Discrete Structures and Graph Theory

Connectives

- 1. Negation (Not)
- 2. Conjunction (and)
- 3. Disjunction (or)
- 4. Conditional (if...then) /implication
- 5. Bi-conditional (if and only if)

Negation (NOT)

- Statements Formed by introducing "not" word
- "P" is Statement then negation of p is written as "not p" or It is not case that P.
- 7 p
- Unary Connective
- If P is true then ¬p is false and vice versa.

P	¬P
T	F
F	T

P:London is a city.

Then

¬ p: London is not a city.

OR

¬ p: It is not the case that London is a city.

Q: I went to my class yesterday

Then

Q:I did not go to my class yesterday

Conjunction (and)

- Statements Formed by introducing "and" word
- Binary Connective
- Used to combine two or more statements.
- Denote by ∧
- If both the statements are true then $\mathbf{p} \wedge \mathbf{Q}$ is true otherwise false.

P	Q	PAQ
T	T	T
T	F	F
F	T	F
F	F	F

P:London is a capital of India.

Q: India is country.

London is a capital of India and India is country.

 $P \wedge Q$

Disjunction (OR)

- Statements Formed by introducing "OR" word
- Binary Connective
- Denote by ∨
- If one statement is true then $p \vee Q$ is true otherwise false.

P	Q	PVQ
T	T	T
T	F	T
F	T	T
F	F	F

P:London is a capital of India.

Q: India is country.

London is a capital of India or India is country.

 $P \vee Q$

Conditional (if..then)

- Statements Formed by introducing "if...then" word
- Binary Connective
- Denote by \rightarrow
- If First statement is true and second statement is false then p
 → Q is false otherwise true.

P	Q	P→Q
T	T	T
T	F	F
F	T	T
F	F	T

"If elephants were red, then they could hide in cherry trees.".

$$P \rightarrow Q$$

P is known as Antecedent Q is known as consequent

For $Q \rightarrow P$, vice versa

Implication

- If you study regularly you then you will get grade 'A'
- Case 1 : You did regular study , you got A grade. $(P \rightarrow O)$: True
- Case 2: You did regular study ,by chance you didn't get grade A. $(P \rightarrow Q)$: False
- Case 3: You didn't study regularly, you may get grade A. $(P \rightarrow Q)$: True
- Case 4: You didn't study regularly, you didn't get grade A. $(P \rightarrow Q)$: True

Some reading for P->Q

- "p implies q"
- "if p, then q"
- "if p, q"
- "when *p*, *q*"
- "whenever p, q"
- "q if p"
- "q when p"
- "q whenever p"

- "*p* only if *q*"
- "p is sufficient for q"
- "q is necessary for p"
- "q follows from p"
- "*q* is implied by *p*"

We will see some equivalent logic expressions later.

Bi-conditional (if and only if)

- Statements Formed by introducing "if and only if "word
- · Binary Connective
- Denote by ↔
- If both the statement has same truth value then $p \leftrightarrow Q$ is true otherwise false.

P	Q	P⇔Q
T	T	T
T	F	F
F	T	F
F	F	T

"x < y if and only if y > x."

$$P \longleftrightarrow Q$$

EX-OR (Either-Or)

- Statement formed by "Either Or" word.
- Exclusive Or
- P x Q proposition will be true, if exactly one of two propositions of both is true.

Otherwise false

P	Q	$P \oplus Q$
T	T	F
T	F	T
F	T	T
F	F	F

• In order to get a job in this multinational company, experience with C++ or Java is mandatory.

• In order to get a job in this multinational company, experience with C++ or Java is mandatory.

Inclusive OR

Disjunction

• "When you buy a mobile of xyz company, you get Rs.500 cashback or a mobile cover of worth Rs.500."

• "When you buy a mobile of xyz company, you get Rs.500 cashback **or** a mobile cover of worth Rs.500."

Exclusive OR

Statement Formula and Truth Table

- Atomic statements/proposition
- Compound statements/proposition

$$\neg (P \land Q) {\longleftrightarrow} (\neg P) \lor (\neg Q), \, \neg (P \land Q) \;, \, \neg (P \land Q)$$

- Statement formula
- Truth Table
- •2ⁿ where n is number of distinct statement variable

•P
$$\land \neg P$$
2 rows, n=1, 2^1

•(
$$P \land Q$$
)
4 rows, n=2, 2^2

• Statements and operators (Connectives and parenthesis) can be combined in any way to form new statements.

(D)		1
	(\neg)	Y)

Р	Q		
Т	Т		
Т	F		
F	Т		
F	F		

Р	Q	⊸P	
Т	Т	F	
Т	F	F	
F	Т	Т	
F	F	Т	

Р	Q	¬P	¬Q	
Т	T	F	F	
Т	F	F	Т	
F	Т	Т	F	
F	F	Т	T	

Р	Q	–₁P	$\neg Q$	(¬P)∨(¬Q)
T	T	F	F	
Т	F	F	T	
F	Т	T	F	
F	F	T	T	

Р	Q	¬P	¬Q	(¬P)∨(¬Q)
Т	Т	F	F	F
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	T	T

$$\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$$

Р	Q	
Τ	Т	
Т	F	
F	Т	
F	F	

$$\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$$

Р	Q	⊸P	$\neg Q$
Т	Т	F	F
Т	F	F	Т
F	Т	Т	F
F	F	T	Т

		"	199
Т	Т	F	F
Т	F	F	T
F	Т	Т	F
F	F	T	T
(P∧Q)			
Т			
Т			
Т			
F			

$$\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$$

Р	Q	¬P	$\neg Q$
Т	Т	F	F
Т	F	F	T
F	Т	Т	F
F	F	T	T
(D, O)	(D, O)		

(P∧Q)	¬(P∧Q)	
Τ	F	
Τ	F	
Τ	F	
F	T	

Q	–₁P	$\neg Q$
Τ	F	F
F	F	T
Τ	T	F
F	T	T
	Q T F T	T

(P∧Q)	¬(P∧Q)	(¬P)∨(¬Q)	
Т	F	F	
Т	F	Т	
Т	F	Т	
F	Т	T	

Р	Q	¬P	$\neg Q$
Т	Т	F	F
Т	F	F	T
F	Т	Т	F
F	F	T	T

(P∧Q)	¬(P∧Q)	(¬P)∨(¬Q)	$\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$
Τ	F	F	T
F	T	Т	T
F	Т	Т	Т
F	T	T	T

Р	Q	¬P	$\neg Q$
Т	Т	F	F
Т	F	F	T
F	Т	Т	F
F	F	T	T

(P∧Q)	¬(P∧Q)	(¬P)∨(¬Q)	$\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$
Τ	F	F	T
F	T	Т	T
F	Т	Т	Т
F	T	T	T

Example

- Using the statements:
 - R: Mark is Rich.
 - H: Mark is happy
- · Write the following statements in symbolic form:
- (a) Mark is poor but happy.

$$\neg R \land H$$

(b) Mark is rich or unhappy;

$$RV \neg H$$

(c) Mark is neither rich nor happy.

$$\neg R \land \neg H$$

(d) Mark is poor or he is both rich and unhappy.

$$\neg R \lor (R \land \neg H)$$

Example

- Let p be "It is cold" and let q be "It is raining". Give a simple verbal sentence which describes each of the following statements:
- (a) $\neg p$; (b) $p \land q$; (c) $p \lor q$; (d) $q \lor \neg p$.
- (a) ¬p;

It is not cold.

(b) p ∧ q;

It is cold and raining.

• (c) p V q;

It is cold or it is raining

• (d) $q V \neg p$.

It is raining or it is not cold.

Example 1.17 There are two restaurants next to each other. One has a sign that says, "Good food is not cheap," and the other has a sign that says, "Cheap food is not good." Are the signs saying the same thing?

Using the statements:

P:Food is good.

H:Food is cheap.

Good food is not cheap. $P \rightarrow \neg H$ Cheap food is not good. $H \rightarrow \neg P$

Р	Н	¬P	⊣Н	$P \rightarrow \neg H$	$H \rightarrow \neg P$
T	T	F	F	F	F
T	F	F	T	T	T
F	T	T	F	T	T
F	F	T	T	T	T

WFF (well formed formula)

• Now consider the proposition : PV~Q→P∧R

Trying to construct a truth table for this is quite confusing. Which is to be assumed?

$$(PV\sim Q)\rightarrow (P\Lambda R) \text{ or } PV(\sim Q\rightarrow P)\Lambda R$$

Which part is calculated first?

for such cases we have order of precendence for these operators.

WFF (well formed formula)

- A statement formula is said to be WFF if it has:
- 1. Every Atomic statement is wff
- 2. If P is wff then ~ p is also wff
- 3. If P and Q are wff then $(P \land Q)$, $(P \lor Q)$, and $(P \rightarrow Q)$ are wff
- 4. Nothing else is wff

For example: $((P \land Q) \lor R)$ is wff w, where as $P \lor Q \land R$ is not a wff

Precedence of the operators

- ~
- ^
- V, ⊕
- $\bullet \longrightarrow$
- ullet \longleftrightarrow

For example,

 $\sim P \wedge Q \rightarrow R \vee Q$ is not a wff,

can be converted to wff by using rules of precedence as $((\sim P) \land Q) \rightarrow (R \lor Q))$

Equivalent Statements

• If truth values of statement formula/proposition A is equal to the truth values of statement formula/proposition B for every possible truth values then A and B are logically equivalent to each other.

Р	Q	⊸P	¬Q	¬(P∧Q)	(¬P)∨(¬Q)
Т	T	F	F	F	F
Т	F	F	Т	Τ	Τ
F	Т	Т	F	Τ	Τ
F	F	Т	Т	Τ	Τ

Denoted by symbol ⇔

- Let P be "Roses are red" and Q be "Violets are blue." Let S be the statement:
 - "It is not true that roses are red and violets are blue."
- Then S can be written in the form $\neg (p \land q)$.
- Accordingly, S has the same meaning as the statement:
 - "Roses are not red, or violets are not blue."
- Then S can be written in the form $\neg p \lor \neg q$.
- However, as noted above, $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$.

Equivalent Statements

• The statements $\neg(P \land Q)$ and $(\neg P) \lor (\neg Q)$ are logically equivalent, since $\neg(P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$ is always true.

Р	Q	⊣P	¬Q	¬(P∧Q)	(¬P)∨(¬Q)	¬(P∧Q)↔(¬P)∨(¬Q)
Т	Т	F	F	F	F	Т
Т	F	F	Т	Т	Т	Τ
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

Convert the following English statements in symbolic form.

• You can access the internet from campus if you are computer science major or you are not a freshman.

Solution: P: You can access the internet from campus.

Q: you are computer major.

R: you are a freshman.

$$P \rightarrow (QV \neg R)$$

• You can ride on roller coaster if you are under 4 feet tall unless you are older than 16 years old.

Solution:

P: You can ride on roller coaster

Q: You are under 4 feet

R: You are older than 16 years old.

$$(QV \neg R) \rightarrow P$$

p	q	$p \rightarrow q$

p	q	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

p	q	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

p	q	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$
T	T			
T	F			
F	T			
F	F			

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

p	q	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$
T	T	F		
T	F	T		
F	T	F		
F	F	T		

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

p	q	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$
T	T	F	F	
T	F	T	F	
F	T	F	T	
F	F	T	T	

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

p	q	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$
T	T	F	F	\mathbf{T}
T	F	T	F	${f F}$
F	T	F	T	\mathbf{T}
F	F	T	T	T

Exercises

•Prove that:

1)
$$(P \rightarrow Q) \Leftrightarrow \neg P \lor Q$$

2)
$$P \rightarrow (Q \rightarrow R) \Leftrightarrow (P \land Q) \rightarrow R$$
.

Tautologies and Contradictions

• Some propositions *P* contain only *T* in the last column of their truth tables or, in other words, they are true for any truth values of their variables. Such propositions are called tautologies. A tautology is a statement that is always true.

Examples:

- R∨(¬R)
- $\forall \neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$
- If $S \rightarrow T$ is a tautology, we write $S \Rightarrow T$.
- If $S \leftrightarrow T$ is a tautology, we write $S \Leftrightarrow T$.

$\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$

Р	Q	⊸P	$\neg Q$
T	T	F	F
Т	F	F	T
F	Т	T	F
F	F	T	T
			•

(P∧Q)	¬(P∧Q)	(¬P)∨(¬Q)	$\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$
Т	F	F	T
F	Т	T	T
F	Т	Т	T
F	Τ	T	T

p	q	$\neg p$	$p \vee q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т				
Т	F				
F	Т				
F	F				

p	q	$\neg p$	$p \vee q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т		F			
Т	F	F			
F	Т	Т			
F	F	Т			

p	q	$\neg p$	$p \vee q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	Т		
Т	F	F	Т		
F	Т	Т	Т		
F	F	Т	F		

p	q	$\neg p$	$p \vee q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Τ	F	Т	F	
Т	F	F	Т	F	
F	Т	Т	Т	T	
F	F	Т	F	F	

p	q	$\neg p$	$p \vee q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	4	F	Т	F	Т
Т	F	F	Т	F	Т
F	Т	Т	Т	T	Т
F	F	Т	F	F	Т

Tautologies and Contradictions

- a proposition P is called a contradiction if it contains only F in the last column of its truth table or, in other words, if it is false for any truth values of its variables.
- A contradiction is a statement that is always false.

Examples:

R∧(¬R)

$$\forall \neg (\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q))$$

 The negation of any tautology is a contradiction, and the negation of any contradiction is a tautology.

- Two way to finding the Equivalences,
 Tautology and Contradiction
- · Truth Table
- Without Truth Table Using Substitution (by formulas)

Р	Q	⊸P	¬Q	¬P∨Q	P→Q
Т	Т	F	F	Т	Τ
Т	F	F	Т	F	F
F	Т	T	F	Т	Т
F	F	Т	Т	Т	Т

- Identity Laws: $p \wedge T \Leftrightarrow p$ and $p \vee F \Leftrightarrow p$.
- Domination Laws: $p \vee T \Leftrightarrow T$ and $p \wedge F \Leftrightarrow F$.
- Idempotent Laws: $p \land p \Leftrightarrow p$ and $p \lor p \Leftrightarrow p$.
- Double Negation Law: $\neg(\neg p) \Leftrightarrow p$.
- Commutative Laws:
 - $(p \lor q) \Leftrightarrow (q \lor p)$ and $(p \land q) \Leftrightarrow (q \land p)$.
- Associative Laws: $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
 - and $(p \land q) \land r \Leftrightarrow p \land (q \land r)$.

- Distributive Laws:
 - $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ and
 - $p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$.
- DeMorgan's Laws:
 - $\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$ and
 - $\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q).$
- Absorption Laws:
 - $p \lor (p \land q) \Leftrightarrow p \text{ and } p \land (p \lor q) \Leftrightarrow p.$
- Negation Laws: $p \lor \neg p \Leftrightarrow T$ and $p \land \neg p \Leftrightarrow F$.

Logical Equivalences for Implication

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

Logical Equivalences for Double Implication

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Substitution instance

 A formula A is called substitution instance of formula B if A can be obtained from B by substituting formulas for some variable of B.

Examples:

- B:P \rightarrow (J \wedge P)
- If P be $R \leftrightarrow S$
- $A:(R \leftrightarrow S) \rightarrow (J \land (R \leftrightarrow S))$
- As like we can substitute the formula with another formula if both have same truth values
- (R → 5) ∧ (R ↔ 5)
- (¬R∨S)∧(R↔S)
- Equivalent formula can be substitute for each other.

- Prove that $P \to (Q \to R) \Leftrightarrow (P \land Q) \to R$.
- $P \rightarrow (Q \rightarrow R) \Leftrightarrow P \rightarrow (\neg Q \lor R)$ implication law

$$\Leftrightarrow \neg P \lor (\neg Q \lor R)$$
 ..implication law

$$\Leftrightarrow (\neg P \lor \neg Q) \lor R$$
 ... Associative law

$$\Leftrightarrow \neg (P \land Q) \lor R$$
 ... Associative law

$$\Leftrightarrow (P \land Q) \rightarrow \mathbf{R}.$$

Prove: $(p \land \neg q) \lor q \Leftrightarrow p \lor q$

$$(p \land \neg q) \lor q$$
 Left-Hand Statement

$$\Leftrightarrow$$
 q \vee (p \wedge ¬q) Commutative

$$\Leftrightarrow$$
 $(q \lor p) \land (q \lor \neg q)$ Distributive

$$\Leftrightarrow$$
 $(q \lor p) \land T$ Or Tautology

$$\Leftrightarrow$$
 q \vee p Identity

Prove: $(p \land \neg q) \lor q \Leftrightarrow p \lor q$

$$(p \land \neg q) \lor q$$
 Left-Hand Statement

$$\Leftrightarrow$$
 q \vee (p \wedge ¬q) Commutative

$$\Leftrightarrow (q \lor p) \land (q \lor \neg q)$$
 Distributive

Why did we need this step?

Prove: $p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$

$$p \rightarrow q$$

Contrapositive

$$\Leftrightarrow \neg p \lor q$$
 Implication Equivalence

$$\Leftrightarrow$$
 q $\vee \neg p$ Commutative

$$\Leftrightarrow \neg(\neg q) \lor \neg p$$
 Double Negation

$$\Leftrightarrow \neg q \rightarrow \neg p$$
 Implication Equivalence

If $p \rightarrow q$ is a statement then $q \rightarrow p$ is called converse.

$$\neg p \rightarrow \neg q$$
 is inverse and

$$\neg q \rightarrow \neg p$$
 is contrapositive.

Prove: $p \rightarrow p \lor q$ is a tautology

Must show that the statement is true for any value of p,q.

$$p \to p \lor q$$

$$\Leftrightarrow \neg p \lor (p \lor q)$$

Implication Equivalence

$$\Leftrightarrow (\neg p \lor p) \lor q$$

Associative

$$\Leftrightarrow (p \lor \neg p) \lor q$$

Commutative

$$\Leftrightarrow T \vee q$$

Or Tautology

$$\Leftrightarrow q \vee T$$

Commutative

 \Leftrightarrow T

Domination

This tautology is called the addition rule of inference.