ugr Universidad de Granada	Fundamentos Físicos y Tecnológicos G.J.I.	Examen de Teoría 10 de Enero de 2014	
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Responde a cada pregunta en hojas separadas.
- Îndica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.
- Lee detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- Un condensador plano está formado por dos láminas conductoras separadas una distancia d muy pequeña en comparación con las dimensiones de las mismas. Uno de estos condensadores (formado por placas de superficie 200cm² separadas una distancia de d = 1mm) se ha cargado para que soporte entre sus armaduras una diferencia de potencial de 1000V. Calcule:
 - a) La expresión del campo entre las láminas de este condensador. (0.4 puntos)
 - b) La carga de cada lámina de este condensador. (0.4 puntos)
 - c) La expresión y el valor numérico de la capacidad de este condensador. (0.25 puntos)
 - d) La energía que almacena este condensador. (0.2 puntos)
- 2. En el circuito de la figura 1:
 - a) Calcula el equivalente Thevenin del circuito visto desde los puntos A y B si todas las resistencias valen R=1k Ω , I₁=1mA, I₂=2mA, V₁=2V, V₂=6V. (1.5 puntos)
 - b) Calcula la potencia en cada una de las fuentes de corriente del circuito justificando si es consumida o suministrada. (1 punto)
 - c) Calcula la potencia disipada por un diodo de tensión umbral 0.6V si éste se colocara entre los puntos A y B (zona p en el punto A y zona n en el B). (0.5 puntos)

Figura 1: Circuito para el problema 2

3. Calcula en el circuito de la figura 2 el punto de polarización del transistor (I_D , V_{DS} y V_{GS}). ¿Cuánto vale la potencia consumida por el transistor? Datos: $V_T=2V$, $k=2\ 10^{-3}A/V^2$, $R_1=1k\Omega$, $R_2=2k\Omega$, $R_3=3k\Omega$, $V_{DD}=10V$, I=3mA. (1.25 puntos)