MODELLI E METODI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (9 punti) Si consideri il problema di cammino a costo minimo sul grafo orientato con le seguenti distanze associate agli archi

	1	2	3	4
1	_	10	2	12
2	12	_	15	4
3	10	3	_	16
4	11	8	14	_

Si trovino i cammini minimi e le loro lunghezze tra tutte le possibili coppie di nodi usando l'algoritmo di Floyd-Warshall. Si veda cosa succede se la distanza dell'arco (3,1) viene posta uguale a -3.

ESERCIZIO 2. (10 punti) Sia data la rete G = (V, A) con

$$V = \{S, 1, 2, 3, 4, 5, 6, D\}$$

e

 $A = \{(S,1), \ (S,2), \ (S,3), \ (1,2), \ (1,4), \ (2,3), \ (2,5), \ (3,6), \ (4,5), \ (4,D), \ (5,6), \ (5,D), \ (6,D)\}$ con le capacità

$$c_{S1}=2$$
 $c_{S2}=5$ $c_{S3}=3$ $c_{12}=8$ $c_{14}=8$ $c_{23}=2$ $c_{25}=3$ $c_{36}=3$ $c_{45}=7$ $c_{4D}=3$ $c_{56}=4$ $c_{5D}=7$ $c_{6D}=5$

Sia data la soluzione

$$x_{S1}=2$$
 $x_{S2}=3$ $x_{S3}=0$ $x_{12}=2$ $x_{14}=0$ $x_{23}=2$ $x_{25}=3$ $x_{36}=2$ $x_{45}=0$ $x_{4D}=0$ $x_{56}=3$ $x_{5D}=0$ $x_{6D}=5$

Dopo aver mostrato che tale soluzione è un flusso ammissibile, si parta da essa per determinare il flusso massimo e il taglio minimo per questa rete. Cosa succede se incremento di 1 la capacità dell'arco (1,2)?

ESERCIZIO 3. (6 punti) Si dimostri la correttezza dell'algoritmo greedy per il problema dell'albero di supporto a peso minimo.

ESERCIZIO 4. (6 punti) Si introducano le classi P e NP di problemi. Si dia la definizione di problemi NP-completi e si dica che cosa potremmo concludere su di essi nel caso sapessimo che $P \neq NP$.