Project 1

CPSC 335

Group Members: Santiago Savala & Ibrahim Israr

rturo.santi015@csu.fullerton.edu misrar0@csu.fullerton.edu

Editor and ReadMe:

Compiling and Executing:

Lawnmower Algorithm Pseudocode and Step Count:

7		
9		
9		
9 3		
9	Step Court Computation & Pseudocode	
9		
9	Laummore Pseudocade & Step Cant	
3		
3	num Of Swap = 0; 1 tu disk_state_before = before; 1 tu for (i=0, i < total; i+t) n times for (j=0; i < total -1; i+t) m times if (i - nock) & (i+t = light) atta	
3	num Ut Swap = 0; 1 tu	
3	disk_state_before = before; 1 th	
3	for (i=0, 12 total; itt) n times	
3	For (i=0; jetotal-1; j+) m times	
•	For (j = 0; j < tital -1;) ++) m times if (j = Dark) & (j + 1 = Light) 2 tin & Swap j; 1 tin num Of Swap ++; 1 tin	
	Elean i 1 tu	
	NAME OF THE PARTY AFTER	
-	3	
-	For (k = total - 1); k > 1; k -) in lives	
-	tor((C=101a -1), K71, K-1 m 0/405	
	if (k = Light) E (k-1 = Bark) 2ty	
-	>wap (k-1), 4+n	
	Swap (K-1), 4th	
-	num Of Swep ++; 1 tu	
	3	
	Old 1	
•	return rum Of Smap	
-5	SC = n + m + m + 4 + 4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	
-	$51 = n + m + m + 4 + 4 + 3 + m = 16 n m^2 + 3 + m$	
-3	30-11/11/11/11/11/11	
-3)		
		_
-		
-3)		
-3)		
- 20		
-0		-

Alternate Algorithm Pseudocode and Step Count:

Proof Argument for Lawnmover and Alternate Algorithms:

Lawnmower:

Alternate:

