<u>Топлина</u>

Процеси с идеален газ

2008	Първи ден	4	Излъчване на водородна молекула (?). Хубава задача върху теория на топлинните капацитети. Нужен е анализ. Упътването се отнася за последната подточка и ще ви потрябва, ако стеработили правилно.				
2004	Първи ден	2	Политропен процес (ДМ). Основна задача върху термодинамичен процес. В б) се иска да защриховете областта около началното състояние на газа, в която процесът може да се намира.				
2002	Първи ден	2	Два процеса (ДМ). Стандартна задача върху уравнение на състоянието и топлинен капацитет.				
2015	Втори ден	1	Процес с идеален газ (MM). Съкратен вариант на предишната задача.				
2003	Първи ден	2.1	Топлинни капацитети (ДМ). Дадена отново на Пролетно състезание, 2019; вж. коментара там.				
2003	Първи ден	2.2	Адиабатни процеси (ДМ). Важна и поучителна задача върху равновесен и неравновесен адиабатен процес.				
2017	Първи ден	2.2	Чаша с лед (ДМ). Задача за процес в топлопроводящ съд. При- емете, че при поставянето на леда температурата на въздуха в чашата става равна на тази на леда.				
2014	Първи ден	2.1	Подвижно бутало (ДМ). Задача за вертикален цилиндър с тежко бутало. В крайния отговор трябва да има допълнителна двойка в знаменателя на първото събираемо.				
2012	Втори ден	2	Нагряване на газ (?). По-трудна, но стандартна задача на същата тема.				
2018	Първи ден	2	Въздушна пружина (ВИ). Лесна класическа задача за хармонични осцилации поради свиване на газ.				
2020	Първи ден	2	Трептене на варел (ДА). По-трудоемка задача върху хармонични осцилации. За да получите авторското решение, приемете, че хидростатичното равновесие винаги се запазва.				
Цикли							
2016	Първи ден	2.2	КПД (ДМ). Стандартна задача за цикъл.				
2011	Първи ден	3	КПД с праволинеен процес (ДМ). Задача за ефективност на обратен цикъл. Дефиницията на КПД в този случай може да се види по интуиция. В решението има грешка, трябва да се получи $A=119\mathrm{J},\varphi=4,\psi=5.$				
2011	Първи ден	3	КПД с политропен процес (ДМ). Друга задача за КПД на обратен цикъл. Забележете, че ниската ефективност като топлинна машина съответства на висока ефективност като климатик или				

хладилник.

2006	Първи ден	2	Газ от фонони (ДМ). Задача върху университетска физика, адаптирана за олимпиади. При a) трябва да използвате опростен модел за движението на фононите. Страните на цикъла са прави линии, тъй като промените в състоянието на газа са много малки.					
2009	Първи ден	2	Равновесие течност-пари (ДМ). Трудна класическа задача, която извежда уравнението на Клапейрон-Клаузиус посредством съставяне на цикъл, две от звената на който са фазови преходи при различни p и T . Тъй като всички стъпки в цикъла са обратими от физична гледна точка, той се явява цикъл на Карно.					
2019	Първи ден	2.1	Кръгов процес (ДМ). Задача оценка. Точното решение иска решаване на уравнение от четвърта степен, което може да направите с WolframAlpha. За точките на нулев топлообмен се получава $(\pi,\Omega)=(0.883,0.779),(1.135,1.211)$. Ако решавате с оценка, използвайте, че адиабатите са сравнително стръмни криви.					
2022	Първи ден	2.2	Айсберг (ДМ). Задача за цикъл на Карно. След разтапяне ледът не може да се използва в двигател.					
2018	Първи ден	4.2	Изкуствен лед (ДМ). Подобна задача върху минималната работа за замразяване на лед.					
2010	Втори ден	2	Хладилник (ДМ). По-трудна задача с няколко фазови прехода. Вместо да решавате всички етапи на процеса поотделно, използвайте факта, че общата ентропия не се променя.					
	Фазови преходи							
			Фазови преходи					
2016	Първи ден	2.1	Фазови преходи Нагряване на течности (ДМ). Упражнителна задача върху топлинни капацитети и специфични топлинни на фазов преход.					
2016 2017	Първи ден Първи ден	2.1 2.3	Нагряване на течности (ДМ). Упражнителна задача върху топ-					
	•		Нагряване на течности (ДМ). Упражнителна задача върху топлинни капацитети и специфични топлинни на фазов преход. Чайник (ДМ). Хубава задача върху непрекъснатост и изпарение. Обърнете внимание, че кипенето налага специално условие върху налягането на излизащите пари. За да получите реалистичен краен отговор, трябва да знаете типичната мощност на					
	•		Нагряване на течности (ДМ). Упражнителна задача върху топлинни капацитети и специфични топлинни на фазов преход. Чайник (ДМ). Хубава задача върху непрекъснатост и изпарение. Обърнете внимание, че кипенето налага специално условие върху налягането на излизащите пари. За да получите реалистичен краен отговор, трябва да знаете типичната мощност на котлон.					
2017	Първи ден	2.3	Нагряване на течности (ДМ). Упражнителна задача върху топлинни капацитети и специфични топлинни на фазов преход. Чайник (ДМ). Хубава задача върху непрекъснатост и изпарение. Обърнете внимание, че кипенето налага специално условие върху налягането на излизащите пари. За да получите реалистичен краен отговор, трябва да знаете типичната мощност на котлон. Топлинно излъчване Топлинно излъчване (ДМ). Лесна задача върху работа по гра-					
2017 2021	Първи ден	2.3	Нагряване на течности (ДМ). Упражнителна задача върху топлинни капацитети и специфични топлинни на фазов преход. Чайник (ДМ). Хубава задача върху непрекъснатост и изпарение. Обърнете внимание, че кипенето налага специално условие върху налягането на излизащите пари. За да получите реалистичен краен отговор, трябва да знаете типичната мощност на котлон. Топлинно излъчване Топлинно излъчване (ДМ). Лесна задача върху работа по графика, която следва от закона на Планк. Слънчево греене (МА). По-сложна задача върху същата графи-					

Молекулно-кинетична теория

2001	Първи ден	3.1	Дебит (ДМ). Не може да се използват закони за флуиди, тъй
			като газът е разреден и отворът е тесен. Вместо това съставете
			опростен модел за движението на частиците в газа. С интегри-
			ране на Максуел-Болцмановото разпределение може да се по-
			лучи точната формула за потока молекули на единица площ за
			единица време, $\Phi = \frac{1}{4}n\bar{v}$, където $\bar{v} = \sqrt{\frac{8k_BT}{\pi m}}$.
2001	Първи ден	3.2	Сила на съпротивление (ДМ). Хубава задача за моделиране на сила на съпротивление върху диск, движещ се много по-бавно
			от газовите частици.