A Universal Turing Machine

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

- Reprogrammable machine
- Simulates any other Turing Machine

Universal Turing Machine simulates any Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Input string of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

Transition Encoding

Turing Machine Encoding

Transitions:

Tape 1 contents of Universal Turing Machine:

binary encoding of the simulated machine M

Tape 1

1 0 1 0 11 0 11 0 10011 0 1 10 111 0 111 0 1100...

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of this language is the binary encoding of a Turing Machine

Language of Turing Machines

```
(Turing Machine 1)
L = \{ 010100101,
     00100100101111,
                          (Turing Machine 2)
     111010011110010101,
     .....}
```

Countable Sets

Infinite sets are either:

Countable

or

Uncountable

Countable set:

```
There is a one to one correspondence of elements of the set to Natural numbers (Positive Integers)
```

every element of the set is mapped to a number uch that no two elements are mapped to same number)

Example: The set of even integers is countable

Even integers: (positive)

Correspondence:

Positive integers:

0, 2, 4, 6, ...

1, 2, 3, 4, ...

2n corresponds to n+1

Example: The set of rational numbers is countable

Rational numbers:
$$\frac{1}{2}$$
, $\frac{3}{4}$, $\frac{7}{8}$, ...

Naïve Approach

Nominator 1

Rational numbers:

$$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots$$

Correspondence:

Positive integers:

Doesn't work:

$$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$$

Better Approach

$$\frac{1}{1}$$
 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$...

$$\frac{2}{1}$$
 $\frac{2}{2}$ $\frac{3}{3}$...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \longrightarrow \frac{1}{2} \qquad \frac{1}{3} \qquad \frac{1}{4} \qquad \cdots$$

$$\frac{2}{1}$$
 $\frac{2}{2}$ $\frac{3}{3}$...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \xrightarrow{\frac{1}{2}} \frac{1}{3} \xrightarrow{\frac{1}{4}} \cdots$$

$$\frac{2}{1} \xrightarrow{\frac{2}{2}} \frac{2}{3} \cdots$$

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \xrightarrow{\frac{1}{2}} \frac{1}{3} \xrightarrow{\frac{1}{4}} \cdots$$

$$\frac{2}{1} \xrightarrow{\frac{2}{2}} \frac{2}{3} \cdots$$

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \xrightarrow{\frac{1}{2}} \frac{1}{3} \xrightarrow{\frac{1}{4}} \cdots$$

$$\frac{2}{1} \xrightarrow{\frac{2}{2}} \frac{2}{3} \cdots$$

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

Rational Numbers:

$$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{2}, \dots$$

Correspondence:

Positive Integers:

We proved:

numbers

the set of rational numbers is countable by describing an enumeration procedure (enumerator) for the correspondence to natural

Definition

Let S be a set of strings (Language)

An enumerator for S is a Turing Machine that generates (prints on tape) all the strings of S one by one

and each string is generated in finite time

strings
$$s_1, s_2, s_3, \ldots \in S$$

Enumerator Machine for
$$S$$
 output $s_1, s_2, s_3, ...$ (on tape) $t_1, t_2, t_3, ...$

Enumerator Machine

Configuration

Time 0

Time t_1

Time t_3

Observation:

If for a set S there is an enumerator, then the set is countable

The enumerator describes the correspondence of S to natural numbers

Example: The set of strings $S = \{a,b,c\}^+$ is countable

Approach:

We will describe an enumerator for S

Naive enumerator:

Produce the strings in lexicographic order:

```
s_1 = a
s_2 = aa
aaaa
aaaa
```

Doesn't work: strings starting with b will never be produced

Better procedure: Proper Order (Canonical Order)

- 1. Produce all strings of length 1
- 2. Produce all strings of length 2
- 3. Produce all strings of length 3
- 4. Produce all strings of length 4

$$\begin{vmatrix}
s_1 & a \\
s_2 & b
\end{vmatrix} = b$$

$$\begin{vmatrix}
aa \\
ab \\
ac \\
ba \\
bb \\
cc \\
ca \\
cb \\
cc
\end{vmatrix}$$

$$\begin{vmatrix}
ength 1 \\
ength 2 \\
bc \\
ca \\
cb \\
cc
\end{vmatrix}$$

$$\begin{vmatrix}
aaa \\
aab \\
aac
\end{vmatrix}$$

$$\begin{vmatrix}
ength 3 \\
ength 3
\end{vmatrix}$$

Produce strings in Proper Order:

Theorem: The set of all Turing Machines is countable.

Proof:

Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumerator:

Repeat

- 1. Generate the next binary string of 0's and 1's in proper order
- Check if the string describes a
 Turing Machine
 if YES: print string on output
 tape
 if NO: ignore string

Binary strings

Turing Machines

```
S(9, a)=(9, b, l)
10101101100
                     S<sub>1</sub>
                             10101101101
10101101101
1011010100101101 \xrightarrow{S_2} 1011010100101101
```

End of Proof

Uncountable Sets

We will prove that there is a language L'which is not accepted by any Turing machine

Technique:

Turing machines are countable

Languages are uncountable

(there are more languages than Turing Machines)

Definition: A set is uncountable if it is not countable

We will prove that there is a language which is not accepted by any Turing machine

Theorem:

If S is an infinite countable set, then the powerset 2^S of S is uncountable.

Proof:

Since S is countable, we can write

$$S = \{s_1, s_2, s_3, \ldots\}$$
Elements of S

Hements of the powerset 2^S have the form:

$$\{s_1, s_3\}$$

$$\{s_5, s_7, s_9, s_{10}\}$$

We encode each element of the powerset with a binary string of 0's and 1's

Powerset element	Binary encoding							
(in arbitrary order)	<i>s</i> ₁	s_2	s_3	s_4	• • •			
$\{s_1\}$	1	0	0	0	• • •			
$\{s_2,s_3\}$	0	1	1	0	• • •			
$\{s_1,s_3,s_4\}$	1_	0	1	1	•••			

Observation:

Every infinite binary string corresponds to an element of the powerset:

Example:
$$1001110 \cdots$$
Corresponds to:
$$\{s_1, s_4, s_5, s_6, \ldots\} \in 2^S$$

Let's assume (for contradiction) that the powerset 2^S is countable

Then: we can enumerate the elements of the powerset

$$2^S = \{t_1, t_2, t_3, \ldots\}$$

Powerset element

suppose that this is the respective Binary encoding

1	0	0	0	0	• • •		
1	1	0	0	0	• • •		
1	1	0	1	0	• • •		
1	1	0	0	1	• • •		
	1	1 0 1 1 1 1	1 0 0 1 1 0 1 1 0	1 0 0 0 1 1 0 0 1 1 0 1	1 0 0 0 1 1 0 0 0 1 1 0 1 0		

Take the binary string whose bits are the complement of the diagonal

The binary string

corresponds to an element of the powerset 2^S :

$$t = 0011...$$

$$t = \{s_3, s_4, \ldots\} \in 2^{s}$$

Thus, tmust be equal to some t_i

$$t = t_i$$

However,

the i-th bit in the encoding of t is the complement of the i-th bit of t_i thus:

$$t \neq t_i$$

Contradiction!!!

Since we have a contradiction:

The powerset
$$2^S$$
 of S is uncountable

End of proof

An Application: Languages

Consider Alphabet: $A = \{a, b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
 infinite and countable

(we can enumerate the strings in proper order)

Consider Alphabet: $A = \{a, b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
 infinite and countable

Any language is a subset of S:

$$L = \{aa, ab, aab\}$$

Consider Alphabet: $A = \{a, b\}$

The set of all Strings:

$$S = A^* = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
infinite and countable

The powerset of S contains all languages:

$$2^{S} = \{\emptyset, \{\lambda\}, \{a\}, \{a,b\}, \{aa,b\}, \dots, \{\underline{aa,ab,aab}, \dots\}\}$$

uncountable

Consider Alphabet: $A = \{a, b\}$

Turing machines:
$$M_1$$
 M_2 M_3 ...

accepts

Languages accepted
By Turing Machines: L_1 L_2 L_3 ...

countable

Denote:
$$X = \{L_1, L_2, L_3, ...\}$$
 Note: $X \subseteq 2^S$ countable $(s = \{a,b\}^*)$

Languages accepted by Turing machines:

X countable

All possible languages: 2^S uncountable

Therefore: $X \neq 2^{S}$

since $X \subseteq 2^S$, we have $X \subseteq 2^S$

Conclusion:

There is a language __not accepted by any Turing Machine:

$$X \subset 2^S \implies \exists L' \in 2^S \text{ and } L' \notin X$$

(Language L'cannot be described by any algorithm)

Non Turing-Acceptable Languages

Note that: $X = \{L_1, L_2, L_3, ...\}$

is a multi-set (elements may repeat) since a language may be accepted by more than one Turing machine

However, if we remove the repeated elements, the resulting set is again countable since every element still corresponds to a positive integer

Recursively Enumerable and Recursive Languages

Definition:

A language is recursively enumerable if some Turing machine accepts it

Let L be a recursively enumerable language and M the Turing Machine that accepts it

For string W:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state or loops forever

Definition:

A language is recursive if some Turing machine accepts it and halts on any input string

In other words:

A language is recursive if there is a membership algorithm for it

Let L be a recursive language

and M the Turing Machine that accepts it

For string W:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state

We will prove:

1. There is a specific language which is not recursively enumerable (not accepted by any Turing Machine)

2. There is a specific language which is recursively enumerable but not recursive

Non Recursively Enumerable

A Language which is not Recursively Enumerable

We want to find a language that is not Recursively Enumerable

This language is not accepted by any Turing Machine

Consider alphabet $\{a\}$

Strings: a, aa, aaa, aaaa, ...

 a^1 a^2 a^3 a^4 ...

Consider Turing Machines that accept languages over alphabet $\{a\}$

They are countable:

$$M_1, M_2, M_3, M_4, \dots$$

Example language accepted by M_i

$$L(M_i) = \{aa, aaaa, aaaaaaa\}$$

$$L(M_i) = \{a^2, a^4, a^6\}$$

Alternative representation

	a^1	a^2	a^3	a^4	a^5	a^6	a^7	• • •
$L(M_i)$	0	1	0	1	0	1	0	• • •

Consider the language

$$L = \{a^i : a^i \in L(M_i)\}$$

L consists from the 1's in the diagonal

Consider the language \overline{L}

$$L = \{a^i : a^i \in L(M_i)\}$$

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

 \overline{L} consists of the 0's in the diagonal

Theorem:

Language \widetilde{L} is not recursively enumerable

Proof:

Assume for contradiction that

 \overline{L} is recursively enumerable

There must exist some machine $\,M_k\,$ that accepts $\,\overline{L}\,$

$$L(M_k) = \overline{L}$$

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Question: $M_k = M_1$?

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Question: $M_k = M_2$?

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Question: $M_k = M_3$?

$$M_k \neq M_i$$
 for any i

Because either:

$$a^i \in L(M_k)$$

or

$$a^i \notin L(M_k)$$

$$a^i \not\in L(M_i)$$

$$a^i \in L(M_i)$$

Therefore, the machine $\,M_k\,$ cannot exist

Therefore, the language $\,L\,$ is not recursively enumerable

End of Proof

Observation:

There is no algorithm that describes $\ L$

(otherwise L would be accepted by some Turing Machine)

Non Recursively Enumerable

A Language which is Recursively Enumerable and not Recursive

We want to find a language which

We will prove that the language

$$L = \{a^i : a^i \in L(M_i)\}$$

Is recursively enumerable but not recursive

Theorem:

The language
$$L = \{a^i : a^i \in L(M_i)\}$$

is recursively enumerable

Proof:

We will give a Turing Machine that accepts $\,L\,$

Turing Machine that accepts L

For any input string W

- Compute *i*, for which $w = a^{i}$
- Find Turing machine $\,M_i\,$ (using an enumeration procedure for Turing Machines)
- Simulate M_i on input a^i
- ullet If M_i accepts, then accept w

End of Proof

Observation:

Recursively enumerable

$$L = \{a^i : a^i \in L(M_i)\}$$

Not recursively enumerable

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

(Thus, also not recursive)

Theorem:

The language
$$L = \{a^i : a^i \in L(M_i)\}$$

is not recursive

Proof:

Assume for contradiction that L is recursive

```
Then \widetilde{L} is recursive: 
 Take the Turing Machine \mathcal{M}that accepts L
```

M halts on any input:

If M accepts then reject If M rejects then accept

Therefore:

 \overline{L} is recursive

But we know:

 \overline{L} is not recursively enumerable thus, not recursive

CONTRADICTION!!!!

Therefore, L is not recursive

End of Proof

Non Recursively Enumerable

Turing acceptable languages and Enumeration Procedures

We will prove:

(weak result)

 If a language is recursive then there is an enumeration procedure for it

 (strong result)
 A language is recursively enumerable if and only if there is an enumeration procedure for it

Theorem:

if a language $\,L\,$ is recursive then there is an enumeration procedure for it

Proof:

Enumeration Machine

If the alphabet is $\{a,b\}$ then \widetilde{M} can enumerate strings as follows:

```
\mathcal{A}
aa
ah
ba
bb
aaa
aah
```

Enumeration procedure

```
Repeat:
```

```
\widetilde{M} generates a string w M \quad \text{checks if } \underline{w \in L} \text{YES: print } \underline{w} \text{ to output} \text{NO: ignore } \underline{w}
```

End of Proof

Example:

$$L = \{b, ab, bb, aaa, \dots\}$$

L(M)	Enumeration Output
b	$\begin{array}{c} \longrightarrow b \\ \longrightarrow ab \end{array}$
bb —	$\Rightarrow bb$ $\Rightarrow aaa$
aaa	aaa
	b ab bb

Theorem:

if language L is <u>recursively enumerable</u> then there is an enumeration procedure for it

Proof:

Enumeration Machine

If the alphabet is $\{a,b\}$ then \widetilde{M} can enumerate strings as follows:

 \mathcal{A} aa ah ba bbaaa aah

NAIVE APPROACH

Enumeration procedure

Repeat: \widetilde{M} generates a string w

M checks if $w \in L$

YES: print w to output

NO: ignore W

Problem: If $w \notin L$

machine M may loop forever

BETTER APPROACH

W: dabbe W: bbaak

 \widetilde{M} Generates first string W_1

M executes first step on

W3: gabba

 \dot{M} Generates second string w_2

M executes first step on w_2 second step on w_1

\widetilde{M} Generates third string w_3

M executes first step on w_3 second step on w_2 third step on w_1

And so on.....

. . .

If for any string w_i machine M halts in a final state then it prints w_i on the output

End of Proof

Theorem:

```
If for language L there is an enumeration procedure then L is recursively enumerable
```

Proof: Input Tape WMachine that accepts Enumerator Compare for

Furing machine that accepts L

For input string w

Repeat:

 \bullet Using the enumerator, generate the next string of L

Compare generated string with W
 If same, accept and exit loop

End of Proof

We have proven:

A language is recursively enumerable if and only if there is an enumeration procedure for it