Travaux dirigés ET1

Description des systèmes physico-chimiques

ET1.1. L'éther liquide et gazeux

On introduit une certaine masse d'éther liquide dans une ampoule scellée de volume 20 cm³ préalablement vidée. La température pendant l'opération reste constante et égale à 18 °C. Quelle sera la composition en masse et volume de l'état d'équilibre final dans les deux cas suivants :

- 1. On introduit 10 g d'éther
- 2. On introduit 0,02 g d'éther

On assimilera la vapeur à un gaz parfait.

Données: pression de vapeur saturante de l'éther à 18 °C et P_{ν} = 400 mmHg; masse volumique de l'éther liquide 0,713 g.cm⁻³; masse molaire de l'éther 74 g.

ET1.2. Équation de van der Waals

Le modèle du gaz parfait peut être amélioré en tenant compte du volume des particules et des interactions attractives entre les particules : c'est le modèle de van der Waals

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

- *n.b* est le covolume : c'est le volume occupé par les particules.
- $\frac{an^2}{V^2}$ est un terme qui réduit la pression car les particules s'attirent.
- 3. Évaluer le rayon d'un atome d'hélium (He) et de xénon (Xe).
- 4. Pour n = 1 mol de xénon dans $V_1 = 10$ L, $V_2 = 100$ L et $V_3 = 1000$ L, évaluer la différence de pression calculées par la formule de van der Waals et l'équation d'état du gaz parfait à la température ambiante.
- 5. Également évaluer la différence de pression calculées pour n = 1 mol d'hélium dans le cas $V_1 = 10$ L à la température ambiante.
- 6. Le modèle du gaz parfait est-il plus adapté à haute pression ou basse pression ? Il plus adapté à petites particules ou grandes particules ?

Données : $a_{He} = 3,457.10^{-3} \text{ m}^6.\text{Pa.mol}^{-1}$; $b_{He} = 2,370.10^{-5} \text{ m}^3.\text{mol}^{-1}$; $a_{Xe} = 4,250.10^{-1} \text{ m}^6.\text{Pa.mol}^{-1}$; $b_{Xe} = 5,105.10^{-5} \text{ m}^3.\text{mol}^{-1}$

ET1.3. Phase polytrope

Un polytrope est une phase dont l'équation d'état est de la forme

$$P = a\rho^{\gamma}$$

- 1. Montrer que le gaz parfait est un polytrope si T est constante. Dans ce cas, évaluer γ et exprimer a en fonction de T.
- 2. Évaluer γ pour un fluide incompressible polytrope.
- 3. À partir des données ci-dessous, peut-on dire si l'eau est un polytrope à T = 20°C?

P (Pa)	ρ (kg.m ⁻³)
1.105	998,3
25.10^{5}	999,3
50.10^5	1000,4
75.10^{5}	1001,5
100.10^{5}	1002,6
125.10^{5}	1003,8
150.10^{5}	1004,8
175.10^{5}	1005,9
200.10^5	1007,1

ET1.4. Énergie d'une transformation

1. Associer les réactions suivantes à leur énergie.

$$CH_{4(liq)} \to CH_{4(g)} \bullet$$
 • 22,4 MeV
 $H_2O_{(liq)} \to H_2O_{(g)} \bullet$ • 8,2 kJ.mol⁻¹,
 ${}_{3}^{6}Li + {}_{1}^{2}H \to 2{}_{2}^{4}He \bullet$ • 6,74.10⁻²⁰ J

2. Pour chaque transformation, préciser si l'énergie est apportée ou libérée.

Données: 1,00 eV = 1,60.10⁻¹⁹ J; N_A = 6,02.10²³ mol⁻¹

ET1.5. Transformations nucléaires

Compléter l'équation des réactions $(x, y \text{ et } {}^{A}X)$:

$${}_{3}^{7}Li + x {}_{0}^{1}n \rightarrow {}_{Z}^{A}X + y {}_{2}^{4}He$$

$${}_{7}^{14}N + {}_{2}^{4}He \rightarrow {}_{Z}^{A}X + x {}_{1}^{1}p$$

$${}_{98}^{249}Cf + {}_{Z}^{A}X \rightarrow {}_{104}^{257}Rf + x {}_{0}^{1}n$$

$${}_{26}^{58}Fe + x {}_{0}^{1}n \rightarrow {}_{Z}^{A}X + {}_{1}^{0}e \rightarrow {}_{28}^{60}Ni + y {}_{-1}^{0}e$$

ET1.6. Lecture d'un diagramme de phases

- 1. Quel est l'état physique du dioxyde de carbone dans les conditions (*T*,*P*) ambiantes ?
- 2. Même question pour T = 25°C, P = 70 bars.
- 3. On place de la carboglace $(CO_{2(s)})$ dans les conditions P = 10 bars et température ambiante. Quelle transformation observe-t-on? Représenter la température d'état condensé en fonction de temps T = f(t) en utilisant un diagramme (t,T).

ET1.7. Diagramme de l'ammoniac

On donne ci-dessous les équations des courbes de sublimation et de vaporisation de l'ammoniac (NH₃) :

Sublimation :
$$\ln \left(\frac{P_s}{P_o} \right) = 23,03 - \frac{3754}{T}$$

Vaporisation :
$$\ln \left(\frac{P_v}{P^{\circ}} \right) = 19,46 - \frac{3063}{T}$$

avec $P^{\circ} = 1,000$ mmHg, P_s et P_v en mmHg et T en K.

- 1. Évaluer les coordonnées du point triple de l'ammoniac.
- 2. Tracer l'allure du diagramme de phases (*T*,*P*) de l'ammoniac. Y inscrire les zones de stabilité des états solide (S), liquide (L), gazeux (G) et supercritique (SC).

Données: Température critique de l'ammoniac est 132,35 °C.