Metody Obliczeniowe w Nauce i Technice Laboratorium 7 Dekompozycja spektralna

4 grudnia 2017

Przydatne funkcje Matlaba i Octava

• eigs, eig

Przydatne funkcje NumPy

• numpy.linalg.eig

1 Metoda potęgowa

Napisz funkcję obliczającą metodą potęgową dominującą wartość własną (największą co do modułu) i odpowiadający jej wektor własny dla danej macierzy rzeczywistej symetrycznej. Sprawdź poprawność działania programu porównując własną implementację z wynikami funkcji bibliotecznej. Przedstaw na wykresie zależność czasu obliczeń od rozmiaru macierzy (rozmiary macierzy 100x100, 500x500, ...).

 \bullet Powtarzaj mnożenie wektora $\mathbf{x_i}$ przez macierz \mathbf{A} :

$$\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i,$$

dzieląc za każdym razem wektor wynikowy przez $||x_{i+1}||_{\infty}$

- \bullet Element wektora \mathbf{x}_i o największej wartości bezwzględnej zbiega do dominującej wartości własnej
- \bullet Przeskalowany wektor \mathbf{x}_i zbiega do dominującego wektora własnego
- Obliczenia powinny się zatrzymać po przekroczeniu maksymalnej liczby iteracji, albo w przypadku gdy $||\mathbf{x}_i \mathbf{x}_{i+1}|| < \epsilon$ (kryterium małej poprawki)
- Pod koniec obliczeń znormalizuj otrzymany wektor własny.

2 Odwrotna metoda potęgowa

Opierając się na twierdzeniu o transformacji widma macierzy:

Twierdzenie 1 Macierz $(\mathbf{A} - \sigma \mathbf{I})^{-1}$ (jeśli istnieje), to ma wartości własne równe $\frac{1}{\lambda_k - \sigma}$ (λ_k jest k-tą wartością macierzy \mathbf{A}) i wektory własne identyczne z macierzą \mathbf{A} .

oraz wykorzystując metodę potęgową i faktoryzację LU zaimplementuj odwrotną metodę potęgową pozwalającą na szybkie znalezienie wektorów własnych macierzy \mathbf{A} , dla wartości σ bliskich odpowiedniej wartości własnej. Wykorzystaj fakt, że mnożenie wektora \mathbf{x}_i przez macierz \mathbf{A}^{-1} ($\mathbf{x}_{i+1} = \mathbf{A}^{-1}\mathbf{x}_i$) odpowiada rozwiązaniu układu równań $\mathbf{A}\mathbf{x}_{i+1} = \mathbf{x}_i$.

3 Iteracje z ilorazem Rayleigha

Zaimplementuj iteracyjną metodę wyznaczania wartości własnej i skojarzonego z nią wektora własnego wykorzystując odwróconą metodę potęgową oraz iloraz Rayleigha. Porównaj zbieżność metody ze zbieżnością algorytmu potęgowego (macierz symetryczna rzeczywista).

$$r(\mathbf{x}) = \frac{\mathbf{x} \mathbf{A} \mathbf{x}^T}{\mathbf{x} \mathbf{x}^T}$$

$$r(\mathbf{q}_i) = \lambda_i$$