



# **Model Development Phase Template**

| Date          | 24 April 2024                                                              |
|---------------|----------------------------------------------------------------------------|
| Team ID       | 739897                                                                     |
| Project Title | Predictive Pulse: Harnessing Machine Learning For Blood Pressure Analysis. |
| Maximum Marks | 10 Marks                                                                   |

## Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

**Initial Model Training Code (5 marks):** 

**Logistic Regression:** 

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report

logistic_regression = LogisticRegression()
logistic_regression.fit(x_train, y_train)
y_pred = logistic_regression.predict(x_test)

acc_lr = accuracy_score(y_test,y_pred)
c_lr = classification_report(y_test,y_pred)

print('Accuracy Score: ',acc_lr)
print(c_lr)
```

#### MultinomialNB:

```
from sklearn.naive_bayes import MultinomialNB

mNB = MultinomialNB()
mNB.fit(x_train, y_train)
y_pred = NB.predict(x_test)

acc_mnb = accuracy_score(y_test,y_pred)
c_mnb = classification_report(y_test,y_pred)

print('Accuracy Score: ',acc_mnb)
print(c_mnb)
```

#### GaussianNB:

```
from sklearn.naive_bayes import GaussianNB

NB = GaussianNB()
NB.fit(x_train, y_train)
y_pred = NB.predict(x_test)

acc_nb = accuracy_score(y_test,y_pred)
c_nb = classification_report(y_test,y_pred)

print('Accuracy Score: ',acc_nb)
print(c_nb)
```

### **Decision Tree:**

```
from sklearn.tree import DecisionTreeClassifier

decision_tree_model = DecisionTreeClassifier()
decision_tree_model.fit(x_train, y_train)
y_pred = decision_tree_model.predict(x_test)

acc_dt = accuracy_score(y_test,y_pred)
c_dt = classification_report(y_test,y_pred)

print('Accuracy Score: ',acc_dt)
print(c_dt)
```

### **Random Forest Regressor:**

```
from sklearn.ensemble import RandomForestClassifier

random_forest = RandomForestClassifier()
random_forest.fit(x_train, y_train)
y_pred = random_forest.predict(x_test)

acc_rf = accuracy_score(y_test,y_pred)
c_rf = classification_report(y_test,y_pred)

print('Accuracy Score: ',acc_rf)
print(c_rf)
```

## **Model Validation and Evaluation Report (5 marks):**

|--|

Logistic Regression, Random forest Regressor, Multinomial NB, Decision Tree, Gaussian Navies Bayes,

The Decision Tree Classifier and **Random Forest** Classifier both achieved the highest accuracy score of 1.000000, indicating perfect prediction performance on the dataset used. Linear Regression performed well with a score of 0.835616. Both Gaussian and **Multinomial Naive Bayes classifiers** had lower accuracy scores, each at 0.676712.

