PROBLEME

- I. Să se specifice metodele asociate functionalităților descrise mai jos $(X, Z, \varphi(X), \Psi(X, Z))$.
- II. Să se projecteze cazuri de testare folosind tehnicile de testare black-box ECP și BVA.
- III. Să se determine acoperirea pentru tehnicile de testare folosite.
 - 1. Verifică dacă un număr natural n este prim.
 - 2. O aplicaţie realizează managementul quiz-urilor efectuate de un student. Punctajul unui quiz este o valoare de la 0 la 30. Lista de quiz-uri poate să conţină până la 100 quiz-uri. În lista de funcţionalităţi este precizat:
 - **F12.** Să se determine numărul de quiz-uri (**maxCounter**) pentru care studentul a obținut cel mai mare punctaj al său. Dacă nu s-au efectuat quiz-uri atunci **maxCounter** este 0. Dacă punctajul obținut pentru fiecare quiz este 0 atunci **maxCounter** este 0. Pentru pentru alte situații se returnează un mesaj de eroare.

Clasa Service conţine o metodă pentru această funcţionalitate, care primeşte la intrare o listă cu valori întregi ce reprezintă punctajele testelor efectuate şi returnează o valoare întreagă ce reprezintă **maxCounter**.

Etape de realizare ECP și BVA:

- 1. identificarea ECs valide/non-valide, pentru datele de intrare/ieşire (slide 1, slide 2);
- 2. proiectarea TCs pentru ECs identificate (slide 3, punctul 3 şi 4);
- 3. calculul acoperirii pentru ECP (slide 4);
- 4. identificarea condițiilor BVA pentru ECs valide identificate (slide 5, slide 6);
- 5. proiectarea TCs pentru condițiile BVA identificate (slide 7, punctul 3 și 4);
- 6. calculul acoperirii pentru BVA (slide 8).

ECP. Proiectarea cazurilor de testare. Reguli 1

- 1. dacă o condiție de intrare precizează apartenența la un interval de valori [a,b]:
- ==> 1 EC validă, 2 EC non-valide;
 - E.g.: luna, o valoare intervalul [1, 12];
- 2. dacă o condiție de intrare precizează o multime finită de valori de intrare:
- ==> 1 EC validă pentru fiecare valoare, 1 EC non-validă;
 - E.g.: tip curs ∈ CourseType = {opțional, obligatoriu, facultativ};
 - 1 EC validă pentru fiecare element din CourseType:
 - EC1: {opțional}, EC2: {obligatoriu}, EC3: {facultativ} ===> 3 ECs valide;
 - 1 EC non-validă: EC₄: M= {e | e ∉ CourseType};

ECP. Proiectarea cazurilor de testare. Regu 2 2)

- 3. dacă o condiție de intrare precizează numărul de valori:
- ==> 1 EC validă, 2 EC non-valide;
 - E.g.: "de la 1 până la 5 studenți";
 - 1 EC validă: EC1: D=[1,5]; 2 EC non-valide: EC2: nici un student; EC3: mai mult de 5 studenți;
- 4. dacă o condiție de intrare precizează o situație de tipul "must be":
- ==> 1 EC validă, 1 EC non-validă.
 - E.g.,: "primul caracter din parolă trebuie să fie un simbol numeric";
 - 1 EC validă
 - EC₁: primul caracter este un simbol numeric;
 - 1 EC non-validă:
 - EC2: primul caracter nu este un simbol numeric.

ECP. Algoritm

- Algoritm de aplicare a ECP (identificarea ECs şi proiectarea TCs):
 - 1. se identifică clasele de echivalență pe baza condițiilor de intrare/ieşire;
 - 2. se clasifică clasele de echivalență în:
 - valide formate din datele de intrare/ieşire valide pentru program;
 - non-valide formate din datele de intrare/ieşire eronate, corespunzătoare tuturor celorlalte stări ale condiției de intrare/ieșire.
 - 3. se asociază un identificator unic fiecărei clase de echivalență (e.g., EC₁, EC₂, etc.);
 - câttimp (nu au fost descrise cazuri de testare pentru toate clasele de echivalență valide/non-valide):
 - scrie (un nou caz de testare care corespunde la cât mai multe clase de echivalență valide încă neacoperite);
 - scrie (un nou caz de testare care corespunde doar uneia dintre clasele de echivalență de non-valide încă neacoperite).

ECP. Acoperirea testării ECs

• calculul acoperirii (engl. coverage) testării ECs pentru tehnica de testare ECP:

Acoperirea ECs =

numărul de ECs testate

x 100

BVA. Proiectarea cazurilor de testare. Reguli

5

- dacă o condiție de intrare/ieșire precizează apartenența la un interval de valori [a,b]:
- ==> <u>cazuri</u> de <u>testare pentru</u>:
 - (1) conditii BVA valide limitele intervalului (e.g., a, a+1; b-1, b);
 - (2) condiții BVA non-valide valori aflate în afara intervalului (e.g., a-1, b+1);
- 2. dacă o condiție de intrare/ieșire precizează o mulțime de valori ordonată:
- ==> cazuri de testare pentru:
 - (1) condiții BVA valide primul și ultimul element din mulțime;
 - (2) <u>condiții</u> BVA non-<u>valide</u> <u>valo</u>area imediat mai mică decât cea mai mică valoare din <u>mulțime</u> și valoarea imediat mai mare decât cea mai mare valoare in mulțime;
- 3. dacă o <u>condiție</u> de <u>intrare</u>/ieșire <u>precizează numărul</u> de <u>valori</u> (e.g., "de la 1 până la 5 <u>studenți</u>"):
- ==> cazuri de testare pentru:
 - (1) <u>condi</u>ții BVA <u>valide</u> <u>numărul</u> minim <u>și</u> maxim de <u>valori</u>, i.e., 1 <u>și</u> 5;
 - (2) condiții BVA non-valide valoarea imediat mai mică și imediat mai mare, i.e. 0 ș<u>i</u> 6;

Condiţii BVA. Sumar

6

Tip ECs	Există limite
interval de valori	da
număr de valori	da
mulţime valori neordonate	nu
mulţime valori ordonate	da
valoare "must be"	nu
secvenţă	da
ECs dependente	da
variabile multiple dependente	nu

BVA. Acoperirea testării condițiilor BVA

- calculul acoperirii (engl. coverage) testării condițiilor BVA:

8

Acoperirea BVAs =

numărul de condiții BVA testate numărul de condiții BVA identificate

x 100

BVA. Algoritm

- · Algoritm de aplicare a BVA (identificarea condițiilor BVA și proiectarea TCs):
 - 1. se identifică limitele tuturor ECs valide de intrare/ieșire;
 - 2. se scriu condiții BVA pentru fiecare limită a fiecărei EC identificate, astfel încât:
 - valoarea să fie sub limită (mai mică decât limita), e.g., x < 2;
 - valoarea să fie pe limită (egală cu limita), e.g., x = 2;
 - valoarea să fie deasupra limitei (mai mare decât limita), e.g., x > 2;
 - 3. se clasifică condițiile BVA în
 - valide corespund unor date de intrare/ieşire valide pentru program;
 - non-valide corespund unor date de intrare/ieşire non-valide pentru program.
 - 4. se asociază un identificator unic fiecărei condiții BVA (e.g., c1, c2, etc.);
 - 5. câttimp (nu au fost descrise cazuri de testare pentru toate condițiile BVA valide/non-valide):
 - scrie (un caz de testare nou, care corespunde la cât mai multe condiții BVA valide încă neacoperite);
 - scrie (un caz de testare nou, care corespunde doar uneia dintre condiţiile BVA non-valide încă neacoperite).

