

Prediction Model

ID/X Partners - Data Scientist

Presented by Willy Agcely Heza

Jakarta Timur, Indonesia

willyagcely08@gmail.com

Willy agcely heza

Willy Agcely Heza

Data Science & Data Anlayst Entuthiast

Lulusan S1 Statistika Universitas Muhammadiyah Semarang (IPK 3,67) dengan pengalaman di Badan Pusat Statistik dan Eduwork. Terampil dalam pengolahan, analisis, dan visualisasi data menggunakan Excel, SQL, Python, Tableau, dan Looker Studio. Memiliki kemampuan komunikasi, teamwork, problem solving, serta inisiatif tinggi dalam mendukung pengolahan data dan pengambilan keputusan berbasis data.

About Company

ID/X Partners (PT IDX Consulting) didirikan pada tahun 2002 dan telah melayani perusahaan di seluruh wilayah Asia dan Australia dan di berbagai industri, khususnya layanan keuangan, telekomunikasi, manufaktur, dan ritel. ID/X Partners menyediakan layanan konsultasi yang mengkhususkan diri dalam memanfaatkan solusi data analytic and decisioning (DAD) yang dipadukan dengan manajemen risiko dan disiplin pemasaran terintegrasi untuk membantu klien mengoptimalkan profitabilitas portofolio dan proses bisnis. Layanan konsultasi dan solusi teknologi yang komprehensif yang ditawarkan oleh mitra id/x menjadikannya sebagai one-stop service provider

Project Portfolio

Project ini, dalam konteks peran Data Scientist di ID/X Partners, berfokus pada pengembangan model machine learning untuk memprediksi risiko kredit pada perusahaan multifinance. Model dibangun menggunakan data pinjaman (baik atau buruk dalam meminjam) melalui tahapan Data Understanding, EDA, Data Preparation, Modelling, dan Evaluation guna meningkatkan akurasi penilaian risiko serta mengurangi potensi kerugian.

Link code here!

Project explanation video <u>here!</u>

Link Drive here!

Link Youtube here

1. Business Understanding

Business Objective

- Meningkatkan akurasi penilaian risiko kredit.
- Mengurangi potensi kerugian akibat kredit macet.
- Mendukung pengambilan keputusan approve/decline pinjaman secara lebih tepat.

Business Metrics

- Default Rate → menurunkan persentase kredit macet.
- Approval Accuracy → meningkatkan ketepatan persetujuan pinjaman.
- Model Performance → diukur dengan metrik machine learning seperti AUC, Precision, Recall, dan F1-Score untuk klasifikasi risiko kredit.

2. Data Understanding

Dataset Overview:

- Data pinjaman 2007–2014.
- Target: loan_status (baik / buruk).
- Variabel: informasi pinjaman, profil peminjam, histori kredit.

Data Exploration Fokus:

- Identifikasi variabel relevan (numerik & kategorikal).
- Cek kualitas data (missing values, distribusi, outlier).
- Analisis awal hubungan fitur dengan loan_status.

Output

 Dataset terpilih & bersih, siap dipakai untuk Feature Engineering dan Modeling.

```
print(df.head())
                         int rate installment grade emp length
  loan amnt
              36 months
                                                       10+ years
              60 months
                             15.27
                                          59.83
                                                    C < 1 year
              36 months
                             15.96
                                          84.33
                                                    C 10+ years
                             13.49
                                         339.31
               36 months
                                                    C 10+ years
                             12.69
                                          67.79
                                                          1 vear
 home ownership annual inc verification status
                                                  loan status
                                                                       purpose
                                                   Fully Paid
                     24000.0
                                                                  credit card
           RENT
                     30000.0
                                 Source Verified
                                                  Charged Off
           RENT
                     12252.0
                                    Not Verified
                                                   Fully Paid
                                                               small business
           RENT
                     49200.0
                                                   Fully Paid
                                 Source Verified
                                                                         other
           RENT
                     80000.0
                                 Source Verified
                                                      Current
                                                                        other
         deling 2yrs ing last 6mths open acc pub rec revol bal \
  27.65
                                                              13648
   1.00
                  0.0
                                  5.0
                                            3.0
                                                               1687
   8.72
                  0.0
                                  2.0
                                            2.0
                                                               2956
                                                     0.0
  20.00
                  0.0
                                  1.0
                                           10.0
                                                     0.0
                                                               5598
  17.94
                  0.0
                                  0.0
                                           15.0
                                                              27783
  revol util total acc
        83.7
                     9.0
         9.4
                     4.0
        98.5
                    10.0
        21.0
                    37.0
        53.9
                    38.0
```


3. Feature Engineering

Proses Label Encoding "loan_status":

1 = Good status (Current, Fully Paid) 0 = Bad status (Charged Off, Default, Late)

Proses Label Encoding pada kolom "grade"

```
cat_features = ["home_ownership", "purpose", "verification_status"]
num transformer = Pipeline(steps=[
     "imputer", SimpleImputer(strategy="median")),
    ("scaler", StandardScaler())
cat transformer = Pipeline(steps=[
    ("imputer", SimpleImputer(strategy="most_frequent")),
    ("onehot", OneHotEncoder(handle_unknown="ignore"))
preprocessor = ColumnTransformer(
        ("num", num_transformer, num_features),
        ("cat", cat_transformer, cat_features)
```

Proses One Hot Encoder "loan_status":
home_ownership", "purpose",
"verification status

Penambahan Variabel (Feature)

• income_to_loan_ratio = annual_inc / loan_amnt

- Mengukur seberapa besar pendapatan tahunan dibanding total pinjaman.
- Logika bisnisnya:
 - Jika rasio tinggi → pendapatan jauh lebih besar dari pinjaman → kemungkinan lebih mampu melunasi (risiko rendah).
 - Jika rasio rendah → pinjaman terlalu besar dibanding pendapatan → risiko gagal bayar lebih tinggi.
- installment_to_income = installment / (annual_inc / 12)
 - Mengukur seberapa besar cicilan bulanan dibanding gaji bulanan.
- Logika bisnisnya:
 - Jika cicilan makan porsi besar dari gaji → rawan gagal bayar.
 - Jika cicilan kecil relatif terhadap gaji → lebih aman.

income_to_loan_ratio	<pre>installment_to_income</pre>
4.800000	0.081435
12.000000	0.023932
5.105000	0.082595
4.920000	0.082759
26.666667	0.010169
5.978261	0.047197
3.545455	0.089615
2.222222	0.134176
41.500000	0.009049
4.600000	0.095890

4. Exploratory Data Analysis

Terdapat korelasi kuat antara beberapa variabel utama seperti loan_amnt-installment dan grade-int_rate, sementara sebagian besar fitur lain relatif independen sehingga tetap relevan digunakan dalam prediksi risiko kredit.

Terjadi Imbalanced class

Pinjaman dengan suku bunga lebih tinggi cenderung memiliki risiko gagal bayar lebih besar.

5. Data Preparation

	loan_amnt	term	int_rate	installment	grade	emp_length	home_ownership	annual_inc	verification_status	loan_status	purpose	dti	delinq_2yrs	inq_last_6mths	open_acc	pub_rec	revol_bal re
		36 months															
		60 months						30000.0	Source Verified	Charged Off							
		36 months															
		36 months							Source Verified	Fully Paid							
		60 months															
466280		60 months									debt_consolidation						
166281	22000	60 months					MORTGAGE	78000.0	Verified	Charged Off	debt_consolidation						
166282		60 months									debt_consolidation						
166283		36 months						83000.0	Verified	Fully Paid	credit_card						
166284		36 months															
6285 rc	ws × 19 colu																

Proses Preprocessing Data & Handling Missing Value

	loan_amnt			installment	emp_length	annual_inc		delinq_2yrs	inq_last_6mths	open_acc	purpose_medical	purpose_moving	purpose_other	purpose_renewable_energy	purpose_smal
										-1.644664					
	-1.428830		0.333851		-1.593664	-0.788592	-2.067429	-0.356759	4.064459	-1.644664					
	-0.523469			-0.383044	1.137658	-0.438781	0.353428	-0.356759		-0.238969					
460385						0.668953									
460386				0.616305	1.137658	0.085935	0.155937	-0.356759	4.064459						
460387															
460388	-1.489187		-1.355656		-0.874895		-1.508084			1.969980					
460389	-0.523469														
60390 rc	ws × 40 colu	nns													

Setelah dilakukan feature engineering

6. Data Modeling

Logistic Regression → max_iter=1000 agar model konvergen, class_weight="balanced" untuk mengatasi imbalance, random_state=42 biar hasil konsisten.

Random Forest \rightarrow n_estimators=200 jumlah pohon, class_weight="balanced" untuk imbalance, random_state=42 untuk reprodusibilitas.

 $\textbf{XGBoost} \rightarrow \text{n_estimators=200}$ jumlah boosting round, $\text{scale_pos_weight=neg/pos}$ untuk atasi imbalance, $\text{eval_metric="logloss"}$ metrik evaluasi, random_state=42 untuk konsistensi, $\text{use_label_encoder=False}$ menonaktifkan warning versi lama.

```
train pos/neg: 327172 41140 scale_pos_weight: 0.12574425684349516

Training LogisticRegression ...
LogisticRegression -- Acc:0.6332 Prec:0.9310 Rec:0.6341 F1:0.7544 AUC:0.6794

Training RandomForest ...
RandomForest -- Acc:0.8883 Prec:0.8883 Rec:1.0000 F1:0.9408 AUC:0.6690

Training XGBoost ...
XGBoost -- Acc:0.6575 Prec:0.9284 Rec:0.6658 F1:0.7755 AUC:0.6798
```

7. Evaluation

Regression cukup baik sebagai baseline model, tetapi performa masih bisa ditingkatkan dengan model lain atau optimasi lebih lanjut.

Evaluation

Model: Ra	andom	Forest			
		precision	recall	f1-score	support
	0	0.4000	0.0002	0.0004	10285
	1	0.8883	1.0000	0.9408	81793
accui	racy			0.8883	92078
macro	avg	0.6442	0.5001	0.4706	92078
weighted	avg	0.8338	0.8883	0.8358	92078

Random Forest menghasilkan akurasi tinggi, namun gagal mengidentifikasi nasabah berisiko (bad loan), sehingga kurang cocok untuk tujuan bisnis yang ingin meminimalkan risiko gagal bayar

Evaluation

XGBoost memberi trade-off terbaik, meski akurasi tidak tinggi, tapi **lebih adil menangani imbalance** dan lebih efektif dalam mendeteksi nasabah berisiko.

8. Conclusion

Hasil evaluasi menunjukkan:

- XGBoost menjadi model terbaik berdasarkan AUC (0.6798) dan memiliki recall 0.6658 serta precision
 0.9284. Artinya, model ini cukup seimbang dalam mendeteksi nasabah yang gagal bayar (tidak terlalu banyak yang lolos) sekaligus menjaga ketepatan prediksi bagi yang lancar bayar.
- Logistic Regression punya performa mirip XGBoost (AUC 0.6793) tapi recall lebih rendah, sehingga lebih berisiko meloloskan nasabah bermasalah.
- Random Forest mencatat akurasi tinggi (0.8883) dan recall hampir sempurna, tapi precision rendah, artinya model cenderung terlalu "longgar" dan bisa banyak salah dalam memprediksi nasabah gagal bayar.

Thank You

Logo Company