TD 1

Théorie de la mesure

Exercice 1

Montrer que l'ensemble des nombres rationnels est de mesure nulle pour la mesure de Lebesgue.

Exercice 2 Triadique de Cantor

Notons $\mathcal A$ l'ensemble constitué de réunions finies de segments deux à deux disjoints. Définissons l'application

$$\mathcal{T}: \qquad \mathcal{A} \qquad \to \mathcal{A}$$

$$\bigcup_{1 \le i \le n} [a_i, b_i] \quad \mapsto \bigcup_{1 \le i \le n} \left([a_i, a_i + \frac{b_i - a_i}{3}] \cup [b_i - \frac{b_i - a_i}{3}, b_i] \right)$$

On note $K_0 = [0, 1]$ et on définit par récurrence $K_{n+1} = \mathcal{T}(K_n)$.

On définit le triadique de Cantor $K = \bigcap_{n=0}^{\infty} K_n$.

- 1. Calculer K_1 , K_2 et K_3 .
- $\mathbf{2}$. Montrer que la mesure de Lebesgue de K est nulle.
- **3.** Si $x \in [0,1]$ montrer que

$$x \in K \iff x = \sum_{k=1}^{\infty} \frac{x_k}{3^k} \quad avec \quad x_k \in \{0, 2\}$$

En déduire que K n'est pas dénombrable

Exercice 3 Escalier du diable

Considérons une suite de fonctions définie sur [0,1] par $f_0(x)=x$ et par la récurrence suivante

$$f_{n+1}(x) = \begin{cases} \frac{1}{2} f_n(3x) & si & 0 \le x \le \frac{1}{3} \\ \frac{1}{2} & si & \frac{1}{3} \le x \le \frac{2}{3} \\ \frac{1+f_n(3x-2)}{2} & si & \frac{2}{3} \le x \le 1 \end{cases}$$

- 1. Tracer f_1 , f_2 et f_3 .
- **2.** Montrer que pour p > q

$$\forall x \in [0,1] \ |f_p(x) - f_q(x)| \le \frac{1}{2^q}$$

et en déduire que la limite de la suite (f_n) notée f existe et est continue.

- **3.** Montrer que f est de dérivée nulle sur $[0,1]\backslash K$.
- **4.** A t-on la relation classique $\int_0^x f'(y) dy = f(x)$?

Exercice 4 Soit μ une mesure positive. Montrer les propriétés suivantes:

1. Si A_n est une suite d'ensembles mesurables, on a :

$$\mu\left(\bigcup_{n\geq 0} A_n\right) \leq \sum_{n\geq 0} \mu(A_n)$$

2. Si $A, B \subset \mathbb{R}^N$ sont mesurables, on a:

$$\mu(A \mid JB) + \mu(A \cap B) = \mu(A) + \mu(B)$$

3. Si A_n est une suite croissante d'ensembles mesurables on a :

$$\mu(\bigcup_{1}^{\infty} A_n) = \lim_{n} \mu(A_n)$$

4. Si A_n est une suite décroissante d'ensembles mesurables et si $\mu(A_1) < +\infty$, on a :

$$\mu(\bigcap_{1}^{\infty} A_n) = \lim_{n} \mu(A_n)$$

Exercice 5 Pour une suite (a_n) , sup (a_n) désigne la borne supérieure dans $[0, \infty]$. La limite supérieure, lim sup (a_n) , est la limite de la suite décroissante (minorée par 0)

$$s_k = \sup_{n > k} (a_n)$$

Pour une suite de fonctions $f_n: X \to [0, \infty]$, $n \in \mathbb{N}$, la fonction $\sup_n f_n$ est la fonction $x \to \sup_n f_n(x)$; la fonction $\lim_n f_n$ est la fonction f_n est la fonction

- **1.** Montrer que si f_n est mesurable alors sup f_n et inf f_n le sont. (On commencera par montrer que $\{x \in X, \sup_n f_n > a\} = \bigcup_n \{x \in X, f_n > a\}$)
 - **2.** Montrer ensuite que si f_n est mesurable lim sup f_n et lim inf f_n le sont

Exercice 6 Si s est une fonction étagée, et $(\mathbb{R}^N, \mathcal{B}, \mu)$ un espace mesuré, alors

$$B \in \mathcal{B} \to \int_{\mathcal{B}} s \ d\mu$$

est une mesure.