Attacks on RSA cryptosystem

김동현, 박 현

발표자

이름: 김동현

소속: Anti-root

활동:

- 2019 영남대학교 SW개발 경진대회(알고리즘 부든 동상

- 영남대학교 Expert 16기 상반기 부회장
- K-shield junior 5기 보안사고 분석대응 과정 16위 (KISA 원장상)
- 2020 동계 정보보호 학술대회 논문 투고

발표자

이름: 박 현

소속: N0Named

활동:

- 2017 Digital Media HighSchool Teenager
 Hacking Defense Contest in Middle School 1st
- 2018 Digital Media HighSchool Teenager
 Hacking Defense Contest in Middle School 3rd
- 2018 Hansei Cyber Defense HighSchool in Midd
 School 1st
- 2018 Layer7 CTF in Middle School 1st
- 2019 The HackingChampionship Junior 3rd
- AnuCTF 3rd

Q&A용

https://www.facebook.com/profile.php?id=1000058 35038786

https://www.facebook.com/profile.php?id=100009136532072

Contents

• 암호수학

• 취약한 공개키

• LLL Attack

• 비밀키 일부 유출

• Q&A

암호수학 RSA

암호수학 ^{오일러정리}

$$\forall a, n \in \mathbb{Z}, \gcd(a, n) = 1 \rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$$

$$a^{k*\phi(n)+1} \equiv a \pmod{n}$$

암호수학 ^{격자 (Lattice)}

$$L = \{ \sum_{i=0}^{n} a_i * v_i \mid a_0, a_1, \dots, a_n \in \mathbb{Z} \}$$

암호수학

Howgrave-Graham Theorem

Let $g(x_1, ..., x_n) \in \mathbb{Z}[x_1, ..., x_n]$ be an integer polynomial with at most ω monomials. Suppose that

1.
$$g(y_1, ..., y_n) \equiv 0 \pmod{p^m}$$
 for $|y_1| \le X_1, ..., |y_n| \le X_n$

2.
$$||g(x_1X_1,...,x_nX_n)|| < \frac{p^m}{\sqrt{\omega}}$$

Then, $g(y_1, ..., y_n) = 0$ holds over the integers.

Fermat's factorization

$$n = x^{2} - y^{2}$$

$$p = x + y$$

$$q = x - y$$

$$n = \left(\frac{p+q}{2}\right)^{2} - \left(\frac{p-q}{2}\right)^{2}$$

Fermat's factorization

ex)

```
from Crypto.Util.number import getPrime, bytes_to_long
from gmpy2 import *
def key_generation():
    p = getPrime(1024)
    q = next_prime(p)
    e = 0x10001
    n = p * q
    return e, n
def encrypt(m, e, n):
    return (pow(m, e, n))
if <u>__name__</u> == "__main__":
    m = b"Hello World"
    pubKey = key_generation()
    e, n = pubKey
    m = bytes_to_long(m)
    c = encrypt(m, e, n)
    print("n: {}".format(n))
    print("e: {}".format(e))
    print("c: {}".format(c))
```

Fermat's factorization

ex)

```
from Crypto.Util.number import long_to_bytes, inverse, GCD
from gmpy2 import *
n = 10338065320880842840714962411843807252488879489247568758!
e = 65537
c = 21431153245847574295730115113628524636579854888233782972!
# fermat's factorization
a = isqrt(n)
b2 = square(a) - n
while not is_square(b2):
   a += 1
   b2 = square(a) - n
p = a + isqrt(b2)
q = a - isqrt(b2)
phi = (p - 1) * (q - 1)
d = inverse(e, phi)
m = pow(c, d, n)
m = long_to_bytes(m)
m = m.decode()
print (m)
```

\$ python3 ex.py
Hello World
\$

Common Modulus

$$c_1 \equiv m^{e_1} \pmod{n}$$
 $c_2 \equiv m^{e_2} \pmod{n}$
 $\gcd(e_1, e_2) = 1$

취약한공개키 Scenario

Calculate s, $t \in \mathbb{Z}$ such that $e_1 * s + e_2 * t = 1$ $m \equiv (c_1^{-1})^{-s} * c_2^t \pmod{n}$ or $c_1^s * (c_2^{-1})^{-t} \pmod{n}$

Coppersmith

$$f_b(x) \equiv 0 \pmod{b} (b \mid N)$$

$$f(x) \equiv 0 \pmod{b^m}$$

$$f(x) \equiv 0 \pmod{b^m}$$

$$f(x) = 0$$

ROCA

M. Nemec, M. Sys, P. Svenda, D. Klinec, V. Matyas: The Return of Coppersmith's Attack..., ACM CCS 2017

The usage domains affected by the vulnerable library

Identity documents (eID, eHealth cards)

Trusted Platform Modules (Data encryption, Platform integrity)

Software signing

Secure browsing (TLS/HTTPS*)

Authentication tokens

Message protection (S-MIME/PGP)

Programmable smartcards

* only a small number of vulnerable keys found

ROCA

ex) CryptoHack fast primes

```
def sieve(maximum=10000):
    marked = [False]*(int(maximum/2)+1)
    for i in range(1, int((math.sqrt(maximum)-1)/2)+1):
        for j in range(((i*(i+1)) << 1), (int(maximum/2)+1), (2*i+1)):
            marked[j] = True
    primes.append(2)
   for i in range(1, int(maximum/2)):
       if (marked[i] == False):
            primes.append(2*i + 1)
def get primorial(n):
    result = 1
    for i in range(n):
       result = result * primes[i]
    return result
def get fast prime():
    M = get primorial(40)
    while True:
       k = random.randint(2**28, 2**29-1)
       a = random.randint(2**20, 2**62-1)
       p = k * M + pow(e, a, M)
       if is prime(p):
            return p
```

```
sieve()
e = 0x10001
m = bytes to long(FLAG)
p = get fast prime()
q = get fast prime()
n = p * q
phi = (p - 1) * (q - 1)
d = inverse(e, phi)
key = RSA.construct((n, e, d))
cipher = PKCS1_OAEP.new(key)
ciphertext = cipher.encrypt(FLAG)
assert cipher.decrypt(ciphertext) == FLAG
exported = key.publickey().export key()
with open("key.pem", 'wb') as f:
    f.write(exported)
with open('ciphertext.txt', 'w') as f:
    f.write(ciphertext.hex())
```

ROCA

ex) CryptoHack fast primes

$$p' \equiv k * M + 65547^a \pmod{M} (a, k \in \mathbb{Z} \&\& \text{ unknown})$$
 $n \equiv (k * M + 65537^a \pmod{M})(l * M + 65537^b \pmod{M})$

$$n \equiv 65537^c \pmod{M}, c = a + b$$

$$M' = 0x1b3e6c9433a7735fa5fc479ffe4027e13bea$$

$$f(x) = M' * x + (65547^{a'} \pmod{M'})$$

$$c' \equiv \log_{65537} p \pmod{M'}$$

$$\left(\frac{c'}{2} \le a' \le \frac{c' + ord_{M'}(65537)}{2}\right) \longleftrightarrow$$

$$\Rightarrow \text{Get p}$$

Tool: https://gitlab.com/jix/neca

Hastad's broadcast

$$c_1 \equiv m^e \pmod{n_1}$$
 $c_2 \equiv m^e \pmod{n_2}$
 $c_3 \equiv m^e \pmod{n_3}$
 \vdots
 $c_e \equiv m^e \pmod{n_e}$
Use Chinese Remainder Theorem
 $m^e \equiv c' \pmod{\Pi n_i}$
 $m^e < \Pi n_i$
 $m^e = c'$

Boneh-durfee

$$d < n^{0.292}$$

 $e * d = k * \phi(n) + 1$
 $k * (n - p - q + 1) + 1 \equiv 0 \pmod{e}$
 $x = k, y = -p - q$
 $x * (n + y + 1) = 0 \pmod{e}$

$$g_{i,k}(x,y) = x^{i} * f^{k}(x,y) * e^{m-k} (0 \le i \le m - k \&\& 0 \le k \le m)$$

$$h_{j,k}(x,y) = y^{j} * f^{k}(x,y) * e^{m-k} (0 \le j \le t \&\& 0 \le k \le m)$$

Tool: https://github.com/mimoo/RSA-and-LLL-attacks/blob/master/boneh_durfee.sage

LLL Attack

What's a Lattice?

Given a set of linearly independents $vectors\ v_1, v_2, \dots v_n \in \mathbb{R}^m$ The lattice L generated by $v_1, v_2, \dots v_n$ is the set of linearly independent Vectors $v_1, v_2, \dots v_n$ with integer coefficients.

Basis of Lattice

Lattice Problem

- 1. SVP (Shortest Vector Problem)
- 2. CVP (Closest Vector Problem)

SVP

Shortest Vector Problem : Find the shortest non-zero vector in a Lattice

CVP

Closest Vector Problem : Given a vector $w \in \mathbb{R}^{m}$ hat is not , L

Find the vector that is closest to w

Cryptohack - Find the Lattice

```
def gen_key():
    q = getPrime(512)
    upper_bound = int(math.sqrt(q // 2))
    lower_bound = int(math.sqrt(q // 4))
    f = random.randint(2, upper_bound)
    while True:
        g = random.randint(lower_bound, upper_bound)
        if math.gcd(f, g) == 1:
            break
    h = (inverse(f, q)*g) % q
    return (q, h), (f, g)
def encrypt(q, h, m):
    assert m < int(math.sqrt(q // 2))</pre>
    r = random.randint(2, int(math.sgrt(q // 2)))
    e = (r*h + m) % q
    return e
def decrypt(q, h, f, g, e):
    a = (f*e) % q
    m = (a*inverse(f, g)) % g
    return m
public, private = gen_key()
q, h = public
f, g = private
m = bytes_to_long(FLAG)
e = encrypt(q, h, m)
print(f'Public key: {(q,h)}')
print(f'Encrypted Flag: {e}')
```

generate key

512bit prime q

$$2 < f < \sqrt{\frac{q}{2}}$$

$$\sqrt{\frac{q}{4}} < g < \sqrt{\frac{q}{2}}$$

$$f^{-1}g \equiv h \pmod{q}$$

encrypt

- 1. choose random number $2 < r < \sqrt{\frac{q}{2}}$
- $2. \ e \equiv rh + m \pmod{q}$

decrypt

$$a \equiv fe \pmod{q}$$

$$m \equiv af^{-1} \pmod{g}$$

Known

$$e \equiv rh + m \pmod{q}$$

$$f^{-1}g \equiv h \pmod{q}$$

Unknown

f, g

Goal

How to get f, g?

Use LLL!

LLL?

find shortest basis vector!

$$f^{-1}g \equiv h \pmod{q}$$

$$fh \equiv g \pmod{q}$$

$$fh \equiv g \pmod{q}$$

$$fh = g + qk$$

Main Idea h, q만 가지고 f, g 가 존재하는 lattice를 만들자!

$$L = \begin{pmatrix} 1 & h \\ 0 & q \end{pmatrix}$$

$$L\binom{f}{-k} = \binom{f}{g}$$

많은 경험이 필요한 부분 ㅜㅜㅜㅜ

ubuntu@ip-172-26-34-187:~/CryptoHack/Mathematics/FindTheLattice\$ sage solve.sage
crypto{

else..

```
egin{bmatrix} 1 & 0 & 0 & 0 & \cdots & -a_1 \ 0 & 1 & 0 & 0 & \cdots & -a_2 \ 0 & 0 & 1 & 0 & \cdots & -a_3 \ 0 & 0 & 0 & 1 & \cdots & -a_4 \ dots & dots & dots & dots & dots \ 1 & 1 & 1 & 1 & \cdots & S \end{bmatrix}
```

knapsack cryptography

Coppersmith Theorem

$$x + p' \equiv 0 \pmod{p}$$

p의 하위 비트를 알 때

$$2^k x + p' \equiv 0 \pmod{p}$$

m의 상위 비트를 알 때

$$(x+m')^e-c\equiv 0\pmod N$$

m의 하위 비트를 알 때

p의 하위 비트와 동일하게 2의 제곱수를 곱해주면 됨

d의 하위 I 비트를 알고 있을 때

$$ed = k(N - p - q + 1) + 1 = k(N - p - \frac{N}{p} + 1) + 1$$

 $k \leq e$ 이므로, 모든 0, ..., e에 대해 순회 하면서 다음 방정식을 풀자

$$kp^2 + (ed' - kN - k - 1)p + kN \equiv 0 \pmod{2^l}$$

그럼 이 이후는 p의 하위비트를 알고 있을 때의 문제와 같다!

Reference

http://www.secmem.org/blog/2020/10/23/SVP-and-CVP/

https://cryptohack.org/

http://blog.rb-tree.xyz/2020/03/10/coppersmiths-method/ https://www

.math.uni-frankfurt.de/~dmst/teaching/WS2015/Vorlesung/Alex.May.pdf

https://www.semanticscholar.org/paper/The-Return-of-Coppersmith's-Attack%3A-Practical-of-Nemec-S%C3%BDs/0b978f224b8520c8e3d9b2eb55431262fcb16c05

모두 다 엄청엄청 좋은 글이므로 무조건 읽는 것을 권장!

Q & A