Interpretable Machine Learning

Shapley Values

- Learn cooperative games and value functions
- Define the marginal contribution of a player
- Study Shapley value as a fair payout solution
- Compare order and set definitions

COOPERATIVE GAMES IN GAME THEORY Shapley (1951)

- Game theory: Studies strategic interactions among "players" (who act to maximize their utility), where outcomes depend on collective behavior
- Cooperative games: Any subset $S \subseteq P = \{1, \dots, p\}$ can form a coalition to cooperate in a game, each achieving a payout v(S)

COOPERATIVE GAMES IN GAME THEORY Shapley (1951)

- Game theory: Studies strategic interactions among "players" (who act to maximize their utility), where outcomes depend on collective behavior
- Cooperative games: Any subset $S \subseteq P = \{1, \dots, p\}$ can form a coalition to cooperate in a game, each achieving a payout v(S)
- Value function: $v: 2^P \to \mathbb{R}$ assigns each coalition S a payout v(S)
 - Convention: $v(\emptyset) = 0 \rightsquigarrow$ Empty coalitions generate no gain
 - v(P): Total achievable payout when all players cooperate → Forms the game's budget to be fairly distributed
- Marginal contribution: Measure how much value player i adds to coalition S by

$$\Delta(j,S) := v(S \cup \{j\}) - v(S) \quad \text{ (for all } j \in P \ S \subseteq P \setminus \{j\})$$

COOPERATIVE GAMES IN GAME THEORY > Shapley (1951)

- Game theory: Studies strategic interactions among "players" (who act to maximize their utility), where outcomes depend on collective behavior
- Cooperative games: Any subset $S \subseteq P = \{1, \dots, p\}$ can form a coalition to cooperate in a game, each achieving a payout v(S)
- Value function: $v: 2^P \to \mathbb{R}$ assigns each coalition S a payout v(S)
 - Convention: $v(\emptyset) = 0 \rightsquigarrow$ Empty coalitions generate no gain
 - v(P): Total achievable payout when all players cooperate → Forms the game's budget to be fairly distributed
- Marginal contribution: Measure how much value player i adds to coalition S by

$$\Delta(j, S) := v(S \cup \{j\}) - v(S) \quad \text{(for all } j \in P \ S \subseteq P \setminus \{j\})$$

- Challenge: Players vary in their contributions & how they influence each other
- Goal: Fairly distribute v(P) among players by accounting for player interactions \rightsquigarrow Assign each player $j \in P$ a fair share ϕ_i (Shapley value)

Question: What are the individual marginal contributions and what is a fair payout?

Player	Coalition S	$v(S \cup \{j\})$	v(S)	$\Delta(j,S)$
0	Ø	1000	0	1000
0	{❷ }	3000	2000	1000
0	(3)	4000	3000	1000
0	$\{ {\color{red} oldsymbol{\varnothing}}, {\color{red} oldsymbol{ \Theta}} \}$	6000	5000	1000
2	Ø	2000	0	2000
2	{● }	3000	1000	2000
2	(3)	5000	3000	2000
2	$\{ oldsymbol{0}, oldsymbol{3} \}$	6000	4000	2000
3	Ø	3000	0	3000
3	(1) }	4000	1000	3000
3	{❷ }	5000	2000	3000
③	$\{0, 2\}$	6000	3000	3000

Players do not interact (payouts & add up in each coalition)

Player	Coalition S	$v(S \cup \{j\})$	v(S)	$\Delta(j,S)$
0	Ø	1000	0	1000
1	{② }	3000	2000	1000
0	(3)	4000	3000	1000
0	{⊘ , ❸ }	6000	5000	1000
2	Ø	2000	0	2000
2	{● }	3000	1000	2000
2	(3)	5000	3000	2000
2	$\{ oldsymbol{0}, oldsymbol{6} \}$	6000	4000	2000
6	Ø	3000	0	3000
6	{● }	4000	1000	3000
(3)	{② }	5000	2000	3000
8	$\{ oldsymbol{0}, oldsymbol{2} \}$	6000	3000	3000

- No interactions: Each player contributes the same fixed value to each coalition
 - → Player 1 always adds 1000, 2 adds 2000, and 3 adds 3000
 - \leadsto Marginal contributions are constant across all coalitions S
- **Conclusion:** Fair payout = average marginal contribution across all *S*
 - \rightsquigarrow Total value v(P)=6000 splits proportionally by individual contributions:

$$\mathbf{0} = \frac{1}{6}, \quad \mathbf{2} = \frac{1}{3}, \quad \mathbf{3} = \frac{1}{2}$$

⇒ Fair payouts are trivial without interactions

⇒ Unclear how to fairly distribute payouts when players interact

Player	Coalition S	$v(S \cup \{j\})$	v(S)	$\Delta(j,S)$
1	Ø	1000	0	1000
0	{❷ }	4000	2000	2000
0	(3)	4000	3000	1000
0	$\{ {\color{red} oldsymbol{\varnothing}}, {\color{red} oldsymbol{ \Theta}} \}$	6000	3000	3000
2	Ø	2000	0	2000
2	{● }	4000	1000	3000
2	(3)	3000	3000	0
2	$\{ oldsymbol{0}, oldsymbol{3} \}$	6000	4000	2000
3	Ø	3000	0	3000
3	(1) }	4000	1000	3000
(3)	{② }	3000	2000	1000
3	$\{0,2\}$	6000	4000	2000

Player	Coalition S	$v(S \cup \{j\})$	v(S)	$\Delta(j,S)$
0	Ø	1000	0	1000
0	{② }	4000	2000	2000
•	(3)	4000	3000	1000
0	$\{ {\color{red} oldsymbol{ 2 } }, {\color{red} oldsymbol{ 3 } } \}$	6000	3000	3000
2	Ø	2000	0	2000
2	(1) }	4000	1000	3000
2	(3)	3000	3000	0
2	$\{ oldsymbol{0}, oldsymbol{6} \}$	6000	4000	2000
3	Ø	3000	0	3000
3	(1) }	4000	1000	3000
3	{❷ }	3000	2000	1000
③	$\{ oldsymbol{0}, oldsymbol{2} \}$	6000	4000	2000

- With interactions: Players contribute different amounts depending on coalition
 → Marginal contributions vary across coalitions S (e.g., due to overlap, synergy)
- Averaging over subsets does not recover total payout $v(P) \leadsto$ unfair payout distr. \leadsto average contrib. \bigcirc = 1750, \bigcirc = 1750, \bigcirc = 2250 do not sum to v(P) = 6000
- Value a player adds depends on joining order, not just who else is in the coalition
 Shapley values fairly average over all possible joining orders

3 joins alone: 3 ☆

2 joins: total = 3 %, marginal = 0

1 joins: total = 6 $\stackrel{\triangle}{\Rightarrow}$, marginal = +3

But what if 1 joins before 2?

Ordering 2: $\textcircled{6} \rightarrow \textcircled{1} \rightarrow \textcircled{2}$

joins alone: 3 ☆

1 joins: total = $4 \stackrel{\triangle}{\Rightarrow}$, marginal = +1

2 joins: total = $6 \stackrel{\triangle}{\Rightarrow}$, marginal = +2

Ordering 1: $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$

joins alone: 3 ☆

2 joins: total = 3 %, marginal = 0

1 joins: total = 6 $\stackrel{\triangle}{\Rightarrow}$, marginal = +3

But what if 1 joins before 2?

Ordering 2: $\textcircled{3} \rightarrow \textcircled{1} \rightarrow \textcircled{2}$

joins alone: 3 ☆

1 joins: total = $4 \Leftrightarrow$, marginal = +1

② joins: total = 6 $\stackrel{\land}{\Rightarrow}$, marginal = +2

- Shapley value: Averages each player's contribution over all possible join orders
 - → Resolves redundancy (e.g., ③'s contribution/skill overlaps with ②'s)
 - → Accounts for order sensitivity (e.g., obvings more value if added last)
 - \leadsto Ensures fairness (no player is advantaged or penalized by order of joining)

- Generate all possible joining orders of players (all permutations of full set *P*)
- For each order: track player *j*-th marginal contribution when *j* joins a coalition

(payout of coalition S)

- Generate all possible joining orders of players (all permutations of full set *P*)
- For each order: track player *j*-th marginal contribution when *j* joins a coalition
- Shapley value of *j*: Average this marginal contribution over all joining orders
- **Example:** Compute payout difference after player 1 enters coalition → average

- Generate all possible joining orders of players (all permutations of full set *P*)
- For each order: track player *j*-th marginal contribution when *j* joins a coalition
- Shapley value of *j*: Average this marginal contribution over all joining orders
- **Example:** Compute payout difference after player 2 enters coalition → average

- Generate all possible joining orders of players (all permutations of full set *P*)
- For each order: track player *j*-th marginal contribution when *j* joins a coalition
- Shapley value of *j*: Average this marginal contribution over all joining orders
- **Example:** Compute payout difference after player 3 enters coalition → average

- Generate all possible joining orders of players (all permutations of full set *P*)
- For each order: track player *j*-th marginal contribution when *j* joins a coalition
- Shapley value of *j*: Average this marginal contribution over all joining orders

Contributions

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value order definition averages the marginal contribution of a player across all possible player orderings:

$$\phi_j = \frac{1}{|P|!} \sum_{\tau \in \Pi} (v(S_j^{\tau} \cup \{j\}) - v(S_j^{\tau}))$$

ullet Π : Set of all permutations (joining orders) of the players – there are |P|! in total

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value order definition averages the marginal contribution of a player across all possible player orderings:

$$\phi_j = \frac{1}{|P|!} \sum_{\tau \in \Pi} (v(S_j^{\tau} \cup \{j\}) - v(S_j^{\tau}))$$


```
• S_i^{\tau}: Set of players before j joins, for each ordering \tau = (\tau^{(1)}, \dots, \tau^{(p)})
 E.g.: \Pi = \{(\mathbf{0}, \mathbf{2}, \mathbf{3}), (\mathbf{0}, \mathbf{3}, \mathbf{2}), (\mathbf{2}, \mathbf{0}, \mathbf{3}), (\mathbf{2}, \mathbf{3}, \mathbf{0}), (\mathbf{3}, \mathbf{0}, \mathbf{2}), (\mathbf{3}, \mathbf{2}, \mathbf{0})\}
        \rightsquigarrow For joining order \tau = (2, \mathbf{0}, \mathbf{3}) and player j = \mathbf{3} \Rightarrow S_i^{\tau} = \{2, \mathbf{0}\}
        \rightsquigarrow For joining order \tau = (3, 0, 2) and player j = 0 \Rightarrow S_i^{\tau} = \{3\}
```


SHAPLEY VALUE - ORDER DEFINITION

The Shapley value order definition averages the marginal contribution of a player across all possible player orderings:

$$\phi_j = \frac{1}{|P|!} \sum_{\tau \in \Pi} (v(S_j^{\tau} \cup \{j\}) - v(S_j^{\tau}))$$

• Order definition allows to approximate Shapley values by sampling permutations \rightsquigarrow Sample a fixed number $M \ll |P|!$ of random permutations and average:

$$\phi_j pprox rac{1}{M} \sum_{ au \in \Pi_M} \left(v(\mathcal{S}_j^{ au} \cup \{j\}) - v(\mathcal{S}_j^{ au}) \right)$$

where $\Pi_M \subset \Pi$ is the random sample of M player orderings

- **Note:** The same subset S_j^{τ} can occur in multiple permutations (joining orders) \rightsquigarrow Its marginal contribution is included multiple times in the sum in ϕ_i
- Example (for set of players $P = \{ \mathbf{0}, \mathbf{0}, \mathbf{0} \}$, player of interest $j = \mathbf{0}$):
 - $\Pi = \{ (\mathbf{0}, \mathbf{2}, \mathbf{3}), \ (\mathbf{0}, \mathbf{3}, \mathbf{2}), \ (\mathbf{2}, \mathbf{0}, \mathbf{3}), \ (\mathbf{2}, \mathbf{3}, \mathbf{0}), \ (\mathbf{3}, \mathbf{0}, \mathbf{2}), \ (\mathbf{3}, \mathbf{2}, \mathbf{0}) \}$
 - \longrightarrow In both (0, 2, 3) and (2, 0, 3), player 3 joins after coalition $S_j^{\tau} = \{0, 2\}$
 - \Rightarrow Marginal contribution $v(\{0, 2, 3\}) v(\{0, 2\})$ occurs twice in ϕ_j
- **Reason:** Each subset S appears in |S|!(|P| |S| 1)! orderings before j joins \Rightarrow There are |S|! possible orders of players within coalition S
 - \Rightarrow There are (|P| |S| 1)! possible orders of players without S and j

Players before player *j* player *j* Players after player *j*

- Order view: Each of the |P|! permutations contributes one term with weight $\frac{1}{|P|!}$
- Same subset $S \subseteq P \setminus \{j\}$ can appear before j in multiple orders \rightsquigarrow e.g., $S = \{ \bigcirc, \bigcirc \} = \{ \bigcirc, \bigcirc \}$
- ullet Set view: Group by unique subsets S, not permutations
- Each S occurs in |S|!(|P|-|S|-1)! orderings \leadsto Weight: $\frac{|S|!(|P|-|S|-1)!}{|P|!}$

- Order view: Each of the |P|! permutations contributes one term with weight $\frac{1}{|P|!}$
- Same subset $S \subseteq P \setminus \{j\}$ can appear before j in multiple orders \rightsquigarrow e.g., $S = \{ \bigcirc, \bigcirc \} = \{ \bigcirc, \bigcirc \}$
- **Set view:** Group by unique subsets *S*, not permutations
- Each S occurs in |S|!(|P|-|S|-1)! orderings \leadsto Weight: $\frac{|S|!(|P|-|S|-1)!}{|P|!}$

- Order view: Each of the |P|! permutations contributes one term with weight $\frac{1}{|P|!}$
- Same subset $S \subseteq P \setminus \{j\}$ can appear before j in multiple orders \rightsquigarrow e.g., $S = \{ \bigcirc, \bigcirc \} = \{ \bigcirc, \bigcirc \}$
- **Set view:** Group by unique subsets *S*, not permutations
- Each S occurs in |S|!(|P|-|S|-1)! orderings \leadsto Weight: $\frac{|S|!(|P|-|S|-1)!}{|P|!}$

SHAPLEY VALUE - SET DEFINITION

Shapley value via **set definition** (weighting via multinomial coefficient):

$$\phi_j = \sum_{S \subseteq P \setminus \{j\}} \frac{|S|!(|P| - |S| - 1)!}{|P|!} (v(S \cup \{j\}) - v(S))$$

0

The coefficient gives the probability that, when randomly arranging all |P| players, the exact set S appears before player j, and the remaining players appear afterward.

S ! permutations		player j	(P - S -	(P - S -1)! permutations		
$\tau^{(1)}$	$ au^{(S)}$	$ au^{(S +1)}$	$ au^{(S +2)}$		$\tau^{(P)}$	

SHAPLEY VALUE - SET DEFINITION

Shapley value via **set definition** (weighting via multinomial coefficient):

$$\phi_j = \sum_{S \subseteq P \setminus \{j\}} \frac{|S|!(|P| - |S| - 1)!}{|P|!} (v(S \cup \{j\}) - v(S))$$

- |S| = 0: player *j* joins first \Rightarrow many permutations \Rightarrow high weight
- |S| = |P| 1: player j joins last \Rightarrow many permutations \Rightarrow high weight
- $\bullet \ \, \mathsf{Middle\text{-}sized} \, \, |S| \mathsf{:} \, \mathsf{fewer} \, \, \mathsf{exact} \, \, \mathsf{matches} \\ \Rightarrow \mathsf{lower} \, \, \mathsf{weight} \\$
- Result: U-shaped weight distribution

What makes a payout fair? The Shapley value provides a fair payout ϕ_j for each player $j \in P$ and uniquely satisfies the following axioms for any value function v:

• **Efficiency**: Total payout v(P) is fully allocated to players:

$$\sum_{j\in P}\phi_j=v(P)$$

What makes a payout fair? The Shapley value provides a fair payout ϕ_j for each player $j \in P$ and uniquely satisfies the following axioms for any value function v:

• **Efficiency**: Total payout v(P) is fully allocated to players:

$$\sum_{j\in P}\phi_j=v(P)$$

• **Symmetry**: Indistinguishable players $j, k \in P$ receive equal shares:

If
$$v(S \cup \{j\}) = v(S \cup \{k\})$$
 for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$

What makes a payout fair? The Shapley value provides a fair payout ϕ_j for each player $j \in P$ and uniquely satisfies the following axioms for any value function v:

• **Efficiency**: Total payout v(P) is fully allocated to players:

$$\sum_{j\in P}\phi_j=v(P)$$

• **Symmetry**: Indistinguishable players $j, k \in P$ receive equal shares:

If
$$v(S \cup \{j\}) = v(S \cup \{k\})$$
 for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$

• Null Player (Dummy): Players who contribute nothing receive nothing:

If
$$v(S \cup \{j\}) = v(S)$$
 for all $S \subseteq P \setminus \{j\}$, then $\phi_j = 0$

What makes a payout fair? The Shapley value provides a fair payout ϕ_j for each player $j \in P$ and uniquely satisfies the following axioms for any value function v:

• **Efficiency**: Total payout v(P) is fully allocated to players:

$$\sum_{j\in P}\phi_j=v(P)$$

• **Symmetry**: Indistinguishable players $j, k \in P$ receive equal shares:

If
$$v(S \cup \{j\}) = v(S \cup \{k\})$$
 for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$

• Null Player (Dummy): Players who contribute nothing receive nothing:

If
$$v(S \cup \{j\}) = v(S)$$
 for all $S \subseteq P \setminus \{j\}$, then $\phi_j = 0$

• Additivity: For two separate games with value functions v_1, v_2 , define a combined game with $v(S) = v_1(S) + v_2(S)$ for all $S \subseteq P$. Then:

$$\phi_{j,\nu_1+\nu_2} = \phi_{j,\nu_1} + \phi_{j,\nu_2}$$

→ Payout of combined game = payout of the two separate games

