Prework 2.2b: Building a PDA for a CFG

Write your preliminary solutions to each problem and submit a PDF on Canvas. The names in brackets indicate the subset responsible for presenting the problem.

1. [Ben, Grace, Micah] Use the procedure in the proof of Lemma 2.21 to build a state diagram for a PDA that recognizes the language described by the following CFG. The start variable is E and the terminals are $\Sigma = \{a, +, *, \}$, ($\{a, b, a, a, b, a,$

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid a$

2. [Curtis, Ky, Todd] Use the procedure in the proof of Lemma 2.21 to build state diagram for a PDA that recognizes the language described by the following CFG. The start variable is *R*.

$$R \rightarrow XRX \mid S$$

 $S \rightarrow aTb \mid bTa$
 $T \rightarrow XTX \mid X \mid \varepsilon$
 $X \rightarrow a \mid b$

- 3. [David, Meghan, Joshua] In this problem you will show that the set of context-free languages is closed under the regular operations. Let $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ be CFG's that describe the languages A_1 and A_2 , respectively, where $V_1 \cap V_2 = \emptyset$. (Hint: For each part (a)-(c), add a new start state S and a new first rule.)
 - a. Give a CFG that describes $A_1 \cup A_2$.
 - b. Give a CFG that describes $A_1 \circ A_2$.
 - c. Give a CFG that describes A_1^* .
- 4. [Andrew, Connor, Allie, Levi] Consider the following grammar. The start state is S.

$$S \rightarrow \varepsilon \mid 0S1 \mid SAS \mid 111$$

 $A \rightarrow 1A0 \mid 0 \mid 010 \mid ASA$

Recall that the *height* of a tree is the length of the longest path from the root to a leaf. What is the length of the largest string that a parse tree of height 5 can derive?

BEGIN YOUR SOLUTIONS BELOW THIS LINE-