得分

第六题(15分)虚拟内存地址转换

为了提升虚拟内存地址的转换效率,降低遍历两级页表结构所带来的地址转换开销,英特尔处理器中引入了大页 TLB,即一个 TLB 项可以涵盖整个 4MB 对齐的地址空间(针对 32 位模式)。只要设置页目录页中页目录项(PDE)的大页标志位,即可让 MMU 识别这是一个大页 PDE,并加载到大页 TLB 项中。大页 PDE 中记录的物理内存页面号必须是 4MB 对齐的,并且整个连续的 4MB 内存均可统一通过该大页 PDE 进行地址转换。

在 32 位的 Linux 系统中,为了方便访问物理内存,内核将地址 0~768MB 间的物理内存映射到虚拟内存地址 3GB~3GB+768MB 上,并通过大页 PDE 进行进行该区间的地址转换。任何 0~768MB 的物理内存地址可以直接通过加 3G(0xC0000000)的方式得到其虚拟内存地址。在内核中,除了该区间的内存外,其他地址的内存通常都通过普通的两级页表结构来进行地址转换。

假设在我们使用的处理器中有 2 个大页 TLB 项, 其当前状态如下:

| 索引号 | TLB 标记  | 页面号     | 有效位 |
|-----|---------|---------|-----|
| 0   | 0xC4812 | 0x04812 | 1   |
| 1   | 0xC9C33 | 0x09C33 | 1   |

有 4 个普通 TLB 项, 当前的状态如下:

| 索引号 | TLB 标记  | 页面号     | 有效位 |
|-----|---------|---------|-----|
| 0   | 0xF8034 | 0x04812 | 1   |
| 1   | 0xF8033 | 0x09812 | 1   |
| 2   | 0xF4427 | 0x12137 | 1   |
| 3   | 0xF44AE | 0x17343 | 1   |

当前页活跃的目录页(PD)中的部分 PDE 的内容如下:

| PDE 索引 | 页面号     | 其他标志 | 大页位 | 存在位 |
|--------|---------|------|-----|-----|
| 786    | 0x04800 |      | 1   | 1   |
| 807    | 0x09C00 |      | 1   | 1   |
| 977    | 0x09C33 |      | 0   | 1   |
| 992    | 0x09078 |      | 0   | 1   |

注:普通页面大小为 4KB, 并且 4KB 对齐。每个页面的页面号为其页面起始物理地址除以 4096 得到。大页由连续 1024 个 4KB 小页组成, 且 4MB 对齐。

# 1. 分析下面的指令序列,

movl \$0xC4812024, %ebx

movl \$128, (%ebx)

movl \$0xF8034000, %ecx

mov1 \$36(%ecx), %eax

请问,执行完上述指令后,eax 寄存器中的内容是();在执行上述指令过程中,共发生了()次TLB miss?同时会发生()次page fault?

注:不能确定时填写"--"。

2. 请判断下列页面号对应的页面中,哪些一定是页表页?哪些不是?哪些不确定?

| 页面号     | 是否为页表页(是/不是/不确定) |
|---------|------------------|
| 0x04800 | 4                |
| 0x09C33 | 5                |
| 0x09812 | 6                |

3. 下列虚拟地址中哪一个对应着够将虚拟内存地址 0xF4427048 映射到物理内存地址 0x14321048 的页表项()?

(A) 0x09C33027

(B) 0xC9C3309C

(C) 0xC9C33027

(D) 0x09C3309C

通过上述虚拟地址,利用 movl 指令修改对应的页表项,完成上述映射,在此过程中,是否会产生 TLB miss? ()(回答:会/不会/不确定)

修改页表项后,是否可以立即直接使用下面的指令序列将物理内存地址 0x14321048 开始的一个 32 位整数清零? 为什么?

movl \$0xF4427048, %ebx

movl \$0, (%ebx)

答:

#### 答案:

第1小题(各1分)

(1) 128: (2) 0: (3) 0:

两个虚拟地址映射的是同一块物理内存: 因此读出的就是写入的: 此过程中全部

TLB 命中,因而既无 TLB miss,也不会有 page fault。

## 第2小题(各2分)

- (1)不确定;因为是大页,一定不是当前页目录项对应的页表页,但不一定该页面不会用作其他页目录项对应的页表页。
- (2) 是; 当前页目录项(977)对应的页表页。
- (3) 不确定; 任何页面都可能用作页表页。

### 第3小题

### B; (2分)

虚拟地址对应的页表页的页面号(0x09C33)已知,通过其地址直接加 3G(即0xC0000000),即可得到当前页表页的基地址(0xC9C33000),在加上对应的第0x27乘以4到页内偏移。

### 不会: (2分)

因为地址 0xC9C33000 在大页映射范围内,已经被大页 TLB 项覆盖到了,会直接命中。

## 不能直接修改。(1分)

因为 TLB 项中的内容和页表中的内容不一致,需要将对应的 TLB 项设置为失效,然后通过 TLB miss 重新加载页表结构中新的地址映射关系,之后才能访问对应的虚拟地址。(1分)