

HF-BL100-CU

Bluetooth Low Energy (BLE 4.0) Module User Manual

V 1.2

Overview of Characteristic

- ♦ Support IEEE 802.15.1 BT4.0 Wireless Standard
- ♦ Support wireless upgrade (OTA)
- ♦ UART Transparent Transmit Module
- ♦ Supper low sleep mode power 1.3uA, excellence power save scheme
- ♦ Unique stop mode, 60nA power
- ♦ Support internal antenna
- \Rightarrow Single 1.9V~5.5V power supply
- ♦ Smallest size : 22.8mm x 15.4mm x 2mm
- ♦ ROHS compliance

Table of Contents

3
6
9
9
8
9
10
9
12
12
14
17
17
18
19
21
21
22
21
21
23
23
22
23
23
23
25
26
27
28
27
28
28
29
31
30
31
31
31

	4.3.11.	Set Transmit Power	31
	4.3.12.	Query Transmit Power	32
	4.3.13.	Set Broadcast Parameter	33
	4.3.14.	Query Broadcast Parameter	34
	4.3.15.	Set User-define Broadcast Data	34
	4.3.16.	Query User-define Broadcast Data	35
	4.3.17.	Set Auto-Broadcast Switch	35
	4.3.18.	Query Auto-broadcast Switch	35
	4.3.19.	Start Broadcast	37
	4.3.20.	Stop Broadcast	36
	4.3.21.	Query Current BLE Subsystem Status	37
	4.3.22.	Disconnect	39
	4.3.23.	Set Device Verify Code	38
	4.3.24.	Query Device Verify Code	39
	4.3.25.	Set UART Output Data Latency	39
	4.3.26.	Save Parameter	41
	4.3.27.	Module Restore	41
	4.3.28.	Set Module Operate Mode	41
	4.3.29.	Reserved	42
	4.3.30.	Reserved	42
	4.3.31.	Reserved	42
	4.3.32.	Reserved	42
	4.3.33.	Module BLE Subsystem Status Notification	42
	4.3.34.	Module CPU Status Notification	42
	4.3.35.	Restore Factory Setting via AT Command	43
	4.3.36.	Enable Module Deep Sleep	43
	4.3.37.	Restore Facotry Setting via Hardware Method	44
	4.3.38.	Reserved	44
5.	Dead Fle	ctricity	45
		Eectricity Channel configuration (temporarily unavailable.)	
		ricity Data Description	
J			
6.		TION OTA	
		Channel Configure	
6	.2. OTA	Data Description	46
7.	APP CON	MAND	47
7		nel and Data Description	
		Format	
		nand Content	
-		Command Type: 0x0E	
		Command Type: 0x0F	
_		··	
8.		mmunication Mechanism	
8	.1. Appli	cation Service Data Channel (User-define application service UUID: 0x2B00)	50

8.1.1. Module->APP, UART Data Channel 【Feature UUID:0x2B10】	50
8.1.2. APP->Module, UART Data Channel [Feature UUID:0x2B11]	51
8.1.3. APP->Module, OTA Mode Switch [Feature UUID:0x2B12]	51
8.1.4. APP->Module, APP Command Channel [Feature UUID:0x2B13]	51
8.2. Battery Service Data Channel	52
8.2.1. APP->Module, Battery Data Channel [Feature UUID:0x2A19]	52
8.3. OTA Service Data Channel	52
8.3.1. APP->Module, OTA Data Channel	52
9. TEST	54
9.1. Test Transparent Transmit Function	53
9.2. Test Battery Electricity Read	55
9.2.1. Electricity Read Command	55
9.2.2. Electricity Display	54
9.3. OTA Function Test	55
9.3.1. Get Module firmware Version	55
9.3.2. Switch to OTA mode	55
9.3.3. OTA	55
10. PACKAGE INFORMATION	56
10.1. Reflow Soldering Profile	56
10.2. Handling Instruction	56
10.3. Shipping Information	57
APPENDIX A: UART TRANSPARENT TRANSMIT TYPICAL APPICATION	58
APPENDIX B: MODULE SCHEMATIC	60
APPENDIX C: EVK SCHEMATIC	62
APPENDIX D: CONTACT INFORMATION	64

LIST OF FIGURES

Figure 1.	HF-BL100-CU Order Information	10
Figure 2.	HF-BL100-CU Pin Definition	11
Figure 3.	HF-BL100-CU Mechanical Size	16
Figure 4.	HF-BL100-CU PCB Antenna Position	17
Figure 5.	HF-BL100-CU Module Reference Placement	17
Figure 6.	Basic HF-BL100-CU Wireless Network Structure	18
Figure 7.	HF-BL100-CU Default UART Parameter	23
Figure 8.	"AT:HELP" List All Command	24
Figure 9.	Module UART Output Data Latency set Map	40
Figure 10.	Module UART Receive Enable Data Map	44
Figure 11.	APP Scan & Connect Interface	53
Figure 12.	APP Receive notify Interface	54
Figure 13.	MCU Receive write Data Interface	54
Figure 14.	Reflow Soldering Profile	56
Figure 15.	Package Information	58
Figure 16.	UART Transparent Transmit Typical Application	58
Figure 17.	HF-BL100-CU Module Schematic $(-)$	60
Figure 18.	HF-BL100-CU EVK TOP VIEW (=)	60
Figure 19.	HF-BL100-CU EVK BOTTOM VIEW (三)	61
Figure 20.	EVK power and USB to UART Circuit (—)	62
Figure 21.		
Figure 22.	EVK Interface Circuit (三)	63

LIST OF TABLES

Table 1	HF-BL100-CU Module Technique Specification	9
Table 2	HF-BL100-CU Pin Function Definition	11
Table 3	Limited Specification	13
Table 4	Electrical Specification	13
Table 5	RF Specification	14
Table 6	Work Mode and System Status	14
Table 7	AD Convertor Function Module DC Parameter Map	15
Table 8	Module Connect Interval 20ms Communication Mode Example	20
Table 9	Error Code List	25
Table 10	AT Command List	25
Table 11	Command Data from APP to Module	47
Table 12	Peedback Data from Module to APP	47
Table 13	3 Command Type 0x0F Command List	48

Table 14	Command Type OxOF Feedback List	49
Table 15	Description of User-define Service of All Channnel	50
Table 16	0x2B10 Feature UART module->APP Channel Description	50
Table 17	0x2B11 Feature UART APP->module Channel Dexcription	51
Table 18	0x2B12 Feature OTA Mode Switch Channel Description	51
Table 19	0x2B13 Feature APP Command Channel Descritpion	51
Table 20	Description of Battery Service of All Channel	52
Table 21	0x2A19 Feature Battery Channel Description	52
Table 22	Description of OTA Service of All Channel	52
Table 23	00060001-F8CE-11E4-ABF4-0002A5D5C51B Feature OTA Data Char	nel Description52
Table 24	Reflow Soldering Specification	56

History

V1.0 08-25-2015. First Version

V1.1 09-01-2015. Update OTA and Add Battery service

V1.2 10-30-2015. Update APP AT Command format.

1.PRODUCT OVERVIEW

1.1. General Description

HF-BL100-CU Bluetooth Low Energy module is a high performance IOT module designed by High Flying. It is based on Cypress chip, and provide a solution for connecting things to Bluetooth wireless network and data transmit ting via UART interface. With the feature of low power, small size, high anti-interference performance, the module integrates PCB antenna and use open stamp type interface which enable customer have more flexibility on software and product structure, and solve the RF hardware design and debug issue.

1.2. Device Feature

- Smallest size: 22.8mm x 15.4mm x 2mm
- With 32 bit high performance RISC 48MHz ARM MO MCU, MCU build-in 16KB SRAM and 128KB Flash;
- 1.9V~5.5V Single power supply
- Support low power & multiple level power management mode
- Full peripheral
 - GPIO interface
 - Serial Communication (UART application)
 - ADC interface
- FCC/CE/BQB
- ROHS compliance

1.3. Key Application

- Smart LED lighting
- Smart toy
- Electronic Scale
- Smart Cup
- Smart Home Appliance
- OBD
- IOT, Smart Home Automation
- Sports, fitness, consumer electronics products
- Smart instrument, data acquisition, sensor
- PC. Tablet peripheral

1.4. Device Parameter

Table 1 HF-BL100-CU Module Technique Specification

Class	Item	Condition	Parameter
	Certificate		
	Wireless		802.15.1
	standard		002.13.1
Wireless	Frequency		2.402 <i>G</i> Hz-2.480 <i>G</i> Hz
paramete	range		
r	Data rate		1Mbps@2.4GHz
	Tx power		Max=+3 dBm, Min=-18dBm
	Rx		-89 dBm
	sensitivity		
	Data		UART
	interface		<i>G</i> PIO
	interface		ADC
	Operating		1.9~5.5V
	voltage		1.9~5.50
		Tx power=0 dBm, Tx	15.6m <i>A</i>
		peak current	
	BLE	Rx peak current	16.4m <i>A</i>
Hardwar	Subsystem	Tx power=0 dBm,	18.9u <i>A</i>
e	current	broadcast interval=1s	10.0
paramete		Tx power=0 dBm, connect interval=1s	18.9u <i>A</i>
r		Run	9504.2604*non MIJ-
•	<i>C</i> PU	Sleep, @3MHz	850uA+260uA*per MHz 1.1mA
	Subsystem	Deep sleep	1.3uA
	current	hibernate	150nA
	Curr Citt	Stop	60nA
	Work		
	temperature		-40℃- 85℃
	Storage		-45℃- 125℃
	temperature		- 1 0 C- 120 C
	Size		22.8mm × 15.4mm × 2mm

Power details refer to Table 6

1.5. Order information

As per customer demand, HF-BL100-C can provide variant physical version, detail part number as below:

Figure 1. HF-BL100-CU order information

2. HARDWARE INTRODUCTION

2.1. Pin Definition

TOPVIEW

Figure 2. HF-BL100-CU Pin Definition

Table 2 HF-BL100-CU Pin Function Definition

Pin	Net name	Description		
1	GND	<i>G</i> round		
2	NC	NC		
3	XRES	Module reset		
4	SWCLK	SWD clock interface, firmware burn		
5	SWDATA	SWD data interface, firmware burn		
6	NC	NC		
7	NC	NC		
8	NC	NC		
9	NC	NC		
10	NC	NC		

11	NC	NC
12	NC	NC
13	NC	NC
14	NC	NC
15	NC	NC
16	NC	NC
17	NC	NC
18	NC	NC
19	VBAT	+1.9V~+5.5V module power input
20	NC	NC
21	NC	NC
22	NC	NC
23	NC	NC
24	NC	NC
25	NC	NC
26	ADC0	Analog input
27	NC	NC
28	BCTS	BCTS (module send advanced signal data, wake external MCU)
29	MANUFACTURE	Restore factory setting
30	UART_TX	UART send data
31	UART_RX	UART receive data
32	WAKEUP	Enable system deep sleep & wake up STOP mode
33	GND	Module ground

2.2. Electrical Specification

Table 3 Limited Specification

Parameter	Description	Min Value	Typ. Value	Max value	Unit
VDDD_ABS	Analog, digital, or radio supply relative to VSS (VSSD = VSSA)	-0.5	-	6	V
VCCD_ABS	Direct digital core voltage input relative to VSSD	-0.6	-	1.95	V
VGPIO_ABS	Maximum current per GPIO	-25	-	25	m <i>A</i>
IGPIO_injection	GPIO injection current, Max for VIH > VDDD, and Min for VIL < VSS	-0.5		0.5	m <i>A</i>
ESD_HBM	Electrostatic discharge human body model	2200			V
LU	Pin current for latch up	-200		200	m <i>A</i>
Storage temperature		-45		125	°C
Max solder temperature	IPC/JEDEC J-STD-020			260	°C

Table 4 Electrical Specification

Parameter	Condition	Min Value	Typ. Value	Max Value	Uni †
Work voltage		1.9	3.3	5.5	٧
BLE Subsystem					
Tx peak current	Tx power =ODB		15.6		m <i>A</i>
Rx peak current			16.4		m <i>A</i>
Broadcast mode average current	Tx power =ODB, broadcast interval=1s		18.9		u <i>A</i>
Connect mode current	Connect power=ODB, connect interval=1s		18.9		u <i>A</i>
CPU application subsystem					
Operate mode	System clock=48Mhz (algorithm: 0.85+0.26*48)		13.4		m <i>A</i>
	System clock =24Mhz		7.1		m <i>A</i>
	System clock=12Mhz		4		m <i>A</i>
	System clock=6Mhz		2.5		m <i>A</i>
	System clock=3Mhz		1.7		m <i>A</i>
Sleep mode	Run at 3Mhz		1.1		m <i>A</i>
Deep sleep mode	ECO stop, WCO work		1.3		uА
Stop mode	ECO stop , WCO work		60		n <i>A</i>

Table 5 RF specification

Parameter	Condition	Min value	Typ. Value	Max value	Unit
Rx sensitivity			-89		dBm
Frequency offset tolerance		225	250	275	KHz
Frequency drift		-50		50	KHz
In-Band	2 MHz offset			-20	dB
blocking rejection	>=3 MHz offset			-30	dB
Output power			0	3	dBm
Standard frequency		2400		2482	MHz
Frequency tolerance			±50		Ppm
Signal strength accuracy			±5		dBm
Signal accuracy			1		dBm
Signal sampling interval			6		uS
Channel band			2		MHz
Effective data rate			1		Mbps

Table 6 Work Mode and System Status

Work mode	Current	Code run	External digital module	Extern al analog module	Clock sour ce	Wakeup source	Wake up time
Active	850uA+260u A per MHz	Yes	All	All	All	-	-
sleep	1.1mA at 3MHz	No	all	All	All	Any interrupt source	0
Deep sleep	1.3uA	No	WDT, LCD, I2C/SPI, Link-Layer	POR, BOD	WCO , ILO	GPIO, WDT, I2C/SPI Link Layer	25uS
hibernate	150n <i>A</i>	No	No	POR, BOD	No	<i>G</i> PIO	2m5
stop	60n <i>A</i>	No	No	No	No	WAKEUP ,XRES	2m5

Table 7 AD Convertor Module DC Parameter Map

Parameter	Description	Min. value	Typ. value	Max value	Unit	Remark
A_RES	Resolution	-	-	12	bits	-
A_CHNIS_S	Number of channels - single-ended	-	-	1	-	1 full speed
A-MONO	Monotonicity	-	-	-	-	YES
A_ISAR	Current consumption	-	-	1	m <i>A</i>	
A_VINS	Input voltage range – single-ended	VSS	-	VDDA	V	
A_INRES	Input resistance	-	-	2.2	kΩ	
A_INCAP	Input capacitance	-	-	10	pF	
VREFSAR	Trimmed internal reference to SAR	-1	-	1	%	Percentage of Vbg (1.024 V)

2.3. Mechanical size

HF-BL100-CU physical size (unit: mm) as below:

Module pad: size 22.8mm X 15.4mm , pad space $1mm_{\circ}$

Figure 3. HF-BL100-CU Mechanical size

2.4. Antenna Layout

HF-BL100-CU support internal antenna. Antenna layout refer to Figure 4. Customer need to obey following antenna design rules and module location suggestions:

- ✓ For user PCB, place module on the edge area of the PCB as possible, or suspend the antenna area.
- ✓ Module antenna (22.8mm×7mm) correspondent area can't put components or paste GND, the surrounding components or GND should be as far as possible from antenna place.

- ✓ Antenna must away from high components at least 10mm
- ✓ Antenna can't be shielded by any metal enclosure.

Figure 4. HF-BL100-CU PCB antenna position

High Flying suggest to locate HF-BL100-CU as Figure 5 shown to reduce the influence to antenna and wireless signal as much as possible, or contact High Flying technique people for support

Figure 5. HF-BL100-CU Module Reference Placement

UART TRANSPARENT TRANSMIT MODE

3.1. Transparent Transmit Mode

Transparent Transmit means the two way communication between device and mobile terminal via the connecting with serial interface and device MCU. Device can set HF-BL100-CU baud rate and connect interval via AT command through serial interface (refer to "Serial AT command Description" for details). Target different baud rate and BLE connect interval or different packet sending interval, module would have different data handling capacity. The default baud rate of HF-BL100-CU is 115200bps, it is recommended to set baud rate at 115200bps when transmitting big data or in highly real-time application. Baud rate support save after power off.

Figure 6. Basic HF-BL100-CU wireless network structure

Module BLE connect interval is 20ms, and able to send utmost 200 byte data one time via serial interface. Theoretically module able to send data up to 4KB/S. Below is the detail description about transparent transmit.

Module can receive utmost 200 byte data from serial interface one time. Module will automatically send sub-packet according to data size, each packet limit is 20 bytes. The data packet sending from mobile device to module must separated to sub-packet(1-20 byte each). After receive the sub-packets, module will send to MCU in proper order.

Serial hardware protocol:: 115200 bps , 8, non-parity, 1 stop bit .

After receive data from MCU serial, module will judge if it is AT command, if it is, module will execute the command, if not, module will transmit the data to APP under BLE connection and notify mode enabled status.

After module receive APP data, output the data to MCU via serial interface.

If module system status changed, module will send status notification character to MCU, such as disconnect, connect, broadcast.

Bluetooth protocol require that the minimum connect interval is 7.5ms. Default connect interval is 20ms (comply with IOS regulation), if need to save power and apply low speed transmit mode, user can adjust connect interval through AT command (the maximum connect interval is 2000ms, comply with IOS regulation)

The calculation of transmit speed: the data packet of each connect interval from APP to module is 1 packet, max 4 packet can be transmit from module to APP in each interval (the packet qty is related to module CPU capacity). There is max 20 bytes in each packet, if connect interval is T (unit:ms), then max transmit speed V (unit is byte/s) is:

```
Vmodule = 20*4*1000/T (V only related T )
Vapp=20*1000/T (V only related T )
```

Vapp: if module connect interval is 20ms, then each interval can transmit max 20 bytes, so theoretically the max speed is 20x50 =1k byte/s. Test shows the transmit from APP to module is stable and reliable.

Vmodule: if module connect interval is 20ms, then each interval can transmit max 80 bytes, so theoretically the max speed is 80x 50=4k byte/s. Test shows that if transmit speed under 2kbyte/s, there is few chances of leaking packet. For safety consideration, it is recommended to do verification and re-transmit at up level whatever it is low speed or high speed application. In Android application, it is recommended to lower connect interval to increase speed.

Below is the example of 20ms connect interval communication mode, user can self-configure. The lower the Speed, the lower the packet lost ratio.

通讯参考模式	BLE 连接 间隔 T (ms)	理论最高 转发能力 V (byte/s) V = 80*1000/T	串口 包长度 L (byte)	串口发包间隔 TS (ms) 当 L<80 时, TS >= T 当 80 <l<160 ts="" 时,="">= T*2 当 160<l<200 ts="" 时,="">= T*3</l<200></l<160>	实际转发速率 V0 (byte/s) V0 = L*1000/TS	备注
1	20	4K	80	TS >= T 即可,若取 TS=20ms	80*1000/20 = 4K	TS 偏小, 不推荐
2	20	4K	200	TS >= T*3 即可,若取 TS=70ms	200*1000/70 = 2.8K	
3	20	4K	200	TS >= T*3 即可,若取 TS=80ms	200*1000/80 = 2.5K	
4	20	4K	80	TS >= T 即可,若取 TS=35ms	80*1000/30 = 2.6K	
5	20	4K	70	TS >= T 即可,若取 TS=30ms	70*1000/30 =2.3K	
6	20	4K	60	TS >= T 即可,若取 TS=30ms	60*1000/30 = 2K	
7	20	4K	40	TS >= T 即可,若取 TS=30ms	40*1000/30 = 1.3K	
8	20	4K	20	TS >= T 即可,若取 TS=30ms	20*1000/30 = 666byte	

Table 8 Module connect interval 20ms communication mode example

Remark: user can set particular communication mode according to actual application, packet length can be set between 80byte < L < 200byte >, the relationship as below as per BLE protocol:

```
If L<80 , TS >= T ;

If 80<L<160 , TS >= T*2 ;

If 160<L<200 , TS >= T*3 ;
```

All transmit mode is safe as long as meet above conditions, TS=T is recommended, TS=T*2, TS=T*3 is ok but the packet lost ratio is high, must add verification and re-transmit mechanism. In another words, if apply 80byte < L < 200byte ,serial data can transmit to module in one time, but need to reserve time for sending data from module to Bluetooth, or there will occur rear-end. E.g. Set connect interval T=20ms, if data length is L=200, TS must over T*3 = 60ms, TS=70ms is a reasonable choice.

Serial data length can be any value under 200 byte. In order to achieve the best efficiency and avoid full load operation, it is recommended to use 20,40,60 byte serial data packet, set packet interval over 20ms.

Remark: in IOS, the function used to call Characteristic is: BCharacteristic Write With Respons

e parameter, "write with response" mode would lower transmit efficiency to ensure the accuracy of each packet, use "CBCharacteristicWriteWithoutResponse"; "write without response" mode would promote transmit efficiency, but the accuracy of packet need to be verified by APP up level.

3.2. Transparent Transmit Mode Pin Description

All pins of Transparent Transmit : $UART_TX$, $UART_RX$, WAKEUP, BCTS, XRES, MANUFACTURE

Min. pins of Transparent Transmit: UART_TX. UART_RX. WAKEUP

Details refer to 《Appendix A》

WEAKEUP: inside high impedance, pin must be connected, pull up to stop UART receive function. UART unable to receive data (UART able to send data), pull down to enable UART to receive data.

MANUFACTURE: pull down inside ,can be no connection, pull up outside and power on or reset, keep high level MANUFACTURE at least 5 second, module restore factory setting

XRES: pull up inside, can be no connection

BCTS: in normal time, output low level; BCTS output high level before sending data from module, after sending, BCTS output low level.

3.3. Factory Default Parameter

3.3.1. Device Name

Device NAME: "HF-BL100-CU"

3.3.2. Broadcast Parameter

Broadcast Min. interval: "0800", means 500ms Broadcast Max. interval:: "0800", means 500ms

Broadcast type: "O", means public

Broadcast channel: "7", means apply channel index 37 38 39

3.3.3. Transmit Power

Broadcast transmit power: "8", means Odbm

Connect transmit power: "8" means Odbm

3.3.4. Connect Parameter

Min interval: "0016", means 20ms

Max interval: "0032", means 40ms

Slave Latency: "0", means 0

Connect timeout: "0200", means 2000ms

3.3.5. Baud rate

Baud rate: "115200"

3.3.6. Send Latency Parameter

Serial sending Latency: "01", means 1ms

4. UART AT COMMAND DEFINITION

4.1. Module Operation Mode Configure

After HF-BL100-CU power on, module enter transparent transmit mode, default UART configuration parameter as below:

Figure 7. HF-BL100-CU Default UART Parameter

User can configure the module via AT command through UART or use Evaluation Kit to test. Evaluation kit refer to Appendix B.

Description>: AT command debug tool recommend use "friend serial debug assistant" and SecureCRT tool, which can be download from company website.

4.2. AT: Command Overview

AT: command can be inputted via serial debug tool or compile as below photo shows, AT:HELP is a help command, list all commands and description.

Remark: the end of each command need add return or line feed character.

Figure 8. "AT:HELP" list All command

4.2.1. Command Format

- AT: command based on ASCII code, format as below:
- > Format description

 - []: mean optional part
- Command message

AT: <CMD>[op][para-1,para-2,para-3,para-4...]<CR><LF>

- AT: : command message prefix
- CMD: command character string
- [op]: command operate character, can be parameter setting or query
 - ◆ "-": means parameter setting
 - "?": means query
- [para-n]: parameter setting code, if query, it is not required.
- <CR>: end , ASCII code 0x0d;
- <LF>: return, ASCII code 0x0a

<descritpion>:

When input command, "AT: <CMD>" character is capital word, parameter parts is the same.

> Feedback message

AT: <RSP>[op] [para-1,para-2,para-3,para-4...]<CR><LF><CR><LF>

- AT:: feedback message prefix;
- RSP: feedback character string, include:
 - ♦ "OK" : success
 - ♦ "ERP": failed
 - ◆ "DENY": operation denied
 - ◆ <CMD>: original command
- [op]: -
- [para-n]: the feedback parameter when query or error code when error happened
- <CR>: ASCII code 0x0d;
- <LF>: ASCII code 0x0a;

Error code

Table 9 Error Code list

Error code	Descritpion
ERP	Invalid command
WRONG	Invalid parameter
DENY	Operation denied

4.2.2. Command List

Table 10 AT Command List

Command Type	Data transmit direction	Save or	Function description	Comman d detail
"AT:HELP"	MCU->Module	No	Helo command	4.3.1
" AT:REN-" + Name	MCU->Module	Yes	Set module NAME	4.3.2
" AT:REN? "	MCU->Module	Query	Query module NAME	4.3.3
"AT+CIT-" +IntervalMin+IntervalM ax+Slave Latency+connSupervisio n Timeout	MCU->Module	Yes	Set connect parameter	4.3.4
"AT+CIT? "	MCU->Module	Query	Query connect parameter	4.3.5
"AT:BPS-"+baudrate	MCU->Module	Yes	Set baud rate	4.3.6

"AT:BPS? "	MCU->Module	Query	Query baud rate	4.3.7
"AT:MAC? "	(APP)MCU->Module	Query	Query MAC	4.3.9
"AT:VER? "	(APP)MCU->Module	Query	Query software version	4.3.10
"AT:TPL-" +Data0+Data1	MCU->Module	Yes	Set transmit power	4.3.11
"AT:TPL? "	MCU->Module	Query	Query transmit power	4.3.12
"AT:ADP-" +parameters	MCU->Module	Yes	Set broadcast parameter	4.3.13
"AT:ADP? "	MCU->Module	Query	Query broadcast parameter	4.3.14
"AT:ADV-"+ Data	MCU->Module	Yes	Set user-define broadcast data	4.3.15
"AT:ADV? "	MCU->Module	Query	Query user-define broadcast data	4.3.16
"AT:ADVAL"+data	MCU->Module	Yes	Set auto-broadcast switch	4.3.17
"AT:ADVAL? "	MCU->Module	Query	Query auto-broadcast switch	4.3.18
"AT:ADVSTART"	MCU->Module	No	Start broadcast	4.3.19
"AT:ADVSTOP"	MCU->Module	No	Stop broadcast	4.3.20
"AT:CNN? "	MCU->Module	Query	Query current BLE subsystem status	4.3.21
"AT:CNN-D"	MCU->Module	No	Disconnect	4.3.22
"AT:PID-"+ Data	(APP)MCU->Module	Yes	Ser device verify code	4.3.23
"AT:PID? "	(APP)MCU->Module	Query	Query device verify code	4.3.24
"AT:CDL-"+X	MCU->Module	Yes	Set UART output data latency	4.3.25
"AT:SAVE"	(APP) MCU- >Module	No	Save parameter	4.3.26
"AT:RST"	MCU->Module	No	Restore module	4.3.27
"AT:SLEEP-"+command	MCU->Module	No	Set module enter sleep mode	4.3.28
"AT:CNN-"+status	Module->MCU	Notifi cation	Module BLE subsystem status Notification	4.3.33
"AT:CPU-"+status	Module->MCU	Notifi cation	Module CPU status Notification	4.3.34

"AT:RELD"	MCU->Module	no	Restore factory setting via AT command	4.3.35
PIN32->WAKEUP high level outside	MCU->module	Notifi cation	Enable module CPU subsystem deep sleep (BLE subsystem isolated operation)	4.3.36
PIN29- >MANUFACTURE keep high level at least 5s when power on	MCU->Module	-	Restore factory parameter via hardware	4.3.37

* remark: UART serial interface command must end with <CR×LF>, feedback must end with <CR×LF>

*remark: (APP) means the command is also applicable to APP command, APP command no need (CR)

4.3. AT Command

4.3.1. Help command

Function: display all command description

Effective time: effective immediately

Command:

"AT:HELP"+<CR><LF>

feedback:

"AT:OK" +<CR>LF>+data mean command success, feedback description data

Data: list all command description data

"AT:ERP\r\n" means invalid command, query failed

4.3.2. Set Module NAME

Function: set module name, max length is 11 character

Effective time: effective after re-broadcast

Command:

" AT:REN-" + Name+<CR><LF>

Name: display the name, max 11 character

Feedback:

"AT:OK\r\n" means success

"AT:WRONG\r\n" means invalid parameter, set failed

"AT:ERP\r\n" means invalid command, set failed

4.3.3. Query module Name

Function: query module current Name

Command

"AT:REN? "+<CR><LF>

'?': means query

Feedback

"AT:REN-"+devicename+<CR>LF> means success

Devicename: device name can be displayed, max 11 character, default factory name is "HF-BL100-CU"

"AT:ERP\r\n\0" means invalid command, failed

4.3.4. Set Connect Parameter

Function: set BLE connect parameter

Effective time: effect immediately at connection status or effective after connection

Command:

"AT:CIT-"+IntervalMin+IntervalMax+Slave Latency+connSupervision Timeout+<CR×LF>

IntervalMin: 4 character means, HighByte |...| LowByte;'0'~'9' means 0~9, "0200"-> decimal 200*1.25ms

IntervalMax: 4 byte means , HighByte |...| LowByte; 0'~'9' means 0~9, "1000"-> decimal 1000*1.25ms

Slave Latency: 1 character, '0'~'9' means 0~9,

connSupervision Timeout: 4 character means , HighCharacter |...|LowCharacter , '0'~'9' means 0~9, "2000"-> decimal 2000*10ms

when connect to IOS APP, Apple has their own regulation, for parameter must comply:

- 2. IntervalMin>=20ms
- 3. IntervalMin +20ms<=IntervalMax
- 4. Slave Latency <= 4
- 5. connSupervision Timeout <= 6 seconds
- 6. IntervalMax*(Slave Latency+1)*3<connSupervisionTimeout

Feedback:

"AT:WRONG\r\n" means invalid parameter, modify failed

"AT:OK\r\n" means success, run with new connect interval

"AT:ERP\r\n" means invalid command, modify failed

4.3.5. Query Connect Parameter

Function: Query module connect parameter

Effective time: immediately

Command:

"AT:CIT?"+<CR><LF>

Feedback:

"AT+CIT-"+IntervalMin+IntervalMax+Slave Latency+connSupervision Timeout+<CR><LF>

IntervalMin: 4 character means , HighByte |...| LowByte; 0'~'9' means 0~9, "0200"-> decimal 200*1.25ms

IntervalMax: 4 character means, HighByte |...| LowByte; 0^{\prime} means 0^{\prime} , "1000"-> decimal 1000*1.25ms

Slave Latency:1 character, '0'~'9' means 0~9,

connSupervision Timeout: 4 character means , HighByte|...|LowByte, '0'~'9' means $0\sim9$, "2000"-> decimal 2000*10ms

when connect to IOS APP, Apple has their own regulation, four parameter must comply:

- 7. IntervalMax* (Slave Latency+1) <= 2 seconds
- 8. IntervalMin>=20ms

- 9. IntervalMin +20ms<=IntervalMax
- 10. Slave Latency <= 4
- 11. connSupervision Timeout<=6 seconds
- 12. IntervalMax*(Slave Latency+1)*3<connSupervisionTimeout

"AT:ERP\r\n" means invalid command, query failed

4.3.6. Set Baud rate

Function: modify UART Baud rate

Effective time: effective after receiving the success feedback data

Command:

"AT:BPS-"+baud rate+<CR><LF>

Baudrate:6 character, '0'~'9' means 0~9,"115200"-> decimal 115200

Feedback:

"AT:OK\r\n" means success

"AT:WRONG\r\n" means invalid parameter, modify failed

"AT:ERP\r\n" means invalid command, modify failed.

Remark: only apply regular baud rate 4800,9600,19200,38400,57600,115200, other parameter would be consider invalid.

4.3.7. Query Baud rate

Function: query current baud rate

Effective time: immediately

Command:

"AT:BPS? "+<CR>LF>

Feedback:

"AT:BPS-"+baud rate+<CR><LF> means success

Baudrate:6 character , '0'~'9' means 0~9,"115200"-> decimal 115200,"038400"-> decimal 38400

"AT:ERP\r\n" means invalid command, query failed

4.3.8. Reserved

4.3.9. Get MAC Address

Function: Get Bluetooth MAC

Command:

"AT:MAC?"+<CR><LF>

APP Command do not need <CR>LF>

Feedback:

"AT:MAC-"+MAC+<CR><LF>

MAC: 12 character can represent 6 byte data, each 2 character represent the four bit in high order and the four bit in low order of one byte.

e.g. : "123456789012"->0x12,0x34,0x56,0x78,0x90,0x12, character can only be '0'~'9','A'~'F'

APP Command do not need <CR>LF>

4.3.10. Query Software Version

function: Query device current software version

Effective time: immediately

Command:

"AT:VER? "+<CR><LF>

APP Command do not need <CR><LF>

Feedback:

"AT:VER-"+version+<CR><LF> means query success

APP Command do not need <CR>LF>

Version: character string, e.g. "100-CU-V*.*"

"AT:ERP\r\n" means invalid command, query failed

APP Command do not need "\r\n"

4.3.11. Set Transmit Power

Function: modify device transmit power, broadcast power and connect power


```
Effective time: immediately
```

Command

```
"AT:TPL-"+Data0+Data1+<CR><LF>
```

DataO: broadcast power, one character, '1'~'8' means 1~8,

Data1: connect power, one character, '1'~'8' means 1~8,

- 1-> -18dbm
- 2-> -12dbm
- 3-> -6dbm
- 4-> -3dbm
- 5-> -2dbm
- 6-> -1dbm
- 7-> +3dbm
- 8-> Odbm

Feedback:

"AT:OK\r\n" means command successfully received

"AT:WRONG\r\n" means invalid parameter, modify failed, if not '1'~'8', then it is invalid parameter

"AT:ERP\r\n" means invalid command, modify failed

4.3.12. Query Transmit Power

Function: query device current transmit power, broadcast power, connect power

Effective time: immediately

Command:

```
"AT:TPL? "+<CR><LF>
```

'?': means query command

Feedback:

```
"AT:TPL-"+Data0+Data1+<CR><LF>
```

DataO: broadcast power ,one character, '1'~'8' means 1~8,

Data1: connect power, one character, '1'~'8' means 1~8,

1-> -18dbm

- 2-> -12dbm
- 3-> -6dbm
- 4-> -3dbm
- 5-> -2dbm
- 6-> -1dbm
- 7-> +3dbm
- 8-> Odbm

"AT:ERP\r\n" means invalid command, query failed

4.3.13. Set Broadcast Parameter

Function: set broadcast parameter, min. interval/max interval/broadcast type/broadcast channel

Effective time: effect in next broadcast

Command:

"AT:ADP-"+parameters+<CR><LF>

Parameters: includes 13 character, min interval ->4 character, max interval ->4 character, broadcast type->1 character, broadcast channel ->1 character

Min interval: HighByte |... | LowByte, '0'~'9' means 0~9("100"-> decimal 100), unit: 0.625ms

Max interval: HighByte|...|LowByte, '0'~'9' means 0~9("1200"-> decimal 1200), unit: 0.625ms

Broadcast type: 0^{\prime} means 0^{\prime} , 0->public,1->random, only public type available temporarily

Broadcast channel: '1'~'7' means 1~7, the three bit in low order correspond each channel index. bit0->channel37, bit1->channel->38,bit2->channel39, the setting can be combined

Feedback:

"AT:OK\r\n" means command successful received

"AT:WRONG\r\n" means invalid parameter, change failed

"AT:ERP\r\n" means invalid command, change failed

4.3.14. Query Broadcast Parameter

Function: query broadcast parameter, min interval/ max interval/ broadcast type/broadcast channel

Effective time: immediately

Command:

"AT:ADP2"+<CR><LF>

Feedback:

"AT:ADP-"+parameters+<CR><LF>

Parameters: include 13 character, min interval ->4 character, max interval->4 character, broadcast type->1 character, broadcast channel ->1 character

Min interval: HighByte |... | LowByte, '0'~'9' means 0~9("100"-> decimal 100), unit: 0.625ms

Max interval: HighByte|...|LowByte, '0'~'9' means $0\sim9("1200"-> decimal 1200)$, unit: 0.625ms

Broadcast: '0'~'1' means 0~1, 0->public,1->random

Broadcast channel: $'1'\sim'7'$ means $1\sim7$, the three bit in low order correspond each channel index, bit0->channel37, bit1->channel->38,bit2->channel39, the setting can be combined.

"AT:ERP\r\n" means invalid command, query failed

4.3.15. Set User-define Broadcast Data

Function: set the user-define data in broadcast, the max data length is 11 bytes

Effective time: effective in next broadcast

Command:

"AT:ADV-"+ Data+<CR><LF>

Data: max length is 11 bytes, data format must follow Bluetooth regulation

Feedback:

"AT:OK\r\n" means command successful received

"AT:WRONG\r\n" means invalid parameter, change failed

"AT:ERP\r\n" means invalid command, change failed

4.3.16. Query User-define Broadcast Data

Function: query the data in user-define broadcast, max data length is 11 bytes

Effective time: immediately

Command:

"AT:ADV? "+<CR>LF>

Feedback:

"AT:ADV-"+data+<CR>LF> means command successful received and feedback data

Data: max length is 11 bytes, data format must follow Bluetooth regulation

"AT:ERP\r\n" means invalid command, change failed

4.3.17. Set Auto-broadcast Switch

Function: auto start broadcast when module power on and disconnection

Effective time: effective when disconnect

Command:

"AT: ADVAL-"+data+<CR><LF>

Data: '0'->disable, '1'-> means enable

Feedback:

"AT:OK\r

\n" means command successfully received

"AT:WRONG\r\n" means invalid parameter, command failed

"AT:ERP\r\n" means invalid command, command failed

4.3.18. Query Auto-broadcast Switch

Function: query the functions status of auto-broadcast

Effective time: immediately

Command:

"AT: ADVAL? "+<CR><LF>

Feedback:

"AT: ADVAL-"+status+<CR><LF> feedback current auto-broadcast switch function parameter

Status: each character indicate a status

'0'-> disable

'1'-> enable

"AT:WRONG\r\n" means invalid parameter, query failed

"AT:ERP\r\n" means invalid command, query failed

4.3.19. Start Broadcast

Function: device start broadcast

Effective time: do not execute if under broadcast status and connect status, execute immediately under other status

Command:

"AT:ADVSTART"+ <CR><LF>

Feedback:

"AT:OK\r\n" means command successfully received and start broadcast

"AT:ADVSTART-"+status+<CR><LF> means command successfully received, but status incorrect

Status: each character indicate a status

'0'-> CYBLE_CNN_INITIALIZING

'1'-> CYBLE_CNN_ADVERTISING

'2'-> CYBLE_CNN_CONNECTED

'3'-> CYBLE_CNN_DISCONNECTED

'4'-> CYBLE_CNN_STOPPED

'5'-> CYBLE_CNN_CONNECTING

"AT:ERP\r\n" means invalid command, command failed

4.3.20. Stop Broadcast

Function: stop broadcast

Effective time: execute immediately at broadcast status; do not execute if at other status

Command:

"AT:ADVSTOP"+ <CR><LF>

Feedback:

"AT:OK\r\n" means command successfully received and stop broadcast

"AT:ADVSTOP-"+status+ $\langle CR \rangle$ LF> means command successfully received, but status incorrect

Status: each character indicate a status

'O'-> CYBLE CNN INITIALIZING

'1'-> CYBLE_CNN_ADVERTISING

'2'-> CYBLE_CNN_CONNECTED

'3'-> CYBLE_CNN_DISCONNECTED

'4'-> CYBLE_CNN_STOPPED

'5'-> CYBLE_CNN_CONNECTING

"AT:ERP\r\n" means invalid command, command failed

4.3.21. Query Current BLE Subsystem Status

Function: query current device status

Effective time: immediately

Command:

"AT:CNN? "+<CR><LF>

Feedback:

"AT:CNN-"+status+<CR><LF> means query success

Status: each character indicate a status

'O'-> CYBLE_CNN_INITIALIZING

'1'-> CYBLE_CNN_ADVERTISING

'2'-> CYBLE_CNN_CONNECTED

'3'-> CYBLE_CNN_DISCONNECTED

'4'-> CYBLE_CNN_STOPPED

'5'-> CYBLE_CNN_CONNECTING

"AT:ERP\r\n" means invalid command, query failed

4.3.22. Disconnect

Function: device disconnect

Effective time: effective immediately if device at connect status; if at other status, do not execute command

Command:

"AT:CNN-D"+<CR><LF>

Feedback:

"AT:OK\r\n" means command received and executed

"AT:CNN-"+status+<CR>LF> means command received, but not executed because status incorrect

Status: each character indicate a status

'O'-> CYBLE_CNN_INITIALIZING

'1'-> CYBLE_CNN_ADVERTISING

'2'-> CYBLE_CNN_CONNECTED

'3'-> CYBLE_CNN_DISCONNECTED

'4'-> CYBLE_CNN_STOPPED

'5'-> CYBLE_CNN_CONNECTING

"AT:ERP\r\n" means invalid command, change failed

4.3.23. Set Device Verify Code

Function: change device verify code, all "0" means no verify code

Effective time: effective in next Bluetooth connection

Command:

"AT:PID-"+ Data+<CR><LF>

APP command no need <CR><LF>

Data:4 character means 1 hexadecimal data, '0'~'9','A'~'F' means 0~9, A~F ("12AD"-> hexadecimal 0x12AD)

Feedback:

"AT:OK\r\n" means command successfully received.

"AT:WRONG\r\n" means invalid parameter, change failed

"AT:ERP\r\n" means invalid command, change failed

APP command no need "\r\n"

4.3.24. Query Device Verify Code

Function: query device verify code parameter, all 'O' means no verify code

Effective time: immediately

Command:

"AT:PID? "+<CR><LF>

'?': means query command

APP command no need<CR><LF>

Feedback:

"AT:PID-"+ Data+<CR><LF>

APP Command no need < CR><LF>

Data:4 Character means 1 hexadecimal data, '0'~'9','A'~'F' means 0~9, A~F ("12AD"-> hexadecimal 0x12AD)

"AT:ERP\r\n" means invalid command, query failed

APP Command no need "\r\n"

4.3.25. Set UART Output Data Latency

Function: receive data from APP, then output low level in BCTS inform outside MCU, send data after the set latency time; during sending, BCTS keep low level until sending finished, set BCTS high level; AT command feedback data from UART is not effected by this

Effective time: immediately

"AT:CDL-"+X+<CR><LF>

X: 2 character means 1 byte, "10"-> decimal 10, unit ms, max 10ms

Feedback:

"AT:OK\r\n" means command successfully received

"AT:WRONG\r\n" means invalid parameter, change failed

"AT:ERP\r\n" means invalid command, change failed

In order to enable user CPU have enough time wake up from sleep and ready to receive, module provide a Latency (X) setting, set BCTS low level before sending data from UART, and the data latency between BCTS to module TX is set by the parameter. Module can assure min latency over "X", the actual latency is T = (X+Y) ms ,and 500us < Y < 1ms. The parameter can be save after power off.

Figure 9. Module UART Output Data Latency Set Map

4.3.26. Save Parameter

Function: save the changed parameter (the save will stop BLE function and other interrupt, after save, system will restore)

Effective time: immediately, save will stop BLE function and other interrupt, after save, system will restore

Command:

"AT:SAVE"+<CR><LF>

APP command no need <CR><LF>

Feedback:

"AT:OK\r\n" means command correct

"AT:ERP\r\n" means invalid command, command failed

APP Command no need "\r\n"

4.3.27. Module Restore

Function: module restore, system software restore

Effective time: stop BLE function, execute immediately

Command:

"AT:RST"+<CR><LF>

Feedback:

"AT:OK\r\n" means command successfully received

"AT:ERP\r\n" means invalid command, change failed

4.3.28. Set Module Operate Mode

function: stop BLE subsystem, force system enter Deepsleep, hibernate, stop mode,

Effective time: stop BLE function, immediately

Command:

"AT:SLEEP-"+command+<CR><LF>

Command: 1-> allow CPU system enter deep sleep, process via UART

2->force CPU enter Hibernate, BLE subsystem must stop, wake up through wake-up pin only

3->force CPU stop, BLE subsystem must stop , restore via wake-up pin and $\times \text{res}$ only

Feedback:

"AT:OK\r\n\0" means command success

"AT:WRONG\r\n" means invalid parameter, command failed

"AT:ERP\r\n" means invalid command, command failed

4.3.29. Reserved

4.3.30. Reserved

4.3.31. Reserved

4.3.32. Reserved

4.3.33. Module BLE subsystem Status Notification

Function: module provide MCU the current BLE subsystem status variation

Notify time: notify when status changed

Command:

```
"AT:CNN-"+status+<CR><LF>
```

Status: each character indicate one status

'O'-> CYBLE_CNN_INITIALIZING

'1'-> CYBLE_CNN_ADVERTISING

'2'-> CYBLE_CNN_CONNECTED

'3'-> CYBLE_CNN_DISCONNECTED

'4'-> CYBLE_CNN_STOPPED

'5'-> CYBLE_CNN_CONNECTING

4.3.34. Module CPU Status Notification

Function: module provide current CPU status to MCU

Notify time: notify when status changed

Command:

"AT:CPU-"+status+<CR><LF>

Status: each character indicate one status

'0'-> CPU power on

'1'-> CPU deep sleep

'2'-> CPU operate or sleep

'3'-> CPU Hibernate

'4'-> CPU stop

4.3.35. Restore Factory Setting via At Command

function: all changeable parameter restore to factory setting, include baud rate, device name, transmit power, user-define broadcast data, UART data latency data, verify code ,broadcast parameter, connect parameter

Effective time: immediately, system compulsory restore

Command:

"AT:RELD"+<CR><LF>

Feedback:

"AT:OK\r\n" means command success, system restore

"AT:ERP\r\n" means invalid command, restore failed

4.3.36. Enable Module Deep Sleep

Function: enable module CPU subsystem deep sleep, (BLE subsystem isolate operation), non deep sleep mode module can receive data via UART, under deep sleep module UART function is disabled

Effective time: immediately

Command:

PIN32->WAKEUP: high level ->CPU subsystem enter deep sleep , module UART don't receive data

PIN32->WAKEUP: low level-> CPU is not allowed to enter deep sleep, module UART able to 不允 receive data

Need to pay attention to actual level and data sending sequence, sending data must wait 50 us after set high level to low level, after sending finished, and must waiting another 50 us to set low level to high level

Figure 10. Module UART Receive Enable Signal Map

Feedback:

null

4.3.37. Restore Factory Setting via Hardware Method

Function: all changeable parameter restore to factory setting, include baud rate, device name, transmit power, user-define broadcast data, UART data latency data, verify code ,broadcast parameter, connect parameter

Effective time: immediately

Command:

PIN29->MANUFACTURE: pin pull up to power on or restore system, keep pin high level over 5 seconds after system started

Feedback:

"AT:RELOAD\r\n" means accept command to restore factory setting

4.3.38. **Reserved**

5. READ ELECTRICITY

5.1. Read Electricity Channel Configuration (temporarily unavailable)

HF-BL100-CU connect to APP, and verified with PID, then module can read electricity:

Service UUID: 0x180F

Characteristic UUID: 0x2A19

Prop: read

APP send data from "read" to HF-BL100-CU, and receive the feedback data from HF-BL100-CU immediately.

5.2. Electricity Data Description

Feedback electricity data is 1 byte, unit is 20mV; the data is the actual signal value , processed by APP

6. APPLICATION OTA

6.1. OTA Channel Configure

HF-BL100-CU connect to APP under "bootloader" mode:

Service UUID: 00060000-F8CE-11E4-ABF4-0002A5D5C51B

Characteristic UUID: 00060001-F8CE-11E4-ABF4-0002A5D5C51B

Prop: writewithresponse

6.2. OTA Data Description

Refer to the APP source code provided by Cyress

7. APP COMMAND

7.1. Channel and Data Description

- > APP command don't send in groups
- > Max data of one group command is 20 bytes
- > Data Channel: 0x2B13 send WriteWithResponse and receive notify

7.2. Data Format

- > Bye length (1 byte) + command type (1 byte) + command content (max 18 bytes)
- > APP-->MODULE

Table 11 Command Data from APP to Module

Byte length	Data[0]	1 byte	Include all byte of command type and command content
Command type	Data[1]	1 byte	0x0E: utmost 18 bytes in one group AT command 0x0F: send verify code
Command content	Data[2]~ data[19]	18 bytes	Details refer to command list (command type)

APP<--MODULE</p>

Table 12 Feedback Data from Module to APP

Byte length	Data[0]	1 byte	Including all bytes from command type and command content
Feedback type	Data[1]	1 byte	0x0E: max 18 bytes in one group AT command 0x0F: feedback verify result
Command content	Data[2]~ data[19]	18 bytes	Details refer to feedback list (feedback type)

7.3. Command Content

7.3.1. Command Type: 0x0E

Command:

Function: data write in the form of $0\times2B13$ writewithresponse , verify code command refer to AT command 4.3.23 &4.3.24, query version command refer to AT command 4.3.10

Feedback:

Channel: feedback data from 0x2B13 notify

Data content:

verify code command refer to AT command 4.3.23 & 4.3.24, query version command refer to AT command 4.3.10

7.3.2. Command Type: 0x0F

Command:

Function: send verify code from APP to module, if no verification after connection, module will not execute any other command from APP, if module self verification is null or "0000", then verify code is no needed.

Verify code have time limit, if no verification within 10 seconds, module will disconnect with APP

Command Content:

Table 13 Command Type 0x0F command list

Byte length	Data[O]	1 byte	1~19	Include all bytes from command type and command content
Command type	Data[1]	1 byte	0x0F	Verify code command
Comman d	Data[2]~data[19]	18 bytes	Data[2]~data[19]	Command content

Feedback:

Channel: feedback data from 0x2B13 notify

Data Content:

Table 14 Command Type 0x0F Feedback List

Byte length	Data[0]	1 byte	2	Include all bytes from command type and command content
command type	Data[1]	1 byte	0x0F	Verified and feedback
Command content	Data[2]	1 byte	Data[2]	Verification feedback 0x00: success 0x01:failed 0x02: no verify code

8. BASIC COMMUNICATION MECHANISIM

8.1. Application Service Data Channel (user-define application service

UUID: 0x2B00)

Table 15 Description of User-define Service of All Channnel

UUID	Channel attribute	function
0x2B10	Notify/WriteWithResponse	APP send enable command to module via this notify channel
		Under notify enable status, module send data to APP via notify channel
0×2B11	Read/WriteWithoutRespons	APP send data to module
0x2B12	WriteWithResponse	APP send OTA mode switch command
0x2B13	Notify/WriteWithResponse	APP command

8.1.1. Module->APP, UART Data Channel [feature UUID:0x2B10]

Table 16 Ox2B10 feature UART Module->APP Channel Description

UUID	Executable operation	Bytes	Default value	Remark
0×2B10	Notify/WriteWithResp onse	20	Null	Module receive data from UART RX, and notify APP via notify channel

Remark: data input from UART and output to Bluetooth. If turn on notify enable switch, outside MCU will send data to module RX via UART, and create a notify event in the channel, APP can directly process in the callback function.

8.1.2. APP->Module, UART Data Channel [feature UUID:0x2B11]

Table 17 Ox2B11 Feature UART APP->Module Channel Description

Feature value	Executable operation	Byte	Default value	remark
0×2B11	Read/WriteWitho utResponse	20	null	APP write data to module via "write" channel, module output data via UART

Description: input from Bluetooth and output via UART. APP write data via "Write" channel, the data will output via UART TX.

8.1.3. APP->Module, OTA Mode Switch [Feature UUID:0x2B12]

Table 18 Ox2B12 Feature OTA Mode Switch Channel Description

Feature value	Executable operation	Byte	Default value	remark
0×2B12	WriteWit houtRespo nse	20	Null	Mode switch: switch from application mode to OTA status, command data is: "bootloader"

8.1.4. APP->Module, APP Command Channel [Feature UUID:0x2B13]

Table 19 Ox2B13 Feature APP Command Channel Description

Feature value	Executable operation	Byte	Default value	remark
0×2B13	Notify/W riteWithR esponse	20	null	APP command, details refer to AT command: 4.3.9 4.3.10 4.3.23 4.3.24
				Note: APP do not need to add the "AT:" prefix for AT comamnd

8.2. Battery Service Data Channel

Battery service UUID: 0x180F

Table 20 Description of Battery Service of All Channel

UUID	Channel attribute	function
0×2 <i>A</i> 19	read	Read electricity

8.2.1. APP->Module, Battery Data Channel [Feature UUID:0x2A19]

Table 21 0x2A19 Feature Battery Power Channel Feature Description

Feature value	Executable operation	byte	Default value	remark
0x2A19	Read	1	null	Unit is 20mV

8.3. OTA Service Data Channel

OTA service UUID: 00060000-F8CE-11E4-ABF4-0002A5D5C51B

Table 22 Description of OTA Service of All Channel

UUID	Channel arritbute	function
00060001-F8CE-11E4-ABF4- 0002A5D5C51B	WriteWithResponse	OTA data transmit

8.3.1. APP->Module, OTA Data Channel

Table 23 Feature OTA Data Channel Feature Description

Feature value UUID	Executable operation	byte	Default value	remark
00060001-F8 <i>C</i> E- 11E4- <i>A</i> BF4- 0002 <i>A</i> 5D5 <i>C</i> 51B	WriteWith Response	20	null	OTA data under "bootloader" mode, OTA mode receive program data and cover FLASH relative area

9. TEST

9.1. Test Transparent Transmit Function

After open "lightblue", it will auto scan and list the devices around (if phone disabled the Bluetooth, there will be indication of open Bluetooth), click the device name and connect. Then switch to control main interface after connection. Click the channel with notify feature, and press "Listen for notification" to receive data from module.

Figure 11. APP Scan & Connect Interface

Next is data packet sending test. For example, send data "123456789" via UART, phone will receive the sending data ,as below photo shows:

Shanghai High Flying Electronics Technology Co., Ltd www.hi-flying.com

Figure 12. APP Receive Notify Interface

Next is data packet receive test. For examples, App sending data "123456789", UART port receive the sending data, as below photo shows:

Figure 13. MCU Receive write Data Interface

9.2. Test Battery Electricity Read

9.2.1. Electricity Read Command

Send read command

9.2.2. Electricity Display

Receive the feedback data and displayed in "read" display area, the data is 1 bytes , Hexadecimal unit is 20mv

9.3. OTA Function Test

9.3.1. Get Module firmware Version

Send app command from 0x2B13 to query firmware version. Type is 0x0E, refer to AT command 4.3.10. Now Cysmart AOO do not check if module have new update

9.3.2. Switch to OTA Mode

Send "bootloader" from $0\times2B12$, module enter into OTA mode. Restart the module before launch OTA, module will enter application mode; if already launched OTA, but offline or power off without finish the OTA, module will stay at OTA mode

9.3.3. OTA

Choose the firmware file for OTA, start update until finished; if offline in halfway, module 选择 will stay in "bootloader" mode, user can restart OTA

Use cysmart to test OTA function

10. PACKAGE INFORMATION

10.1. Reflow Soldering Profile

Figure 14. Reflow Soldering Profile

Table 24 Reflow Soldering Specification

Number	Item	Temp (°C)	Time(s)
1	Reflow time	220 °C above	35~55 s
2	Peak temp	Max 260 ℃	

Remark: 1. Recommend to supply N2 for reflow oven

2. O2 content lower than 300ppm;

10.2. Handling Instruction

- 1. Shelf life in sealed bag: 12 months at $<30^{\circ}$ C, <60% humidity.
- After bag opened, device need to be re-baked if window time over 168 hours
- 3. Recommended to over bake with N2 supplied
- 4. Recommended to reflow oven with N2 supplied
- 5. Bake required with 24 hours at 125+-5 $^{\circ}$ C,
- 6. Recommended to store at $\leq 10\%$ RH with vacuum packing
- 7. If SMT process needs twice reflow
 - (1) TOP side (2) BOT side

Case 1: BLE module mounted on PCB TOP, need to bake TOP side after BOT side processed 168 hours (window time)

Case 2: BLE module mounted on PCB BOT side ,follow normal bake rule.

Remark: window time means it is been 168 hours since last bake to next flow.

10.3. Shipping Information

Tape& reel Size:TBD mm

Carton

size: TBD mm (inside)

Figure 15. Package Information

APPENDIX A: UART TRANSPARENT TRANSMIT TYPICAL APPLICATION

Figure 16. UART Transparent Transmit Typical Application

XRES-----module reset signal, input, low level valid

There is a pull-up resistor to VBAT, no need external pull up resistor. When module power on or failure, MCU will reset the module, pull down at least 10 ms then pull-up.

BCTS----- Module UART output notify signal, output (wakeup external MCU, remind MCU there is data output)

Module will pull down BCTS, and delay Xms before output data; X set by external MCU via At command, in default there is no latency. After sending data, BCTS pull-up, if there is new data sending BCTS will pull-up after sending all the new data. \cdot

WAKEUP----- UART wakeup enable, Stop Mode Wakeup, (recommend to add external Pull-up resistor)

Pin Mode: WAKEUP pin is high resistor input. Can't be suspended, can be controller by pull-up or pull down or external MCU

UART Wakeup Enable: when WAKEUP is pull-up, all system enter into DEEPSLEEP; when WAKEUP is pull-down, system enter into SLEEP mode. When sending data from external MCU to

Shanghai High Flying Electronics Technology Co., Ltd www.hi-flying.com

module, need to pull-down WAKEUP pin, after sending finished, pull-up WAKEUP to lower the power.

There must be a latency from WAKEUP pull-down to MCU sending data, the time is no less \pm 6 than 2ms.

Stop Mode Wakeup: WAKEUP pull-down, AT command send out Stop command, when system enter into STOP mode, can be wakeup through pull-up WAKEUP.

UART_TX/RX-----UART data send/receive signal.

Manufacture (RELD) -----restore factory setting via hardware method: keep high level at least 5 second when power on or restore

APPENDIX B: MODULE SCHEMATIC

Figure 17. HF-BL100-CU Module Schematic (-)

Figure 18. HF-BL100-CU EVK TOP VIEW (\Box)

Figure 19. HF-BL100-CU EVK BOTTOM VIEW (三)

APPENDIX C: EVK SCHEMATIC

Figure 20. EVK Power and USB to UART Circuit (-)

Figure 21. EVK Interface Circuit (二)

Figure 22. EVK Interface Circuit (\equiv)

APPENDIX D: CONTACT INFORMATION
Address: Room 1002 ,#1Building,No.3000 Longdong Avenue, Pudong District, Shanghai, China
Post Code: 201203
Web: www.hi-flying.com
Online consult: 400-189-3108
Email: sales@hi-flying.com
For more information ,please visit http://www.hi-flying.com/

Federal Communication Commission Statement (FCC, U.S.)

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

 This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC Caution:

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

IMPORTANT NOTES

Co-location warning:

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

OEM integration instructions:

This device is intended only for OEM integrators under the following conditions:

The transmitter module may not be co-located with any other transmitter or antenna. The module shall be only used with the external antenna(s) that has been originally tested and certified with this module.

As long as the conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

Validity of using the module certification:

In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization for this module in combination with the host equipment is no longer considered valid and the FCC ID of the module cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

End product labeling:

The final end product must be labeled in a visible area with the following:

"Contains Transmitter Module FCC ID: 2ACSVHF-BL100-CU".

Information that must be placed in the end user manual:

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

© Copyright High-Flying, May, 2011

The information disclosed herein is proprietary to High-Flying and is not to be used by or disclosed to unauthorized persons without the written consent of High-Flying. The recipient of this document shall respect the security status of the information.

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at High-Flying. Viewing of the master document electronically on electronic database ensures access to the current issue. Any other copies must be regarded as uncontrolled copies.