

Preet Kanwal

Department of Computer Science & Engineering

Unit 2

Preet Kanwal

Department of Computer Science & Engineering

Unit 2 - Regular Expression

Regex is an algebraic way to describe regular languages.

Unit 2 - Example of Regular Expressions

Example

a b* c+d

Unit 2 - Example of Regular Expressions

Example

Unit 2 - Example of Regular Expressions

Example

Unit 2 - Example of Regular Expressions

Example

String that contains only d

Unit 2 - Example of Regular Expressions

Example

```
L = { ac,
abc,
abbb....c,
d }
```


Unit 2 - Algebraic Laws of Regular Expressions

$$R.\phi = \phi.R = \phi$$

Let L_1, L_2 be languages, then the concatenation $L_1 \circ L_2 = \{w \mid w = xy, x \in L_1, y \in L_2\}$. If $L_2 = \emptyset$, then there is no string $y \in L_2$ and so there is no possible w such that w = xy. Thus for any L_1 , we'll have $L_1 \circ \emptyset = \emptyset$.

Automata Formal Languages and Logic Unit 2 - Construction of Regular Expressions

Construct a Regular Expression for a given language L

THANK YOU

Preet Kanwal

Department of Computer Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724