Reply to Office Action of: July 24, 2003

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings of claims in the application:

Claim 1 (Currently Amended): A propylene polymer copolymer having:

- (1) a 25°C hexane soluble content (H25) of 0-80 wt%; and,
- (2) either no melting temperature (Tm) measurable by differential scanning calorimetry (DSC), or a melting temperature (Tm) satisfying, if measurable by DSC, the following relationship:

$$\Delta H \ge 3 \times (Tm - 120)_{-3}$$

wherein ΔH is a melting endotherm (J/g).

Claim 2 (Canceled).

Claim 3 (Currently Amended): <u>The A propylene homopolymer according to claim 31</u>, satisfying:

- (1) a mesopentad fraction (mmmm) of 30-60 mol%;
- (2) a racemic pentad fraction (rrrr) satisfying the following relationship:

$$[rrrr/(1-mmmm)] \leq 0.1$$

$$\{rrrr/(1-mmmm)\} \leq 0.1$$

- (3) a fraction (W25) eluted at a temperatures up to 25°C by temperatureprogrammed chromatography, of from 20-100 wt%; and,
 - (4) a pentad fraction (rmrm) of more than 2.5 mol%.

Claim 4 (Original): The propylene homopolymer according to claim 3, satisfying the following relationship:

Reply to Office Action of: July 24, 2003

$$(mm) x (rr)/(mr)^2 \le 2.0$$

wherein (mm) is a meso triad fraction; (rr) is a racemic triad fraction; and (mr) is a triad fraction.

Claim 5 (Currently Amended): The propylene homopolymer according to claim 3, having a molecular weight distribution (Mw/Mn) of 4 or less as measured by gel permeation chromatography (GPC) and/or an intrinsic viscosity $\{\eta\}$ (η) of from 0.5-15.0 dl/g as measured at 135°C in tetralin.

Claim 6 (Currently Amended): A <u>The</u> propylene copolymer <u>according to</u> <u>claim 1</u>, satisfying:

- (1) a stereoregularity index (P) of 55-90 mol% as determined by ¹³C-NMR measurement; and
- (2) a fraction (W25) eluted at a temperatures up to 25°C by temperature-programmed chromatography, of from 20-100 wt%.

Claim 7 (Currently Amended): The propylene copolymer according to claim 6 having a molecular weight distribution (Mw/Mn) of 4 or less as measured by gel permeation chromatography (GPC) and/or an intrinsic viscosity [η] (η) of from 0.5-15.0 dl/g as measured at 135°C in tetralin.

Claim 8 (Currently Amended): The propylene homopolymer according to claim 3 produced by polymerizing propylene in the presence of a polymerization catalyst containing:

(A) a transition metal compound represented by the general formula (I):

Reply to Office Action of: July 24, 2003

wherein M is a metal element of Groups 3 to 10 of the Period Table or lanthanoid series;

E¹ and E² are respectively a ligand selected from the group consisting of substituted cyclopentadienyl, indenyl, substituted indenyl, heterocyclopentadienyl, substituted heterocyclopentadienyl, amide, phosphide, a hydrocarbon group and a silicon-containing group, which form a cross-linked structure via A¹ and A² and may be the same or different;

X is a ligand capable of forming a $\underline{\sigma\text{-bond}}$ or $\pi\text{-bond}$ or $\pi\text{-bond}$ with the proviso that when a plurality of X groups are present, these groups may be the same or different, and may be cross-linked with the other X group, E^1 , E^2 or Y;

Y is a Lewis base with the proviso that when a plurality of Y groups are present, these groups may be same or different, and may be cross-linked with the other Y group, E^1 , E^2 or X;

 A^1 and A^2 are divalent cross-linking groups capable of bonding the two ligands E^1 and E^2 to each other, are respectively a C_1 - C_{20} hydrocarbon group, a C_1 - C_{20} halogen-containing hydrocarbon group, a silicon-containing group, a germanium-containing group, a tin-containing group, -O-, -CO-, -S-, -SO₂-, -Se-, -NR¹-, -PR¹-, -P(O)R¹-, -BR¹- or -AlR¹- wherein R¹ is a hydrogen atom, a halogen atom, a C_1 - C_{20} hydrocarbon group or a C_1 - C_{20} halogen-containing hydrocarbon group, and may be the same or different;

q is an integer of 1 to 5 given by the formula:

Reply to Office Action of: July 24, 2003

 $\frac{\text{[(valence of M)} - 2]}{\text{(valence of M)} - 2}$; and

r is an integer of 0 to 3, and

(B) a component selected from the group consisting of (B-1) a compound capable of forming an ionic complex by reacting with the transition metal compound (A) or a derivative thereof, (B-2) aluminoxane, and (B-3) a Lewis acid.

Claim 9 (Original): The propylene homopolymer according to claim 8, wherein the transition metal compound represented by the general formula (I) is a transition metal compound represented by the general formula (II):

wherein, M, X, Y, A^1 , A^2 , q and r are the same as defined in the above general formula (I); R^2 through R^7 are respectively a hydrogen atom, a halogen atom, a C_1 - C_{20} hydrocarbon group, a C_1 - C_{20} halogen-containing hydrocarbon group, a siliconcontaining group or a heteroatom-containing group with the proviso that at least one of R^2 through R^7 is not a hydrogen atom; and R^2 through R^7 may be the same or different, and adjacent groups of R^2 through R^7 may be bonded to each other to form a ring.

Reply to Office Action of: July 24, 2003

Claim 10 (Original): The propylene homopolymer according to claim 8, wherein the transition metal compound represented by the general formula (I) is a transition metal compound represented by the general formula (II):

$$R^{2}$$
 A^{1}
 R^{6}
 R^{5}
 $MX_{q}Y_{r}$

wherein, M, X, Y, A^1 , A^2 , q and r are the same as defined in the above general formula (I); R^2 through R^7 are respectively a hydrogen atom, a halogen atom, a C_1 - C_{20} hydrocarbon group, a C_1 - C_{20} halogen-containing hydrocarbon group, a siliconcontaining group or a heteroatom-containing group with the proviso that at least one of R^2 through R^7 is a group containing a heteroatom such as oxygen, halogen or silicon; and R^2 through R^7 may be the same or different, and adjacent groups of R^2 through R^7 may be bonded to each other to form a ring.

Claim 11 (Original): The propylene homopolymer according to claim 9, wherein the transition metal compound represented by the general formula (II) is a transition metal compound represented by the general formula (III):

Reply to Office Action of: July 24, 2003

$$R^{11}$$
 R^{10}
 R^{8}
 R^{10}
 R^{10}

wherein, M, X, Y, A^1 , A^2 , q and r are the same as defined in the above general formula (I); at least one of R^8 and R^9 represents a group containing a heteroatom such as oxygen, halogen or silicon; and R^{10} through R^{17} are respectively a hydrogen atom, a C_1 - C_{20} hydrocarbon group, or a group containing a heteroatom such as oxygen, halogen and silicon.

Claim 12 (Currently Amended): The propylene copolymer according to claim 6 produced by copolymerizing propylene with ethylene and/or a C_4 - C_{20} α -olefin in the presence of a polymerization catalyst comprising:

(A) a transition metal compound represented by the general formula (I):

wherein M is a metal element of Groups 3 to 10 of the Period Table or lanthanoid series;

E¹ and E² are respectively a ligand selected from the group consisting of substituted cyclopentadienyl, indenyl, substituted indenyl, heterocyclopentadienyl, substituted heterocyclopentadienyl, amide, phosphide, a hydrocarbon group and a

Reply to Office Action of: July 24, 2003

silicon-containing group, which form a cross-linked structure via A^1 and A^2 and may be the same or different;

X is a ligand capable of forming a $\underline{\sigma\text{-bond}}$ or $\pi\text{-bond}$ or $\pi\text{-bond}$ with the proviso that when a plurality of X groups are present, these groups may be the same or different, and may be cross-linked with the other X group, E^1 , E^2 or Y;

Y is a Lewis base with the proviso that when a plurality of Y groups are present, these groups may be same or different, and may be cross-linked with the other Y group, E^1 , E^2 or X;

 A^1 and A^2 are divalent cross-linking groups capable of bonding the two ligands E^1 and E^2 to each other, are independently a C_1 - C_{20} hydrocarbon group, a C_1 - C_{20} halogen-containing hydrocarbon group, a silicon-containing group, a germanium-containing group, a tin-containing group, -O-, -CO-, -S-, -SO₂-, -Se-, -NR¹-, -PR¹-, -P(O)R¹-, -BR¹- or -AlR¹- wherein R¹ is a hydrogen atom, a halogen atom, a C_1 - C_{20} hydrocarbon group or a C_1 - C_{20} halogen-containing hydrocarbon group, and may be the same or different;

q is an integer of 1 to 5 given by the formula:

 $\frac{\text{(valence of M)} - 2}{\text{(valence of M)} - 2}$; and

r is an integer of 0 to 3, and

(B) a component selected from the group consisting of (B-1) a compound capable of forming an ionic complex by reacting with the transition metal compound (A) or a derivative thereof, (B-2) aluminoxane, and (B-3) a Lewis acid.

Claim 13 (Original): The propylene copolymer according to claim 12, wherein the transition metal compound represented by the general formula (I) is a transition metal compound represented by the general formula (II):

Reply to Office Action of: July 24, 2003

$$R^{4}$$
 A^{1}
 R^{6}
 R^{5}
 $MX_{q}Y_{r}$

wherein, M, X, Y, A^1 , A^2 , q and r are the same as defined in the above general formula (I); R^2 through R^7 are respectively a hydrogen atom, a halogen atom, a C_1 - C_{20} hydrocarbon group, a C_1 - C_{20} halogen-containing hydrocarbon group, a siliconcontaining group or a heteroatom-containing group with the proviso that at least one of R_2 through R_7 is not a hydrogen atom; and R_2 through R_7 may be the same or different, and adjacent groups of R_2 through R_7 may be bonded to each other to form a ring.

Claim 14 (Original): The propylene copolymer according to claim 12, wherein the transition metal compound represented by the general formula (I) is a transition metal compound represented by the general formula (II):

$$R^4$$
 A^1
 R^6
 A^2
 R^3
 MX_qY_r

Reply to Office Action of: July 24, 2003

wherein, M, X, Y, A^1 , A^2 , q and r are the same as defined in the above general formula (I); R^2 through R^7 are respectively a hydrogen atom, a halogen atom, a C_1 - C_{20} hydrocarbon group, a C_1 - C_{20} halogen-containing hydrocarbon group, a siliconcontaining group or a heteroatom-containing group with the proviso that at least one of R^2 through R^7 is a group containing a heteroatom such as oxygen, halogen or silicon; and R^2 through R^7 may be the same or different, and adjacent groups of R^2 through R^7 may be bonded to each other to form a ring.

Claim 15 (Original): The propylene copolymer according to claim 13, wherein the transition metal compound represented by the general formula (II) is a transition metal compound represented by the general formula (III):

$$R^{11}$$
 R^{10}
 R^{8}
 R^{17}
 R^{16}
 R^{12}
 R^{13}
 R^{13}
 R^{13}
 R^{14}
 R^{15}
 R^{15}

wherein, M, X, Y, A^1 , A^2 , q and r are the same as defined in the above general formula (I); at least one of R^8 and R^9 represents a group containing a heteroatom such as oxygen, halogen or silicon; and R^{10} through R^{17} are respectively a hydrogen atom, a C_1 - C_{20} hydrocarbon group, or a group containing a heteroatom such as oxygen, halogen and silicon.

Claim 16 (Canceled).

Reply to Office Action of: July 24, 2003

Claim 17 (Original): A propylene resin composition comprising the propylene homopolymer according to claim 3 and a nucleating agent.

Claim 18 (Original): A propylene resin composition comprising the propylene copolymer according to claim 6 and a nucleating agent.

Claims 19-20 (Canceled).

Claim 21 (Original): A molded product produced by molding the propylene homopolymer according to claim 3.

Claim 22 (Original): A molded product produced by molding the propylene resin composition according to claim 17.

Claim 23 (Original): A molded product produced by molding the propylene copolymer according to claim 6.

Claim 24 (Original): A molded product produced by molding the propylene resin composition according to claim 18.

Claim 25 (Canceled).

Claim 26 (Original): A propylene resin modifier comprising the propylene homopolymer according to claim 3.

Reply to Office Action of: July 24, 2003

Claim 27 (Original): A propylene resin modifier comprising the propylene copolymer according to claim 6.

Claim 28 (Currently Amended): A polymerization catalyst comprising:

(A') a transition metal compound represented by the general formula (II):

$$R^{4}$$
 R^{5}
 $MX_{q}Y_{r}$
 R^{7}
 R^{6}
 $MX_{q}Y_{r}$

wherein M is a metal element of Groups 3 to 10 of the Period Table or lanthanoid series;

E¹ and E² are respectively a ligand selected from the group consisting of substituted cyclopentadienyl, indenyl, substituted indenyl, heterocyclopentadienyl, substituted heterocyclopentadienyl, amide, phosphide, a hydrocarbon group and a silicon-containing group, which form a cross-linked structure via A¹ and A² and may be the same or different;

X is a ligand capable of forming a σ -bond or π -bond with the proviso that when a plurality of X groups are present, these groups may be the same or different, and may be cross-linked with the other X group, E^1 , E^2 or Y:

Y is a Lewis base with the proviso that when a plurality of Y groups are present, these groups may be same or different, and may be cross-linked with the other Y group, E¹, E² or X;

Reply to Office Action of: July 24, 2003

A¹ and A² are divalent cross-linking groups capable of bonding the two ligands E¹ and E² to each other, are respectively a C_1 - C_{20} hydrocarbon group, a C_1 - C_{20} halogen-containing hydrocarbon group, a silicon-containing group, a germanium-containing group, a tin-containing group, -O-, -CO-, -S-, -SO₂-, -Se-, -NR¹-, -PR¹-, -P(O)R¹-, -BR¹- or -AlR¹- wherein R¹ is a hydrogen atom, a halogen atom, a C_1 - C_{20} hydrocarbon group or a C_1 - C_{20} halogen-containing hydrocarbon group, and may be the same or different;

q is an integer of 1 to 5 given by the formula:

 $\{(valence of M) - 2\}$; and

r is an integer of 0 to 3, and M, X, Y, A^{1} , A^{2} , q and r are the same as defined in the above general formula (I); R^{2} through R^{7} are respectively a hydrogen atom, a halogen atom, a C_{1} - C_{20} hydrocarbon group, a C_{1} - C_{20} halogen-containing hydrocarbon group, a silicon-containing group or a heteroatom-containing group with the proviso that at least one of R^{2} through R^{7} is not a hydrogen atom; and R^{2} through R^{7} may be the same or different, and adjacent groups of R^{2} through R^{7} may be bonded to each other to form a ring, and

(B) a component selected from the group consisting of (B-1) a compound capable of forming an ionic complex by reacting with the transition metal compound (A) or a derivative thereof, (B-2) aluminoxane, and (B-3) a Lewis acid.

Claim 29 (Currently Amended): A polymerization catalyst comprising:

(A') a transition metal compound represented by the general formula (II):

Reply to Office Action of: July 24, 2003

$$R^{4}$$
 A^{1}
 A^{2}
 R^{3}
 $MX_{q}Y_{r}$

wherein M is a metal element of Groups 3 to 10 of the Period Table or lanthanoid series;

E¹ and E² are respectively a ligand selected from the group consisting of substituted cyclopentadienyl, indenyl, substituted indenyl, heterocyclopentadienyl, substituted heterocyclopentadienyl, amide, phosphide, a hydrocarbon group and a silicon-containing group, which form a cross-linked structure via A¹ and A² and may be the same or different;

X is a ligand capable of forming a σ -bond or π -bond with the proviso that when a plurality of X groups are present, these groups may be the same or different, and may be cross-linked with the other X group, E^1 , E^2 or Y;

Y is a Lewis base with the proviso that when a plurality of Y groups are present, these groups may be same or different, and may be cross-linked with the other Y group, E¹, E² or X;

A¹ and A² are divalent cross-linking groups capable of bonding the two ligands E¹ and E² to each other, are respectively a C_1 - C_{20} hydrocarbon group, a C_1 - C_{20} halogen-containing hydrocarbon group, a silicon-containing group, a germanium-containing group, a tin-containing group, -O-, -CO-, -S-, -SO₂-, -Se-, -NR¹-, -PR¹-, -P(O)R¹-, -BR¹- or -AlR¹- wherein R¹ is a hydrogen atom, a halogen atom, a C_1 - C_{20}

Reply to Office Action of: July 24, 2003

hydrocarbon group or a C_1 - C_{20} halogen-containing hydrocarbon group, and may be the same or different;

q is an integer of 1 to 5 given by the formula:

 $\{(valence of M) - 2\}$; and

r is an integer of 0 to 3, and M, X, Y, A^1 , A^2 , q and r are the same as defined in the above general formula (I); R^2 through R^7 are respectively a hydrogen atom, a halogen atom, a C_1 - C_{20} hydrocarbon group, a C_1 - C_{20} halogen-containing hydrocarbon group, a silicon-containing group or a heteroatom-containing group with the proviso that at least one of R^2 through R^7 is a group containing a heteroatom such as oxygen, halogen or silicon; and R^2 through R^7 may be the same or different, and adjacent groups of R^2 through R^7 may be bonded to each other to form a ring, and

(B) a component selected from the group consisting of (B-1) a compound capable of forming an ionic complex by reacting with the transition metal compound (A) or a derivative thereof, (B-2) aluminoxane, and (B-3) a Lewis acid.

Claim 30 (Currently Amended): A polymerization catalyst comprising:

(A") a transition metal compound represented by the general formula (III):

$$R^{11}$$
 R^{10}
 R^{8}
 R^{17}
 R^{16}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

Reply to Office Action of: July 24, 2003

wherein, M is a metal element of Groups 3 to 10 of the Period Table or lanthanoid series;

E¹ and E² are respectively a ligand selected from the group consisting of substituted cyclopentadienyl, indenyl, substituted indenyl, heterocyclopentadienyl, substituted heterocyclopentadienyl, amide, phosphide, a hydrocarbon group and a silicon-containing group, which form a cross-linked structure via A¹ and A² and may be the same or different;

X is a ligand capable of forming a σ -bond or π -bond with the proviso that when a plurality of X groups are present, these groups may be the same or different, and may be cross-linked with the other X group, E^1 , E^2 or Y;

Y is a Lewis base with the proviso that when a plurality of Y groups are present, these groups may be same or different, and may be cross-linked with the other Y group, E¹, E² or X;

 A^1 and A^2 are divalent cross-linking groups capable of bonding the two ligands E^1 and E^2 to each other, are respectively a C_1 - C_{20} hydrocarbon group, a C_1 - C_{20} halogen-containing hydrocarbon group, a silicon-containing group, a germanium-containing group, a tin-containing group, -O-, -CO-, -S-, -SO₂-, -Se-, -NR¹-, -PR¹-, -P(O)R¹-, -BR¹- or -AlR¹- wherein R¹ is a hydrogen atom, a halogen atom, a C_1 - C_{20} hydrocarbon group or a C_1 - C_{20} halogen-containing hydrocarbon group, and may be the same or different;

q is an integer of 1 to 5 given by the formula:

 $\{(\text{valence of } M) - 2\}; \text{ and }$

r is an integer of 0 to 3, and M, X, Y, Λ^4 , Λ^2 , q and r are the same as defined in the above general formula (I); at least one of R^8 and R^9 represents a group containing a heteroatom such as oxygen, halogen or silicon; and R^{10} through R^{17} are respectively

Reply to Office Action of: July 24, 2003

a hydrogen atom, a C_1 - C_{20} hydrocarbon group, or a group containing a heteroatom such as oxygen, halogen and silicon, and

(B) a component selected from the group consisting of (B-1) a compound capable of forming an ionic complex by reacting with the transition metal compound (A) or a derivative thereof, (B-2) aluminoxane, and (B-3) a Lewis acid.

Claim 31 (New): A propylene homopolymer having:

- (1) a 25°C hexane soluble content (H25) of 0-80 wt%;
- (2) neither a melting temperature (Tm) nor a melting endotherm (ΔH) measurable by differential scanning calorimetry (DSC).

Reply to Office Action of: July 24, 2003

BASIS FOR THE AMENDMENT

Claims 2, 16, 19, 20 and 25 have been canceled.

Claims 8, 12 and 28-30 have been amended as supported at page 19, line 2 from the bottom.

New Claim 31 has been added as supported at page 14, lines 4-21 and by Claim 1 as originally filed. "No melting temperature Tm measurable by DSC means that a melting endotherm ΔH is not observed as supported at page 14, lines 9-21, by Example 1-3 in Table 2-1, and by Example 13-16 in Table 5-1.

No new matter is believed to have been added by entry of this amendment.

Entry and favorable reconsideration are respectfully requested.

Upon entry of this amendment Claims 1, 3-15, 17-18, 21-24 and 26-31 will now be active in this application.