

CSE 4392 SPECIAL TOPICS NATURAL LANGUAGE PROCESSING

Transformer and Large Language Model

2024 Spring

PRETRAINING

• Knowledge of vocabulary is acquired by "reading".

• Distributional hypothesis:

- Meaning of a word can be determined by its context
- Context can be representated by word distribution
- Knowledge acquired can be useful in language processing long after its initial acquisition

• Pretraining:

- the process of learning some sort of representation of meaning for words or sentences by processing very large amounts of text.
- RNN and even Feedforward NN can be pretrained to learn language models
- Transformer is a better choice

TRANSFORMER

- Like LSTM, transformers can handle long-range dependencies
- But it doesn't use recurrent connections
 - recurrent architectures are hard to parallelize
 - transformers can be parallelized and are more efficient
- Two main ideas in transformers:
 - Self-attention
 - Positional embeddings

SELF ATTENTION NETWORK

- o "Causal" self-attention model
- Each layer maps inputs $x_1, ..., x_n$ to outputs $y_1, ..., y_n$ (equal length) \rightarrow language model (autoregressive generation)
- \circ y_i depends on $x_1, ..., x_i$, can be computed independently from other y_i . → parallelism

A SIMPLE SELF-ATTENTION

- The computation of y_i depends on the comparison tween x_i with x_1 , x_2 , up to x_i itself.
- Simple form: $score(x_i, x_j) = x_i \cdot x_j$ (dot product)
- The larger the score, the the more similar they are.
- Attention weight vector:

$$\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j)) \ \forall j \leq i$$

$$= \frac{\exp(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j))}{\sum_{k=1}^{i} \exp(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_k))} \ \forall j \leq i$$

THE SELF-ATTENTION IN TRANSFORMERS

- Each input x_i plays three roles:
- Query: *current focus of attention* when compared to all preceding input;
- Key: *preceding input* being compared to current focus of attention;
- Value: used to compute the output of current focus of attention;

$$\mathbf{q}_i = \mathbf{W}^{\mathbf{Q}} \mathbf{x}_i; \ \mathbf{k}_i = \mathbf{W}^{\mathbf{K}} \mathbf{x}_i; \ \mathbf{v}_i = \mathbf{W}^{\mathbf{V}} \mathbf{x}_i$$

- \bullet x_i and y_i are vectors of d-dimension.
- $o W^Q \in \mathbb{R}^{d \times d}, W^K \in \mathbb{R}^{d \times d}, W^V \in \mathbb{R}^{d \times d}$

THE SELF-ATTENTION IN TRANSFORMERS

Scale the score down:

$$score(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}}$$

Computing all inputs together:

$$Q = XW^Q$$
; $K = XW^K$; $V = XW^V$

y₃

QUIZ: COMPLEXITY OF ATTENTION

• What is the time complexity of computing attention, in terms of the length of input N?

TRANSFORMER BLOCK

z = LayerNorm(x + SelfAttention(x))

y = LayerNorm(z + FFN(z))

- Residual connection by-passes the information from lower layer to higher layer without going through the intermediate layer
- Residual info is summed with the output the intermediate layer.

LAYER NORM

• Layer normalization can be any normalization that keeps the values of hidden layers in a range that is "gradient friendly."

$$\mu = \frac{1}{d_h} \sum_{i=1}^{a_h} x_i$$

• Standard dev:
$$\sigma = \sqrt{\frac{1}{d_h} \sum_{i=1}^{d_h} (x_i - \mu)^2}$$

o normalized:

$$\mathbf{\hat{x}} = \frac{(\mathbf{x} - \boldsymbol{\mu})}{\boldsymbol{\sigma}}$$

$$LayerNorm = \gamma \hat{\mathbf{x}} + \beta$$

trainable params

MULTI-HEAD ATTENTION

O Different words in a sentence can related to each other in different ways:

- syntactic
- semantic
- discourse
- ...

• Instead of one self-attention layer, multiple self-attention layers (called **heads**) in parallel (concatenated):

MultiHeadAttention(
$$\mathbf{X}$$
) = ($\mathbf{head}_1 \oplus \mathbf{head}_2... \oplus \mathbf{head}_h$) \mathbf{W}^O
 $\mathbf{Q} = \mathbf{X}\mathbf{W}_i^Q$; $\mathbf{K} = \mathbf{X}\mathbf{W}_i^K$; $\mathbf{V} = \mathbf{X}\mathbf{W}_i^V$
 $\mathbf{head}_i = \mathrm{SelfAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V})$

POSITIONAL EMBEDDING

- In a transformer, input tokens are in parallel.
- There's no notion of order at all!
- Idea: add a positional embedding to word embedding to get the new input embedding
- Positional embeddings are learned just like word embedding:
 - randomly initialized
 - one vector for each position such as 1, 2, 3
 - Problem: far positions such as 100, 200 are poorly trained

Quiz: Multi-head vs Positional Embedding

• Why do we concatenate the multipile head vectors together to get the overall attention, but simply add (element-wise) the word vector and positional vector to create the new input vector?

BERT

- "Bidirectional Encoder Representations from Transformers"
- First released in Oct 2018.
- NAACL'19: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- BERT provides contextualized word embedding
- An improvement from ELMo:
 - bidirectional context vs unidirectional context
 - Transformers vs LSTMs
 - The weights are not frozen, called *fine-tuning*

BIDIRECTIONAL ENCODERS

- Language models only use left context or right context (although ELMo used two independent LMs from each direction).
- Language understanding is bidirectional

Bidirectional context Unidirectional context Words can "see themselves" Build representation incrementally bank open bank open Layer 2 Layer 2 Laver 2 Layer 2 Laver 2 Layer 2 <s> a <s> open open

MASKED LANGUAGE MODELS

- How to pretrain the language model?
- Solution: Mask out 15% of the input words, and then predict the masked words

- Too little masking: too expensive to train
- Too much masking: not enough context

MASKED LANGUAGE MODELS

- Because BERT will never see [MASK] in real-world data, training data is a little more complicated:
 - Rather than always replacing the chosen words with [MASK], the data generator will do the following:
 - 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy → my dog is [MASK]
 - 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple
 - 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

NEXT SENTENCE PREDICTION (NSP)

• Always sample two sentences, predict whether the second sentence is followed after the first one.

• Recent paper shows that NSP is not necessary...

Pretraining and Fine-Tuning

• Key idea: all the weights are fine-tuned on downstream tasks

BERT APPLICATIONS

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

BERT MORE DETAILS

• Input representations:

- Use sub-word embedding instead of words
 - playing → play, ##ing
- Trained 40 epoches on Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)
- Two releases: BERT-base, BERT-large

USE BERT IN PRACTICE

• **TensorFlow**: https://github.com/google-research/bert

• PyTorch: https://github.com/huggingface/transformers

BERT IS VERY STRONG FOR MANY TASKS

BiLSTM: 63.9

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7
$XLNet_{LARGE}$						
with BOOKS + WIKI	13GB	256	1 M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

RoBERTa and XLNet are optimized versions of BERT with different pretraining approach. Archi is the same!

ORIGINAL TRANSFORMER

