

Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Academic year 2022-2023 (Even Sem)

DEPARTMENT OF

INFORMATION SCIENCE & ENGINEERING

Date	6 th July 2023	Maximum Marks	50						
Course Code	21IS44	Duration	120 Min						
Sem IV Semester CIE - I									
THEORY OF COMPUTATION									

Sl. No.	Questions	M	BT	СО
1.a	Define distinguishable and indistinguishable states. Identify and minimize the DFA (fig: 1.a) using table filling algorithm.	07	L3	CO 2
	Start A B B B B B C A B B B A B B B A B B B B			
1.b	List the steps involved in converting regular grammar into finite automata. Convert the following grammar using the same. $S \rightarrow 0A \mid 1B \mid 0 \mid 1$ $A \rightarrow 0S \mid 1B \mid 1$ $B \rightarrow 0A \mid 1S$	03	L3	CO 2
2.a	Construct an ε -NFA for the following regular expressions: i) $(00+1)^*(10)^*$ where $\Sigma = \{0,1\}$ i) $(a^*+b^*+c^*)$ where $\Sigma = \{a,b\}$	05	L2	CO 2
2.b	Briefly explain the following: i) Applications of Regular Expressions. ii) Algebraic laws of Regular Expressions.	05	L2	CO 1
3.a	Define left linear grammar and produce the same for the given DFA:	05	L1	CO 1
3.b	State Pumping Lemma for Regular Languages. By using Pumping Lemma,	05	L2	СО

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2022-2023 (Even Sem)

	Prove that $L = \{ww^R \mid w (0+1)^*\}$ is not regular.			1
4.a	Show that class of regular languages is closed under Intersection,	04	L2	СО
	homomorphism and Complementation.			1
4.b	Obtain Regular Expression for the given Finite Automata using State	06	L3	CO
1.0			23	2
	Elimination Method.			
	$\frac{b}{a}$ $\frac{a}{b}$ $\frac{a}{a,b}$			
	a b a			
	$\longrightarrow (A) \longrightarrow (B) \longrightarrow (C) \longrightarrow (D)$			
5.a	Explain any two decision properties of regular languages with an example.	05	L2	CO
- 1				2
5.b	Write regular expressions for the following languages: $\Sigma = \{0,1\}$	03	L2	CO
	i) The set of all strings that contain exactly three 1's.			1
	ii) The set of even length strings.			
	iii) The language of all strings containing exactly two 0's.			
	, , , , , , , , , , , , , , , , , , , ,	0.2	1.0	00
5.c	Draw NFA to recognize strings that start and end with same character for $\Sigma = \{a, b\}$	02	L2	CO 2
	$\{a,b\}.$			

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

			21210	01110 1 41	, ,	0000		011100, 111	1.101110			
	Particulars		CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Marks												
Distribution	Test	Max	22	28			05	29	16			
		Marks										
