Mosaic: a code for power spectrum analysis in multiple patches

October 6, 2018

1 Intro

Mosaic is a set of tools for computing angular power spectra in healpix and CAR pixellisation using the Master algorithm (arxiv:0105302). It makes heavy use of healpix function (https://healpix.sourceforge.io/) and enlib function (see Sigurd Naess github: https://github.com/amaurea), and has benefited from Eiichiro Komatsu tools (https://www.mpa.mpa-garching.mpg.de/ komatsu/), SPHT are performed using libsharp (arXiv:1303.4945) so we are especially thankful to Martin Reinecke and Dag Sverre Seljebotn. The code also allows to make comparison with NaMaster (see David Alonso github: https://github.com/damonge/). While the bugs are all on me, special thanks for Sigurd Naess for help with the code.

2 Installation

The code is mostly written in python apart from the mode coupling calculation written in fortran 90. You need to compile it using f2py. You should

3 Code structure

The code is structured around four executables (located in the bin directory):

- 1. $iso_generate_sims.py$
- 2. iso_generate_window_functions.py
- $3.\ iso_generate_mcms.py$
- 4. iso_generate_all_spectra.py
- $5.\ iso_generate_mc_results.py$
- 6. iso_generate_plots.py

They should be run in order. Two other executables: $iso_generate_plots.py$ and $iso_generate_mc_results.py$ allow for visualisation and combination of the results.

3.1 Generation of simulations

Gaussian simulations are generated from a camb lensed power spectrum.