

Seminar: Maschinelles Lernen

"Mining top-K frequent itemsets from data streams"

R.C.-W. Wong A.W.-C. Fu

Gliederung

- Einleitung
- 2. Chernoff-basierter Algorithmus
- 3. top-K lossy counting Algorithmus
- 4. Empirischer Vergleich
- 5. Mining top-K itemsets in a sliding window
- 6. Zusammenfassung
- 7. Fragen / Diskussion

Definitionen

- Itemset
 - Eine Menge bestehend aus I Items (I-itemset)
- K-th frequent itemset
 - I-itemset, das nach Sortierung der Frequenz des Auftretens auf Position k ist
- Top K-frequent itemsets
 - alle l-itemsets die mindestens am k-häufigsten aufgetreten sind

Anwendungen

- Das Wissen über frequent itemsets kann nützlich sein bei:
 - Click-Streams
 - Netzwerk-Monitoring
 - Finanzmarkt-Monitoring
 - Analyse von Bestellungen
 - und vieles mehr

Einleitung

- Das Finden von frequent itemsets ist im Bereich Data Mining gut erforscht (→ statische Datenmenge)
- Aber:
 - Data Stream ist potentiell unendlich lang
 → die Daten können nicht alle gespeichert werden
 - Die Ergebnisse werden in Real Time erwartet (Im Data Mining gibt es normalerweise Ergebnisse erst am Ende)
- Es werden also neue Methoden gebraucht um frequent itemsets in Data Streams zu finden

Problem A

- "Finde alle Pattern, die eine Frequenz größer als s haben"
- Problem:
 - Benutzer muss eine Grenze s setzen
 - s zu hoch: kaum frequent-pattern werden gefunden
 - s zu tief: zu viele frequent-pattern werden gefunden
 - Für jede Datenmenge muss ein neues s gefunden werden, das brauchbare Ergebnisse liefert
- Alternative:
 Benutzer gibt an wie viele Ergebnisse er haben möchte → Problem B

Problem B

- "Finde die K am häufigsten auftretenden I-Itemsets"
- In Datenströmen ist es i.a. nicht möglich die Frequenzen exakt zu bestimmen (→ Speicherplatz, Laufzeit)
- Frequenz der Itemsets muss geschätzt werden
- Es muss eine Frequenz-Schranke geschätzt werden um weniger häufige Itemsets abschneiden zu können

Gliederung

- 1. Einleitung
- 2. Chernoff-basierter Algorithmus
- 3. top-K lossy counting Algorithmus
- 4. Empirischer Vergleich
- 5. Mining top-K itemsets in a sliding window
- 6. Zusammenfassung
- 7. Resumé

Chernoff-basierter Algorithmus

- Wird gesteuert über 2 Parameter
 - Fehlerschranke (ε)
 - Zuverlässigkeit (δ)
- Grundversion geht von Unabhängigkeit der Daten aus
- Basiert auf der Chernoff-Schranke

Chernoff-Schranke (I)

- Schranke für die Wahrscheinlichkeit, dass eine Zufallsvariable um einen bestimmten Wert vom erwarteten Wert abweicht
- Voraussetzung:
 Eine Folge von Beobachtungen einzelner Bernoulli-Experimente o_i

Chernoff-Schranke (II)

$$\epsilon = \sqrt{\frac{2 \cdot x \cdot \ln(2/\delta)}{n}}$$

Verwendung der Chernoff-Schranke

- Die Bernoulli-Experimente werden als Transaktionen interpretiert
- Das Ergebnis ist jeweils ob ein Itemset X in der Transaktion existiert
- x ist dann der erwartete Support von X
 (Support: Anteil der Transaktionen die X enthalten)
- δ ist die Wahrscheinlichkeit, dass der Support über- oder unterschätzt wird
- ε gibt die Abweichung von erwarteten und beobachteten Support an

Chernoff-basierter Algorithmus (I)

- Alle Itemsets werden in 2 Gruppen aufgeteilt:
 - potential K-frequent itemsets
 - unpromising itemsets
- Bedingung für potential K-frequent itemsets:
 - s_k = beobachtete Support des k-th frequent itemsets
 - dann gilt: $\epsilon_{s_k} = \sqrt{\frac{2 s_k \ln(2/\delta)}{n}}$
 - $\tilde{s}(X)$ = beobachte Support eines Itemsets X
 - $\tilde{s}(X) \ge s_k 2 \cdot \epsilon_{s_k} \to X$ ist potential K-frequent

Chernoff-basierter Algorithmus (II)

```
n = 0, P_1 = \emptyset, F_1 = \emptyset
for every Batch of R transactions do
    n = n + R
    for all 1 such that 1 \le 1 \le L do
        find potential K-frequent itemsets in the current batch
        and store them in P
        F_1 = P_1 \cup F_1 and update the support of each entry in F_1
        prune unpromising itemsets from F_1 if |F1| > n_{0.1}
    endfor
endfor
```


Mathematische Analyse (I)

- Aufgrund der Verwendung der Chernoff-Schranke können Garantien für die Güte des Alorithmus bewiesen werden
- Hier aber nur die Ergebnisse ohne Beweis:
 - Die Wahrscheinlichkeit, dass der beobachtete Support um mehr als ε vom tatsächlichen abweicht ist höchstens δ
 - Wenn X zu den tatsächlichen top-K frequent itemsets gehört, dann wird X vom Algorithmus mit der Wahrscheinlichkeit von mind. 1-δ gefunden

Mathematische Analyse (II)

Speicherbedarf (für itemset der Größe I)

$$O\left(\frac{2\left[C_{l}^{S_{T}}+4\ln\left(2/\delta\right)\right]}{s_{k}}\right)$$

- sK ist der Support des K-th frequent itemsets
- C_IsT ist die Anzahl der Kombinationen von I
 Objekten aus einer Menge von sT Objekten
- Der Speicher ist also unabhängig von der Länge des Data Streams

Gliederung

- 1. Einleitung
- 2. Chernoff-basierter Algorithmus
- 3. top-K lossy counting Algorithmus
- 4. Empirischer Vergleich
- 5. Mining top-K itemsets in a sliding window
- 6. Zusammenfassung
- 7. Fragen / Diskussion

Florian Spitzl

top-K lossy counting Algorithmus (I)

- basiert auf dem "Lossy counting Algorithm"
- Der Data-Stream wird in Batches bestehend aus R Transaktionen eingeteilt
- Jeder Batch wird in Buckets der Größe ω eingeteilt (mit ω = [1/ε])
- Itemsets werden in der Form (set, f, Δ)
- unpromising entry, wenn: $f + \Delta \le \left[\frac{n}{\omega}\right]$

top-K lossy counting Algorithmus (II)

for every Batch of R transactions do

$$n = n + R$$

for all 1 such that $1 \le 1 \le L$ do

find all itemsets of size 1 with frequency count greater than or equal to β and store them in P_1
 $F_1 = P_1 \cup F_1$

update the support of each entry stored in F_1

remove all unpromising entries just updated in F_1
 $P_1 = \emptyset$

endfor

endfor

Gliederung

- 1. Einleitung
- 2. Chernoff-basierter Algorithmus
- 3. top-K lossy counting Algorithmus
- 4. Empirischer Vergleich
- 5. Mining top-K itemsets in a sliding window
- 6. Zusammenfassung
- 7. Fragen / Diskussion

Empirischer Vergleich

- Verwendetes System:
 Pentium IV 2,2 GHz, 1 GB RAM
- Vergleich der beiden vorgestellten Algorithmen mit:
 - BOMO algorithm (Alle Daten des Streams werden als ein Batch angesehen)
 - Zipf-Verteilung
 - Space-Saving Algorithm
- Tests wurden mit 2 synthetischen und einigen echten Datensets durchgeführt

Empirischer Vergleich (II)

- Verwendete Qualitätsmaße:

 - Recall $(\frac{|T \cap O|}{|T|})$ Anteil der korrekt gefundenen frequent itemsets an allen wahren

T = wahren frequent itemsets

O = vom Algorithmus bestimmten frequent itemsets

- Precision $(\frac{|T \cap O|}{|O|})$
 - Anteil der korrekten gefunden frequent itemsets an allen vom Algorithmus gefundenen

Empirischer Vergleich (III)

Unterschiedliche K (Anzahl der ges. itemsets)

Fig. 1 Real Data Set 1: Varying K

Empirischer Vergleich (IV)

--- Chemoff

△ Zipfian

→ Space

BOMO

- Lossy

0.0015

Unterschiedliche ε

		1	Chernoff			1	Lossy			Zipfian			Space				ВОМО				
	ε	1	R	1	P	1	R	1	P	1	R	1	P	1	R	1	P	1	R	1	P
	0.00100	1	0.98	1	0.98	1	1.00	1	1.00	1	1.00	1	1.00	1	0.89	1	1.00	1	1.00	1	1.00
	0.00060	I	0.98	1	0.98	1	1.00	1	1.00	I	1.00	1	1.00	1	0.89	I	1.00	I	1.00	1	1.00
	0.00020	I	0.98	1	0.98	1	1.00	1	1.00	I	1.00	1	1.00	1	0.89	1	1.00	I	1.00	1	1.00
	0.00010	1	0.98	1	0.98	1	1.00	1	1.00	1	1.00	1	1.00	1	0.89	1	1.00	1	1.00	1	1.00
-	0.00005	1	0.98	1	0.98	1	1.00	1	1.00	I	1.00	1	1.00	1	0.89	1	1.00	I	1.00	1	1.00

Fig. 4 Real Data Set 1: Varying ϵ

Empirischer Vergleich (V)

- Speicherbedarf des naiven (BOMO) Ansatzes war im Schnitt mindestens 11 mal so hoch wie bei allen anderen Algorithmen
 - spezielle Algorithmen für Data-Streams sind also wirklich notwendig
- Chernoff-Algorithmus hat, wie erwartet, kleinere Probleme mit abhängigen Daten
- top-K lossy Counting Algorithmus arbeitet sehr genau, braucht aber (deutlich) mehr Speicher als Chernoff
- Zipfverteilungsbasierter Algorithmus liefert ungenaue Ergebnisse, wenn sich die Datenreihenfolge ändert

Gliederung

- 1. Einleitung
- 2. Chernoff-basierter Algorithmus
- 3. top-K lossy counting Algorithmus
- 4. Empirischer Vergleich
- 5. Mining top-K itemsets in a sliding window
- 6. Zusammenfassung
- 7. Fragen / Diskussion

Gründe für sliding window Ansatz

- In vielen Anwendungen sind alte Daten nicht mehr relevant oder nicht mehr von Interesse
- Anpassung der Algorithmen, damit nur die letzten m Transaktionen betrachtet werden

Anpassung der Algorithmen

- Alle Batches die zum aktuellen window gehören müssen gespeichert werde:
 - ${}_{l,0}$ \leftarrow $Q_{l,1}$ \leftarrow $Q_{l,2}$ \leftarrow $Q_{l,3}$ \leftarrow \dots \leftarrow $Q_{l,n-1}$ \leftarrow $Q_{l,n}$ (bei jedem neuen Batch der bearbeitet wird)
- Veränderungen die im aktuellen Batch stattgefunden haben werden in Q_{I,n} gespeichert
- Wenn ein Batch das window verlässt:
 - globale Pool F_I wird um Q_{I,0} gesenkt

Florian Spitzl

28

Chernoff Algo. mit sliding window

$$n = 0, P_1 = \emptyset, F_1 = \emptyset$$

for every Batch of R transactions do

$$n = n + R$$

for all I such that 1 <= 1 <= L do switch the batch storages find potential K-frequent itemsets in the current batch and store them in P.

 $F_1 = P_1 \cup F_1$ and update the support of each entry in F_1 prune unpromising itemsets from F_1 if $|F_1| > n_{0.1}$

endfor endfor

store all updated entries in Q_{I,n}

if there is a batch leaving the window decrement F_I by Q_{I,0}

endif

Ergebnisse mit sliding window (I)

Ergebnisse mit sliding window (II)

	Ch	erno	off	Lo	ossy	Zipfi	ian	Spa	ace	ВОМО		
L	R	1	P	R	P	R	P	R	P	R	P	
1	1.00	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
2	1.00	1:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
3	1.00	1	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	
4	1.00	1 :	1.00	1.00	1.00	1.00	1.00	0.89	1.00	1.00	1.00	

Florian Spitzl

31

Gliederung

- 1. Einleitung
- 2. Chernoff-basierter Algorithmus
- 3. top-K lossy counting Algorithmus
- 4. Empirischer Vergleich
- 5. Mining top-K itemsets in a sliding window
- 6. Zusammenfassung
- 7. Fragen / Diskussion

Florian Spitzl

Zusammenfassung

- Chernoff-bassierter Algorithmus
 - beweisbare Güte
 - benötigt nur begrenzt Speicherplatz unabhängig von der Stream Länge
 - aber: Schwächen bei abhängigen Daten
- Top-K lossy counting Algorithmus
 - benötigt O(1/ε log (εn)) Speicher
- Beide Algorithmen auch mit einem sliding window Ansatz kombinierbar

Zusammenfassung (II)

 "Our experiments shows perfect solutions in almost all cases"

Gliederung

- 1. Einleitung
- 2. Chernoff-basierter Algorithmus
- 3. top-K lossy counting Algorithmus
- 4. Empirischer Vergleich
- 5. Mining top-K itemsets in a sliding window
- 6. Zusammenfassung
- 7. Fragen / Diskusion

Fragen / Diskussion

Fragen

Diskussion

Quellen:

- "Mining top-K frequent itemsets from data streams" (Raymond Chi-Wing Wong, Ada Wai-Chee Fu)
- "Mining top-K itemsets over a sliding window based on Zipfian Distribution" (Raymond Chi-Wing Wong, Ada Wai-Chee Fu)
- "Approximate Frequency Counts over Streaming Data" (G. S. Manku, R. Motwani)