Espaces vectoriels

- 1. Démontrer à l'aide d'un contre-exemple que les ensembles suivants, munis des lois usuelles, ne sont pas des espaces vectoriels.
 - a) $A = \{(x, y) \in \mathbb{R}^2 / x \ge 0\}$,
 - b) $B = \{(x, y) \in \mathbb{R}^2 / x 2y + 2 = 0\},$
 - c) $C = \{(x,y) \in \mathbb{R}^2 / x + y = 0\} \cup \{(x,y) \in \mathbb{R}^2 / 2x y = 0\},$
 - d) $D = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 \le 1\}$ (boule unité),
 - e) $E = \{P \in \mathbb{R}[x] / \deg(P) = 3\}$.
- 2. Déterminer si les vecteurs \vec{a}_i , $i=1,2,\ldots$, sont linéairement dépendants ou non. Dans quel cas est-il possible d'exprimer le vecteur \vec{v} comme combinaison linéaire de ces vecteurs?
 - a) $\vec{a}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{a}_2 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$; $\vec{v} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.
 - b) $\vec{a}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\vec{a}_2 = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$; $\vec{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
 - c) $\vec{a}_1 = \vec{x} \vec{y}$, $\vec{a}_2 = \vec{y} + \vec{z}$; $\vec{v} = -\vec{x} + \vec{y} + 2\vec{z}$, où \vec{x} , \vec{y} , \vec{z} sont trois vecteurs linéairement indépendants de \mathbb{R}^3 .
 - d) $\vec{a}_1 = \begin{pmatrix} 1 \\ -3 \\ 7 \end{pmatrix}$, $\vec{a}_2 = \begin{pmatrix} 2 \\ 0 \\ -6 \end{pmatrix}$, $\vec{a}_3 = \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$; $\vec{v} = \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix}$.
 - e) $\vec{a}_1 = \begin{pmatrix} 2 \\ -3 \\ 7 \end{pmatrix}$, $\vec{a}_2 = \begin{pmatrix} 3 \\ -1 \\ -4 \end{pmatrix}$; $\vec{v} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
 - f) $\vec{a}_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, $\vec{a}_2 = \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}$; $\vec{v} = \begin{pmatrix} -6 \\ 12 \\ -18 \end{pmatrix}$.
- 3. Discuter, suivant les valeurs de $p \in \mathbb{R}$, la dépendance linéaire des vecteurs de \mathbb{R}^3 :
 - a) $\vec{a} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} -3 \\ p^2 4p 3 \\ p^2 + p + 1 \end{pmatrix}$.
 - b) $\vec{a} = \begin{pmatrix} p \\ 1 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ p \\ 1 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 1 \\ 1 \\ p \end{pmatrix}$.

c)
$$\vec{a} = \begin{pmatrix} p-2\\2\\2p \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 2\\p\\2(p+1) \end{pmatrix}$, $\vec{c} = \begin{pmatrix} -1\\2\\p+1 \end{pmatrix}$.

4. a) Soit $P_2[t]$ l'espace vectoriel des polynômes en t à coefficients réels, de degré plus petit ou égal à 2.

On considère les quatre vecteurs de $P_2[t]$ suivants :

$$f_1 = t + 2t^2$$
 $f_3 = 2 + t$
 $f_2 = 1 + 2t + t^2$ $f_4 = 1 - 3t - t^2$

 f_1 , f_2 , f_3 sont-ils linéairement indépendants?

Exprimer f_4 comme une combinaison linéaire de f_1 , f_2 , f_3 .

Cette combinaison linéaire est-elle unique?

b) Mêmes questions avec :

$$A_1 = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$$
 $A_2 = \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}$ $A_3 = \begin{pmatrix} 1 & -5 \\ -4 & 0 \end{pmatrix}$ $A_4 = \begin{pmatrix} 5 & -11 \\ -6 & 2 \end{pmatrix}$

lorsque $A_i \in \mathbb{M}(2, \mathbb{R}), i = 1, \ldots, 4.$

5. Déterminer $t \in \mathbb{R}$ pour que les matrices suivantes soient linéairement dépendantes :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & t-2 \\ 2t & 10 \end{pmatrix}.$$

- **6.** Montrer, si il y a lieu, que les ensembles suivants sont des sous-espaces vectoriels (noté : <u>sev</u> par la suite) :
 - a) $V = \{ f : \mathbb{R} \longrightarrow \mathbb{R} \mid f \text{ est paire } \},$
 - b) $V = \{(x; y) \in \mathbb{R}^2 \mid x^2 + y = 0\},\$
 - c) $V = \{X \in \mathbb{M}_n \mid AX = XA \text{ où } A \in \mathbb{M}_n \text{ est fixée} \},$
 - d) $V = \left\{ \begin{pmatrix} a & b \\ 1 & c \end{pmatrix} \in \mathbb{M}(2, \mathbb{R}) \mid a, b, c \in \mathbb{R} \right\},$
 - e) $V = \{X \in \mathbb{M}_n \mid M(X + X^t) = 0 \text{ où } M \in \mathbb{M}_n \text{ est fixée et } \det M = 0\},$
 - f) $V = \{(x; y; z) \in \mathbb{R}^3 \mid 2x + 3y 4z = 0\},\$
 - g) $V = \{(a; b) \in \mathbb{R}^2 \mid a > 0\},\$
 - h) $V = \{ p \in P_3[x] \mid p(1) = 0 \text{ et } p'(1) = 0 \}.$

(Rappel : $P_n[x]$ est l'espace vectoriel des polynômes en x à coefficients réels, de degré plus petit ou égal à n)

7. Soit E un espace vectoriel réel et $\vec{v}_1, \ldots, \vec{v}_m, \vec{v}_{m+1}$ des vecteurs de E. Montrer la proposition suivante :

si \vec{v}_{m+1} est une combinaison linéaire de $\vec{v}_1, \ldots, \vec{v}_m$

alors
$$[\vec{v}_1, \ldots, \vec{v}_m, \vec{v}_{m+1}]_{sev} = [\vec{v}_1, \ldots, \vec{v}_m]_{sev}$$

8. a) Chercher les équations paramétriques et cartésiennes des sev de \mathbb{R}^3 engendrés par :

$$i) \ \vec{a} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

$$ii) \ \vec{a} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 2 \\ 4 \\ 10 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} -3 \\ -6 \\ -15 \end{pmatrix}$$

$$iii) \ \vec{a} = \begin{pmatrix} 12 \\ 0 \\ 8 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 9 \\ 0 \\ 6 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} -6 \\ 0 \\ -2 \end{pmatrix}$$

b) Déterminer x, y, z pour que \vec{v} appartienne au sev de \mathbb{R}^3 engendré par :

i)
$$\vec{a} = \begin{pmatrix} -4 \\ 2 \\ 1 \end{pmatrix}$$
 et $\vec{b} = \begin{pmatrix} 12 \\ -6 \\ -3 \end{pmatrix}$ avec $\vec{v} = \begin{pmatrix} 4 \\ y \\ z \end{pmatrix}$
ii) $\vec{a} = \begin{pmatrix} 3 \\ 1 \\ -5 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}$ et $\vec{c} = \begin{pmatrix} -9 \\ -3 \\ 15 \end{pmatrix}$ avec $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ z \end{pmatrix}$
iii) $\vec{a} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$ et $\vec{b} = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$ avec $\vec{v} = \begin{pmatrix} x \\ -1 \\ 4 \end{pmatrix}$

9. Soit E un espace vectoriel réel.

On considère l'ensemble $S=\{\vec{a}_1\,,\,\vec{a}_2\,,\,\dots,\vec{a}_n\}\subset E.$ On suppose que ces n vecteurs sont linéairement indépendants.

Soient encore $S_1, S_2 \subset S$ et $S_1, S_2 \neq \emptyset$.

On note E_i le sous-espace vectoriel de E engendré par les vecteurs de S_i , i=1,2. Montrer l'équivalence suivante :

$$S_1 \cap S_2 = \emptyset \iff E_1 \cap E_2 = \{\vec{0}\}$$

10. Soient les vecteurs \vec{x} , \vec{y} , \vec{z} et \vec{u} , \vec{v} , \vec{w} de \mathbb{R}^3 avec :

$$\vec{u} = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \qquad \vec{v} = \begin{pmatrix} 2\\t-1\\2t \end{pmatrix}, \qquad \vec{w} = \begin{pmatrix} -1\\2\\t \end{pmatrix}.$$

a) On considère le sous-espace vectoriel de \mathbb{R}^3 défini par $W=[\vec{x}\,,\,\vec{y}\,,\,\vec{z}]_{\rm sev}\,.$ Sachant que :

$$\det[\,\vec{x} - \vec{y};\,\vec{x};\,\vec{z} - \vec{u}\,] \,+\, \det[\,\vec{x} + \vec{u};\,\vec{y};\,\vec{u}\,] \,-\, 12 \,=\, \det[\,3\vec{w};\,2\vec{u};\,\vec{v}\,] \,,$$

déterminer toutes les valeurs de $t \in \mathbb{R}$ pour que $\dim W < 3$.

Pour la suite du problème, on pose t = 1.

Soit V le sous-espace vectoriel engendré par \vec{u} , \vec{v} et \vec{w} .

- b) Est-il possible d'exprimer tout vecteur $\vec{a} \in V$ comme une combinaison linéaire non unique de \vec{u} , \vec{v} et \vec{w} ? Justifier votre réponse par un calcul.
- c) Déterminer une telle combinaison (dépendant d'un paramètre) lorsque $\vec{a}=\begin{pmatrix}1\\1\\2\end{pmatrix}$.

Puis en déduire les coefficients d'une combinaison linéaire nulle de \vec{a} , \vec{u} , \vec{v} et \vec{w} qui ne soit pas triviale (c'est-à-dire dont les coefficients ne soient pas tous nuls).

- 11. Soit $\mathbb{R}[x]$ l'espace vectoriel des polynômes en x.
 - a) Les polynômes $f_1 = x^3 x^2$, $f_2 = x^3 x$, $f_3 = x^3 2x^2 + x$ sont-ils linéairement indépendants?
 - b) Quelle est la dimension du sev H engendré par f_1 , f_2 , f_3 ? Donner une base de ce sev.
 - c) Le polynôme $p(x) = -2x 3x^2 + 5x^3$ appartient-ils à H? Si oui, donner ses composantes dans la base choisie.
- 12. Soit P_n l'espace vectoriel des polynômes en x, à coefficients réels et de degré plus petit ou égal à n.

Pour tout entier k = 0, 1, ..., n, on pose :

$$p_k(x) = 1 + x + \dots + x^k$$
, degré $p_k(x) = k$

- a) Montrer que $\mathcal{B}(p_0(x), p_1(x), ..., p_n(x))$ est une base de P_n .
- b) Déterminer dans cette base les composantes d'un polynôme quelconque $q(x) = \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \dots + \lambda_n x^n$.
- 13. On donne deux espaces vectoriels réels avec leurs lois : $(E, +_E, \cdot_E)$, et $(F, +_F, \cdot_F)$. Ils sont de dimension n et m respectivement et ont pour bases :

$$\mathcal{B}_{E}(\vec{e}_{1},\ldots,\vec{e}_{n})$$
 et $\mathcal{B}_{F}(\vec{u}_{1},\ldots,\vec{u}_{m})$.

- a) Définir une loi de composition interne, notée "+", et une loi de composition externe, notée " \cdot ", telles que l'ensemble $(E \times F, +, \cdot)$ est un espace vectoriel réel. Déterminer l'élément neutre de cet ensemble.
- b) Montrer que

$$\mathcal{B}_{E \times F} = ((\vec{e_1}, \vec{0_F}), \dots, (\vec{e_n}, \vec{0_F}), (\vec{0_E}, \vec{u_1}), \dots, (\vec{0_E}, \vec{u_m}))$$

est une base de $E \times F$ et en déduire la dimension de cet ensemble.

c) On pose $E=\mathbb{R}^2$ et $F=P_1$ (ensemble des polynômes de degré plus petit ou égal à 1).

Expliciter la base de $\mathbb{R}^2 \times P_1$ et donner les composantes d'un élément quelconque de cet ensemble.

Algèbre linéaire

14. Soit V le sev de $M(2, \mathbb{R})$ engendré par :

$$A = \begin{pmatrix} 2 & 2 \\ -2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}.$$

Les matrices A,B et C sont-elles linéairement indépendantes ou dépendantes ? Déterminer les composantes de $M=\begin{pmatrix} 6 & 9 \\ -9 & 3 \end{pmatrix}$ dans une base de V.

15. Soit A une matrice fixée de $\mathbb{M}(n \times p, \mathbb{R})$, l'espace vectoriel des matrices à n lignes et p colonnes.

On considère le sous-espace vectoriel donné V de $\mathbb{M}(p \times r, \mathbb{R})$ et le sous-ensemble suivant de $\mathbb{M}(n \times r, \mathbb{R})$:

$$W = \{ X \in \mathbb{M}(n \times r, \mathbb{R}) \mid \exists P \in V, X = A \cdot P \}.$$

a) Montrer que W est un sous-espace vectoriel de $\mathbb{M}(n \times r, \mathbb{R})$.

b) On fixe n=3, p=r=2, $A=\begin{pmatrix} -3 & 1 \\ -6 & 2 \\ 3 & -1 \end{pmatrix}$ et V est le sous-espace vectoriel des matrices carrées symétriques d'ordre $2:V=\{P\in\mathbb{M}_2\mid P^t=P\}$. Déterminer une base et la dimension de W.

16. On considère $\mathbb{M}(2, \mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre 2 à coefficients réels. Soient :

$$U = \left\{ \begin{pmatrix} a & b \\ 0 & 2a \end{pmatrix} \in \mathbb{M}(2, \mathbb{R}) \mid a, b \in \mathbb{R} \right\} \text{ et les matrices} :$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -6 \\ -2 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}.$$

- a) Montrer que U est un sev de $M(2, \mathbb{R})$.
- b) Calculer la dimension de V, sous-espace de $\mathbb{M}(2,\mathbb{R})$ engendré par A, B, C. Puis donner la forme générale d'une matrice $X \in V$.
- c) Soit $K = \begin{pmatrix} -2 & 0 \\ \alpha & \beta \end{pmatrix} \in \mathbb{M}(2, \mathbb{R})$. Déterminer α et β pour que $K \in U \cap V$.
- 17. Soient $A, B \in \mathbb{M}(2, \mathbb{R})$, 2 matrices fixées et U, V des sev de $\mathbb{M}(2, \mathbb{R})$.
 - a) Montrer que l'ensemble :

$$E=\{Z\in\mathbb{M}(2,\,\mathbb{R})\mid\exists\;X\in U\;\;\text{et}\;\;\exists\;Y\in V\;\;\text{tels que}\;\;Z=AX+YB\}$$
 est un sev de $\,\mathbb{M}(2,\,\mathbb{R}).$

b) On pose
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$
$$U = \left\{ X \in \mathbb{M}(2, \mathbb{R}) \mid \exists a, b, t \in \mathbb{R}, X = \begin{pmatrix} a & b \\ t & 0 \end{pmatrix} \right\}$$

$$V = \left\{ Y \in \mathbb{M}(2, \mathbb{R}) \mid \exists c, d \in \mathbb{R}, Y = \begin{pmatrix} c & c \\ 0 & d \end{pmatrix} \right\}$$

Déterminer une base et la dimension du sev E défini sous a).

c) Soit
$$M = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Montrer que l'ensemble des matrices S solutions de :

$$M(ST - MT) = 0$$
 $\forall T \in M(2, \mathbb{R}), \det T \neq 0$

forme un sous-ensemble de E. Ce sous-ensemble est-il un sev de E?

18. Soit l'ensemble
$$W = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{M}_2(\mathbb{R}) \mid a+d=c-b \right\}$$
.

a) Montrer que W est un sous-espace vectoriel de $M_2(\mathbb{R})$.

On considère le sous-espace vectoriel de $\mathbb{M}_2(\mathbb{R})$ défini par $V = [E_1, E_2, E_3, E_4]_{sev}$ avec :

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, E_4 = \begin{pmatrix} 2 & -3 \\ -1 & 0 \end{pmatrix}.$$

- b) Déterminer une base et la dimension de V. Puis donner l'expression générale d'une matrice $M \in V$.
- c) Montrer que V = W.
- d) On note U le sous-espace vectoriel de $\mathbb{M}_2(\mathbb{R})$ engendré par les matrices S et T suivantes :

$$S = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}, T = \begin{pmatrix} 1 & 0 \\ 1 & 4 \end{pmatrix}$$

Déterminer une base de $U \cap W$.

Soit B une matrice appartenant à $U \cap W$ et telle que $\det B = 2$.

Calculer les composantes de B par rapport à la base choisie.

- 19. Soit $P_3[x]$ l'espace vectoriel des polynômes en x à coefficients réels dont le degré est inférieur ou égal à 3.
 - a) Montrer que $V_a = \{p(x) \in P_3 \mid p(a) = 0\}$ est un sev de $P_3[x]$.
 - b) Soit $W = [p, q, r, s]_{sev}$ où $p = x^3 3x^2 + 2x$, $q = x^3 x^2 4x + 4$, $r = x^2 + 2x$ et s = 5x 2.

Déterminer la dimension de W.

- c) Chercher une base du sev $U = V_1 \cap W$.
- d) Soit $u = -2x^3 + 4x^2 + 2x 4$. Montrer que u est élément de U et donner ses composantes par rapport à la base trouvée.
- e) Montrer que : $V_1 \cap W = V_1 \cap V_2$.

- **20.** On note P_3 l'ensemble des polynômes en x à coefficients réels de degré plus petit ou égal à 3 et F le sous-ensemble suivant : $F = \{s(x) \in P_3 \mid s'(-1) = 0\}$.
 - a) Montrer que F est un sous-espace vectoriel de P_3 .
 - b) On considère les deux sous-espaces vectoriels de P_3 suivants : $U = \{p(x) \in P_3 \mid p(x) = ax^2 + 2bx \text{ et } p'(-1) = 0\} \text{ et } V = [2x^2 6, x + 2]_{\text{sev}}.$ Déterminer une base B et la dimension du sous-espace vectoriel W suivant :

$$W = \{r(x) \in P_3 \mid \exists p(x) \in U, \exists q(x) \in V \text{ tels que } r(x) = p(x) + x q(x)\}$$

- c) Soit $t(x) = -7x^3 x^2 + 19x$. Montrer que $t(x) \in W$ et donner ses composantes par rapport à la base B.
- d) Montrer que $W \subset F$. Compléter la base B afin d'obtenir une base B' de F.
- **21.** Soit E un espace vectoriel réel et F et G deux sous-espaces de E. On définit
 - la somme de F et G, notée F+G, ainsi :

$$F + G = \{ \vec{w} \in E \mid \vec{w} = \vec{u} + \vec{v}, \ \vec{u} \in F, \ \vec{v} \in G \}$$

Pour tout vecteur de F + G, il existe une telle décomposition, mais on ne sait rien sur l'unicité de cette décomposition.

- Lorsque la décomposition de tout vecteur de F + G est unique, on dit que la somme est directe. On note alors cette somme $F \oplus G$.
- a) Montrer que F + G est un sous-espace vectoriel de E.
- b) Etudier succintement la nature géométrique de F+G dans les cas où F et G sont deux droites de l'espace passant par O ou une droite et un plan passant par O.
- c) Montrer que si $F = [\vec{a}_1, ..., \vec{a}_n]_{sev}$ et $G = [\vec{b}_1, ..., \vec{b}_m]_{sev}$ alors $F + G = [\vec{a}_1, ..., \vec{a}_n, \vec{b}_1, ..., \vec{b}_m]_{sev}$.
- d) F est la droite d'équation : $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = k \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$, $k \in \mathbb{R}$ G est le plan d'équation : y+z=0

H est le plan d'équation : x - y = 0

 $\vec{w} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$

Montrer que

- $\vec{w} \in G + H$ et que sa décomposition selon G et H n'est pas unique,
- $\vec{w} \in G + F$ et que sa décomposition selon G et F est unique.

22. Soit E un espace vectoriel réel.

F et G sont deux sous-espace de E, on considère leur somme F+G. Montrer que la somme est directe si et seulement si $F \cap G = \{\vec{0}\}$.

23. a) On note \mathbb{M}_n l'ensemble des matrices d'ordre n.

 $F = \{M \in \mathbb{M}_n \mid M = M^t\}$ est l'ensemble des matrices symétriques d'ordre n. $G = \{M \in \mathbb{M}_n \mid M^t = -M\}$ est l'ensemble des matrices antisymétriques d'ordre n.

Ces deux ensembles sont des sous-espaces vectoriels de \mathbb{M}_n (à montrer éventuellement). Montrer que $\mathbb{M}_n = F \oplus G$.

b) $F = \{M \in \mathbb{M}_n \mid i > j \Rightarrow a_{ij} = 0, i, j = 1, ..., n\}$ est l'ensemble des matrices triangulaires supérieures d'ordre n.

 $G = \{M \in \mathbb{M}_n \mid i < j \Rightarrow a_{ij} = 0, i, j = 1, ..., n\}$ est l'ensemble des matrices triangulaires inférieures d'ordre n.

Ces deux ensembles sont des sous-espaces vectoriels de \mathbb{M}_n (à montrer éventuellement). Montrer que $\mathbb{M}_n = F + G$.

c) On note $\mathcal{F}(\mathbb{R}, \mathbb{R})$ l'ensemble des applications de \mathbb{R} dans \mathbb{R} .

 $F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(x) = f(-x) \}$ est l'ensemble des applications paires.

 $G = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(-x) = -f(x) \}$ est l'ensemble des applications impaires.

Ces deux ensembles sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Montrer que $\mathcal{F}(\mathbb{R}, \mathbb{R}) = F \oplus G$.

9

Réponses

- **2.** a) \vec{a}_1 et \vec{a}_2 sont linéairement indépendants, $\vec{v} = 2\vec{a}_1 \vec{a}_2$.
 - b) \vec{a}_1 et \vec{a}_2 sont linéairement dépendants, il est impossible d'exprimer \vec{v} comme combinaison linéaire de \vec{a}_1 et \vec{a}_2 .

Espaces vectoriels

- c) \vec{a}_1 et \vec{a}_2 sont linéairement indépendants, il est impossible d'exprimer \vec{v} comme combinaison linéaire de \vec{a}_1 et \vec{a}_2 .
- d) \vec{a}_1 , \vec{a}_2 et \vec{a}_3 sont linéairement indépendants, $\vec{v} = -\frac{33}{14}\vec{a}_1 \frac{17}{7}\vec{a}_2 + \frac{43}{14}\vec{a}_3$.
- e) \vec{a}_1 et \vec{a}_2 sont linéairement indépendants, $\vec{v} = \vec{0} = 0 \vec{a}_1 + 0 \vec{a}_2$.
- f) \vec{a}_1 et \vec{a}_2 sont linéairement dépendants, $\vec{v} = -8\vec{a}_1 + \vec{a}_2$: combinaison linéaire non unique.
- **3.** a) p=1: vecteurs linéairement dépendants, $p \neq 1$: vecteurs linéairement indépendants.
 - b) p = -2 ou p = 1: vecteurs linéairement dépendants, $p \notin \{-2, 1\}$: vecteurs linéairement indépendants.
 - c) $p \in \{0, 1, 2\}$: vecteurs linéairement dépendants. $p \notin \{0, 1, 2\}$: vecteurs linéairement indépendants.
- **4.** a) f_1 , f_2 et f_3 sont linéairement indépendants, $f_4 = f_1 - 3 f_2 + 2 f_3$: combinaison linéaire unique.
 - b) A_1 , A_2 et A_3 sont linéairement dépendants, $A_4 = 2 A_1 + 0 A_2 + 3 A_3$: combinaison linéaire non unique.
- 5. t = -6.
- **6.** a) V est un sev de l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} ,
 - b) V n'est pas un sev de \mathbb{R}^2 ,
 - c) V est un sev de \mathbb{M}_n ,
 - d) V n'est pas un sev de \mathbb{M}_2 ,
 - e) V est un sev de \mathbb{M}_n ,
 - f) V est un sev de \mathbb{R}^3 ,
 - g) V n'est pas un sev de \mathbb{R}^2 ,
 - h) V est un sev de $P_3[x]$.

8. a) i) Trois vecteurs linéairement indépendants, ils engendrent \mathbb{R}^3 .

ii) droite:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$
 ou $x = \frac{y}{2} = \frac{z}{5}$.

iii) plan :
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$
 ou $y = 0$.

- b) i) y = -2 et z = -1,
 - ii) z = 15,
 - iii) $\forall x \in \mathbb{R}, \quad \vec{v} \notin [\vec{a}, \ \vec{b}]_{sev}$.
- **10.** a) t = -1 ou t = 2.
 - b) Oui, car \vec{u} , \vec{v} et \vec{w} sont linéairement dépendants.
 - c) Par exemple : $\vec{0} = -\vec{a} 3\vec{u} + 0\vec{v} + 2\vec{w}$.
- 11. a) f_1 , f_2 , f_3 sont linéairement dépendants.
 - b) dim H = 2.
 - c) $p(x) = \frac{7}{2} f_2 + \frac{3}{2} f_3$.
- **14.** $M = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ dans la base (A, B)
- **15.** b) Soient $J = \begin{pmatrix} 1 & 0 \\ 2 & 0 \\ -1 & 0 \end{pmatrix}$ et $K = \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ 0 & -1 \end{pmatrix}$.

(J, K) est une base de W et $\dim W = 2$.

- **16.** b) dim V = 2, $X = \begin{pmatrix} x & 3y \\ y & 2x \end{pmatrix}$.
 - c) $\alpha = 0$ et $\beta = -4$.
- **17.** b) Soient $E_1' = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $E_2' = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $E_3' = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$. (E_1', E_2', E_3') est une base de E et dim E = 3.
 - c) Le sous-ensemble des matrices $\,S\,$ n'est pas un sev de $\,E\,.$

- **18.** b) (E_1, E_2, E_3) est une base de V, dim V = 3.
 - d) Soit $J = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$, (J) est une base de $U \cap W$, $\dim(U \cap W) = 1$.

Il y a deux matrices B:

B = J (composante 1) ou B = -J (composante -1).

- **19.** b) dim W = 3.
 - c) (q, r-s) est une base de U.
 - d) $u = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$ dans la base (q, r s)
- **20.** b) $B = (x^3 3x, x^2 + 2x)$ est une base de W et $\dim W = 2$.
 - c) $t(x) = \begin{pmatrix} -7 \\ -1 \end{pmatrix}$ par rapport à la base B.
 - d) $B' = (x^3 3x, x^2 + 2x, 1)$ est une base de F.