SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

20PAIE51J- MACHINE LEARNING (UNSUPERVISED MODEL)

Hiearchial Clustering

a. Import required Library (2 marks)

```
In [1]: import pandas as pd
    import seaborn as sns
    from matplotlib import pyplot as plt
    from sklearn.cluster import AgglomerativeClustering
    from sklearn.preprocessing import LabelEncoder
    from scipy.cluster.hierarchy import cophenet, cut_tree, dendrogram, linkage
    from sklearn.decomposition import PCA
    from sklearn.preprocessing import MinMaxScaler
    from scipy.spatial.distance import pdist
```

b. Read the dataset (tab, csv, xls, txt, inbuilt dataset). (1 mark)

```
In [2]: data = pd.read_csv('MPA-1_forestfires.csv')
    data.head()
```

Out[2]:

	X	Y	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
0	7	5	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.0
1	7	4	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.0
2	7	4	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.0
3	8	6	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.0
4	8	6	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.0

c. Perform explanotory data analysis on the dataset. (3 marks)

```
In [3]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 517 entries, 0 to 516
        Data columns (total 13 columns):
             Column Non-Null Count Dtype
         0
             Х
                     517 non-null
                                     int64
                     517 non-null
                                     int64
             Y
         1
                     517 non-null
                                     object
             month
                     517 non-null
             day
                                     object
                     517 non-null
                                     float64
             FFMC
         5
                     517 non-null
                                     float64
             DMC
                     517 non-null
                                     float64
         6
             DC
             ISI
                     517 non-null
                                     float64
                     517 non-null
                                     float64
             temp
             RH
                     517 non-null
                                     int64
             wind
                     517 non-null
                                     float64
         10
                     517 non-null
         11
             rain
                                     float64
         12
             area
                     517 non-null
                                     float64
        dtypes: float64(8), int64(3), object(2)
        memory usage: 52.6+ KB
In [4]: data.nunique()
Out[4]: X
                   9
                   7
        Y
                  12
        month
                   7
        day
```

FFMC

DMC

DC

RH

wind rain

area

dtype: int64

ISI temp 106

215219

119

192

75 21

7 251

```
In [5]: data.isnull().sum()
Out[5]: X
                 0
        Y
                 0
        month
                 0
        day
        FFMC
                 0
        DMC
                 0
        DC
        ISI
                 0
        temp
        RH
                 0
        wind
        rain
                 0
        area
                 0
        dtype: int64
```

d. Plot the datapoints using Scatter Plot. (3 marks)

In [6]: sns.pairplot(data)
 plt.show()

e. Apply five methods of agglomerative hierarchial clustering. [Single, complete, average, centroid and ward's linkage method] (2 marks)

```
In [7]: # applying Label encoder to modify two object type dimensions
    le = LabelEncoder()
    data['month'] = le.fit_transform(data['month'])
    data['day'] = le.fit_transform(data['day'])
    # applying Scaler
    scaler =MinMaxScaler()
    data_scaled = scaler.fit_transform(data)
    pd.DataFrame(data_scaled)
```

Out[7]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.750	0.428571	0.636364	0.000000	0.870968	0.086492	0.101325	0.090909	0.192926	0.423529	0.700000	0.00000	0.000000
1	0.750	0.285714	0.909091	0.833333	0.927742	0.118194	0.775419	0.119430	0.508039	0.211765	0.055556	0.00000	0.000000
2	0.750	0.285714	0.909091	0.333333	0.927742	0.146795	0.796294	0.119430	0.398714	0.211765	0.100000	0.00000	0.000000
3	0.875	0.571429	0.636364	0.000000	0.941935	0.110958	0.081623	0.160428	0.196141	0.964706	0.400000	0.03125	0.000000
4	0.875	0.571429	0.636364	0.500000	0.910968	0.172984	0.110590	0.171123	0.295820	0.988235	0.155556	0.00000	0.000000
512	0.375	0.142857	0.090909	0.500000	0.811613	0.191592	0.771315	0.033868	0.823151	0.200000	0.255556	0.00000	0.005904
513	0.125	0.285714	0.090909	0.500000	0.811613	0.191592	0.771315	0.033868	0.633441	0.658824	0.600000	0.00000	0.049769
514	0.750	0.285714	0.090909	0.500000	0.811613	0.191592	0.771315	0.033868	0.610932	0.647059	0.700000	0.00000	0.010231
515	0.000	0.285714	0.090909	0.333333	0.976774	0.499311	0.711622	0.201426	0.752412	0.317647	0.400000	0.00000	0.000000
516	0.625	0.142857	0.818182	0.833333	0.784516	0.006547	0.115867	0.019608	0.308682	0.188235	0.455556	0.00000	0.000000

517 rows × 13 columns

. . . ,

[0.42678376, 0.04385613], [0.32126669, -0.28562606], [-0.06096833, 0.51151893]])

```
In [9]: # Perform clustering
    single_labels = linkage(X, method='single', metric='euclidean')
    complete_labels = linkage(X, method='complete', metric='euclidean')
    average_labels = linkage(X, method='average', metric='euclidean')
    ward_labels = linkage(X, method='ward', metric='euclidean')
    centroid_labels = linkage(X, method='centroid', metric='euclidean')
```

f. Draw dendrogram for the above five clustering methods. (2 marks)

```
In [10]: plt.figure(figsize=(20, 5))
    dendrogram(single_labels,p=10, truncate_mode='lastp')
    plt.title('Hierarchical Clustering Dendrogram (single)')
    plt.xlabel('Data Points')
    plt.ylabel('Distance')
    plt.show()
```


g. Calculate Cophenet Coorelation coefficient for the above five methods. (4 marks)

```
Cophenetic Correlation Coefficient for Single Hierarchical Clustering: 0.7504796651106578

Cophenetic Correlation Coefficient for Cophenetic Cophenetic Correlation Coefficient for Cophenetic C
```

h. Plot the best method labels using the scatter plot. (3 marks)

```
In [18]: # Perform centriod linkage clustering
Z = linkage(X, method="average")
data["Cluster"] = pd.Series(cut_tree(Z, n_clusters=4).flatten())
data
```

Out[18]:

	X	Y	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area	Cluster
0	7	5	7	0	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.00	0
1	7	4	10	5	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.00	1
2	7	4	10	2	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.00	1
3	8	6	7	0	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.00	0
4	8	6	7	3	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.00	0
512	4	3	1	3	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	6.44	3
513	2	4	1	3	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	54.29	3
514	7	4	1	3	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	11.16	2
515	1	4	1	2	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	0.00	3
516	6	3	9	5	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	0.00	0

517 rows × 14 columns

In [19]: sns.scatterplot(data=data, x=X[:,0], y=X[:,1], hue=data['Cluster'])
plt.show()

