Matemática Discreta l Clase 6 - Conteo

FAMAF / UNC

4 de abril de 2023

Selecciones ordenadas con repetición - ejemplos

Ejemplo

¿Cuántos números de cuatro dígitos pueden formarse con los dígitos 1,2,3,4,5,6?

Por la proposición de la clase pasada es claro que hay 6⁴ números posibles.

Ejemplo

¿Cuántos números de 5 dígitos y capicúas pueden formarse con los dígitos 1,2,3,4,5,6,7,8?

Un número capicúa de cinco dígitos es de la forma

xyzyx

Se reduce a ver cuántos números de tres dígitos pueden formarse con aquéllos dígitos. Exactamente 8³.

Sea X un conjunto de n elementos. ¿Cuántos subconjuntos tiene este conjunto?

Por ejemplo, si $X = \{a, b, c\}$ los subconjuntos de X son:

$$\emptyset$$
, $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$, $\{b,c\}$, $\{a,b,c\}$.

Es decir, si X es un conjunto de 3 elementos, entonces tiene 8 subconjuntos.

Sea
$$A \subseteq X \rightarrow a \in A$$
 o $a \notin A$ (2 posibilidades)

- \rightarrow $b \in A \circ b \notin A$ (2 posibilidades)
- \rightarrow $c \in A$ o $c \notin A$ (2 posibilidades)

Luego hay

$$2 \cdot 2 \cdot 2 = 2^3 = 8$$

posibles subconjuntos de X.

Razonando de manera análoga obtenemos nuestro primer resultado "no sencillo" de conteo.

Proposición

La cantidad de subconjuntos de un conjunto de n elementos es 2^n .

Dado X un conjunto, denotamos $\mathcal{P}(X)$, partes de X, al conjunto formado por todos los subconjuntos de X, por ejemplo

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$$

Si X es un conjunto finito la proposición anterior nos dice que

$$|P(X)| = 2^{|X|}$$

Selecciones ordenadas sin repetición

Sea X un conjunto finito de n elementos.

¿De cuántas formas podemos elegir m de X en forma ordenada?

Ejemplo

Elegir en forma ordenada y sin repetición 2 elementos del conjunto $X = \{a, b, c\}$, tenemos ab, ac, ba, bc, ca, cb, 6 elecciones.

Es decir si el conjunto es $X=\{a_1,a_2,\ldots,a_n\}$, las selecciones deben ser del tipo

$$a_{i_1}a_{i_2}\cdots a_{i_m}$$

donde $a_{i_i} \neq a_{i_k}$ si $i \neq k$.

Por ejemplo, las selecciones de 3 elementos en forma ordenada y sin repetición de $\{1,2,3\}$ son exactamente

(son las ternas donde los tres números son distintos).

O sea hay 6 selecciones ordenadas y sin repetición de elementos de $\{1,2,3\}.$

Notemos que:

- 1° elemento \rightarrow 3 posibilidades: 1, 2, 3
- 2° elemento \rightarrow 2 posibilidades: distinto al elegido en 1°
- 3° elemento $\;\;
 ightarrow\;\;1$ posibilidades: distinto a los elegidos en $\,1^\circ$ y $\,2^\circ$

Tenemos entonces $3 \cdot 2 \cdot 1 = 3!$ selecciones posibles.

Pensemos ahora que queremos elegir en forma ordenada y sin repetición 3 elementos entre 5. Entonces para la primera elección tenemos 5 posibilidades, para la segunda 4 posibilidades y para la tercera 3 posibilidades haciendo un total de

$$5 \cdot 4 \cdot 3$$

selecciones posibles.

Proposición

Si n > m entonces existen

$$n \cdot (n-1) \cdot \cdot \cdot (n-m+1)$$
, (m - factores)

selecciones ordenadas y sin repetición de m elementos de un conjunto de n elementos.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas? Solución.

Razonando,

La solución es entonces $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4$.

Ejemplo (repetido)

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución (aplicando la proposición de p. 7).

Cantidad de elementos: $\rightarrow n = 10$ Cantidad de elecciones: $\rightarrow m = 7$

Por lo tanto, n - m + 1 = 10 - 7 + 1 = 4.

La solución es entonces: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4$.

Observar que

$$10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = \frac{10!}{3!}$$
$$= \frac{10!}{(10 - 7)!}.$$

¿Cómo elegir 4 elementos entre n?

Solución.

Razonando,

```
1^{\circ} puesto \rightarrow n-1 posibilidades 2^{\circ} puesto \rightarrow n-2 posibilidades 3^{\circ} puesto \rightarrow n-3 posibilidades 4^{\circ} puesto \rightarrow n-4 posibilidades
```

La solución es entonces

$$(n-1)(n-2)(n-3)(n-4) = \frac{(n-1)(n-2)(n-3)(n-4)(n-5)!}{(n-5)!}$$
$$= \frac{n!}{(n-5)!}$$

En general

$$n\cdot (n-1)\cdots (n-m+1)=\frac{n\cdot (n-1)\cdots (n-m+1)\cdot (n-m)\cdots 2\cdot 1}{(n-m)\cdots 2\cdot 1}.$$

Es decir

$$n\cdot (n-1)\cdots (n-m+1)=\frac{n!}{(n-m)!}.$$

Por lo tanto podemos reescribir la proposición en forma mas compacta:

Proposición

Si $n \ge m$ entonces existen

$$\frac{n!}{(n-m)!}$$

selecciones ordenadas y sin repetición de m elementos de un conjunto de n elementos.

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas se pueden distribuir 3 pasajeros?

Lo que se está preguntando es de cuantas maneras se pueden distribuir 3 pasajeros en un colectivo con 9 asientos vacíos.

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Primero hagámoslo usando el principio de multiplicación:

- 1° persona: 9 lugares posibles. Total: 9
- \circ 2° persona: 8 lugares posibles. Total: 9 \times 8
- \circ 3° persona: 7 lugares posibles. Total: $9 \times 8 \times 7$.

Este número es

$$9 \cdot 8 \cdot 7$$
, 3 - factores.

Podríamos haberlo hecho directamente por la proposición de la p. 12: elegir 3 elementos entre 9 son

$$\frac{9!}{(9-3)!} = \frac{9!}{6!}$$

$$= \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$$

$$= 9 \cdot 8 \cdot 7$$

posibilidades.

Permutaciones

Hay

$$\frac{n!}{0!} = n!$$

selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos.

Las selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos se denominan permutaciones de grado n.

Hay, pues, n! permutaciones de grado n.

Permutaciones

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar n objetos?

Observemos que, ordenar n objetos es equivalente a seleccionar ordenadamente y sin repetición los n objetos (de un conjunto con n objetos).

Por lo tanto, la respuesta es n!.

Ejemplo.

Dado el conjunto $\mathbb{I}_4=\{1,2,3,4\}$ ¿cuántas permutaciones de los elementos de \mathbb{I}_4 hay?

Solución.4!.

¿Cuántas permutaciones pueden formarse con las letras de silvia?

Solución

Afirmamos que se pueden formar $\frac{6!}{2!}$ palabras usando las letras de *silvia*. Si escribo en lugar de *silvia*,

Es decir si cambio la segunda i por i', todas las letras son distintas, luego hay 6! permutaciones, pero cada par de permutaciones del tipo

coinciden, por lo tanto tengo que dividir por 2 el número total de permutaciones: 6!/2! = 360.

Tomemos la palabra

ramanathan

el número total de permutaciones es

 $\frac{10!}{4!2!}$

En efecto, escribiendo el nombre anterior así

 r_1 a_1 m_1 a_2 n_1 a_3 t_1 h_1 a_4 n_2

el número total de permutaciones es 10! Pero permutando las a_i y las n_i sin mover las otras letras obtenemos la misma permutación de ramanathan.

Como hay 4! permutaciones de las letras a_1 , a_2 , a_3 , a_4 , y 2! de n_1 , n_2 el número buscado es

 $\frac{10!}{4!2!}$