

Machine Learning is everywhere

Social Networks

Healthcare

Banking

Genomics

Weather predictions

Dogs and Cats

Product recommendation

Images from amazon.com

Autonomous vehicles

Creativity

Figure source: Gatys, Ecker and Bethge, Image style transfer using convolutional neural networks, CVPR 2016.

ML Basics

Machine Learning

SUPERVISED

UNSUPERVISED

Some key components

Data pre-processing

x_1	x_2	x_3	y
2.2	0.8	2.7	1
4.9	3.1	1.6	-1

- Data cleaning
- Training-test data splitting
- Feature engineering

Training

- Loss function
- Optimization algorithm
- Regularization

Features

Iris dataset

INPUTS

Sepal Length	Sepal Width	Petal Length	Petal Width
(cm)	(cm)	(cm)	(cm)
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5	3.6	1.4	0.2
5.4	3.9	1.7	0.4
4.6	3.4	1.4	0.3
5	3.4	1.5	0.2
4.4	2.9	1.4	0.2

OUTPUTS			
Species			
Iris Setosa	0		
Iris Virginica	1		
Iris Versicolor	2		

Training and Test data

- Training data: Used for training the ML algorithm.
- Test data: Used for assessing the performance of the ML algorithm.

Loss function

REGRESSION

Squared loss:

$$\mathcal{L}(\mathbf{y}^{(n)}, \mathbf{y}^{*(n)}) = \frac{1}{2} \sum_{j=1}^{J} (y_j^{(n)} - y_j^{*(n)})^2$$

BINARY CLASSIFICATION

Binary cross-entropy loss:

$$\mathcal{L}(y^{(n)}, y^{*(n)}) = -y^{(n)}\log(y^{*(n)}) - (1 - y^{(n)})\log(1 - y^{*(n)})$$

MULTI-CLASS CLASSIFICATION

Cross-entropy loss:

$$\mathcal{L}(\mathbf{y}^{(n)}, \mathbf{y}^{*(n)}) = -\sum_{j=1}^{J} y_j^{(n)} \log y_j^{*(n)}$$

Generalization

- Larger class of functions \to more complexity of the hypothesis class $\mathcal{C}(\mathbb{H})$.
- Objective: Good prediction at unobserved locations \rightarrow good **generalization**.

Generalization

Figures for illustration only.

Simple models

Figures for illustration only.

Complex models

Figures for illustration only.

Loss vs complexity

Bias-variance decomposition

- Dataset: $\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}),, (\mathbf{x}^{(N)}, y^{(N)}) \}$
- Let $g_{\mathcal{D}}$ be the hypothesis which is fit to a particular training dataset \mathcal{D}
- Want to compute the expected prediction error at an arbitrary test point with input \mathbf{x} and output y: $\mathbb{E}_{\mathbf{x},y,\mathcal{D}} \left[(g_{\mathcal{D}}(\mathbf{x}) y)^2 \right]$.
- Mean prediction of the machine learning algorithm:

$$\overline{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}} \left[g_{\mathcal{D}}(\mathbf{x}) \right]$$

- So determining the value of $\overline{g}(\mathbf{x})$ involve
 - generating different training datasets (\mathcal{D}) ,
 - training separate functions $(g_{\mathcal{D}})$ for every generated dataset,
 - making predictions at an arbitrary test point \mathbf{x} with all trained functions,
 - and finally, averaging over all the predictions.
- Let $\overline{y}(\mathbf{x})$ be the expected value of the output at \mathbf{x} , i.e. $\overline{y}(\mathbf{x}) = \mathbb{E}_{y|\mathbf{x}}[y]$.

Bias-variance decomposition

- Dataset: $\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}),, (\mathbf{x}^{(N)}, y^{(N)}) \}$
- Let $g_{\mathcal{D}}$ be the hypothesis which is fit to a particular training dataset \mathcal{D}
- Want to compute the expected prediction error at an arbitrary test point with input \mathbf{x} and output y: $\mathbb{E}_{\mathbf{x},y,\mathcal{D}} \left[(g_{\mathcal{D}}(\mathbf{x}) y)^2 \right]$.
- Mean prediction of the machine learning algorithm:

$$\overline{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}} \left[g_{\mathcal{D}}(\mathbf{x}) \right]$$

- So determining the value of $\overline{g}(\mathbf{x})$ involve
 - generating different training datasets (\mathcal{D}) ,
 - training separate functions $(g_{\mathcal{D}})$ for every generated dataset,
 - making predictions at an arbitrary test point \mathbf{x} with all trained functions,
 - and finally, averaging over all the predictions.
- Let $\overline{y}(\mathbf{x})$ be the expected value of the output at \mathbf{x} , i.e. $\overline{y}(\mathbf{x}) = \mathbb{E}_{y|\mathbf{x}}[y]$.

Bias-variance decomposition

$$\mathbb{E}_{\mathbf{x},y,\mathcal{D}}\Big[\big(g_{\mathcal{D}}(\mathbf{x})-y)^2\Big] = \mathbb{E}_{\mathbf{x},\mathcal{D}}\Big[\big(g_{\mathcal{D}}(\mathbf{x})-\overline{g}(\mathbf{x})\big)^2\Big] + \mathbb{E}_{\mathbf{x}}\Big[\big(\overline{g}(\mathbf{x})-\overline{y}(\mathbf{x})\big)^2\Big] + \mathbb{E}_{\mathbf{x},y}\Big[\big(\overline{y}(\mathbf{x})-y\big)^2\Big]$$
Variance
Bias²
Noise

- Variance: It expresses the sensitivity of the solution on the particular choice of dataset \mathcal{D} .
- Bias: Difference between the expected prediction (averaged over different datasets) and the expected output value. This is the inherent error arising from the choice of model.
- Noise: Expresses the noise in the data.

Example

Figures for illustration only.

Visualization

Figures for illustration only.

Another example

Figures for illustration only.

Bias, variance vs model complexity

- **High Bias**: Model is too simple, and so unable to fit the data properly.
 - Results in underfitting.
 - Training and test errors are both large.
- **High Variance**: Model is too complex, and so small changes in the data produce significant changes in the solution.
 - Results in overfitting.
 - Test Error \gg Training Error

Figures for illustration only.

Underfitting & Overfitting

- Underfitting can be addressed by
 - Increasing the complexity of the model.
 - Minimizing the cost function properly in the training stage.
- Overfitting can be addressed by
 - Reducing the complexity of the model.
 - Incorporating some form of regularization inside the cost function.

Figures for illustration only.

Training and Test datasets

- Dataset is split into two groups:
 - Training dataset is used to train the ML algorithm.
 - Test dataset is used to estimate the error rate of the trained model.

• Shortcomings:

- If the size of the dataset is small, then keeping aside a separate test dataset can lead to loss of some vital information in the model training stage.
- "Unfortunate" data split can result in misleading error estimates.

• Solution:

- K-fold cross-validation
- Leave-one-out cross-validation

K-fold cross validation

• Training data is subdivided into K separate subsets $-\mathcal{D}_1, \mathcal{D}_2,, \mathcal{D}_K$ of equal size (say n_K). Let's take K = 5.

\mathcal{D}_1	\mathcal{D}_2	\mathcal{D}_3	\mathcal{D}_4	\mathcal{D}_5

 \bullet Can generate K training-test datasets using the K subsets

K-fold cross validation

- For k = 1, 2, ..., K
 - Leave out the kth fold data \mathcal{D}_k and train the model on the remaining k-1 folds.

- Use the trained model to make prediction on the kth fold data \mathcal{D}_k and compute the (cross validation) error for this fold

$$E_k = \frac{1}{n_K} \sum_{i=1}^{n_K} (y_{k,i} - f_{-k}(\mathbf{x}_i))^2$$

where f_{-k} is the model trained excluding the kth fold data \mathcal{D}_k .

K-fold cross validation

Estimated generalization error:

$$\mathbf{E} = \frac{1}{K} \sum_{k=1}^{K} E_k$$

- When K = N (size of the training dataset), the approach is known as leave-one-out cross-validation.
- Note: Cross-validation is also used to tune the hyperparameters of a model.
 - The optimal value of a hyperparameter is the one yielding the least value of \mathbf{E} .

Optimization

• Objective: $\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$

Contours and gradients

- Contour line is a level curve which is the set of all real-valued solutions for a fixed value of the objective function.
- Gradients are perpendicular to contour lines.

Gradient Descent algorithm

• Gradient descent algorithm (1st order method)

$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - \xi_k \nabla g(\boldsymbol{\theta}^{(k)})$$

where k is the iteration no. and $\xi_k > 0$ is the learning rate or step size.

• Note that the gradients point towards the maximum, and therefore a negative sign in introduced in front of ξ_k since we are interested in the minimum.

Step size

Fixed step-size: ξ_a

Fixed step-size: ξ_b

Regularization

Classification: Confusion matrix

- A table used to describe/visualize the performance of a classification algorithm.
- Confusion matrix for a binary classification problem:

		Prediction	
		Negative	Positive
Actual	Negative	980	6
	Positive	4	10

- Standard metric: Accuracy
 - Ratio of number of correct predictions to all predictions.

$$\label{eq:accuracy} \begin{aligned} \text{Accuracy} &= \frac{\text{True Positive} + \text{True Negative}}{\text{True Positive} + \text{False Positive} + \text{True Negative}} \end{aligned}$$