Congestion Control for Haptic Communication

☐ Rationale:

- Human-centric technologies (for individuals)
- However, network devices doesn't consider the delay constraints
 of different individuals and applications (data, video, audio, and haptic)

☐ Aim:

Differentiate traffic flows according to their priorities

☐ Technology:

Programmable network devices (e.g., with P4 & Intel's Tofino)

☐ Tasks:

- 1. Build a simulation framework for evaluating haptic communication
- 2. Implement a novel algorithm, e.g., active queue management (AQM) in combination with end-to-end control algorithm
- 3. Conduct experiments to compare performance with the state-of-the-art

Programmable network device

References

P4: https://p4.org
P4 language tutorial: https://opennetworking.org/wp-content/uploads/2020/12/P4_tutorial_01_basics.gslide.pdf
Tofino: https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
For further detail:
☐ (RFC) Controlled Delay Active Queue Management: http://pollere.net/Pdfdocs/draft-02.pdf
□ (paper) P4QoS: QoS-based Packet Processing with P4: https://ieeexplore.ieee.org/document/9492539
☐ (paper) Analysis and design of the google congestion control for web real-time communication (WebRTC) https://doi.org/10.1145/2910017.2910605
□ (paper) Congestion control for web real-time communication https://doi.org/10.1109/TNET.2017.2703615

