ESP32-C3 教程

尚硅谷

一 概述

ESP32-C3 SoC 芯片支持以下功能:

- 2.4 GHz Wi-Fi
- 低功耗蓝牙
- 高性能 32 位 RISC-V 单核处理器
- 多种外设
- 内置安全硬件

ESP32-C3 采用 40 nm 工艺制成,具有最佳的功耗性能、射频性能、稳定性、通用性和可靠性,适用于各种应用场景和不同功耗需求。

此芯片由乐鑫公司开发。

二 安装开发工具 ESP-IDF

ESP-IDF 需要安装一些必备工具,才能围绕 ESP32-C3 构建固件,包括 Python、Git、交叉编译器、CMake 和 Ninja 编译工具等。

在本入门指南中, 我们通过 命令行 进行有关操作。

Warning

限定条件:

- 请注意 ESP-IDF 和 ESP-IDF 工具的安装路径不能超过 90 个字符,安装路径过长可能会导致构建失败。
- Python 或 ESP-IDF 的安装路径中一定不能包含空格或括号。
- 除非操作系统配置为支持 Unicode UTF-8, 否则 Python 或 ESP-IDF 的安装路径中也不能包括特殊字符(非 ASCII 码字符)

系统管理员可以通过如下方式将操作系统配置为支持 Unicode UTF-8: 控制面板-更改日期、时间或数字格式-管理选项卡-更改系统地域-勾选选项 "Beta: 使用 Unicode UTF-8 支持全球语言"-点击确定-重启电脑。

2.1 离线安装 ESP-IDF

点击链接下载离线安装包。

ESP-IDF v5.2.1 - Offline Installer Windows 10, 11 Size: 1.5 GB

图 1 离线安装包示意图

2.2 安装内容

安装程序会安装以下组件:

- 内置的 Python
- 交叉编译器
- OpenOCD
- CMake 和 Ninja 编译工具
- ESP-IDF

安装程序允许将程序下载到现有的 ESP-IDF 目录。推荐将 ESP-IDF 下载到 %userprofile% \Desktop\esp-idf 目录下,其中 %userprofile% 代表家目录。

2.3 启动 ESP-IDF 环境

安装结束时,如果勾选了 Run ESP-IDF PowerShell Environment 或 Run ESP-IDF Command Prompt (cmd.exe),安装程序会在选定的提示符窗口启动 ESP-IDF。

Run ESP-IDF PowerShell Environment:

图 2 PowerShell

三 开始创建工程

现在,可以准备开发 ESP32 应用程序了。可以从 ESP-IDF 中 examples 目录下的 get-started/hello_world 工程开始。

Warning

ESP-IDF 编译系统不支持 ESP-IDF 路径或其工程路径中带有空格。

将 get-started/hello world 工程复制至本地的 ~/esp 目录下:

cd %userprofile%\esp
xcopy /e /i %IDF_PATH%\examples\get-started\hello_world hello_world

i Info

ESP-IDF 的 examples 目录下有一系列示例工程,可以按照上述方法复制并运行其中的任何示例,也可以直接编译示例,无需进行复制。

3.1 连接设备

现在,请将 ESP32 开发板连接到 PC,并查看开发板使用的串口。

在 Windows 操作系统中, 串口名称通常以 COM 开头。

3.2 配置工程

请进入 hello_world 目录,设置 ESP32-C3 为目标芯片,然后运行工程配置工具 menuconfig 。

```
cd %userprofile%\esp\hello_world
idf.py set-target esp32c3
idf.py menuconfig
```

打开一个新工程后,应首先使用 idf.py set-target esp32c3 设置"目标"芯片。注意,此操作将清除并初始化项目之前的编译和配置(如有)。也可以直接将"目标"配置为环境变量(此时可跳过该步骤)。

正确操作上述步骤后,系统将显示以下菜单:

```
| Espressif IoT Development Framework Configuration | SDK tool configuration | ---> | Build type | ---> | Application manager | ---> | Bootloader config | ---> | Security features | ---> | Security features | ---> | Partition Table | ---> | Compiler options | ---> | Component config | ---> | Compatibility options | ---> | Space/Enter | Toggle/enter | ESC | Leave menu | S | Save | Sav
```

图 3 配置界面示意图

可以通过此菜单设置项目的具体变量,包括 Wi-Fi 网络名称、密码和处理器速度等。 hello_world 示例项目会以默认配置运行,因此在这一项目中,可以跳过使用 menuconfig 进行项目配置这一步骤。

3.3 编译工程

请使用以下命令,编译烧录工程:

```
idf.py build
```

运行以上命令可以编译应用程序和所有 ESP-IDF 组件,接着生成引导加载程序、分区表和应用程序二进制文件。

```
$ idf.py build
Running cmake in directory /path/to/hello_world/build
Executing "cmake -G Ninja --warn-uninitialized /path/to/
hello world"...
Warn about uninitialized values.
-- Found Git: /usr/bin/git (found version "2.17.0")
-- Building empty aws iot component due to configuration
-- Component names: ...
-- Component paths: ...
... (more lines of build system output)
[527/527] Generating hello_world.bin
esptool.py v2.3.1
Project build complete. To flash, run this command:
../../components/esptool py/esptool/esptool.py -p (PORT) -b
921600 write flash --flash mode dio --flash size detect --flash freq
40m 0x10000 build/hello world.bin build 0x1000 build/bootloader/
bootloader.bin 0x8000 build/partition table/partition-table.bin
or run 'idf.py -p PORT flash'
```

如果一切正常,编译完成后将生成 .bin 文件。

3.4 烧录到设备

请运行以下命令,将刚刚生成的二进制文件烧录至 ESP32 开发板:

```
idf.py flash
```

i Info

勾选 flash 选项将自动编译并烧录工程,因此无需再运行 idf.py build。

3.5 常规操作

在烧录过程中, 会看到类似如下的输出日志:

```
esptool.py --chip esp32 -p /dev/ttyUSB0 -b 460800 --
before=default_reset --after=hard_reset write_flash --flash_mode dio
--flash freq 40m --flash size 2MB 0x8000 partition table/partition-
table.bin 0x1000 bootloader/bootloader.bin 0x10000 hello world.bin
esptool.py v3.0-dev
Serial port /dev/ttyUSB0
Connecting.....
Chip is ESP32D0WDQ6 (revision 0)
Features: WiFi, BT, Dual Core, Coding Scheme None
Crystal is 40MHz
MAC: 24:0a:c4:05:b9:14
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 460800
Changed.
Configuring flash size...
Compressed 3072 bytes to 103...
Writing at 0x00008000... (100 %)
Wrote 3072 bytes (103 compressed) at 0x00008000 in 0.0 seconds
(effective 5962.8 kbit/s)...
Hash of data verified.
Compressed 26096 bytes to 15408...
Writing at 0x00001000... (100 %)
Wrote 26096 bytes (15408 compressed) at 0x00001000 in 0.4 seconds
(effective 546.7 kbit/s)...
Hash of data verified.
Compressed 147104 bytes to 77364...
Writing at 0x00010000... (20 %)
Writing at 0x00014000... (40 %)
Writing at 0x00018000... (60 %)
Writing at 0x0001c000... (80 %)
Writing at 0x00020000... (100 %)
Wrote 147104 bytes (77364 compressed) at 0x00010000 in 1.9 seconds
(effective 615.5 kbit/s)...
Hash of data verified.
Leaving...
Hard resetting via RTS pin...
Done
```

如果一切顺利,烧录完成后,开发板将会复位,应用程序"hello_world"开始运行。

3.6 监视输出

使用 串口助手 监视输出和调试。

```
Warning
```

当要进行烧写时,请关闭串口助手!

四 基本 GPIO 操作

4.1 GPIO 配置

普通配置

```
gpio_config_t io_conf;

// 禁用中断
io_conf.intr_type = GPIO_INTR_DISABLE;

// 设置 GPIO 为输出模式
io_conf.mode = GPIO_MODE_OUTPUT;

// 设置 GPIO PIN 脚
io_conf.pin_bit_mask = ((1ULL << GPIO_NUM_1) | (1ULL << GPIO_NUM_2));

// 禁用下拉模式
io_conf.pull_down_en = 0;

// 开启上拉模式
io_conf.pull_up_en = 1;

// 使用以上配置来配置 GPIO
gpio_config(&io_conf);
```

有关中断的配置方法

```
// 上升沿触发中断
io_conf.intr_type = GPIO_INTR_POSEDGE;
// 设置为输入模式
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pin_bit_mask = (1ULL << GPIO_NUM_0);
gpio_config(&io_conf);
```

操作 GPIO 的 API

```
// 将 GPIO 口设置为输入模式
gpio_set_direction(GPIO_NUM_2, GPIO_MODE_INPUT);
// 设置输出模式
gpio_set_direction(GPIO_NUM_2, GPIO_MODE_OUTPUT);
// 输出高低电平
gpio_set_level(GPIO_NUM_1, 1);
gpio_set_level(GPIO_NUM_1, 0);
// 获取 GPIO 的电平
gpio_get_level(GPIO_NUM_2);
```

有了这些 API, 我们可以实现 IIC 协议了。然后就可以实现按键功能了。键盘电路图如下:

图 4 键盘模块电路图

为了方便操作,我们先来定义一组宏定义以及声明头文件。

先在 main 文件夹中创建 drivers 文件夹, 然后创建文件 keyboard_driver.h 。文件内容如下:

```
#ifndef __KEYBOARD_DRIVER_H_
#define __KEYBOARD_DRIVER_H_

#include <inttypes.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
```

```
#define SC12B SCL GPI0 NUM 1
#define SC12B SDA GPI0 NUM 2
#define SC12B INT GPI0 NUM 0
#define I2C SDA IN gpio set direction(SC12B SDA, GPIO MODE INPUT)
#define I2C SDA OUT gpio set direction(SC12B SDA, GPIO MODE OUTPUT)
#define I2C SCL H gpio set level(SC12B SCL, 1)
#define I2C SCL L gpio set level(SC12B SCL, 0)
#define I2C SDA H gpio set level(SC12B SDA, 1)
#define I2C SDA L gpio set level(SC12B SDA, 0)
#define I2C READ SDA gpio get level(SC12B SDA)
void Delay ms(uint8 t time);
void I2C_Start(void);
void I2C Stop(void);
void I2C Ack(uint8 t x);
uint8_t I2C_Wait_Ack(void);
void I2C_Send_Byte(uint8_t d);
uint8 t I2C Read Byte(uint8 t ack);
uint8 t SendByteAndGetNACK(uint8 t data);
uint8 t I2C Read Key(void);
uint8 t KEYBOARD read key(void);
void KEYBORAD init(void);
#endif
```

在 drivers 文件夹中创建 keyboard_driver.c 文件。内容如下:

```
#include "keyboard_driver.h"

/// 延时函数, 使用 FreeRTOS 的 API 进行包装
void Delay_ms(uint8_t time)
{
    vTaskDelay(time / portTICK_PERIOD_MS);
}

/// 产生起始信号
void I2C_Start(void)
{
    I2C_SDA_OUT; // sda 线输出
    I2C_SDA_H;
    I2C_SCL_H;
```

```
Delay ms(1);
    I2C SDA L; // START:when CLK is high, DATA change form high to
low
   Delay ms(1);
    I2C_SCL_L; // 钳住 I2C 总线,准备发送或接收数据
    Delay_ms(1);
}
/// 产生停止信号
void I2C_Stop(void)
{
   I2C_SCL_L;
    I2C SDA OUT; // sda 线输出
    I2C SDA L; // STOP:when CLK is high DATA change form low to
high
    Delay ms(1);
    I2C SCL H;
    Delay_ms(1);
    I2C_SDA_H; // 发送 I2C 总线结束信号
}
/// 下发应答
void I2C_Ack(uint8_t x)
{
   I2C SCL L;
   I2C_SDA_OUT;
   if (x)
    {
       I2C_SDA_H;
   else
    {
       I2C_SDA_L;
    Delay_ms(1);
    I2C_SCL_H;
    Delay_ms(1);
    I2C_SCL_L;
}
/// 等待应答信号到来,成功返回 0 。
uint8_t I2C_Wait_Ack(void)
{
    uint8 t ucErrTime = 0;
   I2C_SCL_L;
    I2C_SDA_IN; // SDA 设置为输入
```

```
Delay_ms(1);
    I2C SCL H;
    Delay_ms(1);
    while (I2C READ SDA)
        if (ucErrTime++ > 250)
        {
            // I2C_Stop();
            // printf("接受应答失败\n");
            return 1;
        }
    }
    I2C_SCL_L;
    // printf("接受应答成功\n");
    return 0;
}
/// 发送一个字节
void I2C_Send_Byte(uint8_t d)
{
    uint8 t t = 0;
    I2C SDA OUT;
    while (8 > t++)
    {
        I2C_SCL_L;
        Delay_ms(1);
        if (d & 0x80)
        {
            I2C_SDA_H;
        }
        else
        {
            I2C_SDA_L;
        }
        Delay ms(1); // 对 TEA5767 这三个延时都是必须的
        I2C SCL H;
        Delay ms(1);
        d <<= 1;
    }
}
/// 读 1 个字节
uint8_t I2C_Read_Byte(uint8_t ack)
{
    uint8_t i = 0;
    uint8_t receive = 0;
```

```
I2C SDA IN; // SDA设置为输入
   for (i = 0; i < 8; i++)
   {
       I2C_SCL_L;
       Delay_ms(1);
       I2C_SCL_H;
       receive <<= 1;
       if (I2C READ SDA)
       {
           receive++;
       }
       Delay ms(1);
   }
   I2C_Ack(ack); // 发送 ACK
    return receive;
}
/// 发送数据并返回应答
uint8_t SendByteAndGetNACK(uint8_t data)
{
   I2C Send Byte(data);
   return I2C Wait Ack();
}
/// SC12B 简易读取按键值函数(默认直接读取)
/// 此函数只有初始化配置默认的情况下,直接调用,如果在操作前有写入或者其他读取不
能调用默认
uint8_t I2C_Read_Key(void)
{
   I2C Start();
   if (SendByteAndGetNACK((0x40 << 1) | 0x01))</pre>
   {
       I2C Stop();
       return 0;
   }
   uint8 t i = 0;
   uint8 t k = 0;
   I2C_SDA_IN; // SDA 设置为输入
   while (8 > i)
    {
       i++;
       I2C_SCL_L;
       Delay ms(1);
       I2C SCL H;
       if (!k && I2C_READ_SDA)
       {
```

```
k = i;
        }
        Delay_ms(1);
    }
    if (k)
    {
        I2C_Ack(1);
        I2C_Stop();
        return k;
    }
    I2C_Ack(0);
    I2C_SDA_IN; // SDA 设置为输入
    while (16 > i)
    {
        <u>i++;</u>
        I2C_SCL_L;
        Delay_ms(1);
        I2C SCL H;
        if (!k && I2C_READ_SDA)
            k = i;
        Delay_ms(1);
    I2C_Ack(1);
    I2C_Stop();
    return k;
}
uint8_t KEYBOARD_read_key(void)
{
    uint16_t key = I2C_Read_Key();
   if (key == 4)
    {
        return 1;
    else if (key == 3)
    {
        return 2;
    else if (key == 2)
    {
        return 3;
    else if (key == 7)
    {
        return 4;
```

```
else if (key == 6)
        return 5;
    else if (key == 5)
        return 6;
    else if (key == 10)
        return 7;
    else if (key == 9)
        return 8;
    else if (key == 8)
        return 9;
    else if (key == 1)
    {
       return 0;
    else if (key == 12)
       return '#';
    }
    else if (key == 11)
       return 'M';
    return 255;
}
/// GPIO 初始化
void KEYBORAD init(void)
{
    gpio_config_t io_conf;
    // disable interrupt
    io_conf.intr_type = GPIO_INTR_DISABLE;
    // set as output mode
    io conf.mode = GPIO MODE OUTPUT;
    // bit mask of the pins that you want to set,e.g.SDA
    io_conf.pin_bit_mask = ((1ULL << SC12B_SCL) | (1ULL <<</pre>
SC12B_SDA));
```

```
// disable pull-down mode
io_conf.pull_down_en = 0;
// disable pull-up mode
io_conf.pull_up_en = 1;
// configure GPIO with the given settings
gpio_config(&io_conf);

// 中断
io_conf.intr_type = GPIO_INTR_POSEDGE;
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pin_bit_mask = (1ULL << SC12B_INT);
gpio_config(&io_conf);
}
```

驱动编写好之后,我们可以在主函数中和电容键盘进行通信了。当按下按键,会产生中断,通过处理中断来识别我们的按键。

在 smart-lock.c 文件中,主函数是 app_main , ESP-IDF 在编译整个项目的时候, 会将 app_main 注册为一个任务。无需我们自己编写 main 函数。

smart-lock.c 文件内容如下。

```
// 全局变量, 用来存储来自 GPIO 的中断事件
static QueueHandle t gpio evt queue = NULL;
static void IRAM ATTR gpio isr handler(void *arg)
 uint32 t gpio num = (uint32 t)arg;
 // 将产生中断的 GPIO 引脚号入队列。
 xQueueSendFromISR(gpio evt queue, &gpio num, NULL);
}
// 轮训中断事件队列, 然后挨个处理
static void process isr(void *arg)
 uint32_t io_num;
 for (;;)
   if (xQueueReceive(gpio evt queue, &io num, portMAX DELAY))
   {
     if (io num == 0)
      uint8_t key = KEYBOARD_read_key();
       printf("按下的键: %d\r\n", key);
     }
```

```
}
 }
}
static void ISR QUEUE Init(void)
{
 // 创建一个队列来处理来自 GPI0 的中断事件
 gpio evt queue = xQueueCreate(10, sizeof(uint32 t));
 // 开启 process_isr 任务。这个任务的作用是轮训存储中断事件的队列,将队列中的
事件
 // 挨个出队列并进行处理。
 xTaskCreate(process_isr, "process_isr", 2048, NULL, 10, NULL);
 gpio_install_isr_service(0);
 // 将 SC12B INT 引脚产生的中断交由 gpio isr handler 处理。
 // 也就是说一旦 SC12B INT 产生中断,则调用 gpio isr handler 函数。
 gio_isr_handler_add(SC12B_INT, gpio_isr_handler, (void
*)SC12B INT);
}
// 主程序
void app main(void)
 ISR QUEUE Init();
}
```


图 5 处理中断示意图

五 红外遥控(RMT)

5.1 简介

红外遥控 (RMT) 外设是一个红外发射和接收控制器。其数据格式灵活,可进一步扩展为多功能的通用收发器,发送或接收多种类型的信号。就网络分层而言,RMT 硬件包含物理层和数据链路层。物理层定义通信介质和比特信号的表示方式,数据链路层定义 RMT 帧的格式。RMT 帧的最小数据单元称为 RMT 符号,在驱动程序中以 rmt symbol word t 表示。

ESP32-C3 的 RMT 外设存在多个通道,每个通道都可以独立配置为发射器或接收器。

RMT 外设通常支持以下场景:

- 发送或接收红外信号,支持所有红外线协议,如 NEC 协议
- 生成通用序列
- 有限或无限次地在硬件控制的循环中发送信号
- 多通道同时发送
- 将载波调制到输出信号或从输入信号解调载波

5.2 RMT 符号的内存布局

RMT 硬件定义了自己的数据模式, 称为 RMT 符号。下图展示了一个 RMT 符号的位字段: 每个符号由两对两个值组成,每对中的第一个值是一个 15 位的值,表示信号持续时间,以 RMT 滴答计。每对中的第二个值是一个 1 位的值,表示信号的逻辑电平,即高电平或低电平。

图 6 RMT 符号结构(L-信号电平)

5.3 RMT 发射器概述

RMT 发送通道 (TX Channel) 的数据路径和控制路径如下图所示:

图 7 RMT 发射器概述

驱动程序将用户数据编码为 RMT 数据格式,随后由 RMT 发射器根据编码生成波形。在将波形发送到 GPIO 管脚前,还可以调制高频载波信号。

5.4 RMT 接收器概述

RMT 接收通道 (RX Channel) 的数据路径和控制路径如下图所示:

图 8 RMT接收器概述

RMT 接收器可以对输入信号采样,将其转换为 RMT 数据格式,并将数据存储在内存中。还可以向接收器提供输入信号的基本特征,使其识别信号停止条件,并过滤掉信号干扰和噪声。RMT 外设还支持从基准信号中解调出高频载波信号。

5.5 补充知识:数字调制

图 9 数字信号调制示意图

5.6 ws2812

文件夹 esp-idf/examples/peripherals/rmt/led_strip 是示例代码。修改 RMT 的 GPIO 引脚就可以直接部署运行。

我们的开发板的原理是 esp32c3 芯片使用 RMT 模块的功能通过 GPIO 引脚发送波形。而波形是经过编码的 RGB 值。

原理图如下:

图 10 LED 灯原理图

驱动大部分外设来说,几乎是通过 GPIO 的高低电平来处理,而 ws2812 正是需要这样的电平; RMT(远程控制)模块驱动程序可用于发送和接收红外遥控信号。由于 RMT 灵活性,驱动程序还可用于生成或接收许多其他类型的信号。由一系列脉冲组成的信号由 RMT 的发射器根据值列表生成。这些值定义脉冲持续时间和二进制级别。发射器还可以提供载波并用提供的

脉冲对其进行调制;总的来说它就是一个中间件,就是通过 RMT 模块可以生成解码成包含脉冲持续时间和二进制电平的值的高低电平,从而实现发送和接收我们想要的信号。

关于这个灯珠的资料网上多的是, 我总的概述:

- 1. 每颗灯珠内置一个驱动芯片,我们只需要和这个驱动芯片通讯就可以达成调光的目的。 所以,我们不需要用 PWM 调节。
- 2. 它的管脚引出有 4 个, 2 个是供电用的。还有 2 个是通讯的, DIN 是输入, DOUT 是输出。以及其是 5V 电压供电。
- 3. 根据不同的厂商生产不同,驱动的方式有所不一样!下面发送数据顺序是: GREEN -- BLUE -- RED 。

图 11 发送颜色的顺序

5.7 代码

由于大部分代码都是示例代码。这里只给出新添加的部分,也就是点亮某一个灯的代码。

```
// `led_num` 参数是要点亮的灯的索引。`LED_NUMBERS == 12`, 因为我们有 12 个
灯。
void light_led(uint8_t led_num)
{
    for (int i = 0; i < 3; i++)
    {
        // 构建 RGB 像素点
        hue = led_num * 360 / LED_NUMBERS;
        // 编码 RGB 值
        led_strip_hsv2rgb(hue, 30, 30, &red, &green, &blue);
        // 发送顺序 GREEN --> BLUE --> RED
        led_strip_pixels[led_num * 3 + 0] = green;
        led_strip_pixels[led_num * 3 + 1] = blue;
        led_strip_pixels[led_num * 3 + 2] = red;
```

```
}

// 将 RGB 值通过通道发送至 LED 灯。点亮灯。
ESP_ERROR_CHECK(rmt_transmit(led_chan, led_encoder, led_strip_pixels, sizeof(led_strip_pixels), &tx_config));
ESP_ERROR_CHECK(rmt_tx_wait_all_done(led_chan, portMAX_DELAY));

// 延时 100 毫秒
vTaskDelay(100 / portTICK_PERIOD_MS);

// 清空像素矩阵
memset(led_strip_pixels, 0, sizeof(led_strip_pixels));

// 再次发送, 将灯灭掉。
ESP_ERROR_CHECK(rmt_transmit(led_chan, led_encoder, led_strip_pixels, sizeof(led_strip_pixels), &tx_config));
ESP_ERROR_CHECK(rmt_tx_wait_all_done(led_chan, portMAX_DELAY));
}
```

尝试编写代码调用点灯方法,将灯点亮。

六 语音模块

我们使用 WTN6170 作为语音模块外设。可以使用一根 GPIO 线来控制 WTN6170。

交互语音播放电路

图 12 语音模块电路图

我们来编写初始化 GPIO 引脚的代码。

```
void AUDIO Init(void)
{
    ESP LOGI(AUDIO TAG, "WTN6170P20 Init");
    gpio_config_t io_conf = {};
   // 禁用中断
   io conf.intr type = GPIO INTR DISABLE;
   // 设置为输出模式
   io_conf.mode = GPIO_MODE_OUTPUT;
   // 引脚是数据线
   io conf.pin bit mask = (1ULL << AUDIO SDA PIN);
   gpio_config(&io_conf);
   // 禁用中断
   io_conf.intr_type = GPIO_INTR_DISABLE;
   // 设置为输入模式
   io conf.mode = GPIO MODE INPUT;
   // 引脚是忙线
   io conf.pin bit mask = (1ULL << AUDIO BUSY PIN);</pre>
   gpio_config(&io_conf);
}
```

给语音模块发送数据并播报的代码,通过发送不同的 u8 数据,使语音模块播放不同的声音。 具体参见语音模块文档。

```
void Line 1A WT588F(uint8 t DDATA)
{
    ESP LOGI(AUDIO TAG, "Line 1A WT588F data:0X%2X", DDATA);
   uint8_t S_DATA, j;
   uint8 t B DATA;
   S DATA = DDATA;
   AUDIO SDA L;
    DELAY MS(10); // 这里的延时比较重要
    B DATA = S DATA \& 0X01;
   for (j = 0; j < 8; j++)
    {
        if (B_DATA == 1)
        {
            AUDIO_SDA_H;
            DELAY US(600); // 延时600us
            AUDIO SDA L;
            DELAY_US(200); // 延时 200us
        }
        else
```

七 电机驱动

电机用来开关锁。也就是通过驱动电机进行正转反转来开关锁。 当然我们还是通过 GPIO 的拉高拉低来驱动电机。比较简单。 电路图如下:

图 13 电机模块电路图

初始化 GPIO 引脚代码

```
void MOTOR_Init(void)
{
    gpio_config_t io_conf;
    // 禁用中断
    io_conf.intr_type = GPIO_INTR_DISABLE;
    // 设置为输出模式
    io_conf.mode = GPIO_MODE_OUTPUT;
```

```
// 设置要用的两个引脚
io_conf.pin_bit_mask = ((1ULL << MOTOR_DRIVER_NUM_0) | (1ULL << MOTOR_DRIVER_NUM_1));
gpio_config(&io_conf);

// 最开始都输出低电平, 这样就不转
gpio_set_level(MOTOR_DRIVER_NUM_0, 0);
gpio_set_level(MOTOR_DRIVER_NUM_1, 0);
}
```

开锁代码

```
void MOTOR Open lock(void)
   // 正转 1 秒
   gpio set level(MOTOR DRIVER NUM 0, 0);
    gpio set level(MOTOR DRIVER NUM 1, 1);
   vTaskDelay(1000 / portTICK PERIOD MS);
   // 停止 1 秒
   gpio_set_level(MOTOR_DRIVER_NUM_0, 0);
   gpio set level(MOTOR DRIVER NUM 1, 0);
   vTaskDelay(1000 / portTICK_PERIOD_MS);
   // 反转 1 秒
   gpio set level(MOTOR DRIVER NUM 0, 1);
    gpio set level(MOTOR DRIVER NUM 1, 0);
   vTaskDelay(1000 / portTICK PERIOD MS);
   // 停止转动并播报语音
   gpio set level(MOTOR DRIVER NUM 0, 0);
    gpio set level(MOTOR DRIVER NUM 1, 0);
   Line 1A WT588F(25);
}
```

八 指纹模块

MCU 使用串口和指纹模块进行通信。电路图如下:

图 14 指纹模块电路图

我们先来写头文件

```
#ifndef FINGERPRINT DRIVER H
#define FINGERPRINT DRIVER H
#include "driver/uart.h"
#include "driver/gpio.h"
/// 下面的配置可以直接写死,也可以在 menuconfig 里面配置
#define ECHO TEST TXD (CONFIG EXAMPLE UART TXD)
#define ECHO TEST RXD (CONFIG EXAMPLE UART RXD)
#define ECHO TEST RTS (UART PIN NO CHANGE)
#define ECHO_TEST_CTS (UART_PIN_NO_CHANGE)
#define ECHO UART PORT NUM (CONFIG EXAMPLE UART PORT NUM)
#define ECHO UART BAUD RATE (CONFIG EXAMPLE UART BAUD RATE)
#define ECHO_TASK_STACK_SIZE (CONFIG_EXAMPLE_TASK_STACK_SIZE)
#define BUF SIZE (1024)
#define TOUCH INT GPIO NUM 8
/// 初始化指纹模块
void FINGERPRINT Init(void);
/// 获取指纹芯片的序列号
void get chip sn(void);
/// 获取指纹图像
int get_image(void);
/// 获取指纹特征
int gen char(void);
/// 搜索指纹
int search(void);
```

```
/// 读取指纹芯片配置参数
void read_sys_params(void);
#endif
```

然后编写头文件中接口的实现

```
#include "fingerprint_driver.h"
void FINGERPRINT Init(void)
{
    printf("hahahahahah\r\n");
    /* Configure parameters of an UART driver,
    * communication pins and install the driver */
    uart config t uart config = {
        .baud rate = ECHO UART BAUD RATE,
        .data bits = UART DATA 8 BITS,
        .parity = UART PARITY DISABLE,
        .stop bits = UART STOP BITS 1,
        .flow ctrl = UART HW FLOWCTRL DISABLE,
        .source clk = UART SCLK DEFAULT,
    };
    int intr alloc flags = 0;
    ESP ERROR CHECK(uart driver install(ECHO UART PORT NUM, BUF SIZE
* 2, 0, 0, NULL, intr alloc flags));
    ESP ERROR CHECK(uart param config(ECHO UART PORT NUM,
&uart config));
    ESP ERROR CHECK(uart set pin(ECHO UART PORT NUM, ECHO TEST TXD,
ECHO TEST RXD, ECHO TEST RTS, ECHO TEST CTS));
    // 中断
    gpio config t io conf;
    io conf.intr type = GPIO INTR NEGEDGE;
    io conf.mode = GPIO MODE INPUT;
    io conf.pin bit mask = (1ULL << TOUCH INT);
    io_conf.pull_up_en = 1;
    gpio config(&io conf);
    printf("指纹模块初始化成功。\r\n");
}
void get chip sn(void)
```

```
{
    vTaskDelay(200 / portTICK PERIOD MS);
    uint8 t *data = (uint8 t *)malloc(BUF SIZE);
   // 获取芯片唯一序列号 0x34。确认码=00H 表示 0K; 确认码=01H 表示收包有错。
   uint8 t PS GetChipSN[13] = {0xEF, 0x01, 0xFF, 0xFF, 0xFF, 0xFF,
0 \times 01, 0 \times 00, 0 \times 04, 0 \times 34, 0 \times 00, 0 \times 00, 0 \times 39;
    uart write bytes(ECHO UART PORT NUM, (const char *)PS GetChipSN,
13);
   // Read data from the UART
    int len = uart read bytes(ECHO UART PORT NUM, data, (BUF SIZE -
1), 2000 / portTICK PERIOD MS);
   if (len)
    {
        if (data[6] == 0x07 \&\& data[9] == 0x00)
            printf("chip sn: %.32s\r\n", &data[10]);
        }
    }
    free(data);
}
// 检测是否有手指放在模组上面
int get image(void)
{
    uint8 t *data = (uint8 t *)malloc(BUF SIZE);
   // 验证用获取图像 0x01, 验证指纹时, 探测手指, 探测到后录入指纹图像存于图像缓
冲区。返回确认码表示: 录入成功、无手指等。
    uint8_t PS_GetImageBuffer[12] = {0xEF, 0x01, 0xFF, 0xFF, 0xFF,
0xFF, 0x01, 0x00, 0x03, 0x01, 0x00, 0x05};
    uart write bytes(ECHO UART PORT NUM, (const char
*)PS GetImageBuffer, 12);
    int len = uart read bytes(ECHO UART PORT NUM, data, (BUF SIZE -
1), 2000 / portTICK PERIOD MS);
    int result = 0xFF;
   if (len)
    {
        if (data[6] == 0x07)
```

```
{
           if (data[9] == 0x00)
           {
                result = 0;
           else if (data[9] == 0x01)
                result = 1;
           else if (data[9] == 0x02)
                result = 2;
           }
       }
   }
   free(data);
    return result;
}
int gen char(void)
{
   uint8_t *data = (uint8_t *)malloc(BUF_SIZE);
   // 生成特征 0x02, 将图像缓冲区中的原始图像生成指纹特征文件存于模板缓冲区。
   uint8 t PS GenCharBuffer[13] = {0xEF, 0x01, 0xFF, 0xFF, 0xFF,
0xFF, 0x01, 0x00, 0x04, 0x02, 0x01, 0x00, 0x08};
   uart_write_bytes(ECHO_UART_PORT_NUM, (const char
*)PS_GenCharBuffer, 13);
   int len = uart_read_bytes(ECHO_UART_PORT_NUM, data, (BUF_SIZE -
1), 2000 / portTICK_PERIOD_MS);
   int result = 0xFF;
   if (len)
    {
       if (data[6] == 0x07)
       {
            result = data[9];
       }
    }
   free(data);
```

```
return result;
}
int search(void)
   uint8 t *data = (uint8 t *)malloc(BUF SIZE);
   // 搜索指纹 0x04,以模板缓冲区中的特征文件搜索整个或部分指纹库。若搜索到,则
返回页码。加密等级设置为 0 或 1 情况下支持此功能。
   uint8_t PS_SearchBuffer[17] = {0xEF, 0x01, 0xFF, 0xFF, 0xFF,
0xFF, 0x01, 0x00, 0x08, 0x04, 0x01, 0x00, 0x00, 0xFF, 0xFF, 0x02,
0x0C};
   uart_write_bytes(ECHO_UART_PORT_NUM, (const char
*)PS SearchBuffer, 17);
   int len = uart read bytes(ECHO UART PORT NUM, data, (BUF SIZE -
1), 2000 / portTICK PERIOD MS);
   int result = 0xFF;
   if (len)
    {
       if (data[6] == 0x07)
       {
           result = data[9];
       }
   }
   free(data);
    return result;
}
void read sys params(void)
{
   uint8 t *data = (uint8 t *)malloc(BUF SIZE);
   // 获取模组基本参数 0x0F, 读取模组的基本参数(波特率,包大小等)。参数表前
16 个字节存放了模组的基本通讯和配置信息, 称为模组的基本参数。
   uint8 t PS ReadSysPara[12] = {0xEF, 0x01, 0xFF, 0xFF, 0xFF,
0xFF, 0x01, 0x00, 0x03, 0x0F, 0x00, 0x13};
   uart_write_bytes(ECHO_UART_PORT_NUM, (const char
*)PS ReadSysPara, 12);
```

```
int len = uart read bytes(ECHO UART PORT NUM, data, (BUF SIZE -
1), 2000 / portTICK PERIOD MS);
    if (len)
    {
        if (data[6] == 0x07)
        {
            if (data[9] == 0x00)
            {
                int register_count = (data[10] << 8) | data[11];</pre>
                printf("register count ==> %d\r\n", register_count);
                int fingerprint template size = (data[12] << 8) |</pre>
data[13];
                printf("finger print template size ==> %d\r\n",
fingerprint_template_size);
                int fingerprint_library_size = (data[14] << 8) |</pre>
data[15];
                printf("finger print library size ==> %d\r\n",
fingerprint library size);
                int score_level = (data[16] << 8) | data[17];</pre>
                printf("score level ==> %d\r\n", score_level);
                // device address
                printf("device address ==> 0x");
                for (int i = 0; i < 4; i++)
                {
                    printf("%02X ", data[18 + i]);
                }
                printf("\r\n");
                // data packet size
                int packet_size = (data[22] << 8) | data[23];</pre>
                if (packet_size == 0)
                     printf("packet size ==> 32 bytes\r\n");
                else if (packet size == 1)
                    printf("packet size ==> 64 bytes\r\n");
                else if (packet size == 2)
                    printf("packet size ==> 128 bytes\r\n");
                else if (packet size == 3)
                    printf("packet size ==> 256 bytes\r\n");
                // baud rate
```

九 蓝牙功能

实现了蓝牙功能和我们后面的 WIFI 功能,其实就可以自己编写代码作为固件烧录到 ESP32C3 里面了。这样也可以作为 STM32 的外设来使用了。这是 ESP32 所具有的独特的功能。

蓝牙技术是一种无线通讯技术,广泛用于短距离内的数据交换。在蓝牙技术中,"Bluedroid"和"BLE"(Bluetooth Low Energy)是两个重要的概念,它们分别代表了蓝牙技术的不同方面。

Bluedroid

Bluedroid 是 Android 操作系统用于实现蓝牙功能的软件栈。在 Android 4.2 版本中引入, Bluedroid 取代了之前的 BlueZ 作为 Android 平台的蓝牙协议栈。Bluedroid 是由 Broadcom 公司 开发并贡献给 Android 开源项目的(AOSP),它支持经典蓝牙以及蓝牙低功耗(BLE)。

Bluedroid 协议栈设计目的是为了提供一个更轻量级、更高效的蓝牙协议栈,以适应移动设备对资源的紧张需求。它包括了蓝牙核心协议、各种蓝牙配置文件(如 HSP、A2DP、AVRCP等)和 BLE 相关的服务和特性。

BLE (Bluetooth Low Energy)

BLE,即蓝牙低功耗技术,是蓝牙 4.0 规范中引入的一项重要技术。与传统的蓝牙技术(现在通常称为经典蓝牙)相比,BLE 主要设计目标是实现极低的功耗,以延长设备的电池使用寿命,非常适合于需要长期运行但只需偶尔传输少量数据的应用场景,如健康和健身监测设备、智能家居设备等。

BLE 实现了一套与经典蓝牙不同的通信协议,包括低功耗的物理层、链路层协议以及应用层协议。BLE 设备可以以极低的能耗状态长时间待机,只有在需要通信时才唤醒,这使得使用小型电池的设备也能达到数月甚至数年的电池寿命。

总的来说, Bluedroid 是 Android 平台上用于实现蓝牙通信功能的软件栈, 而 BLE 则是蓝牙技术中的一种用于实现低功耗通信的标准。两者共同为 Android 设备提供了广泛的蓝牙通信能力,满足了不同应用场景下的需求。

我们先来看蓝牙功能的初始化代码。里面有大量错误处理的代码。其实核心代码并不多。 ESP ERROR CHECK 是一个宏定义,用来检测各种返回值是否出错。

```
void BLUET00TH Init(void)
{
   esp err t ret;
   /* Initialize NVS. */
   /// NVS 就是在 flash 上分配的一块内存空间 , 提供给用户保存掉电不丢失的数
据。
   ret = nvs flash init();
   /// 如果 flash 没有空闲页面,或者发现新的版本,
   /// 则擦除 flash 并重新初始化。
   if (ret == ESP ERR NVS NO FREE PAGES || ret ==
ESP ERR NVS NEW VERSION FOUND)
   {
      ESP ERROR CHECK(nvs flash erase());
       ret = nvs flash init();
   /// 错误检查
   ESP ERROR CHECK(ret);
   /// 如果选用 BLE 模式就要在初始化之前先释放 CLASSIC 模式的内存。
   /// 是因为在配置 BLE 之前会调用 esp bt controller init()函数来初始化 bt
的协议栈。
   /// 而我们针对 bt 的初始化用的的内存空间是固定的, 那么在调用初始化 bt 之前先把
CLASSIC 部分会用到的内存给释放掉.
   /// 再在初始化 bt 的时候,初始化函数就会发现 CLASSIC 这部分的内存被释放掉了,
   /// 也就不会初始化对应的内容: 但是如果在初始化函数之后再去释放 CLASSIC 对应
内存的时候,
   /// 当然就会发生内存踩踏事件 (esp bt controller init()这个函数并不知道你
要用 BLE 还是 CLASSIC )。
ESP ERROR CHECK(esp bt controller mem release(ESP BT MODE CLASSIC BT));
   /// 获取蓝牙的默认配置
   esp bt controller config t bt cfg =
BT CONTROLLER INIT CONFIG DEFAULT();
   /// 初始化蓝牙控制器
   ret = esp bt controller init(&bt cfg);
   if (ret)
```

```
{
       ESP LOGE(GATTS TABLE TAG, "%s enable controller failed: %s",
 _func__, esp_err_to_name(ret));
       return;
    }
    ret = esp bt controller enable(ESP BT MODE BLE);
    if (ret)
    {
       ESP_LOGE(GATTS_TABLE_TAG, "%s enable controller failed: %s",
__func__, esp_err_to_name(ret));
       return;
    }
    ret = esp_bluedroid_init();
    if (ret)
    {
       ESP_LOGE(GATTS_TABLE_TAG, "%s init bluetooth failed: %s",
__func__, esp_err_to_name(ret));
       return;
    }
    ret = esp bluedroid enable();
    if (ret)
    {
       ESP_LOGE(GATTS_TABLE_TAG, "%s enable bluetooth failed: %s",
_func__, esp_err_to_name(ret));
       return;
    }
    ret = esp_ble_gatts_register_callback(gatts_event_handler);
    if (ret)
    {
        ESP LOGE(GATTS TABLE TAG, "gatts register error, error code
= %x", ret);
       return;
    }
    ret = esp ble gap register callback(gap event handler);
    if (ret)
    {
        ESP_LOGE(GATTS_TABLE_TAG, "gap register error, error code =
%x", ret);
        return;
    }
    ret = esp ble gatts app register(ESP APP ID);
```

```
if (ret)
{
    ESP_LOGE(GATTS_TABLE_TAG, "gatts app register error, error

code = %x", ret);
    return;
}

esp_err_t local_mtu_ret = esp_ble_gatt_set_local_mtu(500);
if (local_mtu_ret)
{
    ESP_LOGE(GATTS_TABLE_TAG, "set local MTU failed, error code
= %x", local_mtu_ret);
}
}
```