COMP5450M

Knowledge Representation

Lecture KRR-2

Introduction to Knowledge Represenation and Reasoning

Al and the KR Paradigm

The methodology of Knowledge Representation and Automated Reasoning is one of the major strands of Al research.

It employs symbolic representation of information together with logical inference procedures as a means for solving problems.

Although implementation and deployment of KRR techniques is very challenging, it has given rise to ideas and techniques that are used in a wide range of applications.

Al and the KR Paradigm

The methodology of Knowledge Representation and Automated Reasoning is one of the major strands of Al research.

It employs symbolic representation of information together with logical inference procedures as a means for solving problems.

Although implementation and deployment of KRR techniques is very challenging, it has given rise to ideas and techniques that are used in a wide range of applications.

Most of the earliest investigations into AI adopted this approach and it is still going strong.

(It is sometimes called GOFAI — good old-fashioned AI.)

However, it is not the only (and perhaps not the most fashionable) approach to AI.

Neural Nets

One methodology for research in AI is to study the structure and function of the brain and try to recreate or simulate it.

How is intelligence dependent on its physical incarnation?

Situated and Reactive Al

Another approach is to tackle AI problems by observing and seeking to simulate intelligent behaviour by modelling the way in which an intelligent agent reacts to its environment.

A popular methodology is to look first at simple organisms, such as insects, as a first step towards understanding more high-level intelligence.

The view of AI taken in KRR is often considered to be opposed to that of Machine Learning.

The view of AI taken in KRR is often considered to be opposed to that of Machine Learning.

This is partly true.

The view of AI taken in KRR is often considered to be opposed to that of Machine Learning.

This is partly true.

ML automatically creates models from data, that contain knowledge in an implicit form.

KRR typically uses hand-crafted models that store knowledge in an explicit way.

The view of AI taken in KRR is often considered to be opposed to that of Machine Learning.

This is partly true.

ML automatically creates models from data, that contain knowledge in an implicit form.

KRR typically uses hand-crafted models that store knowledge in an explicit way.

ML is primarily concerned with *classification*. KRR is primarily concerned with *inference*.

The view of AI taken in KRR is often considered to be opposed to that of Machine Learning.

This is partly true.

ML automatically creates models from data, that contain knowledge in an implicit form.

KRR typically uses hand-crafted models that store knowledge in an explicit way.

ML is primarily concerned with *classification*.

KRR is primarily concerned with *inference*.

Capabilities of ML systems are limited by the data upon which they are trained.

KRR can work in completely novel situations.

Intelligence via Language

The KR paradigm takes *language* as an essential vehicle for intelligence.

Animals can be seen as semi-intelligent because they only posses a rudimentary form of language.

The principle role of language is to *represent* information.

Language and Representation

Written language seems to have its origins in pictorial representations.

Language and Representation

Written language seems to have its origins in pictorial representations.

However, it evolved into a much more abstract representation.

Language and Logic

 Patters of natural language inference are used as a guide to the form of valid principles of logical deduction.

Language and Logic

- Patters of natural language inference are used as a guide to the form of valid principles of logical deduction.
- Logical representations clean up natural language and aim to make it more definite.

For example:

If it is raining, I shall stay in. $R \to S$ It is raining. RTherefore, I shall stay in. $R \to S$

Formalisation and Abstraction

In employing a formal logical representation we aim to abstract from irrelevant details of natural descriptions to arrive at the essential structure of reasoning.

Formalisation and Abstraction

In employing a formal logical representation we aim to abstract from irrelevant details of natural descriptions to arrive at the essential structure of reasoning.

Typically we even ignore much of the logical structure present in natural language because we are only interested in (or only know how to handle) certain modes of reasoning.

For example, for many purposes we can ignore the tense structure of natural language.

Formal and Informal Reasoning

The relationship between formal and informal modes of reasoning might be pictured as follows:

Reasoning in natural language can be regarded as semi-formal.

• Our problem.

- Our problem.
 - What would count as a solution.

- Our problem.
 - What would count as a solution.
 - Facts about the world.

- Our problem.
- What would count as a solution.
- Facts about the world.
- Logical properties of abstract concepts (i.e. how they can take part in inferences).

- Our problem.
- What would count as a solution.
- Facts about the world.
- Logical properties of abstract concepts (i.e. how they can take part in inferences).
- Rules of inference.

We must determine what knowledge is relevant to the problem.

- We must determine what knowledge is relevant to the problem.
- We need to find a suitable level of abstraction.

- We must determine what knowledge is relevant to the problem.
 - We need to find a suitable level of abstraction.
 - Need a representation language in which problem and solution can be adequately expressed.

- We must determine what knowledge is relevant to the problem.
 - We need to find a suitable level of abstraction.
 - Need a representation language in which problem and solution can be adequately expressed.
- Need a correct formalisation of problem and solution in that language.

- We must determine what knowledge is relevant to the problem.
- We need to find a suitable level of abstraction.
- Need a representation language in which problem and solution can be adequately expressed.
- Need a correct formalisation of problem and solution in that language.
- We need a *logical theory* of the modes of reasoning required to solve the problem.

A tough issue that any AI reasoning system must confront is that of *Tractability*.

A tough issue that any AI reasoning system must confront is that of *Tractability*.

A problem domain is *intractable* if it is not possible for a (conventional) computer program to solve it in 'reasonable' time (and with 'reasonable' use of other resources such as memory).

A tough issue that any AI reasoning system must confront is that of *Tractability*.

A problem domain is *intractable* if it is not possible for a (conventional) computer program to solve it in 'reasonable' time (and with 'reasonable' use of other resources such as memory).

Certain classes of logical problem are not only intractable but also *undecidable*.

This means that there is no program that, given any instance of the problem, will in *finite time* either: a) find a solution; or b) terminate having determined that no solution exists.

A tough issue that any AI reasoning system must confront is that of *Tractability*.

A problem domain is *intractable* if it is not possible for a (conventional) computer program to solve it in 'reasonable' time (and with 'reasonable' use of other resources such as memory).

Certain classes of logical problem are not only intractable but also undecidable.

This means that there is no program that, given any instance of the problem, will in *finite time* either: a) find a solution; or b) terminate having determined that no solution exists.

Later in the course we shall make these concepts more precise.

Time and Change

$$1+1=2$$

Standard, classical logic was developed primarily for applications to mathematics.

$$1+1=2$$

Since mathematical truths are eternal, it is not geared towards representing temporal information.

Time and Change

$$1+1=2$$

Standard, classical logic was developed primarily for applications to mathematics.

1+1=2

Since mathematical truths are eternal, it is not geared towards representing temporal information.

However, time and change play an essential role in many AI problem domains. Hence, formalisms for temporal reasoning abound in the AI literature.

We shall study several of these and the difficulties that obstruct any simple approach (in particular the famous *Frame Problem*).

Spatial Information

Knowledge of spatial properties and relationships is required for many commonsense reasoning problems.

While mathematical models exist they are not always well-suited for AI problem domains.

We shall look at some ways of representing qualitative spatial

information.

Describing and Classifying Objects

To solve simple commonsense problems we often need detailed knowledge about everyday objects.

Can we precisely specify the properties of type of object such as a cup?

Which properties are essential?

Combining Space and Time

For many purposes we would like to be able to reason with knowledge involving both spatial and temporal information.

For example we may want to reason about the working of some physical mechanism:

Robotic Control

An important application for spatio-temporal reasoning is robot control.

Many AI techniques (as well as a great deal of engineering technology) have been applied to this domain.

While success has been achieved for some constrained envioronments, flexible solutions are elusive.

Versatile high-level control of autonomous agents is a major goal of KR.

Uncertainty

Much of the information available to an intelligent (human or computer) is affected by some degree of uncertainty.

This can arise from: unreliable information sources, inaccurate measurements, out of date information, unsound (but perhaps potentially useful) deductions.

Uncertainty

Much of the information available to an intelligent (human or computer) is affected by some degree of uncertainty.

This can arise from: unreliable information sources, inaccurate measurements, out of date information, unsound (but perhaps potentially useful) deductions.

This is a big problem for AI and has attracted much attention. Popular approaches include *probabalistic* and *fuzzy* logics.

But ordinary classical logics can mitigate the problem by use of *generality*. E.g. instead of $prob(\phi) = 0.7$, we might assert a more general claim $\phi \vee \psi$.

Ontology

Literally *Ontology* means the study of *what exists*. It is studied in philosophy as a branch of *Metaphysics*.

Ontology

Literally *Ontology* means the study of *what exists*. It is studied in philosophy as a branch of *Metaphysics*.

In KR the term Ontology is used to refer to a rigorous logical specification of a domain of objects and the concepts and relationships that apply to that domain.

Ontology

Literally *Ontology* means the study of *what exists*. It is studied in philosophy as a branch of *Metaphysics*.

In KR the term Ontology is used to refer to a rigorous logical specification of a domain of objects and the concepts and relationships that apply to that domain.

Ontologies are intended to guarantee the coherence of information and to allow relyable exchange of information between computer systems.

Use of ontologies is one of the main ways in which KRR techniques are exploited in modern software applications.

Issues of Ambiguity and Vagueness

A huge problem that obstructs the construction of rigorous ontologies is the widespread presence of *ambiguity* and vagueness in natural concepts.

For example: tall, good, red, cup, mountain.