Thinking...

...inside the box

Error Detection and Diagnosis in Soar Agents

Paul Nielsen, Jonathan Beard, Jennifer Kiessel

3600 Green Court, Suite 600 Ann Arbor, MI 48105 (734) 327-8000 www.soartech.com

Objective

The objective of the Robustness in Behavior Modeling project is to:

- Develop methodologies for robustness
- Demonstrate application of these methodologies in a non-trivial application
- Describe how this approach will generalize to other applications

- *Reduce* failure situations
- Represent the environment
- Recognize progress and failure
- Resource allocation
- Reason / diagnosis
- <u>Response</u> alternatives
- Recovery actions
- Remember successful approaches

- <u>Reduce</u> failure situations
- Represent the environment
- Recognize progress and failure
- <u>Resource</u> allocation
- Reason / diagnosis
- Response alternatives
- Recovery actions
- <u>Remember</u> successful approaches

- *Reduce* failure situations
- Represent the environment
- Recognize progress and failure
- <u>Resource</u> allocation
- Reason / diagnosis
- Response alternatives
- Recovery actions
- <u>Remember</u> successful approaches

Problem Reduction

- Recovery capability does not replace expert knowledge; it fills in the gaps
- Rigorous application of proven software engineering techniques to the design and implementation of rules-based agents is needed
 - Human interface improvements
 - Eliminate errors due to ill-defined specifications
 - Verification & Validation should be applied

<u>Reduce</u> failure situations

- Represent the environment
- Recognize progress and failure
- Resource allocation
- Reason / diagnosis
- Response alternatives
- Recovery actions
- <u>Remember</u> successful approaches

Represent the Environment

- Qualitative representation
 - Space represented as regions, intervals, and ranges rather than discrete points or values
 - Broad, complete domain coverage
 - Redundant and hierarchical
- Example Racetrack
 - Within a ballpark area of the point
 - Approaching or diverging from point

- <u>Reduce</u> failure situations
- Represent the environment
- Recognize progress and failure
- Resource allocation
- Reason / diagnosis
- Response alternatives
- Recovery actions
- <u>Remember</u> successful approaches

Recognize Failure

- Recognition must precede recovery
- Monitor goal progress
 - Evaluation functions based on problem space representations
- Evaluations may indicate
 - Failure
 - Success
 - Lack of success
 - Negative trend
- Anticipate impending failure in addition to detecting failure as it occurs

- <u>Reduce</u> failure situations
- Represent the environment
- Recognize progress and failure
- Resource allocation
- Reason / diagnosis
- Response alternatives
- Recovery actions
- <u>Remember</u> successful approaches

Resource Allocation

- Filter out unnecessary information
 - Example: barometric pressure less important in encircling a missile site
- Focus on critical information
- Each situation has a risk value based on perceived danger to the agent
 - Example:
 - Failure in transit is low risk
 - Failure in combat is high risk
- Variable sampling rage

- Reduce failure situations
- Represent the environment
- Recognize progress and failure
- Resource allocation

- Reason / diagnosis
- <u>Response</u> alternatives
- Recovery actions
- <u>Remember</u> successful approaches

Reason / Diagnosis

- Possible causes
- Explain groups of symptoms
- Domain for further investigation
 - Flight
 - Communication
 - Radar
 - Weapon

- <u>Reduce</u> failure situations
- Represent the environment
- Recognize progress and failure
- <u>Resource</u> allocation
- Reason / diagnosis

- <u>Response</u> alternatives
- Recovery actions
- <u>Remember</u> successful approaches

<u>Responses</u>

- Contextually appropriate
- Preplanned known solutions
- Use causal models of problem space to suggest appropriate recovery actions
- Even without detailed suggestions of specific actions, sufficient information provided by the model suggests a generic domain of possible actions

Comparison

TAS agent without opponent

TAS agent with opponent

Metrics

Remove .1% Productions			
5	15	1Sv1D	
Avg MS Variance	8.1%	5.4%	
Avg PS Variance	9.7%	26.7%	
Avg OP Variance	11.9%	22.7%	
% Complete	87.8%	82.0%	
with RBM			
Avg MS Variance	11.5%	12.9%	
Avg PS Variance	13.4%	28.0%	
Avg OP Variance	9.3%	19.7%	
% Complete	90.0%	90.0%	
Mission Incomplete			
Not instrumented	100.0%	100.0%	
Instrumented	0.0%	0.0%	
MS = Milestones		OP = Operators	
PS = Problem Spaces		1S = 1 TAS Agent	
1Sv1D = 1 TAS Agent vs. 1 Task Frame Agent			

0.1% Random Rule Removal

Remove 1% Productions			
S	15	1Sv1D	
Avg MS Variance	42.2%	44.1%	
Avg PS Variance	63.1%	71.5%	
Avg OP Variance	65.0%	75.7%	
% Complete	18.8%	6.0%	
with RBM			
Avg MS Variance	46.3%	44.9%	
Avg PS Variance	74.7%	82.1%	
Avg OP Variance	68.4%	72.9%	
% Complete	26.0%	20.0%	
Missi on Not instrumented	Incom 86.5%	plete 95.0%	
		1007/0000000000000000000000000000000000	
Instrumented	13.5%	5.0%	
MS = Milestones		OP = Operators	
PS = Problem Spaces		1S = 1 TAS Agent	
1Sv1D = 1 TAS Agent	vs. 1 Tas	sk Frame Agent	

1.0% Random Rule Removal

Conclusions

- Steps of <u>Recourse</u> are plausible descriptions of recovery mechanisms
 - Sufficient to model recovery
- Pay off in terms of
 - Reliability, time, understanding, cost
- Solution can be generalized to any system that posts results and waits for responses
 - Proactively anticipate and design for failure
 - Broad, complete domain coverage
 - If what you are doing is wrong, try something else

Future Work

- Communications and planning domains
- Learning successful applications of recovery
- Anticipation
 - Attempt to anticipate impending failure in addition to detecting failure as it occurs
 - If error detected in future state, attempt to avoid it in present
- Biological organisms
 - Studying the behavioral system of biological organisms
 - Model their reactions to unexpected environments
- Emotional modeling
 - Use frustration to suggest alternative approach

Nuggets

- Provides a methodology for enhancing the robustness (reducing the brittleness) of rules-based systems
- Provides a small library of portable "qualitative physics" evaluation production rules
- Through the development of an automated testing system, demonstrates efficacy
- Improves the "believability" of symbolic agents

Coal

- TacAir-Soar has several different "types" of domains requiring coverage – we have only applied this solution to the spatial reasoning domain
- Experimental results would be more convincing with better experiment design (in the works)
- Look-ahead search (anticipation) would further enhance this capability by extending it beyond errors-as-they-occur
- Still somewhat labor intensive, although there appear to be some possibilities for re-use and automation

Robustness in Behavior Modeling

<u>SPONSORING ORGANIZATION</u> Office of Naval Research (ONR)

3600 Green Court, Suite 600 Ann Arbor, MI 48105 (734) 327-8000 www.soartech.com

