CS 109 Quiz 6 (33 points):

- 1. [33 points] Definitions (3 points each).
 - a. For random variables X, Y, Cov(X, Y) =
 - b. Events A and B are conditionally independent given C: P(A, B|C) =
 - c. If X, Y are continuous, E[X|Y = y] =
 - d. Suppose Y is a discrete rv that somehow influences X. Give a formula for E[X] which uses the law of total expectation conditioning on Y. E[X] =
 - e. If X is discrete and Y is continuous, then using Bayes Theorem (watch your p's and f's), $p_{X|Y}(x|y) =$
 - f. If X, Y are discrete, then in terms of $p_{X,Y}$, E[g(X,Y)] =
 - g. Suppose X_1, X_2, X_3, X_4 are discrete random variables. We will abuse notation and write $p(x_1, x_2, x_3, x_4)$ to mean $P(X_1 = x_1, X_2 = x_2, X_3 = x_3, X_4 = x_4)$. In your answers, feel free to do the same. For example, $p(x_1, x_3) = p(X_1 = x_1, X_3 = x_3)$. Decompose into as many terms as possible.
 - a. If there is **no assumption** of independence, then $p(x_1, x_2, x_3, x_4) =$
 - b. If X_1, X_2, X_3, X_4 are assumed **independent**, then $p(x_1, x_2, x_3, x_4) =$
 - c. Given this Bayesian network, $p(x_1, x_2, x_3, x_4) =$

- h. If X_1, \ldots, X_n are iid with mean μ and variance σ^2 , and $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then
 - a. $E[\bar{X}_n] =$
 - b. $Var(\bar{X}_n) =$
 - c. The Central Limit Theorem says that, as $n \to \infty$, the distribution of \bar{X}_n is (give distribution and parameter(s)):