Sprawozdanie z listy 2. - Technologie sieciowe

Jakub Bachanek

6 kwietnia 2022

1 Model sieci

1.1 Topologia grafu

Do przeprowadzenia badań wybrałem zmodyfikowany graf Desarguesa, który ma 20 wierzchołków oraz 29 krawędzi. Jest to spójny, niemal kubiczny graf bez mostów. Generujemy go w programie przy wykorzystaniu biblioteki networkx w języku Python, po czym usuwamy jedną losowo wybraną krawędź w celu spełnienia warunków zadania.

1.2 Macierz natężeń strumienia pakietów

Macierz natężeń N, poprzez swoje elementy n(i,j), definiuje ile pakietów jest przesyłanych w ciągu sekundy od źródła v(i) do ujścia v(j). Nie wszystkie węzły się ze sobą komunikują, a sama transmisja nie jest koniecznie symetryczna.

Macierz generujemy losowo, ale staramy się, żeby była ona odpowiednio gęsta.

1.3 Funkcja przepływu

Przepływy pakietów na krawędziach obliczamy na podstawie macierzy natężeń. Dla każdej pary wierzchołków wyznaczamy najkrótszą ścieżkę w grafie między nimi za pomocą metody shortest_path z biblioteki networkx. Następnie każdą krawędź na tej drodze obciążamy liczbą pakietów wysyłanych z v(i) do v(j) oraz na odwrót.

1.4 Funkcja przepustowości

Przechodząc przez krawędzie w grafie przypisujemy im określoną przepustowość, przy czym wartość każdej z nich nieznacznie zmieniamy dodając małą liczbę losową. Podczas tej procedury dbamy o to, żeby spełniony został warunek c(e)>a(e), gdzie c jest funkcją przepustowości, a - funkcją przepływu, a e krawędzią.

1.5 Miara niezawodności sieci

Miarą niezawodności określamy prawdopodobieństwo tego, że w dowolnym przedziale czasowym, nierozspójniona sieć zachowuje warunek $T < T_{max}$, gdzie $T = \frac{1}{G} * \sum_{e \in E} \frac{a(e)}{\frac{c(e)}{m} - a(e)}$ jest średnim opóźnieniem pakietu w sieci, T_{max} maksymalnym dopuszczalnym opóźnieniem, G jest sumą wszystkich elementów macierzy nateżeń, a m- średnią wielkościa pakietu w bitach.

Będziemy szacować niezawodność sieci poprzez przeprowadzenie ustalonej liczby prób, przyjmując, że prawdopodobieństwo nieuszkodzenia każdej krawędzi w dowolnym interwale jest równe p.

2 Testy

2.1 Model początkowy

Przy domyślnych ustawieniach testujemy model z parametrami p=0.95 oraz $T_{max}=0.01$. Wykonujemy 1000 powtórzeń eksperymentu, zliczając sukcesy, dzięki czemu możemy obliczyć przybliżoną niezawodność.

Wynik pracy programu wygląda następująco:

--- INITIAL TEST ---Reliability: 99.1 %, Avg. delay: 0.00464187

2.2 Wpływ natężenia na niezawodność

W każdej iteracji testów zwiększamy średnie wartości w macierzy natężeń. Poniższy wykres przedstawia otrzymane wyniki:

Wnioski: W pewnym momencie niezawodność znacznie spada i utrzymuje się na tym niskim poziomie. Natężenia strumienia pakietów mają bardzo duży wpływ na funkcjonowanie sieci.

2.3 Wpływ przepustowości na niezawodność

Przy parametrze p = 0.9 stopniowo zwiększamy przepustowości krawędzi.

Poniższy wykres przedstawia otrzymane wyniki:

Wnioski: Zbyt niska przepustowość uniemożliwia poprawne działanie sieci. Wzrost jej wartości daje bardzo wyraźne, duże niezawodności, przy czym po osiągnięciu pewnego poziomu wyniki się stabilizują, zapewniając dobre działanie sieci.

2.4 Wpływ liczby krawędzi na niezawodność

W tym teście zmieniamy topologię grafu poprzez dodawanie nowych krawędzi. Losowo wybieramy wierzchołki oraz szukamy dla nich dostępnych połączeń. Na podstawie otrzymanego grafu oraz macierzy natężeń N wyznaczamy nową funkcję przepływu a. Korzystamy tutaj z parametru p=0.75.

Poniższy wykres przedstawia otrzymane wyniki:

Wnioski: Już niewielka liczba dodatkowych krawędzi daje znaczny wzrost niezawodności. Jest to spowodowane powstaniem nowych możliwych najkrótszych ścieżek. Również prawdopodobieństwo rozspójnienia sieci maleje. Im więcej krawędzi tym model działa lepiej i jest bardziej niezawodny.

3 Wnioski końcowe

Aby zapewnić poprawne działanie sieci musimy odpowiednio skonstruować jej topologię oraz zastosować kanały komunikacji o adekwatnych właściwościach. Dobrym rozwiązaniem jest użycie dużej liczby krawędzi, które łączą zarówno bliskie sobie węzły, jak i również te odległe. Ich przepustowość musi być na tyle nadmiarowa, żeby poradzić sobie ze zwiększonymi przepływami w razie awarii oraz innych nieoczekiwanych zdarzeń. Grafy, które spełniają te wymagania są silnie spójne i regularne. Zaproponowany model sieci dobrze sprawdził się w badaniach.