

ESTRUTURA DE DADOS

MÓDULO 07 | AULA 06

OPERAÇÕES COM ÁRVORES BINÁRIAS RECAPITULANDO

Uma árvore binária é uma estrutura de dados hierárquica não linear, caracterizada por nós onde cada nó pode ter no máximo dois filhos. Estes filhos são referidos como filho esquerdo e filho direito.

Árvores binárias são fundamentais em diversas áreas da computação, incluindo organização de dados, processamento de informações e algoritmos de busca e ordenação.

Cada nó em uma árvore binária contém três partes essenciais: um valor ou dado, um ponteiro para o filho esquerdo, e um ponteiro para o filho direito. O nó no topo da árvore é conhecido como a raiz.

- **Subárvores**: Cada filho de um nó em uma árvore binária pode ser a raiz de sua própria subárvore.
- Folhas: Nós sem filhos são chamados de folhas ou nós terminais.
- Altura e Profundidade: Conceitos importantes para entender a estrutura e navegação em uma árvore binária.

Árvores binárias são a base para estruturas mais complexas, como Árvores Binárias de Busca (BSTs), Heaps e Árvores AVL, cada uma adequada para aplicações específicas em sistemas de computação.

alpha ♣ <ed/tech>

OPERAÇÕES COM ÁRVORES BINÁRIAS RECAPITULANDO

alpha <ed/tech>

OPERAÇÕES COM ÁRVORES BINÁRIAS RECAPITULANDO

alpha 4

OPERAÇÕES COM ÁRVORES BINÁRIAS RECAPITULANDO

A é a altura do nó raiz (24) até o nó-folha (39), que é 3 B é a altura do nó raiz (24) até o nó (35), que é 2 C é a altura do nó raiz (24) até o nó-filho (32), que é 1

OPERAÇÕES COM ÁRVORES BINÁRIAS RECAPITULANDO

Algoritmos de caminhamento (navegação) em uma árvore binária

caminhamento pre-ordem:

- Visita nodo corrente
- visita filho da esquerda
- visita filho da direita

caminhamento em ordem:

- visita filho da esquerda
- Visita nodo corrente
- visita filho da direita

caminhamento pos-ordem:

- visita filho da esquerda
- visita filho da direita
- Visita nodo corrente

OPERAÇÕES COM ÁRVORES BINÁRIAS DESAFIO

Operações matemáticas são instruções hierárquicas, e por sua vez podem ser representadas como árvore binária. Como podemos representar a expressão abaixo?

$$4*A-(6+B)+8/(9-7)$$

Lembrem-se:

• A sub-árvore da esquerda representa os menores elementos, por sua vez, são os primeiros elementos a serem analisados considerando que por padrão o método de caminhamento é o EM ORDEM.

alpha 🕹

OPERAÇÕES COM ÁRVORES BINÁRIAS DESAFIO

Operações matemáticas são instruções hierárquicas, e por sua vez podem ser representadas como árvore binária. Como podemos representar a expressão abaixo?

$$4*A-(6+B)+8/(9-7)$$

Lembrem-se:

• A sub-árvore da esquerda representa os menores elementos, por sua vez, são os primeiros elementos a serem analisados considerando que por padrão o método de caminhamento é o EM ORDEM.

OPERAÇÕES COM ÁRVORES BINÁRIAS INSERÇÃO

Para inserir um elemento N em uma árvore você deve seguir os passos:

- 1) Verifique se existe um nó raiz
 - a) Caso não exista, o elemento será a raiz
 - b) Caso exista verifique
 - i) Se o elemento **N** for menor que o **nó** inserir o elemento na **esquerda**

ii) Se o elemento **N** for maior que o **nó** inserir o elemento na **direita**

Este processo deve ser repetido recursivamente até que o elemento seja inserido na estrutura da árvore.

alpha 🗳

OPERAÇÕES COM ÁRVORES BINÁRIAS INSERÇÃO

Vamos inserir os itens 18, 25, 30 na árvore, começando pelo item 18

OPERAÇÕES COM ÁRVORES BINÁRIAS INSERÇÃO

Vamos inserir os itens 18, 25, 30 na árvore, agora inserindo o item 25

alpha 🗳

OPERAÇÕES COM ÁRVORES BINÁRIAS INSERÇÃO

Vamos inserir os itens 18, 25, 30 na árvore, agora inserindo o item 30

OPERAÇÕES COM ÁRVORES BINÁRIAS EXCLUSÃO

O nó **14** informado será excluído, e um de seus filhos assumirá seu lugar reposicionando os demais nós

Se o nó não tem filhos, apenas remova.

Se o nó possui apeas um filho remova o pai e coloque o filho no lugar

O nó possui dois filhos, substituir pelo maior nó da árvore da esquerda, ou pelo menor nó da árvore a direita

alpha 🕹

OPERAÇÕES COM ÁRVORES BINÁRIAS EXCLUSÃO

O nó **14** informado será excluído, e um de seus filhos assumirá seu lugar reposicionando os demais nós

Se o nó não tem filhos, apenas remova.

Se o nó possui apeas um filho remova o pai e coloque o filho no lugar

O nó possui dois filhos, substituir pelo maior nó da árvore da esquerda, ou pelo menor nó da árvore a direita

alpha ♣ <ed/tech>

OPERAÇÕES COM ÁRVORES BINÁRIAS PESQUISA

