Q1. Let (G, \cdot) be a group and let H < G.

- (i) Prove that for all $x \in H$, $x^{-1} \in H$
- (ii) Prove that for all $x, y \in H$, $x \cdot y \in H$

(2 marks)

Q2. Find all of the subgroups of D_4 .

(4 marks)

Q3. Prove that if (G, \cdot) is a group of order 10 then there exists $g \in G$ with order 2. (2 marks)

Q4. Construct an infinite group (G,\cdot) that satisfies the following:

- (i) Every element of (G, \cdot) has finite order
- (ii) For all $n \in \mathbb{N}$, there exists m > n and $g \in G$ such that g has order m

(3 marks)

Q5. Show that $((0123), (01)) = S_4$.

(3 marks)

Q6. Does there exist $a, b \in A_5$ such that $\langle a, b \rangle = A_4$? Justify your answer.

(3 marks)

Q7. Let (G,\cdot) be a group and let $H \leq G$. Define

$$X = \{aH \mid a \in G\}$$

I.e. X is the set of left cosets of H. Define $\star : X \times X \longrightarrow X$ by: for all $a, b \in G$,

$$(aH) \star (bH) = (a \cdot b)H.$$

- (i) We say that H is normal if for all $h \in H$ and for all $g \in G$, $ghg^{-1} \in H$. Prove that if H is normal, then (X, \star) is a group.
- (ii) Find an example of a group (G, \cdot) and $H \leq G$ such that (X, \star) is not a group.

(5 marks)

Q8. Let (G, \cdot) be a group.

- (i) Let $a, b \in G$. Prove by induction that if ab = ba, then $(ab)^n = a^n b^n$
- (ii) Prove that if (G,\cdot) is abelian and H is the set of all elements of G that have finite order, then $H \leq G$

(4 marks)

Q9. Let G be the set of 2×2 invertible real matrices and let \cdot be matrix multiplication. Show that (G, \cdot) is a group. Let

$$A = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Find the orders of A, B and $A \cdot B$.

(4 marks)