Low-dimensional population dynamics of spiking neurons via eigenfunction expansion

Noé Gallice

Professor: Wulfram Gerstner Supervisor: Tilo Schwalger

Laboratory of Computational Neuroscience, EPFL

April 12, 2018

Complex system Simplified model Math. tractable / comput. efficiency

 $\begin{array}{ccc} \textit{Neuron:} & & \text{Biophysical} & & \text{Hodgkin-Huxley} \\ & \text{model} & & \text{model} \end{array} \quad \text{IF model}$

	Complex system	Simplified model	Math. tractable / comput. efficiency
Neuron:	Biophysical model	Hodgkin-Huxley model	IF model
Neuronal network:	Spiking network	Population density equation	Firing rate model

Complex	Бувает	Simplified model	comput. efficiency
-	nysical odel	Hodgkin-Huxley model	IF model

Population density

equation

Simplified model

M. Mattia, P. Del Giudice, *Phys. Review* (2002) They derived a low dynamics of the collective firing rate from the spectral expansion of the Fokker-Plank equation.

Complex system

Spiking network

Neuron:

Neuronal

network:

Math. tractable /

Firing rate model

Complex system Simplified model Math. tractable / comput. efficiency

Neuron: Biophysical Hodgkin-Huxley IF model model IF model

Neuronal network: Spiking network Population density equation Firing rate model

M. Mattia, P. Del Giudice, *Phys. Review* (2002) They derived a low dynamics of the collective firing rate from the spectral expansion of the Fokker-Plank equation.

Aim: Derive a low dimensional dynamics taking into account the slowest modes of the expansion of the refractory density.

Overview

- 1. Refractory density $q(\tau, t)$
 - 1.1 Refractory density equation
 - 1.2 The refractory density for a LIF neuron

2. Theoretical derivation

- 2.1 Eigenfunction expansion of the refractory density
- 2.2 Definition and property of the adjoint operator \mathcal{L}^+
- 2.3 Recover the Activity
- 2.4 Resume of the theoretical derivation

3. Spectral expansion for different processes

- 3.1 LIF neuron with exponential link function
- 3.2 Inverse Gaussian process
- 3.3 Gamma process
- 4. Summary and Future Work

1.1 Refractory density equation

In a large homogeneous population of neurons, spikes are generated at time t according to a hazard function $\rho(t,\tau)$

1.1 Refractory density equation

In a large homogeneous population of neurons, spikes are generated at time t according to a hazard function $\rho(t,\tau)$

The state variable τ is the age of the neuron.

1.1 Refractory density equation

In a large homogeneous population of neurons, spikes are generated at time t according to a hazard function $\rho(t,\tau)$

The state variable τ is the age of the neuron.

The refractory density $q(\tau, t)$ obeys the master equation:

$$\partial_t q(\tau, t) = -\partial_\tau q(\tau, t) - \rho(\tau, t)q(\tau, t)$$

1.1 Refractory density equation

In a large homogeneous population of neurons, spikes are generated at time t according to a hazard function $\rho(t,\tau)$

The state variable τ is the age of the neuron.

The refractory density $q(\tau, t)$ obeys the master equation:

$$\partial_t q(\tau, t) = -\partial_\tau q(\tau, t) - \rho(\tau, t)q(\tau, t)$$

With boundary conditions:

$$q(0,t) = \int_0^\infty \rho(\tau,t)q(\tau,t)d\tau = A(t)$$

$$q(\infty,t) = 0$$

1.2 The refractory density for a LIF neuron

The hazard function for a LIF neuron with exponential link function is:

$$\rho(\tau, t) = C \exp(\frac{u(\tau, t) - V_{th}}{\Delta})$$

with membrane potential:

$$u(\tau,t) = V_r e^{-\tau/\tau_m} + \frac{1}{\tau_m} \int_0^{\tau} e^{-s/\tau_m} \mu(t-s) ds$$

where $\mu(t)$ is a time dependent input current, V_r is a reset potential and Δ sets the sharpness of the threshold at V_{th} .

1.2 The refractory density for a LIF neuron

The refractory density for a step current input μ :

 $V_{th}=15$ mV, $V_r=0$ mV, $\Delta=2$ mV, C=1000 Hz, $\tau_m=20$ ms dt=0.1 ms, $N_{micro}=10^5$

1.2 The refractory density for a LIF neuron

The activity is defined as: $A(t) = q(0,t) = \int_0^\infty \rho(\tau,t)q(\tau,t)d\tau$

 $V_{th}=15 \text{mV},\, V_r=0$ mV, $\Delta=2$ mV, C=1000 Hz, $\tau_m=20$ ms dt=0.1 ms, $N_{micro}=10^5$

Overview

- 1. Refractory density $q(\tau, t)$
 - 1.1 Refractory density equation
 - 1.2 The refractory density for a LIF neuron

2. Theoretical derivation

- 2.1 Eigenfunction expansion of the refractory density
- 2.2 Definition and property of the adjoint operator \mathcal{L}^+
- 2.3 Recover the Activity
- 2.4 Resume of the theoretical derivation

3. Spectral expansion for different processes

- 3.1 LIF neuron with exponential link function
- 3.2 Inverse Gaussian process
- 3.3 Gamma process
- 4. Summary and Future Work

- 2. Theoretical derivation
- 2.1 Eigenfunction expansion of the refractory density

We consider first the time homogeneous case: $\rho(\tau,t) = \rho(\tau)$

$$\partial_t q(\tau, t) = -\partial_\tau q(\tau, t) - \rho(\tau)q(\tau, t) = \mathcal{L}q(\tau, t)$$

- 2. Theoretical derivation
- 2.1 Eigenfunction expansion of the refractory density

We consider first the time homogeneous case: $\rho(\tau,t) = \rho(\tau)$

$$\partial_t q(\tau, t) = -\partial_\tau q(\tau, t) - \rho(\tau)q(\tau, t) = \mathcal{L}q(\tau, t)$$

We can expand the refractory density as:

$$q(\tau,t) = \sum_{n} a_n(t)\phi_n(\tau)$$

2. Theoretical derivation

2.1 Eigenfunction expansion of the refractory density

We consider first the time homogeneous case: $\rho(\tau,t) = \rho(\tau)$

$$\partial_t q(\tau, t) = -\partial_\tau q(\tau, t) - \rho(\tau)q(\tau, t) = \mathcal{L}q(\tau, t)$$

We can expand the refractory density as:

$$q(\tau, t) = \sum_{n} a_n(t)\phi_n(\tau)$$

where $\phi_n(\tau)$ are the eigenfunctions of the operator

$$\mathcal{L} = -\partial_{\tau} - \rho(\tau) \qquad \qquad \mathcal{L}\phi_n = \lambda_n \phi_n$$

With eigenvalues λ_n and boundary conditions:

$$\phi_n(0) = \int_0^\infty \rho(\tau)\phi_n(\tau)d\tau$$
$$\phi_n(\infty) = 0$$

Solving
$$[-\partial_{\tau} - \rho(\tau)]\phi_n = \lambda_n \phi_n$$
 we have:

$$\phi_n(\tau) = \phi_n(0) \exp(-\lambda_n \tau - \int_0^{\tau} \rho(s) ds)$$

Solving
$$[-\partial_{\tau} - \rho(\tau)]\phi_n = \lambda_n \phi_n$$
 we have:

$$\phi_n(\tau) = \phi_n(0) \exp(-\lambda_n \tau - \int_0^\tau \rho(s) ds)$$

Using the boundary condition we find:

$$\phi_n(0) = \int_0^\infty \rho(\tau)\phi_n(0) \exp(-\lambda_n \tau - \int_0^\tau \rho(s)ds)$$

Solving
$$[-\partial_{\tau} - \rho(\tau)]\phi_n = \lambda_n \phi_n$$
 we have:

$$\phi_n(\tau) = \phi_n(0) \exp(-\lambda_n \tau - \int_0^{\tau} \rho(s) ds)$$

Using the boundary condition we find:

$$\phi_n(0) = \int_0^\infty \rho(\tau)\phi_n(0) \exp(-\lambda_n \tau - \int_0^\tau \rho(s)ds)$$

which can be written as:

$$\boxed{1 = \int_0^\infty e^{-\lambda_n \tau} P(\tau) d\tau}$$

with ISI density $P(\tau) = \rho(\tau) \exp(-\int_0^{\tau} \rho(s) ds)$

Solving
$$[-\partial_{\tau} - \rho(\tau)]\phi_n = \lambda_n \phi_n$$
 we have:

$$\phi_n(\tau) = \phi_n(0) \exp(-\lambda_n \tau - \int_0^{\tau} \rho(s) ds)$$

Using the boundary condition we find:

$$\phi_n(0) = \int_0^\infty \rho(\tau)\phi_n(0) \exp(-\lambda_n \tau - \int_0^\tau \rho(s)ds)$$

which can be written as:

$$\boxed{1 = \int_0^\infty e^{-\lambda_n \tau} P(\tau) d\tau}$$

with ISI density
$$P(\tau) = \rho(\tau) \exp(-\int_0^{\tau} \rho(s) ds)$$

 $\Rightarrow \lambda_0 = 0$ fulfilled the condition, The eigenvalues must be complex, and the real part of λ_n cannot be positive.

To recover the activity we will need the eigenfunctions ψ_n of the adjoint operator \mathcal{L}^+ :

$$\mathcal{L}^+\psi_n = \lambda_n \psi_n$$

To recover the activity we will need the eigenfunctions ψ_n of the adjoint operator \mathcal{L}^+ :

$$\mathcal{L}^+\psi_n = \lambda_n \psi_n$$

Defining the inner product : $(\psi, \phi) = \int_0^\infty \psi(\tau)\phi(\tau)d\tau$

and using the property: $(\psi, \mathcal{L}\phi) = (\mathcal{L}^+\psi, \phi)$

To recover the activity we will need the eigenfunctions ψ_n of the adjoint operator \mathcal{L}^+ :

$$\mathcal{L}^+\psi_n = \lambda_n \psi_n$$

Defining the inner product : $(\psi, \phi) = \int_0^\infty \psi(\tau)\phi(\tau)d\tau$

and using the property: $(\psi, \mathcal{L}\phi) = (\mathcal{L}^+\psi, \phi)$

One can obtained the adjoint operator \mathcal{L}^+ :

$$\mathcal{L}^+\psi(\tau) = [\partial_{\tau} - \rho(\tau)]\psi(\tau) + \psi(0)\rho(\tau)$$

To recover the activity we will need the eigenfunctions ψ_n of the adjoint operator \mathcal{L}^+ :

$$\mathcal{L}^+\psi_n = \lambda_n \psi_n$$

Defining the inner product : $(\psi, \phi) = \int_0^\infty \psi(\tau)\phi(\tau)d\tau$

and using the property: $(\psi, \mathcal{L}\phi) = (\mathcal{L}^+\psi, \phi)$

One can obtained the adjoint operator \mathcal{L}^+ :

$$\mathcal{L}^+\psi(\tau) = [\partial_{\tau} - \rho(\tau)]\psi(\tau) + \psi(0)\rho(\tau)$$

 ψ_n , ϕ_n form a biorthonormal basis:

$$(\psi_i, \phi_j) = \delta_{ij}$$

The activity is given by:

$$A(t) = q(t,0) = \sum_{n} a_n(t)\phi_n(0)$$

The activity is given by:

$$A(t) = q(t,0) = \sum_{n} a_n(t)\phi_n(0)$$

We derived $a_n(t)$ by projecting $q(\tau, t)$ on the eigenbasis:

$$a_n(t) = (\psi_n, q)$$

The activity is given by:

$$A(t) = q(t,0) = \sum_{n} a_n(t)\phi_n(0)$$

We derived $a_n(t)$ by projecting $q(\tau, t)$ on the eigenbasis:

$$a_n(t) = (\psi_n, q)$$

From which we obtained $\frac{da_n}{dt} = \lambda_n a_n$ and:

$$a_n(t) = a_n(0) \exp(\lambda_n t)$$

The activity is given by:

$$A(t) = q(t,0) = \sum_{n} a_n(t)\phi_n(0)$$

We derived $a_n(t)$ by projecting $q(\tau, t)$ on the eigenbasis:

$$a_n(t) = (\psi_n, q)$$

From which we obtained $\frac{da_n}{dt} = \lambda_n a_n$ and:

$$a_n(t) = a_n(0) \exp(\lambda_n t)$$

Keeping the two first modes, one can obtain a second order differential equation for the firing rate :

$$\ddot{A}(t) = \left[2Re(\frac{1}{\lambda_1})\dot{A}(t) - A(t) + A_{\infty}\right]|\lambda_1|$$

M. Mattia, Low-dimensional firing rate dynamic of spiking neuron networks (2016)

We can expand the refractory density as:

$$q(\tau,t) = \sum_{n} a_n(t)\phi_n(\tau)$$

We can expand the refractory density as:

$$q(\tau, t) = \sum_{n} a_n(t)\phi_n(\tau)$$

from this expansion we found a condition for the eigenvalues

$$\lambda_n$$
:
$$1 = \int_0^\infty e^{-\lambda_n \tau} P(\tau) d\tau$$

We can expand the refractory density as:

$$q(\tau, t) = \sum_{n} a_n(t)\phi_n(\tau)$$

from this expansion we found a condition for the eigenvalues

$$\lambda_n$$
:
$$1 = \int_0^\infty e^{-\lambda_n \tau} P(\tau) d\tau$$

Knowing the eigenvalues and the hazard function we can analytically define the eigenfunctions ϕ_n and ψ_n .

We can expand the refractory density as:

$$q(\tau, t) = \sum_{n} a_n(t)\phi_n(\tau)$$

from this expansion we found a condition for the eigenvalues

$$\lambda_n$$
:
$$1 = \int_0^\infty e^{-\lambda_n \tau} P(\tau) d\tau$$

Knowing the eigenvalues and the hazard function we can analytically define the eigenfunctions ϕ_n and ψ_n .

Thanks to those eigenfunctions we can recover the activity:

$$A(t) = \sum_{n} a_n(t)\phi_n(0)$$

Overview

- 1. Refractory density $q(\tau, t)$
 - 1.1 Refractory density equation
 - 1.2 The refractory density for a LIF neuron

2. Theoretical derivation

- 2.1 Eigenfunction expansion of the refractory density
- 2.2 Definition and property of the adjoint operator \mathcal{L}^+
- 2.3 Recover the Activity
- 2.4 Resume of the theoretical derivation

3. Spectral expansion for different processes

- 3.1 LIF neuron with exponential link function
- 3.2 Inverse Gaussian process
- 3.3 Gamma process
- 4. Summary and Future Work

- 3. Spectral expansion for different processes
- 3.1 LIF neuron with exponential link function

In the case of the LIF neuron with exponential link function we can not find λ_n from the condition:

$$1 = \int_0^\infty e^{-\lambda_n \tau} P(\tau) d\tau$$

- 3. Spectral expansion for different processes
- 3.1 LIF neuron with exponential link function

In the case of the LIF neuron with exponential link function we can not find λ_n from the condition:

$$1 = \int_0^\infty e^{-\lambda_n \tau} P(\tau) d\tau$$

We can express the operator \mathcal{L} in matrix form. And recover the activity computing the eigenvalues and eigenvectors of this matrix.

3.1 LIF neuron with exponential link function

$$\lambda_0 = 0 \Rightarrow \partial_t q(\tau, t) = 0$$
 $A(t) = \sum_n \psi_n(0)\phi_n(0) \exp(\lambda_n t)$

$$\mu = 16 \text{ mV}, V_{th} = 15 \text{ mV}, V_r = 0 \text{ mV}, \Delta = 2 \text{ mV}, C = 1000 \text{ Hz},$$

 $\tau_m = 20 \text{ ms } dt = 0.1 \text{ ms}$

3.2 Spectral expansion for different processes

3.1 Inverse Gaussian process

The perfect integrate fire model driven by a Gaussian white noise:

$$\dot{V} = \mu + \sqrt{2D}\xi(t) \qquad <\xi(t)\xi(s)> = \delta(t-s)$$
 if $V = V_{th}: V \to V_r$

 $\mu=1,\,D=0.125$ and $V_{th}=1$ figure: T. Schwalger, The interspike-interval statistics of non-renewal neuron models (2013)

The ISI distribution is given by:

$$P(\tau) = \frac{V_{th}}{\sqrt{4\pi D\tau^3}} \exp\left(-\frac{(\mu\tau - V_{th})^2}{4D\tau}\right)$$

The ISI distribution is given by:

$$P(\tau) = \frac{V_{th}}{\sqrt{4\pi D\tau^3}} \exp\left(-\frac{(\mu\tau - V_{th})^2}{4D\tau}\right)$$

The Laplace transform can be derived analytically:

$$\bar{P}(\lambda) = \exp(\frac{\mu V_{th}}{2D} \left[1 - \sqrt{1 + \frac{4D\lambda}{\mu^2}}\right])$$

The ISI distribution is given by:

$$P(\tau) = \frac{V_{th}}{\sqrt{4\pi D\tau^3}} \exp\left(-\frac{(\mu\tau - V_{th})^2}{4D\tau}\right)$$

The Laplace transform can be derived analytically:

$$\bar{P}(\lambda) = \exp(\frac{\mu V_{th}}{2D} \left[1 - \sqrt{1 + \frac{4D\lambda}{\mu^2}}\right])$$

Solving $\bar{P}(\lambda_n) = 1$ we find:

$$\lambda_n = -\frac{2\pi\mu}{V_{th}} n(\frac{2\pi D}{\mu V_{th}} n + i)$$

Recover the activity solving the second order differential equation:

$$\ddot{A}(t) = \left[2Re(\frac{1}{\lambda_1})\dot{A}(t) - A(t) + A_{\infty}\right]|\lambda_1|$$

$$\mu = 50 \text{ mV}, D = 7.5, V_{th} = 1$$

$$\lambda_0 = 0 \Rightarrow \partial_t q(\tau, t) = 0$$
 $A(t) = \sum_n \psi_n(0)\phi_n(0) \exp(\lambda_n t)$

$$\mu = 50 \text{ mV}, D = 7.5, V_{th} = 1$$

Comparison of the theoretical spectrum and the eigenvalues obtained from the matrix form of \mathcal{L}

3.3 Gamma process

The ISI distribution is given by:

$$P(\tau) = \frac{\beta^{\gamma}}{(\gamma - 1)!} \tau^{\gamma - 1} e^{-\beta \tau}$$
 for integer γ and $\beta > 0$.

3.3 Gamma process

The ISI distribution is given by:

$$P(\tau) = \frac{\beta^{\gamma}}{(\gamma - 1)!} \tau^{\gamma - 1} e^{-\beta \tau}$$
 for integer γ and $\beta > 0$.

The Laplace transform can be derived analytically:

$$\bar{P}(\lambda) = (\frac{\beta}{\beta + \lambda})^{\gamma}$$

3.3 Gamma process

The ISI distribution is given by:

$$P(\tau) = \frac{\beta^{\gamma}}{(\gamma - 1)!} \tau^{\gamma - 1} e^{-\beta \tau}$$
 for integer γ and $\beta > 0$.

The Laplace transform can be derived analytically:

$$\bar{P}(\lambda) = (\frac{\beta}{\beta + \lambda})^{\gamma}$$

Solving $\bar{P}(\lambda_n) = 1$ we find:

$$\lambda_n = \beta(\exp(\frac{2\pi i}{\gamma}n) - 1), \ n = 0, ..., \gamma - 1$$

• We made an expansion of the refractory density for time homogeneous hazard rates $\rho(t,\tau)=\rho(\tau)$

- ▶ We made an expansion of the refractory density for time homogeneous hazard rates $\rho(t,\tau) = \rho(\tau)$
- ▶ We obtained a low dimensional dynamics for the firing rate in the case of uncoupled neuron

- We made an expansion of the refractory density for time homogeneous hazard rates $\rho(t,\tau)=\rho(\tau)$
- ▶ We obtained a low dimensional dynamics for the firing rate in the case of uncoupled neuron

Future work:

▶ Derive a low-dimensional ordinary differential equation for the firing rate in the case of a coupled network.

$$\frac{da_n}{dt} = \lambda_n a_n + \frac{d\nu}{dt} (\frac{\partial \psi_n}{\partial \nu}, q)$$

- ▶ We made an expansion of the refractory density for time homogeneous hazard rates $\rho(t,\tau) = \rho(\tau)$
- ▶ We obtained a low dimensional dynamics for the firing rate in the case of uncoupled neuron

Future work:

▶ Derive a low-dimensional ordinary differential equation for the firing rate in the case of a coupled network.

$$\frac{da_n}{dt} = \lambda_n a_n + \frac{d\nu}{dt} (\frac{\partial \psi_n}{\partial \nu}, q)$$

▶ Understand if there is an other constraint on the eigenvalues or if it's a numerical error.

Thanks for your attention

one can show that for different eigenvalues, the eigenfunctions ψ_i and ϕ_j are orthogonal:

$$\lambda_j(\psi_i, \phi_j) = (\psi_i, \mathcal{L}\phi_j)$$
$$= (\mathcal{L}^+\psi_i, \phi_j)$$
$$= \lambda_i(\psi_i, \phi_j)$$

2.2 Definition and property of the adjoint operator \mathcal{L}^+

$$(\psi, \mathcal{L}\phi) = \int_0^\infty \psi(\tau) \mathcal{L}\phi(\tau) d\tau$$

$$= \int_0^\infty \psi(\tau) [-\partial_\tau - \rho(\tau)] \phi(\tau) d\tau$$

$$= -[\psi(\tau)\phi(\tau)]_0^\infty + \int_0^\infty \partial_\tau \psi(\tau)\phi(\tau) d\tau - \int_0^\infty \rho(\tau)\psi(\tau)\phi(\tau) d\tau$$

$$= \psi(0)\phi(0) + \int_0^\infty [\partial_\tau - \rho(\tau)]\psi(\tau)\phi(\tau) d\tau$$

$$= \int_0^\infty \psi(0)\rho(\tau)\phi(\tau) d\tau + \int_0^\infty [\partial_\tau - \rho(\tau)]\psi(\tau)\phi(\tau) d\tau$$

$$= \int_0^\infty \{[\partial_\tau - \rho(\tau)]\psi(\tau) + \psi(0)\rho(\tau)\}\phi(\tau) d\tau$$

$$= (\mathcal{L}^+\psi, \phi)$$

with $\mathcal{L}^+\psi(\tau) = [\partial_{\tau} - \rho(\tau)]\psi(\tau) + \psi(0)\rho(\tau)$

2.2 Definition and property of the adjoint operator \mathcal{L}^+

$$\mathcal{L}^+ \psi_n(\tau) = [\partial_\tau - \rho(\tau)] \psi_n(\tau) + \psi_n(0) \rho(\tau)$$
$$= \lambda_n \psi_n(\tau)$$

The solution of this equation is:

$$\psi_n(\tau) = \psi_n(0) \exp(\lambda_n \tau + \int_0^\tau \rho(s) ds)$$
$$-\psi_n(0) \int_0^\tau \rho(x) \exp\left[\lambda_n(\tau - x) + \int_0^{\tau - x} \rho(s) ds\right] dx$$

Second order differential equation for the firing rate for uncoupled neurons

M. Mattia, Low-dimensional firing rate dynamic of spiking neuron networks (2016)

$$\ddot{A}(t) = \left[2Re(\frac{1}{\lambda_1})\dot{A}(t) - A(t) + A_{\infty}\right]|\lambda_1|$$