Birla Institute of Technology and Science, Pilani

Mid Semester Examination, II Semester 2017-2018 MATH F112 (Mathematics II) PART-A (Closed Book)

N	Max. Marks: 30		Max. Time: 30 Min.
	Name:	ID:	

- NOTE 1. All the questions are multiple choice questions. Write the most appropriate answer in the box provided below and nowhere else. Each question carries 3 marks. One mark will be deducted for each wrong answer.
 - 2. Overwriting/cutting is not allowed and considered as "question not attempted".
 - 3. Do the rough work only on the back pages of answer sheet of Part-B, nowhere else and cross the rough work.

Q.No.	1	2	3	4	5	6	7	8	9	10
Ans.	A	С	В	C	В	D	С	D	D	В

- **Q.1** Let D be an upper triangular square matrix of order n with all non-zero entries on the main diagonal, and b is any $n \times 1$ matrix. Then which of the following statements is true about the existence of solution of Dx = b.
- [A] Solution exists and it is unique
- [B] The given system is inconsistent
- [C] The given system is consistent and it has infinite number of solutions
- [D] None of these.
- **Q.2** Let V be the real vector space of all 2×2 matrices. Let W be the subspace of matrices of the form $\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$. Then dimension of W is equal to [B] 2 [C] 3 [D] 4
- **Q.3** Let $S = \{(3,3,1), (1,1,0), (0,0,1)\}$ be a subset of \mathbb{R}^3 . Then which of the following statements is true
- [A] S is linearly independent

- **[B]** S is linearly dependent
- [C] S is linearly independent but S does not span \mathbb{R}^3
- [D] None of these
- **Q.4** Let \mathbb{P}_4 be the vector space of all polynomials with real coefficients of degree at most 4, and $W = \{p(x) \in \mathbb{P}_4: p(1) = p(-1) = 0\}$ is a subspace of \mathbb{P}_4 . Then dimension of W is equal to [A] 1 [B] 2 [C] 3 [D] 4

Q.5 The rank of the matrix
$$M = \begin{bmatrix} 1 & 4 & -1 & -5 \\ 2 & 8 & 5 & 4 \\ -1 & -4 & 2 & 7 \\ 6 & 24 & -1 & -20 \end{bmatrix}$$
 is equal to [A] 1 [B] 2 [C] 3

Q.6 Consider
$$L: \mathbb{P}_2 \to \mathbb{P}_4$$
 given by $L(p(x)) = x^2 p(x)$, then

[A]
$$ker(L) = \{all constant polynomials\}$$

[B]
$$ker(L) = \{all \text{ polynomials of degree } \le 4\}$$

[D] 4

[C]
$$ker(L) = \{all \text{ quadratic polynomials}\}$$

[D]
$$ker(L) = \{ zero polynomial \}$$

Q.7 Let A be the square matrix such that
$$A^2 = A$$
. Then the greatest eigenvalue of A is

Q.8 Let
$$L: \mathbb{R}^2 \to \mathbb{R}^2$$
 be the linear operator that performs a counterclockwise rotation through an angle of $\pi/6$. Then the matrix for L with respect to the standard basis for \mathbb{R}^2 is

$$[\mathbf{A}] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$[\mathbf{B}] \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$[\mathbf{A}] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad [\mathbf{B}] \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad [\mathbf{C}] \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$[\mathbf{D}] \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

Q.9 Let
$$m > n$$
, then select true statement

- [A] There is an isomorphism from \mathbb{R}^n to \mathbb{R}^m .
- **[B]** There is an onto linear transformation from \mathbb{R}^n to \mathbb{R}^m .
- [C] There is no one-to-one linear transformation from \mathbb{R}^n to \mathbb{R}^m .
- **[D]** There is no onto linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Q.10 Let X be a fixed
$$n \times n$$
 matrix, and consider L: $\mathbb{M}_{nn} \to \mathbb{M}_{nn}$ given by $L(Y) = XY - YX$, then

$$[\mathbf{B}]L$$
 is one-to-one but not onto

Birla Institute of Technology and Science, Pilani

Mid Semester Examination, II Semester 2017-2018 MATH F112 (Mathematics II) PART-A (Closed Book)

Max. Marks: 30	Max. Time: 30 Min.

Name:	ID:

- NOTE 1. All the questions are multiple choice questions. Write the most appropriate answer in the box provided below and nowhere else. Each question carries 3 marks. One mark will be deducted for each wrong answer.
 - 2. Overwriting/cutting is not allowed and considered as "question not attempted".
 - 3. Do the rough work only on the back pages of answer sheet of Part-B, nowhere else and cross the rough work.

Q.No.	1	2	3	4	5	6	7	8	9	10
Ans.	С	D	C	A	A	D	С	D	D	В

Q.1 The rank of the matrix
$$M = \begin{bmatrix} 1 & 4 & -1 & -5 \\ 2 & 8 & 5 & 4 \\ -1 & -4 & 2 & 7 \\ 6 & 24 & -1 & -20 \end{bmatrix}$$
 is equal to [A] 4 [B] 3 [C] 2 [D] 1

- **Q.2** Let A be the square matrix such that $A^2 = A$. Then the greatest eigenvalue of A is [A] 4 [B] 3 [C] 2 [D] 1
- **Q.3** Let \mathbb{P}_4 be the vector space of all polynomials with real coefficients of degree at most 4, and $W = \{p(x) \in \mathbb{P}_4: p(1) = p(-1) = 0\}$ is a subspace of \mathbb{P}_4 . Then dimension of W is equal to [A] 4 [B] 2 [C] 3 [D] 1
- **Q.4** Let $S = \{(3,3,1), (1,1,0), (0,0,1)\}$ be a subset of \mathbb{R}^3 . Then which of the following statements is true
- [A] S is linearly dependent

- [B] S is linearly independent
- **[C]** S is linearly independent but S does not span \mathbb{R}^3
- [D] None of these

Q.5 Consider
$$L: \mathbb{P}_2 \to \mathbb{P}_4$$
 given by $L(p(x)) = x^2 p(x)$, then

[A]
$$ker(L) = \{zero polynomial\}$$

[B] $ker(L) = \{all \text{ polynomials of degree } \le 4\}$

[C]
$$ker(L) = \{all \text{ quadratic polynomials}\}$$

[D] $ker(L) = \{all constant polynomials\}$

Q.6 Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be the line	ear operator that perf	orms a counterclockwise	rotation through	an angle	of
$\pi/3$. Then the matrix for	L with respect to the	standard basis for \mathbb{R}^2 is			

$$[\mathbf{A}] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$[\mathbf{B}] \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$[\mathbf{A}] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad [\mathbf{B}] \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad [\mathbf{C}] \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$[\mathbf{D}] \begin{bmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

- **Q.7** Let D be an upper triangular square matrix of order n with all non-zero entries on the main diagonal, and b is any $n \times 1$ matrix. Then which of the following statements is true about the existence of solution of Dx = b.
- [A] The given system is consistent and it has infinite number of solutions
- [B] The given system is inconsistent
- [C] Solution exists and it is unique
- [**D**] None of these.
- **Q.8** Let m > n, then select true statement
- [A] There is an isomorphism from \mathbb{R}^n to \mathbb{R}^m .
- **[B]** There is an onto linear transformation from \mathbb{R}^n to \mathbb{R}^m .
- [C] There is no one-to-one linear transformation from \mathbb{R}^n to \mathbb{R}^m .
- **[D]** There is no onto linear transformation from \mathbb{R}^n to \mathbb{R}^m .
- **Q.9** Let X be a fixed $n \times n$ matrix, and consider L: $\mathbb{M}_{n,n} \to \mathbb{M}_{n,n}$ given by L(Y) = XY YX, then
- [A] L is an isomorphism

[B] L is one-to-one but not onto

[C] L is onto but not one-to-one

- [D] L is neither one-to-one nor onto
- **Q.10** Let V be the real vector space of all 2×2 matrices. Let W be the subspace of matrices of the form $\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$. Then dimension of W is equal to
- [A] 4

[C] 2

[D] 1