

Group 22: Jiachen Liu and Thinh Nguyen

Background

"Everybody wants their cars to be sold at an ideal price"

Pricing Model has been widely used in many fields.

We will implement car value regression model to predict the ideal price of a used car

Fun Facts:

\$36.7 mil

Market Size

2020

1.6 mil

Vehicles

30%>>>>

Demand

Spring 2021

Primary Steps:

- Exploratory Data Analysis
- Feature Engineering (PCA)
- Classical Models (L1, L2, etc.)
- Advanced Models (XGBoost)
- Model Evaluation

Context

Geography

United Kingdom

Categorical

Model, Transmission, Fuel Type

6 Numerical

Year, Price, Mileage, Tax, Mpg, Engine Size

Exploring Metadata

3 Categorical Features

Model Car Model of the brand

Transmission Type of gearbox

fuelType Engine Fuel

6 Numerical Features

Year Car Registration Year

Used Car

Price Car Price (in £)

Mileage Distance Used

Tax Road Tax (in £)

Mpg Miles per gallon

Pricing Prediction

engineSize Size in liters

Exploring Data

Sample

Model	Year	Price (in £)	Transmission	Mileage	fuelType	Tax (in £)	Mpg	engineSize (in liters)
5 Series	2014	11,200	Automatic	67,068	Diesel	125	57.6	2
2 Series	2018	16,250	Manual	10,401	Petrol	145	52.3	2
1 Series	2015	15,499	Semi-Auto	20,000	Diesel	125	60.1	2
13	2015	17,400	Automatic	29,465	Electric	0	470.8	1
X5	2016	34,498	Automatic	17303	Hybrid	140	113	1.5
3 Series	2017	14,250	Automatic	55594	Other	135	148.7	2
M4	2020	50,000	Semi-Auto	700	Petrol	145	34	3

Flow Chart

Exploratory Data Analysis

Remaining Input Variables:

Model

Year

Transmission

Mileage

fuelType

Tax

Mpg

engineSize

Target Variable: Price

Relationship between Year and Price

Exploratory Data Analysis

Boxplot by Transmission

Boxplot by Model

Exploratory Data Analysis

Relationship between mileage and price (2015-2020)

Feature Engineering

10781

Combinations

mileage fuelType

Number of missings

Encode Categorical Data (One-Hot Encoding)

Perform PCA and choose appropriate

Number of Components

From these plots, we can see there is no missing value, and the number of component is 31.

Model Implementation

Implement Different Regression Models

20%

Linear Regression

```
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22737.80
                            39.77 571.682 < 2e-16 ***
## PC1
               2124.82
                            10.83 196.247 < 2e-16 ***
## PC2
               1766.52
                            13. 43 131. 515 < 2e-16 ***
## PC3
                868.48
                            14.30 60.747 < 2e-16 ***
                 55.16
## PC4
                            14.62 3.772 0.000163 ***
                            18.69 -36.164 < 2e-16 ***
## PC5
               -676.06
               -953.21
                            19.79 -48.164 < 2e-16 ***
## PC6
## PC7
               -648.42
                            21.97 -29.510 < 2e-16 ***
## PC8
                -34.48
                            20. 54 -1. 678 0. 093343 .
## PC9
               -189.38
                            23. 40 -8. 093 6. 62e-16 ***
               -489.52
## PC10
                            40.16 -12.189 < 2e-16 ***
## PC11
               1382, 27
                            27.53 50.219 < 2e-16 ***
## PC12
                319.12
                            30.81 10.359 < 2e-16 ***
## PC13
                -50.47
                            26. 20 -1. 926 0. 054140 .
                            29.97 3.440 0.000584 ***
## PC14
                103.12
## PC15
                900.41
                            29.68 30.341 < 2e-16 ***
## PC16
                600.78
                            29.73 20.206 < 2e-16 ***
## PC17
                226.99
                                  7.423 1.26e-13 ***
## PC18
                619.40
                            32.29 19.185 < 2e-16 ***
## PC19
                544.67
                            32.32 16.850 < 2e-16 ***
## PC20
                365.94
                            34.76 10.529 < 2e-16 ***
## PC21
               1293.34
                            33.67 38.409 < 2e-16 ***
## PC22
               -145.73
                            33. 92 -4. 297 1. 75e-05 ***
## PC23
                 42.33
                            37. 66 1. 124 0. 261097
## PC24
                143.17
                            35. 54 4. 028 5. 66e-05 ***
## PC25
              -1039.04
                            36. 20 -28. 704 < 2e-16 ***
## PC26
                            36.51 18.805 < 2e-16 ***
                686.64
## PC27
                -11.53
                            36.66 -0.315 0.753064
## PC28
                180.31
                            36.96 4.879 1.09e-06 ***
## PC29
                -95.96
                            37. 13 -2. 584 0. 009773 **
## PC30
                569.36
                            37.91 15.019 < 2e-16 ***
## PC31
               -330.95
                            37.44 -8.839 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 3649 on 8390 degrees of freedom
## Multiple R-squared: 0.897, Adjusted R-squared: 0.8966
## F-statistic: 2356 on 31 and 8390 DF, p-value: < 2.2e-16
```

Lasso Regression

```
9000
8000
5000
                       0.2
                                               0.4
                                                                                                 0.8
                                                  Fraction of Full Solution
```

```
## The lasso
## 8422 samples
    31 predictor
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 8422, 8422, 8422, 8422, 8422, 8422, ...
## Resampling results across tuning parameters:
     fraction RMSE
                        Rsquared MAE
    0.1
              9266. 520 0. 5580142 6736. 382
    0.5
              5073. 275 0. 8236085 3533. 407
              5151.493 0.8585858 2688.957
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was fraction = 0.5.
```

Ridge Regression

Elastic Net

KNN Regression


```
## k-Nearest Neighbors
##
## 8422 samples
## 31 predictor
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 8422, 8422, 8422, 8422, 8422, 8422, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 2601.653 0.9470779 1231.675
## 7 2753.984 0.9408119 1348.401
## 9 2866.505 0.9359094 1446.883
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 5.
```

XGBoost

parameter 'min_child_weight' was held constant at a value of 1
RMSE was used to select the optimal model using the smallest value.

The final values used for the model were nrounds = 150, max_depth = 3, eta
= 0.4, gamma = 0, colsample_bytree = 0.8, min_child_weight = 1 and subsample

= 1.

RMSE	R ²	MAE		
2133.722	0.9649395	1254.251		

Model Evaluation

- Implement each model on test set
- Plot the prediction price and true price in test set
- Evaluate the RMSE, R² and MAE of each model

Prediction Price and True Price

Discussion

XGBoost

R²: 97.49%

Worst Model

Lasso

R²: 82.92%

Lasso's Underpderformance

- Use **L1 norm** as penalty
- L1 norm cause some feature weight to 0
- Cause Overfitting

Future Work

Try

More

Model such as Bayesian Ridge Regression

Try Other

Dimension Reduction Method such as LDA

Compare

Result

Between Dataset with PCA and Dataset without PCA

