Igualdad de las integrales inferior y superior como criterio de integrabilidad de Riemann

Ailema Matos C121, Raúl R. Espinosa C122

March 17, 2025

En este documento se demuestra rigurosamente mediante un análisis detallado de las definiciones y propiedades fundamentales de la integración de Riemann un teorema que nos permite asegurar que una funcion sea integrable según Riemann.

Teorema 1 (Condición necesaria y suficiente de integrabilidad de Riemann en funciones reales). Sea $f: \mathbb{R} \to \mathbb{R}$ entonces se cumple que

$$f \in \mathcal{R}[a,b] \Longleftrightarrow \underline{I} = \int_{\underline{a}}^{\underline{b}} f(x) dx = \overline{\int_{\underline{a}}^{\underline{b}}} f(x) dx = \overline{I}$$

Propiedades y definiciones:

- 1. **def 1:** $\overline{I} = inf\{S(f, P) : P \in P[a, b]\}$
- 2. **def 2:** $\underline{I} = \sup\{s(f, P) : P \in P[a, b]\}$
- 3. **Propiedad 1:** Sean $P_1, P_2 : P1 \in P[a, b] \land P_2 \in P[a, b]$, se cumple que:

$$P_2 \supset P_1 \implies S(f, P_2) \le S(f, P_1)$$

$$P_2 \supset P_1 \implies s(f, P_2) \ge s(f, P_1)$$

Proof. Para demostrar este teorema, procedemos en dos partes:

1. Necesidad: Demostremos que $f \in \mathcal{R}[a,b] \implies \underline{I} = \overline{I}$

Afirmacion 1: $\overline{I} = s(f, P_{sup}) \implies \forall P_i : P_i \in P[a, b]$ se tiene que $P_{sup} \supset P_i$. **Afirmacion 2:** $\underline{I} = S(f, P_{inf}) \implies \forall P_i : P_i \in P[a, b]$ se tiene que $P_{inf} \supset P_i$.

Proof. Demostremos la afirmación 1:

Sea $\overline{I} = s(f, P_{sup})$ por la **def 2** se tiene que $s(f, P_{sup}) = \sup\{s(f, P) : P \in P[a, b]\}$. Procedamos por reducción al absurdo, supongamos que existe $P_m : P_m \in P[a, b]$ y $P_{sup} \not\supset P_m$. Sea $P' = P_{sup} \cup P_m$, note que P_{sup} está contenida en P'. Llegamos a que $P' \supset P_{sup}$ donde por la **Propiedad 2** tenemos que $s(f, P') \geq s(f, P_{sup})$ lo cual es una contradicción con $s(f, P_{sup}) = \sup\{s(f, P) : P \in P[a, b]\}$. Por tanto lo supuesto es falso y $\nexists P_m : P_{sup} \not\supset P_m$, de donde se cumple que $\forall P_i : P_i \in P[a, b]$ se tiene que $P_{sup} \supset P_i$

Proof. Demostremos la afirmación 2:

Sea $\underline{I} = S(f, P_{inf})$ por la **def 1** se tiene que $S(f, P_{inf}) = \inf\{S(f, P) : P \in P[a, b]\}$. Procedamos por reducción al absurdo, supongamos que existe $P_m : P_m \in P[a, b] \text{ y } P_{inf} \not\supset P_m$. Sea $P' = P_{inf} \cup P_m$, note que P_{inf} está contenida en P'. Llegamos a que $P' \supset P_{inf}$ donde por la **Propiedad 1** tenemos que $S(f, P') \leq S(f, P_{inf})$ lo cual es una contradicción con $S(f, P_{inf}) = \inf\{S(f, P) : P \in P[a, b]\}$. Por tanto lo supuesto es falso y $\not\equiv P_m : P_{inf} \not\supset P_m$, de donde se cumple que $\forall P_i : P_i \in P[a, b]$ se tiene que $P_{inf} \supset P_i$

Supongamos que f es integrable según Riemann. Entonces, por definición

$$lim(\sigma(f, P, \{\xi_i\})) = I$$

existe un único número I tal que para todo $\epsilon > 0$, existe una partición $P_{\epsilon} \in P[a,b]$ donde para todo $P: P \in P[a,b] \land P \supset P_{\epsilon}$ se cumple que:

$$|\sigma(f, P, \{\xi_i\}) - I| < \epsilon$$

Por la **Afirmacion 1** se tiene que $P_{sup} \supset P_{\epsilon}$ de donde

$$|\sigma(f, P_{sup}, \{\xi_i\}) - I| < \epsilon$$

tomando $\{\xi_i\}$ como $\{m_i\}$ el conjunto de los minimos de cada intervalo de la particion P_{sup} entonces se cumple que

$$|\sigma(f, P_{sun}, \{m_i\}) - I| < \epsilon$$

Note que $\sigma(f, P_{sup}, \{m_i\}) = \sum_{i=1}^n m_i \Delta x_i = s(f, P_{sup})$ de donde

$$|s(f, P_{sup}) - I| < \epsilon$$

$$|\overline{I} - I| < \epsilon$$

por definicion de limite se tiene que $\lim \overline{I} = I$.

Por la **Afirmacion 2** se tiene que $P_{inf} \supset P_{\epsilon}$ de donde

$$|\sigma(f, P_{inf}, \{\xi_i\}) - I| < \epsilon$$

tomando $\{\xi_i\}$ como $\{M_i\}$ el conjunto de los maximos de cada intervalo de la particion P_{inf} entonces se cumple que

$$|\sigma(f, P_{inf}, \{M_i\}) - I| < \epsilon$$

Note que $\sigma(f, P_{inf}, \{M_i\}) = \sum_{i=1}^n M_i \Delta x_i = S(f, P_{inf})$ de donde

$$|S(f, P_{inf}) - I| < \epsilon$$

$$|I - I| < \epsilon$$

por definicion de limite se tiene que limI = I.

Note que de $\lim \overline{I} = I$ y $\lim \underline{I} = I$ se tiene que $\lim (\overline{I} - \underline{I}) = 0$ y como $\overline{I} - \underline{I}$ es una constante, entonces $\overline{I} - \underline{I} = 0$.

Por tanto, concluimos que $\overline{I} = \underline{I}$, y queda demostrado que

$$f \in \mathcal{R}[a,b] \implies \underline{I} = \overline{I}$$

2. Suficiencia: Demostremos que $\underline{I} = \overline{I} \implies f \in \mathcal{R}[a,b]$

Afirmacion 3: $s(f, P) \le \sigma(f, P, \{\xi_i\}) \le S(f, P)$

Proof. Demostremos la afirmacion 3:

Sean $\{m_i\}$ el conjunto de los minimos de cada intervalo de P y $\{M_i\}$ el conjunto de los maximos de cada intervalo de P. Note que

$$m_i \le f(\xi_i) \le M_i$$

$$m_i \Delta x_i \le f(\xi_i) \Delta x_i \le M_i \Delta x_i$$

$$\sum_{i=1}^n m_i \Delta x_i \le \sum_{i=1}^n f(\xi_i) \Delta x_i \le \sum_{i=1}^n M_i \Delta x_i$$

$$s(f, P) \le \sigma(f, P, \{\xi_i\}) \le S(f, P)$$

Supongamos que $\underline{I} = \overline{I}$ y sea $I: I = \underline{I} = \overline{I}$.

Por definicion de \overline{I} (infimo) y de I (supremo) se tiene que

$$S(f, P) - \overline{I} >= 0 \wedge \lim(S(f, P) - \overline{I}) = 0$$

$$\underline{I} - s(f, P) \ge 0 \wedge lim(s(f, P) - \underline{I}) = 0$$

Por definicion de limite para todo x>0, y>0, tomando $\epsilon=max(x,y)$ se tienen las desigualdades

$$0 < |S(f, P) - \overline{I}| < x \le \epsilon$$
$$0 < |s(f, P) - \underline{I}| < y \le \epsilon$$

que son equivalentes a

$$0 < S(f, P) - \overline{I} < \epsilon$$
$$0 < \underline{I} - s(f, P) < \epsilon$$

Por la Afirmacion 3 tenemos que

$$s(f, P) \le \sigma(f, P, \{\xi_i\}) \le S(f, P)$$

restando I

$$s(f, P) - \underline{I} \le \sigma(f, P, \{\xi_i\}) - \underline{I} \le S(f, P) - \overline{I}$$

usando las desigualdades anteriores llegamos a

$$-\epsilon < s(f, P) - \underline{I} \le \sigma(f, P, \{\xi_i\}) - I \le S(f, P) - \overline{I} < \epsilon$$

que se puede escribir como

$$0 < |\sigma(f, P, \{\xi_i\}) - I| < \epsilon$$

Como la desigualdad se cumple para todo $\epsilon>0,$ por definicion de limite se tiene que

$$lim(\sigma(f, P, \{\xi_i\})) = I$$

donde por definicion de Riemann integrable se tiene que $f \in \mathcal{R}[a,b]$. Por tanto, queda demostrado que $\overline{I} = \underline{I} \implies f \in \mathcal{R}[a,b]$