DBMS

Ayushmaan [210010031]

September 16, 2023

1 ONLINE BOARD GAME SERVICE

Figure 1: ER Diagram

Figure 2: Relational Schema

2 2

2.1 (a)

2.1.1 Relational Algebra

 $\pi_{Instructor.id,Instructor.name}(\sigma_{Instructor_activity.a_id=NULL}(Instructor\bowtie_{Instructor.id=Instructor_activity.i_id}Instructor_activity))$

2.1.2 Tuple Relational Calculus

 $\{ \texttt{t} \mid \exists s \in Instructor_activity(Instructor(t) \land (t.id = s.i_id \lor s.a_id = NULL)) \}$

2.1.3 Domain Relational Calculus

 $\{(id, name) \mid \neg \forall a_id(Instructor_activity(a_id, i_id) \rightarrow (Instructor(id, name) \land id = i_id))\}$

i id	i name
1	Macron

Table 1: (a))

2.2 (b)

2.2.1 Relational Algebra

 $\pi_{Instructor.name}(\sigma_{Activity.category='Boxing'}(Instructor \bowtie Instructor_activity \bowtie Activity)) \cap \pi_{Instructor.name}(\sigma_{Activity.category='Combat'}(Instructor \bowtie Instructor_activity \bowtie Activity))$

2.2.2 Tuple Relational Calculus

 $\{ \text{t} \mid \text{Instructor}(\textbf{t}) \land \exists s (Instructor_activity(s) \land Activity(s) \land s. category =' Boxing') \land \exists u (Instructor_activity(u) \land Activity(u) \land u. category =' Combat') \}$

2.2.3 Domain Relational Calculus

 $\{ (name) \mid \exists id(Instructor(id, name) \land \exists a_id, i_id(Instructor_activity(a_id, i_id) \land Activity(a_id, category) \land category =' Boxing') \land \exists a_id', i_id'(Instructor_activity(a_id', i_id') \land Activity(a_id', category') \land category' =' Combat') \}$

i name Jacinda

Table 2: (b))

2.3 (c)

2.3.1 Relational Algebra

 $\pi_{a_name}(Activity) - \pi_{a_name}((\pi_{s_id}(Student)\sigma_{level='L2'}) \bowtie Student_activity \bowtie Activity)$

2.3.2 Tuple Relational Calculus

 $\{t \mid Activity(t) \land \neg \exists s(Student_activity(s) \land s.a_id = t.a_id \land \exists u(Student(u) \land u.level =' L2' \land u.s_id = s.s_id))\}$

2.3.3 Domain Relational Calculus

 $\{(a_name) \mid \forall a_id(Activity(a_id, a_name) \rightarrow \neg \exists s_id(Student_activity(a_id, s_id) \land \exists level(Student(s_id, level) \land level =' L2'))\}$

a name
Karate
Cardio Boxing
Diving

Table 3: (c))

2.4 (d)

2.4.1 Relational Algebra

 $\pi_{Instructor.i_name}(Instructor \bowtie Instructor_activity) - \pi_{Instructor.i_name}((\pi_{Student.s_id}(Student)\sigma_{level='L2'}) \bowtie Student_activity \bowtie Instructor_activity \bowtie Instructor)$

2.4.2 Tuple Relational Calculus

 $\{ \text{t } | \text{Instructor}(\textbf{t}) \land \forall s (Instructor_activity(s) \rightarrow (t.i_id = s.i_id \land \neg \exists u (Student(u) \land u.level =' L2' \land \exists v (Student_activity(v) \land v.s_id = u.s_id \land v.a_id = s.a_id))) \}$

2.4.3 Domain Relational Calculus

 $\{(i_name) \mid \forall i_id, a_id(Instructor(i_id, i_name) \land Instructor_activity(i_id, a_id) \rightarrow \neg \exists s_id(Student(s_id, level) \land level =' L2' \land \exists a_id'(Student_activity(s_id, a_id') \land a_id' = a_id)) \}$

i name
Merkel
Theresea

Table 4: (d))

2.5 (e)

2.5.1 Relational Algebra

 $\pi_{category}(Activity) \cap (\pi_{a_id}((\pi_{s_id}(\sigma_{level='L1'}(Student))) \bowtie Student_activity) \cap \\ \pi_{a_id}((\pi_{s_id}(\sigma_{level='L2'}(Student))) \bowtie Student_activity))$

2.5.2 Tuple Relational Calculus

{t |Activity(t) $\land \exists s(Student_activity(s) \land s.a_id = t.a_id \land \exists u(Student(u) \land u.level =' L1' \land u.s_id = s.s_id) \land \exists v(Student(v) \land v.level =' L2' \land v.s_id = s.s_id)}$

2.5.3 Domain Relational Calculus

 $\{(\text{category}) \mid \forall a_id(Activity(a_id, category) \rightarrow (\exists s_id(Student_activity(a_id, s_id) \land \exists level(Student(s_id, level) \land level =' L1')) \land (\exists s_id'(Student_activity(a_id, s_id') \land \exists level'(Student(s_id', level') \land level' =' L2'))) \}$

category
Combat
Boxing
Aquatic Sport

Table 5: (e))

3 3

(a) No, because same value of A3 is giving different value of A1 for different tuples.

$$t_1[A_3] = t_5[A_3]$$
 but $t_1[A_1] \neq t_5[A_1]$

- (b) Yes.
- (c) No, because same value of A2 is giving different value of A3 for different tuples.

$$t_1[A_2] = t_2[A_2]$$
 but $t_1[A_3] \neq t_2[A_3]$

- (d) Yes.
- (e) Yes.

Question 4

To determine if the given schema is in BCNF (Boyce-Codd Normal Form) and 3NF (Third Normal Form), we'll first analyze the functional dependencies and check if they violate the BCNF and 3NF conditions.

Given Functional Dependencies (FDs):

FD1: B1, B2 \rightarrow B4 FD2: B2, B3 \rightarrow B5 FD3: B5 \rightarrow B6

Let's analyze BCNF and 3NF separately:

BCNF (Boyce-Codd Normal Form):

A relation schema R is in BCNF with respect to a set F of functional dependencies if, for all functional dependencies in F+ of the form $\alpha \to \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$: at least one of the following holds:

- · $\alpha \to \beta$ is a trivial functional dependency.
- · α is a superkey for sheema R.

In the given schema, the primary key is $\{B1, B2, B3\}$, so we have:

```
FD1: B1, B2 \rightarrow B4 (X = \{B1, B2\}) is a part of the key
FD2: B2, B3 \rightarrow B5 (X = \{B2, B3\}) is a part of the key
FD3: B5 \rightarrow B6 (X = \{B5\}) is not a part of the key
```

FD3 violates the BCNF condition because the left side $(X = \{B5\})$ is not a superkey. To bring the schema into BCNF, we need to decompose the table into smaller tables such that each table has a superkey as its primary key.

New schema to achieve BCNF:

```
Table 1: T1(B1, B2, B4)
Table 2: T2(B2, B3, B5)
Table 3: T3(B5, B6)
```

In this new schema, all tables have a superkey as their primary key, and it satisfies BCNF.

3NF (Third Normal Form):

A relation schema R is in 3NF with respect to a set F of functional dependencies if, for all functional dependencies in F+ of the form $\alpha \to \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$: at least one of the following holds:

- $\alpha \rightarrow \beta$ is a trivial functional dependency.
- · α is a superkey for sheema R.

· Each Attribute in A in $\beta - \alpha$ is contained in some candidate key of R.

In the new BCNF schema, we have two candidate keys: $\{B1, B2, B3\}$ and $\{B2, B3\}$. Now, we need to check for transitive dependencies:

FD1: $B1, B2 \rightarrow B4$ (B4 is not transitively dependent on any superkey) FD2: $B2, B3 \rightarrow B5$ (B5 is not transitively dependent on any superkey) FD3: $B5 \rightarrow B6$ (B6 is transitively dependent on $\{B5\}$, which is a superkey)

FD3 violates the 3NF condition because B6 is transitively dependent on a superkey. To bring the schema into 3NF, we need to further decompose the tables

New schema to achieve 3NF:

Table 1: T1(B1, B2, B4)

Table 2: T2(B2, B3, B5)

Table 3: T3(B5, B6)

The new schema satisfies both BCNF and 3NF conditions.