Factor analysis of panel data Application of LS estimation method

Data

Different types of data

- time series
- cross-sectional
- panel data

Data

Different types of data

- time series
- cross-sectional
- panel data

- collection of time series of a number of variables (time-series—cross-section):
 - OECD data set
 - Penn World Tables: national income of 188 countries over 50 years
 - ...
- collection of cross sectional data at several points in time (longitudinal data)
 - National Longitudinal Survey of Labor Market experience (NLS)
 - Michigan Panle Study of Income Dynamics (PSID)
 - German Socioeconomic Panel (GSOEP)
 - ..

- collection of time series of a number of variables (time-series—cross-section):
 - OECD data set
 - Penn World Tables: national income of 188 countries over 50 years
 - ...
- collection of cross sectional data at several points in time (longitudinal data)
 - National Longitudinal Survey of Labor Market experience (NLS)
 - Michigan Panle Study of Income Dynamics (PSID)
 - German Socioeconomic Panel (GSOEP)
 - ..

- collection of time series of a number of variables (time-series—cross-section):
 - OECD data set
 - Penn World Tables: national income of 188 countries over 50 years
 - ...
- collection of cross sectional data at several points in time (longitudinal data)
 - National Longitudinal Survey of Labor Market experience (NLS)
 - Michigan Panle Study of Income Dynamics (PSID)
 - German Socioeconomic Panel (GSOEP)
 - ..

- collection of time series of a number of variables (time-series—cross-section):
 - OECD data set
 - Penn World Tables: national income of 188 countries over 50 years
 - ...
- collection of cross sectional data at several points in time (longitudinal data)
 - National Longitudinal Survey of Labor Market experience (NLS)
 - Michigan Panle Study of Income Dynamics (PSID)
 - German Socioeconomic Panel (GSOEP)
 - .

- collection of time series of a number of variables (time-series—cross-section):
 - OECD data set
 - Penn World Tables: national income of 188 countries over 50 years
 - ...
- collection of cross sectional data at several points in time (longitudinal data)
 - National Longitudinal Survey of Labor Market experience (NLS)
 - Michigan Panle Study of Income Dynamics (PSID)
 - German Socioeconomic Panel (GSOEP)
 - ..

Time-series/cross-section

Electricity prices:

- hourly prices for every day
- day-ahead pricing

Day/Hour	1	2	 24
01.01.2014			
02.01.2014			
31.12.2016			

Time-series/cross-section

Electricity prices:

- hourly prices for every day
- day-ahead pricing

Day/Hour	1	2	 24
01.01.2014			
02.01.2014			
:			
31.12.2016			

Electricity prices

Features of the electricity prices:

- daily, weekly and yearly seasonality
- co-movement of prices within one day
- high volatility: spikes

Question: should hourly prices be modeled jointly or separately?

Electricity prices

Features of the electricity prices:

- daily, weekly and yearly seasonality
- co-movement of prices within one day
- high volatility: spikes

Question: should hourly prices be modeled jointly or separately?

Panel data Factor model Set-up coss function S estimator nterpretation of results

Panel data

Factor model

Assumption: the co-movement of variables Y_{ti} , i = 1, ..., N is govern by K common factors F_{tk} , where $K \ll N$.

Model:

$$Y_{ti} = F_t \lambda_i + e_{ti},$$

- $F_t = [F_{t1}, ..., F_{tK}]$ is a $(1 \times K)$ vector of common factors,
- $\lambda_i = [\lambda_{i1}, ..., \lambda_{iK}]'$ is a $(K \times 1)$ vector of factor loadings,
- e_{ti} is an idiosyncratic component (remark: e_{it} are only weakly correlated across sections i).

Assumption: the co-movement of variables Y_{ti} , i = 1, ..., N is govern by K common factors F_{tk} , where $K \ll N$.

Model:

$$Y_{ti} = F_t \lambda_i + e_{ti},$$

- $F_t = [F_{t1}, ..., F_{tK}]$ is a $(1 \times K)$ vector of common factors,
- $\lambda_i = [\lambda_{i1}, ..., \lambda_{iK}]'$ is a $(K \times 1)$ vector of factor loadings,
- e_{ti} is an idiosyncratic component (remark: e_{it} are only weakly correlated across sections i).

Assumption: the co-movement of variables Y_{ti} , i = 1, ..., N is govern by K common factors F_{tk} , where $K \ll N$.

Model:

$$Y_{ti} = F_t \lambda_i + e_{ti},$$

- $F_t = [F_{t1}, ..., F_{tK}]$ is a $(1 \times K)$ vector of common factors,
- $\lambda_i = [\lambda_{i1}, ..., \lambda_{iK}]'$ is a $(K \times 1)$ vector of factor loadings,
- e_{ti} is an idiosyncratic component (remark: e_{it} are only weakly correlated across sections i).

Assumption: the co-movement of variables Y_{ti} , i = 1, ..., N is govern by K common factors F_{tk} , where $K \ll N$.

Model:

$$Y_{ti} = F_t \lambda_i + e_{ti},$$

- $F_t = [F_{t1}, ..., F_{tK}]$ is a $(1 \times K)$ vector of common factors,
- $\lambda_i = [\lambda_{i1}, ..., \lambda_{iK}]'$ is a $(K \times 1)$ vector of factor loadings,
- e_{ti} is an idiosyncratic component (remark: e_{it} are only weakly correlated across sections i).

Assumption: the co-movement of variables Y_{ti} , i = 1, ..., N is govern by K common factors F_{tk} , where $K \ll N$.

Model:

$$Y_{ti} = F_t \lambda_i + e_{ti},$$

- $F_t = [F_{t1}, ..., F_{tK}]$ is a $(1 \times K)$ vector of common factors,
- $\lambda_i = [\lambda_{i1}, ..., \lambda_{iK}]^i$ is a $(K \times 1)$ vector of factor loadings,
- e_{ti} is an idiosyncratic component (remark: e_{it} are only weakly correlated across sections i).

Assumption: the co-movement of variables Y_{ti} , i = 1, ..., N is govern by K common factors F_{tk} , where $K \ll N$.

Model:

$$Y_{ti} = F_t \lambda_i + e_{ti},$$

- $F_t = [F_{t1}, ..., F_{tK}]$ is a $(1 \times K)$ vector of common factors,
- $\lambda_i = [\lambda_{i1}, ..., \lambda_{iK}]'$ is a $(K \times 1)$ vector of factor loadings,
- e_{ti} is an idiosyncratic component (remark: e_{it} are only weakly correlated across sections i).

Assumption: the co-movement of variables Y_{ti} , i = 1, ..., N is govern by K common factors F_{tk} , where $K \ll N$.

Model:

$$Y_{ti} = F_t \lambda_i + e_{ti},$$

- $F_t = [F_{t1}, ..., F_{tK}]$ is a $(1 \times K)$ vector of common factors,
- $\lambda_i = [\lambda_{i1}, ..., \lambda_{iK}]'$ is a $(K \times 1)$ vector of factor loadings,
- e_{ti} is an idiosyncratic component (remark: e_{it} are only weakly correlated across sections i).

Assumption: the co-movement of variables Y_{ti} , i = 1, ..., N is govern by K common factors F_{tk} , where $K \ll N$.

Model:

$$Y_{ti} = F_t \lambda_i + e_{ti},$$

- $F_t = [F_{t1}, ..., F_{tK}]$ is a $(1 \times K)$ vector of common factors,
- $\lambda_i = [\lambda_{i1}, ..., \lambda_{iK}]'$ is a $(K \times 1)$ vector of factor loadings,
- e_{ti} is an idiosyncratic component (remark: e_{it} are only weakly correlated across sections i).

Notation

- Y a ($T \times N$) panel of observations,
- F a ($T \times K$) matrix of common factors,
- λ a ($K \times N$) matrix of loadings, $\lambda = [\lambda_1, ..., \lambda_K]$
- e a ($T \times N$) panel of idiosyncratic components,

$$Y = F\lambda + e$$

Notation

- Y a ($T \times N$) panel of observations,
- F a ($T \times K$) matrix of common factors,
- λ a ($K \times N$) matrix of loadings, $\lambda = [\lambda_1, ..., \lambda_K]$
- e a ($T \times N$) panel of idiosyncratic components,

$$Y = F\lambda + e$$

Notation

- Y a ($T \times N$) panel of observations,
- F a ($T \times K$) matrix of common factors,
- λ a ($K \times N$) matrix of loadings, $\lambda = [\lambda_1, ..., \lambda_K]$
- e a ($T \times N$) panel of idiosyncratic components,

$$Y = F\lambda + e$$

Notation

- Y a ($T \times N$) panel of observations,
- F a ($T \times K$) matrix of common factors,
- λ a ($K \times N$) matrix of loadings, $\lambda = [\lambda_1, ..., \lambda_K]$
- e a ($T \times N$) panel of idiosyncratic components,

$$Y = F\lambda + e$$

Notation

- Y a ($T \times N$) panel of observations,
- F a ($T \times K$) matrix of common factors,
- λ a ($K \times N$) matrix of loadings, $\lambda = [\lambda_1, ..., \lambda_K]$
- e a ($T \times N$) panel of idiosyncratic components,

$$Y = F\lambda + e$$

Model

$$Y = F\lambda + e$$

- Factors are not known,
- If factors are known, λ could be estimated with LS...
- Identification: when F is a factor then G = FA is a factor, if rk(A) = K. What are loadings then?
- How to identify and estimate F?

Model

$$Y = F\lambda + e$$

- Factors are not known,
- If factors are known, λ could be estimated with LS...
- Identification: when F is a factor then G = FA is a factor, if rk(A) = K. What are loadings then?
- How to identify and estimate F?

Model

$$Y = F\lambda + e$$

- Factors are not known,
- If factors are known, λ could be estimated with LS...
- Identification: when F is a factor then G = FA is a factor, if rk(A) = K. What are loadings then?
- How to identify and estimate F?

Model

$$Y = F\lambda + e$$

- Factors are not known,
- If factors are known, λ could be estimated with LS...
- Identification: when F is a factor then G = FA is a factor, if rk(A) = K. What are loadings then?
- How to identify and estimate F?

Model

$$Y = F\lambda + e$$

- Factors are not known,
- If factors are known, λ could be estimated with LS...
- Identification: when F is a factor then G = FA is a factor, if rk(A) = K. What are loadings then?
- How to identify and estimate F?

Identification and estimation

Identification:

$$\frac{F'F}{T}=I_K$$

$$L = \sum_{i=1}^{N} \sum_{t=1}^{T} e_{it}^{2}$$

Set-up
Loss function
LS estimator
Interpretation of results
Example

Identification and estimation

Identification:

$$\frac{F'F}{T}=I_K$$

$$L = \sum_{i=1}^{N} \sum_{t=1}^{T} e_{it}^{2}$$

Identification and estimation

Identification:

$$\frac{F'F}{T}=I_K$$

$$L = \sum_{i=1}^{N} \sum_{t=1}^{T} e_{it}^{2}$$

Identification and estimation

Identification:

$$\frac{F'F}{T}=I_K$$

$$L = \sum_{i=1}^{N} \sum_{t=1}^{T} e_{it}^{2}$$

Loss function

Loss funciton

$$L = tr(e'e)$$

since
$$e = F\lambda$$

$$L = tr((Y - F\lambda)'(Y - F\lambda))$$

Loss funciton

$$L = tr(e'e)$$

since
$$e = F\lambda$$

$$L = tr((Y - F\lambda)'(Y - F\lambda))$$

Suppose F is known then

$$\hat{\lambda} = (F'F)^{-1}F'Y$$

Hence

$$\Theta=M_FY$$

where

$$M_F = I - F(F'F)^{-1}F'$$

Suppose F is known then

$$\hat{\lambda} = (F'F)^{-1}F'Y$$

Hence

$$\Theta=M_FY$$

where

$$M_F = I - F(F'F)^{-1}F$$

Suppose *F* is known then

$$\hat{\lambda} = (F'F)^{-1}F'Y$$

Hence

$$e = M_F Y$$
,

where

$$M_F = I - F(F'F)^{-1}F'$$

It can be shown that

$$L = tr(YY') - tr(F(F'F)^{-1}F'YY')$$

Under identification condition

$$L = tr(Y'Y) - \frac{1}{T}tr(F'YY'F)$$

If F minimizes L then it maximizes

$$\frac{1}{T}tr(F'YY'F)$$

It can be shown that

$$L = tr(YY') - tr(F(F'F)^{-1}F'YY')$$

Under identification condition

$$L = tr(Y'Y) - \frac{1}{T}tr(F'YY'F)$$

If F minimizes L then it maximizes

$$\frac{1}{T}tr(F'YY'F)$$

It can be shown that

$$L = tr(YY') - tr(F(F'F)^{-1}F'YY')$$

Under identification condition

$$L = tr(Y'Y) - \frac{1}{T}tr(F'YY'F)$$

If F minimizes L then it maximizes

$$\frac{1}{T}tr(F'YY'F)$$

Let

$$\tilde{F} = F/\sqrt{T}$$

ther

$$\frac{1}{T}tr(F'YY'F) = tr(\tilde{F}'YY'\tilde{F})$$

$$\tilde{F}'\tilde{F} = I_K$$

Let

$$\tilde{F} = F/\sqrt{T}$$

then

$$\frac{1}{T}tr(F'YY'F) = tr(\tilde{F}'YY'\tilde{F})$$

$$\tilde{F}'\tilde{F} = I_K$$

Let

$$\tilde{F} = F/\sqrt{T}$$

then

$$\frac{1}{T}tr(F'YY'F) = tr(\tilde{F}'YY'\tilde{F})$$

$$\tilde{F}'\tilde{F}=I_K$$

Let

$$\tilde{F} = F/\sqrt{T}$$

then

$$\frac{1}{T}tr(F'YY'F) = tr(\tilde{F}'YY'\tilde{F})$$

$$\tilde{F}'\tilde{F}=I_K$$

LS estimator

It can be shown that

$$\hat{\tilde{F}} = V_{1:K},$$

where $V_{1:K}$ are the eigenvectors of YY' corresponding with the K largest eigenvalues $(\gamma_1, ..., \gamma_K)$.

$$\hat{F} = \sqrt{T} V_{1:K}$$

$$\hat{\lambda} = \hat{F}' Y / T$$

LS estimator

It can be shown that

$$\hat{\tilde{F}} = V_{1:K},$$

where $V_{1:K}$ are the eigenvectors of YY' corresponding with the K largest eigenvalues $(\gamma_1, ..., \gamma_K)$.

$$\hat{F} = \sqrt{T} V_{1:K},$$

$$\hat{\lambda} = \hat{F}'Y/T$$

Total variance

$$tr(Y'Y) = \sum_{i=1}^{T} \gamma_i$$

Variance of residuals

$$tr(e'e) = tr(Y'Y) - tr(F'YY'F)/T$$

$$tr(F'YY'F)/T = \sum_{i=1}^{K} \gamma_i$$

Total variance

$$tr(Y'Y) = \sum_{i=1}^{T} \gamma_i$$

Variance of residuals

$$tr(e'e) = tr(Y'Y) - tr(F'YY'F)/T$$

$$tr(F'YY'F)/T = \sum_{i=1}^{K} \gamma_i$$

Total variance

$$tr(Y'Y) = \sum_{i=1}^{T} \gamma_i$$

Variance of residuals

$$tr(e'e) = tr(Y'Y) - tr(F'YY'F)/T$$

$$tr(F'YY'F)/T = \sum_{i=1}^{K} \gamma_i$$

Total variance

$$tr(Y'Y) = \sum_{i=1}^{T} \gamma_i$$

Variance of residuals

$$tr(e'e) = tr(Y'Y) - tr(F'YY'F)/T$$

$$tr(F'YY'F)/T = \sum_{i=1}^{K} \gamma_i$$

Total variance

$$tr(Y'Y) = \sum_{i=1}^{T} \gamma_i$$

Variance of residuals

$$tr(e'e) = tr(Y'Y) - tr(F'YY'F)/T$$

$$tr(F'YY'F)/T = \sum_{i=1}^{K} \gamma_i$$

Total variance

$$tr(Y'Y) = \sum_{i=1}^{T} \gamma_i$$

Variance of residuals

$$tr(e'e) = tr(Y'Y) - tr(F'YY'F)/T$$

$$tr(F'YY'F)/T = \sum_{i=1}^{K} \gamma_i$$

Share of explained variance

Share of explained variance

$$\frac{\sum_{i=1}^{K} \gamma_i}{\sum_{i=1}^{T} \gamma_i}$$

Can be used to choose the number of factors.

Number of factors

Notation

- $k = 1, ..., k_{max}$ considered number of factors
- $e^{(k)}$ idiosyncratic component for k factors

•
$$V(k) = \frac{1}{NT} \sum_{t=1}^{T} \sum_{i=1}^{N} (e_{ti}^{(k)})^2$$

• $\hat{\sigma}^2 = V(k_{max})$ - a consistent estimator of the variance

Number of factors - IC

Bai, Ng (2002), Determining the number of factors in approximate Factor model, Econometrica, Vol. 70, No. 1, pp. 191-221

$$PC_{1}(k) = V(k) + k\hat{\sigma}^{2}(\frac{N+T}{NT})\ln(\frac{NT}{N+T})$$

$$IPC_{1}(k) = \ln V(k) + k(\frac{N+T}{NT})\ln(\frac{NT}{N+T})$$

Number of factors - IC

- Set the maximum considered number of factors k_{max}
- Compute IC for $k = 1, 2, ..., k_{max}$
- Choose the number of factors minimizing IC.

Number of factors - IC

- Set the maximum considered number of factors k_{max}
- Compute IC for $k = 1, 2, ..., k_{max}$
- Choose the number of factors minimizing IC.

Number of factors - IC

- Set the maximum considered number of factors k_{max}
- Compute IC for $k = 1, 2, ..., k_{max}$
- Choose the number of factors minimizing IC.

Number of factors - IC

- Set the maximum considered number of factors k_{max}
- Compute IC for $k = 1, 2, ..., k_{max}$
- Choose the number of factors minimizing IC.

- H is a $(K \times K)$ matrix with ortonormal columns $(H'H = I_K)$
- $\hat{G} = \hat{F}H$ and $\hat{\lambda}_G = H^{-1}\hat{\lambda}$
- Do \hat{G} and $\hat{\lambda}_G$ maximize the loss function?
- Do \hat{G} satisfies the identification condition?

- H is a $(K \times K)$ matrix with ortonormal columns $(H'H = I_K)$
- $\hat{G} = \hat{F}H$ and $\hat{\lambda}_G = H^{-1}\hat{\lambda}$
- Do \hat{G} and $\hat{\lambda}_G$ maximize the loss function?
- Do \hat{G} satisfies the identification condition?

- H is a $(K \times K)$ matrix with ortonormal columns $(H'H = I_K)$
- $\hat{G} = \hat{F}H$ and $\hat{\lambda}_G = H^{-1}\hat{\lambda}$
- Do \hat{G} and $\hat{\lambda}_G$ maximize the loss function?
- Do Ĝ satisfies the identification condition?

- H is a $(K \times K)$ matrix with ortonormal columns $(H'H = I_K)$
- $\hat{G} = \hat{F}H$ and $\hat{\lambda}_G = H^{-1}\hat{\lambda}$
- Do \hat{G} and $\hat{\lambda}_G$ maximize the loss function?
- Do \hat{G} satisfies the identification condition?

- H is a $(K \times K)$ matrix with ortonormal columns $(H'H = I_K)$
- $\hat{G} = \hat{F}H$ and $\hat{\lambda}_G = H^{-1}\hat{\lambda}$
- Do \hat{G} and $\hat{\lambda}_G$ maximize the loss function?
- Do \hat{G} satisfies the identification condition?

Factors

Question: how to relate the true factors with the estimator \hat{F}

- no direct link possible rotation
- interpretation based on loading matrix

Factors

Question: how to relate the true factors with the estimator \hat{F}

- no direct link possible rotation
- interpretation based on loading matrix

Factors

Question: how to relate the true factors with the estimator \hat{F}

- no direct link possible rotation
- interpretation based on loading matrix

Electricity prices

Data:

- Polish power exchange day ahead market
- Hourly data
- Time span: 01.01.2015 28.02.2017
- Transformed into logarithms
- Panel of dimension (790 × 24)

Prices

Average prices

- Maximum number of factors is $k_{max} = 4$
- Hourly averages are removed
- Question: should the data be standardized?

- Maximum number of factors is $k_{max} = 4$
- Hourly averages are removed
- Question: should the data be standardized?

- Maximum number of factors is $k_{max} = 4$
- Hourly averages are removed
- Question: should the data be standardized?

- Maximum number of factors is $k_{max} = 4$
- Hourly averages are removed
- Question: should the data be standardized?

Information criteria and explained variability

k	Variability	PC	IPC
1	0.6822	0.0141	-4.1605
2	0.7922	0.0099	-4.4501
3	0.8801	0.0066	-4.8647
4	0.9168	0.0055	-5.0952

Loadings

Conclusions

- Factor models could be useful in reducing the dimension of the data set.
- Factors could be estimated with the Least Square method
- In a case of an Electricity market
 - Four factors explain 91.7% of variability of log prices
 - First factor is the average level of prices
 - Second factor describes the evening peak
 - Third factor represents the morning peak