

1º DAM/DAW Sistemas Informáticos

U4. Usuarios, grupos y permisos

2 - Permisos en Ubuntu

Permisos de usuarios y grupos en Ubuntu

- Los permisos son un aspecto importante en Ubuntu, y en general en todos los sistemas
 Linux, y más en general, en todos los sistemas multiusuario.
- Los permisos definen el nivel de acceso de un usuario. Tanto los permisos otorgados como usuario individual, como por pertenencia a grupo/s.
- El nivel de acceso marca los privilegios de un usuario respecto a :
 - Información
 - Procesos

Permisos de usuarios y grupos en Ubuntu

- Todos los archivos y directorios de un sistema operativo Linux, pertenecen, de forma obligatoria, a un usuario y a un grupo.
- Se denominan respectivamente, usuario propietario y grupo propietario.

```
pepe@Ubuntu12:~

pepe@Ubuntu12:~$ ls -l prueba.txt
-rw-rw-r-- 1 pepe pepe 7 feb 3 13:08 prueba.txt

pepe@Ubuntu12:~$

pepe@Ubuntu12:~$

pepe@Ubuntu12:~$ ls -l /home/pmartinez/texto.txt
-rw-rw-r-- 1 pmartinez pmartinez

7 nov 9 14:12 /home/pmartinez/texto.txt

pepe@Ubuntu12:~$

pepe@Ubuntu12:~$

pepe@Ubuntu12:~$

pepe@Ubuntu12:~$
```

 Por defecto, el usuario propietario será el usuario que ha creado el fichero o la carpeta, y el grupo propietario será el grupo principal del usuario propietario.

Permisos. Niveles de acceso

- Se denominan **niveles de acceso o tipos de permisos**, a los siguientes:
 - Permiso de lectura, simbolizado mediante una "r".
 - Permiso de **escritura**, simbolizado mediante una "w".
 - Permiso de **ejecución**, simbolizado mediante una "x".

 Vamos a observar en detalle la información referente a los permisos de un fichero o directorio: \$ Is -I ruta_fichero_o_carpeta

- Cada grupo de 3 caracteres tiene la siguiente estructura:
 - **Posición 1: lectura** → Una "r" indica que el permiso se tiene.
 - Posición 2: escritura → Una "w" indica que el permiso se tiene.
 - Posición 3: ejecución → Una "x" indica que el permiso se tiene.
 - El símbolo "-" en cualquier posición, indica que el permiso no se tiene.

Permisos de ficheros y directorios. Ejemplos

Permiso de lectura:

- Aplicado a un fichero: nos permite visualizar su contenido. Por ejemplo, mediante el comando "cat".
- Aplicado a un directorio: nos permite listar su contenido. Por ejemplo, mediante el comando "ls".

- Permiso de **escritura**:
 - Aplicado a un fichero: nos permite editar o modificar su contenido.
 - Aplicado a un directorio: nos permite editar o modificar su contenido. Es decir,
 modificar nombres, crear y borrar, tanto archivos como subdirectorios.

- Permiso de ejecución:
 - Aplicado a un fichero: nos permite ejecutar el archivo.
 - Aplicado a un directorio: nos permite acceder o entrar al directorio. Por ejemplo, mediante el comando "cd".

 Para poder leer, modificar o ejecutar el contenido de un fichero, además del permiso correspondiente en el propio fichero, necesitamos disponer de acceso, permiso de ejecución, en el directorio que lo contiene.

Asignación de permisos

- En resumen, podemos asignar permisos sobre ficheros y directorios, del siguiente modo:
 - Al usuario propietario: lectura, escritura, ejecución.
 - Al grupo propietario: lectura, escritura, ejecución.
 - Al resto de usuarios: lectura, escritura, ejecución.

Asignación de permisos

- Para poder **asignar o modificar los permisos** de los **archivos y directorios** de un sistema operativo Linux, será necesaria una de estas condiciones:
 - Usar un perfil de administrador o superusuario (root).

• Ser **el propietario** del archivo o directorio.

• El comando utilizado para cambiar permisos es:

\$ chmod opciones permiso ruta

- Donde:
 - Opciones. Las más habituales son:
 - "-R": para que incluya subdirectorios.
 - "-c": para que muestre los ficheros o directorios que modifica en su ejecución.
 - Permiso.
 - Ruta.

- Donde:
 - Opciones.
 - **Permiso**: se representa mediante:
 - ¿A quién va asociado el permiso?: Usuario: "u"; Grupo: "g"; Resto: "o"; Todos: "a";
 - A continuación, ¿añadimos o quitamos permiso?: Otorgar: "+"; Restringir: "-";
 - A continuación, ¿qué tipo de permiso?: Lectura: "**r**"; Escritura: "**w**"; Ejecución: "**x**";
 - Ruta.

• Ejemplo:

```
pepe@Ubuntu12:~

pepe@Ubuntu12:~$ ls -l archivo.txt
-rw-r--r-- 1 pepe alumnos 5 feb 3 19:20 archivo.txt
pepe@Ubuntu12:~$
pepe@Ubuntu12:~$ chmod g+w archivo.txt
pepe@Ubuntu12:~$ ls -l archivo.txt
-rw-rw-r-- 1 pepe alumnos 5 feb 3 19:20 archivo.txt
pepe@Ubuntu12:~$
pepe@Ubuntu12:~$
pepe@Ubuntu12:~$
pepe@Ubuntu12:~$
pepe@Ubuntu12:~$
```


^{**} Al grupo propietario le añadimos el permiso de escritura sobre el fichero

- Donde:
 - Opciones.
 - Permiso:
 - Se pueden indicar varios destinatarios del permiso seguidos.
 - Su pueden indicar varios permisos separados por coma.
 - Ruta: ubicación del fichero o directorio.

• Ejemplo:

```
pepe@Ubuntu12:~$ chmod ug+x,o-r archivo.txt
pepe@Ubuntu12:~$ ls -l archivo.txt
-rwxrwx--- 1 pepe alumnos 5 feb 3 19:20 archivo.txt
pepe@Ubuntu12:~$
pepe@Ubuntu12:~$
pepe@Ubuntu12:~$
```


^{**}Al usuario y grupo propietario le añadimos el permiso de ejecución sobre el fichero y al resto le quitamos el permiso de lectura

- Otra forma de representar los permisos es en código octal.
- Hemos visto que los permisos se agrupan en 3 grupos de 3 posiciones o bits.
- Cada grupo, representa el permiso de lectura, escritura y ejecución para el usuario, grupo o resto.
- Por tanto, existen 8 posibilidades de permisos para cada destinatario.
- Es decir, podremos usar **3 dígitos del 0 al 7**, para representar **todas las posibilidades** de permisos: **[0-7][0-7]**

• Tabla resumen para cada destinatario (3 caracteres o bits).

Número	Binario	Lectura (r)	Escritura (w)	Ejecución (x)
0	000	×	×	×
1	001	×	×	✓
2	010	×	✓	×
3	011	×	✓	✓
4	100	✓	×	×
5	101	✓	×	✓
6	110	✓	✓	×
7	111	✓	✓	✓

- Ejemplos:
 - Dar todos los permisos al usuario y ninguno ni al grupo ni al resto:
 - \$ chmod 700 archivo.txt
 - Dar al usuario y al grupo permisos de lectura y ejecución y ninguno al resto:
 - \$ chmod 550 archivo.txt
 - Dar todos los permisos al usuario y lectura y ejecución al grupo y al resto:
 - \$ chmod 755 /usr/bin/games/tetris

- Ejemplos:
 - Dar todos los permisos al usuario y de lectura al resto, sobre todos los archivos:
 - \$ chmod 744 *
 - Lo mismo que en el ejemplo anterior, pero incluyendo subdirectorios:
 - \$ chmod -R 744 *

• ..