Учебник по Эконометрике Лекция 2: Линейная Алгебра и Матрицы

Джон Стачурски

Лекции: Акшай Шенкер Перевел: Алексей Кедо

8 октября 2020 г.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NK} \end{pmatrix}$$

Символ a_{nk} означает элемент, стоящий в n-ой строке k-ого столбца

$N \times K$ матрица также называется

- вектором строки, если N=1
- вектором столбца, если K=1

Если N=K, то матрицу ${f A}$ называют квадратной

Если ${f A}$ квадратная и $a_{nk}=a_{kn}$ для любых k и n, то ${f A}$ называют симметричной

Часто элементы матрицы **A** представляют собой коэффициенты в системе линейных уравнений

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1K}x_K = b_1$$

 \vdots
 $a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NK}x_K = b_N$

Для матрицы А применяются обозначения:

- row_n **A** означает n-ую строку **A**
- ullet col $_k$ **A** означает k-ый столбец **A**

Символы 0 и 1 представляют собой матрицы, все элементы которых равны нулю и единице соответственно

Для квадратной матрицы A, элементы a_{nn} называют главной диагональю:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix}$$

Единичная матрица:

$$\mathbf{I} := \left(egin{array}{cccc} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & 1 \end{array}
ight)$$

Заметим, что $\operatorname{col}_n \mathbf{I} = \mathbf{e}_n - n$ -ый канонический базис \mathbb{R}^N

Алгебраические операции над матрицами

Операции над матрицами:

- Умножение на скаляр
- Сложение
- Умножение матриц

Умножение на скаляр выполняется поэлементно, как с векторами:

$$\gamma \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1K} \\
a_{21} & a_{22} & \cdots & a_{2K} \\
\vdots & \vdots & & \vdots \\
a_{N1} & a_{N2} & \cdots & a_{NK}
\end{pmatrix} := \begin{pmatrix}
\gamma a_{11} & \gamma a_{12} & \cdots & \gamma a_{1K} \\
\gamma a_{21} & \gamma a_{22} & \cdots & \gamma a_{2K} \\
\vdots & \vdots & & \vdots \\
\gamma a_{N1} & \gamma a_{N2} & \cdots & \gamma a_{NK}
\end{pmatrix}$$

Сложение тоже выполняется поэлементно:

$$\begin{pmatrix} a_{11} & \cdots & a_{1K} \\ a_{21} & \cdots & a_{2K} \\ \vdots & \vdots & \vdots \\ a_{N1} & \cdots & a_{NK} \end{pmatrix} + \begin{pmatrix} b_{11} & \cdots & b_{1K} \\ b_{21} & \cdots & b_{2K} \\ \vdots & \vdots & \vdots \\ b_{N1} & \cdots & b_{NK} \end{pmatrix}$$

$$:= \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1K} + b_{1K} \\ a_{21} + b_{21} & \cdots & a_{2K} + b_{2K} \\ \vdots & \vdots & \vdots \\ a_{N1} + b_{N1} & \cdots & a_{NK} + b_{NK} \end{pmatrix}$$

Заметим, что матрицы должны быть одинакового размера

Умножение матриц:

Произведение ${\bf AB}$: i,j-ый элемент — скалярное умножение i-ой строки ${\bf A}$ и j-ого столбца ${\bf B}$

$$c_{ij} = \langle \operatorname{row}_i \mathbf{A}, \operatorname{col}_j \mathbf{B} \rangle = \sum_{k=1}^K a_{ik} b_{kj}$$

Для i = j = 1:

$$\begin{pmatrix} a_{11} & \cdots & a_{1K} \\ a_{21} & \cdots & a_{2K} \\ \vdots & \vdots & \vdots \\ a_{N1} & \cdots & a_{NK} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1J} \\ b_{21} & \cdots & b_{2J} \\ \vdots & \vdots & \vdots \\ b_{K1} & \cdots & b_{KJ} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1J} \\ c_{21} & \cdots & c_{2J} \\ \vdots & \vdots & \vdots \\ c_{N1} & \cdots & c_{NJ} \end{pmatrix}$$

Здесь

$$c_{11} = \langle \operatorname{row}_1(\mathbf{A}), \operatorname{col}_1(\mathbf{B}) \rangle = \sum_{k=1}^K a_{1k} b_{k1}$$

Предположим, что размер $\mathbf{A} - N \times K$, $\mathbf{B} - J \times M$

- **AB** определена, только если K = J
- Размер $\mathbf{AB} N \times M$

Запомните правило:

Произведение N imes K и K imes M равно N imes M

Умножение не коммутативно: $\mathbf{AB} \neq \mathbf{BA}$

Заметим, что произведение ${f BA}$ определено, только если N=M соблюдается

- 1. A(BC) = (AB)C
- 2. A(B+C) = AB + AC
- 3. (A + B)C = AC + BC
- 4. $\mathbf{A}\alpha\mathbf{B} = \alpha\mathbf{A}\mathbf{B}$. и
- 5. AI = A и IA = A, где I -единичная матрица.

Здесь "согласованость" значит, что операция определена при заданных размерностях матриц

 \emph{k} -ая мощность квадратной матрицы ${f A}$ определяется как

$$\mathbf{A}^k := \underbrace{\mathbf{A} \cdots \mathbf{A}}_{k \text{ terms}}$$

Если матрица ${f B}$ такая, что ${f B}^2={f A}$, то ${f B}$ называется квадратным корнем матрицы ${f A}$ и записывается как $\sqrt{{f A}}$

$$\mathbf{Ax} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NK} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_K \end{pmatrix}$$

$$= x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{NK} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{NK} \end{pmatrix} + \cdots + x_K \begin{pmatrix} a_{1K} \\ a_{2K} \\ \vdots \\ a_{NK} \end{pmatrix}$$

$$= \sum_{k=1}^{K} x_k \operatorname{col}_k \mathbf{A}$$

Матрицы как отображения

Можно размышлять о матрице ${\bf A}$ размерна $N \times K$ как об отображении из ${\mathbb R}^K$ в ${\mathbb R}^N$:

$$\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$$

Такое отображение линейно

Как насчет примеров линейных функций, не использующих матрицы?

...на самом деле, таких не существует!

Множеству линейных функций из \mathbb{R}^K в \mathbb{R}^N инъективно соответствует множество матриц $N \times K$:

Теорема. (??) Пусть T является функцией из \mathbb{R}^K в \mathbb{R}^N . Следующее эквивалентно:

- Т линейна.
- 2. Существует матрица **A** размера $N \times K$, такая что $T\mathbf{x} = \mathbf{A}\mathbf{x}$ для всех $\mathbf{x} \in \mathbb{R}^K$.

Пусть $T \colon \mathbb{R}^K \to \mathbb{R}^N$ линейна

Мы собираемся построить матрицу **A** размерности $N \times K$, такую что

$$T\mathbf{x} = \mathbf{A}\mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^K$$

Как обычно, пусть $\mathbf{e}_k - k$ -ый канонический базисный вектор в \mathbb{R}^K

Определим матрицу **A** как $\operatorname{col}_k(\mathbf{A}) = T\mathbf{e}_k$. Возьмем любой $\mathbf{x} = (x_1, ..., x_K) \in \mathbb{R}^K$. По линейности, получается

$$T\mathbf{x} = T\left[\sum_{k=1}^{K} x_k \mathbf{e}_k\right] = \sum_{k=1}^{K} x_k T\mathbf{e}_k = \sum_{k=1}^{K} x_k \operatorname{col}_k(\mathbf{A}) = \mathbf{A}\mathbf{x}$$

$$T: \mathbb{R}^K \to \mathbb{R}^N, \qquad T\mathbf{x} = \mathbf{A}\mathbf{x}$$

Возьмем любые \mathbf{x} , \mathbf{y} в \mathbb{R}^K , и любые скаляры α и β

Правила матричной арифметики говорят нам, что

$$T(\alpha \mathbf{x} + \beta \mathbf{y}) := \mathbf{A}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{A} \mathbf{y} =: \alpha T \mathbf{x} + \beta T \mathbf{y}$$

Рассмотрим возможность решения системы линейных уравнений, например, $\mathbf{A}\mathbf{x}=\mathbf{b}$

Существование: можем ли мы найти x, удовлетворяющий уравнению при любых заданных b?

- является ли линейное отображение $T\mathbf{x} = \mathbf{A}\mathbf{x}$ сюръекцией?
- ullet эквивалентно, равен ли rng T всему \mathbb{R}^N ?

Пространство столбцов

Диапазон T — все вектора вида $T\mathbf{x} = \mathbf{A}\mathbf{x}$, где \mathbf{x} варьируется в \mathbb{R}^K

Для $\mathbf{x} \in \mathbb{R}^K$ получается

$$\mathbf{A}\mathbf{x} = \sum_{k=1}^{K} x_k \operatorname{col}_k \mathbf{A}$$

Таким образом, $\operatorname{rng} T$ равен пространству столбцов \mathbf{A} — линейная оболочка столбцов \mathbf{A}

$$colspace \mathbf{A} := span\{col_1 \mathbf{A}, \dots, col_K \mathbf{A}\}$$

В итоге,

$$\operatorname{colspace} \mathbf{A} = \operatorname{rng} T = \{ \mathbf{A} \mathbf{x} : \mathbf{x} \in \mathbb{R}^K \}$$

Ранг

Эквивалентные вопросы

- Насколько велик диапазон линейного отображения $T\mathbf{x} = \mathbf{A}\mathbf{x}$?
- Насколько велико пространство столбцов A?

Очевидной мерой размера линейного подпространства является его размерность

Размерность colspace A известна как ранг A

rank A := dim colspace A

Так как $\operatorname{colspace} \mathbf{A}$ — линейная оболочка K векторов, получается

 $\operatorname{rank} \mathbf{A} = \operatorname{dim} \operatorname{colspace} \mathbf{A} \leq K$

А имеет полный ранг системы столбцов, если

 $\operatorname{rank} \mathbf{A} = \operatorname{количество} \operatorname{столбцов} \mathbf{A}$

Факт. (??) Для любой матрицы A, следующие утверждения эквивалентны:

- 1. А является полным рангом системы столбцов
- 2. Столбцы А линейно независимы
- 3. Если $\mathbf{A}\mathbf{x} = \mathbf{0}$, то $\mathbf{x} = \mathbf{0}$

Квадратные матрицы и обратимость

Рассмотрим случай с матрицей ${f A}$ размера N imes N

Мы ищем условия, при которых для каждого $\mathbf{b} \in \mathbb{R}^N$, существует только один $\mathbf{x} \in \mathbb{R}^N$, такой что $\mathbf{A}\mathbf{x} = \mathbf{b}$

Пусть T является линейным отображением $T\mathbf{x} = \mathbf{A}\mathbf{x}$

- $oldsymbol{f b}$ Когда каждая точка $oldsymbol{f b} \in \mathbb{R}^N$ имеет только один прообраз в T?
- Эквивалентно, когда T биекция?

Факт. (??) Для матрицы **A** размера $N \times N$ следующее эквивалентно:

- 1. Столбцы А линейно независимы.
- 2. Столбцы **A** формируют базис \mathbb{R}^N .
- 3. rank $\mathbf{A} = N$.
- 4. colspace $\mathbf{A} = \mathbb{R}^N$.
- 5. $Ax = Ay \implies x = y$.
- 6. $Ax = 0 \implies x = 0$
- 7. Для каждого $\mathbf{b} \in \mathbb{R}^N$, уравнение $\mathbf{A}\mathbf{x} = \mathbf{b}$ имеется решение.
- 8. Для каждого $\mathbf{b} \in \mathbb{R}^N$, уравнение $\mathbf{A}\mathbf{x} = \mathbf{b}$ имеет единственное решение.

Если любое из эквивалентных условий факта $\ref{eq:constraint}$ верное, мы назовем несингулярной не только отображение T, но и основную матрицу $\mathbf A$

Если хоть одно — и, следовательно, все — из этих условий не выполняются, то ${\bf A}$ называется сингулярной

Любая биекция имеет обратную функцию (смотрите §?? в ЕТ)

Любое несингулярное отображение T имеет несингулярное обратное T^{-1} (факт $\ref{partial}$? на странице $\ref{partial}$?)

• если T создано матрицей ${\bf A}$, обратное T^{-1} также связано с матрицей, называемой обратной ${\bf A}$

Теорема. (??) Для несингулярной А следующие утверждения верны:

- 1. Существует квадратная матрица ${\bf B}$, такая что $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{I}$, где \mathbf{I} — единичная матрица. Матрица \mathbf{B} называется обратной A, и записывается как A^{-1} .
- 2. Для каждого $\mathbf{b} \in \mathbb{R}^N$, единственное решение задачи $\mathbf{A}\mathbf{x} = \mathbf{b}$ записывается как

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Пример. Расстмотрим линейный спрос для N товаров

$$q_n = \sum_{k=1}^N a_{nk} p_k + b_n, \quad n = 1, \dots, N$$

где q_n и p_n — количество и цена n-ого товара

Мы хотим вычислить обратную функцию спроса, которая показывает зависимость цены от количества

Записшем систему в матричной форме: $\mathbf{q} = \mathbf{A}\mathbf{p} + \mathbf{b}$

Если столбцы ${\bf A}$ линейно независимы, то система обратима — единственное решение существует для любых фиксированных ${\bf q}$ и ${\bf b}$:

$$\mathbf{p} = \mathbf{A}^{-1}(\mathbf{q} - \mathbf{b})$$

Для матриц ${\bf A}$ и ${\bf B}$ размера N imes N, если

- **В** является **левой обратной**, в том смысле, что $\mathbf{B}\mathbf{A} = \mathbf{I}$
- ullet или B является правой обратной, в том смысле, что AB=I

Тогда ${f A}$ обратима и ${f B}$ является обратной матрицей ${f A}$

Факт. (\ref{A}) Пусть \mathbf{A} и \mathbf{B} — квадратные матрицы размера N imes N. Если \mathbf{B} является левой или правой обратной матрицы \mathbf{A} , то \mathbf{A} несингулярна и \mathbf{B} — ее обратная матрица.

1.
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$
,

2.
$$(\alpha \mathbf{A})^{-1} = \alpha^{-1} \mathbf{A}^{-1}$$
, и

3.
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

Определитель

Определитель — уникальное число для любой квадратной матрицы ${f A}$

Пусть S(N) является множеством всех биекций из $\{1,\dots,N\}$ в саму себя

Для $\pi \in S(N)$ определим функцию знака π

$$\operatorname{sgn}(\pi) := \prod_{m < n} \frac{\pi(m) - \pi(n)}{m - n}$$

Определитель матрицы ${f A}$ размера N imes N — это

$$\det \mathbf{A} := \sum_{\pi \in S(N)} \operatorname{sgn}(\pi) \prod_{n=1}^N a_{\pi(n)n}$$

Факт. (??) Если I — единичная матрица размера $N \times N$, A и **В** являются марицами размера $N \times N$ и $\alpha \in \mathbb{R}$, то

- 1. $\det I = 1$.
- 2. A несингулярна тогда и только тогда, когда $\det \mathbf{A} \neq 0$,
- 3. $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$,
- 4. $\det(\alpha \mathbf{A}) = \alpha^N \det(\mathbf{A})$, и
- 5. $\det(\mathbf{A}^{-1}) = (\det(\mathbf{A}))^{-1}$.

В случае матрицы размера 2×2 можно показать, что

$$\det\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = ad - bc$$

Доказательство. (Факт ??)

Возьмем кважратную матрицу ${\bf A}$ и предположим, что правая обратная матрица ${\bf B}$ существует:

$$AB = I$$

Тогда обе матрицы \mathbf{A} и \mathbf{B} несингулярны, так как по правилам факта ??:

$$det(\mathbf{A}) det(\mathbf{B}) = 1$$

Оба определителя $\det \mathbf{A}$ и $\det \mathbf{B}$ ненулевые и, следовательно, обе матрицы несингулярные. Далее, $\mathbf{AB} = \mathbf{I}$, значит

$$BAB = B$$

Диагональные и треугольные матрицы

Квадратная матрица назвается нижней треугольной, если каждый элемент строго выше главной диагонали равен нулю

Пример.

$$\mathbf{L} := \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{array} \right)$$

Квадратная матрица назвается верхней треугольной, если каждый элемент строго ниже главной диагонали равен нулю

Пример.

$$\mathbf{U} := \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 1 \end{array} \right)$$

Квадратная матрица назвается треугольной, если она верхняя или нижняя треугольная

Факт. (??) Если $\mathbf{A} = (a_{mn})$ треугольная, то $\det \mathbf{A} = \prod_{n=1}^{N} a_{nn}$.

Связанные линейные уравнения просто решить

Пример.

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

становится

$$x_1 = b_1$$

$$2x_1 + 5x_2 = b_2$$

$$3x_1 + 6x_2 + x_3 = b_3$$

Верхнее уравнение включает только x_1 , так что его можно решить напрямую

Подставьте это значение во второе уравнение и решите для x_2 И Т.Д.

Рассмотрим квадратную матрицу ${f A}$ размера N imes N

N элементов a_{nn} называются главной диагональю

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix}$$

Квадратная матрица D называется диагональной, если все значения вне главной диагонали равны нулю

$$\mathbf{D} = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_N \end{pmatrix}$$

Часто записывается как

$$\mathbf{D} = \operatorname{diag}(d_1, \dots, d_N)$$

Пример.

$$\begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

эквивалентно

$$d_1x_1 = b_1$$

$$d_2x_2 = b_2$$

$$d_3x_3 = b_3$$

Факт. (??) Если ${f C} = {
m diag}(c_1,\ldots,c_N)$ и ${f D} = {
m diag}(d_1,\ldots,d_N)$, то

- 1. $\mathbf{C} + \mathbf{D} = \text{diag}(c_1 + d_1, \dots, c_N + d_N)$
- 2. **CD** = diag($c_1d_1, ..., c_Nd_N$)
- 3. $\mathbf{D}^k = \mathrm{diag}(d_1^k,\ldots,d_N^k)$ для любых $k \in \mathbb{N}$
- 4. $d_n \geq 0$ для всех $n \implies \mathbf{D}^{1/2}$ существует и равняется $\operatorname{diag}(\sqrt{d_1},\dots,\sqrt{d_N})$
- 5. $d_n \neq 0$ для всех $n \implies \mathbf{D}$ несингулярна и

$$\mathbf{D}^{-1} = \text{diag}(d_1^{-1}, \dots, d_N^{-1})$$

След, транспонирование, симметрия

След матрицы определяется как

trace
$$\begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & & \vdots \\ a_{N1} & \cdots & a_{NN} \end{pmatrix} = \sum_{n=1}^{N} a_{nn}$$

 $oldsymbol{\Phi}$ акт. (\ref{A}) Если $oldsymbol{A}$ и $oldsymbol{B}$ являются квадратными матрицами и $lpha,eta\in\mathbb{R}$, то

$$trace(\alpha \mathbf{A} + \beta \mathbf{B}) = \alpha \operatorname{trace}(\mathbf{A}) + \beta \operatorname{trace}(\mathbf{B})$$

Если ${\bf A}$ размера $N \times M$ и ${\bf B}$ размера $M \times N$, то ${\sf trace}({\bf A}{\bf B}) = {\sf trace}({\bf B}{\bf A})$

$$\operatorname{col}_n(\mathbf{A}') = \operatorname{row}_n(\mathbf{A})$$

Пример. Если

$$\mathbf{A} := \left(egin{array}{ccc} 10 & 40 \ 20 & 50 \ 30 & 60 \end{array}
ight)$$
 , то $\mathbf{A}' = \left(egin{array}{ccc} 10 & 20 & 30 \ 40 & 50 & 60 \end{array}
ight)$

Если

$$\mathbf{B} := \left(egin{array}{ccc}1&3&5\2&4&6\end{array}
ight)$$
 , то $\mathbf{B}' := \left(egin{array}{ccc}1&2\3&4\5&6\end{array}
ight)$

Квадратная матрица ${f A}$ называется симметричной, если ${f A}^\intercal = {f A}$

ullet эквивалентно, $a_{nk}=a_{kn}$ для всех k и n

Матрицы $\mathbf{A}^\mathsf{T}\mathbf{A}$ и $\mathbf{A}\mathbf{A}^\mathsf{T}$ всегда корректно определены и симметричны

- 1. $(A^{T})^{T} = A$,
- $(\mathbf{A}\mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}$
- 3. $(A + B)^{T} = A^{T} + B^{T}$, и
- 4. $(c\mathbf{A})^{\mathsf{T}} = c\mathbf{A}^{\mathsf{T}}$ для любых постоянных c.

- 1. $trace(\mathbf{A}) = trace(\mathbf{A}^{\mathsf{T}})$ и
- 2. $det(\mathbf{A}^{\mathsf{T}}) = det(\mathbf{A})$.
- 3. Если \mathbf{A} несингулярна, то \mathbf{A}^T тоже несингулярна, и $(\mathbf{A}^{\mathsf{T}})^{-1} = (\mathbf{A}^{-1})^{\mathsf{T}}.$

Если **a** и **b** — векторы размера $N \times 1$, умножение матриц $\mathbf{a}^\mathsf{T}\mathbf{b} = \mathbf{b}^\mathsf{T}\mathbf{a}$ равняется $\sum_{n=1}^N a_n b_n$,

так же, как скалярное произведение $\langle a,b \rangle$

Возьмем матрицу **A** размера $N \times N$

Обычно A отображает x в какое-то произвольное новое место Ax

Но иногда x будет только масштабироваться:

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$
 для некоторого скаляра λ (1)

Если (1) выполняется и \mathbf{x} is ненулевой, то

- 1. \mathbf{x} называется собственным вектором \mathbf{A} и λ называется собственным значением
- 2. (\mathbf{x}, λ) называется собственной парой

Ясно, что (\mathbf{x}, λ) — собственная пара $\mathbf{A} \implies (\alpha \mathbf{x}, \lambda)$ собственная пара ${f A}$ для любых ненулевых ${\it a}$ Матрицы и Линейные уравнения

$$\mathbf{A} := \begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix}$$

Тогда

$$\lambda=2$$
 и $\mathbf{x}=egin{pmatrix}1\\-1\end{pmatrix}$

формируют собственную пару, потому что $\mathbf{x} \neq \mathbf{0}$ и

$$\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \lambda \mathbf{x}$$

$$\mathbf{R} := \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right)$$

Вызывает вращение против часовой стрелки в любой точке на 90°

Значит ни одна точка \mathbf{x} не масштабируется

Значит не существует пары $\lambda \in \mathbb{R}$ и $\mathbf{x} \neq \mathbf{0}$, такой что

$$\mathbf{R}\mathbf{x} = \lambda \mathbf{x}$$

 Другими словами, не существует вещественных собственных пар

Рис.: Матрица ${f R}$ поворачивает точки на 90°

 $\mathsf{Puc.}$: Матрица $\mathbf R$ поворачивает точки на 90°

Ho $\mathbf{R}\mathbf{x}=\lambda\mathbf{x}$ может выполняться, если мы допускаем комплексные числа

Пример.

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{matrix} 1 \\ -i \end{matrix}\right) = \left(\begin{matrix} i \\ 1 \end{matrix}\right) = i \left(\begin{matrix} 1 \\ -i \end{matrix}\right)$$

То есть

$$\mathbf{R}\mathbf{x} = \lambda\mathbf{x}$$
 для $\lambda := i$ и $\mathbf{x} := \begin{pmatrix} 1 \\ -i \end{pmatrix}$

Тогда (\mathbf{x}, λ) является собственной парой при условии, что мы допускаем комплексные числа

Φ акт. (??) для любой квадратной матрицы A

 λ является собственным значением $\mathbf{A} \iff \det(\mathbf{A} - \lambda \mathbf{I}) = 0$

Доказательство. Пусть \mathbf{A} — матрица размера $N \times N$ и \mathbf{I} единичная матрица размера $N \times N$

Получается

Матрицы и Линейные уравнения

$$\det(\mathbf{A}-\lambda\mathbf{I})=0\iff \mathbf{A}-\lambda\mathbf{I}$$
 сингулярно
$$\iff\exists\,\mathbf{x}\neq\mathbf{0}\text{ s.t. }(\mathbf{A}-\lambda\mathbf{I})\mathbf{x}=\mathbf{0}$$
 $\iff\exists\,\mathbf{x}\neq\mathbf{0}\text{ s.t. }\mathbf{A}\mathbf{x}=\lambda\mathbf{x}$ $\iff\lambda$ является собственным значением \mathbf{A}

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$

Значит собственные значения А являются двумя корнями уравнения

$$\lambda^2 - (a+d)\lambda + (ad - bc) = 0$$

Эквивалентно.

$$\lambda^2 - \operatorname{trace}(\mathbf{A})\lambda + \det(\mathbf{A}) = 0$$

Существование собственных значений

Возьмем матрицу ${f A}$ размера N imes N

Факт. Существуют комплексные числа $\lambda_1,\ldots,\lambda_N$, такие что

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \prod_{n=1}^{N} (\lambda_n - \lambda)$$

Каждое такое λ_i является собственным значением ${f A}$, потому что

$$\det(\mathbf{A} - \lambda_i \mathbf{I}) = \prod_{n=1}^{N} (\lambda_n - \lambda_i) = 0$$

Важно: не все собственные значения обязательно различны — могут быть повторы

- 1. $\det(\mathbf{A}) = \prod_{n=1}^{N} \lambda_n$
- 2. trace(**A**) = $\sum_{n=1}^{N} \lambda_n$
- 3. если **A** симметрична, то $\lambda_n \in \mathbb{R}$ для всех n
- **4**. если **A** несингулярна, то eigenvalues of $\mathbf{A}^{-1} = 1/\lambda_1, \dots, 1/\lambda_N$
- 5. если $\mathbf{A} = \operatorname{diag}(d_1, \dots, d_N)$, то $\lambda_n = d_n$ для всех n

Значит матрица \mathbf{A} несингулярна \iff все ее собственные значения ненулевые

Квадратичные формы

Возьмем матрицу ${f A}$ размера N imes N

Квадратичная функция или квадратичная форма в \mathbb{R}^N , связанная с матрицей \mathbf{A} , — это отображение Q, определяемое как

$$Q(\mathbf{x}) := \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} = \sum_{j=1}^N \sum_{i=1}^N a_{ij} x_i x_j$$

Пример. Пусть N=2 и ${f A}$ — единичная матрица ${f I}$. Тогда

$$Q(\mathbf{x}) = \|\mathbf{x}\|^2 = x_1^2 + x_2^2$$

Рис.: Квадратичная функция $Q(\mathbf{x}) = x_1^2 + x_2^2$

Внимание:

ullet График для $Q({f x}) = \|{f x}\|^2 = x_1^2 + x_2^2$ лежит всюду выше нуля

Матрица ${\bf A}$ с квадратичной формой с указанным выше свойством $Q({\bf x}) \geq 0$ называется положительно определенной

В более общем смысле, симметричная матрица ${f A}$ размера $N \times N$ называется

Матрицы и Линейные уравнения

- неотрицательно определенной, если $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} \geq 0$ для всех $\mathbf{x} \in \mathbb{R}^N$.
- положительно определенной, если $x^T A x > 0$ для всех $\mathbf{x} \in \mathbb{R}^N$ with $\mathbf{x} \neq \mathbf{0}$.
- неположительно определенной, если $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} < 0$ для всех $\mathbf{x} \in \mathbb{R}^N$. u
- отрицательно определенной, если $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} < 0$ для всех $\mathbf{x} \in \mathbb{R}^N$ with $\mathbf{x} \neq \mathbf{0}$.

Если ${f A}$ не подходит ни к одной из этих категорий, то ${f A}$ называется неопределенной

Рис.: Квадратичная функция $Q(\mathbf{x}) = -x_1^2 - x_2^2$

Матрицы и Линейные уравнения

Рис.: Квадратичная функция $Q(\mathbf{x}) = x_1^2/2 + 8x_1x_2 + x_2^2/2$

Когда матрица А диагональная:

$$\mathbf{A} = \mathrm{diag}(d_1,\ldots,d_N)$$
 подразумевает $Q(\mathbf{x}) = d_1 x_1^2 + \cdots + d_N x_N^2$

Диагольная матрица положительно определена, тогда и только тогда, когда все диагональные элементы положительны

- **Факт.** (??) Пусть A некоторая симметричная матрица. Матрица A
 - 1. положительна определена тогда и только тогда, когда все ее собственные значения положительны
 - 2. отрицательно определена тогда и только тогда, когда все ее собственные значения отрицательны

...аналогично для неположительно и неотрицательно определенных

Факт. (??) Если **A** положительно определена, то **A** несингулярна, $\det \mathbf{A} > 0$

Необходимое (но не достаточное) условие для каждого вида определенности:

Факт. (\ref{A}) Если $\mathbf A$ положительна определена, то каждый элемент a_{nn} на главной диагонали положительный, то же самое для неотрицательной, неположительной и отрицательной.

Матрицы проекции

Напомним, что для любого подпространства \mathbb{R}^N , S, соответствующая проекция $\mathbf{P}=\operatorname{proj} S$ является линейным отображением из \mathbb{R}^N в \mathbb{R}^N

Вспомним теорему $\ref{eq:constraint}$: существует матрица $\ref{eq:constraint}$ размера N imes N, такая что $\mathbf{P}\mathbf{x} = \ref{eq:constraint}$ для всех $\mathbf{x} \in \mathbb{R}^N$

ullet с этого момента ${f P}$ также будет означать соответствующую матрицу

Как выглядит эта матрица?

Теорема. (??) Пусть S — подпространство в \mathbb{R}^N . Если $\mathbf{P} = \operatorname{proj} S$, to $\mathbf{P} = \mathbf{B}(\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1}\mathbf{B}^{\mathsf{T}}$ (2)

для каждой матрицы ${\bf B}$, такой что столбцы ${\bf B}$ формируют базис S

Смотрите упражнение ?? для доказательства

• Матрица $\mathbf{M} = \mathbf{I} - \mathbf{P}$ обозначает остаточную проекцию (смотрите страницу ??)

Мы выяснили, что проекция $\mathbf{v} \in \mathbb{R}^N$ на $\mathrm{span}\{\mathbf{1}\}$ — это $\bar{y}\mathbf{1}$

Тот же результат с помощью теоремы (??):

Так как 1 является базисом span{1}:

$$\mathbf{P} = \text{proj span}\{\mathbf{1}\} \implies \mathbf{P} = \mathbf{1}(\mathbf{1}^{\mathsf{T}}\mathbf{1})^{-1}\mathbf{1}^{\mathsf{T}} = \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathsf{T}}$$

- Значит, $\mathbf{P}\mathbf{y} = \bar{y}\mathbf{1}$, как и ожидалось
- Соответствующая остаточная проекция

$$\mathbf{M}_c = \mathbf{I} - \frac{1}{N} \mathbf{1} \mathbf{1}^\mathsf{T}$$

Факт. (??) По постановке теоремы ??, получается

- 1. MB = 0
- $\mathbf{PB} = \mathbf{B}$

Докажите в качестве упражнения (упр. ?? в ЕТ)

Легко заметить, что \mathbf{M}_c в предыдущем примере отображает $\mathbf{1}$ в 0

Квадратная матрица ${f A}$ является иденпотентной, если ${f A}{f A}={f A}$

Факт. (??) И P, и M симметричны и иденпотентны

(Упражнение: проверьте прямыми вычислениями)

Интуиция: проецирование на подпространство дважды — это то же самое, что проецировать один раз — вспомните факт $\ref{eq:control}$? на странице $\ref{eq:control}$?

Факт. (??) Пусть S является линейным подпространством в \mathbb{R}^N . Если $\mathbf{P} = \operatorname{proj} S$ и $\mathbf{M} - \operatorname{остаточная}$ проекция, то

- 1. rank $\mathbf{P} = \text{trace } \mathbf{P} = \dim S$ и
- 2. rank $\mathbf{M} = \operatorname{trace} \mathbf{M} = N \dim S$

Доказательство.

- Ранг линейного отображения это размерность его диапазона. Когда $\mathbf{P} = \operatorname{proj} S$, Диапазон \mathbf{P} равняется S
- Чтобы показать, что trace $P = \dim S$ также соблюдается, используем факт ??— trace $\mathbf{P} = \dim S$,
- Это следует из того, что $\operatorname{trace} \mathbf{M} = N \dim S$, потому что

$$trace \mathbf{M} = trace (\mathbf{I} - \mathbf{P}) = trace \mathbf{I} - trace \mathbf{P} = N - \dim S$$

Переопределенные системы уравнений

Рассмотрим систему уравнений в виде $\mathbf{A}\mathbf{x} = \mathbf{b}$, когда:

- ullet Матрица ${f A}$ размера N imes K имеет полный ранг столбцов
- Вектор \mathbf{x} имеет размер $K \times 1$
- Вектор ${f b}$ имеет размер N imes 1
- K ≤ N

Принимая как данность ${f A}$ и ${f b}$, мы ищем ${f x} \in \mathbb{R}^K$, такой что ${f A}{f x} = {f b}$

Если K = N, то система имеет ровно одно решение

Когда N > K, система уравнений считается переопределенной:

- количество уравнений > количества неизвестных
- количество ограничений > количества степеней свободы

Возможно, не удастся найти ${f b}$, который удовлетворяет всем N уравнениям

Вспомним линейное отображение $T \colon \mathbb{R}^K \to \mathbb{R}^N$, где $T\mathbf{x} = \mathbf{A}\mathbf{x}$

Следующие утверждения эквивалентны:

- 1. существует $\mathbf{x} \in \mathbb{R}^K$, такой что $\mathbf{A}\mathbf{x} = \mathbf{b}$
- 2. вектор $\mathbf{b} \in \operatorname{colspace} \mathbf{A}$
- 3. вектор $\mathbf{b} \in \operatorname{rng} T$

Теорема ?? на странице ??: когда K < N, функция T не может быть сюръекцией – возможные ${\bf b}$ находятся вне диапазона T

Когда K < N, случай с $\mathbf{b} \in \operatorname{colspace} \mathbf{A}$ является "очень редким", потму что:

- ullet точка $oldsymbol{b}$ является произвольной точкой в \mathbb{R}^N
- пространство $\operatorname{colspace} \mathbf{A}$ имеет размерность K
- подпространста \mathbb{R}^N с размерностями K имеют "нулевую меру Лебега" "шанс" того, что \mathbf{b} лежит в этом подпространстве, крошечный

Стандартный подход: признать, что точного решения может не существовать

Следует сосредоточиться на поиске $\mathbf{x} \in \mathbb{R}^K$, чтобы $\mathbf{A}\mathbf{x}$ оказалось настолько близко к \mathbf{b} , насколько возможно

• близки по обычной Евклидовой норме

Задача минимизации называется методом наименьших квадратов

$$\hat{\mathbf{x}} : = \underset{\mathbf{x} \in \mathbb{R}^K}{\operatorname{argmin}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\| \tag{3}$$

При условии, что ${\bf A}$ размера $N \times K$ с $K \le N$ и ${\bf b}$ размера $N \times 1$, мы можем использовать теорему ортогональной проекции для решения (3)

Теорема. (??) Если A имеет полный ранг столбцов, то (3) имеет единственное решение

$$\hat{\mathbf{x}} := (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{A}^\mathsf{T} \mathbf{b} \tag{4}$$

Доказательство.

Пусть:

- А и b будут как в формулировке теоремы
- х̂ как в (4) и
- $S := \operatorname{colspace} \mathbf{A}$

При условии полного ранга столбцов, столбцы ${f A}$ формируют базис для S. Применяем теорему ??, ортогональная проекция ${\bf b}$ на *S*:

$$\mathbf{P}\mathbf{b} := \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b} = \mathbf{A}\hat{\mathbf{x}}$$
 (5)

Поскольку теорема об ортогональной проекции дает единственный минимизатор в терминах ближайшей точки в S к b.

$$\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\| < \|\mathbf{b} - \mathbf{y}\|$$
 для всех $\mathbf{y} \in \mathcal{S}$, $\mathbf{y}
eq \mathbf{A}\hat{\mathbf{x}}$ (6)

Получается $\mathbf{A}\mathbf{x} \in S$

K тому же, так как $\mathbf{x} \neq \hat{\mathbf{x}}$ и \mathbf{A} имеют полный ранг столбцов, должно быть $\mathbf{A}\mathbf{x} \neq \mathbf{A}\hat{\mathbf{x}}$ (упр. ??)

Значит

$$\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\| < \|\mathbf{b} - \mathbf{A}\mathbf{x}\|$$
 для всех $\mathbf{x} \in \mathbb{R}^K$, $\mathbf{x}
eq \hat{\mathbf{x}}$

Другими словами, $\hat{\mathbf{x}}$ является единственным решением (3)

Если K=N, то решение методом наименьших квадратов $\hat{\mathbf{x}}$ в (4) сокращается до:

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Что произойдет, если столбцы boldA не будут линейно независимыми?

- множество colspace A все еще линейное подпространство и теорема ортогональной проекции все еще дает нам ближайшую точку \mathbf{Pb} к \mathbf{b} в colspace \mathbf{A}
- так как $\mathbf{Pb} \in \operatorname{colspace} \mathbf{A}$, все еще существует вектор $\hat{\mathbf{x}}$, такой что $\mathbf{P}\mathbf{b} = \mathbf{A}\hat{\mathbf{x}}$
- но таких векторов существует бесконечное множество

Смотрите упражнение ??

QR-разложение

 ${\sf QR}$ -разложение данной матрицы ${\sf A}$ — это произведение вида ${\sf QR}$

- первая матрица имеет ортонормированные столбцы и
- вторая является верхней треугольной

Приложения включают задачи наименьших квадратов и вычисление собственных значений

Теорема. (??) Если матрица **A** размера $N \times K$ имеет полный ранг столбцов, то существует факторизация $\mathbf{A} = \mathbf{Q}\mathbf{R}$, где

- 1. **R** размера $K \times K$ является верхней треугольной и несингулярной, и
- 2. **Q** размера $N \times K$ имеет ортонормированные столбцы

Смотрите страницу ?? в ЕТ для доказательства

00000

Возьмем разложение $\mathbf{A}=\mathbf{Q}\mathbf{R}$, рещение методом наименьших квадратов $\hat{\mathbf{x}}$, определенное в (4), может также записываться как:

$$\hat{\mathbf{x}} = \mathbf{R}^{-1} \mathbf{Q}^{\mathsf{T}} \mathbf{b}$$

Смотрите упр. ??

Умножение на **R**:

$$R\hat{x} = Q^{T}b$$

Диагонализация и спектральная теория

Если $f\colon A\to A$ и $g\colon B\to B$, то говорят, что g топологически сопряжен с f везде, где существует непрерывная биекция $\tau\colon B\to A$, такая что

$$f = \tau \circ g \circ \tau^{-1}$$

Может быть полезно, если g проще f

Говорят, что квадратная матрица $\mathbf A$ подобна матрице $\mathbf B$, если существует обратимая матрица \mathbf{P} , такая что $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1}$

Рис.: А подобна В

00000

Если ${f A}$ подобна диагональной матрице, то ${f A}$ называется диагонализируемой

Нас интересует подобие простым матрицам, диагональные матрицы — самый простой вид

00000

Факт. (??) Если **A** подобна **B**, то **A**^t подобна **B**^t для всех $t \in \mathbb{N}$

Пример. Мы хотим вычислить \mathbf{A}^t для некоторых данных $t \in \mathbb{N}$

Если $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ для некоторых $\mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_N)$, то по факту ?? и факту ??, получается

$$\mathbf{A}^t = \mathbf{P}\operatorname{diag}(\lambda_1^t, \dots, \lambda_N^t)\mathbf{P}^{-1}$$

Диагонализация и собственные значения

Факт. (??) Если ${\bf A} = {\bf P} {\bf \Lambda} {\bf P}^{-1}$ для некоторых $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$, то $(\operatorname{col}_n \mathbf{P}, \lambda_n)$ является собственной парой A для любого n

Доказательство. Заметим, что ${\bf A} = {\bf P} {\bf \Lambda} {\bf P}^{-1}$ значит, что $AP = P\Lambda$

Equating the nth column on each side gives Рассмотрим столбец n с каждой стороны:

$$\mathbf{A}\mathbf{p}_n = \lambda_n \mathbf{p}_n$$

Где $\mathbf{p}_n := \operatorname{col}_n \mathbf{P}$

Заметим, что \mathbf{p}_n — ненулевой вектор, так как \mathbf{P} обратима

Но когда A диагонализируема?

Факт. (3.3.7) Матрица ${\bf A}$ размера $N \times N$ диагонализируема тогда и только тогда, когда она имеет N линейно независимых собственных векторов

00000

В некоторых случаях, мы можем получить еще более простое разложение матрицы, если матрица Р имеет ортогональные столбцы

Такие матрицы называются ортогональными матрицами

Факт. (??) Если Q и P — ортогональные матрицы размера $N \times N$, to

- 1. ${\bf O}^{\sf T}$ ортогональна и ${\bf O}^{-1} = {\bf O}^{\sf T}$.
- QP ортогонально, и
- 3. $\det \mathbf{Q} \in \{-1, 1\}$.

Если $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}$ и \mathbf{Q} имеют ортогональные столбцы, то

$$A = Q\Lambda Q^{\mathsf{T}}$$

Ясно, что ${\bf A}$ должна быть симметричной. Следующая теорема показывает, что симметрия ${\bf A}$ также достаточна

Теорема. (??) Если ${\bf A}$ симметрична, то ${\bf A}$ может быть диагонализована как ${\bf A}={\bf Q}{\bf \Lambda}{\bf Q}^{\sf T}$, где ${\bf Q}$ — ортогональная матрица и ${\bf \Lambda}$ — диагональная матрица, сформированная из собственных значений ${\bf A}$

Вышеупомянутая теорема была версией теоремы о спектральном разложении

 $\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ называется симметричным разложением на собственные значения матрицы А – воздействие А на вектор \mathbf{x} размера $N \times 1$:

$$\mathbf{A}\mathbf{x} = \sum_{n=1}^{N} \lambda_n(\mathbf{u}_n^{\mathsf{T}}\mathbf{x})\mathbf{u}_n$$

где λ_n является n-ым собственным значением \mathbf{A} и $\mathbf{u}_n = \operatorname{col}_n \mathbf{Q}$

Сравните с
$$\mathbf{x} = \sum_{n=1}^{N} (\mathbf{u}_n^\intercal \mathbf{x}) \mathbf{u}_n$$

Факт. (??) Если А положительно определена, то существует несингулярная, верхняя треугольная матрица R, такая что $A = R^{\mathsf{T}}R$

Такое разложение называется разложением Холецкого

Доказательство. (Разложение Холецкого) Мы можем написать:

$$\boldsymbol{A} = \boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{\intercal} = \boldsymbol{Q}\sqrt{\boldsymbol{\Lambda}}\sqrt{\boldsymbol{\Lambda}}\boldsymbol{Q}^{\intercal} = (\sqrt{\boldsymbol{\Lambda}}\boldsymbol{Q}^{\intercal})^{\intercal}\sqrt{\boldsymbol{\Lambda}}\boldsymbol{Q}^{\intercal}$$

Затем применим QR-разложение к $\sqrt{\Lambda} \mathbf{Q}^{\mathsf{T}}$:

$$\sqrt{\Lambda}Q^{\intercal} = \tilde{Q}R$$

где ${f R}$ несингулярная и верхняя треугольная, и ${f \tilde Q}$ имеет ортонормированные столбцы

Так как столбцы $ilde{\mathbf{Q}}$ ортонормированные,

$$\mathbf{A} = (\tilde{\mathbf{Q}}\mathbf{R})^{\mathsf{T}}\tilde{\mathbf{Q}}\mathbf{R} = \mathbf{R}^{\mathsf{T}}\tilde{\mathbf{Q}}^{\mathsf{T}}\tilde{\mathbf{Q}}\mathbf{R} = \mathbf{R}^{\mathsf{T}}\mathbf{R}$$

Нормы и непрерывность

Возьмем векторную последовательность $\{\mathbf{x}_n\}$ в \mathbb{R}^K и любую точку $\mathbf{x} \in \mathbb{R}^K$. Говорят, что $\{\mathbf{x}_n\}$ сходится к \mathbf{x} и записывается $\mathbf{x}_n \to \mathbf{x}$, если для любых $\epsilon > 0$, существует $N \in \mathbb{N}$, такое что $\|\mathbf{x}_n - \mathbf{x}\| < \epsilon$ при $n \geq N$

Эквивалентно, последовательность действительных чисел $z_n:=\|\mathbf{x}_n-\mathbf{x}\|$ сходится к нулю ы $\mathbb R$ при $n o\infty$

Факт. (3.3.11) Имеют место следующие результаты:

- 1. если $\mathbf{x}_n \to \mathbf{x}$ и $\mathbf{y}_n \to \mathbf{y}$, то $\mathbf{x}_n + \mathbf{y}_n \to \mathbf{x} + \mathbf{y}$.
- 2. если $\mathbf{x}_n \to \mathbf{x}$ и $\alpha \in \mathbb{R}$, то $\alpha \mathbf{x}_n \to \alpha \mathbf{x}$.
- 3. $\mathbf{x}_n \to \mathbf{x}$ тогда и только тогда, когда $\mathbf{a}^\mathsf{T} \mathbf{x}_n \to \mathbf{a}^\mathsf{T} \mathbf{x}$ для всех $\mathbf{a} \in \mathbb{R}^K$

Мы хотим распространить понятие сходимости на матрицы

Норма матрицы A размера $N \times K$:

$$\|\mathbf{A}\| := \max \left\{ \|\mathbf{A}\mathbf{x}\| : \mathbf{x} \in \mathbb{R}^K, \|\mathbf{x}\| = 1 \right\}$$
 (7)

Значение нормы матрицы в общем случае найти непросто Однако, матричная норма ведет себя как векторная норма

Факт. (3.3.12) Для любых согласующихся матриц A и B, матричная норма удовлетворяет

- 1. $\|\mathbf{A}\| \geq 0$ и $\|\mathbf{A}\| = 0$ тогда и только тогда, когда все записи **A** нулевые,
- 2. $\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$ для любых скаляров α ,
- 3. $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$, u
- 4. $\|\mathbf{A}\mathbf{B}\| \leq \|\mathbf{A}\| \|\mathbf{B}\|$.

Факт. (??) Для любых матриц ${\bf A}$ размера $J \times K$ с элементами a_{ik} , выходит

$$\|\mathbf{A}\| \le \sqrt{JK} \max_{jk} |a_{jk}|$$

если каждый элекмент ${f A}$ близок к нулю, то $\|{f A}\|$ тоже близка к нулю

Ряд Неймана

В дальнейшем мы изучаем динамические системы вида

$$\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{b}$$

Существует ли "стационарный" вектор $\mathbf{x} \in \mathbb{R}^N$ в том смысле, что $\mathbf{x}_{t} = \mathbf{x}$ значит, что $\mathbf{x}_{t+1} = \mathbf{x}$?

Мы ищем $\mathbf{x} \in \mathbb{R}^N$, являющийся решением системы уравнений

$$\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$$
 (A is $N \times N$ u b is $N \times 1$) (8)

Рассмотрим случай со скалярами x = ax + b

Если |a| < 1, то существует единственное решение

$$\bar{x} = \frac{b}{1-a} = b \sum_{k=0}^{\infty} a^k$$

Лемма о рядах Неймана помогает обобщить это до \mathbb{R}^N

Теорема. (??) Если матрица ${\bf A}$ квадратная и $\|{\bf A}^j\|<1$ для некоторых $j\in \mathbb{N}$, то ${\bf I}-{\bf A}$ обратима, и

$$(\mathbf{I} - \mathbf{A})^{-1} = \sum_{i=0}^{\infty} \mathbf{A}^{i}$$

$$\bar{\mathbf{x}} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{b} = \sum_{i=0}^{\infty} \mathbf{A}^i \mathbf{b}$$

Чтобы проверить это решение, используем спектральный \mathbf{p} адиус \mathbf{A} :

$$\varrho(\mathbf{A}) := \max\{|\lambda| : \lambda$$
 является собственным значением $\mathbf{A}\}$

 $|\lambda|$ — это модуль возможно комплексного числа λ

Факт. Если $\varrho(\mathbf{A}) < 1$, то $\|\mathbf{A}^j\| < 1$ для некоторых $j \in \mathbb{N}$

Почему достаточно $\rho(\mathbf{A}) < 1$?

Нам нужно $\sum_{i=0}^t \mathbf{A}^i (\mathbf{I} - \mathbf{A})$ было близко к \mathbf{I} для больших t

Получается:

$$\sum_{i=0}^{t} \mathbf{A}^{i} (\mathbf{I} - \mathbf{A}) = \sum_{i=0}^{t} \mathbf{A}^{i} - \sum_{i=0}^{t} \mathbf{A}^{i+1} = \mathbf{I} - \mathbf{A}^{t+1}$$

Упростим до случая, где ${f A}$ диагонализируется:

$$\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$$

где Λ — диагональная матрица, содержащая собственные значения $\lambda_1, \dots, \lambda_N$ матрицы $\mathbf A$ на главной диагонали.

Теперь используем факт ??,

$$\mathbf{A}^t = \mathbf{P} egin{pmatrix} \lambda_1^t & 0 & \cdots & 0 \ 0 & \lambda_2^t & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & \lambda_N^t \end{pmatrix} \mathbf{P}^{-1}$$

Если $\varrho({\bf A})<1$, то $|\lambda_n|<1$ для всех n, и значит $\lambda_n^t\to 0$ при $t\to\infty$. Из этого следует, что ${\bf A}^t\to {\bf 0}$