Math 557 August 29

Key Concepts

- \mathcal{L} -structures: Provide a realm to interpret \mathcal{L} -formulas over.
 - non-empty universe M,
 - interpretation of all constant, function, and relation symbols over M.
- structure isomorphism: bijection π between the universes of two \mathcal{L} structures that preserves interpretations of symbols. General version of
 the well-known idea of isomorphism of mathematical structures.
- assignment: function $\alpha: \mathcal{V} \to M$ that assigns all variables values in the universe of a structure. Recursively extends to terms.
- satisfaction relation: $\mathcal{M} \models \varphi[\alpha]$ means the \mathcal{L} -formula φ is true when interpreted in the \mathcal{L} -structure \mathcal{M} and all variables are assigned values according to assignment α . This is defined recursively over the structure of a formula.

Problems

We warm up with a quote often attributed to Lincoln.

Exercise 0.1.

> You can fool all the people some of the time, and some of the people all the time, but you cannot fool all the people all the time.

Define a suitable language and formalize this statement in first-order logic.

Next, a couple of problems to see the definition of structures and the satisfaction relation \models at work.

Exercise 0.2.

Let $\mathcal{L} = \{\Box, \triangle, c\}$, where \Box is a binary relation symbol, \triangle is a binary function symbol, and c is a constant symbol.

For each of the following formulas, find two \mathcal{L} -structures and (if necessary) assignments to the free variable(s) such that the formula holds in one structure but fails in the other.

$$\varphi \equiv \forall x \exists y \, \Box \, \triangle xy \, c \tag{1}$$

$$\psi \equiv \exists x \forall y (x = c \land \Box \triangle z c y) \tag{2}$$

Next, let's see some general properties of structures we can describe through first-order formulas.

Exercise 0.3.

Let n be a natural number and let \mathcal{L} be any language. Find formulas, $\psi^{\geq}, \psi^{\leq}, \psi^{=}$ such that, for any \mathcal{L} -structure \mathcal{M} ,

$$\mathcal{M} \models \psi^{\geq} \iff |M| \ge n \tag{3}$$

$$\mathcal{M} \models \psi^{\leq} \iff |M| \le n \tag{4}$$

$$\mathcal{M} \models \psi^{=} \iff |M| = n \tag{5}$$

(6)

i Question

Can we find a formula θ such that

$$\mathcal{M} \models \theta \iff |M| \text{ is finite?}$$

We will answer this question in a few weeks...

Exercise 0.4.

Let $\mathcal{L} = \{\cdot, e\}$ be the language of groups. Show that there is a sentence φ such that $\mathcal{M} \models \varphi$ if and only if

$$M \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
.

! Take-home Problems

1. Let $\mathcal L$ be any finite language and let $\mathcal M$ be a finite $\mathcal L$ -structure. Show that there is an $\mathcal L$ -sentence φ such that

$$\mathcal{N} \models \varphi \iff \mathcal{N} \cong \mathcal{M}.$$

- 2. Give an example of a language $\mathcal L$ and an $\mathcal L\text{-sentence}\ \psi$ such that
 - there is at least one \mathcal{L} -structure A such that $A \models \psi$,
 - for all L-structures A, if $A \models \psi$, then the universe A of A is infinite.