Masterclass in Data Structure and Algorithms

The course contents

Part 1: Searching and Sorting Algorithms:

- o Sorting algorithms: Insertion sort
- Merge sort
- Quick sort
- Heap sort
- Bucket sort
- Shell sort
- Counting sort
- Radix sort
- o Searching algorithms: Linear Search
- Binary Search
- More advanced search techniques will be covered with the help of data structures

Part 2: Fundamental Data Structures

- o **Basic Data Structures:** Array as a data structure.
- Array Based Data Structures:
 - Stack,
 - Queue,
 - Dequeue,
 - Priority Queue.
- o Linked Lists:
 - Singly Linked List,
 - Singly Circular Linked List,
 - Doubly Linked List,
 - Doubly Circular Linked List
- List Based
 - Stack,
 - Queue,
 - Dequeue,
 - Priority Queue.
- Dynamic disjoint sets
- Hash tables

Basic Indexing Techniques

• Part 3: The World of Trees:

- o Binary Search Tree:
 - create,
 - insert,
 - search.
 - remove,
 - destroy,
 - recursive preorder recursive,
 - recursive postorder recursive,
 - recursive inorder traversal,
 - nonrecursive preorder traversal,
 - nonrecursive postorder traversa,
 - nonrecursive inorder traversal,
 - predecessor,
 - successor

Height & Weight Balanced Trees:

- Red Black Tree
- AVL Tree
- Radix Tree
- B Tree
- Finger Tree
- Skip Lists

Tree Structures for the sets of intervals:

- Interval Trees
- Segment Trees
- Heaps:
 - Binomial Heap
 - Fibonacci Heap

• Part 4: The World of Graph:

- o Graph management algorithms:
 - Crate_graph
 - Add_vertex
 - Add_edge
 - Remove vertex
 - Remove_edge

- Print graph
- Destroy_graph

Graph Traversal Algorithms:

- Depth First Search
- Breadth First Search

Shortest Path Algorithms:

- Dijikstra's shortest path algorithm
- Bellman Ford Algorithm

Minimum Spanning Tree:

- Prim's Algorithm
- Kruskal's Algorithm

Part 5: Design of Algorithms: Algorithm Design **Strategies:**

- o **Divide and Conquer:** General solution, case studies with merge sort, quick sort.
- o **Greedy:** General Solution, case study with Prim's and Kruskal

Dynamic Programming:

- Introduction through ROD cutting problem.
- recursive top-down implementation
- Bottom up cut rod
- memoized cut rod
- Applying dynamic programming technique to matrix multiplication

• Elements of dynamic programming:

- Optimal substructure
- Overlapping subproblems
- Reconstructing optimal solution
- Longest common subsequence
- Optimal Binary Search Tree
- o **Backtracking:** General strategy and case study with 8 queens' problem.
- Introduction and solution to some well-known algorithmic problems:
 - 0/1 knapsack,
 - Hamiltonian graph problem,

Satisfiability problem.

Part 6: Analysis of algorithms:

- o Time complexity.
- Asymptotic notation to measure time complexity
 - Big Theta
 - Big O
 - Big omega
 - Small O
 - Small omega
- Time Complexity of Non-recursive algorithms
 - Computing Complexity of non-recursive algorithms via step counting
 - Converting step counting output into asymptotic notation
 - o Time Complexity of Recursive algorithms
- Computing Complexity of recursive algorithms
 - Step counting
 - Generate RECURSIVE EQUATION
 - Solving RECURSIVE EQUATION
 - Converting solution to recursive equation into asymptotic notation
- Theory of recursive equations
 - Master Theorem
 - o Other forms of recurrence relations & solving techniques