空间解析几何测试题

1、在以 A(1,-1	,2), B(5,-6,2), C(1	1,3,-1) 为顶点	的三角形 Al	BC 中 AC 边上的高			
BD = ()	(A) 3,	(B) 5:	(C) 2;	(D) 1			
2 、设 \vec{m} , \vec{n} , \vec{p} 两两	万垂直,符合右手	规则,且 $\left \vec{m}\right =4$	$, \left \vec{n} \right = 2, \left \vec{p} \right = 3 ,$	则 $(\vec{m} \times \vec{n}) \cdot \vec{p} = ($)			
(A) 24;	(B) ± 24 ;	(C)	0;	(D) -6			
3、向量 \vec{x} 与 \vec{j} 成角	$\frac{\pi}{3}$,与 \vec{k} 成角 $\frac{2\pi}{3}$,且 $ \vec{x} =2$,则	$\vec{c} = ($)				
(A) $\pm(\sqrt{2},1,-1)$; (B) $(\pm\sqrt{2},\mp$	$(1,\sqrt{2});$ (C) $(\sqrt{2},1,\sqrt{2});$	(D) $(\pm\sqrt{2},1,-1)$			
4、设[\vec{a} , \vec{b} , \vec{c}] = (\vec{a} × \vec{b})· \vec{c} = 1,则[\vec{a} +2 \vec{b} , \vec{b} +2 \vec{c} , \vec{c} -2 \vec{a}] = ()							
(A) -7;	(B) -5;	(C) 3;	(D) -1				
5、已知 $(\vec{a}+\vec{b})$ \perp $(\vec{a}-2\vec{b})$, $(2\vec{a}+\vec{b})$ \perp $(\vec{a}-2\vec{b})$, 则 $(\vec{a},\hat{b}) = ($)							
(A) 0;	(B) $\frac{\pi}{4}$;	(C) $\frac{\pi}{3}$;	(D) $\frac{\pi}{2}$				
6、设 $\vec{a} = (1,1,0), \vec{b} = (2,0,2), \vec{c} 与 \vec{a}, \vec{b} 共面,且 prj_{\vec{a}}^{\vec{c}} = prj_{\vec{b}}^{\vec{c}} = 3, \bar{x} \vec{c}。$							
(A) $\sqrt{2}(2,1,1)$;	(B) $\sqrt{2}(2,-1)$	l,-1); (C)	$\sqrt{2}(2,-1,1)$;	(D) $\sqrt{2}(-2,1,-1)$			
7、设向量 \mathbf{x} 垂直于向量 $\mathbf{a} = (2,3,1)$ 和 $\mathbf{b} = (1,-1,3)$,与 $\mathbf{c} = (2,0,2)$ 的数量积为 -10 ,							
则 $x = ()$							
(A) (10,5,5);	B) (-5,10,5); (C) (-10,-5,5)	; (D) (-10,5	,5)			
8、已知 $\left \vec{b} \right = 2$,(\bar{c}	$(\vec{b}, \vec{b}) = \frac{\pi}{3}, \text{ M } \lim_{x \to 0}$	$\frac{\left \vec{a} + 2x\vec{b}\right - \left \vec{a}\right }{x} =$:()				
(A) $\frac{2}{3}$;	(B) $\frac{1}{2}$;	(C) 2;	(D) -1°				

9、 $\triangle ABC$ 中 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$,D 为 AC 的中点,E 为 BC 的第一个三等分点,用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{DE} ,则 $\overrightarrow{DE} = ($)

(A)
$$\frac{7}{6}\vec{b} - \frac{2}{3}\vec{a}$$
, (B) $\frac{2}{3}\vec{a} - \frac{1}{6}\vec{b}$, (C) $\frac{3}{4}\vec{a} + \frac{1}{6}\vec{b}$; (D) $\frac{2}{3}\vec{a} + \frac{1}{3}\vec{b}$.

10、下列方程表示圆锥面的是()

(A)
$$z = 1 - x^2 - y^2$$
, (B) $z = 1 - \sqrt{x^2 + y^2}$, (C) $z = 1 - \sqrt{1 - x^2 - y^2}$, (D) $z = 2x^2 + y^2$.

11、下列曲线为圆周的是(

(A)
$$\begin{cases} z = 2x^2 + y^2 \\ z = 2 \end{cases}$$
, (B) $\begin{cases} 2x^2 + 3y^2 + z^2 = 4 \\ z = 1 \end{cases}$, (C) $\begin{cases} z = 2x^2 - y^2 \\ x = 2 \end{cases}$, (D) $\begin{cases} z = 3\sqrt{x^2 + y^2} \\ z = 2 \end{cases}$,

12、曲线
$$\begin{cases} y^2 = x \\ y^2 + z^2 = 4x \end{cases}$$
 在 zox 面上的投影方程为 ()

(A)
$$\begin{cases} y = 0 \\ y^2 + z^2 = 4x \end{cases}$$
 (B)
$$\begin{cases} x = 0 \\ z^2 = 3y^2 \end{cases}$$
 (C)
$$\begin{cases} z = 0 \\ y^2 = 4x \end{cases}$$
 (D)
$$\begin{cases} y = 0 \\ z^2 = 3x \end{cases}$$

13、点
$$M(2,1,3)$$
关于直线 $\frac{x+1}{1} = \frac{y}{2} = \frac{z-2}{-1}$ 的对称点坐标为

(A)
$$M'(-\frac{8}{3}, \frac{5}{3}, -\frac{1}{3})$$
; (B) $M'(\frac{3}{4}, \frac{3}{5}, \frac{1}{3})$; (C) $M'(-\frac{3}{4}, -\frac{3}{5}, \frac{1}{3})$; (D) $M'(-1, 2, 0)$

- (A) 平行于平面; (B) 在平面上;
- (C) 垂直于平面;
- (D) 与平面斜交。

15、设平面
$$\pi$$
 过两个平面 π_1 : $x+y+1=0$, 和 π_2 : $x+2y+2z=0$ 的交线,且与平面

 $\pi_3: 2x-y-z=0$ 垂直,则平面 π 的方程为()

(A)
$$\pi: 3x - 2y + 2z = 1$$
; (B) $\pi: x - 2y + z = 1$

(B)
$$\pi: x-2y+z=1$$

(C)
$$\pi: 3x+4y+2z+2=0$$
; (D) $\pi: 3x-2y+z=4$

16、设L过A(1,0,0),B(0,1,1),将L绕z轴旋转一周所得曲面 Σ ,则 Σ 的方程为()。

(A)
$$x^2 + y^2 = (1-z)^2 + z^2$$
; (B) $y^2 + z^2 = 2x^2 + 1$;

(B)
$$v^2 + z^2 = 2x^2 + 1$$

(C)
$$x^2 - 2v^2 = 2z^2 + z$$
:

(D)
$$x^2 + 2y^2 = 2z^2 - z$$

17、直线
$$L: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$$
 在平面 $\pi: x-y+2z = 1$ 上的投影线方程为()

(A)
$$L':\begin{cases} 2x+y+2z-2=0\\ x-y-z+1=0 \end{cases}$$
; (B) $L':\begin{cases} x-y+2z-1=0\\ x-3y-2z+1=0 \end{cases}$;

(C)
$$L':\begin{cases} x-2y+z-1=0\\ x-3y-2z+1=0 \end{cases}$$

(C)
$$L':\begin{cases} x-2y+z-1=0\\ x-3y-2z+1=0 \end{cases}$$
; (D) $L':\begin{cases} 2x+y+2z-1=0\\ x-yy-z+2=0 \end{cases}$

18、
$$l_1: \frac{x-3}{2} = \frac{y}{4} = \frac{z+1}{3}$$
与 $l_2: \begin{cases} x = 2t-1 \\ y = 3 \end{cases}$ 的位置关系为() $z = t+2$

- (A) 垂直; (B) 平行; (C) 重合;

19、平面与平面
$$z=0$$
垂直,又经过从点 $(1,-1,1)$ 到直线 $L: \begin{cases} x=0 \\ y-z+1=0 \end{cases}$ 的垂线,则该平面

的方程为()

(A)
$$\pi: x+2y+1=0$$
; (B) $\pi: x-2y+z=1$;

(B)
$$\pi: x - 2y + z = 1$$

(C)
$$\pi: x + y - z = 1;$$
 (D) $\pi: x - 2y = 1$

(D)
$$\pi: x - 2y = 1$$

20、两直线
$$L_1$$
: $\frac{x-9}{4} = \frac{y+3}{-3} = z$ 和 L_2 : $\frac{x}{-2} = \frac{y+7}{9} = \frac{z-2}{2}$ 的最短距离为()

(A) 4; (B,) 6; (C)
$$\frac{47}{7}$$
;

答案: BADAA ADCBB DDAAC **ABDAC**