Roteiro de Projeto: Classificação de Imagens com CNN (3 Classes)

10 de junho de 2025

Tema 1: Classificação com CNN

Este roteiro detalha as fases e ações necessárias para um projeto de classificação de imagens utilizando Redes Neurais Convolucionais (CNNs), com foco em 3 classes distintas e no tratamento de dados.

Fase 1: Preparação e Organização dos Dados

1. Revisão e Confirmação da Estrutura do Dataset:

- Objetivo: Entender a organização das imagens e metadados no dataset Coronahack Chest X-Ray Dataset.
- Ações:
 - Confirmar o caminho para a pasta raiz das imagens originais (aquela com o duplo Coronahack-Chest-XRay-Dataset aninhado).
 - Localizar o arquivo Chest_xray_Corona_Metadata.csv.
 - Verificar a estrutura de subpastas dentro de test e train (ex: NORMAL, PNEUMONIA/COVID, PNEUMONIA/VIRUS, etc.).
 - Identificar as colunas no CSV que contêm o nome do arquivo da imagem (X_ray_image_name), o tipo de dataset (Dataset_type
 TRAIN/TEST) e os rótulos de diagnóstico (Label, Label_1_Virus_category, Label_2_Virus_category).
- Resultado: Conhecimento claro da hierarquia de arquivos e das informações de rótulos.

2. Definição das 3 Classes Alvo para Classificação:

- Objetivo: Simplificar o problema de classificação para 3 classes relevantes do dataset.
- Ações:

- Analisar os rótulos disponíveis no Chest_xray_Corona_Metadata.csv.
- Propor 3 classes distintas e balanceadas, se possível. Ex:
 - * Classe 1: Normal
 - * Classe 2: COVID-19
 - * Classe 3: **Outras Pneumonias** (combinando Viral, Bacterial, ARDS, Strep, ou deixando como uma única "Pneumonia Não-COVID").
- Documentar as regras para mapear os rótulos originais para estas 3 classes.
- Resultado: Definição clara das 3 classes e estratégia de mapeamento de rótulos.

3. Redimensionamento e Organização das Imagens (para Treino, Validação e Teste):

- Objetivo: Padronizar o tamanho das imagens para a entrada da CNN e organizar em pastas de saída claras.
- Ações:
 - Definir um tamanho padrão para as imagens (ex: 224x224, 256x256).
 - Criar uma pasta raiz para o dataset redimensionado (ex: coronahack_processed).
 - Dentro dela, criar subpastas para train, validation e test.
 - Script de Redimensionamento: Desenvolver ou adaptar o script Python para:
 - * Percorrer as imagens originais da pasta train e test.
 - * Redimensionar cada imagem para o tamanho padrão.
 - * Salvar as imagens redimensionadas nas respectivas subpastas de **treino**, **validação** e **teste** dentro de **coronahack_processed**, mantendo a estrutura de subpastas por classe (ex: coronahack_processed/train/Normal, **coronahack_processed/train/COVID-19**).
 - * Crucial: Decidir a estratégia de divisão do conjunto de validação (ex: 80% do train original para train_processed e 20% para validation_processed). O conjunto test original será seu test_processed.
- *Resultado:* Todas as imagens processadas e organizadas em pastas train, validation, test com o tamanho padrão.

4. Criação do DataFrame de Metadados Unificado:

- Objetivo: Consolidar informações de imagens redimensionadas, rótulos e caminhos em um único DataFrame Pandas.
- Ações:

- Carregar o Chest_xray_Corona_Metadata.csv original.
- Filtrar o DataFrame para incluir apenas as amostras pertinentes às 3 classes selecionadas.
- Criar uma nova coluna (final_label) que contenha as 3 classes definidas.
- Codificar a coluna final_label para valores numéricos (0, 1, 2) e armazenar o mapeamento (ex: {0: 'Normal', 1: 'COVID-19', 2: 'Outras Pneumonias'}).
- Criar uma nova coluna (image_path_resized) que aponte
 para o caminho completo da imagem redimensionada correspondente em suas novas pastas (coronahack_processed/train,
 coronahack_processed/validation, coronahack_processed/test).
- Dividir o DataFrame em 3 sub-DataFrames: df_train,
 df_validation, df_test, com base nas imagens que foram
 salvas em cada respectiva pasta redimensionada.
- Verificar o balanço de classes em cada sub-DataFrame.
- Resultado: Três DataFrames (df_train, df_validation, df_test) limpos, com caminhos de imagens redimensionadas e rótulos codificados.

Fase 2: Pré-processamento e Aumentação de Dados

- 0. Definição das Transformações de Pré-processamento:
 - Objetivo: Preparar os dados para a entrada da CNN.
 - Ações:
 - * Normalização: Converter pixels para o intervalo [0,1] e aplicar normalização com média e desvio padrão (usar valores do ImageNet ou calcular do próprio dataset).
 - * Conversão para Tensor: Transformar imagens em tensores (PyTorch/TensorFlow).
 - * Aumentação de Dados (Data Augmentation) para Treinamento:
 - · Objetivo: Aumentar a diversidade do conjunto de treinamento e reduzir overfitting.
 - · Ações: Aplicar transformações aleatórias como rotação, espelhamento horizontal/vertical, zoom, brilho/contraste, etc. (Escolher as mais relevantes para imagens de raio-X).
 - * Importante: As transformações para validação e teste devem ser apenas a normalização e conversão para tensor (sem data augmentation).
 - Ferramentas: torchvision.transforms (PyTorch) ou tf.keras.Sequential com camadas de pré-processamento (TensorFlow).

Resultado: Funções de transformação definidas para treino, validação e teste.

0. Criação de DataLoaders:

- Objetivo: Carregar os dados em batches de forma eficiente para o treinamento da CNN.
- Ações:
 - * Custom Dataset Class: Implementar uma classe de Dataset personalizada que:
 - · Receba um dos DataFrames (df_train, df_validation, df_test).
 - No método __getitem__, carregue a imagem do image_path_resized, aplique as transformações e retorne a imagem (como tensor) e o rótulo codificado.
 - * DataLoaders: Criar instâncias de DataLoader para treino, validação e teste.
 - · Definir o tamanho do batch (batch_size).
 - · Definir shuffle=True para o DataLoader de treino.
 - Definir num_workers para carregamento paralelo (se a máquina tiver muitos núcleos).
- Ferramentas: torch.utils.data.Dataset, torch.utils.data.DataLoader (PyTorch).
- Resultado: DataLoaders prontos para alimentar a CNN.

Fase 3: Treinamento e Avaliação da CNN

- 0. Definição da Arquitetura da CNN:
 - Objetivo: Escolher ou construir um modelo de CNN adequado para a tarefa.
 - Ações:
 - * Transferência de Aprendizagem (Recomendado): Utilizar um modelo pré-treinado em ImageNet (ex: ResNet, VGG, MobileNet) e adaptar a última camada de classificação para as 3 classes.
 - * Modelo do Zero (Opcional): Construir uma CNN simples do zero (mais complexo e geralmente menos performático para datasets menores).
 - * Definir a arquitetura (camadas, filtros, ativações).
 - Ferramentas: torchvision.models (PyTorch), tf.keras.applications (TensorFlow).
 - Resultado: Modelo de CNN instanciado e pronto para o treinamento.

0. Configuração do Treinamento:

- Objetivo: Preparar o ambiente para o treinamento do modelo.
- Ações:
 - * Função de Perda (Loss Function): Escolher uma função de perda apropriada para classificação multiclasse (ex: CrossEntropyLoss para PyTorch, SparseCategoricalCrossentropy ou CategoricalCrossentropy para TensorFlow).
 - * Otimizador: Selecionar um otimizador (ex: Adam, SGD) e definir a taxa de aprendizado (learning_rate).
 - * Monitoramento: Definir métricas a serem monitoradas durante o treinamento (precisão/accuracy, loss).
 - * **Dispositivo:** Configurar para usar GPU se disponível (CUDA no PyTorch, GPU no TensorFlow).
- Resultado: Otimizador, função de perda e métricas definidos.

0. Ciclo de Treinamento e Validação:

- Objetivo: Treinar o modelo e monitorar seu desempenho.
- Ações:
 - * Loop de epochs.
 - * Fase de Treinamento por Época:
 - · Iterar sobre o DataLoader de treino.
 - · Passar os dados pela CNN (forward pass).
 - · Calcular a perda.
 - · Calcular gradientes (backward pass).
 - · Atualizar pesos do modelo (optimizer step).
 - · Acumular métricas (loss e accuracy).

* Fase de Validação por Época:

- · Iterar sobre o DataLoader de validação (sem calcular gradientes).
- · Calcular a perda e as métricas.
- Salvar o melhor modelo com base na métrica de validação (ex: menor loss de validação ou maior accuracy de validação).
- * Logging: Registrar métricas (loss, accuracy) para treino e validação a cada época.
- Resultado: Modelo treinado e salvo (checkpoint do melhor desempenho).

0. Avaliação Final no Conjunto de Teste:

Objetivo: Avaliar o desempenho generalizado do modelo em dados nunca vistos.

- Ações:

- * Carregar o melhor modelo salvo.
- * Executar o modelo no DataLoader de teste (sem calcular gradientes).
- * Calcular métricas de avaliação:
 - · Precisão (Accuracy): Geral e por classe.
 - · Matriz de Confusão: Visualizar acertos e erros por classe.
 - · Recall, Precision, F1-Score: Métricas mais detalhadas para classes desbalanceadas.
 - · Curva ROC e AUC (se aplicável para classificação binária ou multiclasse com extensões).
- * Analisar **overfitting** (se o desempenho de treino é muito bom e o de validação/teste é muito pior).
- Ferramentas: sklearn.metrics (para matriz de confusão, relatórios de classificação).
- Resultado: Relatório completo de avaliação do modelo, com métricas e gráficos.