CS340 - 2023 Quiz 2

DIVYANSH

TOTAL POINTS

14 / 20

QUESTION 1

1 Question 1 4 / 4

- √ 0 pts Correct dfa
- 2 pts No self loops on dead state / transition to dead state not shown/No self loops on final state
 - 3 pts No proper explanation
 - 4 pts NFA is provided / wrong DFA
 - 2 pts Start state must to be final state
- 2 pts Not explaining how dfa accepting the following Expression

QUESTION 2

2 Question 2 4 / 4

- ✓ **0 pts** The language is \$\$\Sigma ^*\$\$ and minimal dfa will have 1 state. The explanation must consist of what language is accepted by the given NFA. can use logic / algorithm
- 1 pts drawn the correct dfa with 2 states with correct explanation of the language \$\$\Sigma ^*\$\$
- 2 pts no explanation but correct single state well labeled DFA
 - 4 pts incorrect answer/ not attempted
- + 1 pts correct dfa accepting \$\$\Sigma ^*\$\$ with explanation
 - 1 pts minor mistake in notation/explanation

3 Question 3 5 / 6

- 0 pts Correct!
- √ 1 pts Minor error(s)
 - 1 pts Missing part(s) of proof
- 2 pts Correct construction, no formal proof (of equivalence)
- 4 pts Partially correct idea with partial construction
- 4 pts Correct idea, missing construction and/or proof
 - 6 pts Incorrect / Unattempted / No explanation
 - The fact that there can be multiple final states has not been incorporated.

QUESTION 4

4 Question 4 1 / 6

- 0 pts Correct
- \checkmark + 1 pts If written that the statement is true.
 - + 2 pts If mentioned that $f(A,B) = (AB)^+$.
 - + 6 pts Proof with correct explanation.
- √ 6 pts Incorrect/Unattempted/No explanation.

QUESTION 3

CS340 (2023) - Quiz 2.

Duration: 35 minutes, Total marks: 20, Pages: 6.

• Important note. Answers without clear and concise explanations will not be graded.

Name: DIVYANSH
Roll No: 210355

Problems

1. (4 marks) Let $\Sigma = \{0, 1\}$ and consider the regular expression:

$$\alpha = \epsilon + (0+1)0(0+1)^*$$

Give a DFA M with at most 4 states such that $L(M) = L(\alpha)$. Justify your answer.

Let's first simplify the enforcession of, do.

 $L(d) = L(\varepsilon) \cup L((0+1) \circ (0+1)^*)$ $= L(\varepsilon) \cup L((00+10) (0+1)^*)$ $= (0+1)^*$ $= (0+1)^*$ and o

do, Now we can see that the language consist of a empty string or, \$00,10} followed by any string over \$0,13.

2. (4 marks) Consider the NFA N given below. Construct a DFA M with minimal number of states such that L(M) = L(N). Clearly justify your answer.

20, 92, 92

, > 2f we map 90, 92, 92 to a single state (as 10 in the NFA it can do the pransition to all 3 with E).

-> Finally any meaning strong will also to lead to some state in $\{q_0, q_1, q_2\}$ of NFA hence the only o state of DFA.

Also, 92 is not reachable as it has no ricoming edge.

do, DFA

0,1

This is the final DFA.

3. (6 marks) Let Σ be some alphabet set. For a string $x = a_1 a_2 \cdots a_{k-1} a_k \in \Sigma^*$, let $rev(x) = a_k a_{k-1} \cdots a_2 a_1$. For $A \subseteq \Sigma^*$, let $rev(A) = \{rev(x) \mid x \in A\}$. Is the following statement true? Clearly justify your answer.

Statement. If A is regular then then rev(A) is also regular.

My claim is that ver (A) is regular.

Proof: Since A is regular Let M be the finite automata such that L(M) = A. $A \cap M (Q, \Sigma, \mathcal{E}, S, F)$.

Let us define a NFA, N as $N(Q, \Sigma, \Delta, S, F')$ such that

S=F, $F'=\{5\}$ and $S(\{u\},a)=v$ auch that,

δ(v,a) = u { i.e. reverse direction of δ), for u, v ∈ Q.

9 will show, $\Delta(\mathcal{L}_{u}^{\gamma}, x) = v^{\gamma}$ such that

8(v,x)=u by

miduction of length of x.

-> base case covered in definition

 $\rightarrow 2(\{u\}, xa) = \Delta(2(\{u\}, x), a) definition off$

= & (v', a) for & (v', x)=u

of anduction Hyprothesisty.

= v for 8(v,a)=v

Sdefinition of ∆3.

do, me can take uin S and vefsy for create NFA accepting ver (A). Hence proved 3 4. (6 marks) Given two sets $A \subseteq \Sigma^*$ and $B \subseteq \Sigma^*$ we define:

 $f(A, B) = \{ w \in \Sigma^* \mid w = x_1 y_1 x_2 y_2 \dots x_k y_k, \text{ where } k \ge 0,$ for all $i : 1 \le i \le k, x_i \in A$ and $y_i \in B \}.$

Is the following statement true? Clearly justify your answer.

Statement. If A and B are regular then f(A, B) is also regular.

Proof: 9 will define a function g(A, B) such that $g(A, B) \neq f w \in \mathbb{Z}^d \mid w = \chi y$, when $\chi \in A$ and $\chi \in B^2$. It is clear that g(A, B) is basically concatenation of A and B. Since we know that from a sets are closed over concatenation so g(A, B) is also regular.

Me desa can do induction on K.

for K=0, (Base case)

f(A1B)= 20 yo | 20 EA and yo EB

do f(A1B) is regular as set are closed

ones concatenation.

Induction' step.

f(A,B) = 20 yo 21 g2 - 2 k-1 y k-1 24 y K

do, deft part is regular from IH and right part (24, yk) is regular by concatenation. Lo whole set is regular as concatenation.

The property

$$\begin{aligned}
d &= \underbrace{\epsilon + (0+1) \otimes_{0} (0+1)^{*}} \\
&= \underbrace{\epsilon + (0+1) \otimes_{0} (0+1)^{*}} \\$$

91, 82

