Homework 1 - Problem 5B

Mark Labrador

Thursday 13th February, 2014

Problem Statement:

Consider the following sequence of numbers: $s_n = 1 + \prod_{i=0}^{n-1} s_i$, where $s_0 = 2$. Prove that any two numbers in this sequence are relatively prime.

Proof by Induction:

Basis:

$$s_0 = 2$$

 $s_1 = 1 + \prod_{i=0}^{0} s_i = 1 + s_0 = 1 + 2 = 3$

Induction Hypothesis:

Suppose for all $n \ge 0$, s_n are pairwise relatively prime. In other words, $(\forall n \ge 1) \gcd(s_{n-1}, s_n) = 1$. Show that $\gcd(s_n, s_{n+1}) = 1$.

We know that the following property holds for gcd's,

For some sequence of integers
$$a_i$$
, if $gcd(a_i, a_{i+1}) = d$ and $gcd(a_{i+1}, a_{i+2}) = d$, then $gcd(a_i, a_{i+2}) = d$. (1)

For the sequence of numbers s_i , if we can show that $gcd(s_n, s_{n+1}) = 1$, then we'd have shown that all numbers in the sequence are relatively prime.

$$s_{n+1} = 1 + s_n \prod_{i=0}^{n-1} s_i$$

= $1 + s_n (s_n - 1)$, because $s_n - 1 = \prod_{i=0}^{n-1} s_i$ from $s_n = 1 + \prod_{i=0}^{n-1} s_i$, by definition.
 $1 = s_{n+1} - (s_n - 1) s_n$
= $as_{n+1} - bs_n$, where $a = 1$ and $b = s_n - 1$.

So we have shown that 1 is a linear combination of s_n and s_{n+1} , and there is no other positive integer smaller than 1 so we can conclude that $gcd(s_n, s_{n+1}) = 1$. By the induction hypothesis and property 1, all numbers in the sequence s_i for $i = 0 \dots n$ are pairwise relatively prime.

QED