PKI w praktyce

Wnioski z implementacji własnej infrastruktury certyfikatów

Prelegenci:

Krzysztof Taraszkiewicz, Jakub Szymczyk, Józef Sztabiński, Jakub Drejka

Wprowadzenie do Cyberbezpieczeństwa Politechnika Gdańska

Agenda prezentacji

- 1. Dlaczego PKI jest fundamentem bezpieczeństwa?
- 2. Czego nauczyła nas implementacja własnego CA?
- 3. Kiedy wybrać własne CA, a kiedy komercyjne rozwiązanie?
- 4. Pułapki i błędy w zarządzaniu certyfikatami
- 5. Najważniejsze wnioski dla praktyki

Część I: Fundamenty

Dlaczego PKI jest tak ważne?

Wniosek #1: PKI to więcej niż "tylko certyfikaty"

PKI to system zaufania

- Jeden skompromitowany klucz CA = cała infrastruktura zagrożona
- Hierarchia zaufania musi być przemyślana od początku
- Backup i odtwarzanie kluczy to sprawa krytyczna

Przykład:

```
Politechnika Gdańska Root CA (4096-bit, zaszyfrowany)

— Serwery WWW (2048-bit, krótszy okres ważności)

— Klienci (2048-bit, różne uprawnienia)
```

Bezpieczeństwo całego systemu = bezpieczeństwo najsłabszego ogniwa

Wniosek #2: Zaufanie nie jest binarne

Różne poziomy zaufania w naszej implementacji:

Typ certyfikatu	Okres ważności	Poziom zabezpieczeń	Zastosowanie
Root CA	20 lat	Maksymalny	Fundament zaufania
Serwer	1 rok	Wysoki	Szyfrowanie komunikacji
Klient	2 lata	Średni	Uwierzytelnianie użytkowników

Kluczowy wniosek:

- Im dłuższy okres ważności → tym większe ryzyko
- Im wyżej w hierarchii → tym silniejsze zabezpieczenia
- Balans między wygodą a bezpieczeństwem

Część II: Praktyka

Wniosek #3: Formaty to nie tylko technikalia

Dlaczego formaty certyfikatów mają znaczenie:

Format	Kiedy używać	Główna lekcja	
PEM	Serwery Linux, skrypty	Czytelność = łatwiejsze debugowanie	
DER	Integracje Java/Windows	Kompatybilność ma swoją cenę	
PKCS#12	Transport kluczy	Bezpieczeństwo > wygoda	

Wybór formatu to decyzja architektoniczna, nie techniczna

Część III: Wybory strategiczne

Własne CA vs rozwiązania komercyjne

Wniosek #4: Nie ma rozwiązania uniwersalnego

Macierz decyzyjna oparta na naszym doświadczeniu:

Scenariusz	Własne CA	Let's Encrypt	Komercyjne CA
Nauka/Lab	✓ Idealne	X Zbyt proste	X Drogie
Startup	X Za trudne	Optymalne	× Niepotrzebne
Korporacja	⚠ Wymaga ekspertów	X Ograniczone	✓ Wsparcie
Usługi publiczne	X Brak zaufania	Akceptowalne	✓ Preferowane

Kluczowe pytania przy wyborze:

- 1. Kto będzie zarządzał infrastrukturą?
- 2. Jakie są koszty całkowite (TCO)?
- 3. Czy potrzebujemy niestandardowych rozszerzeń?

Wniosek #5: Automatyzacja to konieczność, nie opcja

Co działało ręcznie vs co wymaga automatyzacji:

- **Działało ręcznie** (projekt edukacyjny):
 - Generowanie pojedynczych certyfikatów
 - Weryfikacja podstawowa
 - Konwersje formatów
- **Wymaga automatyzacji** (środowisko produkcyjne):
 - Odnawianie certyfikatów
 - Monitoring dat wygaśnięcia
 - Zarządzanie CRL (Certificate Revocation Lists)
 - Backup i recovery

Ręczne zarządzanie certyfikatami w dużej firmie to sposób na katastrofę

Część IV: Pułapki i błędy

Wniosek #6: Najczęstsze błędy w PKI

1. Błędy bezpieczeństwa:

- X Niezaszyfrowane klucze prywatne
- X Słabe hasła do kluczy CA
- X Zbyt długie okresy ważności
- X Brak backupu kluczy prywatnych

2. Błędy operacyjne:

- X Zapomnienie o odnowieniu certyfikatów
- X Nieprawidłowe uprawnienia plików
- X Brak monitoringu CRL
- X Nieprawidłowa konfiguracja rozszerzeń

3. Błędy architektoniczne:

- X Zbyt płaska hierarchia CA
- X Mieszanie środowisk (test/prod)
- X Brak procedur odwołania certyfikatów

Wniosek #7: Weryfikacja to podstawa zaufania

Warstwy weryfikacji:

- 1. **Kryptograficzna** czy podpis jest prawidłowy?
- 2. **Czasowa** czy certyfikat jest aktualny?
- 3. **Hierarchiczna** czy łańcuch zaufania jest kompletny?
- 4. **Funkcjonalna** czy certyfikat może być użyty do danego celu?
- 5. **Polityczna** czy certyfikat nie został odwołany?

Lekcja: Weryfikacja to proces, nie pojedyncza operacja

Część V: Praktyczne wnioski

Wniosek #8: Lista kontrolna dla PKI

✓ Przed implementacją:

- [] Zdefiniowana polityka bezpieczeństwa
- [] Przemyślana hierarchia CA
- [] Procedury zarządzania kluczami

✓ Podczas implementacji:

- [] Silne hasła i szyfrowanie kluczy
- [] Prawidłowe uprawnienia plików
- [] Odpowiednie okresy ważności
- [] Testowanie w środowisku izolowanym

✓ Po wdrożeniu:

- [] Monitoring dat wygaśnięcia
- [] Procedury awaryjne
- [] Dokumentacja i szkolenia

Część VI: Przyszłość PKI

Wniosek #9: PKI ewoluuje

- Automatyzacja (ACME protocol, Let's Encrypt)
- **②** Krótsze okresy ważności (90 dni → standard)
- **Post-quantum cryptography** (przygotowania na komputery kwantowe)
- **Certificate Transparency** (publiczne logi certyfikatów)
- Blockchain-based PKI (decentralizacja CA)

Co to oznacza dla praktyków:

- Mniej ręcznej pracy, więcej automatyzacji
- Nacisk na monitoring
- Potrzeba ciągłego uczenia się nowych technologii

Kluczowe przesłanie wykładu

Główne wnioski:

- 1. **PKI to fundament** bez zrozumienia PKI nie ma cyberbezpieczeństwa
- 2. **Praktyka =/Teoria** implementacja ujawnia prawdziwe wyzwania
- 3. **Nie ma rozwiązań uniwersalnych** każdy przypadek wymaga analizy
- 4. **Automatyzacja to konieczność** ręczne zarządzanie to droga do błędów
- 5. **Bezpieczeństwo to proces** nie jednorazowa konfiguracja

Materiały uzupełniające

PKI-tutorial.readthedocs.io - praktyczne przykłady

Dziękujemy za uwagę

