TIME COMPLEXITY ANALYSIS

Data Structures (CS2001) Fall 2022
Abeeda Akram

Time complexity Analysis

Time complexity analysis for an algorithm is *independent* of programming language, and machine.

Objectives of time complexity analysis is:

- 1. To determine the feasibility of an algorithm by estimating an *upper bound* on the amount of work performed
- 2. To compare different algorithms before deciding, which one to implement
 - •T(n) is usually very complicated so we need an approximation of T(n)....close to T(n).
 - •This measure of efficiency or approximation of T(n) is called ASYMPTOTIC COMPLEXITY or ASYMPTOTIC ALGORITHM ANALYSIS

Asymptotic Analysis

Is a way of expressing the running time of an algorithm, using idealized units of computational work.

- •Time is not in numbers of seconds or any such time unit.
- •It represents **number of operations** that are carried out while executing the algorithm.
- Depends on Input Data
- •Provides the **best**, **average** and the **worst** running times of an algorithm.

Big-O Notation

Is a formal method of expressing the upper bound of an algorithm's running time.

•The longest amount of time, it could possibly take for the algorithm to complete.

For non-negative functions, f(n) and g(n),

if there exists an integer **no** and a constant c > 0, such that for all integers n, $f(n) \le cg(n)$, then f(n) is Big O of g(n).

This is denoted as "f(n) = O(g(n))".

From Function to Notation

$$f(n) = 2n + 3 \longrightarrow O(n)$$

$$h(n) = 2n^2 + 2n + 3 \longrightarrow O(n^2)$$

- Constants are ignored
- •Terms growing faster, dominate

From Function to Notation

$$f(n) = 4n^4 + 2n^2 + 2n + 3 \rightarrow O(n^4)$$

$$f(n) = 4n^4 + 2^n + 3 \rightarrow ?$$

Which term grows rapidly with growing input?

- Constants are ignored
- •Terms growing faster, dominate

Example: *Big-O*

Formula: for
$$n \ge n_0$$
, $f(n) \le cg(n)$

$$f(n) = 2n + 3$$

$$g(n) = (n)$$

find c and n₀

n	f (n)	c g(n)		
		c = 2	c = 3	
1	5	2	3	
2	7	4	6	
3	9	6	9	
4	11	8	12	

25/08/2022 Answer: c=3, $n_0 = 3$

Example: Big-O

$$f(n) = n^2 + 2n + 5$$

$$g(n) = (n)$$
 find c and n_0

$Big-\Omega$ omega Notation

Is a formal method of expressing the lower bound of an algorithm's running time.

•The smallest amount of time, it could possibly take for the algorithm to complete.

For non-negative functions, f(n) and g(n),

if there exists an integer **no** and a constant c > 0, such that for all integers n, $f(n) \ge cg(n)$, then f(n) is Big Ω of g(n).

This is denoted as " $f(n) = \Omega(g(n))$ ".

Example: $Big-\Omega$ omega

Formula: for
$$n \ge n_0$$
, $f(n) \ge cg(n)$
 $f(n) = 2n + 3$
 $g(n) = (n)$
find c and n_0

Big-θ theta Notation

This is basically saying that the function, f(n) is bounded both from the top and bottom by the same function, g(n).

For non-negative functions, f(n) and g(n), f(n) is theta of g(n) if there exists an integer **no** and a constants c1 > 0 and c2>0,

such that $c1g(n) \le f(n) \le c2g(n)$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. This is denoted as " $f(n) = \Theta(g(n))$ ".

Example: $Big-\theta$ theta

$$f(n) = 2n + 3$$
$$g(n) = (n)$$
find c and n₀

Common Functions

```
-0(1)
                    constant / bounded time
\bullet O(\log_b n) = O(lgn) logarithmic time
                     linear
\cdot O(n)
\cdotO(n log<sub>b</sub>n)
                         n log n
\cdot O(n^2)
                     quadratic
\cdot O(n^3)
                     cubic
\bullet O(n^k)
                     polynomial
-O(2^n)
                     exponential
```

Relative Growth of functions

n	lgn	nlgn	n^2	n^3	2^n
1	0	0	1	1	2
2	1	2	4	8	4
4	2	8	16	64	16
8	3	24	64	512	256
16	4	64	256	4096	65536
32	5	160	1024	32768	4294967296
64	6	384	4096	262144	1.84467E+19
128	7	896	16384	2097152	3.40282E+38
256	8	2048	65536	16777216	1.15792E+77
512	9	4608	262144	134217728	1.3408E+154

Properties of Big-O

- 1. If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))
- 2. If f(n) = O(g(n)) and h(n) = O(g(n)) then f(n) + h(n) = O(g(n))
- 3. $n^k = O(n^{(k+j)})$ for any positive j
- 4. If f(n) is polynomial of degree k then $f(n) = \theta(n^k)$
- 5. if f1(n) = O(g(n)) and f2(n) = O(h(n)) then f1(n) + f2(n)= $O(\max(g(n), h(n)))$
- 6. $\log^{k}(n) = O(n)$ for any constant k