Nachklausur Computational Physics 1, Wintersemester 17/18, Prof. Eckhardt.

Aufgabe 1

Das Trägheitsmoment eines speziellen Körpers wird berechnet über

$$I = \frac{\pi}{2} \int f(x)^4 dx.$$

Berechnen Sie das Trägheitsmoment für $f(x) = \sin(x) \cdot e^{-x}$ auf dem Intervall $[0, \pi]$.

Aufgabe 2

Gegeben sei die Funktion f(x) mit

$$f(x) = \frac{5 \cdot \sin(x)}{x + \cos(x)}.$$

Berechnen Sie auf dem Intervall [0,8] alle Stellen, an denen f(x)=1 und f(x)=-1 gilt. Welche Methode haben Sie verwendet und wie viele Schritte benötigten Sie, um eine Genauigkeit von 10^{-5} zu erreichen?

Aufgabe 3

Lösen Sie die Differentialgleichung

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\mathrm{d}x}{\mathrm{d}t} + \sin^3(x) = 0$$

mit den Anfangsbedingungen x(0) = 1 und x'(0) = 0. Welche Methode haben Sie verwendet?

Aufgabe 4

Berechnen Sie die 5 niedrigsten Energieeigenwerte und Eigenfunktionen des Hamilton-Operators

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x),$$

auf $(0,\infty)$, wobei das Potential durch $V(x)=-2/(1+e^{x-10})$ gegeben ist. Welche Methode haben Sie verwendet und wie verifizieren Sie die Genauigkeit ihrer Ergebnisse?

Aufgabe 5

Gegeben sei

$$I_j = \int_{-\infty}^{\infty} \frac{x^j \cdot e^x}{(e^x + 1)^2}.$$

Berechnen Sie I_0 , I_1 und I_2 . Welche Methode haben Sie verwendet und wie lautet die zugehörige Schrittgröße, um eine Genauigkeit von 10^{-5} zu erreichen?