

CS145 Discussion: Week 1

Shichang, Yewen, Zongyue Friday, 09/24/2021

Roadmap

- Course logistics
- Math review
 - Probability
 - Linear algebra
 - Optimization
 - Matrix calculus
- Python and Google Colab set up

Roadmap

Course logistics

- Math review
 - Probability
 - Linear algebra
 - Optimization
 - Matrix calculus
- Python and Google Colab set up

Course logistics

- Course homepage:
 - https://github.com/yichousun/Fall2021 CS145 IntroDM
 - Please find all the relevant course information there, e.g. schedule, slides, and etc.
- Piazza:
 - o piazza.com/ucla/fall2021/cs145
 - Please ask your question on Piazza before email the professor or any TAs, so others will also benefit from your question.
- Important dates
 - Midterm: 11/4 (Thursday)
 - Final exam: 12/9 (Thursday)
 - First homework out and project details: next week in discussion

Course logistics

Office hours

- Yizhou Sun (yzsun@cs.ucla.edu) Monday 2-3 and Tuesday 4:15-5:00 @
 zoom
- Shichang Zhang (shichang@cs.ucla.edu), office hours: Friday
 10am-12pm @ BH 3551 Conference Room (May change to the TA office BH 3256 once it is open)
- Yewen Wang (wyw10804@gmail.com), office hours: Wednesday 9-10am
 Boelter Hall 3551 Conference Room, 10-11am @ zoom
- Zongyue Qin (qinzongyue@cs.ucla.edu), office hours: Monday 9-11am @
 BH 3551 (row M)

Roadmap

- Course logistics
- Math review
 - Probability
 - Linear algebra
 - Optimization
 - Matrix calculus
- Python and Google Colab set up

Math Review

Slides reference

- Jeff Howbert,
 https://courses.washington.edu/css490/2012.Winter/lecture_slides/02_math_essen_tials.pdf
- Xinkun Nie, http://cs229.stanford.edu/notes2020fall/notes2020fall/TA-slides1.pdf
- Hristo Paskov, http://snap.stanford.edu/class/cs246-2014/slides/LinAlgSession.pdf

Random variables

- A random variable X is a function that associates a number x with each outcome O of a process
 - Common notation: X(O) = x, or just X = x
- Example: X = number of heads in three flips of a coin
 - Possible values of X are 0, 1, 2, 3
 - -p(X=0)=p(X=3)=1/8 p(X=1)=p(X=2)=3/8
 - Size of space (number of "outcomes") reduced from 8 to 4
- Example: X = average height of five randomly chosen American men
 - Size of space unchanged (X can range from 2 feet to 8 feet), but pdf of X different than for single man

Multivariate probability distributions

- Scenario
 - Several random processes occur (doesn't matter whether in parallel or in sequence)
 - Want to know probabilities for each possible combination of outcomes
- Can describe as joint probability of several random variables
 - Example: two processes whose outcomes are represented by random variables X and Y. Probability that process X has outcome x and process Y has outcome y is denoted as:

$$p(X = x, Y = y)$$

Example of multivariate distribution

Multivariate probability distributions

- Marginal probability
 - Probability distribution of a single variable in a joint distribution
 - Example: two random variables X and Y: $p(X = x) = \sum_{b=all \text{ values of } Y} p(X = x, Y = b)$

- Probability distribution of one variable given that another variable takes a certain value
- Example: two random variables X and Y: p(X = x | Y = y) = p(X = x, Y = y) / p(Y = y)

Example of marginal probability

Jeff Howbert

Introduction to Machine Learning

Winter 2012

21

Jeff Howbert

Introduction to Machine Learning

Winter 2012

22

Expected value

Given:

- A discrete random variable X, with possible values $x = x_1, x_2, \dots x_n$
- Probabilities p(X = x_i) that X takes on the various values of x_i
- A function y_i = f(x_i) defined on X

The expected value of f is the probability-weighted "average" value of $f(x_i)$:

$$\mathsf{E}(f) = \sum_{i} p(x_i) \cdot f(x_i)$$

Common forms of expected value (1)

Mean (μ)

$$f(x_i) = x_i \Rightarrow \mu = E(f) = \sum_i p(x_i) \cdot x_i$$

- Average value of $X = x_i$, taking into account probability of the various x_i
- Most common measure of "center" of a distribution

Common forms of expected value (2)

Variance (σ²)

$$f(x_i) = (x_i - \mu) \Rightarrow \sigma^2 = \sum_i p(x_i) \cdot (x_i - \mu)^2$$

- Average value of squared deviation of $X = x_i$ from mean μ , taking into account probability of the various x_i
- Most common measure of "spread" of a distribution
- σ is the standard deviation.

Common forms of expected value (3)

Covariance

$$f(x_i) = (x_i - \mu_x), \quad g(y_i) = (y_i - \mu_y) \implies cov(x, y) = \sum_i p(x_i, y_i) \cdot (x_i - \mu_x) \cdot (y_i - \mu_y)$$

 Measures tendency for x and y to deviate from their means in same (or opposite) directions at same time

Correlation

 Pearson's correlation coefficient is covariance normalized by the standard deviations of the two variables

$$corr(x, y) = \frac{cov(x, y)}{\sigma_x \sigma_y}$$

- Always lies in range -1 to 1
- Only reflects linear dependence between variables

Linear dependence with noise

Linear dependence without noise

Various nonlinear dependencies

Independence

Given: events A and B, which can co-occur (or not)

$$p(A | B) = p(A)$$
 or $p(A, B) = p(A) \cdot p(B)$

areas represent relative probabilities

Jeff Howbert

Introduction to Machine Learning

Winter 2012

35

Bayes rule

A way to find conditional probabilities for one variable when conditional probabilities for another variable are known.

$$p(B | A) = p(A | B) \cdot p(B) / p(A)$$

where $p(A) = p(A, B) + p(A, not B)$

Jeff Howbert

Introduction to Machine Learning

Winter 2012

38

Roadmap

- Course logistics
- Math review
 - Probability
 - Linear algebra
 - Optimization
 - Matrix calculus
- Python and Google Colab set up

Vectors and Matrices

• Vector $x \in \mathbb{R}^d$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

May also write

write
$$x = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix}^T$$

Vectors and Matrices

• Matrix $M \in \mathbb{R}^{m \times n}$

$$M = \begin{bmatrix} M_{11} & \cdots & M_{1n} \\ \vdots & \ddots & \vdots \\ M_{m1} & \cdots & M_{mn} \end{bmatrix}$$

Written in terms of rows or columns

$$M = egin{bmatrix} m{r}_1^T \ dots \ m{r}_m^T \end{bmatrix} = egin{bmatrix} m{c}_1 & ... & m{c}_n \end{bmatrix}$$

$$r_i = [M_{i1} \quad ... \quad M_{in}]^T \quad c_i = [M_{1i} \quad ... \quad M_{mi}]^T$$

Multiplication

• Vector-vector: $x, y \in \mathbb{R}^d \to \mathbb{R}$

$$x^T y = \sum_{i=1}^d x_i y_i$$

• Matrix-vector: $x \in \mathbb{R}^n$, $M \in \mathbb{R}^{m \times n} \to \mathbb{R}^m$

$$Mx = \begin{bmatrix} \boldsymbol{r}_1^T \\ \vdots \\ \boldsymbol{r}_m^T \end{bmatrix} x = \begin{bmatrix} \boldsymbol{r}_1^T x \\ \vdots \\ \boldsymbol{r}_m^T x \end{bmatrix}$$

By columns
$$\begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 4 \\ 7 \end{bmatrix} =$$
 combination contains a_1 and a_2

Matrix Column Space

Ax is a linear combination of the columns of A. This is fundamental.

Multiplication

• Matrix-matrix: $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n} \to \mathbb{R}^{m \times n}$

$$m{A} = \left[egin{array}{ccc} 1 & 3 & 8 \ 1 & 2 & 6 \ 0 & 1 & 2 \end{array}
ight] = \left[egin{array}{ccc} 1 & 3 \ 1 & 2 \ 0 & 1 \end{array}
ight] \left[egin{array}{ccc} 1 & 0 & 2 \ 0 & 1 & 2 \end{array}
ight]$$

Multiplication Properties

Associative

$$(AB)C = A(BC)$$

Distributive

$$A(B+C) = AB + BC$$

NOT commutative

$$AB \neq BA$$

- Dimensions may not even be conformable

Useful Matrices

• Identity matrix $I \in \mathbb{R}^{m \times m}$

$$-AI = A, IA = A$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad I_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

• Diagonal matrix $A \in \mathbb{R}^{m \times m}$

$$A = \operatorname{diag}(a_1, \dots, a_m) = \begin{bmatrix} a_1 & \cdots & 0 \\ \vdots & a_i & \vdots \\ 0 & \cdots & a_m \end{bmatrix}$$

Useful Matrices

- Symmetric $A \in \mathbb{R}^{m \times m}$: $A = A^T$
- Orthogonal $U \in \mathbb{R}^{m \times m}$:

$$U^TU = UU^T = I$$

- Columns/ rows are orthonormal
- Positive semidefinite $A \in \mathbb{R}^{m \times m}$:

$$x^T A x \ge 0$$
 for all $x \in \mathbb{R}^m$

— Equivalently, there exists $L \in \mathbb{R}^{m \times m}$

$$A = LL^T$$

Properties of real symmetric matrix

- 1. Eigenvalues are real.
- 2. Eigenvectors of different eigenvalues are orthogonal

Norms

- Quantify "size" of a vector
- Given $x \in \mathbb{R}^n$, a norm satisfies
 - 1. ||cx|| = |c|||x||
 - $2. \quad ||x|| = 0 \Leftrightarrow x = 0$
 - 3. $||x + y|| \le ||x|| + ||y||$
- Common norms:
 - 1. Euclidean L_2 -norm: $||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$
 - 2. L_1 -norm: $||x||_1 = |x_1| + \cdots + |x_n|$
 - 3. L_{∞} -norm: $||x||_{\infty} = \max_{i} |x_{i}|$

Matrix Rank

- the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns.
- This corresponds to the maximal number of linearly independent columns of *A*.
- This, in turn, is identical to the dimension of the vector space spanned by its rows

Matrix Rank

- rank(M) gives dimensionality of row and column spaces
- If $M \in \mathbb{R}^{m \times n}$ has rank k, can decompose into product of $m \times k$ and $k \times n$ matrices

Properties of Rank

- For $A, B \in \mathbb{R}^{m \times n}$
 - 1. $rank(A) \leq min(m, n)$
 - 2. $rank(A) = rank(A^T)$
 - 3. $rank(AB) \le min(rank(A), rank(B))$
 - 4. $rank(A + B) \le rank(A) + rank(B)$
- A has full rank if rank(A) = min(m, n)
- If m > rank(A) rows not linearly independent
 - Same for columns if $n > \operatorname{rank}(A)$

Matrix Inverse

- $M \in \mathbb{R}^{m \times m}$ is invertible iff $\operatorname{rank}(M) = m$
- Inverse is unique and satisfies

1.
$$M^{-1}M = MM^{-1} = I$$

2.
$$(M^{-1})^{-1} = M$$

3.
$$(M^T)^{-1} = (M^{-1})^T$$

4. If A is invertible then MA is invertible and $(MA)^{-1} = A^{-1}M^{-1}$

Characterizations of Eigenvalues

Traditional formulation

$$Mx = \lambda x$$

Leads to characteristic polynomial

$$\det(M - \lambda I) = 0$$

Linear algebra

Eigenvalue Properties

- For $M \in \mathbb{R}^{m \times m}$ with eigenvalues λ_i
 - 1. $\operatorname{tr}(M) = \sum_{i=1}^{m} \lambda_i$
 - 2. $det(M) = \lambda_1 \lambda_2 ... \lambda_m$
 - 3. $\operatorname{rank}(M) = \#\lambda_i \neq 0$

Roadmap

- Course logistics
- Math review
 - Probability
 - Linear algebra
 - Optimization
 - Matrix calculus
- Python and Google Colab set up

Convex Sets

• A set C is convex if $\forall x, y \in C$ and $\forall \alpha \in [0,1]$

$$\alpha x + (1 - \alpha)y \in C$$

- Line segment between points in C also lies in C
- Ex
 - Intersection of halfspaces
 - $-L_p$ balls
 - Intersection of convex sets

Convex Functions

• A real-valued function f is convex if dom f is convex and $\forall x, y \in dom f$ and $\forall \alpha \in [0,1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

 Graph of f upper bounded by line segment between points on graph

Gradients

- Differentiable convex f with $dom f = \mathbb{R}^d$
- Gradient ∇f at x gives linear approximation

$$\nabla f = \begin{bmatrix} \frac{\delta f}{\delta x_1} & \dots & \frac{\delta f}{\delta x_d} \end{bmatrix}^T$$

Gradients

- Differentiable convex f with $dom f = \mathbb{R}^d$
- Gradient ∇f at x gives linear approximation

$$\nabla f = \begin{bmatrix} \frac{\delta f}{\delta x_1} & \dots & \frac{\delta f}{\delta x_d} \end{bmatrix}^T$$

Gradient Descent

- To minimize *f* move down gradient
 - But not too far!
 - Optimum when $\nabla f = 0$
- Given f, learning rate α , starting point x_0 $x = x_0$

Do until
$$\nabla f = 0$$

$$x = x - \alpha \nabla f$$

Stochastic Gradient Descent

• Given
$$f(\theta) = \sum_{i=1}^n L(\theta; \mathbf{x}_i)$$
, learning rate α , starting point θ_0
$$\theta = \theta_0$$
 Do until $f(\theta)$ nearly optimal For $i = 1$ to n in random order
$$\theta = \theta - \alpha \nabla L(\theta; \mathbf{x}_i)$$

• Finds nearly optimal θ

What if have 3 million datapoints? SGD used the cost gradient of **1 example** at each iteration, instead of using the sum of the cost gradient of **ALL** examples

Minimize $\sum_{i=1}^{n} (y_i - \theta^T x_i)^2$

Roadmap

- Course logistics
- Math review
 - Probability
 - Linear algebra
 - Optimization
 - Matrix calculus
- Python and Google Colab set up

A helpful link:

Matrix cookbook:

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

The Gradient

Suppose that $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a function that takes as input a matrix A of size $m \times n$ and returns a real value. Then the **gradient** of f (with respect to $A \in \mathbb{R}^{m \times n}$) is the matrix of partial derivatives, defined as:

$$abla_A f(A) \in \mathbb{R}^{m imes n} = \left[egin{array}{cccc} rac{\partial f(A)}{\partial A_{11}} & rac{\partial f(A)}{\partial A_{12}} & \dots & rac{\partial f(A)}{\partial A_{1n}} \ rac{\partial f(A)}{\partial A_{21}} & rac{\partial f(A)}{\partial A_{22}} & \dots & rac{\partial f(A)}{\partial A_{2n}} \ dots & dots & \ddots & dots \ rac{\partial f(A)}{\partial A_{m1}} & rac{\partial f(A)}{\partial A_{m2}} & \dots & rac{\partial f(A)}{\partial A_{mn}} \end{array}
ight]$$

i.e., an $m \times n$ matrix with

$$(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ii}}.$$

The Gradient

Note that the size of $\nabla_A f(A)$ is always the same as the size of A. So if, in particular, A is just a vector $x \in \mathbb{R}^n$,

$$abla_x f(x) = \left[egin{array}{c} rac{\partial f(x)}{\partial x_1} \\ rac{\partial f(x)}{\partial x_2} \\ dots \\ rac{\partial f(x)}{\partial x_n} \end{array}
ight].$$

It follows directly from the equivalent properties of partial derivatives that:

-
$$\nabla_x (f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x)$$
.

- For
$$t \in \mathbb{R}$$
, $\nabla_x(t f(x)) = t\nabla_x f(x)$.

The Hessian

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a function that takes a vector in \mathbb{R}^n and returns a real number. Then the *Hessian* matrix with respect to x, written $\nabla_x^2 f(x)$ or simply as H is the $n \times n$ matrix of partial derivatives,

$$\nabla_{x}^{2}f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^{2}f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f(x)}{\partial x_{n}^{2}} \end{bmatrix}.$$

In other words, $\nabla^2_x f(x) \in \mathbb{R}^{n \times n}$, with

$$(\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}.$$

Note that the Hessian is always symmetric, since

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_i} = \frac{\partial^2 f(x)}{\partial x_i \partial x_i}.$$

Gradients of Linear Functions

For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some known vector $b \in \mathbb{R}^n$. Then

$$f(x) = \sum_{i=1}^n b_i x_i$$

SO

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k.$$

From this we can easily see that $\nabla_x b^T x = b$. This should be compared to the analogous situation in single variable calculus, where $\partial/(\partial x)$ ax = a.

Gradients of Quadratic Function

Now consider the quadratic function $f(x) = x^T A x$ for $A \in \mathbb{S}^n$. Remember that

$$f(x) = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j.$$

To take the partial derivative, we'll consider the terms including x_k and x_k^2 factors separately:

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$= \sum_{i=1}^n A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j = 2 \sum_{i=1}^n A_{ki} x_i, \quad \frac{\partial f(x)}{\partial x} = 2Ax$$

Hessian of Quadratic Functions

Finally, let's look at the Hessian of the quadratic function $f(x) = x^T A x$ In this case,

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_\ell} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(x)}{\partial x_\ell} \right] = \frac{\partial}{\partial x_k} \left[2 \sum_{i=1}^n A_{\ell i} x_i \right] = 2A_{\ell k} = 2A_{k\ell}.$$

Therefore, it should be clear that $\nabla_x^2 x^T A x = 2A$, which should be entirely expected (and again analogous to the single-variable fact that $\partial^2/(\partial x^2)$ $ax^2 = 2a$).

Matrix Calculus Example: Least Squares

- Given a full rank matrices $A \in \mathbb{R}^{m \times n}$, and a vector $b \in \mathbb{R}^m$ such that $b \notin \mathcal{R}(A)$, we want to find a vector x such that Ax is as close as possible to b, as measured by the square of the Euclidean norm $||Ax b||_2^2$.
- Using the fact that $||x||_2^2 = x^T x$, we have

$$||Ax - b||_2^2 = (Ax - b)^T (Ax - b) = x^T A^T Ax - 2b^T Ax + b^T b$$

- Taking the gradient with respect to x we have:

$$\nabla_{x}(x^{T}A^{T}Ax - 2b^{T}Ax + b^{T}b) = \nabla_{x}x^{T}A^{T}Ax - \nabla_{x}2b^{T}Ax + \nabla_{x}b^{T}b$$
$$= 2A^{T}Ax - 2A^{T}b$$

- Setting this last expression equal to zero and solving for x gives the normal equations

$$x = (A^T A)^{-1} A^T b$$

Roadmap

- Course logistics
- Math review
 - Probability
 - Linear algebra
 - Optimization
 - Matrix calculus
- Python and Google Colab set up

Thank you!

Q & A