Département d'informatique

Semestre 1. Licence 1 Ingénierie Informatique Cours Architecture des Ordinateurs

TD3: Portes logiques & Fonctions logiques

Exercice 1:

Soient A et B deux variables logiques, compléter les tableaux suivants.

Non- OU	0	Α	В	1
0				
Α				
В				
1				

OUX	0	Α	В	1
0				
Α				
В				
1				

Exercice 2

Vérifier les propriétés suivantes de la fonction logique OU

a) (A + B) + C = A + (B + C) = A + B + C: Associativité b) A + B = B + A: Commutativité c) A + A = A: Idempotence d) A + 0 = A: Elément neutre e) A + 1 = 1: Elément absorbant

Exercice 3

Vérifier les propriétés suivantes de la fonction logique ET

a) (A . B) . C = A . (B . C) = A . B . C : Associativité
b) A . B = B . A : Commutativité
c) A . A = A : Idempotence
d) A . 1 = A : Elément neutre
e) A . 0 = 0 : Elément absorbant

Exercice 4

Vérifier les distributivités respectives des fonctions logiques ET et OU

a) A.(B + C) = (A.B) +(A.C) : Distributivité de ET sur OU
b) A+(B.C) = (A+B).(A+C) : Distributivité de OU sur ET

c) Démontrer la relation suivante : A+(A.B) = A

Exercice 5

En utilisant le théorème de Morgan et les règles de la distributivité, démonter que :

$$\mathbf{A} \oplus \mathbf{B} = (\mathbf{A} + \mathbf{B}). \ \overline{\mathbf{A}.\mathbf{B}} = (\mathbf{A} \cdot \overline{\mathbf{B}}) + (\overline{\mathbf{A}} \cdot \mathbf{B}) = \overline{(\mathbf{A} \cdot \mathbf{B}) + (\overline{\mathbf{A}} \cdot \overline{\mathbf{B}})} = (\mathbf{A} + \mathbf{B}) \cdot (\overline{\mathbf{A}} + \overline{\mathbf{B}})$$

Exercice 6

Soit la fonction simplifiée F (a, b, e)= ā+b+ē

- a) Donner sa table de vérité, sa table de Karnaugh.
- **b)** Ecrire F sous sa forme disjonctive (sommes de mintermes) et sous sa forme conjonctive (produits de maxtermes)

Exercice 7

En utilisant les tableaux de Karnaugh, donner l'expression simplifiée de la fonction logique F définie par la table de vérité ci-dessous. Représenter le circuit correspondant à l'expression simplifiée.

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	1

0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Exercice 8

Trouver la forme simplifiée de chacune des fonctions présentées ci-dessous

	00	AB 01	11 -	10
00				
CD 01	1	1	1	1
11		1	1	
10	1			1

		AB)1 1	1 10	
00	1	1	1	1
CD 01	1	1	1	
11	1	1	1	
10	1	1	1	1

(b)

(a)

Exercice9

Soit la fonction f à quatre variables F(A,B,C,D), représentée par les circuits suivants :

Pour chaque cas, donner l'expression de f, puis sa table de vérité.

Exercice 10:

- 1. Ecrire la fonction à trois variables F(x,y,z)=y sous les deux formes canoniques (conjonctive et disjonctive).
- 2. Soit la fonction F(x,y,z)=1 si et seulement si exactement une et une seule des 3 variables x,y,z prend la valeur 1. Ecrire F sous la forme canonique disjonctive.