-- Query 1. Rank 10 stores has lowest overall average weekly sales. If there is a tie between two -- average weekly sales, they should have the same rank.

```
select st, avg_ws, rank() over( order by avg_ws asc) as RANK from (select st, avg_ws from (select Store st, avg(Weekly_Sales) avg_ws from sales_data group by Store) order by 2 ASC limit 10);
```

```
25
26
       -- Query 1
27
       select st, avg ws, rank() over( order by avg ws asc) as RANK from
28
29
     (select st, avg_ws from
30
     (select Store st, avg(Weekly_Sales) avg_ws from sales data
      group by Store)
31
     order by 2 ASC limit 10);
32
33
34
     st
             avg_ws
                          RANK
       5 5053.41581286811
1
                              1
2
     33 5728.41405272083
                              2
     44 6038.92981447899
                              3
3
       3 6373.03398295704
                              4
4
                              5
5
     38 7492.4784596577
     16 7863.2241236895
6
                              7
     29 8158.81060920147
      7 8358.76614833022
                              8
8
     36 8584.4125634844
                              9
9
10
     30 8764.23771939633
                            10
```

-- Query 2: For each type of the stores, find 5 stores with highest average weekly sales.

```
create table high avg ws A as
select st.Type, st.store, avg(sa.Weekly Sales) from stores data st inner join sales data sa on st.store = sa.store
where st. Type = 'A'
group by 1, 2
order by 3 desc limit 5;
create table high avg ws B as
select st.Type, st.store, avg(sa.Weekly Sales) from stores data st inner join sales data sa on st.store = sa.store
where st.Type = 'B'
group by 1, 2
order by 3 desc limit 5;
create table high avg ws C as
select st.Type, st.store, avg(sa.Weekly Sales) from stores data st inner join sales data sa on st.store = sa.store
where st.Type = 'C'
group by 1, 2
order by 3 desc limit 5;
select type, Store, "avg(sa.Weekly Sales)" as avg weely sales from high avg ws A
UNION
select * from high avg ws B
UNION
select * from high avg ws C;
```

```
select type, Store, "avg(sa.Weekly_Sales)" as avg_weely_sales from high_avg_ws_A

UNION

select * from high_avg_ws_B

UNION

select * from high_avg_ws_C;

63

64
```

	Туре	Store	avg_weely_sales
1	Α	2	26898.0700312562
2	Α	4	29161.2104147196
3	Α	13	27355.13689135
4	Α	14	28784.8517270916
5	Α	20	29508.3015919327
6	В	10	26332.3038187106
7	В	12	14867.3086192684
8	В	18	15733.3131362207
9	В	22	15181.218886251
10	В	23	19776.180880597
11	С	30	8764.23771939631
12	С	37	10297.3550263669
13	С	38	7492.47845965771
14	С	42	11443.3701179347
15	С	43	13415.1141179085

-- Query 3: Find stores with increased total sales in December from 2010 to 2011.

```
SELECT a.Store, a.date, a.total ws, b.total ws, b.date from
(select Store, substr(Date, 4,7) as date, sum(Weekly Sales) as
total ws, substr(Date, 7,4) as year from sales data
where (substr(Date, 7,4) = '2011' and substr(Date, 4,2) == '12')
group by 1) a
join
(select Store, substr(Date, 4,7) as date, sum(Weekly_Sales) as
total ws, substr(Date, 7,4) as year from sales data
where (substr(Date, 7,4) = '2010' and substr(Date, 4,2) == '12')
group by 1) b
on a.Store = b.Store
where a.total ws > b.total ws;
```

```
64
65
       -- Query 3
       SELECT a.Store, a.date, a.total_ws, b.total_ws, b.date from
66
     [] (select Store, substr(Date, 4,7) as date, sum(Weekly_Sales) as total_ws, substr(Date, 7,4) as year from sales_data
67
       where (substr(Date, 7,4) = '2011' and substr(Date, 4,2) == '12')
       group by 1) a join
70
     [ (select Store, substr(Date, 4,7) as date, sum(Weekly Sales) as total ws, substr(Date, 7,4) as year from sales data
       where (substr(Date, 7,4) = '2010' and substr(Date, 4,2) == '12')
71
72
        roup by 1) b on a.Store = b.Store
73
       where a.total ws > b.total ws;
74
   Store date
                      total ws
                                       total ws
                                                     date
       1 12/2011
                       9032594.71
                                         8876953.18 12/2010
1
2
       4 12/2011
                      13144846.51
                                         12466674.3 12/2010
       5 12/2011
                        1931376.8
                                         1829294.03 12/2010
3
       6 12/2011 9869325.58000001 9793698.97000001 12/2010
5
       7 12/2011
                       3841626.31
                                         3643627.46 12/2010
       9 12/2011
                        3404113.5
                                         3214648.24 12/2010
7
      11 12/2011 8395491.14999999
                                         8267278.68 12/2010
                       6283683.83
                                         6147059.47 12/2010
8
      12 12/2011
q
      13 12/2011
                      12800264.37
                                       12587690.25 12/2010
10
      16 12/2011
                       3401326.62
                                         3311064.31 12/2010
                       5055908.87
11
      17 12/2011
                                         4883511.08 12/2010
12
      26 12/2011
                       5854303.21
                                         5813819.77 12/2010
                       7938387.07
13
      31 12/2011
                                         7796083.04 12/2010
      32 12/2011
                       7213433.31
                                         7040638.37 12/2010
14
      33 12/2011
                       1221666.15
                                         1170963.26 12/2010
15
      37 12/2011
                       2655367.07
                                         2590847.49 12/2010
16
17
      38 12/2011
                       2013322.26
                                         1715347.27 12/2010
18
      39 12/2011
                        9497869.8 8630149.33000001 12/2010
                                         5750981.56 12/2010
19
      40 12/2011
                       5927494.64
20
      41 12/2011
                       8051202.84
                                         7509735.45 12/2010
21
      42 12/2011
                       2759543.23
                                         2606910.56 12/2010
22
      43 12/2011
                       3049629.72
                                         2963362.34 12/2010
23
      44 12/2011
                       1539906.15
                                         1428149.1 12/2010
```

- -- 4. Analyze how sales is influenced by holiday
- -- a. Average weekly sales on holiday weeks and non-holiday weeks
- -- b. Top 20 weeks with highest weekly sales and calculate portion of holiday weeks and nonholiday weeks.

```
-- QUERY 4.a
select Date, IsHoliday, avg(Weekly Sales) as avg weekly sales from sales data
group by 2, 1
order by 2 DESC:
-- QUERY 4.b
create table h highest ws as
select Date, avg(Weekly Sales) as avg weekly sales, IsHoliday from sales data
where IsHoliday = 'TRUE'
group by 1
order by 2 DESC limit 10;
create table h non highest ws as
select Date, avg(Weekly Sales) as avg weekly sales, IsHoliday from sales data
where IsHoliday = 'FALSE'
group by 1
order by 2 DESC limit 10;
SELECT * FROM h highest ws
UNION
SELECT * FROM h non highest ws
order by 3 DESC;
```

```
75
76 -- QUERY 4.a
77
78 select Date, IsHoliday, avg(Weekly_Sales) as avg_weekly_sales from sales_data
79 group by 2, 1
80 order by 2 DESC;
81
```

01			
	Date	IsHoliday	avg_weekly_sales
1	07/09/2012	TRUE	16294.6929568442
2	09/09/2011	TRUE	15809.0694827586
3	10/02/2012	TRUE	16664.2478907031
4	10/09/2010	TRUE	15537.7588832142
5	11/02/2011	TRUE	16111.7061912865
6	12/02/2010	TRUE	16352.0560317997
7	25/11/2011	TRUE	22043.5634756703
8	26/11/2010	TRUE	22403.3367052417
9	30/12/2011	TRUE	15332.1548584748
10	31/12/2010	TRUE	13738.5385660891
11	01/04/2011	FALSE	14726.8692612674
12	01/06/2012	FALSE	16405.5894393476
13	01/07/2011	FALSE	16232.8623336745
14	01/10/2010	FALSE	14391.7805349233
15	02/03/2012	FALSE	15672.5869464883
16	02/04/2010	FALSE	17098.6202984063
17	02/07/2010	FALSE	16769.7924237231
18	02/09/2011	FALSE	15387.1221668362
19	02/12/2011	FALSE	16496.5118537074
20	03/02/2012	FAISE	15480 5536076587

95	
96	SELECT * FROM h highest ws
97	UNION
98	SELECT * FROM h non highest ws
99	order by 3 DESC;
100	

	Date	avg_weekly_sales	IsHoliday
1	07/09/2012	16294.6929568442	TRUE
2	09/09/2011	15809.0694827586	TRUE
3	10/02/2012	16664.2478907031	TRUE
4	10/09/2010	15537.7588832142	TRUE
5	11/02/2011	16111.7061912865	TRUE
6	12/02/2010	16352.0560317997	TRUE
7	25/11/2011	22043.5634756703	TRUE
8	26/11/2010	22403.3367052417	TRUE
9	30/12/2011	15332.1548584748	TRUE
10	31/12/2010	13738.5385660891	TRUE
11	02/04/2010	17098.6202984063	FALSE
12	04/06/2010	17246.9220343642	FALSE
13	06/04/2012	17935.7411565538	FALSE
14	06/07/2012	17309.3623370483	FALSE
15	09/12/2011	18458.8530564785	FALSE
16	10/12/2010	18882.8936194029	FALSE
17	16/12/2011	19942.1493328908	FALSE
18	17/12/2010	20892.463619466	FALSE
19	23/12/2011	25437.1461215725	FALSE
20	24/12/2010	27378.6926928282	FALSE

```
🔳 ...🔻 🛟 😤 🗱 main.py
                       import pandas as pd
■ q3 C:\repos\pacte 1
   main.py
                      import matplotlib.pyplot as plt
Ill External Libraries
 Scratches and Con 4
                       class Employee(object):
                           def __init__(self, fn, ln, g, tl, stat, yrs, sal, lb):
                               self.first_name = fn
                               self.last_name = ln
                               self.gender = g
                               self.title = tl
                               self.status = stat
                               self.yrs_of_experience = yrs
                               self.salary = sal
                               self.last_bonus = lb
                           def calc_aprox_sal(self) -> float:
                               def_sal = 30000
                               if self.last_name is not None:
                                   if self.title in ["Software Engineer", "Full Stack Developer", "Software Developer Engineer"]:
                                        def_sal *= 2
                                       if self.yrs_of_experience < 2:</pre>
                                           def_sal *= 1.1
                                       elif self.yrs_of_experience == 2:
                                           def_sal *= 1.3
```

```
▼ ■ q3 C:\repos\pacte 16
                            def calc_aprox_sal(self) -> float:
                                def_sal = 30000
    main.py
► IIII External Libraries 18
                                if self.last_name is not None:
  Scratches and Con 19
                                        def sal *= 2
                                        if self.yrs_of_experience < 2:</pre>
                                            def_sal *= 1.1
                                        elif self.yrs_of_experience == 2:
                                            def_sal *= 1.3
                                        elif self.yrs_of_experience > 2:
                                            def_sal *= 1.6
                                        elif self.yrs_of_experience > 6:
                                            def_sal *= 2
                                return def_sal
                       def main():
                            es = []
                            import random
                            for i in range(25):
                                es.append(Employee("John", "Smith", "Male", "Software Engineer", "Single", 2, 30000*r, 1000))
                               r = random.randint(1, 9)
```

```
return def_sal
   🐔 main.py
IllI External Libraries 31
Scratches and Con 32
                       def main():
                           es = []
                           import random
                           r = random.randint(1,9)
                           for i in range(25):
                               es.append(Employee("John", "Smith", "Male", "Software Engineer", "Single", 2, 30000*r, 1000))
                               r = random.randint(1, 9)
                           data = {
                               'title': [x.title for x in es],
                               'salary': [x.salary for x in es]
                           df = pd.DataFrame(data, columns=['title', 'salary'])
                           print([x.title for x in es])
                           print(df.count())
                           df.plot(x='title', y='salary', kind='line')
                           plt.show()
                       if __name__ == "__main__":
                           main()
```


