CS771 Introduction to Machine Learning

Companion Arbiter PUF

1. Part 1

Let t_i^U denote the total time after which upper leaves the i^{th} multiplexer and t_i^L denote the time after which lower signal leaves the i^{th} multiplexer.(i = 0,1,2,...31).

Also, let a_i and b_i be the respective time taken by upper and lower signals while passing i^{th} multiplexer when the selected challenge $\text{bit}(c_i)$ is 0. Let r_i and s_i be the respective time taken by upper and lower signals while passing i^{th} multiplexer when the selected challenge $\text{bit}(c_i)$ is 1. Note that,

$$t_i^U = (1 - c_i)(t_{i-1}^U + a_i) + c_i(t_{i-1}^L + s_i)$$

$$t_i^L = (1 - c_i)(t_{i-1}^L + b_i) + c_i(t_{i-1}^U + r_i)$$

Lets use the shorthand $\Delta_i = t_i^U - t_i^L$ to denote the time lag between upper and lower signal. Observe that,

$$\Delta_i = d_i \Delta_{i-1} + \alpha_i d_i + \beta_i$$

where, $d_i = 1 - 2c_i$, $\alpha_i = (a_i - b_i + r_i - s_i)/2$ and $\beta_i = (a_i - b_i - r_i + s_i)/2$ Setting $\Delta_{-1} = 0$ (that is absorbing the initial delays in a_0, b_0, r_0 and s_0), we obtain

$$\Delta_{31} = u_0 x_0 + u_1 x_1 + \dots + u_{31} x_{31} + \beta_{31} = u^T x + p \tag{1}$$

where, $u = (u_0, u_1, ..., u_{31})^T$

$$x_i = d_i.d_{i+1}...d_{31}$$

 $u_0 = \alpha_0$
 $u_i = (\alpha_i + \beta_{i-1}) \quad (for \quad i > 0)$

If Δ_{31} <0, upper signal wins and answer is 0.

If $\Delta_{31}>0$, lower signal wins and answer is 1.

Thus, answer is simply -

$$(sign(u^Tx + p) + 1)/2.$$

Thus, the simple arbiter PUF with 32 bit challenge can be cracked by learning the linear model $\Delta_w = u^T x + p = 0$ In similar manner, the reference model can be cracked by learning the linear model

$$\Delta_r = v^T x + q = 0 \tag{2}$$

Let y denotes the response of challenge from the CAR-PUF, then

$$y = \begin{cases} 0; & |\Delta_w - \Delta_r| \le \tau \\ 1; & |\Delta_w - \Delta_r| > \tau \end{cases}$$

$$= \begin{cases} 0; & |u^T x + p - v^T x - q| \le \tau \\ 1; & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0; & |(u - v)^T x + (p - q)| \le \tau \\ 1; & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0; & ((u - v)^T x + (p - q))^2 - \tau^2 \le 0 \\ 1; & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0; & ((u - v)^T x + (p - q))^2 - \tau^2 \le 0 \\ 1; & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0; & ((u - v)^T x)^2 + (p - q)^2 + 2(p - q)(u - v)^T x - \tau^2 \le 0 \\ 1; & \text{otherwise} \end{cases}$$

Note that,

$$\begin{split} \left((u-v)^Tx\right)^2 &= \left((u-v)^Tx\right)\left((u-v)^Tx\right) \\ &= \left((u_0-v_0)x_0 + (u_1-v_1)x_1 + \ldots + (u_{31}-v_{31})x_{31}\right)\left((u_0-v_0)x_0 + (u_1-v_1)x_1 + \ldots + (u_{31}-v_{31})x_{31}\right) \\ &= (u_0-v_0)^2x_0^2 + (u_1-v_1)^2x_1^1 + \ldots + (u_{31}-v_{31})^2x_{31}^2 + \\ &= 2(u_0-v_0)(u_1-v_1)x_0x_1 + \ldots + 2(u_0-v_0)(u_{31}-v_{31})x_0x_{31} + \\ &= 2(u_1-v_1)(u_2-v_2)x_1x_2 + \ldots + 2(u_1-v_1)(u_{31}-v_{31})x_1x_{31} \\ &+ \ldots + 2(u_{30}-v_{30})(u_{31}-v_{31})x_{30}x_{31} \end{split}$$

$$= \sum_{i=0}^{31} (u_i-v_i)^2x_i^2 + \sum_{\substack{i,j=0\\i < j}}^{31} 2(u_i-v_i)(u_j-v_j)x_ix_j$$

$$= \sum_{i=0}^{31} (u_i-v_i)^2 + \sum_{\substack{i,j=0\\i < j}}^{31} 2(u_i-v_i)(u_j-v_j)x_ix_j; \qquad since, \ x_i^2 = 1 \end{split}$$

Also,

$$2(p-q)(u-v)^T x = \sum_{i=0}^{31} 2(p-q)(u_i - v_i)x_i$$

Hence we get,

$$((u-v)^T x)^2 + (p-q)^2 + 2(p-q)(u-v)^T x - \tau^2 = \sum_{\substack{i,j=0\\i < j}}^{31} 2(u_i - v_i)(u_j - v_j)x_i x_j + \sum_{i=0}^{31} 2(p-q)(u_i - v_i)x_i + \sum_{i=0}^{31} (u_i - v_i)^2 + (p-q)^2 - \tau^2$$

$$= w^t \phi(c) + b$$

where

w is a 528×1 vector, with its k^{th} elements given by

 $\phi(c)$ is a map from $\{0,1\}^{32}$ to R^{528} with its k^{th} component given by

$$\phi_{k}(c) = \begin{cases} x_{0}x_{k-(0-1)}; k = 0, 1, 2, ..., 30 \\ x_{1}x_{k-(31-2)}; k = 31, 32, ..., 60 \\ x_{2}x_{k-(61-3)}; k = 61, ..., 89 \\ x_{3}x_{k-(90-4)}; k = 90, 91, ..., 117 \\ \vdots \\ x_{30}x_{31}; k = 495 \\ x_{k-496}; k = 496, 498, ..., 527 \end{cases}$$

$$(4)$$

and b is the bias term given by, $b = \sum_{i=0}^{31} (u_i - v_i)^2 + (p-q)^2 - \tau^2$ Thus,

$$y = \begin{cases} 0; & w^t \phi(c) + b \le 0 \\ 1; & w^t \phi(c) + b > 0 \end{cases}$$

Or

$$y = \frac{1 + sign(w^t \phi(c) + b)}{2}$$

Therefore this CAR-PUF can be cracked by learning the linear model

$$w^t \phi(c) + b = 0$$

. H.P.

2. Part 3

For Logistic Regression

(i) Effect on the variation of C value

Value of C	Training time (s)	Test Accuracy (out of 1)
0.0001	18.03	0.8482
0.001	18.09	0.9069
0.01	18.05	0.9635
0.1	18.53	0.9871
1	18.74	0.9907
10	18.25	0.9922
100	18.80	0.9931
1000	19.05	0.9923

Table 1: Table for hyper Parameter ${\bf C}$

(b) C vs. Test Accuracy

Figure 1: Plots for Hyperparameter C

(ii) Effect on the variation of Tol value and fix the C=100 at which we found the max accuracy.

Value of Tol	Training time (s)	Test Accuracy(out of 1)
0.0001	18.34	0.9931
0.001	18.55	0.9931
0.01	18.56	0.9931
0.1	18.23	0.9931
1	18.38	0.9931
10	18.08	0.9923
100	17.85	0.9857
1000	12.80	0.8587

Table 2: Table for hyper Parameter Tol

(a) Tol vs. Training Time

(b) Tol vs. Test Accuracy

Figure 2: Plots for Hyperparameter Tol

for LinearSVC

(i) Effect on the variation of C value

Value of C	Training time (s)	Test Accuracy(out of 1)
0.0001	18.09	0.8805
0.001	12.80	0.9597
0.01	14.59	0.9865
0.1	21.83	0.9899
1	19.89	0.99132
10	19.61	0.99014
100	20.13	0.98972
1000	19.77	0.98984

Table 3: Table for hyper Parameter C

0.98

0.96

0.88 0.86 0.84 0.82

Accuracy (out of 1) 0.94 0.92 0.9

0.0001 0.001 0.01 0.1 value of C (b) C vs. Test Accuracy

C v/s Accuracy

100

1000

Figure 3: Plots for Hyperparameter C

(ii) Effect on the variation of Tol value and fix the C=100 at which we found the max accuracy

Value of Tol	Training time (s)	Test Accuracy(out of 1)
0.0001	19.95	0.99124
0.001	19.86	0.9909
0.01	19.79	0.9912
0.1	20.17	0.99102
1	20.09	0.99136
10	11.48	0.93448
100	11.55	0.93252
1000	11.56	0.93604

Table 4: Table for hyper Parameter Tol

Figure 4: Plots for Hyperparameter Tol