	277.6990	+ 37.94	296.53	196.82	+ 0.122	56	2354	185.2220	+ 8.98	189.55	118.57	+ 10.832
23	1	750	247.9246	+ 159.85	266.47	168.05	- o.233	57	23 58	112.1596	+ 142.38		46.58	+12.344
21		808	207 3282	- 75.37	225.93	128.50	- 0.123	59	2362	39.0972	- 84.22	45.45	334-59	+13.85

The second and third columns of Tables V and VI give, with some exceptions noted on page -8, the dates of those mean new moons which occur nearest to the nodes. The four columns following give the values of the four principal arguments for these dates.

The number of the conjunction point at which an eclipse occurs may be found from the results of Tables I, II, and IV, as follows:—Put t for the fraction of a century which has elapsed since the last preceding passage of a conjunction point through the corresponding node, as found on p. 14, and n_o for the number of that point. Then, the quantity

 $n_0 + 1\frac{1}{3}t - c.641$

will be nearly an integer, which integer will be the number of the point sought, and the argument for Table V or VI.

TABLE VI.—Mean Elements of Eclipses at Descending Node.

			• -					1						- :
			T	ď	g'	L	$u_{\circ}-180^{\circ}$			T	8	g	L	u _o -180°
Conj.	Fic	titious	Julian Date		Sun's	Sun's	Moon's			Julian Date		Sun's	Sun's	Moon's
Point	. (of Cent	tral Mean	Mean Ano-	Mean Ano-		Mean Arg.	Point.	0. 00.	tral Mean				Mean Arg.
1		Conj	unction.	maly	maly.	gitude.	Lat.		Conj	unction.	maly	maly.	gitude.	Lat.
	-					'				,				' '
102		<i>y</i> . 77 I	d. + 322.7073	, , , , , , ,	° 354-43	230.23	-13.665	136	. <i>y.</i> 837	d. +187.0300	+ 167.03	205.65	108.72	- o.o68
103	_	767	249.6452	- 170.66 - 37.28	282.40	158.26	-12.150	137	895	146.4333	- 68.17	165.07	69.12	+ 0.040
104	_	763	176.5832	- 37.28 + 96.09	210.36	86.28	-10.635	138	953	105.8365	+ 56.63	124.53	29.57	+ 0.147
105	_	759	103.5212	- 130.53	138.30	14.30	9.119	139	1011	65.2396	- 178.56	84.00	350.00	+ 0.252
106	_	755	30.4592	5 5	66.25	302.31	- 7.602	140	1069	24.6425	- 53.75	43.43	310.43	+ 0.357
			•,		·		· ·							
107	_	752	322.6471	+ 136.22	354.21	230.33	- 6.086	141	1144	360.1170	+ 68.22	13.37	281.65	110.0
108	! -	748	249.5851	- 90.11	282.17	158.35	- 4.569	142	1202	319.5197	- 166.95	332.82	242.10	+ 0.090
109		744	176.5231	+ 42.97	210.12	86.36	- 3.052	143	1260	278.9222	- 42.12	292.27	202.55	+ 0.189
110	<u>'</u> –	740	103.4611	+ 176.34	138.08	14.38	- 1.535	1.11	1336	219.1462	+ 79.88	262.17	173.75	- o.186
111	, –	736	30.3990	- 50.28	66.03	302.40	810.0	145	1394	208.5485	- 155.27	221.58	134.17	- 0.090
1									s		•			,
112		679	355.0555	+ 74-33	25.45	262.82	+ 0.127	146	1452	167.9506	- 30.11	181.03	94.58	+ 0.005
113	¦ —	603	325.2849	- 163.95	355 - 37	231.02	- o.188	147	1510	127.3527	•	140.48	55.02	+ 0.098
114	-	545	284.6908	- 39.32	314.82	194.43	- 0.046	148	1568	86.7546		99.90	15.43	+ 0.190
115	-	487	211.0970	+ 85.32	274.30	154.90	+ 0.095	119	1626	46.1564		59.38	335.90	+ 0.280
116	_	411	214.3254	- 152.94	244.25	126.13	- 0.225	150	1702	16.3792	+ 106.26	29.32	307.13	- 0.106
													-6	
117	. —	353	173.7314	- 28.29	203.70	86.57	- o.o87	151	1759	341.0306	- 128.85	348.73	267.55	- 0.019
118	;	- ,,,	133.1372	+ 96.37	163.15	17.00	+ 0.049	152	1817	300.4319		308.17	227.97 188.40	+ 0.066
119	_	237	92.5428	- 138.96	122.58	7.42	+ 0.181	153	1875	259.8331	+ 120.96	267.60	148.83	+ 0.150
120	. –	161	62.7708	- 17.19		33 - 3	0.114	154	1933 2000	189.4562	+ 7.98	227.03 196.98	140.03	- 0.233 - 0.164
121	_	103	22.1762	+ 107.49	51.98	299.07	- 0.012	155	2000	109.4502	+ 7.yo	190.90		0.104
122	٠	46	216 8211	- 127.82	11.45	259.50	+ 0.119	156	2067	148.8570	+ 132.91	156.42	80.50	— o.o85
123	+	30	317.0589		341.37	230.72	- 0.215	157	2125	108.2576	- 102.15	115.87	40.93	- 0.008
124	•	88		+ 118.68	300.83	191.17	- 0.087	158	2183	67.6582	·	75.32	1.37	+ 0.068
125		146	235.8687	•	260.27	151.58	+ 0.039	159	2211	27.0586	+ 147.74	34.73	321.78	+ 0.142
126		204	195.2736	+ 8.11	219.70	112.02	+ 0.164	160	2298	351.7090	- 87.30	354.18	282.26	+ 0.214
		•	·•		•						•	:		
127		280	165.5003	+ 129.95	189.67	83.25	- o.177	161	2302	278.6465	+ 46.10	282.12	210.25	+ 1.727
128		338	124.9047		149.10	43.67	- o.o55	162	2306	205.5811	+ 179.50	210.07	138.27	+ 3.239
129		396	84.3091	+ 19.42	108.55	4.10	+ o.o65	163	2310	132.5217	- 47.10	138.02	66.28	+ 4.750
130		454	43.7133	+ 144.16	68.00	324.52	+ 0.184	161	2314	59 4592	+ 86.29	65.97	354.28	+ 6.263
131		530	13.9394	- 93.97	37.93	295.75	– o. 165	165	2317	351.6468	- 140.31	353.92	282.30	+ 7.773
		_	_		_						4	a0 + 0 -	210 -2	
132		587	338.5931		357.38	256.18	- 0.019	166	2321	278.5844	- 6.91	281.85	210.32	
133		645		+ 155.56	316.83	216.62	+ 0 066	167	2325	205.5219	+ 126.49	209.80	138.34	+10.800
134		703	257.4015		276.25	177 03	+ 0.179	168	2329	132.4595	-100.11 $+33.28$	137.74 65.69	66.35	+12.312 $+13.823$
135		761	210,8046	+ 45.11	235.68	137.47	. + 0.290	169	2333	59.3971	+ 33.25	05.00	354.37	- · J.023

In Table VI the values of u_o are given in the last column as if counted from the descending node, but, to make the notation uniform, these are considered as values of $u_o = 180^\circ$, u_o being always counted from the ascending node.

TABLE VII.—Reduction of Quantities in the Preceding Tables to Corresponding Conjunctions in Other Cycles.

!			Reduction	n of T.							Reduct	ion of	g.			
es.				!	Ch	ange fo	or—		!	_			Ch	ange fo	or—	-
;	Year o.	1000,	2000.	100 <i>y</i> .	200 y.	300 y.	400 y.	500 y.	Year o.	1000.	2000.	100 y.	200 y.	300 y.	400 y.	500
	y. d.	d.	d.		_			!					: 1			i
	18 10.8224	10.8217	10.8211		I	2	2	. 3	- 2.89	- 2.86	- 2.82	0	1	T	2	!
	36 21.6447	21.6435	21,6422	I	3	4	5	6	5.78	5.72	5.64	I	I	2	3	
	54 32.4671	32.4652	32.4633	2	1	6	8	9	8.68	8.58	8.47	ı	2	3	4	
	72 43.2895	43.2869	43.2844	3	5	8	10	13	. 11.58	11.43	11.29	I	. 3	4	6	
	90 54.1119	54.1086	54.1055	3	6	10	13	- 16	14.47	14.29	11.12	2	. 4	5	7	
	108 64.9342	64.9304	64.9265	, 4	. 8	11	15	19	- 17.30	- 17.15	- 16.94	2	, 4	6	9	1
	126 75.7566	75.7521	75.7476	4	9	13	18	22	20.26	20.01	19.76	3	5	8	10	1
	144 86.5790	86.5738	86.5687	5	10	; 15	20	26	23.15	22.87	22.58	3	6	8	11	1
	162 97.4013	97.3956	97.3898	6	12	17	23	29	26.05	25.73	25.41	3	6	9	13	I
	180 108.2237	108.2173	108.2109	6	13	19	26	32	28.91	28.59	28.23	4	7	11	14	1
	198 119.0461	119.0390	119.0320	. 7	1.4	21	28	35	- 31.83	- 31.44	- 31.05	4	8	11	16	1
	216 129.8684	129.8608	129.8531	8	15	23	31	38	34.73	34.30	33.88	4	. 8	13	17	2
	234 140.6908	140.6825	140.6742	8	17	25	33	42	37.62	37.16	36.70	5	9	14	19	2
	252 151.5132	151.5042	151.4953	9	18	27	36	45	40.52	40.02	39.52	5	. 10	15	20	2
	270 162.3356	162.3259	162.3164	10	19	29	38	48	43.41	42.88	42.35	5	11	16	22	2
	288 173.1579	173.1477	173.1374	10	21	31	41	51	- 46.30	- 45.74	- 45.17	6	. 11	17	22	2
	306 183.9803	183.9694	183.9585	: 11	22	33	44	55	49.20	48.60	47.99	6	12	18	23	
	324 194.8027	194.7911	194.7796	12	23	35	16	58	52.09	51.45	50.81	6	13	19	24 26	3
	342 205.6250	205.6129	205.6007	12	24	. 37	49	61	54.99	54.31	53.64	7	13	20		_
	360 216.4474	216.4346	216.4218	1 13	26	38	51	64	57.88	57.17	56.46	7	14	21	27 20	3
	300 220.4474	210.4340	2.0.42.0			;	, ,,	~ 4		377	30.40	,		1	29	3
	378 227.2697	227.2563	227.2429	14	27	40	54	67	- 60.77	- 60.03	- 59.28	7	15	22	30	3
	396 238.0921	238.0781	238.0640	1.1	28	42	56	71	63.67	62.89	62.11	8	15	23	32	3
,	414 248.9145	248.8998	248.8851	15	29	44	59	74	66.56	65.75	64.93	8	16	24	33	4
	432 259.7369	259.7215	259.7062	15	31	46	62	7 7	69.45	16.86	67.75	8	17	25	34	4
	450 270.5593	270.5432	270.5273	16	32	48	64	80	72.35	71.46	70.58	9	17	26	36	4
•	468 281.3817	281.3650	281.3483	17	33	50	66	83	- 75.21	- 74.32	- 73.40	9	18	27	37	4
,	486 292.2041	292.1867	292.1694	17	35	52	69	86	78.13	77.18	76.22	10	19	28	38	4
}	504 303.0264	303.0084	302.9905	18	36	54	72	90	81.03	80.04	79.05	10	20	29	39	4
٠.	522 313.8488	313.8302	313.8116	18	37	56	74	93	83.92	82.90	81.87	10	20	31	41	5
)	540 324.6712	324.6519	324.6327	19	38	58	77	96	86.82	85.76	84.69	11	21	32	42	5
	558 335.4935	335.4736	335.4538	20	40	59	79	99	- 89.71	- 88.62	- 87.52	11	22	33	44	5
:	576 346.3159	346.2954			41	61	82	102	92.61	91.47	90.34		23	34	45	5
			357.0960		42		. 81	106					23	1	i	5
, }	613 2.7107	2.6888	2.6671	1	1		87	109	1	97.19			2.4	36	1	6
;	631 13.5330	13.5105	13.4882		45	67	90	112	101.29	100.05	98.81	. 12	25	37	50	6
5	649 24.3554	21.3322	24.3092	23	16	60	02	115	-104.18	-102.01	-101.63	13	25	1 38	51	6
			35.1303		1						-	_	1	•	1	6
	_		2.0 13.2 24.3	6671 1882 3092	6671 22 1882 22 3092 23	6671 22 44 1882 22 45 3092 23 46	6671 22 44 65 1882 22 45 67 3092 23 46 69	6671 22 44 65 87 1882 22 45 67 90 3092 23 46 69 92	5671 22 44 65 87 109 1882 22 45 67 90 112 3092 23 46 69 92 115	6671 22 44 65 87 109 98.39 1882 22 45 67 90 112 101.29 3092 23 46 69 92 115 -104.18	6671 22 44 65 87 109 98.39 97.19 1882 22 45 67 90 112 101.29 100.05 3092 23 46 69 92 115 -104.18 -102.91	5671 22 44 65 87 109 98.39 97.19 95.98 1882 22 45 67 90 112 101.29 100.05 98.81 3092 23 46 69 92 115 -104.16 -102.91 -101.63	3671 22 44 65 87 109 98.39 97.19 95.98 12 4882 22 45 67 90 112 101.29 100.05 98.81 12 3092 23 46 69 92 115 -104.18 -102.91 -101.63 13	6671 22 44 65 87 109 98.39 97.19 95.98 12 24 1882 22 45 67 90 112 101.29 100.05 98.81 12 25 3092 23 46 69 92 115 -104.18 -102.91 -101.63 13 25	3671 22 44 65 87 109 98.39 97.19 95.98 12 24 36 4882 22 45 67 90 112 101.29 100.05 98.81 12 25 37 3092 23 46 69 92 115 -104.18 -102.91 -101.63 13 25 38	3671 22 44 65 87 109 98.39 97.19 95.98 12 24 36 48 4882 22 45 67 90 112 101.29 100.05 98.81 12 25 37 50 3092 23 46 69 92 115 -104.18 -102.91 -101.63 13 25 38 51

Having identified the central eclipse of the series to which the required one belongs, the times and arguments from Table V or VI are to be reduced to the required date, for the number of periods elapsed, by means of Table VII. Here the time is to correspond to the middle of the elapsed interval. If the eclipse examined precedes the central one in time, the signs of all the quantities are to be changed.

Table VII.—Reduction of Quantities in the Preceding Tables, etc.—Continued.

	Reducti	on of g'.	Reducti	on of L.			Redu	iction of	u.			
Cycles.	Year o.	2000.	Year o.	2000.	Year o.	1000.	2000	-	C	hange for	·-	
		2000.	Teat o.	2000.	Teal o.	. 1000.	2000,	100 y.	200 y.	300 y.	400 y.	500 y
	•	•	•		•	•	•				i	
1	+ 10.50	+ 10.49	+ 10.80	+ 10.80	- o.463	- 0.470	- 0.478	1	2	2	3	4
2	20.99	20.99	21.61	21.61	0.926	0.940	0.956	1	3	. 4	6	7
3	31.49	31.48	32.41	32.41	1.389	1.411	1.433	2	4	7	9	11
4	41.99	41.98	43.21	43.22	1.851	1.881	1.911	3	6	9	12	15
5	52.48	52.47	54.01	54.02	2.314	2.351	2.389	4	7	, 11	15	19
6	+ 62.98	+ 62.97	+ 64.82	+ 64.82	- 2.777	- 2.822	- 2.867	4	9	13	18	22
7	73.48	73.46	75.62	75.63	3.240	3.292	3 - 345	5	10	16	21	26
8	83.98	83.96	86.42	86.43	3.703	3.762	3.822	6	12	18	24	30
9	94.48	94.45	97.23	97.24	4.166	4.233	4.300	7	13	20	27	34
10	104.97	104.94	108.03	108.04	4.628	4.703	4.778	7	15	22	30	37
11	+115.47	+115.44	+118.83	+118.84	- 5.091	- 5.173	- 5.256	8	16	25	33	41
12	125.96	125.93	129.64	129.65	5 · 554	5.644	5 · 734	9	18	27	36	45
13	136.46	136.43	140.44	140.45	6.017	6.114	6.211	10	19	29	39	48
14	146.96	146.92	151.24	151.25	6.480	6.584	6.689	11	21	31	42	52
15	157.45	157.42	162.04	162.06	6.943	7.054	7.167	11	22	34	-45	56
16	+ 167.95	+ 167.91	. 172.85	+172.86	– 7.406	- 7.525	- 7.645	12	24	36	48	60
17	178.45	178.41	183.65	183.67	7.868	7.995	8.123	13.	25	38	51	64
18	188.95	188.90	194.45	194.47	8.331	8.465	8.600	13	27	40	54	. 68
19	199.44	199.39	205.26	205.27	8.794	8.936	9.078	14	28	43	57	71
20	209.94	209.89	216.06	216.08	9.257	9.406	9.556	15	30	45	60	74
21	+ 220.44	+220.38	+226.86	<u>+</u> 226.88	- 9.720	- 9.876	-10.034	16	31	47	63	78
22	230.94	230.88	237.67	237.68	10.183	10.347	10.512	16	33	47	66	. 82
23	241.43	241.37	248.47	248.49	10.646	10.817	10.989	17	34	52	69	86
24	251.93	251.87	259.27	259.29	11.108	11.287	11.467	19	36	54	72	90
25	262.43	262.36	270.07	270.10	11.571	11.758	11.945	19	37	56	75	93
26	 +272.92	+272.86	+280.88	+280.90	-12.034	-12.228	 —12.423	10	39	58	. 78	07
27	283.42	283.35	291.68	291.70	12.497		12.901	20	40	61	. 75 81	97 101
28	293.92	293.85	302.48	302.51	12.960	13.168	13.378	21	42	63	84	101
29	304.41	304.34	313.29	313.31	13.422		13.856	22	43	65	87	108
30	314.91	314.83	324.09	324.12	13.885	14.109	14.334	22	45	67	90	112
31	+325.41	+325.33	+ 334.89	+334.92	-14.348	-14.579	-14.812	23	46	70		116
32	335.91	335.82	345.69	345.72	14.811	15.050	15.290	24	48	70	93 96	
33	346.41	346.32	356.50	356.52	15.274	15.520	15.768	25	49	72 74	90 99	120
34	356.90	356.81	7.30	7 33	15.736		16.245	25	51	74	102	124
35	7.39	7.31	18.10	18.13	16.199	16.460	16.722	26	52	79	105	131
36	+ 17.89	+ 17.80	+ 28.90	+ 28.94	-16.662	-16.931	-17.200	27	. .	8 t	108	104
37	28.39	28.29	l .	:			1	ł .	54			134
21	20.39	20.29	39.70	39.74	17.125	17.401	17.678	28	55	. 83	111	13

Having identified the central eclipse of the series to which the required one belongs, the times and arguments from Table V or VI are to be reduced to the required date, for the number of periods elapsed, by means of Table VII. Here the time is to correspond to the middle of the elapsed interval. If the eclipse examined precedes the central one in time, the signs of all the quantities are to be changed.

Table VIII, Arg. g.—For Reduction to Moment of True New Moon.

<u>-</u>	1	· · · · · · · · · · · · · · · · · · ·				:	<u> </u>		1	-
g	o°	. 10°	20°	30°	40°	50°	60°	70°	80°	1
•		d.	d.	d.	d.	- d.	d.	d.	d.	
0	0000 +	0657 +	1298 +	1910 +	2473 +	2975 +	3402 +	3736 +	3969 +	10
ī	.0066	.0722	. 1361	. 1969	.2526	. 3021	. 3440	. 3764	. 3986	Ç
2	.0132	.0787	. 1423	. 2027	.2579	. 3067	37 • 3477	.3791	.4001	8
3	.0198	.0852	. 1486	. 2085	. 2631	.3112	. 3513	.3817	.4016	
	65	65	61	57	5 T	44	35	25	13	
4	0263 +	0917 +	1547 +	2142 + 57	2682 +	3156 +	3548 + 34	.3842 +	4029 +	ć
5	0329 +	0981 +	1609 +	2199 +	2733 +	3199 +	3582 +	3866 +	4041 +	9
6	.0395	. 1045	. 1670	. 2255	.2783	. 324I	. 3615	.3889	4052	4
7	.0160	.1109	61 . 1731	. 2310	. 2832	. 3283	. 3647	. 3911	.4062	
	66	63	60	55	. ∡8	40	30	20	9	J
8	.0526 66	.1172 63	. 1791 60	. 2365	. 28So 48	· 3323 · 40	. 3677 30	.3931	.4071	. 2
9	.0592	. I 235 63	. 1851	.2419	. 2928 . 47	. 3363	. 3707	. 3951	1079	1
0	0657" +	1298°3+	1910 +	2473 ⁵⁴ +	2975 ⁴ +	3402 ³⁹ +	3736 ²⁹ +	3969 +	4085 +	
	350°	340°	330°	320°	310°	300°	290°	280°	270°	

g	90°	100°	110°	120°	130°	:40°	150°	160°	170*	
•	<i>d</i> ,	d.	d.	d.	d.	d.	<i>d</i> ,	d.	d.	c
U	4085 +	4079 +	3941 +	368o +	3293 +		2188 +	1506 +	0767 +	10
1	.4090	.4071	. 3923		. 3248	. 2735	.2123	. 1434	.0691	9
2	.4093	. 4062 9	. 3901	. 3612	. 3201	. 2678	. 2057	. 1362	.0615	8
3	.4096	.4052	. 3878 23	. 3576	.3154		1 67	. I 290	.0538	7
4	4097 +	4041 +	3854 ²⁴ ₂₆ +	$3539_{38}^{37} +$	3105 ⁴⁹ +	- 2561 59 60 +	1923 ₆₈ +	1217 +	0462 +	6
5	4097 +	4028 +	3828 +		3055 +	250f +	1855 +	1143 +	0385 +	5
6	.4096	.4014	. 3801	. 3462		.2110	. 1786	. 1069	.0308	4
7	.4094	. 3998	28 -3773	. 3 12 1	. 2952	. 2378	. 1717	.0994	.0231	3
8	. 1090	. 3982	· 3743	. 3330	. 2000	62 , 2316	. 1647	.0919	.0154	2
9	.4085	. 3963	. 3712	· 3337	. 2846 54	64 . 2252	.1577	.0843	.0077	1
10	4079 +	19	3680 ³² +	13293 +	2791 +	2188 +	1506 +	0767 +	0000 +	0
			-	-3•93 T	· - /9· T			-		
	260°	250°	240°	230°	220 °	210°	200°	190°	180°	•

Table IX, Arg. g'.—For Reduction to Moment of True New Moon.

g '	o°	10°	20°	30 °	40°	50°	60°	70°	80°	
•	d.	d.	d.	 d.		' d.	: — — · · · · · · · · · · · · · · · · ·	d.	. d.	
0	+.0000 -	+.0310 -	+.0609 -	+.0890	+.1140 -			+.1651 -	+.1724 -	10
ľ	.003.	.0311	.0639	.0916	. 1165	.1375	14	. 1661	.1728	
2	,0063	.0371	.0668	.0943	.1187	. 1394	.1556	.1670	.1732 4	
3	.0093	10101	28 , 0696	. 0969	. 1210	1413	.1570	.1679	.1735	
-	31	21	29	25	22	17	13	8	2	
4	+.0124 —	+.0432 -	+.0725 -	+.0994 —	+.1232 -	+.1430 -	+.1583	+.1687 -	+.1737 -	•
5	, +.0156 -	+.0462 -		+.1019 _	+.1253 -	+ . 1447 _ —	+.1596 -	+.1694 -	+.17 i o –	
6	.0187	.0492	.0781	. 1045	. 1275	. 1465	. 1608	.1700	.1742	4
7	.0217	.0521	.0808	. 106g	. 1296	. 1481	. 1620	.1707	1743	
8	.0248	.0551	.0836	. 1093	.1316	16	.1630	6	0	
-		29	27	24	20	. 1497	11	.1713	.1743	2
9	.0279	1 .0580	.0863	.1117	1336	.1512	.1641	.1719	.1744	1
0	+.0310 -	+.0609 -	+.0890 -	+.1140 -	+.1356 -	+.1528 -	+.1651 -	+.1721 -	+.1743 -	
	, 350°	. 340°	330°	320°	310"	300°	290°	280°	 270°	

g'	90°	100°	110°	120°	130°	110°	150°	160°	170°	
	d. +.1743 - .1742 . .1741 . .1739 . +.1736 3 -	d. +.1710 - .1703 ⁷ .1697 ⁸ .1689 ⁷ +.1682 ⁷	d. +.1625 - .1613 .1602 .1590 +.1578 -	d. +.1492 - .1475 16 .1459 18 .1441 16 +.1425 -	d. +.1314 - .1294. 20 .1274 .1254 +.1233 -	d. +.1100 - 23 .1077 24 .1053 .1029 24 +.1005 -	d. +.0852 - .0827 .0802 27 .0800 26 .0774 +.0747 -	.0554 27 .0527 28 .0499	d. +.0296 - .0265 .0236 .0207 +.0177 -	 • 10 9 8 7 6
5 6 7 8 9	+.17321729 .1725 .1720 .1716 +.1710 -	+.16741665 .1655 .1646 .1635 .+.1625 -	.1551 .1536 .1536 .1522 .1508	+ .14071390 .1371 .1352 .1333 .19 + .1314 -	.1190 .1168 .1168 .1145 .22 .1123	.0956 .0931 .0905 .0878 26	+.07200693 .0666 28 .0638 27 .0611 28 +.0583 -	.0312 .0383 .0355 .0325	+.01480118 .0089 .0059 .0059 +.0000 -	5 4 3 2 1
	260°	250°	240°	230°	220°	210°	200°	190°	180°	<i>g'</i>

Таві	LE X.—Arg.	g+g'.	TABLI	E XI.—Arg	1. g—g'.	TABLE X	XII.—Arg. u.	1		E XII	
δT =	= — o ^d .0051 sin (¿	g + g').	-δT =	+ 0 ^d .0075 sin (g - g').	$\delta T = +c$	od.0104 sin 2 u.	Day of		Year to D Month.	ay of th
g + g'.	δT.		g-g'.	JT.		u.	ðT.		(Common Year.	Bissex Year.
•	d.	•	r	<i>d</i> .	o	, ,	d.	Jan.	0	0	_ I
0	0.0000	360	0	0,000	₁ 360	o	0.0000	•	IJ	10	9
10	- 09 +	350	10	+ 13 -	350	1	+ 04 .		20	20	19
20	17	340	20	26	340	2	07	Feb.	0 ' 10	31 41	30
30	25	330	30	37	330	3	11		20	51	50
40	33	320	40	48	320	4	14		-	· · · · · · · · · · · · · · · · · · ·	
50	39	310	. 50	57	310	5	18	Mar.	0	59	3
60	44	300	60	65	300	6	22		10	69	9
70	48	290	70	70	290	7	25		20	79	
80	50	280	8o	i 74	280	8 Ì	29	April	10	100	
90	51	270	90	75	270	9	32		20	110	
100	. 50	260	100	74	260	10	36	May	0	120	0
110	.48	250	110	70	250	' II '	39		10 20	130	
120	44	240	120	65	240	12	42	lune		140	
130	39	230	130	57	230	13	46	June	0 10	15: 16	
140	33	220	110	48	220	1 11	10	1	20	17	I
150		210	150		210	15	52	July	0	18	
160	25	200	160	37	200	16	•		10 20	19 20	
	17						55 58	i Aug.	0	21	
170	- 09 +	190	170	+ 13 -	. 190	17		8.	10	22	
180	0.0000	180	180	0.0000	180	18	61	1	20	23	2
					1	19	+ 0.0064	Sept.	0	24	
					 		-		20	25 26	
	1	g+g'.			g+g'.		1	Oct.	0 !	27	_
	<u>i</u>			<u> </u>				•	10	28	
TI	he sum of the ar	antities fron	Tables VII	I to XII. inclu	ive, being ann	lied to the time	T of mean conjunc	:=	20	29	3
							true conjunction in		0	30	-
longit			, , ====				J		10 20	31 32	
		tious time th	us found to	the ordinary ca	dendar, a corre	ction from the	table following is to	O Dec.	0	33	
			-		•		zero day of the year	:	10	33 34	
In ord	er that it may c	orrespond to	the civil cou	ant of days, it i	must be increas	ed by 1.			20	35	

Table XIII b.—For Reducing Fictitious Julian Dates to those of the Ordinary Calendar.

Calendar and Limiting Dates.	Bissextile Years.	Year 1 after Bis.	Year 2 after Bis.	Year 3 after Bis.
•	d.	d.	d.	d.
· Julian calendar	+ 0.00	+ 0.25	+ 0.50	+ 0.75
Gregorian calendar, 1582 to 1700, February	10.00	10.25	10.50	10.75
Gregorian calendar, 1700, March, to 1800, February	11.00	11.25	11.50	11.75
Gregorian calendar, 1800, March, to 1900, February	12.00	12.25	12.50	12.75
Gregorian calendar, 1900, March, to 2100, February	13.00	13.25	13.50	13.75
Gregorian calendar, 2100, March, to 2200, February	14.00	14.25	14.50	14.75
Gregorian calendar, 2200, March, to 2300, February	+ 15.00	+ 15.25	+ 15.50	+ 15.75

For the further expression of the time in days and hours, Tables XIII a and XIV are added.

Table XIV.—For Changing Decimals of a Day to Time and Arc.

T.	Time.	Arc.	For $\frac{T}{100}$.	For	T	T.	Time.	Arc.	 For	T īco'	For	T 10000°
I			Time. Arc.	Time.	Arc.				Time.	Arc.	Time.	_Arc_
ď.	h, m. s.	. ,	m. s. ° '	s.	i .	d.	h. m. s.	. ,	m. s.	• •	s.	
0.01	0 14 24	3 36	0 8.64 0 2.	16 0.09	0.02	0.51	12 14 24	183 36	7 20.64	1 50.16	4.41	1.10
0.02	0 28 48	7 12	0 17.28 0 4.	32 0.17	0.04	0.52	12 28 48	187 12	7 29.28	I 52.32	4.49	1.12
0.03	0 43 12	10 48	0 25.92 0 6.	8 0.26	0.06	0.53	í2 43 12	190 48	7 37-92	I 54.48	4.58	1.14
0.04	0 57 36	14 24	0 34.56 0 8.	64 0.35	0.09	0.54	12 57 36	191 24	7 46.56	1 56.64	4.67	1.17
0.05	I 12 O	18 o	0 43.20 0 10.	80 0.43	11.0	0.55	13 12 O	198 0	7 55.20	1 58.80	4.75	1.19
0.06	1 26 24	21 36	0 51.84 0 12.	0.52	0.13	0.56	13 26 24	201 36	8 3.84	2 0.96	4.84	1.21
0.07	1 40 48	25 12	1 0.48 0 15.	· i -	0.15	0.57	13 40 48	205 12	8 12.48	2 3.12	4.92	1.23
0.08	1 55 12	28 48	1 9.12 0 17.	- 1	0.15	0.58	13 55 12	208 48	8 21.12	2 5.28	5.01	1.25
0.00	2 9 36	32 24	1 17.76 0 19.	٠ .	0.17	0.59	14 9 36	•	8 29.76	2 7.44	5.10	1.27
0.10	2 24 0	36 o	1 26.40 0 21.	• •	0.19	0.60	14 24 0	212 24 216 0	8 38.40	2 9.60	5.18	1.30
		30 0	(1	0.22	3.33		210 0				
0.11	2 38 24	39 36	1 35.04 0 23.	76 o.95	0.24	0.61	14 38 24	219 36	8 47.04	2 11.76		1.32
0.12	2 52 48	43 12	1 43.68 0 25.	,	0.26	0.62	14 52 48	223 12	8 55.68	2 13.92	5.36	1.34
0.13		46 48	1 52.32 0 28.0	08 1.12	0.28	0.63	15 7 12	226 48	9 4.32	2 16.08		1.36
0.14	3 21 36	50 24	2 0.96 0 30.	-	0.30	0.64	15 21 36	230 24	9 12.96	2 18.24		1.38
0.15	3 36 o	54 0	2 9.60 0 32	μο 1.30	0.32	0.65	15 36 o	2 34 0	9 21.60	2 20.40	5.62	1.40
0. IÓ	3 50 24	57 36	2 18.24 0 34.	6 1.38	0.35	0.66	15 50 24	237 36	9 30.24	2 22.56	5.70	1.43
် ၀. 17 ^ရ	4 4 48	61 12	2 26.88 0 36.	12 1.47	0.37	0.67 i	16 4 48	241 12	9 38.88	2 24.72	5.79	1.45
0.18	4 19 12	64 48	2 35.52 0 38.	88 1.56	0.39	0.68		244 48	9 47.52	2 26.88	5.88	1.47
0.19	4 33 36	68 24	2 44.16 0 41.	1.64	0.41	0.69	16 33 36	248 24	9 56.16	2 29.04	5.96	1.49
0.20	4 48 0	72 0	2 52.80 0 43.	o i 1.73	0.43	0.70	16 48 o	252 O	10 4.80	2 31.20	6.05	1.51
0.21	5 2 24	75 36	0.741	6 1.81	0.45	0.71	17 2 24	255 36	10 13.44	2 33.36	6.13	
0.21	•	79 12	3 1.44 0 45.5		0.48	0.72	17 16 48	259 I2	10 22.08	2 35.52	6.22	1.53
0.23	5 31 12	82 48	3 18.72 0 49.		0.40	0.73	17 31 12		10 30.72	2 37.68	6.31	1.58
0.24		86 24	3 27.36 0 51.5	•	0.52	0.74	17 45 36	•	10 39.36	2 39.84	6.39	1.60
0.25	5 45 36 6 0 0	90 0	3 36.00 0 54.0		0.54	0.75	18 0 0	•	10 48.00	2 42.00	6.48	1.62
	_	1	, 1			!				-	•	
0.26	6 14 24	.93 36	3 44.64 0 56.		0.56	0.76	18 14 24		10 56.64	2 44.16	6.57	1.64
0.27	6 28 48	97 12	3 53.28 0 58.	_	0.58	0.77	18 28 48		11 5.28	2 46.32	6.65	1.66
0.28	6 43 12	100 48	4 1.92 1 0		0.60	0.78	18 43 12	280 48	11 13.92	2 48.48	6.74	1.68
0.29	6 57 36	104 24	1 10.56 1 2.6	•	0.63	0.79	18 57 36	28.1 24	11 22.56	2 50.64	6.83	1.71
0.30	7 12 0	108 0	4 19.20 1 4.5	80 2.59	0.65	0.80	19 12 0	288 O	11 31.20	2 52.80	6,91	1.73
0.31	7 26 24	111 36	4 27.84 1 6.0	6 2.68	0.67	ο.8τ	19 26 21 '	291 36	11 39.84	2 54.96 :	7.00	1.75
0.32	7 40 48	115 12	4 36.48 1 9.	2 2.76	0.69	0.82		295 12	11 48.48	2 57.12	7.08	1.77
0.33	7 55 12	118 48	4 45.12 1 11.	2.85	0.71	o.83 I	19 55 12	298 48	11 57.12	2 59.28	7.17	1.79
0.34	8 9 36	122 24	4 53.76 1 13.4	4 2.94	0.73	0.84	20 9 36	302 24	12 5.76	3 1.44	7.26	1.81
0.35	8 24 0	126 0	5 2.40 1 15.0	0 3.02	0.76	0.85	20 21 0	306 O	12 14.40	3 3.60	7.34	1.84
0.36	8 38 24	129 36	5 11.04 1 17.	6 3.11	0.78	0.86	20 38 24	309 36	12 23.04	3 5.76	7.43	1.86
0.37	8 52 48	133 12	5 19.68 1 19.6		0.80	0.87	20 52 48	313 12	12 31.68	3 7.92	7.52	1.88
0.38	9 7 12	136 48	5 28.32 1 22.0		0.82	0.88	21 7 12		12 40.32	3 10.08	7.60	1.90
0.39	9 21 36	140 24	5 36.96 I 24.	•	0.84	0.89	21 21 36	-	12 48.96	3 12.24	7.69	1.92
0.40	9 36 0	144 0	5 45.60 I 26.		0.86	0.90	21 36 O	_	12 57.60	3 14.40	7.78	1.94
ł		,	. '			· '	1		13 6.24	3 16.56	7.86	
0.41	9 50 24 10 4 48	147 36	5 54.24 I 28. 6 2.88 I 30.		0.89	0.91	21 50 24	• • •	13 14.88	3 18.72	7.95	1.97
0.42	10 4 40	151 12	6 11.52 1 32.		0.91				13 23.52	3 20.88	8.04 7.45	1.99 2.01
0.43	10 19 12	154 46	6 20.16 1 35.0		0.93	0.93	22 19 12 ₁ 22 33 36		13 32.16	3 23.04	8.12	2.03
0.45	10 48 0	162 0	6 28.80 1 37.	1	0.95	0.94	22 48 · O		13 40.80	3 25.20	8.21	2.05
		1		1					i			
0.46	11 2 24	165 36	6 37.44 1 39.		0.99	0.96	23 2 24	1	13 49.44	3 27.36	8.29	2.07
0.47	11 16 48	169 12	6 46.08 1 41.	-	1.02	0.97	23 16 48		13 58.08	3 29.52	8.38	2.10
0.48	11 31 12	172 48	6 54.72 1 43.0		1.04	0.98	23 31 12		14 6.72	3 31.68	8.17	2.12
0.49	11 45 36	176 24	7 3.36 1 45.		1.06	0-99	23. 45 36		14 15.36	3 33.84	8.55	2.14
0.50	12 0 0	180 O	7 12.00 1 48.	90 4.32	1.08	1.00	24 0 0	360 O	14 24.00	3 36.00	40.6	2.16

TABLE XV, Arg. g.—Values of $u_{r} - u_{o}$.

g	o°	10°	2 0°	30°	40°	50°	60°	70°	8o°	
•					,				ļ	
•	•	•	•	•	0		0	0		
0	000+	064 +	128+	188+	243+	293+	335+	368+	391+	1
I	.006	170.	.134	.193	. 249	.297	•339	. 371	•393	
2	.013	.077	.140	. 199	.254	. 302	•343	∙374	•395	
3	.019	.084	.146	.205	.259	. 306	.346	. 376	. 396	
4	026+	090+	152+	211+	264+	311+	349+	379+	397+	
			•						·	ļ.
5	032+	096+	158+	216+	269+	315+	353+	381+	399+	
6	.039	.103	. 164	.222	. 274	.319	.356	. 383	-400	ļ
7	.045	. 109	. 170	.227	.279	.323	•359	. 386	.401	•
8	.052	.115	.176	.233	.283	. 327	. 362	. 388	. 402	
9	.058	. 121	.182	.238	. 288	. 331	. 365	.390	. 462	
10	064+	128+	188+	243+	293+	335+	368+	391+	403+	
	350°	340°	330°	320°	310°	300°	290°	280°	270°	

	260°	250°	240°	230°	220°	210°	200°	190°	180°	E
10	402+	389+	363+	324+	275+ 	215+	148+	075+	000+	0
9	.403	. 391	. 366	. 328	.281	. 222	. 155	.083	.008	I
8	.403	• 393	. 369	.332	. 286	. 228	. 162	.090	.015	2
7	.404	•394	.372	. 336	.291	.234	. 169.	.097	.023	3
6	.404	. 396	-375	.340	. 296	.240	. 176	. 105	.030	4
5	404+	397+	-·377+	344+	301+	246+	182+	·112+	038+	5
4	404+	-·399+	380+	348+	306+	252+	189+	120+	045+	(
3	.404	.400	.383	.352	.311	.258	. 196	.127	.053	7
2	.404	.401	. 385	. 356	.316	.264	. 202	.134	.060	
I	.403	.402	.387	.360	.320	. 269	. 209	.141	.068	•
0	403+	402+	389+	363+	324+	275+	215+	148+	075+	I
•	•	•	•	0	•	0	0	•	•	:
g	, 90°	100°	110°	120°	130°	140°	150°	160°	170°	

TABLE XVI.—Arg. g'.

<i>g'</i>	o°		,	$u_1 - u_0 = +$	2°.094 sin g' +	o .027 sin 2g	· · · · · · · · · · · · · · · · · · ·			
		10°	20°	30°	40°	50°	60° .	70°	8o°	
	•	0	0	•	•	•	0	0		
U	0.000	+0.373 -	+0.734 -	32	+1.373 -	+1.631 -	+1.837 -	+1.985 -	+2.072 -	1
I	+0.038 -	0.410	0.769	1,102 32	1.401	1.654	1.854	1.997	2.077	
2	0.075	0.446	ı o.8o3	1.134	1.429 27	1.676	1.871	2.007	2.081	
3	O. 112	0.483	0.838		1.455	1.698	1.888	2.018	2.085	
4	+0.150 -	+0.519 -	+0.872 -	+1.196 -	+1.482 -	+1.720 -	+1.903 -	+2.027 9 -	+2.088 3 -	,
5	+0.187 -	+0.555 -		+1.226 -	+1.508 -		+1.918 -	+2.036 -	+2.091 -	
6	0.224	0.591	0.939	1.256	1.533	1.761	1.933	2.044	2.093	
7	. 38 O. 262	0.627	0.972	1.286	1.558	1.781	1.947	2.052	2.094	
8	0.299	0.663	1.005	1.315	1.583	1.800	1.960	2.059	2.094°	:
9	0.336	0.698	1.038	1.314	1.607 ²⁴	1.819	1.973	2.066	2.095	;
0	+0.373 -	+0.734 -	+1.070 -	+1.373 -	+1.631 -	+1.837 -	+1.985 -	+2.072 6 -	+2.094 -	•
	. 350°	340°	330°	320°	310°	300°	290°	280°	270°	8
,	90°	100°	°oıı	120°	130°	140°	150°	160°	170°	
g'	y c	100		120		140	150		1,0	
	•	•	• +1.950 —	•					1	
	+2.001 -	+2 052 -		+1 700 -	±1.578 —	+1.210 -	• +1.024 -	+0.600 -	+0.354 -	
0	2.03	+2.053 -	13	19	+1.578 -	+1.319 -	+1.024 -	+0.699 -	+0.354 -	10
0	2.0 3	2.045 8	1.937 14	1.771 20	1.55.4 25	+1.319 - 28 1.291	+1.024 - 32 0.992 32	+0.699 - 0.665	+0.354 - 0.319	10
0 I 2	2.0 3 2.091	2.045 8 2.037	1.937 1.937 14 1.923	1.771 20 1.751 20	24 1.554 ²⁵ 1.529	+1.319 - 1.291 28 1.263	+1.024 - 0.992 0.960	+0.699 - 0.665 0.631	+0.354 - 0.319 0.284 35	10 9
0 1 2 3	2.0 3 2 2 2 2 2 2 2 3 3 2 2 0 8 8 3 2 2 3	2.045 8 2.037 2.028	1.937 1.937 1.923 1.908	1.771 20 1.751 20 1.731 20	1.554 25 1.529 25 1.504 25	+1.319 - 28 1.291 28 1.263 1.263 1.234 29	$+1.024 - 0.992$ 0.960 3^{1} 0.929	+0.699 - 0.665 0.631 0.597	+0.354 35 0.319 0.284 35 0.249 36	10
0 1 2 3	2.0 3 2.091 2.088	2.045 8 2.037 2.028	1.937 1.923 1.908	1.771 20 1.751 20	1.554 25 1.529 25 1.504	+1.319 - 1.291 28 1.263 29 1.234	+1.024 - 0.992 0.960 0.929	+0.699 - 0.665 0.631 0.631 0.597	+0.354 - 0.319 0.284 0.249	I C
0 1 2 3 4	2.03 ² 2.091 2.088 +2.085 ³	2.045 2.037 2.028 +2.019 	1.937 1.923 1.923 1.908 +1.893 - +1.877	1.771 20 1.751 1.731 +1.711 —	1.554 1.554 1.529 25 1.504 +1.479 -	+1.319 - 28 1.291 28 1.263 1.234 +1.205 - 29 +1.176 -	+1.024 - 0.992 0.960 0.960 0.929 +0.897 - 33 +0.864 -	+0.699 - 0.665 ³⁴ 0.631 ³⁴ 0.597 +0.563 ³⁴ - +0.563 ³ -	+0.354 - 35 0.319 0.284 35 0.249 40.213 36 +0.213	10
0 1 2 3 4	2.0 3 2.091 2.088 3 +2.085 3 4	2.045 2.037 2.028 +2.019 -2.009 -1.999	1.937 1.923 1.923 1.908 +1.893 -	1.771 20 1.751 1.731 +1.711 +1.690 1.668	1.554 1.529 25 1.504 +1.479 -1.454 26 1.428	+1.319 - 1.291 28 1.263 29 1.234 +1.205 - 29 +1.176 - 1.146	$ \begin{array}{r} +1.024 - \\ 0.992 \\ 0.960 \\ 0.929 \\ 0.929 \\ +0.897 - \\ 33 \end{array} $	+0.699 - 0.665 ³⁴ 0.631 0.597 +0.563 ³⁴ +0.563 ³⁴ - 0.494	+0.354 - 0.319 0.284 35 0.249 40.213 +0.178 0.142	10 6 7
0 1 2 3 4	2.0 3 2.091 2.088 4 -2.085 4 +2.081 -4	2.045 2.037 2.028 +2.019 -	1.937 1.923 1.908 1.908 1.908 1.893 1.908	1.771 20 1.751 1.731 +1.711 +1.690 -22	1.554 1.529 1.504 +1.479 +1.454 26	+1.319 - 1.291 28 1.263 1.234 +1.205 - 29 +1.176 - 1.146 1.116	+1.024 - 0.992 0.960 0.929 +0.897 -0.864 - 0.832 0.799	$+0.699 - 0.665^{34} - 0.631^{34} - 0.597^{34} + 0.563^{34} - 0.563^{34} - 0.528 - 0.528^{34}$	+0.354 0.319 35 0.284 35 0.249 36 +0.213 35 +0.178 0.142 0.107	10 6 7
0 1 2 3 4 5 6 7 8	2.0 3 2.091 2.088 4 +2.085 4 +2.081 -2.077 5	2.045 2.037 2.028 +2.019 	1.937 1.923 1.908 1.908 1.893 1.908 1.893 1.893 1.893 1.844 1.844	1.771 20 1.751 20 1.731 +1.711 -1.690 1.668	1.554 1.529 25 1.504 +1.479 -25 +1.454 -26 1.428 27 1.401	+1.319 - 1.291 28 1.263 1.234 +1.205 - 29 +1.176 - 1.146 1.116	+1.024 - 0.992 0.960 0.929 +0.897 -0.864 - 0.832 0.799	+0.699 - 0.665 0.631 0.597 +0.563 - 0.5934 - 0.5934 - 0.494 35	+0.354 - 35 0.319 0.284 35 0.249 36 +0.213 35 +0.178 - 36 0.142 35	1 c c c c c c c c c c c c c c c c c c c
0 1 2 3 4 5 6	2.0 3 2.091 2.088 4 -2.085 4 +2.081 -2.077 2.072 6 2.066	2.045 2.037 2.028 +2.019 	1.937 1.923 1.923 1.908 +1.893 - +1.877 - 1.861 1.844 1.827	1.771 20 1.751 20 1.751 20 1.731 41.711 — 21 +1.690 — 1.668 1.646 22 1.624 23	1.554 1.529 1.529 1.504 +1.479 -1.454 1.428 1.428 1.428 1.427 1.374	+1.319 - 1.291 28 1.263 29 1.234 +1.205 - 29 +1.176 - 1.146 1.116 1.086	+1.024 - 0.992 0.960 0.929 +0.897 -0.832 -0.832 0.799 0.766 34	+0.699 - 0.665 ³⁴ 0.631 ³⁴ 0.597 +0.563 ³⁴ - 0.494 0.494 0.494 0.459 0.424 34	+0.354 - 0.319 0.284 35 0.249 36 +0.213 35 +0.178 - 36 0.142 0.107 36	1 C C C C C C C C C C C C C C C C C C C
0 1 2 3 4 5 6 7 8	2.0 3 2.091 2.088 4 2.085 4 +2.081 - 2.077 2.072 6 2.066	2.045 2.037 2.028 +2.019 	1.937 1.923 1.908 1.908 1.893 1.893 1.861 1.844 1.827	1.771 20 1.751 20 1.731 +1.711 -1.690 -1.668 21.646 22 1.624	1.554 1.554 25 1.529 25 1.504 25 +1.479 — 26 1.428 1.428 1.401 27 1.374	+1.319 - 1.291 1.263 1.263 1.234 +1.205 - 1.146 1.116 1.086	+1.024 - 0.992 0.960 0.929 +0.897 - 0.897 - 0.832 0.799 0.766	+0.699 - 0.665 0.631 0.597 +0.563 - +0.528 - 0.494 0.459 0.424	+0.354 - 0.319 0.284 35 0.249 36 +0.213 - 35 - - - 0.142 35 0.107 36 0.071 35	5 4 3

The sum of the three numbers from Tables XV-XVII is the reduction from the mean argument of latitude at mean conjunction to true argument at true ecliptic conjunction, measured on the ecliptic.

TABLE XVII — Arg. (g + g').

u 1 -	- 2/n ≤	± 0	°.012	sin	(g	+	g').
--------------	---------	-----	-------	-----	----	---	------

+ g'			g+g'			
•		•	•	•	•	ļ
0	0.000	360	90	012 +	270	
10	002 +	350	100	.012	260	
20	.001	340	110	.011	250	1
30	,006	330	120	.oio	240	
40	.008	320	130	.009	230	
50	.009	310	140	.008	220	1
60	.010	300 .	150	.006	210	ı
70	110,	290	160	.004	200	
8υ	.012	280	170	002 +	190	
90	012 +	270	180	0.000	180	i
-		g + g'	i	1	g + g'	

For Values of y_* at the Moment of Ecliptic Conjunction (y_*°) .

TABLE XVIII —Arg. g.

TABLE XIX.—Arg. g'.

$y_2^\circ =0006 \sin g + .0001 \sin 2g$ (near ascending node).	$y_2^\circ = + .0163 \sin g'$ (near ascending node).
$y_{s}^{\circ} = + .0006 \sin g0001 \sin 2g$ (near descending node).	$j_{'2}^{\circ} =0163 \sin g'$ (near descending mode).

E			g			ġ	1		8	,
•			. 0		•	•	0		•	
0	.000	360	90	+ 100	270	180	0	.000	180	360
10	+ .003 -	350	100	.004	2 60	170	10	+ .003 -	190	359
20	.006	340	110	.006	250	160	20	.006	200	349
30	+ .008 -	330	120	008 +	240	150	30	+ .008 -	210	33
40	.009	320	130	.010	230	140	40	.011	220	32
50	.008	310	110	,009	220	130	50	.012	230	31
6 0	+ .007 -	300	150	008 +	210	120	60	+ .014 -	240	30
70	.005	290	160	.006	200	110	70	.015	250	29
8o	+ .002 -	280	170	003 +	190 '	100	80	.016	260	28
90	001 + 1	270	180	,000	180	90	90	+ .016 -	270	27
		g			g					

In Tables XVIII and XIX, the numbers have the sign given with them near the ascending node, and the opposite sign near the descending node.

The algebraic sum of the numbers taken from the three tables, XVIII to XX, is the value of y_2 , the ordinate of the point in which the axis of the shadow intersects the fundamental plane, at the moment of true ecliptic conjunction. This ordinate is reckoned in a direction perpendicular to the ecliptic.

In Table XX, the algebraic sign of the numbers is the same as that of $\sin u_1$. Near the descending node u_1 differs little from 180°; hence near the ascending node the number from Table XX has the same sign as u_1 ; near the descending node the opposite sign of u_1-180° .

TABLE XX.—Hor. Arg., g; Vertical Arg., u,.

	 `	- 1	_						·	
				+ = °وار	+ (5.245 — 0.33c	$\cos g$) $\sin u_1$.				
u	8 360°	10° 350°	20° 340°	30° 330°	40 ⁶ 320°	50°	60°	70° 290°	80° 280°	90° 270°
•	8.669	6.060	0.000	0.000	0.000	0.000	0.000	9.000	0.000	0.000
I	0.086	0:086	6.686 6.686	ნ.ღ § 6	0.087	0.088	0,08g	0,000	0.001	0.092
2	0.172	0.172	0.173 87	0.174	98 0.17 <u>\$</u>	0.176	0.178	0.180	0.181 90	0.183
3	0:257 %	0:257 86	0.258	0.260	0.261	0.263	0.266	0.269	0.272	0.275
4	0.343	0.343	6. 3 44 26	0.346	0.348	88 0.351	0.354	0.358	0.362	• 0.366
5	0.428	0.429	0.430	0.43z 86	0.435	0. 43 9	0.443	0.447	90 0.452	91 0,457
6	0.513	8 ₅ 0. 5 1.4	86	89	87	87	88 ;	89	90	94
7	0.599	86 g. 600	0.516 85 0.601	0.518 86 0.604	0.522	6.526	9.531	0.536	0.542	0.548
8	0.599 89	0.685	86	86	0.60g 86	0.613	Ø.619 88	σ.625 89	0.632 90	0.639
9	0.004 8g	0,005 0,770	0.6 87 85	0.690	0.695	0.700 87	0.707	80	0.722	0.730 91
10	0.709	0.770 84 0.854	0: 772 89	0. 776	0.781	0.787	0.795	0.803 88	0.812	0.821
	ا فع	8g	0.857	υ. 861 85	0.86 7 86	0.871	0.882	0.891	0.901	0.911
11	0.938	0.939	5.942 84	0.946	θ.953 8 ₅	0.960 ; 86 ;	0.969	0.979 88	0.990	1.001
12	1,022	1:023	1.026	1.031	1.038	1.046	1.056	1.067	1.079	1.090
13	1.106	11107 83	1.110	1.116 8g	1.123	1.132	1.143	88 1.155	1.167	1.1 5 0' 90
14	1.189	1.190	1.194 84	1.200	1.208	1.217	1.229	1.242 87	1.255	t.269
15	1.272	1.273	1.277	1.284	1.292	1.302	1.315	1.328	88 1.343	1, 358
16	1.355	1.356	1.360	1.367	1.376	1.387	1.400	7.415	8 ₇ 1.430	88 1.446
17	1.437	1.438	1,443	83 1.450	1.460	94 1.471	1.485	86 1,501	1.517	88 1.534
18	1.519	8 ₂ 1.520	1.525	1.533	1.543	I.555 ,	1.570	1.586	1.603	1.621
–										
₩ ₁	8 { 90° 8 { 270°	100° 260°	110° 250°	120° 240°	1 3 0° 230°	140° 220°	150° 210°	160° 200°	170° 190°	180° 180°
•		 								
0	0.000	0.000	8.000 H	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	0.092	0.092	0.093	0.494	0.095	0.096	0.096	0.097	0.097	0.097
2	0.183	0.185	0.187	0.180	0.191	0.192	0.193	0.194	0.195	0.195
3	0.275	0.277	0.280	0.283	0.286	0.287	0.289 96	0.291	0.291	0.292
4	0.366 9r	0.370	0.374	0.377	0.381	0.383	0.386 ⁹⁷ i	o. 388 97	0.389	0.389
5	0.457	0.462	0.467	0.472	0.476	0.479	0.482	0.484	0.485	o.486 ⁹⁷
6	0.548	92 0.554	o.560	93 0.565	0.570	0.574	96 : 0.578 ;	97 0.581	97 0.582	97 0.583
	0.639	0.554	0.653	0.659	0.570	0.574 96 0.670	0.578 96	0.581	0.582	0.503 96 0.679
7 8	91	02	93	94	95	0.765	0.770	96	. 96	97
•	0.730 0.821	0.738 - 0.829	0.746 0.838	0.753 0.846	o. 760 94 o. 854	o.86o	0.770	0.773 96 0.869	0.775 0.871	0.776 0.872
9	90	92	92	0.940	94	94	0.960	0.809 96 0.965	0.871 96 0.967	0.872 96 0.968
10	0.911	0.921 1.012	0.930	92	0.918	0.954 95	95	0.905 95 1.060	1.063	0.908 96 1.064
11	I ./QQ1 89	90	1.022	1.0 32 93	1.041	1.049	95	95	95	95
12	1.090	1.102 91	1.114	1.125	1.135	1.143	1.150	1.155	1.158	1.159 95
13	1.180 90 89	1.193	1.205	1.217	1.228	I.237	1.214	1.250	1.253	1.254
14	1.269	1.283	1.296	1.309	1.320	1.330	1.338 ;	1.344	1.348	1.349
15	1.358	1.372	1.387	7.400 91	1.412	1.423	1.431	1.438 94	1.442	1.443
16	1.446	7.461	1.477 89	1.401 61	1.504 92	1.515	1.523	1.531	1.535	1.537
17	1.534	1.550	1.566	1.582 97	1.596	1.607	1.617	1.624	1.628	1.630
18	1.621	1.638	1.655	1.672	1.686	1.699	1.709	1.717	1.721 93	1. 723 93

TABLES OF SOLAR ECLIPSES.

TABLE XXI.—For Hourly Motion of Axis of Shadow.

··· I					T					i
g	o°	10*	20°	30°	40°	50°	60°	70°	8o°	
•					! 					
0	. 5807	.5801	.5783	-5754	.5714	. 5665	. 5608	. 5546	-5479	
1	. 5807	. 5800	.5781	-5750	.5710	. 5660	.5602	•5539	.5472	
2	. 5807	. 5798	. 5778	•5747	.5705	.5654	. 5596	∙5533	. 5465	
. 3	.5806	∙5797	∙5775	∙5743	.5700	. 5649	.5590	.5526	. 5458	
4	.5806	• 5795	-5773	-5739	. 5696	. 5643	.5584	.5519	-5452	
5	.5805	-5793	.5770	-5735	.5691	. 5638	. 5578	.5513	• 5445	
6	. 5805	•5792	. 5767	.573I	. 5686	. 5632	.5571	. 5506	. 5438	1
7	. 5804	. 5790	. 5764	.5727	.5681	. 5626	. 5565	• 5499	.5431	
8	. 5803	. 5788	. 5761	-5723	. 5676	. 5620	-5559	-5492	. 5424	
9	. 5802	. 5785	-5757	.5719	. 5670	. 5614	·5552	. 5486	.5417	
10	.5801	.5783	-5754	.5714	. 5665	. 5608	. 5546	• 5479	.5410	
- 1					1					
	350°	340°	330°	320°	310°	300°	290°	280°	270°	
	350°	340°	330°	320°	310°	300°	290°	280° .	270°	
g	350°	340°	330°	320°	310°	300°	290°	280°	270°	
•	90°	100°	110°	120°	130°	140°	150°	160°	170°	
•	90° 	100°	110°	120°	130°	140°	150° -	160°	.5019	
• 0 1	90° .5410 .5403	100° .5341	. 5274 . 5268	. 5212 . 5206	.5155 .5150	.5106 .5101	. 5066 . 5063	. 5037	. 5019 . 5018	
• O I 2	90° .5410 .5403 .5396	.5341 .5334 .5328	.5274 .5268 .5261	.5212 .5206	.5155 .5150 .5144	.5106 .5101 .5097	.5066 .5063 .5059	.5037 .5035 .5032	.5019 .5018 .5017	
• 0 I 2 3	.5410 .5403 .5396 .5389	.5341 .5334 .5328 .5321	.5274 .5268 .5261	.5212 .5206 .5200	.5155 .5150 .5144 .5139	.5106 .5101 .5097 .5093	. 5066 . 5063 . 5059 . 5056	.5037 .5035 .5032 .5030	.5019 .5018 .5017 .5016	1
• O I 2	90° .5410 .5403 .5396	.5341 .5334 .5328	.5274 .5268 .5261	.5212 .5206	.5155 .5150 .5144	.5106 .5101 .5097	.5066 .5063 .5059	.5037 .5035 .5032	.5019 .5018 .5017	1
• 0 I 2 3	.5410 .5403 .5396 .5389	.5341 .5334 .5328 .5321	.5274 .5268 .5261	.5212 .5206 .5200	.5155 .5150 .5144 .5139	.5106 .5101 .5097 .5093	. 5066 . 5063 . 5059 . 5056	.5037 .5035 .5032 .5030	.5019 .5018 .5017 .5016	, , ,
0 I 2 3 4	.5410 .5403 .5396 .5389 .5382	.5341 .5334 .5328 .5321 .5314	.5274 .5268 .5261 .5255	.5212 .5206 .5200 .5194 .5188	.5155 .5150 .5144 .5139 .5134	.5106 .5101 .5097 .5093 .5089	.5066 .5063 .5059 .5056	. 5037 . 5035 . 5032 . 5030 . 5028	.5019 .5018 .5017 .5016 .5015	1
• O I 2 3 4 5	90° .5410 .5403 .5396 .5389 .5382	.5341 .5334 .5328 .5321 .5314	.5274 .5268 .5261 .5255 .5249	.5212 .5206 .5200 .5194 .5188	.5155 .5150 .5144 .5139 .5134	.5106 .5101 .5097 .5093 .5089	.5066 .5063 .5059 .5056 .5053	.5037 .5035 .5032 .5030 .5028	.5019 .5018 .5017 .5016 .5015	ī
• O I 2 3 4 5 6	.5410 .5403 .5396 .5389 .5382 .5375	.5341 .5334 .5328 .5321 .5314 .5307	.5274 .5268 .5261 .5255 .5249 .5242 .5236	.5212 .5206 .5200 .5194 .5188 .5182	.5155 .5150 .5144 .5139 .5134 .5129	.5106 .5101 .5097 .5093 .5089 .5085	.5066 .5063 .5059 .5056 .5053	.5037 .5035 .5032 .5030 .5028 .5027	.5019 .5018 .5017 .5016 .5015	- I
. O I 2 3 4 5 6 7	.5410 .5403 .5396 .5389 .5382 .5375 .5368	.5341 .5334 .5328 .5321 .5314 .5307 .5301	.5274 .5268 .5261 .5255 .5249 .5242 .5236	.5212 .5206 .5200 .5194 .5188 .5182 .5177	.5155 .5150 .5144 .5139 .5134 .5129 .5124 .5119	.5106 .5101 .5097 .5093 .5089 .5085 .5081	.5066 .5063 .5059 .5056 .5053 .5050 .5047	.5037 .5035 .5032 .5030 .5028 .5027 .5025	.5019 .5018 .5017 .5016 .5015 .5014	1

TABLE XXII.—For Hourly Motion of Axis of Shadow.

					x'2	= - o ^d	.0010	os g' -	- od.ooc	of cos (g + g')	o.bo — (0004 cos	s (g — g	gʻ).					
8	o°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°	110°	120°	130°	140°	150°	160°	170°	180°	
g' o°	- 8	_ 8	 _ 8	_ 8	_ 8	- 9	– 9	– 9	-10	–10	_10	-11	-11	-11	-11	-12	-12	-12	-12	360°
10°	- 8	- 8	- 8	- 9	– 9	-10	-10	-11	-11	-11	-12	-12	—12	-12	-12	-12	-12	-12	-12	350°
20°	- 7	- 8	- 9	- 9	-10	-11	-11	-12	-12	-13	-13	-13	-13	-13	-13	-13	-12	12	-11	340°
30°	- 7	8	- 9	-10	-11	-11	-12	-13	-13	-13	-14	-14	. —14	-14	-13	-13	-12	-11	-10	330°
40°	– 6	– 7	- 8	– 9	-11	-12	-12	-13	-14	-14	-14	-14	-14	-14	-13	-12	-11	10	- 9	320°
50°	— 5	- 6	- 8	- 9	-10	-11	-12	-13	-14	-14	-14	-14	•	-13	-12	-11	-10	- 9	- 8	310°
60°	- 4	- 5	- 7	- 8	-10	-11	-12	-13	-13	-14	-14	-14	-13		-11	-10	- 9	- 7	- 6	300°
70°	- 3	- 4	- 6	- 7	- 9	-10	-11	-12	-13	-13	-13	-13	— I2	-11	-10	- 9	- 7	- 6	- 4	290° 280°
80°	- I	- 3	- 5	- 6	– 8	- 9	-10	-11	-11		-11	-11	- ro	- 9	8	- 7	– 5	- 4 - 2	- 2	280° 270°
90°	+ 1	- 2 0	- 3	- 5 - 3	- 7	- 8 - 6	- 9 - 7	- 9 - 8	— 10 — 8	— 8	—10 — 8	- 9 - 7	- 9 - 7			- 5	- 3 - 1	- 2 0	0 + 2	270 260°
110°	1	+ 1	- 2 0	- 3 - 2	- 5 - 3		- 7 - 5	- 6	— 6	_ 6	. – 6	- 7 - 5	- 1 - 4	- 6 - 3	— 4 — 2	- 3 - 1	+ 1	+ 3	4	250°
120°	3 4	3	+ 1	0	— I	- 4 - 2	- 3	– 3	- 4	- 4	- 3	– 3	– 2	- 3 - 1	0	+ 1	3	5	6	240°
130°	5	4		+ 1		0	- I	- t	- I	- I	_ 1	0	0	+ 1	+ 2	4	5	6	8	230°
140°	6	5	4	3	2	+ 2	+ 1	+ 1	+ 1	+ 1	+ 2	+ 2	+ 3	. 4	5	6	7	3	9	220°
150°	7	6	5	5	4	4	3	3	4	4	4	5	5	6	7	8	9	10	10	210°
160°	7	7	6	6	6	6	5	6	6	6	6	7	8	8	9	9	10	11	11	200°
170°	8	8	7	7	7	7	7	8	8	8	8	9	9	10	10	11	11	12	12	190°
180°	8	8	8	8	8	9	9	9	10	10	10	11	11		11	12	12	12	12	180°
190°	8	8	8	9	9	10	10	11	11	11	12	12	12	12	12	12	12	12	12	170°
200°	7	8	9	9	10	11	11	12	12	13	13	13	13	13	13	13	12	12	11	160°
210°	7	8	9	10	11	11	12	13	13	13	14	14	14	14	13	13	12	11	10	150°
220°	6	7	8	9	TI	12	12	13	14	14	14	14	14	14	13	12	11	10	9	140°
230°	5	6	8	9	10	11	12	13	14	14	14	14	14	13	12	11	10	9	8	130° ·
240°	! 4	5	7	8	10	11	12	13	13	13	14	14	13	12	11	10	9	7	6	120°
250°	3	4	6	7	9	10	11	12	13	13	13	13	12	11	10	9	7	6	4	110°
260°	1 + 1	3 + 2	5	6	8	9	10	11	11	11		11	10	9	8	7	5	4	+ 2	100° 90°
270° 280°	0	0	3 + 2	5	6	8 6	9	9	10 8 -	10	10 8	9	9	· 6		5	3	+ 2	0 - 2	90 80°
290°	- I - 3	_ 1	' + 2 0	3 + 2	5		7	6	6	6	6	7	. 7 : 4	; 3	+ 2	3 + I	+ I - I	- 3		70°
300°	- 3	3	- 1	0	.3 + I	+ 2	3	3	4	4	: 0 3	+ 3	+ 2	+ 1	0	- 2	- 1 - 3	5	- 4 - 6	60°
300°	- 4	- 4	- 3	_ 2	- I	0	+ 1	+ 1	+ 1	+ 1	+ 1	0	. ' -	– 1	- 2	- 4	- 3 - 5	– 6	– 8	50°
320°	- 6	- 5	- 4	- 3	– 2	- 2	- 1	_ r	- I	– 1	- 2	- 3	- 3	- 4	- 5	- 6	- 7	- 8	- 9	40°
330°	- 7	- 6	- 5	- 5	- 4	- 4	- 3	— 3	– 3	- 4	- 4	- 5	_ 5	6	- 7	- 8	- 9	-10	-10	30°
340°	- 7	- 7	- 6	- 6	- 6	- 6	- 5	- 6	– 6	- 6	- 6	- 7	- 8	- 8	- 9	- 9	-10	_11	-11	20°
350°	- 8	- 8	- 7	- 7	- 7	- 7	- 7	- 8	- 8	- 8	_ 8	- 9	- 9	-10	-10	-11	-11	-12	-12	10°
360°	_ 8	- 8	– 8	- 8	- 8	- 9	- 9	- 9	-10	-10	-10	-11	-11	, — rı	-11	-12	-12	-12	-12	o°
	1		İ		:					l	1		1		1		ł			8'
	\ 		 		l							¦		i	\ 			i		
	360°	350°	340°	330°	320°	310°	300°	290°	280°	270°	260°	250°	240°	230°	220°	210°	200°	190°	180°	g

When the argument g is at the bottom of the page, or is negative, g' is to be sought for at the right.

The algebraic sum of the numbers from Tables XXI and XXII is the hourly variation of the co-ordinate x_2 of the point in which the axis of the shadow intersects the fundamental plane.

TABLE	E X.—Arg.	g+g'.	TABLE	E XI.—Arg	g-g'.	Table 2	XII.—Arg. u.	TABLE X		LE XI	II a.
δT =	— 0 ^d .0051 sin (,	g+g').	δT =	+ od.0075 sin (g - g').	$\delta T = +$	od.0104 sin 2 u.	Day o	f the	Year to D Month.	Day of the
g + g'.	δT.		g-g'.	δT.		u.	δT.			Common Year.	Bissex Year.
•	d.	•	ا د ا	d .	c	,	d .	Jan.	0		
0	0.0000	360	o 1	0.0000	360 .	o	0.0000	,	IJ	10	9
10	- 09 +	350	10	+ 13 -	350	I	+ 04		20	20	19
20	17	340	20	26	340	2	07	Feb.	0 10	31 41	30 40
30	25	330	30	37	330	3	11		20	51	50
40	33	320	40	48	32 0	4	14 i			•	·
50	39	310	50 [!]	57	310	5	18	Mar.	o	5	0
60	44	300	6o	65	300	6	22		10	6	
70	.1 8	290	70	70	290	7	25		20	7	9
80	50	280	80 ¹	74	280	8	29	April		9	
90	. 51	270	90	75	270	9	32		10 20	11	
100	50	260	100	74	260	10	36	May	0	12	0
110	.48	250	110	74	250	11,	1		10	13	
120	- 1	_	120				39	_	20	14	
1	44	240		65	240	12	42	June	0 10	15 16	
130	39	230	130	57	230	13	46		20	17	
140	33	220	140	48	220	, 14	. 49	July	0	18	1
150	25	210	150	37	210	15	52	•	10	19	
160	17	200	160	26	200	16	55	A	20	20	
170	- 09 +	190	170	+ 13 -	190	17	- 58	Aug.	10	2 I 2 2	_
180	0.0000	180	180	0.0000	180	18	61		20	23	
						19	+ 0.0064	Sept.		24	3
			'	!			_' .	,	10 20	25 26	
i		g+g'.		!	g+g'.			Oct.	0	27	-
		:		l			·	Oct.	10	28	
The	e sum of the ar	iantitiau fran	Tubles VII	I to XII inclus	iva haina air	died to the tim	e T of mean conjunc-	•	20	29	3
							f true conjunction in			30	-
longitu			,,	g- :					10 20	31 32	
		tious time th	us found to	the ordinary ca	lend <mark>ar, a</mark> corre	ection from the	table following is to	Dec.	0	_	
be appli	ied. The corre	ction for biss	extile years p	presupposes the	st January 1 is	counted as the	zero day of the year.		10	33 34	
In orde	er that it may c	orrespond to	the civil con	int of days it i	nust ha increa	and hore			20	35	

Table XIII b.—For Reducing Fictitious Julian Dates to those of the Ordinary Calendar.

Calendar and Limiting Dates.	Bissextile Years.	Year 1 after Bis.	Year 2 after Bis.	Year 3 after Bis.
•	d.	<i>d</i> .	<i>d</i> .	d.
Julian calendar	+ 0.00	+ 0.25	+ 0.50	+ 0.75
Gregorian calendar, 1582 to 1700, February	10.00	10.25	10.50	10.75
Gregorian calendar, 1700, March, to 1800, February	11.00	11.25	11.50	11.75
Gregorian calendar, 1800, March, to 1900, February	12.00	12.25	12.50	12.75
Gregorian calendar, 1900, March, to 2100, February	13.00	13.25	13.50	13.75
Gregorian calendar, 2100, March, to 2200, February	14.00	14.25	14.50	14-75
Gregorian calendar, 2200, March, to 2300, February	+ 15.00	+ 15.25	+ 15.50	+ 15.75

For the further expression of the time in days and hours, Tables XIII a and XIV are added.

TABLES OF SOLAR ECLIPSES.

Table XIV.—For Changing Decimals of a Day to Time and Arc.

T.	Time.	Arc.	ABLE AIV.— For	ForT	T.	Time.	Arc.		T 100'	For	T 10000°
•• .	Time.	1	Time, Arc.	Time. Arc.	1	Time.	Mic.	Time.	Arc.	Time.	_Arc
d.	h, m. s.	. ,	m. s. ° '	s. ,	d.	h. m. s.	۰ ,	m. s.	• ,	s.	,
10.0	0 14 24	3 36	0 8.64 0 2.16	0.09 0.02	0.51	12 14 24	183 36	7 20.64	1 50.16	4.41	1.10
0.02	0 28 48	7 12	0 17.28 0 4.32	0.17 0.04	0.52	12 28 48	187 12	7 29.28	1 52.32	4.49	1.12
0.03	0 43 12	10 48	0 25.92 0 6.48	0.26 0.06	0.53	12 43 12	190 48	7 37.92	1 54.48	4.58	1.14
0.01	0 57 36	14 24	0 34.56 0 8.64	0.35 0.09	0.54	12 57 36	191 24	7 46.56	1 56.64	4.75	1,17
0.05	I I2 O	18 O	0 43.20 0 10.80	0.43 0.11	0.55	13 12 0	198 o	7 55.20	1 58.80		1.19
0.06	1 26 24	21 36	0 51.84 0 12.96	0.52 0.13	0.56	13 26 24	201 36	8 3.84	2 0.96	4.84	1.21
0.07	1 40 48	25 12	1 0.48 0 15.12	0.60 0.15	0.57	13 40 48	205 12	8 12.48	2 3.12	4.92	1.23
0.08	1 55 12	28 48	1 9.12 0 17.28	0.69 0.17	0.58	13 55 12	208 48	8 21.12	2 5.28	5.01	1.25
0.09	2 9 36	32 24	1 17.76 0 19.44	0.78 0.19	0.59	14 9 36	212 24	8 29.76	2 7.44	5.10 5.18	1.27
0.10	2 2.1 0	36 o	1 26.40 0 21.60	0.86 0.22	0.60	I4 24 0	216 o	8 38.40	2 9.60	.	1.30
0.11	2 38 24	39 36	1 35.04 0 23.76	0.95 0.24	0.61	14 38 24	219 36	8 47.04	2 11.76	5.27	1.32
0.12	2 52 48	43 12	1 43.68 0 25.92	1.04 0.26	0.62	14 52 48	223 .12	8 55.68	2 13.92	5.36	1.34
0.13	3 7 12	46 48	1 52.32 0 28.08	1.12 0.28	0.63	15 7 12	226 48	9 4.32	2 16.08	5.44	1.36
0.14	3 21 36	50 24	2 0.96 0 30.24	1.21 0.30	0.64	15 21 36	230 24	9 12.96	2 18.24	5·53	1.38
0.15	3 36 O	54 0	2 9.60 0 32.40	1.30 0.32	0.65	15 36 o	234 0	9 21.60	2 20.40	5.62	1.40
0.10	3 50 24	57 36	2 18.24 0 34.56	1.38 0.35	0.66	15 50 24	237 36	9 30.21	2 22.56	5.70	1.43
0.17	4 4 48	61 12	2 26.88 0 36.72	1.47 0.37	0.67	16 4 48	241 12	9 38.88	2 21.72	5 • 79	1.45
0.18	4 19 12	64 48	2 35.52 O 38.88	1.56 0.39	0.68	16 19 12	244 48	9 47.52	2 26.88	5.88	1.47
0.19	4 33 36	68 24	2 44.16 0 41.04	1.64 0.41	0.69	16 33 36	218 24	9 56.16	2 29.04	5.96	1.49
0.20	4 48 O	72 0	2 52.80 0 43.20	1.73 0.43	0.70	16 48 O	252 0	10 4.80	2 31.20	6.05	1.51
0.21	5 2 24	75 36	3 1.44 0 45.36	1.81 0.45	0.71	17 2 24	255 36	10 13.44	2 33.36	6.13	1.53
0.22	5 16 48	79 12	3 10.08 0 47.52	1.90 0.48	0.72	17 16 48	259 12	10 22.08	2 35.52	6.22	1.56
0.23	5 31 12	82 48	3 18.72 0 49.68	1.99 0.50	0.73	17 31 12	262 48	10 30.72	2 37.68	6.31	1.58
0.24	5 45 36	86 24	. 3 27.36 . 0 51.84	2.07 0.52	0.71	17 45 36	266 24	10 39.36	2 39.84	6.39	1.60
0.25	6 o o	90 o	3 36.00 ; 0 54.00	2.16 0.54	0.75	18 0 0	27 0 0	10 48.00	2 42.00	6.48	1.62
0.26	6 14 24	.93 36	3 44.64 O 56.16	2.25 0.56	0.76	18 14 24	273 36	10 56.64	2 44.16	6.57	1.64
0.27	6 28 48	97 12	3 53.28 0 58.32	2.33 0.58	0.77	18 28 48	277 12	11 5.28	2 46.32	6.65	1.66
0.28	6 43 12	100 48	4 1.92 1 0.48	2.42 0.60	0.78	18 43 12	280 48	11 13.92	2 48.48	6.74	1.68
0.29	6 57 36	104 24	4 10.56 I 2.64	2.51 0.63	0.79	18 57 36	284 24	11 22.56	2 50.64	6.83	1.71
0.30	7 12 0	108 0	4 19.20 T 4.80	2.59 0.65	0.80	19 12 0	288 o	11 31.20	2 52.80	6,91	1.73
0.31	7 26 24	111 36	4 27.84 1 6.96	2.68 0.67	0.81	19 26 24	291 36	11 39.84	2 54.96	7.00	1.75
0.32	7 40 48	115 12	4 36.48 1 9.12	2.76 0.69	0.82	19 40 48	295 12	11 48.48	2 57.12	7.08	1.77
0.33	7 55 12	118 48	4 45.12 : 1 11.28	2.85 0.71	0.83	19 55 12	298 48	11 57.12	2 59.28	7.17	1.79
0.34	8 9 36	122 24	4 53.76 1 13.44	2.94 0.73	0.84	20 9 36	302 24	12 5.76	3 1.44	7.26	1.8t
0.35	8 24 0	126 0	5 2.40 1 15.60	3.02 0.76	0.85	20 24 0	306 0	12 14.40	3 3.60	7 - 34	1.84
0.36	8 38 24	129 36	5 11.04 1 17.76	3.11 0.78	o.86 ·	20 38 24	309 36	12 23.04	3 5.76	7.43	1.86
0.37	8 52 48	133 12	5 19.68 1 19.92	3.20 0.80	0.87	20 52 48	313 12	12 31.68	3 7.92	7.52	1.88
0.38	9 7 12	136 48	5 28.32 1 22.08	3.28 0.82	0.88	21 7 12	316 48	12 40.32	3 10.08	7.60	1.90
0.39	9 21 36	140 24	5 36.96 I 24.24	3.37 0.84	0.89	21 21 36	320 24	12 48.96	3 12.24	7.69	1.92
0.40	9 3 6 0	144 0	5 45.60 1 26.40	3.46 0.86	0.90	21 36 o	321 0	12 57.60	3 14.40	7.78	1.94
		147 36			1	_	327 36	13 6.24	3 16.56	7.86	1.97
0.41	9 50 24	151 12	5 54.24 I 28.56 6 2.88 I 30.72	3.54 0.89 3.63 0.91	0.91	21 50 21		13 14.88	3 18.72	7.95	1.99
0.42		151 12	6 11.52 1 32.88	3.72 0.93	0.92	22 19 12	334 48	13 23.52	3 20.88	8.54	2.01
0.43	10 19 12	158 24	6 20.16 1 35.04	3.80 0.95	0.93	22 33 36	338 24	13 32.16	3 23.04	8.12	2.03
0.45	10 48 0	162 0	6 28.80 1 37.20		0.95	22 48 . 0	342 0	13 40.80	3 25.20	8.21	2.05
						•		- '			
0.46	11 2 24	165 36	6 37.44 1 39.36	3.97 0.99	0.96	23 2 21	345 36	13 49.44	3 27.36	8.29	2.07
0.47	11 16 48	169 12	6 46.08 1 41.52	4.06 1.02	0.97	23 16 48	349 12	13 58.08	3 29.52	8.38 8.47	2.10 2.12
0.48	11 31 12	172 48	6 54.72 1 43.68	4.15 1.04	0.98	23 31 12	352 48 356 24	14 6.72	3 31.68 3 33.84	8.55	2.12
0.49	11 45 36 12 0 0	176 24 180 0	7 3.36 1 45.84	4.23 1.06	0.99	23 45 36 24 0 0	356 24 360 0	14 15.30	3 33.04	8.64	2.14
0.50		, 180 O	7 12.00 1 48.00	4.32 1.08	1.00	24 0 0					

Table XV, Arg. g.—Values of $u_{\scriptscriptstyle \rm I}$ — $u_{\scriptscriptstyle \rm o}$.

	p 			$u_1 - u_0 = -0^\circ$	'.403 sin g + 0	°.016 sin 2 <i>g</i> .				
g	o°	10°	20°	30°	40°	50°	60°	70°	80°	
•	•		•		•	•	0	•		
0	000+	←. 064+	128+	188+	243+	293+	335+	368+	391+	10
I	.006	.071	.134	.193	. 249	. 297	•339	. 371	-393	Ġ
2	.013	.077	.140	. 199	. 254	. 302	•343	•374	•395	8
3	.019	.084	.146	.205	.259	. 306	.346	.376	. 396	7
4	026+	090+	152+ •	211+	264+	311+	349+	379+	397+	(
5	032+	096+	158+	216+	269+	315+	353+	381+	399+	
6	.039	.103	. 164	. 222	. 274	.319	.356	. 383	-400	4
7	.045	. 109	.170	.227	.279	.323	.359	. 386	.401	3
8	.052	.115	. 176	.233	.283	. 327	. 362	. 388	. 402	
9	.058	. 121	.182	.238	.288	.331	. 365	. 390	. 4d2	
10	064+	128+	188+ 	243+	293+	335+	368+	39I+	403+	
	350°	340°	330°	320°	310°	300°	290°	280°	270°	

g	90°	100°	110°	120°	130°	140°	150°	160°	170°	l i
	•	0	•	•	•	۰	•	0	0	· ——
0	403+	402+	389+	363+	324+	275+	215+	148+	075+	10
1	.403	.402	.387	.360	. 320	. 269	. 209	.141	.068	' ¢
2	.404	.401	.385	. 356	.316	.264	.202	.134	.060	
3	.404	.400	. 383	.352	.311	. 258	. 196	.127	.053	
4	404+	399+	38o+ 	348+	306+	252+	189+	120+	045+	•
5	i —.40 4+	397+	377+ j	344+	301+	246+	182+	·112+	038 +	:
6	.404	. 396	•375	.340	.296	.240	. 176	. 105	.030	
7	.404	-394	.372	. 336	. 291	.234	. 169.	.097	.023	:
8	.403	. 393	. 369	.332	. 286	.228	. 162	.090	.015	:
9	.403	. 391	.366	.328	. 281	.222	.155	.083	.008	:
0	402+	389+	363+	324+	—·275+	215+	148+	075+	000+	•
	260°	250°	240°	230°	220°	210°	200°	190°	180°	

TABLE XVI.—Arg. g'.

				$u_1 - u_0 = +$	2~.094 sin g' +	o°.027 sin 2g	· .			,
g'	o°	10°	20°	30°	 40° 	50°	60° .	70°	8o°	
•	•	0	0		•	•	0	0	•	
0	0.000	+0.373 -	+0.734 -	+1.070 -	+1.373 -	+1.631 -	+1.837 -	+1.985 -	+2.072 -	I
1	+0.038 -	0.410	0.769 34	1.102 32	1.401	1.654	1.854	1.997	2.077	'
2	0.075	0.446	0.803	1.134	1.429	1.676	1.871	2.007	2.081	
3	0.112	0.483	0.838	1.165	1.455	J.698	1.888	2.018	2.085	
4	+0.150 -	+0.519 -	+0.872 -	+1.196 -	+1.482 -	+1.720 -	+1.903 -	+2.027 -	+2.088 -	'
5	+0.187 -	+0.555 -	+0.906 -	+1.226 -	+1.508 -	+1.741 -	+1.918 -	+2.036 -	+2.091 -	
6	0.224	0.591	0.939	1.256	1.533	1.761	1.933	2.044	2.093	
7	0.262	0.627	0.972	1.286	1.558	1.781	1.947	2.052	2.094	
8	0.299	0.663	1.005	1.315	1.583	1.800	1.960	2.059	2.094	
9	0.336	0.698	1.038	1.314	1.607	1.819	1.973	2.066	2.095	:
10	+0.373 -	+0.734 -	+1.070 -	+1.373 -	+1.631 -	+1.837 -	+1.985 -	+2.072 6	+2.094 -	
	. 350°	340°	330°	320°	310°	300°	290°	280°	270°	8
e'	90°	. 100°	110°	120°	130°	140°	150°	160°	170°	
•	•	•		•		•	0		0	
• o	+2.094 -	+2.053 -	+1.950 -	+1.790 -	+1.578 -	° +1.319 -	° +1.024 -	+0.699 —	+0.354 —	10
o I	+2.094 - 2.0 3	+2.053 - -2.045 8	+1.950 — 1.937	+1.790 — 1.771	+1.578 — 1.554 25	+1.319 - 1.291	0.992 0.992	+0.699 - 0.665	+0.354 - 35 0.319	10
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	2.094 —	+2.053 8 -2.045 8 2.037	+1.950 — 1.937 1.923 1.923	+1.790 — 1.771 20 1.751 20	1.578 - 1.554 25 1.529 25	° +1.319 - 28 1.291 28 1.263 29	0.992 0.962 0.960	+0.699 - 0.665 0.631	+0.354 35 0.319 0.284	10
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	2.094 — 2.091 2.091 2.088 3		1.950 — 1.937 1.923 1.908	1.770 —	1.578 — 1.554 25 1.529 25 1.504	° +1.319 - 1.291 28 1.263 29 1.234 29	0.992 0.960 0.929	-0.699 - 0.665 0.631 0.597 34	0.354 — 0.319 0.284 35 0.284 35 0.249	1 c
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	2.094 —	-2.053 8 -2.045 8 -2.037 -2.028	+1.950 — 1.937 1.923 1.908	1.790 — 1.771 20 1.751 20 1.731	1.578 — 1.554 1.529 1.504	. +1.319 - 28 1.291 28 1.263 29 1.234	0.992 0.960 0.929	+0.699 - 0.665 0.631 0.597	0.354 — 35 0.319 0.284 0.249	1 c
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	+2.094 - 2.0 3 2.091 2.088 +2.085 3 - +2.081 -	2.045 2.037 2.028 +2.019	1.950 — 1.937 1.923 1.923 1.908 1.908 1.893 — 1.877 —	1.770 — 1.771 20 1.751 1.731 20 +1.711 — +1.690 —	-1.578 - 1.554 - 1.554 - 25 - 1.529 - 1.504 - +1.479 - +1.454 -		0.992 0.992 0.960 0.929 +0.897 -0.864 -0.864	-0.699 - 0.665 0.631 0.597 +0.563 -0.528 -	0.354 - 0.319 35 0.284 35 0.249 36 +0.213 35 +0.178 -	10 6 6
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	-2.094 - 2.0 3 2.091 2.088 3 +2.085 3 +2.081 - 2.077	-2.045 2.045 2.037 2.028 +2.019 -2.009 — 1.999	-1.950 — 1.937 1.923 1.908 1.908 +1.893 - +1.877 — 1.861	-1.790 - 1.771 - 1.751 - 1.731 - 1.711 - 1.668 - 1.668 - 22		-1.319 - 28 1.291 28 1.263 29 1.234 29 +1.205 - 29 +1.176 - 30 1.146		+0.699 - 0.665 0.631 0.597 +0.563 ³⁴ -0.563 ³⁴ -0.494 ³⁴ 35	0.354 — 0.354 — 0.319 0.284 0.249 40.213 36 40.213 35 +0.178 — 0.142 35	10 5 6
0 I	+2.094 - 2.0 3 2.091 2.088 +2.085 4 +2.081 - 2.077 2.072	+2.053 8 2.045 8 2.037 2.028 9 +2.019 9 -1.999 10 1.999 11.987	-1.950 — 1.937 1.923 1.908 1.908 +1.893 -1.893 -1.861 1.844	1.790 — 1.771 20 1.751 20 1.731 +1.711 — +1.690 — 1.668 22 1.646 22	1.578 — 1.554 1.554 1.504 1.504 1.479 25 1.428 1.428	-1.319 - 28 1.291 1.263 1.234 +1.205 - 29 +1.176 - 1.146 1.116		+0.699 - 0.665 ³⁴ 0.631 0.597 +0.563 ³⁴ - 0.598 - 0.494 0.459	+0.354 - 0.319 0.284 0.249 +0.213 35 +0.178 - 0.142 0.107	10 6 6
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	+2.094 - 2.0 3 2.091 2.088 +2.085 3 +2.081 - 2.077 2.072 2.066	-2.053 8 -2.045 8 -2.037 -2.028 -2.019 9 -2.009 — 1.999 1.987 1.976		-1.790 - 1.771 20 1.751 20 1.731 - +1.711 - +1.690 - 1.668 22 1.646 22 1.624	- 1.578 - 1.554 - 25 1.529 - 25 1.504 - 25 1.479 - 25 1.428 - 27 1.401 - 27 1.374	-1.319 - 1.291 28 1.263 29 1.234 +1.205 -29 +1.176 1.146 1.116 1.086	-0.992 0.992 0.960 0.929 +0.897 -0.897 -0.832 0.799 0.766	-0.699 — 0.665 0.631 0.597 +0.563 -0.528 -0.494 0.459 0.424	-0.354 0.319 0.284 0.249 -0.213 0.178 0.142 0.107 0.071	10 6 6
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	+2.094 - 2.0 3 2.091 2.088 +2.085 4 +2.081 - 2.077 2.072	+2.053 8 -2.045 8 2.037 2.028 +2.019 — +2.009 — 1.999 1.987 1.976 1.963	-1.950 — 1.937 1.923 1.928 1.908 1.908 1.908 1.893 -1.893 -1.861 1.844 1.827 1.827 1.809	1.790 — 1.771 20 1.751 20 1.731 20 +1.711 — +1.690 — 1.668 1.646 22 1.624 1.621 1.601		-1.319 - 28 1.291 28 1.263 29 1.234 +1.205 - 29 +1.176 - 1.146 1.086 1.086 1.055		-0.699 - 0.665 0.631 0.597 +0.563 - 10.528 - 0.494 0.494 0.459 0.424 0.390	-0.354 0.319 0.284 35 0.249 -0.213 -0.178 0.142 0.107 0.071 -0.036 -0.035	1c
. o i i 2 2 3 4 4 5 5 6 6 7 8 8	+2.094 - 2.0 3 2.091 2.088 3 +2.085 3 - +2.081 - 2.077 4 2.072 5 2.066	+2.053 8 2.045 8 2.037 9 2.028 9 +2.019 0 1.999 10 1.999 11 1.976 13	-1.950 — 1.937 1.937 1.923 1.908 1.908 1.893 -1.897 -1.861 1.844 1.827 1.827	-1.790 - 1.771 - 1.751 - 1.731 - 1.711 - +1.690 - 1.668 - 1.646 - 1.624 - 1.624 - 23	-1.578 1.554 -25 1.529 1.504 -1.479 +1.454 1.428 1.401 1.374 1.374	-1.319 - 28 1.291 28 1.263 1.234 - 29 +1.205 - 29 +1.176 - 1.146 1.116 1.086		-0.699 - 0.665 0.631 0.597 +0.563 - 0.494 0.459 0.459 0.424 34	-0.354 0.319 0.284 0.249 -0.213 0.178 0.142 0.107 0.071	1 c c c c c c c c c c c c c c c c c c c

The sum of the three numbers from Tables XV-XVII is the reduction from the mean argument of latitude at mean conjunction to true argument at true ecliptic conjunction, measured on the ecliptic.

Table XVII — Arg. (g + g').

uı —	u ₀ ±	_	0°.012	sin	(g	+	g').
------	------------------	---	--------	-----	----	---	----	----

g + g'			g + g'		
•	-, - ·	•	•	•	•
o	0.000	360	90	012 +	27 0
10	002 +	350	100	.012	260
20	.001	340	110	.011	250
30	.006	330	120	.tib	240
40	.008	320	130	.009	230
50	.009	310	140	.008	220
60	.010	300	150	.006	210
70	.011	290	160	.004	200
80	.012	280	170	002 +	190
90	012 +	270	180	0.000	180
		g + g'		1	g + g'

For Values of y_* at the Moment of Ecliptic Conjunction (y_*°) .

TABLE XVIII —Arg. g.

TABLE XIX.—Arg. g'.

$y_i^\circ = -$.0006 sin g +	.0091	sin 2g	(near	ascending n	ode).
72° = +	.0006 sin g	.00gt	sin 2 ¢	(near	descending	node).

 $y_2^\circ = + .0163 \sin g'$ (near ascending node): $y_2^\circ = - .0163 \sin g'$ (near descending node).

_	ţ		_	!		ان	,	,	-	,
8			8			g			8	
•		•	. •		•	0	0	•	0	
0	.000	360	90	+ 100	270	180	0	.000	180	36
10	+ .003 -	350	100	.004	26 0	170	10	+ .003 -	190	35
20	.006	340	110	.006	250	160	20	.006	200	34
30	+ .008 -	330	120	008 +	240	150	30	+ .008	210	33
40	.009	320	130	.010	230	140	40	.011	220	32
50	.008	310	140	,009	220	130	50	.012	230	31
6 0	+ .007 -	300	150	008 +	210	120	60	+ .014 -	240	30
70	.005	290	160	.006	200	110	70	.015	250	29
8 o	+ .002 -	2 80	170	003 +	190	100	8o	.016	2 60	28
90	+ 100	27 0	180	.000	180	90	90	+ .016 -	270	27
	1	g			g					

In Tables XVIII and XIX, the numbers have the sign given with them near the ascending node, and the opposite sign near the descending

The algebraic sum of the numbers taken from the three tables, XVIII to XX, is the value of y_2 , the ordinate of the point in which the axis of the shadow intersects the fundamental plane, at the moment of true ecliptic conjunction. This ordinate is reckoned in a direction perpendicular to the ecliptic.

In Table XX, the algebraic sign of the numbers is the same as that of $\sin u_1$. Near the descending node u_1 differs little from 180° ; hence near the ascending node the number from Table XX has the same sign as u_1 ; near the descending node the opposite sign of u_1-180° .

TABLE XX.—Hor. Arg., g; Vertical Arg., u,.

				<i>y</i> 3° = ⊣	+ (5.245 — 0.330	$\cos g$) $\sin u_1$.				
u	8 360°	10° 350°	20° 340°	30° 330°	40 ⁶ 320°	50°	60° 300°	70° 290°	80° 280°	90° 270°
• o	ର ' ହଣ୍ଡର ଆ	8.08 0	0.000	0.000	0.000	0.000	0.000	9.000	0,000	0.000
1	0.086	o:086	66 6:686 °	9.0 5 6	o.o87	o.o88	0.08g	0.000	0.091	. 0.092
2	0.172	86 0.172	0.173	0.174	0.175	e.176	0.178	0.180	6.181 ⁹⁰	0.183
3	0.257	85 0.257 8	0.258	0.260	96 07361	o. 2 63	o. 266	0.260	0.272	0.275
4	0.343	0.343	5. ∄i1	86 j 0.346	0.348	0. 3 51	0.354 88	0.358	0.362	• 0.366
5	0.428	0.429 86	0.430	∂. 432 86	8 ₇ 0. 135	0.43g	0.443	0.447	0.452	1
	85	85	86	b9	87	87	88	89	90	0.457
6	0.513	0.514 86	0.516 85	0.518	O. 522 ,	6.526 87	Ø. 531	0.536 80	0.542	0.548
7	0.§99 89	0.600 8g	0.60t	0.604	0.60g 86	0.613	o.619 88	0.625 S9	0.632	0.639
8	0.684 8a	0.68\$ 89	0.687	0.690	0.695	0.700 87	0.707	0.714	. 0.722	0.730
9	0.769	0.770 8 4	6.772 8g	0.776	0.781	0.787	0.795	o. 803	0.812	0.821
10	d:853	0.854 8g	0.857 85	v. 861	0.867	0.874	0.882	0.891	0.901	0.911
11	0.938	0.939 84	0.942	0.946 85	မ. 953 8 ₅	0.960	0.969	0.979 88	7.990' 89 89	1.001
12	1.022	1.023	1.026	1.031	1.038	1.046	1.056	1.067	1.079	1.090
13	1.106	1 / 107 1 / 107	1.110	1.116	8g !	86 1.1 32	1.143	88 1.155	1.167	1,180
14	1.18g	1.190 1.190	1.194	1.200	1.208	85 . 1,217	86 I.229	8 ₇	88	1.269
ì	1.272	1.273	83	1.284	84 '	85	86 _i	1.242 86	1.255	٠ (
5	82	873	1.277	83	1.292	1.302	1.315	1.328	1.343	1.358
16	1.355	1.356	1.360	1.367	1.376	1.387	1.400	1.415	1.430 87	1.446 8
7	1.437	1.438	1.443	1.450	1.460	1.471	1.485	1.501		1.534
18 	1.519 	1.520	1.525		1.543	1.555	1.570	1.586	1.603	1.621
u ₁	8 270°	100° 260°	110° 250°	120° 240°	130° 230°	140° 220°	150° 210°	160° 200°	170° 190°	180°
0	0,000	0.000	Ø.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000
- 1	92	92	99	94	9 5	96	0.006	97	0.007	9
1	0.092	0.092	0.093	0.494	0.095	0.096	97	0.097	98	0.097
2	0.183	0.185	0.187	0.189	0.191	0. 192 95	0.193	0.194	0.195	0.195
3	0.275	0.277 93	0.280	0.283	0.286	0.287	0.289	0.291	0.291	0.292
4	0.366	0.370	0.374	O. 377	0.381	0.383	0.386 " \	0.388 96	0.389	0.389
5	0.457	0.462	0.467	0.472 93	0.476	0.479 95	0.482	0.484 ° 97	0.485 97	o.486 9
6	0.548	0.554	0.560	0.565	0.570	0.574	0.578	0.581	0.582	0.583
7	0.639	0.646	0.653	0.659	0.665	0.670	0.674	0.677	0.679	0.679
8	0.730 9 ¹	o. 738	0.746	0.753	o60 ⁹⁵	0.765	0.770	0.773	0.775	0.776
ا و	0.821	- 91 0.829	0.838	0.846	0.854	o.860 95	0.865	0,869	o.871 96	0.872
0	0.911	0.921	0.930	0.940	0.918	0.954	0.960	0.965	0.967 g6	o.968
1	7,001 1,001	1.012	1.022	1.032	1.041	1.049	1.055	1.060	1.063	1.064
•	89	90	92	93	94	94	95	95	95	9
2	1.090	1.102	1.114	1.125	1.135	1.143	1.150	1.155 95	1.158	1.159
3	1.180	1.193	1.205	1.217	1.228	1.237	1.244	1.250	1.253	1.254
4	1.269	1.283	1.296	1.309	1.320	1.330	1.338	1.344	1.348	1.349
5	1.358	1.372	1.387	1.400	1.412	1.423	1.431	1.438	1.442	1.443
6	1.446	1.461 89	1.477	1.491 9 ²	1.501 ⁹²	1.515	1.523	1.531	1.535	1.537
	88	'''89	80 I	OI I	92	92	. 94 !	93	93	. 9
7	1.534	1.550	1.566	1.583	1.596	1.607	1.617	1.624	1.628 93	1.630

TABLES OF SOLAR ECLIPSES.

TABLE XXI.—For Hourly Motion of Axis of Shadow.

_ =				# 2 = 7	+ 0.5410 + 0.03					
8	o°	10"	20°	30°	40°	50°	60°	70°	8o°	
•		:								-
0	. 5807	.5801	.5783	•5754	.5714	. 5665	.5608	. 5546	.5479	10
1	.5807	. 5800	.5781	.5750	.5710	.5660	.5602	•5539	.5472	9
2	.5807	. 5798	. 5778	•5747		.5654	.5596	•5533	.5465	8
3	.5806	•5797	-5775	•5743	.5700	.5649	.5590	.5526	. 5458	7
4	.5806	•5795	•5773	•5739	. 5696	.5643	.5584	.5519	.5452	6
	,	,.		0.07	, ,					
5	.5805	•5793	.5770	-5735	. 5691	. 5638	.5578	-5513	-5445	5
6	.5805	•5792	. 5767	.5731	.5686	.5632	.5571	. 5506	.5438	4
7	.5804 .	. 5790	. 5764	.5727	.5681	.5626	. 5565	• 5499	.5431	3
8	. 5803	. 5788	.5761	.5723	.5676	. 5620	-5559	.5492	.5424	2
9	. 5802	. 5785	.5757	.5719	. 5670	.5614	•5552	. 5486	.5417	. 1
10	.5801	.5783	-5754	.5714	. 5665	.5608	.5546	• 5479	. 5410	
	350°	340°	330°	320°	310°	300°	290°	280°	270°	g
1					· · · · · · · · · · · · · · · · · · ·					1
8	90°	100°	110°	120°	130°	140°	150° ·	160°	170°	
•	-	·	·							1
•	.5410	. 5341	.5274	.5212	.5155	.5106	. 5066	. 5037	.5019	10
• O I	.5410	· 5341 · 5334	·5274 .5268	.5212 .5206	.5155 .5150	.5106	. 5066	.5037	.5019	9
0 I 2	.5410 .5403 .5396	. 5341 . 5334 . 5328	. 5274 . 5268 . 5261	.5212 .5206 .5200	.5155 .5150 .5144	.5106 .5101 .5097	. 5066 . 5063 . 5059	.5037 .5035 .5032	.5019 .5018	9
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	.5410 .5403 .5396 .5389	.5341 .5334 .5328	.5274 .5268 .5261 .5255	.5212 .5206 .5200 .5194	.5155 .5150 .5144 .5139	.5106 .5101 .5097 .5093	. 5066 . 5063 . 5059 . 5056	.5037 .5035 .5032 .5030	.5019 .5018 .5017	9 8 7
• O I 2	.5410 .5403 .5396	. 5341 . 5334 . 5328	. 5274 . 5268 . 5261	.5212 .5206 .5200	.5155 .5150 .5144	.5106 .5101 .5097	. 5066 . 5063 . 5059	.5037 .5035 .5032	.5019 .5018	9 8 7
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	.5410 .5403 .5396 .5389	.5341 .5334 .5328	.5274 .5268 .5261 .5255	.5212 .5206 .5200 .5194	.5155 .5150 .5144 .5139	.5106 .5101 .5097 .5093	. 5066 . 5063 . 5059 . 5056	.5037 .5035 .5032 .5030	.5019 .5018 .5017	9 8 7
° 0 1 2 3 4	.5410 .5403 .5396 .5389 .5382	.5341 .5334 .5328 .5321 .5314	.5274 .5268 .5261 .5255 .5249	.5212 .5206 .5200 .5194 .5188	.5155 .5150 .5144 .5139 .5134	.5106 .5101 .5097 .5093 .5089	. 5066 . 5063 . 5059 . 5056 . 5053	.5037 .5035 .5032 .5030 .5028	.5019 .5018 .5017 .5016	9 8 7 6
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	.5410 .5403 .5396 .5389 .5382	.5341 .5334 .5328 .5321 .5314	. 5274 . 5268 . 5261 . 5255 . 5249	.5212 .5206 .5200 .5194 .5188	.5155 .5150 .5144 .5139 .5134	.5106 .5101 .5097 .5093 .5089	. 5066 . 5063 . 5059 . 5056 . 5053	.5037 .5035 .5032 .5030 .5028	.5019 .5018 .5017 .5016 .5015	10 9 8 7 6
° 0 1 2 3 4 5 6	.5410 .5403 .5396 .5389 .5382 .5375	.5341 .5334 .5328 .5321 .5314 .5307 .5301	.5274 .5268 .5261 .5255 .5249 .5242 .5236	.5212 .5206 .5200 .5194 .5188 .5182 .5177	.5155 .5150 .5144 .5139 .5134 .5129	.5106 .5101 .5097 .5093 .5089 .5085 .5081	. 5066 . 5063 . 5059 . 5056 . 5053 . 5050	.5037 .5035 .5032 .5030 .5028	.5019 .5018 .5017 .5016 .5015	9 8 7 6
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	.5410 .5403 .5396 .5389 .5382 .5375 .5368 .5362	.5341 .5334 .5328 .5321 .5314 .5307 .5301 .5294	.5274 .5268 .5261 .5255 .5249 .5242 .5236 .5230	.5212 .5206 .5200 .5194 .5188 .5182 .5177 .5171	.5155 .5150 .5144 .5139 .5134 .5129 .5124 .5119	.5106 .5101 .5097 .5093 .5089 .5085 .5081 .5077	. 5066 . 5063 . 5059 . 5056 . 5053 . 5050 . 5047 . 5045	.5037 .5035 .5032 .5030 .5028 .5027 .5025 .5023	.5019 .5018 .5017 .5016 .5015 .5014 .5014	5 4 3 2
° 0 1 2 3 4 5 6 7	.5410 .5403 .5396 .5389 .5382 .5375 .5368	.5341 .5334 .5328 .5321 .5314 .5307 .5301	.5274 .5268 .5261 .5255 .5249 .5242 .5236	.5212 .5206 .5200 .5194 .5188 .5182 .5177	.5155 .5150 .5144 .5139 .5134 .5129 .5124	.5106 .5101 .5097 .5093 .5089 .5085 .5081	. 5066 . 5063 . 5059 . 5056 . 5053 . 5050 . 5047	.5037 .5035 .5032 .5030 .5028 .5027 .5025 .5023	.5019 .5018 .5017 .5016 .5015 .5014	0 10 9 8 7 6 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9	.5410 .5403 .5396 .5389 .5382 .5375 .5368 .5362 .5355	.5341 .5334 .5328 .5321 .5314 .5307 .5301 .5294 .5287	.5274 .5268 .5261 .5255 .5249 .5242 .5236 .5230 .5224	.5212 .5206 .5200 .5194 .5188 .5182 .5177 .5171 .5166	.5155 .5150 .5144 .5139 .5134 .5129 .5124 .5119 .5114	.5106 .5101 .5097 .5093 .5089 .5085 .5081 .5077 .5070	. 5066 . 5063 . 5059 . 5056 . 5053 . 5050 . 5047 . 5045 . 5012 . 5039	.5037 .5035 .5032 .5030 .5028 .5027 .5025 .5023 .5022 .5020	.5019 .5018 .5017 .5016 .5015 .5014 .5014 .5013	9 8 7 6 5 4 3 2

TABLE XXII.—For Hourly Motion of Axis of Shadow.

					x'3	= - o ^d	00100	cos g' -	+ od.000	o6 cos ([g+g']) — od.o	004 co	s (g — g	g').					
8	o°	10°	20°	30°	40°	50°	60°	70°	8o°	90°	100°	110°	120°	130°	140°	150°	160°	170°	180°	
g' o°	_ 8	- 8	_ 8	- 8	_ 8	– 9	- 9	 	-10		 10	-11	-11	· —11		-12	-12	-12	-12	360°
10°	_ 8	– 8	- 8 - 8	- 9	— g	- 10	-10	— y	-11	-11		-12	-12	-11	-11	-12	-12 -12	-12	-12 -12	350°
20°	- 7	- 8	- 9	' — 9 :	-10	-11	-11	-12	-12	-13	-13	-13	-13		-13	-13	-12	-12	-11,	340°
30°	- 7	8	- 9	-10	-11	-11	-12	-13	-13	-13	—14	-14	-14	-:14	-13	-13	-12	-11	-10	330°
40°	- 6	- 7	_ 8	- 9	-11	-12	-12	-13	-14	-14	— 14	-14	-14	-14	-13	-12	-11	10	- 9 l	320°
50°	– 5	- 6	- 8	- 9	-10	-11	-12	-13	-14		-11	-14	-14	-13	-12	-11	-10	- 9	- 8	310°
60°	- 4	– 5	- 7	- 8	-10	-11	-12	-13	-13	-14	-14	-14	-13	-12	-11	-10	- 9	-7	- 6	300°
70° 80°	- 3 - 1	- 4 - 3	- 6 - 5	- 7 - 6	- 9 - 8	-10	-10	—12 —11	—13 —11	-13 -11	—13 —11	-13	-12 -10	-11	8	— 9 — 7	- 7 - 5	- 6 - 4	- 4 - 2	290° 280°
90°	- 1	- 3 - 2	- 5 - 3	- 5	— o	- 9 - 8	– 9		-10	-10	-10	- 11 - 9	- io	- 9 - 8	- 6	- 5	- 5 - 3	- 4 - 2	0	270°
100°	+ 1	0	_ 3 _ 2	- 3	- 5	- 6	– 7	.9 8	- 8	– 8	_ 8	- 7	. — 7	– 6	- 4	- 3	_ I	0	+ 2	260°
110°	3	+ 1	0	_ 2	- 3	- 4	– 5	– 6	_ 6	- 6	- 6	- 5	- 4	– 3	- 2	_ I	+ 1	+ 3	4	250°
120°	4	3	+ 1	o	- 1	- 2	- 3	– 3	- 4	- 4	– 3	– 3	– 2	- 1	0	+ 1	3	5	6	240°
130°	5	4	3	+ 1 :	+ 1	o	- I	— τ	– 1	– 1	– 1	0	0	+ 1	+ 2	4	5	6	8	23 0°
140°	6	5	4	3 :	2	+ 2	+ 1	+ 1	+ 1	+ 1	+ 2	+ 2	+ 3	4	. 5	6	7	3	9	220°
150°	. 7	6	5	5	4	4	3	3	4	4	4	5	5	6	7	8	9	10	10	210°
160°	7	7 8	6	6	6	6	5	6	6	6 8	6 8	7	8	. 8	9	9	10	11	11	200°
170° 180°	8	8	! 7 . 8	8	7 8	7	7	8	8	10	10	9	9 11	10	10	11	I I I 2	12	12	180°
190°	8	8	8	9!	9	9 10	9 10	11	11	11	12	. 12	12	; 11 12	12	12	12	12	12	170°
200°	7	8	9	9	10	11	11	12	12	13	13	13	13	13	13	13	12	12	11	160°
210°	7	8	9	10	11	11	12	13	13	13	14	14		14	13	13	12	11	10	150°
220°	6	7	8	9	11	12	12	13	14	14	14	14	14	14	13	12	11	10	9.	140°
230°	5	6	8	9	10	11	12	13	14	14	14	14	14	13	12	11	10	9	8	130° ·
240°	. 4	5	7	8	10	11	12	13	13	13	1 14	14	13	12	11	10	9	7	6	120°
250°	3	4	6	7	9	10	11	12	13		13	13	12	11	10	9	7	6	4	110°
260°	+ 1	3	5	6	8	9	10	11	11	11	11	11	10	9	8	7	5	4	+ 2	100°
270° 280°	0 - 1	+ 2 0	3	5	6	8	9	9	8	10	! 10 8	9	9	' 8 6	6	5	3	+ 2	٥	90° 80°
290°	- 1 - 3	- I	+ 2	3 + 2	5	4	7 5	°	6	6	. 6	7 5	7	3	+ 2	3 + 1	- I	o - 3	- 2 - 4	70°
300°	_ 3 _ 4	- 3	- 1	0	.3 + 1	+ 2	3	3	4	. 4	. 3	+ 3	+ 2	+ 1	0	– 2	- 1 - 3	- 5	- 4 - 6	60°
310°	- 5	- 4	- 3	- 2	I	0	+ 1	+ 1	+ 1	+ 1	: + I		0	– 1	_ 2	- 4	1	- 6	- 8	50°
320°	- 6	- 5	- +	- 3	_ 2	- 2	- r	— т	- I	_ r	- 2	- 3	– 3	- 4	- 5	- 6	- 7	- 8	- 9	40°
330°		- 6	– 5	– 5	- 4	- 4	- 3	- 3	- 3	- 4	- 4	– 5	– 5	- 6	- 7	- 8	- 9	-10	-10	30°
340°	. – 7	- 7	- 6	- 6	- 6	- 6	- 5	- 6	- 6	- 6	- 6	- 7	- 8	- 8	- 9	- 9	-10	-11	-11	20°
350°	- 8	- 8	_i - 7	- 7	- 7	- 7	- 7	- 8	- 8	- 8	- 8	- 9	- 9	–10	-10	-11	-11	-12	-12	10°
360°	- 8	- 8	— 8 	- 8	- 8	- 9	- 9	- 9	-10	—10	_10	-11	-11	-11	-11	-12	-12	-12	-12	o° g'
	360°	350°	340°	330°	320°	310°	300°	290'	280°	270°	260°	250°	240°	230°	220°	210°	200°	190°	180°	В

When the argument g is at the bottom of the page, or is negative, g' is to be sought for at the right.

The algebraic sum of the numbers from Tables XXI and XXII is the hourly variation of the co-ordinate x_2 of the point in which the axis of the shadow intersects the fundamental plane.

TABLE XXIII.—For Radius of Shadow on Fundamental Plane.

				/= .0059 -	.0182 cos g +	.0004 cos 2 g.				
g	o°	10°	2 0°	. 30°	40°	50°	60°	 70°	8o°	
•								! !		.
0	0119	0117	0109	0097	0080	0059	0034	0006	.0024	10
I	119	116	108	. 95	78	56	31	– 03	27	9
2	110	3	107	94	76	54	29	00	30	! 8
3	119	115	106	92	74	52	26	+ 03	33	7
4	119	114	105	90	72	49	23	05	36	; 6
5	0118	0113	0103	0089	0070	0047	0020	→ .0008	.0039	. 5
6	118	112	102	87	67	44	18	11	42	4
7	118	112	101	. 85	65	42	15	I	46	3
8	117	111	100	83	63	39	12	17	49	. •2
9	117	110	098	82	61	37	09	20	52	į t
0	117	109	097	80	59	34	o6 	51	55	0
	1	ı			310°	300°	. 290°	280°	270°	, , ,
-	350°	340°	330°	, 320°	3.0			'		
8	350°	340°	110°	120	130^	. 140°	150°	160°	170°	
<i>8</i>						, <u> </u>		160°		
	. 90° +.0055			120	130° 	, <u> </u>		160° 		
•	+.0055 58	100° +.0087 90	+.0118	120	+.0175 178	140°	150°	+.0233	170° +.0242 243	·
•	- 90° - + .0055 - 58 - 61	100° +.0087 90 93	+.0118 121 124	120° 	130^ +.0175 178 180	+.0199 201 203	150° + .0219 220 222	+.0233	+.0242 243	. 10
。 o	+.0055 58 61 64	100° +.0087 90 93 96	+.0118 121 124 129	120° 	130° +.0175 178 180 183	+.0199 201 203 205	150° +.0219 220 222 224	+.0233 23 235 236	170° +.0242 243 243	. 10 9 8 7
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	- 90° - + .0055 - 58 - 61	100° +.0087 90 93	+.0118 121 124	120° 	130^ +.0175 178 180	+.0199 201 203	150° + .0219 220 222	+.0233	+.0242 243	. 10 9 8 7
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	+.0055 58 61 64	100° +.0087 90 93 96	+.0118 121 124 129	120° 	130° +.0175 178 180 183	+.0199 201 203 205	150° +.0219 220 222 224	+.0233 23 235 236	170° +.0242 243 243	. Io 9 8 7 6
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	+.0055 58 61 64 68	100° +.0087 90 93 96 99	+.0118 121 124 129	120° +.0148 151 154 157 159 +.0162 165	130° +.0175 178 180 183 185	+.0199 201 203 205 207	150° +.0219 220 222 224 225	+.0233 23 235 236 237	+.0242 +.0242 243 243 243 244	. IO 9 8 7
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	+.0055 58 61 64 68 +.0071 76	100° +.0087 90 93 96 99 +.0103	+.0118 121 124 129 131 +.0135	120° +.0148 151 154 157 159 +.0162 165 167	130° +.0175 178 180 183 185 +.0188 190 192	140° +.0199 201 203 205 207 +.0209	150° +.0219 220 222 221 225 +.0226	+.0233 23 235 236 237 +.0238	+.0242 243 243 243 244 +.0244	° 10 9 8 7 6
o 1 2 3 4 5 6	+.0055 58 61 64 68 +.0071 76 79	100° +.0087 90 93 96 99 +.0103 106	+.0118 121 124 129 131 +.0135 136 139	120° +.0148 151 154 157 159 +.0162 165 167	130° +.0175 178 180 183 185 +.0188 190	+.0199 201 203 205 207 +.0209	150° +.0219 220 222 224 225 +.0226 228	+.0233 23 235 236 237 +.0238	+.0242 243 243 243 244 +.0244	0 10 9 8 7 6 5 4
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	+.0055 58 61 64 68 +.0071 76 79 81	100° +.0087 90 93 96 99 +.0103 106 109 142 115	+.0118 121 124 129 131 +.0135 136 139 142	120° +.0148 151 154 157 159 +.0162 165 167	130° +.0175 178 180 183 185 +.0188 190 192	+.0199 201 203 205 207 +.0209 211 213	150° +.0219 220 222 224 225 +.0226 228 229	+.0233 23 235 236 237 +.0238 239	+.0242 243 243 244 +.0244 244 245	0 10 9 8 7 6 5 4 4 3
. O I 2 3 3 4 5 5 6 7 8	+.0055 58 61 64 68 +.0071 76 79	100° +.0087 90 93 96 99 +.0103 106 109	+.0118 121 124 129 131 +.0135 136 139	120° +.0148 151 154 157 159 +.0162 165 167	130° +.0175 178 180 183 185 +.0188 190 192 195	+.0199 201 203 205 207 +.0209 211 213 215	150° +.0219 220 222 224 225 +.0226 228 229 231	+.0233 23 235 236 237 +.0238 239 240 241	+.0242 243 243 244 +.0244 241 245	0 10 9 8 7 6 4 4 3 2

TABLE XXIV.—For Radius of Shadow on Fundamental Plane.

							1=	+ od.oc	046 cos	g' - o	d.0005 (cos (g -	+ g').							
g	o°	10°	20°	30°	40°	50°	60°	70°	8o°	90°	100°	110°	120°	130°	140°	150°	160°	170°	180°	
g'_				1.40	40								0							-4-9
o°	+4I 40	+4I 4I	+41	+42 42	+42 42	+43 43	+43 44	+44	+45	+46 46	+47	+48 48	+48	+49	+50	+50 50	+51 50	+51	+ 51 50	360° 350°
20°	39	39	41 39	40	41	43	42	43	45 44	45	47 46	46	49	49 48	49 48	48	48	50 48	48	340°
30°	36	36	37	37	38	39	40	41	41	42	43	44	44	45	45	45	45	45	44	330°
40°	31	32	33	34	35	35	36	37	38	38	39	40	40	40	40	10	, 40	40	39	320°
50°	26	27	28	29	30	30	31	32	33	33	34	35	34	35	35	34	34	33	33	310°
60°	21	21	22	23	24	25	25	26	27	27	28	28	28	28	28	27	27	26	25	300°
70°	14	15	16	17	17	18	19	20	20	20	21	21	21	20	20	19	19	18	17	2 90°
8o°	+ 7	8	9	10	10	11	12	12	13	13	13	13	13	12	12	11	11	10	+ 9	280°
90°	٥	+ 1	+ 2	+ 3	+ 3	+ 4	+ 4	+ 5	+ 5	+ 5	+ 5	+ 5	+ 4	+ 4	+ 3	+ 2	+ 2		0	270°
100°	- 7	- 6	– 5	— 5	- 4 -11	- 4	- 3	– 3	- 3	— 3	– 3	- 4	- 4	– 5	– 5	- 6	- 7	_ 8 ·	-9	260° 250°
110° 120°	-14 -21	-13 -20	-12 -19	-12 -19	-18	-11 -18	—18	-18	—11 —18	-11	-11	-12 -20	-13 -21	-13 -21	-14 -22	-15 -23	-16 -24	-17 -25	-17 -25	250°
130°	-21	-26	-19 -25	-25	-25	-16 -25	-24	-25	-25	-19	-19	-20 -27	-21	-21 -20	-30	-30	-24 -31	-32	-33	230°
140°	-31	-31	30	-30	-30	-30	-31	-31	-31	-32	-33	-34	-34	-35	-36	-37	-38		-39	220°
150°	-36	-35	-35	-35	-35	-35	-36	-36	-37	-37	-38	-39	-40	-41	-42	-42	-43	-44	-44	210°
160°	-38	-38	-38	-38	—38	-39	-39	-40	-41	-41	-42	-43	-44	-45	-46	-46	-47	-48	-48	200°
170°	-40	-41	-40	-41	-41	-41	-42	-43	-43	-44	-45	-46	-47	-48	-49	-49	-50	-50	-50	190°
180°	-41	-41	-41	-42	-42	-43	-43	-44	-45	-46	-47	-48	-49	-49	-50	-50	-51	-51	-51	180°
190°	-40	-41	-41	-42	-42	-43	-44	-44	-45	-46	-47	-48	-49	-49	-50	-50	-50	-50	-50	170°
200°	-38	-39	-39	-40	-41	-42	-42	-43	-44	-45	-46	-46	—47	-47	-48	-48	-48	-48	-48	160°
210°	-36	-36	-37	-37	-38	-39	-40	-41	-41	-42	-43	-44	-44	-45	-45	-45	-45	-45	-44	150°
220°	-31	-32	-33	-34	-34	-35	-36	-37	-38	-38	-39	-39	-40	-to	-40	-10	-40	-40	-39	140°
230°	-26	-27	-28	-29	-30	—30	-31	-32	-33	-33	-34	-34	-35	-35	-35	-34	-34	-33	-33	130°
240° 250°	-2I	-21	-22	-23	-24	—25 —18	-25 -19	-26	-27	-27 -20	-28	-28	-28	-28	-28 -20	-27	-27	-18 -18	-25	110°
250°	—I4 — 7	—15 — 8	-16 - 9	-17 -10	-17 -10	-11	-19	-20 -12	-20 -13	-13	-2I -13	-21 -13	-21 -13	-20 -12	-12	-11	-19	-10	-17 - 9	100°
200°	0	– 1	_ 9 _ 2	- 3	- 4	- 4	- 4	- 5	5	- 5	– 5	- 13 - 5	- 1	- 4	- 3	- 11 - 2	- · ·	- 10 - 1	- 9	90°
280°	+ 7	+ 6	+ 5	+ 5	+ 4	+ 4	+ 3	+ 3	+ 3	+ 3	+ 3	+ 4	+ 4	+ 5	+ 5	+ 6	+ 7	+ 8	+ 9	80°
290°	14	13	12	12	11	11	11	11	11	11	11	12	13	13	14	15	16	17	17	70°
300°	21	20	19	19	18	18	18	18	18	19	19	20	21	21	22	23	24	25	25	60°
310°	26	26	25	25	25	25	25	25	25	26	26	27	28	29	30	30	31	32	33	50°
320°	31	31	30	30	30	30	31	31	31	32	33	33	34	35	36	37	38	38	39	40°
330°	36	35	35	35	35	35	36	36	36	37	38	39	40	41	42	42	43	44	44	30°
340°	39	38	38	38	38	39	39	40	41	41	42	43	44	45	46	46	47	48	48	20°
350°	40	40	40	41	41	41	42	43	43	44	45	46	47	48	48	49	50	50	50	10°
360°	+41	+41	+41	+42	+42	+43	+43	+44	+45	+46	+47	+48	+48	+49	+50	+50	+51	+51	+51	g'
	360°	350°	340°	330°	320°	310°	300°	290°	280°	270°	260°	250°	240°	230°	220°	210°	200°	190°	180°	g

The algebraic sum of the numbers from Tables XXIII and XXIV is the radius of the shadow-cone on the fundamental plane. If this radius is negative, it indicates a total eclipse; if positive, an annular one.

To find the radius of the penumbra, the sum of the numbers is to be increased by 0.5460.

TABLE XXV.—Angle of Shadow Cone.

sin f	=	0.0046	53	+	0.000078	cos	8	٠.

	g'		sin f	log sin f	g'		sin f	log sin f
		•			0	•		!
İ	О ,	360	0.004731	7.6750	90	270	0.004653	7.6677
-	10	350	.004730	7.6749	100	2 60	.004640	7.6665
	20	340	.004726	7.6745	110	250	.004626	7.6652
	3 0	330	.004720	7.6739	120	240	.004614	7.6641
:	40	320	.004713	7.6733	130	230	.004603	7.6630
ļ	50	310	.004703	7.6724	140	220	.004593	7.6621
i	60	300	.004692	7.6714	150	210	.004586	7.6614
i	70	290	.004680	7.6702	160	200	.004580	7.6609
!	8 o	280	.004666	7.6689	170	190	.004576	7.6605
	90	270	.004653	7.6677	180	180	0.004575	7.6604

Table XXVI, Arg. g'.—Sun's Equation of the Centre, or Reduction from Mean to True Longitude.

g'		Year o.	2000.		g'	Year o.	2000.	
-·		•	0	•	•		•	0
ď	•	+ 0.00 -	+ 0.00 -	360	90	+ 2.01 -	+ 1.91 -	270
5	5	81.0	0.17	355	95	1.99	1.89	265
10)	0.36	0.34	350	100	1.97	1.88	260
15	5	0.53	0.50	345	105	1.93	1.84	255
20	•	0.70	0.67	340	110	1.87	1.79	250
25	5	0.86	0.82	335	115	1.80	I.72	245
30)	+ 1.02 -	+ 0.97 -	330	120	+ 1.72 -	+ 1.64 -	240
35	5	1.17	I.12	325	125	1.62	1.55	235
40)	1.31	1.25	320	130	1.52	1.45	230
45	5	1.44	1.37	315	135	1.40	1.33	225
50)	1.56	1.49	310	140	1.27	1.21	220
55	5	1.66	1.59	305	145	1.13	1.08	215
60)	+ 1.76 -	+ 1.68 -	300	150	+ 0.98 -	+ 0.94 -	210
6	5	1.84	1.75	2 95	155	0.83	0.80	205
79	o	1.90	1.81	290	160	0.67	0.64	200
7	5	1.95	1.86	285	165	0.51	0.49	195
80	0	1.98	1.89	280	170	0.34	0.33	190
8	5	2.00	1.90	275	175	0.17	0.16	185
9	0	+ 2.01 -	+ 1.91 -	270	180	+ 0.00 -	+ 0.00 -	180
		Year o.	2000.	g'		Year o.	2000.	g'

Table XXV gives the angle of the shadow cone and its logarithm.

Table XXVI gives the sun's equation of the centre. By applying this quantity to L, the sun's mean longitude, we obtain O, its true longitude.

TABLE XXVII.—Reduction from O's Longitude to O's Right Ascension.

0		Year o.	2000.			 		Year o.	2000.		
•		•		•		۰	. ,	0		•	<u> </u>
0	180	- 0.00	- 0.00	180	360	45	225	-2.52 +	- 2.46 +	135	31
1	181	0.08	o.o8 ;	179	359	46	226	2.52	2.47	134	31
2	182	0.17	0.17	178	358	47	227	2.52	2.47	133	31
3 '	183	0.25	0.25	177	357	48	228	2.52	2.46	132	31
4	184	0.34	0.33	176	356	49	229	2.51	2.46	131	31
5	185	- 0.42 +	- 0.41 +	175	355	50	230	- 2.50 +	- 2.45 +	130	3
6 .	186	0.50	0.49	174	354	51	231	2.49	2.43	129	30
7	187	0.58	0.57	173	353	52	232	2.47	2.42	128	30
8 ;	188	0.66	0.65	172	352	53	233	2.45	2.40	127	30
9 '	189	0.75	0.73	171	351	54	234	2.43	2.38	126	30
0	190	- o.83 +	- o.81 +	170	350	55	235	- 2.40 +	- 2.35 +	125	30
ı t	191	0.91	0.89	169	349	56	236	2.37	2.32	124	30
2	192	0.99	0.96	168	348	57	237	2.34	2.29	123	30
13	193	1.06	1.01	167	347	58	238	2.31	2.26	122	, 30
14 :	194	1.14	1.12	166	346	59	239	2.27	2.22	121	30
5 :	195	- 1.21 +	- 1.19 +	165	345	6o	210	- 2.23 +	- 2.18 +	120	30
6	196	1.29	1.26	164	344	61	241	2.19	2.14	119	29
7 :	197	1.36	1.33	163	343	62	212	2.14	2.09	118	29
8	198	1.43	1.40	162	342	63	243	2.09	2.05	117	29
9	199	1.50	1.47	161	341	64	211	2.04	2.00	116	29
o :	200	- 1.57 +	- t.53 +	160	340	65 j	245	- 1.99 +	- 1.94 +	115	29
1	201	1.63	r.60	159	339	66	246	1.93	1.89	114	29
2	202	1.70	1.66	158	338	67	247	1.87	1.83	113	29
3	203	1.76	1.72	157	337	68	2 8	1.81	1.77 i	112	29
4	204	1.82	1.78	156	336	69	249	1.74	1.70	111	29
5	205	- t.88 +	- 1.84 +	155	335	70	250	- r.68 +	- r.64 +	110	29
6	206	1.93	1.89	154	334	71	251	1.61	1.57	100	28
7	207	1.99	1.94	153	333	72	252	1.54	1.50	108	28
8	208	2.04	1.99	152	332	73	253	1.46	1.43	107	28
9 '	209	2.09	2.04	151	331	74	254	1.39	1.35	106	28
ю ,	210 .	- 2.14 +	-2.09 +	150	330	75	255	- 1.31 +	- 1.28 +	105	28
. I	211	2.18	2.13	149	329	76	256	1.23	1.20	104	28
2	212	2.22	2.17	148	328	77	257	1.15	1.12	103	28
3	213	2.26	2.21	147	327	7 8	258	1.07	1.04	102	28
4	214	2.30	2.25	146	326	79	259	0.99	o. 96	101	28
5	215	- 2.33 +	- 2.28 +	145	325	8o	260	- o.go +	- o.88 +	100	28
6	216	2.37	2.31	144	324	81	261	0.81	0.79	99	27
7	217	2.40	2.34	143	323	82	262	0.72	0.71	98	27
8	218	2.42	2.36	142	322	83	263	0.64	0.62	97	27
9	219	2.44	2.39	141	321	48	264	0.55	0.53	96	27
o	220	- 2.46 +	- 2.41 + ,	140	320	85	265	- 0.46 +	- 0.45 +	95	27
ı	221	2.48	2.43	139	319	86	266	0.37	0.36	94	27
2	222	2.50	2.44	138	318	87	267	0.28	0.27	93	27
13	223	251	2.45	137	317	88	268	6.18	0.18	92	27
14	224	2.51	2.46	136	316	89	269	- 0.09	- 0.09	91	27
15	225	- 2.52 +	- 2.46 +	135	315	90	270	0.00	0.00	yo	27
		Year o.	2000.	•				Year o.			

Table XXVII gives, with argument ⊙, a quantity which, when added to the equation of the centre (Table XXVI), will be the equation of time, E, expressed in degrees and hundredths.

Table XXVIII — Coefficients for Besselian Co-ordinates of Shadow Axis.

		ode.	escending N	At Γ		ode.	Ascending No	At				_ 	_ (
	<i>b</i> '		log b'	log b	ь.	_	log <i>b</i> '	log b	log a'	log a	a	True itude.	
.												•	
3o	. 3097 —	+ .:	+9.4909-	9.9803	.4865-	+	+9.6871-	9.9440	9.9625	-9 6000+	3981+	360	0
31	.3096		9.4908	03	.4865		9.6871	40	25	9.5999	.3980	359	1
32	.3095		9.4906	04	.4863		9.6869	40	26	9.5998	.3979	358	2
33	. 3092		9.4902	. 04	. 4861		9.6867	41	26	9.5995	.3976	357	3
34	.3088		9.4897	04	.4858		9.6864	42	27	9.5991	.3973	356	4
35	.3083-	+ .	+9.4891-	9.9805	.4853-	+	+9.6860-	9.9443	9.9628	-9.5386+	3968+	355	5
36	. 3078		9.4882	06	.4848		9.6855	44	29	9.5980	. 3963	354	6
37	.3071		9.4872	07	.4841		9.6850	46	30	9.5973	.3956	353	7
38	.3063	• ;	9.4861	о8	.4834		9.6843	48	32	9.5964	.3948	352	8
39	.3054		9.4848	09	.4826		9.6836	50	34	9.5955	.3940	351	9
90	.3044-	+ .	+9.4834-	9.9811	.4816-	+	+9.6827-	9 9453	9.9636	-9.5944+	3930+	350	ιο l
1(. 3032	•	9.4818	13	, 4806		9.6818	56	38	9.5932	.3919	349	I
)2	3020		9.4800	14	.4795		9.6808	59	40	9.5919	.3907	348	2
3	.3007	•	9.4781	16	.4783		9.6797	62	43	9.5905	. 3895	347	3
)4	.2992		9.4760	18	.4769		9.6785	65	46	9.5889	. 388 ι	346	4
95	.2977-	+ .	+9.4738-	9.9820	4755 —	+	+9.6772-	9.9469	9.9649	-9.5873+	3866+	345	5
)6	.2960	•	9.4713	23	.4740		9.6758	73	52	9.5855	.3850	344	6
7	.2943		9.4688	25	.4724		9.6743	77	55	9.5836	.3833	343	7
98	. 2924		9.4660	28	.4706		9.6727	82	58	9.5815	.3815	342	8
99	.2904		9.4631	31	.4688		9.6710	87	. 62	9 5795	. 3796	341	9
ю	.2884-	+ .	+9.4599-	9.9833	.4669-	+	+9.6692-	9.9492	9.9666	-9.5771+	— . 3776+.	340	0
10	. 2862		9.4566	36	.4648		9.6673	97	70	9.5746	•3755	339	1
2	.2839		9.4531	39	. 4627		9.6653	9.9502	74	9.5720	-3733	338	2
)3	.2815		9 . 4494	43	. 4605		9.6632	о8	78	9.5693	.3710	337	23
74	.2790		9.4455	46	.4582		9.6610	14	83	9.5665	. 3685	336	24
P 5	.2763-	+ .	+9.4414-	9.9849	.4557-	+	+9.6587-	9.9520	9.9688	-9.5635+	3660+	335	5
6	. 2736		9.4371	53	.4532		9.6563	26	92	9.5604	.3634	334	6
7	. 2707	•	9.4326	56	.4506		9.6538	32	97	9.5571	. 3606	333	7
8	.2678		9.4278	60	.4478		9.6511	39	9.9702	9.5537	.3578	332	8
9	.2647	•	9.4228	64	.4450		9.6483	46	ი8	9.5501	-3549	331	9
O	.2616-	+ .	+9.4176-	9.9868	.4120-	+	+9.6455-	9.9553	9.9713	-9.5463+	3518+	330	0
II	.2583		9.4121	72	. 4390		9.6425	60	19	9.5124	.3486	329	I
2	.2549		9.4064	76	.4358	•	9.6393	67	2.1	9.5383	• 3454	328	2
13	.2514		9.4004	8o	.4326		9.6361	75	30	9.5341	.3420	327	3
4	.2478		9.3941	84	. 4292		9.6327	82	36	9.5296	.3385	326	4
15	. 2441 —	+ .	+9.3876-	9.9888	.4258-	+	+9.6292-	9.9590	9.9742	-9.5250+	3349+	325	5
6	. 2403		9.3808	92	.4222		9.6258	98	48	9.5202	.3313	324	6
7	.2364		9.3736	96	.4186		9.6218	9.9606	54	9.5153	.3275	323	7
8	. 2324		9.3662	9.9901	.4148		9.6178	14	60	9.5100	. 3236	322	8
19	. 2282		9.3584	05	.4109		9.6138	22	66	9.5046	.3196	321	9
80	.2240-	+ .	+9.3502-	9.9909	.4070-	+	+9.6095	9.9631	9.9772	-9.4990+	3155+	320	0
11	.2196		9.3417	14	.4029		9.6052	39	79	9.4931	.3113	319	I
22	.2152		9.3328	18	. 3987		9.6006	48	85	9.4871	. 3069	318	2
23	.2106	•	9.3232	23	. 3944		9.5960	57	92	9.4808	. 3025	317	3
24	.2060	,	9.3138	27	. 3900		9.5911	65	ç8	9.4742	. 2980	316	4
25	.2012—	+ .	+9.3037-	9.9931	.3855—	+	+9.5861-	9.9674	9.9805	-9.4674+ 	2931+	315	5
n's T	6'		log δ'	log b	<i>b</i> '		log b'	log b					
ngitu		ode.	Ascending N	At		ode	Descending N	At I	log a'	log a	а	i	

Table XXVIII gives the coefficients by which to express the co-ordinates, x_1 and y_1 , of the shadow axis on the fundamental plane. These correspond to the co-ordinates x and y of the Besselian theory of eclipses and of the American Ephemeris. The expressions are:—

$$x_1 = a y_2^{\circ} + b x_2^{\prime} t,$$

 $y_1 = a' y_2^{\circ} + b' x_3^{\prime} t,$

 y°_{3} having been obtained from Tables XVIII to XX, and x'_{3} from Tables XXI and XXII.

TABLE XXVIII.—Coefficients for Besselian Co-ordinates of Shadow Axis—Continued

		ode.	Descending N	At 1	e	lod	Ascending N	At	10-1	1		O	
	İ	<i>b</i> '	log <i>b</i> ′	log b	δ'		log b'	log b	log a'	log a	а	True gitude.	
T			'! !			-						•	
; ' ;	22	+ .2012-	+9.3037-	9.9931	 3855—	1	+9.5861-	9.9674	9.9805	-9.4674+	2934+	315	45
	22	. 1963	9.2930	36	.3809		9.5809	83	11	9.4604	.2886	314	46
	22	. 1914	9.2819	40	. 3762		9.5755	92	18	9.4530	.2838	313	47
	22	.1869	9.2702	44	.3714	1	9.5699	9.9701	24	9.4454	.2789	312	48
	22	. 1811	9.2580	48	. 3665		9.5641	10	31	9-4375	.2738	311	49
	23	+ .1759-	+9.2452-	9.9952	3615-	14	+9.5581-	9.9719	9.9837	-9.4292+	2687+	310	50
	23	. 1705	9.2317	56	:3564		9.5520	28	44	9.4207	.2634	309	51
	23	.1650	9.2175	61	.3512	1	9.5456	37	50	9.4118	.2581	308	52
	23	.1594	9.2026	65	.3459		9.5390	46	57	9.4026	.2527	307	53
	23	.1538	g.186g	68	.3439		9.5322	55	63	9.3930	.2472	306	54
	23	+ .1480-	+9.1703-	9.9972	3351-	1	+9.5252-	9.9764	9.9869	-9.3830+	2415+	305	
	23	.1422	9.1703	9.9972 76	.3295	"			76	9.3726	.2358	• •	55 56
1	_			80	.3238		9.5179	73 82	82	9.3720	.2300	304	٦
	23	.1362	9.1342 9.1145	83	.3230	1	9.5103 9.5025		88	9.3505	.2241	303	57 58
	1	.1302	9.1145	8 ₇		1		91			.2181	302	1
	23	.1241		•	.3122	١.	9-4944	99	.9894	9.3387	2120+	301	59
	24	+ .1178-	+9.0713-	9.9990	3063	7	+9.4861-	9.9808	9.9900	-9.3264+		300	ου -
•	24	.1115	9.0475	93	. 3002		9 • 4774	17	o 6	9.3136	.2059	299	ī
- 1	24	. 1052	9.0219	96	.2911		9.4685	26	12	9.3002	.1996	298	52
i	24	.0987	8.9944	99	.2879	ľ	9.4591	34	17	9.2862	.1933	297	3
	21	.0922	8.9647	0.0002	.2816	l	9.4496	43	23	9.2716	. 1869	2 96	4
1	21	+ .0856-	+8.9324-	0.0004	.2752	+	+9.4397-	9.9851	9.9928	-9.2562+	+ + 1081.	295	5
)	24	.0789	8.8970	07	.2638	ì	9.4293	59	33	9.2401	.1738	294	6
	24	.0721	8.8581	09	.2622	İ	9.4187	67	38	9.2232	. 1672	293	7
1 1	21	.0653	8.8150	11	.2556		9.4076	75	43	9.2054	. 1605	292	58
) : :	24	.0584	8.7666	13	.2489	1	9.3961	82	48	9.1866	.1537	291	59
) :	25	+ .0515-	+8.7115-	0.0014	2422	1	+9.3840-	ე. 989ი	9.9953	-9.1668+	1468+	290	70
: :	25	.0444	8.6478	16	.2353	1	9.3717	98	57	9.1458	.1399	289	11
: :	25	.0374	8.5724	17	.2285	l	9.3588	9.9905	61	9.1236	.1329	288	72
, ! :	25	.0302	8.4804	18	.2215	1	9.3454	12	65	9.0999	.1259	287	73
1	25	.0230	8.3627	19	.2145		9.3314	19	69	9.0747	.1188	286	4
	25	+ .0158-	+8.1992-	0.0019	2071	+	+9.3168-	9.9925	9.9973	-9.0477+	1116+	285	5
	. 25	.0085	7.9313	20	2003	'	9.3016	32	76	9.0187	.1044	284	6
	25	+ .0012-	+7.0828-	20	.1931	1	9.2858	38	8o	8.9874	.0971	283	7
	25	0062+	-7.7889+	20	. 1859		9.2692	45	83	8.9535	.0898	282	8
- 1	25	0135	-8.1316	20	.1786	1	9.2519	50	85	8.9165	.0825	281	9
	26	0210+	8.3220	0.0019	1713—	L	+9.2337-	9.9956	9.9988	-8.8759+	:	280	6
- 1	, 26	0210+ 0285	-8.4542+	18		7	1				0751+		- 1
	26	•	-8.5557		. 1639		9.2146	62 6=	90	8.8307	.0677	279	I
	1	0360		17	.1565	1	9.1946	67	92	8.7802	.0603	278	2
	26	0435	-8.6381	16	.1491		9.1735	72	94	8.7228	.0528	277	3
	26.	0510	-8.7075	14	.1416		9.1512	77	96	8.6563	.0453	276	4
- 1	26	0585+	-8.7674+	0.0013	1341-	+	+9.1276-	9.9981	9.9997	-8.5775+	— .o ₃₇₈ +	275	5
	26	0661	-8.8202	11	. 1266	1	9.1025	85	98	8.4809	.0303	274	6
	26	0737	-8.8673	08	.1191		9.0758	89	99	8.3562	.0227	273	7
	26	0812	-8,9098	96	.1115	1	9.0474	93	99	8.1804	.0151	272	8
)	26	0888	-8.9485	03	. 1040		9.0169	97	0.0000	7.8797	.0076	271	9
<u> </u>	27	0964+	-8.9841+	0.0000	0964	+	+8.9841-	0.0000	0.0000	- ∞ +	+0000+	270	o
's T	1	ь'	log b'	log b	ь'		log <i>b</i> '	log b					
gitu ⊙	Loi	ode.	Ascending No	At	ie.	Nod	Descending N	At	log a'	log a	a ·		

When the argument ③ is found on the right, the headings of the columns are to be sought at the bottom of the page.

TABLE XXIX.—Sun's Declination, etc.

	0	ď	d 1	$ ho_1$: !			0	ď	d_1	$\frac{1}{ ho_1}$! !	1
		: •	•		•	0			•	•		•	!
o ¦	180	+ 0.00-	+ 0.00-	1.6033	180	360	45	135	+16.35-	+16.40-	1.0031	225	31
1	179	U.40	0.40	.0033	181	359	46	134	16.64	16.69	.0031	226	31
2	178	0.80	0.80	.0033	182	358	47	133	16.93	16.98	.0031	227	1 3:
3	177	1.19	1.19	.0033	183	357	48	132	17.21	17.26	.0030	228	3
4	176	1.59	1.60	.0033	184	356	49	131	17.49	17.54	.0030	229	3
5	.175	+ 1.99-	+ 2.00-	1.0033	185	355	50	130	+17.76-	+17.81-	1.0030	230	3
6	174	2.38	2.39	.0033	186	354	51	129	18.02	18.08	.0030	231	3
7	173	2.78	2.79	.0033	187	353	52	128	18.28	18.34	.0030	232	30
8	172 .	3.17	3.18	.0033	188	352	53	127	18.54	18.60	.0030	233	30
i	171	3.57	3.58		189	351	54	126	18.79	18.85	.0030	234	30
9		+ 3.96-	+ 3.97-	.0033		350	55	125	+19.03-	+19.09-	1.0030	235	30
1	170 160	4.35	4.36	1.0033	190	-	56	-	• -		-		_
2	168	4 · 35	4.77	.0033	191	349 348	57	124 123	19.27	19.33 19.56	.0030	236 227	: 30 : 30
- 1	167		5.16	.0033	192		58	123	19.50		.0030	237 233	
3	•	5.14 5.52		.0033	193	347	- 1		19.73	19.79	.0030	, -	30
4	166	5.52	5.54	.0033	194	346	59 60	121	19.95	20.01	.0030	239	30
5	165	+ 5.91- 6.30	+ 5.93- 6.32	1.0033	195	345	61	120	+20.17-	+20.23-	1.0029	240	30
5	164	6.68		.0033	196	344		119	20.38	20.44	.0029	241	29
7	163		6.70	.0033	197	343	62	118	20.58	20.64	.0029	242	20
В	162	7.07	7.09	.0033	198	342	63	117	20.78	20.84	.0029	243	20
9 ;	161	7-45	7.48	.0033	199	341	64	116	20.97	21.03	.0029	244	20
1	160	+ 7.83-	+ 7.86-	1.0033	200	340	65	115	+21.15-	+21.21-	1.0029	245	20
t	159	8.20	8.23	.0033	201	339	66	114	21.33	21.40	.0029	246	29
2	158	8.58	16.8	.0033	202	338	67	113	21.50	21.57	.0029	247	20
3	157	8.95	8.98	.0033	203	337	68	112	21.66	21.73	.0029	248	29
•	156	9.32	9.35	.0033	201	336	69	111	21.82	21.89	.0029	249	29
5	155	+ 9.69-	+ 9.72-	1.0033	205	335	70	110	+21.97-	+22.04-	1.0028	250	29
5	154	10.05	10.08	.0033	206	334	71	109	22.11	22.18	.0028	251	28
7	153	10.41	10.44	.0032	207	333	72	108	22.25	22.32	.0028	252	28
3	152	10.77	10.80	.0032	208	332	73	107	22.38	22.45	.0028	253	28
) ;	151	11.13	11.17	.0032	209	331	74	106	22.50	22.57	.0028	254	28
•	150	+11.48-	+11.52-	1.0032	210	330	75	105	+22.61-	+22.68-	1.0028	255	28
1	149	11.83	11.87	.0032	211	329	76	104	22.72	22.79	.0028	256	28
2	148	12.18	12.22	.0032	212	328	77	103	22.82	22.89	.0028	257	28
3	147	12.52	12.56	.0032	213	327	78	102	22.92	22.99	.0028	258	28
\$ ¦	146	12.86	12.90	.0032	214	326	79	101	23.00	23.07	.0025	259	28
5	145	+13.20-	+13.24-	1.0032	215	325	8o	100	+23.08-	+23.15-	1.0028	260	28
5	144	13.53	13.57	.0032	216	324	81	99	23.15	23.22	.0028	261	27
7	143	13.86	13.90	.0032	217	323	82	98	23.22	23.29	.0028	262	27
3	142	14.19	14.23	.0032	218	322	83	97	23.27	23.34	. 0028	263	27
9	141	14.51	14.56	.0031	219	321	84	96	23.32	23.39	.0028	264	27
0	140	+11.83-	+14.88-	1.0031	220	320	85	95	+23.36-	+23.43-	1.0028	265	27
1	139	15.14	15.19	.0031	221	319	86	94	23.40	23.47	.0028	266	27
2	138	15.45	15.50	.0031	222	318	87	93	23.43	23.50	.0028	. 267	27
3	137	15.75	15.80	.0031	223	317	88	92	23.44	23.51	.0028	268	2
	136	16.05	16.10	.0031	224	316	89	91	23.45	23.52	.0028	269	2
5	135	+16.35-	+16.40-	1.0031	225	315	90	90	+23.46-	+23.53-	1.0028	270	2
		ď		$\frac{\mathbf{I}}{\rho_1}$.	·				ď	d ₁	$\frac{\mathbf{i}}{\rho_1}$		· · · ·

Table XXIX gives, with argument \odot , the value of the sun's declination, d, that of d_1 , the reduced declination, and that of $\frac{1}{\rho_1}$ for computing the central line on the earth's surface.

 x'_2 .5798 .0008

0.5806

As an example of the use of the Tables, we shall examine what eclipses of the sun were visible during the year B. C. 584. From Table I, we find the argument of Table II to be 79.772. From Table II, the times of conjunction of the mean sun with the node are found to be 144d.8 for ascending and 318d.1 for descending node. The values of D show that there were two central eclipses, of which the second was central only in the southern hemisphere. We therefore consider only the first one, which is the celebrated eclipse of Thales:

Table III, — 6	Asc.	Desc.
+ :	16, 1.5	29. I
t.	144.8	318.1
-	173.9	347.2
Multiple,	177.2	354.4
D,	- 3.3	- 7.2
Р,	7 ±	:
T,	+ 126 ±	18
Year of centi eclipse,	ral — 458 ±	18

T Table V, c. p. 4, $-440^{y} + 231^{d}$.62: Table VII, -512^{y} , -144^{y} -86^{d} .58:	$+23^{\circ}.29 - 83^{\circ}.99 - 86^{\circ}.42 + 3^{\circ}.673$ Tabl	y°_{3} x'_{3} e XVIII,004 Table XXI, .5798 e XIX, o Table XXII, + .0008 e XX, + 0.294
Arguments for date, - 584y + 148d.04:	- 11 .90 + 100 .53 + 59 .51 + 3 .3/9	
Table VIII, + d.078 Table IX, - d.000		
Table X, — d.oo.	0 = 59.49 Table XVI,020 Table	
Table XI, + d.oo.	1able XXVII, - 2.20 1able XVII,002 1able 1able XXVIII	e XXIV, - 4t sin f = .004575
Table XII, + d.oo	Fo Cont - F ' co co	l' =0156 log 7.6604
1484.120		
Red, for calendar, od.00	Track of Central E	Iclipse.
H ₀ , True conj., May 28, 2 ^h 52 ^m	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H ₁ Long. Lat. 65°.8 1°.6 E. + 41°.1
T ₁ in arc, 43°.:		66°.5 5°.3 41°.3
- E, +2°.:	1 ^h .45 .7423 .5450 76°.7	67°.3 9°.4 40°.8
H ₁ at conj., 45°.	1 ^h .50 .7701 .5540 82°.4	68°.0 14°.4 39°.1
13.00	1 ^h .55 .7978 .5631 89°.8	68°.8 21°.0 37°.2
By Table XXVIII :—	1 ^h .57 .8089 .5668 93°.5	69°.1 24°.4 36°.0
$x_1 =0624 + .5550 t$	1 ^h .59 .8200 .5704 100°.6	69°.4 30°.6 33°.6
$y_1 = + .2832 + .1796 t$	1h.5918 .8211 .5708 103°.6	69.°4 34°.2 32°.5

The last point of the shadow-path is between 4° and 6° south of the region within which the celebrated battle must have been fought, which was supposed to have been stopped by this eclipse. This large deviation is due to the corrections which have been applied to Hansen's mean longitude of the moon. If these corrections are well founded, the sun set upon the combatants about nine tenths eclipsed.

•			
			·
•	,	·	
	,		
•			
,		· •	

A TRANSFORMATION

OF

HANSEN'S LUNAR THEORY

COMPARED WITH THE

THEORY OF DELAUNAY.

BY

SIMON NEWCOMB, SUPERINTENDENT AMERICAN EPHEMERIS,

AIDED BY

JOHN MEIER,
ASSISTANT AMERICAN EPHEMERIS.

				•	
				• .	
		,			
	·				·
	. •				
			·		•
					•
		•			
				•	

TRANSFORMATION OF HANSEN'S LUNAR THEORY.

The numerical computation of the inequalities in the moon's motion executed by Hansen was probably the greatest step taken in recent times toward placing the theory of the lunar perturbations on an accurate numerical basis. It was the step which first rendered it certain that any discrepancy between the theoretical and observed values of the inequalities produced by the sun arose from some other cause than errors in theory. The theoretical values to which it led must be considered the most accurate which astronomy now possesses.

The only theory which can compete with Hansen's is that of Delaunay. Here the coefficients are developed in series converging so slowly that some of the results are still a little doubtful, notwithstanding the great extent to which the approximation was carried. It may be expected that the numerical theory on which Sir George Airy is now engaged will form yet another step in advance, in which nothing will be wanting for the purposes of accurate astronomy, so that three theories of the highest order of accuracy will ultimately be available for the construction of lunar tables. The work in question being still unfinished, the results of Hansen and Delaunay are the only ones now available.

Unfortunately, the theory of Hansen cannot be directly compared with those which have preceded it, owing to the peculiar form of the variables in which the co-ordinates of the moon are expressed. In saying this, I do not contest the proposition that this form has advantages. But, apart from the question of its merits in form, it becomes important to have the means of making a direct comparison of Hansen's theory with that of his predecessors and colaborers, who have expressed the co-ordinates of the moon directly in terms of the time. This has twice been partially done: by the writer in the Comptes Rendus for 1868, I (Tome LXVI, p. 1197), and, independently, by Schjellerup, in a paper published in 1874 by the Danish Academy of Sciences. Both depend on data for the transformation given by Hansen himself, which, though they may be accurate enough to give an idea of the agreement between the theories of Hansen and Delaunay, cannot be regarded as sufficiently precise for a satisfactory transformed theory. The object of the present paper is to make a transformation which shall faithfully represent HANSEN'S latest theory, and be expressed in arguments depending directly on the time. 59

◊ 1.

EXPRESSION OF THE MOON'S LONGITUDE.

In Hansen's theory the moon's longitude is represented in the following form. Put

- g, the moon's mean anomaly;
- g', the sun's mean anomaly;
- ω , the distance from the node to the perigee;
- ω' , the distance from the node to the solar perigee;
- π , the longitude of the perigee;
- e, the eccentricity of the moon's orbit, as used by Hansen;
- $n\delta z$, the Hansenian perturbations of mean anomaly;
 - s, the Hansenian perturbations of latitude;
 - I, the inclination of the moon's orbit.

Then put, as auxiliary quantities,

$$f = \text{elta } (e,g + n \delta z)$$
, the true anomaly;

$$R = -\tan^2 \frac{1}{2} I \sin 2 (f + \omega) + \frac{1}{2} \tan^4 \frac{1}{2} I \sin 4 (f + \omega) - \text{etc.},$$

the reduction to the ecliptic;

$$R' = -s \frac{\tan I \cos (f + \omega)}{1 - \sin^2 I \sin^2 (f + \omega)}$$

$$-o'' \cdot 397 \sin 2 \omega$$

$$-1'' \cdot 198 \sin (2 g' + 2 \omega')$$

$$-o'' \cdot 285 \sin (2 g - 4 g' + 2 \omega - 4 \omega'),$$

the inequalities of this reduction.

Then, for the moon's longitude,

$$L = f + \pi + R + R'.$$

The latitude, β , is given by the equation

$$\sin \beta \equiv \sin I \sin (f + \omega) + s$$
.

In presenting Hansen's results in the form of a complete and exact numerical theory, several precautions have to be taken. In the first place, all the results must, so far as possible, depend upon or be reduced to one and the same homogeneous set

of elements. In the next place, those inequalities which express the solution of the problem of three bodies, considered as material points, must be separated from inequalities arising from other sources, such, for instance, as the distance between the moon's centres of gravity and figure, and the ellipticity of the earth.

Three values of the eccentricity appear in Hansen's theory and tables:

- (1) A provisional or ideal eccentricity, with which the inequalities were originally computed.
- (2) An apparent eccentricity, which he found to represent the observed motion of the moon's centre of figure, and used in his tables.
- (3) A theoretical eccentricity of the true orbit described by the moon's centre of gravity.

These three values of the element are:—

(1)
$$e = .05490079$$

(2)
$$e = .05490807$$

(3)
$$e = .05489959$$

According to Hansen's view it is the third value which should be used in computing the moon's perturbations; but as he actually used the first value, it is the one which we should employ in the transformation.

In the case of the inclination there are three corresponding values, with an additional complication arising from the question whether we shall add to the inclination a term in the perturbations, 2".705 $\sin(g + \omega)$, having the mean argument of latitude as its argument.

Omitting this term, the values of the inclination will be:-

(1)
$$I = 5^{\circ} 8' 48''$$

(2)
$$I = 5^{\circ} 8' 43''.66$$

(3)
$$I = 5^{\circ} 8' 39''.96$$

Here, again, it is only the first value with which we are concerned in the transformation, because it is the one employed by Hansen in computing the perturbations.

The Hansenian perturbation $n\delta z$ is an explicit function of g, g', ω and ω' . So far as the longitude is concerned, our present problem is to express f, R and R', and thence L, as explicit functions of the above four quantities. If we put:—

$$z = g + n\delta z$$

 e_1 , e_2 , e_3 , etc., the coefficients of $\sin z$, $\sin 2z$, etc. in the development

of elta (e, z), we shall have,

$$f = z + e_1 \sin z + e_2 \sin 2z + \text{etc.}$$

If, then, we put $g + n\delta z$ for s, develop in powers of $n\delta z$, call $(e, g)_0$ the part of f independent of $n\delta z$, and $(e, g)_i$ the coefficient of $(n\delta z)^i$ in f, we shall have,

$$(e,g)_0 = g + e_1 \sin g + e_2 \sin 2g + e_3 \sin 3g + e_4 \sin 4g + \text{etc.}$$

$$(e,g)_1 = 1 + e_1 \cos g + 2e_2 \cos 2g + 3e_3 \cos 3g + \text{etc.}$$

$$(e,g)_2 = -\frac{1}{2}e_1 \sin g - \frac{2^2}{2}e_2 \sin 2g - \frac{3^2}{2}e_3 \sin 3g - \text{etc.}$$

$$(e,g)_3 = -\frac{1}{2\cdot 3}e_1 \cos g - \frac{2^3}{2\cdot 3}e_2 \cos 2g - \frac{3^3}{2\cdot 3}e_3 \cos 3g - \text{etc.}$$

$$(e,g)_4 = \frac{1}{2\cdot 3\cdot 4}e_1 \sin g + \text{etc.}$$
etc.

The coefficients e_1 , e_2 , etc., are dependent on the eccentricity. The well-known analytical values, and the numerical values obtained by putting e = .05490079, are:

$$e_{1} = 2 e \qquad -\frac{1}{4} e^{3} + \frac{5}{96} e^{5} = .10976024 = 22639''.676$$

$$e_{2} = \frac{5}{4} e^{2} - \frac{11}{24} e^{4} + \frac{17}{192} e^{6} = .00376346 = 776''.269$$

$$e_{3} = \frac{13}{12} e^{3} - \frac{43}{64} e^{5} = .00017893 = 36''.907$$

$$e_{4} = \frac{103}{96} e^{4} - \frac{451}{480} e^{6} = .0000972 = 2''.005$$

$$e_{5} = \frac{1097}{960} e^{5} = .00000057 = 0''.118$$

$$e_{6} = \frac{1223}{960} e^{6} = .0000004 = 0''.007$$

The value of $n\delta z$ is taken, not from Hansen's tables, but from his revised results given in the *Darlegung**. They are found in Part I, pp. 409-411, and Part II, pp. 224, 242, 258, and 268, and, for convenience of reference, are all collected in Table I of the present paper. In this table are given also the powers of $n\delta z$, the computations of which were all made in duplicate, that of the square being executed by two independent computers.

We thus have all the data for the numerical value of f, the formula for which is,

$$f = (e, g)_0 + (e, g)_1 \, n \, \delta z + (e, g)_2 \, (n \, \delta z)^2 + \text{etc.}$$
 (1)

Consider next the first term of R, which we may call R₁. We have

$$R_1 = - \tan^2 \frac{1}{2} I \sin (2 f + 2 \omega),$$

which is also to be developed in powers of $n\delta z$.

^{*} Under this title reference is made to Hansen's two papers, Darlegung der theoretischen Berechnung der in den Mondtafeln angewandten Störungen, in the Abhandlungen der königlich-sächeischen Gesellschaft der Wissenschaften. Band IX, XI.

If we substitute for f its value in terms of e and z, and develop in powers of e, we find *:—

$$R_{1} = -\tan^{2}\frac{1}{2}I \times \begin{cases} \frac{1}{24}e^{4} & \sin(-2z+2\omega) \\ +\frac{1}{12}e^{3} & \sin(-z+2\omega) \\ +\left(\frac{3}{4}e^{2}+\frac{1}{8}e^{4}\right)\sin 2\omega \\ +\left(-2e+\frac{7}{4}e^{3}\right)\sin(-z+2\omega) \\ +\left(1-4e^{2}+\frac{55}{16}e^{4}\right)\sin(-2z+2\omega) \\ +\left(2e-\frac{27}{4}e^{3}\right)\sin(-3z+2\omega) \\ +\left(\frac{13}{4}e^{2}-\frac{259}{24}e^{4}\right)\sin(-4z+2\omega) \\ +\frac{59}{12}e^{3} & \sin(-5z+2\omega) \\ +\frac{115}{16}e^{4} & \sin(-6z+2\omega) \end{cases}$$

If, in this equation, we substitute for e and I their numerical values and then differentiate with respect to z, so as to obtain the coefficients of the powers of $n\delta z$, putting

$$R_1 = R_{1,0} + R_{1,1} n \delta z + R_{1,2} (n \delta z)^2 + \text{etc.}$$

we have

$$\begin{array}{l} {\rm R_{1,0}} = - & {\rm o''.006~sin} \; (-g+2\,\omega) \\ - & {\rm o''.942~sin} \; (& 2\,\omega) \\ + & 45''.627~sin} \; (& g+2\,\omega) \\ - & 411''.626~sin} \; (& 2\,g+2\,\omega) \\ - & 45''.281~sin} \; (& 3\,g+2\,\omega) \\ - & 4''.040~sin} \; (& 4\,g+2\,\omega) \\ - & {\rm o''.338~sin} \; (& 5\,g+2\,\omega) \\ - & {\rm o''.027~sin} \; (& 6\,g+2\,\omega) \\ \end{array}$$

^{*} Tables of this and the other developments in the elliptic motion have been given by Professor CAYLEY in the *Memoirs of the Boyal Astronomical Society*, Vol. XXIX, but the above development was executed independently before the applicability of Professor CAYLEY'S formulæ was remarked.

$$R_{1,2} = -.00011 \sin (g+2\omega) +.00399 \sin (2g+2\omega) +.00099 \sin (3g+2\omega) +.00016 \sin (4g+2\omega) R_{1,3} = +.0027 \cos (2g+2\omega) +.0010 \cos (3g+2\omega)$$

In the same way, putting

$$R_2 = \frac{1}{2} \tan^4 \frac{1}{2} I \sin (4 f + 4 \omega)$$

we have by substituting for f its value in z, and developing in powers of e,

$$\sin (4f + 4\omega) = \frac{\frac{11}{2}e^2 \sin (2z + 4\omega)}{-4e \sin (3z + 4\omega)} + (1 - 16e^2) \sin (4z + 4\omega) + 4e \sin (5z + 4\omega) + \frac{21}{2}e^2 \sin (6z + 4\omega)$$

Putting as before,

$$R_2 = R_{20} + R_{21} n \delta z + R_{22} (n \delta z)^2 + \text{etc.}$$

we find by substituting the numerical values of I and e

$$R_{2,0} = + o''.007 \sin (2 g + 4 \omega)$$

$$- o''.092 \sin (3 g + 4 \omega)$$

$$+ o''.400 \sin (4 g + 4 \omega)$$

$$+ o''.092 \sin (5 g + 4 \omega)$$

$$+ o''.013 \sin (6 g + 4 \omega)$$

$$R_{2,1} = -.000 001,3 \cos (3 g + 4 \omega)$$

$$+ .000 007,8 \cos (4 g + 4 \omega)$$

$$+ .000 002,2 \cos (5 g + 4 \omega)$$

The terms of $R_{2,2} (n \delta z)^2$ are less than 0".001.

The coefficient of -s tan I in R' is, with sufficient accuracy,

$$\cos (f + \omega) \left[1 + \sin^2 I \sin^2 (f + \omega) \right]$$

or

$$\left(1+\frac{1}{4}\sin^2 I\right)\cos \left(f+\omega\right)-\frac{1}{4}\sin^2 I\cos \left(3f+3\,\omega\right).$$

By the developments of the elliptic motion we have,

$$\cos (f + \omega) = -\frac{1}{12} e^3 \cos (-2z + \omega)$$

$$-\frac{1}{8} e^2 \cos (-z + \omega)$$

$$-e \cos \omega$$

$$+ (1 - e^2) \cos (z + \omega)$$

$$+ (e - \frac{5}{4} e^3) \cos (2z + \omega)$$

$$+ \frac{9}{8} e^2 \cos (3z + \omega)$$

$$+ \frac{4}{3} e^3 \cos (4z + \omega)$$

$$\cos (3f + 3\omega) = \frac{21}{8} e^2 \cos (z + 3\omega)$$

$$- 3e \cos (2z + 3\omega)$$

$$+ (1 - 9e^2) \cos (3z + 3\omega)$$

$$+ 3e \cos (4z + 3\omega)$$

$$+ 3e \cos (4z + 3\omega)$$

$$+ \frac{51}{8} e^2 \cos (5z + 3\omega)$$

If we represent by S the coefficient of s in R', that is,

$$S = -\tan I \cos (f + \omega) \{ 1 + \sin^2 I \sin^2 (f + \omega) \},$$

and suppose

$$S = S_o + S_1 n \delta z + S_2 (n \delta z)^2,$$

we shall have,

$$S_{o} = +.000034 \cos (-g + \omega) +.004955 \cos \omega -.089978 \cos (g + \omega) -.004936 \cos (2g + \omega) -.000306 \cos (3g + \omega) -.000020 \cos (4g + \omega) -.000030 \cos (2g + 3\omega) +.000176 \cos (3g + 3\omega) +.000030 \cos (4g + 3\omega) +.000004 \cos (5g + 3\omega) S_{1} = +.0900 \sin (g + \omega) +.0099 \sin (2g + \omega) +.0009 \sin (3g + \omega) S_{2} = +.045 \cos (g + \omega) +.010 \cos (2g + \omega)$$

Multiplying these several expressions by Hansen's s, we find the value of $s S_o$, etc., given in Table II.

Collecting all the coefficients of the powers of $n \delta z$, we find the following expressions for the moon's true ecliptic longitude, as a function of $n \delta z$:—

$$L = L_0 + L_1 n \delta z + L_2 (n \delta z)^2 + \text{etc.}$$

Terms independent of n & z.

$$\begin{array}{l} \mathbf{L_o} = g + \pi \\ + 22639''.676 \sin g \\ + {}^{\circ}776''.269 \sin 2g \\ + 36''.907 \sin 3g \\ + 2''.005 \sin 4g \\ + 0''.118 \sin 5g \\ + 0''.007 \sin 6g \\ - 0''.006 \sin (-g + 2\omega) \\ \left\{ \begin{array}{l} - 0''.942 \\ - 0''.397 \\ \end{array} \right\} \sin 2\omega \\ + 45''.627 \sin (g + 2\omega) \\ - 411''.626 \sin (2g + 2\omega) \\ - 45''.281 \sin (3g + 2\omega) \\ - 0''.338 \sin (5g + 2\omega) \\ - 0''.338 \sin (5g + 2\omega) \\ - 0''.027 \sin (6g + 2\omega) \\ + 0''.007 \sin (2g + 4\omega) \\ - 0''.092 \sin (3g + 4\omega) \\ + 0''.400 \sin (4g + 4\omega) \\ + 0''.400 \sin (4g + 4\omega) \\ + 0''.992 \sin (5g + 4\omega) \\ + 0''.992 \sin (5g + 4\omega) \\ - 0''.993 \sin (2g + 2\omega) \\ - 0''.285 \sin (2g + 2\omega) \\ - 0''.285 \sin (2g - 4g + 2\omega - 4\omega) \\ + 8 \, \mathbb{S}_0. \end{array}$$

Coefficient of $n \delta z$.

[The comma points off six places of decimals.]

$$\begin{array}{l} \mathbf{L_1} = & \mathbf{I} \\ & + .109760, 2 \cos g \\ & + .007526, 9 \cos 2g \\ & + .000536, 8 \cos 3g \\ & + .00002, 8 \cos 5g \\ & + .000021, 2 \cos (g + 2\omega) \\ & - .003991, 2 \cos (2g + 2\omega) \\ & - .000058, 6 \cos (3g + 2\omega) \\ & - .000008, 2 \cos (5g + 2\omega) \\ & - .000000, 8 \cos (6g + 2\omega) \end{array}$$

- .000001,3
$$\cos (3g + 4\omega)$$

+ .000007,8 $\cos (4g + 4\omega)$
+ .000002,2 $\cos (5g + 4\omega)$
+ $s S_1$
L₂ = - .05488 $\sin g$
- .00753 $\sin g$
- .00080 $\sin g$
- .00080 $\sin g$
- .00011 $\sin (g + 2\omega)$
+ .00399 $\sin (g + 2\omega)$
+ .00099 $\sin (g + 2\omega)$
+ .00016 $\sin (g + 2\omega)$
+ .00016 $\sin (g + 2\omega)$
+ .00016 $\sin (g + 2\omega)$
+ .00016 $\sin (g + 2\omega)$
+ .00016 $\sin (g + 2\omega)$
+ .00016 $\sin (g + 2\omega)$
+ .00016 $\sin (g + 2\omega)$
+ .0010 $\cos (g + 2\omega)$
+ .0010 $\cos (g + 2\omega)$

The several parts of this expression for L are given in Table II, omitting the following terms, which are, however, all included in the column giving the concluded coefficients in L:—

- 1. The terms of L_o, explicitly given in the first of the preceding equations.
- 2. The expressions for $n\delta z$, $(n\delta z)^2 \times s S_2$, $(n\delta z)^3 \times R_{1,3}$, and $(n\delta z) \times R_{2,1}$.

The values of the last three expressions are as follows, the numbers within the parentheses being coefficients of g, g', ω , and ω' , respectively:—

$n \delta z \times \mathrm{R}_{2,1}$	$(n \delta z)^2 \times s S_2$	$(n \delta z)^3 \times R_1, _3$
. "	<i>"</i> =	=
$001 \sin (3, 3, 2, 2)$	$002 \sin (0, -2, 2, -2)$	∞ 1 sin (2, 1, 2, 0)
$+.001 \sin (1, 2, 2, 2)$	$+.003 \sin(2, -2, 2, -2)$	$+.001 \sin (2, -1, 2, 0)$
$005 \sin (2, 2, 2, 2)$	$+.002 \sin (3, -2, 2, -2)$	$002 \sin (0, 2, 0, 2)$
$020 \sin (3, 2, 2, 2)$	$+.002 \sin (-1, 2, 0, 2)$	$004 \sin (1, 2, 0, 2)$
$005 \sin (4, 2, 2, 2)$	$+.004 \sin (0, 2, 0, 2)$	$002 \sin (2, 2, 0, 2)$
∞ 2 sin (4, 1, 4, 0)	$002 \sin(2, -2, 4, -2)$	$+.002 \sin (2, -2, 4, -2)$
$+.\infty$ 2 sin (4, - 1, 4, 0)	$002 \sin (3, -2, 4, -2)$	$+.003 \sin (3, -2, 4, -2)$
$+.001 \sin (5, -1, 4, 0)$	$002 \sin (4, -6, 6, -6)$	$+.003 \sin (4, -2, 4, -2)$
$003 \sin (4, -2, 6, -2)$	$002 \sin (5, -6, 6, -6)$	$+.002 \sin (5, -2, 4, -2)$
$+.016 \sin (5, -2, 6, -2)$	$002 \sin(2, -6, 4, -6)$	∞ sin (1, -6 , 4, -6)
$+.013 \sin (6, -2, 6, -2)$	$002 \sin (3, -6, 4, -6)$	$001 \sin (2, -6, 4, -6)$
$+.002 \sin (7, -2, 6, -2)$		∞ sin $(6, -6, 8, -6)$
	•	$ \infty i \sin (7, -6, 8, -6)$

In Table II the column "Sum" contains the sums of the terms actually given in the preceding columns of the table.

The next column gives the complete coefficient of each term in the ecliptic longitude, and is formed by adding to the column "Sum" the omitted terms just referred to.

The last column gives, for the larger terms, the elements which they principally contain as factors. If these elements be changed, the coefficients must be changed by corresponding quantities.

₫ 2.

REDUCTION OF THE PRECEDING EXPRESSIONS TO UNIFORM ELEMENTS, AND COMPARISON WITH DELAUNAY.

The coefficients of the preceding inequalities contain as factors certain elements for which different investigators adopt different values. It is essential to a clear presentation of results that they should be reduced to a uniform and well-defined set of elements having given values We therefore commence by reducing the theories of both Hansen and Delaunay to such a system. The elements principally referred to are—

- (α) The ratio of the mean motions of the sun and moon.
- (β) The lunar eccentricity.
- (γ) The solar parallax.
- (δ) The solar eccentricity.
- (ε) The inclination of the moon's orbit.

Really, all these elements are contained in all the inequalities in a very complex manner. But there is so little doubt about their true numerical values that it is only necessary to take account of their changes when they appear as factors in coefficients of considerable magnitude. The extent to which each term is affected can be roughly seen from its analytic expression given by Delaunay at the end of his *Theorie du Mouvement de la Lune*, Tome II. We take up the several elements in order.

- (α) Ratio of mean motions. This element is so certain that no reduction need be made on account of it. It is true that theoretical motions of the lunar node and perigee must implicitly enter in connection with this element. But, from a rough examination of Hansen's integration coefficients on pp. 350-352 of his Darlegung, I
- do not think any of the larger coefficients will be affected by as much as $\frac{1}{100000}$ of their entire amount by any admissible change of these motions.
- (β) Eccentricity of moon's orbit. The eccentricities used by the two investigators are not directly comparable, but may be most conveniently compared by reducing each to the coefficient of g in the expression for the moon's ecliptic longitude. Delaunay uses Airy's value, given in his last paper on the elements of the moon's orbit.*

 Hansen corrected his eccentricity for use in his tables, as already mentioned. The writer obtained a small but well-marked correction to Hansen's value from the Green-

wich observations 1846-'74, and the Washington observations 1862-'74. The four values of the coefficient in question are:—

Although there is no reasonable doubt that the eccentricity of Hansen's tables requires a negative correction, it will be adopted for the purposes of comparison because it is now the standard of the ephemerides with which subsequent comparisons must be made. All the terms having e as a coefficient, must therefore be increased by the factor

$$\frac{.00000728}{.05490} = .0001326,$$

and those having e^2 by double this factor. The coefficients in e must, in Delaunay's theory, be increased by the factor

$$\frac{1''.09}{22639''} = .0000482.$$

(y) Solar parallax. Hansen's theory does not set out with a definite solar parallax, but with a ratio of the mean distances of the sun and moon, which ratio again is not the usual one, because Hansen's a and a' are the same functions of the motion of mean anomaly that the usual a and a' are of the sidereal motions. We must therefore adopt an indirect process for finding the relation of solar parallax and parallactic equation on his theory. He finds that his theoretical coefficient has to be multiplied by the factor 1.03573 to make it agree with observation; and then, in § 266 of his Darlegung, he deduces the solar parallax S''.9159. Dividing this parallax by the preceding factor, we conclude that the parallax of his theory is:—

In turning his theory into numbers Delaunay used 8".75. The parallax to which both theories will be actually reduced is:—

Hence, Hansen's terms having the parallax as a factor must be increased by the factor

and Delaunay's by the factor

.01120.

(δ) The solar eccentricity. The solar eccentricity of Hansen's theory is:—

$$e' = 0.01679226$$
 (Epoch 1800).

^{*} Papers published by the Commission on the Transit of Venus. Part III.

Delaunay uses Le Verrier's value:-

$$e' = 0.01677106$$
 (Epoch 1850).

In strictness these two values are not comparable, owing to the different form of Hansen's solar theory; but since Hansen neglects perturbations of the earth's motion in his lunar theory, it may be assumed that there will be no difference between the form in which the eccentricity enters into the two theories. If we carry Le Verrier's eccentricity back to 1800 with his secular variation, we shall have:—

$$e' = 0.01679228$$
 (Epoch 1800).

This may be regarded as absolutely identical with Hansen's value for the same epoch. So, adopting 1800 as the epoch, we have only to increase Delaunay's coefficients in e' by the factor

$$\frac{.00002122}{.01677} = .001265.$$

Or, we may reduce Hansen's values to 1850 by dividing them by 1.001265, when they will be comparable with Delaunay's.

The theories of Hansen and Delaunay, thus reduced to a uniform and consistent set of elements, are given and compared in Table III. Delaunay's results are frequently doubtful by a small fraction of a second, owing to the slow convergence of the series in powers of m, and the table has been arranged so as to show the extent of the uncertainty thus arising.

Following the indices expressing the arguments are given, first, Hansen's coefficients formed from the values in Table II by multiplying by the appropriate factors for reduction already given. They are only given to o".o1, but should the thousandth of seconds be required they are readily obtainable.

The corresponding coefficients of Delaunay are derived principally from his presentation of numerical results in the additions to the *Connaissance des Temps* for 1869. On pages 11 to 21 of that paper are given the sums of the terms in each coefficient which were actually computed by him. The parallactic terms, as given by Delaunay, are still to be multiplied by $\frac{1-\lambda}{1+\lambda}$, λ being the ratio of the mass of the moon to that of

the earth. Putting, with Hansen, $\lambda = \frac{1}{80}$, the coefficient will be $\frac{79}{81}$. The sums, corrected for this coefficient and for difference of elements, are given in the column Delaunay (1). Had all the appreciable terms been actually computed, these coefficients would have been the definitive ones of Delaunay's theory. But it was frequently found that the terms, even of the ninth order, where the development ceased, were still appreciable; it was, therefore, necessary to estimate the probable sum of the omitted terms of higher orders from the law of the series as observed in the terms actually computed. These estimates can have no true mathematical foundation,

because there is no proof of the actual law of the series.* Still, there is a high degree of probability in favor of each one being at least a rude approximation to the truth. A rigorous computation would probably show that a majority differed less than \(\frac{1}{4} \) of their amount from the true values, though here and there one might be found entirely illusory. The coefficients of longitude, modified by these estimated additions, are given by Delaunay on pages 38-40 of the paper referred to, and are reproduced, with the necessary corrections for changes of elements, in the column Delaunay (2).

The difference of these results, given in the next column, is the correction apparently applied by Delaunar for the uncomputed terms. It will be noted that we have no independent statement of these terms to refer to, and can only infer their values from the differences between the printed results (1) and (2)

Finally, we have the difference, Hansen minus Delaunay (2) showing the discrepancies still outstanding between the two theories Each one can judge for himself how far these discrepancies arise from the uncertainty of Delaunay's semi-empirical corrections, and how far from errors in the two theories.

One or two terms are worthy of a special examination, and among these the parallactic equation takes the first rank, as upon it depends the value of the solar parallax to be derived from a given observed value of this equation. Arranging Delaunay's terms according to the power of m, which enters as a factor, the result will be that given below under the head P_1 . Delaunay omits terms in y^2 after m^3 , and terms in e^2 after m^5 . Correcting the result for an estimated value of these terms, derived by induction, we shall have those given under the head P_2 . It will be seen that the terms follow a nearly regular law up to m^6 , but that m^7 deviates from this law. Assuming this term to be in error, and estimating the value of it and the higher terms as those of

a geometrical progression with the ratio $\frac{4}{10}$ we have the results P₃.

Our choice must lie between the results P₂ and P₃. If we adopt the former we may add o".26 as an estimate of omitting terms giving:—

$$P = -127''.24$$
; $P' = \frac{79}{81} P = -124''.10$.

^{*}It may be remarked that in the series for the secular acceleration DELAUNAY found the terms of a higher order actually to change their sign, directly contrary to the estimate which would have been formed from those of a lower order.

If we adopt the latter we have

$$P = -127''.08;$$
 $P' = \frac{79}{81}P = -123''.94.$

Multiplying by the coefficient 1.0112 to reduce to the parallax 8".848 the result will be:—

$$\begin{array}{ccc} (2) & -125''.49 \\ (3) & -125''.33. \end{array}$$

Hansen's coefficient, — 125".43, falls between these results and may be regarded as certainly correct within less than o".1.

The other term referred to is that depending on the argument:-

$$g-g'+2\omega-2\omega'$$

of which the principal parts of the coefficient are, in Delaunay's theory,-

Delaunar seems to have taken I".18 as the probable sum of the omitted terms, whereas they should have been taken as o".94 to agree with Hansen.

§ 3.

LATITUDE.

Taking Hansen's expression for the moon's latitude:-

$$\sin \beta \equiv \sin I \sin (f + \omega) + s;$$

the first step is to form the expression $\sin (f + \omega)$ in terms of g, ω , etc. This may be done in two ways. By the first we express the required quantity as a function of z, and

then put $g + n\delta z$ for g and develop in powers of $n\delta z$. By the theory of elliptic motion the expression of $\sin (f + \omega)$ in terms of z will be

$$\sin (f + \omega) = \frac{625}{9216} e^{6} \sin (-5z + \omega)$$

$$- \frac{1}{15} e^{5} \sin (-4z + \omega)$$

$$+ \left(-\frac{9}{128} e^{4} + \frac{9}{320} e^{6}\right) \sin (-3z + \omega)$$

$$+ \left(-\frac{1}{12} e^{3} + \frac{1}{48} e^{5}\right) \sin (-2z + \omega)$$

$$+ \left(-\frac{1}{8} e^{2} + \frac{1}{48} e^{4} + \frac{37}{3072} e^{6}\right) \sin (-z + \omega)$$

$$- e \sin \omega$$

$$+ \left(1 - e^{2} + \frac{7}{64} e^{4} - \frac{5}{288} e^{6}\right) \sin (z + \omega)$$

$$+ \left(e - \frac{5}{4} e^{3} + \frac{17}{48} e^{5}\right) \sin (2z + \omega)$$

$$+ \left(\frac{9}{8} e^{2} - \frac{27}{16} e^{4} + \frac{765}{1024} e^{6}\right) \sin (3z + \omega)$$

$$+ \left(\frac{4}{3} e^{3} - \frac{7}{3} e^{5}\right) \sin (4z + \omega)$$

$$+ \left(\frac{625}{384} e^{4} - \frac{625}{192} e^{6}\right) \sin (5z + \omega)$$

$$+ \frac{81}{40} e^{5} \sin (6z + \omega)$$

$$+ \frac{117640}{46080} e^{6} \sin (7z + \omega).$$

If we now substitute for z, $g + n \delta z$, for e its numerical value, and develop, putting:—

$$\sin I \sin (f + \omega) = F_0 + F_1 n \delta z + F_2 (n \delta z)^2 + F_3 (n \delta z)^3$$

we shall have

$$F_{0} \text{ (in arc)} = - \qquad o'' \text{ ol 2 sin } (-3 g + \omega)$$

$$- \qquad o''.255 \sin (-2 g + \omega)$$

$$- \qquad 6''.968 \sin (-g + \omega)$$

$$- \qquad 1015''.834 \sin \omega$$

$$+ \qquad 18447''.342 \sin (g + \omega)$$

$$+ \qquad 1012''.011 \sin (2 g + \omega)$$

$$+ \qquad 62''.458 \sin (3 g + \omega)$$

$$+ \qquad 4''.061 \sin (4 g + \omega)$$

$$F_{0} \text{ (in arc) (cont'd)} = + \quad o''.272 \sin \left(5g + \omega \right) \\ + \quad o''.019 \sin \left(6g + \omega \right) \\ + \quad o''.001 \sin \left(7g + \omega \right)$$

$$F_{0} \text{ (in radius)} = -.000 \text{ cool } \sin \left(-3g + \omega \right) \\ -.000 \text{ cool } 2 \sin \left(-2g + \omega \right) \\ -.000 \text{ cool } 2 \sin \left(-g + \omega \right) \\ -.004 \text{ g249 sin } \omega \\ +.089 \text{ 4352 sin } \left(g + \omega \right) \\ +.004 \text{ go64 sin } \left(2g + \omega \right) \\ +.000 \text{ cool } 3 \sin \left(5g + \omega \right) \\ +.000 \text{ cool } 3 \sin \left(5g + \omega \right) \\ +.000 \text{ cool } 3 \sin \left(6g + \omega \right)$$

$$F_{1} = +.000 \text{ cool } \cos \left(-3g + \omega \right) \\ +.000 \text{ cool } \sin \left(6g + \omega \right)$$

$$F_{1} = +.000 \text{ cool } \cos \left(-2g + \omega \right) \\ +.000 \text{ cool } \sin \left(6g + \omega \right)$$

$$F_{2} = +.000 \text{ g84 cos } \left(3g + \omega \right) \\ +.000 \text{ cools } \cos \left(6g + \omega \right)$$

$$F_{2} = +.000 \text{ cools } \cos \left(-g + \omega \right) \\ -.044 \text{ 72 sin } \left(g + \omega \right) \\ -.009 \text{ 81 sin } \left(2g + \omega \right) \\ -.001 \text{ 36 sin } \left(3g + \omega \right) \\ -.000 \text{ 16 sin } \left(4g + \omega \right) \\ -.000 \text{ cols } \cos \left(2g + \omega \right) \\ -.000 \text{ 22 sin } \left(5g + \omega \right) \\ -.000 \text{ 22 sin } \left(5g + \omega \right) \\ -.000 \text{ 22 sin } \left(5g + \omega \right) \\ -.000 \text{ 22 sin } \left(5g + \omega \right) \\ -.000 \text{ 22 sin } \left(5g + \omega \right) \\ -.000 \text{ 22 sin } \left(5g + \omega \right) \\ -.000 \text{ 23 sin } \left(5g + \omega \right) \\ -.000 \text{ 24 cos } \left(5g + \omega \right) \\ -.000 \text{ 25 cos } \left(2g + \omega \right) \\ -.000 \text{ 25 cos } \left(2g + \omega \right) \\ -.000 \text{ 25 cos } \left(2g + \omega \right) \\ -.000 \text{ 25 cos } \left(2g + \omega \right) \\ -.001 \text{ 4 cos } \left(3g + \omega \right) \\ -.001 \text{ 4 cos } \left(3g + \omega \right) \\ -.001 \text{ 4 cos } \left(3g + \omega \right) \\ -.0014 \text{ 4 cos$$

As a check upon the value of $\sin I \sin (f + \omega)$ a second method of computing it was adopted, as follows. Let us put:—

$$\delta f = f - g$$
.

Then

$$\sin (f + \omega) = \sin (g + \omega + \delta f)$$

$$\cdot = \cos \delta f \sin (g + \omega)$$

$$+ \sin \delta f \cos (g + \omega).$$

From the numerical value of δf already given the powers of this quantity were formed, and thence its cosine and sine from the formulæ:—

$$\cos \delta f = I - \frac{\delta f^2}{I.2} + \text{etc.}$$

$$\sin \delta f = \delta f - \frac{\delta f^3}{I.2.3} + \text{etc.}$$

These expressions were then multiplied by the sine and cosine of $(g + \omega)$.

The mean difference between the coefficients in $\sin I \sin (f + \omega)$ found by the two methods was less than 0".003, the largest one being ".010.

Adding Hansen's s to this expression we have the value of $\sin \beta$. Then β itself is obtained by the formula

$$\beta \equiv \sin \beta + \frac{1}{6} \sin^3 \beta + \frac{3}{40} \sin^5 \beta$$
.

The principal parts of β are given in Table IV, of which the columns referring to Hansen's theory seem to need no explanation.

REDUCTION OF THE LATITUDE AND COMPARISON WITH DELAUNAY.

All the terms of the latitude contain the inclination of the moon's orbit as a factor, and are therefore to be multiplied by such a constant coefficient that the principal term of the latitude shall agree with observation. The transformed expressions of Hansen, given in Table IV, lead to a consistent theory in which the coefficient of the principal term of the latitude is 18463".248. The expressions of Delaunay also lead to a theory, in which this coefficient is 18461".26. Each of these is to be multiplied by such a factor as shall reduce it to the value implicitly adopted in Hansen's tables. There Hansen adopts:—

$$I = 5^{\circ} 8' 39''.96$$

which is less by 8".04 than that of the theory. Ilence, from this alone would follow the correction:—

$$-8''.04 \sin (f + \omega).$$

But, the tables contain, among the perturbations, two terms which depend mainly on the same argument, namely:—

$$2''.705 \sin (f + \omega),$$

which, developed by putting $g + 2e \sin g$ for f, appears as a perturbation, and

$$3''.70 \sin (g + \omega),$$

which is attributed to the separation of the centers of figure and of gravity of the moon. The sum of the first two expressions being developed, become

- 5".319
$$\sin (g + \omega)$$

•+ 0".293 $\sin \omega$
- 0".292 $\sin (2g + \omega)$.

Adding the third, the term in $g + \omega$ will become

-
$$I''$$
.619 $\sin (g + \omega)$.

We are not concerned with the terms in ω and $2g + \omega$. The greater part of their amount may be considered as a *quasi* perturbation, due to the figure of the moon, and implicitly contained in the tables, but not belonging to the problem of three bodies.

With the last correction the term in $g + \omega$ becomes

18461".629
$$\sin (g + \omega)$$
,

which is the coefficient implicitly contained in Hansen's tables.

To this the writer found a correction of -0''.15 from Greenwich and Washington observations 1862-'74, but it will be retained without change. Hence all the coefficients in Hansen's β , as given in Table IV, are to be diminished by the factor

and those of Delaunay are to be increased by the factor

The terms in e and e' are to be modified by the same coefficients as in the case of the longitude. The only terms which will be appreciably affected by the change of e are those depending on ω and $2 g + \omega$.

The modifications here indicated have not been made in the results, because they are so slight, and affect so few terms, that each one can make them for himself.

The column Delaunay (1) contains, as before, the sum of the terms actually computed by Delaunay, and given by him in the Connaissances des Temps for 1869.

In column *Delaunay* (2) his coefficients are corrected by the higher terms, of which the value has been estimated by induction. Delaunay himself did not give these additions, so that they had to be estimated by the writer.

§ 5.

PARALLAX.

Hansen's theory gives the perturbations of the natural logarithm of the moon's radius vector, which are the negative of the perturbations of the logarithm sine parallax. The value of w, in seconds of arc, is found in the *Darlegung*, Part I, pages 409-411, and Part II, pages 224-226, 258, and 268. The moon's parallax p is given by Hansen under the form

$$\log \sin p = \log \frac{D(1 + e \cos f)}{a(1 - e^2)} - w,$$

in which D is the radius of the earth at the latitude of which the sine is $\sqrt{\frac{1}{3}}$, and a the moon's mean distance in the Hansenian theory, which is different in definition from the mean distance of the ordinary theories. It is not, however, necessary to reduce the one to the other directly, because they may be most satisfactorily compared by the values of the constant of parallax to which they lead.

Changing the logarithms to natural quantities and developing in powers of w, the above expression gives:—

$$\sin p = \frac{D}{a} \cdot \frac{1 + e \cos f}{1 - e^2} \left(1 - w + \frac{w^2}{2} - \text{etc.} \right)$$

and then

$$p = \sin p + \frac{\sin^3 p}{6} + \text{etc.}$$

In developing $e \cos f$ two methods of computation were used, as in the computation of the principal term of the latitude.

I. From CAYLEY's tables we have

$$\cos f = -e + \left(1 - \frac{9}{8}e^2 + \frac{25}{192}e^4\right)\cos z$$

$$+ \left(e - \frac{4}{3}e^3\right)\cos z z$$

$$+ \left(\frac{9}{8}e^2 - \frac{225}{128}e^4\right)\cos z z$$

$$+ \frac{4}{3}e^3\cos z z$$

$$+ \frac{625}{384}e^4\cos z z$$

and then by substituting $g + n \delta z$ for z we have $\cos f$ developed in multiples of g, etc

2. Putting

$$f = g + \delta f$$

we have

$$\cos f = \cos \delta f \cos g - \sin \delta f \sin g$$
.

The value of $\frac{D}{a}$ was derived by Hansen from the length of the seconds pendulum and the dimensions of the earth as found by Bessel. The derivation is given in the Astronomische Nachrichten, Volume XVII, page 300. The data made use of are:—

The result is

$$\log \frac{D}{a} = 8.2170139.$$

He gives as the resulting constant part of the sine of the parallax

and the changes in the constant produced by small changes in the data:-

The development subsequently given leads to a constant of

a result o".03 greater than that stated by Hansen.

In comparing the parallaxes of Hansen and Delaunay the only element which will materially affect the result is the constant of parallax: a comparison of the different values of this constant, which have been recently obtained, will therefore be of interest. Three distinct methods of obtaining this important element have been applied.

(α). The theoretical method founded on Kepler's, third law as expressed in the theory of gravitation, and derived fundamentally from the equation

$$a^3 n^2 \equiv m + M$$

a being the mean distance of the moon, which is immediately connected with the parallax; n the mean motion, of the value of which there is no doubt, and m and M the masses of the moon and earth, expressed in appropriate units, the determination of which is the most doubtful part of the problem.

- (β). Measures of the moon's position made at two distant stations, and reduced $t\theta$ a common moment.
- (γ) . Meridian declinations of the moon made at the same station, and reduced on the hypothesis that the undisturbed geocentric orbit is a great circle.

The last method is not well adapted to give a certain result, owing to the constant errors with which measures of absolute declinations are affected. We shall therefore confine our consideration to the first two.

Two determinations by method (α) , that of Hansen, just quoted, and that of Adams in the *Monthly Notices*, Vol. XIII, and the British *Nautical Almanac* for 1856, are available.

The data used by Mr. Adams are:—

^{*}This value in English feet was kindly communicated by Mr. Adams himself, not being explicitly quoted in his published paper.

The resulting value of the constant of the sine is given as 3422".325. To compare it with Hansen we have:—

Change in D = 0, - - - change of
$$\pi_0 = 0$$

" P = + 0^{m m}.046, " " - 0".05

" $\frac{1}{m} = + 1.5$, " " + 0".26

Applying the correction +0"21 to Hansen's constant, the result would be either 3422".27 or 3422".30, according as we accept Hansen's original constant or that deduced from the data of his lunar tables. The latter is probably the value to be preferred.

If we reduce the values both of Hansen and Adams to Hansen's data, according to the system already adopted, the results will be:—

The constant of reduction from the sine to the parallax itself is + 0".157.

β. The most recent determinations of the moon's parallax by measurement are those of Mr. Breen (Memoirs R. A. S. XXXII) and of Mr. Stone (Ibid. XXXIV). Both are founded on Cape observations and both lead to a constant of

It is not distinctly stated whether this is the constant of the parallax itself or of its sine. Mr. Breen's introduction (l. c. pp. 116, 117) seems to imply that he used Mr. Adams's expression for sine parallax as the parallax itself in reducing the Cape observations. But, in the reduction of the Greenwich observations, he applies Adams's correction to the parallax of Airy's lunar reductions, which gives the parallax itself. To put the matter into another shape: On p. 116 Mr. Breen has 3422".32 as the constant of parallax. On p. 132 he has a constant correction of o".68 to the Airy-Plana parallax, of which the constant is 3421".80, which gives 3422".48 as the constant of parallax.

We shall probably make a near approximation to the truth by assuming that Mr. Breen's mean provisional constant was 3422".40, and as he deduced a correction of + o".38 this would give us his result:—

Mr. Stone also finds a correction of +o''.38 to Mr. Adams's parallax. This would give:—

The evidence is therefore in favor of a positive correction to Hansen's constant; but, in accordance with the practice in other parts of this paper, the results as printed are all founded on Hansen's fundamental data.

In the Table V the columns contain-

- (1). The value of $\frac{D}{a}$. $\frac{1}{1-e^2}(1+e\cos f)$, expressed in seconds of arc.
- (2). The product of this quantity by $-w + \frac{w^2}{2}$
- (3). The coefficients for Hansen's sine parallax, formed by adding (1) and (2). If the parallax itself is required, it may be found by adding the reduction from the sine to the parallax itself, namely:—

+ 0".157 + 0".025 cos
$$g$$

+ 0".004 cos $(g - 2g^1 + 2\omega - 2\omega^1)$
+ 0".004 cos $(2g - 2g^1 + 2\omega 2\omega^1)$.

- (4). The coefficients of Delaunay's sine parallax, so far as actually computed by him. As he stopped at the terms of the fifth order, the hundredths of seconds are not always definitive.
- (5). The same, with the addition of quantities estimated by induction to represent the omitted terms of higher orders.
- (6) The corrections applied in the preceding column to obtain the most probable values of the coefficients.
 - (7). The deviation of Hansen's coefficients from the second set of Delaunay's.

As some of Delaunay's terms are doubtful from the insufficient convergence of his series, the coefficients of Adams's parallax, found in the *Monthly Notices R. A. S.*, Vol. XIII, p. 263, have been added for comparison. It will be seen that they agree closely with the coefficients of Hansen, though derived independently of them.

Table I.—Value of $n \delta z$, from Hansen, together with its powers.

			n ó z	(n ð z) ²	$(n \delta z)^3$	$(n \delta z)^4$				n ổ z	$(n \wedge z)^2$	$(n \delta z)^3$	$(n \delta z)^4$
g	<i>s</i> ′		sin.	cos.	sin.	cos.	g	g		sin.	cos.	sin.	cos.
						·	2ω -	- 2ω′		·			
0	o		0.000	+60.860	0.000	+ 0.035		-4	_	0.109	- 0.077	- 0.004	
I	o		0.000	+46.934	- 0.008	+ 0.043	1	-4 -4	+	7.035	- 0.846	- 0.028	•
2	o	_	4.604	+ 0.899	- 0.004	+ 0.009	2	-4	+	7.738	- 0.718	- 0.014	•
3	0	_	0.176	+ 0.015	- 0.002			•	+	0 287	- 0.122	- 0.003	•
. 4	o	_	0.009	+ 0.002			3	-4 -4	+	0.011	- 0.006		•
					<u>`</u>	•••							
-3	— 1	+	0.029	- 0.003			٥	-5		• •	- 0.003		
- 2	— 1	+	1.097	- 0.005	+ 0.029		I	-5	+	0.240	- 0.035	- 0.002	•
- 1	— t	+	73.234	+ 1.557	+ 0.288	+ 0.002	2	-5	+	0.329	- 0.037	- 0.002	•
0	-1	+	657.468	+ 5.093	+ 0.638	+ 0.005	3	5	+	0.012	- 0.007	• •	
1	<u>-1</u>	+	111.681	+ 3.177	+ 0.320	+ 0.001	2ω						
2	— 1	+	1.215	+ 0.125	+ 0.042	+ 0.001	. :		ļ		0.000	ł	
3	— 1	+	0,026	+ 0.005	+ 0.001	١	I	2			- 0.003		•
-		-				i	2	2	+	0.002	0.000	<u> </u>	
- 2	- 2	+	0.002	- 0.017	+ 0.001		— I	I	İ		+ 0.003		•
- 1	-2	+	0.800	- o.185	+ 0.014		0	I	+	0.037	- 0.039	- 0.001	•
0	-2	+	7.319	- 0.953	+ 0.034		I	I	-	0.351	- 0.210	- 0.012	•
I	-2	+	2.159	- o.233	+ 0.023		2	I	+	0.127	+ 0.012	- 0.006	٠,
2	-2	+	0.035	– 0.030	+ 0.003		3	I	+	0.001	+ 0.003		. `
3	-2		• •	- 0.001	• •		— I	O	+	0.070			
- I	-3	. +	0.011	- 0.005		·	0	0	+	5.846	- o.266	- 0.024	
0	-3	+	0.075	- 0.019	• •	• •	I	0	_	85.224	+ 1.633	- 0.072	
ı	-3	+	0.044	- 0.007	•	• •	2	o	+	4.303	+ 0.911	- 0.025	
		_	0.044	0.007			3	0	+	0.094	+ 0.073	+ 0.001	
~	- 2ω′						4	0	+	100.0	+ 0.003		
							· -		_				
- I	0			+ 0.003	- 0.001		0	— I		0.046	+ 0.001	- 0.001	••
0	0	_	0.091	+ 0.013	- 0.010		. 1	- I	+	0.279	+ 0.295	+ 0.005	•
1	0	—	2.524	+ 0.082	— 0.03y		2	— I	+	0.119	+ 0.077	+ 0.005	•
2	o	_	0.052	+ 0.010	- 0.024		3	<u>-1</u>	+	0.003	+ 0.003	+ 0.001	
3	o	i		- 0.002	- 0.004		1	-2			+ 0.003		•
				· <u>-</u> [2	-2	+	0.004	+ 0.002		•
- 1	— t	—	0.040	!	+ 0.001		===.=:	2ω'			.:		
0	— 1	+	3.665	+ 2.324	+ 0.016	+ 0.007	_					! 	
I	— I	_	27.620	+15.414	+ 0.085	+ 0.015	— I	4	1		- 0.001		•
2	I	_	23.006	+ 8.499	+ 0.045	+ 0.012	0	4	_	0.114	- 0.017		•
3	— 1	-	1.337	+ 0.981	+ 0.007	+ 0.003	-3	3			- 0.002	•	
4	1	-	0.066	+ 0.041			-2	3	+	0.012	+ 0.010		
_				0.000			– 1	3	+	0.604	_ o.o69	+ 0.002	•
- 2	-2	_		- 0.003			О	3	_	3.419	- o.346	+ 0.001	
- 1	-2	_	1.893	- 0.085	+ 0.007	• •	1	3	_	0.152	- 0.036	100.0	
•	-2	-	41.648	+ 0.395	+ 0.762	+ 0 000	-		+	0.005	+ 0.002		•.
ı	-2		4466.992	+ 1.867	+ 2.381	+ 0.002	-3	2	+	0.162	+ 0.038	+ 0.003	•
2	-2		2144.995	+ 1.494	+ 1.750		-2	2	+	10.938	- 0.756	- 0.003 - 0.021	•
3	-2	+	60.020	+ 0.420			-1	2	—	81.905	- 0.730 - 1.779	- 0.021	•
4	-2	+	2.083	÷ 0.071	+ 0.018	• •	0	2 2	1	4.722	+ 0.116	- 0.071 - 0.022	•
5	-2	+	0.084	+ 0.001	• •	• •	I 2	2	_	0.075	- 0.110	- 0.002	•
U	-2	+	0.001										- <u>·</u> ·
- J	-3	_	0.082	- 0.006			-2	I	_	0.006	- 0.005		•
0	-3	_	2.352	- 1.437	+ 0.061	- 0.005	— ī	I	-	0.195	+ 0.006	- 0.004	•
ı	-3	+	198.103	—14.857	+ 0.216	- 0.015	0	I	+	2.064	+ 0.271	- 0.007	•
2	-3 -3	+	155.047	- 9.149	+ 0.202	- 0.011	1	1	-	0.043	+ 0.058	- 0.002	
3	~ 7	+	5.166	- 1.341	+ 0.059	- 0.003	2	1			+ 0.003		
A	- 3	+	0.198	- 0.047	+ 0.003		0	0	+	0.012	- 0.002	i • •	
*	- 3	+ 1	0.009	~ 0.001			ő	-1	١.			+ 0.003	
	3	, T	J. 500y	2.501			. ~	•	1		1 .	1	

Table I.—Value of $n \delta z$, &c.—Continued.

					,				
	ม ก็ ร	$(n \delta z)^2$	$(n \delta z)^3$	$(n \delta z)^4$		n d s	$(n \delta z)^2$	$(n \delta z)^3$	$(n \delta s)^4$
8 S'	sin.	cos.	sin.	cos.	g g'	sin.	cos.	sin.	cos.
2ω + 2ω'	.,	"	,,	,,	ω + ω΄	.,		"	"
0 2		+ 0.007			0 0	+ 0.019	- 0.007	• • •	
, I 2 —	0.014	- 0.033			1 0	+ 0.024	- 0.001	· · ·	· · · ·
2 2 +	0.006			- -	3ω — ω΄				
$\omega = \omega'$					2 0		+ 0.007		
0 1 +	0.007	+ 0.010			1 -1		- 0.002		
_ r r —	0.031	+ 0.052	10.001		2 - 1	+ 0.037	- 0.069	- 0.001	
2 1	· · · · · · ·	+ 0.007	• . • .		3 — 1	+ 0.010	- 0 007		
-ı o +	0.290	- 0.013	+ 0.002		1 -2	-	- 0.001		
0 0 +	0.316	- 0.099	+ 0.017		2 —2		- 0.002		
1 0 +	17.566	- 0.382 - 0.011	+ 0.019 + 0.005		$\omega = 3\omega$:_		
	0.259				1 -2		- 0.008		:
0 -1 -	0.564 11.400	-0.021 -2.709	- 0.005 - 0.052	- 0.001 - 0.002	2 -2		+ 0.002		
1 -1 -	121.335	- 1.631	- 0.113	- 0.002	o -3		+ 0.021	- 0.001	
2 1	1.619	– 0.163	- 0.042		1 -3	- 0.324	+ 0.057	+ 0.001	
3 -1 -	0.037	- 0.012	- 0.001		2 - 3	+ 0.005	- 0.001		
-1 -2 -	0.009	+ 0.006	0.001		1 -1		+ 0.001		
0 -2 -	0.147	+ 0.343	- 0.016		 -	- -			
1 -2 -	0.562	F 0.476	+10.01	• •	10-10				
2 -2 -	0.081	+ 0.074	- 0.001		1 -2		+ 0.002	• •	• •
3 -2 -	0.006			<u> </u>	2 -2 3 -2	- 0.033 - 0.018	+ 0.051	- 0.002	• • •
0 -3 -	0.007	+ 0.012	+ 0.001			0.010	+ 0.002		
<u>r -3 +</u>	0.011			·	0 -3	+ 0.042	- 0.066	+ 0.035	
<u>3ω – 3ω΄</u>					2 -3	- 0.350	+ 0.672	+ 0.269	- 0.002
2 -1		+ 0.003	+ 0.001		3 -3	- 0.608	+ 0.917	+ 0.260	- 0.001
3 1	•	+ 0.002	100.001		4 -3	- 0.236	+ 0.323	+ 0.085	
0 -2	. :	— o.co7			5 -3	- 0.023	+ 0.028	+ 0.010	•
1 -2 -	0.038	- 0.011	- 0.003		o -1	- 0.026	+ 0.036	- 0.001	
2 - 2 + 3 - 2 +	0.272 0.123	- 0.110 - 0.201	- 0.014 - 0.007	•	1 -4	+ 0.886	+ 0.924 - 17.890	+ 0.013 + 0.066	- 0.010 - 0.039
4 -2 +	0.000	- 0.000			3 -1	+ 30.010 + 35.723	-46.370	+ 0.077	- 0.010
o -3 -	0.002	+ 0.008	+ 0.001		4 -4	+ 10.683	-12.420	+ 0.035	- 0.018
1 -3 -	1.092	+ 0.210	- 0.011		5 -4	+ 0.775	- 0.665	+ 0.006	- 0.003
2 -3 -	3.154	+ 2.708	- 0.019	+ 0.003	6 -4	+ 0.048	- o.o33		
33 +	0.621	+ 1.279	- 0.017	+ 0.001	7 -4	+ 0.003	- 0.002	:	· ·
4 -3 +	0.018	+ 0.053	- 0.00 2		o —5		+ 0.001		
5 -3 +	0.001				15	+ 0.017	+ 0.079	- 0.020 - 0.246	- 0.001 - 0.004
1 -4 -	0.066	+ 0.018	+ 0.005	• •	2 -5 3 -5	+ 2.666	- 4.31T - 5.544	- 0.259	
2 -1 - 3 -1 +	0. 229 0.078	+ 0.150	+ 0.000		3 -5	+ 1.508	- 1.834	- 0.094	- 0.004
1 -1 +	0.003	+ 0.006	+ 0.001		5 -5	+ 0.118	- 0.112	- 0.013	• •
2 -5 -	0.012	+ 0.001			6 -5	+ . 0.006	— v.oo6	·	
3 -5 +	0.007	+ 0.004			1 -6		+ 0.001	- 0.002	• • :
$\omega + \omega'$	-	· -	=		2 -5	- 3 151		- o.o26	
					3 -6	+ 0.296	- 0.406	- 0 034	100.0 +
. 1 2	· · · · ·	+ 0.007	• •	_ · _ ·	4 -6 5 -6	+ 0.125 + 0.010	- 0.158 - 0.010	-0.013 -0.002	
-1 I		- 0.001				-	· —	i - 	- -
0 1 +	0.050	+ 0.015	+ 0.002	• •	2 -7 3 -7		- 0.012 - 0.022	- 0.001 - 0.002	: : i
1 1 +	0.757		+ 0.002		3 -7 ' 4 -7 '	•	- 0.009		
!				•	' '		<u>.</u>	l	

TABLE I.—Value of noz, &c.—Continued.

	-	1						-			I	
	_,	nos	(12 S z)2	$(n \delta z)^3$	$(n \delta z)^4$,		$n \delta z$	$(n \delta z)^2$	$(n \delta z)^3$	$(n \delta z)^4$
g	g'	sin.	cos.	sin	cos.	8	gʻ		sin.	cos.	sin.	cos.
40-	2ω'	,,	' - 	"		6ω-	- 6ω′		,,		·	
2	-1	+ 0.0	1	- 0.008		2	-5			- 0.002	. — 0.001	
3	-1		_	- 0.004		3	-5	_	0.001	+ 0.011	+ 0.011	- 0.003
4	— 1					4	-5	_	0.011	+ 0.028	+ 0.022	- 0.005
						5	-5	_	0.008	+ 0.018	+ 0.014	- 0.003
2	-2 -2	+ 0.0	-	- 0.004		6	-5			+ 0.004	+ 0.002	
3	-2	- 1.0 - 0.6	.	+ 0.021		2	-6		0.009			
3	-2	+ 0.0	1	+ 0.026		3	-6	+	0.285	-0.013	+ 0.015 - 0.508	• •
						4	-6	+	0.538	- 1.082	- 0.749	• •
I	-3	+ 0.0		100.0		5	-6	÷	0.334	- 0.610	- 0.381	• •
2	- 3	- 0.0		+ 0.009		6	-6	+	0.084	- 0.138	- 0.079	• •
3	-3	- 0.0	.	+ 0.008		7	-6	·	0.000	- 0.012	- 0.006	• •
4	<u>-3</u>	+ 0.0	02	+ 0.002	:_	· :_		·			'· ——	
2	-4		. + 0.003			2	-7		• •	- 0.001	+ 0.002	
3	-4		. + 0.003			3	-7	+	0.037	- o.o88	- 0.070	+ 0 003
2ω —	441	,			·	4	-7	+	0.085	- 0.176	- n.126	+ 0.005
26 -	4ω΄				•	5	-7	+	0.061	- 0.116	- 0.076	+ 0.003
0	- 3		0.001	+ 0.001		6	-7	+	0.016	- 0.029	- 0.017	• •
τ	-3	- 0.0	- 1	+ 0.009		7	7		<u>·</u> ···	- 0.002	- 0.001	
2	-3	- 0.0	12 + 0.027	+ 0.001	•••	3	-8			- 0.007	- 0.005	
0	-4	+ 0.0	20 - 0.086	100.0		4	-8			- 0.016	- 0.012	
1	4	+ 0.2	14 - 1.834	- o.o28	- 0.002	5	-8			- 0.011	- 0.007	• •
2	-4	+ 0.2	28 — 0.628	- 0.025		6	8 			- 0.002	100.0	
3	-4	- 0.0	66 + 0.090	- o.oo6		6ω-	- 1ω'					
4	, — 1	_ o.o	05 + 0.001				<u> </u>		•	!		
	-5		0.006	- 0.001	1	2	-4			- 0.001	- 0.002	
1	-5	+ 0.0		- 0.011		3	-+	-	0.011		+ 0.028	• •
2	-5	+ 0.0	1	- 0.007	1	4	-4	_	0.016	+ 0.0038	+ 0.027	
3	- 5	_ o.o	- I			5	-1		0.005	+ 0.009	7 0.000	<u> </u>
	-6					3	-5			+ 0.003	- 0.003	
1			0.008	• •	• • •	4	- 5			+ 0.005	+ 0.003	
	<u></u> 6	<u> </u>	- 0.000	<u> </u>		1ω-	- 6ω'					
5ω-	- ς ω΄	:			i	<u> </u>		1			0.001	
3	-4		0.000	- 0.006		1	-6		0.003	- 0.001 - 0.017	- 0.001 - 0.030	
4	-4		0.010	- 0.006		2	-6 -6	+	0.003	- 0.017	- 0.030 - 0.025	• •
5	-4		0.002	100.0	١	3	-6	. +	0.005	- 0.004	- 0.004	• •
	<u></u>	i	- 	.,	+ 0 00:	5	-6	т		+ 0.002	+ 0.001	
2	—5 — 5		· + 0.026	+ 0.003	+ 0.001					l		
3	—5 —6	- 0.0	-	+ 0.015		2	—7				- 0.004	
4	-5 -5	- 0.0 + 0.0	•	+ 0.012		3	- 7		<u> </u>	- 0.004	- 0.001	
5	<u>-5</u>		·	.'								
2	-6	İ	. + 0.002									I
3	-6	– 0.0	1	+ 0.004	· ·					:		!
4	-6	- 0.0	-	+ 0.005	· ·							
5	-6	+ 0.0	02	+ 0.001						İ	!	
		i	· 1	1	1	ı	•			1	_	

Table II.—Principal parts of Hansen's Ecliptic Longitude, with the Coefficients of the Concluded Longitude.

					n ô z ×		(n & z)	₃ ×	$(n \delta z)^3 \times$			Terms in	el Co-
g	<i>g</i> '	s S ₀	($(e,g)_1-1$	R _{1,1}	s S _i	(e, g 2	R _{1, 2}	(e, g) ₃		Sum.	Ecliptic Lon- gitude.	Principal Co.
				"	,,	, <i>,</i>	,,	,,	,,		,,	,,	
I	0	- 1.10	3 –	.253	169	+.283	- 3.493	+.003		. —	2.526	+ 22637.150	· e
2	О	- 1.05	8 –	.010	017	+.044	- 1.766			. —	2.807	+ 768.858	ı e
3	0	11	7 –	.253	002	+.005	252			. —	.619	+ 36.112	دع .
4	0	01	o . –	.027			028			_	.065	+ 1.931	. 4
5	0		. , -	.002			003			_	.005	+ .113	•
6	0	•	• ,									+ .007	
-5	— 1		. +	.003						• •	.003	+ .003	
-4	1		. +	.038			100. +	∴ .		+	.039	+ .039	
-3	-1	00	ı +	.515	• •		+ .008			+	. 522	+ .551	, دع
- 2	— 1	.01	2 +	• •		003	+ .063		001	+	6.569	+ 7.666	
- I	— 1	02				012	+ .152		007	+	36.674	+ 109 908	
0	– 1	+ 2.18	7 +	10.157		+.003	+ .045		006	+	12.386	+ 669.852	e'
1	— 1	, + •∩3	4 +	36.421		+.011	143		007	+	36.319	+ 118.000	
2	— 1	00	9 +	8.625			107		005	+	8.504	+ 9.719	es .
3	-1	00	2 +	.665			o18		001	+	.644	+ 670	وع
4	— 1		• †	.019			.002			+	.047	+ .047	
5	— 1		.:+	.003	· • •					+	. 003	+ .003	•
- 3	-2	•	. +	.005			002			+	.003	+ .003	•
- 2	-2		• ' +	.072		· • •	009			+	.063	+ .065	•
- I	— 2		. +	.410			026			+	. 384	+ 1.184	
0	-2	+ .02	7 , +	.163	• •		002			; +	. 188	+ 7.507	ď
I	-2	•	. +	.407	· • •	100.+	+ .026		• •	, +	•434	+ 2.593	
2	— 2		. +	041.			+ .011			+	. 157	+ .192	
3	– 2		. +	.012		٠	+ .002			+	.011	+ :014	•
- 2	-3		. , +	100.						+	100.	100. +	•
- I	-3	•	. +	.004						÷	.001	+ .015	•
0	-3		. +	.003						; +	.003	+ .078	•
I	-3	•	. +	.001						+	.004	+ .018	•
2	-3		. +	.003						. +	.003	+ .003	•
ω _	2 6	i -											
- 1	0	!		.015	'					_	.015	015	
0	0		. –	.139	• •		+ .003			_	.136	230	
ı	o		· –	.008	• •		002			-	.011	- 2.535	ee
2	Ü	+ .00				•	003			_	. 136	188	
3	э									· —	.013	013	•
- 2	-1		. +	_			+ .014			+	.018	+ .018	
- 1	-1		. +	•			+ .126			+	.217	+ .177	
0	-1	+ .00	4 ' -	_			+ .457			· —	1.144	+ 2.521	e e
I	-1	04		1.067			+ .173		001	. —	-939	- 28.559	
2	-1		- 4 -		+ .004	+.037	405			_	1.446	- 24.452	e'
3	-1	+ .06				+.010	292			_	1.589	- 2.926	
4	-1					100.+	o65			_	. 226	292	
5	-1		. –				009			_	.024	02.1	
6	-1		. –				001			_	.002	002	
- 1	-2		. +							+	.005	+ .005	
- 3	-2		. +	-						+	.071	+ .071	
											•	-	

Table II.—The Moon's Longitude—Continued.

g	g'		s So			n ôs ×			(n δ z)	³ ×	(n δ s) ³ ×	_	Sum.	,	erms in	Principal Co- efficient.
				(e	$(g)_1-1$	R ₁ , ,	₅ 5 S₁	(4	,g) ₂ .	R _{1,2}	(e,g)3	 			gitude.	Prince
2ω-	- 2ω'		,,		,,	,,	, ,,	:	,,	"			,,	İ	.,	
— 1	-2	_	.013	+	15.102		011	+	.019	100.	014	+	15.082	+	13.189	دم
0	-2	+	.137	+	253.133	+ .003	+.003	+	.059	004	026	+	253.305	+	211.655	e ²
1	-2		3.301		115.652			+	.032	002	024	+	•	+	4585.954	e
2	-2	-2	23.322		248.293	166	+.016	! —	.041	004	028		224.748	+	2369.746	m ²
3	-2	_	2.653		134.633	006	003	. —	.046	003	023	+		-	191.921	•
4	-2	. –	.246	+	12.569	100. +	006	. —	.018	001	008	+	12.291	+	14.374	<i>e</i> 3
5	-2	-	.021	+	1,003		001	_	.001	• •	100.	+	.976	+	1.060	دم
6	-2.	_	.002	+	.C77				• •	• •	• • •	+	.075	+	.079 .005	
7	-2		• •	++	.0C5	• •		:	100.		• •	+	.005	+	.005	į ·
—3 —2	-3		• •	+	.043			: -	.012	· •		+	.031	+	.031	
-z -1	-3 -3	_		+	.548			_	.099		001	+	_	+	.475	
-1	-3 -3	-	.004	+	11.453	• •		_	.443		002	+	• • •	+	8.660	c2 e'
ī	-3 -3	· +	.150	+	8.399			_	.217		003	+		+	206.432	ee'
2	-3	·	1.000	+	11.147	007	035	+	.377	001	002	+	10.470	+	165.517	e'
3	-3		. 126	+	9.265		011	+	.306		003	+	9.431	+	14.597	ee
4	-3	_	.012	+	.921		002	+	.078		001	+	.984	+	1.182	ce c'
5	-3			+	.076			+	.011			+	.087	+	.096	
6	-3			+	.006			. +	100.			+	.007	+	.007	
-2	-4	'		+	.002			i			•	+	.002	+	.002	
-1	-4			¦ +	.023	• •		<u> </u>	.003	٠.		+	.018	+	.018	
0	-4			+	.415	· • • .		_	.026			+	. 389	+	. 280	· .
I	-4	+	.004	+	.419	· ·		. —	.013			+	.405	+	7.440	e e'8
2	-4	! —	. 033	+	.402		002	+	.020	• •		+	. 387	+	8.125	e'3
3	-4	-	.001	+	.452			+	.023			+	.471	+	.758	•
4	-4			+	.047			+	.006			+	.053	+	. 064	
5	-4		• •	+	.004							+	.004	+	.004	ļ •
0	-5		• • '	+	.013 .018			_	100.	• •	. • •	++	.012 .017	+	.257	
I	-5		• •	+				+	.001		• •	+	.017	т ; +	.344	•
2	- 5		• •	+	.014		• •	+	100.	• •		+	.020	+	.032	
3	-5		• •	+	.002			; `•		• •		+	.002	+	.002	! -
4	- 5		• •	•	.002			1				·				
2						+ .004				001		+	.005	, +	.005	
1	2	+	.002			+ .004	+.002			001		+	.004	+	.006	
2	2 2	_	110.			+ .004	,			001	•	+	.002	+	.002	[
3 0	7		.001	_		010	002	_	.005			_	.027	+	.010	
1	1	+	.084	+	.009	+ .152	+.011	+	.002	+.006	ı İ	+	. 264	_	.087	
2	1		1.054	<u> </u>	.019	+1.341	+.004	+	.005	+.012		+	290	+	.416	.
3	1	_	.115	+	.006	+ .366	+ 001	+	100.	+.005		+	. 264	+	. 265	.
4	1	_	.010			+ .052				+.001		+	.043	+	.043	
5	I	İ				+ .006					• • ;	+	.006	+	.006	
-2	0			+	.003			_	100.			+	.002	+	.002	
-1	o			+	.001		100.+	-	100.			+	,001	+	.065	
0	0	+	1.180	-	4.657	009	+.015	+	.049			-	3.424	+	1.083	I * e*
1	0	_	.926	+	.558	002	+ 263	+	.031	+.087	· • •	+	.014	_	39.583	I2 e
2	0	_	.053	_	4.650		+.130	_	.042	+.264	!	_	4.351	-	411.674	I2
3	0	+	.049	_	.084		+.005	_	.032	+.158		+	.096	· —	45.091	I2 e
4	0	+	.007	_	.002	+ .009	001	_	,006	+.035		+	.042	_	3.997	I3 62
5	0					+ .002	• •	_	100.	800.+ 100.+	! • •	+	.009 .001	. -	. 329 . 026	•
6	0			1				ı		- 001	1	+	.001	_	.020	

TABLE II.—The Moon's Longitude—Continued.

	 g'	 	 		n 6 s ×		ı - I	(n d s)	3 ×	(π δ z)³ ×	!	Sum.	1	erms in	Principal Co- efficient.
•			(e,	g)1 – 1	Rii	s S ₁	(e	· g)2	R _{1,2}	(e, g)3	! !			itude.	Princi
2	ω			"	, <i>"</i>		l L	,,	,,	.,	ı	"	ĺ	"	
; -1	— I		i +	.004			+	100.		• •	+	.005	+	.005	•
. •	— 1	007	+	.016	+ .006	+.002	+	.008			+	.025	+	.071	•
1	— 1	144	+	.009	074	+.005	+	.002	+.003	٠.	-	. 199	+	.080	•
2	<u> </u>	+ 1.104	+	.016	-1.324	+.005	_	.009	+.010		-	. 198	_	.078	•
3	-1	+ .123	+	. o u8	444	100.	<u> </u>	.002	+.009		. —	. 307		. 304	•
4	-1	010. +	İ		065		l		+.002		. —	.053	_	.053	•
5	-1		ł		007		1				_	.007	_	.007	•
1	-2	002]		100. —		i				<u>'</u> —	.003	-	.003	
2	-2	+ .016	1		015	+.002	1		002		+	100.	+	. ბი5	
3	-2	+ .003	1		007				001		-	.005	_	.005	
2 4	., '		1								i				
	-						İ								
-I	4		-	.007		. • •	1	• •	• •		-	.007	-	.007	•
0	4	+ .034	İ.		+ .015	001			002		+	.046	-	.068	•
I	4		-	.007	+ .017		į		100.	· • •	+	.009	+	.009	•
2	4				+ .002					· • •	+	.002	+	,002	•
-3	3		+	.002	· ·						+	.002	+	.002	•
-2	3		+	.020			-	.001			+	,016	+	.028	•
-1	3	+ .014	-	. 190	006	008	_	.010	002		_	. 202	1-	.402	:
0	3	+ 1.032	+	.025	+ .288	032	+	100.	018		<u>'</u> +	1.296	i —	2.153	e'
I	3	024	 -	. 187	+ .446	+.006	+	.010	035	' · ·	+	.216	+	.064	•
2	3	008	-	.022	+ .066	100.+	+	.003	011		, +	.029	+	.029	•
3	3		-	.002	+ .008		1		002		_ +	.004	+	.004	•
-4	2	٠.	+	.002			ı	• •			+	,002	+	.002	•
-3	2	100. +	, +	.028			_	.003		١	+	.026	+	031	•
-2	2	+ .008	+	. 291	003	005	, -	.028			¦ +	. 263	+	.425	
— r	2	+ .094	i –	4.504	117	100.	_	.019			_	4.577	+	6.363	I ² e
0	2	+23.660	' +	. 342	+3.794	+.016	+	.024	+.003	· • •	+	27.839	i —	55.262	Is
I	2	676	—	4.458	+9.628		-+-	.052	+.005		+	4.551	_	. 175	•
. 2	2	275	 -	. 564	+1.472		+	.003	+.002	1	+	.638	+	. 561	•
3	2	028	<u> </u>	.044	+ .167	• •					+	.095	+	.095	•
4	2	203	-	.003	810. +						+	.012	+	.012	٠,
5	2		İ		+ .002		i				<u> </u>	.002	+	,002	
-2	1		<u> </u>	.003			+	100.		•	_	.002	-	,008	•
-1	I	008	+	.113		+.006	· +	.007	+.002		+	. 120	 -	.075	•
0	I	505	_	.013	044	+.034	+	.002	+.016		_	.510	+	1.554	e'
I	1	020	+	.113	063	005	_	.008	+.035	1	+	.052	+	.009	-
2	I	003	+	.006	003	002	_	.003	+.013		+	.008	+	.008	
3	I		+	.001		· • •			+.002		+	.003	+	.003	
0	0	006	1			٠.	ı				ı —	.006	+	.006	•
1	o		!		005		1				<u> </u>	.005	-	.005	.
20+	. 2 W	 -				ĺ					1				
						 	'				ا د ا	~~	_	004	
2	3	003	İ	• •	+ .007		l	•	• •		+	.004	+	,004	•
3	3			• •	+ .002		!	• •	• •	• • •	+	.002	+	100.	•
0	2		+	100.	001	100.+		• •	• •		+	100.	+	100,	•
I	. 2	+ .016	İ	• •	031	004	ı	• •	002			.021	-	.034	•
2	2	180. —	-	100.	+ .160			• •	004		٠+	.074	+	.075	•
3	2	008			+ .036			• •	100.		+	.027	+	.007	•
4	2	¦ . • •	I	• •	+ .005		I	• •		· ·	! +	,005		000	•
2	1	100. +			004		I	• •			· -	.003	i -	.003	•
		<u> </u>	I						<u> </u>	<u> </u>			느 _		

TABLE II.—The Moon's Longitude—Continued.

8	g'		· S _o			n ős ×			(n & z)	2 ×	$(n \delta z)^3 \times$		Sum.		erms in	Principal Co- efficient.
•	•			(e,	g)1-1	R ₁ , 1	s Sı	(4	r, g)2	(R ₁ , 2)	(e, g)3		- 		gitude.	Princi effic
ω-	-ω΄		,,		"	"	"	!	,,	" 、	"		"		"	
0	I			_	.002			+	.002			•	.000	+	.007	
1	1						• •	l	• •		• •	1		-	.031	
2	I		• •		.002			i —	.002			. —	.004	_	.004	
-2	0		• •	+	.022		• •	i	• •	• •		, +	.022	+	.022	
-1	0	١.		+	.083			-	.001			+	.079	+	. 369	π,
0	0	+	.006	+ +	.981 .033			+	.010	• •	i • •	+	.977	+	1.293 17.601	πεε
2	0		• •	+	.965		• •	+	.002	• •		++	.035	+	1,235	π ε'
3	0		• •	+	.080	• •	: :	+	.003	• •		+	.976 .083	+	.083	π εε'
4	0		•	+	.006			١.			! : :	+	.003	+	.006	•
-3	-1			· -	.008		: :	_	.001	•		_	,000	_	.000	
-2	-1			_	.107	• •			.011		• •	_	.118	_	.118	
-1	_ī			_	1.083			_	.082			_	1.165	_	1.729	عے π
0	— t	_	.058	_	6.696		1	_	.045		100.+	_	6.798	l _	18.198	πε
I	-1	_	.947	_	.717	+ .002	007	+	.071		+.001	_	.697	_	122.032	π
2	-1	+	.020	_	6.704	·	002	+	. 055		+.001	_	6.630	-	8.249	πε
3	— 1	+	.002		-549			+	.012			_	.535	_	.572	T 24
4	— 1			_	.041			+	.002			_	.039	. —	.039	
5	— 1			. —	.003		!	ļ				_	.003	_	.003	
-8	-2			_	100.			+	.002			+	.001	+	1001	١.
-1	-2			-	.010			+	.007			_	.003	_	.012	١.
0	-2	_	.001	-	.032			+	.013			i	.020	_	. 167	
I	-2	-	.001	_	.013			-	.008			 	.022	_	. 584	πe'
2	-2			_	.032		+.001	. —	.015		• •	_	.046	-	.127	
3	-2			_	.007		· • •	! -	.004			—	.011	-	.017	
0	-3			+	. 002			+	.001			+	.003	_	.004	
I	-3							-	100.			-	.001	+	.040	
2	-3			+	.002		• •	—	100.			+	.001	+	100.	
3ω-	- 3 w'						İ				,	ļ				
0	-2			_	.001			<u> </u>	.002			_	.003	_	.003	
I	-2			+	.016			_	.013			+	.003	· —	.035	! :
2	-2			+	.005		oot	_	.006			_	.003	+	.270	:
3	-2		100.	+	.016			+	.012			+	.027	+	. 150	
4	-2			+	.008			+	.007			+	.015	+	.024	!
5	-2			+	.001			+	.001			+	,002	+	.002	
-1	-3			_	.005			+	.002		١	_	.003	! —	.003	
0	-3			_	.072			+	.017			-	.055	i —	.057	.
1	-3	-	100.	-	. 171		١	+	.080			-	.092	-	1.184	π
2	-3	+	.009		.026		100.	+	.029			+	.011	-	3.143	π.
3	-3	+	.018	_	. 176		+.006	-	.074			-	. 226	+	•395	π
4	-3	+	.003	+	.022		100.+	-	.045		· •	_	.019	-	.001	
5	-3	1		+	.003		• •	-	.008			_	.005	¦ —	.004	
0	-4	ĺ	• •	_	.005	• •		+	100			· —	.004	! —	.004	
1	-4			<u> </u>	.013			+	.005			_	.008	-	.074	
2	-4		• •	+	100.			+	.002			+	.003	-	. 226	
3	-4		• •	-	.013	• •		-	.004			I -	.017	+	.061	•
4	-4		• •	+	.004		• •	-	.003	• •		+	.001	+	.004	
2	—5 —6		• •						• •	• •			• •	-	.012	
1 3	—5		• •	_	.001				• •	• •		_	.001	+	.006	

Table II.—The Moon's Longitude—Continued.

 g	s'		 s S ₀	 ! !	,	ı őz ×			(n \delta z)	³X	(n \(\delta z^3 \) \times		Sum.	Te Ecli	erms in	incipal Co-
				(e,	g). — t	R _{1,1}	s S ₁	 	e,g)	R _{1, 9}	(e, g)3			g	erms in ptic Lon- itude.	Prince
<u>υ</u> +	ω'		,,	1	,,	,,,	! ! "		,,		,,		,,	j	,,	
2	2	+	.001	1			l	1		i		+	.002	+	.002	
-1	1	1		+	,006		١	+	.001			+	.007	+	.007	
. 0	1	_	.024	+	.042	+ .010	001	-	.002			+	.025	+	.675	
I	I	+	.034	+	.003	243	006	-	.001	·003		_	.216	+	.541	. !
2	I	+	.035	+	.042	063		+	.002	006		+	.010	+	.010	
3	I	+	.004	+	.003	010. —		1		002	i	_	.005	-	.005	.
i 1	o	! ;		+	.003			ľ				+	.003	+	.003	
0	0	İ		+	.002	002	٠.	!			¦		,000	+	.049	• :
I	0	İ		+	.003	+ .035		!		100.	• • !	+	.037	+	100.	
2	0	¦ —	.003	; +	.002	+ .006		i			i	+	.005	+	.005	
<u></u> 3ω-	_ ω′	i		1	İ	' 		i i		1	!			i		i !
2	0	+	.003	l	!	002		Į			1	+	100.	+	.001	
ļ	0	🕶	.003	i	• •			ı			!	_	.036	i <u>-</u>	.036	
3	0			1	•	035 007				.001	• • •	_	.007	_	.007	i : 1
I	-1	+	.003		.002	007	١	١	.002	٠ : :		+	.003	+	.003	1
2	- ī	<u> </u>	.025			+ .000				006	,	·	.022		.015	
3	- I	i	.010		.002	+ .246		+	.002	005	1	+		+	.245	i . i
1 4	-1	<u> </u>	100.	+	.001	+ .043		'		100.		+	.042		.042	
5	-1	İ				+ .005					i	+	.005	+	.005	i . i
3	-2	· —	,001	1		100. +	i]		100.+	1	+	100.	+	100.	i .
1) 		I		1	l	1			1					ĺ
ω		! !		ı			1	ĺ			1			1		!
<u>-1</u>	-3		100.	. —		+ .003	• • i	١.		+.001		+	.004		.001	•
0	-3	+	110.	. –	.018	+ .007		+	.002	005	i • • !	-	•	-	.003	.
I	-3	+	.017	1.		002		i		003		+	.006	<u> </u>	.318	•
2	-3	ļ			.018	100. +		١ -	. 63		· · ·	_	.019		.014 .001	! • i
	-3	l	• •	. –	100.	• •		1		• •	1	_	.001	!	.001	•
140-	4ω'			!		l	1	ļ		i	! .			1		1
I	— 2	ı		¦ —	.002		٠.	+	.002		!		.000	1	.000	• i
2	-2			<u> </u>	100.			+	100.				.000	¦ —	.033	!
3	—2	1		! —	.002			-	.002			_	.004	<u> </u>	022	. ;
1 4	-2	!		¦ —	100.			! -	100.		!	_	.002	· —	.002	
0	-3	!		+	100.			' +	100.			+	.002	! +	. 002	¦ •
1	-3	† 1		. —	.022			¦ +	.022		003		.003	+	.039	
2	-3			<u> </u>	.032			+	.028	٠.	002	_	.006	-	. 356	i •
3	-3	+	.007	_	.032		+.007		.010		004	-	.032	-	.640	100
4	-3	' +	.005	_	.037	• •	+.005	-	.027		003	_	.057	: -	. 293	.
. 5	-3	+	100.	_	.016	· • • •	. • •	_	.013		100.	-	.029	_	.052	1 .
6	-3	1	• •	_	.℃3	• • '	• •	_	.002		1	-	.005	-	.005	! •
-2	-4	I	• •	+	100.	• • •	• • •	_	.002		· · · ·	_	100.	-	.001	.
1-1	-4		• •	+	110.		• • •	_	.017		1	-	.006	_	.006	! •
0	-4		• • •	+	.172			_	. 174			_		— 	.028	نم
I	-4	_	.001	+	1.785	• •	+.002		1.495			+	. 291 . 728		1.177 30.768	2
2	-4	_	.003 .261	+	2.050	• • 1	+ .025	+	. 968	004	! • • '	+	2.703		38.426	
3	-4	_	.168	+	2.212		164	1	1.434	004		+	3.217	+	13.900	m ⁴
4	-4	_		+	2.117		104 029		-533	002		+	1.206	1	13.900	1
5	-4 -4	_	.030	++	.732	• • !	029 003		.086	•		+	. 173	i	.221	· .
1	-4 -4	_	.005	+	.093	• • !		+	.011			+	.020		.023	
7	•		• •	•	· · · · · · ·	• •			• •					•	3	

TABLE II.—The Moon's Longitude—Continued.

8	g'		· S _o		1	n d z ×			(n & z)	3 ×	(n & z) ² ×		Sum.	1	erms in	Principal Co- efficient.
•	•			(e, g	7)ı — I	R _{1,1} .	s S ₁	(e,	g)3	R _{1,2}	(e, g)3				ptic Lon- itude.	Princi
4ω-	- 4ω'		,,		,,	,,	"		,,	,,	"		" .	1	,,	
-1	-5			+	100.			_	.002			_	100.	-	100.	
0	-5 -5			+	.014			_	.017			_	.003	-	.003	
1	-5			+	. 163			_	. 141		+.003	+	.025	+	.072	
2	-5	+	100.	+	.235		+.002	-	. 161		+.003	+	.080	+	2.746	es e'
3	-5	-	.019	+	.230		021	+	.068		+.004	+	. 262	+	4.402	e e
4	-5	_	.018	+	. 244	• •	017	+	. 166		+.003	+	.378	+	1.886 .286	e'
5 6	-5	_	.003	+	.099	• •	003	+	.073	• •	+.002	+	. 168	+	.031	•
7	-5 -5		• •	+	.001			++	.001			+	.025	+	.002	•
, I	6			++	.010			_	.000		• •	+	.002	+	100.	•
2	-6			+	.017			_	.012			+	.005	+	. 156	
3	-6	_	100.	+	.016		001	+	.003			+	.017	+	.313	:
4	-6	_	100	+	.017			+	.012			+	.028	+	.153	
5	-6			+	.008			+	.006		·	+	.014	+	.024	
2	—7 ·			+	100.			_	100.			ĺ	.000		.000	
3	-7			+	100.							+	100.	+	.017	
4	-7			+	100.			+	100.			+	.002	+	.010	
4ω-	- 2ω'													ĺ		
3	0					+ .005						+	.005	+	.005	
4	o					100. +						+	100.	+	100.	
2	— 1	+	.002	+	100.	011				+.004		_	.001	_	.002	
3	-1	_	.011			+ .052	011			+.032		+	.062	+	.070	
4	-1	_	.009			+ .055	007	-		+.025		+	.064	+	.064	
5	-1	_	.002			110. +	001			+.007		+	.015	+	.015	
6	— 1					100. +				+.002		+	.003	+	.003	
— 1	-2			+	.001							+	100.	+	100.	
0	-2	_	100.	_	.003			+	.003			_	.001	-	100.	
I	-2	-	.012	_	.063		+.013	+	.053			_	.009	+	.006	•
2	-2	_	.012	_	.032	+ .578	003	+	.026	+.001		+	.558	-	•534	I² e
3	-2	+	100.	_	.060	-8.664		-	.050	+.004		_	8.769	_	9.370	I3
4	-2	+	.050	-	.037	-5.744		_	.029	+.001		-	5.756	=	5·743 .991	
5 6	-2 -2	++	.011	_		100.1—		_	-			_	·994 .124	_	.124	
7	-2 -2	_				— .126 — .011			: :	• •		_	.014	_	.014	
8	-2					001						_	.001	_	100.	
1	-3			_	.003			+	.002			_	100.	+	.001	
2	-3	_	100.	_	.003	+ .027	001	+	100.	002		+	.021	-	.023	
3	-3	+	.012	_	.003	- ·377	+.011	_	.002	030		_	. 389	-	.430	
4	-3	+	.011	_	.003	374	+.007	_	.002	025		_	. 386	-	. 384	
5	-3	+	.002			070	100.+			008		_	.075	-	.075	
6	-3					009				001		-	.010	_	.010	•
7	-3	ļ				100. —						-	100.	-	100.	•
2	-4				• •	100. +				· : •	• •	+	.001	+	100.	•
3	-4		• •			013				-:002	• •	-	.015	_	.015	•
4	-4	+	.001		• •	016			• •	002	• •	_	.017	-	.017	•
2ω-	- 4ω'										}					
0	-3	ŀ		→ .	.002	100. +		+	.002	002		-	100.		100.	•
I	-3	+	.006			100. +	008	+	100.	002	• •	-	.002	-	.025	•
2	-3	+	.004	. ــ ا	100.		004		.002		1		.003	-	.015	

TABLE II.—The Moon's Longitude—Continued.

	-	S _o	-		n δ z 🗙	-	-		(n d z) ³ ×	(n δ z) ³ ×				rms in	r ncipal Co- efficient.
\$ &'			(e, g	g)1 — I	Rı	. 1	Sı	(4	e, g)2	R _{1,2}	(*, g) ₃	1	Sum,		tic Lon-	Pr ncipal efficien
2 w - 4 w'		,, 1		"	,,		,,		,,	.,	,,	:	,,	. —	,,	
-2 -1						100		İ		+.001	1	+	.003	. +	.003	.
-1 -4	-	,001				014	002	I _	.010	+.026			.004	. —	.001	١.
o -1	_	.033	+	.013	- .	072	+.003	! -	.053	+.120	• •	-	.022	-	.002	•
1 -4	_	.275	+	.014		071	+.260	-	.015	+.096		+	.009	+	.223	. !
2 -1	-	. 143	+	.008	- ·		+.133	+	.053	+.023	• •	, +	.c56	_	.001	
3 -1	-	.011	+	.014			110.+	+	.024			+	.037	_	.029	•
4 -1		.001	_	.003						• •		; —	.006	·	110.	
5 -4		• • !			- .						• •	-	.002	' -	.002	i •
—I —5		• • •		• •		100				+.002		, +	100.	+	.001	•
o —5	_	.001	+	100.		007		i —	.005	+.011		_	100.	-	100.	1 .
t —5	_	.021	+	.002			+.023	ī -	.002	+.012		+	.006	+	.027	• i
2 -5	_	100.	+	.001		003	+.015	+	.005	+.003		+	.005	+	.035	• '
3 -5 1 -6	_	100.	T			•	± ~~:	+	.003			+	.001	. —	.000 100	1 :
1 -0				• •		•	100.+		• •			1	.000	1	.000	•
5ω — 5ω΄																1
2 -5			-	.003				! +	.003			1	.000	1	.000	1.
3 -5		'						+	100.			+	100.	· —	.055	1 . '
4 -5		• •	-	.003				. —	.003			-	.006	_	110.	! •
5 — 5		!				•		! -	100.		· • •	_	100.	+	, 006	•
3 -6	ı					•	• •	1			!	1		-	,006	•
4 —6		• •			•			1				ļ		_	100.	•
5 —6	1	• • !				•					i · ·			+	.002	• ¦
6ω — 6ω΄					i I		1				i	1		i		
3 -5		'			١.			4	100.			. +	100.	· _	.003	١. ١
4 -5								· +	100.			+	100.	_	.010	
5 —5					١.			_	.001			_	100.	_	,009	
1 -6			+	.002	١.			١ _	.004		+.002		.000	1	.000	! .
2 - 6			+	.018				_	.022		000.+	+	,002	+	.011	
3 -6			+	.031	١.			-	.032		+.008	+	.007	+	. 292	! . !
4 -6	-	.003	+	.034	١.		004	+	100.		+.008	+	.036	+	.572	
· 5 —6	-	.005	+	.035			004	+	.028		+.009	+	.063	+	.395	
6 -6	_	.002	+	.021			902	+	.020		+.005	+	.012	+	. 126	· '
7 -6			+	.006				+	.007		100.+	+	.014	+	.023	
2 -7			+	.002				_	.003		100.+		.000		.000	
. 3 -7			+	.005				; —	. 006		100.+		.000	+	.037	. !
4 -7			+	.006		•		, -	.003		100.+	+	.001	+	.089	•
5 -7		• •	+	.006		•			.001		100.+	+	.006	+	.067	•
6 —7		• • •	+	.001		•						: +	.004		.020	•
7 -7		• •	+	.001		•		•				, +	100.	+	100.	•
6 m - 1 m,											}			ļ		
4 -3					+.	100		i .		+.002	1	+	.003	+	.003	. i
5 -3					+ .					+.002		+	.003	+	.003	. i
3 -4			_	100.	+ .			· +	100.	+.004	1	+		, <u>-</u>	.005	. i
4 -4								_	.001	093		· -	.150	! _	. 166	
5 -4		!	_	100.				_	100.	116	!	! —	. 198	i —	. 203	.
6 -4						034		i		052		-	.086	-	.086	.
7 -4		• •			t .	007		ŀ		012		—	.019	1	.019	¦ •
8 -1		• •				•		1		002		· —	.002	. —	.002	.
				_				1			1	1		!		l

TABLE II.—The Moon's Longitude—Continued.

8 8'	s S.		n ð z ×		(n & z)	· *×	$(n \wedge z)^3 \times$	s	Sum.		rms in	Principal Co- efficient.
		$(e,g)_1-1$	R 1, 1	s Sı	(e, g) ₂	R 1, 2	(e g)3				tude.	Prince
6 ω-4 ω'	:		,,		,,	"	,,		"		,,	i i
4 -5			005			009		-	.014	-	.014	•
5 —5			009			013	!	-	.022	-	.022	•
6 -5			005			007		_	.012	١ –	.012	•
7 —5				• •	• •	002		. —	.002	-	.002	•
4 ω-6 ω'												
T -6						+.002		+	.002	+	.001	•
2 -6	003		100. —	+.005		+.002		+	.003	+	.003	
3 -6	004		100. —	+.005		+.002		+	.002	+	.005	•
4 -6	002			+.002					.000	+	.001	•
4 ω							:					
, 4 I	+ .002							+	.002		.000	•
2 0	+ .004		021	• • ;				_	.017	_	ю.	•
3 0	+ .002		+ .169			+.003		+	.174	+	.082	•
4 0			+ .020			+.002		+	.022	+	.422	•
. 5 O			+ .002					+	.002	+	.094	•
; 6 o										+	.013	•
4 I	002							-	.002		,000	•
5 1							• •		• •	+	100.	•
4 ω'								İ				
0 4	+ .002			001		002		-	.004	-	.004	•
ř 4						003		-	.003	-	.003	•
6 ω-2 ω΄												
4 -2			+ .002			+.003		+	.005	+	.002	•
5 -2			+ .002			+.002		+	.004	+	.020	•
6 -2										+	.013	•
7 —2										+	.002	•
8 ω-6 ω'												
5 -6						002		_	.002	-	.002	
6 -6			001			002		_	.003	-	.004	•
7 -6						002		_	,002	_	.003	•
5 ω-3 ω'												
3 -3			+ .002					+	.002	+	.002	•
4 -3			+ .007			+.006		+	.013	+	.013	
5 -3						+.004		+	.004	+	.004	
6 -3				!		100.+		+ .	.001	+	100.	•
	<u> </u>		<u> </u>			l	<u> </u>				·	

TABLE III.—Reduced Coefficients of Longitude, according to HANSEN and DELAUNAY

	g'	2.	Hansen.		eiaunay (1).		elaunay (2).	$D_3 - D_1$	Н-	- D ₂
			"				"			
1	o		22640.15	1	22640.15		22640.15	١		
2	0	+	769.06	+	769.12	+	769.06	- 6		0
3	o	+	36.13	+	36.16	+	36.12	- 4	+	1
4	o	+	1.94	+	1.96		1.94	- 2		0
5	o	+	0.11	+	0.12	+	0.11	- I		0
6	0	+	0.01	+	0.01	+	0.01	0		0
-4	— 1	+	0.04	+	0.01			! .		
-3	— t	+	0.55	+	0.52	+	0.56	+ 4	_	I
-2	-1	+	7.67	+	7.62	+	7.69	+ 7	-	2
— I	— I	+	109.92	+	109.79	+	109.85	+ 6	+	7
0	-1	+	669.85	+	669.57	+	669.76	+ 19	+	9
I	— 1	+	148.02	.+	147.46	+	148.43	+ 97	_	41
2	— 1	+	9.72	+	9.59	+	9.71	+ 12	+	1
3	- 1	+	0.67	+	0.63	+	0.66	+ 3	+	I
4	— r	+	0.05	+	0.04				l	•
-2	-2	+	0.06	+	0.07					•
— 1	-2	+	81.1	+	1.16	+	1.16	0	+	2
0	-2	+	7.51	+	7.49	+	7.46	- 3	+	5
1	-2	+	2.59	+	2.49	+	2.59	+ 10		0
2	-2	+	0.19	+	0.16			• '		•
3	-2	+	10.0	+	10.0			•.		•
I	-3	+	0.02	+	0.02					•
0	-3	+	0.08	+	0.14					•
I	-3	+	0.05	+	0.03					•
2ω-	- 2ω') 						
_I	o	_	0.01	_	0.01]		
0	o	_	0.23	_	0.16		•	•		•
1	o	_	2.54	-	2.22	_	2.35	+ 13	+	19
2	0	_	0.19	! _	0.15	i _	0.15	0	+	4
3	0		0.01	_	0.01		• • •		'	
-2	-1	+	0.02	i						
— 1	-1	+	0.18	+	0.07					
0	~ t	+	2.52	+	1.87	+	2.27	+ 40	+	25
I	I	<u>.</u>	28.56		29.50	· —	28.32	-1.18	+	24
2	– t	_	24.45	_	24.60	· —	24.50	- 10	· -	5
3	-r	_	2.93	_	2.96		2.96	0	_	3
4	- 1	_	0.29	_	0.27					
5	-1	_	0.02	-	0.02					
-3	-2	+	0.07	! ! +	0.06					•
-2	-2	+	0.95	+	0.91	+	1.00	+ 9	_	5
— 1	2	+	13.19	+	13.15	+	13.32	+ 17	_	13
o	-2	+	211.71	+	211.46	+	211.84	+ 38	_	13
I	-2	+	4586.56	+	4586.24	+	4586.44	+ 20	+	12
2	-2	+	2369.75	+	2369.74	+	2369.74	0	+	1
3	-2	+	191.95	+	192.00	+	192.00	О	_	5
4	-2	+	14.38	+	14. 0	+	14.40	o	_	2
5	-2	+	1.06	+	1.06.	+	1.06	0		o
6	-2	+	0.08	+	0.08					

Table III.—Reduced Coefficients of Longitude, &c.—Continued.

g	g'	Ä	Tansen.	D	elaunay (1).	D	Pelaunay (2).	$D_2 - D_1$	H - D ₂
2ω-	- 2ω'		,,		"		"		
-2	— 3	+	0.03	+	0.03	İ			
— 1	-3	+	0.48	+	0.49	+	0.49	o	- 1
0	-3	+	8,66	+	8.66	+	8.66	О	o
I	-3	+	206.46	+	206.54	+	206.34	- 20	+ 12
2	-3	+	165.52	+	165.55	+	165.55	0	– 3
3	-3	;	14.60	+	14.59	+	14.66	+ 7	- 6
4	-3	+	1.18	+	1.11	+	1.15	+ 4	+ 3
5	-3	+	0.10	+	0.08	1			
-1	-4	+	0.02	+	0.01	l			
0	-4	+	0.28	+	0.28	1			
1	-4	+	7.44	+	7.50	+	7.50	0	- 6
2	-4	+	8.13	+	8.06	+	8.06	o	+ 7
3	-4	+	0.76	<u> </u>	0.68	+	0.72	+ 4	+ 4
4	-4	+	0.06	+	C.05	'	• • •	' .	
ò	-5	+	. 0.01	•		i			
τ	-5	+	0.26	+	0.19	l			
2	5	+	0.34	+	0.25	1			
3	-5	+	0.03	+	0.01	l			
2 (-	•	- · · · · ·						: :
0	=. I	+	0.01	+	0.02				_
1		. <u> </u>	0.00	<u> </u>	0.09	1	• •		
2	1	+	0.42	+	0.42	+	0.42	0	0
3	1	+	0.42	+	0.42	1	0.42		
3 4	1	+	0.2/	+	0.04		• •	•	1
-1	0	+	0.04	+	0.05	+	 0.05		+ 2
0	0	+	1.09	+	1.39	+	1.38	- I	- 29
1	0		39.58	-	39.54		39.54	0	+ 4
2	0	_	411.60	_	39·54 411.63	=	411.63	0	– 3
	0			_	_		45.12	0	– 3
3			45.09 4.00	_	45.12	_	4.01	0	- T
4	0	_	-		4.01		0.33	0	
5 6			0.33	_	0.33				
0	0	+	0.03 0.07	_	0.03		• •	•	•
1	I I	+	0.07	ŀ	10.0	1	• •		•
2	-1		0.08	+	0.12		• •		•
		_	0.08	_	0.09	1	• •		
3	I	_	0.30	_	0.28	1	• •		·
4	-1 -1	_	0.05	-	0.04		• •		
5		_	0.01		• •	·	• •		•
	<u>v</u> . 4	_	10.0	+	10.0				_
0	4	_	0.07	_	0.07	1			
1		+	0.07	_					
_2	4	+	0.03		 0.03		•		
_	3	+		+	0.03	۱ ـ	0.27		
-1	3		0.40 2.15	, T	2.17	1 <u>T</u>	0.37 2.17	0	+ 3 - 2
0	3	+	0.06		0.05	-	2.1/		- 1
2	3 3	+	0.03	+ +	0.05	1		•	•
2	3	T	0.03		0.02	1	• •		

Table III.—Reduced Coefficients of Longitude, &c.—Continued.

g	g '	H	Tansen.	De	elaunay (1).	De	elaunay (2).	$D_3 - D_1$	H — D ₂
2 (ນ້		,,		,		,,		
-3	2	+	0.03	+	0.03	İ			_
-2	2	+	0.43	+	0.45	+	0.45	o	- 2
-1	2	+	6.36	+	6.37	+	6.37	o	– 1
0	2	<u> </u>	55.25	<u> </u>	55.20	-	55.17	- 3	+ 8
I	2	_	0.18	_	0.18	_	0.14	- 4	+ 4
2	2	+	0.56	+	0.54	+	0.54	0	+ 2
3	2	+	0.10	+	0.08	·	0.54		-
4	2	+	0.01	+	0.01		• •	•	•
-2	1	<u>-</u>	0.01	-	0.01	1	• •	:	•
—1	1	_	0.08	_	0.10		• •	ł	•
0	1	+	1.55	+	1.43	+	1.43		+ 12
1	1	+	0.01	+	0.01	F	+5	.	
2	1	+	0.01	l '		1			•
0	o	+	0.01	+	 0.02			•	•
		•	0.01	F	0.02	İ	• •	•	•
<u>2ω</u> +									
1	2	-	0.03		• •	1			•
2	2	+	0.08	+	0.08		• •	•	•
3	2	+	10.0	+	0.02	i		•	•
<u>u</u> –	· ω′								
0	I	+	0.01			ļ			•
I	1	-	0.03	-	0.04	ļ			•
2	I		0.00	-	0.01	1			•
-2	0	+	0.02	+	0.02				•
-1	0	+	0.38	+	0.26	Ì			•
0	0	+	1.33	+	0.87	+	0.87	0	+ 46
1	0	+	18.09	+	18.08	+	18.08	0	+ I
2	O	+	1.27	+	1.22	+	1.21	- r	+ 6
3	0	+	0.09	+	0.09				
4	0	+	10.0	+	0.01				
-3	I	_	0.01			1			•
-2	—1	_	0.12	-	0.09		• •	•	•
-1	· t	_	1.78	_	1.50	-	1.59	+ 9	+ 19
0	– 1	-	18.70	-	18.35	-	18.76	+ 41	- 6
I	-1	-	125.43		125.49	-	125.98	+ 49	- 55
2	—1	_	8.48	_	8.45	_	8.54	+ 9	- 6
3	—1	_	0.59	-	0.57	_	.60	+ 3	— I
4	— r	- .	0.04	-	0.04			•	•
— 1	-2	-	10.0	_	0.01			•	•
0	-2	-	0.17	_	0.14	-	0.14	0	+ 3
1	-2	-	0.60	_	0.55	_	0.56	+ 1	+ 4
2	-2	_	0.13	-	0.08			•	•
3	-2	-	0.02	_	0.01		• •	•	•
I	-3	+	0.01	+	0.05		• •	•	•
<u>3 ω –</u>									
I	-2	_	0.04	_	0.01		• •	•	•
2	-2	+	0.28	+	0.27		• •	•	•
3	-2	+	0.15	+	0.14		• •	•	•
4	-2	+	0.02	+	0.02	1			• [

Table III.—Reduced Coefficients of Longitude, &c.—Continued.

ď	8'	H	insen.		launay (1).		launay (2).	D ₂ -	- D ₁	Н-	- D
30-	3 6				"		n			1	
0	-3	-	0.06	-	0.04						
1	-3	-	1.22	-	1.17	-	1.23	+	6	-	1
2	-3	-	3.23	4	2.98	-	3.12	+	14 .	+	11
3	-3	+	0.41	+	0.57	+	0.54	-	3		13
4	-3			+	0.01	+	0.01	-	3	_	I
5	-3			2	10.0	182					-
1	-4	-	0.08	_	0.07						
2	-4	-	0.23	-	0.18						
3	-4	+	0.06	+	0.11						
4	-4			+	10.0						
2	-5	-	0.01								
3	-5	+	0.01	+	10.0						
			2302		2.03						
w +				100							
1	2			+	0.01						
-1	1	+	0.01			1				3	
0	1	+	0.08	+	0.04	1					
1	1	+	0.55	+	0.59	+	0.59		0	-	4
2	1	+	0.01	+	0.03			1			
0	o	+	0.05								
1	0	+	0.06								
30-	- w'									-00	
3	0	-	0.04	_	0.04		6 6				
4	0	_	0.01		0,01				10.7		
2	-1	+	0.02	+	0.02	1	2				
3	-1	+	0.25	+	0.24						
4	-1	+	0.04	+	0.04						
			15.50								
	3 ω'										
1	-2			+	0.01						
0	-3			-	0.03		2. 6		*		
1	-3	-	0.32	-	0.26	-	0.25	-	1	+	7
2	-3	-	0.01	-	0.01						
1	-4			-	0.02						
40-	- 4ω'										
2	-2	-	0.03	_	10.0		2 7				
3	-2	-	0.02	_	0.01						
1	-3	+	0.04	_	0.02				501		1
2	-3	-	0.36	_	0.67	_	0.67		0	-	31
3	-3	-	0.64	_	0.83	-	0.83		0	_	19
4	-3	_	0.29	Т.	0.29		0.30	+	1	_	1
5	-3	-	0.05	-	0.04	-					
-1	-4	-	0.01				1.				
0	-4	-	0.03*								
1	-4	+	1.18	+	0.96	+	1.08	+	12	+	10
2	-4	+	30.78	4.	30.52	+	30.72	+	20	+	6
3	-4	+	38.43	+	38.31	+	38.48	+	17	-	5
4	-4	+	13.90	+	13.89	+	13.98	+	9	E	8
.4	*		-3.90		-3.09	T	13.90	T	9	-	0

TABLE III.—Reduced Coefficients of Longitude, &c.—Continued.

8	g'	Ha	insen.		launay (1).		launay (2).	Da -	- D ₁	н-	- D
4ω-	-4 ω΄	4.5				_	"		-		-
5	 4	+	1.98	+	1.86	+	1.88	+	2	+	10
6	-4 •	+	0.22	+	0.18	+	0.20	. +	2	+	2
7	-4	+	0.02		0.18	т	0.20	. T	•	т.	-
1	-5	+	0.07	+	0.06				•		•
2	- 5	+	2.75	+	2.69	+	2.75	+	6		. ;
		+			4.28	! +	4.34	. +	6		0
3 4	—5 —5	, T	4.41 1.89	. +	•	+	1.71	. .		' + +	7 18
		+	0.29	+	1.67	! '		. T	4	•	10
5 6	-5	+	0.29	' +	0.20	1			•		•
2	-5 -6	, T +	0.16	+	0.01	1	• •		•	i	•
				+	11.0		• •	I	•		•
3	-6	+	0.31	+	O. 22		• •		•		•
4	-6	+	0.15	+	0.10	1	• •	i	•		•
5	-6	; +	0.02	; +	0.01	ì	• •	i	•		
3	—7	+	0.02	:		ļ	• •	1	•		•
4	-7	+	10,0	!	• •		• •	! İ	•		•
4ω-	-2 ω'				•						
2	— I	ļ.		+	10.0	:		!	•		
3	— 1	+	0.07	+	0.11	i	• •		•		
4	— 1	+	0.06	+	0.07	l .		:	•		
5	— r	+	0.02	+	0.01	ĺ		l	•		
I	-2	+	0.01	i		1		ļ			
2	-2	-	0.54	_	0.54	-	0.53	: —	I	+	I
3	-2	_	9.37	!	9.34	-	9.39	+	5	_	2
4	-2	_	5.74	_	5.73	¦ —	5.73	!	0	+	I
5	-2		0.99	! —	0.98	! 	00.1	+	2	_	I
6	-2	_	0.12		0.12	ĺ		1	•		
7	-2	_	10.0	_	10.0	İ		Į.	•		
2	-3		0.02	_	0.02			1			
3	-3	_	0.43	-	0.43	! -	0.43	L	0		0
4	-3		0.38		0.37	i					
5	-3	'	0.08	_	0.06	ı					
6	-3	_	0.01					i			
3	-4	_	0.02	· _	10.0	ł		ł			
4	-4	_	0.02	! -	10.0			1	•		
2ω-	-1ω'			İ		! 					
1			0.03	!	0.02	i					
2	-3 -3	_	0.03	1	0.02		• •		•		•
6	-3 -4		. 0.02	٠ ـ ـ			• •	i	•		•
•	-4			+	0.01			!	•	l	•
I	-4	+	0.22	+	0.34	+	0.34	1	0	_	12
2	-4			· -	0.01	_	10.0	!	0	_	1
3	-4	_	0.03	: -	0.06	l	• •	!	•		•
4	-4	_	10.0	_	0.01	ı		İ	•		•
1 2	-5 -5	+	0.03 0.04	` + , +	0.03 0.01	 +			0	+	٠
		7	0.04	, -r	0.01	l ' I	0.01		•	Т	3
	-5ω'			1				j			
3	- 5	_	0.06	-	0.02				•		•
4	-5		10.0	+	0.02		• •		•		•
5	-5	+	10.0	+	0.02	į		1	•		•
3	-6	_	10.0	1		1		l			

Table III.—Reduced Coefficients of Longitude, &c.—Continued.

g	g'	Ha	nsen.		launay (1).		aunay (2).	D2 D1	H – D ₂
6ω-	- 6ω'		,,		,,	i	,,	•	
4	-5	_	10.0	_	10.0				
5	5	-	10.0						•
2	-6	+	0.01						
3	-6	+	0.29	+	0.20	:			
4	-5	+	0.57	+	0.40	+	0.51	+ 11	+ 6
5	-6	+	0.40	+	0.26			•	•
6	-6	+	0.13	+	0.07				•
7	-6	+	0.02	+	0.01	!		١.	•
3	-7	+	0.04	+	0.01	: !		•	
4	-7	+	0.09	+	0.03				
5	-7	+	0.07	+	0.02			•	•
6	—7	+	0.02	1					•
6ω-	- 4ω'								
3	-4	_	10.0	_	10.0				•
4	-4	_	0.17	-	0.14			•	
5	-4	-	0.20	_	0.16	i			
6	-4	-	0.09	_	0.06				•
7	-1	-	0.02	_	10.0				
4	-5	-	0.01	_	10.0			••	•
5	-5	_	0.02	_	0.01				
6	-5	_	0.01			:			
4	ω								1
2	О	-	10.0						
3	o	+	0.08	+	0.08				
4	0	+	0.42	+	0.42	+	0.42	0	0
5	o	+	0.09	+	0.09				
6	0	+	0.01	+	0.01				
6ω-	- 2ω'					l i			
5	-2	+	0.02	+	0,02	!			
6	- 2	+	0.01	+	0.01	!			
5 w -	- 3ω'								
4	-3	+	10.0	+	0.01				

TABLE IV.—The Moon's Latitude.

g	8'	sin	I sin $(f+\omega)$		s	!	sin β	β-	– sin β		β Hansen.	1	β Delaunay (1).	L	β Pelaunay (2).
٠.		·	,,		,,	i			,,		,,		,,		,,
0	3	-	.002			! —	.002			; _	.002				
I	3	! -	.003			 _	.003			· —	.003	-	.003		
2	3	_	.001			! <u> </u>	100.			ı —	100.				
— i	2	-	100.			! -	100.			_	.001	-	.004		
0	2	_	.092	_	.016	_	. 108			· —	. 108	<u>'</u> —	.075	_	0.08
I	2	-	.317	+	. 262	_	.055			<u> </u>	.055	¦ —	.072		0.07
2	2	-	.064	+	.009	_	.055			! —	.055	-	.055	—	0.06
3	2	· —	.006				.006			! —	.006	_	.006	¦ —	0.01
— 2	1	<u> </u>	.004	- .	.020	-	.024			_	.024	-	.024	¦ —	0.02
 1	1	i —	.071	_	.233	-	. 304	_	100.	_	. 305	_	. 300	-	0.30
0	τ	_	5.089	_	-573	_	5.662	_	.005	. —	5.667	-	5.370	-	5.50
I	1	! -	30.067	+	23.578	_	6.489	_	.008	_	6.497	_	6.471		6.33
2	τ	-	0.610	+	1.279	_	5.331	_	.005	. –	5.336	_	5.254	i —	5.25
3	1	<u>'</u> —	.720	+	.080	_	.640			_	. 640	. —	.617	-	0.62
4	I	· —	.068	+	.005	_	. 063			_	.063	-	. 056	<u> </u>	0.06
5	1	' -	.001			_	.004			_	.001	_	.001		
-1	0		• :	-	.006		.006			_	.006		.006	i —	0.01
-3	0	_	.012	_	.080	-	.092			_	.092	_	. 095	_	0.00
— 2	0	-	.254	_	1.328	-	1.582	_	.003		1.585	_	1.590	-	1.59
— I	0	_	6.933	_	24.787	i —	31.720	-	.019		31.769	_	31.788	_	31.79
0	0	-	1020.614	+	21.919	! —	998.695	-	.991	_	999.686	_	999 - 747	_	999.75
I	0	+	18444.607		0			+	18.641		18463.248		18461.26	+	18461.26
2	0	+	1010.337	_	1.216	+	1009.121	+	1.052		1010.173	+	1010.233	+	1010.19
3	0	+	61.915	_	.055	+	61.860	+	•	+	61.901	+	61.990	+	61.99
4	0	+	3.983	_	.003	+	3.980	_	.001	+	3.979	+	4.013	+	4.01
5	О	+	. 263			+	. 263			+	. 263	+	.272	+	0.27
6	0	+	.019			+	.019			+	.019	+	.019	+	0.02
7	0	+	100.			+	100.			+	.001			1	0.02
-2	- I	+	.004	+	.021 .246	+	.025			+	.025	+	.024	+	
— I	-1	+	3.266	+	1.853	+	.311	+	100. 300.	+	.312 5.125	++	.316 5.014	; + . +	0.32 5.07
0	- I - I	; + : +	29.6.71	+	24.763	+	5.119 4.878	+	.002	+	4.880	+	4.955	+	4.80
I			8.151	_	1.396			+	.002	+	6.763	+	6.519	+	6.6
2	- I - I	+ +	.880	_	.083	++	6.755 .797	+	100.	+	. 798	+	.744	T	0.7.
3	-1	, T , +	.80.	_	.005	. +	.076	·T	.001	, T	.076	+	.061	+	0.00
4	- I	! 	.005	i	.005	+	.005			, 	.005	+	.004		•
5 0	- I - 2	· +	.040	+	. 017	· +	.057			· +	.057	+	.061	+	0.0
1	-2 -2	' +	.355	-	.336	' +	.019		•		.019	+	.037	i ∔	0.0
2	- z - 2	' +	. 142		.026		.116			+	.116		.099	+	0.10
3	- z - 2	· +	.018			1 +	.018			; <u>+</u>	.018		110,	+	0.0
<i>3</i>	- 2 - 2	+	100.			+	100.			+	100.				•
4	-2 -3		.001			+	.001			+	,004	+	.002	ì	
2	-3 -3	:	.003			+	.003			+	.003				
ω –	2ω΄		5		•	. •				1	,	I			
	- Ψ 	ŧ	200				.002			· _	.002	i			
- 2 •	o	_	.002			_					.015	۱_	. 007	_	0.0
- I	C	_	.015		• • •	_	.015			-	.104	_	.083	_	0.0
0	0		111.	+	.007	_	. 101				. 131	_	.122	_	0.1
1	0		.003	_	.128	_	.131		• •		.005	_	.006	_	0.0
2	О	1		_	,005	. —	.005			. —	5	. –	.000	_	0.0

TABLE IV.—The Moon's Latitude—Continued.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 - 0.01 - 0.07 - 1.00 - 12.18 - 0.82
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0.01 - 0.07 - 1.00 - 12.18 - 0.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0.07 - 1.00 - 12.18 - 0.82
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0.07 - 1.00 - 12.18 - 0.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1.00 - 12.18 - 0.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- o.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 1.49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 15.51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 166.57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 623.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 33.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 2.16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0.79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 7.50 + 29.68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 1.75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 0.12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 1.08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 0.06
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
1 4005 · . ·005 + .001004003	+ 0.03
1 4005 · . ·005 + .001004003	
100.	
0 3 + .029 002 + .027 002 + .025 + .016	+ 0.02
1 3142 + .026116 + .028088001	- 0.09
2 3021001022 + .010012012	- 0.01
3 3002002 + .002 0001	
$\begin{vmatrix} -1 & 2 \end{vmatrix} + & .005 \end{vmatrix} + & .003 \end{vmatrix} + & .008 \end{vmatrix} - & .002 \end{vmatrix} + & .006 \end{vmatrix} + & .011$	+ 0.01
0 2 + .506186 + .320031 + .286 + .291	+ 0.29
$\begin{bmatrix} 1 & 2 \\ - & 3.565 \\ \end{bmatrix} + \begin{bmatrix} .768 \\ - & 2.797 \\ \end{bmatrix} + \begin{bmatrix} .603 \\ - & 2.194 \\ \end{bmatrix} - \begin{bmatrix} 2.194 \\ - & 2.190 \\ \end{bmatrix}$	- 2.19
2 2601 + .043558 + .232326313	- 0.31
3 2063063 + .040023023	- 0.02
4 · 2 006 005 001 002	
0 1009009005	- 0.01
1 1 + .085008 + .077012 + .065 + .054	+ 0.05
2 1 + .006002 + .004 + .005	
3 1 + .001 + .001 + .001	

TABLE IV .- The Moon's Latitude-Continued.

1 \(\times \)	.002 .010 .033 .001 .001 .001	++		+	.002 .010 .029 .050 .001	+ + + +	,, ,002 ,005 ,018		.002		,, ,002 ,002 ,064	+	,, o,o6
-4 - -4 - -4 - -4 - -5 - -5 - -5 - 1 + 1 + 1 !	.002				.002 .010 .029 .050 .001 .001	+		- - +	.002 .008 .024	- - +	. 002		
-4445551 +- 1 +- 1 +-	.010 .033 .004 .001 .001 .003		.054		.010 .029 .050 .001 .001	+	.005	_ _ +	.00\$.024	- - +	,002		
-4 - -4 - -5 - -5 - -5 - -1 + 1 + 1 +	.033 .004 .001 .001 .003		.054		.029 .050 .001 .001	+	.005	- +	.024	+	,002		0.06
-4 - -4 - -5 - -5 - -5 : - 1 + 1 : - 1 : +	.001		.054		.050	+	.018	+	•	+			0.06
-5 - -5 - -5 - -5 - 1 + 1 - 1 +		_			.001 .003								
-5 ·5 · - 1 + 1 - 1 +	.003	_		<u>-</u> -	.003				0	_	.005		
-5 · · · · · · · · · · · · · · · · · · ·	; ; 100, ; 110,	-	.003	_	_			_	100.				
1 + 1 - 1 +	110.	-	.003	-		+	100,	_	.002				
1 + 1 - 1 +	110.				.003	+	.002	_	.001	+	.006	+	0.01
I +	110.											l	
1 - 1 + 1	110.			+	100.	•		+	.001			1	
r į			• • !	_	.011	+	.001	_	.007	_	,006	' <u></u>	0.01
	.005		'	+	.005	+	.008	+	.013	+	.013	+	0.01
	• • •					+	.006	+	.006	+	.007	+	0.01
• ,						+	.001	+	.001	+	100.	'	• •
o	.005	+	.003	+	.008	_	100.	+	.007	+	.001		
	. 268	_	.137	+	.131	. –	.023	+	. 108	+		+	0.13
	-	+	.002	_	3.816	+	1.010	_	_	_		_	2.70
	- 1			-		_	-	_		_			6.30
			• • •	_		_		_		_		_	1.02
			• •	_	,002			_	-	_	-	. –	0.12
	• •		• •			_		_		_	.012	_	10.0
_			• • !			_					• •	l	
			• • •	1		_						·	0.01
						_		•		•			
-1				·		_		_		_		_	0.01
-1						_	.001	_	.001	_			
	I		,	'									
	20.5								005				
i	-		• • •				• •	_		_			
1			•	_			• '•	_		_			0.09 0.01
				_				_	_	: -	•	_	• • •
1		+				1		+		_		ı	
			.052		.000			+	.060	+	.021	+	0.02
			.256	_		_	.003	_	1.321	_	1.802	_	1.50
-1 -	1.430	+	. 150	_	1.280	+	.003	_	1.277	_	1.382	-	1.38
-1 -	.259	+	.017		.212	+	.002	-	.240	_	.239	-	0.24
-ı ' -	.034			-	.034		٠.,	. –	.034	_	.023	_	0.02
-ı -	.003			-	.003			-	.003				
-2 +			.029	+	.031			+		+		+•	0.03
-2 -			.273	+			• •						0.25
,									_		1.739	. -	1.68
			. 290	+							199.277	, +	199.42
													117.19
		_										,	15.11
		_							-		-		0.13
											_		0.01
	0 + - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0 + .005 0 + .268 03.818 0252 0021 0002 0002 0003 -1 + .003 -1 + .003 -1005 0116 0015 0015 0001 -1002 -1 + .112 -1 - 1.574 -1 - 1.430 -1259 -1034 -1003 -2 + .005 -2 + .005 -2 + .004 -2 - 1.855 -2 + 199.476 -2 + 117.753 -2 + 15.207 -2 + .531 -2 + .141	0 + .005 + .268	1	0 + .005 + .003 + .003 + .004268137 + .005002001002002001003	1	1	1	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1

Table IV.—The Moon's Latitude—Continued.

g	g'	$\sin I \sin (f + \omega)$	•	<i>s</i>		sin β	β-	- sin β	H	β Tansen.	Di	β claunay (1).	De	β launay (2).
3ω-	2ω′	,,		,,	,	,,		,,		,,				.,
0	-3	i	+	.010	. +	.010			+	.010	+	.010	+	0.01
1	-3	071	+	.010	_	.061			_	.061		.078		0.08
2	-3	+ 9.184	-	. 286	+	8.898	+	.014	+	8.912	+	8.968	+	9.00
3	-3	+ 8.180	-	. 168	+	8.012	_	.015	+	7.997	+	7.946	+	7.95
4	-3	+ 1.166	-	.022	+	1.144	_	.001	+	1.140	+	1.082	+	1.08
5	-3	+ .128			+	. 128	-	100.	+	. 127	+	.100	+	0.10
6	-3	+ .013			+	.013			+	.013	+	.006	+	0.01
1	-4	003	İ	• •	_	.003			_	.003	-	.003		
2	4	+ .334	-	.014	+	.320		• •	+	. 320	+	.311	+	0.31
3 4	-4 -4	+ .401	_	110.	+ +	. 330 . 06 t	1	• •	+	.390	+	. 362	+	0.36
5	-4	+ .007		• •	+	.007		• •	+	.061 .007	+	.013	+	0.04
2	-5	+ .612	İ		. +	.012	!		+	.007	+	.002	+	 0.01
3	-5	+ .017			+	.017			+	.017	+	.006	+	0.01
4	-5	+ .002	1		+	.002			+	.002	•		'	
3ω-	. 4 64		ı		!		:							
2	-2									_				
0	- <u>2</u>	100. +		• •	+	100.			-	100.	_	.002		• •
ī	-3	i – .003	+	.002	_	100.		• •	+	100.				
2	-3	010	; <u> </u>	.143	_	.153		• •	_	.001	_	.014 .199	_	0.01
3	-3	005	1 —	.098	_	.103				. 153	_	.114	_	0.11
4	-3	001	_	,012	_	.013		• •	_	.013	_	.014	_	0.01
-2	-4	:03			l —	.003			_	.003				
-1	-4	012	!		-	.012			_	.012		.002		
0	-4	.043	+	.045	+	.002			+	.002	_	.005		
1	-4	+ .220	+	.404	+	.624	+	.001	+	.625	+	. 582	+	0.61
2	-4	+ .603	+	5.957	+	6.560	+	.016	+	6.576	+	6.532	+	6.56
3	-4	+ .236	+		+	3.687	_	.008	+	3.679	+	3.651	+	3.65
4	-4	+ .020	+	.118	+	.468	_	.002	+	.466	+	. 464	+	0.46
5	-4	100. +	+		+	.048		• •	+	.048	+	.044	+	0.04
-1 0	-5 -5	002	-		_	.002		• •	_	.002				• •
1	-5 -5	005 + .018	· 		+	.005 .029	l	•	_	.005				
2	- 5	+ .066	. .	.450	+	.516	+	.001	+	.029 .517	+	.042 .576	++	0.04 0.60
3	-5	+ .031	+	.379	+	.410	· '		+	.410	+	.375	+	0.40
4	-5	+ .003	+	.050	+	.053			+	.053	+	.046	+	.0.05
2	-6	+ .004		.021	+	.025			+	.025	+	.028	+	0.03
3	-6	+ .002	+	.019	+	.021			+	.021	+	.022	+	0.02
5ω -	- 6ω'			,	l									
1	-6	001			_	100.				~~*				
2	-6	001	+	.005	+	.003		•	+	.003	+	.003		• •
3	-6	+ .005	. +	.068		.073		•	+	.073	+	.061	+	0.06
4	-6	+ .005	¦ ÷	.086	· +	.091			+	.091	+	.071	+	0.07
5	-6	+ .001	+	.035	+	.036			<u>.</u>	.036	+	.024	+	0.02
6	6		+	.002	+	.002			+	.002	+	.002		
4	-7	100. +			+	100.			+	100.	+	.005		
!		<u> </u>	!		٠				L		<u></u>			

TABLE IV .- The Moon's Latitude-Continued.

ď	g'	sin I s	$\sin(f+\omega)$		s		sin β	β	· sin $oldsymbol{eta}$	l l	β Iansen.	De	β launay (1)		β 'aunay (2).
	ω'		,,		,,	ļ-				1	"		•,		"
-3	_ 0	+	.002			+	.002			+	.002	+	100.		
-2	0	+	.022			+	.022			+	.022	+	.010	+	0.01
-1	0	+	.096	_	.080	+	.016			+	.016	+	.024	+	0.02
0	0	+	- 777	+	.015	+	. 792	+	100.	+	.793	+	- 794	+	0.79
I	0	+	.009	+	.004	+	.013			+	.013	+	.035	+	0.03
-4	-1	 	100.			-	100,	i		<u> </u>	100.				
-3	— I	-	.015			-	.015			i –	.015	-	.005	—	0.01
-2	– 1	-	. 151	+	.041	-	.110			-	.110	_	.080	_	0.08
-1	— 1	-	1.174	+	.751	_	.423			l —	.423	-	. 381	-	0.38
0	— I	_	5.504	+	.821	_	4.683	-	.005	-	4.688	_	4.756	_	4.83
I	-1	-	.083	_	.500	_	. 583	_	100.	j –	.584	-	.603	<u> </u>	0.60
2	-1	-	.001	_	.030	' -	.034			-	.034	_	.039	_	0.04
-2	-2	+	100.		• •	+	100.		• •	+	100.	+	.002		• •
— t	-2		• • •	-+-	.019	+	019		• •	+	.019	+	010.	+	0.01
0	-2	_	.015	-	.005		.020		• •	! —	.020	-	.005	-	10.0
1	-2		.002	-		-	.010		• •	_	.010	_	.018	_	0.02
0	-3	+	.002		• • •	+	.002		• •	· -	.002	+	.002		
2ω-	-ω'									 -					
2	1	_	.002			_	,002			! —	.002	-	.002		
0	0	+	.013	+	.004	+	.017			+	.017	+	.014	+	10.0
I	0	+	.018	_	.069	_	.051			-	.051	_	.043	_	0.04
2	О	+	.796	_	.009	+	. 787	+	100.	+	. 788	+	. 791	+	0.79
3	0	+	.101			•	.101			+	101.	+	. 101	+	0.10
4	O	+	.010			+	.010			+.	.010	+	.008	+	0.01
0	-r		.023	-	.043	_	. ა66		!	_	.066	-	.062	_	0.06
1	-1	_	.452	+	•577		. 125		• • !	+	.125	+	.141	+	0.14
2	-1	-	5.431	+	. 186	_	5.245	_	,006	_	5.251	_	5.325	_	5.40
3	-1	_	.659	+	.009	_	.650			_	.650	_	.647	_	0.67
4	-1	_	.063			_	.063		• • •	_	.063	.—	.058	-	0.06
5	-1	_	.006		• • •		.006		• •	_	.006	_	.004		• •
I	-2	-	.014	+	.009	_	.005		• •	_	.005				
2	-2	_	.038	+	.026	_	.012			_	.012	_	.013	-	0.01
3 4	-2 -2	_	.011		• •	_	.002		• •	_	.002	_	.004		• •
2	-2 -3	+	.002			+	.002			+	.002	+	.002		• •
	-	т	.002		• • •	•	.002		• •	'	.002	•	.002		• •
2ω-	3ω'		İ		i						ļ				
0	-2	_	.002		!	_	.002		[-	.002				
I	-2	+	.003		• • ,	+	.003			+	.003	+	.012	+	0.01
2	-2	+	100.	+	.020	+	.021		!	+	.021	+	.033	+	0.03
— I	-3	_	.004			-	.004		• • !	_	.001	-	.002		• •
0	-3	-	.016	_	.002		.048		• • !	_	.048	-	.034	-	0.03
I	-3	_	.071	_	. 224	_	.295			_	.295	-	.290	-	0.29
2	-3	+	.041	-	.391	_	.350		100.	_	.351	_	.339	_	0.34
3	-3	+	100.	_	.045	_	.014		• •		.044	_	.031	-	0.03
0	-4	_	.003		• • '	_	.003		• • •	_	.003	_	100.	_	
I	-4 -4	_	300.		• • !	_	.006 .006		• •	+	.006	_	.017 .021	_	0.02
2	-4	+	.006		• •	-	.000			1 -1-	.000		.021	_	0.02

TABLE IV.—The Moon's Latitude—Continued.

8	g'	sin I sir	n (f+ω)	s		sin B	β-	- sin β	E	β Tansen.	D	β Pelaunay (1).	De	β launay (2).
5ω-	- 4ω'		,,	,,		,,		,,		,,		,,		,,
3	-2	_	.002			,002			-	.002				
4	-2	-	100.		-	.001	1			100.				
2	-3	+	.005		+	.005			+	.005				
3	-3	 	.030		-	.030				.030	-	.058	-	0.06
4	-3	-	.055		-	.055	1		-	.055	_	.058	_	0.06
5	-3	_	.027		-	.027			-	.027	_	.020	_	0.02
6	-3	-	.005			.005			_	.005	-	.001		
I	-4	-	.003		-	003	,		_	.003				
2	-4	+	.019		+	.019			+	.019	+	.006	+	10.0
3	-4	+	2.415		+	2.415	; +	.001	+	2.419	+	2.257	+	2.32
4	-4	+	3.017		+	3.017	-	.013	+	3.004	+	2.816	+	2.89
5	-4	+	1.204		+	1.204	-	110.	+	1.193	+	1.079	+	1.09
6	-4	+	.216		+	.216	_	.002	+	.214	+	. 162	+	0.16
7	-4	+	.029		+	.029			+	.029	+	.012	+	ა.01
8	-4	+	.003		++	.003 .218			++	.003	÷		+	 0.17
3	-5	+	i i		+				+	.346	+	.256	+	0.17
4	-5	+	. 162		+	·347 .162	_	100.	, T 	. 161	+	. 102	+	0.10
5 6	-5 -5	+	.031		+	.031			+	.031	+	.010	+	0.01
7	-5 -5	+	.003	-	+	.003			+	.003	'		•	
3	-6	\ +	.012		+	.012			+	.012	+	.005	+	0.01
4	6	+	.024		+	.024	l		+	.024	+	.008	+	10.0
5	-6	+	.013		4-	.013			+	.013	+	.003		
6	-6	 	.002		+	.002			+	.002	•			
4	-7	+	.001		+	.001			+	100.				
4ω											-			â
2	_ <u></u>	_	.002		1_	.002			_	.002				
3	-2 -2	+	.021		+	.021		• •	+	.021	+	.018	+	0.02
4	-2	+	.014		+	.014		• •	+	.014	+	110.	∔	0.01
5	-2	-4-	.002		+	.002			+	.002	+	.002	•	
2	-3	<u> </u>	.054		i -	.054			_	.054		.043	_	0.04
3	- 3	_	.208		i _	.208			_	.208		. 165	_	0.17
4	-3	_	.030			.030	+	.001	_	.029	+	.005	+	0.01
5	-3	_	.007		_	.007	'		_	.007	+	.005	+	0.01
6	-3	-	100.		_	.001			_	100.	+	.001	1	
2	-4	_	.003		-	.003			_	.003	_	.002		
3	-4	-	.011		-	.014			-	.014	_	.005	-	0.01
2 ω ⊣	⊢ ω′						ŀ							
I		+	100.		+	.001			+	.001	+	100.		
2	1	;	.035		+	.035	_	.005	+	.030	+	.032	+	0.03
3	1	+	.004		+	,004	–	.001	+	.003	+	.004		
I	0	+	.002		+	.002	!		+	.002				
2	0	+	.001		+	.001	+	100.	+	.002				
4ω-	- ω <u>΄</u>													
4	_ ·						_	.001	_	100,				
3	-1	+	.003		+	.003	_	.001	+	,002	+	.002		
4	— 1						+	.005	+	.005	+	.005	+	0.01
		1			1		1	100.	1	_	1		1	

Table IV.—The Moon's Latitude—Continued.

g	g'	sin I s	in (f+ω)	s		sin β	β –	sin β	Н	β ansen.		β <i>'aunay</i> (1).		β launay (2).
	3 ω'		,,	,,		,,		,,		,,		,,		,,
-:	-3	_	.002		_	.002			-	.002	_	.002		
0	-3	-	.015		-	.015	•		_	.015	-	.010	-	0.01
<u>5ω</u> -	- 2ω'	İ												
4	— I				Ì		+	100.	+	.001	+	.003		
5	— 1			•	İ		+	100.	+	.001	+	.002		
2	-2	+	.004		+	.004			+	.004	+	.002		
3	-2	-	.089		-	.089	+	.024	-	.065	-	.068	-	0.07
4	-2	_	.060		-	.060	_	. 186	-	. 246	-	. 246	-	0.25
5	-2	-		• •	-	.008	1 1	. 137	_	. 145 . 030	_	. 142 .028	_	0.14
	-2 -2						_	.004	_	.004	_	.003	_	0.03
7	- <u>2</u>	_	.001	• •		.004	+	100.	_	.003	_	.003		
4	-3	_	.004		_	.004	_	.008	_	.012	_	.011	_	0.01
5	-3						_	.009	_	.009	_	.008	_	10.0
6	-3	l					-	.002	-	.002	_	100.		
4ω.	- 5ω'													
1		+	100.		+	100.			+	.001				
2	-5 -5	_	100.			.001			<u>-</u>	100.	_	.002		
3	-5	+	100.		+	100.			+	.001	_	.004		
-												•		
	<u>- 5 ω΄</u>						:							
4	5		.005	• •		.005 .002		• •	_	.005	١.	• •		• •
5	-5	<u> </u>	.002	• •	_	.002		• •	-	.002	+	100.		• •
7ω-	- 6ω'													
4	6	+	.031	• •	+	.031			+	.031	+	110.	+	0.01
5	-6	+	.060		+	.060			+	.060	+	.020	+	0.02
6	-6	+	.043	• •	+	.043			+	.043	+	.012	+	0.01
7 8	-6 -6	++	.014	• •	++	.014		• •	+	.014	+	.002		• •
4	—5 —7	+	.004		+	.004			+	.002				• •
5	-7	+	.010	• •	+	.010			+	.010				
6	_ ₇	+	.008		+	.008			+	.008			į	
7	-7	+	100.		+	100.			+	.001				
7ω-	- 4ω'													
4	_ 	l _	100.	_	_	100.	1	•	_	.001				_
5	-4 -4	_	.001		_	100.	_	.004	 _	.005	_	.002		
6	-4 -4						_	.006	_	.006	_	.002		
7	-4				1			.003		.003				
3ω-	+ 2ω′													
2	2				İ		l _	.001	_	.001	+	.001		
3	2			• •	1	: :	+	.002	+	.002	+	.002		
					1		1							
	<u> </u>				1		١,	~~*	١	^~	١.	000		
4	0			• •	1	• •	+ +	.001	+	.001	+	.002	1	 0.0I
5 6	0			• •	1	• •	+	.002	+	.002	+	.002	+	5.01
				• •		• •	["	.002	'	.002		• •

TABLE V.—The Moon's Parallax.

	g	8'	$\frac{D(1+\epsilon\cos f)}{a(1-\epsilon^2)}$			Pert.		lansen's sine Parallax.		elaunay's sine Parallax.		elaunay's sine arallax. (2)	D ₂ -	– D ₁	11-	- D ₈		dams' sine arallax.
-																		
	_	•		" 3399.682	١.	"		"				"			_		"	
	0	0	+	186.547	+	22.405 .064	١.	3122.09		3422.7	١.	3422.7		0	- 61		3422.32	
	2	0	+	10.220	_	.059	+	186.483 10.161	+	186.587	+	186.55	-	4	_	7	+	186.51
	3	0	+	.627	_	.007	+	.620	+	10.198	+	10.20	!	o o	_	4 1	++	10.17 0.63
1	4	0	+	.040			+	.040	+	.631	++	0.63 0.04	İ	0	_	0	+	0.03
	5	0	+	.003			+	.003	+	.041	T	-					_	0.04
	-4	-1	<u>-</u>	.001			<u>.</u>	.003	T				l	•		•		
ł	-3	— 1	_	.007	_	.003	_	.010	_	.006		0.01		0		0		
	—2	— I		.067	_	.055	_	.122	_	.092	_	0.00		0	+	3	_	0.10
	— 1	— I		. 304	_	.657	_	.961	_	.912	_	0.93	+	2	+	3		0.95
1	0	— I		.018	_	.375	_	.393		.427	_	0.43		0	_	4		0.40
	I	-1	+	. 299	+	.845	+	1.144	+	1.052	+	1.11	+	6	+	3	+	1.16
	2	— 1	+	.082	+	.067	+	. 149	+	. 103	+	0.10		0	+	5	+	0.12
1	3	—1	+	.009	+	.003	+	.012	+	.006	+	0.01		0		0		
	4	-1	+	100.	!		+	.001										
	— 1	-2	—	.003	-	.007	-	.010	-	.010		0.01]	0		0		
1	0	-2			-	.008	-	.008	-	.012	_	0.01		o		0		
	I	-2	+	.003	+	.009	+	.012	+	.013	+	0.01	! !	0		0		
1	2	-2	+	100.			+	100.	ŀ									
1	2ω –	- 2ω′																
	0		+	.001			+	100.			l				ļ			
Ì	1	0	-			. 021	<u> </u>	.021				 0.01		•	+	·		• •
1	2	0.	_	.001		.001	_	.002		=	_				T			• •
	-1	-1	_	100.			_	.1001	+			• •		•		•		
	o	-1	+	010.	_	.012		.002	+	.002								
1	I	-1	+	.010	_	.237	_	.227	<u> </u>	.379	l _	0.38	1	0	_	15	_	0.23
İ	2	— I	<u> </u>	.015	_	. 286	_	.301	_	.328	_	0.33	ĺ	0	_	3	_	0.31
ł	3	— 1	_	.015	_	.034	_	.049	_	.040	l _	0.04		0	+	1		
	4	-1	-	.002		.002		.004	_	.002								
ł	-3	-2		.002			_	.002										
1	-2	-2		.018	+	.004	_	.014	_	.008	-	0.01		0		o		
	— I	-2	-	.213	+	.092		. 121	_	.101	-	0.10		o	+	2	_	0.12
	0	-2	-	2.128	+	1.826	-	.302	-	.277	_	0.28	:	0	+	2		0.31
	1	-2	-	.992	+	35.301	+	34.309	+	34.166	+	34.29	+	12	+	2	+	34.30
	2	-2	+	1.990	+	26.235	+	28.225	+	28.179	+	28.20	+	2	+	3	+	28.23
	3	-2	+	1.190	+	1.894	+	3.084	+	3.064	+	3.07	+	I	+	1	+	3.09
	4	-2	+	.154	+	.129	+	. 283	+	.271	+	0.27	!	0	+	1	+	0.25
	5	-2	+	.015	+	.008	+	.023	+	.018	+	0.02	Ì	0		0		
i	6	-2	+	100.			+	100.						•		•		• •
	-2	-3	-	100.			-	.001		• •			ĺ	•		•		
	-1	-3	-	.008	+	.004	-	.004	-	.003		• •		•	١.	•		• •
	0	-3	-	.094	+	.075	-	.019	-	.013	-	10.0		0	+	I		• •
	I 2	-3		.069	+	1.516	+	1.447	+	1.452	+	1.47	+	2	-	2	+	1.45
		-3 -3	++	.091 .082	++	1.829	+	1.920	+	1.876	+	1.91	+	3	+	I	+	1.92
	3 4	-3 -3	+	.012	+	. 147 .010	+	. 229 . 022	++	. 197 . 012	+ +	0.01	+	2 0	+	1	+	0.22
	5	-3 -3	+	.001	*		+	.001	T	.012	¯		İ	U	-			
I,		<i>-</i>	Ĺ <u>.</u>				<u> </u>						ĺ	•	[•		•

TABLE V.—The Moon's Parallax—Continued.

ß	e'	$D(t - \epsilon \cos f)$ $a(t - \epsilon^2)$		$D(t - \epsilon \cos f)$ $a(t - \epsilon^2)$																	Pert.		ansen's sine arallax.		launay's sine arallax. (1)		launay's sine trallax. (2)	D ₂ - D	Н	– D ₃		dams' ine rallax.
2ω-	2ω΄						-																									
0			003	+	.002		,001		"		"	I	1		1	"																
1	-1 -1		:ot :03 '	+	.053	+	.049	+		+	0.04		+		 -	0.05																
2	-1		003	+	.080	+	.049	+	.076	+	0.10	+ 2	1 '	1	+	0.09																
3	-1		, 1004	+	.008	+	.012	+	.005	+	10.0		1	0	'																	
1	<u>-</u> i		100	•		+	100.	•		•			ļ																			
1.	-5		•	+	.001	+	.001					٠.	1		I																	
2 .	-5		• ;	÷	.004	+	.004	'	!			i .																				
10-	ıω'		ı						!			:	1																			
,	- 3			_	.001	_	.004	_	.007		0.01	1 0	1	o																		
3	-3	•	•	_	.009	_	.009	_	.008	_	10.0	1		0																		
1. 1	-3			_	.004	_	1001	_	.002						i I																	
1	-1	0	002	+	.010	+	.008	+	.004					•																		
2	-4	0	005	+	.377	+	.372	+	.310	+	0.31		+	6	+	0.37																
3	-4		022	+	.577	+	.599	+	.499	+	0.50		+	10	+	0.60																
4	-1	+ .0	030 '	+	. 231	+	.261	+	. 196	+	0.20	o	+	6	+	0.26																
5	-4	+ .0	012	+	.031	+	.043	+	.019	+	0.02	i o	+	2																		
6	-1	+ .0	002	+	.002	+	.001		'				1	•																		
2	-5	0	100	+	.033	+	.032	+	.016	+	0.02	, 0	1 .	I																		
3	-5		002	+	. 067	+	. o 69	+	.030		0.03	·	1 '	4	+	0.06																
4	— 5		. 100	+	.031	+	.035	+	110.	+	0.01	ď	+	2	,																	
5	-5	+ .0	002	+	.005	+	.007		• • •					•																		
. 2	-6	•	•	+	.002	+	.002		•			•	1	•	1																	
3	-6 -6	•	٠	+	.004	+	.001		• •]		• •	•	1.	•																		
4		•	•	+	.002	+	.002		• • •		• •	•	1	•		• •																
6ω —	6ω'		•						. '						1																	
3	-6	•	•	+	.004	+	.001		• • '																							
4	-6	•	•	+	.010	+	.010						Ι.	•																		
5	-6	•	•	+	. 007	+	.007							•	1																	
6	-6	•	•	+	.002	ŧ	.002							•	I																	
4	-7	•	٠	+	100.	+	100.					•		•	I																	
5	7	•	٠,	+	.001	+	100.		• •					•	l																	
2 4	J											ı																				
1	1	•		_	.003	_	.003	_	.002					•																		
2	1	•	•	+	100.	+	.001	+	.002			. •		•	I																	
-1	o		002	_	.002		0							•	ı																	
0	o	+ .0	238	_	.038		0		• •			•	1	•																		
1 1	0	•	•	-	. 709	_	.709	_	.708	-	0.71	. 0		0	-	0.71																
2	0		239	+.	.027	_	.012	_	.000	_	10.0	o		ი																		
3	n	0	002	+	.002		0		• •			•		•																		
	<u> </u>	•	•	+	.002	+	.002	+	.002			•	1	•																		
2	-1	•	•	+	.001	+	.001	+	.002			•		•																		
2ω΄																																
-1	3	+ .0	100	-	.004		.003	_	.002					•																		
0	3	•		_	.007		.007	_	.007	_	10.0	o		0																		
1	3	0	100		100.	_	.002	_	.003				1	•																		
													_l																			

TABLE V.—The Moon's Parallax—Continued.

g	g'	$\frac{D(t + e \cos f)}{a(t - e^2)}$ Pert.			Tansen's sine arallax.		lauuay's sine arallax. (1)		launay's sine arallax. (2)	D ₂ -D ₁	H – D ₃	Adams' sine Parallax.		
2	ω′		,,		,.	 I			,,					
-2	<u>-</u> _ 2			_	.004		.004		,006		" o.oi			".
-1	2	+	. 038	_	.086	_	.004	_	.050	_	0.01	0	0	
0	2	+	.007	_	.112	_	.105	' _	.100	_	0.05	0	, o	- 0.11
ı	2	<u>-</u>	.036	_	.047	_	.083	_	.082	_	0.08	0	.0	- 0.09
2	2		.006		.003	_	.009	_	.008		0.01	0	o	- 0.09
3	2		100,			_	.009							•
-1	1	_	.001	+	.001		0	+	100.					
0	1	1		+	100.	+	.001	+	.001	Ì				
I	I	+	100.			+	100.	+	100.					
100-	- 2ω'		•					İ		1		_		
2	-2			-	.014	_	.014	-	.015	-	0.01	0	0	• •
3	-2 -2	<u> </u>	100.	_	.010	_	110.	· -	110.	_	10.0	0	0	
4	-2	-	.001			_	100.	İ	• •		• •	•		• •
2ω-	- 4ω΄													
I	-4			-i-	100.	+	100.	+	.003					
2	-4			+	.002	+	.002	; +	.004					
ω-	- ω'													
-1	- <u>-</u>		100.		.002	_	.003		.002			ļ	ľ	
0	0	_	.008	+	.002		100.	—			• •			• •
1	0			+	.146	+	.146			+	0.15			+ 0.14
2	o	+	.008	·	.008	+	.016	+	.013	+	0.01	0		T 0.14
3	0	+	100.	'		+	100.	; .	.002	ļ '				
-2	-1	+	100.			+	100.				• •		:	
-1	— I	+	.012	+	.003	+	.015	! +	.007	+	10.0		+ 1	
0	— 1	+	.055		.044	+	.011	+	.008	+	0+01	0		+ 0.01
1	— 1	_	.004	_	.949		.953	. —	. 938	_	0.97	+ 3	_ 2	- 0.95
2	— 1	_	.055	_	.051	_	. 106	i —	.097	_	0.10	0	+ 1	- 0.11
3	-1	-	.007	_	.003	_	.010	_	.006	_	0.01	O	o	
4	— 1	-	100.			-	100.							
1	-2			-	.004	_	.004	· —	.002					
2	-2			-	100.	_	.001	+	100.					
3ω-	- 3ω'													
2	<u></u>			+	.003	+	.003	+	.003	!				
3	-2			+	.002	+	.003	+	.003		• •			
1	-3			·	.002	_	.000	_	.002		• •			: :
2	-3	_	100.	_	.036	_	.037	_	.020	_	0.02		· + 2	::
3	-3	_	.002	+	.005	+	.003	+	.016	+	0.02	0	- 2	::
2	-4	!		_	.002	_	.002			l .	• •	1 .	ļ .	
3	-4			+	100.	+	100.	+	.002					
ω +	- 43'	İ											1	
- 1										١.		1		
I	I		• •	+	.007	+	.007	+	.007	+	0.01	O	0	
<u>u –</u>	3ω'								•]		
I	-3			_	.002	_	.002	_	.002	1				
		l										<u> </u>		

•

EXPERIMENTAL DETERMINATION

OF THE

VELOCITY OF LIGHT

MADE AT THE

U. S. NAVAL ACADEMY, ANNAPOLIS.

BY

ALBERT A. MICHELSON,
MASTER U. S. NAVY.

		•		
·				
	_		•	
		·		

NOTE.

The probability that the most accurate method of determining the solar parallax now available is that resting on the measurement of the velocity of light, has led to the acceptance of the following paper as one of the series having in view the increase of our knowledge of the celestial motions. The researches described in it, having been made at the United States Naval Academy, though at private expense, were reported to the Honorable Secretary of the Navy, and referred by him to this Office. At the suggestion of the writer, the paper was reconstructed with a fuller general discussion of the processes, and with the omission of some of the details of individual experiments.

To prevent a possible confusion of this determination of the velocity of light with another now in progress under official auspices, it may be stated that the credit and responsibility for the present paper rests with Master Michelson.

SIMON NEWCOMB,

Professor, U. S. Navy,

Superintendent Nautical Almanac.

NAUTICAL ALMANAC OFFICE,

BUREAU OF NAVIGATION,

NAVY DEPARTMENT,

Washington, February 20, 1880.

TABLE OF CONTENTS.

																			Page
Introduction	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	11
Theory of the New Metho	od -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	117
Arrangement and Descri	ption	of A	ppara	tus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	118
Determination of the Cor	stant	8 -		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12
The Formulæ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	13
Observations	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	13
Separate results of Group	s of ()bser	vatio	ns	-	-	-	-	-	-	-	-	-	-	-	-	-	-	13
Discussion of Errors -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	13
Objections Considered -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	14
Postscript	•	-	-	-	•	-	•	-	•	-	•	•	•	•	-	-	-	-	14

				•	
		•			
				·	
			·		
			·		
,		•			
			•		
•					
	•				

EXPERIMENTAL DETERMINATION OF THE VELOCITY OF LIGHT.

BY ALBERT A. MICHELSON, Master, U. S. N.

INTRODUCTION.

In Cornu's elaborate memoir upon the determination of the velocity of light, several objections are made to the plan followed by Foucault, which will be considered in the latter part of this work. It may, however, be stated that the most important among these was that the deflection was too small to be measured with the required degree of accuracy. In order to employ this method, therefore, it was absolutely necessary that the deflection should be increased.

In November, 1877, a modification of Foucault's arrangement suggested itself, by which this result could be accomplished. Between this time and March of the following year a number of preliminary experiments were performed in order to familiarize myself with the optical arrangements. The first experiment tried with the revolving mirror produced a deflection considerably greater than that obtained by Foucault. Thus far the only apparatus used was such as could be adapted from the apparatus in the laboratory of the Naval Academy.

At the expense of \$10 a revolving mirror was made, which could execute 128 turns per second. The apparatus was installed in May, 1878, at the laboratory. The distance used was 500 feet, and the deflection was about twenty times that obtained by Foucault.*

These experiments, made with very crude apparatus and under great difficulties, gave the following table of results for the velocity of light in miles per second:

Mean 186500 ± 300 miles per second. or 300140 kilometers per second

^{*}See Proc. Am. Assoc. Adv. Science, Saint Louis meeting.

In the following July the sum of \$2,000 was placed at my disposal by a private gentleman for carrying out these experiments on a large scale. Before ordering any of the instruments, however, it was necessary to find whether or not it was practicable to use a large distance. With a distance (between the revolving and the fixed mirror) of 500 feet, in the preliminary experiments, the field of light in the eye-piece was somewhat limited, and there was considerable indistinctness in the image, due to atmospheric disturbances.

Accordingly, the same lens (39 feet focus) was employed, being placed, together with the other pieces of apparatus, along the north sea-wall of the Academy grounds, the distance being about 2,000 feet. The image of the slit, at noon, was so confused as not to be recognizable, but toward sunset it became clear and steady, and measurements were made of its position, which agreed within one one-hundredth of a millimeter. It was thus demonstrated that with this distance and a deflection of 100 millimeters this measurement could be made within the ten-thousandth part.

In order to obtain this deflection, it was sufficient to make the mirror revolve 250 times per second and to use a "radius" of about 30 feet. In order to use this large radius (distance from slit to revolving mirror), it was necessary that the mirror should be large and optically true; also, that the lens should be large and of great focal length. Accordingly the mirror was made 1½ inches in diameter, and a new lens, 8 inches in diameter, with a focal length of 150 feet was procured.

In January, 1879, an observation was taken, using the old lens, the mirror making 128 turns per second. The deflection was about 43 millimeters. The micrometer eye-piece used was substantially the same as Foucault's, except that part of the inclined plate of glass was silvered, thus securing a much greater quantity of light. The deflection having reached 43 millimeters, the inclined plate of glass could be dispensed with, the light going past the observer's head through the slit, and returning 43 millimeters to the left of the slit, where it could be easily observed.

Thus the micrometer eye-piece is much simplified, and many possible sources of error are removed.

The field was quite limited, the diameter being, in fact, but little greater than the width of the slit. This would have proved a most serious objection to the new arrangement. With the new lens, however, this difficulty disappeared, the field being about twenty times the width of the slit. It was expected that, with the new lens, the image would be less distinct; but the difference, if any, was small, and was fully compensated by the greater size of the field.

The first observation with the new lens was made January 30, 1879. The deflection was 70 millimeters. The image was sufficiently bright to be observed without the slightest effort. The first observation with the new micrometer eye-piece was made April 2, the deflection being 115 millimeters.

The first of the final series of observations was made on June 5. All the observations previous to this, thirty sets in all, were rejected. After this time, no set of observations nor any single observation was omitted.

THEORY OF NEW METHOD.

Let S, Fig. 1, be a slit, through which light passes, falling on R, a mirror free to rotate about an axis at right angles to the plane of the paper; L, a lens of great focal length, upon which the light falls which is reflected from R. Let M be a plane mirror whose surface is perpendicular to the line R, M, passing through the centers of R, L, and M, respectively. If L be so placed that an image of S is formed on the surface of M, then, this image acting as the object, its image will be formed at S, and will coincide, point for point, with S.

If, now, R be turned about the axis, so long as the light falls upon the lens, an image of the slit will still be formed on the surface of the mirror, though on a different part, and as long as the returning light falls on the lens an image of this image will be formed at S, notwithstanding the change of position of the first image at M. This result, namely, the production of a stationary image of an image in motion, is absolutely necessary in this method of experiment. It was first accomplished by Foucault, and in a manner differing apparently but little from the foregoing.

In his experiments L, Fig. 2, served simply to form the image of S at M, and M, the returning mirror, was spherical, the center coinciding with the axis of R. The lens L was placed as near as possible to R. The light forming the return image lasts, in this case, while the first image is sweeping over the face of the mirror, M. Hence, the greater the distance R M, the larger must be the mirror in order that the same amount of light may be preserved, and its dimensions would soon become inordinate. The difficulty was partly met by Foucault, by using five concave reflectors instead of one, but even then the greatest distance he found it practicable to use was only 20 meters.

Returning to Fig. 1, suppose that R is in the principal focus of the lens L; then, if the plane mirror M have the same diameter as the lens, the first, or moving image, will remain upon M as long as the axis of the pencil of light remains on the lens, and this will be the case no matter what the distance may be.

When the rotation of the mirror R becomes sufficiently rapid, then the flashes of light which produce the second or stationary image become blended, so that the image appears to be continuous. But now it no longer coincides with the slit, but is deflected in the direction of rotation, and through twice the angular distance described by the

mirror, during the time required for light to travel twice the distance between the mirrors. This displacement is measured by the tangent of the arc it subtends. To make this as large as possible, the distance between the mirrors, the radius, and the speed of rotation should be made as great as possible.

The second condition conflicts with the first, for the radius is the difference be tween the focal length for parallel rays, and that for rays at the distance of the fixed mirror. The greater the distance, therefore, the smaller will be the radius.

There are two ways of solving the difficulty: first, by using a lens of great focal length; and secondly, by placing the revolving mirror within the principal focus of the lens. Both means were employed. The focal length of the lens was 150 feet, and the mirror was placed about 15 feet within the principal focus. A limit is soon reached, however, for the quantity of light received diminishes very rapidly as the revolving mirror approaches the lens.

ARRANGEMENT AND DESCRIPTION OF APPARATUS.

SITE AND PLAN.

The site selected for the experiments was a clear, almost level, stretch along the north sea-wall of the Naval Academy. A frame building was erected at the western end of the line, a plan of which is represented in Fig. 3.

The building was 45 feet long and 14 feet wide, and raised so that the line along which the light traveled was about 11 feet above the ground. A heliostat at H reflected the sun's rays through the slit at S to the revolving mirror R, thence through a hole in the shutter, through the lens, and to the distant mirror.

THE HELIOSTAT.

The heliostat was one kindly furnished by Dr. Woodward, of the Army Medical Museum, and was a modification of Foucault's form, designed by Keith. It was found to be accurate and easy to adjust. The light was reflected from the heliostat to a plane mirror, M, Fig. 3, so that the former need not be disturbed after being once adjusted.

THE REVOLVING MIRROR.

Fig. 4.

The revolving mirror was made by Fauth & Co., of Washington. It consists of a cast-iron frame resting on three leveling screws, one of which was connected by cords to the table at S, Fig. 3, so that the mirror could be inclined forward or backward while making the observations.

Two binding screws, S, S, Fig. 4, terminating in hardened steel conical sockets, hold the revolving part. This consists of a steel axle, X, Y, Figs. 4 and 5, the pivots being conical and hardened. The axle

expands into a ring at R, which holds the mirror M. The latter was a disc of plane glass, made by Alvan Clark & Sons, about 1½ inch in diameter and 0.2 inch thick. It was silvered on one side only, the reflection taking place from the outer or front surface. A species of turbine wheel, T, is held on the axle by friction. This wheel has six openings for the escape of air; a section of one of them is represented in Fig 6.

ADJUSTMENT OF THE REVOLV-ING MIRROR.

The air entering on one side at O, Fig. 5, acquires a rotary motion in the box B, B, carrying the wheel with it, and this motion is assisted by the reaction of the air in escaping. The disc C serves the purpose of bringing the center of gravity in the axis

of rotation. This was done, following Foucault's plan, by allowing the pivots to rest on two inclined planes of glass, allowing the arrangement to come to rest, and filing away the lowest part of the disc; trying again, and so on, till it would rest in indifferent equilibrium. The part corresponding to C, in Foucault's apparatus, was furnished with three vertical screws, by moving which the axis of figure was brought into coincidence with the axis of rotation. This adjustment was very troublesome. Fortunately, in this apparatus it was found to be unnecessary.

When the adjustment is perfect the apparatus revolves without giving any sound, and when this is accomplished, the motion is regular and the speed great. A slight deviation causes a sound due to the rattling of the pivots in the sockets, the speed is very much diminished, and the pivots begin to wear. In Foucault's apparatus oil was furnished to the pivots, through small holes running through the screws, by pressure of a column of mercury. In this apparatus it was found sufficient to touch the

pivots occasionally with a drop of oil.

Fig. 7 is a view of the turbine, box, and supply-tube, from above. The quantity of air entering could be regulated by a valve to which was attached a cord leading to the observer's table.

The instrument was mounted on a brick pier.

THE MICROMETER.

This instrument is shown in perspective in Fig. 8, and in plan by Fig. 9. The adjustable slit S is clamped to the frame F. A long millimeter-screw, not shown in Fig. 8, terminating in the divided head D, moves the carriage C, which supports the eye-piece E. The frame is furnished with a brass scale at F for counting revolutions, the head counting hundredths. The eye-piece consists of a single achromatic lens, whose focal length is about two inches At its focus, in H, and in nearly the same plane as the face of the slit, is a single vertical silk fiber. The apparatus is furnished with a standard with rack and pinion, and the base furnished with leveling screws.

In measuring the deflection, the eye-piece is moved till the cross-hair bisects the slit, and the reading of the scale and divided head gives the position. This measurement need not be repeated unless the position or width of the slit is changed. Then

the eye-piece is moved till the cross-hair bisects the deflected image of the slit; the reading of scale and head are again taken, and the difference in readings gives the deflection. The screw was found to have no lost motion, so that readings could be taken with the screw turned in either direction.

MEASUREMENT OF SPEED OF ROTATION.

To measure the speed of rotation, a tuning-fork, bearing on one prong a steel mirror, was used. This was kept in vibration by a current of electricity from five "gravity" cells. The fork was so placed that the light from the revolving mirror was reflected to a piece of plane glass, in front of the lens of the eye-piece of the micrometer, inclined at an angle of 45°, and thence to the eye. When fork and revolving mirror are both at rest, an image of the revolving mirror is seen. When the fork vibrates, this image is drawn out into a band of light.

When the mirror commences to revolve, this band breaks up into a number of moving images of the mirror; and when, finally, the mirror makes as many turns as the fork makes vibrations, these images are reduced to one, which is stationary. This is also the case when the number of turns is a submultiple. When it is a multiple or simple ratio, the only difference is that there are more images. Hence, to make the mirror execute a certain number of turns, it is simply necessary to pull the cord attached to the valve to the right or left till the images of the revolving mirror come to rest.

The electric fork made about 128 vibrations per second. No dependence was placed upon this rate, however, but at each set of observations it is compared with a standard Ut₃ fork, the temperature being noted at the same time. In making the comparison the sound-beats produced by the forks were counted for 60 seconds. It is interesting to note that the electric fork, as long as it remained untouched and at the same temperature, did not change its rate more than one or two hundredths vibrations per second.

THE OBSERVER'S TABLE.

Fig. 9 represents the table at which the observer sits. The light from the heliostat passes through the slit at S, goes to the revolving mirror, &c., and, on its return, forms an image of the slit at D, which is observed through the eye-piece. E represents the electric fork (the prongs being vertical) bearing the steel mirror M. K is the standard fork on its resonator. C is the cord attached to the valve supplying air to the turbine.

THE LENS.

The lens was made by Alvan Clark & Sons. It was 8 inches in diameter; focal length, 150 feet; not achromatic. It was mounted in a wooden frame, which was placed on a support moving on a slide, about 16 feet long, placed about 80 feet from the building. As the diameter of the lens was so small in comparison with its focal length, its want of achromatism was inappreciable. For the same reason, the effect of "parallax" (due to want of coincidence in the plane of the image with that of the silk fiber in the eye-piece) was too small to be noticed.

THE FIXED MIRROR.

The fixed mirror was one of those used in taking photographs of the transit of Venus. It was about 7 inches in diameter, mounted in a brass frame capable of adjustment in a vertical and a horizontal plane by screw motion. Being wedge-shaped, it had to be silvered on the front surface. To facilitate adjustment, a small telescope furnished with cross-hairs was attached to the mirror by a universal joint. The heavy frame was mounted on a brick pier, and the whole surrounded by a wooden case to protect it from the sun.

ADJUSTMENT OF THE FIXED MIRROR.

The adjustment was effected as follows: A theodolite was placed at about 100 feet in front of the mirror, and the latter was moved about by the screws till the observer at the theodolite saw the image of his telescope reflected in the center of the mirror. Then the telescope attached to the mirror was pointed (without moving the mirror itself) at a mark on a piece of card-board attached to the theodolite. Thus the line of collimation of the telescope was placed at right angles to the surface of the mirror. The theodolite was then moved to 1,000 feet, and, if found necessary, the adjustment was repeated. Then the mirror was moved by the screws till its telescope pointed at the hole in the shutter of the building. The adjustment was completed by moving the mirror, by signals, till the observer, looking through the hole in the shutter, through a good spy-glass, saw the image of the spy-glass reflected centrally in the mirror.

The whole operation was completed in a little over an hour.

Notwithstanding the wooden case about the pier, the mirror would change its position between morning and evening; so that the last adjustment had to be repeated before every series of experiments.

APPARATUS FOR SUPPLYING AND REGULATING THE BLAST OF AIR.

Fig. 10 represents a plan of the lower floor of the building. E is a three-horse

power Lovegrove engine and boiler, resting on a stone foundation; B, a small Roots' blower; G, an automatic regulator. From this the air goes to a delivery-pipe, up through the floor, and to the turbine. The engine made about 4 turns per second and the blower about 15. At this speed the pressure of the air was about half a pound per square inch.

The regulator, Fig. 11, consists of a strong bellows supporting a weight of 370 pounds, partly counterpoised by 80 pounds in order to prevent the bellows from sagging. When the pressure of air from the blower exceeds

the weight, the bellows commences to rise, and, in so doing, closes the valve V.

This arrangement was found in practice to be insufficient, and the following addition was made: A valve was placed at P, and the pipe was tapped a little farther on, and a rubber tube led to a water-gauge, Fig 12. The column of water in the smaller tube is depressed, and, when it reaches the horizontal part of the tube, the slightest variation of pressure sends the column from one end to the other. This is checked by an assistant at the valve; so that the column of water is kept at about the same place, and the pressure thus rendered very nearly constant. The result was satisfactory, though not in the degree anticipated. It was possible to keep the mirror at a constant speed for three or four seconds at a time, and this was sufficient for an observation. Still it would have been more convenient to keep it so for a longer time.

I am inclined to think that the variations were due to changes in the friction of the pivots rather than to changes of pressure of the blast of air.

It may be mentioned that the test of uniformity was very delicate, as a change of speed of one or two hundredths of a turn per second could easily be detected.

METHOD FOLLOWED IN EXPERIMENT.

It was found that the only time during the day when the atmosphere was sufficiently quiet to get a distinct image was during the hour after sunrise, or during the hour before sunset. At other times the image was "boiling" so as not to be recognizable. In one experiment the electric light was used at night, but the image was no more distinct than at sunset, and the light was not steady.

The method followed in experiment was as follows: The fire was started half an hour before, and by the time everything was ready the gauge would show 40 or 50 pounds of steam. The mirror was adjusted by signals, as before described. The heliostat was placed and adjusted. The revolving mirror was inclined to the right or left, so that the *direct* reflection of light from the slit, which otherwise would flash into the eye-piece at every revolution, fell either above or below the eye-piece.*

The revolving mirror was then adjusted by being moved about, and inclined forward and backward, till the light was seen reflected back from the distant mirror. This light was easily seen through the coat of silver on the mirror.

The distance between the front face of the revolving mirror and the cross-hair of the eye-piece was then measured by stretching from the one to the other a steel tape, making the drop of the catenary about an inch, as then the error caused by the stretch of the tape and that due to the curve just counterbalance each other.

The position of the slit, if not determined before, was then found as before described. The electric fork was started, the temperature noted, and the sound-beats between it and the standard fork counted for 60 seconds. This was repeated two or three times before every set of observations.

The eye-piece of the micrometer was then set approximately † and the revolving mirror started. If the image did not appear, the mirror was inclined forward or backward till it came in sight.

The cord connected with the valve was pulled right or left till the images of the revolving mirror, represented by the two bright round spots to the left of the cross-hair, came to rest. Then the screw was turned till the cross-hair bisected the deflected image of the slit. This was repeated

till ten observations were taken, when the mirror was stopped, temperature noted, and beats counted. This was called a set of observations. Usually five such sets were taken morning and evening.

Fig. 13 represents the appearance of the image of the slit as seen in the eye-piece magnified about five times.

^{*}Otherwise this light would overpower that which forms the image to be observed. As far as I am aware, Foucault does not speak of this difficulty. If he allowed this light to interfere with the brightness of the image, he neglected a most obvious advantage. If he did incline the axis of the mirror to the right or left, he makes no allowance for the error thus introduced.

[†]The deflection being measured by its tangent, it was necessary that the scale should be at right angles to the radius (the radius drawn from the mirror to one or the other end of that part of the scale which represents this tangent). This was done by setting the eye-piece approximately to the expected deflection, and turning the whole micrometer about a vertical axis till the cross-hair bisected the circular field of light reflected from the revolving mirror. The axis of the eye-piece being at right angles to the scale, the latter would be at right angles to radius drawn to the cross-hair.

DETERMINATION OF THE CONSTANTS.

COMPARISON OF THE STEEL TAPE WITH THE STANDARD YARD.

The steel tape used was one of Chesterman's, 100 feet long. It was compared with Wurdeman's copy of the standard yard, as follows:

Temperature was 55° Fahr.

The standard yard was brought under the microscopes of the comparator; the cross-hair of the unmarked microscope was made to bisect the division marked o, and the cross-hair of the microscope, marked I, was made to bisect the division marked 36. The reading of microscope I was taken, and the other microscope was not touched during the experiment. The standard was then removed and the steel tape brought under the microscopes and moved along till the division marked o.1 (feet) was bisected by the cross-hair of the unmarked microscope. The screw of microscope I was then turned till its cross-hair bisected the division marked 3.1 (feet), and the reading of the screw taken. The difference between the original reading and that of each measurement was noted, care being taken to regard the direction in which the screw was turned, and this gave the difference in length between the standard and each succesive portion of the steel tape in terms of turns of the micrometer-screw.

To find the value of one turn, the cross-hair was moved over a millimeter scale, and the following were the values obtained:

Turns of screw of microscope I in 1 mm —

7.68	7.73	7.60	7.67
7.68	7.62	7.65	7.57
7.72	7.70	7.64	₋ 7.69
7.65	7.59	7.63	7.64
7.55	7.65	7.61	7.63
	Mean	= 7.65	
	TT 4	m m	

Hence one turn $\equiv 0.1307^{mm}$. or $\equiv 0.0051$ inch.

The length of the steel tape from 0.1 to 99.1 was found to be greater than 33 yards, by 7.4 turns = .96 mm - +.003 feet.

Correction for temperature - - - - +.003 feet.

Length - - - - - - - - - - 100.000 feet.

Corrected length - - - - 100.006 feet.

DETERMINATION OF THE VALUE OF MICROMETER.

Two pairs of lines were scratched on one slide of the slit, about 38 mm apart, i. e., from the center of first pair to center of second pair. This distance was measured at intervals of 1mm through the whole length of the screw, by bisecting the interval between each two pairs by the vertical silk fiber at the end of the eye-piece. With these values a curve was constructed which gave the following values for this distance, which we shall call D:

, 0110		2,.										_
	•	1 1										Turns of screw.
At		scale D,		-	-	-	-	-	-	-	-	=38.155
		scale D,		-	-	-	-	-	-	-	-	38.155
	20 of	scale D,	-	-	-	-	-	-	-	-	-	38.150
	30 of	scale D,	-	-	-	-	-	-	-	-	-	38 150
	40 of	scale D,	-	-	-	-	-	-	-	-	-	38.145
	50 of	scale D,	-	-	-	-	-	-	-	-	-	38.140
	60 of	scale D,	-	-	-	-	-	-	-	-	-	38.140
	70 of	scale D,	-	-	-	-	-	-	-	-	-	38.130
	80 of	scale D,	-	-	-	-	-	-	-	-	-	38.130
	90 of	scale D,	-	-	-	-	-		-	-	-	38.125
I	oo of	scale D,	-	-	-	-	-	-	-	-	-	38.120
I	10 of	scale D,	-	•	-	-	-	-	-	-	-	38 110
I	20 of	scale D,	-	-	-	-	-	-	-	-	-	38.105
I	30 of	scale D,	-	-	-	-	-	-	-	-	-	38.100
1	40 of	scale D,	-	-	-	-	-	-	-	-	-	38.100
_	•					_						
g the	form (of this t	able,	we	find	l tha	t					
For	the fire	<i>st</i> 10 tur	ns tl	ie a	verag	je va	lue d	of D	, is	-	-	- 38.155
		20 tur	ns -			_		_ :	· 		_	- 38.152

Changing

```
30 turns -
                                                 38.152
40-turns -
                                                 38.151
50 turns -
                                                 38.149
60 turns -
                                                 38.148
70 turns -
                                                 38.146
80 turns -
                                                 38.144
90 turns -
                                                 38.142
100 turns -
                                                 38.140
110 turns -
                                                 38.138
120 turns -
                                                 38.135
130 turns -
                                                 38.132
140 turns -
                                                 38.130
```

On comparing the scale with the standard meter, the temperature being 16°.5 °C., 140 divisions were found to $= 139.462^{\text{mm}}$. This multiplied by $(1 + .0000188 \times 16.5) =$ 139.505 mm.

One hundred and forty divisions were found to be equal to 140.022 turns of the screw, whence 140 turns of the screw = 139 483 mm, or 1 turn of the screw = 0.996305 mm.

This is the average value of one turn in 140.

But the average value of D, for 140 turns is, from the preceding table, 38.130.

Therefore, the true value of D, is $38.130 \times .996305^{mm}$, and the average value of one turn for 10, 20, 30, etc., turns, is found by dividing $38.130 \times .996305$ by the values of D, given in the table.

This gives the value of a turn-

										mm.
For the first	10 turns	-	-	-	-	-		-	-	0.99570
	20 turns	-	-	-	-	-	-	-	-	0 99570
	30 turns	-	-	-	-	-	-	-	-	0 99573
	40 turns	-	-	-	-	-	-		-	0.99577
	50 turns	-	-	-	-	-	-	-	-	0.99580
	60 turns	-	-	-	-	-	-	-	-	0.99583
	70 turns	-	-	-	-	-	-	-	-	0.99589
	80 turns	-	-	-	-	-	-	-	-	0 99596
	90 turns	-	-	-	-	-	-	-	-	0.99601
	100 turns	-	-	-	-	-	-	-	-	0.99606
	110 turns	-	-	-	-	-	-	-	-	0.99612
	120 turns	-	-	-	-	-	-	-	-	0 99618
	130 turns	-	-	-	-	-	-	-	-	0.99625
•	140 turns	-	-	-	-	-	-	-	-	0.99630

Note.—The micrometer has been sent to Professor Mayer, of Hoboken, to test the screw again, and to find its value. The steel tape has been sent to Professor Rogers, of Cambridge, to find its length again. (See page 145.)

MEASUREMENT OF THE DISTANCE BETWEEN THE MIRRORS.

Square lead weights were placed along the line, and measurements taken from the forward side of one to forward side of the next. The tape rested on the ground (which was very nearly level), and was stretched by a constant force of 10 pounds.

The correction for length of the tape (100.006) was + 0.12 of a foot.

To correct for the stretch of the tape, the latter was stretched with a force of 15 pounds, and the stretch at intervals of 20 feet measured by a millimeter scale

									mm.
At 100 feet the stretch was	-	-	-	-	-	-	-	-	8. o
80 feet the stretch was	-	-	-	-	-	-	· -	-	5.0
60 feet the stretch was	-	-	-	-	-	-	-	-	5 O
40 feet the stretch was	-	-	-	-	-	-	-	-	3.5
20 feet the stretch was	-	-	-	-	-	-	-	-	1.5
									
200									22.00

```
Weighted mean = 7.7<sup>mm</sup>.

For 10 pounds, stretch = 5.1<sup>mm</sup>.

= 0.0167 feet.

Correction for whole distance = + 0.33 feet.
```

The following are the values obtained from five separate measurements of the distance between the caps of the piers supporting the revolving mirror and the distant reflector; allowance made in each case for effect of temperature:

```
1985 13 feet.
1985.17 feet.
1984.93 feet.
1985.09 feet.
1985.09 feet.
```

Mean = 1985.082 feet.

+.70. Cap of pier to revolving mirror.

+.33. Correction for stretch of tape.

+.12. Correction for length of tape.

1986.23. True distance between mirrors.

RATE OF STANDARD Ut, FORK.

The rate of the standard Ut, fork was found at the Naval-Academy, but as so much depended on its accuracy, another series of determinations of its rate was made, together with Professor Mayer, at the Hoboken Institute of Technology.

Set of determinations made at Naval Academy.

The fork was armed with a tip of copper foil, which was lost during the experiments and replaced by one of platinum having the same weight, 4.6 mgr. The fork, on its resonator, was placed horizontally, the platinum tip just touching the lamp-blacked cylinder of a Schultze chronoscope. The time was given either by a sidereal break-circuit chronometer or by the break-circuit pendulum of a mean-time clock. In the former case the break-circuit worked a relay which interrupted the current from three Grove cells. The spark from the secondary coil of an inductorium was delivered from a wire near the tip of the fork. Frequently two sparks near together were given, in which case the first alone was used. The rate of the chronometer, the record of which was kept at the Observatory, was very regular, and was found by observations of transits of stars during the week to be + 1.3 seconds per day, which is the same as the recorded rate.

SPECIMEN OF A DETERMINATION OF RATE OF Ut, FORK.

Temp. $\equiv 27^{\circ}$ C. Column 1 gives the number of the spark or the number of the second. Column 2 gives the number of sinuosities or vibrations at the corresponding second. Column 3 gives the difference between 1 and 11, 2 and 12, 3 and 13, etc.

```
July 4, 1879.
           0.1
                      2552.0
 I
                      2551.7
 2
         255.3
 3
         510.5
                      2551.9
 4
         765.6
                      2551.9
        1020.7
                      2552.1
 5
 6
        1275.7
                      2552.0
 7
        1530.7
                      2551.8
 8
        1786.5
                      2551.4
        2041.6
 9
                      2551.7
10
        2297.0
                      2551.5
ΙI
        2552.1
                     255.180 = mean \div 10.
                     + .699 = reduction for mean time.
I 2
        2807.0
                     + .003 = correction for rate.
        3062.4
13
                     + .187 = correction for temperature.
14
        3317.5
                     256.069 = number of vibrations per second at 65° Fahr.
        3572.8
15
16
        3827.7
17
        4082.5
18
        4335.9
19
        4593.3
20
        4848.5
```

The correction for temperature was found by Professor Mayer by counting the sound-beats between the standard and another Ut, fork, at different temperatures. His result is +.012 vibrations per second for a diminution of 1° Fahr. Using the same method, I arrived at the result +.0125. Adopted +.012.

Résumé of determinations made at Naval Academy.

In the following table the first column gives the date, the second gives the total number of seconds, the third gives the result uncorrected for temperature, the fourth gives the temperature (centigrade), the fifth gives the final result, and the sixth the difference between the greatest and least values obtained in the several determinations for intervals of ten seconds:

				Mean =	256.072	
;	8	20	255.887	26.6	256.066	0.03
	8	20	255.905	26.6	256.084	0.06
	8	20	255.921	26.6	256.100	0.02
	7	2 I	255.911	25.3	256.061	0.04
	7	22	255.938	24.6	256.074	0.05
(6	9	255.948	24.8	256.087	0.24
(6	2 I	255.874	24.7	256.012	0.13
	5	18	255.911	26.0	256.077	0.02
	5	19	255.915	26.4	256.089	0.05
July .	4	20	255.882	27.0	256.069	0.07

In one of the preceding experiments, I compared the two Vt₃ forks while the standard was tracing its record on the cylinder, and also when it was in position as for use in the observations. The difference, if any, was less than .o. vibration per second.

Second determination.

(Joint work with Professor A. M. Mayer, Stevens Institute, Hoboken.)

The fork was wedged into a wooden support, and the platinum tip allowed to rest on lampblacked paper, wound about a metal cylinder, which was rotated by hand Time was given by a break-circuit clock, the rate of which was ascertained, by comparisons with Western Union time-ball, to be 9.87 seconds. The spark from secondary coil of the inductorium passed from the platinum tip, piercing the paper. The size of the spark was regulated by resistances in primary circuit.

The following is a specimen determination:

Column 1 gives the number of the spark or the number of seconds. Column 2 gives the corresponding number of sinuosities or vibrations. Column 3 gives the difference between the 1st and 7th \div 6, 2nd and 8th \div 6, etc.

```
0.3
                      255.83
         256.1
 2
                       255.90
          511.7
 3
                       255.90
         767.9
 4
                       255.93
 5
6
        1023.5
                       255.92
        1289.2
                       256.01
 7
                       255.95
        1535.3
 8
        1791.5
                      255.920 = mean.
                      - 028 \equiv correction for rate.
 9
        2047.1
                      255.892
10
        2303.5
                      + .180 \pm correction for temperature.
ΙI
        2559.0
                      256.072 = number of vibrations per second at 65° Fahr.
I 2
        2825.3
         3071.0
13
```

In the following résumé, column 1 gives the number of the experiments. Column 2 gives the total number of seconds. Column 3 gives the result not corrected for temperature. Column 4 gives the temperature Fahrenheit. Column 5 gives the final result. Column 6 gives the difference between the greatest and least values:

I	13	255.892	80	256.072	9.18
2	ΙI	255.934	18	256.126	0.17
3	13	255.899	8 I	256.091	O. I 2
4	13	255.988	75	256.108	0.13
5	11	255.948	75	256.068	0.05
6	I 2	255.970	75	256.090	0.05
7	12	255.992	75	256.112	0.20
8	ΙI	255.992	. 76	256.124	0.03
9	ΙI	255.888	. 81	256.08 0	0.13
10	13	255.878	81	256.070	0.13

Mean = 256.094

EFFECT OF SUPPORT AND OF SCRAPING.

The standard Vt₃ fork held in its wooden support was compared with another fork on a resonator loaded with wax and making with standard about five beats per second. The standard was free from the cylinder. The beats were counted by coincidences with the ½ second beats of a watch.

Specimen.

Coincidences were marked—

```
At 32 seconds.

37 seconds.

43.5 seconds.

49 seconds.

54.5 seconds.

61.5 seconds.

61.5 - 32 = 29.5.

29.5 ÷ 5 = 5.9 = time of one interval.
```

Résumé.

I	-	-	-	-	5.9
2	-	-	-	-	6.2
3	-	-	-	-	6.2
4	-	-	-	-	6.2

Mean \pm 6.13 \pm time of one interval between coincidences.

In this time the watch makes $6.13 \times 5 = 30.65$ beats, and the forks make 30.65 + 1 = 31.65 beats.

Hence the number of beats per second is $31.65 \div 6.13 = 5.163$.

Specimen.

Circumstances the same as in last case, except that standard Vt₃ fork was allowed to trace its record on the lampblacked paper, as in finding its rate of vibration.

Coincidences were marked at—

```
59 seconds.

04 seconds.

10.5 seconds.

17 seconds.

77 - 59 = 18.

18 \div 3 = 6.0 = time of one interval.
```

Résumé.

No. 1	-	-	-	6.0	seconds	
2	-	-	-	6.0	seconds.	$6.31 \times 5 = 31.55$
3	-	-	-	6.7	seconds.	
4	-	-	-	6.3	seconds.	$\frac{\overline{3^2 55}}{3}$
5	-	-	-		seconds.	$32.55 \div 6.31 = 5.159$
6	-	-	-		seconds.	
7	-	-	-	60	seconds.	
					-	Effect of scrape $=$ 004
		M	ean :	= 6.31	seconds.	

Specimen.

Circumstances as in first case, except that both forks were on their resonators. Coincidences were observed at—

21 seconds. 28 seconds. 36 seconds. 44 seconds. 51 seconds. 60 seconds.

60-21=39 $39 \div 5=7.8 =$ time of one interval.

Résumé.

No. 1	-	-	7.8	second	ls.			7.42	× 5	=3	7.10		
2	-	-	7.1	second	ls.					+	1.00		
				second						3	8.10		
4	-	-	7.4	second	ls.				3				= 5.133
5	-	-	7.2	second	ls.						(Abo	ove)	5.159
							t of	supp	ort	and	scraj	ре = ·	—.026.
				ermina			-	-	-	-	-	-	256.094
Applyi	ng (corre	ection	ı (scraj	рө, е	etc.)	-	-	-	-	-	-	— . 02 6
			ted n		-	-	-	-	-	-	-	-	256.068
Result	of f	first	dete	rminatio	\mathbf{on}	-	-	-	-	-	-	-	256.072
		_	_										

Note —The result of first determination excludes all work except the series commencing July 4. If previous work is included, and also the result first obtained by Professor Mayer, the result would be 256.089.

The previous work was omitted on account of various inaccuracies and want of practice, which made the separate results differ widely from each other.

THE FORMULÆ.

The formulæ employed are—

(1)
$$\tan \varphi = \frac{d_r}{r}$$

(2) $V = \frac{2592000'' \times D \times n}{\varphi''}$

 $\varphi =$ angle of deflection.

 $d_{i} =$ corrected displacement (linear).

r =radius of measurement.

D = twice the distance between the mirrors.

n = number of revolutions per second.

 $\alpha =$ inclination of plane of rotation.

d = deflection as read from micrometer.

B = number of beats per second between electric Vt2 fork and standard Vt3

Cor = correction for temperature of standard Vt₃.

V = velocity of light.

T = value of one turn of screw (Table, page 126.)

Substituting for d, its value or $d \times T \times \sec \alpha$ (log sec $\alpha = .00008$), and for D its value 3972.46, and reducing to kilometers, the formulæ become—

(3)
$$\tan \varphi = c_1 \frac{dT}{r}$$
; $\log c_1 = .51607$

(4)
$$V = c \frac{n}{\varphi}$$
; $\log c = .49670$

D and r are expressed in feet and d_r in millimeters.

Vt. fork makes 256.070 vibrations per second at 65° Fahr.

D = 3972.46 feet.

 $\tan \alpha = \text{tangent of angle of inclination of plane of rotation} = 0.02$ in all but the last twelve observations, in which it was 0.015.

 $\log c_1 = .51607$ (.51603 in last twelve observations.).

 $\log c = .49670.$

The electric fork makes $\frac{1}{2}$ (256.070 + B + cor.) vibrations per second, and n is a multiple, submultiple, or simple ratio of this.

OBSERVATIONS.

SPECIMEN OBSERVATION.

June 17. sunset. Image good; best in column (4).

The columns are sets of readings of the micrometer for the deflected image of slit.

. 112.81	112.80	112.83	112.74	112.79
81	81	81	76	78
79	78	78	74	74
8 0	7 5	74	76	74
79	77	74	76	77
82	7 9	72	78	18
82	73	76	78	77
7 6	78	81	79	75
83	79	74	83	82
78	73	<u>76</u>	78	82
Mean = 112.801	112.773	112.769	112.772	112.779
Zero = 0.260	0.260	0.260	0.260	0.260
$d = \overline{112.541}$	112.513	112.509	112.512	112.519
$Temp = 77^{\circ}$	77°	77°	77°	77°
B = + 1.500				
Cor =144			•	
+ 1.365				
256.070				
n = 257.426	257.43	257.43	257.43	²⁵⁷ 43
r = 28.157	28.157	28.157	2 8. 1 5 7	28.157

The above specimen was selected because in it the readings were all taken by another and noted down without divulging them till the whole five sets were completed.

The following is the calculation for V:

		2d, 3d,	
_	1st set.	and 4th sets.	5th set.
\log	$c_{,} = 51607$	51607	51607
"	T = 99832	998 <u>3</u> 2	99832
"	d = 05131	05119	05123
	56570	56558	56562
"	r = 44958	44958	44958
" ta	an $\varphi = 11612$	11600	11604
	$\varphi = 2694''.7$	2694".1	2694".3
"	c = 49670	49670	49670
"	n = 41066	41066	41066
	90736	90736	90736
"	$\varphi = 43052$	43042	43046
"	V = 47684	47694	47690
	V = 299800	299880	299850

In the following table, the numbers in the column headed "Distinctness of Image" are thus translated: 3, good; 2, fair; 1, poor. These numbers do not, however, show the relative weights of the observations

The numbers contained in the columns headed "Position of Deflected Image," "Position of Slit," and displacement of image in divisions were obtained as described in the paragraph headed "Micrometer," page 120.

The column headed "B" contains the number of "beats" per second between the electric Vt₂ fork and the standard Vt₃ as explained in the paragraph headed "Measurement of the Speed of Rotation." The column headed "Cor." contains the correction of the rate of the standard fork for the difference in temperature of experiment and 65° Fahr., for which temperature the rate was found. The numbers in the column headed "Number of revolutions per second" were found by applying the corrections in the two preceding columns to the rate of the standard, as explained in the same paragraph.

The "radius of measurement" is the distance between the front face of the revolving mirror and the cross-hair of the micrometer.

The numbers in the column headed "Value of one turn of the screw" were taken from the table, page 127.

Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Tremperature, Treatment, Inchesions, Inche		
Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Displacement of image in divisions. Test of 14, 56 0.074 114, 56 0.074 114, 56 0.074 114, 57 0.07		. Set micrometer and counted oscil- lations.
Temperature, Fahr. Temperature, Temperature, Fahr. Texperature,		P. M. P. M.
Temperature, Fahr. 7 7 114, 85 8 8 3 114, 57 7 11 114, 75 9 115, 75 9 115, 7	299950 299980 29980 30000 299980 299930 299950 299960 299960 299960 299960 299960	299940
Temperature, Fahr. Temperature, Fahr. Position of deflected im- age. Difference between great. Difference between great. Difference between great. 1. 533 1.4 57 1.4 53 1.4 54 1.4 53 1.4 54 1.5 53 1.4 54 1.5 53 1.4 54 1.5 53 1.4 57 1.5 53 1.4 57 1.5 53 1.4 57 1.5 53 1.4 57 1.4 51 1.5 53 1.4 57 1.5 53 1.4 57 1.5 53 1.4 57 1.4 57 1.5 53 1.4 57 1.5 53 1.4 57 1.5 53 1.4 57 1.5 53 1.4 57 1.5 53 1.4 57 1.5 53 1.	0.99614 0.99614 0.99614 0.99614 0.99614 0.99614 0.99614 0.99614 0.99614 0.99614 0.99614 0.99614 0.99614	0.99614
Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. To o o o o o o o o o o o o o o o o o o	28. 658 28. 658 28. 658 28. 658 28. 658 28. 685 285 285 285 285 285 285 285 285 285 2	28.178
Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. To 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	257.39 257.39 257.39 257.39 257.29 257.45 257.45 257.45 257.49 257.49	257. 42
Temperature, Fahr. Temper	0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 168
7 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1. 533 1. 533 1. 533 1. 533 1. 517 1. 450 1. 450 1. 500 1. 500 1. 500 1. 517 1. 517 1. 517	1.517
Temperature, Fahr. 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.11
Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. Temperature, Fahr. 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	74.4.1.1.4.5.0.4.5.0.4	112.57
7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		0.260
waaaawwwaaaaa mamawaawaa	4 5 4 1 1 4 5 4 1 1 4 5 4 1 1 4 5 4 1 1 4 5 4 1 1 4 5 4 1 1 1 4 5 4 1 1 1 4 5 4 1 1 1 4 5 4 1 1 1 1	112.83
Distinctness of image.	2 2 2 2 2 2 1 1 1 8 8 8 8 8 8 8 8 8 8 8	2 2
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m m
		• •
j		• •
June 5 7 7 7 9 9 9 12 12 13 13 13		13

Remarks.	Oscillations of image of revolving mirror.	A. M.	A. M.	A. M.	A. M.	A. M.	P. M. Readings taken by Lieut. Nazro.	P. M. Readings taken by Lieut. Nazro.	P. M. Readings taken by Lieut. Nazro.	P. M.	P. M.	A. M.	A. M.	A. M.	P. M. Readings taken by Mr. Clason.	P. M. Readings taken by Mr. Clason.	P. M. Readings taken by Mr. Clason.	P. M. Readings taken by Mr. Clason.	P. M. Readings taken by Mr. Clason.	A. M.	A. M.	А. М.	P. M.	P. M.	P. M.
Velocity of light in air, in kilometers.	299800	299850	299880	299900	299840	299830	299790	299810	299880	299880	299830	299800	299790	299760	299800	299880	299880	299880	299860	299720	299720	299620	299860	299970	299950
Value of one turn of the serew.	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614	0.99614
Radius of measurement, in feet.	28. 152	28. 152	28. 152	28. 152	28. 152	28. 152	28. 159	28. 159	28. 159	28. 159	28. 159	28. 149	28. 149	28. 149	28. 157	28. 157	28. 157	28. 157	28. 157	28. 150	28. 150	28. 150	28. 158	28. 158	28. 158
Number of revolutions per second.	255.69	257.58	257.60	257.59	257.57	257.56	257.36	257.33	257.32	257.32	257.32	257.62	257.59	257.58	257.43	257.43	257.43	257.43	257 43	257.65	257.65	257.62	257.43	257.43	257.43
Cor.	- 0.168	+ 0.012	+ 0.012	0.000	- 0.012	- 0.024	- 0.228	- 0.240	- 0.228	- 0.228	- 0.228	+ 0.036	+ 0.024	+ 0.012	- o. 144	- 0.144	0.144	0.144	- o. 144	+ 0.084	+ 0.084	+ 0.072	0.120	0.120	0. 120
æ	+ 1.517	1.500	1.517	1.517	1.517	1.517	1.517	1.500	1.483	1.483	1.483	1. 517	1. 500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.483	1.483	1.483	1.483
Difference between great-	9	0. 12	0.05	0.11	0.0	0. 12	90.0	%	0.08	0.00	0.00	0.0	90.0	0.07	0.07	9.08	0. 11	0.0	0.08	0.07	0. 10	0.07	60.0	0.10	% 0.0%
Displacement of image in divisions.	111.88	112.57	112.57	112.55	112.57	112.57	112.52	112.50	112.46	112.47	112.49	112. 59	112.58	112.59	112.54	112.51	112.51	112.51	112.52	112.64	112.64	112.66	112.52	112.48	112.49
Position of slit.	0,260	0, 260	0,260	0.260	0,260	0, 260	0,260	0.260	0, 260	0, 260	0.260	0.260	0,260	0, 260	0.260	0.260	0.260	0, 260	0, 260	0.265	0. 265	0.265	0.265	0. 265	0. 265
Position of deflected im-	112.14	112.83	112.83	112.81	112.83	112.83	112. 78	112.76	112. 72	112. 73	112. 75	112.85	112.84	112.85	112.80	112.77	112.77	112.77	112.78	112.90	112.90	112.92	112.79	112. 75	112.76
Тетрегатите, Fahr.	8	\$	\$	65	8	67	84	85	\$	\$	84	62	63	\$	77	77	77	77	77	58	28	59	75	75	22
Distinctness of image.	8	-	-	-	H	H	-	-	H	-	-	7	n	-	m	3	က	3	8	H	-	-	"	**	n
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Date.	June 13 .	41	14	14	41	14	4.	14	14	14	14	. 71	. 41	. 41	. 41	. 41	. 71	. 41	. 41	81	. 89	∾	∞	∞	82

Remarks.	A. M.	A. M.	A. M.		P. M.	Р. М.	P. M.	P. M.		P. M.	A. M.	A. M.	Ä	A. M.	A. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.	
Velocity of light in air, in	299880	299910	299850	299870	299840	299840	299850	299840	299840	299840	299890	299810	299810	299820	299800	299770	299760	299740	299750	299760	299910	299920	299890	299860	299880
Value of one turn of the screw.	9.99614	0.99614	0.99614	0.99614	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	9.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627
Radius of measurement, in feet.	28. 172	28. 172	28. 172	28. 172	33.345	33.345	33.345	33.345	33.345	33.345	33.332	33.332	33.332	33.332	33.332	33.330	33.330	33.330	33.330	33.330	33.345	33.345	33.345	33.345	33.345
Number of revolutions per second.	257.65	257.63	257.62	257.61	257.36	257.40	257.39	257.39	257.38	257.38	257.65	257.64	257.63	257.61	257.60	257.42	257.38	257.37	257.38	257.38	257.32	257.33	257.32	257.30	257.29
Cor.	+ 0.063	+ 0.048	+ 0.036	+ 0.024	— o. 156	— o. 168	- 0.180	- 0.168	- o. 168	— o. 168	+ 0.048	+ 0.036	+ 0.024	+ 0.012	0.000	- 0, 180	— o. 192	- 0.204	- 0.204	- 0. 192	- 0.288	- 0.288	- 0.300	- 0.300	- 0.300
æ	+1.517	1.517	1.517	1.517	1.450	1.500	1.500	1.483	1.483	1.483	1.533	1. 533	1.533	1. 533	1. 533	1.533	1.500	1.500	1.517	1.500	1. 542	1.550	1.550	1. 533	1.517
Difference between great- est and least values.	0.07	6.0	0.07	0.03	0. 13	0.0	0.02	0.13	90.00	0. 10	0. 12	9.08	0.0	0. 11	0.13	90.0	0. 10	0.05	0.08	9.08	9.08	90.0	60.0	0.07	0.02
Displacement of image in divisions.	112.67	112.65	112.67	112.66	133.21	133.23	133.22	133.24	133.22	133. 22	133.29	133.31	133.31	133.30	133.30	133.21	133. 19	133.20	133.20	133. 19	133. 16	133. 15	133.17	133. 16	133. 16
Position of slit.	0.265	0.265	0. 265	0.265	0. 265	0.265	0. 265	0.265	0.265	0.265	0.265	0.265	0.265	0.265	0.265	0.265	0. 265	0. 265	0.265	0.265	0. 265	0.265	0.265	0.265	0.265
Position of deflected im-	112.94	112.92	112.94	112.93	133.48	133.49	133.49	133.50	133.49	133.49	133.56	133.58	133.57	133.57	133.56	133.48	133.46	133.46	133.46	133.46	133.43	133.42	133.43	133.43	133. 42
Тетретатите, Fahr.	-8	19	62	63	82	79	&	29	79	79	19	62	63	\$	65	&	81	82	82	81	&	&	8	8	8
Distinctness of image.	ю	8	n	М	n	n	81	8	п	n	8	н	"	n	n	ю	8	8	8	8	3	3	8	3	8
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•
Date.	June 20 .	. 02	8	. 8	. 02	. 02	8	. 02	8	8	. 12	. 12	. 12	. 12	. 12	. 12	. 12	. 12	. 12	. 12	. 53	23	23	23	33

Remarks.														Mirror inverted.	Mirror inverted.	Mirror inverted.	Mirror inverted.	Mirror inverted.	Mirror inverted.	Mirror inverted.	Mirror inverted.	Mirror erect.	Mirror erect.	Mirror erect.	Mirror erect.
	A. M.	A. M.	A. M.	A. M.	A. M.	P. M.	P. M.	A. M.	A. M.	A. M.	A M.	A. M.	A. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.	P. M.
Velocity of light in air, in kilometers.	299720	299840	299850	_	299780			299780	299810		299810	299790	299810	299820	299850	299870	299870	_	299740			299950	299800	299810	299870
Value of one turn of the screw.	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99627	0.99645	0.09645	0.99645	0.99645	0.99627	0,09627	0.99627	0.99627	0.99606	0.99586	0.99580	0.99574
Radius of measurement, in feet.	33.319	33.319	33.319	33.319	33.319	33.339	33.339	33.328	33.328	33.328	33.328	33.328	33.328	33.274	33.274	33.274	33.274	33. 282	33.282	33.311	33.311	33.205	33. 205	33.205	33.205
Number of revolutions per second.	257.50	257.49	257.48	257.47	257.45	257.33	257.33	257.46	257.44	257.43	257.42	257.42	257.42	193.00	193.00	193.00	193.00	257.35	257.34	257.28	257.28	192.95	128.63	96.48	64.32
Cor.	- 0.084	960.0 -	901.0 -	- 0.120	- 0.132	- 0.252	- 0.252	960.0 -	- 0.108	- 0, 120	- 0.120	- 0.132	- 0.132	- 0.240	- 0.252	- 0.252	- 0.252	- 0.216	- 0.228	- 0.252	- 0.252	- 0.252	- 0.252	- 0.252	- 0.240
ъ	+ 1.517	1.517	1.517	1.517	1.517	1.508	1.508	1.483	1.483	1.483	1.467	1.483	1.483	1.500	1.508	1.508	1.517	1.500	1.500	1.467	1.467	1.450	1.450	1.467	1.450
Difference between great- est and least values,	0.15	0.04	0.11	0.06	0. 10	0.05	0.08	0.11	90.0	0.00	0.00	0.08	0.10	0.05	90.0	0. 10	60.0	0.07	60.00	90.0	0.08	0.05	0.03	0.02	90.0
Displacement of image in divisions.	133.20	133.17	133.16	133.16	133.18	133.15	133.17	133.22	133.20	133.21	133.19	133.20	133.19	89.66	29.66	99.66	99.66	132.98	133.00	133.01	133.00	99.45	66.34	47.96	33.17
Position of slit.	0.265	0,265	0,265	0.265	0,265	26	0.265	0.265	0.265	0,265	0,265	0,265	0,265	135.00	135.00	135.00	135.00	135. 145	135.145	135.145	135.145	0.400	0.400	0.400	0.400
Position of deflected im- age.	133.47	133.44	133.42	133.42	133.44	133.42	133.44	133.49	133.47	133.47	133.45	133.47	133.45	35.32	35.34		35.34	02.17	02, 15	02.14	02, 14	99.85	66.74	50.16	33.57
Temperature, Fahr.	72	73	74	75	94	98	98	73	74	75	75	94	94	85	98	98	98	83	84	86	98	86	86	86	85
Distinctness of image.	60	3	"	3	3	61	61	3	3	n	3	3	3	14	61	64	61	64	м	71	N	3	3	6	n
	1				•					•	•		•	•	•	3	•	•	ě		•	•	•		•
ž			٠			٠					٠	•		•					÷	٠		٠	•		
Date.	June 24	24	24	24	24	56	56	27	27	27	. 27	27	27	30	30	30	30	July 1	1	1	-	N	N	19	73

In the last two sets of June 13, the micrometer was fixed at 113.41 and 112.14 respectively. The image was bisected by the cross-hair, and kept as nearly as possible in this place, meantime counting the number of seconds required for the image of the revolving mirror to complete 60 oscillations. In other words, instead of measuring the deflection, the speed of rotation was measured. In column 7 for these two sets, the numbers 11 and 6 are the differences between the greatest and the smallest number of seconds observed.

In finding the mean value of V from the table, the sets are all given the same weight. The difference between the result thus obtained and that from any system of weights is small, and may be neglected.

The following table gives the result of different groupings of sets of observations. Necessarily some of the groups include others:

Electric light (1 set) 2998 Set micrometer counting oscillations (2) 2998 Readings taken by Lieutenant Nazro (3) 2998 Readings taken by Mr. Clason (5) 2998 Mirror inverted (8) 2998 Speed of rotation, 192 (7) 2998 Speed of rotation, 128 (1) 2998 Speed of rotation, 96 (1) 2998 Radius, 28.5 feet (54) 2998 Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Image, good (46) 2998 Image, fair (39) 2998 Image, poor (15) 2998	340 330 360 340 390 300 310
Set micrometer counting oscillations (2) 2998 Readings taken by Lieutenant Nazro (3) 2998 Readings taken by Mr. Clason (5) 2998 Mirror inverted (8) 2998 Speed of rotation, 192 (7) 2998 Speed of rotation, 128 (1) 2998 Speed of rotation, 96 (1) 2998 Radius, 28.5 feet (54) 2998 Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Mean of lowest temperatures, 60° Fahr. (7) 2998 Image, good (46) 2998 Image, fair (39) 2998	340 330 360 340 390 300 310
Readings taken by Lieutenant Nazro (3) 2998 Readings taken by Mr. Clason (5) 2998 Mirror inverted (8) 2998 Speed of rotation, 192 (7) 2998 Speed of rotation, 128 (1) 2998 Speed of rotation, 96 (1) 2998 Radius, 28.5 feet (54) 2998 Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Mean of lowest temperatures, 60° Fahr. (7) - 2998 Image, good (46) 2998 Image, fair (39) 2998	360 340 390 300 310
Mirror inverted (8) 2998 Speed of rotation, 192 (7) 2998 Speed of rotation, 128 (1) 2998 Speed of rotation, 96 (1) 2998 Speed of rotation, 64 (1) 2998 Radius, 28.5 feet (54) 2998 Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Mean of lowest temperatures, 60° Fahr. (7) 2998 Image, good (46) 2998 Image, fair (39) 2998	340 390 300 310 370
Speed of rotation, 192 (7) 2998 Speed of rotation, 128 (1) 2998 Speed of rotation, 96 (1) 2998 Speed of rotation, 64 (1) 2998 Radius, 28.5 feet (54) 2998 Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Mean of lowest temperatures, 60° Fahr. (7) 2998 Image, good (46) 2998 Image, fair (39) 2998	390 300 310
Speed of rotation, 128 (1) 2998 Speed of rotation, 96 (1) 2998 Speed of rotation, 64 (1) 2998 Radius, 28.5 feet (54) 2998 Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Mean of lowest temperatures, 60° Fahr. (7) 2998 Image, good (46) 2998 Image, fair (39) 2998	300 310 370
Speed of rotation, 96 (1) 2998 Speed of rotation, 64 (1) 2998 Radius, 28.5 feet (54) 2998 Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Mean of lowest temperatures, 60° Fahr. (7) 2998 Image, good (46) 2998 Image, fair (39) 2998	310 370
Speed of rotation, 96 (1) 2998 Speed of rotation, 64 (1) 2998 Radius, 28.5 feet (54) 2998 Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Mean of lowest temperatures, 60° Fahr. (7) 2998 Image, good (46) 2998 Image, fair (39) 2998	310 370
Radius, 28.5 feet (54) 2998 Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Mean of lowest temperatures, 60° Fahr. (7) 2998 Image, good (46) 2998 Image, fair (39) 2998	
Radius, 28.5 feet (54) 2998 Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Mean of lowest temperatures, 60° Fahr. (7) 2998 Image, good (46) 2998 Image, fair (39) 2998	370
Radius, 33.3 feet (46) 2998 Highest temperature, 90° Fahr. (5) 2998 Mean of lowest temperatures, 60° Fahr. (7) 2998 Image, good (46) 2998 Image, fair (39) 2998	
Highest temperature, 90° Fahr. (5) 2999 Mean of lowest temperatures, 60° Fahr. (7) 2998 Image, good (46) 2998 Image, fair (39) 2998	330
Image, good (46) 2998 Image, fair (39) 2998	910
Image, good (46) 2998 Image, fair (39) 2998	300
Image, fair (39) 2998	360
Image, poor (15) 2998	36o
	310
Frame, inclined (5) 2999	960
Greatest value 3000	070
Least value 2996	550
Mean value 2998	352
Average difference from mean	60
Value found for π 3	.26
Probable error =	L 5

DISCUSSION OF ERRORS.

The value of V depends on three quantities D, n, and φ . These will now be considered in detail.

THE DISTANCE.

The distance between the two mirrors may be in error, either by an erroneous determination of the length of the steel tape used, or by a mistake in the measurement of the distance by the tape.

The first may be caused by an error in the copy of the standard yard, or in the comparison between the standard and the tape. An error in this copy, of .00036 inch, which, for such a copy, would be considered large, would produce an error of only .00001 in the final result. Supposing that the bisections of the divisions are correct to .0005 inch, which is a liberal estimate, the error caused by supposing the error in each yard to be in the same direction would be only .000014; or the total error of the tape, if both errors were in the same direction, would be .000024 of the whole length.

The calculated probable error of the five measurements of the distance was ± .000015; hence the total error due to D would be at most .00004. The tape has been sent to Professor Rogers, of Cambridge, for comparison, to confirm the result.

THE SPEED OF ROTATION.

This quantity depends on three conditions It is affected, first, by an error in the rate of the standard; second, by an error in the count of the sound beats between the forks; and third, by a false estimate of the moment when the image of the revolving mirror is at rest, at which moment the deflection is measured.

The calculated probable error of the rate is .000016. If this rate should be questioned, the fork can be again rated and a simple correction applied. The fork is carefully kept at the Stevens Institute, Hoboken, and comparisons were made with two other forks, in case it was lost or injured.

In counting the sound beats, experiments were tried to find if the vibrations of the standard were affected by the other fork, but no such effect could be detected. In each case the number of beats was counted correctly to .o2, or less than .ooo1 part, and in the great number of comparisons made this source of error could be neglected.

The error due to an incorrect estimate of the exact time when the images of the revolving mirror came to rest was eliminated by making the measurement sometimes when the speed was slowly increasing, and sometimes when slowly decreasing. Further, this error would form part of the probable error deduced from the results of observations.

We may then conclude that the error, in the measurement of n, was less than .00002.

THE DEFLECTION.

The angle of deflection φ was measured by its tangent, $\tan \varphi = \frac{d}{r}$; d was measured by the steel screw and brass scale, and r by the steel tape.

The value of one turn of the screw was found by comparison with the standard meter for all parts of the screw. This measurement, including the possible error of the copy of the standard meter, I estimate to be correct to .00005 part. The instrument is at the Stevens Institute, where it is to be compared with a millimeter scale made by Professor Rogers, of Cambridge.

The deflection was read to within three or four hundredths of a turn at each observation, and this error appears in the probable error of the result.

The deflection is also affected by the inclination of the plane of rotation to the horizon. This inclination was small, and its secant varies slowly, so that any slight error in this angle would not appreciably affect the result.

The measurement of r is affected in the same way as D, so that we may call the greatest error of this measurement .00004. It would probably be less than this, as the mistakes in the individual measurements would also appear in the probable error of the result.

The measurement of φ was not corrected for temperature. As the corrections would be small they may be applied to the final result. For an increase of 1° F, the correction to be applied to the screw for unit length would be -.000066. The correction for the brass scale would be +.0000105, or the whole correction for the micrometer would be +.000004. The correction for the steel tape used to measure r would be +.000066. Hence the correction for tan. φ would be -.000003 t. The average temperature of the experiments is $75^{\circ}.6$ F. 75.6-62.5=13.1. $-.000003 \times 13.1=-.00004$

Hence φ should be divided by 1.00004, or the final result should be multiplied by 1.00004 This would correspond to a correction of + 12 kilometers.

The greatest error, excluding the one just mentioned, would probably be less than .00009 in the measurement of φ .

Summing up the various errors, we find, then, that the total constant error, in the most unfavorable case, where the errors are all in the same direction, would be .00015. Adding to this the probable error of the result, .0002, we have for the limiting value of the error of the final result \pm .00017. This corresponds to an error of \pm 51 kilometers.

The correction for the velocity of light in vacuo is found by multiplying the speed in air by the index of refraction of air, at the temperature of the experiments. The error due to neglecting the barometric height is exceedingly small. This correction, in kilometers, is +80.

FINAL RESULT.

The mean value of V from							299852
Correction for temperature	-	-	-	-	-	-	+ 12
77 1 01.1							
3 • 8	-					-	299864
Correction for vacuo	-	-	-	-	-	-	80
Velocity of light in vacuo	_	_	_	_	_		 299944 ± 51
The final value of the velocity of	ligh	t fro	m tl	hese	exp	erin	, , , , ,
299940 k i	ilom	eters	per	sec	ond,)	
or 186 3 80 m	iles	per s	seco	nd.			

OBJECTIONS CONSIDERED.

MEASUREMENT OF THE DEFLECTION.

The chief objection, namely, that in the method of the revolving mirror the deflection is small, has already been sufficiently answered. The same objection, in another form, is that the image is more or less indistinct. This is answered by a glance at the tables. These show that in each individual observation the average error was only three ten-thousandths of the whole deflection.

UNCERTAINTY OF LAWS OF REFLECTION AND REFRACTION IN MEDIA IN RAPID ROTATION.

What is probably hinted at under the above heading is that there may be a possibility that the rapid rotation of the mirror throws the reflected pencil in the direction of rotation. Granting that this is the case, an inspection of Fig. 14 shows that the deflection will not be affected.

In this figure let m m be the position of the mirror when the light first falls on it from the slit at a, and m, m, the position when the light returns.

From the axis o draw op op, perpendicular to mm and to m, m, respectively. Then, supposing there is no such effect, the course of the axis of the pencil of light would be $a \circ c$ mirror $c \circ a$. That is, the angle of deflection would be $a \circ a$, double the angle $p \circ p$. If now the mirror be supposed to carry the pencil with it, let $o \circ c$, be the direction of the pencil on leaving the mirror mm; i. e., the motion of the mirror has changed the direction of the reflected ray through the angle $c \circ c$. The course would then be $a \circ c$, mirror c, o. From o the reflection would take place in the direction a, making

the angles c, o p, and p, o a,, equal. But the angle c o c, must be added to p o a,, in consequence of the motion of the mirror, or the angle of deviation will be a o a,, + c o c, = a. (1)

By construction—

$$c \circ p, \equiv p, o a, \quad (2)$$

$$c, o p, \equiv p, o a, \quad (3)$$

Subtracting (3) from (2) we have— $c \circ p, -c, \circ p, \equiv p, \circ a, -p' \circ a,, \text{ or}$

Or the deflection has remained unaltered.

RETARDATION CAUSED BY REFLECTION.

Cornu, in answering the objection that there may be an unknown retardation by reflection from the distant mirror, says that if such existed the error it would introduce in his own work would be only $\frac{1}{7000}$ that of Foucault, on account of the great distance used, and on account of there being in his own experiments but one reflection instead of twelve.

In my own experiments the same reasoning shows that if this possible error made a difference of 1 per cent in Foucault's work (and his result is correct within that amount), then the error would be but .00003 part.

DISTORTION OF THE REVOLVING MIRROR.

It has been suggested that the distortion of the revolving mirror, either by twisting or by the effect of centrifugal force, might cause an error in the deflection.

The only plane in which the deflection might be affected is the plane of rotation. Distortions in a vertical plane would have simply the effect of raising, lowering, or extending the slit.

Again, if the mean surface is plane there will be no effect on the deflection, but simply a blurring of the image.

Even if there be a distortion of any kind, there would be no effect on the deflection if the rays returned to the same portion whence they were reflected.

The only case which remains to be considered, then, is that given in Fig. 15, where the light from the slit a, falls upon a distorted mirror, and the return light upon a different portion of the same.

The one pencil takes the course abcd efa_n , while the other follows the path $afghiba_n$.

In other words, besides the image coinciding with a, there would be two images, one on either side of a, and in case there were more than two portions having different inclinations there would be formed as many images to correspond. If the surfaces are not plane, the only effect is to produce a distortion of the image.

As no multiplication of images was observed, and no distortion of the one image, it follows that the distortion of the mirror was too small to be noticed, and that even if it were larger it could not affect the deflection.

The figure represents the distorted mirror at rest, but the reasoning is the

same when it is in motion, save that all the images will be deflected in the direction of rotation.

IMPERFECTION OF THE LENS.

It has also been suggested that, as the pencil goes through one-half of the lens and returns through the opposite half, if these two halves were not exactly similar,

the return image would not coincide with the slit when the mirror was at rest. This would undoubtedly be true if we consider but one-half of the original pencil. It is evident, however, that the other half would pursue the contrary course, forming another image which falls on the other side of the slit, and that both these images would come into view, and the line midway between them would coincide with the true position. No such effect was observed, and would be very unlikely to occur. If the lens was imperfect, the faults would be all over the surface, and this would produce simply an indistinctness of the image.

Moreover, in the latter part of the observations the mirror was inverted, thus producing a positive rotation, whereas the rotation in the preceding sets was negative. This would correct the error mentioned if it existed, and shows also that no constant errors were introduced by having the rotation constantly in the same direction, the results in both cases being almost exactly the same.

PERIODIC VARIATIONS IN FRICTION.

If the speed of rotation varied in the same manner in each revolution of the mirror, the chances would be that, at the particular time when the reflection took place, the speed would not be the same as the average speed found by the calculation. Such a periodic variation could only be caused by the influence of the frame or the pivots. For instance, the frame would be closer to the ring which holds the mirror twice in every revolution than at other times, and it would be more difficult for the mirror to turn here than at a position 90° from this. Or else there might be a certain position, due to want of trueness of shape of the sockets, which would cause a variation of friction at certain parts of the revolution.

To ascertain if there were any such variations, the position of the frame was changed in azimuth in several experiments. The results were unchanged showing that any such variation was too small to affect the result.

CHANGE OF SPEED OF ROTATION.

In the last four sets of observations the speed was lowered from 256 turns to 192, 128, 96, and 64 turns per second. The results with these speeds were the same as with the greater speed within the limits of errors of experiment.

BIAS.

Finally, to test the question if there were any bias in taking these observations, eight sets of observations were taken, in which the readings were made by another, the results being written down without divulging them. Five of these sets are given in the "specimen," pages 133-134.

It remains to notice the remarkable coincidence of the result of these experiments with that obtained by Cornu by the method of the "toothed wheel."

Cornu's result was 300400 kilometers, or as interpreted by Helmert 299990 kilometers. That of these experiments is 299940 kilometers.

POSTSCRIPT.

The comparison of the micrometer with two scales made by Mr. Rogers, of the Harvard Observatory, has been completed The scales were both on the same piece of silver, marked "Scales No. 25, on silver. Half inch at 58° F., too short .00009 inch. Centimeter at 67° F., too short .00008 cm."

It was found that the ratio .3937079 could be obtained almost exactly, if, instead of the centimeter being too short, it were too long by .00008 cm. at 67°.

On this supposition the following tables were obtained. They represent the value of one turn of the micrometer in millimeters.

Table 1 is the result from centimeter scale.

Table 2 is the result from half-inch scale.

Table 3 is the result from page 31.

It is seen from the correspondence in these results, that the previous work is correct.

	(1)	(2)	(3)
From o to 13	.99563	.99562	.99570
25,	.99562	.99564	.99571
38′	.99560	·99572	.99576
51	99567	.99578	.99580
64	·9 9577	.99586	.99585
76	.99582	.99590	.99592
89	.99590	.99598	.99601
102	.99 5 96	.99 6 08	.99605
115	.99606	.99614	.99615
128	.99618	.99622	.9962 3
140	.99629	.99633	.99630

•			·	
		,		
•		·		
•				
		. ·		•
			•	
		•		·
		·		
				-

CATALOGUE

OF

1098 STANDARD CLOCK AND ZODIACAL STARS.

PREPARED UNDER THE DIRECTION OF

SIMON NEWCOMB,

PROFESSOR, U. S. N., SUPERINTENDENT AMERICAN EPHEMERIS.

•			·	•	
		·			
	•				
				·	

PREFACE.

The preparation of the following catalogue was commenced at the Naval Observatory for the purpose of obtaining standard positions of reference stars for use in the lunar and planetary theories, especially in the reduction of the older occultations. It originally included only time stars, and stars occultations of which by the moon had been well observed.

In 1877 the unfinished work, along with other material pertaining to the lunar theory, was courteously turned over to the office of the American Ephemeris by Rear-Admiral Rodgers, United States Navy, the Superintendent of the Observatory. It was then found advisable to greatly enlarge the catalogue, so as to include all the standard stars of the American Ephemeris, and all the stars, down to the sixth magnitude, which could be occulted by the moon.

The work of reconstructing and completing the catalogue has been nearly all performed, under the personal direction of the writer, by Master Chauncer Thomas, United States Navy, to whose care and accuracy is due much of its value.

149

,

.

CONTENTS.

																			_
																			Page.
§ 1.	Introduction		-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	153
§ 2.	Formation of the Righ	t Ascen	sions	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	154
§ 3.	Formation of the Decl	ination	B -	-	-	·	-	-	-	-	-		-	-	-	-	-	-	158
§ 4.	Positions of the Nine I	Principa	al Stars	of	the Ple	eiade	8	-	-	-	-	-	-	-	-	-	-	-	160
§ 5.	Declinations of Sirius	and Pro	ocyon	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	162
§ 6.	Circumpolar Stars -		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	164
§ 7.	Explanation of the Ca	talogue	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	165
ø8.	Formulæ for Reducing	the Ca	talogue	Pla	aces to	othe	r Ep	ochs	-	-	-	-	-	-	-	-	-	-	167
	The Catalogue -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	175
	Corrections to the Decl	ination	s of Sir	ins	and P	rocyo	n for	r Inec	ıu a li	ty of	Pro	per M	lotion	1 -	-	-	-	-	297
•	Right Ascensions of Ti	me Sta	rs, 1800	and	1 1830-	1900	-	-	-	•	•	-	-	-	-	-	-	-	299

POSITIONS OF STANDARD CLOCK AND ZODIACAL STARS.

§ 1. INTRODUCTION.

In the reduction of all the Washington meridian observations since 1862, and in all the investigations of the motions of the planets by the author up to and including that of Uranus in 1873, the right ascensions depend fundamentally upon Dr. Gould's standard catalogue. The latter was published by the Coast Survey, and introduced into the American Ephemeris from the years 1865 to 1880.

When the work of reducing the older occultations of stars with modern data was undertaken at the Naval Observatory, it became necessary to have accurate positions of stars for dates much more remote than the time of Bradley, because a large number of the occultations selected were observed before 1700. As Dr. Gould's proper motions depended largely on Bessel's Bradley, which was to be superseded by Auwers's re-reduction of Bradley's observations, and as much other material had become available for the determination of accurate proper motions, it became necessary for the work in hand to redetermine the positions of the fundamental time-stars. So far as the right ascensions are concerned, this was done for the "Maskelyne stars" in 1872 The resulting "Right Ascensions of the Equatorial Fundamental Stars" appeared as an appendix to the Washington Observations for 1870.

One result of this investigation was the discovery of a periodic error in the right ascensions of a number of modern catalogues, which seems to have had its origin in some one of Pond's adopted catalogues, and to have disseminated itself among the results of many observatories through the employment of the earlier Greenwich star positions, which depend fundamentally upon those of Pond. When, after the practice of Professor Airy, new fundamental positions depending entirely on recent observations are formed from time to time, the error in question is gradually cut down, and, as a matter of fact, it has disappeared from the recent Greenwich results. But so long as the same fundamental catalogue is used, it will in consequence of erroneous proper motions, tend to increase with the time rather than diminish. By referring to the tables on page 46 of the paper cited, and the formulæ of correction which precede them, it will be seen that in the cases of the Greenwich, Oxford, Paris, and Washington results, the right ascensions about 9^h are very generally too great relative to those about 21^h, the difference ranging from 0.º10 in the case of Oxford (Radcliffe, 1845) to 0.º03 in the case of the Greenwich 7-year catalogue for 1864.

The necessity of reobserving a large number of the occulted stars, as well as the pressure of other duties, caused the work to be laid aside until 1876, when the means for recommencing it became available. It was the original intention to reduce the

declinations to Auwers's standard, copious tables for doing which are given in the Astronomische Nachrichten. But it was found that in the mean time a very exhaustive discussion of the declinations of the principal fixed stars, and of the systematic corrections necessary to reduce the declinations of the different catalogues to a fundamental system, had been undertaken by Mr. Lewis Boss, then of the Northern Boundary Survey, but now Director of the Dudley Observatory, Albany. An examination of Mr. Boss's work led me to believe that in the thoroughness with which the bases of all existing original catalogues of value were examined and discussed, and in the correctness of the general principles on which the work was being executed, it left little to be desired. The only serious deficiency seemed to be the absence of Auwers's reduction of Bradley's declinations from the data employed, an absence which I regretted, but which could not be satisfactorily supplied. Altogether, I judged it best to adopt Mr. Boss's declinations as the standard of reduction, and have to express my indebtedness to Maj. W. J. Twining, Corps of Engineers, U. S. A., chief astronomer of the American branch of the survey, as well as to Mr. Boss, for the communication of all the tables and data necessary to reduce the declinations of different catalogues to Mr. Boss's system.

The zodiacal stars in the original catalogue, above described, included only those of which occultations had been actually observed up to 1870. On taking charge of the America Ephemeris the need of a complete revision of the stars which might be occulted by the moon was found to be pressing. It was therefore decided to extend the catalogue so as to include all stars to the sixth magnitude, inclusive, which could be occulted by the moon. Stars below this magnitude were included only when found in Bradley's catalogue or when occultations had actually been observed

In preparing the original list, which was that employed in investigating the motion of the moon before 1750, the provisional declinations of Dr. Auwers, reduced to Boss's system, were used for the epoch 1755. In the mean time Dr. Auwers had worked out his definitive results for Bradley's declinations, and it was deemed best to incorporate them in the whole catalogue. The original places were therefore modified so as to give the results which would have been reached had Auwers's declinations been used in the first place.

The catalogue here presented may therefore be considered as including two classes of stars:

- (1) All the standard stars of the American Ephemeris, omitting for the most part those added for field work.
- (2) All stars to the sixth magnitude, inclusive, which can be occulted by the moon, together with stars below the sixth magnitude which had been observed by BRADLEY.

§ 2. FORMATION OF RIGHT ASCENSIONS.

Owing to the constant improvements still in progress in the art of determining star positions, the time has not yet arrived when a fundamental catalogue can be regarded as entirely definitive. It is not, therefore, deemed necessary to present in detail the deduction of the position of each separate star, but it is considered sufficient to give a general statement of the method pursued.

The method of forming the definitive right ascensions of the original catalogue was to compare the catalogue places with computed provisional places, and, assuming the corrections thus obtained to be of the form a+b T, to find the values of a and b by least squares. These quantities were the corrections to be applied to the provisional right ascensions and proper motions.

As a general check upon the accuracy of all the work, two fundamental epochs were adopted, namely, 1755.0, the epoch of Bessel's and of Auwers's reductions of Bradley, and 1850.0, that most generally adopted as the zero epoch for the theoretical astronomy of the present time. Approximate positions for these two epochs (supposed to be correct to 0°.3 of time in R. A, and to 0'.1 in declination) were obtained for these epochs, generally from Bessel's Fundamenta and the British Association Catalogue. The precessions and secular variations of the annual motion for each epoch were then independently computed. In these computations Struve's constant of precession and Hill's formulæ, as found in the Star Tables of the American Ephemeris and in my paper of 1872, already cited, were made use of. It will be remarked that the secular variations thus computed are not those of the precession simply, but of the annual variation. The difference, however, is not great, except in cases of stars having considerable proper motion or high declination. The annual precessions were computed to 0°0001, and the variations in 100 years to the same order of units

The provisional right ascensions of the stars were then carried forward from Auwers's Bradley, neglecting proper motion entirely, and assuming the precession to vary uniformly between 1755 and 1850. The computed values of the secular variation were therefore substantially unused in obtaining the provisional places, except as a check against serious error. Practically the adopted value of this variation was of the difference between the precession for 1755 and that for 1850. The residual corrections given by the several catalogues thus represented proper motions from 1755. To guard against an accumulation of small errors, the computations of the provisional places were carried to .º001.

In the case of stars of the American Ephemeris, a course different in some respects was pursued.

The annual variations and secular variations for 1860 being given in the Star Tables of the American Ephemeris, it was not considered necessary to compute them for 1850. The secular variations were, however, computed for 1755 to five places of decimals, the difference between this and the corresponding quantity for 1860 giving the term depending on the third power of the time. The right ascensions were then carried back to the epochs of the catalogues, supposing the annual variation and secular variation of the Star Tables to be exact for 1860, and including the term depending on the third power of the time. The provisional proper motions were therefore included.

The computed places thus obtained for each class of stars were then compared with those given in the following catalogues.

1. Bradley, 1755.—The right ascensions were those of Dr. Auwers's, as communicated in manuscript. In the case of a few stars, however, Bessel's places, as given in the Fundamenta Astronomiæ, had to be used.

- 2. Piazzi, 1800.—Precipuarum Stellarum Inerrantium Positiones Mediæ. Panormi, This catalogue was used in the case of stars not observed by Bradley.
 - 3. Struve, 1830.—Catalogue in the Positiones Media.
- 4. Argelander, 1830.—DLX Stellarum Fixarum Positiones Media, ineunte anno 1830. Helsingfors, 1835.
 - 5. Pond, 1830.—Catalogue of 1112 stars. London, 1833.
- 6. Airy, 1830.—First Cambridge catalogue of 726 stars in the Memoirs of the Royal Astronomical Society, vol. xi.
- 7. Johnson, 1830.—St. Helena catalogue of 606 stars. London, 1835. (Used only for two or three southern stars.)
- 8. Gilliss, 1840.—Catalogue in Observations made at the [old] Naval Observatory. Washington, 1846.
 - 9. Armagh, 1840.—Robinson's catalogue.
 - 10. Airy, 1840. The Greenwich twelve-year catalogue.
- 12. Pulkowa, 1845.—Catalogue in vol. I of the Pulkowa observations, derived from observations with the transit instrument.
 - 13. Airy, 1850.—Greenwich six-year catalogue for 1850.
- 14. Pulkowa, 1855.—Catalogue from observations with the meridian circle, communicated in manuscript by Director Struve.
 - 15. Airy, 1860.—Greenwich seven-year catalogue.
- 16. Yarnall, 1860.—Washington catalogue. Appendix to Washington observations for 1871.
 - 17. Airy, 1864.—Second Greenwich seven-year catalogue.
- 18. Engelmann, 1866.—Resultate aus Beobachtungen am Meridiankreise der Sternwarte zu Leipzig, von Dr. Rudolph Engelmann.
- 19. Greenwich, 1870.—Mean result from the Greenwich observations from 1868 to 1876, inclusive.
- 20. Washington, 1870.—Mean results from all observations with the Washington Transit circle from 1866 to 1873.

To the positions of the separate catalogues were applied the systematic corrections given on pages 43 to 47 of the paper on the right ascensions of the equatorial fundamental stars.

The weights assigned to the several catalogues, as dependent on the number of observations, were founded upon a consideration of the probable systematic and accidental errors of each catalogue. While such considerations do not constitute a refined discussion, I consider that the final results will be much nearer to those which would be given by the most refined discussion than to those given by the usual mode of combining catalogue results. I also consider that the former difference will be much less than the probable error of the best results. The following is the table made use of, the argument at the top being the number of observations.

Tables of adopted weights in right ascension.

Number of obs	erva	ation.			1	2	3	4	5	7	10	15	20	25	30	40	50	60	80	100
Bessel's Bradley .			Ġ.	-	18	10	10	1 1	+	+	ł	+	1	1	1 2	1	1	1	1	1
Auwers's Bradley .	-				110	1	1	1	1	1	1	1	1	2	2	3	3	3	4	4
Piazzi			4.1		1	1 8	1	1	1	1	1	1	1	1	1	1	1	ı	1	1
Struve, 1825		-	-		1	1	1	1	2	2	3	3	4	4	5	5	6	6	7	8
Argelander, 1830 .		4.		4	44		**	**	**	**	64	44	**	-66	**	**	**	**	**	
Pond			-	-	1	1	ı	1	1	1	2	2	2	2	3	3	4	4	5	6
Johnson		4	-	-	-	**	**	44	**	**	**	**	66	**	**	44	**		**	
Airy, Cambridge, 1830			-	-	èi.	**	- 61	- 44	**	**	44	**	66	11		**	**	**	**	
Gilliss, 1840	-	-	-			**	**	44	**		44	**	**	14	**	-	44	44	**	
Airy, Greenwich, 1840			-	-		44	**	**		**	**	**	**	- 66	44		**	**	**	,.
Armagh, 1840	-		-	-	+	1	1	1	1	1	1	1	2	2	3	3	4	4	5	1
Pulkowa, 1845	_	-	-		1	2	2	3	4	5	7	7	8	10	15	20	20	25	25	30
Radcliffe, 1845	-				1	1	1	1	1	1	2	2	2	2	3	3	4	4	5	1
Airy, Greenwich, 1845		-	-		-		22	**		-	**	**	44	66	44	**	**	**	**	
Airy, Greenwich, 1850	- 1	-		-	- 44	**	**	11	a	**	**	14	84	64	66	66	64	**	**	
Pulkowa, 1850					1	2	2	3	4	5	7	7	8	10	15	15	20	25	25	3
Airy, Greenwich, 1860						**	**	**	**	44	**	**	**	**	11	**	64	**	**	
Yarnall, Washington, 1860		5.			**	44	**	**	**	**	44	44	66	**	11	- 66	**	**	**	
Airy, Greenwich, 1864					11	**	**	**	**	44	**	**	**	-	16	44	44	14	**	1
Engelmann, Leipzig, 1866					-	46	**	66	44	**	***	**	**	**	**	**	**	**		
Airy, Greenwich, 1870			4			44		46	**	**	**	**	**	**	**	**	"	**	**	
Washington, 1870 .					14	**	**	**	46	**	**	**	**	**	**	16	**	**	**	

Assuming the residuals to be represented by an expression of the form a+bT, T being the fraction of a century after 1850.0, the equations of condition thus obtained were solved by least squares. The definitive correction to the provisional right ascension for 1850 was then a, and to that for 1755 was a-0.95b. These corrections being applied to the provisional places, corrected places for the two fundamental epochs would then be obtained.

The process thus described was not rigorous with respect to the third place of decimals in the seconds owing to three causes.

- (1) The limitation of the adopted annual precession to the fourth decimal.
- (2) The neglect of the secular variation of the proper motion, which would introduce a small term varying with the time.
- (3) The assumption that the secular variation of the centennial motion was constant.

The errors thus introduced were entirely unimportant so far as the immediate purpose was concerned, because they were smaller than the necessary uncertainty of the results; but it was considered desirable that the relation between the final positions in the catalogue, and the precessions and proper motions, should correspond accurately to a uniform theory. The results were therefore checked and adjusted by the following process.

The centennial variation for 1850 was obtained in the first place by correcting that value of the precession or centennial variation for 1850, which was used in computing the provisional places, by the quantity b, derived from the equations of condition. The

value thus employed for correction was not generally the same as the definitive precession for 1850, because the latter was afterward computed to one more place of decimals. But the corrected result was considered as the definitive variation for the epoch 1850.

The centennial variation for 1755 was derived from that for 1850 by subtracting from the latter the quantity

 $\frac{1}{2}(s_1+s_2) \times (1-\frac{1}{20})$

 s_1 and s_2 being the secular variations for the respective fundamental epochs.

Having thus obtained the centennial variations, which we may call v_1 and v_2 , for the two fundamental epochs, the change of right ascension between those two epochs was independently computed by the formula

$$\triangle \text{ R.A.} = \frac{1}{2} (v_1 + v_2) (1 - \frac{1}{90}) - 0.075 (s_2 - s_1)$$

Had the data and method of interpolation of the provisional places of the stars been perfectly consistent with the definitive quantities, the right ascension for 1755, obtained by subtracting \triangle R.A. from the right ascension for 1850, would have agreed exactly with that obtained by correcting the provisional place. But, owing to the want of a rigorous reduction already pointed out, small discordancies were to be expected. In a large majority of cases the discordance was less than o.o. and rarely or never amounted to o.o. unless from some error of computation to be rectified. It was then judged best to render the right ascensions for 1755 and the centennial variations consistent with each other by an adjustment. In general one-third the discordance was applied to the place for 1755 and two-thirds to the centennial variation. But this proportion was subject to change in exceptional cases. The general result aimed at was that the numbers should be as nearly as possible the same as if a rigorous theory had been adopted at the outset.

The above descriptions apply only to the original catalogue. In the extension of it made by Master Chauncey Thomas, U. S. N., it was considered better to use the more elegant process of reducing each catalogue place to 1850 by precession alone and then to obtain the position and proper motion for this epoch by the usual method.

In the original formation of a catalogue, assuming the proper motions to be entirely unknown, this is the preferable process. But in future it will probably be found more convenient, at least in the case of fundamental stars, to reduce the provisional places to the epoch of each catalogue and work only with the residual differences between the two positions. This is in fact using the general astronomical method of correcting elements.

Ulterior details respecting the construction of the catalogue, will be given in connection with it.

§ 3. FORMATION OF THE DECLINATIONS.

As already stated, the normal catalogue to which all the declinations are reduced is that of Mr. Lewis Boss. This catalogue has since been published as Appendix H to the American Report of the Northern Boundary Commission.*

^{*}Reports upon the Survey of the Boundary between the Territory of the United States and the Possessions of Great Britain from the Lake of the Woods to the Summit of the Rocky Mountains, authorized by an act of Congress approved March 19, 1872. Archibald Campbell, esq., Commissioner; Capt. W. J. Twining, Corps of Engineers, breves major U. S. A., Chief Astronomer. Washington: Government Printing Office. 1878.

The most important modification which had to be made in using Mr. Boss's tables arose from the substitution of Auwers's reduction of Bradley's observations for that of Bessel. Mr Boss's systematic corrections were applicable only to Bessel's positions. It was therefore necessary to find the correction to be applied to Auwers's declinations in order to reduce them to the same fundamental system. Boss's systematic correction to each of Bradley's zodiacal stars was taken from the table, which has since been published, page 496 [90] of Mr. Boss's paper, and the result compared with Dr. Auwers's definitive reduction.

It would have been much better had all the zodiacal stars of Mr. Boss's catalogue been definitely reduced to 1755 and compared with Auwers's corrections. This course was not, however, at the time practicable.

The following table shows the mean result for each hour of right ascension in the sense of Boss's correction to Auwers's definitive declination. The argument 0° gives the mean result for all the stars between 23^h 30^m and 0^h 30^m of right ascension; the argument 15° the mean result from 0^h 30^m to 1^h 30^m, etc.:

Right ascension.	Boss-Auwers.	Number of stars.	Right ascension.	Boss-Auwers.	Number of stars
v,			0	"	
0	+0.98	30	180	+2.58	17
15	1. 70	37	195	2. 48	25
30	1.65	28	210	2.99	19
45	1.61	35	225	2. 29	26
60	1.45	67	240	2. IO	31
75	o. 89	34	255	1.64	26
90	1. 57	45	270	I. 47	26
105	0. 74	39	285	1.06	30
120	1. 14	44	300	1.60	25
135	1. 71	37	315	o. 65	36
150	2. 14	33	330	0. 71	47
165	+2.66	31	345	+0.66	37

It will be remarked that since the stars to which this table refers are on the average within 3° or 4° of the ecliptic the corrections are functions both of the right ascension and declination. Owing, however, to this arrangement, it is impossible to separate quantities depending on the right ascension from those depending on the declination. The best practical course, therefore, seems to be to leave in abeyance the general form of correction and to tabulate it as a function of the right ascension alone. Developing the residuals in the usual way the result is—

Boss—Auwers =
$$+ 1''.60 - 0''.68 \cos \alpha + 0''.32 \cos 2 \alpha - 0.10 \sin \alpha + 0.38 \sin 2 \alpha$$

In cases of this sort the terms in 2 α are generally to be regarded as accidental. It was therefore deemed best to omit them and to apply only the expression

$$+ 1''.60 - 0''.68 \cos \alpha - 0''.10 \sin \alpha$$

In applying this correction to Auwers's results from Bradley's observations I do not wish to be considered as indorsing its reality, but have used it only in order that all the declinations might be reduced to the same system. I believe that considerable

weight would have been added to Boss's results had he been able to use Auwers's Bradley as one of the normal catalogues. It may be expected that the additional data accumulated during the next fifteen or twenty years will lead to a more certain result.

Catalogues used for Declinations.—These were, in the main, the same as in the case of the right ascensions, with the following additions:

- (1) Cambridge, 1840.—Mean results from the Cambridge observatories from 1836 to 1844, as found in the several annual volumes of observations.
- (2) Paris, 1860.—Mean results from the Paris observations of 306 "étoiles fondamentales" made with the Gambey mural circle, 1854-'63, as found in the several annual volumes of observations.
- (3) Paris, 1865.—Similar results from the observations with the new meridian instrument, 1863-'67.
- (4) Melbourne, 1870.—First Melbourne General Catalogue of 1227 stars for the epoch 1870. Melbourne, 1874.

The several tables of systematic corrections which have been applied, and the weights, as dependent on the number of observations, will be found in Mr. Boss's work, pages 560-567.

The deduction of the definitive declinations has been carried out in the same way as in the case of the right ascensions. The most important modifications were these:

- (1) An approximate proper motion was used in interpolating the provisional places compared with the several catalogues.
- (2) In the same interpolation account was taken of the change in the secular variation of the annual motion; in other words, the term multiplied by the cube of the time was retained.
- (3) All the results were computed to o".o1, with the definitive values of the annual motions.

In consequence of these changes, the average discrepancy between the places for 1755, as obtained by applying the computed correction, a = 0.95 b, to the provisional place, and those obtained by direct computation from the definitive centennial motions is less than 0''.02.

§ 4. POSITIONS OF THE NINE PRINCIPAL STARS OF THE PLEIADES.

The mode of treating the stars of this group was in some points exceptional. A question which naturally presents itself in investigating their positions is that of their relative proper motion. We might proceed on either of two hypotheses; first, that the place of each star is to be determined independently on the supposition that its proper motion is independent of that of the others; second, that they all have a common and equal proper motion. If the differences of the proper motions decidedly exceed the probable errors of the separate determinations, we should choose the first hypothesis; otherwise the second. On either hypothesis our first step must be to determine each star independently, and this was done in the same way as with all the other stars. It was thus found that there was no conclusive evidence of change from the meridian observations alone, and that the common proper motions + 0°.088 in R. A. and - 5".87 in declination for the entire group, would satisfy all these observations within their possible limits of error.

As a still further test of the invariableness of their relative positions, and a means of further correcting these positions, the triangulations of Bessel and of Wolf were called into requisition. The former work is found in Bessel's Astronomische Untersuchungen, vol. 1, pp. 209-238, the latter in the Comptes Rendus of the French Academy for 1875. It has since appeared in Annales de l'Observatoire de Paris, Memoires, XIV.

The date of Bessel's triangulation is 1840, that of Wolf's 1874, so that the elapsed time exceeds one-third of a century. Both of these sets of positions were reduced to 1850 with the common proper motion already given, and the results compared with the meridian observations. There was no marked resemblance between the signs of the differences Wolf—Bessel and the signs of the relative proper motions indicated by the meridian observations; so that an additional proof of the unreality of these proper motions was obtained. I therefore conclude that although a certain amount of relative proper motion must exist in this group, yet the apparent motions, as observed, are as much due to errors of observation as to the actually existing motions, and when the latter shall finally be discovered they will, on the average, be found as near to zero as to the values indicated by all the observations yet made. Consequently, the most probable values of these relative proper motions must be regarded as zero.

It is evident that from the data described we shall have two classes of results for the position of each individual star of the group. The one is the result of the meridian observations of that particular star; the other the result of the triangulations between that and all the other stars, combined with the meridian observations of those other stars.

Since the triangulation can give only relative positions, the mean of the entire group should remain as determined by the meridian observations. We must therefore apply to the results of the triangulations such constant corrections that this result shall be attained. These corrections are:

In combining the several results, the relative weights assigned were as follows:

In R. A. In Dec.

Mer. obs., Wt.
$$\equiv$$
 1

Bessel, "Wt. \equiv 2

Wolf, "Wt. \equiv 1

Wolf, "Wt. \equiv 2

Wolf, "Wt. \equiv 2

The several steps of the process thus described are shown in the following table. The small figures after the individual proper motions show the relative weights which have been assigned to them. The mean common proper motion of the group obtained by their combination is—

In R. A.,
$$\mu = +$$
 o*.088
In Dec., $\mu = -5''.87$

Right ascensions of the Pleiades for 1850.0.

				Fro	m meridian o	observations.	Seconds of right ascension from differential measures.			Conclude		
	Name.		Right	ascei	nsion, 1850.	Proper motion and weight.	Bessel.	Wolf. —0°.040	Right ascension,			
			h.	m.	s.	s.	s.	s.	h.	m.	s.	
16 g,	Celæno		3	35	53. 716	+0.2121	53. 723	53- 73	3	35	53- 723	
17 <i>b</i> ,	Electra		3	35	58. 600	+0. 146 ₁	58. 595	5 8. 60	. 3	35	58. 598	
18, 🕶			3	36	13. 299	+0, 0201	13. 292	13. 38	3	36	13. 315	
19 e,	Tayzeta	-	3	36	17. 226	-0.002 ₁	17. 271	17. 28	3	36	17. 262	
20 ι,	Maia .		3	36	54- 549	+0.1162	54. 582	54- 54	3	36	54 563	
23 d,	Merope		3	37	25. 867	+0.006 ₁	25. 893	25. 90	3	37	25. 888	
25 7,	Alcyone	-	3	38	34. 588	+0. 1364	34- 575	34- 55	3	38	34. 572	
27 ρ,	Atlas .		3	40	15.077	+0.0742	15.053	15.05	3	40	15.058	
28 h,	Pleione		3	40	16. 250	-o. o68 ₁	16, 216	16, 21	3	40	16. 223	

Declinations of the Pleiades for 1850.

	From meridian	observations.		clination from measures.	Concluded		
Name.	Declination, 1850.	Proper motion and weight.	Bessel. +o".69	Wolf. +0"-04	Declination, 1850.		
	0 / "	"		"	1 0 1 "		
16 g, Celæno	23 48 47.78	—6. 531	47. 87	47. 83	23 48 47.84		
17 b, Electra	23 38 14.76	—5. 13 1	14. 45	14. 65	23 38 14.57		
18, m	24 21 51.43	6.31 ₁	50. 40	50.86	24 21 50.73		
19 c, Tayzeta	23 59 31.89	6. 26 ₁	32. 12	32. 18	23 59 32.10		
20 c, Maia	23 53 40.93	-4.82 ₁	40.68	40. 71	23 53 40.73		
23 d, Merope	23 28 36.07	—5. 73 1	36. 42	36. 40	23 28 36.35		
25 η, Alarone	23 38 13.13	—5. 58 ₅	13. 28	13. 17	23 38 13.22		
27 ρ, Atlas	23 35 25.26	-5.85 ₁	25. 58	25.44	23 35 25.48		
28 h, Pleione	23 40 25.81	-7.96 ₁	2 5. 76	25. 64	23 40 25.73		

§ 5. DECLINATIONS OF SIRIUS AND PROCYON.

SIRIUS.

In his researches on the variable proper motion of Sirius (Publication VII der Astronomischen Gesellschaft, Leipzig, 1868), Auwers has found a correction, r, to its declination, defined as follows: Let r_1 and r_2 be the respective corrections to be applied to the declinations of Sirius in the Tabulæ Regiomontanæ, in order that this declination may be correct relatively to those of β Orionis and α Hydræ, respectively. Then Auwers puts

$$r=\frac{1}{2}\left(r_1+r_2\right)$$

It follows that if the corrections to the declinations of β Orionis and α Hydræ in the *Tabulæ Regiomontanæ* are respectively Δ_1 and Δ_2 , the correction to the declination of Sirius in the same tables will be

$$\frac{1}{2}(\Delta_1+\Delta_2)+r$$

By comparing the positions of β Orionis and α Hydræ in Boss's catalogue with those of the *Tabulæ Regiomontanæ*, we find:

$$\Delta_{1} = + 1.48 + 2.44 T + 0.01 \times \frac{1}{2} T^{2} - 0.22 \times \frac{1}{6} T^{3}$$

$$\Delta_{2} = + 1.29 + 0.89 + 0.35 + 0.76$$

$$\frac{1}{2} (\Delta_{1} + \Delta_{2}) = + 1.38 + 1.66 + 0.18 + 0.27$$

T being counted from 1850. AUWERS finds for the value of r:

$$r = + 0^{\prime\prime}.84 + 1^{\prime\prime}.47 T + P^{\prime}$$

P' representing the purely periodic term arising from the orbital revolution of the companion of Sirius. The total correction to the place of Sirius in the Tabulæ Regiomontanæ would then be

$$+2''.23 + 3''.13 T + 0''.18 \times \frac{1}{2} T^2 + 0''.27 \times \frac{1}{6} T^3 + P'$$

But by comparing the secular variation of the centennial motion, — 37" 44 + 0".13 T, with that of Bessel, — 38."0, it seems that the actual correction must be of the form—

$$a + bT + o''.56 \times \frac{1}{2}T^2 + o''.13 \times \frac{1}{6}T^3 + P'$$

The difference in the coefficients of T² will produce a difference of only o".17 in the declinations for 1755; we may therefore omit any adjustment on account of it, and put for the total correction to the declination of Sirius—

$$+2''.23 + 3''.13 T + 0.56 \times \frac{1}{2} T^2 + 0''.13 \times \frac{1}{6} T^3 + P'$$

PROCYON.

The declination of this star is determined on the same principle with that of Sirius, from the investigation of Auwers in his paper.

The comparison is, however, made, not with the *Tabul Regiomontana*, but with the *Tabulæ Reductionum* of Wolfers. The stars of comparison are α Ceti, α Orionis, α Serpentis, γ , α , and β Aquilæ, and α Aquarii, but the three stars of Aquila receive only the weight of two. In the value of Δ we may omit writing the terms depending on T^2 and T^3 , since they are not used in obtaining the final result. By comparing

the corrections of Wolfers to the Tabulæ Regiomontanæ with the declinations of the present paper we find the following values of \triangle :

```
α Ceti
                              \Delta^1 = + 0.04 + 1.88 \,\mathrm{T}
                              \Delta_2 = + 0.18 + 0.76
α Orionis -
α Serpentis
                              \Delta_3 = -0.50 - 2.66
y Aquilæ -
                              \triangle_4 = -0.35 - 1.45
α Aquilæ -
                              \Delta_5 = -0.40 - 1.35
β Aquilæ -
                              \triangle_6 = -0.12 - 102
α Aquarii -
                              \Delta_7 = -0.24 - 1.06
Mean by weights
                              \triangle = -0.18 - 0.605 \text{ T}
                                    +0.39 + 0.931 T + P'
Auwers's r
                                    +0.204+0.326 T+P'
Total correction
```

This correction, omitting P', being applied to the place of the Tabulæ Reductionum, gives the declination in the table.

§ 6. CIRCUMPOLAR STARS.

In the case of stars within 30° of the pole an accurate reduction between epochs a century apart cannot be effected without other data than those given for the ecliptic and time stars. It was judged that the convenience of astronomers using the catalogue would be subserved by presenting data for the stars in the same general form as for others, with the addition of such intermediate epochs that the reductions could be effected without the employment of higher powers of the time. Hence stars between 10° and 30° from the pole have data given for each half century, or to speak more exactly, for the epochs 1755, 1800, 1850, and 1900. In the case of stars yet nearer the pole the epochs 1755, 1825, and 1875 are added.

The declinations of the circumpolar stars are all taken from Boss's catalogue for the epoch 1875.

The right ascensions have not been independently investigated, but are taken from the second edition of Dr. Gould's catalogue, published by the United States Coast Survey, and based upon Dr. Gould's extended investigations found in Volume VI of the Astronomical Journal. Although these right ascensions may be at the present time susceptible of correction, it was judged best to adhere to them for the following reasons:

- 1st. They had been retained in the American Ephemeris for 1881, in which new declinations had been introduced, and it was judged best to make changes only at few epochs. They had also been so extensively used by the Coast Survey and other authorities as to form a standard of reference which it was desirable not to change except when a great and permanent improvement was possible.
- 2d. Their definitive amelioration is not practicable until Dr. Auwers's reductions of Bessel's observations are available.
- 3d. Each astronomer can readily apply for himself such corrections as may appear necessary.

It will probably be found that the easiest way of making these corrections will

be to reduce each star to the epoch of the catalogue of observation and work with the correction thus indicated for that particular epoch. For all except two or three of the closest polar stars the correction of each co-ordinate may be assumed to increase uniformly with the time.

To form a set of data in which the positions, centennial variations, and secular variations for each epoch should be perfectly consistent throughout, several trouble-some modifications were found necessary. The coefficients of reduction given by Gould and Boss, respectively, could not be used unchanged, because those for each co-ordinate depended upon the value of the other co-ordinate, and must therefore be changed with it. It was therefore necessary to compute anew for each epoch the constants corresponding to it and to combine these results in such a way as to secure homogeneity and consistency.

In the case of the close polar stars both the positions and the proper motions were reduced from 1855 to the several epochs by the rigorous trigonometrical formulæ, the constants being those founded on Struve's precession. These reductions were, in the first place, made with Dr. Gould's proper motion in declination, but it was easy to correct them, so that they should give Boss's proper motion for the epoch 1875.

The positions and proper motions for this epoch include all the data necessary for computing the precessions and secular variations for the different epochs. The centennial variations were then found by applying the proper motion to the precession. The original reductions were next checked by computing the change of position between each pair of consecutive epochs from the centennial variations, secular variations, etc., and comparing it with the actual difference given by the trigonometrical reduction.

In the case of stars more than 15° from the pole the trigonometrical reduction was not necessary. Generally Dr. Gould's coefficients gave results which need little correction, and this little, when necessary, was derived from the computed elements of motion for the different epochs.

§ 7. EXPLANATION OF THE CATALOGUE.

The catalogue is arranged so that all the data pertaining to the right ascension shall be on the left-hand pages, and those pertaining to the declinations on the right-hand pages.

In the case of the stars observed by Bradley, the positions and other data are given for the two fundamental Besselian epochs 1755.0 and 1850.0. In some cases stars not observed by Bradley have been given for both of these epochs. In the case of fundamental time stars the positions are also given for 1900. The precession and secular variation for each epoch are independently computed, so that their general agreement will serve as a check upon their accuracy.

On the left-hand page the fourth column gives, opposite the epoch 1755, the number of observations made by Bradley in right ascension. Opposite 1850 is given the number of observations made at Greenwich, Pulkowa, and Washington since 1840, which have been used in preparing the catalogue.

Observations at other observatories have been omitted in the enumeration.

although employed in obtaining the final result. In some cases, as, for instance, those of the Pulkowa fundamental time stars, no precise number of observations could be assigned. The object of this column is rather to give a general idea of the weight of the result than a precise enumeration of the observations.

Column Right Ascension gives the right ascension of each star for the several epochs, as already explained. The epoch 1850 has been taken as a fundamental one, and, for the most part, the positions for other epochs have been derived from those for 1850 by the centennial variation, etc., deduced from observations.

The equinox to which all the stars are reduced is that of my paper of 1872 on the Right Ascensions of the Equatorial Fundamental Stars. (Washington Observations for 1870, Appendix II.) The results obtained by Dr. Auwers for Bradley's equinox, and the recent Greenwich observations, render it probable that the adopted equinox is nearly correct for 1850, but that the centennial variations require a general correction of perhaps — 0°.05. Further researches are, however, necessary before a definitive result for the motion of the equinox can be derived.

The right ascensions of the 32 Maskelyne stars in the investigation of 1872 are transferred without alterations to the present catalogue

The centennial variation derived in the first place for the epoch 1850 has usually been regarded as a fundamental one, and that for other epochs has been derived from it by the secular variations given in the following column.

The precessions are computed strictly from STRUVE's constant, using the formulæ given in the star tables of the American Ephemeris and in part reprinted on p. 172 of the present paper. But, as a general rule, the precessions and secular variations were derived before the definitive positions of the stars were worked out, and did not, therefore, in all cases accurately correspond to the finally concluded positions. In general, however, where any important discrepancy would thus be produced, the precessions and secular variations have been recomputed with the definitive data.

The proper motions are generally obtained by subtracting the precessions from the centennial variations. The differences among the proper motions thus found arise partly from incongruity of the data, imperfections of calculation, etc., but mostly from the change in the direction of the meridian produced by precession.

With a view of detecting any serious error in the proper motions the secular variation of the proper motion has been independently computed by the formula given in the present paper in the case of those stars of the American Ephemeris which have a considerable proper motion. The result of this computation is given in the last column.

In the case of circumpolar stars the above method of obtaining the centennial variations for the different epochs would not always have been reliable. In this case, therefore, the secular variation of the proper motion was carefully computed for several epochs and the proper motions for past and future epochs obtained by applying the changes thus indicated to the proper motions for the fundamental epoch. The precessions being also computed for the different epochs, the centennial variations were obtained by applying the proper motions to them.

On the right-hand pages the third column gives, for the epoch 1850, the magnitudes of the stars taken in the order of preference from the following authorities.

- 1. Gould, Uranometria Argentina.
- 2. Heis, Atlas Coelestis Novus, Köln, 1872.
- 3. Argelander, Bonner Sternverzeichniss, commonly called the Durchmusterung; Astronomische Beobachtungen auf der Sternwarte zu Bonn, vols. iii, iv

Opposite epoch 1755 are given the magnitudes of Bessel's Fundamenta.

In both cases the fractions of a magnitude are expressed decimally.

The general method of arranging the data for the declinations is substantially the same as for the right ascensions, and therefore needs no additional explanation.

§ 8. FORMULÆ FOR REDUCING THE CATALOGUE PLACES TO OTHER EPOCHS.

It is supposed that the data given in connection with the place of each star will suffice for its reduction to any epoch between 1750 and 1900, by TAYLOR'S Theorem. To effect this we take the catalogue epoch nearest that to which the star is to be reduced, and put—

- T, the interval, in units of a century.
- α_0 , the star position for the catalogue epoch.
- c_{o} the centennial variation for the same epoch.
- s, the secular variation for the same epoch.
- s', the derivative of s at this epoch, the unit of time being a century.
- s", the second derivative of s, etc.

Then:

$$\alpha = \alpha_0 + T c_0 + \frac{1}{2} T^2 s_0 + \frac{1}{6} T^3 s_0' + \frac{1}{24} T^4 s_0'' + \text{etc.}$$
 (1)

The values of c_0 and s_0 are always given in the catalogue. Those of s'_0 , s''_0 , etc., will not always be required, but when required, are readily deduced from the values of s for different catalogue epochs.

In the most general case the values of s'_0 , s''_0 , etc., may be formed from the successive differences of s by the usual formulæ, namely, these differences being arranged according to the following usual scheme:

where

$$\Delta'_{-1} = s_{-1} - s_{-2}
\Delta'_{-1} = s_{0} - s_{-1}
\Delta'_{1} = s_{1} - s_{0}
\text{etc.,}$$

$$\Delta''_{-1} = \Delta'_{-1} - \Delta'_{-1}
\Delta''_{0} = \Delta'_{1} - \Delta'_{-1}
\Delta''_{1} = \Delta'_{1} - \Delta'_{1}
\text{etc.,}$$
etc., etc.

we put

$$\Delta_{0}' = \frac{1}{2} (\Delta_{-i}' + \Delta_{i}')$$

$$\Delta_{0}''' = \frac{1}{2} (\Delta_{-i}''' + \Delta_{i}''')$$
etc., etc.

and then find

$$s_{0}' = \frac{ds}{dT} = n \ (\triangle_{0}' - \frac{1}{6} \triangle_{0}''' + \frac{1}{30} \triangle_{0}^{v} - \text{etc.})$$

$$s_{0}'' = \frac{d^{2}s}{dT^{2}} = n^{2} \ (\triangle_{0}'' - \frac{1}{12} \triangle_{0}^{iv} + \text{etc.})$$

$$s_{0}''' = \frac{d^{3}s}{dT^{3}} = n^{3} (\triangle_{0}''' - \frac{1}{4} \triangle_{0}^{v})$$

n being the factor by which the interval between epochs must be multiplied to make 100 years. These values of s are to be introduced into the equation (1).

When several reductions are to be computed to the same epoch it may be a little more convenient to introduce \triangle' , \triangle'' , etc., directly into the formulæ instead of s', s'', etc. If we make this substitution, stopping at s''' and \triangle''' , the result will be

$$\alpha = \alpha_0 + Tc_0 + \frac{1}{2}T^2s_0 + \frac{n}{6}T^3\Delta'_0 + \frac{n^2}{24}T^4\Delta''_0 + \left(\frac{n^3}{120}T^5 - \frac{n}{36}T^3\right)\Delta'''_0$$

It will be remarked that the coefficients of \triangle_0' , \triangle_0'' and \triangle_0''' will be very minute fractions, so that these quantities are not required with great precision. When, owing to the epoch being near the end of the series, their values are not given by differencing, they may be found with sufficient accuracy by extending the successive orders of differences by induction.

When the interval is 95 years, $n = \frac{20}{19}$ When the interval is 50 years, n = 2When the interval is 45 years, $n = \frac{20}{9}$ When the interval is 25 years, n = 4When the interval is 20 years, n = 5

REDUCTION BETWEEN TWO CATALOGUE EPOCHS.

As a check upon the numbers of the catalogue it is desirable to compute the change of position between two catalogue epochs in order to see whether it agrees with the difference between the assigned positions. The following is a simple way of effecting this. Put

 c_0 , s_0 , etc., the centennial variation, etc., for the first epoch; c_1 , s_1 , etc., the same for the second epoch; t the fraction of a century between the epochs; α_t the position for the middle of the elapsed interval. Then—

$$\alpha_{i} = \alpha_{0} + \frac{t}{2} c_{0} + \frac{t^{2}}{8} s_{0} + \frac{t^{3}}{48} s'_{0} + \frac{t^{4}}{384} s'' + \frac{t^{5}}{3840} s'''$$

$$\alpha_{i} = \alpha_{1} - \frac{t}{2} c_{1} + \frac{t}{8} s_{1} - \frac{t^{3}}{48} s_{1} + \frac{t^{4}}{384} s''_{1} - \frac{t^{5}}{3840} s'''_{1}$$

whence

$$\alpha_{1} - \alpha_{0} = \frac{t}{2} (c_{1} + c_{0}) - \frac{t^{2}}{8} (s_{1} - s_{0}) + \frac{t^{3}}{48} (s'_{1} + s'_{0}) - \frac{t^{4}}{384} (s''_{1} - s''_{0}) + \frac{t^{5}}{3840} (s''_{1} + s'''_{0}) - \text{etc.}$$

Since each of the quantities c, s, s', etc., is the derivative of the preceding one, their differences are given by a series of the same kind, namely:

$$s_{1} - s_{0} = \frac{t}{2} (s'_{1} + s'_{0}) - \frac{t^{2}}{8} (s''_{1} - s''_{0}) + \frac{t^{3}}{48} (s'''_{1} + s'''_{0}) - \text{etc.}$$

$$s''_{1} - s''_{0} = \frac{t}{2} (s'''_{1} + s'''_{0}) - \text{etc.}$$

Making these substitutions we find:

$$\alpha_1 - \alpha_0 = \frac{t}{2} (c_1 + c_0) - \frac{t^3}{24} (s_1' + s_0') + \frac{t^5}{240} (s_1''' + s_0''')$$

From the equations which give the values of the derivatives of s in terms of its differences, putting $n = \frac{1}{t}$, we have by simple reductions:

$$s'_0 + s'_1 = \frac{1}{t} \left(2 \triangle'_{i} + \frac{1}{6} \triangle'''_{i} \right)$$

 $s'''_1 + s'''_0 = \frac{2}{t^3} \triangle'''_{i}$

Making these substitutions in the value of $\alpha_1 - \alpha_0$, it reduces to

$$\alpha_1 - \alpha_0 = \frac{t}{2} (c_1 + c_0) - \frac{t^2}{12} \Delta_1' + \frac{t^2}{720} \Delta_1'''$$

The following are special cases of this formula:

A. Interval, 95 years:

$$\alpha_1 - \alpha_0 = 0.475 (c_1 + c_0) - 0.075 \Delta_1^2$$

which may be readily computed when put into the form-

$$\alpha_1 - \alpha_0 = \frac{c_1 + c_0}{2} \left(1 - \frac{1}{20} \right) - \frac{3}{40} \Delta_1'$$

B. Interval, 50 years:

$$\alpha_1 - \alpha_0 = \frac{c_1 + c_0}{4} - \frac{1}{48} \Delta_{\frac{1}{2}}' + \frac{1}{2880} \Delta_{\frac{1}{2}}'''$$

C. Interval, 25 years:

$$\alpha_1 - \alpha_0 = \frac{c_1 + c_0}{8} - \frac{1}{102} \Delta_1' + \frac{1}{11520} \Delta_1'''$$

REDUCTION TO ANY EPOCH.

The following are the principal special forms which will be found useful in reduction to different epochs. They vary with the number and interval of the catalogue epochs, and are therefore classified accordingly.

CLASS A.—Zodiacal stars.

Epochs 1755, 1850.

For 1850 + T

$$\alpha \equiv \alpha_0 + T c_0 + \frac{1}{2} T^2 s_0 + \frac{1}{6} \frac{20}{10} T^3 \triangle s_1$$

 $\triangle s$ being the increment of the secular variation from 1755 to 1850. Especially, to reduce to—

1860,
$$\alpha = \alpha_0 + \frac{1}{10}c_0 + \frac{1}{200}s_0$$

1870, $\alpha = \alpha_0 + \frac{1}{5}c_0 + \frac{1}{50}s_0 + \frac{1}{712}\triangle s$
1875, $\alpha = \alpha_0 + \frac{1}{4}c_0 + \frac{1}{32}s_0 + \frac{1}{365}\triangle s$
1880, $\alpha = \alpha_0 + 0.3c_0 + 0.045s_0 + 0.0047\triangle s$
1890, $\alpha = \alpha_0 + 0.4c_0 + 0.080s_0 + 0.0112\triangle s$
1900, $\alpha = \alpha_0 + \frac{1}{2}c_0 + \frac{1}{6}s_0 + 0.0219\triangle s$

For corresponding epochs before 1850, as far back as 1800, change the signs of the coefficients of c_0 and of $\triangle s$.

For epochs between 1755 and 1800 take the values of c and s corresponding to 1755 and count T from this epoch.

CLASS B.—Time and standard stars.

Epochs 1755, 1850, 1900.

For epochs previous to 1850, compute as in Class A. For epochs between 1850 and 1900 put

 c_0 , centennial variation for 1850.

 c_1 , centennial variation for 1900.

 s_0 , secular variation for 1850.

 s_1 , secular variation for 1900.

 Δ 's, secular variation for 1900 minus secular variation for 1850

Then in general, we may use either of the forms-

$$\alpha = \alpha_0 + T c_0 + \frac{1}{2} T^2 s_0 + \frac{1}{3} T^3 \triangle s \quad . \quad . \quad (T \text{ from 1850})$$

$$\alpha = \alpha_1 + T c_1 + \frac{1}{2} T^2 s_1 + \frac{1}{3} T^3 \triangle s \quad . \quad . \quad (T \text{ from 1900})$$

Especially, to reduce to -

1860,
$$\alpha = \alpha_0 + \frac{1}{10} c_0 + \frac{1}{200} s_0$$

1870, $\alpha = \alpha_0 + \frac{1}{5} c_0 + \frac{1}{50} s_0 + (\frac{1}{375} = 0.00266) \triangle s$
1875, $\alpha = \alpha_0 + \frac{1}{4} c_0 + \frac{1}{32} s_0 + (\frac{1}{192} = 0.0052) \triangle s$
1880, $\alpha = \alpha_0 + 0.3 c_0 + 0.045 s_0 + 0.0090 \triangle s$
1880, $\alpha = \alpha_1 - \frac{1}{5} c_1 + \frac{1}{50} s_1 - 0.00266 \triangle s$
1890, $\alpha = \alpha_1 - \frac{1}{10} c_1 + \frac{1}{200} s_1$

CLASS C.—Circumpolar stars.

Data given for 1755, 1800, 1850, 1900.

Let c_0 be the centennial variation.

 s_0 , the secular variation.

 Δ_0 , the mean first difference of s for 50 years for the catalogue epoch nearest that to which the star is to be reduced.

$$\alpha = \alpha_0 + T c_0 + \frac{1}{2} T^2 s_0 + \frac{1}{3} T^3 \triangle_0$$
For 5 years: $\alpha - \alpha_1 = \frac{1}{20} c_0 + \frac{1}{800} s_0 + \frac{1}{24000} \triangle$
For 10 years: $\alpha - \alpha_1 = \frac{1}{10} c_0 + \frac{1}{200} s_0 + \frac{1}{3000} \triangle_0$
For 15 years: $\alpha - \alpha_1 = 0.15 c_0 + 0.011 25 s_0 + 0.001 125 \triangle_0$
For 20 years: $\alpha - \alpha_1 = \frac{1}{5} c_0 + \frac{1}{50} s_0 + 0.002 67 \triangle_0$
For 25 years: $\alpha - \alpha_1 = \frac{1}{4} c_0 + 0.031 25 s_0 + 0.005 20 \triangle_0$

CLASS D.—Data for intervals of twenty-five years.

 \triangle'_0 the mean first difference for 25 years according to the scheme of differences given at the beginning of this section.

 \triangle_0'' the second difference for 25 years.

 $\triangle_0^{"}$ the mean third difference for 25 years.

Then, in general,

$$\alpha' = \alpha_0 + Tc_0 + \frac{1}{2}T^2s_0 + \frac{2}{3}T^3\Delta'_0 + \frac{2}{3}T^4\Delta''_0 + (\frac{8}{15}T^5 - \frac{1}{6}T^3)\Delta'''_0$$

Especially,

For — 10 years:

$$\alpha = \alpha_0 - \frac{1}{10}c_0 + \frac{1}{200}s_0 - \frac{1}{1500}\Delta'_0 + \frac{1}{15000}\Delta''_0 - 0.000 \text{ IO }\Delta'''_0$$

For -5 years:

$$\alpha = \alpha_0 - \frac{1}{20} c_0 + \frac{1}{800} s_0 - \frac{1}{12000} \Delta'_0 + \frac{1}{240000} \Delta''_0$$

For 5 years:

$$\alpha - \alpha_0 = \frac{1}{20} c_0 + \frac{1}{800} s_0 + \frac{1}{12000} \Delta_0' + \frac{1}{240000} \Delta_0''$$

For 10 years:

$$\alpha - \alpha_0 = \frac{1}{10} c_0 + \frac{1}{200} s_0 + \frac{1}{1500} \Delta'_0 + \frac{1}{15000} \Delta''_0 - 0.000 \text{ IO } \Delta'''_0$$

HILL'S FORMULÆ FOR THE SECULAR VARIATION OF THE ANNUAL MOTION AND PROPER MOTION OF THE STARS.

 μ , the centennial proper motion in R. A., expressed in seconds of time.

 μ' , the same in declination, expressed in seconds of arc.

p, p', the centennial precessions in R. A. and Dec. at any epoch, expressed in the same units as μ and μ' .

Then:

$$p = m + n \sin \alpha \tan \delta$$

$$p' = n \cos \alpha$$

$$\frac{d\alpha}{dT} = p + \mu$$

$$\frac{d\delta}{dT} = p' + \mu'$$

$$\frac{d^2\alpha}{dT^2} = + 0^8 \cdot 3^{22} - [6.6338] p + [7.9878] (p + 2 \mu) \cos \alpha \tan \delta + [6.8117] (p' + 2 \mu') \sin \alpha \sec^2 \delta + [4.9866] \mu \mu' \tan \delta$$

$$\frac{d^2\delta}{dT^2} = -[6.6338] p' - [9.1640] (p + 2 \mu) \sin \alpha - [6.7367] \mu^2 \sin 2 \delta$$

$$\frac{d\mu}{dT} = [7.9878] \mu \cos \alpha \tan \delta + [6.8117] \mu' \sin \alpha \sec^2 \delta + [4.9866] \mu \mu' \tan \delta$$

$$\frac{d\mu'}{dT} = -[9.1640] \mu \sin \alpha - [6.7367] \mu^2 \sin 2 \delta$$

Struve's values of m and n.

Year.	m	n	Log. n	n	Log. n
	8.	8.		"	
1750	306.987	133.767	2.126349	2006.50	3.302439
1755	306.997	133.764	2.126339	2006.46	3.302430
1775	307.035	133.753	2.126302	2006.28	3 302392
1800	307.082	133.738	2.126255	2006.07	3.302346
1825	307.130	133.724	2.126209	2005.85	3.302300
1850	307.177	133.710	2.126162	2005.64	3.302253
1875	307.225	133.696	2.126115	2005.42	3.302206
1900	307.272	133.681	2.1 26069	2005. 2 I	3.302160

·			
		-	
		•	

CATALOGUE.

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
I	4 Ceti	1755	5	h.	m. 55	s. 11.092	s. + 307. 323	s. — 0, 041	s. + 307. 188	s. + o. 135	s.
		1850	6	0	0	3 . 038	307. 310	+ 0.013	307. 175	0. 135	
2	5 Ceti	1755	5	23	55 o	39. 518 31. 283	+ 307. 128 307. 122	- 0.034 + 0.022	+ 307. 165 307. 160	- 0. 037 0. 038	
3	a Andromedæ	1755	4	!	55	46. 413	+ 306. 733	+ 1.734	+ 305. 701	+ 1.032	+ 0.005
		1850		0	0	38.603	308.417	1.812	307. 383	1.034	
		1900		0	3	13.040	309. 333	1.853	308. 292	1.041	
4	B. A. C. 5	1850	12	0	I	2. 040	+ 307. 109	+ 0.037	+ 307. 145	— o. o36	
5	B. A. C. 17	1850	11	o	2	38. 179	+ 307.088	— 0. 113	+ 307.013	+ 0.075	
6	γ Pegasi	1755	10	0	o	38. 871	+ 307.069	+ 0. 929	+ 307.090	— 0.021	
		1850		0	5	31.016	307. 980	0. 989	307. 999	0. 019	
		1900	• •	0	8	5. 131	308, 482	1.020	308. 502	0, 020	
7	35 Piscium	1755	5	0	2	22. 7 33	+ 307.869	+ 0. 593	+ 307. 178	+ 0.691	
		1850	24	0	7	15. 485	308. 459	0.650	307. 771	o, 688	
8	36 Piscium	1755	5	0	3	59. 888	+ 307.025	+ 0.573	+ 307.277	— o. 252	
		1850	5	0	8	51. 829	307. 596	0.629	307. 849	0. 253	
9	38 Piscium	1755 1850	5	0	4	48. 507 41. 096	+ 307.687 308.297	+ 0.613 0.670	+ 307. 366	+ 0. 321 0. 322	
10	d Piscium	1755	5		8	0. 488		,	307.975		
-	- 1301uiii	1850	68	0	12	52. 932	+ 307. 545 308. 136	+ 0.594 0.650	+ 307. 556 308. 147	0,011	
11	44 Piscium	1755	5	o	12	51. 247	+ 306,868	+ 0. 293	+ 307. 073	— 0. 205	
		1850	32	0	17	42. 912	307. 172	0. 349	307- 377	0, 205	
12	β Hydri	1850		o	17	47. 12	+ 329.13	15.88	+ 257.99	+71.14	
		1875		0	19	8. 92	325. 31	15. 30	254. 92	70. 39	
		1900		0	20	2 9. 77	321. 56	—14. 75	251.97	69. 59	
13	45 Piscium	1755	5	0	13	5. 278	+ 307.997	+ 0. 597	+ 307.844	+ 0. 153	
_		1850	44	0	17	58. 152	308, 590	0.651	308. 437	0. 153	
14	10 Ceti	1755 1850	5	1	14	3. 983	+ 307.214	+ 0. 196	+ 306. 795	+ 0.419	
			30	l		55.933	307. 427	0, 252	307. 007	0. 420	
15	11 Ceti	1755	5	0	17	•	+ 307.639	+ 0. 157	+ 306. 559	+ 1.080	
16	12 Ceti		4	0	22	13.472	307.814	0, 211	306. 739	1. 075	
10	12 Ceu	1755 1850	5 243	0	17 22	32. 305 23. 053	+ 306.036 306.074	0.068	+ 306.045 306.085	- 0,009	
		1900		0		56. 100	306. 074	0.003	306. 085	0,011	İ
17	51 Piscium	1755	5			46. 562	+ 308.217	+ 0.598	+ 308. 127	+ 0.090	
•		1850	17	0	24	39. 647	308. 810	0.651	308. 718	0.092	
18	13 Ceti	1755	5	0	22	_	+ 308. 530	+ 0.056	+ 305.855	+ 2.675	
		1850	46	0	27		308.610	0. 113	305.940	2.670	
19	14 Ceti	1755	5	0	22	58. 7 73	+ 307.457	+ 0. 223	+ 306.564	+ 0.893	
		1850	19	0		50.965	307. 694	0. 276	306, 801	0.893	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
ī	4 Ceti	7. o 6. o	3755 1850	0 / " - 3 54 49.41 3 23 2.42	+ 2007.47 2007.09	+ o. o8 - o. 87	" + 2006. 02 2005. 64	" + 1.45 1.45	
2	5 Ceti	7. o 6. o	1755 1850	- 3 48 43.44 3 16 58.15	+ 2005. 72 2005. 26	- 0.01 0.96	+ 2006. 10 2005. 63	- o. 38	
3	a Andromedæ	I. 0 2. 0	1755 1850	+27 44 13.80 28 15 43.59	+ 1989.42 1988.94	- 0.12 0.99	+ 2006. 11 2005. 63	-16, 69 16, 69	0,00
4	B. A. C. 5	5- 7	1900	28 32 17.91 - 3 3 27.03	1988. 32 + 2004. 25	- 1.06	2005. 01 + 2005. 62	16, 69 — 1. 37	
5	B. A. C. 17	6 . o	1850	6 4 56. 50	+ 2002.11	- 1.38	+ 2005.50	— 3· 39	
6	γ Pegasi	2. 5 2. 7	1755 1850 1900	+13 49 14.15 14 20 57.93 14 37 39.26	+ 2004. 61 2003. 21 2002. 11	- 0.99 1.95 2.45	+ 2006. 46 2005. 06 2003. 96	— 1.85 1.85 1.85	
7	35 Piscium	6. o 5. 8	1755 1850	+ 7 27 33·39 7 59 15.62	+ 2003. 13 2001. 42	- 1. 33 2. 28	+ 2006. 35 2004. 63	- 3. 22 3. 21	
8	36 Piscium	6. 5 6. 3	1755 1850	+ 6 52 40.44 7 24 24.52	+ 2005. 22 2003. 21	- 1.64 2.60	+ 2006. 15 2004. 14	- 0.93 0.93	
9	38 Piscium	7· 5 6. 9	1755 1850	+ 7 30 27.25 8 2 20.98	+ 2015.47 2013.30	- 1.81 2.76	+ 2006.01 2003.85	+ 9.46 9.45	
10	d Piscium	5· 5 5· 3	1755 1850	+ 6 49 39.28 7 21 24.06	+ 2006. 34 2003. 58	- 2.43 3.39	+ 2005.23 2002.47	1.11	
11	44 Piscium	6. o 5. 9	1755 1850	+ 0 34 52.∞ 1 6 31.16	+ 2000.85 1997.19	- 3.38 4.33	+ 2003.32 1999.65	- 2.47 2.46	
12	β Hydri	2. 7	1850 1875 1900	-78 5 57. 53 77 57 30. 11 77 49 2. 98	+ 2030. 22 2029. 12 2027. 96	- 4. 23 4. 56 4. 84	+ 1999. 60 1998. 42 1997. 19	+30.62 30.70 30.77	
13	45 Piscium	6. o 6. g	1755 1850	+ 6 20 5.18 6 51 41.47	+ 1997. 88 1994. 17	- 3·43 4·39	+ 2003. 19 1999. 48	- 5. 31 5. 31	
14	10 Ceti	6. o 6. 2	1755 1850	- 1 24 31.65 0 52 51 02	+ 2002. 51 1998. 61	- 3.62 4.58	+ 2302.68 1998.80	— 0. 17 0. 19	
15	II Ceti	7· 5 7. 8	1755 1850	- 2 28 12.11 1 56 40.10	+ 1993. 78 1989. 27	- 4. 27 5. 22	+ 2000, 71 1996, 21	— 6. 93 6. 94	
16	12 Ceti	6. o 6. o	1755 1850	- 5 18 50.80 4 47 12.42 4 30 35.12	+ 2000. 46 1995. 95 1993. 22	- 4. 28 5. 22 5. 72	+ 2000. 59 1996. 05 1993. 35	- 0. 13 0. 10 0. 13	
17	51 Piscium	6. 5 5. 8	1755 1850	+ 5 35 57.87 6 7 34.91	+ 1999. 28 1994. 32	- 4. 74 5. 70	+ 1999.00 1994.05	+ 0. 28 0. 27	
18	13 Ceti	6. o 5. 7	1755 1850	- 4 56 41.41 4 25 9.67	+ 1994.00 1988.47	- 5· 34 6. 30	+ 1996.67 1991.19	- 2.67 2.72	
19	14 Ceti	 6. o	1755 1850	— 1 51 17.42 1 19 49.76	+ 1989. 72 1984. 17	- 5. 36 6. 31	+ 1996, 38 1990, 86	- 6,66 6,69	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
20	15 Ceti	1755	4 24	h. m. s. o 25 33.684 o 30 24.539	s. + 306.041 306.294	s. + o. 238	s. + 306. 514 306. 767	s. — 0. 473 0. 473	s.
21	a Cassiopeæ	1755 1850	5 449	o 26 45.538 o 32 1.531 o 34 49.820	330. 089 335. 194 337. 972	5. 253 5. 496 5. 621	329. 410 334. 491 337. 263	+ 0.679 0.703 0.709	+ 0.010
22	21 Cassiopeæ	1755 1775 1800	5	o 29 56.52 o 31 9.87 o 32 42.36	+ 365. 28 368. 15 371. 83	+14. 23 14. 51 14. 88	+ 366. 38 369. 26 372. 95	- I. IO I. II I. I2	
1		1825 1850		o 34 15.79 o 35 50.17 o 37 25.52	375. 60 379. 46 383. 42	15. 25 15. 64 16. 04	376. 73 380. 60 384. 57	1. 13 1. 14 1. 15	
23	β Ceti	1900 1755 1850	 9 67	o 39 1.89 o 31 16.647 o 36 3.478	+ 387.48 + 302.216 301.648	+16.45 - 0.625 0.572	+ 388.64 + 300.611 300.041	- 1. 16 + 1. 605 1. 607	— o. oo4
24	58 Piscium	1900 1755 1850	5 13	o 38 34. 232o 34 16. 422o 39 12. 293	301. 370 + 310. 984 311. 911	0. 539 + 0. 948 1. 004	299. 765 + 310. 737 311. 665	1.605 + 0.247 0.246	
2 5	60 Piscium	1755	5 19 5	o 34 44.622 o 39 38.382 o 35 36.165	+ 308.896	+ 0.666 0.720	+ 308.905 309.564	- 0.009 0.010 + 0.606	
27	B. A. C. 221	1755		o 40 30. 764 o 35 33. 262	+ 309. 763 310 455 + 313. 278	+ 0. 701 0. 756 + 0. 580	+ 309. 157 309. 848 + 308. 449	0.607 + 4.829	
28	δ Piscium	1850 1755 1850	5 114	o 40 31.146 o 35 59.690 o 40 54.256	313. 852 + 309. 718 310. 427	0. 628 + 0. 720 0. 773	309. 031 + 309. 286 309. 994	4. 821 + 0. 432 0. 433	
30	B. A. C. 237	1755	 19	o 38 42.313o 43 35.039o 40 29.912	+ 307. 883 308. 391 + 305. 863	+ 0.510 0.561 + 0.289	+ 307. 802 308. 312 + 305. 978	+ 0.081 0.079 - 0.115	
31	B. A. C. 274	1850 1755 1850	70 5 10	o 45 20.619o 47 9.005o 52 3.388	306. 161 + 309. 528 310. 234	0. 340 + 0. 717 0. 769	306. 278 + 309. 467 310. 168	0. 117 + 0. 061 0. 066	
32	70 Piscium	1755 1850	3 32 5	o 49 23.966o 54 19.107o 50 15.094	+ 310, 284 311, 074 + 309, 767	+ 0.807 0.858 + 0.810	+ 310. 315 311. 106 + 310. 345	- 0. 031 0. 032 - 0. 578	
! . 34	26 Ceti	1850	529	0 55 9.745 0 57 45.134 0 51 13.425	310. 560 310. 999 + 307. 745	0. 860 + 0. 886 + 0. 472	+ 310.345 311.136 311.574 + 307.021	o. 576 o. 575	
35		1850 1755 1850	23 5	0 56 6.003	+ 307. 745 308. 218 + 309. 463 310. 151	0. 523 + 0. 698 0. 750	307.494 + 309.287	+ 0. 724 0. 724 + 0. 176	
36	72 Piscium	1755	3 8	o 52 11.551 o 57 10.659	+ 314. 263 315. 440	+ 1.212	309: 975 + 314: 315 315: 493	0. 176 — 0. 052 0. 053	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				0 / //	,,	,,	"	,,	"
20	15 Ceti	7.0	1755	— 1 51 15.01	+ 1992.13	— 5.82	+ 1994.00	— 1.87	
		6.8	1850	1 19 45. 26	1986. 16	6. 76	1988. 02	1.86	
21	a Cassiopeæ	3.0	1755	+55 11 23.66	+ 1988. 72	— 6. 44	+ 1992. 78	- 4.06	- 0,01
		2. 5	1850	55 42 49 85	1982.02	7.68	1986.09	4.07	
			1900	55 59 19.88	1978. 02	8. 32	1982.09	4.07	
22	21 Cassiopeæ	6. o	1755	+73 38 37.07	+ 1987. 24	— 7. 78	+ 1989.34	_ 2. 10	
	21 Cassimpes : 1	6. o	1775	73 45 14.38	1985.66	8. 11	1987. 76	2. 10	
			1800	73 53 30 53	1983. 59	8. 54	1985.68	2.09	
			1825	74 1 46. 16	1981.41	8.99	1983.49	2.08	
			1850	74 10 1.21	1979. 08	9.45	1981. 16	2.08	
			1875	74 18 15.68	1976. 67	9. 91	1978. 74	2.07	
			1900	+74 26 29.53	+ 1974.13	—10.40	+ 1976.20	- 2.07	
23	β Ceti	2. 5	1755	—19 20 6.39	+ 1990. 32	— 6.88	+ 1987.79	+ 2.53	— o. o3
	·	2. 3	1850	18 48 38.83	1983. 36	7. 77	1980.86	2. 50	
			1900	18 32 8. 14	1979. 36	8. 23	1976.88	2.48	
24	58 Piscium	6. o	1755	+10 37 57.45	+ 1982. 52	— 7.62	+ 1984.06	— 1.54	
	J	5.0	1850	11 9 17. 26	1974. 82	8.60	1976. 36	1.54	
25	60 Piscium	6.0	1755	+ 5 23 56.93	+ 1982. 32	— 7.66	+ 1983.44	_ 1.12	
4 5	oo riscium	6, 2	1850	5 55 16.53	1974. 59	8.62	1975. 71	1. 12	
_			- 1			•			
26	62 Piscium	6.0	1755	+ 5 57 28.89	+ 1982, 16	 7.86	+ 1982. 32	- 0.16	
		6.0	1850	6 28 48, 23	1974. 24	8.83	1974. 40	0. 16	
27	B. A. C. 221		1755.	+ 4 0 59.79	+ 1867.90	- 7.98	+ 1982.36	—114.46	
		5.9	1850	4 30 30.48	1859. 84	8.98	1974. 37	114.53	
28	δ Piscium	5. o	1755	— 6 14 49.37	+ 1976 97	— 7⋅94	+ 1981.77	- 4.80	
		4.4	1850	6 46 3.75	1968.95	8. 92	1973. 78	4.83	
29	B. A. C. 237	7.5	1755	+ 2 3 4.57	+ 1971.04	- 8.40	+ 1977.89	— 6.85	
		6. 7	1850	2 34 13. 12	1962.60	9. 36	1969.47	6.87	
30	20 Ceti	5. o	1755	_ 2 28 46.48	+ 1973.87	- 8.69	+ 1975.21	— 1.34	
•		5. 2	1850	I 57 35.37	1965. 17	•	1966. 51	1.34	
31	B. A. C. 274	6. 5	1755	+ 5 9 22.01	+ 1963.69	—10.07	+ 1964.14	— o. 45	
3.	B. H. C. 2/4	6. 2	1850	5 40 22.83	1953.67	11.03	1954. 13	0, 46	
	- n·			-	+ 1963.35	—IO. 52	+ 1960.03		
32	70 Piscium	8. o 8. o	1755	+ 6 36 49.84	1952. 89	11.49	1949.57	+ 3.32	
			1850	7 7 50. 12				3. 32	_
33	e Piscium	4.0	1755	+ 6 33 55.02	+ 1960.75	—10.67	+ 1958.43	+ 2.32	+ 0.01
		4. 2	1850	7 4 52. 76	1950. 15	11.63	1947. 82	2. 33	
			1900	7 21 6. 36	1944. 21	12. 13	1941. 88	2. 33	
34	26 Ceti	6. 5	1755	+ 0 2 52.00	+ 1952.26	—10. 82	+ 1956.55	— 4.29	
		5.9	1850	0 33 41.62	1941. 54	11.76	1945.85	4. 31	
35	73 Piscium	6. 5	1755	+ 4 20 12.33	+ 1953.58	-11.04	+ 1954.63	- 1.05	
		5.9	1850	4 51 3.10	1942. 64	12.00	1943. 69	1.05	
36	72 Piscium	6. o	1755	+13 37 21.87	+ 1958.40	—11. 19	+ 1954.66	+ 3.74	
	1	6.0	1850	14 8 17. 15	1947. 29	12. 20	1943. 55	3. 74	1

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
37	77 Piscium	1755 1850	4 11	h. m. s. o 53 10.035 o 58 3.823	s. + 308.929 309.581	s. + 0.662 0.711	s. + 308.930 309.584	s. — 0.001 0.003	s.
38	75 Piscium	1755 1850	3	0 53 42.140	+ 313.534 314.608	+ 1. 105	+ 313.392 314.468	+ 0. 142	
39	29 Ceti	1755 1850	5 19	o 55 22.694 I O 15.742	+ 308. 220 308. 732	+ 0.515 0.563	+ 307. 391	+ 0.829 0.822	
40	e Piscium	1755 1 85 0	5 78	o 55 46.266 1 o 38.776	+ 307.560 308.256	+ 0.710 0.756	+ 309.449 310.147	- 1.889 1.891	
41	β Andromedæ	1755 1850	10 159	o 56 5.522 1 1 20.878	+ 330. 624 333. 296	+ 2. 770 2. 856	+ 329. 112 331. 778	+ 1.512	
42	33 Ceti	1900		1 4 7.885 0 57 58.143	334. 736 + 307. 584	2. 904 + 0. 564	333. 214 + 307. 660	1. 522 — 0. 076	
43	35 Ceti	1850 1755	36 2	o 59 57.839	308. 143 + 306. 458	0.612 + 0.569	308. 217	0. 074 — 1. 243	
44	a Ursæ Minoris	1850 1755		1 4 49.239 0 43 42.11	307. 025 +1039. 42	0.625 + 483.42	308. 269	1. 244 + 8. 33	
		1775 1800 1825		0 47 20.21	1144.48	570. 02 709. 32	1135.66 1294.06	8. 82 9. 53	
		1850 1875		0 58 15.32 1 5 1.55 1 13 0.16	1503.06 1757.17 2086.78	895. 82 1150, 68 1506. 80	1492. 73 1745. 90 2074. 40	10. 33 11. 27 12. 38	
45	ζ Piscium	1900		I 22 33.76 I 0 57.437	+2523.03 + 311.684	+2016. 15 + 0. 844	+2509. 33 + 310. 861	+13.70 + 0.823	
46	88 Piscium	1850	52 5	1 5 53.924 1 1 59.313	312. 509 + 310. 359	0.892 + 0.815	311.685 + 310.559	0. 824	
47	f Piscium	1850	6	1 6 54.529 1 5 10.983	311. 157	o. 865 + o. 657	311.358 + 308.516	0. 20I — 0. 472	
48	B. A. C. 410	1850 1850	39	1 10 3.929	308, 690	0. 703	309. 162	0. 472	
49	θ^1 Ceti	1755 1850	6 656		+ 299. 503 299. 636	+ 0. 115 0. 164*	+ 300. 135	- 0.632 0.633	— o. oo4
50	ρ Piscium	1900 1755		1 19 1.461	299. 724 + 320. 078	0. 188 + 1. 565	300. 359	o. 635 — o. 457	
51	94 Piscium	1850 1755	18 5	1 18 10.658 1 13 30.517	i	1.618 + 1.567	322. 048 + 320. 668	0.458	
52	95 Piscium	1850 1755	11 4	1 18 36.110 1 14 58.215	322. 439 + 309. 728	1. 628 + 0. 784	322. 188 + 310, 064	0. 251 — 0. 336	
53	38 Cassiopeæ	1850 1755	7 5	1 19 52.816 1 13 24.64	310.494	o. 828 +13. 27	310. 833 + 416. 67	0. 339	
		1800 1850 1900		1 16 34.60 1 20 8.94 1 23 46.79	425. 18 432. 13 + 439. 31	13.67 14.13 +14.60	422. 72 429. 64 + 436. 80	2.46 2.49 + 2.51	

DECLINATIONS.

									
No,	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				0 / //	,,,	,,	"	,,	,,
37	77 Piscium	7. 5	1755	0 / " + 3 35 50.51	+ 1940.64	— 11. 20	+ 1952.71	—12. 07	"
. 37	7, 2 15010111	5.9	1850	4 6 29.92	1929. 55	12. 16	1941.61	12.06	
-0	75 Piscium	6.5	1755	+11 38 10.28	+ 1954. 78	- 11 46	+ 1951.63	+ 3.15	
38	75 Fiscium	6. o	1850	12 9 2.00	1943. 42	12.46	1940. 27	3. 15	
				•					
39	29 Ceti	7· 5 6. 3	1755	+ 0 42 24.67 1 12 28.30	+ 1904.23 1892.74	- 11.63 12.57	+ 1948. 17 1936. 70	-43.94 43.96	
		_		_					
40	e Piscium	5.0	1755	+ 4 20 50.11	+ 1929.08	- 11.60	— 1947. 32	—18. 24 18. 22	
		5. 5	1850	4 51 17.35	1917.61	12.55	1935.83		
41	β Andromedæ	2.0	1755	+34 18 54.10	+ 1934.49	— 12. 56	+ 1946.65	—12. 16	 0.06
•		2. 2	1850	34 49 26.03	1922.00	13. 75	1934. 21	12. 21	
			1900	35 05 25.28	1914.98	14. 37	1927. 22	12. 24	
42	33 Ceti	6.0		+ 1 8 5.72	+ 1942.09	— 12.09	+ 1942.59	— 0.50	
		6. I	1850	1 38 45.09	1930. 18	13.02	1930. 71	0. 53	
43	35 Ceti	6. 5	1755	+ 1 10 16.17	+ 1925.80	— 12. 35	+ 1938. 16	-12.36	
		6. 3	1850	1 40 39.92	1913.49	13. 57	1925.95	12.46	
44	a Ursæ Minoris	2. 5	1755	+87 59 41.11	+ 1970.59	- 29.82	+ 1970.11	+ 0.48	
			1775	88 6 14.60	1964. 11	35⋅35	1963. 68	0.43	
			1800	88 14 24.42	1954. 19	44. 28	1953. 84	0. 35	
			1825	88 22 31.47	1941.68	55.95	1941. 42	0. 27	
		2.0	1850 1875	88 30 34.96 88 38 33.86	1925. 60 1904. 58	71. 36 96. 72	1925. 44 1904. 54	0. 17 + 0. 04	
			1900	+88 46 26.66	+ 1876.41	—131.46	+ 1876.51	- 0.10	
	. 5.		١ .			1			
45	ζ Piscium	4. 0 4. 8	1755 1850	+ 6 16 22.18 6 46 50.44	+ 1931.13 1918.46	- 12.85 13.82	+ 1935.91 1923.30	- 4. 78 4. 84	
			1						
46	88 Piscium	6. 7	1755	+ 5 41 33.28	+ 1930.69	- 12.92	+ 1933.51	- 2.82	
		6. 2	1850	6 12 1.45	1917.96	13.88	1920. 75	2. 79	
47	f Piscium	6. o	1755	+ 2 19 2.89	+ 1922.85	— 13.45	+ 1925.83	- 2.98	
		5. 2	1850	2 49 23.40	1909. 63	14. 37	1912.64	3.01	
48	B. A. C. 410	6. o	1850	+ 6 37 23.42	+ 1917.52	— 15.50	+ 1898.88	+18.64	
49	θ¹ Ceti	3.0	1755	- 9 27 17.95	+ 1886.78	— 14. 26	+ 1908.85	-22.07	
		3. 2	1850	8 57 32.07	1872.83		1894. 87	22.04	
			1900	8 41 57.57	1865. 16	15. 56	1887. 18	22. 02	
50	ρ Piscium	5.5	1755	+17 53 18.50	+ 1907.33	- 15.44	+ 1905.26	+ 2.07	
		5. o	1850	18 23 23.34	1892. 17	16.48	1890, 08	2.09	
51	94 Piscium	6. 5	1755	+17 57 43.89	+ 1899.37	- 15.60	+ 1904.08	— 4.71	
_		6. 3	1850	18 27 41.02	1884. 05	16.66	1888.83	4. 78	
52	95 Piscium	7. O	1755	+ 4 4 57.01	+ 1885.18	— 15. 32	+ 1900.06	—14.88	
		8. o	1850	4 34 40.88	1870. 18	16. 26	1885. 04	14. 86	
53	38 Cassiopeæ	6. o	1755	+68 59 31.75	+ 1896.98	— 20. 18	+ 1904.40	- 7.42	
,,,	J		1800	69 13 43.30	1887.67	21.27	1895. 14	7.47	
		6. 7	1850	69 29 24.42	1876. 71	22. 53	1884. 24	7. 53	
		•	1900	+69 44 59.91	+ 1865. 12	— 23.86	+ 1872.71	— 7.59	
			l		l	<u> </u>	I	l	L

RIGHT ASCENSIONS.

No.	Star.	Epoch.	observations.	Right a	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
54	96 Piscium	1755		h. m. 1 16 1 21		s. + 311. 333 312. 203	s. + 0.893 0.939	s. + 311.607 312.479	s. — 0. 274 0. 276	s.
55	μ Piscium	1755	5	I 17	22. 463	+ 312.572 313.394	+ 0.842	+ 310.775	+ 1.797	
56	η Piscium	1755 1850 4	5	I 18 I 23 I 26	² 4. 745 ² 7. 8 ₃ 2	+ 318. 388 319. 698 320. 406	+ 1.354 1.403 1.428	+ 318.248 319.557 320.263	+ 0. 140 0. 141	
57	B. A. C. 455	1755	1 3	1 18 1 23	53. 546	+ 320.407 321.813	+ 1.456 1.505	+ 319.671 321.079	0. 143 + 0. 736 0. 734	
58	100 Piscium	1755	5	I 21 I 26	53. 046	+ 316.113	+ 1.204 1.249	+ 316.340	- 0. 227 0. 229	
59	101 Piscium	1755	5 8	I 22 I 27		+ 318.200 319.485	+ 1.330 1.376	+ 318. 253 319. 535	— 0. 053 0. 050	
60	π Piscium	1755	5 4	1 24 1 29		+ 315.766 316.920	1. 193	+ 316. 226 317. 377	— 0. 460 0. 457	
61	B. A. C. 490	1755 1850	4 6	I 24 I 29	42. 153	+ 317. 139 318. 292	+ 1.189 1.230	+ 316.230 317.382	0.910	
62	103 Piscium	1850	7	1 26 1 31	10.692	+ 320. 347 321. 752	1. 503	+ 320.489 321.897	- 0, 142 0, 145	
63 64	104 Piscium	1755	3	1 26 1 31	13.628	+ 319. 026 320. 302	1.320	+ 318.365 319.642	0.660	
65	a Eridani	1755 1850 1850	7	I 26 I 31 I 32	35. 734	+ 320. 745 322. 142 + 223. 74	+ 1.448 1.495 - 1.32	+ 320. 347 321. 745 + 223. 46	+ 0. 398 0. 397 + 0. 28	
9	Distant	1875	-	1 33 1 33	3. 20	223. 42 223. 10	I. 30 I. 27	223. 14 222. 82	0, 28 0, 28	
66	ν Piscium	1755 1850 3 1900 -	5 6	1 28 1 33 1 36	37. 7 66	+ 310.596 311.425 311.877	+ 0.852 0.894 0.916	+ 310. 737 311. 569 312. 021	- 0. 141 0. 144 0. 144	
67	o Piscium	1755 1850 20	5 7	I 32 I 37 I 40	29. 178 28. 690	+ 314.765 315.793	+ 1.062 1.102 1.124	+ 314.300 315.325 315.881	+ 0.465 0.468 0.468	0.000
68	3 Arietis	1755	5	I 33 I 38	20. 125	+ 322. 507 323. 982	+ 1.531	+ 322. 364 323. 841	+ 0. 143	
69	4 Arietis	1755	5 7	I 34 I 40	-	+ 322. 394 323. 848	+ 1.508 1.552	+ 322. 155 323. 611	+ 0. 239 0. 237	
70	B. A. C. 549	1755 1850	2	1 35 1 40		+ 321.935 323.390	+ 1.510 1.554	+ 322.244 323.707	- 0. 309 0. 317	
71	54 Ceti	1755 1850	5 7	1 37 1 42		+ 316.052 + 317.184	+ 1.172 1.212	+ 316. 589 317. 723	- 0. 537 0. 539	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
54	96 Piscium	6. 5	1755	0 ' " + 6 I 16.62	,, + 1889. 80	 15. 64	" + 1896.35	 6. 55	"
34	go i isdam	6.6	1850	6 31 4.72	1874.48	16.60	1880.98	6. 50	
55	μ Piscium	5.0	1755	+ 4 52 20.08	+ 1889.61	— 16.00	+ 1893. 19	— 3.58	
		5.0	1850	5 22 7.84	1873. 95	16.97	1877.61	3.66	
56	η Piscium	4.0	1775	+ 14 4 27.45	+ 1889.43	- 16.40	+ 1890.17	— 0.74	
		3.7	1900	14 34 14.85 14 49 49.34	1873. 37 1864. 53	17. 41	1874. 11 1865. 27	0. 74 0. 74	
57	B. A. C. 455	8. o	1755			- 16,62	+ 1888. 75		
		7.0	1850	+ 16 11 7		17.66	1872. 54		
58	100 Piscium	7.0	1755	+ 11 17 41.73	+ 1879.14	— 16.92	+ 1879.75	— o. 61	
•	101 Piscium	6.8 6.0	1850	11 47 19.13	1862.59	17. 92	1863. 19	0,60	
59	101 Fiscium	6.3	1755 1850	+ 13 23 59.57 13 53 33.62	+ 1875. 76 1858. 92	- 17. 22 18. 22	+ 1877. 22 1860. 38	— 1.46 1.46	
60	π Piscium	6.0	1755	+ 10 52 45. 18	+ 1877.56	— 17.36	+ 1872.69	+ 4.87	
1		5.7	1850	11 22 20.86	1860, 60	18. 34	1855. 79	4. 81	!
61	B. A. C. 490		1755	+ 10 49 16.61	+ 1866. 76	— 17.56	+ 1871.04	 4. 28	
6.	and Dissimum	7.5	1850	11 18 41.93	1849. 52	18. 73	1853.94	4. 42	
62	103 Piscium	7· 5 6. 8	1755	+ 15 22 21.89 15 51 44.38	+ 1863.94 1846.41	17. 94 18. 97	+ 1866.54 1849.00	2.60 2.59	ļ
63	104 Piscium	6. 5	1755	+ 13 1 59.31	+ 1862.77	— 17.93	+ 1866, 36	— 3. 59	
		7.5	1850	13 31 20.70	1845. 26	18.94	1848. 84	3. 58	
64	105 Piscium	6. o 6. g	1755	+ 15 9 11.36	+ 1864. 14	- 18.07	+ 1865, 22	- 1.08	
65	a Eridani	1.0	1850 1850	15 38 33.98 58 0 0.14	1846.49	19. 10	1847. 58	1.09	
05	d Endam	1.0	1875	57 52 20.30	1837.63	- 13. 58 13. 68	1842, 38	- 4. 72 4. 75	
			1900	57 44 41-33	1834. 18	13. 78	1838, 95	4- 77	
66	ν Piscium	5.0	1755	+ 4 14 18.86	+ 1858. 20	- 17.93		+ 0.20	
		4-5	1850	4 43 35.92 4 58 53.79	1840. 72 1830. 90	18. 87 19. 36	1840. 54 1830. 80	o. 18 o. 10	
67	o Piscium	5.0	1755	+ 7 54 56.13	+ 1847.97	- 18.87		+ 2.67	
		4.3	1850	8 24 3.04	1829. 58	19. 84	1826. 94	2.64	
			1900	8 39 15.32	1819. 54	20. 34	1816, 92	2. 62	
68	3 Arietis	6. 5 6. o	1755 1850	+ 16 10 33.28 16 39 33.26	+ 1840.95 1821.99	19.44 20.48	+ 1842.35 1823.40	— 1.40 1.41	
69	4 Arietis	6. 5	1755	+ 15 43 29.43	+ 1834.64	— 19. 73	+ 1836. 75	- 2. II	
		5.7	1850	16 12 23, 28	1815.40	20. 77	1817. 53	2. 13	
70	B. A. C. 529	8. o	1755	+ 15 47 15.55	+ 1838.60	— 19.71	+ 1836. 12	+ 2.48	
		8. 2	1850	16 16 13.17	1819.39	20. 74	1816.87	2. 52	
71	54 Ceti	6. o 5. 5	1755	+ 9 49 11.68	+ 1822.91 1803.59	- 19.85 20.83	+ 1826, 16 1806, 81	- 3. 25 3. 22	
		J. J.		/ 54-34	3.39	20.03		3. 22	L

RIGHT ASCENSIONS.

72	No.	Star.	Epoch.	Number of observations.	Right ascension.		Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
1850 35 I 45 18.463 327.518 I. 709 327.083 0.4 74 β Arietis 1755 10 I 41 9.443	72	γ¹ Arietis	1755	9	I 40	8 . o85	+ 325.918	+ 1.660	+ 325.477	s. + 0.441 0.435	s.
1850 408 1 46 21.789 329.636 1.811 329.045 0.5	73	γ ⁸ Arietis			-	-		•		+ 0.441 0.435	
75 t Arietis 1755 5 1 44 0.668 + 324.693 + 1.985 + 324.491 + 0.2 76 50 Cassiopeæ 1755 5 1 43 2.90 + 476.85 + 17.29 + 477.96 - 1.1 1800 1 46 39.24 484.74 17.79 485.86 1.1 1850 1 50 43.85 493.78 18.36 494.91 1.1 77 B. A. C. 609 1850 20 1 51 24.494 + 319.911 + 1.302 + 319.960 - 0.0 78 a Arietis 1755 10 1 53 25.083 + 334.403 + 1.982 + 333.040 + 1.3 1850 1 58 43.665 336.302 2.020 334.944 1.1900 2 1 32.069 337.317 2.042 335.960 1.3 79 15 Arietis 1755 5 1 57 5.725 4329.236 + 1.721 4328.669 + 0.5 1850 12 2 1 19.281 330.888 1.757 330.323 0.5 80 64 Ceti 1755 5 1 58 26.896 + 314.602 + 1.092 + 315.603 - 0.9 1850 15 2 4 24.793 334.035 1.877 333.306 1.0 81 η Arietis 1755 5 1 59 8.302 332.269 + 1.842 333.306 1.0 82 19 Arietis 1755 5 5 1 59 4.054 4 324.375 + 1.468 333.766 - 0.5 82 19 Arietis 1755 5 2 0 2.724 335.766 1.502 335.960 1.0 83 ξ ¹ Ceti 1755 5 2 0 2.724 335.875 1.166 337.681 0.1 84 B. A. C. 686 . 1755 3 2 0 19.168 329.479 1.168 337.031 0.1 85 θ Arietis 1755 5 2 0 2.724 315.875 1.165 317.02 0.1 86 B. A. C. 686 . 1755 3 2 0 19.168 329.479 1.1758 337.031 0.1 86 23 Arietis 1755 5 2 3 3.940 331.142 1.768 331.033 0.1 86 B. A. C. 686 . 1755 3 2 0 19.168 329.479 1.758 331.033 0.1 87 B. A. C. 738 1755 1 2 11 5.864 331.856 1.754 332.265 0.1 88 B. A. C. 738 1755 1 2 11 5.864 331.856 1.754 332.265 0.1 89 B. A. C. 738 1755 1 2 11 5.864 331.856 1.754 332.265 0.1 80 B. A. C. 738 1755 1 2 11 5.864 331.856 1.221 332.950 0.2	74	β Arietis	1850		1 46	21. 789	329. 636	1.811	329. 045	+ 0.602 0.591	-0.002
76 50 Cassiopeæ 1755 5 1 43 2.90	75	ι Arietis	1755	- 1	I 44	o. 668	+ 324.693	+ 1.585	+. 324. 491	0. 587 + 0. 202 0. 200	
1900 . 1 54 53.06 503.10 18.93 504.26 1.1	76	50 Cassiopeæ	1755		I 43	2. 90	+ 476.85	+17. 29	+ 477.96	- I. II	
78 a Arietis			1900 .		1 50	43.85	493. 78	18. 36	504. 26	1. 13 1. 16	
1900 2 1 32 369 337 317 2 042 335 960 1 3 1 1 1 1 1 1 1 1			1755	l	I 53	25. 083	+ 334.403	+ 1.982	+ 333.040	- 0.049 + 1.363	0.000
80 64 Ceti	•	ag Asiasia	1900		2 I	32. 069	337- 317	2. 042	335. 960	1. 358	
81 η Arietis 1755 5 1 59 8. 302 + 332. 269 + 1. 842 + 331. 242 + 1. 00 1850 15 2 4 24. 793 334. 035 1. 877 333. 006 1. 00 1			1850	12	2 2	19. 281	330. 888	1. 757	330. 323	0. 565 - 1. 001	
82 19 Arietis			1850	6	2 3	26. 267	315.656	1, 126	316.652	0.996	
83	82		1850	15	2 4	24. 793	334- 035	1.877	333. 006	1.029 + 0.589	
84 B. A. C. 686 . 1755 3 2 0 19.168 + 329.479 + 1.732 + 329.363 + 0.1 85 θ Arietis	83	ξ ¹ Ceti		·	_		,	-	l	0. 590 — 0. 151	
85 θ Arietis 1755 5 2 4 32.800 + 330.363 + 1.754 + 330.481 - 0.1 86 23 Arietis 1755 4 2 5 34.405 + 330.205 + 1.734 + 330.382 - 0.1 87 B. A. C. 738 1755 1 2 11 5.864 + 318.456 + 1.211 + 318.659 - 0.2 1850 3 2 16 8.948 319.620 1.239 319.822 0.2	_		1900 .		2 7	41.935	317. 531	1. 165	317.681	o. 150 o. 150	
86 23 Arietis 1755 4 2 5 34.405 + 330.205 + 1.787 332.166 0.1 87 B. A. C. 738 1755 1 2 11 5.864 + 318.456 + 1.211 + 318.659 - 0.2 1850 3 2 16 8.948 319.620 1.239 319.822 0.2			1850	3	2 5	32. 960	331. 142	1. 768	331.033	0. 109	
87 B. A. C. 738	_		1850	34	2 9	47. 442	332. 045	1. 787	332. 166	0. 121	
1850 3 2 16 8.948 319.620 1.239 319.822 0.2			1850	3	2 10	48. 886	331.867	1. 765	332. 050	o. 183 - o. 203	
			1850		2 16	8. 948	319. 620	1. 239	319. 822	o. 202 — o. 78	
1800 2 12 47.76 474.65 12.73 475.43 0.7 1850 2 16 46.68 481.07 12.97 481.86 0.7		! !	1800 . 1850 .		2 122 16	47. 76 46. 68	474. 65 481. 07	12. 73 12. 97	475· 43 481. 86	o. 78 o. 79 — o. 8o	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
72	γ¹ Arietis	4-5	1755	+ 18 4 54.44	+ 1807.98		+ 1817.97	- °9.99	"
73	γ ^s Arietis	3· 7 4· 5	1850	18 33 22.41 + 18 5 3.02	1787.59	21.99 — 20.93	1797.61 + 1817.97	10, 02 — 10, 00	
		3-7	1850	18 33 30.98	1787. 58	21.99	1797.61	10.03	•
74	β Arietis	3. o	1755	+ 19 35 58.67	+ 1802.42	- 21.26	+ 1814.17	— 11.75	0.04
		3.0	1850	20 4 21.21	1781.71	22. 34	1793. 50	11. 79	
			1900	20 19 9.25	1770. 41	22.90	1782. 22	11.81	
75	ι Arietis	6.0	1755	+ 16 36 38.17	+ 1800. 12	- 21.55	+ 1803.34	— 3. 22	
		5. 7	1850	17 4 58.40	1779. 15	22.60	1782. 38	3. 23	
76	50 Cassiopeæ	4.5	1755 1800	+ 71 13 5.95	+ 1809, 28	— 30. 94	+ 1807.02	+ 2.26	
		4.0	1850	71 26 36.93 71 41 30.32	1795. 04 1778. 39	32. 43 34. 15	1792. 75 1776. 06	2. 29 2. 33	:
	1	7	1900	71 56 15.17	1760.88	35.96	1758.49	2. 33	
77	B. A. C. 609	6. o	1850	+ 11 33 53.54	+ 1766.98	— 22. 56	+ 1773.31	- 6.33	
78	a Arietis	3.0	1755	+ 22 17 29.96	+ 1750.71	— 24.04	+ 1765.74	-15.03	— 0, 10
		2.0	1850	22 45 2.12	1727. 35	25. 14	1742.47	15. 12	
			1900	22 59 22.63	1714.63	25. 72	1729. 80	15. 17	
79	15 Arietis	6. o	1755	+ 18 19 56.14	+ 1746.48	— 24. 30	+ 1750.22	— 3.74	
		5- 7	1850	18 47 24. 18	1722.90	25. 34	1726.67	3. 77	
8o	64 Ceti	6. 5	1755	+ 7 24 37.90	+ 1733.83	— 23. 36	+ 1744.36	—10.53	
		5- 7	1850	7 51 54-35	1711.20	24. 28	1721.69	10. 49	
81	η Arietis	6. o	1755	+ 20 2 48.92	+ 1742.69	— 24.90	+ 1741.40	+ 1.29	
		5.3	1850	20 30 13.07	1718. 52	25.99	1717. 31	1.21	
82	19 Arietis	7.0	1755	+ 14 7 8.77	+ 1736.66	24. 42	+ 1738.81	— 2. 15	
		5- 7	1850	14 34 27.44	1713.00	25. 42	1715. 19	2. 19	
83	ξ ¹ Ceti	5.0	1755	+ 7 41 7.89	+ 1735.86	— 23. 76	+ 1737-43	- 1.57	+ 0.03
		4.3	1850	8 8 26.11	1712.86	24.68	1714.40	1. 54	
	5 4 6 404		1900	8 22 39.42	1700.40	25. 16	1701.92	1.52	
84	B. A. C. 686	8. o	1755 1850	+ 18 27 14.83	l		+ 1736.26	- 0.01	
۰.	A	7. 2		18 54 32.90	1712. 15	25.90	1712. 15	0,00	
85	heta Arietis	6. o , 5. 7	1755 1850	+ 18 45 17.21 19 12 16.19	+ 1716.55 1691.68	— 25.65 26.71	+ 1717.49	- 0.84	
86	aa Amiatia				-		1692. 52	0.84	
30	23 Arietis	7·5 7·5	1755 18 5 0	+ 18 33 9.72 18 59 53.93	+ 1701.07 1676.05	- 25. 82 26. 87	+ 1712.73 1687.70	—11.66 11.65	
87	B. A. C. 738	% S	-	25 23.93	,0.03	-		11.05	
",	D. A. C. 730	7.7	1755 1850	+ 9 35 25.6		25.86 26.80	+ 1687 05 1662.08		
88	ι Cassiopeæ	4.5	1755	+ 66 16 51.55	+ 1696. 10	— 37.24	+ 1695.71	+ 0.39	
	- Candiopate	T* 3	1800	66 29 31.02	1679.06	38. 57	1678.64	0.42	
		4.0	1850	66 43 25.68	1659. 39	40.09	1658.93	0.46	
			1900	+ 66 57 10.30	+ 1638.96	— 41.65	+ 1638.48	+ 0.48	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec, var. of proper motion.
89	ξ Arietis	1755	5	h. m. s. 2 11 43.259	+ 319.150	s. + 1,228	s. + 319.150	- 0,000	s.
90	B. A. C. 755	- 1755	1	2 16 47.010 2 13 39.213	320. 328 + 319. 477	+ 1.230	320, 330 + 319, 253	+ 0, 224	
91	25 Arietis		5	2 18 43.275 2 14 23.403	320, 658 + 316, 922	1.256	320. 436 + 318. 849	0, 222 — 1, 927	
92	ξ² Ceti	1850	5	2 19 25.020 2 15 9.875	318, o66 + 316, 832	+ 1.129	320.005 + 316.590	1.939	
		1850 1900	232	2 20 11.379 2 22 50.483	317.917 318.498	1. 155	317.674 318.255	0. 243 0. 243	
93	26 Arietis	- 1755 1850	5	2 16 57.060 2 22 14.226	+ 333.019	+ 1.761	+ 332. 548 334. 235	+ 0.471 0.469	
94	27 Arietis	- 1755 1850	5 42	2 17 21.658 2 22 35.669	+ 329.764	+ 1.622	+ 329.500	+ 0. 264 0. 259	
95	29 Arietis	- 1755 1850	5	2 19 31,426	+ 325.817	+ 1.477	+ 325.978	- 0, 161 0, 160	
96	B. A. C. 782	1755	5	2 19 57.545	327. 232 + 332. 102	+ 1.704	327. 392 + 331. 601	+ 0.501	
97	31 Arietis	1850	5	2 25 13.814 2 23 18.539	333. 732 + 324. 624		333. 232 + 322. 742	0. 500 + 1. 882	
98	ν Arietis	1850	17	2 28 27.538 2 24 57.378	325. 905 + 337. 095	1. 360	324. 024 + 337. 172	- 0.077	
99	μ Arietis	1850	25 5	2 30 18.476 2 28 36.095	338. 905 + 334. 908	1.917	338. 984 + 334. 735	0.079	
	B, A. C. 826	1850	21	2 33 55,060	336, 601	1. 793	336. 425	0. 176	
100		1850	6	2 33 56.385	+ 320, 418 321, 606	1. 260	+ 320,510 321,698	- 0.092 0.092	
101	85 Ceti	1755	5 7	2 29 19.681 2 34 24.785	÷ 320, 570 321, 766	+ 1.248 1.269	+ 320.837 322.035	- 0, 267 0, 269	
102	γ Ceti	- 1755 1850 1900	495	2 30 37.916 2 35 31.968 2 38 7.064	+ 309.099 309.961 310.422	+ 0,898 0,916 0,929	+ 310, 122 310, 992 311, 459	- 1.023 1.031 1.037	-0, 006
103	36 Arietis	- 1755 1850	5 3	2 30 41.235 2 35 57.290	+ 331.913 333.470	+ 1.630 1.649	+ 331.540 333.102	+ 0.373 0.368	
104	o Arietis	. 1755 1850	5	2 31 5.377 2 36 17.430	+ 327.767 329.190	+ 1.489 1.508	+ 327.819 329.243	- 0.052 0.053	
105	38 Arietis	- 1755 1850	5	2 31 38,836 2 36 47.607	+ 324. 388 325. 661	+ 1.334 1.346	+ 323.568 324.848	+ 0.820 0.813	
106	μ Ceti	. 1755 1850	5 52	2 31 44.073 2 36 50.378	+ 321.842	+ 1.225 1.241	+ 320.116 321.288	+ 1. 726 1. 725	
107	40 Arietis	- 1755 1850	5	2 34 50.749 2 40 8.051	+ 333. 208 334. 800	+ 1.670 1.682	+ 332.967 334.552	+ 0.241	

					Centennial	Secular	Stru ve 's	Proper	Sec. var.
No.	Star.	Mag.	Epoch.	Declination.	variation.	variation.	precession.	motion.	of proper motion.
				0 / //	"	,,	"	"	"
89	ξ Arietis	6.0	1755	•	+ 1682.27	26.08	+ 1684.11	— 1.84	
		5.3	1850	9 55 42.85	1657. 06	27. 01	1658. 91	1.85	
90	B. A. C. 755		1755	+ 9 26 57.59	+ 1672.83	— 26.40	+ 1674.83 1649.22	- 2.00	
		7.0		9 53 14. 72		27. 35		1.92	
91	25 Arietis	7·5 7·3	1755 1850	9 5 52.62	+ 1648. 70 1623. 43	- 26. 14 27. 06	+ 1671.27 1645.83	-22. 57 22. 40	
	79 C-4:		-		+ 1666, 02	— 26.44	+ 1667.50	— 1.48	
92	ξ ² Ceti	5. o 4. 4	1755	+ 7 20 55. 12 7 47 5. 77	1640.43	27.44	1641.97	1.54	
		•	1900	8 0 42.53	1626. 58	27. 96	1628. 19	1.61	
93	26 Arietis	6.5	1755	+ 18 45 10.77	+ 1655.58	28.08	+ 1658.76	— 3. 18	
"		6.0	1850	19 11 10.74	1628.40	29. 15	1631.62	3. 22	
94	27 Arietis	6.0	1755	+ 16 36 22.99	+ 1647.16	- 27.87	+ 1656.74	9. 58	
		6. 3	1850	17 2 15.07	1620, 20	28.89	1629. 80	9.60	
95	29 Arietis	6. 5	1755	+ 13 56 9.59	+ 1648, 89	— 27.88	+ 1645.98	+ 2.91	
		6.3	1850	14 22 3.31	1621.95	28.85	1619.04	2.91	
96	B. A. C. 782	6.5	1755	+ 17 47 6.66	+ 1644.61	— 28. 53	+ 1643.80	+ 0.81	
		7.0	1850	18 12 56.01	1617.01	29. 57	1616. 23	o. 78	
97	31 Arietis	6.0	1755	+ 11 22 14.26	+ 1618.88	— 28. 58	+ 1626.81	— 7.93	
		5.7	1850	11 47 39.15	1591. 27	29. 54	1599. 36	8.09	
98	ν Arietis	5.5	1755	+ 20 53 12.36	+ 1617.17	— 29. 76	+ 1618. 32	— 1.15	
		5. 7	1850	21 18 35.08		30.82	1589. 55	1, 16	
99	μ Arietis	6.0	1755	+ 18 57 8.34	+ 1593.87	— 30. 26	+ 1599.26	- 5. 39	
		6.0	1850	19 22 8.72		31. 30	1570.09	5. 46	
100	B. A. C. 826	7. 0 7. 1	1755	+ 9 29 3.98 9 54 5.04	+ 1593.97 1566.01	- 28. 95 29. 91	+ 1597.89 1569.95	- 3.92 3.94	
	8- 6 :	1				- 29.05			
101	85 Ceti	6.0	1755	+ 9 40 58.18	+ 1591.46	29.05	+ 1595.41 1567.37	- 3.95 3.92	
102	y Ceti	3.0	1755	+ 2 11 21.55	+ 1572.62	- 28. 17	+ 1588.46	—15.84	+ 0.08
102	y Ceu	3. 2	1850	2 36 2.70	1545. 47	i	1561.24	15. 77	1 0.00
			1900	2 48 51.80	1530.87	29.40	1546, 60	15. 73	
103	36 Arietis :	7.0	1755	+ 16 42 41.95	+ 1584 41	- 30.31	+ 1588.15	— 3.74	
		6.5	1850	17 7 33.31	1555. 14	31. 31	1558. 92	3. 78	
104	o Arietis	6.5	1755	+ 14 15 34.78	+ 1582.89	— 29.96	+ 1586.00	- 3.11	
		6. o	1850	14 40 24.85	1553.96	30.94	1557. 07	3. 11	
105	38 Arietis	5.5	1755	+ 11 23 58.27	+ 1575. 22	— 29.90	+ 1583.04	— 7.82	
		5.0	1850	11 48 41.09	1546. 39	30.80	1554. 30	7.91	
106	μ Ceti	4.0	1755	+ 9 3 52.84	+ 1579.62	— 29.75	+ 1582.56	— 2.94	
		4.3	1850	9 28 39.98	1551. 10	30. 32	1554. 04	2.94	
107	40 Arietis	6.0	1755	+ 17 14 50.54	+ 1561.96	- 31.14		- 3.69	
		6.3	1850	17 39 20. 22	1531.97	32.00	1535.66	3.69	

RIGHT ASCENSIONS. .

No.	Star.	Epoch.	Number of observations.	Right a	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
108	π Arietis	1755 1850	5 43	h. m. 2 35 2 40	s. 39. 856 55. 768	s. + 331.772 333.309	s. + 1.609 1.627	s. + 331.774 333.313	s. — 0.002 0.004	s.
109	σ Arietis	1755 1850	5 108	2 38 2 43	0. 401 13. 097	+ 328.450 329.859	+ 1.475	+ 328. 301 329. 710	+ 0. 149	
110	ρ¹ Arietis	1755 1850	5	2 41 2 46	13. 977 31. 260	+ 333.211 334.755	+ 1.619	+ 332.993 334.544	+ 0. 218 0. 211	
111	ρ² Arietis	1755 1850	5	2 42 2 47	5. 265 23. 268	+ 333.954 335.528	+ 1.650	+ 334. 103	- 0. 149 0. 153	
112	ρ ³ Arietis	1755 1850	5 39	2 42 2 47	39. 036 58. 591	+ 335.604 337.150	+ 1.610 ·	+ 333.694 335.249	+ 1.910 1.901	
113	47 Arietis	1755 1850	4	2 44 2 49	6. 923 30. 646	+ 339.907 341.617	+ 1.794 1.806	+ 338. 383 340. 092	+ 1. 524 1. 525	
114	Γ. Λ. C. 920	1755 1850	2 4	2 44 2 50	53. 42 17. 67	+ 340.45 342.19	+ 1.852 1.867	+ 340. 165 341. 928	+ 0. 285 0. 262	
115	e Arictis	1755 1850	5 71	2 45 2 50	15. 152 38. 630	+ 339.632 341.378	+ 1.834 1.843	+ 339. 740 341. 482	0. 108 0. 104	
116	50 Arietis	1755 1850	3	2 46 2 52	47. 920 5. 989	+ 334.036 335.584	+ 1.624 1.635	+ 334. 229 335. 782	— 0. 193 0. 198	
117	a Ceti	1755 1850 1900	10	2 49 2 54 2 57	30. 009 26. 599 3. 048	+ 311.745 312.657	+ 0.952 0.965	+ 311.901	— 0. 156 0. 158	- 0.004
118	52 Arietis	1755	5	2 51	8. 024 39. 419	313. 141 + 347. 853 349. 822	0.972 + 2.070 2.076	313.301 + 347.989 349.960	0. 160 0. 136 0. 138	
119	Lal. 5725	1850		2 58	9.9		+ 1.372	+ 328. 155		
120	53 Arietis	1755 1850	5 21	2 53 2 58	40. 810 59. 461	+ 334.643 336.193	+ 1.650 1.613	+ 334.961 336.490	- 0. 318 0. 297	
121	54 Arietis	1755 1850	5	2 54 2 59	30. 821 51. 447	+ 336.713 338.289	+ 1.655 1.662	+ 336.695 338.271	o. 018	•
122	48 Cephei	1755 1775 1800		2 50 2 52 2 55	14. 26 33. 79 30. 10	+ 694. 24 700. 99	+33.57	+ 692.59 699.34	+ 1.65	
		1825 1850		2 58 2 58 3 I		709. 51 718. 12 726. 81	34. 25 34. 60 34. 94	707. 86 716. 48 725. 17	• 1.65 1.64 1.64	
		1875 1900		3 4 3 7	31.97 36.97	735· 59 + 744· 43	35· 25 +35· 55	733· 95 + 742. 80	1.64 + 1.63	
123	d Arietis	1755 1850	233	2 57 3 3	40, 006 3, 603	+ 339.816 341.442	+ 1.710 1.714	+ 338.832 340.455	+ 0.984 0.987	
124	ζ Arietis	1900 1755 1850	5	3 5 3 0 3 6	54. 538 51. 999	342. 299 + 341. 559	1. 715 + 1. 766	341.309 + 341.775	0. 990 — 0. 216	— o. oo3
		1900		3 6	17. 278 9. 117	343. 238 344. 120	1. 764 1. 764	343· 454 344· 339	0. 216 — 0. 219	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
108	π Arietis	5.0	r755	+ 16 25 45.62	+ 1560. 34	- 31.07	+ 1561.16	- 0. 82	"
109	σ Arietis	5· 7 6. o 5· 7	1850 1755 1850	16 50 13.77 + 14 3 26.06 14 27 38.85	1530. 35 + 1544. 22 1514. 14	32. 06 - 31. 19 32. 13	1531. 17 + 1548. 19 1518. 16	0.82 - 3.97 4.02	
110	$ ho^1$ Arietis	7. 5 7. 0	1755	+ 16 43 20.87	+ 1527.05	- 32. 12 33. 11	+ 1530.07	- 3. 02 3. 03	,
111	ρ ² Arietis	6. o 6. o	1755 1850	+ 17 19 20.80 17 43 13.63	+ 1523.75 1492.60	- 32. 30 33. 28	+ 1525. 22 1494. 06	- 1.47 1.46	
112	ρ ³ Arietis	6. o 6. o	1755 1850	+ 17 1 44.83 17 25 17.54	+ 1502.80 1471.15	- 32.81 33.81	+ 1522.00 1490.62	—19. 20 19. 47	
113	47 Arietis	6. o	1755 1850	+ 19 40 8.78 20 3 48.95	+ 1510.95 1478.74	- 33. 42 34. 40	+ 1513.62 1481.61	- 2.67 2.87	
114	B. A. C. 920	7. 0 7. 0 5. 0	1755 1850	+ 21 0 53.9 + 20 20 36.47	+ 1507.06	- 33·45	+ 1509.21 1476.96 + 1507.07	- o, oı	
116	50 Arietis	4· 3 7· 5	1850	20 44 12.95 + 17 0 54.89	1474. 80	33· 45 34· 47 — 33. 04	1474.91	0, 11	
117	a Ceti	6.8	1850	17 24 20.94 + 3 6 47.30	1464. 05 + 1473. 65	34.02	1466. 17	2. I2 — 8. 60	+ 0.01
		2. 4	1850 1900	3 29 53.00 3 41 50.76	1443. 56 1427. 44	32.06 32.46	1452. 15 1436. 03	8. 59 8. 59	
118	52 Arietis	6. 5 5. 7 6. o	1755 1850 1850	+ 24 17 2.66 24 40 3.44 + 12 36 28.8	+ 1470. 29 1436. 45	- 35. 09 36. 16	+ 1472. 59 1438. 73 + 1429. 51	- 2. 30 2. 28	
119	Lal. 5725	6. o 6. 3	1755	+ 16 55 1.43	+ 1458.∞ 1425.08	- 34. 19 - 34. 17 35. 12	+ 1429.51 + 1457.40 1424.43	+ 0.60 0.65	,
121	54 Arietis	6. 5 6. 3	1755 1850	+ 17 50 14.33 18 12 56.82	+ 1450. 74 1417. 52	- 34. 52 35. 41	+ 1452.33 1419.08	— 1. 59 1. 56	
122	48 Cephei	6, o	1755 1775 1800	+ 76 47 43.66 76 52 36.85 76 58 39.34	+ 1472.88 1458.93 1441.00	69. 34 70. 75 72. 57	+ 1477. 88 1463. 96 1446. 07	- 5.00 5.03 5.07	
		6. 3	1825 1850	77 4 37. 31 77 10 30. 63	1422, 63 1403, 81	74· 37 76. 27	1427. 74 1408. 96	5. 11 5. 15	
123	ð Arietis	4. 0.	1875 1900 1755	77 16 19.19 + 77 22 2.86 + 18 46 54.86	1384. 50 + 1364. 74 + 1433. 19	78. 19 - 80. 08 - 35. 51	1389.69 + 1370.00 + 1433.13	5. 19 - 5. 24 + 0. 06	
3		4.0	1850	19 9 20. 22	1398.99	36. 50 37. 00	1399. 13	- 0. 14 0. 26	
124	ζ Arietis	5. 0 4. 7	1755 1850 1900	+ 20 7 7.11 20 29 5.43 20 40 25.97	+ 1404.93 1370.33 1351.75	— 35. 96 36. 91 37. 41	+ 1413.37 1378.76 1360.16	8. 44 8. 43 8. 41	# 0.02

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascens	ion.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
125	60 Arietis	1755 1850	5	h. m. s 3 5 57. 3 11 32.	568	s. + 351.809 353.738	s. + 2.033 2.028	s. + 351.743 353.673	s. + 0.066 0.065	s.
126	τ ¹ Arietis	1755	1 45	•	646	+ 343. 235 344. 896	+ 1. 751 1. 746	+ 34 ² · 954 344. 614	+ 0. 281 0, 282	
127	a Persei	1755 1850	8 295		864	!	+ 4.857	+ 418.930 423.537	+ 0.315	-o. oo5
128	τ² Arietis	1755	 5	3 17 10. · 3 8 42.		426, 261 + 342, 050	4. 819 + 1. 722	425. 952 + 342. 408	o. 309 — o. 358	
129	64 Arietis	1850	9 5	3 9 53.		343. 686 + 350. 586	1. 722 + 1. 957	344. 044 + 350. 552	0. 358 + 0. 034	
130	65 Arietis	1850	24 5	3 10 21.	•	+ 342. 759	1.952	352.411 + 342.778	0. 032 — 0. 019	
131	B. A. C. 1055	1850	13	3 10 22.	•	+ 345.693	1.714	344. 411 + 345. 208	0. 021 + 0. 485	
132	66 Arietis	1850 1755 1850	6 5 8	3 15 51. 3 14 10. 3 19 40.	132	347. 398 + 347. 370 349. 085	1. 792 + 1. 810 1. 801	346. 921 + 347. 379	0. 477 — 0. 009	
133	s Tauri	1755	5 н	3 17 3.	949 022 902	+ 325.606 326.771	ı	349. 101 + 325. 740 326. 906	0. 016 - 0. 134 0. 135	
134	f Tauri	1755 1850	5 113	3 17 22. 3 22 35.	971	+ 328.748 329.983	+ 1.300 1.300	+ 328. 712 329. 946	+ 0.036	
135	7 Tauri	1755	5 13		979	+ 351.871 353.661	+ 1.891	+ 351.811	+ 0.060 0.058	
136	e Eridani	1755	5 115	3 25 51.		282. 145	+ 0. 540 0. 550	+ 288. 275 288. 790	- 6.648 6.645	
137	9 Tauri	1900 1755 1850	5 36	3 22 36.	099 464 290	282.421 + 349.501 351.190	0. 555 + 1. 767 1. 788	289. 065 + 349. 594 351. 298	6, 644 0, 093 0, 108	
138	B. A. C. 1119	1850	10	3 30 57.	153	+ 338. 108	+ 1.423	+ 337. 781	+ 0. 327	_
139	δ Persei	1850	5 61	3 26 11. 3 31 49.	291	+ 354.811 356.617	1.892	+ 354. 771 356. 581	0.040	
.40	· A CLOCK	1755 1850 1900	128	3 25 35. 3 32 15. 3 35 48.		+ 419. 380 423. 361 425. 435	+ 4. 217 4. 165 4. 132	+ 419.019 423.012 425.089	+ 0. 361 0. 349 0. 346	<i>—</i> 0, 006
141	13 Tauri	1755 1850	5 13	3 28 13. 3 33 40.	677	+ 343. 105	+ 1.578	+ 343105 344.603	0,000	l
142	14 Tauri	1755 1850	5 5		727 270		+ 1.570 1.556	+ 343. 226 344. 714	+ 0.813 0.810	
143 144	B. A. C. 1143	1850 1755				+ 347.297	1	+ 347.480	— o. 183	
-44	a remainin	1850	4 19	3 30 17. 3 35 53.		+ 353. 268 354. 988	1.822	+ 353. 181 354. 900	+ 0.087 0.088	

DECLINATIONS.

					•				
No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
125	60 Arietis	7·5 6.3	1755	0 / " + 24 45 40.07 25 7 5.89	" + 1371.63 1335.20	- 37. 82 38. 86	+ 1381.41	- 9. 78	• "
126	$ au^1$ Arietis	6. o	1755	+ 20 14 45. 16	+ 1369.61	— 37. 13	+ 1373.97	9. 91 — 4. 36	
127	a Persei	5. o 2. 5	1755	20 36 9.39 + 48 57 58.91	1333. 88 + 1371. 69	38. 10 - 45. 15	1338. 29 + 1375. 01	4.4I - 3.32	— 0. 02
		2.0	1850 1900	49 19 20.89 49 30 19.01	1328. 01 1304. 39	46. 81 47. 69	1331. 34 1307. 73	3· 33 3· 34	
128	r ² Arietis	7. o 5. 3	1755 1850	+ 19 50 48.35 20 12 5.48	+ 1362, 20 1326, 38	- 37. 20 38. 20	+ 1363.91 1328.12	— 1. 71 1. 74	
129	64 Arietis	5· 5 5· 7	1755 1850	+ 23 50 13.65 24 11 19.37	+ 1350.68 1313.83	- 38. 28 39. 29	+ 1356.32 1319.40	- 5.64 5.57	
130	65 Arietis	6. o 6. o	1755 1850	+ 19 54 53.88 20 16 1.76	+ 1352.59 1316.53	- 37· 52 38. 41	+ 1353.22 1317.17	— 0, 63 0, 64	
131	B. A. C. 1055	7· 5 6. 8	1755 1850	+ 21 30 23.0		- 37.87 38.85	+ 1353. 10 1316. 69		
132	66 Arietis	6. 5 6. o	1755 1850	+ 21 56 26.35 22 16 59.04	+ 1316.03 1278.95	- 38. 55 39. 52	+ 1328.40 1291.33	-12. 37 12. 38	
133	s Tauri	6. o 5. o	1755 1850	+ 10 28 39.78	+ 1306.99	- 36. 54 37· 34	+ 1309.40 1274.28	- 2.41 2.38	
134	f Tauri	5. 5 4. 0	1755 1850	+ 12 4 42. 32 12 25 7. 65	+ 1307.58	- 37. 07 37. 90	+ 1307.21	+ 0.37 0.28	
135	7 Tauri	6. o 6. o	1755 1850	+ 23 37 22.24	+ 1285.57	- 39. 88 40. 8 6	+ 1289.84 1251.49	4. 27 4. 27	
136	e Eridani	4. 0 3. 6	1755	- 10 18 13.12 9 58 9.25	+ 1282. 31	- 31.56 32.10	+ 1280. 30	+ 2.01 2.64	
137	9 Tauri	6, o	1900	9 47 47.24	1235.95	32. 36 - 39. 94	1233.02	2. 93 — 5. 36	
138	B. A. C. 1119	7.0	1850	22 42 38.93	1228. 37	40. 94	1233. 72	5⋅ 35	
139	II Tauri	6. o	1755	+ 16 2 41.21 + 24 30 59.33	+ 1209. 52	- 39.82 - 41.08	+ 1214.34	- 4.82 - 2.09	
140	δ Persei	6. 7 3· 5	1850	24 50 24.02 + 46 58 46.37	1206, 18 + 1248, 43	42. 05 — 48. 34	1208. 28	2. 10 - 4. 38	
	.	3.3	1850 1900	47 18 9.86 47 28 3.99	1200. 79	49. 85 50. 63	1205. 17 1180. 05	4. 3 ⁸ 4. 3 ⁸	
141	13 Tauri	6. 5 5. 7	1755 .1850	+ 18 53 44.74 19 12 56.38	+ 1231.43 1192.95	40. 03 40. 97	+ 1233. 70 1195. 31	- 2.27 2.36	
142	14 Tauri	7. o 6. g	1755 1850	+ 18 52 11.26 19 11 11.60	+ 1219.68 1180.89	- 40. 39 41. 27	+ 1223.77 1185.10	— 4. 09 4. 21	
143 144	B. A. C. 1143 g Pleiadnm	6. o 5. 5	1850 1755	+ 20 27 2.63 + 23 29 53.71	+ 1180.53 + 1213.71	- 41.44 - 41.58	+ 1180.67 + 1219.47	- 0. 14 - 5. 76	
		6. 3	1850	23 48 47.83	1173. 76	42. 52	1179.63	5.87	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right a	ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
145	17 Tauri	1755 1850	5 68	h. m 3 30 3 35	22. 533	s. + 352.896 354.606	s. + 1.808 1.791	s. + 352.805 354.518	s. + 0.091	s.
146	18 Tauri	1755 1850	15	3 36		+ 354-545 356. 286	+ 1.845 1.820	+ 354-454 356. 198	+ 0.091 0.088	
147	19 Tauri	1755 1850	5	3 36		+ 353. 721	+ 1.833	+ 353.635 355.364	+ 0, 086 0, 088	
148	20 Tauri	1755 1850	5 20	3 31		+ 353.608 355.327	+ 1.820 1.798	+ 353. 520 355. 239	+ 0.088 0.088	
149	21 Tauri	1755 1850	3	3 31	21.659		+ 1.826	+ 353-943 355-675	+ 0.096 0.088	
150	22 Tauri	1755 1850	2 9	3 31	30. 251	+ 354.003 355.725	+ 1.824 1.803	+ 353.909 355.637	+ 0.094 0.088	
151	23 Tauri	1755 1850	5	3 3 ¹ 3 3 ⁷		+ 352. 764 354. 459	+ 1.795 1.773	+ 352.676 354.371	+ o. o88	
152	24 Tauri	1755 1850	3 33	3 3 ² 3 3 ⁸	-	+ 353.306 354.996	+ 1.791 1.769	+ 353. 213 354. 908	+ 0.093 0.088	
153	η Tauri	1755 1850	10 643	3 32 3 38	•	+ 353. 299 354. 992	+ 1.795 1.769	+ 353.210 354.904	+ 0. 089 0. 088	-0.004
154	B. A. C. 1170	1900	2	3 41	•	355. 873 + 351. 848	1.756	355. 7 ⁸⁸ + 351. 845	0.085	
155	B. A. C. 1171	1850 1755	3 1	3 39 3 33	-	353·495 + 353.918	1. 724 + 1. 794	353-495 + 353-907	0.000	
156	 26 Tauri	1850 1755	10 3	3 39 3 34		355.612 + 352.989	1.773	355. 608 + 352. 894	0.004 + 0.095	
157	27 Tauri	1850 1755	9 5	3 40 3 34		354.655 + 353.453	1.744	354. 567 + 353. 365	0. 088 + 0. 088	
158	28 Tauri	1850 1755	134	-	15.057		1. 754	355. 044 + 353. 554	0.088	
159	B. A. C. 1189	1850 1850	40	3 40	16. 223		1. 757 + 1. 650	355. 238 + 351. 097	0. 088	
160 161	B. A. C. 1192	1850	10	3 41		+ 358. 527	+ 1.819	+ 358. 737	— 0, 210	
162		1850 1850	7	3 4 ² 3 44	35. 797	+ 342.053	+ 1. 220	+ 331.858 + 340.865	+ 1.188	
163	ζ Persei	1755 1850	5 92	3 38 3 44	42.817	375. 149	2. 224	+ 372.942 375.072	+ 0.075	-0, 002
	32 Tauri	1900 1850	14	3 47 3 48		376. 255 + 352. 880	+ 1.604	376. 181 + 352. 582	0.074 + 0.298	
165	33 Tauri	1755 1850	19	3 4 ² 3 4 ⁸		+ 353.051 354.638	+ 1.683 1.657	+ 352.610 354.195	+ 0.441 0.443	

DECLINATIONS.

17 Tauri	4.3 I 7.0 I 6.3 I 5.0 I	755 850 755 850	+ 23 19 21.06 23 38 14.57 + 24 2 58.78 24 21 50.73	+ 1213.03 1173.16 + 1211.46	" — 41.49 42.44	+ 1218, 86 1179, 03	- 5.8 ₃	"
18 Tauri	4.3 I 7.0 I 6.3 I 5.0 I	850 755 850	23 38 14.57 + 24 2 58.78	1173. 16		l '	— 5.83	1
19 Tauri	7.0 I 6.3 I 5.0 I	755 850	+ 24 2 58.78		444	1170 02	5.87	1
19 Tauri	6. 3 1 5. 0 1 5. 0 1	850			— 41.65	+ 1217.31	- 5.85	
20 Tauri	5. o 1	755		1171.44	42.60	1177.31	5.87	
			+ 23 40 40.61	+ 1210.97	— 41.63	+ 1216.78	— 5.81	İ
	5.0 1	850	23 59 32.10	1170.97	42. 58	1176.84	5.87	
21 Tauri	1	755	+ 23 34 53 39	+ 1206.63	- 41.70	+ 1212.41	— 5. 78	
21 Tauri		850	23 53 40.73	1166, 56	_	1172.43	5.87	
		755 850	+ 23 46 7.23 24 4 54.04	1166,02	- 41.69 42.63	+ 1211.98 1171.89	- 5.91 5.87	
22 Tauri	•	755	+ 23 44 32.81	+ 1205.12	- 41. 7I	+ 1210.98	5. 86	
		850	24 3 18.72	1165.05	42.65	1170.92	5.87	
23 Tauri	5.0 1	755	+ 23 9 52.52	+ 1202.94	- 41.72	+ 1208. 72	— 5. 78	
	4.7	850	23 28 36. 35	1162.86	42.66	1168. 73	5. 87	
24 Tauri		755	+ 23 20 14.82	+ 1195.82	— 41.80	+ 1201.63	- 5.81	
_		850	23 38 51.85	1155.67	42. 73	1161.54	5. 87	
η Tauri		755 850	+ 23 19 37.09 23 38 13.22	+ 1194.90 1154.71	- 41.85 42.75	+ 1200. 76 1160. 58	5.86 5.87	- 0.01
	•	-		1133.22	43. 21	1139. 10	5.88	
B. A. C. 1170	7.0	755	+ 22 38 49.93	+ 1189.49	— 41. 76	+ 1194.24	- 4 . 75	
	6.3	850	22 57 20.97	1149. 39	42.67	1154. 16	4. 77	
B. A. C. 1171			+ 23 34 21.75	+ 1186.77	— 42. 01	+ 1193.79	— 7.02	ĺ
	- 1	•						! !
26 Tauri		1						
27 Tauri	•	•						
27 14411	- 1		23 35 25.48	1142. 73	43. 02	1148.60	_	!
28 Tauri	5.5 1	755	+ 23 22 1.01	 	— 42. 15	+ 1188,86	- 5.82	
	6. 2	850	23 40 25.73	1142, 56	43. 08	1148.43	5. 87	
B. A. C. 1189	6. o I	850	+ 21 47 2.2		— 42. 66	+ 1142.45		
B. A. C. 1192	6. o I	85 0	+ 25 7 19.70	+ 1125.70	43.48	+ 1140.98	-15.28	
Lal. 7110	6. o I	850	+ 12 35 28.4		— 40. 49	+ 1129.34		
B. A. C. 1206	6. o 1	850	+ 16 52 34.51	+ 1116.18	— 42.06	+ 1117.23	— 1. o5	1
ζ Persei	1		+ 31 8 2.55	+ 1156.40	— 44. 94	+ 1159.52	— 3. 12	— 0.01
	-		_ , -	1113. 23	45· 95		3. 13	
				l	1			
22 Tauri	U. U I	თეს	77 7 AX ^^		43 65	1 7000 06		1
32 Tauri	5.5 1	755	+ 22 2 28.99 + 22 26 32.93	+ 1081.13	- 43.67 - 43.12	+ 1092.26 + 1132.32	—11. 13 — 1. 84	
2	B. A. C. 1171	B. A. C. 1170	B. A. C. 1171	B. A. C. 1170	B. A. C. 1170	B. A. C. 1170	B. A. C. 1170	B. A. C. 1170

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right asce	nsion.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
166	γ¹ Eridani	1755 1850 1900	5 397	3 51	s. 6. 483 1. 965	s. + 279. 238 279. 672 279. 900	s. + o. 459 o. 454 o. 456	s. + 278.674 279.109 279.341	s. + 0. 564 0. 563 0. 559	s. 0. 005
167	B. A. C. 1238	1755 1850	5	i -	6. 485 2. 774	+ 353.210 354.762	+ 1.649 1.620	+ 353.233 354.790	- 0.023 0.028	
168	B. A. C. 1240	1850	11	3 52 1	o. 6 7 6	+ 344.498	+ 1.383	+ 343. 528	+ 0.970	
169	λ Tauri	1755 1850	5 57	i	8. 259 2. 537	+ 330. 268 331. 369	+ 1.167 1.151	+ 330. 330 331. 433	- 0.062 0.064	
170	B. A. C. 1242	1755	5	3 46 5	3. 12 7 3. 092	+ 346.627 348.032	+ 1.492 1.466	+ 346. 576 347. 986	+ 0.051 0.046	
171	36 Tauri	1755	2	3 49 4	5. 103 23. 869	+ 355.807 357.381	+ 1.672 1.642	+ 355.805 357.382	+ 0.002 - 0.001	
172	A ¹ Tauri	1755 1850	5 86	3 50 I	5. 040 0. 059	+ 351.913 353.386	+ 1.566	+ 351.219 352.691	+ 0.694 0.695	
173	A' Tauri	1755 1850	4	3 50 5	2. 400 2. 882	+ 352.409 353.865	+ 1.549	+ 351.147 352.608	+ 1.262 1.257	
174	41 Tauri	1755 1850	2 5		7. 531 4. 851	+ 364. 728 366. 466	+ 1.849 1.810	+ 364. 531 366. 276	+ 0. 197 0. 190	
175	ψ Tauri	1755 1850	5		4. 5 27 4. 553	+ 3 ⁶ 7.535 3 ⁶ 9.355	+ 1.938	+ 368. 102 369. 927	— 0. 567 0. 572	
176	B. A. C. 1272	1755 1850	13		2. 400 4. 336	+ 341.311 342.560	+ 1.325 1.305	+ 341.134 342.382	+ 0. 177 0. 178	
177	ω' Tauri	1755 1850	5 87	1	5. 849 6. 050	+ 346.913 348.244	+ 1.415	+ 346. 231 347. 564	+ 0.682 0.680	
178	p Tauri	1755 1850	5		7. 369 2. 241	+ 362.201 363.839	+ 1.745 1.704	+ 362.464 364.110	— 0. 263 0. 271	
179	48 Tauri	1755	5 18	_	3. 483 5. 654	+ 338.562 339.687	1. 169	+ 337.676 338.802	+ o. 886 o. 885	
180	ω ² Tauri	1755	5 36		6. 479 8. 664	+ 349.012 350.322	+ 1.397 1.361	+ 349. 361 350. 672	- 0. 349 0. 350	
181	51 Tauri	1755 1850	5		5. 488 0. 975	+ 352.464 353.818	+ 1.445 1.406	+ 351.800 353.147	+ 0.664 0.671	
182	53 Tauri	1755	4 9	4 5	1. 793 5. 990	+ 351.121 352.446	+ 1.409 1.375	+ 350.909 352.231	+ 0. 212 0. 215	
183	56 Tauri	1755 1850	4	4 5	8. 688 4. 263	+ 352. 559 353. 909	+ 1.440 1.402	+ 352.405 353.749	+ 0. 154 0. 160	
184	φ Tauri	1755 1850	5	4 5 I	9. 714 8. 197	+ 366.025 367.616	+ 1.700 1.650	+ 366. 130 367. 731	— 0. 105 0. 115	
185	γ Tauri	1755 1850	6 216	4 5 5	2. 836 5. 738	+ 339. 341 340. 449	+ 1.178 1.154	+ 338. 520 339. 628	+ 0.821 0.821	+0.001
		1900			6. 105	341.023	1. 141	340. 202	0. 821	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
166	γ¹ Eridani	2.8	755 850	- 14 13 20. 73 13 56 19. 54	+ 1091.40 1058.41	- 34. 52 34. 96	+ 1102.98 1070.00		o. o2
167	B. A. C. 1238	7.5	900 755 850	13 47 34. 72 + 22 29 20. 26 22 46 27. 15	1040.87 + 1101.73 1060.01	35. 18 - 43. 49 44. 35	1052. 47 + 1104. 21 1062. 49	11.60 — 2.48 2.48	
168 169	B. A. C. 1240		850 755	+ 17 45 59.63 + 11 46 40.48	+ 1057.84 + 1097.05	- 43. 22 - 40. 77	+ 1061.54 + 1099.12	- 3.70 - 2.07	
170	B. A. C. 1242	1	755 850	12 3 44. 16	1057.97	41. 48	+ 1100.96	2.07 - 5.91	
171	36 Tauri	6.5 1	850 755 850	19 46 28.30 + 23 24 34.46 23 41 18.05	1054.06 + 1077.55 1035.15	43. 56 - 44. 21 45. 06	1059. 98 + 1079. 90 1037. 52	5. 92 — 2. 35 2. 37	
. 172	A ¹ Tauri	I .	755 850	+ 21 23 28.06 21 40 2.99	+ 1068.24 1026.19	- 43.87 44.70	+ 1076. 19 1034. 23	— 7.95 8.04	
173	A ³ Tauri	6.3	755 850	+ 21 19 32.67 21 35 58.67	+ 1058.97 1016.70	- 44. 08 44. 92	+ 1071.62	—12.65 12.85	
174	41 Tauri	5.3	755 850 755	+ 26 55 1.50 27 11 26.87 + 28 18 57.50	+ 1059.05 1015.25 + 1063.91	- 45. 56 46. 66 - 45. 84	+ 1066. 04 1022. 34 + 1063. 94	6.99 7.09 0.03	
176	B. A. C. 1272	5. 7	755 755	28 35 27.38 + 16 39 49.81	1019. 92	46. 76 — 43. 00	1019.85	+ 0.07 - 2.14	
177	ω ¹ Tauri	6. o I	850 755	16 56 4.32 + 18 56 23.51	1005. 12 + 1037. 56	43. 78 - 43. 79	1007. 30	2. 18 — 3. 86	
178	p Tauri	6.5 1	850 755 850	19 12 29.31 + 25 49 8.58 26 5 5.22	995. 59 + 1028. 85 985. 03	44. 56 — 45. 70 46. 55	999. 53 + 1033. 73 989. 85	3. 94 — 4. 88 4. 82	
179	48 Tauri	6. o 1	755 850	+ 14 45 58.92 15 1 15.31	+ 985.40 943.74	- 43· 54 44. 16	+ 988.85 947.30	- 3. 45 3. 56	
180	ω ² Tauri	1	755 850	+ 19 57 9.84 20 12 16.81	+ 976. 15 933. 15	- 44.91 45.60	+ 980.87 937.90	- 4. 72 4. 75	
181	51 Tauri	6. o	755 850	+ 20 57 27.84 21 12 28.46	+ 969.81 926.15	- 45.60 46.32	+ 973·35 929.85	- 3.54 3.70	
182	53 Tauri	6. o 1	755 850 755	+ 20 31 37.91 20 46 28.97 + 21 9 32.48	+ 959.62 916.15 + 958.88	- 45. 40 46. 10 - 45. 63	+ 964.82 921.44 + 963.94	- 5. 20 5. 29 - 5. 06	
184	φ Tauri	6. o 1	850 755	21 24 22.70 + 26 44 28.09	915. 15 + 954. 18	46. 43 — 47. 25	920. 36 + 962. 57	5. 21 - 8. 39	
. 185	γ Tau ri	3.5	850 755 8 5 0	+ 15 0 51.27	908. 90 + 955. 73 913. 58	48. 07 — 44. 06 44. 69	917.27 + 958.35 916.30	8. 37 — 2. 62 2. 72	— o. 11
		1	900	15 15 39. 23 15 23 10. 42	913. 58 891. 14	45. 03	893. 92	2. 78	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
186	55 Tauri	1755 1850	2	h. m. s. 4 5 55.215 4 11 19.933	s. + 341.237 342.376	s. + 1. 212 1. 186	s. + 340. 499 341. 641	s. + o. 738 o. 735	s.
187	h Tauri	1755 1850	5 8	4 6 11.702 4 11 31.172	+ 335·757	+ 1. 122 1. 096	+ 335.063 336.120	+ 0.694 0.691	
188	58 Tauri	1755 1850	3 12	4 6 44.396 4 12 6.231	+ 338. 230 339. 314	+ 1. 156 1. 126	+ 337.423 338.507	+ 0.807 0.807	
189	B. A. C. 1335	1755	3 6	4 7 7.507 4 12 26.710	+ 335.478 336.521	+ 1.111	+ 334. 766 335. 811	+ 0.712 0.710	
190	χ Tauri	1755 1850	5 18	4 7 42.650 4 13 27.664	+ 362.424 363.915	+ 1.591 1.547	+ 362. 105 363. 598	+ 0. 319 0. 317	
191	60 Tauri	1755 1850	5 3	4 8 16.978 4 13 36.675	+ 336.001 337.042	1. 083	+ 335.318 336.363	+ 0.683 0.679	
192	Tauri	1850	5 59	4 8 50.204	+ 343. 826 344. 984	1. 202	+ 343.051 344.209	+ 0.775 0.775	•
193	Г. А. С. 1347 63 Tauri	1755 1850 1755	11 5	4 8 44.427 4 14 26.853 4 9 23.511	+ 359. 729 361. 162 + 342. 043	+ 1.530 1.486 + 1.206	+ 359. 201 360. 633	+ 0.528 0.529	
195	62 Tauri	1850	18	4 14 48.991	343. 174 + 359. 118	1. 176 + 1. 514	+ 341. 383 342. 509 + 359. 011	+ 0.660 0.665 + 0.107	
196	δ ² Tauri	1850	7 5	4 14 57.527	360. 535 + 343. 753	1.470	360. 432 + 342. 940	0. 103	
197	χ ¹ Tauri	1850	26	4 15 27.228 4 10 48.289	344. 902 + 354. 962	1. 192	344. 085 + 354. 325	0.817	
198	χ ² Tauri	1850 1755	14	4 16 26.132	356. 280° + 354. 968	1. 366	355. 643 + 354. 105	o. 637 + o. 863	
199	δ ³ Tauri	1850	5	4 16 29.277 4 11 20.772	356. 288 + 344. 895	1. 368 + 1. 236	355. 420 + 344. 166	o. 868 + o. 729	
200	70 Tauri	1850	.13 5	Ī	346. 053 + 340. 273	1. 203 + 1. 156	345. 319 + 339. 708	0. 734 + 0. 565	
201	v ¹ Tauri	1850	3	4 11 40.690	+ 356. 775	1. 125 + 1. 430	340. 791 + 355. 681	0. 566 + 1. 094	
202	71 Tauri	1850	45 5	4 12 24.997	358. 113 + 339. 740	1. 388	357.019 + 339.052	1.094 + 0.688	
203	π Tauri	1755	8 4	4 12 47.490	+ 337.053	1. 106	340.117 + 337.069	- 0. 016	
204	v ² Tauri	1850 1755 1850	. 3 5 9		+ 356.210	1.073 + 1.430	338. 104 + 356. 244	0. 018 — 0. 034	
205	B. A. C. 1373	1755		4 13 30. 143		1. 387 + 1. 294	357. 578 + 353. 018	0. 030 + 0. 854	 - -
			. . '		355. 114	1. 320	354. 296	0, 818	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
186	55 Tauri	7· 5 7· 3	1755 1850	+ 15 54 37.69 16 9 23.05	+ 953 08 910. 72				"
187	h Tauri	6. o	1755	+ 13 25 22.88	+ 952.75	- 43. 56	+ 955.90	- 3. 15	
		6. o	1850	13 40 8, 24	911.05	44. 22	914. 28	3. 23	
188	58 Tauri	6.0	1755	+ 14 29 10.95	+ 949.11	— 44. 00	+ 951.68	 2.57	
		6. 3	1850	14 43 52.66	907. 01	44.65	909. 73	2. 72	
189	B. A. C. 1335	6. 5	1755	+ 13 15 26,00	+ 946.11	— 43.62	+ 948. 74	— 2 . 63	
		6. 5	1850	13 30 5.02	904. 36	44. 27	907.05	2.69	
190	χ Tauri	6.0	1755	+ 25 1 42.08	+ 940.62	— 47. 15	+ 944.20	— 3.58	
		5. 7	1850	25 16 14.29	895.46	47.93	899. 14	3. 68	
191	60 Tauri	7. 0	1755	+ 13 28 34.69	+ 936. 29	— 43.8 0	+ 939.79	— 3.50	
		6 . o	1850	13 43 4.30	894. 38	44- 44	897. 96	3. 58	
192	δ ¹ Tauri	4. 0	1755		+ 932.62	— 44.91	+ 935.50	- 2.88	
		4. 0	1850	17 11 9.96	889. 63	45.60	892.64	3. 01	
193	B. A. C. 1347		1755			— 46. 89	+ 936.25		
		7.3	1850	+ 24 3 3.9		47. 69	891.40		
194	63 Tauri	6. o	1755	+ 16 11 0.00	+ 927.33	— 44. 77	+ 931.20	— 3.87	
		6. o	1850	16 25 20.65	884. 46	45.46	888. 51	4. 05	
195	62 Tauri	7. 0	1755	+ 23 42 26.42	+ 929.40	— 46.81	+ 932.21	— 2.81	
		6. o	1850	23 56 48.11	884. 57	47. 56	887.40	2. 83	
196	do Tauri	4.5	1755	+ 16 51 15.09	+ 921.96	— 45.06	+ 926.54	— 4. 58	
		5.7	1850	17 5 30. 53	878. 87	45.67	883. 51	4. 64	
197	χ¹ Tauri	5- 5	1755	+ 21 42 36.64	+ 915.05	— 46.43	+ 920.17	— 5. 12	
		4.7	1850	21 56 44.93	870.61	47. 14	875.80	5. 19	
198	χ ⁸ Tauri	6. 5	1755	+ 21 37 0.00	+ 914.33	— 46. 5 6	+ 919.80	— 5⋅47	
		6. 3	1850	21 51 7.51	869. 76	47. 25	875. 37	5.61	
199	& Tauri	5. o	1755	+ 17 20 42.56	+ 912.06	— 45. 37	+ 916.17	- 4.11	
		5.0	1850	17 34 48.46	868. 68	45-97	872. 78	4. 10	
200	70 Tauri	7.0	1755	+ 15 21 31.51	+ 911.12	— 44. 75	+ 913.50	— 2. 38	
		6. 3	1850	15 35 36.78	868. 30	45.40	870. 84	2. 54	
201	v ¹ Tauri	5. o	1755	+ 22 14 4.21	+ 909.00	— 46.85	+ 913.42	4.42	
		4. 7	1850	22 28 6,51	864. 15	47. 58	868. 68	4. 53	
202	71 Tauri	5.5	1755	+ 15 2 23.77	+ 904.45	— 44. 76	+ 907.66	— 3.21	
		6. o	1850	15 16 22.73	861.65	4 5· 35	864. 98	3.33	
203	π Tauri	5. o	1755	+ 14 8 15.86	+ 901.44	— 44. 27	+ 904.73	— 3.29	
		5. o	1850	14 22 12.16	859.08	44. 90	862. 38	3. 30	l
204	υ ^g Tauri	6.0	1755	+ 22 25 13.97	+ 904.17	— 46.87	+ 905.75	— 1.58	
		6. o	1850	22 39 11.68	859. 30	47. 58	860, 86	1.56	
205	B. A. C. 1373		1755	+ 21 3 3.79	+ 892.71	— 46. 76	+ 899. 20	— 6.49	
	·	6.0	1850	21 16 50.64	847. 94	47.50	854. 62	6, 68	

STANDARD CLOCK AND ZODIACAL STARS.

RIGHT ASCENSIONS.

No.	Star.	Epoch. Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
206	e Tauri	1755 5 1850 321	h. m. s. 4 14 20.531 4 19 51.783 4 22 46.570	5. + 348.094 349.271 349.875	s. + 1.258 1.219 1.198	s. + 347.346 348.521 349.126	s. + 0.748 0.750 0.749	8.
207	75 Tauri	1755 5 1850 12	4 14 27.949 4 19 52.217	+ 340. 790 341. 873	+ 1.156	+ 340, 880 341, 962	- 0.090 0.089	
208	76 Tauri	1755 5 1850 3	4 14 32.229 4 19 53.808	+ 337.990	+ 1.093	+ 337. 265	+ 0.725	
209	θ Tauri	1755 5 1850 21	4 14 36.522	+ 340.648	+ 1.137	+ 340.004	+ 0.644	
210	θ² Tauri	1755 5	4 14 42, 172	341. 713 + 340. 528	+ 1.133	+ 339.806	+ 0. 722	
211	So Tauri	1850 29 1755 5	4 20 6.180	341. 591 + 340. 031	+ 1,111	340. 867 + 339. 405	0. 724 + 0. 626	
212	В. А. С. 1391	1850 9	4 21 35.743	341.071 + 341.239	+ 1, 133	340. 449 + 340. 696	+ 0.543	
213	81 Tauri	1850 7 1755 5	4 21 58.815	342, 299 + 340, 426	+ 1,112	341.749 + 339.568	0.550 + 0.858	
214	83 Tauri	1850 15 1755 4	4 22 5.824 4 26 51.451	341.467 + 335.888	+ 1.044	340. 608 + 335. 179	0.859	
215	B. A. C. 1394	1850 3 1755	4 22 11.011	336, 866	+ 1.146	336. 160 + 340. 610	0. 706	
216	84 Tauri	1850 5 1755 5	4 22 12.2 4 17 14.618	+ 338.537	1.114 + 1.083	341.663 + 338.293	+ 0.244	
217	85 Tauri	1850 6 1755 5	4 22 36.711	339. 550 + 340. 735	+ 1.104	339. 307 + 340. 029	0, 243 + 0, 706	
218	В. Л. С. 1406	1850 17 1755 4	4 23 18.010	341. 768 + 341. 256	1. 071 + 1. 108	341.063 + 341.238	0. 705 + 0. 018	
219	B. A. C. 1408	1850 3 1850 11	4 25 3.365 4 25 15.235	342. 292 + 374. 120	1.073	342, 281 + 374, 053	0.011	
220	ρ Tauri	1755 6 1850 5	4 19 58.309 4 25 20.383	+ 338. 529 339. 518	+ 1.058	+ 337.912 338.904	+ 0.617	
221	e Tauri	1755 1850 953 1900	4 21 53.409 4 27 19.097 4 30 10.893	+ 342. 322 343. 333 343. 851	+ 1.082 1.045 1.025	+ 341.878 342.898 343.419	+ 0.444 0.435 0.432	-0,010
222	W. B. 4h 650	1850	4 29 25.1		+ 1.187	+ 353.016		
223	89 Tauri	1755 5 1850 3	4 24 9.548 4 29 34,516	+ 341,570 342,566	+ 1.066 1.030	+ 340, 939 341, 939	+ 0.631 0.627	
224	σ¹ Tauri	1755 5 1850 5	4 25 11.494 4 30 35.578	+ 340,651 341,626	+ 1.044 1.007	+ 340.490 341.470	+ 0, 161 0, 156	
225	σ ² Tauri	1755 5 1850 7	4 25 17.223 4 30 41.947	+ 341.320 342.304	+ 1.054	+ 340, 760 341, 748	+ 0.560 0.556	

DECLINATIONS

				2202111					
No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
206	e Tauri	4. 0 3· 7	1755 1850 1900	0 ' " + 18 36 51.85 18 50 34.84 18 57 31.12	,,, + 888. 25 844. 26 820. 86	,, — 46.00 46.63 46.95	,, + 892.60 848.70 825.36		— o. 10
207	75 Tauri	6. o 6. 3	1755	+ 15 47 23.66 16 1 11.19	+ 892. 56 849. 50	- 45.01 45.65	+ 891.66 848.65	+ 0.90	
208	76 Tauri	7. o 6. 3	1755 1850	+ 14 10 26.56 14 24 9.85	+ 887.93 845.22	- 44. 66 45. 27	+ 891.07 848.43	- 3. 14 3. 21	
209	θ ¹ Tauri	5. 0	1755	+ 15 23 45.21 15 37 28.14	+ 887. 66 844. 69	- 44.91 45.55	+ 890.47 847.54	- 2.81 2.85	
210	θ ³ Tauri	5. 5 4. 0	1755	+ 15 18 17.73 15 32 0.55	+ 887. 64 844. 47	- 45. 13 45. 75	+ 889. 80 846. 80	- 2. 16 2. 33	
211	80 Tauri	6. o 6. 3	1755	+ 15 4 48.84	+ 874.46 831.30	- 45. 11 45. 75	+ 877. 95 834. 95	- 3.49 3.65	
212	В. А. С. 1391	5. 5 5. 0	1755 1850	+ 15 38 19.53	+ 871.62 828.17	- 45· 39 46. 07	+ 875. 18 831. 89	- 3. 56 3. 72	
213	81 Tauri	5. 5 6. 3	1755 1850	+ 15 8 12.94 15 21 39.89	+ 871.03 827.68	- 45. 31 45. 96	+ 874. 06 830. 96	- 3.03 3.28	
214	83 Tauri	6. o 6. o	1755 1850	+ 13 10 10.25 13 23 36.34	+ 869.79 827.15	- 44. 59 45. 18	+ 872.82 830.27	- 3.03 3.12	
215	B. A. C. 1394	7. 5 7. 5	1755 1850	+ 15 35 41.33 15 49 8.16	+ 870.91 827.55	- 45. 32 45. 97	+ 873.38 830.08	- 2.47 2.53	
216	84 Tauri	7. o 7. 3	1755 1850	+ 14 33 16.34 14 46 36.74	+ 863.95 821.00	- 44. 91 45. 52	+ 869. 78 826. 85	- 5.83 5.85	
217	85 Tauri	6. o 6. 5	1755 1850	+ 15 18 13.06 15 31 30.15	+ 860.67 817 31	45. 32 45. 95	+ 864.60 821.36	- 3.93 4.05	
218	B. A. C. 1406	7· 5 7· 5	1755 1850	+ 15 47 3.39 16 0 8.01	+ 847.60 804.13	- 45·45 46.07	+ 850. 79 807. 31	- 3. 19 3. 18	
219 220	B. A. C. 1408	6, o 5, o	1850 1755	+ 28 38 32.32 + 14 18 25.75	+ 801.49 + 844.19	- 50. 34 - 45. 20	+ 805. 71 + 848. 19	4. 22 4. 00	
221	a Tauri	5. 3 1. 0	1850	14 31 27.24 + 15 59 38.38	800. 97 + 813. 86	45 79 — 45.89	805.03	4. 06 —19. 09	— o, o6
		1.0	1850 1900	16 12 10. 74 16 18 29. 92	770.00 746.70	46. 44 46. 72	789. 16 765. 90	19. 16 19. 20	3,30
222 223	W 4 ^h 650	6. o 7. o	1850 1755	+ 20 22 42.1 + 15 31 9.50	+ 812.17	- 47.86 - 45.97	+ 772.22 + 814.83	- 2.66	
224	σ¹ Tauri	6. 5 5. 5	1850	15 43 40.22	768. 22 + 798. 48	46. 55 — 45. 87	770. 93 + 806. 55	2. 71 — 8. 07	
225	σ² Tauri	5. o 5. 5	1850	15 29 58. 72 + 15 24 36. 19	754. 63 + 802. 90	46. 44 — 46. 02	762. 71 + 805. 79	8. o8 — 2. 89	
		5.0	1850	15 36 58.09	758.91	46, 60	761.86	2.95	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
226	B. A. C. 1444	1850	8	h.	m. 31	s. 56. 833	s. + 374. 134	s. + 1.475	s. + 373·977	s. + o. 157	s.
227	τ Tauri	1755 1850	5 89	4	27 33	34. 297 14. 837	+ 357.861 359.056	+ 1.284 1.232	+ 357.867 359.057	- 0.006	
228	95 Tauri	1755 1850	5	4	28 34	25. 780 9. 230	+ 360.911 362.134	+ 1.315	+ 360.834 362.061	+ 0.077	
229	В. А. С. 1463	1755	1	4	30	56.976	+ 359.895	+ 1. 273	+ 359.927	— o. o32	
230	B. A. C. 1468	1850 1850	8	4	36 37	39· 443 31. 624	361.079 + 349.387	1.219	361. 117 + 348. 949	- 0.038 + 0.429	
231	a Camelopardalis .	1755		4	29	53. 38	+ 582.73	+ 7.67	+ 583.04	— o. 31	
		1800 1850		4	34 39	16. 38 10. 35	586. 13 589. 75	7. 40 7. 09	586. 44 590. 06	0. 3I	
	`	1900		4	44	6. 10	593. 22	6. 75	593- 53	0.31	
232	96 Tauri	1755 1850	5 15	4	35 41	44. 587 9. 467	+ 341.523 342.428	+ 0.974	+ 341.508	+ 0.015	
233	i Tauri	1755	5	4	37	4. 026	+ 349. 177	+ 1.041	+ 348.611	+ 0.566	
-33	· · · · · ·	1850	26	4	42	36. 208	350. 145	1.000	349. 583	0. 562	
234	ι Aurigæ	1755	3	4	41	4- 555	+ 388.059	+ 1.556	+ 387.990	+ 0.069	
		1850	212	4	47	13.901	389.495	1.467	389. 425	0. 070 0. 068	
225	D A C - go6	1900		4	50	28.830	390. 216	1.417	390, 148		
235	B. A. C. 1526	1755 1850	14	4	43 48	14. 665 42. 730	+ 344.891 345.764	+ 0.943 0.896	+ 345.008 345.886	— 0. 117 0. 122	
236	99 Tauri	1755		4	42		+ 361.960	+ 1.153	+ 362.014	— o. o54	
		1850	9	4	48	42.885	363. 026	1.092	363. 078	0, 052	
237	& Tauri	1755	5	4	43	11.415	+ 365.234	+ 1.177	+ 364.961	+ 0.273	
		1850	21	4	48	58. 910	366. 322	1.114	366. o 52	0. 270	
238	101 Tauri	1755 1850	5	1	45	41.878	+ 342.872	+ 0.885 0.844	+ 342, 215	+ 0.657 0.651	
220	ι Tauri		3	4	51	7. 999	343.693		343.042		
239	ι Tauri	1755 1850	5 70	4	48 54	28. 574 8. 038	+ 356.856 357.794	0.960	+ 356.413 357.353	+ 0.443 0.441	
240	11 Orionis	1755	5	4		35. 410	+ 341.353	+ 0.836	+ 341. 304	+ 0.049	
		1850	83	4	56	0.066	342. 125	0. 790	342.073	0. 052	
		1900	• •	4	58	51. 226	342. 515	0. 769	342. 4 63	0, 052	
241	<i>m</i> Tauri	1755	5	4	52	59-479	+ 353.077	+ 0.907	+ 349. 336	+ 3.741	
	/ Taux!	1850	21	4	58	35. 303	353.913	0, 853	350. 165	, 3.748	
242	/ Tauri	1755 1850	5 16	4	53 58	19. 806 56. 016	+ 353·473 354·328	+ 0.930 0.871	+ 353.817 354.675	- 0. 344 0. 347	
243	105 Tauri	1755	5	4	53	17. 863	+ 357.043	+ 0.977	+ 357.098	- 0. 055	
		1850	18	4	58	57. 487	357. 944	0. 920	357-993	0.049	
244	103 Tauri	1755	5	4	53	12. 435	+ 363. 756	+ 1.044	+ 363.815	— o. o59	
		1870	16	4	58	58. 464	364. 716	0.976	364. 779	0.063	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	of proper motion.
226	B. A. C. 1444	5. 7	1850	+ 28 19 9.16	+ 748.64	— 50. 94	// + 751.77		"
227	τ Tauri	5.0	1755	+ 22 27 47.45	+ 784.90	— 48. 44		— 3. 13	
,	, raun	4.3		22 39 51. 15	738. 59	49. 07	+ 787.42 741.20	- 2.52 2.61	
228	95 Tauri	7. 0	1755	+ 23 36 1.45	+ 777.95	— 48.8 5	+ 780.52	— 2.57	
		6. 3	1850	23 47 58.36	731.24	49. 49		2. 57	
229	B. A. C. 1463	7· 5	1755			— 48.91	+ 760.15		
		6. 3	1850	+ 23 20 49.7		49-53	713. 39		
230	B. A. C. 1468	6. 3	1850	+ 18 27 31.12	+ 697.30	— 48. o6	+ 706.30	- 9.00	
231	a Camelopardalis .	4- 7	1755	+ 65 53 11.88	+ 768.54	— 78. 81	+ 768. 73	— 0. 19	
			1800	65 58 49. 73	732.84		733. 01	0. 17	
			1850	66 4 46.11 66 10 42.25	692. 62 651. 86	80.99	692. 77	0. 15	
	of Touri	6.0				82.04	651.99	0. 13	
232	96 Tauri	6. o 6. <u>5</u>	1755	+ 15 27 12.45 15 38 15.87	+ 720.65 675.94	- 46.80 47.32	+ 721.14 676.44	- 0.49 0.50	
233	i Tauri		-	+ 18 23 57.87	+ 705.86	- 48 of		-	
233	raun	5· 5 5· 3	1755	18 34 46.66	659.95	- 48 66 48.60	+ 710. 31 664. 53	4· 45 4. 58	
34	ι Aurigæ	4.0	1755	+ 32 45 5.80	+ 675.21	1	+ 677.38	-	
-34	. Aunga	3.0	1850	32 55 22.98	624.01	- 53· 59 54· 21	+ 677. 38 626. 16	- 2. 17 2. 15	
		•	1900	33 0 28.19	596.83	54-53	598.98	2. 15	
235	B. A. C. 1526	6. 5	1755	+ 16 44 45.52	+ 656.65	— 47. 78	+ 659.51	— 2.86	
		5.3	1850	16 54 47.71	611.03	48. 27	613.83	2.80	
236	99 Tauri	6. 5	1755	+ 23 32 29.36	+ 659. 22	— 50. 26	+ 661.73	- 2.51	
		6. o	1850	23 42 32.87	611. 20	50. 84	613.82	2. 62	
237	& Tauri	6. o	1755	+ 24 38 50.61	+ 653.80	— 50.67	+ 659.92	— 6. 12	
		6. o	1850	24 48 48.75	605. 37	51.31	611.60	6. 23	
238	101 Tauri	7. o	1755	+ 15 31 26.45	+ 635.86	— 47. 78	+ 639.17	— 3.31	
		7. O	1850	15 41 8.88	590. 25	48. 24	593. 64	3⋅39	
239	ι Tauri	4.5	1755	+ 21 12 56.39	+ 610.98	— 50.00	+ 616.07	— 5.09	
		5. o	1850	21, 22 14.09	563. 26	50. 47	568. 51	5. 25	
240	11 Orionis		1755	+ 15 2 21.71	+ 594.65	— 47.89	+ 598.46	— 3.81	— 0. 0
		5.0	1850	15 11 24.96	548. 98	48. 27		3. 84	
		•	1900	15 15 53.41	524. 80	48.47		3. 86	
24 I	m Tauri	5.0	1755	+ 18 17 29.97	+ 580. 72	— 50. 30	+ 578.36	+ 2.36	
		5.3	1850 	18 26 18.88	532. 74	50. 70	531.03	1. 71	
242	/ Tauri	5.5	1755	+ 20 4 14.93	+ 572.09	— 49. 72	+ 575 50	- 3.41	
	To a Transi	5.7		20 12 55.90	524.66	50. 12	528. 11	3- 45	
243	105 Tauri	6. o 6. o	1755	+ 21 21 21.61	+ 573.86	— 50. 24	+ 575.76	- 1.90	
	too Touri		· ·	21 30 4.07	525.98	50. 57	527.90	1.92	
244	103 Tauri	6. o 6. o	1755 1850	+ 23 54 58.41 24 3 41.92	+ 575.39 526.65	51. 07 51. 55	+ 576.52 527.76	— 1.13	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
245	107 Tauri	1755 1850		h. m. s. 4 54 24.276 4 59 59.505	s. + 352.450 353.287		s. + 352.479 353.317	s. — 0. 029 0. 030	s.
246	W 4 ^h 1421	1850	١	5 0 19.1		+ 1.071	+ 375.398		
247	15 Orionis	1755 1850	5 26	4 55 41.741 5 1 7.005	+ 342.013 342.748		+ 342.062 342.800	- 0. 049 0. 052	
248	a Aurigæ	1755 1850 1900		4 58 37.982 5 5 36.928 5 9 18.043	+ 440. 137 441. 821 442. 631	+ 1.879 1.666 1.573	+ 439.270 441.005 441.848	+ 0.867 0.816 0.783	—0. 052
249	108 Tauri	1755 1850	5 2	5 0 45.440 5 6 26.931	+ 359. 046 359. 872	0.837	+ 359. 191 360. 019	- 0. 145 0. 147	
250	$oldsymbol{eta}$ Orionis	1755 1850 1900	 !	5 2 46. 463 5 7 19. 856 5 9 43. 892	+ 287. 588 287. 974 288. 172		+. 287.613 287.999 288.199	- 0.025 0.025 0.027	
251	n Tauri	1755 1850	32	5 4 34·475 5 10 16.037	+ 359. 140 359. 927	1	+ 358.981 359.762	+ 0. 159 0. 165	
252	22 Aurigæ	1755	5 3	5 7 53. 265 5 13 53. 155	+ 378.373 379.276	+ 0.995 0.907	+ 378. 273 379. 166	0. 110	
253	110 Tauri	1755	5	5 9 29.917 5 14 58.156	+ 345. 197 345. 825	+ 0.687 0.635	+ 345. 521 346. 155	- 0. 324 0. 330	
254	III Tauri	1755 1850	5 15	5 10 8.643 5 15 40.428	+ 348.919 349.564	+ 0. 706 0. 653	+ 347. 255 347. 893	+ 1.664 1.671	
255	β Tauri	1755 1850 1900	10	5 10 49.487 5 16 48.787 5 19 58.192	+ 377. 795 378. 611 379. 006	0. 904 0. 814 0. 767	+ 377. 597 378. 410 378. 821	+ 0. 198 0. 201 0. 185	—0.010
256	113 Tauri	1755 1850	5 5	5 11 57.240 5 17 25.770	+ 345. 514 346. 121	+ 0.665 0.613	+ 345.646 346.258	- 0. 132 0. 137	
257	115 Tauri	1755 1850	19	5 12 53.442 5 18 25.209	+ 348.914 349.533	+ 0.680 0.624		+ 0.059 0.060	
258	o Tauri	1755	31	5 12 56. 163 5 18 37. 709	+ 359. 173 359. 861	+ 0. 756 0. 692	+ 359. 116	+ 0.057	
259	B. A. C. 1699	1755	3	5 13 25.553 5 18 52.538	+ 343.900 344.483	+ 0.640 0.588	+ 344. 085 344. 672	- 0. 185 0. 189	
260	116 Tauri	1755 1850	5	5 13 41.825 5 19 8.630	+ 343.713	0.581	+ 343.690 344.270	+ 0.023 0.020	
261	117 Tauri	1755 1850	6	5 13 49.317 5 19 19.338	+ 347.088 347.682	+ 0.652 0.598	+ 347.096 347.690	0.008 0.008	
262	B. A. C. 1703	1755	3	5 14 2.774 5 19 30.502	+ 344.681 345.266	+ 0.643 0.589	+ 345. 109 345. 706	- 0.428 0.440	
263	Groombridge 966.	1755 1800 1850		5 7 9.10 5 13 4 72 5 19 42.12	+ 787.92 792.49 797.00	+10.61 9.63 8.38	+ 787.14 791.70 796.20	+ 0. 78 0. 79 0. 80	
		1900		5 26 21.60	800.83	7. 02	800, 04	0. 79	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
	Town:			0 / //	"	"	"		"
2 45	107 Tauri	7. o 6. 5	1755 1850	+ 19 31 0.31 19 39 35.30	+ 565.71 518.42	49. 56 50. 00	+ 566.47 519.15	— 0. 76 0. 73	
246	W 4 ^h 1421	6.0	1850	+ 27 50 5.2		— 53. 14	+ 516.41		
247	15 Orionis :	5.0	1755	+ 15 15 36.86	+ 555.07	- 48. 17	+ 555.62	- o. 55	
~4/	15 01.01.01	5.3	1850	15 24 2.38	509. 12	48. 57	509.65	0. 53	
248	a Aurigæ	1.0	1755	+ 45 43 5.52	+ 487. 59	— 62. 35	+ 530.92	-43 · 33	- o. 11
•	J	1.0	1850	45 50 20.51	428. 07	62.96	471.48	43. 41	
			1900	45 53 46.66	+ 396.51	63. 28	439. 98	43-47	
249	108 Tauri	7. 0	1755	+ 21 58 45.88	+ 512.05	— 50. 84	+ 512.90	— o. 85	
		6. 3	1850	22 6 29. 32	463. 56	51.24	464. 39	o. 83	
250	β Orionis	1.0	1755	— 8 30 16.69	+ 495. 19	 40. 88	+ 495.80	— o. 61	
		1.0	1850	8 22 44. 74	456. 26	41.09	456.87	0.61	
		j	1900	8 19 1.75	435. 68	. 41.19	436. 2 9	0.61	
251	# Tauri	5.5	1755	+ 21 49 4.43	+ 472.34	— 51. 22	+ 480. 54	— 8. 2 0	
	·	5- 7	1850	21 56 9.97	423. 50	51.60	431.82	8. 32	
252	22 Aurigæ	7.0	1755	+ 28 40 33.80	+ 459. 22	— 53.99	+ 452. 31	+ 6.91	
		7.0	1850	28 47 25.64	407. 74	54. 40	400, 86	6. 88	
253	110 Tauri	7.0	1755	+ 16 26 36.80	+ 435.86	- 49. 28	+ 438.56	- 2.70	
		6.8	1850	16 33 8.57	388.89	49.60	391.55	2.66	
254	III Tauri	6.0	1755	+ 17 7 51.40	+ 433. 10	— 50. 22	+ 433.05	+ 0.05	İ
		5.7	1850	17 14 20.15	385. 25	50. 52	385. 50	— o. 25	
255	3 Tauri	2.0	1755	+ 28 22 26.51	+ 409. 20	— 54. 12	+ 427.23	—18. 03 18. 06	— o. o <u>3</u>
		2.0	1850	28 28 30. 78 28 31 22. 79	357. 64 330. 38	54· 44 54. 60	375. 70 348. 46	18.08	
	113 Tauri	6. o		+ 16 27 28.43	+ 416.43	— 49. 46	+ 417.56	— 1.13	
256	113 tauri	7.0	1755 1850	16 33 41.67	369.30	49. 76	370.38	1.08	
~==	115 Tauri	5. 5	1755	+ 17 43 34.90	+ 409.21	- 50.02	+ 409.50	- o. 29	1
257	III I auri	5. 5 6. o	1850	17 49 41.01	361.51	50.41	361.88	0.37	
258	o Tauri	5. o	1755				+ 409.16	— t. 15	
250	U Tauri	6.0	1850	21 48 12.71	358. 84	51.93	360. 10	1. 26	
259	B. A. C. 1699	8. o	1755	+ 15 48 24.03	+ 403.02	— 49. 28	+ 404.92	- 1.90	
-37		8. o	1850	15 54 24.61	356.06	49.57	357-94	1.88	
260	116 Tauri	6.0	1755	+ 15 38 35.80	+ 398.93	— 49. 30	+ 402.62	— 3.69	
		6.0	1850	15 44 32.49	351.96	49. 58	355.65	3.69	
261	117 Tauri		1755	+ 17 0 42.26	+ 393.62	— 49.98	+ 401.65	— 8. 03	
	•	6. 3	1850	17 6 33.59	346. 01	50. 27	354. 12	8. 11	
262	B. A. C. 1703	7.0	1755			— 49. 38	+ 399.62		
		6.9	1850	+ 16 18 40.4		49.67	352.49		
263	Groombridge 966.		1755	+ 74 49 31.24	+ 460.64	-112.21	+ 458.59	+ 2.05	
-			1800	74 52 47. 12	409. 84	113.48	407. 85	1.99	
		6. 5	1850	74 55 57.80	352. 78	114.74	350. 84	1.94	
			1900	74 58 39.81	+ 295.15	-115.84	+ 293.27	+ 1.88	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right asc	cension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
264	118 Tauri	1755	5 8	-	s. 12. 796 2. 773	s. + 368. 030 368. 750	s. + o. 797 o. 720	s. + 367.923 368.644	s. + o. 107 o. 106	s.
265	 119 Tauri	1755	5		51. 757	+ 350. 782	+ 0.641	+ 350. 711	+ 0.071	
266	B. A. C. 1728	1850 1850	32	l	25. 279 32. 9	351. 362	0. 581 + 0. 558	351. 289	0. 073	
267	δ Orionis	1755			30,004	+ 305.809		+ 347.391	- o. o35	
		1850	607	•	20. 704 53. 845	306. 187 306. 376	o. 385 o. 371	306, 220 306, 410	0. 033 0. 034	
268	120 Tauri	1755	5 18		10. 871 44. 298	+ 350.685 351.258	+ 0.632 0.574	+ 350.638	+ 0.047	
259	a Leporis	1755	209	5 21 5 26	55- 947 6. 951	+ 264.069 264.358	+ 0.311	+ 264. 090 264. 377	- 0. 021 0. 019	+0.002
950	tat Tauri	1900	¦ - •	5 28	19. 167	264. 506	0. 293	264. 528	0, 022	
•	121 Tauri	1755			30. 319 17. 637	+ 365. 279 365. 904	+ 0.696 0.620	+ 365. 262 365. 884	+ 0.017 0.020	
271	122 Tauri	1755 1850		· -	51. 337 21. 527	+ 347.313 347.816	+ 0.557 0.501	+ 347.014 347.524	+ 0. 299 0. 292	
272	ε Orionis	1755	10 420		47. 501 36. 227	+ 303.743 304.095		+ 303.815 304.167	- 0.072 0.072	
273	ζ Tauri	1900	5	5 31 5 23	8. 319 o. 961	304. 271		304· 343 + 357· 593	0.072	
	ı	1850	119	5 28	40. 961	358. 167	o. 552	358. 147	0.020	
274	26 Aurigæ	1755 1850	3 6	5 22 5 29	55. 275 0. 394	383.979 384.676	+ 0. 785 0. 684		- 0. 223	
275 276	B. A. C. 1772	1850	٠.		46. 2			+ 381.024		
2/0		1755	5 23		26. 541	+ 370. 742 371. 340	o. 586	371.300	0.041	
277	126 Tauri	1755 1850	5 10	5 27 5 32	8. 772 37. 713	+ 346.020 346.479	+ 0.510 0.456		+ 0. 104 0. 098	
278	B. A. C. 1796	1755 1850	1 3	•	4. 368 39. 241		-	+ 352.210 352.675	+ 0.051 0.051	
279	127 Tauri	1755 1850	5		29. 680 4. 308	+ 352.002		+ 352. 199 352. 670		
280	B. A. C. 1801	1850			13. 1			+ 363.926		
281	a Columbæ	1755 1850	 179		46. 941 13. 124		+ 0. 281 0. 275	+ 216.757 217.023		-0.002
282	128 Tauri	1900	· .	5 36	1. 741	217. 303	0. 272	I	1	!
aj U Li		1755 1850	5 6			+ 344. 886 345. 308	+ 0.472 0.416	+ 344. 928 345. 356	- 0. 042 0. 048	
283	129 Tauri	1755 1850	5 21	5 3 ² 5 3 ⁸	40. 685 7. 989	+ 344. 3 ²⁶	+ 0.449 0.394	+ 344- 333 344- 738	- 0.007 0.012	

DECLINATIONS.

DECLINATIONS.												
No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.			
264	118 Tauri	İ	1755	+ 24 55 33.01 25 1 24.57	+ 395. 19 344. 87		+ 398. 19 347. 90	- 3. oo 3. o3	"			
265	119 Tauri	5. 5		+ 18 23 13.74	+ 366.33	_ 50. 57	+ 366.80	- 0.47 0.57				
266	B. A. C. 1728	6. o	1850	+ 16 56 26.5		_ 50. 18	+ 317.66					
267	δ Orionis		1755 1850 1900	=	+ 352. 28 310. 27 288. 11	44. 29	+ 352. 76 310. 76 288. 62		— o. o2			
268	120 Tauri	6. o 6. o	1755 1850	+ 18 20 25.60 18 25 41.09	+ 356. 22 307. 94	- 50.69 50.95		+ 0.65 0.57				
269	с: 1.eporis		1755 1850 1900	- 18 0 58. 59 17 56 0. 71 17 53 37. 80		t.	295.45	0.06	— o. oı			
270	121 Tauri	6. o 6. o	1755	+ 23 51 3.66 23 56 3.82	+ 341.07 290.78		+ 344.07 293.92	•				
271	122 Tauri		1755	+ 16 51 52.78 16 56 32.68	+ 318.50 270.72	- 50. 18 50. 42	+ 323.77 276.00	- 5. 27 5. 28				
272	ε Orionis	2. 3 1. 8	1755 1850 1900	- 1 22 48. 15 1 18 8. 05 1 15 56. 59	+ 315.73 273.94 251.90	44. 05	+ 315.70 273.90 251.86	0.04				
273	ζ Tauri	3· 4 3· 3	1755 1850	+ 20 58 5.69 21 2 44.97	+ 318.62 269.32		+ 322.40 273.21					
274	26 Aurigæ	5. o 6. o	1755 1850	30 19 10. 33 30 23 51. 54	+ 322.39 269.63		+ 323.20 270.41	1				
275	B. A. C. 1772	6. 3	1850	+ 29 7 24.6		— 55. 22						
-	125 Tauri	6. o 6. o	1850	+ 25 44 0.74 25 48 27.13	ı	53.95	257. 96					
277	126 Tauri	5· 5 5· 7	1755	1	+ 284. 27 236. 58	50. 30		- 2. 37 2. 38				
278	B. A. C. 1796	8. o 7. 5	1755 1850	+ 18 50 38.81 18 54 32.36	+ 270. 10 221. 54	- 51.02 51.22	+ 278.61 230.02	- 8. 51 8. 48				
279	127 Tauri	8. o 6. 3	1850	- -	+ 270.64 222.14	!	+ 274.96 226.36	- 4. 32 4. 22				
280 281	B. A. C. 1801	6.0	1850		+ 250.64	- 52.91 - 31.55	+ 225. 15 + 255. 10	 — 4.46	_ ^ ^			
201	a commute	2.5	1755	34 9 25.39	220. 64	31.61	225. 14	4. 50 4. 52	— o. o <u>s</u>			
282	128 Tauri	6. o 6. g	1755	+ 15 57 18.39 16 0 56.85	+ 253.73 206.19	50. 01 50. 07	+ 255.09 207.50	- 1.36 1.31				
283	129 Tauri	6. o 6. 3	1755	+ 15 42 8.98 15 45 31.13	+ 236.57 189.02	- 49. 97 50. 14	+ 238.63 191.07	2.06 2.05				

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
284	130 Tauri	1755	5	h. 5	m. 33 38	s. 9. 684 41. 475	s. + 349. 043 349. 455	s. + 0.464 0.404	s. + 349. 169 349. 584	o. 126 o. 129	s.
285	132 Tauri	1755	5 26	5 5	33 39	59. 491 48. 728	+ 367.381 367.843	+ 0.527	+ 367.447 367.908	— o. o66	
286	136 Tauri	1755	5 43	5	37 43	56, 206 54, 057	+ 376.470 376.895	+ 0.492 0.402	+ 376.390 376 820	+ 0.080	
287	B. A. C. 1867	1755	I 12	5 5	38 44	45· 734 24. 195	+ 356. 144 356. 500	+ 0.409 0.342	+ 356.045 356.412	+ 0.099	
288	X ¹ Orionis	1755	5 44	5 5	39 45	52.959 30.081	+ 354.689 355.031	+ 0.394 0.327	+ 356. 037 356. 388	- 1. 348 1. 357	
289	X2 Orionis	1755	5	5 5	40 46	26. 900 3. 928	+ 354.586 354.936	+ 0.402 0.335	+ 354.656	— 0. 070 0. 067	
290	a Orionis	1755 1850 1900	· i	5 5	41 47 49	54. 894 3. 125	+ 324. 308 324. 593 324. 728	+ 0. 321 0. 279 0. 261	+ 324. 170 324. 452	+ 0, 138	+0.001
291	 139 Tauri	1755	3	5 5	49 42 48	45. 456 47. 976 41. 281	+ 371. 718 372. 069	+ 0.411	324. 589 + 371. 757 372. 112	0. 139 0. 039 0. 043	
292	! - 140 Tauri	1755	١	5	45 51		363. 472	+ 0.354 0.279	+ 363. 277 363. 577	— 0. 105 0. 105	
. 293	141 Tauri	1755	5 12	5 5	46 52	54· 3 ⁸ 5 38. 187	+ 361.750 362.034	+ 0.336 0.263	+ 361.952 362.237	- 0. 202 0. 203	
294 !	\(\chi^3 \rightarrow \text{rionis} \)	1755 1850	3 7		48 54	58. 106 34. 739	+ 354. 221 354. 470	+ 0. 295 0. 230	+ 354-755 355-007	- 0. 534 0. 537	
295	I Geminorum	1755 1850	5 92	5	49 55	13. 828 0. 144	+ 364.418	+ 0. 292 0. 216	+ 364.413 364.653	+ 0.005 0.002	
29 6	λ ⁴ Orionis	1755 1850	18	5	49 55	22. 636 0. 734	+ 355. 766 356. or r	+ 0. 292 0. 224	+ 355. 946 356. 194	- 0. 180 0. 183	
297	;	1755	5 7	5		52. 639 40. 009	+ 365. 535 365. 757	0. 195		+ 0.037 0.036	
298	v Orionis	1755 1850 1900	132	5 5 6	53 59 I	35. 016 0. 462 51. 819	+ 342.472 342.670 342.754	0. 181 0. 153	+ 342. 257 342. 458 342. 541	+ 0.215 0.212 0.213	
299	3 Geminorum	1755 1850	5 18	5 6		51. 421 37. 410	+ 364. 107	+ 0. 219 0. 150	+ 364.116 364.298	- 0, 009 0, 006	
300	4 ('eminorum	1755 1850	5	5 6	55 1	38. 384 24. 056	+ 363.776 363.942	+ 0.214		- 0. 035 0. 046	
301	22 (II) Camelopardalis	1755 1800 1850	· · ·	5 5 6	51 56 2	49. 60 47. 44 18. 45	+ 661.72 661.99 661.98	+ 0.90 + 0.30 - 0.36	+ 661.87 662.17 662.19	- 0. 15 0. 18 0. 21	
		1900	;	6	7	49- 37	+ 661.64	— 1.02	+ 661.87	— o. 23	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
284	130 Tauri	6. o	1755	+ 17 36 43.61	+ 234.99	— 50. 72	+ 234.42	+ 0.57	"
_		6. o	1850	17 40 3.96	186.89	50. 55	186. 20	0.69	
285	132 Tauri	5.0	1755	+ 24 27 32.26	+ 225. 29	— 53.50	227. 28 176. 45	- 1.99	
-06	rot Touri	5.3	1850	24 30 42.11	174. 36	53. 72		2.09	
286	136 Tauri	4· 5 5· 3	1755	+ 27 31 38.86 27 34 16.39	+ 191.88 139.70	— 54. 85 55. 01	+ 192.84 140.78	— 0.96 1.08	
287	B. A. C. 1867		•	·			· ·		
207	B. A. C. 1807	7· 5 7. 2	1755	+ 20 13 7.85 20 15 31.90	+ 176.27 126.97	51.82	+ 185.69 136.37	— 9. 42 9. 40	1
288	χ¹ Orionis	•		+ 20 12 20.95	+ 165.48		+ 175.88	—10.40	
200	A Olionis	5.0 4.7	1755	20 14 34.93	116.57	51.42	126.81	10. 24	
289	χ^2 Orionis		1755	+ 19 40 37.02	+ 169.65		+ 171.00	— I. 35	
209		6.0	1850	19 42 54.81	120.44	51.81	121.87	1.43	
290	a Orionis	1.0	1755	+ 7 20 17.74	+ 158.88	1	+ 158.18	+ 0.70	- 0, 02
		1.3	1850	7 22 27.34	113.94		113.25	0.69	
			1900	7 23 18.39	90. 26		89. 59	0. 67	
291	139 Tauri	5.5	1755	+ 25 53 48.55	+ 150.44	- 54. 29	+ 150.44	0,00	1
		5⋅3	1850	25 55 46.97	98. 77	54. 50	98. 95	— o. 18	!
292	140 Tauri	8. o	1755	+ 22 51 33.28	+ 125.16	— 52. 91	+ 125.77	— o. 61	1
		7.0	1850	22 53 8, 28	74.85	53.00	75.41	0. 56	
293	141 Tauri	6. o	1755	+ 22 22 5.76	+ 111.99	— 52.82	+ 114.56	— 2.57	
		6. 7	1850	22 23 28.30	61. 78	52.88	64. 42	2.64	
294	χ^3 Orionis			+ 19 40 10.15	+ 93.95	— 51. 54	+ 96.54	— 2. 59	
		6. o	1850	19 41 16.11	44. 94	51.64	47- 44	2. 50	
295	I Geminorum	5. o		+ 23 15 1.82	+ 84.13	- 53. 23	+ 94.23	-10. 10	
		5. o	1850	23 15 57. 72	33- 53	53.35	43. 74	10, 21	
296	χ ⁴ Orionis	5.5	1755	+ 20 7 7.77	+ 92.34	- 52.03	+ 93.00	— o. 66	<u> </u>
		5.0	1850	20 8 11.99	42.86	52. 14	43.64	0. 78.	
297	2 Geminorum	6. 5	1755	+ 23 38 6.78	+ 69.63	— 53.33	+ 71.10	- 1.47	
			1850	23 38 48.86	18. 95	53.37	20.43	1.48	
298	ν Orionis			+ 14 46 24.93		— 50. 11	+ 56.15	- 2.81	
		4. 7	1850 1900	14 46 52.89 14 46 49.46	+ 5.65	50.08	+ 8.67	3. 02 — 3. 07	
	. Ci	6.0	•	!	1		İ	1	
299	3 Geminorum	6. 3		+ 23 7 39. 13 23 7 56. 69	+ 43.80 - 6.84	- 53. 30 53. 30	+ 45.04 - 5.45	1. 39	
300	4 Geminorum		1755	i		1	+ 38.17	- 6.42	
300	4 Cemmorum	7. 0 7. 4	1850	23 1 6.10	+ 31.75 - 18.67	- 53. o6 53. o8	+ 30.17 - 12.25	6.42	
301	22 (H) Camelopardalis		1755	+ 69 21 32.94	+ 59.66		+ 71.53	-11.87	
301	22 (11) Cameropardans		1800	69 21 50.05	+ 16.24		+ 28.09	11.85	
		4. 7	٠ _	69 21 46. 10	- 32.03		— 20. 19	11.84	
			1900	+ 69 21 18.03	— 80. 26	— 96.40	- 68.43	—11.83	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession,	Proper motion.	Sec. var. of proper motion.
302	5 Geminorum	1755 1850	5	h. m. s. 5 56 30.891 6 2 20.349	s. + 367. 767 367. 921	s. + 0. 203 0. 121	s. + 367.803 367.960	s. — o. o36 o. o39	s.
303	68 Orionis	1755 1850	2 10	5 57 30.465 6 3 8.231	+ 355.463		+ 355. 206 355. 360	+ 0. 257 0. 253	
304	6 Geminorum	1755 1850	4	5 57 28.040 6 3 13.499	+ 363.561		+ 363.601	- 0. 040 0. 043	
305	f ¹ Orionis	1755 1850	4	5 57 55.908	+ 345.634 345.790	+ 0. 193	+ 345·757 545.918	— 0. 123 0. 128	
306	κ Aurigæ	1755	4 35		+ 382. 364 382. 42 4	1	+ 382.864	— 0. 500 0. 524	
307	η Geminorum	1755 1850	5 214	6 0 5.307 6 5 49.393	+ 362. 130 362. 250	1	+ 362. 547 362. 667	- 0.417 0.417	
308	71 Orionis	1755 1850	4	6 0 26.121 6 6 1.354	+ 352.826 352.917	+ 0. 128	1	— 0. 794 0. 812	
309	f ² Orionis	1755 1850	3	6 I 17.515 6 6 46.200	+ 345.919	+ 0. 158	+ 345.840	+ 0.079	
310	8 Geminorum	1755 1850	4 3	6 1 21.079 6 7 9.220	+ 366.411	+ 0. 140	+ 366.617	- 0. 206	
311	9 Geminorum	1755	5	6 2 1.981 6 7 49.650	+ 365.916	i	+ 365.984	- 0. 068 0. 073	
312	10 Geminorum	1755 1850	4 3	6 3 58.751	+ 365.454 365.513	+ 0. 101	+ 365.627 365.697	- 0. 173 0. 184	
313	11 Geminorum	1755 1850	3	6 4 24.316 6 10 11.437	+ 365. 352	+ 0. 106	+ 365. 259 365. 324	+ 0.093	
314	12 Geminorum	1755 1850		6 10 15.7		+ 0.111	+ 364.719 364.778		
315	μ Geminorum	1755 1850	5 498	6 8 8.100	+ 363. 162 363. 166	+ 0.040 - 0 032	+ 362.679 362.691	+ o. 483	-o. oo8
316	Lal. 12148	1900 1755 1850		6 16 54.688 6 14 5.1	363. 141	0.070 + 0.017	362.674 + 349.586 349.626	0.467	
317	14 Geminorum	1755	4 3	6 11 0.447	+ 360, 126 360, 115	+ 0.024 - 0.049	+ 360, 314 360, 308	- 0. 188 0. 193	
318	15 Geminorum(2d star)	_	4	6 13 10.304 6 18 50.139	+ 357. 732 357. 699	0.000	+ 358.030 358.001	- 0. 298 0. 302	
319	48 Aurigæ	1755 1850	13	6 12 48.974 6 18 55.524	+ 385. 893 385. 776	- 0.071 0.176	+ 386. 035 385. 920	— 0. 142 0. 144	
320	16 Geminorum	1755 1850	5 5	6 13 22.233 6 19 1.362	+ 356.987 356.959	+ 0.005	+ 357. 240 357. 210	- 0. 253 0. 251	
321	ν Geminorum	1755 1850	5 55	6 14 24.816 6 20 3.361	+ 356 380 356.338	- 0.013 0.075	+ 356.489 356.448	— 0. 109 0. 110	

DECLINATIONS.

No. Star. Declination. Centennial variation. Secular variation. Struve's precession 302 5 Geminorum - 7.0 1755 + 24 26 52.83 + 24.06 - 53.65 + 30.	motion.	Sec. var. of proper motion.
		11
302 5 Geminorum $ 7.0 1755 + 24 26 52.83 + 24.06 -53.65 + 30.$	1 6.45	
6.7 1850 24 26 51.48 — 26.91 53.66 — 20.		
303 68 Orionis 6.0 1755 + 19 49 12.13 + 19.43 - 52.06 + 21.	2 - 2.39	
6.0 1850 1949 7.07 - 30.05 52.11 - 27.		
304 6 Geminorum 6.5 1755 + 22 56 16.39 + 22.23 - 53.11 + 22.	8 + 0.05	
6.7 1850 22 56 13.58 — 28.21 53.08 — 28.		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
5.7 1850 16 9 33.39 - 31.18 50.41 - 29.		
306 κ Aurigæ 4.0 1755 + 29 33 40.92 - 25.94 - 55.70 + 2.		
4.7 1850 29 32 51.15 78.84 55.67 — 50.	1	
	- 1	
307 7 Geminorum - 4.5 1755 + 22 33 8.01 - 2.31 - 52.83 - 0. 3.3 1850 22 32 41.99 52.54 52.92 50.		
308 71 Orionis 5.5 1755 + 19 12 55.49 — 25.30 — 51.52 — 3. 6.0 1850 19 12 8.21 74.30 51.66 52.	1 - 1	
	, i	
309 $\int_{0.07}^{2} \text{ Orionis}$ 6.0 1755 + 16 11 37. 31 - 12. 42 - 50. 47 - 11.		
5. 7 1850 16 11 2. 75 60. 35 50. 44 - 59.	i i	
310 8 Geminorum 7.0 1755 + 24 1 26.02 - 15.77 - 53.42 - 11.		
6.5 1850 24 0 46.95 66.50 53.38 62.	6 3.94	
311 9 Geminorum 7.0 1755 + 23 47 51.59 - 18.92 - 53.36 - 17.	0 - 1. 12	
6. 3 1850 23 47 9. 55 69. 59 53. 32 68.	9 1.10	
312 10 Geminorum 7.5 1755 + 23 40 19.99 - 41.26 - 53.26 - 34.	4 - 6.42	
7.0 1850 23 39 16.79 91.78 53.11 85.	6. 33	
313 11 Geminorum 7.0 1755 + 23 32 23.40 - 37.91 - 53.28 - 38.	6 + 0.65	
7. 3 1850 23 31 23. 41 88. 51 53. 23 89.	5 0.64	
314 12 Geminorum 8.0 1755	8	
7.5 1850 + 23 19 47.2 53.36 89.		
315 μ Geminorum $3.0 \cdot 1755 + 22 \cdot 36 \cdot 49.96 - 83.22 - 53.07 - 71.$	6 —12.06	— 0, 08
3.0 1850 22 35 6.97 133.58 52.93 121.	4 12. 14	
1900 22 33 53. 58 160. 02 52. 85 147.	4 12. 18	
316 Lal. 12148 1755 + 17 40 6.47 - 74.85 - 50.93 - 74.	5 0.00	
7.0 1850 17 38 32.37 123.22 50.85 123.	1	
317 14 Geminorum 7.5 1755 + 21 45 19.68 - 99.12 - 52.40 - 96.	3 - 2.79	
7.2 1850 21 43 21.88 148.86 52.30 146.		
318 15 Geminorum(2d star) 6.0 1755 + 20 54 52.06 - 119.96 - 52.01 - 115.		
7.0 1850 20 52 34.65 169.31 51.89 164.		
319 48 Aurigæ 6.0 1755 + 30 37 2.45 - 114.99 - 56.14 - 112. 5.7 1850 30 34 47.90 168.25 55.99 165.		
	- 1	
320 16 Geminorum 6.0 1755 + 20 37 7.89 - 117.58 - 51.90 - 117. 6.8 1850 20 34 52.79 166.83 51.78 166.	J 1	
321 v Geminorum 5.0 1755 + 20 20 31.93 - 128.14 - 52.00 - 126.	1 1	
4. 7 1850 20 18 6. 76 177. 45 51. 80 175.	0 2.15	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
322	a rgus	. 185		h. m.	s. 37. 48	s. + 132.99	s.	s. +. 132. 90	s. + 0.09	5.
322	u igus	18		6 21	10. 73	133.02	0. 10	132.93	0.09	
		190		6 21	43.99	133.02	0. 10	132.93	0.09	
						!	I		1	1
32 3	19 Geminorum .	- 175	-	6 17	31. 743	+ 345. 321	- 0.010	+ 345.368	- 0.047	
	l	185	0 4	6 22	59. 785	345. 285	o. o 66	345. 335	0.048	i I
324	20 Geminorum .	- 17	5 5	6 17	59. 571	+ 350.468	— o. o27	+ 350. 139	+ 0.329	
	· ·	18	;o ! 3	6 23	32. 494	350. 415	0. 085.	350. 085	0. 330	
325	21 Geminorum .	- 17	5 2	6 18	0.471	+ 350.358	— O. 024	+ 350. 150	+ 0, 208	
3-3		18	-	_	33. 290	350.307	0.084	350.097	0. 211	
					•	!	1			
326	49 Aurigæ	- 17			45. 769	+ 378.397	— o. 16o	+ 378.413	— 0. 016	
		18	io ! 15	6 25	45. 160	378. 201	0. 252	378. 222	0, 021	
327	22 Geminorum .	- 17	5 3	6 20	11.579	+ 354. 256	- o. o67	+ 354.422	- o. 166	
		18	30	6 25	48. 083	354. 162	0. 131	354- 327	0. 165	
328	23 Geminorum .	- 17	: 55 i 3	6 21	50.665	+ 347.674	- 0,064	+ 347.631	 + 0.043	
•	i	18		6 27	20.918	347. 587	0. 121	347. 548	0.039	
	an (II) Combai		,	•	-			1	-	
329	51 (H) Cephei .	- 175		5 39	27.33	+3091.51	+103.66	+3097.40	- 5.89	
	}	17	-	5 49	47-43	3106.84	+ 49.94	3113.03	6. 19	
		180		6 2	45.07	3110.80	— 18. 22	3117.35	6.55	
		18:	1	6 15	41.55	3097. 79	85. 76	3104.64	6. 85	
	I	18		_	32.65	3068, 16	150, 40	3075.27	7.11	
		18		6 41	14. 35	3022.99	210.09	3030.33	7.34	
		190		6 53	42.95	+2963.67	—2 63. 18	+2971.20	7. 53	
330	53 Aurigæ	- 17	-	6 22	50. 332	+ 381.037	— O. 22 I	+ 381.284	— 0. 247	
	1	18	50 <u>3</u>	6 28	52. 203	380. 781	0. 317	381.030	0. 249	
331	γ Geminorum .	- 17	5 10	6 23	33. 234	+ 346.891	— o. o78	+ 346.621	+ 0.270	-0,001
	i	18	0 426	6 29	2. 737	346. 790	0. 133	346. 525	0. 265	
		190	ю!	6 31	56. 114	346. 715	0. 164	346. 453	0. 262	
332	54 Aurigæ	. 17	5 5	6 24	5. 718	+ 378.845	- 0. 232	+ 379.082	— o. 237	
332	54 manga	18		· .	5. 501	378.580	0. 326		0. 242	
				•					:	
333	25 Geminorum .	. 17				+ 378.772			— 0. 078	
		18	50 _, 7	6 31	53- 554	378. 486	0. 348	378. 565	0.079	
334	26 Geminorum .	. 17	55 5	6 28	7. 951	+ 349.790	— o. 147	+ 349.774	+ 0.016	
		18	50 ¦ 12	6 33	40. 176	349. 623	o. 206	349.611	0.014	
335	ε Geminorum .	. 17	· 55 5	6 28	50. 942	+ 369.755	— o. 254	+ 369.864	o. 10g	
333	· commorata :	18			42. 084			369. 586	0, 112	
_				ļ.		1			!	
336	28 Geminorum .	. 17	- 1	-	-	+ 381.061			— o. o63	
		18	9	6 35	15. 028	3 80. 7 07	0. 421	380. 772	0, 065	
337	a Canis Majoris .	. 17	55	6 34	21. 105	+ 264.453	_ o. o59		- 3.620	-o. o86
		18	;o	6 38	32. 307	264. 392	0.069	268, 094	3. 702	
		19	ю'	6 40	44- 494	264. 356	0. 073	268. 102	3. 746	
338	33 Geminorum .	. 17	, ; ; ; ;	6 35		+ 345.822	- 0.106	± 246 028	— o, 206	
JJ-		18		-	11. 753	345.610	0. 250	345. 820		
		1	<u> </u>		/33	3-3.0.0	3.230	;	5.210	

No. Star.		Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				0 / //		· "	,,	"	,,
322	a Argus	0.4	1850	— 52 3 6 55. 39	— 179.35	- 19. 25	— 180. 24	+ 0.89	
			1875	52 37 40.83	184. 16	19. 25	185.06	o. 9 0	
			1900	52 38 27.48	188.97	19. 25	189.87	0. 90	
323	19 Geminorum	6. 5	1755	+ 16 3 2.36	— 155.31	 50. 16	— 153. 32	— 1.99	1
		6.6	1850	16 0 12.20	202.90	50. 02	200. 90	2.00	1
324	20 Geminorum	8. o	1755	+ 17 55 39.61	- 156.11	— 50.95	— 157. 36	+ 1.25	
	1	6.3	1850	17 52 48. 33	204. 45	50. 81	205. 64	1. 19	
325	21 Geminorum	7.0	1755	+ 17 55 55.53	— . 154. 60	— 50. 92	- 157.49	+ 2.89	
<i>J J</i>	 	6.5	1850	17 53 5.70	202. 90	50. 78	205. 74	2.84	
326	49 Aurigæ	6.0	1755	+ 28 11 13 18	— 175. 82	- 54.92	— 172.81	- 3.01	
320	49	5.7	1850	28 8 1.40	227. 90	54. 72	224. 90	3.00	<u> </u>
7	22 Geminorum	• •	_			51. 38		-	
327	22 Gemmorum	7.5	1755 1850		225. 52	51. 22		— 0. 23 0. 18	
		•	-			•			
328	23 Geminorum	8.0	1755	+ 16 58 14.57	— 193.95	- 50.41	— 190. 96	- 2.99	
		7. 1	1850	16 54 47.60	241. 76	50. 25	238. 77	2. 99	
3 2 9	51 (H) Cephei	! • •	1755	87 15 59.39	+ 174.55		+ 179.62	— 5. 07	
	l i		1775	87 16 25.15	+ 84.45		+ 89.35	4.90	
		1	1800 1825	87 16 32.16 87 16 10.85	— 28. 75 141. 66		- 24. 08 137. 24	4. 67	
	1	5 3	1850		253. 32	449. 79	249. I5	4. 42 4. 17	
		, 3.3	1875	87 14 4.35	362.82	432.67		3.91	
	1		1900	87 12 20. 24	— 469. 33	—419. 26	— 465. 69	— 3. 64	
220	53 Aurigæ	7.5	1755	+ 29 10 2.85	— 201.94	— 55. 19	— 199.62	- 2. 32	
330	33 Aunga	7· 5 6. o	1850	29 6 26.16	254. 21	54.86	251.96	2. 25	
	O	i		-	— 210. 50	•	— 205. 80		
331	γ Geminorum	3.0	1755 1850	+ 16 35 2.90 16 31 20.22	258. 25	50. 15	205. 80 253. 50	- 4. 70 4. 75	— o. o <u>.</u>
	•	2.3	1900		283. 29	50.03	253. 50 278. 52	4· 73 4· 7 7	
		. ,	,		,				
332	54 Aurigæ	6.0	1755 1850	_	266. 58	— 54. 84 54. 60	— 210. 56 262. 57	- 4.04	
	•	'	-	28 23 24. 19	•		'	4. 01	
333	25 Geminorum	7.0	1755	+ 28 23 47.03	— 226.97	— 54-79	— 226. 24	- o. 73	
		6.5	1850	28 19 46. 72		54- 55	278. 20	0. 71	l
334	26 Geminorum .	5.5	1755	+ 17 51 38.56	— 255.75		— 245.67	—10. 08	
	I	5.7	1850	17 47 12. 75	303. 78	50.46	293. 56	10, 22	
335	e Geminorum	3.0	1755	+ 25 16 27.38	— 253. 08	— 53. 57	— 251.87	+ 1.21	
		3.3	1850	25 20 51.96	303. 86	53- 33	302. 52	1. 34	
336	28 Geminorum	6. o	1755	+ 29 11 31.67	— 258. 24	— 55. 02	— 255. 12	— 3. 12	
		6. o	1850	29 7 1.56	310. 38	54- 74	307. 28	3. 10	
337	a Canis Majoris	1.0	1755	— 16 23 53.31	— 420. 92	— 37. 56	— 299.62	—121.30	
JJ 1		1.0	1850	16 30 51.11	456. 54	37-44	335.67	120.87	
			1900	16 34 44.06	475.24	37.37	354. 58	120, 66	
338	33 Geminorum	6.0	: 1755	+ 16 27 23.22	— 310. T4	— 49.67	— 311.47	+ 1.33	
J)	, 22	0.0	1850	16 22 6.21	J	77.51	358. 58	33	I

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				à. m.	s.	<i>s</i> .	 s.	s. —	<i>s.</i>	
339	d Geminorum	1755	5	6 36	51. 365	+ 360. 348	— o. 307	+ 360.409	— o. o61	
		1850	7.	6 42	33- 547	360. 025	0. 374	360, 092	o. o 67	
340	37 Ceminorum	1755	5	6 40	13.831	+ 369.966	- 0.414	+ 370.259	- o. 293	
		1850	· 7	6 46	5. 100	369. 536	0. 493	369. 831	0. 295	i
341	39 Ceminorum	1755	5	6 43	40. 456	+ 370.871	— o. 466	+ 372. 129	— 1.258	
		1850	7	6 49	32. 560	370. 390	o. 546	371.646	1 256	1
342	40 Geminorum	1755	5	6 44	19. 393	+ 371.522	— o. 489	+ 371.649	— o. 127	
		1850	7	6 50	12. 106	371.020	o. 568	371. 150	0. 130	
343	41 Geminorum	1755	4	6 46	.10. 536	+ 345.418	0. 302	+ 345.551	— 0. 133	
		1850	3	6 51	38. 539	345. 106	0. 354	345. 244	0. 138	
344	e Canis Majoris	1755	5	6 49	0.020	+ 235.590	+ 0.138	+ 235.564	+ 0.026	
		1850	349	6 52	43. 891	235. 718	0. 132		0.027	•
		1900		6 54	41. 767	235. 784	0. 131	235. 759	0. 025	
345	ω Geminorum	1755	. 5	6 47	28. 157	+ 366.658	- 0.490	+ 366. 766	— o. 108	
		1850	16	6 53		366. 158	0, 562	366, 266	0, 108	
346	W 6h 1656	1850		6 54	29. 7		— 0.651	+ 373.534		
347	ζ Geminorum .	1755	5	6 49	33. 754	+ 356.880	- o. 431	+ 356.903	— o. o23	
347		1850	195	6 55	12. 586	356. 442	0. 492	356.464	0. 022	
348	44 Geminorum	1755	5	6 50	32. 452	+ 362.302	- 0.491	+ 362.345	- 0.043	
J4-	44	1850	8	-	16.407	361.804	0. 558	361.849	0.045	
349	45 Geminorum	1755	5	6 54		+ 344.922	— o. 394	+ 345.014	_	
347	45 ************************************	1850	11	6 59	45. 751	344. 525	0. 442	344. 628	- 0, 092 0, 103	
350	τ Geminorum	1755	5	6 55	31. 206	+ 383.562				
330	· ocumorum	1850	23	7 1	35. 220	382. 769	- 0, 790 0, 881	+ 383.858 383.067	0. 296 0. 298	
351	47 Geminorum	-	-	6 56						
33.	47 Cemmorum	1755 1850	18	7 2	9. 953 4. 647	+ 373.700 373.013	— 0. 684 0. 762	+ 373.787	o o87 o. o87	
252	A Cambo Malanto			•				373. 100	•	
352	δ Canis Majoris	1755 1850	5 129	6 58	26. 028 17. 586	+ 243.690 243.801	+ 0.116 0.118	+ 243.805		+0.003
		1900			19. 501	243. 860	0.117	243. 915 243. 973	0. 114	
25.1	В. Л. С. 2347	-					· ·		_	
353	B. A. C. 2347	1755 1850	1 3		16, 864 42, 792	+ 343. 280 342. 877	— 0, 400	+ 343.476	_	
	. P. Camina						0. 447	343.057	0. 180	
354	48 Geminorum	1755	5	• •	31.970	+ 365.960		+ 366.081		
		1850	15		19. 342	3 65. 338	0.690	365. 463	0. 125	
355	49 Ceminorum	1755	3		44. 032	+ 370.437	— o. 674		— 0. 113	
		1850	6		35.632	369. 762	0. 748	369. 883	0. 121	
356	50 Geminorum	1755			49. 137	+ 343.015		+ 343.034	— 0.019	
		1850	3	7 4	14. 812	342. 609	0.451	342. 626	0. 017	
357	51 Geminorum	1755	4		17.445	+ 345.350	— o. 438	+ 345.425	— o. o75	
		1850	71	7 4	45. 323	344.911	0.486	344- 990	0.079	
358	B. A. C. 2363	1755	1	6 59	28. 828	+ 367.061	— o. 658	+ 367.583	- o. 522	
		1850	9	7 5	17. 228	366. 404	0. 727	366. 911	0. 507	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
-	_		-			,,		·· –	.,
339	d Geminorum	6. 5	1755	+ 22 1 31.53	— 326. 25	- 51. 74	— 321. 28	— 4. 97	••
139		6. o	1850	21 55 58.30	375. 26	51.45	370. 31	4. 95	•
	()i		-					— 0. 14	
40	37 Geminorum	6. o 6. <u>3</u>	1755 1850	+ 25 39 25.48 25 33 28.61	— 350. 55 400. 69	- 52.95 52.61	— 350. 41 400. 59	0. 10	
		_					-		
34 I	39 Geminorum		1755	+ 26 22 40.56		- 52. 78	— 380. 06	+ 6.91	
		6. 3	1850	26 16 22.31	423. 11	52. 41	430. 19	7. 08	
42	40 Geminorum	6. 5	1755	+ 26 13 17.91	— 388. 46	- 53.00	— 385. 63	- 2.83	
		6. 3	1850	26 6 45.02	438.63	52.63	435.81	2. 82	
43	41 Geminorum	7. o	1755	+ 16 23 36.31		- 49. 18	— 401. 53	— 0. 20	
		6 . o	1850	16 16 52.53	448. 30	4 8. 8 6	448. 12	0. 18	
44	ε Canis Majoris	2. 5	1755	— 28 39 15.70	— 427. 01	— 33.41	 425. 73	— 1, 28	0, 00
		1.8	1850	28 46 16, 42	458. 69	33. 27	457. 41	1. 28	
			1900	28 50 9.92	475. 31	33. 21	474. 03	1. 28	
45	ω Geminorum	6. o	1755	+ 24 32 24.26	- 414.66	- 521 27	- 412,60	— 2.06	
		5.7	1850	24 25 26.82	464. 14	51.92	462.00	2. 14	
46	W 6h 1656	8. 2	1850	+ 27 3 3.9		— 52. 76	— 472. 42		
47	ζ Geminorum	4.0	1755	+ 20 54 20.90	— 432. 33	— 50. 78	- 430.54	— 1.79	
•	•	4.0	1850	20 47 7.36	480. 34	50. 33	478. 50	1. 84	
48	44 Geminorum		1755	+ 22 58 46.56	— 440. 49	- 51.38	- 438.90	— 1.59	
40	44 Geninorum	6. o	1850	22 51 24.95	489. 16	50.98	487. 53	1.63	
_	. Oznaka zaman		_					•	
49	45 Geminorum	6.0	1755	+ 16 17 55.79	- 482. 32 528. 40	- 48.69	- 470.99	-11.33	
		5.7	1850	16 9 55.67		48. 32	517.09	11. 31	
50	τ Geminorum	5. o	1755	+ 30 37 15.08	— 486. 78	— 54.07	- 481.33	- 5·45	
		4. 7	1850	30 29 8.32	537. 91	53. 56	532. 50	5.41	
51	47 Geminorum	6 . o	1755	+ 27 14 3.02		— 52. 75	— 486.82	 4. 81	
		6. o	1850	27 5 52. 24	541. 52	52. 25	536.63	4. 89	
52	δ Canis Majoris		1755	— 26 1 15.07	— 505. 17	— 34. 15	— 506. 10	+ 0.93	0.00
		2. I	1850	2 6 9 30. 36	537∙ 53	33-97	538. 4 6	0.93	
			1900	26 14 3.37	554-4 9	33.89	555· 42	0.93	
53	B. A. C. 2347		1755	+ 15 42 46.01	— 500. 28	- 48. 29	— 496. 21	— 4. 07	
		7⋅3	1850	· 15 34 29.02	545-97	47. 90	542.00	3 97	
54	48 Geminorum	6. o	1755	+ 24 30 48.75	— 503. 15	— 51.63	498. 42	— 4. 73	
		6. o	1850	24 22 27.55	551.97	51. 16	547. 12	4. 85	
155	49 Geminorum	8. o	1755	+ 26 8 0.01	— 504. 68	— 52. 10	— 500. 14	— 4. 54	
	••	7. 2	1850	25 59 37.13	553-95	51.62	549- 39	4. 56	
56	50 Geminorum	7. 5	1755	+ 15 33 55.03	 508. 79	- 48. 13	- 509 28	+ 0.49	
,,,	<u> </u>	7· 5	1850	15 25 30.00	554- 37	47. 79	554-95	0. 58	
557	51 Geminorum	5. o	1755	+ 16 33 4.80		— 48.47	— 513. 28		
3/	j. Cemmorum	5. 7	1850	16 24 30.95	563. 79	48. 07	559. 19	4.60	
0	B A C 2262				5 5 .,			•	: !
58	B. A. C. 2363		1755	+ 24 57 40.8		- 51.46	— 514.91 563.40	• • •	•
		7.3	1050	i= m4 3/ 40/0		50.99	303.40		

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right	ascension.	Centennial	Secular	Struve's precession.	Proper motion.	Sec. var.
!		퓠	N.u.					•		motion.
										 !
339	d Geminorum	1755	5	<i>à. n</i> 6 3		s. + 360, 348	- o. 307	s. + 360.409	- o. o61	s.
337	' Commorani	1850	3 7	6 4		360. 025	0. 374	360, 092	0.067	
2.0	· · · · · · · · · · · · · · · · · · ·	-	•	_ •					•	
340	37 ('eminorum	1755 1850	5 · 7	6 4		+ 369.966	- 0.414	+ 370. 259	- 0. 293	
1		1050	. /		6 5. 100	369. 536	0. 493	369. 831	0. 295	1
341	39 Ceminorum	1755	5	6 4		+ 370.871		+ 372.129	- 1.258	
		1850	7	6 4	9 32.560	370. 390	0. 546	371. 646	1 256	•
342	40 Geminorum	1755	5	6 4	4 19. 393	+ 371.522	— 0. 489	+ 371.649	— o. 127	
		1850	7	6 5	0 12.106	371.020	o. 568	371. 150	0. 130	
343	41 Geminorum	1755	4	6 4	6 ,10. 536	+ 345.418	— o. 302	+ 345.551	— o. 133	
		1850	3	6 5	1 38.539	345. 106	0. 354	345. 244	o. 138	
344	ε Canis Majoris	1755	5	6 4	9 0.020	+ 235.590	+ 0.138	+ 235.564	+ 0.026	
		1850	349	6 5	-	235. 718	0. 132	235.691	0. 027	
		1900		6 5	4 41. 767	235. 784	0. 131		0. 025	
345	ω Geminorum	1755	. 5	6 4	7 28. 157	+ 366.658	— o. 490	+ 366.766	— o. to8	
3.3		1850	16	6 5		366, 158	0. 562	366, 266	0, 108	
346	W 6h 1656	1850				0 0	_	Ū		
			• •				— o. 651	+ 373-534		
347	ζ Geminorum .	1755	5	6 4		+ 356.880	- o. 431	+ 356.903	— 0. 023	
		1850	195	6 5	5 12. 586	356. 442	0. 492	356. 464	0. 022	
348	44 Geminorum	1755	5	6 5		+ 362. 302	- 0.491	+ 362.345	— 0.043	
		1850	8	6 5	6 16.407	361.804	o. 558	361.849	0. 045	
349	45 Geminorum	1755	5	6 5	4 18, 260	+ 344.922	— o. 394	+ 345.014	- o. o 92	
		1850	11	6 5	9 45.751	344. 525	0. 442	344. 628	0. 103	
350	τ Geminorum	1755	5	6 5	5 31.206	+ 383.562	— o. 790	+ 383.858	— o. 296	
		1850	2.3	7	1 35. 220	382. 769	o. 881	383.067	0. 298	
351	47 Geminorum	1755	5	6 5	6 9.953	+ 373.700	— o. 684	+ 373. 787	o o87	
03	••	1850	18	-	2 4.647	373.013	0. 762	373. 100	o. o 87	
352	d Canis Majoris	1755	5	6 5		+ 243.690			_	
33-	" Canto Majoris	1850) 129	-	2 17.586	243.801	+ 0.116 0.118	+ 243.805 243.915	- 0. 115 0. 114	+0.∞3
		1900			4 19.501	243. 860	0.110	243. 913 243. 973	0. 113	
25.	В. А. С. 2347				7 16.864		-		_	
353	16. 11. (. 234/	1755 1850	1	•	7 10.804 2 42.792			+ 343.476		
	0.0		3			342.877	0. 447	343· º57	0, 180	
354	48 Geminorum	1755	5		7 31.970		- o. 620	. •	— O. 121	
		1850	15		3 19. 342	365. 338	o. 6 9 0	365. 463	0. 125	
355	49 Ceminorum	1755	3		7 44. 032	+ 370.437	— o. 674	+ 370.550	— 0.113	
		1850	6	7	3 35.632	369 . 7 62	0. 748	369. 883	0. 121	
356	50 Geminorum	1755		6 5	8 49. 137	+ 343.015	- 0. 404	+ 343.034	— 0.019	
		1850	3	7	4 14.812	342.609	0.451	342. 626	0.017	
357	51 Geminorum	1755	4	6 5	9 17.445	+ 345.350	- o. 438	+ 345.425	— o. o75	
		1850	71	-	4 45.323		0. 486	344. 990	0.079	
358	B. A. C. 2363	1755	1		9 28.828	+ 367.061			- o. 522	
		1850	9	_	5 17. 228	366.404	0. 727	366.911	-	
				•		J: /4-4		J y	1 307	1

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
	10	٤.		0 / "	., — 326. 25	"	"	"	
339	d Geminorum	6. 5 6. o	1755 1850	+ 22 1 31.53 21 55 58.30	375. 26	- 51. 74 51. 45	— 321. 28 370. 31	- 4.97 4.95	•
340	37 Geminorum	6. o	1755	+ 25 39 25.48	— 350. 55	- 52.95	— 350. 41	— 0. 14	
340	3/ Осинилин	6. 3	1850	25 33 28.61	400.69	52.61	400. 59	0. 10	
341	39 Geminorum	6. 5	1755	+ 26 22 40.56	— 373. 15	— 52. 78	— 380. 06	+ 6.91	
31	3,	6. 3	1850	26 16 22.31	423. 11	52.41	430. 19	7. 08	
342	40 Geminorum	6. 5	1755	+ 26 13 17.91	— 388. 46	— 53.00	— 385.63	- 2 , 83	
•	•	6. 3	1850	26 6 45.02	438.63	52.63	435.81	2. 82	
343	41 Geminorum	7. 0	1755	+ 16 23 36.31	— 401.73	— 49. 18	— 401. 53	- 0, 20	
		6. o	1850	16 16 52.53	448. 30	48.86	448. 12	0. 18	
344	e Canis Majoris	2. 5	1755	— 28 39 15.7 0	— 427. 01	- 33.41	— 425. 73	- 1, 28	0,00
		1.8	1850	28 46 16.42	458. 69	33. 27	457. 41	1. 28	
			1900	28 50 9.92	475. 31	33. 21	474. 03	1. 28	
345	ω Geminorum	6. o	1755	+ 24 32 24.26	— 414.66	- 52° 27	- 412.60	- 2.06	
		5. 7	1850	24 25 26.82	464. 14	51.92	462.00	2. 14	
346	W 6h 1656	8. 2	1850	+ 27 3 3.9		— 52. 76	— 472. 42		
347	ζ Geminorum	4.0	1755	+ 20 54 20.90	— 432. 33	— 5o. 78	- 430. 54	— 1.79	
	ı	4.0	1850	20 47 7.36	480. 34	50. 33	478. 50	1.84	
348	44 Geminorum	6. 5	1755	+ 22 58 46.56	— 440. 49	- 51.38	438.90	— 1.59	
	1	6. o	1850	22 51 24.95	489. 16	50. 98	487. 53	1.63	
349	45 Geminorum	6. o		+ 16 17 55.79	— 482. 32	48.69	— 470.99	—11.33	
	•	5: 7	1850	16 9 55.67	528. 40	48. 32	517.09	11.31	
350	τ Geminorum	5. o	1755	+ 30 37 15.08	— 486. 78	— 54. 07	— 481. 33	- 5.45	
		4. 7	1850	30 29 8.32	537. 91	53. 56	532. 50	5. 41	
351	47 Geminorum	6. 0	1755	+ 27 14 3.02	— 491.63	 52. 75	— 486.82	— 4. 8t	
		6. o	1850	27 5 52. 24	541. 52	52. 25	536.63	4. 89	
352	δ Canis Majoris		1755	— 26 1 15.07	— 505. 17	— 34. 15	— 506. 10	+ 0.93	0.00
		2. I	1850 19 0 0	26 9 30. 36 26 14 3. 37	537- 53 554- 49	33· 97 33. 89	538. 46 555. 42	o. 93 o. 93	
	D. A. C		· .	•					
353	B. A. C. 2347			+ 15 42 46.01 15 34 29.02	— 500. 28 545·97		— 496. 21 542. 00	- 4. 07 3 97	
	. P. Caminamum		-				-		
354	48 Geminorum	6. o		+ 24 30 48.75 24 22 27.55	— 503. 15 551. 97		— 498. 42 547. 12	4. 73 4. 85	
25.	49 Geminorum			+ 26 8 0.01			— 500. 14	— 4.54	
335	49 Ochimorum		1850	25 59 37.13	553.95	· ·	549.39		
356	50 Geminorum			+ 15 33 55.03			— 509 28 i		4
220	Jo commonant	7· 5	1850	15 25 30.00	554.37		554-95		
357	51 Geminorum			+ 16 33 4.80			- 513.28		
331	J			16 24 30.95	563. 79		559. 19	4.60	1
358	B. A. C. 2363	ı				— 51.46	- 514.91		
230	2505	7· 3		+ 24 57 40.8					•

RIGHT ASCENSIONS.

Star.	Epoch.	Number of observations.	Rig	tht a	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
			h.		s.	s.	<i>s</i> .	s.	s.	s.
eminorum .	- 1755	4	6	59	41.611	+ 368.476	1	+ 368.056	+ 0.420	
	1850	15	7	5	31. 338	367. 78 1	o. 763	367. 378	o . 40 3	
Geminorum .	. 1755	5	7	0	37. 704	+ 376.334		+ 376.510	— o. 176	
	1850	10	7	6	34. 857	375-553	o. 861	375. 733	0, 180	
Geminorum -	- 1755	5	7	3		+ 345.908	— 0.490	+ 346.207	— 0. 299	
	1850	86	7	9	28. 194	345. 42 3	o. 533	345. 722	0. 299	
eminorun .	. 1755	5	7	5	28. 210	+ 359. 725	— o. 653	+ 359.922	— o. 197	
	1850	619	7	11	9. 646	359. 079	0. 710	359. 271	0. 192	
	1900		7	14	9. 096	358. 717	0. 739	358. 910	0. 193	
eminorum .	. 1755	5	7	7	28. 291	+ 355.352	— o. 629	+ 355.831	— 0.479	
	1850	11	7	13	5. 584		0.684		0.479	:
Geminorum .	- 1755	. 5	7	8	30. 944	+ 367.405	- 0, 792	+ 367.960	o. 555	
	1850	6	7	14	19.610	366, 620	0.859	367. 178	o. 558	
Geminorum .	- 1755	· 2	7	- 8	43. 577	+ 361.984	— o. 725		— o. 295	
	1850	3	7		27. 126	361.266	0. 787		0, 298	[
Piazzi VII 67 .		3	-					1		
nazzi vii 07 .	- 1755 1800		7	5	8. 40 55. 84	+ 640.44	- 7.23 7.66	+ 640. 16	+ 0.28	
	. 1850	. • •	7 7	9 15	13. 39	637.09	7.00 8.12	636. 82 632. 88	0. 27	
	1900		7	20	28.93	633. 14 628. 96	8. 58	628. 73	o. 26 o. 23	!
	-	• •	•		- •	1	_	1	,	
Geminorum .	. 1755	5	7	9	17. 146	+ 375. 181	— o. 890	+ 375.140	+ 0.041	
	1850	14	7	15	13. 155	374- 299	0.967	3 74- 2 57	0, 042	
Geminorum .	- 1755	5	7	_		+ 374.627	- o. 928	+ 375. 526	— o. 899	1
	1850	48	7	16	24. 294	373. 710	1.003	374. 615	0. 905	!
Geminorum .	1755	5	7	12	28. 753	+ 354.969	— o. 68o	+ 355.094	 0, 125	
	1850	3	7	18	5.658	354. 298	0. 732	354. 426	0. 128	
Geminorum .	- 1755	5	7	13	10. 394	+ 357. 728	— o. 734	+ 358. 108	— 0. 380	
	1850	29	7	18	49. 896	357. 004	0. 791	357. 389	0. 385	I
Geminorum .	. 1755	5	7	14	2. 881	+ 375.840	— o. 990	+ 376. 149	— o. 309	
	1850	6	_	••	59. 471		1.063	1	0. 314	
Geminorum .	. 1755	7			32. 521			+ 375. 520	_	
	1850	9	7				1. 056		0. 1/9	:
) A G		-	-							ļ
3. A. C. 2472 .		7	7	21	19. 638	+ 374.243	— 1.070	+ 374.466	— o. 223	İ
V 7 ^h 685	. 1850		7	23	9.4		- o. 676	+ 346.354		:
Geminorum .	- 1755		7	19	2 5. 779	+ 342.973	— o. 6o5	+ 343.408	0.435	
	1850	4	7		51. 324	342. 379	0.645			
Geminorum .	. 1755		7	18	55. 563		— I. 216	+ 386, 800	1	—o. oo3
	1850	623	-		1. 292	384. 367			_	J. 30
	1900			-	-	383. 696				
Geminorum .	. 1755	1	7					i		:
				-					1	l
		1850 1900	1850 623 1900 inorum 1755 1	1850 623 7 1900 7 inorum 1755 1 7	1850 623 7 25 1900 7 28 inorum 1755 1 7 19	1850 623 7 25 1.292 1900 7 28 13.309 inorum 1755 1 7 19 36.343	1850 623 7 25 1.292 384.367 1900 7 28 13.309 383.696 inorum 1755 1 7 19 36.343 + 343.768	inorum 1755 1 7 19 36. 343 + 343. 768 — 0. 606	1850 623 7 25 1.292 384.367 1.321 385.692 1900 . 7 28 13.309 383.696 1.363 385.023 inorum . 1755 1 7 19 36.343 + 343.768 - 0.606 + 343.848	1850 623 7 25 1.292 384.367 1.321 385.692 1.325 1900 7 28 13.309 383.696 1.363 385.023 1.327 inorum 1755 1 7 19 36.343 + 343.768 - 0.606 + 343.848 - 0.080

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of prope motion.
		1		0 / ./	"	-	"		
359	52 Geminorum	7. 0	1755	+ 25 17 9.51	— 527.42	— 51.73	— 516. 71	10.71	
		6. 3	1850	25 8 25. 17	576.40	51.41	565.62	10. 78	
360	53 Geminorum	6. o	1755	+ 28 17 55.07	— 526, 83	— 52. 74	— 524.62	- 2.21	
		6. 3	1850	28 9 10.87	5 76. 68	52. 22	574. 50	2. 18	! }
361	λ Geminorum	4. 5	1755	+ 16 57 34.47	— 558. 18	— 48. 37	— 553. ∞	 5. 18	
		4.0	1850	16 48 22.44	603. 91	47-93	598. 70	5. 21	i r
362	J Geminorum	3. 5	1755	+ 22 24 33.97	— 567. oı	- 50. 16	— 565. 37	— 1.64	!
		3⋅3	1850	22 15 12.75	614.41	49. 62	612. 78	1.63	
			1900	22 9 59.35	639. 15	49. 34	637. 52	— 1.63	:
363	56 Geminorum	5.5	1755	+ 20 52 55. 78	— 584. 19	— 49.48	— 582. 15	- 2.04	
	ı	5.7	1850	20 43 18.53	630. 98	49. 05	6 28. 8 6	2. 12	
364	A Geminorum	6. o	1755	+ 25 29 48.75	- 594. 58	- 50. 89	- 590.95	— 3.63	l
-	1	5.7	1850	25 20 1.02	642.66	50. 34	639. 10	3. 56	
365	58 Geminorum	7. O	1755	+ 23 23 34.86	— 597. 21	— 50. 15	— 592. 7 1	- 4. 50	
, ,	1	6. <u>3</u>	1850	23 13 44.96	644. 61	49. 63		4- 47	
366	Piazzi VII 67		1755	+ 68 55 26.43	566.35	— 80.48	— 562. 64	— 3. 71	
,,,,			1800	68 51 2.58	606. 38	88. 42	602, 66	3. 72	
	•	5. 5	1850	68 45 48.39	650. 28	87. 19	- !	3. 74	
		1	1900	68 40 12.41	693. 54	85. 88	689. 78		
367	59 Geminorum	6.5	1755	+ 28 5 10.75	- 595.94	- 52.00	— 597.41	+ 1.47	
•	1	6.9	1850	27 55 21.23	645.06	51.42		1.44	
368	ι Geminorum	4.0	1755	+ 28 15 36.46	— 616. 35	— 51.70	— 607. 36	— 8.99	
300		4.0	1850	28 5 27.70	665. 18	51.11	656. 31	8.87	
369	61 Geminorum	7· 5	1755	+ 20 43 25.67	-	— 48.93	— 624. 02	— 2. <u>52</u>	
3 ~y .	di deminorum	6.0	1850	20 33 8.45	672. 78	48. 41		2. 48	
	6- 0	į.				• •			
3 7 0	63 Geminorum	6. o	1755 1850	+ 21 55 21.19 21 44 49.33	641. 77 688. 37	- 49. 30 ·	— 629. 80 676. 36	—11.97 12.01	İ
						•	, ,		
371	b ¹ Geminorum		1755	+ 28 35 54.59			— 637. o6		
		5.3					685. 87	Į.	
372	b ² Geminorum			+ 28 23 48.60					!
		_		28 13 13.57			!		
373	B. A. C. 2472	8. o	1850	+ 28 13 0.90	— 701.88	 50. 86	— 696. 88	− 5.00	
374	W 7 ^h 685	6. 2	1850	+ 17 24 4.4		- 46.93	— 711.85		
375	67 Geminorum	7.0	1755	+ 16 8 32.36	- 682.92	— 46. 7 0	— 681. 47	- 1.45	
				15 57 22.59		46. 19		1. 30	
376	a ² Geminorum	١	1755	+ 32 23 57.98	— 685.44	— 52.48	— 677. 37	8. 07	+ 0.2
J.		1.7		32 12 43.25		51. 72		• :	
	ı	•	1900	32 6 29.33		51. 32	-	7. 78	
377	68 Geminorum	5. o	1755	+ 16 19 53.01	— 685. 56	— 46. gz			
J. 1				16 8 40.65		46. 36			

RIGHT ASCENSIONS.

			<u></u> -							
No.	Star.	Epoch.	Number of observations,	Right a	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				h. m.	s.	s.	s.	. —	s.	s.
378	v Geminorum .	. 1755	5	7 20	47-574	+ 371.927	— I. o38	+ 372.114	— o. 187	
		1850	42	7 26	40 426	370. 910	1. 105	371. 105	0. 195	
379	f Geminorum .	. 1755	5	7 25		· + 347.878	— o. 722	+ 347.988	— 0. 110	
		1850	28	7 30	48. 584	347. 172	0. 764	347. 284	0. 112	
380 	a Canis Minoris .	. 1755		•	• •	+ 315.045	— o. 506	+ 319.701	— 4. 656	n. 061
		1850 1900		7 31	26, 842 4, 054	314. 556 314. 291	o. 525 o. 535	319. 267 319. 038	4. 71 I 4. 747	
. 381	σ Geminorum .	. 1755			_	+ 377. 578	— 1. 250	+ 377. 033		
3	o venimoralis .	1850	; 5 · 5	1 .	55. 818	376. 358	1. 318	375.832	+ 0. 545 0. 526	
382	CGeminorum .	- , 1755	5		8. 436	+ 368.077	- 1.071	+ 368. 287	— O. 210	!
		1850	,	7 34	57.615	367. 026	1. 141	367. 233	0. 207	
383	κ Geminorum	- , 1755	5	7 29	37. 531	+ 364. 330	- 1.030	+ 364.563	- o. 233	
	I	1850		7 35	23. 171	363. 323	1.090	363. 504	0. 241	
384	i β Geminorum .	. 1755		7 30	17. 274	+ 369.577	— 1. 186	+ 374. 327	 4. 750	+0. ∞07
	ı	1850		7 36	7. 828	368. 420	1. 247	373. 159	4. 739	
	[1900		7 39	11.881	367. 789	1. 278	372. 525	4. 736	
385	79 Geminorum .	. 1755	1	7 30	45. 119	+ 353.677	— o. 864	+ 354.077	 0.400	•
1	1	1850	6	7 36	20. 714	352. 834	0. 910	353· 233	o. 399	!
386	□ g Geminorum .	- : 1755	5		54. 863	+ 349.055	— o. 816	+ 349.606	- o. 551	1
}	i	1850	32	7 37	26. 092	348, 262	o. 8 55	348. 813	0. 551	
387	82 Geminorum .	1755	5	7 33	52, 920	+ 360,671	- 1.013	+ 360.917	— 0. 246	į
	!	1850	11	7 39	35.093	359. 685	1.063	359-935	0. 250	
388	84 Geminorum .	1755	2	7 38	26, 091	+ 358.438	- 1. 028	+ 358. 473	- 0. 035	!
.0.		1850	7	7 44	6. 136	357. 440	1.074	357. 480	0. 040	
389	, ø Geminorum	1755	118	7 38	27. 370 18. 626	+ 369. 709 368. 505	— 1. 240 1. 295	+ 369.971 368.765	— 0. 262 0. 260	-0,001
1		1900		7 47	22. 716	367. 851	1. 322	368. 112	0. 261	1
390	85 Geminorum .	. 1755	5	7 41	20. 379		_	+ 352.219	— o. 208	İ
3,		1850	11	7 46		351.080	0. 997	351 293	0. 213	:
391	1 Cancri	. 1755	5	7 43	3. 418	+ 342. 292	— o. 810	+ 342. 504	- 0.212	1
		1850	22	7 48	• .	341. 507	0.842	341. 722	0. 215	Ì
392	ω Cancri	. 1755	5	7 46	4. 341	+ 365.468	— I. 27I	+ 365.485	— o. o12	i
		1850	10	7 51	50. 956	364, 246	1. 301	364. 26 4	0.018	:
393	B. A. C. 2658	1755		7 46	31.848	+ 347.923	— o. 929	+ 347.924	- 0,001	
		1850	7	7 52	1.950	347. 025	0.962	347. 025	0,000	i
394	3 Cancri	. 1755	1	7 46	43.379	+ 345.594	— o. 896	+ 345.738	- o 144	
	 	1850	19	7 52	11. 284	344. 729	0. 926	344. ⁸ 73	0, 144	
395	ω ² Cancri	. 1755		7 46		+ 364.449	— 1. 24 6	+ 364. 598	— o. 149	
	: 	1850	5	7 52	40. 492	363. 243	1. 292	363. 392	0. 149	
396	5 Cancri	. 1755	3	7 47	30. 793	+ 343.835	— 0, 862	+ 343. 723	+ 0.112	
i	i	1850	' 21 	7 52	57. 043	343 002	0. 892	342. 895	0. 105	1
! _	1	ı	1	1						

DECLINATIONS.

i : No.	Star.	۔ ٿ	— Declination.	Centennial Secular		roper Sec. var.
		Mag. - Epoch.	Zeemation.	variation. variation.	precession. m	otion.
!		:	0 / //	" "	,,	. ,,
. 378	v Geminorum	5.0 1755	+ 27 24 58.63	— 704. 39 ¹ — 50. 60	— 692. 77	-11.62
		4. 3 1850	27 13 26. 72	752. 15 49. 94	74 0. 56	11. 59
379	f Geminorum : .	6. o 1755	+ 18 12 34.82	— 728.98 — 47.11	— 729. 72 	- 0. 74
		6.0 1850	18 0 41.11	773. 46 46. 54	774. 07	0.61
3 8 0	a Canis Minoris	1.5 1755	+ 5 49 59 53	- 843.64 - 41.7 6	— 739. 13 —	104. 51
:	ı	1.0 1850	5 36 19.30	883. 10 41. 32		103. 90
		1900	5 28 52.59	903. 70 41 07	~799. 88	103. 82
381	σ Geminorum	6.0 1755	+ 29 27 8.77	— 775. 04 — 50. 82	— 751.32 —	-23. 72 [!]
!		5.0 1850	29 14 29.67	822. 97 50. 08	799. 19	23.78
382	c Geminorum	6.0 1755	+ 26 20 40. 12	— 765. o7 — 49. 38	— 760, 85 —	- 4. 22
		6.0 1850	26 8 11. 10	811. 73 48. 85	807. 44	4. 29
383	κ Geminorum	4.0 1755	+ 24 57 44.70	- 771. o8 - 48. 84	— 764. 79	- 6. 29
	•	3. 7 1850	24 45 10 23	817. 17 48. 18	810. 8 6	6. 31
384	β Geminorum	2.0 1755	+ 28 35 41.15	776.67 48.85	— 770. 18	- 6.49 + 0.62
		1.3 1850	28 23 1.38	822. 73 48. 10	816.81	5. 92
		1900	28 16 4.02	846. 67 47. 70	841.07	5. 60
385	79 Geminorum	7.0 1755	+ 20 52 53.72	— 772. 98 — 47. 22	— 773.91 	- 0.93
		6. 3 1850	20 40 18.17	817. 54 46. 59	818. 54	1.00
386	g Geminorum	6.0 1755	+ 19 5 7.52	— 789. 10 — 46. 56	— 783. 30	- 5. 8o
		5. 3 1850	18 52 16, 96	833. 06 45. 98	827. 22	5. 84
387	82 Geminorum	7.0 1755	+ 23 43 26.91	— 799. oo — 47. 88	— 799.13 +	- 0.13
		6. 3 1850	23 30 26 . 36	844. 16 47. 20	844. 33	0. 17
388	84 Geminorum	7.5 1755	+ 22 56 31.55	— 836. 52 — 47. 18	— 835. 54 —	- 0.98
		6.8 1850	22 42 55.68	881.00 46.47	88o. o5	0. 95
389	φ Geminorum	5. 0 1755	+ 27 22 35.43	- 838. 21 - 48. 73	— 835. 74	- 2.47 + 0.01
		5.0 1850	27 8 57. 26	884. 11 47. 92	881.65	2.46
		1900	27 1 29.23	907.97 47.50	905. 51	2.46 :
390	85 Geminorum	6. 5 1755	+ 20 30 31.40	— 861.91 — 36.10	— 858.60 —	- 3.31
ı		6. 0 1850	20 16 31.89	905. 37 45. 41	902.00	3.37
391	1 Cancri	6.0 1755	+ 16 25 25.12	— 877. 02 — 44. 56	– 872. 15 <i>–</i>	- 4.87
		6. 3 1850	16 11 11.94	9:9.05 43.92	914. 21	4.84
392	ω' Cancri	6.0 1755	+ 26 2 28.01	- 895. 37 - 47. 43	— 895. 81 	- 0.44
		6.0 1850	25 47 56.14	940. 03 46. 58	940. 43	0.40
393	В. Л. С. 2658	7. 5 1755	+ 18 53 42.15	— 899. 16 — 44. 98	899.44 -	- o. 28
1	ı	7. 2 1850	18 39 7.76	941.56 44.29	941.90	0. 34
394	3 Cancri	6. o 1755	+ 17 57 33.63	- 903. 26 - 44 . 64	— 900.94 —	- 2. 32
:	!	6.0 1850	17 42 55.49	945.34 43.96	943. 05	2. 29
395	ω ² Cancri	6. 5 1755	+ 25 44 29.80	— 901.94 — 47.08		- 0.49
		6. 3 1850	25 29 51.84	946. 29 46. 29	946. 81	0. 52
396	5 Cancri	6. o 1755	+ 17 6 35.16	- 908.69 - 44.39	— 907. 10 —	- 1.59
	i	6. 3 1850	16 51 51.97	950. 56 43. 75	948. 92	1.64
<u> </u>	· 				-	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	• Right a	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
			-	h. m.		<i>s</i> ,	s.	s.	s.	s
397	6 Cancri	1755	5	7 48		+ 371.395	- I.42I	+ 371.536	— o. 141	
		1850	156	7 54	17. 868	370. 021	1.471	370. 166	0. 145	
398	7 Cancri	1755	5	7 49	20. 798	+ 356.371	— 1. 122	+ 356. 788	- 0.417	
		1850	3	7 54	58. 839	355. 287	1. 161	355. 707	0.420	
399	8 Cancri	1755	5	7 51	24. 176	+ 335.887	— o. 7 7 6	+ 336.036	— 0. 149	İ
		1850	16	7 56	42.915	335. 139	o. 799	335. 294	0. 155	1
400	μ^1 Cancri	1755	5	7 51	45. 421	+ 357.719	— 1. 176	+ 357.922	- o. 203	
		1850	9	7 57	24. 717	356. 584	1.215	356. 79 0	0. 206	1
401	B. A. C. 2703	1755	I	7 52	4. 808	+ 356. 307	- 1. 167	+ 357.460	— 1. 153	:
,		1850	8	7 57	42. 767	355. 180	1. 205	356. 331	1. 151	1
402	 3 (H) Ursæ Majoris.	1755		7 48	4. 57	+ 620. 59	-11.31	+ 620.02	+ 0.57	
402	5 (11) Olsa majoris.	1800		7 52		615.43	11. 56	614.87	0.56	
	!	1850		7 57		609. 5 9	11.80	609. 03	0. 56	
		1900		8 2		603.63	12. 02	603. 08	0. 55	
403	: μ² Cancri	1755	5	7 53	18, 806	+ 355. 364	— 1.142	+ 355. 220	+ 0.144	
7~3	,	1850	20	7 58		354. 263	1. 176		0. 148	
404	II Cancri			-		+ 369.874	- 1.461	+ 369.981	0. 107	
404	i Cancri	1755 1850	4	7 53 7 59	38. 725	+ 309.874 368.464	1, 508		0. 110	
			_							
405	12 Cancri	1755	5	7 54		+ 337.024	- 0.812	+ 336. 963 336. 182	0.060	
		1850	24	8 o	19. 212	336. 242	0. 835			
406	ψ^1 Cancri	1755	5	7 55	22. 390	+ 365. 204		+ 365. 525	— 0. 321	
		1850	3	8 i	8. 702	363. 86 8	1.427		0. 327	i
407	15 Argus	1755	5	7 57	6, 810	+ 255.314	+ 0.091	+ 255.989	— o. 675	+0.004
	!	1850	207	8 1	9.400	255. 404	0. 098		0.670	
	1	1900		8 3	17. 114	255· 4 54	0. 102	256. 123	0.669	
408	ψ² Cancri	1755	5	7 55	39- 435	+ 364 090	_	+ 364.686	— o. 596	1
		1850	32	8 i	24. 678	362. 730	1.452	363. 35 0	0. 620	1
409	ζ ¹ Cancri	1755	5	7 58	7. 990	+ 346.033			+ 0. 398	
	1	1850	64	8 3	36. 259	345. 055	1.038	344. 6 <u>7</u> 4	0. 381	
410	χ Cancri	1755	5	8 5	8. 161	+ 367.627	— 1.621	+ 367.753	— o, 126	
		1850	11	8 10		366. 07 0	1.657	366. 224		
411	B. A. C. 2788	1850	13	8 11	35. 62o	+ 351.121	— 1.239	+ 350. 763	+ 0.358	
	•		_			+ 359.486		+ 359.642	— o. 156	
412	λ Cancri	1755 1850	5 45	8 5 8 11	55. 702 36. 587	+ 359.480 358.160	1.413	358. 313		
	n									İ
413	d ¹ Cancri	1755	5					+ 346. 135	0. 483	
	1	1850	82		46. 161	344. 588	1. 130	345. 070		:
414	21 Cancri	1755	5		29. 932	+ 329.668				1
		1850	8	-	42. 760		o. 798	328. 969	0. 053	
415	B. A. C. 2810	1755	I			+ 343-437		+ 343.492		
		1850	3	8 16	12. 863	342. 4 03	1.098	342, 462	0. 059	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
397	6 Cancri	5· 5 5· 4	1755 1850	0 / " + 28 27 31.98 28 12 36.86	" — 919.66 964.68	// 47. 82 46. 97	" — 914. 26 959. 28	" — 5.40 5.40	,,
398	7 Cancri	7· 5 6. 3	1755 1850	+ 22 44 9.29 22 29 12.70	- 922. 18 965. 27	- 45· 74 44· 97	- 921.40 964.54	— o. 78 o. 73	
399	8 Cancri	6. o 6. o	1755 1850	+ 13 47 47·45	- 945.40 98 5 .84	- 42. 90 42. 25	937. 36	- 8. o ₄ 8. o ₂	
400	μ ¹ Cancri	6. o 6. 3	1755 1850	+ 23 18 49.53 23 3 33.51	- 942.66 985.68	- 45. 67 44. 89	— 940. 11 983. 12	- 2. 55 2. 56	
401	B. A. C. 2703	7. 8 7. 5	1755 1850	+ 23 8 19.01 22 53 0.03	→ 945.93 988.63	- 45· 33 44· 56	- 942. 58 985. 36	- 3 35 3.27	
402	3 (H) Ursæ Majoris.		1755 1800	+ 69 9 30. 51 69 2 32. 39	- 911.22 947.03	- 80. 33 78. 80	- 911.51 947.29	+ 0. 29 0. 26	
		5⋅3	1850 19 00	68 54 29. 10 68 46 6. 54	986. 00 1024. 10	77. 08 75. 32	986, 22 1024. 28	o. 22 o. 18	
403	μ ^q Cancri	6. 5 5· 7	1755 1850	+ 22 16 18.61 22 0 46.46	— 959. 82 1002. 51	- 45· 33 44· 55	952. 12 994. 71	— 7. 7 0 7. 80	
404	11 Cancri	7. o 7. o	1755 1850	+ 28 10 17.85 27 54 44.60	— 960, 19 1004, 44	— 47. 02 46. 15	— 955.86 1000.13	- 4.33 4.31	
405	12 Cancri	6. o 6. g	1755 1850	+ 14 20 1.83 14 4 24.24	— 966. 76 1007. 00	— 42. 70 42. 02	— 965. 02 1005. 24	— 1. 74 1. 76	
406	ψ ¹ Cancri	7· 5 6. 8	1755 18 5 0	+ 26 32 37.92 26 16 51.98	— 973.91 1017.41	- 46. 21 45. 36	— 967.96 1011.48	- 5.95 5.93	
407	15 Argus	3. 5 3. 2	1755 1850 1900	- 23 36 47.59 23 52 29.96 24 0 57.43	- 976. 82 1007. 05 1022. 83	- 31.99 31.62 31.48	981. 26 1011. 57 1027. 39	+ 4.44 4.52 4.56	+ 0.09
408	ψ ² Cancri	7· 5 5· 7	1755 1850	+ 26 13 46.22 25 57 29.09	— 1006, 85 1050, 14	- 45. 99 45. 15	— 970. 13 1013. 50	-36. 72 36. 64	
409	ζ¹ Cancri	6. o 4. 7	1755 1850	+ 18 21 54.76 18 5 42.94	- 1002. 36 1043. 45	- 43.61 42.91	- 988, 90 1030, 02	—13. 46 13. 43	
410	χ Cancri	6. o 5. 3	1755 1850	+ 27 59 23. 16 27 41 56. 63	— 1080. 13 1122. 94	- 45. 53 44. 61	— 1041. 88 1084. 60	—38. 25 38. 34	
411	B. A. C. 2788	6.0	1850	+ 21 13 0.17	— 1094. 62	- 42.58	— 1089. 39	- 5. 23	
412	λ Cuncri	6. o 5. 7	1755 1850	+ 24 46 25.00 24 29 25.52	— 1052. 23 1093. 89	- 44. 29 43. 42	— 1047. 87 1089. 45	- 4. 36 4. 44	
413	d ¹ Cancri	6. o 6. o	1755 1850		1115. 13	41.40	— 1072. 90 1112. 60	- 2. 52 2. 53	
414	21 Cancri	7. o 6. 3	1755 1850	+ 11 24 10.12 11 6 41.72	1122.38	- 40. 03 39. 32	— 1081. 75 1119. 45	- 2.93 2.93	
415	B. A. C. 2810	7·5 7·0	1755	+ 17 57 43.97 17 40 4.02	— 1096. 07 1135. 29	- 41.68 40.89	— 1083. 84 1123. 13	—12. 23 12. 16	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right a	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
416	d ² Cancri	1755 1850	5	h. m. 8 11 8 17	5. 55. 965 20. 090	3. + 341.701 340.664	- 1.080 1.104	s. + 343.094 342.068	5. - 1.393 1.404	5.
417	ø² Cancri (mean)	1755	35	8 11 8 17	55. 676 42. 457	+ 365.805	- 1.612 1.644	+ 365.943 364.398	- 0. 138 0. 140	
418	v ¹ Cancri	1755 1850	3	8 12 8 17		+ 359.611	- 1.473 1.501	+ 360.065	- 0.454 0.454	
419	27 Cancri	1755 1850	5	8 13 8 18	9. 476 25. 929	+ 333-534 332.680	- 0.892 0.906	+ 333.727 332.880	- 0. 193 0. 200	
420	υ ^g Cancri	1755 1850	5	8 14 8 19	2. 781 42. 690	+ 358.499 357.095	- 1.465 1.492	+ 358.856 357.456	- 0. 357 0. 361	
421	29 Cancri	1755 1850	5 36	8 14 8 20	55. 480 14. 819	+ 336, 606 335, 685	- 0.963 0.976	+ 336.810 335.897	- 0, 204 0, 212	
422	υ ^s Cancri	1755 1850	5 16	8 16 8 22	58. 805 37. 891	+ 357.641 356.221	- 1.483 1.507	+ 358. 294 356. 875	- 0.653 0.654	
423	θ Cancri	1755 1850	5 43	8 17 8 23	35. 687 2. 239	+ 344. 291 343. 182	- 1.158 1.176	+ 344-793 343.685	- 0, 502 0, 503	
424	η Cancri	1755 1850	3 221	8 18 8 24	30. 151 1. 661	+ 349-573 348-344	+ 1,286 1,303	+ 349.809 348.583	- 0, 236 0, 239	
425	υ¹ Cancri	1900 1755 1850	5	8 26 8 18 8 24	55. 670 28. 728	347. 690 + 357. 457	- 1. 493	347. 931 + 358. 099	- 0. 642	
426	35 Cancri	1755 1850	5 7	8 24 8 21 8 26	7. 635 12. 435 41. 691	356, 028 + 347, 183 345, 986	1. 516 - 1. 252 1. 269	356, 661 + 347, 624 346, 422	0. 633 - 0. 441 0. 436	
427	B. A. C. 2899	1850	3	8 29	10.498	+ 344.820	- 1. 259	+ 345-443	- 0.623	
428 429	B. A. C. 2907	1755		8 30	31. 989 35. 962	+ 346. 198 + 347. 205	- 1. 297 - 1. 288	+ 345.958	+ 0.240 - 0.309	
430	B. A. C. 2914	1850	5	8 31	5. 224 13. 898	345.975 + 345.733	- 1. 298	346. 279 + 345. 777	0. 304 — 0. 044	
431	39 Cancri	1755 1850	1 25	8 25 8 31	28. 357	+ 347-445 346. 199	- 1, 305 1, 320	+ 347.958 346.712	- 0.513 0.513	
432	40 Cancri	1755 1850	23	8 26	3. 979 33. 495	+ 347.481 346.236	- 1. 303 1. 317	+ 347.868 346.624	- 0.387 0.388	
433	B. A. C. 2919	1755 1850	3	8 26 8 31	16. 031 45. 041	+ 346.943 345.708	1. 307	+ 347. 202 345. 966	- 0, 259 0, 258	
434	e Cancri	1755	7	8 26 8 31	50.409	+ 346. 366	1, 282	+ 346.921 345.694	- 0. 555 0. 553	
435	e Cancri	1755 1850	12	8 26 8 32	36. 651 6. 057	+ 347. 361 346. 123	- 1. 296 1. 310	+ 347. 267 346. 025	0.098	
436	B. A. C. 2925	1755	7	8 26 8 32	51. 241 19. 663	+ 346, 321 345 091	- 1, 288 1, 302	+ 346.938 345.706	- 0.617 0.615	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
416	d ² Cancri	6. 0	1755	0 / " + 17 50 1.39	— 1107.09	" — 41. 25	" — 1092. 29		"
417	φ ² Cancri (mean)	6. o 6. o 5. 7	1850 1755 1850	17 32 11.18 + 27 42 54.08 27 25 15.31	1145. 88 - 1093. 62 1135. 23	40. 42 - 44. 28 43. 33	— 1092. 25 1133. 90	14.67 — 1.37	
418	υ ¹ Cancri (1st star) .	7· 5 6. o	•	+ 25 19 10.41	- 1102.87	— 43.46	- 1093. 17 1134. 09	1. 33 — 9. 70 9. 64	
419	27 Cancri	6. ₅	1	+ 13 26 38.74	- 1111. 76 1149. 65	— 40. 27	— 1101. 26 1139. 12	—10. 50 10. 53	
420	υ ³ Cancri	6. 5 5. 8	1755	+ 24 56 17.85 24 38 18.61	— 1115. 72 1156. 22	— 43. 08 42. 17	— 1107. 78 1148. 32	- 7.94 7.90	
421	29 Cancri	6. o 6. o	1755 1850	+ 15 0 11.73 14 42 12.81	— 1116.61 1154.67	- 40. 43 39. 67	— 1114. 15 1152. 16	- 2.46 2.51	
422	υ ³ Cancri	6. 5 6. o	1755 1850	+ 24 53 17.53 24 34 58.56	— 1136. 73 1176. 77	- 42. 57 41. 74	— 1129. 10 1169. 18	- 7.63 7.59	
42 3	θ Cancri	5· 5 5· 7	1755 1850	+ 18 54 12.46 18 35 50.79	_	- 40. 99 40. 13	— 1133.49 1172.05	- 6.83 6.80	
424	η Cancri	6. o 5. 7	1755 1850 1900	+ 21 15 15.14 20 56 48.47 20 46 51.21	— 1145. 33 1184. 38 1204. 63	- 41. 52 40. 70 40. 28	— 1140, 10 1179, 08 1199, 26	- 5. 23 5. 30	
42 5	υ ⁴ Cancri	7· 5 5· 7	1755	+ 24 53 55.22	— 1145.55	- 42. 35 41. 42	- 1139. 92 1179. 78	5· 37 — 5. 63 5. 56	
426	35 Cancri	8. o 6. 3	•	+ 20 24 48.18	- 1160.93	— 40. 78 39. 92	— 1159.50	- 1.43 1.36	
427 428	B. A. C. 2899 B. A. C. 2907	7. 2 8. 8	_	+ 19 47 9.67 + 20 6 55.48	— 1211.62	- 39. 42 - 39. 50	— 1215. 17 — 1224. 69	+ 3.55 - 3.23	
42 9	38 Cancri	7. o 7. o	i	1	— 1189.42		— 1190.65	+ 1.23 1.28	
430 431	B. A. C. 2914	7. 2 6. o	1	+ 20 3 55.67 + 20 51 12.89		i	— 1229. 49 — 1193. 38	- 3.66 1.06	
•	40 Cancri	7. o 6. o	1850	20 32 0.18	1232. 18	39. 28		1.04	
433	B. A. C. 2919	7·3	1850	20 29 49.22 + 20 31 2.33	1231.63	39. 29 — 40. 11	1231. 74 — 1195. 31	o, 11 — 3. 86	
434	e Cancri	7· 3 6. 5	1850	20 11 45.15	1236. 85 — 1197. 43	39. 22 - 39. 99	1233. 12 — 1196. 03	3· 73 — 1. 40	
435	e Cancri	7. 2 7. 5	1850	20 4 16.87 + 20 34 4.74	1235. 00 — 1198. 70	39. 10	1233. 69 — 1197. 68	1.31 - 1.02	
436	B. A. C. 2925	7. I 7. 5	1850	+ 20 25 49.17	1236. 42 — 1202. 63	39. 26 - 39. 91	1235. 50 — 1199. 46	0. 92 - 3. 17	
		7. 7	1850	20 6 28. 79	1240. 13	39. 02	1237. 07	3. 06	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
437	B. A. C. 2931	1755 1850	1	h. m. s. 8 27 43.694 8 33 12.778	s. + 347.028 345.779	s. — 1. 308 1. 322	s. + 347.463 346.208	s. 0.435 0.429	s.
438	γ Cancri	1755 1850	5 146	8 29 4.085 8 34 35.901	+ 349-949 348.609	— 1. 406 1. 417	+ 350. 720 349. 376	- 0. 771 0. 767	
439	44 Cancri	1755 1850	7	8 29 10. 529 8 34 36. 209	+ 343.404 342.237	- 1. 224 1. 233	+ 343.659 342.490	- 0. 255 0. 253	
440	A ¹ Cancri	1755 1850	1 12	8 29 40.566 8 34 56.057	+ 332.552 331.640	- 0.957 0.962	+ 332. 584 331. 669	- 0.032 0.029	
441	δ Cancri	1755 1850	5 105	8 30 43.603 8 36 9.251	+ 343. 389 342. 185	— 1. 262 1. 272	+ 343. 524 342. 329	— 0. 135 0. 144	
442	δ Cancri	1755 1850	3	8 31 25.628 8 36 36.267	+ 327. 394 326. 583	— 0. 854 0. 854	+ 327.432 326.621	— 0. 038 0. 038	
443	A ² Cancri	1755 1850	5 17	8 33 28.742 8 38 42.422	+ 330.642 329.736	- 0. 954 0. 955	+ 331. 193 330. 288	— 0. 551 0. 552	
444	e Hydræ	1755 1850 1900	5 580 	8 33 46.884 8 38 49.741 8 41 28.883	+ 319.133 318.461 318.107	.— 0. 708 0. 707 0. 707	+ 320.418 319.747 319.392	- 1. 285 1. 286 1. 285	0.000
445	54 Cancri	1755 1850	3 5	8 37 20.952 8 42 39.865	+ 336. 226 335. 170	- 1.110 1.113	+ 337. 134 336. 074	- 0.908 2.904	
446	52 Cancri	1755 1850	3 8	8 37 25.961 8 42 46.630	+ 338.093 337.000	— 1. 150 1. 153	+ 338.407 337.315	- 0. 314 0. 315	
447	60 Cancri	1755 1850	5 18	8 42 31. 242 8 47 43. 840	+ 329. 504 328. 594	- 0.960 0.957	+ 329. 587 328. 674	- 0. 083 0. 080	
448	o¹ Cancri	1755 1850	10	8 43 33.108 8 48 52.632	+ 336.884 335.797	- 1. 143 1. 145	+ 336.464 335·374	+ 0.420 0.423	
449	ι Ursæ Majoris	1755 1850 1900	322	8 42 18.455 8 48 54.788 8 52 21.775	+ 419. 299 415. 085 412. 863	- 4. 430 4. 442 4. 446	+ 423. 804 419. <u>5</u> 85 417. 365	- 4. 505 4. 500 4. 502	+0.004
450	o² Cancri	1755 1850	5 18	8 43 52.369 8 49 12.228	+ 337. 240 336. 144	— 1. 155 1. 154	+ 336.923 335.822	+ 0.317 0.322	
451	c ² Cancri	1755 1850	170	8 45 3.649 8 50 16.716	+ 330.012 329.078	- 0. 984 0. 982	+ 329.822 328 890	+ 0. 190 0. 188	!
452	68 Cancri	1755 1850	4 7	8 47 56. 526 8 53 18. 144	+ 339. 141 337· 949	- 1. 255 1. 255	+ 339·349 338. 155	- 0. 208 0. 206	
453	ν Cancri	1755 1850	3 20	8 48 21.985 8 53 57.560	+ 354. 055 352. 419	1. 721 1. 724	+ 354. 128 352. 490	- 0. 073 0. 071	
454	σ² Ursæ Majoris	1755 1800 1850 1900		8 48 27.47 8 52 35.21 8 57 7.28 9 1 35.99	+ 553.61 547.52 540.77 + 534.07	-13. 58 13. 52 13. 44 -13. 36	+ 553.84 547.76 541.02 + 534.34	- 0. 24 0. 24 0. 25 - 0. 27	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				o / //	"	"	"	"	"
437	B. A. C. 2931	7.0	1755	+ 20 43 41.02	— 1206. 56		— 1205.60	— o. 96	
		7.5	1850	20 24 16.91	1244.04	39.00	1243. 13	0. 91	
438	γ Cancri	5. o	1755	+ 22 19 50.99	— 1219.39	— 40. 08	- 1214.94	- 4.45	
		4.3	1850	22 0 14.65	1257.00	39. 10	1252.63	4.37	
439	44 Cancri	8. o	1755	+ 19 0 35.71	- 1215.54	— 39. 30	— 1215. 72	+ o. 18	
		8. 3	1850	18 41 3.34	1252. 46	38. 42	1252.68	0. 22	İ
440	A ¹ Cancri	6.5	1755	+ 13 32 30.18	. — 1219.80	— 38. 03	- 1219.09	— o. 71	
••		6. o	1850	13 12 54.34	1255. 54	37. 22	1254.94	o. 6o	
441	8 Cancri	4.5	1755	+ 19 2 11.72	— 1249. 76	— 39. 2 0	- 1226.49	23. 27	
44 •	Cancil	4.0	1850	18 42 6.88	:	-	1263. 24	23. 33	
	1.0			•		-			
442	<i>b</i> Cancri	6.5	1755 1850	+ 10 57 4. 14 10 37 16. 73	- 1232. 37 1267. 32	- 37. 18 36. 40	- 1231.36 1266.30	- 1.01 1.02	
		5.7		• • • • • • • • • • • • • • • • • • • •		i			
443	A ² Cancri	6.0	1755	+ 12 59 29.78	— 1250. 80		— 1245.48	- 5. 32	
		6. o	1850	12 39 24.84	1285.80	36. 43	1280. 50	5. 30	
444	e Hydræ	4.0	1755	+ 7 18 2.84	— 1253.07	— 35. 82	— 1247.54	— 5.53	+ 0.13
	·	3⋅3	1850	6 57 56.37	1286. 75	35.06	1281.35	5. 40	
			1900	6 47 8.64	1304. 17	34. 66	1298.83	5. 34	
445	54 Cancri	6. 5	1755	+ 16 14 30.89	— 1265.85	— 37. 29	- 1271.87	+ 6.02	
		6. 3	1850	15 54 11.64	1300.87	36.43	1306.98	6. 11	
446	52 Cancri	7.5	1755	+ 16 53 39.58	— 1269. 15	- 37.55	- 1272.43	+ 3.28	
		8. o	1850	16 33 17.07	1304.41	36.68	1307. 74	3. 33	
447	60 Cancri	6. o	1755	+ 12 32 43.81	— 1308. 32	- 35.97	— 1306.53	— 1.79	
		6. o	1850	12 11 44.80	1342.05	35.07	1340. 28	1. 77	
448	o¹ Cancri	6. o	1755	+ 16 14 42.59	— 1311.4 6	— 36.67	 — 1313. 39	+ 1.93	
• • • •		5. 7	1850	15 53 40.27		35. 82	1347. 73	1.85	
440	Ursæ Majoris	3.5	1755	+ 48 59 0.28	— 1331.00	- 45.41	— 1305. 14	—25.86	+ 0.48
449	t Otsæ Majoris	3.0	1850	48 37 35.58	1373. 37	43. 76	1347.97	25.40	7 0.40
		J. 4	1900	48 26 3.46		42.90	1369. 92	25. 16	
450	o² Canari	6. o	1700			— 36.66		+ 2.29	
450	o ² Cancri	6. o	1850	16 9 13.27	1313. 23	1	- 1315. 52 1349. 85	2.23	
	a Commi		_		1	1		_	
451	ι ² Cancri	5.0		+ 12 47 23.11	- 1327. 39	- 35. 71 24. 82	- 1323.36	- 4. 03	
		4.0	1850	12 26 6.08	_	34. 82	1356. 80	4. 08	
452	68 Cancri	7-5	1755	+ 18 1 27.11	- 1341 45	— 36. 18	- 1342.21	+ 0.76	
		7.5	1850	17 39 56.55		35. 25	1376. 16	o. 78	
453	ν Cancri	6.0	1755	+ 25 23 58.33	— 1346. 72	— 37.74	— 1344.96	— 1.76	
		5⋅3	1850	25 2 22.07	1382, 08	36. 70	1380. 34	1. 74	
454	σ² Ursæ Majoris		1755	+ 68 6 6.39	- 1351.17	— 59. 30	- 1345.56	— 5.61	
		5.5	1800	67 55 52.41	1377-49	57.66	1371.90	5. 59	
		5.0	1850	67 44 16.53	1405. 86	55.85	1400. 28	5. 58	
			1900	+ 67 32 26. 70	— 1433.34	 54.08	- 1427. 74	 5.60	1

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	l roper motion.	Sec. var. of proper motion.
455	71 Cancri	1755 1850	3	л. 8 8	m. 51 57	5. 58. 401 20. 056	s. + 339.196 337.973	s. - 1. 289 1. 286	s. + 339.451 338.224	s. — 0. 255 0. 251	5.
456	В. А. С. 3103	1755 1850	3	8	52 57	29. 273 50. 637	+ 338.883 337.672	- 1.277 1.273	+ 338.865 337.654	+ 0.018 0.018	
457	73 Cancri	1755 1850	7	8	52 58	43. 781 1. 768	+ 335. 280 334. 166	- 1.175 1.171	+ 335.401 334.290	- 0, 121 0, 124	
458	« Cancri	1755 1850 1900	5 246	8 8 9	54 59 2	26. 998 37. 082 19. 944	+ 326.851 325.958 325.490	- 0.946 0.936 0.932	+ 326.944 326.047 325.579	- 0. 093 0. 089 0. 089	
459	78 Cancri	1755 1850	3 5	8	55 o	16. 090 37- 352	+ 338.791 337.551	- 1.309 1.302	+ 339.188 337.949	- 0.397 0.398	
460	ξ Cancri	1755 1850	4 16	8	55 o	13. 796 43. 583	+ 347.899 346.390	- 1.589 1.586	+ 348.011 346.503	- 0, 112 0, 113	
461	79 Cancri	1755 1850	5 15	9	56 1	13. 715 43. 352	+ 347. 741 346. 231	- 1.591 1.587	+ 347.751 346.239	- 0,010 0,008	
462	So Cancri	1755 1850	3 13	8	58 3	9.013 31.021	+ 339.597 338.315	- 1.352 1.346	+ 339.884 338.604	- 0, 287 0, 289	
463	π¹ Cancri	1755 1850	.4	9	58	51. 316 4. 707	+ 330. 426 329. 344	- 1. 143 1. 136	+ 334.193 333.097	- 3. 767 3. 753	
464	B. A. C. 3138	1755 1850	2 22	9	59	35. 064 2. 745	+ 345.668 344.187	- 1.562 1.556	+ 345.815 344.337	0. 150	
465	π ² Cancri	1755 1850	20	9	6	40, 256 56, 626	+ 333.581 332.460	1. 175	+ 333.815 332.696	- 0. 234 0. 236	
466	83 Cancri	1755 1850	5 196	9	10	16, o88 36. 145	+ 337. 533 336. 268	1. 354	+ 338. 321 337. 033	- 0. 788 0. 765	
467	t Argus	1850 1875 1900		9 9	13 14	24. 47 4. 51 24. 58	+ 160, 20 160, 14 160, 09	- 0, 23 0, 23 0, 23	+ 161. 10 161. 04 160. 99	- 0.90 0.90 0.90	k u [±]
468	1 (H) Draconis	1755 1775 1800 1825 1850		8 9 9	59 3 7 11	52. 86 13. 57 19. 55 20. 21 15. 63	+1012.49 994.85 973.23 952.08 931.44	-88. 92 87. 36 85. 45 83. 50 81. 51	+1013. 25 995. 62 974. 00 952. 85 932. 21	- 0. 76 0. 77 0. 77 0. 77 0. 77	
469	B A. C. 3206	1875 1900 1755 1850	2	9 9	19 22 10	5. 96 51. 32 55. 549 18. 365	911. 29 + 891. 68 + 340. 520 339. 094	79· 49 —77· 46 — 1. 508 1. 495	912. 05 + 892. 44 + 341. 230 339. 804	0. 77 - 0. 77 - 0. 710 0. 710	
470	c Hydræ	1755 1850 1900	10	9 9	15 20 22	32. 662 12. 950 40. 416	+ 295. 116 294. 967 294. 898	- 0. 168 0. 144 0. 131	+ 295. 246 295. 096 295. 025	- 0. 130 0. 129 0. 127	+0.002

. DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				0 / "	"	"	"	"	,,
455	71 Cancri	7∙ 5 8. o	1755 1850	+ 18 21 1.69 17 59 6.19	— 1367. 99 1401. 34	- 35. 58 34. 64	— 1368. 26 1401. 60	+ 0. 27 0. 26	
456	В. А. С. 3103	7. 5	1755			— 35. 50	- 1371.52		
		7.5	1850	+ 17 42 40.6		34. 56	1404. 82		
457	73 Cancri	o .8 1 .8	1755 1850	+ 16 14 15.93 15 52 16.04	— 1372. 84 1405. 72	— 35. 06 34. 15	— 1373. 02 1405. 97	+ 0. 18 0. 25	
458	κ Cancri	5. 5	1755	+ 11 38 17.38	— 1384.44	— 33.88	— 1384. 02	— 0. 42	+ 0.04
43-	, canon	5.0	1850	11 16 7.00	1416, 22	33. 01	. 1415.84	o. 38	
		•	1900	11 4 14.79	1432.60	32. 55	1432. 24	o. 36	1
459	78 Cancri	7 . o	1755	+ 18 26 43.33	— 1391.67	- 35.02	— 1389. 18	— 2.49	
	•	7.8	1850	18 4 25.58	1424 49	34.07	1422.05	2.44	
460	ξ Cancri	5. 5	1755	+ 23 1 10.28	— 1387.91	— 36. 02	— 1388. 94	+ 1.03	
•	-	5. o	1850	22 38 55.67	1421.64	34-99	1422. 69	1.05	
461	79 Cancri	6. o	1755	+ 22 58 28.14	- 1394.85	— 35.86	— 1395. 24	+ 0.39	
•		6. 3	1850	22 36 7.00	1428.43	34. 83	1428.83	0.40	
462	80 Cancri	7.5	1755	+ 19 1 53.58	— 1409. 52	— 34.68	— 1407. 30	- 2.22	
•		6.8	1850	18 39 19.01	1442.08	33.87	1439. 78	2. 30	
463	π^1 Cancri	6. 5	1755	+ 15 58 6.44	— 1390.43	— 33. 26	— 1411.68	+21.25	
1-3		6. 3	1850	15 35 50.65	1421,60	32. 36	1443. 23	21.63	
464	B. A. C. 3138	6. o	1775	+ 22 16 36.92	- 1420.00	— 35. 10	— 1416. 2 0	— 3.80	
• •	J. J. J. J. J. J. J. J. J. J. J. J. J. J	6. 3	1850	21 53 52.23	1452.86	34. 08	1449. 08	3. 78	
465	π ² Cancri	6. o	1755	+ 15 56 30.17	— 1428.90	— 33. 52	— 1429. 08	+ 0.18	
		6 . o	1850	15 33 37.73	1460, 30	32. 59	1460, 51	0, 21	
466	83 Cancri	6. o	1755	+ 18 43 44.46	— 1465. 53	— 33.30	— 1451.03	—14. 50	
•		5.7	1850	18 20 17. 30	1496. 70	32. 32	1482, 27	14. 43	
467	ι Argus	2. 5	1850	— 58 38 49.83	— 1493.96	— 14.82	— 1496.77	+ 2.81	
• •		•	1875	58 45 3.78	1497.66	14. 77	1500.48	2.82	
			1900	58 51 18.65	1501.35	14. 71	1504. 18	2.83	
468	I (H) Draconis		1755	+ 82 22 6.86	— 1419.97	-103.96	— 1418. 04	- 1.93	
			1775	82 17 20.80	1440. 41	. 100.47	1438. 50	1.91	
			1800	82 11 17.61	1465. 01	96.40	1463, 12	1.89	
			1825	82 5 8.38	1488.63	92.51	1486. 76	1.87	
		4.3	1850 1875	81 58 53.38	1511.28	88. 74	1509. 42	1.86	
			1900	81 52 32.83 + 81 46 6.96	1533.00 — 1553.83	85. 10 — 81. 52	1531. 16 — 1552. 03	1. 84 — 1. 82	
460	R A C coof		-		ľ				
469	B. A. C. 3206	7. o 6. g	1755 1850	+ 20 49 54.42 20 25 57.43	- 1497. 25 1527. 83	- 32. 70 31. 68	— 1484. 78 1515. 44	—12. 47 12. 39	
		_			l				
470	a Hýdræ	2.0	1755 1850	- 7 36 34. 21 8 0 39. 81	— 1508. 67	- 27.66	— 1511.68	+ 3.01	+ 0.01
		2. I	1900	8 13 30.47	1534. 61 1547. 99	26. 95 26. 57	1537.63 1551.01	3. 02 3. 02	
			.900	0 13 30.47	• 34/• 99	20.37	.,,,,,,,,	3.02	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
471	ω Leonis	1755	2	h. m. 9 15	s. 18. 712	s. + 323.067	s. — 0. 953	s. + 322.699	s. + o. 368	s.
		1850	19	9 20	25. 205	322. 192	0, 890	321. 846	0. 346	
472	3 Leonis	1755 1850	2 4	9 15 9 20	25. 175 29. 715	+ 320.975 320.166	- 0, 861 0, 844	+ 321.318 320.508	- 0. 343 0. 342	
473	d Ursæ Majoris	1755		- 9 12	20. I I	+ 563.30	—17.63	+ 564.82	— 1.52	
		1800		9 16	31.82	555. 41	17. 39	556. 91	1. 50	
		1850	• •	9 21	7·37	546. 79	17. 10 16. 81	548. 26	1.47	
		1900	• •	9 25	38. 64	538. 31		539. 76	1.45	
474	θ Ursæ Majoris	1755		9 16	19. 237	+ 411.594 406.289	— 5. 627	+ 422. 332	-10. 738	+0.067
		1850	175	9 22 9 26	47. 724 10. 177	400, 289	5. 541 5. 503	416. 979 414. 200	10. 690 10. 672	
475	ξ Leonis	1755		9 18	42. 829	+ 325.248	- I. (24	+ 325.982	- 0. 734	
4/3	, Leonis	1850	5 87	9 23	51.354	324. 283	1.008	325.017	0. 734	
476	h Leonis	1755	2	9 i8	47. 913	+ 323.541	– 0. 946	+ 323.475	+ 0.066	1
470	"	1850	29	9 23	54. 854	322.654	0. 923	322. 589	0.065	
477	7 Leonis	1755	5	9 22	27. 556	+ 330. 181	— 1. 194	+ 330.470	— 0. 289	
4//	,	1850	5	9 27	40.691	329.056	1. 174	329. 344	0. 288	
478	8 Leonis	1755	5	9 23	29. 433	+ 333.479	- 1.317	+ 333.646	— o. 167	
••		1850	9	9 28	45. 646	332. 237	1. 297	332. 409	0. 172	
479	10 Leonis	1755	2	9 24	15.414	+ 318. 158	— o. 797	+ 318.692	— o. 534	
•••		1850	26	9 29	17. 308	317.410	0. 776	317. 945	0. 535	
48 0	11 Leonis	1755	5	9 24	37. 257	+ 329, 615	- 1. 198	+ 330. 168	— o. 553	
		1850	3	9 29	49. 853	328. 487	1. 177	329. 042	0. 555	
481	• o Leonis	1755	5	9 28	2. 999	+ 321.962	— 0.960	+ 322.990	- 1.028	
		1850	223	9 33	8. 433	321.061	0. 936	322.096	1. 035	Ì
482	ψ Leonis	1755	5	9 30	21.514	+ 328.906	— 1. 181	+ 328.968	— o. o62	
		1850	14	9 35	33-445	3 ² 7· 795	1. 158	327. 857	0.062	
483	e Leonis	1755	5		53- 773	+ 343-933	- 1.825	+ 344. 367	— 0.434	+0.001
		1850	653		19.690	342. 213	1. 797	342. 645	0, 432	
		1900	• •		10. 573	341. 318	1. 784	341. 750	0.432	
484	18 Leonis	1755	5	9 33	9.687	+ 325.239	- 1.051	+ 325.346	— 0. 107	
_		1850	23		18. 193	324. 252	1.028	324. 357	0. 105	
485	19 Leonis	1755	4		14. 174	+ 324. 311	- 1.040	+ 324.885	- 0. 574	
		1850	5		21.804	323. 335	1.014	323. 909	0. 574	
486	B. A. C. 3345	1755	1	9 34	21. 270	+ 324. 592	- 1.051	+ 324.680	o. o88	
	T 1	1850	33	9 39	29. 161	323.605		323. 701	0,096	
487	20 Leonis	1755	5 6	9 36	4. 805	+ 338.821	— 1.642 1.614	+ 339. 241	- 0. 420	
00	T '	1850			25. 948	337. 274	_	337. 697	0. 423	
488	21 Leonis	1755	3		36. 715	+ 324.757	- 1.057	+ 324.935	— 0. 178	
		1850	5	9 42	44. 761	323. 766	1.030	323. 944	0. 178	ĺ

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
471	ω Leonis	6. 5	1755	0 ' " + 10 6 34 15	,,, — 1510. 89	" — 30.46	" —. 1510. 35	" — 0. 54	"
•		5.9	1850	9 42 25.70	1539. 39	29. 54	1538. 77	0.62	
472	3 Leonis	6. 5 6. 3	1755 1850	+ 9 14 34.01 8 50 23.56	- 1512.62 1540.82	— 30. 13 29. 25	— 1510. 96 1539. 20	— 1.66 1.62	
473	d Ursæ Majoris .	5. o	1755 1800	+ 70 53 2.70 70 41 48.02	- 1487. 23 1511. 17	— 54. 11 52. 22	— 1493. 05 1517. 05	+ 5.82 5.88	
		4.7	1850	70 41 46.02 70 29 5.99 70 16 11.43	1536. 74 1561. 32	50. 17 48. 16	. 1542. 70 1567. 36	5. 96 6. 04	
474	θ Ursæ Majoris	3. o 3. o	1755 1850 1900	+ 52 46 38.36 52 21 27.34 52 7 58.95	- 1572. 91 1607. 89 1625. 63	- 37. 70 35. 94 35. 02	— 1516, 17 1552, 01 1570, 21	-56. 74 55. 88	+ 0.91
475	ξ Leonis	5. o 5. 3	1755	+ 12 22 14.87 11 57 40.35	- 1538. 01 1566. 10	- 30. 04 29. 13	— 1529. 82 1557. 88	55. 42 — 8. 19 8. 22	
476	h Leonis	6. o 5. 7	1755 1850	+ 10 46 56.05	- 1531.48 1559.46	- 29. 92 28. 99	1530. 26 1558. 21	— 1. 22 1. 25	-
477	7 Leonis	6. 5 6. 3	1755 1850	+ 15 27 34.01 15 2 46.29	- 1551.99 1579.91	29. 87 28. 90	— 1550. 79 1578. 73	— 1. 20 1. 18	
478	8 Leonis	6. 5 5· 7	1755 1850	+ 17 31 19.89 17 6 26.09	- 1558. 32 1586. 36	— 30. 01 29. 02	— 1556, 50 1584, 56	1.82 1.80	
479	10 Leonis	5· 5 5· 4	1755 1850	+ 7 55 15.98 7 30 20.67	— 1560. 63 1587. 24	— 28. 45 27. 58	— 1560. 72 1587. 39	+ 0.09 0.15	
480	11 Leonis	7. o 6. 8	1755	+ 15 26 24.36 15 1 19.60	— 1570. 13 1597. 63	- 29.44 28.47	— 1562. 73 1590. 27	— 7.40 7.36	
481	o Leonis	4. 0 3. 7	1755	+ 10 59 37.65	- 1584. 82 1611. 43	- 28. 47 27. 56	— 1581. 39 1607. 80	- 3·43 3·63	
482	ψ Leonis	6. o	1755 1850	+ 15 7 47. 11 14 42 18. 73	— 1595.47 1622.04	- 28. 46 27. 48	- 1593. 74 1620. 32	— 1. 73 1. 72	
483	e Leonis	3. o 3. o	1755 1850 1900	+ 24 53 21.19 24 27 44.19 24 14 4.88	— 1604. 05 1631. 57 1645. 62	29. 53 28. 40 27. 80	— 1601. 87 1629. 40 1643. 46	- 2. 18 2. 17 2. 16	+ 0.02
484	18 Leonis	6. o 6. o	1755	+ 12 55 34.35 12 29 54.21	— 1608. 19 1634. 03	— 27. 70 26. 71	— 1608. 52 1634. 37	+ o. 33 o. 34	
485	19 Leonis	7. o 7. o	1755 1850	+ 12 41 18.48 12 15 34.21	- 1612. 70 1638. 24	— 27. 36 26. 41	- 1614. 14 1639. 72	+ 1.44	
486	B. A. C. 3345	8.0	1755 18 5 0	+ 12 33 10.00 12 7 19.14	— 1619. 61 1645. 23	26. 52	- 1614. 79 1640. 34	4. 82 4. 89	
487	20 Leonis	7. o 6. o	1755	+ 22 18 31.32 21 52 32.80	- 1627. 27 1653. 65	- 28. 30 27. 22	- 1623. 67 1650. 07	- 3.60 3.58	
488	21 Leonis	7· 5 6. 8	1755 1850	+ 12 58 27.03 12 32 25.24	— 1631.39 1656.45	- 26. 86 25. 90	— 1631. 52 1656. 60	+ 0. 13 0. 15	

RIGHT ASCENSIONS.

				<u> </u>				i		1	
No.	Star.	Epoch.	Number of observations.	Righ	ıt ası	cension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
489	23 Leonis	1755. 1850	2	l	37	s. 44. 540	s. + 326.950	s. — 1. 130	s. + 326.682	s. + o. 268	s.
400	T	-	7	9	42	54.637	325. 890	1. 103	325.620	0. 270	1.0.000
490	μ Leonis	1755	5 220	9	38 44	46. 679 13. 405	+ 344. 868 342. 981	1.970	+ 346.640 344.747	- 1. 772 1. 766	+0.∞5
		1900			47	4.650	342.001	1.952	343. 764	1. 763	
491	9 Sextantis	1755	5	9	41	17.443	+ 314. 722	— o. 697	+ 315.113	— o. 391	
		1850	3		4 6	16. 119	314.074	0,668	314.465	0. 391	
492	10 Sextantis	1755	5	9	43	25. 372	+ 319.641	···· 0. 895	+ 320. 345	0. 704	
		1850	3	9	48	28.632	318.805	o, 865	319. 508	0. 703	
493	26 Leonis	1755	4	9	44	50. 498	+ 328. 533	- 1. 254	+ 328, 860	- o. 327	
		1850	12	9	50	2.043	327. 356	1. 225	327. 684	0. 328	
494	ν Leonis	1755	5	9	45	0. 943	+ 324. 731	- 1.093	+ 324.976	— o. 245	
		1850	47	9	50	8. 948	323. 704	1.070	323. 955	0. 251	i
495	11 Sextantis	1755	5		45	7. 540	+ 319.412	— o. 866	+ 319.385	+ 0.027	
		1850	5	9	50	10. 596	318.604	o. 836	318. 577	0.027	
496	π Leonis	1755	5	1	47	14. 757	+ 318.543	— o. 850	+ 318.867	- 0. 324	
		1850	214	9	52	16. 994	317. 750	0.819	318. 075	0. 325	
497	14 Sextantis	1755	2	1	53	57. 717	+ 314.964	— 0.713	+ 315.326	- o. 362	
		1850	14	9	58	56.615	314. 303	0.679	314.665	0. 362	
498	η Leonis	1755	5 48		53	56. 437	+ 329. 581	— 1.362	+ 329.643	- 0.062	
		1850	-		59	8. 932	328. 312	1.310	328. 381	0,069	
499	A Leonis	1755	17		54 59	52. 725 56. 391	+ 320.093 319.212	0.945	+ 320. 732 319. 853	- 0.639 0.641	
500	a Leonis		' '		-			1	i	1	
300	a Leonis	1755 1850		9	55 . o	17. 835 22. 728	+ 321.432 320.454	- 1.045 1.011	+ 323.179 322.200	- 1. 747 1. 746	+0.004
		1900		10	3	2. 829	319.953	0. 992	321, 695	1. 742	
501	B. A. C. 3460	1755	1	9	55	39. 228	+ 332.028	- 1.467	+ 331. 758	+ 0.270	
	.	1850	7	10	0	53. 998	330.652	1.429	330. 391	0. 261	
502	16 Sextantis	1755	3	9	56	23. 214	+ 315.928	— o. 736	+ 315.873	+ 0.055	
		1850	13	10	1	-	315. 248	0.697	315. 188	0.060	
503	34 Leonis	1755	3	9	58	25. 645	+ 324.922	- 1.134	+ 324. 568	+ 0.354	
		1850	20	10	3	33. 814	323.863	1.097	323. 507	o. 356	
504	19 Sextantis	1755	5	10	o	2. 535	+ 313.299	— o. 650	+ 313 805	— o. 506	
		1850	3	10	4	59. 881	312.699	0.615	313. 204	0. 505	
505	32 Ursæ Majoris	1755	5	9	59	55. 09	+ 457.91	-12. 14	+ 459.58	— 1.67	
		1800		10	3	19. 94	452. 50	11.89	454. 15	1.65	
		1850		10	7	4. 72	446.62	11.62	448. 26	1.64	
	D.A.G.	1900		10	10	46. 59	+ 440.87	-11.35	+ 442.50	- 1.63	
506	B. A. C. 3506	1850	14	10	8	5.434	+ 328.499	— 1.361	+ 328. 147	+ 0.352	
507	37 Leonis	1755	5	10	3	29.931	+ 324. 103	- 1.146	+ 324. 368	— o. 265	
		1850	23	10	8	37- 317	323. 032	1. 108	323. 298	0. 266	

DECLINATIONS.

	r —							1	1
No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
489	23 Leonis	7· 5 6. 3	1755 1850	0 / " + 14 11 59.60 13 45 54.24	— 1635. 06 1660. 30	- 27. 06 26. 08	 1632. 18 1657. 50		"
490	μ Leonis	3. 0 4. 0	1755 1850 1900	+ 27 8 52.04 26 42 38.74 26 28 40.81	- 1642. 89 1669. 14 1682. 52	- 28. 21 27. 06 26. 46	- 1637. 41 1663 84 1677. 30	- 5.48 5.30 5.22	+ 0. 14
491	9 Sextantis	7. o 6. g	1755 1850	+ 6 5 16.49 5 38 58.46	— 1649. 17 1672. 86	25. 38 24. 49	— 1650. 05 1673. 77	+ o. 88	
492	10 Sextantis '.	6, o 6, o	1755 1850	+ 10 4 57.44 9 38 29.44	— 1659. 67 1683. 35	— 25. 40 24. 47	— 1660, 60 1684, 34	+ 0.93 0.99	
493	26 Leonis	7· 5 7· 7	1755 1850	+ 16 22 42.99 15 56 3.61	— 1671.41 1695.55	- 25.91 °	- 1667. 54 1691. 70	- 3.87 3.85	
494	ν Leonis	5· 5 5· 3	1755 1850	+ 13 36 8.00 13 9 28.88	— 1671. 26 1695. 16	25.65 24.67	- 1668, 38 1692, 23	- 2.88 2.93	
495	11 Sextantis	6. o 6. o	1755 1850	+ 9 28 19.37 9 1 39.62	— 1672. 15 1695. 60	- 25. 15 24. 22	— 1668. 92 1692. 36	- 3. 23 3. 24	
496	π Leonis	4· 5 5. 2	1755 1850	+ 9 12 30.00 8 45 41.68	— 1681. 35 1704. 42	- 24. 77 23. 82	— 1679. 14 1702. 20	- 2. 21 2. 22	
497	14 Sextantis	6. o 6. 6	1755 1850	+ 6 47 42.30 6 20 26.40	— 1711. 11 1732. 76	- 23. 25 22. 34	— 1710.61 1732.29	- 0. 50 0. 47	
498	η Leonis	3·5 3·3	1755 1850	+ 17 56 46.75 17 29 30.97	— 1710. 46 1733. 17	- 24. 43 23. 39	— 1710. 52 1733. 16	+ 0.06	
499	A Leonis	5. o 4. 7	1755 1850	+ 11 11 15.35	- 1720.69 1742.52	- 23.46 22.50	- 1714. 80 1736. 66	- 5.89 5.86	
500	a Leonis	1.0	1755 1850 1900	+ 13 9 15.16 12 41 53.64 12 27 21.50	— 1716.96 1738.73 1749.81	- 23.41 22.43 21.91	— 1716. 70 1738. 60 1749. 74	- 0. 26 0. 13 0. 07	+ 0.13
501	В. А. С. 3460	7. 8 6. 3	1755 1850	+ 19 43 25.23 19 15 56.05	— 1724. 62 1747. 19	- 24. 29 23. 22	— 1718, 31 1740, 82	6. 31 6. 37	
502	16 Sextantis	6. o 6. 9	1755 1850	+ 7 21 41.41 6 54 14.46	— 1722.91 1744.26	- 22.95 22.00	— 1721. 64 1742. 96	- 1.27 1.30	
503	34 Leonis	6. o 6. 3	1755 1850	+ 14 33 13.57 14 5 36.34	- 1733. 56 1755. 18	- 23. 26 22. 26	— 1730. 73 1752. 34	- 2.83 2.84	
504	19 Sextantis	7. 0 6. 2	1755 1850	+ 5 48 54.71 5 21 13.81	- 1737.98 1758.50	- 22.06 21.15	- 1737. 80 1758. 41	- 0. 18 0. 09	
505	32 Ursæ Majoris	5. 5 6. o	1755 1800 1850	+ 66 19 1.22 66 5 54.97 65 51 13.94	— 1739.97 1754.36 1769.66	- 32.55 31.30 29.95	- 1737. 28 1751. 72 1767. 08	- 2.69 2.64 2.58	
			1900	65 36 25.43	1784. 28	28.64		2. 52	
506	B. A. C. 3506	6. o	1850	+ 18 29 5.14	— 1773.63	- 21.74	— 1771. 25	— 2. 38	
507	37 Leonis	6. o 5· 7	1755 1850	+ 14 56 26. 13 14 28 27. 59	- 1756.47 1777.12	- 22. 24 21. 23	1752. 76	- 3. 71 3. 69	
L	L			<u> </u>	J	1	1	!	L

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rigi	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
508	γ¹ Leonis	1755 1850	10 380	h. 10 10	m. 6 11	s. 25. 590 41. 759 27. 611	s. + 333·543 332·081 331·328	s. — 1.560 1.518 1.493	s. + 331.503 330.050	5. + 2.040 2.031	s. 0. 048
509	23 Sextantis	1755	1 9	10	8	22. 312 17. 081	+ 310. 522 310. 051	- 0, 516 0, 477	329. 305 + 310. 838 310. 368	2. 023 — 0. 316 0. 317	
510	42 Leonis	1755 1850	5 26	10	8	37. 925 46. 028	+ 324.887 323.756	- 1. 207 1. 174	+ 325. 149 324. 015	- 0. 262 0. 259	
511	43 Leonis	1755 1850	.6 .6	10	10 15	10. 223 9. 355	+ 315.218 314.540	- 0. 734 0. 694	+ 315.420 314.745	- 0. 202 0. 205	-
512 513	44 Leonis	1850 1755	14 3	10	17 14	20. 675 41. 133	+ 316.995 + 318.553	- 0, 805 - 0, 893	+ 316.913	+ 0.082	
514	B. A. C. 3579	1850	26 I	10	19 15	43. 3 ⁶ 3 40. 9 ⁸ 7	317. 724 + 322. 827	0.854 — 1.155	317. 703 + 323. 401	0. 021 — 0. 574	
515	9 (H) Draconis	1755		10	13	47. 157 27. 71	321. 74δ + 565. 93	-31.44	322. 321 + 565. 94	o. 573 — o. oi	
		1775 1800 1825		10	15 17 19	20. 27 39. 24 56. 33	559. 70 552. 08 544. 64	30. 84 30. 11 29. 40	559. 71 552. 10 544. 66	0, 01 0, 02 0, 02	
		1850 1875 1900		10	22 24 26	11. 58 25. 04	537. 38 530. 30	28. 69 28. 00	537. 40 530. 32	0. 02	
516	31 Sextantis	1755	1 6	10	17	36. 74 50. 835 45. 960	+ 523.38 + 310.881 310.442	-27.33 - 0.483 0.442	+ 523.41 + 310.422 309.983	- 0.02 + 0.459 0.459	
517	i Leonis	1755	5	10	19	5. 330 11. 027	+ 322.320 321.256	- 1. 142 1. 097	+ 322.688	- 0. 368 0. 370	
518	32 Sextantis	1755 1850	3 6	10 10	19 24	34. 108 30. 798	+ 312.583	- 0.600 0.559	+ 312.856	- 0. 273 0. 272	
519	ρ Leonis	1755	330	10	•	53. 278 54. 554	+ 317.527	- 0.852 0.810	+ 317. 546 316. 756	0.019	,
520	48 Leonis	1900 1755 1850	5	10	22	32. 822 0. 128 58. 321	316. 337 + 314. 218 313. 563	0. 787 — 0. 711 0. 670	316. 357 + 314. 996 314. 338	0. 020 — 0. 778 0. 775	
521	49 Leonis	1755	4 8	10 10	22	9. 633 9. 748	+ 316.290 315.537	- 0.812 0.774	+ 316.671 315.922	- 0. 381 0. 385	
522	50 Leonis	1755 1850	4 7	10		44. ² 53 51. 489	+ 323.993 322.830	- 1.247 1.201	+ 323.750 322.590	+ 0. 243 0. 240	
523	34 Sextantis	1755 1850	4 148	10	2 9 34	57. 713 52. 615	+ 310.659 310.194	- 0. 511 0. 467	+ 311.347 310.881	o. 688 o. 687	
524	35 Sextantis (Ist star)	1755 1850	4 6	l	30 35	37. 017 33. 085	+ 311.916 311.393	- 0. 574 0. 529	+ 312.365 311.842	- 0.449 0.449	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
508	γ¹ Leonis	2.0	1755 1850 1900	0 ' " + 21 4 14.08 20 35 53.60 20 20 50.78	" - 1779.47 1800.33 1810.89	" - 22. 52 21. 41 20. 83	" — 1765. 09 1785. 82 1796. 30	—14. 38 14. 51 14. 59	- o, 14
509	23 Sextantis	6. o 6. 6	1755 1850	+ 3 30 46.71 3 2 32.74	- 1773. 57 1792. 54	- 20. 42 19. 52	— 1773. 11 1792. 11	— 0.46 0.43	i
510	42 Leonis	6. o 6. o	1755 1850	+ 16 12 6.22 15 43 47.87	— 1777. 73 1797. 52	- 21. 36 20. 31	- 1774. 20 1794. 00	- 3.53 3.52	
511	43 Leonis	6. o 6. 5	1755 1850	+ 7 46 39.27 7 18 8.22	— 1791. 56 1810. 51	— 20. 42 19. 48	- 1780.44 1799.41	—11. 12 11. 10	
512 513	44 Leonis	6. o 6. o	1850	+ 9 32 43.68 + 11 0 7.55	- 1812. 16 - 1798. 33	- 19. 26 - 19. 87	- 1807. 78 - 1798. 33	- 4. 38 0. 00	
514	B. A. C. 3579	6.0	1850	10 31 30.33	1816. 74	18.88	1816, 70 — 1802, 06	- 0. 04 - 2. 03	
515	9 (H) Draconis	7. 2 5. 5	1850	15 6 29.63 + 76 57 39.57	1822. 54	18. 92 — 36. 24	1820. 63 — 1793. 54	1.91 — 1.61	
3.3	y (33) 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ر در	1775 1800	76 51 39.82 76 44 8.16	1802. 30 1810. 95	35. 22 34. 01	1800, 69 1809, 34	1.61 1.61	
		4. 7	1825 1850 1875 1900	76 36 34. 38 76 28 58. 55 76 21 20. 73 + 76 13 41.00	1819. 30 1827. 35 1835. 14 — 1842. 64	32. 82 31. 66 30. 54 — 29. 44	1817. 69 1825. 74 1833. 53 — 1841. 03	1.61 1.61 1.61 — 1.61	
516	31 Sextantis	7. o 7. o	1755	+ 3 24 0.01	- 1815.05 1832.47	- 18. 80 17. 88	- 1810, 44 1827, 83	4. 61 4. 64	
517	i Leonis	6. o 5. 7	1755 1850	+ 15 23 11.18 14 54 19.52	- 1813. 81 1831. 65	- 19. 31 18. 26	- 1815. 08 1832. 90	+ 1.27	
518	32 Sextantis	7. o 8. o	1755 1850	+ 5 53 41.01 5 24 48.84	- 1814. 67 1831. 85	18. 55 17. 62	- 1816.88 1834.07	+ 2.21	
519	ρ Leonis	4. o 3. 9	1755 1850 1900	+ 10 33 32.85 10 4 36.51 9 49 16.13	- 1818. 94 1836. 34 1845. 13	- 18. 79 17. 83 17. 33	— 1818. 06 1835. 46 · 1844. 25	o. 88 o. 88 o. 88	
520	48 Leonis	5· 5 5· 5	1755 1850	+ 8 12 25.93 7 43 27.64	- 1821. 29 1838. 11	- 18. 18 17. 22	1825. 81 1842. 66	+ 4. 5 ² 4. 55	
521	49 Leonis	6. o 6. o	1755 1850	+ 9 54 30.45 9 25 25.80	— 1827.91 1844.89	18. 34 17. 40	- 1826. 41 1843. 32	— 1.50 1.57	
522	50 Leonis	6. 5 6. 3	1755 1850	+ 17 23 41.45 16 54 23.56	— 1841. 97 1858. 69	- 18. 12 17. 08	- 1839. 12 1855. 83	- 2.85 2.86	
5 2 3	34 Sextantis	6. o 6. 7	1755 1850	+ 4 51 21.99 4 21 55.21	— 1852. 07 1867. 32	- 16. 51 15. 58	1853. 61 1868. 88	+ 1.54 1.56	
524	35 Sextantis (1st star)	7. o 6. 2	1755 1850	+ 6 1 32.80 5 31 56.12	— 1862. 52 1877. 72	- 16.48 15.53	— 1855. 79 1871. 04	- 6. 73 6. 68	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Righ	nt as	cension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
525	36 Sextantis	1755 1850	5	<i>h</i> . 10	m. 32 37	s. 31.454 25.630	s. + 309.862 309.463	s. — 0. 437 0. 403	s. + 310. 278 309. 875	s. — 0.416 0.412	s.
526	37 Sextantis	1755 1850	4 28	10	33 38	19. 214 16. 917	+ 313.675	- 0.652 0.606	+ 313.638	+ 0.037	
527	k Leonis	1755	5 18	10	33 38	25. 120 28. 329	+ 319.682	- 1.097 1.049	+ 320.655 319.642	- 0. 973	
528	η Argus	1850		10	39	15. 22	+ 230. 50	+ 2.13	+ 230. 70	0. 979 — 0. 20	
		1900		10	40 41	12.91	231. 04 231. 58	2. 16 2. 20	231. 24 231. 78	0. 20	
529	38 Sextantis	1755 1850	5 13	10	34 39	33. 946 30. 920	+ 312.901	- 0. 641 0. 594	+ 313. 524 312. 936	- 0.623 0.621	
530	/ Leonis	1755 1850 1900	265 265	10	36 41 44	21. 402 22. 142 0. 125	+ 316.974 316.170 315.765	- 0.870 0.823 0.797	+ 317.001 316.196 315.791	- 0.027 0.026 0.026	
531	55 Leonis	1755	5	10	43 47	5. 677 59. 296	+ 309. 215	- 0. 317 0. 270	+ 308. 564 308. 285	+ 0.651 0.652	
532	56 Leonis	1755	1 6	10	43 48	17. 243 14. 038	+ 312.690	- 0.600 0.553	+ 312.770	0, 080 0, 080	
533	57 Leonis	1755	2		43	35. 930 28. 811	+ 308.431	- 0. 300 0. 252	+ 308. 321	+ 0, 110	
534	d Leonis	1755	5	10	47 52	53. 956 48. 745	+ 310.509	- 0. 448 0. 399	+ 310.566	- 0. 057 0. 058	
535	c Leonis	1755	5 30	10	48 52	2. 101 58. 157	+ 311.904	- 0. 576 0. 528	+ 312.371	- 0.467 0.466	
536	a Ursæ Majoris	1755	10 576	10	48 54	22. 731 25. 606	+ 386. o39	- 8. 704 8. 267	+ 387.947 379.857	— 1. 908 1. 880	0, 008
537	p ² Leonis	1900		10	57	33. 571 4. 022	373. 900 + 307. 321	8. 040 — 0. 246	375. 761 + 307. 906	1.861 — 0.585	
538	χ Leonis	1850	9	10	55	55. 8 ₇₃ 21. 908	307. 110	0. 198 0. 624	307.697 + 312.920	o. 587 — 2. 395	
	p ³ Leonis	1850	190	l .	57	16. 634 24. 137	309. 959	0. 570	312. 350	2. 391 — 2. 788	
539		1755	18	10	54 59	15.050	306. 082	- 0. 330 0. 283	+ 309. 161 308. 871	2. 789	
540	p [*] Leonis	1755	6	10	56 1	34. 084	+ 306.859 306.740	- 0. 150 0. 101	+ 306.989 306.870	- 0. 130 0. 130	
541	p ⁵ Leonis	1755	5 27	11	6	12. 806 4. 837	+ 307.485 307.325	— 0. 194 0. 143	+ 307. 742 307. 583	- 0. 257 0. 258	
542	δ Leonis	1755 1850 1900	746 	11	1 6 8	2. 517 7. 468 47. 476	+ 321.660 320.350 319.684	- 1.410 1.348 1.315	+ 320, 652 319, 347 318, 685	+ 1.008 1.003 0.999	-0.007

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
525	36 Sextantis	6. o 6. 6	1755	0 / " + 3 46 8.96 3 16 31.36	 1863. 70 1878. 47	" — 16, 01 15, 09	" 1862.07 1876.86	— 1.63 1.61	"
526	37 Sextantis	6. o 6. 3	1755	+ 7 39 26.16 7 9 44.03	- 1868. 43 1883. 29	- 16. 13 15. 16	— 1864. 61 1879. 50	- 3.82 3.79	
527	k Leonis	6. o 5· 7	1755 1850	+ 15 28 53.20 14 59 6.70	— 1872. 92 1887. 97	- 16. 35 15. 33	— 1864. 97 1880. 07	- 7.95 7.90	
528	η Argus		1850 1875 1900	- 58 53 48.72 59 1 39.76 59 9 31.47	1882, 83 1885, 51 1888, 17	— 10. 78 10. 67 10. 56	- 1882.45 1885.12 1887.77	- 0, 38 0, 39 0, 40	
529	38 Sextantis	7. o 7. 8	1755 1850	+ 7 37 53.23 7 8 11.75	— 1867. 90 1882. 44	— 15. 79 14. 83	- 1868.66 1883.23	+ 0. 76 0. 79	
530	/ Leonis	6. o 5· 3	1755 1850 1900	+ 11 50 5.51 11 20 15.24 11 4 27.61	1877. 19 1891. 63 1898. 85	— 15. 69 14. 69 14. 17	- 1874. 31 1888. 75 1895. 97	- 2.88 2.88 2.88	0.00
531	55 Leonis	6. o 6. 2	1755 1850	+ 2 2 15. 18 1 32 7.83	— 1895. 93 1908. 89	- 14. 11 13. 18	— 1894. 56 1907. 45	- 1.37 1.44	
532	56 Leonis	7. o 6. 6	1755 1850	+ 7 29 11.51 6 59 5.01	— 1895. 01 1908. 01	- 14. 17 13. 20	— 1895. 10 1908. 11	+ 0.09 0.10	
533	57 Leonis	7. o 6. g	1755 1850	+ 1 44 4.95 1 13 55.56	— 1898. 16 1910. 94	- 13.91 12.99	— 1896. oo 1908. 77	— 2. 16 2. 17	
534	d Leonis	5. o 5. 3	1755 1850	+ 4 55 39.21 4 25 18.21	— 1910. 79 1922. 89	- 13. 23 12. 26	- 1907. 95 1920. 07	2. 84 2. 82	
535	c Leonis	5· 5 5· 3	1755	+ 7 24 43.01 6 54 22.14	— 1910. 59 1922. 68	— 13. 21 12. 25	1908, 34 1920, 46	- 2. 25 2. 22	
536	a Ursæ Majoris	1. 5 2. 0	1755 1850 1900	+ 63 4 1.85 62 33 34.46 62 17 27.27	— 1916, 08 1930, 79 1937, 89	- 16. 32 14. 64 13. 76	— 1909. 32 1924. 11 1931. 25	6. 76 6. 68 6. 64	+ 0.08
537	p ³ Leonis	6. o 5. 4	1755 1850	+ 1 18 48.08 0 48 20.81	— 1917. 66 1929. 08	— 12.48 11.56	- 1916. 32 1927. 78	— 1. 34 1. 30	
538	χ Leonis	4· 5 4. 8	1755 1850	+ 8 39 18.09 8 8 44.84	— 1924. 06 1935. 28	— 12. 29 11. 33	— 1919. 73 1931 0 0	- 4· 33	
539	p³ Leonis	5· 5 5· 9	1755 1850	+ 3 16 49.58 2 46 7.56	— 1933. 56 1944. 24	11.68 10.81	— 1924. 83 1935. 59	— 8. 73 8. 65	
540	p ⁴ Leonis	7. o 6. 9	1755 1850	— o o 37.46 o 31 16.66	1930. 75 1941. 11	- 11. 37 10. 44	— 1930, 42 1940, 82	- 0. 33 0. 29	
541	p Leonis	5· 5 5· 7	1755	+ 1 15 34.41 0 44 44.90	— 1942.00 1951.57	— 10. 54 9. 60	— 1940. 81 1950. 39	— 1. 19 1. 18	
542	δ Leonis	3. o 2. 3	1755 1850 1900	+ 21 51 42.84 21 20 41.09 21 4 17.50	— 1954. 61 1964. 71 1969. 61	- 11.15 10.09 9.53	— 1940. 42 1950. 48 1955. 36	—14. 19 14. 23 14. 25	- 0.04

RIGHT ASCENSIONS.

								,		
No.	Star.	Epoch.	Number of observations.	Righ	nt ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
			:							
543	B. A. C. 3837	1850	17	h. 11	m. s. 6. 14. 025	+ 312.460	- o. 578	s. + 312.034	+ 0.426	s.
544	ø Leonis	1755	5	11	4 12.473	+ 304.961	+ 0.001	+ 305.692	— o. 731	
		1850	33	11	9 2. 193	304. 986	0.052	305. 718	0. 732	
545	75 Leonis	1755	5	11	4 40. 768	+ 309.085	— 0. 290	+ 308.876	+ 0.209	
		1850	11	11	9 34.275	308. 832	0. 240	308. 622	0, 210	
546	76 Leonis	1755	5	11	6 20. 352	+ 308. 168	— o. 259	+ 308.617	— 0.449	
		1850	4	11	11 13.002	307-947	0, 208	308. 397	0.450	
547	d Crateris	1755	5	11	7 6. 552	+ 298.815	+ 0.568	+ 299.677	- o. 862	+0.001
		1850	454	11	11 50.691	299. 381	0.623	300, 240	0.859	
		1900		11	14 20.461	299. 700	0.653	300. 559	0, 859	
548	σ Leonis	1755	5	111	8 29. 521	+ 310, 209	— o. 48o	+ 310,852	- o. 643	
		1850	146	11	13 24.010	309. 778	0.428	310. 421	0.643	
549	ι Leonis	1755	5	11	11 8. 252	+ 313.919	— o. 725	+ 312.948	+ 0.971	
		1850	31	11	16 6. 157	313. 257	0.669	312. 289	0.968	
550	79 Leonis	1755	4	11	11 27.873	+ 308.096	— 0. 220	+ 308. 346	— o. 250	
		1850	15	11	16 20.475	307.913	0, 166	308, 163	0. 250	
551	82 Leonis	1755	1	11	13 3. 225	+ 309.090	— 0.312	+ 309. 208	— 0. 118	
	•	1850	9	11	17 56. 727	308. 818	0, 260	308. 937	0. 119	
552	80 Leonis	1755	5	11	13 14. 203	+ 308.871	— o. 340	+ 309.466	— o. 595	
		1850	5	11	18 7. 485	308. 574	0. 287	309. 168	0. 594	
553	83 Leonis	1755	5	11	14 21.020	+ 303.966	— 0. 277	+ 309. ∞7	— 5.041	
		1850	25	11	19 9.671	303. 728	0. 226	308. 764	5.036	
554	τ Leonis	1755	5	11	15 19.986	+ 308.932	— o. 278	+ 308.901	+ 0.031	
	•	1850	201	11	20 13.354	308. 693	0. 226	308.663	0. 030	
		1900	• •	II	22 47.674	308. 589	0. 195	308. 558	0.031	
555	λ Draconis	1755	5	11	16 32.76	+, 377.80	-12.30	+ 378.91	- 1.11	
		1800		11	19 21.55	372. 37	11.85	373.46	1.09	
		1850 1900		11	22 26, 28 25 28, 15	366. 56 360. 98	11. 37	367. 64 362. 05	1.08 1.07	
		! !	İ	!					-	
556	e Leonis	1755	5	11	17 47.993	+ 306. 376 306. 438	+ 0.039	+ 306.290	+ 0.086 0.086	
		1850	39		22 39.076	1	0.091	306. 352		
557	89 Leonis	1755		11	21 49. 286	+ 307.481	— o. 254	+ 308.710	— I. 229	
		1850	11	11	26 41, 286	307. 265	0, 200	308.495	1.230	
558	v Leonis	1755	5	11	24 24.393	+ 307. 126	- 0.040	+ 307. 187	- 0.061	+0.001
		1850 1900	271	11	29 16. 15431 49. 716	307. 116 307. 132	0.019	307. 178 307. 194	0.062 0.062	
		1900		••	J. 49./10	307.132	0.04/	J~1. 194	3.002	
559	ω Virginis	1755	5	11	25 48.970	+ 310, 203	— o. 506	+ 310.318	·- o. 115	
		1850	6	11	30 43.443	309. 749	0. 451	309. 866	0. 117	
560	ξ Virginis	1755	5	11	32 38.615	+ 310.131	— 0.478	+ 309.696	+ 0.435	
	-	1850	17	11	37 33.032	309. 704	0, 421	309. 270	0.434	
				· ·						l

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
543	B. A. C. 3837	6. 3	1850	0 ' " + 8 52 49.98		,, — 9.77	 1950. 70	,, — 9. 80	"
			_			_ 9.86	— 1947. 32	— 4.87	
544	ø Leonis	5. 0 4. 2	1755 1850	- 2 18 58.05 2 49 56.94	— 1952. 19 1961. 12	8.95	1956. 26	4. 86	
545	75 Leonis	5. 5	1755	+ 3 21 14.87	— 1964.60	- 9.99	- 1948. 26	-16. 34	
		5. 7	1850	2 50 4.14	1973. 63	9.04	1957. 28	16. 35	
546	76 Leonis	6. o 6. g	1755	+ 2 59 23.82 2 28 19.25	— 1958. 31 1966. 96	- 9. 58 8. 63	— 1951. 71 1960. 38	6. 60 6. 58	
547	d Crateris	3.5	1755	— 13 27 20. 51	— 1934. 94	— g. II	— 1953. 25	+18.31	+ 0.03
. 347	o cruteris	3.8	1850	13 58 2.68	1943. 18	8. 24	1961. 52	18. 34	' "
		_	1900	. 14 14 15.28	1947. 18	7. 78	1965. 54	18. 36	
548	σ Leonis	4.0	1755	+ 7 22 5.65	— 1957. 19	- 9. 24	— 1956.00	— 1.19	
		4. I	1850	6 51 2.29	1965. 52	8. 28	1964. 33	1. 19	
549	ι Leonis	4.0	1755	+ 11 52 32.23	— 1969. 37	— 8.88	— 1961.03	- 8. 34	
		4.0	1850	11 21 17.48	1977. 33	7. 88	1968.95	8. 38	
550	79 Leonis	5.5	1755	+ 2 44 57.45	- 1962.87	— 8.6 0	1961.63	— 1.24	
		6. o	1850	2 13 49.00	1970. 58	7.64	1969. 36	I. 22	
551	82 Leonis	7. o	1755	+ 4 38 51.66	— 196 9. 94	— 8. 37	— 1964. 50	- 5.4 6	
		6.9	1850	4 7 36.59	1977. 44	7.41	1971, 96	5. 48	
552	80 Leonis	7. o	1755	+ 5 12 23.59	— , 1970. 95	— 8. 27	- 1964. 84	6. 11	
		6. 5	1850	4 41 7.60	1978. 35	7. 32	1972. 25	6. 10	
553	83 Leonis	8. o	1755	+ 4 20 43.54	- 1949. 18	- 7.78	— 1966. 79	+17.61	
		6. 5	1850	3 49 48.44	1956. 14	6.88	1973. 88	17. 74	
554	τ Leonis	4. 0	1755	+ 4 12 10.01	— 1970. 57	— 7.89	— 1968.46	— 2. 11	— o. oı
		5.3	1850	3 40 54.56 3 24 24.92	1977. 61 1980. 94	6. 93 6. 43	1975. 50 19 7 8. 84	2. II 2. IO	
	. 5		-			1			
555	λ Draconis	3. 5	1755	+ 70 40 48. 10 70 25 59. 48	— 1972. 59 1976. 71	9. 51 8. 70	— 1970. 50 1974. 63	- 2.09 2.08	
		3.3	1850	70 9 30.08	1980, 83	7.85	1978. 76	2.07	
			1900	69 52 58, 72	1984. 55		1982. 49	2. 06	
556	e Leonis	4. 5	1755	— 1 39 16.94	— 1973. 88	— 7· 35	— 1972. 55	— 1.33	
		5.3	1850	2 10 35.30	1980.41	6.41	1979. 07	1.34	
557	89 Leonis	6 . o	1755	+ 4 25 7.41	1989. 75	— 6. 56	1978, 68	—11.07	
		6. 2	1850	3 53 34-33	1995. 53	5.61	1984. 49	11.04	
558	υ Leonis	4. 5	1755	+ 0 31 36.93	<u>-</u> 1978. 80	- 6.09	— 1982. 30	+ 3.50	0.00
		4.4	1850	+ 0 0 14.46	1984. 14	5. 14	1987. 64	3. 50	
			1900	— o 16 18.23	1986. 58	4.64	1990.08	3. 50	
559	ω Virginis	6. 5	1755	+ 9 29 20.94	— 1986. 31	— 5.87	— 1984. 18	- 2. 13	
		5.9	1850	8 57 51.44	1991.43	4.90	1989. 29	2. 14	
560	ξ Virginis	5. 5	1755	+ 9 37 7.56	— 1995. 18	- 4.54	— 1992. 18	— 3.00	
		5.3	1850	9 5 30.25	1999. 03	3.57	1996. 02	3. 01	İ

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
561	ν Virginis	1755 1850	5 57	h. m.	s. 15. 555 8. 914	s. + 308.972 308.635	s. — 0. 383 0. 328	s. + 309.159 308.823	s. — o. 187 o. 187	s.
562	A ¹ Virginis	1755 1850	5	11 35 11 40	18. 978 12. 378	+ 309.051 308.642	- 0.459 0.403	+ 309. 429	- 0. 378 0. 377	
563	β Leonis	1755 1850 1900	20	11 36 11 41 11 43	32. 622 24. 315 57. 567	+ 307.414 306.686 306.326	- 0. 795 0. 736 0. 703	+ 310.900 310.164 309.800	3.486 3.478 3.474	+0.009
564	β Virginis	1755 1850	10 129	II 37 II 42	55. 992 52. 910	312. 587 312. 512	- 0. 107 0. 051	+ 307. 703 307. 632	+ 4.884 4.880	
565	B. A. C. 4006	1900 1755 1850	2 26	11 45 11 38 11 43	29. 161 31. 019 22. 250	312. 494 + 306. 422 306. 705	0. 021 + 0. 266 0. 330	307. 616 + 306. 128 306. 414	4. 878 + 0. 294 0. 293	
566	γ Ursæ Majoris	1755 1850	10 390	11 40	49. 117 55. 054	+ 324.210 319.903	- 4.645 4.423	+ 323. coo 318. 699	+ 1.210	-0.016
567	A ² Virginis	1900 1755 1850	 5 5	11 48 11 42 11 47	34. 458 28. 460 21. 360	317. 721 + 308. 511 308. 130	4. 304 — 0. 430 0. 373	316. 527 + 308. 762 308. 382	1. 194 — 0. 251 0. 252	
568	B. A. C. 4039	1755 1850	2 9	11 45 11 50	40. 184 32. 558	+ 307. 822 307. 711	- 0. 145 0. 090	+ 307. 705 307. 593	+ 0.117	
569	b Virginis	1755	5 26	11 47	23. 863 15. 923	+ 307.491 307.381	- 0. 144 0. 088	+ 307.642 307.531	— 0. 151 0. 150	
570 571	π Virginis	1755 1850	5 160 5	11 48 11 53 11 52	18. 908 11. 152 43. 270	+ 307. 757 307. 502 + 306. 216	- 0. 297 0. 240 - 0. 381	+ 307.952 307.697 + 307.753	- 0. 195 0. 195 - 1. 537	
		1,850 1900	189		34. 012 6. 914	305. 882 305. 728	o. 323 o. 293	307. 416 307. 261	I. 534 I. 533	
572 573	a Corvi	1755 1850	5 5	11 55 12 0	49. 504 41. 190 8. 168	+ 306. 341 307. 749 + 307. 359	+ 1.442 1.522 + 0.002	+ 305.950 307.354 + 307.092	+ 0. 391 0. 395 + 0. 267	
574	11 Virginis	1850	43	11 57	o. 168 34. 089	307. 387 + 305. 999	0. 059 — 0. 197	307. 121	0. 266 — 1. 176	
575	4 (H) Draconis	1850 1755 1775		12 2 12 0 12 1	24. 708 21. 25 22. 34	305. 838 + 306. 99 304. 00	0. 141 -15. 13 14. 67	307. 013 + 305. 94 302. 96	1.175 + 1.05 1.04	
		1800 1825 1850		12 2 12 3	37.89 52.56	300. 40 296. 93	14. 12 13. 59	299. 38 295. 92	1. 02 1. 01	
		1875		12 5 12 6 12 7	6. 38 19. 37 31. 58	293. 60 290. 38 + 287. 29	13.09 12.61 —12.16	292. 60 289. 39 + 286. 31	1.00 0.99 + 0.98	
576	y Corvi	1755 1850 1900	25 	12 3 12 8 12 10	14. 246 5. 873 39. 769	+ 306.456 307.505 308.081	+ 1.074 1.135 1.168	+ 307.544 308.595 309.172	- 1.088 1.090 1.091	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
561	ν Virginis	4.5	1755	0 ' '' + 7 54 2.76 7 22 10.87	— 2010. 58	- 4.42	// 1992. 79	—17. 79	"
562	A ¹ Virginis	5.5	1755	+ 9 36 20. 16 9 4 43. 45	2014. 31 — 1994. 80 1998. 13	$\begin{array}{c c} 3.44 \\ -3.98 \\ 3.02 \end{array}$	1996. 53 — 1994. 83 1998. 16	17. 78 + 0. 03 0. 03	
563	β Leonis	2. 5		+ 15 56 26 48 15 24 37.44	- 2007. 92 2010. 96	- 3.67		—11.96 11.92	+ 0.04
564	β Virginis		1900	15 7 51.64 + 3 8 40.51	2012. 20 — 2025. 34	2. 23 - 3. 59	2000. 30 — 1997. 15	11.90 —28.19	— o. o5
565	B. A. C. 4006	3. 7	1850	2 36 34.95 2 19 40.51 — 3 58 16.19	2028. 29 2029. 45 — 1999. 88	2. 59 2. 07	2001. 19	28. 24 28. 26 — 2. 24	
566	γ Ursæ Majoris	6. I 2. O	1755	4 29 57.45 + 55 3 24.25	2002. 61 — 1999. 58	- 3. 35 2. 40 - 3. 07	2000. 36 — 1999. 44	2. 24 2. 25 — 0. 14	- 0.01
•		2. 3	1850	54 31 43.41 54 15 2.18	2002. 01	2.01	2001.86	0. 15 0. 15	
567	A ² Virginis	6. o 6. ı	1755 1850	+ 9 48 23.08 9 16 40.82	- 2001. 31 2003. 31	- 2. 58 1. 62	— 2000. 59 2002. 59	— 0. 72 c. 72	
568	B. A. C. 4039	7. o 7. 5	1755 1850	+ 4 50 47. 24 4 19 2. 72	— 2003. 97 2005. 37	0.99	— 2002. 54 2003. 94	- 1.43 1.43	
569 570	b Virginis	5.5 5.8	1755 1850 1755	+ 5 1 12.38 4 29 26.58 + 7 58 50.40	- 2005. 50 2006. 57 - 2007. 72	- 1.60 0.65 - 1.42	- 2003. 42 2004. 50 - 2003. 85	- 2.08 2.07 - 3.87	
571	o Virginis	4.9	1850	7 27 2.57 + 10 5 40.49	2008. 62 — 2001. 68	0.47	2004. 76 — 2005. 46	3. 86 + 3. 78	0.00
•			1850		2001. 75 — 2001. 43	+ 0.39	2005. 53 2005. 21	3. 78 3. 78	
572	a Corvi	4. 2	1755 1850	- 23 21 40.39 23 53 30.50	- 2010. 82 2010. 33	+ 0.05	— 2006. 14 2005. 64	4.68 4.69	
	10 Virginis	6.4	1850	'	2025. 23	1.25		—19.67 19.67	
574 575	4 (H) Draconis	7. o 6. 1 5. o	1850	+ 7 10 12.25 6 38 27.96 + 78 58 43.42	- 2004. 85 2004. 03 - 2004. 36	1. 33	- 2006. 35 2005. 53 - 2006. 49	+ 1.50 1.50 + 2.13	
213		_	1775 1800	78 52 2.71 78 43 41.74	2004. 14 2003. 82	1. 13	2006, 27 2005, 95	2. I3 2. I3	
		4. 7	1825 1850 1875	78 27 0.02	2003. 45 2003. 01 2002. 53	1. 60 1. 82 2. 03		2. I3 2. I3 2. I3	
576	γ Corvi	3.0	1900	+ 78 10 18.77 - 16 10 47.69	- 2002. 01 - 2004. 66	+ 2.24 + 1.49	- 2004. 14 - 2006. 23	+ 2. 13 + 1. 57	
		2. 5	1850 1900	16 42 31.29 16 59 12.36	2002. 79 2001. 45	2. 44 2. 94	2004. 36 2003. 04	1. 57 1. 59	

RIGHT • ASCENSIONS.

No.	Star.		Epoch.	Number of observations.	Rig	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
577	β Chamæleontis .	-	1850 1875		12 12	m. 9	s. 39. 51 2. 65	s. + 330.42 334.73	s. +17.08 17.71	s. + 334.85 339.22	s. - 4-43 4-49	s.
0	D. A. C. 1101	İ	1900	• •	12	12	26.89	3 39. 24	18. 36	343. 78	4- 54	
578	B. A. C. 4134 .	1	1850		12	10	27.8			+ 307.510		
579	13 Virginis	- !	1755	5		6	7. 233	+ 307.013			+ 0.053	
		÷	1850	30	12	. 10	58 . 991	307. 224	i i	307. 172	0. 052	
580	14 Virginis	- '	1755		12			+ 307.735	•	+ 307.517	+ 0.218	
		i	1850	. 13	12	11	37. 170	308. 356	0.682	308. 139	0. 217	
581	η Virginis	٠,	1755	5	12	7	22.660	+ 306.547	+ 0. 196	+ 306.945	— o. 398	
		Ì	1850	. 385	12	12	13.976	306. 759	0. 250	307. 156	0. 397	
			1900	٠.	12	14	47. 388	306. 891	0. 279	307. 289	0. 398	
582	c Virginis		1755	4	12	7	54. 528	+ 304.602	— o. oo6	+ 306.618	- 2.016	
		ı	1850	26	12	12	43.905	304. 623	+ 0.050	306.639	2, 016	
583	17 Virginis	-	1755	. 3	12	10	4. 499	+ 305.241	— o. o98	+ 306, 308	— 1.067	
		i	1850	14	12	14	54- 443	305. 175	0.041	306. 242	1.067	
584	a1 Crucis		1850	١	12	18	17. 54	+ 325. 13	+ 6.61	+ 327.46	— 2.33	
	1	:	1875		12	19	39. 03	326. 79	6. 71	329.13	2. 34	
		į	1900		12	21	0.94	328.48	6.82	330.83	2. 35	
585	q Virginis		1755	4	: . I2	21	9. 501	+ 308.047	+ 0. 737	+ 308.751	- o. 704	
	. 1 3		1850	54	12	26	2. 486	308. 773	0. 791	309.477	0. 704	
586	 : β Corvi		1755	2	12	21	33. 885	+ 312.014	+ 1.552	+ 312.085	— o. o71	
300		- ,	1850	521	12	26	31.009		1.620	313. 592	0.071	
	i 		1900		12	29	7.973	314. 340	1.656	314.410	0.070	
587	κ Draconis		1755	1	12	22		+ 266.86	— 6. 10	+ 267.98	— 1. 12	
307	i k Diaconis	٠,	1800		12	24	52. 25 51. 75	264.17	5.83	265. 28	1.11	
		1	1850		12	27	3. 13	261.33	5. 55	262. 42	1.09	
		i	1900	:	12	29			5. 29	259. 70	1.08	
588	f Virginis	:	1755	4	12	24		+ 307.804	+ 0.561	+ 308. 100	— o. 296	
300	· J virginis · ·	-	1850	22	12		3. 985		0.615	308, 658	0. 295	
40 0	P. A. C. 1011		-		1	-	0,7,5	!	1.	"	l .	
589	B. A. C. 4254 .	٠,	1850		Į.			+ 305.642	+ 0.502 	+ 306. 340	— 0.698	1
590	χ Virginis	-	1755		1 .			+ 308. 226	+ 0.687	+ 308.802	— o. 576·	
			1850	57	12	31	30. 475	308. 904	0. 742	309. 482	0. 578	
591	γ Virginis	-	1755		12	29	15.411	+ 303.295	+ 0.361	+ 307.029	— 3.734	
	1	:	1850	95	12	34	3.712	303.664	0.414	307. 393	3. 72 9	
592	28 Virginis	-	1755	ı	12	29	18. 760	+ 308.864	+ 0.678	+ 308.835	+ 0. 029	1
		!	1850	24	12	34	12. 494	309- 534	0. 732	309. 504	0. 030	
593	38 Virginis		1755	2	12	40	39. 659	+ 305.903	+ 0.531	+ 307.911	- 2.008	1
	_	!	1850	28	12	45	30. 515	1	0. 581	308.438	2.007	
	, 37.						-0					
594	ψ Virginis	-	1755	4	12	41	38. 322		+ 0.852	+ 310.480	— 0. 263	1
		İ	1850	56	12	40	33. 420	311.052	0.906	311.316	0, 264	1

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
577	β Chamæleontis	4. 6	1850 1875 1900	0 ' " 78 28 44.50 78 37 4.29 78 45 23.88	" — 1999. 55 1998. 79 1997. 95	,,, + 2.87 3.18 3.51	" - 2003. 86 2003. 09 2002. 26	+ 4.31 4.30 4.31	"
578	B. A. C. 4134	6. 3	1850	- 3 7 12.5		+ 2.92	— 2003. 54		
579	13 Virginis	6. o 6. 1	1755 1850	+ 0 34 37.64 0 2 49.67	— 2009. 53 2007. 12	+ 2.06 3.01	— 2005. 74 2003. 34	- 3. 79 3. 78	
580	14 Virginis	6.5	1755	- 7 33 1.13 8 4 49.42	— 2009. 92 2007. 39	+ 2. 18 3. 14	- 2005. 59 2003. 06	- 4. 33 4. 33	
581	η Virginis	3· 5 4· 0	1755 1850 1900	+ 0 41 48.64 + 0 10 2.04 - 0 6 40.32	- 2008. 19 2005. 56 2003. 82	+ 2.29 3.24 3.74	2005.41 2002.78 2001.04	2. 78 2. 78 2. 78	
582	c Virginis	5· 5 5· 5	1755 1850	+ 4 40 45.67 4 8 54.51	- 2013.03 2010.32	+ 2.38 3.31	— 2005. 26 2002. 55	- 7.77 7.77	
583	17 Virginis	6. o 6. 6	1755 1850	+ 6 40 13.82 6 8 24.57	- 2011. 22 2008. 11	+ 2.81 3.74	- 2004. 52 2001. 40	— 6. 70 6. 7 ⊩	
584	a ¹ Crucis	1.3	1850 1875 1900	- 62 16 1.06 62 24 21.76 62 32 42.15	2003. 38 2002. 19 2000. 92	+ 4.62 4.91 5.22	— 1999. 25 1998. 05 1996. 78	- 4. 13 4. 14 4. 14	
585	q Virginis	5. 5 5. 7	1755 1850	- 8 5 49.32 8 37 26.29	— 1999. 35 1994. 12	+ 5.∞ 5.98	— 1997.91 · 1992.70	— 1.44 1.42	
586	β Corvi	2, 5 2, 0	1755 1850 1900	- 22 2 17. 77 22 33 59. 24 22 50 37. 86	— 2004. 13 1998. 81 1995. 63	+ 5. 11 6. 11 6. 63	— 1997. 55 1992. 22 1989. 04	- 6, 58 6, 59 6, 59	— o. oı
587	κ Draconis	3· 5 3· 3	1755 1800 1850	+ 71 8 30. 38 70 53 32. 70 70 36 56. 47	— 1995. 93 1993. 74 1991. 16	+ 4. 72 5. 01 5. 33	- 1996, 48 1994, 28 1991, 69	+ 0. 55 0. 54 0. 53	
588	f Virginis	6. 5	1900 1755 18 5 0	70 20 21.57 4 28 39.08 5 0 15.90	1988. 41 — 1999. 46 1993. 70	5. 64 + 5. 58 6. 54	1988. 93 — 1995. 29 1989. 53	0. 52 4. 17 4. 17	
589	B. A. C. 4254	6. 1	1850	+ 2 40 52.20	— 1989.46	+ 6.85	— 1987. 64	— 1.82	
590	χ Virginis	6. o 5. 2	1755 1850	- 6 38 34.86 7 10 9.31	— 1997. 19 19 9 0. 98	+ 6.06 7.02	— 1992. 93 1086. 70	- 4. 26 4. 28	
591	γ Virginis	4. 0 3. I	1755	- 0 6 5.18 0 37 33.32	— 1990, 72 1984, 18	+ 6.43 7.34	— 1990. 14 1983. 53	— o. 58	
592	28 Virginis	6. o 7. o	1755	- 6 8 56.90 6 40 28.22	— 1994. 17 1987. 42	+ 6.62 7.58	— 1990. 10 1983. 34	- 4.07 4.08	
593	38 Virginis	6. o 6. 2	1755	- 2 12 59. 59 2 44 13. 03	— 1976. 34 1967. 62	+ 8. 71 9. 66	- 1975.00 1966.23	- 1.34 1.39	
594	ψ Virginis	5. 5 5. 2	1755 1850	- 8 12 9.43 ·8 43 23.23	1976. 87 1967. 84	+ 9.02 9.99	— 1973. 43 1964. 40	- 3.44 3.44	

RIGHT · ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
	!	 - 		h.	m.	s.	s.	5.	s.	, s.	, s.
595	32 (H) Camelopardalis	1755	7	12	47	48. 42	+ 4.37	+31.42	+ 5.73	— 1. <u>3</u> 6	!
	(foll.)	1775		12	47	49. 90	10.45	29.67	11. 7 9	1.34	
		1800		12	47	53. 41	17. 58	27. 61	18. 89	1.31	1
		1825		12	47	58. 64	24. 20	25. 57	25.49	1.29	· ·
		1850		12	48	5-47	30. 37	23.81	31.63	1. 26	1
	ı	1875		12	48	13. 79	36. 12	22. 21	37-34	1. 23	:
	1	1900	• •	12	48	23. 51	+ 41.51	+20.76	+ 42.64	- 1.21	ſ
596	a Canum Venaticorum	1755	5	12	44	31.499	+ 283.624	- 1.614	+ 285. 597	- 1.973	+0.015
	!	1850	364	12	49	0. 227	282. 135	1. 520	284. 096	1.961	•
	1	1900		12	51	21. 107	281. 387	1.473	2 83. 340	ı I. 953	1
597	k Virginis	1755	5	12	47	3. 282	+ 307.907	+ o. 577	+ 308. 179	- o. 272	:
37.	1	1850	11	12	51	56. 061	308. 479	0.627	308. 752	0. 273	
0					•	-				,	!
598	46 Virginis	1755	5	12	48	0. 168	+ 307.673	+ 0.560	+ 307.989		!
		1850	8	12	52	52. 717	308. 229	0, 610	308. 544		:
599	48 Virginis	1755	5	12	51	18. 199	+ 307.807	+ 0.593	+ 308.210	_	1
	i	1850	17	12	56	10. 889	308. 393	0. 641	308. 795	0.402	!
600	g Virginis	1755	5	12	55	5. 463	+ 312.336	+ 0.987	+ 312. 282	+ 0.054	1
	i !	1850	21	13	0	2. 635	313. 298	1.039	313. 244	0.054	1
601	B. A. C. 4394	1755	1					+ 0.890	+ 311.338	1	
۳.	; D. N. O. 4394	1850	• •	13		43· 5		0.945	312.210	1	
	l		• •		_						
602	50 Virginis	1755	5	12	56	57. 385	+ 312. 284	+ 0.977	+ 312.216	-	1
	i	1850	20	13	I	54. 503	313. 235	1.026	313. 167	0. 068	I
603	θ Virginis	1755	5	12	57	17. 296	+ 309.093	+ 0.720	+ 309.441	— o. 348	į
	•	1850	364	13	2	11.267	3 0 9. 801	o. 770	310. 147	0. 346	1
		1900		13	4	46. 265	310. 192	0. 794	310. 537	0. 345	
604	56 Virginis	1755	4	13	I	56. 435	+ 312.433	+ 1.000	+ 312.693	- o. 26o	1
		1850	3	13	6	53. 705	313.407	1.050	313.665		
605	 58 Virginis	1755	I	13	4	38. 618	+ 312.506	+ 1.021	+ 313.056		
wo	jo virginis	1850	19	13	9	35. 969	313.500	•	314.051		ĺ
١	1	1	•	_	•			!		-	
606	62 Virginis	1755	5	13	7	29.969	+ 312.856	+ 1.072	+ 313.849		
	1 1	1850	5	13	12	27.673	313. 898	1. 122	314. 894	0.996	1
607	65 Virginis	1755	5	. 13	10	38. 610	+ 309. 298	+ 0.750	+ 309.574	— o. 276	!
		1850	11	13	15	32. 789	310. 032	0. 796	310. 308	0. 276	
608	66 Virginis	1755	4	13	11	49. 511	+ 310.700	+ 0.770	+ 309. 790	+ 0.910	1
		1850		13	16	-	311.453	0.816	310. 541	0.912	ļ
600	A Virginia							+ 1.088			Ì
609	a Virginis	1755 1850	100	13	12	19. 140 17. 807	+ 313.862 314.919	1. 135	+ 314. 223 315. 281	I	
	!	1900			19	55.409		1. 160	315. 281	0. 302	
				13			1				
610	i Virginis	1755		13	13	48. 726	+ 314.554	+ 1.181	+ 315.552	1	
		1850	11	13	18	48. 093	315. 701	1. 233	316.696	0. 995	
611	69 Virginis	1755	4	13	14	25. 525	+ 317.236	+ 1.369	+ 318.189	- o. 953	
		1850	7	13	19	27. 524	318. 560	1.420	319. 516	0. 956	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	. Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				0 / //		"	"	"	"
595	32 (H) Camelopardalis	6. o	1755	+ 84 44 45.75	1961.64	+ 0.93	— 1962.97	+ 1.33	
	(foll.)		1775	84 38 13.44	1961.43	1.11	1962. 75	1. 32	
		i	1800	84 30 3. 12	1961.12	1. 32	1962.43	1.31	
		ļ	1825	84 21 52.88	1960. 75	1 53	1962. 05	1. 30	
		4.7	1850	84 13 42, 76	1960, 36	1. 72	1961.65	1.29	
			1875	84 5 32. 73	1959.90	1.91	1961, 18	1. 28	
		į	1900	+ 83 57 22.81	— 1959. 41	+ 2.08	— 1960, 68	+ 1.27	
596	a Canum Venaticorum	2. 5	1755	+ 39 38 47. 78	<u> </u>	+ 8.79	— 1968. 71	+ 4.88	— 0.06
		2. 7	1850	39 7 46. 21	1955. 14	9. 51	1959. 97	4. 83	
		į	1900	38 51 29.84	1950. 29	9.89	1955. 09	4.80	
597	& Virginis	6. o	1755	— 2 29 3.38	— 1964. 36	+ 9.99	1964. 31	— o. o5	
	J	5.9	1850	3 0 4.87	1954. 42	10.94	1954. 36	0.06	
598	46 Virginis	6.5	1755	— 2 2 42.6 1	— 1958. 53				
390	40 Virginis	6. 1	1850	2 33 38.48	1958. 53	+ 10.17	— 1962, 60	+ 4 07	
		!	_			11.11	1952.49	4. 07	
599	48 Virginis	6.0	1755	— 2 20 20,88	— 1959. 70	+ 10.81	— 1956. 41	— 3.29	
		6. 7	1850	2 51 17.57	1948.98	11.76	1945.68	3. 30	
600	g Virginis	5.5	1755	— 9 25 25.67	— 1950.08	+ 11.69	— 1948. 77	— 1.31	
		5.9	1850	9 56 12.82	1938. 51	12.67	1937. 20	1.31	
601	B. A. C. 4394	i	1755	— 7 39 57·94	— 19 5 0. 73	+ 11.78	— 1947. 32	— 3.41	
	2. 2. 4371	6. o	1850	8 10 45.68	1939. 10	12. 73	1935.65	3.45	
600	so Vinninin		-						
602	50 Virginis	6.0	1755	— 9 o 56. 57	— 1946. 13	+ 12.07	— 1944. 82	— 1.31	
		6.3	1850	9 31 39.80	1934. 21	13.04	1932.90	1.31	
60з	θ Virginis	4- 5	1755	— 4 13 27. 16	— 1948. 22	+ 11.99	— 1944. II	- 4. 11	- 0.01
		4- 7	1850	4 44 12.41	1936. 38	12.94	1932. 26	4. 12	
		ļ	1900	5 0 18.96	1929. 78	13.44	1925. 66	4. 12	
604	56 Virginis	7.5	1755	- 9 3 45.17	1939.80	+ 12.99	— 1933. 62	— 6. 18	
		7.0	1850	9 34 21.96	1926. 99	13.97	1920. 82	6. 17	
605	58 Virginis	6. o	1755	- 9 14 51.71	— 1925.89	+ 13.51	— 1927. 20	+ 1.31	
	J	7. 0	1850	9 45 15.06	1912.59	14.50	1913.86	1.27	
606	60 Vincinia	i				_			
606	62 Virginis	7.0	1755		— 1921.99	+ 14.03	— 1920. o6	— 1.93	
	`	7.0	1850	10 30 52.07	1908. 19	15.01	1906. 22	1.97	
607	65 Virginis	6. o	1755	— 3 38 4.38	— 1914. 55	+ 14.50	- 1911.89	— 2.66	
		6. 1	1850	4 8 16. 52	1900. 33	15.44	1897. 66	2.67	
608	66 Virginis	6. o	1755	— 3 52 31.42	— 1913.33	+ 14.84	1908. 73	- 4. 60	
		6. o	1850	4 22 42.24	1898. 78	15. 79	1894. 22	4. 56	
609	a Virginis	1.0	1755	 — 9 52 27.41	- 1911.15	+ 15.01	— 1907. 39	— 3. 76	— 0, 02
,	b	1.5	1850	10 22 36.08	1896. 42	15.99	1892.65	3. 77	0.02
		-, 5	1900	10 38 22.27	1888. 30	16.51	1884. 51	3. 77 3. 79	
£	i Vinai-i-			-			!		
610	i Virginis	5.0	1755	— II 25 26.59	— 1907. 39	+ 15.34	— 1903. 26	- 4.13	
		5.7	1850	11 55 31.54	1892. 34	16. 34	1888. 24	4. 10	
611	69 Virginis	5.6	1755	— 14 41 39.28	— 1901.80	+ 15.54	— 1901.59	- 0. 21	1
			1850		1886. 56	16. 55			

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right a	ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
612	/1 Virginis	1755 1850	4 3	h. m 13 17 13 22	40. 435	s. + 311.221 312.057	s. + o. 858 o. 903	s. + 311.042 311.879	s. + o. 179 o. 178	s.
613	/ ³ Virginis	1755	5 36	13 19	15. 239	+ 310, 160	+ 0.856	+ 310.949	- 0. 789 0. 789	
614	75 Virginis	1755 1850	3	13 19 13 24	48. 305	+ 318. 161	+ 1.359	+ 318.455	- 0. 294 0. 294	
615	h Virginis	1755	5 39	13 20 13 25	5. 761	+ 313.810 314.843	+ 1.065	+ 314. 164	- 0. 354 0. 355	
616	77 Virginis	1755 1850	8	13 20 13 25		+ 311.614 312.518	+ 0.930 0.974	+ 312.130 313.036	0. 516 0. 518	
617	ζ Virginis	1755 1850	5 483	13 22 13 27	3. 201	+ 304.486 305.060	+ 0.583 0.626	+ 306.452 307.027	— 1.966 1.967	-0.002
618	80 Virginis	1755	5	13 29 13 22	48.044	305. 378	0.648	307. 348 + 310. 419	1.970 + 0.038	
619	81 Virginis	1850	19	13 27 13 24	46. 735	311.260 + 312.425	0.868	311.221 + 312.601	0. 039 — 0. 176	
620	m Virginis	1850 1755 1850	4 5 99	13 29 13 28 13 33	46. 935	313.360 + 312.915 313.902	+ 1.016 1.062	313. 538 + 313. 610 314. 598	o. 178 — o. 695 o. 696	
621	83 Virginis	1755	5	13 31 13 36	19. 193	+ 320.907	+ 1.451	+ 320.841	+ 0.066	
622	85 Virginis	1755 1850	4 15	13 32 13 37	26. 185	+ 320.090 321.467	+ 1.427 1.472	+ 320.599 321.979	- 0. 509 0. 512	
623	86 Virginis	1755 1850	5 37	13 32 13 37		+ 317. 207 318. 401	+ 1.236 1.278	+ 317.432 318.627	- 0. 225 0. 226	
624	87 Virginis	1755 1850	5 9	13 34 13 39		+ 323. 153 324. 661	+ 1.565 1.610	+ 322.943 324.451	+ 0. 210 0. 210	
625	B. A. C. 4591	1850	7	13 39	18.0		+ 1.133	+ 316.023	-	
626	88 Virginis	1755 1850	3	13 35 13 40		+ 311.859 312.778	+ 0.948	+ 312. 309 313. 228	- 0.450 0.450	
627	η Ursæ Majoris	1755 1850 1900	5 593	13 37 13 41 13 43	37. 482	+ 238. 553 237. 529 237. 021	1. 038 0. 996	+ 239.696 238.657 238.145	- 1. 143 1. 128 1. 124	+0.012
628	89 Virginis	1755 1850	5 42	13 36 13 41	36. 388	+ 322.839 324.365	+ 1.584 1.629	+ 323.628 325.155	— 0. 789 0. 790	
629	B. A. C. 4647 (mean)	1755 1850	1 19	13 42 13 47		+ 312.439 313.435	+ 1.028 1.068	+ 313.915	— 1.476 1.478	
630	η Bootis	1755 1850 1900	8 ₅₃	13 43 13 47 13 49	32. 564	+ 285.764 285.693 285.673	- 0.098 0.052 0.027	+ 286. 260 286. 177 286. 154	- 0. 496 0. 484 0. 481	

No.	Star.	Mag. Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
612	/¹ Virginis	7. 5 1755	o ' " - 5 II 50. 72	// — 1890. 05	+ 15.92	// 1892. 32	+ 2.27	"
		6. 7 1850		1874. 48	16.87	1876. 76	2. 28	
613	/2 Virginis	6.0 1755	_ 4 58 56.40	- 1892. 28	+ 16.18	- 1887. 70	4.58	
•		5. 1 1850	5 28 46.63	1876.47	17. 13	1871.88	4. 59	
614	75 Virginis	6.0 1755	— 14 5 37.09	- 1887. 23	+ 16.65	— 1886. 04	- 1.19	
	•	6. o 1850	14 35 22.30	1870. 94	17.66	1869. 74	I. 20	
615	h Virginis	6.0 1755	— 8 53 38.06	— 1889. 01	+ 16.47	- 1885. 16	— 3.85	
•		5. 8 1850	,	1872. 90	17.44	1869. 04	3. 86	
616	77 Virginis	7. 0 1755	- 6 21 19.23	- 1883.46	+ 16.45	— 1883. 57	+ 0.11	
		7. o 1850	_	1867. 38	17.41	1867. 43	0. 05	
617	ζ Virginis	4.0 1755	+ 0 39 55.50	- 1874. 57	+ 16.31	— 1878. 70	- 4. 13	_ o. 10
•		3.6 1850	+ 0 10 22.16	1858.65	17. 20	1862. 69	4.04	
		1900	— o 5 5.00	1849. 93	17.66	1853. 91	3.98	
618	80 Virginis	6.0 1755	— 4 8 19.35	— 1870. 11	+ 16.85	- 1876.96	+ 6.85	
		6. 1 1850	4 37 48, 21	1853.66	17.80	1860. 50	6.84	
619	81 Virginis	7. 5 175	— 6 36 45.02	— 1875. 01	+ 17.27	— 1870. 73	— 4. 28	•
	·	7. 3 1850	7 6 18.34	1858. 15	18. 23	1853. 86	4. 29	
620	m Virginis	5. 5 1755	— 7 27 25.86	— 1853.78	+ 18.04	— 1857. 79	+ 4.01	
		5. 7 1850	7 56 38.64	1836. 17	19.04	1840. 18	4. 01	
621	83 Virginis	6.0 175	- 14 56 10.21	— 1852. 39	+ 18.96	— 1849. 26	- 3. 13	
		6. 0 1850	15 25 21.27	1833.89	19.99	1830. 78	3. 11	
622	85 Virginis	6.0 1755	— 14 31 33.03	— 1849. 7 6	+ 19.09	— 1845.46	— 4. 30	
		6. 5 1850	15 0 41.54	1831. 14	20. 11	1826, 80	4.34	
623	86 Virginis	6. 0 175	- 11 11 19.09	- 1843.83	+ 19.03	- 1843. 79	— 0. 04	i
		5.9 1850	11 40 21.98	1825. 28	20. 03	1825. 22	0.06	
624	87 Virginis	6.0 1755	— 16 37 20. 34	— 1844. 32	+ 19.63	— 1839. 54	— 4. 78	
		5. 8 1850	17 6 23.42	1825. 17	20, 68	1820. 41	4. 76	
625	B. A. C. 4591	6.0 1850	- 8 57 15.2		+ 20. 14	— 1820. 30		
626	88 Virginis	7. 0 1755	- 5 36 13.04	— 1838. 30	+ 19. 18	— 1834. 72	— 3. 58	
		6.8 1850	1	1819.63	20. 12	1816.03	3.60	
627	η Ursæ Majoris	2. 5 1755	+ 50 32 39.21	— 1828. 71	+ 15.15	— 1826. 34	— 2.37	_ o.o
,	,, 51333	2.0 1850		1814. 11	15. 5 9	1811.68	2. 43	
		1900	49 48 43. 74	1806. 26	15.81	1803. 79	2.47	
628	89 Virginis	5. 5 1755	— 16 54 10.17	- 1835.92	+ 20.01	1830. 82	— 5. 10	
		5.4 1850		1816. 42	21.05	1811.28	5. 14	! !
629	B. A. C. 4647 (mean)	7. 0 175	— 6 50 33.32	- 1812.57	+ 20. 33	— 1810. 44	— 2. 13	
•		6.4 1850	I	1792.81	21.27	1790. 56	2. 25	
630	η Bootis	3. o 175	+ 19 38 8.46	— 1843. 22	+ 18.89	— 1807. 15	—3 6 . 0 7	_ o.o.
J-		3. 0 1850	1	1824.94	19.60	1788.86	36.08	!
		1900	18 53 56.03	1815.04	19.98	1778.95	36.09	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
631	W ⁸ 13 ^h 825	1850		h. m. s. 13 47 51.9	5.	s. + 1.150	s. + 316.587	s.	s.
632	β Centauri	1850	١	13 53 17.20	+ 414.47	+ 8.32	+ 415.50	— I. O3	
		1875		13 55 1.07	416. 56	8.40	417.59	1.03	
		1900	١	13 56 45.48	418.67	8. 47	419. 70	1.03	
633	94 Virginis	1755	5	13 53 21.442	+ 315.372	+ 1.104	+ 315. 594	 0. 222	
		1850	35	13 58 21.550	316. 438	1. 141	316, 660	0, 222	
634	95 Virginis	1755	5	13 53 47.368	+ 315.044	+ 1. 124	+ 316. 103	- 1.059	
		1850	20	13 58 47.173	316. 130	1. 162	317. 189	1.059	
635	a Draconis .	1755	10	13 57 45.97	+ 161.69	+ 0.50	+ 162.36	- o. 67	
		1800		13 58 58.79	161.92	0. 50	162. 58	0.66	
		1850	' • •	14 0 19.82	162. 17	0. 50	162.83	o. 66	
		1900	• •	14 1 40.97	162.43	0. 50	163. 07	0.64	
636	96 Virginis	1755	5	13 55 59 370	+ 317.418	+ 1.197	+ 317.454	— o. o36	
		1850	5	14 1 1.460	318. 567	1. 221	318. 598	0. 031	
637	B. A. C. 4700	1850	34	14 2 39.376	+ 326.485	+ 1.560	+ 326. 205	+ 0. 280	
638	97 Virginis	1755	1	13 59 31.942	+ 317.587	+ 1.176	+ 317.236	+ 0.351	İ
		1850	6	14 4 34.185	318. 720	1. 208	318. 367	0. 353	
639	κ Virginis	1755	5	13 59 51.625	+ 317.747	+ 1. 195	+ 317.719	+ 0.028	
		1850	145	14 4 54.029	318.898	1. 229	318.868	o . 030	
640	B. A. C. 4720	1755	2	14 1 37.353	+ 310,604	+ 0.973	+ 312.675	- 2.071	
		1850	3	14 6 32.870	311. 543	1.004	313.619	2.076	
641	B. A. C. 4722	1755	ļ	14 1 56.718	+ 327. 538	+ 1.640	+ 327.800	- 0. 262	
		1850	20	14 7 8.625	329. 114	1.678	32 9. 381	0. 267	
642	ι Virginis	1755	5	14 3 11.881	+ 312.560	+ 1.013	+ 312.771	— 0.211	
		1850	28	14 8 9.276	313. 538	1.045	315. 735	0. 197	
643	a Bootis	1755		14 4 29.638	+ 273.209	+ 0, 182	+ 281. 190	— 7.981	+0.086
		1850		14 8 49.275	273. 402	0. 224	281. 291	7. 889	
_		1900	!	14 11 6.005	273. 520	0. 249	281. 35 7	7. 837	
644	λ Virginis	1755	5	14 5 53.608	+ 321.926	+ 1.367	+ 322. 134	- o. 208	
		1850	121	14 11 0.059	323. 239	1. 397	323. 449	0. 210	
645	2 Libræ	1755	5	14 10 16.899	+ 320. 273	+ 1.290	+ 320.448	— o. 175	
		1850	34	14 15 21.745	321. 513	1. 320	321.686	0. 173	
646	B. A. C. 4772	1755	• •	14 11 32.710	+ 320, 211	+ 1.287	+ 320. 515	— 0. 304	
		1850	6	14 16 37.496	321.447	1. 316	321. 749	0. 302	
647	θ Bootis	1755	4	14 16 51.097	+ 204.611	— o. 169	+ 207. 219	2.608	+0.069
		1850	136	14 20 5.407	204. 469	0. 130	207. 012	2. 543	
		1900		14 21 47.626	204. 409	0. 111	206. 912	2. 503	
648	106 Virginis	1755	5	14 15 48.250	+ 314.344	+ 1.058	+ 314.567	— o. 223	
		1850	13	14 20 47.357	315. 361	1.084	315. 582	0. 221	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
631	W² 13 ^h 825	6.8	1850	o ' " - 8 49 18.2		+ 21.71	- 1787. 57		"
632	β Centauri	1. 2	1850	- 59 38 45.35 59 46 7.14	- 1770.85 1763.44	+ 29.37	- 1765. 55 1758. 13	— 5. 30 5. 31	
			1900	59 53 27.05	1755. 88	30.47	1750. 57	5.31	
633	94 Virginis	6. o 6. 8	1755	7 42 36.88 8 10 23.83	- 1765. 59 1743. 63	+ 22.64 23.61	— 1766.00 1744.07	+ 0.41 0.44	
634	95 Virginis	6. o	1755	- 8 7 58.48	- 1763.63	+ 22.63	- 1764.17	+ 0.54	
-31		6. o	1850	8 35 43.56	1741.69	23.55	1742. 22	0. 53	
635	a Draconis	3-5	1755	+ 65 33 12.43	— 1746.69	+ 12.30	— 1747. 34	+ 0.65	
			1800	65 20 7.66	1741. 15	12.42	1741.77	0.62	
		3· 3	1850	65 5 38.66	1734.88	12. 56	1735.48	0,60	
		•	1900	64 51 12.79	1728. 58	12. 70	1729. 14	0. 56	
636	96 Virginis	6. 5	1755	- 9 9 40.23	— 1754. 9 5	+ 23.20	— 1754.93	— 0. 02	
		6.9	1850	9 37 16.82	1732. 45	24. 16	1732. 43	0.02	
637	B. A. C. 4700	5.6	1850	— 15 35 26.83	— 1726. 06	+ 25.05	— 1725. 20	— o. 86	
638	97 Virginis	7. o	1755	— 8 44 6. 37	— 1743.45	+ 23.86	— 1739. 68	— 3. 77	
		7. 0	1850	9 11 31.74	1720. 33	24.81	1716. 59	3. 74	
639	κ Virginis	4.0	1755	- 9 7 13.80	- 1725.80	+ 24.00	— 1738. 28	+12.48	
		4. 2	1850	9 34 22.32	1702.52	25.01	1715. 10	12. 58	
640	B. A. C. 4720	7.5	1755	- 4 47 45.08	— 1724.57	+ 23.52	— 1730. 5 0	+ 5.93	
		6. 7	1850	5 14 52.68	1701.80	24. 41	1707.57	5- 77	1
641	B. A. C. 4722		1755	- 17 2 41.05	— 1730.69		— 1729. 12	— 1.57	
		5.8	1850	17 29 53.70	1706.31	26. 20	1704. 82	1.49	
642	ι Virginis	4.0	1755	- 4 49 9.08	1766.07	+ 24.08	— 1723.48	—42. 59	
		4. I	1850	5 16 55.87	1742. 77	24. 98	1700. 16	42.61	
643	a Bootis	1.0	1755	+ 20 28 7.65	1916.81	+ 20. 72	- 1717.61	199. 20	 0.62
		1.0	1850	19 57 56, 12	1896. 84	21. 34		199. 79	
			1900	19 42 10. 38	1886. 08	21.67	1685.99	200.09	
644	λ Virginis	4.0	1755	— 12 13 47.71	— 1709. 70	1	- 1711.28	+ 1.58	
		5.0	1850	12 40 40.33	1685. 17	26. 31	1686, 82	1.65	
645	2 Libræ	6.0	1755	- 10 34 51.79	•	+ 25.87	— 1690. 90	- 7.69	
		6. 5	1850	11 1 33.63	1673. 56	26. 82		7. 68	
646	B. A. C. 4772	7.5	1755	— 10 32 35. 70	— 1689. 44	+ 26.06	— 1684. 88	- 4.56	
		6.6	1850	10 59 8.76	1664. 23	27. 02	1659. 68	4- 55	
647	θ Bootis	4.0	1755	+ 52 59 32.22	— 1699, 69	+ 17.26	— 1659.23	40.46	— 0. 22
		4.0	1850	52 32 45.35	1683. 14	17. 59			
			1900	52 18 45.99	1674. 30	17. 76	1633. 53	40. 77	
648	106 Virginis	6. o	1755	- 5 47 10.45	— 1671.67	+ 26.31	— 1664. 39	— 7. 28	
•	_	5.9	1850	6 13 26.53	1646. 25	27. 20	1638.95	7. 30	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right	ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
649	ρ Bootis	1755	5		n. s. 21 15.916	s. + 259. 030	s. — 0. 219	s. + 259.687	s. — o. 657	s.
		1850	204	! .	25 21.902	258. 841	0. 179	259. 505	0.664	
		1900			27 31.301	258. 757	0. 157	259. 425	o. 668	
650	5 Ursæ Minoris	1755	5		28 22. 70 28 7. 82	— 36. o3	+13.46	— 36. 57	+ 0.54	i
		1850			20 7. 02 27 54. 34	30. 10 23. 81	12. 89 12. 29	30. 63 24. 32	0. 53 0. 51	
		1900			27 43.96	17. 77	11.78	18. 30	0. 53	1
۲.,	. Camaaaa	į -		1			1	1		
651	a ² Centauri	1850			29 27. 77 31 8. 43	+ 401.70	7.32	+ 448.94	-47. 24	—o. 710
		1900	:		31 8.43 32 49.54	403. 53 405. 37	7. 36 7. 40	450. 95 452. 98	47. 42 47. 61	İ
	!	_	1	1		1	-	l .		
652	5 Libræ	1755	4		32 29. 743	+ 327.980	+ 1.499	+ 328.217	- 0. 237	
	ı	1850	37	14	37 42.003	329. 413	1.517	329. 651	0. 238	
653	ε Bootis	1755	4		34 17.151	+ 262, 162	— 0. 045	+ 262.428	- o. 266	-0.001
		1850	839	ł	38 26, 189	262. 135	- 0.011	262, 401	0. 266	!
		1900		14	40 37.256	262. 136	+ 0.016	262. 405	0. 269	
654	μ Libræ	1755	5	1 .	35 55.819	+ 326.016	+ 1.428	+ 326.598	- o. 582	
		1850	23	14	41 6. 181	327. 380	1.445	327. 962	0. 582	!
655	a¹ Libræ	1755	7	14	37 10.919	+ 328. 702	+ 1.530	+ 329.634	— o. 932	
	!	1850	61	14	42 23 . 880	330. 165	1. 550	331.097	0. 932	1
6 56	a ² Libræ	1755	7	14	37 22. 169	+ 328.884	+ 1.529	+ 329. 732	- o. 848	+0.001
	1	1850	660	14 .	42 35. 303	330. 345	1. 545	331. 193	0, 848	!
	ļ	1900		14	45 20.667	331. 120	1. 553	331.968	0, 848	
657	B. A. C. 4896	1755	I	14	37 55. 766	+ 332.202	+ 1.635	+ 332, 601	— o. 399	
	1	1850	22	14	43 12.098	333. 763	1.651	334. 160	0. 397	
658	to Libræ	1755	3	14	38 9.670	+ 333.170	+ 1.659	+ 333.568	— o. 398	
•		1850	3	1	43 26.932	334- 753	1.674	335. 151	0. 398	
659	12 Libræ	1755	4	14	40 9. 788	+ 344.606	+ 2.065	+ 344.633	— 0.027	<u> </u>
-39		1850	14		45 38.097	346. 573	2.078	346. 597	0.024	
660	 ξ¹ Libræ	-	5		41 7. 165	+ 323.077		1	i	
000	i salante	1755	;) II	14	_	324. 328	1. 325	+ 323.622 324.875	- 0. 545 0. 547	
	w I ''	1	ì	1	•		1			
661	ξ^2 Libræ	1755	5 80	1	43 30. 762 48 38. 169	+ 322.974 324.200	+ 1.283	+ 323.066	- 0.092 0.098	
		i	60	14	40 30109	324. 200	1. 300	324. 298	0.098	ı
662	B. A. C. 4923	1755		i : :	.0 0		+ 1.881	+ 339. 320		
		1850	13	:	48 42.8	:	2. 049	341. 164	• • •	
663	17 Libræ	1755	4	i	44 59. 173		+ 1.276	+ 322. 792	+ 1.479	
		1850	3	14	50 7.808	325. 490	1. 291	324.008	1.482	
664	18 Libræ	1755	5			+ 322.079		+ 322.826	- 0. 747	ļ
		1850	3	14	50 47. 182	323. 298	1. 291	324. 043	0. 745	
665	β Ursæ Minoris	1755	6	14	51 42.50	— 37. 51	+11.24	— 36. 78	— o. 73	
		1800		14	51 26. 78	32. 51	10.86	31. 79	0. 72	
		1850		1	51 11.87	27. 18	10.45	26.47	0. 71	
		1900		14	50 59.57	— 22.03	+10,06	— 21.35	- o. 68	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				0 / //	"	"	,,	"	,,
649	ρ Bootis	4.0	1755	+ 31 27 31.54	- 1626.92	+ 22.54	— 1637. 20	+ 10. 28	
		3.7	1850	31 1 56.23	1605. 26	23.06	1615. 55	10. 29	
	•		1900	30 48 36.49	1593.66	23.33	— 1603.95	10. 29	
650	5 Ursæ Minoris	4.0	1755	+ 76 47 6.13	159 8. 89	- 2.44	— 1600. 43	+ 1.54	
			1800	76 35 6.38	1599. 88	1.91	1601 44	1. 56	!
		4.7	1850	76 21 46. 22	1600, 69	1. 36	1602. 27	1. 58	
			1900	76 8 25. 73	1601.24	0.84	1602, 84	1.60	
651	a ² Centauri	0. 7	1850	— 60 12 45.01	— 1550. 52	+ 32.06	 	+43.50	— 4. 30
_		•	1875	60 19 11.63	1542.45	32. 51	1584.91	42, 46	
			1900	60 25 36.22	1534. 27	32.96	1575.65	41. 38	
652	5 Libræ	6. o	1755	— 14 24 39.56	— 1579. 32	+ 30.20	— 1578.43	o. 89	
	3	6.6	1850	14 49 26.13	1550. 17	31. 16	1	0.89	
653	ε Bootis		1755	+ 28 7 11.23	— 1567.66	+ 24.50	- 1568. 74	+ 1.08	— 0, 02
053	¿ Doons	3. o 2. 3	1850		1544. 14	25.02		1.03	- 0.02
		2 . 3	1900	27 42 33.09 27 29 44.15	1531.56	25. 28	1545. 17 1532. 57	1.01	
				· ·					
654	μ Libræ	5.5	1755	— 13 6 43. 74	— 1562.83	+ 30.54	- 1559. 70	— 3. 13	İ
		5.7	1850	13 31 14.51	1533. 37	31.48	1530. 17	3. 20	
655	₁¹ Libræ	6. o	1755	— 14 57 43.72	— 1560, 92	+ 31.08	— 1552. 78	- 8. 14	
		6. 3	1850	15 22 12.43	1530.96	32.03	1522.83	8. 13	
656	a ² Libræ	3.0	1755	— 15 o 26.87	— 1559. 53	+ 31.04	- 1551.74	— 7.79	— o. o6
		3.0	1850	15 24 54.27	1529. 59	31.99	1521. 75	7. 84	
			1900	15 37 35.05	1513.47	32.49	1505. 59	7. 88	
657	B. A. C. 4896	6. o	1755	— 16 45 18.33	1560.01	+ 31.44	- 1548.60	-11.41	
	1	6. 6	1850	17 9 46.00	1529.67	32.43	1518.27	11.40	
658	10 Libræ	7.0	1755	— 17 19 45.14	<u> </u>	+ 31.57	— 1547.33	- Q, 82	
		6. 5	1850	17 44 1.48	1517.69	32. 56	1516.84	o. 85	
659	12 Libræ	6.0	1755		— 1541. 7 8	+ 33.00	— 1536. 12	— 5.66	
939	12 Divia	5.8	1850	- 23 37 19.94 24 1 29.58	1509.92	34.08	1504. 26	5.66	İ
	7. 1.1	-		1			1		
66o	ξ¹ Libræ	6. o 6. ı	1755	— 10 52 55. 52	1		— 1530. 72	— 2.46	
				11 16 57.88	1503. 23	31.98	1500. 72	2.51	!
661	ξ ² Libræ	5.0	1755	- 10 24 15.41		+ 31.48	- 1517.09	— 0.77	
		5.7	1850	10 48 3.04	1487. 53	32. 37	1486. 75	o. 78	;
662	B. A. C. 4923		1755	— 20 17 40. 08	- 1684. 03	+ 34.30	— 1518. 7 6	- 165. 27	!
		7. 3	1850	20 44 4.27	1650. 92	35.40	1486. 30	164. 62	
663	17 Libræ	7.0	1755	— 10 9 14.79	- 1510.93	+ 31.98	<u> </u>	— 2.32	!
	•	7. 2	1850	10 32 55.60	1480. 12	32.88	1478. 12	2.00	
664	18 Libræ	7.0	1755	— 10 8 31.71	- 1513.63	+ 31.66	— 1504. 62	— 9. 01	
		6. 3	1850	10 32 15.24	1483. 13	32.54	1474. 04	9.09	
665	β Ursæ Minoris	_			— 1468.65		1		į
~J	ρ Orac Milloris	3. o	1755	+ 75 9 23. 15 74 58 21. 96	- 1466. 65 1469. 97	- 3. 17 2. 66	— 1469. 17 1470. 46	+ 0.52 0.49	
		2. 0	1850	74 46 6.67	1409.97	2.13	1470.40	0.49	
		•	1900	+ 74 33 50.85	- 1472.09	— I. 62	- 1472. 52	+ 0.43	
				1 77 33 30.03	.7/2.09		-4,2.32	1 5.43	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
666	γ Scorpii	1755	5	14	m. 49	s. 47. 383	s. + 347.132	s. + 2.081	s. + 347. 7 62	s. — o. 630	s.
667	3 Bootis	1850 1755	52 4	14	55 52	18. 099 43. 067	349. 112 + 226. 016	2. 088 0. 025	349. 741 + 226. 391	o. 629 — o. 375	+0.005
		1850	151	14	56	17. 775	226.005	+ 0.001	226. 369	0. 364	,
		1900		14	58	10. 778	226. 009	+ 0.016	226. 372	0. 363	
668	ν¹ Libræ	1755	5 18	14	53 58	o. 366 16. 096	+ 331.623 333.073	1.522	+ 332. 052 333. 501	- 0.429 0.428	
669	ν ⁸ Libræ	1755	5	14	53	11. 216	+ 331.826	+ 1.532	+ 332.468	- 0.642	
,		1850	16	14	58	27. 142	333. 285	1.540	333. 927	0.642	
670	ι¹ Libræ	1755	5	14	58	18. 339	+ 338.627	+ 1.708	+ 339.043	— 0.416	
		1850	89	15	3	40. 804	340. 252	1. 713	340. 663	0.411	
671	ι ² Libræ	1755 1850	5 7	14	59 4	24. 687 47. 032	+ 338.506 340.116	+ 1.693	+ 338. 942 340. 516	- 0. 436 0. 430	
672	26 Libræ	1755	4	15	0	46.977	+ 335.496	+ 1.586	+ 335. 715	- 0. 219	
-,-		1850	4	15	6	6. 415	337.004	1. 589	337. 222	0. 218	
673	β Libræ	1755	10	15	3	51. 375	+ 320. 595	+ 1. 181	+ 321. 303	— o. 708	-o. oo
	 	1850	734	15	8	56. 473	321.716	1. 178	322. 420	0. 704	
674	28 Libræ	1900	2	15	11	37. 478 2. 920	322. 305 + 337. 123	1.179	323.011	o. 706 — o. 131	
0/4	20 110122	1755	20	15	7 12	23.908	338. 640	1.598	+ 337. 254 338. 766	0, 126	
675	o¹ Libræ	1755	5	15	7	21.983	+ 332.688	+ 1.449	+ 332.498	+ 0. 190	
	†	1850	5	15	12	38. 690	334. 065	1.449	333. 876	0. 189	
676	o² Libræ	1755	5	15	9	24. 323	+ 331.868	+ 1.421	+ 331.968	- 0, 100	
677	B. A. C. 5070	1850	66	15	14	40. 239 38. 822	333. 219 + 328. 054	1.424	333. 319 + 328. 286	0. 100 — 0. 232	
678	μ^1 Bootis	1850	5	15	15	14. 291	+ 326.054	+ 1.294 + 0.114	+ 328.280	- 0. 232 - 1. 191	0,004
0/0	books	1850	144	15	18	49.479	226. 571	0. 123	227. 769	1. 198	-0.004
		1900		15	20	42. 781	226. 637	0. 142	227. 837	1.200	
679	ζ¹ Libræ	1755	5	-	14		+ 335.483	+ 1.495	+ 335.480	+ 0.003	
68o	γ² Ursæ Minoris	1850	104		•	48. 285	336. 901	1.491	336. 893	0, 008	
000	γ Ursæ Minoris	1755		15	21 21	19. 34 9. 46	23. 73 20. 17	+ 8.02 7.82	— 23.69 20.12	— 0, 04 0, 05	
		1850		15	21	0. 34	16. 32	7. 60	16. 27	0.05	
		1900		15	20	53. 12	12. 58	7.39	12. 51	0.07	
681	ζ² Libræ	1755	5	15	15	45. 875	+ 336.370	+ 1.516	+ 337.020	— o. 650	
682	্র Libræ	1850	2	15	21	6. 110	337. 807	1.511	338.460	0.653	
002	5 LIDE	1755	5 13	15	16 22	53. 588 13. 132	+ 335.660 337.064	+ 1.478 1.478	+ 335.562 336.962	+ 0.098 0.102	
683	B. A. C. 5109	1850	17	15	24	0. 262	+ 343. 124	+ 1.625	+ 343.271	— o. 147	
684	ζ ⁴ Libræ	1755	5	_	19	7. 244	+ 336.091	+ 1.480	+ 336. 290	- o. 199	
		1850	17	-	24	27. 197	337-494	1.474	337. 688	0. 194	

DECLINATIONS.

				<u> </u>	<u> </u>	1	1	<u> </u>	· · · · · · · · · · · · · · · · · · ·
No.	Star.	Mag.	rpocu.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				0 1 11		"			. ,
666	γ Scorpii		55	+ 24 18 3.62	- 1485.64	+ 34.75	— 1480. 56	— 5.08	
		i	50	24 41 19.14	1452. 12	35.82	1446. 97	5. 15	İ
667	β Bootis		55	+ 41 22 8.63	— 1467.61	+ 23. 15	— 1463. 13	— 4.48	— 0. 04
			50 00	40 59 4.90 40 47 5.12	1445. 46 1433. 66	23. 50 23. 68	1440. 94 1429. 12	4. 52 4. 54	
668	ν¹ Libræ		755	— 15 17 20. 15	- 1465. ç4		— 1461.41		
000		! !	33 30	15 40 17.43	1433.45	+ 33·73 34·67	1428.87	- 4. 53 4. 58	
669	v ³ Libræ	!	'55	- 15 31 4.58	— 1463. 17	+ 33. 76	— 1460. 32	— 2.85	
			33	15 53 59.21	1430.65	34.69	1427. 74	2.91	
670	t ¹ Libræ	5.5 1	' 55	— 18 50 46. 15	— 1434. 36	+ 35.37	— 1429. 25	- 5.11	
			50	19 13 12.68	1400. 27	36.41	1395.25	. 5.02	
671	ι ² Libræ	6.5	55	— 18 42 25.38	- 1425. 72	+ 35.40	— 1422. 42	— 3.30	
		6. 5	50	19 4 43. 70	1391.64	36, 36	1388, 28	3. 36	
672	26 Libræ		' 55	— 16 50 6.43	- 1416.66	+ 35.31	- 1413.92	— 2. 74	
		6. 5 18	50	17 12 16.17	1382, 63	36. 34	1379. 92	2. 71	
673	β Libræ	1	55	— 8 27 40. 58	— 1397.71	+ 34.17	— 1394. 72	— 2.99	— 0.07
			50	8 49 32.87	1364.87	34.97	1361.80	3. 07	
٤	-0.7.1		000	9 0 50.92	1347. 29	35.39	1344. 18	3. 11	
674	28 Libræ		55 50	- 17 14 58.23 17 36 35.90	- 1383.44 1348.31	+ 36.50	— 1374. 49	— 8. 95 8. 87	
675	o¹ Libræ		'55	14 38 47.44		37.47	1339.44	·	
0/3.	" Libra		50 50	15 0 12.59	- 1370.04 1335.40	+ 36.01 36.90	— 1372. 46 1337. 84	+ 2.42 2.44	
676	o² Libræ		55	— 14 14 25.54	- 1359. 55	+ 36.23	— 1359. 41	— 0. 14	
•			50	14 35 40.65	1324. 70	37. 13	1324. 58	0. 12	
677	B. A. C. 5070	6. 2 18	5ö	— 11 49 48.61	— 1319. 79	+ 36.61	- 1318.15	— 1.64	
678	μ¹ Bootis	1	'55	+ 38 14 56.29	- 1312.43	+ 25.34	— 1321.40	+ 8.97	— 0. 11
·	,		50	37 54 20.97	1288, 20	25.67	1297.07	8.87	
		19	00	37 43 40.09	1275. 32	25.83	1284. 13	8.8 ₁	
679	ζ¹ Libræ		55	— 15 50 33.86	- 1331.53	+ 37.42	— 1326.40	— 5. 13	
		5.9 18	50	16 11 21.82	1295. 56	38. 31	1290. 50	5. 06	
68o	γ ³ Ursæ Minoris		55	+ 72 42 19.77	- 1279.06	_ 2, 12	— 1280. 8 ₄	+ 1.78	
			00	72 32 43.99	1279. 94	1. 72	1281. 71	1. 77	
		-	50 00	72 22 3.83 72 11 23.34	1280, 67 1281, 21	1. 28 0. 84	1282. 44 1282. 98	1. 77 1. 77	
68ı	ζ ³ Libræ								
301	, 200100		755 850	- 16 34 34.13 16 55 9.08	1281.85	+ 37.50 38.38	— 1317.91 1281.77	+ 0.02 - 0.08	
682	ζ³ Libræ		'55	— 15 44 56.84	— 1312.52	+ 37.72	— 1310.45	- 2.07	
			33	16 5 26.57	1276. 24	38.66	1274. 27	1.97	
683	B. A. C. 5109	6. 2	350	- 19 9 19.56	— 1264.92	+ 39. 43	- 1262. 18	— 2.74	
684	ζ¹ Libræ		755	- 16 o 7.21	- 1299.09	+ 38. 10	— 1295.63	- 3.46	
	•		350	16 20 24.00	1262.47	1 -		_	
		5.8 18	350	16 20 24.00	1262.47	39.00	1259. 11	3. 36	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
685	γ Libræ	1755	5 64	h. 15	m. 21 27	s. 51. 474 8. 536	s. + 333. 101 334. 397	s. + 1. 368 1. 361	s. + 332.629 333.927	s. + 0.472 0.470	s.
686	a Coronæ Borealis .	1755 1850	10	15 15	24 28 30	19. 267 20. 303 27. 249	+ 253.615 253.832 253.952	+ 0. 220 0. 237 0. 244	+ 252.698 252.914 253.036	+ 0.917 0.918 0.916	+0.002
687	41 Libræ	1755	3 7	15	24 30	50. 857 16. 895	+ 342.446 343.948	+ 1.587	+ 341.832 343.329	+ 0.614	•
688	42 Libræ	1755 1850	2 26	15	25 31		+ 351. 188 352. 912	+ 1.825 1.806	+ 351.411 353.137	- 0. 223 0. 225	
689	к Libræ	1755 1850 1850	34 13	15 15	27 33 35	52. 603 18. 741 0. 7	+ 342.550 344.056	+ 1.591 1.579 + 1.351	+ 343.004 344.497 + 335.180	- 0.454 0.441	
690		1850	6	15	35 36	53.6	• • • •	+ 1.822	+ 356.023		
691 692	B. A. C. 5197 η Libræ	1755	5 40	15	30 35	19. 691 38. 499	+ 334-933 336.244	+ 1.386 1.375	+ 335. 209 336. 514	- 0. 276 0. 270	
693	a Serpentis	1755 1850		15 15 15	32 36 39	13. 070 52. 970 20. 506	+ 294. 342 294. 920 295. 226	+ 0.607 0.612 0.613	+ 293.466 294.047 294.360	+ 0.876 0.873 0.866	-0.004
694	<i>в</i> Scorpii	1755 1850	2 15	15	36 41	18. 092 58. 030	+ 356.943 358.712	+ 1.875	+ 357.471 359.238	- 0. 528 0. 526	
695	e Serpentis	1755 1850 1900	5 228	15 15 15	38 43 45	37. 301 20. 536 49. 843	+ 297.833 298.452 298.778	+ 0.650 0.650 0.653	+ 297.003 297.631 297.958	+ 0.830 0.821 0.820	—o. oo5
696	A Scorpii (2d star) .	1755 1850	3 22	15	38 44	57· 379 36· 943	+ 356. 572 358. 297	+ 1.829 1.803	+ 356.942 358.666	- 0.370 0.369	
697	λ Libræ ·	1755 1850	5 23	15 15	39 44	9· 334 38. 050	+ 345. 285 346. 746	+ 1.548 1.528	+ 345.513 346.972	- 0. 228 0. 226	
698	B. A. C. 5253 B. A. C. 5254	1755 1850 1850	10 8	15		18. 850 56. 854 0. 782	+ 354-953 356.632 + 355.266	+ 1.780 1.754 + 1.721	+ 355. 180 356. 858 + 355. 579	- 0. 227 0. 226 - 0. 313	
699 *700	B. A. C. 5255	1850		15	-	12. 2	, 333.200	+ 1.799		0.3.3	
701	θ Libræ	1755	57	15			+ 338.981 340.273	+ 1.370	+ 338.387 339.683	+ 0. 594	
702	3 Scorpii	1755 1850		15 15	40 45	o. 123 39. 796	+ 356.692 358.404	+ 1.816 1.789	+ 356.913 358.634	- 0, 22I 0, 230	
703	47 Libræ	1755 1850	5	-	40 46	53· 374 20. 656	+ 343. 798 345. 2#3	+ 1.500 1.479	+ 344. 053 345. 465	- 0. 255 0. 252	
704	4 Scorpii	1755 1850	10	15		44. 802 26. 765	+ 359.077 360.841	+ 1.872 1.842	+ 359.425 361.194	- 0. 348 0. 353	

*No. 700. There is some doubt respecting the existence of this star.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
685	γ Libræ	4- 5		- 13 57 10.35	- !277. 52	+ 38.07		- o. 31	"
686	a Coronæ Borealis .	4· 4 2. 0	1850 1755	14 17 6.68 + 27 33 14.97	— 1270. 62	+ 29.45	1240. 70 — 1260. 52	026 —10. 10	+ 0.11
		2.0	1850 1900	27 13 21.23 27 3 3.75	1242. 45 1227. 52	29. 85 30. 05	1232. 45 1217. 58	10,00 9,94	
687	41 Libræ	6. o ; 5. 9	1755 1850	- 18 28 29.80 18 48 12.99	— 1264. 39 1226. 39	+ 39·55 40.44	— 1256.94 1219.00	- 7·45 7·39	
688	42 Libræ	5· 5 5· 7	1755 1850	- 23 o 1.15	- 1253.47 1214.38	+ 40.66 41.64	— 1250. 12 1211. 05	- 3· 35 3· 33	
689	κ Libræ	5.0	1755	- 18 51 50.65	— 1247. 56 1209. 20	+ 39.97	— 1236. 17 1197. 84	-11.39 11.36	
690	B. A. C. 5188	5· 5 6. 6	-	- 14 33 27.71	- 1196.09	+ 39.94	- 1185.87	—10. 22	
691	B. A. C. 5197	6. o	1850	- 24 14 27.4		+ 42.64	— 1172.55		
692	η Libræ	4· 5 5· 9	1755 1850	- 14 52 18.79 15 11 26.06	— 1226. 55 1188. 59	+ 39.52 40.41	- 1219. 23 1181. 36	- 7.32 7.23	
693	a Serpentis	2. 5 2. 6	1755 1850 1900	+ 7 12 50.82 6 54 4.08 6 44 23.90	— 1202. 73 1169. 26 1151. 44	+ 34.95 35.51 35.79	- 1205. 99 1172. 62 1154. 86	+ 3. 26 3. 36 3. 42	+ 0.11
694	δ Scorpii	5. o 5. 3	1755 1850	- 24 59 1.36 25 17 26.08	— 1183. 26 1142. 33	+ 42.61 43.55	— 1177. 22 1136. 24	- 6, 04 6, 09	
695	e Serpentis	3. o 3. 7	1755 1850 1900	+ 5 13 58.35 4 55 58.36 4 46 43.19	— 1154. 05 1119. 52 1101. 14	+ 36.07 36.62 36.92	— 1160. 73 1126. 30 1107. 98	+ 6.68 6.78 6.84	+ 0.11
696	A Scorpii (2d star) .	5. o 5. 2	1755 1850	- 24 34 24.20 24 52 28.76	— 1162, 18 1120, 96	+ 42.93 43.85	— 1158, 34 1117, 06	- 3.84 3.90	
697	λ Libræ	5. o 5. 5	1755 1850	- 19 24 47. 28 19 42 50. 85	— 1160. 51 1120. 57	+ 41.63 42.47	— 1156.91 1116.93	- 3.60 3.64	
698	B. A. C. 5253	6. o	1755 1850	23 46 51.61 24 4 53.06	— 1158. 87 1117. 68	+ 42.90 43.83	— 1155.82 1114.65	— 3. 05 3. 03	
699	B. A. C. 5254		1850	— 23 31 35.69	- 1115.89		— 1114. 16	— 1.73	
700	B. A. C. 5255		1850	- 24 57 37·5		+ 44.04	— 1112.80		
701	θ Libræ	4-5	1755 1850	— 15 59 20. 24 16 17 4. 57	1140.08 1100.48	+ 41.26 42.07	— 1151.51 1112.15	+11.43	
702	3 Scorpii		1755	- 24 29 42.80 24 47 39.15	— 1153.62 1112.25	+ 43.09 44.00	— 1150, 82 1109, 46	- 2.80 2.79	
703	47 Libræ		1755 1850	— 18 38 15. 52 18 56 7. 07	— 1147.86 1107.90	+ 41.66 42.48	— 1144.47 1104.46	- 3.39 3.44	
704	4 Scorpii	6. 5 6. 3	1755 1850	— 25 31 17.08 25 49 9.06	— 1149. 19 1107. 47	+ 43.46 44.38		— 3. 71 3. 74	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right	ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
705	ζ Ursæ Minoris	1755 1800 1850		15 ! 15 !	n. s. 53 22.50 51 30.74 49 31.57 47 37.54	5. 253. 11 243. 75 233. 16 223. 02	s, +21.49 21.04 20.51 20.00	5. — 254. 41 · 245. 04 234. 43 224. 28	s. + 1.30 1.29 1.27	s.
706	π Scorpii	1755	5 20	15	14 4.931 19 47.225	1	+ 1.838	+ 359.634	- 0. 195 0. 187	
707	48 Libræ	1755 1850	3 15	-	30. 328 49 47· 753	+ 333·539 334·723	1. 254	+ 333.766 334.949	- 0. 227 0. 226	
708	ε Coronæ Borealis .	1755 1850 1900	4 57	15	27. 108 51 22. 770 53 26. 909	+ 247. 928 248. 204 248. 354	+ 0, 286 0, 296 0, 303	+ 248. 435 248. 707 248. 861	- 0. 507 0. 503 0. 507	+0.003
709	δ Scorpii	1755 1850	5 158	15	45 53. 486 51 28. 339	+ 351. 708 353. 242	+ 1.630 1.598	+ 351.829 353.362	- 0, 121 0, 120	
710	49 Libræ	1755 1850	2 17	15	54 25. 159 46 36. 766 51 54. 914	354. 038 + 334. 235 335. 545	1. 582 + 1. 390 1. 368	354. 156 + 338. 606 339. 871	0. 118 - 4. 371 4. 326	
711 712	B. A. C. 5314 β ¹ Scorpii	1850	5 10	•	54 17. 201 51 13. 855	+ 361.142 + 346.151	+ 1.750	+ 361.458 + 346.222	- 0. 316 0. 071	
		1850 1900	492	-	56 43. 350 59 37. 287	347. 519 348. 229	1.429	347. 592 348. 301	0. 073 0. 072	
713	ω¹ Scorpii	1755 1850	5 16	15	52 31.044 58 2.430	+ 348. 126 349. 525	+ 1.487 1.459 + 1.494	+ 348. 306 349. 701 + 348. 822	- 0. 180 0. 176	
714	Lal. 29314	1850	62	15	53 4· 735 58 36. 977 58 42. 7	+ 349. 023 350. 429	1.467 + 1.178	+ 346. 622 350. 225 + 335. 236	0, 201	
716 717	B. A. C. 5347	1850	10	15	58 59.598 57 10.800	+ 364. 106	+ 1.719	+ 363. 312	+ 0. 794	
	¿ Scorpii	1755 1850 1755	7	16	3 0.432 57 15.839	+ 367. 159 368. 904 + 366. 070	1.815	+ 367. 523 369. 264 + 366. 287	- 0. 364 0. 360 - 0. 217	
<i>.</i> 719		1850 1755	17	16	3 4· 4 ² 4 57 47· 760	367. 786 + 345. 987	1. 784	368, 001 + 346, 188	0, 215	
720	B. A. C. 5395	1850 1755		l	3 17. 068 59 18. 630	347. 292 + 349. 991	1. 361 + 1. 475	347. 525 + 350. 818	0. 233 — 0. 827	
721	Groombridge 2320	1755		16	4 51. 782 5 46. 03	351. 376 + 8. 43	1.441 + 4.21	352. 205 + 9. 39	0.829 - 0.96	
		1800 1850 1900		16 16 16	5 50. 24 5 55. 91 6 2. 60	10. 32 12. 37 14. 40	4. 16 4. 08 4. 01	11. 29 13. 35 15. 39	o. 97 o. 98 o. 99	
722	δ Ophiuchi	1755	5 699	16 - 16	1 31.764 6 29.342 9 6.264	+ 312.842	+ 0.842 0.830 0.824	+ 313. 183 313. 967	- 0. 341 0. 331	+0.007

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
705	ζ Ursæ Minoris	4. 0 ·	1755 1800 1850	78 32 6. 19 78 24 9.08 78 15 11.97	" — 1053. 38 1066. 96 1081. 33	- 30.86 29.50 28.03	— 1053. 03 1066. 68 1081. 13	- 0. 35 0. 28 0. 20	"
		4- 5	•1900	78 6 7.86	1094.98	26, 60	1094.86	0, 12	
706	π Scorpii	3.5	1755	— 25 23 8.66	- 1125.98	+ 44.06	— 1121.40	— 4. 58	
	.0 1:1	3.4	1850	25 40 38.33	1083. 70	44.97	1079. 20	4. 50	
7 07	48 Libræ	5. o 5. 4	1755	- 13 33 4.39 13 50 31.94	— 1122. 20 1083. 04	+ 40.85 41.60	1079. 14	3.88 3.90	
708	ε Coronæ Borealis .	4.5	1755	+ 27 36 9.05	- 1102,96	+ 30.77	- 1096, 85	— 6, 11	- o. o3
		4.0	1850	27 18 55.17	1073. 57	31.11	1067.43	6. 14	
			1900	27 10 2.28	1057. 97	31.29	1051.81	6. 16	
709	δ Scorpii	3. o	1755	— 21 54 7.77	- 1111.90	+ 43.31	— 1108. 27	- 3.63	- 0.02
		2. 3	1850 1900	22 11 24.42 22 20 14.08	1070. 38 1048. 24	44. 08	1066. 73 1044. 59	3. 65 3. 65	
	49 Libræ		-	,		44. 49	-	-38. 84	
710	49 Librae	5. 5 5. 9	1755 1850	- 15 47 27.45 16 5 13.64	— 1141. 78 1102. 72	+ 40. 74 41. 50	— 1102.94 1063.46	-30. 04 39. 26	
711	B. A. C. 5314	5. 7	1850	- 25 26 31. 76	- 1048, 59	+ 45.37	— 1045. 78	- 2 , 81	
712	β ¹ Scorpii	2. 0	1755	— 19 6 45.40	— 1072. 76	+ 43.23	1068, 97	— 3.79	— 0.02
	-	2. 5	1850	19 23 24.90	1031. 35	43-94	1027. 56	3. 79	
			1900	19 31 55.06	1009. 29	44. 32	1005.48	3.81	
713	ω¹ Scorpii	4- 5	1755	19 58 59.26	— 1063.40	+ 43.56	— 1059. 42	— 3.98	
		4. 6	1850	20 15 29.71	1021, 64	44. 36	1017. 62	4. 02	
714	ω ² Scorpii	4. 5 4. 6	1755 1850	- 20 11 2.56 20 27 31.62	1062, 10	+ 43.91 44.70	— 1055. 27 1013. 30	- 6, 8 ₃ 6, 72	
	Lel coare	6, 8	1850		1020, 02		'	0. /2	
715	I.al. 29314		_	— 13 39 49.8		+ 42.65	— 1012, 56		
716	B. A. C. 5347	6.0	1850	- 25 55 13.74	— 999. o9	+ 46.42	1010.45	+11.36	
717	c¹ Scorpii	6, o 6, 1	1755	27 45 20.47 28 1 18 68	— 1030, 85 986, 30	+ 46.45 47.33	— 1024. 50 979. 94	- 6. 35 6. 36	
718	€ Scorpii		_	- 27 16 o. 14	— 1027.48		— 1023. 94	- 3· 54	
/.0	c Scorpii	5. o 5. 3	1755	27 31 55.21	983. 04	47. 21	979.43	3. 61	
719	ν² Scorpii	4.0	1755	— 18 48 5.24	— 1024. 29	+ 44. 13	— 1019. 95	— 4. 34	
	•	4.5	1850	19 3 58.28	982, 05	44. 78	977.83	4. 22	
720	B. A. C. 5395		1755	— 20 45 9. 16	- 1005.57	+ 44.63	— 1008, 51	+ 2.94	
		7. o	1850	21 0 44. 22	962, 81	45.40	965.74	2.93	
721	Groombridge 2320		1755	+ 68 27 24.09	- 952. 14	+ 1.37	— 959. 19	+ 7.05	
			1800 1850	68 20 15. 76 68 12 20. 22	951.48	1.61	958.47	6. 99 6. 93	
		5.7	1900	68 4 25.17	950. 60 949. 60	2. 16	957· 53 956. 41	6. 93 6. 81	
722	δ Ophiuchi	3. 0 2. 7	1755	- 3 2 36.92 3 18 14.36	— 1005. 90 967. 57	+ 40.08 40.61	991.62 953.24	—14. 28 14. 33	— o. o5
		,	1900	3 26 13.06	947. 19	40.89	933. 24	14. 35	
						<u> </u>	l		

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
723	W ⁸ 16 ^h 140	1850		h. m.	s. 23. 8	s.	s. + 1.154	s. + 337. 598	s. 	s.
724	B. A. C. 5429	1850	3	16 9	0, 281	+ 370.403	+ 1.770	+ 370. 721	— o. 318	
725	19 Scorpii :	1755 1 85 0	3 18	16 5 16 11	56. 293 37. 090	+ 358.007 359.455	+ 1.545 1.504	+ 358. 236 359. 684	- 0. 229 0. 229	
726	σ Scorpii	1755 1850	5 76	16 6 16 12	20. 507 4· 733	+ 361.586 363.094	+ 1.608 1.566	+ 361.811 363.319	- 0. 225 - 0. 225	
727	τ Herculis	1755 1850 1900	159	16 12 16 15 16 16	23. 416 14. 087 44. 101	+ 179.408 179.900 180.157	+ 0.521 0.516 0.512	+ 179.487 179.977 180.232	- 0. 079 0. 077 0. 075	0.002
728	ψ Ophiuchi	1755 1850	5 40	16 9 16 15	48. 077 19. 928	+ 348.690	+ 1.334 1.297	+ 348.855	- 0. 165 0. 162	
729	ρ Ophiuchi (south star)	1755 1850	5	16 10 16 16	56. 129 35. 885	+ 356.948 358.322	+ 1.467	+ 357. 124 358. 492	— 0. 176 0. 170	
730	χ Ophiuchi	1755 1850	5 28	16 12 16 18	51. 584 20. 186	+ 345. 296 346. 483	+ 1.294 1.204	+ 345.515 346.675	- 0. 219 0. 192	
731	a Scorpii	1755 1850 1900	20 520	16 14 16 20 16 23	,	+ 364.953 366.423 367.176	+ 1.573 1.521 1.491	+ 365.085 366.550 367.306	- 0. 132 0. 127 0. 130	+0.002
732	22 Scorpii	1755 1850	5	16 15 16 21	21. 776 6. 095	+ 361.736 363.137	+ 1.500	+ 361.846	- 0, 110 0, 106	
733	η Draconis	1755 1850 1900	 264	16 20 16 21 16 22	43. 073 58. 144 38. 329	+ 78. 139 79. 909 80. 828	+ 1.875 1.851 1.824	+ 77.952 79.757 80.691	+ 0. 187 0. 152 0. 137	-0, 020
734	φ Ophiuchi	1755 1850	5 30	16 17 16 22	8, 855 33, 572	+ 341. 268 342. 341	+ 1.146	+ 341.682	- 0.414 0.410	
735	ω Ophiuchi	1755 1850	5 26	16 17 16 23	38. 966 15. 108	+ 353.218 354.445	+ 1.314	+ 353.112	+ 0. 106	
736	β Herculis	1755 1850 1900	5 48	16 19 16 23 16 25	41. 845 46. 405 55. 252	+ 257. 260 257. 604 257. 786	+ 0. 362 0. 363 0. 364	+ 257.946 258.289 258.473	o. 686 o. 685 o. 687	
737	τ Scorpii	1755	5 46	16 20 16 26	40. 296	+ 370.688 372.155	+ 1.556	+ 370.687 372.166	+ 0.001	
738	A Draconis	1755 1800 1850		16 28 16 28 16 28	34. 13 25. 96 17. 89	— 19.08 17.18 15.11	+ 4. 23 4. 18 4. 13	— 19. 17 17. 27 15. 19	+ 0.09 0.09 0.08	
739	ζ Ophiuchi	1900 1755 1850 1900	5	16 28 16 23 16 28 16 31	10. 85 41. 529 54. 209 39. 098	13. 07 + 328. 711 329. 559 329. 995	4. °5 + °0. 906 °0. 879 °0. 863	13. 14 + 328. 637 329. 489 329. 928	0. 07 + 0. 074 0. 070 0. 067	-o. œ3
740	a Trianguli Australis	1850 1875 1900		16 32 16 35 16 38	50. 05 26. 92 4. 36	+ 626. 32 628. 62 630. 88	+ 9. 32 9. 13 8. 92	+ 626. 32 628. 62 630. 87	0.00 0.00 + 0.01	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
723	W ² 16 ^h 140	6. 3	1850	0 ' '' 14 28 8.5		+ 43.83	,, — 946. 26		"
724	B. A. C. 5429	6. o	1850	— 28 14 8, 26	— 945. 53	+ 48. 18	— 933.80	—11. 73	
725	19 Scorpii	5.5	1755	- 23 33 15.20	— 964. 36	+ 46.33	— 957.87	- 6.49	
		5. 1	1850	23 48 10, 31	919.95	47. 17	913. 52	6.43	
726	σ Scorpii	4.0	1755	24 58 51.75	— 957.45	+ 46.88	 954. 78	2.67	
		3.4	1850	25 13 40.05	912. 52	47. 71	909. 93	2. 59	
727	τ Herculis	4. 0	1755	+ 46 54 32.35	— 905. 55	+ 23.67	— 907. 86	+ 2.31	0.04
		3⋅3	1850 1 90 0	46 40 22. 79 46 33 4. 29	882.97 871.01	23.86	885. 24	2. 27	
728	ψ Ophiuchi		-		•	23.96	873. 26	2. 25	
/20	ψ Opinucin	5. o 4. 8	1755 1850	— 19 26 24.84 19 40 52.94	- 935. 50 891. 96	+ 45.48 46.18	— 928. 02 884. 47	- 7.48 7.49	
729	ρ Ophiuchi (south star)	5.0	1755	- 22 51 31.45	- 923.40	+ 46.66	- 919. 20	- 4. 20	
	,	5.0	1850	23 5 47.52	878. 72	47.40	874. 51	4. 21	
730	χ Ophiuchi	5.0	1755	— 17 52 37.65	— 908, 62	+ 45.44	— 904. 20	— 4. 42	
		4. 6	1850	18 6 40. 23	865. 14	46.08	860, 80	4- 34	
731	a Scorpii	1.0	1755	— 25 51 49.30	895.63	+ 48. 15	— 891.97	— 3.66	0. 01
		1.4	1850	26 5 38.31	849. 57	48. 82	845. 90	3.67	
			1900	26 12 36.98	825.07	49. 18	821.40	3.67	
732	22 Scorpii	6.0	1755 1850	— 24 33 5.64	- 888.47	+ 47.86	— 884. 60	- 3.87	
***	η Draconis	5.5		24 46 47.99	842, 68	48. 55	838.87	3.81	
733	7 Draconis	3. o 2. 7	1755 1850	+ 62 4 27.52 61 51 17.40	- 836. 85 826. 52	+ 10.76	- 842. 27 831. 97	+ 5.42 5.45	+ 0.03
		,	1900	61 44 25.52	820. 98	11.13	826. 45	5· 45	
734	ø Ophiuchi	4. 5	1755	— 16 3 20,65	— 874. 89	+ 45. 18	— 870. 53	— 4. 36	
		4.6	1850	16 16 51.32	831.68	45. 80	827. 26	4. 42	
735	ω Ophiuchi	5.0	1755	— 20 55 6.28	— 863. 74	+ 46.86	866. 58	+ 2.84	
		4- 7	1850	21 8 25. 58	818.90	47- 53	821. 74	2.84	
736	β Herculis		1755	+ 22 2 25.95		+ 34.29		— 1.78	
İ		2. 3	1850	21 49 11.98 21 42 26.61	819. 40 802. 06	_		1.82	
727	τ Scorpii			•		34. 76	800, 21	1.85	
737	r scorpii	3. 5 3. 2	1755	- 27 40 55.63 27 53 57.87	— 847. 07 799. 63	+ 49·57 50.32	842.62 795.30	- 4. 45 4. 33	
738	A Draconis	4.5	1755	+ 69 17 52.50	- 777. 3 ²	— 2.22	— 779. 40	+ 2.08	
"		4.2	1800	69 12 2.50	778. 27	1.96	780. 35	2.08	
		5. o	1850	69 5 33.14	779. 17	1.68	781. 26	2.09	
			1900	68 59 3.35	779.96	1.44	782. 04	2.08	
739	ζ Ophiuchi		1755	— 10 2 55. 7 6	— 816.47	+ 44. 18	— 818. 58	+ 2.11	— o. oı
		2. 7	1850	10 15 31.39 10 21 52.93	774. 26 751. 86	44.67	776. 38	2. 12	
740	a Trianguli Australis	2. 2	-			44.93	753.98	2. 12	
/40	- Trangui Musialis	2. 2	1850 1875	- 68 44 34.71 68 47 39.59	— 750. 19 728. 82	+ 85. 16 85. 85	— 744-54 723. 17	— 5.65 5.65	
			1900	68 50 39.11	707. 28	86. 52	701.63	5.65	
L					<u></u>	<u> </u>		l	<u> </u>

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
741	24 Scorpii	1755	5 33	h. m. s. 16 27 25.938 16 32 54.219	s. + 345.043 346.069	s. + 1. 101 1. 059	\$ + 345.177 346.201	s. — o. 134 o. 132	s.
742	B. A. C. 5580	1755		16 27 31.671 16 33 5.051	+ 350.379 351.466	+ 1.167 1.122	+ 350. 392 351. 488	- 0.013 0.022	
743	15 Ophiuchi	1755	2	16 30 26.741 16 36 7.650	+ 358. 261 359. 434	+ 1.262 1.208	+ 358. 745 359. 913	0. 484 0. 479	
744	25 Scorpii	1755	1 26	16 31 53.459 16 37 40.736	+ 364.929 366.173	1. 279	+ 364.972 366.217	- 0.043 0.044	
745	η Herculis	1755 1850	139	16 34 30.552 16 37 45.343 16 39 28.004	+ 204. 859 205. 226 205. 418	+ 0. 387 0. 385 0. 385	+ 204.671 205.031 205.220	+ 0. 188 0. 195 0. 198	+0.005
746	18 Ophiuchi	1850	22	16 40 37.024	+ 363.874	+ 1.216	+ 364. 148	- 0.274	
747	22 Ophiuchi	1755 1850	13	16 40 4.286 16 45 47.256	+ 360.471 361.563	+ 1.178 1.120	+ 360.576 361.664	— 0. 105 8. 101	
748	24 Ophiuchi	1755	4 8	16 42 , 3. 185 16 47 45. 527	+ 359. 828 360. 882	1.079	+ 359.834 360.893	0.006	
749	κ Ophiuchi	1755 1850 1900	367	16 46 5.048 16 50 34.241 16 52 56.082	+ 283. 148 283. 572 283. 790	+ 0.453 0.439 0.433	+ 285. 139 285. 564 285. 780	- 1.991 1.992 1.990	0.000
750	B. A. C. 5709	1755	ı 9	16 44 59.446	İ	+ 1. 168	+ 365. 237 366. 327	+ 0.080	
751	26 Ophiuchi	1755 1850	11	16 45 11.209 16 50 58.601	+ 365. 129 366. 213	+ 1. 174 1. 109	+ 364.976 366.061	+ o. 153	
752	29 Ophiuchi	1755	3 24	16 47 33.056 16 53 5.081	+ 349.056 349.936	+ 0.952 0.900	+ 349. 538 350. 420	- 0. 482 0. 484	
753	31 Ophiuchi	1755 1850	7	16 49 40. 795 16 55 30. 141	+ 367. 200 368. 254	+ 1.144 1.075	+ 367. 194 368. 245	+ 0,006	
754	d Herculis	1755 1850	39	16 52 34.454 16 56 4.258 16 57 54.799	+ 220.691 221.001 221.163	+ 0. 328 0. 324 0. 323	+ 220, 849 221, 165 221, 329	— 0. 158 0. 164• 0. 166	-0,002
755	B. A. C. 5758	1755	4	16 51 36.012 16 57 14.809	+ 356, 163 357, 085	+ 1.000 0.942	+ 356. 584 357·497	— 0. 421 0. 412	
756	e Ursæ Minoris	1755 1775 1800 1825		17 11 57. 10 17 9 43. 27 17 6 57. 51 17 4 13. 48	- 671. 73 666. 48 659. 63 652. 53	+25. 91 26. 82 27. 87 28. 88	- 673. 23 667. 98 661. 13 654. 02	+ 1.50 1.50 1.50 1.49	
		1850 1875 1900		17 1 31.26 16 58 50.91 16 56 12.47	645. 19 637. 61 — 629. 85	29. 86 30. 68 +31. 49	646. 68 639. 10 — 631. 34	1.49 1.49 1.49 + 1.49	
757	η Ophiuchi	1755 1850	5 188	16 56 21.014 17 1 46.776	+ 342. 542 343. 265	+ o. 785 o. 738	+ 342.424 343.151	+ 0. 118 0. 114	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
741	24 Scorpii	5. o 5. 5	1755 1850	0 / // - 17 14 39.97 17 26 49.65	// 790. 32 745. 77	+ 46,61 47.18	,, — 788, 55 744, 00	— 1. 77 1. 77	"
742	B. A. C. 5580	7· 5 6. o	1755 .1850	— 19 25 50.65 19 37 54.95	785. 01 739: 75	+ 47·34 47·94	— 787. 79 742. 58	+ 2. 78 2. 83	
743	15 Ophiuchi	7· 5 7· 3	1755 1850	- 22 42 14.03 22 53 58.44	— 764. 68 718. 21	+ 48. 59 49. 21	764. 23 717. 68	- 0.45 0.53	
744	25 Scorpii	6. o 7. o	1755 1850	- 25 3 27.54 25 15 0.24	- 752. 87 705. 38	+ 49.66 50.30	- 752. 57 705. 02	— o. 30 o. 36	
745	η Herculis	3. o 3. 3	1755 1850 1900	+ 39 24 7.92 39 12 37.37 39 6 44.21	— 740. 32 713. 43 699. 21	+ 28. 21 28. 39 28. 49	731. 24 704. 39 690. 19	9. 08 9. 04 9. 02	+ 0.04
746	18 Ophiuchi	6. 7	1850	- 24 22 19.59	 685. 30	+ 50.18	680, 92	- 4. 38	
747	22 Ophiuchi	6. 5 6. 7	1755 1850	- 23 5 5. 12 23 15 38. 93	- 690. 87 643. 39	+ 49. 70 50. 26	— 685.65 638.16	- 5. 22 5. 23	
748	24 Ophiuchi	6. 5 5. 9	1755 1850	22 44 10. 12 22 54 23. 96	- 669. 88 622. 34	+ 49.77 50.32	— 669. 33 621. 76	- 0. 55 0. 58	
749	κ Ophiuchi	4. 0 3· 4	1755 1850 1900	+ 9 46 30.55 9 36 43.93 9 31 49.44	— 636. 14 598. 83 579. 09	+ 39. 15 39. 40 39. 54	— 635. 95 598. 35 578. 45	- 0, 19 0, 48 0, 64	— o. 31
750	B. A. C. 5709	6. o 6. 3	1755 1850	- 24 41 43.68 24 51 32.41	643. 91 595. 44	+ 50.75	— 645. 01 596. 58	+ 1.10	
751	26 Ophiuchi	6, o 6. 1	1755 1850	- 24 35 22.37 24 45 17.44	— 650. 59 602. 12	+ 50.75 51.30	— 643. 35 594. 96	- 7. 24 7. 16	
752	29 Ophiuchi	6. o 6. 8	1755 1850	— 18 30 3.29 18 39 35.01	— 625. 01 578. 54	+ 48. 71 49. 12	623. 77 577. 30	— 1. 24 1. 24	
753	31 Ophiuchi	7· 5 6. 7	1755 1850	- 25 16 12.75 25 25 33.13	- 614. 34 565. 33	+ 51.33 51.85	606.05 556.96	- 8. 29 8. 37	
754	d Herculis	5. o 5. o	1755 1850 1900	+ 33 56 17.26 33 47 18.79 33 42 46.67	581.57 552.04 536.44	+ 31.01 31.16 31.24	- 581. 83 552. 26 536. 64	+ 0. 26 0. 22 0. 20	o. os
755	B. A. C. 5758	6. o 6. 6	1755 1850	— 21 11 56. 52 21 21 4. 54	600, 62 553. 03	+ 49.86 50.33	— 589. 98 542. 34	—10. 64 10. 69	
756	e Ursæ Minoris	4.0	1755 1775 1800	+ 82 23 51.57 82 22 26.04 82 20 33.80	- 418. 12 437. 13 460. 60	- 95. 45 94. 50 93. 26	— 417. 58 436. 63 460. 15	- 0. 54 0. 50 0. 45	
		4.3	1825 1850 1875	82 18 35.76 82 16 31.95 82 14 22.49	4 ⁸ 3. 74 506. 56 529. 06	91.96 90.65 89.26	483. 35 506. 22 528. 77	o. 39 o. 34 o. 29	
757	η Ophiuchi	2. 5 2. 4	1900 1755 1850	+ 82 12 7.45 - 15 23 49.43 15 32 2.78	— 551. 20 — 542. 32 496. 24	- 87.88 + 48.31 48.70	— 550. 96 — 550. 11 504. 04	- 0. 24 + 7. 79 7. 80	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
758	B. A. C. 5800	1755 1850	10	16 17	m. 59	s. o. 616 54. 105	s. + 371.598 372.576	s. + 1.069 0.991	s. + 371.801 372.773	s. — 0. 203 0. 197	s.
759	A Ophiuchi	1755	5	17	o 6	18. 672 7· 775	+ 366, 921	+ 1.193	+ 370.645	- 3. 724 3. 642	
760	B. A. C. 5813	1755 1850	23	17	1 7	11. 242 0. 302	+ 366.882 367.969	1. 181	+ 370. 567 371. 571	- 3.685 3.602	
761	B. A. C. 5815	1755 1850		17	1 7	25.657 14.308	+ 366. 552 367. 439	+ 0.970 0.898	+ 367. 353 368. 241	— 0. 801 0. 802	
762	a Herculis	1755 1850		17	3 7		+ 272.878 273.213	+ o. 358 o. 347	+ 272.995 273.331	- 0. 117 0. 118	-0.003
763	38 Ophiuchi	1900 1850	2	17	8	5. 242 20. 460	273. 3 ⁸ 5 + 371. 416	0. 341 + 0. 928	273. 508 + 372. 036	0, 123 — 0, 620	
764	39 Ophiuchi (south star)	1755 1850	5 11	17	3 8	5· 755 52. 068	+ 364.111 364.959	+ 0. 929 0. 858	+ 3 ⁶ 4. 7 ⁰ 9 3 ⁶ 5. 555	- o. 598 o. 596	
765	В. А. С. 5831	1755 1850	. 10	17	8	10. 666 57. 681	+ 364. 846 365. 701	+ 0.935 0.866	+ 364. 123 364. 969	0. 732	
766	ξ Ophiuchi	1755 1850	5 51	17	12	20. 512 1. 116	+ 358. 139 358. 909	+ 0.843 0.777	+ 356. 487 357. 242	1.652	
7 67	B. A. C. 5846	1755 1850	9	17	12	41.647 29.870	+ 366. 135 366. 954	+ 0.899 0.826	+ 366.679 367.500	— 0. 544 0. 546	
7 68	θ Ophiuchi	1755 1850 1900	200	17	6 12 15	59. 265 48. 112 52. 020	+ 366. 791 367. 612 368. 016	+ 0.901 0.827 0.788	+ 366.962 367.779 368.181	- 0. 171 0. 167 0. 165	
76 9	43 Ophiuchi	1755 1850	3 16	17	7	57. 998 55. 441	+ 375.812 376.686	+ 0.963 0.877	+ 375.940 376.814	- 0. 128 0. 128	
770	B. A. C. 5868	1755 1850	5 12	17	10 15	9. 0 8 5 56. 397	+ 365.207 365.966	+ •0. 835 0. 763	+ 365. 130 365. 887	+ 0.077	
771	δ Ophiuchi	1755 18 5 0	5 163	17			+ 364.859 365.610	+ 0.833 0.750	+ 365.011 365.761	- 0. 152 0. 151	+0.010
_	/ Outint:	1900		17	20	15. 735	365. 977	0. 717	366, 128 + 381, 358	0. 151	
772	d Ophiuchi	1755	30	17	17	44· 435 46. 873	+ 381.065 381.947	+ 0. 975 0. 882	382. 231	0, 293 0, 284	
773	€ Ophiuchi	1755 1850	5 49	17		29. 272 16. 043	+ 364.677 365.356	+ 0. 752 0. 679	+ 364. 786 365. 465	0. 109	
774	52 Ophiuchi	1755 1850	5 5	17		35. 360 17. 293	+ 359.623 360.226	+ 0.669 0.601	+ 359.848 360.448	- 0. 225 0. 222	
7 75	β Draconis	1755	10 299	17	27	54. 634 2. 776 10. 407	+ 134.635	+ 0. 534 0. 517	+ 134.750 135.255	- 0. 115 0. 121 0. 120	+0.001
<u> </u>		1900		17	20	10.407	135. 390	0. 507	135. 510	0. 120	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
758	B. A. C. 5800	6. 5 7· 5	1755	0 / " - 26 39 49.53 26 47 56.94	// 538. 08 487. 98	// + 52.50 52.96	" — 527.67 477.57	" — 10.41 10.41	"
759	A Ophiuchi	4· 5 4· 9	1755	- 26 12 59. 29 26 22 36. 20	- 631. 78 582. 70	+ 51.44	- 516.66 467.12	—115. 12 115. 58	
76 0	B. A. C. 5813	7. o 6. 8	1755	- 26 9 59. 32 26 19 29. 33	- 624. 54 575. 41	+ 51.49	509. 26 459. 64	—115. 28 115. 77	
76 t	B. A. C. 5815	7 5 7·3	1755 1850	- 25 7 48.5		+ 51.84 52.27	- 507. 23 457. 79		
762	a Herculis	3· 5 3· 3	1755 1850	+ 14 41 20.30 14 33 55.08	487. 11 450. 14	+ 38.82	- 489. 77 452. 79	+ 2.66 2.65	- 0, 02
7 63	38 Ophiuchi	6. 7	1900 1850	14 30 14.89 - 26 27 28.30	430.62 - 455.63	39. 10 + 52. 92	433 25 — 448. 24	2. 63 - 7. 39	}
764	39 Ophiuchi (south star)	6. o 5. 5	1755 1850	- 23 59 36.53 24 7 4.89	- 496. 55 447. 32	+ 51.62 52.03	— 493. 09 443. 77	— 3.46 3.55	
765	B. A. C. 5831	6. o 6. g	1755 1850	- 23 46 32. 11 23 54 6. 33	- 502. 85 453· 39	+ 51.93 52.20	- 492. 48 442. 97	— 10. 37 10. 42	
766	ξ Ophiuchi	4. 5 5. 1	1755 1850	- 20 49 29.98 20 56 47.44	484. 94 435. 98	+ 51.38	— 465. 51 416. 84	— 19.43 19.14	
7 67	B. A. C. 5846	7· 5 6. 8	1755 1850	- 24 37 57.23 24 44 56.71	- 466. 40 416. 72	+ 52. 10 52. 49	— 462.48 412.72	- 3.92 4.00	
768	θ Ophiuchi	3· 5 3. 6	1755 1850 1900	- 24 43 40. 56 24 50 39. 04 24 54 0. 17	- 465. 45 415. 49 389. 05	+ 52.39 52.78 52.97	— 459.99 410.13 383.76	- 5.46 5.36 5.29	
769	43 Ophiuchi	6. o 5. 8	1755 1850	- 27 52 38.42 27 59 29.42	458, 20 406, 98	+ 53.71 54.12	— 451.65 400,52	- 6, 55 6, 46	
7 7 0	B. A. C. 5868	7. o 7. o	1755 1850	- 23 59 34.40 24 6 2.81	- 433. 71 383. 93	+ 52. 22 52. 58	— 432. 98 383. 21	- 0.73 0.72	
771	b Ophiuchi	5· 5 4· 5	1755 1850 1900	- 23 55 24.59 24 1 54.35 24 5 0.46	- 435. 15 385. 36 359. 06	+ 52. 28 52. 53 52. 67	422.07 372.27 345.94	- 13.08 13.09 13.12	— 0.03
772	d Ophiuchi	5. o 4. 6	1755 1850	- 29 37 2.98 29 43 30.88	— 434. 26 382. 30	+ 54.50 54.89	— 419.41 367.40	— 14. 85 14. 90	
773	c ² Ophiuchi	5. o 5. 2	1755 1850	- 23 44 48.49 23 50 27.98	- 382. 30 332. 38	+ 52.39 52.70	— 378, 65 328, 74	- 3.65 3.64	
774	52 Ophiuchi	7. o 6. s	1755 1850	- 21 51 6.24 21 56 13.73	— 348. 32 298. 98	+ 51.80 52.08	— 343·34 293·97	- 4.98 5.01	
775	β Draconis	2. 0 2. 7	1755 1850 1900	+ 52 29 33.71 52 24 51.82 52 22 30.54	— 305. 99 287. 44 277. 64	+ 19.49 19.57 19.61	- 305. 98 287. 39 277. 57	- 0.01 0.05 0.07	- 0.04

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	cension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
776	a Ophiuchi	1,255	10	í	m.	s,	s.	s.	s.	s.	. s.
110	a Opinuem	1755	i	17	23	34. 319 58. 411	+ 277.828	+ 0.348	+ 277.092	+ 0. 736	+0.014
		1900		17	27 30	17. 529	278. 153 278. 319	o. 336 o. 328	277. 402	0. 751	
	* C		,		-		1	}	277. 565	0. 755	I
777	ξ Serpentis	1755		17	23	34. 390	+ 342. 529	+ 0. 545	+ 342.930	- 0.401	
		1850	33	17	29	0. 031	343. 023	0, 494	343. 419	0. 396	'
7 7 8	B. A. C. 5954	1755	I	17	24	2. 649	+ 359-373	+ 0.624	+ 359.690	- o. 317	i i
		1850	7	17	29	44. 324	359-933	0. 555	360. 239	0. 306	
779	σ Octantis	1800		16	8	4. 77	+ 8628.31	+5460.7	+ 8621.89	+ 6.42	
		1825	· ·	16	46	46. 30	9904.91	4517.9	9895. 20	9. 71	ı
		1850	· · ·	17	30	2.49	10764. 86	+2138.1	10751. 76	13. 10	
		1875	· • •	18	15	27.61	10899. 75	—I 102. I	10883.89	15.86	
_	_	1900		18	5 9	46. 38	+10253.76	—3884. 7	+10236.40	+17.36	
78 0	58 Ophiuchi	1755	5	17	28	45. 687	+ 358,660	+ 0. 566	+ 359.306	— o. 646	!
		1850	57	17	34	26. 658	359. 164	0.497	359. 800	0.636	i
78 I	ω Draconis	1755	3	. 17	38	24. 54	— 36.81	+ 1.04	— 37. 56	+ 0.75	
		1800		17	38	8. o8	36. 34	1.05	37. 02	0.68	
		1850		17	37	50. 04	35. 82	1.06	36.41	0. 59	
•		1900		17	37	32. 32	35. 26	1.10	35.80	0. 54	ł İ
782	3 Sagittarii	1755	4	. 17	32	9. 343	+ 376.519	+ 0.597	+ 376. 736	— 0. 217	r i
		1850	34	17	38	7. 291	377. 042	0. 506	377. 258	0. 216	
783	μ Herculis	1755	1 5	17	36	52. 825	+ 231. 122	+ 0. 386	+ 236.590	- 2.468	+0.029
		1850	367	17	40	35.414	234. 486	0, 380	236. 899	2.413	
		1900	• •	17	42	32. 704	234. 675	0. 375	237. 059	2. 384	i I
7 ⁸ 4	ψ^1 Draconis	1755		17	46	21.05	- 110.41	+ 1.78	110.43	+ 0.02	
	ı	1800		17	45	31.55	109.59	1.84	109. 70	0. 11	
		1850		17	44	36. 99	108.65	1.90	108, 86	0, 21	
		1900	!,	17	43	42 . 90	107. 70	1.94	107. 99	0. 29	
785	63 Ophiuchi	1755	5	17	39	49. 979	+ 368. 556	+ 0.448	+ 368, 604	- 0.048	
•		1850	11	17	45	40. 297	368, 945	0. 370	368, 990	0. 045	
786	B. A. C. 6060	1850	:	17	47	5. 7		+ 0. 319	+ 352.544		•
787	B. A. C. 6066						1 -66	!	1	, I	
101	<i>J. H. C.</i> 0000	1755 1850	9	17	42	9.692	+ 366.017	+ 0.411	+ 366.026	- 0.009	
-QU	. 6	i		17		57. 581		0. 333	366. 380	0.010	
788	4 Sagittarii	1755	5	17		50.619	+ 365. 702	+ 0.381	+ 365.773	- 0.071	
_		1850	50	17	50	38. 196	366. 027	0. 303	366. 092	0.065	
789	5 Sagittarii	1755	1	17		10.686	+ 367.404	+ 0.374	+ 367.091	+ 0.313	
		1850	. 12	17	50	59. 876	367. 721	0. 294	367. 407	0. 314	
790	6 Sagittarii	1755	5	17	47	9. 517	+ 348. 113	+ 0.308	+ 348. 141	- 0.028	
		1850	7	17	52	40. 354	348. 377	U. 249	348. 407	0. 030	1
791	γ Draconis	1755	9	17	50	55. 566	+ 138. 707	+ 0. 341	+ 138. 795	- o. o88	+0.006
		1850	550	17		7. 479		0. 324	139. 107	0, 084	
		1900			54			· •	•	0. 085	ı

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
776	a Ophiuchi	2. 0 2. 0	1755 1850	0 / " + 12 45 30.11 12 40 23.95	- 341.43 303.10	// + 40. 30 40. 41	., — 317. 59 279. 36	-23. 84 23. 74	+ 0.11
777	ξ Serpentis	5. o 3. 7	1900 1755 1850	12 37 57.46 - 15 13 10.63 15 17 56.03	282. 88 - 323. 93 276. 88	40. 47 + 49. 42 49. 64	259. 20 — 317. 57 270. 45	23. 68 - 6. 36 6. 43	
778	B. A. C. 5954	6. o 6. 8	1755	- 21 44 27.55 21 49 6.20	- 317.99 268.59	+ 51.87	- 313.49 264.07	- 4. 50 4. 52	,
779	σ Octantis	5.8	1800 1825 1850	- 89 11 10.36 89 14 28.99 89 16 22.18	- 944. 75 - 633. 36 - 264. 32	+1112.8 1373.4 1559.0	— 941. 19— 630, 06— 261. 43	- 3.56 3.30 2.89	
780	58 Ophiuchi	5. o	1875 1900	89 16 38.77 89 15 17.01 — 21 32 15.46	+ 132.82 $+ 515.31$ $- 278.82$	1588. 7 1447. 5 + 51. 86	+ 135. 18 + 517. 07 - 272. 64	2. 36 1. 76 — 6. 18	
781	ω Draconis	5·4 5. o	1850 1755	21 36 16.90 + 68 52 7.20	229. 45 — 156. 45	52. 07 — 5. 16	223. 19 — 188. 72	6. 26 +32. 27	
		5. o	1800 1850 1900	68 50 56. 26 68 49 36. 23 68 48 14. 94	158. 79 161. 32 163. 82	5. 10 5. 03 4. 96	191. 10 193. 67 196. 21	32. 31 32. 35 32. 39	
782	3 Sagittarii	5. o 4-6	1755 1850	- 27 42 35. 12 27 46 4. 28	246. 14 194. 17	+ 54.60 54.80	— 243. 17 191. 20	- 2.97 2.97	2.06
783	μ Herculis	4. 0 3· 3	1755 1850 1900	+ 27 52 50.89 27 48 42.48 27 46 43.97	- 277. 51 245. 46 228. 56	+ 33. 70 33. 78 33. 82	- 202. 05 169. 66 152. 58	-75. 46 75. 80 75. 98	— o. 36
784	ψ ¹ Draconis	5· 5 4· 3	1755 1800 1850	+ 72 15 41.81 72 14 34.15 72 13 15.20	146. 80 153. 95 161. 85	- 16. 02 15. 89 15. 73	— 119.45 126.62 134.53	-27. 35 27. 33 27. 32	\ .
785	63 Ophiuchi	6. 5 6. 6	1900 1755 1850	72 11 52. 32 24 48 42. 26 24 51 5. 37	169. 66 — 176. 14 125. 13	+ 53.63 53.76	142. 36 — 176. 33 125. 30	27. 30 + 0. 19 0. 17	
786 787	B. A. C. 6060 B. A. C. 6066	6. 7 7. 5	1850 1755	- 18 46 10.7 - 23 52 36.91	 — 158. 18	+ 51.22 + 53.30	— 112.88 — 156.00	 — 2. 18	
788	4 Sagittarii	7·3 5·0 5·4	1850 1755 1850	- 23 54 43.11 - 23 45 59.70 23 47 47.88	107. 49 — 139. 19 88. 53	53. 42 + 53. 28 53. 38	105. 31 — 132. 59 81. 93	2. 18 6. 60 6. 60	
789	5 Sagittarii	7. 0 7. 0	1755	- 24 14 17.20 24 15 59.57	- 133. 23 82. 28	+ 53.59	— 129. 75 78. 74	- 3.48 3.54	
790	6 Sagittarii	7. 0 6. 9	1755 1850	- 17 7 20.85 17 8 43.80	63. 18	+ 50.75 50.82	— 112. 37 64. 12	+ 0.95 0.94	
791	γ Draconis	2. 0	1755 1850 1900	+ 51 31 39.79 51 30 30.60 51 30 1.56	— 82.49 63.17 52.99	+ 20. 32 20. 36 20. 38	- 79·43 60. 14 49. 98	— 3. o6 3. o3 3. o1	+ 0.03

No.	Star.	Epoch.	Number of observations.	Right as	cension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
792	7 Sagittarii	1755 1850	3 8	h. m. 17 47 17 53	s. 50. 929 39. 720	s. + 367.003 367.282	s. + o. 334 o. 254	s. + 367. 179 367. 458	s. — 0. 176 0. 176	s.
793	B. A. C. 6098	1850	7	17 53	40. 520	+ 357.469	+ 0. 250	+ 357. 767	_ 0. 298	
794	Piazzi 17 ^h 330	1850		17 54	31. 1		+ 0. 238	+ 364. 291		
795	9 Sagittarii	1755 1850	2 24	17 48 17 54	51. 705 40. 700	+ 367. 223 367. 491	+ 0. 322 0. 242	+ 367.430 367.696	- 0. 207 0. 205	
796	Piazzi 17 ^h 334	1850	6	17 54	50. 465	+ 363, 238	+ 0. 233	+ 363.469	— 0. 231	
7 97	γ ¹ Sagittarii	1850	20	17 55	26. 314	+ 383.383	+ 0, 232	+ 383.062	+ 0. 321	
798	γ ³ Sagittarii	1755	4	17 50	4. 776	+ 384. 758	+ 0.365	+ 385.395	- o. 637	+0. 019
		1850	95	17 56	10. 445	385. 055	0. 260	385.676	0. 621	,,
		1900	• •	17 59	23.003	385. 172	0. 206	385. 78 7	0.615	
799	B. A. C. 6127	1850	14	17 58	35. 045	+ 379.913	+ o. 183	+ 379.675	+ 0.238	
800	B. A. C. 6161	1755	1	17 56	46. 605	+ 365. 791	+ 0. 220	+ 365. 772	+ 0.019	
		1850	11	18 2	34. 194	365. 9 6 4	0. 144	365. 938	0. 026	
801	μ Sagittarii	1755	5	17 59	7.010	+ 358.486	+ 0. 177	+ 358.606	·	
		1900 1850	752	18 4 18 7	47.641	358, 621	0. 107	358. 741		
0	41 to 11				46. 963	358.666	0.071	358. 78 6		
802	14 Sagittarii	1755 1850	4 2	17 59 18 5	33. 093 15. 149	+ 359.986 360.122	+ 0. 178 0. 108	+ 360. 368 360. 502	- 0. 382 0. 380	
803	15 Sagittarii	1755	5	18 0	36. 168	+ 357.691	+ 0. 163	- '		
	15 Sagittain	1850	14	18 6	16. 036	357.812	0.092	+ 357. 742 357. 865	— 0. 051 0. 053	
804	16 Sagittarii	1755	5	18 o	38. 568	+ 356. 729	+ 0. 165	+ 356.835	— o. 106	
		1850	4		17. 525	356. 858	0. 107	356. 958	0. 100	
805	17 Sagittarii	1755	1	18 2	0.087	+ 356.979	+ 0. 150	+ 357. 269	— o. 290	
		1850	5	18 7	39. 273	357. 087	0.079	357-377	0. 290	
806	B. A. C. 6194	1850	18	18 8	40.018	+ 374.668	+ 0.023	+ 375. 526	— o. 858	
807	B. A. C. 6201	1850		18 9	47.		+ 0.060	352. 307		
808	δ Sagittarii	1755	5	18 5	18. 567	+ 384. 122	+ 0.072	+ 383.906	+ 0.216	
		1850	38	18 11	23. 499	384. 141	o. o31	383. 927	0. 214	
809	B. A. C. 6210	1755	3	18 6	2. 546	+ 345.297.	+ 0, 112	+ 345. 108	+ 0. 189	
		1850	14	18 11	30, 620	345- 377	o. o 5 6	345. 188	0. 189	
810	η Serpentis	1755	5	18 8	38. 435	+ 309.967	+ 0.218	+ 313.866	— 3.899	
		1850	261	-	32.997	310, 160	o, 188	314. 016	3. 856	
		1900		18 16	8. 100	+ 310.250	+ 0.172	+ 314.085	— 3. 835	
811	21 Sagittarii	1755	5		45. 640	+ 357. 264	+ 0.040	+ 357. 346	- o. o82	
		1850	23	18 16	25. 048	357-272	0. 024	357. 351	0.079	
812	λ Sagittarii	1755	5	18 12	51.007	+ 370. 324	+ 0.013	+ 370. 783	- 0.459	
		1850	116	18 18	42.807	370. 295	- 0.071	370. 741	0.446	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
792	7 Sagittarii	7.0	1755	- 24 15 13.38	— 107. 52	+ 53.48	— 106. 32		"
793	B. A. C. 6098	5.9 6.0	1850 1850	24 16 31.38 - 20 43 50.42	56. 66 — 58. 40	53.60	55. 36	1.30	
793 794	Piazzi 17h 330	5.3	1850	- 23 8 8.3		+ 52.11	- 55·34 - 47·98	— 3.06	
795	9 Sagittarii	6.5	1755	— 24 20 17.88	— 100. II	+ 53. 15 + 53. 52	- 47.98 - 97.46	- 2.65	
133	y sagamar	6.0	1850	- 24 21 28.82	49. 23	53. 58	46. 58	2. 65	
796	Piazzi 17 ^h 334	5.3	1850	— 22 50 6.45	— 45. 18	+ 52.96	— 45. 14	— 0. 04	
7 97	γ¹ Sagittarii	5-6. 5	1850	— 29 34 50.56	— 39. 12	+ 55.98	— 39.88	+ 0.76	
798	γ ² Sagittarii	5.0	1755	— 30 23 53.59	— 108.62	+ 56. 12	— 86.87	-21.75	— 0. 07
		2.8	1850	30 25 11.46	55. 31	56, 12	33. 48	21.83	
	D 4 G 4		1900	30 25 32.10	27. 25	56. 12	5. 38	21.87	
799	B. A. C. 6127	5. 1	1850	— 28 28 4.8 0	- 13.11	+ 55.46	— 12.4 0	— o. 71	:
800	B. A. C. 6161	5.7	1755	- 23 43 25. 17 23 43 34. 54	- 35. 22 + 15. 49	+ 53.37 53.38	28, 22 + 22, 48	— 7.00 6.99	
801	μ Sagittarii	3. 5	1755	- 21 5 48.62	— 8.8 ₁	+ 52.24			6
•••	a Sagittarii	4.3	1850	21 5 33.43	+ 40.79	52. 18	- 7.70 + 41.95	— 1, 11 1, 16	- o. o6
			1900	21 5 6.51	66.87	52. 14	68. 07	1. 20	:
802	14 Sagittarii	6. o	1755	— 21 45 7.82	— 7.28	+ 52.46	— 3.93	— 3.35	
		6.0	1850	21 44 51.07	+ 42.55	52. 44	+ 45.99	3- 44	
803	15 Sagittarii	6.0	1755	- 20 46 31.05	+ 4.95	+ 52.17	+ 5.29	— 0.34	
0-		5.8	1850	20 46 2.82	54. 50	52. 15	54. 86	0. 36	
804	16 Sagittarii	6.0	1755	- 20 26 3.95 20 25 37.52	+ 3. 12 52. 53	+ 52.02 52.00	+ 5.63 55.07	- 2. 51 2. 54	
805	17 Sagittarii	7.0	1755	- 20 35 54. 73	+ 14.52	+ 52.02	+ 17.51	- 2.99	
	-, -, -, -, -, -, -, -, -, -, -, -, -,	7.0	1850	20 35 17.46	63.94	52.02	66.98	3.04	
806	B. A. C. 6194	5. 1	1850	— 27 5 28. 14	+ 78.79	+ 54.46	+ 75.83	+ 2.96	
807	B. A. C. 6201		1850	18 40		+ 51.31	+ 85. 59		
808	8 Sagittarii	3. 5	1755	- 29 54 16. 39	+ 43.74	+ 56.03	+ 46.48	— 2.74	
		2.8	1850	29 53 9.57	96.93	55.96	99.63	2. 70	
809	B. A. C. 6210	6.0	1755			+ 50. 36	+ 52.90		
		6.0	1850	— 15 53 17.7		50.30	100. 71		
810	η Serpentis	4.0	1755	- 2 56 28.41	+ 9.02	+ 44. 56	+ 75.64	66. 62	— o. 58
		3.5	1850	2 55 59.74	51. 33	44. 50	118.51	67. 18	
0	6			2 55 28.52	73.57	44. 46	141.03	67.46	
811	21 Sagittarii	6.0	1755	- 20 38 50. 30 20 36 59.63	+ 91.73	+ 52.09 52.06	+ 94.19	- 2.46	1
_							143- 54	2. 34	1
812	λ Sagittarii	4.0	1755	- 25 31 45.85 25 29 56.03	+ 89.98	+ 53.99	+ 112.42	—22.44	
		2.7	.~50	25 29 50.03	141. 21	53. 88	163.60	22. 39	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
813	8 Ursæ Minoris	1755		h. m. s. 18 50 35.73	s. —1831.68	s. —139.45	s. —1835. 35	s. + 3.67	s.
		1775		18 44 26.68	1858. 19	125. 30	1861. 73	3- 54	
		1800	¦	18 36 38.41	1887. 13	105.91	1890, 49	3. 36	
		1825	• •	18 28 43.53	1911.02	84.80	1914. 18	3. 16	
		1850		18 20 43.36	1929. 39	62, 28	1932. 35	2.96	
		1875		18 12 39.32	1942.03	38. 72	1944. 77	2. 74	
		1900	• •	18 4 32.87	-1948. 72	- 14.49	—1951. 22	+ 2.50	
814	B. A. C. 6287	1755				+ 0.005	+ 352.578		
	•	1850	4	18 21 22.6		 0. 060	352. 545		
815	В. А. С. 6294	1850	6	18 22 39. 006	+ 351.707	- o. o75	+ 351.698	+ 0.009	
816	B. A. C. 6304	1755	I	18 18 15.600	+ 366.958	— o. o85	+ 367.090	— 0. 132	
		1850	8	18 24 4.159	366. 839	0. 165	3 66. 9 76	0. 137	
817	24 Sagittarii	1755	5	18 18 55.296	+ 366. 752	- 0. 093	+ 366.874	— 0. 122	
		1850	11	18 24 43.657	366. 626	0. 173	366. 746	0. 120	
818	25 Sagittarii	1755	 I	18 19 32.717	+ 367.900	— o. 108	+ 367.407	+ 0.493	
0.0		1850	5		367.759	0. 188	367. 266	0.493	
				!	1	1			
819	1 Aquilæ (3 H. Scuti.)		5		+ 326.421	+ 0.051	+ 326.640	- 0. 219	+0,020
		1850	170	18 27 2.691	326. 451	+ 0.012	326, 650	0. 199	
	1	1900		18 29 45.917	326. 452	- 0.008	326, 641	0. 189	
820	B. A. C. 6336	1755	2	18 23 14.293	+ 359.331	— o. 108	+ 359.613	- o. 282	
		1850	7	18 28 55.595	359. 186	0. 198	359- 472	0. 286	ĺ
821	В. Л. С. 6343	1755	3	18 23 36.389	+ 365.230	- o. 149	+ 365.370	— 0. 140	
	!	1850	23	18 29 23.279	365.053	0, 224	365. 190	0. 137	
822	В. А. С. 6347	1755	2	18 24 16.636	+ 358.024	- 0, 109	+ 358.634	— 0.610	
022	17.11.0.0347.	1850	5	18 29 56.699	357. 888	0. 178	358. 520	0.632	
_	_		, ,	I.					
823	a Lyræ	1755		18 28 38.734	+ 202.987	+ 0.111	+ 201.162	+ 1.825	o. o2S
	' 	1850	• •	18 31 51.621	203.090	0. 105	201. 292	1. 798	
	!	1900	• •	18 33 33.179	203. 142	0. 101	201.356	1. 786	
824	26 Sagittarii	1755	5	18 26 54.679	+ 366.357	- o. 198	+ 366. 241	+ 0.116	
		1850	8	18 32 42.618	366. 133	0. 275	366, 015	0, 118	
825	B. A. C. 6369	1850	3	18 35 36.211	+ 369, 109	- o. 336	+ 369, 221	— 0. 112	
826	ø Sagittarii		1	18 30 20,586	+ 375.329	— o. 300			
020	y Sagittarii	1755	5	18 36 17.000		0.387	+ 375. 184	+ 0. 145	
			74	_			374. ⁸ 59	0. 144	
827	28 Sagittarii	1755	5	18 31 33.733	+ 362.270	— 0. 240	+ 362, 212	+ 0.058	
		1850	6	18 37 17.770	362, 009	0.310	361.946	0. 063	
828	B. A. C. 6386	1755	1	18 33 19.838	+ 356.439	·- 0. 233	+ 356.511	- 0.072	!
:	,	1850	3	18 38 58, 332	356.190	0, 291	356. 269	0.079	
829	29 Sagittarii	1755	5	18 35 7.382	+ 356. 548	- o. 255	+ 356.627	— 0. 079	
	,	1850	24	18 40 45.978	356. 276	0. 318	356. 354	0.079	
0	,		i		I	1	•		
530	30 Sagittarii	1755	5	18 36 6.677	+ 360.985	- 0.290	+ 361.492	— o. 507	
		1850	3	18 41 49.471	36 0. 677	0. 359	361. 181	0, 504	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				0 / //			"		
813	ð Ursæ Minoris	3.0	1755	+ 86 30 49.15	+ 443.90	—260. 39	+ 439. 38	+ 4.52	
			1775	86 32 12.68	3 91, 2 6	265. 64	386.65	4.61	
			1800	86 33 42, 12	324.09	271.49	319. 36	4. 73	
			1825	86 34 54.61	255.60	276. 25	250. 75	4.85	
		4.3	1850	86 35 49.84	186. 06	279. 95	181. 10	4. 96	
			1875	86 36 27.58	115. 74	282. 52	110, 68	5. 06	
			1900	+ 86 36 47.67	+ 44.95	-283.87	+ 39.79	+ 5. 16	
814.	B. A. C. 6287		1755	— 18 51 32.56	+ 128.70	+ 51.11	+ 138.25	— 9. 55	
•. .		6. o	1850	18 49 7.22	177. 19	50.97	186, 8o	9. 53	
			_						
815	B. A. C. 6294	5. 5	1850	— 18 3 o 0, 39	+ 191.78	+ 50.97	+ 197.87	6.09	
816	B. A. C. 6304	7. o	1755	- 24 15 41.82	+ 157.61	+ 53.27	+ 159.70	2.09	1
			1850	24 12 48.08	208. 14	53. 11	210. 22	2. 08	
817	24 Sagittarii	6. 5	1755	— 24 11 18. 37	+ 164.60	+ 53.23	+ 165.47	— o. 87	
•	_	5.9	1850	24 8 18.01	215.09	53.06	215.99	0.90	
818	25 Sagittarii	7.5	1755	— 24 22 58.92	+ 171.76		+ 170.86	-	
010	25 Sagittarii	6.3	1850	_	222.48	+ 53.47		+ 0.90	
		_	_	24 19 51.65		53. 30	221.59	0.89	
819	1 Aquilæ (3 H. Scuti.)	5.5	1755	— 8 23 30.35	+ 157.96	+ 47.55	+ 191.08	—33. 12	+ 0.08
		3.6	1850	8 20 38.85	203. 05	47- 37	236. 09	33. 04	
			1900	8 18 51.41	226. 71	47. 29	259. 71	33.00	
820	B. A. C. 6336	6.5	1755	— 21 34 24.70	+ 192. 39	+ 52.02	+ 203. 10	—10. 71	
		6, 2	1850	21 30 58.49	241. 71	51.83	252.46	10. 75	
821	B. A. C. 6343	6. o	1755	- 23 41 15.22	+ 203.03	+ 52.89	+ 206.30	2 27	1
021	27.11. 01 0343	6. 3	1850	23 37 38.51	253. 19	52.70	256.46	- 3. 27	
_		-	_					3. 27	
822	B. A. C. 6347	6. 5	1755	- 21 13 44.34	+ 196,68	+ 51.75	+ 212.16	-15.48	
		6. o	1850	21 10 14. 18	245. 75	51.56	261.31	15. 56	
823	a Lyræ	I. O	1755	+ 38 34 12.44	+ 277.05	+ 29.56	+ 250, 12	+26.93	+ 0. 26
		I. 0	1850	38 38 48, 96	305. 10	29. 48	277. 92	27. 18	
			1900	38 41 25. 19	319.83	29.44	292. 53	27. 30	
824	26 Sagittarii	6. o	1755	— 24 2 7.78	+ 232.00	+ 52.99	+ 235.06	- 3.06	
·		6, 6	1850	23 58 3.51	282, 23	52. 76	285. 28	3.05	
0	D A C 6060						ì		
825	B. A. C. 6369	6. 2	1850	— 25 9 19. 58	+ 307.31	+ 53.05	+ 310.34	— 3. o3	
826	φ Sagittarii	4- 5	1755	— 27 12 54.85	+ 262.02	+ 54.46	+ 264, 82	— 2.80	
		3, 7	1850	27 8 21.43	313.57	54. 07	316. 20	2, 63	
827	28 Sagittarii	6. o	1755	- 22 37 21.32	+ 273.30	+ 52.24	+ 275.49	— 2. 19	
		5.6	1850	22 32 38. 15	322, 80	51.98	324.96	2. 16	
828	B. A. C. 6386	7.5	1755	— 20 30 50.02	+ 287.37	+ 51.31	+ 290.76		
-		7· 3	1755 1850	20 25 53.90		51.06		- 3.39	1
	0 10 11				335-99		339-44	3- 45	
829	29 Sagittarii	6. o	1755	— 20 34 38.80	+ 307.63	+[51.37	+ 306.24	+ 1.39	
	THIS	5.5	1850	20 29 23.40	356. 32	51. 14	354.88	1.44	1
830	30 Sagittarii	6. o	1755	- 22 25 2.00	+ 311.02	+ 51.80	+ 314.84	— 3.82	
	1	6.6	1850	22 19 43. 20	360. 10	51.52	363.88	3. 78	1

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
831	31 Sagittarii	1755 1850	5 9	h. m. s. 18 37 25.140 18 43 7.739	s. + 360. 785 360. 465	s. o. 303 o. 371	s. + 360.814 360.491	s. — 0. 029 0. 026	s.
832	β Lyræ	1755 18 5 0 1900	5 1058	18 41 2.353 18 44 32.580 18 46 23.280	+ 221.219 221.363 221.437	+ 0. 154 0. 149 0. 147	+ 221.214 221.355 221.429	+ 0.005 0.008 0.008	_
833	33 Sagittarii	1755 1850	5 8	18 39 21.022 18 45 2.128	+ 359. 225 358. 880	- 0. 331 0. 396	+ 359. 273 358. 935	- 0. 048 0. 055	
834	ν ¹ Sagittarii	1755 1850	5 27	18 39 22,206 18 45 6,698	+ 362.797 362.437	- 0. 344 0. 414	+ 362.996 362.632	- 0. 199 0. 195	
835	σ Sagittarii	1755 1850 1900	5 126	18 40 3.795 18 45 57.762 18 49 3.883	+ 372.811 372.371 372.108	- 0. 422 0. 504 0. 545	+ 372.884 372.437 372.178	- 0. 073 0. 066 0. 070	
836	ν ² Sagittarii	1755 1850	5 19	18 40 17.912 18 46 2.960	+ 363.389 363.017	- 0. 358 0. 427	+ 362.770 362.393	+ 0.619 0.624	
837 838	B. A. C. 6447 B. A. C. 6448	1850 1850	12	18 46 55. 18 46 55.635	+ 363,686	- 0. 312 - 0. 450	+ 346.081 + 363.716	- o. o3o	
839	ξ¹ Sagittarii	1755 1850	5 12	18 42 46.480 18 48 25.579	+ 357. 124 356. 760	- 0. 351 0. 416	+ 357·324 356·957	- 0. 200 0. 197	
840	€ Sagittarii	1755 1850	5 40	18 43 6.191 18 48 46.771	+ 358.687 358.317	- 0. 363 0. 416	+ 358. 507 358. 128	+ 0. 180 0. 189	
841	50 Draconis	1755 1800 1850 1900		18 54 7.57 18 52 44.55 18 51 10.95 18 49 35.95	— 183. 19 185. 79 188. 63 191. 38	- 5.81 5.72 5.62 5.48	- 182, 86 185, 43 188, 23 190, 97	- 0. 33 0. 36 - 0. 40 0. 41	
842	ζ Sagittarii	1755 1850	5ر. 18	18 47 0.430 18 53 3.876	+ 382.888 382.246	- 0.630 0.722	+ 383. 226 382. 583	- o. 338 o. 337	
843 844	Lal. 35497 o Sagittarii	1850 1755 1850	5 58	18 54 14.6 18 49 59.435 18 55 41.567	+ 360. 367	- 0.447 - 0.457	+ 353.097	+ 0.409	
845	A. Oe. ² 19053	1850		18 57 5.8	359.902	- 0. 397	+ 344-043	0,400	
846	τ Sagittarii	1755	30	18 51 37.717 18 57 34.377	+ 375. 731 375. 120	0.685	376. 334 375. 704	- 0.603 0.584	
847	ζ Aquilæ	1755 1850 1900	1049	18 54 9. 125 18 58 30. 993 19 0 48. 834	+ 275.627 275.672 275.692	+ 0.053 0.042 0.037	+ 275. 733 275. 772 275. 792	- 0, 106 0, 100 0, 100	
848	B. A. C. 6536	1755 1850	1 9	18 53 52.323 18 59 27.777	+ 353.331 352.879	- 0.448 0.504	+ 353.444 352.991	- 0. 113 0. 112	
849	π Sagittarii	1755 1850	5 143	18 55 10.873 19 0 50.492	+ 357·745 357·233	- 0. 510 0. 568	+ 357.876 357.371	- 0. 131 0. 138	
850	ψ Sagittarii	1755 1850	5 78	19 0 30.025 19 6 20.399	+ 369. 156 368. 464	- 0, 693 0, 764	+ 369.017 368.327	+ 0.139 0.137	

									Sec. var.
No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	of proper motion.
831	31 Sagittarii	6. o	1755 1850	0 ' '' - 22 11 0.75 22 5 31.74	+ 321.78 370.84	" + 51.79 51.49	// + 326. 14 375. 21	" 4. 36 4. 37	"
832	β Lyræ	3. o 4. o	1755 1850	+ 33 5 37.70 33 11 29.81	+ 355.64 385.64	+ 31.63	+ 357. 36 387. 35	— 1. 72 1. 71	+ 0.01
833	33 Sagittarii	6. o 6. o	1900 1755 1850	33 14 46.57 - 21 38 5.54 21 32 17.32	401. 39 + 342. 03 390. 96	31.47 + 51.67 51.35	403. 10 + 342. 77 391. 58	- 0. 74 0. 62	
834	ν¹ Sagittarii	5. o 5. o	1755 1850	- 23 1 12.40 22 55 26.07	+ 339.93 389.15	+ 51.97 51.66	+ 342.98 392.23	- 3. 05 3. 08	•
835	σ Sagittarii	3. o 2. 4	1755 1850 1900	- 26 34 26.85 26 28 38.64 26 25 16.11	+ 341.21 391.81 418.29	+ 53.46 53.07 52.85	+ 348.93 399.53 426.01	- 7. 72 7. 72 7. 72	0, 00
836	v³ Sagittarii	5. o 5. I	1755 1850	— 22 57 6.20 22 51 11.72	+ 348.44 397.81	+ 52.13 51.81	+ 350.99 400.28	- 2.55 2.47	
8 ₃₇ 8 ₃ 8	B. A. C. 6447 B. A. C. 6448	5. 8 6. 4	1850 1850	— 16 33	+ 406.03	+ 49. 26 + 51. 77	+ 407. 72 + 407. 83	 — 1.80	
839	ξι Sagittarii	6.0	1755	- 23 21 33.04 - 20 57 3.61	+ 369.34	+ 51.09	+ 372.29	- 1. 30 - 2. 95	
		5. 7	1850	20 50 49. 73	417. 70	50. 75	420, 65	2.95	
840	ξ ² Sagittarii	5. o 3. 5	1755 1850	— 21 24 11.60 21 17 54.27	+ 372.87 421.44	+ 51.30 50.97	+ 375. 14 423. 64	- 2.27 2.20	
841	50 Draconis	5. 5 6. o	1755 1800 1850 1900	+ 75 7 54.42 75 11 26.40 75 15 15.60 75 18 58.03	+ 477.00 465.09 451.66 438.02	- 26, 23 26, 64 27, 08 27, 52	+ 469. 48 457. 60 444. 20 430. 59	+ 7.52 7.49 7.46 7.43	
842	ζ Sagittarii	3. 5 3. 1	1755 1850	- 30 12 11.79 30 5 19.59	+ 408. 16 459. 51	+ 54.46 53.65	+ 408.66 460.14	— 0. 50 0. 63	
843	Lal. 35497	6.4	1850	— 19 27 26.8		+ 49.87	+ 470. 27		
844	o Sagittarii	4.5 3.8	1755 1850	- 22 4 29. 76 21 57 21. 18	+ 426.86 475.34	+ 51.25 50.84	+ 434. 22 482. 60	— 7. 36 7. 26	
845	A. Oe.º 19053	5.9	1850	— 15 52 52. I		+ 48.43	+ 494. 52		
846	τ Sagittarii	4. o 3. 6	1755 1850	- 28 o 7.32 27 53 2.76	+ 421.63 472.07	+ 53.29 52.88	+ 448. 17 498. 55	-26. 54 26. 48	
847	ζ Aquilæ	6. o 3. o	1755 1850 1900	+ 13 31 5.80 13 38 39 75 13 42 52.68	+ 459.43 496.22 515.50	+ 38.84 38.62 38.50	+ 469. 71 506. 54 525. 84	-10. 28 10. 32 10. 34	— 0. 04
848	B. A. C. 6536	6. 5 5. 8	1755 1850	— 19 31 12.6		+ 49.91 49.52	+ 467.30 514.56		
849	π Sagittarii	4. 5 3. I	1755 1850	- 21 23·17.83 21 15 24.83	+ 473.98 521.78	+ 50.50 50.14	+ 478.43 526.19	4- 45 4- 41	
850	ψ Sagittarii	6. o 5· 4	1755 1850	- 25 39 12.33 25 30 35.57	+ 519.37 568.43	+ 51.88 51.40	+ 523.52 572.50	— 4. 15 4. 07	

RIGHT ASCENSIONS.

		·								
No.	Star.	Epoch.	Number of observations.	Right	ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
851	d Sagittarii	1755 1850 1900	5 82	19 19	n. s. 3 17.230 8 51.387	1's. + 352.013 351.468	s. — o. 547 o. 600 o. 626	s. + 352.233 351.691	s. - 0. 220 0. 223	s.
852	B. A. C. 6591	1755	 I 2	19	47. 045 5 6. 748 10 33. 794	+ 344.495	- 0.481 0.527	351. 390 + 344. 617 344. 138	0, 229 — 0, 122 0, 122	-
853	B. A. C. 6607	1755 1850	14	19	5 56. o95 1 38. 645	+ 360, 901 360, 247	- 0.655 0.720	+ 360, 998 360, 338	- 0.097 0.091	-
854	d Draconis	1755 1800 1850 1900	5	19	2 25. 70 2 28. 17 2 30. 38 2 32. 02	+ 6.02 5.00 3.86 2.70	- 2. 26 2. 28 2. 31 2. 32	+ 4.08 3.07 1.94 0.78	+ 1.94 1.93 1.92	
855	ρ' Sagittarii	1755 1850	4 52	19	7 26.917 2 58.250	+ 349.047 348.488	- 0.563 0.613	+ 349. 295 348. 744	- 0. 248 0. 256	
856	ρ² Sagittarii	1755 1850	5 3	19	7 32.491 3 5.804	+ 351.133 350.571	— 0. 566 0. 617	+ 350. 422 349. 861	+ 0. 711 0. 710	
857	υ Sagittarii	1755 1850	5 20	19	7 40. 927 3 8. 056	+ 344-594 344-091	- 0. 504 0. 555	+ 344.639 344.139	— 0. 045 0. 048	
858	B. A. C. 6628	1755 1850		19	9 12. 320 15 8. 917	+ 375.802 374.916	— 0. 891 0. 976	+ 375· 799 374· 909	+ 0.003	
859	χ ¹ Sagittarii	1755 1850	5 18	-	20. 670 6 8. 612	+ 366, 636 365, 863	- 0. 782 0. 847	+ 366. 346 365. 567	+ 0. 290 0. 296	-
860	χ^2 Sagittarii χ^3 Sagittarii	1850	3 5	19	16 15. 366 10 38. 702	+ 365. 420 + 364. 606	- 0.847 - 0.774	+ 365.308 + 364.864	+ 0.112 - 0.258	
862	50 Sagittarii	1850 1755 1850	13 5 8	19	16 24. 720 11 41. 392	363. 842 + 359. 087 358. 381	o. 835 — o. 714	364. 094 + 359. 033	+ 0.054	
863	B. A. C. 6643	1850	5	19	17 22. 193 17 38. 958	+ 342. 190	0. 772 — 0. 562	358. 336 + 341. 786	0.045	
864	δ Aquilæ	1755 1850 1900	956 	19	8. 558 7 56. 104 20 27. 380	+ 302. 761 302. 597 302. 505	- 0. 165 0. 180 0. 187	+ 301.126 300.967 300.880	+ 1.635 1.630 1.625	
865	τ Draconis	1755 1800 1850 1900	5	19	20 5. 55 19 18. 22 18 24. 25 17 28. 82	— 103. 88 106. 47 109. 41 112. 32	5. 78 5. 81 5. 84 5. 87	- 101. 35 103. 89 106. 77 109. 64	2. 53 2. 58 2. 64 2. 68	
866	B. A. C. 6658	1755	3		19 21.5		- 0.633 0.680	+ 350. 268 349. 646		
867	B. A. C. 6666	1850	21	-	20 35. 249	+ 371.825	- 1.006	+ 371.934	— 0. 109	
868	h¹ Sagittarii	1755 1850	5 14	19 2	21 7. 549 26 54. 942	+ 366, 129 365, 217	0. 930 0. 990	+ 366, 125 365, 209	0.004	
869	h ² Sagittarii	1755 18 5 0	120	1 -	21 46. 384 27 34. 479	+ 366, 876 365, 949	- 0.946 1.006	+ 366. 513	+ 0. 363 0. 366	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
851	d Sagittarii	5. o 5. 6	1755 1850	0 / " — 19 21 53.76 19 12 53.57 19 7 51.59	" + 545·34 591.81 616.09	+ 49. 17 48. 68 48. 42	" + 547. 04 593- 54 617. 84	.,, — 1. 70 1. 73 1. 75	
852	B. A. C. 6591	5. o 8. o	1755	- 16 10 32.8		+ 47.98 47.55	+ 562.41 607.85		
853	B. A. C. 6607	5.9	1755	- 22 49 55.84 22 40 34.19	+ 567.53 614.80	+ 50.03 49.50	+ 569.39 616.80	- 1.86 2.00	
854	δ Draconis	3.0	1755	+ 67 13 51.36 67 18 35.76	+ 631.83 632.17	+ 0.84	+ 623.60 623.83	+ 8. 23 8. 34	 -
		3.0	1850 1900	67 23 51.92 67 29 8.21	632. 46 632. 69	o. 53 o. 36	623. 99 624. 08	8. 47 8. 61	
855	ρ¹ Sagittarii	5. o 4. 2	1755 18 5 0	- 18 17 2.76 18 7 28.59	+ 581.38 627.33	+ 48.60 48.15	+ 582.01 627.84	- 0.63 0.51	
856	ρ ² Sagittarii	5. 5 6. 5	1755 1850	- 18 44 20, 08 18 34 53, 19	+ 573·55 619.81	+ 48.98 48.40	+ 582.77 628.90	- 9. 22 9. 09	
857	υ Sagittarii	5· 5 4· 9	1755 18 5 0	— 16 23 28.71 16 13 54.16	+ 582. 15 627. 38	+ 47.84 47.38	+ 583.96 629.20	— 1.81 1.82	
858	B. A. C. 6628	5.9	1755 1850	- 28 18 50.40 28 9 1.69	+ 594.99 644.30	+ 52.22 51.60	+ 596.66 645.93	- 1.67 1.63	
859	χ ¹ Sagittarii	6. o 5. 4	1755 1850	- 24 57 32.08 24 47 39.91	+ 599. 32 647. 29	+ 50. 77 50. 21	+ 606, 23 654, 14	— 6.91 6.85	
86 0	χ ² Sagittarii	6. 3	1850	— 24 42 2,84	+ 649.41	+ 50. 12	+ 655.09	— 5.68	
861	χ ³ Sagittarii	6. o 5. 6	1755 1850	- 24 25 2.98 24 15 3.60	+ 607.08 654.69	+ 50. 39 49. 84	+ 608. 74 656. 38	- 1.66 1.69	
862	50 Sagittarii	6. 5 5. 9	1755 1850	- 22 14 14.98 22 4 6.93	+ 616. 59 663. 44	+ 49.58 49.05	+ 617.45 664.30	— o. 86 o. 86	
863		5.9	1850	— 15 20 44.23	+ 664.42	+ 46.85	+ 666. 56	- 2.14	
864	δ Aquilæ	3· 5 3· 4	1755 1850 1900	+ 2 38 47.43 2 49 11.36 2 54 54.81	+ 636.93 676.55 697.25	+ 41.89 41.52 41.32	+ 629. 55 668. 97 689. 57	+ 7.38 7.58 7.68	+ 0.21
865	τ Draconis	4- 5	1755	+ 72 53 35.05 72 58 47.77	+ 698.31 691.53	- 14.88 15.26	+ 687.02 680.40	+11.29	
0	n 1 6 4 6	4.7	1850	73 4 31.60	683. 78 675. 84	15, 69	672, 83 665, 06	10. 95	
866		7.3	1755	- 18 49 55. 13 18 39 27. 61	+ 637. 76 683. 25	+ 48. 20 47. 56	+ 635.14 680.70	+ 2.62 2.55	
867	B. A. C. 6666	5.8	1850	— 27 17 14.56	+ 686.98	+ 50.61	+ 690. 76	— 3. 78	
868	h ¹ Sagittarii	6.0 5 1 -6 1	1755 1850	- 25 13 54.47 25 2 33.59	+ 693. 16 740. 17	+ 49.80 49.18	+ 695. 51 742. 51	- 2. 35 2. 34	
869	h² Sagittarii	4- 5 4- 7	1755 1850	- 25 23 59.95 25 12 34.36	+ 698. Q7 745. 17	+ 49.90 49.26	+ 700.83 747.86	- 2. 76 2. 69	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right as	cension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
8 7 0	В. А. С. 6707	1850	5	h. m.	s. 41. 259	s. + 350.479	s. — o. 775	s. + 350, 322	s + 0. 157	s.
871	В. А. С. 6710	1850	2	19 28	20. 928	+ 348.990	- o. 754	+ 348. 773	+ 0.217	
872	κ Aquilæ	1755	5	19 23	42, 109	+ 323.466	- 0, 410	+ 323.560	- 0.094	
		1850	132	19 28	49. 213	323.065	0. 435	323. 159	0.094	
		1900		19 31	30. 691	322. 844	0.448	322.941	0.097	
873	53 Sagittarii	1755	5	19 25 19 30	4. 709 48. 322	+ 362. 144 361. 244	- 0. 920 0. 974	+ 362.399 361.484	- 0. 255 0. 240	
874	B. A. C. 6727	1755	5	19 25	21, 884	+ 362.486	— 0.930	+ 362. 382	+ 0. 104	
		1850	11	19 31	5.817	361.577	0.984	361.465	0, 112	
875	c¹ Sagittarii	1755	5	19 26	40. 130	+ 345.021	- o, 681	+ 344.606	+ 0.415	
"		1850	31	19 32	7. 587	344. 356	0. 720	343. 936	0, 420	
876	c ² Sagittarii	1755	5	19 28	29. 180	+ 344. 521	— o, 696	+ 344.117	+ 0.404	
 I		1850	65	19 33	56. 156	343. 843	0. 733	343-434	0.409	
877	B. A. C. 6746	1850	8	19 35	0, 022	+ 342.860	— o. 697	+ 341.841	+ 1.019	
878	f Sagittarii	1755	5	1	2. 920	+ 351.545	- o. 851	+ 352.615	- 1.070	
		1850	52	19 37	36. 497	350. 716	o. 895	351.777	1.061	
879	γ Aquilæ	1755	50	, ,	36, 666	+ 285.359	— o. o97	+ 285.317	+ 0.042	
		1850		19 39	7. 712	285. 265	0, 102	285. 222	0.043	
		1900	• •	19 41	30. 332	285. 213	0. 105	285. 173	0,040	
88o	a Aquilæ	1755	• •	19 38	49. 590 27. 867	+ 293.008 292.837	0. 177 0. 183	+ 289. 399 289. 247	+ 3.609 3.590	-0. 023
į		1900		19 43	54. 263	292. 745	0. 183	289, 168	3. 577	
881	57 Sagittarii	1755	I	19 37	56. 168		 o. 876	+ 350. 453	+ 0.038	
001	jg	1850	30	19 43	28. 733	349. 640	0,916	349. 596	0.044	
882	ω Sagittarii	1755	5	19 40	47.877	+ 369.882	— 1.268	+ 368.474	+ 1.408	
		1850	26	19 46	38. 686	368.655	1. 316	367. 256	1. 399	
883	b Sagittarii	1755	5	19 41	52. 794	+ 370.503	— 1. 293	+ 370.655	— o. 151	
		1850	26	19 47	44. 179		1. 349	369. 397	0. 149	
884	β Aquilæ	1755	50	19 43	16, 619	+ 294.897	_ o. 136	+ 294. 738	+ 0. 159	+o. n28
 :		1850		19 47		294. 764	0. 144	294. 576	о, 188	
		1900		19 50	24. 072	294, 690	0. 147	294. 493	0. 197	
885	e Draconis	1755	2	19 48	52. 76	— 12. 15	- 4. 20	— 13.59	+ 1.44	
		1800		19 48	46, 86	14.06	4. 26	15.50	1.44	
		1850		19 48	39. 2 9	16, 21	4- 34	17.65	1.44	
000	a	1900		19 48	30. 64	18. 38	4.42	19.85	1.47	
886	g Sagittarii	1755	5	1	2. 121 26. 369	+ 341.696	- 0, 790 0, 829	+ 341.742	0, 046	
Q0_	A Camintanii		15	19 49			1	340.971	0.044	·
887	A Sagittarii	1755 1850		19 43	59. 585 48. 500	+ 367. 893 366, 658	- 1. 275 1. 326	+ 367.821 366.587	+ 0.072 0.071	
888	c Sagittarii		-				1		ĺ	
000	c Sagittarii	1755	136	19. 47		+ 371.624 370.269	- 1.401 1.452	+ 371.415 370.063	+ 0. 209 0. 206	
		-535	-35	-9 33	- J. 009	310,209		3,5,55	3,200	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
870	B. A. C. 6707	6.4	1850	0 / . " — 19 10 44. 52	+ 748.45	+ 47.13	" + 748.80	- o. 35	• //
871	B. A. C. 6710	5.8	1850	- 18 33 34. 20	+ 748.54	+ 46.88	+ 754. 14	5.6o	
872	κ Aquilæ	4.0	1755	- 7 33 4·48	+ 716.69	+ 43.79	+ 716.61	+ 0.08	0.00
٠,ـ	a require r	5.4	1850	7 21 23.94	758. 05	43. 30	757.97	0.08	0.00
			1900	7 14 59. 52	779.63	43.04	779. 55	0.08	
873	53 Sagittarii	7.0	1755	— 23 57 38.94	+ 722.82	+ 48.89	+ 727.86	— 5. 04	
		6. 7	1850	23 45 50.33	768.86	48, 03	774. 05	5. 19	
874	B. A. C. 6727	7. 0	1755	— 23 57 56.31	+ 728.69	+	+ 730.21	— 1.52	
		6. 2	1850	23 46 2.06	774.89	48.06	776.40	1.51	
875	c¹ Sagittarii	5.5	1755	— 16 49 56.74	+ 735.34	+ 48. 32 +	+ 740.83	— 5.49	
		5.5	1850	16 37 57. 26	779. 26	46, 51	784. 66	5.40	
876	€ Sagittarii	5. o	1755	— 16 40 31.36	+ 753-54	45.95 + 46.29	+ 755.58	- 2.04	
		5.4	1850	16 28 14. 70	797. 24	45. 72	799. 23	1.99	
877	B. A. C. 6746	5.8	1850	- 15 48 47.81	+ 787.11	+ 45.57	+ 807. 73	—20. 62	
878	f Sagittarii	6, o	1755	— 20 19 38.38	+ 774.89	+ 46.77	+ 784.39	- 9. 50	
		5. 2	1850	20 7 1.20	819.00	46, 10	828, 60	9.60	
879	γ Aquilæ	3. o	1755	+ 10 2 4.25	+ 804.21	+ 37.67	+ 805.06	— o. 85	+ 0.01
		3. o	1850	10 15 5.17	839.86	37. 39	840. 70	0.84	
			1900	10 22 9.77	858. 52	37. 25	859. 36	0. 84	
88 o	a Aquilæ	1.5	1755	+ 8 14 24.72	+ 875.09	+ 38.96	+ 838, 64	+36.45	+ 0.47
		1. 1	1850	8 28 33.57	911.90	38. 52	875. 02	36. 88	
			1900	8 36 14.32	931. 10	38, 29	893. 97	37. 13	
881	57 Sagittarii	5.5	1755	- 19 38 41. 18	+ 824.97	+ 46. 18	+ 831.56	- 6. 59	
		6. I	1850	19 25 16. 72	868, 53	45. 52	875. 11	6. 58	
882	ω Sagittarii	6. o	1755	— 26 55 35.52	+ 863.74	+ 48. 74	+ 854.25	+ 9.49	
		5. I	1850	26 41 33 11	909, 64	47. 91	899, 96	9.68	
883	b Sagittarii	5.0	1755	— 27 47 43.87	+ 859. 28	+ 48.40	+ 862.85	— 3·57	
		4.6	1850	27 33 45.82	904. 89	47.61	908, 47	3. 58	
884	β Aquilæ	3.5	1755 1850	+ 5 48 48.24 6 2 9.02	+ 824. 76 861. 02	+ 38.38	+ 873.87 910.12	49. 11 49. 10	+ 0.02
		3.9	1900	6 9 24. 26	879.94	37· 94 37· 71	929. 02	49. 18	
885	e Draconis	5. 5		+ 69 38 35.51	+ 920. 25	— 1.78	+ 917. 76	+ 2.49	
٠.,	· istacoms	3. 3	1755 1800	69 45 29.44	919.40	2.03	916.83	2.57	
	•	3.7	1850	69 53 8.87	918. 31	2. 31	915.65	2, 66	
			1900	70 0 47. 73	917.09	2.60	914. 32	2. 77	
886	g Sagittarii	6. o	1755	— 16 7 13.67	+ 870.94	+ 44.42	+ 879.85	— 8.91	
		5-3	1850	15 53 6.33	912.83	43- 77	921. 75	8, 92	
887	A Sagittarii	5-5	1755	— 26 50 6.92	+ 881.34	+ 47.87	+ 879.53	+ 1.81	
		5-3	1850	26 35 48.16	926. 44	47. 08	924. 59	1.85	
888	c Sagittarii	4-5	1755	— 28 22 4.41	+ 909.03	+ 47.99	+ 907.44	+ 1.59	
		4. 7	1850	28 7 19. 31	9 54. 22	47. 15	952.60	1.62	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	tht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
		: 		h.	m.	s.	s.	s.	s.	s .	s.
889	63 Sagittarii	1755	. 5 15	19	48 53	14. 009 34. 253	336. 727	— 0. 766 0. 792	+ 337.350 336.608	0.117	
0	r Aquilæ		-					· i		_	
890	r Aquinae	1755	5 63		52 56	9, 886 48, 692	+ 293. 575 293. 385	— 0, 198 0, 201	+ 293. 326 293. 137	+ 0. 249 0. 248	
		1900		19 19	59	15. 360		0, 201	293. 137	0. 244	
0	6a Carinarii	-						1	_		
891	65 Sagittarii	1755	5	-	51	4	+ 334.812	- 0. 747 0. 769	+ 335.011 334.284	- 0. 199 0. 192	
_			i i	19	57	5. 747		1			i
892	ξ ¹ Capricorni	1755	5	19	58	22. 156	+ 333.837	— o. 781		— o. 225	
		1850	12	20	3	38. 944	333. 082	0,810	333. 309	0. 227	
893	ξ ² Capricorni	1755	5	19	58	45. 700	+ 335.641	— o. 774	+ 334-497	+ 1.144	
		1850	12	20	4	4. 207	334. 896	0. 794	333. 741	1. 155	
894	3 Capricorni	1755	5	20	2	47-733	+ 333.619	- o. 8o6	+ 333.694	— 0. 075	
		1850	5	20	8	4. 304	332. 845	0. 824	332. 915	0.070	
895	4 Capricorni	1755	5	20	3	35. 883	+ 354. 715	- 1, 232	+ 354.644	+ 0.071	
-		1850	15	20	9	12. 301	353. 530	1. 263	353.456	0.074	1
896	a ¹ Capricorni	1755	9	20	4	2. 904	+ 334.010	_ o. 823	+ 333.982	+ 0.028	
-,-	i	1850	114	20	9	19.839	333. 221	0.839	333. 193	0. 028	
897	ι. ² Capricorni		1	ĺ				- 0.827	+ 334.037	+ 0.310	
997	a. Capricorni	1755	9	20	9	26. 473 43. 726	+ 334-347	0.844	333. 242	0.312	
		1900		20	12	30. 397	333· 554 333· 130	0.853	332, 820	0. 310	
0.0	Cii	•					!	· '		_	
898	σ Capricorni	1755	5	20	5	13.697	+ 348, 244	- 1.116	+ 348, 285	- 0.041	l
		1850	29	20	10	44. 022	347. 172	1. 140	347. 211	0. 039	
899	ν Capricorni	1755	5	20	7	3. 208	+ 334.227	- o. 855	+ 334.322	- 0,095	
		1850	8	20	12	20. 337	333.411	0.864	333. 509	0, 098	
900	B. A. C. 6992	1755	4	20	6	59. 277	+ 338. 743	- o. 932	+ 338.624	+ 0. 119	1
		1850	12	20	12	20,660	337. 849	0.951	337. 727	0, 122	
901	β Capricorni	1755	5	20	7	13. 359	+ 338.788	- o. 937	+338,602	+ 0. 186	
	1	1850	159	20	12	34. 782	337. 888	0.957	337. 702	0, 186	
902	λ Ursæ Minoris	1755		21	17	40.87	-3033.51	-1806, 85	—3030. 19	— 3.32	
		1775		21	6	56. 11	3419. 71	2055. 82		3. 77	1
		1800		20	51	33. 20	3975-33	2388, 14	3970. 91	4. 42	
	•	1825		20	33	41. 18	4612. 77	2702. 72	4607.60	5. 17	
		1850		20	13	o. 7 8	5320.43	2936, 22	5314. 42	6. 01	
		1875		19	49	18. 01	6064.97	2975. 83	6058.09	· 6. 88	
		1900		19	22	31.37	-6781.07	2689. 28		− 7.74	
903	a Pavonis	1850		20	13	45. 15	+ 480 5	- 5.89	+ 480.38	+ 0.37	1
		1875	• •	20	15	45. 16	479 27	5.92	478. 90	0.37	
		1900	• •	20	17	44. 79	477. 78	5.96	477. 41	0.37	
904	κ Cephei	1755		20	16	39. 92	- 170.68	-15.56	— 170.95	+ 0.27	
		1800	• •	20	15	21.50	177. 77	15.90	178. 03	0.26	
		1850		20	13	•	185.84	16, 35	186, 09	0. 25	
		1900	• •	20	12	15.63	194.08	16. 77	194. 35	0. 27	1

90s. The reductions to past epochs are somewhat uncertain.

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
889	63 Sagittarii	1	1755 1850	0 , " — 14 17 42.61 14 2 54.51	; [" + \ \ 914.30	+ 43.46 42.82	+1 912. 73 953. 70	+ 1.57. 1.58	"
8 9 0	r Aquilæ	5.9	1755 1850 1900	+ 6 36 16.00 6 51 29.59 6 59 43.86	+ 943.96 979.31 997.73	+ 37.45 36.97 36.71	+ 943.24 978.56 996.96	+ 0. 72 0. 75 0. 77	+ 0.03
891	65 Sagittarii	6. 7	1755 1850	- 13 20 13.43 13 5 5.66	+ 935·37 975.64	+ 42. 72 42. 07	+ 940.43 980.72	5. 06 5. 08	
892	ξ¹ Capricorni	6.8	•	- 13 5 59. 74 12 50 1. 70	+ 988.67 1028.15	+ 41.89 41.22	+ 990.84	- 2. 17 2. 21	
893	§ ² Capricorni	6. 3	1755 1850 1755	- 13 18 54.88 13 3 9.86 - 13 4 3.74	+ 974.84 1014.61 + 1023.83	+ 42. 16 41. 57 + 41. 40	+ 993.82 1033.52 + 1024.35	18, 98 18, 91 0, 52	
895	4 Capricorni	6. 8 6. o	1850 1755	12 47 32.52 - 22 32 42.48	1062, 83	40. 70	1063. 37	0. 54 - 3. 76	
896	a ¹ Capricorni	4.0	1850 1755 1850	- 13 14 44.83 12 58 3.89	1067. 99 + 1034. 11 1073. 03	43. 14 + 41. 32 40. 62	1071. 76 + 1033. 76 1072. 67	3· 77 + 0· 35	
897	α ² Capricorni	3.0	1755 1850	- 13 17 14.05 13 0 20.61	+ 1036. 75	+ 41.31 40.58	+ 1036.73 1075.62	0. 36 + 0. 02 0. 03	+ 0.01
898	σ Capricorni	5.5	1900 1755 1850	12 51 17.73 — 19 51 45.81 19 34 56.91	1095. 85 + 1041. 73 1082. 16	40, 20 + 42, 95 42, 16	1095. 82 + 1042. 60 1082. 99	o. o3 o. 87 o. 83	
899	ν Capricorni	5. o	1755 1850	- 13 30 37.71 13 13 36.55	+ 1055.45 1094.05	+ 40.99 40.27	+ 1056, 22 1094, 84	- 0. 77 0. 7 9	
900	B. A. C. 6992	6. 7	1755 1850	- 15 32 14.63 15 15 13.39	+ 1055. 33	+ 41.63 40.83	+ 1055. 73 1094. 88	- 0, 40 0, 38	
901	β Capricorni	3. 2	1755 1850 1755	- 15 32 6.54 15 15 3.57 + 88 30 23.06		+ 41.62 40.93 -288.84	+ 1057.45 1096.60 + 1523.91	- 0.37 0.28 + 1.84	•
			1775 1800 1825	88 35 22. 10 88 41 16. 25 88 46 43. 64	1462. 77 1366. 95 1248. 05	343. 02 425. 97 528. 34	1461.00 1365.29 1246.52	1. 77 1. 66 1. 53	
		6. 3	1850 1875 1900	88 51 37.91 88 55 51.48 + 88 59 15.81	1101.13 921.72 + 707.44	650, 27 787, 33 —927, 16	1099. 77 920. 56 + 706. 52	1. 36 1. 16 + 0. 92	
903	a Pavonis	!	1850 1875	- 57 12 34.96 57 7 59.13	— 1096, 09 1110, 55 1124, 88	+ 58.09 57.57	+ 1105. 16 1119. 62	- 9.07 9.07	
904	κ Cephei	4-5	1900 1755 1800	57 3 19.70 + 76 57 42.66 77 6 8.82	+ 1129.61	57.04 — 21.05 21.99	1133.94 + 1126.82 1117.13	9. 06 + 2. 79 2. 81	
		1	1850 1900	77 15 25.99 77 24 37.40	1108.66	23. 06 24. 16	1 105. 84 1094. 03	2, 82 2, 84	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
905	γ Cygni	1755 1850 1900	5 87	h. m. s. 20 13 26.352 20 16 50.803 20 18 38.475	s. + 215. 127 215. 298 215. 392	s. + 0. 174 0. 186 0. 191	s. + 214.949 215.119 215.212	s. + 0. 178 0. 179 0. 180	s.
906	π Capricorni	1755 1850	5 117	20 13 16.138 20 18 43.840 20 21 35.901	+ 345. 485 344. 409 343. 834	- 1. 121 1. 145 1. 155	+ 345.476 344.390 343.814	+ 0.009 0.019 0.020	
907	ρ Capricorni	1755 1850	5 209	20 14 51.397 20 20 17.987	+ 344. 313 343. 243	- 1.117 1.136	+ 344.451 343.377	— 0. 138 0. 134	
908	B. A. C. 7043 B. A. C. 7044	1850 1755 1850	1 13	20 20 26. 2 20 14 59. 470 20 20 26. 353	+ 344.616 343.556	- 1. 120 - 1. 106 1. 125	+ 342.560 + 344.553 343.484	+ 0.063	
910	В. А. С. 7049	1755 1850	 I4	20 15 6. 754 20 20 42. 881	+ 354.476 353.161	- 1. 387 1. 382	+ 354.609 353.308	- 0. 133 0. 147	
911	o Capricorni	1755 1850 1850	5	20 15 49.466 20 21· 17.654 20 22 42.	+ 346, 013 344, 906	- 1. 155 1. 175 - 1. 019	+ 346.015 344.901 + 337.401	- 0.002 + 0.005	
913	B. A. C. 7077	1755		20 18 14.420 20 23 56.047	+ 360.336 358.877	- 1. 532 1. 545	+ 360, 127 358, 659	+ 0. 209	
914 915	B. A. C. 7087 e Delphini	1850 1755 1850	5 5 284	20 25 50. 229 20 21 30. 305 20 26 2. 794	+ 334.433 + 286.894 286.769	- 0. 979 - 0. 134 0. 128	+ 334-454 + 286.809 286.683	- 0.021 + 0.085 0.086	
916	τ ¹ Capricorni	1900 1755 1850	 5 8	20 28 26, 163 20 23 35, 101 20 28 56, 244	286. 707 + 338. 539 337. 546	0. 122 — 1. 030 1. 060	286. 620 + 338. 025 337. 028	0.087 + 0.514 0.518	
917	Groombridge 3241	1755 1800 1850		20 30 52.39 20 30 45.80 20 30 36.94 20 30 26.42	- 13. 23 16. 09 19. 35 22. 70	- 6. 28 6. 43 6. 61 6. 79	— 12.95 - 15.81 19.07 22.42	- 0, 28 0, 28 0, 28 0, 28	
918	τ ² Capricorni	1755 1850	5 35	20 25 32.685 20 30 52.809	+ 337·470 336·476	- 1.041 1.052	+ 337·459 336.463	+ 0.011	
919	ν Capricorni	1755 1850	5 45	20 26 4.298 20 31 30.330	+ 343.766 342.616	- 1. 205 1. 217	+ 343.977 342.825	- 0, 211 0, 209	
920	a Cygni	1755 1850 1900	⊙ 	20 33 5. 146 20 36 19. 182 20 38 1. 384	+ 204. 153 204. 349 204. 458	+ 0. 198 0. 214 0. 224	+ 204. 109 204. 299. 204. 406	+ 0.044 0.050 0.052	
921	ψ Capricorni	1755 1850	5 43	20 31 32.739 20 37 12.384	+ 358. 304 356. 736	- 1.641 1.659	+ 358. 788 357. 209	- 0.484 0.473	
922	B. A. C. 7237	1755 1850 1755	15	20 31 55. 542 20 37 27. 861 20 38 36. 516	+ 350. 496 349. 123 + 354. 806	- 1.443 1.448 - 1.587	+ 350. 425 349. 057 + 354. 329	+ 0.071 0.066 + 0.477	
923	B. M. C. /23/	1850	12	20 44 12.862	353. 284	1.617	352. 790	0.494	

No.	Star.	افو	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
		Mag.	H d						motion.
				0 / "	"	,,	,,	"	"
905	γ Cygni	3.0	1755	+ 39 29 5.18	+ 1102.65	+ 25.73	+ 1103.34	 0.69	0.00
		2. 3	1850	39 46 44.28	1126.97	25.46	1127.66	0.69	
		ĺ	1900	39 56 10.94	1139.67	25. 32	1140, 36	0,69	ļ
906	π Capricorni	5. o	1755	- 18 59 41.81	+ 1100.35	+ 41.67	+ 1102.08	— 1.73	0.00
		5-5	1850	18 41 57.81	*1139.53	40. 82	1141.26	1. 73	i
			1900	18 32 22.96	1159.83	40. 38	1161.56	1. 73	
907	ρ Capricorni	6. o	1755	— 18 36 14.47	+ 1111.70	+ 41.29	+ 1113.69	- I.99	
		5⋅3	1850	18 18 19.86	1150. 53	40.47	1152. 54	2.01	
908	B. A. C. 7043	6. 7	1850	— 17 55 32.0		+ 40.31	+ 1153.52		
909	B. A. C. 7044	7.5	1755	— 18 39 31.83	+ 1099.85	+ 41.33	+ 1114.68	-14.83	
		7.0	1850	18 21 48.45	1138. 72	40. 51	1153.55	14.83	
910	B. A. C. 7049		1755	- 23 10 59.00	+ 1111.14	+ 42.49	+ 1115.54	- 4.40	
,		6.5	1850	22 53 4.38	1151.08	41.58	1155.50	4.42	
911	o Capricorni	6. o	1755	— 19 22 27.34	+ 1112.41	+ 41.39	+ 1120.72	— 8.31	
9	o cupricoriii i		1850	19 4 32,00	1151.33	40. 56	1159.65	8. 32	
912	B. A. C. 7063	6.4	1850	— 15 33		+ 39.48	+ 1169.66		
-		1		— 25 44 56. 14	+ 1128.73	+ 42.51	+ 1138.42	- 9.69	
913	B. A. C. 7077	6.4	1755 1850	25 26 44.81	1168, 66	41.56	1178.40	9. 74	
	B. A. C. 7087			-			+ 1191.88	+ 5.18	
914		6.3	1850	— 14 13 56.56	+ 1197.06	+ 38.72			
915	ε Delphini	4.0	1755	+ 10 29 11.78	+ 1159.46	+ 33.61	+ 1161.64	— 2. 18	- 0.01
		4.0	1850 1900	10 47 48.35 10 57 48.04	1191.13 1207.60	33. 08 32. 80	1193. 32 1209. 79	2. 19 2. 19	
			-						
916	τ¹ Capricorni	6.0	1755	— 15 58 38.63	+ 1172.34	+ 39.56	+ 1176.43	- 4.09	
		7.0	1850	15 39 47.21	1209. 53	38. 75	1213.56	4. 03	
917	Groombridge 3241	6.0	1755	+ 71 42 0.00	+ 1225.59	- 2.09	+ 1227.51	— I. 92	
		6. o	1800 1850	71 51 11.29 72 1 23.26	1224. 58 1223. 27	2. 42	1226, 52 1225, 22	I. 94 1. 95	
	·	0.0	1900	72 11 34.53	1223. 27	3. 18	1223. 74	1.95	
0-0	ra Capricorni	6.0			Ī	1	+ 1190, 27	— 2.88	
918	τ ² Capricorni	6, o 5, 6	1755 1850	- 15 47 43.01 15 28 37.45	+ 1187.39 1224.18	+ 39. 17 38. 28	1227.05	2.87	
	Complete Com				-				
919	v Capricorni	5. o 5. 7	1755 1850	- 18 58 58.49 18 39 46.55	+ 1193.83	+ 39.77 38.90	+ 1193.99 1231.37	— o, 16	
920	a Cygni	1. 0 1. 7	1755 1850	+ 44 24 57.28 44 44 47.38	+ 1241.92 1263.52	+ 22.87 22.60	+ 1242.77 1264.36	— 0.85 0.84	+ 0.01
		•• /	1900	44 55 21.96	1274. 78	22.46	1275.62	0.84	
001	ψ Capricorni	4. 5	1755	- 26 ⁻ 7 54. 78	+ 1215.99	+ 40.67	+ 1232. 16	—16. 17	
921	y capitolini	4.3		25 48 21.39	1254. 15	39.67	1270. 37	16. 22	
922	17 Capricorni	_	1755	_ 22 23 7.66	+ 1231.90	+ 39.90	+ 1234.76	— 2.86	
7-4	-,	6. o	1850	22 3 19.49	1269, 38	39.00	1272. 12	2. 74	
923	B. A. C. 7237		1755	— 24 40 54.23	+ 1271.48	+ 39.50	+ 1280, 27	— 8. 79	
7-3		6.9	1850	24 20 28,66	1308.49	38.43	1317. 24	8. 75	1

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right asc	ension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
924	μ Aquarii	1755 1850 1900	5 163	20 44	s. 25. f 36 33. 598	s. + 325. 088 324. 307	s. — o. 820 o. 825 o. 824	s. + 324.881 324.106	s. + 0. 207 0. 201	s.
925	19 Capricorni	1755	5	20 40	15_648 55. 262 1& 940	323. 895 + 341. 322 340. 107	- 1. 278 1. 281	323.692 + 341.832 340.620	0. 203 - 0. 510 0. 513	
926	7 Aquarii	1755 1850	5	1	38. 368 47. 517	+ 325.833 325.007	- 0.872 0.869	+ 325.952 325.125	- 0.119 0.118	
927	В. Л. С. 7263	1850	6	20 49	16. 323	+ 337. 121	- 1.084	+ 336.661	+ 0.460	
928	Lal. 40522	1850		20 50	23.6		- 1. 108	+ 333.659		
929	20 Capricorni	1755 1850	5 13	20 45 20 51	38. 621 4. 389	+ 343.559 342.270	— 1. 356 1. 358	+ 343.445 342.156	+ 0. 114 0. 114	
930	ν Cygni	1755 1850 1900	4 128	,	3. 056 34. 998 26. 678	+ 222.930 223.267 223.453	+ 0.343 0.366 0.379	+ 222.905 223.246 223.428	+ 0.025 0.021 0.025	
931	8 Aquarii	1755 1850	5 3		25. 388 39. 948	+ 331.609 330.624	- 1.039 1.035	+ 331.910 330,921	- 0. 301 0. 297	
932	21 Capricorni	1755 1850	5 19	20 47 20 52	2. 44 I 24. 888	+ 340.025 338.811	— 1. 277 1. 278	+ 340. 323 339. 108	— 0. 298 0. 297	
933	9 Aquarii	1755 1850	5 5		36, 645 52, 064	+ 332.530 331.509	— 1.076 1.074	+ 332.692 331.677	— 0. 162 0. 168	
934	12 Year Cat. 1879 .	1755 1775 1800 1825 1850 1875		20 57 20 56 20 55 20 54	7. 01 10. 89 12. 96 13. 21 11. 55 7. 99	 215. 36 220. 95 228. 04 235. 33 242. 78 250. 41 258. 23 	-27. 53 28. 07 28. 75 29. 44 30. 15 30. 88 -31. 62	— 214. 21 219. 80 226. 89 234. 18 241. 63 249. 26 — 257. 08	- 1. 15 1. 15 1. 15 1. 15 1. 15 1. 15 1. 15	
935	η Capricorni	1755 1850	5 39	1	25. 490 51. 699	+ 344.056 342.698	- 1.430 1.428	+ 344.411 343.054	- 0. 355 0. 356	
936	θ Capricorni	1755 1850	5 156	20 52 20 57	8. 580 30. 61 <i>7</i>	+ 339·597 338·378	- 1. 284 1. 282	+ 339. 125 337. 908	+ 0.472 0.470	
937	B. A. C. 7325	1755 1850	3	20 52 20 58	41. 879 8. 620	+ 344.628 343.247	— 1.454 1.454	+ 344. 718 343. 337	- 0.090 0.090	
938	χ Capricorni	1755 1850	5 11	•	29. 125 57. 670	+ 346. 567 345. 106	- 1. 541 1. 536	+ 346.439 344.985	+ 0. 128 0. 121	
939	611 Cygni	1755 1850 1900	483 	21 0	56. 104 10. 670 24. 797	+ 267. 779 268. 152 268. 366	+ 0. 370 0. 415 0. 442	+ 232.986 233.317 233.525	+34. 793 34. 835 34. 841	+0.029
940	26 Capricorni	1755 1850	3	i .	15. 793 42. 306	+ 344-395 343.000	— 1.470 1.466	+ 344.371 342.973	+ 0.024 0.027	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
924	μ Aquarii	4· 5 5. 0	1755 1850	9 53 7.01 9 32 33.53 9 21 31.58	" + 1281.49 1315.18 1332.60	" + 35.87 35.06 34.62	" + 1285.83 1319.51 1336.93	" - 4-34 4-33 4-33	+ 0.01
925	19 Capricorni	6. o 6. 1	1755	- 18 50 3.16 18 29 16.91	+ 1294. 18 1329. 38	+ 37. 51 36. 57	+ 1295.88	- 1.70 1.66	
926	7 Aquarii	6. o 5. 9	1755 1850	- 10 37 12.10 10 16 9.21	+ 1312.69 1345.88	+ 35·34 34·53	+ 1313.97 1347.16	- 1.28 1.28	
927	B. A. C. 7263	5.9	1850	— 16 36 18.75	+ 1347.42	+ 35.83	+ 1350.29	— 2.87	
928	Lal. 40522	6. r	1850	- I5 3 33.2		+ 35.24	+ 1357.52		
929	20 Capricorni	6. o 6. g	1755 1850	— 19 58 2.02 19 36 47.01	+ 1324.69 1359.37	+ 37. 03 36. 00	+ 1327. 18 1361. 91	- 2.49 2.54	
930	ν Cygni	4. 0 4. 0	1755 1850 1900	+ 40 14 6.01 40 35 30.64 40 46 55.21	+ 1341.09 1363.34 1374.94	+ 23.59 23.26 23.10	+ 1342.92 1365.17 1376.77	- 1.83 1.83 1.83	0.00
931	8 Aquarii	6. o 6. 8	1755 1850	- 13 59 14.42 13 37 53.91	+ 1331.15	+ 35.57 34.70	+ 1332.29 1365.70	- 1. 14 1. 17	
932	21 Capricorni	6. o 6. 4	1755 1850	- 18 28 10.13 18 6 44.17	+ 1336. 51 1370. 64	+ 36.39 35.47	+ 1336.33 1370.50	+ 0. 18 0. 14	
933	9 Aquarii	6. o 6. 8	1755 1850	- 14 28 15.24 14 6 47.51	+ 1338. 74 . 1372. 12	+ 35·59 34·72	+ 1340.03 1373.40	— 1.29 1.28	
934	12 Year Cat. 1879 .	5.3	1755 1775 1800 1825 1850 1875 1900	+ 79 37 11.00 79 41 51.02 79 47 39.70 79 53 26.86 79 59 12.40 80 4 56.31 + 80 10 38.52	+ 1402. 46 1397. 78 1391. 74 1385. 46 1378. 98 1372. 27 + 1365. 33	23. 15 23. 81 24. 63 25. 50 26. 39 27. 29 28. 22	+ 1405. 37 1400. 71 1394. 70 1388. 45 1382. 00 1375. 32 + 1368. 42	- 2.91 2.93 2.96 2.99 3.02 3.05 - 3.09	
935	η Capricorni	5. o 5. I	1755 1850	- 20 48 21.42 20 26 40.38	+ 1352.39 1386.53	+ 36.42 35.47	+ 1358.30 1392.42	- 5.91 5.89	
936	θ Capricorni	5. 5 4. I	1755	- 18 11 21.26 17 49 31.62	+ 1361.71 1395.23	+ 35. 76 34. 80	+ 1369. 29 1402. 70	7.58 7.47	
937	B. A. C. 7325	7. o 6. g	1755 1850	- 21 8 32,99 20 46 35.95	+ 1369.39. 1403.18	+ 36.06 35.08	+ 1372.87 1406.69	- 3.48 3.51	
938	χ Capricorni	5· 5 5· 4	1755 1850	- 22 9 38.96 21 47 33.91	+ 1377. 79 1411.65	+ 36.08 35.21	+ 1384. 22 1417. 96	- 6.43 6.31	
939	611 Cygni	5. 5 5. 0	1755 1850 1900	+ 37 33 31.55 38 0 52.21 38 15 26.60	+ 1712.64 1741.31 1756.27	+ 30.35 30.00 29.82	+ 1393.41 1419.30 1432.78	+319. 23 322. 01 323. 49	+ 2.94 2.94 2.94
940	26 Capricorni	7. 5 7. 0	1755 1850	— 21 10 1.89 20 47 47.14	+ 1388.23 1421.63	+ 35.66 34.66	+ 1389. 16 1422. 62	- 0.93 0.99	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Righ	nt asc e n	sion.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				h.	m.	s.	s,	s.	s.	s.	s.
941	27 Capricorni	1755	5			. 128	+ 345.855	- I. 494	+ 345.025	+ 0.830	
		1850	3	21	o 58	. 018	344. 438	1.490	343, 609	0.829	
942	ν Aquarii	1755	5	20	56 13	. 423	+ 328. 594	— o. 986	+ 328.040	+ 0.554	
		1850	70	21	I 25	. 144	327.660	0.979	327. 107	0. 553	
943	ζ Cygni	1755	5	21	2 31	. 393	+ 254.456	+ 0.356	+ 254.646	_ o. 190	+0.003
		1850	899	21		. 291	254. 808	0. 384	254. 994	o. 186	
		1900	. • •	21	8 40	- 744	255.004	0, 400	255. 190	0. 186	
944	Capricorni	1755	5	21	ı 38	953	+ 344. 185	- 1.532	+ 344. 276	- 0.091	
		1850	17	21	7 5	. 238	3 42 . 733	1. 524	342. 829	0.096	
945	29 Capricorni	1755	5	21	2 9	. 324	+ 334. 325	- I, 200	+ 334. 170	+ 0. 155	
		1850	27	21	7 26	. 392	333. 190	1, 190	333. 034	0. 156	
946	14 Aquarii	1755	4	21	3 7	. 268	+ 323.697	- o. 893	+ 323.812	— o. 115	
		1850	7	21	8 14	. 378	322. 854	0, 882	322. 972	0, 118	
947	30 Capricorni	1755	5	21	4 10	. 749	+ 338.990	— 1.367	+ 338.956	+ 0.034	
		1850	3	21	9 32	. 174	337.696	1. 357	337. 660	0. 036	
948	31 Capricorni	1755	3	21	4 30	. 844	+ 338. 399	- 1. 340	+ 337.969	+ 0.430	
		1850	3	21		. 721	337. 131	1. 330	336, 699	0, 432	
949	ι Capricorni	1755	5	21	8 34	. 254	+ 336.469	- 1.312	+ 336. 318	+ 0. 151	
		1850	1.53	21	_	. 309	335. 228	1.300	335.075	0. 153	
950	B. A. C. 7408	1755	2	21	8 48	. 312	+ 323.601	- 0.909	+ 323. 594	+ 0.007	
		1850	10	21	13 55		322. 745	0, 894	322. 745	0,000	
951	17 Aquarii	1755	5	21	9 46	. 987	+ 323, 104	– 0.916	+ 323.516	- 0.412	
		1850	6	1	14 53		322. 246	0, 891	322, 661	0.415	
952	a Cephei	1755	3	21	12 42	. 732	+ 144. 524	- o. 627	+ 142. 340	+ 2. 184	+0.029
	•	1850	653			. 742	143.917	0.651	141. 703	2. 214	, ,
		1900		21	16 11	. 618	143. 588	0,664	141.360	2. 228	
953	ı Pegasi	1755	4	21	10 45	. 846	+ 276,990	+ 0. 151	+ 276.400	+ 0.590	-0.002
		1850	64	21	15 9	. 059	277. 147	0, 180	276. 560	0. 587	
		1900		21	17 27	. 656	277. 241	0. 195	276.654	o. 587	
954	33 Capricorni	1755	5	21	10 13	. 595	+ 343.061	— 1.560	+ 343.244	- o. 183	
		1850	14	21	15 38	. 802	341. 587	1. 543	341. 769	0. 182	ļ
955	18 Aquarii	1755	5	21	10 46	. 528	+ 329.907	— 1.095	+ 329. 301	+ 0.606	
		1850	8	21	15 59	. 448	328, 874	1.080	328. 266	0,608	
956	19 Aquarii	1755	_	21	12 1	Sar	J 222 625	0.020	± 224 020	0 001	
950	-3 114mm	1755	5 7	2 I 2 I		. 825	+ 323.935 323.076	- 0, 920 0, 888	+ 324.030 323.157	0.095	
			,	!					J-J51		
957	ζ Capricorni	1755	5			. 070	+ 345.690	- 1.68o	+ 345. 715	- 0.025	
		1850	41	21	18 5	. 719	344. 101	1.667	344. 123	0.022	
958	35 Capricorni	1755	5	21	13 18	. 871	+ 343.115	- 1.602	+ 343.365	— 0. 250	
		1850	10	21	18 44	. 110	341.600	1. 587	341, 852	0. 252	
										Ì	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
941	27 Capricorni	7· 5 6. 5	1755	0 / // - 21 31 21.63 21 9 19.06	" + 1375.28 1408.95	+ 35.94 34.95	" + 1390.62 1424.17	" 15. 34	"
942	ν Aquarii	5.0	1755	- 12 20 51.82 11 58 32.78	+ 1393.55 1425.35	+ 33.91	+ 1395.21 1426.94	— 1.66 1.59	
943	ζ Cygni	4. o 3. o	1755 1850 1900	+ 29 14 3.01 29 36 50.58 29 48 59.40	+ 1427. 58 1451. 45 1463. 83	+ 25. 36 24. 89 24. 65	+ 1434.30 1458.18 1470.56	- 6. 72 6. 73 6. 73	— 0.01
944	φ Capricorni	6, o 5. 5	1755 1850	- 21 39 7.08 21 16 15.65	+ 1427. 33 1459. 77	+ 34.66	+ 1428.95 1461.37	- 1.62 1.60	
945	29 Capricorni	5. o 5. 7	1755 1850	- 16 10 24.51 15 47 29.31	+ 1431. 78 1463. 22	+ 33.56	+ 1432.06 1463.48	- 0, 28 0, 26	
946	14 Aquarii	7· 5 6. 6	1755 1850	- 10 13 10.45 9 50 11.10	+ 1436. 74 1467. 02	+ 32.30 31.44	+ 1437.97 1468.29	- 1.23 1.27	
947	30 Capricorni	6. o 5. 5	1755 1850	- 18 59 44.45 18 36 38.31	+ 1443.25 1474.80	+ 33. 71 32. 72	+ 1444.41 1475.97	— 1. 16 1. 17	
948	31 Capricorni	6. 5 6. 7	1755 1850	- 18 28 28.01 18 5 17.62	+ 1447. 76 1479. 25	+ 33.64 32.66	+ 1446, 44 1477, 90	+ 1.32 1.35	
949	ι Capricorni	5. o 4. 4	1755 1850	- 17 51 44.69 17 28 12.42	+ 1471.20 1501.87	+ 32.77 31.79	+ 1470.84 1501.50	+ o. 36 o. 37	
950	B. A. C. 7408	7. o 6. g	1755 1850	- 9 57 44.0		+ 31.44 30.56	+ 1472. 24 1501. 69		
951	17 Aquarii	6, o 6, 2	1755 1850	- 10 20 55.53 9 57.20.24	+ 1475. 10 1504. 32	+ 31.20 30.32	+ 1478. 07 1507. 31	- 2.97 2.99	
952	a Cephei	3. 0 2. 7	1755 1850 1900	+ 61 33 14.23 61 57 4.58 62 9 42.26	+ 1499. 19 1512. 03 1518. 69	+ 13.63 13.40 13.28	+ 1495.25 1507.90 1514.46	+ 3.94 4.13 4.23	+ 0. 20
953	ı Pegasi	4.0 4.3	1755 1850 1900	+ 18 46 8.78 19 9 55.08 19 22 35.27	+ 1488.82 1513.85 1526.81	+ 26.67 26.09 25.77	+ 1483.81 1508.76 1521.68	+ 5.01 5.09 5.13	+ 0.08
954	33 Capricorni	6. o	1755 1850	- 21 52 38.81 21 29 10.81	+ 1466. 53 1497. 52	+ 33. 14 32. 08	+ 1480, 67 1511, 64	—14. 14 14. 12	
955	18 Aquarii	6. o 5. 7	1755 1850	- 13 54 50, 38 13 31 7, 26	+ 1483.06 1512.84	+ 31.82 30.88	+ 1483.90 1513.64	- 0, 84 0, 80	
956	19 Aquarii	6. o 5. 8	1755 1850	- 10 46 37.25 10 23 2.89	+ 1474.23 1503.23	+ 30.97 30.08	+ 1491.27 1520.27	17.04 17.04	
957	ζ Capricorni	4.0	1755	- 23 27 22.97 23 3 27.92	+ 1495.08 1525.92	+ 33.00	+ 1494. 80 1525. 64	+ 0, 28	
958	35 Capricorni	6, o 6, 2	1755	- 22 14 25. 10 21 50 30.94	+ 1494. 28 1524. 82	+ 32.70 31.62	+ 1498. 76 1529. 27	- 4.48 4.45	

No.	Star.	Epoch.	Number of observations.	Right ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
959	b Capricorni	1755	,	h. m. s. 21 14 42.640 21 20 9.777	s. + 345. 136 343. 576	s. — 1.649 1.634	s. + 344.231 342.670	s. + 0.905 0.906	s.
960	β Aquarii	1755 1850	i	21 18 38.612 21 23 39.573	+ 317.147 316.459 316.104	— 0. 739	+ 317.069 316.377 316.021	+ 0.078 0.082 0.083	
961	37 Capricorni .	1900 1755 1850	5 8	, , ,	+ 339.947 338.480	- 1.562 1.526	+ 340.099 338.639	- 0. 152 0. 159	
962	38 Capricorni	1755 1850	5	21 21 5.468 21 26 28.460	+ 340. 725 339. 261	- 1.551 1.532	+ 340. 370 338. 903	+ 0. 355 0. 358	
963	β Cephei	1755 1800 1850	5	21 25 24.07 21 26 1.48 21 26 42.28 21 27 22.23	+ 83. 86 82. 41 80. 75 79. 04	3.17 3.27 3.38 3.47	+ 83.68 82.23 80.57 78.85	+ 0. 18 0. 18 0. 18	
964	ε Capricorni	1900 1755 1850	5 34	21 23 19.482 21 28 40.535	+ 338.666 337.238	1.495	+ 338.671 337.246	- 0.005 0.008	
965	ξ Aquarii	1755 1850 1900	231	21 24 41. 321 21 29 45. 810 21 32 25. 767	+ 320.914 320.119 319.709	0.826	+ 320. 191 319. 392 318. 982	+ 0. 723 0. 727 0. 727	0.000
966	γ Capricorni	1755 1850	8 ₃	21 26 29.022	+ 334. 792	- 1. 343 1. 322	+ 333·593 332·329	1. 198	
967	42 Capricorni	1755 1850	9	1	327. 237	I. 127	+ 329. 234 328. 137	0.900	
968	κ Capricorni	1755	21	21 34 16.528	+ 337.637 336.238	- 1.483 1.463	+ 336.765 335.368 + 336.460	+ 0.872 0.870 + 0.851	
969 970	B. A. C. 7550 44 Capricorni	1850	5	21 34 49.642 21 29 40.600 21 34 53.052	+ 337. 311 + 329. 465 328. 333	- 1.505 - 1.203	+ 330.400 + 329.630 328.500	- 0. 165 0. 167	
971	45 Capricorni	1850 1755 1850	. 9 . 5 . 8	21 30 36.409 21 35 49.177	+ 329.804	- 1.216 1.193	+ 330.043	- 0. 239 0. 241	
972	B. A. C. 7558	1755		21 36 4.1		- 1.304 1.270	+ 331.898 330.667		
973	ε Pegasi	1755 1850 1900	88 ₂	21 32 9. 163 21 36 49. 153 21 39 16. 492	1	- 0, 093 0, 062 0, 046	+ 294. 599 294. 523 294. 498	+ 0. 167 0. 169 0. 167	
974	B. A. C. 7562	1755 1850		21 31 49.568 21 36 54.963	+ 321.896 321.044	- 0.909 0.886	+ 321.418 320.572	+ 0.478 0.472	
975	c¹ Capricorni	1755 1850	ı	21 31 55.216	+ 321.429 320.574	0.912 0.889	+ 321.481 320.627	- 0.052 0.053	
976	c ^a Capricorni	1755 1850	5	21 33 10.814 21 38 15.900	+ 321.576 320.714	- 0.920 0.894	+ 321.660 320.798	0.084 0.084	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				0 / //	. "	,, ·	"	"	"
959	b Capricorni		' .	- 22 51 29.81	+ 1505.11	+ 32.68	+ 1506, 86	- 1.75	
		4-7	1	22 27 25.37	1535.65	31,62	1537. 34	1.69	
960	β Aquarii	3.0	1755	- 6 38 6, 16 6 13 41, 75	+ 1527.69 1555.14	ı	+ 1529.36 1556.79	- 1.67	+ 0.02
		1 2.0	1900	6 0 40.64	1569, 26	28.00		1, 65 1, 64	!
961	37 Capricorni	7.0	1755	- 21 9 41.52	+ 1545.46	l	+ 1542.93	+ 2.53	1
90.	3, (2)	6.0	1850	20 44 59.49	1574.44	29.98	1571.92	2.52	!
962	 38 Capricorni	i j 7.0	1755	— 21 19 26. 16	+ 1537.40	+ 31.14		- 5. 76	
,	J. T. P. T. T. T. T. T. T. T. T. T. T. T. T. T.	6.9	1850	20 54 51.74	1566, 48	30.09	1572.21	5. 73	i
963	β Cephei	, 3.0	1755	+ 69 29 19.06	+ 1566.51	+ 6.98	+ 1567.00	— 0.49	; !
, ,	•	! 	1800	69 41 4.70	1569.64	6.82	1570, 12	0.48	,
		3.0	1850	69 54 10.36	1572.99	6.64	1573.46	0.47	
	·	İ	1900	70 7 17.67	1576. 26	6.46	1576. 74	0.48	!
964	ε Capricorni	5.0	1755	— 20 32 56,40	+ 1553.86	+ 30.61	+ 1555 58	— 1.72	
		4.7	1850	20 8 6,58	1582.45	29.60	1584. 10	1.65	!
965	ξ Aquarii	5.0	1755	— 8 56 21.21	+ 1559.51	+ 28.73	1 -5-5	— 3.59	+0.05
		5.0	1850	8 31 26, 85	1586. 38	.27.82	1589.92	3- 54	
		ļ	1900	8 18 10, 20	1600, 16	27. 34	1603. 68	3.52	
9 6 6	γ Capricorni	4.0	1755	- 17 45 22.40	+ 1573.99	+ 29.88	+ 1572.88	+ 1.11	:
	,	3.7	1850	17 20 13.78	1601.86	28, 82	1600, 60	1, 26	!
967	42 Capricorni	6.0	1755	— 15 7 36. 28	+ 1551.85	+ 28.70	+ 1582, 20	. —30. 35	
		5.6	1850	14 42 49. 22	1578.65	27. 73	1609. 05	30, 40	
968	κ Capricorni	5.0	1755	- 19 58 7.52	+ 1583.92	+ 29.61	+ 1586, 18	— 2. 26	
_		5.0	1850	19 32 49.59	1611.54	28. 54	1613.67	2. 13	
969	B. A. C. 7550	6. 3	1850	— 20 18 9.71	+ 1614.52	+ 28.50	+ 1616.53	— 2. 01	
970	44 Capricorni	6.0	1755	— 15 30 23.28	+ 1592. 28	+ 28.61	+ 1590.10	+ 2.18	
		6, 1	1850	15 4 57.85	1619.00	27.63	1616, 84	2. 16	
971	45 Capricorni	6.0	1755	- 15 51 23.90	+ 1589.20	+ 28.48	+ 1595.06	- 5.86	
		6.3	1850	15 26 1.46	1615. 79	27. 49	1621.68	5. 89	
972	B. A. C. 7558	6.0		— 17 4 43.86				- 2.03	
		8. o	1850	16 39 16,61	i 1620. 92	27. 64	1622. 95	2. 03	
973	e Pegasi	2.5	1755	+ 8 45 49.08	+ 1602.60	+ 25.22	+ 1603.23	— o. 63	+ 0.02
		2. 3	1850	9 11 22,83	1	24. 47		0. 59	
		!	1900	9 24 58.98	1638. 34	24.09	1638. 92	o. <u>5</u> 8	
974	B. A. C. 7562	, 7·5	1755	— 10 8 57. 73	+ 1601.45	+ 27.64	+ 1601.51	– 0.06	
	-	5.5	1850	9 43 24.02	1627. 27	26. 72	1627. 32	0.05	İ
075	c¹ Capricorni	6, 0	1755	— 10 11 41, 20	- 1601 44	+ 27.60	+ 1602.00	- 0.56	i
975	Capitolii	5.5	1850	9 46 7.51			1627.74	— 0.56 0.51	
		1			i			_	
976	c⁴ Capricorni	6.5	1755	— 10 23 35.40	1	+ 27.34	+ 1608.66	— o. 77	
		6.4	1850	9 57 55.71	1633. 42	26. 41	1634. 17	0. 75	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	cension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
977	λ Capricorni	1755	5 24	<i>ት</i> . 21 21	m. 33 38	s. 19. 327 27. 397	s. + 324.771 323.800	s. — 1.034 1.010	s. + 324.683 323.713	s. + o. o88 o. o87	s.
978	50 Capricorni	1755 1850	3	2 I 2 I	33 38	28. 199 36. 696	+ 325. 224 324. 249	— 1.038 1.014	+ 325. 140 324. 159	+ 0.084 0.090	
979	δ Capricorni	1755 1850	159	2 I 2 I	33 38	29. 175 45. 403	+ 333.484 332.265	— I. 295. I. 272	+ 331.741 330.519	+ 1.743 1.746	
980	II Cephei	1755 1800 1850		2 I 2 I 2 I	38 38 39	14. 12 56. 26 42. 33	+ 94-33 92.96 91.39	- 2.99 3.09 3.21	+ 91.71 90.32 88.74	+ 2.62 2.64 2.65	
981	μ Capricorni	1900 1755 1850	 5 126	21 21 21	40 39 45	27. 63 54. 641 6. 801	89. 76 + 329. 139 328. 044	3· 33 — 1. 167 1. 139	87. 09 + 327. 134 326. 040	2.67 + 2.005 2.004	—o. oo6
982	B. A. C. 7620	1900 1755 1850		2I 2I	47	50.681	327.479	1. 122 — 0. 072 0. 945	3 ² 5·477 + 3 ² 2·493 3 ² 1·5 ⁸ 2	2,002	
983	B. A. C. 7650	1755	5 1 9	21 21	45 45 50	35. o 21. 921 21. 386	+ 315.556	- 0. 706 0. 676	+ 315.539 314.878	+ 0.017	
984	79 Draconis	1755 1800 1850		21 21 21	49 50 51	47. 11 22. 18 0. 11	+ 78.90 76.97 74.74	- 4. 21 4. 37 4. 56	+ 78.08 76.15 73.91	+ 0.82 0.82 0.83	
985	29 Aquarii (mean)	1900 1755 1850	5	21 21 21	51 48 · 54	36. 90 59. 089 12. 652	72. 42 + 330. 709 329. 431	4- 73 — 1. 362 1. 328	71.57 + 330.696 329.416	0.85 + 0.013 0.015	
986	30 Aquarii	1755	5 21	2I 2I	50 55	22. 220 22. 875	+ 316.837 316.125	- 0. 765 0. 734	+ 316.682 315.971	+ 0. 155	
987	B. A. C. 7680	1755 1850	5	2 I 2 I	51 56	46. 707 44. 941	+ 314. 247 313. 619	- 0.677 0.645	+ 314.483 313.850	- 0. 236 0. 231	
988	a Aquarii	1755 1850 1900		21 21 22	53 58 o	11. 492 4. 706 38. 872	+ 308. 859 308. 438 308. 229	- 0.459 0.426 0.409	+ 308.837 308.418 308.206	+ 0.022 0.020 0.023	
989	B. A. C. 7690	1755 1850	1 6	21 21	53 58	13. 540 12. 912	+ 315.457 314.806	- 0. 701 0. 669	+ 315.047 314.397	+ 0.410 0.409	
990	ι Aquarii	1755	5 77	2 I 2 I	53 58	10, 622	+ 326.080 324.991	- 1. 163 1. 130	+ 325. 895 324. 804	+ o. 185 o. 187	10.00
991	a Gruis	1755 1850 1900	86	2 I 2 I 2 2	52 58 I	39. 906 45. 2 92 55. 927	+ 386.833 382.414 380.128	- 4. 699 4. 603 4. 546	+ 385. 721 381. 297 379. 007	+ 1.112 1.118 1.121	- +0.004
992	B. A. C. 7704	1755 1850	3	2 I 2 I	54 59		+ 315. 328 314. 658	- 0. 722 0. 688	+ 315. 545 314. 874	- 0. 217 0. 216	
993	35 Aquarii	1755 1850	5 ⁻	2 I 22	55 o	30. 586 45. 033	+ 331.684 330.316	— 1.458 1.422	+ 331.761 330.392	- 0.077 0.076	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
977	λ Capricorni	5. 5 5. 7	1755 1850		" + 1607.10		" + 1609. 36 1635. 14		<i>"</i>
978	50 Capricorni	7· 5 6. 9	1755	— 12 48 25.08 12 22 56.64		+ 27.62	+ 1610.14	-14.21	I
979	δ Capricorni	3· 5 2. 8	1755 1850	- 17 13 31.37 16 48 18.80	+ 1578. 79 1605. 39		+ 1610. 22 1636. 66	-31.43 31.27	
980	II Cephei	4·5 · · 5·0	1755 1800 1850	+ 70 11 11.86 70 23 32.45 70 37 17.06	+ 1644.06 1647.42 1651.04	7· 35 7. 18	1641.44	9. 48 9. 60	
981	μ Capricorni	5. o 5. 4	1900 1755 1850 1900	70 51 3.48 - 14 41 31.42 14 15 18.81 14 1 21.64	1654. 59 + 1642. 69 1667. 90 1680. 78	7.00 + 27.04 26.03	1644. 86 + 1643. 12 1668. 17		+ 0.17
982	B. A. C. 7620	 6. 5	1755 1850	- 11 27 3.32 11 0 54.31	+ 1639. 32 1663. 73	25. 49 + 26. 19 25. 22	+ 1646.04 1670.46	- 6.72	
983	B. A. C. 7650	6. 5 6. 5	1755 1850	- 6 34 24.82 6 8 0.25	+ 1656. 33 1679. 46	+ 24.80 23.90	+ 1670.11 1693.23	13. 78 13. 77	
984	79 Draconis	6. o 6. 5	1755 1800 1850 1900	+ 72 32 42.93 72 45 25.90 72 59 34.92 73 13 45.22	+ 1694. 26 1696. 72 1699. 35 1701. 86	+ 5.53 5.35 5.15 4.95	+ 1691, 22 1693, 65 1696, 24 1698, 71	+ 3.04 3.07 3.11 3.15	
985	29 Aquarii (mean) .	6. o 6. 5	1755 1850	- 18 8 1.48 17 41 6.22	+ 1688.39 1712.00	+ 25.37 24.33	+ 1687.52	+ 0.87 0.87	
986	30 Aquarii	5. 5 5. 8	1755 1850	- 7 41 42.04 7 14 41.95	+ 1694.08 1716.49	+ 24.05	+ 1693.97 1716.38	0.11	
987	B. A. C. 7680	8. o 8. o	1755 1850			+ 23.58 22.67	+ 1700. 54 1722. 56		
988	a Aquarii	3. 0 2. 7	1755 1850 1900	- 1 29 57.77 1 2 47.14 0 48 20.86	+ 1705.69 1727.08 1738.00	22.08		_	
989	B. A. C. 7690	7. 0 7. 0	1755 1850	_ 6 4 57.0		+ 23.47			
99 0	ι Aquarii	4· 5 4· 4	1850		1723. 24	23. 27	1729.60	6. 36	
991	a Gruis	1.9	1755 1850 1900	- 48 7 59.47 47 41 3.58 47 26 43.07	1714. 23	27.45	_	17. 23	
992	B. A. C. 7704	7·5 7·3	1755 1850	- 6 33 33.6		22.22			
993	35 Aquarii	5. 5 5. 9	1755 1850	— 19 42 27.11 19 15 5.24	+ 1716.93 1739.48	1	+ 1717.66 1740.21	- 0. 73 0. 73	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Right	ascension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
994	36 Aquarii	. 1755 1850	5 12	h. m 21 50		s. + 318.545 317.759	s. — 0.844 0.811	s. + 318.341 317.551	s. + 0. 204 0. 208	<i>s</i> .
995	B. A. C. 7717 .	1755	i i 1	21 5	6 32.693 1 34.671	+ 318, 251 317, 499	- o. 809	+ 317.519 316.768	+ 0. 732 0. 731	
996	c¹ Aquarii	1755	3	21 5		+ 321. 792 320. 870	- 0, 988 0, 954	+ 321.507 320.586	+ 0. 285 0. 284	
997	B. A. C. 7720 .	1755	. I 6	21 5	5 5.	+ 313.312	- 0.607 0.584	+ 313.051	+ 0, 261	
998	c ² Aquarii	1755	5	21 5		+ 322. 791 321. 825	– 1.036	+ 322.426	+ 0.365	
999	B. A. C. 7726 .	1755	31 4 6	21 5		+ 313.591	0. 998 - 0. 638 0. 602	321.467 + 313.494 312.910	0.358	
1000	B. A. C. 7740 .	1030	· I	21 5		313.002 + 322.608	- 0.999	+ 321.625	0.092	
1001	39 Aquarii	. 1755 1850	5 6	21 5	•	321.688 + 325.565	0.938	320, 693 + 325, 519	0.995	
1002	B. A. C. 7744 .	1755	i 4 . 8	21 5	9 57.491	324. 465 + 313. 551 312. 946	1. 141 — 0. 654 0. 620	324.418 + 313.929	0. 047 — 0. 378	
1003	40 Aquarii	1755	4	22	4 55. 074 0 18. 938 5 24. 683	+ 322. 326	- 1.042	313. 328 + 322. 556	o. 382 — o. 230 o. 228	
1004	B. A. C. 7752 .	. 1755	, , , ,	22	1 4. 372 6 2. 655	321. 353 + 314. 282	1.007 - 0.642 0.606	321. 581 + 313. 565	+ 0.717	
1005	42 Aquarii	1755	5 11	22	3 39. 198	313.689 + 323.243	- 1.094	312.973 + 323.258	0. 716 — 0. 015	
1006	θ Aquarii	1755	5	22	3 53.217	322. 222 + 317. 967	- 0.809	322. 242	+ 0, 696	·
	B.A.C.	1900	409 '	22 I	1 33.438	317. 216 316. 835	0. 772 0. 752	316. 519 316. 139	o, 697 o, 696	
1007	B. A. C. 7774	1850	ı	22	3 54.815 8 57.016	+ 318.515 317.704	- 0.872 0.837	+ 318.732 317.919	0. 217 0. 215	
1008	44 Aquarii	1850	5	22 .	4 18. 136 9 16. 463	+ 314.348 313.716	o. 646	+ 314.483 313.853	— 0. 135 0. 137	
1009	45 Aquarii	1850	5 19	1	5 50. 136 0 57. 473	+ 324.037 322.995	1. 116	+ 323.551 322.506	+ 0.486 0.489	
1010	ρ Aquarii	. 1755 1850	5 46	l	7 17. 303 2 18. 199	+ 317.110 316.362	- o. 806 o. 769	+ 317.050 316.303	+ 0, 060 0, 059	-
1011	B. A. C. 7804 .	. 1850		22 I	5 40.0		— o. 725	+ 315.387		
1012	51 Aquarii	1755	5 9	22 I	1 20. 294 6 17. 938	+ 313.605 313.020	— 0, 636 0, 596	+ 313.488 312.903	+ 0.117 0.117	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
994	36 Aquarii	7.0	1755	1	+ 1726. 50	+ 23.13	+ 1722.01	+ 4.49	"
		6. 3	1850	8 55 15.41	1748.02	22. 17	1743. 52	4. 50	
995	B. A. C. 7717	8. o 6. g	1755	- 8 15 40. I		+ 23. 13 22. 18	+ 1722. 32 1743. 83		
996	د Aquarii	6.0	1755	— 12 o 57. 10	+ 1730.31	+ 23. 20	+ 1726.32	+ 3.99	
	•	6.8	1850	11 33 22.98	1751.89	22. 22	1747.87	4. 02	
997	B. A. C. 7720	7.0	1755	1	+ 1721.83	+ 22.54	+ 1727.00	- 5.17	
		6. 5	1850	4 37 37.06	1742.82	21.64	1747.99	5. 17	
998	c ² Aquarii	6. o 5. 6	1755 1850	- 12 45 32.70 12 18 2.13	+ 1726. 52 1748. 22	+ 23.34 22.35	+ 1726.60 1748.24	0, 08 0, 02	
999	B. A. C. 7726	-	1755	- 5 27 37. 78		+ 22.52	+ 1727.85	— 1.38	
999	15, 11, 6, 7/20	6.3	1850	5 0 7.61	l .	21.61	1748. 79	1. 36	
1000	B. A. C. 7740	7.0	1755		• • • •	+ 23.01	+ 1734.01		
		7.0	1850	- 11 48 11.8		22. 02	1755. 38		
1001	39 Aquarii	7.0	1755			+ 23. 15	+ 1734.08	- 3. 8 ₄	
	D A C ==	6.4	1850			22. I4 + 22. IO	1755. 59	3.84	
1002	B. A. C. 7744	7. 5 6. 7	1755	- 5 55 7.83 5 27 29.82	1	21.19	+ 1737.46 1758.06	- 2.54 2.58	
1003	40 Aquarii	, 7.0	1755	- 13 7 36.58		+ 22.69	+ 1739.02	+ 0. 14	
Ū	•	7.0	1850	1	1	21. 70	1760, 14	0. 11	
1004	B. A. C. 7752	7.0	1755			+ 22.04	+ 1742. 32		
•		6. 7	1850	- 5 11 33.3		21, 12	1762. 79		
1005	42 Aquarii	6. o 5. 8	1755 1850	- 14 2 33.55 13 34 38.55		+ 22.15 21.16	+ 1753.44 1774.00	— 0.65 0.64	
1006	θ Aquarii	4.5	1755	- 8 59 35.45		+ 21.81	+ 1754.41	- 2, 54	+ 0.05
1000	o riquam	4.3	1850	8 31 41.48	l .	20, 85	1774. 62	2. 49	,5
			1900	8 16 52.83	1782, 43	20. 33	1784. 90	2.47	
1007	B. A. C. 7774	۱ ـ	1755				1	- 2.03	
		6.4	1850	9 47 8.10	1772. 71	20, 81	1774. 78	2.07	
1008	44 Aquarii	6.5	1755 1850	- 6 36 4.18 6 8 3.37		+ 21.41 20.50	+ 1756.17 1776.08	+ 3.08 3.08	
1009	45 Aquarii	6.0	1755	- 14 31 16.55		+ 21.86	+ 1762.62	1.57	
		6. 3	1850	14 3 13.83	1781. 34	20, 85	1	1.55	
1010	ρ Aquarii	6, 0	1755	- 9 2 28, 90	+ 1767.88	+ 21.12	+ 1768.57	- o. 69	
		5.6	1850	8 34 20, 03		20. 16	1788. 24	0. 75	1
1011	B. A. C. 7804	6. 2	1850	— 7 57 I.I		+ 19.58	+ 1801.38		
1012	51 Aquarii	6.0	1755	_ 6 4 1.88	+ 1783.09	+ 20. 14	+ 1785.19	- 2.10	
		5.8	1850	5 35 39.01		19. 22	1803. 80	2, 02	

No.	Star.	Epoch.	Number of observations.	Right as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
1013	50 Aquarii	1755 1850	5	h. m. 22 II 22 I6	s. 17. 974 24. 697	s. + 323. 385 322. 343	s. — 1.111 1.082	s. + 323.096 322.050	s. + o. 289	s.
1014	π Aquarii	1755	5 92	1.	45· 574 36. 966	+ 306.878 306.584	- 0. 328 0. 292	+ 306. 845 306. 554	0. 293 + 0. 033 0. 030	
1015	B. A. C. 7818	1755 1850	4	22 20 22 13 22 18	10. 223 13. 953 25. 027	306. 444 + 328. 067 326. 831	0. 267 — 1. 322 1. 279	306.416 + 326.494 325.258	0. 028 + 1. 573 1. 573	
1016	53 Aquarii	1755	5	22 I3 22 I8	14. 501 25. 575	+ 328, 066 326, 832	- 1. 322 1. 279	+ 326.493 325.259	+ 1.573	•
1017	54 Aquarii	1755 1850	5		39. 298 43. 363	+ 320. 527 319. 617	- 0.979 0.937	+ 320. 229 319. 320	+ 0. 298 0. 297	
1019	B. A. C. 7835	1755 1850	9	22 16 22 21 22 17	53· 535 59. 884 7. 8 63	+ 322.976 321.977 $+ 323.573$	- 1.073 1.032 - 1.168	+ 321.671 320.674 + 323.453	+ 1.305 1.303 + 0.120	
1020	σ Aquarii	1850	14	22 22	14. 736 39. 646	322. 480 + 319. 039	1.135	322. 363 + 319. 194	0.117 - 0.155	
1021	Lal. 43974	1850 1850		22 22 22 2 3	42. 319 25. 9	318, 169	0. 892 — 0. 564	318, 326 + 314, 199	0. 157	
1022	58 Aquarii	1755 1850 1755	12	22 18 22 23 22 21	40. 658 43. 989	+ 319.738 318.860 + 310.000	0.904	+ 319. 320 318. 441	+ 0.418 0.419	
1023		1850	5 6	22 26 22 22	24. 731 19. 040 45. 649	309.604	- 0. 438 0. 397 - 0. 363	+ 309. 751 309. 352 + 308. 316	+ 0. 249 0. 252 + 0. 495	
		1850 1900	350	22 27	38, 862 13, 067	308. 487 308. 333	o. 320 o. 297	307. 990 307. 836	0. 497 0. 497	
1025	226 (B) Cephei	1755 1800 1850 1900		22 27 22 28 22 29 22 30	52. 17 42. 26 37. 18 31. 29	+ 112.00 110.64 109.05 107.38	- 2.95 3.09 3.26 3.44	+ 112.17 110.78 109.19 107.52	- 0, 14 0, 14 0, 14 0, 14	
1026	к Aquarii	1755 1850	5 41	22 25	3· 379 59. 207	+ 311.657 311.148	- 0. 561 0. 511	+ 312.167	- 0, 510 0, 506	
1027	64 Aquarii	1755 1850	3	22 26 22 31	21. 157 22. 198	+ 317. 292 316. 484	- 0.873 0.827	+ 317.611 316.802	- 0. 319 0. 318	
1028	Lal. 44337	1850	5	22 33	1. 7 14. 986	+ 298.820	- 0.475 + 0.168	+ 310.930 + 298.308		
		1850	722	22 29 22 33 22 36	58. 948 28. 477	299. 002 299. 116	0. 215 0. 242	298, 490 298, 605	+ 0. 512 0. 512 0. 511	
1030	65 Aquarii	1755 1850	1	22 30 22 35	6. 543 7. 524	+ 317. 225 316. 425	— 0. 865 0. 820	+ 317. 286 316. 484	- 0, 061 0, 059	

	·			l		1			
No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
				0 / //	,,	"	"	"	"
1013	50 Aquarii	6.0	1755	— 14 45 41. 18	+ 1785.42	+ 20.81	+ 1784.96	+ 0.46	
-		6. 1	1850	14 17 15.80	1804. 70	19. 78	1804. 23	0. 47	
1014	π Aquarii	5.0	1755	+ 0 8_35.54	+ 1790. 32	+ 19.43	+ 1790.79	- 0.47	0. 00
		4.9	1850	0 37 4.97	1808. 35	18. 54 18. 08	1808. 81	0.46	
			1900	0 52 11.45	1817.51		1817.97	0.46	
1015	B. A. C. 7818	6.5	1755	— 17 58 35. 75	+ 1789.96	+ 20.82	+ 1792.64	- 2.68	
		6. 7	1850	17 30 6.06	1809. 23	19. 76	1811.83	2, 60	
1016	53 Aquarii	6.5	1755	— 17 58 40. 72	+ 1789.99	+ 20,82	+ 1792.68	- 2.69	
		5.8	1850	17 30 11.00	1809. 26	19. 76	1811.86	2.60	
1017	54 Aquarii	7.5	1755	— 12 27 53.35	+ 1794.13	+ 20.17	+ 1794.29	— o. 16	
		7.0	1850	11 59 19.97	1812, 82	19. 18	1813.00	o. 18	
1018	B. A. C. 7835	6.5	1755	- 14 9 35.53	+ 1805.01	+ 19.77	+ 1806, 83	— 1.82	
		6. 5	1850	13 40 51.99	1823. 30	18. 74	1825. 05	1. 75	
1019	56 Aquarii	6. 0	1755	- 15 49 44.83	+ 1803.43	+ 19.71	+ 1807.71	- 4. 28	
		6. 3	1850	15 21 2.83	1821, 68	18. 71	1825.94	4, 26	
1020	σ Aquarii	5. o	1755	- 11 55 22.76	+ 1806.84	+ 19. 32	+ 1809.72	- 2.88	
		5. 1	1850	11 26 37.66	1824. 76	18. 33	1827. 61	2.85	
1021	Lal. 43974	6. 2	1850	7 18 59.2		+ 17.96	+ 1830, 22		
1022	58 Aquarii	6, 0	1755	— 12 9 8.21	+ 1809.61	+ 19. 20	+ 1813.55	— 3.94	
		6. 7	1850	11 40 20.56	1827, 38	18. 21	1831. 30	3. 92	
1023	60 Aquarii	6. 5	1755	– 2 49 38.08	+ 1819.38	+ 18.09	+ 1823.66	- 4. 28	
		6. 2	1850	2 20 41.65	1836. 13	17. 18	1840, 39	4. 26	
1024	η Aquarii	4.0	1755	_ I 22 20. IO	+ 1822, 80	+ 17.78	+ 1828.54	— 5.74	+ 0.02
		4. I	1850	0 53 20.55	1839. 26	16.87	1844. 98	5. 72	,
			1900	o 37 58.83	1847. 58	16. 39	1853. 29	5. 71	
1025	226 (B) Cephei		1755	+ 74 57 57.80	+ 1845.63	+ 5.59	+ 1846.51	— o. 88	
			1800	75 11 48.89	1848. 13	5.46	1849. 01	o. 88	
	·	5.3	1850	75 27 13.62	1850, 80	5. 31	1851.69	0.89	
			1900	75 42 39.68	1853. 42	5. 14	1854. 30	o. 88	•
1026	κ Aquarii	6. o	1755	- 5 29 1.59	+ 1824.55	+ 17.53	+ 1836. 71	—12. 16	
ł		5. 2	1850	5 0 0.49	1840. 76	16, 62	1852. 93	12. 17	
1027	64 Aquarii	6. 5	1755	- 11 17 40.62	+ 1840.03	+ 17.58	+ 1841.27	— I. 24	
		6.9	1850	10 48 24.81	1856, 26	16.60	1857. 53	1. 27	
1028	Lal. 44337	6. 3	1850	- 4 19 56.8		+ 16.00	+ 1862.95		
1029	ζ Pegasi	3.0	1755	+ 9 33 34.58	+ 1849.92	+ 16,04	+ 1851.17	_ 1 25	400
1029	, regasi	3. 3	1850	10 2 59.11	1864. 75	15.19	1866.01	- 1.25 1.26	+ 0.02
			1900	10 18 33.37	1872. 23	14. 75	1873. 51	1.28	
								1	
1030	65 Aquarii	7.0	1755	- II 22 43.05	+ 1855.00	+ 16.89	+ 1854.09	+ 0.91	
		7.0	1850	10 53 13.34	1870. 57	. 15.90	1869.67	0,90	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rigl	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	l roper motion.	Sec. var. of proper motion.
1031	67 Aquarii	1755	2	h.	m. 30	s. 25. 952	s. + 314.209	s. — 0,693	s. + 314.375	s. o. 166	s.
		1850	9	22	35	24. 145	313. 572	0.647	313. 739	0. 167	
1032	τ ^ι Aquarii	1755	4	22	34	40. 859	+ 320.258	_ 1.085	+ 320. 344	- o, o86	
	•	1850	6	22	39	44. 621	319. 251	1.036	319. 336	0.085	
1033	B. A. C. 7951 (mean)	1755	. 5	22	35	11.492	+ 310.160	- o. 550	+ 311.649	- 1,489	1
33		1850	_	22	40	5. 908	309.677	0.467	311.178	1.501	İ
1034	70 Aquarii	1755	5	22	35	35. 215	+ 317.431	_ o. 875	+ 317.096	+ 0. 335	<u> </u>
1034	70 .1qua	1850		22	40	36, 389	316,621		316. 285	0. 336	
1035	τ ² Aquarii	1755	5	22	36	35.666	! + 319.532	- 1.054	+ 319.648	— 0. 116	
.033	, .squa	1850	78	22	30 41	38. 754	318. 554	1.004	318.673	0. 119	
1036	ι Cephei	1755	5	22	41	1. 33	+ 209.31	+ 2.03	+ 210.46	- 1.15	
1036	r Cepher	1800		22	42	35. 72	210. 23	2. 10	211.39	1, 16	
		1850		22	44	21. 10	211. 31	2. 18	212.47	1. 16	
		1900		22	46	7.03	212, 42	2. 27	213.58	1. 16	
1037	λ Aquarii	1755	5	22	39	49. 055	+ 314. 167	o. 691	+ 314.158	+ 0.009	
3.	•	1850	257	22	44	47. 209	313. 532	0.645	313. 523	0.009	
		1900		22	47	23. 895	313. 216	0,620	313. 208	0, 008	
1038	Lal. 44734	1850		22	44	50. 5		- o. 781	+ 315.435		
1039	74 Aquarii	1755	5	22	40	33. 396	+ 317.516	- 0.919	+ 317.414	+ 0, 102	<u> </u>
		1850	9	22	45	34. 629	316.668	o. 868	316. 564	0. 104	
1040	75 Aquarii	1755	3	22	41	10.652	+ 317.901	- 0.948	+ 317.812	+ 0.089	
		1850	7	22	46	12. 238	317.025	0.897	316. 933	0, 092	
1041	78 Aquarii	1755	5	22	41	47. 826	+ 313.410	- o. 659	+ 313.686	- o. 276	Ì
		1850	13	22	46	45. 276	312.809	0.612	313.080	0. 271	
1042	1 Piscium	1755	1	22	42	2 6. 944	+ 307.518	- 0. 229	+ 307.178	+ 0. 340	
		1850	13	22	47	18, 992	307. 328	0. 172	306, 980	0. 348	i
1043	B. A. C. 7986	1850	8	22	47	24. 084	+ 311.632	– 0. 493	+ 311. 397	+ 0. 235	
1044	a Piscis Australis .	1755	20	22	44	3. 483	+ 335.399	- 2.212	+ 333.055	+ 2.344	-0.009
		1850		22	49 52	7. 519	333. 326	2, 151 2, 106	330. 992	2. 334	
		1900	` `		_		332, 262	1	329. 935	2. 327	
1045	Lal. 44872	1850		22 .	49		' I	— 0. 392 	+ 310.045		
1046	R. A. C. 7993	1755	4	22	44	35. 694		— o. 520	+ 311.625	- o. 315	
		1850	5	22	49	31. 211	310, 838	0.474	311.153	0. 315	!
1047	2 Piscium	1755	5	22	•		+ 307.709	- 0, 211	+ 307. 244	+ 0.465	
	.	1850	5	22	51	46. 192	307. 531	0. 164	307.066	0. 465	i
1048	3 Piscium	1755	5	22	48	• 4. 340	+ 307.501	- 0. 249	+ 307.806	o. 3o5	
		1850	1	22		56. 361	307. 287	0, 201	307. 593	0. 306	
	9. A		١ .	22	,0	38. 884	1 212 812	- o. 626	 		
1049	81 Aquarii	1755 1850	16	22	48 53		+ 312.810 312.239	0. 577	+ 313.025 312.454	- 0. 215 0. 215	
		1050	, 10 		33	33.773	3.2.239	0.3//	3-2-434	9, 215	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
1031	67 Aquarii	6. o	1755	0 / // - 8 14 17. 37	+ 1855.66	+ 16.67	+ 1855.17	+ 0.49	"
	•	6.4	1850	7 44 47.11	1871.03	15.67	1870. 54	0.49	
1032	r1 Aquarii	6. o	1755	- 15 20 25. 22	+ 1866.87	+ 16.20	+ 1869.01	- 2. 14	
		5.8	1850	14 50 44. 54	1881. 78	15. 18	1883. 92	2. 14	
1033	B. A. C. 7951 (mean)	7.5	1755	- 5 29 38.25	+ 1842.07	+ 15.48	+ 1870.64	—28. 57	
		6. 7	1850	5 0 21.43	1856. 37	14.64	1884. 99	28. 62	
1034	70 Aquarii	6. o	1755	— 11 50 33.41	+ 1873.63	+ 15.91	+ 1871.89	+ 1.74	
		6. 2	1850	11 20 46.43	1888. 27	14. 93	1886, 50	1. 77	
1035	τ² Aquarii	5.5	1755	— 14 52 42.00	+ 1870.15	+ 15.80	+ 1875.04	4.89	
		4. 2	1850	14 22 58.39	1884. 67	14. 78	1889. 56	4.89	
1036	ι Cephei	4.0	1755	+ 64 54 58.57	+ 1875.27	+ 9.45	+ 1888, 50	—13.23	
			1800	65 9 3.39	1879.49	9. 29	1892. 75	13.26	
		3.3	1850	65 24 44.28	1884. 08	9. 12	1897. 37	13. 29	
			1900	65 40 27.46	1888.60	8. 94	1901.91	13. 31	
1037	λ Aquarii	4.0	1755	- 8 52 35.71	+ 1888.50	+ 14.88	+ 1884.92	+ 3.58	- o. oI
	·	3.6	1850 1900	8 22 35.07 8 6 42.27	1902. 17	13. 90 13. 38	1898, 60 1905, 42	3.57	
0			•					3.57	
1038	Lal. 44734	6.8	1850	- 10 51 17.3		+ 14.00	+ 1898.75	• • •	
1039	74 Aquarii	6.0	1755	— 12 54 44.23	+ 1885. 70	+ 14.93	+ 1887.11	- 1.41	
		6, o	1850	12 24 46, 23	1899. 42	13.95	1900, 82	1.40	
1040	75 Aquarii	7.5	1755	— I3 29 4.97	+ 1884. 75	+ 14.83	+ 1888.95	 4. 2 0	
	_	7.0	1850	12 59 7.91	1898. 36	13.82	1902, 58	4. 22	
1041	78 Aquarii	6,0	1755	— 8 30 o. 64	+ 1886.42	+ 14.47	+ 1890. 78	- 4.36	
•		6.4	1850	8 0 2.16	1899. 71	13.50	1904.09	4. 38	
1042	I Piscium	6.0	1755	- 0 14 2.76	+ 1891.37	+ 14.10	+ 1892, 68	- 1.31	
		6. 3	1850	+ 0 16 0.27	1904. 33	13.19	1905.62	1.29	
1043	B. A. C. 7986	5.9	1850	— 5 47 8.24	+ 1906. 16	+ 13.35	+ 1905.86	+ 0.30	
1044	a Piscis Australis .	1.0	1755	— 30 54 49.81	+ 1880, 12	+ 15.19	+ 1897. 32	—17. 2 0	+ 0. 10
		1.4	1850	30 24 57.02	1893.99	14. 02	1911.09	17. 10	
			1900	30 9 8.30	1900, 85	13.40	1917.91	17.06	
1045	Lal. 44872	7. o	1850	- 4 2 42.2		+ 12.90	+ 1911.15	· · •	
1046	B. A. C. 7993	7.5	1755	- 6 6 48.00	+ 1898.78	+ 13.84	+ 1898, 83	- 0.05	
		6.6	1850	5 36 38.06	1911.48	12.89	1911. 54	0.06	
1047	2 Piscium	6. 5	1755	- o 2o 2o. 83	+ 1897. 26	+ 13.28	+ 1905.26	8.00	
		5.4	1850	+ 0 9 47.42	1909. 44	12. 36	1917.42	7.98	
1048	3 Piscium	6. o	1755	_ 1 7 26.05	+ 1910, 52	+ 13.07	+ 1908.42	+ 2. 10	
•		6.4	1850	0 37 5.29	1922. 50	12. 14	1920. 38	2. 12	
1049	81 Aquarii	6, o	1755	_ 8 22 15.8o	+ 1909.81	+ 13.15	+ 1910.00	— 0. 19	
1049	or requarit	6.6	1850	7 51 55.70	1921. 84	12. 18	1922.04	0.19	
		J. 0	.030	, 3. 33. 70	- 5			5, 20	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	scension.		ennial ation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
	D A C 8			h.		s.	_	s.	s.	s.	s.	s.
1050		1850		22	53	45.7			· — 0, 448	+ 310.858		
1051	82 Aquarii	1755	5 8	22	49	48. 551	_	12. 544		+ 312.580	- 0, 036	
		1850	i	!	54	45. 207		12. 004	0, 544	312. 039	0.035	
1052	a Pegasi	1755	10	22	52	34. 419		97. 7 77 98. 2 7 6	+ 0.498 0.552	+ 297.405	+ 0.372	+0.001
		1850	, 	22	57 59	17. 540 46. 748		98. 559	0. 552	297. 904 298. 183	0. 372 0. 376	
TOTA	h Aquarii	-		22	52	22. 385		13. 935	— o. 639	+ 313.165	+ 0.770	
1053	" Aquam	1755	18	l	52 57	20. 342		13. 349	o. 596	312.574	0.775	
1054	h² Aquarii	1	1	22	52	32. 744		13. 296	- o. 649	+ 313. 192	+ 0. 104	
1054	"- Aquam	1755	5	22	57	30, 090		12. 703	0. 598	312. 598	0. 105	
1055	W ² 22 ^h 1220	1850]	22	57	37.3				+ 306.863		
"	1	'	İ		•	-				+ 313.266	1 0 055	
1056	№ Aquarii	1755 18 5 0	5	22	53 58	6. 755 4. 121	i -	13. 321 12. 722	0.605	+ 313.200 312.668	+ 0.055 0.054	
	A Aquarii	_	_	22	54	26, 269	-	13. 307	- o. 635	+ 312.982	+ 0. 325	
1057	" Aquarii	1755 1850	3	22	59	23. 631		13. 307 12. 72 7	o. 585		0. 327	•
1058	A Piscium		5	22	56	8. 034		o7. 357	- o. 118	+ 306.483	+ 0.874	
1030	A liscium	1755	16	23	0	59.977		07. 269	0, 068		0.872	
TOTO	B. A. C. 8065	-	2	22	56	51. 730	_	o6. 394	_ o. 109	+ 306.475	— o. o81	
1059	B. A. C. 3005	1755	4	23	30	42. 762		o6. 314	0. 059	306. 395	0.081	
1060	ø Aquarii		i	23	I	37-459	_	11.513	0.509	+ 311. 355	+ 0. 158	
1000	, · •	1755	5 86	23	6	33. 173		11.054	0, 458	310.893	0, 161	
1061	B. A. C. 8094	1850		23	7	50.8			- o. 319	+ 309.451		
				1					- o. 685			
1062	ψ ¹ Aquarii	1755	41	23	3 8	2. 400 1. 829	_	15. 505 14. 881	0.632	+ 313.048 312.426	+ 2.457 2.455	
		-	1	i -		8. 27 0		11.908	o. 596	+ 312.144		
1063	χ Aquarii	1755 1850	13	23	4 9	4. 321		11. 366	0.544	311.604	- 0. 236 0. 238	
1064	y Piscium	1		-	4	28. 531	_	10. 799	- 0.011	+ 305.904	+ 4.895	
1004	y riscium	1755	286	23	9	23. 792			+ 0.041	305.904	4.897	1
1065	ψ ² Aquarii			23	5	9.410	_	•		+ 312.883	+ 0.002	
1005	φ Aquam	1755	33	23	10	6. 354		12. 271		312. 269	0,002	
1066	ψ ³ Aquarii · .	1755	5	23	6	12. 131				+ 313.015	+ 0, 221	
1000	Ψ Ziquain	1850	56	23	11	9. 401		12,604	0.638		0. 221	
1067	96 Aquarii	1755	5	23	6	41. 386		11.651	:	+ 310.489	+ 1. 162	
1007	30 11 Juni 1 1 1	1850	28	23	11	37. 262		11. 255		310.094	1. 161	
1068	o Cephei	1755	5	23	8	40. 33		39. 12	+ 3.72	+ 237.77	+ 1.35	
		1800		23	10	28. 32		10.82	3.85	239.46	1.36	
		1850		23	12	29. 22		12. 79	4.01	241.41	1. 38	.
		1900		23	14	31.13	24	14. 84	4. 18	243· 44	1.40	
1069	κ Piscium	1755	5	23	14	22. 520		o 7. 492	- 0,064	+ 307.035	+ 0.457	_
		1850	250	23	19			07.456	- 0,012	306. 997	0. 459	
		1900		23	21	48. 343	39	o 7. 459	+ 0.016	306. 998	0.461	

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
1050	B. A. C. 8017	6. ı	1850	0 ' " - 5 31 2.9	"	// + 12.12	" + 1922.46		"
1051	82 Aquarii	6. o	1755	- 7 53 o.61	+ 1908.88	+ 12.92	+ 1913.08	— 4. 20	
	00 114	6.4	1850	7 22 41.50	1920. 70	11.96	1924. 91	4. 21	
1052	a Pegasi	2.0	1755	+ 13 52 32.51	+ 1915.22	+ 11.79	+ 1920. 24	- 5.02	+ 0.01
		2.0	1850	14 23 57.16	1926. 01	10.93	1931.02	5. 01	
			1900	14 40 1.52	1931. 37	10.49	1936. 38	5.01	
1053	h¹Aquarii	6. o	1755	9 0 39.11	+ 1921.26	+ 12.53	+ 1919.73	+ 1.53	
		5-4.	1850	8 30 8.42	1932. 69	11.54	1931. 15	1.54	
1054	№ Aquarii	7- 5	1755	9 4 16.84	+ 1920. 19	+ 12.44	+ 1920. 18	+ 0.01	
	:	7.4	1850	8 33 47. 20	1931. 54	11.46	1931. 54	0.00	
1055	W ² 22 ^h 1220	6, 6	1850	+ 0 29 59.3		+ 11.07	+ 1931.80		
1056	№ Aquarii	7.0	1755	- 9 15 13.64	+ 1921.07	+ 12.32	+ 1921.61	- 0.54	
		7.0	1850	8 44 43.21	1932. 32	11.35	1932. 86	0.54	
1057	Aquarii	8. o 8. o	1755	- 9 0 38. 18 8 30 8.61	+ 1920. 29	+ 12.08	+ 1924.92	- 4.63 4.64	
			1850	-	1931. 30	11.10	1935. 94		
1058	A Piscium	6. o 5. 6	1755	+ 0 47 55.47 I 18 43.20	+ 1939.65 1950.17	+ 11.53	+ 1929.05 1939.55	+10.60 10.62	
***	B. A. C. 8065	8. o	_	+ 0 49 16.89	+ 1929. 20	+ 11. 32	+ 1930.80	— 1,60	
1059	B, A, C, 8005	8. o	1850	1 19 54.60	1939. 52	10.40	1941.13	1.61	
1060	ø Aquarii	5.6	1755	— 7 21 55.24	+ 1922.43	+ 10.65	+ 1941.68	—19. 25	
	y riquant	4. I	1850	6 51 24.28	1932.09	9.68	1951. 36	19.27	
1061	B. A. C. 8094	5.4	1850	_ 4 18 42.3		+ 9.34	+ 1953.94		
1062	ψ¹ Aquarii	5.5	1755	— 10 25 5.72	+ 1943.58	+ 10.60	+ 1944-79	— 1.21	
	,,	4. I	1850	9 54 14.69	1953. 18	9. 58	1954. 30	1, 12	
1063	χ. Aquarii	5.5	1755	- 9 3 29.02	 	+ 10.15	+ 1947. 14	- 4. 12	·
		5⋅3	1850	8 32 38.71	1952. 21	9. 20	1956. 33	4. 12	
1064	γ Piscium	4. 5	1755	+ 1 56 52.94	+ 1948.62	+ 10.21	+ 1947.84	+ 0.78	
		3.6	1850	2 27 48.59	1957. 86	9. 25	1956. 94	0.92	
1065	ψ² Aquarii	5. o	1755	'	+ 1946.99	+ 10,02	+ 1949.27	— 2.28	
		4. 2	1850	10 0 2.61	1956. 03	9.02	1958. 30	2. 27	
1066	ψ³ Aquarii	5.0	1755	- 10 56 45.49	+ 1950. 76	+ 9.82	+ 1951.43	- 0.67	
		4.8	1850	10 25 48.01	1959.61	8. 82	1960, 26	0.65	
1067	96 Aquarii	6.0	1755		+ 1949.99	+ 9.71	+ 1952.41	- 2.42	
		5.6		5 56 35.50	i	8. 73	1961.05	2. 30	
1068	o Cephei	7. 0	1755	+ 66 46 25.74 67 1 7.58	1958.02	+ 6.95 6.73	+ 1956.35 1959.43	+ 1.67 1.69	
		5.3	1850	67 17 28.96	1964.41	6.49	1959. 43	1.71	
		J. J	1900	67 33 51.96	1967. 59	6, 23	1965.85	1.74	
1069	κ Piscium	5.5	1755	- o 4 55.39	+ 1955. 70	+ 8.07	+ 1966,86	-11.16	
		4.7	1850	+ 0 26 6.03	1962, 92	7. 13	1974.00	11.08	
			1900	0 42 28.35	1966. 35	6, 60	1977. 43	11.08	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	Rig	ht as	scension.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
1070	9 Piscium	1755	5	h. 23	m. 14	s. 41. 776	s. + 307.417	s. 0.071	s. + 307.097	s. + o. 316	s.
1071	heta Piscium	1850 1755 1850	18 5 76	23	19 15 20	33. 798 32. 957 21. 658	307. 375 + 303. 793	0.018	307. 054 + 304. 724 304. 938	0. 321 - 0. 931 0. 931	
1072	II Piscium	1900		23	22	53. 694	304. 007 304. 140 + 308. 145	0. 251	305. 072	0.932	
		1755	5	23	16 21	52. 379 45. 029	307. 970	0. 158	308. 192	0. 222	
1073	B. A. C. 8184	1755 1850	15	23	16 21	51. 586 46. 749	+ 310.851 310.550	- 0. 334 0. 300	+ 309. 567 309. 255	1. 295	
1074		1755	5	23	16 21	56. 347 48. 820	+ 307.940 307.802	0.119	+ 308.035	0.095	
1075	13 Piscium	1755 1850	3	23	19 24	23. 296 15. 778	307. 816	- 0. 162 0. 109	+ 307.999 307.871	- 0. 055 0. 055	
1076	14 Piscium	1755 1850	5 7	23 23	21 26	33. 033 26. 295	+ 308.764 308.639	0. 106	+ 308.009 307.886	+ 0. 755 0. 753	. !
1077	15 Piscium	1775 1850	5	23	22 27	57. 601 48. 528	+ 306. 239 306. 248	- 0.018 + 0.036	307.010	- 0. 771 0. 771	
1078	16 Piscium	1755 1850	15	23	23 28	53· 457 44. 102	+ 305.922 305.970	0.079	+ 306. 725 306. 774	- 0.803 0.804	
1079	ι Piscium	1755 1850 1900	612	23 23 23	27 32 34	21, 461 14, 214 48, 398	+ 308. 039 308. 292 308. 445	+ 0. 240 0. 293 0. 320	+ 305. 569 305. 816 305. 968	+ 2.470 2.476 2.477	+0.006
1080	γ Cephei	1755 1800 1850	6	23 23 23	29 31 33	30. 20 15. 43 13. 92	+ 232.41 235.29 238.69	+ 6. 23 6. 59 7. 03	+ 234. 38 237. 31 240. 77 244. 46	- 1.97 2.02 2.08 2.14	
1081	λ Piscium	1900 1755 1850	5	23 23 23	35 29 34	14. 16 33. 033 23. 640	242. 32 + 305. 866 305. 943	+ 0.065 0.097	+ 306.863 306.928	- 0. 997 0. 985	
1082	19 Piscium	1755 1850	4	1	33 38	52. 925 43. 739	+ 306.038 306.209	+ 0. 153 0. 207	+ 306.431 306.602	- 0. 393 0. 393	
1083	20 Piscium	1755 1850	5 48	23	35 40	20. 775 13. 878	+ 308.601 308.470	- 0, 166 0, 110	+ 308.032 307.901	+ 0. 569 0. 569	
1084	B. A. C. 8274	1850	_	23	40	49. 9 42	+ 308. 524	- 0. 299	+ 308. 591	— o. o67	
1085	21 Piscium	1755 1850	1	23		55. 147 46. 718	306. 956	0, 099	+ 307.063 307.132	— 0. 175 0. 176	
1086	22 Piscium	1755 1850	13	23 23	39 44	25. 849 17. 191	+ 306, 594 306, 766	+ 0. 155 0. 208	+ 306.667 306.842	- 0. 073 0. 076	
1087	24 Piscium	1755 1850	5 7	23 23		20. 378 13. 242	+ 308. 344 308. 221	- 0. 155 0. 103	+ 307. 902 307. 777	+ 0.442 0.444	
1088	25 Piscium	1755 1850	5 8	23 23	40 45	32. 322 23. 913	+ 306.873 307.011	+ 0. 118 0. 172	+ 306.852 306.998	+ 0.021 0.013	_

DECLINATIONS.

No.	Star.		Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
1070	9 Piscium	6, o 6, 6	4755 1850	- 0 13 11.06 + 0 17 56.60	" + 1962. 31 1969. 43	// + 7.97 7.02	" + 1967. 39 1974. 50		"
1071	θ Piscium	5. 0 4. 2	1755 1850	+ 5 2 11.90 5 33 20.29 5 49 46.16	+ 1963. 24 1970. 09	+ 7.67 6.76 6.28	+ 1968. 85 1975. 72 1978. 99	- 5.61 5.63 5.64	o. o2
1072	II Piscium	6. 5 6. 4	1755 1850	- 3 8 11.85 2 36 57.68	+ 1969.37 1976.10	+ 7.56 6.61	+ 1971.04 1977.77	- 1.67 1.67	
1073	B. A. C. 8184	6.3	1755 1850	- 5 51 51.24 5 20 57.15	+ 1948. 19 1954. 96	+ 7.62 6.65	+ 1971.00 1977.81	-22.81 22.85	
1074	12 Piscium	7. o 6. 8	1755 1850	- 2 22 52.85 1 51 37.96	+ 1970. 14 1976. 85	+ 7.54 6.60	+ 1971.15 1977.86	- 1.0I 1.0I	
1075	13 Piscium	7. 0 6. 4	1755 1850	- 2 26 11.05 1 54 49.46	1983.66	+ 7.07 6.12	1975.04	+ 2.36 2.36	
1076	14 Piscium	6. 5 5. 9 7. 0	1755 1850 1755	- 2 35 52.53 2 4 31.64 - 0 2 13.82	+ 1976.86 1982.76 + 1976.23	+ 6.69 5.73 + 6.32	+ 1978. 28 1984. 17 + 1980. 31	- 1.42 1.41 - 4.08	
1077	16 Piscium	6. 6 6. o	1850	+ 0 29 6.31 + 0 44 42.63	1981. 79	5. 38	1985.89	4. 10 + 5. 56	
1079	ι Piscium	5. 8 4. 5	1850	1 16 13.09 + 4 18 2.35	1992. 59	5. 23 + 5. 59	1987.00	5· 59 —44· 37	+ 0.04
		4. I	1850 1900	4 48 49. 39 5 5 3. 25	1946. 61 1948. 79	4. 63 4. 11	1990. 94 1993. 10	44. 33 44. 31	
1080	γ Cephei	3. 0	1755 1800 1850 1900	+ 76 15 58.67 76 31 0.43 76 47 43.19 77 4 26.74	+ 2003. 12 2004. 71 2006. 34 2007. 86	+ 3.60 3.40 3.17 2.92	+ 1988. 72 1990. 33 1991. 98 1993. 52	+14.40 14.38 14.36 14.34	
1081	λ Piscium	5. o 4. 5	1755 1850	+ 0 26 2.56 0 57 17.67	+ 1971. 54 1975. 89	+ 5.07 4.12	+ 1988. 76 1993. 14	-17. 22 17. 25	
1082	19 Piscium	6. o 4. 9	1755 1850	+ 2 7 45.09 2 39 17.60	+ 1990, 26 1993, 82	+ 4.21 3.28	+ 1993.44 1997.01	- 3. 18 3. 19	
1083	20 Piscium	5· 5 5· 5	1755	- 4 7 19. 24 3 35 42. 56	+ 1994. 76 1998. 08	+ 3.99 3.02	1994. 86	- 0. 10 0. 10	
1084	B. A. C. 8274	7.0 6.0 5.8	1850 1755 1850	- 7 12 47. 12 - 0 16 58. 27 + 0 14 37. 08	+ 1995.44 + 1993.54 1996.50	+ 2.90 + 3.65 2.62	+ 1998.63 + 1996.29 1999.30	- 3. 19 - 2. 75 2. 80	
1086	22 Piscium	6. o 5. o	1755	+ 1 34 10.32 2 5 48.15	+ 1996. 37 1998. 92	+ 3.15	+ 1998. 38 2000. 92	- 2.01 2.00	
1087	24 Piscium	6. 5 6. 1	1755 1850	- 4 30 54.52 3 59 17.50	+ 1995. 59 1997. 99	+ 3.01	+ 1999. 08 2001. 47	- 3·49 3.48	
1088	25 Piscium	6. 5 6. 4	1755 1850	+ 0 43 44.35 1 15 23.33	+ 1997.68 2000.02	+ 2.94 1.99	+ 1999. 23 2001. 57	- 1.55 1.55	

RIGHT ASCENSIONS.

No.	Star.	Epoch.	Number of observations.	• Right ascens	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
1089	26 Piscium	1755 1850	5 14	h. m. 23 42 36. 23 47 27.	1	s. + o. 388 o. 443	s. + 305.983 306.379	s. — 0. 135 0. 137	5.
1090	Groombridge 4163	1755 1800 1850		23 43 10. 23 45 14. 23 47 35. 23 49 57.	278, 81 30 283, 02	+ 7.85 8.22 8.66 9.12	+ 274. 80 278. 41 282. 62 287. 06	+ 0.39 0.40 0.40	
1091	27 Piscium	1755	5 56		826 + 307. 230	- 0. 145 0. 090	+ 307.693 307.577	0.41 0.463 0.459	
1092	ω Piscium	1755 1850 1900	5 384 	23 46 44. 23 51 36. 23 54 10.	1	+ 0.403 0.460 0.489	+ 306. 251 306. 660 306. 896	+ 0.992 0.993 0.994	+0.001
1093	Lal. 47041	1850		23 52 5.	8	+ 0.087	+ 307. 267		
1094	29 Piscium	1755 1850	5 33	•	136 + 307.488 213 307.419	!	+ 307.478 307.408	+ 0.010 0.011	
1095	30 Piscium	1755 1850	5 28	23 49 23. 23 54 16.	523 + 308,007 519 307,786	- 0. 261 0. 205	+ 307. 799 307. 579	+ 0. 208	
1096	B. A. C. 8351	1755 1850	1 5	23 49 28. 23 54 21.		ı	+ 307. 440 307. 384	+ 0.334	
1097	€ Piscium	1755 1850	5	23 49 59. 23 54 49.	1	+ 0.504	+ 306, 266 306, 772	- 0.489 0.490	
1098	33 Piscium	1755 1850	5 76	23 52 47. 23 57 39.		- 0, 224 0, 168	+ 307. 520 307. 334	— 0. 184 0. 184	

DECLINATIONS.

No.	Star.	Mag.	Epoch.	Declination.	Centennial variation.	Secular variation.	Struve's precession.	Proper motion.	Sec. var. of proper motion.
0-				0 / "	. "	, "	" "		"
1089	26 Piscium	6. o 6. 3	1755 1850	+ 5 42 33.47 6 14 13.57	+ 1999.06 2001.01	+ 2.53 1.59	+ 2000.68 2002.64	- 1,62 1,63	•
1090	Groombridge 4163		1755	+ 73 2 51.58	+ 2000, 15	:	+ 2001.05	— 0.90	
			1800	73 17 51.84	2001.03	1. 76	2001.93	0.90	
•		7. 0	1850	73 34 32.55	2001.80	1.38	2002. 70	0.90	
			1900	73 51 13.60	2002. 38	0, 98	2003. 27	o. 89	
1091	27 Piscium	5. o	1755	- 4 54 54.60	+ 1996.68	+ 1.84	+ 2002.77	- 6.09	
•		5. 1	1850	4 23 17.17	1997. 98	0, 90	2004. 10	6. 12	
1092	ω Piscium	4.5	1755	+ 5 30 25.55	+ 1991.63	+ 1.74	+ 2003. 10	-11.47	
		4.0	1850	6 1 58. 24	1992, 84	o. 78	2004. 30	11.46	
			1900	6 18 34. 74	1993. 10	o. 28	2004. 56	11.46	
1093	Lal. 47041	7. I	1850	- 1 6 48.2		+ 0.68	+ 2004.45		
1094	29 Piscium	5.0	1755	- 4 23 28.00	+ 2003.13	+ 1.24	+ 2004. 24	— 1.11	
		5.0	1850	3 51 44.61	2003.85	0. 29	2004. 98	1. 13	
1095	30 Piscium	4.5	1755	- 7 22 32.83	+ 2000, 46	+ 1.23	+ 2004.33	— 3.87	
		4.4	1850	6 50 51.99	2001.17	0. 27	2005.01	3. 84	
1096	B. A. C. 8351	8. o	1755	- 4 7 47. 72	+ 2002.40	+ 1,20	+ 2004. 34	- 1.94	
	33	8. o	1850	3 36 5.07	2003, 09	0, 24	2005.03	1.94	
1097	& Piscium	6.0	1755	+ 7 7 26.14	+ 2001.49	+ 1.08	+ 2004. 54	- 3.05	
/ 1		5.7	1850	7 39 7.90		0.14	2005. 13	3.06	
1008	33 Piscium	5.0	1755	- 7 4 42·44		+ 0.55	+ 2005.50	+ 9.47	
30,3		4.8	1850	6 32 48. 12		- 0.40	2005. 54	9.47	

		•	
		•	
		•	
•		•	
•			
	·	·	
•			

AUWERS' PERIODIC CORRECTIONS TO BE APPLIED TO THE POSITIONS OF SIRIUS AND PROCYON, ON ACCOUNT OF INEQUALITY OF PROPER MOTION.

Periodic terms to be applied to the position of Sirius.

[P, correction to the right ascension. P', correction to the declination.]

	c	CANIS	Majoris.			α Can	is Majoi	RIS—Continue	d .
Year.	Year.	Year.	P	P'	Year.	Year.	Year.	P	Ρ′
			s.	"				s.	"
1750.6	1800.0	1849. 4	+. 026	+1.41 _ 6	1775.6	1825.0	1874. 4	131 124 + 7	—1. 16 — 7
	1801.0	1850. 4	+.006	ı —II. 25 I	1776.6	1826. o	1875.4		-1.23 - 7
1752.6	1802. 0	1851.4	014	+1.28 7	1777.6	1827. 0	1876. 4	117 ^{+ 7}	— I. 29
1753.6	1803. 0	1852. 4	031 ⁻¹⁷	+1.19	1778.6	1828. o	1877. 4	108 ^{+ 9}	-1.34 ⁻⁵
1754.6	1804. 0	1853. 4	047	+1.09	1779.6	1829. 0	1878.4	098 ⁺¹⁰	—r. 38 [—] 4
1755.6	1805. o	1854. 4	-, 062	+ .08	1780.6	1830. o	1879.4	o86 +12	- 4 1.422
1756.6	1806. o	1855.4	—. 076 ^{—14}	+ .87 "	1781.6	1831.0	1880.4	074 + 12	-1.44 ₋₁
1757.6	1807. o	1856.4	088 ⁻¹²	+ . 76	1782.6	1832. 0	1881.4	o61 ⁺¹³	-1.45
1758.6	1808, o	1857.4	000	+ .64	1783.6	1833. o	1882.4	046 ⁺¹⁵	-1.44^{+1}
1759.6	1809. 0	1858. 4	109	+ . 52 "	1784.6	1834. o	1883. 4	030 ⁺¹⁶	-1.42 ^{+ 2}
1760.6	1810.0	1859.4	- 118	+ · 40	1 785. 6	1835. o	1884. 4	+18 012	+ 5 -1, 37
1761.6	1811.0	1860.4	126 - 8	+ . 28 - 12	1786.6	1836. o		+.007 + 19	-1.30 ^{+ 7}
1762.6	1812. o	1861.4	—. I32 [—]	+ . 16-12	1787.6	1837.0	1886, 4	+.027 +20	- I. 21 T 9
1763.6	1813. o	1862.4	· 138 ^{- 6}	+ .04-12	1788.6	1838. o	1887. 4	+.049	-1.08 ⁺¹³
1764.6	1814.0	1863.4	143 ^{- 5}	07-11	1789.6	1839. o	1888.4	+.072 +23	90 ⁺¹⁸
1765.6	1815.0	1864. 4	147 - 4	19 ₋₁₁	1790.6	1840. 0	1889. 4	+. 096	+23 67
1766.6	1816. o	1865.4	149 ^{- 2}	30 ⁻¹¹	1791.6	1841.0	1890.4	+. I2O	37 ⁺³⁰
1767.6	1817.0	1866.4	151 ⁻²	41	1792.6	1842.0	1891.4	+. 141	+ .02+39
1768.6	1818. o	1867.4	152 ^{- 1}	52 ⁻¹¹	1793.6	1843.0	1892.4	+. 152+11	$+.46^{-44}$
1769.6	1819. 0	1868.4	—. 152 °	63-11	1794.6	1844.0	1893. 4	+. 147 5	+ .88+42
1770.6	1820, o	1869. 4	+ 1	-10	1795.6	1845.0	1894. 4	+. 130	+29 +1.17
1771.6	1821.0	1870.4	151 149	- · 73 - · 82	1795.0	1846.0	1895.4	+. 107 -23	±1 24 +17
1772.6	1822. 0	1871.4	149 146 ^{+ 3}	92 92	1797.6	1847. 0	1896.4	+. 082 ²⁵	+1.43+9
1773.6	1823.0	1872.4	142 ^{+ 4}	-1.00 8 -1.00 8	1797.6	1848. o	1897.4	+. 058 ⁻²⁴	+1.45 + 2
1774.6	1824. 0	1873.4	142 $137^{+.5}$	-1.08 ⁻⁸	1799.6	1849.0	1898.4	+.035	+1.43
1	•					1		-21	- 5
1775.6	1825.0	1874.4	131 _{+ 7}	-1. 16 ₋₇	1800.6	1850.0	1899. 4	+.014	+1.38
1776.6	1826. o	1875.4	124 + 7	-1.23 ₋₆	1801.6	1851.0	1900.4	006	+1.31 - 7
1777.6	1827. 0	1876.4	117 _{+ 9}	-1.29 - 5	1802.6	1852.0	1901.4	024 ⁻¹⁸	+1.22 9

Periodic terms to be applied to the position of Procyon.

		α Cani	s Minor	is.			αС	anis Mi	voris—C	ontinued.	
Year.	Year.	Year.	Year.	P	P'	Year.	Year.	Year.	Year.	P	P'
				s.	"					s.	"
1750.0	1790.0	1830. o	1870. o	045 ₋₈	80	1770.0	1810.0	1850. o	1890. o	+.045	+ .80_11
1751.0	1791.0	1831.0	1871.0	053	60	1771.0	1811.0	1851.0	1891.0	十.053	十 .09
1752.0	1792.0	1832.0	1872.0	-, o6o ⁻⁷	·- · 55	1772.0	1812.0	1852.0	1892.0	+. 060 + 7	+ .55-14
1753.0	1 7 93.0	1833. o	1873. o	o65 ⁻⁵			1813.0	1853.0	1893. 0	+.065+5	+ .41 -14
1754.0	1794.0	1834. 0	1874. 0	068_{-2}^{-3}	25 ⁺¹⁶	1774.0	1814. 0	1854. 0	1894. 0	+.068+3	+ .2517
1755.0	1795. o	1835. o	1875. o	—. 07 0	09+17	1775.0	1815. o	1855. o	1895. o	+.070	+ .08
1756. o	1796.0	1836. o	1876. o		+ .08	1776. o	1816.0	1856. o	1896. o	+. 070 °	o8 ⁻¹⁶
1757.0	1797.0	1837.0	1877. o	o68 ^{+ 2}	+ .08 + .24 + 16	1777.0	1817.0	1857.0	1897. o	+. 068 2	24
1758. o	1798.0	1838. o	1878. o	065^{+3}_{+5}	+ -40.	1778. o	1818. o	1858. o	1898. o	+. 065 - 3	40-16
1759. 0	1799.0	1839. 0	1879. o	o6o ^{+ 5}	$+.55^{+15}_{+13}$	1779.0	1819.0	1859.0	1899. 0	+.060 5	55_{-13}^{-15}
1760. o	1800.0	1840. o	1880. o		+ .68	1780.0	1820.0	1860. o	1900, 0	+.054	68
1761.0	1801.0	1841.0	1881.0	045	+ .80+10	1781.0	1821.0	1861. o	1901.0	+. 046	— .8 o
1762.0	1802.0	1842.0	1882.0	036	+ .90	1782.0	1822. o	1862. o	1902.0	+.037	90 ⁻¹⁰
1 <i>7</i> 63. o	1803. 0	1843.0	1883. o	026 +10	+ •97 _[]	1783.0	1823.0	1863. o	1903.0	+. 027_10	97 7
1764.0	1804. 0	1844.0	1884. 0	016 ⁺¹⁰	1 1 02 1	1784.0	1824. 0	1864. o	1904.0	+.017_11	-1.02 3
1765.0	1805. o	1845.0	1885. o	006		1785. o	1825.0	1865. o	1905.0	+.006	-1.05
1 766. o	1806. o	1846. o	1886. o	+.005	+1.05	1786.0	1826. o	1866. o	1906. 0	005	-1.05 °
1767.0	1807. o	1847.0	1887. o	+.015	+1.02	1787.0	1827.0	1867.0	1907. 0	015	-1.02 ^{+ 3}
1768. o	1808. o	1848. n	1888. o	+.020	l+ .97 ∣	1788. o	1828, 0	1868. o	1908. o	027	— . 07 ^{T 3}
1 7 69. o	1809. o	1849. 0	1889. o	+. 036 + 9	+ .90 7	1789.0	1829. o	1869.0	1909.0	. 037	90 ^T ⁷
1770.0	1810.0	1850. o	1890. o		+ .80_11	1790.0	1830. o	18 7 0. 0	1910.0	046	8o ⁺¹⁸

RIGHT ASCENSIONS OF TIME STARS FOR 1800

AND

FOR QUINQUENNIAL EPOCHS, 1830–1900.

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900.

37	α Andr	omedæ.	y Peg	asi.	12 Ce	ti.	α Cassio	peæ.	ß Ce	eti.
Year.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. va
	23h; Oh		Op		Oh		Op		Op	
800	58 4.62	3. 0753	2 57.148	3. 0749	19 50.023	3. 0605	29 14.615	3. 3245	33 32.581	3. 019
830	59 36.95	6 3. 0806	4 29.440	3. 0778	21 21.839	3. 0606	30 54.602	3. 3410	35 3. 137	3.017
835	52. 36	3. 0815	44. 830	3. 0783	37. 143	3. 0606	31 11.314	3- 3437	18. 224	3.017
840	0 7.77	3. 0824	5 0. 223	3. 0788	52. 446	3.0607	28. 039	3. 3465	33. 310	3. 01
845	23. 18	3. 0833	15.618	3. 0793	24 7. 749	3. 0607	44. 778	3. 3492	48. 395	3.016
850	38.60	3 3. 0842	31.016	3. 0798	23.053	3. 0007	32 1.531	3. 3519	36 3.4 7 8	3. 016
855	54. 02	6 3. 0851	46. 416	3. 0803	38. 357	3.0608	18. 298	3- 3547	18. 56 0	3.016
860	1 9.45	3. 0860	6 1.819	3. 0808	53. 661	3. 0608	35. 078	3.3574	33. 640	3. 01
865	24. 88	6 3. 0869	17. 224	3.0813	23 8.965	3. 0608	51.872	3. 3602	48. 719	3. 01
870	40. 32	1	32.632	3. 0818	24. 269	3. 0609	33 8.680	3. 3629	37 3.7 96	3. 01
875	55. 76	4 3.0888	48.042	3. 0823	39- 574	3. 0609	25. 502	3. 3657	18, 872	3. 01
88o	2 11.21	i	7 3.455	3. 0828	54. 878	3. 0610	4 ² . 337	3. 3685	33-947	3.01
885	26.66	3, 0906	18.870	3. 0833	24 10. 183	3.0610	59. 187	3. 3713	49. 020	3. 01
890	42. 11		34. 288	3. 0838	25.489	3.0611	34 16.051	3.3741	38 4.092	3.01
895	57-57	_	49. 708	3. 0843	40. 794	3.0611	32, 928	3. 3768	19. 163	3. 01.
900	3 13.04	3. 0934	8 5.131	3. 0848	56. 100	3. 0611	49. 820	3. 3784	34. 232	
900				3. 0848		3. 0611	49. 820	3. 3784	34. 232	3. 01
Year.	εPis	cium.	β Andro	3. 0848 medæ.	56. 100 • θ' Ce	3. 0611	4 9. 8 2 0 η Pisci	3. 3784 um.	34. 232 o Pisc	3. 01;
				3. 0848	56. 100	3. 0611	49. 820	3. 3784	34. 232	3. 01
Year.	εPis	cium. Ann. var.	β Andro R. A. Oh; 1h	3. 0848 medæ. Ann. var.	- θ' Ce R. A.	3. 0611	49. 820 η Pisci R. A.	um.	34. 232 o Pisc	3. 01;
Year	ε Pis R. A. oh 52 34-55	cium. Ann. var. 3 3. 1013	β Andro R. A. oh; 1h 58 34.585	3. 0848 medæ. Ann. var.	. 6' Ce R. A.	3. 0611 Ann. var.	49. 820 η Pisci R. A.	3. 3784 um.	o Pisc R. A.	jum.
Year.	ε Pis R. A. oh 52 34-52 54 7.65	Ann. var. 3 3. 1013 0 3. 1039	β Andro R. A. oh; 1h 58 34.585 ο 14.276	3. 0848 medæ. Ann. var. 3. 3186 3. 3272	56. 100 - 9' Ce R. A. 1h 14 1. 823 15 31. 697	3. 0611 Ann. var. 2. 9955 2. 9960	η Pisci R. A. 1b 20 48. 158 22 23. 921	3. 3784 Ann. var. 3. 1900 3. 1942	o Pisc R. A. 1h 34 50. 929 36 25. 553	3. 01; ium. Ann. v
Year. 800 830	ε Pis R. A. Oh 52 34-57 54 7.65 23.17	Ann. var. 3 3. 1013 0 3. 1039 1 3. 1043	β Andro R. A. oh; 1h 58 34.585 ο 14.276 30.916	3. 3186 3. 3272 3. 3287	56. 100 - 6' Ce R. A. 1h 14 1.823 15 31.697 46.677	3. 0611 Ann. var. 2. 9955 2. 9960 2. 9961	η Pisci R. A. 1b 20 48. 158 22 23. 921 39. 893	3. 3784 Ann. var. 3. 1900 3. 1942 3. 1949	o Pisc R. A. 1h 34 50. 929 36 25. 553 41. 333	3. 01 January 15: 3. 1
Year.	ε Pis R. A. oh 52 34-52 54 7.65	Ann. var. 3 3. 1013 0 3. 1039 1 3. 1043	β Andro R. A. oh; 1h 58 34.585 ο 14.276	3. 0848 medæ. Ann. var. 3. 3186 3. 3272	56. 100 - 9' Ce R. A. 1h 14 1. 823 15 31. 697	3. 0611 Ann. var. 2. 9955 2. 9960	η Pisci R. A. 1b 20 48. 158 22 23. 921	3. 3784 Ann. var. 3. 1900 3. 1942	o Pisc R. A. 1h 34 50. 929 36 25. 553	3. 01; ium. Ann. v 3. 15: 3. 15: 3. 15:
Year. 800	ε Pis R. A. Oh 52 34-57 54 7-65 23. 17 38. 66 54. 21	Ann. var. 3 3. 1013 0 3. 1039 1 3. 1043 3 3. 1047 8 3. 1052	β Andro R. A. oh; 1h 58 34.585 0 14.276 30.916 47.563 1 4.217	3. 3186 3. 3272 3. 3287	. 6' Ce R. A. 1h 14 1.823 15 31.697 46.677 16 1.658 16.639	2. 9955 2. 9960 2. 9962 2. 9963	η Pisci R. A. 1b 20 48. 158 22 23. 921 39. 893 55. 869 23 11. 849	3. 3784 Ann. var. 3. 1900 3. 1942 3. 1949 3. 1956 3. 1963	o Pisc R. A. 1b 34 50, 929 36 25, 553 41, 333 57, 116 37 12, 902	3. 01; ium. Ann. v 3. 15; 3. 15; 3. 15; 3. 15;
Year. 800 830 835 840	ε Pis R. A. Oh 52 34-57 54 7-65 23. 17 38. 69 54. 21 55 9-74	cium. Ann. var. 3 3. 1013 0 3. 1039 1 3. 1043 3 3. 1047 8 3. 1052 5 3. 1056	β Andro R. A. oh; 1h 58 34.585 ο 14.276 30.916 47.563 1 4.217 20.878	3. 3186 3. 3272 3. 3287 3. 3301 3. 3315 3. 3330	56. 100 - 6' Ce R. A. 1h 14	2. 9955 2. 9960 2. 9961 2. 9963 2. 9964	η Pisci R. A. 1b 20 48. 158 22 23. 921 39. 893 55. 869 23 11. 849 27. 832	3. 3784 Ann. var. 3. 1900 3. 1942 3. 1949 3. 1956 3. 1963 3. 1970	o Pisc R. A. 1h 34 50, 929 36 25, 553 41, 333 57, 116 37 12, 902 28, 690	3. 15: 3. 15: 3. 15: 3. 15: 3. 15: 3. 15:
Year.	ε Pis R. A. oh 52 34-57 54 7.65 23.17 38.69 54.21 55 9.74 25.27	cium. Ann. var. 3 3. 1013 0 3. 1039 1 3. 1043 3 3. 1047 8 3. 1052 5 3. 1056 4 3. 1060	β Andro R. A. oh; 1h 58 34.585 ο 14.276 30.916 47.563 1 4.217 20.878 37.546	3. 0848 medæ. Ann. var. 3. 3186 3. 3272 3. 3287 3. 3301 3. 3315 3. 3330 3. 3344	56. 100 - 9' Ce R. A. 1h 14 1. 823 15 31. 697 46. 677 16 1. 658 16. 639 31. 621 46. 603	2. 9955 2. 9960 2. 9961 2. 9963 2. 9964 2. 9964	η Pisci R. A. 1b 20 48. 158 22 23. 921 39. 893 55. 869 23 11. 849 27. 832 43. 819	3. 3784 Ann. var. 3. 1900 3. 1942 3. 1949 3. 1956 3. 1963 3. 1970 3. 1977	o Pisc R. A. 1h 34, 50, 929 36, 25, 553 41, 333 57, 116 37, 12, 902 28, 690 44, 481	3. 15: 3. 15: 3. 15: 3. 15: 3. 15: 3. 15: 3. 15:
Year.	ε Pis R. A. Oh 52 34-57 54 7-65 23. 17 38. 69 54. 21 55 9-74	cium. Ann. var. 3 3. 1013 0 3. 1039 1 3. 1043 3 3. 1047 8 3. 1052 5 3. 1056 4 3. 1060	β Andro R. A. oh; 1h 58 34.585 ο 14.276 30.916 47.563 1 4.217 20.878	3. 3186 3. 3272 3. 3287 3. 3301 3. 3315 3. 3330	56. 100 - 6' Ce R. A. 1h 14	2. 9955 2. 9960 2. 9961 2. 9963 2. 9964	η Pisci R. A. 1b 20 48. 158 22 23. 921 39. 893 55. 869 23 11. 849 27. 832	3. 3784 Ann. var. 3. 1900 3. 1942 3. 1949 3. 1956 3. 1963 3. 1970	o Pisc R. A. 1h 34 50, 929 36 25, 553 41, 333 57, 116 37 12, 902 28, 690	3. 15: 3. 15: 3. 15: 3. 15: 3. 15: 3. 15: 3. 15:
Year. 1800 1830 1835 1840 1855 1860	ε Pis R. A. Oh 52 34-57 54 7-65 23.17 38.69 54.21 55 9.74 25.27 40.86 56.3	Ann. var. 3 3. 1013 0 3. 1039 1 3. 1043 3 3. 1047 8 3. 1052 5 3. 1056 4 3. 1060 9 3. 1065	β Andro R. A. oh; 1h 58 34.585 ο 14.276 30.916 47.563 1 4.217 20.878 37.546	3. 3186 3. 3272 3. 3287 3. 3301 3. 3315 3. 3330 3. 3344 3. 3358 3. 3372	56. 100 - 9' Ce R. A. 1h 14 1. 823 15 31. 697 46. 677 16 1. 658 16. 639 31. 621 46. 603	2. 9955 2. 9960 2. 9961 2. 9963 2. 9964 2. 9964	η Pisci R. A. 1b 20 48. 158 22 23. 921 39. 893 55. 869 23 11. 849 27. 832 43. 819 59. 809	3. 3784 Ann. var. 3. 1900 3. 1942 3. 1949 3. 1956 3. 1963 3. 1970 3. 1977	o Pisc R. A. 1h 34, 50, 929 36, 25, 553 41, 333 57, 116 37, 12, 902 28, 690 44, 481	3. 01; Ann. v 3. 15; 3. 15; 3. 15; 3. 15; 3. 15; 3. 15;
Year. 800 830 835 840 855 866	ε Pis R. A. Oh 52 34-57 54 7-65 23.17 38.69 54.21 55 9.74 25.22 40.86 56.33 56 11.89	Ann. var. 3 3. 1013 0 3. 1039 1 3. 1047 8 3. 1052 5 3. 1056 4 3. 1060 5 3. 1069 14 3. 1073	β Andro R. A. Oh; Ih 58 34.585 O 14.276 30.916 47.563 I 4.217 20.878 37.546 54.222 2 10.905 27.594	3. 3186 3. 3272 3. 3287 3. 3301 3. 3315 3. 3330 3. 3344 3. 3358 3. 3372 3. 3387	56. 100 - 6' Ce R. A. 1h 14	2. 9955 2. 9960 2. 9961 2. 9963 2. 9964 2. 9964 2. 9966 2. 9966 2. 9967	η Pisci R. A. 1b 20 48. 158 22 23. 921 39. 893 55. 869 23 11. 849 27. 832 43. 819 59. 809 24 15. 803 31. 800	3. 3784 Ann. var. 3. 1900 3. 1942 3. 1949 3. 1956 3. 1963 3. 1970 3. 1977 3. 1984	o Pisc R. A. 1h 34 50, 929 36 25, 553 41, 333 57, 116 37 12, 902 28, 690 44, 481 38 0, 275 16, 071 31, 871	3. 15: 3. 15: 3. 15: 3. 15: 3. 15: 3. 15: 3. 15: 3. 15: 3. 15: 3. 15:
Year. 1800 1830 1835 1840 1845 1855	ε Pis R. A. Oh 52 34-57 54 7-65 23, 17 38, 69 54, 21 55 9, 74 25, 27 40, 86 56, 3; 56 11, 8	Ann. var. 3 3. 1013 0 3. 1039 1 3. 1043 3 3. 1047 8 3. 1052 5 3. 1056 4 3. 1060 9 3. 1065	β Andro R. A. Oh; 1h 58 34.585 O 14.276 30.916 47.563 I 4.217 20.878 37.546 54.222 2 10.905	3. 3186 3. 3272 3. 3287 3. 3301 3. 3315 3. 3330 3. 3344 3. 3358 3. 3372	56. 100 R. A. 1h 14 1. 823 15 31. 697 46. 677 16 1. 658 16. 639 31. 621 46. 603 17 1. 585 16. 568	2. 9955 2. 9960 2. 9961 2. 9962 2. 9964 2. 9964 2. 9965 2. 9966	η Pisci R. A. 1b 20 48. 158 22 23. 921 39. 893 55. 869 23 11. 849 27. 832 43. 819 59. 809 24 15. 803	3. 3784 Ann. var. 3. 1900 3. 1942 3. 1949 3. 1956 3. 1963 3. 1977 3. 1984 3. 1991	o Pisc R. A. 1h 34 50. 929 36 25. 553 41. 333 57. 116 37 12. 902 28. 690 44. 481 38 0. 275 16. 071	3. 013 Ann. v 3. 152 3. 156 3. 156 3. 155 3. 155 3. 156 3. 156

58. 494 3. 1087

29. 585 3. 1095

1890 . . | 57 14.039 3.1091

1895 . .

1900 . .

17. 707

51. 152

4 7.885

3.3430

3-3444

3-3459

3.3473

16. 504 2. 9970

2. 9971

2.9971

2.9972

31.489

46. 475

1.461

19. 813 3. 2019

3. 2033

35. 824

51.839

7.858

19. 285 | 3. 1618

3. 1624

.3. 1629

3. 1634

35. 095

50.908

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900-Continued.

••	β Ari	etis.	a	Arie	tis.		ξι Ce	ti.		ξº Ce	ti.		y Ce	ti.
Year.	R. A.	Ann. var.	R.	Α.	Ann. var.	1	R. A.	Ann. var.	1	R. A.	Ann. var.]	R. A.	Ann. va
	1p		In;	2 ^b			2 ^h			2 ^h			2 ^h	
1800	43 37. 197	3. 2872	55 55	. 765	3. 3530	2	24. 982	3. 1638	17	32.554	3. 1735	32	57. 102	3.0951
1830	45 15.898	3. 2927	57 36	. 445	3. 3590	3	5 9- 947	3. 1672	19	7.808	3. 1769	34	29. 994	3.0978
1835	32. 364	3. 2936	53	. 242	3. 3600	4	15. 784	3. 1678		23. 694	3. 1774		45. 484	3. 0982
1840	48. 834	3. 2946	58 10	. 045	3. 3610		31.625	3. 1684		39. 583	3. 1780	35	o. 9 7 6	3.098
1845	46 5. 309	3. 2955	26	. 852	3. 3620		47. 468	3. 1689		55-475	3. 1786		16. 471	3. 0991
1850	21. 789	ľ	43	. 665	3. 3630	5	3. 314	3. 1695	20	11. 379	3. 1792		31.968	3. 0996
1855	38. 273	1	_	. 482	3. 3640		19. 163	3. 1701		27. 276	3. 1797		47.467	3. 1001
1860	54. 761	_		. 305	3. 3650		35.015	3. 1706		43. 176	3. 1803	36	2.969	3. 1009
1865	47 11.255	3. 2991		. 133	3. 3661		50.870	3. 1712		59. 080	3. 1809		18. 472	3. 1010
1870	27. 753	1	l	. 9 6 6	3. 3671	6	-	3. 1718	21	14. 986	3 1815		33.979	3. 1014
1875	44. 255	1		. 803	3. 3681	·	22. 588	3. 1724		30. 894	3. 1821		49. 487	3. 1019
1880	48 0. 762	1	1	. 646	3. 3691		38. 452	3. 1730		46. 806	3. 1826	37	4. 998	3. 102
	1	1						l l			_	<i>31</i>		1
1885	17. 273		l .	494	3. 3701	_	54. 318	3. 1736	22	2. 721	3. 1832		20. 511	3. 102
1 89 0	33. 789		l	347	3. 3711	7	•	3. 1741		18.638	3. 1838		36.026	3. 103
1895	50. 309 49 6. 835		1 15	2.069	3. 3721 3. 3732		26. 059 41. 935	3. 1747 3. 1753		34· 559 50. 482	3. 1844 3. 1850	38	51. 544 7. 064	3. 103
•												-		
	αCo	eti.	,						<u>_</u>	ε Erida			8 Per	
37	l .		,	Ariet	tis.		α Pers	sei.		e Liiu	ami.		0 101.	sei.
Year.	R. A.	Ann. var.	R.		Ann. var.		α Pers	Ann. var.	•]	R. A.	Ann. var.		R. A.	Ann. va
Year.	R. A.		R	Α.	l		R. A.		• 1	R. A.		1	R. A.	1
Year.		Ann. var.	R	Α.	Ann. var.		R. A.		23	R. A		28	R. A.	1
 	2h	Ann. var.	R	A.	l		R. A. 3 ^h 7. 015	Ann. var.		R. A.	Ann. var.		R. A.	Ann. va
1800 1830	2 ^h 51 50.391	Ann. var. 3. 1218 3. 1246	R. 3 ^h 3 25 5 8	A. . 880	Ann. var.	10	R. A. 3 ^h 7. 015	Ann. var.	23	R. A. 3h 30. 955	Ann. var.	28	3 ^b	Ann. va 4. 212 4. 225
1800	2 ^h 51 50.391 53 24.087	3. 1218 3. 1246 3. 1251	R. 3 ^h 3 25 5 8	A. 5. 880 6. 666	Ann. var. 3. 4235 3. 4288	10	R. A. 3 ^h 7. 015 13. 662	Ann. var. 4. 2143 4. 2288	23 24	R. A. 3h 30. 955 55. 540	Ann. var. 2. 8187 2. 8203	28 30	3 ^h 43. 815 50. 385	Ann. va 4. 212 4. 225 4. 227
1800 1830 1835	2h 51 50. 391 53 24. 087 39. 712 55. 338	3. 1218 3. 1246 3. 1251 3. 1256	R. 3 ^h 3 25 5 8 25 42	A. 3. 880 3. 666 5. 812 2. 963	3. 4235 3. 4288 3. 4297 3. 4306	IO I2	3 ^h 7. 015 13. 662 34. 812 55. 974	Ann. var. 4. 2143 4. 2288 4. 2312 4. 2336	23 24	R. A. 3h 30. 955 55. 540 9. 642 23. 746	2. 8187 2. 8203 2. 8206 2. 8209	28 30	R. A. 3 ^b 43.815 50.385 12.517 33.659	4. 212 4. 225 4. 227 4. 229
1800 1830 1835 1840	2h 51 50. 391 53 24. 087 39. 712 55. 338 54 10. 968	3. 1218 3. 1246 3. 1251 3. 1256 3. 1261	R. 3h 3 25 5 8 25 42	A. 3. 880 3. 666 5. 812 6. 963 6. 118	3. 4235 3. 4288 3. 4297 3. 4306 3. 4315	IO I2	3 ^h 7. 015 13. 662 34. 812 55- 974 17. 149	4. 2143 4. 2288 4. 2312 4. 2336 4. 2361	23 24	3h 30. 955 55. 540 9. 642 23. 746 37. 851	2. 8187 2. 8203 2. 8206 2. 8209 2. 8212	28 30 31	3 ^h 43. 815 50. 385 12. 517 33. 659 54. 811	4. 212 4. 225 4. 227 4. 229 4. 231
1800 1830 1835 1840	2h 51 50. 391 53 24. 087 39. 712 55. 338 54 10. 968 26. 599	3. 1218 3. 1246 3. 1251 3. 1266 3. 1261 3. 1266	R. 3h 3 25 5 8 25 42 6 0 17	A	3. 4235 3. 4288 3. 4297 3. 4306 3. 4315 3. 4324	IO I2	R. A. 3h 7. 015 13. 662 34. 812 55. 974 17. 149 38. 335	4. 2143 4. 2288 4. 2312 4. 2336 4. 2361 4. 2385	23 24 25	R. A. 3h 30, 955 55, 540 9, 642 23, 746 37, 851 51, 958	2. 8187 2. 8203 2. 8206 2. 8209 2. 8212 2. 8215	28 30 31	3 ^h 43. 815 50. 385 12. 517 33. 659 54. 811 15. 974	4. 212; 4. 225; 4. 227; 4. 229; 4. 231; 4. 233;
1800 1830 1835 1840 1845	2h 51 50. 391 53 24. 087 39. 712 55. 338 54 10. 968	3. 1218 3. 1246 3. 1251 3. 1256 3. 1261 3. 1266 3. 1271	R. 3h 3 25 5 8 25 42 6 00 17 34	A. 3. 880 3. 666 5. 812 6. 963 6. 118	3. 4235 3. 4288 3. 4297 3. 4306 3. 4315	IO I2	3h 7. 015 13. 662 34. 812 55. 974 17. 149 38. 335 59. 533	4. 2143 4. 2288 4. 2312 4. 2336 4. 2361	23 24	3h 30. 955 55. 540 9. 642 23. 746 37. 851	2. 8187 2. 8203 2. 8206 2. 8209 2. 8212	28 30 31	3 ^h 43. 815 50. 385 12. 517 33. 659 54. 811	4. 212; 4. 225; 4. 227; 4. 229; 4. 231; 4. 233; 4. 235
1800 1830 1835 1840	2h 51 50. 391 53 24. 087 39. 712 55. 338 54 10. 968 26. 599 42. 233	Ann. var. 3. 1218 3. 1246 3. 1251 3. 1256 3. 1261 3. 1266 3. 1271 3. 1275	R. 3 ^h 3 25 5 8 25 42 6 0 17 344 51	A	3. 4235 3. 4288 3. 4297 3. 4306 3. 4315 3. 4324 3. 4333	10 12	R. A. 3h 7. 015 13. 662 34. 812 55. 974 17. 149 38. 335 59. 533	Ann. var. 4. 2143 4. 2288 4. 2312 4. 2336 4. 2361 4. 2385 4. 2409	23 24 25	R. A. 3h 30. 955 55. 540 9. 642 23. 746 37. 851 51. 958 6. 066	2. 8187 2. 8203 2. 8206 2. 8209 2. 8212 2. 8215 2. 8217	28 30 31	3h 43. 815 50. 385 12. 517 33. 659 54. 811 15. 974 37. 147	Ann. va

1870 . .

1875 . .

1885 . .

1890 . .

1895 . .

1900 . .

3. 1285

3. 1290

3. 1300

3. 1304

3. 1309

3. 1314

29. 150

44- 794

16. 088

31.739

47-393

57 3.049

1880 . . | 56 0.440 | 3.1295

25. 961 3. 4359

43. 143 | 3. 4368

3. 4386

3.4394

3.4403

3.4412

8 0. 329 3. 4377

17.519

34. 714

51.914

9 9.117

15 3. 201 4. 2481

45. 707

28. 261

49. 556

16 6.978

17 10.863

24. 448 | 4. 2505

4. 2530

4. 2554

4. 2578

4. 2602

4. 2626

48. 398 2. 8226

16. 626 2. 8231

30. 743 2. 8234

44. 860 2. 8237

58. 979 2. 8240

28 13. 100 | 2. 8242

27 2.511

2. 8228

4. 2419

4. 2440

4. 2461

4. 2481

4. 2502

4. 2523

4. 2543

40. 729

23. 169

44. 405

26, 907

48. 174

34 1.944

35 5.651

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

		η Tau	ri.		ζ Pers	ei.		y1 Erid	ani.		y Tau	ıri.		ε Tau	ri.
Year.	,	R. A.	Ann. var.	I	R. A.	Ann. var.		R. A.	Ann. var.	1	R. A.	Ann. var.	,	R. A.	Ann. var
		3 ^h			3 ^h			3 ^h			4 ^h			4 ^b	
1800	35	37. 298	3. 5411	41	35. 521	3. 7403	48	42. 186	2. 7944	8	25.656	3. 3987	16	57. 301	3. 4866
1830	37	23.609	3. 5464	43	27. 832	3. 7470	50	6. 040	2. 7958	10	7. 671	3. 4022	18	41.953	3. 4903
1835		41.343	3- 5473		46. 570	3. 7481		20.019	2. 7960		24. 683	3. 4028		59. 40 6	3. 4909
1840	i	59. 082	3. 5481	44	5.313	3- 7493		34. 000	2. 7963		41.699	3. 4033	19	16, 862	3. 4915
1845	38	16. 825	3. 5490	İ	24. 062	3. 7504		47. 982	2. 7965		58. 717	3. 4039		34. 321	3. 4921
1850		34. 572	3- 5499		42.817	3. 7515	51	1.965	2. 7967	11	15. 738	3. 4045		51. 783	3. 4927
1855		52. 3 2 4	3. 5508	45	1. 577	3. 7526		15. 949	2. 7969		32. 762	3. 4051	20	9. 248	3- 4933
1860	39	10. 080	3. 5517	ļ	20. 343	3- 7537		29. 935	2. 7972		49. 789	3. 4056		26. 716	3- 4939
1865	1	27. 841	3. 5526		39. 114	3. 7548		43. 921	2. 7974	12	6.818	3. 4062		44. 187	3. 4945
1870		45.606	3. 5535	ļ	57. 891	3. 7559		57. 909	2. 7976		23. 851	3.4068	21	1.662	3. 4951
1875	40	3. 375	3. 5543	46	16.674	3. 7570	52	_	2. 7979		40. 886	3. 4073		19. 139	3. 4957
1880	İ	21. 149	3.5552	[35.462	3. 7581		25. 887	2. 7981		57. 9 24	3.4079		36. 619	3. 4963
1885		38. 927	3. 5561		54. 255	3. 7592		39. 878	2. 7983	12	14. 965	3. 4085		54. 102	3. 4969
1890		56. 710	3. 5570	47	13.054	3. 7604		53.870	2. 7985	-3	32,009	3. 4091	22	11. 588	3. 4975
1895	41		3. 5579	77	31.859	3. 7615	53		2. 7988		49.055	3. 4096		29.078	3. 4981
1900	1	32, 288	3. 5587	İ	50.669	3. 7626	33	21.858	2. 7990	14	6, 105	3.4102	İ	46. 570	3. 4987
	<u> </u>			<u> </u>		1	<u> </u>		1	<u> </u>	•	I	<u> </u>		ı
		α Tau			z Auri	gæ.		11 Orio	onis.		α Auri	gæ,		β Orio	nis.
Year.		α Tau R. A.			1 Auri	gæ.		11 Orio	onis.		α Auri R. A.	gæ.		β Orio	1
			ri.			<u>-</u> T						- 			1
Year.		R. A.	ri.		R. Å. 4 ^h 59- 339	<u>-</u> T	53	R. A. 4 ^h 9. 103			R. A.	- 	4	R. A.	1
Year. 1800		4 ^h 27. 562 10. 452	Ann. var. 3. 4281 3. 4312		R. Å.	Ann. var. 3. 8875 3. 8920		R. A. 4 ^h 9. 103 51. 657	Ann. var.		5 ^h 56. 230 8. 597	Ann. var.		Sh 55. 919 22. 269	2. 8777 2. 8789
Year. 1800 1830	24	4 ^h 27. 562 10. 452 27. 609	ri. Ann. var. 3. 4281 3. 4312 3. 4318	43	R. Å. 4 ^h 59- 339	3. 8875 3. 8920 3. 8927	53	R. A. 4 ^h 9. 103 51. 657 8. 756	Ann. var.		F. A. 5b 56. 230 8. 597 30. 673	Ann. var. 4. 4096 4. 4148 4. 4157	4	5h 55. 919 22. 269 36. 665	2. 8777 2. 8789 2. 8791
Year. 1800 1830	24	4 ^h 27. 562 10. 452	Ann. var. 3. 4281 3. 4312	43 45	R. Å. 4 ^h 59: 339 56. 031	Ann. var. 3. 8875 3. 8920	53 54	R. A. 4 ^h 9. 103 51. 657	Ann. var. 3. 4172 3. 4197		5 ^h 56. 230 8. 597	Ann. var. 4. 4096 4. 4148	4	Sh 55. 919 22. 269	2. 8777 2. 8789 2. 8791 2. 8793
Year. 1800 1830 1835 1840	24	4 ^h 27. 562 10. 452 27. 609 44. 769 1. 932	ri. Ann. var. 3. 4281 3. 4312 3. 4318	43 45	R. Å. 4h 59. 339 56. 031 15. 493	3. 8875 3. 8920 3. 8927	53 54	R. A. 4 ^h 9. 103 51. 657 8. 756	3. 4172 3. 4197 3. 4201		F. A. 5b 56. 230 8. 597 30. 673	Ann. var. 4. 4096 4. 4148 4. 4157	4	5h 55. 919 22. 269 36. 665 51. 061 5. 458	2. 8777 2. 8789 2. 8791
Year. 1800 1830 1835 1840	24 26	R. A. 4 ^h 27. 562 10. 452 27. 609 44. 769 1. 932 19. 097	ri. 3. 4281 3. 4312 3. 4318 3. 4323 3. 4328 3. 4333	43 45	4 ^h 59- 339 56- 031 15- 493 34- 959 54- 428 13- 901	3. 8875 3. 8920 3. 8927 3. 8935 3. 8942 3. 8949	53 54	R. A. 4 ^h 9. 103 51. 657 8. 756 25. 857	3. 4172 3. 4197 3. 4201 3. 4205 3. 4209 3. 4212	I 4	5 ^b 56. 230 8. 597 30. 673 52. 754	Ann. var. 4. 4096 4. 4148 4. 4157 4. 4165	4 6	Sh 55. 919 22. 269 36. 665 51. 061 5. 458 19. 856	2. 8777 2. 8789 2. 8791 2. 8793 2. 8795 2. 8797
Year. 1800	24 26	4 ^h 27. 562 10. 452 27. 609 44. 769 1. 932 19. 097 36. 265	7i. Ann. var. 3. 4281 3. 4312 3. 4318 3. 4323 3. 4328 3. 4333 3. 4339	43 45 46	R. Å. 4h 59- 339 56. 031 15- 493 34- 959 54. 428 13. 901 33. 378	3. 8875 3. 8920 3. 8927 3. 8935 3. 8942 3. 8949 3. 8957	53 54 55	R. A. 4 ^h 9. 103 51. 657 8. 756 25. 857 42. 961 0. 066 17. 173	3. 4172 3. 4197 3. 4201 3. 4205 3. 4209	I 4	5 ^h 56. 230 8. 597 30. 673 52. 754 14. 839	4. 4096 4. 4148 4. 4157 4. 4165	4 6	5h 55. 919 22. 269 36. 665 51. 061 5. 458 19. 856 34. 256	2. 8777 2. 8789 2. 8791 2. 8793 2. 8795 2. 8797 2. 8799
Year. 1800	24 26	R. A. 4 ^h 27. 562 10. 452 27. 609 44. 769 1. 932 19. 097	ri. 3. 4281 3. 4312 3. 4318 3. 4323 3. 4328 3. 4333	43 45 46	4 ^h 59- 339 56- 031 15- 493 34- 959 54- 428 13- 901	3. 8875 3. 8920 3. 8927 3. 8935 3. 8942 3. 8949	53 54 55	R. A. 4 ^h 9. 103 51. 657 8. 756 25. 857 42. 961 0. 066	3. 4172 3. 4197 3. 4201 3. 4205 3. 4209 3. 4212	1 4	5 ^h 56. 230 8. 597 30. 673 52. 754 14. 839 36. 928	4. 4096 4. 4148 4. 4157 4. 4165 4. 4174 4. 4182	4 6	Sh 55. 919 22. 269 36. 665 51. 061 5. 458 19. 856	2. 8777 2. 8789 2. 8791 2. 8793 2. 8795 2. 8797
Year. 1800 1830 1835 1845 1850 1855	24 26	4 ^h 27. 562 10. 452 27. 609 44. 769 1. 932 19. 097 36. 265	7i. Ann. var. 3. 4281 3. 4312 3. 4318 3. 4323 3. 4328 3. 4333 3. 4339	43 45 46	R. Å. 4h 59. 339 56. 031 15. 493 34. 959 54. 428 13. 901 33. 378	3. 8875 3. 8920 3. 8927 3. 8935 3. 8942 3. 8949 3. 8957	53 54 55	R. A. 4 ^h 9. 103 51. 657 8. 756 25. 857 42. 961 0. 066 17. 173	3. 4172 3. 4197 3. 4201 3. 4205 3. 4209 3. 4212 3. 4216	1 4	5h 56. 230 8. 597 30. 673 52. 754 14. 839 36. 928 59. 022	4. 4096 4. 4148 4. 4157 4. 4165 4. 4174 4. 4182 4. 4190	4 6	5h 55. 919 22. 269 36. 665 51. 061 5. 458 19. 856 34. 256	2. 8777 2. 8789 2. 8791 2. 8793 2. 8795 2. 8797 2. 8799
Year. 1800 1830 1835 1845 1850 1866	24 26	R. A. 4h 27, 562 10, 452 27, 609 44, 769 1, 932 19, 097 36, 265 53, 436 10, 609 27, 785	Ann. var. 3. 4281 3. 4312 3. 4318 3. 4323 3. 4328 3. 4333 3. 4339 3. 4344	43 45 46 47	R. Å. 4h 59- 339 56. 031 15. 493 34- 959 54. 428 13. 901 33- 378 52. 858	3. 8875 3. 8920 3. 8927 3. 8935 3. 8942 3. 8949 3. 8957 3. 8964	53 54 55	R. A. 4h 9. 103 51. 657 8. 756 25. 857 42. 961 0. 066 17. 173 34. 282 51. 394	3. 4172 3. 4197 3. 4201 3. 4205 3. 4209 3. 4212 3. 4216 3. 4220	1 4 5 6	Sh 56. 230 8. 597 30. 673 52. 754 14. 839 36. 928 59. 022 21. 119	4. 4096 4. 4148 4. 4157 4. 4165 4. 4174 4. 4182 4. 4190 4. 4199	4 6	Sh 55. 919 22. 269 36. 665 51. 061 5. 458 19. 856 34. 256 48. 656	2. 8777 2. 8789 2. 8791 2. 8793 2. 8795 2. 8797 2. 8799 2. 8801
Year. 1800 1830 1835 1845 1850 1860 1865 1870	24 26	R. A. 4 ^h 27. 562 10. 452 27. 609 44. 769 1. 932 19. 097 36. 265 53. 436 10. 609 27. 785 44. 963	3. 4281 3. 4312 3. 4318 3. 4323 3. 4328 3. 4333 3. 4339 3. 4344 3. 4349	43 45 46 47	R. Å. 4h 59. 339 56. 031 15. 493 34. 959 54. 428 13. 901 33. 378 52. 858 12. 342 31. 829 51. 320	3. 8875 3. 8920 3. 8927 3. 8935 3. 8942 3. 8949 3. 8957 3. 8964 3. 8971 3. 8979	53 54 55 56	R. A. 4h 9. 103 51. 657 8. 756 25. 857 42. 961 0. 066 17. 173 34. 282 51. 394	3. 4172 3. 4197 3. 4201 3. 4205 3. 4209 3. 4212 3. 4216 3. 4220 3. 4224	1 4 5 6	Sh 56. 230 8. 597 30. 673 52. 754 14. 839 36. 928 59. 022 21. 119 43. 221	4. 4096 4. 4148 4. 4157 4. 4165 4. 4174 4. 4182 4. 4190 4. 4199	4 6	Sb 55. 919 22. 269 36. 665 51. 061 5. 458 19. 856 34. 256 48. 656 3. 057 17. 459 31. 862	2. 8777 2. 8789 2. 8791 2. 8793 2. 8795 2. 8797 2. 8801 2. 8803 2. 8805 2. 8807
Year. 1800 1830 1835 1845 1850 1860 1865 1870	24 26	R. A. 4h 27, 562 10, 452 27, 609 44, 769 1, 932 19, 097 36, 265 53, 436 10, 609 27, 785	3. 4281 3. 4312 3. 4318 3. 4323 3. 4328 3. 4333 3. 4339 3. 4344 3. 4349 3. 4354	43 45 46 47	R. Å. 4h 59. 339 56. 031 15. 493 34. 959 54. 428 13. 901 33. 378 52. 858 12. 342 31. 829	3. 8875 3. 8920 3. 8927 3. 8935 3. 8942 3. 8949 3. 8957 3. 8964 3. 8971 3. 8979	53 54 55 56	R. A. 4h 9. 103 51. 657 8. 756 25. 857 42. 961 0. 066 17. 173 34. 282 51. 394 8. 507	3. 4172 3. 4197 3. 4201 3. 4205 3. 4209 3. 4212 3. 4216 3. 4220 3. 4224 3. 4228	1 4 5 6	Sh 56. 230 8. 597 30. 673 52. 754 14. 839 36. 928 59. 022 21. 119 43. 221 5. 326	4. 4096 4. 4148 4. 4157 4. 4165 4. 4174 4. 4182 4. 4190 4. 4207 4. 4207 4. 4215	4 6	Sb 55. 919 22. 269 36. 665 51. 061 5. 458 19. 856 34. 256 48. 656 3. 057 17. 459	2. 8777 2. 8789 2. 8791 2. 8793 2. 8795 2. 8797 2. 8801 2. 8803 2. 8803
Year. 1800 1830 1835 1840 1850 1855 1866 1875 1875 1875	24 26 27	R. A. 4 ^h 27. 562 10. 452 27. 609 44. 769 1. 932 19. 097 36. 265 53. 436 10. 609 27. 785 44. 963	ri. 3. 4281 3. 4312 3. 4318 3. 4323 3. 4328 3. 4333 3. 4339 3. 4344 3. 4349 3. 4354 3. 4359	43 45 46 47 48	R. Å. 4h 59. 339 56. 031 15. 493 34. 959 54. 428 13. 901 33. 378 52. 858 12. 342 31. 829 51. 320	3. 8875 3. 8920 3. 8927 3. 8935 3. 8942 3. 8949 3. 8957 3. 8964 3. 8971 3. 8979 3. 8986	53 54 55 56	R. A. 4h 9. 103 51. 657 8. 756 25. 857 42. 961 0. 066 17. 173 34. 282 51. 394 8. 507 25. 622	3. 4172 3. 4197 3. 4201 3. 4205 3. 4209 3. 4212 3. 4216 3. 4220 3. 4224 3. 4228 3. 4232	5 6 7	5h 56. 230 8. 597 30. 673 52. 754 14. 839 36. 928 59. 022 21. 119 43. 221 5. 326 27. 436	4. 4096 4. 4148 4. 4157 4. 4165 4. 4174 4. 4182 4. 4190 4. 4207 4. 4215 4. 4223	4 6	Sb 55. 919 22. 269 36. 665 51. 061 5. 458 19. 856 34. 256 48. 656 3. 057 17. 459 31. 862	2. 8777 2. 8789 2. 8791 2. 8793 2. 8795 2. 8797 2. 8801 2. 8803 2. 8805 2. 8807
Year. 1800 1830 1835 1840 1850 1855 1860 1875 1875 1880	24 26 27	R. A. 4h 27, 562 10, 452 27, 609 44, 769 1, 932 19, 097 36, 265 53, 436 10, 609 27, 785 44, 963 2, 144	ri. 3. 4281 3. 4312 3. 4318 3. 4323 3. 4328 3. 4333 3. 4339 3. 4344 3. 4359 3. 4364	43 45 46 47 48	R. Å. 4h 59- 339 56. 031 15. 493 34- 959 54. 428 13. 901 33. 378 52. 858 12. 342 31. 829 51. 320 10. 815	3. 8875 3. 8920 3. 8927 3. 8935 3. 8942 3. 8949 3. 8957 3. 8964 3. 8971 3. 8979 3. 8986 3. 8993	53 54 55 56	R. A. 4h 9. 103 51. 657 8. 756 25. 857 42. 961 0. 066 17. 173 34. 282 51. 394 8. 507 25. 622 42. 739 59. 858	3. 4172 3. 4197 3. 4201 3. 4205 3. 4212 3. 4216 3. 4220 3. 4224 3. 4228 3. 4232 3. 4236	5 6 7	R. A. 5h 56. 230 8. 597 30. 673 52. 754 14. 839 36. 928 59. 022 21. 119 43. 221 5. 326 27. 436 49. 550	4. 4096 4. 4148 4. 4157 4. 4165 4. 4174 4. 4182 4. 4190 4. 4207 4. 4215 4. 4223 4. 4232	4 6 7	Sb 55. 919 22. 269 36. 665 51. 061 5. 458 19. 856 48. 656 3. 057 17. 459 31. 862 46. 267	2. 8777 2. 8789 2. 8791 2. 8793 2. 8795 2. 8797 2. 8799 2. 8801 2. 8803 2. 8805 2. 8807 2. 8809
Year.	24 26 27	R. A. 4h 27, 562 10, 452 27, 609 44, 769 1, 932 19, 097 36, 265 53, 436 10, 609 27, 785 44, 963 2, 144 19, 327	3. 4281 3. 4312 3. 4318 3. 4323 3. 4328 3. 4333 3. 4339 3. 4344 3. 4349 3. 4354 3. 4359 3. 4364 3. 4370	43 45 46 47 48	R. Å. 4h 59- 339 56. 031 15. 493 34- 959 54. 428 13. 901 33- 378 52. 858 12. 342 31. 829 51. 320 10. 815 30. 313	3. 8875 3. 8920 3. 8927 3. 8935 3. 8942 3. 8949 3. 8957 3. 8964 3. 8971 3. 8979 3. 8986 3. 8993 3. 9000	53 54 55 56	R. A. 4h 9. 103 51. 657 8. 756 25. 857 42. 961 0. 066 17. 173 34. 282 51. 394 8. 507 25. 622 42. 739 59. 858	3. 4172 3. 4197 3. 4201 3. 4205 3. 4209 3. 4212 3. 4216 3. 4220 3. 4224 3. 4228 3. 4236 3. 4240	5 6 7	R. A. 5h 56. 230 8. 597 30. 673 52. 754 14. 839 36. 928 59. 022 21. 119 43. 221 5. 326 27. 436 49. 550 11. 668	4. 4096 4. 4148 4. 4157 4. 4165 4. 4174 4. 4182 4. 4190 4. 4207 4. 4215 4. 4223 4. 4232 4. 4240	4 6 7	Sh 55. 919 22. 269 36. 665 51. 061 5. 458 19. 856 48. 656 3. 057 17. 459 31. 862 46. 267 0. 672	2. 8777 2. 8789 2. 8791 2. 8793 2. 8795 2. 8799 2. 8801 2. 8803 2. 8805 2. 8809 2. 8811

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

		β Tau	ıri.		δ Orio	nis.		α Lepo	ris.		ε Orio	nis.		α Colum	nbæ.
Year.	1	R. A.	Ann. var.		R. A.	Ann. var.]	R. A.	Ann. var.		R. A.	Ann. var.	1	R. A.	Ann. var
		5 ^h			5 ^b			5 ^h			5 ^h			5 ^b	
1800	13	39. 585	3. 7819	21	47.659	3. 0599	23	54.810	2. 6421	26	4. 225	3. 0391	32	24 . 575	2. 1703
1830 .	15	33. 081	3. 7845	23	19.474	3.0611	25	14. 085	2. 6430	27	35.415	3. 0402	33	29.696	2. 1710
1835	İ	52.005	3. 7849		34. 780	3.0613		27. 301	2. 6431		50.617	3. 0404		40. 552	2. 1712
1840	16	10.930	3. 7 ⁸ 53		50.087	3.0615		40. 517	2. 6433	28	5. 819	3.0406		51.409	2. 1714
1845		29.858	3. 7857	24	5.395	3. 0617		53- 733	2. 6434		21.023	3. 0408	34	2, 266	2. 1715
1850		48. 787	3. 7861		20. 704	3.0619	26	6.951	2, 6436		36. 227	3. 0410		13. 124	2. 1716
1855	17	7. 719	3. 7865		36. 014	3.0621		20, 169	2. 6437		51, 432	3. 0411		23. 983	2. 1718
1860		26.652	3. 7869		51. 325	3. 0623		33. 388	2. 6439	29	6.638	3. 0413		34. 842	2. 1719
1865		45. 588	3. 7873	25	6, 636	3.0624		46.608	2.6440		21. 845	3.0415		45. 702	2. 1721
1870	18	4. 526	3. 7877		21.949	3. 0626		59.829	2. 6442		37. 053	3. 0417		56. 563	2. 1722
1875		23. 465	3. 7881		37. 263	3. 0628	27	13.050	2. 6443		52. 262	3. 0418	35	7. 4 2 4	2. 1723
1880		42.407	3. 7885		52. 577	3.0630		26. 272	2.6445	30	7. 471	3. 0420		18. 286	2. 1725
1885 . :	19	1. 350	3. 7889	26	7. 893	3.0632		39- 494	2. 6446		22, 682	3. 0422		29. 149	2. 1726
1890		20, 296	3. 7893		23. 209	3.0634		52. 718	2.6448		37. 893	3. 0424		40, 012	2. 1728
1895		39. 243	3. 7897		38. 527	3. 0636	28	5.942	2.6449		53. 106	3. 0425		50.876	2. 1729
1900		58. 193	3. 7901		53.845	3. 0638		19. 167	2. 6450	31	8. 319	3. 0427	36	1. 741	2. 1730

	α Orionis.	nis.	ν Orionis.				u Gemin	orum.	,	∨ Gemin	orum.	α	Canis M	lajoris.	
Year.	1	R. Δ.	Ann. var.]	R. A.	Ann. var.		R. A.	Ann. var.]	R. A.	Ann. var.	1	R. A.	Ann. var
		5h		51	h; 6h			6ь			6h			6h	
1800	44	20. 865	3. 2445	56	9. 150	3. 4257	10	51. 526	3.6317	26	9. 3 2 6	3. 4685	36	20, 102	2. 6443
1830	45	58, 212	3. 2454	57	51.932	3. 4263	12	40. 477	3. 6317	27	53. 376	3. 4682	37	39. 427	2. 6441
1835	46	14. 439	3. 2455	58	9. 064	3. 4264		58.636	3. 6317	28	10. 717	3. 4681		52.647	2. 6440
1840		30.667	3. 2456		26. 196	3. 4265	13	16. 794	3.6317	i	28. 057	3. 4680	38	5.867	2.6440
1845		46.896	3. 2458		43. 329	3. 4266		34-953	3.6317		45. 397	3. 4680		19. 087	2.6440
1850	47	3. 125	3. 2459	59	00.462	3. 4267		53. 111	3.6317	29	02. 737	3. 4679		32. 307	2. 6439
1855		19. 355	3. 2461		17. 596	3. 4268	14	11. 269	3.6316		20. 076	3. 4678		45.527	2. 6439
1860		35. 586	3. 2462		34. 730	3. 4269		29. 427	3.6316	 	37.415	3. 4678		58. 746	2. 6439
1865		51.817	3. 2464		51.864	3. 4270		47. 586	3. 6316		54. 754	3. 4677	39	11.965	2. 6438
1870	48	8. 050	3. 2465	0	8. 999	3. 4270	15	5. 743	3.6316	30	12.092	3. 4676		25. 184	2, 6438
1875	ĺ	24. 282	3. 2466		26. 135	3. 4271		23.901	3.6316		29. 430	3. 4675		38. 403	2. 6437
1880		40. 516	3. 2468		43. 271	3. 4272		42.059	3.6315		46. 768	3. 4675		51.622	2. 6437
1885		56. 750	3. 2469	1	0. 407	3. 4273	16	0. 217	3.6315	31	4. 105	3. 4674	40	4. 840	2. 6437
1890	49	12.985	3. 2470		17. 544	3. 4274		18. 374	3.6315		21.442	3. 4673		18. 058	2.6436
1895		29. 220	3. 2472	i	34. 681	3. 4275		36. 531	3.6314		38. 778	3. 4672		31.276	2.6436
1900		45-457	3. 2473		51.818	3. 4275		54. 688	3.6314		56. 114	3. 4672		44- 494	2. 6436

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

Year.	ε	Canis M	lajoris.	δ	Canis M	lajoris.		δ Gemin	orum.		α ^g Gemin	orum.	a	Canis M	linoris.
rear.		R. A.	Ann. var.	1	R. A.	Ann. var.		R. A.	Ann. var.		R. A.	Ann. var.	1	R. A.	Ann. var
		6h			7 ^h			7 ^h			7 ^h			7 ^h	
1800	50	46. 049	2. 3565	0	15. 700	2. 4374	8	10.019	3. 5942	21	48. 945	3. 8501	28	49-499	3. 1482
1830	51	56 . 7 50	2. 3569	1	28. 828	2. 4378	9	57. 816	3. 5922	23	44. 392	3. 8463	30	23. 920	3. 1466
1835	52	8. 535	2. 3570		41.017	2. 4378	10	15. 776	3. 5919	24	3.622	3. 8456		39. 653	3. 1463
1840		20. 320	2. 3570		53. 2 06	2. 4379		33-735	3. 5915		22. 849	3. 8450		55. 384	3. 1461
1845		32. 105	2. 3571	2	5. 396	2.4380		51.691	3. 5911		42.072	3. 8443	31	11. 113	3. 1458
1850		43. 891	2. 3572		17. 586	2. 4380	11	9.646	3. 5908	25	1. 292	3. 8437		26, 842	3. 1456
1855		55.677	2. 3572		29. 776	2. 4381		27.599	3. 5904		20. 509	3. 8430		42, 569	3. 1453
1860	53	7. 463	2. 3573		41.967	2. 4381		45. 550	3. 5901		39. 722	3.8423		58. 295	3. 1450
1865		19. 250	2. 3574		54. 157	2. 4382	12	3. 500	3. 5897		58. 932	3. 8417	32	14.019	3. 1448
1870		31.037	2. 3574	3	6. 349	2. 4382		21.448	3. 5894	26	18. 139	3. 8410		29. 742	3. 1445
1875		42. 825	2. 3575		18. 540	2. 4383		39- 393	3. 5890		37. 342	3. 8403		45. 464	3. 1442
1880		54.612	2. 3576		30. 73 2	2. 4384		57 · 33 7	3. 5886		56. 542	3.8397	33	1. 185	3. 1440
1885	54	6, 400	2. 3577		42. 924	2. 4384	13	15. 280	3. 5883	27	15 739	3.8390		16. 904	3. 1437
1890		18. 189	2. 3577		55. 116	2. 4385		33. 220	3. 5879	İ	34.932	3. 8383		32. 622	3. 1434
1895		29. 978	2. 3578	4	7. 308	2. 4385		51.159	3. 5875		54. 122	3.8376		48. 338	3. 1432
1900 .	_	41. 767	2. 3578		19. 501	2. 4386	14	9. 095	3. 5872	28	13. 309	3. 8370	34	4. 053	3. 1429

		ß Gemin	orum.		• Gemin	orum.		15 Arg	gus.	i	η Can	cri.		ε Нус	lræ.
Year.		R. A.	Ann. var.		R. A.	Ann. var.		R. A.	Ann. var.		R. A.	Ann. var.		R. A.	Ann. var
		7 ^h			7 ^h		7	հ; 8ե			8 _b			8h	
1800	33	3. 462	3. 6904	41	14. 212	3. 6914	59	1.710	2. 5536	21	7. 326	3. 4899	36	10. 422	3. 1882
1830	34	54. 119	3. 6867	43	4. 899	3. 6876	0	18. 321	2. 5538	22	51.966	3. 4860	37	46. 035	3. 186o
1835	35	12. 551	3. 6861		23. 336	3.6870		31.091	2. 5539	23	9- 395	3. 4854	38	1.964	3. 1857
1840		30. 980	3. 6855		41. 769	3. 6863		43.860	2. 5539		26, 820	3. 4847		17. 891	3. 1853
1845		49. 405	3. 6848	44	0. 199	3. 6857		56.630	2. 5540		44. 242	3. 4841		33.817	3. 1850
1850	36	7.828	3. 6842		18, 626	3.6850	I	9.400	2. 5540	24	1.661	3. 4834	38	49. 741	3. 1846
1855		26, 248	3. 6836		37. 050	3. 6844		22. 170	2. 5541		19. 077	3. 4828	39	5. 663	3. 1843
1860		44. 664	3. 6829		55.470	3. 6838		34. 941	2. 5541		36. 489	3. 4821		21. 584	3. 1839
1865	37	3. 077	3. 6823	45	13. 887	3. 6831		47. 712	2. 5542		53. 898	3. 4815		37. 502	3. 1835
1870		21.487	3. 6817		32. 301	3. 6824	2	0. 483	2. 5542	25	11. 304	3. 4808		53.419	3. 1832
1875		39. 894	3.6810		50. 712	3.6818		13. 254	2. 5543		28. 706	3.4802	40	9- 334	3. 1828
1880		58. 298	3. 6804	46	9. 119	3.6811		26. 026	2. 5543		46. 105	3. 4795		25. 247	3. 1825
1885	38	16, 699	3.6798		27. 523	3. 6805		3 ⁸ . 797	2. 5544	26	3. 501	3. 4789		41. 159	3. 1821
1890	_	35. 097	3.6791		45. 924	3. 6798		51. 570	2. 5544		20. 894	3. 4782		57.069	3. 1818
1895		53. 491	3.6785	47	4. 321	3.6792	3	4. 342	2. 5545		38. 284	3. 4776	41	12.977	3. 1814
1900	39	11, 882	3.6778		22. 715	3. 6785		17. 114	2. 5545		55.670	3.4769		28. 883	3. 1811

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900-Continued.

	ι Ursæ M	lajoris.	н Can	cri.	αНу	dræ.	θ Urs	æ Majoris.		ε Leon	nis.
Year.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.	R. A	. Ann. var	. 1	R. A.	Ann. var.
	8p		8h; 9h		9h		O _p			9 ^b	
1800	45 26, 691	4. 1730	56 53.985	3. 2643	17 45.448	2. 9504	19 23.	885 4. 0907	34	28. 358	3.4312
1830	47 31.682	4. 1597	58 31.872	3. 2615	19 13.953	2. 9500	21 26.	355 4. 0740	36	11.211	3. 4257
1835	52. 475	4. 1575	48. 178	3. 2610	28. 703	2. 9499	46.			28. 338	3. 4248
1840	48 13.257	4. 1553	59 4.482	3. 2605	43. 452	2, 9498	22 7.	067 4. 0684		45. 460	3. 4239
1845	34. 028	4. 1531	20. 783	3. 2600	58. 201	2. 9497	27.	403 4.0657	37	2. 577	3. 4230
1850	54. 788	4. 1509	37. 082	3. 2596	20 12.950	1	47.		"	19.690	3. 4221
1855	49 15.537	4. 1486	53. 379	3. 2591	27. 698			032 4. 0601		36. 798	3.4212
1860	36. 274	4. 1464	0 9.673	3. 2586	42, 446	ı	28.			53. 902	3. 4203
1865	57.001	4. 1442	25.965	3. 2582	57. 193	2. 9495	48.		38	11,002	3. 4194
1870	50 17.716	4. 1420	42. 255	3. 2577	21 11.940	1		871 4.0518) 30	28. 097	3. 4185
1875	38. 420	4. 1397	58. 542	3. 2572	26.687	1	29.	. 1	1	45. 187	3.4176
1880	59. 114	4. 1375	1 14.827	3. 2568	41. 433		49.	-	39	2. 273	3. 4168
1885	51 19.796	4. 1353	31.110	3. 2563	56. 179	i		586 4. 0436		19. 355	
1890	40.467	4. 1331	47. 390	3. 2558	22 10.925	1	25 9.			36. 432	3. 4159 3. 4150
1895	52 1.126	4. 1308	2 3.668	3. 2554	25.670	1	49.	1		53. 504	3. 4141
1900	21. 775	4. 1286	19.944	3. 2549	40.416	1	26 10.	_ 1	40	10. 572	3. 4132
:	1	1			<u> </u>				.1		<u> </u>
:	<i>u</i> , I eo	nis	a Leo	nis	vi I.e	onis		Leonis	1	/ Leon	
Year.	μ Leo	nis.	α Leo	nis.	y ¹ Le	onis.	ρ	Leonis.		/ Leon	nis.
Year.	μ Leo R. A.	nis.	α Leo R. A.	nis. Ann. var.	γ¹ Le R. A.	onis.	ρ R. A		. 1	/ Leon	nis.
Year.	R. A.	1		<u>. </u>					. 1		<u> </u>
1800	R. A. 9h 41 21,668	Ann. var.	R. A. 9 ^h ; 10 ^h 57 4 ² . 373	Ann. var.	R. A. 10h 8 55. 528	Ann. var.	R. A	. Ann. var	. 1	10h 43-953	Ann. var.
1800 1830	R. A. 9h 41 21.668 43 4.769	Ann. var. 3-4397 3-4338	R. A. 9h; 10h 57 42.373 59 18.617	3. 2096 3. 2066	R. A. 10h 8 55. 528 10 35. 312	Ann. var.	R. A 10 ^b 22 16. 23 51.	. Ann. var		R. A. 10 ^h 43-953 18,891	Ann. var 3. 1659 3. 1634
1800 1830	R. A. 9h 41 21.668 43 4.769 21.936	3. 4397 3. 4338 3. 4328	R. A. 9h; 10h 57 42.373 59 18.617 34.648	3. 2096 3. 2066 3. 2061	R. A. 10h 8 55. 528 10 35. 312 51. 930	Ann. var. 3. 3285 3. 3239 3. 3231	R. A 10 ^h 22 16. 23 51. 24 7.	. Ann. var	38	R. A. 10h 43. 953 18. 891 34. 707	3. 1659 3. 1634 3. 1629
1800 1830	R. A. 9h 41 21.668 43 4.769	Ann. var. 3-4397 3-4338	R. A. 9h; 10h 57 42.373 59 18.617	3. 2096 3. 2066	R. A. 10h 8 55. 528 10 35. 312	Ann. var. 3. 3285 3. 3239 3. 3231	R. A 10 ^b 22 16. 23 51.	. Ann. var	38	R. A. 10 ^h 43-953 18,891	3. 1659 3. 1634
1800 1830	R. A. 9h 41 21.668 43 4.769 21.936 39.097	3. 4397 3. 4338 3. 4328 3. 4318	R. A. 9h; 10h 57 42.373 59 18.617 34.648 50.677 0 6.704	3. 2096 3. 2066 3. 2061	R. A. 10h 8 55. 528 10 35. 312 51. 930	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223	R. A 10 ^h 22 16. 23 51. 24 7. 22.	. Ann. var	38	R. A. 10h 43. 953 18. 891 34. 707	3. 1659 3. 1634 3. 1629
1800 1830 1835 1840	R. A. 9h 41 21.668 43 4.769 21.936 39.097	3. 4397 3. 4338 3. 4328 3. 4318	R. A. 9h; 10h 57 42.373 59 18.617 34.648 50.677	3. 2096 3. 2066 3. 2061 3. 2056	R. A. 10h 8 55. 528 10 35. 312 51. 930 11 8. 543 25. 153 41. 759	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223 3. 3216 3. 3208	R. A 10h 22 16. 23 51. 24 7. 22. 38.	. Ann. vai	38	IOh 43- 953 18, 891 34- 707 50. 521	3. 1659 3. 1634 3. 1629 3. 1625
1800	R. A. 9h 41 21.668 43 4.769 21.936 39.097 56.253 44 13.405 30.552	Ann. var. 3. 4397 3. 4338 3. 4328 3. 4318 3. 4308 3. 4298 3. 4288	R. A. 9h; 10h 57 42.373 59 18.617 34.648 50.677 0 6.704 22.728 38.749	3. 2096 3. 2066 3. 2061 3. 2050 3. 2050 3. 2045 3. 2040	R. A. 10h 8 55. 528 10 35. 312 51. 930 11 8. 543 25. 153 41. 759 58. 361	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223 3. 3216 3. 3208 3. 3201	R. A 10h 22 16. 23 51. 24 7. 22. 38. 54. 25 10.	. Ann. var 082 3. 1715 190 3. 1690 034 3. 1686 876 2. 1682 716 3. 1678 3. 1674 390 3. 1670	38	R. A. 10h 43. 953 18. 891 34. 707 50. 521 6. 332 22. 142 37. 949	3. 1659 3. 1634 3. 1629 3. 1621 3. 1617 3. 1613
1800 1830 1835 1840 1845	R. A. 9h 41 21.668 43 4.769 21.936 39.097 56.253 44 13.405	3. 4397 3. 4338 3. 4328 3. 4318 3. 4308 3. 4298	R. A. 9 ^h ; 10 ^h 57 42.373 59 18.617 34.648 50.677 0 6.704 22.728	3. 2096 3. 2066 3. 2061 3. 2050 3. 2050 3. 2045	R. A. 10h 8 55. 528 10 35. 312 51. 930 11 8. 543 25. 153 41. 759	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223 3. 3216 3. 3208 3. 3201	R. A 10h 22 16. 23 51. 24 7. 22. 38. 54. 25 10.	. Ann. vai 082 3. 1715 190 3. 1690 034 3. 1686 876 2. 1682 716 3. 1678 3. 1674	38	R. A. 10h 43. 953 18. 891 34. 707 50. 521 6. 332 22. 142	3. 1659 3. 1634 3. 1629 3. 1625 3. 1621 3. 1617
1800	R. A. 9h 41 21.668 43 4.769 21.936 39.097 56.253 44 13.405 30.552	Ann. var. 3. 4397 3. 4338 3. 4328 3. 4318 3. 4308 3. 4298 3. 4288	R. A. 9h; 10h 57 42.373 59 18.617 34.648 50.677 0 6.704 22.728 38.749	3. 2096 3. 2066 3. 2061 3. 2050 3. 2050 3. 2045 3. 2040	R. A. 10h 8 55. 528 10 35. 312 51. 930 11 8. 543 25. 153 41. 759 58. 361	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223 3. 3216 3. 3208 3. 3201 3. 3193	R. A 10h 22 16. 23 51. 24 7. 22. 38. 54. 25 10.	. Ann. vai 082 3. 1715 190 3. 1690 034 2. 1682 716 3. 1678 554 3. 1674 3. 1670 3. 1666	38	R. A. 10h 43. 953 18. 891 34. 707 50. 521 6. 332 22. 142 37. 949	3. 1659 3. 1634 3. 1629 3. 1621 3. 1617 3. 1613
1800	R. A. 9h 41 21.668 43 4.769 21.936 39.097 56.253 44 13.405 30.552 47.693	Ann. var. 3. 4397 3. 4338 3. 4328 3. 4318 3. 4308 3. 4298 3. 4288 3. 4278	R. A. 9h; 10h 57 42.373 59 18.617 34.648 50.677 0 6.704 22.728 38.749 54.768 1 10.784	3. 2096 3. 2066 3. 2061 3. 2056 3. 2056 3. 2045 3. 2040 3. 2035 3. 2030 3. 2035	R. A. 10h 8 55. 528 10 35. 312 51. 930 11 8. 543 25. 153 41. 759 58. 361 12 14. 960	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223 3. 3216 3. 3208 3. 3201 3. 3193 3. 3185	R. A 10 ^b 22 16. 23 51. 24 7. 22. 38. 54. 25 10. 26.	. Ann. vai 082 3. 1715 190 3. 1690 034 3. 1686 876 2. 1682 716 3. 1678 3. 1674 3. 1670 3. 1666 055 3. 1661	38 40	R. A. 10h 43. 953 18. 891 34. 707 50. 521 6. 332 22. 142 37. 949 53. 755	3. 1659 3. 1634 3. 1629 3. 1625 3. 1621 3. 1613 3. 1609
1800	R. A. 9h 41 21.668 43 4.769 21.936 39.097 56.253 44 13.405 30.552 47.693 45 4.830	3. 4397 3. 4398 3. 4318 3. 4308 3. 4298 3. 4288 3. 4278 3. 4269	R. A. 9h; 10h 57 42.373 59 18.617 34.648 50.677 0 6.704 22.728 38.749 54.768 1 10.784 26.798 42.810	3. 2096 3. 2066 3. 2061 3. 2056 3. 2050 3. 2045 3. 2040 3. 2035 3. 2030 3. 2035 3. 2030	R. A. 10h 8 55. 528 10 35. 312 51. 930 11 8. 543 25. 153 41. 759 58. 361 12 14. 960 31. 554 48. 145	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223 3. 3216 3. 3208 3. 3201 3. 3193 3. 3185 3. 3178 3. 3178	R. A 10h 22 16. 23 51. 24 7. 22. 38. 54. 25 10. 26. 42. 57. 26 13.	. Ann. vai 082 3. 1715 190 3. 1690 034 3. 1686 876 2. 1682 716 3. 1674 390 3. 1670 224 3. 1661 885 3. 1657 713 3. 1653	38 40	R. A. 10h 43. 953 18. 891 34. 707 50. 521 6. 332 22. 142 37. 949 53. 755 9. 558 25. 360 41. 159	3. 1659 3. 1634 3. 1625 3. 1625 3. 1621 3. 1613 3. 1609 3. 1605
1800	R. A. 9h 41 21.668 43 4.769 21.936 39.097 56.253 44 13.405 30.552 47.693 45 4.830 21.962	3. 4397 3. 4338 3. 4328 3. 4318 3. 4308 3. 4298 3. 4288 3. 4278 3. 4269 3. 4259	R. A. 9h; 10h 57 42.373 59 18.617 34.648 50.677 0 6.704 22.728 38.749 54.768 1 10.784	3. 2096 3. 2066 3. 2061 3. 2056 3. 2050 3. 2045 3. 2040 3. 2035 3. 2030 3. 2035 3. 2030	R. A. 10h 8 55. 528 10 35. 312 51. 930 11 8. 543 25. 153 41. 759 58. 361 12 14. 960 31. 554 48. 145	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223 3. 3216 3. 3208 3. 3201 3. 3193 3. 3185 3. 3178 3. 3178	R. A 10h 22 16. 23 51. 24 7. 22. 38. 54. 25 10. 26. 42. 57. 26 13.	. Ann. vai 082 3. 1715 190 3. 1690 034 3. 1686 876 2. 1682 716 3. 1678 3. 1674 390 3. 1670 224 3. 1666 055 3. 1661 885 3. 1657	38 40	R. A. 10h 43. 953 18. 891 34. 707 50. 521 6. 332 22. 142 37. 949 53. 755 9. 558 25. 360	3. 1659 3. 1634 3. 1625 3. 1621 3. 1617 3. 1613 3. 1605 3. 1605
1800	R. A. 9h 41 21.668 43 4.769 21.936 39.097 56.253 44 13.405 30.552 47.693 45 4.830 21.962 39.089	3. 4397 3. 4338 3. 4328 3. 4318 3. 4308 3. 4298 3. 4288 3. 4278 3. 4269 3. 4259 3. 4249	R. A. 9h; 10h 57 42.373 59 18.617 34.648 50.677 0 6.704 22.728 38.749 54.768 1 10.784 26.798 42.810	3. 2096 3. 2061 3. 2050 3. 2045 3. 2040 3. 2035 3. 2030 3. 2025 3. 2020 3. 2015	R. A. 10h 8 55. 528 10 35. 312 51. 930 11 8. 543 25. 153 41. 759 58. 361 12 14. 960 31. 554 48. 145	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223 3. 3216 3. 3201 3. 3193 3. 3185 3. 3178 3. 3170 3. 3163	R. A 10h 22 16. 23 51. 24 7. 22. 38. 54. 25 10. 26. 42. 57. 26 13. 29.	. Ann. vai 082 3. 1715 190 3. 1690 034 3. 1686 876 2. 1682 716 3. 1674 390 3. 1670 224 3. 1661 885 3. 1657 713 3. 1653	38 40 41	R. A. 10h 43. 953 18. 891 34. 707 50. 521 6. 332 22. 142 37. 949 53. 755 9. 558 25. 360 41. 159	3. 1659 3. 1634 3. 1625 3. 1621 3. 1617 3. 1603 3. 1605 3. 1601 3. 1597
1800	R. A. 9h 41 21.668 43 4.769 21.936 39.097 56.253 44 13.405 30.552 47.693 45 4.830 21.962 39.089 56.211	Ann. var. 3. 4397 3. 4338 3. 4328 3. 4318 3. 4308 3. 4298 3. 4278 3. 4269 3. 4259 3. 4249 3. 4239 3. 4229	R. A. 9h; 10h 57 42.373 59 18.617 34.648 50.677 0 6.704 22.728 38.749 54.768 1 10.784 26.798 42.810 58.818	3. 2096 3. 2066 3. 2061 3. 2050 3. 2045 3. 2040 3. 2035 3. 2030 3. 2025 3. 2020 3. 2015 3. 2010	R. A. 10h 8 55. 528 10 35. 312 51. 930 11 8. 543 25. 153 41. 759 58. 361 12 14. 960 31. 554 48. 145 13 4. 732 21. 315	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223 3. 3216 3. 3208 3. 3201 3. 3193 3. 3185 3. 3178 3. 3170 3. 3163 3. 3155	R. A 10h 22 16. 23 51. 24 7. 22. 38. 54. 25 10. 26. 42. 57. 26 13. 29. 45.	. Ann. vai 082 3. 1715 190 3. 1690 034 3. 1686 876 2. 1682 716 3. 1674 3. 1670 3. 1666 055 3. 1661 3. 1657 713 3. 1653 3. 1649	38 40 41 42	R. A. 10h 43. 953 18. 891 34. 707 50. 521 6. 332 22. 142 37. 949 53. 755 9. 558 25. 360 41. 159 56. 956	3. 1659 3. 1634 3. 1629 3. 1625 3. 1621 3. 1613 3. 1609 3. 1605 3. 1601 3. 1597 3. 1593
1800	R. A. 9h 41 21. 668 43 4. 769 21. 936 39. 097 56. 253 44 13. 405 30. 552 47. 693 45 4. 830 21. 962 39. 089 56. 211 46 13. 328	3. 4397 3. 4338 3. 4328 3. 4318 3. 4308 3. 4298 3. 4269 3. 4269 3. 4259 3. 4249 3. 4229 3. 4229 3. 4220	R. A. 9h; 10h 57 42.373 59 18.617 34.648 50.677 0 6.704 22.728 38.749 54.768 1 10.784 26.798 42.810 58.818	3. 2096 3. 2066 3. 2061 3. 2050 3. 2045 3. 2035 3. 2035 3. 2030 3. 2025 3. 2020 3. 2015 3. 2010 3. 2005	R. A. 10h 8 55. 528 10 35. 312 51. 930 11 8. 543 25. 153 41. 759 58. 361 12 14. 960 31. 554 48. 145 13 4. 732 21. 313 37. 895	Ann. var. 3. 3285 3. 3239 3. 3231 3. 3223 3. 3216 3. 3208 3. 3201 3. 3193 3. 3185 3. 3178 3. 3170 3. 3163 3. 3155 3. 3148	R. A 10h 22 16. 23 51. 24 7. 22. 38. 54. 25 10. 26. 42. 57. 26 13. 29. 45. 27 1.	. Ann. vai 082 3. 1715 190 3. 1690 034 3. 1686 876 2. 1682 716 3. 1674 3. 1670 3. 1666 055 3. 1661 885 3. 1657 713 3. 1653 3. 1649 362 3. 1645	38 40 41 42	R. A. 10h 43. 953 18. 891 34. 707 50. 521 6. 332 22. 142 37. 949 53. 755 9. 558 25. 360 41. 159 56. 956 12. 751	3. 1659 3. 1634 3. 1629 3. 1625 3. 1621 3. 1613 3. 1609 3. 1605 3. 1601 3. 1597 3. 1593 3. 1588

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

	α Ursæ M	lajoris.	δ Leo	nis.	δ Crat	eris.	r Leo	nis.	ν Leon	nis.
Year.	R. A.	Ann. var.	R. A.	Ann. var.	R. ∆ .	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.
	10p		114		IIp		IIp		IIp	
1800	51 15.575	3.8217	3 27. 123	3. 2103	9 21.077	2, 9908	17 38.979	3. o881	26 42.597	3. 0711
1830	53 9.845	3. 7964	5 3.371	3. 2062	10 50.827	2, 9926	19 11.611	3.0874	28 14. 731	3.0711
1835	28.816	3. 7922	19,400	3. 2055	11 5.791	2.9929	27. 048	3. 0873	30. 087	3.0711
1840	47. 767	3. 7881	35. 426	3. 2048	20. 756	2.9932	42, 484	3. 0872	45. 443	3.0711
1845	54 6.697	3. 7839	51.449	3, 2042	35. 723	2. 9935	57. 919	3. 0870	29 o. 798	3.0711
1850	25.606	3. 7798	6 7.468	3. 2035	50.691	2. 9938	20 13.354	3. 0869	16. 154	3. 0712
1855	44- 495	3. 7756	23.484	3. 2028	12 5.661	2. 9941	28. 788	3. 0868	31.510	3.0712
1860	55 3.362	3. 7715	39. 496	3. 2022	20.632	2.9944	44. 222	3. 0867	46. 866	3. 0712
1865	22, 210	3. 7674	55. 505	3. 2015	35.605	2.9948	59.655	3. 0866	30 2.222	3. 0712
1870	41.037	3. 7633	7 11.511	3. 2008	50. 580	2.9951	21 15.088	3. 0865	17. 578	3. 0712
1875	59.843	3. 7592	27. 514	3. 2002	13 5.556	2.9954	30. 520	3. 0864	32. 934	3.0712
1880	56 18.629	3. 7552	43.513	3. 1995	20. 534	2.9957	45. 952	3. 0863	48, 290	3.0712
1885	37- 395	3. 7511	59. 508	3. 1988	35.513	2.9960	22 1.383	3. 0862	31 3.646	3. 0713
1890	56. 140	3. 7471	8 15.501	3. 1982	50.494	2.9963	16.814	3. 0861	19,003	3. 0713
1895	57 14.865	3. 7430	31.490	3. 1975	14 5.476	2.9967	32. 244	3. 0860	34- 359	3. 0713
1900	33. 570	3. 7390	47.476	3. 1968	20, 461	2.9970	47. 674	3. 0859	49. 716	3.0713
	β Leo	nis.	γ Ursæ N	lajoris.	o Virgii	nius.	y Cor	vi.	η Virgit	nius.
Year.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.
					11p					
1800	38 50.879	3. 0706	11p	[12h			
1830	3 3 17		43 14.545	3. 2214	55 I, 02Q	3, 0605	5 32, 262	3, 0695	12h 9 40, 627	3, 0664
	40 22.963	1 -	43 14.545 44 50.985	3. 2214	55 1.029 56 32.829	3. 0605 3. 0595	5 32.262 7 04.395	3. 0695 3. 0728	12 ^h 9 40.627 11 12.629	3. 0664 3. 0671
	40 22.963 38.304	3. 0683 3. 0680	43 14.545 44 50.985 45 7.019	3. 2079	,	3. 0595		3. 0728	9 40.627	3. 0671
1835	1	3. 0683	44 50.985	1 - 1	56 32.829	1	7 04. 395		9 40.627 11 12.629	-
1835 1840	38. 304 · 53. 642	3. 0683 3. 0680 3. 0676	44 50.985 45 7.019 23.042	3. 2079 3. 2057 3. 2035	56 32.829 48.126 57 3.422	3. 0595 3. 0593 3. 0591	7 04. 395 19. 760 35. 128	3. 0728 3. 0733 3. 0739	9 40.627 11 12.629 27.965 43.301	3. 0671 3. 0672 3. 0673
1835 1840 1845	38. 304 · 53. 642 41 8. 980	3. 0683 3. 0680 3. 0676 3. 0672	44 50. 985 45 7. 019 23. 042 39. 053	3. 2079 3. 2057 3. 2035 3. 2012	56 32. 829 48. 126 57 3. 422 18. 717	3. 0595 3. 0593 3. 0591 3. 0590	7 04. 395 19. 760 35. 128 50. 499	3. 0728 3. 0733 3. 0739 3. 0745	9 40. 627 11 12. 629 27. 965 43. 301 58. 638	3. 0671 3. 0672 3. 0673 3. 0675
1835 1840 1845 1850	38. 304 · 53. 642 41 8. 980 24. 315	3. 0683 3. 0680 3. 0676 3. 0672 3. 0669	44 50.985 45 7.019 23.042	3. 2079 3. 2057 3. 2035 3. 2012 3. 1990	56 32.829 48.126 57 3.422 18.717 34.012	3. 0595 3. 0593 3. 0591 3. 0590 3. 0588	7 04. 395 19. 760 35. 128 50. 499 8 05. 873	3. 0728 3. 0733 3. 0739 3. 0745 3. 0751	9 40. 627 11 12. 629 27. 965 43. 301 58. 638 12 13. 976	3. 0671 3. 0672 3. 0673 3. 0675 3. 0676
1835 1840 1845	38. 304 · 53. 642 41 8. 980	3. 0683 3. 0680 3. 0676 3. 0672	44 50.985 45 7.019 23.042 39.053 55.054	3. 2079 3. 2057 3. 2035 3. 2012	56 32. 829 48. 126 57 3. 422 18. 717	3. 0595 3. 0593 3. 0591 3. 0590	7 04. 395 19. 760 35. 128 50. 499	3. 0728 3. 0733 3. 0739 3. 0745	9 40. 627 11 12. 629 27. 965 43. 301 58. 638	3. 0671 3. 0672 3. 0673 3. 0675
1835 1840 1845 1850 1855	38. 304 · 53. 642 41 8. 980 24. 315 39. 648 54. 980	3. 0683 3. 0680 3. 0676 3. 0672 3. 0669 3. 0665 3. 0661	44 50. 985 45 7. 019 23. 042 39. 053 55. 054 46 11. 044 27. 022	3. 2079 3. 2057 3. 2035 3. 2012 3. 1990 3. 1968 3. 1946	56 32. 829 48. 126 57 3. 422 18. 717 34. 012 49. 306 58 4. 599	3. 0595 3. 0593 3. 0591 3. 0590 3. 0588 3 0587 3. 0585	7 04. 395 19. 760 35. 128 50. 499 8 05. 873 21. 250 36. 629	3. 0728 3. 0733 3. 0739 3. 0745 3. 0751 3. 0756 3. 0762	9 40. 627 11 12. 629 27. 965 43. 301 58. 638 12 13. 976 29. 314 44. 653	3. 0671 3. 0672 3. 0673 3. 0675 3. 0676 3. 0677 3. 0678
1835	38. 304 · 53. 642 41 8. 980 24. 315 39. 648 54. 980 42 10. 309	3. 0683 3. 0680 3. 0676 3. 0672 3. 0669 3. 0665 3. 0661	44 50. 985 45 7. 019 23. 042 39. 053 55. 054 46 11. 044 27. 022 42. 990	3. 2079 3. 2057 3. 2035 3. 2012 3. 1990 3. 1968	56 32. 829 48. 126 57 3. 422 18. 717 34. 012 49. 306 58 4. 599 19. 891	3. 0595 3. 0593 3. 0591 3. 0590 3. 0588 3. 0587 3. 0585 3. 0583	7 04. 395 19. 760 35. 128 50. 499 8 05. 873 21. 250 36. 629 52. 012	3. 0728 3. 0733 3. 0739 3. 0745 3. 0751 3. 0756 3. 0762 3. 0768	9 40. 627 11 12. 629 27. 965 43. 301 58. 638 12 13. 976 29. 314 44. 653 59. 993	3. 0671 3. 0672 3. 0673 3. 0675 3. 0676 3. 0678 3. 0680
1835	38. 304 · 53. 642 41 8. 980 24. 315 39. 648 54. 980	3. 0683 3. 0680 3. 0676 3. 0672 3. 0669 3. 0665 3. 0658 3. 0658	44 50. 985 45 7. 019 23. 042 39. 053 55. 054 46 11. 044 27. 022 42. 990 58. 946	3. 2079 3. 2057 3. 2035 3. 2012 3. 1990 3. 1968 3. 1946 3. 1924	56 32. 829 48. 126 57 3. 422 18. 717 34. 012 49. 306 58 4. 599	3. 0595 3. 0593 3. 0591 3. 0590 3. 0588 3. 0587 3. 0585 3. 0583 3. 0582	7 04. 395 19. 760 35. 128 50. 499 8 05. 873 21. 250 36. 629 52. 012 9 07. 397	3. 0728 3. 0733 3. 0739 3. 0745 3. 0751 3. 0756 3. 0762	9 40. 627 11 12. 629 27. 965 43. 301 58. 638 12 13. 976 29. 314 44. 653 59. 993 13 15. 333	3. 0671 3. 0672 3. 0673 3. 0675 3. 0676 3. 0677 3. 0680 3. 0681
1835	38. 304 · 53. 642 41 8. 980 24. 315 39. 648 54. 980 42 10. 309 25. 637	3. 0683 3. 0680 3. 0676 3. 0672 3. 0669 3. 0665 3. 0661	44 50. 985 45 7. 019 23. 042 39. 053 55. 054 46 11. 044 27. 022 42. 990 58. 946	3. 2079 3. 2057 3. 2035 3. 2012 3. 1990 3. 1968 3. 1946 3. 1924 3. 1902	56 32. 829 48. 126 57 3. 422 18. 717 34. 012 49. 306 58 4. 599 19. 891 35. 182	3. 0595 3. 0593 3. 0591 3. 0590 3. 0588 3. 0587 3. 0585 3. 0583	7 04. 395 19. 760 35. 128 50. 499 8 05. 873 21. 250 36. 629 52. 012	3. 0728 3. 0733 3. 0739 3. 0745 3. 0751 3. 0756 3. 0762 3. 0768 3. 0773	9 40. 627 11 12. 629 27. 965 43. 301 58. 638 12 13. 976 29. 314 44. 653 59. 993	3. 0671 3. 0672 3. 0673 3. 0675 3. 0676 3. 0677 3. 0678 3. 0680
1835	38. 304 53. 642 41 8. 980 24. 315 39. 648 54. 980 42 10. 309 25. 637 40. 963 56. 288	3. 0683 3. 0680 3. 0676 3. 0672 3. 0669 3. 0665 3. 0651 3. 0658 3. 0654 3. 0650 3. 0647	44 50. 985 45 7. 019 23. 042 39. 053 55. 054 46 11. 044 27. 022 42. 990 58. 946 47 14. 892 30. 827	3. 2079 3. 2057 3. 2035 3. 2012 3. 1990 3. 1968 3. 1946 3. 1924 3. 1902 3. 1880 3. 1859	56 32. 829 48. 126 57 3. 422 18. 717 34. 012 49. 306 58 4. 599 19. 891 35. 182 50. 473 59 5. 762	3. 0595 3. 0593 3. 0591 3. 0590 3. 0588 3. 0587 3. 0585 3. 0583 3. 0582 3. 0580 3. 0579	7 04. 395 19. 760 35. 128 50. 499 8 05. 873 21. 250 36. 629 52. 012 9 07. 397 22. 785 38. 176	3. 0728 3. 0733 3. 0739 3. 0745 3. 0756 3. 0756 3. 0762 3. 0768 3. 0773 3. 0779 3. 0785	9 40. 627 11 12. 629 27. 965 43. 301 58. 638 12 13. 976 29. 314 44. 653 59. 993 13 15. 333 30. 674 46. 015	3. 0671 3. 0672 3. 0673 3. 0675 3. 0676 3. 0677 3. 0678 3. 0681 3. 0682 3. 0684
1835	38. 304 53. 642 41 8. 980 24. 315 39. 648 54. 980 42 10. 309 25. 637 40. 963 56. 288 43 11. 610	3. 0683 3. 0680 3. 0676 3. 0672 3. 0669 3. 0665 3. 0661 3. 0658 3. 0654 3. 0650 3. 0647	44 50. 985 45 7. 019 23. 042 39. 053 55. 054 46 11. 044 27. 022 42. 990 58. 946 47 14. 892 30. 827 46. 751	3. 2079 3. 2057 3. 2035 3. 2012 3. 1990 3. 1968 3. 1946 3. 1924 3. 1902 3. 1880 3. 1859 3. 1837	56 32. 829 48. 126 57 3. 422 18. 717 34. 012 49. 306 58 4. 599 19. 891 35. 182 50. 473 59 5. 762 21. 051	3. 0595 3. 0593 3. 0591 3. 0590 3. 0588 3. 0587 3. 0585 3. 0583 3. 0582 3. 0580 3. 0579	7 04. 395 19. 760 35. 128 50. 499 8 05. 873 21. 250 36. 629 52. 012 9 07. 397 22. 785 38. 176 53. 570	3. 0728 3. 0733 3. 0739 3. 0745 3. 0756 3. 0762 3. 0768 3. 0773 3. 0779 3. 0785 3. 0791	9 40. 627 11 12. 629 27. 965 43. 301 58. 638 12 13. 976 29. 314 44. 653 59. 993 13 15. 333 30. 674	3. 0671 3. 0672 3. 0673 3. 0675 3. 0676 3. 0677 3. 0688 3. 0681 3. 0682 3. 0684 3. 0684
1835	38. 304 53. 642 41 8. 980 24. 315 39. 648 54. 980 42 10. 309 25. 637 40. 963 56. 288	3. 0683 3. 0680 3. 0676 3. 0672 3. 0669 3. 0665 3. 0651 3. 0658 3. 0654 3. 0650 3. 0647	44 50. 985 45 7. 019 23. 042 39. 053 55. 054 46 11. 044 27. 022 42. 990 58. 946 47 14. 892 30. 827 46. 751	3. 2079 3. 2057 3. 2035 3. 2012 3. 1990 3. 1968 3. 1946 3. 1924 3. 1902 3. 1880 3. 1859	56 32. 829 48. 126 57 3. 422 18. 717 34. 012 49. 306 58 4. 599 19. 891 35. 182 50. 473 59 5. 762	3. 0595 3. 0593 3. 0591 3. 0590 3. 0588 3. 0587 3. 0585 3. 0583 3. 0582 3. 0580 3. 0579	7 04. 395 19. 760 35. 128 50. 499 8 05. 873 21. 250 36. 629 52. 012 9 07. 397 22. 785 38. 176	3. 0728 3. 0733 3. 0739 3. 0745 3. 0756 3. 0756 3. 0762 3. 0768 3. 0773 3. 0779 3. 0785	9 40. 627 11 12. 629 27. 965 43. 301 58. 638 12 13. 976 29. 314 44. 653 59. 993 13 15. 333 30. 674 46. 015	3. 0671 3. 0672 3. 0673 3. 0675 3. 0676 3. 0677 3. 0678 3. 0681 3. 0682 3. 0684

57. 56**7**

1900 . .

3. 0633

34. 457 | 3. 1772

60 6. 914 3. 0573

39. 769

3.0808

32. 044 3. 0688 47. 388

3. 0689

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

Year.	₿ Coı	rvi.	α Canum corui		0 Virg	inis.	α Virgi	nis.	ζ Virgi	nis.
1	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var
	12 ^h		12 ^h		12h; 13h		13h		13 ^h	
1800	23 54.450	3. 1272	46 38.968	2. 8291	59 36.462	3.0942	14 40, 489	3 1436	24 30. 748	3. 0475
1830	25 28. 337	3. 1320	48 3.769.		I 9. 322	3.0965	16 14.846	3. 1469	26 2. 201	3.0494
1835	43.999	3. 1328	17. 890	2. 8236	24. 806	3. 09 59	30. 582	3. 1475	17. 449	3. 0497
1840	59. 665	3. 1336	32.006	2. 8229	40. 291	3.0972	46. 321	3. 1481	32, 698	3. 0500
1845	26 15.335	3. 1344	46. 118	2, 8221	55. 778	3.0976	17 2.063	3. 1486	47-949	3. 0503
1850 ,	31.009	3. 1352	49 0. 227	2. 8213	2 11.267	3. 0980	17.807	3. 1492	27 3. 201	3. 0506
1855 :	46. 687	3. 1360	14. 332	2. 8206	26. 758	3. 0984	33- 555	3. 1498	18.455	3. 0509
1860	27 2.369	3. 1368	28. 433	2.8198	42. 251	3. 0988	49. 305	3. 1503	33. 710	3. 0512
1865	18. 055	3. 1376	42. 530	2.8191	57. 746	3. 0992	18 5.058	3. 1509	48.967	3. 0515
1870	33. 746	3. 1385	56. 624	2.8183	3 I3. 243	3. 0996	20, 814	3. 1515	28 4. 226	3. 0519
1875	49. 440	3. 1393	50 10.713	2.8176	28. 741	3. 1000	36. 573	3. 1520	19. 486	3. 0522
1880	28 5. 139	3. 1401	24. 800	2.8168	44. 242	3. 1003	52. 334	3. 1526	34- 747	3. 0525
1885	20, 841	3. 1409	38, 882	2.8161	59- 745	3. 1007	19 8.099	3. 1532	50, 011	3. 0528
1890	36. 548	3. 1417	52, 960	2.8153	4 15.250	3. 1011	23. 866	3. 1538	29 5.275	3. 0531
1895	52. 259	3. 1426	• .	2.8146	30. 756	3. 1015	39.637	3. 1544	20, 542	3. 0535
1900		3. 1434	21.106	2. 8139	46, 265	3. 1019	55.410	3. 1549	35.810	3. 0538
		•	,							
	η Ursæ M	fajoris.	η Boo	tis.	α Βοο	otis.	0 Boo	tis.	ρ Βοο	tis.
Year.	η Ursæ M R. A.	Ann. var.	η Boo R. A.	tis.	α Boo	Ann. var.		Ann. var.	ρ Boo R. A.	1.
Year.		·	! <u> </u>						<u> </u>	Ann. var
	R. A.	·	R. A.	Ann. var.	R. A.		R. A.		R. A.	Ann. va.
1800	R. A. 13 ^h 39 38.586 40 49.955	Ann. var.	R. A. 13 ^h 45 9.710	2. 8572 2. 8570	R. A. 14 ^h 6 32.601 7 54-599	Ann, var.	R. A.	Ann. var.	R. A.	Ann. va. 2. 5894 2. 5888
1800 1830	R. A. 13h 39 38.586	2. 3806 2. 3774 2. 3769	R. A. 13 ^h 45 9.710 46 35.424 49.709	2. 8572 2. 8570 2. 8570	R. A. 14 ^h 6 32.601 7 54.599 8 8.267	Ann. var.	R. A. 14 ^h 18 23, 156	2. 0454 2. 0450 2. 0449	R. A. 14 ^h 23 12.458 24 30.130 43.074	2. 5894 2. 5888 2. 5888
1800 1830	R. A. 13 ^h 39 38.586 40 49.955	Ann. var. 2. 3806 2. 3774	R. A. 13 ^h 45 9.710 46 35.424 49.709	2. 8572 2. 8570	R. A. 14 ^h 6 32.601 7 54-599	Ann. var.	R. A. 14 ^h 18 23. 156 19 24. 511	Ann. var. 2. 0454 2. 0450	R. A. 14 ^b 23 12.458 24 30.130	2. 5894 2. 5888 2. 5888
1800 1830 1835	R. A. 13 ^h 39 38.586 40 49.955 41 1.841	2. 3806 2. 3774 2. 3769	R. A. 13 ^h 45 9.710 46 35.424 49.709	2. 8572 2. 8570 2. 8570	R. A. 14 ^h 6 32.601 7 54.599 8 8.267	2. 7330 2. 7336 2. 7337	R. A. 14 ^h 18 23, 156 19 24, 511 34-735	2. 0454 2. 0450 2. 0449	R. A. 14 ^h 23 12.458 24 30.130 43.074	2. 5894 2. 5888 2. 5887 2. 5886
1800 1830 1835 1840	R. A. 13 ^h 39 38. 586 40 49. 955 41 1. 841 13. 724	2. 3806 2. 3774 2. 3769 2. 3763	R. A. 13 ^h 45 9.710 46 35.424 49.709 47 3.994 18.279	2. 8572 2. 8570 2. 8570 2. 8570	R. A. 14 ^h 6 32.601 7 54.599 8 8.267 21.936 35.605	Ann. var. 2. 7330 2. 7336 2. 7337 2. 7338	R. A. 14 ^h 18 23, 156 19 24, 511 34, 735 44, 959	2. 0454 2. 0450 2. 0449 2. 0448	R. A. 14 ^b 23 12.458 24 30.130 43.074 56.017	2. 5894 2. 5888 2. 5887 2. 5886 2. 5886
1800 1830 1835 1840	R. A. 13h 39 38.586 40 49.955 41 1.841 13.724 25.604	2. 3806 2. 3774 2. 3769 2. 3763 2. 3758	R. A. 13 ^h 45 9.710 46 35.424 49.709 47 3.994 18.279	2. 8572 2. 8570 2. 8570 2. 8570 2. 8570	R. A. 14 ^h 6 32.601 7 54.599 8 8.267 21.936 35.605 49.275 9 2.945	Ann. var. 2. 7330 2. 7336 2. 7337 2. 7338 2. 7339	R. A. 14 ^h 18 23, 156 19 24, 511 34, 735 44, 959 55, 183 20 5, 407 15, 630	2. 0454 2. 0450 2. 0449 2. 0448	R. A. 14 ^b 23 12.458 24 30.130 43.074 56.017 25 8.960 21.902	2. 5894 2. 5888 2. 5887 2. 5886 2. 5885 2. 5884 2. 5883
Year. 1800	R. A. 13 ^h 39 38.586 40 49.955 41 1.841 13.724 25.604 37.482	2. 3806 2. 3774 2. 3769 2. 3763 2. 3758 2. 3753	R. A. 13 ^h 45 9.710 46 35.424 49.709 47 3.994 18.279 32.564 46.849	2. 8572 2. 8570 2. 8570 2. 8570 2. 8570 2. 8569	R. A. 14 ^h 6 32.601 7 54.599 8 8.267 21.936 35.605 49.275	Ann. var. 2. 7330 2. 7336 2. 7337 2. 7338 2. 7339 2. 7340	R. A. 14 ^h 18 23.156 19 24.511 34.735 44.959 55.183 20 5.407	2. 0454 2. 0450 2. 0449 2. 0448 2. 0448	R. A. 14 ^b 23 12.458 24 30.130 43.074 56.017 25 8.960 21.902	2. 5894 2. 5888 2. 5887 2. 5886 2. 5885 2. 5884 2. 5883
1800	R. A. 13h 39 38.586 40 49.955 41 1.841 13.724 25.604 37.482 49.357	Ann. var. 2. 3806 2. 3774 2. 3769 2. 3763 2. 3758 2. 3753 2. 3748 2. 3743	R. A. 13 ^h 45 9.710 46 35.424 49.709 47 3.994 18.279 32.564 46.849	2.8572 2.8570 2.8570 2.8570 2.8570 2.8569 2.8569	R. A. 14 ^h 6 32.601 7 54.599 8 8.267 21.936 35.605 49.275 9 2.945	2. 7330 2. 7336 2. 7337 2. 7338 2. 7339 2. 7340 2. 7341	R. A. 14 ^h 18 23, 156 19 24, 511 34, 735 44, 959 55, 183 20 5, 407 15, 630	2. 0454 2. 0450 2. 0449 2. 0448 2. 0448 2. 0447 2. 0446	R. A. 14 ^b 23 12.458 24 30.130 43.074 56.017 25 8.960 21.902 34.844	2. 5894 2. 5888 2. 5887 2. 5886 2. 5885 2. 5884 2. 5883
1800	R. A. 13 ^h 39 38. 586 40 49. 955 41 1. 841 13. 724 25. 604 37. 482 49. 357 42 1. 230	2. 3806 2. 3774 2. 3769 2. 3763 2. 3758 2. 3753 2. 3748	R. A. 13h 45 9.710 46 35.424 49.709 47 3.994 18.279 32.564 46.849 48 1.133	2. 8572 2. 8570 2. 8570 2. 8570 2. 8570 2. 8569 2. 8569 2 8569	R. A. 14 ^h 6 32.601 7 54.599 8 8.267 21.936 35.605 49.275 9 2.945 16.616	Ann. var. 2. 7330 2. 7336 2. 7337 2. 7338 2. 7339 2. 7340 2. 7341 2. 7342	R. A. 14 ^h 18 23, 156 19 24, 511 34, 735 44, 959 55, 183 20 5, 407 15, 630 25, 853	2. 0454 2. 0450 2. 0449 2. 0448 2. 0448 2. 0446 2. 0446	R. A. 14 ^h 23 12. 458 24 30. 130 43. 074 56. 017 25 8. 960 21. 902 34. 844 47. 785	2. 5894 2. 5888 2. 5887 2. 5886 2. 5885 2. 5884 2. 5883 2. 5883
1800	R. A. 13h 39 38.586 40 49.955 41 1.841 13.724 25.604 37.482 49.357 42 1.230 13.100	2. 3806 2. 3774 2. 3769 2. 3763 2. 3753 2. 3743 2. 3743 2. 3737	R. A. 13h 45 9.710 46 35.424 49.709 47 3.994 18.279 32.564 46.849 48 1.133	2. 8572 2. 8570 2. 8570 2. 8570 2. 8570 2. 8569 2. 8569 2. 8569 2. 8569	R. A. 14 ^h 6 32.601 7 54.599 8 8.267 21.936 35.605 49.275 9 2.945 16.616 30.288	Ann. var. 2. 7330 2. 7336 2. 7337 2. 7338 2. 7339 2. 7340 2. 7341 2. 7342 2. 7344	R. A. 14 ^h 18 23. 156 19 24. 511 34. 735 44. 959 55. 183 20 5. 407 15. 630 25. 853 36. 076	2. 0454 2. 0450 2. 0449 2. 0448 2. 0448 2. 0446 2. 0446 2. 0445	R. A. 14 ^b 23 12. 458 24 30. 130 43. 074 56. 017 25 8. 960 21. 902 34. 844 47. 785 26 0. 726	2. 5894 2. 5888 2. 5886 2. 5886 2. 5885 2. 5884 2. 5882 2. 5881 2. 5881 2. 5881
1800	R. A. 13h 39 38.586 40 49.955 41 1.841 13.724 25.604 37.482 49.357 42 1.230 13.100 24.967	2. 3806 2. 3774 2. 3769 2. 3763 2. 3753 2. 3753 2. 3743 2. 3743 2. 3737 2. 3732	R. A. 13h 45 9.710 46 35.424 49.709 47 3.994 18.279 32.564 46.849 48 1.133 15.417 29.702	2. 8572 2. 8570 2. 8570 2. 8570 2. 8570 2. 8569 2. 8569 2. 8569 2. 8569 2. 8569	R. A. 14 ^h 6 32.601 7 54.599 8 8.267 21.936 35.605 49.275 9 2.945 16.616 30.288 43.960	Ann. var. 2. 7330 2. 7336 2. 7337 2. 7338 2. 7339 2. 7340 2. 7341 2. 7342 2. 7344 2. 7345	R. A. 14 ^h 18 23. 156 19 24. 511 34. 735 44. 959 55. 183 20 5. 407 15. 630 25. 853 36. 076 46. 298	2. 0454 2. 0450 2. 0449 2. 0448 2. 0448 2. 0446 2. 0446 2. 0445 2. 0444	R. A. 14 ^h 23 12.458 24 30.130 43.074 56.017 25 8.960 21.902 34.844 47.785 26 0.726 13.667	2. 5894 2. 5888 2. 5886 2. 5886 2. 5885 2. 5884 2. 5881 2. 5881 2. 5881
1800	R. A. 13h 39 38. 586 40 49. 955 41 1. 841 13. 724 25. 604 37. 482 49. 357 42 1. 230 13. 100 24. 967 36. 832 48. 694	2. 3806 2. 3774 2. 3769 2. 3763 2. 3753 2. 3748 2. 3743 2. 3737 2. 3732 2. 3727 2. 3727	R. A. 13h 45 9.710 46 35.424 49.709 47 3.994 18.279 32.564 46.849 48 1.133 15.417 29.702 43.986 58.270	2. 8572 2. 8570 2. 8570 2. 8570 2. 8570 2. 8569 2. 8569 2. 8569 2. 8568 2. 8568 2. 8568	R. A. 14 ^h 6 32.601 7 54.599 8 8.267 21.936 35.605 49.275 9 2.945 16.616 30.288 43.960 57.633 10 11.306	2. 7330 2. 7336 2. 7337 2. 7338 2. 7339 2. 7340 2. 7341 2. 7342 2. 7344 2. 7345 2. 7346	R. A. 14 ^h 18 23, 156 19 24, 511 34, 735 44, 959 55, 183 20 5, 407 15, 630 25, 853 36, 076 46, 298 56, 520 21 6, 742	2. 0454 2. 0450 2. 0449 2. 0448 2. 0447 2. 0446 2. 0446 2. 0445 2. 0444 2. 0444	R. A. 14 ^h 23 12. 458 24 30. 130 43. 074 56. 017 25 8. 960 21. 902 34. 844 47. 785 26 0. 726 13. 667 26. 607 39. 546	2. 5894 2. 5888 2. 5886 2. 5886 2. 5885 2. 5883 2. 5882 2. 5881 2. 5881 2. 5880 2. 5880
1800	R. A. 13h 39 38. 586 40 49. 955 41 1. 841 13. 724 25. 604 37. 482 49. 357 42 1. 230 13. 100 24. 967 36. 832 48. 694 43 0. 554	Ann. var. 2. 3806 2. 3774 2. 3769 2. 3763 2. 3753 2. 3743 2. 3737 2. 3732 2. 3727 2. 3722 2. 3717	R. A. 13h 45 9.710 46 35.424 49.709 47 3.994 18.279 32.564 46.849 48 1.133 15.417 29.702 43.986 58.270 49 12.554	2. 8572 2. 8570 2. 8570 2. 8570 2. 8570 2. 8569 2. 8569 2. 8569 2. 8568 2. 8568 2. 8568 2. 8568	R. A. 14 ^h 6 32. 601 7 54. 599 8 8. 267 21. 936 35. 605 49. 275 9 2. 945 16. 616 30. 288 43. 960 57. 633 10 11. 306 24. 980	Ann. var. 2. 7330 2. 7336 2. 7337 2. 7338 2. 7339 2. 7340 2. 7341 2. 7342 2. 7344 2. 7345 2. 7346 2. 7347	R. A. 14 ^h 18 23. 156 19 24. 511 34. 735 44. 959 55. 183 20 5. 407 15. 630 25. 853 36. 076 46. 298 56. 520 21 6. 742 16. 963	2. 0454 2. 0450 2. 0449 2. 0448 2. 0447 2. 0446 2. 0445 2. 0444 2. 0443 2. 0443	R. A. 14 ^h 23 12. 458 24 30. 130 43. 074 56. 017 25 8. 960 21. 902 34. 844 47. 785 26 0. 726 13. 667 26. 607 39. 546 52. 486	2. 5894 2. 5888 2. 5886 2. 5886 2. 5885 2. 5884 2. 5882 2. 5881 2. 5881 2. 5880 2. 5879
1800	R. A. 13h 39 38. 586 40 49. 955 41 1. 841 13. 724 25. 604 37. 482 49. 357 42 1. 230 13. 100 24. 967 36. 832 48. 694	2. 3806 2. 3774 2. 3769 2. 3763 2. 3753 2. 3748 2. 3743 2. 3737 2. 3732 2. 3727 2. 3727	R. A. 13h 45 9.710 46 35.424 49.709 47 3.994 18.279 32.564 46.849 48 1.133 15.417 29.702 43.986 58.270	2. 8572 2. 8570 2. 8570 2. 8570 2. 8570 2. 8569 2. 8569 2. 8569 2. 8568 2. 8568 2. 8568	R. A. 14 ^h 6 32.601 7 54.599 8 8.267 21.936 35.605 49.275 9 2.945 16.616 30.288 43.960 57.633 10 11.306	2. 7330 2. 7336 2. 7337 2. 7338 2. 7339 2. 7340 2. 7341 2. 7342 2. 7344 2. 7345 2. 7346	R. A. 14 ^h 18 23, 156 19 24, 511 34, 735 44, 959 55, 183 20 5, 407 15, 630 25, 853 36, 076 46, 298 56, 520 21 6, 742	2. 0454 2. 0450 2. 0449 2. 0448 2. 0446 2. 0446 2. 0445 2. 0444 2. 0443 2. 0443 2. 0443	R. A. 14 ^h 23 12. 458 24 30. 130 43. 074 56. 017 25 8. 960 21. 902 34. 844 47. 785 26 0. 726 13. 667 26. 607 39. 546	2. 5894 2. 5888 2. 5886 2. 5886 2. 5885 2. 5883 2. 5882 2. 5881 2. 5881 2. 5880 2. 5879

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

	ļ }	ε Boot	is.		αº Lib	ræ.		ß Boo	tis.		ß Libr	æ.		μ¹ Boo	otis.
Year.	R.	A.	Ann. var.	1	R. A.	Ann. var.		R. A.	Ann. var.	1	R. A.	Ann. var.		R. A.	Ann. var
	1.	4 ^b			74 ^h			14 ^h		·	15 ^b			15 ^b	
1800	36 I	5. 120	2.6215	39	50. 321	3. 2957	54	24. 772	2. 2601	6	15. 763	3. 2113	16	56. 209	2. 2652
1830	37 3	3. 762	2.6214	41	29. 263	3. 3004	55	32. 574	2, 2601	7	52. 153	3. 2148	18	4. 167	2, 2655
1835	4	6, 869	2.6214		45. 7 66	3. 3011		43. 874	2, 2601	8	8. 229	3. 2154		15.495	2. 2655
1840	5	9- 975	2. 6214	42	2. 274	3. 3019		55. 175	2, 2601		24. 307	3. 2160		26, 823	2. 2656
1845	38 I	3. 082	2.6214		18. 785	3. 3026	56	6. 475	2. 2601		40. 389	3. 2166		38. 151	2. 2656
1850	2	6. 189	2.6214		35. 301	3. 3034		17. 775	2. 2601		56. 473	3. 2172		49.479	2. 2657
1855	3	9. 296	2.6213		51.820	3. 3042		29. 075	2. 2601	9	12, 560	3. 2177	19	o. 8o8	2, 2658
860	5	2. 402	2.6213	43	8. 343	3. 3050		40. 376	2, 2601		2 8. 650	3. 2183		12. 137	2. 2658
865	39	5. 509	2.6213		24. 870	3. 3058		51.676	2, 2601		44- 744	3. 2189		23.466	2, 2659
18 7 0	1	8.616	2.6213		41.401	3. 3065	57	2. 976	2. 2601	10	0.840	3. 2195		34. 796	2, 2660
1875	3	1. 723	2.6213		57-935	3. 3073		14. 276	2. 2601		16. 939	3. 2201		46. 126	2, 2660
1880	4	4. 829	2,6213	44	14. 474	3. 3081		25. 577	2. 2601		33. 041	3. 2207		57.456	2. 2661
1885	5	7. 936	2.6213		31.016	3. 3089		36.877	2, 2601		49. 146	3. 2213	20	8. 787	2. 2662
1890	1	1.043	2.6213		47. 562	3. 3096		48. 177	2, 2601	11	5. 254	3. 2219		20. 118	2, 2662
1895	2	4. 149	2.6214	45	4. 113	3. 3104		59. 478	2. 2601	! :	21. 365	3. 2225		31.449	2. 2663
1900	3	7. 256	2.6214		20, 667	3. 3112	58	10. 778	2. 2601		37.478	3. 2231	İ	42. 781	2. 2664
	α Сο	oronæ I	Borealis.		α Serpe	entis.		ε Serpe	entis.	ε	Coronæ 1	Borealis.		ð Sco	rpii.
Year.		oronæ I	Borealis.		α Serpe	Ann. var.		ε Serpe	entis.		Coronæ I	Borealis.		δ Scor	<u> </u>
Year.	R.	Α.			R. A.			R. A.	<u> </u>		R. A.	<u> </u>		R. A.	<u> </u>
	R.	A. 5 ^h		34	R. A.		40	R. A.	<u> </u>			<u> </u>	48		Ann. va
1800	R.	A.	Ann. var.	 	R. A. 15 ^h 25. 586 53. 998	Ann. var.		R. A. 15 ^h 51. 391	Ann, var.		R. A.	Ann. var.		R. A.	Ann. va
1800 1830	R. 26 1 27 2	A.	Ann. var.	34	R. A. 15 ^h 25. 586	2. 9462 2. 9480 2. 9483	40	R. A. 15h 51. 391 20. 859 35. 776	Ann. var.	49	R. A. 15 ^h 18. 705	Ann. var.	48	R. A. 15 ^h 31. 919	Ann. va 3. 5244 3. 5292
1800 1830 1835	R. 26 1 27 2	A. 15h 13.416 29.541	Ann. var. 2. 5372 2. 5378	34 35	R. A. 15 ^h 25. 586 53. 998	Ann. var. 2. 9462 2. 9480	40	R. A. 15 ^h 51. 391 20. 859	Ann. var. 2. 9812 2. 9832	49	R. A. 15 ^h 18. 705 33. 135	Ann. var. 2. 4805 2. 4814	48	R. A. 15 ^h 31. 919 17. 723	Ann. va 3. 5244 3. 5292 3. 5300 3. 5308
1800 1830 1835	R. 26 1 27 2	A. 15h 13. 416 29. 541 142. 231	Ann. var. 2. 5372 2. 5378 2. 5380	34 35	R. A. 15h 25. 586 53. 998 8. 739	2. 9462 2. 9480 2. 9483	40	R. A. 15h 51. 391 20. 859 35. 776	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842	49	R. A. 15h 18. 705 33. 135 45. 543	Ann. var. 2. 4805 2. 4814 2. 4816	48	R. A. 15h 31. 919 17. 723 35. 371	3. 5244 3. 5292 3. 5300
1800 1830 1835 1840	R. 26 1 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A. 15 ^h 13. 416 29. 541 42. 231 54. 921	Ann. var. 2. 5372 2. 5378 2. 5380 2. 5381 2. 5382 2. 5383	34 35	15 ^h 25. 586 53. 998 8. 739 23. 481	2. 9462 2. 9480 2. 9483 2. 9486 2. 9489 2. 9492	40 42	R. A. 15 ^h 51. 391 20. 859 35. 776 50. 694	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842 2. 9845	49 50	R. A. 15 ^h 18. 705 33. 135 45. 543 57. 951 10. 360 22. 770	Ann. var. 2. 4805 2. 4814 2. 4816 2. 4817 2. 4819 2. 4820	48 50	R. A. 15 ^h 31. 919 17. 723 35. 371 53. 023 10. 679 28. 339	3. 5244 3. 5292 3. 5300 3. 5300 3. 5310
1800 1830 1835 1840 1845 1850	R. 26 1 27 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3	A. 15h 13. 416 29. 541 42. 231 54. 921 7. 612 20. 303 32. 995	2. 5372 2. 5378 2. 5380 2. 5381 2. 5382 2. 5383 2. 5384	34 35	R. A. 15 ^h 25. 586 53. 998 8. 739 23. 481 38. 225 52. 970 7. 717	2. 9462 2. 9480 2. 9483 2. 9486 2. 9489 2. 9492 2. 9495	40 42	R. A. 15 ^b 51. 391 20. 859 35. 776 50. 694 5. 614 20. 536 35. 459	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842 2. 9845 2. 9848	49 50	R. A. 15 ^h 18. 705 33. 135 45. 543 57. 951 10. 360 22. 770 35. 181	Ann. var. 2. 4805 2. 4814 2. 4816 2. 4817 2. 4819 2. 4820 2. 4822	48 50	R. A. 15 ^h 31. 919 17. 723 35. 371 53. 023 10. 679 28. 339 46. 003	3. 5244 3. 5292 3. 5306 3. 5316 3. 5324
1800 1830 1835 1840 1845 1850	R. 26 1 27 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3	A. 15h 13. 416 29. 541 42. 231 54. 921 7. 612 20. 303	Ann. var. 2. 5372 2. 5378 2. 5380 2. 5381 2. 5382 2. 5383	34 35 36	R. A. 15h 25, 586 53, 998 8, 739 23, 481 38, 225 52, 970	2. 9462 2. 9480 2. 9483 2. 9486 2. 9489 2. 9492	40 42	R. A. 15 ^b 51. 391 20. 859 35. 776 50. 694 5. 614 20. 536	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842 2. 9845	49 50	R. A. 15 ^h 18. 705 33. 135 45. 543 57. 951 10. 360 22. 770	Ann. var. 2. 4805 2. 4814 2. 4816 2. 4817 2. 4819 2. 4820	48 50	R. A. 15 ^h 31. 919 17. 723 35. 371 53. 023 10. 679 28. 339	3. 5244 3. 5292 3. 5300 3. 5316 3. 5324 3. 5332
1800	R. 26 1 27 2 4 4 5 1 28 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A. 15h 13. 416 29. 541 42. 231 54. 921 7. 612 20. 303 32. 995	2. 5372 2. 5378 2. 5380 2. 5381 2. 5382 2. 5383 2. 5384	34 35 36	R. A. 15 ^h 25. 586 53. 998 8. 739 23. 481 38. 225 52. 970 7. 717	2. 9462 2. 9480 2. 9483 2. 9486 2. 9489 2. 9492 2. 9495	40 42	R. A. 15 ^b 51. 391 20. 859 35. 776 50. 694 5. 614 20. 536 35. 459 50. 384	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842 2. 9845 2. 9848	49 50	R. A. 15 ^h 18. 705 33. 135 45. 543 57. 951 10. 360 22. 770 35. 181	Ann. var. 2. 4805 2. 4814 2. 4816 2. 4817 2. 4819 2. 4820 2. 4822	48 50	R. A. 15 ^h 31. 919 17. 723 35. 371 53. 023 10. 679 28. 339 46. 003	3. 5244 3. 5292 3. 5300 3. 5308 3. 5316 3. 5324 3. 5334
1800	R. 26 1 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A. 15h 13. 416 29. 541 42. 231 54. 921 7. 612 20. 303 32. 995 45. 687 58. 380	Ann. var. 2. 5372 2. 5378 2. 5380 2. 5381 2. 5382 2. 5383 2. 5384 2. 5386	34 35 36	R. A. 15 ^h 25. 586 53. 998 8. 739 23. 481 38. 225 52. 970 7. 717 22. 465	2. 9462 2. 9480 2. 9483 2. 9486 2. 9489 2. 9492 2. 9495 2. 9498	40 42 43	R. A. 15h 51. 391 20. 859 35. 776 50. 694 5. 614 20. 536 35. 459 50. 384 5. 311 20. 239	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842 2. 9845 2. 9848	49 50	R. A. 15h 18. 705 33. 135 45. 543 57. 951 10. 360 22. 770 35. 181 47. 592	2. 4805 2. 4814 2. 4816 2. 4817 2. 4819 2. 4820 2. 4822 2. 4823 2. 4825 2. 4826	48 50	R. A. 15 ^h 31. 919 17. 723 35. 371 53. 023 10. 679 28. 339 46. 003 3. 671	3. 5244 3. 5292 3. 5306 3. 5316 3. 5324 3. 5334 3. 5348
1800	R. 26 1 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A. 15h 13. 416 29. 541 42. 231 54. 921 7. 612 20. 303 32. 995 45. 687 58. 380	Ann. var. 2. 5372 2. 5378 2. 5380 2. 5381 2. 5382 2. 5383 2. 5384 2. 5386	34 35 36	R. A. 15 ^h 25, 586 53, 998 8, 739 23, 481 38, 225 52, 970 7, 717 22, 465 37, 215	2. 9462 2. 9480 2. 9483 2. 9486 2. 9489 2. 9492 2. 9498 2. 9501	40 42 43	R. A. 15 ^h 51. 391 20. 859 35. 776 50. 694 5. 614 20. 536 35. 459 50. 384 5. 311	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842 2. 9845 2. 9848 2. 9852	49 50	R. A. 15 ^h 18. 705 33. 135 45. 543 57. 951 10. 360 22. 770 35. 181 47. 592 0. 004	Ann. var. 2. 4805 2. 4814 2. 4816 2. 4817 2. 4819 2. 4820 2. 4822 2. 4823 2. 4825	48 50	R. A. 15 ^h 31. 919 17. 723 35. 371 53. 023 10. 679 28. 339 46. 003 3. 671 21. 343	3. 5244 3. 5292 3. 5300 3. 5300 3. 5310 3. 5324 3. 5334 3. 5344 3. 5354
1800	R. 26 1 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A. 15h 13. 416 29. 541 42. 231 54. 921 7. 612 20. 303 32. 995 45. 687 58. 380	Ann. var. 2. 5372 2. 5378 2. 5380 2. 5381 2. 5382 2. 5383 2. 5384 2. 5386 2. 5387 2. 5388	34 35 36 37	R. A. 15 ^h 25. 586 53. 998 8. 739 23. 481 38. 225 52. 970 7. 717 22. 465 37. 215 51. 966	2. 9462 2. 9480 2. 9483 2. 9486 2. 9489 2. 9492 2. 9495 2. 9498 2. 9501 2. 9504	40 42 43	R. A. 15h 51. 391 20. 859 35. 776 50. 694 5. 614 20. 536 35. 459 50. 384 5. 311 20. 239	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842 2. 9845 2. 9852 2. 9852 2. 9855 2. 9858	49 50	R. A. 15 ^h 18. 705 33. 135 45. 543 57. 951 10. 360 22. 770 35. 181 47. 592 0. 004 12. 417	2. 4805 2. 4814 2. 4816 2. 4817 2. 4819 2. 4820 2. 4822 2. 4823 2. 4825 2. 4826	48 50	R. A. 15 ^h 31. 919 17. 723 35. 371 53. 023 10. 679 28. 339 46. 003 3. 671 21. 343 39. 019	3. 5244 3. 5292 3. 5306 3. 5316 3. 5324 3. 5332 3. 5348 3. 5348 3. 5356 3. 5368
1800	R. 26 1 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A. 15h 13. 416 29. 541 42. 231 54. 921 7. 612 20. 303 32. 995 45. 687 58. 380 11. 074 23. 768	2. 5372 2. 5378 2. 5380 2. 5381 2. 5382 2. 5383 2. 5384 2. 5386 2. 5387 2. 5388 2. 5388	34 35 36 37	R. A. 15h 25. 586 53. 998 8. 739 23. 481 38. 225 52. 970 7. 717 22. 465 37. 215 51. 966 6. 719	2. 9462 2. 9480 2. 9483 2. 9486 2. 9489 2. 9492 2. 9495 2. 9495 2. 9501 2. 9504 2. 9507	40 42 43	R. A. 15 ^h 51. 391 20. 859 35. 776 50. 694 5. 614 20. 536 35. 459 50. 384 5. 311 20. 239 35. 169 50. 101	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842 2. 9845 2. 9852 2. 9855 2. 9858 2. 9858	49 50	R. A. 15h 18. 705 33. 135 45. 543 57. 951 10. 360 22. 770 35. 181 47. 592 0. 004 12. 417 24. 830	2. 4805 2. 4814 2. 4816 2. 4817 2. 4819 2. 4820 2. 4822 2. 4823 2. 4825 2. 4826 2. 4828	48 50 51	R. A. 15 ^h 31. 919 17. 723 35. 371 53. 023 10. 679 28. 339 46. 003 3. 671 21. 343 39. 019 56. 699	3. 5244 3. 5292 3. 5306 3. 5308 3. 5316 3. 5324 3. 5346 3. 5356 3. 5364 3. 5372
1800	R. 26 1 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A. 15h 13. 416 29. 541 42. 231 54. 921 7. 612 20. 303 32. 995 45. 687 58. 380 11. 074 23. 768 36. 463	2. 5372 2. 5378 2. 5380 2. 5381 2. 5382 2. 5383 2. 5384 2. 5386 2. 5387 2. 5388 2. 5389 2. 5390	34 35 36 37	R. A. 15 ^h 25. 586 53. 998 8. 739 23. 481 38. 225 52. 970 7. 717 22. 465 37. 215 51. 966 6. 719 21. 473	2. 9462 2. 9480 2. 9483 2. 9486 2. 9489 2. 9495 2. 9495 2. 9501 2. 9504 2. 9507 2. 9510	40 42 43	R. A. 15h 51. 391 20. 859 35. 776 50. 694 5. 614 20. 536 35. 459 50. 384 5. 311 20. 239 35. 169 50. 101	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842 2. 9845 2. 9852 2. 9855 2. 9858 2. 9861 2. 9865	49 50	R. A. 15h 18. 705 33. 135 45. 543 57. 951 10. 360 22. 770 35. 181 47. 592 0. 004 12. 417 24. 830 37. 245	2. 4805 2. 4814 2. 4816 2. 4817 2. 4819 2. 4820 2. 4822 2. 4823 2. 4825 2. 4828 2. 4828	48 50 51	R. A. 15h 31. 919 17. 723 35. 371 53. 023 10. 679 28. 339 46. 003 3. 671 21. 343 39. 019 56. 699 14. 383	3. 5244 3. 5292 3. 5306 3. 5316 3. 5324 3. 5334 3. 5346 3. 5356 3. 5364 3. 5372 3. 5380
1800 1830 1835 1840	R. 26 1 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A. 15h 13. 416 29. 541 42. 231 54. 921 7. 612 20. 303 32. 995 45. 687 58. 380 11. 074 23. 768 36. 463 49. 159	Ann. var. 2. 5372 2. 5378 2. 5380 2. 5381 2. 5382 2. 5383 2. 5384 2. 5386 2. 5389 2. 5390 2. 5392 2. 5393	34 35 36 37 38	R. A. 15h 25, 586 53, 998 8, 739 23, 481 38, 225 52, 970 7, 717 22, 465 37, 215 51, 966 6, 719 21, 473 36, 229	2. 9462 2. 9480 2. 9486 2. 9486 2. 9499 2. 9492 2. 9498 2. 9501 2. 9504 2. 9507 2. 9510 2. 9513 2. 9516	43	R. A. 15h 51. 391 20. 859 35. 776 50. 694 5. 614 20. 536 35. 459 50. 384 5. 311 20. 239 35. 169 50. 101 5. 034	2. 9812 2. 9832 2. 9835 2. 9839 2. 9842 2. 9845 2. 9852 2. 9855 2. 9858 2. 9861 2. 9865	49 50 51	R. A. 15h 18. 705 33. 135 45. 543 57. 951 10. 360 22. 770 35. 181 47. 592 0. 004 12. 417 24. 830 37. 245 49. 660	2. 4805 2. 4814 2. 4816 2. 4817 2. 4820 2. 4822 2. 4823 2. 4825 2. 4828 2. 4829 2. 4831	48 50 51	R. A. 15 ^h 31. 919 17. 723 35. 371 53. 023 10. 679 28. 339 46. 003 3. 671 21. 343 39. 019 56. 699 14. 383 32. 071	3. 5244 3. 5292 3. 5306 3. 5306

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

	β¹ Sco	rpii.	δOp	hiuchi.	r Hero	rulis.	α Sco	pii.	η Drac	onis.
Year.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. vai
	15h		16b		16p		16h		16h	
1800		1 3.4680	3 52.62	8 3. 1322	13 44. 202	1. 7965	17 10.056	3.6566	21 18.422	o. 7899
1830	55 33.875	3.4723	5 26.63	3. 1347	14 38.117	1. 7980	18 59.822	3.6612	21 42.199	. 7954
1835	51.238	3.4730	42. 30	6 3. 1351	47. 108	1. 7982	19 18.130	3.6619	46. 179	. 7963
1840	56 8.605	3.4737	57. 98	3. 1355	56. 100	1. 7985	36. 442	3.6627	50. 162	. 7972
1845	25.976	3.4744	6 13.66	3. 1359	15 5.093	1. 7987	54. 757	3. 6635	54. 151	. 7982
1850	43. 350	3-4752	29. 34	1	14. 087	1. 7990	20 13.076	3.6642	58. 144	. 7991
855	57 0. 728	3- 4759	45. 02	3. 1368	23.083	1. 7993	31. 399	3.6650	22 2. 142	. 8000
860	18. 109	3. 4766	7 0.71	3. 1372	32. 080	1. 7995	49. 726	3.6657	6. 144	, 8009
865	35-494	3 4773	16. 39	₇ _{3. 1376}	41.078	1. 7998	21 8.057	3.6665	10, 151	. 8019
870	52. 882	3.4780	32.08		50.077	1.8000	26. 391	3.6673	14. 163	. 8028
875	58 10. 274	3. 4788	47.77	1	59. 078	1.8003	44. 730	3.6680	18, 179	. 8037
880	27.670	3-4795	8 3.47		16 8.080	1.8005	22 3.072	3. 6688	22, 200	. 8046
885	45.069	3. 4802	19. 16	3. 1393	17. 084	1.8008	21,417	3. 6695	26. 225	. 8055
890	59 2.472	3. 4809	34. 86		26, 088	1.8011	39. 767	3.6703	30. 255	. 8064
895	19.878	3.4816	50. 56	1	35. 094	1.8013	58. 120	3.6710	34. 290	. 8074
1900	37. 288	3. 4823	9 6.26		44. 101	1.8016	23 16.477	3.6718	38. 329	0.808
	37.200	3.42-3				1	<u> </u>		l	J
	β Hero		ζ Opł		η Herc	ulis.	х Ophi	uchi.	d Herc	ulis.
Year.					η Hero	ulis.	κ Ophi R. A.	uchi.	d Herc	ulis.
	β Hero R. A.	culis.	Ç Opl	iuchi.		<u> </u>	 .		R. A.	ī
Year.	В Него	culis.	ζ Opł	iuchi.	R. A.	<u> </u>	R. A.			Ann. va
	β Hero R. A.	Ann. var.	ζ Oph R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann. var.	R. A.	Ann, va
Year.	β Hero R. A. 16 ^h 21 37. 649	Ann. var.	ζ Opł R. A. 16 ^b 26 9.54	iuchi. Ann. var. 3. 2911 3. 2938	R. A. 16h 36 2.778 37 4.305 14.563	Ann. var.	R. A. 16h 48 12.510 49 37.535 51.710	Ann. var.	R. A. 16 ^h 54 13. 798	Ann. va 2. 2084 2. 2094
Year.	β Hero R. A. 16h 21 37. 649 22 54. 892	Ann. var.	ζ Oph R. A. 16 ^b 26 9.54 27 48.31	iuchi. Ann. var. 3. 2911 3. 2938 3. 2942	R. A. 16h 36 2.778 37 4.305	Ann. var. 2. 0504 2. 0515	R. A. 16 ^h 48 12.510 49 37.535	Ann. var. 2. 8336 2. 8349	R. A. 16 ^h 54 13.798 55 20.064	ī
Year. 1800	β Hero R. A. 16h 21 37. 649 22 54. 892 23 7. 769	2. 5742 2. 5753 2. 5755	ζ Oph R. A. 16 ^b 26 9.54 27 48.31 28 4.78	iuchi. Ann. var. 3. 2911 3. 2938 3. 2942 3. 2947	R. A. 16h 36 2.778 37 4.305 14.563	Ann. var. 2. 0504 2. 0515 2. 0517	R. A. 16h 48 12.510 49 37.535 51.710	2. 8336 2. 8349 2. 8351 2. 8353	R. A. 16 ^h 54 13.798 55 20.064 31.112	2, 2084 2, 2094 2, 2095 2, 2097
Year. 1800 1830 1835 1840	β Hero R. A. 16h 21 37. 649 22 54. 892 23 7. 769 20. 646	2. 5742 2. 5753 2. 5757	ζ Oph R. A. 16 ^b 26 9.54 27 48.31 28 4.78 21.25	iuchi. Ann. var. 3. 2911 3. 2938 3. 2942 3. 2947 2. 3. 2952	R. A. 16 ^h 36 2. 778 37 4. 305 14. 563 24. 822	Ann. var. 2. 0504 2. 0515 2. 0517 2. 0519	R. A. 16 ^h 48 12.510 49 37.535 51.710 50 5.886	Ann. var. 2. 8336 2. 8349 2. 8351 2. 8353	R. A. 16h 54 13.798 55 20.064 31.112 42.160	2. 2084 2. 2094 2. 2095 2. 2097 2. 2098
Year. 800 830 835 840 850	β Hero R. A. 16h 21 37. 649 22 54. 892 23 7. 769 20. 646 33. 525	2. 5742 2. 5753 2. 5757 2. 5759	ζ Oph R. A. 16 ^b 26 9.54 27 48.31 28 4.78 21.25 37.73	iuchi. Ann. var. 3. 2911 3. 2938 3. 2942 3. 2947 2. 3. 2952 3. 2957	R. A. 16 ^h 36 2. 778 37 4. 305 14. 563 24. 822 35. 082	2. 0504 2. 0515 2. 0517 2. 0519 2. 0521	R. A. 16 ^h 48 12.510 49 37.535 51.710 50 5.886 20.063	2. 8336 2. 8349 2. 8351 2. 8353 2. 8355	R. A. 16 ^h 54 13.798 55 20.064 31.112 42.160 53.208	2. 2084 2. 2094 2. 2095 2. 2097 2. 2098 2. 2100
Year. 800	β Hero R. A. 16h 21 37. 649 22 54. 892 23 7. 769 20. 646 33. 525 46. 405	2. 5742 2. 5753 2. 5757 2. 5759 2. 5760	C Oph R. A. 16h 26 9.54 27 48.31 28 4.78 21.25 37.73 54.20	iuchi. Ann. var. 3. 2911 3. 2938 3. 2942 3. 2947 3. 2952 3. 2957 3. 2960	R. A. 16h 36 2. 778 37 4. 305 14. 563 24. 822 35. 082 45. 343	2. 0504 2. 0515 2. 0517 2. 0519 2. 0521 2. 0523	R. A. 16 ^h 48 12.510 49 37.535 51.710 50 5.886 20.063 34.241	2. 8336 2. 8349 2. 8351 2. 8353 2. 8355 2. 8357	R. A. 16 ^h 54 13.798 55 20.064 31.112 42.160 53.208 56 4.258	Ann. va 2. 2084 2. 2094 2. 2095
Year. 1800 1830 1845 1845	β Hero R. A. 16h 21 37. 649 22 54. 892 23 7. 769 20. 646 33. 525 46. 405 59. 286	2. 5742 2. 5753 2. 5755 2. 5759 2. 5760 2. 5762	C Oph R. A. 16b 26 9.54 27 48.31 28 4.78 21.25 37.73 54.20 29 10.68	iuchi. Ann. var. 3. 2911 3. 2938 3. 2942 3. 2947 3. 2952 3. 2957 3. 2960 3. 2965	R. A. 16h 36 2. 778 37 4. 305 14. 563 24. 822 35. 082 45. 343 55. 605	2. 0504 2. 0515 2. 0517 2. 0519 2. 0521 2. 0523 2. 0525	R. A. 16h 48 12.510 49 37.535 51.710 50 5.886 20.063 34.241 48.420	2. 8336 2. 8349 2. 8351 2. 8353 2. 8355 2. 8357 2. 8359	R. A. 16h 54 13.798 55 20.064 31.112 42.160 53.208 56 4.258 15.308	2. 2084 2. 2094 2. 2095 2. 2097 2. 2098 2. 2100 2. 2102
Year. 1800 1830 1845 1850 1855 1860	β Hero R. A. 16h 21 37. 649 22 54. 892 23 7. 769 20. 646 33. 525 46. 405 59. 286 24 12. 167	2. 5742 2. 5753 2. 5755 2. 5757 2. 5759 2. 5760 2. 5762	7 Oph R. A. 16 ^h 26 9.54 27 48.31 28 4.78 21.25 37.73 54.20 29 10.68 27.16	iuchi. Ann. var. 3. 2911 3. 2938 3. 2942 3. 2947 3. 2952 3. 2957 3. 2960 3. 2965 3. 2969	R. A. 16h 36 2. 778 37 4. 305 14. 563 24. 822 35. 082 45. 343 55. 605 38 5. 868	Ann. var. 2. 0504 2. 0515 2. 0517 2. 0519 2. 0521 2. 0523 2. 0525 2. 0526	R. A. 16h 48 12.510 49 37.535 51.710 50 5.886 20.063 34.241 48.420 51 2.600	2. 8336 2. 8349 2. 8351 2. 8353 2. 8355 2. 8357 2. 8359 2. 8362	R. A. 16h 54 13.798 55 20.064 31.112 42.160 53.208 56 4.258 15.308 26.360	2. 2084 2. 2094 2. 2095 2. 2097 2. 2098 2. 2100 2. 2103 2. 2103
Year. 1800 1830 1840 1850 1855 1866	R. A. 16h 21 37. 649 22 54. 892 23 7. 769 20. 646 33. 525 46. 405 59. 286 24 12. 167 25. 050	2. 5742 2. 5753 2. 5757 2. 5759 2. 5760 2. 5764 2. 5764	ζ Oph R. A. 16 ^h 26 9.54 27 48.31 28 4.78 21.25 37.73 54.20 29 10.68 27.16 43.65	iuchi. Ann. var. 3. 2911 3. 2938 3. 2947 3. 2952 3. 2957 3. 2966 3. 2965 3. 2969 3. 2973	R. A. 16h 36 2. 778 37 4. 305 14. 563 24. 822 35. 082 45. 343 55. 605 38 5. 868 16. 131	2. 0504 2. 0515 2. 0517 2. 0519 2. 0521 2. 0523 2. 0525 2. 0526 2. 0528	R. A. 16h 48 12.510 49 37.535 51.710 50 5.886 20.063 34.241 48.420 51 2.600 16.782	2. 8336 2. 8349 2. 8351 2. 8353 2. 8355 2. 8357 2. 8359 2. 8362 2. 8364 2. 8366 2. 8368	R. A. 16h 54 13.798 55 20.064 31.112 42.160 53.208 56 4.258 15.308 26.360 37.412	2. 2084 2. 2094 2. 2095 2. 2097 2. 2098 2. 2100 2. 2102 2. 2103 2. 2105
800 830 845 850 865 865 870 875	8 Hero R. A. 16h 21 37. 649 22 54. 892 23 7. 769 20. 646 33. 525 46. 405 59. 286 24 12. 167 25. 050 37. 933	2. 5742 2. 5753 2. 5757 2. 5759 2. 5760 2. 5762 2. 5764 2. 5766 2. 5768	7 Oph R. A. 16h 26 9.54 27 48.31 28 4.78 21.25 37.73 54.20 29 10.68 27.16 43.65 30 0.13	iuchi. Ann. var. 3. 2911 3. 2938 3. 2942 3. 2947 3. 2952 3. 2956 3. 2966 3. 2969 3. 2973 3. 2978	R. A. 16h 36 2. 778 37 4. 305 14. 563 24. 822 35. 082 45. 343 55. 605 38 5. 868 16. 131 26. 396	2. 0504 2. 0515 2. 0517 2. 0519 2. 0521 2. 0523 2. 0525 2. 0526 2. 0528 2. 0530	R. A. 16h 48 12.510 49 37.535 51.710 50 5.886 20.063 34.241 48.420 51 2.600 16.782 30.964	2. 8336 2. 8349 2. 8351 2. 8353 2. 8355 2. 8357 2. 8359 2. 8362 2. 8364 2. 8366	R. A. 16 ^h 54 13.798 55 20.064 31.112 42.160 53.208 56 4.258 15.308 26.360 37.412 48.465	2. 2084 2. 2094 2. 2095 2. 2097 2. 2098 2. 2100 2. 2102 2. 2103 2. 2107 2. 2108
Year. 800 830 835 846 850 855 860 875	β Hero R. A. 16h 21 37. 649 22 54. 892 23 7. 769 20. 646 33. 525 46. 405 59. 286 24 12. 167 25. 050 37. 933 50. 817 25 3. 703	2. 5742 2. 5753 2. 5755 2. 5757 2. 5759 2. 5760 2. 5764 2. 5766 2. 5768 2. 5769 2. 5771	7 Oph R. A. 16h 26 9.54 27 48.31 28 4.78 21.25 37.73 54.20 29 10.68 27.16 43.65 30 0.13 16.62 33.11	iuchi. Ann. var. 3. 2911 3. 2938 3. 2947 3. 2952 3. 2957 3. 2960 3. 2965 3. 2969 3. 2978 3. 2978 3. 2982	R. A. 16h 36 2. 778 37 4. 305 14. 563 24. 822 35. 082 45. 343 55. 605 38 5. 868 16. 131 26. 396 36. 662 46. 928	Ann. var. 2. 0504 2. 0515 2. 0517 2. 0519 2. 0521 2. 0523 2. 0525 2. 0526 2. 0528 2. 0530 2. 0532 2. 0534	R. A. 16h 48 12.510 49 37.535 51.710 50 5.886 20.063 34.241 48.420 51 2.600 16.782 30.964 45.148	2. 8336 2. 8349 2. 8351 2. 8353 2. 8355 2. 8357 2. 8359 2. 8362 2. 8364 2. 8366 2. 8368	R. A. 16 ^h 54 13.798 55 20.064 31.112 42.160 53.208 56 4.258 15.308 26.360 37.412 48.465 59.518	2. 2084 2. 2094 2. 2095 2. 2097 2. 2098 2. 2100 2. 2103
800 830 835 840 855 860 870 875 880 885	β Hero R. A. 16h 21 37. 649 22 54. 892 23 7. 769 20. 646 33. 525 46. 405 59. 286 24 12. 167 25. 050 37. 933 50. 817 25 3. 703 16. 589	2. 5742 2. 5753 2. 5755 2. 5757 2. 5759 2. 5760 2. 5764 2. 5766 2. 5768 2. 5769 2. 5771	7 Oph R. A. 16 ^b 26 9. 54 27 48. 31 28 4. 78 21. 25 37. 73 54. 20 29 10. 68 27. 16 43. 65 30 0. 13 16. 62	iuchi. Ann. var. 3. 2911 3. 2938 3. 2942 3. 2947 3. 2957 3. 2960 3. 2965 3. 2969 3. 2973 3. 2982 3. 2982	R. A. 16h 36 2. 778 37 4. 305 14. 563 24. 822 35. 082 45. 343 55. 605 38 5. 868 16. 131 26. 396 36. 662	2. 0504 2. 0515 2. 0517 2. 0519 2. 0521 2. 0523 2. 0525 2. 0526 2. 0528 2. 0530 2. 0532	R. A. 16h 48 12.510 49 37.535 51.710 50 5.886 20.063 34.241 48.420 51 2.600 16.782 30.964 45.148 59.332	2. 8336 2. 8349 2. 8351 2. 8353 2. 8355 2. 8357 2. 8359 2. 8362 2. 8364 2. 8366 2. 8368 2. 8370 2. 8373	R. A. 16h 54 13. 798 55 20. 064 31. 112 42. 160 53. 208 56 4. 258 15. 308 26. 360 37. 412 48. 465 59. 518 57 10. 573	2. 2084 2. 2094 2. 2095 2. 2097 2. 2098 2. 2100 2. 2103 2. 2105 2. 2108 2. 2110
Year. 1800 1830 1835 1840 1850 1855 1866 18670	β Hero R. A. 16h 21 37. 649 22 54. 892 23 7. 769 20. 646 33. 525 46. 405 59. 286 24 12. 167 25. 050 37. 933 50. 817 25 3. 703	2. 5742 2. 5753 2. 5755 2. 5757 2. 5759 2. 5760 2. 5764 2. 5766 2. 5768 2. 5769 2. 5771	7 Oph R. A. 16h 26 9.54 27 48.31 28 4.78 21.25 37.73 54.20 29 10.68 27.16 43.65 30 0.13 16.62 33.11 49.60	iuchi. Ann. var. 3. 2911 3. 2938 3. 2947 3. 2952 3. 2957 3. 2960 3. 2965 3. 2969 3. 2973 3. 2982 3. 2987 3. 2987	R. A. 16h 36 2. 778 37 4. 305 14. 563 24. 822 35. 082 45. 343 55. 605 38 5. 868 16. 131 26. 396 36. 662 46. 928 57. 196	Ann. var. 2. 0504 2. 0515 2. 0517 2. 0519 2. 0521 2. 0523 2. 0526 2. 0528 2. 0530 2. 0532 2. 0534 2. 0536	R. A. 16h 48 12. 510 49 37. 535 51. 710 50 5. 886 20. 063 34. 241 48. 420 51 2. 600 16. 782 30. 964 45. 148 59. 332 52 13. 518	2. 8336 2. 8349 2. 8351 2. 8353 2. 8355 2. 8357 2. 8369 2. 8364 2. 8366 2. 8368 2. 8370	R. A. 16h 54 13. 798 55 20. 064 31. 112 42. 160 53. 208 56 4. 258 15. 308 26. 360 37. 412 48. 465 59. 518 57 10. 573 21. 628	2. 2084 2. 2094 2. 2095 2. 2097 2. 2098 2. 2100 2. 2103 2. 2105 2. 2106 2. 2110 2. 2111

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

	İ	α¹ Hero	culis.		b Ophic	ıchi.		β Drace	onis.		α Ophi	ıchi.		μ Hero	ulis.
Year.	1	R. A.	Ann. var.]	R. A.	Ann. var.		R. A.	Ann. var.]	R. A.	Ann. var.	1	R. A.	Ann. va
		17 ^h			17 ^h			17 ^h			17h			17h	
800	5	32.029	2. 7304	14	10, 128	3.6522	25	55. 274	1. 3487	25	39- 377	2. 7798	38	38. 219	2. 3429
830	6	53.956	2. 7314	15	59. 731	3. 6546	26	35. 760	1. 3503	27	2. 788	2. 7809	39	48. 524	2. 3441
835	, 7	7. 614	2. 7316	16	18, 005	3.6550		42. 512	1. 3506		16.692	2. 7810	40	0. 245	2. 3443
840	ì	21. 273	2. 7318		36. 281	3.6553		49. 265	1. 3508		30. 598	2. 7812		11.967	2. 344
845		34. 932	2. 7320		54. 558	3.6557		56. 020	1. 3511		44. 504	2. 7814		23.690	². 344
850			2. 7321	17		3. 6561	27	2. 776	1. 3513		58. 411	2. 7815		35.414	2. 344
855	8	2, 253	2. 7323		31. 119	3. 6565		9. 533	1. 3516	28	12, 319	2. 7817		47. 139	2. 345
1860		15.915	2. 7325		49. 403	3. 6568		16, 292	1. 3519		26. 228	2. 7819		58.865	2. 345
1865	į	29. 578	2. 7327	18	7. 688	3.6572		23. 052	1. 3521		40. 138	2. 7820	41	10, 591	2. 345
1870		43. 242	2. 7328		25. 975			29.813	1. 3524		54.049	2. 7822	•	22. 319	2. 345
1875	1	56, 906	2. 7330		44. 264	3. 6580		36. 576	1. 3526	29	7.960	2. 7824		34. 047	
18 8 0	 9	10. 572	2. 7332	19	2. 554	3.6583		43. 339	1. 3529		21.872	2. 7825		45. 777	
1885		24. 238	2. 7333	!	20. 847	3. 6587	ļ	50, 104	1. 3531		35. 785	2. 7827		57. 507	2. 346
1890		37. 905	2. 7335	:	39. 141	3.6590		56. 871	1. 3534		49. 699	2. 7829	42	9. 239	2, 346
1895	1	51. 573	2. 7337		57-437	1	28	3.638	1. 3536	30	3.614		'	20. 971	2. 346
1900	10	5. 242	2. 7339	20	15. 735	3.6598		10.407	1. 3539		17. 530	2. 7832		32. 704	2. 346
		γ Drac	onis.		γ² Sagi	ttarii.		μ Sagit	tarii.		η Serpe	entis.		ı Aqu	ilæ.
Year.		γ Drac R. A.	onis.		γ² Sagii R. A.	ttarii. Ann. var.		μ Sagit R. A.	ttarii. Ann. var.		η Serpe	entis.		ı Aqu R. A.	
Year.		R. A.			R. A.	1		R. A.			R. A.	1		R. A.	
		R. A.	Ann. var.		R. A.	Ann. var.		R. A.	Ann. var.	 	R. A.	Ann. var.		R. A.	Ann. v
1800	51	R. A. 17 ^h 58. 008	Ann. var.	52	R. A. 17 ^h 57. 951	Ann. var.	1	R. A. 18h 48. 346	Ann. var.	10	R. A. 18h 57. 941	Ann. var.	24	R. A. 18 ^h 19. 468	Ann. v
1800 1830		R. A. 17 ^h 58. 008 39. 681	Ann. var.	52 54	R. A. 17 ^h 57. 951 53. 439	Ann. var. 3. 8491 3. 8500	1	R. A. 18h 48. 346 35. 919	Ann. var.	 	R. A. 18h 57. 941 30. 969	Ann. var. 3. 1005 3. 1012	24	R. A. 18h 19.468 57.401	Ann. v 3. 264 3. 264
1800	51	R. A. 17 ^h 58. 008 39. 681 46. 629	I. 3886 I. 3896 I. 3897	52	7 ^h 57. 951 53. 439 12. 690	3. 8491 3. 8500 3. 8502	1	R. A. 18h 48. 346 35. 919 53. 849	Ann. var. 3. 5856 3. 5860 3. 5860	10	R. A. 18h 57. 941	Ann. var.	24	R. A. 18 ^h 19. 468	3. 264 3. 264 3. 264
1800 1830 1835	51 52	R. A. 17 ^h 58. 008 39. 681 46. 629 53. 578	I. 3886 I. 3896 I. 3897 I. 3899	52 54	R. A. 17h 57. 951 53. 439 12. 690 31. 941	3. 8491 3. 8500 3. 8502 3. 8503	3	R. A. 18h 48. 346 35. 919 53. 849 11. 779	Ann. var. 3. 5856 3. 5860 3. 5860 3. 5861	10	18h 57. 941 30. 969 46. 475 1. 982	3. 1005 3. 1012 3. 1013 3. 1014	24	R. A. 18h 19, 468 57, 401 13, 724 30, 046	3. 264 3. 264 3. 264 3. 264
1800 1830 1835 1840 .	51 52 53	R. A. 17 ^h 58. 008 39. 681 46. 629 53. 578 0. 528	I. 3886 I. 3896 I. 3899 I. 3901	52 54 55	17 ^h 57. 951 53. 439 12. 690 31. 941 51. 193	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504	1 3	R. A. 18h 48. 346 35. 919 53. 849 11. 779 29. 710	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862	10	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015	24 25 26	R. A. 18h 19. 468 57. 401 13. 724 30. 046 46. 368	3. 264 3. 264 3. 264 3. 264 3. 264
1800 1830 1835 1840 .	51 52 53	R. A. 17 ^h 58. 008 39. 681 46. 629 53. 578 0. 528 7. 479	I. 3886 I. 3896 I. 3897 I. 3901 I. 3902	52 54 55	R. A. 17h 57. 951 53. 439 12. 690 31. 941 51. 193 10. 445	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504 3. 8505	3	R. A. 18h 48. 346 35. 919 53. 849 11. 779 29. 710 47. 641	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862 3. 5862	10	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489 32. 997	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015 3. 1016	24	R. A. 18h 19. 468 57. 401 13. 724 30. 046 46. 368 2. 691	3. 264 3. 264 3. 264 3. 264 3. 264 3. 264
1800 1830 1835 1840 1845	51 52 53	R. A. 17h 58, 008 39, 681 46, 629 53, 578 0, 528 7, 479 14, 431	I. 3886 I. 3896 I. 3897 I. 3899 I. 3901 I. 3902 I. 3904	52 54 55	R. A. 17 ^h 57. 951 53. 439 12. 690 31. 941 51. 193 10. 445 29. 698	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504 3. 8505 3. 8507	3	R. A. 18h 48. 346 35. 919 53. 849 11. 779 29. 710 47. 641 5. 572	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862 3. 5862 3. 5863	10	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489 32. 997 48. 505	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015 3. 1016 3. 1017	24 25 26	R. A. 18h 19. 468 57. 401 13. 724 30. 046 46. 368 2. 691 19. 014	3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264
1800	51 52	R. A. 17 ^h 58. oo8 39. 681 46. 629 53. 578 0. 528 7. 479 14. 431 21. 382	I. 3886 I. 3896 I. 3897 I. 3899 I. 3901 I. 3902 I. 3904 I. 3906	52 54 55	R. A. 17 ^h 57. 951 53. 439 12. 690 31. 941 51. 193 10. 445 29. 698 48. 952	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504 3. 8505 3. 8507 3. 8508	3	R. A. 18h 48. 346 35. 919 53. 849 11. 779 29. 710 47. 641 5. 572 23. 504	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862 3. 5862 3. 5863	10 12	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489 32. 997 48. 505 4. 014	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015 3. 1016 3. 1017 3. 1018	24 25 26	R. A. 18h 19. 468 57. 401 13. 724 30. 046 46. 368 2. 691 19. 014 35. 336	3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264
1800 1830 1835 1840 1845 1850 1866	51 52 53	R. A. 17h 58, 008 39, 681 46, 629 53, 578 0, 528 7, 479 14, 431 21, 382 28, 336	I. 3886 I. 3896 I. 3899 I. 3899 I. 3901 I. 3902 I. 3904 I. 3906 I. 3907	52 54 55	R. A. 17 ^h 57. 951 53. 439 12. 690 31. 941 51. 193 10. 445 29. 698 48. 952 8. 206	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504 3. 8505 3. 8507 3. 8508	3	R. A. 18h 48, 346 35, 919 53, 849 11, 779 29, 710 47, 641 5, 572 23, 504 41, 435	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862 3. 5862 3. 5863 3. 5863	10 12	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489 32. 997 48. 505 4. 014 19. 523	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015 3. 1016 3. 1017 3. 1018	24 25 26 27	R. A. 18 ^b 19. 468 57. 401 13. 724 30. 046 46. 368 2. 691 19. 014 35. 336 51. 659	3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264
1800	51 52	R. A. 17h 58, 008 39, 681 46, 629 53, 578 0, 528 7, 479 14, 431 21, 382 28, 336 35, 290	I. 3886 I. 3896 I. 3899 I. 3901 I. 3902 I. 3904 I. 3907 I. 3909	52 54 55 55	R. A. 17 ^h 57. 951 53. 439 12. 690 31. 941 51. 193 10. 445 29. 698 48. 952 8. 206 27. 461	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504 3. 8505 3. 8507 3. 8508 3. 8509 3. 8510	3 3	R. A. 18h 48. 346 35. 919 53. 849 11. 779 29. 710 47. 641 5. 572 23. 504 41. 435 59. 367	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862 3. 5863 3. 5863 3. 5864 3. 5864	13	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489 32. 997 48. 505 4. 014 19. 523 35. 033	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015 3. 1016 3. 1017 3. 1018 3. 1019 3. 1020	24 25 26	R. A. 18 ^b 19. 468 57. 401 13. 724 30. 046 46. 368 2. 691 19. 014 35. 336 51. 659 7. 981	3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264
1800 1830 1835 1840 1850 1855 1866 1865 1870	51 52 53	R. A. 17h 58, 008 39, 681 46, 629 53, 578 0, 528 7, 479 14, 431 21, 382 28, 336 35, 290 42, 245	I. 3886 I. 3896 I. 3897 I. 3901 I. 3902 I. 3904 I. 3907 I. 3909 I. 3910	52 54 55 56	R. A. 17 ^h 57. 951 53. 439 12. 690 31. 941 51. 193 10. 445 29. 698 48. 952 8. 206 27. 461 46. 717	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504 3. 8505 3. 8507 3. 8508 3. 8509 3. 8510 3. 8512	3 3	R. A. 18h 48. 346 35. 919 53. 849 11. 779 29. 710 47. 641 5. 572 23. 504 41. 435 59. 367 17. 300	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862 3. 5863 3. 5864 3. 5864 3. 5865	13	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489 32. 997 48. 505 4. 014 19. 523 35. 033 50. 543	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015 3. 1016 3. 1017 3. 1018 3. 1019 3. 1020 3. 1021	24 25 26 27	R. A. 18h 19, 468 57, 401 13, 724 30, 046 46, 368 2, 691 19, 014 35, 336 51, 659 7, 981 24, 304	3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264
1800	51 52 53	R. A. 17h 58. oo8 39. 681 46. 629 53. 578 0. 528 7. 479 14. 431 21. 382 28. 336 35. 290 42. 245 49. 200	I. 3886 I. 3896 I. 3897 I. 3899 I. 3901 I. 3904 I. 3906 I. 3907 I. 3909 I. 3910 I. 3912	52 54 55 56	R. A. 17h 57. 951 53. 439 12. 690 31. 941 51. 193 10. 445 29. 698 48. 952 8. 206 27. 461 46. 717 5. 973	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504 3. 8505 3. 8507 3. 8508 3. 8509 3. 8510 3. 8512 3. 8513	3 3	R. A. 18h 48. 346 35. 919 53. 849 11. 779 29. 710 47. 641 5. 572 23. 504 41. 435 59. 367 17. 300 35. 232	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862 3. 5862 3. 5863 3. 5864 3. 5864 3. 5864 3. 5865	10 12 13	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489 32. 997 48. 505 4. 014 19. 523 35. 033 50. 543 6. 053	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015 3. 1016 3. 1017 3. 1018 3. 1019 3. 1020 3. 1021 3. 1022	24 25 26 27 27	R. A. 18h 19. 468 57. 401 13. 724 30. 046 46. 368 2. 691 19. 014 35. 336 51. 659 7. 981 24. 304 40. 627	3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264
1800	51 52 53	R. A. 17h 58. 008 39. 681 46. 629 53. 578 0. 528 7. 479 14. 431 21. 382 28. 336 35. 290 42. 245 49. 200 56. 157	I. 3886 I. 3896 I. 3897 I. 3899 I. 3901 I. 3904 I. 3906 I. 3907 I. 3909 I. 3910 I. 3912 I. 3914	52 54 55 56 57	R. A. 17h 57. 951 53. 439 12. 690 31. 941 51. 193 10. 445 29. 698 48. 952 8. 206 27. 461 46. 717 5. 973 25. 229	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504 3. 8505 3. 8508 3. 8509 3. 8510 3. 8512 3. 8513	1 3 4 4 5 5	R. A. 18h 48. 346 35. 919 53. 849 11. 779 29. 710 47. 641 5. 572 23. 504 41. 435 59. 367 17. 300 35. 232 53. 165	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862 3. 5863 3. 5863 3. 5864 3. 5864 3. 5865 3. 5865	13	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489 32. 997 48. 505 4. 014 19. 523 35. 033 50. 543 6. 053 21. 564	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015 3. 1016 3. 1017 3. 1018 3. 1019 3. 1020 3. 1021 3. 1022	24 25 26 27 28	R. A. 18 ^b 19. 468 57. 401 13. 724 30. 046 46. 368 2. 691 19. 014 35. 336 51. 659 7. 981 24. 304 40. 627 56. 949	3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264
1800	51 52 53	R. A. 17h 58, 008 39, 681 46, 629 53, 578 0, 528 7, 479 14, 431 21, 382 28, 336 35, 290 42, 245 49, 200 56, 157 3, 114	I. 3886 I. 3896 I. 3899 I. 3901 I. 3902 I. 3904 I. 3907 I. 3909 I. 3910 I. 3914 I. 3915	52 54 55 56 57	R. A. 17h 57. 951 53. 439 12. 690 31. 941 51. 193 10. 445 29. 698 48. 952 8. 206 27. 461 46. 717 5. 973 25. 229 44. 487	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504 3. 8505 3. 8508 3. 8509 3. 8510 3. 8512 3. 8514 3. 8514	3 3 4 5 5	R. A. 18h 48, 346 35, 919 53, 849 11, 779 29, 710 47, 641 5, 572 23, 504 41, 435 59, 367 17, 300 35, 232 53, 165 11, 098	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862 3. 5862 3. 5863 3. 5864 3. 5864 3. 5865 3. 5866 3. 5866	13	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489 32. 997 48. 505 4. 014 19. 523 35. 033 50. 543 6. 053 21. 564 37. 076	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015 3. 1016 3. 1017 3. 1018 3. 1019 3. 1020 3. 1021 3. 1022 3. 1022	24 25 26 27 28	R. A. 18 ^b 19. 468 57. 401 13. 724 30. 046 46. 368 2. 691 19. 014 35. 336 51. 659 7. 981 24. 304 40. 627 56. 949 13. 272	3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264
1800	51 52 53	R. A. 17h 58. 008 39. 681 46. 629 53. 578 0. 528 7. 479 14. 431 21. 382 28. 336 35. 290 42. 245 49. 200 56. 157	I. 3886 I. 3896 I. 3899 I. 3901 I. 3902 I. 3904 I. 3907 I. 3909 I. 3910 I. 3914 I. 3915 I. 3917	52 54 55 56 57	R. A. 17h 57. 951 53. 439 12. 690 31. 941 51. 193 10. 445 29. 698 48. 952 8. 206 27. 461 46. 717 5. 973 25. 229	3. 8491 3. 8500 3. 8502 3. 8503 3. 8504 3. 8505 3. 8509 3. 8509 3. 8510 3. 8512 3. 8514 3. 8515 3. 8516	5	R. A. 18h 48. 346 35. 919 53. 849 11. 779 29. 710 47. 641 5. 572 23. 504 41. 435 59. 367 17. 300 35. 232 53. 165	Ann. var. 3. 5856 3. 5860 3. 5861 3. 5862 3. 5862 3. 5863 3. 5864 3. 5864 3. 5865 3. 5866 3. 5866 3. 5866 3. 5866	13	R. A. 18h 57. 941 30. 969 46. 475 1. 982 17. 489 32. 997 48. 505 4. 014 19. 523 35. 033 50. 543 6. 053 21. 564 37. 076 52. 588	3. 1005 3. 1012 3. 1013 3. 1014 3. 1015 3. 1016 3. 1017 3. 1018 3. 1019 3. 1020 3. 1021 3. 1022	24 25 26 27 28	R. A. 18 ^b 19. 468 57. 401 13. 724 30. 046 46. 368 2. 691 19. 014 35. 336 51. 659 7. 981 24. 304 40. 627 56. 949	3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264 3. 264

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

		α Lyr	æ.		ß Ly	ræ.	ı	o Sagit	tarii.		ζ Aqui	ilæ.		d Sagit	tarii.
Year.]	R. A.	Ann. var.		R. A.	Ann. var.		R. A.	Ann. var.]	R. A.	Ann. var.		R. A.	Ann. var
		18b			18h	!		18h		18	հ; 19 ^հ	<u> </u>		10h	
1800	30	10. 089	2. 0304	42	41.917	2. 2129	42	_	3. 7261	56	13. 163	2. 7565	5	55. 579	3. 5176
1830	31	11.005	2. 0307		48, 310	2, 2133	44		3. 7247	57	35. 859	2. 7566	7	41,081	3. 5159
1835		21. 159	2. 0307		59.377	2. 2134	45		3. 7245		49. 643	2. 7567		58, 660	
1840		31.313	2.0308	44	10. 444	2. 2135			3. 7242	58	3. 426	2. 7567	8	16. 237	3. 5153
1845		41.467	2.0308		21, 512	2. 2136		39. 143	3. 7240		17. 210	2. 7567		33.813	 3.5150
1850		51.621	2. 0309		32. 580	2. 2136		57. 762	3. 7237		30. 993	2. 7567		51.387	
1855 .	32	1. 776	2.0310		43.648	2. 2137	46	16. 380	3. 7235		44. 777	2. 7567	9	8. 960	3. 5144
1860	١	11.931	2.0310		54. 717		•		3. 7232		58. 560	2. 7568		26. 531	3. 5141
1865		22. 086	2.0311	45	5. 786	2. 21 39		53.612	3. 7229	59	12. 344	2. 7568		44. 100	3. 5138
1870	l	32, 241	2. 0311	T 3	16. 856	2. 2139	47	12. 226	3. 7227	37		2. 7568	10	1,669	3. 5135
1875		42. 397	2.0312	: I	27. 925		4/	30. 839	3. 7224		39. 912			19. 235	3. 5132
1880			2.0312	'	38, 996	=		49. 450	3. 7222	`	53.696	2. 7568		36, 800	3. 5129
			i			!			1			1		•	
1885	33	2. 709	2.0313	:	50, 066	2. 2141	48	8, 060	3. 7219	0	7. 481	2. 7569		54. 364	
1890		12.865	2.0313	40	1. 137	-		26, 669	3. 7216		21. 265	2. 7569		11.926	
1895		23. 022 33. 179	2.0314	i	12. 208 23. 280	1	1	45. 277 3. 883	3. 7214		35. 049 48. 834	2. 7569 2. 7569		29, 486 47, 045	3. 5119
	l	55 17			•	1	49	5 5	1 3 .			.,,			3.3
		8 Aqu	ilæ.		ж Aqu	ilæ.		γ Aqu	ilæ.		a Aqu	ilæ.		β Aqu	ilæ.
Year.		R. A.	Ann. var.	 	R. A.	Ann, var.	 	R. A.	Ann. var.	 	R. A.	Ann. var.		R. A.	Ann. vai
		10 _p		 	10p			19h			10p			19 ^h	i
1800	15	, .	3. 0268	26	-	3. 2328	36	45.066	2.8532	41	1.425	2. 9293	45	29. 308	2. 9483
1830	16	55. 581	3. 0263	27	44. 591	3. 2315	38	10.657	2. 8529		29, 296	1	46	57. 752	2. 9479
1835	17		3. 0262	28	0. 748	i	1	24. 921	2. 8528	ı	43.939	2. 9286	47	12. 492	2. 9479
1840		25.843	3. 0261		16, 904	3. 2311		39. 185	2.8528	i	58. 582	2. 9286		27. 231	2. 9478
1845		40. 974	3. 0261	İ	33. 059	3. 2309	1	53. 448	2. 8527	43	13. 225	2, 9285		41.970	2.9477
1850		56. 104	3. 0260		49. 213	1 -	39	7. 712	2.8527		27.867			56. 708	
1855	18	11.234	3. 0259	29		1		21.975	2. 8526		42. 508	1	48	11.446	2.9476
1860		26, 363	i		21.517		į	36. 238	1		57. 150	1 -	•	26. 184	1
1865		41.492	!	İ	37. 668	1		50. 500			11. 790	1		40. 921	2. 9474
1870	ĺ	56, 620	and the second second]	53.817	l l	40		1	"	26, 430			55.658	
1875	10	11. 748		30		1		19. 025	2. 8524	1	41.070		49	10. 394	2. 9473
1880		26. 875			26, 113	1	!	33. 287	1	1	55. 710	1	′′	25. 131	2. 9472
						1			ì	1				39. 866	Ī
1885		42,002		1	42. 259	1	4.	47. 548 1. 810	1		10. 349	1			2. 9471
1890	20	57. 128 12. 254	1	31	58. 404 14. 548	1	41		_		24. 987			54.602	2.9471
1045	1 40	14.414													
1900	1	27. 380]	30. 691			16. 071 30. 331	2. 8522 2. 8521	1	39. 625 54. 262	1	50	9· 337 24. 072	2. 9470 2. 9469

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

	r Aqu	iilæ.	α ² Capı	icorni.		γ Cyg	gni.	•	π Capri	corni.		ε Delp	hini.
Year.	R. A.	Ann. var.	R. A.	Ann. var.	ŀ	R. A.	Ann. var.		R. A.	Ann. var.		R. A.	Ann. v
	19h		20h			20 ^h			20 ^h			20h	
1800	54 21.975	2. 9349	6 56.844	3- 3397	15	3. 177	2. 1520	15	51.493	3.4499	23	39- 394	2.868
1830	55 50.011	2.9343	8 36.999	3. 3372	16	7. 747	2. 1526	17	34-935	3.4464	25	5. 438	2. 867
1835	56 4.682	2. 9342	53.684	3 3368		18. 510	2. 1527		52. 166	3.4458		19. 777	2, 867
1840	19. 353	2. 9341	9 10.367	3. 3364		29. 274	2. 1528	. 18	9. 393	3. 4452		34. 116	2.867
1845	34. 023	2. 9340	27. 048	3. 3360		40. 038	2. 1529	1	26, 618	3-4447		48. 455	2. 867
1850	48, 692	2. 9339	43. 726	3- 3355		50.803	2. 1530		43. 840	3. 4441	26	2. 794	2.867
1855	57 3.361	2. 9338	10 0, 403	3. 3351	17	1. 568	2. 1531	19	1. Q59	3-4435		17. 132	2.867
1860	18. 030	2. 9337	17.078	3-3347		12. 334	2, 1532		18. 275	3. 4429		31.470	2.86
1865	32, 698	2. 9336	33. 750	3. 3343		23. 100	2. 1533	1	35. 488	3. 4424	 	45. 808	2. 867
1870	47. 365			3 3339		33.866	2. 1534		52.699	3.4418	27	0. 145	2. 86
1875	58 2.032	:	11 7.090			44.633	2. 1535	20	9. 906	3.4412		14. 482	2. 86
1880	16, 699	2. 9333	23. 756		i	55. 401	2, 1536	į	27. 111	3. 4406		28, 819	2.86
1885	31. 365	2. 9332	40. 420	3. 3326	18	6, 169	2. 1537	'	44. 313	3. 4400		43. 155	2.86
1890	46, 030	1	57. 082			16. 937	2. 1537	21	1.512	3.4395		57.492	2. 86
1895	59 0.695	2. 9330	=	3. 3317		27. 706	2. 1538	ı	18. 708	3. 4389	28	11.827	2, 86
1900	15. 360	2. 9329	30, 400	3. 3313		38.476	2. 1539		35. 901	3.4383		26. 163	2. 86
	1	1 17 1			<u> </u>		•	·					<u> </u>
	<i>α</i> Cy ₁		μ Aqu			νCyg	ni.		61 Cygni	(pr).		ζ Cyg	ni.
Year.			μ Aqu R. A.		R	ν Cyg	ni.		61 Cygni	(pr).		ζ Cyg R. A.	
	α Cy ₁	yni.	R. A.	arii.		R. A.		1	R. A.	<u> </u>		R. A.	
Year.	α Cy ₁ R. A.	gni.	R. A.	arii.		20 ^h	Ann, var.	20 ¹	R. A.	Ann. var.		R. A.	Ann. v
Year.	α Cy ₁ R. A. 20 ^b 34 37. 034	Ann. var.	R. A. 20h 41 51.342	Ann. var.	49	20 ^h	Ann. var.	20 ¹ 57	R. A. 1; 21 ^h 56. 643	Ann. var.	4	R. A. 21h 25. 934	Ann. v
Year.	α Cy ₁ R. A. 20 ^h 34 37. 034 35 38. 316	Ann. var. 2. 0424 2. 0431	R. A. 20h 41 51.342 43 28.720	Ann. var. 3. 2472 3. 2447	49 50	20 ^h 43, 410 50, 352	Ann. var.	20 ¹	R. A. 21h 56.643 17.046	Ann. var.	4	21h 25. 934 42. 337	2. 546 2. 545
Year. 1800 1830	α Cy ₁ R. A. 20 ^h 34 37. 034 35 38. 316 48. 532	2, 0424 2, 0431 2, 0432	R. A. 20h 41 51.342	Ann. var. 3. 2472 3. 2447 3. 2443	49	20 ^h	Ann. var.	20 ¹ 57	R. A. 56. 643 17. 046 30. 450	Ann. var. 2. 6795 2. 6807	4	R. A. 21h 25. 934	2. 546 2. 546 2. 547
Year. 1800 1830 1835	α Cy ₁ R. A. 20 ^b 34 37. 034 35 38. 316 48. 532 58. 748	2. 0424 2. 0431 2. 0432 2. 0433	R. A. 20h 41 51.342 43 28.720 44.943 44 1.163	arii. Ann. var. 3. 2472 3. 2447 3. 2443 3. 2439	49 50	20h 43. 410 50. 352 1. 512 12. 673	Ann. var. 2. 2308 2. 2319 2. 2321 2. 2323	20 ¹ 57	R. A. 56. 643 17. 046 30. 450 43. 855	2. 6795 2. 6807 2. 6809 2. 6811	4 5	21h 25. 934 42. 337 55. 074 7. 812	2. 546 2. 547 2. 547 2. 547
Year. 1800 1830 1835 1840	α Cy ₁ R. A. 20 ^h 34 37. 034 35 38. 316 48. 532 58. 748 36 8. 965	2. 0424 2. 0431 2. 0432 2. 0433 2. 0434	R. A. 20h 41 51.342 43 28.720 44.943 44 1.163 17.382	arii. Ann. var. 3. 2472 3. 2447 3. 2443 3. 2439 3. 2435	49 50	20h 43. 410 50. 352 1. 512 12. 673 23. 835	Ann. var. 2. 2308 2. 2319 2. 2321 2. 2323 2. 2325	20 ¹ 57 59	R. A. 56. 643 17. 046 30. 450 43. 855 57. 261	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813	4 5	21h 25. 934 42. 337 55. 074 7. 812 20. 551	2. 540 2. 547 2. 547 2. 547 2. 547
Year. 1800 1830 1835 1840	α Cy ₁ R. A. 20 ^h 34 37. 034 35 38. 316 48. 532 58. 748 36 8. 965 19. 182	2. 0424 2. 0431 2. 0432 2. 0433 2. 0434 2. 0435	R. A. 20h 41 51. 342 43 28. 720 44. 943 44 1. 163 17. 382 33. 598	3. 2472 3. 2447 3. 2443 3. 2439 3. 2435 3. 2431	49 50	20h 43.410 50.352 1.512 12.673 23.835 34.998	Ann. var. 2. 2308 2. 2319 2. 2321 2. 2323 2. 2325 2. 2327	20 ¹ 57	R. A. 56. 643 17. 046 30. 450 43. 855 57. 261 10. 668	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813 2. 6815	4 5	21h 25. 934 42. 337 55. 074 7. 812 20. 551 33. 291	2. 544 2. 544 2. 544 2. 544 2. 544
Year. 1800 1830 1835 1840 1850 1855	α Cy ₁ R. A. 20 ^h 34 37. 034 35 38. 316 48. 532 58. 748 36 8. 965 19. 182 29. 399	2. 0424 2. 0431 2. 0432 2. 0433 2. 0434 2. 0435 2. 0436	R. A. 20h 41 51. 342 43 28. 720 44. 943 44 1. 163 17. 382 33. 598 49. 812	3. 2472 3. 2447 3. 2443 3. 2435 3. 2431 3. 2427	49 50	20 ^h 43. 410 50. 352 1. 512 12. 673 23. 835 34. 998 46. 162	2. 2308 2. 2319 2. 2321 2. 2323 2. 2325 2. 2327 2. 2329	20 ¹ 57 59	R. A. 1; 21h 56. 643 17. 046 30. 450 43. 855 57. 261 10. 668 24. 076	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813 2. 6815 2. 6817	4 5	R. A. 21h 25. 934 42. 337 55. 074 7. 812 20. 551 33. 291 46. 032	2. 546 2. 546 2. 546 2. 546 2. 546 2. 548
Year. 1800 1830 1835 1845 1850 1855	α Cy ₁ R. A. 20 ^b 34 37. 034 35 38. 316 48. 532 58. 748 36 8. 965 19. 182 29. 399 39. 618	2, 0424 2, 0431 2, 0432 2, 0433 2, 0434 2, 0435 2, 0436 2, 0437	R. A. 20h 41 51. 342 43 28. 720 44. 943 44 1. 163 17. 382 33. 598 49. 812 45 6. 025	arii. Ann. var. 3. 2472 3. 2447 3. 2443 3. 2439 3. 2435 3. 2431 3. 2427 3. 2422	49 50 51	20h 43, 410 50, 352 1, 512 12, 673 23, 835 34, 998 46, 162 57, 327	Ann. var. 2. 2308 2. 2319 2. 2321 2. 2323 2. 2325 2. 2327 2. 2329 2. 2330	20 ¹ 57 59	R. A. 21 ^h 56. 643 17. 046 30. 450 43. 855 57. 261 10. 668 24. 076 37. 485	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813 2. 6815 2. 6817 2. 6819	4 5 6	R. A. 21 ^h 25. 934 42. 337 55. 074 7. 812 20. 551 33. 291 46. 032 58. 774	2. 546 2. 547 2. 547 2. 547 2. 548 2. 548 2. 548
Year. 1800 1830 1835 1845 1850 1865	α Cy ₁ R. A. 20 ^b 34 37. °34 35 38. 316 48. 532 58. 748 36 8. 965 19. 182 29. 399 39. 618 49. 836	2. 0424 2. 0431 2. 0432 2. 0433 2. 0434 2. 0435 2. 0437 2. 0438	R. A. 20h 41 51. 342 43 28. 720 44. 943 44 1. 163 17. 382 33. 598 49. 812 45 6. 025 22. 235	3. 2472 3. 2447 3. 2443 3. 2439 3. 2435 3. 2431 3. 2427 3. 2422 3. 2418	49 50	20h 43. 410 50. 352 1. 512 12. 673 23. 835 34. 998 46. 162 57. 327 8. 492	Ann. var. 2. 2308 2. 2319 2. 2321 2. 2323 2. 2325 2. 2327 2. 2329 2. 2330 2. 2332	20 ¹ 57	R. A. 1; 21 ^h 56. 643 17. 046 30. 450 43. 855 57. 261 10. 668 24. 076 37. 485 50. 896	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813 2. 6815 2. 6819 2. 6822	4 5 6	R. A. 21 ^h 25. 934 42. 337 55. 074 7. 812 20. 551 33. 291 46. 032 58. 774 11. 517	2. 546 2. 547 2. 547 2. 547 2. 548 2. 548 2. 548
Year. 1800 1830 1835 1840 1850 1865 1860	α Cy ₁ R. A. 20 ^b 34 37. °34 35 38. 316 48. 532 58. 748 36 8. 965 19. 182 29. 399 39. 618 49. 836 37 0. 056	2. 0424 2. 0431 2. 0432 2. 0433 2. 0434 2. 0435 2. 0437 2. 0438 2. 0439	R. A. 20h 41 51. 342 43 28. 720 44. 943 44 1. 163 17. 382 33. 598 49. 812 45 6. 025 22. 235 38. 443	3. 2472 3. 2447 3. 2443 3. 2435 3. 2431 3. 2427 3. 2422 3. 2418 3. 2414	49 50 51	20h 43, 410 50, 352 1, 512 12, 673 23, 835 34, 998 46, 162 57, 327 8, 492 19, 659	Ann. var. 2. 2308 2. 2319 2. 2321 2. 2323 2. 2325 2. 2327 2. 2329 2. 2330 2. 2332 2. 2334	20 ¹ 57 59	R. A. 1; 21 ^h 56. 643 17. 046 30. 450 43. 855 57. 261 10. 668 24. 076 37. 485 50. 896 4. 307	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813 2. 6815 2. 6817 2. 6819 2. 6822 2. 6824	4 5 6	R. A. 21h 25. 934 42. 337 55. 074 7. 812 20. 551 33. 291 46. 032 58. 774 11. 517 24. 260	2. 544 2. 54; 2. 54; 2. 54; 2. 54; 2. 548 2. 548 2. 548 2. 548
Year. 1800 1830 1835 1840 1855 1860 1865 1870 1875	α Cy ₁ R. A. 20 ^h 34 37. 034 35 38. 316 48. 532 58. 748 36 8. 965 19. 182 29. 399 39. 618 49. 836 37 0. 056 10. 276	2. 0424 2. 0431 2. 0432 2. 0433 2. 0435 2. 0436 2. 0437 2. 0438 2. 0439 2. 0440	R. A. 20h 41 51. 342 43 28. 720 44. 943 44 1. 163 17. 382 33. 598 49. 812 45 6. 025 22. 235 38. 443 54. 649	3. 2472 3. 2447 3. 2443 3. 2435 3. 2431 3. 2427 3. 2418 3. 2414 3. 2410	49 50 51	20 ^h 43. 410 50. 352 1. 512 12. 673 23. 835 34. 998 46. 162 57. 327 8. 492 19. 659 30. 826	2. 2308 2. 2319 2. 2321 2. 2323 2. 2325 2. 2327 2. 2329 2. 2330 2. 2332 2. 2334 2. 2336	20 ¹ 57	R. A. 1; 21h 56. 643 17. 046 30. 450 43. 855 57. 261 10. 668 24. 076 37. 485 50. 896 4. 307 17. 719	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813 2. 6815 2. 6817 2. 6819 2. 6822 2. 6824 2. 6826	4 5 6	R. A. 21h 25. 934 42. 337 55. 074 7. 812 20. 551 33. 291 46. 032 58. 774 11. 517 24. 260 37. 005	2. 546 2. 547 2. 547 2. 547 2. 548 2. 548 2. 548 2. 548 2. 548
Year. 1800 1830 1835 1845 1850 1865 1867 1875	α Cy ₁ R. A. 20 ^b 34 37. °34 35 38. 316 48. 532 58. 748 36 8. 965 19. 182 29. 399 39. 618 49. 836 37 0. 056 10. 276 20. 496	2. 0424 2. 0431 2. 0432 2. 0433 2. 0434 2. 0437 2. 0438 2. 0439 2. 0440 2. 0441	R. A. 20h 41 51. 342 43 28. 720 44. 943 44 1. 163 17. 382 33. 598 49. 812 45 6. 025 22. 235 38. 443 54. 649 46 10. 853	3. 2472 3. 2447 3. 2443 3. 2439 3. 2435 3. 2431 3. 2422 3. 2418 3. 2414 3. 2410 3. 2406	49 50 51	20h 43. 410 50. 352 1. 512 12. 673 23. 835 34. 998 46. 162 57. 327 8. 492 19. 659 30. 826 41. 995	2. 2308 2. 2319 2. 2321 2. 2323 2. 2325 2. 2327 2. 2329 2. 2330 2. 2332 2. 2334 2. 2336 2. 2338	20 ¹ 57	R. A. 21h 56. 643 17. 046 30. 450 43. 855 57. 261 10. 668 24. 076 37. 485 50. 896 4. 307 17. 719 31. 133	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813 2. 6815 2. 6817 2. 6822 2. 6824 2. 6824 2. 6828	4 5 6	R. A. 21h 25. 934 42. 337 55. 074 7. 812 20. 551 33. 291 46. 032 58. 774 11. 517 24. 260 37. 005 49. 751	2. 546 2. 547 2. 547 2. 547 2. 548 2. 548 2. 548 2. 548 2. 548 2. 548
Year. 1800 1830 1835 1845 1855 1865 1867 1875 1875 1888	α Cy ₁ R. A. 20 ^b 34 37. °34 35 38. 316 48. 532 58. 748 36 8. 965 19. 182 29. 399 39. 618 49. 836 37 0. 056 10. 276 20. 496 30. 717	2. 0424 2. 0431 2. 0432 2. 0433 2. 0434 2. 0435 2. 0437 2. 0438 2. 0439 2. 0440 2. 0441	R. A. 20h 41 51. 342 43 28. 720 44. 943 44 1. 163 17. 382 33. 598 49. 812 45 6. 025 22. 235 38. 443 54. 649 46 10. 853	3. 2472 3. 2447 3. 2443 3. 2439 3. 2435 3. 2431 3. 2422 3. 2418 3. 2414 3. 2410 3. 2406 3. 2402	49 50 51	20h 43. 410 50. 352 1. 512 12. 673 23. 835 34. 998 46. 162 57. 327 8. 492 19. 659 30. 826 41. 995 53. 164	Ann. var. 2. 2308 2. 2319 2. 2321 2. 2323 2. 2325 2. 2327 2. 2329 2. 2330 2. 2332 2. 2334 2. 2336 2. 2338 2. 2340	20 ¹ 57 59	R. A. 1; 21 ^h 56. 643 17. 046 30. 450 43. 855 57. 261 10. 668 24. 076 37. 485 50. 896 4. 307 17. 719 31. 133 44. 547	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813 2. 6815 2. 6819 2. 6822 2. 6824 2. 6826 2. 6828 2. 6830	4 5 6	R. A. 21h 25. 934 42. 337 55. 074 7. 812 20. 551 33. 291 46. 032 58. 774 11. 517 24. 260 37. 005 49. 751 2. 498	2. 546 2. 547 2. 547 2. 547 2. 548 2. 548 2. 548 2. 548 2. 548 2. 548 2. 548 2. 548
Year. 1800 1830 1835 1845 1855 1865 1870 1875 1880	α Cy ₁ R. A. 20 ^b 34 37. °34 35 38. 316 48. 532 58. 748 36 8. 965 19. 182 29. 399 39. 618 49. 836 37 0. 056 10. 276 20. 496 30. 717 40. 939	2. 0424 2. 0431 2. 0432 2. 0433 2. 0434 2. 0435 2. 0436 2. 0437 2. 0438 2. 0449 2. 0441 2. 0443	R. A. 20h 41 51. 342 43 28. 720 44. 943 44 1. 163 17. 382 33. 598 49. 812 45 6. 025 22. 235 38. 443 54. 649 46 10. 853	3. 2472 3. 2447 3. 2443 3. 2435 3. 2431 3. 2427 3. 2418 3. 2414 3. 2410 3. 2406 3. 2402 3. 2398	49 50 51 52	20h 43. 410 50. 352 1. 512 12. 673 23. 835 34. 998 46. 162 57. 327 8. 492 19. 659 30. 826 41. 995 53. 164 4. 334	Ann. var. 2. 2308 2. 2319 2. 2321 2. 2323 2. 2325 2. 2327 2. 2329 2. 2330 2. 2332 2. 2334 2. 2336 2. 2338 2. 2340 2. 2342	20 ^k 57 59	R. A. 1; 21 ^h 56. 643 17. 046 30. 450 43. 855 57. 261 10. 668 24. 076 37. 485 50. 896 4. 307 17. 719 31. 133 44. 547 57. 963	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813 2. 6815 2. 6819 2. 6822 2. 6824 2. 6826 2. 6830 2. 6832	4 5 6	R. A. 21h 25. 934 42. 337 55. 074 7. 812 20. 551 33. 291 46. 032 58. 774 11. 517 24. 260 37. 005 49. 751 2. 498 15. 245	2. 546 2. 547 2. 547 2. 547 2. 548 2. 548 2. 548 2. 548 2. 549 2. 549 2. 549
	α Cy ₁ R. A. 20 ^b 34 37. °34 35 38. 316 48. 532 58. 748 36 8. 965 19. 182 29. 399 39. 618 49. 836 37 0. 056 10. 276 20. 496 30. 717	2. 0424 2. 0431 2. 0432 2. 0433 2. 0434 2. 0435 2. 0437 2. 0438 2. 0439 2. 0440 2. 0441	R. A. 20h 41 51. 342 43 28. 720 44. 943 44 1. 163 17. 382 33. 598 49. 812 45 6. 025 22. 235 38. 443 54. 649 46 10. 853	3. 2472 3. 2447 3. 2443 3. 2439 3. 2435 3. 2431 3. 2427 3. 2418 3. 2414 3. 2410 3. 2406 3. 2402 3. 2398 3. 2394	49 50 51	20h 43. 410 50. 352 1. 512 12. 673 23. 835 34. 998 46. 162 57. 327 8. 492 19. 659 30. 826 41. 995 53. 164	Ann. var. 2. 2308 2. 2319 2. 2321 2. 2323 2. 2325 2. 2327 2. 2329 2. 2330 2. 2332 2. 2334 2. 2336 2. 2338 2. 2340	20 ^k 57 59	R. A. 1; 21h 56. 643 17. 046 30. 450 43. 855 57. 261 10. 668 24. 076 37. 485 50. 896 4. 307 17. 719 31. 133 44. 547 57. 963	2. 6795 2. 6807 2. 6809 2. 6811 2. 6813 2. 6815 2. 6819 2. 6822 2. 6824 2. 6826 2. 6828 2. 6830	4 5 6	R. A. 21h 25. 934 42. 337 55. 074 7. 812 20. 551 33. 291 46. 032 58. 774 11. 517 24. 260 37. 005 49. 751 2. 498	2. 544 2. 54 2. 54 2. 54 2. 54 2. 54 2. 54 2. 54 2. 54 2. 54 2. 54 2. 54 2. 54

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

	α	ephei.		1 Peg	asi.		β Aqu	arii.		ξ Aqua	arii.		ε Peg	asi.
Year.	R. A.	Ann. var.		R. A.	Ann. var.		R. A.	Ann. var.	1	R. A.	Ann. var.		R. A.	Ann. va
	21 ^h			21 ^h			21h			21 ^b		 	21h	
1800	13 47.7	03 1.4425	12	50. 507	2. 7705	21	1. 254	3. 1681	27	5. 647	3. 2052	34	21. 799	2. 947
1830	14 30.9		14	13.633	2. 7711	22	36. 267	3. 1660	28	41.770	3. 2028	35	50. 213	2.947
1835	38. 1	47 1.4401	1	27. 489	2. 7712	I	52, 096	3. 1657		57. 783	3. 2024	36	4- 949	2. 947
1840	45.3	47 1.4398		41.345	2. 7713		7. 924	3. 1653	29	13. 794	3. 2020		19. 683	2. 947
845	52. 5	i		55. 202	2. 7714		23. 749	3. 1649		29. 803	3. 2016		34. 418	2, 946
850	59. 7	-	15	9. 059	2. 7715		39. 573	3. 1646	!	45.810	3. 2012		49. 153	2.946
855	15 6.9		'	22.917	2. 7716		55. 395	3. 1642	30	1.815	3. 2008	37	3. 888	2. 946
860	14.1			36. 775	2. 7717	24		3. 1639		17.818	3. 2004	3,	18. 622	2.946
			!				•	ļ		-				1
865	21.3			50, 633	2. 7717		27.034	3. 1635		33.819	3. 2000	}	33. 356	2.946
870	28. 5		16	4. 492	2. 7718	:	42.851	3. 1632	۱		3. 1996	.0	48, 090	2.946
875	35. 7		1	18. 351	2. 7719		58, 666	3. 1628	31	5.814		38	2. 824	2.940
880	42.8	88 1.4372		32. 211	2. 7720	25	14.479	3. 1625		21.809	3. 1987		17. 558	2.946
885	50.0	73 1.4369		46. 072	2. 7721		30. 290	3. 1621		37. 801	3. 1983		32, 292	2. 940
890	57. 2	56 1.4365	!	59. 932	2. 7722	1	46. 100	3. 1617		53. 792	3. 1979		47. 025	2. 940
895	16 4.4	38 1.4362	17	13. 794	2. 7723	2 6	1.908	3. 1614	32	9. 780	3. 1975	39	1. 759	2. 94
900	11,6	19 1.4359		27.656	2. 7724	'	17. 714	3. 1610		25. 767	3. 1971	1	16. 492	2. 946
-						!		I				<u> </u>		1
	I	pricorni.		α Aqu	arii.	!	α Gru	iis.		0 Aqua	arii.		π Aqu	arii.
Year.	I	pricorni.	ļ	α Aqua	arii.		α Gru R. A.	is.		0 Aqus	Ann. var.		π Aqu	arii.
	μ Ca	<u> </u>		R. A.	!		R. A.			R. A.	, 		R. A.	1
Year.	μ Са	Ann. var.	21	R. A.	Ann. var.	21	R. A.	Ann. var.	6		, 	15		Ann. v
Year.	μ Ca R. A.	Ann. var.		R. A.	!		R. A. h; 22h 33. 507	Ann. var.		R. A.	Ann. var.		R. A. 22h 3.638	Ann. v
Year. 800 830	μ Ca R. A. 21 ^h 42 22.6 44 1.1	Ann. var. 36 3. 2861 69 3. 2827	21 55	R. A. a; 22 ^h 30. 433	Ann. var.	21 55	R. A. h; 22h 33. 507	Ann. var. 3. 8472 3. 8334	6	R. A. 22h 16. 221	Ann. var.	15	R. A. 22h 3.638	3. 069 3. 060
Year. 800 830	μ Ca R. A. 21 ^h 42 22.6 44 1.1	Ann. var. 36 3. 2861 69 3. 2827 82 3. 2822	21 55	R. A. a; 22h 30. 433 3. 010 18. 435	3. 0866 3. 0852 3. 0850	21 55	R. A. h; 22h 33. 507 28. 717	Ann. var.	6 7	R. A. 22h 16, 221 51, 467	3. 1760 3. 1737	15	R. A. 22h 3. 638 35. 644 50. 976	3. 06 3. 06 3. 06
Year. 800 830 835	μ Ca R. A. 21 ^b 42 22.6 44 1.1 17.5 33.9	Ann. var. 36 3. 2861 69 3. 2827 82 3. 2822 91 3. 2816	21 55	R. A. a; 22h 30. 433 3. 010 18. 435 33. 860	3. 0866 3. 0852 3. 0850 3. 0848	21 55	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027	3. 8472 3. 8334 3. 8311 3. 8288	6 7	22h 16, 221 51, 467 7, 335 23, 201	3. 1760 3. 1737 3. 1733 3. 1729	15	R. A. 22h 3. 638 35. 644 50. 976 6. 307	3. 06 3. 06 3. 06 3. 06
Year. 800 830 835 840 845	μ Ca R. A. 21 ^h 42 22.6 44 1.1 17.9 33.9	Ann. var. 36 3. 2861 69 3. 2822 91 3. 2816 97 3. 2810	21 55 57	R. A. a; 22h 30. 433 3. 010 18. 435 33. 860 49. 283	3. 0866 3. 0852 3. 0850 3. 0848 3. 0846	21 55	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265	6 7	22h 16, 221 51, 467 7, 335 23, 201 39, 064	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725	15	R. A. 22h 3.638 35.644 50.976 6.307 21.637	3. 06 3. 06 3. 06 3. 06 3. 06
Year. 800 830 835 840 845	μ Ca R. A. 21 ^h 42 22.6 44 1.1 17.5 33.6 50.3 45 6.8	Ann. var. 36 3. 2861 69 3. 2822 91 3. 2816 97 3. 2810 01 3. 2805	21 55	R. A. a; 22h 30. 433 3. 010 18. 435 33. 860 49. 283 4. 706	3. 0866 3. 0852 3. 0850 3. 0848 3. 0846 3. 0844	21 55 57	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165 45. 292	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265 3. 8242	6 7 8	R. A. 22h 16. 221 51. 467 7. 335 23. 201 39. 064 54. 926	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725 3. 1722	15	R. A. 22h 3. 638 35. 644 50. 976 6. 307 21. 637 36. 967	3. 06 3. 06 3. 06 3. 06 3. 06 3. 06
Year. 800 830 835 840 850	μ Ca R. A. 21 ^h 42 22.6 44 1.1 17.5 33.9 50.3 45 6.8	Ann. var. 36 3. 2861 69 3. 2827 82 3. 2822 91 3. 2816 97 3. 2810 01 3. 2805 02 3. 2799	21 55 57	R. A. a; 22 ^h 30. 433 3. 010 18. 435 33. 860 49. 283 4. 706 20. 127	3. 0866 3. 0852 3. 0850 3. 0848 3. 0846 3. 0844 3. 0842	21 55	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165 45. 292 4. 407	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265 3. 8242 3. 8219	6 7 8	R. A. 22h 16. 221 51. 467 7. 335 23. 201 39. 064 54. 926 10. 786	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725 3. 1722 3. 1718	15 16	R. A. 22h 3.638 35.644 50.976 6.307 21.637 36.967 52.296	3. 06 3. 06 3. 06 3. 06 3. 06 3. 06 3. 06
Year. 800 830 840 850 855	μ Ca R. A. 21 ^h 42 22.6 44 1.1 17.5 33.9 50.3 45 6.8 23.2 39.6	Ann. var. 36 3. 2861 69 3. 2822 91 3. 2816 97 3. 2810 01 3. 2805 02 3. 2799 00 3. 2793	21 55 57	R. A. a; 22 ^h 30. 433 3. 010 18. 435 33. 860 49. 283 4. 706 20. 127 35. 548	3. 0866 3. 0852 3. 0850 3. 0848 3. 0846 3. 0844 3. 0842 3. 0840	21 55 57	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165 45. 292 4. 407 23. 511	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265 3. 8242 3. 8219 3. 8196	6 7 8	R. A. 22h 16. 221 51. 467 7. 335 23. 201 39. 064 54. 926 10. 786 26. 644	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725 3. 1722 3. 1718 3. 1714	15	R. A. 22h 3. 638 35. 644 50. 976 6. 307 21. 637 36. 967 52. 296 7. 624	3, 06 3, 06 3, 06 3, 06 3, 06 3, 06 3, 06 3, 06
800 830 835 845 855 860 865	μ Ca R. A. 21 ^h 42 22.6 44 1.1 17.5 33.9 50.3 45 6.8 23.2 39.6 55.9	Ann. var. 36 3. 2861 69 3. 2822 91 3. 2816 97 3. 2810 01 3. 2805 02 3. 2799 00 3. 2793 95 3. 2787	55 57	R. A. a; 22h 30. 433 3. 010 18. 435 33. 860 49. 283 4. 706 20. 127 35. 548 50. 967	3. 0866 3. 0852 3. 0850 3. 0848 3. 0846 3. 0844 3. 0842 3. 0840 3. 0838	21 55 57	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165 45. 292 4. 407 23. 511 42. 603	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265 3. 8242 3. 8219 3. 8196 3. 8173	6 7 8	R. A. 22h 16. 221 51. 467 7. 335 23. 201 39. 064 54. 926 10. 786 26. 644 42. 500	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725 3. 1722 3. 1718 3. 1714 3. 1710	15 16	R. A. 22h 3. 638 35. 644 50. 976 6. 307 21. 637 36. 967 52. 296 7. 624 22. 951	3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06;
800 830 840 855 865 865 870	μ Ca R. A. 21 ^h 42 22.6 44 1.1 17.5 33.9 50.3 45 6.8 23.2 39.6 55.9 46 12.3	Ann. var. 36 3. 2861 69 3. 2822 91 3. 2816 97 3. 2810 01 3. 2805 02 3. 2799 00 3. 2793 95 3. 2787 87 3. 2782	21 55 57	R. A. 30. 433 3. 010 18. 435 33. 860 49. 283 4. 706 20. 127 35. 548 50. 967 6. 385	3. 0866 3. 0852 3. 0850 3. 0848 3. 0846 3. 0844 3. 0842 3. 0840 3. 0838 3. 0838	21 55 57	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165 45. 292 4. 407 23. 511 42. 603 1. 683	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265 3. 8242 3. 8219 3. 8196 3. 8173 3. 8150	6 7 8	R. A. 22h 16. 221 51. 467 7. 335 23. 201 39. 064 54. 926 10. 786 26. 644 42. 500 58. 354	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725 3. 1722 3. 1718 3. 1714 3. 1710 3. 1706	15 16	R. A. 22h 3. 638 35. 644 50. 976 6. 307 21. 637 36. 967 52. 296 7. 624 22. 951 38. 278	3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06;
800 830 840 850 855 860 865 870 875 875	μ Ca R. A. 21 ^h 42 22.6 44 1.1 17.9 33.9 50.3 45 6.8 23.2 39.6 46 12.3 28.3	Ann. var. 36 3. 2861 69 3. 2822 91 3. 2816 97 3. 2810 01 3. 2805 02 3. 2799 00 3. 2787 87 3. 2782 77 3. 2776	55 57	R. A. a; 22 ^h 30. 433 3. 010 18. 435 33. 860 49. 283 4. 706 20. 127 35. 548 50. 967 6. 385 21. 802	3. 0866 3. 0852 3. 0850 3. 0848 3. 0844 3. 0842 3. 0849 3. 0838 3. 0838 3. 0838	21 55 57	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165 45. 292 4. 407 23. 511 42. 603 1. 683 20. 752	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265 3. 8242 3. 8219 3. 8196 3. 8173 3. 8150 3. 8127	6 7 8	R. A. 22h 16. 221 51. 467 7. 335 23. 201 39. 064 54. 926 10. 786 26. 644 42. 500 58. 354 14. 206	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725 3. 1722 3. 1718 3. 1710 3. 1706 3. 1702	15 16	R. A. 22h 3. 638 35. 644 50. 976 6. 307 21. 637 36. 967 52. 296 7. 624 22. 951 38. 278 53. 604	3. 06 3. 06 3. 06 3. 06 3. 06 3. 06 3. 06 3. 06 3. 06 3. 06
800 830 845 855 865 875 875	μ Ca R. A. 21 ^h 42 22.6 44 1.1 17.5 33.9 50.3 45 6.8 23.2 39.6 55.9 46 12.3	Ann. var. 36 3. 2861 69 3. 2827 82 3. 2822 91 3. 2816 97 3. 2810 01 3. 2805 02 3. 2799 00 3. 2787 87 3. 2787 87 3. 2776	55 57	R. A. 30. 433 3. 010 18. 435 33. 860 49. 283 4. 706 20. 127 35. 548 50. 967 6. 385	3. 0866 3. 0852 3. 0850 3. 0848 3. 0846 3. 0844 3. 0842 3. 0840 3. 0838 3. 0838	21 55 57	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165 45. 292 4. 407 23. 511 42. 603 1. 683	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265 3. 8242 3. 8219 3. 8196 3. 8173 3. 8150	6 7 8	R. A. 22h 16. 221 51. 467 7. 335 23. 201 39. 064 54. 926 10. 786 26. 644 42. 500 58. 354	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725 3. 1722 3. 1718 3. 1714 3. 1710 3. 1706	15 16	R. A. 22h 3. 638 35. 644 50. 976 6. 307 21. 637 36. 967 52. 296 7. 624 22. 951 38. 278	3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06;
800 830 845 845 865 870 875 886	μ Ca R. A. 21 ^h 42 22.6 44 1.1 17.5 33.9 50.3 45 6.8 23.2 39.6 46 12.3 28.3	Ann. var. 36 3. 2861 69 3. 2822 91 3. 2816 97 3. 2810 01 3. 2805 02 3. 2799 00 3. 2793 95 3. 2787 87 3. 2782 77 3. 2776 63 3. 2770	55 57	R. A. a; 22 ^h 30. 433 3. 010 18. 435 33. 860 49. 283 4. 706 20. 127 35. 548 50. 967 6. 385 21. 802	3. 0866 3. 0852 3. 0850 3. 0848 3. 0844 3. 0842 3. 0840 3. 0838 3. 0833 3. 0831	21 55 57	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165 45. 292 4. 407 23. 511 42. 603 1. 683 20. 752	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265 3. 8242 3. 8219 3. 8196 3. 8173 3. 8150 3. 8127	6 7 8	R. A. 22h 16. 221 51. 467 7. 335 23. 201 39. 064 54. 926 10. 786 26. 644 42. 500 58. 354 14. 206 30. 056	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725 3. 1722 3. 1718 3. 1710 3. 1706 3. 1702	15 16 17	R. A. 22h 3. 638 35. 644 50. 976 6. 307 21. 637 36. 967 52. 296 7. 624 22. 951 38. 278 53. 604	3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06;
800 830 845 855 860 875 875 880 885	μ Ca R. A. 21h 42 22.6 44 1.1 17.5 33.9 50.3 45 6.8 23.2 39.6 46 12.3 28.3 45.1	Ann. var. 36 3. 2861 69 3. 2822 91 3. 2816 97 3. 2810 01 3. 2805 02 3. 2799 00 3. 2793 95 3. 2787 87 3. 2782 77 3. 2776 63 3. 2776	55 57	R. A. 30. 433 3. 010 18. 435 33. 860 49. 283 4. 706 20. 127 35. 548 50. 967 6. 385 21. 802 37. 218 52. 633	3. 0866 3. 0852 3. 0850 3. 0848 3. 0846 3. 0844 3. 0842 3. 0838 3. 0835 3. 0831 3. 0829	211 555 57 59	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165 45. 292 4. 407 23. 511 42. 603 1. 683 20. 752 39. 810	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265 3. 8242 3. 8219 3. 8196 3. 8173 3. 8150 3. 8127 3. 8104	6 7 8	R. A. 22h 16. 221 51. 467 7. 335 23. 201 39. 064 54. 926 10. 786 26. 644 42. 500 58. 354 14. 206	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725 3. 1718 3. 1714 3. 1710 3. 1706 3. 1702 3. 1699	15 16 17	R. A. 22h 3. 638 35. 644 50. 976 6. 307 21. 637 36. 967 52. 296 7. 624 22. 951 38. 278 53. 604 8. 929 24. 254	1
	μ Ca R. A. 21 ^h 42 22.6 44 1.1 17.5 33.9 50.3 45 6.8 23.2 39.6 46 12.3 28.3	Ann. var. 36 3. 2861 69 3. 2822 91 3. 2816 97 3. 2810 01 3. 2805 02 3. 2793 05 3. 2787 87 3. 2782 77 3. 2766 63 3. 2765 28 3. 2759	55 57 58	R. A. a; 22h 30. 433 3. 010 18. 435 33. 860 49. 283 4. 706 20. 127 35. 548 50. 967 6. 385 21. 802 37. 218 52. 633	3. 0866 3. 0852 3. 0850 3. 0848 3. 0846 3. 0844 3. 0842 3. 0838 3. 0835 3. 0833 3. 0831 3. 0829 3. 0827	211 555 57 59	R. A. h; 22h 33. 507 28. 717 47. 878 7. 027 26. 165 45. 292 4. 407 23. 511 42. 603 1. 683 20. 752 39. 810 58. 856	3. 8472 3. 8334 3. 8311 3. 8288 3. 8265 3. 8242 3. 8219 3. 8196 3. 8173 3. 8150 3. 8127 3. 8104 3. 8081	6 7 8	R. A. 22h 16. 221 51. 467 7. 335 23. 201 39. 064 54. 926 10. 786 26. 644 42. 500 58. 354 14. 206 30. 056 45. 905	3. 1760 3. 1737 3. 1733 3. 1729 3. 1725 3. 1722 3. 1718 3. 1714 3. 1710 3. 1706 3. 1702 3. 1699 3. 1695	15 16 17	R. A. 22h 3. 638 35. 644 50. 976 6. 307 21. 637 36. 967 52. 296 7. 624 22. 951 38. 278 53. 604 8. 929	3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06; 3, 06;

314

Right Ascensions of Time Stars for 1800 and for Quinquennial Epochs, 1830-1900—Continued.

Vac	η Aqua	arii.		ζ Pega	ısi.		λ Aqu	arii.	α	Piscis Au	ıstralis.
Year.	R. A.	Ann. var.	R.	. A.	Ann. var.	:	R. A.	Ann. var.		R. A.	Ann. var
	22 ^b	¦		22 ^h			22 ^b			22 ^h	
1800	25 4. 578	3. 0865	31 :	29. 473	2. 9890	42	10. 361	3. 1386	46	34. 189	3. 3441
1830	26 37. 158	3. 0855	32	5 9. 152	2, 9896	43	44. 490	3. 1366	48	14. 414	3. 3376
1835	52. 585	3. 0853	33	14. 100	2. 9897	44	0. 172	3. 1363		31. 100	3. 3 3 65
1840	27 8.012	3. 0852	:	29. 049	2. 9898		15 852	3. 1360		47- 779	3-3354
1845	23. 437	3. 0850	' ·	43. 998	2. 9899		31.532	3. 1356	49	4- 454	3- 3343
1850	38, 862	3.0849		58. 948	2. 9900		47. 209	3. 1353		21. 123	3- 3333
1855	54. 286	3. 0847	34	13. 898	2.9901	45	2. 885	3. 1350		37. 786	3. 3322
1860	28 9. 709	3. 0846	:	28 . 849	2, 9902		18. 559	3. 1347		54-445	3. 3311
1865	25. 131	3. 0844	•	43. 801	2.9903		34. 232	3. 1344	50	11.097	3. 3300
1870	40. 553	3. 0842	,	58. 753	2. 9905		49. 903	3. 1340		27. 745	3. 3290
1875	55- 974	3. 0841	35	13. 705	2. 9906	46	5. 572	3. 1337		44. 3 ⁸ 7	3. 3279
1880	29 11.394	3. 0839	. :	28. 659	2.9907		21.240	3. 1334	51	1.024	33268
1885	26.813	3. 0838		43. 612	2.9908		36, 906	3. 1331		17.656	3. 3258
1890	42. 232	3. 0836		58. 567	2. 9909		52. 571	3. 1328		34. 282	3. 3247
1895	57. 649	3. 0835	36	13. 522	2. 9910	47	8. 234	3. 1325		50. 903	3. 3236
***	30 13.067	3. 0833	:	28. 477	2.9912		23. 895	3. 1322	52	7. 518	3. 3226
1900	3.007			•	<u>'</u>	<u> </u>	•				
	α Pegr			θ Pisci			ı Pisci	um.		ω Pisci	um.
Year.				θ Pisci			ı Pisci	um. Ann. var.		ω Pisci	
	α Pega	asi.	R	θ Pisci	um.		R. A.			R. A.	
Year.	α Peg:	Ann. var.	R	θ Pisci	um.	29	R. A.		49		Ann. va
Year.	α Pegr. R. A.	Ann. var.	R.	θ Pisci.	Ann. var.		R. A.	Ann. var.		23 ^h	Ann. va
Year.	α Pegr. R. A. 22 ^b 54 48.470	Ann. var. 2. 9801 2. 9817	R. 17 4	θ Pisci . A. 23 ^h 49. 685	Ann. var.	2 9	R. A. 23 ^h 40. 104	Ann. var.	49	23 ^b	3. 0744 3. 0756
Year. 1800	α Pegr. R. A. 22 ^h 54 48.470 56 17.896	Ann. var. 2. 9801 2. 9817 2. 9819	R. 17 4	6 Pisci . A. 23 ^b 49, 685 20, 862	Ann. var. 3. 0389 3. 0396 3. 0397	29 31	23 ^h 40. 104 12. 561	Ann. var. 3. 0815 3. 0823	49	23 ^h 2. 903 35. 152	3. 0744 3. 0756 3. 0758
Year. 1800	α Pega R. A. 22 ^b 54 48.470 56 17.896 32.805	Ann. var. 2. 9801 2. 9817 2. 9819	R. 17 4	6 Pisci A. 23 ^h 49, 685 20, 862 36, 060	Ann. var. 3. 0389 3. 0396 3. 0397	29 31	23 ^h 40. 104 12. 561 27. 973	3. 0815 3. 0823 3. 0825	49 50	23h 2.903 35.152 50.530	3. 0744 3. 0756 3. 0761
	R. A. 22 ^h 54 48.470 56 17.896 32.805 47.715	Ann. var. 2. 9801 2. 9817 2. 9819 2. 9822	R. 17 . 19	θ Pisci . A. 23 ^h 49. 685 20. 862 36. 060 51. 259	3. 0389 3. 0396 3. 0398 3. 0398 3. 0399	29 31	23 ^h 40. 104 12. 561 27. 973 43. 386 58. 800	3. 0815 3. 0823 3. 0825 3. 0826	49 50	23 ^b 2. 903 35. 152 50. 530 5. 910	3. 0744 3. 0756 3. 0758 3. 0761
Year. 1800 1830 1835 1840	R. A. 22 ^b 54 48.470 56 17.896 32.805 47.715 57 2.627	Ann. var. 2. 9801 2. 9817 2. 9819 2. 9822 2. 9825 2. 9828 2. 9830	R. 17 4 19 2	θ Pisci . A. 23 ^h 49. 685 20. 862 36. 060 51. 259 6. 458	3. 0389 3. 0396 3. 0397 3. 0398 3. 0399 3. 0401	2 9	23 ^h 40. 104 12. 561 27. 973 43. 386 58. 800	3. 0815 3. 0823 3. 0825 3. 0826 3. 0828	49 50	23 ^h 2. 903 35. 152 50. 530 5. 910 21. 291	3. 0744 3. 0756 3. 0763 3. 0763 3. 0763 3. 0765
Year. 1800 1830 1835 1840 1845	R. A. 22 ^b 54 48.470 56 17.896 32.805 47.715 57 2.627 17.540	Ann. var. 2. 9801 2. 9817 2. 9819 2. 9822 2. 9825 2. 9828 2. 9830	R. 17 4 19 20 20	θ Pisci . A. 23 ^h 49. 685 20. 862 36. 060 51. 259 6. 458 21. 658	3. 0389 3. 0396 3. 0397 3. 0398 3. 0399 3. 0401	2 9	23 ^h 40. 104 12. 561 27. 973 43. 386 58. 800 14. 214	3. 0815 3. 0823 3. 0825 3. 0826 3. 0828 3. 0829	49 50 51	23 ^h 2.903 35.152 50.530 5.910 21.291 36.673	3. 0744 3. 0756 3. 0758 3. 0761 3. 0763 3. 0765 3. 0768
Year. 1800	R. A. 22b 54 48.470 56 17.896 32.805 47.715 57 2.627 17.540 32.455 47.370	Ann. var. 2. 9801 2. 9817 2. 9819 2. 9822 2. 9825 2. 9828 2. 9830	R. 17 4 19 20 20	θ Pisci . A. 23 ^h 49. 685 20. 862 36. 060 51. 259 6. 458 21. 658 36. 859	3. 0389 3. 0396 3. 0397 3. 0398 3. 0399 3. 0401 3. 0402 3. 0403	2 9	23 ^h 40. 104 12. 561 27. 973 43. 386 58. 800 14. 214 29. 629	3. 0815 3. 0823 3. 0825 3. 0826 3. 0828 3. 0829 3. 0831	49 50 51	23 ^h 2. 903 35. 152 50. 530 5. 910 21. 291 36. 673 52. 056	3. 0744 3. 0756 3. 0761 3. 0763 3. 0765 3. 0768 3. 0768
Year. 1800 1830 1835 1845 1850 1855	R. A. 22 ^h 54 48. 470 56 17. 896 32. 805 47. 715 57 2. 627 17. 540 32. 455 47. 370 58 2. 288	Ann. var. 2. 9801 2. 9817 2. 9819 2. 9822 2. 9825 2. 9828 2. 9830 2. 9833	R. 17 4 19 20 21	θ Piscir . A. 23 ^b 49. 685 20. 862 36. 060 51. 259 6. 458 21. 658 36. 859 52. 060	3. 0389 3. 0396 3. 0397 3. 0398 3. 0399 3. 0401 3. 0402 3. 0403 3. 0405	29 31 32	23 ^h 40. 104 12. 561 27. 973 43. 386 58. 800 14. 214 29. 629 45. 045	3. 0815 3. 0823 3. 0825 3. 0826 3. 0828 3. 0829 3. 0831 3. 0832 3. 0834	49 50 51	23 ^b 2. 903 35. 152 50. 530 5. 910 21. 291 36. 673 52. 056 7. 441	3. 0744 3. 0756 3. 0761 3. 0763 3. 0765 3. 0765 3. 0770 3. 0772
Year. 1800 1830 1845 1850 1860	R. A. 22h 54 48.470 56 17.896 32.805 47.715 57 2.627 17.540 32.455 47.370 58 2.288 17.206	Ann. var. 2. 9801 2. 9817 2. 9819 2. 9822 2. 9825 2. 9828 2. 9830 2. 9833 2. 9836 2. 9839	R. 17 4 19 20 20 21	θ Piscir . A. 23 ^h 49. 685 20. 862 36. 060 51. 259 6. 458 21. 658 36. 859 52. 060 7. 262	3. 0389 3. 0396 3. 0397 3. 0398 3. 0399 3. 0401 3. 0402 3. 0403 3. 0405 3. 0406	29 31 32	23 ^h 40. 104 12. 561 27. 973 43. 386 58. 800 14. 214 29. 629 45. 045 0. 461	3. 0815 3. 0823 3. 0825 3. 0826 3. 0828 3. 0829 3. 0831 3. 0832 3. 0834 3. 0835	49 50 51	23 ^b 2. 903 35. 152 50. 530 5. 910 21. 291 36. 673 52. 056 7. 441 22. 826	3. 0744 3. 0756 3. 0761 3. 0763 3. 0765 3. 0765 3. 0770 3. 0772 3. 0772
Year. 1800 1830 1845 1850 1865 1867	R. A. 22h 54 48.470 56 17.896 32.805 47.715 57 2.627 17.540 32.455 47.370 58 2.288 17.206	2. 9801 2. 9817 2. 9819 2. 9822 2. 9825 2. 9828 2. 9830 2. 9833 2. 9836 2. 9839 2. 9841	20 21 21	θ Piscir . A. 23 ^h 49. 685 20. 862 36. 060 51. 259 6. 458 21. 658 36. 859 52. 060 7. 262 22. 464	3. 0389 3. 0396 3. 0397 3. 0398 3. 0401 3. 0402 3. 0403 3. 0405 3. 0406	29 31 32	23 ^h 40. 104 12. 561 27. 973 43. 386 58. 800 14. 214 29. 629 45. 045 0. 461 15. 878	3. 0815 3. 0823 3. 0825 3. 0826 3. 0828 3. 0829 3. 0831 3. 0832 3. 0834 3. 0835 3. 0837	49 50 51	23 ^b 2. 903 35. 152 50. 530 5. 910 21. 291 36. 673 52. 056 7. 441 22. 826 38. 213	3. 0744 3. 0756 3. 0761 3. 0763 3. 0765 3. 0768 3. 0772 3. 0772 3. 0777
Year. 1800	R. A. 22 ^h 54 48.470 56 17.896 32.805 47.715 57 2.627 17.540 32.455 47.370 58 2.288 17.206 32.126 47.048	Ann. var. 2. 9801 2. 9817 2. 9819 2. 9822 2. 9825 2. 9828 2. 9830 2. 9833 2. 9836 2. 9839 2. 9841	20 21 21	6 Pisci A. 23 ^h 49, 685 20, 862 36, 060 51, 259 6, 458 21, 658 36, 859 52, 060 7, 262 22, 464 37, 668 52, 872	3. 0389 3. 0396 3. 0397 3. 0398 3. 0401 3. 0402 3. 0403 3. 0405 3. 0406 3. 0407	29 31 32	23 ^h 40. 104 12. 561 27. 973 43. 386 58. 800 14. 214 29. 629 45. 045 0. 461 15. 878 31. 296	3. 0815 3. 0823 3. 0825 3. 0826 3. 0828 3. 0831 3. 0832 3. 0834 3. 0835 3. 0837 3. 0838	49 50 51	23 ^b 2. 903 35. 152 50. 530 5. 910 21. 291 36. 673 52. 056 7. 441 22. 826 38. 213 53. 601	3. 0744 3. 0756 3. 0763 3. 0763 3. 0768 3. 0770 3. 0772 3. 0777 3. 0779
Year. 1800	R. A. 22 ^h 54 48.470 56 17.896 32.805 47.715 57 2.627 17.540 32.455 47.370 58 2.288 17.206 32.126 47.048	2. 9801 2. 9817 2. 9819 2. 9822 2. 9825 2. 9833 2. 9836 2. 9839 2. 9841 2. 9844	R. 17 20 21 21 22	6 Pisci A. 23 ^h 49, 685 20, 862 36, 060 51, 259 6, 458 21, 658 36, 859 52, 060 7, 262 22, 464 37, 668 52, 872	3. 0389 3. 0396 3. 0397 3. 0398 3. 0401 3. 0402 3. 0403 3. 0405 3. 0406 3. 0407 3 0409 3. 0410	29 31 32	R. A. 23h 40. 104 12. 561 27. 973 43. 386 58. 800 14. 214 29. 629 45. 045 0. 461 15. 878 31. 296 46. 715	3. 0815 3. 0823 3. 0825 3. 0826 3. 0828 3. 0829 3. 0831 3. 0832 3. 0834 3. 0835 3. 0838 3. 0840	49 50 51	23 ^b 2. 903 35. 152 50. 530 5. 910 21. 291 36. 673 52. 056 7. 441 22. 826 38. 213 53. 601 8. 990	3. 0744 3. 0756 3. 0761 3. 0763 3. 0765 3. 0767 3. 0772 3. 0777 3. 0779 3. 0782
Year. 1800	R. A. 22b 48. 470 56 17. 896 32. 805 47. 715 57 2. 627 17. 540 32. 455 47. 370 58 2. 288 17. 206 32. 126 47. 048 59 1. 971 16. 895	Ann. var. 2. 9801 2. 9817 2. 9819 2. 9822 2. 9825 2. 9833 2. 9836 2. 9839 2. 9841 2. 9847 2. 9850	20 21 21 22 22	6 Pisci A. 23 ^h 49. 685 20. 862 36. 060 51. 259 6. 458 21. 658 36. 859 52. 060 7. 262 22. 464 37. 668 52. 872 8. 076	3. 0389 3. 0396 3. 0397 3. 0398 3. 0402 3. 0403 3. 0405 3. 0405 3. 0406 3. 0407 3. 0409 3. 0410 3. 0411	29 31 32	23 ^h 40. 104 12. 561 27. 973 43. 386 58. 800 14. 214 29. 629 45. 045 0. 461 15. 878 31. 296 46. 715 2. 135	3. 0815 3. 0823 3. 0825 3. 0826 3. 0828 3. 0829 3. 0831 3. 0832 3. 0834 3. 0835 3. 0838 3. 0840 3. 0841	49 50 51 52	23 ^b 2. 903 35. 152 50. 530 5. 910 21. 291 36. 673 52. 056 7. 441 22. 826 38. 213 53. 601 8. 990 24. 380	3. 0744 3. 0756 3. 0761 3. 0763 3. 0765 3. 0768 3. 0772 3. 0772 3. 0777

ON

GAUSS'S METHOD

OF COMPUTING

SECULAR PERTURBATIONS,

WITH AN APPLICATION TO THE ACTION OF VENUS ON MERCURY.

BY

GEORGE W. HILL, ASSISTANT AMERICAN EPHEMERIS.

ON GAUSS'S METHOD OF COMPUTING SECULAR PERTURBATIONS.

In 1818 Gauss presented to the Royal Society of Sciences at Göttingen a memoir, the full title of which is Determinatio Attractionis quam in punctum quodvis positionis data exerceret planeta si ejus massa per totam orbitam ratione temporis quo singulæ partes describuntur uniformiter esset dispertita. (Werke, Band III, s. 331.)

This memoir is a notable one in the history of elliptic functions, as it contains a new algorithm for the computation of the complete functions of Legendre's first and second species. But we shall at present view it from the side of celestial mechanics. Gauss investigates the expressions for the components of the attraction of a certain species of elliptic ring on a point, which can be advantageously employed in computing the secular perturbations of a planet, at least the parts of them which are of the first order with respect to the disturbing forces. This method merits attention because, with it, we can secure almost absolute accuracy at the cost of a comparatively small outlay of labor. Moreover, it is capable of being applied, with success, to all the asteroids, and even to such refractory cases as the periodic comets. Yet, I can find but two published investigations where it has been employed. The first, a computation of the secular perturbations of the earth by Nicolai, results only being given (Berliner Astronomische Jahrbuch für 1820). The second, an application of the method to Tuttle's periodic comet by Dr. Thomas Clausen (Dorpater Beobachtungen, Band XVI, Einleitung). This, perhaps, is due to the circumstance that the memoir of Gauss does not contain all the formulæ needed in the application. A double integration being necessary, Gauss has considered only that in respect to the eccentric anomaly of the disturbing body, and, having regard to elegance only, has not reduced his equations to the forms giving the utmost brevity of calculation. Hence, I propose to give an exposition of the method with the additional formulæ required.

The following notation will be adopted: For the quantities pertaining to the disturbed planet, let

a denote the semi-axis major,

n " " mean motion in a Julian year,

e " " eccentricity,

 φ " angle of the eccentricity, such that $e = \sin \varphi$,

 π " longitude of the perihelion measured from a fixed equinox,

i " inclination of the orbit to a fixed ecliptic,

 Ω " longitude of the ascending node of the orbit on the fixed ecliptic,

L " mean longitude at the epoch,

χ " longitude of the perihelion measured from a point fixed in the shifting plane of the orbit,

317

 ω denote the angular distance of the perihelion from the ascending node $\equiv \pi - \Omega$,

r " radius vector,

M, E, r " mean, eccentric, and true anomalies,

u " argument of the latitude $= v + \omega$,

m " mass of the planet, the sun's being taken as the unit,

p " semi-parameter $\equiv a(1-e^2)$.

The similar quantities belonging to the disturbing planet will be denoted by the same letters accented. In addition, let R denote the component of the disturbing force in the direction of the radius vector, positive outward from the sun; S the component of the same perpendicular to the radius vector and in the plane of the orbit, positive in the direction of motion; and W the component perpendicular to the plane of the orbit, positive northward.

The differential equations, which give the variations of the elements of the disturbed planet, are

$$\frac{da}{dt} = \frac{2a^{3}n \sec \varphi}{1+m} \left[e \sin r \cdot R + \frac{p}{r} S \right]$$

$$\frac{de}{dt} = \frac{a^{2}n \cos \varphi}{1+m} \left[\sin r \cdot R + (\cos r + \cos E) S \right]$$

$$r \frac{d\chi}{dt} = \frac{a^{2}n \cos \varphi}{1+m} \left[-\cos r \cdot R + (\frac{r}{p} + 1) \sin r \cdot S \right]$$

$$\frac{di}{dt} = \frac{an \sec \varphi}{1+m} r \cos u \cdot W$$

$$\sin i \frac{d\Omega}{dt} = \frac{an \sec \varphi}{1+m} r \sin u \cdot W$$

$$\frac{d\pi}{dt} = \frac{d\chi}{dt} + 2 \sin^{2} \frac{i}{2} \cdot \frac{d\Omega}{dt}$$

$$\frac{dL}{dt} = -\frac{2an}{1+m} r \cdot R + 2 \sin^{2} \frac{\varphi}{2} \cdot \frac{d\chi}{dt} + 2 \sin^{2} \frac{i}{2} \cdot \frac{d\Omega}{dt} - \frac{3}{2} \int \frac{n \, da}{a \, dt} \, dt$$

where R, S, and W involve the factor $m' \equiv$ the mass of the disturbing planet measured with the sun's mass as the unit, but are not multiplied by the factor k^2 (k being usually known as the Gaussian constant).*

Provided the orbits do not intersect, and if we limit the approximation to terms of the first order with respect to the disturbing forces, each of these differential coefficients can be expanded in a periodic series of the form

$$\Sigma$$
. A $\frac{\sin}{\cos}(jM + j'M')$

j and j' being positive or negative integers, and A being constant. The term, for

^{*} For the proof of these formula the reader may consult either of the following sources: Encke, Berliner Astronomische Jahrbuch für 1837 und 1838, in the treatise Über die Berechnung der Speciellen Störungen, which has been reprinted in Encke's Abhandlungen; or Oppolzer, Lehrbuch zur Bahnbestimmung der Cometen und Planeten, Band II, s. 213 et seq.; or Watson, Theoretical Astronomy, pp. 516–523.

which both j = 0 and j' = 0, constitutes the secular portion of the series. The part of any differential coefficient, as $\frac{de}{dt}$, independent of M', is given by the definite integral

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{de}{dt} dM'$$

and the secular portion, which is independent of both M and M', by the definite integral

$$\frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \frac{de}{dt} dM dM'$$

But as we have the equations

$$d\mathbf{M} = \frac{r}{a} d\mathbf{E} = \frac{r^2}{a^2 \cos^2 \varphi} dv$$

$$d\mathbf{M}' \equiv \frac{r'}{a'} d\mathbf{E}' \equiv \frac{r'^2}{a'^2 \cos^2 \boldsymbol{\varphi}'} dv'$$

and as the variables M, E, and r all take the values o and 2π together, it is possible to make the integrations with reference to the eccentric or the true anomalies of the planets. Thus we have choice between four different procedures. That in which both of the integrations are executed with reference to the eccentric anomalies is to be preferred; for the inequalities of distribution of a series of points on an elliptic orbit, corresponding to equal intervals in the value of the eccentric anomaly, are of the order of the square of the eccentricity; while, for the other two anomalies, they are of the order of the first power of this quantity. Hence, to get the secular portion of the variation of any element, as e, we shall employ the double integral

$$\frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \frac{de}{dt} \frac{r}{a} \frac{r'}{a'} dE dE'$$

the value of which we shall denote by $\begin{bmatrix} de \\ dt \end{bmatrix}_{m}$

As, in this method, the integration, with reference to E, will be performed by quadratures, instead of the notation

$$\frac{1}{2\pi} \int_0^{2\pi} X dE$$

we shall use M_E[X], which will denote the average of all the values of X with respect to the variable E. In the application of this method to the eight large planets of the solar system, the taking the average of 12 values, evenly distributed about the circumference with reference to E, will give, in all cases, extremely accurate results; and often 8 values will suffice. It can readily be shown, but, for the sake of brevity, we omit the demonstration, that, if the number of these values be even, the order of the error committed in the determination of the secular portions of the differential coeffi-

cients $\frac{de}{dt}$, $e\frac{d\pi}{dt}$, $\frac{di}{dt}$, and $\sin i\frac{d\Omega}{dt}$ will be the same as that of a power of the eccentricities or mutual inclination of orbits, whose exponent is one less than the number of these values, while the error, in the case of $\frac{dL}{dt}$, is of an order one degree higher. From this principle it can be judged, in any particular case, how many values ought to be computed.

It is well known that, not only when the approximation is limited to terms of the first order with respect to the disturbing forces, but even when terms of the second order are included, the secular portion of $\frac{da}{dt}$ vanishes. Hence, we can dispense with computing it.

If we put

$$R_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{ar}{m'} R (1 - e' \cos E') dE'$$

$$S_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{ar}{m'} S (1 - e' \cos E') dE'$$

$$W_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{r^{2}}{m'} W (1 - e' \cos E') dE'$$

we shall have, for the secular portions of the differential coefficients of the elements of m, the equations

$$\begin{bmatrix} \frac{da}{dt} \end{bmatrix}_{00} = 0$$

$$\begin{bmatrix} \frac{de}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \cos \varphi. \, M_{E} \begin{bmatrix} \sin v. \, R_{0} + (\cos v + \cos E) \, S_{0} \end{bmatrix}$$

$$e \begin{bmatrix} \frac{d\chi}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \cos \varphi. \, M_{E} \begin{bmatrix} -\cos v. \, R_{0} + \left(\frac{r}{a \cos^{2} \varphi} + 1\right) \sin v. \, S_{0} \end{bmatrix}$$

$$\begin{bmatrix} \frac{di}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \sec \varphi. \, M_{E} \begin{bmatrix} \cos u. \, W_{0} \end{bmatrix}$$

$$\sin i \begin{bmatrix} \frac{d\Omega}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \sec \varphi. \, M_{E} \begin{bmatrix} \sin u. \, W_{0} \end{bmatrix}$$

$$\begin{bmatrix} \frac{d\pi}{dt} \end{bmatrix}_{00} = \begin{bmatrix} \frac{d\chi}{dt} \end{bmatrix}_{00} + 2 \sin^{2} \frac{i}{2} \cdot \begin{bmatrix} \frac{d\Omega}{dt} \end{bmatrix}_{00}$$

$$\begin{bmatrix} \frac{dL}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \, M_{E} \begin{bmatrix} -2\frac{r}{a} \, R_{0} \end{bmatrix} + 2 \sin^{2} \frac{\varphi}{2} \cdot \begin{bmatrix} \frac{d\chi}{dt} \end{bmatrix}_{00} + 2 \sin^{2} \frac{i}{2} \cdot \begin{bmatrix} \frac{d\Omega}{dt} \end{bmatrix}_{00}$$

In the case of the earth, as the ecliptic is usually assumed as the plane of reference, at the epoch i vanishes and Ω is indeterminate. But this inconvenience is avoided by

substituting for i and Ω two variables p and q (where the reader is asked not to confound this p with the p which denotes the semi-parameter), such that

$$p \equiv \sin i \sin \Omega$$
 $q \equiv \sin i \cos \Omega$

When we shall have

$$\begin{bmatrix} \frac{dp}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \sec \varphi. M_{E} \begin{bmatrix} \sin (v+\pi). W_{0} \end{bmatrix}$$

$$\begin{bmatrix} \frac{dq}{dt} \end{bmatrix} = \frac{m'n}{1+m} \sec \varphi. M_{E} \begin{bmatrix} \cos (v+\pi). W_{0} \end{bmatrix}$$

The parts of R, S, and W, which arise from the action of the disturbing planet on the sun, have, in their periodic developments, no terms independent of M'. For

$$\int \frac{x'}{r'^3} dM' = -\frac{n'}{1+m'} \int \frac{d^2x'}{dt^2} dt = -\frac{n'}{1+m'} \frac{dx'}{dt}$$

which, as it has the same value for $M' \equiv 0$ and $M' \equiv 2\pi$, leads to

$$\int_0^{2\pi} \frac{x'}{r'^3} d\mathbf{M}' = 0$$

In like manner

$$\int_{0}^{2\pi} \frac{y'}{r'^{3}} dM' = 0 \qquad \int_{0}^{2\pi} \frac{z'}{r'^{3}} dM' = 0$$

Hence, for our present purpose, it will suffice to consider only the mutual action of the two planets. Then, assuming a system of rectangular co-ordinates, two of whose axes, x and y, lie in the plane of the orbit of the disturbed planet, so that z = 0, R, S, and W are determined by the equations

$$r \atop m' R = \frac{xx' + yy' - r^2}{\triangle^3}$$

$$r \atop m' S = \frac{xy' - x'y}{\triangle^3}$$

$$r \atop M' W = \frac{z'}{\triangle^3}$$

and the distance \triangle of the two planets by the equation

$$\triangle^2 = r^2 - 2(xx' + yy') + r'^2$$

In order to accomplish the integrations which R_0 , S_0 , and W_0 involve, it will be necessary to express R, S, and W explicitly in terms of the variable E'. If I denotes the mutual inclination of the orbits, and Π and Π' severally the angular distances of

the perihelia from the ascending node of the orbit of the disturbing planet on the orbit of the disturbed, these quantities are determined by the equations

$$\sin I \cos (II - \omega) \equiv -\sin i \cos i' + \cos i \sin i' \cos (\Omega' - \Omega)$$

$$\sin I \sin (II - \omega) \equiv -\sin i \cos i' \sin (\Omega' - \Omega)$$

$$\sin I \cos (II' - \omega') \equiv \cos i \sin i' - \sin i \cos i' \cos (\Omega' - \Omega)$$

$$\sin I \sin (II' - \omega') \equiv -\sin i \sin i (\Omega' - \Omega)$$

We shall then have

$$xx' + yy' = rr' \left[\cos(v + II)\cos(v' + II') + \cos I\sin(v + II)\sin(v' + II') \right]$$

 $xy' - x'y = rr' \left[-\sin(v + II)\cos(v' + II') + \cos I\cos(v + II)\sin(v' + II') \right]$
 $z' = r'\sin I\sin(v' + II')$

But if four auxiliary constants, k, K, k', and K', are so taken that

$$k \cos (K - II) \equiv \cos II'$$
 $k' \cos (K' - II) \equiv \cos I \cos II'$
 $k \sin (K - II) \equiv -\cos I \sin II'$ $k' \sin (K' - II) \equiv -\sin II'$

the first two equations take the forms

$$xx' + yy' \equiv kr\cos(v + K). r'\cos v' + k'r\sin(v + K'). r'\sin v'$$
$$xy' - x'y \equiv -kr\sin(v + K). r'\cos v' + k'r\cos(v + K'). r'\sin v'$$

By the substitution of the values

$$r' \cos r' \equiv a' (\cos E' - e)$$
 $r' \sin v' \equiv a' \cos \varphi' \sin E'$

we have

$$xx' + yy' \equiv ka'r\cos(r + K) (\cos E' - e') + k'a'\cos\varphi'. r\sin(v + K')\sin E'$$

$$xy' - x'y \equiv -ka'r\sin(v + K) (\cos E' - e') + k'a'\cos\varphi'. r\cos(v + K')\sin E'$$

$$z' \equiv a'\sin I\sin II' (\cos E' - e') + a'\sin I\cos\Pi'\cos\varphi'\sin E'$$

Moreover,

$$r' \equiv a' (1 - e' \cos \mathbf{E}')$$

in consequence, if we put

$$\Lambda = r^{2} + 2 ka'e'r \cos(r + K) + a'^{2}$$

$$B \cos \epsilon = ka'r \cos(r + K) + a'^{2}e'$$

$$B \sin \epsilon = k'a' \cos \varphi'. r \sin(r + K')$$

$$C = a'^{2}e'^{2}$$

we shall have

$$\triangle^2 = A - 2B\cos(E' - \epsilon) + C\cos^2 E'$$

R, S, and W are now expressed explicitly in terms of E'. Gauss's method of

effecting the integrations, which give R_0 , S_0 , and W_0 , consists in taking a new variable T, such that

$$\cos E' = \frac{\alpha + \alpha' \sin T + \alpha'' \cos T}{\gamma + \gamma' \sin T + \gamma'' \cos T}$$

$$\sin E' = \frac{\beta + \beta'}{\gamma + \gamma'} \frac{\sin T + \beta''}{\sin T + \gamma''} \frac{\cos T}{\cos T}$$

where α , β , γ , &c, satisfy certain conditions, and, moreover, are so taken that the coefficients of sin T, cos T and sin T cos T vanish in the expression

$$\triangle^2 \left[\gamma + \gamma' \sin T + \gamma'' \cos T \right]^2$$

which, in consequence, takes the form

$$G - G'\sin^2 T + G''\cos^2 T$$

As the equation

 $[\alpha + \alpha' \sin T + \alpha'' \cos T]^2 + [\beta + \beta' \sin T + \beta'' \cos T]^2 - [\gamma + \gamma' \sin T + \gamma'' \cos T]^2 = 0$ ought to hold true independently of the value of T, the left member must have the form

$$k \left(\sin^2 T + \cos^2 T - 1\right)$$

but as it is plain that the values of α , α' , &c., can be multiplied by a common factor without any change resulting in sin E' and cos E', we may assume $k \equiv 1$. We then have the six equations of condition

$$\alpha^{2} + \beta^{2} - \gamma^{2} = -1$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 1$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 1$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 1$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

$$\alpha^{2} + \beta^{2} - \gamma^{2} = 0$$

From the values of sin E' and cos E' in terms of T, by having regard to the equations of condition just written, we obtain

$$\alpha \cos E' + \beta \sin E' - \gamma = \frac{-1}{\gamma + \gamma' \sin T + \gamma'' \cos T}$$

$$\alpha' \cos E' + \beta' \sin E' - \gamma' = \frac{\sin T}{\gamma + \gamma' \sin T + \gamma'' \cos T}$$

$$\alpha'' \cos E' + \beta'' \sin E' - \gamma'' = \frac{\cos T}{\gamma + \gamma' \sin T + \gamma'' \cos T}$$

Hence, as the equation

 $[\alpha \cos E' + \beta \sin E' - \gamma]^2 - [\alpha' \cos E' + \beta' \sin E' - \gamma']^2 - [\alpha'' \cos E' + \beta'' \sin E' - \gamma'']^2 = 0$ ought to be satisfied independently of the value assigned to E', the left member must have the form

$$k \left[\sin^2 \mathbf{E}' + \cos^2 \mathbf{E}' - 1 \right]$$

Consequently,

$$\alpha^{2} - \alpha'^{2} - \alpha''^{2} \equiv k \qquad \alpha\beta - \alpha'\beta' - \alpha''\beta'' \equiv 0$$

$$\beta^{2} - \beta'^{2} - \beta''^{2} \equiv k \qquad \alpha\gamma - \alpha'\gamma' - \alpha''\gamma'' \equiv 0$$

$$\gamma^{2} - \gamma'^{2} - \gamma''^{2} \equiv -k \qquad \beta\gamma - \beta'\gamma' - \beta''\gamma'' \equiv 0$$

But by comparing the three of these equations which involve squares of the quantities α , α' , &c., with the similar three of the equations of condition previously obtained, we get 3k = -3, or k = -1.

The six equations of condition first obtained may be so written as to form three groups of linear equations, thus:

$$\alpha. \quad \alpha+\beta. \quad \beta-\gamma. \quad \gamma=-1 \qquad \alpha. \quad \alpha'+\beta. \quad \beta'-\gamma. \quad \gamma'=0 \qquad \alpha. \quad \alpha''+\beta. \quad \beta''-\gamma. \quad \gamma''=0$$

$$\alpha'. \quad \alpha+\beta'. \quad \beta-\gamma'. \quad \gamma=0 \qquad \alpha'. \quad \alpha'+\beta'. \quad \beta'-\gamma'. \quad \gamma'=1 \qquad \alpha'. \quad \alpha''+\beta'. \quad \beta''-\gamma'. \quad \gamma''=0$$

$$\alpha''. \quad \alpha+\beta''. \quad \beta-\gamma''. \quad \gamma=0 \qquad \alpha''. \quad \alpha'+\beta''. \quad \beta''-\gamma''. \quad \gamma''=1$$

If we put

$$D = \alpha \beta' \gamma'' - \alpha' \beta \gamma'' + \alpha' \beta'' \gamma - \alpha'' \beta' \gamma + \alpha'' \beta \gamma' - \alpha \beta'' \gamma'$$

we shall have

$$D\alpha = -\frac{dD}{d\alpha} = \beta''\gamma' - \beta'\gamma''$$

$$D\alpha' = -\frac{dD}{d\alpha'} = \beta''\gamma - \beta\gamma''$$

$$D\beta' = -\frac{dD}{d\beta'} = \alpha\gamma'' - \alpha''\gamma'$$

$$D\beta' = -\frac{dD}{d\beta'} = \alpha\gamma'' - \alpha''\gamma'$$

$$D\gamma' = -\frac{dD}{d\gamma'} = \alpha\beta'' - \alpha''\beta'$$

$$D\alpha'' = -\frac{dD}{d\alpha''} = \beta\gamma' - \beta\gamma'$$

$$D\beta'' = -\frac{dD}{d\beta''} = \alpha\gamma' - \alpha\gamma'$$

$$D\gamma'' = -\frac{dD}{d\gamma''} = \alpha\beta' - \alpha\beta'$$

The value of D may be found by taking any one of the twelve preceding equations of condition between α , α' , &c., and substituting in it the values of α , α' , &c., from the preceding nine equations. Thus, if we take the equation

$$\alpha^2 - \alpha'^2 - \alpha''^2 - - 1$$

we shall have

$$D^{2} (-\alpha^{2} + \alpha'^{2} + \alpha''^{2}) = D^{2} = (\beta \gamma' - \beta' \gamma)^{2} + (\beta'' \gamma - \beta \gamma'')^{2} - (\beta' \gamma'' - \beta'' \gamma')^{2}$$

$$= \beta^{2} \gamma'^{2} + \beta'^{2} \gamma^{2} + \beta''^{2} \gamma^{2} + \beta^{2} \gamma''^{2} - \beta'^{2} \gamma''^{2} - \beta''^{2} \gamma'^{2}$$

$$- 2 \beta \gamma \beta' \gamma' - 2 \beta \gamma \beta'' \gamma'' + 2 \beta' \gamma' \beta'' \gamma''$$

$$= \beta^{2} (\gamma^{2} - 1) + \beta'^{2} (\gamma'^{2} + 1) + \beta''^{2} (\gamma''^{2} + 1)$$

$$- 2 \beta \gamma \beta' \gamma' - 2 \beta \gamma \beta'' \gamma'' + 2 \beta' \gamma' \beta'' \gamma''$$

$$= - \beta^{2} + \beta'^{2} + \beta''^{2} + (\beta \gamma - \beta' \gamma' - \beta'' \gamma'')^{2}$$

$$= 1$$

Hence, $D = \pm 1$. It is evident we may adopt either sign, consequently we take the positive one.

The foregoing equations between the quantities α , α' , &c., are all that are necessary for our purposes, but in order to obtain the values of these quantities and also of the three G, G', and G'' we must have recourse to the equations furnished by the transformation of the expression for Δ^2 . This transformation evidently comes to the same thing as the changing of the expression

$$Az^2 - 2B\cos \varepsilon$$
. $xz - 2B\sin \varepsilon$. $yz + Cx^2$

into

$$Gu^2 - G'u'^2 + G''u''^2$$

by the employment of the formulæ

$$x = \alpha u + \alpha' u' + \alpha'' u''$$

$$y = \beta u + \beta' u' + \beta'' u''$$

$$z = \gamma u + \gamma' u' + \gamma'' u''$$

But, having regard to the equations which the quantities α , α' , &c., satisfy, we readily deduce from the last-given equations

$$u = -\alpha x - \beta y + \gamma z$$

$$u' = \alpha' x + \beta' y - \gamma' z$$

$$u'' = \alpha'' x + \beta'' y - \gamma'' z$$

By substitution of these values in the expression $Gu^2 - G'u'^2 + G''u''^2$ and comparison of the resulting coefficients with

$$Az^2 - 2B\cos \epsilon$$
. $xz - 2B\sin \epsilon$. $yz + Cx^2$

we get the following equations:

$$G\alpha^{2} - G'\alpha'^{2} + G''\alpha''^{2} \equiv C$$

$$G\alpha\beta - G'\alpha'\beta' + G''\alpha''\beta'' \equiv 0$$

$$G\alpha\beta - G'\alpha'\beta' + G''\alpha''\beta'' \equiv 0$$

$$G\alpha\gamma - G'\alpha'\gamma' + G''\alpha''\gamma'' \equiv B\cos\varepsilon$$

$$G\gamma^{2} - G'\gamma'^{2} + G''\gamma''^{2} \equiv A$$

$$G\beta\gamma - G'\beta'\gamma' + G''\beta''\gamma'' \equiv B\sin\varepsilon$$

which, in conjunction with the six independent equations between α , α' , &c., previously obtained, suffice to determine the twelve unknowns, α , α' , α'' , β , β' , β'' , γ , γ''

These six equations can be written in three groups of three equations each, the first group being as follows:

$$\alpha$$
. $G\alpha - \alpha'$. $G'\alpha' + \alpha''$. $G''\alpha'' \equiv C$
 α . $G\beta - \alpha'$. $G'\beta' + \alpha''$. $G''\beta'' \equiv o$
 α . $G\gamma - \alpha'$. $G'\gamma' + \alpha''$. $G''\gamma'' \equiv B\cos \varepsilon$

The second and third groups are obtained from this by writing in succession β and γ for α in the first factors of the terms of the left members of the equations, and

making the second members, in the first case, severally 0, 0, and B sin ε , and in the second, B cos ε , B sin ε , and A. By having regard to the six equations of conditions between α , α' , &c., which were first obtained, we get from these three groups severally the following three groups of equations:

$$\begin{cases}
G\alpha &=- C\alpha + B \cos \varepsilon. \gamma \\
G\beta &= B \sin \varepsilon. \gamma \\
G\gamma &=- B \cos \varepsilon. \alpha - B \sin \varepsilon. \beta + A\gamma
\end{cases}$$

$$\begin{cases}
G'\alpha' &=- C\alpha' + B \cos \varepsilon. \gamma' \\
G'\beta' &= B \sin \varepsilon. \gamma' \\
G'\gamma' &=- B \cos \varepsilon. \alpha' - B \sin \varepsilon. \beta' + A\gamma'
\end{cases}$$

$$\begin{cases}
-G''\alpha'' &=- C\alpha'' + B \cos \varepsilon. \gamma'' \\
-G''\beta'' &= B \sin \varepsilon. \gamma'' \\
-G''\gamma'' &=- B \cos \varepsilon. \alpha'' - B \sin \varepsilon. \beta'' + A\gamma''
\end{cases}$$

From the first two equations of each of these three groups is obtained

$$\alpha = \frac{B \cos \varepsilon}{G + C} \gamma \qquad \qquad \alpha' = \frac{B \cos \varepsilon}{G' + C} \gamma' \qquad \qquad \alpha'' = \frac{B \cos \varepsilon}{C - G''} \gamma''$$

$$\beta = \frac{B \sin \varepsilon}{G} \gamma \qquad \qquad \beta' = \frac{B \sin \varepsilon}{G'} \gamma' \qquad \qquad \beta'' = -\frac{B \sin \varepsilon}{G''} \gamma''$$

By substituting these values of α , β , &c., in the last equation of each group we obtain

$$G - A + \frac{B^2 \cos^2 \varepsilon}{G + C} + \frac{B^2 \sin^2 \varepsilon}{G} = 0$$

$$G' - A + \frac{B^2 \cos^2 \varepsilon}{G' + C} + \frac{B^2 \sin^2 \varepsilon}{G'} = 0$$

$$-G'' - A + \frac{B^2 \cos^2 \varepsilon}{-G'' + C} + \frac{B^2 \sin^2 \varepsilon}{-G''} = 0$$

It is evident, now, that G, G', and -G'' are the roots of the cubic equation

$$x - A + \frac{B^2 \cos^2 \varepsilon}{x + C} + \frac{B^2 \sin^2 \varepsilon}{x} = 0$$

or of

$$x \left[(x - A) (x + C) + B^2 \right] + B^2 \sin^2 \varepsilon = 0$$

The roots of this equation are all real, as can be shown in the following manner: If, for the moment, we adopt Gauss's system of rectangular co-ordinates, that is, put the origin at the center of the ellipse described by the disturbing planet, and make the axes of x and y coincide severally with the major and minor axes of this ellipse, and suppose that the co-ordinates of the disturbed planet, with reference to this system of

axes are denoted by A, B, and C, the expression for \triangle^2 , which, in our notation, is

$$\triangle^2 = A - 2B \cos(E' - \epsilon) + C \cos^2 E'$$

will become

$$\Delta^{2} = (A - a' \cos E')^{2} + (B - a' \cos \varphi' \sin E') + C^{2}$$

$$= A^{2} + B^{2} + C^{2} + a'^{2} \cos^{2} \varphi' - 2 (Aa' \cos E' + Ba' \cos \varphi' \sin E') + a'^{2} \sin^{2} \varphi' \cos^{2} E'$$

By comparison of these two expressions for \triangle^2 , we find that, expressed in terms of the second system of co-ordinates, the equation in x becomes

$$x \left[x - (A^2 + B^2 + C^2 + a'^2 \cos^2 \varphi') \right] (x + a'^2 \sin^2 \varphi') + (A^2 a'^2 + B^2 a'^2 \cos^2 \varphi') x + B^2 a'^4 \sin^2 \varphi' \cos^2 \varphi' = 0$$

We substitute for x in this equation the four values — C, o, $a'^2 \cos^2 \varphi'$, and A, and obtain the results

$$x = -a^{\prime 2} \sin^2 \varphi' = -C$$
 result, $-A^2 a^{\prime 4} \sin^2 \varphi'$
 $x = 0$ " $+B^2 a^{\prime 4} \sin^2 \varphi' \cos^2 \varphi'$
 $x = a^{\prime 2} \cos^2 \varphi'$ " $-C^2 a^{\prime 4} \cos^2 \varphi'$
 $x = A$ " $+B^2 (A + C \sin^2 \varepsilon)$

From this it is apparent that the roots are all real, one being negative and numerically less than C, one positive and less than $a'^2 \cos^2 \varphi'$, and another positive and lying between $a'^2 \cos^2 \varphi'$ and A.

The assignment of these roots as the values of G, G', and -G'' is not indifferent; as we wish both Δ and the transformation to be real, we put G equal to the larger of the positive roots, G' equal to the smaller, and -G'' equal to the negative root. Consequently, G, G', and G'' are always positive quantities.

The readiest method of obtaining them from the equation of the third degree, which determines them, appears to be by trial. If we put

$$g = B^{2} C \sin^{2} \varepsilon$$

 $h = \frac{1}{2} [A - C + \sqrt{(A+C)^{2} - 4B^{2}}]$
 $l = \frac{1}{2} [A - C - \sqrt{(A+C)^{2} - 4B^{2}}]$

the equation takes the form

$$x(x-h)(x-l)+g=0$$

As g is usually a small quantity, having the factor e'^2 , the approximate values of the roots are o, l, and h. G, G', and G'' can then be obtained, by successive approximations, from the equation put in the forms

$$G = h - \frac{g}{G(G - l)}$$

$$G' = l + \frac{g}{G'(h - G')}$$

$$G'' = \frac{g}{(h + G'')(l + G'')}$$

quite approximate values being

$$G = h - \frac{g}{h(h-l)} \qquad G' = l + \frac{g}{l(h-l)} \qquad G'' = \frac{g}{\left(h + \frac{g}{hl}\right)\left(l + \frac{g}{hl}\right)}$$

For verification we may employ either or both of the equations

$$G + G' - G'' = A - C$$

 $GG'G'' = B^2C \sin^2 \varepsilon$

It will be seen that, in order to make our desired transformation from the variable E' to the variable T, we do not need the values of the nine quantities α , α' , &c., but only the values of the following ten squares and products of them, viz, α'^2 , γ'^2 , $\alpha'\beta'$, $\alpha'\gamma'$, $\beta'\gamma'$, α''^2 , γ''^2 , $\alpha''\beta''$, and $\beta''\gamma''$; hence, we will limit ourselves to the determination of these.

The values of α' and β' , in terms of γ' , and of α'' and β'' , in terms of γ'' , have already been given. If we substitute them in the equations

$$\alpha'^2 + \beta'^2 - \gamma'^2 = 1$$
 $\alpha''^2 + \beta''^2 - \gamma''^2 = 1$

we obtain

$$\begin{bmatrix} \frac{B^2 \cos^2 \varepsilon}{(G' + C)^2} + \frac{B^2 \sin^2 \varepsilon}{G'^2} - 1 \end{bmatrix} \gamma' = 1$$

$$\begin{bmatrix} \frac{B^2 \cos^2 \varepsilon}{(C - G'')^2} + \frac{B^2 \sin^2 \varepsilon}{G''^2} - 1 \end{bmatrix} \gamma'' = 1$$

Whence

$$\gamma^{\prime 2} = \frac{\frac{(G' + C) G'}{B^2 \cos^2 \varepsilon}}{\frac{B^2 \cos^2 \varepsilon}{G' + C} G' + \frac{B^2 \sin^2 \varepsilon}{G'} (G' + C) - (G' + C) G'}$$

or having regard to the equation which determines G',

$$\gamma'^{2} = \frac{(G' + C) G'}{(A - G') G' + \frac{B^{2}C \sin^{2} \varepsilon}{G'} - (G' + C) G'}$$

$$= \frac{(G' + C) G'}{(A - C - 2G') G' + GG''}$$

$$= \frac{(G' + C) G'}{(G' + G'') (G - G')}$$

And in like manner,

$$\begin{split} \gamma''^2 &= \frac{(C - G'') G''}{\frac{B^2 \cos^2 \varepsilon}{C - G''} G'' + \frac{B^2 \sin^2 \varepsilon}{G''} (C - G'') - (C - G'') G''} \\ &= \frac{(C - G'') G''}{(A + G'') G'' + GG' - (C - G'') G''} \\ &= \frac{(C - G'') G''}{(G + G'') (G' + G'')} \end{split}$$

We have

$$\frac{B^2}{G'} \frac{\cos^2 \varepsilon}{+C} = A - G' - \frac{B^2}{G'} \frac{\sin^2 \varepsilon}{G'}$$

consequently,

$$\alpha'^2 = \frac{(A - G') G' - B^2 \sin^2 \varepsilon}{(G' + G'') (G - G'')}$$

Also,

$$\frac{B^2 \cos^2 \varepsilon}{C - G''} = A + G'' + \frac{B^2 \sin^2 \varepsilon}{G''}$$

consequently,

$$\alpha^{\prime\prime 2} = \frac{(A + G^{\prime\prime}) G^{\prime\prime} + B^2 \sin^2 \varepsilon}{(G + G^{\prime\prime}) (G^{\prime} + G^{\prime\prime})}$$

And the values of the six products needed are

$$\alpha'\beta' = \frac{B^2 \sin \varepsilon \cos \varepsilon}{(G' + G'')(G - G')}$$

$$\alpha''\beta'' = -\frac{B^2 \sin \varepsilon \cos \varepsilon}{(G + G'')(G' + G'')}$$

$$\alpha'\gamma' = \frac{B \cos \varepsilon \cdot G'}{(G' + G'')(G - G')}$$

$$\alpha''\gamma'' = \frac{B \cos \varepsilon \cdot G''}{(G + G'')(G' + G'')}$$

$$\beta''\gamma'' = -\frac{B \sin \varepsilon \cdot (C + G')}{(G + G'')(G' + G'')}$$

We have next to ascertain the value of the differential dE' in terms of the differential dT. From the equations

H cos E'
$$\equiv \alpha + \alpha' \sin T + \alpha'' \cos T$$

H sin E' $\equiv \beta + \beta' \sin T + \beta'' \cos T$

where H stands for $\gamma + \gamma' \sin E' + \gamma'' \cos E'$, it follows that

$$\mathrm{H} \ d\mathrm{E}' = [\cos \mathrm{E}' \ (\beta' \ \cos \mathrm{T} - \beta'' \ \sin \mathrm{T}) - \sin \mathrm{E}' \ (\alpha' \ \cos \mathrm{T} - \alpha'' \ \sin \mathrm{T})] \ d\mathrm{T}$$

or

$$H^{2} dE' = [(\alpha''\beta' - \alpha'\beta'') + (\alpha''\beta - \alpha\beta'') \sin T + (\alpha\beta' - \alpha'\beta) \cos T] dT$$
$$= -[\gamma + \gamma' \sin T + \gamma'' \cos T] dT$$

Whence

$$H dE' = -dT$$

The quantity H is always of the same sign, otherwise sin E' and cos E' might become infinite in the passage of H through zero. If this consideration is not deemed conclusive, the point can be established as follows:

Since we have

$$(\gamma' \sin T + \gamma'' \cos T)^2 + (\gamma'' \sin T - \gamma' \cos T)^2 = \gamma'^2 + \gamma''^2 = \gamma^2 - 1$$

without regard to signs, $\gamma' \sin T + \gamma'' \cos T$ will always be less than γ . Hence, if γ be negative, T will always increase when E' increases; but if γ be positive, T will always diminish when E' increases.

If we put $\sqrt{\gamma^2 - 1} = \delta$, so that $\delta^2 = \alpha^2 + \beta^2 = \gamma'^2 + \gamma''^2$, we shall have

H
$$(\delta + \alpha \cos E' + \beta \sin E') = \gamma \delta + \alpha^2 + \beta^2 + (\gamma' \delta + \alpha \alpha' + \beta \beta') \sin T + (\gamma'' \delta + \alpha \alpha'' + \beta \beta'') \cos T$$

= $(\gamma + \delta) (\delta + \gamma' \sin T + \gamma'' \cos T)$

Also,

H
$$(\alpha \sin E' - \beta \cos E') \equiv (\alpha \beta' - \alpha' \beta) \sin T + (\alpha \beta'' - \alpha'' \beta) \cos T$$

= $\gamma'' \sin T - \gamma' \cos T$

By putting

$$\frac{\alpha}{\delta} = \cos L$$
 $\frac{\beta}{\delta} = \sin L$ $\frac{\gamma''}{\delta} = \cos M$ $\frac{\gamma'}{\delta} = \sin M$

these two equations become

$$H[I + \cos(E' - L)] = (\gamma + \delta)[I + \cos(T - M)]$$

$$H \sin(E' - L) = \sin(T - M)$$

By division we get

$$\tan \frac{1}{2} (T - M) = (\gamma + \delta) \tan \frac{1}{2} (E' - L)$$

From this equation it is evident that, when E' augments by a circumference, T augments or diminishes by the same quantity according as γ is negative or positive.

The expressions we have to integrate with respect to E' are of the form $\frac{\Theta}{\triangle^3}$; hence, whether γ be positive or negative, we shall always have

$$\int_0^{2\pi} \frac{\Theta}{\Delta^3} dE' = \int_0^{2\pi} \frac{H^2 \Theta}{(H^2 \Delta^2)_2^3} dT$$

provided that we understand that the radical in the denominator is to have the positive sign.

The general form of Θ is

$$\Theta = [f + g(\cos E' - e') + h \sin E'] (1 - e' \cos E')$$

$$= f - ge' + [g(1 + e'^2) - fe'] \cos E' + h \sin E' - he' \sin E' \cos E' - ge' \cos^2 E'$$

If in this expression, multiplied by H^2 , are substituted the values of H^2 , $H \cos E'$, and $H \sin E'$ in terms of T, and the terms multiplied by $\sin T$, $\cos T$, and $\sin T \cos T$ omitted, as, when integrated between the limits o and 2π they contribute nothing to the value of the integral, we get

$$\begin{aligned} H^{2}\Theta &= (f - ge') \; (\gamma^{2} + \gamma'^{2} \sin^{2} T + \gamma''^{2} \cos^{2} T) \\ &+ [g \; (1 + e'^{2}) - fe'] \; (\alpha \gamma + \alpha' \gamma' \sin^{2} T + \alpha'' \gamma'' \cos^{2} T) \\ &+ h \; (\beta \gamma + \beta' \gamma' \sin^{2} T + \beta'' \gamma'' \cos^{2} T) \\ &- he' \; (\alpha \beta + \alpha' \beta' \sin^{2} T + \alpha'' \beta'' \cos^{2} T) \\ &- ge' \; (\alpha^{2} + \alpha'^{2} \sin^{2} T + \alpha''^{2} \cos^{2} T) \end{aligned}$$

But we have the equations

$$\alpha^{2} = -1 + \alpha'^{2} + \alpha''^{2}$$

$$\gamma^{2} = 1 + \gamma'^{2} + \gamma''^{2}$$

$$\alpha\beta = \alpha'\beta' + \alpha''\beta''$$

$$\alpha\gamma = \alpha'\gamma' + \alpha''\gamma''$$

$$\beta\gamma = \beta'\gamma' + \beta''\gamma''$$

Hence, if we put

$$\begin{split} \Gamma' &= (f - ge') \ \gamma'^2 + [g \ (\mathbf{1} + e'^2) - fe'] \ \alpha' \gamma' \ + h \beta' \gamma' \ - h e' \alpha' \beta' \ - g e' \alpha'^2 \\ \Gamma'' &= (f - ge') \ \gamma''^2 + [g \ (\mathbf{1} + e'^2) - fe'] \ \alpha'' \gamma'' + h \beta'' \gamma'' - h e' \alpha'' \beta'' - g e' \alpha''^2 \end{split}$$

we shall have

$$H^2\Theta \equiv [2\Gamma' + \Gamma'' + f] \sin^2 \Gamma + [\Gamma' + 2\Gamma'' + f] \cos^2 \Gamma$$

If we substitute, in the expressions for Γ' and Γ'' , for γ'^2 , $\alpha'\gamma'$, &c., the values we have previously obtained for these squares and products, and, moreover, put

F =
$$[ge' B \sin \varepsilon - he' B \cos \varepsilon + hC] B \sin \varepsilon$$

J = $-ge' A + (f - ge') C + [g(1 + e'^2) - fe'] B \cos \varepsilon + hB \sin \varepsilon$

we shall obtain

$$\Gamma' = \frac{F + JG' + fG'^2}{(G' + G'')(G - G')} \qquad \qquad \Gamma'' = \frac{-F + JG'' - fG''^2}{(G + G'')(G' + G'')}$$

Substituting in the values of F and J the values of A, B cos ϵ , B sin ϵ , and C, we get

$$F = a'e'r \text{ B sin } \varepsilon \left[gk' \cos \varphi' \sin \left(v + \mathbf{K}' \right) - hk \cos \left(v + \mathbf{K} \right) \right]$$

$$J = -fa'e'kr \cos \left(v + \mathbf{K} \right) + g \left[ka' \cos^2 \varphi' \cdot r \cos \left(v + \mathbf{K} \right) - e'r^2 \right]$$

$$+ hk'a' \cos \varphi' \cdot r \sin \left(v + \mathbf{K}' \right)$$

To apply these formulæ to the three special cases of the computation of R_0 , S_0 , and W_0 . In the case of R_0 we have

$$f = -ar^2$$
 $g = kaa'r \cos(v + K)$ $h = k'aa' \cos \varphi'$. $r \sin(v + K')$

Consequently, here

F = 0
J =
$$aa'^2 \cos^2 \varphi'$$
. $r^2 [k^2 \cos^2 (v + K) + k'^2 \sin^2 (v + K')]$
= $aa'^2 \cos^2 \varphi'$. $r^2 [1 - \sin^2 I \sin^2 (v + II)]$

In the case of S₀ we have

$$f = 0$$
 $g = -kaa'r \sin(v + K)$ $h = k'aa' \cos \varphi'$. $r \cos(v + K')$

Consequently, here

$$F = -aa'^{2} kk' \cos (K' - K) \sin \varphi' \cos \varphi'. r^{2} B \sin \varepsilon$$

$$= -aa'^{2} \sin \varphi' \cos \varphi' \cos I. r^{2} B \sin \varepsilon$$

$$J = kaa'e'r^{2} \sin (v + K) + \frac{1}{2} aa'^{2} \cos^{2} \varphi'. r^{2} [k'^{2} \sin 2 (v + K') - k^{2} \sin 2 (v + K)]$$

$$= kaa'e'r^{3} \sin (v + K) - \frac{1}{2} aa'^{2} \cos^{2} \varphi' \sin^{2} I. r^{2} \sin 2 (v + II)$$

In the case of Wo we have

$$f \equiv 0$$
 $g \equiv a' \sin I \sin \Pi'$. r^2 $h \equiv a' \sin I \cos \Pi' \cos \varphi'$. r^2

Consequently, here

$$\begin{aligned} \mathbf{F} &= a'^2 \sin \varphi' \cos \varphi' \sin I. \ r^3 \, \mathbf{B} \sin \varepsilon \left[k' \sin \Pi' \sin \left(v + \mathbf{K}' \right) - k \cos \Pi' \cos \left(v + \mathbf{K} \right) \right] \\ &= -a'^2 \sin \varphi' \cos \varphi' \sin I. \ r^3 \cos \left(v + \Pi \right). \ \mathbf{B} \sin \varepsilon \\ \mathbf{J} &= a'^2 \cos^2 \varphi' \sin I. \ r^3 \left[k \sin \Pi' \cos \left(v + \mathbf{K} \right) + k' \cos \Pi' \sin \left(v + \mathbf{K}' \right) \right] \\ &- a' \sin \varphi' \sin I \sin \Pi'. \ r^4 \\ &= a'^2 \cos^2 \varphi' \sin I \cos I. \ r^3 \sin \left(v + \Pi \right) - a'c' \sin I \sin \Pi'. \ r^4 \end{aligned}$$

The values of R₀, S₀, and W₀ are given by the definite integral

$$\frac{1}{2\pi} \int_{0}^{2\pi} \frac{\left[2\Gamma' + \Gamma'' + f\right] \sin^{2} \Gamma + \left[\Gamma' + 2\Gamma'' + f\right] \cos^{2} \Gamma}{\left[G + G''\right]^{\frac{3}{2}} \left[1 - c^{2} \sin^{2} \Gamma\right]^{\frac{3}{2}}} d\Gamma$$

provided we attribute to F, J, and f the values they have in each case. In this expression we have put

$$\frac{G' + G''}{G + G''} = c^2$$

c is then the modulus of the elliptic integrals involved in the expression. Let b denote the complementary modulus $= \sqrt{1 - c^2}$. In the notation of Legendre

$$\int_{0}^{\frac{\pi}{2}} \frac{d\mathbf{T}}{[\mathbf{I} - c^{2} \sin^{2} \mathbf{T}]^{\frac{1}{2}}} = \mathbf{F}^{1} (c) \qquad \int_{0}^{\frac{\pi}{2}} [\mathbf{I} - c^{2} \sin^{2} \mathbf{T}]^{\frac{1}{2}} d\mathbf{T} = \mathbf{E}^{1} (c)$$

We have the equation

$$\frac{d}{dT} \frac{\sin T \cos T}{[1-c^2 \sin^2 T]^{\frac{1}{2}}} = \frac{1-2 \sin^2 T + c^2 \sin^4 T}{[1-c^2 \sin^2 T]^{\frac{3}{2}}}$$

whence

$$\int_{0}^{\frac{\pi}{2}} \frac{1 - 2 \sin^{2} T + c^{2} \sin^{4} T}{[1 - c^{2} \sin^{2} T]^{\frac{3}{2}}} = 0$$

In consequence, we have the equations

$$\int_{0}^{\frac{\pi}{2}} \frac{(1-c^{2}) dT}{[1-c^{2} \sin^{2} T]^{\frac{3}{2}}} = E^{1} (c)$$

$$\int_{0}^{\frac{\pi}{2}} \frac{\sin^{2} T dT}{[1-c^{2} \sin^{2} T]^{\frac{3}{2}}} = \frac{1}{c^{2}} \left[\frac{1}{b^{2}} E^{1} (c) - F^{1} (c) \right]$$

$$\int_{0}^{\frac{\pi}{2}} \frac{\cos^{2} T dT}{[1-c^{2} \sin^{2} T]^{\frac{3}{2}}} = \frac{1}{c^{2}} \left[F^{1} (c) - E^{1} (c) \right]$$

Legendre, moreover, has put

$$F^{1}(c) = \frac{\pi}{2} K$$
 $E^{1}(c) = \frac{\pi}{2} K L$

Hence,

$$R_{0}, S_{0}, \text{ or } W_{0} = \frac{K}{c^{2}(G+G'')^{\frac{3}{2}}} \left[(\Gamma' + 2\Gamma'' + f) (\mathbf{I} - \mathbf{L}) + (2\Gamma' + \Gamma'' + f) \left(\frac{\mathbf{L}}{b^{2}} - \mathbf{I} \right) \right]$$

$$= \frac{KL}{b^{2}(G+G'')^{\frac{3}{2}}} f + \frac{K}{(G+G'')^{\frac{3}{2}}} \left[\frac{\mathbf{L}}{b^{2}} + \frac{\mathbf{L} - b^{2}}{b^{2}c^{2}} \right] \Gamma' + \frac{K}{(G+G'')^{\frac{3}{2}}} \left[2\frac{\mathbf{L}}{b^{2}} - \frac{\mathbf{L} - b^{2}}{b^{2}c^{2}} \right] \Gamma''$$

We will now put

$$\mathbf{X} = \frac{\mathbf{KL}}{b^2} \qquad \qquad \mathbf{E} = \frac{\mathbf{L} - b^2}{c^2 \mathbf{L}}$$

In consequence, the general expression for R₀, S₀, or W₀ will take the form

$$\frac{\mathfrak{Z}}{(\mathbf{G}+\mathbf{G}'')^{\frac{2}{3}}} \left\lceil f + (\mathbf{I}+\mathbf{Z}) \ \Gamma' + (\mathbf{2}-\mathbf{Z}) \ \Gamma'' \right\rceil$$

If we put

$$N = \frac{ar^2 \mathcal{X}}{(G + G'')^{\frac{3}{2}}} \qquad N' = \frac{N (1 + \mathcal{X})}{b^2 c^2 (G + G'')^{\frac{3}{2}}} \qquad N'' = \frac{N (2 - \mathcal{X})}{c^2 (G + G'')^2}$$

and substitute for Γ' and Γ'' their values, this expression becomes

$$(N' - N'') \frac{F}{ar^2} + (N'G' + N''G'') \frac{J}{ar^2} + (N + N'G'^2 - N''G''^2) \frac{f}{ar^2}$$

This can be rendered more suitable for computation by putting

$$P = N' - N'' = \frac{N \left[-2b^2 + t + (t + b^2) \mathcal{L} \right]}{b^2 c^2 (G + G'')^2}$$

$$Q = N' (G' + G'') = \frac{N (t + \mathcal{L})}{b^2 (G + G'')}$$

$$V = Q - PG''$$

Then the expression takes the form

$$P\frac{F}{ar^2} + V\frac{J}{ar^2} + (N + QG' - VG'')\frac{f}{ar^2}$$

If we call $\frac{F}{ar^2}$, $\frac{J}{ar^2}$, and $\frac{f}{ar^2}$ severally in the cases of R_0 , S_0 , and W_0 by F_1 , J_1 , f_1 , F_2 , J_2 , f_2 , F_3 , J_3 , f_3 , remembering that $F_1 = 0$, $f_1 = -1$, $f_2 = 0$, and $f_3 = 0$, we shall have

$$R_0 = -(\dot{N} + QG' - VG'') + VJ_1$$

 $S_0 = PF_2 + VJ_2$
 $W_0 = PF_3 + VJ_3$

It now only remains to show how the elliptic integrals K and L may be computed. If we adopt a new variable, T⁰, such that

$$\sin (2T - T^0) = c^0 \sin T^0$$

where $c^0 = \frac{1-b}{1+b}$, we shall have the following equations.

$$\cos (2T - T^{0}) = \checkmark (1 - c^{0^{2}} \sin^{2} T^{0}) = \triangle$$

$$\cos 2T = \triangle \cos T^{0} - c^{0} \sin^{2} T^{0}$$

$$\sin 2T = \triangle \sin T^{0} + c^{0} \sin T^{0} \cos T^{0}$$

$$= \sin T^{0} (c^{0} \cos T^{0} + \triangle)$$

$$2dT = \frac{dT^{0}}{\triangle} (c^{0} \cos T^{0} + \triangle)$$

$$\checkmark (1 - c^{2} \sin^{2} T) = \frac{c^{0} \cos T^{0} + \triangle}{1 + c^{0}}$$

$$\frac{dT}{\checkmark (1 - c^{2} \sin^{2} T)} = \frac{1 + c^{0}}{2} \frac{dT^{0}}{\triangle}$$

which constitute the well-known transformation of Landen. It is plain, from the values of $\sin(2T - T^0)$ and $\cos(2T - T^0)$ that, when T passes from the value o to

the value $\frac{\pi}{2}$, To passes from 0 to π . Hence,

$$\int_0^{\frac{\pi}{2}} \frac{d\mathbf{T}}{\sqrt{(1-c^2\sin^2\mathbf{T})}} = (1+c^0) \int_0^{\frac{\pi}{2}} \frac{d\mathbf{T}^0}{\sqrt{(1-c^{02}\sin^2\mathbf{T}^0)}}$$

or

$$F^{1}(c) = (1 + c^{0}) F^{1}(c^{0})$$

If we take c^{00} the same function of c^0 that c^0 is of c, and, again, in like manner, derive c^{000} , and so on, the quantities c, c^0 , c^{00} , &c., diminish, and, as $F^1(0) = \frac{\pi}{2}$, we shall have

$$F^{1}(c) = \frac{\pi}{2} (I + c^{0}) (I + c^{00}) (I + c^{000}) ...$$

If the moduli complementary to c^0 , c^{00} , &c., are denoted by b^0 , b^{00} , &c., we shall have $b^0 = \sqrt{1-c^{02}}$ and $b = \frac{1-c^0}{1+c^0}$. Consequently,

$$(\mathbf{1}+c^0) = \frac{b^0}{\sqrt{h}}$$

Hence,

$$K = \sqrt{\frac{\overline{b^0} \, \overline{b^{00}} \, \overline{b^{000}} \dots}{b}}$$

From the equations

$$\frac{d\mathbf{T}}{\sqrt{(1-c^2\sin^2\mathbf{T})}} = \frac{\mathbf{I}+c^0}{2} \frac{d\mathbf{T}^0}{\Delta} \qquad \qquad \sin^2\mathbf{T} = \frac{\mathbf{I}}{2} \left(\mathbf{I}+c^0\sin^2\mathbf{T}^0 - \Delta\cos\mathbf{T}^0\right)$$

we obtain

$$\int_{0}^{\frac{\pi}{2}} \frac{A + B \sin^{2} T}{\sqrt{(1 - c^{2} \sin^{2} T)}} dT = (1 + c^{0}) \int_{0}^{\frac{\pi}{2}} \frac{A + \frac{B}{2} + B \frac{c^{0}}{2} \sin^{2} T^{0}}{\Delta} dT^{0}$$

If this process of transformation is continued as in the case of the former integral we find that

$$\int_{0}^{\frac{\pi}{2}} \frac{A + B \sin^{2} T}{\sqrt{(1 - c^{2} \sin^{2} T)}} dT = \frac{\pi}{2} K \left[A + \frac{B}{2} \left(1 + \frac{c^{0}}{2} + \frac{c^{0} c^{00}}{4} + \frac{c^{0} c^{00} c^{000}}{8} + \dots \right) \right]$$

In the case of $E^{1}(c)$ we have A = 1 and $B = -c^{2}$; hence,

$$L = I - \frac{c^2}{2} - \frac{c^2 c^0}{4} - \frac{c^2 c^0 c^{00}}{8} - \dots$$

As we have

$$1 - \frac{c^2}{2} - \frac{c^2 c^0}{4} = \frac{c^2}{4c^0} = \frac{b}{b^{0^2}}$$

and as we may, for our purpose, cut off the series at the term which contains c^{000} , and with sufficient approximation put

$$1 + \frac{1}{2}c^{000} = \sqrt{1 + c^{000}} = \sqrt{\frac{2\sqrt{c^{000}}}{c^{00}}} = \frac{\sqrt{b^{000}}}{\sqrt{b^{00}}}$$

we may put

$${
m L} \equiv rac{b}{ar{b}^{0\,2}} \left[{
m I} - rac{{
m I}}{2} \, c^{0^2} \, c^{00} \, \sqrt[4]{ar{b}^{000}}
ight]$$

In like manner

$$\frac{\mathbf{L} - b^{2}}{c^{2}} = \frac{1}{2} \left[\mathbf{I} - \frac{c^{0}}{2} - \frac{c^{0}}{4} \frac{c^{00}}{\sqrt{b^{00}}} \right]$$

$$\mathbf{E} = \sqrt{\frac{\overline{b^{00}} \, \overline{b^{000}}}{b^{3} \, \overline{b^{0}}^{3}}} \left[\mathbf{I} - \frac{1}{2} \, c^{0^{2}} \, c^{00} \frac{\sqrt{b^{000}}}{\sqrt{b^{00}}} \right]$$

$$\frac{(\mathbf{I} + b^{2}) \, \mathbf{E} - 2 \, b^{2} + \mathbf{I}}{b^{2} \, c^{2}} = \mathbf{E}' = \frac{2 - c^{2} - \frac{(\mathbf{I} - c^{2} + c^{4})}{8} \, b^{0^{2}} \left(\mathbf{I} + \frac{1}{2} \, c^{00} \, \frac{\sqrt{b^{000}}}{\sqrt{4} \sqrt{b^{00}}} \right)}{\frac{b^{3}}{b^{0^{2}}} \left[\mathbf{I} - \frac{1}{2} \, c^{0^{2}} \, c^{00} \, \frac{\sqrt{b^{000}}}{\sqrt{b^{00}}} \right]}$$

$$\frac{\mathbf{I} + \mathbf{E}}{b^{2}} = \mathbf{E}' = \frac{\frac{3}{2} - \frac{1}{2} \, c^{2} - \frac{\mathbf{I} + c^{2}}{2} \left[\frac{c^{0}}{2} + \frac{c^{0}}{4} \frac{c^{0}}{\sqrt{b^{00}}} \right]}{\frac{b^{3}}{b^{0^{2}}} \left[\mathbf{I} - \frac{1}{2} \, c^{0^{2}} \, c^{00} \, \frac{\sqrt{b^{000}}}{\sqrt{b^{00}}} \right]}$$

The common logarithms of the last three functions are tabulated at the end of this memoir. In order to make the data of Legendre's Tables in the second volume of his Théorie des Fonctions Elliptiques available, c has been put $\equiv \sin \theta$, and θ adopted as the argument. The quantities are given to eight places of decimals, having been computed with ten. They are tabulated at intervals of a tenth of a degree, and are given from $\theta \equiv 0$ up to $\theta \equiv 50^{\circ}$. Beyond the latter limit they will scarcely be needed and the interpolation of the tables becomes difficult. Should values, beyond the limit of the table, be wanted, it will be easier to compute them directly from the formulæ than to derive them by interpolation from values tabulated at intervals of 0° . I in the value of θ .

Recapitulation of the formulæ needed for the application of this method.

For the benefit of those who wish to make a numerical application of this method, I have here gathered together and arranged, in proper order, all the formulæ necessary to be used. For the signification of the symbols, the preceding discussion must be consulted.

Compute the constants I, Π , Π' , k, K, k', and C, which are functions of the elements of the two orbits, by means of the equations

$$\sin I \cos (\Pi - \omega) \equiv -\sin i \cos i' + \cos i \sin i' \cos (\Omega' - \Omega)$$

$$\sin I \sin (\Pi - \omega) \equiv -\sin i' \sin (\Omega' - \Omega)$$

$$\sin I \cos (\Pi' - \omega') \equiv \cos i \sin i' - \sin i \cos i' \cos (\Omega' - \Omega)$$

$$\sin I \sin (\Pi' - \omega') \equiv -\sin i \sin i \sin (\Omega' - \Omega)$$

$$k \cos (K - \Pi) \equiv \cos \Pi'$$

$$k \sin (K - \Pi) \equiv -\cos I \sin \Pi'$$

$$k' \cos (K' - \Pi) \equiv -\sin \Pi'$$

$$C \equiv a'^2 e'^2$$

The circumference, with reference to the variable E, will now be divided into a certain number of equal parts, which number ought to be a multiple of 4, and should be large or small as the perturbations are more or less irregular through the variation of the distance of the two planets. For each of these values of E, the values of the varying quantities in the left members of the following equations must be calculated. Here a useful check against large errors may be had by adding the first, third, fifth, &c., numerical values of any one of these quantities, and again the second, fourth, sixth, &c. The difference of the two sums should be very small, except in case of certain angles, where one sum may exceed the other by nearly 180°. The same test may be applied to the logarithms of a quantity, provided it does not change sign and does not approach zero very closely.

$$r \cos v \equiv a (\cos E - e)$$

$$r \sin v \equiv a \cos \varphi \sin E$$

$$A \equiv r^2 + 2ka'e'r \cos (v + K) + a'^2$$

$$B \cos \varepsilon \equiv ka'r \cos (v + K) + a'^2 e'$$

$$B \sin \varepsilon \equiv k'a' \cos \varphi'. r \sin (v + K')$$

$$g \equiv B^2 C \sin^2 \varepsilon$$

$$h = \frac{1}{2} \left[A - C + \sqrt{(A+C)^2 - 4B^2} \right]$$

$$l \equiv \frac{1}{2} \left[A - C - \sqrt{(A+C)^2 - 4B^2} \right]$$

Find G, G', and G" by trial from the equations

$$G = h - \frac{g}{G(G - l)}$$

$$G' = l + \frac{g}{G'(h - G')}$$

$$G'' = \frac{g}{(h + G'')(l + G'')}$$

Approximate values are

$$G = h - \frac{g}{h(h-l)}$$

$$G' = l + \frac{g}{l(h-l)}$$

$$G'' = \frac{g}{\left(h + \frac{g}{hl}\right)\left(l + \frac{g}{hl}\right)}$$

$$\sin^2 \theta = \frac{G' + G''}{G + G''}$$

From the tables at the end of this memoir, with the argument θ , take out the values of $\log \mathfrak{U}$, $\log \mathfrak{U}'$, and $\log \mathfrak{U}$.

$$N = \frac{ar^{2}}{(G + G'')^{\frac{3}{2}}}$$

$$P = \frac{N \mathcal{L}'}{(G + G'')^{2}}$$

$$Q = \frac{N \mathcal{L}'}{G + G''}$$

$$V = Q - PG''$$

$$J_{1} = a'^{2} \cos^{2} \varphi' \left[1 - \sin^{2} I \sin^{2} (v + II)\right] + G''$$

$$J_{2} = ka'e'r \sin (v + K) - \frac{1}{2} a'^{2} \cos^{2} \varphi' \sin^{2} I \sin 2 (v + II)$$

$$J_{3} = \frac{a'^{2}}{a} \cos^{2} \varphi' \sin I \cos I. \ r \sin (v + II) - \frac{a'}{a} e' \sin I \sin II. \ r^{2}$$

$$F_{2} = -a'^{2} \sin \varphi' \cos \varphi' \cos I. \ B \sin \varepsilon$$

$$F_{3} = -\frac{a'^{2}}{a} \sin \varphi' \cos \varphi' \sin I. \ r \cos (v + II). \ B \sin \varepsilon$$

$$R_{0} = -N - QG' + VJ_{1}$$

$$S_{0} = PF_{2} + VJ_{2}$$

$$W_{0} = PF_{3} + VJ_{3}$$

The secular variations of the elements will be given by the following equations:

$$\begin{bmatrix} \frac{de}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \cos \varphi. \, M_{E} \begin{bmatrix} \sin v. \, R_{0} + (\cos v + \cos E) \, S_{0} \end{bmatrix}$$

$$e \begin{bmatrix} \frac{d\chi}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \cos \varphi. \, M_{E} \begin{bmatrix} -\cos v. \, R_{0} + \left(\frac{r}{a \cos^{2} \varphi} + 1\right) \sin v. \, S_{0} \end{bmatrix}$$

$$\begin{bmatrix} \frac{di}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \sec \varphi. \, M_{E} \begin{bmatrix} \cos u. \, W_{0} \end{bmatrix}$$

$$\sin i \begin{bmatrix} \frac{d\Omega}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \sec \varphi. \, M_{E} \begin{bmatrix} \sin u. \, W_{0} \end{bmatrix}$$

$$\begin{bmatrix} \frac{d\pi}{dt} \end{bmatrix}_{00} = \begin{bmatrix} \frac{d\chi}{dt} \end{bmatrix}_{00} + 2 \sin^{2} \frac{i}{2} \cdot \begin{bmatrix} \frac{d\Omega}{dt} \end{bmatrix}_{00}$$

$$\begin{bmatrix} \frac{dL}{dt} \end{bmatrix}_{00} = \frac{m'n}{1+m} \, M_{E} \begin{bmatrix} -2\frac{r}{a} \, R_{0} \end{bmatrix} + 2 \sin^{2} \frac{\varphi}{2} \cdot \begin{bmatrix} \frac{d\chi}{dt} \end{bmatrix}_{00} + 2 \sin^{2} \frac{i}{2} \cdot \begin{bmatrix} \frac{d\Omega}{dt} \end{bmatrix}_{00}$$

EXAMPLE.

Computation of the Secular Perturbations of Mercury produced by the Action of Venus.

The elements of the two planets, adopted for the epoch 1850.0, are

Mercury.
$$n = 5381016''.26$$
 $n' = 2106641''.357$ $e = 0.20560476$ $e' = 0.00684311$ $\pi = 75^{\circ}$ 7' 13''.62 $\pi' = 129^{\circ}$ 27' 42''.83 $i = 7^{\circ}$ 0' 7''.71 $i' = 3^{\circ}$ 23' 35''.01 $\Omega = 46^{\circ}$ 33' 8''.63 $\Omega' = 75^{\circ}$ 19' 53''.08 $\log a = 9.5878217$ $\log a' = 9.8593378$ $m = \frac{1}{5000000}$

From these are deduced

$$I = 4^{\circ} 20' 42''.98$$
 $K = 305^{\circ} 43' 2''.46$ $\log k' = 9.9999176$ $\Pi = 230^{\circ} 39' 31''.39$ $K' = 305^{\circ} 47' 57''.54$ $\log C = 5.3891826$ $\Pi' = 284^{\circ} 54' 1''.18$ $\log k = 9.9988328$ $C = 0.00002450$

The circumference is now divided into twelve parts with respect to E, the eccentric anomaly of Mercury. The values of the various quantities employed in the computation, computed for each of the points of division, are tabulated below. The result of the application of the test, mentioned above, is given at the foot of the column, opposite

to the symbols S and S', whenever it is supposed to be useful. The numbers given are affected with asterisks when the additions have been made on the numbers which correspond to the logarithms in the column of values.

E	log. r	v		A ·	10	og. B		E		log. g
c		0 /	"				0		"	· · —
0	9. 4878584		0.00	0. 619543		3505444	1	-	. 64	3. 90151
30	9. 5026623		7. 50	0. 627435	- 1	3671640		_	. 83	3. 07719
60	9. 5407098		1.41	0. 647116	- 1	4050438	1	•	.01	3. 10312
90	9. 5878217	, ,	3.65	0.675632		4506321	47		. 28	4. 02085
120	9. 6303194	-	1.60	o. 7065 03		4909308	l .		. 98	4. 34050
150	9. 6589887		9. 02	0. 730295		5171866	!	_	. 25	4. 40878
180	9. 6690267	1	0,00	0. 738317	1	5249278	125	_	. 07	4. 26384
210	9. 6589887		0. 98	0. 727259	_	5130385	149	-	. 18	3. 81457
240	9. 6303194	, -	5. 40	0. 701243	i	4833852			. 29	2, 05108
270	9. 5878217		5. 35	0.669559	1 1	4412922	204	•	.00	3 49971
300	9. 5407098	1	8. 59	0.641856		3963533	235	•	. 28	4. 01534
330	9. 5026623	323 27 5	2. 50	0. 624398	30 9.	3618721	270	4 31	. 93	4. 11293
8 !			-	4. 054580	48 6.	6511853	934	32 42	. 27	
S'				4. 054580	49 6.	6511855	1114	32 42	- 47	
E	h	ı	(3	G'	G"	· 	6		log. 🖀
E								c /	"	
E	o. 5 2 35 8 611	0. 09593335	0. 523	58255	o. 09595277	0, 00001	·	c / 25 20	" 53. 91	o. 06678
E 0 30	o. 52358611 o. 52390824	o. 09593335 o. 10350226	o. 523 o. 523	358255	o. 09595277 o. 10350501	0, 00001	220	c / 25 20 26 23	,, 53. 91 25. 40	o. 06678 o. 07267
E 0 30 60	o. 52358611 o. 52390824 o. 52384405	o. 09593335 o. 10350226 o. 12324776	0. 523 0. 523 0. 523	58255 690770 684345	o. 09595277 o. 10350501 o. 12325033	0, 00001	220 196	c / 25 20 26 23 29 0	,, 53. 91 25. 40 59. 16	o. 06678 o. 072678 o. 08883
E 0 30 60 90	o. 52358611 o. 52390824 o. 52384405 o. 52344857	o. 09593335 o. 10350226 o. 12324776 o. 15215982	o. 523 o. 523 o. 523 o. 523	358255 (390770 (384345 (344317 (3	o. 09595277 o. 10350501 o. 12325033 o. 15217839	0, 00001 0, 00000 0, 00000	220 196 317	25 20 26 23 29 0 32 37	,, 53. 91 25. 40 59. 16 46. 67	o. 06678 o. 072673 o. 08883
E 0 0 30 60 90 120	o. 52358611 o. 52390824 o. 52384405 o. 52344857 o. 52319735	0. 09593335 0. 10350226 0. 12324776 0. 15215982 0. 18328117	0. 523 0. 523 0. 523 0. 523 0. 523	158255 (190770 (184345 (144317 (18503	o. 09595277 o. 10350501 o. 12325033 o. 15217839 o. 18331632	0, 00001 0, 00000 0, 00000 0, 00001 0, 00002	220 196 317 284	25 20 26 23 29 0 32 37 36 17	53. 91 25. 40 59. 16 46. 67 45- 75	0. 066781 0. 072678 0. 08883; 0. 11429; 0. 16872;
E 0 0 30 60 90 120 150	o. 52358611 o. 52390824 o. 52384405 o. 52344857 o. 52319735 o. 52358284	o. 09593335 o. 10350226 o. 12324776 o. 15215982 o. 18328117 o. 20668842	0. 523 0. 523 0. 523 0. 523 0. 523 0. 523	158255 (199770 (184345 (184317 (18503 (186739	o. 09595277 o. 10350501 o. 12325033 o. 15217839 o. 18331632 o. 20672755	0, 00001 0, 00000 0, 00000 0, 00001 0, 00002	220 196 317 284 368	c / 25 20 26 23 29 0 32 37 36 17 38 55	77 53. 91 25. 40 59. 16 46. 67 45. 75 52. 65	o. 06678 o. 07267 o. 08883 o. 11429 o. 14429 o. 16872
E 0 30 60 90 120 150 180	o. 52358611 o. 52390824 o. 52384405 o. 52344857 o. 52319735 o. 52358284 o. 52446108	o. 09593335 o. 10350226 o. 12324776 o. 15215982 o. 18328117 o. 20668842 o. 21383175	0. 523 0. 523 0. 523 0. 523 0. 523 0. 523 0. 524	158255 (199770 (184345 (184317 (18503 (165739 (14498)	o. 09595277 o. 10350501 o. 12325033 o. 15217839 o. 18331632 o. 20672755 o. 21385939	0, 00001 0, 00000 0, 00001 0, 00002 0, 00002	220 196 317 284 368	c / 25 20 26 23 29 0 32 37 36 17 38 55 39 41	,,, 53. 91 25. 40 59. 16 46. 67 45- 75 52. 65 12. 28	o. 066781 o. 072678 o. 08883; o. 11429; o. 16872; o. 17620;
E 0 30 60 90 120 150 180 210	o. 52358611 o. 52390824 o. 52384405 o. 52344857 o. 52319735 o. 52358284 o. 52446108 o. 52500793	0. 09593335 0. 10350226 0. 12324776 0. 15215982 0. 18328117 0. 20668842 0. 21383175 0. 20222662	0. 523 0. 523 0. 523 0. 523 0. 523 0. 524 0. 525	158255 (199770 (184345 (184317 (18503 (18503 (184981 (190408 (1860	0. 09595277 0. 10350501 0. 12325033 0. 15217839 0. 18331632 0. 20672755 0. 21385939 0. 20223662	0, 00001 0, 00000 0, 00001 0, 00002 0, 00001 0, 00000	220 196 317 284 368 617	c / 25 20 26 23 29 0 32 37 36 17 38 55 39 41 38 21	" 53. 91 25. 40 59. 16 46. 67 45. 75 52. 65 12. 28 51. 22	o. 066781 o. 072678 o. 08883; o. 11429; o. 16872; o. 17620; o. 16325;
E 0 30 60 90 120 150 180 210 240	o. 52358611 o. 52390824 o. 52384405 o. 52344857 o. 52319735 o. 52358284 o. 52446108 o. 52500793 o. 52470763	0. 09593335 0. 10350226 0. 12324776 0. 15215982 0. 18328117 0. 20668842 0. 21383175 0. 20222662 0. 17651115	0. 523 0. 523 0. 523 0. 523 0. 523 0. 523 0. 524 0. 525 0. 524	558255 (6) 190770 (6) 184345 (6) 184317 (6) 18503 (6) 18503 (6) 1856739 (6) 1844981 (6) 1800408 (6) 1870757 (6)	0. 09595277 0. 10350501 0. 12325033 0. 15217839 0. 18331632 0. 20672755 0. 21385939 0. 20223662 0. 17651133	0. 00001 0. 00000 0. 00001 0. 00002 0. 00001 0. 00000	220 196 317 284 368 617 615	c / 25 20 26 23 29 0 32 37 36 17 38 55 39 41 38 21 35 27	" 53. 91 25. 40 59. 16 46. 67 45. 75 52. 65 12. 28 51. 22 1. 86	0. 066781 0. 072678 0. 08883; 0. 11429; 0. 16872; 0. 17620; 0. 16325; 0. 136986
E 0 30 60 90 120 150 180 210 240 270	o. 52358611 o. 52390824 o. 52384405 o. 52344857 o. 52319735 o. 52358284 o. 52446108 o. 52500793 o. 52470763 o. 52391066	0. 09593335 0. 10350226 0. 12324776 0. 15215982 0. 18328117 0. 20668842 0. 21383175 0. 20222662 0. 17651115 0. 14562431	0. 523 0. 523 0. 523 0. 523 0. 523 0. 523 0. 524 0. 525 0. 524	558255 (6) 690770 (6) 684345 (6) 644317 (6) 618503 (6) 656739 (6) 644981 (6) 600408 (6) 670757 (6) 690907 (6)	0. 09595277 0. 10350501 0. 12325033 0. 15217839 0. 18331632 0. 20672755 0. 21385939 0. 20223662 0. 17651133 0. 14563005	0, 00001 0, 00000 0, 00001 0, 00002 0, 00001 0, 00000 0, 00000	220 196 317 284 368 617 615	c / 25 20 26 23 29 0 32 37 36 17 38 55 39 41 38 21 35 27 31 49	" 53. 91 25. 40 59. 16 46. 67 45. 75 52. 65 12. 28 51. 22 1. 86 7. 12	0. 066781 0. 072678 0. 08883; 0. 11429; 0. 14429; 0. 16872; 0. 17620; 0. 16325; 0. 13698;
E 0 30 60 90 120 150 180 210 240 270 300	0. 52358611 0. 52390824 0. 52384405 0. 52344857 0. 52319735 0. 52358284 0. 52446108 0. 52500793 0. 52470763 0. 52391066 0. 52329644	0. 09593335 0. 10350226 0. 12324776 0. 15215982 0. 18328117 0. 20668842 0. 21383175 0. 20222662 0. 17651115 0. 14562431 0. 11853565	0. 523 0. 523 0. 523 0. 523 0. 523 0. 523 0. 524 0. 525 0. 524	558255 (6) 690770 (6) 684345 (6) 644317 (6) 618503 (6) 618503 (6) 618503 (6) 619503 (6)	0. 09595277 0. 10350501 0. 12325033 0. 15217839 0. 18331632 0. 20672755 0. 21385939 0. 20223662 0. 17651133 0. 14563005 0. 11855724	0. 00001 0. 00000 0. 00001 0. 00002 0. 00001 0. 00000 0. 00000 0. 00000	220 196 317 2284 368 617 615 012 414 670	c / 25 20 26 23 29 0 32 37 36 17 38 55 39 41 38 21 35 27 31 49 28 25	" 53. 91 25. 40 59. 16 46. 67 45. 75 52. 65 12. 28 51. 22 1. 86 7. 12 30. 44	0. 066781 0. 072678 0. 08883; 0. 11429; 0. 16429; 0. 16872; 0. 17620; 0. 16325; 0. 10823; 0. 08503;
E 0 30 60 90 120 150 180 210 240 270	o. 52358611 o. 52390824 o. 52384405 o. 52344857 o. 52319735 o. 52358284 o. 52446108 o. 52500793 o. 52470763 o. 52391066	0. 09593335 0. 10350226 0. 12324776 0. 15215982 0. 18328117 0. 20668842 0. 21383175 0. 20222662 0. 17651115 0. 14562431	0. 523 0. 523 0. 523 0. 523 0. 523 0. 524 0. 525 0. 524 0. 523 0. 523	158255 (199770 (184345 (18503 (18503 (18503 (1850498 (19757 (1890907 (18909	0. 09595277 0. 10350501 0. 12325033 0. 15217839 0. 18331632 0. 20672755 0. 21385939 0. 20223662 0. 17651133 0. 14563005	0, 00001 0, 00000 0, 00001 0, 00002 0, 00001 0, 00000 0, 00000	220 196 317 284 368 617 615 012 414 670	c / 25 20 26 23 29 0 32 37 36 17 38 55 39 41 38 21 35 27 31 49 28 25	" 53. 91 25. 40 59. 16 46. 67 45. 75 52. 65 12. 28 51. 22 1. 86 7. 12 30. 44 20. 74	0. 066781 0. 072678 0. 08883; 0. 11429; 0. 14429; 0. 16872; 0. 17620; 0. 16325; 0. 13698;

E	log. 11 .′	lo	g. N	log. N	log. P	log	. Q	log. V	log. J ₁
°	0. 3610703	0. 2	748567	9. 0518226	9. 9748963	9. 60	76810	9. 6076649	9. 7171747
30	0. 3687562		834450	9. 0869399	0. 0171829		11283	9. 6511261	9. 7161627
60	0. 3897436	0. 30	068691	9. 1792740	0. 1306114		69400	9. 7 669380	9. 7168407
90	0. 4225948	0. 3.	434556	9. 2994382	0. 2842720	9. 92	40133	9. 9240002	9. 7181351
120	0. 4609870	0. 3	860837	9. 4147450	0. 4383836	0. 08	21545	0. 0821320	9. 7186740
150	0. 4919942	0.4	204077	9. 4960332	0. 5500430	0. 19	74487	0. 1974255	9. 7181915
180	0. 5014421	0.4	308492	9 5225000	0. 5845071	0. 23	36317	0. 2336158	9. 7171751
210	0. 4850679	0.4	127493	9. 4887989	0. 5335312	o. 18	13804	0. 1813744	9. 7163236
240	0. 45 16579	0.3	757381	9. 4055651	0. 4173882	0.06	13858	0. 0613857	9. 7162443
270	0. 4148054	0. 3	347895	9. 2928157	0. 2691023	9. 90	83458	9. 9083417	9. 7171416
300	0. 3848118	0. 3	013686	9. 1761378	0. 1234346	9. 75	87489	9. 7587321	9. 7183721
330	0. 3664971	0. 2	809213	9. 0860239	0. 0150988	9.64	82341	9. 6482093	9. 7185270
8	2. 5497127	2.0	757654	5. 7500445	1. 6692212	9. 51	05419	9. 5104685	8. 3044809
8'	2. 5497156		757684	5. 7500498	1. 6692302		05506	9. 5104772	8. 3044815
E	log. J ₂	lo	g. J ₃	log. F ₂	log. F ₃	log	. R ₀	log. So	log. W ₀
0								·	-
ŏ	n 7. 4321671		837285	6. 8088312	n 5. 3916432		60911	n 6. 6886872	n 7. 9924224
30	n 6. 7963083		099324	6. 3966713	n 3. 8820117		92004	# 5. 3190515	n 8, 1610823
60	7. 2616976		788955	n 6. 4096375	n 4. 9613828 °		09724	6. 8580694	n 8. 2461381
90	7. 4216280		575909	n 6, 8685040	n 5. 6972542		78487	6, 9002047	n 8, 1843223
120	7. 3047658		021384	н 7. 0283282	n 5. 9515414		83301	n 6. 6917105	6. 5600086
150	7. 0091948		158080	n 7. 0624655	n 5. 9675881		56128	n 7. 3958789	8. 5088240
180	6. 5998867		688794	n 6, 9899995	n 5. 7539798		869000	n 7. 4874988	8. 8010010
210	6. 5740806		552729	n 6. 7653615	n 5. 1245368	1	27427	n 7. 1525123	8. 8363593
240	6. 8487789	l .	332314	n 5. 8836161	4. 0827215	l	08864	6. 7875671	8. (9:6448
270	6, 8412620	1	906201	6. 6079307	# 5. 2855935	ı	333867	7. 1190054	8. 3983398
300	n 6, 6329728		916691	6. 8657465	n 5. 6718326	1	35270	6, 8627036	7. 8465591
33°	n 7. 3581667	117.0	939066	6. 9145405	n 5. 6967794	0.0	79243	n 6. 2157912	n 7. 5484 8 91
8						4. 21	16 7070	—o. 00198922	1
8′						4. 21	167156	-0.00198415	+0.09258717*
E	$R_0 \sin v + S_0 (\cos v + c$	cos E)		$\frac{-R_0\cos v}{\cos^2\phi} + 1 \sin v$	W _o cos	14	V	V ₀ sin u	$-2\frac{r}{a}R_0$
° •	— o. ooo97	660	_	0. 0597161	— o, oo86	3059	- (0, 00469931	— o. o948763
30	+ 0.03833		_	0. 0518053	- 0.0061		- 0	0. 01314386	— 0. 10594 27
60	+ 0.07755			0. 0254115	+ 0.0028			0. 01738805	— o. 1461808
90	+ 0. 10909			0. 0245450	+ 0.0099			0. 01163594	— o. 2232948
120	+ 0.11643			0. 0956574	— o, ooo3			0. 00013397	— o. 3325506
150	+ 0.08098		1	0. 1653789	— o. o321		ľ	0. 00226584	— 0.4343200
180	+ 0.00614			0. 1935976	- o, o555.			0. 03024215	— o. 4668045
210	- 0.07011			0. 1603978	- 0.0411	•	1	0. 05487000	— 0. 4120403
240	— o. 10947			0. 0895491	- 0,0096		ì	0. 04855987	— 0. 3121865
270	— 0. 10595		ı	0.0195723	+ 0.0071		ł	0. 02396722	— 0. 2159816
300 330	— 0. 07680 — 0. 03941		1	0. 0282224 0. 0526511	+ 0.0051 - 0.0035		Į.	0. 01472486 0. 00049010	0. 1470433 0. 1080923
							l	i i	
8	+ 0, 01287			0. 2654541	— 0, 0660 — 0, 0668			0. 10548027	— 1.49964 2 0
8'	+ 0.01292		:	0. 2654376	— o. o658	/025		0. 10539276	— 1.4996717 —————
l	+ 0.02579	833	1 +	· 0. 5308917	— 0. 1319	254I	_	0. 21087303	- 2.9993137

Dividing the numbers at the foot of the last five columns by 12, we have the average values of the several functions written at the top. And, leaving the mass of Venus indefinite, we have

$$\begin{bmatrix} \frac{de}{dt} \end{bmatrix}_{00}^{\text{log. coeff.}} + 11321''.28 \ m' & 4.0538954 \\ \begin{bmatrix} \frac{dX}{dt} \end{bmatrix}_{00}^{\text{log. coeff.}} + 1133122'' & m' & 6.0542766 \\ \begin{bmatrix} \frac{di}{dt} \end{bmatrix}_{00}^{\text{log. coeff.}} + 1133122'' & m' & 6.0542766 \\ \begin{bmatrix} \frac{di}{dt} \end{bmatrix}_{00}^{\text{log. coeff.}} + 14.7813907 \\ \begin{bmatrix} \frac{d\Omega}{dt} \end{bmatrix}_{00}^{\text{log. coeff.}} + 1127210'' & m' & n 5.8990565 \\ \begin{bmatrix} \frac{d\Omega}{dt} \end{bmatrix}_{00}^{\text{log. coeff.}} + 1127210'' & m' & 6.0520049 \\ \begin{bmatrix} \frac{dL}{dt} \end{bmatrix}_{00}^{\text{log. coeff.}} + 1326648''.7 \ m' & n 6.1227559 \end{bmatrix}$$

The eccentricity e is supposed to be expressed in seconds of arc; if the variation in parts of the radius is wanted, the result given above must be multiplied by the factor whose logarithm is 94 6855749. It is scarcely necessary to add that the unit of time is the Julian year, and that m' must be expressed in parts of the sun's mass.

If we adopt Leverrier's value of m', viz, $m' = \frac{1}{401847}$, we have the values of the secular variations given below. Alongside, for the sake of comparison, I put Leverrier's values, deduced from the series expanded in powers of the eccentricities and mutual inclination of the plane of the orbits. (Annales de l'Observatoire de Paris. Mémoires. Tome V, pp. 6-7-21.)

$$\begin{bmatrix} \frac{de}{dt} \end{bmatrix}_{00} = + \text{ o''.0281731} + \text{ o''.02823} \\ + \text{ o''.02823} + \text{ o''.02823} \\ \frac{d\pi}{dt} \end{bmatrix}_{00} = + \text{ 2''.805073} + \text{ 2''.8064} \\ \frac{di}{dt} \end{bmatrix}_{00} = - \text{ o''.1504284} - \text{ o''.15044} \\ \frac{d\Omega}{dt} \end{bmatrix}_{00} = - \text{ 1''.972403} - \text{ 1''.9702} \\ \frac{dL}{dt} \end{bmatrix}_{00} = - \text{ 3''.301377} - \text{ 3''.3282}$$

Table of the Values of Three Elliptic Integrals employed in this Memoir.

в	Log. 🗮		Log. 71.		Log. 📉	
0.0	0. 00000000		0. 27300127		0. 17609126	
0. 1	00000099	+ 99 +199	27300259	+ 132 +265	17609275	+ 149 +297
0. 2	00000397	290 108	27300656	397	17609721	446 298
0.3	00000893	496	27301318	264	17610465	744 298
0.4	00001588	695 893	27302244	926 265	17611507	1042 298 1340
0.5	0.00002481	+198	0. 27303435	+264	0. 17612847	+207
0.6	00003572	+1091 199	27304890	+ 1455 265	17614484	+ 1637 298
0:7	00004862	1290 198	27306610	1720	17616419	1935
0.8	00006350	1488	27308594	1984 265	17618651	2232 299
0.9	00008037	1087	27310843	2249 265	17621182	2531
1.0	0. 00009923	1886	0. 27313357	2514 +265	0. 17624010	2828 ⁻⁹⁷ +297
1. 1	0.0009923	+2084 198	27316136	+ 2779 264	17627135	+ 3125 299
I. 1	00012007	2282 . 199		3043	17630559	3424
		248I	27319179	3308 264	1	3721 297
1.3	00016770	2680 199	27322487	3572 204 3572	17634280	4019
I. 4	00019450	2878 198	27326059	3838	17638299	4317
1.5	0, 00022328	+3°779	0. 27329897	+ 4102 +264	0. 17642616	+ 4615 +298
1.6	00025405	3275	27333999	426 7 265	17647231	4012
1.7	00028680	3475 ₂₀₀	27338366	4632 265	17652144	5211
1.8	00032155	3 ⁶ 73 19 ⁸	27342998	4896	17657355	5508 297
1.9	00035828	3 ⁰ /3 198 3871	27347894	266 5162	17662863	5807 299
2, 0	0. 00039699	+200	0. 27353056	+264	o. 17668670	+207
2. I	00043770	+4071 198	27358482	+ 5426 266	17674774	+ 6104 299
2. 2	00048039	4269 199	27364174	5692 264	17681177	6403 297
2. 3	00052507	4468 199	27370130	5956 266	17687877	6700 299
2. 4	00057174	4667 4866	27376352	6222 6486	17694876	6999 298 7297
2. 5	0, 00062040	-	0. 27382838	⊥ 266	0. 17702173	+298
2.6	00067105	+5065 198	27389590	+ 6752 265	17709768	+ 7595
2. 7	00072368	5263 200	27396607	7017 265	17717662	7894 ²⁹⁷
2.8	00077831	5463	27403889	7282 265	17725853	8191 299
2.9	00083493	5662 199 5861	27411436	7547 7812	17734343	8490 299 8789
3.0	0. 00089354	+200	0. 27419248		0. 17743132	1.208
3. 1	00095415	+6001	27427326	+ 8078	17752219	+ 9007
3. 2	00101674	6259 200	27435670	8344 264	17761604	9385
3.3	00108133	6459	27444278	8608	17771288	9684 299
3.4	00114791	0058	27453153	8875 265	17781271	9983
3.5	0.00121649	6858	0. 27462293	9140 -1-265	0. 17791552	10281 +299
3.6	00128706	+7057	27471698	+ 9405	17802132	+10580
3.7	00135962	7250 201	27481369	9671 266	17813011	10879
3.8	00143419	7457	27491306	9937 266	17824188	300
3.9	00151074	7655 201 7856	27501509	10203 10468	17835665	11477 298 11775
4.0	0. 00158930	-1-100	0. 27511977	- 267	0. 17847440	+300
4. I	00166985	+8055 7199	27522712	+10735 265	17859515	+12075 298
4.2	00175240	8255 200	27533712	11000	17871888	12373
4.3	00183695	8455 200	27544979	266	17884561	12073
4.4	00192350	8655 201	27556512	11533 266	17897533	12972
	0. 00201206	+8856 +199	0. 27568311	+11799 +266	0. 17910805	+13272 +299

Table of the Values of Three Elliptic Integrals, &c.—Continued.

9	Log.		Log. 71/		Log. N
° • 5	0. 00201206	+199	0. 27568311	+266	0. 17910805 +299
. 6	00210261	+9055	27580376	+12005	17024276 T13571 200
. 7	00219516	9255 201	27592708	1233 2 266	17938246 13870 300
. 8	00228972	9456	27605306	12598	17952416 14170 300
.9	00238628	9656 9856	27618170	12864 268 13132	17966886 14470 299
. 0	0. 00248484	1 202	0. 27631302	⊥ 266	0. 17981655 +301
. 1	00258542	+10058 +202	27644700	+13398 +267	17996725 +15070 299
. 2	00268799	10257	27658365	13665 266	18012094 15369 300
. 3	00279258	10459	27672296	13931 268	18027763 15669 300
-4	00289917	10659 10860	27686495	14199 14466 267	18043732 15969 301 16270
.5	0. 00300777	+11061 +201	0. 27700961	- 266	0. 18060002 +16570 +300
. 6	00311838	11262	27715693	+14732 269	1 18070572 200
. 7	00323100	201	27730694	15001 266	18093442 16870 301
. 8	00334563	11463 202	27745961	15267 268	18110613 17171 300
. 9	00346228	11665 11865	27761496	15535 15802 267	18128084 17471 301
i. o	0. 00358093	+12068 +203	0. 27777298	+16070 +268	0. 18145856 +18073 +301
i. 1	0037 0161	201	27793368	268	
. 2	00382430	12269	27809706	16338 268	18182202 10374 201
. 3	00394900	12470	27826312	16606 268	18200978 18675 301
.4	00407572	12672 12874	27843186	16874 267 17141	18219954 18976 301
. 5	0. 00420446	+203	0. 27860327	+17410 +269	0. 18239231 +301
. 6	00433523	+13077 201	27877737	260	18258809 19880 302
. 7	00446801	13278	27895416	17679 267	10270000 302
. 8	00460281	13480	27913362	17946 269	18298871 20182 301
.9	00473964	13683 202 13885	27931577	18215 269 18484	.18319354 20483 303
.0	0. 00487849	+14088 +203	0. 27950061	+18753 +269	0. 18340140 +21087 +301
. 1	00501937	14291	27968814	19021	18361227 302
. 2	00516228	202	27987835	270	18382616 21691 302
. 3	00530721	14493 203	28007126	19291 268	18404307 303
.4	00545417	14696 203 14899	28026685	19559 19829 2 7 0	18426301 22296 302
٠5	0. 00560316	+15103 +204	0. 28046514	+20098 +269	0. 18448597 +22599 +303
. 6	00575419	15305	28066612	20368	18471190 32002 303
. 7	00590724	15509	28086980	20638 270	18494098 302
. 8	00606233	15712	28107618	20907	18517302 303
.9	00621946	15916 ²⁰³	28128525	21177	23811
.0	0.00637862	+16121 +205	0. 28149702	+21447	0. 18564620 +303
3. 1	00653983	16324	28171149	21717	10500734 303
. 2	006 7 0307	16528	28192866	21988 271	10013151 304
3.3	00686835	16722	28214854	22258 270	10037072 35025 304
-4	00703568	16937	28237112	22529	25328 303
. 5	0. 00720505	+17141	0. 28259641	+22800 +271	0. 18688225 +25633 +305
.6	00737646	17346	28282441	23070	10713050 25026 303
. 7	00754992	17551 205	28305511	23342	18739794 26241 305
8.8	00772543	17756 205	28328853	23613	18700035 26546 305
3.9	00790299	200	28352466	+23884	10792501
. 0	0. 00808261	+17962 +204	0. 28376350	+23004 +272	0. 18819431 +20850 +305

Table of the Values of Three Elliptic Integrals, &c.—Continued.

0	Log. 🌋		Log. 71'	·	Log. N	
9.0	0. 00808261	+18166 +204	0. 28376350	+272	0. 18819431	+305
9. 1	00826427	18372 206	28400506	+24156 271	18846586	+27155 305
9. 2	00844799	18577 205	28424933	24427	18874046	27460 305
9.3	00863376	18784	28449633	24700 271		27765 305
9.4	00882160	18989 205	28474604	24971 25243	18929881	28070 306 28376
9.5	0.00901149	+19195 +206	0. 28499847	+25516 +273	0. 18958257	+28681 +305
9.6	00920344	19402	28525363	25789 ²⁷³	18986938	306
9.7	00939746	19608	28551152	26061	19015925	28987 306
9.8	00959354	19814	28577213	26333	19045218	29293
9.9	00979168	20022	28603546	26607 ²⁷⁴	19074818	29600 306 29906
10.0	0.00999190	+20228 +206	0. 28630153	+26881 +274	0. 19104724	+306
10. 1	01019418	207	28657034	. 272	19134936	+30212 307
10. 2	01039853	20435 20643	28684187	27153 274	19165455	30519
10.3	01060496	20850	28711614	27427	19196280	30825
10.4	01081346	20050 21058 21058	28739315	27701 274 27975	19227413	31133 307
10. 5	0. 01 102404	+21265 +207	0. 28767290	+28248 +273	0. 19258853	1-208
10.6	01123669	209	28795538	276	19290601	+31748
10. 7	01145143	21474 21682 208	28824062	28524 273	19322656	32055 308
10.8	01166825	21890	28852859	28797 275	19355019	32303
10.9	01188715	22099	28881931	29072 276 29348	19387690	32671 308 32979
11.0	0. 01210814	+22307	0. 28911279	+29622 +276	0. 19420669	1.208
11.1	01233121	210	28940901	29897	19453956	T33207
11.2	01255638	22517 208 22725	28970798	270	19487552	33596 309
11.3	01278363	210	29000971	30173 276	19521457	33905 309
11.4	01301298	22935 23145	29031420	30449 30724	19555671	34214 34524 34524
11.5	0. 01324443	+209	0. 29062144	+276	0. 19590195	2.08
11.6	01347797	+23354 210	29093144	+31000	19625027	+34832
11.7	01371361	23564 211	29124421	31277 276	19660170	35143
11.8	01395136	23775	29155974	31553	19695622	35452 310
11.9	01419121	23985 24195	29187804	31830 277 32107	19731384	357 ⁶² 311
12.0	0. 01443316	1211	0. 29219911	1 200	0. 19767457	±310
12. I	01467722	+24406 211	29252295	+32304	1	+30383
12. 2	01492339	24617	29284956	32001		30093
12.3	01517168	24829 211	29317895	32939	I	37005
12.4	01542208	25040 25251	29351111	33216 278 33494	1	37316 311 37627
12.5	0. 01567459	1212	0. 29384605	+270	0. 19952481	+312
12.6	01592922	+25463 213	29418378	+33773	I	+37939
12. 7	01618598	25676 212	29452429	34051 279		38251
12.8	01644486	25888	29486759	34330		38503
12.9	01670586	26100 26313	29521368	34609 278 34887		38875 313 39188 313
13.0	0. 01696899	1212	0. 29556255	⊥ 2&	0. 20145297	+212
13. 1	01723425	+26526 7213	29591422	+35167 280		+39500
13. 2	01750165	20740	29626869	35447		39014
13.3	01777118	20953	29662596	35727		40127
13.4	01804284	27100	29698602	30000		40440
13.5	0. 01831665	+27381 $+214$	0. 29734889	+36287 +281		+40754 +315

Table of the Values of Three Elliptic Integrals, &c.—Continued.

0	Log.		Log. 31,		Log. N	
3.5	0. 01831665	+214	0. 29734889	+281	0. 20345932 +	315
3.6	01859260	+27595	29771457	+30508	+41009	313
3. 7	01887069	27809	29808305	36848 281	20428383 41382	315
3.8	01915093	28024 215	29845434	37129 282	41697	315
3.9	01943332	28239 28454	29882845	37411 37692	42012	315
4.0	0. 01971786	+28670 +216	0. 29920537	+37974 +282	0. 20554419 +42642 +	315
4. I	02000456	28885	29958511	28256	20597061 42958	316
1. 2	02029341	29101	29996767	38539 283	20040019	316
4.3 ¦	02058442	210	30035306	282	20683293 43274	316
4-4	02087759	29317 29534	30074127	38821 39104 283	43900	316
4-5 į	0. 02117293	+29751	0. 30113231	+39387 $+283$		-316
4.6	02147044	20068	30152618	20670 203	20815011	318
4- 7	02177012	20184	30192288	204	. 20859551 44857	317
4.8	02207196	20402	30232242	40238	20904408	317
4·9	02237599	30620	30272480	40522	20949582 45493	319
5.0	0. 02268219	+30839 +219	0. 30313002	+40807 +285		317
5. 1	02299058	31056	30353809	41001	46128	318
5. 2	02330114	220 21276	30394900	41277	21087013	319
5-3	02361390	218 31494	30436277	41661 284	21133460 46766	319
5.4	02392884	31714	30477938	41948 287	47086	320
5.5	0. 02424598	+31933 +219	0. 30519886	+42233 +285	+47404	318
5.6	02456531	32152	30562119	42520 287	47725	3 2 1
5.7	02488683	32373	30604639	42320 286 42806 286	21322441 48044	319
5.8	02521056	325 93	30647445	43092 286	48305	321
5.9 5.0	02553649 0. 02586463	32814 +221	30690537 o. 30733917	43380 288 43380 +287	48685	320
6. I	0.02500403	+33035	30777584	+43 ⁶⁶ 7 ⁺²⁸ 7	+49007	322
. 1		33256	1	43955 288	40228	321
6.2	02652754	33478	30821539	44242	49049	321
6.3	02686232	33699	30865782	4453I 288	49972	3 2 3
5. 5	02719931	33922 +222	30910313	44820 +289	50293	321 323
5.6	02787997	+34144	31000242	+45109	+50010	_
5.7	02/8/99/	34367 223	31045640	45398 289 4587 289	50939	323 222
5.8	02856954	34590	31043040	45687 290	51202	323
5.9	02891768	34814 223 35037	31137304	45977 46268	51586	324 323
7. o	0. 02926805	1224	0. 31183572	+28 0	0.21072006	325
7. 1	02962066	+35261 +224	31230129	+40557	22024330 +52234	324
7. 2	02997551	35485 226	31276978	40849 291	22076888 52558	3 2 5
7. 3	03033262	35711 224	31324118	47140	22120771 52883	325
7.4	03069197	35935 36161	31371549	47431 47724	53208	3 2 5
7.5	0. 03105358	+36386 +225	0. 31419273	+48015 +291	0. 22236512 +53859 +	32 6
7.6	03141744	+30380 226 36612	31467288	203	+53059	327
7.7	03178356	36839 227	31515596	48308 292 48600	22344557	32 6
7.8	03215195	220	31564196	48894 294	22399069 54512	327
7.9	03252260	37065	31613090		22453908 54839	3 27
. o	0. 03289552	+37292 +228	0. 31662277	+49187 +294	+55100	327

Table of the Values of Three Elliptic Integrals, &c.—Continued.

6	Log. 🌋		Log. 71	,	Log. N	
18.°0	0. 03289552	+228	0. 31662277	+294	0. 22509074	+327
18. r	03327072	+37520 228	31711758	+49481 294	22564567	+55493 329
18. 2	03364820	37748	31761533	49775	22620389	55822 327
18. 3	03402795	37975	31811603	50070	22676538	56149 330
18. 4	03440999	38204 229 38433	31861968	50365 295 50660 295	22733017	56479 56807
18, 5	0. 03479432	+38662 +229	0. 31912628	+50956 +296	0. 22789824	+57137 +330
18.6	0351 80 94	38891 ²²⁹	31963584	51251 295	22846961	57466 329
18. 7	03556985	39121	32014835	51548 297	22904427	57796 330
8.8	03596106	39351	32066383	51845	22962223	58127 331
18.9	03635457	39582 231	32118228	52141	23020350	58458 331
19.0	o. 0 3675039	+231	0. 32170369	+299	0. 23078808	+331
19. 1	03714852	+39813 +231	32222809	+52440	23137597	+50709
19. 2	03754897	40045	32275546	52737 298	23196717	59120 333
19. 3	03795172	40275 233	32328581	53035 298	23256170	59453 59785 332
19.4	03835680	40508 233 40741	32381914	53333 53 ⁶ 33	23315955	59785 60117 33 ²
19.5	0. 03876421	+232	0. 32435547	+299	0. 23376072	+334
19.6	03917394	+40973	32489479	+53932	23436523	+00451
19. 7	03958601	41207	32543711	54232 300	23497307	224
19.8	04000041	41440 234	32598243	54532 300	23558425	01119
19.9	04041715	41674 41908 ²³⁴	32653075	54832 55134	23619878	61453 333 61787 334
20. o	0. 04083623	+42144 +236	0. 32708209	+300	0. 23681665	+62122 +335
20. I	04125767	42378	32763643	+55434 303	23743787	. 335
20. 2	04168145	42614 236	32819380	55737 56038 301	23806244	62457 337
20. 3	04210759	42850 236	32875418	56038 303	23869038	62794 336
20.4	04253609	43086 236	32931759	56341 303 56644	23932168	63130 337 63467 337
0. 5	0. 04296695	+237	0. 32988403	+303	0. 23995635	+337
20.6	04340018	+43323 238	33045350	+50947	24059439	+03004
20. 7	04383579	43561 237	33102601	57251 305	24123580	04141
eo. 8	04427377	43798 238	33160157	57556 303	24188059	04479
0.9	04471413	44036 238 44274	33218016	57859 306 58165 306	24252877	64818 339 65157 339
1.0	0. 04515687	+44514 +240	0. 33276181	+58470 +305	0. 24318034	+65496 +339
:I. I	04560201	44752	33334651	58776 306	24383530	65835 339
1.2	04604953	44993	33393427	50083	24449365	66176 341
1.3	04649946	45232	33452510	59389	24515541	66516 340
1.4	04695178	45-52 45474	33511899	59696 307	24582057	66858 342
21.5	0. 04740652	+240	0. 33571595	+60004 +308	0. 24648915	±67108 +340
1.6	04 78 63 66	+45714 241	33631599	60313 308	24716113	T0/190
21.7	04832321	45955 46108 ²⁴³	33691911	60312 308 60620	24783654	07541
1.8	04878519	40190	33752531	300	24851537	67883 342 68226 343
21.9	04924959	46440 +46683	33813460	60929 +61239	24919763	+68569 343
2.0	0. 04971642	+243	0. 33874699	+309	0. 24988332	+08509

Table of the Values of Three Elliptic Integrals, &c.—Continued.

	Log.		Log. 11		Log. N	
					· =	
Po	0. 04971642	+46926 +243	0. 33874699	+309 +615 4 8	0. 24988332	+344
. 1	05018568	244	33936247	F01540	25057245	-03913 243
2	05065738	47170 244	33998106	61859 311	25126501	09250
3	05113152	47414	34060276	62170 311	25196103	69602 345
4	05160810	47658 246 47904	34122757	62481 311 62792	25266050	69947 70292 345
.5	0. 05208714	+245	0. 34185549	+313	0. 25336342	⊥ 246
6	05256863	+48149 +247	34248654	+03105	25406980	F/0030 347
7	05305259	48396 245	34312071	03417	25477965	70985 347
8	05353900	48041	34375801	63730 314	25549297	71332 347
9	05402789	48889	34439845	04044	25620976	71679 348
		49136		04358		72027
0	0. 05451925	+49385 +249	0. 34504203	+64673 +315	0. 25693003	+348 +72375
I	05501310	49632	34508870	64987 314	25705378	72725 350
2	05550942	49882	34633863	65303	25838103	73074 349
3	05600824	50131 ²⁴⁹	34699166	65619 316	25911177	73424 350
4	05650955	50381 . 250	34764785	65936 317	25984601	73774 350
5	0. 05701336	+250	0. 34830721	+316	0. 26058375	+351
6	05751967	+50631 251	34896973	218	26132500	74125
7	05802849	50882	34963543	218	26206976	74470
8	05853983	51134 251	35030431	210	26281805	74829
9	05905368	51385 51638 ²⁵³	35097638	67207 318 67525	26356986	75181 353 75534
0	0. 05957006	+51891 +253	0. 35165163	+67845 +320	0. 26432520	ـــــــــــــــــــــــــــــــــــــ
1	06008897	253	35233008	68166 321	26508407	⊢75887 ^{—333}
2	06061041	52144 255	35301174	210	-26584648	76241 355
3	06113440	52399 254	35369659	68485 322	26661244	70590
4	06166093	52653 52907 254	35438466	68807 322 69129 322	26738195	76951 355 77306 355
5	0.06219000	+257	0. 35507595	+321	0. 26815501	+356
6	06272164	+53164 255	35577045	124 124	26893163	-77002 257
7	06325583	53419 ²⁵⁷	35646819	69774 322	26971182	78019
8	06379259	53676 257	35716915	70096 3 ²⁵	27049559	78377
9	06433192	53933 54191 258	35787336	70421 3 ²³	27128292	78733 360 79093
0	o. o648738 3	+54449 +258	o. 35858080	+326 +71070	0. 27207385	+357
I	06541832	54708 259	35929150	325	27286835	7/9450 261
2	06596540	200	36000545	71395 326	27366646	79811
3	06651508	54968 ²⁵⁹	36072266	71721	27446816	361
4	06706735	55227 55488 261	36144314	72048 326 72374	27527347	80531 360 80891
5	0. 06762223	+55748 +260	0. 36216688	+72702 +328	0. 27608238	+363
6	06817971	56011	36289390	72021 329	27689492	81615 361
7	06873982	56272	36362421	73031 328	27771107	_ 36 3
8	06930254	204	36435780	73359	27853085	31978 262
9	06986790	56536 262	36509469	73009	27025426	2341
o ¦	o. 07043588	+56798 $+265$	o. 36583488	+74019 +330	0. 28018132	⊢82 7 06 303 +364

Table of the Values of Three Elliptic Integrals, &c.—Continued.

6	Log.		Log. 71.	•		Log. N		
o 6. o		1 060	26492499			0.000.000		٠
	0. 07043588	+57063 +265	0. 36583488	+74349	+330	0. 28018132	+83070	-364
6. 1	07100651	57227	36657837	74680	331	28101202	83434	364
6. 2	07157978	57502	36732517	75012	332	28184636	838or	367
6. 3	07215570	57858	36807529	75344	332	28268437	84166	365
6.4	07273428	58124 266	36882873	75678	334	28352603	84534	368
6. 5	0. 07331552	+58391 +267	0. 36958551	+76010	+332	0. 28437137	+84901 +	-367
6.6	07389943	58659 268	37034561	• •	335	28522038	85269	368
6. 7	07448602	207	37110906	76345 - 6685	335	28507307		368
6.8	07507528	58926 270	37187586	76680	3 35	28692944	85637	370
6.9	07566724	59196 268 59464	37264601	77015 77350	335	28778951	86007 86377	370
7.0	0. 07626188	+271	0. 37341951		+338	o. 28865328		-370
7. I	07685923	+59735 270	37419639		336	28952075		371
7. 2	07745928	60005	37497663	78024	339	29039193	87118	372
7.3	07806204	60270 272	37576026	78363	338	29126683	87490	373
7.4	07866752	60548 273 60821	37654727	78701 79040	339	29214546	87863 88235	372
7. 5	0. 07927573	+273	o. 37733767		+339	0. 29302781		-374
7.6	07988667	+61094 273	37813146	+79379	341	29391390		374
7. 7	08050034	01307	37892866	79720	341	29480373	88983	375
7.8	08111676	61642	3 7 97 292 7	80061	342	29569731	89358	376
7.9	08173593	61917 276 62193	38053330	80403 80745	342	29659465	X0724	376
8. o	0, 08235786	+276	0. 38134075		+343	0. 29749575		-376
8. ı	08298255	102409	38215163	+91099	344	29840061	7-90400	378
8. 2	08361000	02745	38296595	81432	343	29930925	40004	379
8. 3	08424024	63024 278	38378370	81775	346	30022168	01243	378
8.4	08487326	63302 279	38460491	82121	346	30113789	91621	380
İ		03581	, -	82467			92001	_
8. 5	0. 08550907	+63861 +280	o. 38542958	+82813	+346	0. 30205790	+92380 +	379
8.6	08614768	64141 280	38625771	83159	346	30298170	02762	382
8. 7	08678909	64422	3870893 0	83508	349	30390932	93143	381
8.8	08743331	64704 282	38792438	83856	348	30484075	93 -4 3 93 52 6	383
3.9	088 08035	64987 283	. 38876294	84205	349	30577601	93520	382
). o	o. 08873022	+65269 +282	0. 38960499	+84555	+350	0. 30671509	+94292 +	-384
9. I	08938291	285	39045054		350	30765801	94677	385
9. 2	09003845	65554 284	39129959	84905	351	30860478		384
9.3	09069683	65838 285	39215215	85256	352	30955539	95061	386
9.4	09135806	66123 287 66410	39300823	85608 85961	353	31050986	95447 95833	386
9. 5	0. 09202216	±66606 +286	o. 39386784		+354	0. 31146819		-388
9.6	09268912	+00090	39473099	+86315 86668	353	31243040	96608	387
9. 7	09335895	280	39559767		355	31339648		390
9.8	09403167	280	39646790	87023	356	31436646	96 998	388
9.9	09470728	67501	39734169	87379	355	31534032	97386	390
0, 0	0. 09538579	+67851 +289	0. 39821903	+87734	+358	0. 31631808	+97 77 6 .	.391

Table of the Values of Three Elliptic Integrals, &c.—Continued.

0	Log.		Log. 11'		Log. N
o. o	0. 09538579	+289	0. 39821903	+358	0. 31631808 +391
). I	09606719	+68140	30000005	-00092	31720075 + 98107
), 2	09675151	68432	200008445	258	31828534 98559 305
o. 3	09743875	68724	40087253	250	31927485 98951 393
0.4	09812892	69017 293 69310	40176420	89167 361 89528	32026829 99344 394 99738 394
o. 5 :	0. 09882202	+69605 +295	0. 40265948	89888 +360	0. 32126567 +100132 +394
o. 6	09951807	69899	40355830	90250 362	32220099 100527 395
). 7	10021706	295	40440080	90612 362	32327226 100527 39%
. 8	10091901	70195 297	40536698	363	32428150 100924 396
. 9	10162393	70492 70789	40027073	90975 364	32529470 101320 394 101718
. 0	0. 10233182	+298	0. 40719012	+365	0. 32631188 +399
. I	10304269	+71087	40810716	365	32733305 +102117 398
. 2	10375655	71386 300	40902785	92069 366	32835820 102515 400
i. 3	10447341	71686 300	40995220	92435	32938735 102915 403
• 4	10519327	71986 72288 302	41088023	92803 93170 3 ⁶ 7	33042052 103317 103717
. 5	0. 10591615	+301	0. 41181193	+370	0. 33145769 +40
.6	10664204	+72589 304	A127A773	-93540 ₂₆₈	+10412C 33249889 +10412C
. 7	10737097	72893 304	41300041	93908	33354412 104523 40
. 8	10810294	73197 304	41402020	94279 371	33459339 40
.9	10883795	73501 306 73807	41557570	94650 372 95022	33564671 105332 400
ı. o	0. 10957602	+306	0. 41652592	-95395 ⁺³⁷³	0. 33670409 +106144 +400
. 1 '	11031715	+74113 308	41747987	95769 374	33776553 106551 40
. 2	11106136	74421 74728 307	A1843750	95709 374	33883104 106959 40
• 3	11180864	309	41939899	96519 376	33990063 107368 409
•4	11255901	75°37 75347	A 20 20 A 1 8	96894 375	34097431 107778 416
٠5 ٔ	0. 11331248	+311	0. 42133312	+378	0. 34205209 +108188 +410
. 6	11406906	+75050	42220EX4	9/2/2	34313307 AIS
٠7	11482875	75969 313 76282 313	. A232823A	97650 379 98029 379	34421997 108600 413
. 8	11559157	312	42426263	98408 379	34531010 109013 412
.9	11635751	76594 76909	42524671	98789 381	34640435 109840 415
۰۰ ا	0. 11712660	+77224 +315	0. 42623460 +	99171 +382	0. 34750275 +110254 +414
. I ¦	11789884	77540	42722031	00552	34800529
. 2	11867424	77867 317	42822183	99937	34971200
• 3	11945281	78175	42922120	100320	35082287 111504 41
-4	12023456	78493 318	43022440	385	35193791 111923 419
- 5	0. 12101949	+78813 +320	0. 43123145	101092 +387	0. 35305714 +112343 +420
.6	12180762	79133 320	43224237	101478 386	35418057
. 7	12259895	79455	43325715	101867 389	35530820
.8	12339350	79777	43427582	102255 388	35044004 113606 422
. 9	12419127	+80101 324	43529837	102645 390	35/5/010 ±114020 423
.0	0. 12499228	+324	0. 43632482	+390	0. 35871639 +425

Table of the Values of Three Elliptic Integrals, &c.—Continued.

	Log. 🋣		Log. % /	Log. 🏋
0	0. 12499228	+324	0. 43632482 +390	0. 35871639 +425
1	12579653	+80425 7326	43735517 +103035 392	35986093 +114454 424
2	12660404	80751	43838944 103427 393	36100971 114878 426
3	12741480	328	43942764 103820 394	36216275 115304 427
4	12822884	81404 81732	44046978 104214 394	115731
5	0. 12904616	+82061 +329	0.44151586 +105003 +395	0. 36448164 +116588 +430
6	12986677	82392 33f	44256589 105400 397	30504752 429
7	13069069	770	44301989 397	36681769 117017 430
8	13151791	82722 333	44467786 105797 399	36799216
9	13234846	8 ₃₀₅₅ 333 8 ₃₃ 88 333	44573982 106196 399	36917096 118312 432
0	0. 13318234	+83722 +334	0. 44680577 +106996 +401	0. 37035408 +118745 +433
I	13401956	84057 335	44787573 107308 402	37154153 119180 435
2	13486013	84394 337	44894971 107799 401	37273333
3	13570407	84731 337	45002770 107/99 405	37392949 120052 436
4	13655138	85069 33 ⁸	45110974 108608 404	37513001 120489 437
5	0. 13740207	+85408 +339	0. 45219582 +109013 +405	0. 37633490 +120929 +440
6	13825615	85749	45328595 100420 407	37754419
7	13911364	86091	45438015 109828 408	37875787 121808 440
8	13997455	86433	45547843 110227 409	37997595 122250 442
9	14083888	86776 343	45658080 110646 409	38119845 122693 443
0	0. 14170664	+87122 +346	0.45768726 +411	0. 38242538 +123137 +444
1	14257786	87467 345	45879783 111469 412	38305075 123582 445
2	14345253	87814 347	45991252 111883 414	30409257 124027 445
3	14433067	88161 347	46103135 112296 413	38613284 124474 447
4	14521228	88512 351	46215431 112711-	38737758 124922 44 ⁸
5	0. 14609740	+88861 +349	0.46328142 +113128 +417	
6	14698601	89212	40441270 112546 410	38988052
7	14787813	89565 353	46554816 113963 417	39113873 126273 452
8	14877378	254	46668779 114384 421	39240146 126725 452
9	14967297	89919 354 - 90273 354	46783163 114804 420	39366871 127179 454
0	0. 15057570	+90630 +357	0.46897967 +115226 +422	+127033
1	. 15148200	350	47013193	39021083 128088 455
2	15239186	01344 358	47128843 116073 423	39749771 128546 45 ⁸
3	15330530	01704	116499	39878317 129003 457
4	15422234	92065 361	47361415 116925 426	40007320 129463 460
5	0. 15514299	+ 92426 + 361	0. 47478340 +117354 +29	
6	15606725	92789 363	47595094 117782 420	40200700 130384 461
7	15699514	02152 304	47713476 118212 430	40397090 130846 462
8	15792667	02510 300	47831688 118643 431	40527930 131310 404
9	15886186	10388r 300	47950331 +119076 433	+131776
0	0. 15980071	+368	0.48069407 +434	465

Table of the Values of Three Elliptic Integrals, &c.—Continued.

0	Log. 🌋	Log. 31.	Log. N
38.°o	0. 15980071 +368	0.48069407 +434	0.40791022 +465
38. ı	16074324 7 94253 369	48188917 +119510 434	40923263 +132241 467
8. 2	16168946 94622 370	48308861 119944 437	41055971 469
8. 3	16263938 94992 372	48429242 120381 437	41189148 133177 469
8.4	16359302 953 ⁶⁴ 373 95737	48550060 121257 439	41322794 133646 471 134117
8. 5	0.16455030 +372	0.48671317	0.41456011 1477
8.6	16551149 + 96110 376	48793013 +121696 +439	41591500 +134509
8. 7	16647635 96486 377	48015151 122138 442	41726562 135062 475
8.8	16744498 96863 377	4903773I 122580 443	41862099 135537 476
3.9	16841738 97240 380 97620	49160754 123023 446 123469	41998112 136013 476 136489
9. o	o. 16939358 + 98000 +380	0.40284223 +446	0.42134601
9. 1	17037358 382	49408138 +123915 447	42271569 +136968 +79
9. 2	17135740 98382 384	49532500 124362 449	42409016 137447 481
9. 3	17234506 90700 383	49657311 451	42546944 137928 481
9.4	17333655 99149 387	49782573 125262 450	42685353 138409 485
9. 5	0. 17433191 + 99922 +386	0. 49908285 +126166 +454	0.42824247 +483
9.6	17533113 7 99922 390	50034451 453	42963624 +139377 487
7.7	17633425 100312 389	50161070 126619 457	43103488 139864 487
. 8	17734126 100701 391	50288146 127076 456	43243839 140351 488
9.9	17835218 101092 393	50415678 127532 458	43384678 140839 490
o. o	0. 17936703 +101879 +394	0. 50543668 +128450 +460	0.43526007 +141820 +491
), I	18038582 102275 396	50072118 400	43007827 493
0. 2	18140857 102671 396	50801028 128910 463	43810140
0. 3	18243528 300	50930401 129373 464	4395 ² 947
0.4	18346598 103469 399	51060238 129837 465 130302	44096248 143301 498
0. 5	0. 18450067 +103871 +402	0. 51190540 +130769 +467	0. 44240047 +144296 +497
0.6	18553938 104273 402	51321300 467	44304343 500
0.7	18658211 104677 404	51452545 131236 470	44529139 144796 500
o, 8	18702888 400	51584251 131706 471	44074435 503
0.9	18867971 105083 407 105490	51716428 132177 472 132649	44820234 145799 503
.0	0. 18973461 +105898 +408	0. 51849077 +133123 +474	0.44966536 +146807 +505
. 1	19079359 106309 411	51982200 133598 475	45113343
. 2	19185668 106719 410	52115798 124075 477	45260656 147821 508
1.3	19292387 107133 414	52249873 478	45408477
.4	19399520 107548 415	52384426 134553 480 135033	45556808 148841 510
٠5	0. 19507068 +107964 +416	0. 52519459 +135515 +482	0. 45705649 +149353 +512
. 6	19615032 108381 417	52054974 125007 482	45055002 140867 514
. 7	19723413 108801 420	52700071 484	: 40004800
. 8	19832214 420	52927452 136481 486 136967	46155251 150382 517
1.9	19941435 +109644 423		46306150 +151416
2.0	0. 20051079 +423	0. 53201874 +137455 +488	0.46457566 +521

Table of the Values of Three Elliptic Integrals, &c.—Continued.

0	Log. 🏗	Log. Z.	Log. N
2.0	0, 20051079 +423	0. 53201874 +488	0. 46457566 +521
2. I	20161146 +110067 427	53339817 +137943	46609503 +151937 520
2. 2	20271640 110494 426	53478252 138435	46761960 152457 524
2. 3	20382560 110920 430	53617178 138926 494	46914941 523
2.4	20493910 111350 429 111779	53756598 139420 495 139915	47068445 153504 526
2. 5	0. 20605680 +433	0. 53896513 +408	0.47222475
2.6	20717901 +112212 434	54036926 +140413 498	47377033 +154550 528
2. 7	20830547 435	54177837 140911 500	47532119 155080 521
2.8	20943628 113081 437	54319248 141411 502	47687736 155017 532
2.9	21057146 113518 439	54461161 141913 503 142416	47843885 156683 534
3. o	0. 21171103 +440	0. 54603577 +506	0. 48000568 +535
3. 1	21285500 +114397 443	54746499 +142922 507	48157786 +157218 537
3. 2	21400340	54889928 143429 508	48315541 157755 530
3.3	21515623	55033865 143937 510	48473835 158294 530
3.4	21631353 116176 446	55178312 144447 513 144960 513	48632668 158833 543
3.5	0.21747529 +116626 +450	0. 55323272 +513	0. 48792044 + 543
3.6	21804155 451	55468745 +145473 516	48951963 +159919 +545
3. 7	21981232 117077 452	55614734 145989 516	49112427 160464 547
3.8	22098761 117529 456	55761239 146505 520	49273438 161011 549
3.9	22216746 118440	55908264 147025 521 147546	49434998 162110 550
4.0	0. 22335186 +118899 +459	0.56055810 +522	0. 49597108 +162662 +552
4. I	22454085 450	10203070	49759770 553
4. 2	22573443	56352470 148592 527	49922985 163215 556
4.3	22093264 19821 463	56501589 149119 527	50086756
4.4	22813548 120750	56651235 149646 530	50251085 164329 558
4.5	0. 22934298 +467	0. 56801411 +532	0. 50415972 +561
4.6	23055515 +121217	1 56952119 +150708 534	50581420 7105440 563
4.7	23177202 471	57103361 151242 535	50747431 564
4. 8	28209360 122158 473	57255138 151777 537	50014006 100575 566
4.9	23421991 122631 475 123106	57407452 152314 539 152853 539	51081147 167710 569
5.0	0. 23545097 +478	0. 57560305 +541	0.51248857 +560
5. 1	23668681 123334 470	57713600 1153394 544	FIAI7126 +108279
5. 2	23792744 124743 480	57867627 153930	51585987 573
5.3	23917287 124543 484	58022110 154402	51755411 109424 576
5-4	24042314 125512 485	58177148 155029 549 155578	51925411 170900 577 170577 577
5- 5	0. 24167826 . +487	0. 58332726 +551	0, 52005088 4-580
5.6	24293825 +125999 489	58488855 +150129	52267145 +171157 580
5. 7	24420313 126488 491	58645536 150081 556	52438882 171737 584
5.8	24547292 126979 494	58802773 157237 556	52611203 172321 585
5.9	24674765	58060566 157793 560	52784100 172900 586
6. o	0. 24802732 +127967 +499	0. 59118919 +158353 +560	0. 52957601 +173492 +590

Table of the Values of Three Elliptic Integrals, &c.—Continued.

0	Log.			Log.			Log. N		
6.°o	0. 24802732	+	499 o.	59118919	1	+560	0. 52957601	1 0 .	+590
6. 1	24931198	+128366	499	59277832	+158913	563	53131683	+174082	591
6. 2	25060163	128905	501	59437308	159476	565	53306356	174673	592
6. 3	25189629	129466	505	59597349	160041	568	53481621	175265	596
6.4	25319600	120071	505	59757958	160609 161177	568	53657482	175861 176457	596
6. 5	0, 25450076		508 o.	59919135		+572	o. 53833939	•	+600
6.6	25581060	+130984	511	60080884	+161749	574	54010996	+177057	600
6. 7	25712555	131495	513	60243207	162323	576	54188653	177657	604
6.8	25844563	132008	514	60406106	162899	577	54366914	178261	605
6.9	25977085	132522 133039	517 i	60569582	1634 7 6 1640 5 6	58o	54545780	178 8 66 179473	607
7.0	0. 261 10124	+133558 +	519 0.	60733638	+164639	+583	0. 54725253	+180083	+610
7. 1	26243682	134080	522	60898277	165223	584	54905336	180694	611
7. 2	26377762		524	61063500	165809	586	55086030	181308	614
7.3	26512366	134604	526	61229309		590	55267338		616
7.4	2664749 6	135130 135658	528	61395708	166399 166990	591	55449262	181924 182541	617
7. 5	0. 26783154	+136189 +	531 0.	61562698	+167583	+593	0. 55631803	+183162	+621
7.6	26919343	136723	534	61730281	168179	596	55814965	183785	623
7- 7	27056066	137257	534	61898460	168777	598	55998750	184409	624
7.8	27193323	137796	539	62067237	169378	601	56183159	185035	626
7.9	27331119	138336	540	62236615	169981	603	56368194	185665	630
8. o	0. 27469455	1 20070		62406596	+170585	+604	0. 56553859	+186297	+632
8. 1	2 7 60833 3	130424	546	62577181	171193	608	56740156	186930	633
8. 2	27747757	139972	548	62748374	171803	610	56927086	187565	635
8. 3	27887729	140521	549	62920177	172415	612	57114651	188205	640
8.4	28028250	141074	553	63092592	173030	615	57302856	188844	639
8. 5	0. 28169324		i i	63265622	+173648	+618	0. 57491700	+189488	+644
8.6	28310953	142187	558	63439270	174267	619	57681188	190133	645
8. 7	28453140	142747	560	63613537	174889	622	57871321	190781	648
8.8	28595887	143310	563	63788426	175513	624	58062102	191431	650
8.9	28739197	143875	565	63963939	176141	628	58253533	192083	652
9. o	0. 28883072	T-14444.5	, ,	64140080	+176771	+630	0. 58445616	+192738	+655
9. 1	29027515	145013	570	64316851	177403	632	58638354	193396	658
9. 2	29172528	145587	574	64494254	178038	635	58831750	194056	660
9.3	29318115	146163	576	64672292	178675	637	59025806	194718	662
9.4	·2946 427 8	146741	578	64850967	179316	641	59220524	195383	665
9. 5	0, 29611019			65030283	+179958	+642	0. 59415907	+196050	+667
9.6	29758342	147007	584	65210241	180603	645	59611957	196720	670
9.7	299 06 24 9	148493	586	65390844	181252	649	59808677	197393	673
9.8	30054742	149084	591	65572096	181903	651	60006070	198068	675
9.9	30203826	+149675 +	591	65753999	+182556	+653	60204138	+198745	+677
0.0	0. 30353501	1 -47-13	0.	65936555			0. 60402883	1 -2~/43	

ADDENDUM.

Since the preceding portion of this memoir was in type it has occurred to me that some of the processes might be modified with advantage.

First, the roots of the equation

$$x \left[(x - A) (x + C) + B^2 \right] + B^2 C \sin^2 \varepsilon = 0$$

can be obtained by the well-known trigonometric method. If we put

$$p = \frac{I}{3} (A - C)$$

$$q^2 = p^2 - \frac{I}{3} (B^2 - AC)$$

$$r = \frac{I}{2} p (p^2 - 3 q^2) + \frac{I}{2} B^2 C \sin^2 \epsilon$$

$$\sin \theta = \tau = \frac{r}{q^3}$$

and if θ is taken between the limits $\pm 90^{\circ}$, the three quantities G, G', and G" are given by the equations

G = 2 q sin
$$\left(60^{\circ} - \frac{\theta}{3}\right) + p$$

G' = 2 q sin $\frac{\theta}{3} + p$
G" = 2 q sin $\left(60^{\circ} + \frac{\theta}{3}\right) - p$

From these equations we derive the following:

G + G" =
$$2\sqrt{3}$$
 q cos $\frac{\theta}{3}$
G' + G" = $2\sqrt{3}$ q cos $\left(60^{\circ} - \frac{\theta}{3}\right)$
G - G' = $2\sqrt{3}$ q cos $\left(60^{\circ} + \frac{\theta}{3}\right)$

If these values are substituted in the equations

$$\Gamma' = \frac{F + JG' + fG'^2}{(G' + G'')(G - G')} \qquad \Gamma'' = \frac{-F + JG'' - fG''^2}{(G + G'')(G' + G'')}$$

we obtain

$$\Gamma' = \frac{\Gamma + Jp + f(p^2 + 2q^2) + 2(J + 2fp)q\sin\frac{\theta}{3} - 2fq^2\cos\frac{2}{3}\theta}{12q^2\cos\left(60^\circ - \frac{\theta}{3}\right)\cos\left(60^\circ + \frac{\theta}{3}\right)}$$

$$\Gamma'' = \frac{-\left[\Gamma + Jp + f(p^2 + 2q^2)\right] + 2(J + 2fp)q\sin\left(60^\circ + \frac{\theta}{3}\right) + 2fq^2\cos\left(120^\circ + \frac{2}{3}\theta\right)}{12q^2\cos\frac{\theta}{3}\cos\left(60^\circ - \frac{\theta}{2}\right)}$$

Or, since we have

$$\Gamma' = \frac{\left[F + J p + f(p^2 + q^2)\right] \cos \frac{\theta}{3} + (J + 2 f p) q \sin \frac{2}{3} \theta}{3 q^2 \cos \theta} - \frac{1}{3} f$$

$$\Gamma'' = \frac{-\left[F + J p + f(p^2 + q^2)\right] \cos \left(60^\circ + \frac{\theta}{3}\right) + (J + 2 f p) q \sin \left(120^\circ + \frac{2}{3}\theta\right)}{3 q^2 \cos \theta} - \frac{1}{3} f$$

From these equations we derive

$$\Gamma' + 2 \Gamma'' + f = \frac{[F + J p + f(p^2 + q^2)] \sin \frac{\theta}{3} + (J + 2 f p) q \cos \frac{2}{3} \theta}{\sqrt{3} q^2 \cos \theta}$$

$${}_{2} I^{\mathsf{v}} + I^{\mathsf{v}'} + f = \frac{[F + Jp + f(p^{2} + q^{2})] \sin\left(60^{\circ} + \frac{\theta}{3}\right) + (J + 2fp) q \cos\left(60^{\circ} - \frac{2}{3}\theta\right)}{\sqrt{3} q^{2} \cos\theta}$$

The values of R₀, S₀, and W₀ are given by the integral

$$\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\left[\Gamma' + 2 \Gamma'' + f\right] \cos^{2} T + \left[2 \Gamma' + \Gamma'' + f\right] \sin^{2} T}{\left(2 \sqrt{3} q\right)^{\frac{3}{2}} \left[\cos \frac{\theta}{3} \cos^{2} T + \cos \left(60^{\circ} + \frac{\theta}{3}\right) \sin^{2} T\right]^{\frac{3}{2}}} dT$$

provided we attribute to F, J, and f the values they severally have in each case. Let us put

$$m^{2} = \cos \frac{\theta}{3}$$

$$n^{2} = \cos \left(60^{\circ} + \frac{\theta}{3}\right)$$

$$a = \frac{F + J p + f(p^{2} + q^{2})}{6 \sqrt[4]{12} q^{\frac{\pi}{2}}}$$

$$b = \frac{J + 2 f p}{6 \sqrt[4]{12} q^{\frac{\pi}{2}}}$$

Then the integral, just given, takes the form

$$\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \left[a \sin \frac{\theta}{3} + b \cos \frac{2}{3} \theta \right] \cos^{2}T + \left[a \sin \left(60^{\circ} + \frac{\theta}{3} \right) + b \cos \left(60^{\circ} - \frac{2}{3} \theta \right) \right] \sin^{2}T dT$$

$$\cos \theta \left[m^{2} \cos^{2}T + n^{2} \sin^{2}T \right] \frac{\pi}{2}$$

In the second place Gauss's processes for approximating to the values of the integrals may be employed instead of those of Legendre. The equation between definite integrals

$$\int_0^{\frac{\pi}{2}} \sqrt{(1-c^2\sin^2 T)} = (1+c^0) \int_0^{\frac{\pi}{2}} \frac{dT}{\sqrt{(1-c^{02}\sin^2 T)}}$$

may be easily transformed into

$$\int_{0}^{\frac{\pi}{2}} \frac{dT}{[m^{2}\cos^{2}T + n^{2}\sin^{2}T]\frac{1}{2}} = \int_{0}^{\frac{\pi}{2}} \frac{dT}{[m'^{2}\cos^{2}T + n'^{2}\sin^{2}T]\frac{1}{2}}$$

where

$$m' \equiv \frac{1}{2} (m + n)$$
 $n' \equiv \sqrt{mn}$

when we remember that

$$c^2 = \frac{m^2 - n^2}{m^2}$$
 $c^0 = \frac{m - n}{m + n}$

If this mode of transformation is continued, and we compute

$$m'' = \frac{1}{2} (m' + n')$$
 $n'' = \sqrt{m' n'}$
 $m''' = \frac{1}{2} (m'' + n'')$ $n''' = \sqrt{m'' n''}$

the series of quantities, m, m', m", etc., and n, n', n", etc., converge very rapidly toward a common limit μ , which Gauss has called the *arithmetico-geometrical mean* between m and n. Then,

$$\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{d\mathbf{T}}{[\mathbf{m}^{2} \cos^{2} \mathbf{T} + \mathbf{n}^{2} \sin^{2} \mathbf{T}]^{\frac{1}{2}}} = \frac{1}{\mu}$$

The equation

$$\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{A + B \sin^{2} T}{\sqrt{(I - c^{2} \sin^{2} T)}} dT = K \left[A + \frac{B}{2} \left(I + \frac{c^{0}}{2} + \frac{c^{0} c^{00}}{4} + \frac{c^{0} c^{00}}{8} + \ldots \right) \right]$$

on putting

$$A = -\frac{I}{m} \qquad B = \frac{2}{m}$$

is readily transformed into

$$\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\sin^{2} T - \cos^{2} T}{[m^{2} \cos^{2} T + n^{2} \sin^{2} T]^{\frac{1}{2}}} dT = \frac{1}{\mu} \left[\frac{m-n}{2(m+n)} + \frac{m-n}{2(m+n)} \frac{m'-n'}{2(m'+n')} + \dots \right]$$

The series within the brackets may be denoted by ν . It can be transformed as follows:

$$\nu = \frac{m^2 - n^2}{8 m'^2} + \frac{m^2 - n^2}{8 m'^2} \frac{m'^2 - n'^2}{8 m''^2} + \frac{m^2 - n^2}{8 m''^2} \frac{m''^2 - n''^2}{8 m''^2} \frac{m''^2 - n''^2}{8 m''^2} + \dots$$

$$= \frac{m^2 - n^2}{8 m'^2} + \frac{m^2 - n^2}{8 m'^2} \frac{(m^2 - n^2)^2}{128 m''^2 m''^2} + \frac{m^2 - n^2}{8 m'^2} \frac{(m^2 - n^2)^2}{128 m''^2 m''^2} \frac{(m'^2 - n'^2)^2}{128 m''^2 m''^2} + \dots$$

As this mode of transformation may be continued indefinitely, it is plain, that if we compute the series of quantities

$$\lambda = \frac{1}{4} \checkmark (m^2 - n^2)$$
 $\lambda' = \frac{\lambda^2}{m'}$ $\lambda'' = \frac{\lambda''^2}{m''}$ $\lambda''' = \frac{\lambda''^2}{m'''}$

we shall have

$$\nu = \frac{2 \lambda'^2 + 4 \lambda''^2 + 8 \lambda'''^2 + \dots}{\lambda^2}$$

The equation

$$\int_{0}^{\frac{\pi}{2}} \frac{1-2}{1-c^{2} \sin^{2} T} \frac{1+c^{2} \sin^{4} T}{1-c^{2} \sin^{2} T} \frac{1}{2} dT = 0$$

is readily transformed into

$$\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{m}^{2} \cos^{4} \mathrm{T} - \mathrm{n}^{2} \sin^{4} \mathrm{T}}{\left[\mathrm{m}^{2} \cos^{2} \mathrm{T} + \mathrm{n}^{2} \sin^{2} \mathrm{T}\right]^{\frac{3}{2}}} d\mathrm{T} = 0$$

Whence we conclude that

$$\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos^{2} T}{\left[m^{2} \cos^{2} T + n^{2} \sin^{2} T\right]^{\frac{3}{2}}} dT = \frac{1 + \nu}{2 m^{2} \mu}$$

$$\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin^{2} T}{\left[m^{2} \cos^{2} T + n^{2} \sin^{2} T\right]^{\frac{3}{2}}} dT = \frac{1 - \nu}{2 n^{2} \mu}$$

Substituting these values in the general integral expression for R⁰, S⁰, and W⁰, we get

$$R^{0}, S^{0}, \text{ or } W^{0} = \frac{a}{\cos \theta} \left[\frac{1 + \nu}{2 \mu} \tan \frac{\theta}{3} + \frac{1 - \nu}{2 \mu} \tan \left(60^{\circ} + \frac{\theta}{3} \right) \right]$$

$$+ \frac{b}{\cos \theta} \left[\frac{1 + \nu}{2 \mu} \frac{\cos \frac{2\theta}{3}}{\cos \frac{\theta}{3}} + \frac{1 - \nu}{2 \mu} \frac{\cos \left(60^{\circ} - \frac{2\theta}{3} \right)}{\cos \left(60^{\circ} + \frac{\theta}{3} \right)} \right]$$

This expression presents the inconvenience of taking the indeterminate form o when the modulus c vanishes and when $\theta = -90^{\circ}$. This is avoided by putting

$$\nu' = \frac{\sqrt{3}}{64} \frac{\nu}{\lambda^2}$$

where we recall that

$$\lambda^2 = \frac{1}{16} \cos \left(60^{\circ} - \frac{\theta}{3} \right)$$

and transforming the expression into the shape

$$a \frac{\sin\left(60^{\circ} - \frac{\theta}{3}\right) - \nu'}{4 \mu \cos^{2}\frac{\theta}{3}\cos^{2}\left(60^{\circ} + \frac{\theta}{3}\right)} + b \frac{\frac{1}{2} + \cos\frac{\theta}{3}\cos\left(60^{\circ} + \frac{\theta}{3}\right) - \nu'\sin\theta}{4 \mu \cos^{2}\frac{\theta}{3}\cos^{2}\left(60^{\circ} + \frac{\theta}{3}\right)}$$

This may be written, if we choose, in the briefer manner

$$a \frac{\sin \left(60^{\circ} - \frac{\theta}{3}\right) - \nu'}{4 m^{4} n^{4} \mu} + b \frac{\frac{1}{2} + m^{2} n^{2} - \nu' \sin \theta}{4 m^{4} n^{4} \mu}$$

The factors of a and b in this expression are functions of τ , and their common logarithms might be tabulated with τ as the argument.

We will now put

$$\chi(\tau) = -\frac{\sin\left(60^{\circ} - \frac{\theta}{3}\right) - \nu'}{\frac{24^{\circ}}{3}\sqrt{\frac{12}{12}} \frac{m^{4}}{m^{4}} \frac{n^{4}}{\mu}} \qquad \psi(\tau) = \frac{\frac{1}{2} + m^{2}}{\frac{24}{3}\sqrt{\frac{12}{12}} \frac{m^{4}}{m^{4}} \frac{n^{4}}{\mu}}$$

as also

$$V = \frac{p}{q} \chi (\tau) + \psi (\tau)$$

Then, if

$$F_{1} = \frac{B^{2} - AC}{3 a^{\prime 2} \cos^{2} \varphi^{\prime}. q}$$

$$F_{2} = -\tan \varphi^{\prime} \cos I. \quad \frac{B \sin \varepsilon}{q}$$

$$F_{3} = -\tan \varphi^{\prime} \sin I. \frac{r}{a} \cos (v + \Pi). \quad \frac{B \sin \varepsilon}{q}$$

$$J_{1} = I - \sin^{2} I \sin^{2} (v + \Pi) - \frac{2 p}{a^{\prime 2} \cos^{2} \varphi^{\prime}}$$

$$J_{2} = k\alpha \frac{\tan \varphi^{\prime}}{\cos \varphi^{\prime}} \frac{r}{a} \sin (v + K) - \frac{1}{2} \sin^{2} I \sin 2 (v + \Pi)$$

$$J_{3} = \sin I \cos I. \frac{r}{a} \sin (v + \Pi) - \alpha \frac{\tan \varphi^{\prime}}{\cos \varphi^{\prime}} \sin I \sin \Pi. \frac{r^{2}}{a^{2}}$$

where α denotes $\frac{a}{a'}$, we shall have the following equations

$$\frac{a}{r} R_0 = a^2 a'^2 \cos^2 \varphi'. \ r \ q^{-\frac{5}{2}} \left[F_1 \chi (\tau) + J_1 V \right]$$

$$\frac{a}{r} S_0 = a^2 a'^2 \cos^2 \varphi'. \ r \ q^{-\frac{5}{2}} \left[F_2 \chi (\tau) + J_2 V \right]$$

$$\frac{a}{r} W_0 = a^2 a'^2 \cos^2 \varphi'. \ r \ q^{-\frac{5}{2}} \left[F_3 \chi (\tau) + J_3 V \right]$$

Why we multiply the members of these equations by $\frac{a}{r}$ will presently appear.

A third modification, which seems advantageous, is to apply the process of mechanical quadratures to the quantities $\frac{a}{r} R_0$, $\frac{a}{r} S_0$, and $\frac{a}{r} W_0$, instead of applying it to the variations of the elements. If we multiply the factors of R_0 , S_0 , and W_0 , in the expressions for the variations of the elements, by the factor $\frac{r}{a}$, they become integral functions of sin E and cos E. And thus we have

$$\begin{bmatrix} \frac{d}{d} \frac{\varphi}{t} \end{bmatrix}_{00} = \frac{m'}{1+m} M_{E} \begin{bmatrix} \cos \varphi \sin E \cdot \frac{a}{r} R_{0} + \left(-\frac{3}{2}e + 2 \cos E - \frac{e}{2} \cos 2 E \right) \frac{a}{r} S_{0} \end{bmatrix}$$

$$e \begin{bmatrix} \frac{d}{d} \chi \\ \frac{d}{t} \end{bmatrix}_{00} = \frac{m'}{1+m} M_{E} \begin{bmatrix} -\cos \varphi (\cos E - e) \frac{a}{r} R_{0} + \left((2 - e^{2}) \sin E - \frac{e}{2} \sin 2 E \right) \frac{a}{r} S_{0} \end{bmatrix}$$

$$\begin{bmatrix} \frac{d}{d} \frac{i}{t} \end{bmatrix}_{00} = \frac{m'}{1+m} M_{E} \begin{bmatrix} (-\tan \varphi \cos \omega + \sec \varphi \cos \omega \cos E - \sin \omega \sin E) \frac{a}{r} W_{0} \end{bmatrix}$$

$$\sin i \begin{bmatrix} \frac{d}{\omega} \frac{\Omega}{dt} \end{bmatrix}_{00} = \frac{m'}{1+m} M_{E} \begin{bmatrix} (-\tan \varphi \sin \omega + \sec \varphi \sin \omega \cos E + \cos \omega \sin E) \frac{a}{r} W_{0} \end{bmatrix}$$

$$\frac{m'}{1+m} M_{E} \begin{bmatrix} -2\frac{r}{a} R_{0} \end{bmatrix} = \frac{m'}{1+m} M_{E} \begin{bmatrix} (-(2+e^{2}) + 4e \cos E - e^{2} \cos 2 E \right) \frac{a}{r} R_{0} \end{bmatrix}$$

The quantities $\frac{a}{r}$ R₀, $\frac{a}{r}$ S₀, and $\frac{a}{r}$ W₀, by the application of mechanical quadratures, must now be developed in periodic series with the argument E, so that we have

$$\begin{split} &\frac{a}{r} \ \mathrm{R_0} \ = \mathrm{A_0^{(c)}} + \mathrm{A_1^{(c)}} \cos \mathrm{E} + \mathrm{A_1^{(s)}} \sin \mathrm{E} + \mathrm{A_2^{(c)}} \cos \mathrm{2} \ \mathrm{E} + \ldots . \\ &\frac{a}{r} \ \mathrm{S_0} \ = \mathrm{B_0^{(c)}} + \mathrm{B_1^{(c)}} \cos \mathrm{E} + \mathrm{B_1^{(s)}} \sin \mathrm{E} + \mathrm{B_2^{(c)}} \cos \mathrm{2} \ \mathrm{E} + \mathrm{B_2^{(s)}} \sin \mathrm{2} \ \mathrm{E} + \ldots \\ &\frac{a}{r} \ \mathrm{W_0} = \mathrm{C_0^{(c)}} + \mathrm{C_1^{(c)}} \cos \mathrm{E} + \mathrm{C_1^{(s)}} \sin \mathrm{E} + \ldots . \end{split}$$

where we have written only the terms whose coefficients are needed.

If the circumference, with reference to E, is divided into j parts, and the corresponding values of $\frac{a}{r}$ R₀ are R⁽⁰⁾, R⁽¹⁾, R⁽²⁾ . . . R^(j-1), then

$$A_{0}^{(c)} = \frac{1}{j} \left[R^{(0)} + R^{(1)} + R^{(2)} + \dots + R^{(j-1)} \right]$$

$$\frac{1}{2} A_{1}^{(c)} = \frac{1}{j} \left[R^{(0)} + R^{(1)} \cos \frac{2\pi}{j} + R^{(2)} \cos \frac{4\pi}{j} + \dots + R^{(j-1)} \cos \frac{2(j-1)\pi}{j} \right]$$

$$\frac{1}{2} A_{1}^{(6)} = \frac{1}{j} \left[R^{(1)} \sin \frac{2\pi}{j} + R^{(2)} \sin \frac{4\pi}{j} + \dots + R^{(j-1)} \sin \frac{2(j-1)\pi}{j} \right]$$

$$\frac{1}{2} A_{2}^{(c)} = \frac{1}{j} \left[R^{(0)} + R^{(1)} \cos \frac{4\pi}{j} + R^{(2)} \cos \frac{8\pi}{j} + \dots + R^{(j-1)} \cos \frac{4(j-1)\pi}{j} \right]$$

$$\frac{1}{2} A_{2}^{(6)} = \frac{1}{j} \left[R^{(1)} \sin \frac{4\pi}{j} + R^{(2)} \sin \frac{8\pi}{j} + \dots + R^{(j-1)} \sin \frac{4(j-1)\pi}{j} \right]$$

Similar equations give the coefficients of $\frac{a}{r}S_0$ and $\frac{a}{r}W_0$.

In fine the following equations result

$$\begin{bmatrix} d\varphi \\ dt \end{bmatrix}_{00} = \frac{m' n}{1+m} \begin{bmatrix} \frac{1}{2} A_1^{(8)} \cos \varphi - \frac{3}{2} e B_0^{(c)} + B_1^{(c)} - \frac{e}{4} B_2^{(c)} \end{bmatrix}$$

$$e \begin{bmatrix} \frac{d\chi}{dt} \end{bmatrix}_{00} = \frac{m' n}{1+m} \begin{bmatrix} e A_0^{(c)} \cos \varphi - \frac{1}{2} A_1^{(c)} \cos \varphi + (1 - \frac{1}{2} e^2) B_1^{(8)} - \frac{e}{4} B_2^{(8)} \end{bmatrix}$$

$$\begin{bmatrix} \frac{di}{dt} \end{bmatrix}_{00} = \frac{m' n}{1+m} \begin{bmatrix} (\frac{1}{2} C_1^{(c)} - e C_0^{(c)}) \sec \varphi \cos \omega - \frac{1}{2} C_1^{(8)} \sin \omega \end{bmatrix}$$

$$\sin i \begin{bmatrix} \frac{d \Omega}{dt} \end{bmatrix}_{00} = \frac{m' n}{1+m} \begin{bmatrix} (\frac{1}{2} C_1^{(c)} - e C_0^{(c)}) \sec \varphi \sin \omega + \frac{1}{2} C_1^{(8)} \cos \omega \end{bmatrix}$$

$$\frac{m' n}{1+m} M_{\rm E} \begin{bmatrix} -2 \frac{r}{a} R_0 \end{bmatrix} = \frac{m' n}{1+m} \begin{bmatrix} -(2 + e^2) A_0^{(c)} + 2 e A_1^{(c)} - \frac{e^2}{2} A_2^{(c)} \end{bmatrix}$$

				·	
				•	
	٠				
			·		
	•				

			•		
			• .		
		•	• .	·	
	•				•
		·	•		
				•	
			·		
·					
	•				
	•				

CONTENTS.

		PART	I.—	DISC	cus	SION	OF	OBS	ER	VATI	ONS		•				
§ 1. Introductory Re	amarka													•			
§ 2. Authorities for (•	•	-	•	-	•	-	•	-	-	-	-	_	-	-	-
§ 3. Distinction of F		- athad a	e The	- adnoi	næ t	ho Ti	mae	of Co	ntaa	t from	- m the	- . (1) ac	- rvot	ione	-	-	_
§ 4. Longitudes of 8					սեւ	ле т	_		ın vax	- 1101	ш ш	- Cusc	- V V M	10119	-	•	_
§ 5. External Contact		_	_	_	_	_	-	_	•	-	-	-	-	-	-	•	_
§ 6. Explanation of		Summ	-	- 	-	- ration		-	-	-	-	,	-	-	-	-	Ī
§ 7. Classification of			-					-	_		•	•	-	-	-	-	-
§ 8. Tabular Summa		•	-		_			n De	tail	-	•	•	-	-	•	•	-
PART II.—CO	MPUTATIO	OF	TAB	ULA		ELEN SERV			ND	сом	PAR	ISON	OF	тн	EORY	w	ІТН
§ 1. Determination of	of times of A	pparen	ıt Co	ntac	t of	the	Limb	of a	n Iı	ferio	r Pla	anet v	vith	that	of th	e Sı	ın,
using Helioce					-					od of	f Ecl	ipses	-	-	-	-	-
§ 2. Reduction of the	ne Constants	in the	Prec	eding	Fo	rmula	e to l	Juml	ers	-	-	-	-	-	-	-	
§ 3. Tabular Helioce	entric Positio	ns of M	lercu	ıry a	nd t	he E	arth	-	-	-	-	-	-	-	-	-	-
§ 4. Computation of	f Tabular tin	ies of (Cont	act	-	-	-	-	-	-	-	-	-	-	-	-	-
§ 5. Symbolic Correct	ctions to the l	Relativ	e Po	sitior	ıs of	Merc	ury 8	and tl	ie St	ın in	term	s of C	orrec	tions	of Ele	emoi	ıts
§ 6. Introduction of	a term depe	nding t	ıpon	the	Нур	othet	ical `	Varia	bilit	y of	the E	Carth'	s axi	al Re	otation	1 -	-
§ 7. Comparison of	Observed and	l Ta bul	lar (Quan	titie	s wit	h the	For	mati	on a	nd S	olutio	n of	the	Equat	ions	of
Condition		-	-	-	-	-	-	-	-	-	-	•	-	-	-	•	. •
		PAI	RT I	II.—	DIS	cuss	ION	s of	RE	SUL	TS.						
§ 1. Do the Transite	s of Mercury	prove	or	dispr	ove	the	bypo	thesi	s of	the '	Varia	bility	of t	be I	Earth's	Ax	ial
Rotation ?		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
§ 2. Concluded Corre						-	-	-	-	•	•	•	-	-	-	-	-
§ 3. Values of the m	ass of Venu	s given	by 8	3ecul	ar V	'ariat	ions	and I	Perio	dic P	ertur	batio	ns	-	•	•	-
α . Motion o	f the Perihel	ion of	Merc	cury	•	-	-	-	-	-	-	-	•	-	, -	•	-
β. Motion o	f the Node o	f Merc	ury	-	-	-	-	-	-	-	-	-	-	-	-	-	-
y. Motion o	of the Node o	f Venu	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8. Obliquit	y of the Ecli	ptic	-	•	-	-	-	-	-	-	-	-	-	•	<i>:</i>	-	-
ε. Periodic	perturbation	18 -	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-
§ 4. Conclusions resp	ecting the M	ass of	Ven	118 AD	d tb	ю Ех	севв	n the	Mo	tion c	of the	e Pori	helio	n of	Mercı	ıry	
§ 5. Speculation on l														-	-	-	-
§ 6. Law of Recurre	nce of Trans	its of M	ferc	ury,	with	list :	of fu	ture	trans	its to	2100) -	-	-	-	-	-
•																	

	•		
			•
•		•	

TRANSITS OF MERCURY, 1677 TO 1881.

PART I.

DISCUSSION OF THE OBSERVATIONS.

§ 1.

Introductory Remarks.

The series of transits of Mercury discussed by Leverrier* terminated with that of 1848. The work of Leverrier on this subject is memorable from the fact that in it was first pointed out the discrepancy between the motion of the perihelion of Mercury as derived from observation and as derived from theory. The existence of this discrepancy, at least when the mass of Venus determined in other ways is employed, has been placed beyond doubt by observations of four transits since the publication of Leverrier's work. Notwithstanding the thoroughness with which the great astronomer treated the subject, there are a number of circumstances which render a reinvestigation desirable. The mere fact that a third of a century of observations, far more accurate than any made in previous times, are now available, is alone a reason for ascertaining whether any modification of Leverrier's results is now possible.

Again, several new questions have arisen which observed transits of Mercury will help to decide. Among these is the question of the uniformity of the earth's rotation. The discrepancies between theory and observation in the moon's secular acceleration, and the inequalities of long period in its longitude, give rise to the question whether the rotation of the earth itself may not be variable. That a slow secular retardation in this rotation exists seems almost certain on theoretical grounds; and it is not impossible that causes may act, capable of producing changes of long period. The question whether the apparent discrepancies in the moon's motion are to be accounted for in this way can best be settled by observation on other rapidly moving bodies.

There are many questions respecting the phenomena of contact, data for the solution of which will be found in the mass of recorded observations of transits of Mercury. Valuable hints may thus be derived in respect to the interpretation and discussion of observed transits of Venus.

Yet another reason for a new discussion is the desirableness of having the results of the theory and of observation so worked out, collated, and compared that the astronomer of the present or future may be able to see how they are to be reconciled

without the necessity of going over the entire discussion from the beginning. The author hopes that the present paper will make this possible.

It is a part of the general policy which the writer has adopted in carrying on this work to secure the co-operation of other astronomers, and he desires to express his thanks to those who have aided him in the collection of materials for the present discussion. Prominently among these must be mentioned Dr. J. A. C. Oudemanns, of Utrecht, who kindly furnished a complete translation of a number of Dutch Memoirs containing observations not found elsewhere. Messrs. R. L. J. Ellery, James Tebbut, and H. C. Russell, of Australia, kindly furnished, in advance of publication, the valuable series of Australian observations of the transit of 1881, made under their direction. Mr. J. E. Hilgard, Superintendent of the Coast and Geodetic Survey, also supplied valuable data from the records of that office. Among them are a great number of American observations on the transit of 1845, which had never been published. Dr. Otto Struve also furnished several unpublished observations made in Russia as well as extracts from the Montpelier Memoirs made by Dr. Wagner.

Most of the heavy work of reducing the observations has been performed by Lieutenant Chauncey Thomas, U. S. N., and Mr. R. W. Prentiss

§ 2.

Authorities for Observations.

Completeness in an investigation like the present requires the use of all data which can add to the precision of the result. In the case of contact observations the phenomena are of such a character that precision can be obtained only by combining as many observations as possible, made by different observers and under different circumstances. For these reasons the available published sources of observations were examined with some care. It was soon found, however, that a limit would have to be set to the number used. In the older volumes of the Berliner Astronomisches Jahrbuch, Monatliche Correspondenz, and Allgemeine Geographische Ephemeriden are great numbers of observations which it is hardly possible to use without suspicion. The range from the most valueless to the best is so gradual that it is very difficult to draw a line of distinction. The embarrassment is increased by the circumstance that the longitudes of the stations are in many cases not known with precision. It was desirable to reduce to a minimum the number of observations likely to be rejected merely on account of their discordance from others, and this again was a reason for leaving out of consideration some observations which might possibly have proved accordant, but which, had they been discordant, would not have been considered entitled to any The rule finally adopted was to retain all observations of known observers and all made at well known observatories, or stations, even when the observer was not known as an experienced astronomer; but, as a general rule, to leave out of consideration those of unknown observers at stations whose longitude would be difficult to determine. Except in the case of the Coast Survey records, and a few Russian observations already alluded to, reliance has been placed entirely upon published sources. The author did, indeed, some years ago make a collection of unpublished observations among the registers of the Paris observatory, but these were unfortunately lost through some accident. A critical examination of them had, however, shown that there

was very little material of value not already published, so that the investigation has probably not suffered much from their loss. The principal published sources are indicated at the commencement of the tabular exhibit of the observations, so that it is unnecessary to repeat them here. Thoroughness has not, however, been aimed at in preparing the bibliographical references, it being deemed sufficient to furnish the reader with the data which would enable him to trace any observations quoted.

§ 3.

Distinction of Phases and Methods of Deducing the Time of Contact from the Observations.

It is well known that different definitions of what shall be regarded as the time of interior contact of a planet with the sun may be formulated. Although, in reality, there can be but one phase of true contact, namely, that of interior tangency of the limbs, yet in practice, owing to the effect of irradiation, the limbs are not seen in their true geometrical outline. It has, however, been very generally considered that when allowance is made for irradiation we shall find two distinct phases of contact, namely:

- I. A phase in which the apparent limb of the sun, as extended by irradiation, and the apparent limb of the planet, as contracted from the same cause, shall be in geocentric contact.
- II. A phase when the light of the sun's limb is first or last seen to completely encircle the planet.

At ingress the phases follow each other in the order here described, while at egress their order is reversed. The first phase is sometimes denominated "apparent contact" or "tangency of limbs"; while the second is commonly known as "true contact" or "formation of the thread of light." The terms apparent and true contact are founded on a theory of the phenomenon which presupposes that the breaking or completion of the thread of light marks the moment of true internal contact, while the apparent tangency of limbs occurs at that interval preceding it during which the planet moves over a space equal to double the enlargement produced by irradiation. The geometry of this theory is quite simple, and, assuming the hypothesis to correspond to the facts of the case, it is quite correct. The theory assumes that, owing to the extreme brilliancy of the sun's limb, the completion of the thread of light can be noted the moment that the planet completely enters upon the solar disc.

In accordance with this view it was generally the custom, previous to the transit of Venus in 1874, to divide phases of contact into the two classes just defined, and to assume that the observer noted one or the other of the two phases. Thus, in Encke's classic work on the transits of 1761 and 1769 we find the observations of internal contact classified under the two heads of "Umkreis in Berührung" and "Lichtfaden." A similar course was followed by Mr. Stone, in his discussion of the transit of 1769, though he put some observations into one class which his predecessors had put into the other.

Now, assuming that observers always did note one or the other of these two distinct phases; assuming also that it could be inferred, either from their statements or from the times given, which phase each observer noted, it would be necessary, in com-

paring observations, to classify the phase and to avoid comparing one phase with another, except after applying the proper reduction.

But all experience concurs in showing that no such distinct classification of the two phases is possible in actual observation. It is true that observers sometimes describe the phase of tangency of limbs and formation of the thread of light as occurring at different specified times. It is also true that, as a general rule, it will be found that these observers who describe the thread of light as fully formed will be found to have noted their times somewhat later [at ingress] than those who describe their observation as that of tangency of limbs.

But this is by no means universal. As a matter of fact, we find the noted times of contact bridging over both phases in such a way that no clear distinction can be drawn. It is also to be remarked that a majority of observers do not define the phase at all; so that it is impossible to infer from their description which phase they observed. The following is perhaps the most conclusive way of considering the subject.

If there are two distinct and separable phases of contact, and if some observers note one phase and some another, then, by examining the times in a great number of transits observed by a great number of observers, we should find in them a tendency to group themselves near two distinct moments, corresponding to the two phases. If, for example, apparent contact at ingress occurs at o' and true contact at 20' then we should find one set of observers giving a result near to o' and another near to 20', while observations at 10' would be fewer in number. To show whether there is any such tendency we have, in a subsequent section, taken all the good observations given in the following pages between the limits 1769 and 1878 and grouped them in the way supposed. It is thus found that there is no tendency to a grouping about any distinct phase, and that the observations all group themselves around a single general mean, according to the usual law of error.

It appears, therefore, that no distinct line can be drawn between the two phases as they have been actually observed by the hundreds of observers in past times.

Associated with the error thus pointed out is another one, which has not been without influence in the discussion of observations. It is that the phenomena commonly known as "breaking of the black drop" at ingress, and which is frequently described by observers as occurring suddenly, is a real and well defined phase. were this so, there would be at least some approximation to agreement among observers as to the time of this phase. But, as a matter of fact which has been pointed out too frequently to need a full explanation at present, there is no such agreement. On the contrary, the divergence of times between the observers of the supposed phase is as wide as between observers of geometrical tangency. Moreover, optical considerations will show that this is nothing more than we should expect. Whether the black drop is or is not present, the moment of the phase thus described is not that at which the thread of light commences, but that at which it became sufficiently strong to be sensible to the eye of the observer. Now, this moment depends very largely upon the state of the atmosphere, the defining power of the telescope, and the contrast between the sun and the sky. Since irradiation implies a diffusion of the solar light, we may expect the phase in question to occur later the greater the amount of this disturbing

cause. But the greater the irradiation the earlier the supposed tangency of limbs will occur at ingress. Hence, with increased irradiation the one phase will occur earlier and the other later than the moment of actual contact.

The general conclusions to which we are led are these: Between the time when, in a field of view with considerable irradiation, the body of the planet would appear as if entirely within the sun, were the limbs of both bodies continued in their circular outlines, and the time when sunlight is seen to completely encircle the planet, there occur a series of phases extending over a period of time which, under unfavorable circumstances, may approximate to an entire minute, and between which no distinct line can really be drawn in practice. With good optical power and fine definition this period of indetermination, if we may so call it, may be so reduced to twenty or even to ten seconds. An observer, taking a general view of the phenomena, and estimating a single moment of true contact from the general appearance; and not from special phenomena, may be expected on the average to note a time somewhere about the mean of the period of indetermination, and therefore a time corresponding closely to true contact. If, however, he clearly sees the formation of a thread of light before the time he assigns, his observation may be assumed to be too late and to need a correction of a few seconds. But when the phase is not described, a mean contact may be assumed to have been observed. At the same time an examination of the observations shows it unsafe to place special interpretations upon the descriptions of observers except those in which they describe the thread of light as having become very distinct.

The conclusion to be drawn from these considerations is that it is for the most part useless to attempt any investigation of phases, and that our proper course is to take an indiscriminate mean of the results of all observers irrespective of their description, except in those cases where there was something clearly different from true contact observed. It may be objected that we thus confound observations of different phases. But the same objection will lie against any observations in which observers do not agree as to the time. Whenever observers assign different times, it is certain that the phases corresponding to these times must be different.

The answer to the objection is that we must let these differences go in with the probable error of the final result. The calculation of probabilities will still apply to the final probable error of the comparison, unless we suppose different observers to have observed systematically on a different plan in different transits. If, for example, we had twenty observations of one transit and twenty of another, and if an observer of each transit was equally likely to observe some phase, A, or some other phase, B, then the chance would be that ten observers observed each phase on each occasion. The probable error arising from the possible unequal division between the phases would be determined on the same principles as the probable error of observations and would be confounded with it. Whatever errors such a course may lead to they will be inherent in the very nature of the subject, and it will be useless to attempt their elimination. Assuming that we take an indiscriminate mean without regard to the remarks of the observers, the standard phase at which we aim will not necessarily be that of true contact but that which would correspond to a mean observation by an infinite number of observers of the same kind as those who actually made the obser-

vations. The adoption of this mean is as legitimate as that of any other, provided the probable error is extended so as to include both that of observation and that of interpretation.

We now reach a difficult question in the treatment Although the course just marked out is inevitable in those cases when we do not know what distinctive phase an observer noted, should we still adopt the indiscriminate mean in the case of observers who specifically state that they observed a particular phase, for instance, that of completion of the thread of light? It might appear that since, in such cases, we know that they observed a phase different from the one aimed at, we should apply a correction to reduce it to the phase. On the other hand it may be maintained that the same phase is also noted by an observer who does not describe the observation, and that, therefore, no account should be taken of differences of descriptions.

On first commencing the work the former system was adopted as being undoubtedly founded on correct principles. Assuming that the observers who describe the completion of the thread of light differed systematically from those who did not, a correction ought undoubtedly to be applied to them, although its omission might not cause a systematic error. But it was soon found doubtful whether, in a great majority of cases, there was any real systematic difference. For example, in some of the older transits several observers describe the planet as being wholly within the sun, thus implying that contact had passed and that sunlight was seen all around the planet, but they sometimes add, to complete the description, that the limbs were in contact, which would negative the hypothesis that contact had passed.

The general impression produced by the discussion was that it was unsafe to apply any special interpretation to the language of observers, and that the different descriptions of phases were merely different ways of describing what was in reality the same thing. An exception should be made in those cases where the description is such as to render it certain that contact had passed, as, for instance, when the line of light seen around the planet was described as a band of sensible breadth.

The course finally adopted does not admit of being reduced to an absolute rule. An observation is thrown aside or corrected when it appears probable that it did not or could not correspond to the general mean. It will be seen by the discussion of the several observations, that in only a few exceptional cases is any correction applied.

One point was, however, strictly adhered to. The acceptance or rejection of the observation was not allowed to depend in any way upon the magnitude of the mean correction which would result to the tabular times. Of course, after the time was concluded upon, it might sometimes be found to need modification or rejection in consequence of discordance. The only cases of such rejection, however, are those of the doubtful times of ingress in the transits of 1740 and 1786. In both these cases it was impossible to obtain a certain result, and the observations are, therefore, rejected. Individual observations were generally rejected when they deviated from the general mean of the other observations by more than half a minute.

Another reason for adhering to the indiscriminate mean is the impossibility in practice of recognizing any observations as those of apparent contact in the sense in which that term has been defined. According to this definition a black drop is sup-

posed to be seen, and the time of apparent contact is that when, if the limbs of the sun and planet were produced through the black drop, they would touch each other. But, notwithstanding the geometric definiteness of the phase, it is, in practice, one which, under the circumstances, it is impossible to observe with any approximation to precision. As a matter of fact it may be doubted whether attempts have been made to note it, unless from some preoccupation on the part of the observer. When, therefore, the observer describes a tangency of the limbs, it cannot be inferred that he means anything different from the average contact.

As a matter of fact the only instance in which the question of this contact came in was connected with the transit of 1878, where there are several cases of geometric contact with black drop intervening.

§ 4.

Longitudes of the Stations.

When, in so great a mass of observations, made in every part of the world, absolute precision is aimed at, the determination of the longitudes of the observers would be the most troublesome and laborious part of the work. It may be doubted whether, with the most elaborate historical research, the position of the observer could in all cases be learned. Happily, the last degree of precision is not necessary, because the necessary probable error of the observations themselves being from 5" to 10", their precision will not be materially diminished by a small error of longitude. Moreover, as a general rule, those observers whose longitude is unknown are otherwise entitled to the least weight. No attempt was, therefore, made at an exhaustive investigation of the observing stations. In the case of towns in France, and sometimes, also, in Germany, the table of positions in the Comptes Rendus was accepted without further discussion. Where there was any room for distinguishing between different points in the city, the cathedral or other central point was generally taken as most likely to be near the place of observation. The places of a few German towns were taken by measurement from the maps in the Hand-atlas of Sohr-Berghaus, published by Carl Flemming, Glogau, 1879. The British Admiralty Charts frequently furnish data for the longitude of ports, but for most maritime stations the longitudes were obtained from data in the Hydrographic Office of the Bureau of Navigation. The observations and researches of Lieutenant Commander Francis M. Green, U. S. N., were of great value in this respect

A table of the adopted longitudes, with the authority from which each was obtained, is appended. It will aid in the application of any corrections which may be required by future investigators.

Adopted Positions of Stations.

Place.	-			(Gr. =	= long h; Pa	ritudes g. from (. = long	3reen-	Authorities and remarks.				
Adelaide	—34	57	" 00	h. —9	m. 14	8. 21	Gr.	Am. Eph., adopted.				
Altona	+53	32	45	—o	30	26	Pa.	Conn. des Temps.				
				! —o	39	47	1	Adopted.				
Amsterdam	+52	22	30	_o	10 19	33	Pa. Gr.	Conn. des Temps. Adopted.				
Athens	+37	58	20, 0	<u></u>	34	55- 7	Gr.	Am. Eph., adopted.				
Avignon	+43	57	13		9 19	53 14	Pa. Gr.	Conn. des Temps. Adopted.				
Bagdad	+33	19	50	-2 -2	48 57	9 30	Pa. Gr.	Conn. des Temps. Adopted.				
Batavia	– 6	10. 2	2	–7	7	12 5	Gr.	A. N., lxxiv, 167, adopted.				
Berlin	+52	30	16. 7	-	53	34. 91	Gr.	Am. Eph., adopted.				
Bologna (St. Petrone) -	+44	29	32	—o	36 45	2 23	Pa. Gr.	Conn. des Temps. Adopted.				
Breslau	+51	6	56. 5	 1	8	8. 71	Gr.	Am. Eph., adopted.				
Brunswick	+52	16	6	-0	32 42	45 6	Pa. Gr.	Conn. des Temps. Adopted.				
Brussels	+50	51 .	10. 5	- o	17	28, 6	Gr.	Am. Eph., adopted.				
Calcutta	+22	3 3	11.	—5 —5	44 53	4 21	Pa. Gr.	Le Ver., v, 46. Lt. Com. F. M. Green, adopted.				
Cambridge, Mass	+42	22	48. 3	+4	44	31	Gr.	Am. Eph., adopted.				
Cambridge, Eng	+52	12	51.6	-0	0	22. 75	Gr.	Am. Eph., adopted.				
Canton	+23	7. 5	5	-7	33	8	Gr.	Admiralty Map, adopted.				
Cape Town	-33	56	3-4	-1	13	55	Gr.	Am. Eph., adopted.				
Celle	+52	37	30	-0 -0	30 40	52 13		From map. Adopted.				
Cincinnati (old obs.) -	+39	6	26. 5	+5	37	58. 94	Gr.	Am. Eph., adopted.				
Cookstown	+54	38		+0	26	52	Gr.	Мар.				
Copenhagen	+55	40	5 3	 -0 -0	40 50	58 19	Pa. Gr.	Conn. des Temps. Adopted.				
Copenhagen (new obs.)	+55	4 I	13.6	_o	50	19. 2	Gr.	Am. Eph., adopted.				
Dantzic	+54	21	18	-1	14	39-3	Gr.	Am. Eph., adopted.				
Dorpat	+58	22	47-4	_ı	46	53- 5	Gr.	Am. Eph., adopted.				
Dresden	+51	3	39	o o	45 54	35 56	Pa. Gr.	Conn. des Temps. Adopted.				
Durham	+54	46	6, 2	+0	6	19.8	Gr.	Am. Eph., adopted.				
Edge Hill	+53	24. 4	ŀ	+0	0	o. 8	Gr.					
Florence	+43	46	22	o o	35 45	4I 2	Pa. Gr.	Conn. des Temps. Adopted.				
Geneva	+46	11	5 8. 8	-0	24	36. 77	Gr.	Am. Eph., adopted.				

Adopted Positions of Stations—Continued.

Place.	Geog	. lati	tude.	(Gr. =	=long h; Pa	itudes. g. from (g. == long	reen-	Authorities and remarks.
	l			Par	is.)			
Gotha (Seeberg)	-50	, 56	" 5	h. o o	m. 33 42	8. 36 57	Pa. Gr.	Conn. des Temps. Adopted.
Gottingen	+51	31	47.9	_o	39	46. 24		Am. Eph., adopted.
Grantham	+52	54.9		+0	0	2.6	Gr.	
ireenwich	+51	28	38. 4	0	o	o	Gr.	Am. Eph., adopted.
Haarlem	+52	22	54	_o _o	9 18	12 33	Pa. Gr.	Conn. des Temps. Adopted.
Hague	+52	4	40	o o	, 7 17	53 14	Pa. Gr.	Conn. des Temps. Adopted.
Hamburg	+53	33	7	-o	39	53-7	Gr.	Am. Eph., adopted.
Hartwell	+51	48	36	+0	3	24 33	Gr.	Br. Eph., adopted.
Hobart Town	-42	53	12	-9 -9	40 49	I 22	Pa. Gr.	Conn. des Temps. Adopted.
Königsberg	+54	42	50.6	-1	21	58.91	Gr.	Am. Eph., adopted.
Kremsmünster	+48	3	23. 7	—о	56	32. 2	Gr.	Am. Eph., adopted.
Kurnaul	+2 9	42.	3	-4 -5	58 8	55 7	Pa. Gr	Le Ver. Lt. Com. F. M. Green, adopte
Leiden	+52	9	20	—о	17	56. 35	Gr.	Am. Eph., adopted.
Leipsic	+51	20	10	_o _o	40 49	13 34	Pa. Gr.	Conu. des Temps. Adopted.
Lilienthal	+53	8	28	o	26 35	18 39	Pa. Gr.	Conn. des Temps. Adopted.
London (Fleet st.)	+51	30	49	+0 +0	9 0	44 23	Pa. Gr.	Coun. des Temps. Adopted.
Liverpool	+53	24	4	+0	12	17.2	Gr.	Am. Eph., adopted.
Louvain	+50	53	27	0 0	18	27 48	Pa. Gr.	Conn. des Temps. Adopted.
Malta	+35	54. 8	3	-о	58	2	Gr.	Adopted.
Manchester	+53	29	o	o o	18 27	20 41	Pa. Gr.	Conn. des Temps. Adopted.
Manheim	+49	29	13	_o ' _o	24 33	31 52	Pa. Gr.	Conn. des Temps. Adopted.
Manila	+14	35	26	-8	3	49	Gr.	Lt. Com. F. M. Green, adopte
Marscilles	+43	18	19. 1	- o	21	34. 64	Gr.	Am. Eph., adopted.
darburg	+50	48	46, 9	—o	35	5. o	Gr.	Am. Eph., adopted.
Milan	+45	27	35	-o -o	27 36	24 45	Pa. Gr.	Conn. des Temps. Adopted.
Mitau	+56	39	2	—I	25 34	35 56	Pa. Gr.	Conn. des Temps. Adopted.
Modena	+44	38	52.8	—о	43	42.8	Gr.	Am. Eph., adopted.
Montauban	+44	1	6	+0	3 5	56	Pa.	Conn. des Temps.

Adopted Positions of Stations—Continued.

Place.	Geog.	latit	ude.	(Gr. =	long; Pa.	itudes. . from G = long	reen-	Authorities and remarks.
Montpellier		, 	" - •	_o _o	m. 6 15	8. 10 31	Pa. Gr.	Conn. des Temps. Adopted.
Montevideo	-34	54	18	+3	44	49	Gr.	Lt. Com. F. M. Green, adopted.
Naples	+40	51	47	-o -o	47 57	41 2	Pa. Gr.	Conn. des Temps. Adopted.
New Haven	+41	18	36. 5	+4	51	42. 19	Gr.	Am. Eph., adopted.
Nicolajeff	+46	58	20.6	- 2	7	54. I	Gr.	Am. Eph., adopted.
Nienstädten	+53	33. 1	i	-0	39	22.8	Gr.	24°.2 W. of Altona (A. N., xxiii, 145).
Norristown	+40	9.7	İ	+5	t	30. 45	Gr.	From long. of Phila. and tri- angulations.
Nuremberg	+49	27	3º ,	_o _o	34 44	57· 7 18. 7	Pa. 'Gr.	Adopted.
Padua	+45	23	45	_ 0 _ 0	38 47	11 32	Pa.	Conn. des Temps. Adopted.
Palermo	+38	6	44	- o	53	25.0	Gr.	Am. Eph., adopted.
Paramatta	-33	48	50	- 9 -10	54 4	43 4	Pa. Gr.	Le Ver. (C. des T. gives 46°). Adopted.
Paris	+48	50	11	_ o	o 9	0 21	Pa. Gr.	Conn. des Temps. Adopted.
Pekin	+39	54	13	- 7 - 7	36 45	34 55	Pa. Gr.	Conn. des Temps. Adopted.
Pokin (Russian Obs.) -		. .		- 7 - 7	36 45	20 41	Pa. Gr.	
Philadelphia	+39	57	7 · 5	+ 5	o	38.45	Gr.	Am. Eph., adopted.
Prague	+50	5	18,8	 o	57	41.4	Gr.	Am. Eph., adopted.
Princeton	+40	20	58	+ 4	58	37.5	Gr.	Am. Eph., adopted.
Pulkowa	+ 59	46	18. 7	– 2	1	18.6	(ir.	Am. Eph., adopted.
Quedlinburg	+51	47	32	— o	35 44	29 50	Pa. Gr.	Conn. des Temps. Adopted.
Reval	+59	26	28	I	39	6.3	Gr.	O. Struve, adopted.
Rouen (cathedral)	+49	26	29	+ o - o	4	_	Pa. Gr.	Conn. des Temps. Adopted.
Rouen (3º W. of cathedral).	+49	26	29	+ o - o	5 4		Pa. Gr.	See next preceding. Adopted.
Schwerin	+53	37	38. 2	— o	45	40 7	Gr.	Am. Eph., adopted.
Seftenberg	+50	5	10. I	I	5	50.6	Gr.	Am. Eph., adopted.
Rome	+41	54	6	— o	40 49	28 4 9	Pa. Gr.	Conn. des Temps. Adopted.
Sidney	-33	51	41	- 9 -10	55 4	34 55	Pa. Gr.	Le Ver. Adopted.
St. Helena	-15	55		+ °	32 22	12 52	Pa. Gr.	Conn. des Temps. Adopted.
St. Petersburg	+59	56	30	- 2	1	13.5	Gr.	Am. Eph., adopted.

Adopted Positions of Stations-Continued.

				L	ongi	tudes		
Place.	Geog.	latit	ıde.	(Gr. = wich : Paris	Pa.	from G == long.		Authorities and remarks.
						-		
	O	′	"	h.	m.	8.		
Toulouse	+43	36	33	— o	3 5	35 46	Pa. Gr.	Coun. des Temps. Adopted.
Twickenham	+51	27	4. 2	+ 0	ı	13.1	Gr.	Am. Eph., adopted.
Upsal	+59	51	50	- I	I IO	13.3 34.3	Pa. Gr.	A. N., xi, 409. Adopted.
Utrecht '	+52	5	10. 5	— о	20	31.7	Gr.	Am. Eph., adopted.
Vienna (1' 1".7 S. 1s.1 E. of obs.)	+48	11	33.8	- 1	5	32.84	(ir.	Am. Eph., adopted.
Vienna (old obs.)	+48	12	35∙5	— I	5	31.74	Gr.	Am. Eph., adopted.
Viviers	+44	2 9	14	— o	18	23 44		Conn. des Temps. Adopted.
Wanstead	+51	34	10	— o	0	9	Gr.	
Washington College, Pa.	+40	ю		+ 5	2 I	18	Gr.	From map, adopted.
Waterloo	+53	28. 4	,	. + 0	12	4	Gr.	
University of William and Mary, Va.	+37	16		+ 5	5	28	Gr.	From map, adopted.
· · · · · · · · · · · · · · · · · · ·			-		_		-	and the second of the second o

§ 5.

External Contacts.

Experience seems to indicate that an observation of external contact, under certain conditions, can be made with nearly as much precision as one of internal contact. The observed phase will not, however, be that of tangency of limbs, but that at which the notch made by the planet passes from the stage of visibility to invisibility, or vice versa. This stage depends upon the state of the atmosphere, the eye of the observer, and the quality of the instrument. Yet it would seem that if we regard the effect of the differences which result from these causes as probable errors simply the total probable error will not be materially increased. The fact appears to be that, in day observations upon the sun, the maximum of seeing power is nearly reached with quite a moderate-sized telescope in ordinary states of the atmosphere. No account has, therefore, been taken of differences in telescopic power, etc., except that a few observations, made with evidently insufficient means, have been rejected.

There is, however, one important point to be noted. There can be no doubt that, owing to the progressive improvements in telescopes, and in the art of observing, the phase which would be noted as external contact has continually approached nearer to that of true external tangency. It is, therefore, necessary, in the discussion, to allow for this progressive change. The mode of doing this is described in connection with the formation and solution of the equations of condition.

A very little examination shows that no reliance can be placed upon the older observations of first external contact, and very little upon the recent ones, except where the observers had first practiced upon an artificial transit. As no observations of a distinct class are of value unless they extend through a long period of time, all observations of first external contact have been rejected. Owing to the inferior weight assigned to observations of fourth contact, no attempt has been made to discuss them with the care devoted to those of internal contact. As a rule, the reductions to geometric phase have been supposed the same as in the case of internal contact. Except when the planet passes very near the limb of the sun the error of this hypothesis is insensible.

√ 6.

Explanation of the Tabular Summary of Observations.

The general construction of this summary has been so fully explained in the preceding sections that few additional explanations are necessary. Perfect symmetry of arrangement has not been aimed at, and might tend, in some respects, to mislead because of the impossibility of its according with a series of observations of so miscellaneous a character extending over two centuries.

The first two columns, giving the station and the names of observers, call for no special remark. The third column contains the description of the phase, when any is given. As a rule, the exact language of the observer is quoted, though it sometimes has to be condensed. Sometimes, also, when thus condensed, or when there can be

no doubt as to the exact meaning, his statements are expressed in English. In the majority of cases it will be seen that there is no specific description.

The fourth column contains the time as given by the observer. It is generally apparent time before 1800, and mean time since. No attempt has been made in any case to redetermine the clock correction of the observer, except in a few observations by Wurzlebau, which, however, proved worthless.

The next column contains the reduction to the center of the earth. It is computed from the tabular data as given in the second part. The omitted terms of the second order would rarely amount to one second, and, therefore, need not be taken into account.

The transit of 1782, however, in which Mercury passed very near the sun's limb, is an exception. It was here necessary to make a rigorous reduction to the center of the earth. The details of this reduction are given in the proper place.

Next follows the concluded Greenwich mean time of geocentric contact as deduced from each observation. It is obtained by correcting the observed time for equation of time, reduction to center of earth, and longitude. The three adopted corrections being all given, any error in the reduction can be readily found.

The mean time concluded from all the observations of each transit is given as the result of a separate discussion of each. It was necessary in the case of each transit to discuss the observations upon the system likely to give the nearest approximation to a general mean result.

§ 7.

Classification of Residuals with respect to Magnitude.

The classification of the errors of observed times, with respect to their magnitude, is shown in the following exhibit. The transit of 1782 is omitted. In other cases the numbers given are the differences between each individual observed time and the geocentric time concluded from the general mean of all the observations.

The algebraic signs are so applied that a positive error means that Mercury was too far from the sun's center. Hence, the differences are:

(Computed—Observed) times of contact II.

(Observed—Computed) times of contact III.

By this arrangement similar signs correspond to similar differences of phases of contact.

No allowance is made for obliquity of the path of the planet to the sun's limb.

A P, PART VI---3

Residuals.	Ingress.	Egress.	Total.	Residuals.	Ingress.	Egress.	Total.
8.				8.			
0	14	14	28	+ 1	14	16	30
— I	15	16	31	+ 2	15	17	32
- 2	10	16	26	+ 3	15	15	30
– 3	17	20	37	+ 4	7	10	17
— 4	9	9	18	+ 5	9	6	15
— 5	15	17	32	+ 6	9	5	14
– 6	10	10	20	+ 7	4	9	13
— 7	I 2	13	25	+ 8	8	4	I 2
– 8	9	5	14	+ 9	4	7	11
- 9	16	6	22	+10	6	8	14
-10	8	6	14	+11	5	4	9
-11	8	7	15	+12	4	2	6
— 12	4	8	I 2	+13	3	. 3	6
-13	4	8	I 2	+14	5	2	7
<u>•</u> 14	6	5	11	+15	6	6	I 2
-15	6	7	13	+16	I	2	3
— 16	3	2	5	+17	3	2	5
— 17	I	2	3	+18	2	3	5
 18	3	0	3	+19	3	3	6
19	1	2	3	+20	I	4 .	5
- 20	2	0	2	+21	0	4	4
— 2 I	5	2	7	+22	2	I	3
-22	0	0	0	+23	2	1	3
- 23	0	2	2	+24	0	I	1
-24	0	2	2	+25	2	I	3
—.25	3	1	4	+26	2	2	4
— 26	0	1	1	+27	I	0	1
-27	0	2	2	+28	3	0	3
- 28	' О	0	0	+29	0	0	0
-29	0	2	2	+30	3	0	3
-30	0	0	0	>30	9	14	23
>30	9	9	18				

The numbers thus presented show no tendency to divide into groups corresponding to special phases. In order to determine more definitely whether there is any such tendency we divide them into groups of five, the middle group being the sum of -2, -1, 0, +1, +2; the group +5 the sum from +3 to +7, etc. We thus have—

	Magnitude.	No. of errors.	Probable number.
Exceeding —	27 sec.	20	2
	25 sec.	11	6
	20 sec.	15	18
	15 sec.	44	44
	· 10 sec.	77	83
	5 sec.	132	120
	o sec.	147	137
+	5 sec.	89	I 20
+	lo sec.	52	83
+	15 sec.	33	44
+	20 sec.	23	18
+	25 sec.	I 2	6
Exceeding +	27 sec.	29	2

The great difference between the residuals which fall between -3° and -7° and those which fall between $+3^{\circ}$ and $+7^{\circ}$ is striking, but seems to arise partly from the unequal grouping; partly from the excess of positive errors of about $+20^{\circ}$; partly from the excess of instances in which observation of small weight were those of moderate negative residual. It will be remarked that in preparing the table no distinction whatever was made between different classes of results as regards quality; but every residual was enumerated. Hence, any irregularity in the distribution of weights will be shown by an irregularity in the numbers.

To compare these numbers with the probable ones, deduced from the standard law of distribution of errors, we remark that somewhat more than half the residuals are contained in the three middle groups, which again should be considered as comprising all errors between the limits $-7^{\circ}.5$ and $+7^{\circ}.5$. If we include the abnormal residuals which exceed 27 seconds, the limits between which one half the residuals are contained should be regarded as $\pm 6^{\circ}.8$. But considering only those 635 residuals which do not exceed 27 seconds, one half of them are contained between the limits $\pm 6^{\circ}.2$. Actually we have assumed $\pm 6^{\circ}.2$ seconds as the probable error, and thus obtained the probable distribution of the residuals, as shown in the last column.

This method of deducing the probable error does not rest upon a mean of squares of errors, but is based immediately on the definition that the probable error is that quantity for which there is an equal chance that an error shall exceed it or fall short of it. The necessity for adopting such a definition arises when the law of error varies appreciably from that usually adopted, as in the present case.

It is evident, from an examination of the table, that the observations are liable to abnormal errors, since 49 of the residuals exceed 27", while adopting the usual law of

error the probable number should be only 4. Quite likely the abnormal error, in many of these cases, arises from such mistakes as those of a minute in the recorded time. But I think that, for the most part, they arise from the unfavorable circumstances under which observations are frequently made. It is evident that if we have a collection of observations of different degrees of probable error, in which, however, there is no way of distinguishing those of great probable error from those of small probable error, the law of the errors will not be that usually adopted, but there will be a comparative excess of large residuals. It is also evident that in such a case the arithmetical mean does not necessarily give the most probable result. For, in the case of an observation of large residual, there is evidently a preponderance of probability that it belongs to a class with large probable error, and therefore should be assigned least weight. This principal has, to a certain extent, been indirectly applied in deducing the times of geocentric contact from observation. When a result differed from the general mean by a quantity much more than half a minute it was rejected. The above table seems, however, to indicate that all residuals exceeding 25" should be rejected, except in cases where the other observations on the same transit were worse than the average.

That any general collection of observations of transits of Mercury must be a mixture of observations with different probable errors was made evident to the writer by his observations of the transit of May 6, 1878, which may be here described as an illustration of the subject.

The instrument used was a 4-inch telescope not moved by clock-work, and, therefore, somewhat difficult to manage. At ingress the definition of the sun's limb was fairly good, though there was a slight distortion in the figure of the planet about the time of internal contact. About the time of contact there was an interval, which I should roughly estimate as probably not less than 6° nor more than 10°, during which it was doubtful whether contact was or was not past. The middle of this interval was therefore taken as the time of contact, with an error which almost certainly could not exceed 5°. About 12° later the band of light between the limb of the sun and planet was clearly of sensible breadth. It could therefore be asserted with entire confidence that the contact took place several seconds before the last recorded moment. Yet a large number of observations gave a later time than this, when all were reduced to the center of the earth. It may, however, be remarked that the time of true contact as noted agreed closely with the general mean.

At egress, however, the circumstances were entirely different. The sun shone through a thin cirrus cloud which, although it did not seem to disturb the limb materially, yet produced such a blurring as at times almost to obliterate the view of the planet. Under these unfavorable circumstances a time of probable contact was noted. But half a minute later, during a few seconds of somewhat better definition, it appeared doubtful if contact had really taken place. Bad definition immediately followed, and the attempt to note contact had to be given up. Some seconds later the sun shone with nearly its full brilliancy; the planet then appeared to form a notch in the sun's limb the shape of the letter U, the length of which was fully double its breadth, thus showing distortion in an extreme degree. Had this state of things occurred a

minute earlier a well formed black drop would no doubt have been seen. Before the planet went off the sun its limb again became so disturbed that external contact could not be noted.

Hence it was impossible to have recorded a time of internal contact at egress which would not have been liable to an error of half a minute or more. Even during the time of best definition between third and fourth contacts an observed time would have been liable to an error of from ten to twenty seconds. And I am persuaded that at this time the sun was not more disturbed than it very often is in observed transits. The conclusion I therefore draw is that if it were possible to select from a collection those observations made under the most favorable circumstances, and by observers fully prepared for the phenomena, we might either reject, or assign but small weight to, all the other results. Unfortunately, it is, in most cases, impossible to select such observations. Still, it is not likely, in the method of treatment actually adopted, that the systematic error is considerable.

The main conclusion to be deduced from the tables is, however, that there are no distinctive features of contact which are actually noted by observers. The phases merge into each other by insensible gradations, and the mean phase is got more frequently than any phase differing from it by so much as 5". Especially no tendency can be seen to observe anything which we may consider true contact, apparent contact, breaking of the ligament, etc., at any definite time. It may be advisable in some cases to correct an observation which the observer particularly describes as one of a special phase. But even this must be done with caution.

Tabular Summary of Observations with their Reductions.

ABBREVIATIONS.

- P. T., Philosophical Transactions of the Royal Society.
- Paris, Memoirs of the French Academy of Sciences.

 M. A. A., Memoirs of the American Academy of Arts and Sciences (First Series).
- P. A. A., Proceedings of the American Academy of Arts and Sciences.
- M. A. P. S., Memoirs of the American Philosophical Society.
- M. R. A. S., Memoirs of the Royal Astronomical Society.
- P. R. A. S., Proceedings of the Royal Astronomical Society. Le V., Le Verrier's Annales de l'Obs. de Paris, v.
- St. P., N. C., St. Petersburg, Novi Commentarii.
- B. M., Memoirs of the Academy of Berlin.
- A. G. E., Zach's Allgemeine Geographische Ephemeriden.
- Zach, Zach's Monatliche Correspondenz.
- II. Internal contact at Ingress.
- III. Internal contact at Egress
- IV. External contact at Egress

1677. NOVEMBER 7.0.

[Equation of time: Ingress - 15^m 56^s; Egress - 15^m 54^s.]

Place.	Observer.	Contact and description.		Local app. time.		Red. to geocentric phase.	Corr. for phase.		time of geocen-	rue contact.	Authority and remarks.
St. Helena	Halley	I. Limbus Solis a Merc. temeratus		171. 26		#. +29	1			8. 42	Catalogus Stellarum Australium, App., p.
	do	II. Totus Merc. intra Solem	21	27	30	+29.2		21	34	55	(2).
	do	III. Limbus Merc. attigit Solis Limbum.	2	40	8	+22.0	•••••	2	47	28	·
		IV. Solis limbus integer factus	2	41	54	+22	+20	. 5	49	34	
A vignon	Gallet	IV. Egressum e Sole	3	26	56	- 4	+30	2	52	14	Flamsteed, Hist. Col , i, 187.
In comitatu Lan- castria.	Townley	IV. Total Egress	2	54	0	- 8		••••	••••	••••	Do.

GALLET'S observation may be rejected without discussion, his time being certainly more than a minute after last external contact.

Townley's time and longitude are so uncertain that his observation has not been used.

Considering the errors of the tabular times as not exceeding half a minute, it would seem that both of Halley's phases at ingress are a minute or more late, and both those at egress perhaps a minute too early. The most plausible explanation seems to be that, with his bad telescope and inexpertness in observing, he did not see Mercury at first contact until long after it had began to indent the solar disk, and that Mercury did not appear "totus intra Solem" until the thread of light had reached a considerable thickness. At egress the same causes would produce the reverse effects, though probably in a less degree.

These observations can, therefore, be combined with those of other observers only when this probable source of error is eliminated.

1690, NOVEMBER 10.

[Equation of time, — 15^m 40^s.]

Place.	Observer.	Contact and description.		Local app. time.		Red. to geocentric phase.	Greenwich mean time of geocen- tric contact.	Authority and remarks.
Canton	Fontenay	Sortie certaine et entière	h .	m. 18		8. -22.5	h. m. s. 19 28 52	Paris, vii, pt. ii, p. 870.
Nuremberg	Wurzelbau	Merc. postquam undulanti limbo Solis ad Min. temporis adhæ- serat exiit.	8	24	45	-61.2		P. T., xvii, p. 485.

According to Wurzelbau, his observation was made at 8^h 36^m by his clock, and the mean of four altitudes following it gives the correction — 11^m 15^s. The result is, however, several minutes in error, and the observation is not worth discussing.

Nothing is said of the instrument with which Fontenay's observation was made, but his remark, "Il a paru toujours dans le Soleil comme une tache noire et fort ronde," implies a good instrument. The planet appeared half emerged at 3^h 17^m 5^s app. time.

1697, NOVEMBER 2.8.

[Equation of time, — 16^m 6^s.]

· Place.	Observer.	Contact and description.	Local app. time.		Red. to geocentric phase.		Greenwich mean time of geocen-	tric contact.	Authority and remarks.
Paris	Cassini	III. Margo precedens Mercurii pervenit ad Solis marginem pre- cedentem. IV. Merc. totus emersit	8	38	-18.1	19	42		Le V., p. 38.

The second observation is quoted by Flamsteed, Hist. Col., but I have found no published record of the internal contact. The time is, therefore, adopted on the authority of Le Verrier.

The observations were made with an 18-foot telescope, but no power is stated.

1723, NOVEMBER 9.1.

[Equation of time, -15m 52s.]

Place.	Observer.	Contact and description.		Local app. time.		Red. to geocentric phase.	Greenwich mean time of geocen- tric contact.			Authority and remarks.	
Bologna	Manfredi	Merc. entirely within; limbs tangent.	h. 3	m. 27		8. +23		m. 26	8. 53	P. T., xxxiii, p. 228.	
Paris	Maraldi Delisle	II	1	51	100	+18	2 2	26 26	53 44	Paris, 1723, p. 295. Paris, 1723, p. 309.	

1723, NOVEMBER 9.1—Continued.

Place.	Observer.	Contact and description.	Local app. time.			Red. to geocentric phase.	Greenwich mean time of geocen- tric contact.			Authority and remarks.
Paris	Cassini	Merc. était entièrement entré et son bord rasait celui du Soleil.	h. 2	m. 51		8.	h. 2	m. 26	8. 53	Paris, 1723, p. 261.
Wanstead	Bradley	II	2	42	38	+16	2	26	53	P. T., xxxiii, p. 228.
Greenwich	Halley	He was wholly entered, the light of the sun just beginning to ap- pear behind his disk.	2	42	26	+16	2	26	50	Do.
London	Graham	Mere, entirely within the disk	2	42	19	+16	2	27	6	Do.

Here, four observers describe the thread of light as fully formed, or Mercury as entirely within the sun. The mean of their times is 2^h 26^m 56^s . Three observers are silent as to the phenomenon; the mean of their times is 2^h 26^m 50^s . Whether any correction should be applied to the first set is doubtful, for reasons given in § 6. Assuming Halley's to need such a correction, I shall adopt

Contact II, 2h 26m 528.

1736, NOVEMBER 10.9.

[Equation of time: Ingress — 15^m 37°; Egress — 15^m 36°.]

Place.	Observer. Contact a	Contact and description.		Local app. time.		Red. to geocentric phase.	Greenwich mean time of geocen- tric contact.		tric contact.	Authority and remarks.
Montpellier	Plantade	II. Imm. totale	h.	1111	8.	8. +19	h.	m.	- 72	Mem. de Moutpellier, ii.
•	(2)	п	7.5		-0	1 3	-			arous de arouspeaner, in
Bologna	The state of the s			10		+21		10	55	
D		Entièrement entré	100		183	0.01			7	
Paris		Entierement entre	21	35		+18		10	-	
London	Graham			25		+19			42	P. T., xl, roz.
Montpellier	Plantade	III. Il touchait le bord	0	21	12	-75	23	48	50	
Bologna	Manfredi	ш	0	51	7	-73		48	55	Ib., xl, 103.
	Algarottus		0	50	ı	-73		47	49	
	Vandellius		0	50	50	-73		48	38	
Paris	Maraldi	Paraît tomber	0	15	5	-77		48	51	
	Cassini	Rasait le bord	0	15	18	-77		49	4	
Montpellier	Plantade	IV	0	24	18		23	51	55	*
Bologna	Manfredi	IV	0	53	44	-73		51	32	
The second second	Roversius		0	54	1	-73		51	49	
	The second secon			53	6	-73		50	54	
	Vandellius		0	54	6	-73		51	54	
Paris	The state of the s		-	18	11	-77		51	57	
	Cassini		0	18	18	-77		52	4	
Greenwich	Bevis	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	8	33	-79		51	38	

For second contact we may reject GRAHAM's doubtful observations, and take the mean of the remaining five. At third and fourth contact we may also reject the observations of Algarottus without question. We shall then have—

Contact II, 21 10 30 III, 23 48 51 IV, 23 51 50

1740, MAY 2.4.

[Equation of time, -3^m 25^s.]

Place.	Observer.	Contact and description.	Local app. time.	Red. to geocentric phase.	Greenwich mean time of geocen- tric contact.	Authority and remarks
[Cambridge, U.S	Winthrop	diameter entered Almost within	h. m. s. 4 54 59 5 0 40	#84.3	h. m. s. 9 37 28 9 43 9	P. T., xlii, p. 572.

This observation, rude and uncertain though it appears, is noteworthy, not only as being the first made on a May transit, but as belonging to that May transit in which the distance of centers was greatest. It may also be remarked that estimates of the kind here given are more accurate in comparison with contact observations than is commonly supposed. We may, therefore, see what conclusions may be drawn from them. In the first place, the tabular interval between contacts is 8^m 28^s. Three-fourths of this being 6^m 21^s, the reduced time of internal contact would be 9^h 43^m 49^s. The general character of the intervals between observed contacts, as estimated by observers in those times, indicates that they often lost sight of the planet when one-fourth of it was still on the disk. The general conclusions from Professor Winthrop's observations may, therefore, be summed up as follows:

From first estimate, time probably earlier than 9^h 43^m 49^s.

From second estimate, time certainly later than 9^h 43^m 9^s.

Therefore, if we assume 9^h 43^m 29^s as the reduced time of internal contact, the probable error of the result, mistakes aside, would seem not to exceed 20^s.

The ulterior discussion, however, shows a probable mistake in the time, since, at the last recorded moment, when Wintheop thought internal contact had not quite arrived, the contact would seem to have been decidedly past.

A P, PART VI----4

1743, NOVEMBER 5.0.

[Equation of time, - 16" 7".]

Place.	Observer.	Contact and description.		Local app. time.		Red. to geocentric	posse.	Greenwich mean time of geocen-		Authority and remarks.
London, Surrey st.	Short	 Just past internal contact. Thread of light 10 to 10 the diameter of Mercury. 		m. 30). 51	h. m. 20 14		
Paris	Lacaille Maraldi		{							Paria, 1743, p. 173. Ib., p. 281.
Thury		II	1			! — ! - !			16 18	Ib., p. 375. Ib., p. 373.
Paris	Lacaille	III. Mercure me parut toucher le bord du Soleil pour en sortir.				+ 1	-	0 44 45	52 6	
	Le Monnier	circonférence du disque du Soleil.	1	-		+ 1				Ib., p. 360.
Thury	Cassini, jr		ı			+ 1	- 1	45 45	14 26	•
Loudon	Graham	ш	١.	o	42		5	45 45		i !
Cambridge, U.S	l -	ш	l	-	- 1			45	0	
Paris	Maraldi Le Monnier	IV	1	12 12	18:	+ :	7	0 46 47 46 47	•	
Thury	Cassini, sr		1					46		
London				_		+ 1	-		50 50	
Cambridge	Winthrop		20	18	58	- :	6	46	53	

The danger of assigning special interpretations to the language of the observers may be seen in the case of Maraldi, who describes Mercury as wholly entered, while, at the same time, its limb touched that of the sun, and this a second after Short, at London, saw the thread of light fully formed. It would seem that in all cases the observers at ingress noted a time about that of true contact. The time required for the formation of such a thread of light as that described by Short would be 4° to 6°. If we subtract 5° from his time we shall have 20h 14m 22°. Then, the mean of all the five observations will be

In the case of third contact there is nothing to indicate any separation of phases. The general mean of all the observations is

Rejecting Maraldi's doubtful observation, we have seven observations of last contact, the mean of which is

The actual computed interval between the last two contacts is 121°. If we suppose the observation of Cassini the son correct, he saw the planet 20° after the mean of the other observers, and the true internal contact could not have arrived until after 0^h 45^m 12°. But, it seems hardly likely that the other observers should have lost sight of it so soon were his observation correct.

1753, MAY 5.9.

[Equation of time, -3^m 43ⁿ.]

Place.	Observer.	Observer. Contact and description.		Local app. time.		Red. to geocentric phase.	Greenwich mean	Greenwich mean time of geocen- tric phase.		Authority and remarks.
Naples	Cartani	ш		m.	#. 51	#. +::	h.	m. 5	ø. 17	Heinsius, St. P., N. C., vi, p
Bologna	Unknown	•••••	22	54	4 3	+12		5	49	563. Ib., mean of two observers no
.	Donto	Premier attouchement								named.
Rouen			22	14		+10			25	Paris, 1753, p. 424.
	., .	III			16	+10		6	23	Do.
,		III		13	53	+10	i	6	0	Do.
Paris	Cassini	Le bord de Merc. me parut tou- cher celui du Soleil.	22	19	3	+10		6	9	Paris, 1753, p. 62.
	Le Gentil			18	47	+10		5	53	Ib., p. 272.
	Bouguer				44	+10		5	50	Ib., p. 200.
	De Merveille	Premier attouchement		18		+10		5	45	-,•
	Libours	· · · · · · · · · · · · · · · · · · ·		18	38*	+10	,	5	44	
	De l'Isle	Attouchement intérieur des deux disques.		18	-	+10			47	
æiden	Lulofs	ш	22	28	12*	+16		6	49	Communicated by Dr. J. A. C Oudemana, who translate from the Haarlem Memoirs
lague	Gabry	ш	22	27	22	+16		6	41	
Iaariem	Anonymous	III	22	28	31	+16			31	
London	-	······································	22		35	+12			15	P. T., xlviii, 192; the times ar
	Bird		22	5	25	+12		6	5	mean times.
Naples	Cartani	IV	21	9	5		22	8	32	
Bologna			22	57	23			8	20	
Rouen	Bouin	•	22	16	38			8	45	
iouen			22		40			8		
				16	26			8	47 33	
Paris		·•····	22	21		· • • • · • • •		8	48	
				21	•			8	48	
					23			8	29	
				21	35	· • • • • • • • • • • • • • • • • • • •		8	4 I	
				21	46	.	ı	8	52	
_	J			21	13:	· · · · · · · · · · · ·		8	19:	
London		 	22	8		j. 			50	Mean times.
		· • • • • • • • • • • • • • • • • • • •		8		· • • • • • • • •		8	46	
		· · · · · · · · · · · · · · · · · · ·						8	51	
		••••••••••••••••••••••••••••••••••••••		8	11	! .		8	51	
	Canton	· · · · · · · · · · · · · · · · · · ·		8	40	· · · · · · · ·		9	20	
Hague	Gabry	! 	22	30	7	. 	!	9	26	

^{*} The observor notes this phase as observed very accurately with a power of 75. There would seem to be some mistake in his time.

The discordances among the times of internal contact are such as to render it difficult to fix upon a definitive moment as that given by observation. An indiscriminate mean of the whole, rejecting only the doubtful external contact by Bouguer, gives

But, in reality, the observations should not all have the same weight. If we take the six best known observers, Cassini, Le Gentil, Delisle, Short, Bevis, and Bird, the mean results are,

In this case, the times of internal contact still have a range of 28 seconds, while the agreement in the case of external contact is fairly good.

Looking at the general agreement among the observers of external contact, it can hardly be doubted that Mercury was entirely off the sun before 9^m 0^s. If this be so, there must have been an error of half a minute or more in the times of the observers at Haarlem and the Hague. One of these is entirely unnamed, the other was not an astronomer. Their results may, therefore, be rejected without question. The description of his observation given by Lulofs would indicate that it was very exact. As his time is the latest of all, and 40 seconds later than the mean of good observers, we are obliged to reject his result from the suspicion of an error in his time. The Naples observation may be placed in the same category.

We have left the five observations already cited by known astronomers, and eight others by comparatively unknown ones. For internal contact the mean of these eight results is,

An indiscriminate mean of all but the Dutch observers gives 22^h 8^m 44^o.5 as the time of external contact. The following times seem the most probable from all the observations:

1756, NOVEMBER 6.7.

[Equation of time, — 16^m 3^s for ingress; — 16^m 2^s for egress.]

Place.	Observer.	Contact and description.		Local app. time.		Red. to geocentric phase.	Greenwich mean time of geocen tric contact.		erio comença	Authority and remarks.	
			h.	m.	s. ,	8.	h.	m.	8.		
Pekin	Hallerstein	Ingressus totus	21	30	30	-33	13	28	6	St. P., N. C., ix, 503.	
	Gaubil		21	31	54	-33	13	29	30	Paris, 1758, p. 135.	
	Hallerstein	Ş cæpit egredi ex ⊙	2	54	22	+ 8	.8	52	40		
	Amiot	Attouchement inférieur	2	54	20	+ 8	÷	52	38		
	Gaubil	Commencement du sortie	2	54	25	+ 8		52	43		
	Hallerstein	Egressus totus	2	56	6	+ 8		54	24		
	Amiot	Sortie totale	2	56	4	+ 8		54	22		
	Gaubil	Fin de la sortie	2	56	31	+ 8	!	54	49		

It is remarked by Le Verrier that the observations of Gaubil and Amiot give a semi-diameter of the sun so small that he rejects them entirely. Those of Haller-stein he does not refer to. The discordances will be seen from the circumstance that the tabular interval between external and internal contacts is only 1^m 39^s, while that between internal contact and the least visible phase at external contact must be 10 or 20 seconds less. It is, therefore, certain that contact III was observed too early by all the observers.

The discordances at ingress are yet more strongly marked. Arranging the statements of the three observers in chronological order, they are:

- h. m. s.
 21 29 15; HALLERSIEIN, primum visus.
 - 29 49; GAUBIL, commencé à voir Mercur.
 - 30 30; HALLERSTEIN, ingressus totus.
 - 30 51; GAUBIL, le centre sur le bord du Soleil.
 - 31 12; AMIOT, à moitié entré.
 - 31 54½; GAUBIL, Mercur. tout entré.

GAUBIL and AMIOT observed together; HALLERSTEIN in an entirely separate place. GAUBIL and HALLERSTEIN had 14-foot telescopes, AMIOT an 8½-foot telescope. That GAUBIL and AMIOT saw Mercury only half entered more than a minute after its appearance upon the disk can be attributed only to badness of their telescopes.

The best course seems to be to reject all the observations except those of last external contact, which are less affected by telescopic irradiation. Giving half weight to Amor's observation, the mean result will be,

Contact IV, 18h 54m 34s.

[Equation of time: Ingress, - 15^m 51^s; Egress,

1769, NOVEMBER 9.4.

app. Local Williams Thread of light closed in a mo ment. Philadelphia ... II..... + 25 37 Shippen 37 22 50 37 38 Ewing 22 42 37 Rittenhouse ... Norristown A. P. S., i, 159. Smith 36 33 Manilla ш..... - 37 III 19 33 32 IV 20 31 24 **- 37** Mohr IV 19 35 11

WILLIAMS used a watch without a second hand, which was set by transits. Except for the possibility of systematic errors in the other observations, his result should be rejected. In view of this possibility, we may assign it the weight $\frac{1}{3}$. The results will then be,

h. m. s.
Contact II, 7 22 47
III, 12 9 51
IV, 12 11 26

1782, NOVEMBER 12.1.

[Equation of time, — 15^m 32^s.]

Place.	Observer.	Contact and description.		Local app. time.	004	Red. to geocentric phase.	Greenwich mean	THE CORRECT	Authority and remarks.
Kremsmünster	Fixlmillner	II. Après déja une ½ qu'il é tait	h.	m. 51	8.	#. + 197	h. m. 2 42	#. 15	
Paris	Le Monnier	dans le doute. II	3	1	21 48	+ 193	38 40	41 8	Paris. 1782, p. 647
1	Méchain Dagelet	II	1	2 2	3-	 	40 40 40	24 28 52	
!	Messi r	Mercury absolutely detached Le deuxième bord de Mercur. parut, mais touchait encore.		3	46 13		42 42	6 33	Paris, 1782, p. 660.
	Cassini Le Gentil	II		4	21 22 24	! 	42 42 42	44	I
Jookstown	Messier	6taient détaché	2	4	35 57 43	+ 188	42 43 42	55 17	· P. T.
Cambridge, U.S	Winthrop	First internal contact when the thread of light was formed and Mercury recovered his round-	22	12	13	+ 97	42	44	M. A. A., i, 159.
: !	İ	ness. First appearance of small thread of light.	22	12	7		42	38	M. A. A., i, 115.
!	Gauvet	и	22	12 12	37 45		43 43	8 16	
pswich		п		13	36 37		42 42	50 44	M. A. A., i, 127.
Philadelphia Paris		II				+ 85 - 178	42 3 49	43 28	Mean time.
	Cagnoli		4	17 16 17	18 24 46		49 48 49	27 33 55	
	Le Gentil			18	7			16 52	·
pswich Chelsea			23	•	١	- 161 - 161	•	1 3 20	
ambridge	Winthrop	Mercury began to appear oblong before the second internal con-	23	21	41	- 161	3 47	58	
İ	ı	Doubtful whether the thread of light was broken.		22	44		49	1	

1782, NOVEMBER 12.1—Continued.

Place.	Observer.	Contact and description.		Local app. time.		Red. to geocentric phase.		time of geocen-	tric contact.	Authority and remarks.
				m.	8.	8.	h.	m.	8.	:
Cambridge	Winthrop	Second internal contact when the thread of light was completely broken.	23	23	5		3	49	22	l
	Williams	Second internal contact		23	8			49	25	:
	Paine			22	5			48	22	With small telescope; power, 50.
	Willard		23	23	2			49	19	
	Gauvet		23	23	36			49	53	
New Haven			23	15	48	- 158		49	20	
Philadelphia	Rittenhouse		22	51	30	- 154		49	34	Mean time.
Paris	Casaidi	iv	4	22	49		3	54	58	
	Wallot	! <u></u>	-	22	53			-	82	<u> </u>
Rocheguyon	Several obs			20	47			52	56	'
		 	1						18	
-		l <u></u>	1	28					56	
						1		-		
Cambridge	1		1 "	29	19	2.21		55	36	
			1	29	10	1		55	27	l :
	•		:	20	30				49	İ
				28	6	1		12.0	23	
Philadelphia	Rittenbouse		22	57	35				39	

Among all observed transits this one is remarkable for the nearness of Mercury to the sun's limb, the least distance of centers not being 30" less than the sun's semi-diameter. The interval between internal and external contacts was more than seven minutes, and a good opportunity was, therefore, offered for studying the phenomena of contact.

At Paris ingress occurred late in the afternoon, and egress only a quarter of an hour before sunset, so that the sun's limb was much disturbed by atmospheric vibrations. The American observations were made under much more favorable conditions, so that, if an absolute result were alone aimed at, they would be entitled to greater weight. But what we really want is not so much the time of mathematical contact as a time corresponding to the general average phase noted by other observers in other transits. Now, an examination of the descriptions of contacts shows that in this, as in the preceding transits, it seems impossible to discriminate with certainty between different phases of internal contact merely from the descriptions of the observer. Thus, Mechain describes "entrée totale" two minutes before any one else saw the thread of light. For ingress, one course will be to reject Cagnoli's observation entirely, as clearly in error, and take an indiscriminate mean of all the others. This will give

On the other hand, we have been led to suspect that, in previous transits, observers with bad telescopes were apt to observe internal contact too late, because the

thread of light would not seem complete till after it had attained a considerable thickness. Should we reject the observations of Wallot (int. cont.) and Le Monnier, where it is evident the thread of light cannot have been observed, we should obtain 2^h 42^m 29^a as the time of contact. On the whole, however, it seems better, for the present at least, to accept the indiscriminate mean.

At the time of egress the sun had nearly set to Paris, so that the observations there were made under very unfavorable circumstances. The American observations being made nearer noon, deserve more careful consideration. In treating them, it seems advisable to take the probable skill of the observer into account. Wintheor's observation deserves the highest weight, because of his care in describing three well-marked phases. There seems little doubt that the time of contact from his observations should be placed between the second and third phases; perhaps midway, but more likely one-third of the way from the second to the third.

Next in order should come the observations of the practiced observers, WILLIAMS, WILLARD, and RITTENHOUSE, though, as they do not describe the phenomena, their observations have less weight than those of WINTHROP. We may, therefore, take for the three best results,

There remain five results of comparatively unknown American observers, including Paine, who had but a small telescope. The indiscriminate mean of their times is

The indiscriminate mean of the six Paris observations is

$$3^h 49^m 35^s (3)$$

If we reject Cagnoli and D'Ayen, the mean of Cassini, Wallot, Mechain, and Le Gentil is

Considering the extreme obliquity of the motion, the accordance of these four mean results is quite satisfactory. In combining them, I shall assign

To (1) the weight 4.
(2) the weight 2.
To
$$(3) + (4)$$
 the weight 1.

giving 3^h 49^m 24ⁿ as the concluded time of third contact. For the fourth contact we

can do no better than take an indiscriminate mean of the eight American observations. We thus have, for the concluded times of the geocentric contacts,

In reaching this result, however, we have used only the differential reduction to geocentric time, computed by the usual formulæ. But, in a transit occurring so near the sun's limb as this, the differential reduction will not be sufficiently accurate. A rigorous computation of the times of contacts has, therefore, been made for Paris and Cambridge by formulæ given hereafter, and these times have been compared with the geocentric times. The principal steps of the process are shown in the following table:

		act II. M. T. 2 ^h .7.		nct III. M. T. 3 ^h .85.		nct IV. M. T. 3 ^h .95.
	Paris.	Cambridge.	Paris.	Cambridge.	Paris.	Cambridge.
	"	,,	,,	,,	,,	
$\triangle (l-l')$.	+ 2.10	- 4.87	+ 3.19	- 3.11	+ 3.26	- 2.94
Effect of $\triangle (b' - b)$.	+ 8.48	+ 6.45	+ 8.31	+ 7.13	+ 8.29	. + 7.19
Δ7	- 0.01	·- 0.02	- 0.01	- 0.02	- 0.01	- 0.02
<i>l-1</i>	– 730.45	- 730.45	+ 151.32	+ 151.32	+ 228.02	+ 228.02
b' - b	- 1963.14	- 1963.14	- 2092.48	- 2092.18	- 2103.72	- 2103.72
·	2085.95	2090.29	2089.89	2090.61	2108.16	2108.58
$r + \Delta r$	2091 51	2094.53	2095.63	2095 62	2116.88	2116.87
<i>.</i>	h. - 0.05072	h. - 0.02521	h. + 0.03312	h. + 0.02940	h. + 0.04366	h. + 0.04210
	2.64928	2.67479	3.88312	3.87940	3.99366	3.99210
Gr. m. t. of contact .	h. m. s. 2 38 57.4	h, m, s. 2 40 29.2	h. m. s. 3 52 59.2	h. m. s, 3 52 45.8	h. m. s. 3 59 37.2	h. m. s. 3 59 31.6
Geocentric times	2 41 59.5	2 41 59.5	3 50 9.5	3 50 9.5	3 57 17.3	3 57 17-3
Difference	+ 3 2.1	+ 1 30.3	- 2 49.7	2 36.3	- 2 19.9	- 2 14.3
Approximate reduction	3 13	1 37	– 2 58	– 2 .51		
A second approxima-						
tion gives t	2 38 58.6	2 40 30.8	3 53 O.1	3 52 47.0	3 59 36.1	3 59 31.2
Geocentric times	2 41 59.5	2 41 59.5	3 50 9.5	3 50 9.5	3 57 17.3	3 57 17.3
Difference	+ 3 0.9	+ 1 28.7	- 2 50.6	– 2 37.5	- 2 18.8	- 2 13.9
Approximate reduction	+ 3 13	+ 1 37	- 258	— 251	- 2 58	- 2 51
Corr. to approximate re-						l
duction	- 12	- 8	+ 7	+ 14	+ 39	+ 37

At ingress about twice as many observations were made in Europe as in America. We may suppose the correction, —12°, applicable to all the European observations, and —8° to all the American ones. This will diminish the general mean by 11°.

At egress the weights of the Paris and Cambridge observations were in the ratio A. P. PART VI—5

of 1:6. This will give +13 seconds as the correction. We thus have, for the concluded geocentric times:

Contact II, 2 42 6 III, 3 49 37 IV, 3 56 6

1786, MAY 3.7.

_		[Equation of time	-	3 ^m 2	28*.]			
Place.	Observer.	Contact and description.		Local app. time.		Red. to geocentric phase.	Greenwich mean- time of geocen-	ine contact.	Authority and remarks.
				m.	8.	8.	h. m.	8.	
Bagdad	Beauchamp	II		0	5	+ 43	14 59	41	St. P., N. A., ii, 281.
St. Petersburg		Thread of light complete		3	19	+ 108	14 59 15 0	25 19	St. P., N. A., i, 377. St. P., N. A., ii, 268.
Mıtau	Beitler		16	. 7	26	1 105	15 0	48	В. М., 1786, 309-321.
Bagdad	Beauchamp	III	2;	22	2	- 35	20 21	10	
St. Petersburg	Rumowski	······	22	26	55	- 65	21	8	
٠,	Tzernoi		22	27	7		21	20	
Lund	Inochodzow		22	27 . v		•••••	21	25	St D W A ii aa.
Lund	, .	Sehr genau	21			- 8o		•	St. P., N. A., ii,274.
Upsal	-	Beginning of Egress		21	10		21	21	B. J., 1789, 207. P. T., lxxvi, 47.
		Degining of Egicas			23	- 90 - 97	22	23	1. 1., 1321, 47.
			21	3	25 26	- 97	21	-	
	****			2	30	95	20	37 41	
Bologna	Matteucci	······	21	12	16	- 97	21	46	•
Padua	Toaldo		. 21	13	8	- 96	20	35	
Mannheim	König	i •••••••••	. 21	U	17	- y8	21	20	
Louvain			20	45	41	-102	21	43	P. T., lxxvi, 384-389.
	E. Pigott		20	45	31		21	33	
Paris			20	-	28	106	21	5 3	P. M., 1786, p. 123.
Toulouse	d'Arquier	! 	. 20	32	39	-111	21	34	
London	* *	! 	20	23	23	- 110	21	58	Mean time, B. J., 1789.
London Argyle street.	Voy	: ************************************	20	26	51		21	58	St. P., N. A., ii, 274- B. J., 1789, p. 206.
Montpellier		·····		•	45	- 108	20	58	B. J., 1789, p. 206.
Bagdad		ıv	1 -	26	48		25	6	
St. Petersburg				.,				48	
I'ngal		· · · · · · · · · · · · · · · · · · ·	22			•••••	24 26		
Lund	1	······			20 48		_	_	
		·		25			-	20	
				,	23 18		_	18	
			1	-			24	_	!
	1							50	
				-				51	
	• * * * * * * * * * * * * * * * * * * *	·····	1				•	10	
Manheim		: 	. 21	4	14		25	17	
Louvain								18	
	•	! .************************************						24	
Paris		*****			-		•	23	
London			1		-		-	21 53	

The fixing of a definite time of ingress from the four discordant observations is very difficult from the fact that Rumowski, whose description is clear and exact, saw the ingress notably sooner than any one else. He says:

"Momentum pro contactu interno in introitu assumtum est a me illud, cum inter undulantes et tremulos limbos filum lucidum mihi sese obtulerit, id circo realis contactus aliquot minutis secundis a me observatum præcesserit necesse est."

Granting the correctness of the observation, this conclusion is sound, and geocentric contact must have occurred decidedly before 14^h 5 ^m 25^h.

On the other hand, the sun was only about 8° above the horizon at St. Petersburg, while at Bagdad its altitude was considerable. Against this, however, must be placed the consideration that the longitude of Bagdad is uncertain by some seconds.

At Mitau the sun was still lower than at St. Petersburg, and the observer gives no description. The observation may, therefore, be passed over.

Some light may be thrown upon the results by the observations of external contact We have:

Tabular interval between contacts I and II - - 4 16
Rumowski estimated bisection of disc at - - - 16 59 44
INOCHOLZOW saw "contactus primus sive externus" 17 0 6

There is clearly a blunder on one side or the other; probably an error of one minute. If we assume Rumowski to be correct we have nothing better to do than accept his result, and put

If, however, we assume an error of 1^m in Rumowski's time, we may assign equal weight to him, Beauchamp, and Inochodzow. We shall then have

We cannot decide a priori between these hypotheses.

Though the observations at egress are also unusually discordant, there is less doubt about the result. In the first place, an indiscriminate mean gives

Examining the observations critically, we may reject the observations of D'Cesaris and Toaldo on suspicion of an error of one minute, and the doubtful observation of Köhler. Moreover, we may suspect the two London observations to be but one, from the absolute identity of both third and fourth contacts. We may also assign superior weight to the observations of Rumowski, Inochodow, Prosperin, and Messier. The mean of their times is 20^h 21^m 27^s. The mean of the remaining unsuspected twelve observations is 20^h 21^m 28^s. We therefore have

1789, NOVEMBER 5.2.

[Equation of time = -16^{m} 115.]

Place.	Observer.	. Observer. Contact and description.				Red. to geocentric phase.	Greenwich mean time of georen- tric phase.			Authority and remarks.
37/	m-1	TT	h.		#. 6	a.	'	m.		D. T
Vienna		II	2	15		- 22	0	53	ī	B. J., 1794, 1.6.
		Sure to 2 seconds	I	51	16	- 2 ļ	0	53	11	B. J., 1795, 110, mean time.
Marseilles	De Thulis	Gewiss	I	31	7	-24	. 0	53	4	B J., 1703, 124.
Viviers	Flaugergues		1	28	40	-25	· i	53	20	
Paris	Messier	Mercur, touchait encore			47	-28		52	47	
	do	Je commença à voir un filet de lumière.	i	18	56	·	 	52	56	•
	Méchain	Absonderung der Ränder	١.	10	o	1		53	o	
				19	5	1	i	5.3	5	
	Delambre		1	19	2	ļ	i	53	2	
Montauban	De la Chapelle		្រ	15	14	- 26	I	53	12	1
Cambridge	Willard	·	20	25	52	-46	:	5.3	22	•
Philadelphia	Rittenhouse		19	53	20	_46		53	12	Mean time.
Washington College.	Smith		30	5	0		!	52	13	
Montevideo	Galliana	III	1 2	15	11	+ 21	5	44	1)	B. J., 1794. 136.
Cambridge	Willard		į	15	44	1 12		44	13	
Philadelphia	Rittenhouse		0	43	24	+10	i	44	12	
Washington College.	Smith		. 0	55	to	+ 7	!. .		••••	
William and Mary.	Madison		. о	53	42	+ 2		44	11	ı
	Andrews		0	5.3	48			44	17	
Cambridge	Willard	ıv	. 1	17	36		5	46	. 5	•
Philadelphi a	Rittenhouse		. 0	45	4			45	52	
Washington College.	Smith		0	56	35			44	41	
William and Mary.	∆ndrews		. 0	55	19	;•••••		45	48	
		_								

The "Washington college" observations are assumed to have been made at an institution of that name in Chestertown, Md.; but this is purely conjectural. No locality is mentioned. Their systematic discordance indicates an error in the time, and they are not used.

The ingress affords a case in which the astronomer must feel in doubt what conclusion ought to be drawn from the combined observations. Supposing the observations of Messier and Mechain correct, the true contact must have occurred before oh 53^m of. But every one of the other observers assigns a time later than this. The general mean results are:

True contact, from observations of Messier and Mechain - 0 52 56 Indiscriminate mean of all the observers - - - - 0 53 8

If we employed no transits except those in which we could deduce a time of true contact from the descriptions of the observers, we should, no doubt, use only the first

result. But, being obliged, in many cases, to use indiscriminate means, the last result is not to be neglected. On the whole, it would seem that the mean of the two is about the phase we want.

The third contacts offer no difficulty. In the fourth we give double weight to Willard and Rittenhouse. The concluded results are, therefore,

M. m. i.
Contact II, 0 53 2
III, 5 44 12
IV, 5 46 8

1799, MAY 7.1.

Equation of time: Ingress, — 3^m 43^a; Egress, — 3^m 44^a.

Place.	Observer.	Contact and description.		Local app. time.	-	Red. to georentric	phase.	Greenwich mean	tric contact.	Authority and remarks.
St. Petersburg		II	23	m. 14	R. 26 31	_ '	4	h. m . 21 9	8. 25 30	A. G. E., iv, 172: Ibid., iv, 465.
Krakau	-	•••••	1			- :		٥	60	331111111111111111111111111111111111111
Breslau		Inner contact	i				24	-	30	
	oungines :	Lichtfaden		22	47		• • ••••		31	
				22	51		'		35	
	Ender		!	22	28			10	12	Seine erste ast. Beobachtung.
Vienna	Triesnecker	Tropfen	22	15	43	- :	27 .	9	44	A. G. E , iv, 66. Mean time.
		Lichtfaden	i	15	45		••••	9	46	Mean time.
1		do	į		47		• • •	9	48	
		do	:	15	52		• • • • •	9	53	
! Prague			22	7	49	:	1	9	40	Mean time.
			i	7 8				9	46	A. G. E., iv, 172.
		· •	!					9	61	
Dresden	Köhler	Kein Lichtfaden sondern ein klei- ner Tropfen.	22	5	7	- :	28	9	43	B. A.J., 1802. 214. Mean time.
		Tropfen verschwunden	ļ	5	16	. .			52	
	v. Gesler		1	-		• • • • •		9	- ·	
Kremsmünster			. 22		12		- Q	,	12	Mean time.
			!	4	8			7	8	A. G. E., iv. 68.
Berlin		•	. 22	3	46	_ :	27	9	44	B. A. J., 1803, 114. Mean time.
Leipzig					41			-		Ibid. Mean time.
• "			1	•	•		ĺ		39	
Padua			i		5	-	35	9		A. G. E., iv, 464.
Hamburg			21	33	42		1	9	36	A. G. E., iv, 65.
Ì.				53	25	• • • •	••••		19	
Gotha	Anonymons		21	53	17	-	32	9	54	A. G. E., iv, 217.
Paris	Méchain	Eiste innere Berührung		_	14	-		9	28	A. G. E., iv, 171.
i		Lichtfaden sehr kenntlich						9	-	1
		· · · · · · · · · · · · · · · · · · ·		-	14		- 1	9		1
			!	23	43 53			9 10	57 7	
Amsterdam (Felix Meritis.)		: Limbs clear; the planet entered this moment.	21	•			35	9		·
Utrecht	Utenbouer	Planet very faint; observations a little late.	21	34	43	-	35	9	53	
Marseilles	Vidal	!	21	32	10	_	44	9	58	M. C., viii, 116.

1799, MAY 7.1—Continued.

Place.	Observer.	Contact and description.	Local app. 11me.		Red. to geocentric phase.	Greenwich mean time of geocen-	ario puisso.	Authority and remarks.
			h. m.	A.	и.	h. m.	8	
St. Petersburg		111	17.10	34	+111	4 30	27	
	-		4-4			30	19	
_			-	40	*****	30	33	
Breslau	Jungmitz 1	Schwarzchen Tr. pfen Berührung			+110	30	32 38	
	Hoffman					30 29	53	HOPFMAN, professor of theology
		I						used a power of only 24.
	Jungnitz II		40	48		30	45	
	Ender		-9	46		29	43	JUNGNITZ II seems to have been
Dantzic	Koch	· · · · · · · · · · · · · · · · · · ·	5 47	2	+110	[0	30	unable to make a good obser
Dresden	Köhler	Tropfen ensteht	5 23	37	+100	30	30	vation; and ENDER was inex- perienced.
		Tropfen verschwunden	23	48	<u> </u>	30	41	portenced.
	v. Gesler		23	36	•••••	30	29	Mean time.
Berlin	Bode		5 22	17	+109	30	31	
Hamburg		<u> </u>	5 12	20	+107	30	29	·
	Eimbcke		12	16		ļ ,	25	
Paris	Mechain	Ein schwarzer Punckt		52	+ 104	30	31	
•	Donaldania	Scheinbare Vereinigung d. Ränder					41	
1	Burckhardt		, •	51 10		30	29 49	
•			1 .	48		30		!
	Bouvard		41			30	21	
Greenwich	Maskelyne		4 28	43	+103	30	26	Mean time.
			28	33		30	16	
			28			30	36	
			28			30	30	
London	•		4 28		+103	30	22	A. G. E., iv, 172.
Manheim		ļ	5 2	28	+107	30	25	Mean time. A. G. E., iv, 172.
Upsal	•		5 39	14	+108	30	32	M. C., viii, 116.
Marseilles	Vidal		4 50	25	+105	30	42	A. G. E., iv, 218.
St. Petersburg		IV	6 35	53	+111	4 32	46	
	_	 	36			33		
		•••••	36			32	59	
Breslau			1		+110	33	33 26	
			5 42			33	3	
			42	_		32		
Dantzie	Kock		: 5 49	38	+111	. 33	6	•
Dresden	Köhler		5 26			33	27	
			26			ì	24	
Berlin	Bode		5 25	30		33	44	
			5 14	,		32		(Clauder, doubthat
			14		1	32		Cloudy; doubtful.
Paris	Mechain	l	4 45	3	+104	33	42	
		· ••••	. 44	49		33	28	
Greenwich	Wilson		! ' 4 31	20	1	33	3	
	T. F				1	1		

The discordances at ingress are striking, but do not prevent us approximating to a definite result. In the first place, we have four observers who distinguish between

inner contact and thread of light. From these we may reject TRIESNECKER, from the extraordinary interval of 61 seconds between the phenomena. Taking the mean between the times of the two phenomena in the other cases, the results for contact II are

We note also that the mean of the three intervals between the two phenomena is 6°.

Next, we may take the well-known observers who do not describe the phenomena, Burg and Vega, who noted the thread of light, and v. Beeck, who seems to have made a satisfactory observation. From the times of the three last named we may subtract 5° to reduce them to probable true contact. We then have the following results:

•			h.		
			n.	m.	8.
Rumowa	3KI	-	2 I	9	25
Bürg	-	-		9	43
VEGA	-	-		9	48
David	-	-		9	40
Bode	-	-		9	44
Bouvar	D	-		9	28
LALAND	E	-		9	57
DELAME	RE	-		9	67
v. Beec	K	-		9	15
		_			
Mean	_	-	2 I	9	4 I

Should we reject the three Paris observations and that at Amsterdam, on account of their discordance, the mean result would be

From the remaining observations we may reject those of Kremsmiinster and Leipzig without question, as well as that at Utrecht, where clouds rendered the observation late. The indiscriminate mean of the remaining ones is

But there is little doubt that the Breslau observations should be rejected from any mean. We should then have

The different classes of observations seem to group themselves so clearly around the mean 21^h 9^m 42^s that we may adopt this as the time of contact.

Treating the observations of egress in the same general way, we note that three observers observed separately the formation of the black drop and the internal contact. Moreover, the means of their times agree almost perfectly, and give

Other experienced observers, who do not describe any phenomena, give the results:

		h.	m.	8.
Rumowski	-	4	30	27
Воре	-		30	3 I
BURKHARDT	٠ -		30	29
Messier -	-		30	49
DELAMBRE	-		30	27
Bouvard -	-		30	2 I
MASKELYNE	-		30	26
Wilson -	-		30	16
NISBET -	-		30	36
T. F	-		30	30
TROUGHTON	-		30	22
Mean -	-	4	30	29

The indiscriminate mean of the remaining twelve results is

But there is little doubt that we should exclude the three observations at Breslau. The mean result will then be

The mean result to be adopted may be fixed at 4^h 30^m 32^s.

For fourth contact we reject the observations of Hoffman, Junghitz II, and Ender, as well as the doubtful ones at Hamburg. We thus have the following geocentric times for the three contacts:

1802, NOVEMBER 9.0.

[Equation of time = -16^{m} os.]

Place.	Observer.	Contact and description.	1	Local app. time.	•	Red. to geocentric phase.	Greenwich meen	time of grocen-	Life contact.	Authority and remarks.
rague	David	ш		. m.	#. 57	8. —13	h.	m.	s .	Paris, 1806, p. 55.
aples	Cassela		0	54	8	-10		40	57	
openhagen	Bugge		o	47	44	-15		41	10	i
eipzig	Rudiger	·	o	46	51	-14		41	3	' .
otha	Zach		. 0	40	30	-14		41	25	Zach. Monat. Corr., VI, 562
	Sein Bruder			40	33	,		41	28	
	Catenelli			40	19	,		41	14	
Brunswick	Gauss		. 0	39	16	-15		40	57	l
ello	!		0	21	41111	-15		41	13	
dlienthal				17	3 m	-16	1	41	8	ı
	Harding		0	16	58			41	3	l
uedlinburg	Fritsche		0	26	8m	-14		41	17	
farseilles	Thulis		. 0	18	5	-15		40	22	
'iviers	Flaugergues		0	15	50	-16		40	50	Ib., VII, p. 8r.
aris	Lalande		0	6	29	-18		40	50	
				6	44	I. 	1	41	5	
					54			41	15	1
					49 45			41 41	to 6	
					45			41 41	6	
reenwich	T. F		. 23	57	21	 20	,	41	, i	
			_	57	21	; .		4T	1	
aples	Cassela	IV	0	55	50		- 23	42	39	
openhagen	Bugge	· · · · · · · · · · · · · · · · · · ·	•	49	9	l		42	35	
				48	0	· • • • •		42	21	
runswick				40	∡ 8			42	29	
ilienthal				18	33			•	38	
mentiai		· · · · · · · · · · · · · · · · · · ·		18	33 36	I	:	42 42	41	
nedlinburg	,		ı	27	41	!		.42	 35 !	
arseilles	'			10	58		!	42	1	
iviors		•••••		17	20		,		1	
i			'	•	-		,	42	- 1	
aris				<i>7</i> 8	56 20		ı	42 42	17 41	
ļ				_	19			42 42	40	
	Bouvard		'	8	19			42	40	
	Mechain			8	30			42	51	
İ	Day 1-1-2			_						
reenwich			ì	8 50	20			42	41 j	

Giving double weight to each of the Paris and Greenwich observers, and to Schröter and Harding, the mean result for

Internal contact is 23 41 5 External contact is 23 42 34

A. P., PART VI-6

1822, NOVEMBER 4.5.

Place.	Observer. Contact and description.			Local mean time	,	Red. to geocentric phase.	Greenwich mean time of geocen- tric contact.			Authority and remarks.
			h.	m.	s .	8.	h.	m.	8.	
Calcutta	Hodgson	II	18	56	16	-43	13	2	8	M. R. A. S., iii, 110; uncertain to
Paramatta	Rümker	Complete immersion	23	7	20	+26		3	42	4 or 5 seconds. P. T., 1829, app. p. 30; A. N., ii,
Sydney	Brisbane	·	23	8	6	+27		3	42	!
	**	III					15	45	-	Hodgson used a power of 45 at
		······································		.,		· • • • • • • •			11	ingress, and 60 at egress.
•						-11		45	28	
Paramatta	Rümker		1	49	8	+14		45	18	
Sydney	Brisbane		ı	50	2 '	+14		45	25	
Calcutta	Hodgson	τ v	21	40	56		15	47	25	
	Herbert	•••••	21	40	55	. 		47	24	
Kurnaul	Euwer	ļ	20	56	16			47	58	
Paramatta	Rümker		1	52	7			48	17	
Sydney	Brisbane		ı	53	0			48	23	

The discordance between Hodgson's observation of ingress and the observations of Rümker and Brisbane is embarrassing. If, as appears to be the case, Brisbane never published his observations himself, it is likely he assigned them little weight. As a combination of Hodgson's observation with the other two is out of the question we must for second contact adopt

with a suspicion that it may be too late.

For third contact there seems no better course than to combine all, giving greater weight to RÜMKER and BRISBANE. The result,

seems most probable.

The fourth contacts observed at Calcutta again are troublesome, because it hardly seems probable that the planet should have disappeared from sight more than a minute before external contact. We shall therefore reject their results. The mean of the remaining three observations is

All these results must be regarded as more doubtful than usual.

1832, MAY 5.0.

Place.	Observer.	Contact and description.	-	Local mean time.		Red. to geocentric	Greenwich mean	time of geo		Authority and remarks.
Königsberg	Bessel	; , II	h.	m. 24	s. 39	#. + 51	h. 1	m. 3	8. 31	Ast. Nach., x, 186-7.
Cape	Henderson		. 22	10	13	-100			38	
Breslau				•	3	+ 43			37	
Prague			1		25	+ 40		3	24	•
Padua				40	59:	+ 30		3	0:	
Modena				• • •	50	+ 28		3	35	
Altona		1		•	٠,	+ 58			53:	
виона				42	7			3	19	•
	Nyegaard		-,	42	29			3	41	·
Milan	Four obs	Mean of all	21	39	55	+ 28		3	37	Eph. Milano, 1833, p. 105.
Marburg	Gerling		. 21	38	14	+ 39		3	48	
Manheim	Nicolai		. 21	36	47	+ 36		3	33	
Marseilles	Gambart	App. tangency		24	26	+ 23		3	14	
		Filet de lumière	-;	24	44			3	32	
Utrecht			,	23	25	+ 40		3	33	
		· 		23	25 25	• • • • • •		3	33 33	
aldan				-	-	1				
eiden	• ,			20	42 50	-1- 40		3	34	
Konigsberg		III	1	7		+ 64	3	46	43	
acaigosoig				7	39			4 6	44	
		; 	,	7	39	· • • • • • • • • • • • • • • • • • • •		46	44	
Dantzig		!	-		56	+ 65		46	22	
•		' I	1	0	0			46	26	
Cape			1	58	26:	+104			15:	⊙ only 1° high.
Breslau			1 '	5 3	39	+ 70		46	40	
Prague				43		+ 71		46	43	
			1 1	43	14			46	42	Nicht sehr zuverlässig.
Berlin			7	39	3	66 			34	Micht sent zuvermassig.
Padua			7	33	2	+ 77		46	50	
Modena			•	28	49	+ 78		16		
Fottingen			4	25	32	+ 66		46	52	m 1 1 1 1
Altona		l	- 4	25 25		+ 63		46 46	45 58	Through clouds.
Milan	Four obs	1	•	•	•			46	34	
		App. tangency of limbs after for						46		
me.ourg	dering	mation of black drop.	. •	20	20	T 0/		40	J	
Mannheim	Nicolai	·		10	37	+ 60		4 ő	57	
		Disparition du filet			51	'			33	
		Tangency	-		19			47	1	
msterdam	Vout6	* !	. 4	5	14			46	44	A. N., x, 209.
Jtrecht	Foekens	:. 	. 4	6	7	+ 63		4 6	38	
		••••••	•	-	••			46		
			•		8				39	i I
Brussels	1		-		52	+ 64		46	28	(
Königaberg		· IV			1	+ 65	-	49	67	
	A PONIGROUP						1	49	54	

1832, MAY 5.0—Continued.

Place.	Observer.	Contact and description.		Local mean time.		Red. to geocentric phase.	Greenwich mean	PLIC CODINGS	Authority and remarks.
Develor	D		h. n		8.		h. m.		
	1	•••••	4	50	58	+ 70	49	59	
Dantzig			5		30	+ 64	49		
_ •	1		5	3	30		49	55	
Prague			4		27	+ 70		57	
-			1		25	48/11/5/8/	49	55	
Berlin		········	4	42	18	+ 66	49	49	
Padu a	Santini	······································	4	35	57	+ 77	49	45	
Modena	Bianchi		4	3 2	14	+ 78	49	49	
Gottingen	Gauss		4	28	22	+ 66	49	42	
Altona	Schumacher		4	28	4 I	+ 63	49	58	
	Peterson	••••••	4	28	44		49	61	
		•••••	4	28	49		49	66	
	Selander		4	28	47		49	64	
Milan	Mean of 5 obs		4	25	24	+ 76	49	54	
Marburg	Gerling		4	23	42	+ 67	49	44	
Utrecht	Foeken		4	9	15	+ 63	49	46	
	Van Rees		4	9	18		49	49	
	Van Beck		4	9	10		49	41	
Marseilles	Gambart	••••••	4	10	17	+ 76	49	58	
Brussels	Ouetelet			6		+ 64	40	36	

The observations afford little ground for discussion. In ingress we may omit the doubtful observations of Schumacher and Santini, and in egress that of Henderson, and take an indiscriminate mean of all the other quoted results. We thus have

1845, MAY 8.

Place.	Observer.	Contact and description.		Local app. time.		Red. to geocentric phase.	Greenwich mean	time of geocen-		Authority and remarks.
Pulkown		II. No distortion	. 6	24		+48 •	h. 4		8. 48 55	Communicated by O. Struve.
	Sivens		5	52	8	- -50		23	52 59	;
Dorpat	Mädler		6	9	31	+52		23	30	!
Seftenberg	Hackel		5	28	9	+69		23	27	•
Nienstedten	Peterson		5	2	21			23 23 23	59	: A. N., xxiii, 146.

1845, **MAY** 8—Continued.

Place.	Observer.	Contact and description.		Local mean time.		Red. to geocentric phase.	Greenwich meen	time of geocen-	and contract.	Authority and remarks.
Hamburg	Rümker	He thinks too early	h.		8. 26	#. + 61	h.	m. 23	8 .	
••	Götze		. 5		43				50	•
			-		46	· · · · ·	!	-	53	
Geneva			,		50	+ 74	i i	-	57	
			1		9	+ 79			5 9 5 3	
				-		+ 64		24	3 3	
							1	24	4	
	Bouvy		4					24	1	
				40				_	57	
Greenwich		Through clouds			59	+ 6r		23 23	22	
Portland Mo		angicos certain				_ 74		24	41	The American observations are
		Internal contact				- 21	•		35	ulmost?ontirely from the un.
Timocron	Micxaddel	Penumbra or black drop broke						-	43	published records of the U.S.
New York	Loomis	A faint line of light began to show itself between the limbs of the	23	27	58	- 21		23	35	Coast Survey.
Caleb Hill monn	T II D	planet and sun.	!							
Baltimore.	J. H. Perry:		23	18	22	- 24 			• • • •	
West Point	Bartlett		23	28	33	- 20		24	3	
Charleston, S. C	Gibbes		23	4	51	- 30		24	5	
Cincinnati, Ohio	Mitchell		22	46	18	- 38		23	39	
Portland, Me	C. H. Davis	III. The disc of the planet ap-	6	5	36	+123	10	48	40	
		peared to elongate or make a bead upon the edge of the sun. Very uncertain.								
Nantucket	Mitchell	Planet sharply defined	6	6	31	+122		48	57	
Cambridge								49	5	
	G. P. Bond		6	2	31	·		49	4	
	ł .							49	11	
Princeton		Penumbra reappeared				+119		49	10	
		Internal contact						49	17	
	!	A mean of three phases	•	•	•	+119		48	5 3	
Providence				_	77	+121		49	21	•
Great Meadow Station, Mass.	Bache	Disc of planet appeared to unite into that of the sun. Real contact?				+121			13	
Cobb Hill	Perry !				•	+117				
Baltimore	Gould		. 5	40	46	+117			•••	I
St. Mary's College, Annapolis, Md.	Veraut		5	40	55	+117			 .	
West Point	i			51	28	† 120		49	18	
Charleston		•••••	_	•	40	+ 108	1	49	12	
Cincinnati	Mitchell	FOURTH CONTACTS.	; 5	9	17	+112		49	8	
Princeton		adhering.	1				; 			·
				52	8	••••		52	45	
New York	Loomis	Planet ceased to make a sensible	5	54	29	, 	l	52	26	1

1845, **MAY** 8—Continued.

Place.	Observer.	Contact and description.		Local mean time.		Red. to geocentric phase.		time of geocen-	Life continues.	Authority and remarks.
	:						h.	m.	8 .	
Providence	Caswell		. 6	5	14	, • • • ·	10	52	51	
Portland	Davis		6	8	38			51	42	
West Point	. Bartlett	! 	. 5	54	55	•••••		52	45	
Middletown	. A. W. Smith		5	59	58	••••		52	36	
Nantucket	Mitchell	· · · · · · · · · · · · · · · · · · ·	6	٠,	56	ļ		52	22	
Charleston	Gibbes		5	30	55			52	27	

Studying the results for ingress we may act on the following conclusions:

- 1. No doubt of a mistake of 10^m in copying the Reval observations.
- 2. As RÜMKER considered his observation too early we may reject it.
- 3. H.'s observation through clouds should be rejected; his certain one retained.
- 4. Davis's observation is probably im in error, but as he gives no description, cannot be safely corrected. We therefore reject it.
- 5. ALEXANDER'S two observations should be separately retained, the sun being high and his description clear.

The mean of the 25 observations of first internal contact is 4^h 23^m 50^e.

At egress Davis describes his observation as very uncertain, and the time that of first elongation of the planet. The average correction for this phase is +10°; we may apply this and assign ½ weight to his results. We may also assign double weight to MITCHELL, of Nantucket, and the BONDS.

From Bache's diagram I judge the most probable time of contact is found by applying + 5° to his first observation. The mean, with these modifications, becomes 10^h 49^m 7°. We thus have,

For fourth contacts we may include ALEXANDER's two observations separately and reject the Portland observation as certainly in error. We then have

1848, NOVEMBER 8.

Place.	Observer.	Contact and description.		Local maen time.		Red. to geoceutric phase.	Greenwich mean	time of geocen-		Authority and remarks.
·			h.	m.	8.	8 .	h.	m.	8.	
Hamburg	Rümker	Er hält das Moment für genau	23	46	40	- 10	23	6	36	A. N., xxviii, 106—108.
		II		46	46			6	42	
				46	58			6	54	•
	Breymann	· · · · · · · · · · · · · · · · · · ·		46	52			6	48	
Altona	Schumacher		23	46	45	- 10		6	48	From 34° to 52° contact doubtful. Then permanent separation.
	Peterson			46	9		i	6	12	During meridian transit.
	• • • • • • • • • • • • • • • • • • • •			46	33			6	36	
	Olde			46	41	· • • • • • • • • • • • • • • • • • • •		6	44	
Geneva	Plantamour	l	23	31	33	- 12	ĺ	6	45	Ib., p. 121.
	Bruderer		-	31	25	- 11		6	37	
Leiden	Oudemanns	••••••	23	24	59	- 12		6	50	A. N., xxix, 154.
Brussels	•		23	24	29	- 13		6	48	
			i	24	27			6	46	-
	Houzeau	Notablement trop tard	1	24	59			6	78	Obs. on screen.
Greenwich	Airy		23	7	14	- 14		6	60	Greenwich obs., 1848.
		Breaking of drop	ł	7	15			6	61	
				6	59	. • • • • • • • • • • • • • • • • • • •		6	45	
		Ingress complete	:	7	4	•••••		6	50	
		No distortion		•	13			6 6	59	
		No distortion	1	7	7 19			6	53	Rejected.
Daminat'a Dania					•			6	-	•
١			-		26	1			48	A. N., xxviii, 110.
• '	-	•	1		54			6	38	Greenwich m. t.
		••••••	! -	6	56	- 15		6	41	Do.
Cambridge			25	6	48	- 14		6	34	M. N., R. A. S., ix, 3.
!	Breen			6	47			6	33	Greenwich mean time.
Hartwell			23	3	57	- 15		6	66	M. N., R. A. S., ix, 22.
Princeton	Alexander	III. Dark fringe	23	29	52	- 22	4	28	8	A. N., xxviii, 151.
Princeton	Alexander	IV	23	31	36		4	29	52	
	Loomia	IV	23	31	32	!		20	48	

Rejecting the doubtful observations of Peterson and Houzeau, and the discordant one of H. B. at Greenwich, we may take the mean of all the others. We thus have—

1861, NOVEMBER 11.8.

Place.	Observer.	Contact and description.		Local mean time.		Red. to geocentric		Greenwich mean	time of geocen-	Authority and remarks.
~ .			h.		-	- s.		h.	m. s	1
Sydney	1	П			34	+ 30	,	7	20 1	3
Hobart Town	1	Doubtful		9	36	+ 22	2		20 3	7
Adelaide	1	Very exact		34	12	+ 23	3		20 T	H
Nicolajew	I.			29	15	- 10)		21 1	1 . A. N., lvi, 336.
Batavia		On screen		27	24	+ 14	,		20 18	3 A. N., lvii, 158.
Batavia	1	III. On screen		25	21	+ 21	: 2	21	18 22	Do.
Nicolajew	,					- 48	1		18 19	1
	1				3		•••		18 21	,
Pulkowa	Wagner	'. 	23	20	23	- 49)		18 15	; A. N., lvi, 303. Thick clouds. Planet faint.
	Kortazzi		23	20	28	ļ. .	• • •		18 20	· 1
Athens	Schmidt	İ	22	54	6	- 47	. ;		18 24	A. N., lvi, 315.
Vienna	Werdmuller	· · · · · · · · · · · · · · · · · · ·	22	23	54	- 52			17 30	A. N., lvi, 255.
Malta	Lassell	Good	. 22	18	6	- 48			19 16	; ; }
Berlin	Encke	· · · · · · · · · · · · · · · · · · ·	. 22	12	51	- 54			18 22	A. N., lvii, 44.
			1	12	58	····	.		18 29	
	I ".	 !		12	٠.		• •		18 19	D
				12	•		· :		18 27	T.
Copenhagen	d'Arrest	Black band 20° before actual con tact.	22	9	52	— 54 :			18, 39	
	Schjellerup	 '		9	51	· · · · · · · ·	•		18 38	
Rome	Secchi		. 22	9	9	- 51	1		18 23	A. N., lvi, 329.
	Rbsa			9	16	·····	- '		18 30	Do.
Leipzig			1	8	36	— 54			18 8	A. N., lvi, 345.
	.,			8 8	41		-		18 13 18 14	
,		· · · · · · · · · · · · · · · · · · ·	-	8	42 34		• ·		18 14 18 6	1
Padua	Michez		. 22	6	34	- 52	1		18 13	N., lvii, 5.
Ourbam	Chevalier	· ·	21	19	13	- 56	'		18 17	Greenwich mean time.
		· · · · · · · · · · · · · · · · · · ·	,	19	14	, 			18 18	Do.
Waterloo	Joynson	·······	.:	19	14	! — 55			18 19	Do.
Edge Hill	Jee	·····	.i	20	00	 - 55	١			Greenwich, 21" aperture.
rantham	Jeans	******	i •:	19	18	- 55	i		18 23	Greenwich mean time.
Anchester	Baxendell		1	19	9	- 55			18 14	Do.
iverpool	Hartnup	Line of light formed and broken	1	19	14	- 56			18 18	Do.
atavia	Ondemanns	several times.		27	24	+ 21	:			
icolajew			23	20	7	- 48			20 25	
	•		· !	29	7				20 25	
eipzig	Bruhns		. 22	11	2	- 54	i		20 34	
	• • • • • • • • • • • • • • • • • • • •		1	10	49		'		20 21	
į	Auerbach		-	11	3	!		:	20 35	!
ulkowa			-	22	46	- 49			20 38	
. !				22	35		••		20 27	
1				26	17	' ·- 52		1	19 53	
[alta	Lassell		. 22	20	21	- 48		-	21 31	1

1861, NOVEMBER 11.8—Continued.

Place.	Observer.	Contact and description.		Local mean time.		Red. to geocentric phase.	Greenwich mean	time of geoceu-	٠	Authority and remarks.
1			h.	m.	4.		h.	m.		
Berlin	Encke	ıv		15	0	- 54	21		31	
ļ				14	58			20	29	
	Tietjen			15	3	 		20	34	
1	Romberg			14	56	ļ		20	27	
Copenhagen	d'Arrest	· · · · · · · · · · · · · · · · · · ·	22	41	37	- 54		20	24	
	Schjellerup			11	36	İ'		20	23	
į	Thiele			11	41	ļ ¹		20	31	r I
Rome	Secchi		22	11	17	- 51		20	31	•
	Rosa		22	11	12			20	26	
Padua	Micher	; 	22	8	42	- 52		20	21	•
1				8	44			20	23	
Durham	Chevalier				• •	- 56		20	,,	Greenwich mean time.
					-	- 55	•	20		OTOLIWA III III III III III III III III III
Waterlas					-	, J			-	
	•			21	,	'		20	14	:
Edge Hill	Jee			21	20			20	25	
Grantham	Jeans		I	21	24			20	29	
Manchester	Barendall			21	23			20	28	
Livernool	Hartnun	: 			26			20	30	

The observations of second contact are so scanty and uneven as to require some care in treatment. Knorre's observation is indicated as very uncertain, which might well be, as the sun had risen only 23 minutes before, and its altitude was less than 4°. Owing to this, and its discordance, the observation has been rejected. Oudemanns observed on a screen, and lost the moment of actual contact by a cloud. But he was able to obtain what he deemed a satisfactory result by subtracting 13°.8 from the time when he concluded the thickness of the thread of light to be 1". The best combination appears to be to assign weights as follows: Scott 1, Abbot \(\frac{1}{3}\), Todd 2, Oudemanns 1. The mean result will then be 17h 20m 16°.

Among the third contacts the Edge Hill observation is clearly too late, while it may be assumed that the observation of LASSELL is affected by an error of one minute. We might suspect the same error in Werdmüller were it not that his observation of external contact cannot be thus reconciled with the others. Correcting Lassell, and rejecting Jee and Werdmüller, the agreement is excellent and the general mean result is 21^h 18^m 20^s.

The concluded results now become-

A. P., PART VI----7

TRANSIT OF NOVEMBER 4, 1868.

In this transit the attention of observers was attracted to the optical phenomena of contact more fully than in any preceding one. Although it had been long wel understood that the outlines of Venus and the sun did not always preserve their geometric form at the time of contact, few observers were conscious of the necessity of noting and describing any distortion that might be perceived, and of stating the exact appearance of the planet at the moment cited as the time of internal contact. In a paper published in the American Journal of Science and Arts for July, 1870,* I have given a collection of the principal observations of egress made at this transit, arranging them in the order of reduced geocentric time. A similar but more complete table is also given by André in his paper on the observation of contacts in transits of Venus and Mercury.†

For our present purpose, the best course seems to be, so far as egress is concerned, to follow the same plan, tabulating the observations in the order of reduced geocentric time, and indicating the observer's description of the phenomena in each case. In general, no distortion was observed at stations where the altitude of the sun was considerable and the atmosphere steady. In such cases there would be no especial phenomena for the observer to describe, and the time noted would naturally be that of true contact.

* American Journal of Science and Arts, second series, vol. 1, page 80. † Annales de l'Observatoire de Paris, vol. x, p. B. 2.

1868, NOVEMBER 4.8.

Place.	Observer.	Contact and description.		Local mean time.		Red. to geocentric phase.		time of geocen-	tric contact.	Authority and remarks.
		••		m.	8.	e .	ħ.		8.	
		II. Good		41	30	- 16	17	26	53	M. N., R. A. S., xxix, 89.
Cape	Mann	Do	18	41	35	-34	17	27	o6	M. N., R. A. S., xxix, 197.
Pekin	Lepissier	ш	1	14	31:	+46	17	29	36:	C. R. Image undulating excessively.
Göttingen	Koldewey	ш	21	39	31.0	;. 	20	59	49	A. N., vol. lxxiii, 95.
Helsingfors	Fabritius	No description	22	39	26. 5	+17.2			54	A. N., vol. lxxiii. 191.
Bonn	Oppenheim		21	28	16. 5	+2. 1			55	A. N., lxxii, 355.
Vienna	Oppolzer	Thread of light broke	22	5	14. 5	+6.0			56	Images very bad. A. N., vol. lxxii, 347.
Paris	Rayet	Regular contact	21	9	19. 4	-2.0			57	C. R., vol. lxvii, p. 948.
Marseilles	Le Verrier	Sudden black drop	21	21	35- 7	-4.0			58	Ibid, p. 922.
Dunkerque	Torquem		31	9	28. 5	-04			58€	•
Leiden	P. J. Kaiser	No description	21	17	55	+1.6			58	Images very bad. A. N., vol. lxfii, 214.
Greenwich	Lynn	First contact of filament	21	0	0.7	- z. 4			59	
San Fernando	La Flor		20	35	31. 3	-22.0			59	Le Verrier, Annales x, p. B 2.
									59	•
						ļ	21	0	1	
	Garrido		20	35	33.8	-22.0			1	

1868, NOVEMBER—Continued.

Place.	Observer.	Contact and description.	No. 400	Local mean time.		Red. to geocentric phase.	Grenwich mean time of geocen- tric contact.	Authority and remarks.
~.			1	m.	8.	8.	h. m. s	
Christiania	1		31	42	44. I	+ 9.8		A. N., lxxii, 345.
Göttingen	· -		21		44-4		2	A. N., lxxiii, 95.
Königsberg Pulkowa	Rosen	Regular contact			48.6	+12.4	2	A. N., lxxiv, 104.
Greenwich	Stone	Very fine dark filament	23		2	+19.9	3	Comptes Rendus, 1868, ii, p. 126
Paris	André	Regular contact		0	55	- 1.4 - 2.0	•	•
Atalaïa	Liais	Limbs perfectly in contact; no distortion.	18	9 8	27. 3 46	-64. 3	4	A. N., lxxiii, 209.
Bonn	Wolff	No description	21	28	26	+ 2.3	5	A. N., lxxii, 355.
Rome	Lais	Thread broke	21	49	59	+ 0.3	5	A. N., lxii, 367.
Pulkowa	Kortazzi	Regular contact	23	ı	4	+19.9	5	Comptes Rendus, 1868, ii p 128
	Wagner	Do	23	1	4	+19.9	5	1
	Nyrén	Do	23	1	4	+19.9	5	
Greenwich	Dunkin	Planet suddenly pear-shaped	21	0	6. 2	- 1.4	5	
Königsberg	Lorek		ļ	21	51 9	+12.4	5	A. N., lxxiv, 104.
Paris			ĺ	9	28. Q	- 2.0	6	
Altona	C.F. W. Peters		į	39	47.3	+ 6.0	7	Bad images.
Edinburgh	Smyth		21	0	7	+ 0.4	7	
Christiania	Mohr		21	42	50.8	, ,	7	A. N., lxii, 345.
Helsingfors			22	39	40.7		8	A. N., lxxiii, 191.
Hamburg	_		21	39	57	+ 5.6	9	A. N., lxxiv, 43.
Pulkowa	Lebedeff		23	1	8	+19.9	9	1
		·····	23	1	8	+19.9	9	
	Miroschnit— Schenko	••••			8	 	9	
	Leskineu		23	1	8	+19.9	9	1
Rome	Mancini	Thread broke	31	50	3. 9	+ 0.3	9	A. N., lxii, 367.
Bonn	Argelander	No description	21	28	30	+ 2.3	9	A. N., lxxii, 355.
Christiania	Fearnley		21	42	52.8	+ 9.8	9	A. N., lxxii, 345.
			21	42	54. 8	,	11	Do. Do.
C ****			21	42	56	•• •••	12	A. N., lxxiii, 95.
Göttingen		Light ceased between limbs	1		52. 9	'·····	11	1
Greenwich	-	Light ceased between limbs			11.1	- 1.4	10	1
		*	. •		10	+19.9		0
Greenwich		Sudden rupture of ring	1		12.8	- 1.4 - 2.0	11	
Vienna		Discs tangent			33, 8	- 2.0 + 6	12	A. N., lxxii, 347.
Vienna Leiden	i ••			_	31. 5	+ 2.0	. 12	A. N., lxxiii, 213.
LCRICH	r. Mainer	image micrometer.	21	10		T 2.0		
Rome	Secchi	Thread broke	21	50	5. 9	+ 0.3	12	A. N., lxxii, 367.
Durham	Plummer		21	o	12.0	+ 0.2	12	Greenwich mean time.
Marseilles	ı		1		51. 3	- 4-3	12	
Greenwich	J. Carpenter	Thread broke suddenly	21	o	14. 1	- 1.4	r ₃	
Altona	C. A. F. Peters		21	39	53	+ 6.0	13	A. N., lxii, 327.
Vienna	Weiss	No particular phenomenon	22	5	38. 5	+ 6.5	13	A. N., lxxiii, 173.
Pulkowa	Strave		23	_	13	+19.9	14	

1868, NOVEMBER—Continued.

Place.	Observer.	Contact and description.		Local mean time.		Red. to geocentric phase.	Greenwich mean	time of geocen-		Authority and remarks.
Madrid	Merino	Breaking of thread			8. 40. 4	#. - 12	h.	m.		Uncertainty of three seconds, A. N., lxxii, 356.
Lund	Dunér	Thread broke	21	52	51.6	8.8	!		15	He adds that at 21 52 43 Mercury had not reached the sun's limb.
Walworth	Buckingham	Sudden black ligament	21	o	18. 8	- 1.4			17	A. N., lxii, 377.
Paris	De la Grye	Very accurate	21	9	39· 7	- 1.8			17	
Pulkowa	Sokolov		23	1	18	+19.9	:		19	,
Kahlenberg (Vienna.)	Pohl	Mercur vollkommen rund	22	5	45- 4	+ 6] -		20	A. N., lxxiii, 77.
Leiden	Kam	No distortion of planet	21	18	15	+ 2.0	1		21	A. N., lxxiii, 214.
Madrid	Ventosa	Contact formed suddenly	20	45	47- 4	 			21	Observations de confiance. A. N , lxxii, 356.
Göttingen	Klinkerfues		21	40	5.6	+ 4.3	Ì		24	A. N., lxxiii, 95.
Cuckfield	Knott	·	21	0	25.9	- 1	1		25	Greenwich mean time.
Leiden	Kaiser	Round images in contact	21	18	19.8	+ 2.0			25	A. N., lxxiii, 213.
Pulkowa	Lindemann	•••••	: 23	I	24	+19.9			25	
Uukfield	Prince	Apparent contact (!)	21	0	30	- r. 5	21	o	28	Greenwich mean time.
Bologna	Palagi	·······	21	45	54. 0	+ 1.0			30	A. N., lxiii, 75.
Greenwich	Lynn	Contact of limbs established. Very doubtful.	22	o	3 2. 6	- 1.4	!		31	i i
Maidenbead	Lassell	·	21	0	37	- 1.0	1		36	Greenwich mean time.
Wimbledon	Penrose	Thread of light interrupted	21	0	53-7	- 1.4	!		52	Greenwich mean time.

The Peking observation is given in so confused a manner that no use has been made of it. The remaining two observations of contact II seem entitled to equal weight.

For contact III there are several sources of doubt connected with the San Fernando observations; they are, therefore, regarded as forming but a single observation. The Wimbledon observation may be rejected as certainly affected with some abnormal error. The mean of the remaining results is taken without discrimination, since no discussion would materially affect the general result to be derived from the whole.

No separate reduction of fourth contacts has been attempted, but the mean result has been taken from the paper by Wolf and André already cited. The concluded results are:

TRANSIT OF 1878, MAY 6.

EUROPEAN OBSERVATIONS OF INGRESS.

Place.	Observer.	Contact and description.		Local mean time.		Red to geocentric phase.	Greenwich mean	time of geocentric contact.		Authority and remarks
				m.	8.	s	h.	m.	8.	
Kiel	-	и	3	54	43	+ 94	3	15	4 I	A. N., xcii, 191.
				54	42				40	
i	C. F. W. Peters .	Mercur rund		54	40				38	
1	D 0-1	Deutlicher Lichtfaden			55				53	
!		п			39				37 !	
	-	•		54	50	•			48	
Göttingen			4	7	36	÷ 94			35	A. N., xcii, 199.
		•••••••••••••••••••••••••••••••••••••••		7	49	i			48	Berlin mean time.
	Heidorn			7	49				48	
Anvers			3	14	15	+ 91			46 .	A. N., xcii, 223.
·	Van Litborn	••••		14	16				45	Greenwich mean time.
Vienna	Oppolzer	••••	4	19	36	+ 98			49	A. N., xcii, 223.
(Josephstadt.)	Kühnert	•••••••••	•	19	33				46	-
	Anton			19	40	ļ 			5 3	
Christiania	Geelmuyden	Geschätze oder erwartete Berührung.	3	57	2	+ 94			42	A. N., xcii, 237.
	Mohn	Scheinbare Berührung eher etwas spät angesetzt.		57	5				45	
	Geelmuyden	Erste Spur vom Lichtfalen		57	10				52	
		Bildung der Lichtbrücke.	ļ	57	14				54	
	Mohn	Sichere Trennung	1	57	15				55	
Lund	Dunér	Apparent contact	4	6	41	+ 96			32	A. N., xcii, 283.
		do	. •	6					30	
	Dunér	Acusserst zarter Lichtfaden	i	6	52	1			43	l
	Linstedt	do	!	6	52				43	•
Breslau	Galle	Geometrische Berührung	٠.	22	18	+ 98			47	A. N., xcii, 287.
		Völlige Trennung	1	22	41	i			70	Z. N., XOII, 207.
	Neugebauer	do			40				60	i -
Prague	Wongol	n	1		•				•	A N well o
rrague			1 7		31	+ 97			27	A. N., xcii, 287.
				11	50				46	
Krakau	Karlinski		4	33	49	+100			39	A. N., xcii, 299.
Königsberg			4	36	11	+ 99			51	A. N., xcii, 301.
		•	ł	3 6	I	i 			41	
	Benecke	•••••		36	14				54	
Berlin	Förster	Planet round and in contact	4	7	38	+ 96			39	A. N., xcii, 319.
		Breiter Lichtfaden.	•	7					57	
	Tietjen	•			-				46	<u>!</u>
		Volkommen kreisförmig							53	
	Becker	II							46	
		Deutlich Lichtstreifen		8	3				63	•
	Кьютте	Apparent contact		7	37				38	• !
		Erscheinen eines Lichtfadens		7		i			44	
	Oppenheim	и		7	51				52	
Vienna	Holetschek	· · · · · · · · · · · · · · · · · · ·	4	19	46	+ 98			52	A. N., xcii, 365.
(Observatory.)				20	8				74	
					-			(Aperture, 3"; power, 15.
	Weiss	Planet pear-form		-					30	Images very bad.
		Ligament formed		•	•	:			35	
		Ligament broke		19	53	,			59	ı I
Gotha	Krueger	Dunkelgraues Band zwischen Mercur und Sonnenrand.	3	56	54	+ 94			47	A. N., xciii, 63.

TRANSIT OF 1878, MAY 6—Continued.

Place.	Observer.	Contact and description.		Local mean time.	Red. to generaltic	pbase.	Greenwich mean time of geocen- tric contact.		Authority and remarks.
			ħ.	m.	8 .	8.	h. m. 4		
Strassburg	Winnecke	Innere (geometrische) Berüh- (45	1	92	3 15 4		A. N., xcii, 337.
	Küstner			45	17		4	6	
	Hartwig	fallende Erscheinungen no-		45	17		4	16	
	Elkin) tirt.		45	33	'	•	52	
Wimbledon	Penrose	Planet apparently circular but clinging to limb.	3	14	32 +	88	ć	50 '	M. N., xxxviii, 404.
,		Two thin threads of light		14	36		6	54 ¦	Greenwich mean time.
Orwell Park	Plummer	Light permanently established in rear of planet.	3	14	20 +	88	4	8	M. N., xxxviii, 413.
Dunecht	Ranvard	The disks in geometrical contact .	6		16 +	86		: in	M. N., xxxviii, 414.
	H. J. Carpenter .		Ů	2	14		_	8	Sidereal time.
	Lohse	Contact certainly past; probably		2	17		_	i !	
		late by 15° to 20°.	•			·			
	Copeland	Apparent geometric contact		2	7		5	;1	
		Distant rupture of ligament		2	19	· • •	6	53 [:]	
O-Gyalla	Horváth		3	14	311 +	99	7	ю:	M. N., xxxviii, 427.
į			·	13	581		3	37 : ;	Greenwich mean time.
j	Kaiser			13	44	1	2	23	
,				13	45	!	2	4	
	Konkoly			13	45		2	4	
Glasgow	Bowden		3	14	16 +	85		ı ;	M. N., xxxix, 167.
Toulouse	Perrotin		3	19	52 . +	8o:	2	: I	
Palermo	1		4	7	47 +	86:	4	7	
Pulkowa	O Struce	•••••	-		••			i	St. P. Mélanges, v, 551.
	(Tropfenphänomen		15		02		55	St. F. Melanges, v, 551.
		do		15	-			8	
:	1			15			-	4	•
				15	_			8	
	H. Struve			15	•		-	3	
	Döllen	i		15	33		5	6	
!	•			15	24			7	
	•	·,		15	33	••••	•	6	
				15		••••	-	8	
į	**			-	21	1		4 !	
				_	35	- 1	-	8	
!		••••		-	33	'	_	6	
	Daranow			15	18	•,	4	I	

Among these observations, the following may be set down as too late to correspond to any observation of contact as usually made, namely: Mohn, "Sichere Trennung"; Galle and Neugebauer, "Völlige Trennung"; Förster, "Breiter Lichtfaden"; Becker, Lohse, "contact certainly past."

Nearly the same thing may be said of the "Deutlicher Lichtstreifen" of BECKER and Peters, but as we have been under the necessity, in other transits, of retaining observations of the threads of light, we may include these in the same class, and in each case, take the mean of the two times given.

In all the remaining cases we may take the indiscriminate mean of all the separate times noted, with the following exceptions.

The observation of Lukas, at Vienna, is rejected, owing to the totally insufficient

optical power employed. The mean of Weiss's three times is taken as a single observation. Half weight is assigned to the doubtful O-Gyalla observations of Horváth and Cvet. We thus find:

Mean result of 73 European observations, 3^h 15^m 47^s.3, G. M. T.

Let us now compare this result with that of the American observations. In Appendix II to the Washington Observations for 1876 is an exhaustive discussion by Professor Eastman and Mr. H. M. Paul of 109 observations of this transit made in the United States. The classification of the times of the different phenomena, as described by the observers, is especially complete and instructive. I therefore transcribe the mean results, reduced to Greenwich time.

CONTACT II.

					h	Times.	No. of obs.
I.	Geometric contact with black drop -		-	-		15 26.7	4
2.	Phase I		-	-		31.7	8
3.	Geometric contact without black drop			-		42.6	3
4.	Geometric contact with no statement of	blacl	k di	rop		42. 9	9
5.	First glimmer of light behind planet		-	-		1 49.4	I 2
6.	Phase II		-	-		50.2	16
7.	No description of phase		-	-		51.8	27
8.	Breaking of ligament or black drop -		-	-		52.8	7
9.	Closing of line of light		-	-		57.0	t I
10.	Phase III		-	-		61.2	14

In this table phases I, II, and III refer to the appearance of the planet at three different times, as shown on a large diagram which had been circulated among the observers.

Phase I, in this diagram, represented the planet as it would appear 12° before first interior contact, the cusps being separated by nearly one-half the diameter of the planet.

Phase II represented the appearance of the planet at the exact moment of true interior contact.

Phase III represented the appearance 12° after contact, a broad line of light being formed between the planet and the limb of the sun.

The size of the diagram was such that when placed at the distance of half a mile, the angular magnitude of the planet on the diagram would be the same as that of the real planet in the heavens.

Mr. Paul's discussion, however, showed that the observations of these outside phases, I and III, were much less accurate than in the case of ordinary contacts, so that they had to be rejected entirely. But he also rejects phase II, which is that of true internal contact, for reasons which he does not fully state. The only phases which he retains in his discussion are those of $\frac{1}{2}$ (5 + 9), 8 and 7. From these he deduces

Whatever we may say of the correspondence of this result with the time of true contact, it is cannot be considered as the time to be compared with observations of previous transits by other observers. Since we have been obliged to include all observations,

those in which phases were not described as well as those in which phases were described, our proper course is to take the same sort of a mean which would have been taken had the observations been treated in the same manner and not classified as they are. Let us take up the phases in order.

The four observations of geometric contact with black drop, occurring as they did 5° before phase I, when the cusps were separated by more than the radius of the planet, should be rejected entirely if anything like true contact is sought for. But it may be that they correspond to observations in other transits, and therefore should be retained.

Phase I and III, for reasons already given, may be thrown aside, although their mean corresponds closely to the general mean of the observations. All the other observations seem to correspond closely to the usual observed phases of contacts: the general mean may, therefore, be taken.

It is, however, to be remarked that Mr. Paul's means, as given above, are taken by weighting the observations according to atmospheric and other conditions. Although this process has not been employed to any considerable extent in the discussion of the preceding transits, we may adopt Mr. Paul's weighted results as being better, or at least, no worse than indiscriminate means, even for purposes of comparison. We therefore first give to each of the results, from 3 to 9, inclusive, a weight proportional to the number of observations on which it depends, and thus obtain the first result which follows. Next, we show the result when the four observations of geometric contact with black drop:

```
Contact II, 3 15 50.7, 85 obs. (rejecting class 1)
15 49.6, 89 obs. (retaining class 1)
15 47.3, 73 obs. (European)
```

What mean between these results we should choose is largely a matter of judgment. That the means of two so large bodies of observers should differ by 3 seconds shows it hopeless to expect a probable error of less than 2 seconds in the best possible results from observation. In view of the fact that the American observations were generally made with the sun at a higher altitude than in Europe, I have taken 3^h 15^m 49^s.2 as the most probable mean.

CONTACT III.

For egress we have the following results from Mr. Paul's tabular summary:

				Times.	No. of obs.
		•		h. m. s.	•
I.	Phase III			10 43 15.7	5
2.	Phase II			36.4	5
3.	Geometric contact with nothing about	black	drop	36.6	8
4.	Formation of ligament or drop			39.2	. 01
5.	Breaking of line of light			39.6	7
6.	Geometric contact without black drop			39.8	2
7.	No description of phase			42.2	27
8.	Last glimmer of light			42.8	8
9.	Phase I			52.3	5
10.	Geometric contact with black drop -			- 57.7	7

The curious reversal of the supposed normal order of phases, geometric contacts being noted earlier than last glimmer of light, is noteworthy. The early occurrence of "phase II" (true contact) is also remarkable. Whatever conclusions we may draw from these anomalies, the only course open to us is to take a mean of those phases which we may suppose to correspond to phases observed in preceding transits. We therefore reject phases I and III. It is doubtful whether geometric contact with black drop should be retained or rejected.

We may accept the mean of the two as the result to be accepted.

For external contact an indiscriminate mean is taken in the usual way, rejecting a few observations with very insufficient optical power. The results then are:

TRANSIT OF 1881, NOVEMBER 7.6.

Place.	Obærver.	Contact and description.		Local mean time		Red. to geocentric phase.	Greenwich mean time of geocen- tric contact.			Authority and remarks.
•			h.	m.	8.		h.	m.	8.	
Melbourne	Ellery	II. Internal contact; good	19	58	44	- 10	10	18	39	Communicated by Mr. ELLERY
	•	Black drop broken		59	8	*******		19	3	also, M. N., xlii, 101.
i	White	Thread of light		58	47			18	42	, , ,
₽.	Moerlin	Complete separation		59	43			19	38	
Windsor	Tebbutt	Contact nearly made	20	92	10	- 11		18	37	Communicated by Mr. TEBBUTT
	200000000000000000000000000000000000000	Band of light distinct		22				18	43	also, l. c.
	n	_		177	25					ľ
Sydney		Unsatisfactory		23		- 11		18	34	Contact made and broken sev-
	Lenehan	do		23	100			18	41	eral times during 10°.
		do		23				10		
				23	8.1			-0	44	Definition and
1	***	Contact expected		23	12.	secure.		18	39	Definition good.
	Diaden	Band of light distinct		23		1		18	23	The Sydney observations were
		0		23	43			18	41	all communicated by Mr. Rus
		Limbs tangential		23	36			18	34	SELL.
	Brooks	First indication of white line		23	86	******		18	34	
Honolulu	Rockwell	II	22	18	26	- 6		18	10	
M. Hamilton	Holden	и	2	12	26	- 5		18	53	Power 50. Communicated by
	Burnham	π	2	12	6	- 5		18	33	Power 300. Professor HOLDEN
Malhourna	Fllory	III. Thin slickering line connect-		15		+ 16	15	35	27	
meibourne	incry	ing planet and limb.		15	0	1.00	15	33	-7	
		Internal contact	9						-22	
	White	Internal contact		- 7	-			35	54	
				15		i			51	1
		Filament assumed a solid form				••••			55	
	rathel	Internal contact past		16					85	
		•			•				05	
Windsor	Tobbutt		1	38		1			52	1
		Contact complete	1		58				56	•

				_										
Place.	Observer.	Contact and description.		Local mean time.		Red. to geocentric phase.	Greenwich meen	time of geocen-	THE POST OFFICE AND ADDRESS OF THE POST OF	Authority and remarks.				
Sydney		Contact good	1	m. 40	8. 27	# 20 + 20	h.	m.	8 . 56	Clean contact and rupture of band of light.				
		Definition not good		40	29		ļ		58	outle of light.				
	. •			40	-	*** ***			52					
•	•	Contact surely complete		40		*******			39	Moderately good.				
		No black drop		•		43 K 1497			73	Boiling badly.				
Honolulu		III		40 35	•	+ 36	i	36	56 12	Comm. by Mr. Rockwell.				
Melbourne	Ellery	ıv	!	17	12	1		37	24	•				
								-	32	1				
				•		i		37	28					
	Turner		1	17				37	28					
Windsor	Tebbutt		1	40	36			37	35					
Sydney	Russell		1	42	9	!	:	3#	38	•				
•	Lenehan			42	4	l		7	33	ı				
	Wright			42	3	1		37	32					
	Morrice		;	42	16	!	Į.	37	45					
	Hargrave		:	42	0		1	37	29					
	Bladen		i	42	24			37	53					
	Brooks	•••••		42	9			3 7	չ8	[

TRANSIT OF 1881, NOVEMBER 7—Continued.

Guided by the light thrown on the case by previous observations, we shall endeavor to deduce a time of contact from the statements of each observer, and assign weights according to the apparent certainty of the results.

Whether Mr. Ellers's "good" internal contact is to be regarded as a true mean contact it is difficult to say: The breaking of the black drop may be regarded as certainly later than mean contact. On the whole, the most probable result seems to be that obtained by adding to the time of the first observation one-third of the interval between it and the second. This will give 10^h 18^m 47ⁿ, Greenwich time.

From Mr. White's observation we may subtract 5°, giving 37°.

Moerlin's "complete separation" is clearly too late.

TEBBUTT's description is excellent; his mean time is 40°.

During the 10°, from 24° to 34°, Russell saw the thread of light formed and broken several times. This is what should take place in the situation corresponding to true contact. We may, therefore, take 29° as his result instead of 34°.

The four observers following Russell give no indications for judging their results. Wright is so obviously too early that it is doubtful whether his result should not be rejected. A mean course will be to assign him half weight. The mean result of the four will then be 37°.

BLADEN'S two descriptions clearly bound the possible times of confact. The mean 32' seems good. The next two results may also be accepted unchanged.

With ROCKWELL'S Honolulu observation we have the same trouble as with WRIGHT'S at Sydney. In doubt whether to reject it, we can assign it only small weight.

We now have the following single or combined results for probable mean contact II: •

						h.	m.	8.	Wt.
Ellery -	-	-	-	-	-	10	18	47	2
Wніте -	-	-	-	-	-			37	2
Теввитт	-	-	-	-	-			40	3
Russell	-	-	-	-	-			29	I
Four other	ob	ser	ver	3	<u>-</u> ·			37	3
Couder -	-	-	-	-	-			34	2
Brooks -	-	-	-	-	-			34	2
ROCKWELL	-	-	-	-	-			10	1/2
Holden	-	-	-	-	-			53	2
Burnham	-	-	-	-	-			33	2
Mean	-	-	-	-	-	10	18	38	

Of the third contacts, only the following call for special remark.

Mr. Ellery's "thin flickering line" was probably the result of atmospheric softening of the thin line of light just before contact, and so not to be regarded as a true contact of any kind.

TURNER'S description corresponds accurately to a true contact.

TEBBUTT's description close limits the time of contact.

BLADEN's result seems valueless. The images were too bad to permit of an obser vation of contact.

With Rockwell's we have the same trouble as at ingress, only he is now late. We should, perhaps, treat his observation in the same way as at ingress.

In the combination we give double weight to Tebbuit and Russell. The mean result is then 15^h 35^m 54^s.

The results for geocentric contact then are—

PART II.

COMPUTATION OF TABULAR ELEMENTS.

LEVERRIER'S tables of Mercury and the sun have been adopted as the medium for obtaining the results of the preceding observations, in so far as the elements to be corrected depend upon the relative heliocentric positions of Mercury and the earth. The method of deriving the times of contact and other results from the tabular positions is not the usual one, since the computation of the geocentric place of the planet is entirely dispensed with. Not only would the computation of this place involve considerable additional labor with great liability to errors, but the symbolic expressions of the corrections to the theory would also have been more troublesome in computation. A method has, therefore, been adopted which is founded on Bessel's theory of eclipses. By this method the time of contact is defined as that when the observer is on the conical surface touching the planet and the sun. Of the two circumscribing cones, that whose vertex is between the interior planet and the earth will correspond to internal contact, and that whose vertex is between the planet and the sun to external contact.

Į Ι

Determination of times of contact during transits of an inferior planet by the heliocentric method, using the conceptions of Bessel's method of eclipses.

By this method the time of contact is fixed as that when the observer is upon the surface of one of the two shadow cones touching the sun and the planet. The axis of the cone is the line joining the centers of the sun and planet. The fundamental plane of reference, or the plane of XY, passes through the center of the earth perpendicular to the axis of the cone.

The axis of X in the present case is formed by the intersection of the ecliptic with the fundamental plane, its positive direction being toward the west or the opposite of that in which planets are moving. The axis of Y is, as usual, toward the north.

Let us put:

- r, b, l, the heliocentric radius vector, latitude, and longitude of the planet Mercury or Venus.
 - r', b', l', the same quantities for the earth.
 - c, the angular distance of the planet and earth as seen from the center of the sun.
- ω , the position angle of the point in which the shadow-axis intersects the plane of XY, counted from the axis of X towards that of Y.

422

R', the linear radius of the sun.

R, the linear radius of the planet.

f, the semi-angle of the shadow cone.

 ρ_0 , the radius of the cone on the plane of reference.

EFFECT OF ABERRATION.

The preceding quantities require some modification in their employment owing to the motion of the planets during the interval required by light to reach them from the sun. When we compute the place of the sun from the tables for a time T, the tables are so constructed as to give its apparent direction at this moment. If τ_2 be the time required for light to reach the earth from the sun, the position we shall get from the tables for the time T will be the true one at the time $T-\tau_2$. By subtracting 180° from the longitude and changing the algebraic sign of the latitude we shall have the true direction of the earth from the sun at the moment $T-\tau_2$.

The condition that the planet, as seen from the earth, shall appear projected upon a given point of the sun's disk at a moment T', is that a ray of light, emanating from the given point at a certain moment, shall pass through the planet and through the earth, reaching the latter at the moment T'. So, putting τ_1 for the time required for the ray to reach the planet, and referring positions to the sun, the true heliocentric position of the planet at the moment $T' - \tau_2 + \tau_1$ and that of the earth at the moment T', must be in the same straight line from the given point on the sun's disk.

Therefore, in order that the positions of the earth and planet may be comparable for a moment T', we must use the true heliocentric position of the earth at this moment. This is obtained either by computing the apparent position from the tables for the moment $T' + \tau_2$, or taking the apparent position as computed for the time T', and increasing the longitude by the aberration in longitude.

The corresponding position of the planet must be the true one for the moment $T' - \tau_2 + \tau_1$. If, therefore, it is computed from the tables for the moment T' the coordinates must be corrected by subtracting the motion during the interval $\tau_2 - \tau_1$, which we may take as the interval required for the light to pass from the planet to the earth.

Value of $\tau_2 - \tau_1$. If we put

$$\tau = \tau_2 - \tau_1 = \frac{497^{\circ}.8}{3600} \ (r' - r)$$

which may be considered as the time required for light to pass from the planet to the earth expressed in hours, the required corrections to the place of the planet will be

$$\delta l = -\tau \frac{dl}{dt}$$

$$\delta b = -\tau \frac{db}{dt}$$

$$\delta r = -\tau \frac{dr}{dt}$$

the differentials being the hourly motions of the several co-ordinates of Mercury.

. In what follows these corrections will be supposed to be applied to the co-ordinates of the planet, and the corresponding ones to the positions of the earth as derived from the solar tables. That is, if we compute the tabular places of both the planet and earth for a moment T of absolute time, we must apply the preceding corrections to the heliocentric place of the planet, and add the aberration to the longitude of the earth in order that the quantities may be comparable for the moment T.

The co-ordinates x, y, and z of the center of the earth are given by the formulæ

$$x \equiv r' \sin c \cos \omega$$

 $y \equiv r' \sin c \sin \omega$

The angles c and ω are given by the equations

$$\sin c \cos \omega = \cos b' \sin (l - l')$$

$$\sin c \sin \omega = \cos b \sin b' - \sin b \cos b' \cos (l - l')$$
(1)

For these equations we may put, owing to the minuteness of b', b, and (l-l')

$$\sin c \sin \omega = \sin (b' - b)$$

 $\sin c \cos \omega = \sin (l - l')$ (1)

without an error exceeding o".o1 in a transit. Or, yet more simply, we may suppose

$$c \sin \omega = b' - b$$

$$c \cos \omega = l - l'$$
(1)"

without introducing an error of which the average value will exceed o",o1.

By these formulæ the values of x and y, for the earth's center, may be computed for any required moment. Their derivatives with respect to the time will be given with sufficient approximation by the formulæ

$$\frac{dx}{dt} = r' \left(\frac{dl}{dt} - \frac{dl'}{dt} \right)$$
$$\frac{dy}{dt} = r' \left(\frac{db'}{dt} - \frac{db}{dt} \right)$$

the effect of the change of r' being unimportant. But the quantity $\frac{db'}{dt}$ may always be regarded as insensible.

For the radius of the shadow cone on the fundamental plane we have, by the theory of eclipses,

$$\rho_0 \equiv r' \cos c \tan f \ \mathrm{R}' = \sec f$$

The value of f may be obtained by the consideration that the radius of the cone on a plane passing through the center of the sun is $-R' \sec f$, while, on a plane passing through the center of the planet, it is $\pm R \sec f$, the positive sign holding for the cone whose vertex is between the sun and planet, and the negative sign for that

whose vertex is between the earth and planet. The former is the cone of external and the latter that of internal contact. The difference of these radii is $r \tan f$, that is,

$$r \tan f = (R' \pm R) \sec f$$

or

$$\sin f = \frac{R' \pm R}{r}$$

The value of the radius ρ_0 may now be expressed in the form

$$\rho_0 \cos f = \frac{r'}{r} (R' \pm R) \cos c - R'$$

At the earth's center the condition of contact of the limb of the planet with that of the sun is

$$r' \sin c = \rho_0$$

or, dividing by r' and substituting the value of ρ_0 ,

$$\sin c = \frac{\rho_0}{r'} = \frac{\cos c}{\cos f} \left(\frac{R'}{r} \pm \frac{R}{r} - \frac{R'}{r'} \sec c \right) \tag{2}$$

The quantities c and f are so small, and vary so slightly for transits of the same planet at the same node, that their cosines may, in this formula, be supposed to have the same value for all such transits.

The moment at which the condition of geocentric contact is fulfilled may be found by Bessel's method of eclipses. We select a moment near the time of contact and compute the values of c and ω for this moment from equations (1). Let us call T_0 the moment in question, and c_0 and ω_0 the special values of c and ω thus found. Let us also compute the hourly variations of c cos ω and of c sin ω , which we call n cos ω' , and n sin ω' , from the formulæ,

$$n \sin \omega' = \frac{db'}{dt} - \frac{db}{dt}$$

$$n\cos\omega'=rac{dl}{dt}-rac{dl'}{dt}$$

Let us also put

$$\mathbf{r} = \frac{\cos c}{\cos f} \left(\frac{R'}{r} \pm \frac{R}{r} - \frac{R'}{r'} \sec c \right)$$
 (3)

and

$$\sin \psi \equiv \frac{c_0 \sin (\omega' - \omega_0)}{\mathbf{r}}$$

then

$$\tau = -\frac{c_0 \cos(\omega' - \omega_0)}{n} \mp \mathbf{r} \cos \psi \tag{4}$$

Each value of $T_0 + \tau$ will then be a time of true geocentric contact, the earlier being first, and the later second contact.

By using the two values of **r** we shall have four times of contact in all, the one

pair corresponding to external and the other to internal contact The condition to be fulfilled at each contact will be:

$$c = \mathbf{r}$$
 (5)

By what precedes we have found a moment $T + \tau$ at which this condition is fulfilled at the center of the earth. In the case of an actual observation, the observer is not at the center of the earth, but at its surface, and we have next to find the time at which he is on the surface of the shadow cone, or the reduction from contact at center to contact at his station. If, now, we suppose c_1 to represent the angular distance of the observer from the planet as seen from the sun's center, and all the other quantities which refer to the earth's center to refer to the observer, the same equations will hold true. The difference of directions between the station and the earth's center, as seen from the sun, is simply the sun's parallax in longitude and latitude. If we put ρ , β , λ the observer's distance from the earth's center, in units of the equatorial radius of the earth, and the latitude and longitude of his zenith; π the sun's equatorial horizontal parallax at the date; b'_1 , b'_1 , c'_1 , the latitude, longitude, and distance of the observer, as seen from the sun, we shall have with all necessary precision,

$$l'_{1} = l' + \rho \cos \beta \sin \pi \sin (\lambda - l')$$

$$b'_{1} = b' + \rho \sin \beta \sin \pi$$

$$r'_{1} = r' \left\{ 1 + \rho \cos \beta \sin \pi \cos (\lambda - l') \right\}$$

$$l - l'_{1} = l - l' - \rho \cos \beta \sin \pi \sin (\lambda - l')$$

$$b'_{1} - b = b' - b + \rho \sin \beta \sin \pi$$

$$r'_{1} - r' = r' \rho \cos \beta \sin \pi \cos (\lambda - l')$$
(6)

or

Substituting these values in (1)'', noting that the parallax is so small that the change in the signs of b'-b and l-l' may be taken the same as in the arcs themselves, and putting c_1 and ω_1 for the values of c and ω which refer to the station, we shall have

$$c_1 \sin \omega_1 \equiv c \sin \omega + \rho \sin \beta \sin \pi$$

$$c_1 \cos \omega_1 \equiv c \cos \omega - \rho \cos \beta \sin \pi \sin (\lambda - l')$$
(7)

From these equations the varying values of c and ω may be computed for any place at any moment. But what we really want is the time at which c_1 has the value \mathbf{r}_1 , the latter being the value of \mathbf{r} when r_1 is substituted for r in (3). By this substitution we find, to quantities of the first order

$$\mathbf{r}_{1} - \mathbf{r} = \frac{R'}{r'} \rho \cos \beta \sin \pi \cos (\lambda - l')$$

$$= \rho \sin S \cos \beta \sin \pi \cos (\lambda - l')$$

where we put S for the sun's geocentric angular semi-diameter. At the moment of geocentric contact we have $c = \mathbf{r}$, while at the required moment of local contact we must have

$$c_1 = \mathbf{r_1}$$

and the problem is to find the interval after geocentric contact when this will occur. This interval will be so small that we may regard the quantities in the equations (7) as varying uniformly through its extent. If, then, we put

$$q = + \rho \sin \beta \sin \pi$$

$$p = -\rho \cos \beta \sin \pi \sin (\lambda - l')$$
(8)

the quantities being taken for the moment of geocentric contact, the equation (7) gives, for the condition of local contact,

$$\mathbf{r}_{1} \sin \omega_{1} \equiv \mathbf{r} \sin \omega + q + \left(\frac{dq}{dt} + n \sin \omega'\right) t$$

$$\mathbf{r}_{1} \cos \omega_{1} \equiv \mathbf{r} \cos \omega + q + \left(\frac{dp}{dt} + n \cos \omega'\right) t$$
(9)

and the problem is reduced to finding the values of ω_1 and t from these equations. The first will be the local position-angle of the two bodies at the moment of local contact, and t will be the correction to reduce geocentric to local contact. The latter quantity is, in fact, the only one that is wanted, since the position-angle ω cannot be observed.

The preceding equations can, if desired, be rigorously solved for any station by Bessel's eclipse formulæ, as follows:

$$\mathbf{r}_1 = \mathbf{r} + \rho \sin S \sin \pi \cos \beta \cos (\lambda - l')$$

Find m and M from the equations:

$$m \sin M \equiv \mathbf{r} \sin \omega + q$$

 $m \cos M \equiv \mathbf{r} \cos \omega + p$ (10)

and m' and N, ψ and t, from the equations:

$$m' \sin N = n \sin \omega' + \frac{dq}{dt}$$

$$m' \cos N = n \cos \omega' + \frac{dp}{dt}$$

$$\sin \psi = \frac{m \sin (M - N)}{r_1}$$

$$t = \frac{\mathbf{r}_1 \cos \psi - m \cos (M - N)}{r_1}$$

If T is the moment of geocentric contact, T + t will be that of local contact.

In most cases, however, an approximate method leading to the usual formulæ will be sufficient. The quantities t and q are, when at their maximum, smaller than \mathbf{r} in the ratio of the radius of the earth to that of the shadow cone, or roughly in transits of Mercury, 1:150 in a May transit and 1:250 in a November transit. Also, p' and q' are smaller than n in about the same ratio. Therefore, the development in powers of these quantities will converge very rapidly.

Squaring the equations (9) and taking the sum, in order to eliminate ω' we have, omitting the second powers of the small quantities p, q, p't, q't,

$$\mathbf{r}_1^2 \equiv \mathbf{r}^2 + 2 \mathbf{r} (p \cos \omega + q \sin \omega) + 2 \mathbf{r} nt \cos (\omega - \omega')$$

or

$$\mathbf{r}_1^2 - \mathbf{r}^2 \equiv 2 \mathbf{r} \left(p \cos \omega + q \sin \omega \right) + 2 \mathbf{r} nt \cos \left(\omega - \omega' \right) \tag{11}$$

The quantity $\mathbf{r}_1^2 - \mathbf{r}^2 = (\mathbf{r}_1 + \mathbf{r}) (\mathbf{r}_1 - \mathbf{r})$ is very small. \mathbf{r}_1 may be derived from A. P., PART VI—9

the value of \mathbf{r} in (3) by substituting r_1' for r'. We thus find from the expression for r_1' in (6), neglecting the quotient of the radius of the planet divided by that of the sun,

$$\mathbf{r}_{1} - \mathbf{r} = \frac{R'}{r'} \rho \sin \pi \cos \beta \cos (\lambda - l')$$

But, $\frac{R'}{r'}$ is the sine of the sun's angular semi-diameter as seen from the earth, which we have called S. Therefore,

$$\mathbf{r}_1 - \mathbf{r} = \rho \sin S \sin \pi \cos \beta \cos (\lambda - l')$$

Thus we have, with all necessary exactness,

$$\mathbf{r}_1^2 - \mathbf{r}^2 \equiv 2 \mathbf{r} (\mathbf{r}_1 - \mathbf{r}) \equiv 2 \mathbf{r} \sin S \rho \sin \pi \cos \beta \cos (\lambda - l')$$

It is scarcely possible, from any number of observations of a transit of Mercury, to obtain the time of contact without an uncertainty of more than a second of time. The error from neglecting all the powers of $\frac{p}{r}$ and $\frac{q}{r}$ will rarely amount to a second, except when the least geocentric distance of centers is nearly as great as the sun's semi-diameter. In this case it will be more convenient to use the rigorous formulæ (10). In all other cases we may take the approximate expression (11). So substituting the above value of $\mathbf{r}_1^2 - \mathbf{r}_2$ in (11), and solving with respect to t, we find

$$t = \frac{\rho \sin S \sin \pi \cos \beta \cos (\lambda - l') - p \cos \omega - q \sin w}{n \cos (\omega - \omega')}$$

Substituting for p and q their values, this expression reduces to

$$t = \frac{\rho \sin \pi \left\{ \sin S \cos \beta \cos (\lambda - l') + \cos \omega \cos \beta \sin (\lambda - l') - \sin \omega \sin \beta \right\}}{n \cos (\omega - \omega')}$$

The quantities β and λ , which represent the latitude and longitude of the observer's geocentric zenith, are given by equations:

$$\cos \beta \cos \lambda = \cos \varphi' \cos \tau$$

$$\cos \beta \sin \lambda = \cos \varphi' \cos \varepsilon \sin \tau + \sin \varphi' \sin \varepsilon$$

$$\sin \beta = \sin \varphi' \cos \varepsilon - \cos \varphi' \sin \varepsilon \sin \tau$$

where ε is the obliquity of the ecliptic, φ' the observer's geocentric latitude and τ the local sidereal time. If we substitute these values in the expression for t, it may be expressed in the form

$$t = A\rho \sin \varphi' + B\rho \cos \varphi' \cos \tau + C\rho \cos \varphi' \sin \tau \tag{12}$$

where

$$\Lambda = \frac{\sin \pi}{n \cos (\omega - \omega')} \left\{ -\cos \varepsilon \sin \omega + \sin \varepsilon (\cos \omega \cos l' + \sin S \sin l') \right\}$$

$$B = \frac{\sin \pi}{n \cos (\omega - \omega')} \left\{ -\cos \omega \sin l' + \sin S \cos l' \right\}$$

$$C = \frac{\sin \pi}{n \cos (\omega - \omega')} \{ \sin \epsilon \sin \omega + \cos \epsilon (\cos \omega \cos l' + \sin S \sin l') \}$$

In these equations the coefficient sin S is only 0.0046; it is, therefore, of the same order of magnitude with quantities which we have neglected. It may, however, be readily taken into account by substituting for l' the quantity $l' - \sin S$ sec $\omega = l' - 16'$ sec ω , which corrected value of l' we may call l''. Developing to quantities of the first order with respect to the small quantity S, we have

$$\cos \omega \sin l'' \equiv \cos \omega \sin l' - \sin S \cos l'$$

 $\cos \omega \cos l'' \equiv \cos \omega \cos l' + \sin S \sin l'$

Making these substitutions, and putting π instead of $\sin \pi$, the values of A, B, and C will become

$$A = \frac{\pi}{n\cos(\omega - \omega')} \{ \sin \varepsilon \cos \omega \cos l'' - \cos \varepsilon \sin \omega \}$$

$$B = -\frac{\pi}{n\cos(\omega - \omega')} - \cos \omega \sin l''$$

$$C = \frac{\pi}{n\cos(\omega - \omega')} \{ \sin \varepsilon \sin \omega + \cos \varepsilon \cos \omega \cos l'' \}$$

The computations of these quantities and of the final values of t in (12) may be most readily effected as follows. From

$$p \sin P \equiv \sin \omega$$

$$p \cos P \equiv \cos \omega \cos l''$$

find p and P Then,

$$A = \frac{p\pi \sin (\varepsilon - P)}{n \cos (\omega - \omega')}.$$

From

$$k \sin K = p \cos (\varepsilon - P)$$

 $k \cos K = -\cos \omega \sin l''$

find k and K. Then,

$$D = \frac{\pi k}{n \cos(\omega - \omega')}$$

and

$$t = A\rho \sin \varphi' + D\rho \cos \varphi' \cos (K - \tau).$$

Here we may take for τ the local sidereal time of geocentric contact. If we put L, the west longitude of the place, τ_0 , the Greenwich sidereal time of contact, expressed in arc, we shall have

$$\tau = \tau_0 - L$$

$$t = A\rho \sin \varphi' + D\rho \cos \varphi' \cos (K - \tau_0 + L)$$
(13)

which is equivalent to the usual formula.

Reductions of the constants in the preceding formula to numbers.

Having a number of transits to reduce, the work will be facilitated by reducing the preceding formulæ, so far as possible, to numbers. The following are the adopted values of the semi-diameters of the sun and Mercury.

Sun:
$$R' = \sin 959''.78 = .00465316$$

Mercury: $R = \sin 3''.30 = .00001600$

In forming \mathbf{r} from (3) the cosines of the small angles c and f vary so slightly that they may be assumed to have the same values for all May transits and for all November transits. The principal quantities to be used are as follows:

			1	May transits.	November transits.
r', (approximate)			-	1.0096	0.9904
r, (approximate)		-	-	0.4516	0.3139
$\sin f$ (external contact)		-	-	0.01033	0.01487
$\sin f$ (internal contact)		•	-	0.01026	0.01477
$\sin c$ (external contact)		•	-	0.00572	0.01018
$\sin c$ (internal contact)		-	-	0.00565	0.01008
$\log \cos c \sec f(R' + R)$ (in	sec])		- 2.983678	8 2.983688
$\log \cos c \sec f(R'-R)$ (in	sec))		- 2.98069	3 2.980702
$\log R' \sec f (\text{in sec})$	-	-		- 2.98219	6 2.982220

We therefore have from (3) the following numerical formulæ for r in seconds:

May transit, external contact,
$$\mathbf{r} = \frac{[2.983678]}{r} - \frac{[2.982196]}{r'}$$

May transit, internal contact, $\mathbf{r} = \frac{[2.980693]}{r} - \frac{[2.982196]}{r'}$

November transit, ext. contact, $\mathbf{r} = \frac{[2.983688]}{r} - \frac{[2.982220]}{r'}$

November transit, int. contact, $\mathbf{r} = \frac{[2.980702]}{r} - \frac{[2.982220]}{r'}$

The following are the extreme values of the aberration time, from which intermediate values can be found as with the argument $\log r$:

May transits -
$$\begin{cases} \log r = 9.6522; \ \tau_2 - \tau_1 = 279.1 \\ \log r = 9.6580; \ \tau_2 - \tau_1 = 276.1 \end{cases}$$
November transits
$$\begin{cases} \log r = 9.4942; \ \tau_2 - \tau_1 = 337.8 \\ \log r = 9.4997; \ \tau_2 - \tau_1 = 335.6 \end{cases}$$

Taking 8".848 as the mean solar parallax, we have

For a May transit: $\log \pi = 0.9427$. For a November transit: $\log \pi = 0.9510$.

Reductions to external contact.

For reasons already given, only last external contacts have been used. Instead of computing them independently, they have been obtained from those of last internal contact by computing the difference of times of the two phases. Taking the difference between the two values of r for the two classes of contact we find them to be:

November transits:
$$\Delta r \equiv 21'' \circ 2$$
.
May transits: $\Delta r \equiv 14''.61$.

If we represent by Δ the changes of the quantities to reduce from internal to external contact, we have

$$c\Delta c = (l - l') (\Delta l - \Delta l') + (b' - b) (\Delta b' - \Delta b)$$

By substituting

$$\Delta l \equiv \frac{dl}{dt} \Delta t$$
, etc.,

we find

The condition of contact being $\Delta c = \Delta \mathbf{r}$, we have, for the values of Δt

For November transits,
$$\Delta t = \frac{21''.02}{n \cos{(\omega - \omega')}}$$

For May transits,
$$Jt = \frac{14''.61}{n \cos (\omega - \omega')}$$

These corrections are to be applied to the times of internal contact to reduce them to those of external contact.

§ 3.

Tabular heliocentric positions of Mercury and the earth.

The tabular heliocentric positions of Mercury and the earth are derived from Leverrier's tables in Vols. IV and V of his *Annales de l'Observatoire*. They are exhibited in the following table.

The first two columns give the dates and the Paris and Greenwich mean times of computation. In the second column the first number is the Paris time which was used unchanged in the computations. It was originally intended to choose this time so as to correspond to the nearest hour and sometimes the nearest simple fraction of an hour to the observed contact. But as the work was performed before the contacts were carefully examined this condition is frequently not fulfilled.

The second number of this column gives the Greenwich time corresponding to the Paris time.

The third number gives the Greenwich time as corrected for aberration, and is less than the time of computation by the interval required for light to pass from the planet to the earth.

The aberration time given in the last column is the time required for light to pass from Mercury to the earth. Along with it is given the motion of Mercury in longitude during this interval. As already stated, and as will be presently shown more fully, the longitude of Mercury is to be ultimately referred to a moment at which the ray of light, indicating contact to the observer, passed it.

The third column gives in the first line of each set the longitude of Mercury referred to the mean equinox of the date for a moment earlier than the first mean time in column two by the aberration time. The longitude was first computed for the given Paris time, and the motion in longitude during the aberration time was then subtracted. Hence, to find the longitude for the given Paris time, the correction given in the last column must be applied positively to the longitude of Mercury in the second column.

Under each longitude of Mercury is given the longitude of the earth, which is also referred to the mean equinox, for the moment first indicated in the second column. The tabular longitude of the sun is freed from the effect of aberration in order to have the longitude of the earth for the given moment.

Under each pair of longitudes is given their difference found by simple subtraction.

The latitudes of Mercury and the earth in the fifth column are given in the same way as the longitudes; that is, the latitude of Mercury is that which corresponds to the moment found by subtracting aberration time from the time of computation in the second column, and which is the third of the given times. The hourly motions in longitude and latitude are computed for each date independently by means of the differences in the tables. Hence, when two places are given for an interval of a few hours the hourly motions may be used to check the computations.

It may, however, be remarked that these hourly motions are those obtained for the original moment of computation without respect to the aberration time. Hence, to correspond strictly to the longitude, they should be reduced for aberration time. The necessary reduction is so small that no account has been taken of it.

In the column "Perturbations by Venus" are given the perturbations of Mercury and of the earth, and also their differences. Since the phenomena of contact depend entirely upon relative position, only the difference of perturbations need be considered.

The column $\log r$ gives the logarithm of the radii vectores of Mercury and the earth for the times given in the second column, uncorrected for aberration. In strictness they should be corrected for the aberration times like the longitudes and latitudes. This correction has been made in the subsequent work, but not in the tabular exhibit.

Theory of the correction for aberration when heliocentric elements are used.—The general basis of this theory has already been given. But the following more careful and rigorous examination of it may be desirable.

Let us put

$$l_0, b_0, r_0,$$

the absolute longitude, latitude, and radius vector of Mercury for a certain moment of computation from the tables, which moment we take as the zero of time:

l', b', r', the hourly variations of these quantities;

L₀, B₀, R₀, the absolute longitude, latitude, and radius vector of the earth for the same moment of time.

L', B', R', their hourly variations;

 τ_1 the time required for light to pass from the sun to the planet;

 τ_2 the time required to pass from the sun to the earth.

We shall then have, with all necessary approximation,

$$\tau_3 \equiv \tau_2 - \tau_1$$

for the time required for light to pass from the planet to the earth.

We shall then have for any time t after the moment of computation values of the absolute co-ordinates of the two bodies given by equations of the form

$$l \equiv l_0 + l't$$

 $L \equiv L_0 + L't \text{ etc., etc.}$

The phenomena of contact are determined by the condition that a ray of light leaving the limb of the sun at a certain moment shall graze the surface of the planet at a moment τ_1 later, and reach the eye of the observer yet later by the time τ_3 . Hence, if we put t_0 for the interval after the zero of time when the required ray of light left the sun, it will reach the planet at the moment $t_0 + \tau_1$, and the observer at the moment $t_0 + \tau_2$. Hence the time t_0 is to be determined by the condition that the position of some point on the planet at the moment $t_0 + \tau_1$ and of some point on the earth at the moment $t_0 + t_2$ shall be in the same straight line, or be in some definite relative position not differing much from a straight line.

The co-ordinates of the two bodies at these moments will be, For the planet,

$$l_0 + l' (t_0 + \tau_1) \beta_0 + \beta' (t_0 + \tau_1) r_0 + r' (t_0 + \tau_1)$$

And for the earth,

$$\begin{aligned} & L_0 + L' (t_0 + \tau_2) \\ & B_0 + B' (t_0 + \tau_2) \\ & R_0 + R' (t_0 + \tau_2) \end{aligned}$$

Now the condition of contact is that the position of the three bodies at the times thus indicated shall be such that the observer shall be on the cone surrounding the sun and planet. Assuming t_0 to be determined by this condition the actual moment of contact as seen by the observer will be $t_0 + \tau_2$.

If then we put

$$t_1 \equiv t_0 + \tau_2$$

If also we put

$$l_{1} \equiv l_{0} - l' (\tau_{2} - \tau_{1})$$

$$\beta_{1} \equiv \beta_{0} - \beta' (\tau_{2} - \tau_{1})$$

$$r_{1} \equiv r_{0} - r' (\tau_{2} - \tau_{1})$$

The condition of contact will be that at the time t_1 the co-ordinates determined by the equations

$$l = l_1 + l' t_1$$

$$\beta = \beta_1 + \beta' t_1$$

$$r = r_1 + r' t_1$$

$$L = L_0 + L' t_1$$

$$B = \beta_0 + B' t_1$$

$$R = R_0 + R' t_1$$

shall fulfill the required condition.

We may now describe the third and fifth columns of the table as giving the values of the quantities l_1 , L_0 , b_1 , B_0 and their differences. The quantities l, b, r, L, B, R, are now of the same general form with that assumed in § 1 of this part as the basis of the investigation. The time t_1 takes the place of t, and the co-ordinates l_1 , β_1 , etc., take the place of the co-ordinates at the zero of time. Hence, the equations of § 1 may be applied unchanged, merely taking t_1 as the unknown quantity instead of t Moreover, the time t_1 will express the local time of actual contact at the earth's surface.

The computation of the several quantities in this table were all made in duplicate, and in case where the discrepancy approximated to the tenth of a second the computations were re-examined and reconciled. Where the difference did not exceed two or three hundredths of a second, and might, therefore, be attributed to the accumulation of accidental errors in taking out numbers from the tables, the mean of the two results was adopted. The form in which the work is presented is such as to render very easy the discovery of any accidental error. The aberration time in the last coumn is equal to $\tau_1 - \tau_2$.

Positions of Mercury and the Earth, from Leverrier's Tables.

Date.	Pari Greenv	s M.	Т. М. Т.	M	ongi Ierc Ear	tude ury, th.	Hourly Motions.	Latitude Mercury, Earth.	Hourly Motions.	Pert. by Venus.	Log r Mercury, Earth.	Aberration time.
					Di	ff.		Diff.				
	h.		a .		,	٠,	•,,	, ,,	"	,,		÷
1677. Nov. 6	//. 21	9	21	44	54	29.63	908.75	+ 2 54.49	+ 111.58	- 16.51	9.4963396	337*.0
	21	0	0	45	36	0.34	150. 9 9	- 0.40	+0.01	- 3.85	9.9953667	- 85".07
	20	54	23.0	-	41	30.71	757.76	+ 2 54.89	+ 111.57	- 12.66		
,1677.		_		46		32.62	912.55	+ 14 4.87	+ 112.05	- 16.78	9 - 4954334	337*-4
Nov. 7	3	9	2 t O	45	25 51	6.07	151.01	- 0.35	+0.01	- 10.78 - 3.81	9.9953441	- 85".50
	_					-	-				7.775544-	- 3
	22	54	22.6	+	34	26.55	761.54	+ 14 5.22	+ 112.04	- 12.97		
1690. Nov. 9	19	54	21	48	47	11.93	917.59	+ 30 18.95	+ 112.70	- 1.79	9.4942272	337*.8
	19	45	0	48	25	4.94	151.17	+ 0.24	0.00	- 1.40	9.9951279	– 86".In
	19	39	22.2	+	22	6.99	766.42	+ 30 18.71	+ 112.70	- 0.39		
.1607.						4	0		1	1	9.4983092	336*.2
Nov. 2	19	53	0	42 41	9 40	21.16 31.77	900.38 150.69	- 19 6.65 + 0.59	0.00	+ 4.92	9.9957905	- 84".of
	19	43	39	•							, ,,,,,,,,	
	19	38	2.8	-+-	28	49.39	749.69	- 19 7.24	+ 110.55	+ 2.75		
1723. Nov. 9	2	36	0	46	6	49.01	010.00	+ 7 46.12	+ 111.73	- 9.79	9.4960269	337°.1
-	2	26	39	46	40	41.89	151.01	+ 0.72	o.co	+ 1.13	9.9953517	- 85".11
	2	21	1.9	_	33	52.88	758.99	+ 7 45.40	+ 111.73	, - to.92		ı
1736.			•	_		-					0	
Nov. 10	19	9	21	48	24	57.80	915.12	+ 23 35.71	+ 112.36	- 4.39 - 6.59	9.4948091 9.9951362	337°.6 - 85′′.8
	19	0	0	49	13	54.98	151.17	- 0.03			4.443.30.	
_	18	54	22.4	-	48	57.18	763.95	+ 23 35.74	+ 112.36	+ 2.20		i
1736. Nov. 10	21	9	21	48	55	29.01	916.27	+ 27 19.70	+ 112.54	- 4.41	9-4945279	337°-7
	21	0	0	49	18	57 - 42	151.17	- 0.03	0.00	- 6.59	9.9951279	- 85".9
	20	54	22.3		23	28 41	765.12	+ 27 19.73	+ 112.54	+ 2.18		
1736.		•										
Nov. 11	0	9	21	49 49	41 26	20.79 30.89	918.02 151.18	+ 32 57.03	+ 112.72 0.00	- 4.26 - 6.59	9.4941174	337°.8 - 86″.11
10	Ü	Ü	Ü	-							4.9933-	
	23	54	22.2	+	14	49.90	766.84	+ 32 57.03	+ 112.72	+ 2.33		
1740. May 2	9	59	21	222	39	7.89	440.71	+ 19 9.63	- 54.11	- 2.87	9.6534729	278*.5
	9	50	o	222	41	41.26	145.13	- 0.32	0.00	+ 1.00	0.0039904	- 34".11
	9	45	21.5	-	2	33 - 37	295.58	+ 19 9.75	- 54.11	- 3.87		
1743					_	28.75	9.9.6	- 23 5.59	+ 110.20	± ** **	9.4987932	335*.6
Nov. 4	20	31	21 0	42 42	9 33	11.44	898.46 150.69	- 23 5.59 - 0.66	-0.0I	+ 15.72 + 3.66	9.9958021	- 83".7
				•								! - ·
••••	20	16	24.4	. –	23	42.69	J47 · 77	- 23 4.93	+ 110.21	+ 12.06		!
1743. Nov. 5	o	9	21	43	3		901.04	— тб 24.89	+ 110.63	+ 15.72	9.4981719	336•.3
4	o	0	О	42	42	18.97	150. 7 0	- o.69	-0.01	+ 3.66	9.9957866	- 84".10
	23	54	23.7	+	21	38.38	750.34	- 16 24.20	+ 110.64	+ 12.06		
1753. May 5	22	, -	0	226	1 =	15.51	434 - 31	- 6 13.85	- 53.33	4.46	9.6566337	2764.7
y 5	22	15	39	225		0.04	144.93	+ 0.16	0.00	+ 2.89	0.0043322	
·					-		•	- 6 t4.ot		-		
1756.	22	1	2.3	_	•0	15.47	239 41	- 0 14.01	- 53 33	- 7 ·3 5		
Nov. 6	13	39	21	44	-	13.06	904.63	- 6 28.48	+ 111.11	- 10.56	9.4973108	3361.6
	13	30	0	45	7	37.97	150.87	+ 0.17	0.00	- 1.91	9.9855457	. — 84″.5
•	13	24	23.4	-	33	24.91	753.76	- 6 28.65	+ 111.11	- 8.65		i
1756. Nov. 6	19	3	21	15	55	47.14	908.22	+ 3 32.45	+ 111.55	- 10.62	9.4964505	33(*.9
	18	3 54	0	45	21	12.47	150.88	+ 0.17	0.00	- 1.90	9.9955229	- 84".9
												İ
1769.	18	45	23.1	+	34	34.67	757 - 34	+ 3 32.28	-T 111.55	- 0.72		i i
Nov. 9	7	31	21	47	11	20.44	910.90	+ 11 40.75	+ 111.84	- 9.35	9.4958061	337*.1
	7	22	0	47	44	11.23	151 #02	- 0.45	0.00	+ 2.71	9.9953103	- 85".20
		16	22.9	. –	32	50.79	759.88	+ 11 41.20	+ 111.84	- 12.06		

TRANSITS OF MERCURY, 1677-1881.

Positions of Mercury and the Earth, etc.—Continued.

Date.	Paris M. T. Greenwich M. T.			Longitude Mercury, Earth.		Hourly Motions.	Latitude Mercury, Earth.	Hourly Motions.		Pert.	Log r Mercury,	Aberration time.	
			_		Dif	r.		Diff.			Venus.	Earth.	
1769. Nov. 9	h. 12	m. 18	8. 21	o 48	,	,,	913.87	, , , , , , , , , , , , , , , , , , ,	.1	,,	"		
1101. g	12	9	2: 0	47	24 56	4.37	151.05	+ 20 36.02	_	0.00	- 9.57 + 2.76	9.4951008	337°·4 - 85′′.64
	12	3	22.6	: +	27	50.73	762.82	+ 20 36.46		112.25	- 12.33	, ,,,,	
1782.		-					•			-			
Nov. 12	3	9	21 O	50 50	16 25	51.05	917.74	+ 33 17.15	-+-	0.00	+ 16.80 + 6.65	9.4941700	337°.8 — 86″.o8
	. 2		22.2		 8	20.51	766.55	+ 33 16.84		112.34		9.995935	
1782.	-	54			Ĭ					•	+ 10.15		
Nov. 12	. 4	9	21	50 50	32 27	9.12	918.31	+ 35 9.65 + 0.31	+	0.00	+ 16.80 + 6.65	9-4940354	337°.8 — 86″.o8
	,		22.2	· .								y.yy 30 y 00	00 .00
1786.	3	54	22.2	+	4	26.37	767.12	.+ 35 9.34	+	112.38	+ 10.15		
May 3	15	9	21 0	223	34	7.91 46.17	440.28	+ 16 25.22 - 0.01	-	54.06 +0.01	- 5.09	9.6536747	278*.
				223	44		145.12				- 10.28	0.0040243	
1786.	14	55	21.8	_	10	38.26	295.16	+ 16 25.23	_	54.07	+ 5.19		
May 3	20 20	9	21 0	224	10	47.77	439.10	+ 11 55.51	-	53.92	- 5.04	9.6542616	278*.2
				223	56	51.75	145.10	+ 0.02			- 10.31	0.0040451	- 33"-94
1789.	19	55	21 8	+	13	56.02	294.00	+ 11 55.49	_	5 3.93	+ 5.27		
Nov. 5	1	4	21	43	7	45.06	899.21	- 19 58.02	+	110.41	+ 4.40	9.4986204	336°.0
	o	55	o	43	3 5	20.93	150.71	+ 0.36	_	0.00	- 7.51	9.9957774	— 83″.gc
1789.	0	49	24.0	_	27	35.87	748.50	— 19 58.38	+	110.41	+ 11.91		:
Nov. 5	5	51	21	44	19	33 - 74	902.56	- 11 9.07	+	110.86	+ 4.28	9.4978112	336*.3
	. 5	42	٥	43	47	21.62	150.73	+ 0.39		0.00	7.49	9 - 9957570	_ 84″. ₃₃
1000	5	36	23.7	+	32	12.12	751.83	- 11 9.46	+	110.86	+ 11.77		
1799. May 6	21	9	31	226	24	56.07	435.30	- 3 24.56		53 - 45	+ 3.95	9.6561498	276°.7
	21	0	0	226	44	44.38	144.92	- 0.12	-	0.00	- 8.84	0.0043103	
	20	55	23.3	-	19	48.31	290.38	3 24.44	-	53-45	+ 12.79		
1799. May 7	4	29	21	227	18	2.55	433.75	- 9 55.88	_	53.26	+ 3.91	9.6569333	276°.7
	4	20	0	227	2	27.4ú	144.90	- 0.15		0.00	- 8.8o	0.0043400	_ 33".36
•	4	15	23.3	+	15	35.09	288.85	- 9 55.73	_	53.26	+ 12.71		
1802. Nov. 8	23	54	21	46	59	9.22	909 10	+ 7 18.71	+	111.62	- 3.77	9.4962414	337".1
	23	45	0	46	24	24.60	151.32	- 0.31		+0.01	- 1.48	9.9955122	_ 85".og
_	23	39	22.9	+	34	44.62	757.78	+ 7 19.02	+	111.61	- 2.29		
1802. Nov. 9	o	54	21	47	14	18.47	909.74	+ 9 10.36	+	111.74	- 3.81	9.4960877	337°.1
	o	45	0	. 46	26	55.55	151.32	- 0.30		+0.01	- 1.47	9 9955081	- 85".15
•	0	39	22.9	+	47	22.92	758.42	+ 9 10.66	+	111.73	- 2.34		1
1822. Nov. 4	13	12	21	41	52	47-41	894.05	- 32 1.98	+	109.77	+ 18.53	9.4998451	335°.6
	. 13	3	0	42	5	14.76	150.56	- o.4t		0.00	+ 6.29	9.9960157	- 84".33
	12	57	24.4		12	27.35	743-49	- 3 ² 1.57	+	109.77	+ 12.24	•	•
1822. Nov. 4	. 15	54	21	42	33	5.10	896.02	- 27 5.89	+	110.02	+ 18.62	9.4993629	335°.6
	15	45	0		12	1.25	150.56	- 0.41		0.00	+ 6.26	9.9960042	- 83".51
	15	39	24.4	+	21	3.85	745.46	- 27 5.48	+	110.02	+ 12.37		
1832. May 4	21	9	21	224	35	22.48	439.70	+ 12 55.23	_	53.99	- 3.11	9.6539 70 6	278°. I
	21	0		224		21.96	145.10			0.00	+ 8.89	0.0040566	- 33".99
	20	55	21.9	_	14	59:48	294.60	+ 12 54.88	_	53.99	- 12.00		; i
1832. May 5	2	51	21	225	24	23.24	428.12	+ 6 54.02	_	53.79	- 3.12	9.6547443	277°.6
. , ,	3	42	0	225	6	34.12	145.07	+ 0.32		0.00	+ 8.89	0.0040844	- 33".78

Positions of Mercury and the Earth, etc.—Continued.

Date.	Pari Greenw			≥	ongi lerc Ear	tude ury, th.	Hourly Motions.	Me	titude rcury, arth.		lourly otions.		ert. by	Log r Mercury, Earth.		erration lime.
	I				Dif	f.		1	Diff.			• •	enue.	Marti.		
1845. May 8	h.	1n.	₽. 21	o 227	, 35	31.26	" 434·49	. - 8		i –	53.35	+	3.14	9.6565614	_	277*.1
.0	4	20	22.9	227 - -	53 17	22.92 51.66	289.59	— {	+ 0.19	 	53.35	+	4.53	0.0043575	_	33".46
1845. May 8	10	51 42	21 0	228	8 -21	33.40 45.59	433.15 144.88	- 13	+ 0.19	-	53.18	+	3.20 1.43	9.6572317 0.0043833	-	2761.5 33".27
1848. Nov. 8	23	37 16	23.5 21	46	39	5.25	906.39	+ 4	49.79	- +	53.18	+ : -	4.63 20.42	9.4968828		3,64.7
.0.0	23 23	7	23.3	47 —	13 34	37·74 32·49	755·50	+ 0	+ 0.30	+	111.29	_	6.79	9.9955213	-	84".75
1848. Nov. 9	4	39 30	21 0	48 47	o 27	33.9t 9.84	909.91 150.92		+ o.35	+	111.76 +0.01	_ _ _	20.49 6.74	9.4960434 9.9954983	_	337 °. 1 85″.20
1861. Nov. 11	17	24 24	22.9 21	49	33 21	24.07 10.60	758.99 912.72	+ 10	35.88	+	111.75	+	9.01	9-4953715		337*·4
	17	15 9	o 22.6	49	50 29	54.92 44.32	151.06 761.66	+ 19	36.17	 	112.00	+	4.60 ! 13.61	9.9952807	-	85''.52
1861. Nov. 11	21 21	24 15	21 0	50 50	22	6.25 59.14	915.15 151.07	+ 27	- 0.30	+	112.17 8.∞	+	9.03 4.57	9-4947957 9-9952642	 -	337*.6 85″.84
1868. Nov. 4	21 17	9 33	22.4 21	42	21 48	7.11 9.87	764.08 894.68	+ 27 - 29	14.93	+	109.85	+	5.24	9.4997015		335*.6
1868.	17	24 18	o 24.4	43 —	18	52.17	744.10	- 29	+ 0.14	+	109.85	+	0.98 	9.9959840	_	83".38
Nov. 4	21	3	0	43 43	42 16	40.19 11.63	897.35 150.59	- 22	+ 0.13	+	0,00	+	5.14 0.94	9.4990547 9.9959683	_	335*-9 83''.72
1878. May 6	' 20 0	57 9	24. I 21 0	225	26 14	28.56 45.63 59.46	746.76 439.81 145.09	+ 12		+	54.02 0.00	+ + -	6.08 4.16 3.72	9.6539212 0.0040746	 	278°.1 33′′.98
5 1878.	23	55	21.9	225	33	13.83	294.72	+ 12	6.62	· —	54.02	+	7.88			
May 6	3	24 15	0 22.0	225	38 55	33.78 51.13 17.35	439.06 145.04 294.02	 - + 9	- o.33	·	53.92 0.00 53.92	+ - +	7.87	9.6543012 0.0040878	_	278°.0 33″.9⊃
1878. May 6	10	54 45	21	226 226	33	20.02	437.30	+ :		 -	53.71	+	4.14	9.6551599 0.0041188	_	277*.6 33"·72
1881.	10	40	22.4	+	19	20.69	292.25		27.60	 - -	53.71	+	7.83	0.4081040		3364.2
Nov. 7	10	27 18	o 23.8	45 45 —	9 41 31	7·39 3·73 56.34	900.91 150.76 750.15	- 13 - 13	- o.28		0.00		3.20 9.23 12.43	9.4981949 9.9957346 -	-	84",13
1881. Nov. 7		9	21 0	1	34 45	39.92 19.96	902.05 150.70		57.68 - 0.28	+	110.79	_	3.13	9·4979994 9·9957273	_	336°.3 84″.25
1881. Nov. 7	11	54	23.7 21	-	10	40.04	751 · 35	i	57.40		110.78			9 · 4973155		336*.6
1101. 7	15	45 36	0 23.4	45	54 34	22.52	753.79	l -	- 0.25 18.13		0.00	+	9.26	9.9957120	-	84".57

§ 4.

Computation of tabular times of contact and other quantities.

In order to afford the most convenient method of introducing any necessary correction, the principal numbers which occur in computing the tabular times of contact and other elements from the preceding formulæ are shown in the following table. Only those lines in which the results are completely carried out are to be regarded as definitive; the others were provisional computations made for the purpose of approximately determining the tabular times. They are inserted to make more easy the discovery of accidental errors, or the introduction of any changes in the elements.

The second column of the table gives the assumed times of computation.

Column Δt gives the computed correction to the assumed time.

Column t gives the definitive Greenwich mean times of geocentric internal contact thus obtained.

Date.	G. M. T.	r	\boldsymbol{c}	ω	1t	t		A	D	K
1677.	h .			0 / //	h	h m				0 1 11
Nov. 6	21.55	2080.73	2087.26	•	"	n m		•	•	•
	21.55868	2080.75	2080.83	186 32 51.9	11000. +	21 33	31.6	+ 7.482	- 42.784	316 7 35.0
	21.70	2080.80	1976.39	3- 3- 3	' ·		•	' ' '		3 . 35
		•	,, ,,							
Nov. 7	2.80	06	0. 6-							
Nov. /		2086.29	2083.60			0		-6.6		
	2.80371	2086.27	2086.36	336 45 37.1	00012	2 48	12.9	+ 26.673	+ 34.025	146 53 30.0
	3.0	2086.48	2232.72							
1630. Nov. o			!						,	-9
Nov. 9	19.44813	2094.16	2094.25	301 32 44.8	+ 00018	19 26	52.0	+ 59.531	+ 25.352	183 4 15.8
	19.45	2094.16	2095.18		i					
1697.					!			1		
Nov. 2	19.71345	2067.27	2067.42	33 45 23.6	00027	19 42	47 - 4	- 15.010	+ 55.233	124 56 57.8
1	19.7275	2067.30	2075.32					ĺ		
1723.									1	
Nov. 9	2.44417	2082.33	2085.50							
	2.44846	2082.32	2082.43	192 55 49.3	+ .00015	2 26	55.0	+ 2.750	- 44.910	315 16 1.8
1736.	1		:		1			1		
Nov. 10	21.00	2092.37	2161.56		ļ					
	21.17416	2092.55	2092.69	232 27 32.1	+ .00037	31 10	28.3	- 48.541	- 70.136	304 11 37.3
	21.23	2092.56	2083.03	•	1			İ	,	
	23.80	2095.05	2088.66					1		
•	23.81727	2095. to	2095.19	290 58 7.2	00024	23 49	1.3	+ 80.410	+ 26.657	210 14 28.0
	24.00	2095.24	2:68.08							
1740.		_			:				'	
May 2	9.69773	1173.38	1173.35	260 30 37.0	00029	9 41	50.8	- 264.643	- 159.533	257 29 42.4
i	9.73333	1173.36	1169.75		1					
1743.			'		1					
Nov. 4	20.23333	2063.79	2068.00		1	•		ļ	1	
	20.23)00	2063.80	2063.90	137 19 42.0	+ .οωι6	20 14	24.2	+ 43.131	- 28.145	335 28 18.5
i	20.3666 <i>7</i>	2063.95	1985.47		:					
Nov. 5	0.75210	2069.14	2069.34	25 48 35.4	00032	0 45	6.4	- 6.966	+ 50.749	128 4 20.5
	0.8	2009.20	2099.52						Ī	
1753.	į		1		!				ŀ	
May 5	22.00417	1158.64	1157.56	•	, 1					
	22.00775	1158.64	1158.60	18 50 35.2	4 .00014	22 5	52.4	- 60.511	+ 89.911	325 4 38.0
1756.		1						!	ļ	
Nov. 6	11.45828	2073.71	2073.85	169 4 1.0	+ .00019	13 27	30.5	+ 19.008	- 37.733	321 10 35.8
	13.5	2073-75	2042,09		1					
									1	
İ	18.80248	2079.72	2079.76	354 9 52.7	vooo6	18 53	32.7	+ 15.630	+ 39.040	139 40 30.0
	18.9	2079.73	2085.58		1				1	

Computation of Tabular Times of Contact, etc.—Continued.

Date.	G. M. T.	r	c	ω	Δt	t	A	D	K
1769.	h.	"	,,	0 / "	h	h m s			• ' "
Nov. 9	7.36667	2083.78	2091.81		1			! !	
1	7.37836	2083.80	2083.88	199 42 4.4	+ .00012	7 22 42.5	- 2.708	47.375	314 15 26.4
	12.15	2088 70	2078.58	323 38 41.7	•	12 9 54.2	+ 35.832	+ 30.774	156 35 36.8
1782.	12.10303	2000.73	1	323 30 4-17		1	33.032] 30.774	130 33 30.0
Nov. 12	2.69933	2094.55	2094.64	249 35 2.5	+ .00056	2 41 59.6	- 153.342	- 126.609	294 58 26.8
ı	2.7	2094.54	2094.53					1	
	3.83665	2095.63	2095.74	273 51 35.8	00067	3 50 9.5	+ 183.090	+ 71.046	261 44 59.8
! !	3.85	2095.62	2097.94	,,,	•	1	, , ,		11 37
1	4.0	2005.77	2126.10					1	
1786. May 2		***** 30 :	*****			!		i	
May 3	15.00755	1172.39	1173.90	237 8 38.0	00015	15 0 26.6	- 142.233	- 57.709	183 48 35.3
l	1 1	1			·	!			3 1 30 3
	20	1169.57	1100.39					!	!
i	20.35	1169.37	1169.11	323 26 16.9	+ .00020	20 21 0.5	+ 48 000	+ 146.747	205 50 46 2
1789.	20.35106	1169.37	1169.33	323 20 10.9	1 .00.20	20 21 0.5	, 40.909	1 -40./4/	305 59 46.2
Nov. 5	0.88513	2065.05	2065.22	144 24 43.0	+ .00025	0 53 7.4	+ 36.719	- 30.583	331 10 25.5
1	0.91667	2065.10	2044.02			 			
i	!	2020 27	2044 75	· · · · · · · · · · · · · · · · · · ·					1
!	5.73863	2070.71	2044.75 2070.83	18 43 56.T	00059	5 44 16.9	- 1.062	+ 47-533	130 57 35.8
1799.		1				i			
May 6	21.16260	1160.86	1160.82	169 25 13.2	00014	21 9 44.9	- 11.421	- 113.907	136 1 17.7
	21.16667	1160.86	1159.70						
May 7	4.33333	1157.21	1108.73				1		i i
1	4.5	1157.13	1154.25						
:	4.510,6	1157.12	1157.08	31 32 2.6	+ .00014	4 30 37.8	- 81.868	+ 80.965	332 31 13.2
1802. Nov. 8	23.68581	2081.16	2081.27	348 1 27.1	- 00014	23 41 8.4	+ 19.307	+ 37.377	142 52 56.2
	23.75	2081.22	2130.34	340 0 0711		-3 4	, ,,,,,	37.377	J- J- J- J- J- J- J- J- J- J- J- J- J- J
1822.	1	1						,	
Nov. 4	13.05	2057.08	2061.79				+ 83.288		27 54 24.8
	13.06240	2057.09	2057.19	111 1 36.4	+ .00027	13 3 45.6	03.250	- 23.555	2/ 54 24.0
1	15.75	2060.42	2059.01						
	15.75407	2060.40	2060.51	52 3 34.6	00030	* 15 45 13.6	- 46.918	+ 72.728	119 26 20.0
1832. May 4	21.0	1171.02	1187.22	,				• '	
11119	21.06294	1170.99	1171.00		+ .00004	21 3 46.7	- 100.187	- 70.782	156 49 50.01
		4	I	i e				:	
May 5	3.75	1167.30	1146.37		 				
	3.83183	1167.26 1167.25	1167.22 1171.86	339 28 19.6	+ .00016	3 46 55.2	+ 7.228	+ 123.242	311 39 19.2
1845.		· · · · ·	,						
1845. May 8	1 !	1159.06	1176.05	1	١.			I -	
ı	4.40385	1159.02	1159.06	155 5 31.7	+ .00021	4 24 14.6	+ 18.948	- 129.984	132 50 37.3
1	10.82597	1155.74	1155.75	45 54 45.2	+.00017	10 49 34.1	— 111.496°	+ 70.941	344 53 45-1
+	10.86667	1155.78	1165.48						
1848.	i i			0	!			l	•
Nov. 8	23.11174	2076.68 2076.68	2076.80 2073.08	181 21 1.1	+ .00016	23 6 42.8	+ 10.624	- 41.384	319 15 26.6
1	25.1100/	2070.00	20/3.00						T.
Nov. 9	4.46797	2082.52	2082.64	341 55 25.0	00016	4 28 4.1	+ 23.041	+ 35.778	146 20 57.9
1	4.5	2082.53	2106.87	i		! 	! }	· {	
1861. Nov. 4	17.25	2086.77	2137.10	l					
1	17.25	2080.77	2086.98	214 40 10.0	+ .00019	17 20 21.6	 	- 54.320	11 24 25.7
1	17.35	2086.87	2080.87				•	: · · ·	
1	1 1					• .			1

Computation of '	Tabular	Times	of'	Contact,	etc.—Continued.
------------------	---------	-------	-----	----------	-----------------

Date.	G. M. T.	r	\boldsymbol{c}		ω	Δt	t	1	A	D	K	
1861. Nov. 4	h. 21.3			0	, ,,	h	h m	s i	s.			,,
X01. 4	21.30042	2000.85	2090.71	308	46 49.7	00019	21 18	o.8 , +	- 49.718	+ 27.464	173 0	20.0
1868.		, , ,	, , ,			•		i '				
Nov. 4	17.46188	2058.08	2058.19	121	51 3.2	+ .00023	17 27	43.6	- 61.705	- 23.889	357 34	42.6
	17.46667	2058.09	2055.86									
			ļ							1. 1	•	
	20.99953	2062.41	2062.53	41	14 33.4	00025	20 59	57 5 -	25.448	+ 60.664	123 58	43.5
	21.0	2062.43	2062.76							i :		
1878.	1	0	60 (-0 4			!		0		
May 6		1169.48	1174.68		58.6				74 94	— 81.96 <u> </u>	229 30	
	3.26833	1169.47	1169.52	• •		\$1000. 	3 10	6.6		Î		
	10.73233	1165.36	1165.04			+ .00114				۱ ا		
	10.75	1165.35	1170.02	352	45.2	01649	10 44	0.5 -	17.26	+ 110.13	210 11	
1881.			i					1	•	1	•	
Nov. 7	10.3	2067.97	2071.12					•		!		1
	10.30411	2067.98	2068.10	157	41 16.2	+ .00021	10 18	15.54	- 26.458	- 34.773	326 16	50.0
	15.59374	2074.06	2074.13	5	30 o.3	00005	15 35	37.3	- 8.163	+ 42.705	136 42	17.4
	15.6	2074.08	2078.81							i l		

Special Computation of Transit of 1782 for Paris and Cambridge.

PARIS.

Date.	G. M. T.	r + ⊿r	c .		ω		Δt		t	
1782. Nov. 12	h 2.64928	2094.50	2094.55	 0 248	- , 30	"	h + .∞032	h 2	m 38	8 58.6
i	3.88312	2095.67	2095.63	274	55	32	+ .00025	3	53	0.1
1	3.99366	2116.92	2116.98	277	11	8	00030	3	59	36.1
			CAMBRI	DGE	•					
					_	-				
Nov. 12	2.67479	2094.49	2094.56	248	52	53	+ .00014	2	40	30.8
	3.87940	2095.66	2095.71	274	40	29	+ .00032	3	52	47.0
	3.99210	2116.92	2116.94	276	59	6	00010	3	59	31.2

§ 5·

Symbolic corrections to the tabular relative positions of Mercury and the earth in terms of corrections to elements.

We next require the change in the time of geocentric contact produced by changes in the elements. If we first take as the co-ordinates for the position of Mercury,

- θ , the longitude of its node;
- u, its argument of latitude;
- i, the inclination of its orbit;

we shall have the following values of l and b:

$$l = 0 + u_1$$

$$\sin b = \sin i \sin u$$
where $\tan u_1 = \cos i \tan u$

Hence differentiating and substituting for $\frac{\cos^2 u_1}{\cos^2 u}$ its value, $\sec^2 b$,

$$\delta l = \delta \theta + \cos i \sec^2 b \, \delta u$$

$$\delta b = \sin i \sec b \cos u \, \delta u$$

Owing to the minuteness of the latitude during a transit, we may put sec b = 1. We then have, with sufficient approximation,

$$\delta l = \delta \theta + \cos i \, \delta u$$

$$\delta b = \sin i \cos u \, \delta u$$

We need not vary i because it cannot be corrected from transits.

From the equations (1)" of §1 we have

$$c \equiv (l - l') \cos \omega + (b' - b) \sin \omega$$
.

The earth's latitude b' may be assumed as so well known as not to need correction. So, differentiating this last equation, we have

$$\delta c = \cos \omega \, (\delta l - \delta l') - \sin \omega \, \delta b$$

Substituting for δl and δb their values just given

$$\delta c \equiv \cos \omega \, (\delta \theta - \delta l') + (\cos \omega \, \cos i - \sin \omega \, \sin i \, \cos u) \, \delta u$$

During a transit at the ascending node (a November transit) the value of u must be contained within the limits $\pm 5^{\circ}$, and during one at the descending node (a May transit) within the limits $180^{\circ} \pm 3^{\circ}$. We may therefore suppose $\cos u$ equal to + 1 during a November transit, and to - 1 during a May transit.

The preceding expression will thus become:

$$\delta c \equiv \cos \omega (\delta \theta - \delta l') + \cos (\omega + i) \delta u \text{ for November.}$$
 $\delta c \equiv \cos \omega (\delta \theta - \delta l') + \cos (\omega - i) \delta u \text{ for May.}$ (2)

We have next to express δu in terms of the corrections of such of the elements of the orbit of Mercury as admit of correction from observed transits. We shall however first transform the equations, so that the longitude in orbit shall enter instead of u, putting

v, the longitude in orbit, counted from a departure point in its moving plane. We shall then have

$$\delta u \equiv \delta v - \cos i \delta \theta$$

Substituting this value of δu in (2)

$$\delta c = \{\cos \omega - \cos i \cos (\omega + i) \} \delta \theta - \cos \omega \delta l' + \cos (\omega + i) \delta v$$

= \sin (\omega + i) \sin i \delta \theta - \cos \omega \delta l' + \cos (\omega + i) \delta v

in which i is to be taken positive in a November and negative in a May transit.

The coefficients of δv and $\delta l'$ are so nearly identical that separate values of these quantities cannot be obtained. Indeed, it is evident that, since the phenomena depend only upon the relative positions of the earth and Mercury, it is not possible to obtain the absolute position of either. We may, in fact, express the last equation in the form

$$\delta c = \sin (\omega + i) \sin i (\delta \theta - \delta l') + \cos (\omega + i) (\delta v - \cos i \delta l')$$
 (3)

Supposing the corrections $\delta\theta$, $\delta l'$, and v constant, we could, from a system of equations of this form, obtain values of the two expressions $\delta\theta - \delta l'$ and $\delta v - \cos i \delta l'$. When, from other data, the value of $\delta l'$ is found, its substitution will give the required values of $\delta\theta$ and δv .

Since observations of contact give only the time when the relative position of the bodies have a certain relation to their semi-diameters, namely, the moment at which $c - \mathbf{r} = 0$, it is necessary to include $\delta \mathbf{r}$ as well as δc in the equations. An approximate value of \mathbf{r} from the equation (3) of § 4, is, for internal contact,

$$\mathbf{r} = \frac{R' - R}{r} - \frac{R'}{r'}$$

R and R' being the angular semi-diameters of the sun and Mercury at distance unity.

We have by differentiating this expression

$$\delta \mathbf{r} = \left(\frac{1}{r} - \frac{1}{\hat{r}'}\right) \delta \mathbf{R}' - \frac{1}{r} \delta \mathbf{R},$$

or reduced to numbers

FOR A NOVEMBER TRANSIT,
$$\delta \mathbf{r} \equiv 2.18 \ \delta R' - \frac{1}{3}.19 \ \delta R$$
FOR A MAY TRANSIT,
$$\delta \mathbf{r} \equiv 1.22 \ \delta R' - 2.21 \ \delta R$$
(4)

For external contacts we have only to change the sign of δR , obtaining

$$\delta \mathbf{r} = 2.18 \, \delta \mathbf{R}' + 3.19 \, \delta \mathbf{R}$$

$$\delta \mathbf{r} = 1.22 \, \delta \mathbf{R}' + 2.21 \, \delta \mathbf{R}$$
 (5)

In the equation (3) the absolute residual is δc , or the correction to the tabular distance of centers. But, in practice, it may be more convenient to make use of times of contact. The equations (1)" give, by differentiation, and omission of the change in b', which is insensible,

$$\frac{dc}{dt} = \cos \omega \left(\frac{dl}{dt} - \frac{dl'}{dt} \right) - \sin \omega \frac{db}{dt}$$

So near the node as a transit of Mercury can be observed we may put

$$\frac{dl}{dt} = \frac{dr}{dt} \cos i$$

$$\frac{db}{dt} = \frac{dv}{dt} \sin i$$

which will give

$$\frac{dc}{dt} = \cos (\omega + i) \frac{dv}{dt} - \cos \omega \frac{dl'}{dt}$$

i being, as before, positive at the ascending node (November) and negative at the descending node (May). Since

$$\delta c = rac{dc}{dt} \, \delta t$$

the correction to the tabular time would be expressed by the equation

$$\left(\begin{array}{cc} \cos{(\omega+i)} & \frac{dv}{dt} - \cos{\omega} \frac{dl'}{dt} \end{array}\right) \delta t = \sin{(\omega+i)} \sin{i} \left(\delta \theta - \delta l'\right) \\ + \cos{(\omega+i)} \left(\delta v - \cos{i} \delta l'\right)$$

A somewhat more elegant form might be given this equation by dividing it throughout by $\cos (\omega + i)$, but since the probable errors of observations should be referred to the distance of centers rather than to the time we shall retain it in its present form.

From the tables of heliocentric positions to be given hereafter it will be seen that the values of $\frac{dv}{dt}$ for a November transit range between 901" and 925" per hour, the mean value being 913". By adopting this mean value as applicable to all the November transits we shall nearly always have the correct value of the co-efficient within one hundredth, and as the errors of Leverrier's tables can scarcely ever exceed 20 seconds, and the necessary probable error of all contact observations is an entire second or more, we may use this mean value. For the same reason we may use 441" as the value of $\frac{dv}{dt}$ for all May transits. Using also the mean values for the sun's change of longitude, and reducing the unit of time to seconds we shall have

FOR A NOVEMBER TRANSIT,

(0".253 cos
$$(\omega + i)$$
 - 0" 042 cos ω) $\delta t = \sin (\omega + i) (\delta \theta - \delta l') \sin i + \cos (\omega + i) (\delta v - \cos i \delta l')$

FOR A MAY TRANSIT,

(0".122
$$\cos (\omega - i)$$
 - 0".040 $\cos \omega$) $\delta t = \sin (\omega - i) (\delta \theta - \delta l') \sin i + \cos (\omega - i) (\delta v - \cos i \delta l')$

When, instead, of δc , we use $\delta c - \delta \mathbf{r}$, as we should, we add $\delta \mathbf{r}$ (4) and (4') to the second member of the equations, obtaining

FOR A NOVEMBER TRANSIT, INTERNAL CONTACT,

(0".253
$$\cos (\omega + i) - 0$$
".042 $\cos \omega$) $\delta t = \sin (\omega + i) (\delta \theta - \delta l') \sin i + \cos (\omega + i) (\delta v - \cos i \delta l') + 2.18 \delta R' - 3.19 \delta R$

$$(\delta \theta - \delta l') \sin i$$
(6)

A. P., PART VI-11

FOR A MAY TRANSIT, INTERNAL CONTACT,

(0".122 cos (
$$\omega - i$$
) - 0".040 cos ω) $\delta t = \sin (\omega - i) (\delta \theta - \delta l') \sin i + \cos (\omega - i) (\delta v - \cos i \delta l') + 1.22 \delta R' - 2.21 \delta R$ (7)

For external contacts we use the same equations, changing the sign of the coefficient δR .

For the value of the inclination i to be used we may take 7° o' throughout. Moreover, since $\cos i$ differs from unity by less than .01, we may suppose $\cos i$ $\delta l' = \delta l'$, as $\delta l'$ itself can never exceed 2''.

The next step in order is the substitution of the elements of the earth and Mercury and the mass of Venus for the indeterminate quantities in the second members of (6) and (7).

We put

g, the mean anomaly;
π, the longitude of the perihelion on the orbit;
e, the eccentricity;
λ, the mean longitude at any epoch;
δμ, the correction to the mass of Venus.

Then, in the case of Mercury,

$$\delta v = \delta \lambda \left\{ \begin{array}{l} 1 + 0.409 \cos g + 0.104 \cos 2g \\ + 0.027 \cos 3g + 0.007 \cos 4g \end{array} \right\}$$

$$+ \delta \pi \left\{ \begin{array}{l} -0.409 \cos g - 0.104 \cos 2g \\ -0.027 \cos 3g - 0.007 \cos 4g \end{array} \right\}$$

$$+ \delta e \left\{ \begin{array}{l} 1.97 \sin g + 0.50 \sin 2g \\ + 0.13 \sin 3g + 0.104 \sin 4g \right\}$$

$$+ \delta \mu \text{ (perturbations by Venus)}.$$

Also, for the earth,

$$\begin{array}{l} \delta l' = \delta \lambda' & \times (\mathbf{1} + 0.033 \cos g') \\ - e \delta \pi' & \times \mathbf{2} \cos g' \\ + \delta e' & \times \mathbf{2} \sin g \\ \cdot + \delta \mu & \times (\text{perturbations by Venus}). \end{array}$$

We may put, for brevity,

$$h = 0.409 \cos g + 0.104 \cos 2g + 0.027 \cos 3g + 0.007 \cos 4g$$

 $k = 1.97 \sin g + 0.50 \sin 2g + 0.13 \sin 3g + 0.04 \sin 4g$

and then find h and k from the following table, which includes all the values which g can have at the time of a transit.

		· ·
g	h	k
! .		
¦ o		
135	— O. 277	+ 0.985
136	— 0. 279	+ 0.958
137	- 0. 282	+ 0.931
138	— o. 284	+ 0.904
139	- o. 286	+ 0.877
140	— o. 288	+ 0.851
338	+ 0.465	— 1.308
339	+ 0.473	— 1. 260
340	+ 0.480	— I. 2II
341	+ 0.486	— 1. 16o
342	+ 0.492	— I. 10 7
343	+ 0.498	— 1.054
344	+ 0.503	— 0.999
345	+ 0.508	- 0.942
i		

If we also put

P₁, the periodic perturbations of the longitude of Mercury by Venus, P₂, the same for the earth,

h', k', the quantities corresponding to h and k in the sun's longitude, we shall have

$$\delta v = (\mathbf{1} + \mathbf{h}) \, \delta \lambda - \mathbf{h} \, \delta \pi + \mathbf{k} \, \delta e + \mathbf{P}_1 \, \delta \mu$$

$$\delta l' = (\mathbf{1} + \mathbf{h}') \, \delta \lambda' - \mathbf{h}' \, \delta \pi' + \mathbf{k}' \, \delta e' + \mathbf{P}_2 \, \delta \mu$$

If we also put

FOR A NOVEMBER TRANSIT,

$$n = 0^{\prime\prime}.253 \cos{(\omega + i)} - 0^{\prime\prime}.042 \cos{\omega}$$

FOR A MAY TRANSIT,

$$n = 0''.122 \cos{(\omega - i)} - 0''.040 \cos{\omega}$$

and suppose $\cos i = 1$, the general equations of condition (6) and (7) will reduce to

$$n\delta t = \sin (\omega \pm i) (\delta \theta - \delta l') \sin i$$

$$+ \cos(\omega \pm i) \{ (1+h) \delta \lambda - (1+h') \delta \lambda' - k \delta \pi + h' \pi' + k \delta e - k' \delta e' + (P_1 - P_2) \delta \mu \}$$

$$+ \begin{cases} 2.18 \\ 1.22 \end{cases} \delta R' - \begin{cases} 3.19 \\ 2.21 \end{cases} \delta R$$

If all the unknown quantities in this general equation could be independently determined from transits of Mercury, they might all appear with their secular variations in the equations of condition. But, owing to the fact that transits of Mercury can be observed only at or near two opposite points of the orbit, only certain linear functions of these corrections to the elements can be actually determined from the

observed transits. In fact, the coefficients h, k, h', and k' have each nearly the same value for all the transits occurring at the same point of the orbits. It is therefore necessary to find what linear functions of the elements the transits actually observed are best adapted to give, and to determine these functions alone, leaving the elements themselves to be subsequently determined from meridian observations. The following are the expressions of δv in terms of the corrections to the elements of Mercury at the times of the several transits. An approximate weight is assigned to each, expressing the suitability of the observations for determining the value of δv .

NOVEMBER TRANSITS.

a 677,	$\delta v = 1.495 \delta \lambda$	-0.495δ	$\tau = 1.081\delta e$	Wt. = 0
1690,	= 1.503	- 0.503	- 1.002	= 0
1697,	= 1.479	- 0.479	— 1.217	= 0
1723,	= 1 500	- 0.500	- 1.032	= 1
1736,	= 1.505	- 0.505	- 0.977	= 1
1743,	= 1.480	- 0.480	- I.22I	= 1
1756,	= 1.488	- 0.488	- 1.139	= 1
1769,	= 1.498	 0.498	— 1.056	= 1
1782,	= 1.508	- 0.508	 0.940	= 0
ı 7 89,	= 1.477	- 0.477	— 1.206	= 1
1802,	= 1.493	- 0.493	— 1.102	= 1
1822,	= 1.470	 0.470	- 1.277	= I
1848,	= 1.491	- 0.491	— I.II2	= 2
1861,	= 1.500	- 0.500	- 1.027	= 2
1868,	= 1.472	-0.472	— 1.26 5	= 2
1881,	= 1.483	- 0.483	— 1.185	= 2

MAY TRANSITS.

```
\delta v = 0.722\delta\lambda + 0.278\delta\pi + 0.975\delta e
                                                 Wt. = 0
1740,
                        + 0.288
                                    + 0.851
1753,
            = 0.712
                                                      = 1
1786,
            = 0.721
                        +0.279
                                    + 0.958
                                                      = 1
                                                      = 2
1799,
            = 0.712
                        + 0.288
                                    + o.851
1832,
            = 0.7.9
                        + 0.281
                                    + 0.942
                                                      =3
1845,
            = 0.711
                        + 0.289
                                    + 0.836
                                                      =3
1878,
            = 0.718
                        +0.282
                                    + 0.926
```

Corrections to the solar elements are to be included in each of the equations, but as their coefficients may be assumed constant for all the transits at one node, they are omitted in the above table. They are, however, included in the following mean values of $\delta v - \cos i \, \delta l'$ derived from the tables above.

In the equations we shall put

- V, the mean value of $\delta v \cos i \, \delta l'$ for the November transits;
- W, the mean value of $\delta v \cos i \, \delta l'$ for the May transits;
- V', W', the secular variations of V and W.

We then have

```
\begin{array}{l} V \; \equiv \; 1.487\delta\lambda \; - \; 0.487\delta\pi \; - \; 1.137\delta e \; - \; 1 \; 01\delta\lambda' \; + \; 1.19e'\delta\pi' \; + \; 1.58\delta e', \\ W \; \equiv \; 0.716\delta\lambda \; + \; 0.284\delta\pi \; + \; 0.896\delta e \; - \; 0 \; 97\delta\lambda' \; - \; 1.11e'\delta\pi' \; - \; 1.62\delta e', \\ V' \; \equiv \; 1.487D_t \; \delta\lambda \; - \; 0.487D_t \; \delta\pi \; - \; 1.137D_t \; \delta e \; - \; 1 \; 01D_t \; \delta\lambda' \; + \; 1.19D_t \; e'\delta\pi' \; + \; 1.58D_t \; \delta e', \\ W' \; \equiv \; 0.716D_t \; \delta\lambda \; + \; 0.284D_t \; \delta\pi \; + \; 0.896D_t \; \delta e \; - \; 0.97D_t \; \delta\lambda' \; - \; 1.11D_t \; e'\delta\pi' \; - \; 1.62D_t \; \delta e'. \end{array}
```

From these values of V and W we have the following expressions for $\delta v = \cos i \, \delta l'$ in the several transits:

NOVEMBER TRANSITS.

```
\delta v - \cos i \, \delta l' \equiv V + 0.008 \delta \lambda - 0.008 \delta \pi + 0.056 \delta e
1677,
                      = V + 0.016
                                       - 0.016
                                                   +0.135
1690,
                      = V - 0.008
1697,
                                       + 0.008
                                                   - 0.080
                      = V + 0.013
                                       - 0.013
1723,
                                                   + 0.105
                      810.0 + V =
                                       - 0.018
                                                   + 0.160
1736,
                      = V - 0.007
                                       + 0.007
                                                   — 0.084
1743,
                      = V + 0.001
                                       - 0.001
                                                   - 0.002
1756,
                      = V + 0.011
                                       - 0.0 I
                                                   + 0.081
1769,
                      = V + 0.021
                                                   + 0.197
1782,
                                       - 0.02 I
                      = V - 0.010
                                       + 0.010
1789,
                                                   -0.069
                      = V + 0.006
                                                   +0.035
1802,
                                       — 0.006
                      = V - 0.017
1822,
                                       十 0.017
                                                   - 0.140
                      = V + 0.004
1848,
                                       - 0.004
                                                   +0.025
                      = V + 0.013
1861,
                                       - 0.013
                                                   + 0.110
                      \equiv V - 0.015
1868,
                                       + 0.015
                                                   \equiv V - 0.004
1881,
                                       + 0.004
                                                   - 0.048
```

MAY TRANSITS.

```
\delta v - \cos i \, \delta l' \equiv W + 0.006 \delta \lambda - 0.006 \delta \pi + 0.079 \delta e
1740,
                        \pm W - 0.004
                                           +0.004
                                                        — 0 045
1753,
                        = W + 0.005
                                                        +0.062
1780,
                                           - 0.005
                        \pm W - 0.004
1799,
                                           + 0.004
                                                        -0.045
                        = W + 0.003
                                           - 0.003
1832,
                                                        + 0.046
                        \pm W - 0.005
                                           + 0.005
                                                        — 0.060
1845,
                        = W + 0.002
                                           - 0.002
1878,
                                                        + 0.030
```

The rigorous course would now be, in forming the equations of condition, to transfer the small terms in $\delta\lambda$, $\delta\pi$, and δe to the second members of the equations, and retain $\delta\lambda$, $\delta\pi$, and δe in a symbolic form in the solution. But the corrections to the elements of Mercury are so small that it can hardly be practicable to determine them without an uncertainty equal to their tenth part. Their coefficients in the equations are always much less than 0.1, and it is probable that in the final values of the unknown quantities these corrections would not exceed 0.01. We may, therefore, in the solution, neglect these small terms entirely.

The semi-diameters of the two bodies are also two quantities which cannot be separately determined. If we put

$$S = \delta R' - 1.60 \delta R$$

and replace $\delta R'$ by S in the general equations (6) and (7) we shall have

2.18
$$\delta R' - 3.19 \ \delta R = 2.18 \ S + 0.31 \ \delta R$$

1.22 $\delta R' - 2.21 \ \delta R = 1.22 \ S - 0.26 \ \delta R$

 δR , the correction to the semi-diameter of Mercury at distance unity, cannot exceed a small fraction of a second, the terms in δR may therefore be regarded as insensible, and we may consider the equations as determining S alone.

Finally, we shall put, for convenience in solving the equations,

$$N = \delta\theta$$
$$M = 10 \delta\mu$$

The equations for correcting the tabular times of contact will then be:

FOR A NOVEMBER TRANSIT.

$$n\delta t = \sin (\omega + i) N + \cos (\omega + i) V + \cos (\omega + i) \frac{P}{10} M$$

$$- 2.2 S$$
(3)

FOR A MAY TRANSIT.

$$n\delta t = \sin (\omega - i) N + \cos (\omega - i) W + \cos (\omega - i) \frac{P}{10} M$$

$$= 1.2 S$$
(3)

Here δt is the difference between the observed and tabular times of internal contact. This difference gives rise to another question for consideration.

Introduction of a term depending on hypothetical variations of the earth's rotation.

In several papers published in the American Journal of Science and Arts during the past twelve years the author has called attention to the fact that the mean motion of the moon is apparently subject to certain inequalities of long period which are not accounted for by any existing theory. He therefore suggested that this apparent inequality might really be due, not to the moon's motion, but to inequalities in the axial rotation of the earth on which our astronomical reckoning of time necessarily depends. It was pointed out that this question could best be settled by observations on other rapidly moving bodies, with a view of determining whether they also show apparent inequalities which could be accounted for in the same way. Eclipses of Jupiter's satellites and transits of Mercury were especially suggested as suitable for this object.

The results of the Researches on the Motion of the Moon, published in 1878, were such as to encourage the belief that the observed inequality was really in the moon's motion. It was in fact found that the moon's mean motion for about 250 years could

be represented with approximate accuracy by the addition of a single term with a period not differing greatly from 300 years. Since it seemed quite improbable that the inequality in the earth's rotation should be periodic, the balance of probability seemed in favor of the inequality being in the moon itself. But since theory had entirely failed to show any such inequality in the moon's motion the question had still to be regarded as unsettled.

Transits of Mercury have now been observed for two centuries, and for a century and a half the times of contact may be considered as determined within a very few seconds. Taking as the standard of time the earth's axial rotation between 1750 and 1850, and assuming that the observed inequalities in the moon's mean motion are to be accounted for by actual inequalities in the earth's rotation, then our measurement of time would be in error by amounts ranging from 17 seconds in one direction to 17 seconds in the other direction between 1723 and 1881. Inequalities of this amount could not fail to be indicated by the preceding observations on the transits of Mercury.

At the same time, considering the imperfections of the older observations, these assumed inequalities are not so many times greater than the possible errors of observation as to make them evident without careful treatment. Let us then consider what method is best adapted to decide the question.

On page 266 of the Researches on the Motion of the Moon is given the errors with which the astronomical determinations of time must be supposed affected, in order that the apparent inequalities in the moon's mean motion not yet accounted for by theory may be represented.

The following table shows the amount of these errors when interpolated to the times of the several observed transits of Mercury.

Year of transit.	4	1t	Year of transit.	∆t		
1677	+	8. 33	1789		#. 18	
1690	+	29	1799	_	17	
1697	+	26	1802	_	16	
1723	+	17	1822		9	
1736	+	9	1832	_	6	
1740	+	6	1845	_	2	
1743	+	4	1848		o	
1753	_	2	1861	+	2	
1756	_	4	1868	+	10	
1769	_	12	1878	+	15	
1782	_	17	1881	+	16	
1786 j	_	18	i ,			

It is to be remarked that these times are subject to a probable uncertainty of two or three seconds, arising from the fact that Hansen's tables have not been directly compared with observations of the moon between the years 1750 and 1840. It is, however, known that the errors during this period must be small, and they have necessarily been assumed to vanish in determining the value of the hypothetical error of time.

The most natural method of making the required investigation would be to form two solutions of the equations of condition afforded by transits of Mercury, one with and the other without this hypothetical correction, and to find which solution gives the smallest residuals. But, in a case like the present, in which we must not except a striking difference in the magnitude of the residuals, the result of the solutions would not necessarily be conclusive. What we shall do, therefore, will be to assume that the values of Δt should all be multiplied by a constant factor k, and to determine from the equations of condition that value of k which best satisfies the observations.

If the hypothesis of perfect uniformity in the earth's rotation is the true one, the value of k should vanish.

If the observed inequalities in the moon's mean motion arise from the cause supposed, the value of k should come out nearly equal to unity.

If k should come out different from either zero or unity by an amount greater than its possible error it would tend to show that both causes might be in operation.

Closely associated with the value of k is another constant which it would be desirable to determine. That a tidal retardation of the earth's rotation must exist can scarcely be doubted, although no reliable estimate of its amount has yet been made. We must, therefore, suppose that our astronomical measures of time need a correction of the form cT^2 , in which T is the time reckoned from any standard epoch and c is a minute constant. If we seek to determine the possible value of c from transits of Mercury we should introduce it into the equations of condition. But it will be noticed that during the period within which transits of Mercury have been observed with any accuracy the coefficient k will be of the same general kind with c, so that k and c can not be separately determined. In fact, we shall find the values of Δt to be closely represented by the formula

$$-18^4 + 60^8 T^2$$

If, therefore, we should introduce c as an additional unknown quantity it could not be determined independently of k, but our equations would give the value only of a linear function of c and k. The relation between the two quantities is such that, supposing the true value of k to be zero, the existence of a regular tidal retardation would be indicated by a small negative value of k.

§ 7.

Numerical comparison of observed and tabular quantities, with the resulting equations of condition.

. In the first of the following tables is given the comparison of the observed and tabular times of contacts, to be subsequently used as a check upon the equations of condition. The following columns are the ones which seem to need explanation.

The third column gives the Greenwich mean times of geocentric contact derived from the observations already given in Part I. Since, however, the time itself, as determined from astronomical observations, hypothetically needs a correction — $k\Delta t$, this correction is added symbolically to the observed time to render it strictly comparable with the tabular time.

The next column gives the adopted weight of the observation, which refers, not merely to the time, but to the distance of centers. No precise formula has been applied in determining these weights because of the extremely heterogenous character of the data. As a rule, the result of five fairly accordant and satisfactory observations of internal contact is considered entitled to weight I But the weight is not proportional to the number of observations, but varies in a less degree, so that 6 is the maximum weight for any one transit. Moreover, account is taken of the skill of the observers and the general accordance and certainty of the observations.

Next we have the tabular times, the computation of which has already been given, followed by the symbolic corrections produced by corrections to the elements.

Comparison of Observed and Tabular Geocentric Contacts.

Con- tact.	Date.	Observed G. M. T. of geoc. contact.	Wt.			Tal	buls	er time	8, W	rith sy	mb	olio co	rrec	ctions.		
		h. m. s. s.		h.	m.	8.							_		_	
П	1677, Nov. 6	21 34 1 - 33/2	0.1	21	33	31.6	+	1.1N	+	4.8V	+	6.3M	-	10.7R'	+	15.6R
Ш	1677, Nov. 7	2 47 27 - 33k	0.1	2	48	12.9	-	1.4	+	4.7	-	6.4	+	10.7	-	15.6
111	1697, Nov. 2	19 42 53 - 26/2	0.3	19	42	47 - 4	+	4.2	+	4.8	+	1.7	+	13.9	-	20.3
11	1723, Nov. 9	2 26 52 - 17k	2.0	2	26	55.0	+	1.7	+	4.8	+	5.5	-	11.1	+	16.2
H	1736, Nov. 10	21 10 30 - 9/2	1.0	21	10	28.3	+	8.5	+	5.0	-	2.2	-	21.4	+	31.3
111	1736, Nov. 10	23 48 51 - 9k	1.0	23	49	1.3	-	8.5	+	4.5	+	2.3	+	21.0	_	30.7
11	1743, Nov. 4	20 14 21 - 4k	1.0	20	14	24.2	_	3.4	+	4.7	_	7.0	-	12.5	+	18.3
Ш	1743, Nov. 5	0 45 5 - 44	1.5	0	45	6.4	+	3. I	+	4.8	+	7.0	+	12.5	_	18.2
H	1769, Nov. 9	7 22 47 + 124	1.0	7	22	42.5	+	2.4	+	4.8	+	6.5	_	11.7	+	17.2
III	1769, Nov. 9	12 9 51 + 124	0.2	12	9	54.2	_	2.6	+	4.7	_	6.6	+	11.7	_	17.2
Ш	1782, Nov. 12	2 42 6 + 17k	3.0	2	41	59.5	+	22.1	+	5 - 3	_	23.1	_	49.5	+	72.5
Ш	1782, Nov. 12	3 49 37 + 174	3.0	3	50	9.5	_	21.8	+	4.2		22.6		48.4	_	70.9
11	1789, Nov. 5	0 53 2 + 18/	2.0		53	7.4	_	2.5	+	4.7	_	6.3		11.6		17.0
Ш	1789, Nov. 5	5 44 12 + 184	1.0	5	44	16.9	+	2.2	+	4.8	+	6.2		11.5		16.g
III	1802, Nov. 8	23 41 5 + 164	3.0	23	41	8.4	_	0.4	÷	4.7	_	1.1		10.3		15.1
11	1822, Nov. 4	13 3 42 + 9/2	0.5	13	3	45.6	_	8.5	÷	4.5		11.8	-	21.0		30.7
III	1822, Nov. 4	15 45 18 + 9k	1.0	15	45	13.6	+	8.3		4.9		11.9		21.0		30.7
II	1848, Nov. 8	1	5.0	23	6	42.8	+	0.7	+	4.8	-	6.6		10.5		15.3
III	1848, Nov. 9	" .	-	1	28	4.1	_	0.0	+	4.7		6.6		10.5		15.3
II	1861, Nov. 11	1 '	0.3	4		•		•		4.8	_	8.8		-		
111	1861, Nov. 11	1 '	0.7	17	18	17.9 16.8	+	4-3	++	4.6		8.8		14.2	-	20.7 20.6
II	1868, Nov. 4	1 24 35,55	5.0	2:				4.5			T		-	14.1		
III	1	17 27 0 — 10/2	0.5	17	27	43.6	_	5.7	+	4.6		4.5		15.9		23.3
	1868, Nov. 4	21 0 9.8— 10/2	6.0	20	59	57.5	+	5.4	+	4.9	+	4.4		15.9		23.3
II	1881, Nov. 7	10 18 38 - 16k	3.0	10	18	15.5	-	1.3	+	4.7	+	6. t		10.6	-	15.6
III	1881, Nov. 7	15 35 54 — 16 <i>k</i>	3.0	15	35	37.3	+	1.1	+	4.8	_	6.1	+	10.6	_	15.6
		II.—MAY TI	RANS	its, i	INI	ERI	OR	CON	T	ACTS.	•					
	1740, May 2	9 43 9 - 6k	0,1	9	41	50.8	+	34.2N	+	10.4V	+	13.8M		43.6R'	_	78.0R
III	1753, May 5	22 6 0.5+ 2k	1.5	22	5	52.4	÷	2.7	-	12.0	_	9.7		16.1		20.1
11	1786, May 3	14 59 25 1 184	0.3	15	٥	26.6	- 1	14.0	- :	11.7	_	9.4	•	22.2		40.2
ш	1786, May 3	20 21 27 + 184	2.0	20	21	0.5	•	12.8	- 1	13.4	_	9.6		22.6		40.9
II	1799, May 6		1.5	21	9	44.9		4.0	- 1	12.7	-	17.1		16.3		29.5
Ш	1	' ' ' ' ' ' ' ' '	-		-	37.8	+	-	•	12.1		16.9		16.3		
	1799, May 7	4 30 32 + 17/2	2.0	4	30		+	5·5 8.2	- 1	12.1	-	10.9	•	-		29.5
II	1832, May 4	21 3 30 + 6/2	3.0	21	3	46.7	•		•		•			17.7		32.0
III	1832, May 5	3 46 40 + 64	3.0	3	46	55.2	-	6.7		12.9		17.4		17.7		32.0
II	1845, May 8	4 23 50 + 2k	4.0	4	24	14.6	-	8.0		12.9		6.9		18.5		33 · 5
III	1845, May 8	10 49 7 + 2/2	4.0	10	49	34 · I	+	9.5		11.8	•	7.0		18.5		33.5
		1 -!														
II III	1878, May 6	3 15 49.2— 15k 10 43 41.2— 15k	6.o 4.0	3 10	16 44	6.6 0.5	+	4.6 3.2	•	12.1 12.8		10.2		15.8 16.1	•	28.7 29.1

A. P., PART VI---12

Comparison of Observed and Tabular Contacts.

NOVEMBER TRANSITS, EXTERIOR CONTACTS.

Date.				G. M conta	. T. of ct.	Wt.	t. Tabular tin		
1677, Nov.		h.	m.	ø.	8.	0.1	À.	m.	8.
1690, Nov.	•	2	49 28	33 -		0.2	2	49	55
1697, Nov.	-	19		54. — 39. —		1	19	29	25
		19	44			0.3	19	45	2
1736, Nov.		23	51	50 -	-		23	52	21
1743, Nov.	-	0	46	54 -	•	0.7	0	47	7
1756, Nov.		18	54	34 +	•	0.3	18	55	12
1769, Nov.	-	12	11	26 +		0.2	12	11	45
1782, Nov.		3	56	6 +	•	1.0	3	57	17
1789, Nov.	-	5	46	8 +		0.2	5	46	.9
1802, Nov.		23	42	34 +	· 16#	1.2	23	42	37
1822, Nov.	•	15	48	13 +	•	0.2	15	48	37
1848, Nov.		4	29	40	o.fr	0.2	4	29	42
1861, Nov.	11	21	20	27 —	2 k	1.5	21	20	14
1868, Nov.	4	21	2	3 3 -	104	2.0	21	2	32
1881, Nov.	7	15	37	33 —	16#	1.5	15	37	20
MAY	TF	RANSIT	rs,	EXT	ERIO	R CONT	CACT	8.	
1753, May	5	22	8	- 45 +	2.k	1.0	22	8	53
1786, May	3	20	25	3 +	18 <i>k</i>	1.0	20	25	18
1799, May	7	4	33	16 +	17k	1.0	4	33	. 20
1832, May	5	3	49	52 	6 <i>k</i>	1.2	3	50	21
1845, May	8	10	52	35 +	2 k	1.0	10	53	14
1878, May	6	. 10	46	23 -		1.5	10	47	2

The equations of condition might now be formed directly from this comparison. But, in order to secure the greatest amount of certainty in the results, the absolute terms of the equations have been independently determined by computing the values of c-r for the concluded observed moments. The following table shows the results of the two methods of determining these terms:

Interior Contacts.

NOVEMBER TRANSITS.

Date.	Contact.	n	not	c _o	r _o	$c_{ m o}-r_{ m o}$
-6	111	" — 0. 204	_ ″ _ 6. o	., 2074. 61	// acgo ===	- 6. 16
1677	III	- 0. 204 + 0. 204		2074.01	2080. 77 2086. 26	
1697	III	+ 0. 204 + 0. 157	- 9.4 + 0.87	2068. 10	2067. 27	- 9.48 + 0.83
1723	II	— 0. 197	+ 0.59	2082. 89	2082. 32	+ 0.63
1736	II	- 0. 197 - 0. 102	— 0. 39 — 0. 17	2092. 39	2092. 55	— 0. 16
1/30	III	+ 0. 104	— I. 07	2094. 03	2095. 10	— I. 07
1743	II	— 0. 174	+ 0.56	2064. 33	2063. 80	+ 0.53
- / - / 3	III	+ 0.175	- 0.24	2068.90	2069. 14	- 0.24
1769	II	— o. 186	— o. 84	2082.96	2083.80	- o. 8 ₄
-7-7	III	+ 0. 186	- o. 6o	2088. 15	2088. 80	- o. 65
1782	II	- 0.044	- 0.29	2094. 32	2094. 55	- o. 23
, -	III	+ 0.045	— 1.46	2094. 17	2095. 62	- I.45
1789	II	- o. 188	+ 1.01	2066. 06	2065.05	+ 1.01
	ш	+ o. 189	- o. 92	2069. 58	2070. 75	_ 1.17
1802	III	+ 0.211	— o. 72	2080. 45	2081.16	- 0.71
1822	II	— 0. 104	+ 0.37	2057. 46	2057.09	+ 0.37
	III	+ 0. 104	+ 0.46	2060. 86	2060.40	+ 0.46
1848	II	_ o. 208	- o. 87	2075. 80	2076. 68	- o. 88
	III	+ 0. 208	+ 0.81	2083. 26	2082. 52	+ 0.74
1861	II	— o. 154	+ 0.29	2087. 17	2086. 87	+ 0.30
	III	+ 0. 155	+ 0.50	2091. 34	2090. 85	+ 0.49
1868	II	— o. 137	+ 6.0	2063.97	2058. 07	+ 5.90
	III	+ 0. 137	+ 1.63	2064. 04	2062. 41	+ 1.63
1881	II	— 0. 205	- 4.61	2063. 34	2 06 7 . 98	— 4.64
	III	+ 0. 205	+ 3.42	2077. 58	2074. 06	+ 3.52
		M	IAY TRAN	SITS.		
1740	II ·	— o. o28	- 2. 19	1171. 17	1173. 37	_ 2. 20
1753	111	+ 0.076	+ 0.62 5+ 3.39	1159. 31	1158.64	+ 0.67
1786	II	— o. o55	3.39 1.02	1175.91	1172. 39	{+ 3.52 + 1.06
	III	+ 0.054	+ I.43	1170.64	1169. 37	+ 1.27
1799	II	— o. o75	+ 0.22	1161.09	1160.86	+ 0.23
	III	+ 0.075	- 0.44	1156.69	1157. 12	— o. 43
1832	II	— o. o 69	+ 1.15	1172. 19	1170.99	+ 1.18
	III	+ 0.069	- 1.05	1166. 18	1167. 26	— 1.08
1845	II	— o. o66	+ 1.62	1160.64	1159. 02	+ 1.62
	III	+ 0.066	— I. 79	1153.99	1155. 75	— 1.76
1878	II	- 0. 077	+ 1.34	1170.84	1169.47	+ 1.37
	III	+ 0.076	— I. 47	1163. 84	1165. 36	— 1.52

Exterior Contacts. NOVEMBER TRANSITS.

	,,		,
1677,	$n\delta t = -4.5$	1789, n	$\delta t = -0.2$
1690,	- 4.2	1802,	— o. 6
1697,	— 3.6	1822,	— 2. 5
1736,	— 3.2	1848,	- 0.4
1743,	– 2.3	1861,	+ 2.0
1756,	— 8. o:	1868,	+ o. 1
1769,	— 3.5	1881,	+ 2.7
1782,	— 3. 2		
	MAY TR	ANSITS.	
1753,	$n\delta t = -0.6$	1832, n	$\delta t = -2.0$
1 78 6,	_ o. 8	1845,	– 2. 6
	- 2 .6	1878,	– 3.0

The quantities thus obtained under the heads $n\delta t$ and $c_0 - r_0$ are the absolute terms of the equation of condition which are next given. The unknown quantities which enter into these equations and the expressions for the coefficients have already been given in part in δ 5.

The method of forming the equations is as follows:

The datum supposed to be given by each time of contact derived from observation is that, at a certain moment of apparent astronomical time, the heliocentric distance of centers of the earth and Mercury was equal to the sum or difference of their semi-diameters. The requirement of the equation thence derived is that, for this same moment when reduced to absolute time, the tabular quantities, when affected by the proper symbolic corrections, shall give the same equality. We now have—

Moment of observation, in absolute time, $t_0 - k\Delta t$.

At this moment, c = r.

If we put c_0 and r_0 for the values of c and r given on page 454 we have, for the theoretical terms:

Moment of computation, in absolute time, t_0 .

At this moment—

$$c = c_0$$
 $+ \sin (\omega \pm i) \text{ N}$
 $+ \cos (\omega \pm i) (\text{V or W})$
 $+ \cos (\omega \pm i) \frac{\text{P}}{\text{IO}} \text{M}$
 $r = r_0 + 2.18 \text{ S for November}$
 $r = r_0 + 1.22 \text{ S for May}.$

To reduce the tabular value of c to the moment $c - k_0 \Delta t$ it is necessary to apply the farther correction

The quantities N, V, and W are not constants, but are subjected to a secular variation. We must therefore suppose

$$N = N_0 + N't$$

$$V = V_0 + V't$$

$$W = W_0 + W't$$

t being the time from an arbitrary mean epoch.

The equation c - r = 0 now becomes,

o = sin (
$$\omega + i$$
) (N₀ + N't)
+ cos ($\omega + i$) (V₀ + V't)
+ cos ($\omega + i$) $\frac{P}{10}$ M
- 2.18 S - $nk\Delta t$
+ $c_0 - r_0$
FOR MAY,
o = sin ($\omega - i$) (N₀ + N't)
+ cos ($\omega - i$) (W₀ + W't)
+ cos ($\omega - i$) $\frac{P}{10}$ M
- 1.22 S - $nk\Delta t$
+ $c_0 - r_0$

The following explanations on special points are, however, necessary:

Exterior contacts.—In combining exterior contacts with interior ones, it is necessary to avoid as far as possible the introduction of any possible systematic error arising from the different methods of observing the two classes of phenomena. Such conditions may be expected to arise from the fact that the external tangency of the limbs cannot be really observed. The time noted by the observer is that at which the notch made by Mercury in the sun's limb became so small that he could no longer see it. This magnitude is an unknown quantity, to be determined from the observations, and the functions of the semi-diameters which enter into the expression for external contact must be considered as entirely independent of that for internal contact.

Again, the magnitude of the notch when the observer loses sight of it will depend upon the optical power of his telescope and the condition of the atmosphere. Now the optical power of the telescope has gradually improved from the time of observation of the first transit until the present. The magnitude of the last visible notch must therefore be considered as subject to a gradual variation during the period of observations of the transit. We may without danger of serious error suppose this change to have been proportional to the time. The function of the semi-diameters which enters

into the equations must therefore be supposed affected by a secular variation. Since the time of observation depends upon the optical power of the telescope, which varies with different observers, the question arises whether we are to apply corrections depending on the telescope. This is impracticable in the greater number of cases from want of the necessary data. Variations arising from differences of telescopic power must therefore be regarded as merged with the accidental errors. The question how far the accidental errors of observation will thus be increased is a serious one, to be settled only by a comparison of results.

It is an observed fact that if we reject those observations in which the telescopic power was insufficient, or in which the observer evidently could not have seen the smallest visible notch, it is found that the discordance among the observations of external contact are not enormously greater than among those of internal contact. Now, as it cannot be supposed that the observations at one transit are made with instruments systematically different from those at another transit, the result is that the probable error arising from differences of telescopic power cannot be regarded as many times greater than the regular errors of internal contact.

It is however proper to remark that the weights assigned to the observations of internal contacts in this discussion have been below rather than above that to which the author would consider them fairly entitled.

It may be questioned whether there may not be a similar progression in the observations of internal contact arising from differences of telescopic power. That such a systematic change could be found among an infinity of observations cannot be doubted. But the observations actually made do not seem to afford any sufficient data for its investigation. As a general rule, there appears to be no marked difference between observations at the same transit made with instruments of different powers. The same thing may therefore be supposed true of the earlier and later observations of transits. The fact that eleven unknown quantities are already introduced into the equations of condition affords another reason for laying the discussion of this question aside.

But there are two cases in which a difference of this kind is evident, the one the transit of 1677, the other that of 1756. The time of duration observed by HALLEY seems to indicate that his observed time of ingress was too late, and that of egress too early, a circumstance which we may attribute to deficiency of optical power. This difference is so much more striking than in the case of the following transits that the equations of condition given by HALLEY's observations have been combined into one in such a way as to eliminate the semi-diameter.

The observations of 1756, which are also exceptional from the same apparent cause, have been rejected entirely.

Owing to the small weight assigned to the observations of external contact, it has not been deemed necessary to form separate equations for them. The coefficients of the unknown quantities have therefore been assumed to be the same as those corresponding to internal contact.

If the errors of Leverrier's tables were of considerable magnitude this course would not be advisable, but since they must be regarded as almost vanishing quanti-

ties it does not appear that any serious error will result from using the same coefficients in the two cases. In fact, the preceding identity of coefficients supposes merely that the tabular interval between external and internal contact is absolutely correct, a function of the semi-diameter alone excepted.

Two modifications have been made in the equations as thus derived.

I. It was long a subject of embarrassment what to do with Halley's observations on the transit of 1677. As already remarked, the two phases are discordant by more than a minute. To express the result in another form the semi-diameter of the sun, as it would result from his observations, is some 3".5 less than its true value. After much consideration the conclusion was finally reached that this discordance was due not so much to an error in time as to a personality in Halley's method of observing the contact. Accepting this hypothesis the mean result of his observations of ingress and egress would be correct. The difference of the equations resulting from his two observations was therefore taken as entitled to a small weight, and the semi-diameter was thus eliminated from the result.

II. In assigning the relative weights given in the preceding section no account was taken of the fact that Mercury is nearer the earth in a May transit than in a November one. An error of 1" in the heliocentric place would, in November, cause an error of 0".46 in the geocentric place, and in May an error of 0".80. Hence the heliocentric place can be determined with more accuracy by a May observation than by a November one. The weights of the May transits, as given in Part I, were therefore all multiplied by 2.

III. In discussing the observations the question what to do with the second contacts observed in 1740 and 1786 was laid aside. These observations were, therefore, omitted with the view of seeing how they would be represented by the concluded theory. It would seem from this that internal contact must have actually passed some time before the moment at which Wintheop noted it as not having occurred, and, therefore, that his observation is affected with some undiscoverable error. It would also appear that the second hypothesis respecting the internal contact of 1786 is the one to be accepted, but it was not thought worth while to re-solve the equations of condition.

The observations of 1756 have been entirely dropped, as the weight to which they could be considered entitled is too small to have any influence on the result.

Equations of Condition.

INTERNAL CONTACTS IN NOVEMBER.

```
Wt.
                                          -0.98V_0 + 1.40V'
                      0.23N_0 + 0.33N'
                                                                + 1.23M
                                                                           - 2.28
                                                                                     +6.7k
1677,
                                                                                                  6. 1
                                                                                                         Rei.
                                                                                     — 6. 7
        III
                               + 0.40
                                          + 0.96
                                                     — 1.38
                                                                - I. 24
                                                                           _ 2. 2
                                                                                                  9.5
                                                                                                         Rej.
1677, II and III o = + 0.02
                               -- o. o3
                                                     + 1.39
                                                                + 1.24
                                                                                     +6.7
                                          - 0.97
                                                                              0.0
                                                                                                  1. 7
                                                                                                         o. 3
        III
1697,
              0 = + 0.65
                               - o. 8o
                                          + 0.75
                                                     - o. 93
                                                                + 0.21
                                                                           - 2.2
                                                                                                  0.9
                                                                                                         0.3
1723,
        H
                    -- 0. 34
                               + 0.33
                                          - 0.95
                                                     + 0.92
                                                                + 1.02
                                                                                                         2. 0
                                          - o. 51
        11
                     - o. 86
                               + 0.72
                                                     + 0.43
1736,
                                                                - 0.11
                                                                           - 2. 2
                                                                                                          1.0
        III
                     - o. 88
                               + 0,74
                                          + 0.47
                                                     - 0.40
                                                                + 0. 11
        H
1743
                    + 0.58
                               -- 0.45
                                          - o. 81
                                                     +0.62
                                                                - o. 98
                                                                           — 2.2
                                                                                      + 0.7
                                                                                                          1.0
                                          +0.84
        Ш
                                                     - 0.64
                                                                + 1.01
                                                                                                          1.5
        II
                    <del>.</del> 0.45
                                                     + 0.46
1769,
                               + 0.23
                                          - 0, 90
                                                                + 1.08
                    - 0.49
                               + 0.25
                                          + o. 88
                                                     - 0.45
                                                                - I. OS
```

Equations of Condition—Continued.

```
INTERNAL CONTACTS IN NOVEMBER.
                                                                                                  Wt.
  1782,
         11
               0 = -0.97N_0 + 0.37N' - 0.23V_0 + 0.09V' - 0.23M - 2.2S
                                                                               -0.8k - 0.2
                                                                                                  3.0
               0 = -0.98
         Ш
                              + 0.37
                                        + 0.19
                                                  — 0.07
                                                            + 0.19
                                                                      — 2.2
                                                                               + 0.8
                                                                                                  3.0
  1789,
         П
                                        - o. 87
               0 = + 0.48
                              - 0.15
                                                                                — 3.4
                                                  + 0.27
                                                            - I. OS
                                                                                                  2. 0
                                                                                           1.0
         Ш
               0 = + 0.43
                              — 0. 13
                                        + 0.90
                                                  - 0.28
                                                            + 1.07
                                                                       — 2.2
                                                                                + 3.4
  1802,
         Ш
                                        + 1.00
                                                            - 0.23
               0 = -0.00
                              + 0.02
                                                  - O. 17
                                                                      — 2. 2
                                                                                + 3.4
                                                                                           0. 7
                                                                                                  3.0
         H
               o = + 0.88
                              + 0.02
  1822.
                                        - 0.46
                                                  — 0. 01
                                                             — o. 57
                                                                      — 2. 2
                                                                                - 0.9
                                                                                           0.4
                                                                                                  0. 5
         III
               0 = + 0.86
                              + 0.02
                                                  + 0.01
                                                                      — 2.2
                                                                                           o. 5
                                        + 0.51
                                                            + 0.64
                                                                                + 0.9
                                                                                        +
                                                                                                  1.0
         H
  1848,
               0 = -0.14
                              - 0.04
                                        - o. 99
                                                  - 0.28
                                                            + 1.35
                                                                       — 2.2
                                                                                  0.0
                                                                                           0. Q
                                                                                                  5.0
         Ш
                              - 0.05
                                                                                        +
               0 = -0.10
                                        + 0.98
                                                  + 0.28
                                                                      - 2.2
                                                            - 1.34
                                                                                  0.0
                                                                                           0.8
                                                                                                  o. 3
  1861,
         II
               0 = -0.66
                              - 0.27
                                        — 0.75
                                                  — 0.31
                                                             - 1.02
                                                                       — 2.2
                                                                                + 0.3
                                                                                        +
                                                                                                  0. 7
                                                                                           0. 3
         Ш
               0 = -0.70
                                                                      - 2.2
                              - 0, 20
                                        + 0.72
                                                  + 0.30
                                                            + 0.97
                                                                                — o. з
                                                                                        +
                                                                                           0. 5
                                                                                                  5.0
               o = + 0.78
  1868,
         H
                              + 0.37
                                          0.62
                                                  — о. 30
                                                            — o. 39
                                                                       - 2.2
                                                                                + 1.4
                                                                                                  ٥. ٢
                                                                                           5. Q
         Ш
               0 = + 0.75
                              + 0.36
                                        + 0.66
                                                  + 0.32
                                                            + 0.41
                                                                      - 2. 2
                                                                                - I.4
                                                                                        +
                                                                                           1.6
                                                                                                  6. 0
  1881,
         II
               0 = + 0.26
                              + 0.16
                                        — 0.96
                                                  — o. 59
                                                            + 1.20
                                                                      — 2.2
                                                                                           4.6
                                                                                                  3.0
                                                                                + 3.3
         Ш
               0 = + 0.22
                              + 0.13
                                                                      — 2.2
                                                                                        +
                                        + 0.97
                                                  + 0.59 >
                                                            — 1.21
                                                                                — 3.3
                                                                                           3.5
                                                                                                  3.0
                                    INTERNAL CONTACTS IN MAY.
               0 = -0.96N_0 + 0.77N' - 0.29W_0 + 0.23W' + 0.11M - 1.28
 1740,
         11.
                                                                               + 0.2k - 2.2
                                                                                                  Rej.
  1753,
         III
               0 = + 0.20
                             — 0.14
                                        + 0.97
                                                  - o. 65
                                                            — 0.72
                                                                      - 1.2
                                                                                + 0.2
                                                                                        + 0.6
                                                                                                  3. 0
                                                                                           3.4
  1786,
               0 = -0.77
                              + 0, 26
                                        - o. 6<sub>4</sub>
                                                  + 0.22
                                                            - o. 33
                                                                      - 1.2
                                                                                                  Rej.
                                                                                - 1.0
         Ш
                              + 0.27
                                        + 0.73
                                                  — 0. 23
                                                            + 0.38
                                                                      — 1.2
                                                                               + 1.0
                                                                                        ÷
                                                                                           1. 3
                                                                                                  4. 0
                             - o. o6
                                                            — I. 22
         11
               0 = + 0.30
                                        - 0.95
                                                  + 0.20
                                                                      — 1.2
                                                                               - 1.3
                                                                                           0. 2
                                                                                                  3. o
  1799,
                                                                      — 1.2
                             - 0.09
                                                            + 1.16
         Ш
               0 = + 0.41
                                        + 0.90
                                                  — 0. 19
                                                                               + 1.3
                                                                                           0.4
                                                                                                  4. 0
         11
 1832,
               0 = -0.56
                             - 0.07
                                        - o.83
                                                  — 0. 10
                                                            + 0.99
                                                                      - I. 2
                                                                               - 0.4
                                                                                           1. 2
                                                                                                  6. o
                             - 0.06
                                                                      — 1.2
                                                                                + 0.4
                                        +0.89
                                                  + 0.11
                                                            — 1.06
                                        - o. 8<sub>4</sub>
                                                            — о. 38
                                                                                                  8. o
         11
 1845,
               o = + 0.53
                             + 0.13
                                                  - o. 21
                                                                      — 1.2
                                                                               - 0.1
                                                                                        + 1.6
                                                                      — 1.2
                                                                                + 0.1
              0 = + 0.63
                             + 0.16
                                        + 0.77
                                                  + 0.19
                                                            + 0.36
                                                                                           1.8
                                                                      _ · 1. 2
 1878,
         11
              0 = -0.36
                             — 0.21
                                        - 0.94
                                                  — o. 54
                                                            - o. 73
                                                                                + 1.1
                                                                                        + 1.3
                                                                                                 12. 0
              0 = -0.25
                             — 0. 14
                                                  + 0.56
                                                            + 0.76
                                                                      — 1.2
                                        + 0.97
                                                                               — 1. 1
                                                                                           1.5
                                                                                                  8. c
                               EXTERNAL CONTACTS IN NOVEMBER.
                                                                                                    Wt.
                                + 0.96V_0 - 1.38V' - 1.24M - 2.2S_1 + 3.1S_1' - 6.7k
        o = -0.28N_0 + 0.40N'
1677,
                                                                                           - 4.5
                                                                                                    0. 1
                                 + 0.63
                                                                                           - 4.3
1690,
        o = -0.78
                      + 1.02
                                          — o. 82
                                                    - o. o2
                                                               - 2.2
                                                                        + 2.9
                                                                                 - 3.9
                                                                                                    0. 2
                      — 0.80
                                 + 0.75
                                           — 0.93
                                                     + 0.21
                                                               — 2.2
                                                                        + 2.7
1607.
        0 = + 0.65
                                                                                           - 3.6
                                                                                 - 4. I
                                                                                                    0. 3
                                                               — 2.2
                                                                                           — 3.2
                      + 0.74
                                           — 0.40
1736,
       0 = -0.88
                                 + 0.47
                                                     + 0.11
                                                                        +1.8
                                                                                  — 0.9
                                                                                                    0.6
                                                                                 - o. 7
                                                                                           - 2. 3
                      - 0.42
                                                     + 1.01
1743,
        0 = + 0.54
                                 + 0.84
                                           - 0.64
                                                               — 2.2
                                                                        + 1.7
                                                                                                    0. 7
       0 = -0.49
                      + 0.25
                                 + 0.88
                                           - 0.45
                                                     - 1.05
                                                               — 2.2
                                                                        + 1.1
                                                                                  + 2.2
                                                                                                    0. 2
1760.
                                                                                           - 3.5
       0 = -0.98
                                                     + 0. 19
                                           - 0.07
                                                               - 2.2
                                                                        + 0.8
                                                                                          — 3.2
1782.
                      + 0.37
                                - 0. 10
                                                                                 + 0.8
                                                                                                    1.0
1789,
       0 = + 0.43
                      — 0.13
                                 + 0.90
                                           - 0.28
                                                     + 1.07
                                                               — 2.2
                                                                        + 0.7.
                                                                                           — 0, 2
                                                                                  + 3.4
                                                                                                    0. 2
1802,
       0 = -0.09
                       + 0.02
                                 + 1.00
                                           — 0.17
                                                     - o. 23
                                                               — 2.2
                                                                        + 0.4
                                                                                           — o. 6
                                                                                                    1.2
                                                                                  + 3.4
                                                                                          — 2.5
1822.
       0 = + 0.86
                      + 0.02
                                           + 0.01
                                                     + 0.64
                                                               — 2.2
                                 + 0.51
                                                                        — 0.0
                                                                                  + 0.9
                                                                                                    0. 2
1848,
       0 = -0.19
                      - 0.05
                                 + 0.98
                                           + 0.28
                                                     — 1.34
                                                               - 2, 2
                                                                        -0.6
                                                                                    0. 0
                                                                                          - 0.4
                                                                                                    0. 2
1861,
       0 = -0.70
                      - o. 29
                                 + 0.72
                                           + 0.30
                                                     + 0.97
                                                               - 2.2
                                                                        — 0.9
                                                                                  — o. з
                                                                                           + 2.0
                                                                                                    1.5
       0 = + 0.75
                                                               - 2.2
                                                                                 - 1.4
1868.
                      + 0.36
                                 + 0.66
                                           + 0.32
                                                                        - 1.1
                                                     + 0.41
                                                                                           + 0.1
                                                                                                    2. 0
1881.
       0 = + 0.22
                      + 0.13
                                + 0.97
                                           + 0.59
                                                     — 1.21
                                                               — 2.2
                                                                        - L3
                                                                                 — 3.3
                                                                                           + 2.7
                                                                                                    1.5
                                   EXTERNAL CONTACTS IN MAY.
                                + 0.97W_0 - 0.65W' - 0.72M - 1.2S_1
                                                                        + 0.88_{1}' + 0.2k
1753,
       0 = + 0.20N_0 - 0.14N'
                                                                                          - 0.6
                                                                                                    2. 0
                                                                        + 0.4
1786,
       0 = -0.69
                                 + 0.73
                                                     + 0.38
                                                               - I. 2
                                                                                 + 1.0
                      + 0.27
                                          - 0.23
                                                                                          - 0.8
                                                                                                    2.0
                                 + 0.90
                                          - 0, 19
                                                     + 1.16
                                                               - I. 2
                                                                                 + 1.3
                                                                                          — 2.6
1799,
       0 = + 0.41
                      - 0.09
                                                                        + 0.3
                                                                                                    2. 0
                      — 0.06
1832,
       0 = -0.46
                                + 0.89
                                           + 0.11
                                                    - 1.06
                                                               — 1.2
                                                                        - o. I
                                                                                 + 0.4
                                                                                          - 2.0
                                                                                                    2.4
                                                     + 0.36
1845,
       0 = + 0.63
                      + 0.16
                                           + 0.19
                                                               — 1.2
                                                                        — о. 3
                                                                                          - 2.6
                                 + 0.77
                                                                                 + o. 1
                                                                                                    2.0
1878,
                                                     + 0.76
       0 = -0.25
                      - O. IA
                                + 0.97
                                           + 0.56
                                                               - 1.2
                                                                                 - I. I
                                                                        - 0. 7
                                                                                          - 3.0
                                                                                                    3. o
```

These equations of condition, when treated by the method of least squares, lead to the following normal equations:

$$\begin{array}{l} (1) + 37.809 N_0 - 0.177 N' + 2.817 V_0 - 0.068 V' + 1.339 W_0 + 1.025 W' \\ - 1.072 M + 10.380 S + 1.620 S_1 - 2.035 S_1' - 16.549 k + 7.892 = 0 \end{array}$$

(2)
$$-0.177N_0 + 7.571N' - 0.204V_0 + 1.443V' + 1.322W_0 + 0.720W' + 1.160M - 7.130S - 2.104S_1 + 0.212S_1' + 0.066k - 2.822 = 0$$

$$(3) + 2.817N_0 - 0.204N' + 33.765V_0 + 1.996V' + 0.000W_0 + 0.00W' - 6.813M - 5.346S - 15.039S_1 - 1.008S_1' - 19.446k + 27.994 = 0$$

(4)
$$-0.068N_0 + 1.443N' + 1.996V_0 + 10.099V' + 0.000W_0 + 0.000W' - 4.072M - 6.981S - 0.757S_1 - 5.419S_1' - 11.000k + 30.263 = 0$$

(5) +
$$1.339N_0 + 1.322N' + 0.000V_0 + 0.000V' + 58.783W_0 + 10.505W'$$

+ $16.728M - 3.432S - 14.143S_1 - 0.037S_1' - 2457k - 80.480 = 0$

(6) +
$$1.025N_0 + 0.720N' + 0.000V_0 + 0.000V' + 10.505W_0 + 10.591W'$$

+ $8.922M + 6.156S - 0.221S_1 - 2.654S_1' - 17.457k - 28.376 = 0$

(7) -
$$1.072N_0 + 1.160N' - 6.813V_0 - 4.072V' + 16.728W_0 + 8.922W'$$

+ $88.021M - 28.928S - 4.599S_1 - 0.342S_1' + 27.607k - 64.899 = 0$

$$(8) + 10.380N_0 - 7.130N' - 5.346V_0 - 6.981V' - 3.432W_0 - 6.156W' - 28.928M + 307.080S - 0.000S_1 - 0.000S_1' - 16.120k - 12.510 = 0$$

(9) +
$$1.620N_0 - 2.104N' - 15.039V_0 - 0.757V' - 14.143W_0 - 0.221W'$$

- $4.599M + 0.000S + 67.212S_1 - 0.050S_1' + 9.174k + 41.002 = 0$

(10)
$$-2035N_0 + 0.212N' - 1.008V_0 - 5.419V' - 0.037W_0 - 2.654W'$$

 $-0.342M + 0.000S - 0.050S_1 + 19.665S_1' + 7.741k - 19.601 = 0$

(11)
$$-16.549N_0 + 0.066N' - 19.446V_0 - 11.000V' - 2.457W_0 - 17.457W'$$

+ $27.607M - 16.120S + 9.174S_1 + 7.741S_1' + 308.208k - 86.022 = 0$
A. P., Part VI——13

The solution of these equations gives the following values of the unknown quantities in terms of k:

	w	w'	Probable errors.		
Values.	(k = 0)	(k indeter- minate.)	k = 0	k = 0.295	
		-	,,	,,	
$N_0 = -0.16 + 0.38k$	36. 7	35.9	± o. 18	± 0.17	
$V_0 = -0.90 + 0.33k$	28.6	283	± 0. 21	± 0. 19 ·	
$W_c = + 0.84 - 0.30k$	44.0	43.3	± o. 17	± o. 15	
N' = + 0.28 - 0.37k	7. O	7.0	± 0,42	± o. 38	
V' = -2.63 + 1.01k	7. 8	7.6	± 0.40	± o. 36	
W' = + 1.84 + 2.38k	7. 5	6. 3	<u>+</u> 0.41	± 0.40	
M = + 0.15 - 0.43k	71.5	67.6	± o. 13	± 0.12	
S = -0.04 - 0.03k	270. 3	270. 3	± 0.07	± o. o6	
$S_1 = -0.64 - 0.16k$	55. o	54- 7	± o. 15	± o. 13	
$S_{1'} = + 0.46 + 0.26k$	15. 7	15.6	<u>-</u> ∤: 0. 28	± 0.25	
k = + 0.295				± 0.065	

The solution has been so conducted as to give separate results on two distinct hypotheses:

- I. That the rotation of the earth is really uniform, and, therefore, that the true value of k is zero, and that this quantity is to be omitted from the equations.
- II. That k has a certain definite value to be derived from the equations themselves.

 On the first supposition there will be ten unknown quantities, and on the second

On the first supposition there will be ten unknown quantities, and on the second eleven.

The required result has been reached by solving the equations so as to express each of the other ten quantities in terms of k. The result of omitting k is then obtained by putting k equal to zero in these results, as above given.

The solution was then continued so as to obtain the most probable value of k itself. The weights were then obtained separately on the two hypotheses, and, irrespective of the probable errors, should be a little larger for the less number of unknown quantities. On the other hand, the probable error by supposing k to have the value of 0.295 is decidedly less, because the residuals are smaller. Hence, on the whole, the probable errors are less when we assign to k the value given by the equations than when we suppose it to vanish.

The epoch for the variable quantities N, V, W, and S_1 is 1820. For any other year Y, we have

$$W = W_0 + W' \frac{Y - 1820}{100}$$

$$V = V_0 + V' \frac{Y - 1820}{100}$$

$$N = N_0 + N' \frac{Y - 1820}{100}$$

PART III.

DISCUSSION OF RESULTS.

Of results to be derived from transits of Mercury, there are two which outweigh all others in importance: One is the possible variation of the sidereal day, which has been already described, and the other the discordance between the theoretical and the observed motions of the perihelion of Mercury. The two questions thus arising have to be considered separately, and it will be convenient to take up first the question of the variability of the earth's axial rotation.

≬ 1.

Do the transits of Mercury prove or disprove the hypothesis of the variability of the earth's axial rotation?

We have made this question depend upon the value of the constant k, deduced in the preceding sections. The evidence that we have hitherto obtained of the supposed variability is found in the discordance between the observed and theoretical mean motions of the moon. As already explained, we have so arranged the equations of condition that the hypothesis of perfect uniformity in the earth's rotation will be represented by $k \equiv 0$, and that of such variability in the rotation as will account for the inequalities of the motion of the moon by $k \equiv 1$. A value of k differing from either 0 or 1 must either arise from the unavoidable errors of observation or from a combination of both hypotheses.

As a matter of fact we have found k = + 0.295. This result does not correspond to either hypothesis.

To facilitate the judgment how far we are to consider this value of k as indicating a general change in the earth's rotation, we present the following values of the residuals corresponding to the several cases, $k \equiv 0$, $k \equiv 0$ 295, and $k \equiv +1$. The residuals are presented in two forms—those of heliocentric arc between the positions of Mercury and the earth and those of times of contact.

We begin with the former, and express them as functions of k, so that those for k = 0, k = 0.295, and k = 1 can be readily formed. We thus find the following values:

Residuals of Equations of Condition in terms of k.

NOVEMBER TRANSITS, INTERNAL CONTACTS.

Year.	Contact.	Residuals.	k = 0	k = 0.295	k = 1	Wt.
	!	. " "	···	"		
1677	III & III	- 0.90 $+$ 7.25 k	 0.90	+ 1.24	+ 6.35	0. (
1697	, III	+ 2.45 - 4.26k	+ 2.45	+ 1.19	- 1.81	0.
1723	; II	-0.58 + 3.38k	— o. 58	+ 0.42	+ 2.80	2.
1736	II	-0.47 + 0.68k	— o. 47	— O. 27	+ 0.21	1.
1736	III	-0.03-1.74k	— о. оз	- o. 54	— 1.77	1.
1743	! II	-0.68 + 1.94k	- 0.68	- o. 11	+, 1.26	I.
1743	III	+ 0.75 $-$ 1.07 k	+ 0.75	+ 0.43	— O. 32	ı.
1769	H	-0.82 - 2.70k	— o. 82	— 1.62	— 3. 52	ı.
1769	III	-0.14 + 2.28k	— 0. 14	+ 0.53	+ 2.14	о.
1782	II	+ 0.07 - 1.13k	+ 0.07	0. 26	1.06	3.
1782	III	-1.12 + 0.27k	— I. 12	- 1.04	o. 85	3.
1789	II	+ 0.88 - 2.66k	+ o. 88	+ 0. 10	— 1.78	2.
1789	III	-1.14 + 3.23k	- 1.14	— 0. 19	+ 2.09	1.
1802	II	-1.09 + 3.68k	- 1.09	0.00	+ 3.59	٠3٠
1822	II	+ 0.70 - 0.42k	+ 0.70	+ 0.58	+ 0. 28	0.
1822	III	+ 0.06 + 1.18k	+ 0.06	+ 0.41	+ 1.24	1.
1848	II	•+ 1. 02 — 1. 16k	+ 1.02	+ 0.68	— 0. 14	5.
1848	III	-0.92 + 1.20k	- 0.92	— o. 57	+ 0. 28	о.
1861	11	+ 1.75 + 0.11k	+ 1.75	+ 178	+ 1.86	0.
1861	· 111	-0.68 - 0.27k	— o. 68	— o. 76	— 0.95	5.
1868	II	+7.25+1.28k	+ 7.25	+ 7.63	+ 8.53	0.
1868	III	+ 0.29 - 0.83k	+ 0.29	+ 0.05	— 0. 54	6.
1881	, II	-1.92 + 1.98k	— 1.92	— 1.34	+ 0.06	3.
1881	III	+ 0.97 - 1.77k	+ 0.97	+ 0.45	— o. 8o	3.
	М	AY TRANSITS, IN	TERNAL	CONTACT	s.	
1753	III	+ o. 08 — 1. 15k	+ 0.08	— 0. 26	- 1.07	3.
1786	· III	+ 1.77 - 0.25k	+ 1.77	+ 1.70	+ 1.52	4.
1799	II	-0.43 + 0.15k	- 0.43	— o. 39	- o. 2 8	3.
1799	III	+ 0.14 + 0.31k	+ 0. 14	+ 0. 23	+ 0.45	4.
1832	II	+ 0.58 - 0.97k	+ 0.58	+ 0.29	— 0.39	6.
1832	111	-0.21 + 0.74k	- o. 21	+ 0.01	+ 0.53	6.
1845	II	+ 0.45 + 0.00k	+ 0.45	+ 0.45	+ 0.45	8.
1845	III	-0.76 + 0.38k	0. 76	— o 65	- o. 38	8.
1878	II	-0.55 + 0.49k	- o. 55	— 0. 4I	 0.06	12.
-	1		-	•		

Residuals of Equations of Condition in terms of k—Continued.

NOVEMBER TRANSITS, EXTERNAL CONTACTS.

Year.	Residuals.	k = 0	k = 0.295	k = 1	Wt.	
	,, ,,	,,	,,	,,		
1677	+ 1.04 - 6.35k	+ 1.04	o. 83	- 5.31	0. 1	
1690	+ 0.47 - 4.09k	+ 0.47	— o. 74	- 3.62	0. 2	
1697	+ 0.51 - 3.28k	+ 0.51	— 0.46	— 2. 77 <i>.</i>	0. 3	
1736	+ 0.01 - 1.00k	+ 0.01	0. 29	– 0.99	o. 6	
1743	+ 0.75 - 0.36k	+ 0.75	+ 0.64	+ 0.39	0. 7	
1756	-3.62 + 0.92k	— 3.62	- 3·35	— 2. 70	o. o	
1769	-1.22 + 2.84k	- 1. 22	— 0.38	+ 1.62	o. 2	
1782	-0.79 + 0.63k	— o. 79	— 0.60	— o. 16	1.0	
1789	+ 1.50 + 3.69k	+ 1.50	+ 2. 59	+ 5.19	0, 2	
1802	+ 0.51 + 4.07k	+ 0.51	+ 1.71	+ 4.58	1. 2	
1822	-1.62 + 1.46k	— 1.62	- 1.19	— o. 16	0. 2	
1848	-1.09 + 1.32k	- 1.09	o. 70	+ 0.23	0. 2	
1861	+ 1.72 - 0.22k	+ 1.72	+ 1.65	+ 1.50	1.5	
1868	- 0.40 $-$ 0.84 k	- 0.40	- o. 65	— 1.24	2. 0	
1881	+ 0.90 - 1.82k	+ 0.90	+ 0.36	— I. 92	1.5	
MAY TRANSITS, EXTERNAL CONTACTS.						
1753	-0.03-0.81k	— o. o3	- o. 27	— o. 84	2, 0	
1786	+ 0.58 0.00k	+ 0.58	+ 0.58	+ o. 58	2, 0	
1799	-1.21 + 0.54k	— 1.21	— 1.05	— o. 67	2. 0	
1832	-0.44 + 0.87k	— 0.44	— o. 18	+ 0.43	2. 4	
1845	-0.98 + 0.45k	— o. 98	— o. 85	— o. 53	2. 0	
1878	-0.60-0.42k	- o. 6o	— 0. 72	- 1.02	3.0	

We thus derive, by direct computation,

Hence, for

$$\Sigma W_{\bullet}^{2} = 109.4 - 136.4k + 237.8k^{2}$$

while the result from the solution of the normal equations is

$$\Sigma W_{\epsilon}^{2} = 109.5 - 137.2k + 232.8k^{2}.$$

$$k = 0; \quad \Sigma W_{\epsilon}^{2} = 109.4$$

$$k = 0.295; \quad \Sigma W_{\epsilon}^{2} = 89.9$$

$$k = 1; \quad \Sigma W_{\epsilon}^{2} = 210.8$$

Since what we are now aiming at is the determination of a hypothetical error of the astronomical time, a conclusion will be facilitated by presenting the mean error of time for each transit. We remark that, continuing the notation already employed, to the residual Δc in arc will correspond the residual $\Delta t = n\Delta c$ in time. Hence, to a weight W of Δc will correspond a weight proportional to Wn^2 of Δt . Hence we shall have, as the mean by weights of any number of results:

$$\Delta t = \frac{\sum \mathbf{W} \mathbf{n} \Delta c}{\sum \mathbf{W} \mathbf{n}^2}.$$

We thus have the following results from the one, two, or three contacts observed at each transit. The probable error corresponding to the unit of weight is assumed to be 1.5.

	 I) i			- —
Year.	k = 0	k = 0.295	k = 1	Wt.	ε
•		i — i		!	
1677	+ 4.6	- 5.6	— 30. o	. 0165	12
1690	+ 3.4	- 5.4	— 26. 3	. 0039	24
1697	+ 9.4	+ 2.3	- 14.6	. 0143	12
1723	+ 2.9	- 2.2	— 14. 3	. 0776	5
1736	+ 1.6	- 1.7	- 9.7	. 0277	9
1743	+ 4.2	+ 2.2	– 2. 6	. 0975	4.8
1753 ·	+ 0.5	- 3.5	— 12.9	. 0288	9
1769	+ 2.1	+ 6.3	+ 16.4	, 0483	7
1782	- 14. 1	- 9.6	+ 1.2	. 0139	13
1786	+ 25.5	+ 24.6	+ 22.4	. 0175	11
1789	— 4.3	+ 0.2	+ 11.1	. 1136	4. 5
1799	- o. 8	0.0	+ 2.0	. 0506	7
1802	— 3. о	+ 2.3	+ 15.0	. 1869	3.5
1822	— 3⋅5	— 0.7	+ 6.0	. 0184	11
1832	- 5.8	— 2. I	+ 6.6	. o686	6
1845	- 9.8	- 8.8	6. 5	. 0784	5
1848	- 4.9	- 3.3	+ 0.7	. 2380	3. 1
1861	— 1.8	— 2. 3	- 3.4	. 1727	3.6
1868	– 2 . 3	- 4.1	- 8.5	. 1595	3.8
1878	+ 5.0	+ 3.3	— о. 9	. 1347	4. I
1881	+ 6.5	+ 3.8	— 2.6	. 3153	2. 7

In order still farther to trace the course of the changes of long period, we take the mean results from groups of transits with the following results:

Limits of dates.	Mean year.	k = 0	k = 0.295	k = 1	W t.	ε
		н.	! *.	я.		s.
1677—1697	1690	+ 6.5	– 2 . 3	— 23. I	. 0352	8
1723—1753	1740	+ 3.0	- 0.4	– 8.6	. 2316	3. 2
1769—1802	1787	— I.7	+ 2.5	+ 12.5	. 4308	2. 3
1822—1832	1822	- 5⋅3	- 1.8	+ 6.5	. 0870	5 1
1845—1848	1847	- 6. ı	— 4.7	1.1	. 3164	2. 7
1861—1868	1865	- 2.0	- 3.2	– 5.8	. 3322	2.6
1878—1881	1879	+ 6.1	+ 3.7	— 2. I	. 4500	2.2

If we are compelled to choose between the two limiting values of k0, and unity the value zero is far the more probable. The probable error of k being the probability that the true value of k can be as great as 0.8 is only . This would be the probability if no systematic errors entered into the observations. But the possibility of systematic differences between observations of different transits is such that we should regard this probable error as quite illusory. Still it must be admitted that the probability that k can be nearly unity is so small that we must regard it as quite improbable that the inequalities in the mean motion of the moon are entirely to be

accounted for by changes in the earth's rotation. One of the conclusions of the present discussion is therefore this:

Inequalities in the motion of the moon not accounted for by the theory of gravitation really exist, and exist in such a way that the mean motion of the moon between 1800 and 1875 was really less than it was between 1720 and 1800.

If on the other hand we adopt the hypothesis k = 0, the systematic character of the residuals is such that this hypothesis must also appear quite improbable though not wholly impossible. The question then arises, can we admit the actual existence of inequalities of both classes? The most remarkable circumstance in this connection is that a value of k equal to about $\frac{1}{3}$ should so closely satisfy the whole series of observations. That there could be any such relation between variations in the earth's rotation and in the moon's mean motion as would be implied by supposing this value of k to be real would be a result which cannot be accounted for by known physical laws. But it is a singular circumstance that the whole series of observed transits through two centuries should so closely follow this law. It is also singular that the changes during the last 40 years should be so closely represented. It is to be remarked that the apparent retardation of the moon's mean motion during the present century has not been uniform, but that during a few years preceding 1860 there was a temporary acceleration which continued until perhaps 1862. A rapid retardation then commenced, which has gradually brought the moon back into its regular position as given by the hypothetical inequalities of long period. Now it is most remarkable that the observations of transits of Mercury agree with those of the moon, and those of the first satellite of Jupiter, in indicating that this apparent inequality was in part at least due to the earth's rotation. If we should accept this result it would lead to the conclusion that the motions of the earth and moon are so connected that one is retarded when the other is accelerated. But, it is difficult to see how such a conection could result from the mutual action of the two bodies. If these motions were connected in a way which could be accounted for by the action of a couple of forces between the two bodies they would be accelerated and retarded together. This relation would be indicated by a negative value of k.

On the whole it would seem premature to reach any positive conclusion upon these results, though they seem to suggest the desirableness of further physical investigation to ascertain the possibility of any such relation

At present the best course would seem to be to suppose $k \equiv 0$ in our subsequent investigations. The effect of k is so small that our general conclusions respecting the motion of Mercury will not be materially altered should it subsequently be found to have a value different from zero. By constructing theories and tables on the simpler hypothesis, the existence of any real deviation will be made more evident by the results of future transits.

§ 2.

Concluded corrections to Leverrier's elements.

Since we cannot derive separate and independent values of all the elements from observations of transits, the corrections which we obtain must be regarded as those

applicable to certain functions of the elements, as shown in Chap. II, § 5. Transferring the epoch from 1820 to 1850, and putting k = 0, we have the following values of the corrections to the tabular quantities. T is here the time after 1850.0, the unit being a century.

$$N = (\delta\theta - \delta l') \sin i = -0''.07 + 0''.28T$$

$$V = 1.487\delta\lambda - 0.487\delta\pi - 1.137\delta e$$

$$- 1.01\delta\lambda' + 1.19e'\delta\pi' + 1.58\delta e' = -1''.69 - 2''.63T$$

$$W = 0.716\delta\lambda + 0.284\delta\pi + 0.896\delta e$$

$$- 0.97\delta\lambda' - 1.11e'\delta\pi' - 1.62\delta e' = +1''.39 + 1''.84T$$

$$M = + 0.15$$

Hence, the mass of Venus derived from the periodic perturbations at the times of transits is

$$\frac{1.015}{401847} = \frac{1}{396000}$$

For the corrections of semi-diameters we have

$$S = \delta R' - 1.60\delta R = -0''.04$$

Hence, for the sun's semi-diameter at distance unity we have

959".75 — 1.60
$$\delta R$$

 δR being the correction to the semi-diameter of Mercury at distance unity. The value of S_1

$$-o''.50 + o''.46T$$

expresses the extent to which Mercury impinged upon the sun at the time of an average external contact. The term o".46T represents the diminution of this quantity in consequence of the gradual improvement of the telescope.

Comparison of observed and theoretical secular variations and of results for the mass of Venus.

The observed secular variation of the perihelion of Mercury, as derived from observation, can, without difficulty, be accounted for by suitably increasing the adopted mass of Venus. The only argument against such an increase is that the variations of other elements will not then be represented. But in the absence of any reason for preferring one determination to another, the true form in which we should put the result is that the variations of different elements give different values of the mass of Venus. We can reject one result only when we have found that all the methods but one give accordant results and that this one alone is discordant. The first step toward a satisfactory solution of the question is, therefore, to find what values of the mass of Venus are given by different data and discuss the discordances among them.

Five methods are available for the determination of the mass of Venus.

- I. The secular motion of the perihelion of Mercury.—More exactly we should say the secular motions of V and W, which arise from variations both in the eccentricities and in the perihelion of Mercury and the earth.
- II. The secular motion of the node of Mercury.—Any uncertainty that may exist in the theoretical motion of this node arises almost entirely from the uncertainty in the mass of Venus, since the influence of all the other planets can be accurately determined.
- III. The secular motion of the node of Venus on the ecliptic.—Properly speaking we should say the secular motion of the ecliptic itself, because that portion of the motion of the node of Venus which depends on the mass of that planet arises solely from the motion of the ecliptic.
- IV. The secular diminution of the obliquity of the ecliptic.—This, like the first, is a motion of the ecliptic due to the action of Venus. Hence these two determinations cannot be considered as wholly independent, though each would strengthen the other.
- V. The periodic perturbations of Mercury and the earth produced by the action of Venus.

Since a discordance of the kind in question indicates the continuous action of some unknown cause, we cannot say that any one of the first four methods is necessarily free from the effects of such action. Hence, if the results are discordant, we have no right to deduce with certainty any mass of Venus from them. It is different with the last method. It is beyond all moral probability that any unknown cause should produce periodic inequalities in the planetary motions corresponding to those produced by the action of the planets on each other. We may therefore consider the mass of Venus derived from periodic perturbations to be that which is to be accepted as the real mass to be used in comparing the other results. Unfortunately, the best mass that can be derived from transits is very uncertain, while that of discussing the meridian observations will be very laborious.

Mass of Venus from the motion of the perihelion of Mercury.

I. To determine what mass of Venus will best represent the secular variations of the eccentricity and perihelion, let us consider the values of V' and W', which depend upon the corrections to the secular variations. If we put

$$\delta H_1 = 0.487 \delta \pi + 1.137 \delta e - 1.19 e' \delta \pi' - 1.58 \delta e'
\delta H_2 = 0.284 \delta \pi + 0.896 \delta e - 1.11 e' \delta \pi' - 1.62 \delta e'$$
(a)

The values of V' and W', which we have found, give the equations—

1.487
$$\delta n - 1.01\delta n' - \frac{d\delta H_1}{dt} = -2''.63$$
 (b)
0.716 $\delta n - 0.97\delta n' + \frac{d\delta H_2}{dt} = +1''.84$

Where δn and $\delta n'$ are the corrections to the centennial mean motions of Mercury and the earth, respectively. There being four unknown quantities in these two equations, we cannot determine them all from the data afforded by the transits. We shall

A. P., PART VI-14

therefore take the tabular mean motion of the sun as correct, which amounts to supposing $\delta n' = 0$, and express $\frac{dH_1}{dt}$ and $\frac{dH_2}{dt}$ in terms of the mass of Venus as the single unknown quantity in addition to δn

The following values of the secular variations of π , e, π' and e' are given by LE-VERRIER,* and will be accepted with the single change of substituting, for the action of Venus, the value found by Mr. Hill by Gauss's method. (Ante, p. 342.)

$$\begin{aligned} D_{t}\pi &= 527''.00 &+ 280''.51\nu' &+ 83''.64\nu'' + 2''.85\nu''' \\ &+ 152''.59\nu^{iv} + 7''.25\nu^{v} &+ 0''.14\nu^{vi} + 0''.06\nu^{vii} \end{aligned}$$

$$D_{t}e &= + 4''.18 &+ 2''.82\nu' &+ 1''.06\nu'' &- 0''.07\nu''' \\ &+ 0''.32\nu^{iv} &+ 0''.05\nu^{v} \end{aligned}$$

$$e'D\pi' &= + 19''.30 - 0''.46\nu &+ 5.89\nu' &+ 1.89\nu''' &+ 11''.66\nu^{iv} + 0.31\nu^{v} \\ D_{t}e' &= - 8''.95 &- 0''.29\nu &+ 1''.36\nu' &- 1''.82\nu''' &- 8''.16\nu^{iv} - 0''.04\nu^{v} \end{aligned}$$

The coefficients ν , ν' , etc., are determined by the condition that $1 + \nu$, $1 + \nu'$, etc., are the factors by which we must multiply the provisional masses adopted by Leverrier to obtain the true masses. Since the time when Leverrier wrote the masses of most of the planets have been determined with a certainty far exceeding any then attainable. The following seem at present to be the most reliable values of the planetary masses:

Mercury.—Von Asten's investigations on Encke's comet indicate a large diminution of the mass of Mercury generally assumed. The different results for this mass are so discordant that the choice among them must be a matter of judgment rather than of calculation. Analogy would lead us to suppose that the density of this planet is probably less than that of the earth. It is the opinion of the writer, from a consideration of all the data, that we may adopt the value

Mass of Mercury
$$=\frac{1}{7500000}$$

as being at present the most probable value.

The Earth—The most recent determinations of the solar parallax appear to group themselves around the value 8".91, which we may regard as the most probable value now obtainable. To this corresponds

Combined mass of the Earth and Moon $=\frac{1}{327000}$

Mass of Mars.—Professor Hall's discussion, from the motions of the satellites, gives

Mass of Mars=
$$\frac{1}{3093500}$$

which does not seem to need any further discussion or correction.

Mass of Jupiter.—There does not seem to be any reason for changing Bessel's mass, which we shall therefore adopt.

^{*} Aunales de l'Observatoire, tome ii, p. 100.

Saturn, Uranus, and Neptune.—The action of these planets on Mercury and the earth is so small that there is no need of changing the masses employed by LEVERRIER.

We now have the following comparison of the masses here adopted with those adopted by Leverrier, with the resulting values of the coefficients ν .

Planet.	Mass adopted by LEVERRIER.	Corrected mass.	Value of ν.
Mercury	3,000,000	7,500,000	— o. 6
'Venus	1 401,847	Indeterm.	Unknown.
Earth	1 354,936	<u>1</u> 327,000	+ 0.0854
Mars	2,680,337	1 3,093,500	_ o. 134
Jupiter	1050	1 1047.88	+ 0.00202

Substituting these values of ν , ν'' , etc., the preceding expressions for the secular variations in terms of the mass of Venus become

In Leverrier's tables of Mercury and the sun the adopted secular variations, assuming the precession for 1850 to be 50".2357, are

$$D_{t}\pi = 567.81$$
 $D_{t}e = 4.20$
 $e'D_{t}\pi' = 19.23$
 $D_{t}e' = -8.76$

The corrections to the tabular secular variations are therefore expressed in the form

Substituting these values in the derivatives (a) of δH_1 and δH_2 with respect to the time, we have the following expressions for the theoretical corrections to the tabular secular variations of H_1 and H_2

$$D_t \delta H_1 = -16.81 + 130.6 \nu'$$

 $D_t \delta H_2 = -9.98 + 73.4 \nu'$

Substituting these theoretical expressions in the formulæ (b), and putting $\delta n' = o$, the equations derived from observation become

$$1.487\delta n + 16.81 - 130.6\nu' = -2.63$$

 $0.716\delta n - 9.98 + 73.4\nu' = +1.84$

The solution of these equations gives

$$\delta n = + 0.58$$
 $v' = + 0.1554$

This value of ν' gives

Mass of Venus =
$$\frac{1}{347800}$$

II. Motion of the node of Mercury.—Our next inquiry is, what mass of Venus results from the observed motion of the node of Mercury upon the ecliptic? If we put, with LEVERBIER,

$$p \equiv \tan i \sin \theta,$$

 $q \equiv \tan i \cos \theta,$

we have the following theoretical values of the secular variations of the planes of the orbit, derived and expressed as in the case of the perihelion of Mercury.

FOR MERCURY

$$D_{t}p = -53.69 - 27.71\nu' - 8.76\nu'' - 0.21\nu''' - 16.08\nu^{tv}$$

$$D_{t}q = +24.65 + 7.06\nu' + 7.32\nu'' + 0.17\nu''' + 9.75\nu^{tv}$$

FOR THE EARTH.

$$D_{t}p'' = + 5.89 + 0.62\nu + 7.57\nu' + 0.73\nu''' - 2.50\nu^{iv}$$

$$D_{t}q'' = - 47.59 - 0.52\nu - 28.90\nu' - 0.83\nu''' - 16.01\nu^{iv}$$

FOR MERCURY RELATIVE TO EARTH.

$$\begin{array}{l} D_{i}(p-p'') = -59.58 - 0.62\nu - 35.28\nu' - 8.76\nu'' - 0.94\nu''' - 13.58\nu^{iv} \\ D_{i}(q-q'') = +72.24 + 0.52\nu + 35.97\nu' + 7.32\nu'' + 1.00\nu''' + 25.76\nu^{iv} \end{array}$$

Substituting the values of ν , ν'' , ν''' , and ν^{iv} , already given, these last equations become

$$D_{t}(p - p'') = -59.86 - 35.28\nu'$$

$$D_{t}(q - q'') = +72.48 + 35.97\nu'$$

The secular motion of the inclination and node of Mercury relative to the moving ecliptic is found by substituting p-p'' and q-q'' for p and q in the expressions for the latter quantities and then differentiating. We thus find

$$\sin i D_t \mathcal{I} \equiv \cos i \cos \theta D_t (p - p'') - \cos i \sin \theta D_t (q - q'')$$

For the epoch 1850 we have

$$i = 7$$
 0 7.7 $\theta = 46$ 33 8.8

whence

$$\sin i D_t \theta = -93''.09 - 50''.00\nu'$$

The observed value of this same quantity is found by applying to Leverrier's tabular value the corrections already derived. We thus have

Observed
$$\sin i D_t \theta = -92''.56 + 0''.28 = -92''.28$$

Equating the values we find

$$v' = -.016$$

Hence for the mass of Venus derived from the motion of the node of Mercury, we have

$$m' = \frac{1}{408400}$$

III. Motion of the node of Venus.—The most recent determination of the motion of the node of Venus, and of the consequent mass of that planet, is that of Mr. G. W. Hill, who finds

Annual motion of node
$$=$$
 32.515 — precession $=$ $-$ 17.737

Mass of Venus* =
$$\frac{I}{427240}$$

The motion adopted in Leverrier's tables of Venus (Annales de l'Obs., vol. vi) corresponds to a yet smaller mass of Venus not far from $\frac{1}{450000}$, so that there is, apparently, an extraordinary discrepancy between the mass of Venus derived from this source and from the others. But the observations of the transit of Venus in 1874 showed that Leverrier's position of the node needed a correction about twice that found by Mr. Hill. From this it would seem probable that the geocentric latitude of Venus derived from the transits of 1761 and 1769 was several seconds in error. It must, therefore, be deemed probable that the actual motion of the node corresponds to a mass of Venus decidedly greater than that found by Mr. Hill, and not differing greatly from that found by the motion of the node of Mercury. But in the absence of a definitive investigation of the subject, no value of the mass in question can at present be derived from this source.

IV. Obliquity of the ecliptic.—The secular diminution of the obliquity of the ecliptic, as found from observation by Leverrier, indicates a diminution of the provisional

^{*} Tables of Venus, Introduction, p. 36.

mass of Venus. But this is another constant of which a definitive value is yet to be investigated, and no certain result can be laid down until this is done.

V. Results of periodic perturbations.—We have found from the equations of condition

$$M = 10v' = +0.15 - 0.43k \pm 0.13$$

The large value of the coefficient of k shows that the concluded mass of Venus from the periodic perturbations will be materially affected by any inequalities in the earth's rotation. We can, therefore, only attribute small weight to the result, which is

Should the true value of k be that given by the equations, the denominator would be increased to 401 000.

§ 4.

Concluded mass of Venus and excess of motion of perihelion of Mercury.

We have now the following results for the mass of Venus:

From perihelion of Mercury $1 \div 1000m' = 347.8$ From node of Mercury - - - - 4084 From periodic inequalities - - - - 396.

while the results from the other two sources will probably not differ much from the second of the above values.

The third value is too uncertain to permit of any conclusion being drawn from its deviation from the second. By merely supposing the constant k to have the value 0.295 not only will the last value be increased to 401, but the value 408.4 from the motion of the node will be diminished. The two values will, therefore, be made more accordant.

There is, therefore, a decided preponderance of evidence that the true value of the mass of Venus does not differ much from $\frac{I}{405\,000}$, and is probably contained between the limits $\frac{I}{400\,000}$ and $\frac{I}{410\,000}$. The value $\frac{I}{347\,800}$ is entirely inconsistent with all the others. We must, therefore, conclude that the discordance between the observed and theoretical motions of the perihelion of Mercury, first pointed out by Leverier, really exists, and is indeed larger than he supposed.

Determination of excess of motion of perihelion.—In investigating the actual amount of the discordance we call to mind that we have no certain evidence as to how the discordance is to be divided among the several elements which enter into the expressions for V' and W'. But, so far as has yet been noticed, it does not appear that any other element than the perihelion of Mercury is affected by this abnormal variation. We, therefore, put the inquiry into this form: assuming that the variations of e, e', and π'

correspond to theory, how much is the variation of π in excess of the value given by theory? In considering this question we shall assume $\nu' = -.008$ and hence $m' = \frac{1}{405000}$. We shall also put,

p, the excess in the centennial motion of π .

With this adopted value of the mass of Venus the motions of the elements which are to be reconciled with observation will become

$$D_{t}\pi \equiv 531.83 - p$$
 $D_{t}e \equiv 4.26$
 $e'D_{t}\pi' \equiv 19.30$
 $D_{t}e' \equiv -8.56$

The excess of the values adopted in the tables over these values are

$$\Delta D_t \pi \equiv 35.98 - \pi'$$

$$\Delta D_t e \equiv -0.06$$

$$\Delta e' D_t \pi' \equiv -0.07$$

$$\Delta D_t e' \equiv -0.20$$

We thence derive from the equations (a) the following values of the excess of the tabular values of D_tH_1 and D_tH_2 over the modified theory

$$\Delta D_t H_1 \doteq 17.85 - 0.487 p$$
 $\Delta D_t H_2 = 10.57 - 0.284 p$

Next, the equations (b) give for the excess of observation over the tables

$$\delta D_t H_1 = + 2.63 + 1487 \delta n$$

 $\delta D_t H_2 = + 1.84 - 0.716 \delta n$

the terms in $\delta n'$ being omitted as before.

Hence, the excesses of observation over theory, which is to be reduced to zero by attributing suitable values to p and δn , are

$$20.48 - 0.487p + 1.487\delta n$$

 $12.41 - 0.284p - 0.716\delta n$

Equating these expressions to zero we find

$$\delta n = + 0.37$$

$$p = + 42.95$$

It follows that the observed centennial motion of the perihelion of Mercury is greater by 43" than the theoretical motion computed from the best attainable values of the masses of the planets.

Speculation on possible causes of the excess of motion of the perihelion of Mercury.

Should physicists succeed in discovering some modification of the law of attraction between different bodies, which would closely represent the phenomenon in question, further investigation of the subject from an astronomical standpoint would be greatly limited. But, in the absence of any such modification, no satisfactory conclusion can be reached without more certain data than we now possess as to the exact character of the excess of motion of the perihelion of Mercury, and of the other phe nomena which may be associated with it. It is therefore difficult, in discussing the possible cause of such a motion, to speak with the confidence of certainty on every point that may come up. What we have to say must be to a considerable extent pro visional, and must be founded on the supposition that the character of the phenomena with which we are concerned is that which appears most probable from the preceding discussion.

Of course the first thing to be sure of before basing any theory upon the observed discordance is, that the latter does not arise from any imperfection either in the theory or in the discussion of the observations. The close agreement of the secular variations produced by Venus, as computed by Mr. Hill in the preceding paper of this series, and as computed by Leverrier, seem to prove conclusively the correctness of the latter's results. For any other planet than Venus the uncertainty must be much smaller. We cannot, therefore, look with any probability for an error in the computed secular variations. The question may, however, be raised, whether there is a possibility of any term of very long period. This question also must, it would seem, be answered in the negative. Any term having a period of a number of centuries would depend upon multiples of the mean motion so high that there is no possibility of their being sensible.

To show this let us develop the ratio of the mean motions of Venus and Mercury as a continued fraction. It will be—

$$\frac{\frac{1}{2}}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{7} + \frac{1}{\text{etc.}}$$
be

The convergents will be

$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{2}{5}$, $\frac{9}{23}$, $\frac{65}{166}$

The period of the term 23 V — 9 M will be little more than 50 years. The term 166 V — 65 M could not be sensible in the motion of the perihelion.

The most simple hypothesis is the well-known one of Leverrier, which presupposes the existence of a planet or group of planets between Mercury and the sun. That any such body or bodies of sufficient mass to produce the motion in question can really exist seems to be out of the question, for a number of reasons.

In the first place, on any probable hypothesis of the relation of mass to reflecting power, it is impossible that a planet or group of planets of sufficient mass to produce the observed motion of the perihelion of Mercury could exist without being very conspicuous objects during total eclipses of the sun, if at no other time. We cannot, indeed, assign an exact value to the mass unless we know the mean distance. But the less we suppose the mean distance, and therefore the greater we suppose the liability that the planet should be lost in the sun's rays, the greater the mass required and the more brilliant the planet or planets would shine during a total eclipse. In fact the more distant from the sun the required planet, the less readily it would be detected during an eclipse; but, on the other hand, it would be more readily detected at other times. In a paper published in Gould's Astronomical Journal, volume vi, the writer showed that if a group of sufficient magnitude existed, the transits over the sun would be too frequent to escape detection.

In the next place, no such group could exist and produce the observed effect without also disturbing the secular motions of the node of Mercury and Venus. It was shown in the paper just referred to that, supposing the group to lie in the ecliptic, the excess of motion of the node would be as great as that of the perihelion. But observations do not indicate any such excess. If, therefore, the group exists its plane must be very nearly coincident with the orbit of Mercury. But here we meet with two difficulties:

If the mean plane of the group were at any epoch coincident with that of Mercury, it could not remain so permanently, but the planes of the different orbits would, in time, group themselves near the invariable plane of the planetary system. Again, if the coincidence had place with the orbit of Mercury it could not have place with reference to the plane of Venus, and the plane of motion of that planet would be subject to a secular variation.

Now it is quite true, as already pointed out, that these several secular motions of the planes have not been investigated with such thoroughness that we can speak positively on this question. At the same time it appears extremely improbable that any disturbing action can exist of such magnitude as the hypothesis would imply.

The hypotheses just considered are those of a single planet or a group of planets. It may be asked to what limit we must suppose the subdivision carried in order that the individual bodies may escape detection. The reply is that they must be so small as to be invisible either in transit across the sun or by reflected light during a total eclipse, or in the evening after sunset. Their diameters at the distance unity cannot, therefore, exceed a very small fraction of a second.

The limit of mean diameter may be roughly placed at $\frac{I}{50}$ that of the earth, and the limit of individual volume at $\frac{I}{100000}$ that of the earth. Since the total mass must be an appreciable fraction of the mass of the earth the number of the hypothetical planets must be thousands and probably tens of thousands.

It may be suggested that in the zodiacal light we have evidence of at least the possibility that a group of many thousand bodies, too minute to be visible to the naked

A. P., PART VI--15

eye, circulate between the earth and the sun. It would be an interesting photometrical investigation to ascertain the limit of volume of these bodies of the supposition that they are of ordinary whiteness. The extreme softness of the zodiacal light is such that the minimum number of separate bodies would have to be estimated at hundreds of thousands. The writer thinks it probable that the result would be that a collection of 100,000 bodies with a combined volume one-tenth that of the earth would glow with a much brighter light than the zodiacal light actually does. The hypothesis of the zodiacal light is subject to the same difficulties with respect to motions of the nodes as have already been pointed out with respect to the group of planets. But we have at present no way of positively disproving it.

We may next inquire whether either a possible ellipticity of the sun or of his atmosphere, or of the matter in his interior, can produce the observed effect. The reply to this would be that the most exact measures have failed to show any ellipticity of the body of the sun at all approaching that required. Indeed, if we suppose the elliptic disturbance of matter, if I may use the expression, to be within the sun, it would probably be found that the consequent deviation of the level surfaces at the photosphere from a spherical form would lead to a sensible ellipticity of the sun's disk.

There is a field for investigation in the question what the mass of a ring round the sun must be to produce the observed effect, and what influence that mass would have upon the motion of the nodes of Mercury and Venus. This is a question which can be more profitably discussed when the character of the phenomena is more accurately ascertained. But, as the question now stands, all hypotheses that the observed phenomenon is produced by the attraction of unknown matter in the neighborhood of the sun or Mercury must be dismissed as at least highly improbable.

We may next inquire whether any deviation from or modification of the law of gravitation which would produce the observed effect is admissible. The most natural modification of this kind would be the addition of a term varying as the inverse third or fourth power of the distance. This hypothesis can, however, be refuted very readily. A term of the inverse third power which, at the distance of Mercury, should have a value even the millionth part of the total gravitative force of the sun would, at the distance of a foot, have a value two hundred thousand times that of the term depending on the inverse square. If higher powers than the cube were added the discrepancy would be yet more enormous. The existence of a term of such magnitude is out of the question.

Another hypothesis which has been considered in this connection is that of Weber's electro-dynamic theory. According to this theory the gravitative force between two bodies is expressed by an equation of the form

$$\frac{m}{r^2}\left(1-\frac{1}{h^2}\left(\frac{dr}{dt}\right)^2+\frac{2r}{h^2}\frac{d^2r}{dt^2}\right)$$

in which the constant h, as is evident from the formula, must be a velocity. This velocity Weber has sought to determine experimentally; his value is 439,450 kilometers per second. From this datum Tisserand has computed the secular variations of the planets.*

His results are that the only element affected with a sensible inequality is the perihelion, and that the secular motions of the perihelia of Mercury and Venus would have the following values:

If h be the velocity of light his result is,

But the actual motion has been found to be three times this. To produce this motion the value of h must be reduced to about 174,000 kilometers per second.

Objections have been raised to Weber's whole theory on the part of physicists, to whom the discussion of its possibility must be left.

Assuming that we are still to look to a more exact determination of the astronomical character of the phenemena for a solution of the question, the necessary steps are an exact determination of the mass of Venus from the periodic perturbations of the inner planets, an investigation of the secular motions of the planes of the orbits of these planets, and the comparison of the theoretical and observed secular motion of the perihelion of Venus.

The latter research would be of especial interest in this connection. Unfortunately, however, owing to the very small eccentricity of Venus, a motion of its perihelion amounting to only a few seconds in a century would escape the observations hitherto made. Moreover, the very imperfect way in which observations of Venus were made during the last century precludes our obtaining a satisfactory result. The question whether this element is effected by a motion corresponding to that of Mercury can, therefore, hardly be settled until after 20 or 30 years more of careful meridian observations of Venus. But a general investigation of the secular variations of all four of the inner planets might result in showing discordances which would throw some light on the question. This investigation is one for which the material is being prepared under the writer's direction.

§ 6.

Law of recurrence of transits of Mercury.

The conception of conjunction points, developed in Part I of the present series of papers, pages 8 to 10, enables us to lay down the law of recurrence of transits of Mercury in such a way that the times and circumstances of all possible transits during several centuries past and future may be determined with great ease. Since, however, we have to consider only those conjunctions which take place near the node, it will not be necessary to consider the arrangement and motion of the whole series of conjunction points. Moreover, it is only when we neglect the eccentricities that the conjunction points are uniformly distributed and move uniformly. The eccentricity of the orbit of Mercury is so great that the positions of the mean conjunction points give

us no index to the actual circumstances of transits. What we therefore have to do is to treat the relations of the sun and Mercury at each node separately, and consider their motions at this point as if they were mean motions. Notwithstanding the eccentricity and the secular motion of the perigee, the intervals between consecutive passages of each planet through either of the common nodes will be nearly the same for many centuries. These intervals will not, however, be the same for each node, nor will they coincide with the periods corresponding to the mean motions. By a simple computation from Leverrier's tables we find the following intervals between consecutive passages of the earth and Mercury through the common nodes during the first half of the present century:

Interval between passages of Mercury through the ascending node in No-

874.969204 Through descending node in May - - - - - - - - - -87^d.969046 Interval between successive passages of the earth through the ascending

365^d.254268 Interval for descending node in May - - - - - - - - - -365^d.254147

If we develop the ratio of each of these pairs of periods as a continued fraction, we have the following results:

Proof the ratio of each of these pairs of periods as a corlowing results:

NOVEMBER.

Ratio of Periods =
$$\frac{1}{4 + \frac{1}{6 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3 \cdot \frac{9}{11}}}}}}$$

Ratio of Periods =
$$\frac{\frac{1}{4 + \frac{1}{6 + \frac{1}{1 + \frac{1}{2 + \frac{1}{4 \cdot \frac{16}{16\overline{1}}}}}}{1 + \frac{1}{4 \cdot \frac{16}{16\overline{1}}}}$$
rging fractions for each period, so far as it is necessary to

The converging fractions for each period, so far as it is necessary to carry them for our present purpose, are

$$\frac{1}{4}$$
, $\frac{6}{25}$, $\frac{7}{29}$, $\frac{13}{54}$, $\frac{33}{137}$, $\frac{46}{191}$, $\frac{171}{710}$, $\frac{217}{901}$.

These fractions are common to the extent to which we have carried them, but beyond this point we should have different convergents for May and November.

The first ratio to be considered is 46:191. It shows that at the end of forty-six years Mercury will have made nearly 191 revolutions, so that the two bodies will

have returned nearly to their original positions. The number of conjunctions will have been 145, which is therefore the number of conjunction points when this system is adopted. In order that each conjunction may occur at one of these 145 points, we must attribute a suitable motion to the whole system. This motion may be best conceived by determining the intervals between consecutive passages of the conjunction points through the node, an interval which is given by the equation .

$$I = \prod_{i \mid T - i' \mid T'}^{T \mid T'}$$

T and T' being the periodic times of Mercury and the earth, respectively, and i and i' the chosen coefficients; in the present case 191 and 46.

From the preceding values of T and T' we have

```
191 T for November - - - - = 16802.1179

May - - - - - = 16802.0877

46 T' for November - - - - = 16801.6963

May - - - - - - = 16801.6908
```

We thus find:

For November transits - - - I \equiv 208.6 years. For May transits - - - - I \equiv 221.6 years.

The value of I for November is gradually increasing, and that for May gradually diminishing, in consequence of the secular recession of the perihelion from the node.

The last passage of a November conjunction point through the ascending node occurred about the year 1776. The adjacent point will therefore pass the node about the year 1985. At the present time, 1882, the node is about half way between these points. The limits within which a November transit may occur are distant a little more than four intervals between conjunction points. Hence, at the present time, four transits occur during each 46-year period.

The last passage of a May conjunction point through the descending node occurred about 1725; the next will therefore occur about 1946. Only two May transits can occur during the 46-year period.

The conditions under which transits will recur for several centuries may be conceived by the following scheme. The horizontal lines are those along which Mercury may be supposed to pass as it crosses the several conjunction points. The planet must be supposed to pass along each of these lines in November of every 46th year, in an indefinite series. The dates of several passages are given at the right of the line, and the series may be continued at pleasure in either direction.

Thirty-three years after passing each line it passes along the next line below. Thirteen years after passing each line it passes along the line next above. Thus all the passages along these six lines may be indefinitely continued, and additional lines may be added above and below.

The sun must be supposed to move downward across the lines at such a rate that it passes over the space between two lines in 208.6 years. The line on the left represents the sun's vertical diameter, the position being that which it occupies in 1800. Its length is about $4\frac{1}{10}$ spaces between the horizontal lines. Its downward motion is

such that the north end passed the first conjunction point about 1794, and its south end crossed the fifth conjunction point about 1764. The passages of each end over the conjunction lines are given on the diagrams, the intervals being 208.6 years, with a minute increase in future centuries. These motions being supposed, we have the following rule for predicting transits. Every time that the planet in its passage along a conjunction line strikes the sun's diameter there will be a transit across the disk.

If it passes near the end of the diameter without striking it there will be a near approach to the sun. If the passage across the transit occurs near the center of the diameter, the transit will be a nearly central one. Thus one can, in a few minutes, map out all the transits and all the near approaches to the sun which are to occur for several thousand years, with a close approach to precision. It will be noticed that there is for each conjunction point a period of 864 years, during which the sun is in such a position that the planet will strike it at each passage. By continuing the series the limiting dates can thus be computed for each point. The dates of passage of Mercury along each line are found by adding to any one line the quantity 33 + 46 i years to form the dates for the lines next below. Here i may be any integer. We thus have belonging to each line an indefinite system of numbers, congruous with respect to the modulus 46. Such of these numbers as fall within the interval of 865 years between the two dates above the line will correspond to transits of the planet. The first date of the series will be very near the south limb. A date corresponding exactly to that given on the line will indicate a case in which the planet grazes the sun's limb: dates outside of the interval will indicate approaches more or less near the limb. The successive transits will then occur nearer and nearer the sun's center for a period of four centuries, when the line will pass the center and the following ones of the series will occur near the north limb.

Scheme for November transits. Transit of Transit of South Limb of ① North Limb of O 1644, 1690, 1736, 1782, 1828, etc. N. 1138 1677, 1723, 1769, 1815, 1861, etc. 1347 1710, 1756, 1802, 1848, 1894, etc. Node in 1800 1555 Ö, 1743, 1789, 1835, 1881, 1927, etc. 1764 1776, 1822, 1868, 1914, 1960, etc. s. 1973 1993, 2039, 2085, 2131, 2177, etc. 2181 - 2164, 2210, 2256, 2302, 2348, etc.

The corresponding scheme for May transits is given below. The two points in which the schemes differ is that the thirty-three years' interval is measured in the opposite direction from that of the November transits. The motion of the node being also reversed, the diagram itself is inverted, so that the motion shall be downward. The north end of the sun's diameter is the lower one. Moreover the length of the diameter line instead of being equal to four spaces between the horizontal lines, is equal to a little less than two.

The successive transits are now determined in the same way as the November ones, but owing to the diminished relative length of the sun's diameter there will be fewer transits along each line. Moreover the first transit of each series will occur near the sun's north limb.

Scheme for May transits. Transit of Transit of North Limb South Limb of O ol O 1285 1628, 1674, 1720, etc. 1506 1707, 1753, 1799, 1845, 1891, etc. Node in 1800 1728 1740, 1786, 1832, 1878, 1924, etc. 1950 1957, 2003, 2049, 2095, 2141, etc. 2171 2174, 2220, 2266, 2312, 2358, etc. 2393 2391, 2437, 2483, 2529, 2575, etc. 2614 - 2608, 2654, 2700, 2746, 2792, etc.

The next higher system of conjunction points which it is advantageous to consider is that corresponding to the ratio 217:901. This ratio is obtained by supposing the last denominator of each continued fraction to be 4. It expresses so nearly the relative motion of the earth and Mercury from their common node, that it is a little too great for the one node and a little too small for the other. The corresponding number of conjunction points is 684. We may therefore say that, as a rule, 217 years after each transit there will be another transit over the same part of the solar disk.

Two plates are appended hereto showing the apparent paths of Mercury over the disk of the sun during all the transits from 1667 to 1881 inclusive, which constitute one series of 217 years. At the end of this period the transits are repeated. To find the slight deviation of the new series from the old one, we note that the last denominator $\left(4-\frac{2}{11}\right)$ in the continued fraction expressing the ratio for the November transits.

sits, shows that at the end of the period the remaining transit will fall about \$\frac{1}{6}\$ of the 46 years' interval below the transit 217 years preceding. These recurring transits are shown by two dotted lines near the points of egress and ingress with the corresponding years.

In the case of May transits the fraction is about $\frac{I}{IO_1}$ so that the coincidence will

be relatively closer. The diagrams give all the transits within the interval, whether observed or not. Those which have not been observed are indicated by dotted lines. In cases where only one of the phases, egress or ingress, has been observed, one-half of the line is dotted and the other half is left entire.

In the case of the past and future series of May transits, namely, those before 1707 and those after 1881, it may be remarked that the dates are on the wrong side of the lines. For instance, in 1924 the path will be a little north of what it was in 1707. Neglecting inequalities, the change should be one-tenth the space between two consecutive paths.

The times given on each path are those of the middle of the transit. In the case of observed transits these times are the actual means, to the nearest minute, between internal contact at ingress and at egress. They are, therefore, affected by small inequalities arising from periodic perturbations by Venus and the other planets. In the case of November transits these perturbations rarely amount to a minute, so that they do not materially affect the progression of the given times. But in the case of a May transit the effect may amount to several minutes. In the case of transits which have not been observed, no computation of the times has been made, but the times as given are derived by induction from the transits preceding and following.

The times of beginning and ending may be obtained by subtracting and adding the semi-duration from or to the middle times given on the diagram. A scale at the bottom of each diagram will enable us to determine the duration of any transit within one or two minutes. To do this we take in a pair of dividers the length of the chord described by the planet on the diagram, and find the corresponding time on the scale. This time will be the duration from internal contact at ingress to internal contact at egress. It may be expected that the times of egress and ingress thus found will not, for several centuries, be more than three or four minutes in error for the November transits, nor more than five or six minutes for the May transits. Of course the errors may be greater when the chord is very short.

In the case of transits outside the period 1677-1881 the diagrams give only the years. But the times, within a few minutes, may be found by adding to each time during the given period:

79260^d 6^h 24^m for November transits. 79260^d 2^h 10^m for May transits. We thus find the following approximate Greenwich mean times of middle of transit for the period beginning with 1891:

```
h. m.
1891. May 9,
                  14 20.
                   6 36.
       Nov. 10,
1894.
1907.
       Nov. 14,
                   0
                      7.
1914.
       Nov. 7,
                      5.
       May
1924.
                 13 34.
       Nov. 9.
1927.
                  17 45.
       May 10,
                          (A near approach.)
                 2 I 22.
1937.
      Nov. 11,
1940.
                  II 22.
1953.
       Nov. 14.
                   4 53
       May
            5,
1957.
                  13 12.
       Nov. 7,
1960.
                   4 54
       May 8,
1970.
                 20 22.
1973.
       Nov. 9,
                  22 34
       Nov. 12,
1986.
                  16 9.
       Nov. 5,
1993.
                  15 59.
       Nov. 15,
                          (Mercury grazes sun's limb.)
1999.
                   9 40.
       May 6,
2003.
                 19 51.
2006.
       Nov. 8,
                   9 43.
2016.
       May 9,
                   3 0.
       Nov. 11,
2019.
                   3 23.
2032.
       Nov. 12,
                  20 56.
       Nov. 6,
                  20 49.
2039.
2049.
       May
                   2 35.
2052.
       Nov. 8,
                  14 32
2062.
       May 10,
                   9 46.
       Nov. 11,
2065.
                   8 11.
2078.
       Nov. 14,
                   1 44.
2085.
       Nov. 7,
                   1 39.
       May 8,
2095.
                   9 10.
       Nov. 9.
2008.
                  19 21.
       May 11,
                  16 30.
```

Remarkable transits.—By the aid of the diagrams we are enabled on sight to select transits which are remarkable from any circumstance and to determine those which are visible in any longitude.

During the last two centuries the transits in which Mercury passed at the shortest distance within the sun's limb are those of 1776, November 2, and 1782, November 12. The two transits correspond closely in their general features, but they occurred near opposite limbs of the sun. That of 1782 was fully observed both in Europe and America. The other does not however seem to have been observed at all, although the ingress at least was visible throughout the United States, and the whole transit in the Middle and Southern States.

Following up the series of transits, which commenced with that of 1776, at intervals of forty-six years, we find the duration longer and longer. The next transit of the series will occur 1914, November 7, when the path of Mercury will be nearly the same as it was on 1697, November 2.

Among the unobserved transits it is most surprising that that of 1835 appears to have passed unnoticed, although the ingress was visible all over the United States, it having occurred about Washington noon.

The next occasion on which a November transit as near the sun's limb as those of 1776 and 1782 will occur is 1999, when it is probable that Mercury will barely enter upon the sun's northern limb.

In the case of the May transits there will be no remarkably short transit for a number of centuries. That of 1957 will probably be the shortest during the next 300 years. But on the morning of 1937, May 11, Mercury will pass so close to the sun at inferior conjunction that it may almost be seen projected on the chromosphere. The nearest approach to the sun's limb cannot be given without a more careful computation from the tables. It is however certain that it will be only a little more than a minute of arc. The path laid down on the diagram is obtained by simple measurement, and is therefore somewhat uncertain.

Until the question of possible changes in the earth's axial rotation shall be placed on a firm basis, or until the theory of the moon's mean motion shall be so perfected that these changes can be determined with precision from observations of that satellite, transits of Mercury must be regarded with the greatest interest as affording independent determinations of the variations in question. The November transits will long be most favorable for this purpose, for the reason that the series of observed November transits extends back nearly a century before the first well-observed May transit. It is to them therefore that we must principally look for light upon this question. The next November transit will be that of 1894. It will be very favorable for this purpose because it is not far from central. Ingress will be visible over the American continent, and egress at points west of the Alleghenies. The transits of 1907 and 1914 will be less favorable on account of being nearer the limb of the sun. That of 1927 will however be again favorable, and, in may be hoped, will decide the question at issue.

CORRIGENDA.

Page 384. Reduction to geocentric phase for contacts I and II, for $+29^4$.2 read -25^4 .1, and carry the correction forward. Page 405, Reduction for Altona, for $+58^4$ read $+54^4$, and carry the correction forward.

Page 406, Contacts II, for 2th 3m 32t read 2th 3m 30t.

It is also to be remarked that the list of longitudes beginning on p. 374 does not, in all cases, give the longitude of the station actually adopted, it having been sent to press in an imperfect state.

PATHS OF MERCURY IN NOVEMBER TRANSITS OVER THE SUN, 1600-2100.

•

PATHS OF MERCURY IN MAY TRANSITS OVER THE SUN, 1600-2100.

•

. .

•

	1			
		•		·
·				
•				
,				•
	,			
	•			

			•	
	·			
•			•	
		•		
				٠.

•

