

MOBA Mobile Automation AG

SystemtestCurrentInterface

Version 2.000

Produkt	MRW 4-20mA	
	(Momenten unabhängige Redundante Wägezelle)	
Auftraggeber	MOBA Mobile Automation AG Kapellenstraße 15 65555 Limburg Germany	
Auftragnehmer	MOBA Mobile Automation AG Kapellenstraße 15 65555 Limburg Germany	

Dokument erstellt von	Datum	Unterschrift
M.Offenbach	28.04.2022	

MRW 4-20mA vertraulich

Diese Dokumentation des Unittests basiert auf einem Vordruck der MOBA AG.

Der Inhalt darf ausschließlich den am Projekt beteiligten Personen zugängig gemacht werden. Insbesondere die Weitergabe an Dritte ist ohne ausdrückliche schriftliche Erlaubnis der MOBA AG nicht erlaubt.

Außerhalb des gemeinsamen Projektes darf kein Teil dieser Unterlagen für irgendwelche Zwecke vervielfältigt oder übertragen werden, unabhängig davon, auf welche Art und Weise oder mit welchen Mitteln dies geschieht.

Die hier getroffenen Festlegungen schließen nicht aus, dass in einer gesonderten Geheimhaltungsvereinbarung weiterreichende oder abweichende Vereinbarungen zur Wahrung der Vertraulichkeit getroffen und festgeschrieben werden.

Copyright by

MOBA Mobile Automation AG Kapellenstr. 15 D-65555 Limburg Internet: www.moba.de

Inhaltsverzeichnis

1	Einfi	ührung		6
	1.1	Vorwort.		6
	1.2	Änderun	gshistorie	6
	1.3	Ansprect	npartner	7
	1.4	-	· >	
	1.5	_		
2	Syst	emtest ,Cı	urrentInterface'	8
	2.1	Testmitte	el in der Übersicht	8
		2.1.1	Firmware V2.000 – zu testende Firmware in der Originalfassung	
		2.1.2	Firmware V1.103 –Firmware in der Originalfassung	
		2.1.3	Terminalsoftware ,Docklight Scripting V2.3'	
		2.1.4	MRW420digital – Wägezelle mit Firmware V2.000	
		2.1.5	Testboard ,MRW420'	
		2.1.6	Weigh-Tronix ,Wiegestabsimulator'	
		2.1.7	WZ-Simulationsbox	
		2.1.7	Widerstandsdekade	
		2.1.9	Multimeter ,HP3478A'	
		2.1.3	Labornetzteil ,Owon ODP3033'	
		2.1.10	Oszilloskop ,Tektronix TDS2014B'	
		2.1.12	Signalgenerator ,Juntek PSG9080'	
		2.1.13	2-Kanal-Relaisbox	
		2.1.14	MRW-Kommunikationsleitung.	
		2.1.15	Adapter DB9 auf USB	
	2.2	Stromscl	nnittstelle	
		2.2.1	Zu überprüfende Spezifikationen	14
		2.2.2	Regelparameter in der Übersicht	15
		2.2.3	Untersuchung des Regelverhaltens bei kontinuierlicher Lastzu- und	4.5
		2.2.3.1	abnahme von 0-920-0kg Testbeschreibung	
		2.2.3.2	Testmittel	
		2.2.3.3	Testablauf	
		2.2.3.4	Testergebnisse	17
		2.2.3.5	Testauswertung	
		2.2.3.6	Resultierendes Testergebnis	19
		2.2.4	Untersuchung des Regelverhaltens bei sprunghafter Lastzu- und abna von 0-920-0kg	
		2.2.4.1	Testbeschreibung	
				= 0

2.2.4.2	Testmittel	. 20
2.2.4.3	Testablauf	. 20
2.2.4.4	Testergebnisse	. 21
2.2.4.5	Testauswertung	. 23
2.2.4.6	Resultierendes Testergebnis	. 24
2.2.5	Untersuchung des Einflusses des Lasterfassung-Mittelwertfilters auf das	
	Ausgangssignal	
2.2.5.1	Testbeschreibung	. 25
2.2.5.2	Testmittel	
2.2.5.3	Testablauf	. 26
2.2.5.4	Testergebnisse	. 27
2.2.5.5	Testauswertung	. 29
2.2.6	Ab- und Anklemmen der Bürde	. 30
2.2.6.1	Testbeschreibung	. 30
2.2.6.2	Testmittel	. 30
2.2.6.3	Testablauf	. 30
2.2.6.4	Testergebnisse	. 30
2.2.6.5	Testauswertung	. 37
2.2.6.6	Resultierendes Testergebnis	. 38
2.2.7	Einfluss der Bürde auf den Ausgangsstrom	. 39
2.2.7.1	Testbeschreibung	. 39
2.2.7.2	Testmittel	. 39
2.2.7.3	Testablauf	. 39
2.2.7.4	Testergebnisse	. 39
2.2.7.5	Testauswertung	. 42
2.2.7.6	Resultierendes Testergebnis	. 42
2.2.9	Abschaltung bei Überlast	. 43
2.2.9.1	Testbeschreibung	. 43
2.2.9.2	Testmittel	. 43
2.2.9.3	Testablauf	. 43
2.2.9.4	Testergebnisse	. 44
2.2.9.5	Testauswertung	
2.2.9.6	Resultierendes Testergebnis	. 49
2.2.10	Untersuchung der Abschaltzeit aufgrund einer Soll- Iststrom-Abweichung	
2.2.10.1	Testbeschreibung	
2.2.10.2	Testmittel	
2.2.10.3	Testablauf	
2.2.10.4	Testergebnisse	
2.2.10.5	Testauswertung	
2.2.10.6	Resultierendes Testergebnis	. 53
2.2.11	Verlässlichkeit der Soll- Iststrom-Untersuchung	
2.2.11.1	Testbeschreibung	
2.2.11.2	Testmittel	
2.2.11.3	Testablauf	
2.2.11.4	Testergebnisse	. 55

	2.2.11.5	Testauswertung	61
	2.2.11.6	Resultierendes Testergebnis	62
	2.2.12	Abschaltung aufgrund eines Fehlers im 17V-Netzteil	63
	2.2.12.1	Testbeschreibung	63
	2.2.12.2	Testmittel	63
	2.2.12.3	Testablauf	63
	2.2.12.4	Testergebnisse	64
	2.2.12.5	Testauswertung	65
	2.2.12.6	Resultierendes Testergebnis	65
	2.2.13	Einschaltzeit	66
	2.2.13.1	Testbeschreibung	66
	2.2.13.2	Testmittel	66
	2.2.13.3	Testablauf	66
	2.2.13.4	Testergebnisse	67
	2.2.13.5	Testauswertung	
	2.2.13.6	Resultierendes Testergebnis	69
	2.2.14	Vergleich des Zeitverhaltens zwischen den Firmware-Version V1.103	und
		V2.000	70
	2.2.14.1	Testbeschreibung	70
	2.2.14.2	Testmittel	70
	2.2.14.3	Testergebnisse, -auswertung	70
	2.2.14.4	Resultierendes Testergebnis	70
3	Kommentare		71
4	Anhang		72

1 Einführung

1.1 Vorwort

Die MOBA AG versteht sich als Partner für die Entwicklung und Lieferung kundenspezifischer Elektronikkomponenten und daraus zusammengestellter Steuerungssysteme, die für den Einsatz an mobilen Maschinen konzipiert sind.

Der hier vorliegend beschriebene Systemtest überprüft das exakte Verhalten der Funktionalität des CurrentInterfaces, welche aufgrund von Kompatibilitätsgründen mit alten Firmware-Varianten von Nöten ist.

Dokumentiert ist zunächst das erwartete Verhalten der Firmware in Bezug auf die Eeprom-Reorganisation, gefolgt von der Auflistung der benötigten Testmittel und der Beschreibung des Testablaufs. Im anschließenden Teil finden sich die Testergebnisse in Bezug auf das geforderte Verhalten wieder.

1.2 Änderungshistorie

Version	Datum	Kapitel	Änderung / Ergänzung
1.0	28.04.2022	alle	Erstellung

1.3 Ansprechpartner

MOBA Mobile Automation AG

Kapellenstraße 15 65555 Limburg

Name	Position	Telefonnummer	E-Mail
Boris Zils	Produktmanager	+49(0)6431-9577- 123	b.zils@moba.de
Sebastian Schlesies Vertrieb		+49(0)6431-9577- 267	s.schlesies@moba.de
Jürgen Stiller Entwicklungsleiter		+49(0)6431-9577- 282	j.stiller@moba.de
Norbert Lipowski	Entwicklung	+49(0)6431-9577- 137	n.lipowski@moba.de

1.4 Anhänge

Dokumentname	Beschreibung	

1.5 Glossar

Abkürzung / Fachbegriff	Beschreibung / Definition	
MRW Momenten unabhängige Redundante Wägezelle		
DMS	Dehnungsmessstreifen	

2 Systemtest ,CurrentInterface^e

- 2.1 Testmittel in der Übersicht
- 2.1.1 Firmware V2.000 zu testende Firmware in der Originalfassung
- 2.1.2 Firmware V1.103 -Firmware in der Originalfassung
- 2.1.3 Terminalsoftware ,Docklight Scripting V2.3'

2.1.4 MRW420digital - Wägezelle mit Firmware V2.000

2.1.5 Testboard ,MRW420'

2.1.6 Weigh-Tronix ,Wiegestabsimulator'

2.1.7 WZ-Simulationsbox

2.1.8 Widerstandsdekade

2.1.9 Multimeter ,HP3478A'

2.1.10 Labornetzteil ,Owon ODP3033'

2.1.11 Oszilloskop ,Tektronix TDS2014B'

2.1.12 Signalgenerator ,Juntek PSG9080'

2.1.13 2-Kanal-Relaisbox

2.1.14 MRW-Kommunikationsleitung

2.1.15 Adapter DB9 auf USB

2.2 Stromschnittstelle

2.2.1 Zu überprüfende Spezifikationen

Index	Verhalten	Testergebnis
ST1.1.1	Der Grenzwert zur Erkennung einer Stromabweichung liegt bei 0.16mA (Wägezellen mit 500kg Nennlast) bzw. 0.08mA (Wägezellen mit 1000kg Nennlast). Das entspricht einer Last von 5kg.	
ST1.1.2	Die genannten Spezifikationen gelten für alle MRW420-Wägezellen mit 500kg und auch mit 1000kg Nennlast.	
ST1.1.3	Bei einer mehrfach hintereinander festgestellten Stromabweichung (Ist-/Sollstrom) ist das System innerhalb von 3 Sekunden in den Sicherheitszustand zu überführen (I _{out} = 0mA).	Erfüllt
	Der Sicherheitszustand wird über das dauerhafte Leuchten der dem Kanal zugeordneten, roten LED signalisiert	Erfüllt
	Das System verbleibt bis zum Neustart in diesem Zustand	Erfüllt
ST1.1.4	Ein defektes Netzteil der Spannungsversorgung des Stromausgangs muss detektiert werden, sobald der Ausgangsstrom über dem Wert liegt, welchen das defekte Netzteil noch treiben kann. Eine Detektion führt zum Sicherheitszustand.	Erfüllt Der Test von ST1.1.3 inkludiert diesen Test, da die
		gleichen Abschaltkriterien zu Tragen kommen
ST1.1.5	Eine abgetrennte Bürde beim Systemstart darf nicht zum Sicherheitszustand führen.	Erfüllt
ST1.1.6	Ein Ab- oder Zuschalten der Bürde im laufenden Betrieb darf nicht zum Sicherheitszustand führen.	Erfüllt
ST1.1.7	Niederfrequente Schwingungen auf der Korblast dürfen nicht zum Sicherheitszustand führen.	Erfüllt
ST1.1.8	Zu jeder Zeit muss der Ausgangsstrom langsamen Laständerungen (100kg/s) folgen. Aufgrund der Aktualisierungszeit der Stromschnittstelle (< 550ms) dürfen sich "Treppenstufen" einstellen. Der maximale Zeitversatz zwischen Lastkurve und Ausgangsstrom darf 1s nicht überschreiten. Zu keiner Zeit darf das System in den Sicherheitszustand gelangen.	Erfüllt
ST1.1.9	Der Zeitversatz zwischen sprunghaften Laständerung und Ausgangsstrom darf 2.5s nicht überschreiten. Zu keiner Zeit darf das System in den Sicherheitszustand gelangen.	Erfüllt
ST1.1.10	Kurzzeitige Unterbrechungen des Anschlusses zur Bürde (Kabelbruch) dürfen nicht zum Systemfehler führen.	Erfüllt
ST1.1.11	Eine dauerhafte Überlast (> 110% der Nennlast) muss binnen 3s zu einem Systemfehler führen (=> Ausgangsstrom = 0mA). Dieser Zustand wird über ein dauerhaftes Leuchten der roten, dem Kanal zugeordneten Led signalisiert. Besteht dieses Kriterium nicht länger, geht das System in den normalen Betriebsmodus und stellt den Ausgangsstrom gemäß der Last ein.	Erfüllt
ST1.1.12	Die Veränderung der Bürde innerhalb von 0 bis 500Ω darf bei 1000kg Last nur eine Ausgangsstromänderung von 0.08mA (entsprecht 5kg) nach sich ziehen.	Nicht erfüllt

2.2.2 Regelparameter in der Übersicht

Parameter	Wert	Bemerkung
Zellenkalibrierung	500/1000k	
,Nennlast'	g	
Zähler-Grenzwert	13	Anzahl der ermittelten Stromabweichungs-Überschreitungen
,Stromabweichun		bis zur Abschaltung
g'		(SYSTEMCND_CURRENT_DEVIATION_COUNTER_LIMIT)
Grenzwert	0.08mA	1000kg Zelle
,Stromabweichun	0.16mA	500kg Zelle
g'		9
I-Anteil der	50%	
,Stromregelung ⁽		
Abschaltung der	5mA	SYSTEMCND_CURRENT_DEVIATION_DISABLE_FEEDBA
Stromregelung ab		CK
einer		
Stromabweichung		
von		

2.2.3 Untersuchung des Regelverhaltens bei kontinuierlicher Lastzu- und abnahme von 0-920-0kg

2.2.3.1 Testbeschreibung

Zu testen sind die Spezifikationen:

Spec.	Verhalten	Bemerkung
ST1.1.8	Zu jeder Zeit muss der Ausgangsstrom langsamen Laständerungen (100kg/s) folgen. Der maximale Zeitversatz zwischen Lastkurve und Ausgangsstrom darf 1s nicht überschreiten. Zu keiner Zeit darf das System in den Sicherheitszustand gelangen.	Bei einer Mittelwertfilterung des Wägesignals mit Filtertiefe 6

In diesem Abschnitt soll das Regelverhalten der Stromschnittstelle bei kontinuierlicher Lastzu- und abnahme von 0kg-920kg-0kg untersucht werden. Als Bürde dient ein 100 und 500Ω Widerstand.

2.2.3.2 Testmittel

- Testboard ,MRW420' mit Projekt ,MRW420 V2.000'
 Diese ist vor dem Test zu kalibrieren.
- Labornetzteil ,Owon ODP3033'
- Oszilloskop ,Tektronix TDS2014B^c
- Signalgenerator ,Juntek PSG9080^c
- WZ-Simulationsbox

2.2.3.3 Testablauf

Mit dem o.g. Signalgenerator wird dem Wägeeingang über die Netzteiladaptionsplatine eine Dreieckspannung eingespeist. Diese dient der Simulation einer Lastzu- bzw. abnahme um etwa

920kg innerhalb einer Zeit von jeweils fünf Sekunden. Aufgrund der WZ-Simulationsbox entspricht dies einer Amplitude des Eingangssignals von 4.6Vpp bei einem Offset von 2.3V.

Einstellung Signalgenerator PSG9080

Zu diesem Eingangssignal ist die Spannung über eine 100Ω und eine 500Ω Bürde aufzuzeichnen und zu bewerten:

Zu jeder Zeit muss der Ausgangsstrom der Laständerung folgen.

Der maximale Zeitversatz zwischen Lastkurve und Ausgangsstrom darf 1s nicht überschreiten.

2.2.3.4 Testergebnisse

Laständerung - 1000hm Bürde

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Dreiecksignal

CH2: Spannung über 100Ω Bürde des 1.Kanals CH3: Spannung über 100Ω Bürde des 2.Kanals

Laständerung - 5000hm Bürde

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Dreiecksignal

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

2.2.3.5 Testauswertung

Deutlich erkennt man eine Verzögerung des Ausgangssignals von etwa 600-700ms, welche neben der Regelverzögerung auch vom Mittelwertfilter der Gewichtserfassung beeinflusst wird. Das Ausgangssignal folgt dem Wägesignal kontinuierlich.

100Ω Bürde				
Spec.	Prüfkriterium	erf	üllt	Bemerkung
ST1.1.8	Zu jeder Zeit muss der Ausgangsstrom langsamen Laständerungen (100kg/s) folgen. Aufgrund der Der maximale Zeitversatz zwischen Lastkurve und Ausgangsstrom darf 1s nicht überschreiten. Zu keiner Zeit darf das System in den Sicherheitszustand gelangen.	CH0	Ja Ja	Bei einer Mittelwertfilterung des Wägesignals mit Filtertiefe 6

500Ω Bürde				
Spec.	Prüfkriterium	erf	üllt	Bemerkung
ST1.1.8	Zu jeder Zeit muss der Ausgangsstrom langsamen Laständerungen (100kg/s) folgen. Aufgrund der Der maximale Zeitversatz zwischen Lastkurve und Ausgangsstrom darf 1s nicht überschreiten. Zu keiner Zeit darf	CH0	Ja Ja	Bei einer Mittelwertfilterung des Wägesignals mit Filtertiefe 6
	das System in den Sicherheitszustand gelangen.			

2.2.3.6 Resultierendes Testergebnis

Test bestanden

2.2.4 Untersuchung des Regelverhaltens bei sprunghafter Lastzu- und abnahme von 0-920-0kg

2.2.4.1 Testbeschreibung

Zu testen sind die Spezifikationen:

Spec.	Verhalten	Bemerkung
ST1.1.9	Der Zeitversatz zwischen sprunghaften Laständerung und Ausgangsstrom darf 2.5s nicht überschreiten. Zu keiner Zeit darf das System in den Sicherheitszustand gelangen.	

In diesem Abschnitt soll das Regelverhalten der Stromschnittstelle bei sprunghafter Lastzu- und Abnahme von 0kg-920kg-0kg untersucht werden. Als Bürde dient ein 100 und 500Ω Widerstand.

2.2.4.2 Testmittel

- Testboard ,MRW420' mit Projekt ,MRW420 V2.000'
 Diese ist vor dem Test zu kalibrieren.
- Labornetzteil ,Owon ODP3033*
- Oszilloskop ,Tektronix TDS2014B'
- Signalgenerator ,Juntek PSG9080[°]
- WZ-Simulationsbox

2.2.4.3 Testablauf

Mit dem o.g. Signalgenerator wird dem Wägeeingang über die Netzteiladaptionsplatine eine Rechteckspannung eingespeist. Diese dient der Simulation einer Lastzu- bzw. Abnahme um etwa 920kg innerhalb einer Zeit von jeweils fünf Sekunden. Aufgrund der WZ-Simulationsbox entspricht dies einer Amplitude des Eingangssignals von 4.6Vpp bei einem Offset von 2.3V.

Einstellung Signalgenerator PSG9080

Zu diesem Eingangssignal ist die Spannung über eine 100Ω und eine 500Ω Bürde aufzuzeichnen und zu bewerten:

Zu jeder Zeit muss der Ausgangsstrom der Laständerung folgen.

Der maximale Zeitversatz zwischen Lastkurve und Ausgangsstrom darf 2,5s nicht überschreiten.

2.2.4.4 Testergebnisse

Sprunghafte Laständerung - 1000hm Bürd

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal CH2: Spannung über 100Ω Bürde des 1.Kanals

CH3: Spannung über 100Ω Bürde des 2.Kanals

TDS 2014B - 08:21:16 24.01.2022

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal CH2: Spannung über 100Ω Bürde des 1.Kanals CH3: Spannung über 100Ω Bürde des 2.Kanals

Sprunghafte Laständerung - 5000hm Bürd

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

Sprunghafte Laständerung - 5000hm Bürd

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

2.2.4.5 Testauswertung

Deutlich erkennt man eine Verzögerung des Ausgangssignals von etwa 2000-2100ms. Die Stufen der ansteigenden Flanken der Stromausganssignale beruhen auf der Filterung des Wägesignals und haben einen deutlichen Einfluss auf die Dauer bis zur vollständigen Aussteuerung des ungefilterten Eingangssignals.

100Ω Bürde			
Spec.	Prüfkriterium	erfüllt	Bemerkung
ST1.1.8	Ausgangsstrom folgt der Laständerung	Ja	
ST1.1.9	Zeitversatz < 2.5s	Ja	

500Ω Bürde			
Spec.	Prüfkriterium	erfüllt	Bemerkung
ST1.1.8	Ausgangsstrom folgt der Laständerung	Ja	
ST1.1.9	Zeitversatz < 2.5s	Ja	

2.2.4.6 Resultierendes Testergebnis

Test bestanden

2.2.5 Untersuchung des Einflusses des Lasterfassung-Mittelwertfilters auf das Ausgangssignal

2.2.5.1 Testbeschreibung

Um die vorangegangenen und die nachfolgenden Messungen besser bewerten zu können, soll an dieser Stelle der Einfluss des Mittelwertfilters der Lasterfassung untersucht werden. Dieser bewirkt ein Verschleifen des Eingangssignals, welches dann in dieser Form dem Strommodul zur Wandlung in den geforderten Ausgangsstrom zugeführt wird.

Filtertiefe 6 Eingangssignal			
Last [kg]	gefilterte Last [kg]		
0	0		
0	0		
920	153		
920	307		
920	460		
920	613		
920	767		
920	920		
920	920		
920	920		

Berechneter Einfluss des Mittelwertfilters auf das dem Strommodul zugeführten Gewichtswert

2.2.5.2 Testmittel

- Testboard ,MRW420' mit Projekt ,MRW420 V2.000' Diese ist vor dem Test zu kalibrieren.
- Labornetzteil ,Owon ODP3033'
- Oszilloskop ,Tektronix TDS2014B⁶
- Signalgenerator ,Juntek PSG9080⁶
- WZ-Simulationsbox

2.2.5.3 Testablauf

Mit dem o.g. Signalgenerator wird dem Wägeeingang über die Netzteiladaptionsplatine eine Rechteckspannung eingespeist. Diese dient der Simulation einer Lastzu- bzw. abnahme um etwa 920kg innerhalb einer Zeit von jeweils fünf Sekunden. Aufgrund der WZ-Simulationsbox entspricht dies einer Amplitude des Eingangssignals von 4.6Vpp bei einem Offset von 2.3V. Als Bürde kommt ein 500Ω Widerstand zum Einsatz. Der Signalverlauf der Spannung am Wägeeingang und über der Bürde sind aufzuzeichnen.

Die Aufzeichnung erfolgt mit einer Mittelwert-Filtertiefe von 6 (einzustellen über den Uart-Befehl ,SFD 6') und wird mit Filtertiefe 0 (,SFD 0') – Filter ausgeschaltet – wiederholt.

2.2.5.4 Testergebnisse

Filtertiefe 6

Sprunghafte Laständerung - 5000hm Bürd

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 – Filtertiefe 6 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

Sprunghafte Laständerung - 5000hm Bürd

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 – Filtertiefe 6 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

Filtertiefe 0

Sprunghafte Laständerung - 5000hm Bürd

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 – Filtertiefe 0 CH1: Brückenspannung (DMS) – ,Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

Sprunghafte Laständerung - 5000hm Bürd

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 – Filtertiefe 0 CH1: Brückenspannung (DMS) – 'Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

2.2.5.5 Testauswertung

Deutlich erkennt man den Einfluss des Mittelwertfilters auf die zur Ausregelung des Lastsprungs benötigte Zeit. Diese erhöht sich durch den Filter um etwa 1.4 bis 1.5 Sekunden und berechnet sich aus der ADC-Wandlungsperiode von etwa 200ms und der Filtertiefe:

MRW 4-20mA vertraulich

2.2.6 Ab- und Anklemmen der Bürde

2.2.6.1 Testbeschreibung

Zu testen sind die Spezifikationen:

Spec.	Verhalten	Bemerkung
ST1.1.5	Eine abgetrennte Bürde beim Systemstart darf nicht zum Sicherheitszustand führen.	
ST1.1.6	Ein Ab- oder Zuschalten der Bürde im laufenden Betrieb darf nicht zum Sicherheitszustand führen.	
ST1.1.10	Kurzzeitige Unterbrechungen des Anschlusses zur Bürde (Kabelbruch) dürfen nicht zum Systemfehler führen.	

Eine abgeklemmte Bürde zum Systemstart sowie das Ab- und Anklemmen der Bürde während der Betriebsphase darf nicht zu einem Sicherheitszustand führen.

2.2.6.2 Testmittel

- <u>Testboard ,MRW420</u> mit Projekt ,MRW420 V2.000

 Diese ist vor dem Test zu kalibrieren.
- Labornetzteil ,Owon ODP3033'
- Weigh-Tronix ,Wiegestabsimulator'
- 2-Kanal-Relaisbox
- 2x Multimeter HP3478A

2.2.6.3 Testablauf

Weigh-Tronix-Kalibrierbox an den Wägeeingang des Testboards ,MRW420' anschließen. Über diese eine Last von 1mV/V, entsprechend 1000kg, einstellen.

Das Testboard ist nacheinander mit verschiedenen Bürden zu versehen. Diese werden über die 2-Kanal-Relaisbox mit 0.1 Hz (Duty: 50% - Tastzeit ist gleich der Pausenzeit) an- bzw.

abgeklemmt. Für jeden Kanal nimmt ein HP3478A im Zwei-Sekundentakt den Ausgangsstrom auf und loggt diesen mit.

Weder durch das An- noch durch das Abklemmen der Bürde darf das System in den Sicherheitszustand gelangen. Gleiches gilt beim Anklemmen der Bürde während des Betriebs. Zuvor ist noch zu prüfen, ob der Aufstart des Systems ohne Bürde nicht zu einem Übergang in den Sicherheitsstaus (Systemfehler) führt.

Die Tests sind mit einer 0Ω , einer 100Ω und einer 500Ω Bürde durchzuführen.

Abschließend erfolgt noch die Überprüfung bei kurzzeitig (100ms) abgeklemmter Bürde (z.B. durch kurzzeitigen Kabelbruch).

Zu keiner Zeit darf das System in den Sicherheitszustand versetzt werden.

2.2.6.4 Testergebnisse

Die zyklisch gemessenen Ausgangsströme als Diagramm:

Ausgangsstrom bei zyklischem Ausschalten der 0Ω-Bürde (5s aus / 5s eingeschaltet).

Ausgangsstrom bei zyklischem Ausschalten der 100Ω -Bürde (5s aus / 5s eingeschaltet).

Ausgangsstrom bei zyklischem Ausschalten der 500Ω-Bürde (5s aus / 5s eingeschaltet).

100ms-Impuls

Ausgangsstrom bei kurzzeitigem (100ms) Ausschalten der 0Ω -Bürde.

100Ω Bürde

1000hm Bürdenabschaltung - 100ms

Ausgangssignal bei kurzzeitiger Unterbrechung der Bürde für 100ms - Kanal 0 und Kanal 1

CH2: Spannung über 100Ω Bürde des 1.Kanals CH3: Spannung über 100Ω Bürde des 2.Kanals

Ausgangsstrom bei kurzzeitigem (100ms) Ausschalten der 100Ω-Bürde.

500Ω Bürde

5000hm Bürdenabschaltung - 100ms

Ausgangssignal bei kurzzeitiger Unterbrechung der Bürde für 100ms – Kanal 0 und Kanal 1

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

Ausgangsstrom bei kurzzeitigem (100ms) Ausschalten der 500Ω -Bürde.

2.2.6.5 Testauswertung

0Ω Bürde						
Spec.	Spec. Prüfkriterium			Bemerkung		
ST1.1.5	Eine abgetrennte Bürde beim Systemstart darf nicht zum	CH0	Ja			
	Sicherheitszustand führen.	CH1	Ja			
ST1.1.6	Ein Ab- oder Zuschalten der Bürde	CH0	Ja			
	im laufenden Betrieb darf nicht zum Sicherheitszustand führen.	CH1	Ja			

100Ω Bürde						
Spec.	Prüfkriterium erf			Bemerkung		
ST1.1.5	Eine abgetrennte Bürde beim Systemstart darf nicht zum	CH0	Ja			
	Sicherheitszustand führen.	CH1	Ja			
ST1.1.6	Ein Ab- oder Zuschalten der Bürde	CH0	Ja			
	im laufenden Betrieb darf nicht zum Sicherheitszustand führen.	CH1	Ja			

	500Ω Bürde						
Spec.	Prüfkriterium	er	füllt	Bemerkung			
ST1.1.5	Eine abgetrennte Bürde beim Systemstart darf nicht zum	CH0	Ja				
	Sicherheitszustand führen.	CH1	Ja				

ST1.1.6	Ein Ab- oder Zuschalten der Bürde	CH0	Ja
	im laufenden Betrieb darf nicht		
	zum Sicherheitszustand führen.	CH1	Ja

0Ω Bürde – 100ms-Impuls						
Spec.	Prüfkriterium	er	füllt	Bemerkung		
ST1.1.5	Eine abgetrennte Bürde beim Systemstart darf nicht zum	CH0	Ja			
	Sicherheitszustand führen.	CH1	Ja			
ST1.1.6	Ein Ab- oder Zuschalten der Bürde	CH0	Ja			
	im laufenden Betrieb darf nicht zum Sicherheitszustand führen.	CH1	Ja			
ST1.1.10	Kurzzeitige Unterbrechungen des Anschlusses zur Bürde	CH0	Ja			
	(Kabelbruch) dürfen nicht zum Systemfehler führen.	CH1	Ja			

100Ω Bürde – 100ms-Impuls						
Spec.	Prüfkriterium	erf	üllt	Bemerkung		
ST1.1.5	Eine abgetrennte Bürde beim Systemstart darf nicht zum	CH0	Ja			
	Sicherheitszustand führen.	CH1	Ja			
ST1.1.6	Ein Ab- oder Zuschalten der Bürde	CH0	Ja			
	im laufenden Betrieb darf nicht zum Sicherheitszustand führen.	CH1	Ja			
ST1.1.10	Kurzzeitige Unterbrechungen des Anschlusses zur Bürde	CH0	Ja			
	(Kabelbruch) dürfen nicht zum Systemfehler führen.	CH1	Ja			

500Ω Bürde – 100ms-Impuls						
Spec.	Prüfkriterium	erf	üllt	Bemerkung		
ST1.1.5	Eine abgetrennte Bürde beim Systemstart darf nicht zum	CH0	Ja			
	Sicherheitszustand führen.	CH1	Ja			
ST1.1.6	Ein Ab- oder Zuschalten der Bürde	CH0	Ja			
	im laufenden Betrieb darf nicht zum Sicherheitszustand führen.	CH1	Ja			
ST1.1.10	Kurzzeitige Unterbrechungen des	CH0	Ja			
	Anschlusses zur Bürde					
	(Kabelbruch) dürfen nicht zum	CH1	Ja			
	Systemfehler führen.					

2.2.6.6 Resultierendes Testergebnis

Test bestanden

Seite 38 von 72 Systemtest Version 1.0

2.2.7 Einfluss der Bürde auf den Ausgangsstrom

2.2.7.1 Testbeschreibung

Zu testen sind die Spezifikationen:

Spec.	Verhalten	Bemerkung
ST1.1.12	Die Veränderung der Bürde innerhalb von 0 bis 500Ω	
	darf bei 1000kg Last nur eine Ausgangsstromänderung	
	von 0.08mA (entsprecht 5kg) nach sich ziehen.	

Ein veränderter Bürdenwiderstand darf nur geringfügig den Ausgangsstrom verändern.

2.2.7.2 Testmittel

- <u>Testboard ,MRW420</u> mit Projekt ,MRW420 V2.000

 Diese ist vor dem Test zu kalibrieren.
- Labornetzteil ,Owon ODP3033'
- Weigh-Tronix ,Wiegestabsimulator*
- Multimeter HP3478A

2.2.7.3 Testablauf

Weigh-Tronix-Kalibrierbox an den Wägeeingang des Testboards "MRW420" anschließen. Über diese eine Last von 1mV/V, entsprechend 1000kg, einstellen.

Das Testboard ist nacheinander mit verschiedenen Bürden zu versehen. Ein Multimeter "HP3478A" erfasst bei verschiedenen Bürdenwiderständen jeweils 100mal den Ausgangsstrom. Diese Werte sind im Laufe der Auswertung zu mitteln.

Bürden von 0Ω , 100Ω und 500Ω sind bei diesem Test zu verwenden.

Der Ausgangsstrom darf sich von der niedrigsten zur höchsten Bürde nur um maximal 0.08mA (entsprechend 5kg) verändern.

2.2.7.4 Testergebnisse

	Bürdenwiderstand 0Ω		Bürdenwiderstand 100Ω		iderstand 0Ω
lout CH0	lout CH1	lout CH0	lout CH1	lout CH0	lout CH1
[mA]	[mA]	[mA]	[mA]	[mA]	[mA]
20,002	19,946	19,969	19,946	19,900	19,944
19,999	19,947	19,966	19,947	19,898	19,944
19,992	19,950	19,971	19,946	19,898	19,939
19,997	19,951	19,969	19,946	19,898	19,938
19,995	19,948	19,968	19,950	19,898	19,940
19,993	19,948	19,971	19,947	19,899	19,941

				1	
19,994	19,949	19,975	19,944	19,897	19,938
19,991	19,949	19,973	19,946	19,899	19,941
19,993	19,948	19,975	19,947	19,901	19,937
19,992	19,950	19,975	19,947	19,896	19,936
19,992	19,948	19,975	19,948	19,897	19,938
19,992	19,949	19,978	19,947	19,897	19,939
19,992	19,946	19,972	19,947	19,900	19,941
19,990	19,948	19,970	19,952	19,896	19,940
19,991 19,990	19,945 19,945	19,969 19,970	19,955 19,954	19,898 19,898	19,939 19,939
19,990	19,952	19,969	19,957	19,896	19,940
19,986	19,951	19,969	19,956	19,896	19,939
19,985	19,952	19,970	19,956	19,900	19,941
19,987	19,951	19,973	19,954	19,900	19,939
19,984	19,954	19,973	19,954	19,901	19,933
19,984	19,954	19,972	19,952	19,901	19,935
19,983	19,952	19,969	19,956	19,902	19,933
19,983	19,949	19,969	19,951	19,899	19,934
19,984	19,949	19,969	19,948	19,896	19,932
19,983	19,949	19,969	19,949	19,896	19,933
19,980	19,949	19,970	19,954	19,896	19,932
19,980	19,947	19,968	19,957	19,898	19,934
19,984	19,955	19,966	19,956	19,900	19,933
19,984	19,952	19,969	19,954	19,899	19,936
19,983	19,950	19,970	19,954	19,900	19,933
19,982	19,952	19,969	19,954	19,900	19,934
19,981	19,951	19,966	19,950	19,902	19,932
19,980	19,952	19,968	19,952	19,896	19,937
19,983	19,951	19,969	19,946	19,897	19,940
19,984	19,953	19,966	19,951	19,898	19,945
19,981	19,952	19,964	19,951	19,897	19,942
19,982	19,948	19,964	19,950	19,900	19,943
19,981	19,946	19,966	19,951	19,896	19,935
19,983	19,943	19,967	19,952	19,897	19,929
19,982	19,945	19,966	19,951	19,893	19,931
19,979	19,950	19,969	19,948	19,894	19,931
19,979	19,953	19,967	19,952	19,894	19,934
19,982	19,953	19,964	19,951	19,895	19,937
19,982	19,953	19,968	19,953	19,895	19,937
19,985	19,949	19,968	19,952	19,897	19,938
19,985	19,953	19,971	19,951	19,896	19,938
19,986	19,953	19,974	19,950	19,898	19,937
19,989	19,952	19,973	19,947	19,900	19,940
19,991	19,950	19,974	19,947	19,898	19,937
19,985	19,950	19,972	19,946	19,898	19,944
19,979	19,950	19,974	19,947	19,897	19,944
19,983	19,949	19,974	19,945	19,896	19,943
19,983	19,950	19,972	19,945	19,899	19,945
19,985	19,951	19,974	19,946	19,897	19,945
19,983	19,945	19,975	19,945	19,897	19,944
19,985	19,947	19,975	19,950	19,900	19,944
19,982	19,946	19,973	19,957	19,899	19,943
19,980	19,947	19,974	19,955	19,898	19,942
19,984	19,949	19,973	19,951	19,901	19,939
19,982	19,948	19,971	19,949	19,900	19,944
19,983	19,949	19,967	19,943	19,900	19,938
19,981	19,951	19,967	19,945	19,896	19,941
19,984	19,953	19,968	19,947	19,896	19,949
19,982	19,954	19,967	19,947	19,899	19,950
19,983	19,954	19,965	19,942	19,899	19,947 19,944
19,981	19,953	19,965	19,941	19,900	13,344

19,983	19,953	19,970	19,941	19,900	19,943
19,980	19,952	19,969	19,940	19,897	19,942
19,982	19,953	19,971	19,941	19,901	19,942
19,983	19,953	19,967	19,942	19,898	19,934
19,982	19,951	19,974	19,944	19,899	19,934
19,985	19,952	19,974	19,942	19,896	19,935
19,989	19,952	19,970	19,941	19,899	19,938
19,989	19,948	19,972	19,941	19,898	19,938
19,992	19,946	19,972	19,934	19,898	19,937
19,991	19,947	19,970	19,934	19,898	19,937
19,989	19,946	19,973	19,934	19,896	19,936
19,990	19,944	19,970	19,935	19,901	19,937
19,992	19,947	19,974	19,936	19,899	19,938
19,991	19,947	19,978	19,934	19,900	19,935
19,996	19,950	19,977	19,935	19,901	19,935
19,995	19,949	19,979	19,933	19,900	19,933
19,996	19,949	19,978	19,936	19,900	19,930
19,994	19,948	19,977	19,934	19,899	19,931
19,991	19,948	19,974	19,933	19,902	19,928
19,990	19,949	19,979	19,932	19,904	19,933
19,991	19,953	19,972	19,934	19,907	19,930
19,991	19,954	19,973	19,936	19,907	19,929
19,993	19,958	19,972	19,937	19,904	19,930
19,990	19,953	19,973	19,940	19,904	19,932
19,987	19,950	19,978	19,940	19,902	19,932
19,987	19,950	19,979	19,942	19,904	19,931
19,989	19,953	19,979	19,943	19,902	19,930
19,990	19,956	19,977	19,943	19,903	19,935
19,992	19,953	19,974	19,945	19,901	19,937
19,990	19,954	19,971	19,944	19,900	19,932
19,989	19,956	19,969	19,943	19,899	19,931
19,988	19,950	19,970	19,939	19,901	19,933

Bürde	Kanal	Mittelwert des Ausgangsstroms [mA]	Ausgangss -Bü	
			[mA]	[kg]
0Ω	CH0	19,987	0	
052	CH1	19,95	0	
1000	CH0	19,971	-0,016	-0,98
100Ω	CH1	19,946	+0,004	+0,256
5000	CH0	19,899	-0,088	-5,494
500Ω	CH1	19,937	-0,013	-0,791

2.2.7.5 Testauswertung

Spec.	Prüfkriterium	erfüllt		Bemerkung
	Die Veränderung der Bürde innerhalb von 0 bis 500Ω darf bei 1000kg Last nur eine	СНО	Nein	
	Ausgangsstromänderung von 0.08mA (entsprecht 5kg) nach sich ziehen.	CH1	Ja	

2.2.7.6 Resultierendes Testergebnis

Test nicht bestanden

2.2.9 Abschaltung bei Überlast

2.2.9.1 Testbeschreibung

Zu testen sind die Spezifikationen:

Spec.	Verhalten	Bemerkung
ST1.1.11	Eine dauerhafte Überlast (> 110% der Nennlast) muss binnen 3s zu einem Systemfehler führen (=> Ausgangsstrom = 0mA). Dieser Zustand wird über ein dauerhaftes Leuchten der roten, dem Kanal zugeordneten Led signalisiert. Besteht dieses Kriterium nicht länger, geht das System in den normalen Betriebsmodus und stellt den Ausgangsstrom gemäß der Last ein.	

Übersteigt die Last für mehr als drei Sekunden 110% der Nennlast, muss das System den Ausgangsstrom auf 0mA setzen. Nach Unterschreitung dieses Grenzwerts, stellt sich der Ausgangsstrom wieder gemäß der Last ein.

2.2.9.2 Testmittel

- <u>Testboard ,MRW420</u> mit Projekt ,MRW420 V2.000

 Diese ist vor dem Test zu kalibrieren.
- Labornetzteil ,Owon ODP3033'
- Signalgenerator ,Juntek PSG9080^o
- Oszilloskop ,Tektronix TDS2014B'
- WZ-Simulationsbox

2.2.9.3 Testablauf

Ein wichtiges Kriterium bei der Bewertung der Wägezelle ist die Zeit bis zur Abschaltung bei Überlast. Simuliert wird diese durch ein Rechtecksignal, welches eine Amplitude von 5.75V und einen Offset von 2.875V aufweist. Diese Einstellung entspricht einem Lasthub von 0kg auf etwa 1150kg.

Die Untersuchung erfolgt mit einer 100 und 500Ω Bürde.

Um auch eine praxisgerechte Simulation der Überlastabschaltung zu betrachten, wird der Test mit den folgenden Parametern wiederholt:

Gewichtssprung von 1050kg (hier 5,25V) auf knapp über 1150kg (hier 5,75V).

Die Abschaltung muss innerhalb einer Zeit von 3s erfolgen und über das Aufleuchten der dem Kanal zugeordneten roten LED signalisiert werden. Kehrt die Last wieder in den zulässigen Bereich zurück, stellt sich der Ausgangsstrom erneut ein.

2.2.9.4 Testergebnisse

Überlast - 1000hm Bürde

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal CH2: Spannung über 100Ω Bürde des 1.Kanals CH3: Spannung über 100Ω Bürde des 2.Kanals

Überlast - 1000hm Bürde

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal CH2: Spannung über 100Ω Bürde des 1.Kanals CH3: Spannung über 100Ω Bürde des 2.Kanals

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – ,Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

Überlast - 5000hm Bürde

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal CH2: Spannung über 500Ω Bürde des 1.Kanals

CH3: Spannung über 500Ω Bürde des 2.Kanals

Überlastsimulation mit einer Laständerung von 1050kg auf 1150kg

Überlast - 1000hm Bürde

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1

CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal

CH2: Spannung über 100Ω Bürde des 1.Kanals

CH3: Spannung über 100Ω Bürde des 2.Kanals

Überlast - 1000hm Bürde

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal CH2: Spannung über 100Ω Bürde des 1.Kanals

CH3: Spannung über 100Ω Bürde des 2.Kanals

Überlast - 5000hm Bürde

Eingangs- und Ausgangssignal bei 0.1Hz – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

Überlast - 5000hm Bürde

Eingangs- und Ausgangssignal bei 0.1Hz - Kanal 0 und Kanal 1

CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 0.1Hz-Rechtecksignal

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

2.2.9.5 Testauswertung

100Ω Bürde					
Spec.	Prüfkriterium	erf	üllt	Bemerkung	
ST1.1.10	Eine dauerhafte Überlast (> 110% der Nennlast) muss binnen 3s zu	CH0	Ja		
	einem Systemfehler führen (=> Ausgangsstrom = 0mA	CH1	Ja		
	Die Überlastung wird über ein dauerhaftes Leuchten der roten,	CH0	Ja		
	dem Kanal zugeordneten Led signalisiert.		Ja		
	Besteht dieses Kriterium nicht länger, geht das System in den	CH0	Ja		
	normalen Betriebsmodus und stellt den Ausgangsstrom gemäß der Last ein (rote LED ist aus).	CH1	Ja		

500Ω Bürde					
Spec.	Prüfkriterium	erf	üllt	Bemerkung	
ST1.1.10	Eine dauerhafte Überlast (> 110% der Nennlast) muss binnen 3s zu	CH0	Ja		
	einem Systemfehler führen (=> Ausgangsstrom = 0mA	CH1	Ja		

Die Überlastung wird über ein dauerhaftes Leuchten der roten,	CH0	Ja
dem Kanal zugeordneten Led signalisiert.	CH1	Ja
Besteht dieses Kriterium nicht länger, geht das System in den	CH0	Ja
normalen Betriebsmodus und stellt den Ausgangsstrom gemäß der Last ein (rote LED ist aus).	CH1	Ja

2.2.9.6 Resultierendes Testergebnis

Test bestanden

MRW 4-20mA vertraulich

2.2.10 Untersuchung der Abschaltzeit aufgrund einer Soll- Iststrom-Abweichung

2.2.10.1 Testbeschreibung

Zu testen sind die Spezifikationen:

Spec.	Verhalten	Bemerkung
ST1.1.3	Bei einer mehrfach hintereinander festgestellten	
	Stromabweichung (Ist-/Sollstrom) ist das System	
	innerhalb von 3 Sekunden in den Sicherheitszustand zu	
	überführen (I _{out} = 0mA).	
	Der Sicherheitszustand wird über das dauerhafte	
	Leuchten der dem Kanal zugeordneten, roten LED	
	signalisiert	
	Das System verbleibt bis zum Neustart in diesem	
	Zustand	

Kann der Stromregler den Ausgangsstrom nicht auf den Sollwert einstellen, so muss das System innerhalb von drei Sekunden in den Sicherheitszustand gehen und den Ausgangsstrom auf 0mA einstellen. Dort verbleibt das System bis zum Spannungsreset.

2.2.10.2 Testmittel

- Testboard ,MRW420' mit Projekt ,MRW420 V2.000'
 Diese ist vor dem Test zu kalibrieren.
- Labornetzteil ,Owon ODP3033'
- Weigh-Tronix ,Wiegestabsimulator'
- Oszilloskop ,Tektronix TDS2014B'
- Widerstandsdekade

2.2.10.3 Testablauf

An den Ausgang des Testboards wird die Widerstandsdekade mit einem Widerstandswert von 700Ω als Bürde angeklemmt.

Als Wägesignal kommt der Weigh-Tronix ,Wiegestabssimulator zum Einsatz. Dieser ist auf 0.8mV/V einzustellen, was einer Last von etwa 800kg entspricht.

Über das Oszilloskop ist die Spannung über der Bürde bzw. der Widerstandsdekade aufzunehmen.

Die Überprüfung liegt nun darin, die Bürde bzw. den Widerstandswert der Widerstandsdekade von 700Ω auf 900Ω zu erhöhen. Da die Elektronik den Soll-Ausgangsstrom für eine 900Ω -Bürde nicht treiben kann, muss das System in den Sicherheitszustand schalten. Die maximal zulässige Reaktionszeit liegt bei 3s.

Anschließend den Widerstand wieder auf 700Ω zurückstellen. Der Sicherheitszustand und der Ausgangsstrom von 0mA müssen weiterhin anstehen.

Die Überführung in den Sicherheitszustand und damit die Abschaltung des Ausgangsstroms, muss innerhalb einer Zeit von 3s erfolgen und über das Aufleuchten der dem Kanal

zugeordneten roten LED signalisiert werden. Auch wenn die Bedingungen dahingehend verändert werden, dass das System den Ausgangsstrom liefern könnte, muss es im Sicherheitszustand verbleiben.

2.2.10.4 Testergebnisse

Umschaltung der Bürde - 700>>900Ohm

Ausgangssignal – Kanal 0 CH2: Spannung über 700/900Ω Bürde

Sobald der Strom auf 0mA absinkt, leuchtet die dem Kanal zugehörige rote LED dauerhaft. Das anschließende Reduzieren der Bürde auf 700Ω hat keinen Einfluss auf den Ausgangsstrom bzw. den Systemzustand.

Umschaltung der Bürde - 700>>9000hm

Ausgangssignal – Kanal 1 CH2: Spannung über 700/900Ω Bürde

Sobald der Strom auf 0mA absinkt, leuchtet die dem Kanal zugehörige rote LED dauerhaft. Das anschließende Reduzieren der Bürde auf 700Ω hat keinen Einfluss auf den Ausgangsstrom bzw. den Systemzustand.

2.2.10.5 Testauswertung

Spec.	Prüfkriterium	erfüllt	Bemerkung
ST1.1.3	Bei einer mehrfach hintereinander festgestellten Stromabweichung (Ist-/Sollstrom) ist das System innerhalb von 3 Sekunden in den Sicherheitszustand zu überführen (Iout = 0mA).	Ja	
	Der Sicherheitszustand wird über das dauerhafte Leuchten der dem Kanal zugeordneten, roten LED signalisiert	Ja	
	Das System verbleibt bis zum Neustart in diesem Zustand	Ja	

Der Test wurde auch am 2.Kanal durchgeführt und zeigte keine Unterschiede zum 1.Kanal.

2.2.10.6 Resultierendes Testergebnis

Test bestanden

2.2.11 Verlässlichkeit der Soll- Iststrom-Untersuchung

2.2.11.1 Testbeschreibung

Zu testen sind die Spezifikationen:

Spec.	Verhalten	Bemerkung
ST1.1.7	Niederfrequente Schwingungen auf der Korblast dürfen	
	nicht zum Sicherheitszustand führen.	

Während des Betriebs der Wägezelle darf es nicht zu Abschaltungen durch fälschlich ermittelte Abweichungen zwischen Soll- und Iststrom kommen.

2.2.11.2 Testmittel

- Testboard ,MRW420' mit Projekt ,MRW420 V2.000' Diese ist vor dem Test zu kalibrieren.
- Labornetzteil ,Owon ODP3033'
- Oszilloskop ,Tektronix TDS2014B'
- Signalgenerator ,Juntek PSG9080[°]
- WZ-Simulationsbox
- Widerstandsdekade

2.2.11.3 Testablauf

Um die Zuverlässigkeit der Stromregelung zu untersuchen, erfährt die Bühne über eine Offsetspannung von 2V am Eingang "Uin" der WZ-Simulationsbox eine Last von etwa 400kg. Dieser wird eine sinusförmige Laständerung von +/- 40kg (hier 400mVpp) überlagert, welche eine Frequenz von 0.5, 1, 2 und 5Hz hat. Zu keiner Zeit darf es zur Abschaltung kommen. Bürden von 100 und 500 Ω kommen zum Einsatz.

Es darf zu keiner Zeit zu Abschaltungen wegen einer Überlast- oder Stromabweichung-Erkennung kommen.

Die Schwankung des Ausgangsstroms muss innerhalb der Laständerung plus 5kg Toleranz (hier: 144mVpp (100Ω-Bürde) bzw. 720mVpp(500Ω-Bürde)) liegen.

2.2.11.4 Testergebnisse

0.5Hz-Lastschwingungen - 1000hm Bürde

Ausgangssignal - Kanal 0 und Kanal 1

CH1: Brückenspannung (DMS) - ,Uin' WZ-Simulationsbox - 0.5Hz-Schwingung

CH2: Spannung über 100Ω Bürde des 1.Kanals CH3: Spannung über 100Ω Bürde des 2.Kanals

0.5Hz-Lastschwingungen - 5000hm Bürde

Ausgangssignal – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – ,Uin' WZ-Simulationsbox – 0.5Hz-Schwingung

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

1Hz-Lastschwingungen - 1000hm Bürde

Ausgangssignal - Kanal 0 und Kanal 1

CH1: Brückenspannung (DMS) - ,Uin' WZ-Simulationsbox - 1Hz-Schwingung

CH2: Spannung über 100Ω Bürde des 1.Kanals CH3: Spannung über 100Ω Bürde des 2.Kanals

1Hz-Lastschwingungen - 5000hm Bürde

Ausgangssignal – Kanal 0 und Kanal 1 CH1: Brückenspannung (DMS) – ,Uin' WZ-Simulationsbox – 1Hz-Schwingung CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

2Hz-Lastschwingungen - 1000hm Bürde

Ausgangssignal – Kanal 0 und Kanal 1
CH1: Brückenspannung (DMS) – ,Uin' WZ-Simulationsbox – 2Hz-Schwingung
CH2: Spannung über 100Ω Bürde des 1.Kanals
CH3: Spannung über 100Ω Bürde des 2.Kanals

2Hz-Lastschwingungen - 5000hm Bürde

Ausgangssignal - Kanal 0 und Kanal 1

CH1: Brückenspannung (DMS) – ,Uin' WZ-Simulationsbox – 2Hz-Schwingung

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

5Hz-Lastschwingungen - 1000hm Bürde

Ausgangssignal - Kanal 0 und Kanal 1

CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 5Hz-Schwingung

CH2: Spannung über 100Ω Bürde des 1.Kanals CH3: Spannung über 100Ω Bürde des 2.Kanals

5Hz-Lastschwingungen - 1000hm Bürde

Ausgangssignal - Kanal 0 und Kanal 1

CH1: Brückenspannung (DMS) – "Uin' WZ-Simulationsbox – 5Hz-Schwingung

CH2: Spannung über 100Ω Bürde des 1.Kanals CH3: Spannung über 100Ω Bürde des 2.Kanals

5Hz-Lastschwingungen - 5000hm Bürde

Ausgangssignal - Kanal 0 und Kanal 1

CH1: Brückenspannung (DMS) - ,Uin' WZ-Simulationsbox - 5Hz-Schwingung

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

TDS 2014B - 05:57:49 26.01.2022

Ausgangssignal - Kanal 0 und Kanal 1

CH1: Brückenspannung (DMS) - ,Uin' WZ-Simulationsbox – 5Hz-Schwingung

CH2: Spannung über 500Ω Bürde des 1.Kanals CH3: Spannung über 500Ω Bürde des 2.Kanals

2.2.11.5 Testauswertung

Spec.	Prüfkriterium	erfüllt	Bemerkung
ST1.1.7	Niederfrequente Schwingungen	Ja	
	auf der Korblast dürfen nicht zum		
	Sicherheitszustand führen.		
	Die Schwankung des	Ja	siehe nachfolgende
	Ausgangsstroms muss innerhalb		Tabellen
	einer Grenze von +/-40kg +	ze von +/-40kg +	
	5kgToleranz (hier: 144mVpp		
	(100Ω-Bürde) bzw.		
	720mVpp(500Ω-Bürde)) liegen.		

	100Ω - Bürde					
Frequenz		Semessene tschwankung	Grenzwert	erfüllt	Bemerkung	
0.511-	СН0	192mVpp		Ja	Die gemessenen Werte liegen aufgrund der Spitzen höher als der Grenzwert. Die reine	
0.5Hz	CH1	212mVpp		Ja	Sinusschwingung des Ausgangsstroms erfüllt aber das Testkriterium	
1Hz	CH0	156mVpp		Ja	Die gemessenen Werte liegen aufgrund der Spitzen höher als der Grenzwert. Eine Veränderung des	
1112	CH1	168mVpp	144mVpp	Ja	Ausgangssignals ist kaum noch auszumachen und befindet sich innerhalb der Grenzen	
2Hz	CH0	120mVpp		Ja	Die gemessenen Werte liegen aufgrund der Spitzen höher als der Grenzwert. Eine Veränderung des	
2112	CH1	180mVpp		Ja	Ausgangssignals ist nichtmehr auszumachen und befindet sich innerhalb der Grenzen	
5Hz	CH0	116mVpp		Ja		
SHZ	CH1	120mVpp		Ja		

	500Ω - Bürde						
Frequenz		Gemessene tschwankung	Grenzwert	erfüllt	Bemerkung		
0.5Hz	CH0	540mVpp		Ja			
0.5112	CH1	520mVpp		Ja			
1Hz	CH0	200mVpp		Ja			
1112	CH1	160mVpp		Ja			
01.1-	CH0	160mVpp	720mVpp	Ja			
2Hz	CH1	160mVpp		Ja			
51.I-	CH0	260mVpp		Ja			
5Hz	CH1	120mVpp		Ja			

Bereits bei einer Frequenz der Laständerung von 1Hz ist fast keine Auswirkung dieser auf das Ausgangssignal sichtbar. Dies ist auch gewünscht, um Vibrationen auf der Maschine nicht in das Messergebnis einfließen zu lassen. Niedrige Frequenzen werden durchgereicht und

verfälschen die tatsächliche Last auf der Zelle.

Bei den Auswertungen stellt sich heraus, dass es bei etwa 5Hz zu einer Eigenschwingung des Regelsystems kommt. Die daraus resultierenden Schwankungen im Ausgangsstroms haben aber keine Abschaltung des Systems zur Folge und liegen innerhalb der Spezifikation.

2.2.11.6 Resultierendes Testergebnis

Test bestanden

2.2.12 Abschaltung aufgrund eines Fehlers im 17V-Netzteil

2.2.12.1 Testbeschreibung

Zu testen sind die Spezifikationen:

Spec.	Verhalten	Bemerkung
ST1.1.4	Ein defektes Netzteil der Spannungsversorgung des	
	Stromausgangs muss detektiert werden, sobald der	
	Ausgangsstrom über dem Wert liegt, welchen das	
	defekte Netzteil noch treiben kann. Eine Detektion führt	
	zum Sicherheitszustand.	

Liefert das 17V-Netzteil nicht die volle Spannung, kann u.U. der geforderte Sollstrom nicht ausgegeben werden. Aufgrund der Soll-Iststromabweichung muss das System dauerhaft in den Sicherheitszustand gehen.

2.2.12.2 Testmittel

- <u>Testboard ,MRW420</u> mit Projekt ,MRW420 V2.000

 Diese ist vor dem Test zu kalibrieren.
- Labornetzteil ,Owon ODP3033'
- Oszilloskop ,Tektronix TDS2014B'
- Weigh-Tronix ,Wiegestabsimulator
- Signalgenerator ,Juntek PSG9080[°]
- WZ-Simulationsbox

2.2.12.3 Testablauf

Am Testboard 'MRW420' ist die Brücke an den Testbuchsen 'TP18' und 'L12' zu entfernen. Stattdessen wird an 'TP18' die 17V-Versorgungsspannung über das Labornetzteil 'Owon ODP3033' bereitgestellt (gegen Masse der Versorgungsspannung). Diese beträgt in diesem Testfall 4V gegen Masse.

Die Last wird über den Signalgenerator, welcher eine Sägezahnspannung von 0 bis 2V ausgibt, und der WZ-Simulationsbox simuliert.

Die Widerstandsdekade mit eingestelltem 280Ω -Widerstand stellt die Bürde am Stromausgang dar.

Das Lastsignal, der Ausgangsstrom (indirekt über die Bürde/Widerstandsdekade), und die 17V-Versorgungsspannung werden zur Auswertung mit dem Oszilloskop aufgenommen.

Sobald das 17V-Netzteil den Ausgangsstrom nicht mehr dem Sollstrom entsprechend einstellen kann, muss das System in den Sicherheitszustand gehen.

2.2.12.4 Testergebnisse

17V-Netzteilfehler - 280Ohm-Bürde

Ausgangssignal – Kanal 0
CH1: Brückenspannung (DMS) – "Uin' Wägesignal-Adaptionsplatine
CH2: Spannung über 280Ω Bürde
CH3: Simulierte 17V-Netzteilspannung an "TP18" – 4V

17V-Netzteilfehler - 280Ohm-Bürde

Ausgangssignal – Kanal 1
CH1: Brückenspannung (DMS) – ,Uin' Wägesignal-Adaptionsplatine
CH2: Spannung über 280Ω Bürde
CH3: Simulierte 17V-Netzteilspannung an ,TP18' – 4V

2.2.12.5 Testauswertung

Spec.	Prüfkriterium	erfüllt	Bemerkung
ST1.1.4	Ein defektes Netzteil der	Ja	
	Spannungsversorgung des		
	Stromausgangs muss detektiert		
	werden, sobald der		
	Ausgangsstrom über dem Wert		
	liegt, welchen das defekte Netzteil		
	noch treiben kann. Eine Detektion		
	führt zum Sicherheitszustand.		

Der Test wurde auch am 2.Kanal durchgeführt und zeigte keine Unterschiede zum 1.Kanal.

2.2.12.6 Resultierendes Testergebnis

Test bestanden

2.2.13 Einschaltzeit

2.2.13.1 Testbeschreibung

Zu testen sind die Spezifikationen:

Spec.	Verhalten	Bemerkung
		Es existiert keine Spezifikation
		der Einschaltzeit

Es ist die Dauer nach dem Einschalten der Elektronik bis zum vollständigen Einstellen des Ausgangsstroms zu überprüfen. Z.Z. existiert keine Spezifikation hierzu.

2.2.13.2 Testmittel

- <u>Testboard ,MRW420</u> mit Projekt ,MRW420 V2.000

 Diese ist vor dem Test zu kalibrieren.
- Labornetzteil ,Owon ODP3033'
- Oszilloskop ,Tektronix TDS2014B'
- Weigh-Tronix ,Wiegestabsimulator'
- WZ-Simulationsbox

2.2.13.3 Testablauf

Das Testboard ,MRW420' ist nacheinander mit 100Ω und 500Ω Bürden zu bestücken und die Spannung über diesen mit dem Oszilloskop aufzuzeichnen. Um den Zeitpunkt der Bestromung festhalten zu können, wird zusätzlich die Versorgungsspannung erfasst.

2.2.13.4 Testergebnisse

Einschaltzeit - 1000kg Last - 1000hm

Ausgangssignal nach Bestromung – Kanal 0 und Kanal 1 CH1: Versorgungsspannung der MRW420-Elektronik

CH2: Spannung über 100Ω Bürde – Kanal 0

CH3: Spannung über 100Ω Bürde – Kanal 1

Einschaltzeit - 1000kg Last - 5000hm

Ausgangssignal nach Bestromung - Kanal 0 und Kanal 1

CH1: Versorgungsspannung der MRW420-Elektronik

CH2: Spannung über 100Ω Bürde – Kanal 0 CH3: Spannung über 100Ω Bürde – Kanal 1

	100Ω Bürde	
Kanal	Einschaltzeit	Bemerkung
CH0	2280ms	
CH1	1100ms	

	500Ω Bürde	
Kanal	Einschaltzeit	Bemerkung
CH0	2460ms	
CH1	1750ms	

2.2.13.5 Testauswertung

Spec.	Prüfkriterium	erfüllt	Bemerkung
		Ja	Es existiert keine
			Spezifikation der
			Einschaltzeit

Der Test wurde auch am 2.Kanal durchgeführt und zeigte keine Unterschiede zum 1.Kanal.

2.2.13.6 Resultierendes Testergebnis

Test bestanden

2.2.14 Vergleich des Zeitverhaltens zwischen den Firmware-Version V1.103 und V2.000

2.2.14.1 Testbeschreibung

Zu testen ist die Spezifikation:

Spec.	Verhalten	Bemerkung
ST1.1.0	Das Zeitverhalten der Stromschnittstelle darf sich nicht	
	nennenswert von der Version V1.103 unterscheiden	

Es soll das Zeitverhalten der Version V2.000 gegenüber der Referenz-Firmware V1.103 verglichen werden. Dieses darf aus Kompatibilitätsgründen nur unwesentlich voneinander abweichen.

2.2.14.2 Testmittel

• Es werden keine Testmittel benötigt, da hier der Vergleich zwischen den bereits erfassten Daten beider Versionen die Grundlagen bilden.

2.2.14.3 Testergebnisse, -auswertung

Beschr	eibung	V1.103	V2.000	Diff.	Erfüllt	Bemerkung
	,Untersuchung des Regelverhaltens bei kontinuierlicher Lastzu- und abnahme von 0-920-0kg'					
	Dauer bis zur Ausregelung					
CH0	100Ω	600ms	640ms	40ms	Ja	
CH1	100Ω	600ms	640ms	40ms	Ja	
	Untersuchung des Regelverhaltens bei sprunghafter Lastzu- und abnahme von 0-920-0kg,					-0kgʻ
			Dauer bis zur Ausre	gelung		
CH0	100Ω	2200ms	1980ms	-220ms	Ja	
CH1	100Ω	2200ms	1980ms	-220ms	Ja	
	,Abschaltung bei Überlast'					
	Dauer bis zur Abschaltung					
CH0	100Ω	1150ms	1220ms	70ms	Ja	
CH1	100Ω	1150ms	1220ms	70ms	Ja	
Einschaltzeit bis zum vollständigen						
Einstellen des Ausgangsstroms						
CH0	100Ω	3300ms	2280ms	-1020ms		
CH1	100Ω	2600ms	1100ms	-1500ms		
CH0	500Ω	3140ms	2460ms	-680ms		
CH1	500Ω	3140ms	1750ms	-1390ms		

2.2.14.4 Resultierendes Testergebnis

Test bestanden

3 Kommentare

4 Anhang