1	2	3	4	5	\sum	Jméno:
						Učo:

Za každý příklad lze získat maximálně 10 bodů.

- 1. V náhodně vybraném fotbalovém mužstvu o 11 hráčích sledujeme počet hráčů starších 20 let. Definujte pravděpodobnostní prostor tohoto pokusu. Jedná se o klasický pravděpodobnostní prostor? Pokud ano, napište pravděpodobnosti jednotlivých elementárních jevů. Pokud ne, napište důvod.
- 2. Definujte nestranný a asymptoticky nestranný odhad parametrické funkce $\gamma(\boldsymbol{\theta})$. Formulujte postačující podmínku pro to, aby odhad parametrické funkce $\gamma(\boldsymbol{\theta})$ byl konzistentní.
- 3. Ve skupině 30 studentů je 5 geniálních, 10 výborných a zbytek jsou průměrní studenti. Geniální studenti odpoví vždy správně, výborní v 80 % otázek, průměrní jen s pravděpodobností 0,5. Náhodně je vybrán jeden student a je mu položena otázka.
 - (A) Spočítejte pravděpodobnost, že student odpoví špatně;
 - (B) Spočítejte pravděpodobnost, že student je průměrný, když odpověděl špatně.
 - (C) Jsou jevy "student odpoví špatně" a "student je průměrný, když odpověděl špatně" stochasticky nezávislé? Zdůvodněte.
- 4. Řidič dodávkového auta projíždí 4 křižovatkami řízenými nezávislými semafory. Na každé křižovatce svítí zelený signál s pravděpodobností 0,4 a červený signál s pravděpodobností 0,6, oranžovou neuvažujeme. Náhodná veličina X popisuje počet křižovatek, které řidič projede, než bude nucen poprvé zastavit na červený signál.
 - (A) Spočítejte rozdělení pravděpodobnosti náhodné veličiny X.
 - (B) Načrtněte graf distribuční funkce F(x) náhodné veličiny X.
 - (C) Spočítejte střední hodnotu EX.
 - (D) Spočítejte pravděpodobnost $P(1 \le X \le 2.4)$.
- 5. Při zjišťování denní teploty (s normálním rozdělením pravděpodobnosti) v měsíci květnu bylo provedeno 10 měření s výběrovým průměrem 20,4 °C a výběrovou směrodatnou odchylkou 4,7 °C. Odvoďte a číselně spočítejte 95% interval spolehlivosti pro střední hodnotu teploty. Postup výpočtu a výsledek okomentujte. Jak byste výsledný interval v praxi intepretovali?

	$u_{0,95}$	$u_{0,975}$	$\overline{F_{0,95}(9,9)}$	$F_{0,975}(9,$	$(9) F_{0,95}($	(10, 10)	$F_{0,975}(10,10)$	$F_{0,95}(9,$	$8) F_{0,975}$	$(9,8) F_0$	0,95(8,9)	$\overline{F_{0,975}(8,9)}$))
	1,645	1,960	3,179	4,0	026	2,978	3,71	[7] 3,3	88	4,357	3,230	4,10	2
Ī	$t_{0,95}(10)$	$t_{0,975}(10$	$ t_{0,95}(9) t_{$	$t_{0,975}(9) _{\lambda}$	$\chi^2_{0,025}(10)$	$\chi^2_{0,05}(10)$	$ \chi^2_{0,95}(10) $	$\chi^2_{0,975}(10)$	$\chi^2_{0,025}(9)$	$\chi^2_{0,05}(9)$	$\chi^2_{0,95}(9)$	$\chi^2_{0,975}(9)$	_
	1,812	2,228	8 1,833	2,262	3,247	3,940	0 18,307	20,483	2,700	3,325	16,919	19,023	

Pomocné vzorce

Čebyševova nerovnost: $P(|X-EX| \geq \varepsilon) \leq \frac{DX}{\varepsilon^2}$

Mějme $\mathbb{1}\{X_1,\ldots,X_n\} \simeq N(\mu,\sigma^2)$ a výběrový průměr $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ a výběrový rozptyl $S^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\overline{X})^2.$ Pak platí

- (1) Výběrový průměr $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
- (2) Statistika $U = \frac{\overline{X} \mu}{\sigma} \sqrt{n} \sim N(0, 1)$
- (3) Statistika $K = \frac{n-1}{\sigma^2} S^2 \sim \chi^2(n-1)$
- (4) Statistika $T = \frac{\overline{X} \mu}{S} \sqrt{n} \sim t(n-1)$

Nechť $\mathbbm{1}\{X_1,\ldots,X_{n_1}\}\sim N(\mu_1,\sigma_1^2),\overline{X}$ výběrový průměr a S_1^2 výběrový rozptyl. Dále nechť $\mathbbm{1}\{Y_1,\ldots,Y_{n_2}\}\sim N(\mu_2,\sigma_2^2),\overline{Y}$ výběrový průměr a S_2^2 výběrový rozptyl. Předpokládejme $\mathbf{X}\perp\mathbf{Y}$. Pak

1. Statistika

$$U_{\overline{X}-\overline{Y}} = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1).$$

2. Pokud $\sigma_1^2 = \sigma_2^2 = \sigma^2$, pak statistika

$$T_{\overline{X}-\overline{Y}} = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S_{12}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \sim t(n_1 + n_2 - 2), S_{12}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$$

3. Statistika

$$F = \frac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2} \sim F(n_1 - 1, n_2 - 1).$$

Nechť $\mathbbm{1}\{X_1,\ldots,X_n\}\simeq A(\theta)$ a výběrový průměr $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$. Pak platí

Statistika
$$U = \frac{\overline{X} - \theta}{\sqrt{\overline{X}(1 - \overline{X})}} \sqrt{n} \stackrel{A}{\sim} N(0, 1)$$

Nechť $\mathbb{1}\{X_1,\ldots,X_n\} \simeq Po(\theta)$ a výběrový průměr $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i$. Pak platí

Statistika
$$U = \frac{\overline{X} - \theta}{\sqrt{\overline{X}}} \sqrt{n} \stackrel{A}{\sim} N(0, 1)$$