Lecture 2

3.1-1

Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $max(f(n),g(n))=\Theta(f(n)+g(n))$.

trivially: 46

3.1-4

Is
$$2^{n+1}=O(2^n)$$
)? Is $2^{2n}=O(2^n)$? $2^{n+1}=2*2^n=O(2^n)$ $2^{2n}=4^n$ IS NOT $O(2^n)$

2 By Getting rid of the asymtotically insignificant parts of the expressions, give a simplified asymtotic tight bounds (theta notation) for the following running times. Here k>=1, e>0, c>1 are constants

- 1. $0.001n^2 + 70000n$ $\Theta(n2)$
- **2.** $2^n + n^{10000} \theta(2^n)$
- **3.** $n^k + c^n \theta(c^n)$ Because any exponential function dominates any polynomial function.
- **4.** $lg^k n + n^e \theta(n^e)$
- 5. $2^n + 2^{n/2} \theta(2^n)$
- **6.** $nlq*c+c^{lg*n}$ $\theta(c^{lg*n})=\theta(n^{lg*c})$ because $n^{lg*c}=c^{lg*n}$

Exercise 2.1 Consider the following algorithm:

```
DoSomething(n:int):int
1
      A:int[1..n]
      for i \leftarrow 1 to n
^{2}
          do A[i] \leftarrow i
3
4
      i \leftarrow n
      while i > 1 do
5
          x \leftarrow A[1]
6
7
          for j \leftarrow 1 to n-1
              do A[j] \leftarrow A[j+1]
          A[n] \leftarrow x
9
          i \leftarrow \lceil i/2 \rceil
10
      return A[1]
11
```

What is DoSomething(8)? What is the (asymptotic) running time of DoSomething?

Lines number	Algorithm	cost	times
1	A:int[1n]	c1 = 0	
2	$for \ i \leftarrow 1 \ to \ n$	c2	n
3	$do A[i] \leftarrow i$	c3	n-1
4	$i \leftarrow n$	c4 = 0	
5	$while\ i>1\ do$	c5	$\sum_{j=2}^n t_j$
6	$x \leftarrow A[1]$	с6	$\sum_{j=2}^n t_j - 1$
7	$for \ j \leftarrow 1 \ to \ n-1$	c7	n + noget af det ovenstående?
8	$do\ A[j] \leftarrow A[j+1]$	c8	n-1
9	$A[n] \leftarrow x$	c9	$\sum_{j=2}^n t_j - 1$
10	$i \leftarrow [i/2]$	c10	$\sum_{j=2}^n t_j - 1$
11	$return\ A[1]$	c11 = 0	

Udregnet forkert

$$Svar = O(n * lg * n)$$

Exercise 2.2 - Consider the following algorithm:

Assume that A is with size 8x8, how does A look like after FillTable(A)? What is the (asymtotic) running time of FillTable?

Runtime = $O(n^2)$