Scorecard with Latent Factor Models for User Follow Prediction Problem

KDD cup 2012 – track 1

Xing Zhao, Ph.D.
Senior Scientist
Model Builder Product Development

August, 2012

© 2009 Fair Isaac Corporation.

Agenda

- » Problem description
- » Scorecard introduction
- » Feature generation
- » Latent factor models
- » Results and discussions

Background

FICO Model Builder

- FICO's internal tool used to build models
- software product for sale to customers

Use Model Builder for KDD cup problem?

- Performance to handle big size data?
- Scorecard to ensemble scores from CF models?

Self-motived project

- First two months, after work, fun
- Last three weeks, work time, tough competition

Problem Description

Task

predict if a user will follow a recommended item

Evaluation

average precision

Data

- rec_log_train, rec_log_test
- user_profile, user_key_word, user_sns, user_actions, item

Solution

- Generate predictive features
- Train latent factor models
- Train scorecard model to ensemble latent factor model scores and predictive features.

Development Environment

Model Builder scripting environment on linux

Groovy scripts for simple processing

Java for latent factor model training and feature generation

Frequently used Model Builder functions

- dataset, data analysis
- binning, scorecard,
- model performance, reporting

Training Data Setup

Raw train data: 31 days, 70M records
remove duplicates and dummy users => 36M
Split => train1 (first 22 days, 26M) + train2 (last 9 days, 10M)
User based split for train2 => train2_a (9M) + trian2_b (1M)

 $train1 + train2_a$ (35M)

- training data for latent factor models
- feature generation train2_b (1M)
- validation for latent factor models
- training data for scorecard

Average Precision

Introduce record weight to address average precision indirectly

- For each user, balance the weight of follow records and recommend records
- Adjust user's importance based on user's total follow records.
- H_u: the count of follow records for user u in training data
- L_u: the count of recommend records for user u in training data.
- W_u: record weight used in latent factor model and scorecard
 - 1/ H_{II} for follow record
 - 1/ L_u for recommend record

Miniature Example of a Scorecard

Cha j	ract.	Bin k	Description	Score Weight
	1		# Late Payments last 9 months	
-		1	0	20
		2	1	10
		3	2 or more	5
	2		Age of account	
-		1	below 1 year	5
		2	1-2 years	10
			etc.	
	3		Debt Ratio	
		1	0-30	15
		2	30-50	10
		3	50-70	5
			etc.	

Copyright © 2003 Fair Isaac Corporation. All rights reserved

* Simulated figures for illustrative purposes only

» Scorecard is additive among variables

$$score = w_0 + f_1(x_1) + f_2(x_2) + ... + f_N(x_N)$$

» f(x) can capture nonlinear relation from each variable

Variable Interactions

Scorecard is additive, but real relationship may have interactions

$$score = w_0 + f_1(x_1) + f_2(x_2) + ... + f_N(x_N)$$

$$target = f(x_1, x_2, ..., x_N)$$

=> Segmented Scorecards

=> Scorecard with cross binnings

Segmented scorecard can handle variable interactions FICO score is built using segmented scorecard

cross binning for pairwise interaction fij(xi, xj)

$$score = w_0 + f_1(x_1) + f_2(x_2) + ... + f_N(x_N) + \sum_{(i,j)} f_{ij}(x_i, x_j)$$

Pairwise Interaction Selection

For each variable pair, build two models

$$scoreA = w_0 + f_{ij}(x_i, x_j)$$

$$scoreB = w_0 + f_i(x_i) + f_j(x_j)$$

Model performance difference is because of variable interaction

Select variable pairs with bigger performance difference

Predictive Features

Session variables based on time stamp, batch and session

pre_batch: time from the last batch of records

next_batch: time to the next batch of records

session_start: time to the start of the session

session_end: time to the end of the session

session_start_batches: batches to the start of the session

session_end_batches: batches to the end of the session

next_batch is a very strong predictor

Pairwise interactions detected

- (next_batch, pre_batch)
- (next_batch, session_end_batches)
- (next_batch, session_start_batches)

Predictive Features

Item popularity based on age-gender group

- users are divided into 15 groups based on age and gender combination.
- group based item popularity is a stronger predictor

Some other features that are weak predictors

Item based KNN

Item category

Keyword match

Latent Factor Models

Each user is represented through other elements indirectly.

- Followed_items
- Action_users
- Keywords
- Tags

Latent factors introduced for these elements and items

$$\hat{r}_{ui} = u + u_u + u_i + q_i^T \left(\frac{1}{\sqrt{|I(u)|}} \sum_{j \in I(u)} q_j^0 \right)$$

Latent Factor Models

Record weights for average precision

Age-gender group based item average

Average precision measure for validation data

Combo latent factor models

- followed_item + key_word+ tag
- key_word + tag, followed_item + key_word ...

Results

Features only: 0.390

Add latent factor models: 0.422

Add cross binnings: 0.428

Best single predictor: 0.384

- combo latent factor model (followed_item + keyword + tag)
- age-gender group based item average

Summary and Discussions

Scorecard

- ensemble features and latent factor model scores
- deal with pairwise feature interactions

Discussions

- better way to handle average precision?
- tuning for latent factor models?
- train latent factor models on data segments?

Thanks

FICO Model Builder product development team for their support

organizers for a successful competition