IC Sprout 浙江创芯集成电路有限公司

扩散工艺设备Training

Outline

- 工艺简介
- 设备简介

扩散工艺简介

▶ 扩散工艺属于半导体制造的重要模块之一,主要是为集成电路制造提供掺杂、成膜及退火工艺。

- ▶ 扩散工艺(俗称"炉管工艺")属于半导体制造的重要模块之一,可从应用上分为两个部分:
- ①利用扩散原理,通过一定时间的热过程,使掺杂杂质经热运动扩散到硅中的加工和处理方法(已基本采用离子注入工艺替代)。
- ②通过扩散炉管进行氧化层的热生长,氮化硅、多晶硅等膜质的热淀积,以及热退火也作为扩散工艺的一部分(当前主要应用)。

成膜及热退火

- ▶ 扩散工艺根据压力不同分为常压(AP: Atmosphere Pressure)和低压(LP: Low Pressure)两种:
 - ① 常压工艺,就是在压力接近大气压条件下(Atmospheric Pressure)下进行工艺反应,主要包含热氧化层的生长(Oxide),热退火(Anneal),合金(Alloy)等工艺。
 - ② 低压工艺,即在低压情况下(0.1-5.0torr)进行的化学气相沉积,主要包括多晶硅(Poly),二氧化硅(Si02),氮化硅(SIN)等工艺。

扩散工艺过程简介(AP)

扩散工艺过程简介 (LPCVD)

退火(ALLOY)

(410°C)

- ① PAD ox用于当做垫层
- ② Gate ox介电层,利用不同厚度的 gate oxide ,可对不同组件进行开关

① 形成良好欧姆接触,降低Si/SiO2界面电荷

② 提高Bonding OX1致密性、增强bonding 后键合力

扩散工艺简介-低压工艺应用(氮化硅)

▶ 氮化硅工艺:

① DCS-SIN工艺,主要用于AASIN(760℃)、55nm Spacer1 SIN (650℃)。

Chemical reaction

②HCD-SIN 工艺

$$3Si_{2}Cl_{6} + 8NH_{3} \rightarrow 2Si_{3}N_{4} + 18HCl + 3H_{2}$$

$$HCl + NH_{3} \rightarrow NH_{4}Cl$$

$$3Si_{2}Cl_{6} + 26NH_{3} \rightarrow 2Si_{3}N_{4} + 18NH_{4}Cl + 3H_{2}$$

扩散工艺简介-低压工艺(氮化硅)

▶氮化硅工艺差异:

项目	高温DCS-SIN	低温DCS-SIN	HCD-SIN	
工艺温度	760°C	650°C	580℃	
工艺机型	TEL IND	TEL FORMULA		
机台费用	TEL FORMULA ≈ TEL INDYPLUS			
反应原理	DCS+NH3 化	HCD+NH3化学气相沉积		
Running Cost	HCD-SIN > 低温DCS-SIN ≈ 高温DCS-SIN			
PRD Batch Size	125	125	50	
WPH(同等膜厚)	低温DCS-SIN >高温DCS-SIN> HCD-SIN			
WIW U%	<3%	<1.5%	<3%	
Batch WTW Range	Target±15A	Target±5A	Target±3A	
Step Coverage	HCD-SIN(100%) > 低温DCS-SIN > 高温DCS-SIN			
WER(200:1HF)	1.59 A/min	2.16 A/min	15.24 A/min	
应用工艺	LP AA-SIN	SP1-DEP	LP SP2-DEP	

扩散工艺简介-低压工艺应用(Ploy)

▶Poly工艺:

多晶硅工艺, 主要用于55nm产品P1DEP (620℃)

- Undoped Film
 - Amorphous silicon (a-Si): typically 500-550°C.
 - · Has no crystalline structure.
 - Poly Si: above 580°C, typically 620°C.
 - · Has crystalline grained structure.

扩散工艺简介-低压工艺应用(氧化硅)

> 低压化学气相沉积氧化硅工艺反应气体及反应方式

TEOS工艺,主要用于55 Spacer (580℃)

$TEOS (= \underline{T}etra\underline{e}th\underline{o}xy\underline{s}ilane)$

$$OC_{2}H_{5}$$
 | $C_{2}H_{5}O - Si - OC_{2}H_{5}$ | $OC_{2}H_{5}$

- 1)Liquid at ambient Temperature Boiling Point = 169 °C
- 2)Excellent Thermal Stability

 Decomposition Temperature > 550 °C
- 3)Non Pyrophoric
- 4)Easier and Safer for handling than SiH4

Si(OC₂H₅)₄ + 12O₂
$$\rightarrow$$
 SiO₂ + 8CO₂ + 10H₂O
Si(OC₂H₅)₄ \rightarrow SiO₂ + 4C₂H₄ + 2H₂O

Film, by-product

扩散设备简介

▶ 扩散工艺设备主要由日本东京电子有限公司(TEL)、日立国际电气有限公司(KE)和国产北方华创(NAURA)提供。

▶扩散工艺设备分为常压AP和低压LP两种。

- ① 常压炉管,就是在压力接近大气压条件下(Atmospheric Pressure)下进行工艺反应,主要包含热氧化层的生长 (Oxide),热退火(Anneal),合金烘烤(Alloy)等工艺。
- ② 低压炉管,即在低压情况下(0.1-5.0torr)进行的化学气相沉积,主要包括多晶硅(Poly),氧化硅(Si02),氮化硅(SIN)。
- ③ 低压炉管与常压炉管的区别在于: 低压炉管的设备有一组用来提供反应之真空度的真空泵(Vacuum Pump)及用于处理反应气体的尾气处理器(Local Scrubber)。

> 高产能设计

最多可同时作业125枚(5 lots)硅片 新型高速机械手设计 硅片冷却系统改良

> 可实现双批次预约作业

内置18个FOUP存储位置,可实现一个批次作业,另一批次在设备内等待的功能。(A/B batch function)

- ➤ 气体管路集成系统(1.125inch W-Seal IGS) 有效节省气体管路排列空间 配件模块化,易维护
- 双操作屏设计,便于维护作业时操作 液晶屏式气路控制面板,更直观
- ➤ 先进的设备群组管理系统 (AGC)

扩散工艺设备简介

包括加热器(Heater)/石英管等部件,是硅片进行工艺的腔体

扩散炉水/电/气供应系统,为炉 管工艺提供动力保障

包括FOUP搬入口/机械手等 机械部件,用于FOUP/Wafer的搬送

用于炉管作业的控制,包括Recipe的编辑管理,炉体温度的控制,机械动作的控制,工艺参数的实时记录等

▶ 机台前后双操作屏设计

➤ 液晶屏式气体管路系统 (FDP Gas Flow Chart)

直观明了,不同颜色表示不同状态

- ➤ 设备群组管理系统 AGC (Advanced Group Controller)
 - ✓ 实时监控设备状态 (Tool Monitoring)
 - ✓ 工艺程式的远程编辑 (Recipe Management)
 - ✓ 数据收集及存储 (Data Collection & Analysis)

最多可连接32台设备 支持INDYPLUS/FORMULA机型

➤TC:用以检测温度的热偶

结构:炉丝螺旋绕制,分五段温区,单段独立PID控温,由绝缘子加穿杆支撑。

PROTIID II	用于确定恒温区,确定offset值,有5个测试点,安装于内管内部,尽量贴近Wafer的安装位置,实际工艺时会拆除。
Inner TC	多用于实际工艺中的温度控制,安装于内管内边缘处或内外管之间,同Profile TC有5个测试点位(工艺管法兰装配体有TC插口)。
Outer TC	用于炉丝区域温度检测,备用控温等,安装于加热丝附近。 (A,B双TC)
Flatzone TC	拉Flat zone才用得到。用于量测炉体恒温区实际长度及精度并实施调整,安装于工艺门开孔处。 目标: (Target -1 < Flat Zone < Target + 1) 实际: (Target -0.5 < Flat Zone < Target + 0.5)

727		3				当日	28-MAY-200 16:17:31
Status		P/M Normal T/M Normal	Proc Mode Normal	Status			Select Screen
Buffer		Temperature TOP		CJ-1 CJ_83		CJ-2	
				PJ-1 4 PJ_02 Processing		PJ-2	
Load Ready		Boat Elevator		PROCES	PROCESSA Boat Detail		
LoadPort State	Robot	Gas Press. 0.0000 KPa		STANDBY 4 PRE	DEPO 5	UN END	ABORT
Carrier State	Load Unload State			6 COOL Process	DOWN 00:01:11		bort
Equipment	Status			processor concentrated (Est. End Ti	ne Process 00:00	Account processing
J08	Mainte- mance Menu	Change Mode	Standby Factor	Collect Data	Recipe (Recipe Abort	Hold Recipe

按钮	功能
Buffer Buffer Load Ready	按[Buffer]按钮显示 storage 状态的详细资料。
LoadPort State	按[Load Port State]按钮显示 load port 的状态。
Robot	按[Robot]按钮显示自动化系统的初始状态。如果自动操作已被初始化,本按钮呈灰色。如果自动操作需要被初始化,本按钮呈黄色。
Carrier State	按[Carrier State]按钮显示 carrier 状态的详细资料。
Load Unload State	按[Load Unload State]按钮显示 carrier loading 和 unloading 的队列。
Equipment Status	Equipment Status 区域显示工具的工作状态。
Top 0.0 C-TOP 0.0 CENTER C-BOTM 0.0 BTM 0.0	按[Temperature]按钮显示加热器温度的详细资料。
	出现报警讯息时,报警讯息按钮显示报警讯息的数量以及最后一次报警的编号和讯息。报警时按钮以红色闪烁,警告时按钮以黄色闪烁。按报警按钮显示《Alarm List》屏幕,该屏幕上有每个报警的详细资料。
D	出现报警讯息时,会响起蜂鸣声,蜂鸣按钮以紫色闪烁。按本 按钮关闭蜂鸣声。

▶ IGS: Integrated Gas System 模组化气体供应系统

1. MFC: 气体流量控制器

2. PV : 气动阀

主要包含部件:

3. MFM: 气体流量计

CV :单向阀

5. PT : 压力传送器

6. REG: 调压阀

7. FL : 过滤器

8. SO: 手阀

特点:

- 节省空间,密封性好
- 安装、维护效率高
- 3. 元件标准化,可替换性强

> Cooling water:

炉管为高温机台,其各处密封接触面需冷却水进行冷却,防止0-ring; Parts等部件过热受损,其中包括:

- 1. Heater
- 2. Manifold
- 3. Cap
- 4. Shutter

> Scavenger cover:

根据产品特性,为防止产品在炉管工艺处理前,尽可能避免暴露在空气中,造成wafer表面膜质的自然氧化,所以炉管机台会有N2 L/L功能(控制wafer在装载区域的02浓度),就是靠scavenger cover对loading area进行密封,充斥N2来控制所需的02浓度

> Wafer transfer:

炉管机台的Wafer传送装置,负责 Wafer的装载动作

Z轴和transfer Arm的丝杆需定期上 油维护

Fork为陶瓷材质,受力易碎,维护作业时需cover保护

➤ Boat Elevator:

炉管机台的Boat传送装置,负责Boat的升降 动作

Z轴的丝杆需定期上油维护

> Cap:

炉管机台的Boat承载装置

Cap中间孔洞为磁流体安装位置,通过对伺服 马达的控制,使马达带动皮带,皮带连接磁 流体上的传动轴部件进行转动,传动轴通过 Cap孔洞连接Tube内部各传动部件,最终带动 Boat进行旋转动作,而磁流体就是对传动轴 部件处的密封应用,防止连接处真空破坏

➤ 炉管机台PM注意事项:

- ①维护作业中,只要不需要涉及机台相关机械动作时,TX/EVL PAUSE键请务必按下
- ②由于炉管机台为前后面板操控,而维护区域在机台后方,为防止维护人员在机台内部维护作业时,他人对机台的操作,造成机械动作的伤害。

→ Transfer Robot Pause Switches

