

layers.Conv2D

```
In [1]: import tensorflow as tf
In [2]: from tensorflow.keras import layers

In [6]: layer=layers.Conv2D(4, kernel_size=5,strides=1,padding='valid')
In [8]: out=layer(x)
Out[9]: TensorShape([1, 28, 28, 4])

In [10]: layer=layers.Conv2D(4, kernel_size=5,strides=1,padding='same')
In [11]: out=layer(x)
Out[12]: TensorShape([1, 32, 32, 4])

In [13]: layer=layers.Conv2D(4, kernel_size=5,strides=2,padding='same')
In [14]: out=layer(x)
Out[15]: TensorShape([1, 16, 16, 4])

In [16]: layer.call(x).shape
Out[16]: TensorShape([1, 16, 16, 4])
```

weight & bias

nn.conv2d

```
In [21]: w=tf.random.normal([5,5,3,4])
In [22]: b=tf.zeros([4])
In [23]: x.shape
Out[23]: TensorShape([1, 32, 32, 3])

In [29]: out=tf.nn.conv2d(x, w, strides=1, padding='VALID')
Out[30]: TensorShape([1, 28, 28, 4])

In [31]: out = out + b
Out[32]: TensorShape([1, 28, 28, 4])

In [33]: out=tf.nn.conv2d(x,w,strides=2,padding='VALID')
Out[34]: TensorShape([1, 14, 14, 4])
```

卷积梯度的求导

10.2 池化与采样

- ✓ Pooling ←→ 下采样
- ✓ upsample ←→ 上采样
- ✓ ReLU

下采样


```
In [36]: x # TensorShape([1, 14, 14, 4])
In [37]: pool=layers.MaxPool2D(2,strides=2)
In [38]: out=pool(x)
Out[39]: TensorShape([1, 7, 7, 4])
In [40]: pool=layers.MaxPool2D(3,strides=2)
In [41]: out=pool(x)
Out[42]: TensorShape([1, 6, 6, 4])
In [44]: out=tf.nn.max_pool2d(x, 2,strides=2,padding='VALID')
Out[45]: TensorShape([1, 7, 7, 4])
```

补充,关于卷积核后的图像尺寸计算,

1、 卷积后尺寸的计算

```
out_height = (in_height + 2*padding - filter_height) / strides[1] + 1
out_width = (in_width + 2*padding - filter_width) / strides[2] + 1
```

2、卷积参数 same 和 valid 运算之后的维度计算

```
(1)same
```

```
out_height = ceil(float in_height)) / float(strides[1])
out_width = ceil(float(in_width)) / float(strides[2])
```

(2)valid

```
out_height = ceil(float(in_height - filter_height + 1)) / float(strides[1])
out_width = ceil(float(in_width - filter_width + 1)) / float(strides[2])
```

关于参数:

padding: SAME 和 VALID 两种形式

filter: [5,5,1,32] 表示 5*5 的卷积核, 1 个 channel, 32 个卷积核。

strides: [1,4,4,1] 表示横向和竖向的步长都为 4

上采样

```
In [47]: x=tf.random.normal([1,7,7,4])
In [48]: layer=layers.UpSampling2D(size=3)
In [49]: out=layer(x)
Out[50]: TensorShape([1, 21, 21, 4])
In [51]: layer=layers.UpSampling2D(size=2)
In [52]: out=layer(x)
Out[53]: TensorShape([1, 14, 14, 4])
```

ReLU

实战

网络结构

代码:

```
import tensorflow as tf
from tensorflow.keras import layers, optimizers,datasets,Sequential
tf.random.set seed(2345)
# 5 unites of conv + maxpooling
conv_layers = [
    # unit 1
    layers.Conv2D(64, kernel size=[3,3], padding='same', activation=tf.nn.relu),
    layers.Conv2D(64, kernel_size=[3,3], padding='same', activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2,2], strides=2, padding='same'),
    # unit 2
    layers.Conv2D(128, kernel_size=[3,3], padding='same', activation=tf.nn.relu),
    layers.Conv2D(128, kernel_size=[3,3], padding='same', activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2,2], strides=2, padding='same'),
    # unit 3
    layers.Conv2D(256, kernel_size=[3,3], padding='same', activation=tf.nn.relu),
    layers.Conv2D(256, kernel_size=[3,3], padding='same', activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2,2], strides=2, padding='same'),
    # unit 4
    layers.Conv2D(512, kernel_size=[3,3], padding='same', activation=tf.n
n.relu),
    layers.Conv2D(512, kernel_size=[3,3], padding='same', activation=tf.n
n.relu),
```

```
layers.MaxPool2D(pool_size=[2,2], strides=2, padding='same'),
    # unit 5
    layers.Conv2D(512, kernel_size=[3,3], padding='same', activation=tf.n
n.relu),
    layers.Conv2D(512, kernel_size=[3,3], padding='same', activation=tf.n
n.relu),
    layers.MaxPool2D(pool_size=[2,2], strides=2, padding='same')
 1
# 数据预处理与加载数据集
def preprocess(x, y):
   x = tf.cast(x, dtype=tf.float32) / 255.
   y = tf.cast(y, dtype=tf.int32)
   return x,y
(x,y),(x_test,y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
train_db = tf.data.Dataset.from_tensor_slices((x,y))
train_db = train_db.shuffle(1000).map(preprocess).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x,y))
test db = test db.map(preprocess).batch(64)
def main():
   \# [b, 32, 32, 3] \Longrightarrow [b, 1, 1, 512]
   conv_net = Sequential(conv_layers)
   # conv_net.build(input_shape=[None, 32, 32,3])
    # 全连接层
    fc_net = Sequential([
        layers.Dense(256, activation=tf.nn.relu),
        layers.Dense(128, activation=tf.nn.relu),
        layers.Dense(100, activation=None)
    1)
   # 将上面两个网络给 build 一下
   conv_net.build(input_shape=[None, 32, 32, 3])
   fc_net.build(input_shape=[None, 512])
   # 设置优化器
    optimizer = optimizers.Adam(lr=1e-4)
    # 设置梯度参数
    variables = conv_net.trainable_variables + fc_net.trainable_varia
bles
```

```
for epoch in range(50):
        for step, (x,y) in enumerate(train_db):
            with tf.GradientTape() as tape:
                \# [b, 32, 32, 3] \Rightarrow [b, 1, 1, 512]
                out = conv_net(x)
                # flatten to [b, 512]
                out = tf.reshape(out, [-1, 512])
                # [b, 512] ==> [b, 100]
                logits = fc_net(out)
                # 对 y 进行 one hot 编码
                y_onehot = tf.one_hot(y, depth=100)
                # 计算损失
                loss = tf.losses.categorical_crossentropy(y_onehot, 1
ogits, from_logits=True)
                loss = tf.reduce_mean(loss)
            grads = tape.gradient(loss, variables)
            optimizer.apply_gradients(zip(grads, variables))
            if step % 100 == 0:
                print(epoch, step, 'loss', float(loss))
        total num = 0
        total_correct = 0
        for x, y in test_db:
            out = conv_net(x)
            out = tf.reshape(out, [-1, 512])
            logits = fc_net(out)
            prob = tf.nn.softmax(logits, axis=1)
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)
            correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
            correct = tf.reduce sum(correct)
            total_num += x.shape[0]
            total_correct += int(correct)
        acc = total_correct / total_num
        print(epoch, 'acc:', acc)
main()
```

经典卷积网络

LeNet-5

AlexNet

AlexNet: ILSVRC 2012 winner

- · Similar framework to LeNet but:
 - · Max pooling, ReLU nonlinearity
 - More data and bigger model (7 hidden layers, 650K units, 60M params)
 - GPU implementation (50x speedup over CPU)
 - · Trained on two GPUs for a week
 - Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional Neural Networks</u>, NIPS 2012

VGG

VGGNet: ILSVRC 2014 2nd place 11层到19层网络

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
_	i	nput (224 × 2	24 RGB imag	e)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
Alexandra presidente		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
	-	max	pool	-	-
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
		max	pool	-	-
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
- 00000000	1		pool	8	Ž
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
			pool		
			4096		
			4096		
			1000		
		soft	-max		

Table 2: Number of parameters (in millions).									
Network	A,A-LRN	В	C	D	E				
Number of parameters	133	133	134	138	144				

- Sequence of deeper networks trained progressively
- Large receptive fields replaced by successive layers of 3x3 convolutions (with ReLU in between)

- One 7x7 conv layer with C feature maps needs 49C² weights, three 3x3 conv layers need only 27C² weights
- Experimented with 1x1 convolutions

K. Simonyan and A. Zisserman,

Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

那么 1x1 的卷积核有什么作用呢?

- less computation
- 可以改变图片的通道数,从而改变维度, c in >= c out

GooLeNet

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

ResNet 与 DenseNet

- · The residual module
 - Introduce skip or shortcut connections (existing before in various forms in literature)
 - · Make it easy for network layers to represent the identity mapping
 - · For some reason, need to skip at least two layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual Learning for Image Recognition, CVPR 2016 (Best Paper)

Deeper residual module (bottleneck)

- Directly performing 3x3
 convolutions with 256 feature
 maps at input and output:
 256 x 256 x 3 x 3 ~ 600K
 operations
- Using 1x1 convolutions to reduce 256 to 64 feature maps, followed by 3x3 convolutions, followed by 1x1 convolutions to expand back to 256 maps:

```
256 x 64 x 1 x 1 ~ 16K
64 x 64 x 3 x 3 ~ 36K
64 x 256 x 1 x 1 ~ 16K
Total: ~70K
```

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016 (Best Paper)

实现

Basic Block

```
class BasicBlock(layers.Layer):
                                    <u>__init__</u>(self, filter_num, stride=1):
                                    super(BasicBlock, self).__init__()
                                   self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding='same')
                                   self.bn1 = layers.BatchNormalization()
            基本单元,unit
                                    self.relu = layers.Activation('relu')
                                   self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding='same')
                                   self.bn2 = layers.BatchNormalization()
Convolution layer
                                    if stride != 1
                                        self.downsample = Sequential()
     ReLU
                x: Identity
                                        self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride))
Convolution layer
                                        self.downsample.add(layers.BatchNormalization()
     F(x)
                                        self.downsample = lambda x: x
                                    self.stride = stride
                               def call(self, inputs, training=None):
                                    residual = self.downsample(inputs)
                                    conv1 = self.conv1(inputs)
                                    bn1 = self.bn1(conv1)
                                    relu1 = self.relu(bn1)
conv2 = self.conv2(relu1)
                                    bn2 = self.bn2(conv2)
                                    add = layers.add([bn2, residual])
                                    out = self.relu(add)
                                    return out
```

ResBlock

将 BasicBlock 堆叠起来, 形成 ResBlock。

```
convolution layer

ReLU

Convolution layer

F(x)

Convolution layer

ReLU

Convolution layer

F(x)

Convolution layer

ReLU

Convolution layer

F(x)

Convolution layer

F(x)

Convolution layer

F(x)

Convolution layer
```

DenseNet

Batch Norm

直观的解释:

Image Normalization

```
def normalize(x, mean,std):
    # x: [b, h, w, c]
    x = x - mean
    x = x / std
    return x
```

(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

layers.BatchNormalization

- net = layers.BatchNormalization()
 - axis=-1,
 - center=True,
 - scale=True
 - trainable=True
- net(x, training=None)

```
In [3]: net=layers.BatchNormalization()
In [5]: x=tf.random.normal([2,3])
In [6]: out=net(x)
In [7]: net.trainable_variables
[<tf.Variable 'batch_normalization/gamma:0' shape=(3,) dtype=float32, numpy=array([1., 1., 1.],</pre>
dtype=float32)>,
<tf.Variable 'batch_normalization/beta:0' shape=(3,) dtype=float32, numpy=array([0., 0., 0.],</pre>
dtype=float32)>]
In [8]: net.variables
[<tf.Variable 'batch_normalization/gamma:0' shape=(3,) dtype=float32, numpy=array([1., 1., 1.],</pre>
dtype=float32)>,
<tf.Variable 'batch_normalization/beta:0' shape=(3,) dtype=float32, numpy=array([0., 0., 0.],</pre>
dtype=float32)>,
<tf.Variable 'batch_normalization/moving_mean:0' shape=(3,) dtype=float32, numpy=array([0., 0.,</pre>
0.], dtype=float32)>,
<tf.Variable 'batch_normalization/moving_variance:0' shape=(3,) dtype=float32, numpy=array([1.,</pre>
1., 1.], dtype=float32)>]
```

规范化写法

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

```
for i in range(10):
    with tf.GradientTape() as tape:
        out = net(x, training=True)
        loss = tf.reduce_mean(tf.pow(out,2)) - 1
        grads = tape.gradient(loss, net.trainable_variables)
        optimizer.apply_gradients(zip(grads, net.trainable_variables))

backward(10 steps):
    [<tf.Variable 'batch_normalization/gamma:0' shape=(3,) dtype=float32, numpy=array([0.93549937, 0.9356556, 0.9355564], dtype=float32)>,
        <tf.Variable 'batch_normalization/beta:0' shape=(3,) dtype=float32, numpy=array([ 1.3411044e-09, 1.3411045e-08, -4.0978188e-10], dtype=float32)>...]
```

```
前向传播
In [15]: x=tf.random.normal([2,4,4,3],mean=1.,stddev=0.5)
In [16]: net=layers.BatchNormalization(axis=3)
In [19]: out=net(x,training=True)
[<tf.Variable 'batch_normalization_2/gamma:0' shape=(3,) dtype=float32, numpy=array([1., 1.,

    dtype=float32)>,

 <tf.Variable 'batch_normalization_2/beta:0' shape=(3,) dtype=float32, numpy=array([0., 0., 0.],</pre>
dtype=float32)>.
<tf.Variable 'batch_normalization_2/moving_mean:0' shape=(3,) dtype=float32,</pre>
numpy=array([0.9923687 , 0.9918039 , 0.99186534], dtype=float32)>]
In [21]: for i in range(100):out=net(x,training=True)
In [22]: net.variable
[<tf.Variable 'batch_normalization_2/gamma:0' shape=(3,) dtype=float32, numpy=array([1., 1.,
1.], dtype=float32)>
<tf.Variable 'batch_normalization_2/beta:0' shape=(3,) dtype=float32, numpy=array([0., 0., 0.],</pre>
dtype=float32)>
<tf.Variable 'batch_normalization_2/moving_mean:0' shape=(3,) dtype=float32,</pre>
numpy=array([0.5134074, 0.4773918, 0.4813124], dtype=float32)>]
```

实战:

```
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, Sequential
class BasicBlock(layers.Layer):
   def init (self, filter num, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = layers.Conv2D(filter_num, (3,3), strides=stride,
 padding='same')
        self.bn1 = layers.BatchNormalization()
        self.relu = layers.Activation('relu')
        self.conv2 = layers.Conv2D(filter_num, (3,3), strides=1, padd
ing='same')
        self.bn2 = layers.BatchNormalization()
        if stride != 1:
            self.downsample = Sequential()
            self.downsample.add(layers.Conv2D(filter_num, (1,1), stri
des=stride))
        else:
            self.downsample = lambda x:x
```

```
def call(self, inputs, training=None):
        # [b, h, w, c]
        out = self.conv1(inputs)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        identity = self.downsample(inputs)
        output = layers.add([out, identity])
        # output = self.relu(output) 等价于下面的
        output = tf.nn.relu(output)
        return output
class ResNet(keras.Model):
   def __init__(self, layer_dims, num_classes=100):
        super(ResNet, self).__init__()
        self.stem = Sequential([layers.Conv2D(64,[3,3],strides=(1,1))
                                layers.BatchNormalization(),
                                layers.Activation('relu'),
                                layers.MaxPool2D(pool_size=(2,2), str
ides=[1,1], padding='same')])
        self.layer1 = self.build_resblock(64, layer_dims[0])
        self.layer2 = self.build_resblock(128, layer_dims[1], stride=
2)
        self.layer3 = self.build_resblock(256, layer_dims[2], stride=
2)
        self.layer4 = self.build resblock(512, layer dims[3], stride=
2)
        self.avgpool = layers.GlobalAveragePooling2D()
        self.fc = layers.Dense(num classes)
   def call(self, inputs, training=None):
        x = self.stem(inputs)
        x = self.layer1(x)
        x = self.layer2(x)
```

```
x = self.layer3(x)
x = self.layer4(x)

x = self.avgpool(x)
x = self.fc(x)

return x

def build_resblock(self, filter_num, blocks, stride=1):

res_blocks = Sequential()
res_blocks.add(BasicBlock(filter_num, stride))

for _ in range(1, blocks):
    res_blocks.add(BasicBlock(filter_num, stride=1))

return res_blocks

def resnet18():
    return ResNet([2, 2, 2, 2])

def resnet34():
    return ResNet([3, 4, 6, 3])
```

主代码

```
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
from resnet import resnet18
tf.random.set seed(2345)
# 数据预处理与加载数据集
def preprocess(x, y):
   x = tf.cast(x, dtype=tf.float32) / 255.
   y = tf.cast(y, dtype=tf.int32)
   return x,y
(x,y),(x_test,y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
train db = tf.data.Dataset.from tensor slices((x,y))
train db = train db.shuffle(1000).map(preprocess).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x,y))
test_db = test_db.map(preprocess).batch(64)
```

```
def main():
    \# [b, 32, 32, 3] \Longrightarrow [b, 1, 1, 512]
   model = resnet18()
   model.build(input_shape=(None, 32, 32, 3))
   optimizer = optimizers.Adam(lr=1e-3)
   for epoch in range(50):
        for step, (x,y) in enumerate(train_db):
            with tf.GradientTape() as tape:
                # [b, 512] ==> [b, 100]
                logits = model(x)
                # 对 y 进行 one_hot 编码
                y_onehot = tf.one_hot(y, depth=100)
                # 计算损失
                loss = tf.losses.categorical_crossentropy(y_onehot, 1
ogits, from_logits=True)
                loss = tf.reduce mean(loss)
            grads = tape.gradient(loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_vari
ables))
            if step % 100 == 0:
                print(epoch, step, 'loss', float(loss))
        total_num = 0
        total correct = 0
        for x, y in test_db:
            logits = model(out)
            prob = tf.nn.softmax(logits, axis=1)
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)
            correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
            correct = tf.reduce_sum(correct)
            total_num += x.shape[0]
            total correct += int(correct)
        acc = total_correct / total_num
        print(epoch, 'acc:', acc)
main()
```