Les Réseaux de Pétri

> Mourad Daoudi

ıtroduction

Notations et règles de franchisse-

ment
Places,

Transitions et Arcs Marquages

Franchissement Réseaux particuliers

Propriétés des réseau

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

Les Réseaux de Pétri

Mourad Daoudi

USTHB

Jeudi 25 Juin

Les Réseaux de Pétri

> Mourad Daoudi

Introduction

Notations e règles de franchissement

Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

- Introduction
- 2 Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- 3 Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacité
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage
 - Etat d'accueil
 - Conservation
 - Types de réseaux de Petri
 - Réseaux de Petri généralisés
 - Réseaux de Petri à capacités
 - Graphe de marquage
 - Arborescence de couverture
 - Algorithme de contstruction d'un graphe de marquage → ← 🗇 → ← 🚊 → ← 📜 →

Les Réseaux de Pétri

> Mourad Daoudi

Introduction

Notations e règles de franchissement

Places.

Transitions et Arcs Marquages Franchissemen

Franchisseme Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

- Introduction
- 2 Notations et règles de franchissemen
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- 3 Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GI
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacité
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Définition génerale

Les Réseaux de Pétri

> Mourad Daoudi

Introduction

Notations et règles de franchissement

Places, Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux

Graphe de Marquage Accessible (GMA) Le vecteur

Le vecteur d'occurrence et l'équation de changement

Rappel d'histoire

Les réseaux de Petri ont été inventés par le mathématicien allemand Carl Alain Petri dans les années 1960.

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations et règles de franchissement Places.

Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

- Introduction
- 2 Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- 3 Propriétés des réseaux de Petr
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacité
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Les Réseaux de Pétri

> Mourad Daoudi

itroduction

règles de franchissement

Transitions et Arcs Marquages

Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

- Introduction
- 2 Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- 3 Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacité
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

règles de franchisse-

Places, Transitions et Arcs

Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement d'état

Un réseau de pétri c'est quoi ?

un graphe

- Une place (pi) modélise les ressources utilisées dans le système.
- Une transition (ti) modélise les actions sur les ressources.

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations et règles de franchisse-

Places, Transitions et Arcs Marquages

Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement d'état

Un réseau de pétri c'est quoi ?

- un graphe
- formé de deux types de nœuds appelés places et transitions, reliés par des arcs orientés

- Une place (pi) modélise les ressources utilisées dans le système.
- Une transition (ti) modélise les actions sur les ressources.

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations e règles de franchisse-

Places, Transitions et Arcs

Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

Un réseau de pétri c'est quoi ?

- un graphe
- formé de deux types de nœuds appelés places et transitions, reliés par des arcs orientés
- biparti, c.-à-d. qu'un arc relie alternativement une place à une transition et une transition à une place

- Une place (pi) modélise les ressources utilisées dans le système.
- Une transition (ti) modélise les actions sur les ressources.

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations et règles de franchisse-

Places, Transitions et Arcs

Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement
d'étet

Un réseau de pétri c'est quoi ?

- un graphe
- formé de deux types de nœuds appelés places et transitions, reliés par des arcs orientés
- biparti, c.-à-d. qu'un arc relie alternativement une place à une transition et une transition à une place

- Une place (pi) modélise les ressources utilisées dans le système.
- Une transition (ti) modélise les actions sur les ressources.

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations et règles de franchisse-

Places, Transitions et Arcs

Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

Un réseau de pétri c'est quoi ?

- un graphe
- formé de deux types de nœuds appelés places et transitions, reliés par des arcs orientés
- biparti, c.-à-d. qu'un arc relie alternativement une place à une transition et une transition à une place

- Une place (pi) modélise les ressources utilisées dans le système.
- Une transition (ti) modélise les actions sur les ressources.

Exemples

Les Réseaux de Pétri

> Mourad Daoudi

troduction

Notations e règles de franchisse-

ment Places

Transitions et Arcs Marquages

Franchissement Réseaux particuliers

des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement d'état

Exemples

la place p1 est en entrée de la transition t1 et p2 est en sortie de t1 .

Les Réseaux de Pétri

> Mourad Daoudi

Introductio

Notations et règles de franchisse-

Places, Transitions et Arcs

Marquages Franchissement Réseaux particuliers

Propriétés des réseaux

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

- -Une transition sans place en entrée est une transition source.
- -Une transition sans place en sortie est une transition puits.

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations e règles de franchissement

Places, Transitions et

Marquages

Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

- Introduction
- Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
 - Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacit
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Marquage

Les Réseaux de Pétri

> Mourad Daoudi

ıtroduction

Notations et règles de franchissement

Places, Transitions et Arcs

Marquages

Franchissement Réseaux particuliers

Propriétés des réseau de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

Le Marquage

Chaque place (pi) d'un RdP peut contenir un ou plusieurs marqueurs (jetons).

La configuration complète du réseau, avec toutes les marques positionnées, forme le marquage et définit l'état du réseau (et donc l'état du système modélisé).

- P1 ,P2,P3 sont des places .
- T1 est une transition qui permet de passer de P1 vers Deux places P2 et P3 .

Les Réseaux de Pétri

> Mourad Daoudi

itroduction

Notations e règles de franchissement

Places, Transitions et Arcs Marquages

Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

- Introduction
- Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
 - Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacité
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Franchissement

Les Réseaux de Pétri

> Mourad Daoudi

troduction

Notations e règles de franchissement

Places, Transitions et Arcs Marquages

Franchissement Réseaux particuliers

Propriétés des réseau

Graphe de Marquage Accessible (GMA)

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

Franchissement

C'est le formalisme qui permet de passer d'un marquage à un autre, ce qui rend compte de l'évolution du système modélisé. Une transition est franchissable si chacune des places en entrée compte au moins un jeton ; dans ce cas :

le franchissement est une opération indivisible (atomique)

Franchissement

Les Réseaux de Pétri

> Mourad Daoudi

troduction

Notations e règles de franchissement

Places.

Transitions et Arcs Marquages

Franchissement Réseaux particuliers

Propriétés des réseaux

Graphe de Marquage Accessible (GMA) Le vecteur d'occurren

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

Franchissement

C'est le formalisme qui permet de passer d'un marquage à un autre, ce qui rend compte de l'évolution du système modélisé. Une transition est franchissable si chacune des places en entrée compte au moins un jeton ; dans ce cas :

- le franchissement est une opération indivisible (atomique)
- 2 un jeton est consommé dans chaque place en entrée

Franchissement

Les Réseaux de Pétri

> Mourad Daoudi

troduction

Notations e règles de franchissement

Places, Transitions et Arcs Marquages

Franchissement Réseaux particuliers

Propriétés des réseau de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

Franchissement

C'est le formalisme qui permet de passer d'un marquage à un autre, ce qui rend compte de l'évolution du système modélisé. Une transition est franchissable si chacune des places en entrée compte au moins un jeton ; dans ce cas :

- le franchissement est une opération indivisible (atomique)
- 2 un jeton est consommé dans chaque place en entrée
- un jeton est produit dans chaque place en sortie

Exemples de franchissement

Les Réseaux de Pétri

> Mourad Daoudi

Introductio

Notations orègles de franchissement

Places, Transitions et Arcs

Marquages Franchissement

Réseaux particuliers

des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement d'état Voici des exemples de franchissement avec deux réseaux différents.

Les Réseaux de Pétri

> Mourad Daoudi

ntroduction

Notations e règles de franchissement

Places, Transitions et Arcs Marquages Franchissemen

Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

- Introduction
- Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacit
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Graphe d'état

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations e règles de franchissement

Places, Transitions et Arcs Marquages Franchissemen

Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

Le vecteur d'occurrence et l'équation de changement Il existe des réseaux particuliers on va dans la suite de ce cours citer quelques uns .

Graphe d'état

un graphe d'état a une particularité qui est relative à ses transitions tel que, chaque transition ne dispose que d'une place en entrée et une place en sortie.

Réseau sans conflit

Les Réseaux de Pétri

> Mourad Daoudi

troductio

Notations et règles de

régles de franchissement

Places, Transitions et Arcs

Marquages Franchissement Réseaux

Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement d'état

Réseau sans conflit

Un réseau sans conflit est un réseau où chaque place n'a qu'une transition en sortie.

Réseau simple

Les Réseaux de Pétri

> Mourad Daoudi

troductio

Notations et règles de franchissement

Places, Transitions et Arcs Marquages Franchissement

Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

Réseau simple

Les réseaux dits simples sont des réseaux avec conflit(s) où chaque transition n'intervient au plus que dans une situation de conflit.

Les Graphes purs

Les Réseaux de Pétri

> Mourad Daoudi

and disease

Notations e règles de

régles de franchissement

Places, Transitions et Arcs Marquages Franchissement

Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

Graphe pur

Les Graphes purs sont ceux dont aucune place n'est à la fois en entrée ou en sortie de la même transition.

Notions et règles de franchissement

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations e règles de franchisse-

Places, Transitions et Arcs Marquages Franchissement

Réseaux particuliers

Propriétés des réseaux de Petri Graphe de

Marquage Accessible (GMA) Le vecteur d'occurrence et l'équation de changement

Définition

Un réseau de Petri est défini par le tuple (P, T, $Pr\acute{e}$, Post, M_0)

- P: ensemble de places p_i
- T : ensemble de transitions
- **Pré** : Pré(p, t) est une valeur (≥ 0) associée à l'arc allant de la place p à la transition t
- Post : Post(p, t) est une valeur (≥ 0) associée à l'arc allant de la transition t à la place p
- M_0 : vecteur décrivant le marquage initial, $M_0 = (M_0 (p_1), \ldots, M_0 (p_n))$. nombre de jetons dans la place p_1

Notions et règles de franchissement

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations e règles de franchisse-

Places, Transitions et Arcs Marquages Franchissement Réseaux

particuliers
Propriétés
des réseaux

des reseaux de Petri Graphe de Marquage

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

Exemple Soit $P = p_1$, p_2 , p_3 où p_1 représente la ressource 'fichier', p_2 la ressource 'imprimante' et p 3 la ressource «fichiers en cours d'impression». On peut définir le RP suivant dans son état initial (par exemple).

Exemple

```
Les Réseaux
  de Pétri
```

Mourad Daoudi

Places. Transitions et Marquages

Franchisse ment Réseaux particuliers.

Graphe de Marquage Accessible et l'équation changement

On a:

 $Pré(p_1, t) = 1$ (p donne le poids sur l'arc) $Pré(p_2, t) = 1$; $Pré(p_3, t) = 0$ $P ost(p_1, t) = 0;$ $Post(p_3, t) = 0$

$$Post(p_3, t) = 0$$

$$Post(p_3, t) = 1$$

$$Post(p_3, t) =$$

$$M_0 = (M_0 (p_1), M_0 (p_2), M_0 (p_3)) = (5, 2, 0)$$

Remarque:

dans le cas général, Pré(p, t) représente le nombre de ressources de type p consommées par la transition t, et Post(p,t) représente le nombre de ressources de type p produites suite au tir de la transition t. M(p) indique le marquage de la place p (nombre de jetons contenus dans p).

Les Réseaux de Pétri

> Mourad Daoudi

itroductio

Notations e règles de franchissement

Places.

Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

1 Introduction

2 Notations et règles de franchissemen

- Places, Transitions et Arcs
 - Marquages
 - Franchissement
- Réseaux particuliers
- Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacité
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Propriétés des réseaux de Petri

Les Réseaux de Pétri

> Mourad Daoudi

Introduction

Notations et règles de franchisse-

Places, Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur d'occurrence et l'équation de changement À partir du marquage initial, le réseau de Petri peut évoluer si les conditions sont vérifiées.

Exemple (se référer à l'exemple précédent) :

Soit $M_0=(5, 2, 0)$ Après le franchissement (tir) de la transition t, on utilisera un fichier et une imprimante (car $Pré(p_1, t) = 1$ et $Pré(p_2, t) = 1$) et on aura un fichier en cours d'impression.

le marquage deviendra alors :

$$M_1 = (4, 1, 1)$$

Après un deuxième tir de la transition t, on obtiendra :

$$M_2 = (3, 0, 2).$$

On ne peut plus effectuer un autre tir de t, car M_2 $(p_2) = 0$.

Dans le cas général, pour un marquage M, une transition t est tirable si et seulement si pour tout $p \in P$, on a : $M_p \ge \Pr(p, t)$ La franchissabilité (ou la sensibilisation ou le tir) d'une transition t pour le marquage M se note : M [t>.

Si le marquage résultant est M', alors on note : M[t>M'].

suite exemple

Les Réseaux de Pétri

Mourad Daoudi

Introduction

Notations et règles de franchisse-

franchissement Places

Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement Dans l'exemple précédent : M_0 [t> M_1 ; M_1 [t> M_2 et t n'est pas tirable pour M_2 car M_2 (p_2) < Pré(p_2 , t).

Soit M un marquage : $M = (M(p_1), M(p_2), ...)$

Notons:

 C^- la matrice des Prés telle que : C^- (ij) = Prés (p_i, t_j) C^+ la matrice des P osts telle que : C^+ (ij) = Posts (p_i, t_j) $C = C^+ - C^-$

Toujours dans l'exemple précédent on a:

$$C^- = \operatorname{Pr\'e} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 $C^+ = \operatorname{Post} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

suite exemple(fichiers imprimantes)

Les Réseaux de Pétri

> Mourad Daoudi

la tra du ati a

Notations e règles de franchisse-

franchissement

Places, Transitions et

Arcs Marquages Franchissement

Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

Le vecteur d'occurrence et l'équation de changement

Ainsi, avec cette notation, pour un marquage M, une transition t_i est tirable si et seulement si :

 $\mathsf{M} \geq {}^i \mathcal{C}^-$, où ${}^i \mathcal{C}^-$ est le vecteur colonne i de la matrice \mathcal{C}^- .

Les Réseaux de Pétri

suite exemple(fichiers imprimantes)

Les Réseaux de Pétri

> Mourad Daoudi

Introducti

Notations e règles de franchisse-

Places.

Transitions et Arcs Marquages Franchissement Réseaux

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

Exemple (précédent suite)

 M_1 est tirable car [4, 1, 1] \geq [1, 1, 0] c.-à-d $M_1 \geq t_1$ $C^ M_2$ n'est pas tirable car M_2 [3, 0, 2] n'est pas supérieur à C^- [1, 1, 0]

• - Le tir d'une transition t ou un marquage M conduit à un nouveau marquage M_0 défini par : $\forall p \in P$, $M_0(p) = M$ (p) - Pré(p, t) + Post(p, t) où $M_0 = M - {}^tC^- + {}^tC^+ = M + {}^tC$

Application

$$M_1 = M_0 - {}^tC^- + {}^tC^+$$

 $M_1 = [5, 2, 0] - [1, 1, 0] + [0, 0, 1]$
 $M_1 = [4, 1, 1]$

4 D > 4 D > 4 D > 4 D >

Les Réseaux de Pétri

> Mourad Daoudi

ntroduction

Notations e règles de franchissement

Places.

Transitions et Arcs Marquages Franchissement Réseaux

particuliers Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

- Introduction
- Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacité
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Graphe de Marquage Accessible (GMA)

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations e règles de franchissement

Places, Transitions et Arcs Marquages Franchissement Réseaux

Propriétés des réseaux

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

Définition

Un marquage sera dit accessible si on peut l'atteindre à partir du marquage initial, soit directement (avec un seul tir), soit indirectement (avec plusieurs tirs). On note A l'ensemble des marquages accessibles d'un réseau de Petri.

Exemple (précédent:fichiers & imprimantes) :

 $A = M_0 , M_1 , M_2$

Le graphe des marquages accessibles

Graphe de Marquage Accessible (GMA)

Les Réseaux de Pétri

> Mourad Daoudi

ntroduction

Notations orègles de franchisse-

ment
Places,
Transitions et

Marquages
Franchissement
Réseaux
particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

Application Considérons le réseau de Petri suivant :

Application (suite)

Les Réseaux de Pétri

Mourad Daoudi

t vo du et le

Notations et règles de franchisse-

franchissement <u>P</u>laces,

Transitions et Arcs Marquages Franchissement

Réseaux particuliers

des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement d'état

soit T =
$$(t_1, t_2)$$
, on a:

$$C^- = \text{Pr\'e} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \quad C^+ = \text{Post} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$C = C^+ - C^- = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & -1 \\ -1 & 1 \end{bmatrix} \quad {}^tC = \begin{bmatrix} 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Graphe de Marquage Accessible (GMA)

Les Réseaux de Pétri

Mourad Daoudi

Places. Transitions et

Marquages Franchisse ment Réseaux particuliers

Graphe de Marquage

et léquation changement

Application(suite)

avec M0 = (1, 1, 0, 4)On peut avoir les autres marquages

accessibles, exemple : M_0 [t1 > M_1 car [1, 1, 0, 4] > [0, 0, 1, -1]

Donc: $M_1 = M_0 + {}^tC = [1, 1, 0, 4] +$ [0,0,1,-1] = [1,1,1,3] etc.

Le graphe des marquages accessibles :

Sommaire

Les Réseau× de Pétri

> Mourad Daoudi

itroduction

Notations e règles de franchissement

Places.

Transitions et Arcs Marquages Franchissement Réseaux

particuliers Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement
d'état

- Introduction
- Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacité
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Les Réseaux de Pétri

> Mourad Daoudi

troductio

Notations e règles de franchisse-

franchissement Places,

Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

(GMA)
Le vecteur
d'occurrence
et l'équation
de changement
d'état

Soit T^* l'ensemble de transitions $T^*=t1$, t2, . . . , th Soit S une séquence de transitions (S $\in T^*$); $\overrightarrow{\sigma}=(\overrightarrow{\sigma}(t))_t$ où $\overrightarrow{\sigma}(t)$ est le nombre d'occurrences de t dans S.

Exemple 1:

Soit le graphe de marquage ci-dessous,

avec T = t1 , t2 , t3. Considérons la séquence $\overrightarrow{\sigma}$ = t1 t2 t3 Alors le vecteur d'occurrences $\overrightarrow{\sigma}$ = $(\overrightarrow{\sigma}(t_1), \overrightarrow{\sigma}(t_2), \overrightarrow{\sigma}(t_3))$ est $\overrightarrow{\sigma}$ = (2, 1, 0)

Les Réseaux de Pétri

Mourad Daoudi

ntroduction

Notations e règles de franchisse-

ment Places, Transitions et

Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseau de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement d'état Ainsi, à partir d'un marquage M , on peut tirer une séquence de transitions σ , et on trouve le marquage M' .

L'équation de changement d'état est alors donnée comme suit : $M_0 = M + C.\overrightarrow{\sigma}$

Les Réseaux de Pétri

> Mourad Daoudi

troductio

Notations e règles de franchisse-

Places, Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseau

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement d'état **Exemple 2**: le franchissement d'une transition «source» consiste à rajouter un jeton à chacune des places en sortie.

Les Réseaux de Pétri

> Mourad Daoudi

atroductio

Notations e règles de franchisse-

Places, Transitions et Arcs Marquages Franchissement

particuliers Propriétés des réseaus

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement d'état **Exemple 3** : le franchissement d'une transition «puits» consiste à retirer un jeton de chacune de ses places en entrée.

Les Réseaux de Pétri

> Mourad Daoudi

Places. Transitions et Marquages Franchisse ment Réseaux particuliers

Graphe de Marquage Accessible

et léguation changement d état

Exemple 4:

séquence de franchissement :

 M_0 [t1 > M_1 avec $M_1 = (0, 1, 0, 0)$

 M_0 [t1 t2 > M_2 avec M_2 = (0, 0, 0, 1)

 M_0 [t1 t3 > M_3 avec $M_3 = (0, 0, 0, 1)$

Ensemble des marquages accessibles : M * = M0, M1, M1, M3

Les Réseaux de Pétri

Sommaire

Les Réseaux de Pétri

> Mourad Daoudi

ntroduction

Notations e règles de franchissement

Places.

Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

Le vecteur d'occurrence et l'équation de changement

- Introduction
- Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacité
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Quelques propriétés qualitatives:Bornitude

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations et règles de franchisse-

rran cn ment

Places, Transitions et Arcs Marquages Franchissement Réseaux

particuliers Propriétés des réseaux

Graphe de Marquage Accessible (GMA) Le vecteur

Le vecteur d'occurrence et l'équation de changement

Définition:Bornitude

Une place sera dite k-bornée si $\forall M, M(p) \leq k$

Exemple (précédent):

- $M_0(p1) = M_1(p1) = M_2(p1) = M_3(p1) = M_4(p1) = 1$ donc p1 est 1-bornée
- la place p4 est 4-bornée

Bornitude(suite)

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations et règles de franchissement

Places, Transitions et Arcs Marquages Franchissemen

Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur d'occurren

Le vecteur d'occurrence et l'équation de changement Un réseau de Petri est borné s'il existe une valeur k telle que : $\forall M, \forall p, M(p) \leq k$

Remarque

Pour que le réseau soit borné, il faut que son ensemble de marquages accessibles A soit fini (sinon, le réseau n'est pas borné).

Exemple:

Quelques propriétés qualitatives: Pseudo-vivacité

Les Réseaux de Pétri

> Mourad Daoudi

ntroducti

Notations e règles de franchisse-

ment Places

Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur d'occurrence et l'équation

changement

Pseudo-vivacité

Définition

Le réseau de Petri est pseudo-vivant si $\forall M, \exists t/M[t>c.-à-d.$ pour tout marquage, il existe au moins une transition tirable à partir de ce marquage.

Ainsi, le GMA d'un RdP pseudo-vivant possède au moins un arc (transition) sortant de chaque état (marquage).

Remarque

Un réseau pseudo vivant n'a pas de marquage puits (ou mort) c.-à-d. un marquage sans transition tirable. Donc s'il y a un marquage à partir duquel on ne peut pas tirer une transition alors le réseau n'est pas pseudo-vivant.

Quelques propriétés qualitatives: Quasi-vivacité

Les Réseaux de Pétri

> Mourad Daoudi

troductio

Notations et règles de franchisse-

ment Places

Transitions et Arcs Marquages Franchissement Réseaux

particuliers
Propriétés
des réseaux

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

Définition : Quasi-vivacité

Un réseau est quasi-vivant si : \forall t, \exists M/M [t > c-à-d que pour toute transition, il existe au moins un marquage à partir duquel on peut tirer cette transition.

Ainsi, la quasi-vivacité désigne la possibilité de franchir au moins une fois chaque transition.

Quelques propriétés qualitatives: Vivacité

Les Réseaux de Pétri

> Mourad Daoudi

troduction

Notations e règles de franchissement

Places, Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

Le vecteur d'occurrence et l'équation de changement

Vivacité

Définition

Un RdP est vivant s'il est pseudo-vivant et quasi-vivant.

Exemple:

Réseau vivant.

Quelques propriétés qualitatives: Réseau sans blocage

Les Réseaux de Pétri

> Mourad Daoudi

troductio

Notations e règles de franchisse-

Places, Transitions et Arcs Marquages

Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement Réseau sans blocage

Définition

Un RdP est dit sans blocage s'il n'a pas de marquage puits (mort).

Exemple:

 M_1 (après franchissement de t_2) est un blocage

Quelques propriétés qualitatives: Etat d'accueil

Les Réseaux de Pétri

> Mourad Daoudi

ntroductio

Notations e règles de franchisse-

ment Places

Transitions et Arcs Marquages

Franchissement Réseaux particuliers

Propriétés des réseau de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

Etat d'accueil

Définition

Un RdP admet un état d'accueil M_a si

 $: \forall M \in A, \exists \sigma \in \mathit{T} * / \mathit{M}[\sigma > \mathit{M}_{a}.$

c.-à-d. un marquage d'accueil M_a est tel qu'on peut lui accéder à partir de n'importe quel autre marquage M via une séquence de transition σ .

Remarque 1:

Un état d'accueil est accessible quelque soit l'évolution du réseau.

Quelques propriétés qualitatives: Etat d'accueil

Les Réseaux de Pétri

> Mourad Daoudi

ntroduction

Notations e règles de franchisse-

Places, Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur d'occurren

Le vecteur d'occurrence et l'équation de changement

Remarque 2:

Si le marquage initial (M_0) est un marquage d'accueil, alors le réseau est dit réinitialisable.

Exemple:

Réseau réinitialisable

Conversation

Les Réseaux de Pétri

> Mourad Daoudi

troductio

Notations et règles de franchisse-

Places, Transitions et Arcs

Marquages Franchissement Réseaux particuliers

Propriétés des réseau de Petri

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

Définition: Réseau de Petri conservatif

Un réseau de Petri est conservatif si :

$$\forall M, \sum_{i=1}^{size(P)} M_0(p_i) = \sum_{i=1}^{size(P)} M(p_i)$$

Exemple:

Considérons le RdP tel que :

 $M_0 = [5, 8, 3]; 5+8+3=16$

 $M_1 = [4, 6, 6]; 4+6+6=16$

 $M_2 = [3, 7, 6]; 3+7+6=16$

Ce réseau est dit conservatif.

Sommaire

Les Réseaux de Pétri

> Mourad Daoudi

itroduction

Notations e règles de franchissement

Places.

Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

Le vecteur d'occurrence et l'équation de changement

- Introduction
- 2 Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- 3 Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacit
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Daoudi troduction

Notations et

règles de

franchisse-

ment Places,

Transitions et Arcs Marquages

Franchissement Réseaux particuliers

Propriétés des réseaux

Graphe de Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement d'état

Daoudi troduction

Notations et règles de

franchisse-

ment Places,

Transitions et Arcs Marquages

Franchissement Réseaux particuliers

Propriétés des réseaux

Graphe de Marquage Accessible (GMA)

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement
d'état

Daoudi

Notations et

Places, Transitions et Arcs

Marquages Franchisse ment Réseaux particuliers.

Graphe de

Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

d'état

Daoudi

Notations et

Places, Transitions et

Arcs Marquages Franchisse ment

Réseaux particuliers.

Graphe de

Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

d'état

Sommaire

Les Réseaux de Pétri

> Mourad Daoudi

itroduction

Notations e règles de franchissement

Places.

Transitions et Arcs Marquages Franchissement Réseaux particuliers

Propriétés des réseaux de Petri

Graphe de Marquage Accessible (GMA) Le vecteur

(GMA)
Le vecteur
d'occurrence
et l'équation
de
changement

- Introduction
- 2 Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- 3 Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacit
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage

Daoudi

Notations et

Places,

Transitions et Arcs

Marquages Franchisse ment Réseaux particuliers.

Graphe de

Marquage Accessible (GMA) Le vecteur d'occurrence et l'équation de changement

d'état

Daoudi

Notations et

Places, Transitions et Arcs

Marquages Franchisse ment Réseaux particuliers.

Graphe de

Marquage Accessible (GMA)

Le vecteur d'occurrence et l'équation de changement

d'état