Study on Semi-Supervised Learning with the Framework of Generative Model 生成モデルを用いた半教師付き学習に関する研究

Nguyen Hoang Nghia Supervisor: Professor Yamada Koichi

Nagaoka University of Technology Information and Management Systems Engineering

From the View of Learning Data

Semi-supervised learning (SSL)

Labeled with a large amount of unlabeled data

From the View of Learning Data

Semi-supervised learning (SSL)

Labeled with a large amount of unlabeled data

Discriminative: Direct solution

Generative: Data boundary

Outline

Multinomial Naive Bayes

- Inductive learning
- A class is constructed of many sub-components
- How do we initialize these sub-components?
- Apply on text data

Component Assumptions

Given a component set M, we have

$$P(x) = \sum_{M_j \in M} P(x|M_j)P(M_j)$$

with predefined $P(y|M_j) \in \{0,1\}$

Component Assumptions

Given a component set M, we have

$$P(x) = \sum_{M_j \in M} P(x|M_j)P(M_j)$$

with predefined $P(y|M_j) \in \{0,1\}$

Many-to-one assumption

How Do We Initialize These Components?

Conventional methods set it randomly

$$P(M_j|y) \sim \mathcal{U}(0,1)$$
 such that

$$\sum_{M_j:P(y|M_j)=1}P(M_j|y)=1$$

In this way, it assumes that

- All components are the same
- Different outputs when we re-sampling

How Do We Initialize These Components?

Conventional methods set it randomly

$$P(M_j|y) \sim \mathcal{U}(0,1)$$
 such that

$$\sum_{M_i:P(y|M_i)=1}P(M_i|y)=1$$

In this way, it assumes that

- All components are the same
- Different outputs when we re-sampling

Instances ----X Components ----X

Or it better to be seen as an unsupervised task

- Consider the structure of data
- Keep the same samples when re-sampling

Apply on Text Data

Let text feature x be the word count (Naive Bayes assumption) with dictionary \mathbf{w} . Then component conditional is multinomial distribution

$$P(x|M_j,\theta) \sim Multinomial(x, P(\mathbf{w}|M))$$

Apply on Text Data

Let text feature x be the word count (Naive Bayes assumption) with dictionary \mathbf{w} . Then component conditional is multinomial distribution

$$P(x|M_j,\theta) \sim Multinomial(x, P(\mathbf{w}|M))$$

Component Initialization

Experimental Results

Data splitting process using the split-x

Experimental Results

Data splitting process using the split-x

- Data: 20Newsgroup
- Default cross validation: 5 folds
- Similarity measure: Cosine for trees, Euclidean for K-means

Experimental Results (Thesis Page 11)

Results average in f1-score with split-x, (#labeled, #unlabeled)

Table: comp versus rec

Table: comp versus sci

Random	Tree	Kmeans
Split-70, (1064:2484)		
0.82	0.85	0.84

Random	Tree	Kmeans
Split-70	0, (1061	:2476)
0.91	0.91	0.90

Table: comp versus talk

Random	Tree	Kmeans
Split-7	'0, <mark>(</mark> 977	:2280)
0.93	0.93	0.93

Experimental Results (Thesis Page 11)

Results average in f1-score with split-x, (#labeled, #unlabeled)

Table: comp versus rec

Random	Tree	Kmeans
Split-70), (1064	1:2484)
0.82	0.85	0.84
Split-97, (106:3442)		
0.74	0.77	0.77

Random Tree Kmeans
Split-70, (1061:2476)

Table: comp versus sci

0.91	0.91	0.90
Split-	97, (106:3	3431)
0.86	0.89	0.89

Table: comp versus talk

Random	Tree	Kmeans
Split-7	0, (977	:2280)
0.93	0.93	0.93
Split-9	97, (97:	3160)
0.90	0.92	0.92

Outline

Graph-based Approach

- Transductive learning
- Present data on Graph
- Look for the separation between classes
- What happen if the separation is overlapped?

Graph Construction

Graph Construction

Some simple schedules

- K most similar vertices for each vertex (kNN)
- Spanning tree with maximum weight (MST)

Sparse Graph Separation Assumption

Sparse Graph Separation Assumption

Objective function

$$\operatorname{argmin}_{f} \quad \frac{1}{2} \sum_{(i,j) \in E} W_{i,j} |f(i) - f(j)|$$

where $f(i) \in \{-1, +1\}$ represents label for $i \in V$.

Minimum Cut Separation

Blum and Chawla in "Learning from Labeled and Unlabeled Data Using Graph Mincuts" gives a solution with a minimum cut on G

Step 1, add pseudo vertices $v_+, v_$ and corresponding edges

Minimum Cut Separation

Blum and Chawla in "Learning from Labeled and Unlabeled Data Using Graph Mincuts" gives a solution with a minimum cut on G

Step 1, add pseudo vertices v_+, v_- and corresponding edges

Step 2, find a minimum cut in G with source v_+ and sink v_-

Step 3, use this cut to label unlabeled vertices

When the Boundary Is Collapsed

A graph may have more than one positive solution and can cause the degenerate inference.

 \rightarrow The need for a balanced separation.

When the Boundary Is Collapsed

A graph may have more than one positive solution and can cause the degenerate inference.

- \rightarrow The need for a balanced separation.
 - Loop for all positive separations and choose the best
 - Add random noise to have better change of the right boundary (randomized mincut, Blum et al.)
 - Intervene the reasoning process

Graphical Model

Consider the vertices as random variables

$$X = \{X_i : i \in V, X_i = f(i)\}$$

Graphical Model

Consider the vertices as random variables

$$X = \{X_i : i \in V, X_i = f(i)\}$$

We define a set of independent factors. Assume that the implied distribution of X only depends on Φ

$$\Phi = \{\phi_{i,j} : (i,j) \in E, \phi_{i,j} = \exp(-W_{i,j}(X_i - X_j)^2)\}$$

Graphical Model

Consider the vertices as random variables

$$X = \{X_i : i \in V, X_i = f(i)\}$$

We define a set of independent factors. Assume that the implied distribution of \boldsymbol{X} only depends on $\boldsymbol{\Phi}$

$$\Phi = \{\phi_{i,j} : (i,j) \in E, \phi_{i,j} = \exp(-W_{i,j}(X_i - X_j)^2)\}$$

We are looking for a configuration X_{max} of X that

$$P_{\Phi}(X_{max}) = \max_{X} P_{\Phi}$$

Influence Index

The inference can be represented in a message sending schedule

Influence Index

The inference can be represented in a message sending schedule

More possible solutions with equal condition

$$\psi_{-1,X_j} = \psi_{+1,X_j}$$

Influence Index

The inference can be represented in a message sending schedule

More possible solutions with equal condition

$$\psi_{-1,X_i} = \psi_{+1,X_i}$$

We can replace it with the Influence index

$$\mathsf{influence}_{i \in V_U} = \mathsf{argmax}_{X_i} \sum_{X_i = X_j, \forall j \in V_L} W_{i,j}$$

Loopy Belief Propagation Algorithm

Message sending is not guaranteed when we have circles in G

Loopy Belief Propagation Algorithm

Message sending is not guaranteed when we have circles in G

The approximate loopy process

- Messages will be sent from both directions, all at the same time.
- The decision will be made on all neighbor vertices $P_{\Phi}(X_i) = \max_{X_i} \prod_{k \in ne(i)} \psi_{X_k, X_i}$

Loopy Belief Propagation Algorithm

Message sending is not guaranteed when we have circles in G

The approximate loopy process

- Messages will be sent from both directions, all at the same time.
- The decision will be made on all neighbor vertices $P_{\Phi}(X_i) = \max_{X_i} \prod_{k \in ne(i)} \psi_{X_k, X_i}$

 \rightarrow We can only check the equal condition (when using influence index) after the loop is finished

$$\prod_{k \in ne(i)} \psi_{X_k, -1} = \prod_{k \in ne(i)} \psi_{X_k, +1}$$

Synthetic Data

- (a) True data
- $\mathcal{N}(0, 0.6^2) \& \mathcal{N}(1, 0.6^2)$
- (c) Graphical model

(75 instances for each label: 7 labeled and 68 unlabeled)

Experimental Results

Data splitting process using the split-x

Experimental Results

Data splitting process using the split-x

- Data: Abalone, Digit, 20Newsgroup
- Default cross validation: 5 folds
- Similarity measure: Cosine for text, Euclidean similarity and Gaussian kernel for others
- ightarrow Assume that we have pre-examined a fit graph construction method for our model.

Experimental Results (Thesis Page 29-31)

Results average in f1-score with split-x, (#labeled, #unlabeled)

Table: Abalone data

Mincut	Graphical
Split-70,	(1152:2690)
0.76	0.73
Split-97,	(115:3727)
0.69	0.72

Table: Digit data

Mincut	Graphical
Split-70,	(539:1258)
0.99	0.99
Split-97	, (53:1744)
0.95	0.95

Experimental Results (Thesis Page 29-31)

Results average in f1-score with split-x, (#labeled, #unlabeled)

Table: Abalone data

Graphical

Split-70. (1152:2690) 0.76 0.73

Mincut

Split-97, (115:3727)

0.69 0.72 Table: Digit data

Mincut **Graphical** Split-70, (539:1258)

0.990.99

Split-97, (53:1744) 0.95 0.95

Table: comp vs rec, 20Newsgroups data

Mincut	Graphical
Split-70,	(2661:6209)
0.85	0.85
Split-97,	(266:8604)
0.41	0.84

Conclusion

Our assumption

The label values are distributed as dense components and these components are separated in its data representation form.

Multinomial Naive Bayes

- Component initialization problem
- → Unsupervised component assignment

Graph-based

- Component separation problem
- → Graphical model with influence index

Long term view

"Semi-supervised learning is much more a practical than a theoretical problem." (Olivier, Schölkopf, and Zien, Semi-Supervised Learning).

Resources & References

Resources and references including full thesis, experimental implementations and results are online at https://github.com/nghiapickup/master_thesis

Thank You!

Questions and Discussions?