Regular Expressions and Automata

Introduction

Regular expressions: convenient to specify a text pattern

Finite automata: efficient to match a text pattern

Both are equivalent

Outline

• Regular Expressions to NFA

- Illustration
- Algorithm
- NFA to Regular Expressions

Regular Expressions to NFA

Regex and NFA:

• To say they are equivalent, the **language** produced by the regex $L(\mathbf{R})$ must be equal to the **language** produced by the NFA $L(\mathbf{N})$.

Given a Regex, we need to convert the following parts into NFA

- Basis Regular Expressions:
 - Empty set
 - Empty string
 - Input symbol
- Regular Operations:
 - Concatenation
 - Union
 - Kleene-Closure

Basis Regular Expressions:

Figure 1: Basis Regular Expressions -> NFA

Regular Operations:

Before handling operations, convert the basis regular expressions into a NFA using the conversions shown in figure 1. Example:

Given REGEX: $e_1e_2e_3^*$, where e_i are expressions

Convert each e_i to NFAs so that they are $N_1,\,N_2,\,N_3$

Then handle the concatenation of N_1 and N_2 and the Kleene Closure of N_3

Concatenation

Figure 2: Example Conatenation: N_1 and N_2 are basis expressions that were converted to NFAs

Union

Figure 3: Example Union

Kleene

Figure 4: Example Kleene

Abstract Syntax of Regular Expressions

$$\label{eq:concatenation} \begin{split} &\operatorname{Concatenation} \to (:&\operatorname{concatenation} \ e\text{-1} \ \dots \ e\text{-n}) \\ &\operatorname{Union} \to (:&\operatorname{union} \ e\text{-1} \ \dots \ e\text{-n}) \\ &\operatorname{Kleene} \to (:&\operatorname{kleene} \ e) \end{split}$$

McNaughton-Yamada-Thompson Algorithm

Input: A regular expression R

Output: The equivalent NFA N, where L(R) = L(N)

Overview: Recursive construction:

Base case: If R is a basis element (\emptyset, ϵ, a) construct the equivalent NFA directly

Recursive case: Otherwise, recurse on the children of R and combine the results according to the operation of R

Algorithm 1: MYT

```
Input: R;  // Regex
Output: (Q, E, s, a);  // states, edges, start, accept

1 if R is \emptyset, \varepsilon, or symbol then // Base Case
2 | return MYT-base(R);
3 else if car(R) = KLEENE-CLOSURE then
4 | return kleene-closure (MYT (child (R)));
5 else if car(R) = CONCATENATION then
6 | return MYT-concatenate (cdr (R));
7 else if car(R) = UNION then
8 | return MYT-union (cdr (R));
9 else // Malformed Regex
10 | ERROR;
```

```
Procedure MYT-base
```

```
Input: R
Output: (Q, E, s, a)

1 s \leftarrow newstate();

2 a \leftarrow newstate();

3 Q \leftarrow \{s, a\};

4 if R = \emptyset then // empty set \emptyset

5 | E \leftarrow \emptyset;

6 else // empty string \varepsilon or symbol \sigma

7 | E \leftarrow \{s \xrightarrow{R} a\};
```

Procedure MYT-concatenate

Procedure MYT-union

```
Input: c
Output: (Q, E, s, a)

1 function f(M, R) is
2 \lfloor \text{union}(M, \text{MYT}(R));

3 if \emptyset = c then
4 \mid \text{return MYT-emptyset}(\emptyset);

5 else
6 \lfloor \text{return fold-left}(f, \text{MYT}(\text{car}(c)), \text{cdr}(c));
```

NFA to Regular Expressions

Input: NFA N

Output: Equivalent regular expression R,

$$L(N) = L(R)$$

Approach: Construction generalized NFA: an NFA with regular expressions on its edges 1. Convert N to an initial GNFA 2. Iteratively remove (rip) states from the GNFA 3. When the GNFA has only two states (start and accept), the edge between them is the equivalent regular expression

Generalized NFA (GNFA)

A generalized NFA $\tilde{N}=(Q, \Sigma, \delta, q_{start}, q_{accept})$:

- Q is the finite set of states
- Σ is the input alphabet
- δ : (Q {q~accept}) × (Q {q_{start}}) \rightarrow REGEX
- $q_{start} \in Q$ is the start state
- $q_{accept} \in Q$ is the accept state

Ripping a state from the GNFA

Ripping is taking a section of the GNFA and converting it into a regex

- Given: $state_i \rightarrow state_{rip} \rightarrow state_j$
- Convert: $state_i \rightarrow state_j$ where the transition is the regex

Ripping state \tilde{q}

- Predecessor state q_i
- Successor state q_i

Four types of edges:

- Predecessor $E(q_i, \tilde{q})$
- Successor $E(\tilde{q}, q_i)$
- Loop $E(\tilde{q}, \tilde{q})$
- Bypass $E(q_i, q_i)$

All predecessor/successor pairs

Figure 5: Example rip of a GNFA

Algorithm 2: NFA to Regex Input: $N = (Q, \Sigma, E, q_0, F)$; // states, alphabet, edges, start, accept Output: R; // Regular Expression /* Construct the initial GNFA */ 1 $N' \leftarrow \text{NFA-to-GNFA}(N)$; /* Call Convert() subroutine on the GNFA */ 2 $R \leftarrow \text{Convert}(N')$;

Algorithm 3: NFA-to-GNFA Input: $N = (Q, \Sigma, E, q_0, F)$; // states, alphabet, edges, start, accept Output: $N' = (Q', \Sigma, E', q_{\text{start}}, q_{\text{accept}});$ // states, alphabet, edges, start, accept 1 $Q' \leftarrow Q \cup \{q_{\mathrm{start}}, q_{\mathrm{accept}}\}$; // add new start, accept states $2 \ E' \leftarrow \underbrace{\left\{q_{\mathrm{start}} \xrightarrow{\varepsilon} q_0\right\}}_{\mathrm{edge \ from \ new \ start}} \cup \underbrace{\bigcup_{q \in F} \left\{q \xrightarrow{\varepsilon} q_{\mathrm{accept}}\right\}}_{;}$ 3 forall $q_i \in Q$ do // Merge multiple edges between nodes into union edges forall $q_i \in Q$ do $e \leftarrow \left\{ a \stackrel{\sigma}{ ightarrow} b \in E \mid a = q_i \wedge b = q_j ight\}; \text{// set of edges from } q_i \text{ to } q_j$ 5 if |e| < 1 then 6 $E' \leftarrow E' \cup e$; 7 else if |e| > 1 then 8 $\ell \leftarrow \left(\bigcup_{\substack{a \xrightarrow{\sigma} b \in e}} \{\sigma\}\right); \text{// set of edge labels from } q_i \text{ to } q_j$ 9 10 $E' \leftarrow E' \cup \left\{ q_i \xrightarrow{r} q_j \right\};$ 11

Function Convert(Q,E)

```
1 if |Q| = 2 then
            R \leftarrow E(q_{\text{start}}, q_{\text{accept}}); // Extract label of edge from GNFA start to accept
            return R;
 3
 4 else
           	ilde{q} \leftarrow 	ext{any state in } (Q \setminus \{q_{	ext{start}}, q_{	ext{accept}}\});
 5
            Q' \leftarrow Q \setminus \{\tilde{q}\};
            E' \leftarrow E \setminus \{\tilde{q} \rightarrow \tilde{q}\};
           forall q_i where E(q_i, 	ilde{q}) 
eq \emptyset do // predecessors of 	ilde{q}
 8
                  forall q_i where E(\tilde{q}, q_i) \neq \emptyset do // successors of \tilde{q}
                          r \leftarrow \operatorname{regex}(E(q_i, \tilde{q}) (E(\tilde{q}, \tilde{q}))^* E(\tilde{q}, q_j) \cup E(q_i, q_j));
10
                         E' \leftarrow E' \setminus \{(q_i \rightarrow \tilde{q}), (\tilde{q} \rightarrow q_j), (q_i \rightarrow q_j), \};
11
                         E' \leftarrow E' \cup \left\{q_i \xrightarrow{r} q_j\right\};
12
           return Convert(Q', E');
13
```

Equivalence

