

Design and Prototypical Implementation of ...

Silas Weber Zurich, Switzerland Student ID: 14-704-845

Supervisor: Eryk Schiller Date of Submission: February 3, 2019

University of Zurich Department of Informatics (IFI) Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Das ist die Kurzfassung...

Acknowledgments

Optional

Contents

Abstract							
\mathbf{A}	Acknowledgments						
1	Intr	roduction	1				
	1.1	Motivation	1				
	1.2	Description of Work	1				
	1.3	Thesis Outline	1				
2	Rela	ated Work	3				
	2.1	Lora	3				
		2.1.1 LoRa signal	3				
		2.1.2 LoRa in SDRs	3				
	2.2	C-RAN in LTE	3				
3	C-R	RAN for LoRa	5				
	3.1	Goal	5				
	3.2	Methods	5				
		3.2.1 Sending uplink signals	5				
		3.2.2 Sending downlink signals	5				
		3.2.3 Transmission protocol	5				
	3.3	Architecture	5				
		3 3 1 RRII	5				

vi	CONTENTS
V I	CONTENTS

		3.3.2 RRH	5		
		3.3.3 Network	5		
	3.4	Implementation	5		
	3.5	Results	5		
4	Futi	ure work	7		
	4.1	Limitations	7		
	4.2	Improvements	7		
5	Sun	nmary and Conclusions	9		
Abbreviations					
Glossary					
List of Figures					
List of Tables					
\mathbf{A}	A Installation Guidelines				
B Contents of the CD					

Introduction

- 1.1 Motivation
- 1.2 Description of Work
- 1.3 Thesis Outline

Related Work

2.1 Lora

history, usage iot, smart cities, long range, semtech the things network keys & gateways

2.1.1 LoRa signal

chirps, spreading factors, modulation

2.1.2 LoRa in SDRs

josh blum matt knight pieter robyns

2.2 C-RAN in LTE

advantages graphics

C-RAN for LoRa

- 3.1 Goal
- 3.2 Methods
- 3.2.1 Sending uplink signals
- 3.2.2 Sending downlink signals

getting a downlink signal recording from thethingsnetwrok recording from private networks manipulating private gateway offline generation of downlink signal see chapter

- 3.2.3 Transmission protocol
- 3.3 Architecture
- 3.3.1 BBU
- 3.3.2 RRH
- 3.3.3 Network
- 3.4 Implementation
- 3.5 Results

Future work

- 4.1 Limitations
- 4.2 Improvements

Summary and Conclusions

Bibliography

- [1] "Arduino-based library for dragino lora shield v1.4 https://github.com/arduino-org/arduinolibrary-lora-node-shield, last visit."
- [2] M. Coates, A. Hero, R. Nowak, and B. Yu, "Internet tomography," May 2002. http://www.qqq.com, 15.12.2019.
- [3] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions with Formulas*, *Graphs, and Mathematical Tables*. Dover, ninth dover printing, tenth gpo printing ed.

12 BIBLIOGRAPHY

Abbreviations

AAA Authentication, Authorization, and Accounting

14 ABBREVIATONS

Glossary

Authentication

Authorization Authorization is the decision whether an entity is allowed to perform a particular action or not, e.g. whether a user is allowed to attach to a network or not.

Accounting

16 GLOSSARY

List of Figures

18 LIST OF FIGURES

List of Tables

20 LIST OF TABLES

Appendix A

Installation Guidelines

Appendix B

Contents of the CD