Universidad de Granada	Fundamentos Físicos y Tecnológicos	Práctica de Laboratorio 4	
Apellidos:			Firma:
Bolaños Quesada			
Nombre:	DNI:	Grupo:	
Manuel Vicente	77688712W	DGIIM 2.2	

- 1. Simula un circuito 5.2 formado por una fuente de continua en serie con una resistencia de $2 \text{ k}\Omega$ y un diodo. Coloca sondas que permitan medir la tensión entre los extremos de la resistencia, entre los extremos del diodo así como la corriente que atraviesa cada elemento.
 - *a*) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para los valores de tensión en la fuente que se muestran en ella:

V	V_R	V_d	I
0.2 V			
0.3 V			
0.4 V			
0.5 V			
0.6 V			
0.8 V			
1 V			
1.5 V			
2 V			
2.5 V			

EXCEL

b) Representa en una gráfica la intensidad que circula por el diodo (eje Y) frente a la diferencia de potencial entre los extremos del diodo. Realiza un ajuste exponencial de dicha ecuación calculando además el coeficiente de correlación para completar la siguiente tabla.

Curva exponencial de ajuste	Coef. correlación	I_s	q/nkT	n (T = 19C)
1e-15 * e^(38,687x)	1	1e-15	38,687	1.02635

c) Representa en una gráfica la diferencia de potencial entre los extremos del diodo (eje Y) frente a la diferencia de potencial en la fuente (eje X). Señala las dos zonas de comportamiento que se muestran y determina la tensión umbral del diodo como la tensión en la que se produce la transición.

$$V_T = 0.648 \, {
m V}$$

d) Representa por separado cada una de las dos zonas de comportamiento de la gráfica anterior y realiza un ajuste lineal de cada una de ellas. Calcula además el coeficiente de correlación para completar la siguiente tabla.

Zona	Ecuación de la recta	Coef. correlación
Zona I	0.972x + 0.0084	0.9992
Zona II	0.0353x + 0.6291	0.914

e)	Comenta los resultados anteriores comparándolos con las representaciones vistas en clase.	Utilízalos
	para determinar el valor de r_d del modelo empleado para simplificar el comportamiento de	l diodo en
	circuitos	

Tenemos que Vo = Vi * (Rd / (Rt + Rd)) + (Vj * R) * (Ry * Rd).

Tenemos que Rd / (R + Rd) = 0.0353, de donde Rd = 0.73 k Ω

(Modelo 2 del comportamiento del diodo)

- 2. Simula el circuito 6.3 usando $R_G=R_D$ =40 k Ω y $V_{DD}=10$ V.
 - a) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para V_i :

V_i	V_{DS}	V_{GS}	I_D	I_G
1 V				
2 V				
2.5 V				
3 V				
4 V				
4.5 V				
5 V				
5.5 V				
6 V				
7 V				
8 V				
9 V				
10 V				

EXCEL

b) ¿Coinciden los valores obtenidos para la intensidad de puerta con los esperados teóricamente?

Sí, ya que es igual a 0

- c) Pinta la característica de tranferencia. ¿Coincide con la esperada teóricamente?
 - Sí. En valor bajos se corresponde con un 1 lógico, y en valores altos se acerca al 0 lógico

- 3. Simula el circuito 6.4 usando R_D =40 k Ω .
 - a) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para V_i :

V_i	I_D	$\sqrt{I_D}$	V_{DS}
3 V			
4 V			
5 V			
6 V			
7 V			
8 V			

EXCEL

- b) Representa en una gráfica la raíz cuadrada de la intensidad de drenador (eje Y) frente a $V_{GS}=V_{DS}$ (eje X).
- c) Realiza un ajuste lineal de la representación anterior, determina la ecuación de la recta, su coeficiente de correlación y usa la información anterior para completar la siguiente tabla

Ecuación del ajuste	Coef. correlación	V_{th}	$\mu_n C_{ox} W/L$
0.0032x + 0.0031	1	0.96875	0.00002048

Explicación en el Excel