23 - Integrabilità e Integrale, secondo Bochner

₩ Definizione: Integrabilità secondo Bochner

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione.

f si dice integrabile secondo Bochner quando:

- f è fortemente μ -misurabile;
- La funzione $T \to \mathbb{R} : t \mapsto \|f(t)\|$ è sommabile secondo Lebesgue.

₩ Definizione: Funzione semplice, Integrale di Bochner di funzioni semplici

Sia $T\in\mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione.

f si dice semplice quando:

- f è misurabile;
- $\mu ig(T \setminus f^{-1} \{ \mathbf{0} \} ig) < +\infty;$
- f(T) è un insieme finito.

Sia $f: T \to X$ una funzione semplice.

Si dice **integrale di Bochner** di f l'elemento in X

$$\int_T f(t)\,d\mu := \sum_{\mathbf{x} \in f(T) \smallsetminus \{\mathbf{0}\}} \muig(f^{-1}\{\mathbf{x}\}ig) \cdot \mathbf{x}.$$

Q Osservazione

 $\int_T f(t) d\mu$ è un vettore ben definito; cioè, $\mu \big(f^{-1} \{ \mathbf{x} \} \big) < +\infty$ per ogni $\mathbf{x} \in f(T) \setminus \{ \mathbf{0} \}.$

Infatti, $\mu(T \setminus f^{-1}\{\mathbf{0}\}) < +\infty$ per ipotesi di semplicità di f, e $\mu(f^{-1}\{\mathbf{x}\}) \leq \mu(T \setminus f^{-1}\{\mathbf{0}\})$ per monotonia della misura di Lebesgue, essendo $f^{-1}\{\mathbf{x}\} \subseteq T \setminus f^{-1}\{\mathbf{0}\}$.

Q Osservazioni

Sia $T\in\mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione semplice.

Si hanno i seguenti fatti:

- f è integrabile secondo Bochner;
- $\left\| \int_T f(t) d\mu \right\| \leq \int_T \|f(t)\| dt$.

Infatti, f è misurabile in quanto semplice per ipotesi; inoltre, essendo f(T) finito, esso è separabile.

Dunque, f è fortemente μ -misurabile.

si osserva che $T = \bigcup_{\mathbf{x} \in f(T)} f^{-1}\{\mathbf{x}\}$; inoltre, $f^{-1}\{\mathbf{x}\} \in \mathscr{L}_p$ per ogni $\mathbf{x} \in f(T)$ essendo f misurabile, e si ha $f^{-1}\{\mathbf{x}\} \cap f^{-1}\{\mathbf{y}\} = \varnothing$ per ogni $\mathbf{x}, \mathbf{y} \in f(T)$ con $\mathbf{x} \neq \mathbf{y}$.

Si ha allora che

$$\begin{split} &\int_{T}\|f(t)\|\,dt = \sum_{\mathbf{x}\in f(T)}\int_{f^{-1}\{\mathbf{x}\}}\|f(t)\|\,dt \quad \text{ Per numerabile additività dell'integrale di Lebesgue rispetto all'insieme di integrazione} \\ &= \sum_{\mathbf{x}\in f(T)}\int_{f^{-1}\{\mathbf{x}\}}\|\mathbf{x}\|\,dt \quad \text{ In quanto } f(t) = \mathbf{x} \text{ per ogni } t\in f^{-1}\{\mathbf{x}\} \\ &= \sum_{\mathbf{x}\in f(T)\smallsetminus\{\mathbf{0}\}}\int_{f^{-1}\{\mathbf{x}\}}\|\mathbf{x}\|\,dt \quad \text{ In quanto } \int_{f^{-1}\{\mathbf{0}\}}\|\mathbf{0}\|\,dt = \int_{f^{-1}\{\mathbf{0}\}}0\,dt = 0 \\ &= \sum_{\mathbf{x}\in f(T)\smallsetminus\{\mathbf{0}\}}\|\mathbf{x}\|\int_{f^{-1}\{\mathbf{x}\}}dt \quad \text{ Per omogeneità dell'integrale di Lebesgue} \\ &= \sum_{\mathbf{x}\in f(T)\smallsetminus\{\mathbf{0}\}}\mu(f^{-1}\{\mathbf{x}\})\cdot\|\mathbf{x}\| \quad \text{ In quanto } \int_{S}dt = \mu(S) \text{ per ogni } S\in\mathcal{L}_{p} \end{split}$$

Avendo osservato che $\mu(f^{-1}\{\mathbf{x}\}) < +\infty$ per ogni $\mathbf{x} \in f(T) \setminus \{\mathbf{0}\}$ per semplicità di f, la funzione $T \to \mathbb{R} : t \mapsto \|f(t)\|$ è sommabile, essendo l'ultimo membro della catena di uguaglianze finito; avendone anche mostrato la misurabilità, ne segue che f è integrabile secondo Bochner.

Si osserva infine che

$$\begin{split} & \left\| \int_T f(t) \, d\mu \right\| = \left\| \sum_{\mathbf{x} \in f(T) \smallsetminus \{0\}} \mu(f^{-1}(\mathbf{x})) \cdot \mathbf{x} \right\| & \text{Per definizione di integrale di Bochner} \\ & \leq \sum_{\mathbf{x} \in f(T) \smallsetminus \{0\}} \mu(f^{-1}\{\mathbf{x}\}) \cdot \|\mathbf{x}\| & \text{Per sub-additività e assoluta omogeneità delle norme} \\ & = \int_T \|f(t)\| \, dt & \text{Per quanto visto prima} \end{split}$$

Dunque, anche il secondo punto è acquisito.

Proposizione 23.1: Linearità dell'integrale di Bochner per funzioni semplici

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Siano f,g:T o X due funzioni semplici.

Siano $\alpha, \beta \in \mathbb{R}$.

Allora:

- $\alpha f + \beta g$ è semplice;
- $\int_T (lpha f + eta g)(t) \, d\mu = lpha \int_T f(t) \, d\mu + eta \int_T g(t) \, d\mu.$

Osservazioni preliminari

Sia $\mathbf{z} \in (\alpha f + \beta g)(T)$.

La famiglia $\{f^{-1}\{\mathbf{x}\} \cap g^{-1}\{\mathbf{y}\} \mid \mathbf{x} \in f(T), \ \mathbf{y} \in g(T), \ \alpha \mathbf{x} + \beta \mathbf{y} = \mathbf{z}\}$ è una partizione di $(\alpha f + \beta g)^{-1}\{\mathbf{z}\}$.

Dimostrazione

Si provi dapprima che $\alpha f + \beta g$ è semplice.

Si ha:

• $(\alpha f + \beta g)(T)$ finito; infatti, $(\alpha f + \beta g)(T) \subseteq \alpha f(T) + \beta g(T)$, e tale soprainsieme è finito in quanto f(T) e g(T) sono finiti per ipotesi di semplicità di f e g.

- $\alpha f + \beta g$ è fortemente μ -misurabile, essendo combinazione lineare di f e g, fortemente μ -misurabili in quanto semplici ([Proposizione 22.3]); dunque, $\alpha f + \beta g$ è anche misurabile.
- $\begin{array}{l} \bullet \quad \mu \big(T \smallsetminus (\alpha f + \beta g)^{-1} \{ \mathbf{0} \} \big) < +\infty; \\ \text{infatti, } (\alpha f + \beta g)^{-1} \{ \mathbf{0} \} \supseteq f^{-1} \{ \mathbf{0} \} \cap g^{-1} \{ \mathbf{0} \}, \text{ da cui segue che} \\ T \smallsetminus (\alpha f + \beta g)^{-1} \{ \mathbf{0} \} \subseteq T \smallsetminus (f^{-1} \{ \mathbf{0} \} \cap g^{-1} \{ \mathbf{0} \}) = T \smallsetminus f^{-1} \{ \mathbf{0} \} \cup T \smallsetminus g^{-1} \{ \mathbf{0} \}; \end{array}$

l'ultimo insieme della catena di inclusioni ha misura finita per semplicità di f e g, dunque anche $T \setminus (\alpha f + \beta g)^{-1}\{\mathbf{0}\}$ ha misura finita.

Resta da mostrare che $\int_T (\alpha f + \beta g)(t) \, d\mu = \alpha \int_T f(t) \, d\mu + \beta \int_T g(t) \, d\mu.$ Si ha

$$\begin{split} &\alpha \int_{T} f(t) d\mu + \beta \int_{T} g(t) d\mu \\ &= \alpha \sum_{\mathbf{x} \in f(T) \setminus \{\mathbf{0}\}} \mu \big(f^{-1}\{\mathbf{x}\} \big) \mathbf{x} + \beta \sum_{\mathbf{y} \in g(T) \setminus \{\mathbf{0}\}} \mu \big(g^{-1}\{\mathbf{y}\} \big) \mathbf{y} \\ &= \alpha \sum_{\mathbf{x} \in f(T) \setminus \{\mathbf{0}\}} \sum_{\mathbf{y} \in g(T)} \mu \big(f^{-1}\{\mathbf{x}\} \cap g^{-1}\{\mathbf{y}\} \big) \mathbf{x} + \beta \sum_{\mathbf{y} \in g(T) \setminus \{\mathbf{0}\}} \sum_{\mathbf{x} \in f(T)} \mu \big(g^{-1}\{\mathbf{y}\} \cap f^{-1}\{\mathbf{x}\} \big) \mathbf{y} \end{split}$$

Per definizione di integrale di Bochner di funzioni semplici

Per additività della misura di Lebesgue, essendo le famiglie delle controimmagini degli elementi di f(T) e delle controimmagini degli elementi di g(T) due partizioni di T

$$\begin{split} &= \sum_{\mathbf{x} \in f(T) \smallsetminus \{\mathbf{0}\}} \mu \big(f^{-1}\{\mathbf{x}\} \cap g^{-1}\{\mathbf{0}\} \big) \alpha \mathbf{x} + \sum_{\mathbf{y} \in g(T) \smallsetminus \{\mathbf{0}\}} \mu \big(f^{-1}\{\mathbf{0}\} \cap g^{-1}\{\mathbf{y}\} \big) \beta \mathbf{y} \\ &+ \sum_{\mathbf{x} \in f(T) \smallsetminus \{\mathbf{0}\}} \sum_{\mathbf{y} \in g(T) \smallsetminus \{\mathbf{0}\}} \mu \big(f^{-1}\{\mathbf{x}\} \cap g^{-1}\{\mathbf{y}\} \big) (\alpha \mathbf{x} + \beta \mathbf{y}) \\ &= \sum_{\mathbf{z} \in (\alpha f + \beta g)(T) \smallsetminus \{\mathbf{0}\}} \mu \big((\alpha f + \beta g)^{-1}\{\mathbf{z}\} \big) \mathbf{z} \end{split}$$

$$=\int_T (lpha f + eta g)(t)\,d\mu$$

Per additività della misura di Lebesgue e per l'osservazione preliminare

Per definizione di integrale di Bochner di funzioni semplici

Anche il secondo punto è dunque acquisito.

Proposizione 23.2: Criterio di integrabilità secondo Bochner

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione.

Sono equivalenti le seguenti affermazioni:

- 1. f è integrabile secondo Bochner;
- 2. Esiste una successione $\{f_n: T \to X\}_{n \in \mathbb{N}}$ di funzioni semplici, convergente quasi ovunque in T a f e tale che $\lim_n \int_T \|f_n(t) f(t)\| \, dt = 0$.

Si supponga che esiste una successione $\{f_n: T \to X\}_{n \in \mathbb{N}}$ di funzioni semplici, convergente quasi ovunque in T a f e tale che $\lim_n \int_T \|f_n(t) - f(t)\| \, d\mu = 0$.

Dall'ipotesi di semplicità segue che f_n è fortemente μ -misurabile per ogni $n \in \mathbb{N}$; poiché $\{f_n\}_{n\in\mathbb{N}}$ converge per ipotesi a f quasi ovunque in T, dalla [Proposizione 22.4] segue allora che f è fortemente μ -misurabile.

Per acquisire la tesi, resta allora da provare che la funzione $T \to \mathbb{R}: t \mapsto \|f(t)\|$ è sommabile, ossia $\int_T \|f(t)\| \, dt < +\infty$.

Poiché per ipotesi si ha $\lim_n \int_T \|f_n(t) - f(t)\| dt = 0$, in corrispondenza a $\varepsilon = 1$ esiste $\nu \in \mathbb{N}$ tale che $\int_T \|f_n(t) - f(t)\| dt < 1$ per ogni $n \ge \nu$.

Si ha allora che

$$egin{aligned} & \int_{T} \|f(t)\| \, dt = \int_{T} \|f(t) - f_{
u}(t) + f_{
u}(t)\| \, dt \ & \leq \int_{T} \|f(t) - f_{
u}(t)\| \, dt + \int_{T} \|f_{
u}(t)\| \, dt \end{aligned}$$

Per monotonia dell'integrale di Lebesgue, in quanto

$$\|f(t)-f_
u(t)+f_
u(t)\|\leq \|f(t)-f_
u(t)\|+\|f_
u(t)\|$$
 per sub-additività delle norme

$$<1+\int_{T}\left\Vert f_{
u}(t)
ight\Vert dt$$

Per costruzione di u

$$<+\infty$$

In quanto f_{ν} è semplice per ipotesi

come si voleva.

Sia $T \subseteq \mathscr{L}_p$.

Sia $\eta:T o\mathbb{R}$ una funzione sommabile secondo Lebesgue.

Allora, per ogni $\varepsilon>0$ esistono $\delta>0$ e $M\subseteq T$ misurabile con $\mu(M)<+\infty$ tali che, per ogni $A\subseteq T$ misurabile con $\mu(A\cap M)<\delta$, si abbia $\left|\int_A \eta(t)\,dt\right|<\varepsilon.$

Sia $T \subseteq \mathscr{L}_p$.

Sia $\{\gamma_n: T \to \mathbb{R}_0^+\}_{n \in \mathbb{N}}$ una successione di funzioni misurabili e nonnegative, tale che $\lim_n \int_T \gamma_n(t) \, dt = 0$.

Allora, essa ammette un'estratta $\{\gamma_{n_k}\}_{k\in\mathbb{N}}$ convergente quasi ovunque in T alla funzione identicamente nulla.

\bigcap Dimostrazione: 1. \Rightarrow 2.

Si supponga f integrabile secondo Bochner.

Allora, f è fortemente μ -misurabile, cioè esiste $T_0 \subseteq T$ con $\mu(T_0) = 0$, tale che $f_{T \setminus T_0}$ sia misurabile e $f(T \setminus T_0)$ sia separabile.

Sia ora $\{S_k\}_{k\in\mathbb{N}}\subseteq\mathscr{L}_p$ una successione di insiemi misurabili, tale che:

- $ullet 0<\mu(S_k)<+\infty;$
- $S_h \cap S_k = \emptyset$ per ogni $h, k \in \mathbb{N}$ con $k \neq k$;
- $ullet T \smallsetminus T_0 = igcup_{k \in \mathbb{N}} S_k.$

Essa esiste, per come è fatta la misura di Lebesgue;

basta infatti considerare una successione $\{S_k^0\}_{k\in\mathbb{N}}$ di insiemi di misura finita che ricoprono tutto \mathbb{R}^p (ad esempio i quadrati di

lato n centrati nell'origine, con $n \in \mathbb{N}$), definire poi $\{S_k^1\}_{k \in \mathbb{N}}$ ponendo $S_1^1 = S_1^0$ e $S_k^1 = S_k^0 \setminus \bigcup_{i=1}^{k-1} S_i^0$, così che sia una partizione di \mathbb{R}^p , e infine porre

 $S_k = S_k^1 \cap (T \setminus T_0)$ per ogni $k \in \mathbb{N}$, dimodoché sia una partizione di $T \setminus T_0$.

Si fissi $k \in \mathbb{N}$.

 $f(S_k)$ è separabile in quanto sottoinsieme di $f(T \setminus T_0)$, separabile per costruzione di T_0 ; inoltre, $f_{|S_k}$ è misurabile in quanto $S_k \subseteq T \setminus T_0$ ed $f_{|T \setminus T_0}$ è separabile per costruzione di T_0 . Per la [Proposizione 22.2] esiste allora, per ogni $n \in \mathbb{N}$, una funzione $f_{n,k}: S_k \to X$ misurabile, tale che $f_{n,k}(S_k)$ sia al più numerabile e $\|f_{n,k}(t) - f(t)\| < \frac{1}{2^{k+1}n\mu(S_k)}$ per ogni $t \in S_k$.

Dalla monotonia dell'integrale di Lebesgue viene allora che

$$\int_{S_k} \|f_{n,k}(t)-f(t)\|\,dt \leq \int_{S_k} rac{1}{2^k n \mu(S_k)}\,dt = rac{1}{2^k n}$$
, per ogni $n,k\in\mathbb{N}$.

Per ogni $n \in \mathbb{N}$, si definisca ora la funzione $g_n: T \setminus T_0 \to X$ ponendo $g_n(t) = f_{n,k}(t)$ per ogni $t \in T$, con $k \in \mathbb{N}$ tale che $t \in S_k$; si hanno i seguenti fatti:

- g_n è ben definita per ogni $n \in \mathbb{N}$ in quanto, fissato $t \in T$, l'indice $k \in \mathbb{N}$ tale che $t \in S_k$ è unico per costruzione di $\{S_k\}_{k \in \mathbb{N}}$;
- g_n è misurabile per ogni $n \in \mathbb{N}$; infatti, $(g_n)_{|S_k} = f_{n,k}$ per ogni $k \in \mathbb{N}$ per definizione di g_n , e $f_{n,k}$ è misurabile per costruzione; ne viene che $(g_n)_{|\bigcup\limits_{k \in \mathbb{N}} S_k}$ è misurabile, cioè g_n è misurabile essendo $\bigcup\limits_{k \in \mathbb{N}} S_k = T \setminus T_0$ per costruzione degli S_k .
- $g_n(T \setminus T_0)$ è al più numerabile per ogni $n \in \mathbb{N}$; infatti, dalla definizione di g_n segue che $g_n(T \setminus T_0) \subseteq \bigcup_{k \in \mathbb{N}} f_{n,k}(S_k)$, che è al più numerabile essendo unione numerabile di insiemi al più numerabili per costruzione degli $f_{n,k}$.

Si vuole osservare anche che $\mu(g_n^{-1}\{\mathbf{x}\}) < +\infty$ per ogni $\mathbf{x} \in g_n(T \setminus T_0) \setminus \{\mathbf{0}\}.$

Infatti, si nota intanto che $g_n^{-1}\{\mathbf{x}\} = \bigcup_{k \in \mathbb{N}} f_{n,k}^{-1}\{\mathbf{x}\}$ per definizione di g_n .

Adesso, si osserva che $\mu(f_{n,k}^{-1}\{\mathbf{x}\}) < +\infty$ per ogni $k \in \mathbb{N}$, e $\mu(f_{n,k}^{-1}\{\mathbf{x}\}) > 0$ per un numero finito di $k \in \mathbb{N}$.

Infatti, per ogni $k \in \mathbb{N}$ si ha $f_{n,k}^{-1}\{\mathbf{x}\} \subseteq S_k$, e $\mu(S_k) < +\infty$ per costruzione; dunque, $\mu(f_{n,k}^{-1}\{\mathbf{x}\}) < +\infty$ per monotonia di μ . Se fosse $\mu(f_{n,k}^{-1}\{\mathbf{x}\}) > 0$ per un numero infinito di $k \in \mathbb{N}$, si avrebbe

$$\int_T \|f(t)\| \, dt = \int_{T \smallsetminus T_0} \|f(t)\| \, dt$$

Per additività dell'integrale di Lebesgue rispetto all'insieme di integrazione, ed essendo $\int_{T_0} \|f_n(t) - f(t)\| \, dt = 0$ in quanto $\mu(T_0) = 0$ per costruzione

$$=\sum_{k\in\mathbb{N}}\int_{S_k}\|f(t)\|\,dt$$

Per numerabile additività dell'integrale di Lebesgue rispetto all'insieme di integrazione, essendo gli S_k una partizione di $T \setminus T_0$

$$\geq \sum_{k\in\mathbb{N}} \int_{S_k} \|f_{n,k}(t)\| - rac{arepsilon}{2^{k+1}n\mu(S_k)} \ dt$$

Per monotonia dell'integrale di Lebesgue, in quanto

 $rac{arepsilon}{2^{k+1}n\mu(S_k)}>\|f_{n,k}(t)-f(t)\|\geq\|f_{n,k}(t)\|-\|f(t)\|$ per ogni $t\in S_k$ e per ogni $k \in \mathbb{N}$, per costruzione di $f_{n,k}$ e per la seconda disuguaglianza triangolare

$$\geq \sum_{k\in\mathbb{N}} \int_{f_{n,k}^{-1}\{\mathbf{x}\}} \|f_{n,k}(t)\| - rac{arepsilon}{2^{k+1}n\mu(S_k)} \, dt$$

 $\geq \sum_{k \in \mathbb{N}} \int_{f_{n,k}^{-1}\{\mathbf{x}\}} \|f_{n,k}(t)\| - \frac{\varepsilon}{2^{k+1}n\mu(S_k)} dt$ Per monotonia dell'integrale di Lebesgue rispetto all'insieme di integrazione, essendo $f_{n,k}^{-1}\{\mathbf{x}\}\subseteq S_k$ per ogni $k\in\mathbb{N}$

$$=\sum_{k\in\mathbb{N}}\int_{f_{n,k}^{-1}\{\mathbf{x}\}}\|\mathbf{x}\|-rac{arepsilon}{2^{k+1}n\mu(S_k)}\;dt$$

Essendo $f_{n,k}(t) = \mathbf{x}$ per ogni $t \in f_{n,k}^{-1}\{\mathbf{x}\}$

$$=\sum_{k\in\mathbb{N}}\Big(\|\mathbf{x}\|-rac{arepsilon}{2^{k+1}n\mu(S_k)}\Big)\muig(f_{n,k}^{-1}\{\mathbf{x}\}ig)$$

Per linearità dell'integrale di Lebesgue ed essendo $\int_S dt = \mu(S)$ per ogni $S \subset \mathscr{L}_n$

$$=+\infty$$

La serie $\sum_{k\in\mathbb{N}} \frac{\varepsilon}{2^{k+1}n\mu(S_k)} \mu(f_{n,k}^{-1}\{\mathbf{x}\})$ converge per confronto, in quanto $\muig(f_{n,k}^{-1}\{\mathbf{x}\}ig) \leq \mu(S_k)$ per ogni $k \in \mathbb{N}$, e la serie $\sum\limits_{k \in \mathbb{N}} rac{arepsilon}{2^{k+1}n}$ converge in quanto

geometrica di ragione $\frac{1}{2}$;

La serie $\sum_{k\in\mathbb{N}}\|\mathbf{x}\|\;\muig(f_{n,k}^{-1}\{\mathbf{x}\}ig)$ diverge positivamente poiché $\mathbf{x}
eq \mathbf{0}$ e avendo supposto $\muig(f_{n,k}^{-1}\{\mathbf{x}\}ig)>0$ per un numero infinito di $k\in\mathbb{N}$

Ciò va in contraddizione con il fatto che $\int_T \|f(t)\| \, dt < +\infty$ per integrabilità di f secondo Bochner.

Ne segue che $\mu(f_{n,k}^{-1}\{\mathbf{x}\}) < +\infty$ per ogni $k \in \mathbb{N}$, e $\mu(f_{n,k}^{-1}\{\mathbf{x}\}) > 0$ per un numero finito di $k \in \mathbb{N}$; da questo fatto e dalla numerabile sub-additività di μ segue che $\mu(g_n^{-1}\{\mathbf{x}\}) = \mu\left(\bigcup_{k \in \mathbb{N}} f_{n,k}^{-1}\{\mathbf{x}\}\right) < +\infty$.

Si ha inoltre

$$\int_{T \setminus T_0} \|g_n(t) - f(t)\| \, dt$$

$$= \sum_{k \in \mathbb{N}} \int_{S_k} \|g_n(t) - f(t)\| \, dt$$
 Per numerabile additività dell'integrale di Lebesgue rispetto all'insieme di integrazione, essendo $\{S_k\}_{k \in \mathbb{N}}$ una partizione di $T \setminus T_0$

$$= \sum_{k \in \mathbb{N}} \int_{S_k} \|f_{n,k}(t) - f(t)\| \, dt$$
 In quanto, per ogni $k \in \mathbb{N}$, vale $g_n(t) = f_{n,k}(t)$ per ogni $t \in S_k$ per definizione di g_n

$$\leq \sum_{k \in \mathbb{N}} \frac{1}{2^k n}$$
 Per confronto delle serie numeriche, in quanto $\int_{S_k} \|f_{n,k}(t) - f(t)\| \, dt \leq \frac{1}{2^k n}$ per ogni $k \in \mathbb{N}$ per quanto osservato prima
$$= \frac{1}{n}$$
 Dall'espressione della somma di una serie geometrica

Si fissi ora $n \in \mathbb{N}$.

Essendo $g_n(T \setminus T_0)$ al più numerabile, si dispongano gli elementi della famiglia $\{g_n^{-1}\{\mathbf{x}\} \mid \mathbf{x} \in g_n(T \setminus T_0)\}$ in una successione, che verrà denotata con $\{G_{n,h}\}_{h \in \mathbb{N}}$; si osserva che:

- $\{G_{n,h}\}_{h\in\mathbb{N}}$ è una partizione di $T\setminus T_0$, essendo la famiglia delle controimmagini di tutti i possibili valori che g_n assume in $T\setminus T_0$:
- $\mu(G_{n,h}) < +\infty$ per ogni $h \in \mathbb{N}$ tale che $G_{n,h} \neq g_n^{-1}\{\mathbf{0}\}$, avendo prima osservato che $\mu(g_n^{-1}\{\mathbf{x}\}) < +\infty$ per ogni $\mathbf{x} \in g_n(T \setminus T_0) \setminus \{\mathbf{0}\}$.

Essendo la mappa $T \to \mathbb{R} : t \mapsto \|f(t)\|$ sommabile per ipotesi di integrabilità di f secondo Bochner, per il primo richiamo esistono $\delta > 0$ e $M \subseteq T \setminus T_0$ misurabile con $\mu(M) < +\infty$, tali che, per ogni $A \subseteq T \setminus T_0$ con $\mu(A \cap M) < \delta$, si abbia $\int_A \|f(t)\| dt < \frac{1}{n}$.

 $M\capigcup_{h\in\mathbb{N}}G_{n,h}=M$ in quanto $\{G_m\}_{m\in\mathbb{N}}$ è una partizione di $T\smallsetminus T_0$;

per continuità verso l'alto e per sottrattività della misura di Lebesgue, esiste allora $r_n \in \mathbb{N}$ tale che $\mu\left(M \setminus \bigcup_{h=1}^{r_n} G_{n,h}\right) < \delta$.

Ne viene che $\int_{(T \smallsetminus T_0) \smallsetminus \bigcup_{t=1}^{r_n} G_{n,h}} \|f(t)\| \, dt < rac{1}{n}$ per costruzione di δ e M.

Infine, si definisca la funzione $f_n: T o X$ ponendo

$$f_n(t) = egin{cases} g_n(t), & t \in igcup_{h=1}^{r_n} G_{n,h} \ & & . \ \mathbf{0}, & ext{altrimenti} \end{cases}.$$

 f_n è semplice. Infatti:

- f_n è misurabile essendo g_n misurabile su $T \setminus T_0$, dunque su $\bigcup_{h=1}^{r_n} G_{n,h}$, per quanto osservato su tale funzione, ed essendo la funzione identicamente nulla misurabile su qualsiasi insieme misurabile;
- $f_n(T)$ è finito, essendo f_n costante su $G_{n,h}$ per ogni $h \in \{1, \dots, r_n\}$ per definizione di $G_{n,h}$;
- $\mu(T\smallsetminus f_n^{-1}\{\mathbf{0}\})<+\infty$ in quanto $T\smallsetminus f_n^{-1}\{\mathbf{0}\}=igcup_{1\leq h\leq r_n}G_{n,h}$, e $\mu(G_{n,h})<+\infty$ per ogni $h\in\{1,\ldots,r_n\}$ con $G_{n,h}
 eq g_n^{-1}\{\mathbf{0}\}$

 $G_{n,h} \neq g_n^{-1}\{\mathbf{0}\}$, per definizione di $\{G_{n,h}\}_{h\in\mathbb{N}}$ e per quanto osservato prima su tali insiemi.

$$\int_T \left\| f_n(t) - f(t)
ight\| dt \ \int_{T \setminus T_0} \left\| f_n(t) - f(t)
ight\| dt$$

Per additività dell'integrale di Lebesgue rispetto all'insieme di integrazione, ed essendo $\int_{T_0} \|f_n(t) - f(t)\| \, dt = 0 \text{ in quanto } \mu(T_0) = 0 \text{ per costruzione}$

$$=\int_{igcup_{h=1}^{r_n}G_{n,h}}\|f_n(t)-f(t)\|\,dt+\int_{(T\smallsetminus T_0)\smallsetminusigcup_{h=1}^{r_n}G_{n,h}}\|f_n(t)-f(t)\|\,dt$$
 Per additività dell'integrale di Lebesgue rispetto

all'insieme di integrazione

$$=\int_{igcup_{h=1}^{r_n}G_{n,h}}\|g_n(t)-f(t)\|\,dt+\int_{(T\smallsetminus T_0)\smallsetminusigcup_{h=1}^{r_n}G_{n,h}}\|f(t)\|\,dt$$

Per definizione di f_n

$$< \frac{1}{n} + \frac{1}{n} = \frac{2}{n}$$

Dalle due maggiorazioni ottenute finora

Ne segue che $\lim_n \int_T \|f_n(t) - f(t)\| \, d\mu = 0.$

Allora, per il secondo richiamo la successione $\{f_n\}_{n\in\mathbb{N}}$ ammette un'estratta $\{f_{n_s}\}_{s\in\mathbb{N}}$ tale che $\lim_{\epsilon}\|f_{n_s}(t)-f(t)\|=0$, ossia $\lim f_{n_s}(t) = f(t)$, per quasi ogni $t \in T$.

poiché si ha anche $\lim_{s} \int_{T} \|f_{n_s}(t) - f(t)\| d\mu = 0$ in quanto $\lim_{n} \int_{T} \|f_n(t) - f(t)\| d\mu = 0$, la tesi è dunque acquisita.

Proposizione 23.3: Convergenza di una successione di integrali secondo Bochner di funzioni semplici

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $\{f_n: T \to X\}_{n \in \mathbb{N}}$ una successione di funzioni semplici, convergente quasi ovunque in T;

sia dunque $f: T \to X$ limite puntuale quasi ovunque per $\{f_n\}_{n \in \mathbb{N}}$.

Si supponga $\lim_{n} \int_{T} \|f_{n}(t) - f(t)\| dt = 0.$

Allora:

• La successione $\left\{ \int_T f_n(t) d\mu \right\}_{n \in \mathbb{N}}$ converge in X;

• Data $\{g_n:T o X\}_{n\in\mathbb{N}}$ una seconda successione di funzioni semplici, convergente quasi ovunque in T a f e tale che $\lim_n \int_T \|g_n(t) - f(t)\| \, dt = 0$, si ha $\lim_n \int_T f_n(t) \, d\mu = \lim_n \int_T g_n(t) \, d\mu.$

Dimostrazione

Si fissino $n, m \in \mathbb{N}$.

Si provi che la successione $\left\{ \int_T f_n(t) d\mu \right\}_{n \in \mathbb{N}}$ è di Cauchy; essendo X completo in quanto spazio di Banach, ne segue la convergenza.

Si ponga
$$f_n(T) \setminus \{\mathbf{0}\} = \{\mathbf{x}_1, \dots, \mathbf{x}_h\}$$
, e $f_m(T) \setminus \{\mathbf{0}\} = \{\mathbf{y}_1, \dots, \mathbf{y}_k\}$; si ponga anche $A_i = f_n^{-1}\{\mathbf{x}_i\}$ per ogni $i \in \{1, \dots, h\}$ e $B_j = f_m^{-1}\{\mathbf{x}_j\}$ per ogni $j \in \{1, \dots, k\}$.

Si ha

$$\left\| \int_T f_n(t) \, d\mu - \int_T f_m(t) \, d\mu \right\|$$

$$=\left\|\int_T f_n(t)-f_m(t)\,d\mu
ight\|$$

Per linearità dell'integrale di Bochner di funzioni semplici ([Proposizione 23.1])

$$\leq \int_{T} \|f_n(t) - f_m(t)\| dt$$

Per maggiorazione della norma dell'integrale di Bochner di funzioni semplici

$$=\int_T \|f_n(t)-f(t)+f(t)-f_m(t)\|\,dt$$

$$\leq \int_{T} \|f_n(t) - f(t)\| \, dt + \int_{T} \|f_m(t) - f(t)\| \, dt$$
 Per monotonia dell'integrale di Lebesgue

Da questa catena di disuguaglianze e dal fatto che $\lim_n \int_T \|f_n(t) - f(t)\| \, dt = 0$ per ipotesi, segue allora che la successione $\left\{ \int_T f_n(t) \, d\mu \right\}_{n \in \mathbb{N}}$ è di Cauchy, come si voleva.

Per mostrare il secondo punto, basta osservare che

$$\left\| \int_T f_n(t) \, d\mu - \int_T g_n(t) \, d\mu
ight\|$$

$$=\left\|\int_T f_n(t)-g_n(t)\,d\mu
ight\|$$

Per linearità dell'integrale di Bochner di funzioni semplici ([Proposizione

$$\leq \int_{T} \left\| f_n(t) - g_n(t)
ight\| dt$$

Per le osservazioni sulle funzioni semplici

$$=\int_T \left\|f_n(t)-f(t)+f(t)-g_n(t)
ight\|dt$$

$$\leq \int_T \|f_n(t) - f(t)\| \, dt + \int_T \|f(t) - g_n(t)\| \, dt$$
 Per monotonia dell'integrale di Lebesgue

e che
$$\lim_n \int_T \|f_n(t) - f(t)\| \, dt = 0$$
 e $\lim_n \int_T \|g_n(t) - f(t)\| \, dt = 0$ per ipotesi.

Il secondo punto è allora acquisito per confronto dei limiti.

Definizione: Integrale secondo Bochner di funzioni integrabili secondo Bochner

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:T o X una funzione integrabile secondo Bochner.

Si dice **integrale di Bochner** di f l'elemento in X

$$\int_T f(t) \, d\mu := \lim_n \int_T f_n(t) \, d\mu,$$

dove $\{f_n: T \to X\}_{n \in \mathbb{N}}$ è una successione di funzioni semplici convergente quasi ovunque in T a f, tale che $\lim_n \int_T \|f_n(t) - f(t)\| \, dt = 0.$

Questa definizione è ben posta.

Infatti, una tale successione $\{f_n\}_{n\in\mathbb{N}}$ esiste per la [Proposizione 23.2], il limite indicato esiste per la [Proposizione 23.3], e sempre per tale proposizione esso non dipende dalla scelta di $\{f_n\}_{n\in\mathbb{N}}$.

Q Osservazione: Integrabilità secondo Bochner di funzioni a valori reali

Sia $T \in \mathscr{L}_p$.

Sia $f: T \to \mathbb{R}$ una funzione.

Si hanno i seguenti fatti:

- f è integrabile secondo Bochner se e solo se è sommabile secondo Lebesgue;
- $\int_T f(t) d\mu = \int_T f(t) dt$.

Q Osservazione: Coerenza della definizione di integrale di Bochner sulle funzioni semplici

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:T o X una funzione semplice, che dunque è anche integrabile secondo Bochner.

Sia $\int_T^* f(t) \, d\mu$ l'integrale di Bochner di f nel senso delle funzioni semplici.

Sia $\int_T f(t) d\mu$ l'integrale di Bochner di f nel senso delle funzioni integrabili secondo Bochner.

Si ha $\int_T^* f(t) d\mu = \int_T f(t) d\mu$.

Infatti, essendo f semplice, la successione costante $\{f\}_{n\in\mathbb{N}}$ è costituita da funzioni semplici, converge ovunque in T a f, e si ha $\lim_n \int_T \|f(t) - f(t)\| \, dt = \lim_n 0 = 0.$

Per definizione di $\int_T f(t) d\mu$ si ha allora $\int_T f(t) d\mu = \lim_n \int_T^* f(t) d\mu = \int_T^* f(t) d\mu$.