

FIG.2A

HSU22027 7215 bp DNA PRI 22-OCT-1995 N Human cytochrome P450 (CYP2A6V2) gene, complete cds. U22027 g1008461 human. Homo sapiens	Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata; Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 7215) Fernandez-Salguero, P., Hoffman, S.M., Cholerton, S., Mohrenweiser, H., Raunio, H., Rautio, A., Pelkonen, O., Huang, J.D., Evans, W.E., 60 Idle, J.R. et, al.	A genetic polymorphism in coumarin 7-hydrozylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles Am. J. Hum. Genet. 57 (3), 651-660 (1995) 95397851 2 (bases 1 to 7215) Fernandez-Salguero, P.	Direct Submission Submitted (01-MAR-1995) Pedro Fernandez-Salguero, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20894, USA Location/Qualifiers 17215 /organism="Homo sapiens"
LOCUS DEFINITION ACCESSION NID KEYWORDS SOURCE ORGANISM	REFERENCE	TITLE JOURNAL MEDLINE REFERENCE AUTHORS	TITLE JOURNAL FEATURES SOURCE

782790 join (791970, 12371399, 21152264, 24992659, 32073383, 42574398,48735060,55775718, 63086489) /gene=CYP2A6V2: /codon_start=1 /product=cytochrome P450" /db_xref-PID:q1008462"	/translation=MLASGMLLVALLACLTVMVLMSVWQQRKSKGKLPPGPTPLPFIG NYLQLNTEQMYNSLMKISERYGPVFTIHLGPRRVVVLCGHDAVREALVDOAEEFSGRG EQATFDWVFKGYGVVFSNGERAKQLLRFAIATLRDFGVGKRGIEERIQEESGFLIEAI RSTHGANIDPTFFLSRTVSNVISSIVFGDRFDYKDKEFLSLLRMMLGIFQFTSTSTGQQ LYEMFSSVMKHLPGPQQQAFQLLQGLEDFIAKKVEHNQRTLDPNSPRDFIDSFLIRMQQQ EEEKNPNTEFYLKNLMMSTLNLFIAGTETVSTTLGYGFLLLMKHPEVEAKVHEEIDRV IGKNRQPKFEDRAKMPYMEAVIHEIQRFGDVIPMSLARRVKKDTKFRDFFLPKGIEVF PMLGSVLRDLRFFSNPRDFNPQHFLGEKGQFKKRDAFVPFSIRKRNCFGEGLARMELF, LFFTTVMQNFRLKSSQSPKDIDVSPKHVGFATIPRNYTMSFLPR	791970 /gene=CYP2A6V2: /number=1	12371399 /gene=CYP2A6V2: /number=2	21152264
5 ' UTR CDS		exon	exon	exon

ORIGIN

						1627 t
P2A6V2: 3 59 P2A6V2:	4 83 P2A6V2:	5 98 P2A6V2:	6 60 P2A6V2:	7 18 P2A6V2:	8 89 P2A6V2:	9 44 c 1746 g
<pre>/gene=CYP2A6V2 /number=3 24992659 /gene=CYP2A6V2</pre>	/number=4 32073383 /gene=CYP2A6V2	/number=5 42564398 /gene=CYP2A6V2	/number=6 48735060 /gene=CYP2A6V2	/number=7 55775718 /gene=CYP2A6V2	<pre>/number=8 63086489 /gene=CYP2A6V2</pre>	/number= 649067 a 2196
					·	1646
exon	exon	exon	exon	exon	exon	3'UTR BASE COUNT

FIG.2A CONT. BASE COUNT

gatggcagtg	tctgggcatc	ctgggctgct	aaactccaca	ggaatcccc	cacagccaca	acccccagat	caagtgctcc	ctcctaaatc	ccctctctg	ctaggcagga	agccaaagtc	tctatcatcc	gcctgactgt	ctccgggacc	tgtacaactc	tgcctagttg	aatggagttt	ctgtgagaac	agagtggagg	tggccccgtg	tgccgtcagg
caatgaagaa	caatgaggat	ggacccagtg	ctcctcccag	ccatatgcct	cccctaaatg	ctcccctgga	atccaaagcc	ctgttgcccc	gtctggaggc	gtgtcccaag	ttatgtaatc	gccgtcacca	ttgctggcct	gggaagctgc	acagagcaga	gggtgggggc	agtcttagga	agctccctga	ggccccattc	gtgagcgcta	gtggacatga
ctccccttgc	tctgaggttc	gtcagcccct	ctacacactc	actttcaagt	caacagaaga	ttggattcct	cagaccccaa	tacagcttat	cacagattta	cttgctggct	aatgaggtaa	aaccaccca	tctggtggcc	gaagagcaag	gcagctgaac	gggtgtctcg	tgtggaccaġ	tgggatgtcc	ctcggtgctg	catcagatca	gtggtgctgt
tctggtcttc	ctggcctcac	gctaaatcaa	gctgggcttg	tagccccgag	gcatcctcca	acccagacct	ttctcactct	tcctcagttc	cctgaagtac	cttatcctcc	tgggaggtga	tataaaggca	cagggatgct	ggcagcagag	gaaactacct	acagggagat	ggttgaccag	gacaggatct	cacatgacat	cacccacctc	ccggcgggtc
gaaatatggc	ggcagccatc	tctgggcaaa	ggagaacgcc	tgggtcttcc	ccttaaccct	ccctaataaa	ttggggtgca	tattccaaac	cggcacccct	ctggggtccc	ggcatgtagt	tttcaggcag	atgctggcct	atgtctgttt	cccttcattg	gtgtcccaag	tgtggcaggg	gcatcagaaa	agcatcccag	taaccactcc	acttggggcc
aagttcccct	gaggttctat	aagagacagc	gggctttctg	cccacagccc	ttcctgagac	ctttgtctta	ccgcacaact	cctatgcaaa	cacagccctg	770	770	\circ	ctctaccacc	gatggtcttg	ccccat	cctcatgaag	gctggggctt	g	gggtgc	gttctccctc	ttcaccattc
⊷1	61	121	∞	241	0	9			Ţ	601		721	∞	841	901	961	1021	1081	1141	1201	1261

FIG.2A CONT

agegeateca gttctgcctg tggcgctggg ctctgagttg accgctttga tccagttcac caccttcgac cacgaaggtc gagagtccc tccctcacct ccttattctc tgggtttctg ttctgggctt taggatgcca ctcttccttc cttaagaatc ccaccctcc atccaatgga ctgggtaata tcctgcgctt aggggaccc atcccacctt ttaccaaaac acccgcgcgc gcgagcaagc cctcttagc gtaacagtct ctggccgtac gccaagcagc ggcatcgagg ccctggagtc ctcctcagac gtctttgggg ggcaggtgga tccatgtgta ctccatctct tcctctgtct tccagctcag atctcactac tgcggacgcg cacggtgagc gccaatatcg ctaggaatct gtgaaggccc gaggataagg tgccccacci cccactgccc agcgggcgag ttggggcctc tgcctctctc gtctttgagg tctcaattct ccatctcctg aactctctgc atctctctgt cggggagcgc gggcaagcga ccggagcacg aggacgagga gcacttccag aattctgact acccggaggc cagctccatt ggggaaggtg tacactatat atctccccat gcgcatgatg agcccggccc ctgacaact tgaggagttc cggatccctt tattcagcaa acttcggggt tcgaggccat tgcccaagag cctgactctc gattcctccc tcccctctct gtctacatga tcttcaggct ctcaatatta ctccacccag tcttctctc agctatgtgc gaaaacaccc aaaggcgccc tgcctcctgg ctcccgacat tgtcactgtt tctccctaca ccaatgtcat taatggttgc tggaccaggc aacaaggccc aaagagttcc aaggctatgg cagccttctc ctgggtctct ctcatctctc agaggatgtc tccatcactc aatgccgtga ctaggcgtgg ggcttcctca gcaggagaag ctaggtgggg caacccctt tccctcccca gccctgtcct gtctcctct tacttccaca ctgtttctat accctgaggg cgcacagtct acggggcagg gaggctctgg tgggtcttca acctgatcga tcagtgttcc agtctggtct tctcactgga tttaccagcc ctctgggttt gggttattcc cagaccctct tgccatcgcc ggaggagtcg gagtgcgggg gggatgggga cttcctgagc gtctccagcg tcacaccaag atcctctgcc gtgtggagct aatttggctc actctcccc tataaggac tcaacctcc 1381 2041 2101 2161 2221 501 1681 1741 801 1861 1921 1981 2281 2341 1441 561 2401 2461 ゼ

FIG.2A CONT

gattgcttga taagaaaaa gtcagcaagg ctgtaatccc gaccagcctg catggtggcg gtctgggtga attcaaatta ttcatagcca ttcattgact atgcaaagcc tgtccttccc atgaaacacc gattagttcc tcagttcctt aagggctgg ggcacgtgtt ttcttgaata cccggacag gctccccaaa gtgagcctg agacccggg caagtcagta cggacagatg gagtcagggc taaaaagtaa ggctaacagc aggagttcga attagttggg ttgcactcca gaggctggag acacaggccc tgcctttaac ccgtgacagc gctggaggac cccacgggac ctgcggggag ctcttcggtg gagtggaacc tacccaggtc aaactttaga teccaeegee cacaacagat tctcaccctg tgataattga gcaacgccag atcacttgtt tcaggaggct ttagcaagac gatcacggca aaatccaaaa ccagcagcca tgggtgccgt acctgaggtc caggcagatg agctcctgcc tgctgcaagg atcccaattc agctcagctc ggagaccaga ggccccaaat caaattggca accgggatag agatgctcc atgagatgt ccttcctgt ctccagctac cctgtgcaac acagctaagt agcattgggg aaaaaatta gggagtgggg cacaattggc caggtggatc tctctactaa aatgagccaa cgcacgctgg gaggtacacc gggtacctaa cattcccatc cccagctct gcctttcagt gcataccctc cctaaccacc ggggaaggg ctccagggac aatttctaac ccgatttggg gagaaggaag cagaggttgc ccctgtgtca gcatgtgcag tggcgtccgg aaaaagctg gcacaaccag aaatcagtct taataatcct gaggccgagg tcaaaccccg ctctctgcaa gcagcaacag ccgcatgcag aaacaaatcc ctctgaaata ttcccctacc aaatcagtcc atcccctgct ctggcaggat acttaccggt cggaaaccct taacgaaggt atggtcatgc gctcaggagt aaaaacaaa cgaagggggg cagaatgagg ttcccatcct agaaggtgga cctttctcat aggcagaggg acctcatca agcactttgg gccaacatgg tgccaggacc tatccggccc ccttgctatg cggcaaattg tggttgtcca acagagcctg cccatcccca tttaacacc tgtcccctca 961 3661 3781 841 901 3181 3241 3301 3241 3481 3541 3601 3361 3001 3061 941

gtctcccaaa	tggaccccat	tagaaggaca	aactcctgcc	aggtccccca	cagaaatctc	34
gtcataggga	tcggccttt	ccctttccat	aacagaagcc	tatcttaaga	ccaaacttcc	
acacatgttc	ggagaatcaa	ctttgtgtca	tctccagact	gtcctgcatc	acactcctga	22
ttccacttag	cgttccacct	ccaccacatc	acttccccaa	gtcaaaaaag	ccctcaatca	16
ctgtcccact	tttctagacc	cattagaagc	atcccaccca	tgtccccagc		10
actcca	ccagactacg	ccccaccc	gtgctatccg	cctccctaag	gggatttctt	04
accaagtttc	caaaaaggac	cccgcagagt	atgagtttgg	cgtgatcccc		98
gagatccaaa	agtgatccac	acatggaggc	aagatgccct	ggaccgggcc	ttt	92
aaccggcagc	gatcggcaag	ttgacagagt	catgaggaga	agccaaggtc	ctcctcccc	86
cacattcccc	gatacctaaa	gagaccccta	ttcctgctct	ggactatcat	ttgcctatcc	80
ccaccccatt	ggcatttcat	cataggcgga	acttccgtct	tgaatgctct	ttctgt	74
gggtgatgtc	caatgcgaat	cctactccaa	ttaacaggat	cacaacctgg	gtgattctgg	68
tgcctcccct	ttcctccctg	atcccctaag	ccaccgggtc	actgcccgtt	ctgagtgccc	62
cccaagccca	tcacttctgt	gattggtcag	tgtctgcact	atattgaaaa	atatta	56
gagtctcatt	ggcatcagct	tcagctggta	agggcaacat	gtccagagac	acttg	0
accctgagac	agatcccggg	cacctgtccc	gcaatgtccc	ttcgactggt	aaaattcccc	44
ccagaccctc	gtggagggcc	ggggacggaa	aaggctggag	ggtggagggt	agcacccaga	∞
ctgctcatga	tggcttctta	ccctgcacta	gtcagcacca	caccgagacg	attgca	32
ttgaacctct	gatgagcacg	agaacctgat	ttctacttga	caacacggag	aagaacc	26
cttcaggagg	cccctctcc	tgtcctaaag	ggagtgaggt	aggtcaagca	tggtgccctg	20
aacccctaga	ccatggggtg	agtggaagat	tgaacctaag	cccattggtc	\sim	14
cttggggtcc	ctgtgtagat	agactcgagt	ggattgcgct	gagggtgctg	agagg	08
tcttgcccca	caccctgcgg	ccctcttctc	gatctagggc	agtctggtag	tcctagagcg	

gtcccca ccctgtg	tccaacccc	cgtgatgctt	actcacacca	tccccagctt	taactaccaa	tcagaggcgg	acaggagatt	gttcttatct	acccatctt	aggctccctc	cagctggagg	ccgcctctcc	cttctcttc	ggacattgac	gagcttcctg	gaaagggcag	ggcggaaagg	accttgataa	aagagtagta
ctccctcag	caggttette	gtttaagaag	caggcttact	gcctagtatt	gatactccct	catacccctt	ctagggtcac	atatttggga	gcatcgatca	gagggtcaag	gggagagccg	tccaccctc	gaatggagct	agtcacctaa	actacaccat	cggggccagg	ggggcaggat	ggctcagttc	ttatgctatg
ccccaagg caccctag	acatacacct tgagagacct	agaaggggca	tgtttggtgc	ctgccgtgta	gccaccaggt	aaggaaacat	atttatttcc	acagcaggtc	tggacacctg	tgaggtcaag	cttcctccct	gggcttcacc	ggcctggcca	aagtcctccc	atcccacgaa	gtctggtggg	gctaagactg	aaacagaagc	aacccttaca
accttcta ctcaccgg	ccgcctcatc ggctccgtgc	ttcctgggtg	aagagaccac	gttcccctct	ctaccgtcga	ggcaaaagga	agaatcagag	agatgacggc	cctcccattg	tcaaggaaac	atattccacc	cactgagagt	tttcggagaa	cttccgcctc	ctttgccacg	gccggtgaag	gaggggcgca	ggaagagaag	agaggaagga
agagatgt gccacttc	atcccccaac ccctatgttg	tececageae	ctccatcagt	cccttaccca	tgttagcaat	cctgtgccca	aaggccagag	cctaaaaagg	ggatcttaaa	tttgggtcac	tcagggccat	ggcgaggctg	agcggaactg	tcatgcagaa	aacacgtggg	cgagggctgt	gggcttggga	gtggctagag	agctgggatg
ttcctgtt tcccatgo	actctcaaca tagaagtgtt		ttgtgccctt	gcaggggcct	ggcaagttcc	gcacccagta		cttcagcatc	gggaagg	ttggtcatct	ttaaagtctc	tcggtactgg	tcctcaggaa	ttcaccaccg	gtgtccccca	ccccgctgag	ggccaagacc	aaggggcgtg	ggtgcttccg
0 9 0	5521 5581	64	7.0	9 /	82	8	94	00	90	12	18	24	30	36	42	48	54	09	99

FIG.2A CONT

cagataaggc acatacaggg ctgtccgggg gcccacactc ccattttac taagtgccca aaaagcacc caaaaaccat ctgaacatcc tgcttgctac ggcgttcatg tcacaaaaca acagattctt ctgcacacat acatgactgg cacctttgtt cctgccttca gtgtaatctg acccccgtgt ccttcgaagg ctctgatgtc agccttctag atcacatggc acacaacgag gggtggttgc gactacccgg ctgagcacgt cacaaaaccc agaaagttgt ctgtgcccat ttagtataga cagcccaggg ctcttatttc cctaatttgc cattcagagt gagacctggg aacatgctgt actgaggctt gaacacagat gcaaaacagt aacaa ataatagcag. tgcacgctca gagttcccca cactgtagcc tcagtccatt acgtgacaaa gaaaatctgc tattcctcac tcacctactc 7021 7081 7141 6781 6841 6901 6961

Location/Qualifiers

FEATURES

LOCUS	HSP452B6 1415 bp RNA PRI 29-MAY-1992
DEFINITION	Human MRNA FOR CYTOCHROME P-450IIVB6.
ACCESSION	X13494
NID	
KEYWORDS	Cytochrome; cytochrome P450IIB6.
SOURCE	human.
ORGANISM	Homo sapiens
	Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
	Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE	1 (bases 1 to 1415)
AUTHORS	Miles, J.S.
TITLE	
JOURNAL	Submitted (10-NOV-1988) Miles J.S., Imperial Cancer Research Fund,
	Lab of Molecular Phrmacology and Drug Metabolism, Hugh Robson
	Building, George Square, Edinburgh, EH8 9XD
REFERENCE	2 (bases 1 to 1415)
AUTHORS	, McLaren, A.Q. and Wolf, C.R.
TITLE	Alternative splicing in the human cytochrome P450IIB6 gene
	generates a high level of aberrant messages
JOURNAL	Nucleic Acids Res. 17 (20), 8241-8255 (1989)
MEDLINE	
COMMENT	The sequence is a compilation of genomic and cDNA clones. **map:
	chromosomal location=19q12-13.2;
-	Data kindly reviewed (13-NOV-1989) by Miles, J.S.

11/59 Fund,

gaatteegee etgeaceeat gaeegeetee caeeagggee eegeeetetg eeettttgg

	"S1									region"	316 t	
	omo sapien	, partial"		"	u.	ı	u	u u		, god	328 g	
11415	/organism="Homo sapiens" 9110	/note=exon 1, 111273	/note=exon 2" 274423	/note=exon 3" 424584	/note=exon 4	/note=exon 5" 762903	/note=exon 6" 9041091	/note=exon 7" 10921233	/note=exon 8" 12341415	/note=exon 9"	a 430 c	
source	misc-feature	misc-feature	misc-feature	misc-feature	misc-feature	misc-feature	misc-feature	misc-feature	misc-feature		OUNT 341	ORIGIN

FIG.2B CONT.

13/59

61	gaaaccttct	gcagatggat	agaagagcc	tactcaaatc	ctttctgagg	ttccgagaga
\sim	aatatgggga	cgtcttcacg	gtacacctgg	gacccaggcc	cgtggtcatg	ctgtgtggag
181	tagaggccat	acgggaggcc	cttgtggaca	aggctgaggc	cttctctggc	cggggaaaaa
₽.	tcgccatggt	cgacccattc	ttccggggat	atggtgtgat	ctttgccaat	ggaaaccgct
0	ggaaggtgct	tcggcgattc	tctgtgacca	ctatgaggga	cttcgggatg	ggaaagcgga
9	gtgtggagga	gcggattcag	gaggaggctc	agtgtctgat	agaggagctt	cggaaatcca
\sim	agggggccct	catggacccc	accttcctct	tccagtccat	taccgccaac	atcatctgct
∞	ccatcgtctt	tggaaaacga	ttccactacc	aagatcaaga	gttcctgaag	atgctgaact
マ	ı	gactttttca	ctcatcagct	ctgtattcgg	ccagctgttt	gagctcttct
0	ctggcttctt	gaaatacttt	cctggggcac	acaggcaagt	ttacaaaaac	ctgcaggaaa
9	tcaatgctta	cattggccac	agtgtggaga	agcaccgtga	aaccctggac	cccagcgccc
\sim	ccaaggacct	catcgacacc	tacctgctcc	acatggaaaa	agagaaatcc	aacgcacaca
∞	gtgaattcag	ccaccagaac	ctcaacctca	acacgctctc	gctcttcttt	gctggcactg
ゼ	agaccaccag	caccactctc	cgctacggct	tcctgctcat	gctcaaatacc	ctcatgttg
0	cagagagagt	ctacagggag	attgaacagg	tgattggccc	acatcgccct	ccagagcttc
9	atgaccgagc	caaaatgcca	tacacagagg	cagtcatcta	tgagattcag	agattttccg
02	accttctcc	catgggtgtg	ccccacattg	tcacccaaca	caccagcttc	cgagggtaca
∞	tcatccccaa	ggacacagaa	gtatttctca	tcctgagcac	tgctctccat	gacccacact
7	actttgaaaa	accagacgcc	ttcaatcctg	accactttct	ggatgccaat	ggggcactga
20	aaaagactga	agcttttatc	cccttctcct	tagggaagcg	gatttgtctt	ggtgaaggca
1261	tegecegage	ggaattgttc	ctcttcttca	ccaccatcct	ccagaacttc	tccatggcca
32	gccccgtggc	cccagaagac	atcgatctga	caccccagga	gtgtggtgtg	ggcaaaatac
1381	ccccaacata	ccagatccgc	ttcctgcccc	gctga		

SUBSTITUTE SHEET (RULE 26)

BEST AVAILABLE COPY

20/59

4.5 4 3.5 Density 2.5 2 1.5 0.5 0 200 50 100 150 250 300 350 [ug] of microsomal protein FIG.8B

SUBSTITUTE SHEET (RULE 26)

CYP2A6 Antisense Knockdown in HepG2 Cells

Oligodeoxynucleotide Treatment

FIG.12

26/59

L41 L43 L44 L45 L47 L60 L61 L62 L63 L64

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

35/59

FIG.23A

SUBSTITUTE SHEET (RULE 26)

36/59

$$C_2H_5$$
 C_1H_1 C_1H_2 C_1H_3 C_1H_3

Pilocarpine

Nicotine

$$\begin{array}{c|c} \text{CI} & \text{CI} \\ \text{H}_2\text{N} - \begin{array}{c} \text{CH}_2 - \begin{array}{c} \text{CI} \\ \text{NH}_2 \end{array} \end{array}$$

4,4'-Methylene bis[2-chloroaniline

6-Aminochrysene

 α -Naphthoflavone

FIG.23B

4-Chromanone

About 80% activity left at 0.05 mM concentration

70% inhibition at 0.5 mM concentration

 $(CH_3CH_2)_2NCS_2NH_4$

Diethyldithiocarbamic acid ammonium salt

Sphondin IC50 90

Amgelicin IC 50 160 Pimpinrllin IC50>500

S CH₃

SM-12502

[(CH₃)₂N]₃P(O)

Hexamethylphosphoramide

(CH₃)₂ NNO

N-Nitrosodimethylamine

FIG.23C

LSMEAN 92354.2010 89397.9447

> Methoxsalen10-50 Placebo

_	٩	•
7	J	_
C	١	L
_	_	•
1	Γ	5
-	_	_
ı	ı	
-	•	-

The SAS System
Experiment BC1; Pharmacokinetics of nicotine
Revised analysis of kinetics based on re-assays

		Ŏ	Does treatment affect AUC?	ect AUC?		
	 	ο)	Compound assayed=COTININE	COTININE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1
Dependent V	Variable:	AUC	Sum of	Mean		
Source Model Error Corrected	Total	DF 7 6	Squares 10578731978 1944298022 12523030000	Square 151124745 324049670	F Value 4.66	Pr > F 0.0397
		R-Square 0.844742	C.V. 19.80871	Root MSE 18001.38		AUC Mean 90876.07
Source SUBJ TREATMNT		DF 6	Type I SS 10548143898 30588081	Mean Square 1758023983 30588081	F Value 5.43 0.09	Pr > F 0.0294 0.7690
			Least Squares Me	Means		
		TREATMNT	T	AUC		

38/59

7	1
C	Ý
	5
Ĺ	Ĺ

	Experiment BC1; Pharmacokinetics of nicotine	Revised analysis of kinetics based on re-assays	Does treatment affect AUC?
<u>1</u>			

			39/59	-			
		Pr > F 0.0317	AUC Mean 7165.426	Pr > F 0.1422 0.0038			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		F Value 5.14		F Value 2.52 20.86			
NICOTINE	Mean	Square 7839927.55 1523942.34	Root MSE 1234.481	Mean Square 3847592.43 31793938.32	Means	AUC	8672.40779 5658.44323
Compound assayed=NICOTINE	Jo mnS	Squares 54879492.87 9143654.02 64023146.88	C.V. 17.22829	Type I SS 23085554.55 31793938.32	Least Squares Me	L	thoxsalen10-50 gacebo
Com	AUC	DF 7 6 13	R-Square 0.857182	DF 6 1	I	TREATMNT	Methoxs. Placebo
	Dependent Variable:	Total					
1	Dependent	Source Model Error Corrected		Source SUBJ TREATMNT			٠.

SUBSTITUTE SHEET (RULE 26)

Inhibition of Nicotine to Cotinine Metabolism by various Compounds

Inhibitor	Ki	% Inhibition at 10 uM	% Inhibition at 100 uM	% Inhibition at 150 uM	
coumarin	2 uM (n+4)	65 (n=1)	90 (n=1)	85 +/- 11 (SD, n=31)	
7-methoxycoumarin	2.5 uM (n=1)	40 (n=1)	60 (n=3)		
7-methylcoumarin	15 uM*	20 (n=1)	70 (n=3)		
7-ethoxycoumarin	>100 uM*	10 (n=1)	20 (n=3)		
7-hydroxycoumarin	200 uM		25 (n+1		•
diethyldithiocarbamic acid	14.5 uM (n=1)				
pilocarpine	0.1 uM				·
naringenin	4.3 uM (n=1)	30 (n=1)	70 (n=3)		
methoxsalen	0.02 uM (n=1)				
naringin	.100 uM*		10 (n=1)		
bupropion		20 (n=1)	30 (n=1)		
orphenadrine				20 +/- 16 (SD, n=30)	
troleandomycin				3 +/- 11 (SD, n=30)	

all nicotine concentrations were at the Km value for cotinine formation in their respective livers * estimated from screening studies with 10 and 100 uM inhibitor concentrations

FIG.30A

FIG.30B

the CYP2A6 Substrate Coumarin to 7-Hydroxycoumarin Metabolism by various compound		
Substrate Coumarin to 7-Hydroxy	Monkey liver	1.69 uM 24.1 uM 0.9 uM
	Human liver	0.29 uM 100.1 uM 0.9 uM
Ki Values for the Inhibition of	Inhibitor	methoxsalen nicotine pilocarpine

49/59

Effect of Various Compounds on Cotinine Formation % control cotinine formation

Inhibitor	10 uM	100 uM
coumarin	35	10
naringenin	70	30
7-methylcoumarin	80	30
7-methoxycoumarin	60	40
bupropion	80	70
7-ethoxycoumarin	90	80

FIG.30C

SUBSTITUTE SHEET (RULE 26)

Comparsison Between Morning and Afternoon Testing Sessions

