1.	Dadas las expresiones: [True, []] True: [] [True]: [] [[True], []] © Exactamente una de las expresiones está mal tipada © Exactamente dos de las expresiones están mal tipadas © Las dos anteriores son falsas.
2.	Sean las cuatro expresiones: [True:[]] []:[True] [True]:[] [[True],[]] ○ Dos de ellas están mal tipadas ⊗ Dos de ellas son sintácticmente equivalentes y una está mal tipada ○ Las dos anteriores son falsas.
	Nota: en las preguntas siguientes, sobre sintaxis de listas, suponemos que los numerales 1,2, tienen un tipo concreto, por ejemplo Int.
3.	Dadas las expresiones: 0:[1] 0:[1]:[2] 0:[1,2] [0,1]:[[2]] ([]:[],2) ⊗ Exactamente una de las expresiones está mal tipada ○ Exactamente dos de las expresiones están mal tipadas ○ Las dos anteriores son falsas.
4.	Dadas las expresiones: []:[1] [1:[2]]:[] [1:[2]]:[[]] [1,1]:(2:[]) (1:[]):[] ○ Exactamente tres de las expresiones están mal tipadas ⊗ Exactamente dos de las expresiones están mal tipadas ○ Las dos anteriores son falsas.
5.	Dadas las expresiones: 0:[1] 0:[1]:[2] 0:[1,2] [0,1]:[2] (1:[]):[] ○ Exactamente tres de las expresiones están mal tipadas ⊗ Exactamente dos de las expresiones están mal tipadas ○ Las dos anteriores son falsas.
6.	Dadas las expresiones: [1]:[] [[]]:[] (1:2):[] 1:(2:[]) © Exactamente una de ellas está mal tipada © Exactamente dos de ellas están mal tipadas © Las dos anteriores son falsas.
7.	Dadas las expresiones: [0]:[1] []:[[]]:[] [0]:[[]]:[] [0]:[1,2]] ([[]]:[],[1]) Comparison
8.	Dadas las expresiones: [1]:[] [1]:[[]]:[2] [1]:[[[]]] 0:1:2 (0:[1],2) Comparison
9.	¿Cuál de las siguientes expresiones es sintácticamente equivalente a [[[0],[],[2,2]]]? ⊗ ((0:[]):[[],2:2:[]]):[] ○ [0]:[]:[2,2]:[]:[] ○ Ninguna de las anteriores, porque de hecho la expresión está mal tipada

10.	¿Cuál de las siguientes expresiones es sintácticamente equivalente a [[1,[]],[3,4]]? ○ ((1:[]):[[],3:4:[]]):[] ○ [1]:[]:[3,4]:[]:[] ⊗ Ninguna de las anteriores, porque de hecho la expresión está mal tipada
11.	¿Cuál de las siguientes expresiones es sintácticamente equivalente a [[3,4],[]]? ○ 3:4:([],[]) ○ (3:4:[]):[]:[] ○ Ninguna de las anteriores, porque de hecho la expresión está mal tipada
12.	¿Cuál de las siguientes expresiones es sintácticamente equivalente a (1:[]):(1:2:[]):[]?
13.	¿Cúantas de las siguientes expresiones son sintácticamente equivalentes a [[1,2],[]]? [1:2:[]] 1:2:[[]] [1,2]:[[]] [1:[2],[]] Exactamente dos Exactamente tres Exactamente cuatro
14.	Considérense las expresiones [[1],[2]] [1]:[[2]]:[] [1]:[2]] [1]:[2,[]] [1,2]:[] ¿Cuál de las siguientes afirmaciones es cierta? ○ La primera, la tercera y al menos otra más son sintácticamente equivalentes entre sí ○ La segunda, la cuarta y al menos otra más son sintácticamente equivalentes entre sí ○ Las dos anteriores son falsas.
15.	Considérense las expresiones [[1,2]] ([1]:[2]):[] (1:[2]):[] [1,2]:[] [1]:[2]:[] ¿Cuál de las siguientes afirmaciones es cierta? ⊗ La primera, la tercera y al menos otra más son sintácticamente equivalentes entre sí ○ La segunda, la cuarta y al menos otra más son sintácticamente equivalentes entre sí ○ Las dos anteriores son falsas.
16.	¿Cúantas de las siguientes expresiones son sintácticamente equivalentes a [[1,2],[1]]? [1:2:[],1:[]] [1:[2],[1]] [1,2]:[1]:[] (1:2:[]):[[1]] Exactamente dos Exactamente tres Exactamente cuatro
17.	Considérense las expresiones (solo difieren en los paréntesis): $e_1 = (f((x y) y)) (f 0)$ $e_2 = f(x y y) (f 0)$ $e_3 = f(x y y) f 0$
	$\bigcirc e_1 \equiv e_2 \equiv e_3$ $\bigcirc e_1 \not\equiv e_2 \equiv e_3$ $\bigotimes e_1 \equiv e_2 \not\equiv e_3$

18. Considérense las expresiones (que solo difieren en los paréntesis): $e_1 = f$ (f x (y^2)) y

$$e_1 = f (f x (y^2)) y$$

 $e_2 = f ((f x) ((^) y 2)) y$
 $e_3 = f (f x (y^) 2) y$

$$\bigcirc e_1 \equiv e_2 \equiv e_3$$

$$\bigotimes e_1 \equiv e_2 \not\equiv e_3$$

$$\bigcirc$$
 $e_1 \not\equiv e_2 \not\equiv e_3$

19. Considérense las expresiones (solo difieren en los paréntesis):

$$e_1 = f (z (y x)) ((z 0) x)$$

$$e_2 = (f (z (y x))) (z 0 x)$$

 $e_3 = f z (y x) (z 0 x)$ Entonces:

$$\bigcirc e_1 \equiv e_2 \equiv e_3$$

$$\bigotimes e_1 \equiv e_2 \not\equiv e_3$$

$$\bigcirc$$
 $e_1 \not\equiv e_2 \not\equiv e_3 \not\equiv e_1$

20. Considérense las expresiones (que solo difieren en los paréntesis): $e_1 = f x (g x, y/2)$

$$e_1 = 1 \times (g \times, y/2)$$

 $e_2 = f \times (g \times) (y/2)$
 $e_3 = (f \times) (g \times, (/y) 2)$

$$\bigcirc e_1 \equiv e_2 \equiv e_3$$

$$\bigotimes e_1 \not\equiv e_2 \not\equiv e_3 \not\equiv e_1$$

$$\bigcirc$$
 $e_1 \equiv e_3 \not\equiv e_2$

21. Considérense las expresiones (que solo difieren en los paréntesis):

$$e_1 = f x (g (x+1) y)$$

 $e_2 = (f x) (g (((+) x) 1) y)$
 $e_3 = (f x) (g (x+1)) y$

$$\bigotimes e_1 \equiv e_2 \not\equiv e_3$$

$$\bigcirc e_1 \not\equiv e_2 \equiv e_3$$

$$\bigcirc e_1 \equiv e_2 \equiv e_3$$

22. Considérense las expresiones (que solo difieren en los paréntesis): $e_1 = f \times (g \times y+1)$

$$e_1 = f x (g x,y+1)$$

 $e_2 = f x (g x) (y+1)$
 $e_3 = (f x) (g x,(+) y 1)$

$$\bigcirc$$
 $e_1 \equiv e_2 \equiv e_3$

$$\bigcirc e_1 \not\equiv e_2 \not\equiv e_3$$

$$\bigotimes e_1 \equiv e_3 \not\equiv e_2$$

23. Considérense las expresiones (que solo difieren en los paréntesis): $e_1 = f x g (x+1) y$

$$e_1 = f x g (x+1) y$$

 $e_2 = (f x) (g (x+1) y)$
 $e_3 = (f x) g ((+) x 1) y$

$$\bigcirc e_1 \equiv e_2 \not\equiv e_3$$

$$\bigotimes e_1 \equiv e_3 \not\equiv e_2$$

O Las dos anteriores son falsas.

24. Considérense las expresiones (que solo difieren en los paréntesis): $e_1 = f \times 1 (x + y)$

$$e_1 = 1 \times 1 \times 4 \times 4$$

 $e_2 = (f \times 1) \times 4 \times 4 \times 4$
 $e_3 = f \times 1 \times 4 \times 4 \times 4$

$$\bigcirc$$
 $e_1 \not\equiv e_2 \not\equiv e_3 \not\equiv e_1$

```
\bigcirc e_1 \equiv e_3 \not\equiv e_2\bigotimes e_1 \equiv e_2 \equiv e_3
```

25. Suponiendo la declaración infixr 9!, considérense las expresiones (que solo difieren en los paréntesis):

```
\begin{array}{l} e_1 = ((! \ \ g) \ \ f) \ \ ! \ \ \ ((h \ !) \ \ i) \ \ ! \ \ j \\ e_2 = ((!) \ \ (f \ ! \ \ g)) \ \ ((h \ ! \ \ i) \ ! \ \ j) \\ e_3 = (!) \ \ \ ((!) \ \ f \ g) \ \ ((!) \ \ \ ((!) \ \ h \ i) \ j) \\ \bigotimes \ e_1 \equiv e_2 \equiv e_3 \\ \bigcirc \ \ e_1 \equiv e_2 \not\equiv e_3 \end{array}
```

26. Considérense las expresiones: $e_1 = f \times (y-1):z$

```
e_2 = ((:) f) x ((-) y 1) z

e_3 = (: z) ((f x) ((-) y 1))
```

 \bigcirc $e_1 \equiv e_2 \equiv e_3$

 $\bigcirc e_1 \not\equiv e_2 \equiv e_3$

- $\bigcirc e_1 \not\equiv e_2 \not\equiv e_3 \not\equiv e_1$
- $\bigotimes e_1 \equiv e_3 \not\equiv e_2$

27. Considérense las expresiones (que solo difieren en los paréntesis): $e_1 = f$ ((g x) (x y)) x

$$e_2 = f (g x) (x y) x$$

 $e_3 = (f (g x (x y))) x$

- $\bigcirc e_1 \equiv e_2 \not\equiv e_3$
- $\bigotimes e_1 \equiv e_3 \not\equiv e_2$
- \bigcirc $e_1 \equiv e_2 \equiv e_3$

28. Considérense las expresiones (que solo difieren en los paréntesis): $e_1 = f x y + z 4$

$$e_2 = f x ((+) y (z 4))$$

 $e_3 = (+) ((f x) y) (z 4)$

- $\bigcirc e_1 \not\equiv e_2 \not\equiv e_3 \not\equiv e_1$
- $\bigcirc e_1 \equiv e_2 \equiv e_3$
- $\bigotimes e_1 \equiv e_3 \not\equiv e_2$

29. Considérense las expresiones (que solo difieren en los paréntesis): $e_1 = f x + g z 4$

$$e_1 = 1 \text{ x} \cdot \text{g} \cdot \text{g} \cdot \text{g}$$

 $e_2 = \text{f} \cdot \text{x} \cdot ((+) \cdot \text{g} \cdot (\text{z} \cdot 4))$
 $e_3 = (+) \cdot (\text{f} \cdot \text{x} \cdot (\text{g} \cdot \text{z} \cdot 4))$

- $\bigotimes e_1 \not\equiv e_2 \not\equiv e_3 \not\equiv e_1$
- \bigcirc $e_1 \equiv e_2 \equiv e_3$
- \bigcirc $e_1 \equiv e_3 \not\equiv e_2$

30. Considérense las expresiones de tipo (solo difieren en los paréntesis): $\tau_1 = (a \rightarrow a) \rightarrow (a \rightarrow a) \rightarrow (a \rightarrow a)$

$$au_2 = (a \rightarrow a) \rightarrow (a \rightarrow a \rightarrow a \rightarrow a)$$
 $au_3 = (a \rightarrow a) \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a$

- \bigcirc $\tau_1 \equiv \tau_2 \not\equiv \tau_3$
- $\bigotimes \ \tau_1 \equiv \tau_3 \not\equiv \tau_2$
- \bigcirc $\tau_1 \equiv \tau_2 \equiv \tau_3$

31. Considérense las expresiones de tipo (solo difieren en los paréntesis):

$$au_1 = ((b \rightarrow a) \rightarrow a) \rightarrow ((a \rightarrow b) \rightarrow (b \rightarrow b))$$

 $au_2 = (b \rightarrow (a \rightarrow a)) \rightarrow (a \rightarrow b) \rightarrow b \rightarrow b$
 $au_3 = (b \rightarrow a \rightarrow a) \rightarrow (a \rightarrow b \rightarrow b \rightarrow b)$

Entonces:

- \cap $\tau_1 \equiv \tau_2 \not\equiv \tau_3$
- $\bigcirc \quad \tau_1 \equiv \tau_2 \equiv \tau_3$
- $\bigotimes \tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1$
- 32. Considérense las expresiones de tipo (que solo difieren en los paréntesis): $\tau_1 = (a \rightarrow (b \rightarrow a) \rightarrow b \rightarrow b$ $\tau_2 = (a \rightarrow ((b \rightarrow a) \rightarrow a)) \rightarrow (b \rightarrow b)$ $\tau_3 = a \rightarrow b \rightarrow a \rightarrow a \rightarrow b \rightarrow b$
 - $\bigvee \tau_1 \equiv \tau_2 \not\equiv \tau_3$
 - $\bigcirc \quad \tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1$
- 33. Considérense las expresiones de tipo (solo difieren en los paréntesis): $\tau_1 = (a \rightarrow b \rightarrow a) \rightarrow (a \rightarrow b \rightarrow b)$ $\tau_2 = (a \rightarrow b \rightarrow a) \rightarrow a \rightarrow (b \rightarrow b)$ $\tau_3 = (a \rightarrow (b \rightarrow a)) \rightarrow a \rightarrow b \rightarrow b$
 - $\bigcirc \quad \tau_1 \equiv \tau_2 \not\equiv \tau_3 \\ \bigcirc \quad \tau_1 \equiv \tau_3 \not\equiv \tau_2$

 - $\bigvee \tau_1 \equiv \tau_2 \equiv \tau_3$
- 34. Considérense las expresiones de tipo (solo difieren en los paréntesis): $\tau_1 = a \rightarrow (b \rightarrow a \rightarrow a) \rightarrow b \rightarrow b$

$$\tau_2 = (a \rightarrow ((b \rightarrow a) \rightarrow a)) \rightarrow b \rightarrow b$$

 $\tau_3 = a \rightarrow (b \rightarrow (a \rightarrow a)) \rightarrow (b \rightarrow b)$

- $\bigcirc \quad \tau_1 \equiv \tau_2 \not\equiv \tau_3$
- \cap $\tau_1 \equiv \tau_2 \equiv \tau_3$
- 35. Considérense las expresiones de tipo (solo difieren en los paréntesis): $\tau_1 = (a \rightarrow b \rightarrow a \rightarrow a) \rightarrow b \rightarrow b$

$$\tau_1 = (a \rightarrow b \rightarrow a \rightarrow a) \rightarrow b \rightarrow b$$
 $\tau_2 = a \rightarrow b \rightarrow a \rightarrow a \rightarrow b \rightarrow b$
 $\tau_3 = (a \rightarrow b \rightarrow (a \rightarrow a)) \rightarrow (b \rightarrow b)$

- $\bigcirc \quad \tau_1 \equiv \tau_2 \not\equiv \tau_3$

- 36. Considérense las expresiones de tipo (que solo difieren en los paréntesis): $\tau_1 = a \rightarrow a \rightarrow a \rightarrow (a \rightarrow a) \rightarrow (b \rightarrow b)$

$$\tau_1 = a \rightarrow a \rightarrow (a \rightarrow a) \rightarrow (b \rightarrow b)$$

 $\tau_2 = a \rightarrow (a \rightarrow ((a \rightarrow a) \rightarrow b \rightarrow b))$
 $\tau_3 = (a \rightarrow a) \rightarrow (a \rightarrow a) \rightarrow b \rightarrow b$

- \cap $\tau_1 \equiv \tau_2 \equiv \tau_3$
- \bigcirc $\tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1$
- $\nabla \tau_1 \equiv \tau_2 \not\equiv \tau_3$
- 37. Considérense las expresiones de tipo (que solo difieren en los paréntesis): $\tau_1 = a \rightarrow ((a \rightarrow a) \rightarrow a)$

$$\tau_2 = a \rightarrow (a \rightarrow a) \rightarrow a$$

$$\tau_3 = a \rightarrow a \rightarrow a \rightarrow a$$

- $\bigotimes \ \tau_1 \equiv \tau_2 \not\equiv \tau_3$
- $\bigcirc \quad \tau_1 \equiv \tau_3 \not\equiv \tau_2$
- \bigcirc $\tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1$

38. Considérense las expresiones de tipo (que solo difieren en los paréntesis): $\tau_1 = (a \rightarrow a) \rightarrow (a \rightarrow a) \rightarrow (a \rightarrow a)$ $\tau_2 = a \rightarrow a \rightarrow (a \rightarrow a) \rightarrow (a \rightarrow a)$ $\tau_3 =$ (a -> a) -> (a -> a) -> a -> a

- $\bigcirc \quad \tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1 \\ \bigotimes \quad \tau_1 \equiv \tau_3 \not\equiv \tau_2$
- \cap $\tau_1 \equiv \tau_2 \equiv \tau_3$

39. Considérense las expresiones de tipo (solo difieren en los paréntesis): $\tau_1 = (b \rightarrow a \rightarrow a) \rightarrow (a \rightarrow b) \rightarrow b$

 $\tau_2 = (b \rightarrow (a \rightarrow a)) \rightarrow ((a \rightarrow b) \rightarrow b)$ $\tau_3 =$ (b -> a -> a) -> a -> b -> b

- $\bigcirc \quad \tau_1 \equiv \tau_2 \equiv \tau_3$
- $\bigcirc \quad \tau_1 \equiv \tau_3 \not\equiv \tau_2$
- $\bigvee \tau_1 \equiv \tau_2 \not\equiv \tau_3$

40. Considérense las expresiones de tipo (solo difieren en los paréntesis): $\tau_1 = a \rightarrow b \rightarrow (c \rightarrow d)$

 $\tau_2 = a \rightarrow (b \rightarrow c \rightarrow d)$ $\tau_3 = a \rightarrow b \rightarrow c \rightarrow d$

- $\bigcirc \quad \tau_1 \equiv \tau_3 \not\equiv \tau_2$
- \bigcirc $\tau_1 \not\equiv \tau_2 \not\equiv \tau_3$

41. Considérense las expresiones de tipo (que solo difieren en los paréntesis): $\tau_1 = (a \rightarrow a) \rightarrow (a \rightarrow a) \rightarrow (a \rightarrow a)$

$$au_2 = (a \rightarrow a) \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a$$
 $au_3 = (a \rightarrow a) \rightarrow ((a \rightarrow a) \rightarrow (a \rightarrow a))$

- \bigcirc $\tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1$
- $\bigcirc \quad \tau_1 \equiv \tau_3 \not\equiv \tau_2$
- $\langle \rangle \quad \tau_1 \equiv \tau_2 \equiv \tau_3$

42. Considérense las expresiones de tipo (que solo difieren en los paréntesis): $\tau_1 = (a \rightarrow a \rightarrow a) \rightarrow (a \rightarrow a) \rightarrow (a \rightarrow a)$

$$\tau_2 = (a \rightarrow (a \rightarrow a)) \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a$$

 $\tau_3 = (a \rightarrow a \rightarrow a) \rightarrow ((a \rightarrow a) \rightarrow a \rightarrow a)$

- $\bigcirc \quad \tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1$
- $\bigcirc \quad \tau_1 \equiv \tau_3 \not\equiv \tau_2$
- $\bigvee \tau_1 \equiv \tau_2 \equiv \tau_3$

43. Considérense las expresiones siguientes:

- $e_1 \equiv (\text{let x=5 in x+x}) + 3$ $e_2 \equiv$ let x=2 in let y=x+x in y*y
- $e_3 \equiv$ let x=2 in let y=x+x in y*y*x $e_4 \equiv$ let y=x+x in let x=2 in y*y*x
- $e_5 \equiv$ let y=(let x=2 in x+x) in y*y $e_6 \equiv \text{let y=(let x=2 in x+x) in y*y*x}$

¿Cuántas de ellas son sintácticamente erróneas por problemas de ámbito de variables?

- Exactamente tres de ellas
- Exactamente dos de ellas
- O Todas están correctamente formadas

44. Considérense las expresiones siguientes:

- $e_1 \equiv (\text{let x=5 in x+x}) + 5$ $e_2 \equiv \text{let x=2 in let y=x+x in y*x}$
- $e_3 \equiv$ let x=2 in let y=x+x in x $e_4 \equiv$ let x=y in let x=2 in y*y*x
- $e_5\equiv$ let y=(let x=2 in x+x) in y*y $e_6\equiv$ let y=(let x=2 in x+x) in y*y*x

	¿Cuántas de ellas son sintácticamente erróneas por problemas de ámbito de variables?
	 Exactamente una de ellas Exactamente dos de ellas Exactamente tres de ellas
45.	Considérense las expresiones siguientes: $e_1 \equiv (\text{let x=5 in x+x}) + \text{x}$ $e_2 \equiv \text{let x=2 in let y=x+x in y*y*x}$ $e_3 \equiv \text{let y=x+x in let x=2 in y*y*x}$ $e_4 \equiv \text{let } \{\text{y=x+x;x=2}\} \text{ in y*y*x}$ $e_5 \equiv \text{let y=(let x=2 in x+x) in y*y*x}$ $e_6 \equiv \text{let y=(let x=2 in 3) in y*y}$ ¿Cuántas de ellas son sintácticamente erróneas por problemas de ámbito de variables? \bigcirc Exactamente dos de ellas \bigcirc Exactamente tres de ellas \bigcirc Exactamente cuatro de ellas
46.	Considérense las expresiones siguientes: $e_1 \equiv (\text{let x=5 in x+x}) + 5$ $e_2 \equiv \text{let x=2 in let y=x+x in y*x}$ $e_3 \equiv \text{let x=2 in let y=x+x in x}$ $e_4 \equiv \text{let x=y in let x=2 in y*y*x}$ $e_5 \equiv \text{let y=(let x=x in x+x) in y*y}$ $e_6 \equiv \text{let y=(let x=2 in x+x) in y*y*x}$ ¿Cuántas de ellas son sintácticamente erróneas por problemas de ámbito de variables?
	 Exactamente una de ellas Exactamente dos de ellas Exactamente tres de ellas
47.	Considérense las expresiones siguientes: $e_1 \equiv (\text{let x=5 in x+x}) + (\text{let x=3 in 2*x})$ $e_2 \equiv \text{let y=x+x in let x=2 in y*y*x}$ $e_3 \equiv \text{let x=2 in let y=x+x in y*y*x}$ $e_4 \equiv \text{let \{y=x+x;x=2\} in y*y*x}$ $e_5 \equiv [\text{i i<-[1j],j<-[0100],mod j 3 == 0]}$ $e_6 \equiv [\text{i j<-[0100],i<-[1j],mod j 3 == 0}]$ $\in (\text{Cuántas de ellas son sintácticamente erróneas por problemas de ámbito de variables?}$ $\cap (\text{Exactamente una de ellas})$ $\cap (\text{Exactamente tres de ellas})$ $\cap (\text{Exactamente tres de ellas})$
48.	Considérense las expresiones siguientes: $e_1 \equiv \text{let x=1:x in head x}$ $e_2 \equiv (\x -> (\y -> x+y)) \x $ $e_3 \equiv \text{let x=[1,2,3] in let y= x!!2 in y*last x}$ $e_4 \equiv \text{let } \{y=2*x;x=5\} \text{ in y*y*x}$ $e_5 \equiv [i+j \mid i<-[1j],j<-[0100],mod j i == 0]$ ¿Cuántas de ellas son sintácticamente erróneas por problemas de ámbito de variables?

- \bigotimes Exactamente dos de ellas
- $\bigcirc\;$ Exactamente en tres de ellas
- $\bigcirc\;$ Exactamente en cuatro de ellas
- 49. Considérense las expresiones siguientes:

¿Cuántas de ellas son sintácticamente erróneas por problemas de ámbito de variables?

- ⊗ Exactamente una de ellas
- Tres o más de ellas
- Las dos anteriores son falsas.
- 50. Considérense las expresiones siguientes:

$$e_3 \equiv$$
 let y= (let x = 1 in x+x) in x+y $e_4 \equiv$ let y= (let x = 1 in x+x) in y+y

 $e_5 \equiv [j \mid i \leftarrow [1..100], j \leftarrow [0..i]]$

¿Cuántas de ellas son sintácticamente erróneas por problemas de ámbito de variables?

- O Exactamente una de ellas
- Exactamente dos de ellas
- Las dos anteriores son falsas.
- 51. En el siguiente fragmento de código

- 🛇 La definición de T contiene algún error sintáctico, pero la de f no.
- O La definición de f contiene algún error sintáctico, pero la de T no.
- O Las dos anteriores son falsas.
- 52. En el siguiente fragmento de código

$$f x (x:xs) = True$$

$$f x (y:xs) = f x xs$$

- O La definición de T contiene algún error, pero la de f no.
- O La definición de f contiene algún error, pero la de T no.
- \times Las dos anteriores son falsas.
- 53. En el siguiente fragmento de código

- O La definición del tipo T contiene algún error sintáctico, pero la de f no.
- Las dos anteriores son falsas.
- 54. Supongamos que 1::Int , (+)::Int->Int, y considérese la función f definida por las dos reglas siguientes:

f True
$$x y = (x,y)$$

f False
$$y x = (y,x+1)$$

- ⊗ El tipo que se infiere para f es Bool → a → Int → (a,Int)
- O El tipo que se infiere para f es Bool -> Int -> Int -> (Int,Int)
- f está mal tipada.
- 55. Considérese la función definida por f x y = y x x. El tipo de f es:

$$\bigotimes$$
 a -> (a -> a -> b) -> b

- () a -> (a -> a -> a) -> a
- O No está bien tipada

- 56. Sea f definida por f g x = x (g True) g. El tipo de f es:
 - \otimes \forall a,b.(Bool->a) -> (a -> (Bool->a) -> b) -> b
 - \bigcirc \forall a.(Bool->a) -> (a -> (Bool->a) -> a) -> a
 - O Está mal tipada
- 57. Sea f definida por f g x = x g g. El tipo de f es:
 - \bigotimes \forall a,b.a -> (a -> a -> b) -> b
 - \bigcirc \forall a,b.(a -> a -> b) -> a -> b
 - Está mal tipada
- 58. Sea f definida por f g x = x g g. El tipo de f es:
 - O Está mal tipada
 - \bigcirc \forall a.(a -> a -> a) -> a -> a
 - \bigotimes \forall a,b.a -> (a -> a -> b) -> b
- 59. Considérese la función definida por f x y = x (y x). El tipo de f es:
 - \bigotimes (a -> b) -> ((a -> b) -> a) -> b
 - $(a \rightarrow b \rightarrow a) \rightarrow (b \rightarrow a) \rightarrow a$
 - O No está bien tipada
- 60. Considérese la función definida por f x y = y (x x). El tipo de f es:
 - () (a -> a -> a) -> (a -> a) -> a
 - (a -> b -> a) -> (b -> a) -> a
 - 🛇 No está bien tipada
- 61. Considérese la función definida por f x y = x x y. El tipo de f es:
 - () (a -> a -> a) -> (a -> a) -> a
 - \bigcirc (a -> b -> a) -> (b -> a) -> a
 - No está bien tipada
- 62. Considérese la función definida por f x y = x (y y). El tipo de f es:
 - $(a \rightarrow b) \rightarrow (a \rightarrow a) \rightarrow b$
 - $(a \rightarrow a) \rightarrow (a \rightarrow a) \rightarrow a$
 - No está bien tipada
- 63. Considérese la función definida por f g = g (f g). El tipo de f es:
 - () a -> a -> a
 - \bigotimes (a -> a) -> a
 - O No está bien tipada
- 64. Considérese la función definida por f g = g (g f). El tipo de f es:
 - O a -> a -> a
 - \bigcirc (a -> a) -> a
 - No está bien tipada
- 65. Sea f definida por f g x = x (x g). El tipo de f es:
 - \bigcirc \forall a.a -> (a -> b) -> b
 - \bigotimes \forall a.a -> (a -> a) -> a
 - Está mal tipada

66. Sea f definida por f g x = x x g. El tipo de f es: \bigcirc \forall a.a -> (a -> a -> a) -> a \bigcirc \forall a,b.a -> (b -> a -> b) -> b Está mal tipada 67. Sea f definida por f x y z = x (y z). El tipo de f es: \bigcirc (a -> b) -> (b -> c) -> a -> c $(a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow c \rightarrow b$ () f está mal tipada 68. Sea f definida por f x g = x (x (g True)). El tipo de f es: \bigcirc $\forall a,b.(a \rightarrow b) \rightarrow (Bool \rightarrow a) \rightarrow b$ ∀a.(a -> a) -> (Bool -> a) -> a Ninguno, f está mal tipada 69. Sea f definida por f x y = (x y).(x y). El tipo de f es: $(a \rightarrow a) \rightarrow (a \rightarrow a)$ $(a \rightarrow b) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow b)$ \bigotimes (a -> b -> b) -> a -> b -> b 70. Sea f definida por f x y = x (x y). El tipo de f es: \bigotimes (a -> a) -> (a -> a) () (a -> b) -> a -> b () a → b → a 71. Considérese la función definida por f g = g (f f). El tipo de f es: () a -> a -> a (a -> a) -> a No está bien tipada 72. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por $f x y z = if x \le y then z + 1 else z$ f :: Num a => a -> a -> a f :: (Ord a, Num b) ⇒ a → a → b → b () f :: (Ord a, Num a) => a -> a -> a 73. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por $f x y z = if x \le y z then z + 2 else z$

() f :: Num a => a -> a -> a

O Esa definición dará un error de tipos

Of :: (Ord a, Num b) => a -> b -> a

∅ f :: (Ord a, Num b) => a -> (b -> a) -> b -> b

f x y z = if x then y <= z else x será:

() f :: (Ord a, Bool a) => a -> a -> a -> a

() f :: Ord a => Bool -> a -> a -> Bool

74. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por

- 75. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por $f x y z = if x \le y then z+1 else x$ será: ∅ f :: (Num a,Ord a) => a -> a -> a () f :: (Ord a, Num b) => a -> a -> b -> b () f :: (Ord a, Num b) => a -> a -> b -> a 76. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por $f x y z = if x \le y then z else not x$ será: () f :: (Ord a, Bool a) => a -> a -> a () f :: Ord a => Bool -> a -> a -> Bool ⊗ Bool → Bool → Bool → Bool 77. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por $f x y z = z (x \le y+1)$ será: ∅ f :: (Num a, Ord a) => a -> a -> (Bool -> b) -> b () f :: (Ord a, Num b, Ord b) => a -> b -> (Bool -> c) -> c O Dará un error de tipos 78. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por $f x y z = if x \le y then z + x else z$ f :: Num a => a -> a -> a () f :: (Ord a, Num b) => a -> a -> b -> b ∅ f :: (Ord a, Num a) => a -> a -> a 79. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por $f x y = if x \le 0 then y + 1 else y$ f :: Num a ⇒ a → a → a () f :: (Ord a, Num a) => a -> a -> a 80. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por f x y = if x == y+1 then y else y+1será: f :: Eq (Num a) ⇒ a → a → Num a f :: (Eq a, Num a) ⇒ a → a → a \bigcirc f :: (Eq a, Num b) => a -> b -> b 81. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por f x y z = if not x then z <= y else x f :: Ord Bool ⇒ Bool → Bool → Bool f :: Bool → Bool → Bool → Bool () f :: Ord a => Bool -> a -> a -> Bool 82. ¿Cuál de los siguientes tipos para f hacen que la expresión (curry f 0).(|| True) esté bien tipada?
- \bigotimes f::(Int,Bool) -> Int

 - f:: Int → Bool → Int
 - O Esa expresión está mal tipada, sea cual sea el tipo de f
- 83. Sea f de tipo $\tau \to \tau$, y unaLista de tipo $[\tau]$. El tipo de la expresión map (take 2) (map (iterate f) unaLista) es:

84.	Sea f de tipo $\tau \to \tau$, y unaLista de tipo $[\tau]$. El tipo de la expresión map (iterate f) (map (take 2) unaLista) es: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
85.	¿Cuál de los siguientes tipos para f hace que la expresión (True).(uncurry f) esté bien tipada?
86.	¿Cuál de los siguientes tipos para la expresión e hace que la expresión zipWith filter [(> 0),(< 0)] e esté bien tipada? [Int] [[Int]] [(Int,Int)]
87.	¿Cuál de los siguientes tipos para la expresión e hace que la expresión zipWith filter e [[14],[-23]] esté bien tipada? ○ Int -> Bool ○ [Int -> Bool] ○ Las dos anteriores son falsas.
88.	¿Cuál de los siguientes tipos para la expresión e hace que la expresión takeWhile e (zip (iterate not True) [010]) esté bien tipada? O Int -> Int O Int -> Bool O (Bool,Int) -> Bool
89.	¿Cuál de los siguientes tipos para la expresión e hace que la expresión zipWith e (iterate not True) (iterate (+ 1) 0) esté bien tipada? [Bool] -> [Int] -> [Bool] [Bool] -> [Int] -> [(Bool,Int)] Bool -> Int -> Char
90.	¿Cuál de los siguientes tipos para la expresión e hace que la expresión
91.	¿Cuántas de las siguientes definiciones de tipos (independientes unas de otras) son correctas? data Tip = A C Int Tip (Int,Int,Tip) data Tap = A C Int Tap D Int Int Tap data Top = A C a Top D a b Top

	○ Las tres○ Ninguna de las tres⊗ Una de las tres
92.	¿Cuántas de las siguientes definiciones de tipos (independientes unas de otras) son correctas? data Tip = A C Int Tip C (Int,Int,Tip) data Tap = A C Int Tap D (Int,Int,Tap) data Top a = A C a D a a
	○ Una de las tres⊗ Dos de las tres○ Las tres
93.	En lo que sigue, \leq indica el orden estándar (el obtenido por deriving Ord) para tipos con constructoras de datos. Considérense las afirmaciones siguientes: (i) $[] \leq [True] \leq [False, True]$ (ii) $[] \leq [False, True] \leq [True, False]$. Entonces, teniendo en cuenta que para los booleanos $\underline{False} \leq \underline{True}$, se tiene: (i) es cierta pero (ii) no (ii) es cierta pero (i) no (Las dos son falsas
94.	Considérese la definición del tipo data T = A B C T T deriving (Eq,Ord). ¿Cuál de las siguientes afirmaciones es cierta? Solution A <= B && B <= C A A se evalúa a True A <= B && B <= C A A se evalúa a False C loop loop == C loop loop se evalúa a True, donde loop está definido por loop = loop
95.	Considérese la definición del tipo data T = A B C T T deriving (Eq,Ord) y la función mal = head []. ¿Cuál de las siguientes afirmaciones es cierta? C mal A <= C mal B se evalúa a True C A mal == C B mal se evalúa a True A <= C mal mal && B <= C mal mal se evalúa a True
96.	Considérese la definición del tipo data T = A B C T T deriving (Eq,Ord) y la función loop = loop. ¿Cuál de las siguientes afirmaciones es cierta?
97.	Considérese la definición del tipo data T = A B C T T deriving (Eq,Ord) y la función loop = loop. ¿Cuál de las siguientes afirmaciones es falsa? © loop <= B && B <= C loop loop se evalúa a True O A <= C loop loop && B <= C loop loop se evalúa a True C A loop == C B loop se evalúa a False
98.	Considérense la definición del tipo data T = A B C T T deriving (Eq,Ord) y la función mal = head []. ¿Cuál de las siguientes afirmaciones es cierta? C mal A <= C mal B se evalúa a True A <= C mal mal && B <= C mal mal se evalúa a True C A mal == C B mal se evalúa a True

99.	Considérese la definición del tipo data T = A B C T T deriving (Eq,0rd) y la función mal = head [] y considérense las siguientes afirmaciones: (i) C mal A <= C mal B se evalúa a True (ii) C A mal == C B mal se evalúa a True
	(iii) A <= C mal mal && B <= C mal mal se evalúa a True ⊗ Exactamente una es cierta ○ Exactamente dos son ciertas ○ Las dos anteriores son falsas.
100.	En lo que sigue, \leq indica el orden estándar (el obtenido por deriving Ord) para tipos con constructoras de datos Considérense las afirmaciones siguientes: (i) [] \leq [0,1] (ii) [] \leq [0,1] \leq [1,0]. Entonces: (i) es cierta pero (ii) no (ii) es cierta pero (i) no (ii) as dos son ciertas
101.	Considérense la declaraciones de clase e instancia class C a where f, g:: a -> Int instance C Bool where g True = 0 instance C Int where f x = x g x + 1 g x = f x - 1 g False = 1 g x = 2*x g x = 2*x Qué afirmación es correcta?
102.	Considérese la declaración de clase class C a where f, g:: a -> Int f x = g x + 1 g x = f x - 1 ¿Qué afirmación es correcta? Esa declaración es errónea, porque f y g no terminarán nunca {f} es un conjunto minimal suficiente de métodos de C {f,g} es un conjunto minimal suficiente de métodos de C
103.	Considérese la declaración de clase class C a where f, g:: a -> Int f x = g x + 1 ¿Qué afirmación es correcta? © Esa declaración es errónea, porque g no está definida
	 ⟨g⟩ es un conjunto minimal suficiente de métodos de C ⟨f⟩ es un conjunto minimal suficiente de métodos de C
104.	Considérese la declaración de clase class C a where f, g, h:: a -> Int f x = g x + 1 g x = f x - 1 ¿Qué afirmación es correcta? El sistema dará un error con esta definición Al declarar una instancia de C no es obligado definir h ni redefinir f, g Al declarar una instancia de C es obligado definir h y razonable redefinir f o bien g

105.	Considérense la declaraciones de clase e instancia class C a where f, g:: Int -> a instance C Bool where g x = (x == 0) instance C Int where f x = x f x = g (x + 1) g x = f (x - 1) ; Qué afirmación es correcta? Of 0 && g 0 se evalúa a False y f 1 se evalúa a 1 La evaluación de exactamente una de las expresiones del caso anterior da un error Las dos anteriores son falsas.
106.	Considérense la declaraciones de clase e instancia class C a where f, g:: Int -> a instance C Bool where g 0 = True g = False g x = f 1
107.	Considérese la función f definida como f xs = foldr g [] xs where f x y = y++[x]. Entonces: S f xs computa la inversa de xs f xs computa la propia lista xs f está mal tipada
108.	Considérense las funciones f xs = foldr g [] xs where g x y = x:filter (/= x) y f' xs = foldl g [] xs where g y x = x:filter (/= x) y (y ojo al orden de argumentos en g). Entonces: f xs y f' xs coinciden, para cualquier lista finita xs. Los elementos de f xs y f' xs coinciden, quizás en otro orden, para cualquier lista finita xs. Una de las dos está mal tipada.
109.	Considérese la función f definida como f xs = foldl g [] xs where g y x = y++[x]. Entonces:
110.	La evaluación de foldl (\e x -> x:x:e) [] [1,2,3] produce como resultado \bigcirc [1,1,2,2,3,3] \otimes [3,3,2,2,1,1] \bigcirc [3,2,1,3,2,1]
111.	La evaluación de foldr (\x e → x:[1length e]) [0] [1,2,3] produce como resultado
112.	La evaluación de foldr (\x y -> x y) 1 [\x -> x*x,\x -> x-1,(+ 3)] produce como resultado \otimes 9 \bigcirc [1,0,4] \bigcirc Una lista de funciones

113.	La evaluación de \bigcirc -4 \bigcirc -6 \bigcirc 2	foldl (\x y -> y-x) 0 [1,2,3] produce como resultado
114.	La evaluación de	foldr ($\xy \rightarrow x-y$) 0 [1,2,3] produce como resultado
115.	La evaluación de \bigotimes 4 \bigcirc 2 \bigcirc 1	foldr (\x y -> x/y) 1 [8,4,2] produce como resultado
116.	La evaluación de	foldl (\x y -> y-x) 1 [1,2,3] produce como resultado
117.	La evaluación de	foldl (\x y -> x-(last y)) 10 [[1,2],[3,4],[5]] produce como resultado
118.		$\neq m$
119.	Sea n el valor de fo $\bigotimes n > m$ $\bigcirc n < m$ $\bigcirc n = m$	ldl (\x y -> y) 0 [1,2,3] y m el valor de foldr (\x y -> y) 0 [1,2,3]. Entonces
120.	<pre> ⊗ 11 ○ [2,3,4,5,6,7]</pre>	foldr (\x y -> y+(x!!0)) 2 [[1,2],[3,4],[5,6]] produce como resultado expresión está mal tipada
121.	La evaluación de ○ [3,4,5,6,7,8] ⊗ 14 ○ Nada porque la	foldr (\x y -> y+(x!!1)) 2 [[1,2],[3,4],[5,6]] produce como resultado expresión está mal tipada

122.	Sea f:: Int -> Int una función commutativa, y considerense las igualdades siguientes: (i) foldr f 0 [3] = foldl f 0 [3]
123.	 (ii) foldr f 0 [3,5] = foldl f 0 [3,5]. Entonces: ○ Tanto (i) como (ii) son con seguridad ciertas. ⊗ Sólo (i) es con seguridad cierta. ○ Las dos anteriores son falsas.
124.	Sea l una lista finita de enteros positivos. Entonces la evaluación de la expresión foldr (\x y -> if x > 2 then x else y) 5 l O Produce el valor 3, con independencia de l No Produce el valor 5, con independencia de l Las dos anteriores son falsas.
125.	Sea l una lista finita de enteros positivos. Entonces la evaluación de la expresión foldl (\x y -> if x > 2 then x else y) 5 l O Produce el valor 3, con independencia de l New Produce el valor 5, con independencia de l Las dos anteriores son falsas.
126.	La evaluación de la expresión foldr (\x y → not x y) False [False,True,undefined] da como resultado ⊗ True ○ False ○ Un error en tiempo de ejecución
127.	La evaluación de la expresión foldl (\x y → not x y) False [False,True,undefined] da como resultado True False Un error en tiempo de ejecución
128.	La evaluación de la expresión foldr (\x y -> (not y) && x) undefined [True,True] da como resultado True False Un error en tiempo de ejecución
129.	La evaluación de la expresión foldl (\x y -> (not y) && x) undefined [True,True] da como resultado True False Un error en tiempo de ejecución
130.	La reducción de la expresión (\x y -> (\z -> y (z+2)) (y x)) 3 (\x -> x+1) producirá el resultado (8 \otimes 7 $_{\odot}$ 6

131.	La reducción de la expresion \bigcirc 7 \otimes 10 \bigcirc Las dos anteriores son falsa	$(\x y -> x (x y)) (\x -> x + 3)$ 4 producirá el resultado s.
132.	La reducción de la expresion ○ 8 ○ 12 ⊗ Las dos anteriores son falsa	$(\x y \rightarrow x (x y)) (\x \rightarrow x + y)$ 4 producirá el resultado as.
133.	La reducción de la expresión \otimes 8 \bigcirc 7 \bigcirc 6	(\x y -> (\u -> x (u+1)) (x y)) (\x -> x+2) 3 producirá el resultado
134.	La reducción de la expresión \bigcirc 1 \bigcirc 2 \otimes 3	$(\x y \rightarrow x (y x))(\x \rightarrow x+1) (\x \rightarrow x 1)$ producirá el resultado
135.	La reducción de la expresión \bigcirc 5 \otimes 6 \bigcirc 7	(\x y -> (\u -> x (u+1)) (x y)) (\x -> x+1) 3 producirá el resultado
136.	La reducción de la expresion	(\x y -> y (y x)) ((\x -> x+1) 0) (\x -> x+1) producirá el resultado
137.	La reducción de la expresion ⊗ 10 ○ 14 ○ Depende del orden en que s	(\x y -> x + (\x -> y+x) y) ((\x -> x+1) 5) 2 producirá el resultado se efectúe
138.	La reducción de la expresion \bigcirc 5 \bigcirc 3 \otimes 7	$(\x y \rightarrow x (y x)) (\x \rightarrow x + 2) (\x \rightarrow x 3)$ producirá el resultado
139.	La reducción de la expresion \bigcirc 1 \bigcirc 2 \otimes -2	(\x y z -> x z y) (\x y -> x-y) ((\x -> x+1) 2) 1 producirá el resultado
140.	La reducción de la expresión	(\x y -> y (y x)) 1 (\x -> x+2) producirá el resultado

```
141. La reducción de la expresión (\x y z -> x z (y z)) (\x y -> y+1) (\x -> x+1) 1 producirá el resultado
     \bigcirc 1
     \bigcirc 2
     \otimes 3
142. Considérense las funciones: f x y
                                             = [2*i|i \leftarrow [1..x], i>y]
                                  f' x y = filter (> y) (map (2 *) [1..x])
                                  f'', x y = map (2 *) (filter (> y) [1..x])
     () f, f' y f'' computan lo mismo
     Of y f' computan lo mismo, pero f'' no

    f y f'' computan lo mismo, pero f' no

143. La evaluación de map (zipWith (-) [3,2,1]) [[1,2,3],[4,5,6]] !! 1 !! 0 produce como resultado:
     \bigcirc [-1]
     ⊗ -1
     O Un error, porque esa expresión está mal tipada
                         [i|i \leftarrow [i-1..i+1], i \leftarrow [1..5], i > 1] produce como resultado
144. La evaluación de
     \bigcirc 2
     \bigcirc 3
     ♥ Un error
145. La evaluación de
                       length [i|i <- [1..5], j <- [1..i],i+j<5] produce como resultado</pre>
     \bigcirc 3
     \otimes 4
     \bigcirc 5
146. La evaluación de length [i+j|i <- [1..5], i > 2, j <- [3..i]] produce como resultado
     \bigcirc 0
     \otimes 6
     O Da un error en tiempo de ejecución
147. La evaluación de
                        length [i+j|i \leftarrow [1..5], i > 2, j \leftarrow [i-1,i]] produce como resultado
     \bigcirc 9
     \otimes 6
     O Da un error en tiempo de ejecución
                         [i+j|i \leftarrow [1..5], i > 2, j \leftarrow [i-1,i]] !! 2 produce como resultado
148. La evaluación de
     \bigcirc 9
     \otimes 7
     O Da un error en tiempo de ejecución
                       length [i+j|i \leftarrow [1..5], i > 2, j \leftarrow [i-1,i], j < i] produce como resultado
149. La evaluación de
     \bigcirc 6
```

150.	La evaluación de — take 2 [take j [12*1] 1 <- [110], 1 > 2, j <- [1-11+1]] — produce el resultado [3,4] [3,4],[3,4,5]] No produce ningún valor, porque la expresión está mal tipada
151.	La evaluación de length [take j [1i] i <- [15], i > 2, j <- [i-1,i]] produce como resultado \bigcirc 3 \otimes 6 \bigcirc No produce ningún valor, porque la expresión está mal tipada
152.	La evaluación de map (zip [14]) [2,512] produce el resultado O [(1,11),(2,11),(3,11),(4,11)] O [(4,11)] No produce ningún valor, porque la expresión está mal tipada
153.	La evaluación de map length [take 2 ys x <- [13], ys <- iterate (+ 3) x] produce como resultado
	\bigcirc [2,2,2] \bigcirc [2] \bigotimes Un error, porque la expresión está mal tipada
154.	La evaluación de (head.tail) (map ((take 3).(iterate (+ 2))) [1,310]) produce como resultado ([4,6,8,11,14] ([1,4,7] ([3,5,7]
155.	La evaluación de take 3 (zipWith (+) [x+y x<-[14],y<-[x,x+2,x+4]] (iterate (*2) 1)) produce como resultado ○ [3,5,7] ⊗ [3,6,10] ○ [
156.	La evaluación de (head.tail) (map ((take 2).(iterate (+ 3))) [1,310]) produce como resultado ([4,6,8,11,14] ([1,4] ([3,6]
157.	. La evaluación de $[j i \leftarrow [15], i > 1, j \leftarrow [i-1i+1]]$!! i produce como resultado
	$\bigcirc \ 2$ $\bigcirc \ 3$ \bigcirc Un error, porque hay una variable fuera de ámbito
158.	La evaluación de map (!! 2) (map (iterate (\x -> 2*x)) [03]) produce el resultado 2 ([0,4,8,12] No produce ningún valor, porque la expresión está mal tipada

```
159. La evaluación de map fst [(zip [0..i] [1..j]) !! i | i <- [1..3], j <- [1..(i+1)], j > i] produce el
    resultado
    (0,1)
    \otimes [1,2,3]
    O No produce ningún valor, porque la expresión está mal tipada
                      ((!! 2).head) (map (iterate (+2)) [2,0,4]) produce como resultado
160. La evaluación de
     \otimes 6
    \bigcirc [2,4,6]

    Las dos anteriores son falsas.

161. La evaluación de
                      (head.(!! 1)) (map (zip [0..3]) [[1..4],[2..5]]) produce como resultado
    \bigcirc 1
    (1,2)
    \otimes (0,2)
162. ¿Cuál de las siguientes definiciones es equivalente a f n m = [x*y \mid x \leftarrow [1..n], y \leftarrow [x..m]]?
    \bigotimes f n m = concat (map f [1..n]) where f x = map (\y -> x*y) [x..m]
    \bigcirc f n m = concat (map f [x..m]) where f y = map (\y -> x*y) [1..n]
    \bigcirc f n m = zipWith (*) [1..n] [x..m]
163. ¿Cuál de las siguientes definiciones es equivalente a f n m = [x*n | x < [1..n], x > m]?
    \bigotimes f n m = map (\x -> x*n) (filter (> m) [1..n])
    \bigcirc f n m = filter (> m) (map (\x -> x*n) [1..n])
164. Sea f una función definida previamente, y considérense las definiciones
          х у
                  = let z = f x y in (z,x*y,z+1)
                   = (f x y, x*y, f x y + 1)
      g,
          х у
      g'' \times y = h \times y (f \times y)
      h 	 x y z = (z,x*y,z+1)
     ¿Qué afirmación es correcta?
     🛇 g, g' y g'' computan los mismos valores, g y g'' tienen una eficiencia similar, pero g' es menos eficiente
    🔾 g, g'y g'' computan los mismos valores, gyg'' tienen una eficiencia similar, pero g' es más eficiente
    O No es verdad que g, g'y g'' computen los mismos valores
165. Sea h::Int -> Int una función costosa de calcular, y sean f, f', f'' definidas por
       f x y = (x+u,y+u)
                                    f' \times y = (x+(h \times), y+(h \times)) f'' \times y = g \times y (h \times)
                 where u = h x
                                                                       g \times y z = (x+z,y+z)
    () Tanto f' como f'' son extensionalmente equivalentes a f y comparables en eficiencia con ella.
     Tanto f' como f'' son extensionalmente equivalentes a f, pero f' es menos eficiente.
    ( ) Las dos anteriores son falsas.
166. ¿Cuál de las siguientes afirmaciones es cierta?
    Las listas intensionales pueden eliminarse usando map, filter, concat, y recíprocamente

    Las listas intensionales pueden eliminarse usando map, filter, concat, pero el recíproco no es cierto
```

Las dos anteriores son falsas.

167.	Sea $l=[(x,y) x \leftarrow [0,2,3], b,y \leftarrow [1x]]$, donde b es una cierta expresión booleana, y sea $n=$ length l . ¿Cuál de la siguientes situaciones no puede darse? $\bigcirc n=0$ $\bigcirc n=5$ $\bigotimes n=4$
168.	Sea $l = [(x,y) x < -[2,4], y < -[1x], b]$, donde b es una cierta expresión booleana , y sea $n = length \ l$. ¿Cuántas de la siguientes situaciones: $n = 1$ $n = 5$ $n = 7$ pueden darse? \bigcirc Solo una de ellas \bigcirc Solo dos de ellas \bigcirc Las tres son posibles
169.	Considérense las siguientes expresiones: head (reverse [110^30]) last (reverse [110^30]) last (takeWhile (< 1000) ([110^30] ++ [110^30])) ¿Cuántas de ellas nos llevará toda la vida evaluarlas? ○ Exactamente una de ellas ○ Exactamente dos de ellas ○ Las tres
170.	Considérense las siguientes expresiones: take 30 (reverse [110^30]) reverse (take 30 [110^30]) last (takeWhile (< 1000) (iterate (+ 2) 1)) ¿Cuántas de ellas nos llevará toda la vida evaluarlas? Exactamente una de ellas Exactamente dos de ellas Las tres
171.	Considérense las siguientes expresiones: head (reverse (reverse [110^30])) reverse (reverse (take 30 [110^30])) take 100 (iterate (+ 2) 1 ++ [1100])) ¿Cuántas de ellas nos llevará toda la vida evaluarlas? Exactamente una de ellas Exactamente dos de ellas Las tres
172.	Considérense las siguientes definiciones de funciones:
	f x y z = x + y - z g x y = f x x y g' x = f x x g'' = f x Entonces: ○ g, g' y g'' son equivalentes ⊗ g y g' son equivalentes, pero la definición de g'' contiene un error ○ Las dos anteriores son falsas.
173.	Considérense las siguientes definiciones de funciones:
	f x y z = x + y - z

L'm	tonoor.	
	tonces:	

- Og, g'y g'' son equivalentes
- O g y g' son equivalentes, pero la definición de g', contiene un error
- 174. Considérense las siguientes definiciones de funciones:

f x y z = x + y - z g x y z = f (x+1) y z g' x y = f (x+1) y g'' x = f (x+1)

- ⊗ g, g'y g'' son equivalentes
- O g y g' son equivalentes entre sí, pero no equivalentes a g''
- O La definición de g'', contiene un error
- 175. Sean las definiciones f g h x y = g (h x (g y)) f' g h x = g.(h x).g f'' g h = g.($x \rightarrow h$ x).g
 - Of, f'y f'' son extensionalmente equivalentes
 - \(\begin{aligned} \frac{\pmathbf{f}}{\pmy} \frac{\pmathbf{f}}{\pmy} \frac{\pmathbf{f}}{\pmy} \frac{\pmathbf{f}}{\pmy} \frac{\pmathbf{f}}{\pmy} \frac{\pmathbf{f}}{\pmy} \frac{\pmathbf{f}}{\pmy} \frac{\pmathbf{f}}{\pmy} \frac{\pm}{\pm} \frac{\pmathbf{f}}{\pmy} \frac{\pm}{\pm} \frac{\pm}
 - Of yf'' son extensionalmente equivalentes, pero f' no
- 176. Sean las definiciones f g h x = g (h (g x)) f' g h x = g.h.($x \rightarrow g$ x) f'' g h = g.h.g
 - Of, f'y f'' son extensionalmente equivalentes
 - () f y f' son extensionalmente equivalentes, pero f'' no
- 177. Considérense las siguientes definiciones de funciones:

 $f1 \times y = x \cdot y$ $f2 \times y = (x \cdot y) z$ $f3 \times y = x \cdot (y \cdot z)$ $f4 \times y = x \cdot y$

- O f1, f2, f3, f4 computan la misma función
- O f1, f2, f3 computan la misma función, pero f4 no
- 🛇 f2, f3, f4 computan la misma función, pero f1 no
- 178. Considérense las igualdades

(take m).(take n) = take (min n m) (drop m).(drop n) = drop (n+m) (take m).(drop n) = (drop n).(take (m+n))

donde m,n son ≥ 0 . Se tiene:

- \times Las tres son correctas
- O Solo dos son correctas
- O Solo una es correcta
- 179. ¿Cuántas de las siguientes igualdades son correctas?

map id = id map f (xs ++ ys) = (map f xs) ++ (map f ys) map (f.g) xs = (map f . map g) xs Nota: en la primera de ellas, se entiende que las funciones de ambos lados se aplican solo a listas

- O Solo dos
- O Solo una
- 180. Sea un programa funcional con dos funciones f,g::Int -> Int y la función h = h. ¿Cuál de las siguientes situaciones es posible?
 - $\bigcirc \ \llbracket \mathbf{g} \ (\mathbf{f} \ \mathbf{h}) \rrbracket = 2 \ \mathbf{y} \ \llbracket \mathbf{g} \ (\mathbf{f} \ \mathbf{0}) \rrbracket = \bot$
 - \bigotimes [g (f h)] = \bot y [g (f 0)] = 2
 - $\bigcirc \ \llbracket \mathbf{g} \ (\mathbf{f} \ \mathbf{h}) \rrbracket = 0 \ \mathbf{y} \ \llbracket \mathbf{g} \ (\mathbf{f} \ \mathbf{0}) \rrbracket = 2$

- 181. Sea un programa funcional con dos funciones f,g::Int -> Int y la función h = h. ¿Cuál de las siguientes situaciones no es posible?
 - \bigotimes [g (f h)] = 2 y [g (f 0)] = \bot
 - $\bigcirc \ \llbracket \mathsf{g} \ (\mathsf{f} \ \mathsf{h}) \rrbracket = \bot \ \mathsf{y} \ \llbracket \mathsf{g} \ (\mathsf{f} \ \mathsf{0}) \rrbracket = 2$
- 182. Sea un programa funcional con dos funciones f,g::Int -> Int y la función loop = loop. ¿Cuál de las siguientes situaciones es posible?
 - \bigcirc [f (g loop)] = 1 pero [f (g 0)] = \bot
 - \bigotimes [f (g loop)] = \bot pero [f (g 0)] = 1
- 183. De una función f solo sabemos que su tipo es $\forall a. [a] \rightarrow Int.$; Cuál de las siguientes situaciones es posible?

 - \bigotimes [f [1,2]] = 1 y [f [True,True]] = 1
- 184. De una función f solo sabemos que su tipo es ∀a.Eq a => [a] -> Int. ¿Cuántas de las siguientes situaciones son posibles?
 - [f [1,2]] = 2 y [f [True,True]] = 1
 - $\llbracket f [1,2] \rrbracket = 1$ y $\llbracket f [True, True] \rrbracket = 1$
 - [f [1,2]] = 1 y [f [True,True]] = 2

 - O Solo dos
 - O Solo una
- 185. La función f definida por las siguientes ecuaciones:
- f x False = True
- f False y = True
- f True True = False
- \bigotimes Es estricta en el segundo argumento pero no en el primero
- O No es estricta en ninguno de sus argumentos
- O Es estricta en sus dos argumentos
- 186. Sean las funciones
 - f x y = if x > 0then 1 else y
 - g x = if x > 0 then 1 else 0
 - h x y = (g.(f x)) y
 - ⊗ La función h es estricta en el primer argumento pero no en el segundo
 - O La función h no es estricta en ninguno de sus argumentos
 - O La función h es estricta en sus dos argumentos
- 187. Considérese el programa
 - f y 0 = g y
 - $f \circ x = h \times (x*x)$
 - g x = if x > 0 then 1 else 0
 - h x y = if x > y then 1 else 0
 - $\bigcirc\;$ La función ${\tt f}$ es estricta en el segundo argumento pero no en el primero

O La función f no es estricta en ninguno de sus argumentos

🛇 La función f es estricta en sus dos argumentos

188. Considérese el programa

```
f 0 y = g y
f x 0 = h x (x*x)
g x = if x > 0 then 1 else 0
h x y = if x > y then 1 else 0
```

- O La función f es estricta en el primer argumento pero no en el segundo
- O La función f no es estricta en ninguno de sus argumentos
- 🛇 La función f es estricta en sus dos argumentos
- 189. Considérese el programa

- O La función f no es estricta en ninguno de sus argumentos
- O La función f es estricta en sus dos argumentos
- 190. La función f definida por las siguientes ecuaciones:

- O No es estricta en ninguno de sus argumentos
- 🛇 Es estricta en el primer argumento pero no en el segundo
- O Las dos anteriores son falsas.
- 191. Sea la función f definida por las siguientes ecuaciones:

y considérense las siguientes afirmaciones: (a) [f e \bot] = \bot , para toda expresión e (b) [f \bot e] = \bot , para toda expresión e

- \bigcirc (a) y (b) son ciertas
- \bigotimes (a) es cierta y (b) es falsa
- O Las dos anteriores son falsas.
- 192. Considérese el programa

- \bigcirc Existen e, e' tales que ni la evaluación de (f e mal) ni la de (f mal e') dan error
- \bigcirc Para todo e, e' f e mal y f mal e' dan error
- \times Las dos anteriores son falsas.

```
193. Sea f definida por las siguientes ecuaciones:
                                                                          True
                                                                                  y sea mal = head [].
                                                   f
                                                       False
                                                                        = True
                                                   f
                                                                        = False
    ¿Cuál de las siguientes afirmaciones es cierta?
    \bigcirc f mal e da error de ejecución, para cualquier expresión e
     \bigotimes f e mal da error de ejecución, para cualquier expresión e
    O f mal True se evalúa a False
194. Sea f definida por las siguientes ecuaciones:
                                                   f
                                                               False
                                                                        = True
                                                                                  y sea mal = head [].
                                                   f
                                                       False
                                                                        = True
                                                                    У
                                                   f
                                                        True
                                                                        = False
                                                                 True
     ¿Cuál de las siguientes afirmaciones es cierta?
     O La evaluación de
                           f mal e da error, para cualquier expresión e
     f e mal da error, para cualquier expresión e
    \bigcirc f mal True se evalúa a False
195. Sea f definida por las siguientes ecuaciones:
                                                   f
                                                                        = True
                                                            х
                                                               False
                                                   f
                                                                        = False
                                                        True
                                                                 True
    y sea mal = head []. ¿Cuál de las siguientes afirmaciones es falsa?
    f mal e da error, para cualquier expresión e
     O La evaluación de
                           {\tt f}\ e\ {\tt mal}
                                      da error, para cualquier expresión e cuya evaluaci
     'on termine
     196. Considérense las definiciones:
                                     fxy
                                               x < y
                                               otherwise
                                              | x > = 0
     ¿Qué afirmación es correcta?
     \bigcirc f x y tiene un valor definido para valores cualesquiera de x e y
     \bigotimes f x y tiene un valor definido \Leftrightarrow x = 0 \lor x > y
    O La definición es errónea y será rechazada por el sistema
197. Considérese el programa
             f x 0 = g x
             f x y = h x
             g x = if x > 0 then 1 else 0
             h x = 0

    La función f no es estricta en ninguno de sus argumentos

     O La función f es estricta en sus dos argumentos
      Las dos anteriores son falsas.
198. Sea f definida por las siguientes ecuaciones:
                                                                     = False ¿Cuál de las siguientes afirmaciones es
                                                         Х
                                                             False
                                                              True
                                                         У
    cierta?
```

O La función es estricta en sus dos argumentos

	 \text{\$\}\$}}}\$}}}}}} \end{lightiles }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
199.	Sea f definida por las siguientes ecuaciones: f x False = x ; Cuál de las siguientes afirmaciones es f y True = not y cierta? La función es estricta en sus dos argumentos La función es estricta en el segundo pero no en el primer argumento Las dos anteriores son falsas.
200.	Sea f definida por las siguientes ecuaciones: f x False = True ¿Cuál de las siguientes afirmaciones es f True True = False cierta? La función es estricta en sus dos argumentos La función es estricta en el segundo pero no en el primer argumento Las dos anteriores son falsas.
201.	Dada la definición del tipo data $T = A \mid B \mid C \mid T$, considérese su dominio \mathcal{D}_T , y el orden de aproximación sobre él \sqsubseteq . ¿Cuál de las siguientes afirmaciones es cierta? $\bigcirc A \sqsubseteq B \sqsubseteq C \mid A \mid B$ $\bigcirc \mathcal{D}_T$ es finito y \bot es el elemento mínimo para \sqsubseteq \bigcirc Las dos anteriores son falsas.
2 <mark>02</mark> ,	Dada la definición del tipo data $T = A \mid B \mid C \mid T$, considérese su dominio \mathcal{D}_T , y el orden de aproximación sobre él \sqsubseteq . ¿Cuál de las siguientes afirmaciones es cierta? \bigcirc A y B son los únicos maximales para \sqsubseteq \bigcirc A y B son maximales para \sqsubseteq pero no son los únicos \bigcirc Las dos anteriores son falsas.
203.	Considérese la definición del tipo data $T = A \mid B \mid C \mid T \mid T$, y sea \sqsubseteq el orden de información o de aproximación sobre los valores de T . ¿Cuál de las siguientes afirmaciones es cierta? $\bigcirc \perp \sqsubseteq A \sqsubseteq B \sqsubseteq C \perp \bot$ $\bigcirc A y B son los únicos valores maximales para \sqsubseteq\bigotimes \perp \sqsubseteq C \perp \bot \sqsubseteq C \perp B \sqsubseteq C \mid A \mid B$
204.	Considérese la definición del tipo data $T = A \mid B \mid C \mid T \mid T$, y sea \sqsubseteq el orden de información o de aproximación sobre los valores de T . ¿Cuál de las siguientes afirmaciones es cierta? $\bigcirc \perp \sqsubseteq A \sqsubseteq B \sqsubseteq C \perp \bot$ $\bigotimes A y B \text{ son valores maximales para } \sqsubseteq$ $\bigcirc \perp \sqsubseteq C A \perp \sqsubseteq C \perp B \sqsubseteq C \perp B$
2 <mark>05.</mark>	Considérese la definición del tipo data $T = A \mid B \mid C \mid T \mid T$, y sea \sqsubseteq el orden de información o de aproximación sobre los valores de T . ¿Cuál de las siguientes afirmaciones es falsa ? $\bigcirc \bot \sqsubseteq C \bot \bot \sqsubseteq C \land A$ $\bigcirc C \land A$ es un valor maximal para $\sqsubseteq C \lor \bot \sqsubseteq C \lor B \sqsubseteq C \lor B \lor \Box C \lor A \lor B$

206.	En lo que sigue, \sqsubseteq indica el orden de aproximación entre valores semánticos. ¿Cuál de las siguientes afirmaciones es cierta? \bigcirc $[\bot]$ \sqsubseteq $[0]$ \sqsubseteq $[0,\bot]$ \bigcirc $[\bot]$ \sqsubseteq $[0,\bot]$ \bigcirc $[\bot]$ \sqsubseteq $[\bot,\bot]$ \sqsubseteq $[0,\bot]$ \bigcirc \bot \sqsubseteq $[\bot,\bot]$ \sqsubseteq $[0,\bot]$
207.	En lo que sigue, \sqsubseteq indica el orden de aproximación entre valores semánticos. ¿Cuál de las siguientes afirmaciones es cierta? \bigcirc [] \sqsubseteq [\bot] \sqsubseteq [\bot , \bot] \sqsubseteq [0, \bot] \bigcirc [\bot] \sqsubseteq [\bot , \bot] \sqsubseteq [0, \bot] \bigcirc Las dos anteriores son falsas.
208.	En lo que sigue, \sqsubseteq indica el orden de aproximación entre valores semánticos del tipo [Int]. ¿Cuál de las siguientes afirmaciones es falsa? \bigcirc \bot \sqsubseteq $[\bot]$ \sqsubseteq $[0]$ \bigotimes $[\bot]$ \sqsubseteq $[\bot,\bot]$ \sqsubseteq $[0,\bot]$ \bigcirc \bot \sqsubseteq $[\bot,\bot]$ \sqsubseteq $[0,\bot]$
209.	El valor de la expresión let x=1:3:x in take 3 x es: ⊗ [1,3,1] ○ ⊥, porque la evaluación no termina ○ Hay un error sintáctico porque x no puede aparecer en el lado derecho de let x=
210.	El valor de la expresión let x=1:3:x in head (x ++ x) es: ⊗ 1 ○ ⊥, porque la evaluación no termina ○ Hay un error sintáctico porque x no puede aparecer en el lado derecho de let x=
211.	El valor de la expresión let x= reverse (x++[1]) in head x es: ○ 1 ⊗ La evaluación no termina ○ La expresión es incorrecta, porque x no puede aparecer a la derecha de let x =
212.	El valor de la expresión let x=x++x in head (2:x) es: ⊗ 2
213.	El valor de la expresión let x=x++[1] in last x es: ○ 1 ⊗ ⊥, porque la evaluación no termina ○ La expresión está mal construida o mal tipada
214.	Considére la evaluación de las expresiones let x=2:filter (/=2) x in head x let x=2:filter (/=2) x in head (tail x) O Ninguna de las dos termina Una de las dos termina Las dos terminan

215.	El valor de la expresión let x=x++[1] in x!!1 es: ○ 1 ⊗ ⊥, porque la evaluación no termina ○ La expresión está mal construida o mal tipada
216.	El valor de la expresión let x=[1]++x in head (tail x) es: ⊗ 1 ○ La evaluación no termina ○ La expresión está mal construida o mal tipada
217.	El valor de la expresión let x=1:y in head x es: ○ 1 ○ ⊥, porque la evaluación no termina ⊗ La expresión está mal construida o mal tipada
218.	La evaluación de la expresión let x= 1:map (+ 2) x in take 3 x produce como resultado: ⊗ [1,3,5] ∪ Una lista que empieza por 1 y luego da un error ∪ Un error sintáctico o de tipos
219.	La evaluación de la expresión let x= 1:3:map (+ 1) x in last (take 3 x) produce como resultado: ② 2 ③ Un error en ejecución ④ Un error sintáctico o de tipos
220.	La evaluación de la expresión let x= 1:map (+ 1) x in length (take 4 x) produce como resultado:
221.	Dadas las expresiones: length [1] y let x=length [1] in fst (1,x) ⊗ La evaluación de la segunda termina pero la de la primera no ○ La evaluación de ninguna de las dos termina ○ Las dos anteriores son falsas.
222.	Considérense las definiciones $f \ x = 1 + f \ (x+1)$ $g \ x = if \ x \ge 1 \ then \ 1 \ else \ 0$ $h \ x = 3$ $y \ las \ expresiones \ e \equiv g \ (f \ 1) \ y \ e' \equiv h \ (g \ (f \ 1)). \ Entonces:$ $\bigcirc \ Ni \ la \ evaluación \ de \ e \ ni \ la \ de \ e' \ terminan, \ tanto \ al \ usar \ evaluación \ impaciente \ como \ perezosa.$ $\bigcirc \ Ni \ la \ evaluación \ de \ e \ ni \ la \ de \ e' \ terminan \ al \ usar \ evaluación \ impaciente, \ pero \ sí \ lo \ hacen \ (ambas) \ al \ usar \ evaluación \ perezosa.$ $\bigcirc \ Ni \ la \ evaluación \ de \ e \ ni \ la \ de \ e' \ terminan \ al \ usar \ evaluación \ impaciente, \ pero \ sí \ lo \ hacen \ (ambas) \ al \ usar \ evaluación \ perezosa.$ $\bigcirc \ Ni \ la \ evaluación \ son \ falsas.$
223.	Sea e una expresión. ¿Cuál de las siguientes situaciones es posible? Al evaluar e por evaluación impaciente se obtiene el valor 3, y por evaluación perezosa el valor 2 Al evaluar e por evaluación impaciente resulta el valor 3, y por evaluación perezosa el cómputo no termina Al evaluar e por evaluación perezosa resulta el valor 3, y por evaluación impaciente el cómputo no termina

224.	 Por et Se obt Por et El cón Exa Exa 	na expresión. ¿Cuántas o valuación impaciente se o tiene el valor 3 tanto por valuación perezosa el cón valuación perezosa el cón mputo no termina ni por octamente dos actamente tres dos anteriores son falsas	obtiene el v evaluación aputo no te aputo term evaluación	ralor 3, y por evalua n impaciente como e ermina, y por evalu ina, y por evaluacio	ación perezosa el va por evaluación pere ación impaciente el ón impaciente el cón	lor 2. zosa. cómputo termina. mputo no termina.	
225.	 25. Sean las funciones f y g definidas por f x = f x y por g f x = if x==0 then 0 else f (x-1). Entonces, al evaluar la expresión g f 1: ○ Con evaluación perezosa se obtiene el valor 0, y con evaluación impaciente el cómputo no termina. ○ Tanto con evaluación perezosa como con evaluación impaciente se obtiene el valor 0. ⊗ Tanto con evaluación perezosa como con evaluación impaciente el cómputo no termina. 						
226.	Entonce Cor Tan	s funciones f y g definida es, al evaluar la expresión n evaluación perezosa se e to con evaluación perezo to con evaluación perezo	n f g 1: obtiene el s sa como co	valor 0, y con evalu on evaluación impac	ación impaciente el ciente se obtiene el v	cómputo no termina. valor 0.	
227.	Entonce ○ Con ⊗ Cor	s funciones f y g definida es, al evaluar la expresión n evaluación perezosa se o n evaluación perezosa se o nto con evaluación perezo	n f g [2] obtiene el v obtiene el v	l: valor 2, y con evalua valor 1.	ación impaciente el	cómputo no termina.	(tail x).
228.	LasSolo	de las dos siguientes exp do x <- getChar x dos la primera dos anteriores son falsas		epresenta correctam do x <- getChar return x		I/0?	
229.	¿Cuál d	le las siguientes expresion	nes denota	correctamente la ac	cción de leer un cara	ácter y escribirlo dos vec	es?
		<pre>x=getChar in [x,x] x <- getChar return x return x x <- getChar putStr [x,x]</pre>					
230.	Considé	érense las definiciones:	f:: I0 f = do	<pre>() x <- getChar print x</pre>	g = do	x <- f print x	

Entonces, la evaluación de g tiene por efecto:

 Leer un carácter y escribirlo dos veces
 g no llegará a evaluarse pues hay errores de tipo en ese código
 Las dos anteriores son falsas.