Semaine 12: Réduction

Hussein El gouch

Exercice 1 : Polynôme caractéristique évalué en une autre matrice

Enoncé:

- (1) Soient $M, N \in M_n(\mathbb{C})$. Montrer que MN est inversible si et seulement si M et N sont inversibles.
- (2) Soient $A, B \in M_n(\mathbb{C})$. Montrer que

$$\chi_A(B) \in GL_n(\mathbb{C}) \iff \operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \varnothing.$$

Exercice 2 : Décomposition de l'espace

Enoncé:

Montrer qu'il existe un entier naturel non nul r, des nombres complexes distincts $\lambda_1, \lambda_2, \ldots, \lambda_r$, ainsi que des entiers naturels non nuls m_1, m_2, \ldots, m_r , tels que :

$$\mathbb{C}^n = \bigoplus_{i=1}^r E_i,$$

où pour $i \in [1; r]$, $E_i = \ker(a - \lambda_i \mathrm{id}_{\mathbb{C}^n})^{m_i}$.

avec $a_i = a_{Ei}$

Montrer que pour tout $t \in [1; r], V \in \mathbb{R}$, on a :

$$||e^{a_i t}|| \le e^{\lambda_i t} \sum_{k=0}^{m_i - 1} \frac{|t^k|}{k!} ||a_i - \lambda_i \mathrm{id}_{E_i}||^k.$$

Exercice 3 : Décomposition de l'espace vectoriel

Soit $P(\lambda) = \prod_{i=1}^r (\lambda - \lambda_i)^{m_i}$. On pose:

$$E = \bigoplus_{i=1}^{r} N_i,$$

où N_i est stable par a, et :

$$N_i = \ker ((a - \lambda_i \mathrm{id}_E)^{m_i}).$$

À démontrer :

1. $\dim(N_i) = m_i$.

Exercice 4

Soient A et B deux matrices de $M_n(\mathbb{C})$ et Φ l'endomorphisme de $M_n(\mathbb{C})$ déterminé par :

$$\Phi(M) = AM - MB$$
 pour tout $M \in M_n(\mathbb{C})$.

- (a) Soient α une valeur propre de A et β une valeur propre de B. Montrer que $\alpha \beta$ est valeur propre de Φ .
- (b) Soit $M \in M_n(\mathbb{C})$. À quelle condition la matrice $\chi_A(M)$ n'est-elle pas inversible?
- (c) Soit λ une valeur propre de Φ . Montrer qu'il existe α valeur propre de A et β valeur propre de B telles que $\lambda = \alpha \beta$.

Exercice 5 - Dimension du commutant

Soit f un endomorphisme diagonalisable d'un K-espace vectoriel E de dimension finie n. On note C_f le sous-espace vectoriel des endomorphismes de E commutant avec f.

- 1. Démontrer que $g \in C_f$ si et seulement si les sous-espaces propres de f sont stables par g.
- 2. En déduire que $\dim(C_f) = \sum_{\lambda \in \operatorname{Sp}(f)} \operatorname{mult}(\lambda)^2$, où $\operatorname{mult}(\lambda)$ désigne la multiplicité de la valeur propre λ .
- 3. On suppose en outre que les valeurs propres de f sont simples. Démontrer que $\{Id, f, \ldots, f^{n-1}\}$ est une base de C_f .

Exercice 6 - Simultanément trigonalisables

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ vérifiant AB = BA.

- 1. Montrer que les matrices A et B ont au moins un vecteur propre en commun.
- 2. Établir que les matrices A et B sont simultanément trigonalisables.

Exercice 7 - Diagonalisation simultanée

Soient $f,g \in \mathcal{L}(E)$ deux endomorphismes de E. On suppose que f et g commutent, c'est-à-dire que $f \circ g = g \circ f$, et que f et g sont diagonalisables.

- 1. Montrer que les sous-espaces propres de f sont stables par q.
- 2. Montrer que les endomorphismes induits par g sur chaque sous-espace propre de f sont diagonalisables.
- 3. En déduire qu'il existe une base de E dans laquelle les matrices de g et f sont diagonales, autrement dit, qu'on peut diagonaliser $simultanément\ f$ et g.

2