# GROUP OUTLYING ASPECTS MINING

## Jincai Ma

Xi'an Shiyou University, China

#### Introduction

**Project Background** Bike-sharing is not new to us. This report mainly analyzes the data of bike-sharing in Washington, US from 2011 to 2012.

**The Data Source** The data comes from Kaggle https://www.kaggle.com/c/bike-sharing-demand

**Project Purpose** This project is mainly about the prediction of relevant data, and the description and analysis of relevant factors are presented here.

## Related Field Name Interpretation

 datetime season holiday workingday weather temp atemp humidity windspeed casual registered count

## Data Analysis

• Descriptive statistics of the data

|       | season       | holiday      | workingday   | weather      | temp        | atemp        | humidity     | windspeed    | casual       | registered   | cour        |
|-------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|-------------|
| count | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.00000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.00000 |
| mean  | 2.506614     | 0.028569     | 0.680875     | 1.418427     | 20.23086    | 23.655084    | 61.886460    | 12.799395    | 36.021955    | 155.552177   | 191.57413   |
| std   | 1.116174     | 0.166599     | 0.466159     | 0.633839     | 7.79159     | 8.474601     | 19.245033    | 8.164537     | 49.960477    | 151.039033   | 181.14445   |
| min   | 1.000000     | 0.000000     | 0.000000     | 1.000000     | 0.82000     | 0.760000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 1.00000     |
| 25%   | 2.000000     | 0.000000     | 0.000000     | 1.000000     | 13.94000    | 16.665000    | 47.000000    | 7.001500     | 4.000000     | 36.000000    | 42.00000    |
| 50%   | 3.000000     | 0.000000     | 1.000000     | 1.000000     | 20.50000    | 24.240000    | 62.000000    | 12.998000    | 17.000000    | 118.000000   | 145.00000   |
| 75%   | 4.000000     | 0.000000     | 1.000000     | 2.000000     | 26.24000    | 31.060000    | 77.000000    | 16.997900    | 49.000000    | 222.000000   | 284.00000   |
| max   | 4.000000     | 1.000000     | 1.000000     | 4.000000     | 41.00000    | 45.455000    | 100.000000   | 56.996900    | 367.000000   | 886.000000   | 977.00000   |
| 4     |              |              |              |              |             |              |              |              |              |              | - L         |

- The standard deviation of the number of leases you have to predict at the end is very large. So let's look at the distribution by drawing it.
- Exclude data other than three standards, log of count







• The impact of hour, month, season, year, weekday, working day



The impact of weather

## Data Analysis

• The impact of temp, a temp, humidity, windspeed





## Data Analysis

• Impact of season,week,registered and non-registered users on cycling usage trends







. 101)

• Draw the thermal diagram of the correlation coefficient



It can be seen that the correlation from large to small is:registered casual hour temp atemp year month season windspeed weekday holiday workingday weather humidity

#### **Build Model**

- 1. Separate the training set and test set.
- 2.Remove unwanted eigenvalues:'casual','count','datetime','registered','date','atemp',<mark>'mo</mark>
- 3. Cross validation is used to determine the optimal parameters.
- 4.View the selected optimal parameters:max depth: 20, n estimators: 150
- 5. Apply the optimal parameters to the model, it can be obtained
- Accuracy on test set: 0.6945996275605214

#### Conclusion

Through this Kaggle project, I practiced by myself to have a deeper underest of data visualization and to explore the structure and rules of