(Exact) Inference in Bayesian Networks

Chapter 14

Inference tasks

- Simple queries: compute posterior marginal $P(X_i | E=e)$ e.g., P(NoGas | Gauge=empty; Lights=on; Starts=false)
- •Conjunctive queries: $P(X_i, X_j | E=e) = P(X_i | E=e) P(X_j | X_i, E=e)$
- •Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome | action; evidence)
- •Value of information: which evidence to seek next?
- •Sensitivity analysis: which probability values are most critical?
- •Explanation: why do I need a new starter motor?

Inference by Enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$\mathbf{P}(B|j,m)$$
= $\mathbf{P}(B,j,m)/P(j,m)$
= $\alpha \mathbf{P}(B,j,m)$
= $\alpha \Sigma_e \Sigma_a \mathbf{P}(B,e,a,j,m)$

Rewrite full joint entries using product of CPT entries:

$$\mathbf{P}(B|j,m)$$
= $\alpha \sum_{e} \sum_{a} \mathbf{P}(B)P(e)\mathbf{P}(a|B,e)P(j|a)P(m|a)$
= $\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e)P(j|a)P(m|a)$

Recursive depth-first enumeration: O(n) space, $O(d^n)$ time

Enumeration Algorithm

```
function ENUMERATION-ASK(X, e, bn) returns a distribution over X
   inputs: X, the query variable
             e, observed values for variables E
              bn, a Bayesian network with variables \{X\} \cup \mathbf{E} \cup \mathbf{Y}
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
        extend e with value x_i for X
        \mathbf{Q}(x_i) \leftarrow \text{Enumerate-All}(\text{Vars}[bn], \mathbf{e})
   return Normalize(Q(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   Y \leftarrow \text{First}(vars)
   if Y has value y in e
        then return P(y \mid Pa(Y)) \times \text{Enumerate-All(Rest(vars), e)}
        else return \Sigma_y P(y \mid Pa(Y)) \times \text{Enumerate-All(Rest(vars), } \mathbf{e}_y)
             where e_y is e extended with Y = y
```

Evaluation Tree

Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Variable Elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

$$\mathbf{P}(B|j,m) = \alpha \underbrace{\mathbf{P}(B) \sum_{e} \underbrace{P(e) \sum_{a} \mathbf{P}(a|B,e)}_{\bar{E}} \underbrace{P(j|a) \underbrace{P(m|a)}_{\bar{A}}}_{\bar{A}} \underbrace{P(m|a)}_{\bar{J}} \underbrace{P(m|a)}_{\bar{M}}$$

$$= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) P(j|a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} P(a|B,e) f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} f_{A}(a,b,e) f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \sum_{e} P(e) f_{\bar{A}JM}(b,e) \text{ (sum out } A)$$

$$= \alpha \mathbf{P}(B) f_{\bar{E}\bar{A}JM}(b) \text{ (sum out } E)$$

$$= \alpha f_{B}(b) \times f_{\bar{E}\bar{A}JM}(b)$$

Factors

A factor is a representation of a function from a tuple of random variables into a number.

We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$. We can assign some or all of the variables of a factor:

- $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in dom(X_1)$, is a factor on X_2, \dots, X_j .
- $f(X_1 = v_1, X_2 = v_2, ..., X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .

The former is also written as $f(X_1, X_2, \dots, X_j)_{X_1 = v_1}$, etc.

Example of a factor

	X	Y	Ζ	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	8.0
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$(X = t, Y, Z)$$
: $(X = t, Y, Z)$: $(X =$

$$r(X=t, Y, Z=f)$$
: $t = 0.9$
 $f = 0.8$
 $r(X=t, Y=f, Z=f) = 0.8$

$$r(X=t, Y=f, Z=f) = 0.8$$

Multiplying factors

The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

Multiplying factors example

	A	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	8.0

	D	_	vai
	t	t	0.3
<i>f</i> ₂ :	t	f	0.7
	f	t	0.6
	f	f	0.4

Sum out a variable

We can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j)$$

= $f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$

Sum out a variable - Example

	Α	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
<i>f</i> ₃ :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	A	C	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
	f	t	0.54
	f	f	0.46

Evidence

If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_j = v_j$:

$$P(Z|Y_{1} = v_{1}, ..., Y_{j} = v_{j})$$

$$= \frac{P(Z, Y_{1} = v_{1}, ..., Y_{j} = v_{j})}{P(Y_{1} = v_{1}, ..., Y_{j} = v_{j})}$$

$$= \frac{P(Z, Y_{1} = v_{1}, ..., Y_{j} = v_{j})}{\sum_{Z} P(Z, Y_{1} = v_{1}, ..., Y_{j} = v_{j})}.$$

So the computation reduces to the probability of $P(Z, Y_1 = v_1, ..., Y_j = v_j)$. We normalize at the end.

Probability of a conjunction

Suppose the variables of the belief network are X_1, \ldots, X_n . To compute $P(Z, Y_1 = v_1, \ldots, Y_j = v_j)$, we sum out the other variables, $Z_1, \ldots, Z_k = \{X_1, \ldots, X_n\} - \{Z\} - \{Y_1, \ldots, Y_j\}$. We order the Z_i into an elimination ordering.

$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

$$= \sum_{Z_k} ... \sum_{Z_1} P(X_1, ..., X_n)_{Y_1 = v_1, ..., Y_j = v_j}.$$

$$= \sum_{Z_k} ... \sum_{Z_1} \prod_{i=1}^n P(X_i | parents(X_i))_{Y_1 = v_1, ..., Y_j = v_j}.$$

Computing Sums of products

Computation in belief networks reduces to computing the sums of products.

How can we compute ab + ac efficiently?

Distribute out the a giving a(b+c)

How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i | parents(X_i))$ efficiently?

Distribute out those factors that don't involve Z_1 .

Variable Elimination Algorithm

To compute
$$P(Z|Y_1 = v_1 \land \ldots \land Y_j = v_j)$$
:

Construct a factor for each conditional probability.

Set the observed variables to their observed values.

Sum out each of the other variables (the $\{Z_1, \ldots, Z_k\}$) according to some elimination ordering.

Multiply the remaining factors. Normalize by dividing the resulting factor f(Z) by $\sum_{Z} f(Z)$.

Sum out Evidence

To sum out a variable Z_i from a product f_1, \ldots, f_k of factors:

- Partition the factors into
 - ▶ those that don't contain Z_j , say f_1, \ldots, f_i ,
 - ▶ those that contain Z_j , say f_{i+1}, \ldots, f_k

We know:

$$\sum_{Z_j} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times \left(\sum_{Z_j} f_{i+1} \times \cdots \times f_k \right).$$

• Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_k by the new factor.

Variable Elimination – Another Example

$$\begin{array}{c}
P(A) \\
P(B|A)
\end{array}$$

$$\begin{array}{c}
P(C)
\end{array}$$

$$\begin{array}{c}
P(D|BC)
\end{array}$$

$$\begin{array}{c}
P(E|C)
\end{array}$$

$$\begin{array}{c}
P(F|D)
\end{array}$$

$$\begin{array}{c}
P(G|FE)
\end{array}$$

$$\begin{array}{c}
P(H|G)
\end{array}$$

$$\begin{array}{c}
P(H|G)
\end{array}$$

$$\begin{array}{c}
P(I|G)
\end{array}$$

$$\begin{array}{c}
P(I|G)
\end{array}$$

$$\begin{array}{c}
P(I|G)
\end{array}$$

$$P(D, h) = ...(\sum_{A} P(A)P(B|A))(\sum_{I} P(I|G))$$

Variable Elimination – (Yet) Another Example

Query: P(G|f); elimination ordering: A, H, E, D, B, C

$$P(G|f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A)P(B|A)P(C|B)(D|C)$$
$$P(E|D)P(f|E)P(G|C)P(H|E)$$

Variable Elimination – (Yet) Another Example

Query: P(G|f); elimination ordering: A, H, E, D, B, C

$$P(G|f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A)P(B|A)P(C|B)(D|C)$$
$$P(E|D)P(f|E)P(G|C)P(H|E)$$

$$= \sum_{C} \left(\sum_{B} \left(\sum_{A} P(A)P(B|A) \right) P(C|B) \right) P(G|C)$$
$$\left(\sum_{D} P(D|C) \left(\sum_{E} P(E|D)P(f|E) \sum_{H} P(H|E) \right) \right)$$

Complexity of Exact Inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:

- can reduce 3SAT to exact inference ⇒ NP-hard
- equivalent to counting 3SAT models \Rightarrow #P-complete

- 2. C v D v ¬A
- 3. B v C v ¬D

