НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ»

Кафедра математического и компьютерного моделирования

Численные методы

Отчет по лабораторной работе №2 «Решение линейных уравнений»

Вариант 47

Студент: Жарова Светлана Павловна

Преподаватель: Амосова Ольга

Алексеевна

Группа: А-16-22

Задача 2.1

Постановка задачи

Функция

$$f(x) = e^{-x} - lg(1-x^2) - 2$$

Методом простой итерации найти вещественные корни нелинейного уравнения f(x)=0 с точностью $\varepsilon=10^{-8}$.

Решение

Построим графики функций P(x) и P'(x) и найдем отрезки локализации, проверив, что на концах отрезков производная функции сохраняет знак:

2. Отрезки локализации корней:

$$x_1 \in [-0.6, -0.55]$$

 $x_2 \in [0.9, 0.99]$

Проверим, что на концах отрезков локализации производная функции сохраняет знак:

```
x = [[-0.6, -0.59], [0.9, 0.99]]
f = [[f(d[0]), f(d[1])] for d in x]
for i in f:
    print(i)

[0.015938826406621587, -0.010192565642330065]
[-0.8721839412122296, 0.07272361461233867]

x = [[-0.6, -0.59], [0.9, 0.99]]
df = [[df(d[0]), df(d[1])] for d in x]
for i in df:
    print(i)

[-1.3631137896626235, -1.3404409350579263]
[1.654765664768595, 40.51997528485864]
```

3. Для каждого корня определить итерационный параметр и параметр,используя формулы:

$$\alpha = \frac{2}{M1 + m1}$$

$$M1=maxP'(x)|_{[a,b]}$$
 $m1=minP'(x)|_{[a,b]}$ $q=|rac{M1-m1}{M1+m1}|$

Корни:	[a,b]	M1	m1	α	q	Корень с заданной точностью	Число итераций
1 корень:	[-0.55, -0.5]	-0.1561920859677537	-0.31538793736679493	-4.2410617520606015	0.33757971822759847	-0.593921602146647	190
2 корень:	[0.8, 0.9]	-4.8937734085616675	-9.880253870266918	-0.13537270253088213	0.3375166681092403	0.9881472983094748	39

Задача 2.2. Дано уравнение Найти все корни уравнения с заданной точностью на указанном отрезке [a,b] методом Ньютона и методом бисекции.

Функция

$$f(x) = x^3 * sin(5x) + cos(5x)$$

Отрезок

[-2, 2]

Построим графики и локализуем корни:

2. Отрезки локализации корней:

$$x_1 \in [-2, -1.8]$$
 $x_2 \in [-1.2, -1]$ $x_3 \in [-0.5, -0.2]$ $x_4 \in [0.2, 0.5]$ $x_5 \in [1, 1.2]$ $x_6 \in [1.8, 2]$

Проверим, что на концах отрезков локализации производная функции сохраняет знак:

```
x = [[-2, -1.8],[-1.2, -1],[-0.5, -0.2],[0.2, 0.5],[1, 1.2],[1.8, 2]]
df = [[df(d[0]), df(d[1])] for d in x]
for i in df:
    print(i)

[37.37100893928368, 24.62335918621609]
[-8.48587381543443, -3.3361594766424085]
[3.044221372158648, 4.084766313627809]
```

[-4.084766313627809, -3.044221372158648] [3.3361594766424085, 8.48587381543443] [-24.62335918621609, -37.37100893928368]

Начальное приближение	Корень уравнения методом Ньютона	Корень уравнения методом бисекции	Число итераций метода Ньютона	Число итераций метода бисекции
-2	-1.8538169024441482	-1.8538169024439415	4	38
-1.2	-1.1372078154349676	-1.1372078154345218	4	38
-0.5	-0.32075709706096667	-0.32075709706059574	3	38
0.2	0.32075709706096667	0.3207570970611414	5	38
1	1.1372078154349676	1.1372078154345218	4	38
1.8	1.8538169024441482	1.8538169024439415	4	38

Модифицируем методы:

- 1. Да, порядок сходимости метода Ньютона >1, а порядок сходимости метода бисекции 1.
- **2.** Да, метод Ньютона, имеющий более высокий порядок сходимости, потребовал меньше итераций для достижения заданной точности по сравнению с методом бисекции. Это соответствует ожидаемым результатам, так как методы с более высоким порядком сходимости обычно сходятся быстрее.
- 3. Вблизи корня невязка будет колебаться вокруг нуля, поскольку точность вычислений ограничена погрешностями округления и другими факторами.
- **4.** Да, на некоторой итерации невязка может быть равна нулю, особенно если метод приближается к решению. Однако из-за ограничений точности вычислений и приближений вероятность этого очень мала.

Задача 2.3. Используя метод Ньютона, найти все корни алгебраического уравнения P_m = 0 с точностью $\varepsilon=10^{-8}$

Функция

$$P_m(x) = 9.8x^3 + 10x^2 - 8.8x - 4.2$$

Получилось три отрезка локализации

interval1 = (-1.5, -1.3)
root1 = newton_method(p, dp, sum(interval1) / 2)
print(root1)

(-1.4376535919539615, 3)

(-0.375867004444322, 2)

print(root2)

interval3 = (0.5, 1)
root3 = newton_method(p, dp, sum(interval3) / 2)
print(root3)

(0.793112433262025, 3)

Корни:

 $x_1 = -1.4376535919539615$ и его кратность 1.

 $x_2 = -0.375867004444322$ и его кратность 1.

 $x_3 = 0.793112433262025$ и его кратность 1.