

Cronograma - Aplicação em Química Semana 1 Semana 2 Semana 3 Semana 4 estequiométrico básicos Introdução ao Exercícios estequiométrico Facens

Como o projeto deve ser feito e apresentado?

- Vídeo pitch 3 a 5 minutos de duração;
- Vídeo de conteúdo livre, mostrando o carro químico em movimento e com explicação dos seguintes itens:
 - Quais materiais foram utilizados na construção do carro químico e qual foi o custo total do carro?
 - Que volume de vinagre e que massa de bicarbonato de sódio serão empregados no carro projetado?
 - Qual é o reagente limitante de sua reação?
 - Nas condições ambiente de temperatura e pressão, quantos mL de CO₂ foram produzidos?

• Equipes com 4 alunos;

• 1) Qual é a massa molar da glicose?

massa de 1 molécula C₆H₁₂O₆ --- 180 u
massa de 1 mol moléculas C₆H₁₂O₆ --- 180 g
• 2) Quantas moléculas de glicose há em 90 g de glicose?
1 mol moléculas C₆H₁₂O₆ --- 180 g
6 . 10²³ moléculas C₆H₁₂O₆ --- 180 g

X moléculas --- 90 g
X = 3.10²³ moléculas C₆H₁₂O₆

