EE5410 Signal Processing

Semester A 2020-2021

Assignment 2

Due Date: 10 November 2020

1. Consider a linear time-invariant (LTI) system with impulse response h[n]. The discrete-time Fourier transform (DTFT) of h[n] is:

$$H(e^{j\omega}) = \frac{1}{1 + 0.9e^{-j\omega} + 0.2e^{-2j\omega}}$$

- (a) Determine the transfer function H(z) and its region of convergence (ROC).
- (b) Find h[n].
- 2. Find the frequency response $H(e^{j\omega})$ of a discrete-time stable system whose input x[n] and output y[n] satisfy the following difference equation:

$$y[n] - \frac{1}{2}y[n-1] = x[n] + 2x[n-1] + x[n-2]$$

Then determine the system impulse response h[n].

3. Figure 1 shows the block diagram representation of a causal LTI discrete-time system with input x[n] and output y[n].

Figure 1

- (a) Determine the system transfer function H(z) = Y(z)/X(z) where X(z) and Y(z) are the z transforms of the input x[n] and output y[n], respectively.
- (b) Draw the block diagram representation of the system using canonic form.
- (c) Is the system stable? Explain your answer.

4. Consider a causal LTI system whose system function is

$$H(z) = \frac{1 + \frac{1}{5}z^{-1}}{\left(1 - \frac{1}{2}z^{-1} + \frac{1}{3}z^{-2}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

Draw one signal flow graph for the system in each of the following forms:

- (a) Direct form
- (b) Cascade form using canonic form sections
- (c) Parallel form using canonic form sections
- 5. Consider an ideal bandpass filter whose frequency response in $(-\pi, \pi)$ is:

$$H_d(e^{j\omega}) = \begin{cases} 1, & \omega_a \le \omega \le \omega_b, -\omega_b \le \omega \le -\omega_a \\ 0, & \text{otherwise} \end{cases}$$

where $\omega_a = 0.3\pi$ and $\omega_b = 0.8\pi$.

- (a) Use the window method with rectangular window to design a causal and linear-phase finite impulse response (FIR) filter of length 7 that approximates $H_d(e^{j\omega})$. Write down the filter transfer function H(z) with numerical values.
- (b) When implementing the FIR filter with transfer function H(z), determine the minimum numbers of multiplications and additions for computing each output sample.
- 6. Consider a causal and linear-phase FIR filter of length 3 such that $h[0]=h[2]=\alpha_0$ and $h[1]=\alpha_1$. It is known that the magnitude of the filter frequency response $H(e^{j\omega})$ is $|H(e^{j\omega})|=0$ at $\omega=0.1$, while $|H(e^{j\omega})|=1$ at $\omega=0.4$. Determine the values of α_0 and α_1 .