Hamiltonian Dynamics of Fluids

James Hawley

University of Waterloo

August 14, 2015

Background

Hamiltonian Dynamics Shallow Water Model Quasigeostrophic Model

Main Work

References

Classical Mechanics

Classical Mechanics

Newtonian Dynamics

Newtonian Dynamics

- $\frac{d^2\vec{q}}{dt} = -\nabla\Pi$
- Second order system

Newtonian Dynamics

Hamiltonian Dynamics

- $\frac{d^2\vec{q}}{dt} = -\nabla\Pi$
- Second order system

Newtonian Dynamics

- $\frac{d^2\vec{q}}{dt} = -\nabla\Pi$
- Second order system

Hamiltonian Dynamics

- $\frac{d\vec{p}}{dt} = -\frac{\partial H}{\partial \vec{q}}, \frac{d\vec{q}}{dt} = \frac{\partial H}{\partial \vec{p}}$
- First order, coupled system

Fluids

Fluids

Navier-Stokes Equations

Fluids

Navier-Stokes Equations

- $\rho \frac{d\vec{u}}{dt} = -\nabla p + \rho \nabla \Pi + F$
- Coupled, first order, nonlinear system

Navier-Stokes Equations

• $\rho \frac{d\vec{u}}{dt} = -\nabla p + \rho \nabla \Pi + F$

 Coupled, first order, nonlinear system

Hamiltonian

Navier-Stokes Equations

- $\rho \frac{d\vec{u}}{dt} = -\nabla p + \rho \nabla \Pi + F$
- Coupled, first order, nonlinear system

Hamiltonian

- $\frac{d\vec{p}}{dt} = -\frac{\delta \mathcal{H}}{\delta \vec{q}}, \frac{d\vec{q}}{dt} = \frac{\delta \mathcal{H}}{\delta \vec{p}}$
- · Coupled, first order, linear system

System of PDEs

$$\mathbf{0} = \mathbf{F}\left(\mathbf{q}, \frac{\partial}{\partial x_i}, \frac{\partial}{\partial t}\right)$$

System of PDEs

$$\mathbf{0} = \mathbf{F}\left(\mathbf{q}, \frac{\partial}{\partial x_i}, \frac{\partial}{\partial t}\right)$$

is *Hamiltonian* if $\exists \mathcal{H}, J$ such that

System of PDEs

$$\mathbf{0} = \mathbf{F}\left(\mathbf{q}, \frac{\partial}{\partial x_i}, \frac{\partial}{\partial t}\right)$$

is *Hamiltonian* if $\exists \mathcal{H}, J$ such that

$$\mathcal{H} = \int_{\Omega} H(\mathbf{q}) d\mathbf{x}$$

is conserved, and solutions $\mathbf{q}(x_i, t)$ satisfy

System of PDEs

$$\mathbf{0} = \mathbf{F}\left(\mathbf{q}, \frac{\partial}{\partial x_i}, \frac{\partial}{\partial t}\right)$$

is Hamiltonian if $\exists \mathcal{H}, J$ such that

$$\mathcal{H} = \int_{\Omega} H(\mathbf{q}) d\mathbf{x}$$

is conserved, and solutions $\mathbf{q}(x_i, t)$ satisfy

$$\mathbf{q}_t = \mathbf{J} \frac{\delta \mathcal{H}}{\delta \mathbf{q}}$$

Derivatives

$$\mathcal{F}(\mathbf{q}) = \int_{\Omega} F(\mathbf{q}) \, d\mathbf{x}$$

Derivatives

$$\mathcal{F}(\mathbf{q}) = \int_{\Omega} F(\mathbf{q}) \, d\mathbf{x}$$

$$\lim_{\epsilon \to 0} \frac{\partial}{\partial \epsilon} \mathcal{F}(\mathbf{q} + \epsilon \delta \mathbf{q}) \equiv \left\langle \frac{\delta \mathcal{F}}{\delta \mathbf{q}}, \delta \mathbf{q} \right\rangle \equiv \int_{\Omega} \frac{\delta \mathcal{F}}{\delta \mathbf{q}} \delta \mathbf{q} \, d\mathbf{x}$$

 $\frac{\partial \mathcal{F}}{\partial t}$

$$\frac{\partial \mathcal{F}}{\partial t} = \int_{\Omega} \frac{\partial F}{\partial t} \, d\mathbf{x}$$

$$\frac{\partial \mathcal{F}}{\partial t} = \int_{\Omega} \frac{\partial F}{\partial t} d\mathbf{x}$$
$$= \int_{\Omega} \frac{\delta \mathcal{F}}{\delta \mathbf{q}}^{\top} \mathbf{q}_{t} d\mathbf{x}$$

$$\frac{\partial \mathcal{F}}{\partial t} = \int_{\Omega} \frac{\partial F}{\partial t} d\mathbf{x}$$

$$= \int_{\Omega} \frac{\delta \mathcal{F}}{\delta \mathbf{q}}^{\top} \mathbf{q}_{t} d\mathbf{x}$$

$$= \int_{\Omega} \frac{\delta \mathcal{F}}{\delta \mathbf{q}}^{\top} \mathbf{J} \frac{\delta \mathcal{H}}{\delta \mathbf{q}} d\mathbf{x}$$

$$\frac{\partial \mathcal{F}}{\partial t} = \int_{\Omega} \frac{\partial F}{\partial t} d\mathbf{x}$$

$$= \int_{\Omega} \frac{\delta \mathcal{F}}{\delta \mathbf{q}}^{\top} \mathbf{q}_{t} d\mathbf{x}$$

$$= \int_{\Omega} \frac{\delta \mathcal{F}}{\delta \mathbf{q}}^{\top} \mathbf{J} \frac{\delta \mathcal{H}}{\delta \mathbf{q}} d\mathbf{x}$$

$$= \left\langle \frac{\delta \mathcal{F}}{\delta \mathbf{q}}, \mathbf{J} \frac{\delta \mathcal{H}}{\delta \mathbf{q}} \right\rangle$$

$$\frac{\partial \mathcal{F}}{\partial t} = \int_{\Omega} \frac{\partial F}{\partial t} d\mathbf{x}$$

$$= \int_{\Omega} \frac{\delta \mathcal{F}}{\delta \mathbf{q}}^{\mathsf{T}} \mathbf{q}_{t} d\mathbf{x}$$

$$= \int_{\Omega} \frac{\delta \mathcal{F}}{\delta \mathbf{q}}^{\mathsf{T}} \mathbf{J} \frac{\delta \mathcal{H}}{\delta \mathbf{q}} d\mathbf{x}$$

$$= \left\langle \frac{\delta \mathcal{F}}{\delta \mathbf{q}}, \mathbf{J} \frac{\delta \mathcal{H}}{\delta \mathbf{q}} \right\rangle$$

$$\equiv \{\mathcal{F}, \mathcal{H}\}$$

Shallow Water Model

Geostrophic Model

Geostropic Model

$$\frac{d\vec{u}}{dt} + 2\vec{\Omega} \times \vec{u} = -\frac{\nabla \rho}{\rho} + \nabla \Pi + \frac{F}{\rho}$$

$$\vec{u} = \text{velocity field}$$

$$\vec{\Omega} = \text{rotation vector}$$

$$\rho = \text{pressure}$$

$$\Pi = \text{scalar potential field}$$

$$F = \text{viscous forces}$$

Quasigeostrophic Model

$$0 = \frac{\partial q}{\partial t} + J(\psi, q)$$
$$J(a, b) = \frac{\partial a}{\partial x} \frac{\partial b}{\partial y} - \frac{\partial a}{\partial y} \frac{\partial b}{\partial x}$$

1. Reference