

ABSTRACT OF THE DISCLOSURE

The present invention is concerned with a novel process for the manufacture of α -tocopheryl acetate which comprises reacting 2,3,6-trimethylhydroquinone-1-acetate with a compound selected from the group consisting of phytol (formula IV with R = OH), iso-phytol (formula III with R = OH), and (iso) phytol derivatives represented by the following formulae III and IV with R = C₂-to C₅-alkoxyloxy, benzyloxy, mesyloxy, bezenesulfonyloxy or tosyloxy,

(IV) in the presence of a catalyst of the formula Mⁿ⁺(R¹SO₃⁻)_n, wherein Mⁿ⁺ is a silver, copper, gallium, hafnium or rare earth metal cation, n is the valence of the cation Mⁿ⁺, and R₁ is fluorine, C₁₋₈-perfluoroalkyl or perfluoroaryl, and, if required, cyclizing any 3-phytetyl-2,5,6-trimethylhydroquinone-1-acetate or a double bond isomer thereof obtained as an intermediate reaction product, to produce α -tocopheryl acetate. In the catalyst Mⁿ⁺ is preferably Ag⁺, Cu⁺, Ga³⁺, Sc³⁺, Lu³⁺, Ho³⁺, Tm³⁺, Yb³⁺ or Hf⁴⁺.