Roll Number: 190070049

Name: Rathour Param Jitendrakumar

Course: Electronic Devices Lab

Course Code: EE236

Q1)

The black box is

Output Response Vout and Vout vs Vin below

Full wave rectifier made using 1N4007 below (Vin =15V)

Full wave rectifier made using 1N4007 below (Vin =1V)

In 1N4007 (Vin =15V), the Vout vs Vin slope is less than 1 due to diode cut-in voltages, whereas in precision rectifier the slope is 1

When Vin = 1V, the output is distorted for 1N4007 due to diode cut-in voltages

Around Vin = 0V, 1N4007 is flat and precision is sloped slower (response due to high frequency)

Q2) I-V characteristics of X, Y

log I-V characteristics of X, Y

Using the above,

slope =
$$\frac{\ln I_{D_2} - \ln I_{D_1}}{V_{D_2} - V_{D_1}} = \frac{1}{\eta V_T} \to \eta = \frac{1}{V_T} \left(\frac{V_{D_2} - V_{D_1}}{\ln I_{D_2} - \ln I_{D_1}} \right)$$

$$I_S = \exp (y\text{-intercept})$$

Diode X can be used when for power rectifiers as it has lower forward voltage and higher ideality factor.

Diode	Forward Voltage	Reverse Saturation	Peak Inverse Voltage	Ideality factor
	(approx) (in mV)	Current (in A)	(PIV) (in V)	
Х	209.6655	2.095383e-07	-74.8272	1.336854
Y	527.9265	6.904011e-11	-1000.15	1.423315

By comparing their forward voltages, X is probably Germanium diode and Y is Silicon.

Q3) C_DUT vs |V_DUT| and 1/C^2 vs V_DUT are plotted respectively

The CDUT vs |VDUT| characteristics looks like a hyperbola and that is actually the case as can be seen from first formula

$$|V_{out}/V_{DUT}| = (C_{DUT}/C_{fb})(1/\sqrt{1+1/(\omega R_{fb}C_{fb})^2})$$

 $1/\text{C}^2 \text{ vs V}_D\text{UT}$ plot is approximately a straight line. Hence, Slope of $1/\text{C}^2 \text{ vs V}_D\text{UT} = (8.869170\text{e}-01 - 2.937230\text{e}-01)/(-4-(-2)) = -2.96597$ N_D = 4.08661e+21 atoms/cm^3 was calculated using K2, slope of $1/\text{C}^2 \text{ vs V}_D\text{UT}$ V_bi = 17.04114mV using y-intercept of $1/\text{C}^2 \text{ vs V}_D\text{UT}$, N_D and K2 where K2 = $\left(2/q\varepsilon N_D\right)$