Intro to Social Science Data Analysis

Lecture 2: Types of Data

Christopher Gandrud

September 4, 2012

Lecture 2 1 / 42

- Review
- 2 Why do we care about data?
- General Types of Data
- 4 General Types of Data
- Data Frames in R
- 6 First Assignment

- ▶ Installed R, RStudio, & Dropbox
- Learned how to Compile Notebooks
- Discussed how R is an object-oriented programming language.
 - Basic object modes
 - Basic object types
 - Commands, Functions, & Arguments
- ► How to install add-on packages

- ▶ Installed R, RStudio, & Dropbox
- ► Learned how to Compile Notebooks
- Discussed how R is an object-oriented programming language.
 - Basic object modes
 - Basic object types
 - Commands, Functions, & Arguments
- How to install add-on packages

- ▶ Installed R, RStudio, & Dropbox
- Learned how to Compile Notebooks
- ► Discussed how R is an **object-oriented** programming language.
 - ► Basic object modes
 - Basic object types
 - ► Commands, Functions, & Arguments
- How to install add-on packages

- ▶ Installed R, RStudio, & Dropbox
- Learned how to Compile Notebooks
- Discussed how R is an object-oriented programming language.
 - ► Basic object modes
 - Basic object types
 - Commands, Functions, & Arguments
- How to install add-on packages

- ▶ Installed R, RStudio, & Dropbox
- Learned how to Compile Notebooks
- Discussed how R is an object-oriented programming language.
 - ► Basic object modes
 - Basic object types
 - ► Commands, Functions, & Arguments
- How to install add-on packages

- ▶ Installed R, RStudio, & Dropbox
- Learned how to Compile Notebooks
- Discussed how R is an object-oriented programming language.
 - ► Basic object modes
 - Basic object types
 - ► Commands, Functions, & Arguments
- How to install add-on packages

- ▶ Installed R, RStudio, & Dropbox
- Learned how to Compile Notebooks
- Discussed how R is an object-oriented programming language.
 - Basic object modes
 - Basic object types
 - ► Commands, Functions, & Arguments
- ► How to install add-on packages

Quick Quiz

With a partner: describe the following code/output in as much detail as possible.

```
# A quick quiz
Population \leftarrow c(14.3, 6.3, 66.7)
Countries <- c("Cambodia", "Laos", "Thailand")
NewData <- cbind(Countries, Population)</pre>
sum(Population)
## [1] 87.3
```

Today: how do we handle data in R?

Step Back

Why do we care about data?

Step Back

Why do we care about data?

We want to answer questions.

- 1. Identify a question or problem.
- 2. Think of possible answers (hypotheses).
- 3. Collect relevant data on the topic.
- 4. Analyse the data.
- 5. Form a conclusion.

- 1. Identify a question or problem.
- 2. Think of possible answers (hypotheses).
- 3. Collect relevant data on the topic.
- 4. Analyse the data.
- Form a conclusion.

- 1. Identify a question or problem.
- 2. Think of possible answers (hypotheses).
- 3. Collect relevant data on the topic.
- 4. Analyse the data.
- Form a conclusion.

- 1. Identify a question or problem.
- 2. Think of possible answers (hypotheses).
- 3. Collect relevant data on the topic.
- 4. Analyse the data.
- 5. Form a conclusion.

- 1. Identify a question or problem.
- 2. Think of possible answers (hypotheses).
- 3. Collect relevant data on the topic.
- 4. Analyse the data.
- 5. Form a conclusion.

For Example

Research question: Are some authoritarian regimes more likely to go to war than others?

Hypothesis: Weeks (2012) hypothesised that military regimes are more likely to start wars than civilian authoritarian regimes and democracies.

Data Gathering: What data does she need to investigate this hypothesis?

For Example

Research question: Are some authoritarian regimes more likely to go to war than others?

Hypothesis: Weeks (2012) hypothesised that military regimes are more likely to start wars than civilian authoritarian regimes and democracies.

Data Gathering: Country-year data on regime type (military regime, civilian authoritarian regime, democracy), whether a war was started, & other factors (military power, level of economic development, etc.)

For Example

Research question: Are some authoritarian regimes more likely to go to war than others?

Hypothesis: Weeks (2012) hypothesised that military regimes are more likely to start wars than civilian authoritarian regimes and democracies.

Data Gathering: Country-year data on regime type (military regime, civilian authoritarian regime, democracy), whether a war was started, & other factors (military power, level of economic development, etc.)

Analyse Data & Form Conclusions: We'll talk about this more in parts 2 & 3 of the course.

Variables

Variables

Regime type, conflict, economic development etc. are **concepts**.

Concepts can be operationalised as variables.

For example, economic development is often operationalised as the variable Gross Domestic Product per Capita (GDP/Capita).

In a data set variables are usually the columns.

	र्ध
-	_
u	nt

Albania

Albania

Albania

1989 1

1990 1

1991 1 0

0

0

0

0

0

country	year	reg_4state	ocbu	ocbu_lag	se_ptrade_i_ocbu	se_high_equity_ocbu	se_eu_ocbu	se_basel
Afghanistan	1987	1	0	NA	NA	NA	0.0000000	0.000000
Afghanistan	1988	1	0	0	NA	0.0000000	0.0000000	0.000000
Afghanistan	1989	1	0	0	NA	0.0000000	0.0000000	0.000000
Afghanistan	1990	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	1991	1	9	0	NA	NA	0.0000000	0.000000
Afghanistan	1992	1	9	0	NA	NA	0.0000000	0.000000
Afghanistan	1993	1	0	9	NA	NA	0.0000000	0.000000
Afghanistan	1994	1	9	9	NA	NA	0.0000000	0.000000
Afghanistan	1995	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	1996	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	1997	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	1998	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	1999	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	2000	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	2001	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	2002	1	0	0	0.36137640	NA	0.0000000	0.000000
Afghanistan	2003	1	0	0	0.38224009	NA	0.0000000	0.000000
Afghanistan	2004	1	0	0	0.34683919	NA	0.0000000	0.000000
Afghanistan	2005	1	0	0	0.27944830	NA	0.0000000	0.000000
Afghanistan	2006	1	0	0	0.30699331	NA	0.0000000	0.000000
Albania	1987	1	0	NA	NA	NA	0.0000000	0.000000
Albania	1988	1	0	0	0.00000000	0.0000000	0.0000000	0.00000

0.00254820

0.00143640

0.00480600

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.000000

0.000000

0.000000

Observations

Observations

Each time we measure our variables we create an observation,

Observations are usually the rows of the data set.

	र्ध
-	_
u	nt

Albania

Albania

Albania

1989 1

1990 1

1991 1 0

0

0

0

0

0

country	year	reg_4state	ocbu	ocbu_lag	se_ptrade_i_ocbu	se_high_equity_ocbu	se_eu_ocbu	se_basel
Afghanistan	1987	1	0	NA	NA	NA	0.0000000	0.000000
Afghanistan	1988	1	0	0	NA	0.0000000	0.0000000	0.000000
Afghanistan	1989	1	0	0	NA	0.0000000	0.0000000	0.000000
Afghanistan	1990	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	1991	1	9	0	NA	NA	0.0000000	0.000000
Afghanistan	1992	1	9	0	NA	NA	0.0000000	0.000000
Afghanistan	1993	1	0	9	NA	NA	0.0000000	0.000000
Afghanistan	1994	1	9	9	NA	NA	0.0000000	0.000000
Afghanistan	1995	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	1996	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	1997	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	1998	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	1999	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	2000	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	2001	1	0	0	NA	NA	0.0000000	0.000000
Afghanistan	2002	1	0	0	0.36137640	NA	0.0000000	0.000000
Afghanistan	2003	1	0	0	0.38224009	NA	0.0000000	0.000000
Afghanistan	2004	1	0	0	0.34683919	NA	0.0000000	0.000000
Afghanistan	2005	1	0	0	0.27944830	NA	0.0000000	0.000000
Afghanistan	2006	1	0	0	0.30699331	NA	0.0000000	0.000000
Albania	1987	1	0	NA	NA	NA	0.0000000	0.000000
Albania	1988	1	0	0	0.00000000	0.0000000	0.0000000	0.00000

0.00254820

0.00143640

0.00480600

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.0000000

0.000000

0.000000

0.000000

Levels of Measurement

Variables can be at different levels of measurement.

Source: Diaz et al. (2011, 5)

Levels of Measurment Examples

		Also Known As	Example
Numerical	Continuous		GDP/Capita
	Discrete		People in a city
Categorical	Ordinal		Satisfaction with democ- racy (5-point scale)
	Binary	Dummy (0/1)	Gender
	Nominal	Regular Cate- gorical	Country names

Levels of Measurement

Levels of measurement are important because they **determine** what kinds of **statistical analyses** we can do.

We'll talk more about this beginning Week 5.

Now: We need to keep in mind what level of measurement our data is in.

Tip: Try to have your data as close to **Continuous** as possible.

Data Frames 1

The main type of object we will use in R to store data are called data frames.

So far we have worked with matrices.

Matrices have rows and columns.

```
# A quick matrix example
Population \leftarrow c(14.3, 6.3, 66.7)
Countries <- c("Cambodia", "Laos", "Thailand")
NewData <- cbind(Countries, Population)</pre>
NewData
## Countries Population
## [1,] "Cambodia" "14.3"
## [2.] "Laos" "6.3"
## [3.] "Thailand" "66.7"
```

Matrices vs. Data Frames

Matrices can only have data with **one mode**.

Data frames can have multiple modes.

To create a data frame from multiple vectors use the data.frame command.

Lecture 2 Data Frames in R 21 / 42

```
# A quick data.frame example

NewData <- data.frame(Countries, Population)

NewData

## Countries Population
## 1 Cambodia 14.3
## 2 Laos 6.3
## 3 Thailand 66.7</pre>
```

Lecture 2 Data Frames in R 22 / 42

Multi-mode data frames

```
# Check variables' class
class(NewData$Countries)

## [1] "factor"

class(NewData$Population)

## [1] "numeric"
```

Lecture 2 Data Frames in R 23 / 42

New Things

- ► What is the dollar sign (\$)?
- ▶ What is a factor?

New Things

- ► What is the dollar sign (\$)?
- ▶ What is a factor?

Factors 1

Factors are an R term for categorical variables.

Component selector

In R the \$ is called the **component selector**.

It allows us to select a specific column of a data set.

```
# Select the Countries variable from NewData
NewData$Countries
## [1] Cambodia Laos Thailand
## Levels: Cambodia Laos Thailand
```

Lecture 2 Data Frames in R 26 / 42

Factors 2

We now have the Countries variable and can see its Levels

Giving this variable Levels doesn't really make sense.

One solustion is to use the stringsAsFactors = FALSE option with data.frame.

Lecture 2 Data Frames in R 27 / 42

```
# Create data.frame with no factors
NewData <- data.frame(Countries,</pre>
                       Population,
                       options(
                         stringsAsFactors = FALSE))
NewData$Countries
## [1] "Cambodia" "Laos"
                              "Thailand"
# Show NewData variable names
names (NewData)
## [1] "Countries"
                           "Population"
## [3] "stringsAsFactors"
```

Subsetting 1

How do we get rid of the StringsAsFactors variable?

Use subscripts to **subset** the data!

These are the square braces: [].

All cells in an object have an address: [row, column].

We want to keep the first and second columns:

```
# Subset NewData, columns 1 & 2
NewData <- NewData[, 1:2]

# Show variable names
names(NewData)

## [1] "Countries" "Population"</pre>
```

Lecture 2 Data Frames in R 29 / 42

Subsetting Preview

Preview: We can subset not just by location but also by **observation value**.

For example, to subset the data to include only countries with populations greater than 7 million:

```
# Create new object for countries with > 7m pop.
MoreThan7 <- NewData[NewData$Population > 7, ]

# Show contents of MoreThan7
MoreThan7

## Countries Population
## 1 Cambodia 14.3
## 3 Thailand 66.7
```

Lecture 2 Data Frames in R 31 / 42

Before the seminar it might be a good idea to look at the help file for the subset command.

?subset

Factor Level Assignment 1

What if we have a variable without factor levels, but want to assign them?

Factor Level Assignment 2

Level	Code
Coastal	1
Not Coastal	0

```
# Create variable
Coastal \leftarrow c(1, 0, 1)
# Combine with Countries
CoastalDF <- data.frame(Countries,</pre>
                           Coastal,
                           options(
                             stringsAsFactors = FALSE))
# Remove stringsAsFactors variable
CoastalDF <- CoastalDF[, 1:2]</pre>
```

Lecture 2 Data Frames in R 35 / 42

```
# Merge with NewData
MergedData <- merge(x = NewData,
                    y = CoastalDF,
                    by = "Countries")
# Show variable names
names (MergedData)
## [1] "Countries" "Population" "Coastal"
# Show the Coastal variables class
class(MergedData$Coastal)
## [1] "numeric"
```

Use the factor command to add the factor levels

```
# Turn Coastal into a factor & specify levels
MergedData$Coastal <- factor(MergedData$Coastal,</pre>
                                 labels = c(
                                   "Not Coastal",
                                   "Coastal"))
# Show levels
MergedData$Coastal
## [1] Coastal Not Coastal Coastal
## Levels: Not Coastal Coastal
```

Merging 1

What was this?

Lecture 2 Data Frames in R 38 / 42

Merging 2

We saw how you can use the cbind command to attach columns together.

This is usually **not** a good way to two data sets together.

For cbind the observations have to be in the **same order** in both objects.

This is very uncommon.

Merging 2

The merge command matches each observation.

You tell it what the **observation ID variable** is with the by argument.

For example by = "Countries"

We'll see more of this next week.

First Assignment

Due: Monday 24 September

Create a new data frame with country-level data from at least **three** different sources.

Save it as a .csv file in your Dropbox's Public folder and email me the link.

Also, include a text file describing the variables and their sources.

References I

Diaz, David M., Christopher D. Barr, and Mine Çetinkaya-Rundel. OpenIntro Statistics. 1st ed.

http://www.openintro.org/stat/downloads.php.

Weeks, Jessica L. 2012. Strongmen and Straw Men: Authoritarian Regimes and the Initiation of International Conflict. American Political Science Review 106(2): 326347.

Lecture 2 First Assignment 42 / 42