O を原点とする座標平面上で考える。0 以上の整数 k に対して,ベクトル $\overrightarrow{v_k}$ を

$$\overrightarrow{v_k} = \left(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3}\right)$$

と定める。投げたとき表と裏がどちらも $\frac{1}{2}$ の確率で出るコインを N 回投げて,座標平面上に点 $X_0,\,X_1,\,X_2,\,\cdots$, X_N を以下の規則 (i) , (ii) に従って定める。

- (i) X_0 は O にある。
- (ii) n を 1 以上 N 以下の整数とする。 X_{n-1} が定まったとし, X_n を次のように定める。

n 回目のコイン投げで表が出た場合,

$$\overrightarrow{OX_n} = \overrightarrow{OX_{n-1}} + \overrightarrow{v_k}$$

により X_n を定める。ただし , k は 1 回目から n 回目までのコイン投げで裏が出た回数とする。

n 回目のコイン投げで裏が出た場合 , X_n を X_{n-1} と定める。

- (1) N=8 とする。 X_8 が O にある確率を求めよ。
- (2) N=200 とする。 X_{200} が O にあり,かつ,合計 200 回のコイン投げで表がちょうど r 回出る確率を p_r とおく。ただし $0 \le r \le 200$ である。 p_r を求めよ。また p_r が最大となる r の値を求めよ。