

Formularium

Academiejaar 2024 - 2025

Timo Vandevenne

Formule	Variabelen en uitleg
Verdunningsregel: $M_i V_i = M_f V_f$	M Molariteit [mol/l]
	m Molaliteit [mol/kg]
PV = nRT	$\mathbf{P} \text{ Druk } [1 \text{ atm} = 1013\text{hPa} = 760 \text{ mmHg}]$
	V Volume
	n Aantal deeltjes [mol]
	R Gasconstante
	T Temperatuur [K]
$\Delta U = U_{prod.} - U_{reag.} = q + w$	ΔU Verandering van interne energie [J]
	q warmteuitwisseling met omgeving
	(q>0: warmte van omgeving in systeem)
	w Arbeid verricht op/door het systeem
	(w>0: arbeid op systeem)
$\mathbf{w} = -P\Delta V$	∆V Volumeverandering
Wet van Hess:	ΔH^0_{rxn} Reactieenthalpie [kJ/mol]
$\Delta H_{rxn}^0 = \sum i\Delta H_f^0(prod.) - \sum j\Delta H_f^0(reag.)$	
, , , , , , , , , , , , , , , , , , ,	$\mathbf{H}_{\mathbf{f}}^{0}$ Standaardvormingsenthalpie [kJ/mol]
	i, j coefficiënten in reactievergelijking
$q = ms\Delta T = C\Delta T$	m massa [g]
	s Specifieke warmte $\left[\frac{J}{q^{\circ}C}\right]$
$q_{sys} = 0 \Leftrightarrow q_{rxn} + q_{cal} + q_{opl} = 0$	ΔT Temperatuurverandering [K]
$q_{rxn} = n\Delta H_{rxn}^0$	C Warmtecapaciteit [J/K]
$\frac{q_{rxn} = n\Delta H_{rxn}^0}{E = h\nu = h\frac{c}{\lambda}}$	E Energie [J]
λ	\mathbf{h} constante van Planck = $6.62 \cdot 10^{-34} \mathrm{Js}$
	\mathbf{v} frequentie [Hz]
	c Lichtsnelheid = $3 \cdot 10^8 \frac{m}{s}$
	λ Golflengte [m]
$E_{kin.e^-} = h\mathbf{v} - W$	W Werkfunctie: maat voor hoe sterk e^- in metaal worden
$\Sigma_{kin,e}$	vastgehouden
De Broglie: $\lambda = \frac{h}{p} = \frac{h}{mu}$	\mathbf{p} Impuls $\left[\frac{kg \cdot m}{s}\right]$
De Brogne. $\lambda = \frac{1}{p} = \frac{1}{mu}$	\mathbf{m} Massa bewegend deeltje [kg]
Wet van Dalton: $P_i = y_i P_{tot}$	u Snelheid [m/s] P _i Partieeldruk
Wet van Danon: $F_i = y_i F_{tot}$	
Wet van Raoult: $P_i = x_i P_i^0$	y _i Molfractic gas [%]
Wet van Raouit. $F_i = x_i F_i$	x _i Molfractie vloeistof [%] P _i Dampdruk
Wet van Henry: $P_i = x_i H_i = \frac{C_i}{k}$	C _i Concentratie
We van Henry. $T_i - x_i H_i - \overline{k}$	
	H _i Henry constante
	k gegeven constante bij bep. temp
$\Delta T_b = iK_b m$	$\Delta T_{\rm b}$ Kookpuntsverhoging
$\Delta T_f = iK_f m$	ΔT_f Vriespuntsverlaging
	i Van 't Hoff factor: aantal opgeloste deeltjes waarin een
	verbinding voorkomt in oplossing
	$\mathbf{K_b}, \mathbf{K_f}$ karakteristiek van het oplosmiddel
	m Molaliteit [mol/kg]
$\pi = iMRT$	π Osmotische druk
$\Delta P = x_{\text{opgeloste stof}} P_{\text{oplosmiddel}}^0$	ΔP Dampdrukverlaging

Formule	Variabelen en uitleg
$v = k[A]^x[B]^y$	$aA+bB \rightleftharpoons cC+dD$
	v Reactiesnelheid [M/s]
	k Snelheidsconstante [Eenheid afh. van reactieorde]
Arrhenius:	$\mathbf{x}=\mathbf{a}, \mathbf{y}=\mathbf{b}$ indien elementaire stap
$k = Ae^{\frac{-Ea}{RT}}$	$\mathbf{E_a}$ Activeringsenergie [kJ/mol]
$\kappa - Ae^{-Rt}$ $-E_{\alpha}$	
$\ln k = \frac{-E_a}{RT} + \ln A$	A Botsingsfrequentiefactor
$\frac{\ln \frac{k_2}{k_1} = \frac{-E_a}{R} (\frac{1}{T_2} - \frac{1}{T_1})}{K = \frac{[C]^c [D]^d}{[A]^a [B]^b}}$	Dezelfde reactie op verschillende temperaturen vergelijken
$K = \frac{[C]^c [D]^a}{C^2}$	K Evenwichtsconstante (K>1: Evenwicht naar rechts)
$[A]^a[B]^b$	K_p bij gassen (druk), K_c bij concentraties
	[X] Concentratie van stof X $[M] = [mol/l]$
	Q Reactieconstante, K met actuele concentraties
	(Q>K: systeem naar links voor evenwicht)
$K_p = K_c(RT)^{\Delta n}$	$\Delta \mathbf{n} = (c+d) - (a+b)$ bij $aA+bB \rightleftharpoons cC+dD$
1	
Principe van Le Châtelier	System compenseert uitwendige stress gedeeltelijk
	• Concentratieverandering
	• Druk & volumeverandering
	• Temperatuursverandering \rightarrow K verandert
77 1 177 1	• Katalysator & inert gas hebben geen invloed
$pH = -\log[H^+] = -\log[H_3O^+]$	
$pOH = -\log[OH^-] = 14 - pH$	
$K = \frac{[H^+][A^-]}{}$	$\mathbf{K_a}$ Aciditeitsconstante $(\mathbf{p}\mathbf{K_a} = -\log K_a)$
$K_a = [HA]$	Γ_a reduces constant $(pr_a - \log r_a)$
$pOH = -\log[OH^{-}] = 14 - pH$ $K_a = \frac{[H^{+}][A^{-}]}{[HA]}$ $K_b = \frac{[OH^{-}][B^{+}]}{[B]}$	$\mathbf{K_b}$ Basiciteitsconstante $(\boldsymbol{pK_b} = -\log K_b)$
$K_a K_b = K_w$	$\mathbf{K_w}$ Dissociatie constante van water
$pK_a + pK_b = pK_w$	$K_{\rm w} = [H^+][OH^-] = 10^{-14} \text{ bij } 25^{\circ}\text{C}$
$K_{sp} = [C]^c [D]^d$	$\mathbf{K_{sp}}$ Oplosbaarheidsproduct: beschrijf het oplossen van
$K_{sp} = [C][D]$	een ionische verbinding in water
$Q = [C]_0^c [D]_0^d$	
$a = [C]_0[D]_0$	Q Reactiequotiënt, K_{sp} met actuele concentraties
	[X] ₀ Concentratie voor reactie
	• $Q < K_{sp}$: Onverzadigde oplossing \rightarrow Geen neerslag
II II	• $Q=K_{sp}$: Verzadigde oplossing \rightarrow Net geen neerslag
Henderson-Hasselbalch:	• Q> K_{sp} : Oververzadigde oplossing \rightarrow Neerslag onstaat
$pH = pK_a + \log \frac{[\text{geconj. base}]_b}{[\text{zuur}]_b}$ $\text{Nernst: } E = E^0 - \frac{RT}{nF} \log Q$	
Nernst: $E = E^0 - \frac{RT}{mE} \log Q$	F Faraday constante: lading 1 mol e ⁻
$\underbrace{A(s) \mid A^{a+} (xM) \mid}_{\text{Anode: oxidatie}} \underbrace{B^{b+} (yM) \mid B(s)}_{\text{Kathode: reductie}} $	Notatie celdiagram
A Anode: oxidatie A Kathode: reductie	
$E_{cel}^0 = \frac{RT}{nF} \log K$	$\mathbf{E_{cel}^0}$ Celpotentiaal ($E_{cel}^0 > 1$: Formatie producten)
$E_{cel}^{0} = E_{ox}^{1} + E_{red}^{0} = E_{red,anode}^{0} + E_{red,kathode}^{0}$	$\mathbf{E}_{\mathbf{red}}^{0}$ Reductiepotentiaal (afleesbaar in de tabel)
	$\mathbf{E_{ox}^0}$ Oxidatiepotentiaal $E_{ox}^0 = -E_{red}^0$

 ${\rm Timo~Vandevenne} \\ 2/2$