

United International University

B.Sc. in Data Science Course Syllabus

1. Course Title: Programming for Data Science

2. Course Code: DS 1501

3. Trimester and Year: Spring 2025

4. Pre-requisites: None.

5. Credit Hours: 3.0

6. Section:

7. Class Hours: 11:11 AM - 12:30 PM

8. Class Room:

9. Instructor's Name: Khushnur Binte Jahangir

10. Email: khushnur@cse.uiu.ac.bd

11. Office: 336(C)

12. **Counselling Hours:** See at glass door of R#336 (C)

13. Text Book:

(i) Python Crash Course, 3rd Edition: A Hands-On, Project-Based Introduction to Programming, Eric Matthes, No starch press.

14. References:

- (i) Intro to Python for Computer Science and Data Science: Learning to Program with AI, Big Data and the Cloud, Deitel and Deitel.
- (ii) Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code Book by Zed Shaw
- (iii) পাইথন দিয়ে প্রোগ্রামিং শেখাঃ তামিম শাহরিয়ার স্বিন, দ্বিমিক প্রকাশনী
- (iv) https://www.w3schools.com/python/
- (v) https://www.hackerrank.com/domains/python
- 15. **Course Contents (approved by UGC):** Branching and iteration; String Manipulation, Guess and Check, Approximations, Bisection; Decomposition, Abstractions, Functions; Tuples, Lists, Aliasing, Mutability, Cloning; Recursion, Dictionaries; Testing, Debugging, Exceptions, Assertions, Files and I/O.

16. Course Outcomes:

- **CO1** Understand basic concepts of Programming.
- **CO2** Comprehend basic and intermediate concepts of a programming language used in data science.
- **CO3** Apply programming language skills to solve basic and intermediate level programming problems.
- **CO4** Interpret programs written in a programming language used in data science.
- **CO5** Develop simple data science applications using a programming language used in data science.

17. **Teaching Methods:** Lecture, Slides, Demonstration

18. CO with Assessment Methods:

CO	Assessment Method	(%)
-	Attendance	5
-	Assignments	5
-	Class Tests	20
CO1,CO2,CO3	Midterm exam	30
CO3,CO4,CO5	Final exam	40

19. Mapping of COs and Program outcomes:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	Χ							
CO2	Χ							
CO3		Х						
CO4	Χ							
CO5			Х					

20. Lecture Outline:

Class	Topic	CO	Reading	Activities/
			Ref	Outcome
1	Introduction to Data Science and Python, how to run	CO1	Chapter 1	Lecture, Slides,
	a python program.			Demonstration
2	Print Function, Comments in python Variables Logi-	CO1	2.1-2.5	Lecture, Slides,
	cal and Mathematical Operators Precedence		(Deitel)	Demonstration
3	Dynamic Typing, input() More on print function, for-	CO1	2.6 (Deitel)	Lecture, Slides,
	matted output builtin functions: min, max			Demonstration
4	Conditional Statements and Branches	CO1	2.7, 3.5, 3.6	•
			(Deitel),	Demonstration
			Chapter 5	
_	Desiries Melienesith Ossalities at Otalescent	004	(crash)	Lastina Olistaa
5	Decision Making with Conditional Statements and Branches	CO1	2.7, 3.5, 3.6	Lecture, Slides, Demonstration
	branches		(Deitel), Chapter 5	Demonstration
			· ·	
6	Introduction to Lists, sublisting, indexing	CO2	(crash) 5.1 (deitel),	Lecture, Slides,
	introduction to Lists, sublisting, indexing	002	chapter 3	
			(crash)	Bomonoudion
7	Loops: For	CO1	3.8 (Deitel)	Lecture, Slides,
			(= 0.10.)	Demonstration
8	List, Iterator, Ranges and Augmented Assignments	CO2	3.8, 3.9	
			(Deitel),	Demonstration
			Chapter	
			3-4 (crash)	
9	While Loops	CO1	Chapter 7	Lecture, Slides,
			(crash)	Demonstration

Class	Topic	CO	Reading	Activities/	
			Ref	Outcome	
10	More on Loops: break, nested, continue	CO3	Chapter 7	Lecture, Slides,	
			(crash)	Demonstration	
11	More Builtin Functions Random numbers	CO3	2.9, 3.17,	Lecture, Slides,	
			4.4 (deitel)	Demonstration	
12	Review	-	-		
	Mid Exam				
13	Tuples and More on Lists	CO3	5.3-5.6	Lecture, Slides,	
			(deitel)	Demonstration	
14	Dictionary	CO4	6.2 (deitel)	Lecture, Slides,	
				Demonstration	
15	Dictionary Extended	CO4	6.2 (deitel)	Lecture, Slides,	
4.0	- .	000		Demonstration	
16	Tuples, Sets	CO3	6.3 (deitel)	Lecture, Slides,	
		000		Demonstration	
17	Strings	CO3	Chapter 8	, ,	
4.0		000	(deitel)	Demonstration	
18	User Defined Functions	CO2	Chapter 4	, ,	
40		000	(deitel)	Demonstration	
19	User Defined Functions, Variable Scopes, Global Vari-	CO3	Chapter 4	, ,	
	ables, recursion	000	(deitel)	Demonstration	
20	Array operations with numpy	CO3	Chapter 7	,,	
		001	(deitel)	Demonstration	
21	More on Array operations with numpy	CO4	Chapter 7	Lecture, Slides,	
		004	(deitel)	Demonstration	
22	Files	CO4	9.2-9.4	Lecture, Slides,	
		00-	(deitel)	Demonstration	
23	Files	CO5	9.2-9.4	Lecture, Slides,	
			(deitel)	Demonstration	
24	Review	CO5	-		
Final Exam					

Letter Grades

Letter Grade	Grade Point	Marks	Assessment
А	4.00	90-100	Outstanding
A-	3.67	86-89	Excellent
B+	3.33	82-85	Very Good
В	3.00	78-81	Good
B-	2.67	74-77	82-85 Above Average
C+	2.33	70-73	Average
С	2.00	66-69	Below Average
C-	1.67	62-65	Poor
D+	1.33	58-61	Very poor
D	1.00	55-57	Pass
F	0.00	<55	Fail
I	0.00	-	Incomplete
W	0.00	-	Withdraw
R	0.00		Repeat/Retake

Program Outcomes

Graduates of the program will have an ability to:

- **PO1** Analyze a complex problem and to apply principles of data science and other relevant disciplines to identify solutions.
- **PO2** Design, implement, and evaluate solutions of complex problems to meet a given set of requirements.
- **PO3** Apply theory, techniques, and tools throughout the data science lifecycle and employ the resulting knowledge to satisfy stakeholders' needs.
- PO4 Communicate effectively in a variety of professional contexts.
- **PO5** Recognize professional responsibilities and make informed judgments based on legal and ethical prin-ciples in practice.
- **PO6** Function effectively as a member or leader of a team engaged in activities to solve a wide variety of infrequently encountered problems in diverse areas.
- **PO7** Acquire and apply new knowledge as needed, using appropriate learning strategies.
- **PO8** Demonstrate understanding of the skills required to be an entrepreneur and ability to apply entrepreneurial skills.