

Instituto Federal de Educação, Ciência e Tecnologia de Brasília – Câmpus Taguatinga Ciência da Computação – Teoria da Computação Prova III – 2°/2017 – Redutibilidade Prof. Daniel Saad Nogueira Nunes

Aluno:		
Matrícula:		
Data: 6 de dezembro		
Data: 6 de dezembro		

Duração da prova: 150 minutos

Tabela de notas (uso exclusivo do professor)

Questão	Pontos	Nota
1	2	
2	3	
3	2	
4	2	
5	3	
6	1	
Total	13	

Observações

- Esta prova tem o total de 2 páginas (incluindo a capa) e 6 questões.
- O número total de pontos é 13.
- Certifique-se de assinar todas as folhas de resposta bem como a capa da prova.
- Leia atentamente todas as questões da prova. A interpretação do problema é crucial para o desenvolvimento correto da resposta.
- Resoluções sem justificativa não serão consideradas.
- É vedado o uso de equipamentos eletrônicos, como celulares, notebooks, entre outros.
- A prova será anulada e medidas disciplinares serão tomadas para os alunos que "colarem" durante a avaliação.
- * Certifique-se de assinar todas as folhas de resposta.

Questão 1 (2 pontos)

Mostre que EQ_{MT} é indecidível, tal que:

$$EQ_{MT} = \{ \langle M_1, M_2 \rangle | M_1 \text{ e } M_2 \text{ são MTs e } L(M_1) = L(M_2) \}$$

Dica: prove que se fosse possível decidir EQ_{MT} , então E_{MT} também seria decidível.

Questão 2 (3 pontos)

De acordo com redutibilidade e funções computáveis:

- (a) (1 ponto) Defina a relação de redução \leq_m , isto é, defina a noção de função computável e redutibilidade por mapeamento.
- (b) (1 ponto) Sejam A e B duas linguagens. Dado que $A \leq_m B$, o que podemos dizer da dificuldade de B em relação a A?
- (c) (1 ponto) Mostre que se $A \leq_m B$ então $\bar{A} \leq_m \bar{B}$.

Questão 3 (2 pontos)

Mostre que uma linguagem A é Turing-reconhecível se, e somente se, $A \leq_m A_{MT}$.

Questão 4 (2 pontos)

Demonstre que se $A \leq_m B$ e B é Turing-decidível, então A também é.

Questão 5 (3 pontos)

Demonstre que A_{MT} não é redutível via mapeamento para E_{MT} . Onde:

$$A_{MT} = \{\langle M, w \rangle | M \text{ \'e uma MT e } M \text{ aceita } w\}$$

$$E_{MT} = \{ \langle M \rangle | M \text{ \'e uma MT e } L(M) = \emptyset \}$$

Suponha que o seguinte resultado já foi provado:

Se A não é Turing-reconhecível e $A \leq_m B$ então B não é Turing-reconhecível.

Questão 6 (1 ponto)

Um vírus de computador é capaz de infectar outros programas ao injetar o seu próprio código neles. Uma vez que estes programas infectados são executados, o código malicioso do vírus também é executado efetuando alguma ação maliciosa e se propagando para outros programas.

Um detector de vírus perfeito é possível de ser obtido? Justifique a sua resposta.

Dica: pense nos conceitos de redutibilidade vistos.

Palma, palma! Não priemos cânico!

Chapolin

^{*} Certifique-se de assinar todas as folhas de resposta.