$$\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$

$$\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)$$
$$\gamma(t) := (\cos(t), \sin(t))$$

```
\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)
\gamma(t) := (\cos(t), \sin(t))
\tilde{\gamma}(t) := (\cos(t + \pi/2), \sin(t + \pi/2))
```

```
\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)
\gamma(t) := (\cos(t), \sin(t))
\tilde{\gamma}(t) := (\cos(t + \pi/2), \sin(t + \pi/2))
\phi(t) = t + \pi/2
```

```
\dot{\tilde{\gamma}}(t) = \dot{\gamma}(\phi(t))\phi'(t)
\gamma(t) := (\cos(t), \sin(t))
\tilde{\gamma}(t) := (\cos(t + \pi/2), \sin(t + \pi/2))
\phi(t) = t + \pi/2
\tilde{\gamma}(t) := \gamma(\phi(t))
```

Definition.

The point $\gamma(t)$

Definition.

The point $\gamma(t)$ of γ :

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If ϕ

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for every $t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse ψ

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for every $t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

$$\psi(\phi(t)) = t$$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

$$\psi(\phi(t)) = t \text{ for } each t$$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

$$\psi(\phi(t)) = t \text{ for } each \ t$$

 $\psi'(\phi(t))\phi'(t) = 1$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

$$\psi(\phi(t)) = t \text{ for } each \ t$$

 $\psi'(\phi(t))\phi'(t) = 1 \text{ for } each \ t$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t$ for each t $\psi'(\phi(t))\phi'(t) = 1$ for each tSo, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t$ for each t $\psi'(\phi(t))\phi'(t) = 1$ for each tSo, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each t

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t$ for each t $\psi'(\phi(t))\phi'(t) = 1$ for each tSo, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each tSo, $\psi'(t) \neq 0$ and $\phi'(t) \neq 0$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t$ for each t $\psi'(\phi(t))\phi'(t) = 1$ for each tSo, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each tSo, $\psi'(t) \neq 0$ and $\phi'(t) \neq 0$ for each t

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t$ for each t $\psi'(\phi(t))\phi'(t) = 1$ for each tSo, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each tSo, $\psi'(t) \neq 0$ and $\phi'(t) \neq 0$ for each t because ϕ is bijective.

Proposition. A reparametrization of a regular parametrization

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t$ for each t $\psi'(\phi(t))\phi'(t) = 1$ for each tSo, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each tSo, $\psi'(t) \neq 0$ and $\phi'(t) \neq 0$ for each t because ϕ is bijective.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if *Proof*. $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization $\gamma:$ γ is called regular if $\dot{\gamma}(t)\neq 0$ for every $t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t$ for each t $\psi'(\phi(t))\phi'(t) = 1$ for each tSo, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each tSo, $\psi'(t) \neq 0$ and $\phi'(t) \neq 0$ for each t because ϕ is bijective.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is regular point if *Proof.* $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \gamma$ is called regular if $\dot{\gamma}(t) \neq 0$ for every $t \in (\alpha, \beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if Proof. $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if *Proof*. $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for every $t \in (\alpha, \beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) =$ $(3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi:$ $(\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta}), \text{ then } \phi'(t) \neq 0 \text{ for all } t \in (\tilde{\alpha}, \tilde{\beta}) \text{ and }$ $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if *Proof.* $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for every $t \in (\alpha, \beta)$. $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \rightarrow$

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) =$ $(3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi:$ $(\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta}), \text{ then } \phi'(t) \neq 0 \text{ for all } t \in (\tilde{\alpha}, \tilde{\beta}) \text{ and }$ $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if *Proof.* $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for every $t \in (\alpha, \beta)$. $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) =$ $(3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi:$ $(\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta}), \text{ then } \phi'(t) \neq 0 \text{ for all } t \in (\tilde{\alpha}, \tilde{\beta}) \text{ and }$ $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if Proof. $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$. $\tilde{\gamma}:(\tilde{\alpha},\tilde{\beta})\to\mathbb{R}^2$

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t$ for each t $\psi'(\phi(t))\phi'(t) = 1$ for each tSo, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each tSo, $\psi'(t) \neq 0$ and $\phi'(t) \neq 0$ for each t because ϕ is bijective.

tion $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if Proof. $\dot{\gamma}(t)\neq 0$ and singular if $\dot{\gamma}(t)=0$. The parametrization $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t)\neq 0$ for $every\ t\in(\alpha,\beta)$. $\tilde{\gamma}:(\tilde{\alpha},\tilde{\beta})\to\mathbb{R}^2$

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = \tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t}))$ $(3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if *Proof.* $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for every $t \in (\alpha, \beta)$. $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = \frac{\tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t}))}{\tilde{\gamma}'(\tilde{t})}$ $(3t^2, 3t^2).$

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi:$ $(\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta}), \text{ then } \phi'(t) \neq 0 \text{ for all } t \in (\tilde{\alpha}, \tilde{\beta}) \text{ and }$ $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if *Proof.* $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for every $t \in (\alpha, \beta)$. $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = \frac{\tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t}))}{\tilde{\gamma}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})}$ $(3t^2, 3t^2).$

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi:$ $(\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta}), \text{ then } \phi'(t) \neq 0 \text{ for all } t \in (\tilde{\alpha}, \tilde{\beta}) \text{ and }$ $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if *Proof.* $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for every $t \in (\alpha, \beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = \dot{\tilde{\gamma}}(t) = \gamma(\phi(t))$ $\dot{\tilde{\gamma}}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})$ $(3t^2, 3t^2).$

 $\tilde{\gamma}: (\tilde{\alpha}, \beta) \to \mathbb{R}^2$ But, $\gamma'(t) \neq 0$

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi:$ $(\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta}), \text{ then } \phi'(t) \neq 0 \text{ for all } t \in (\tilde{\alpha}, \tilde{\beta}) \text{ and }$ $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if *Proof.* $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for every $t \in (\alpha, \beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = \tilde{\gamma}(t) = \gamma(\phi(t))$ $\dot{\gamma}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})$ $(3t^2, 3t^2).$

 $\tilde{\gamma}: (\tilde{\alpha}, \beta) \to \mathbb{R}^2$ But, $\gamma'(t) \neq 0$ for all t,

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi:$ $(\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta}), \text{ then } \phi'(t) \neq 0 \text{ for all } t \in (\tilde{\alpha}, \tilde{\beta}) \text{ and }$ $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

Proposition. A reparametrization of a regular parametrization is regular.

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if *Proof.* $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for every $t \in (\alpha, \beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = \dot{\tilde{\gamma}}(t) = \gamma(\phi(t))$ $\dot{\tilde{\gamma}}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})$ $(3t^2, 3t^2)$.

tion
$$\gamma: (\alpha, \beta) \to \mathbb{R}^2$$

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$
 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$
 $t) = \tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t}))$
 $\tilde{\gamma}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})$

But, $\gamma'(t) \neq 0$ for all t, therefore, even for $\phi(\tilde{t})$

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi:$ $(\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta}), \text{ then } \phi'(t) \neq 0 \text{ for all } t \in (\tilde{\alpha}, \tilde{\beta}) \text{ and }$ $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

$$\psi(\phi(t)) = t$$
 for each t
 $\psi'(\phi(t))\phi'(t) = 1$ for each t
So, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each t
So, $\psi'(t) \neq 0$ and $\phi'(t) \neq 0$ for each t because ϕ is bijective.

Definition.

The point $\gamma(t)$ of $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is regular point if Proof. $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for $every \ t \in (\alpha, \beta)$. $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = \dot{\gamma}'(t) = \gamma(\varphi(t))$ $\dot{\gamma}'(t) = \gamma'(\phi(t))\phi'(t)$ But, $\gamma'(t) \neq 0$ for all

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t$ for each t $\psi'(\phi(t))\phi'(t) = 1$ for each tSo, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each tSo, $\psi'(t) \neq 0$ and $\phi'(t) \neq 0$ for each t because ϕ is bijective.

Proposition. A reparametrization of a regular parametrization is regular.

tion $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ $\tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t}))$ $\tilde{\gamma}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})$ But, $\gamma'(t) \neq 0$ for all t, therefore, even for $\phi(\tilde{t})$

and, $\phi'(\tilde{t}) \neq 0$

Definition.

The point $\gamma(t)$ of $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is regular point if *Proof.* $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for every $t \in (\alpha, \beta)$.

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = \dot{\tilde{\gamma}}(t) = \dot{\tilde{\gamma}}(\phi(t)) = \dot{\tilde{\gamma}}(\phi(t))$ $(3t^2, 3t^2).$

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi:$ $(\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta}), \text{ then } \phi'(t) \neq 0 \text{ for all } t \in (\tilde{\alpha}, \tilde{\beta}) \text{ and }$ $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t \text{ for } each t$ $\psi'(\phi(t))\phi'(t) = 1$ for each t So, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each t So, $\psi'(t) \neq 0$ and $\phi'(t) \neq 0$ for each t because ϕ is bijective.

Proposition. A reparametrization of a regular parametrization is regular.

$$\gamma: (\alpha, \beta) \rightarrow$$

$$\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t}))$$

$$\tilde{\gamma}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})$$

But, $\gamma'(t) \neq 0$ for all t, therefore, even for $\phi(\tilde{t})$

and,
$$\phi'(\tilde{t}) \neq 0$$
 for all \tilde{t}

Definition.

The point $\gamma(t)$ of $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is regular point if Proof. $\dot{\gamma}(t) \neq 0$ and singular if $\dot{\gamma}(t) = 0$. The parametrization $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ γ is called regular if $\dot{\gamma}(t) \neq 0$ for $every \ t \in (\alpha, \beta)$. $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$

Example. $\gamma(t) = (t^3, t^3)$ is singular at 0 because $\dot{\gamma}(t) = \dot{\gamma}'(t) = \gamma(\phi(t)) / (\dot{t}) = \gamma'(\phi(t)) / (\dot{t}) / (3t^2, 3t^2)$.

Lemma.

If $\phi: (\tilde{\alpha}, \tilde{\beta}) \to (\alpha, \beta)$ is invertible with inverse $\psi: (\alpha, \beta) \to (\tilde{\alpha}, \tilde{\beta})$, then $\phi'(t) \neq 0$ for all $t \in (\tilde{\alpha}, \tilde{\beta})$ and $\psi'(t) \neq 0$ for all $t \in (\alpha, \beta)$.

Proof.

 $\psi(\phi(t)) = t$ for each t $\psi'(\phi(t))\phi'(t) = 1$ for each tSo, $\psi'(\phi(t)) \neq 0$ and $\phi'(t) \neq 0$ for each tSo, $\psi'(t) \neq 0$ and $\phi'(t) \neq 0$ for each t because ϕ is bijective.

Proposition. A reparametrization of a regular parametrization is regular.

tion $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ $\tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t}))$ $\tilde{\gamma}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})$ But, $\gamma'(t) \neq 0$ for all t, therefore, even for $\phi(\tilde{t})$ and, $\phi'(\tilde{t}) \neq 0$ for all \tilde{t}

Inner product: v = (2,3)

$$v = (2, 3)$$

$$v = (2, 3)$$

$$v = (2, 3)$$

 $w = (2, 1)$

$$v = (2,3)$$

 $w = (2,1)$

$$w = (2, 1)$$

v.w

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1)$$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1$$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

$$v = (2, 3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$v = (2, 3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

$$v = (2, 3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}:(\alpha,\beta)\to\mathbf{R}^2$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}:(\alpha,\beta)\to\mathbf{R}^2$ and $\mathbf{w}:(\alpha,\beta)\to\mathbf{R}^2$,

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

$$v = (x, y)$$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$

$$v = (x, y)$$

v.v

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

$$v = (x, y)$$

 $v.v = (x, y).(x, y) = x^2 + y^2$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^2 + y^2$$

$$||(x,y)|| = \sqrt{x^2 + y^2}$$

$$v = (x, y)$$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^2 + y^2$$

$$||(x,y)|| = \sqrt{x^2 + y^2}$$

$$v = (x, y)$$

$$v.w =$$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$

$$v = (x, y)$$

 $v.v = (x, y).(x, y) = x^2 + y^2$
 $||(x, y)|| = \sqrt{x^2 + y^2}$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a unit speed parametrization

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)||=1$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)|| = 1$ for each $t \in (\alpha, \beta)$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$

$$v = (x, y)$$

 $v.v = (x, y).(x, y) = x^{2} + y^{2}$
 $||(x, y)|| = \sqrt{x^{2} + y^{2}}$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)|| = 1$ for each $t \in (\alpha, \beta)$

Theorem. If $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a unit speed parametrization

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)|| = 1$ for each $t \in (\alpha, \beta)$

Theorem. If $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a unit speed parametrization, then $\dot{\gamma}(t).\ddot{\gamma}(t)=0$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)|| = 1$ for each $t \in (\alpha, \beta)$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)|| = 1$ for each $t \in (\alpha, \beta)$

Proof.
$$||\dot{\gamma}(t)|| = 1$$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, $\dot{\gamma}(t).\dot{\gamma}(t) = 1$ show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)||=1$ for each $t\in(\alpha,\beta)$

Proof.
$$||\dot{\gamma}(t)|| = 1$$

 $\dot{\gamma}(t).\dot{\gamma}(t) = 1$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, $\dot{\gamma}(t).\dot{\gamma}(t) = 1$ show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$ $(\dot{\gamma}(t).\dot{\gamma}(t))' = \mathbf{v}'(t).\dot{\gamma}(t)$

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)|| = 1$ for each $t \in (\alpha, \beta)$

Proof.
$$||\dot{\gamma}(t)|| = 1$$

 $\dot{\gamma}(t).\dot{\gamma}(t) = 1$
 $(\dot{\gamma}(t).\dot{\gamma}(t))' = 0$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, $\dot{\gamma}(t).\dot{\gamma}(t) = 1$ show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$ $(\dot{\gamma}(t).\dot{\gamma}(t))' = \mathbf{v}'(t).\dot{\gamma}(t)$

$$v = (x, y)$$

 $v.v = (x, y).(x, y) = x^2 + y^2$
 $||(x, y)|| = \sqrt{x^2 + y^2}$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)|| = 1$ for each $t \in (\alpha, \beta)$

Proof.
$$||\dot{\gamma}(t)|| = 1$$

 $\dot{\gamma}(t).\dot{\gamma}(t) = 1$
 $(\dot{\gamma}(t).\dot{\gamma}(t))' = 0$
 $\ddot{\gamma}(t).\dot{\gamma}(t) + \dot{\gamma}(t).\ddot{\gamma}(t) = 0$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, $\dot{\gamma}(t).\dot{\gamma}(t) = 1$ show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$ $(\dot{\gamma}(t).\dot{\gamma}(t))' = \mathbf{v}'(t).\dot{\gamma}(t)$

$$v = (x, y)$$

 $v.v = (x, y).(x, y) = x^2 + y^2$
 $||(x, y)|| = \sqrt{x^2 + y^2}$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)|| = 1$ for each $t \in (\alpha, \beta)$

Proof.
$$||\dot{\gamma}(t)|| = 1$$

 $\dot{\gamma}(t).\dot{\gamma}(t) = 1$
 $(\dot{\gamma}(t).\dot{\gamma}(t))' = 0$
 $\ddot{\gamma}(t).\dot{\gamma}(t) + \dot{\gamma}(t).\ddot{\gamma}(t) = 0$
 $2\ddot{\gamma}(t).\dot{\gamma}(t) = 0$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, $\dot{\gamma}(t).\dot{\gamma}(t) = 1$ show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$ $(\dot{\gamma}(t).\dot{\gamma}(t))' = \mathbf{v}'(t).\dot{\gamma}(t)$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)|| = 1$ for each $t \in (\alpha, \beta)$

$$\begin{aligned} &Proof. \ ||\dot{\gamma}(t)|| = 1 \\ &\dot{\gamma}(t).\dot{\gamma}(t) = 1 \\ &(\dot{\gamma}(t).\dot{\gamma}(t))' = 0 \\ &\ddot{\gamma}(t).\dot{\gamma}(t) + \dot{\gamma}(t).\ddot{\gamma}(t) = 0 \\ &2\ddot{\gamma}(t).\dot{\gamma}(t) = 0 \\ &\ddot{\gamma}(t).\dot{\gamma}(t) = 0 \end{aligned}$$

$$v = (2,3)$$

$$w = (2, 1)$$

$$v.w := (2,3).(2,1) = 2 \times 2 + 3 \times 1 = 7$$

In general:

$$(x_1, y_1).(x_2, y_2) := x_1x_2 + y_1y_2$$

Exercise. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, $\dot{\gamma}(t).\dot{\gamma}(t) = 1$ show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$ $(\dot{\gamma}(t).\dot{\gamma}(t))' = \mathbf{v}'(t).\dot{\gamma}(t)$

$$v = (x, y)$$

$$v.v = (x, y).(x, y) = x^{2} + y^{2}$$

$$||(x, y)|| = \sqrt{x^{2} + y^{2}}$$

$$v = (x, y)$$

 $v.w = ||v||||w||\cos(\theta)$ where,
 θ is the angle between v and w

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization if $||\dot{\gamma}(t)|| = 1$ for each $t \in (\alpha, \beta)$

$$\begin{aligned} &Proof. \ ||\dot{\gamma}(t)|| = 1 \\ &\dot{\gamma}(t).\dot{\gamma}(t) = 1 \\ &(\dot{\gamma}(t).\dot{\gamma}(t))' = 0 \\ &\ddot{\gamma}(t).\dot{\gamma}(t) + \dot{\gamma}(t).\ddot{\gamma}(t) = 0 \\ &2\ddot{\gamma}(t).\dot{\gamma}(t) = 0 \\ &\ddot{\gamma}(t).\dot{\gamma}(t) = 0 \end{aligned}$$

$$\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t)$$

$$\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t) + \dot{\gamma}(\phi(t))\phi''(t)$$

 $\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t) + \dot{\gamma}(\phi(t))\phi''(t)$ (may change the direction of acceleration)

 $\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t) + \dot{\gamma}(\phi(t))\phi''(t)$ (may change the direction of acceleration)

 $\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t) + \dot{\gamma}(\phi(t))\phi''(t)$ (may change the direction of acceleration)

$$\dot{\gamma}(t) =$$

$$\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t) + \dot{\gamma}(\phi(t))\phi''(t)$$
(may change the direction of acceleration)

$$\dot{\gamma}(t) = f(t)\mathbf{v} =$$

$$\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t) + \dot{\gamma}(\phi(t))\phi''(t)$$
(may change the direction of acceleration)

$$\dot{\gamma}(t) = f(t)\mathbf{v} = (f(t)v_1, f(t)v_2)$$

$$\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t) + \dot{\gamma}(\phi(t))\phi''(t)$$
(may change the direction of acceleration)

$$\dot{\gamma}(t) = f(t)\mathbf{v} = (f(t)v_1, f(t)v_2)$$

 $\ddot{\gamma}(t) =$

 $\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t) + \dot{\gamma}(\phi(t))\phi''(t)$ (may change the direction of acceleration)

$$\dot{\gamma}(t) = f(t)\mathbf{v} = (f(t)v_1, f(t)v_2)$$
$$\ddot{\gamma}(t) = (f'(t)v_1, f'(t)v_2) =$$

 $\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t) + \dot{\gamma}(\phi(t))\phi''(t)$ (may change the direction of acceleration)

$$\dot{\gamma}(t) = f(t)\mathbf{v} = (f(t)v_1, f(t)v_2)$$
$$\ddot{\gamma}(t) = (f'(t)v_1, f'(t)v_2) = f'(t)\mathbf{v}$$

 $\ddot{\tilde{\gamma}}(t) = \ddot{\gamma}(\phi(t))\phi'(t)\phi'(t) + \dot{\gamma}(\phi(t))\phi''(t)$ (may change the direction of acceleration)

If the direction of velocity does not change with t

$$\dot{\gamma}(t) = f(t)\mathbf{v} = (f(t)v_1, f(t)v_2)$$
$$\ddot{\gamma}(t) = (f'(t)v_1, f'(t)v_2) = f'(t)\mathbf{v}$$

Direction of acceleration also unchanged