

ENPM662(Robot Modelling)

FORMAL REPORT

PROJECT

Non-linear Control

Author:
Akwasi A. Obeng

UID: 117000801

December 08, 2019

Contents

1	Problem Statement	2
2	Dynamics(Question A)2.1 Lagrangian2.2 Equation of Motion	2 2 3
3	Linearization (Question B)	4
4	Controllability (Question C)	5
5	FeedBack and Linear Quadratic Regulator (Question D)	7
6	Observability (Question E)	7
7	Luenberger Observer (Question F)	7
8	LQG (Question G)	10
9	Appendix 9.1 Code for Dynamics Calculations	
	9.3 Code for LQG	11

1 Problem Statement

2 Dynamics(Question A)

2.1 Lagrangian

Potential Energy

The potential energy associated with m_1,M and m_2 are written obtained as follows. Setting a reference point of U=0 at the origin we get

$$V_{m_1} = -m_1 * l_1 cos(\theta_1(t)) \tag{1}$$

$$V_{m_2} = -m_2 * l_2 cos(\theta_2(t)) \tag{2}$$

$$V_M = 0 (3)$$

$$V = V_{m_1} + V_{m_2} + V_M \tag{4}$$

Kinetic Energy

The Kinetic energy associated with m_1,M and m_2 are written obtained as follows

$$T_{m_1} = \frac{1}{2} m_1 (\frac{\mathrm{d}x(t)}{\mathrm{d}t})^2 + \frac{1}{2} m_1 l_1^2 (\frac{\mathrm{d}\theta_1}{\mathrm{d}t})^2 - m_1 l_1 \cos \theta_1(t) \frac{\mathrm{d}\theta_1}{\mathrm{d}t} \frac{\mathrm{d}x}{\mathrm{d}t}$$
 (5)

$$T_{m_2} = \frac{1}{2}m_2(\frac{\mathrm{d}x(t)}{\mathrm{d}t})^2 + \frac{1}{2}m_2l_2^2(\frac{\mathrm{d}\theta_2}{\mathrm{d}t})^2 - m_2l_2\cos\theta_2(t)\frac{\mathrm{d}\theta_2}{\mathrm{d}t}\frac{\mathrm{d}x}{\mathrm{d}t}$$
(6)

$$T_M = \frac{1}{2}M(\frac{\mathrm{d}x}{\mathrm{d}t})^2 \tag{7}$$

$$T = T_{m_1} + T_{m_2} + T_M (8)$$

Lagrangian

The lagrangian is calculated as T-V and is obtained as follows

$$L = T - V$$

$$= \frac{1}{2} m_1 (\frac{\mathrm{d}x(t)}{\mathrm{d}t})^2 + \frac{1}{2} m_1 l_1^2 (\frac{\mathrm{d}\theta_1}{\mathrm{d}t})^2 - m_1 l_1 \cos \theta_1(t) \frac{\mathrm{d}\theta_1}{\mathrm{d}t} \frac{\mathrm{d}x}{\mathrm{d}t} +$$

$$\frac{1}{2} m_2 (\frac{\mathrm{d}x(t)}{\mathrm{d}t})^2 + \frac{1}{2} m_2 l_2^2 (\frac{\mathrm{d}\theta_2}{\mathrm{d}t})^2 - m_2 l_2 \cos \theta_2(t) \frac{\mathrm{d}\theta_2}{\mathrm{d}t} \frac{\mathrm{d}x}{\mathrm{d}t} +$$

$$\frac{1}{2} M (\frac{\mathrm{d}x}{\mathrm{d}t})^2 + m_1 * l_1 \cos(\theta_1(t)) + m_2 * l_2 \cos(\theta_2(t))$$
(10)

(16)

2.2 Equation of Motion

$$0 = -m_1 l_1 \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} \cos \theta_1(t) + m_1 l_1^2 \frac{\mathrm{d}^2 \theta_1}{\mathrm{d}t^2} + mg l_1 \sin \theta_1(t)$$
 (11)

$$0 = -m_2 l_2 \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} \cos \theta_2(t) + m_2 l_2^2 \frac{\mathrm{d}^2 \theta_2}{\mathrm{d}t^2} + mg l_2 2 \sin \theta_2(t)$$
 (12)

$$F = \frac{d^2 x(t)}{dt^2} [M + m_1 + m_2] - m_1 l_1 \left[\frac{d^2 \theta_1(t)}{dt^2} cos(\theta_1(t)) - \sin \theta_1(t) \left(\frac{d\theta_1}{dt} \right)^2 \right] - m_2 l_2 \left[\frac{d^2 \theta_2}{dt^2} \cos \theta_2(t) - \sin \theta_2(t) \left(\frac{d\theta_2}{dt} \right)^2 \right].$$
(13)

NB.Refer to Appendix(Code for Dynamics) on how this was obtained

The equations obtained above can be further simplified to obtain the equation stated below

Simplification

Make $\frac{d^2\theta_2(t)}{dt^2}$ and $\frac{d^2\theta_1(t)}{dt^2}$ the subject of equations 11 and 12 respectively. Then substitute into equation 13 to get the equation below.

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \frac{-\frac{g}{2}[m_1 \sin(2\theta_1(t)) + m_2 \sin(2\theta_2(t))] - m_1 l_1 \sin(\theta_1(t)) (\frac{\mathrm{d}\theta_1(t)}{\mathrm{d}t})^2 - m_2 l_2 \sin(\theta_2(t)) (\frac{\mathrm{d}\theta_2}{\mathrm{d}t})^2 + F}{M + m_1 \sin^2(\theta_1(t)) + m_2 \sin^2(\theta_2(t))}$$
(14)

Resubstitue the equation above into equation 11 and 12 to get the following.

$$\frac{d^{2}\theta_{1}}{dt^{2}} = \frac{\frac{\cos(\theta_{1})}{l_{1}} \left(F - \frac{m_{1}g\sin(2\theta_{1})}{2} - \frac{m_{2}g\sin(2\theta_{2})}{2} - m_{1}l_{1}\sin\theta_{1}\left(\frac{d\theta_{1}}{dt}\right)^{2} - m_{2}l_{2}\sin\theta_{2}\left(\frac{d\theta_{2}}{dt}\right)^{2}\right)}{M + m_{1}\sin^{2}(\theta_{1}(t)) + m_{2}\sin^{2}(\theta_{2}(t))} \tag{15}$$

$$\frac{d^{2}\theta_{2}}{dt^{2}} = \frac{\frac{\cos(\theta_{2})}{l_{2}} \left(F - \frac{m_{1}g\sin(2\theta_{1})}{2} - \frac{m_{2}g\sin(2\theta_{2})}{2} - m_{1}l_{1}\sin\theta_{1}\left(\frac{d\theta_{1}}{dt}\right)^{2} - m_{2}l_{2}\sin\theta_{2}\left(\frac{d\theta_{2}}{dt}\right)^{2}\right)}{M + m_{1}\sin^{2}(\theta_{1}(t)) + m_{2}\sin^{2}(\theta_{2}(t))}$$

3

3 Linearization (Question B)

A non linear system, F(X, U) with state space euation $\frac{dX}{dt} = F(X, U)$ can be linearized with the equation stated below.

$$\delta_x = A_F \frac{\mathrm{d}x(t)}{\mathrm{d}t} + B_F \frac{\mathrm{d}x(t)}{\mathrm{d}t} \tag{17}$$

where $A_F = \nabla_x F, B_F = \nabla_u F$, U(input) and X(State)

Given the equation above, the following state space is chosen for the Dynamic problem.

$$X = \begin{bmatrix} x & \frac{\mathrm{d}x}{\mathrm{d}t} & \theta_1 & \frac{\mathrm{d}\theta_1}{\mathrm{d}t} & \theta_2 & \frac{\mathrm{d}\theta_2}{\mathrm{d}t} \end{bmatrix}^T \tag{18}$$

Therefore, the state space equation can be written as

$$\frac{\mathrm{d}X}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x \\ \frac{\mathrm{d}x}{\mathrm{d}t} \\ \theta_1 \\ \frac{\mathrm{d}\theta_1}{\mathrm{d}t} \\ \theta_2 \\ \frac{\mathrm{d}\theta_2}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} f_1(X,U) \\ f_2(X,U) \\ f_3(X,U) \\ f_4(X,U) \\ f_5(X,U) \\ f_6(X,U) \end{bmatrix} = F \tag{19}$$

Based on equation above, the following can be noted

$$f_1(X, U) = \frac{\mathrm{d}x}{\mathrm{d}t} \tag{20}$$

$$f_2(X, U) = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$$
 Refer to Dynamics for equation (21)

$$f_3(X,U) = \frac{\mathrm{d}\theta}{\mathrm{d}t} \tag{22}$$

$$f_4(X, U) = \frac{\mathrm{d}^2 \theta_1}{\mathrm{d}t^2}$$
 Refer to Dynamics for equation (23)

$$f_5(X, U) = \frac{\mathrm{d}\theta_2}{\mathrm{d}t} \tag{24}$$

$$f_3(X,U) = \frac{\mathrm{d}^2}{\mathrm{d}t}$$

$$f_4(X,U) = \frac{\mathrm{d}^2\theta_1}{\mathrm{d}t^2}$$
 Refer to Dynamics for equation (23)
$$f_5(X,U) = \frac{\mathrm{d}\theta_2}{\mathrm{d}t}$$

$$f_6(x,U) = \frac{\mathrm{d}^2\theta_2}{\mathrm{d}t^2}$$
 Refer to Dynamics for equation (25)

(26)

From $A_F = \nabla_x F = \frac{\partial F}{\partial X}$ and $B_F = \nabla_u F = \frac{\partial F}{\partial U}$ we get

$$A_{F} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{m_{1}g}{M} & 0 & -\frac{m_{2}g}{M} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{g}{l_{1}}(1 + \frac{m_{1}}{M}) & 0 & \frac{-m_{2}g}{l_{1}M} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{-m_{1}g}{l_{2}M} & 0 & -\frac{g}{l_{1}}(1 + \frac{m_{2}}{M}) & 0 \end{bmatrix} \qquad B_{F} = \begin{bmatrix} 0 \\ \frac{1}{M} \\ 0 \\ \frac{1}{Ml_{1}} \\ 0 \\ \frac{1}{Ml_{2}} \end{bmatrix}$$

$$(27)$$

Controllability (Question C) 4

Output

Output of langrange Dynamics

Figure 1: lagrange Dynamics

- 5 FeedBack and Linear Quadratic Regulator (Question D)
- 6 Observability (Question E)
- 7 Luenberger Observer (Question F)

Figure 2: State x(t) Linear Response

State x(t) Non Linear Response

Figure 3: State x(t) Non Linear Response

State $\mathbf{x}(\mathbf{t})$ and $\theta_2(t)$ Linear Response

Figure 4: State $\mathbf{x}(\mathbf{t})$ and $\theta_2(t)$ Linear Response

State $\mathbf{x}(\mathbf{t})$ and $\theta_2(t)$ Non-Linear Response

Figure 5: State $\mathbf{x}(\mathbf{t})$ and $\theta_2(t)$ Non-Linear Response

State $\mathbf{x}(\mathbf{t}), \theta_1(t)$ and $\theta_2(t)$ Linear Response

Figure 6: State $x(t), \theta_1 t()$ and $\theta_2(t)$ Linear Response

State $\mathbf{x}(\mathbf{t}), \theta_1(t)$ and $\theta_2(t)$ Non-Linear Response

Figure 7: State $x(t), \theta_1 t()$ and $\theta_2(t)$ Non-Linear Response

8 LQG (Question G)

9 Appendix

9.1 Code for Dynamics Calculations

Output

Output of langrange Dynamics

Figure 8: lagrange Dynamics

9.2 Code for LQR

9.3 Code for LQG