Imperial College London

MATH 50006 Winter 2022

Department of Mathematics Lecturer: P.-F. Rodriguez p.rodriguez@imperial.ac.uk

Tutorials Lead (Senior GTA): Yuriy Shulzhenko yuriy.shulzhenko16@imperial.ac.uk

Graduate Teaching Assistants (GTAs):

John McCarthy j.mccarthy18@imperial.ac.uk Riccardo Carini r.carini19@imperial.ac.uk Soham Karwa s.karwa19@imperial.ac.uk William Turner william.turner17@imperial.ac.uk

Exercise Sheet 2

1. Show that the countable additive property of a measure μ is equivalent to μ being additive and continuous from below. That is (using the numbering of the lecture notes),

$$(1.8) \iff (1.10) \text{ and } (1.11).$$

- **2.** Let $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ denote the set of integers. A measure μ on $(\mathbb{Z}, 2^{\mathbb{Z}})$ is siad to be invariant under translation if, for any $A \subset \mathbb{Z}$ and $x \in \mathbb{Z}$, $\mu(x+A) = \mu(A)$. Find all finite measures on $(\mathbb{Z}, 2^{\mathbb{Z}})$ (i.e. such that $\mu(\mathbb{Z}) < \infty$) which are invariant under translation.
- **3.** Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, with λ the Lebesgue measure on \mathbb{R} .
 - a) Show that, for any $x \in \mathbb{R}$, we have $\lambda(\{x\}) = 0$.
 - **b)** John claims: "One can write \mathbb{R} as the disjoint union, over all $x \in \mathbb{R}$, of the singleton $\{x\}$, and therefore:

$$\lambda(\mathbb{R}) = \sum_{x \in \mathbb{R}} \lambda(\{x\}) = \sum_{x \in \mathbb{R}} 0 = 0.$$

What is wrong with John's argument?

c) Show that any countable subset of \mathbb{R} is Borel measurable and has Lebesgue measure zero.

- **4.** Let (X, \mathcal{A}, μ) be a measure space and $A_n \in \mathcal{A}$, $n \geq 1$, satisfy $\mu(\bigcup_{n=1}^{\infty}) < \infty$. Recall the event $\limsup A_n$ from Exercise sheet 1.
 - a) Show that

$$\limsup \mu(A_n) \le \mu(\limsup A_n).$$

b) Prove the following (first Borel-Cantelli lemma):

if
$$\sum_{n=1}^{\infty} \mu(A_n) < \infty$$
, then $\mu(\limsup A_n) = 0$.

In words, what does this conclusion mean?

5. Let μ be a Borel measure on \mathbb{R}^n , i.e. a measure $\mu: \mathcal{B}(\mathbb{R}^n) \to [0, \infty]$. We set

$$S := \{ x \in \mathbb{R}^n, \, \mu(B(x,r)) > 0 \text{ for all } r > 0 \},$$

where $B(x,r) = \{y \in \mathbb{R}^n : |y = x| < r\}$ is the open ball of radius r around $x \in \mathbb{R}^n$. Show that:

- a) S is a closed subset of \mathbb{R}^n ,
- **b)** $\mu(S^c) = 0$,
- c) any strict closed subset F of S satisfies $\mu(S \setminus F) > 0$.

S is called the support of the measure μ .