CS & IT ENGINERING

Theory of Computation Finite Automata:

Closure Properties - Part 1

Lecture No. 17

TOPICS TO BE COVERED

$$(D, 0)$$
 is closed iff $+x_1, x_2 \in D \implies x_1 \circ x_2 \in D$

Example:

$$\exists x_1, x_2 \in \mathbb{D} \quad \exists x_1 \circ x_2 \notin \mathbb{D}$$

$$(N, -)$$
 is not closely

Set of Numbers, C, 2N, 2N+1, H. set of matriles,. Domain In TOC Set of languages Set of finite languages Set of infinite languages Set of regular languages,

Prefix(L) Suffix (L) Substiny (L) Operation -) Subset of L

-

Closure Properites for finite languages: D = Set of finite languages

D	1
T	V

Operation		Finite languages over 5	
\bigcirc	Union	closed(/)	FIUF2 0 F3
2	Intersection		FINF2 DF3
3)	Complement	Not closer (X)	F > Infinite set
(P)	Difference		F,-F2 ⇒ F3
(§)	concatenation		$F_1.F_2 \Rightarrow F_3$
6	Reversal		FRev D FZ
7	Kleene star	\times	F* => may or may not finite
8	Kleene plus	X	Ft A may or may not finite
9	Subset		Subset of (F) => Always Finite set
(0)	Prefix		Prefix (F) => Finite Set
	Suffix		Suffix (F) F) Finite set

- 1) Fin U Fin | Always Finite
- (2) Fin 1 Fin Always Finite
- 3) Finite language => Infinite language

Fin
$$\Rightarrow$$
 Need not be Finite

$$L = \phi \Rightarrow L^* = \{E\} \mid L = \{a\} \Rightarrow L^* = \alpha^*\}$$

$$L = \{E\} \Rightarrow L^* = \{a\} \Rightarrow L^* = \{aa\} \Rightarrow L$$

INOK If L = \$ and L 丰 { { { { { { { { { { } } } } } } } then It is Infinit

(8) (Fin) + = Need not be finite

(9) Est of Finite language is

Livix 88x

E, a, aaa }

Finite sel
8 Subsets

every subset is finite

Det dest dead desay

L=
$$\{a, abb\}$$

Prefix (L) = $\{\xi, a\}$

ab, abb $\{Pref(ab) = d\xi, a, ab, abb\}$

Closure Properites for infinik languages: D = Set of infinitelanguages

1	p	1
	Y	V

C	operation	Infinite languages	OVEY E
()	Union		$I_1 U I_2 \Rightarrow I_3$
2	Intersection	X	In Iz > Need not be Infini
3)	Complement	X	I > Need not be Infin
(J)	Difference	×	I,-I2 > Need not be Infi
(3)	concatenation		$I_1.I_2 \rightarrow I_3$
6	Reversal		IRev > Infinite
7	Kleene star		I* = Infinite
8	Kleene plus		I + = Infinite
9	Subset	\times	Subset of Inf Set => need not be
(0)	Prefix		Prefix(I) A) Inf
	Suffix		Suffix (I) A) Inf

at n = 0

Need not be Inf

$$az^*$$
 Inf

(9) (Every) Subset of Infinite set is now not sufficient


```
Union is closed for finite languages
 (D, U) is closed where D=set of finite languages
(Set of Sinite languages, U) is closed
 Finite languages is closed under union operation
( F|Fis Finite language } U) is closed
```

Note:

Closure Properites for regular languages

DOM	nain = Set of	oegular la	nguages		
Prime.	. ф	· a*	** **		
	- {ε }	. b*	· ab		70
, 0, 720	· {a}	· (a+b)			over Zida
John Organia	·{E,a}	· a 2*	* a * *		
Outside demoir answer	· {E,ab}	· Ita		* { \delab* }	
011 - a2 6		· b=*	- {w w = 2	2, we larby*	
· 227					
· {WW w	Eda, bit	THE PERSON NAMED IN		100	

Closure Properites for regular languages:

- 1 LIUL2
- (2) LINL2
- (4) 1,-12
- (5) 4,· L2
- 6 LRev
- (F) (*
- Subset (L)

- (10) Prefix(L)
- (ii) Suffix (L)
- (12) Substring(L)
- (13) Quotient(L)
- (14) Substitution (L)
- (15) Homomorphism (L)
- (16) E- free Homomorphism (L)
- h'(L)
- Half(L)

- Second Half(L)
- (20) one-third (L)
- Middle = (L)
- Last = (L)
- 23) Symmetric Difference (L)
- Finik Union
- (25) Finite Intersection
- 26) Finite Difference
- 27) Finite Concatenation (3) Ing.
- (28) Finite Subset
- (29) Finite Substitution (35) In Substi

M IN C

For regular languages:

Subset is not closed

Infinite U, n, -, e, f are not closed

Summary

> what is closed, not closed? + For finite languages + For Infinite languages Next: For regular languages

