Programa superior en IA y Deep Learning. República Dominicana -Algoritmos no supervisados (clusters)

Escuela de Organización Industrial (EOI). 2019

Apellidos:	Nombre:

1. Partiendo de la siguiente matriz de distancias:

	A	В	\mathbf{C}	D	\mathbf{E}	F
A	0					
В	2.15	0				
\mathbf{C}	0.7	1.53	0			
D	1.07	1.14	0.43	0		
\mathbf{E}	0.85	1.38	0.21	0.29	0	
F	1.16	1.01	0.55	0.22	0.41	0

- a) Utilizando la estrategia complete linkage (amalgamiento completo) aglomerativo, realiza una agrupación en tres clusters de los individuos, mostrando la matriz de distancias resultante tras cada etapa.
- b) Dibuja el dendograma resultante de aplicar el método de Ward con la función Agnes de R.
- 2. (1 pto.) A partir de los datos del fichero Molusco, obtén la clusterización resultante de aplicar PAM (k-medias) y el método de amalgamiento completo. Dibuja el dendograma
- 3. (Extra tras la vidocall del domingo) Obtén la clusterización resultante de aplicar DBSCAN con un radio de ventana deslizante de 0.2 y con un mínimo de puntos requeridos en esa ventana de 4)