# Беседы с Батюшкой

Коллективный разум 3 февраля 2023 г.

# Гомеоморфизм

Пусть  $M, N \subset \mathbb{R}^n$ .  $f: M \longrightarrow N$  – отображение<sup>1</sup>.

Отображение f непрерывно в точке a, тогда и только тогда, когда

$$\lim_{x \to a} f(x) = f(a)$$

#### Непрерывность по Коши:

$$\forall \varepsilon > 0 \; \exists \delta_{\varepsilon} > 0 : \; (\forall x \in U_{\delta_{\varepsilon}}(a) \cap M \Rightarrow f(x) \in U_{\varepsilon}(f(a)))$$

или в многомерном случае

$$\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : (\forall x \in B_{\delta_{\varepsilon}}(a) \Rightarrow \rho(f(x), f(a)) < \varepsilon),^{2}$$

По Гейне:

$$\forall x_n \to a \Rightarrow f(x_n) \to f(a)$$

**Определение:** отображение  $f:M\to N$  называется <u>гомеоморфизмом,</u> если

- f биекция,
- f непрерывна,
- $f^{-1}$  непрерывна

Говорят, что M гомеоморфно N и обозначается

$$M \cong N$$

Упражнение 1: доказать или опровергнуть, что ллюбая нерпрерывная биекция является гомеоморфизмом.

**Упражнение 2:** доказать, что  $(0,1) \cong \mathbb{R}$ 

**Упражнение 3:** доказать, что  $D \cong \mathbb{R}^2$ ,

где 
$$D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1 \}$$

 $<sup>^1</sup>$ Отображение  $f: M \to N$  – закон, который каждому элементу  $x \in M$  ставит в соответствие единственный элемент  $y \in N.$ 

<sup>&</sup>lt;sup>2</sup>Здесь  $B_{\delta_{\varepsilon}}=\{y\in\mathbb{R}^n|\ \rho(y,a)<\delta_{\varepsilon}\},\ \mathrm{a}\ \rho(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2}$ 

# Многообразие

Пусть  $M \subset \mathbb{R}^n$  такое, что  $\exists k \in \mathbb{N}, \forall \varepsilon > 0$ :

либо 
$$U_{\varepsilon}(x) \cap M \cong \mathbb{R}^k$$
,

либо 
$$U_{\varepsilon}(x) \cap M \cong \mathbb{R}^k_+,$$

$$e \partial e \mathbb{R}^k_+ = \{(x_1, x_2, ..., x_k) | x_1, ..., x_{k-1} \in \mathbb{R}, x_k \ge 0\}$$

 $\mathit{ede}\ \mathbb{R}_+^k = \{(x_1, x_2, ..., x_k)|\ x_1, ..., x_{k-1} \in \mathbb{R}, x_k \geq 0\}$  в этом случае М является **многообразием** размерности k.

Если  $\nexists$  окрестности  $U_{\varepsilon}(x)$   $\overline{:U_{\varepsilon}(x)\cap M\cong \mathbb{R}^k},$  то x - граничная точка, иначе - внутренняя точка.

Если множество граничных точек пустое  $(\emptyset)$ , то M- многообразие **без** края, в противном случае с краем.

### Примеры:

1. Диск: 
$$D^1 = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$$



2. Окружность: 
$$S^1 = \{(x,y) \in \mathbb{R}^2 | \ x^2 + y^2 = 1\}$$

Окружность- одномерное многообразие без края



3. Сфера: 
$$S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$$

2-мерное многообразие без края



4. Тор. Рассматриваем как поворот единичной окружности вокруг оси Оz.  $T = \{(x,y,z) \in \mathbb{R}^3 |$ 

$$\begin{cases} (y-2)^2 + z^2 = 1\\ x = 0 \end{cases}$$

2-мерное многообразие без края



5. Цилиндр  $C=\{(x,y,z)\in\mathbb{R}^3|$ 

$$\begin{cases} x^2 + y^2 = 1\\ 0 \le z \le 1 \end{cases}$$

2-мерное многообразие с краем



### Динамическая система

Определение: Пусть М – многообразие. Динамической системой (ДС) на многообразии М называется непрерывное отображение  $f: M \times X \to M$   $(X = \mathbb{R} \ unu \ X = \mathbb{Z})$  со следующими свойствами:

1. 
$$f(x,0) = x$$
,  $\forall x \in M$ 

2. 
$$f(f(x,t),s) = f(x,t+s), \quad \forall x \in M \forall t, s \in X$$

Если  $X = \mathbb{R}$ , то ДС называется **потоком** (непрерывная ДС). Если  $X = \mathbb{Z}$ , то ДС называется **каскадом** (дискретная ДС).

Динамическая система  $f: M \times X \to M$  определяет семейство гомеоморфизмов  $\{f^t \mid t \in \mathbb{R}(\mathbb{Z})\}$  на M, где  $f^t(x) \equiv f(x,t)$ .

Если  $t \in \mathbb{Z}$ , то

• при 
$$t > 0$$
  $f^t = \underbrace{f \circ \ldots \circ f}_t;$ 

• при 
$$t < 0$$
  $f^t = \underbrace{f^{-1} \circ \ldots \circ f^{-1}}_t;$ 

$$\bullet \ f^0 = Id: M \to M, \ Id(x) = x$$

Определение: Траекторией точки  $x_0 \in M$  называется множество  $O_{x_0} = \{ f^t(x_0) \mid t \in \mathbb{R}(\mathbb{Z}) \}$ . Если  $t \in \mathbb{Z}$ , то траекторию называют орбитой.

Пример 1. 
$$x_t = v_0 \cdot t + x_0$$
,  $t \in \mathbb{R}$ ;

$$f^t: \mathbb{R} \to \mathbb{R}$$
:



$$f^t(x_0) = v \cdot t.$$

# Пример 2. Математический маятник без трения $(\alpha, V_x)$

 $\alpha \in [-\pi, \pi]$   $0 \sim 2\pi \ V_x \in \mathbb{R}$ 







Пример 3. Математический маятник с трением.



**Определение:** Точка  $x\in M$  называется блуждающей, если  $\exists U(x)$  и  $\exists T: \forall t>T \to f^t(U(x))\cap U(x)=\varnothing$ 

В противном случае, точка называется неблуждащей.

**Определение:** Объединение неблуждающих точек - неблуждающее множество.

**Определение:** Неподвижная точка - точка, траектория которой совпадает с ней  $(O_x = \{x\})$ .

**Обозначения:**  $\omega$  - сток (притягивающая неподвижная точка)

 $\alpha$  - источник (отталкивающая неподвижная точка)

**Определение:**  $x \in M$  -периодическая для потока  $f^t$  (каскад f), если  $\exists T>0: f^T(x)=x \forall$ 

 $1 < t_1 < T$ 

 $f^{t_1}(x) \neq x$ 

Примеры: Каскады

**Обозначение:**  $NB(f) = \{...\}$ - множество неблуждающих точек.

1. 
$$f(x) = \bar{x} = 0, 5x$$
  
 $t \in \mathbb{Z}, f^t = \underbrace{f \circ \dots \circ f}_{t}$ 



$$2. f(x) = 2x$$



$$3. \ f(x) = x + \alpha$$
$$\alpha \in \mathbb{R}$$



NB(f)={∅}