Лабораторная работа № 1

Цель работы – изучение простой семантики объекта и прагматики сопоставления объекта с двумя эталонами.

Семантика

- Выполним переход: физика → семантика и разделим параметры объекта и его значения следующим образом: наблюдения над объектом и сотояния пророды объекта.
- → Наблюдения над объектом совокупность параметров и их значений, полученных в результате { измерений, наблюдений, экспертиз }.
- Состояния природы объекта совокупность таких параметров и их значений, по которым составлена некоторая суммарная (интегральная) характеристика объекта.

Составление суммарной (интегральной) характеристика объекта выполняется на основании предшествующих { измерений, наблюдений, экспертиз }.

Наблюдения над объектом и состояния природы объекта формируются обычно как результат длительных исследований и разработок { научных, технических, технологических, философских, исторических, религиозных }.

В отличие от подхода Cantor: множество есть совокупность однородных сущностей, Zadeh в пионерской работе Zadeh L. A. Fuzzy sets. – Inf. & Control., 1965, v. 8, p. 338–353., ввел парадигму принадлежность элемента множеству. Такое множество называется нечетким (HM).

Пусть объект имеет параметр, определенный на некотором диапазоне и этот параметр измеряется по шкале интервалов, то есть диапазон разделен на п равных интервалов.

Тогда эти интервалы представляют собой разнородные сущности, так как физика объекта различна на различных интервалах и даже возможен разрыв производной (фазовый переход).

Поэтому интервалы образуют носитель нечеткого множества, причем каждому интервалу ставиться в соответствие число – принадлежность данного интервала НМ.

Носитель: { интервал₁, интервал₂, интервал_i, ..., интервал_n }, Функция принадлежности: { число₁, число₂, число_i, ..., число_n }.

Параметр объекта представляет собой наблюдение, а состояния природы – отсутствие/наличие фазового перехода и/или градации другого параметра, зависящего от первого.

Рассмотрим простейший случай: объект с двумя наблюдениями и двумя состояниями природы, далее — состояниями.

Семантика объекта:

$$HM_i = \{ (\{d_i, c_i\}, \mu_{ii \ni KC}) \}$$

где HM_j j—тое нечеткое множество, $j \in \{1, 2\}$, μ_{ij} $_{3KC}$ — значение функции принадлежности, полученное в результате эксперимента, d_i — наблюдение, c_j — состояние, $\{d_i, c_j\}$ — элемент носителя $\{\cup \{d_i, c_j\}\}$, $i = 1 \div 2$.

Таким образом, объекту с состоянием c_1 соответствует HM_1 , а объекту с состоянием c_2 соответствует HM_2 .

Из двух объектов с состояниями $\{c_1, c_2\}$ при заданной семантике пустой базе знаний можно получить непустую базу знаний.

Семантика пустой базы знаний:

$$HM_{j} = \{ (\{ d_{i}, c_{j} \}, \emptyset) \}$$

где \varnothing — отсутствие значения функции принадлежности, d_i — наблюдение, c_j — состояние,

 $\{d_i, c_j\}$ — элемент носителя $\{\cup \{d_i, c_j\}\}, i = 1 \div 2.$ Таким образом, пустая база знаний это два HM_j при отсутствии значений функции принадлежности, $j \in \{1, 2\}$, $i = 1 \div 2$.

Семантика непустой базы знаний:

$$HM_i = \{ (\{d_i, c_i\}, \mu_{ii}) \}$$

где $\mu_{ij} = \mu_{ij} _{jKC}$.

Таким образом, непустая база знаний — это два HM_j , $i, j = 1 \div 2$. Каждое HM_i будем называть эталоном с состоянием c_i .

Прагматика

Имеется семантика объекта с неизвестным состоянием c_k при известных наблюдениях $\{d_1, d_2\}$:

$$HM_k = \{ (\{d_i, c_k\}, \mu_{ik \ni KC}) \}$$

где $k \in \{1, 2\}, i = 1 \div 2.$

Имеется также семантики двух эталонов $\{c_1, c_2\}$:

$$HM_{i} = \{ (\{d_{i}, c_{j}\}, \mu_{ij}) \}$$

где $i, j = 1 \div 2$.

Тогда прагматика сопоставления семантик объекта и базы знаний (эталонов) – это определение одного из исходов:

- 1. Отсутствие сходства объект не похож ни на один из эталонов отказ.
- 2. Многозначное сходство объект похож на оба эталона $c_1 c_2$.
- 3. Однозначное сходство объект похож на эталон c_1 или эталон c_2 .

В прагматике используются функция доверия Bel и степень сходства L.

Bel есть мера доверия экспериментальным данным (фактам), содержащимся в семантиках объекта и эталонов от полного доверия Bel = 1 до отсутствия доверия Bel = 0.

L есть мера сходства объекта и эталона от полного сходства L=1 до отсутствия сходства L=0.

Для объекта мера доверия:

$$Bel_{k} = \frac{\mu_{1k} + \mu_{2k} - 2\mu_{1k} \mu_{2k}}{\mu_{1k} + \mu_{2k} - \mu_{1k} \mu_{2k}}$$

где $k \in \{1, 2\}$.

Для эталона с ј – тым состоянием мера доверия:

$$Bel_{j} = \frac{\mu_{1j} + \mu_{2j} - 2\mu_{1j}\mu_{2j}}{\mu_{1j} + \mu_{2j} - \mu_{1j}\mu_{2j}}$$

где
$$j = 1 \div 2$$
.

Степень сходства объекта и эталона с ј – тым состоянием:

$$L_{j} = Bel [MAX (\mu_{ik}, \mu_{ij})] / Bel [MIN (\mu_{ik}, \mu_{ij})]$$

где $i, j, k = 1 \div 2$.

Прагматика сопоставления объекта с двумя эталонами содержит следующие пункты:

1. По μ_{ij} выполним экспертизу эталонов (определим степень сходства между ними L_{12}) и получим порог степени сходства $L_0 = L_{12}$:

$$L_0 = \text{Bel} \left[\text{MAX} \left(\mu_{i1}, \mu_{i2} \right) \right] / \text{Bel} \left[\text{MIN} \left(\mu_{i1}, \mu_{i2} \right) \right]$$

где $i = 1 \div 2$.

2. По μ_{ik} и μ_{ij} определим степени сходства $\{L_1, L_2\}$ объекта и эталонов $\{c_1, c_2\}$:

$$\{L_j\} = \text{Bel} [MAX (\mu_{ik}, \mu_{ij})] / \text{Bel} [MIN (\mu_{ik}, \mu_{ij})]$$

где $i, j, k = 1 \div 2$.

- 3. По L_1 , L_2 и L_0 определим исходы по сходству:
- 3. 1. Если $L_1 < L_0$ и $L_2 < L_0$, то отказ
- 3. 2. Если $L_1 = L_2 > L_0$, то $c_1 c_2$
- 3. 3. Если $L_1 > L_0$ и $L_1 > L_2$, то c_1
- 3. 4. Если $L_2 > L_0$ и $L_2 > L_1$, то c_2

Примеры исходов по сходству:

где L_0 – порог степени сходства,

 L_1 – степень сходства объекта с эталоном c_1 .

 L_2 – степень сходства объекта с эталоном c_2 .

Схема выполнения работы

- 1. Выполнить пункты верхнего меню: «Программа— Сопоставление» и с помощью данной программы:
- 1.1. Подобрать значения μ_{11} и μ_{1k} так, чтобы:
- при вариации μ_{11} на [0, 1] результатами были четыре исхода по сходству { отказ, c_1 c_2 , c_1 , c_2 } в произвольном порядке;
- при вариации μ_{1k} на [0,1] результатами были четыре исхода по сходству $\{$ отказ, c_1 c_2 , c_1 , c_2 $\}$ в произвольном порядке.
- 1.2. Экспериментально определить вид функций L_1 (μ_{11}) и L_1 (μ_{1k}): возрастание/убывание, наличие max/min, одно/много модальность.

В качестве исходных значений использовать μ_{11} и μ_{1k} , подобранные в 1.1.

1.3. Получить результаты предельных переходов для Bel (μ_{1j} , μ_{2j}) при $\mu_{1j} = \mu_{2j} \rightarrow 0$ и $\mu_{1j} = \mu_{2j} \rightarrow 1$, $j \in \{1, 2\}$.

Расчет предельных переходов функции Bel от двух переменных μ_{1j} и μ_{2j} в общем случае, приводит к неопределенным результатам.

В данном случае, значения μ_{1j} и μ_{2j} получены в ходе { измерений, наблюдений, экспертиз } с ограничением — тождественность функций распределения μ_{1j} и μ_{2j} на [0, 1], что следует использовать при расчетах предельных переходов.

Выбор объекта или эталона – сдвиг курсора на любой его элемент μ и нажатие левой клавиши мыши с результатом – красный цвет числа. Далее линейкой скроллинга выбрать значение μ .

- 2. Выполнить пункты верхнего меню «Возврат—В меню работы» для возврата в меню работы. Затем выполнить пункт верхнего меню «Сертификация знаний», после чего СКЅ перейдет к сертификации знаний, полученных в ходе выполнения пункта 1 настоящей схемы.
- 3. Сертификация знаний.

В режиме сертификации знаний на экран выводятся вопросы с их перебором: увеличение/уменьшение номера вопроса — левая/правая клавиша мыши на кнопке «Вопрос». В каждом вопросе имеются пропущенные места, которые необходимо заполнить перебором ответов: увеличение/уменьшение номера ответа — левая/правая клавиша мыши на кнопке «Ответ». В СКЅ для каждого вопроса запоминается тот ответ, который

выводится на экран при переборе вопросов. Изменить ответ на любой вопрос можно в пределах лимита времени ответов на все вопросы — 20 минут.

Число вопросов – от 2 до 5.

Число ответов на каждый вопрос – от 2 до 5.

В каждом сеансе сертификации знаний номера вопросов и ответов есть функции случайных кодов.

После ответов на все вопросы необходимо просмотреть вопросы с ответом перебором: левая/правая клавиша мыши на кнопке «Вопрос».

После завершения ответов на все вопросы выполнить пункт верхнего меню «Заключение». В СКS составляется заключение о результате работы и при положительной оценке (3, 4 или 5) она сохраняется в базе данных с выводом на экран. Заключение доступно только после перебора всех вопросов.

После получения заключения в правой нижней части экрана для каждого вопроса с ответом установлен флажок: зеленый/ красный при совпадении/несовпадении ответа с эталоном (правильным ответом). Перебор вопросов с ответом — левая/правая клавиша мыши на кнопке «Ответ». Вывод эталона — левая клавиша мыши на кнопке «Эталон».

При отрицательном результате (оценка 2) необходимо повторить сертификацию знаний до положительного результата. Отрицательный результат в базу данных не заносится.

В СКЅ в базу данных заносится только первый положительный результат по каждой работе, остальные выводятся на экран без сохранения в базе данных.

По достижению положительного результата и просмотра вопросов с ответом и эталонов следует выполнить пункты верхнего меню «Возврат—В меню работы». Затем системным меню закрыть текущее окно и выполнить пункт верхнего меню «Отчет» для просмотра обновленной базы данных. Выход из СКS—выполнение пунктов верхнего меню «Выход—Из СКS».

Лабораторная работа № 2

Имеются данные, полученные с ошибкой – в верхней части рисунка – объекты $\{O_1, O_2, O_3\}$.

Требуется сгладить эти данные, как показано в нижней части рисунка – эталоны $\{ \Theta_1, \Theta_2, \Theta_3 \}$.

После выбора пунктов верхнего меню: «Программа— Распознавание» отображаются следующие окна.

В ходе выполнения работы необходимо произвести сглаживание функций μ_{ij} (d_i), $i=1\div 10, j\in\{1,2,3\}$ при ограничениях:

- 1. Bel₀ \geq 0.73.
- 2. Однозначное распознавание по полученной базе знаний:
- объекты $\{O_1, O_2, O_3\}$ с состоянием $\{C_1, C_2, C_3\}$ соответственно; эталоны $\{O_1, O_2, O_3\}$ с состоянием $\{C_1, C_2, C_3\}$ соответственно;
- 3. Сохранение расположения главных мод (глобальных MAX): d_7 для Θ_1 , d_4 для Θ_2 , $\{d_5, d_6\}$ для Θ_3 .

При выполнении контролировать значения Bel_0 и соотношение параметров: L_1 , L_2 , L_3 и L_0 .

Если использовать данные, полученные с ошибкой, то есть объекты $\{O_1, O_2, O_3\}$ в качестве базы знаний, то можно получить следующие исходы по сходству:

где L_0 — порог степени сходства, L_1 — степень сходства объекта с эталоном C_1 , L_2 — степень сходства объекта с эталоном C_2 , L_3 — степень сходства объекта с эталоном C_3 .

Поэтому необходимо из набора $\{O_1,O_2,O_3\}$ выбрать очередной объект, нажать кнопку «Объект=Эталон» и выполнить сглаживание функций μ_{ij} (d_i), $i=1\div 10$, $j\in\{1,2,3\}$ при вышеуказанных ограничениях. Перебор наблюдений d_i , $i=1\div 10$ – сдвиг курсора на любой элемент μ_{ij} и нажатие левой клавиши мыши с результатом – красный цвет числа.

После сглаживания всех функций μ_{ij} (d_i), $i = 1 \div 10$, $j \in \{1, 2, 3\}$ выполняем проверку эталонов сформированной базы знаний: каждый эталон поместить в окно «Объект для распознавания» нажатием кнопки «Объект=Эталон» и убедиться в соблюдении ограничений:

- Bel₀ ≥ 0.73;
- однозначное распознавание эталонов по базе знаний: эталоны $\{ \, \mathcal{G}_1, \, \mathcal{G}_2, \, \mathcal{G}_3 \, \}$ имеют состояния $\{ \, \mathcal{C}_1, \, \mathcal{C}_2, \, \mathcal{C}_3 \, \}$ соответственно.

Потом проверяем однозначность распознавания объектов, отображаемых под кнопкой «Сохранить». С этой целью линейкой скроллинга перенести значения μ_{ij} в окно «Объект для распознавания». Перебор наблюдений d_i , $i=1\div 10$ – сдвиг

курсора на любой элемент μ_{ik} и нажатие левой клавиши мыши с результатом — красный цвет числа.

При этом необходимо убедиться в соблюдении ограничений:

- Bel₀ ≥ 0.73;
- однозначное распознавание объектов по базе знаний: объекты $\{O_1, O_2, O_3\}$ имеют состояния $\{C_1, C_2, C_3\}$ соответственно.

В ходе сглаживания необходимо помнить о сохранение расположения главных мод (глобальных МАХ): d_7 для Θ_1 , d_4 для Θ_2 , $\{d_5, d_6\}$ для Θ_3 .

Если требования к Bel₀ и/или однозначному распознаванию всех объектов и эталонов не соблюдены, повторяем процедуру сглаживания до соблюдения этих требований.

Перед выполнением работы рекомендуется сделать копию файла из адреса CKSIS\IS2\kb2.txt. В файле находятся данные, полученные с ошибкой; при нажатие кнопки «Сохранить» эти данные замещаются эталонами базы знаний.

В случае процедурных ошибок, либо преждевременного нажатия кнопки «Сохранить», можно восстановить файл kb2.txt либо из копии, либо следующим образом.

- 1. Из адреса http://cks.mpei.ru архив Win 7 32 bit.rar разархивировать в папку с новым именем, например, Win 7 32 bit.Эталон.
- 2. Из адреса http://cks.mpei.ru по процедуре в разделе «Виртуальная машина», «Инструкция», пункт 5, присоединить два виртуальных диска: из адреса Win 7 32 bit. Эталон\Win 7 32 bit. Vhd; из адреса, где расположена виртуальная машина с поврежденным файлом kb2.txt.
- 3. Из виртуального диска с эталона копировать файл kb2.txt на виртуальный диск в папку вместо поврежденного файла kb2.txt.
- 4. Из адреса http://cks.mpei.ru по процедуре в разделе «Виртуальная машина», «Инструкция», пункт 5, отсоединить виртуальные диски.