Лабораторная работа № 0-1 Имитационное моделирование в среде AnyLogic. Общие понятия.

АпуLogic обеспечивает поддержку всех этапов имитационного моделирования: для различных типов динамических моделей – дискретных, непрерывных и гибридных, детерминированных и стохастических. Создание модели, ее выполнение, оптимизация параметров, анализ полученных результатов, верификация модели – все эти этапы удобно выполнять в среде AnyLogic. Этот инструмент обладает большим спектром разнообразных возможностей проведения как отдельных прямых экспериментов типа "if-then", так и серий таких экспериментов для решения разнообразных обратных задач. Удобный интерфейс и разнообразные средства поддержки разработки в AnyLogic делают не только использование, но и создание компьютерных имитационных моделей в этой среде моделирования доступными даже для тех, кто в области вычислительной техники и программирования не является профессионалом.

1. Моделирование в AnyLogic

AnyLogic используется для разработки имитационных исполняемых моделей и последующего их прогона с целью их анализа. Разработка модели выполняется в графическом редакторе AnyLogic с использованием многочисленных средств поддержки, упрощающих работу. Построенная модель затем компилируется встроенным компилятором AnyLogic и запускается на выполнение. В процессе выполнения модели пользователь может наблюдать ее поведение, изменять параметры модели, выводить результаты моделирования в различных формах и выполнять разного рода компьютерные эксперименты с моделью.

Графический редактор AnyLogic позволяет разработчику модели описывать структуру моделируемой системы, ее подсистемы и поведение объектов в модели графически, выполняя генерацию соответствующего программного кода автоматически. Графическая разработка легче, быстрее, понятнее, чем написание программных текстов.

В данной главе мы начнем с простейшей модели, уже разработанной в AnyLogic, чтобы составить первое представление о структуре инструмента и его функциях на этих фазах работы с моделью. Главная цель этой главы — научиться работать с окнами редактора и исполнителя модели, запуская уже разработанные модели и внося в них некоторые изменения.

2. Модель "прыгающий мячик"

Открытие проекта

Проанализируем простую модель *Bouncing Ball*, созданную для имитации поведения прыгающего мяча. Для открытия этого проекта в AnyLogic выберете в примерах *Bouncing Ball*:

На экране появится следующее окно (рис.1).

AnyLogic при открытии проекта всегда открывает среду разработки моделей – графический редактор. Рис.1 показывает основные составляющие пользовательского интерфейса этого редактора.

Рис.1. Окно редактора AnyLogic

Структурная диаграмма

При построении модели нужно задать ее структуру (т.е. описать, из каких частей состоит модель системы) и поведение отдельных объектов системы. В AnyLogic структурными элементами модели является так называемый активный объект. Активный объект имеет структуру и поведение. Элементы структуры - это другие активные объекты, включенные как составные элементы данного активного объекта, и связи, которые существуют между включенными активными объектами. Структура активного объекта задается графически в специальном окне редактора — структурной диаграмме. Поведение, представленное в своем окне (окне редактора поведения), определяет реакции активного объекта на внешние события — логику его действий во времени. Кроме того, в дополнительном окне редактора анимации можно построить анимацию активного объекта.

На рис.1 для нашего примера структура единственного объекта модели — мяча - задается в окне с именем *Ball* прямоугольником, внутри которого содержатся его переменные (координата у и скорость vy) и иконка поведения с именем *main*. Наш простой объект не содержит никаких включенных в него объектов, поэтому в прямоугольнике с именем *Ball* нет никаких других вложенных прямоугольников и связей между ними. Рядом с прямоугольником *Ball* на желтом поле содержится поясняющий текст — комментарий.

Окно поведения активного объекта

Поведение мяча представлено в окне *Ball.main*, которое содержит простейшую "карту состояний" (или стейтчарт - "statechart") с двумя состояниями и двумя переходами. Стейтчарты — это модифицированные графы переходов конечного автомата, одной из самых простых и в то же время мощных формальных моделей, описывающих дискретное поведение систем во времени с помощью визуального представления состояний системы и переходов между ними под воздействием событий или условий. В последнее время стейтчарты доказали свое удобство как средство графического описания поведения весьма сложных систем. Стейтчарт модели прыгающего мяча состоит из одного состояния и перехода, ведущего из этого состояния в него же.

Окно редактора анимации активного объекта

В этом окне для модели строится двумерное или трехмерное анимационное представление, которое помогает понять, что происходит с моделью с течением времени. Для данной модели в окне анимации построено изображение прыгающего мяча, представленного закрашенным кругом. Элементы анимационной картинки имеют свои параметры (для круга это, например, его координаты центра), которые могут быть связаны с переменными и параметрами модели. Изменение переменных модели во времени ведет к изменению графического образа что позволяет пользователю наглядно представить динамику моделируемой системы с помощью динамически меняющейся графики. В нашем примере координата у центра круга связана с переменной у активного объекта Ball, и таким образом изменение переменной модели связывается на анимационной картинке с перемещением мяча.

Окно классов

Главное окно редактора содержит также окно классов, показывающее дерево всех объектов проекта:

В нашем примере проект simplebouncingball содержит один класс активных объектов Ball, составляющими которого являются его код, анимация с именем animation (со своим кодом) и стейтчарт с именем main. Один из объектов в дереве классов имеет название Эксперименты, он объединяет группу компьютерных экспериментов, которые могут быть выполнены с

моделью. В открытом нами проекте "прыгающий мяч" в группу экспериментов входит только один эксперимент с именем **Simulation**, выделенный жирным шрифтом – это *текущий* эксперимент, именно в соответствии с установленными в текущем эксперименте параметрами будет происходить выполнение модели после ее компиляции.

Окно свойств

В окне свойств редактора AnyLogic для каждого выделенного элемента модели указываются его свойства (параметры). При выделении какого-либо элемента в любом из окон редактора (в окне структуры, окне поведения, окне анимации или в окне классов) справа появляется окно свойств, показывающее параметры именно этого выделенного элемента. Выделить элемент можно щелчком левой кнопкой мыши на нем. Например, при выделенном окне редактора структуры объекта *Ball* окно свойств содержит три вкладки, *Общие, Картинка* и *Описание*. Во вкладке *Общие* кроме имени этого объекта указываются его параметры:

Щелкните мышкой на нескольких элементах окон редактора (на переменных и на поле окна редактора структуры, на переходах и состояниях окна поведения, на графических элементах окна редактора анимации, на объекте *Simulation* дерева классов проекта и т.п.). Вы увидите, что для каждого элемента модели окно свойств имеет свою структуру и содержит специфическую информацию и параметры, характеризующие именно данный элемент. Если выделено несколько элементов, окно свойств не показывает ничего.

Например, кликните мышкой в окне редактора структуры на поясняющем тексте, расположенном на желтом фоне. В окне свойств для текста будет представлено только один параметр — сам текст. Его можно редактировать и наблюдать, как в поле текста окна редактора структуры этот текст изменяется.

Модель "прыгающий мяч" уже построена и готова к запуску.

Запуск модели

Для запуска модели кликните кнопку на панели инструментов. Этим действием запустится компилятор, который построит исполняемый код модели в языке Java, отгранслирует его и затем запустит модель на исполнение. При этом откроется окно наблюдения (viewer) (рис.2). Окно наблюдения в данном проекте включает несколько окон:

- (a) окно переменных и параметров, в котором в дереве с корнем *root* можно наблюдать мгновенные значения всех переменных и параметров (vy, y, g, u, k),
- (b) ожившее окно анимации с прыгающим мячом,
- (с) окно структуры,
- (d) окно поведения с подсвеченным красным цветом тем состоянием, в котором в данный момент находится моделируемый объект,
- (e) два окна графиков, которые показывают изменение переменных объекта (координаты y и скорости vy) в модельном времени.

Puc 2. Окно наблюдения проекта Bouncing Ball

Анимация в *AnyLogic* создается в виде динамических графических объектов, которые дают возможность наглядно представить динамику моделируемой системы, т.е. поведение ее во времени. Средства анимации позволяют пользователю легко создать виртуальный мир (совокупность графических образов, мнемосхему и т.п.), управляемый динамическими параметрами модели по законам, определенным пользователем с помощью уравнений и логики моделируемых объектов. Поэтому окно анимации можно назвать "экспериментальным стендом" для проведения компьютерного эксперимента с моделью.

Эксперименты с моделью

В данном примере в окне анимации кроме движущегося изображения мяча можно видеть текстовый комментарий и так называемые "слайдеры" или "бегунки" – подвижные указатели для изменения параметров модели во время ее выполнения. Двигая слайдеры, можно менять в этой модели два параметра – ускорение свободного падения g и долю k потери энергии прыгающим мячом при каждом отскоке. Изменение параметров позволяет исследовать поведение модели в различных условиях – это и есть компьютерный эксперимент.

Изменение параметров и переменных возможно также и без слайдеров. Двойной щелчок мыши на переменной или параметре в окне с именем *root* при остановленном выполнении модели вызывает окно с текущим значением этой переменной, которое можно редактировать. Последующий запуск приведет к продолжению выполнения модели уже с измененным значением параметра.

Для проведения компьютерных экспериментов необходимо использовать (кроме уже известной кнопки компиляции и запуска модели на выполнение) также кнопки запуска выполнения модели по шагам , останова , повторного запуска с исходными начальными условиями , а также кнопку разрушения скомпилированной модели и возврата в редактор . Вместо использования этих кнопок можно в основном меню Модель выполнить команды Запустить, Выполнить шаг и т.п.

Проведите несколько экспериментов с моделью, изменяя параметры и переменные модели либо слайдерами, либо вызывая эти параметры двойным кликом для изменения в окне *root*. При работающей модели поле анимации можно двигать, нажав на нем правой кнопкой мыши.

Управление скоростью выполнения модели

В АпуLogic скорость выполнения модели может быть установлена максимальной (и модель будет. выполняться в режиме виртуального времени, с максимально возможной скоростью выполнения соответствующего программного кода) либо соответствующей по возможности) реальному физическому времени с некоторым коэффициентом (единица модельного времени равна одной секунде реального). Переключение с виртуального времени на реальное и наоборот осуществляется кнопкой панели инструментов, а уменьшение коэффициента ускорения модельного времени относительно реального выполняется с помощью двух кнопок и расположенного между ними окна и расположенного между на расположенного между ними окна и расположенного меж

Проведите несколько экспериментов с различными скоростями выполнения модели, используя кнопки останова, рестарта, запуска.

Предварительно определенные эксперименты с моделью

Запуск модели на выполнение производится в AnyLogic в соответствии с некоторым набором ограничений на переменные и значений параметров модели, а также с некоторыми дополнительными установками (например, точность, шаг численных методов и т.п.). Совокупность всех установок для проведения компьютерного эксперимента с моделью называется в AnyLogic "экспериментом". Все эксперименты, возможные для выполнения в данном проекте, представлены как элементы группы (корня) с именем Эксперименты в окне классов проекта. Один такой эксперимент с названием Simulation уже построен при

создании нового проекта с выбранными по умолчанию установками, он и выбран в качестве текущего (название текущего эксперимента показано жирным шрифтом).

Установка значений параметров, реального либо виртуального времени при выполнении эксперимента, условие прекращения выполнения эксперимента и многое другое, относящееся к проведению эксперимента можно до запуска модели установить в окне свойств объекта *Simulation*, являющегося в данном проекте единственным элементом группы *Эксперименты* в дереве классов модели. В окне *Свойства* объекта *Simulation* вы можете увидеть эти возможности и поменять установки, прежде чем запустить модель. Например, во вкладке *Дополнительные* установите условие остановки выполнения модели по времени 100 единиц модельного времени.

Для одной и той же модели в AnyLogic можно определить несколько различных экспериментов на этапе построения модели.

3. Работа с окнами

Работать с окнами при разработке и исследовании модели требуется постоянно. Поэтому необходимо уметь открывать нужные окна, изменять их размеры, закрывать, сворачивать и разворачивать.

Вновь откройте редактор проекта *Bouncing Ball*. В редакторе и при работе модели открытие и закрытие окна дерева классов и окна свойств выполняется соответствующими кнопками панели инструментов. Кроме того, открыть эти окна можно выбрав в главном меню команды *Bud* | *Модель и Вид* | *Свойства* соответственно. Откройте и закройте эти окна несколько раз в редакторе и в окне наблюдения при выполнении модели.

Окна структуры, поведения или анимации можно открыть двойным кликом мыши на именах соответствующих объектов дерева объектов в окне классов, если они закрыты. Попробуйте закрыть () и открыть несколько раз каждое из окон редактора.

С любым объектом (графиком, переменной, активным объектом в окне редактора и т.п.) в редакторе AnyLogic связано контекстное меню, которое появляется при щелчке правой кнопкой мыши на этом объекте.

Размеры окон можно менять. Для помещения изображения в центр окна после изменения размеров окна в его контекстном меню выберите команду Перейти в центр. Масштаб изображения в этих окнах регулируется кнопками и окном панели инструментов, а также командой Показать все контекстного меню. Для каждого из окон редактора сделайте его активным, щелкнув на нем мышью, измените его размеры, пользуяся правой кнопкой мыши, поместите изображение в центр нового окна, измените масштаб изображения в ту и другую сторону.

Запустите модель на выполнение по шагам (В появившемся окне наблюдения можно закрыть и затем открыть окно (с предопределенным именем *root*) экземпляра корневого класса модели, показывающего текущие значения всех переменных и параметров модели (командой

Вид | Корневой объект модели или кнопкой панели инструментов). Двойной клик на переменной или параметре в этом окне вызовет появление диалогового окна модификации этого объекта. Тот же эффект вызовет и команда Изменить контекстного меню этого объекта.

Команда Bud | Анимация откроет окно анимации модели, если оно закрыто. Заметьте, что закрытие окон графиков уничтожает их, они не сохраняются и их нужно будет снова создавать.