15-213

"The course that gives CMU its Zip!"

Integer Arithmetic Operations Jan. 27, 2000

Topics

- Basic operations
 - Addition, negation, multiplication
- Programming Implications
 - Consequences of overflow
 - Using shifts to perform power-of-2 multiply/divide

C Puzzles

- Taken from Exam #2, CS 347, Spring '97
- Assume machine with 32 bit word size, two's complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

Initialization

•
$$x < 0$$
 \Rightarrow $((x*2) < 0)$
• $ux >= 0$
• $x & 7 == 7 \Rightarrow (x << 30) < 0$
• $ux > -1$
• $x > y$ \Rightarrow $-x < -y$
• $x * x >= 0$
• $x > 0 & y > 0 \Rightarrow x + y > 0$
• $x >= 0$

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits $UAdd_w(u, v)$

u

+ v

u + v

Standard Addition Function

Ignores carry output

Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

Visualizing Integer Addition

Integer Addition

- 4-bit integers u and v
- Compute true sum Add₄(u, v)
- Values increase linearly with u and v
- Forms planar surface

Visualizing Unsigned Addition

Wraps Around

• If true sum ≥ 2^w

At most once

True Sum

Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \leq \mathsf{UAdd}_{\mathsf{w}}(u, v) \leq 2^{\mathsf{w}} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u, 0) = u$$

Every element has additive inverse

-Let
$$UComp_w(u) = 2^w - u$$

 $UAdd_w(u, UComp_w(u)) = 0$

Detecting Unsigned Overflow

Task

- Given $s = UAdd_{u}(u, v)$
- Determine if s = u + v

Application

Did addition overflow?

Claim

- Overflow iff s < u ovf = (s < u)
- Or symmetrically iff s < v

Proof

- Know that 0 < v < 2^w
- No overflow $\Rightarrow s = u + v \ge u + 0 = u$
- Overflow $\Rightarrow s = u + v 2^w < u + 0 = u$

No Overflow

Overflow

$$< u + 0 = u$$

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
• Will give s == t
```

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

class04.ppt -9- CS 213 S'00

Visualizing 2's Comp. Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - -At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - -At most once

Detecting 2's Comp. Overflow

Task

- Given $s = TAdd_w(u, v)$
- **Determine** if $s = Add_w(u, v)$
- Example

```
int s, u, v;
s = u + v;
```

Claim

· Overflow iff either:

```
u, v < 0, s \ge 0 (NegOver)

u, v \ge 0, s < 0 (PosOver)

ovf = (u<0 == v<0) && (u<0 != s<0);
```

Proof

- Easy to see that if $u \ge 0$ and v < 0, then $TMin_w \le u + v \le TMax_w$
- Symmetrically if u < 0 and $v \ge 0$
- Other cases from analysis of TAdd

Mathematical Properties of TAdd

Isomorphic Algebra to UAdd

- $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

Two's Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

Let
$$TComp_w(u) = U2T(UComp_w(T2U(u)))$$

 $TAdd_w(u, TComp_w(u)) = 0$

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

Two's Complement Negation

Mostly like Integer Negation

• TComp(u) = -u

TMin is Special Case

• TComp(*TMin*) = *TMin*

Negation in C is Actually TComp

$$mx = -x$$

- mx = TComp(x)
- Computes additive inverse for TAdd

$$x + -x == 0$$

U

Negating with Complement & Increment

In C

$$~x + 1 == -x$$

Complement

• Observation: $\sim x + x == 1111...11_2 == -1$

Increment

$$\cdot ^{x} + ^{x} + (^{-x} + 1) == ^{-1} + (^{-x} + 1)$$

$$\cdot ^{x} + 1 == ^{-x}$$

Warning: Be cautious treating int's as integers

• OK here: We are using group properties of TAdd and TComp

class04.ppt -14- CS 213 S'00

Comp. & Incr. Examples

x = 15213

	Decimal	Hex	Binary		
X	15213	3B 6D	00111011 01101101		
~X	-15214	C4 92	11000100 10010010		
~x+1	-15213	C4 93	11000100 1001001 1		
У	-15213	C4 93	11000100 10010011		

TMin

	Decimal	Hex	Hex Binary	
TMin	-32768	80 00	10000000 00000000	
~TMin	32767	7F FF	01111111 11111111	
~TMin+1	-32768	80 00	10000000 000000000	

0

	Decimal	Hex	Binary		
0	0	00 00	00000000 00000000		
~0	-1	FF FF	11111111 11111111		
~0+1	0	00 00	00000000 00000000		

Comparing Two's Complement Numbers

Task

- Given signed numbers u, v
- Determine whether or not u > v
 - Return 1 for numbers in shaded region below

Bad Approach

- Test (u-v) > 0
 - $-\mathsf{TSub}(u,v) = \mathsf{TAdd}(u, \mathsf{TComp}(v))$
- Problem: Thrown off by either Negative or Positive Overflow

class04.ppt -16- CS 213 S'00

Comparing with TSub

Will Get Wrong Results

- NegOver: u < 0, v > 0-but u-v > 0
- PosOver: u > 0, v < 0-but u-v < 0

Working Around Overflow Problems

Partition into Three Regions

• $u < 0, v \ge 0$ $\Rightarrow u < v$

• $u \ge 0$, $v < 0 \Rightarrow u > v$

- u, v same sign ⇒ u-v does not overflow
 - -Can safely use test (u-v) > 0

Multiplication

Computing Exact Product of w-bit numbers x, y

Either signed or unsigned

Ranges

- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$ -Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$ - Up to 2*w*-1 bits
- Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$ - Up to 2w bits, but only for $TMin_w^2$

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages
- Also implemented in Lisp, ML, and other "advanced" languages

Unsigned Multiplication in C

Standard Multiplication Function

Ignores high order w bits

Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Unsigned vs. Signed Multiplication

Unsigned Multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

- Truncates product to w-bit number $up = UMult_w(ux, uy)$
- Simply modular arithmetic

```
up = ux \cdot uy \mod 2^w
```

Two's Complement Multiplication

```
int x, y;
int p = x * y;
```

- Compute exact product of two w-bit numbers x, y
- Truncate result to w-bit number $p = TMult_w(x, y)$

Relation

- Signed multiplication gives same bit-level result as unsigned
- up == (unsigned) p

Multiplication Examples

```
short int x = 15213;
int txx = ((int) x) * x;
int xx = (int) (x * x);
int xx2 = (int) (2 * x * x);
```

```
      x
      =
      15213:
      00111011 01101101

      txx
      =
      231435369: 00001101 11001011 01101100 01101001

      xx
      =
      27753: 00000000 00000000 01101100 01101001

      xx2
      -10030: 11111111 11111111 11011000 11010010
```

Observations

- Casting order important
 - If either operand int, will perform int multiplication
 - If both operands short int, will perform short int multiplication
- Really is modular arithmetic
 - -Computes for xx: $15213^2 \mod 65536 = 27753$
 - -Computes for xx2: (int) 55506U = -10030
- Note that xx2 == (xx << 1)

Power-of-2 Multiply with Shift

Operation

- $u \ll k$ gives $u * 2^k$
- Both signed and unsigned

Examples

- Most machines shift and add much faster than multiply
 - Compiler will generate this code automatically

class04.ppt -23- CS 213 S'00

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- u >> k gives $\lfloor u / 2^k \rfloor$
- Uses logical shift

	Division	Computed	Hex	Binary
X	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	0 0011101 10110110
x >> 4	950.8125	950	03 В6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

class04.ppt -24- CS 213 S'00

2's Comp Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $u \gg k \text{ gives } \lfloor u / 2^k \rfloor$
- Uses arithmetic shift
- Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

class04.ppt -25- CS 213 S'00

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want $\lceil \mathbf{u} / 2^k \rceil$ (Round Toward 0)
- Compute as $\lfloor (u+2^k-1)/2^k \rfloor$
 - $-\ln C$: (u + (1<<k)-1) >> k
 - -Biases dividend toward 0

Case 1: No rounding

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

class04.ppt -27- CS 213 S'00

Correct Power-of-2 Divide Examples

	y/2 ^k	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y+1		-15212	C4 94	11000100 10010 <i>100</i>
(y+1) >> 1	-7606.5	-7606	E2 4A	1 1100010 010010 <i>10</i>
У	-15213	-15213	C4 93	11000100 10010011
y+15		-15197	C4 A2	11000100 10 <i>100010</i>
(y+15) >> 4	-950.8125	-950	FC 4A	1111 1100 010010 <i>10</i>
У	-15213	-15213	C4 93	11000100 10010011
y+255		-14958	C5 92	1100010 <i>1 10010010</i>
(y+255)>>8	-59.4257813	-59	FF C5	11111111 1100010 <i>1</i>

class04.ppt -28- CS 213 S'00

Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms Commutative Ring

- Addition is commutative group
- Closed under multiplication

$$0 \leq UMult_{w}(u, v) \leq 2^{w}-1$$

Multiplication Commutative

$$UMult_{w}(u, v) = UMult_{w}(v, u)$$

Multiplication is Associative

$$UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$$

1 is multiplicative identity

$$UMult_w(u, 1) = u$$

Multiplication distributes over addtion

$$UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$$

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - -Truncating to w bits
- Two's complement multiplication and addition
 - -Truncating to w bits

Both Form Rings

Isomorphic to ring of integers mod 2^w

Comparison to Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,

$$u > 0$$
 $\Rightarrow u + v > v$
 $u > 0, v > 0$ $\Rightarrow u \cdot v > 0$

These properties are not obeyed by two's complement arithmetic

$$TMax + 1 == TMin$$
15213 * 30426 == -10030 (16-bit words)

class04.ppt -30- CS 213 S'00

C Puzzle Answers

- Assume machine with 32 bit word size, two's complement integers
- TMin makes a good counterexample in many cases

•
$$x < 0$$
 \Rightarrow (($x*2$) $<$ 0) False: TMin

• x & 7 == 7
$$\Rightarrow$$
 (x<<30) < 0 True: $X_1 = 1$

•
$$ux > -1$$
 False: 0

•
$$x > y$$
 \Rightarrow $-x < -y$ False: -1 , $TMin$

•
$$x * x >= 0$$
 False: 65535

$$(x*x = -131071)$$

•
$$x > 0 \&\& y > 0 \Rightarrow x + y > 0$$
 False: TMax, TMax

•
$$\mathbf{x} >= 0$$
 \Rightarrow $-\mathbf{x} <= 0$ True: $-TMax < 0$

•
$$x \le 0$$
 \Rightarrow $-x >= 0$ False: TMin