2020-Sep-3 Shift-2

AI24BTECH11002 - K. Akshay Teja

1)	If $x^3dy + xydx = x^2dy + 2ydx$; $y(2) = e$ a	nd
	x > 1, then $y(4)$ is equal to:	

- a) $\frac{\sqrt{e}}{2}$ b) $\frac{3}{2}\sqrt{e}$ c) $\frac{1}{2} + \sqrt{e}$ d) $\frac{3}{2} + \sqrt{e}$

2) Let
$$A$$
 be a 3×3 matrix such that $adjA = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{pmatrix}$ and $B = adj(adjA)$. If $|A| = \lambda$ and $|(B^{-1})^T| = \mu$, then the ordered pair, $(|\lambda|, \mu)$ is equal to:

- a) $\left(9, \frac{1}{81}\right)$ c) $\left(3, \frac{1}{81}\right)$ b) $\left(9, \frac{1}{6}\right)$ d) (3, 81)

- 3) Let $a, b, c \in \mathbb{R}$ be such that $a^2 + b^2 + c^2 = 1$, if $a\cos\theta = b\cos\left(\theta + \frac{2\pi}{3}\right) = c\cos\left(\theta + \frac{4\pi}{3}\right)$, where $\theta = \frac{\pi}{9}$, then the angle between the vectors $a\hat{i} + b\hat{j} + c\hat{k}$ and $b\hat{i} + c\hat{j} + a\hat{k}$ is:

- a) $\frac{\pi}{2}$ b) $\frac{2\pi}{3}$ c) $\frac{\pi}{0}$ d) 0
- 4) Suppose f(x) is a polynomial of degree four, having critical points at (-1, 0, 1). If $T = \{x \in$ $\mathbb{R} \mid f(x) = f(0)$, then the sum of squares of all the elements of T is:
 - a) 6
- b) 2 c) 8
- 5) If the value of the integral $\int_0^{\frac{1}{2}} \frac{x^2}{(1-x^2)^{\frac{3}{2}}}$ is $\frac{k}{6}$, then k is equal to:
 - a) $2\sqrt{3} + \pi$ c) $3\sqrt{2} \pi$ b) $3\sqrt{2} + \pi$ d) $2\sqrt{3} \pi$
- 6) If the term independent of x in the expansion of $\left(\left(\frac{3}{2}\right)x^2 - \frac{1}{3x}\right)^9$ is k, then 18k is equal to:

- a) 5
- b) 9
- c) 7
- d) 11
- 7) If a triangle ABC has vertices A(-1,7), B(-7,1), and C(5,-5), then its orthocentre has coordinates:
 - a) (-3,3) c) $\left(\frac{3}{5}, -\frac{3}{5}\right)$ d) (3,-3)

- 8) Let e_1 and e_2 be the eccentricities of the ellipse, $\frac{x^2}{25} + \frac{y^2}{b^2} = 1$ (where b < 5) and the hyperbola, $\frac{x^2}{16} \frac{y^2}{b^2} = 1$ respectively, satisfying $e_1e_2 = 1$. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to:
 - a) (8, 12) c) $\left(\frac{20}{3}, 12\right)$ b) $\left(\frac{24}{5}, 10\right)$ d) (8, 10)

- 9) If z_1, z_2 are complex numbers such that $Re(z_1) = |z_1 - 1|, Re(z_2) = |z_2 - 1|$ and $\arg(z_1 - z_2) = \frac{\pi}{6}$, then $Im(z_1 + z_2)$ is equal
 - a) $2\sqrt{3}$ b) $\frac{2}{\sqrt{3}}$ c) $\frac{1}{\sqrt{3}}$ d) $\frac{\sqrt{3}}{2}$

- 10) The set of all real values of λ for which the quadratic equations, $(\lambda^2 + 1)x^2 - 4\lambda x + 2 = 0$ always have exactly one root in the interval (0,1) is:
 - a) (-3, -1)
- c) (1,3)
- b) (2,4)
- (0,2)
- 11) Let the latus rectum of the parabola $y^2 = 4x$ be the common chord to the circles C_1 and C_2 , each of them having radius $2\sqrt{5}$. Then, the distance between the centres of the circles C_1 and C_2 is:

- b) $8\sqrt{5}$ c) $4\sqrt{5}$ a) 8 d) 12
- 12) The plane which bisects the line joining the points (4, -2, 3) and (2, 4, -1) at right angles also passes through the point:
 - a) (0, -1, 1)
- c) (4, 0, -1)
- b) (4, 0, 1)
- d) (0, 1, -1)
- 13) $\lim_{x\to a} \frac{(a+2x)^{\frac{1}{3}} (3x)^{\frac{1}{3}}}{(3a+x)^{\frac{1}{3}} (4a)^{\frac{1}{3}}}$ is equal to:
 - a) $\frac{2}{9} \left(\frac{4}{3}\right)$ b) $\frac{2}{3} \left(\frac{4}{3}\right)$

- c) $\left(\frac{2}{3}\right)\left(\frac{2}{9}\right)^{\frac{1}{3}}$ d) $\left(\frac{2}{9}\right)\left(\frac{2}{3}\right)^{\frac{1}{3}}$
- 14) Let x_i ($1 \le i \le 10$) be ten observations of a random variable X. If $\sum_{i=1}^{10} (x_i - p) = 3$ and $\sum_{i=1}^{10} (x_i - p)^2 = 9$ where $0 \neq p \in \mathbb{R}$, then the standard deviation of these observations is:
- a) $\frac{7}{10}$ b) $\frac{9}{10}$ c) $\sqrt{\frac{3}{5}}$ d) $\frac{4}{5}$
- 15) The probability that a randomly chosen 5digit number is made from exactly two digits is:
- a) $\frac{134}{10^4}$ b) $\frac{121}{10^4}$ c) $\frac{135}{10^4}$ d) $\frac{50}{10^4}$