

Maria Eichlseder Information Security – WT 2023/24

You Are Here

Recap of Last Week (1): Schemes for Message Authentication

Cryptographic schemes for message authentication compute a short, fixed-length Tag $T \gg$ from the Message $M \cong$ and (in some cases) a Key $K \sim$.

Recap of Last Week (2): Merkle-Damgård Hashing

Primitive: Compression Function (fixed-size inputs)

Mode: Merkle–Damgård (MD) Hash Function $\mathcal{H}(M) = T$ (variable-size inputs)

‡ Outline

- Confidentiality
 - Goals and Applications
- Symmetric Primitives
 - Block Ciphers
 - The AES
- Encryption
 - Definition and Security
 - Constructions
- Authenticated Encryption
 - Definition
 - Constructions

Confidentiality

Introduction

4-

Confidentiality

Confidentiality of Data

Prevent unauthorized entities from learning information (messages, data) that authorized parties are communicating or processing.

There are several related, but different concepts:

- Anonymity: The users' identity is unknown, they are not identifiable within a certain set of users
- Privacy: The users are able to seclude themselves, or information about themselves, and thereby express themselves selectively. This often refers to sensitive personal information.

Cryptographic Schemes for Encryption

Encryption schemes transform a plaintext Message $M \stackrel{\square}{=}$ of arbitrary length to a Ciphertext $C \stackrel{\square}{=}$ of about the same length based on a Key $K \stackrel{\square}{\triangleleft}$ of fixed length.

Schemes may require additional inputs or produce an authentication Tag T \diamondsuit .

Examples (1): Secure Communication with HTTPS

Example (2): Disk Encryption with LUKS

```
meichlseder@x1tblme ~ % sudo cryptsetup luksDump /dev/nvme0n1p3
[sudo] password for meichlseder:
LUKS header information
Version:
Epoch:
Metadata area: 16384 [bytes]
Kevslots area: 16744448 [bytes]
                087c56a9-a282-42f2-8361-869ec488e61e
UUTD:
label:
               (no label)
Subsystem:
             (no subsystem)
                (no flags)
Flags:
Data segments:
 0: crypt
        offset: 16777216 [bytes]
       length: (whole device)
       cipher: aes-xts-plain64
       sector: 512 [bytes]
Kevslots:
 0: luks2
                   512 bits
       Cipher:
       Cipher key: 512 bits
        ו נויופ כטגנ: ס
                    1048576
       Memorv:
        Threads:
                    81 0d d7 18 01 e4 1d d9 6c 14 68 08 95 f5 f4 73
                    fc 8c 32 9a 4e 94 a0 aa 23 91 6b 2a 6d 66 51 13
        AF stripes: 4000
        AF hash:
                    sha256
```


Symmetric Primitives

Secure Building Blocks

Symmetric Primitives

Block Ciphers – Key Space and Plaintext Space

A block cipher is a family of permutations (bijective functions) E_{κ} .

Each k-bit key K defines a permutation E_K that encrypts n-bit message blocks M to n-bit ciphertext blocks $C = E_K(M)$.

It also defines the inverse permutation $D_K = E_K^{-1}$ that maps C back to M.

- 2ⁿ possible inputs/outputs M
- 2^k possible keys (mappings) K

Block Ciphers – Key Space and Plaintext Space

Block Ciphers - Security

Pseudorandomness

An attacker must be unable to learn M from C (or vice-versa).

Key Recovery Security

An attacker must be unable to recover K, even if they can obtain ciphertexts C for any messages M of their choice (or vice-versa).

Anatomy of a Block Cipher – The Key-Alternating Construction

Two fundamental ideas:

- 1. Repeat simple circuit *r* times: the "round function"
 - Make it easy to implement

- 2. Make the round circuit public but XOR input with round key
 - Avoid key-dependent circuitry

The AES Competition (1997–2000)

- ► AES Advanced Encryption Standard
- Goals: A block cipher to replace DES
 - The previous Data Encryption Standard (DES) was co-designed by NSA
 - Its security level was no longer adequate (small key, cryptanalysis)
- Organized by NIST (US Institute of Standards and Technology)
- 🛗 Announced 1997, 15 submissions from 50 cryptographers
- ▼ Winner: Rijndael/AES, designed by Joan Daemen and Vincent Rijmen
 - Now used everywhere for secure encryption

AES – State and Operations

- Block size n = 128 bits
- Key size $k \in \{128, 192, 256\}$ bits → ciphers AES-128, AES-192, AES-256
- The 16-byte input block $M = s_{00} ||s_{10}||s_{20}||s_{30}||s_{01}|| \dots ||s_{33}||$ is written as a 4×4 matrix of bytes, the $\{16, 24, 32\}$ -byte key K as a $4 \times \{4, 6, 8\}$ matrix:

$$M = \begin{bmatrix} s_{00} & s_{01} & s_{02} & s_{03} \\ s_{10} & s_{11} & s_{12} & s_{13} \\ s_{20} & s_{21} & s_{22} & s_{23} \\ s_{30} & s_{31} & s_{32} & s_{33} \end{bmatrix}$$

$$M = \begin{bmatrix} s_{00} & s_{01} & s_{02} & s_{03} \\ s_{10} & s_{11} & s_{12} & s_{13} \\ s_{20} & s_{21} & s_{22} & s_{23} \\ s_{30} & s_{31} & s_{32} & s_{33} \end{bmatrix}, \qquad K = \begin{bmatrix} k_{00} & k_{01} & k_{02} & k_{03} & k_{04} & k_{05} & k_{06} & k_{07} \\ k_{10} & k_{11} & k_{12} & k_{13} & k_{14} & k_{15} & k_{16} & k_{17} \\ k_{20} & k_{21} & k_{22} & k_{23} & k_{24} & k_{25} & k_{26} & k_{27} \\ k_{30} & k_{31} & k_{32} & k_{33} & k_{34} & k_{35} & k_{36} & k_{37} \end{bmatrix}$$

The state is initialized to M and updated in 10 rounds (for AES-128) or 12 rounds (AES-192) or 14 rounds (AES-256).

AES Round Function – Overview

AES Round Function – 1 SubBytes (SB)

- S-box layer: $b_{ij} = \mathcal{S}[a_{ij}]$
- Each of the 16 state bytes a_{ij} is substituted using an 8-bit lookup table S[0x00] = 0x63, S[0x01] = 0x7C, S[0x02] = 0x77, ..., S[0xFF] = 0x16
- The S-box S has strong cryptanalytic properties to defend against attacks

AES Round Function - 2 ShiftRows (SR)

- Part of the linear layer: $b_{i,j} = a_{i,j+i\%4}$
- Each row *i* of the state is rotated to the left by *i* bytes
- The values of one column are shifted to four different columns

AES Round Function - 3 MixColumns (MC)

- Part of the linear layer: $(b_{0j}, b_{1j}, b_{2j}, b_{3j}) = M \cdot (a_{0j}, a_{1j}, a_{2j}, a_{3j})$
- Each column of the state is updated using a multiplication with a matrix M (this multiplication is over a "finite field", not normal integer multiplication!)
- If one byte at the input changes, all output bytes in the column will change
- This step is omitted in the last round

AES Round Function - 4 AddRoundKey (AK)

- lacksquare Key-alternating construction: $b_{ij} = a_{ij} \oplus k_{ij}^{(r)}$
- XOR the round key k^(r) of round r to the state
- The round keys $k_{ij}^{(r)}$ are derived from the key K using the key schedule (details omitted the key schedule uses similar operations to the round function)
- An additional AddRoundKey step happens before the first round

Symmetric Primitives – Conclusion

- Primitives are the foundation of security in symmetric cryptography
- Their security cannot be "proven", but only "analyzed"
- **1** Symmetric primitives in TLS 1.3:
 - AES-{128, 256} block cipher
 - ChaCha20 stream cipher
 - SHA-{256, 512} compression function
- All of these are expected to provide long-term security (also in a post-quantum world)

Encryption

Protecting Confidentiality

How NOT To Do It − The Electronic CodeBook mode (ECB) 🛕

Split M into blocks M_1, M_2, \ldots, M_ℓ and encrypt each block with block cipher E_K . This simple mode has 2 major problems:

 \triangle Patterns: Two identical blocks M_i , M_j get encrypted to the same C_i , C_j

▲ Context: Two identical messages M, M' get encrypted to the same C, C'

Encryption Schemes – Definition

An encryption scheme is a keyed function \mathcal{E}_K that maps a k-bit key K, n-bit nonce N, and a message M of arbitrary length to a ciphertext C, together with its inverse decryption function \mathcal{D}_K , to protect the confidentiality of M:

$$\mathcal{E}_{\mathcal{K}}: \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{*} \to \mathbb{F}_{2}^{*}, \qquad \mathcal{E}_{\mathcal{K}}(N, M) = C$$

$$\mathcal{D}_{\mathcal{K}}: \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{*} \to \mathbb{F}_{2}^{*}, \qquad \mathcal{D}_{\mathcal{K}}(N, C) = M$$

The nonce (number used only once) makes sure that an adversary can't tell if two encrypted messages are the same! It is sometimes also called "IV" = Init. Vector.

In practice, N can be randomly generated or (in some cases only!) a counter.

Encryption Schemes – Application

- 1 Alice computes $C = \mathcal{E}_{\kappa}(N, M)$
- 2 Alice transmits N and C to Bob (over an insecure channel controlled by Eve)
- 3 Bob computes $M = \mathcal{D}_{\kappa}(N, C)$

Cipher Block Chaining mode (CBC)

• **Goal:** C_i should depend on the "context", i.e., on blocks M_1, \ldots, M_i and the nonce N.

Idea:

XOR \oplus previous ciphertext block C_{i-1} (= chaining value) to msg block M_i , then encrypt with E_K

- Idea: Start with random (!) nonce N to hide repeated messages
- Must be combined with a suitable padding scheme for the message M.

CounTeR mode (CTR)

- **Goal**: *C_i* should depend on the "context", i.e., on block *M_i*, position *i*, and the nonce *N*.
- Idea: Create a streaming mode that produces a keystream depending on K, N and XOR it to M
- Nonce N can be random (unpredictable) or a counter (predictable), as long as it never repeats for the same K
- No padding needed, len(C) = len(M)

Encryption in Practice

- CBC and CTR provide only confidentiality, no authenticity
- There are VERY FEW applications that need pure (unauthenticated) encryption or where authenticated encryption doesn't fit.

Example: some file system encryption schemes (no space for tags)

Usually you instead want Authenticated Encryption!

Authenticated Encryption

Protecting Confidentiality and Authenticity

Authenticated Encryption – Goals

If your data is worth encrypting, you almost certainly don't want it modified!

Confidentiality
 as provided by encryption modes \mathcal{E}_{κ}

 $\hbox{ as provided by message authentication codes } {\cal H}_{\kappa}$

AEAD – Authenticated Encryption (with Associated Data)

An Authenticated Encryption scheme is a keyed function \mathcal{AE}_K that maps a k-bit key K, n-bit nonce N, associated data A, and a message M of arbitrary length to a ciphertext C with attached tag T. Its inverse verified decryption function \mathcal{AD}_K returns either the message M or, on invalid ciphertexts, an error \bot . AEAD protects

- the confidentiality and authenticity of message *M*.
- the authenticity of associated data A (e.g., metadata).

$$\mathcal{AE}_{\kappa} : \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{*} \longrightarrow \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{t}, \qquad \mathcal{AE}_{\kappa}(N, A, M) = C, T$$

$$\mathcal{AD}_{\kappa} : \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{t} \rightarrow \mathbb{F}_{2}^{*} \cup \{\bot\}, \qquad \mathcal{AD}_{\kappa}(N, A, C, T) = M$$

AEAD – Authenticated Encryption (with Associated Data)

Important:

- $\mathcal{AE}_{\mathcal{K}}$: Nonce N must never repeat for the same \mathcal{K} ; a counter is usually ok
- $\mathcal{AD}_{\mathcal{K}}$: (Parts of) Message *M* must never be released before verifying *T*

Example: CCM Mode - CTR encryption with CBC-MAC authentication

 A_1, \ldots, A_s and M_1, \ldots, M_ℓ are the blocks of the padded $A \supseteq$ and $M \supseteq$. $f(N, s, \ell)$ encodes various parameters in one block (details here).

Popular Authenticated Ciphers

In TLS 1.3:

- AES-GCM (the TLS default), with AES-{128, 256}
- AES-CCM
- ChaCha20-Poly1305 (not based on AES, uses ChaCha20 stream cipher)

New NIST standard:

Ascon

Conclusion

Conclusion

- Symmetric schemes protect data confidentiality and/or authenticity
- Their security builds on secure primitives by using a secure mode
- Confidentiality can be protected with
 - Encryption (A no authenticity)
 - Authenticated Encryption
 - Asymmetric encryption, key encapsulation (next lecture)