Introductory Course on Transformer Models and Generative AI Tools

- Introduction to Transformer Models
- Generative Al
- Applications of Transformer Models
- Training and Evaluating Transformer Models
- Advanced Topics in Transformers & Generative AI

Speaker: Pranav Raikote, Senior AI Researcher, Plexflo plexflo

Introduction

- Understanding Large Language Models
 - Language
 - LLM
 - Some of the Large Language Models
- Background About Transformer Models
- How are transformers different from previous Models
- What is Generative Artificial Intelligence (AI)?

Understanding Large Language Models

ORGANIZER

Language?

- It's how we learn about the world. Language is also how we connect and communicate — as people, and as groups and companies
- Despite the rapid evolution of software, computers remain limited in their ability to deal with language. Software is great at searching for exact matches in text, but often fails at more advanced uses of language — ones that humans employ daily
- There's a clear need for more intelligent tools that better understand language

Text Output Text Input Language Model Numeric Representation of text useful for other systems

A large language model, or LLM, is a deep learning algorithm that can recognize, summarize, translate, predict and generate text and other content based on knowledge gained from massive datasets

Transformers

ORGANIZER

Some of the Large Language Models

- Pathways Language Model (PaLM) 540 billion parameter model, from Google Research
- Generalist Language Model (GLaM) 1 trillion parameter model, from Google Research
- Language Models for Dialog Applications (LaMDA) 137 billion parameter model from Google Research
- Megatron-Turing NLG 530 billion parameter model, from Microsoft/Nvidia
- DreamFusion/Imagen 3D image generation from Google Research
- Get3D from Nvidia
- MineClip from Nvidia
- BLOOM: BigScience Large Open-science Open-access Multilingual Language Model with 176 billion parameters.

Why Transformers

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best-performing models also connect the encoder and decoder through an attention mechanism.

Need for Transformers

The dominant sequence transduction models are based on

- Complex recurrent or convolutional neural networks
- The best-performing models also connect the encoder and decoder through an attention mechanism.

Transformers

- Developed in 2017 by Researchers at Google and the University of Toronto
- Unlike recurrent neural networks, transformers could be very efficiently parallelized
- With the right hardware, you could train some really big models.
- Transformer is a deep learning model that adopts the mechanism of self-attention
- It differentially weighs the significance of each part of the input data.
- Like recurrent neural networks (RNNs), transformers are designed to process sequential input data, such as natural language with applications for tasks such as translation and text summarization.
- However, unlike RNNs, transformers process the entire input all at once.

Transformers are a type of artificial intelligence (AI) model that uses a self-attention mechanism to process sequential data (When the points in the dataset are dependent on the other points in the dataset), such as natural language (a language that has developed naturally in use), by encoding and decoding input data into a continuous space. This allows for better generalization and understanding of the data, which can be used for various tasks such as language modeling, question answering, machine translation, and summarization.

Transformers are in many cases replacing convolutional and recurrent neural networks (CNNs and RNNs), the most popular types of deep learning models were developed just five years ago.

India Smart Grid Forum

28 Feb - 04 March 2023 | New Delhi

Model Architecture

- **Encoder and Decoder Stacks**
- Attention
 - ✓ Scaled Dot-Product Attention
 - ✓ Multi-Head Attention
- Position-wise Feed-Forward Networks
- **Embeddings and Softmax**
- **Positional Encoding**

Functioning

- Transduction models have an encoder-decoder structure
- the encoder maps an input sequence of symbol representations (x1, ..., xn) to a sequence of continuous representations z = (z1, ..., zn)
- The decoder then generates an output sequence (y1, ..., ym) of symbols one element at a time
- At each step the model is auto-regressive consuming the previously generated symbols as additional input when generating the next.

Some of the Transformer Models

ORGANIZER

- Generative pre-trained transformer (GPT)
- <u>GPT-2</u>: Generative Pre-trained Transformer 2 with 1.5 billion parameters.
- <u>GPT-3</u>: Generative Pre-trained Transformer 3, with the unprecedented size of 2048-token-long context and 175 billion parameters (requiring 800 GB of storage).
- GPT-3.5/ChatGPT/InstructGPT from OpenAI
- GPT-NeoX-20B: An Open-Source Autoregressive Language Model with 20 billion parameters.
- **BERT**: Bidirectional Encoder Representations from Transformers (BERT)
- OPT-175B by Meta AI: another 175-billion-parameter language model. It is available to the broader AI research community.
- <u>Point-E by OpenAI</u>: a 3D model generator.
- RT-1 by Google: a model for operating robots
- VALL-E text to speech synthesis based on 3-second speech sample It was pre-trained on 60,000 hours of English speech from 7,000 unique speakers (dataset: LibriLight)

Problems in Training LLMs

- Distributed/Parallel training
- Representation bottleneck
- Vanishing gradients
- Fixed context (sequence length)

Transformers

isuw@isuw.in

Attention Mechanism

What should I pay attention to?

high attention low attention She is eating apple. green

```
The FBI is chasing a criminal on the run.
The FBI is chasing a criminal on the run.
              chasing a criminal on the run.
     FBI
     FBI is
              chasing a criminal on the run.
The
The
               chasing a
                           criminal on the run.
              chasing a
                           criminal
                                        the run.
The
     FBI
                       a criminal
          is
              chasing
                                        the run.
                                    on
```


Transformer

- Highly capable Encoder-Decoder model with Self-Attention mechanism
- Train once and fine-tune on a variety of downstream tasks

Embeddings

ORGANIZER

Input Embeddings

Positional Embeddings

Positional Encoding

ORGANIZER

28 Feb - 04 March 2023 | New Delhi

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Self-Attention

India Smart Grid Forum

ORGANIZER

28 Feb - 04 March 2023 | New Delhi

He went to the **bank** and learned of his empty account, after which he went to a river bank and cried

Self-Attention

ORGANIZER

India Smart Grid Forum

28 Feb - 04 March 2023 | New Delhi

Multi-Head Attention

ORGANIZER India Smart Grid Forum

28 Feb - 04 March 2023 | New Delhi

- 8 heads
- Representation sub-space
- Each head will have a 64-dim vector

Multi-Head Attention (Recap)

28 Feb - 04 March 2023 | New Delhi

Residual Connections & Feed Forward Network

28 Feb - 04 March 2023 | New Delhi

Decoder

- Autoregressive in nature
- 2 special Multi-Head Attention layers

Masked Multi-Head Attention

ORGANIZER

28 Feb - 04 March 2023 | New Delhi

Scaled Scores	Look-Ahead Mask	Masked Scores		
0.7 0.1 0.1 0.1	0 -inf -inf -inf	0.7 sinf sinf sinf		

0.7	.7 0.1 0.1		0.1	
0.1	0.6	0.2	0.1	
0.1	0.3	0.6	0.1	
0.1	0.3	0.3	0.3	

+

0.7	0.7 -inf		-inf
0.1	0.6	-inf	-inf
0.1	0.3	0.6	-inf
0.1	0.3	0.3	0.3

Encoder-Decoder Attention

ORGANIZER

Final Layers & Loss Function

- Linear Layer with dimension equivalent to number of unique words
- Softmax Layer for class probabilities

Adam optimizer with Categorical Cross-entropy (Log) Loss

$$Logloss_i = -[y_i ln p_i + (1 - y_i) ln(1 - p_i)]$$

Impact of Transformers

- New avenue and direction in Deep Learning w.r.t NLP & LLMs
- Initially it started off with an idea/approach to understand how languages function and how to represent them
- 66000+ citations and counting
- Base architecture to a plethora of new-age architectures like GPT and **BERT**

www.isuw.in

Generative Al

Generative Al

- Creation of data in various modalities like Images, Text, Audio, Video, and so on
- Solves various data problems
 - Data scarcity
 - Edge cases
 - Dangerous situations

Al can not only boost our analytic and decision-making abilities but also heighten creativity.

History of Generative Al

- First explored in 1950-60s, gained traction in 2010s
- Breakthrough in 2014 by Ian Goodfellow's GANs paper
- Going really strong and dominating the Deep Learning space
 - ChatGPT, ImageGPT, CLIP, DALL-E, Stable Diffusion, etc.

Coolest idea in Deep Learning in the last 20 years – Yann LeCun

Generative AI Timeline

ORGANIZER

8 Feb – 04 Iviar	cn 2023	New Dein

	PRE-2020	2020	2022	2023?	2025?	2030?
TEXT	Spam detection Translation Basic Q&A	Basic copy writing First drafts	Longer form Second drafts	Vertical fine tuning gets good (scientific papers, etc)	Final drafts better than the human average	Final drafts better than professional writers
CODE	1-line auto-complete	Multi-line generation	Longer form Better accuracy	More languages More verticals	Text to product (draft)	Text to product (final), better than full-time developers
IMAGES			Art Logos Photography	Mock-ups (product design, architecture, etc.)	Final drafts (product design, architecture, etc.)	Final drafts better than professional artists, designers, photographers)
VIDEO / 3D / GAMING			First attempts at 3D/video models	Basic / first draft videos and 3D files	Second drafts	Al Roblox Video games and movies are personalized dreams
			Large model availability:	First attempts	Almost there	Ready for prime time

Global AI investment surged from \$12.75 million in 2015 to \$93.5 billion in 2021, and the market is projected to reach \$422.37 billion by 2028. Already over \$2B has been invested in **Image Credit** Generative AI, up 425% since 2020

Types of Generative Models

- Generative Adversarial Networks (GANs)
- Variational Autoencoders (VAEs)
- Autoregressive Models (Transformers-XL, PixelCNN, WaveNet)
- Markov Chain Monte Carlo Models

Generative Adversarial Networks

ORGANIZER

India Smart Grid Forum

Generative Adversarial Networks

ORGANIZER India Smart Grid Forum

28 Feb - 04 March 2023 | New Delhi

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(\boldsymbol{x})$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Generative Adversarial Networks

- Problems/Nuances with GANs
 - Mode Collapse
 - Nash Equilibrium
 - Very Very Very difficult to train and get good outputs
- Popular architectures
 - Pix2Pix
 - StyleGAN
 - CycleGAN
 - VideoGAN

Auto-Encoders

Variational Auto-Encoders

Variational Auto-Encoders

28 Feb - 04 March 2023 | New Delhi


```
generation_loss = mean(square(generated_image - real_image))
latent_loss = KL-Divergence(latent_variable, unit_gaussian)
loss = generation_loss + latent_loss
```


Auto-regressive Models

- Generate a token, given the previous token in an iterative manner
- Tend to forecast future behaviour
 - High impact in NLP & Time-Series domains
- Examples: Transformers-XL, GPT

Applications of Generative Al

28 Feb - 04 March 2023 | New Delhi

- Realistic and diverse images. Applications in Graphics, Video games, Super resolution, Art, In-painting
- Language Translation, Summarization, Conversational Al
- Simulate complex systems
- Generate data for scientific research
 - Climate modelling
 - Drug discovery
 - Protein folding
- Power & Utility
 - Synthetic data
 - Identify and replicate energy saving patterns
 - Text2Sim, Text2Image, Text2Code, etc.

Popular Generative AI Models

- Co-Pilot/Codex, Stable Diffusion, PaLM, LaMDA, ChatGPT
- CLIP, DALL-E
- ImageGPT, GPT-3
- StyleGAN2
- BigGAN
- WaveNet
- DeepDream

Applications of Transformers

Applications of Transformers

- Regarded as AI 2.0
- Accelerated R&D in various industries
- Cross domain problem statements
 - Language, Images, Videos, Speech, Tabular
- Advances in Drug Discovery, Protein Folding
- Carbon Footprint

Image Credit

Applications of Transformers

Vision

- Image Classification: ViT, DeiT
- Object Detection, Segmentation: DETR, SWIN Transformer
- Music
 - Music Transformer
 - MusicLM: Synthetic Music generation from text desciptions
- NLG
 - Image Captions, Generating Reports, Chatbots, Transcriptions
 - E-Commerce, Banking, Media, Art & Poetry, Assistants

Applications of Transformers

- Power & Utility Industry
 - Disaggregation
 - Load Forecasting
 - Pricing optimization
 - Solar & EV Propensity
 - Demand and Response
 - Material & Design Innovations
 - Outage Predictions, Grid Stability & Resilience, Restoration

Training & Evaluating Transformers

Week 2023 Training & Evaluating Transformers

28 Feb - 04 March 2023 | New Delhi

- Data
 - Massive data required ~A few TBs
 - Little to no pre-processing
 - Data representation
- Compute
 - Massive GPU servers, mostly one-time investment
- Hyperparameters
 - 6 blocks of Encoders and Decoders
 - 8 Nvidia P100 GPUs, 300,000 steps optimized by Adam (varied LR)

Week 2023 Training & Evaluating Transformers

28 Feb - 04 March 2023 | New Delhi

Outline

- Dataset -> Character level or Word level tokenization -> Indexing
- Generate sequences from data
 - If Seq2Seq, then additional masking operation to be done
- Embedding Representation
- Define the functional blocks
- Define the hyperparameters
- Training & Testing loop
- Stand-alone function for saving, loading and generation of text

Evaluation Metrics

- BLEU
- Perplexity

Transformers in Action!

Advanced Topics in Transformers & Generative Al

Advanced Topics in Generative Al

- Transformers in Reinforcement Learning
 - Modified into a "Big Sequence Modelling"
 - Decision Transformers
- Policy Based Learning
 - ChatGPT
- DIET (Dual Intent Entity Transformer)

Decision Transformer

ORGANIZER India Smart Grid Forum

Image Credit

ORGANIZER

- Large Language Models & Transformers
 - Understanding of How? Why? And Impact!
- Generative Al
 - Concept and Fundamental Architectures
 - Impact, Applications & Opportunities
- Train your own Generative Al Model
 - Generate novel language
 - How to use pre-trained models for downstream tasks
- Future of Power & Utility Industry with Generative Al

Thank You

For discussions/suggestions/queries email: isuw@isuw.in www.isuw.in Links/References (If any)

