HW2

$Melaina\,Wright$

May 9, 2017

```
library(tidyverse)
library(tibble)
library(readr)
```

Import

```
#Read the gazetteer data as-is (all columns; no type conversion) into a gaz_raw tibble.
gaz_raw <-read_csv("CA_Features_20170401.zip")</pre>
## Parsed with column specification:
## cols(
     `FEATURE_ID|FEATURE_NAME|FEATURE_CLASS|STATE_ALPHA|STATE_NUMERIC|COUNTY_NAME|COUNTY_NUMERIC|PRIMAR
##
## )
## Warning: 11 parsing failures.
## row col expected
                         actual
                                                     file
## 60566 -- 1 columns 2 columns 'CA_Features_20170401.zip'
## 63884 -- 1 columns 2 columns 'CA_Features_20170401.zip'
## 70687 -- 1 columns 2 columns 'CA_Features_20170401.zip'
## 70688 -- 1 columns 2 columns 'CA_Features_20170401.zip'
## 73865 -- 1 columns 2 columns 'CA_Features_20170401.zip'
## See problems(...) for more details.
#unzipped it but is not deliminated correctly
gaz_raw <- read_delim("CA_Features_20170401.zip", delim="|")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_character(),
##
    FEATURE_ID = col_integer(),
##
    PRIM_LAT_DEC = col_double(),
    PRIM_LONG_DEC = col_double(),
    SOURCE_LAT_DEC = col_double(),
##
    SOURCE_LONG_DEC = col_double(),
##
##
    ELEV_IN_M = col_integer(),
##
    ELEV_IN_FT = col_integer()
## )
## See spec(...) for full column specifications.
```

Tidy

```
# Copy only the following columns into a gaz tibble (you can rename them if you like):
# feature ID
# feature name
# feature class
# state alpha
# county name
# primary latitude (decimal)
# primary longitude (decimal)
# source latitude (decimal)
# source longitude (decimal)
# elevation in meters
# map name
# date created
# date edited
gaz <- select(gaz_raw, FEATURE_ID, FEATURE_NAME, FEATURE_CLASS, STATE_ALPHA, COUNTY_NAME, PRIM_LAT_DEC,
# Convert the gaz columns to the appropriate type.
# Parsed with column specification:
# cols(
  .default = col_character(), -> thinks date created and date edited are characters, should be dates
  FEATURE_ID = col_integer(),
# PRIM_LAT_DEC = col_double(),
# PRIM_LONG_DEC = col_double(),
# SOURCE_LAT_DEC = col_double(),
# SOURCE_LONG_DEC = col_double(),
# ELEV_IN_M = col_integer(),
#
  ELEV_IN_FT = col_integer()
# )
gaz$DATE_CREATED = as.Date(gaz$DATE_CREATED, "%m/%d/%Y")
gaz$DATE_EDITED = as.Date(gaz$DATE_EDITED, "%m/%d/%Y")
#Convert any placeholders for unknown data to NA
gaz$MAP_NAME <- parse_character(gaz$MAP_NAME, na="Unknown")</pre>
gaz$PRIM_LAT_DEC <- parse_character(gaz$PRIM_LAT_DEC, na="0")</pre>
gaz$PRIM_LONG_DEC <- parse_character(gaz$PRIM_LONG_DEC, na="0")</pre>
#revert back to numeric after using parse_character
gaz$PRIM_LAT_DEC <- as.numeric(gaz$PRIM_LAT_DEC)</pre>
gaz$PRIM_LONG_DEC <- as.numeric(gaz$PRIM_LONG_DEC)</pre>
```

```
# Delete from gaz rows where:
# the primary latitude or longitude are unknown -> delete NA
gaz <- filter(gaz, !PRIM_LAT_DEC == "NA")
gaz <- filter(gaz, !PRIM_LONG_DEC == "NA")

#Delete from gaz rows where:
# the feature is not in California -> only select CA
gaz <- filter(gaz, STATE_ALPHA == "CA")

# Write the gaz tibble to a CSV files (using "|" as a delimiter)
write.table(gaz, "gaz.csv", sep="|")</pre>
```

Analyze

Most-Frequently-Occuring Feature Name

```
# Create R code snippets that answer the following questions about California:
# What is the most-frequently-occuring feature name?

Mode <- function(x) {
   ux <- unique(x)
   ux[which.max(tabulate(match(x, ux)))]
}</pre>
Mode(gaz$FEATURE_NAME)
```

[1] "Church of Christ"

[1] "Sea"

Least-Frequently-Occuring Feature Class

```
# What is the least-frequently-occurring feature class?

UnMode <- function(x) {
   ux <- unique(x)
   ux[which.min(tabulate(match(x, ux)))]
}</pre>
UnMode(gaz$FEATURE_CLASS)
```

Approximate Center Point of Each County

```
# What is the approximate center point of each county?
# Hint: Calculate the center of the bounding box of the county's point features.
gaz <- filter(gaz, !COUNTY_NAME == "NA")</pre>
ucounties <- unique(gaz$COUNTY_NAME)
CountyCenter <- function(county, dataframe) {</pre>
  points = subset(gaz, COUNTY_NAME == county)
  latmin = min(points$PRIM_LAT_DEC)
  latmax = max(points$PRIM_LAT_DEC)
  longmin = min(points$PRIM_LONG_DEC)
  longmax = max(points$PRIM_LONG_DEC)
  centerpoint = c((latmin+latmax)/2, (longmin+longmax)/2)
  return(centerpoint)
}
for(county in ucounties) {
  cp = CountyCenter(county,gaz)
  #print(cp)
  cat(county,"\t",cp, "\n")
}
## Imperial
                 33.05796 -115.2855
## Sacramento
                 39.09157 -121.6143
## Monterey
                 36.3326 -121.1135
## Merced
             37.18383 -120.6907
## Alameda
            37.68525 -121.9243
## Contra Costa
                     37.90659 -121.9944
## Solano
            36.13968 -120.5618
## Santa Clara 38.88102 -121.8937
## Tuolumne
                 39.00205 -121.5801
## Humboldt
                 40.65793 -122.0243
## Calaveras
                 36.46287 -119.8929
## El Dorado
                 37.97298 -121.4447
## Marin
            36.83411 -121.9622
## Santa Cruz
                 35.63555 -120.4298
## Fresno
           36.74745 -119.6338
## San Francisco
                     36.00691 -120.8974
## Mendocino
                 39.38642 -123.4288
## Sutter 39.03162 -121.6965
## Lake
            39.13503 -122.7503
## Siskiyou
                 41.5011 -122.581
## San Mateo
                 37.39077 -122.3197
## Lassen
             40.46185 -120.8094
## Stanislaus
                 37.61389 -120.9406
## Tehama
           40.05988 -122.1986
            38.63463 -121.9447
## Yolo
## San Joaquin 37.89854 -121.253
## Nevada
            39.26712 -120.6413
## Placer
             39.03074 -120.7767
## Alpine
            37.61799 -118.229
## Sonoma
            38.46991 -122.5055
```

```
## Napa
            38.49838 -122.3625
            36.29215 -118.78
## Tulare
## Madera
            36.04061 -119.7934
## Inyo
            36.60175 -117.2923
## Colusa
            39.16739 -122.278
## Amador 38.35542 -121.0613
## Shasta 40.78738 -121.6522
## Sierra 37.37716 -120.5399
## Modoc
           41.58628 -120.7315
## Glenn
            39.62933 -122.4071
## Yuba
           39.27781 -121.3127
## San Benito
                36.59107 -121.1142
## Trinity 40.66529 -123.0399
            38.06252 -118.9393
## Mono
## Mariposa
                37.24062 -119.3346
## Plumas
            37.34911 -119.4346
## Butte
            39.72335 -121.5716
## Del Norte
              41.69998 -123.955
                36.14524 -118.4051
## Riverside
## Los Angeles 35.08041 -118.9973
## San Bernardino
                    35.87137 -117.8211
## San Diego
                35.16475 -119.236
## San Luis Obispo
                   35.3558 -120.4077
## Ventura 34.04778 -119.1644
## Orange
            33.66613 -117.7801
## Santa Barbara
                    33.96514 -119.5775
## Kern
            35.34304 -119.4605
            36.13049 -119.887
## Kings
#prints out the x and y coordinates of the center of the boundary box for each county
```

Fraction of Total Number of Features in Each Country that are Natural and that are Man-Made

```
# What are the fractions of the total number of features in each county that are natural? man-made?
# Hint: Construct a tibble with two columns, one containing all possible feature classes (see "Feature")

POSSIBLE_FEATURE_CLASSES <- c("Airport", "Arch", "Area", "Arroyo", "Bar", "Basin", "Bay", "Beach", "Ben

MANMADE_VS_NATURAL <- c("ManMade", "ManMade", "Natural", "
```

```
Fraction <- function(county, dataframe) {</pre>
  points = subset(gaz2, COUNTY_NAME == county)
  manmade = filter(points, MANMADE_VS_NATURAL == "ManMade")
  natural = filter(points, MANMADE VS NATURAL == "Natural")
  manmadelength = length(manmade$MANMADE_VS_NATURAL)
  naturallength = length(natural$MANMADE_VS_NATURAL)
  FractionNatural = (naturallength)/((manmadelength) + (naturallength))
  FractionManMade = (manmadelength)/((manmadelength) + (naturallength))
  return(c(FractionNatural, FractionManMade))
}
cat("County\t\tfraction natural\tfraction manmade\n")
## County
                fraction natural
                                    fraction manmade
for(county in ucounties) {
  cn = Fraction(county,gaz2)
  cat(county,"\t",cn, "\n")
                 0.3849765 0.6150235
## Monterey
## Fresno
            0.4340528 0.5659472
## Del Norte
                 0.5810147 0.4189853
## Mono
          0.5905689 0.4094311
## San Bernardino
                     0.3099698 0.6900302
## Kern
         0.332799 0.667201
## Inyo
            0.5813268 0.4186732
## Plumas
            0.6440785 0.3559215
## Glenn
            0.5210084 0.4789916
## Modoc
            0.5998415 0.4001585
          0.6070912 0.3929088
## Lassen
## San Luis Obispo 0.4206081 0.5793919
## Riverside
                0.2289318 0.7710682
## San Diego
                 0.1973956 0.8026044
## Los Angeles
                0.1179533 0.8820467
            0.0884053 0.9115947
## Orange
## Mendocino
                 0.6462901 0.3537099
## Sonoma
            0.3415189 0.6584811
## Calaveras
                 0.366167 0.633833
## Napa
           0.3797314 0.6202686
## Colusa
            0.5636743 0.4363257
## Humboldt
                 0.6490551 0.3509449
## Merced
            0.1451767 0.8548233
## Placer
            0.4 0.6
## Kings
            0.2656716 0.7343284
## Alpine
            0.6395564 0.3604436
## Butte
            0.3951947 0.6048053
## Imperial
                 0.1133036 0.8866964
## Contra Costa
                     0.1760933 0.8239067
            0.3937622 0.6062378
## Yuba
## Yolo
            0.3249581 0.6750419
## San Mateo
                 0.1917404 0.8082596
## Shasta
            0.6181575 0.3818425
```

```
## Sierra 0.5140515 0.4859485
```

Ventura 0.2572347 0.7427653

El Dorado 0.4754286 0.5245714

Santa Barbara 0.3639896 0.6360104

Madera 0.4442524 0.5557476

Lake 0.6338798 0.3661202

Tuolumne 0.5754779 0.4245221

Solano 0.2198758 0.7801242

Tehama 0.6345291 0.3654709

Santa Cruz 0.2906641 0.7093359

Tulare 0.5071429 0.4928571

Siskiyou 0.6944943 0.3055057

Amador 0.3065693 0.6934307

Sacramento 0.04281099 0.957189

San Joaquin 0.1008534 0.8991466

Trinity 0.7182576 0.2817424

Alameda 0.08868185 0.9113182

Santa Clara 0.1552774 0.8447226

Nevada 0.4217877 0.5782123

San Benito 0.5226917 0.4773083

Sutter 0.2037037 0.7962963

Mariposa 0.6079836 0.3920164

Stanislaus 0.1613508 0.8386492

Marin 0.3078024 0.6921976

San Francisco 0.0864371 0.9135629

NA NaN NaN