KY-024 Linear Magnetic Hall Effect Sensor Module - Detailed Explanation

The **KY-024 Hall Effect Sensor Module** is a **magnetic field detection sensor** that uses the **Hall Effect** to measure the presence and strength of a magnetic field. It provides both **digital** and **analog** outputs, making it useful for detecting **magnet proximity**, **direction**, **and strength**.

What is the KY-024 Hall Effect Sensor?

The KY-O24 module is based on a **linear Hall effect sensor** (typically an **A3144**, **SS49E**, **or similar sensor**) and includes additional components such as an **operational amplifier (comparator)**, **potentiometer**, **and indicator LEDs** for easier signal processing.

Hall Effect Principle:

The Hall Effect describes the creation of a voltage difference across an electrical conductor when it is exposed to a **perpendicular magnetic field**. This voltage is **proportional** to the strength of the magnetic field and can be used to measure its **polarity and intensity**.

Components of the KY-024 Module

Component	Function	
Hall Sensor (SS49E/A3144/Other)	Detects the presence and strength of a magnetic field	
LM393 Comparator	Converts the analog signal into a digital HIGH/LOW output	
Potentiometer	Adjusts the sensitivity for the digital threshold	
Power LEDs	Indicates power and signal status	
Analog Output (A0)	Provides a continuous signal representing field strength	
Digital Output (D0)	Outputs HIGH (1) if no field is detected, LOW (0) if a strong field is detected	

How Does KY-024 Work?

- The **Hall sensor** detects a **magnetic field** and generates a voltage proportional to its strength.
- If the field is strong enough, the **digital output (D0)** will switch from HIGH to LOW, triggering an event.
- The **analog output (A0)** provides a **continuous voltage** representing the field's strength and polarity.
- The **potentiometer** adjusts the **threshold sensitivity** for digital output.

Digital Output Behavior (D0)

Magnetic Field	DO Output	LED State
No Magnet	HIGH (1)	OFF
Strong North/South Pole	LOW (0)	ON

Uses of KY-024

Contactless Switches – Used in industrial machines for contactless sensing.

Speed Measurement – Detects RPM (Rotations Per Minute) in motors.

Position Sensing - Measures object displacement.

Magnetic Field Detection – Detects nearby magnets, useful in door security systems.

Electric Current Measurement – Indirectly measures electric currents.

Robotics & Automation – Detects magnetic tracks for guided robots.

KY-024 vs. Other Hall Effect Sensors

Feature	KY-024	KY-003	KY-035
Output Type	Digital & Analog	Digital Only	Analog Only
Hall Sensor Type	Linear	Switch	Linear
Adjustable Sensitivity	Yes	No	No
Use Case	Strength & Polarity Measurement	Simple Detection	Strength Measurement

Summary

The KY-024 Hall Effect Sensor Module is a versatile and sensitive magnetic field detector that provides both analog (A0) and digital (D0) outputs. It is widely used in automation, security systems, robotics, and motor speed sensing. Its adjustable sensitivity potentiometer makes it highly customizable for different applications.

Fun Fact: The Hall Effect is used in **electric guitars**, **speedometers**, and even magnetic levitation trains!