URPP Tutorial: Genomic Visualization I, UZH Session I. Genome Browsers

Part 1. UCSC Genome Browser

1. Navigating the Browser:

- a) Open your internet browser of choice (Firefox, Chrome, Opera, Safari)
- b) Go to https://genome-euro.ucsc.edu/
- c) Click on "Genome Browser"

- d) Select "Human Assembly" (usually it's selected by default)
- c) Type **BRCA1** on the "**Position/Search Term**" field in the browser gateway and click "**GO**". Look at the default tracks and try to answer the following questions:

Which is the transcript with more exons? (hint: hover over the last exon of the isoforms)

 Which are the two closest genes to BRCA1? (hint: zoom-out and look immediate left and right of the gene)

- In which tissue it has the highest expression? And lowest? (hint: click on the expression plot from GTEx)
- Hide all tracks except the Gencode track (hint: right click with the mouse of the left panels and hide the tracks)

• Activate the track "GWAS Catalog" (Hint: Check the "Phenotype and Literature" track)

Can you identify the SNP ID? (Hint: Hover over it)

- What's the latest study about? (Hint: click directly on the SNP)
- What conclusions can you draw about this gene regarding its function?

Part 1.1. UCSC Table Browser

1. Go to Tools > Table Browser

- 2. Create a custom track:
- Use the human CRCh37/h19 assembly.
- Select → Group: regulation and Track: CpG Islands

- Import the custom track to the UCSC Genome browser by changing the output format to custom track and clicking on get output → get custom track in genome browser

- Is there any CpG island in or near BRCA1? (hint: remember to zoom-out)

Part 1.3 UCSC Genome Graphs

1. Go to Tools > Genome Graphs > import

2. Import the knownGene track by clicking on import (remember to name it!)

3. Load the Genes track. Click on configure.

- 4. Change the chromosome layout to one per line.
- 5. Change the **width** to 2000 and change the **number of graphs** and **number of lines** to two.

- Now import the track of repetitive elements (Repeats) by doing the same that we previously did to upload the track of genes.
- 7. Remember to load the tracks, you can customize the **colours** and **overlap** graphs. You can upload custom tracks as well.
- 8. Can you conclude anything about the repetitive elements around the centromeres?

Part 2. Ensembl Browser

- 1.
- 2. Go to https://www.ensembl.org/
- 3. In the Search select human and type your favorite gene (i.e. BRCA1) and click on "Go"

- How many transcripts BRCA1 has?
- How many transcripts are annotated as non-coding?
- How many **one-to-one** orthologs? (hint: click on orthologues)
- Go to menu on the left and click on Genomic alignments (under Comparative Genomics) and select Multiple > 12 Primates EPO > View an image of this alignment

5. You can either **download the data** for further use or **quickly** assess if your gene of interest is **conserved** or/and **syntenic** among species of interest.

Part 2. BioMart

1. Go to BioMart by clicking BioMart on the ensembl webpage

- 2. Create a BED file using BioMart.
- 3. Select Ensembl Genes 94
- 4. Choose your favorite species
- 5. Click on filter and select protein_coding

- Click on "count" and see how many protein-coding genes are (hint: look next to Dataset).
- 7. Now click on **Attributes** and **unselect** everything
- 8. Select with this specific order: Chromosome/scaffold name > Gene start (bp) > Gene end (bp) > Gene stable ID > Gene type > Strand

- 9. Click on Results
- 10. Mark "unique results only" > Go
- 11. The downloading will start and you will have a bed file.
- 12. You can create multiple files with lots of information.

- If you selected human as your favorite species --can you find genes only involved in Schizophrenia? (hint: go to **filters** > **phenotype**). How many genes did you find?
- 13. You can explore other phenotypes, protein features and additional external information.

NOTE: There is **Ensembl Bacteria**: https://bacteria.ensembl.org/index.html for bacterial species.

Part 3. Integrative Genome Viewer

- 1. If you have the **VM** from other courses IGV is under **home/student/software**
- 2. Else download and install IGV:
 - For Windows/Mac/Linux:
 https://software.broadinstitute.org/software/igv/download
 - From the command:

wget \
http://data.broadinstitute.org/igv/projects/downloads/2.4/IGV_2.4.14.zip
unzip IGV_2.4.14.zip

- Run IGV from within the installed distribution:

```
./igv.sh
```

- Or if you are in Linux:

```
sudo apt-get install igv #install
Igv #run
```

3. You will work with data from the 1000 Genomes Project:

G00096.chrom11.ILLUMINA.bwa.GBR.exome.20120522.bam.bai

• Download the .bam file and its index .bai (the \ is to be careful of the space, there cannot be any newlines when you copy it in the command line):

```
wget \
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/exome_alignment/H
G00096.chrom11.ILLUMINA.bwa.GBR.exome.20120522.bam

wget \
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/exome_alignment/H
```

Note: Both files have to be in the same folder.

- Load the files on IGV: File > Load from folder >
 exome_alignment/HG00096.chrom11.ILLUMINA.bwa.GBR.exome.20120522.b
 am
- Navigate to the gene **SSRP1** in chr11. Remember what **the colours meant**?
- Look at the neighboring gene P2RX3. Is there anything curious about the way the reads are distributed?
- 4. Load the data from the server:

Load from server > 1000 Genomes > Phase 3 sites > Phase 3 Genotypes

• Navigate to **BRCA1**. What can you tell about the allele frequencies?

Part 4. Circos (we will not use it)

1. Download Circos:

```
wget <a href="http://circos.ca/distribution/circos-0.69-6.tgz">http://circos.ca/distribution/circos-0.69-6.tgz</a> #unzip
```

Check for missing Perl modules:

```
sudo perl -MCPAN -e shell
install Config::General
...
exit
```

• If the installation of modules fails:

```
sudo apt-get install libgd-perl
```

• Run Circos within your distribution: bin/circos