## STOCHASTIC PROCESSES

# Lecture 10: Positive recurrence, Decomposition of state space, Limiting Behavior, Period

Hailun Zhang@SDS of CUHK-Shenzhen

March 3, 2021

## Two Examples

One dimensional symmetric random walk

Reflected random walks

## Positive recurrence criterion

• Let  $N_i(n) = \sum_{k=1}^n 1_{\{X_k=i\}}$  be the number of times visiting state i in [1,n]. Then

$$\mathbb{E}_i(N_i(n)) = \sum_{k=1}^n \mathbb{E}_i 1_{\{X_k = i\}} = \sum_{k=1}^n \mathbb{P}_i \{X_k = i\} = \sum_{k=1}^n P_{ii}^k.$$

## THEOREM

State i is positive recurrent if and only if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} P_{ii}^{k} > 0.$$

• Proof.

# Comparison with recurrence criterion

• Recall that state i is recurrent iff

$$\sum_{k=1}^{\infty} P_{ii}^k = \infty.$$

• State *i* is positive recurrent iff

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} P_{ii}^{k} > 0.$$

## Solidarity of positive recurrence

#### LEMMA 1

Assume states i and j communicate. State i is p.r. iff state j is p.r.

- Proof: there exist  $k_1$  and  $k_2$  such that  $P_{ij}^{k_1} > 0$  and  $P_{ji}^{k_2} > 0$ .
- Assume j is p.r. Then  $\lim_{n\to\infty} (1/n) \sum_{k=1}^n P_{jj}^k > 0$ . Lemma follows from

$$P_{ii}^{k_1+k+k_2} \ge P_{ij}^{k_1} P_{jj}^k P_{ji}^{k_2},$$

$$\frac{1}{n} \sum_{k=1}^{n+k_1+k_2} P_{ii}^k = \frac{1}{n} \sum_{k=1}^{n} P_{ii}^{k_1+k_2} + \frac{1}{n} \sum_{k=1}^{k_1+k_2} P_{ii}^k > 0$$

when n is large enough.

• The proof for solidarity of recurrence is left as exercise.

# Limiting behavior of transition matrix P

- Assume that the DTMC is irreducible.
- If it is positive recurrent, for every pair of states  $i, j \in S$ ,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (P^k)_{ji} = \frac{1}{\mathbb{E}_i(T_i)} > 0.$$

Namely,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} P^k = P^{(\infty)},$$

where 
$$P_{ij}^{(\infty)} = \pi_j = 1/\mathbb{E}_j(T_j)$$
.

• If it is not positive recurrent, for every pair of states

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (P^k)_{ji} = 0.$$

# Communicating classes

#### **DEFINITION**

- (a) A set  $C \subset S$  is said to be a communicating class if i, j communicate for any  $i, j \in C$  and i, j does not communicate if  $i \in C$  and  $j \notin C$ .
- (b) A communicating class is said to be *closed* if  $i \in C$  and  $i \to j$  imply  $j \in C$ .

#### THEOREM

Let C be a communicating class. Then either all states in C are transient or all are recurrent.

#### THEOREM

Every recurrent class is closed.

## Decomposition of states

• The state space

$$S = T \cup C_1 \cup C_2 \cup \dots,$$

where  $C_i$  is a closed, communicating recurrent class, and T the set of transient states.

- For a finite state DTMC, there exists at least one (closed) recurrent class.
- $\bullet$  Counter example when S is infinite.

## A reducible DTMC

Consider the following DTMC.



# Limiting behavior

• compute  $\lim_{n\to\infty} P^n$ .

- $S = T \cup C_1 \cup C_2 = \{3, 4, 5\} \cup \{1, 2\} \cup \{6, 7\}$
- When computing rows 1, 2, you can just forget about states except for 1 and 2 because there is no arrow going out. Same for rows 6, 7.

## Another reducible DTMC

Consider the following DTMC.



# Limiting distribution?

•  $\lim_{n\to\infty} P^n$  does not exist.  $\lim_{n\to\infty} (P^n + P^{n+1})/2$  exists.

| / 5   | 5/13    | 8/13        | 0 | 0 | 0 | 0         | 0 \       |
|-------|---------|-------------|---|---|---|-----------|-----------|
| 5     | 5/13    | 8/13        | 0 | 0 | 0 | 0         | 0         |
| (1/2) | )(5/13) | (1/2)(8/13) | 0 | 0 | 0 | (1/2)(.5) | (1/2)(.5) |
| (.6)  | (5/13)  | (.6)(8/13)  | 0 | 0 | 0 | (.4)(.5)  | (.4)(.5)  |
| 5     | 5/13    | 8/13        | 0 | 0 | 0 | 0         | 0         |
|       | 0       | 0           | 0 | 0 | 0 | .5        | .5        |
|       | 0       | 0           | 0 | 0 | 0 | .5        | .5        |

# Periodicity

#### **DEFINITION**

The period of state i of a DTMC is  $d(i) = \gcd\{n : P_{ii}^n > 0\}$ .

## THEOREM (SOLIDARITY PROPERTY)

If state i and j communicate, then d(i) = d(j).

• Assume  $P_{ij}^{k_1} > 0$  and  $P_{ji}^{k_2} > 0$ . For  $k \ge 0$ ,

$$P_{ii}^{k+k_1+k_2} \ge P_{ij}^{k_1} P_{jj}^k P_{ji}^{k_2}$$

- Take k = 0,  $P_{ii}^{k_1 + k_2} > 0$ , which implies  $d(i) | k_1 + k_2$ .
- Whenever  $P_{jj}^k > 0$ ,  $P_{ii}^{k+k_1+k_2} > 0$ , thus,  $d(i) | k + k_1 + k_2$ , which implies d(i) | k. Thus,  $d(i) \le d(j)$ .

# Periodicity and limit

#### **DEFINITION**

An irreducible DTMC is aperiodic if d = 1. Otherwise, it's periodic.

## THEOREM

If an irreducible DTMC is aperiodic, then

$$\lim_{n\to\infty} P^n = P^{(\infty)}$$

exists, where  $P_{ij}^{(\infty)} = 1/\mathbb{E}_j(T_j)$ . Therefore, when the DTMC is positive recurrent, every row of the limiting matrix  $P^{(\infty)}$  is equal to the DTMC's stationary distribution  $\pi$ .

The Theorem is false if the DTMC is periodic!

#### Random walks on circles

- R.w. on a circle of three points.
- R.w. on a circle of four points.