№1

Дано: последовательность a_n , которая задана $a_0 = 5$; $a_{n+1} = a_n^2 + 3$. Построим вспомогательную последовательность b_n - последняя цифра числа a_n . Заметим, что каждый элемент (кроме n = 0) b_n однозначно задается через b_{n-1} (это следует из делимости чисел на 10).

Таким образом существует не более 10 различных значений b_n .

Рассмотрим начало последовательности b_n : 5, 8, 7, 2, 7, 2, 7, 2, 7, Начиная с b_2 в последовательности чередуются числа 7 и 2 (это происходит, так как следующий элемент зависит только от предыдушего). Таким образом $b_{2k} = 7$, $\forall k \in \mathbb{N}$ и $b_{2k+1} = 2$, $\forall k \in \mathbb{N}$. В частости, $b_{2015} = 2$

Ответ: 2

№2

Заметим, что каждой правильной раскраске соответствует какая-нибудь последовательность $S \in \{a = \{0,1,2\}^n, \forall i \in \mathbb{N}, i < n : a_i \neq a_{i+1}\}.$

Каждая такая последовательность, в свою очередь, однозначно задается первым числом и последовательностью $\{0,1\}^{n-1}$, указывающей, большее из возможных чисел мы берем, или меньшее. Количество различных таких последовательностей $3 \cdot 2^{n-1}$ (то есть комбинаций из начального числа и какой-то двоичной последовательности длины n-1)

Ответ: $3 \cdot 2^{n-1}$

№3

Поскольку граф связен, существует путь между любыми двумя вершинами. В частости существует путь между двумя (какие-то 2 из 4) вершинами с нечетной степенью. Обозначим W - множество ребер, которое содержит этот путь. Очевидно, для W существует путь, обходящий все его вершины. Рассмотри граф без этих ребрер. Мы уменьшили степень двух начальных вершин на 1, значит теперь их степень четная. Для остальных вершин, входящих в путь степень уменьшилась на два, а, значит, осталась четной. Значит в графе осталось только две вершины с нечетной степенью. Поэтому существует путь, проходящий через все ребра ровно один раз.

Заметим, что получившийся путь задает множество ребер Q, не пересеющее с W. Поскольку для W и Q существует путь, обходящий их в графе, мы получили необходимое разбиение. Что и требовалось доказать

№4

Обозначим n - размерность куба.

Рассмотрим следующий граф: вершинами будут вершины куба, то есть каждой вершине будет соответсвовать элемент из $\{0,1\}^n$. Проведем между вершинами ребро, если между соответствующими вершинами куба есть ребро, другими словами между $u,v\in\{0,1\}^n$ ребро существует тогда и только тогда, когда $\exists p: u_p \neq v_p$ и $\forall i \in \mathbb{N}, i \leq n, i \neq p: u_i = v_i$.

Заметим, что у каждой вершины степень равна n (мы можем поменять ровно один из элементов).

Поккажем по индукции, что всегда можно найти такой путь в графе, который проходжит по каждой вершине ровно 1 раз, причем этот путь может начинаться с любой вершины.

База: если n=1 n, то в графе всего две вершины, соедененные ребром. Путь, соединяющих их подходит. Причем этот путь может начинаться в любой вершине.

Шаг: предположим, что для k-1 найдет искомый путь. Разделим множество вершин в графе на два непересекающихся множества в зависимости от элемента вершины v_1 (если $v_1=0$, будем считать $v\in W$, иначе $(v_1=1)$ $v\in Q$). Заметим, что из каждой вершины $v\in W$ существует смежная ей вершина $u\in Q$ (а именно та, в которой поменяли v_1). Также, по предположения индукции, в подграфах W и Q существует путь, проходящий через все вершины по одному разу. Пусть нам нужно найти такой путь во всем графе, причем он должен начинаться в вершине e (не ограничивая общности будем пологать $e\in W$). Для этого возьмем такой путь в W, начинающийся с e. Он заканчивается в какой-то вершине, из которой есть ребро в какую-то вершину Q. Соеденим наш путь в W с путем в Q и получим искомый путь в первоначальном графе.

Что и требовалось доказать.

№5