Embedded and System
Software
Introduction

- О чем наш курс и кому он нужен
- Знакомство
- Об отладочной плате на которой будут проводиться лабораторные работы
- Небольшой пример
- Задание

Что такое системное программирование ?

Application Software

System Software - ПО необходимое для запуска Application Software: Операционные системы и различные Firmware, компиляторы, драйвера операционных систем, симуляторы.

Application Software - ПО которое использует конечный пользователь для своих нужд: Word/Excel/etc, IDE, Video/Audio editors and players.

Engineer knowledge	Engineer knowledge
Как работает железо	Прикладной язык программирования
Как работает операционная система, сетевой стэк	Алгоритмы/Структуры данных
Как работают компиляторы и интерпретаторы, во что компилируется ваш код	Какой то собственный Framework для разработки вашего Application Software

System Software

System Software vs Application Software 3

Что такое Embedded Software ?

Embedded Software - ПО для управления устройствами не являющимися компьютерами, телефонами. Например это ПО для управления: медицинским оборудованием, потребительской электроникой, автомобильным оборудованием и т.д.

System Software	Embedded Software
System Software для компьютеров, телефонов	Embedded Software для устройств управления
SoC (System on chip) и компьютеры	Микроконтроллеры
General Purpose OS	Embedded OS, RTOS
	Часто требуется дополнительное знание схемотехники

System/Embedded Software in Russia

Компании	Что делать
Intel	Симуляторы (Simics), компиляторы, Linux kernel, Linux Drivers, Zephyr RTOS, BIOS, etc
Samsung	Компиляторы, Tizen, TizenRT, Firmware, etc
Huawei	Компиляторы, Операционные системы, Firmware для базовых станций, etc
Yandex	ПО для беспилотных авто, Yandex devices
Sber	Робототехническая лаборатория, ПО для Sber Devices
Множество других компаний поменьше	ПО для управления различными устройствами: газовые корректора, телеметрия, etc

Антонов Александр

- **AMT:** Embedded ПО для сбора данных с газовых счетчиков, корректоров и обеспечения телеметрии этих данных; драйвера для GSM и WiFi модемов
- CareFusion: Портирование ПО для медицинского оборудования на новое железо:
 Cortex-M4, и перенос ПО на новую embedded OS SMX
- Intel: Написание моделей Intel Hardware для Simics симулятора
- Samsung: Paspaбoткa TizenRT OS: KASan, OTA, lock validator
- **Huawei**: ПО для базовой станции, немного компиляторы :)

Считаю System Software самой интересной областью в разработке ПО. Каждый разработчик мечтает написать свой компилятор и свою ОС, а мы этим занимаемся на работе !!!

Расскажите о вас кратко :)

- Какая область в разработке ПО вас интересует ?
- Чем бы вы хотели заниматься после окончания учебы в МФТИ ?
- Ваши Hard-Skills что уже знаете и умеете ?

STM32F746G Discovery Kit:

- ARM Cortex-M7 Core
- 1 MByte of flash (ROM), 340 KByte of RAM
- 480x272 LCD TFT, touch screen
- Ethernet
- USB
- 128 MBit SPI Flash Memory
- 128 MBit SDRAM
- 1 программируемая кнопка и 1 кнопка для сброса
- On-Board ST-LINK debugger
- Может быть запитана через USB

STM32F746G Discovery Kit, STM32CubeF7 Library:

https://github.com/STMicroelectronics/STM32CubeF7

- HAL (Hardware Abstraction Layer)
- TouchGFX graphics software stack
- USB, TCP-IP protocols

IDE:

• STM32CubeIDE:

https://www.st.com/en/development-tools/stm32cubeide.html

- https://drive.google.com/drive/folders/1EK-h3_woWxNoxjw-RlfXEqPOID82y8LI
 WMware Player Image (Скачайте все 3 файла в одну папку для запуска)
- https://customerconnect.vmware.com/en/downloads/details?downloadGroup=WKST-PLAYER-1700&productId=1377&rPId=97014
 WMware Player - Free for personal use
- https://www.youtube.com/watch?v=PnDNgFKRsKI&t=224s
 Example: How to start, compile, debug with STM32Cube IDE

		U5B				
FMC D2	PD0 B12	PD0	PG0	N7 PG0	FMC A10	
FMC D3	PD1 C12	PD0 PD1	PG0 PG1	M7 PG1	FMC A11	
uSD CMD	PD2 D12			M13 PG2	RMII RXER	
DCMI D5	PD3 C11	PD2 PD3	PG2 PG3	M12 PG3	EXT RST	
OTG FS OverCurrent	PD4 D11			N12 PG4	FMC BA0	
OTG FS PowerSwitch	hOn PD5 C10	PD4	PG4	N11 PG5	FMC BA1	
Audio INT	PD6 B11	PD5	PG5	J15 PG6	ARD D2	
SPDIF RX0	PD7 A11	PD6	PG6	J14 PG7	ARD D4	
FMC D13	PD8 L15	PD7	PG7	H14 PG8	FMC SDCLK	
FMC D14	PD9 L14	PD8	PG8	D9 PG9	DCMI VSYNC	
FMC D15	PD10 K15	PD9	PG9	C8 PG10	SAI2 SDB	
QSPI D0	PD11 N10	PD10	PG10	B8 PG11	RMII TX EN	
QSPI D1	PD12 M10	PD11	PG11	C7 PG12	LCD B4	
QSPI D3	PD13 M11	PD12	PG12	B3 PG13	RMII TXD0	
FMC D0	PD14 L12	PD13	PG13	A4 PG14	RMII TXD1	
FMC D1	PD15 K13	PD14	PG14	B7 PG15	FMC SDNCAS	
		PD15	PG15			
FMC NBL0	PEO A6					
FMC NBL1	PE1 A5	PE0				3V3 3V3
QSPI D2	PE2 A3	PE1	DIVO	K4 PH2	NC2 R29 100	TP1 T
OTG HS OverCurren		PE2	PH2	J4 PH3	FMC SDNE0	TP
LCD B0	PE4 A1	PE3	PH3	H4 PH4	ULPI NXT	R62 R61
DCMI D6	PE5 B1	PE4	PH4	J3 PH5	FMC SDNWE	₹ 2K7 1% 0402
DCMI D7	PE6 B2	PE5	PH5	P13 PH6	ARD D6	2K7 1% 0402
FMC D4	PE7 R8	PE6	PH6	N13 PH7	LCD SCL AUDIO	
FMC D5	PE8 N9	PE7	PH7	P14 PH8	LCD SDA AUDIO	
FMC D6	PE9 P9	PE8	PH8	N14 PH9	DCMI D0	
FMC D7	PE10 R9	PE9	PH9	P15 PH10	DCMI D1	
FMC D8	PE11 P10	PE10	PH10	N15 PH11	DCMI D2	
FMC D9	PE12 R10	PE11	PH11	M15 PH12	DCMI D3	
FMC D10	PE13 R12	PE12	PH12	E12 PH13	DCMI PWR EN	
FMC D11	PE14 P11	PE13	PH13	E13 PH14	DCMI D4	
FMC D12	PE15 R11	PE14	PH14	D13 PH15	TP PH15	
Title B12	1210 1011	PE15	PH15	210 11110	11 11110	
FMC A0	PF0 D2			E14 PI0	ARD D5	
FMC A1	PF1 E2	PF0	PIO	D14 PI1	ARD D13	
FMC A2	PF2 G2	PF1	PI1	C14 PI2	ARD D8	
FMC A3	PF3 H2	PF2	PI2	C13 PI3	ARD D7	
FMC A4	PF4 J2	PF3	PI3	C3 PI4	SAI2 MCLKA	
FMC A5	PF5 K3	PF4	PI4	D3 PI5	SAI2 SCKA	
ARD A5	PF6 K2	PF5	PI5	D6 PI6	SAI2 SDA	
ARD A4	PF7 K1	PF6	PI6	D4 PI7	SAI2 FSA	
ARD A3	PF8 L3	PF7	PI7	C2 PI8	NC1 R33	100 TP2
ARD A2	PF9 L2	PF8	PI8-ANTI_TAMP2	E4 PI9	LCD VSYNC	TP
ARD A1	PF10 L1	PF9	PI9	D5 PI10	LCD HSYNC	IP
FMC SDNRAS	PF11 P8	PF10	PI10	F3 PI11	B USER	
FMC A6	PF12 M6	PF11	— PI11	E3 PI12	LCD DISP	
FMC A7	PF13 N6	PF12	PI12	G3 PI13	LCD INT	
FMC A8	PF14 P6	PF13	PI13	H3 PI14	LCD CLK	
FMC A9	PF15 M8	PF14	PI14	G4 PI15	LCD R0	
INC A)	1115 1/10	PF15	PI15	OT 1113	LCD RO	
		STM32F7	46NGH6			

https://www.st.com/content/ccc/resource/technical/layouts and diagrams/schematic pack/group1/ff/cd/ce/2d /f8/fb/40/69/mb1191-F746NGH6-C01 schematic/files/mb1191-F746NGH6-C01 schematic.pdf/jcr:content/translati ons/en.mb1191-F746NGH6-C01 schematic.pdf

6.4.1 GPIO port mode register (GPIOx_MODER) (x =A to K)

Address offset:0x00

Reset value:

- 0xA800 0000 for port A
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODE	R15[1:0] MODER14[1:0]		R14[1:0]	MODER13[1:0] MODER12[1:0]		MODER11[1:0]		MODER10[1:0]		MODER9[1:0]		MODER8[1:0]			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 MODER[15:0][1:0]: Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O mode.

- 00: Input mode (reset state)
- 01: General purpose output mode
- 10: Alternate function mode
- 11: Analog mode

void BSP_PB_Init(Button_TypeDef Button, ButtonMode_TypeDef ButtonMode)

void HAL_GPI0_Init(GPI0_TypeDef *GPI0x, GPI0_InitTypeDef *GPI0_Init)


```
GPIOI->PUPDR = GPIOI->PUPDR | (0b00 << 22); // << 22, потому что кнопка сидит на 11\ddot{n} ножке и 2 бита отвечаюта за каждую ножку (11*2=22) GPIOI->MODER = GPIOI->MODER | (0b00 << 22); // << 22, потому что кнопка сидит на 11\ddot{n} ножке и 2 бита отвечаюта за каждую ножку (11*2=22)
```

```
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
   GPIO_PinState bitstatus;
   /* Check the parameters */
   assert_param(IS_GPIO_PIN(GPIO_Pin));

   if((GPIOx->IDR & GPIO_PIN) != (uint32_t)GPIO_PIN RESET)
   f
   bitstatus = GPIO_PIN_SET;
   }
   else
   {
    bitstatus = GPIO_PIN_RESET;
   }
   return bitstatus;
}
```

Регистры микроконтроллера:

конфигурируют микроконтроллер (периферию микроконтроллера)

Периферия микроконтроллера:

Устройства в микроконтроллере которые не являются ядром микроконтроллера: GPIO, SPI, I2C, USART, ADC, DAC, etc...

NOTE:

HAL - Hardware Abstraction Layer

BSP - Board Support Package

Quick Demo 1

```
GPIOI->PUPDR = GPIOI->PUPDR | (0b00 << 22);
GPIOI -> MODER = GPIOI -> MODER | (0b00 << 22);
#define PERIPH BASE
                                         0 \times 40000000000
#define AHB1PERIPH BASE
                                        (PERIPH BASE + 0 \times 00020000UL)
#define GPIOI BASE
                                        (AHB1PERIPH BASE + 0x2000UL)
#define GPIOI
                                        ((GPIO TypeDef *) GPIOI BASE)
typedef struct
   IO uint32 t MODER:
                        /*!< GPIO port mode register.
                                                                Address offset: 0x00
   IO uint32 t OTYPER;
                       /*!< GPIO port output type register,
                                                                Address offset: 0x04
   IO uint32 t OSPEEDR; /*!< GPIO port output speed register,
                                                                Address offset: 0x08
   IO uint32 t PUPDR:
                       /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C
                       /*!< GPIO port input data register,
   IO uint32 t IDR;
                                                                Address offset: 0x10
   IO uint32 t ODR;
                       /*! < GPIO port output data register,
                                                                Address offset: 0x14
                       /*!< GPIO port bit set/reset register,
   IO uint32 t BSRR;
                                                                Address offset: 0x18
                                                                                        */
                       /*!< GPIO port configuration lock register, Address offset: 0x1C
   IO uint32 t LCKR;
                       /*!< GPIO alternate function registers.
   IO uint32 t AFR[2]:
                                                                Address offset: 0x20-0x24 */
} GPIO TypeDef;
0x4002 2000 - 0x4002 23FF
                                 GPIOI
                                GPIOH
0x4002 1C00 - 0x4002 1FFF
                                GPIOG
0x4002 1800 - 0x4002 1BFF
0x4002 1400 - 0x4002 17FF
                                GPIOF
0x4002 1000 - 0x4002 13FF
                                GPIOF
                                                      Section 6.4.11: GPIO register map on page 214
                                GPIOD
0x4002 0C00 - 0x4002 0FFF
0x4002 0800 - 0x4002 0BFF
                                GPIOC
0x4002 0400 - 0x4002 07FF
                                GPIOB
                                GPIOA
0x4002 0000 - 0x4002 03FF
```


Микроконтроллер = CPU Core + Peripherals

Что вынести из этой лекции:

- System and Embedded Software
- Регистры микроконтроллера позволяют вам конфигурировать периферию микроконтроллера и расположены по специальным адресам, которые описаны в

https://www.st.com/resource/en/reference_manual/rm0385-stm32f75xxx-and-stm32f74xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf

- Microcontroller = CPU + Peripherals
- How to start new project in IDE, compile the code, flash the board and debug the code

Задание:

- Повторить пример взять Hello World проект: https://www.youtube.com/watch?v=PnDNgFKRsKI&t=224s и добавить к нему логику управления кнопкой - 2 строчки на слайде предыдущем слайде (Quick Demo слайд). Скомпилировать, прошить в плату, принести на занятие.
- Найти и посмотреть в

https://www.st.com/resource/en/reference_manual/rm0385-stm32f75xxx-and-stm32f74xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf описание следующих регистров:

GPIO->PUPDR GPTO->MODER GPIO->IDR

сделать скрин как на слайде Quick Demo и прислать мне в подтверждение что вы посмотрели :)

```
iff --git a/Core/Src/main.c b/Core/Src/main.c
index c9f0c1a..2abcdfd 100644
 -- a/Core/Src/main.c
0 -19,6 +19,8 00
#include "main.h"
#include "WM.h"
+#include <stdio.h>
+#include "stm32746g discovery.h"
/* Private typedef -----*/
/* Private define -----*/
00 -27,6 +29,7 00
uint8_t GUI_Initialized = 0;
TIM HandleTypeDef TimHandle;
uint32 t uwPrescalerValue = 0;
+volatile int button cnt = 0;
/* Private function prototypes -----*/
static void MPU Config(void);
@@ -38,6 +41,11 @@ static void CPU_CACHE_Enable(void);
/* Private functions ------*/
-void HAL GPIO EXTI Callback(uint16 t GPIO Pin)
  * @brief Main program
  * @param None
@@ -64,6 +72,7 @@ int main(void)
  /* Configure LED1 */
  BSP LED Init(LED1);
  BSP PB Init(BUTTON_KEY, BUTTON_MODE_EXTI);
00 -116,7 +125,16 00 int main(void)
  MainTask();
  /* Infinite loop */
  int last_button_cnt = 0;
  for(;;) {
   if (button cnt != last button cnt) {
     GUI Clear();
     sprintf(lcd string, "Button cnt: %d", button cnt);
```