$6.2.\{13,\ 15\},\ 6.3.\{1,\ 3,\ 4,\ 25,\ 33\}$

Colley 6.2.13 Evaluate $\oint_C (x^4y^5 - 2y) dx + (3x + x^5y^4) dy$, where *C* is the oriented curve pictured in Figure 6.29.

Figure 6.29 The oriented curve C of Exercise 13.

Colley 6.2.15

- (a) Sketch the curve given parametrically by $\mathbf{x}(t) = (1 t^2, t^3 t)$.
- (b) Find the area inside the closed loop of the curve.

Colley 6.3.1 Consider the line integral $\int_C z^2 dx + 2y dy + xz dz$.

- (a) Evaluate this integral, where C is the line segment from (0,0,0) to (1,1,1).
- (b) Evaluate this integral, where *C* is the path from (0,0,0) to (1,1,1) parametrized by $\mathbf{x}(t)=(t,t^2,t^3),\ 0\leq t\leq 1.$
- (c) Is the vector field $\mathbf{F} = z^2 \mathbf{i} + 2y \mathbf{j} + xz \mathbf{k}$ conservative? Why or why not?

3

Colley 6.3.3 In Exercises 3-17, determine whether the given vector field **F** is conservative. If it is, find a scalar potential function for **F**.

$$\mathbf{F} = e^{x+y} \, \mathbf{i} + e^{xy} \, \mathbf{j}$$

Colley 6.3.4 In Exercises 3-17, determine whether the given vector field **F** is conservative. If it is, find a scalar potential function for **F**.

$$\mathbf{F} = 2x\sin y \,\mathbf{i} + x^2\cos y \,\mathbf{j}$$

Colley 6.3.25 Let $F = x^2 i + \cos y \sin z j + \sin y \cos z k$.

- (a) Show that ${\bf F}$ is conservative and find a scalar potential function f for ${\bf F}$.
- (b) Evaluate $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$ along the path $\mathbf{x} : [0,1] \to \mathbb{R}^3$, $\mathbf{x}(t) = (t^2 + 1, e^t, e^{2t})$.

6

Colley 6.3.33

(a) Determine where the vector field

$$\mathbf{F} = \frac{x + xy^2}{y^2} \,\mathbf{i} - \frac{x^2 + 1}{y^3} \,\mathbf{j}$$

is conservative.

- (b) Determine a scalar potential for **F**.
- (c) Find the work done by **F** in moving a particle along the parabolic curve $y = 1 + x x^2$ from (0,1) to (1,1).