1 HLW's (2023) post COVID19 State-Space Model (SSM) Form

HLW23 (post COVID19) use the same standard State-Space Form (SSF) as in HLW17:

Measurement :
$$\mathbf{y}_t = \mathbf{A}\mathbf{x}_t + \mathbf{H}\boldsymbol{\xi}_t + R_t^{1/2} \varepsilon_t^{\mathbf{y}}$$

State : $\boldsymbol{\xi}_t = \mathbf{F}\boldsymbol{\xi}_{t-1} + \mathbf{O}^{1/2} \varepsilon_t^{\boldsymbol{\xi}}$

but where the states and exogenous variables have been modified:

$$\mathbf{y}_{t} = \begin{bmatrix} y_{t} & \pi_{t} \end{bmatrix}',$$

$$\mathbf{x}_{t} = \begin{bmatrix} y_{t-1} & y_{t-2} & r_{t-1} & r_{t-2} & \pi_{t-1} & \pi_{t-2,4} & d_{t} & d_{t-1} & d_{t-2} \end{bmatrix}',$$

$$\boldsymbol{\xi}_{t} = \begin{bmatrix} y_{t}^{*} & y_{t-1}^{*} & y_{t-2}^{*} & g_{t} & g_{t-1} & g_{t-2} & z_{t} & z_{t-1} & z_{t-2} \end{bmatrix}',$$

$$\mathbf{A} = \begin{bmatrix} a_{y,1} & a_{y,2} & \frac{a_{r}}{2} & \frac{a_{r}}{2} & 0 & 0 & \phi & -\phi a_{y,1} & -\phi a_{y,2} \\ b_{y} & 0 & 0 & 0 & b_{\pi} & 1 - b_{\pi} & 0 & -\phi & 0 \end{bmatrix},$$

$$\mathbf{H} = \begin{bmatrix} 1 & -a_{y,1} & -a_{y,2} & 0 & -4c\frac{a_{r}}{2} & -4c\frac{a_{r}}{2} & 0 & -\frac{a_{r}}{2} & -\frac{a_{r}}{2} \\ 0 & -b_{y} & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

to incorporate dummy variables in the measurement equation and a time-varying R_t covariance matrix, and some correction I pointed out in the formulation of the state equation (see pages 7-8 in 'HLW_Replication_Code_Guide.pdf' and pages 43-44 in 'Measuring the Natural Rate of Interest after COVID-19'.

Note: This follows the notation used in the documentation file: 'HLW_Replication_Code_Guide.pdf' included in the zip file: 'HLW_2023_Replication_Code.zip' that contains the replication code of HLW23 and which is available from the NYFED website at: https://www.newyorkfed.org/medialibrary/media/research/economists/williams/data/HLW_Code.zip.

Compared to HLW17, the constant c is estimated again and dummies are added to account for the COVID19 years.

In the construction of r_t^* , trend growth g_t is again annualized, but not in the state equations for g_t . That is, in the matrices above, the entries in $\mathbf{H}(1,4:5)$ corresponding to trend growth are multiplied by 4 (as well as c) in the code that performs the estimation (see unpack.parameters.stage3.R in HLW_replication.zip files, line 30, which reads):

H[1, 5:6] <- -parameters[param.num["c"]]*parameters[param.num["a_r"]]*2. The standard deviations of the shocks are denoted by $\begin{bmatrix} \sigma_{\tilde{y}} & \sigma_{\pi} & \sigma_{y^*} & \sigma_{g} & \sigma_{z} \end{bmatrix}'$ in the documentation in 'HLW_Code_Guide.pdf'.

1.1 SSM of HLW23

obs0 The measurement equation is:

$$\mathbf{y}_t = \mathbf{A}\mathbf{x}_t + \mathbf{H}\boldsymbol{\xi}_t + R_t^{1/2}\boldsymbol{\varepsilon}_t^{\mathbf{y}}$$

$$\underbrace{\begin{bmatrix} y_{t} \\ \tau_{t} \end{bmatrix}}_{y_{t}} = \underbrace{\begin{bmatrix} a_{y,1} & a_{y,2} & \frac{a_{r}}{2} & a_{r} & 0 & 0 & \phi & -\phi a_{y,1} & -\phi a_{y,2} \\ b_{y} & 0 & 0 & 0 & b_{\pi} & 1 - b_{\pi} & 0 & -\phi b_{y} & 0 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} y_{t-1} \\ y_{t-2} \\ \tau_{t-1} \\ \tau_{t-2} \\ \pi_{t-1} \\ \pi_{t-2,4} \\ d_{t} \\ d_{t-1} \\ d_{t-2} \end{bmatrix}}_{\mathbf{x}_{t}} + \underbrace{\begin{bmatrix} 1 & -a_{y,1} & -a_{y,2} & 0 & -4c\frac{a_{r}}{2} & -4c\frac{a_{r}}{2} & 0 & -\frac{a_{r}}{2} & -\frac{a_{r}}{2} \\ 0 & -b_{y} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}}_{\mathbf{H}} \underbrace{\begin{bmatrix} y_{t} \\ y_{t}^{*} \\ y_{t-1}^{*} \\ y_{t-2}^{*} \\ z_{t} \\ z_{t-1} \\ z_{t-2} \end{bmatrix}}_{\boldsymbol{\xi}_{t}} + \underbrace{\begin{bmatrix} \kappa_{t}\sigma_{\bar{y}} & 0 \\ 0 & \kappa_{t}\sigma_{\pi} \end{bmatrix}}_{\mathbf{R}_{t}^{1/2}} \underbrace{\begin{bmatrix} \varepsilon_{t}^{\bar{y}} \\ \varepsilon_{t}^{\pi} \\ \varepsilon_{t}^{*} \end{bmatrix}}_{\mathbf{E}_{t}}. \tag{1b}$$

The state equation is:

$$\boldsymbol{\xi}_t = \mathbf{F}\boldsymbol{\xi}_{t-1} + \mathbf{Q}^{1/2}\boldsymbol{\varepsilon}_t^{\boldsymbol{\xi}}$$

$$\begin{bmatrix}
y_{t}^{*} \\
y_{t-1}^{*} \\
y_{t-2}^{*} \\
g_{t} \\
g_{t-1} \\
z_{t-1} \\
z_{t-2}
\end{bmatrix} = \underbrace{\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} \underbrace{\begin{bmatrix}
\varepsilon_{t}^{y^{*}} \\
\varepsilon_{t}^{g} \\
\varepsilon_{t}^{g} \\
\varepsilon_{t}^{g} \end{bmatrix}}_{\varepsilon_{t}^{g}}$$

$$(2) \text{ state1}$$

Expanding the relations in (1) and (2) and re-arranging yields:

$$\begin{bmatrix} y_{t} \\ \eta_{t} \end{bmatrix} = \begin{bmatrix} y_{t+1,COVID} & y_{t-2,COVID} \\ y_{t}^{*} + \phi d_{t} + a_{y,1} (y_{t-1} - y_{t-1}^{*} - \phi d_{t-1}) + a_{y,2} (y_{t-2} - y_{t-2}^{*} - \phi d_{t-2}) \\ + \frac{1}{2} a_{r} ([r_{t-1} - 4cg_{t-1} - z_{t-1}] + [r_{t-2} - 4cg_{t-2} - z_{t-2}]) + \kappa_{t} \sigma_{\tilde{y}} \varepsilon_{t}^{\tilde{y}} \\ b_{y} (y_{t-1} - y_{t-1}^{*} - \phi d_{t-1}) + b_{\pi} \pi_{t-1} + (1 - b_{\pi} 1) \pi_{t-2,4} + \kappa_{t} \sigma_{\pi} \kappa_{t} \varepsilon_{t}^{\pi} \end{bmatrix}$$
(3) lwa

$$\begin{bmatrix} y_{t}^{*} \\ y_{t-1}^{*} \\ y_{t-2}^{*} \\ g_{t} \\ g_{t-1} \\ g_{t-2} \\ z_{t} \\ z_{t-1} \\ z_{t-2} \end{bmatrix} = \begin{bmatrix} y_{t-1}^{*} + g_{t-1} + \sigma_{y^{*}} \varepsilon_{t}^{y^{*}} \\ y_{t-1}^{*} \\ y_{t-2}^{*} \\ g_{t-1} \\ g_{t-2} \\ z_{t-1} \\ z_{t-1} \\ z_{t-2} \end{bmatrix} \Rightarrow \begin{bmatrix} \Delta y_{t}^{*} \\ \Delta g_{t-1} \\ \Delta g_{t-1} \\ \Delta g_{t-1} \end{bmatrix} = \begin{bmatrix} g_{t-1} + \sigma_{y^{*}} \varepsilon_{t}^{y^{*}} \\ \sigma_{g} \varepsilon_{t}^{g} \\ \sigma_{z} \varepsilon_{t}^{z} \end{bmatrix}$$

$$(4) \text{ lwb}$$

and with $r_t^* = 4cg_t + z_t$, we get:

$$\Delta r_t^* = 4 \underbrace{c \Delta g_t}^{\sigma_g \varepsilon_t^g} + \underbrace{\Delta z_t}^{\sigma_z \varepsilon_t^z}$$

$$= 4 c \sigma_g \varepsilon_t^g + \sigma_z \varepsilon_t^z. \tag{5} \text{ drstar}$$

Note here that the timing mismatch has been resolved now so that the equations read as expected, that is, without any lagged values in ε_t^{ξ} in (2).

The COVID-adjusted natural rate of output is defined in equation 16 of their paper:

$$\tilde{y}_{t,COVID} = 100(y_t - y_{t,COVID}^*) = 100(y_t - y_t^*) - \phi d_t.$$

2 Shock recovery SSM

2.1 SSM with lagged states

SSM

Kurz's (2018) SSM has the following general from:

Measurement:
$$Z_t = D_1 X_t + D_2 X_{t-1} + R \varepsilon_t$$
 (6a) ssm1

State:
$$X_t = AX_{t-1} + C\varepsilon_t$$
, (6b) ssm2

where $\varepsilon_t \sim MN(0, I_m)$, D_1 , D_2 , A, R are C are conformable system matrices, Z_t the observed variable and X_t the latent state variable.

2.2 HLW23 equations

Following the same format as before, HLW23's SSM equations in (3) and (4) gives the following SSM equations:

 $y_t = y_t^* + \phi d_t + \sum_{i=1}^2 a_{y,i} \left(y_{t-i} - y_{t-i}^* - \phi d_{t-i} \right) + \frac{1}{2} a_r \sum_{i=1}^2 \left(r_{t-i} - r_{t-i}^* \right) + \kappa_t \sigma_{\tilde{y}} \varepsilon_t^{\tilde{y}}$ (7a) LWO3a

$$\pi_t = b_y(y_{t-1} - y_{t-1}^* - \phi d_{t-1}) + b_\pi \pi_{t-1} + (1 - b_\pi) \pi_{t-2,4} + \kappa_t \sigma_\pi \varepsilon_t^\pi$$
(7b)

$$\Delta z_t = \sigma_z \varepsilon_t^z$$
 (7c) LW03c

$$\Delta y_t^* = g_{t-1} + \sigma_{y^*} \varepsilon_t^{y^*} \tag{7d}$$
 LW03d

$$\Delta g_t = \sigma_{\!\scriptscriptstyle \mathcal{S}} arepsilon_t^{\!\scriptscriptstyle \mathcal{S}}$$
 (7e) LW03e

with

LW03

ssm0

ssmO

$$\Delta r_t^* = 4c\sigma_g \varepsilon_t^g + \sigma_z \varepsilon_t^z.$$
 (7f) LWO3f

2.3 HLW23 SSM for shock recovery

To assess recovery, re-write the model in 'shock recovery' form. That is, collect all observables in Z_t , and all shocks (and other state variables) in state vector X_t . The relevant equations from (7) (incorporating (7f)) for the 'shock recovery' SSM are (note the inclusion of c in (8e)):

Measurement: $Z_{1t} = y_t^* - a_{y,1}y_{t-1}^* - a_{y,2}y_{t-2}^* - \frac{1}{2}a_r\left(r_{t-1}^* + r_{t-2}^*\right) + \kappa_t \sigma_{\tilde{y}} \varepsilon_t^y$ (8a)

$$Z_{2t} = -b_y y_{t-1}^* + \kappa_t \sigma_\pi \varepsilon_t^\pi \tag{8b}$$

State: $\Delta y_t^* = g_{t-1} + \sigma_{y^*} \varepsilon_t^{y^*}$ (8c)

$$\Delta g_t = \sigma_g \varepsilon_t^g \tag{8d}$$

$$\Delta r_t^* = 4c\sigma_g \varepsilon_t^g + \sigma_z \varepsilon_t^z, \tag{8e}$$

with the observables Z_t in the measurement equations defined as:

$$Z_{1t} = y_t - \sum_{i=1}^{2} (a_{y,i} y_{t-i} - \phi d_{t-i}) - \frac{1}{2} a_r \sum_{i=1}^{2} r_{t-i}$$
(9a)

$$Z_{2t} = \pi_t - b_{\pi} \pi_{t-1} - (1 - b_{\pi}) \pi_{t-2,4} - (b_y y_{t-1} - \phi d_{t-1}). \tag{9b}$$

So these are the same as before for the HLW17 model, with the dummy variables only impacting the observable part of the Z_t measurement in (9) and the only change being the inclusion of the 3 different possibilities for κ_t : $\kappa_{20220Q2-Q4}$, κ_{2021} , κ_{2022} and 1 for the baseline, but with the 2023 estimates of all other parameters.

KOSSM

The 'shock recovery' SSF corresponding to (8) is then:

State: $X_t = AX_{t-1} + C\varepsilon_t$,

$$\begin{bmatrix}
y_{t}^{*} \\
y_{t-1}^{*} \\
g_{t} \\
r_{t}^{*} \\
r_{t-1}^{*} \\
\varepsilon_{t}^{*} \\
\varepsilon$$

Correlation between true change in natural rate and estimate

The correlation between the true and estimated Δr_t^* from the SSM can be constructed from the relation:

$$\rho = 0.5 \frac{\text{Var}(\Delta r_t^*) + \text{Var}(E_T \Delta r_t^*) - \phi}{\sigma(\Delta r_t^*)\sigma(E_T \Delta r_t^*)},$$
(11)

where $Var(\Delta r_t^*) = 4^2c^2\sigma_5^2 + \sigma_3^2$, $\sigma(\Delta r_t^*) = \sqrt{Var(\Delta r_t^*)}$, and $Var(E_T\Delta r_t^*)$ can be computed from simulating from the true model, applying the Kalman Filter and Smoother to get $E_T \Delta r_t^*$ and then computing the sample variance of $E_T \Delta r_t^*$ as an estimate of $Var(E_T \Delta r_t^*)$.

To obtain ϕ , add Δr_t^* to the state-vector X_t and augment the remaining matrices to be conformable. The required ϕ term is then the entry of diag $(P_{t|T}^*)$ that corresponds to Δr_t^* , which will be the very last element.

The augmented SSF of (10) is then:

 $X_t = AX_{t-1} + C\varepsilon_t$ State:

(13)

