Informática Gráfica Tema 3. Visualización de Objetos.

Domingo Martín

Dpto. Lenguajes y Sistemas Informáticos ETSI Informática y de Telecomunicación Universidad de Granada

Curso 2013-14

Índice

Informática Gráfica Tema 3. Visualización de Objetos.

- 1 Cámara: proyección
- 2 Cámara: transformación de vista
- 3 Iluminación
- 4 Texturas

- Una vez hemos visto como crear los objetos pasamos a estudiar al observador o cámara virtual
- Podemos obviar la iluminación por el momento porque los objetos se comportan como si emitieran luz.
- ► La función de la cámara es capturar la luz reflejado por la escena 3D y convertirla en información 2D ya que la mayoría de los elementos de representación son bidimensionales
- ▶ ¿Cómo se pasa de 3D a 2D?

Solución \rightarrow Proyección

- ► Además la cámara debe poder colocarse en cualquier posición para observar la escena
- ▶ Debemos hacer incapié en la relatividad del posicionamiento:
 - ► Cámara fija
 - ► Colocar y orientar los objetos
 - Disparar
 - Revelar y obtener el positivo, indicando el tamaño y forma del resultado final
 - ► Escena fija
 - ► Colocar y orientar la cámara
 - Disparar
 - Revelar y obtener el positivo, indicando el tamaño y forma del resultado final
- ► El resultado es el mismo
- ► Las transformaciones se aplican en orden inverso con los valores opuestos

- ► Elementos de la proyección
 - Centro de proyección
 - \blacktriangleright Punto en el que convergen todos los proyectores
 - Plano de proyección
 - Plano intersectado por los proyectores
 - ► Proyector
 - ▶ Recta que une el punto a proyectar con el centro de proyección

- ▶ 3D \rightarrow 2D
- ► Imagen=Proyector ∩ Plano de proyección
- ▶ 2 tipos
 - ▶ Paralela
 - Centro de proyección en el infinito
 - ► Perpectiva
 - Centro de proyección en una posición finita

- ► Centro de proyección local
- Si el plano de proyección corta
 - ▶ 1 eje: 1 punto de fuga
 - ▶ 2 ejes: 2 puntos de fuga
 - ▶ 3 ejes: 3 puntos de fuga
- ▶ Un punto de fuga es el punto donde convergen 2 líneas paralelas

Cálculo por semejanza de triángulos

$$\frac{y'}{d} = \frac{y}{z+d} \rightarrow y' = \frac{y \times d}{z+d} \rightarrow y' = y \times \left(\frac{1}{\frac{z}{d}+1}\right)$$

► Cálculo por ecuaciones paramétricas

$$x' = x - x \times u \qquad y' = y - y \times u \quad z' = z - (z + d) \times u \quad \text{con } 0 \le u \le 1$$

Proyección
$$z=0$$
 \rightarrow $z'=0$ \rightarrow $u=\frac{z}{(z+d)}$

$$x' = x \times \frac{d}{(z+d)}$$
 $y' = y \times \frac{d}{(z+d)}$

- ► Se puede escribir en forma matricial
- ► Aprovechar el paso de 4D a 3D (divididir por w)

$$(x,y,z,w) \rightarrow (\frac{x}{w},\frac{y}{w},0,1) = (\frac{x}{(\frac{z}{d}+1)},\frac{y}{(\frac{z}{d}+1)},0,1)$$

$$\blacktriangleright w = \frac{z}{d} + 1$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{d} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

► Acortamiento perspectivo

▶ Puntos de fuga

► Confusión de vista

► Distorsión topológica

- ► Se utiliza nomenclatura PHIGS
- ► Parámetros:
 - ► Centro de proyección
 - ▶ Planos de corte
 - ► Ventana
- ► Estos parámetros permiten definir el volumen de visión

- ► Centro de proyección
 - ► Es el punto al que convergen los proyectores
 - Se define mediante un punto en coordenadas de vista, denominado Punto de Referencia de Proyección (Projection Reference Point, P.R.P.)
 Ésto permite no cambiar los planos de corte cuando cambia el
 - Esto permite no cambiar los planos de corte cuando cambia el observador
 - Proyección de perspectiva: el PRP define el CP.
 - Proyección paralela: El vector PRP-VRP definen la dirección de los proyectores

► Centro de proyección (paralela)

► Centro de proyección (perspectiva)

- ▶ Planos de corte
 - Se definen los planos de corte delantero y trasero, PD y PT (Front Plane y Back Plane)
 - ► El Plano Delantero evita la distorsión topológica
 - ► El Plano Delantero está delante del PRP (en P. de perspectiva)
 - ► El Plano Trasero evita transformar información no representativa
 - ▶ El Plano Trasero no puede estar delante del Plano Delantero

▶ Planos de corte

- ▶ Ventana
 - ▶ Delimita la información visible una vez se realiza la proyección
 - ► Es una zona rectangular definida en el plano de proyección (extremo inferior izquierdo, extremo superior derecho)
 - ▶ Junto con el CP forma 4 planos de corte

► Ventana

- Volumen de visión
 - P. Parelela: paralelepípedo
 - ▶ P. Perspectiva: pirámide truncada llamada "frustum"
 - ▶ Toda la información se recorta con respecto al volumen de visión
 - El volumen de visión se normaliza convirtiéndolo en un cubo unidad

▶ Volumen de visión (paralela)

▶ Volumen de visión (perspectiva)

Otros tipos de proyección

► Anamorfosis

Otros tipos de proyección

► Anamorfosis

- ► Es necesario poder observar la escena desde cualquier posición
- ▶ Hasta ahora ha estado en el origen (P.P.: z = 0)
- ► Solución:
 - Definir un nuevo sistema de coordenas: Sistema de Coordenadas de Vista
 - ▶ Se sigue la nomenclatura de PHIGS
 - ► Transformar la coordenadas de cada objeto desde el S.C. de Mundo al S.C. de Vista → Transformación de Vista
 - ► Alinear un sistema de coordenadas con el otro

- ▶ Definir el Sistema de Coordenadas de Vista
 - Parámetros necesarios para definir al observador:
 - Posición
 - ► Hacia donde se mira
 - Orientación hacia arriba
- ▶ Transformación de Vista
 - Traslación
 - ► Rotación en el eje X
 - ► Rotación en el eje Y
 - ▶ Rotación en el eje Z

- ▶ ¿Por qué es necesario un cambio de sistema de coordenadas?
- Porque el observador está en un sistema y los objetos observados en otro

- Posición
 - Es el lugar donde se coloca el observador
 - ► Es un punto dado en coordenadas de mundo
 - ► Representa el origen del S.C. de Vista
 - ► Normalmente el plano de proyección pasa por él.
 - Se denomina Punto de Referencia de Vista (View Reference Point, V.R.P.)

▶ Posición

- ► Hacia donde se mira
 - ▶ Es un vector dado en coordenadas de mundo
 - ► Define la normal del plano de proyección
 - Se denomina Normal del Plano de Vista(View Plane Normal, V.P.N.)
 - ► El sentido es opuesto hacia donde se mira

► Hacia donde se mira

- ▶ Orientación hacia arriba
 - ▶ Es un vector dado en coordenadas de mundo
 - ▶ Define el sentido hacia arriba
 - Se denomina Vector Arriba de Vista (View Up Vector, V.U.V. o V.UP)
 - No puede ser paralelo al VPN

▶ Orientación hacia arriba

▶ Efecto del VUP

- ▶ ¿Cómo se obtiene el S.C. de Vista?
 - 1 El VRP es el origen del sistema
 - 2 El VPN es el eje Z del S.C. de Vista, llamado \vec{n}
 - 3 El eje X del S.C. de Vista, llamado \vec{u} , se calcula como: $\vec{u} = V\vec{U}P \otimes V\vec{P}N$ siendo \otimes =producto vectorial
 - 4 El eje Y del S.C. de Vista, llamado v, se calcula como: $\vec{v} = V \vec{P} N \otimes \vec{u}$

ightharpoonup El VRP es el origen del sistema

▶ El VPN es el eje Z del S.C. de Vista

 \blacktriangleright El eje X del S.C. de Vista, llamado $\vec{u},$ se calcula como: $\vec{u} = V \vec{U} P \otimes V \vec{P} N$

 \blacktriangleright El eje Y del S.C. de Vista, llamado v, se calcula como: $\vec{v} = V \vec{P} N \otimes \vec{u}$

► Traslación

 \blacktriangleright Rotación con respecto al eje X

▶ Rotación con respecto al eje y

▶ Rotación con respecto al eje z

► Resultado

Iluminación

- ▶ Para que un modelo parezca realista debe reproducirse el efecto de la reflexión de la luz sobre la superficie del objeto
- ► Se necesita:
 - ▶ Un modelo de reflexión
 - ▶ Definir las características de la fuente o fuentes de luz
 - ▶ Definir las características del material del objeto
 - Conocer la orientación de la superficie del objeto
 - ► La posición del observador

Modelo de reflexión

- ▶ Se basa en un modelo sencillo que intenta representar las distintas componentes que conforman la reflexión
- ► Es un modelo local: no hay interacciones entre objetos
- ▶ Tiene 3 componentes $R = R_{amb} + R_{dif} + R_{esp}$:
 - ▶ Reflexión difusa
 - ▶ Se produce en objetos con superficie no pulidas
 - La luz se refleja en todas direcciones
 - No depende del observador
 - ► Reflexión especular
 - ► Se produce en objetos con superficie pulidas
 - ▶ Depende del observador
 - Reflexión ambiental
 - Evita los objetos negros si no le llega luz
 - Modela las interreflexiones

Reflexión difusa

- ▶ Depende del ángulo que forman la normal y la posición de la luz
- $R_{dif} = I_{dif} \times K_{dif} \times \cos(\alpha)$
- ► Si el vector Normal \vec{N} y el vector de la luz \vec{L} están normalizados: $\cos(\alpha) = \vec{N} \cdot \vec{L}$ con · siendo el producto escalar
- $R_{dif} = K_{dif} \times \vec{N} \cdot \vec{L}$
- \blacktriangleright K_{dif} es la constante de reflectividad difusa del material
- $\blacktriangleright\ I_{dif}$ es la componente difusa de la luz

Reflexión difusa

Reflexión especular

- Depende del ángulo que forman la luz reflejada y la posición del observador
- $R_{esp} = I_{esp} \times K_{esp} \times \cos(\varphi)^n$
- ▶ Si el vector de luz reflejada \vec{R} y el vector del observador \vec{O} están normalizados: $\cos(\varphi) = \vec{R} \cdot \vec{O}$
- $R_{dif} = K_{dif} \times \vec{R} \cdot \vec{O}$
- $ightharpoonup K_{dif}$ es la constante de reflectividad difusa del material
- ightharpoonup es la componente especular de la luz
- \blacktriangleright n modela el que el objeto sea más o menos brillante ya que hace que el coseno sea más o menos ancho

Reflexión especular

Reflexión ambiental

- ▶ Si hay una parte del objeto visible pero no iluminada aparece negra → no es realista
- ► Se producen interreflexiones entre los objetos
- ▶ Dado que es un modelo local, se representa mediante una constante: $R_{amb} = I_{amb} \times k_{m-amb} \times K_{amb}$
- \triangleright k_{m} amb es la constante ambiental del modelo
- ► K_{amh} constante de reflectividad ambiental del material
- $ightharpoonup I_{amb}$ es la componente ambiental de la luz

Características de la fuente de luz

- ► Posición
- ► Color
- ► Cono de luz
- ▶ Dirección del cono de luz
- ► Factor de atenuación
- ▶ ..

Cálculo de la normal de un triángulo

- ▶ Se calcula el producto vectorial de los dos vectores que se forman
- ▶ Dados los puntos P_0, P_1 y P_2
- ► Calcular los vectores $\vec{A} = P_1 P_0$ y $\vec{B} = P_2 P_0$
- $ightharpoonup ec{N} = ec{A} \otimes ec{B} \quad ext{con } \otimes ext{ siendo el producto vectorial}$
- ightharpoonup Hay que normalizar lo para facilitar los cálculos $\vec{N}=rac{\vec{N}}{|\vec{N}|}$

Cálculo de la normal de un punto

- ▶ Se calcula como la media de las normales
- \blacktriangleright Dadas los normales de las caras que confluyen en el punt
to $\vec{N_0}, \vec{N_1}, ..., \vec{N_n}$

$$\vec{N} = \frac{\sum_{i=0}^{n} \vec{N}_i}{n}$$

 \blacktriangleright Hay que normalizar lo para facilitar los cálculos $\vec{N} = \frac{\vec{N}}{|\vec{N}|}$

Introducción

- ▶ Modelar todos los detalles con geometría puede ser muy costoso
- \blacktriangleright Solución \to Usar una geometría simplificada y "pegarle" una imagen (textura)
- ► Hay que relacionar posiciones en el espacio 3D con posiciones en el espacio 2D
- La imagen se define en un espacio paramétrico u,v, con límites entre 0 y 1 (normalización)
- f(u,v) = f(x,y,z)
- ▶ Imagen (discreta) \rightarrow Espacio u,v (continuo) \rightarrow Coordenadas de mundo (continuo) \rightarrow Coordenadas de dispositivo (discreto)
- ► Hay que tener en cuenta la posición de la cámara y la deformación de perspectiva
- Proceso costoso

Espacio paramétrico

Función de relación

Función de relación

Ajustes

- ➤ Sin tener en cuenta las deformaciones, hay que considerar los casos en los que la imagen se corresponde con más píxeles y con menos
- ► Solución:
 - ► Interpolación
 - ► Mip-mapping

Interpolación

Mip-mapping

- Para ajustar la textura a la geometría se recurre a las coordenadas de textura
- ► A cada vértice se le hacen corresponder las coordenadas deseadas de la textura
- ► Este proceso puede ser:
 - Manual: para casos muy sencillos
 - ► Asistido: para casos muy complejos (mapas y atlas de texturas)
 - Automático: para figuras muy sencillas o donde no importan las deformaciones

► Asistido

Figura: (blender.org©)

► Asistido

Figura: (Steve Fabok©; http://vimeo.com/16790123)

► Automático

Figura: (blender.org©)