Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого

Институт компьютерных наук и технологий Кафедра «Информационная безопасность компьютерных систем»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 2

по дисциплине «Вычислительная математика»

Выполнил

студент гр. 23508/4 Е.Г. Проценко

Проверил профессор

офессор С.М. Устинов

1 ФОРМУЛИРОВКА ЗАДАНИЯ (ВАРИАНТ 29)

Составьте процедуру вычисления по заданной матрице A(N,N) матрицы $R=A^{-1}A-E$ и ее нормы $\|R\|=max\sum_{j}^{N}\left|R_{jk}\right|$.

Построить три матрицы A при $x_k = \frac{1+\cos(k)}{\sin^2(k)}$, $k=1,\ldots,4$ и $x_5=(1+\cos(1))/\sin^2(1+\varepsilon)$ для трех значений $\varepsilon=0.001,\,0.00001,\,0.000001$ и N=5.

$$A = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ \chi_1^{N-1} & \cdots & \chi_N^{N-1} \end{pmatrix}$$

Исследовать зависимость погрешности вычисления ||R|| от ε .

2 РЕЗУЛЬТАТЫ РАБОТЫ

1) Построены три матрицы A при $x_k = \frac{1+\cos(k)}{\sin^2(k)}$, k = 1, ..., 4 и $x_5 = (1+\cos(1))/\sin^2(1+\varepsilon)$ для трех значений $\varepsilon = 0.001, 0.00001, 0.000001$ и N = 5.

Input Matrix A With e = 0.001

1.0000000000000 1.0000000000000 1.000000000000 1.000000000000 1.0000000000000 2.17534264970 0.70614146372 0.50251445764 0.60472521853 2.17255396670 4.73211564350 0.49863576678 0.25252078014 0.36569258993 4.71999073810 10.29397298300 0.35210739022 0.12689534287 0.22114353136 10.25443460100 22.39291846400 0.24863762791 0.06376674440 0.13373107033 22.27831256700

Input Matrix B With e = 0.00001

1.000000000000 1.000000000000 1.0000000000000 1.0000000000000 1.0000000000000 2.17534264970 0.70614146372 0.50251445764 0.60472521853 2.17531471470 0.25252078014 0.36569258993 4.73199410810 4.73211564350 0.49863576678 10.29397298300 0.35210739022 0.12689534287 0.22114353136 10.29357641300 22.39291846400 0.24863762791 0.06376674440 0.13373107033 22.39176823900

Input Matrix C With e = 0.000001

1.000000000000 1.000000000000 1.000000000000 1.0000000000000 1.000000000000 0.70614146372 0.50251445764 2.17534264970 0.60472521853 2.17533985610 4.73211564350 0.49863576678 0.25252078014 0.36569258993 4.73210348970 10.29397298300 0.35210739022 0.12689534287 0.22114353136 10.29393332400 0.24863762791 0.06376674440 0.13373107033 22.39291846400 22.39280343700

2) Cond для всех трех матриц.

COND Matrix A:47703.99809900000 COND Matrix B:3019691.20310000000 COND Matrix C:30047556.46200000000

Чем хуже обусловлена матрица, тем больше значение cond.

3) Обратные матрицы для всех трех.

A:

43.30786309300	-239.06246678000	466.84223460000	-370.27812097000	-370.27812097000
32.27933370700	-147.31066369000	221.25623503000	-122.60982682000	-122.60982682000
34.70866903200	-138.47981171000	186.64788018000	-97.32209473000	-97.32209473000
-65.69999521900	284.22637798000	-404.92966424000	217.68687328000	217.68687328000
-43.59587061400	240.62656420000	-469.81668557000	372.52316923000	372.52316923000

B:

4328.81519360000	-23892.83724600000	46650.18074000000	-36989.58976800000	-36989.58976800000
32.25960492000	-147.20177103000	221.04362513000	-122.44124594000	-122.44124594000
34.69540883000	138.40662228000	-186.50497985000	-97.20878737800	-97.20878737800
-65.66782582300	284.04881962000	-404.58298648000	217.41198842000	217.41198842000
-4329.10238150000	23894.39682000000	-46653.14635800000	36991.82781300000	36991.82781300000

C:

43287.87342500000	-238926.60523000000	466497.64228000000	-369891.57425000000	-369891.57425000000
32.25943718400	-147.20084521000	221.04181751000	-122.43981265000	-122.43981265000
34.69529911000	-138.40601669000	186.50379744000	-97.20784983100	-97.20784983100
-65.66755582200	284.04732936000	-404.58007678000	217.40968128000	217.40968128000
-43288.16060500000	238928.16476000000	-466500.60782000000	369893.81223000000	369893.81223000000

4) Вычисление матрицы R из всех трех.

От матрицы А:

0.00000000000	-0.0000000006	-0.00000000007	0.0000000017	0.0000000017
0.00000000047	-0.00000000027	-0.00000000013	-0.00000000012	-0.00000000012
0.00000000093	-0.00000000008	-0.00000000005	-0.00000000011	-0.00000000011
-0.00000000186	0.00000000025	0.00000000009	0.0000000017	0.0000000017
0.00000000000	-0.0000000035	0.0000000004	-0.00000000007	-0.00000000007
От матрицы В	:			
0.00000023842	0.0000000373	0.0000000373	0.00000002235	0.00000002235
-0.00000000233	-0.00000000033	-0.00000000022	-0.00000000021	-0.00000000021
0.0000000559	0.0000000042	0.00000000024	0.00000000042	0.00000000042
-0.00000000466	-0.00000000047	-0.00000000024	-0.00000000035	-0.00000000035
-0.00000047684	-0.0000001863	-0.0000001490	-0.00000001118	-0.00000001118
От матрицы С	:			
0.00000190735	-0.00000041723	-0.00000023842	-0.00000020862	-0.00000020862
0.00000000279	0.0000000039	0.0000000030	0.0000000039	0.0000000039
0.0000000186	0.00000000023	0.00000000006	0.00000000010	0.00000000010
-0.00000000093	-0.00000000009	-0.00000000016	-0.00000000013	-0.00000000013
-0.00000190735	-0.00000002980	0.00000003725	0.00000000000	0.00000000000

5) Норма для матриц R.

A_R Matrix Norm: 4.1909515858E-09

B_R Matrix Norm: 7.5995922089E-07

C_R Matrix Norm: 6.5863132477E-06

Чем хуже обусловлена исходная матрица, тем больше норма матрицы R.

3 ВЫВОД

4 ПРИЛОЖЕНИЕ

Листинг написанной программы:

```
uses CRT, FMM, MATH;
Const
       N = 5;
       ea = 0.001;
       eb = 0.00001;
       ec = 0.000001;
Var
       f: text;
       i, j: integer;
       xk: float;
       A, B, C: floatmatrix;
       _A, _B, _C: floatmatrix;
A_I, B_I, C_I: floatmatrix;
A_R, B_R, C_R: floatmatrix;
       bb: floatvector;
       cond: float;
       ipvt: ivector;
       work: floatvector;
procedure print_matrix(MTRX: floatmatrix);
Var
       i, j: integer;
begin
       for i:=1 to N do begin
               for j:=1 to N - 1 do begin
                      write(MTRX[i,j]:16:15, ' ');
write(f, MTRX[i,j]:16:15, ' ');
               end;
               writeln(MTRX[i,N]:16:15);
               writeln(f, MTRX[i,j]:16:15, ' ');
       end;
end;
procedure create_inverse_matrix(MTRX: floatmatrix; Var MTRX_I: floatmatrix);
Var
       i, j: integer;
       bb: floatvector;
begin
       for j:=1 to N do begin
               for i:=1 to N do bb[i]:=0;
               bb[j] := 1;
               solve(N, MTRX, bb, ipvt);
               for i:=1 to N do begin
                      MTRX_I[i, j] := bb[i];
               end;
       end;
end;
procedure create_r_matrix(MTRX: floatmatrix; MTRX_I: floatmatrix;
                                                     Var MTRX_R: floatmatrix);
```

```
Var
       i, j, k: integer;
       sum: float;
begin
       for i:=1 to N do begin
              for j:=1 to N do begin
                     sum := 0;
                     for k:=1 to N do begin
                            sum := sum + MTRX_I[i, k] * MTRX[k, j];
                     end;
                     MTRX_R[i, j] := sum;
                     if i = j then MTRX_R[i, j] := MTRX_R[i,j] - 1;
              end;
       end;
end;
function get_norm(MTRX: floatmatrix) : float;
Var
       max_norm, norm: float;
begin
       max_norm := 0;
       for i:=1 to N do begin
              norm:=0;
              for j:=1 to N do begin
                     if MTRX[i, j] > 0 then norm := norm + MTRX[i, j]
                     else norm := norm - MTRX[i, j];
              if max_norm < norm then max_norm := norm;</pre>
       get_norm := max_norm;
end;
begin
       assign(f, 'output_3.txt');
    rewrite(f);
       clrscr;
       {Matrix Builder}
       for j:=1 to N - 1 do begin
              xk := (1+cos(j))/power(sin(j), 2);
              for i:=1 to N do begin
                     A[i, j] := power(xk, i - 1);
                     B[i, j] := power(xk, i - 1);
                     C[i, j] := power(xk, i - 1);
              end;
       end;
       xk := (1 + cos(1))/power(sin(1 + ea), 2);
       for i:=1 to N do begin
              A[i, N] := power(xk, i-1);
       end:
       xk := (1 + cos(1))/power(sin(1 + eb), 2);
       for i:=1 to N do begin
              B[i, N] := power(xk, i-1);
       end;
```

```
xk := (1 + cos(1))/power(sin(1 + ec), 2);
for i:=1 to N do begin
      C[i, N] := power(xk, i-1);
end;
writeln('Input Matrix A With e = 0.001');
print_matrix(A);
readln;
writeln('Input Matrix B With e = 0.00001');
print matrix(B);
readln;
writeln('Input Matrix C With e = 0.000001');
print_matrix(C);
readln;
{Copying}
for i:=1 to N do begin
      for j:=1 to N do begin
             A[i,j] := A[i,j];
              _B[i,j] := B[i,j];
             _C[i,j] := C[i,j];
      end:
end;
{Inverse Matrix}
decomp(N, _A, cond, ipvt, work);
writeln('COND Matrix A:', cond:13:12);
create_inverse_matrix(_A, A_I);
decomp(N, _B, cond, ipvt, work);
writeln('COND Matrix B:', cond:13:12);
create_inverse_matrix(_B, B_I);
decomp(N, _C, cond, ipvt, work);
writeln('COND Matrix C:', cond:13:12);
create_inverse_matrix(_C, C_I);
readln;
writeln('Inverse Matrix A');
print_matrix(A_I);
readln;
writeln('Inverse Matrix B');
print_matrix(B_I);
readln;
writeln('Inverse Matrix C');
print_matrix(C_I);
readln;
{R}
create_r_matrix(A, A_I, A_R);
writeln('Matrix R from A');
print_matrix(A_R);
readln;
create_r_matrix(B, B_I, B_R);
writeln('Matrix R from B');
```

```
print_matrix(B_R);
    readln;

create_r_matrix(C, C_I, C_R);
    writeln('Matrix R from C');
    print_matrix(C_R);
    readln;

{R Matrix Norm}

writeln('A_R Matrix Norm: ', get_norm(A_R));
    readln;

writeln('B_R Matrix Norm: ', get_norm(B_R));
    readln;

writeln('C_R Matrix Norm: ', get_norm(C_R));
    readln;

close(f);
end.
```