CheatSheet pour l'Algèbre Linéaire

Yehor KOROTENKO

March 11, 2025

1 Éspaces euclidiens

Proposition 1.1. Endomorphisme $f: E \to E$ un drapeau invariant (i.e $f(E_i) \subset E_i$) \iff Mat(f) triangulaire supérieure

1.1 Produits scalairs et normes

Définition 1.1. Une forme bilinéaire sur E (produit scalair) un espace euclidien est une application:

$$f: E \times E \longrightarrow \mathbb{R}$$

 $(u, v) \longmapsto f(u, v)$

qui vérifie ces propriétés:

1. Bilinéarité:

(a)
$$f(u + \lambda v, w) = B(u, w) + \lambda B(v, w)$$
 avec $u, v, w \in E$ et $\lambda \in \mathbb{R}$

(b)
$$f(u, v + \lambda w) = B(u, v) + \lambda B(v, w)$$
 avec $u, v, w \in E$ et $\lambda \in \mathbb{R}$

2. Symétrie:
$$B(u,v) = B(v,u)$$
 $\forall u,v \in E$

3. **Définie positive**:
$$\forall u \in E, B(u, u) > 0$$

4. **Définie**:
$$B(u,u) = 0 \iff u = 0$$

Remarque. Le produit vectoriel est noté: $\langle .,. \rangle$

Définition 1.2. La norme $\forall X \in E$:

$$||X|| = \sqrt{\langle X, X \rangle}$$

Proposition 1.2. Les formules utiles: (pour $X, Y \in E$)

1.
$$|\langle X, Y \rangle| < ||X|| \cdot ||Y||$$

2.
$$||X + Y||^2 = ||X||^2 + 2\langle X, Y \rangle + ||Y||^2$$

3.
$$||X + Y||^2 + ||X - Y||^2 = 2(||X||^2 + ||Y||^2)$$

4.
$$\langle X, Y \rangle = \frac{1}{4} (\|X + Y\|^2 - \|X - Y\|^2)$$

1.2 Orthogonalité

Définition 1.3. $u, v \in E$ sont **orthogonaux** si $\langle u, v \rangle = 0$ et on les notes $u \perp v$

Définition 1.4. Orthogonale de A:

$$A^{\perp} = \{ u \in E \mid \langle u, v \rangle = 0 \quad \forall v \in A \}$$

aussi connu comme complement orthogonale.

Proposition 1.3. Si E est un espace euclidien et $A \subset E$ son sous-espace vectoriel, alors:

$$E = A \oplus A^{\perp}$$

i.e tout vecteur $x \in E$ peut s'écrit comme x = e + e' où $e \in A$ et $e' \in A'$.

Proposition 1.4. Si f est une projection orthogonale sur $F \subset E$, alors:

$$f(f(x)) = f(x) \quad \forall x \in E$$

Définition 1.5. La projection orthogonale sur un sous-espace $A \subset E$ est une application:

$$p_F: E \longrightarrow F$$

 $x \longmapsto p_F(x = e + e') = e$

Proposition 1.5. La distance d'un vecteur x à un sous-espace F est:

$$||x-p_F(x)||$$

Définition 1.6. Une isométrie de E est un endomorphisme tel que:

$$\forall x, y \in E, \quad \langle f(x), f(y) \rangle = \langle x, y \rangle$$

 $de\ plus,$

$$\forall x \in E, \quad \|f(x)\| = \|x\|$$