Rec'd PCT/PTO 14 SEP 2005

SEP 1 4 2005 SEP 1 4 2005 The Regents of Shi, Huazhong Rlumwald Edua

SEQUENCE LISTING

<110> The Regents of the University of California Shi, Huazhong Blumwald, Eduardo

<120> IMPROVED	TRANSPORTERS	AND	THEIR	USES
----------------	--------------	-----	-------	------

<130> 023070-127310US

<140> US 10/520,497

<141> 2003-07-09

<150> WO PCT/US2003/021549

<151> 2003-07-09

<150> US 60/395,662

<151> 2002-07-12

<160> 22

<170> PatentIn version 3.3

<210> 1

<211> 1614

<212> DNA

<213> Arabidopsis thaliana

<400> 1

atgttggatt	ctctagtgtc	gaaactgcct	tcgttatcga	catctgatca	cgcttctgtg	60
gttgcgttga	atctctttgt	tgcacttctt	tgtgcttgta	ttgttcttgg	tcatcttttg	120
gaagagaata	gatggatgaa	cgaatccatc	accgccttgt	tgattgggct	aggcactggt	180
gttaccattt	tgttgattag	taaaggaaaa	agctcgcatc	ttctcgtctt	tagtgaagat	240
cttttcttca	tatatctttt	gccacccatt	atattcaatg	cagggtttca	agtaaaaaag	300
aagcagtttt	tccgcaattt	cgtgactatt	atgctttttg	gtgctgttgg	gactattatt	360
tcttgcacaa	tcatatctct	aggtgtaaca	cagttcttta	agaagttgga	cattggaacc	420
tttgacttgg	gtgattatct	tgctattggt	gccatatttg	ctgcaacaga	ttcagtatgt	480
acactgcagg	ttctgaatca	agacgagaca	cctttgcttt	acagtcttgt	attcggagag	540
ggtgttgtga	atgatgcaac	gtcagttgtg	gtcttcaacg	cgattcagag	ctttgatctc	600
actcacctaa	accacgaagc	tgcttttcat	cttcttggaa	acttcttgta	tttgtttctc	660
ctaagtacct	tgcttggtgc	tgcaaccggt	ctgataagtg	cgtatgttat	caagaagcta	720
tactttggaa	ggcactcaac	tgaccgagag	gttgccctta	tgatgcttat	ggcgtatctt	780
tcttatatgc	ttgctgagct	tttcgacttg	agcggtatcc	tcactgtgtt	tttctgtggt	840
attgtgatgt	cccattacac	atggcacaat	gtaacggaga	gctcaagaat	aacaacaaag	900
catacctttg	caactttgtc	atttcttgcg	gagacattta	ttttcttgta	tgttggaatg	960

gatgccttgg	acattgacaa	gtggagatcc	gtgagtgaca	caccgggaac	atcgatcgca	1020
gtgagctcaa	tcctaatggg	tctggtcatg	gttggaagag	cagcgttcgt	ctttccgtta	1080
tcgtttctat	ctaacttagc	caagaagaat	caaagcgaga	aaatcaactt	taacatgcag	1140
gttgtgattt	ggtggtctgg	tctcatgaga	ggtgctgtat	ctatggctct	tgcatacaac	1200
aagtttacaa	gggccgggca	cacagatgta	cgcgggaatg	caatcatgat	cacgagtacg	1260
ataactgtct	gtctttttag	cacagtggtg	tttggtatgc	tgaccaaacc	actcataagc	1320
tacctattac	cgcaccagaa	cgccaccacg	agcatgttat	ctgatgacaa	caccccaaaa	1380
tccatacata	tccctttgtt	ggaccaagac	tcgttcattg	agccttcagg	gaaccacaat	1440
gtgcctcggc	ctgacagtat	acgtggcttc	ttgacacggc	ccactcgaac	cgtgcattac	1500
tactggagac	aatttgatga	ctccttcatg	cgacccgtct	ttggaggtcg	tggctttgta	1560
ccctttgttc	caggttctcc	aactgagaga	aaccctcctg	atcttagtaa	ggct	1614

<210> 2

<400> 2

Met Leu Asp Ser Leu Val Ser Lys Leu Pro Ser Leu Ser Thr Ser Asp 1 10 15

His Ala Ser Val Val Ala Leu Asn Leu Phe Val Ala Leu Leu Cys Ala 20 25 30

Cys Ile Val Leu Gly His Leu Leu Glu Glu Asn Arg Trp Met Asn Glu 35 40 45

Ser Ile Thr Ala Leu Leu Ile Gly Leu Gly Thr Gly Val Thr Ile Leu 50 60

Leu Ile Ser Lys Gly Lys Ser Ser His Leu Leu Val Phe Ser Glu Asp 70 75 80

Leu Phe Phe Ile Tyr Leu Leu Pro Pro Ile Ile Phe Asn Ala Gly Phe 85 90 95

Gln Val Lys Lys Gln Phe Phe Arg Asn Phe Val Thr Ile Met Leu 100 105 110

Phe Gly Ala Val Gly Thr Ile Ile Ser Cys Thr Ile Ile Ser Leu Gly 115 120 125

<211> 538

<212> PRT

<213> Arabidopsis thaliana

Val Thr Gln Phe Phe Lys Lys Leu Asp Ile Gly Thr Phe Asp Leu Gly 135 130 Asp Tyr Leu Ala Ile Gly Ala Ile Phe Ala Ala Thr Asp Ser Val Cys 150 Thr Leu Gln Val Leu Asn Gln Asp Glu Thr Pro Leu Leu Tyr Ser Leu 170 Val Phe Gly Glu Gly Val Val Asn Asp Ala Thr Ser Val Val Phe Asn Ala Ile Gln Ser Phe Asp Leu Thr His Leu Asn His Glu Ala Ala Phe His Leu Leu Gly Asn Phe Leu Tyr Leu Phe Leu Leu Ser Thr Leu 215 Leu Gly Ala Ala Thr Gly Leu Ile Ser Ala Tyr Val Ile Lys Lys Leu 230 235 Tyr Phe Gly Arg His Ser Thr Asp Arg Glu Val Ala Leu Met Met Leu 245 250 Met Ala Tyr Leu Ser Tyr Met Leu Ala Glu Leu Phe Asp Leu Ser Gly 265 Ile Leu Thr Val Phe Phe Cys Gly Ile Val Met Ser His Tyr Thr Trp 275 280 His Asn Val Thr Glu Ser Ser Arg Ile Thr Thr Lys His Thr Phe Ala 295 Thr Leu Ser Phe Leu Ala Glu Thr Phe Ile Phe Leu Tyr Val Gly Met Asp Ala Leu Asp Ile Asp Lys Trp Arg Ser Val Ser Asp Thr Pro Gly 330 Thr Ser Ile Ala Val Ser Ser Ile Leu Met Gly Leu Val Met Val Gly Arg Ala Ala Phe Val Phe Pro Leu Ser Phe Leu Ser Asn Leu Ala Lys 360

Lys	Asn 370	Gln	Ser	Glu	Lys	Ile 375	Asn	Phe	Asn	Met	Gln 380	Val	Val	Ile	Trp		
Trp 385	Ser	Gly	Leu	Met	Arg 390	Gly	Ala	Val	Ser	Met 395	Ala	Leu	Ala	Tyr	Asn 400		
Lys	Phe	Thr	Arg	Ala 405	Gly	His	Thr	Asp	Val 410	Arg	Gly	Asn	Ala	Ile 415	Met		
Ile	Thr	Ser	Thr 420	Ile	Thr	Val	Cys	Leu 425	Phe	Ser	Thr	Val	Val 430	Phe	Gly		
Met	Leu	Thr 435	Lys	Pro	Leu	Ile	Ser 440	Tyr	Leu	Leu	Pro	His 445	Gln	Asn	Ala		
Thr	Thr 450	Ser	Met	Leu	Ser	Asp 455	Asp	Asn	Thr	Pro	Lys 460	Ser	Ile	His	Ile		
Pro 465	Leu	Leu	Asp	Gln	Asp 470	Ser	Phe	Ile	Glu	Pro 475	Ser	Gly	Asn	His	Asn 480		
Val	Pro	Arg	Pro	Asp 485	Ser	Ile	Arg	Gly	Phe 490	Leu	Thr	Arg	Pro	Thr 495	Arg		
Thr	Val	His	Tyr 500	Tyr	Trp	Arg	Gln	Phe 505	Asp	Asp	Ser	Phe	Met 510	Arg	Pro		
Val	Phe	Gly 515	Gly	Arg	Gly	Phe	Val 520	Pro	Phe	Val	Pro	Gly 525	Ser	Pro	Thr		
Glu	Arg 530	Asn	Pro	Pro	Asp	Leu 535	Ser	Lys	Ala								
<210 <210 <210 <210	1> 1 2> 1	3 1614 DNA Artii	ficia	al													
<22 <22	_	1odi1	fied	AtNI	4X1 S	SM-23	3										
<400 atg		3 att d	ctcta	agtgt	c ga	aact	gcct	tcç	gttat	cga	cato	ctgat	ca d	cgctt	ctgtg	6	50
gtt	gcgtt	:ga a	atcto	ctttq	gt to	gcact	tctt	tgt	gctt	gta	ttgt	tctt	.gg t	cato	cttttg	12	20
gaa	gagaa	ata q	gatgo	gatga	aa co	gaato	ccato	aco	cgcct	tgt	tgat	tgg	gct a	ggca	actggt	18	30
gtta	accat	tt t	gtt	gatta	ag ta	aagg	gaaaa	a ago	ctcgc	catc	ttct	cgto	ctt t	agto	gaagat	24	10

cttttcttca tatatctttt gccacccatt atattcaatg cagggtttca agtaaaaaag 300 aagcagtttt teegeaattt egtgaetatt atgetttttg gtgetgttgg gaetattatt 360 tcttgcacaa tcatatctct aggtgtaaca cagttcttta agaagttgga cattggaacc 420 tttgacttgg gtgattatct tgctattggt gccatatttg ctgcaacaga ttcagtatgt 480 540 acactgcagg ttctgaatca agacgagaca cctttgcttt acagtcttgt attcggagag ggtgttgtga atgatgcaac gtcagttgtg gtcttcaacg cgattcagag ctttgatctc 600 actcacctaa accacgaagc tgcttttcat cttcttggaa acttcttgta tttgtttctc 660 ctaagtacct tgcttggtgc tgcaaccggt ctgataagtg cgtatgttat caagaagcta 720 tactttggaa ggcactcaac tgaccgagag gttgccctta tgatgcttat ggcgtatctt 780 tettatatge ttgetgaget tttegaettg ageggtatee teactgtgtt tttetgtggt 840 900 attgtgatgt cccattacac atggcacaat gtaacggaga gctcaagaat aacaacaaag catacctttg caactttgtc atttcttgcg gagacattta ttttcttgta tgttggaatg 960 gatgeettgg acattgacaa gtggagatee gtgagtgaca cacegggaae ategategea 1020 qtqaqctcaa tcctaatqqq tctqqtcatq qttqqaaqaq cagcqttcqt ctttccqtta 1080 1140 tegtttetat etaaettage caagaagaat caaagegaga aaateaaett taacatgeag 1200 gttgtgattt ggtggtctgg tctcatgaga ggtgctgtat ctatggctct tgcatacaac aagtttacaa gggccgggca cacagatgta cgcgggaatg caatcatgat cacgagtacg 1260 ataactgtct gtctttttag cacagtggtg tttggtatgc tgaccaaacc actcataagc 1320 tacctattac cgcaccagaa cgccaccacg agcatgttat ctgatgacaa caccccaaaa 1380 tocatacata tocotttgtt ggaccaagac togttcattg agoottcagg gaaccacaat 1440 qtgcctcggc ctgacagtat acgtggcttc ttgacacggc ccactcgaac cgtgcattac 1500 tactqqaqac aatttqatqa ctqcttcatq cqacccqtct ttqqaqqtcq tqqctttqta 1560 ccctttgttc caggttctcc aactgagaga aaccctcctg atcttagtaa ggct 1614

<220>
<223> Putative amino acid sequence encoded by modified AtNHX1 SM-23
<400> 4

Met Leu Asp Ser Leu Val Ser Lys Leu Pro Ser Leu Ser Thr Ser Asp 5 10 15

<210> 4 <211> 538 <212> PRT <213> Artificial

His Ala Ser Val Val Ala Leu Asn Leu Phe Val Ala Leu Leu Cys Ala Cys Ile Val Leu Gly His Leu Leu Glu Glu Asn Arg Trp Met Asn Glu Ser Ile Thr Ala Leu Leu Ile Gly Leu Gly Thr Gly Val Thr Ile Leu Leu Ile Ser Lys Gly Lys Ser Ser His Leu Leu Val Phe Ser Glu Asp Leu Phe Phe Ile Tyr Leu Leu Pro Pro Ile Ile Phe Asn Ala Gly Phe 90 Gln Val Lys Lys Gln Phe Phe Arg Asn Phe Val Thr Ile Met Leu 105 Phe Gly Ala Val Gly Thr Ile Ile Ser Cys Thr Ile Ile Ser Leu Gly Val Thr Gln Phe Phe Lys Lys Leu Asp Ile Gly Thr Phe Asp Leu Gly 130 135 Asp Tyr Leu Ala Ile Gly Ala Ile Phe Ala Ala Thr Asp Ser Val Cys 145 155 150 Thr Leu Gln Val Leu Asn Gln Asp Glu Thr Pro Leu Leu Tyr Ser Leu 165 170 Val Phe Gly Glu Gly Val Val Asn Asp Ala Thr Ser Val Val Phe 180 185 Asn Ala Ile Gln Ser Phe Asp Leu Thr His Leu Asn His Glu Ala Ala 195 200 205 Phe His Leu Gly Asn Phe Leu Tyr Leu Phe Leu Leu Ser Thr Leu 210 215 220 Leu Gly Ala Ala Thr Gly Leu Ile Ser Ala Tyr Val Ile Lys Lys Leu 235 240 Tyr Phe Gly Arg His Ser Thr Asp Arg Glu Val Ala Leu Met Met Leu

Met Ala Tyr Leu Ser Tyr Met Leu Ala Glu Leu Phe Asp Leu Ser Gly

260 265 270

Ile	Leu	Thr 275	Val	Phe	Phe	Cys	Gly 280	Ile	Val	Met	Ser	His 285	Tyr	Thr	Trp
His	Asn 290	Val	Thr	Glu	Ser	Ser 295	Arg	Ile	Thr	Thr	Lys 300	His	Thr	Phe	Ala
Thr 305	Leu	Ser	Phe	Leu	Ala 310	Glu	Thr	Phe	Ile	Phe 315	Leu	Tyr	Val	Gly	Met 320
Asp	Ala	Leu	Asp	Ile 325	Asp	Lys	Trp	Arg	Ser 330	Val	Ser	Asp	Thr	Pro 335	Gly
Thr	Ser	Ile	Ala 340	Val	Ser	Ser	Ile	Leu 345	Met	Gly	Leu	Val	Met 350	Val	Gly
Arg	Ala	Ala 355	Phe	Val	Phe	Pro	Leu 360	Ser	Phe	Leu	Ser	Asn 365	Leu	Ala	Lys
Lys	Asn 370	Gln	Ser	Glu	Lys	Ile 375	Asn	Phe	Asn	Met	Gln 380	Val	Val	Ile	Trp
Trp 385	Ser	Gly	Leu	Met	Arg 390	Gly	Ala	Val	Ser	Met 395	Ala	Leu	Ala	Tyr	Asn 400
Lys	Phe	Thr	Arg	Ala 405	Gly	His	Thr	Asp	Val 410	Arg	Gly	Asn	Ala	Ile 415	Met
Ile	Thr	Ser	Thr 420	Ile	Thr	Val	Cys	Leu 425	Phe	Ser	Thr	Val	Val 430	Phe	Gly
Met	Leu	Thr 435	Lys	Pro	Leu	Ile	Ser 440	Tyr	Leu	Leu	Pro	His 445	Gln	Asn	Ala
Thr	Thr 450	Ser	Met	Leu	Ser	Asp 455	Asp	Asn	Thr	Pro	Lys 460	Ser	Ile	His	Ile
Pro 465	Leu	Leu	Asp	Gln	Asp 470	Ser	Phe	Ile	Glu	Pro 475	Ser	Gly	Asn	His	Asn 480
Val	Pro	Arg	Pro	Asp 485	Ser	Ile	Arg	Gly	Phe 490	Leu	Thr	Arg	Pro	Thr 495	Arg
Thr	Val	His	Tyr 500	Tyr	Trp	Arg	Gln	Phe 505	Asp	Asp	Cys	Phe	Met 510	Arg	Pro

Val Phe Gly Gly Arg Gly Phe Val Pro Phe Val Pro Gly Ser Pro Thr 515 520 525

Glu Arg Asn Pro Pro Asp Leu Ser Lys Ala 530 535

<210> 5

<211> 1563

<212> DNA

<213> Artificial

<220>

<223> Modified AtNHX1 DL-1

<400> 5

atgttggatt ctctagtgtc gaaactgcct tcgttatcga catctgatca cgcttctgtg 60 gttgcgttga atctctttgt tgcacttctt tgtgcttgta ttgttcttgg tcatcttttg 120 gaagagaata gatggatgaa cgaatccatc accgccttgt tgattgggct aggcactggt 180 qttaccattt tqttqattaq taaaqqaaaa aqctcqcatc ttctcqtctt taqtqaaqat 240 300 cttttcttca tatatctttt gccacccatt atattcaatg cagggtttca agtaaaaaag aagcagtttt teegeaattt egtgaetatt atgetttttg gtgetgttgg gaetattatt 360 tcttgcacaa tcatatctct aggtgtaaca cagttcttta agaagttgga cattggaacc 420 tttgacttgg gtgattatct tgctattggt gccatatttg ctgcaacaga ttcagtatgt 480 acactgcagg ttctgaatca agacgagaca cctttgcttt acagtcttgt attcggagag 540 ggtgttgtga atgatgcaac gtcagttgtg gtcttcaacg cgattcagag ctttgatctc 600 actcacctaa accacgaagc tgcttttcat cttcttggaa acttcttgta tttgtttctc 660 ctaagtacct tgcttggtgc tgcaaccggt ctgataagtg cgtatgttat caagaagcta 720 tactttggaa ggcactcaac tgaccgagag gttgccctta tgatgcttat ggcgtatctt 780 tettatatge ttgetgaget tttegaettg ageggtatee teaetgtgtt tttetgtggt 840 attgtgatgt cccattacac atggcacaat gtaacggaga gctcaagaat aacaacaaag 900 catacctttg caactttgtc atttcttgcg gagacattta ttttcttgta tgttggaatg 960 gatgccttgg acattgacaa gtggagatcc gtgagtgaca caccgggaac atcgatcgca 1020 gtgagetcaa teetaatggg tetggteatg gttggaagag eagegttegt ettteegtta 1080 tcgtttctat ctaacttagc caagaagaat caaagcgaga aaatcaactt taacatgcag 1140 gttgtgattt ggtggtctgg tctcatgaga ggtgctgtat ctatggctct tgcatacaac 1200 1260 aagtttacaa gggccgggca cacagatgta cgcgggaatg caatcatgat cacgagtacg

ataactgtct gtctttttag cacagtggtg tttggtatgc tgaccaaacc actcataagc	1320
tacctattac cgcaccagaa cgccaccacg agcatgttat ctgatgacaa caccccaaaa	1380
tccatacata tccctttgtt ggaccaagac tcgttcattg agccttcagg gaaccacaat	1440
gtgcctcggc ctgacagtat acgtggcttc ttgacacggc ccactcgaac cgtgcattac	1500
tactggagac aatttgatga ctccttcatg cgacccgtct ttggaggtcg tggctttgta	1560
ccc	1563
<210> 6	
<211> 521	
<212> PRT	
<213> Artificial	
<220>	
<223> Putative amino acid sequence encded by modified AtNHX1 DL-1	
<400> 6	
M. I. T. B. G. T. W. I. G. J. J. J. J. D. G. J. J. G. G. B. B. G. J. B. G. J. B. G. J. B. G. J. B. G. G. B. B. G. G. G. B. G.	

Met	Leu	Asp	Ser	Leu	Val	Ser	Lys	Leu	Pro	Ser	Leu	Ser	Thr	Ser	Asp
1				5					10					15	

His	Ala	Ser	Val	Val	Ala	Leu	Asn	Leu	Phe	Val	Ala	Leu	Leu	Cys	Ala
			20					25					30		

Cys	Ile	Val	Leu	Gly	His	Leu	Leu	Glu	Glu	Asn	Arg	Trp	Met	Asn	Glu
		35					40					45			

Ser	Ile	Thr	Ala	Leu	Leu	Ile	Gly	Leu	Gly	Thr	Gly	Val	Thr	Ile	Leu
	50					55					60				

Leu Phe Phe Ile Tyr Leu Leu Pro Pro Ile Ile Phe Asn Ala Gly Phe
$$85$$
 90 95

Gln Val Lys Lys Gln Phe Phe Arg Asn Phe Val Thr Ile Met Leu
$$100$$
 ` 105 110

Phe Gly Ala Val Gly Thr Ile Ile Ser Cys Thr Ile Ile Ser Leu Gly
$$115$$
 120 125

Val Thr Gln Phe Phe Lys Lys Leu Asp Ile Gly Thr Phe Asp Leu Gly
$$130$$
 135 140

Thr Leu Gln Val Leu Asn Gln Asp Glu Thr Pro Leu Leu Tyr Ser Leu Val Phe Gly Glu Gly Val Val Asn Asp Ala Thr Ser Val Val Phe Asn Ala Ile Gln Ser Phe Asp Leu Thr His Leu Asn His Glu Ala Ala Phe His Leu Leu Gly Asn Phe Leu Tyr Leu Phe Leu Leu Ser Thr Leu Leu Gly Ala Ala Thr Gly Leu Ile Ser Ala Tyr Val Ile Lys Lys Leu Tyr Phe Gly Arg His Ser Thr Asp Arg Glu Val Ala Leu Met Met Leu Met Ala Tyr Leu Ser Tyr Met Leu Ala Glu Leu Phe Asp Leu Ser Gly Ile Leu Thr Val Phe Phe Cys Gly Ile Val Met Ser His Tyr Thr Trp His Asn Val Thr Glu Ser Ser Arg Ile Thr Thr Lys His Thr Phe Ala Thr Leu Ser Phe Leu Ala Glu Thr Phe Ile Phe Leu Tyr Val Gly Met Asp Ala Leu Asp Ile Asp Lys Trp Arg Ser Val Ser Asp Thr Pro Gly Thr Ser Ile Ala Val Ser Ser Ile Leu Met Gly Leu Val Met Val Gly Arq Ala Ala Phe Val Phe Pro Leu Ser Phe Leu Ser Asn Leu Ala Lys Lys Asn Gln Ser Glu Lys Ile Asn Phe Asn Met Gln Val Val Ile Trp Trp Ser Gly Leu Met Arg Gly Ala Val Ser Met Ala Leu Ala Tyr Asn

Lys Phe Thr Arg Ala Gly His Thr Asp Val Arg Gly Asn Ala Ile Met 415

Ile Thr Ser Thr Ile Thr Val Cys Leu Phe Ser Thr Val Val Phe Gly 430

Met Leu Thr Lys Pro Leu Ile Ser Tyr Leu Leu Pro His Gln Asn Ala

Thr Thr Ser Met Leu Ser Asp Asp Asn Thr Pro Lys Ser Ile His Ile 450 455 460

Pro Leu Leu Asp Gln Asp Ser Phe Ile Glu Pro Ser Gly Asn His Asn 465 470 475 480

Val Pro Arg Pro Asp Ser Ile Arg Gly Phe Leu Thr Arg Pro Thr Arg 485 490 495

Thr Val His Tyr Tyr Trp Arg Gln Phe Asp Asp Ser Phe Met Arg Pro 500 505 510

Val Phe Gly Gly Arg Gly Phe Val Pro 515 520

<210> 7

<211> 1473

<212> DNA

<213> Artificial

<220>

<223> Modified AtNHX1 DL-2.

<400> 7

atgttggatt ctctagtgtc gaaactgcct tcgttatcga catctgatca cgcttctgtg 60 gttgcgttga atctctttgt tgcacttctt tgtgcttgta ttgttcttgg tcatcttttg 120 qaaqaqaata qatqqatqaa cgaatccatc accgccttgt tgattgggct aggcactggt 180 qttaccattt tgttgattag taaaggaaaa agctcgcatc ttctcgtctt tagtgaagat 240 cttttcttca tatatctttt gccacccatt atattcaatg cagggtttca agtaaaaaag 300 aagcagtttt teegeaattt egtgactatt atgetttttg gtgetgttgg gactattatt 360 tcttgcacaa tcatatctct aggtgtaaca cagttcttta agaagttgga cattggaacc 420 tttgacttgg gtgattatct tgctattggt gccatatttg ctgcaacaga ttcagtatgt 480 acactgcagg ttctgaatca agacgagaca cctttgcttt acagtcttgt attcggagag 540 ggtgttgtga atgatgcaac gtcagttgtg gtcttcaacg cgattcagag ctttgatctc 600

actcacctaa	accacgaagc	tgcttttcat	cttcttggaa	acttcttgta	tttgtttctc	660
ctaagtacct	tgcttggtgc	tgcaaccggt	ctgataagtg	cgtatgttat	caagaagcta	720
tactttggaa	ggcactcaac	tgaccgagag	gttgccctta	tgatgcttat	ggcgtatctt	780
tcttatatgc	ttgctgagct	tttcgacttg	agcggtatcc	tcactgtgtt	tttctgtggt	840
attgtgatgt	cccattacac	atggcacaat	gtaacggaga	gctcaagaat	aacaacaaag	900
catacctttg	caactttgtc	atttcttgcg	gagacattta	ttttcttgta	tgttggaatg	960
gatgccttgg	acattgacaa	gtggagatcc	gtgagtgaca	caccgggaac	atcgatcgca	1020
gtgagctcaa	tcctaatggg	tctggtcatg	gttggaagag	cagcgttcgt	ctttccgtta	1080
tcgtttctat	ctaacttagc	caagaagaat	caaagcgaga	aaatcaactt	taacatgcag	1140
gttgtgattt	ggtggtctgg	tctcatgaga	ggtgctgtat	ctatggctct	tgcatacaac	1200
aagtttacaa	gggccgggca	cacagatgta	cgcgggaatg	caatcatgat	cacgagtacg	1260
ataactgtct	gtctttttag	cacagtggtg	tttggtatgc	tgaccaaacc	actcataagc	1320
tacctattac	cgcaccagaa	cgccaccacg	agcatgttat	ctgatgacaa	caccccaaaa	1380
tccatacata	tccctttgtt	ggaccaagac	tcgttcattg	agccttcagg	gaaccacaat	1440
gtgcctcggc	ctgacagtat	acgtggcttc	ttg			1473

<210> 8

<211> 491

<212> PRT

<213> Artificial

<220>

<223> Putative amino acid encodied by modified AtNHX1 DL-2.

<400> 8

Met Leu Asp Ser Leu Val Ser Lys Leu Pro Ser Leu Ser Thr Ser Asp $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

His Ala Ser Val Val Ala Leu Asn Leu Phe Val Ala Leu Leu Cys Ala 20 25 30

Cys Ile Val Leu Gly His Leu Leu Glu Glu Asn Arg Trp Met Asn Glu 35 40 45

Ser Ile Thr Ala Leu Leu Ile Gly Leu Gly Thr Gly Val Thr Ile Leu 50 60

Leu Ile Ser Lys Gly Lys Ser Ser His Leu Leu Val Phe Ser Glu Asp 70 75 80

Leu Phe Phe Ile Tyr Leu Leu Pro Pro Ile Ile Phe Asn Ala Gly Phe 85 90 Gln Val Lys Lys Gln Phe Phe Arg Asn Phe Val Thr Ile Met Leu 100 105 Phe Gly Ala Val Gly Thr Ile Ile Ser Cys Thr Ile Ile Ser Leu Gly Val Thr Gln Phe Phe Lys Lys Leu Asp Ile Gly Thr Phe Asp Leu Gly 135 Asp Tyr Leu Ala Ile Gly Ala Ile Phe Ala Ala Thr Asp Ser Val Cys Thr Leu Gln Val Leu Asn Gln Asp Glu Thr Pro Leu Leu Tyr Ser Leu 170 165 Val Phe Gly Glu Gly Val Val Asn Asp Ala Thr Ser Val Val Phe 185 Asn Ala Ile Gln Ser Phe Asp Leu Thr His Leu Asn His Glu Ala Ala 200 Phe His Leu Leu Gly Asn Phe Leu Tyr Leu Phe Leu Leu Ser Thr Leu 215 Leu Gly Ala Ala Thr Gly Leu Ile Ser Ala Tyr Val Ile Lys Lys Leu 230 235 Tyr Phe Gly Arg His Ser Thr Asp Arg Glu Val Ala Leu Met Met Leu 250 Met Ala Tyr Leu Ser Tyr Met Leu Ala Glu Leu Phe Asp Leu Ser Gly Ile Leu Thr Val Phe Phe Cys Gly Ile Val Met Ser His Tyr Thr Trp 275 280 His Asn Val Thr Glu Ser Ser Arg Ile Thr Thr Lys His Thr Phe Ala 290 295 Thr Leu Ser Phe Leu Ala Glu Thr Phe Ile Phe Leu Tyr Val Gly Met 310 315

Asp	Ala	Leu	Asp	Ile 325	Asp	Lys	Trp	Arg	Ser 330	Val	Ser	Asp	Thr	Pro 335	Gly	
Thr	Ser	Ile	Ala 340	Val	Ser	Ser	Ile	Leu 345	Met	Gly	Leu	Val	Met 350	Val	Gly	
Arg	Ala	Ala 355	Phe	Val	Phe	Pro	Leu 360	Ser	Phe	Leu	Ser	Asn 365	Leu	Ala	Lys	
Lys	Asn 370	Gln	Ser	Glu	Lys	Ile 375	Asn	Phe	Asn	Met	Gln 380	Val	Val	Ile	Trp	
Trp 385	Ser	Gly	Leu	Met	Arg 390	Gly	Ala	Val	Ser	Met 395	Ala	Leu	Ala	Tyr	Asn 400	
Lys	Phe	Thr	Arg	Ala 405	Gly	His	Thr	Asp	Val 410	Arg	Gly	Asn	Ala	Ile 415	Met	
Ile	Thr	Ser	Thr 420	Ile	Thr	Val	Cys	Leu 425	Phe	Ser	Thr	Val	Val 430	Phe	Gly	
Met	Leu	Thr 435	Lys	Pro	Leu	Ile	Ser 440	Tyr	Leu	Leu	Pro	His 445	Gln	Asn	Ala	
Thr	Thr 450	Ser	Met	Leu	Ser	Asp 455	Asp	Asn	Thr	Pro	Lys 460	Ser	Ile	His	Ile	
Pro 465	Leu	Leu	Asp	Gln	Asp 470	Ser	Phe	Ile	Glu	Pro 475	Ser	Gly	Asn	His	Asn 480	
Val	Pro	Arg	Pro	Asp 485	Ser	Ile	Arg	Gly	Phe 490	Leu						
<210 <210 <210 <210	1>	9 1362 DNA Arti:	ficia	al												
<22 <22		1odi:	fied	AtN	HX1 [DL-3.	•									
<40 atg		ett o	ctcta	agtg	cc ga	aaact	zgcct	t to	gttai	cga	cato	ctgat	ca d	egett	tctgtg	60
gtt	gcgtt	cga a	atcto	cttt	gt to	gcact	tctt	t tgi	gcti	tgta	ttgt	tctt	gg t	cato	cttttg	120

180

240

gaagagaata gatggatgaa cgaatccatc accgccttgt tgattgggct aggcactggt

gttaccattt tgttgattag taaaggaaaa agctcgcatc ttctcgtctt tagtgaagat

cttttcttca tatatctttt gccacccatt atattcaatg cagggtttca agtaaaaaag 300 aagcagtttt teegeaattt egtgaetatt atgetttttg gtgetgttgg gaetattatt 360 tcttqcacaa tcatatctct aggtgtaaca cagttcttta agaagttgga cattggaacc 420 tttgacttgg gtgattatct tgctattggt gccatatttg ctgcaacaga ttcagtatgt 480 acactgcagg ttctgaatca agacgagaca cctttgcttt acagtcttgt attcggagag 540 ggtgttgtga atgatgcaac gtcagttgtg gtcttcaacg cgattcagag ctttgatctc 600 actcacctaa accacgaagc tgcttttcat cttcttggaa acttcttgta tttgtttctc 660 ctaagtacct tgcttggtgc tgcaaccggt ctgataagtg cgtatgttat caagaagcta 720 tactttggaa ggcactcaac tgaccgagag gttgccctta tgatgcttat ggcgtatctt 780 tettatatge ttgetgaget tttegaettg ageggtatee teactgtgtt tttetgtggt 840 attqtqatqt cccattacac atggcacaat gtaacggaga gctcaagaat aacaacaaag 900 catacctttg caactttgtc atttcttgcg gagacattta ttttcttgta tgttggaatg 960 gatgccttgg acattgacaa gtggagatcc gtgagtgaca caccgggaac atcgatcgca 1020 gtgagctcaa tcctaatggg tctggtcatg gttggaagag cagcgttcgt ctttccgtta 1080 1140 togtttotat otaacttago caagaagaat caaagogaga aaatcaactt taacatgoag gttgtgattt ggtggtctgg tctcatgaga ggtgctgtat ctatggctct tgcatacaac 1200 aagtttacaa gggccgggca cacagatgta cgcgggaatg caatcatgat cacgagtacg 1260 ataactgtct gtctttttag cacagtggtg tttggtatgc tgaccaaacc actcataagc 1320 1362 tacctattac cgcaccagaa cgccaccacg agcatgttat ct

<210> 10

<211> 454

<212> PRT

<213> Artificial

<220>

<223> Putative amino acid encodied by modified AtNHX1 DL-3.

<400> 10

Met Leu Asp Ser Leu Val Ser Lys Leu Pro Ser Leu Ser Thr Ser Asp 1 5 10 15

His Ala Ser Val Val Ala Leu Asn Leu Phe Val Ala Leu Leu Cys Ala 20 25 30

Cys Ile Val Leu Gly His Leu Leu Glu Glu Asn Arg Trp Met Asn Glu 35 40 45

Ser Ile Thr Ala Leu Leu Ile Gly Leu Gly Thr Gly Val Thr Ile Leu Leu Ile Ser Lys Gly Lys Ser Ser His Leu Leu Val Phe Ser Glu Asp Leu Phe Phe Ile Tyr Leu Leu Pro Pro Ile Ile Phe Asn Ala Gly Phe Gln Val Lys Lys Gln Phe Phe Arg Asn Phe Val Thr Ile Met Leu 105 Phe Gly Ala Val Gly Thr Ile Ile Ser Cys Thr Ile Ile Ser Leu Gly 120 Val Thr Gln Phe Phe Lys Lys Leu Asp Ile Gly Thr Phe Asp Leu Gly 135 . 130 Asp Tyr Leu Ala Ile Gly Ala Ile Phe Ala Ala Thr Asp Ser Val Cys 145 150 155 Thr Leu Gln Val Leu Asn Gln Asp Glu Thr Pro Leu Leu Tyr Ser Leu 165 170 Val Phe Gly Glu Gly Val Val Asn Asp Ala Thr Ser Val Val Phe 185 Asn Ala Ile Gln Ser Phe Asp Leu Thr His Leu Asn His Glu Ala Ala Phe His Leu Leu Gly Asn Phe Leu Tyr Leu Phe Leu Leu Ser Thr Leu 210 215 Leu Gly Ala Ala Thr Gly Leu Ile Ser Ala Tyr Val Ile Lys Lys Leu 225 235 Tyr Phe Gly Arg His Ser Thr Asp Arg Glu Val Ala Leu Met Met Leu Met Ala Tyr Leu Ser Tyr Met Leu Ala Glu Leu Phe Asp Leu Ser Gly 260 265 Ile Leu Thr Val Phe Phe Cys Gly Ile Val Met Ser His Tyr Thr Trp 275 280

His Asn Val Thr Glu Ser Ser Arg Ile Thr Thr Lys His Thr Phe Ala

290	295	300
Thr Leu Ser Phe Leu Ala 305 310		Leu Tyr Val Gly Met 320
Asp Ala Leu Asp Ile Asp 325	Lys Trp Arg Ser Val 330	Ser Asp Thr Pro Gly 335
Thr Ser Ile Ala Val Ser 340	Ser Ile Leu Met Gly 345	Leu Val Met Val Gly 350
Arg Ala Ala Phe Val Phe 355	Pro Leu Ser Phe Leu 360	Ser Asn Leu Ala Lys 365
Lys Asn Gln Ser Glu Lys 370	Ile Asn Phe Asn Met 375	Gln Val Val Ile Trp 380
Trp Ser Gly Leu Met Arg 385 390		Ala Leu Ala Tyr Asn 400
Lys Phe Thr Arg Ala Gly 405	His Thr Asp Val Arg 410	Gly Asn Ala Ile Met 415
Ile Thr Ser Thr Ile Thr 420	Val Cys Leu Phe Ser 425	Thr Val Val Phe Gly 430
Met Leu Thr Lys Pro Leu 435	Ile Ser Tyr Leu Leu 440	Pro His Gln Asn Ala 445
Thr Thr Ser Met Leu Ser		
<210> 11 <211> 1566 <212> DNA <213> Artificial		
<220> <223> Modified AtNHX1	NDL-1 cDNA.	
<400> 11 atggcttctg tggttgcgtt g	aatctcttt gttgcacttc	tttgtgcttg tattgttctt 60
ggtcatcttt tggaagagaa t	agatggatg aacgaatcca	tcaccgcctt gttgattggg 120

ctaggcactg gtgttaccat tttgttgatt agtaaaggaa aaagctcgca tcttctcgtc

tttagtgaag atctttctt catatatctt ttgccaccca ttatattcaa tgcagggttt

caagtaaaaa agaagcagtt tttccgcaat ttcgtgacta ttatgctttt tggtgctgtt

180

240

gggactatta	tttcttgcac	aatcatatct	ctaggtgtaa	cacagttctt	taagaagttg	360
gacattggaa	cctttgactt	gggtgattat	cttgctattg	gtgccatatt	tgctgcaaca	420
gattcagtat	gtacactgca	ggttctgaat	caagacgaga	cacctttgct	ttacagtctt	480
gtattcggag	agggtgttgt	gaatgatgca	acgtcagttg	tggtcttcaa	cgcgattcag	540
agctttgatc	tcactcacct	aaaccacgaa	gctgcttttc	atcttcttgg	aaacttcttg	600
tatttgtttc	tcctaagtac	cttgcttggt	gctgcaaccg	gtctgataag	tgcgtatgtt	660
atcaagaagc	tatactttgg	aaggcactca	actgaccgag	aggttgccct	tatgatgctt	720
atggcgtatc	tttcttatat	gcttgctgag	cttttcgact	tgagcggtat	cctcactgtg	780
tttttctgtg	gtattgtgat	gtcccattac	acatggcaca	atgtaacgga	gagctcaaga	840
ataacaacaa	agcatacctt	tgcaactttg	tcatttcttg	cggagacatt	tattttcttg	900
tatgttggaa	tggatgcctt	ggacattgac	aagtggagat	ccgtgagtga	cacaccggga	960
acatcgatcg	cagtgagctc	aatcctaatg	ggtctggtca	tggttggaag	agcagcgttc	1020
gtctttccgt	tatcgtttct	atctaactta	gccaagaaga	atcaaagcga	gaaaatcaac	1080
tttaacatgc	aggttgtgat	ttggtggtct	ggtctcatga	gaggtgctgt	atctatggct	1140
cttgcataca	acaagtttac	aagggccggg	cacacagatg	tacgcgggaa	tgcaatcatg	1200
atcacgagta	cgataactgt	ctgtctttt	agcacagtgg	tgtttggtat	gctgaccaaa	1260
ccactcataa	gctacctatt	accgcaccag	aacgccacca	cgagcatgtt	atctgatgac	1320
aacaccccaa	aatccataca	tatccctttg	ttggaccaag	actcgttcat	tgagccttca	1380
gggaaccaca	atgtgcctcg	gcctgacagt	atacgtggct	tcttgacacg	gcccactcga	1440
accgtgcatt	actactggag	acaatttgat	gactccttca	tgcgacccgt	ctttggaggt	1500
cgtggctttg	taccctttgt	tccaggttct	ccaactgaga	gaaaccctcc	tgatcttagt	1560
aaggct						1566

```
<210> 12
```

<220>

<223> Putative amino acid encodied by modified AtNHX1 NDL-1 cDNA.

<400> 12

Met Ala Ser Val Val Ala Leu Asn Leu Phe Val Ala Leu Leu Cys Ala 1 5 10 15

Cys Ile Val Leu Gly His Leu Leu Glu Glu Asn Arg Trp Met Asn Glu

<211> 522

<212> PRT

<213> Artificial

25 30

20

Ser Ile Thr Ala Leu Leu Ile Gly Leu Gly Thr Gly Val Thr Ile Leu 40 Leu Ile Ser Lys Gly Lys Ser Ser His Leu Leu Val Phe Ser Glu Asp 55 Leu Phe Phe Ile Tyr Leu Leu Pro Pro Ile Ile Phe Asn Ala Gly Phe Gln Val Lys Lys Gln Phe Phe Arg Asn Phe Val Thr Ile Met Leu Phe Gly Ala Val Gly Thr Ile Ile Ser Cys Thr Ile Ile Ser Leu Gly Val Thr Gln Phe Phe Lys Lys Leu Asp Ile Gly Thr Phe Asp Leu Gly 120 115 Asp Tyr Leu Ala Ile Gly Ala Ile Phe Ala Ala Thr Asp Ser Val Cys 135 Thr Leu Gln Val Leu Asn Gln Asp Glu Thr Pro Leu Leu Tyr Ser Leu 150 Val Phe Gly Glu Gly Val Val Asn Asp Ala Thr Ser Val Val Val Phe 170 Asn Ala Ile Gln Ser Phe Asp Leu Thr His Leu Asn His Glu Ala Ala Phe His Leu Gly Asn Phe Leu Tyr Leu Phe Leu Ser Thr Leu Leu Gly Ala Ala Thr Gly Leu Ile Ser Ala Tyr Val Ile Lys Lys Leu Tyr Phe Gly Arg His Ser Thr Asp Arg Glu Val Ala Leu Met Met Leu 230 Met Ala Tyr Leu Ser Tyr Met Leu Ala Glu Leu Phe Asp Leu Ser Gly 245 250

Ile Leu Thr Val Phe Phe Cys Gly Ile Val Met Ser His Tyr Thr Trp

265

His Asn Val Thr Glu Ser Ser Arg Ile Thr Thr Lys His Thr Phe Ala Thr Leu Ser Phe Leu Ala Glu Thr Phe Ile Phe Leu Tyr Val Gly Met Asp Ala Leu Asp Ile Asp Lys Trp Arg Ser Val Ser Asp Thr Pro Gly Thr Ser Ile Ala Val Ser Ser Ile Leu Met Gly Leu Val Met Val Gly Arg Ala Ala Phe Val Phe Pro Leu Ser Phe Leu Ser Asn Leu Ala Lys Lys Asn Gln Ser Glu Lys Ile Asn Phe Asn Met Gln Val Val Ile Trp Trp Ser Gly Leu Met Arg Gly Ala Val Ser Met Ala Leu Ala Tyr Asn ` Lys Phe Thr Arg Ala Gly His Thr Asp Val Arg Gly Asn Ala Ile Met Ile Thr Ser Thr Ile Thr Val Cys Leu Phe Ser Thr Val Val Phe Gly Met Leu Thr Lys Pro Leu Ile Ser Tyr Leu Leu Pro His Gln Asn Ala Thr Thr Ser Met Leu Ser Asp Asp Asn Thr Pro Lys Ser Ile His Ile Pro Leu Leu Asp Gln Asp Ser Phe Ile Glu Pro Ser Gly Asn His Asn Val Pro Arg Pro Asp Ser Ile Arg Gly Phe Leu Thr Arg Pro Thr Arg Thr Val His Tyr Tyr Trp Arg Gln Phe Asp Asp Ser Phe Met Arg Pro

Val Phe Gly Gly Arg Gly Phe Val Pro Phe Val Pro Gly Ser Pro Thr

Glu Arg Asn Pro Pro Asp Leu Ser Lys Ala

<210> 13 <211> 1410 <212> DNA

<213> Artificial

<220>

<223> NDL-2 cDNA.

<400> atgaaaagct cgcatcttct cgtctttagt gaagatcttt tcttcatata tcttttgcca 60 cccattatat tcaatgcagg gtttcaagta aaaaagaagc agtttttccg caatttcgtg 120 actattatgc tttttggtgc tgttgggact attatttctt gcacaatcat atctctaggt 180 240 gtaacacagt tetttaagaa gttggacatt ggaacetttg aettgggtga ttatettget 300 attggtgcca tatttgctgc aacagattca gtatgtacac tgcaggttct gaatcaagac 360 gagacacctt tgctttacag tcttgtattc ggagagggtg ttgtgaatga tgcaacgtca 420 gttgtggtct tcaacgcgat tcagagcttt gatctcactc acctaaacca cgaagctgct tttcatcttc ttggaaactt cttgtatttg tttctcctaa gtaccttgct tggtgctgca 480 540 accggtctga taagtgcgta tgttatcaag aagctatact ttggaaggca ctcaactgac 600 cgagaggttg cccttatgat gcttatggcg tatctttctt atatgcttgc tgagcttttc 660 gacttgageg gtatecteae tgtgttttte tgtggtattg tgatgteeca ttacacatgg 720 cacaatgtaa cggagagctc aagaataaca acaaagcata cctttgcaac tttgtcattt cttgcggaga catttatttt cttgtatgtt ggaatggatg ccttggacat tgacaagtgg 780 agateegtga gtgacacace gggaacateg ategeagtga geteaateet aatgggtetg 840 gtcatggttg gaagagcagc gttcgtcttt ccgttatcgt ttctatctaa cttagccaag 900 960 aagaatcaaa gcgagaaaat caactttaac atgcaggttg tgatttggtg gtctggtctc 1020 atgagaggtg ctgtatctat ggctcttgca tacaacaagt ttacaagggc cgggcacaca 1080 gatgtacgcg ggaatgcaat catgatcacg agtacgataa ctgtctgtct ttttagcaca gtggtgtttg gtatgctgac caaaccactc ataagctacc tattaccgca ccagaacgcc 1140 1200 accacgagca tgttatctga tgacaacacc ccaaaatcca tacatatccc tttgttggac 1260 caagactcgt tcattgagcc ttcagggaac cacaatgtgc ctcggcctga cagtatacgt

qqcttcttqa cacqqcccac tcgaaccqtq cattactact ggagacaatt tgatgactcc

ttcatgcgac ccgtctttgg aggtcgtggc tttgtaccct ttgttccagg ttctccaact

gagagaaacc ctcctgatct tagtaaggct

1320

1380

<210> <211>	- -
	PRT
<213>	Artificial

<220> <223> Putative amino acid encodied by modified AtNHX1 NDL-2 cDNA.

<400> 14

Met Lys Ser Ser His Leu Leu Val Phe Ser Glu Asp Leu Phe Phe Ile 5 10 15

Tyr Leu Leu Pro Pro Ile Ile Phe Asn Ala Gly Phe Gln Val Lys Lys 20 25 30

Lys Gln Phe Phe Arg Asn Phe Val Thr Ile Met Leu Phe Gly Ala Val 35 40 45

Gly Thr Ile Ile Ser Cys Thr Ile Ile Ser Leu Gly Val Thr Gln Phe 50 55 60

Phe Lys Lys Leu Asp Ile Gly Thr Phe Asp Leu Gly Asp Tyr Leu Ala 65 70 75 80

Ile Gly Ala Ile Phe Ala Ala Thr Asp Ser Val Cys Thr Leu Gln Val 85 90 95

Leu Asn Gln Asp Glu Thr Pro Leu Leu Tyr Ser Leu Val Phe Gly Glu
100 105 110

Gly Val Val Asn Asp Ala Thr Ser Val Val Val Phe Asn Ala Ile Gln 115 120 125

Ser Phe Asp Leu Thr His Leu Asn His Glu Ala Ala Phe His Leu Leu 130 135 140

Gly Asn Phe Leu Tyr Leu Phe Leu Leu Ser Thr Leu Leu Gly Ala Ala 145 150 155 160

Thr Gly Leu Ile Ser Ala Tyr Val Ile Lys Lys Leu Tyr Phe Gly Arg 165 170 175

His Ser Thr Asp Arg Glu Val Ala Leu Met Met Leu Met Ala Tyr Leu 180 185 190

Ser Tyr Met Leu Ala Glu Leu Phe Asp Leu Ser Gly Ile Leu Thr Val

195	200	205

Phe Phe Cys Gly Ile Val Met Ser His Tyr Thr Trp His Asn Val Thr

	210	0,0	0-1			215			-1-		220	0			
Glu 225	Ser	Ser	Arg	Ile	Thr 230	Thr	Lys	His	Thr	Phe 235	Ala	Thr	Leu	Ser	Phe 240
Leu	Ala	Glu	Thr	Phe 245	Ile	Phe	Leu	Tyr	Val 250	Gly	Met	Asp	Ala	Leu 255	Asp
Ile	Asp	Lys	Trp 260	Arg	Ser	Val	Ser	Asp 265	Thr	Pro	Gly	Thr	Ser 270	Ile	Ala
Val	Ser	Ser 275	Ile	Leu	Met	Gly	Leu 280	Val	Met	Val	Gly	Arg 285	Ala	Ala	Phe
Val	Phe 290	Pro	Leu	Ser	Phe	Leu 295	Ser	Asn	Leu	Ala	Lys 300	Lys	Asn	Gln	Ser
305	_		Asn		310					315					320
	-		Ala	325					330					335	
	_		Thr 340	_				345					350		
		355	Cys				360				_	365			
	370		Ser			375					380				
385			Asp		390					395					400
			Phe	405					410					415	
_			Arg 420	_				425					430		
туr	Trp	Arg 435	Gln	rne	ASP	Asp	440	rne	мет	Arg	rro	Val 445	rne	стА	σтλ

Arg Gly Phe Val Pro Phe Val Pro Gly Ser Pro Thr Glu Arg Asn Pro 450 455 460

Pro Asp Leu Ser Lys Ala 465 470

<210> 15

<211> 1323

<212> DNA

<213> Artificial

<220>

<223> NDL-3 cDNA.

<400> 15

atgaaaaaga agcagttttt ccgcaatttc gtgactatta tgctttttgg tgctgttggg 60 actattattt cttgcacaat catatctcta ggtgtaacac agttctttaa gaagttggac 120 attggaacct ttgacttggg tgattatctt gctattggtg ccatatttgc tgcaacagat 180 tcagtatgta cactgcaggt tctgaatcaa gacgagacac ctttgcttta cagtcttgta 240 ttcggagagg gtgttgtgaa tgatgcaacg tcagttgtgg tcttcaacgc gattcagagc 300 tttgatctca ctcacctaaa ccacgaagct gcttttcatc ttcttggaaa cttcttgtat 360 420 ttgtttctcc taagtacctt gcttggtgct gcaaccggtc tgataagtgc gtatgttatc aagaagctat actttggaag gcactcaact gaccgagagg ttgcccttat gatgcttatg 480 gcgtatcttt cttatatgct tgctgagctt ttcgacttga gcggtatcct cactgtgttt 540 ttctgtggta ttgtgatgtc ccattacaca tggcacaatg taacggagag ctcaagaata 600 acaacaaagc atacctttgc aactttgtca tttcttgcgg agacatttat tttcttgtat 660 720 gttggaatgg atgccttgga cattgacaag tggagatccg tgagtgacac accgggaaca tegategeag tgageteaat eetaatgggt etggteatgg ttggaagage agegttegte 780 tttccgttat cgtttctatc taacttagcc aagaagaatc aaagcgagaa aatcaacttt 840 aacatgcagg ttgtgatttg gtggtctggt ctcatgagag gtgctgtatc tatggctctt 900 qcatacaaca agtttacaaq qqccqqqcac acaqatqtac qcqqqaatqc aatcatqatc 960 acqaqtacqa taactqtctq tctttttaqc acaqtqqtqt ttqqtatqct qaccaaacca 1020 ctcataagct acctattacc gcaccagaac gccaccacga gcatgttatc tgatgacaac 1080 accccaaaat ccatacatat ccctttgttg gaccaagact cgttcattga gccttcaggg 1140 aaccacaatg tgcctcggcc tgacagtata cgtggcttct tgacacggcc cactcgaacc 1200 gtgcattact actggagaca atttgatgac teetteatge gaccegtett tggaggtegt 1260

ggctttgtac cctttgttcc aggttctcca actgagagaa accctcctga tcttagtaag											
gct											
<210> 16 <211> 439 <212> PRT <213> Artificial											
<220> <223> Putative amino acid encodied by modified AtNHX1 NDL-3 cDNA.											
<400> 16											
Met Lys Lys Lys Gln Phe Phe Arg Asn Phe Val Thr Ile Met Leu Phe 5 10 15											
Gly Ala Val Gly Thr Ile Ile Ser Cys Thr Ile Ile Ser Leu Gly Val 20 . 25 30											
Thr Gln Phe Phe Lys Lys Leu Asp Ile Gly Thr Phe Asp Leu Gly Asp 35 40 45											
Tyr Leu Ala Ile Gly Ala Ile Phe Ala Ala Thr Asp Ser Val Cys Thr 50 55 60											
Leu Gln Val Leu Asn Gln Asp Glu Thr Pro Leu Leu Tyr Ser Leu Val 65 70 75 80											
Phe Gly Glu Gly Val Val Asn Asp Ala Thr Ser Trp Val Phe Asn Ala 85 90 95											
Ile Gln Ser Phe Asp Leu Thr His Leu Asn His Glu Ala Ala Phe His 100 105 110											
Leu Leu Gly Asn Phe Leu Tyr Leu Phe Leu Leu Ser Thr Leu Leu Gly 115 120 125											
Ala Ala Thr Gly Leu Ile Ser Ala Tyr Val Ile Lys Lys Leu Tyr Phe 130 135 140											
Gly Arg His Ser Thr Asp Arg Glu Val Ala Leu Met Met Leu Met Ala 145 150 155 160											
Tyr Leu Ser Tyr Met Leu Ala Glu Leu Phe Asp Leu Ser Gly Ile Leu 165 170 175											
Thr Val Phe Phe Cys Gly Ile Val Met Ser His Tyr Thr Trp His Asn 180 185 190											

Val Thr Glu Ser Ser Arg Ile Thr Thr Lys His Thr Phe Ala Thr Leu Ser Phe Leu Ala Glu Thr Phe Ile Phe Leu Tyr Val Gly Met Asp Ala Leu Asp Ile Asp Lys Trp Arg Ser Val Ser Asp Thr Pro Gly Thr Ser Ile Ala Val Ser Ser Ile Leu Met Gly Leu Val Met Val Gly Arg Ala Ala Phe Val Phe Pro Leu Ser Phe Leu Ser Asn Leu Ala Lys Lys Asn Gln Ser Glu Lys Ile Asn Phe Asn Met Gln Trp Ile Trp Trp Ser Gly Leu Met Arg Gly Ala Val Ser Met Ala Leu Ala Tyr Asn Lys Phe Thr Arg Ala Gly His Thr Asp Val Arg Gly Asn Ala Ile Met Ile Thr Ser Thr Ile Thr Val Cys Leu Phe Ser Thr Val Val Phe Gly Met Leu Thr Lys Pro Leu Ile Ser Tyr Leu Leu Pro His Gln Asn Ala Thr Thr Ser Met Leu Ser Asp Asp Asn Thr Pro Lys Ser Ile His Ile Pro Leu Leu Asp Gln Asp Ser Phe Ile Glu Pro Ser Gly Asn His Asn Val Pro Arg Pro Asp Ser Ile Arg Gly Phe Leu Thr Arg Pro Thr Arg Thr Val His Tyr Tyr Trp Arg Gln Phe Asp Asp Ser Phe Met Arg Pro Val Phe Gly

Gly Arg Gly Phe Val Pro Phe Val Pro Gly Ser Pro Thr Glu Arg Asn

Pro Pro Asp Leu Ser Lys Ala

<210> <211> <212> <213>		
<220> <223>	Putative amino acid encodied by modified AtNHX1 NDL-3 cDNA.	٠.
<400> ggagac	17 aatt tgatgactgc ttcatgcgac ccgtc	35
<210> <211> <212> <213>	DNA	
<220> <223>	Primer SM-23-R	
<400> gacggg	18 tcgc atgaagcagt catcaaattg tctcc	35
<210><211><211><212><213>	38 DNA	
<220> <223>	Primer EXCH-5	
<400> agctag	19 gatc cggatctaga agaagataac aatgttgg	38
<210><211><211><212><213>		
<220> <223>	Primer EXCH-DL-1	
<400> agctga	20 attc ctagggtaca aagccacgac ctc	33
<210> <211> <212> <213>	32	
<220> <223>	Primer EXCH-DL-2	

<400> agctga	21 mattc ctacaagaag ccacgtatac tg	32
<210><211><211><212><213>	32	
<220> <223>	Primer EXCH-DL-3	
<400>	22 Matto otaagataao atgotogtog to	32