Ph.D. Working Notes

December 12, 2022

Contents

1	Crescent Labelled Trees	1
2	Polynomial Method	3
	Distance Multiplicities in Unweighted Graphs 3.1 Conjectures	4

1 Crescent Labelled Trees

Let T be a tree of order n. A crescent labelling of T is a map $L: E(T) \mapsto \{1, 2, ..., t\}$, such that the distance multiset of L(T) is of the form $\{d_1^1, d_2^2, ..., d_{n-1}^{n-1}\}$. The diameter of T, denoted Diam(T), is the length of the (u, v)-path in T. The max degree of T is denoted $\Delta(T)$.

Lemma 1 (Basic Diameter Lower Bound). Let t be a positive integer. If L(T) is a crescent labelling of the tree T with weights $\{1, 2, ..., t\}$, then $Diam(T) \ge \frac{n-1}{t}$.

Proof. Since there are at least n-1 distinct distances, there is a distance d with value at least n-1. Let $u,v\in V(T)$ such that d(u,v)=d, then since t is the max edge weight, this means that the number of edges on a (u,v)-path is at least $\frac{d}{t}\geq \frac{n-1}{t}$.

For a pair of vertices $u, v \in V(T)$, we denote the (u, v)-path in T as P(u, v). Lemma 2 below generalizes the observation underlying the maximum degree upper bound of $\sim \sqrt{2n}$.

Lemma 2. Let T be a tree of order n. For every $i \in [1, n-1]$, $M \in V(T)$, and $j \in \mathcal{N}(M)$, define

$$D_j := \{ u \in V(T) \setminus \{M\} : d(u, M) = d_i, j \in P(u, M) \}.$$

Then distance $2d_i$ occurs with multiplicity at least $\sum_{j < k}^{\deg(M)} |D_j| \cdot |D_k|$.

Proof. Let $M \in V(T)$ and $i \in [1, n-1]$. Since T is a tree, there is always a unique (u, v)-path for all $u, v \in V(T)$. So, for each $u \in D_j$ and $v \in D_k$, the (u, v)-path must go through M, which means $d(u, v) = d(u, M) + d(M, v) = 2d_i$. There are $|D_j| \cdot |D_k|$ such u and v pairs, so indeed $2d_i$ has multiplicity at least $\sum_{j < k}^{\deg(M)} |D_j| \cdot |D_k|$.

Now we apply the lemma to get a condition on crescent labelled trees.

Proposition 1.1 (Max Multiplicity Condition). Let L(T) be a crescent labelling of a tree T. Then for every $i \in [1, n-1]$, $M \in V(T)$, and $j \in \mathcal{N}(M)$,

$$\sum_{j < k}^{\deg(M)} |D_j| \cdot |D_k| < n.$$

Proof. Since L(T) is a crescent labelling of T, no distance can have multiplicity greater than n-1 and T is a tree. Since T is a tree, it follows by Lemma 2 that for each vertex $M \in V(T)$, $i \in [1, n-1]$, $\sum_{j < k}^{\deg(M)} |D_j| \cdot |D_k| < n$.

Next is a general lemma on $\{1, 2, \dots, t\}$ -words containing subwords with t-1 consecutive 1s.

Lemma 3 (Arithmetic Condition). Let $k \geq 2t$. Let **w** be a $\{1, 2, ..., t\}$ -word with length k. If $w_{a-t+2} = w_{a-t+3} = \cdots = w_a = 1$ for some $a \in \{1, 2, ..., k\}$, then each value

$$1, 2, \dots, \max \left\{ \sum_{i=1}^{a} w_i, \sum_{i=a-t+2}^{k} w_i \right\}$$

occurs as a partial sum in w.

Proof. Suppose without loss of generality that $\sum_{i=1}^a w_i \leq \sum_{i=a-t+2}^k w_i$. Then it is sufficient to show that every value $1,2,\ldots,\sum_{i=a-t+2}^k w_i$ occurs as a partial sum in \mathbf{w} . Call $w_{a-t+2},w_{a-t+3},\ldots,w_a$ the unit segment of \mathbf{w} and $w_{a+1},w_{a+2},\ldots,w_k$ the non-unit segment of \mathbf{w} . We proceed by induction on the number of terms r in the non-unit segment of \mathbf{w} . When $r=1,w_{a+r}\in\{1,\ldots,t\}$, and since the unit segment has t-1 1s, for each $j\in\{1,2,\ldots,t-1\}$, we have the partial sums $j=\sum_{i=0}^{j-1}w_{a-i}$. Then the values between w_{a+r} and $\sum_{i=a-t+2}^{a+r}w_i$ are of the form $w_{a+r}+\sum_{i=0}^{j-1}w_{a-i}$. For the inductive step, the values $1,2,\ldots,\sum_{i=a-t+2}^{a+r-1}w_i$ occur at least once by inductive hypothesis. We have that $w_{a+r}\in\{1,2,\ldots,t\}$ and the values between $\sum_{i=a+1}^{a+r-1}w_i$ and $\sum_{i=a+1}^{a+r}w_i$ can be obtained from $\sum_{i=a+1-j}^{a+r-1}w_i$ for each $j\in\{1,2,\ldots,t-1\}$. Then similarly the values between $\sum_{i=a+1}^{a+r}w_i$ and $\sum_{i=a+1}^{a+r}w_i$ and $\sum_{i=a+1-j}^{a+r}w_i$ for $j\in\{1,2,\ldots,t-1\}$.

We now apply this arithmetic lemma to crescent labelled trees to show that when there are many consecutive 1s on a path, the path cannot be too long with many large weight edges.

Proposition 1.2. Let L(T) be a crescent labelling of a tree T with edge weights in $\{1, 2, ..., t\}$. Then for every path $P = (v_1v_2, v_2v_3, ..., v_{t-1}v_t)$ in T such that $w(v_iv_{i+1}) = 1$ for $i \in \{1, 2, ..., t-1\}$, it follows that $\max\{d(v_1, u) : u \in V(T)\} < n$ and $\max\{d(v_t, u) : u \in V(T)\} < n$.

Proof. Let T be a tree with a path P specified in the proposition statement and L(T) a crescent labelling. It is sufficient to show that $\max\{d(v_1,u):u\in V(T)\}< n$ since the case for v_t is similar. Let $u'\in V(T)$ such that $d(v_1,u')=\max\{d(v_1,u):u\in V(T)\}$. By Lemma 3, every distance $1,2,\ldots,d(v_1,u')$ occurs at least once. Since L(T) is a crescent labelling, there can be at most n-1 distinct distances, so $d(v_1,u')< n$ as desired.

The implication for when t = 2 is quite strong since this imposes a max distance condition on vertices incident to edges with weight 1.

Corollary 1.3. Let L(T) be a crescent labelling of a tree T. If t = 2, then every vertex incident to an edge with weight 1 has max distance at most n - 1.

What follows is a basic lemma about trees that may turn out to be useful in case parameterizing by number of leaves becomes sensible.

Lemma 4 (From Chartrand and Lesniak's text "Graphs and Digraphs" 4th edition). Let T be a tree with n_i vertices with degree i, where $i \in \{1, 2, ..., \Delta(T)\}$. Then $n_1 = n_3 + 2n_4 + 3n_5 + \cdots + (\Delta(T) - 2)n_{\Delta(T)} + 2$.

Proof. Note that $n = \sum_{i=1}^{\Delta(T)} n_i$. Since T is a tree,

$$\sum_{i=1}^{\Delta(T)} i n_i = \sum_{v \in V(T)} \deg(v) = 2(n-1) = 2\left(\sum_{i=1}^{\Delta(T)} n_i\right) - 2.$$

Rearranging gives $2 + \sum_{i=1}^{\Delta(T)} (i-2)n_i = 0$.

Corollary 1.4. If T is a tree, then $\sum_{i=3}^{\Delta(T)} (i-2)n_i < n_1$

2 Polynomial Method

Let L(G) be a crescent labelling of a graph G with corresponding distance multiset $\{d_1^1, d_2^2, \ldots, d_{n-1}^{n-1}\}$. Consider the bipartite multigraph $\mathcal{M} := \mathcal{M}(G)$ where $V(\mathcal{M}) = X \cup Y$, where X consists of the distinct distances $d_1, d_2, \ldots, d_{n-1}$ and Y consists of the vertices of G, v_1, v_2, \ldots, v_n . For $d_k \in X$ and $v_i \in Y$, an edge $d_k v_i \in E(\mathcal{M})$ is included for every $j \in [n]$ such that $d(v_i, v_j) = d_k$. Note that since L(G) is a crescent labelling, for each $k \in [n-1]$, $\deg(d_k) = 2k$. Observe also that the multiset neighbourhood of v_i is the multiset of the n-1 distances between v_i and the other vertices in G.

We show a variation of a result from Alon (see proof of Theorem 6.1 in [1]) about the existence of p-regular subgraphs of a multigraph whose average degree is very close to its max degree. If we relax this strong average degree condition, we can still obtain a rather powerful result whereby a subgraph U of \mathcal{M} has vertex degrees in $\{p, 2p, 3p, 4p, 5p, 6p, 7p\} \cap [2(n-1)]$, where $p \in [\frac{n}{4}, \frac{n}{2}]$, which is significant because \mathcal{M} is bipartite and so the structure of U can tell us some things about how the distances relate to the vertices in G. This subgraph U likely can't be too small, since then there would be a vertex $v \in G$ with too many other vertices at some distance d from v.

Remark 2.1. Relating the size of this U to the structure of G might be a fruitful way to proceed. For instance, paths require |U| to be quite large (no vertex is at distance d with more than 2 other vertices for each d). I think stars might be similar in that they require |U| to be rather large. Perhaps if $p \sim n/4$, or even asymptotically when $p \sim n/2 - (n/2)^{0.525}$ or so, U being large with min degree p forces convergence of crescent labelled trees to paths and stars. But I admit, I'm not really sure right now what to do when |U| is big.

The proof applies Alon's combinatorial nullstellensatz [1]. The corollary of the nullstellensatz that we use is as follows:

Lemma 5 (Combinatorial Nullstellensatz). Let \mathbb{F} be a field and let $f \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ be a polynomial such that $\deg(f) = \sum_{i=1}^n t_i$ and the coefficient of $\prod_{i=1}^n x_i^{t_i}$ is non-zero. Let S_1, S_2, \ldots, S_n be subsets of \mathbb{F} such that $|S_i| > t_i$ for all $i \in [n]$. Then there exists $(s_1, s_2, \ldots, s_n) \in S_1 \times S_2 \times \cdots \times S_n$ such that $f(s_1, s_2, \ldots, s_n) \neq 0$.

Proposition 2.2 (Variation of Theorem 6.1 in [1]). Let p be a prime number in $[\frac{n}{4}, \frac{n}{2}]$. Then $\mathcal{M}(G)$ contains a subgraph U such that for every $u \in V(U)$, $\deg(u) \in \{p, 2p, 3p, 4p, 5p, 6p, 7p\} \cap [2(n-1)]$.

Proof. We define a polynomial f with degree $|E(\mathcal{M})|$ over \mathbb{F}_2 , and using the fact that $a^{p-1} \pmod{p}$ $\equiv 1$ for all $a \not\equiv 0 \pmod{p}$, we show the existence of the desired subgraph using the nullstellensatz directly.

Define the polynomial

$$f(x_e : e \in E(\mathcal{M})) = \prod_{v \in V(\mathcal{M})} \left[1 - \left(\sum_{e \in E(\mathcal{M}) \atop v \in e} x_e \right)^{p-1} \right] - \prod_{e \in E(\mathcal{M})} (1 - x_e).$$

The degree of f is $|E(\mathcal{M})|$ because

$$|V(\mathcal{M})|(p-1) = (2n-1)(p-1) \le (2n-1)(\frac{n}{2}-1) = n(n-\frac{5}{2}) + 1 < n(n-1) = |E(\mathcal{M})|.$$

Note that the max degree term, $(-1)^{|E(\mathcal{M})|}\prod_{e\in E(\mathcal{M})}x_e$ has a non-zero coefficient. To apply the nullstellensatz, we consider solutions to f of the form $(s_1,s_2,\ldots,s_{|E(\mathcal{M})|})\in\{0,1\}^{|E(\mathcal{M})|}$ (where $t_i=1$ for all $i\in[|E(\mathcal{M})|]$). Thus by Lemma 5, there exists a vector, call it $r=(r_e:e\in E(\mathcal{M}))$, such that $f(r)\neq 0$. By the definition of $f,r\neq 0$ because f(0)=0, so some of its entries are 1. This means that the latter product in f vanishes when evaluated at r. The former product in f can be non-zero only when $\left(\sum_{e\in E(\mathcal{M})}r_e\right)^{p-1}\equiv 0\pmod{p}$. It follows that r corresponds to a subgraph U of $\mathcal{M}(G)$ whose vertex degrees are congruent to $0\pmod{p}$. Since $\Delta(\mathcal{M})=2(n-1)$ and $r\neq 0$, there exists a vertex $u\in U$ such that $\deg(u)\in\{p,2p,3p,4p,5p,6p,7p\}\cap[2(n-1)]$. Note that since the degrees of the vertices in the neighbourhood of u are all at least 1, U contains at least one vertex in each part of \mathcal{M} with degree at least p.

3 Distance Multiplicities in Unweighted Graphs

Let G be a tree. Define T(G) to be G without its leaves, and on each vertex v of T(G) assign it a weight equal to the degree of v in G, $\deg(v)$. Define m(k) to be the multiplicity of distance k in a graph G.

The following expresses m(k) in terms of the degrees of the vertices of G, or equivalently, the vertex weights in T(G).

Lemma 6 (Characterizing Distance Multiplicities in Terms of Vertex Degrees). It holds that m(1) = |E(G)|, $m(2) = \sum_{v \in V(G)} \binom{\deg(v)}{2}$, and when $3 \le k \le \text{Diam}(G)$,

$$m(k) = \sum_{\substack{\{x,y\} \subset T(G)\\d(x,y) = k-2}} (\deg(x) - 1)(\deg(y) - 1).$$

Proof sketch. The cases k=1 and k=2 are straightforward and no distance can be larger than the diameter of G. Suppose $3 \le k \le \operatorname{Diam}(G)$. Let $x,y \in T(G)$ where d(x,y)=k-2 and let P(x,y) be the unique path of length k-2 between x and y. There are $\deg(x)-1$ and $\deg(y)-1$ neighbours of x and y in G that are not in P(x,y). Let w be such a neighbour of x and y such a neighbour of y. Then the unique (w,z)-path contains P(x,y) and has length k. Thus d(w,z)=k and there are $(\deg(x)-1)(\deg(y)-1)$ such pairs. So, each pair $x,y\in T(G)$ satisfying d(x,y)=k-2 contributes a multiplicity for k in G of $(\deg(x)-1)(\deg(y)-1)$.

It is because G is a tree that this method counts all instances of distance k; if G has a cycle, then some distances can be over counted and this sum is an upper bound for m(k).

3.1 Conjectures

Conjecture 3.1. Let d be the largest distance that attains maximum multiplicity in a tree T. Then for every $i \in \{d, ..., \text{Diam}(T) - 1\}$, $m(i) \ge m(i+1)$.

Remark 3.2. I suspect it is possible to prove this by induction on the path lengths k. That is, every path of length k+1 corresponds to at least 1 distinct path of length k. But I think things get a bit tricky because somehow the maximality of d needs to come into play.

Remark 3.3. There are counter-examples to the related claim that $m(i) \ge m(i-1)$ for all $i \in \{d, \dots, 2\}$.

The remaining conjectures are all about upper bounding m(d). The following proposition handles the lower bound.

Proposition 3.4. Let d be the largest distance with max multiplicity in a tree T. If $1 \le d \le \lceil \frac{n}{3} \rceil$, then $m(d) \ge n - 1$.

Proof. It is sufficient to construct a tree T such that m(d) = |E(T)| = n - 1. Let u be a root vertex. Append two paths X and Y of length d-1 to u. Then for the remaining n-2(d-1)-1 vertices, append them as a length n-2(d-1)-1 path to u. There are 3(d-1) distinct paths of length d with endpoints in $X \cup Y$. There are n-2(d-1)-d paths of length d with endpoints in $V(T) \setminus (X \cup Y)$.

Altogether, there are n-2d+2-d+3d-3=n-1 paths of length d in T. Note that since $d \leq \lceil n/3 \rceil$,

$$n - 2(d - 1) - d \ge n - 3\lceil n/3 \rceil + 2 = \begin{cases} 0, & \text{if } n \equiv 1 \pmod{3} \\ 1, & \text{if } n \equiv 2 \pmod{3}, \end{cases}$$

and in either case, m(d) = n - 1. Observe that in fact $m(1) = m(2) = \cdots = m(d) = n - 1$.

Example 1. Figure 1 shows a tree with maximum multiplicity m(d) = n - 1 where d = 6 is the largest distance with max multiplicity and n = 20.

Figure 1: Extremal tree example minimizing m(d).

Remark 3.5. Below I conjecture that $d \leq \lceil n/3 \rceil + 2$. I have not yet looked for extremal trees that minimize m(d) when $d \in \{\lceil n/3 \rceil + 1, \lceil n/3 \rceil + 2\}$.

Conjecture 3.6. Let d be the largest distance with max multiplicity in a tree T.

1. If $d \leq C_1 \frac{n}{3} + C_2$ and even, then $m(d) \leq (3-a-b) \lceil \frac{r}{3} \rceil \lfloor \frac{r}{3} \rfloor + \lfloor \frac{r}{3} \rfloor^{2a} \lceil \frac{r}{3} \rceil^{2b}$, where $r = n - \frac{3}{2}d + 2$ and

$$(a,b) = \begin{cases} (1,0), & \text{if } r \equiv 1 \pmod{3} \\ (0,1), & \text{if } r \equiv 2 \pmod{3} \\ (0,0), & \text{otherwise.} \end{cases}$$

2. If $C_1 \frac{n}{3} + C_2 < d \leq \lceil \frac{n}{3} \rceil + 2$, then $m(d) \leq a \lfloor \frac{r'}{4} \rfloor^2 + (2-a) \lceil \frac{r'}{4} \rceil^2 + 2 \lfloor \frac{r'}{4} \rfloor \lceil \frac{r'}{4} \rceil$, where r' = n - d - 1 and

$$a = \begin{cases} 2, & \text{if } r' \equiv 1 \pmod{4} \\ 1, & \text{if } r' \equiv 2 \pmod{4} \\ 0, & \text{otherwise.} \end{cases}$$

Remark 3.7. My experimentation suggests that $C_1 \sim 1$ and $-1 \leq C_2 \leq 1$; however, I have not yet examined these values carefully.

Remark 3.8. I believe there are 3 extremal trees that maximize m(d); one unknown when $d \le C_1 \frac{n}{3} + C_2$ and odd, and the other two are described below.

Construction 1: Refer to Figure 2a for an example. When $d \leq C_1 \frac{n}{3} + C_2$ and even, do the following:

- 1. First we use $3(\frac{d}{2}-1)+1$ vertices by making 3 branch paths with length $\frac{d}{2}-1$ from a root vertex u.
- 2. Let v, w, x be the vertices at the ends of each branch.
- 3. For the remaining $n-3(\frac{d}{2}-1)-1$ vertices, append them to v,w,x so that the number of leaf neighbours of v,w, and x differ from one another by at most 1.

Remark 3.9. Trees with large m(d) when $d \leq C_1 \frac{n}{3} + C_2$ often tend to have a triple branching structure. The structure of T becomes much more constrained the larger d gets, and I think this is probably because it is most common for d = 2. When d > 2, then for $m(2) \leq m(d)$ to hold, (1) the degrees of the vertices of T cannot be too high, and (2) there needs to be enough branching in T to ensure enough distinct length d paths. Somehow the triple branching pattern in Construction 1 satisfies (1) and (2) while also maximizing m(d); but I doubt that this extremal structure is fragile. That is, I think even when d is odd and $d \leq C_1 \frac{n}{3} + C_2$, an extremal tree has a similar triple branching structure.

Construction 2: Refer to Figure 2b for an example. When $d > C_1 \frac{n}{3} + C_2$, do the following:

- 1. Form a path of length d-4 and call its leaves x and y.
- 2. Append two vertices x_1 and x_2 to x and similarly y_1 and y_2 to y.
- 3. Append the remaining n-d-1 vertices to x_1 , y_1 , x_2 , and y_2 so that the number of leaf neighbours on each differ from one another by at most 1. If $r' \equiv 2 \pmod{4}$, then ensure that both x_1 and y_1 are each adjacent to $\lceil r'/4 \rceil$ leaves.

Figure 2: Extremal tree examples that maximize m(d).

Example 2. Figure 2 shows examples from Constructions 1 and 2, which are mentioned above. In Figure 2a, n = 20, d = 6, and m(6) = 56. In Figure 2b, n = 24, $d = \lceil \frac{n}{3} \rceil + 2 = 10$, and m(d) = 42.

Conjecture 3.10. Let d be the largest distance with max multiplicity. Then $d \leq \lceil \frac{n}{3} \rceil + 2$.

Remark 3.11. I have not yet found a counter-example to this conjecture. Please let me know if you find one! I have searched $n \le 25$ without finding a CE, but it may well be that $d \le \lceil n/3 \rceil + C\sqrt{n}$ or something. If so, then there would probably still be a sensible case division at $d \sim n/3$.

References

[1] Alon, N. (1999). Combinatorial Nullstellensatz. Combinatorics, Probability and Computing, 8(1-2), 7-29. doi:10.1017/S0963548398003411