Tautologies; Normal Forms

CS 350: Computer Organization & Assembler Language Programming

A. Why?

- Tautologies describe properties that are always true and transformations that are always valid.
- Disjunctive Normal Form (DNF) is a particular standard way to represent a logical expression.
- DNF corresponds to a sum of the rows of 1's for the truth table of an expression.

B. Outcomes

At the end of today, you should:

- Know what tautologies, contradictions, and contingencies are and how to recognize them.
- Know what disjunctive normal form (DNF) is and how it's related to truth tables.

C. Laws of Boolean Logic

- In addition to comparing the truth tables of expressions, we can also manipulate them syntactically, substituting equals for equals.
- There exist many alternative ways to write laws for Boolean logic; here are some.

Associativity and Commutativity

- AND and OR are associative; XOR, NAND, NOR, IMPL, IFF are not associative.
- AND, OR, XOR, NAND, NOR, IFF are commutative, IMPL is not commutative.

• Distributivity

• $X \ AND \ (Y \ OR \ Z) = (X \ AND \ Y) \ OR \ (X \ AND \ Z)$

- X OR (Y AND Z) = (X OR Y) AND (X OR Z)
- DeMorgan's Laws
 - $P \ NAND \ Q = NOT \ (P \ AND \ Q) = (NOT \ P) \ OR \ (NOT \ Q)$
 - $P \ NOR \ Q = NOT \ (P \ OR \ Q) = (NOT \ P) \ AND \ (NOT \ Q)$
- Contradiction: X AND NOT X = 0
- Excluded Middle: X OR NOT X = 1
- **Double Negation** (Pierce's Law): NOT NOT X = X
- Identity: X AND 1 = X; also, X OR 0 = X
- **Domination**: X OR 1 = 1; also, X AND 0 = 0
- Idempotency: X OR X = X AND X = X
- **Definition of** IMPL: X IMPL Y = NOT X OR Y
- **Definition of** IFF: X IFF Y = (X IMPL Y) AND (Y IMPL X)

D. Disjunctive Normal Form

- A **normal form** is a standard way of writing something.
- In **DNF** (**Disjunctive Normal Form**), a logical expression is written as as a disjunction (OR) of terms.
 - Each term is the conjunction (AND) of 1 or more "atoms" (a.k.a. "literals").
 - An \mathbf{atom} (= " $\mathbf{literal}$ ") is a variable or NOT variable.
 - **Example**: $\overline{X}Y + XZ$ is in DNF.
 - **Example**: XZ + YZ is in DNF.
 - **Example**: (X+Y) Z is not in DNF (even though it's equivalent to XZ+YZ).
- Using Boolean algebra (especially DeMorgan's laws and distribution) you can always simplify a complex expression into one in DNF.
 - Typically use DeMorgan's laws and distribution to reduce the number of parentheses in the expression, then use rules like contradiction, identity, idempotency, etc., to get rid of unnecessary terms.

• Example:

$$\neg (X \overline{Y} + Y)$$

$$= \neg (X \overline{Y}) \overline{Y} \quad \text{by DeMorgan's law } (NOT \text{ of } OR)$$

$$= (\overline{X} + Y) \overline{Y} \quad \text{by DeMorgan's law } (NOT \text{ of } AND) \text{ and double negation}$$

$$= \overline{X} \overline{Y} + Y \overline{Y} \quad \text{by Distributivity } (AND \text{ over } OR)$$

$$= \overline{X} \overline{Y} + \theta \quad \text{by Contradiction}$$

$$= \overline{X} \overline{Y} \quad \text{by Domination}$$

E. Full DNF and Truth Tables

- A DNF expression is in **Full DNF** if each term includes all the variables of the expression.
 - Example: $XYZ + X\overline{Y}Z + XYZ + \overline{X}YZ$ is in full DNF.
 - Example: XZ + YZ is in DNF but not full DNF
- You can convert an expression from DNF to full DNF by inserting $(V + \overline{V})$ for missing variables V and expanding by distributing AND over OR

• Example:
$$XZ + YZ$$

 $= X(Y + \overline{Y})Z + (X + \overline{X})YZ$
 $= XYZ + X\overline{Y}Z + XYZ + \overline{X}YZ$
 $= XYZ + X\overline{Y}Z + \overline{X}YZ$

- Full DNF format is useful because a full DNF term corresponds to exactly one row of a truth table.
- **Example**: $Z = \overline{X} \ \overline{Y} + X \ \overline{Y} + X \ Y$ is in full DNF (there are two variables, X and Y), so each term specifies exactly one row where the truth table for Z should be 1.

X	Y	DNF Term	Z
0	0	$\overline{X} \ \overline{Y}$	1
0	1	$\overline{X} Y$	0
1	0	$X \overline{Y}$	1
1	1	X Y	1

- For 3 variables, there are 8 rows, with each row indexed by a 3-variable term.
- **Example**: The table below defines $W = \overline{X} \ \overline{Y} \ \overline{Z} + \overline{X} \ YZ + X \ \overline{Y} \ Z$.

X	Y	\boldsymbol{Z}	DNF Term	W
0	0	0	$\overline{X} \ \overline{Y} \ \overline{Z}$	1
0	0	1	$\overline{X} \ \overline{Y} \ Z$	0
0	1	0	$\overline{X} Y \overline{Z}$	0
0	1	1	$\overline{X} YZ$	1
1	0	0	$X \overline{Y} \overline{Z}$	0
1	0	1	$X \overline{Y} Z$	1
1	1	0	$XY\overline{Z}$	0
1	1	1	XYZ	0

- To convert a full DNF expression to a truth table, take the column for the expression and place a 1 in each row corresponding to a full DNF term; place a 0 in each leftover row.
- In the other direction, to convert a truth table to a full DNF term, find each row that contains a 1 and add the DNF term for that row.
 - (If the column is nothing but 0, the expression is F (false).
- Length of Full DNF Expressions
 - How many terms can a full DNF expression with k variables have?
 - Converting from arbitrary boolean expression to equivalent full DNF representation can cause "exponential blowup".
 - **Problem to solve** in next class: Given a boolean expression, how can we find a shortest equivalent expression?

Tautologies; Normal Forms

CS 350: Computer Organization & Assembler Language Programming

A. Why?

- Tautologies describe properties that are always true and transformations that are always valid.
- Disjunctive Normal Form (DNF) is a particular standard way to represent a logical expression.

B. Outcomes

After this activity, you should be able to

- Recognize tautologies, contradictions, and contingencies via their truth tables.
- Translate between an expression's disjunctive normal form (DNF) and its truth table.

C. Questions

- 1. Write a truth table to show that ((X IMPL Y) AND (Y IMPL Z)) IMPL (X IMPL Z) is a tautology.
- 2. Write a truth table to test one of DeMorgan's laws on three variables: NOT(X OR Y OR Z) = NOT X AND NOT Y AND NOT Z. Is this a tautology, contradiction, or contingency?
- 3. Write a truth table for ((X IMPL Y) IMPL Z) IFF (X IMPL (Y IMPL Z)); is this a tautology, a contradiction, or a contingency?
- 4. Given an expression, the number of 1's in its truth table column is =, >, or < than the number of terms in its full DNF representation?
- 5. (a) Translate $\neg (X + YZ)$ into minimal DNF (non-full DNF with a minimal set of terms). (b) Give the equivalent full DNF representation. (c) Use the full DNF representation to write a truth table for the expression.
- 6. Repeat the previous problem on $(X + \overline{Y})(Y + Z)$.

Solution

The table below shows that $((XIMPL\ Y)\ AND\ (YIMPL\ Z))\ IMPL\ (XIMPL\ X)$ Z) is a tautology.

X	Y	\boldsymbol{Z}	((X	IMPL	Y)	AND	(Y	IMPL	Z))	IMPL	(X	<i>IMPL</i>	Z)
0	0	0	0	1	0	1	0	1	0	1	0	1	0
0	0	1	0	1	0	1	0	1	1	1	0	1	1
0	1	0	0	1	1	0	1	0	0	1	0	1	0
0	1	1	0	1	1	1	1	1	1	1	0	1	1
1	0	0	1	0	0	0	0	1	0	1	1	0	0
1	0	1	1	0	0	0	0	1	1	1	1	1	1
1	1	0	1	1	1	0	1	0	0	1	1	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1

The table below shows that $NOT(X \ OR \ Y \ OR \ Z) = NOT \ X \ AND \ NOT \ Y$ AND NOT Z is a tautology.

X	Y	\boldsymbol{Z}	(NOT ((X	OR	$Y) \ OR \ Z))$	=	((NOT	X AND	NOT	Y) AND	NOT Z)
0	0	0	1	0	0	1	1	1	1	1	1
0	0	1	0	0	1	1	1	1	1	0	0
0	1	0	0	1	1	1	1	0	0	0	1
0	1	1	0	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	0	0	1	0	1
1	0	1	0	1	1	1	0	0	1	0	0
1	1	0	0	1	1	1	0	0	0	0	1
1	1	1	0	1	1	1	0	0	0	0	0

Since the truth table for ((X IMPL Y) IMPL Z) IFF (X IMPL (Y IMPL Z)) has a mix of 0's and 1's, it's a contingency.

X	Y	\boldsymbol{Z}	((X IMPL Y)	IMPL	Z)	=	(X	IMPL	$(Y\ IMPL\ Z))$
0	0	0	1	0	0	0	0	1	1
0	0	1	1	1	1	1	0	1	1
0	1	0	1	0	0	0	0	1	0
0	1	1	1	1	1	1	0	1	1
1	0	0	0	1	0	1	1	1	1
1	0	1	0	1	1	1	1	1	1
1	1	0	1	0	0	1	1	0	0
1	1	1	1	1	1	1	1	1	1

The number of 1's in the truth table column for an expression equals the number of terms in the full DNF representation.

5a.
$$\neg (X + Y Z) = \overline{X} \ \neg (Y Z) = \overline{X} (\overline{Y} + \overline{Z}) = \overline{X} \ \overline{Y} + \overline{X} \ \overline{Z}$$
.

5b.
$$\overline{X} \ \overline{Y} + \overline{X} \ \overline{Z} = \overline{X} \ \overline{Y} (Z + \overline{Z}) + \overline{X} (Y + \overline{Y}) \ \overline{Z}$$

$$= \overline{X} \ \overline{Y} \ Z + \overline{X} \ \overline{Y} \ \overline{Z} + \overline{X} Y \ \overline{Z} + \overline{X} \ \overline{Y} \ \overline{Z}$$

$$= \overline{X} \ \overline{Y} \ \overline{Z} + \overline{X} \ \overline{Y} \ \overline{Z} + \overline{X} Y \ \overline{Z}.$$

5c. The table below shows the full DNF expression from part (b) and also the original expression $\neg (X + Y Z)$. (You weren't asked for this last part.)

X	Y	Z	$egin{array}{cccccccccccccccccccccccccccccccccccc$	NOT	(X	+	Y Z)
0	0	0	1	1	0	0	0
0	0	1	1	1	0	0	0
0	1	0	1	1	0	0	0
0	1	1	0	0	0	1	1
1	0	0	0	0	1	1	0
1	0	1	0	0	1	1	0
1	1	0	0	0	1	1	0
1	1	1	0	0	1	1	1

6a.
$$(X + \overline{Y})(Y + Z) = XY + XZ + \overline{Y}Y + \overline{Y}Z = XY + XZ + \overline{Y}Z$$
.

6b.
$$XY + XZ + \overline{Y}Z = XY(\overline{Z} + Z) + X(\overline{Y} + Y)Z + (\overline{X} + X)\overline{Y}Z$$

 $= XY\overline{Z} + XYZ + X\overline{Y}Z + XYZ + \overline{X}\overline{Y}Z + X\overline{Y}Z$
 $= \overline{X}\overline{Y}Z + X\overline{Y}Z + XY\overline{Z} + XYZ$

6c. The table:

X	Y	\boldsymbol{Z}	$\overline{X} \overline{Y} Z + X \overline{Y} Z$	$(X+\overline{Y})$	AND	(Y + Z)
			$+ X Y \overline{Z} + X Y Z$			
0	0	0	0	1	0	0
0	0	1	1	1	1	1
0	1	0	0	0	0	1
0	1	1	0	0	0	1
1	0	0	0	1	0	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1