Idea del Análisis Discriminante Lineal

LDA en dos palabras

De las n variables independientes del dataset, LDA extrae las $p \le n$ nuevas variables independientes que separan la mayoría de clases de la variable dependiente.

LDA en dos palabras

De las n variables independientes del dataset, LDA extrae las $p \le n$ nuevas variables independientes que separan la mayoría de clases de la variable dependiente.

Como se usa la VD en el modelo, el LDA resulta ser un modelo supervisado.

LDA encuentra las direcciones de máxima separación de clases

LDA encuentra las direcciones de máxima separación de clases

LDA encuentra las direcciones de máxima separación de clases

LD₁ y LD₂ son las direcciones de máxima separación de clases

PASO 1: Aplicar escalado de variables a la matriz de características X, compuesta por n variables independientes.

PASO 2: Sea C el número de clases, calcular C vectores m-dimensionales, de modo que cada uno contenga las medias de las características de las observaciones para cada clase.

Ex: supongamos que las VD tienen dos clases 0 y 1, y sea x_j^i la característica j-ésima de la observación i-ésima, entonces

Machine Learning A-Z

© SuperDataScience

PASO 3: Calculamos la matriz de productos cruzados centrados en la media para cada clase, que mide la varianza dentro de cada clase

Con nuestro ejemplo de las clases 0 y 1, las dos matrices de productos cruzados S₀ y S₁ para las respectivas clases 0 y 1 son:

$$S_0 = \sum_{\substack{i=1,...,n\\y^i \in \text{class 0}}} \left((x_1^i, ..., x_m^i) - \mu_0 \right) \left((x_1^i, ..., x_m^i) - \mu_0 \right)^T$$

$$S_{1} = \sum_{\substack{i=1,...,n\\v^{i} \in \text{class }1}} \left((x_{1}^{i},...,x_{m}^{i}) - \mu_{1} \right) \left((x_{1}^{i},...,x_{m}^{i}) - \mu_{1} \right)^{T}$$

PASO 4: Calculamos la covarianza normalizada de todas matrices anteriores, W

Con nuestro ejemplo de las clases 0 y 1, la covarianza normalizada W es simplemente:

$$W = \frac{1}{n_0} S_0 + \frac{1}{n_1} S_1$$

PASO 5: Calculamos la matriz de covarianza global entre clases, B

Con nuestro ejemplo de las clases 0 y 1, la matriz de covarianza global entre clases B es simplemente:

$$B = n_0(\mu_0 - \mu)(\mu_0 - \mu)^T + n_1(\mu_1 - \mu)(\mu_1 - \mu)^T$$

where
$$\boldsymbol{\mu} = (\underline{\mu, ..., \mu})^T$$
 with $\mu = \frac{1}{n} \sum_{i=1,...,n} \sum_{j=1,...,m} x_j^i$

PASO 6: Calculamos los valores y vectores propios de la matriz

$$W^{-1}B$$

PASO 7: Elegimos los p valores propios más grandes como el número de dimensiones reducidas

PASO 8: Los p vectores propios asociados a los p valores propios más grandes son los discriminantes lineales. El espacio m-dimensional del dataset original se proyecta al nuevo subespacio p-dimensional de características, aplicando la matriz de proyecciones (que tiene los p vectores propios por columnas).