

Modèle d'apprentissage pour la prévision du mildiou

Detant Arthur Steichen Antoine

M1 ISIDIS

Introduction

368 millions de tonnes: Monde

5.2 millions de tonnes: France

Bio agresseurs: Insectes, virus, ... et le Mildiou

Du développement de la plante aux effets néfastes du mildiou. Qu'est ce qu'une Pomme de terre?

Cycle composé de 3 phases:

- Croissance des germes
- Phase de tubérisation
- Repos végétatif

PLAN DE POMME DE TERRE - famille des Solanacées

Qu'est ce que le mildiou P. infestant?

- Maladie redoutable pour la culture de pomme de terre
- Propagation importante, destruction totale en moins de 2 semaines
- Propagation sous forme spores, par le sol et par les airs
- Presque impossible d'empêcher la prolifération donc traitement préventif

Echelle de gravité des contaminations

Les moyens de traitement

But : empêcher l'installation de la maladie ou réduire la vitesse de propagation

- Effectuer un maximum de rotations culturales
 - Minimiser les sources d'agents pathogènes
 - Éliminer les tas de déchets de la récolte précédente
- Utilisation de fongicides
 - Résistance du mildiou par mutation génétique
 - Pollution des sols
 - Prévention
- Lutte préventive
 - Outils d'aide à la décision, modèle d'apprentissage pour la prévision de mildiou
 - Simulation de l'épidémie de mildiou
 - Données climatiques

Modélisation de la propagation du mildiou de la pomme de terre. Le modèle de dispersion gaussien "Plume"

Simulation de la dispersion des spores

Le modèle de plante : Spudgro

Modèle de culture : Représentation mathématique dont le rôle est de simuler le fonctionnement du système sol-plante-atmosphère sous l'influence de pratiques culturales.

But : Estimer des grandeurs agronomiques tel que le rendement.

- Développé par Johnson et al en 1986
- Modélisation de la croissance et du développement de la pomme de terre
- Simulation du rendement de la culture en fonction des conditions climatiques.
- Utilisation de variables d'entrée :
 - Données météorologiques (température et radiation solaire)
 - Données physiologiques caractérisant la croissance et le développement de la plante (durée de la croissance, durées des stades de développement végétatif et de tubérisation, précocité de la variété)
 - Une caractéristique physique du sol (évolution du potentiel hydrique)

Le modèle de développement des spores: Milsol Survie des spores et contamination

1	TT •//	B 1.4			
Acronyme	Unité	Description			
	Paramètres				
D0	=	Degré de développement pour le début de la germination (=100)			
D1	-	Degré de développement pour le taux de contamination totale (=150)			
Dc	-	Degré de développement pour le taux de survie nulle (=100)			
p_1	$h^{-1}C^{-1}$	Coefficient d'unités de développement de spores $\theta \le 18$ °C (=0.5)			
p_2	h^{-1}	Coefficient d'unités de développement de spores $\theta \le 18$ °C (=1.0)			
p_3	-	Coefficient d'unités de développement de spores $\theta > 18$ °C (=10)			
Variables d'entrées					
Hr	%	Humidité relative			
θ	°C	Température moyenne horaire			
	Variables d'état				
CUMDDS	-	Degré de développement des spores			
GRAVI	-	Proportion de spores ayant germées			
POIDS	_	Nombre de spores contaminatrices			
SPORES	-	Nombre de spores issues de la contamination primaire			
SURVIE	-	Taux de survie des spores			
TUDESPO	h^{-1}	Taux d'accroissement des unités de développement			

TUDESPO(θ) =p1 θ + p2 si θ ≤ 18C TUDESPO(θ) =p3 si θ > 18C

Le modèle de développement des spores: Milsol

Incubation et sporulation potentielle

Acronyme	Unité	Description				
	Paramètres					
FACT	-	Maximum du potentiel de sporulation				
p_4	$h^{-1}C^{-1}$	Coefficient d'unité d'incubation (=0.05)				
<i>p</i> ₅	$h^{-1}C^{-1.5}$	Coefficient d'unité d'incubation (=0.025)				
<i>p</i> ₆	-	Coefficient d'unité d'incubation (=1.5)				
<i>p</i> ₇	-	Coefficient d'unité d'incubation (=75)				
p_8	-	Coefficient d'unité d'incubation (=150)				
<i>p</i> 9	F=	Coefficient d'unité d'incubation (=225)				
p_{10}	$h^{-1}C^{-1.5}$	Coefficient du retard sur le développement (=0.004)				
θ_{opt}	°C	Température optimale pour l'incubation (=18)				
J53		Variable d'entrée				
θ	°C	Température moyenne d'une demi-journée				
Variables d'état						
AFFAIB	-	Degré de réduction du potentiel de sporulation				
AGE	=	Degré de développement du mycélium dans les tissus				
KASPOréel	-	Potentiel de sporulation réel				
KASPOthéo	(⊆	Potentiel de sporulation théorique				
POSPO	=	Sporulation potentielle des lésions				
RET	h^{-1}	Retard sur la croissance				
SPOSPO	<u>(</u>	Sporulation potentielle de tous les cycles				
TINCUB	h^{-1}	Taux d'accroissement des unités d'incubation				
TRED	h^{-1}	Taux de réduction du potentiel de sporulation				

TINCUB(
$$\theta$$
) = p4. θ si $\theta \le 18C$
TINCUB(θ) = p4. θ -RET(θ) si θ > 18C

RET(
$$\theta$$
) = p₅(θ - θ _{opt})^p₆

Le modèle de développement des spores: Milsol

Sporulation réelle

Unité	Description
	Paramètres
$^{\circ}C^{-2}$	Coefficient d'unités de développement de la sporulation (=0.009)
0.20	Coefficient d'unités de développement de la sporulation (=2)
h^{-1}	Coefficient d'unités de développement de la sporulation (=1)
$h^{-1} C^{-1}$	Coefficient d'unités de développement de la sporulation (=0.037)
$^{\circ}\mathrm{C}$	Température minimum pour la sporulation (=3)
	Variables d'entrée
%	Humidité relative
°C	Température moyenne horaire
	°C ⁻² - h ⁻¹ h ⁻¹ C ⁻¹ °C

Acronymes et descriptions des paramètres de Spudgro

- Le taux d'accroissement : $TUSPORU(\theta) = p_{11}(\theta \theta_{min})^{p_{12}}[p_{13} p_{14}(\theta \theta_{min})]$
- Le nombre d'unités de développement de la sporulation : $CUMSPO(n) = \sum_{h=1}^{n} TUSPORU(\theta(h))$
- L'activité de sporulation : $ACTISPO = \frac{CUMI CUM0}{CUM1 CUM0}$
- Nombre de spores prêtes à être disséminées : SPORUL = ACTISPO * SPOSPO

Le modèle de développement des spores: Milsol

Mécanisme du modèle Compartiment Compartiment Compartiment incubation et sporulation survie et contamination sporulation potentielle réelle et dégâts p10 Hr θ RET TRED >TUDESPO FACT **CUMDDS** TINCUB AGE Hr AFFAIB KASPOthéo GRAVI SURVIE SPORES KASPOréel TUSPORU POIDS CUMSPO POSPO ACTISPO SPOSPO SPORUL SURFMIL

Vert : variable d'état

Bleu foncé : variable intermédiaire

Bleu clair : variable d'entrée

Jaune: taux d'accroissement biomasse

Rond noir : paramètre

Pointillés : flux d'information

Les modèles complémentaires

- Le modèle météo de précision

- Le modèle de stress hydrique

- Le modèle de sol

Simulation de la dynamique du mildiou sur un territoire

Composition des modèles atomiques

Graphe de connexions des modèles atomiques au niveau des cellules et de la parcelle

Simulation de la propagation du mildiou: exemple (7 jours)

Conclusion

- Trois modèles principaux pour la modélisation dynamique du mildiou :
 - Le modèle de plante (Spudgro)
 - Le modèle de développement des spores (Milsol)
 - Le modèle de dispersion.

Ces trois modèles nécessitent un certain nombre de paramètres indispensables à leur fonctionnement.

Ils peuvent être couplés à d'autres modèles complémentaires tels que : la météo géolocalisée, la gestion hydrique du sol ou encore la transpiration de la plante.

Pour la suite du projet : Analyse du modèle Milsol et ses techniques d'apprentissage.