Конспект конспекта по матану

Захаренко Артем

28 марта 2021 г.

Оглавление

пределенные интегралы	2
Обычные интегралы	2
нализ в метрических пространствах	5
Метрические и нормированные пространства	5
Открытые и замкнутые множества	6
Предельные точки	7
Подпространства	8
Нормированные пространства	8
Пределы в метрических пространствах	9

Определенные интегралы

Обычные интегралы

$$\int_{a}^{b} f(x)dx = \sigma(f_{+}(x)) - \sigma(f_{-}(x))$$

Свойства

• Аддитивность:
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Теорема: монотонность интеграла

$$f, g \in C[a, b], \ f(x) \leqslant g(x) \forall x \in [a, b] \Rightarrow \int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} f(x) dx$$

Следствие:

$$f \in C[a, b], (b - a) \min_{x \in [a, b]} (f(x)) \le \int_{a}^{b} f(x) dx \le (b - a) \max_{x \in [a, b]} (f(x))$$

Теорема о среднем

$$f \in C[a,b] \Rightarrow \exists c \in [a,b] : \int_a^b f(x)dx = (b-a)f(c)$$

Определение:

Интеграл с переменным верхним пределом: $\Phi:[a,b]\to \mathbb{R}, \Phi(x)=\int\limits_{a}^{x}f(t)dt$

Теорема Барроу: любая непрерывная на отрезке функция имеет первообразную

Основная идея:
$$R(y) = \frac{\Phi(y) - \Phi(x)}{y - x} = \frac{1}{y - x} \int\limits_x^y f(t) dt = f(c)$$

Следствие: на любом промежутке непрерывная функция имеет первообразную

Теорема: формула Ньютона-Лейбница

$$f \in C[a,b] \Rightarrow \int_{a}^{b} f(x)dx = F(a) - F(b)$$

Теорема: линейность интеграла

$$f, g \in C[a, b], \ \alpha, \beta \in \mathbb{R} \Rightarrow \int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) + \beta \int_{a}^{b} g(x)$$

Формулы интегрирования по частям и замена переменной

Приложение к формуле Валлиса:

$$W_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx,$$

$$W_{2k} = \frac{(2k-1)!!}{(2k)!!} \frac{\pi}{2}$$

$$W_{2k+1} = \frac{(2k)!!}{(2k+1)!!}$$

$$W_{2k} \leqslant W_{2k+1} \leqslant W_{2k+2}$$

$$\Rightarrow \lim \left(\frac{(2n)!!}{(2n-1)!! \cdot \sqrt{2n+1}}\right) = \sqrt{\frac{\pi}{2}}$$

Теорема: Формула Тейлора с остатком в интегральной форме

3

$$f \in C^{n+1}\langle a, b \rangle \Rightarrow \forall x \in \langle a, b \rangle \ f(x) = T_{n,x_0} f(x) + \frac{1}{n!} \int_{x_0}^{x} (x-t)^n f^{(n+1)}(t) dt$$

Основная идея: индукция + интегрирование по частям

Теорема Ламберта

 π и π^2 иррациональны

План доказательства:

$$H_j = \frac{1}{j!} \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2} \right)^2 - x^2 \right)^2 \cos x dx$$

Свойства:

- $0 < H_j < \frac{1}{j!} \left(\frac{\pi}{2}\right)^{2j}$
- $\forall c > 0, \ H_j c^j \to 0$
- $H_0 = 1, H_1 = 2$
- $H_j = (4j-2)H_{j-1} \pi^2 H_{j-2}$ (Интегрирование по частям)
- $\exists P_j, \deg(P_j) \leqslant j, H_j = P_j(\pi^2)$

Дальше в 2 строки следует иррациональность π

Анализ в метрических пространствах

Метрические и нормированные пространства

Определение:

Метрика $\rho: X \times X \to [0, +\inf)$

- 1. $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. Неравентсво треугольника $\rho(x,z) \le \rho(x,y) + \rho(y,z)$

Примеры:

1. Дискретная метрика

$$\rho(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

2. Манхетенская \mathbb{R}^2 , $\rho((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$

3.
$$C[a,b] \rho(f,g) = \int_{a}^{b} |f(x) - g(x)| dx$$

$$\rho(f,h) = \int_{a}^{b} (|f - h|) \leqslant \int_{a}^{b} (|f - g| + |g - h|) = \int_{a}^{b} (|f - g|) + \int_{a}^{b} (|g - h|) = \rho(f,g) + \rho(g,h)$$

4. Расстояние в произвольном *п*-мерном пространстве.

Определение:

 (X, ρ) — метрическое пространство.

$$B_r(x) = \{ y \in X : \rho(x, y) < r \}$$

$$\overline{B}_r(x) = \{ y \in X : \rho(x, y) \leqslant r \}$$

Свойства:

1.
$$B_{r_1}(x) \cap B_{r_2}(x) = B_{\min(r_1, r_2)}(x)$$

Открытые и замкнутые множества

Определение: открытое множество

 $A \subset X$ — открытое, если $\forall a \in A \ \exists r > 0 : B_r(a) \subset A$

Теорема об открытых множествах

- 1. X, \varnothing открытые
- 2. Объединение конечного числа открытых множеств открытое множество
- 3. Пересечение конечного числа открытых множеств открытое множество
- 4. $B_r(x)$ открытое множество

Доказательство:

- 1. Очев
- 2. Очев
- 3. Очев
- 4. $x \in B_R(a)$, берем $r = R \rho(x, a)$. Докажем, что $B_r(x) \subset B_R(a)$. $y \in B_r(x) \Rightarrow \rho(x, y) < r = R \rho(x, y) \Rightarrow R > \rho(x, y) + \rho(a, x) \geqslant \rho(a, y) \Rightarrow y \in B_R(a)$

Определение: внутренняя точка

Пусь (X, ρ) - метрическое пространство, $A \subset X$, $a \in A$. Тогда a - внутренняя $\Leftrightarrow \exists r > 0 : B_r(a) \subset A$

Определение: внутренность множества

Внутренность множества $IntA = \{a \in A : a$ — внутренняя $\}$

Свойства:

- 1. $IntA \subset A$
- 2. $IntA = \bigcup_{C \subset A} C, \ C$ открытые Доказательство:

Пусть $B := \bigcup A_i, \ A_i$ — все открытые подмножества A. Если $x \in B \Rightarrow \exists \ A_i : x \in A_i \Rightarrow \exists \ r > 0 : \ B_r(x) \subset A_i \subset A$. Если $x \in IntA \Rightarrow \exists r > 0 : B_r(x) \subset A, \ B_r(x)$ — открытое множество.

- 3. IntA открыто
- 4. $IntA = A \Leftrightarrow A$ открыто

- 5. $B \subset A \Rightarrow IntB \subset A$
- 6. $Int(A \cap B) = IntA \cap IntB$ очев
- 7. IntIntA = IntA

Определение: замкнутое множество

A — замкнуто, если его дополнение (в X) открыто.

Теорема о свойствах замнкутых множеств

- 1. X, \varnothing замкнуты
- 2. Пересечение любого числа замкнутых множеств замкнутое (перетащим с открытых)
- 3. Объединене конечного числа замкнутых множеств замкнутое (перетащим с открытых)
- 4. $\overline{B}_r(a)$ замкнутое.

Доказательство: Тут все должно быть очевидно :)

Определение: замыкание множества

Пересечение всех замкнутых множеств, содержащих данное — его замыкание (обозначают за CL(A))

Предельные точки

Точка x предельная для множества $A \Leftrightarrow \text{если } \forall r > 0B_r(x) \cap A \neq \emptyset$. A' — множество предельных точек A.

Свойства предельных точек

- 1. $CL(A) = A \cup A'$
- 2. Если A замкнуто, то $A' \subset A$

Теорема

 $x \in A' \Leftrightarrow \forall r > 0B_r(x)$ содержит бесконечно много точек из A. (ну это очев, из определения)

Подпространства

$$(X, \rho)$$
— метрическое пространство $Y \subset X$ $(Y, \rho|_{Y \times Y})$ — подпространство

Теорема об открытых и замкнутых множествах в подпространстве

$$(X, \rho)$$
 — метрическое пр-во (Y, ρ) — под-во, $A \subset Y$.

- 1. A открыто в $Y \Leftrightarrow \exists G$ открытое в $X: A = G \cap Y$
- 2. A замкнуто в $Y \Leftrightarrow \exists G$ замкнуто в $X: A = G \cap Y$

Нормированные пространства

X — векторное пространство над \mathbb{R} . $||x||:X \to \mathbb{R}$ — норма, если:

1.
$$||x|| \ge 0 \forall x \in X$$
, $||x|| = 0 \Leftrightarrow x = 0_X$

2.
$$||\lambda x|| = \lambda ||x|| \quad \forall x \in X, \lambda \in \mathbb{R}$$

3.
$$||x + y|| \le ||x|| + ||y||$$

Скалярное произведение

 $\langle.\ .\rangle: X\times X\to \mathbb{R}$ — скалярное произведение, если

1.
$$\langle x, x \rangle \geqslant 0$$
, $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

2.
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

3.
$$\langle x, y \rangle = \langle y, x \rangle$$

4.
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \lambda \in \mathbb{R}$$

Свойства скалярного произведения и нормы

- 1. Нер-во Коши-Буняковского $\langle x,y \rangle^2 \leqslant \langle x,x \rangle \cdot \langle y,y \rangle$ Д-во: $f(t) := \langle x+ty,x+ty \rangle \geqslant 0 \\ \langle x,x \rangle + t \langle x,y \rangle + t \langle y,x \rangle + t^2 \langle y,y \rangle$ квдратный трехчлен больший 0, то есть $D \leqslant 0$. Дальше очев.
- 2. $||x|| = \sqrt{\langle x, x \rangle}$ норма. Все очев, нер-во треугольника по Коши-Буняковскому.

3.
$$\rho(x,y) = ||x-y||$$
 — метрика.

4.
$$||x - y|| \ge |||x|| - ||y|||$$

Пределы в метрических пространствах

 ${x_i} \in X$, $\lim x_i = a$. 2 Варианта:

- 1. Вне любого $B_r(a), r > 0$ лежит конечное число точек из $\{x_i\}$
- 2. $\forall \epsilon > 0 \; \exists N : \; \forall n \geqslant N x_n \in B_{\epsilon}(a)$

В общем-то, все как в \mathbb{R} . Стоит отметить, что и свойства такие же:

- 1. Если перемешать члены последовательности, то предел не изменится
- 2. У подпоследовательности такой же предел
- 3. Если каждую точку последовательности взять с конечной кратностью, то предел не изменится
- 4. Единственность предела

Доказательство:

Пусть у нас 2 предела a и b, возьмем $r_a = r_b = \frac{\rho(a,b)}{3}$. Тогда вне $B_{r_a}(a)$ конечное число точек последовательности, вне $B_{r_b}(b)$ конечное число точек. Так как они не пересекаются, то во всей последовательности конечно число точек. Ну, так не бывает.

5. **Новое свойство!** $a = \lim x_n \Leftrightarrow \lim \rho(x_n, a) = 0$ Стоит заметить, что оба выражения эквивалентны тому, что $\forall \epsilon > 0 \; \exists N : \; \forall n \geqslant N \rho(a, x_n) < \epsilon$

Определение: ограниченное множество

 $A\subset X$ ограничено, если оно содержится в некотором шаре

Теорема: сходящаяся последовательность ограничена

Очев же, как из первого семестра :)

Теорема: про предельные точки

a — предельная точка $A \leftrightarrow \exists x_n \in A \setminus a, \lim(x_n) = a$. Писать много, но все тоже самое, что и в первом семе.

Теорема: про предельные точки

a — предельная точка $A \leftrightarrow \exists x_n \in A \setminus a, \lim(x_n) = a$. Писать много, но все тоже самое, что и в первом семе.

Теорема: про арифметические действия

 (X, ρ) — нормированное пространство. $\lim(y_n) = y_0, \lim(x_n) = x_0$

- 1. $\lim(x_n + y_n) = x_0 + y_0$
- 2. $\lim(x_n y_n) = x_0 y_0$
- 3. $\lim(\lambda x_n) = \lambda \lim(x_n)$
- 4. $\lim(||x_n||) = ||x_0||$
- 5. Если в X есть скалярное произведение, то $\lim \langle x_n, y_n \rangle = \langle x_0, y_0 \rangle$

Частный случай: R^d

Обычно норма это $||x|| = \sqrt{x_1^2 + ... + x_d^2}$. Для нее и рассматривают пределы. При этом, можно рассматривать сходимость по-координатно (то есть по каждой координает отдельно рассматривать последовательность из \mathbb{R})

Не трудно видеть, что оба эти предела совпадают, так как пусть $\rho(x_n, x_0) \to 0 \Rightarrow \left(x_n^{(1)} - x_0^{(1)}\right)^2 + \left(x_n^{(2)} - x_0^{(2)}\right)^2 + \dots + \left(x_n^{(d)} - x_0^{(d)}\right)^2 \to 0$. Сумма неотрицательных последовательностей стремится к 0, тогда каждая из них по отдельности стремится к 0. В другую сторону (от по-координатно к по норме) еще легче.

Определение: фундаментальная последовательность

Определение почти как в первом семе)

Определение: полное пространство

 (X, ρ) — полное, если для любой фундаментальной последовательности она имеет предел

Теорема: R^d — полное

Если x_n — фундаментальная, то $\forall \epsilon>0$ $\exists N \forall m,n\geqslant N x_n-x_m<\rho(n,m)<\epsilon$