Лабораторная работа 3

Градиентные методы минимизации функций многих переменных

Постановка задачи: Требуется найти безусловный минимум функции n переменных $f(x) = f(x_1, x_2, ..., x_n)$, т.е. такую точку $x^* \in E_n$, что $f(x^*) = \min_{x \in E} f(x)$.

Предполагается, что целевая функция f(x) - дифференцируема в E_n и возможно вычисление ее производных в произвольной точке E_n .

В данной работе рассматриваются итерационные процедуры минимизации вида

$$x^{k+1} = x^k + \alpha_k p^k, \quad k = 0,1,...$$
 (1)

где направление убывания p^k определяется тем или иным способом с учетом информации о частных производных функции f(x), а величина шага $\alpha_k>0$ такова, что

$$f(x^{k+1}) < f(x^k), \quad k = 1, 2, \dots$$
 (2)

Метод градиентного спуска

Стратегия поиска: Положим в (1) на каждом шаге $p^k = -\nabla f(x^k)$. Если $\nabla f(x^k) \neq 0$, то условие $(\nabla f(x^k), p^k) < 0$, очевидно, выполнено. Следовательно, направление вектора p^k является направлением убывания функции f(x), причем в малой окрестности точки x^k направление p^k обеспечивает наискорейшее убывание этой функции. Поэтому найдется такое $\alpha_k > 0$, что будет выполняться условие (2).

Алгоритм:

- 1.Задать параметр точности $\varepsilon > 0$, начальный шаг $\alpha > 0$, выбрать $x \in E_n$. Вычислить f(x).
- 2. Вычислить $\nabla f(x)$ и проверить условие достижения точности: $\|\nabla f(x)\| < \varepsilon$. Если оно выполнено, вычисления завершить, положив $x^* = x$, $f^* = f(x)$. Иначе перейти к шагу 3.
- 3. Найти $y = x \alpha \cdot \nabla f(x)$ и f(y). Если f(y) < f(x), то положить x = y, f(x) = f(y) и перейти к шагу 2, иначе к шагу 4.
- 4. Положить $\alpha = \alpha/2$ и перейти к шагу 3. <u>Замечание</u>. Вблизи стационарной точки функции f(x) величина $\|\nabla f(x)\|$ становится малой. Это часто приводит к замедлению сходимости последовательности $\{x^k\}$. Поэтому в основной формуле (1) иногда полагают $p^k = -\nabla f(x^k)/\|\nabla f(x^k)\|$, используя вместо антиградиента вектор единичной длины в этом же направлении.

Метод наискорейшего спуска

<u>Стратегия поиска:</u> Метод является модификацией метода градиентного спуска. Здесь также полагают $p^k = -\nabla f(x^k)$, но величина шага α_k из (1) находится в результате решения задачи одномерной оптимизации

$$\Phi_k(\alpha) \to \min, \quad \Phi_k(\alpha) = f(x^k - \alpha \nabla f(x^k)), \quad \alpha > 0,$$
(3)

т.е. на каждой итерации в направлении антиградиента $-\nabla f(x^k)$ совершается исчерпывающий спуск.

Алгоритм:

- 1. Задать параметр точности $\varepsilon > 0$, выбрать $x \in E_n$. Вычислить f(x).
- 2. Вычислить $\nabla f(x)$ и проверить условие достижения точности: $\|\nabla f(x)\| < \varepsilon$. Если оно выполнено, вычисления завершить, полагая $x^* = x$, $f^* = f(x)$. Иначе перейти к шагу 3.
- 3. Решить задачу одномерной оптимизации (3) для $x^k = x$, т.е. найти α^* . Положить $x = x \alpha^* \cdot \nabla f(x)$ и перейти к шагу 2. Замечание. Решение задачи (3) можно получить одним из рассмотренных для одномерной минимизации способов. Проверять выполнение условия (2) в этом методе необязательно. Если функция f(x) квадратична, т.е. $f(x) = \frac{1}{2}(Ax, x) + (b, x) + c$, то для величины шага исчерпывающего спуска можно получить точную формулу

$$\alpha_k = -\frac{(\nabla f(x^k), p^k)}{(Ap^k, p^k)} = -\frac{(Ax^k + b, p^k)}{(Ap^k, p^k)}$$
, положив $p^k = -\nabla f(x^k)$.

Метод сопряженных градиентов

Стратегия поиска: В методах градиентного спуска в итерационной процедуре (1) в качестве направления убывания функции f(x) использовалось направление антиградиента: $p^k = -\nabla f(x^k)$. Однако такой выбор направления убывания не всегда бывает удачным. В частности, для плохо обусловленных задач минимизации направление антиградиента в точке x^k может значительно отличаться от направления к точке минимума x^* . В результате траектория приближения к точке минимума имеет зигзагообразный характер. В методе сопряженных градиентов применяется другой подход. Используется итерационный процесс

$$x^{k+1} = x^k + \alpha_k \cdot p^k$$
, $k = 0,1,...$; $x^0 \in E_n$, $p^0 = -\nabla f(x^0)$,

в котором величина шага α_k находится из условия исчерпывающего спуска по направлению p^k .

$$f(x^k + \alpha_k p^k) = \min_{\alpha > 0} f(x^k + \alpha p^k), \quad k = 0,1,...,$$

Далее, после вычисления очередной точки x^{k+1} , k=0,1,..., новое направление поиска p^{k+1} находится по формуле, отличной от антиградиента:

$$p^{k+1} = -\nabla f(x^{k+1}) + \beta_k p^k$$
, $k = 0,1,...$,

где коэффициенты β_k выбираются так, чтобы при минимизации квадратичной функции f(x) с положительно определенной матрицей A получалась последовательность A - ортогональных векторов p^0 , p^1 ,....

Для величины β_k можно получить формулу

$$\beta_k = \frac{\left\| \nabla f(x^{k+1}) \right\|^2}{\left\| \nabla f(x^k) \right\|^2}, \quad k = 1, 2, \dots$$

Выражение для коэффициента β_k не содержит в явном виде матрицу A квадратичной формы. Поэтому метод сопряженных градиентов применяют для минимизации любых, а не только квадратичных функций.

Если функция f(x) квадратична, т.е. $f(x) = \frac{1}{2}(Ax,x) + (b,x) + c$, то для величины шага исчерпывающего спуска можно получить точную формулу

$$\alpha_k = -\frac{(\nabla f(x^k), p^k)}{(Ap^k, p^k)}.$$

При реализации метода сопряженных градиентов применяется <u>практический прием</u> — через каждые N шагов производят обновление метода, полагая $\beta_{m\cdot N}=0$, m=1,2,.... Номера $m\cdot N$ называют моментами <u>рестарта</u>. Часто полагают N=n - размерности пространства E_n . Если N=1, то получается <u>частный случай метода сопряженных градиентов — метод наискорейшего спуска</u>.

Алгоритм:

- 1. Задать точность вычислений ε , выбрать начальное приближение x^0 и частоту обновления N .
- 2.Положить k = 0 (k номер итерации). Вычислить значение $p^0 = -\nabla f(x^0)$.
- 3.Вычислить значение α_k из решения задачи одномерного исчерпывающего спуска $f(x^k + \alpha_k p^k) = \min_{x \to 0} f(x^k + \alpha p^k)$
- 4.Вычислить точку $x^{k+1} = x^k + \alpha_k \cdot p^k$ и градиент $\nabla f(x^{k+1})$.
- 5.Проверить критерий окончания поиска $|\nabla f(x^{k+1})| < \varepsilon$. Если критерий выполнен, перейти к шагу 8.
- 6. Если k+1=N, то положить $x^0=x^{k+1}$, k=0 и перейти к шагу 2 (рестарт).
- 7.Вычислить коэффициент $\beta_k = \frac{\left\| \nabla f(x^{k+1}) \right\|^2}{\left\| \nabla f(x^k) \right\|^2}$ и найти новое направление поиска

 $p^{k+1} = -\nabla f(x^{k+1}) + \beta_k \ p^k$. Положить k = k+1 и перейти к шагу 3.

8.Выбрать приближенно $x^* = x^{k+1}$, $f(x^*) = f(x^{k+1})$. Поиск завершен.

Метод Ньютона

<u>Стратегия поиска:</u> Пусть функция f(x) дважды дифференцируема в E_n . Тогда, с помощью градиента и матрицы Гессе, для нее можно записать разложение в ряд по формуле Тейлора в окрестности точки x^k :

$$f(x) = f(x^k) + \nabla f(x^k)^T \Delta x + \frac{1}{2} \Delta x^T H(x^k) \Delta x + o(\|\Delta x\|^2),$$

где $o(\|\Delta x\|^2)$ - сумма всех членов разложения, имеющих порядок выше второго; $\Delta x^T H(x^k) \Delta x$ - квадратичная форма.

Отсюда следует, что поведение функции f(x) с точностью до величины порядка $o(\|\Delta x\|^2)$ может быть описано квадратичной функцией

$$\Phi_k(x) = f(x^k) + \nabla f(x^k)^T \Delta x + \frac{1}{2} \Delta x^T H(x^k) \Delta x.$$
(4)

Минимизируем функцию $\Phi_k(x)$ вместо f(x). Найдем ее точку минимума x^{k+1} из условия стационарности точки $\nabla \Phi_k(x) = 0$:

$$\nabla \Phi_k(x) = H(x^k) \cdot (x - x^k) + \nabla f(x^k) = 0.$$
 (5)

Пусть матрица Гессе H(x) положительно определена при всех $x \in E_n$ и, следовательно, невырождена ($\det H(x) > 0$). Тогда существует обратная матрица $[H(x)]^{-1}$. Отметим, что квадратичная функция (4) с положительно определенной матрицей $H(x^k)$ сильно выпукла и уравнение (5) определяет единственную точку глобального минимума функции $\Phi_k(x)$. Умножим слева обе части равенства (5) на матрицу $[H(x^k)]^{-1}$ и найдем точку минимума x^{k+1} квадратичной функции $\Phi_k(x)$, аппроксимирующей f(x) в окрестности точки $x = x^k$:

$$x^{k+1} = x^k - [H(x^k)]^{-1} \cdot \nabla f(x^k), \quad k = 0,1,...$$
 (6)

Итерационный процесс (6), начатый из произвольной точки $x^0 \in E_n$, называется методом Ньютона минимизации функции многих переменных и является обобщением метода Ньютона в одномерном случае.

Квазиньютоновские методы

Построить квазиньютоновский алгоритм в соответствии с п.5.8. Главы 5 пособия или воспользоваться одним из следующих квазиньютоновских алгоритмов из дополнительной литературы: метод Давидона — Флетчера — Пауэлла (ДФП); метод Бройдена — Флетчера — Шенно (БФШ); метод Мак-Кормика.

Задания

1. Реализовать в среде MATLAB метод градиентного спуска, метод наискорейшего спуска и метод сопряженных градиентов.

В методе наискорейшего спуска и в методе сопряженных градиентов наряду с аналитическим выражением для величины шага исчерпывающего спуска для квадратичной функции реализовать решение задач одномерной минимизации методом поразрядного поиска.

2. Протестировать работу реализованных методов на примере овражной функции

$$f(x) = x_1^2 + a x_2^2,$$

при a=1, 100, 500, 1000. При $\varepsilon=10^{-3}$ и $\varepsilon=10^{-5}$ сравнить скорость работы методов при различных значениях параметра a по числу итераций и по числу вызовов совокупности значений функций и производных.

3. Выбрать для выполнения работы тестовую функцию, номер которой соответствует номеру Вашего компьютера. Например, для компьютера №3 это будет функция 3), для компьютера №13 — функция 4): 13-9=4; для компьютера №23 это будет функция 5): 23-9×2=5.

1)
$$f(x) = 64x_1^2 + 126x_1x_2 + 64x_2^2 - 10x_1 + 30x_2 + 13$$

2)
$$f(x) = 129x_1^2 - 256x_1x_2 + 129x_2^2 - 51x_1 - 149x_2 - 27$$

3)
$$f(x) = 254x_1^2 + 506x_1x_2 + 254x_2^2 + 50x_1 + 130x_2 - 111$$

4)
$$f(x) = 151x_1^2 - 300x_1x_2 + 151x_2^2 + 33x_1 + 99x_2 + 48$$

5)
$$f(x) = 85x_1^2 + 168x_1x_2 + 85x_2^2 + 29x_1 - 51x_2 + 83$$

6)
$$f(x) = 211x_1^2 - 420x_1x_2 + 211x_2^2 - 192x_1 + 50x_2 - 25$$

7)
$$f(x) = 194x_1^2 + 376x_1x_2 + 194x_2^2 + 31x_1 - 229x_2 + 4$$

8)
$$f(x) = 45x_1^2 - 88x_1x_2 + 45x_2^2 + 102x_1 + 268x_2 - 21$$

9)
$$f(x) = 99x_1^2 + 196x_1x_2 + 99x_2^2 - 95x_1 - 9x_2 + 91$$

- 4. Графически отобразить линии уровня выбранной функции. Сравнить эффективность методов градиентного, наискорейшего спуска, а так же метода сопряженных градиентов для задачи п.2 при а=250 и тестовой функции п.3 по числу итераций. Объяснить полученные результаты.
 - 5. Минимизировать функцию Розенброка

$$f(x) = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2$$

с точностью $\varepsilon = 10^{-3}$ и $\varepsilon = 10^{-5}$, выбрав начальную точку $x^0 = (-1, 1)^T$.

Для решения задачи использовать метод Ньютона, один из квазиньютоновских методов (воспользоваться одним из следующих квазиньютоновских алгоритмов из дополнительной литературы: метод Давидона — Флетчера — Пауэлла (ДФП); метод Бройдена — Флетчера — Шенно (БФШ); метод Мак-Кормика) и метод сопряженных градиентов. Определить, сколько итераций потребуется каждому методу для того, чтобы разность между численным и точным решением $x^* = (1, 1)^T$ была меньше ε . Сравнить эффективность методов.

- 6. Исследовать работу метода сопряженных градиентов в зависимости от частоты обновлений N на примере функции Розенброка. *Какое значение можно назвать оптимальным?*
 - 7. На примере функции Химмельблау

$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

рассмотреть особенности применения градиентных методов для минимизации многомодальных функций. В качестве начального приближения взять точки (0,0) и (-5,0). Как зависит работа рассматриваемых алгоритмов от выбора начального приближения?

- 8. Результаты работы необходимо сохранить для использования в лабораторной работе 4.
- 9.Сдать лабораторную работу преподавателю, ответив предварительно на все следующие контрольные вопросы.

Контрольные вопросы к Лабораторной работе 3

- 1). Функции какого вида называются квадратичными функциями n переменных?
- 2). Чему равны градиент и гессиан квадратичной функции?
- 3). Каким свойством обладает квадратичная функция с положительно определенной матрицей A?

- 4).При каких a,b,c функция $f(x) = ax_1^2 + bx_1x_2 + cx_2^2$ будет выпукла?
- 5). Выписать матрицу A квадратичной функции $f(x) = x_1^2 + 3x_3^2 + 2x_1x_2 - x_2x_3 + 2x_2 + x_3$.
- 6). Какая последовательность $\{x^k\}$, k = 0,1,2... называется минимизирующей?
- 7). Привести пример минимизирующей последовательности, не сходящейся к точке минимума.
- 8). Что такое скорость сходимости минимизирующей последовательности? Какие скорости сходимости Вы знаете?
- 9). Когда говорят, что в итерационном процессе $x^{k+1} = x^k + \alpha_k p^k$, k = 0,1,... производится исчерпывающий спуск?
- 10). Какие направления дифференцируемой в точке x^k функции f(x) называются направлениями убывания? Каков геометрический смысл направления убывания?
- 11). Какова скорость сходимости метода градиентного спуска для квадратичной функции f(x) с положительно определенной симметрической матрицей A, где 0 < l < L ее наименьшее и наибольшее собственные значения?
- 12). Когда говорят, что сильно выпуклая функция f(x) имеет "овражный характер"? Какие задачи минимизации называются хорошо обусловленными, а какие плохо обусловленными?
- 13).В чем состоят преимущества и недостатки метода наискорейшего спуска по сравнению с методом градиентного спуска?
- 14). Каков главный недостаток градиентных методов?
- 15).В чем состоит идея метода сопряженных градиентов? Чем этот метод отличается от методов градиентного и наискорейшего спуска?
- 16). Какова скорость сходимости метода Ньютона для дважды дифференцируемой выпуклой функции f(x) многих переменных? Какова трудоемкость этого метода?
- 17). Чем отличаются классический и обобщенный методы Ньютона для сильновыпуклой дважды дифференцируемой функции многих переменных?
- 18). Сформулировать общий принцип построения квазиньютоновских методов. Какую скорость сходимости следует ожидать от квазиньютоновских методов? Какова их трудоемкость?