Date: 04/05/2018

M20580 L.A. and D.E. Tutorial Worksheet 9

Sections 6.5, 1.1, 1.2

1. Let

$$A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{bmatrix}.$$

(a) Use Gram-Schmidt process to find a orthogonal basis for Col A, and use the orthogonal basis you get to find the QR factorization of A.

$$V_{i} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$
 , $V_{2} = X_{2} - \frac{X_{2} \cdot V_{i}}{V_{i} \cdot V_{i}} V_{i} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} - \frac{15}{7} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 2/1 \\ -2/3 \end{pmatrix}$

2. The extremes of Q should be overliner and
$$u_1 = \frac{V_1}{|V_1|} = \frac{1}{7} {2 \choose 2} = {2/3 \choose 2/7}$$
 and $u_2 = {-1/3 \choose 2/7}$ and $u_3 = {-1/3 \choose -2/3}$ and $u_4 = {-1/3 \choose 2/7} = {-1/3 \choose 1/7}$

$$\implies Q = \begin{pmatrix} 2/3 & -1/3 \\ 2/3 & 2/3 \\ 1/3 & -2/3 \end{pmatrix}$$

7. Find R. Since we want $A = QR, (Q^{\dagger}Q)^{\dagger} \cdot (Q^{T}A) = R, 10$

$$Q^{T}Q = \begin{pmatrix} 2/3 & 2/3 & 1/3 \\ -1/1 & 2/3 & -2/3 \end{pmatrix} \begin{pmatrix} 2/3 & -1/3 \\ 2/3 & 2/3 \\ 1/3 & -2/3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$Q^{T}A = \begin{pmatrix} 3 & 5 \\ 0 & 1 \end{pmatrix}$$

R = (3 5) (since QTQ was the identity

(b) Use the QR factorization you found in part(a) to find the least-squares solution of $A\mathbf{x} = \mathbf{b}$, where b = (7, 3, 1) (as a column vector).

We use the formula
$$\hat{X} = R^{-1} Q^{T} 6$$

$$R^{-1} = \begin{pmatrix} 1/3 & -5/3 \\ 0 & 1 \end{pmatrix}, so$$

$$\hat{X} = \begin{pmatrix} 1/3 & -5/3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2/3 & 2/3 & 1/3 \\ -1/3 & 2/3 & -2/3 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \\ 1 \end{pmatrix}$$

$$\hat{X} = \begin{pmatrix} 4 \\ -1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

2. Solve the initial value problem

general selection:
$$\frac{dA}{dt} = 0.05A + \frac{dA}{dt} = 0.05A + \frac{dA}$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

$$\frac{dA}{dt} = 0.05A + 15, \quad A(0) = 0.$$

3. The partial differential equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

is called *Laplace's equation*, and any solution to this equation is called a *harmonic function*. Determine whether the given function is harmonic.

(a)
$$f(x,y) = x^2 + y^2$$
.

$$f_{x} = 2x$$

$$f_{y} = 2y$$

$$f_{xx} = 2$$

$$f_{yy} = 2$$

$$f_{yy} = 2$$

$$f_{xx} + f_{yy} = 4 \neq 0$$

$$f_{xy} = 2$$

$$f_{xy} = 2$$

$$f_{xy} = 2$$

(b)
$$f(x,y) = x^2 - y^2$$
.

(c) (optional)
$$f(x,y) = e^x \cos y$$
 and $g(x,y) = e^x \sin y$.

$$f_x = f_{xx} = e^x \cos y$$

 $f_y = -e^x \sin y \implies f_{xx} + f_{yy} = 0$, harmonic.
 $f_{yy} = -e^x \cos y$

- 4. Consider the differential equation $\frac{dy}{dx} = y(y-1)(y-2)$, and $\phi(x)$ a solution for various initial conditions.
 - (a) Give a rough sketch of the direction field.

(b) Without using any integrals, find the general solution $\phi(x)$ for the initial condition $\phi(0) = 1$.

The only salution is $\phi(x)=1$

(c) Compute $\lim_{x\to\infty}\phi(x)$ for any solution $\phi(x)$ satisfying the given initial condition:

• $\phi(-1) = 0.5$ we are in trajion T, so line $\phi(x)$

- $\phi(1) = 1.5$ we wre in region $\overline{11}$, so line $\phi(x) = 1$ $x \to \infty$
- $\phi(5) = 3$ region III \Longrightarrow line $\phi(x) = +\infty$