FCC SAR Test Report

Product Name: Tablet PC

Model No. : TE69SA3

FCC ID : WL6-TE69SA3

Applicant: ELITEGROUP COMPUTER SYSTEMS CO., LTD.

Address: No.239, Sec. 2, Tiding Blvd., Neihu Dist, Taipei City 14,

Taiwan (R.O.C)

Date of Receipt: Apr. 01, 2015

Date of Test : Sept. 09, 2015

Issued Date : Sept. 16, 2015

Report No. : 1540106R-HP-US-P03V01

Report Version: V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Sept. 16, 2015

Report No.: 1540106R-HP-US-P03V01

Product Name

: Tablet PC

Applicant

ELITEGROUP COMPUTER SYSTEMS CO., LTD.

Address

No.239, Sec. 2, Tiding Blvd., Neihu Dist, Taipei City 14, Taiwan

(R.O.C)

Manufacturer

ELITEGROUP COMPUTER SYSTEMS CO., LTD.

Address

No.239, Sec. 2, Tiding Blvd., Neihu Dist, Taipei City 14, Taiwan

(R.O.C)

Model No.

TE69SA3

FCC ID

WL6-TE69SA3

EUT Voltage

DC 5V

Applicable Standard

: FCC KDB Publication 447498 D01v05r02

FCC KDB Publication 865664 D01v01r03
FCC KDB Publication 248227 D01v02
FCC KDB Publication 616217 D04v01r01
FCC KDB Publication 941225 D01, D05,D06

Test Result

Max. SAR Measurement (1g)

Head: 0.252 W/kg; Body-worn: 1.270 W/kg Simultaneous transmission 1.878 W/kg

Performed Location

Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006,

Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392

Documented By

Elevine Word

Reviewed By

How your

Approved By

Dream Coo

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

USA : FCC
Japan : VCCI
China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : http://www.quietek.com/tw/ctg/cts/accreditations.htm
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8859 E-Mail: service@guietek.com

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

Suzhou Testing Laboratory:

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TABLE OF CONTENTS

Descri	ption	Page
1. Ge	neral Information	7
1.1.	EUT Description	7
1.2.	Test Environment	9
1.3.	EUT Antenna Locations	9
1.4.	Simultaneous Transmission Configurations	10
1.5.	SAR Test Exclusions Applied	10
1.6.	Power Reduction for SAR	10
1.7.	Guidance Documents	10
2. SA	R Measurement System	11
2.1.	DASY5 System Description	11
2.1	.1. Applications	12
2.1	.2. Area Scans	12
2.1	.3. Zoom Scan (Cube Scan Averaging)	12
2.1	.4. Uncertainty of Inter-/Extrapolation and Averaging	12
2.2.	DASY5 E-Field Probe	13
2.2	.1. Isotropic E-Field Probe Specification	13
2.3.	Boundary Detection Unit and Probe Mounting Device	14
2.4.	DATA Acquisition Electronics (DAE) and Measurement Server	14
2.5.	Robot	15
2.6.	Light Beam Unit	15
2.7.	Device Holder	16
2.8.	SAM Twin Phantom	16
3. Tis	sue Simulating Liquid	17
3.1.	The composition of the tissue simulating liquid	17
3.2.	Tissue Calibration Result	17
3.3.	Tissue Dielectric Parameters for Head and Body Phantoms	19
4. SA	R Measurement Procedure	20
4.1.	SAR System Validation	20
4.1	.1. Validation Dipoles	20
4.1	.2. Validation Result	20
4.2.	SAR Measurement Procedure	22
4.3.	SAR Measurement Conditions for UMTS	23

	4.3.1	Output Power Verification	23
	4.3.2	Head SAR Measurements for Handsets	23
	4.3.3	Body SAR Measurements	23
	4.3.4	SAR Measurements for Handsets with Rel 5 HSDPA	23
	4.3.5	SAR Measurements for Handsets with Rel 6 HSUPA	24
5.	SAR	Exposure Limits	25
6.	Test	Equipment List	26
7.	Meas	surement Uncertainty	27
8.	Conc	lucted Power Measurement	35
9.	Test	Results	40
	9.1.	Test Results	40
	9.2.	SAR Test Notes	52
Αp	pendix	A. SAR System Validation Data	58
Αp	pendix	B. SAR measurement Data	64
Αp	pendix	C. Test Setup Photographs & EUT Photographs	114
Αp	pendix	D. Probe Calibration Data	. 124
Αp	pendix	E. Dipole Calibration Data	. 136
Αp	pendix	F. DAE Calibration Data	160

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1540106R-HP-US-P03V01	6R-HP-US-P03V01 V1.0 Initial Issued Report S		Sept. 16, 2015

1. General Information

1.1. EUT Description

Product Name	Tablet PC		
Model No.	TE69SA3		
Device Category	Portable		
RF Exposure Environment	Uncontrolled		
Antenna Type	Integral Antenna		
GPS Funtions	Yes		
2G			
Support Band	GSM850/PCS1900		
GPRS Class	Class 12		
Uplink	GSM 850: 824~849MHz		
	PCS 1900: 1850~1910MHz		
Downlink	GSM 850: 869~894MHz		
	PCS 1900: 1930~1990MHz		
Release Version	R99		
Type of modulation	GMSK for GSM/GPRS		
	8PSK for EDGE		
Antonno Coin	GSM 850: 1.07 dBi		
Antenna Gain	PCS 1900: 2.12 dBi		
3G			
Support Band	WCDMA Band II/ WCDMA Band V		
Uplink	WCDMA Band II: 1852.4~1907.6MHz		
	WCDMA Band V: 824~849MHz		
Downlink	WCDMA Band II: 1932.4~1987.6MHz		
	WCDMA Band V: 869~894MHz		
Release Version	Rel-7		
Type of modulation	QPSK for Uplink		
Antenna Gain	WCDMA Band II: 2.12 dBi		
	WCDMA Band V: 1.07 dBi		
Wi-Fi			
Frequency Range	For 2.4GHz Band		
	802.11b/g/n(20MHz): 2412~2462MHz		
Channel Number	11 for 802.11b/g/n(HT20)		
Type of Modulation	802.11b: DSSS		
Type of Modulation	802.11b: DSSS 802.11g/n: OFDM		
	802.11b: DSSS		

Page: 7 of 164

	802.11n : up to 72.2Mbps
Antenna Gain	2.0 dBi
Bluetooth	
Bluetooth Frequency	2402~2480MHz
Bluetooth Version	V3.0HS +V4.0
Type of modulation	V3.0HS: GFSK, Pi/4 DQPSK, 8DPSK
	V4.0: GFSK
Data Rate	V3.0+HS: 1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps
	(8DPSK)
	V4.0: 1Mbps(GFSK)
Antenna Gain	2.0 dBi

Component	component				
Adapter #1	Model No.: W12-010N3A				
	Output Power: 5VDC/2A				
	Input Power: 100 - 240V ~ 50/60Hz, 0.3A				
Adapter #2	Model No.: WB-10G05FU				
	Output Power: 5VDC/2A				
	Input Power: 100 - 240V ~ 50/60Hz, 0.4A				

1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5± 2
Humidity (%RH)	30-70	52

1.3. EUT Antenna Locations

Bottom of Tablet

Primary landscape

Secondary landscape

1.4. Simultaneous Transmission Configurations

2.4GHz Wi-Fi and Bluetooth share the same antenna path and cannot transmit simultaneously.

1.5. SAR Test Exclusions Applied

(A) WIFI/ Bluetooth

Per FCC KDB 447498 D01v05r02, the SAR exclusion threshold for distances<50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 3.0$$

 $[(3.98 \text{mW/5})^* \sqrt{2.480}] = 1.254 < 3.0 \text{ for Head}; [(3.98 \text{mW/5})^* \sqrt{2.480}] = 1.254 < 3.0 \text{ for Body.}$

Based on the maximum output power of Bluetooth and the antenna to use separation distance,

Bluetooth SAR was not required;

Based on the maximum output power of 2.4GHz WIFI and the antenna to use separation distance, the maximum exclusion distance is 31.35mm;

Based on the maximum output power of GSM850 power and the antenna to use separation distance, the maximum exclusion distance is 335.49mm;

Based on the maximum output power of PCS1900 power and the antenna to use separation distance, the maximum exclusion distance is 164.86mm;

Based on the maximum output power of WCDMA Band II power and the antenna to use separation distance, the maximum exclusion distance is 61.37mm;

Based on the maximum output power of WCDMA Band V power and the antenna to use separation distance, the maximum exclusion distance is 52.33mm;

1.6. Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.7. Guidance Documents

- 1) FCC KDB Publication 447498 D01v05r02 (General SAR Guidance)
- 2) FCC KDB Publication 865664 D01v01r03(SAR measurement 100 MHz to 6 GHz)
- 3) FCC KDB Publication 248227 D01v02 (SAR Considerations for 802.11 Devices)
- 4) FCC KDB Publication 616217 D04v01r01 (SAR evaluation considerations for Laptop, Notebook, Netbook and Tablet Computers)
 - 5) FCC KDB Publication 941225 D01,D05,D06

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4				
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)				
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)				
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)				
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)				
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm				
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.				

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- > Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	835MHz	835MHz	1900MHz	1900MHz	2450MHz	2450MHz
(% Weight)	Head	Body	Head	Body	Head	Body
Water	40.45	52.4	54.90	40.5	46.7	73.2
Salt	1.45	1.40	0.18	0.50	0.00	0.04
Sugar	57.6	45.0	0.00	58.0	0.00	0.00
HEC	0.40	1.00	0.00	0.50	0.00	0.00
Preventol	0.10	0.20	0.00	0.50	0.00	0.00
DGBE	0.00	0.00	44.92	0.00	53.3	26.7
Triton X-100	40.45	52.4	54.90	40.5	46.7	73.2

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Head Tissue Simulant Measurement							
Frequency	Description	Dielectric Pa	Tissue Temp.				
[MHz]	Description	$\epsilon_{\rm r}$ σ [s/m]		[°C]			
835 MHz	Reference result ± 5% window	41.50 39.43 to 43.58	0.90 0.86 to 0.95	N/A			
	09-09-2015	41.14	0.88	21.0			
1900 MHz	Reference result ± 5% window	40.00 38.00 to 42.00	1.40 1.33 to 1.47	N/A			
	09-09-2015	38.88	1.45	21.0			
2450 MHz	Reference result ± 5% window	39.20 37.24 to 41.16	1.80 1.62 to 1.98	N/A			
	09-09-2015	39.76	1.85	21.0			

Body Tissue Simulant Measurement							
Frequency	Description	Dielectric P	arameters	Tissue Temp.			
[MHz]	Description	ε _r	σ [s/m]	[°C]			
	Reference result	55.2	0.97	N/A			
835 MHz	± 5% window	52.44 to 57.96	0.92 to 1.02	IN/A			
	09-09-2015	52.89	0.97	21.0			

Page: 17 of 164

1900 MHz	Reference result ± 5% window	53.3 1.52 50.64 to 55.97 1.44 to 1.60		N/A
	09-09-2015	52.93	1.53	21.0
2450MHz	Reference result ± 5% window	52.7 50.07 to 55.34	1.95 1.85 to 2.05	N/A
	09-09-2015	52.25	1.99	21.0

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Вс	ody
(MHz)	٤ _r	σ (S/m)	٤ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68.0	39.5	3.6
2450MHz	51.5	30.4	3.6

4.1.2. Validation Result

System Perfo	System Performance Check at 835MHz, 1900MHz and 2450MHz for Head											
Validation Kit: D835V2-SN 4d094												
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]								
Reference result ± 10% window		9.59 8.63 to 10.55	6.21 5.59 to 6.83	N/A								
	09-09-2015	9.80	6.44	21.0								
Validation Kit	:: D1900V2-SN 5d12	1										
1900 MHz	Reference result ± 10% window	41.1 36.99 to 45.21	21.3 19.17 to 23.43	N/A								
	09-09-2015	38.20	19.48	21.0								
Validation Dip	oole: D2450V2-SN 8	39										
2450 MHz	Reference result ± 10% window	52.0 46.8 to 57.2	24.3 21.87 to 26.73	N/A								
	09-09-2015	54.0	24.08	21.0								

Page: 20 of 164

Note: All SAR values are normalized to 1W forward power.

System Performance Check at 835MHz, 1900MHz and 2450MHz for Body

Validation Kit: D835V2-SN 4d094

Frequency [MHz]	Description	Description SAR [w/kg] 1g		Tissue Temp. [°C]
835 MHz	Reference result ± 10% window	9.42 8.48 to 10.36	6.15 5.54 to 6.77	N/A
	09-09-2015	9.40	6.12	21.0

Validation Kit: D1900V2-SN 5d121

Frequency [MHz]	Description	cription SAR [w/kg]		Tissue Temp. [°C]
1900 MHz	Reference result ± 10% window	39.7 35.73 to 43.67	20.9 18.81 to 22.99	N/A
	09-09-2015	38.88	19.96	21.0

Validation Dipole: D2450V2-SN 839

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 10% window	49.9 44.91 to 54.89	23.1 20.79 to 25.41	N/A
	09-09-2015	50.0	22.60	21.0

Note: All SAR values are normalized to 1W forward power.

4.2. SAR Measurement Procedure

The DASY5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, Tablet PC, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

4.3. SAR Measurement Conditions for UMTS

4.3.1. Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

4.3.2. Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

4.3.3. Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

4.3.4. SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of β c=9 and β d=15, and power offset parameters of Δ ACK= Δ NACK =5 and Δ CQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

4.3.5. SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is \leq 75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

Sub- test	βε	β_d	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$.

Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	N/A
Controller	Stäubli	SP1	S-0034	N/A
Dipole Validation Kits	Speag	D835V2	4d094	2016.02.26
Dipole Validation Kits	Speag	D1900V2	5d121	2016.02.26
Dipole Validation Kits	Speag	D2450V2	839	2016.02.23
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data	Speag	DAE4	Sn1220	2016.01.20
Acquisition Electronic				
E-Field Probe	Speag	EX3DV4	3710	2016.03.26
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A
Directional Coupler	Agilent	778D	20160	N/A
Universal Radio	R&S	CMU 200	117088	2016.03.10
Communication Tester				
Vector Network	Agilent	E5071C	MY48367267	2016.03.10
Signal Generator	Agilent	E4438C	MY49070163	2016.03.10
Power Meter	Anritsu	ML2495A	0905006	2015.10.29
Wide Bandwidth	Anritsu	MA2411B	0846014	2015.10.29
Sensor				

7. Measurement Uncertainty

DASY5 Uncertainty								
Measurement uncertainty	for 300 M	Hz to 3 G	Hz avera	iged ovei	1 gram	/ 10 gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related		I	I	I			l	
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup		I	I	I			l	
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	. 5.00/	_	-	0.04	0.40	. 4 00/	. 4 00/	
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity	.0.50/	N	4	0.04	0.40	.4.00/	.4.40/	
(meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity	LE 00/	R	(a	0.6	0.49	±1.7%	14 40/	∞
(target)	±5.0%	K	√3	0.0	0.49	±1.7%	±1.4%	ω
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)	±2.0%	IN	'	0.0	0.49	±1.0%	±1.∠70	~
Combined Std. Uncertain	nty					±11.0%	±10.8%	387
Expanded STD Uncertain	nty					±22.0%	±21.5%	

		DASY	′5 Und	ertain	itv			
Measurement uncertainty	for 3 GHz				•	gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	8
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±9.9%	R	√3	1	1	±5.7%	±5.7%	∞
Max. SAR Eval.	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Test Sample Related		•	•	•	•	1	1	
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup		•	•	•	•			
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	. F. O0/	Б		0.64	0.42	14.00/	14.20/	8
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	ω
Liquid Conductivity	12.5%	N	1	0.64	0.43	±1.6%	±1 10/	8
(meas.)	±2.5%	IN	1	0.64	0.43	±1.0%	±1.1%	ω
Liquid Permittivity	±5.0%	R	/a	0.6	0.49	±1.7%	±1.4%	8
(target)	13.0 /0	11	√3	0.0	0.48	±1.7 /0	⊥1.+/0	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)	12.0/0	1 4	'	0.0	0.73	±1.070	±1.∠/0	
Combined Std. Uncerta	inty					±12.8%	±12.6%	330
Expanded STD Uncerta	inty					±25.6%	±25.2%	

Note: Per KDB 865664 D01 v01r03 requirements for dipole calibration, QuieTek Lab has adopted two years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement (Show below);
- 4. Impedance is within 5Ω of calibrated measurement (Show below).

835 Head

Calibrated impedance: 51.4 Ω ; Measured impedance: 50.160 Ω (within 5 Ω)

Calibrated return loss: -30.2 dB; Measured return loss: -29.523dB (within 20%)

835 Body

Calibrated impedance: 46.9 Ω ; Measured impedance: 46.859 Ω (within 5Ω)

Calibrated return loss: -24.3 dB; Measured return loss: -25.239dB (within 20%)

1900 Head

Calibrated impedance: 50.8 Ω ; Measured impedance: 52.217 Ω (within 5 Ω)

Calibrated return loss: -23.6 dB; Measured return loss: -24.035dB (within 20%)

1900 Body

Calibrated impedance: 46.3 Ω ; Measured impedance: 47.072 Ω (within 5 Ω)

Calibrated return loss: -21.6 dB; Measured return loss: -21.172dB (within 20%)

2450 Head

Calibrated impedance: 54.5 Ω ; Measured impedance: 49.994 Ω (within 5 Ω)

Calibrated return loss: -26.2 dB; Measured return loss: -25.169dB (within 20%)

2450 Body

Calibrated impedance: 50.604Ω ; Measured impedance: 53.371Ω (within 5Ω)

Calibrated return loss: -27.363 dB; Measured impedance: -28.403 dB (within 20%)

8. Conducted Power Measurement

	(MHz)			Frame Power	Max. Power	Scaling
	(IVITIZ)	Power (dBm)	Factor (dB)	(dBm)	(dBm)	Factor
Max. Power <sim1></sim1>	>					
	824.2	32.20	-9.19	23.01	32.5	1.072
GSM850	836.4	32.32	-9.19	23.13	32.5	1.042
	848.8	32.47	-9.19	23.28	32.5	1.007
	824.2	32.18	-9.19	22.99	32.5	1.076
GPRS850(1 Slot)	836.4	32.29	-9.19	23.10	32.5	1.050
	848.8	32.45	-9.19	23.26	32.5	1.012
	824.2	29.28	-6.16	23.12	29.5	1.052
GPRS850(2 Slot)	836.4	29.33	-6.16	23.17	29.5	1.040
	848.8	29.48	-6.16	23.32	29.5	1.005
	824.2	27.58	-4.42	23.16	28.0	1.102
GPRS850(3 Slot)	836.4	27.80	-4.42	23.38	28.0	1.047
	848.8	27.87	-4.42	23.45	28.0	1.030
	824.2	26.28	-3.18	23.10	26.5	1.052
GPRS850(4 Slot)	836.4	26.42	-3.18	23.24	26.5	1.019
	848.8	26.50	-3.18	23.35	26.5	1.000
	1850.2	30.86	-9.19	21.67	31.0	1.033
PCS1900	1880.0	30.60	-9.19	21.41	31.0	1.096
	1909.8	30.71	-9.19	21.52	31.0	1.069
	1850.2	30.83	-9.19	21.64	31.0	1.040
GPRS1900(1 Slot)	1880.0	30.57	-9.19	21.38	31.0	1.104
	1909.8	30.68	-9.19	21.49	31.0	1.076
	1850.2	27.76	-6.16	21.60	28.0	1.057
GPRS1900(2 Slot)	1880.0	27.51	-6.16	21.35	28.0	1.119
	1909.8	27.73	-6.16	21.57	28.0	1.064
	1850.2	26.10	-4.42	21.68	26.5	1.096
GPRS1900(3 Slot)	1880.0	26.37	-4.42	21.45	26.5	1.030
	1909.8	26.13	-4.42	21.71	26.5	1.089
	1850.2	24.69	-3.18	21.51	25.0	1.074
GPRS1900(4 Slot)	1880.0	24.45	-3.18	21.27	25.0	1.135
	1909.8	24.66	-3.18	21.48	25.0	1.081
Max. Power <sim2></sim2>	•					
GSM850	836.4	32.32	-9.19	23.13	32.5	1.042
PCS1900	1880.0	30.60	-9.19	21.41	31.0	1.096

Page: 35 of 164

Note 1: Scaling Factor = Max. Power(mW) / Avg. Burst Power(mW)

- 2: This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05r02.
- 3: Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged powers were calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 4: The bolded GPRS modes were selected for SAR testing according to the highest frame-averaged output power table per KDB 941225 D01v03.
- 5: GPRS(GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 6: EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

WCDMA/HSDPA/HSUPA

		Band	l (1900)	MHz)	Ban	d V (835N	lHz)	
	2000		Chann	el		Channe	el	
Mode	3GPP Subtest	Conduc	ted Powe	er (dBm)	Cone	MPR		
		9262	9400	4233				
WCDMA R99	1	23.23	22.64	22.97	22.25	22.14	22.15	N/A
	1	22.94	22.47	22.61	21.98	21.49	21.63	0
Dale Hedda	2	22.89	22.44	22.58	21.94	21.46	21.59	0
Rel5 HSDPA	3	22.41	21.93	22.04	21.45	20.92	21.13	0.5
	4	22.38	21.91	22.01	21.47	20.89	21.11	0.5
	1	22.96	22.47	22.54	22.03	21.52	21.60	0.0
	2	20.91	20.42	20.49	20.01	19.48	19.53	2.0
Rel6 HSUPA	3	21.98	21.50	21.51	21.05	20.54	20.62	1.0
	4	20.95	20.44	20.46	19.99	19.41	19.49	2.0
	5	22.94	22.42	22.51	22.00	21.49	21.55	0.0

Note: UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

Mode	Channel	Normal Power (dBm)	Max. Power (dBm)	Scaling Factor
WCDMA Band II	9262	23.23	23.5	1.064
	9400	22.64	23.0	1.086
(1900MHz)	9538	22.97	23.0	1.007
MCDMA Dand	4132	22.25	22.5	1.059
WCDMA Band	4182	22.14	22.5	1.086
V(835MHz)	4233	22.15	22.5	1.084

WLAN output power

Test Mode	Channel No.	Frequency (MHz)	Average Power (dBm)	Max. Average Power (dBm)	Scaling Factor
	01	2412	17.10	17.8	1.175
802.11b	06	2437	17.70	17.8	1.023
	11	2462	17.70	17.8	1.023
	01	2412	12.59	12.7	1.026
802.11g	06	2437	15.59	16.0	1.099
	11	2462	12.65	12.7	1.012
	01	2412	12.14	12.7	1.138
802.11n(20MHz)	06	2437	15.15	16.0	1.216
	11	2462	12.25	12.7	1.109

Note 1: Justification for reduced test configurations for Wi-Fi channels per KDB Publication 248227 D01v02.

2: For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.

3: When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.

BT output power

Test Mode	Channel No.	Frequency (MHz)	Average Power (dBm)	Max. Power (dBm)	Scaling Factor
	00	2402	4.15	5.0	1.216
DH5	39	2441	4.65	5.0	1.084
	79	2480	5.10	6.0	1.230
	00	2402	4.86	5.0	1.033
2DH5	39	2441	5.45	6.0	1.135
	2DH5 39 :	2480	5.77	6.0	1.054
	00	2402	4.76	5.0	1.057
3DH5	39	2441	5.36	6.0	1.159
	79	2480	5.70	6.0	1.072
	00	2402	-5.06	-5.0	1.014
BLE	19	2440	-4.77	-4.2	1.140
	39	2480	-4.27	-4.2	1.016

9. **Test Results**

9.1. Test Results

9	Δ	R	N	1=	Δ	SI	Ш	R	F	١/	IF.	NT	•
C)	┑	ı 🔪	ıν	п_	_	C) I		•		ıv	ட	1 1	

Ambient Temperature (°C): 21.5 ± 2 Relative Humidity (%): 52

Liquid Temperature (°C) : 21.0 ± 2 Depth of Liquid (cm):>15

Product: Tablet PC

Test Mode: GSM850 <SIM1>

rest wode: Gs	SIVIOOU <sii< th=""><th>VI I /</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></sii<>	VI I /							
Test Position Head	Antenna Position	Frequ Channel	ency MHz	Frame Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)
Left-Cheek	Fixed	128	824.2	23.01			1.072		1.6
Left-Cheek	Fixed	189	836.4	23.13	0.17	0.205	1.042	0.214	1.6
Left-Cheek	Fixed	251	848.8	23.28			1.007		1.6
Left-Tilted	Fixed	189	836.4	23.13	0.17	0.133	1.042	0.139	1.6
Right-Cheek	Fixed	128	824.2	23.01			1.072		1.6
Right-Cheek	Fixed	189	836.4	23.13	0.05	0.218	1.042	0.227	1.6
Right-Cheek	Fixed	251	848.8	23.28			1.007		1.6
Right-Tilted	Fixed	189	836.4	23.13	0.05	0.116	1.042	0.121	1.6
Test Mode: GS	SM850 <sii< td=""><td>M2></td><td></td><td> </td><td> </td><td>Г</td><td> </td><td></td><td>Г</td></sii<>	M2>		 	 	Г	 		Г
Right-Cheek	Fixed	189	836.4	23.13	0.05	0.203	1.042	0.212	1.6

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498 D01 v05r02.

SA	١R	N	1F	AS	i U	RI	=1	ΛF	N٦	Г

Ambient Temperature (°C): 21.5 ± 2 Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ± 2 Depth of Liquid (cm):>15

Product: Tablet PC

Test Mode: GSM850

Landscape

Test Position Body (0mm gap)	Antenna Position	Frequ Channel	ency MHz	Frame Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)
Bottom	Fixed	128	824.2	23.01			1.072		1.6
Bottom	Fixed	189	836.4	23.13	0.13	0.474	1.042	0.494	1.6
Bottom	Fixed	251	848.8	23.28			1.007		1.6
Test Mode: GPRS85	0-3slot								
Bottom	Fixed	128	824.2	23.16	0.19	0.937	1.102	1.030	1.6
Bottom	Fixed	189	836.4	23.38	0.01	1.090	1.047	1.140	1.6
Bottom*	Fixed	189	836.4	23.38	0.01	1.030	1.047	1.080	1.6
Bottom	Fixed	251	848.8	23.45	0.00	0.807	1.030	0.831	1.6
Primary Landscape	Fixed	189	836.4	23.38	0.04	0.188	1.047	0.197	1.6
Primary Portrait	Fixed	189	836.4	23.38	-0.06	0.046	1.047	0.048	1.6
Secondary Portrait	Fixed	189	836.4	23.38	-0.04	0.368	1.047	0.385	1.6
Secondary	Fixed	189	836.4	23.38	-0.03	0.083	1.047	0.087	1.6

Note: when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498 D01 v05r02.

SAR MEASUREMENT

Ambient Temperature (°C): 21.5 ± 2 Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ± 2 Depth of Liquid (cm):>15

Product: Tablet PC

Test Mode: PCS1900 <SIM1>

Test Position	Antenna	Frequ	ency	Frame	Power Drift	SAR 1g	Scaling	Scaled	Limit
Head	Position	Channel	MHz	Power (dBm)	(<±0.2)	(W/kg)	Factor	SAR 1g (W/kg)	(W/kg)
Left-Cheek	Fixed	512	1850.2	21.67			1.033		1.6
Left-Cheek	Fixed	661	1880	21.41	0.05	0.170	1.096	0.186	1.6
Left-Cheek	Fixed	810	1909.8	21.52			1.069		1.6
Left-Tilted	Fixed	661	1880.0	21.41	-0.06	0.139	1.096	0.152	1.6
Right-Cheek	Fixed	512	1850.2	21.67			1.033		1.6
Right-Cheek	Fixed	661	1880	21.41	0.14	0.230	1.096	0.252	1.6
Right-Cheek	Fixed	810	1909.8	21.52			1.069		1.6
Right-Tilted	Fixed	661	1880.0	21.41	0.03	0.094	1.096	0.103	1.6
Test Mode: PCS	S1900 <sim< td=""><td>12></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></sim<>	12>							
Right-Cheek	Fixed	661	1880	. 21.41	0.04	0.225	1.096	0.247	1.6

Note: when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498 D01 v05r02.

0.138

0.012

1.6

1.6

C	ΔP			JRF		VIT.
. 7	H	IVIT.	ハつし	ᇧᅐᆮ	IVITI	VI

Ambient Temperature (°C): 21.5 ± 2 Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ± 2 Depth of Liquid (cm):>15

Product: Tablet PC

Toot Mode: DCS1000

Landscape Secondary

Secondary

Landscape

Portrait

Test Mode: PCS190	00			_					
Test Position	Antenna	Frequ	ency	Frame	Power	SAR 1g	Scaling	Scaled	Limit
Body (0mm gap)	Position	Channel	MHz	Power (dBm)	Drift (<±0.2)	(W/kg)	Factor	SAR 1g (W/kg)	(W/kg)
Bottom	Fixed	512	1850.2	21.67			1.033		1.6
Bottom	Fixed	661	1880	21.41	0.05	0.608	1.096	0.666	1.6
Bottom	Fixed	810	1909.8	21.52			1.069		1.6
Test Mode: GPRS1	900-3slot								
Bottom	Fixed	512	1850.2	21.68	0.01	1.160	1.096	1.270	1.6
Bottom	Fixed	661	1880	21.45	0.20	1.190	1.030	1.230	1.6
Bottom*	Fixed	661	1880	21.45	0.20	1.140	1.030	1.170	1.6
Bottom	Fixed	810	1909.8	21.71	0.04	1.140	1.089	1.240	1.6
Primary	Fixed	661	1880	21.45	-0.14	0.253	1.030	0.261	1.6

-0.02

0.12

0.134

0.012

1.030

1.030

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498 D01 v05r02.

21.45

21.45

1880

1880

661

661

Fixed

Fixed

SAR	$M = \Delta$	II I P	ΣΕΙ	1EN	ΙT
SAL		いつしカ	ヽ┌ぃ	/ []	

Ambient Temperature (°C): 21.5 ± 2 Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ± 2 Depth of Liquid (cm):>15

Product: Tablet PC

Test Mode: WCDMA Band II

		-		_					
Test Position Head	Antenna Position	Frequ Channel	ency MHz	Conduct ed Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)
Left-Cheek	Fixed	9262	1852.4	23.23			1.064		1.6
Left-Cheek	Fixed	9400	1880	22.64	0.13	0.090	1.086	0.098	1.6
Left-Cheek	Fixed	9538	1907.6	22.97			1.007		1.6
Left-Tilt	Fixed	9400	1880	22.64	-0.05	0.040	1.086	0.043	1.6
Right-Cheek	Fixed	9262	1852.4	23.23			1.064		1.6
Right-Cheek	Fixed	9400	1880	22.64	0.13	0.119	1.086	0.129	1.6
Right-Cheek	Fixed	9538	1907.6	22.97			1.007		1.6
Right-Tilt	Fixed	9400	1880	22.64	-0.16	0.058	1.086	0.063	1.6

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.

SAR MEASUREMENT	
Ambient Temperature (°C): 21.5 ± 2	Relative Humidity (%): 52
Liquid Temperature (°C): 21.0 ± 2	Depth of Liquid (cm):>15

Product: Tablet PC

Test Mode: WCDMA Band II

Test Position	Antenna	Frequency		Conduct ed	Power	SAR	Scaling	Scaled	Limit (W/kg)
Body (0mm gap)	Position	Channel MHz		Power (dBm)	Drift (<±0.2)	1g (W/kg)	Factor	SAR 1g (W/kg)	
Bottom	Fixed	9262	1852.4	23.23		-	1.064		1.6
Bottom	Fixed	9400	1880	22.64	-0.01	0.310	1.086	0.337	1.6
Bottom	Fixed	9538	1907.6	22.97			1.007		1.6
Primary	Fixed	9400	1880	22.64	-0.01	0.332	1.086	0.361	1.6
Landscape	TIXCG	0400	1000	22.04	-0.01	0.002	1.000	0.001	1.0
Secondary	Fixed	9400	1880	22.64	-0.10	0.510	1.086	0.554	1.6
Portrait	Tixeu	3400	1000	22.04	-0.10	0.510	1.000	0.554	1.0
Secondary	Fixed	9400	1880	22.64	-0.10	0.486	1.086	0.528	1.6
Landscape	i ixeu	3400	1000	ZZ.0 4	-0.10	0.480	1.000	0.528	1.0

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498 D01 v05r02.

Ambient Temperature (°C): 21.5 ± 2 Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ± 2 Depth of Liquid (cm):>15

Product: Tablet PC

Test Mode: WCDMA Band V

							-		
Test Position Head	Antenna	Frequency		Conduct ed Power	Power Drift	SAR 1g	Scaling	Scaled SAR 1g	Limit
	Position	Channel	Channel MHz		(<±0.2)	(W/kg)	Factor	(W/kg)	(W/kg)
Left-Cheek	Fixed	4132	824.4	22.25			1.059	-	1.6
Left-Cheek	Fixed	4182	836.4	22.14	-0.08	0.016	1.086	0.017	1.6
Left-Cheek	Fixed	4233	846.6	22.15			1.084	1	1.6
Left-Tilt	Fixed	4182	836.4	22.14	0.18	0.025	1.086	0.027	1.6
Right-Cheek	Fixed	4132	824.4	22.25			1.059	-	1.6
Right-Cheek	Fixed	4182	836.4	22.14	0.07	0.052	1.086	0.056	1.6
Right-Cheek	Fixed	4233	846.6	22.15			1.084	1	1.6
Right-Tilt	Fixed	4182	836.4	22.14	-0.05	0.055	1.086	0.060	1.6

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.

SAR MEASUREMENT	
Ambient Temperature (°C): 21.5 ± 2	Relative Humidity (%): 52
Liquid Temperature (°C): 21.0 ± 2	Depth of Liquid (cm):>15

Product: Tablet PC

Test Mode: WCDMA Band V

Tool Mode. Weblant Bank									
Test Position Body (0mm gap)	Antenna Position	Frequ Channel	ency MHz	Conduct ed Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)
Bottom	Fixed	4132	824.4	22.25			1.059		1.6
Bottom	Fixed	4182	836.4	22.14	-0.05	0.030	1.086	0.033	1.6
Bottom	Fixed	4233	846.6	22.15			1.084		1.6
Primary Landscape	Fixed	4182	836.4	22.14	0.06	0.045	1.086	0.049	1.6
Secondary Portrait	Fixed	4182	836.4	22.14	0.01	0.333	1.086	0.362	1.6
Secondary Landscape	Fixed	4182	836.4	22.14	.01	0.246	1.086	0.267	1.6

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498 D01 v05r02.

SAR MEASUREMENT

Ambient Temperature (°C): 21.5 ± 2 Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ± 2 Depth of Liquid (cm):>15

Product: Tablet PC

Test Mode: 802.11b

reet meae: ee									
Test Position Ante	Antenna	enna Frequency		Conducted Power	Power Drift	SAR 1g	Scaling	Scaled SAR 1g	Limit
Head	Position	Channel	MHz	(dBm)	(<±0.2)	(W/kg)	Factor	(W/kg)	(W/kg)
Left-Cheek	Fixed	01	2412	17.10			1.175	-	1.6
Left-Cheek	Fixed	06	2437	17.70	0.17	0.153	1.023	0.157	1.6
Left-Cheek	Fixed	11	2462	17.70			1.023	1	1.6
Left-Tilt	Fixed	06	2437	17.70	-0.04	0.107	1.023	0.109	1.6
Right-Cheek	Fixed	01	2412	17.10			1.175	1	1.6
Right-Cheek	Fixed	06	2437	17.70	0.07	0.098	1.023	0.100	1.6
Right-Cheek	Fixed	11	2462	17.70			1.023	1	1.6
Right-Tilt	Fixed	06	2437	17.70	-0.13	0.089	1.023	0.091	1.6
									_

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.

SAR MEASUREMENT	
Ambient Temperature (°C): 21.5 ± 2	Relative Humidity (%): 52
Liquid Temperature (°C): 21.0 ± 2	Depth of Liquid (cm):>15

Product: Tablet PC

Test Mode: 802.11b

1001.11040.002.110									
Test Position Head	Antenna Position	Frequ Channe I	MHz	Conduc ted Power (dBm)	Scaled SAR 1g (W/kg)	Duty cycle (%)	Duty factor	Duty Cycle Scaled SAR 1g (W/kg)	Limit (W/kg)
Left-Cheek	Fixed	01	2412	17.10	-1	99	1.010		1.6
Left-Cheek	Fixed	06	2437	17.70	0.157	99	1.010	0.159	1.6
Left-Cheek	Fixed	11	2462	17.70	-	99	1.010		1.6
Left-Tilt	Fixed	06	2437	17.70	0.109	99	1.010	0.110	1.6
Right-Cheek	Fixed	01	2412	17.10		99	1.010		1.6
Right-Cheek	Fixed	06	2437	17.70	0.100	99	1.010	0.101	1.6
Right-Cheek	Fixed	11	2462	17.70		99	1.010		1.6
Right-Tilt	Fixed	06	2437	17.70	0.091	99	1.010	0.092	1.6

SAR MEASUREMENT	
Ambient Temperature (°C): 21.5 ± 2	Relative Humidity (%): 52
Liquid Temperature (°C): 21.0 ± 2	Depth of Liquid (cm):>15
Liquid Temperature (°C): 21.0 ± 2	Depth of Liquid (cm):>15

Product: Tablet PC

Test Mode: 802.11b

Test Position Body (0mm gap)	Antenna Position	Frequ Channel	ency MHz	Conducted Power (dBm)	Power Drift (<±0.2	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)
					,				
Bottom	Fixed	01	2412	17.10			1.175		1.6
Bottom	Fixed	06	2437	17.70	0.17	0.588	1.023	0.602	1.6
Bottom	Fixed	11	2462	17.70			1.023		1.6
Primary									
Portrait	Fixed	06	2437	17.70	-0.14	0.105	1.023	0.107	1.6
Secondary					_				
Landscape	Fixed	06	2437	17.70	0.17	0.562	1.023	0.575	1.6

Note: when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.

SAR MEAS	UREMEN	Т							
Ambient Temperature (°C): 21.5 ± 2 Relative Humidity (%): 52									
Liquid Temperature (°C) : 21.0 ± 2					Dep	Depth of Liquid (cm):>15			
Product: Tabl	et PC								
Test Mode: 802	2.11b								
Test Position Body (0mm gap)	Antenna Position	Frequ	ency	Conduc	Scaled SAR 1g (W/kg)	Duty cycle (%)	Duty factor	Duty Cycle Scaled SAR 1g (W/kg)	Limit (W/kg)
		Channel	MHz	ted Power (dBm)					
Bottom	Fixed	01	2412	17.10	-	99	1.010		1.6
Bottom	Fixed	06	2437	17.70	0.602	99	1.010	0.608	1.6
Bottom	Fixed	11	2462	17.70		99	1.010		1.6
Primary	Fixed	06	2437	47.70	0.107	99	1.010	0.108	1.6
Portrait	i ixeu	00 2	2437 1	17.70	0.107	33	1.010	0.100	1.0
Secondary Landscape	Fixed	06	2437	17.70	0.575	99	1.010	0.581	1.6

Note1: Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg;

Note2: When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

Note3: Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

9.2. SAR Test Notes

9.2.1. General Notes

- 1. Batteries are fully charged at the beginning of the SAR measurements.
- 2. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 3. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 4. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05r02.
- 5. Per FCC KDB 616217 D04 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v05r02 was applied to determine SAR test exclusion for adjacent edge configurations. SAR tests were required for bottom and secondary landscape for the WLAN antenna and bottom and primary landscape for the BT Antenna.

WLAN/BT Notes:

- 1. Justification for reduced test configurations for Wi-Fi channels per KDB Publication 248227 D01v02 and April 2010 FCC/TCB Meeting Notes for 2.4 GHz Wi-Fi: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other default channels is not required.

9.2.2. Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02 IV.C.1.iii,simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is≤1.6W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r02 4.3.2 2,the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Estimated SAR for Bluetooth

Mode	Frequency	Maximum	Separation	Estimated	Separation	Estimated
		Allowed	Distance	SAR	Distance	SAR
		Power	(Head)	(Held-to-Ear)	(Body)	(Body)
	[MHz]	[dBm]	[mm]	[W/kg]	[mm]	[W/kg]
Bluetooth	2480	6.0	5	0.167	5	0.167

9.2.3. Simultaneous Transmission Analysis

Simultaneous Transmission Scenario with Wi-Fi

Configuration	Mode	Max. Scaled SAR	Wi-Fi SAR	∑ SAR
Configuration	IVIOGE	(W/kg)	(W/kg)	(W/kg)
Head	GSM850	0.227	0.157	0.384
Head	PCS1900	0.252	0.157	0.409
Head	WCDMA Band II	0.129	0.157	0.286
Head	WCDMA Band V	0.06	0.157	0.217
Body	GSM850	0.494	0.608	1.102
Body	PCS1900	0.666	0.608	1.274
Body	WCDMA Band II	0.554	0.608	1.162
Body	WCDMA Band V	0.362	0.608	0.970

Simultaneous Transmission Scenario with Bluetooth

Configuration	Mode	Max. Scaled SAR	Bluetooth SAR	∑ SAR
Configuration	iviode	(W/kg)	(W/kg)	(W/kg)
Head	GSM850	0.227	0.167	0.394
Head	PCS1900	0.252	0.167	0.419
Head	WCDMA Band II	0.129	0.167	0.296
Head	WCDMA Band V	0.06	0.167	0.227
Body	GSM850	0.494	0.167	0.661
Body	PCS1900	0.666	0.167	0.833
Body	WCDMA Band II	0.554	0.167	0.721
Body	WCDMA Band V	0.362	0.167	0.529

Simultaneous Transmission Scenario (Hotspot)

Cincult Tv	Configuration	GPRS850 SAR	Wi-Fi SAR	∑ SAR	
Simult Tx	Configuration	(W/kg)	(W/kg)	(W/kg)	
	Bottom	1.14	0.608	1.748	
	Primary	0.197		0.197	
	Landscape	0.107		0.101	
Body	Primary Protrait	0.048	0.108	0.156	
	Secondary	0.087	0.581	0.668	
	Landscape				
	Secondary Protrait	0.385		0.385	
Simult Tx	Configuration	GPRS1900 SAR	Wi-Fi SAR	∑ SAR	
	_	(W/kg)	(W/kg)	(W/kg)	
	Bottom	1.27	0.608	1.878	
	Primary	0.261		0.261	
	Landscape				
Body	Primary Protrait		0.108	0.108	
	Secondary	0.012	0.581	0.593	
	Landscape				
	Secondary Protrait	0.138		0.138	
Simult Tx	Configuration	WCDMA Band II	Wi-Fi SAR	∑ SAR	
	garation .	SAR (W/kg)	(W/kg)	(W/kg)	
	Bottom	0.337	0.608	0.945	
	Primary	0.361		0.361	
	Landscape				
Body	Primary Protrait		0.108	0.108	
	Secondary	0.528	0.581	1.109	
	Landscape	0.020	0.001		
	Secondary Protrait	0.554		0.554	
Simult Tx	Configuration	WCDMA Band V	Wi-Fi SAR	∑ SAR	
Omnait 1X	Comiguration	SAR (W/kg)	(W/kg)	(W/kg)	
	Bottom	0.033	0.608	0.641	
	Primary	0.049		0.049	
	Landscape	0.040		0.070	
Body	Primary Protrait		0.108	0.108	
	Secondary	0.267	0.581	0.848	
	Landscape	0.201		0.040	
	Secondary Protrait	0.362		0.362	

Simult Tx	Configuration	∑ SAR (W/kg)	Peak SAR location separation (mm)	SAR to peak location separation ratio
Body	GPRS850&WIFI	1.748	127	0.018
	GPRS1900&WIFI	1.878	66	0.039

Peak SAR location separation of GPRS850 and WIFI:

Peak SAR location separation of GPRS1900 and WIFI:

Result: The SAR to peak location separation ratio is less than 0.04, so simultaneous transmission is not applicable.

Note: When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be \leq 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

9.2.4. Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05r02.

Appendix A. SAR System Validation Data

Date/Time: 09-09-2015

Test Laboratory: QuieTek Lab System Check Head 835MHz

DUT: Dipole 835 MHz D835V2; Type: D835V2

Communication System: UID 10000, CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ = 0.88 S/m; ϵr = 41.14; ρ = 1000 kg/m3; Phantom section: Flat Section; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check GSM850 Head/Area Scan (6x19x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 2.51 W/kg

Configuration/System Check GSM850 Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 53.791 V/m; Power Drift = 0.04 dB
Peak SAR (extrapolated) = 3.68 W/kg

SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 2.64 W/kg

0 dB = 2.64 W/kg = 4.22 dBW/kg

Test Laboratory: QuieTek Lab System Check Head 1900MHz

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2

Communication System: UID 10000, CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle: 1:1; Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; σ = 1.45 S/m; ϵ r = 38.88; ρ = 1000 kg/m3; Phantom section: Flat Section; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Head 1900MHz/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 9.43 W/kg

Configuration/System Check Head 1900MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 85.802 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 9.55 W/kg; SAR(10 g) = 4.87 W/kg Maximum value of SAR (measured) = 10.8 W/kg

0 dB = 10.8 W/kg = 10.33 dBW/kg

Test Laboratory: QuieTek Lab System Check Head 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: UID 0, CW; Communication System Band: D2450(2450MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon r = 39.76$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section; Input Power=250mW

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Head 2450MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 14.1 W/kg

Configuration/System Check Head 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 86.905 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dBW/kg

Test Laboratory: QuieTek Lab System Check Body 835MHz

DUT: Dipole 835 MHz D835V2; Type: D835V2

Communication System: UID 10000, CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ = 0.97 S/m; ϵr = 52.89; ρ = 1000 kg/m3; Phantom section: Flat Section; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Body 835MHz/Area Scan (8x17x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.35 W/kg

Configuration/System Check Body 835MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 52.328 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 2.54 W/kg

0 dB = 2.54 W/kg = 4.05 dBW/kg

Test Laboratory: QuieTek Lab System Check Body 1900MHz

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2

Communication System: UID 10000, CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle: 1:1; Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; σ = 1.53 S/m; ϵ r = 52.93; ρ = 1000 kg/m3; Phantom section: Flat Section; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Body 1900MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.8 W/kg

Configuration/System Check Body 1900MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 85.743 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 9.72 W/kg; SAR(10 g) = 4.99 W/kg Maximum value of SAR (measured) = 10.9 W/kg

0 dB = 10.9 W/kg = 10.37 dBW/kg

Test Laboratory: QuieTek Lab System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: UID 0, CW; Communication System Band: D2450(2450MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ S/m; $\epsilon r = 52.25$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section; Input Power=250mW

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Body 2450MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 13.4 W/kg

Configuration/System Check Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 82.154 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.65 W/kg Maximum value of SAR (measured) = 14.3 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg

Appendix B. SAR measurement Data

Date/Time: 09-09-2015

Test Laboratory: QuieTek Lab GSM850 Mid Touch-Left

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM; Communication System Band: GSM850; Duty Cycle: 1:8.3; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ S/m; $\epsilon r = 41.11$; $\rho = 1000$ kg/m3;

Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GSM850 Mid Touch-Left/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.259 W/kg

Configuration/GSM850 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 3.848 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.347 W/kg

SAR(1 g) = 0.205 W/kg; SAR(10 g) = 0.189 W/kg Maximum value of SAR (measured) = 0.278 W/kg

0 dB = 0.297 W/kg = -5.27 dBW/kg

Test Laboratory: QuieTek Lab

GSM850 Mid Tilt-Left

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM; Communication System Band: GSM850; Duty Cycle: 1:8.3;

Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ S/m; $\epsilon r = 41.11$; $\rho = 1000$ kg/m3;

Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GSM850 Mid Tilt-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.113 W/kg

Configuration/GSM850 Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 6.518 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.166 W/kg

SAR(1 g) = 0.133 W/kg; SAR(10 g) = 0.099 W/kg Maximum value of SAR (measured) = 0.138 W/kg

0 dB = 0.138 W/kg = -8.60 dBW/kg

Test Laboratory: QuieTek Lab GSM850 Mid Touch-Right

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM; Communication System Band: GSM850; Duty Cycle: 1:8.3;

Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ S/m; $\epsilon r = 41.11$; $\rho = 1000$ kg/m3;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 20/01/2015

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GSM850 Mid Touch-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.217 W/kg

Configuration/GSM850 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 3.569 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.254 W/kg

SAR(1 g) = 0.218 W/kg; SAR(10 g) = 0.179 W/kg Maximum value of SAR (measured) = 0.224 W/kg

0 dB = 0.224 W/kg = -6.50 dBW/kg

Test Laboratory: QuieTek Lab

GSM850 Mid Tilt-Right

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM; Communication System Band: GSM850; Duty Cycle: 1:8.3;

Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ S/m; $\epsilon r = 41.11$; $\rho = 1000$ kg/m3;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GSM850 Mid Tilt-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.118 W/kg

Configuration/GSM850 Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 6.760 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.135 W/kg

SAR(1 g) = 0.116 W/kg; SAR(10 g) = 0.095 W/kg Maximum value of SAR (measured) = 0.120 W/kg

0 dB = 0.120 W/kg = -9.21 dBW/kg

Test Laboratory: QuieTek Lab GSM850 Mid Touch-Right<SIM2> DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM; Communication System Band: GSM850; Duty Cycle: 1:8.3;

Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ S/m; $\epsilon r = 41.11$; $\rho = 1000$ kg/m3;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 20/01/2015

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GSM850 Mid Touch-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.202 W/kg

Configuration/GSM850 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 3.569 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.236 W/kg

SAR(1 g) = 0.203 W/kg; SAR(10 g) = 0.167 W/kg Maximum value of SAR (measured) = 0.208 W/kg

0 dB = 0.208 W/kg = -6.82 dBW/kg

Test Laboratory: QuieTek Lab GSM850 Mid Body-Bottom

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM850; Duty Cycle:

1:8.3; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.97$ S/m; $\epsilon r = 52.88$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GSM850 Mid Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.440 W/kg

Configuration/GSM850 Mid Body-Bottom/Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 17.53 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.474 W/kg; SAR(10 g) = 0.242 W/kg Maximum value of SAR (measured) = 0.524 W/kg

0 dB = 0.524 W/kg = -2.81 dBW/kg

Test Laboratory: QuieTek Lab GPRS850 Low Body-Bottom(3up) **DUT: Tablet PC; Type: TE69SA3**

Communication System: UID 0, GPRS/EGPRS-3 Slot (0); Communication System Band: GSM 850; Duty Cycle: 1:2.8; Frequency: 824.2 MHz; Medium parameters used: f = 824.2 MHz; $\sigma = 0.95$ S/m; $\epsilon r = 52.96$; $\rho = 0.95$ S/m; $\epsilon r = 52.96$; $\epsilon r = 52.96$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS850 Low Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.989 W/kg

Configuration/GPRS850 Low Body-Bottom/Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 26.11 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 2.77 W/kg

SAR(1 g) = 0.937 W/kg; SAR(10 g) = 0.482 W/kg Maximum value of SAR (measured) = 1.05 W/kg

0 dB = 1.05 W/kg = 0.21 dBW/kg

Test Laboratory: QuieTek Lab GPRS850 Mid Body-Bottom(3up) **DUT: Tablet PC; Type: TE69SA3**

Communication System: UID 0, GPRS/EGPRS-3 Slot (0); Communication System Band: GSM 850; Duty Cycle: 1:2.8; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.97$ S/m; $\epsilon r = 52.88$; $\rho = 0.97$ S/m; $\epsilon r = 52.88$; $\epsilon r = 52.88$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS850 Mid Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.10 W/kg

Configuration/GPRS850 Mid Body-Bottom/Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 27.76 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.89 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.553 W/kg Maximum value of SAR (measured) = 1.21 W/kg

0 dB = 1.21 W/kg = 0.83 dBW/kg

Test Laboratory: QuieTek Lab
GSM850 High Body-Bottom(3up)
DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, GPRS/EGPRS-3 Slot (0); Communication System Band: GSM 850; Duty Cycle: 1:2.8; Frequency: 848.8 MHz; Medium parameters used: f = 848.8 MHz; $\sigma = 0.98$ S/m; $\epsilon r = 52.71$; $\rho = 0.98$ S/m; $\epsilon r = 52.71$; $\epsilon r = 0.98$ S/m; $\epsilon r = 0.98$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1220; Calibrated: 20/01/2015

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GSM850 Mid Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.870 W/kg

Configuration/GSM850 Mid Body-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm;Reference Value = 24.23 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 2.60 W/kg

SAR(1 g) = 0.807 W/kg; SAR(10 g) = 0.384 W/kg Maximum value of SAR (measured) = 0.844 W/kg

0 dB = 0.844 W/kg = -0.74 dBW/kg

Test Laboratory: QuieTek Lab GPRS850 Mid Body-Bottom(3up)* DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, GPRS/EGPRS-3 Slot (0); Communication System Band: GSM 850; Duty Cycle: 1:2.8; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.97$ S/m; $\epsilon r = 52.88$; $\rho = 0.97$ S/m; $\epsilon r = 52.88$; $\epsilon r = 52.88$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS850 Mid Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.04 W/kg

Configuration/GPRS850 Mid Body-Bottom/Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 27.76 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.74 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.524 W/kg Maximum value of SAR (measured) = 1.15 W/kg

0 dB = 1.15 W/kg = 0.61 dBW/kg

Test Laboratory: QuieTek Lab

GPRS850 Mid Body-Primary Landscape(3up)

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM850; Duty Cycle:

1:2.8; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.97 S/m; ϵ r = 52.88; ρ = 1000

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS850 Mid Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.169 W/kg

Configuration/GPRS850 Mid Body-Bottom/Zoom Scan (5x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 13.92 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.345 W/kg

SAR(1 g) = 0.188 W/kg; SAR(10 g) = 0.112 W/kg Maximum value of SAR (measured) = 0.212 W/kg

0 dB = 0.212 W/kg = -6.74 dBW/kg

Test Laboratory: QuieTek Lab

GPRS850 Mid Body-Primary Portrait(3up)

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM850; Duty Cycle:

1:2.8; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.97 S/m; ϵ r = 52.88; ρ = 1000

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS850 Mid Body-Primary Landscape/Area Scan (7x7x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0546 W/kg

Configuration/GPRS850 Mid Body-Primary Landscape/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.251 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.021 W/kg Maximum value of SAR (measured) = 0.0541 W/kg

0 dB = 0.0541 W/kg = -12.67 dBW/kg

Test Laboratory: QuieTek Lab

GPRS850 Mid Body-Secondary Portrait(3up)

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM850; Duty Cycle:

1:2.8; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.97$ S/m; $\epsilon r = 52.88$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS850 Mid Body-Secondary Portrait/Area Scan (7x7x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.349 W/kg

Configuration/GPRS850 Mid Body-Secondary Portrait/Zoom Scan (5x6x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm; Reference Value = 17.36 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.368 W/kg; SAR(10 g) = 0.179 W/kg Maximum value of SAR (measured) = 0.448 W/kg

0 dB = 0.448 W/kg = -3.49 dBW/kg

Test Laboratory: QuieTek Lab

GPRS850 Mid Body-Secondary Landscape(3up)

DUT: Tablet PC; Type: TE69SA3

 $Communication \ System: \ UID\ 0,\ Generic\ GSM\ (0);\ Communication\ System\ Band:\ GSM850;\ Duty\ Cycle:$

1:2.8; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.97$ S/m; $\epsilon r = 52.88$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS850 Mid Body-Secondary Landscape/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0909 W/kg

Configuration/GPRS850 Mid Body-Secondary Landscape/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 8.241 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.156 W/kg

SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.046 W/kg Maximum value of SAR (measured) = 0.0933 W/kg

0 dB = 0.0933 W/kg = -10.30 dBW/kg

Test Laboratory: QuieTek Lab PCS1900 Mid Touch-Left

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM; Communication System Band: PCS1900; Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ S/m; $\epsilon = 39.00$; $\rho = 1000$ kg/m3;

Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.78, 7.78, 7.78); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/PCS1900 Mid Touch-Left/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.181 W/kg

Configuration/PCS1900 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 6.550 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.268 W/kg

SAR(1 g) = 0.170 W/kg; SAR(10 g) = 0.103 W/kg Maximum value of SAR (measured) = 0.184 W/kg

0 dB = 0.184 W/kg = -7.35 dBW/kg

Test Laboratory: QuieTek Lab

PCS1900 Mid Tilt-Left

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM; Communication System Band: PCS1900; Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ S/m; $\epsilon = 39.00$; $\rho = 1000$ kg/m3;

Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.78, 7.78, 7.78); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/PCS1900 Mid Tilt-Left/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.127 W/kg

Configuration/PCS1900 Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 10.84 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.230 W/kg

SAR(1 g) = 0.139 W/kg; SAR(10 g) = 0.078 W/kg Maximum value of SAR (measured) = 0.150 W/kg

0 dB = 0.150 W/kg = -8.24 dBW/kg

Test Laboratory: QuieTek Lab PCS1900 Mid Touch-Right

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM; Communication System Band: PCS1900; Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ S/m; $\epsilon = 39.00$; $\rho = 1000$ kg/m3;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.78, 7.78, 7.78); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/PCS1900 Mid Touch-Right/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.275 W/kg

Configuration/PCS1900 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 4.875 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.344 W/kg

SAR(1 g) = 0.230 W/kg; SAR(10 g) = 0.145 W/kg Maximum value of SAR (measured) = 0.258 W/kg

0 dB = 0.258 W/kg = -5.88 dBW/kg

Test Laboratory: QuieTek Lab PCS1900 Mid Tilt-Right

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM; Communication System Band: PCS1900; Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ S/m; $\epsilon = 39.00$; $\rho = 1000$ kg/m3;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.78, 7.78, 7.78); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/PCS1900 Mid Tilt-Right/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.138 W/kg

Configuration/PCS1900 Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 10.07 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.207 W/kg

SAR(1 g) = 0.094 W/kg; SAR(10 g) = 0.056 W/kg Maximum value of SAR (measured) = 0.109 W/kg

0 dB = 0.109 W/kg = -9.63 dBW/kg

Test Laboratory: QuieTek Lab
PCS1900 Mid Touch-Right<SIM2>
DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM; Communication System Band: PCS1900; Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ S/m; $\epsilon = 39.00$; $\rho = 1000$ kg/m3;

Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.78, 7.78, 7.78); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/PCS1900 Mid Touch-Right/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.270 W/kg

Configuration/PCS1900 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 4.875 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.337 W/kg

SAR(1 g) = 0.225 W/kg; SAR(10 g) = 0.142 W/kg Maximum value of SAR (measured) = 0.253 W/kg

0 dB = 0.253 W/kg = -5.97 dBW/kg

Test Laboratory: QuieTek Lab PCS1900 Mid Body-Bottom

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS1900; Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ S/m; $\epsilon r = 53.01$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/PCS1900 Mid Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.611 W/kg

Configuration/PCS1900 Mid Body-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 13.25 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.608 W/kg; SAR(10 g) = 0.271 W/kg Maximum value of SAR (measured) = 0.741 W/kg

0 dB = 0.741 W/kg = -1.30 dBW/kg

Test Laboratory: QuieTek Lab
GPRS1900 Low Body-Bottom(3up)
DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, GPRS/EGPRS-3 Slot (0); Communication System Band: PCS 1900; Duty Cycle: 1:2.8; Frequency: 1850.2 MHz; Medium parameters used: f = 1850.2 MHz; $\sigma = 1.47$ S/m; $\epsilon r = 53.16$;

 ρ = 1000 kg/m3 ; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS1900 Low Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.24 W/kg

Configuration/GPRS1900 Low Body-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 20.02 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.88 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.505 W/kg Maximum value of SAR (measured) = 1.43 W/kg

0 dB = 1.43 W/kg = 1.55 dBW/kg

Test Laboratory: QuieTek Lab GPRS1900 Mid Body-Bottom(3up) **DUT: Tablet PC; Type: TE69SA3**

Communication System: UID 0, GPRS/EGPRS-3 Slot (0); Communication System Band: PCS 1900; Duty

Cycle: 1:2.8; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.51 S/m; ϵ r = 53.01; ρ =

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 20/01/2015

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS1900 Mid Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.24 W/kg

Configuration/GPRS1900 Mid Body-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 19.51 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 2.94 W/kg

SAR(1 g) = 1.19 W/kg; SAR(10 g) = 0.514 W/kg

Maximum value of SAR (measured) = 1.46 W/kg

0 dB = 1.46 W/kg = 1.64 dBW/kg

Test Laboratory: QuieTek Lab

GPRS1900 High Body-Bottom(3up)

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, GPRS/EGPRS-3 Slot (0); Communication System Band: PCS 1900; Duty

Cycle: 1:2.8; Frequency: 1909.8 MHz; Medium parameters used: f = 1909.8 MHz; $\sigma = 1.55$ S/m; $\epsilon r = 52.90$;

 ρ = 1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS1900 High Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.16 W/kg

Configuration/GPRS1900 High Body-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 18.70 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.88 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.489 W/kg Maximum value of SAR (measured) = 1.41 W/kg

0 dB = 1.41 W/kg = 1.49 dBW/kg

Test Laboratory: QuieTek Lab GPRS1900 Mid Body-Bottom(3up)*

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, GPRS/EGPRS-3 Slot (0); Communication System Band: PCS 1900; Duty Cycle: 1:2.8; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ S/m; $\epsilon r = 53.01$; $\rho = 1.51$ S/m; $\epsilon r = 1.51$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS1900 Mid Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.19 W/kg

Configuration/GPRS1900 Mid Body-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 19.51 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.83 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.494 W/kg Maximum value of SAR (measured) = 1.40 W/kg

0 dB = 1.40 W/kg = 1.46 dBW/kg

Test Laboratory: QuieTek Lab

GPRS1900 Mid Body-Primary Landscape(3up)

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, GPRS/EGPRS-4 Slot (0); Communication System Band: PCS 1900; Duty

Cycle: 1:2.8; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ S/m; $\epsilon r = 53.01$; $\rho = 1.51$ S/m; $\epsilon r = 53.01$; $\epsilon r = 53.01$

1000 kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS1900 Mid Body-Right side/Area Scan (5x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.260 W/kg

Configuration/GPRS1900 Mid Body-Right side/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 9.786 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.403 W/kg

SAR(1 g) = 0.253 W/kg; SAR(10 g) = 0.151 W/kg Maximum value of SAR (measured) = 0.274 W/kg

0 dB = 0.274 W/kg = -5.62 dBW/kg

Test Laboratory: QuieTek Lab

GPRS1900 Mid Body-Secondary Portrait(3up)

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS1900; Duty Cycle: 1:2.8; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ S/m; $\epsilon r = 53.01$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS1900 Mid Body-Secondary Portrait/Area Scan (5x10x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.121 W/kg

Configuration/GPRS1900 Mid Body-Secondary Portrait/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm; Reference Value = 8.877 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.233 W/kg

SAR(1 g) = 0.134 W/kg; SAR(10 g) = 0.073 W/kg Maximum value of SAR (measured) = 0.147 W/kg

0 dB = 0.147 W/kg = -8.33 dBW/kg

Test Laboratory: QuieTek Lab

GPRS1900 Mid Body-Secondary Landscape(3up)

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS1900; Duty Cycle: 1:2.8; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ S/m; $\epsilon r = 53.01$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/GPRS1900 Mid Body-Secondary Landscape/Area Scan (5x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0134 W/kg

Configuration/GPRS1900 Mid Body-Secondary Landscape/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 2.990 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.0200 W/kg

SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.00694 W/kg Maximum value of SAR (measured) = 0.0145 W/kg

0 dB = 0.0145 W/kg = -18.39 dBW/kg

Test Laboratory: QuieTek Lab
WCDMA Band II Mid Touch-Left
DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, UMTS (0); Communication System Band: Band II UTRA/FDD; Duty Cycle: 1:1.0; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ S/m; $\epsilon r = 39.00$; $\rho = 1000$

kg/m3; Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.78, 7.78, 7.78); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WCDMA Band II Mid Touch-Left/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.126 W/kg

Configuration/WCDMA Band II Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 3.683 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.180 W/kg

SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.076 W/kg Maximum value of SAR (measured) = 0.129 W/kg

0 dB = 0.129 W/kg = -8.89 dBW/kg

Test Laboratory: QuieTek Lab WCDMA Band II Mid Tilt-Left

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, UMTS (0); Communication System Band: Band II UTRA/FDD; Duty Cycle: 1:1.0; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ S/m; $\epsilon r = 39.00$; $\rho = 1000$ kg/m3; Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.78, 7.78, 7.78); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WCDMA Band II Mid Tilt-Left/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0574 W/kg

Configuration/WCDMA Band II Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 5.917 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.0910 W/kg

SAR(1 g) = 0.058 W/kg; SAR(10 g) = 0.034 W/kg Maximum value of SAR (measured) = 0.0639 W/kg

0 dB = 0.0639 W/kg = -11.94 dBW/kg

Test Laboratory: QuieTek Lab
WCDMA Band II Mid Touch-Right
DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, UMTS (0); Communication System Band: Band II UTRA/FDD; Duty Cycle: 1:1.0; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ S/m; $\epsilon r = 39.00$; $\rho = 1000$ kg/m3; Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.78, 7.78, 7.78); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WCDMA Band II Mid Touch-Right/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0988 W/kg

Configuration/WCDMA Band II Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 3.077 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.131 W/kg

SAR(1 g) = 0.090 W/kg; SAR(10 g) = 0.056 W/kg Maximum value of SAR (measured) = 0.0957 W/kg

0 dB = 0.0957 W/kg = -10.19 dBW/kg

Test Laboratory: QuieTek Lab
WCDMA Band II Mid Tilt-Right
DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, UMTS (0); Communication System Band: Band II UTRA/FDD; Duty Cycle: 1:1.0; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ S/m; $\epsilon r = 39.00$; $\rho = 1000$ kg/m3; Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.78, 7.78, 7.78); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WCDMA Band II Mid Tilt-Right/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0443 W/kg

Configuration/WCDMA Band II Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 4.678 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.0650 W/kg

SAR(1 g) = 0.040 W/kg; SAR(10 g) = 0.017 W/kg Maximum value of SAR (measured) = 0.0457 W/kg

0 dB = 0.0457 W/kg = -13.40 dBW/kg

Test Laboratory: QuieTek Lab
WCDMA Band II Mid Body-Bottom
DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, UMTS (0); Communication System Band: Band II UTRA/FDD; Duty Cycle: 1:1.0; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ S/m; $\epsilon r = 53.01$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WCDMA Band II Mid Body-Bottom/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.337 W/kg

Configuration/WCDMA Band II Mid Body-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 14.28 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.689 W/kg

SAR(1 g) = 0.310 W/kg; SAR(10 g) = 0.141 W/kg Maximum value of SAR (measured) = 0.366 W/kg

0 dB = 0.366 W/kg = -4.37 dBW/kg

Test Laboratory: QuieTek Lab

WCDMA Band II Mid Body-Primary Landscape

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, UMTS (0); Communication System Band: Band II UTRA/FDD; Duty Cycle: 1:1.0; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ S/m; $\epsilon r = 53.01$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WCDMA Band II Mid Body-Primary Landscape/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.361 W/kg

Configuration/WCDMA Band II Mid Body-Primary Landscape/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 14.28 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.738 W/kg

SAR(1 g) = 0.332 W/kg; SAR(10 g) = 0.151 W/kg Maximum value of SAR (measured) = 0.392 W/kg

0 dB = 0.392 W/kg = -4.07 dBW/kg

Test Laboratory: QuieTek Lab

WCDMA Band II Mid Body-Secondary Portrait

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, UMTS (0); Communication System Band: Band II UTRA/FDD; Duty Cycle: 1:1.0; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ S/m; $\epsilon r = 53.01$; $\rho = 1000$

kg/m3 ; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WCDMA Band II Mid Body-Secondary Portrait/Area Scan (7x7x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.578 W/kg

Configuration/WCDMA Band II Mid Body-Secondary Portrait/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 12.29 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.510 W/kg; SAR(10 g) = 0.188 W/kg Maximum value of SAR (measured) = 0.671 W/kg

0 dB = 0.671 W/kg = -1.73 dBW/kg

Test Laboratory: QuieTek Lab

WCDMA Band II Mid Body-Secondary Landscape

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, UMTS (0); Communication System Band: Band II UTRA/FDD; Duty Cycle: 1:1.0; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ S/m; $\epsilon r = 53.01$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7.21, 7.21, 7.21); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WCDMA Band II Mid Body-Secondary Portrait/Area Scan (7x7x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.551 W/kg

Configuration/WCDMA Band II Mid Body-Secondary Portrait/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 12.29 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.486 W/kg; SAR(10 g) = 0.179 W/kg Maximum value of SAR (measured) = 0.640 W/kg

0 dB = 0.640 W/kg = -1.94 dBW/kg

Test Laboratory: QuieTek Lab
WCDMA Band V Mid Touch-Left
DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, UMTS; Communication System Band: Band V UTRA/FDD; Duty Cycle:

1:1.0; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.91$ S/m; $\epsilon r = 42.00$; $\rho = 1000$

kg/m3; Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WCDMA Band V Mid Touch-Left/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0941 W/kg

Configuration/WCDMA Band V Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 4.594 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.0680 W/kg

SAR(1 g) = 0.052 W/kg; SAR(10 g) = 0.039 W/kg Maximum value of SAR (measured) = 0.0601 W/kg

0 dB = 0.0601 W/kg = -12.21 dBW/kg

Test Laboratory: QuieTek Lab WCDMA Band V Mid Tilt-Left

DUT: Tablet PC; Type: TE69SA3

Communication System: UID 0, UMTS; Communication System Band: Band V UTRA/FDD; Duty Cycle:

1:1.0; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; $\sigma = 0.91$ S/m; $\epsilon r = 42.00$; $\rho = 1000$

kg/m3; Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(9.16, 9.16, 9.16); Calibrated: 27/03/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WCDMA Band V Mid Tilt-Left/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0564 W/kg

Configuration/WCDMA Band V Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 6.665 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.0670 W/kg

SAR(1 g) = 0.055 W/kg; SAR(10 g) = 0.043 W/kg Maximum value of SAR (measured) = 0.0574 W/kg

0 dB = 0.0574 W/kg = -12.41 dBW/kg