WE CLAIM:

1. A compound of Formula I:

$$R^4$$
 R^3
 N
 X
 N
 N
 N
 N

5

in which:

 X^{1} is $-C(R^{1})(R^{2})X^{2}$ or $-X^{3}$;

 X^2 is cyano, -CHO, -C(R⁷)(R⁸)R⁵, -C(R⁷)(R⁸)CF₃, -C(R⁷)(R⁸)CF₂CF₂R⁹ $-C(R^7)(R^8)CF_2C(O)NR^5R^6$, $-C(R^7)(R^8)C(R^7)(R^8)NR^5R^6$, -CH=CHS(O)₂ R^5 , 10 $-C(R^7)(R^8)CH_2OR^5$, $-C(R^7)(R^8)CH_2N(R^6)SO_2R^5$, $-C(R^7)(R^8)C(R^7)(R^8)OR^5$, $-C(R^7)(R^8)C(R^7)(R^8)N(R^6)(CH_2)_2OR^6$ $-C(R^7)(R^8)C(R^7)(R^8)N(R^6)(CH_2)_2NR^6$ $-C(R^7)(R^8)C(R^7)(R^8)R^5;$ wherein \mathbb{R}^5 (C_{1-4}) alkyl, (C_{6-10}) aryl (C_{0-6}) alkyl, $hetero(C_{4-10})aryl(C_{0-6})alkyl,$ (C_{4-10}) cycloalkyl (C_{0-6}) alkyl $hetero(C_{4-10})$ cycloalkyl (C_{0-6}) alkyl; R^6 is hydrogen or (C_{1-6}) alkyl; R^7 is hydrogen or 15 (C₁₋₄)alkyl and R⁸ is hydroxy or R⁷ and R⁸ together form oxo; R⁹ is hydrogen, halo, (C_{1-4}) alkyl, (C_{5-10}) aryl (C_{0-6}) alkyl or hetero (C_{5-10}) aryl (C_{0-6}) alkyl;

X³ represents a group of Formula (a):

10

15

20

25

30

in which n is 1 or 2, z is 0 or 1, X^5 is selected from NR^{10} , S or O, wherein R^{10} is hydrogen or $(C_{1.6})$ alkyl, and X^6 is O, S or NR^{11} , wherein R^{11} is selected from hydrogen, $(C_{1.6})$ alkyl, $-X^4C(O)OR^{12}$, $-X^4C(O)R^{13}$, $-X^4C(O)NR^{12}R^{12}$, $-X^4S(O)_2NR^{12}R^{12}$, $-X^4S(O)_2R^{14}$, $-R^{15}$, $-X^4S(O)_2R^{15}$, $-X^4C(O)R^{15}$, $-X^4C(O)OR^{15}$, $-X^4C(O)NR^{12}R^{15}$ and $-X^4S(O)_2NR^{12}R^{15}$, in which X^4 is a bond or $(C_{1.6})$ alkylene; R^{12} at each occurrence independently is hydrogen or $(C_{1.6})$ alkyl; R^{13} is hydrogen, $(C_{1.6})$ alkyl or halo-substituted $(C_{1.6})$ alkyl, R^{14} is $(C_{1.6})$ alkyl or halo-substituted $(C_{1.6})$ alkyl and R^{15} is $(C_{3.10})$ cycloalkyl $(C_{0.6})$ alkyl, hetero $(C_{3.10})$ cycloalkyl $(C_{0.6})$ alkyl, $(C_{6.10})$ aryl $(C_{0.6})$ alkyl, hetero $(C_{5.10})$ aryl $(C_{0.6})$ alkyl, $(C_{9.12})$ bicycloaryl $(C_{0.6})$ alkyl or hetero $(C_{8.12})$ bicycloaryl $(C_{0.6})$ alkyl;

wherein within X^1 any cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be substituted with 1 radical R^{20} selected from $-R^{15}$, $-X^4OR^{15}$, $-X^4SR^{15}$, $-X^4S(O)R^{15}$, $-X^4S(O)R^{15}$, $-X^4C(O)R^{15}$, $-X^4C(O)R^{15}R^{12}$, $-X^4C(O)R^{15}R^{12}$, $-X^4C(O)R^{15}R^{12}$, $-X^4C(O)R^{15}R^{12}$, $-X^4C(O)R^{15}R^{12}$, and wherein X^1 and $X^2C(O)R^{15}R^{12}$, $X^4R^{12}R^{12}R^{12}$, and wherein X^1 and $X^2C(O)R^{15}R^{12}$, $X^4R^{12}R^{12}R^{12}$, $X^4R^{12}R^{12}R^{12}R^{12}$, $X^4R^{12}R^{12}R^{12}R^{12}$, $X^4R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{12}R^{$

R¹ and R² are both fluoro; or

 $R^{1} \text{ is hydrogen or } (C_{1-6}) \text{alkyl and } R^{2} \text{ is selected from the group consisting of hydrogen, } (C_{1-6}) \text{alkyl, cyano, } -X^{4} NR^{12}R^{12}, -X^{4} NR^{12}C(O)R^{12}, -X^{4} NR^{12}C(O)OR^{12}, -X^{4} NR^{12}C(O)NR^{12}R^{12}, -X^{4} NR^{12}C(O)NR^{12}R^{12}, -X^{4} NR^{12}C(O)NR^{12}R^{12}, -X^{4} C(O)NR^{12}R^{12}, -X^{4} C(O)R^{13}, -X^{4} C(O)R^{13}, -X^{4} C(O)R^{13}, -X^{4} C(O)R^{13}, -X^{4} C(O)R^{12}R^{12}, -X^{4} S(O)_{2}NR^{12}R^{12}, -X^{4} NR^{12}S(O)_{2}R^{13}, -X^{4} C(O)(OR^{12})OR^{12}, -X^{4} C(O)(OR^{12})OR^{12}, -X^{4} S(O)R^{14}, -X^{4} S(O)_{2}R^{14}, -R^{15}, -X^{4} C(O)R^{15}, -X^{4} SR^{15}, -X^{4} C(O)R^{15}, -X^{4} C(O)R^{15}, -X^{4} C(O)R^{15}, -X^{4} C(O)R^{15}, -X^{4} C(O)R^{15}, -X^{4} C(O)R^{15}R^{12}, -X^{$

15

20

25

30

wherein R^2 , said cycloalkylene and said heterocycloalkylene may be substituted further with 1 to 3 radicals independently selected from (C_{1-6}) alkyl, cyano, halo, halo-substituted (C_{1-4}) alkyl, nitro, $-X^4NR^{12}R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4C(O)R^{12}$, wherein $-X^4$, $-X^4C(O)R^{12}$, and $-X^4C(O)R^{12}$, wherein $-X^4$, $-X^4C(O)R^{12}$, and $-X^4C(O)R^{12}$, and $-X^4C(O)R^{12}$, wherein $-X^4$, $-X^4C(O)R^{12}$, and $-X^4C(O)R^{12}$, and $-X^4C(O)R^{12}$, wherein $-X^4$, $-X^4C(O)R^{12}$, and $-X^4C(O)R^{12}$, and

 R^3 and R^4 are independently $-C(R^{16})(R^{17})X^7$, wherein R^{16} and R^{17} are hydrogen, (C_{1.6})alkyl or fluoro, or R¹⁶ is hydrogen and R¹⁷ is hydroxy and X⁷ is selected from $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)OR^{12}$, $-X^4NR^{12}C(O)NR^{12}R^{12}$, $-X^4NR^{12}R^{12}$. $-X^4NR^{12}C(NR^{12})NR^{12}R^{12}$, $-X^4OR^{13}$, $-X^4SR^{13}$, $-X^4C(O)OR^{12}$, $-X^4C(O)R^{13}$, $-X^4OC(O)R^{13}$, $-X^4S(O)_2NR^{12}R^{12}$, $-X^4NR^{12}S(O)_2R^{13}$, $-X^4P(O)(OR^{12})OR^{12}$ $-X^4C(O)NR^{12}R^{12}$. $-X^4OP(O)(OR^{12})OR^{12}$, $-X^4S(O)R^{14}$, $-X^4S(O)_2R^{14}$, $-R^{15}$, $-X^4OR^{15}$, $-X^4SR^{15}$, $-X^4S(O)R^{15}$, $-X^4S(O)R^$ $-X^4S(O)_2R^{15}$, $-X^4C(O)R^{15}$, $-X^4C(O)OR^{15}$, $-X^4OC(O)R^{15}$, $-X^4NR^{15}R^{12}$, $-X^4NR^{12}C(O)R^{15}$, $-X^4C(O)NR^{15}R^{12}$, $-X^4S(O)_2NR^{15}R^{12}$, $-X^4NR^{12}S(O)_2R^{15}$, $-X^4NR^{12}C(O)OR^{15}$, $-X^4NR^{12}C(O)NR^{15}R^{12}$ and $-X^4NR^{12}C(NR^{12})NR^{15}R^{12}$, wherein X^4 , R^{12} , R^{13} , R^{14} and R^{15} are as defined above;

wherein within one of R³ or R⁴ any cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be substituted with 1 radical R²¹ selected from -R¹⁵, -X⁴OR¹⁵, -X⁴SR¹⁵, -X⁴S(O)R¹⁵, $-X^4S(O)_2R^{15}$, $-X^4C(O)R^{15}$, $-X^4C(O)OR^{15}$, $-X^4OC(O)R^{15}$, $-X^4NR^{15}R^{12}$, $-X^4NR^{12}C(O)R^{15}$, $-X^4C(O)NR^{12}R^{15}$, $-X^4S(O)_2NR^{15}R^{12}$, $-X^4NR^{12}S(O)_2R^{15}$, $-X^4NR^{12}C(O)OR^{15}$, $-X^4NR^{12}C(O)NR^{15}R^{12}$ and $-X^4NR^{12}C(NR^{12})NR^{15}R^{12}$, wherein X^4 , R^{12} and R^{15} are as defined above; and wherein each of R³, R⁴ and R²¹ may be substituted further with 1 to 5 radicals independently selected from (C₁₋₆)alkyl, cyano, halo, halo-substituted(C₁₋₄)alkyl, nitro, $-X^4NR^{12}R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)OR^{12}$, $-X^4NR^{12}C(O)NR^{12}R^{12}$, $-X^4NR^{12}C(NR^{12})NR^{12}R^{12}$, $-X^4OR^{13}$, $-X^4SR^{13}$, $-X^4C(O)OR^{12}$, $-X^4C(O)R^{13}$, $-X^4OC(O)R^{13}$, $-X^4NR^{12}S(O)_2R^{13}$, $-X^4P(O)(OR^{12})OR^{12}$. $-X^4C(O)NR^{12}R^{12}$. $-X^4S(O)_2NR^{12}R^{12}$, $-X^4OP(O)(OR^{12})OR^{12}$, $-X^4S(O)R^{14}$ and $-X^4S(O)_2R^{14}$, wherein X^4 , R^{12} , R^{13} and R^{14} are as defined above; provided that only one bicyclic ring structure is present within each of R³ or R⁴; and provided that when X² is cyano and X⁷ within one of R³ or R⁴ is -X⁴C(O)R¹³ or -X⁴C(O)R¹⁵, wherein X⁴ is a bond, then X⁷ within the other of R³ or R⁴ is limited to

10

15

-X⁴SR¹⁵, -X⁴S(O)R¹⁵ and -X⁴S(O)₂R¹⁵, wherein R¹⁵ is $(C_{6\cdot10})$ aryl($C_{1\cdot6}$)alkyl substituted with 1 to 5 radicals or hetero($C_{5\cdot10}$)aryl($C_{0\cdot6}$)alkyl optionally substituted with 1 to 5 radicals, wherein said radicals are independently selected from ($C_{1\cdot6}$)alkyl, cyano, halo, halo-substituted($C_{1\cdot4}$)alkyl, nitro, -X⁴NR¹²R¹², -X⁴NR¹²C(O)R¹², -X⁴NR¹²C(O)OR¹², -X⁴NR¹²C(O)NR¹²R¹², -X⁴NR¹²C(NR¹²)NR¹²R¹², -X⁴OR¹³, -X⁴SR¹³, -X⁴C(O)OR¹², -X⁴C(O)R¹³, -X⁴C(O)R¹³, -X⁴C(O)R¹³, -X⁴C(O)R¹²R¹², -X⁴S(O)₂NR¹²R¹², -X⁴NR¹²S(O)₂R¹³, -X⁴P(O)(OR¹²)OR¹², -X⁴OP(O)(OR¹²)OR¹², -X⁴S(O)R¹⁴ and -X⁴S(O)₂R¹⁴, wherein X⁴, R¹², R¹³ and R¹⁴ are as defined above, provided that the radical is not selected from only halo when R¹⁵ is ($C_{6\cdot10}$)aryl($C_{1\cdot6}$)alkyl; and provided that when X² is cyano then X⁷ within R³ and R⁴ is not -X⁴C(O)NR¹²R¹², -X⁴C(O)NR¹⁵R¹² or -X⁴C(O)NR¹⁸R¹⁹, wherein X⁴ is a bond and R¹⁸ and R¹⁹ together with the nitrogen atom to which they are attached form hetero($C_{3\cdot10}$)cycloalkyl or hetero($C_{5\cdot10}$)aryl;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

2. The compound of Claim 1 in which:

 X^{1} is $-C(R^{1})(R^{2})X^{2}$ or $-X^{3}$;

 $X^2 \text{ is cyano, -CHO, -C(O)R}^5, -C(O)CF_3, -C(O)CF_2CF_2R}^9 \text{ -CH=CHS}(O)_2R^5, \\ -C(O)CF_2C(O)NR^5R^6, -C(O)C(O)NR^5R^6, -C(O)C(O)OR^5, -C(O)CH_2OR^5, \\ -C(O)CH_2N(R^6)SO_2R^5, -C(O)C(O)N(R^6)(CH_2)_2OR^6, -C(O)C(O)N(R^6)(CH_2)_2NR^6 \text{ or } \\ -C(O)C(O)R^5, \text{ wherein } R^5 \text{ is } (C_{1-4})\text{alkyl, } (C_{6-10})\text{aryl}(C_{0-6})\text{alkyl, hetero}(C_{4-10})\text{aryl}(C_{0-6})\text{alkyl, } \\ (C_{4-10})\text{cycloalkyl}(C_{0-6})\text{alkyl} \text{ or hetero}(C_{4-10})\text{cycloalkyl}(C_{0-6})\text{alkyl, } R^6 \text{ is hydrogen or } \\ 25 \text{ } (C_{1-6})\text{alkyl and } R^9 \text{ is halo; }$

X³ represents a group of Formula (b):

10

15

20

25

in which n is 1 or 2, z is 0 or 1, X^6 is O or NR^{11} , wherein R^{11} is selected from hydrogen, (C_{1-6}) alkyl, $-X^4OC(O)R^{13}$, $-X^4C(O)OR^{12}$, $-X^4C(O)R^{13}$, $-X^4C(O)NR^{12}R^{12}$, $-X^4S(O)_2NR^{12}R^{12}$, $-X^4S(O)_2R^{14}$, $-R^{15}$, $-X^4S(O)_2R^{15}$, $-X^4C(O)R^{15}$, $-X^4C(O)OR^{15}$, $-X^4C(O)NR^{12}R^{15}$ and $-X^4S(O)_2NR^{12}R^{15}$, in which X^4 is a bond or (C_{1-6}) alkylene; R^{12} at each occurrence independently is hydrogen or (C_{1-6}) alkyl; R^{13} is hydrogen, (C_{1-6}) alkyl or halo-substituted (C_{1-6}) alkyl, R^{14} is (C_{1-6}) alkyl or halo-substituted (C_{1-6}) alkyl and R^{15} is (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, (C_{9-12}) bicycloaryl (C_{0-6}) alkyl, or hetero (C_{8-12}) bicycloaryl (C_{0-6}) alkyl;

wherein within X^1 any cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be substituted with 1 radical selected from $-R^{15}$ and $-X^4C(O)R^{15}$; and wherein X^1 may be substituted further with 1 to 3 radicals independently selected from (C_{1-6}) alkyl, halo-substituted (C_{1-4}) alkyl, $-X^4NR^{12}R^{12}$, $-X^4OR^{13}$ and $-X^4S(O)_2R^{14}$, wherein X^4 , R^{12} , R^{13} , R^{14} and R^{15} are as defined above;

R¹ and R² are both fluoro; or

 R^1 is hydrogen or (C_{1-6}) alkyl and R^2 is selected from the group consisting of hydrogen, (C_{1-6}) alkyl, $-X^4OR^{13}$ and $-R^{15}$; or R^1 and R^2 taken together with the carbon atom to which both R^1 and R^2 are attached form (C_{3-8}) cycloalkylene or hetero (C_{3-8}) cycloalkylene; wherein R^2 may be substituted further with (C_{1-6}) alkyl; wherein X^4 , R^{13} and R^{15} are as defined above;

 R^3 and R^4 are independently $-C(R^{16})(R^{17})X^7$, wherein R^{16} and R^{17} are hydrogen, (C_{1-6}) alkyl or fluoro, or R^{16} is hydrogen and R^{17} is hydroxy and X^7 is selected from $-X^4SR^{13}$, $-X^4C(O)R^{13}$, $-X^4C(O)NR^{12}R^{12}$, $-R^{15}$, $-X^4OR^{15}$, $-X^4SR^{15}$, $-X^4S(O)_2R^{15}$, $-X^4C(O)R^{15}$ and $-X^4C(O)NR^{15}R^{12}$, wherein X^4 , R^{12} , R^{13} and R^{15} are as defined above;

15

20

wherein within one of R^3 or R^4 any cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be substituted with 1 radical selected from $-R^{15}$, $-X^4OR^{15}$, $-X^4SR^{15}$, $-X^4S(O)R^{15}$, $-X^4S(O)_2R^{15}$, $-X^4C(O)R^{15}$, $-X^4C(O)R^{15}$, $-X^4OC(O)R^{15}$, $-X^4NR^{15}R^{12}$, $-X^4NR^{12}C(O)R^{15}$, $-X^4NR^{12}C(O)R^{15}$, $-X^4C(O)R^{15}$, $-X^4C(O)R^{15}R^{12}$, $-X^4R^{15}R^{12}$, $-X^4R^{12}S(O)_2R^{15}$, $-X^4R^{12}C(O)R^{15}R^{12}$ and $-X^4R^{12}C(R^{12})R^{15}R^{12}$, wherein X^4 , R^{12} and R^{15} are as defined above; and wherein each of R^3 and R^4 may be substituted further with 1 to 5 radicals independently selected from (C_{1-6}) alkyl, cyano, halo, halo-substituted (C_{1-4}) alkyl, nitro, $-X^4R^{12}R^{12}$, $-X^4R^{12}C(O)R^{12}$, $-X^4R^{12}C(O)R^{12}$, $-X^4R^{12}C(O)R^{12}$, $-X^4R^{12}C(O)R^{12}$, $-X^4R^{12}C(O)R^{13}$, $-X^4C(O)R^{13}$, $-X^4C(O)R^{13}$, $-X^4C(O)R^{13}$, $-X^4C(O)R^{12}$, $-X^4R^{12}$

wherein within one of R^3 and R^4 any cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be substituted with 1 radical selected from - R^{15} and - X^4OR^{15} ; and wherein each of R^3 or R^4 may be substituted further by 1-5 radicals independently selected from (C_{1-6})alkyl, cyano, halo, halo-substituted(C_{1-4})alkyl, - $X^4NR^{12}C(O)OR^{12}$, - X^4OR^{13} , - $X^4C(O)OR^{12}$, - $X^4C(O)NR^{12}R^{12}$, - $X^4NR^{12}S(O)_2R^{13}$ and - $X^4S(O)_2R^{14}$, wherein X^4 , R^{12} , R^{13} , R^{14} and R^{15} are as defined above;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

A compound of claim 2 in which R³ and R⁴ are independently -CH₂X⁷, wherein X^7 is selected from X^4SR^{13} , $-X^4C(O)R^{13}$, $-X^4C(O)NR^{12}R^{12}$, $-R^{15}$, $-X^4OR^{15}$, 25 $-X^4SR^{15}$, $-X^4S(O)_2R^{15}$, $-X^4C(O)R^{15}$ and $-X^4C(O)NR^{15}R^{12}$, wherein X^4 is a bond or (C₁₋₆)alkylene, R¹² at each occurrence independently is hydrogen or (C₁₋₆)alkyl, R¹³ is (C_{1-6}) alkyl or halo-substituted (C_{1-6}) alkyl, R^{14} is (C_{1-6}) alkyl or hydrogen, R^{15} (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, halo-substituted(C_{1-6})alkyl and is (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{0-3}) alkyl, (C_{6-10}) aryl (C_{0-6}) alkyl, 30 hetero(C_{5-10})aryl(C_{0-6})alkyl, (C_{9-12}) bicycloaryl (C_{0-6}) alkyl or

10

hetero(C_{8-12})bicycloaryl(C_{0-6})alkyl; wherein within R^3 and R^4 any cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be substituted with 1 radical selected from - R^{15} and - X^4 OR¹⁵, wherein X^4 and R^{15} are as defined above; and wherein R^3 and R^4 may be substituted further by 1 to 5 radicals independently selected from (C_{1-6})alkyl, cyano, halo, halo-substituted(C_{1-4})alkyl, - X^4 NR¹²C(O)OR¹², - X^4 OR¹³, - X^4 C(O)OR¹², - X^4 C(O)NR¹²R¹², - X^4 NR¹²S(O)₂R¹³ and - X^4 S(O)₂R¹⁴, wherein X^4 R¹², R¹³ and R¹⁴ are as defined above:

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

A compound of claim 3 in which R³ is selected from 5-bromo-thiophen-2-4. ylmethyl, 3-cyclohexylpropyl, 2-cyclohexylpropyl, 2-cyclopentylpropyl, 3-phenylpropyl, 3-(2-difluoromethoxy)phenylpropyl, 15 2-phenylcyclopropylmethyl, 2,2-difluoro-3-phenylpropyl, 1-benzylcyclopropylmethy, 2-tetrahydro-pyran-4-ylethyl, 1-isobutylcyclopropylmethyl, thiophen-2-ylmethyl, tetrahydro-pyran-4-ylmethyl, cyclopropylmethylsulfanylmethyl, 2,2-dimethyl-3-phenylpropyl, 4-methyl-[1,2,5]thiadiazol-3-ylmethylsulfonylmethyl, 3-methyl-[1,2,4]thiadiazol-3-20 ylmethylsulfonylmethyl, thiophen-3-ylmethylsulfonylmethyl, 3-methoxy-5-methylisoxazol-4-ylmethylsulfonylmethyl, 2,4-dimethyl-thiazol-5-ylmethylsulfonylmethyl, 2methyl-oxazol-4-ylmethylsulfonylmethyl, 2-methyl-thiazol-4-ylmethylsulfonylmethyl,, 1,2,3]thiadiazol-4-ylmethylsulfonylmethyl, 3-methyl-[1,2,4]thiadiazol-5ylmethylsulfonylmethyl, 4-methyl-[1,2,5]thiadiazol-3-ylmethylsulfonylmethyl, thiophen-3-25 ylmethylsulfonylmethyl, tetrahydro-pyran-4-yloxymethyl, piperidin-1-ylcarbonyl, 3-chloro-2-fluoro-benzylsulfonylmethyl, thiophene-2-sulfonylmethyl, benzenesulfonylmethyl, benzylsulfonylmethyl, 2-(1,1-difluoro-methoxy)-benzylsulfonylmethyl, 2-benzenesulfonyl-ethyl, 2-(pyridine-2-sulfonyl)-ethyl, 2-(pyridine-4-sulfonyl)-ethyl, 2-benzylsulfonyl-ethyl, 30 oxy-pyridin-2-ylmethylsulfonylmethyl, prop-2-ene-1-sulfonylmethyl, 4-methoxy-benzylsulfonylmethyl, *p*-tolylmethylsulfonylmethyl,

o-tolylmethylsulfonylmethyl, 4-chloro-benzylsulfonylmethyl, 4-trifluoromethyl-benzylsulfonylmethyl, 3,5-dimethyl-benzylsulfonylmethyl, 4-trifluoromethoxy-benzylsulfonylmethyl, 2-bromo-benzylsulfonylmethyl, pyridin-3-ylmethylsulfonylmethyl, pyridin-2-ylmethylsulfonylmethyl, naphthalen-2-ylmethylsulfonylmethyl, 5 pyridin-4-ylmethylsulfonylmethyl, 3-trifluoromethyl-benzylsulfonylmethyl, 3-methyl-benzylsulfonylmethyl, 3-trifluoromethoxy-benzylsulfonylmethyl, 4-fluoro-2-trifluoromethoxy-benzylsulfonylmethyl, 2-fluoro-6-trifluoromethyl-benzylsulfonylmethyl, 3-chloro-benzylsulfonylmethyl, 10 2-fluoro-benzylsulfonylmethyl, 2-trifluoro-benzylsulfonylmethyl, 2-cyano-benzylsulfonylmethyl, 4-tert-butyl-benzylsulfonylmethyl, 3-fluoro-benzylsulfonylmethyl, 2-fluoro-3-methyl-benzylsulfonylmethyl, 2-chloro-benzylsulfonylmethyl, 4-fluoro-benzylsulfonylmethyl, 2,6-difluoro-benzylsulfonylmethyl, 2,5-difluoro-benzylsulfonylmethyl, 3,4-dichloro-benzylsulfonylmethyl, 15 2,5-dichloro-benzylsulfonylmethyl, 2-cyano-benzylsulfonylmethyl, 2-(1,1-difluoro-methoxy)-benzylsulfonylmethyl, 2-trifluoromethoxy-benzylsulfonylmethyl, 3-cyano-benzylsulfonylmethyl, 2,5-difluoro-benzylsulfonylmethyl, 2,3-difluoro-benzylsulfonylmethyl, biphenyl-2-ylmethylsulfonylmethyl, cyclohexylmethyl, 3-fluoro-benzylsulfonylmethyl, 2,4-difluoro-benzylsulfonylmethyl, 3,4-difluoro-benzylsulfonylmethyl, 20 2,4,5-trifluoro-benzylsulfonylmethyl, 2,4,6-trifluoro-benzylsulfonylmethyl, 2,3,5-trifluoro-benzylsulfonylmethyl, 2,3,4-trifluoro-benzylsulfonylmethyl, 2,5,6-trifluoro-benzylsulfonylmethyl, 2-chloro-5-trifluoromethylbenzylsulfonylmethyl, 2-fluoro-3-trifluoromethylbenzylsulfonylmethyl, 2-methyl-propane-1-sulfonyl, 2-fluoro-4-trifluoromethylbenzylsulfonylmethyl, 25 2-fluoro-5-trifluoromethylbenzylsulfonylmethyl, 4-fluoro-3-trifluoromethylbenzylsulfonylmethyl, 2-methoxy-benzylsulfonylmethyl, 3,5 4-difluoromethoxy-benzylsulfonylmethyl, bis-trifluoromethyl-benzylsulfonylmethyl, 3-difluoromethoxy-benzylsulfonylmethyl, 2-difluoromethoxy-benzylsulfonylmethyl, biphenyl-4-ylmethylsulfonylmethyl, 30 2,6-dichloro-benzylsulfonylmethyl,

3,5-dimethyl-isoxazol-4-ylmethylsulfonylmethyl,

15

5-chloro-thiophen-2-ylmethylsulfonylmethyl,

2-[4-(1,1-Difluoro-methoxy)-benzenesulfonyl]-ethyl,

2-[2-(1,1-Difluoro-methoxy)-benzenesulfonyl]-ethyl,

2-[3-(1,1-Difluoro-methoxy)-benzenesulfonyl]-ethyl,

- 5 2-(4-trifluoromethoxy-benzenesulfonyl)-ethyl,
 - 2-(3-trifluoromethoxy-benzenesulfonyl)-ethyl,
 - 2-(2-trifluoromethoxy-benzenesulfonyl)-ethyl, (cyanomethyl-methyl-carbamoyl)-methyl, biphenyl-3-ylmethyl, 2-oxo-2-pyrrolidin-1-yl-ethyl, 2-benzenesulfonyl-ethyl, isobutylsulfanylmethyl, 2-phenylsulfanyl-ethyl, cyclohexylmethylsulfonylmethyl, 2-cyclohexyl-ethanesulfonyl, benzyl, naphthalen-2-yl, benzylsulfanylmethyl, 2-trifluoromethyl-benzylsulfanylmethyl, phenylsulfanyl-ethyl and

cyclopropylmethylsulfonylmethyl;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

 R^4 selected from 5. which is of claim 4 in compound 2-trifluorobenzylsulfonylmethyl, 3-phenylsulfanylpropyl, 4-chlorobenzylsulfonylmethyl, thiophen-2-ylsulfonylmethyl, benzylsulfonylmethyl, 4-methylbenzylsulfonylmethyl, 20 2-pyridin-2-ylsulfonylethyl, 2-pyridin-4-ylsulfonylethyl, 2-phenylsulfonylethyl, 2-(3-difluoromethoxyphenylsulfonyl)ethyl, 2-benzylsulfonylethyl, pyridin-2-ylmethylsulfonylmethyl, naphthalen-2-ylmethylsulfonylmethyl, 3-trifluoromethylbenzylsulfonylmethyl, 3-methylbenzylsulfonylmethyl, 3-chlorobenzylsulfonylmethyl, 25 3-difluoromethoxybenzylsulfonylmethyl, 4-fluorobenzylsulfonylmethyl, 3-fluorobenzylsulfonylmethyl, 4-cyanobenzylsulfonylmethyl, 3-cyanobenzylsulfonylmethyl, benzylsulfonylmethyl, 3,4-difluorobenzylsulfonylmethyl, N-cyanomethyl-N-methylcarbamoylmethyl, 3-bromobenzyl, 4-phenylbutyl, 2,2-difluoro-4'-methylsulfonylaminobiphenyl-3-ylmethyl, 30 3-phenylpropyl, 4'-ethoxycarbonylaminobiphenyl-3-ylmethyl, 4-methylpiperazin-1-ylcarbonylmethyl,

1-fluoro-2-(4-methylpiperazin-1-yl)-2-oxoethyl, 1-hydroxy-4-methylpiperazin-1-yl-2-oxoethyl, 1-hydroxy-2-morpholin-4-yl-2-oxoethyl, 1-hydroxy-2-oxo-2-pyrrolidin-1-ylethyl, 1-fluoro-2-oxo-2-pyrrolidin-1-yl-ethyl, 1-fluoro-2-isopropylamino-2-oxoethyl, 1-fluoro-2-oxo-2-piperazin-1-ylethyl, 1-hydroxy-2-isopropylamino-2-oxoethyl, thiophen-3-ylmethylsulfonylmethyl, 4-methyl-[1,2,5]thiadiazol-3-ylmethylsulfonylmethyl, 5 ` 2,4-dimethyl-thiazol-5-3-methoxy-5-methyl-isoxazol-4-ylmethylsulfonylmethyl, ylmethylsulfonylmethyl, 2-methyl-oxazol-4-ylmethylsulfonylmethyl, 2-methylthiazol-4-ylmethylsulfonylmethyl, 2-([1,2,3]thiadiazol-4-ylmethylsulfonyl)-ethyl, 2-(3methyl-[1,2,4]thiadiazol-5-ylmethylsulfonyl)-ethyl, 2-oxo-2-phenyl-ethyl, 2-morpholin-4-yl-2-oxo-ethyl, 2-benzenesulfonyl-ethyl, 2-naphthalen-2-yl-2-oxo-ethyl, 10 2-benzo[b]thiophen-2-yl-2-oxo-ethyl, 2-benzo[1,3]dioxol-5-yl-2-oxo-ethyl, 4-benzylsulfonylmethyl, 2-biphenyl-4-yl-2-oxo-ethyl, 2-(3-trifluoromethoxy-benzenesulfonyl)-ethyl, 2-oxo-2-(4-phenoxy-phenyl)-ethyl, benzylcarbamoyl-methyl, 2-(4-hydroxy-phenyl)-2-oxo-ethyl, acid cyclohexylcarbamoylmethyl, 15 4-acetyl-piperazine-1-carboxylic ethyl ester, 2-(3-Chloro-benzo[b]thiophen-2-yl)-2-oxo-ethyl, benzenesulfonylmethyl, 2-oxo-2-thiophen-2-yl-ethyl, 2-oxo-2-thiophen-3-yl-ethyl, naphthalene-2-sulfonylmethyl, 2-(3-chloro-thiophen-2-yl)-2-oxo-ethyl, 2-(5-methyl-thiophen-2-yl)-2-oxo-ethyl, phenylcarbamoylmethyl, 5-methyl-thiophene-2-sulfonylmethyl, (5,6,7,8-tetrahydro-naphthalen-1-ylcarbamoyl)-methyl, 20 (3-carbamoyl-phenylcarbamoyl)-methyl, (4-carbamoyl-phenylcarbamoyl)-methyl, biphenyl-4-ylmethyl, 2-oxo-2-p-tolyl-ethyl, (butyl-methyl-carbamoyl)-methyl, 2-(4-chloro-phenyl)-2-oxo-ethyl, 2-(3-fluoro-4-methoxy-phenyl)-2-oxo-ethyl, 2-oxo-2-(4-trifluoromethoxy-phenyl)-ethyl, 2-(4-methoxy-phenyl)-2-oxo-ethyl, 2-(3,4-dimethoxy-phenyl)-2-oxo-ethyl, 25 2-(3,4-difluoro-phenyl)-2-oxo-ethyl, 5-methyl-2-oxo-hexyl, 2-(4-fluoro-phenyl)-2-oxo-ethyl, 3,5-dimethyl-benzylsulfonylmethyl, 4-trifluoromethyl-benzylsulfonylmethyl; 4-trifluoromethoxy-benzylsulfonylmethyl, isopropylcarbamoyl-methyl, 4-dimethylcarbamoylmethyl, pyridin-4-ylcarbamoylmethyl, pyridin-3-ylmethylsulfonylmethyl, 30 pyridin-4-ylmethylsulfonylmethyl, 3,4-dichloro-benzylsulfonylmethyl, pyridin-3-ylcarbamoylmethyl,

4-methoxy-benzylsulfonylmethyl, 4-chloro-benzylsulfonylmethyl, benzylsulfonylmethyl, p-tolylmethylsulfonylmethyl, thiophene-2-sulfonylmethyl, 2-benzenesulfonyl-ethyl, 2-(pyridine-2-sulfonyl)-ethyl, 2-(pyridine-4-sulfonyl)-ethyl, 2-[3-(1,1-Difluoro-methoxy)-benzenesulfonyl]-ethyl, 2-benzylsulfonyl-ethyl, pyridin-2-ylmethylsulfonylmethyl, 5 naphthalen-2-ylmethylsulfonylmethyl, *m*-tolylmethylsulfonylmethyl, 3-trifluoromethyl-benzylsulfonylmethyl, 3-chloro-benzylsulfonylmethyl, 3-trifluoromethoxy-benzylsulfonylmethyl, 4-fluoro-benzylsulfonylmethyl, 3-fluoro-benzylsulfonylmethyl, 3-cyano-benzylsulfonylmethyl, 4-cyano-benzylsulfonylmethyl, 10 3,4-difluoro-benzylsulfonylmethyl, (cyanomethyl-methyl-carbamoyl)-methyl, 3-bromo-benzyl, 2-oxo-2-pyrrolidin-1-yl-ethyl, 2-(4'-chloro-biphenyl-4-yl)-2-oxo-ethyl, 2-(1,1-difluoro-methoxy)-benzylsulfonylmethyl, biphenyl-3-ylmethyl, 2-(4-methylsulfonylamino-phenyl)-2-oxo-ethyl, 2-oxo-2-piperidin-1-yl-ethyl, 2-(4-methylsulfonyl-piperazin-1-yl)-2-oxo-ethyl, 2-trifluoromethyl-benzylsulfonylmethyl, 4-fluoro-3-trifluoromethyl-benzylsulfonylmethyl, 4-carboxy-benzylsulfonylmethyl, 15 3,5-bis-trifluoromethyl-benzylsulfonylmethyl, 4-(1,1-difluoro-methoxy)-benzylsulfonylmethyl, 3-(1,1-difluoro-methoxy)-benzylsulfonylmethyl, 5-chloro-thiophen-2-ylmethylsulfonylmethyl, 2-[4-(1,1-difluoro-methoxy)-benzenesulfonyl]-ethyl, 20 2-phenylsulfanyl-ethyl, 2-(4-trifluoromethoxy-benzenesulfonyl)-ethyl, 2-trifluoromethyl-benzylsulfanylmethyl, benzylsulfanylmethyl, 2-trifluoromethoxy-benzylsulfanylmethyl, 2-cyclohexyl-ethyl and isobutylsulfanylmethyl; and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual 25 isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and

6. The compound of claim 5 in which R¹ is hydrogen or (C₁₋₆)alkyl and R² is hydrogen, -X⁴OR¹³, hetero(C₅₋₁₀)aryl(C₀₋₆)alkyl, (C₅₋₁₀)aryl(C₀₋₆)alkyl or (C₁₋₆)alkyl; or R¹ and R² taken together with the carbon atom to which both R¹ and R² are attached form

derivatives, individual isomers and mixtures of isomers thereof.

solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected

 (C_{3-8}) cycloalkylene or hetero (C_{3-8}) cycloalkylene; wherein the cycloalkylene or heterocycloalkylene are optionally substituted with 1 to 3 (C_{1-6}) alkyl radicals;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

7. The compound of claim 6 in which R^1 is hydrogen or methyl and R^2 is methoxymethyl, methoxyethyl, methyl, ethyl, propyl, butyl, phenethyl, hiophen-2-yl or 5-methyl-furan-2-yl; or R^1 and R^2 taken together with the carbon atom to which both R^1 and R^2 are attached form cyclopropyl, tetrahydro-pyran-4-yl or 1-methyl-piperidin-4-yl;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

8. The compound of claim 7 of Formula I(a):

$$X^7CH_2$$

$$\begin{array}{c}
CH_2X^7 \\
N \\
R^1 \\
R^2
\end{array}$$

$$I(a)$$

20

25

5

10

15

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

9. The compound of claim 8 selected from the group consisting of 3-biphenyl-3-yl-*N*-cyanomethyl-2-benzylsulfonylmethyl-propionamide; 3-biphenyl-4-yl-*N*-

30

propionamide;

cyanomethyl-2-benzylsulfonylmethyl-propionamide; 3-(3-bromo-phenyl)-N-cyanomethyl-2-benzylsulfonylmethyl-propionamide; N-cyanomethyl-3-(3-cyano-benzylsulfonyl)-2-N-cyanomethyl-2-[2-1,1-difluoro-methoxy)benzylsulfonyl-methyl-propionamide; benzylsulfanylmethyl]-3-benzylsulfanyl-propionamide; N-cyanomethyl-3-(2-5 trifluoromethyl-benzylsulfanyl)-2-(2-trifluoro-methyl-benzylsulfanylmethyl)propionamide; N-cyanomethyl-3-isobutylsulfanyl-2-isobutylsulfanylmethyl-propionamide; N-cyanomethyl-4-phenylsulfanyl-2-(2-phenylsulfanyl-ethyl)-butyramide; N-cyanomethyl-3-[2-(1,1-difluoro-methoxy)-benzylsulfanyl]-2-[2-(1,1-difluoro-methoxy)-3-benzylsulfanyl-2-benzylsulfanylmethyl-Nbenzylsulfanylmethyl]-propionamide; N-cyanomethyl-2-[2-1,1-difluoro-methoxy)-10 cyanomethyl-propionamide; benzylsulfonylmethyl]-3-benzylsulfonyl-propionamide; N-cyanomethyl-3-(2trifluoromethyl-benzylsulfonyl)-2-(2-trifluoromethyl-benzylsulfonylmethyl)-propionamide; 4-benzenesulfonyl-2-(2-benzenesulfonyl-ethyl)-N-cyanomethyl-butyramide; cyanomethyl-3-[2-(1,1-difluoro-methoxy)-benzylsulfonyl]-2-[2-(1,1-difluoro-methoxy)-N-cyanomethyl-3-benzylsulfonyl-2-15 benzylsulfonylmethyl]-propionamide; benzylsulfonylmethyl-propionamide; N-cyanomethyl-3-(2-methyl-propane-1-sulfonyl)-2-(2-methyl-propane-1-sulfonylmethyl)-propionamide; N-cyanomethyl-3-(2-methyl-thiazol-3-biphenyl-3-yl-N-4-ylmethylsulfonyl)-2-benzyl-sulfonylmethyl-propionamide; cyanomethyl-2-[2-(1,1-difluoro-methoxy)-benzyl-sulfonylmethyl]-propionamide; (3'-{2- $(cyanomethyl-carbamoyl)-3-[2-(1,1-difluoro-methoxy)-benzyl-sulfonyl]-propyl\}-biphenyl-propyl-sulfonyl-propyl-sulfonyl-propyl-biphenyl-propyl-sulfonyl-propyl-sulfonyl-propyl-sulfonyl-propyl-biphenyl-propyl-sulfonyl-sulfonyl-su$ 20 N-cyanomethyl-2-[2-(1,1-difluoro-methoxy)-4-yl)-carbamic acid ethyl ester; benzylsulfonylmethyl]-3-(4'-methylsulfonylamino-biphenyl-3-yl)-propionamide; 3-(3bromo-phenyl)-N-cyanomethyl-2-[2-(1,1-difluoro-methoxy)-phenyl-N-cyanomethyl-2-((E)-3-phenyl-allyl)-3methylsulfonylmethyl]-propionamide;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

benzylsulfonyl-propionamide; and N-cyanomethyl-3-benzylsulfonyl-2-(3-phenyl-propyl)-

10. The compound of Claim 7 of Formula I(b):

$$X^7CH_2$$
 O
 R^1
 R^2
 R^5
 $I(b)$

5

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

10

15

The compound of claim 10 in which R⁵ is 1H-benzoimidazol-2-yl, 11. 5-phenyloxazolo[4,5-b]pyridin-2-yl, benzothiazol-2-yl, benzooxazol-2-yl, 4-(5-pyridin-4-yl-[1,3,4]oxadiazol-2-yl, 5-pyridin-3-yl-[1,3,4]oxadiazol-2-yl, [1,3,4]oxadiazol-2-yl, 5-pyridazin-3-yl-[1,3,4]oxadiazol-2-yl, pyrimidin-2-yl, pyridazin-3yl, 3-penyl-[1,2,4]oxadiazol-5-yl, 5-methoxymethyl-[1,3,4]oxadiazol-2-yl, 5-ethyl-[1,3,4]oxadiazol-2-yl, 1,3,4]thiadiazol-2-yl, benzyloxycarbonyl, benzyloxydicarbonyl, phenyldicarbonyl, 5-methyl-[1,3,4]thiadiazol-2-yl, 5-trifluoromethyl-[1,3,4]oxadiazol-2-yl, 5-methyl-[1,3,4]oxadiazol-2-yl, 5-methyl-[1,2,4]oxadiazol-3-yl, 5-phenyl-[1,2,4]oxadiazol-3-yl, 5-thiophen-3-yl-[1,2,4]oxadiazol-3-yl, 5-trifluoromethyl-[1,2,4]oxadiazol-3-yl, 3methyl-[1,2,4]oxadiazol-5-yl or 3-pyrazin-2-yl;

20

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

25

12. The compound of claim 11 selected from the group consisting of N-[(S)-1-(1-Benzooxazol-2-yl-methanoyl)-butyl]-3-benzylsulfonyl-2-benzylsulfonylmethyl-propionamide; N-[(S)-1-(1-Benzooxazol-2-yl-methanoyl)-butyl]-3-(2-trifluoromethyl-benzylsulfonyl)-2-(2-trifluoromethyl-benzylsulfonylmethyl)-propionamide; N-[(S)-1-(1-yl-methanoyl)-butyl]-3-(S)-1-(1-yl-methanoyl)-butyl]-3-(S)-1-(1-yl-methanoyl)-2-(S)-1-

10

15

20

25

30

Benzooxazol-2-yl-methanoyl)-pentyl]-4-(2-methoxy-benzenesulfonyl)-2-[2-(2-methoxybenzenesulfonyl)-ethyl]-butyramide; 4-Benzenesulfonyl-2-(2-benzenesulfonyl-ethyl)-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-butyl]-butyramide; (R)-N-[(S)-1-(1-benzooxazol-2yl-methanoyl)-butyl]-2-cyclohexylmethyl-3-benzylsulfonyl-propionamide; N-[(S)-1-(1benzothiazol-2-yl-methanoyl)-propyl]-4-morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-butyl]-3-cyclohexyl-2butyramide; cyclohexylmethyl-propionamide; N-[(S)-1-(1-Benzooxazol-2-yl-methanoyl)-butyl]-3isobutylsulfanyl-2-isobutylsulfanylmethyl-propionamide; N-[(S)-1-(1-benzooxazol-2-ylmethanoyl)-butyl]-3-benzylsulfanyl-2-benzylsulfanylmethyl-propionamide; N-[(S)-1-(1benzooxazol-2-yl-methanoyl)-butyl]-4-phenylsulfanyl-2-(2-phenylsulfanyl-ethyl)butyramide; N-[(S)-1-(1-benzooxazol-2-yl-methanoyl)-propyl]-4-morpholin-4-yl-4-oxo-2benzylsulfonylmethyl-butyramide; N-[(S)-1-(1-Benzooxazol-2-yl-methanoyl)-pentyl]-4morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-butyramide; 4-Morpholin-4-yl-4-oxo-2benzylsulfonylmethyl-N-{(S)-1-[1-(3-phenyl-[1,2,4]oxadiazol-5-yl)-methanoyl]-propyl}butyramide; N-[(S)-1-(1-Benzooxazol-2-yl-methanoyl)-butyl]-2-[2-(1,1-difluoro-methoxy)benzylsulfonylmethyl]-3-benzylsulfonyl-propionamide; 4-Morpholin-4-yl-4-oxo-N-[1-(2oxo-2-phenyl-acetyl)-pentyl]-2-benzylsulfonylmethyl-butyramide; N-(1,1-Dimethyl-2oxazolo[4,5-b]pyridin-2-yl-2-oxo-ethyl)-4-morpholin-4-yl-4-oxo-2-benzylsulfonylmethylbutyramide; N-[1-(5-Ethyl-[1,3,4]oxadiazole-2-carbonyl)-butyl]-4-morpholin-4-yl-4-oxo-2benzylsulfonylmethyl-butyramide; N-[1-(5-Ethyl-[1,3,4]oxadiazole-2-carbonyl)-butyl]-4oxo-2-benzylsulfonyl-methyl-4-piperidin-1-yl-butyramide; N-[1-(5-Ethyl-[1,3,4]oxadiazole-2-carbonyl)-butyl]-4-oxo-2-benzylsulfonyl-methyl-4-pyrrolidin-1-ylbutyramide; N-[1-(5-Methoxymethyl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-4-morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-butyramide; N-[1-(5-Methoxymethyl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-4-oxo-2-benzylsulfonylmethyl-4-piperidin-1-yl-N-[1-(5-Methoxymethyl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-4-oxo-2butyramide; benzylsulfonylmethyl-4-pyrrolidin-1-yl-butyramide; 4-Morpholin-4-yl-4-oxo-2benzylsulfonylmethyl-N-[1-(5-phenyl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-butyramide; 4-Oxo-2-benzylsulfonylmethyl-N-[1-(5-phenyl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-4piperidin-1-yl-butyramide; 4-Oxo-2-benzylsulfonylmethyl-N-[1-(5-phenyl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-4-pyrrolidin-1-yl-butyramide; 4-Morpholin-4-yl-N-

[1-(oxazolo[4,5-b]pyridine-2-carbonyl)-propyl]-4-oxo-2-benzylsulfonylmethyl-butyramide; N-[1-(Oxazolo[4,5-b]pyridine-2-carbonyl)-propyl]-4-oxo-2-benzylsulfonyl-methyl-4piperidin-1-yl-butyramide; N-[1-(Oxazolo[4,5-b]pyridine-2-carbonyl)-propyl]-4-oxo-2benzylsulfonyl-methyl-4-pyrrolidin-1-yl-butyramide; 4-Morpholin-4-yl-4-oxo-2benzylsulfonylmethyl-N-[1-(5-pyridin-4-yl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-5 4-Oxo-2-benzylsulfonylmethyl-4-piperidin-1-yl-N-[1-(5-pyridin-4-ylbutyramide; [1,3,4]oxadiazole-2-carbonyl)-propyl]-butyramide; 4-Oxo-2-benzylsulfonylmethyl-N-[1-(5-pyridin-4-yl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-4-pyrrolidin-1-yl-butyramide; 4-Morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-N-[1-(5-pyridin-3-yl-[1,3,4]oxadiazole-2carbonyl)-propyl]-butyramide; 10 N-[1-(Benzooxazole-2-carbonyl)-propyl]-4-oxo-2benzylsulfonylmethyl-4-piperidin-1-yl-butyramide; N-[1-(Benzooxazole-2-carbonyl)propyl]-4-oxo-2-benzylsulfonylmethyl-4-pyrrolidin-1-yl-butyramide; N-[1-(Benzooxazole-2-carbonyl)-propyl]-2-cyclohexylmethyl-4-morpholin-4-yl-4-oxo-butyramide; Cyclohexylmethyl-4-morpholin-4-yl-N-[1-(oxazolo[4,5-b]pyridine-2-carbonyl)-propyl]-4oxo-butyramide; 2-Cyclohexylmethyl-N-[1-(5-ethyl-[1,3,4]oxadiazole-2-carbonyl)-butyl]-15 4-morpholin-4-yl-4-oxo-butyramide; N-(2-Benzooxazol-2-yl-1-methoxymethyl-2-oxoethyl)-2-(2-difluoromethoxy-benzylsulfonylmethyl)-4-morpholin-4-yl-4-oxo-butyramide; N-[1-(Benzooxazole-2-carbonyl)-propyl]-2-(2-cyclohexyl-ethyl)-4-morpholin-4-yl-4-oxobutyramide; 2-(2-Cyclohexyl-ethyl)-4-morpholin-4-yl-N-[1-(oxazolo[4,5-b]pyridine-2carbonyl)-propyl]-4-oxo-butyramide; 2-(2-Cyclohexyl-ethyl)-4-morpholin-4-yl-4-oxo-N-20 [1-(5-phenyl-[1,3,4]oxadiazole-2-carbonyl)-propyl]-butyramide; 2-(2-Difluoromethoxybenzylsulfonylmethyl)-4-morpholin-4-yl-4-oxo-N-[1-(5-phenyl-[1,3,4]oxadiazole-2carbonyl)-propyl]-butyramide; 2-(2-Difluoromethoxy-benzylsulfonylmethyl)-N-[1-(5-ethyl-[1,3,4]oxadiazole-2-carbonyl)-butyl]-4-morpholin-4-yl-4-oxo-butyramide; N-[1-(Benzooxazole-2-carbonyl)-propyl]-2-(2-difluoromethoxy-benzyl-sulfonylmethyl)-4-25

2-(2-Morpholin-4-yl-2-oxo-ethyl)-5-phenyl-pentanoic acid, 1-(benzooxazole-2-carbonyl)-propyl]-amide; (R)-2-Cyclohexylmethyl-4-morpholin-4-yl-4-oxo-*N*-[(S)-1-(5-phenyl-1,2,4-oxadiazole-3-carbonyl)-propyl]-butyramide; 2-(2-Morpholin-4-yl-2-oxo-ethyl)-5-phenyl-pentanoic acid, (S)-1-(5-phenyl-[1,2,4]oxadiazole-3-carbonyl)-propyl]-amide; 4-Morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-*N*-[(S)-1-(5-phenyl-1,2,4-

morpholin-4-yl-4-oxo-butyramide;

oxadiazole-3-carbonyl)-propyl]-butyramide; (R)-2-Cyclohexylmethyl-4-morpholin-4-yl-4-oxo-N-[(S)-1-(3-phenyl-1,2,4-oxadiazole-5-carbonyl)-propyl]-butyramide; 4-Morpholin-4-yl-N-[1-(oxazole-2-carbonyl)-3-phenyl-propyl]-4-oxo-2-benzylsulfonylmethyl-butyramide; N-(1,1-Dimethyl-2-oxazol-2-yl-2-oxo-ethyl)-4-morpholin-4-yl-4-oxo-2-

- benzylsulfonylmethyl-butyramide; *N*-4-Isopropyl-*N*-1-[1-(oxazole-2-carbonyl)-3-phenyl-propyl]-2-benzylsulfonylmethyl-succinamide; 2-(2-Difluoromethoxybenzylsulfonylmethyl)-4-morpholin-4-yl-*N*-[1-(oxazole-2-carbonyl)-3-phenyl-propyl]-4-oxo-butyramide; 2-(2-Methyl-propane-1-sulfonylmethyl)-4-morpholin-4-yl-*N*-[1-(oxazole-2-carbonyl)-3-phenyl-propyl]-4-oxo-butyramide; 2-Cyclopropylmethylsulfonylmethyl-4-morpholin-4-yl-*N*-[1-(oxazole-2-carbonyl)-3-phenyl-propyl]-4-oxo-butyramide; *N*-[1-(Benzooxazole-2-carbonyl)-butyl]-2-benzylsulfonyl-3-(tetrahydro-pyran-4-yloxymethyl)-propionamide; *N*-[1-(Benzooxazole-2-carbonyl)-butyl]-3-ethanesulfonyl-2-(tetrahydro-pyran-4-yloxymethyl)-propionamide; *N*-(1-Benzenesulfonyl-3-oxo-azepan-4-yl)-2-cyclopropylmethylsulfonyl-methyl-4-morpholin-4-yl-4-oxo-butyramide; 2-
- Cyclopropylmethylsulfonylmethyl-N-{(S)-1-[(R)-hydroxy-(3-phenyl-1,2,4-oxadiazol-5-yl)-methyl]-propyl}-4-morpholin-4-yl-4-oxo-butyramide; *N*-{(S)-1-[(R)-hydroxy-(3-phenyl-1,2,4-oxadiazol-5-yl)-methyl]-propyl}-2-(2-methyl-propane-1-sulfonylmethyl)-4-morpholin-4-yl-4-oxo-butyramide; 2-(2-Morpholin-4-yl-2-oxo-ethyl)-5-phenyl-pentanoic acid {(S)-1-[(R)-hydroxy-(3-phenyl-1,2,4-oxadiazol-5-yl)-methyl]-propyl}-amide; 2-
- Cyclopropylmethylsulfonylmethyl-4-morpholin-4-yl-4-oxo-N-[(S)-1-(3-phenyl-1,2,4-oxadiazole-5-carbonyl)-propyl]-butyramide;
 2-(2-methyl-propane-1-sulfonylmethyl)-4-morpholin-4-yl-4-oxo-N-[(S)-1-(3-phenyl-1,2,4-oxadiazole-5-carbonyl)-propyl]-butyramide;
 2-(2-Morpholin-4-yl-2-oxo-ethyl)-5-phenyl-pentanoic acid, (S)-1-(3-phenyl-1,2,4-oxadiazole-5-carbonyl)-propyl}-amide;
 N-[(1S)-1-(Benzooxazol-2-yl-hydroxy-methyl)-3-phenyl-propyl]-2-cyclopropylmethylsulfonylmethyl-4-morpholin-4-yl-4-oxo-butyramide;
 (R)-2-((S)-1-Hydroxy-2-morpholin-4-yl-2-oxo-ethyl)-5-phenyl-pentanoic acid,
 - 1-(benzoxazole-2-carbonyl)-propyl]-amide; (R)-5-(2-Difluoromethoxy-phenyl)-2-((S)-1-hydroxy-2-morpholin-4-yl-2-oxo-ethyl)-pentanoic acid, 1-(benzoxazole-2-carbonyl)-propyl]-amide; and 4-Morpholin-4-yl-N-[1-(oxazole-2-carbonyl)-cyclopropyl]-4-oxo-2-

30 benzylsulfonyl methyl –butyramide;

and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual

isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

13. The compound of claim 7 of Formula I(c):

$$X^7CH_2$$
 CH_2X^7
 H
 R^2
 SO_2R^5
 $I(c)$

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

14. The compound of claim 13 in which R⁵ is phenyl;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

20

25

15

5

15. The compound of claim 14 selected from the group consisting of N-[(S)-1-((E)-2-benzenesulfonyl-vinyl)-pentyl]-3-benzylsulfonyl-2-benzylsulfonylmethyl-propionamide and N-(3-benzenesulfonyl-1-phenethyl-allyl)-3-benzylsulfonylmethyl-propionamide;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

10

15

20

25

16. The compound of claim 7 of Formula I(d):

$$X^7CH_2$$
 CH_2
 N
 R^1
 R^2
 SO_2R^5
 $I(d)$

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

- 17. The compound of claim 16 in which R⁵ is phenyl and R⁶ is hydrogen; and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.
- 18. The compound of claim 17 namely *N*-(3-benzenesulfonylamino-2-oxo-propyl)-4-morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-butyramide;
- and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.
 - 19. The compound of claim 7 of Formula I(e):

10

15

20

$$X^7CH_2$$
 O
 R^1
 R^2
 F
 R^5
 $I(e)$

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

20. The compound of claim 19 in which R⁵ and R⁶ is methyl;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

21. The compound of claim 20 in which one X^7 is morpholine-4-carbonyl and the other is benzylsulfonyl, R^1 is hydrogen and R^2 is ethyl, namely (S)-2,2-difluoro-4-(4-morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-butanoylamino)-3-oxo-hexanoic acid dimethylamide;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

22. The compound of claim 7 of Formula I(f):

$$X^7CH_2$$
 CH_2X^7
 H
 N
 R^6

10

15

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

23. The compound of claim 22 in which R⁵ is methyl, benzyl, phenethyl, cyclohexyl, methoxyethyl, dimethylaminoethyl, tetrahydro-pyran-4-yl, 1-methylsulfonyl-piperidin-4-yl, 4-methyl-piperazin-1-yl, morpholin-4-ylethyl, pyridin-2-yl, pyridin-2-ylmethyl or oxazol-2-ylmethyl; R⁶ is hydrogen or methyl; or R⁵ and R⁶ together with the nitrogen atom to which both R⁵ and R⁶ are attached form morpholine-4-yl, pyrrolidin-1-yl, 4-dimethylamino-piperazin-1-yl, 4-hydroxy-piperazin-1-yl, 4-pyridin-2-yl-piperazin-1-yl, 4-benzoyl-piperazin-1-yl or 3-oxo-piperazin-1-yl;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

24. The compound of claim 23 selected from the group consisting of *N*-[(S)-1-(1-Benzylcarbamoyl-methanoyl)-propyl]-3-benzylsulfonyl-2-benzylsulfonylmethyl-propionamide and *N*-[(S)-1-(1-Benzylcarbamoyl-methanoyl)-propyl]-4-morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-butyramide;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

25. The compound of claim 7 of Formula I(g):

30

20

25

$$X^7CH_2$$
 CH_2
 N
 N
 $I(g)$

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

The compound of claim 25 in which X³ is 1-benzoyl-4-oxo-pyrrolidin-3-yl, 26. 4-oxo-pyrrolidin-3-yl-1-carboxylic acid tert-butyl ester, 2-methyl-4-oxo-tetrahydro-furan-10 3-yl, 2-ethyl-4-oxo-tetrahydro-furan-3-yl, 4-oxo-tetrahydro-furan-3-yl, 2-acetoxy-4-oxoazetidin-3-yl, 1-isopropyl-3-oxo-azepan-4-yl, 3-oxo-azepan-4-yl-1-carboxylic acid benzyl ester, 3-oxo-azepan-4-yl-1-carboxylic acid tert-butyl ester, 1-benzoyl-3-oxo-azepan-4-yl, 1-3-oxo-1-(propane-2-sulfonyl)-azepan-4-yl, 1isobutyryl-3-oxo-azepan-4-yl, benzenesulfonyl-3-oxo-azepan-4-yl, 1-benzenesulfonyl-3-oxo-piperidin-4-yl, 1-15 1-benzoyl-3-oxo-piperidin-4-yl or benzenesulfonyl-4-oxo-pyrrolidin-3-yl, tetrahydro-pyran-4-yl;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

27. The compound of claim 23 selected from the group consisting of 3-Hydroxy-4-(4-morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-butyrylamino)-azepane-1-carboxylic acid tert-butyl ester; 4-(2-Cyclopropylmethylsulfonylmethyl-4-morpholin-4-yl-4-oxo-butyrylamino)-3-hydroxy-azepane-1-carboxylic acid tert-butyl ester; 3-Hydroxy-4-[2-(2-methyl-propane-1-sulfonylmethyl)-4-morpholin-4-yl-4-oxo-butyrylamino]-azepane-1-carboxylic acid tert-butyl ester; 4-(4-Morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-

4-(2butyrylamino)-3-oxo-azepane-1-carboxylic acid tert-butyl ester: Cyclopropylmethylsulfonylmethyl-4-morpholin-4-yl-4-oxo-butyrylamino)-3-oxo-azepane-1-carboxylic acid tert-butyl ester; 4-[2-(2-Methyl-propane-1-sulfonylmethyl)-4-morpholin-4-yl-4-oxo-butyrylamino]-3-oxo-azepane-1-carboxylic acid tert-butyl ester; N-(1-Benzenesulfonyl-3-oxo-azepan-4-yl)-4-morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-N-(1-Benzenesulfonyl-3-oxo-azepan-4-yl)-2-(2-methyl-propane-1butyramide; 3-(4-Morpholin-4-yl-4-oxo-2sulfonylmethyl)-4-morpholin-4-yl-4-oxo-butyramide; benzylsulfonylmethyl-butyrylamino)-4-oxo-pyrrolidine-1-carboxylic acid tert-butyl ester; 4-(4-Morpholin-4-yl-4-oxo-2-benzylsulfonylmethyl-butyrylamino)-3-oxo-azepane-1carboxylic acid benzyl ester; and acetic acid (2S,3S)-3-(4-morpholin-4-yl-4-oxo-2benzylsulfonylmethyl-butanoylamino)-4-oxo-azetidin-2-yl ester;

and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

28. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.

20

25

5

10

- 29. A method for treating a disease in an animal in which inhibition of Cathepsin S can prevent, inhibit or ameliorate the pathology and/or symptomology of the disease, which method comprises administering to the animal a therapeutically effective amount of compound of Claim 1 or a *N*-oxide derivative or individual isomer or mixture of isomers thereof; or a pharmaceutically acceptable salt or solvate of such compounds and the *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.
- 30. The use of a compound of Claim 1 in the manufacture of a medicament for treating a disease in an animal in which Cathepsin S activity contributes to the pathology and/or symptomology of the disease.

31. A process for preparing a compound of Formula I:

$$\mathbb{R}^4$$
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^4

5

10

15

in which:

 X^1 is $-C(R^1)(R^2)X^2$ or $-X^3$;

 X^2 is cyano, -CHO, -C(R^7)(R^8) R^5 , -C(R^7)(R^8)CF₃, -C(R^7)(R^8)CF₂CF₂ R^9 $-C(R^7)(R^8)CF_2C(O)NR^5R^6$, $-C(R^7)(R^8)C(R^7)(R^8)NR^5R^6$, -CH=CHS(O)₂ R^5 , $-C(R^7)(R^8)CH_2OR^5$, $-C(R^{7})(R^{8})CH_{2}N(R^{6})SO_{2}R^{5},$ $-C(R^{7})(R^{8})C(R^{7})(R^{8})OR^{5}$ $-C(R^7)(R^8)C(R^7)(R^8)N(R^6)(CH_2)_2OR^6$ $-C(R^7)(R^8)C(R^7)(R^8)N(R^6)(CH_2)_2NR^6$ $-C(R^7)(R^8)C(R^7)(R^8)R^5$; wherein \mathbb{R}^5 (C_{1-4}) alkyl, (C_{6-10}) aryl (C_{0-6}) alkyl, (C_{4-10}) cycloalkyl (C_{0-6}) alkyl $hetero(C_{4-10})aryl(C_{0-6})alkyl,$ hetero(C_{4-10})cycloalkyl(C_{0-6})alkyl; R^6 is hydrogen or (C_{1-6})alkyl; R^7 is hydrogen or (C₁₋₄)alkyl and R⁸ is hydroxy or R⁷ and R⁸ together form oxo; R⁹ is hydrogen, halo, (C_{1-4}) alkyl, (C_{5-10}) aryl (C_{0-6}) alkyl or hetero (C_{5-10}) aryl (C_{0-6}) alkyl;

X³ represents a group of Formula (a):

$$-\xi - (a)$$

10

15

20

25

30

in which n is 1 or 2, z is 0 or 1, X^5 is selected from NR^{10} , S or O, wherein R^{10} is hydrogen or (C_{1-6}) alkyl, and X^6 is O, S or NR^{11} , wherein R^{11} is selected from hydrogen, (C_{1-6}) alkyl, $-X^4C(O)OR^{12}$, $-X^4C(O)R^{13}$, $-X^4C(O)NR^{12}R^{12}$, $-X^4S(O)_2NR^{12}R^{12}$, $-X^4S(O)_2R^{14}$, $-R^{15}$, $-X^4S(O)_2R^{15}$, $-X^4C(O)R^{15}$, $-X^4C(O)OR^{15}$, $-X^4C(O)NR^{12}R^{15}$ and $-X^4S(O)_2NR^{12}R^{15}$, in which X^4 is a bond or (C_{1-6}) alkylene; R^{12} at each occurrence independently is hydrogen or (C_{1-6}) alkyl; R^{13} is hydrogen, (C_{1-6}) alkyl or halo-substituted (C_{1-6}) alkyl, R^{14} is (C_{1-6}) alkyl or halo-substituted (C_{1-6}) alkyl and R^{15} is (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, hetero (C_{3-10}) cycloalkyl (C_{0-6}) alkyl, (C_{6-10}) aryl (C_{0-6}) alkyl, hetero (C_{5-10}) aryl (C_{0-6}) alkyl, (C_{9-12}) bicycloaryl (C_{0-6}) alkyl or hetero (C_{8-12}) bicycloaryl (C_{0-6}) alkyl;

wherein within X^1 any cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be substituted with 1 radical R^{20} selected from $-R^{15}$, $-X^4OR^{15}$, $-X^4SR^{15}$, $-X^4S(O)R^{15}$, $-X^4S(O)R^{15}$, $-X^4C(O)R^{15}$, and wherein X^1 and $X^2C(O)R^{15}$, $-X^4R^{12}$, and wherein X^1 and $X^2C(O)R^{12}$, $-X^4R^{12}$, and wherein X^1 , and $X^2C(O)R^{12}$, $-X^4R^{12}$, and wherein X^1 , and $X^2C(O)R^{12}$, $-X^4R^{12}$, and wherein X^1 , and $X^2C(O)R^{12}$, $-X^4R^{12}$, and wherein X^1 , and $X^2C(O)R^{12}$, $-X^4R^{12}$, and wherein X^1 , and $X^2C(O)R^{12}$, and wherein X^2 , and $X^2C(O)R^{12}$, and any are an elements X^2 , and $X^2C(O)R^{12}$, and an elements X^2 , and $X^2C(O)R^{12}$, and an elements X^2 , and $X^2C(O)R^{12}$, and an elements X^2 , and an e

R¹ and R² are both fluoro; or

R¹ is hydrogen or (C_{1-6}) alkyl and R² is selected from the group consisting of hydrogen, (C_{1-6}) alkyl, cyano, $-X^4NR^{12}R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)QR^{12}$, $-X^4NR^{12}C(O)QR^{12}$, $-X^4NR^{12}C(O)QR^{12}$, $-X^4NR^{12}C(O)QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{13}$, $-X^4QR^{12}$, $-X^4QR^{13}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, and $-X^4QR^{12}$, wherein $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, and $-X^4QR^{12}$, wherein $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, $-X^4QR^{12}$, wherein $-X^4QR^{12}$,

20

25

30

wherein R^2 , said cycloalkylene and said heterocycloalkylene may be substituted further with 1 to 3 radicals independently selected from (C_{1-6}) alkyl, cyano, halo, halo-substituted (C_{1-4}) alkyl, nitro, $-X^4NR^{12}R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4C(O)R^{12}$, wherein $-X^4$, $-X^4C(O)R^{12}$, and $-X^4C(O)R^{12}$, wherein $-X^4$, $-X^4C(O)R^{12}$, and $-X^4C(O)R^{12}$, are as defined above;

R³ and R⁴ are independently -C(R¹⁶)(R¹⁷)X⁷, wherein R¹⁶ and R¹⁷ are hydrogen, (C_{1.6})alkyl or fluoro, or R¹⁶ is hydrogen and R¹⁷ is hydroxy and X⁷ is selected from $-X^4NR^{12}C(O)OR^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)NR^{12}R^{12}$ $-X^4NR^{12}R^{12}$, 10 $-X^4NR^{12}C(NR^{12})NR^{12}R^{12}, -X^4OR^{13}, -X^4SR^{13}, -X^4C(O)OR^{12}, -X^4C(O)R^{13}, -X^4OC(O)R^{13}, -X^4OC(O)R^$ $-X^4NR^{12}S(O)_2R^{13}$, $-X^4P(O)(OR^{12})OR^{12}$. $-X^4S(O)_2NR^{12}R^{12}$, $-X^{4}C(O)NR^{12}R^{12}$. $-X^4OP(O)(OR^{12})OR^{12}, -X^4S(O)R^{14}, -X^4S(O)_2R^{14}, -R^{15}, -X^4OR^{15}, -X^4SR^{15}, -X^4S(O)R^{15}, -X^4S(O)R^{1$ $-X^4S(O)_2R^{15}$, $-X^4C(O)R^{15}$, $-X^4C(O)OR^{15}$, $-X^4OC(O)R^{15}$, $-X^4NR^{15}R^{12}$, $-X^4NR^{12}C(O)R^{15}$, $-X^4C(O)NR^{15}R^{12}$, $-X^4S(O)_2NR^{15}R^{12}$, $-X^4NR^{12}S(O)_2R^{15}$, $-X^4NR^{12}C(O)OR^{15}$ 15 $-X^4NR^{12}C(O)NR^{15}R^{12}$ and $-X^4NR^{12}C(NR^{12})NR^{15}R^{12}$, wherein X^4 , R^{12} , R^{13} , R^{14} and R^{15} are as defined above; wherein within one of R³ or R⁴ any cycloalkyl, heterocycloalkyl, aryl or heteroaryl may be

substituted with 1 radical R²¹ selected from -R¹⁵, -X⁴OR¹⁵, -X⁴SR¹⁵, -X⁴S(O)R¹⁵, $-X^4S(O)_2R^{15}$, $-X^4C(O)R^{15}$, $-X^4C(O)OR^{15}$, $-X^4OC(O)R^{15}$, $-X^4NR^{15}R^{12}$, $-X^4NR^{12}C(O)R^{15}$, $-X^4C(O)NR^{12}R^{15}$, $-X^4S(O)_2NR^{15}R^{12}$, $-X^4NR^{12}S(O)_2R^{15}$, $-X^4NR^{12}C(O)OR^{15}$, $-X^4NR^{12}C(O)NR^{15}R^{12}$ and $-X^4NR^{12}C(NR^{12})NR^{15}R^{12}$, wherein X^4 , R^{12} and R^{15} are as defined above; and wherein each of R³, R⁴ and R²¹ may be substituted further with 1 to 5 radicals independently selected from (C₁₋₆)alkyl, cyano, halo, halo-substituted(C₁₋₄)alkyl, nitro, $-X^4NR^{12}R^{12}$, $-X^4NR^{12}C(O)R^{12}$, $-X^4NR^{12}C(O)OR^{12}$, $-X^4NR^{12}C(O)NR^{12}R^{12}$, $-X^4NR^{12}C(NR^{12})NR^{12}R^{12}$, $-X^4OR^{13}$, $-X^4SR^{13}$, $-X^4C(O)OR^{12}$, $-X^4C(O)R^{13}$, $-X^4OC(O)R^{13}$, $-X^4C(O)NR^{12}R^{12}$, $-X^4S(O)_2NR^{12}R^{12}$, $-X^4NR^{12}S(O)_2R^{13}$, $-X^4P(O)(OR^{12})OR^{12}$, $-X^4OP(O)(OR^{12})OR^{12}$, $-X^4S(O)R^{14}$ and $-X^4S(O)_2R^{14}$, wherein X^4 , R^{12} , R^{13} and R^{14} are as defined above; provided that only one bicyclic ring structure is present within each of R³ or R^4 : and provided that when X^2 is cyano and X^7 within one of R^3 or R^4 is $-X^4C(O)R^{13}$ or -X⁴C(O)R¹⁵, wherein X⁴ is a bond, then X⁷ within the other of R³ or R⁴ is limited to - X^4SR^{15} , - $X^4S(O)R^{15}$ and - $X^4S(O)_2R^{15}$, wherein R^{15} is (C_{6-10}) aryl (C_{1-6}) alkyl substituted with 1 to 5 radicals or hetero (C_{5-10}) aryl (C_{0-6}) alkyl optionally substituted with 1 to 5 radicals, wherein said radicals are independently selected from (C_{1-6}) alkyl, cyano, halo, halo-substituted (C_{1-4}) alkyl, nitro, - $X^4NR^{12}R^{12}$, - $X^4NR^{12}C(O)R^{12}$, - $X^4NR^{12}C(O)R^{13}$, - $X^4C(O)R^{13}$, - $X^4C(O)R^{13}$, - $X^4C(O)R^{13}$, - $X^4C(O)R^{13}$, - $X^4C(O)R^{12}$, and $X^4C(O)R^{12}$

and the corresponding N-oxides, and their prodrugs, and their protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds of formula I and their N-oxides and their prodrugs, and their protected derivatives, individual isomers and mixtures of isomers thereof; which process comprises:

(A) reacting a compound of Formula 2:

$$R^4$$
 OH

20

25

5

10

15

with a compound of the formula $NH_2CR^1R^2X^2$, in which X^2 , R^1 , R^2 , R^3 and R^4 are as defined in the Summary of the Invention for Formula I; or

- (B) reacting a compound of Formula 2 with a compound of the formula NH_2X^3 , in which X^3 , R^3 and R^4 are as defined in the Summary of the Invention for Formula I; or
- (C) optionally converting a compound of Formula I into a pharmaceutically acceptable salt;
- (D) optionally converting a salt form of a compound of Formula I to non-salt form;

- (E) optionally converting an unoxidized form of a compound of Formula I into a pharmaceutically acceptable *N*-oxide;
- (F) optionally converting an N-oxide form of a compound of Formula I its unoxidized form;
- 5 (G) optionally resolving an individual isomer of a compound of Formula I from a mixture of isomers;
 - (H) optionally converting a non-derivatized compound of Formula I into a pharmaceutically prodrug derivative; and
- (I) optionally converting a prodrug derivative of a compound of Formula I to its
 non-derivatized form.