```
In [1]: # Load Packages
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        import matplotlib.ticker as mtick
        import sqlite3
        import seaborn as sns
        from imblearn.over_sampling import SMOTENC
        from sklearn.linear_model import LinearRegression
        from sklearn import tree, preprocessing
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import accuracy_score, confusion_matrix, classificatio
        n_report, plot_confusion_matrix, recall_score
        from sklearn. tree import DecisionTreeClassifier
        from sklearn.ensemble import BaggingClassifier, RandomForestClassifier, Ext
        raTreesCl assi fi er
        from sklearn.preprocessing import OneHotEncoder, Ordinal Encoder, StandardSc
        aler
        from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
        from sklearn. neighbors import KNeighborsClassifier
        from sklearn.metrics import roc_curve, auc, f1_score, make_scorer, recall_s
        core
        from sklearn.svm import SVC
        from sklearn.linear_model import LogisticRegression
        from matplotlib. offsetbox import OffsetImage, AnnotationBbox
        from matplotlib.pyplot import figure
        from bs4 import Beautiful Soup
        import time
        import requests # to get images
                           # to save files locally
        import shutil
        import datetime
        from scipy stats import norm
        import warnings
        warni ngs. fi I terwarni ngs(' i gnore')
        import xqboost
        from xgboost import XGBClassifier
        from imblearn import under_sampling, over_sampling
        from imblearn.over_sampling import SMOTE, ADASYN
        import random
        from random import randint
        from sklearn. datasets import *
        from IPython. display import Image, display_svg, SVG
        import os
        from sklearn. pipeline import Pipeline
        from dtreeviz. trees import *
        from sklearn.tree import plot_tree
        os. environ["PATH"] += os. pathsep + "C: \\Users\\tmcro\\anaconda3\\pkgs\\grap
        hvi z-2. 38-hfd603c8_2\Li brary\bi n\graphvi z\"
        from sklearn.model_selection import train_test_split
        from sklearn.compose import make_column_selector as selector
        from sklearn.preprocessing import OneHotEncoder, StandardScaler
        from imblearn.pipeline import Pipeline as imbpipeline # https://towardsdata
        science.com/the-right-way-of-using-smote-with-cross-validation-92a8d09d00c7
```

```
from imblearn.pipeline import make_pipeline as make_imb_pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn. pipeline import make_pipeline
        from sklearn. pipeline import FeatureUnion
In [2]: import pandas as pd
        df = pd. read_csv('heart_2020_cl eaned.csv')
        target_name = "HeartDi sease"
        y = df[target_name]
        X = df.drop(columns=[target_name])
In [3]: # Scoring Metric
        def my_custom_score(y_true, y_pred):
             cf = confusion_matrix(y_true, y_pred)
             precision = cf[1,1] / sum(cf[:,1])
             recal I
                       = cf[1,1] / sum(cf[1,:])
             f1_score = 2*precision*recall / (precision + recall)
             rwf\_score = (1+(2**2)) * ((precision * recall) / (((2**2) * precision))
        + recall))
             return rwf_score
        my_scorer = make_scorer(my_custom_score, greater_is_better= True)
        # Change class metric
        class_metric = my_scorer
In [4]: X. dtypes
Out[4]:
        BMI
                              float64
        Smoki na
                               obi ect
        Al cohol Dri nki ng
                              obi ect
        Stroke
                               obj ect
                             float64
        Physi cal Heal th
        Mental Heal th
                              float64
        Di ffWal ki ng
                              obj ect
                               obj ect
        Sex
        AgeCategory
                               obi ect
        Race
                               obj ect
        Diabetic
                               obj ect
        Physical Activity
                               obj ect
        GenHeal th
                               obj ect
        SI eepTi me
                              float64
        Asthma
                              obi ect
        Ki dneyDi sease
                               obj ect
        Ski nCancer
                               obj ect
        dtype: object
In [5]:
        numeri cal _col umns_sel ector = sel ector(dtype_excl ude=obj ect)
        categorical_columns_selector = selector(dtype_include=object)
        numerical_columns = numerical_columns_selector(X)
        categorical_columns = categorical_columns_selector(X)
```

```
In [6]: categorical_columns
 Out[6]: ['Smoking',
           'Al cohol Drinking',
           'Stroke',
           'DiffWalking',
           'Sex',
           'AgeCategory',
           'Race',
           'Diabetic',
           'Physical Activity',
           'GenHeal th',
           'Asthma',
           'Ki dneyDi sease',
           'Ski nCancer']
 In [7]:
          numerical_columns
 Out[7]:
          ['BMI', 'Physical Health', 'Mental Health', 'SleepTime']
 In [8]: X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
 In [9]: catcols = [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16]
In [10]: # To get the column names from onehotencoder
          ohe = OneHotEncoder(sparse=False, handle_unknown='ignore')
          checker = ohe. fi t_transform(X_train[categori cal_col umns])
In [11]: feature_names_categorical = ohe.get_feature_names(categorical_columns)
In [12]: feature_names_categorical
Out[12]: array(['Smoking_No', 'Smoking_Yes', 'AlcoholDrinking_No',
                  'Al cohol Dri nki ng_Yes', 'Stroke_No', 'Stroke_Yes', 'Di ffWal ki ng_No',
                  'DiffWalking_Yes', 'Sex_Female', 'Sex_Male', 'AgeCategory_18-24',
                  'AgeCategory_25-29', 'AgeCategory_30-34', 'AgeCategory_35-39',
                  'AgeCategory_40-44', 'AgeCategory_45-49', 'AgeCategory_50-54',
                  'AgeCategory_55-59', 'AgeCategory_60-64', 'AgeCategory_65-69', 'AgeCategory_70-74', 'AgeCategory_75-79',
                  'AgeCategory_80 or older', 'Race_American Indian/Alaskan Native',
                  'Race_Asian', 'Race_Black', 'Race_Hispanic', 'Race_Other',
                  'Race_White', 'Diabetic_No', 'Diabetic_No, borderline diabetes',
                  'Diabetic_Yes', 'Diabetic_Yes (during pregnancy)',
                  'Physical Activity_No', 'Physical Activity_Yes',
'GenHeal th_Excellent', 'GenHeal th_Fair', 'GenHeal th_Good',
                  'GenHealth_Poor', 'GenHealth_Very good', 'Asthma_No', 'Asthma_Yes',
                  'Ki dneyDi sease_No', 'Ki dneyDi sease_Yes', 'Ski nCancer_No',
                  'SkinCancer Yes'], dtype=object)
```

```
In [13]: Smote_NC = SMOTENC(categorical_features= catcols, random_state=42)
In [14]: print(y_train.value_counts())
         # Fit SMOTE to training data
         X_train_resampled, y_train_resampled = Smote_NC.fit_resample(X_train, y_tra
         # Preview synthetic sample class distribution
         print('\n')
         print(pd. Seri es(y_trai n_resampl ed). val ue_counts())
         No
                219418
                 20428
         Yes
         Name: HeartDisease, dtype: int64
         No
                219418
         Yes
                219418
         Name: HeartDisease, dtype: int64
In [15]: | X_train = X_train_resampled
         y_train = y_train_resampled
In [16]: # Identify Processors
         categori cal _preprocessor = OneHotEncoder(handl e_unknown="i gnore")
         numeri cal _preprocessor = StandardScaler()
         preprocessor = ColumnTransformer([('one-hot-encoder', categorical_preproces
         sor, categorical_columns),
             ('standard_scaler', numerical_preprocessor, numerical_columns)])
         smoter = SMOTENC(categorical_features= categorical_columns, random_state=
         classifier = LogisticRegression(max_i ter=500)
```

Code Additions

```
In [17]: # SOURCE: The origin of this confusion matrix code was found on medium,
          # from https://medium.com/@dtuk81/confusion-matrix-visualization-fc31e3f30f
         def make_confusi on_matri x(cf,
                                     group_names=None,
                                    categori es='auto',
                                     count=True,
                                     percent=True,
                                     cbar=True.
                                     xyticks=True,
                                     xyplotlabels=True,
                                     sum_stats=True,
                                     figsize=None,
                                     cmap='Bl ues',
                                     title=None):
              # CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS
              if sum_stats:
                  #Accuracy is sum of diagonal divided by total observations
                  accuracy = np. trace(cf) / float(np. sum(cf))
                  #if it is a binary confusion matrix, show some more stats
                  if len(cf)==2:
                      #Metrics for Binary Confusion Matrices
                      a = cf[0, 0]
                      b = cf[0, 1]
                      c = cf[1, 0]
                      d = cf[1, 1]
                      tn = ((a / (a+b))*100). round(2). astype(str) + '%'
                      fp = ((b / (a+b))*100). round(2). astype(str) + '%'
                      fn = ((c / (c+d))*100). round(2). astype(str) + '%'
                      tp = ((d / (c+d))*100). round(2). astype(str) + '%'
                      precision = cf[1,1] / sum(cf[:,1])
                      recal I
                                = cf[1,1] / sum(cf[1,:])
                      f1_score = 2*precision*recall / (precision + recall)
                      rwf\_score = (1+(2**2)) * ((precision * recall) / (((2**2) * pre
         cision) + recall))
                      stats_text = "\n\nAccuracy={: 0. 3f}\nPrecision={: 0. 3f}\nRecall =
          {: 0. 3f}\nF1 Score={: 0. 3f}\n\nRecall -Weighted F Score={: 0. 3f}". format(
                          accuracy, precision, recall, f1_score, rwf_score)
                  el se:
                      stats_text = "\n\nAccuracy={: 0. 3f}". format(accuracy)
              el se:
                  stats_text = ""
              # CODE TO GENERATE TEXT INSIDE EACH SQUARE
              blanks = ['' for i in range(cf. size)]
              if group_names and len(group_names)==cf. size:
                  group_labels = ["{}\n".format(value) for value in group_names]
              el se:
                  group_labels = blanks
              if count:
                  group_counts = ["{0:0.0f}\n".format(value) for value in cf.flatten
```

```
()1
              el se:
                  group_counts = blanks
             if percent:
                  group_percentages = [tn, fp, fn, tp]
                  # old = group_percentages = ["{0:.2%}".format(value) for value in c
          f. flatten()/np. sum(cf)]
             el se:
                  group_percentages = bl anks
              box_labels = [f''(v1)(v2)(v3)''.strip()) for v1, v2, v3 in zip(group_label
         s, group_counts, group_percentages)]
              box_labels = np. asarray(box_labels). reshape(cf. shape[0], cf. shape[1])
              # SET FIGURE PARAMETERS ACCORDING TO OTHER ARGUMENTS
              if figsize==None:
                  #Get default figure size if not set
                  figsize = plt.rcParams.get('figure.figsize')
              if xyticks==False:
                  #Do not show categories if xyticks is False
                  categori es=Fal se
              # MAKE THE HEATMAP VISUALIZATION
             plt.figure(figsize=figsize)
              sns. heatmap(cf, annot=box_l abels, fmt="", cmap=cmap, cbar=cbar, xti ckl abels=
         categories, yticklabels=categories)
             if xyplotlabels:
                  plt.ylabel('True label', weight = 'bold')
                  plt.xlabel('Predicted label' + stats_text, weight = 'bold')
             el se:
                  plt.xlabel(stats_text)
             if title:
                  plt.title(title, size = 20, weight = 'bold')
In [18]: dfcols = ['Model', 'RWF Score', 'F1', 'Recall', 'Precision', 'Accuracy']
         model_summary = pd. DataFrame(columns=dfcols)
         model_summary
Out[18]:
```

Model RWF Score F1 Recall Precision Accuracy

```
In [19]:
         # Define Result Saving Initial Function
         def save_result(cf, model_name):
                     global model_summary
                     accuracy = np. trace(cf) / float(np. sum(cf))
                     precision = cf[1,1] / sum(cf[:,1])
                               = cf[1,1] / sum(cf[1,:])
                     recal I
                     f1_score = 2*precision*recall / (precision + recall)
                     rwf\_score = (1+(2**2)) * ((precision * recall) / (((2**2) * pre
         cision) + recall))
                     row = [(model_name, rwf_score, f1_score, recall, precision, acc
         uracy)]
                     res = pd. DataFrame(columns = dfcols, data = row)
                     yeep = [model_summary, res]
                     model_summary = pd. concat(yeep)
                     model_summary = model_summary.sort_values('RWF Score', ascendin
         g = False)
                     model_summary = model_summary.drop_duplicates()
                     return model_summary.round(3)
In [20]: def run_model (model, model_name):
             model.fit(X_train, y_train)
             model_prediction = model.predict(X_test)
             cf_matrix = confusion_matrix(y_test, model_prediction)
             save_resul t(cf_matri x, model _name)
             cf = make_confusion_matrix(cf_matrix)
             return model_summary
```

Models to Run

Out[26]:

	Model	RWF Score	F1	Recall	Precision	Accuracy
0	Logistic Regression	0.501597	0.337694	0.741541	0.218628	0.747326
0	Initial Decision Tree	0.412634	0.246150	0.751476	0.147180	0.600158

Recall-Weighted F Score=0.413

In [27]: run_model(log_reg, 'Logistic Regression')

Out[27]:

	Model	RWF Score	F1	Recall	Precision	Accuracy
0	Logistic Regression	0.501597	0.337694	0.741541	0.218628	0.747326
0	Initial Decision Tree	0.412634	0.246150	0.751476	0.147180	0.600158

Recall-Weighted F Score=0.502

In [28]: run_model (decisionTree, 'Decision Tree')

Out[28]:

	Model	RWF Score	F1	Recall	Precision	Accuracy
0	Logistic Regression	0.501597	0.337694	0.741541	0.218628	0.747326
0	Decision Tree	0.441529	0.276928	0.731317	0.170803	0.668251
0	Initial Decision Tree	0.412634	0.246150	0.751476	0.147180	0.600158

Recall-Weighted F Score=0.442

Out[29]:

	Model	RWF Score	F1	Recall	Precision	Accuracy
0	Logistic Regression	0.501597	0.337694	0.741541	0.218628	0.747326
0	Decision Tree	0.441529	0.276928	0.731317	0.170803	0.668251
0	Initial Decision Tree	0.412634	0.246150	0.751476	0.147180	0.600158
0	Random Forest	0.304572	0.288472	0.316343	0.265114	0.864439

Recall-Weighted F Score=0.305

Out[30]:

	Model	RWF Score	F1	Recall	Precision	Accuracy
0	Logistic Regression	0.501597	0.337694	0.741541	0.218628	0.747326
0	Decision Tree	0.441529	0.276928	0.731317	0.170803	0.668251
0	Initial Decision Tree	0.412634	0.246150	0.751476	0.147180	0.600158
0	Random Forest	0.304572	0.288472	0.316343	0.265114	0.864439
0	Bagged Trees	0.256132	0.252925	0.258315	0.247756	0.867440

Recall-Weighted F Score=0.256

Out[31]:

	Model	RWF Score	F1	Recall	Precision	Accuracy
0	Logistic Regression	0.501597	0.337694	0.741541	0.218628	0.747326
0	Decision Tree	0.441529	0.276928	0.731317	0.170803	0.668251
0	Initial Decision Tree	0.412634	0.246150	0.751476	0.147180	0.600158
0	Random Forest	0.304572	0.288472	0.316343	0.265114	0.864439
0	Extra Trees	0.300333	0.273155	0.321670	0.237357	0.851293
0	Bagged Trees	0.256132	0.252925	0.258315	0.247756	0.867440

Recall-Weighted F Score=0.300

Out[32]:

	Model	RWF Score	F1	Recall	Precision	Accuracy
0	Logistic Regression	0.501597	0.337694	0.741541	0.218628	0.747326
0	Decision Tree	0.441529	0.276928	0.731317	0.170803	0.668251
0	Initial Decision Tree	0.412634	0.246150	0.751476	0.147180	0.600158
0	XGBoost	0.371405	0.343849	0.392369	0.306008	0.869917
0	Random Forest	0.304572	0.288472	0.316343	0.265114	0.864439
0	Extra Trees	0.300333	0.273155	0.321670	0.237357	0.851293
0	Bagged Trees	0.256132	0.252925	0.258315	0.247756	0.867440
label	○ - 66824 91.53%		6180 8.47%		- 60000 - 50000 - 40000	
True label	H - 4220 60.76%		2725 39.24%		- 30000 - 20000 - 10000	

Accuracy=0.870 Precision=0.306 Recall=0.392 F1 Score=0.344

Recall-Weighted F Score=0.371

Predicted label

Iterate the best

```
log_reg['logisticregression'].get_params()
In [331:
Out[33]: {'C': 1.0,
           'class_weight': None,
           'dual': False,
           'fit_intercept': True,
           'intercept_scaling': 1,
           'I1_ratio': None,
           'max_i ter': 100,
           'multi_class': 'auto',
           'n_j obs': None,
           'penalty': '12',
           'random_state': 0,
           'solver': 'lbfgs',
           'tol': 0.0001,
           'verbose': 0,
           'warm_start': False}
In [34]:
         # Define Grid
          rf_grid = [{'logisticregression__C': [1, 2],
                  'logisticregression__penalty': ['l2', 'none'],
                  'logisticregression__solver': ['newton-cg', 'lbfgs','sag']}]
In [35]:
         logreg_gridsearch = GridSearchCV(estimator=log_reg, param_grid=rf_grid, sco
          ring=class_metric, cv=3)
In [36]: log_reg.get_params().keys()
Out[36]:
         dict_keys(['memory', 'steps', 'verbose', 'columntransformer', 'logisticregr
         ession', 'columntransformer__n_jobs', 'columntransformer__remainder', 'colu
         \verb|mntransformer_sparse_threshold|, \ \ 'column transformer_transformer_weights'|,
          'columntransformer__transformers', 'columntransformer__verbose', 'columntra
         nsformer__one-hot-encoder', 'columntransformer__standard_scaler', 'columntr
         ansformer__one-hot-encoder__categories', 'columntransformer__one-hot-encode
```

r__drop', 'col umntransformer__one-hot-encoder__dtype', 'col umntransformer__ one-hot-encoder__handle_unknown', 'col umntransformer__one-hot-encoder__spar se', 'col umntransformer__standard_scaler__copy', 'col umntransformer__standard_scaler__with_mean', 'col umntransformer__standard_scaler__with_std', 'log isticregression__C', 'logisticregression__class_weight', 'logisticregression__dual', 'logisticregression__fit_intercept', 'logisticregression__interce pt_scaling', 'logisticregression__l1_ratio', 'logisticregression__max_iter', 'logisticregression__multi_class', 'logisticregression__n_jobs', 'logisticregression__penalty', 'logisticregression__random_state', 'logisticregression__verbose', 'logisticregr

ogisticregression_warm_start'])

In [37]: #logreg_gridsearch.fit(X_train, y_train)
run_model(logreg_gridsearch, 'Logistic Regression with Grid Search')

Out[37]:

	Model	RWF Score	F1	Recall	Precision	Accuracy
0	Logistic Regression	0.501597	0.337694	0.741541	0.218628	0.747326
0	Logistic Regression with Grid Search	0.501412	0.337529	0.741397	0.218502	0.747189
0	Decision Tree	0.441529	0.276928	0.731317	0.170803	0.668251
0	Initial Decision Tree	0.412634	0.246150	0.751476	0.147180	0.600158
0	XGBoost	0.371405	0.343849	0.392369	0.306008	0.869917
0	Random Forest	0.304572	0.288472	0.316343	0.265114	0.864439
0	Extra Trees	0.300333	0.273155	0.321670	0.237357	0.851293
0	Bagged Trees	0.256132	0.252925	0.258315	0.247756	0.867440

Recall-Weighted F Score=0.501

Winner: Logistic Regression

```
In [38]: log_reg.named_steps
Out[38]: {'columntransformer': ColumnTransformer(transformers=[('one-hot-encoder',
                                            OneHotEncoder(handle_unknown='ignore'),
                                            ['Smoking', 'Alcohol Drinking', 'Stroke',
                                             'DiffWalking', 'Sex', 'AgeCategory', 'Ra
         ce',
                                             'Di abeti c', 'Physi cal Acti vi ty', 'GenHeal
         th',
                                             'Asthma', 'KidneyDisease', 'SkinCancer
         ']),
                                            ('standard_scaler', StandardScaler(),
                                            ['BMI', 'Physical Health', 'Mental Health',
                                             'SleepTime'])]),
          'logisticregression': LogisticRegression(random_state=0)}
In [39]: coefs = log_reg['logisticregression'].coef_
         coefs = list(coefs[0])
         len(coefs)
Out[39]: 50
In [40]: numerical_columns
Out[40]: ['BMI', 'Physical Health', 'Mental Health', 'SleepTime']
In [41]: cat_list= list(feature_names_categorical)
In [42]: all_cats = cat_list + numerical_columns
```

```
In [43]:
          all_cats
Out[43]:
          ['Smoking_No',
            Smoking_Yes',
           'Al cohol Drinking_No',
           'Al cohol Dri nki ng_Yes',
           'Stroke_No',
           'Stroke_Yes',
           'DiffWalking_No',
           'DiffWalking_Yes',
           'Sex_Female',
           'Sex_Male',
           'AgeCategory_18-24',
           'AgeCategory_25-29',
           'AgeCategory_30-34'
           'AgeCategory_35-39',
           'AgeCategory_40-44',
           'AgeCategory_45-49'
           'AgeCategory_50-54',
           'AgeCategory_55-59'
           'AgeCategory_60-64',
           'AgeCategory_65-69',
           'AgeCategory_70-74'
           'AgeCategory_75-79',
           'AgeCategory_80 or older',
           'Race_American Indian/Alaskan Native',
           'Race_Asi an',
           'Race_Black',
           'Race_Hi spani c',
           'Race_Other',
           'Race_White',
           'Diabetic_No',
           'Diabetic_No, borderline diabetes',
           'Diabetic_Yes',
           'Diabetic_Yes (during pregnancy)',
           'Physical Activity_No',
           'Physi cal Acti vi ty_Yes',
           'GenHeal th_Excellent',
           'GenHealth_Fair',
           'GenHeal th_Good',
           'GenHeal th_Poor',
           'GenHealth_Very good',
           'Asthma_No',
           'Asthma_Yes',
           'Ki dneyDi sease_No',
           'Ki dneyDi sease_Yes',
           'Ski nCancer_No',
           'SkinCancer_Yes',
           'BMI',
           'Physical Health',
           'MentalHealth',
           'SleepTime']
```

```
log_reg['logisticregression'].coef_
In [44]:
Out[44]: array([[-4.05333675e-01, -2.90920559e-02,
                                                       3.37922741e-01,
                  -7. 72348472e-01, -6. 18184131e-01,
                                                       1.83758400e-01,
                  -3. 03145729e-01, -1. 31280001e-01, -6. 00230712e-01,
                   1. 65804981e-01, -2. 16451588e+00, -2. 27540768e+00,
                  -2. 01627123e+00, -1. 44242048e+00, -8. 19559992e-01,
                  -4.64338740e-01,
                                     2.44673437e-01,
                                                       6.01561770e-01,
                   1.01634869e+00,
                                     1. 28097544e+00,
                                                       1.61177442e+00,
                                     2. 17521394e+00, -6. 26414042e-01,
                   1.81754057e+00,
                                     6. 32556488e-02,
                  -7. 51741889e-01,
                                                       3.01197732e-01,
                  -4. 49489479e-01,
                                     1. 02876630e+00,
                                                      5. 26667578e-01,
                                    1.00643036e+00, -1.48716355e+00,
                  -4. 80360117e-01,
                  -2.57080607e-01, -1.77345124e-01, -1.34099153e+00,
                                     2.00928726e-03,
                                                      9.89670893e-01,
                   6. 31534785e-01,
                  -7. 16649164e-01, -2. 70863747e-01, -1. 63561984e-01,
                  -2.54662829e-01, -1.79762902e-01, -1.43987311e-01,
                  -2.90438420e-01, 9.58713097e-02, -1.40068493e-02,
                   9. 92067232e-02, -6. 18929764e-02]])
```

```
In [45]: data1 = log_reg['logisticregression'].coef_
    cols = all_cats
    data = pd.DataFrame(data1, columns=cols)
    data = data.T
    data
```

Smoking_No	-0.405334
Smoking_Yes	-0.029092
AlcoholDrinking_No	0.337923
AlcoholDrinking_Yes	-0.772348
Stroke_No	-0.618184
Stroke_Yes	0.183758
DiffWalking_No	-0.303146
DiffWalking_Yes	-0.131280
Sex_Female	-0.600231
Sex_Male	0.165805
AgeCategory_18-24	-2.164516
AgeCategory_25-29	-2.275408
AgeCategory_30-34	-2.016271
AgeCategory_35-39	-1.442420
AgeCategory_40-44	-0.819560
AgeCategory_45-49	-0.464339
AgeCategory_50-54	0.244673
AgeCategory_55-59	0.601562
AgeCategory_60-64	1.016349
AgeCategory_65-69	1.280975
AgeCategory_70-74	1.611774
AgeCategory_75-79	1.817541
AgeCategory_80 or older	2.175214
Race_American Indian/Alaskan Native	-0.626414
Race_Asian	-0.751742
Race_Black	0.063256
Race_Hispanic	0.301198
Race_Other	-0.449489
Race_White	1.028766
Diabetic_No	0.526668
Diabetic_No, borderline diabetes	-0.480360

```
Diabetic_Yes 1.006430
```

Diabetic_Yes (during pregnancy) -1.487164

PhysicalActivity_No -0.257081

PhysicalActivity_Yes -0.177345

GenHealth_Excellent -1.340992

GenHealth_Fair 0.631535

GenHealth_Good 0.002009

GenHealth_Poor 0.989671

GenHealth_Very good -0.716649

Asthma_No -0.270864

Asthma_Yes -0.163562

KidneyDisease_No -0.254663

KidneyDisease_Yes -0.179763

SkinCancer_No -0.143987

In [46]: data = data.reset_index()

Out[55]: Text(0.5, 1.0, 'Logistic Regression Coefficients')

In []: