# Homework 04

# Adam Guerra

5/17/23

### Problem 1

# 1. Null and Alternative Hypothesis

Mathematical

- $H_0: \beta_1 = 0$
- $H_A: \beta_1 \neq 0$

# Biological

- $H_0$ : Fish length is not a significant predictor of fish weight for trout perch.
- $H_A$ : Fish length is a significant predictor of fish weight for trout perch.

### 2. Visualize the missing data



Figure 1: As shown in the figure above, 41% of the weight category has NAs. This is going to limit how many observations I have to use in the linear model, reducing its statistical power.

#### 3. Run test

```
#create linear model
fish_lm <- lm(weight ~ length, data = fish_data)

#get residuals
fish_res <- fish_lm$residuals</pre>
```

# 4. Visually check assumptions

```
#diagnostic plots
par(mfrow = c(2,2)) #set 2x2 format
plot(fish_lm)
```



Figure 2: Diagnostic plots for linear model.

### 5. Descriptions of diagnostic plots

- Residuals vs Fitted: Shows residuals and fitted line to visualize linearity and constant variance. Points appear to be evenly and randomly distributed around the line, although there are a few outliers.
- QQ: Shows both data sets against one another. Data appears to be normally distributed.
- Scale Location: Similar to residuals vs fitted but is more accurate for showing homoscedasticity of variance. Data appears to be evenly and randomly distributed around the line.
- Residuals vs Leverage: Shows which data points are influential in the model. There are a few outliers identified that could be influential.

#### 6. Display summary of model object

```
#sumary of model object
summary(fish_lm)
```

Residuals 288 322.05

```
Call:
lm(formula = weight ~ length, data = fish_data)
Residuals:
    Min
            1Q Median
                            3Q
                                   Max
-3.0828 -0.4862 -0.1830 0.4128 7.3191
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -11.702476
                        0.481564 -24.30 <2e-16 ***
             0.199852
                        0.005584 35.79 <2e-16 ***
length
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.057 on 288 degrees of freedom
  (199 observations deleted due to missingness)
Multiple R-squared: 0.8164,
                               Adjusted R-squared: 0.8158
F-statistic: 1281 on 1 and 288 DF, p-value: < 2.2e-16
7. Create summary ANOVA table
  #store ANOVA table as object
  fish_squares <- anova(fish_lm)</pre>
  fish_squares
Analysis of Variance Table
Response: weight
          Df Sum Sq Mean Sq F value
                                        Pr(>F)
           1 1432.29 1432.29 1280.8 < 2.2e-16 ***
length
```

1.12

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

```
#create table
fish_squares_table <- tidy(fish_squares) |>
                      #round the sum of squares and mean squares columns to have 5 digits
                      mutate(across(sumsq:meansq, ~ round(.x, digits = 5))) |>
                      #round the F-statistic to have 1 digit
                      mutate(statistic = round(statistic, digits = 1)) |>
                      #replace the very very very small p value with < 0.001</pre>
                      mutate(p.value = case_when(
                             p.value < 0.001 ~ "< 0.001")) |>
                      #rename the stem_length cell to be meaningful
                      mutate(term = case_when( term == "length" ~ "Fish Length (mm)",
                             TRUE ~ term)) |>
                     # format(scientific = T) |>
                      #make the data frame a flextable object
                      flextable() |>
                      #change the header labels to be meaningful
                      set_header_labels(df = "Degrees of Freedom",
                                         sumsq = "Sum of squares",
                                         meansq = "Mean squares",
                                         statistic = "F-statistic",
                                         p.value = "p-value")
fish_squares_table
```

| term                   | Degrees of<br>Freedom | Sum of squares | Mean<br>squares | F-statisticp-value |
|------------------------|-----------------------|----------------|-----------------|--------------------|
| Fish<br>Length<br>(mm) | 1                     | 1,432.28771    | ,432.28769      | 1,280.8< 0.001     |
| Residuals              | 288                   | 322.0525       | 1.11824         |                    |

#### 8. Describe how the ANOVA table relates to the information given from summary object.

The information from this table is the relevant information about where the p-value and  $R^2$  come from.

#### 9. Summarize results with in-text references to test results.

After checking the assumptions for a linear model (step 4), I performed the linear regression model of length and weight of trout that showed that length is a significant predictor of weight in trout (part 6). It also showed that 81.6% the variance in weight of trout can be explained by length. This is a high percentage, meaning that this model is a good fit.

#### 10. Visualize the model predictions and confidence intervals.

```
#generate predictions
predictions <- ggpredict(fish_lm, terms = "length")
predictions</pre>
```

#### # Predicted values of weight

```
95% CI
length | Predicted |
            -1.71 | [-2.12, -1.30]
    50 l
             0.29 | [-0.02, 0.59]
    60 l
    65 l
             1.29 | [ 1.03, 1.54]
             3.29 | [ 3.12, 3.45]
    75 |
             5.28 | [5.16, 5.41]
   85 l
             7.28 | [7.12, 7.44]
   95 l
             9.28 | [ 9.04, 9.53]
   105 |
   120 |
            12.28 | [11.88, 12.68]
```

# Fish Length as a Predictor of Fish Weight



Figure 3: Shows fish lengths' and weights' plotted against the predictions with an accopanying confident interval shaded around the regression line.

# Repo Link