Integração do ChatGPT para Aprimoramento da Definição de Requisitos de Software: Uma Revisão Sistemática da Literatura

Iohana Salvador Silva¹ e Aêda Monalliza Cunha de Sousa¹

¹ Universidade de Pernambuco, Garanhuns 55294-902, Brazil {iohana.salvador,aeda.sousa}@upe.br

Resumo. A Engenharia de Requisitos desempenha um papel crucial no desenvolvimento de software, como também a crescente adoção de Inteligência Artificial traz consigo diversas incertezas relacionadas à integração de ambas as áreas. Diante disso, este estudo busca aprofundar o entendimento sobre a integração do ChatGPT na Engenharia de Requisitos, explorando os principais domínios de aplicação, métodos de integração, desafios enfrentados, impactos na colaboração entre stakeholders e preocupações éticas associadas ao uso do ChatGPT. Foi realizada uma revisão sistemática da literatura, aplicando os critérios de inclusão e exclusão, foram selecionados oito artigos relevantes que responderam às questões de pesquisa. Os resultados destacam a importância de uma abordagem colaborativa, onde o ChatGPT serve como uma ferramenta complementar aos profissionais, visando aprimorar a eficiência e a qualidade do processo de levantamento de requisitos. Contudo, ressalta-se a necessidade de abordar questões éticas, como viés, privacidade e transparência, para garantir uma aplicação responsável do ChatGPT na Engenharia de Requisitos.

Palavras-chave: Engenharia de Requisitos, ChatGPT.

1 Introdução

A Inteligência Artificial (IA) atualmente tem um poder de transformação tecnológica em nossa sociedade e empresas. Um exemplo marcante dessas tecnologias é o ChatGPT, um modelo de linguagem desenvolvido pela OpenAI, que significa "Chat Generative Pre-trained Transformer". Foi lançado em 30 de novembro de 2022 e tem se destacado pela sua capacidade de gerar texto coerente e contextualizado [14]. Neste artigo, será explorada a integração do ChatGPT no processo de definição de requisitos, uma etapa crucial no desenvolvimento de software que visa captar as necessidades e expectativas dos clientes e usuários.

Desta forma, há uma preocupação na adoção do ChatGPT, devido a um estigma que a Inteligência Artificial poderia ameaçar os profissionais humanos, incluindo os Engenheiros de Requisitos. Sendo assim, o estudo busca esclarecer a importância de uma abordagem colaborativa, onde o ChatGPT serve como uma ferramenta complementar aos profissionais, em vez de um substituto, melhorando a eficiência e a qualidade do processo de levantamento de requisitos.

O intuito da pesquisa é revisar a literatura sobre a utilização do ChatGPT na Engenharia de Requisitos, identificando os principais domínios de aplicação, métodos de integração, desafios comuns, impactos na colaboração entre stakeholders e as preocupações éticas. Após a revisão sistemática da literatura, foram encontrados 7 artigos relevantes que abordam o tema, além dos estudos selecionados inicialmente, realizamos também um processo de Snowball, durante o qual identificamos apenas mais 1 artigo relevante para a realização da revisão sistemática da literatura, totalizando 8 artigos selecionados.

Dessa forma, os resultados preliminares mostram que, apesar da recente introdução do ChatGPT, seu valor potencial já é reconhecido. O ChatGPT tem se mostrado útil em várias etapas do processo de Engenharia de Requisitos, entretanto a validação humana é essencial para garantir a precisão e relevância dos resultados.

Outrossim, a pesquisa demonstra que ao integrar o ChatGPT no processo de Engenharia de Requisitos, traz consigo uma série de diversos desafios, tais como necessidade de validação humana constante, ambiguidade nas respostas, limitações de tamanho de documento e inconsistências nos resultados.

Além disso, os impactos potenciais na colaboração entre stakeholders, incluem a possibilidade de uma maior automatização, aumento da eficiência, redução de ambiguidades presentes nos requisitos e fornecimento de suporte à modelagem de UML. Em síntese, a integração do ChatGPT na Engenharia de Requisitos oferece um grande potencial para melhorar a eficiência e qualidade dos processos, apesar dos desafios mencionados na pesquisa. Dessa forma, a pesquisa proporcionou insights valiosos e identificou pontos de melhoria na integração dessa ferramenta com a elicitação de requisitos.

2 Tipo de Pesquisa Bibliográfica e Estratégia de Abrangência

Este artigo trata de uma revisão sistemática e para sua realização foram utilizados os seguintes mecanismos de busca acadêmica: IEEE, Google Scholar, ACM, Scopus e ScienceDirect.

2.1 Objetivo da Pesquisa

O objetivo desta pesquisa é realizar um levantamento sistemático da literatura sobre a integração do ChatGPT no processo de levantamento de requisitos, com o intuito de aperfeiçoar a comunicação entre os stakeholders, melhorando a qualidade dos requisitos estabelecidos e aumentando a eficiência e a qualidade do processo.

Para a realização desta pesquisa, elaboramos 5 perguntas a serem respondidas:

- PP1: Quais são os principais domínios de aplicação onde o ChatGPT tem sido aplicado na Engenharia de Requisitos?
- PP2: Quais são os principais métodos e abordagens utilizados para integrar o ChatGPT no processo de Engenharia de Requisitos?
- PP3: Quais são os desafios mais comuns enfrentados ao empregar o ChatGPT na análise e documentação de requisitos de software?

PP4: Quais são os impactos potenciais do uso do ChatGPT na colaboração entre stakeholders durante o processo de Engenharia de Requisitos?

PP5: Como as preocupações éticas relacionadas à geração de texto automatizada pelo ChatGPT afetam sua adoção e aplicação na Engenharia de Requisitos?

2.2 Obtenção da String de Busca

Fizemos uma análise das perguntas e, a partir delas, obtivemos as palavras-chave: "Engenharia de Requisitos", e "ChatGPT". Após alguns testes em repositórios acadêmicos, chegamos à elaboração da frase de busca a seguir: (("Requirements engineering")) AND (("ChatGPT") OR ("LLM"))

2.3 Estratégia de Seleção dos Artigos

Foram elaborados critérios de inclusão e exclusão, para a seleção dos artigos.

Critérios de Inclusão

- 1º. Estudos que abordam, de forma geral, ao menos uma das questões de pesquisa pré-definidas;
- 2°. Estudos semelhantes que respondam uma mesma pergunta, mas que tenham resultados diferentes.

Critérios de Exclusão

- 1°. Estudos escritos em idiomas que NÃO sejam inglês;
- 2°. Estudos que se encaixam fora da temática pré-definida;
- 3º. Estudos que não satisfazem nenhuma das perguntas de pesquisa;
- 4º. Estudos com menos de cinco páginas considerados artigos curtos;
 5º. Para estudos que dispõem das mesmas informações, deverá ser mantido o mais
- ompleto.
 6°. Estudos que não estejam no período de 2019 a 2024.

2.4 Resultados Obtidos

Para melhor entendimento, a Tabela 1 mostra a quantidade de artigos encontrados em cada base, de acordo com as seguintes etapas: 1 - Estudos selecionados na busca inicial, 2 - Após de leitura dos títulos, resumos/abstracst e palavras-chaves, 3 - Após a leitura da introdução e conclusão e 4 - Após a leitura do texto completo. O mecanismo de busca com a maior quantidade de pesquisas foi o Google Acadêmico, qual continha vários artigos das outras bases científicas, então foram removidas as duplicatas.

Tabela 1. Panorama geral da seleção de estudos de acordo com as bases científicas

	Quantidade de estudos encontrados em cada base					
Seleção de estudos	IEEE	Google Scholar	ACM	Scopus	Science Direct	Total

Estudos selecionados na busca inicial	348	516	53	17	7	941
Após de leitura títulos resumo/abstract e as palavras-chaves	4	17	1	-	-	22
Após leitura da introdução e conclusão	2	7	-	-	-	9
Após leitura de texto completo	2	5	-	-	-	7

Ao final, a seleção dos artigos resultou em 7 estudos que atendiam aos critérios de inclusão e exclusão. A tabela 2 mostra em ordem alfanumérica, para maior organização, os artigos que foram selecionados.

Além dos 7 estudos selecionados inicialmente, realizamos também um processo de Snowball, durante o qual identificamos apenas mais um artigo relevante para a realização da revisão sistemática da literatura.

Tabela 2. Ano de Publicação

Ano de Publicação x Fonte de Busca	IEEE	Google scholar	Total
2023	3	5	8
Total	37,5%	62,5%	100%

Tabela 3. Estudos selecionados para a Síntese e extração das Evidências

Nº	Dados dos Artigos				
A1	Título Autores Ano	Exploring the Efficacy of ChatGPT in Generating Requirements: An Experimental Study Leila Bencheikh, et al. 2023			
A2	Título Autores Ano	Investigating ChatGPT's Potential to Assist in Requirements Elicitation Processes Krishna Ronanki, et al. 2023			
A3	Título	Requirements Modeling Aided by ChatGPT: An Experience in Embedded Systems			

	Autores Ano	Kun Ruan, et al. 2023
A4	Título Autores Ano	Inconsistency Detection in Natural Language Requirements using ChatGPT: a Preliminary Evaluation Alessandro Fantechi, et al. 2023
A5	Título Autores Ano	Artificial Intelligence in Software Requirements Engineering: State-of-the-Art Kaihua Liu, et al. 2022. Artigo selecionado pelo processo de Snowball.
A6	Título Autores Ano	Advancing Requirements Engineering through Generative AI: Assessing the Role of LLMs Chetan Arora, et al. 2023
A7	Título Autores Ano	Empirical Evaluation of ChatGPT on Requirements Information Retrieval Under Zero-Shot Setting Jianzhang Zhang, et al. 2023
A8	Título Autores Ano	Rule-based NLP vs ChatGPT in Ambiguity Detection, a Preliminary Study Alessandro Fantechi, et al. 2023

2.4.1 Quais são as etapas da Engenharia de Requisitos onde o ChatGPT tem sido aplicado?

O propósito desta investigação é mapear as diferentes fases da Engenharia de Requisitos em que o ChatGPT colabora, visando compreender suas contribuições e limitações em cada processo.

Tabela 4. Áreas da Engenharia de Requisitos e sua correlação com o uso do ChatGPT

Áreas	Artigos	
Elicitação de Requisitos	[2], [3], [5],[6], [7].	
Análise e Negociação dos Requisitos	[1], [2], [3], [5], [6], [7], [8].	
Documentação dos Requisitos	[1], [6], [8].	
Verificação dos Requisitos	[1], [5], [6].	

Validação dos Requisitos

[1], [2], [3], [4], [5], [6], [7], [8].

Foram revisados vários estudos que investigam as diferentes fases da Engenharia de Requisitos em que o ChatGPT tem sido aplicado. A maioria dos artigos examina a elicitação, análise e negociação, documentação, verificação e validação de requisitos [1 - 8]. Esses estudos revelam uma ampla utilização do ChatGPT em várias etapas do processo de Engenharia de Requisitos, destacando sua versatilidade e potencial de contribuição para diferentes aspectos do desenvolvimento de software.

No que tange à elicitação de requisitos, o ChatGPT é empregado para detectar inconsistências nos requisitos de software, acelerando o processo de refinamento e identificação de problemas [1]. Na análise e negociação dos requisitos, ele oferece insights valiosos, tornando-se uma ferramenta auxiliar significativa [1].

Quanto à documentação dos requisitos, embora enfrente algumas limitações, como processamento inadequado de documentos extensos, o ChatGPT pode ser útil sugerindo a divisão do documento para uma análise mais eficiente [8]. Na fase de verificação dos requisitos, o ChatGPT demonstra sua capacidade de acelerar a geração de modelos, mas é essencial ressaltar que a validação humana permanece crucial para garantir a qualidade dos resultados [1].

Por fim, na validação dos requisitos, a combinação de automação fornecida pelo ChatGPT e da expertise humana desempenha um papel vital. Isso é ressaltado pela citação: "Mesmo com a capacidade do ChatGPT de acelerar a geração de modelos de requisitos, a validação humana continua sendo essencial para garantir a qualidade dos resultados" [1]. Essa integração entre a tecnologia e o conhecimento humano destaca-se como uma abordagem promissora para aprimorar todas as fases da Engenharia de Requisitos.

2.4.2 Quais são os principais métodos e abordagens utilizados para integrar o ChatGPT no processo de engenharia de requisitos?

O objetivo desta pergunta, é investigar os principais métodos e abordagens utilizados para integrar o ChatGPT no processo de Engenharia de Requisitos, visando compreender como essa tecnologia pode ser efetivamente empregada para melhorar a qualidade desse processo.

Para integrar o ChatGPT no processo de Engenharia de Requisitos, tem-se explorado uma gama de métodos e abordagens disponíveis. Um desses métodos destaca a importância de realizar prompts abrangentes, nos quais apresenta uma descrição minuciosa dos elementos dos requisitos do sistema, "[...] prompt completo é crucial para orientar o comportamento do Chat-GPT durante o processo de extração" [1], desta forma, permite que a IA identifique e interprete corretamente as informações pertinentes para auxiliar o processo de elicitação de requisitos.

Além disso, o feedback ao ChatGPT é crucial para entender a interação entre IA e humanos, melhorando a qualidade dos requisitos [2]. Este processo resulta no refinamento e aprimoramento contínuo, proporcionando aos profissionais a oportunidade de avaliar a qualidade das respostas geradas e corrigir eventuais equívocos ou lacunas, contribuindo diretamente para a melhoria da qualidade dos requisitos, garantindo a precisão e completude das especificações.

Outrossim, "Os LLMs podem avaliar automaticamente a qualidade dos requisitos, sinalizando quaisquer ambiguidades, termos vagos, inconsistências ou

incompletudes, e destacar lacunas ou sobreposições" [6]. Esse método automatizado oferecido pelos LLMs simplifica o processo de avaliação dos requisitos, identificando potenciais problemas e melhorando a eficiência do processo de Engenharia de Requisitos.

Deste modo, se destaca o potencial do LLMs e das suas funcionalidades de automatizar os requisitos, que desempenham um papel fundamental na identificação de risco e na posição de contramedidas. Como mencionado a seguir, "Os LLMs, quando equipados com conhecimento de domínio, podem identificar riscos potenciais associados aos requisitos ou às suas suposições subjacentes"[6]. Sendo assim, a capacidade de analisar riscos permite que os profissionais de Engenharia de Requisitos analisem essas informações e tomem medidas necessárias com o intuito de mitigar potenciais problemas ou gargalos, garantindo assim a segurança do sistema em desenvolvimento.

2.4.3 Quais são os desafios mais comuns enfrentados ao empregar o ChatGPT na análise e documentação de requisitos de software?

O objetivo desta análise é identificar os principais desafios enfrentados ao empregar o ChatGPT na Engenharia de Requisitos. Para isso, ocorreu uma abordagem dos resultados de estudos que retratam diferentes aspectos relacionados à utilização dessa tecnologia nesse contexto.

Tabela 5. Obstáculos enfrentados ao empregar o ChatGPT na Engenharia de Requisitos

Desafios	Artigos
Validação humana	[1], [2], [3], [4], [5], [6], [7], [8]
Ambiguidade	[1], [5], [6], [7], [8]
Limitação de tamanho do documento	[4], [6], [8]
Inconsistência na saída dos resultados	[1], [3], [4], [5], [6], [7], [8]

Os desafios ao utilizar o ChatGPT na Engenharia de Requisitos incluem a validação humana, pois a experiência humana é necessária para garantir a qualidade dos resultados [1]. Destaca-se que todos os artigos analisados abordam essa necessidade, representando 100% dos estudos. A ambiguidade também é um desafio, já que o método de detecção de ambiguidades do ChatGPT difere do tradicional [8], como também é relevante mencionar que os seguintes artigos abordam essa temática [1, 5, 6, 7, 8].

Ademais, ao considerar a utilização do ChatGPT, é importante ressaltar a preocupação com a consistência na saída do modelo. Esta questão é abordada em diversos estudos, onde se destaca a constatação de que o formato de saída dos resultados do ChatGPT não é consistente [1]. Deste modo, tal inconsistência representa um desafio significativo, conforme discutido pelos estudos [1, 3, 4, 5, 6, 7, 8].

Outrossim, a natureza generativa da Inteligência Artificial evidencia "como o ChatGPT é um modelo generativo pré-treinado, seus dados de treinamento normalmente abrangem um domínio genérico" [1]. A consistência na saída do modelo é outra preocupação, pois a falta de uniformidade pode comprometer a interpretação dos resultados, como discutido nas pesquisas [1, 3-8]. Estratégias de pós-processamento são necessárias para garantir uma saída mais confiável [1].

Além disso, a limitação do tamanho de entrada de documento é um desafio significativo, especialmente em documentos extensos de requisitos, onde o ChatGPT pode processar apenas a primeira parte [4]. Isso pode resultar em análises incompletas dos requisitos, destacando esse aspecto como um obstáculo na integração da Inteligência Artificial com a Engenharia de Requisitos.

2.4.4 Quais são os impactos potenciais do uso do ChatGPT na colaboração entre stakeholders durante o processo de Engenharia de Requisitos?

O objetivo desta análise é compreender os impactos do uso do ChatGPT na colaboração entre stakeholders durante a Engenharia de Requisitos, investigando seus beneficios e desvantagens.

Tabela 6. Os principais impactos ao utilizar o ChatGPT na Engenharia de Requisitos

Impactos	Artigos
Automatização e Eficiência	[1], [2], [3], [5], [6]
Redução de Ambiguidade	[1], [5], [6],[7], [8]
Suporte à Modelagem de UML	[1], [2]
Conhecimento de Domínio Específico	[1], [2], [6], [8]
Dependência de Prompts Bem Definidos	[1], [2], [4], [5], [6], [7]

O uso do ChatGPT na colaboração entre stakeholders durante o processo de Engenharia de Requisitos pode influenciar a dinâmica de trabalho e a comunicação entre as partes interessadas. Estudos indicam que os artigos analisados mostram que a IA é eficiente em tarefas como classificação e elicitação automatizada de requisitos, melhorando a produtividade dos profissionais .

Contudo, ressaltam que a experiência humana ainda é crucial para garantir a qualidade dos requisitos gerados [2].

Além disso, o ChatGPT mostra potencial para auxiliar na modelagem de UML, com destaque para a elaboração de diagramas de classes e modelos de casos de uso [1, 2]. No entanto, a falta de conhecimento específico do domínio é uma preocupação significativa, pois os modelos de linguagem do ChatGPT têm limitações nesse aspecto, levando a extrações insatisfatórias quando os requisitos exigem conhecimento especializado [1].

Outra limitação importante é a dependência de prompts bem definidos, que influenciam diretamente na qualidade dos resultados. Usuários mais experientes tendem a criar prompts mais eficazes para extrair requisitos de alta qualidade do ChatGPT [2]. Assim, embora a IA ofereça vantagens, suas limitações devem ser consideradas ao aplicá-la na Engenharia de Requisitos, especialmente em termos de conhecimento de domínio e dependência de prompts.

2.4.5 Como as preocupações éticas relacionadas à geração de texto automatizada pelo ChatGPT afetam sua adoção e aplicação na Engenharia de Requisitos?

Embora a utilização do ChatGPT atrelado à Engenharia de requisitos seja uma prática relativamente recente, é válido salientar a importância da preocupação ética associada a essa abordagem. Desse modo, dos 8 artigos selecionados, apenas 2 abordaram brevemente as questões éticas relacionadas ao uso da Inteligência Artificial nesse contexto. Além disso, é essencial reconhecer a necessidade de considerar aspectos éticos como viés, privacidade e transparência ao empregar o ChatGPT para auxiliar no processo de elicitação de requisitos.

As preocupações éticas relacionadas à geração de texto automatizada pelo ChatGPT têm um impacto significativo na adoção e aplicação na engenharia de software e, mais especificamente, na Engenharia de Requisitos. "Desde o lançamento do ChatGPT em 30 de novembro de 2022, tornou-se um tópico de pesquisa importante avaliar e aplicar o ChatGPT em vários domínios" [14].

A Engenharia de Requisitos (RE) é reconhecida como um ponto crítico de intersecção entre ética e tecnologia [11]. A confiança excessiva na IA pode levar a uma dependência sem avaliação crítica dos resultados [12], mas o ChatGPT também pode promover a ética ao rejeitar perguntas inseguras e gerar respostas condizentes [2]. O processo de Engenharia de Requisitos oferece oportunidades para discutir preocupações éticas desde o início do ciclo de desenvolvimento de software [15]. Uma abordagem proativa nesse sentido pode ajudar a mitigar os riscos éticos associados ao uso do ChatGPT, garantindo que os requisitos éticos e políticos sejam considerados desde o início [16].

Conclusão

O estudo explorou uma revisão sistemática da literatura que destaca o potencial da integração do ChatGPT na obtenção de requisitos de software. A qualidade dos requisitos é essencial para o sucesso de qualquer projeto de desenvolvimento de software, e a Inteligência Artificial oferece uma nova abordagem para facilitar esse processo. O ChatGPT tem demonstrado versatilidade e capacidade de contribuição em várias etapas da Engenharia de Requisitos, desde a elicitação até a verificação e validação.

Contudo, existe uma problemática muito grave, as preocupações éticas relacionadas ao uso do ChatGPT. Além disso, o ChatGPT apresenta impactos potenciais na colaboração entre os stakeholders durante o processo da Engenharia de Requisitos, podendo tanto facilitar a comunicação e a compreensão mútua quanto introduzir novos desafios de coordenação e confiança. Assim, enquanto o ChatGPT

pode corroborar diversos aspectos e processos, sua integração deve ser feita de forma cautelosa e ética para garantir resultados eficazes e responsáveis.

Sendo assim, há uma necessidade de pesquisas futuras sobre os aspectos éticos da utilização do ChatGPT na elicitação de requisitos. Dessa forma, é essencial que as organizações e pesquisadores adotem uma postura proativa na análise e implementação de políticas éticas e de segurança ao utilizar o ChatGPT e outras tecnologias similares. Além disso, é fundamental promover uma maior transparência e conscientização sobre o uso dessas ferramentas, garantindo que os benefícios sejam maximizados e os riscos mitigados.

Referências

- Bencheikh, L., et al.: Exploring the Efficacy of ChatGPT in Generating Requirements: An Experimental Study. (2023)
- Ronanki, K., et al.: Investigating ChatGPT's Potential to Assist in Requirements Elicitation Processes. (2023)
- 3. Ruan, K., et al.: Requirements Modeling Aided by ChatGPT: An Experience in Embedded Systems. (2023)
- 4. Fantechi, A., et al.: Inconsistency Detection in Natural Language Requirements using ChatGPT: a Preliminary Evaluation. (2023)
- 5. Liu, K., et al.: Artificial Intelligence in Software Requirements Engineering: State-of-the-Art. (2022)
- Arora, C., et al.: Advancing Requirements Engineering through Generative AI: Assessing the Role of LLMs. (2023)
- 7. Zhang, J., et al.: Empirical Evaluation of ChatGPT on Requirements Information Retrieval Under Zero-Shot Setting. (2023)
- 8. Fantechi, A., et al.: Rule-based NLP vs ChatGPT in Ambiguity Detection, a Preliminary Study. (2023)
- J, Sajed., Rafi, S., LaToza, T. D., Moran, K., Lam, W.: ChatGPT and Software Testing Education: Promises Perils. arXiv preprint arXiv:2302.03287 (2023)
- Sommerville, I.: Engenharia de Software. Tradução de Ivan Bosnic e Kalinka G. de O. Gonçalves. 9. ed. Pearson, São Paulo (2011)
- 11. Dechesne, F.: Requirements Engineering for Moral Considerations in Algorithmic Systems: RE'20 Conference Keynote. In: 2020 IEEE 28th International Requirements Engineering Conference (RE), pp. 1–2 (2020)
- 12. Akter, S., McCarthy, G., Sajib, S., et al.: Algorithmic bias in data-driven innovation in the age of AI. International Journal of Information Management 60 (2021)
- 13. Peng, Z., Rathod, P., Niu, N., Bhowmik, T., Liu, H., Shi, L., et al.: Environment-driven abstraction identification for requirements based testing. In: 2021 IEEE 29th International Requirements Engineering Conference (RE), pp. 245–256. IEEE (2021)
- Fraiwan, M., Khasawneh, N.: A Review of ChatGPT Applications in Education, Marketing, Software Engineering, and Healthcare: Benefits, Drawbacks, and Research Directions. arXiv preprint arXiv:230500237 (2023)
- 15. Kostova, B., Gurses, S., Wegmann, A.: On the Interplay between Requirements, Engineering, and Artificial Intelligence. In: REFSQ Workshops (2020)
- 16. High-Level Expert Group on Artificial Intelligence. Ethics Guidelines for Trustworthy Artificial Intelligence (AI) (2019)