

Instytut Radioelektroniki i Technik Multimedialnych

Praca dyplomowa

na kierunku Studia Podyplomowe w specjalności Głębokie Sieci Neuronowe - Zastosowania w Mediach Cyfrowych

Metoda detekcji uczestników ruchu drogowego na podstawie obrazów radarowych

Janko Muzykant

Numer albumu 283673

promotor dr Jan Sebastian

Metoda detekcji uczestników ruchu drogowego na podstawie obrazów radarowych

Streszczenie.

Głównym celem pracy jest Nacisk w pracy został położony na ... W pierwszej części pracy przedstawiono ... Następnie opisano ... Druga część pracy rozpoczyna się od ... Eksperymenty opisane w dalszej części pracy przedstawiają ... Dodatkowym etapem pracy jest ... W zakończeniu pracy przedstawiono podsumowanie wykonanych działań oraz dalsze działania, które mogą przynieść poprawę ...

Słowa kluczowe: NFT, ChatGPT, Buzzword300

	miejscowość i data
imię i nazwisko studenta	
numer albumu	
kierunek studiów	

OŚWIADCZENIE

Świadomy/-a odpowiedzialności karnej za składanie fałszywych zeznań oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie, pod opieką kierującego pracą dyplomową.

Jednocześnie oświadczam, że:

- niniejsza praca dyplomowa nie narusza praw autorskich w rozumieniu ustawy z dnia 4 lutego 1994 roku o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. Nr 90, poz. 631 z późn. zm.) oraz dóbr osobistych chronionych prawem cywilnym,
- niniejsza praca dyplomowa nie zawiera danych i informacji, które uzyskałem/-am w sposób niedozwolony,
- niniejsza praca dyplomowa nie była wcześniej podstawą żadnej innej urzędowej procedury związanej z nadawaniem dyplomów lub tytułów zawodowych,
- wszystkie informacje umieszczone w niniejszej pracy, uzyskane ze źródeł pisanych i elektronicznych, zostały udokumentowane w wykazie literatury odpowiednimi odnośnikami,
- znam regulacje prawne Politechniki Warszawskiej w sprawie zarządzania prawami autorskimi i prawami pokrewnymi, prawami własności przemysłowej oraz zasadami komercjalizacji.

Oświadczam, że treść pracy dyplomowej w wersji drukowanej, treść pracy dyplomowej zawartej na nośniku elektronicznym (płycie kompaktowej) oraz treść pracy dyplomowej w module APD systemu USOS są identyczne.

czytelny podpis studenta

Spis treści

1. Wstęp

Motywacja, dlaczego warto zająć się rozwiązaniem postawionego problemu.

Opis wkładu własnego - co zrobiono w ramach przygotowywania pracy dyplomowej. Np. przygotowanie zbioru danych, implementacja procedur to trenowania i ewaluacji modelu, opracowanie architektury modelu itp. W pracy wykorzystano gotowy zbiór danych podany przez organizatorów konkursu. Zaimplementowane procedury do trenowania i ewaluacji modeli oparte na bibliotece Pytorch Lightning i wykorzystujące serwis neptune.ai do zbierania wyników. Do implementacji architektury modeli wykorzystano bibliotekę MMSegmentation.

2. Cel pracy

Niniejsza praca przedstawia rozwiązanie zadania konkursowego *SpaceNet 8: Flood Detection Challenge Using Multiclass Segmentation* **spacenet8**. Celem konkursu, który zakończył się w październiku 2022 roku, było wyłonienie najlepszych algorytmów wykrywających budynki i drogi, a także ich zniszczenia na skutek katastrof naturalnych, na zdjęciach satelitarnych. Oceniane były rozwiązania dwóch zagadnień:

- 1. Segmentacja budynków i dróg na pojedynczych zdjęciach oraz klasyfikacja dróg ze względu na maksymalną dozwoloną prędkość
- 2. Segmentacja zniszczonych budynków i dróg na podstawie par zdjęć wykonanych przed i po katastrofie naturalnej

Ta praca skupia się na rozwiązaniu drugiego zagadnienia.

2.1. Zbiór danych

Zbiór danych udostępniony przez organizatorów konkursu składa się ze zdjęć satelitarnych w formacie TIFF, podzielonych na zdjęcia wykonane przed i po katastrofie, adnotacji budynków i dróg w formacie GeoJSON oraz plików CSV zawierających przypisanie adnotacji do zdjęć. Podział danych na zbiór treningowy i testowy jest zadany z góry.

2.2. Ocena rozwiązania

3. Przegląd literaratury

Przegląd literatury związanej z rozwiązywanym problemem.

W pracy **he2016deep** opisano W **liu2022convnet** zaproponowano nowatorską architekturę.... Przykładowy obraz 3.1.

Swin Transformer Block LN 1×1, 96×3 ResNet Block ConvNeXt Block + rel. pos. win. shift MSA, w7×7, H=3 256-d 1×1, 64 d7x7, 96 1×1, 96 BN, ReLU LN 3x3. 64 1×1, 384 96-d BN, ReLU GELU LN 1×1, 96 1×1, 256 1×1, 384 GELU 1×1, 96

Rysunek 3.1. Porównanie bloków rezydualnych wykorzystywanych w sieci Swin Transformer, ResNet i ConvNeXt.

4. Opis rozwiązania

Rozwiązanie zadania konkursowego zostało w całości zaimplementowane w języku Python w wersji 3.8. Najważniejsze biblioteki jakie zostały wykorzystane w rozwiązaniu to:

- 1. torch do obsługi danych i modeli.
- 2. albumentations do przetwarzania obrazów.
- 3. pytorch_lightning do trenowania i ewaluacji modeli.
- 4. segmentation-models-pytorch do budowy modeli.
- 5. neptune do monitorowania przebiegu treningu i ewaluacji.

4.1. Zbiór danych

Do wstępnej obróbki zbioru danych wykorzystano skrypty dostarczone przez organizatorów konkursu razem z rozwiązaniem *baseline* w niezmienionej postaci. Przetwarzają one adnotacje w formacie GeoJSON na obrazy w formacie TIFF i rozdzielczości identycznej jak odpowiadające im zdjęcia. Dla jednej pary zdjęć (przed i po katastrofie) generowane są maksymalnie cztery obrazy:

- 1. Jednokanałowa maska budynków o wartościach 0, 1.
- 2. Jednokanałowa maska dróg o wartościach 0, 1.
- 3. Jednokanałowa maska dróg o wartościach 0 7, odpowiadających różnym ograniczeniom prędkości. Nieużywana w tej pracy.
- 4. Czterokanałowa maska budynków i dróg po katastrofie o wartościach 0, 1. Kanały odpowiadają następującym obiektom, w kolejności: niezniszczony budynek, zniszczony budynek, niezniszczona droga, zniszczona droga.

Po przetworzeniu zbiór danych zawierał 801 par zdjęć z kompletem masek dróg i budynków przed i po katastrofie. Według podziału narzuconego w konkursie 679 par znalazło się w zbiorze treningowym i 122 w zbiorze testowym.

Zdjęcia sprzed katastrofy miały rozdzielczość 1300×1300 pikseli, natomiast zdjęcia po katastrofie miały różne rozdzielczości. Aby efektywnie używać ich jako wsadu do modeli o różnych architekturach, zaimplementowano skalowanie wszystkich obrazów i masek po ich wczytaniu do tej samej rozdzielczości. W eksperymentach ustalono tą rozdzielczość na 1024×1024 piksele.

4.2. Eksperymenty

5. Wyniki ewaluacji eksperymentalnej

6. Podsumowanie

Podsumowanie i krytyczna analiza osiągniętych rezultatów. Ocena, czy osiągnięto założony cel pracy. Dyskusja co można było zrobić lepiej i propozycja dalszych prac w celu uspraweniania opracowanego rozwiązania.

Spis rysunków

3.1	Porównanie bloków rezydualnych wykorzystywanych w sieci Swin	
	Transformer, ResNet i ConvNeXt	11

Spis tabel