Q1:
Ar is a noble ags.
Q2:
Note that Li , F have the smallest number of electron shells.
Moreover, as F has more outermost shell electrons than Li , the attraction be-
tween electrons and the nucleus is strong than that of Li and hence has a smaller
atomic radius.
Given the above, \boxed{F} has the smallest atomic radius.
Q3:
(1): Trigonal pyramidal
(2): Bent
(3): Bent
(4): Tetrahedral
(5): Linear
Q4:
A nonelectrolyte cannot conduct electricity after dissolved in water.
(2) to (5) dissociate into ions when dissolved in water and hence are electrolytes.
Only (1) is a nonelectrolyte.

Q5:

(2), (3) and (5) are very soluble in water.

Moreover, H_2S is fairly soluble in water while NO is only slightly soluble in water.

Given the above, \overline{NO} is the most diffcult one to dissolve in water.

Q6:

$$\frac{2 \cdot 16.0}{2 \cdot 12.0 + 4 \cdot 1.0 + 2 \cdot 16.0} \times 100\% \approx \boxed{53\%}$$

Q7:

We have
$$\rho = \frac{M}{V} = \frac{m_A}{22.4}$$
.

The volume % of H_2 is equal to the molar % by Avogadro's law.

We have
$$\frac{2 \cdot 1.0 \cdot x + 2 \cdot 14.0 \cdot (1-x)}{22.4} = 0.670$$
, i.e. $x \approx \boxed{50\%}$.

Q8:

$$\frac{1.33x}{23.0+16.0+1.0} \cdot 1000 = 10.0$$
, we have $x \approx \boxed{30\%}$.

Q9:

At 353 K, consider the solubility, $\frac{x}{250-x} = \frac{51}{100}$, there are $x \approx 84.44$ g of KCl in the solution.

Then, consider the solubility at 273 K, $\frac{84.44-x}{250-84.44}=\frac{28}{100},~x\approx \boxed{38~g}$ of KCl is crystallised out.

Q10:

As the formation of 3.00 L, i.e. $\frac{3}{22.4}$ mol of HCl releases 12.4 kJ of heat, the formation of 1 mol of HCl releases $\frac{12.4}{\frac{3}{22.4}} \approx \boxed{+93~kJ/mol}$ of heat.

Q11:

Number of moles of H^+ ion=8.0 \times $10^{-3} \cdot \frac{100}{1000} = 8 \times 10^{-4}$ mol.

Number of moles of OH^- ion=1.0 \times 10⁻² \cdot $\frac{50}{1000}$ = 5 \times 10⁻⁴ mol.

After neutralisation, $3 \times 10^{-4} \ mol$ of H^+ ion is remained and the volume of the solution becomes 150 mL.

Therefore,
$$[H^+] = \frac{3 \times 10^{-4}}{\frac{150}{1000}} = 2 \times 10^{-3} \ mol/L$$
 and $pH = -\log[H^+] = 3 - \log 2 \approx \boxed{2.70}$.

Q12:

By
$$pV = nRT$$
, $2.43 \cdot \frac{600}{1000} = \frac{m}{12.0 + 2 \cdot 16.0} \cdot 0.082 \cdot 350$, i.e. $m \approx \boxed{2.2~g}$

Q13:

As $Cr_2O_7^{2-}$ has the oxidation number of -2, Cr has the oxidation number of $\frac{7\cdot 2-2}{2}=\boxed{+6}$.

Q14:

The half equations are:

$$MnO_4^- + 8H^+ + 5e^- \to Mn^{2+} + 4H_2O$$

$$H_2O_2 \to 2H^+ + O_2 + 2e^-$$

The overall equation is $2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$.

Number of moles of $MnO_4^- = 0.020 \cdot \frac{12.0}{1000} = \frac{2}{5} \cdot M \cdot \frac{10.0}{1000}$, i.e. $M = \boxed{0.060 \ mol/L}$.

Q15:

The half equation at the anode is $2Cl^- \rightarrow Cl_2 + 2e^-$.

$$Q = It = 15 \cdot 60I = 900I \ C = \frac{900}{9.65 \times 10^4} I \ F.$$

Number of moles of $Cl_2 = \frac{315}{22.4 \cdot 1000} = \frac{1}{2} \cdot \frac{900}{9.65 \times 10^4} I$, i.e. $I \approx \boxed{3.0 \ A}$.

Q16:

- (1) : Colourless
- (2): Brick-red flame
- (3): Yellowish-green

- (4): Golden yellow flame
- (5): Violet flame

Note: In fact, burning Mg will give a bright white colour. So the flame test is still applicable.

Q17:

 $Ba(OH)_2$ is soluble.

Q18:

It is either a alkene or a cyclic alkane.

Alkene: But-1-ene, Cis-but-2-ene, Trans-but-2-ene, Methylpropene

Cyclic alkane: Cyclobutane, Methylcyclopropane

There are $\boxed{6}$ isomers.

Q19:

Consider the weight percentage of C atoms in CO_2 , the mass of C atoms in the compound= $17.6 \cdot \frac{12.0}{12.0 + 2 \cdot 16.0} = 4.8 \ mg$.

Similarly, the mass of H atoms in the compound is 0.8 mg.

Therefore, the mass of O atoms is 8.8-4.8-0.8=3.2 mg.

The molar ratio $C: H: O = \frac{4.8}{12.0}: \frac{0.8}{1.0}: \frac{3.2}{16.0} = 2:4:1.$

The empirical formula is C_2H_4O .

Solving $n(2 \cdot 12.0 + 4 \cdot 1.0 + 16.0) = 88$, we have n = 2.

Therefore, the molecular formula is $C_4H_8O_{\boxed{2}}$.

Q20:

A $-C(OH)HCH_3$ or $-COCH_3$ branch is responsible for a positive result in the iodoform test.

Among the options, only Acetic acid does not contain such a branch.