Assignment 1

The answers to the problems of this assignment do not require any calculations but can be inferred from the information given (provided you have the relevant knowledge!)

Let
$$A = \begin{bmatrix} 2 & 3 & 5 & -7 & -2 \\ 4 & -5 & 3 & 1 & -3 \\ 3 & 7 & -2 & 4 & 5 \\ 2 & 2 & -7 & 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 9 & 5 & 1 \\ 0 & -3 & 1 & 4 \\ 0 & 0 & 0 & -7 \end{bmatrix}$

- a) Explain why the columns of A are not linearly independent
- b) Explain why Ax = 0 has a non-trivial solution
- c) Explain why Bx = b is consistent for every b in \mathbb{R}^3
- d) Explain whether or not AB^T is well-defined

Assignment 2

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -4 & -1 \\ -1 & -3 & 2 \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$

- a) Find the inverse of A using elementary row operations on the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$
- b) Use the inverse of A to solve Ax = b

Assignment 3

Find the value(s) of α for which the determinant of the following matrix is -18 by coexpanding on the second row

$$\begin{bmatrix} 1 & 5 & -a \\ a & -a & a \\ 2 & 13 & -7 \end{bmatrix}$$

Assignment 4

Let

$$u_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} -2 \\ 1 \\ -1 \\ 1 \end{bmatrix}, u_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \\ -1 \end{bmatrix}, u_4 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -2 \end{bmatrix}, and \ v = \begin{bmatrix} 4 \\ 2 \\ -1 \\ 0 \end{bmatrix},$$

- a) Show that $\{u_1,u_2,u_3,u_4\}$ is an orthogonal basis for \mathbb{R}^4 using the inner product.
- b) Write v as the sum of two vectors, one in $span\{u_1, u_2\}$ and the other in $span\{u_3, u_4\}$.

Assignment 5

Measurements of the deflection (mm) of particleboard from stress levels of relative humidity are displayed below.

Stress level (%)	Deflection (mm)
54	16.473
54	18.693
61	14.305
61	15.121
68	13.505
68	11.640
75	11.168
75	12.534
75	11.224

- a) Find the best fitted least-squares line to describe the data above
- b) Determine the least-squares error of the least squares line found in (a).

Assignment 6

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -4 & -1 \\ -1 & -3 & 2 \end{bmatrix}$$
 , $v_1 = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

- a) Show that v_1 and v_2 are eigenvectors of A with associated eigenvalues λ_1 and λ_2 , respectively
- b) Determine the eigenspaces of λ_{1} and λ_{2}
- c) Orthogonally diagonalize A where $A = PDP^{-1}$ and the columns of P are normalized