Молекула O_2 . Длина связи: $d = 121 \cdot 10^{-12}$ м

Молекулярный ион $\,{
m O}_{\!\scriptscriptstyle 2}^{\scriptscriptstyle -}\,$. Длина связи: $d=134\cdot 10^{-12}\,$ м

Энергетическая диаграмма молекулы $\,{\rm O}_2^{}$

Порядок связи частицы равен полуразности электронов на связывающих и разрыхляющих орбиталях.

$$n = \frac{N - N^*}{2} = \frac{8 - 4}{2} = 2$$

Порядок связи частицы равен полуразности электронов на связывающих и разрыхляющих орбиталях.

$$n = \frac{N - N^*}{2} = \frac{8 - 5}{2} = 1,5$$

В молекулярном ионе порядок связи имеет меньшее значение. Чем меньше порядок связи, тем связь слабее. Атомы кислорода в молекулярном ионе притягиваются друг к другу с наименьшей силой. Поэтому длина связи в молекулярном ионе больше, чем в молекуле.