Discrete Mathematics: Lecture 6. Functions

a function f from A to B is an assignment of exactly one element of B to each element of A

- \blacksquare f:A \rightarrow B: A is the domain of f, B is the codomain of f
- \blacksquare f(a) = b: a is a preimage of b, b is the image of a
- range of f is the set of all images of elements of A range R⊆B of f is R={b | $\exists a \ f(a)=b$ }

- domain: {Adams, Chou, Goodfriend, Rodriguez, Stevens}
- \blacksquare codomain: {A, B, C, D, F}
- range: {A, B, C, F}

let f₁ and f₂ be functions from A to R

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

$$\blacksquare$$
 f₁ f₂ (x) = f₁(X) f₂ (x)

$$f_1$$
 and $f_2: R \rightarrow R$

$$f_1(x) = x^2$$

$$f_2(x) = x - x^2$$

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + (x - x^2) = x$$

 $(f_1f_2)(x) = x^2(x - x^2) = x^3 - x^4$

- one-to-one (injunction)
- onto (surjection)
- one-to-one correspondence (bijection)

- one-to-one (injunction)
 - $f(a) \neq f(b)$ whenever $a \neq b$
 - $\forall a \ \forall b \ (a \neq b \rightarrow f(a) \neq f(b))$

If f is either strictly increasing or decreasing, then f is one-to-one

- f is strictly (or monotonically) increasing iff x>y f(x)>f(y) for all x,y
- f is strictly (or monotonically) decreasing iff x>y f(x)< f(y) for all x,y

f:
$$\{a, b, c, d\} \rightarrow \{1, 2, 3, 4, 5\}$$

f(a) = 4, f(b) = 5, f(c) = 1, f(d) = 3
is f one-to-one?

$$f(x) = x^2$$

- $f: Z \to Z$: not one-to-one
- $f: Z+ \rightarrow Z$: one-to-one

- onto (surjection)
 - for every element $b \in B$ there is an element $a \in A$ with f(a) = b

f:
$$\{a, b, c, d\} \rightarrow \{1, 2, 3\}$$

f(a) = 3, f(b) = 2, f(c) = 1, f(d) = 3
is f onto?

f:
$$\{a, b, c, d\} \rightarrow \{1, 2, 3, 4\}$$
 is f onto?

- one-to-one correspondence (bijection)
 - if it is one-to-one and onto

f:
$$\{a, b, c, d\} \rightarrow \{1, 2, 3, 4\}$$

f(a) = 3, f(b) = 2, f(c) = 1, f(d) = 4
is f bijection?

bipartite graph representation

- inverse function
 - $f^{-1}(b) = a$ when f(a) = b, f is one-to-one correspondence

f:
$$\{a, b, c, d\} \rightarrow \{1, 2, 3, 4\}$$

f(a) = 3, f(b) = 2, f(c) = 1, f(d) = 4
is f bijection?

composition of the functions

$$(f \cdot g) (a) = f (g (a))$$

$$f, g: Z \rightarrow Z$$

$$f(x) = 2x + 3$$
, $g(x) = 3x + 2$

what is the composition of f and g? composition of g and f?

$$(f \circ g)(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

$$(g \cdot f)(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$$

graphs of functions

f: $A \rightarrow B$, the graph of the function f is the set of ordered pairs $\{(a, b) \mid a \in A \text{ and } f(a) = b\}$

$$f: Z \rightarrow Z, f(n) = 2n + 1$$

- Integer that is less than or equal to x
- \blacksquare ceiling function $\lceil x \rceil$ assigns to the real number x the smallest integer that is greater than or equal to x

$$\begin{bmatrix} 0.5 \end{bmatrix} = 0$$
 $\begin{bmatrix} 0.5 \end{bmatrix} = 1$ $\begin{bmatrix} -0.5 \end{bmatrix} = 0$ $\begin{bmatrix} -0.5 \end{bmatrix} = 0$ $\begin{bmatrix} 7 \end{bmatrix} = 7$

$$y = \lceil x \rceil$$

Data stored on a computer disk or transmitted over a data network are usually represented as a string of bytes. Each byte is made up of 8bits. How many bytes are required to encode 100 bits of data?

$$\lceil 100/8 \rceil = \lceil 12.5 \rceil = 13 \text{ bytes}$$

properties of the floor and ceiling functions (n is an integer, x is a real number)

(Ia)
$$\lfloor x \rfloor = n \text{ iff } n \leq x \leq n + 1$$

(1b)
$$\lceil x \rceil = n \text{ iff } n - 1 < x \le n$$

$$(Ic) \lfloor x \rfloor = n \text{ iff } x - I < n \leq x$$

(Id)
$$\lceil x \rceil = n \text{ iff } x \leq n \leq x + 1$$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a)
$$\lfloor -x \rfloor = - \lceil x \rceil$$

(3b)
$$\lceil -x \rceil = - \lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

$$(4b) \quad \lceil x + n \rceil = \lceil x \rceil + n$$

prove
$$\lfloor x + n \rfloor = \lfloor x \rfloor + n$$

suppose $\lfloor x \rfloor = m$, m is a positive integer
 $m \le x < m + 1$ by property (Ia)
 $m + n \le x + n < m + 1 + n$
 $\lfloor x + n \rfloor = m + n = \lfloor x \rfloor + n$

prove that if x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 0.5 \rfloor$

suppose $x = n + \epsilon$, when n is integer and $0 \le \epsilon < 1$

1)
$$0 \le \epsilon < 0.5$$
 $(0 \le 2\epsilon < 1, 0.5 \le \epsilon + 0.5 < 1)$
 $2x = 2n + 2\epsilon$ $\lfloor 2x \rfloor = 2n$
 $\lfloor x + 0.5 \rfloor = \lfloor n + \epsilon + 0.5 \rfloor = n$
 $|x| + |x + 0.5| = n + n = 2n$

2)
$$0.5 \le \epsilon < 1$$
 $(1 \le 2\epsilon < 2, 1 \le \epsilon + 0.5 < 1.5)$
 $2x = 2n + 2\epsilon = (2n + 1) + (2\epsilon - 1)$ $\lfloor 2x \rfloor = 2n + 1$
 $\lfloor x + 0.5 \rfloor = \lfloor n + \epsilon + 0.5 \rfloor = \lfloor n + 1 + \epsilon - 0.5 \rfloor = n + 1$
 $\lfloor x \rfloor + \lfloor x + 0.5 \rfloor = n + n + 1 = 2n + 1$

partial functions

 $f:A \rightarrow B$

a total function f when A is the domain of definition

a partial function $f:A' \rightarrow B$, where A' is a subset of A, domain of definition

$$f: Z \rightarrow R$$
 where $f(n) = \sqrt{n}$

f is a partial function from Z to R where domain of definition is the set of nonnegative integers