Drogi kolejowe

Nazwa angielska	Railway
Plik wejściowy	standardowe wejście
Plik wyjściowy	standardowe wyjście
Limit czasowy	2 sekundy
Limit pamięciowy	256 megabajtów

Między Zurychem a Lugano ciągnie się droga kolejowa o długości s kilometrów. Przebiega przez malownicze Alpy, oferując niezapomniane przeżycia podróżującym. Niektóre wzniesienia są zbyt wysokie, by położyć na nich tory, dlatego na trasie wybudowano t tuneli. Tunel o numerze i zaczyna się a_i kilometrów od Zurychu i kończy b_i kilometrów od Zurychu (zatem długość i-tego tunelu jest równa $b_i - a_i$).

W twoim posiadaniu znalazł się rozkład jazdy pociągów między tymi dwoma miastami. Z Zurychu do Lugano kursuje m pociągów, j-ty pociąg odjeżdża o c_j -tej minucie. Z Lugano do Zurychu kursuje n pociągów, przy czym k-ty z nich odjeżdża o d_k -tej minucie. Wszystkie pociągi mają tę samą prędkość na całej trasie równą jednemu kilometrowi na minutę (na prędkość nie wpływa ani fakt przebywania w tunelu, ani kierunek jazdy). Nie ma żadnych przystanków pośrednich i pociągi nie zatrzymują się na semaforach (kolejowej sygnalizacji świetlnej), stąd każdy pociąg dociera do celu w dokładnie s minut.

Długość pociągu w porównaniu do długości trasy jest na tyle mała, że można ją pominąć. **Załóż zatem, że pociąg jest punktem**, który przesuwa się po torach.

Trasy są zazwyczaj dwutorowe (po jednym torze w każdym kierunku), jedynym wyjątkiem są tunele. Każdy tunel zawiera dokładnie jeden tor, który może być użyty w dowolnym kierunku.

Dwa pociągi jadące w przeciwnych kierunkach, jeśli mijają się poza tunelem, jadą dalej bez szwanku . Zachodzi to również w przypadku pociągów, które mijają się na jednym z końców tunelu. Jednakże w przypadku, gdy pociągi mijają się w tunelu, następuje wypadek.

Znając położenie tuneli oraz rozkład jazdy, określ, czy nastąpi wypadek.

Wejście

W pierwszym wierszu znajdują się cztery rozdzielone spacją liczby całkowite s, t, m, n ($1 \le s \le 1\,000\,000\,000$, $0 \le t \le 100\,000$, $0 \le m, n \le 2\,000$) — odpowiednio długość trasy, liczba tuneli, liczba pociągów odjeżdżających z Zurychu i odjeżdżających z Lugano.

W drugim wierszu znajduje się t rozdzielonych spacją liczb całkowitych a_i ($0 \le a_i < s$) — punkty początkowe tuneli.

W trzecim wierszu znajduje się t rozdzielonych spacją liczb całkowitych b_i ($0 \le b_i < s$) — punkty końcowe tuneli.

Dla każdego i od 1 do t zachodzi $a_i < b_i$. Dodatkowo, dla każdego i od 1 do t-1 zachodzi $b_i < a_{i+1}$. Mówiąc inaczej, każdy tunel ma dodatnią długość, tunele są parami rozłączne oraz ich odległości od Zurychu są podane w porządku rosnącym.

W czwartym wierszu znajduje się m rozdzielonych spacją liczb całkowitych c_j ($0 \le c_j \le 1\,000\,000\,000$) oznaczających czasy odjazdu (podane w minutach) pociągów z Zurychu. Czasy są podane w porządku rosnącym, czyli $c_j < c_{j+1}$ dla każdego $1 \le j < m$.

W piątym wierszu podano n rozdzielonych spacją liczb całkowitych d_k ($0 \le d_k \le 1\,000\,000\,000$) oznaczających czasy odjazdu (podane w minutach) pociągów z Lugano. Czasy są podane w porządku rosnącym, czyli $d_j < d_{j+1}$ dla każdego $1 \le j < n$.

Wyjście

W pierwszym i jedynym wierszu należy wypisać słowo "YES" (bez cudzysłowu; one są dla czytelności, nie należy ich wypisywać) jeśli nastąpi co najmniej jeden wypadek, w przeciwnym wypadku "NO".

Ocenianie

We wszystkich podzadaniach prócz pierwszego wartości s i wszystkie c_j oraz d_k są parzyste.

Podzadanie 1 (14 punktów): $t, m, n \leq 100$ i $s \leq 5000$.

Podzadanie 2 (16 punktów): $t \le 5\,000$ i $s \le 1\,000\,000$.

Podzadanie 3 (41 punktów): Brak kolejnych ograniczeń.

Podzadanie 4 (29 punktów): Brak kolejnych ograniczeń. Dodatkowo, $s,\ c_j$ i d_k nie muszą być parzyste.

Przykłady

standardowe wejście	standardowe wyjście
100 2 1 4 20 50 30 60 120 30 100 200 250	NO
1000 1 1 1 600 700 100 400	YES
1000 1 1 1 600 700 100 300	NO
1000 1 1 1 600 700 100 500	NO

Uwagi do przykładów

W pierwszym przykładzie na trasie o długości 100 kilometrów znajdują dokładnie 2 tunele: jeden na odcinku [20,30], drugi na odcinku [50,60]. Jedyny wyjeżdżający z Zurychu pociąg mija z powodzeniem wszystkie pociągi jadące od strony Lugano:

- Z pierwszym mija się 5 kilometrów od Zurychu,
- Z drugim mija się w połowie drogi między tunelami (40 kilometrów od Zurychu),
- Z trzecim mija się 10 kilometrów od Lugano,
- Z czwartym nie mija się wcale, ponieważ ten odjeżdża długo po przyjeździe zuryskiego pociągu do celu.

W drugim przykładzie jedyna para pociągów mija się dokładnie pośrodku jedynego tunelu, co skutkuje wypadkiem.

W trzecim przykładzie pociągi mijają się dokładnie na końcu (położonym bliżej Zurychu) tunelu. W czwartym przykładzie pociągi mijają się również na końcu (położonym dalej od Zurychu) tunelu. W obu przypadkach nie dochodzi do wypadku.