Chapter 9: Parity & Other Option Relations

Finance 6470 - Derivatives Markets

Tyler J. Brough

Department of Finance and Economics

Section 9.1: Put-Call Parity

Chapter 9

Parity and Other Option Relationships

IBM Option Quotes

TABLE 9.1

IBM option prices, dollars per share, May 6, 2011. The closing price of IBM on that day was \$168.89.

		Calls		Puts	
Strike	Expiration	Bid (\$)	Ask (\$)	Bid (\$)	Ask (\$)
160	June	10.05	10.15	1.16	1.20
165	June	6.15	6.25	2.26	2.31
170	June	3.20	3.30	4.25	4.35
175	June	1.38	1.43	7.40	7.55
160	October	14.10	14.20	5.70	5.80
165	October	10.85	11.00	7.45	7.60
170	October	8.10	8.20	9.70	9.85
175	October	5.80	5.90	12.40	12.55

Source: Chicago Board Options Exchange.

Put-Call Parity

 For European options with the same strike price and time to expiration the parity relationship is

$$Call - put = PV(forward price - strike price)$$

or

$$C(K,T) - P(K,T) = PV_{0,T}(F_{0,T} - K) = e^{-rT}(F_{0,T} - K)$$

- Intuition
 - Buying a call and selling a put with the strike equal to the forward price $(F_{0,T}=K)$ creates a synthetic forward contract and hence must have a zero price