

Survey of Scientific Computing (SciComp 301)

Dave Biersach
Brookhaven National
Laboratory
dbiersach@bnl.gov

Session 25
Early Quantum Mechanics

Session Goals

- Understand how double-slit diffraction enables the measurement of photon wavelengths
- Predict the spectral emission lines of the Hydrogen atom using the Rydberg Formula
- Discuss the evolution of the early atomic models
- Develop the Bohr Atomic Model for Hydrogen
- Calculate spectral lines using the Bohr Atomic Model
- Compare the Rydberg Formula to the Bohr Model

Double Slit Diffraction

Double Slit Diffraction

$$D >\!\!> d \Longrightarrow \overline{S_1P} \parallel \overline{S_2P} :: \delta = d \sin \theta$$

For constructive interference:

$$d \sin \theta = n\lambda$$

$$\lambda = \frac{d\sin\theta}{n}$$

Wavelengths (λ) of four visible emission lines after heating pure Hydrogen

An Inward Electron Transition Emits a Photon

Spectroscopy

Continuous vs Discrete

Spectroscopy

Electron Shells – Periodic Table

Spectral Absorption Lines

Spherical harmonics

Despite their name, spherical harmonics take their simplest form in Cartesian coordinates, where they can be defined as homogeneous polynomials of degree ℓ in (x,y,z) that obey Laplace's equation. Functions that satisfy Laplace's equation are often said to be harmonic, hence the name spherical

A specific set of spherical harmonics, denoted $Y_\ell^m(\theta,\varphi)$ or $Y_\ell^m(\mathbf{r})$, are called Laplace's spherical harmonics, as they were first introduced by Pierre Simon de Laplace in 1782. [1] These functions form an orthogonal system, and are thus basic to the expansion of a general function on the sphere as alluded to above.

Spherical harmonics are important in many theoretical and practical applications, e.g., the representation of multipole electrostatic and electromagnetic fields, computation of atomic orbital electron configurations, representation of gravitational fields, geoids, fiber reconstruction for estimation of the path and location of neural axons based on the properties of water diffusion from diffusion-weighted MRI imaging for streamline tractography, and the magnetic fields of planetary bodies and stars, and characterization of the cosmic microwave background radiation. In 3D computer graphics, spherical harmonics play a role in a wide variety of topics including indirect lighting (ambient occlusion, global illumination, precomputed radiance transfer, etc.) and modelling of 3D shapes.

Hydrogen Emission Lines

Hydrogen Emission Lines

n=1 n=1 n=3 n=4Lyman series Lyman series Lyman series n=2 n=3 n=6P aschen series

Rydberg Formula

$$\frac{1}{\lambda} = R \left(\frac{1}{n_k^2} - \frac{1}{n_i^2} \right)$$

 $k, j \in \mathbb{Z}^+ \ and \ j > k$

Rydberg Constant $R = 1.0967757 \times 10^{7} m^{-1}$

Final orbit

4			/L	/ Initial orbit		
k	j	j	/ j	j	j	
1	2	3	4	5	6	
Lyman	122	103	97	95	94	

2	3	4	5	6	7
Balmer	656	486	434	410	397

3	4	5	6	7	8
Paschen	1876	1282	1094	1005	955

4	5	6	7	8	9
Brackett	4052	2626	2166	1945	1818

Rydberg Formula

$$\frac{1}{\lambda} = R \left(\frac{1}{n_k^2} - \frac{1}{n_j^2} \right)$$

$$k, j \in \mathbb{Z}^+ \ and \ j > k$$

Rydberg Constant $R = 1.0967757 \times 10^7 m^{-1}$

Johannes Rydberg (1865 – 1919)

Open Lab 1 - Rydberg Spectra for Hydrogen

https://en.wikipedia.org/wiki/Hydrogen_spectral_series

- Update a C++ console application to generate the anticipated wavelengths of the spectral emission of Hydrogen using the Rydberg formula
- For each family from the Lyman to the Brackett series, display the first five (5) wavelengths (nm) in each series

```
If n_k = 1, then n_j = 2, 3, 4, \cdots This family is known as the Lyman series

If n_k = 2, then n_j = 3, 4, 5, \cdots This family is known as the Balmer series

If n_k = 3, then n_j = 4, 5, 6, \cdots This family is known as the Paschen series

If n_k = 4, then n_j = 5, 6, 7, \cdots This family is known as the Brackett series
```

Edit Lab 1 – Rydberg Spectra for Hydrogen

```
int main()
    const double R = 1.0967757e7;
    cout << "Rydberg Formula Hydrogen Spectral Lines" << endl;</pre>
    cout << fixed << setprecision(0);</pre>
    // k is the final orbit #
    for (int k\{1\}; k < 5; ++k)
        // j is the initial orbit #
        for (int j\{k + 1\}; j < k + 6; ++j)
                                                      Enter the correct
                                                           formula
            double lambda = 0;
             cout << setw(3) << j;
             cout << setw(10) << lambda * 1e9 << "nm";</pre>
             cout << endl;
        // Skip a line between families
        cout << endl;
    return 0;
```

Edit Lab 1 – Rydberg Spectra for Hydrogen

```
int main()
    const double R = 1.0967757e7;
    cout << "Rydberg Formula Hydrogen Spectral Lines" << endl;</pre>
    cout << fixed << setprecision(0);</pre>
    // k is the final orbit #
    for (int k\{1\}; k < 5; ++k)
        // j is the initial orbit #
        for (int j\{k + 1\}; j < k + 6; ++j)
            double lambda = 1 / (R * (1 / pow(k, 2) - 1 / pow(j, 2)));
            cout << setw(3) << i;
            cout << setw(10) << lambda * 1e9 << "nm";</pre>
            cout << endl;
        // Skip a line between families
        cout << endl;
    return 0;
```

Run Lab 1 – Rydberg Spectra for Hydrogen

Formulas ≠ Physics

- Rydberg developed his formula in 1888 and it was later extended by Ritz to account for all known atoms
- But it is still only an empirical formula there was no explanation given as to why the formula worked
- Fitting a curve mathematically and then making accurate predictions is still not physics if you don't understand the underlying physical laws that lead to the equation
- It took the next 50 years for science to understand the true nature of the formula and to realize the source of Rydberg's constant

Physics Intuition: Voltage vs. Current

It is *neither* the size nor the speed of the drops

The Ultraviolet Catastrophe

Max Planck's Law - 1900

Einstein's Photon Quantum - 1905

- No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy (sufficiently short wavelength)
- After the necessary energy is reached, the current (# electrons emitted per second) increases as the intensity (brightness) of the light increases
- The current, however, does not depend on the wavelength

Einstein's Photon Quantum - 1905

Light frequency too low; no electrons ejected from metal; no electric current flows.

Photoelectric effect

Low-intensity light above threshold frequency; some electrons ejected from metal; small current.

High-intensity light above threshold frequency; many ejected electrons; high current.

$$E_{photon} = \frac{hc}{\lambda}$$

Early Atomic Models

J.J Thomson (1904)

But if like charges repel, then what keeps the protons close together?

E. Rutherford Experiment (1911)

Rutherford scattering indicated atoms have a heavy & compact nucleus

Early Atomic Models

The Rutherford model required even *stable* atoms to constantly emit radiation (but they don't) and it could not explain discrete spectral emission lines

Electric Field Potential

Coulomb's Law

$$F \propto \frac{q_1 q_2}{r^2} \Longrightarrow F = k \frac{q_1 q_2}{r^2}$$
$$k = \frac{1}{4\pi\varepsilon_0} (Coulomb's constant)$$

$$\text{Eq 1 } F = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2}$$

 $F = rac{q_1 q_2}{4\pi \varepsilon_0 r_e^2}$ q = Electric charge $\varepsilon_0 = \text{Permittivity}$ of free space

Electric Field Potential

$$W_{A\to B} = \int_A^B F \, ds$$

$$E(r) = \frac{q_1 q_2}{4\pi \varepsilon_0} \int_A^B \frac{1}{r^2} dr$$

$$\int \frac{1}{r^2} = -\frac{1}{r} \qquad \frac{-1}{r_B} - \frac{-1}{r_A} = \frac{1}{r_A} - \frac{1}{r_B}$$

$$E = \frac{q_1 q_2}{4\pi\varepsilon_0} \left[\frac{1}{r_A} - \frac{1}{r_B} \right]$$

A as reference point $: r_B = \infty$

$$E_{A} = \frac{q_1 q_2}{4\pi \varepsilon_0 r_A}$$

$$F=rac{q_1q_2}{4\piarepsilon_0r^2}$$
 Eq 1

$$q_{electron} = -e$$
$$q_{proton} = +e$$

 $F_{radial} = m * a_{radial}$

$$\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} = m \frac{v^2}{r}$$
Eq 3

$$L = mvr = n\hbar \qquad v = n\frac{\hbar}{mr}$$

$$\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} = \frac{m}{r} n^2 \frac{\hbar^2}{m^2 r^2}$$

Eq 4
$$r = n^2 \frac{4\pi\varepsilon_0 \hbar^2}{e^2 m}$$

Bohr: Angular momentum L is **quantized** and is a multiple n of Plank's constant \hbar

$$\hbar = \frac{h}{2\pi}$$

$$r = \frac{(1.11 \times \frac{10^{-10}C^2}{Nm^2})(1.05 \times 10^{-34}Jsec)^2}{(1.6 \times 10^{-19}C)^2(9.1 \times 10^{-31}kg)} \quad \boxed{n = \frac{(1.11 \times \frac{10^{-10}C^2}{Nm^2})(1.05 \times 10^{-34}Jsec)^2}{(1.6 \times 10^{-19}C)^2(9.1 \times 10^{-31}kg)}}$$

$$r = 0.53 \times 10^{-10} = 0.53 \,\text{Å}$$

Eq 3
$$\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} = m \frac{v^2}{r}$$

$$\frac{r}{2} \left[\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} \right] = \frac{r}{2} \left[m \frac{v^2}{r} \right]$$

$$\frac{1}{2} m v^2 = \frac{1}{2} \left[\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r} \right]$$

$$Eq 2 E = \frac{q_1 q_2}{4\pi \varepsilon_0 r}$$

 $E_{TOTAL} = kinetic + potential$

$$E_{TOTAL} = \frac{1}{2}mv^2 - \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}$$

Potential is negative because
$$q_1 = -e \ \& \ q_2 = e$$

$$E_{TOTAL} = \frac{1}{2} \left[\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r} \right] - \left[\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r} \right]$$

$$E_{TOTAL} = -\frac{1}{2} \left[\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r} \right]$$
Eq 4 $r = n^2 \frac{4\pi\varepsilon_0 \hbar^2}{e^2 m}$ $h = 2\pi\hbar$

Eq 5
$$E_n = -\frac{e^4m}{8\varepsilon_0^2h^2}\frac{1}{n^2}$$
 $n = orbit \#$

Eq 5
$$E_n=-\frac{e^4m}{8\varepsilon_0^2h^2}\frac{1}{n^2}$$

$$E_0=\frac{e^4m}{8\varepsilon_0^2h^2}$$
 $E_0=$ Just the constants

$$E_n = -\frac{E_0}{n^2}$$
, $n = 1,2,3,...$ $n = orbit #$

$$E_{final} - E_{initial} = \frac{hc}{\lambda}$$

Einstein's Photon Energy Quantum

$$\lambda = \frac{hc}{E_{final} - E_{initial}}$$

When an electron falls back to its ground state, it will emit a photon at the wavelength associated with the corresponding energy delta

Open Lab 2 – Bohr Spectra for Hydrogen

Update a C++ console application to display the predicted wavelengths for the spectral emission of the Hydrogen atom using Bohr's Atomic model

$$E_0 = \frac{e^4 m}{8\varepsilon_0^2 h^2}$$

$$E_n = -\frac{E_0}{n^2}$$
, $n = 1,2,3,...$ $n = orbit #$

$$\lambda = \frac{hc}{E_{final} - E_{initial}}$$
 $E_i = E_{initial}$
 $E_f = E_{final}$

$$e = 1.6 \times 10^{-19} C$$

 $m = 9.1 \times 10^{-31} kg$
 $\varepsilon_0 = 8.84 \times 10^{-12} C^2 / Nm^2$
 $h = 6.63 \times 10^{-34} Jsec$
 $c = 3 \times 10^8 m/sec$

Note: The SI unit for distance is meters (m) but we want the results shown in nanometers (nm)

Edit Lab 2 – Bohr Spectra for Hydrogen

```
int main()
    const double eCharge = 1.6e-19;
    const double eMass = 9.1e-31;
    const double permittivity = 8.84e-12;
    const double hPlank = 6.63e-34;
    const double speedLight = 3e8;
 const double E0 = 0;
    cout << "Bohr Model Hydrogen Spectral Lines" << endl;</pre>
    cout << fixed << setprecision(0);</pre>
    for (int i\{1\}; i < 5; ++i)
        for (int f\{i + 1\}; f < i + 6; ++f)
         double Ei = 0;
         double Ef = 0;
          double lambda = 0;
            cout << setw(3) << f;
            cout << setw(10) << lambda << "nm";</pre>
            cout << endl;
        // Skip a line between families
        cout << endl;
    return 0;
```


Run Lab 2 – Bohr Spectra for Hydrogen

```
int main()
   const double eCharge = 1.6e-19;
   const double eMass = 9.1e-31;
   const double permittivity = 8.84e-12;
   const double hPlank = 6.63e-34;
   const double speedLight = 3e8;
const double E0 = (pow(eCharge, 4)*eMass) /
                      (8 * pow(permittivity, 2) * pow(hPlank, 2));
   cout << "Bohr Model Hydrogen Spectral Lines" << endl;</pre>
   cout << fixed << setprecision(0);</pre>
   for (int i{ 1 }; i < 5; ++i)
        for (int f\{i+1\}; f < i+6; ++f)
        double Ei = -E0 / pow(i, 2);
        double Ef = -E0 / pow(f, 2);
         double lambda = hPlank * speedLight / (Ef - Ei) * 1e9;
            cout << setw(3) << f:
            cout << setw(10) << lambda << "nm";</pre>
            cout << endl;</pre>
       // Skip a line between families
        cout << endl;
   return 0;
```

Check Lab 2 – Bohr Spectra for Hydrogen

```
spectrum-bohr
    Edit View Terminal Tabs Help
Bohr Model Hydrogen Spectral Lines
          122nm
  3
          103nm
           98nm
           95nm
  6
           94nm
  3
          660nm
  4
          489nm
          436nm
  6
          412nm
          399nm
         1885nm
  4
         1289nm
  6
         1100nm
         1010nm
  8
          960nm
         4073nm
  6
         2640nm
  7
         2177nm
         1955nm
  8
  9
         1827nm
Process returned 0 (0x0)
                            execution time : 0.015 s
Press ENTER to continue.
```

$$\operatorname{Eq} 5 \overline{E_n = -\frac{e^4 m}{8\varepsilon_0^2 h^2} \frac{1}{n^2}}$$

$$E_n = -\frac{E_0}{n^2}$$
, $n = 1,2,3,...$

$$E_0 = \frac{e^4 m}{8\varepsilon_0^2 h^2}$$

Rydberg Formula

$$\frac{1}{\lambda} = R \left(\frac{1}{n_k^2} - \frac{1}{n_j^2} \right)$$

Rydberg Constant
$$R = 1.0967757 \times 10^{7} m^{-1}$$

$$E_{initial} - E_{final} = \frac{hc}{\lambda}$$

$$\left(-\frac{E_0}{n_i^2}\right) - \left(-\frac{E_0}{n_f^2}\right) = \frac{hc}{\lambda}$$

$$i,f\in\mathbb{Z}^+\ and\ f>i$$

$$\frac{1}{\lambda} = \frac{E_0}{hc} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

$$R_{Bohr} = \frac{E_0}{hc} = \frac{e^4 m}{8\varepsilon_0^2 h^3 c}$$

$$R_{Bohr} = 1.09740 \times 10^7 m^{-1}$$

Rydberg Formula

$$\frac{1}{\lambda} = R \left(\frac{1}{n_k^2} - \frac{1}{n_i^2} \right)$$

where $k, j \in \mathbb{Z}^+$ and j > k

Rydberg Constant
$$R = 1.0967757 \times 10^7 m^{-1}$$

Bohr Formula

$$\frac{1}{\lambda} = R_{Bohr} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$
where $f, i \in \mathbb{Z}^+$ and $f > i$

$$R_{Bohr} = 1.09740 \times 10^{7} m^{-1}$$

Now we are doing physics!

With Bohr's model we can assemble a logical sequence of physical laws to derive an empirical rule!

Rydberg Formula

Bohr Formula

The Bohr Model still had problems!

Bohr Didn't Include Electron "Spin"

Bohr Didn't Include Electron "Spin"

Now you know...

- Double-slit diffraction enables measurement of wavelengths
- The Rydberg Formula indicated an underlying model existed, but an equation without an explanation is just a nifty observation
- Consider the plight of early atomic models how do you measure something you cannot possibly <u>see</u>?
- At the atomic level, Mother Nature is quantized this violates common experience with continuous spectrums
- Don't be scared off by a soup of complex looking symbols and a long series of equations – learn to glide with them!