VERMES MIKLÓS Fizikaverseny 2019. április 6. III. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

XI. osztály

I. feladat

Egy pontszerűnek tekinthető jégkockát egy l_0 hosszúságú feszültségmentes rugó végéhez rögzítünk. A rugó szabad végét egy állványhoz erősítjük, úgy, hogy a rugó alakváltozásmentes, függőleges helyzetében a jégkocka az asztalon legyen (1. *ábra*). Vízszintesen meglökve a jégkockát, ez súrlódásmentesen rezgőmozgást végez az asztalon. Tudva, hogy a legnagyobb amplitúdó, melyre a jégkocka még nem emelkedik fel az asztallap felületéről A, határozzátok meg az asztalra helyezett vízszintes helyzetű rugó végére rögzített jégkocka (2. *ábra*) periódusát az l_0 , A és g függvényében! Hasonlítsátok össze a kapott eredményt egy l_0 hosszúságú gravitációs inga periódusával.

10 p

II. feladat

Egy hangvilla folyamatosan v=250 Hz frekvenciájú hangot bocsát ki a mindkét végén nyitott, hosszú, dugattyúval ellátott cső végénél. A levegő hőmérséklete $t=57,33\,^{\circ}\mathrm{C}$, a hang terjedési sebessége $t=0\,^{\circ}\mathrm{C}$ hőmérsékleten c=330 m/s és a levegő izobár hőkiterjedési együtthatója $\alpha=\frac{1}{273}$ fok^{-1}

- a) Kezdetben a dugattyú a csőnek a hangvillához közeli végénél található. A dugattyút lassan húzni kezdjük, távolodva a hangvillától. Azt figyeljük meg, hogy a csőben található levegőoszlop rezonanciába jön a hangvillával. Számítsátok ki a levegőoszlop hosszának első három l_i értékét, melyre észleljük a rezonanciát! 5,5 p
- b) A dugattyút az l_2 hosszúságú levegőoszlopnak megfelelő helyzetbe hozzuk. Ezután elmozdítjuk $\Delta l = 1,7$ cm-el. Határozzátok meg, mennyivel kell megváltoztatni a levegő hőmérsékletét, hogy újra rezonanciába jöjjön! 4,5 p

III. feladat

Az R = 6 Ω ellenállású fogyasztót és $L = \frac{10}{2\pi}mH$ induktivitású ideális tekercset sorosan

kapcsoljuk, majd az így kapott áramköri ágat párhuzamosan kötjük egy változtatható kapacitású kondenzátorral. Az áramkört egy olyan $v=800~{\rm Hz}$ frekvenciájú váltakozó áramú áramforrásról tápláljuk, amelyik a külső áramkör impedanciájától függetlenül azonos $I=20~{\rm A}$ erősségű áramot biztosít az áramkörben.

Határozzátok meg:

- a) a változtatható kondenzátor C_0 értékét, melyre az áramkör teljesítmény tényezője $\cos \varphi_0 = 1$.
- b) a változtatható kondenzátor C_1 értékét, melyre az áramkör két ágában az áramerősség azonos értékű $I_L = I_C$, valamint a fáziseltolódást a feszültség és az áramerősség között a főáramkörben, ebben az esetben.
- c) a feszültséget az áramkör kapcsain, valamint az L induktivitású ideális tekercsen az előző két alpont kapacitás értékei esetén. 3 P

A feladatlapot és a hozzá tartozó javítókulcsot összeállította: Faluvégi Ervin Zoltán (Silvania Főgimnázium, Zilah).