La phylogénie des images dans les réseaux sociaux

Noé LE PHILIPPE

Équipe ICAR - William Puech

17 mars 2016

Sommaire

- 1 Le sujet de stage
- Analyse des recompressions

Le sujet de stage

Le sujet

La phylogénie des images dans les réseaux sociaux

Définition

"La phylogenèse ou phylogénie est l'étude des relations de parenté entre êtres vivants." — Wikipedia

Les applications

Réduire le nombre de versions de la même image pour optimiser l'espace de stockage

Les applications

Réduire le nombre de versions de la même image pour optimiser l'espace de stockage

Suivre l'évolution et la diffusion d'images sur les réseaux sociaux

Les applications

Réduire le nombre de versions de la même image pour optimiser l'espace de stockage

Suivre l'évolution et la diffusion d'images sur les réseaux sociaux

Détecter l'altération d'images

Définitions

Near-Duplicate Image (NDI)

Une image I_1 est le near-duplicate I_1 d'une image I_1 si :

$$I_1 = T(I), T \in \mathcal{T}$$

où \mathcal{T} est un ensemble de transformations autorisées

Dans le cas général,

$$\mathcal{T} = \{\textit{resampling}, \textit{cropping}, \textit{affine warping}, \\ \textit{color changing}, \textit{lossy compression}\}$$

mais dans le cadre du stage, $\mathcal{T} = \{lossy\ compression\}$

^{1.} Alexis Joly, Olivier Buisson et Carl Frélicot. "Content-based copy retrieval using distortion-based probabilistic similarity search". In: Multimedia, IEEE Transactions on 9.2 (2007), p. 293-306. ◆□ ▶ ◆□ ▶ ◆ ≣ ▶ ◆ ≣ ▶ ♥ 9
 ◆ 5/20

Définitions

Image Phylogeny Tree (IPT)

C'est l'arbre retraçant la parenté des images

Image phylogeny tree

Deux parties importante lors de la reconstruction de l'arbre phylogénétique :

Image phylogeny tree

Deux parties importante lors de la reconstruction de l'arbre phylogénétique :

Correctement identifier la racine

Image phylogeny tree

Deux parties importante lors de la reconstruction de l'arbre phylogénétique :

Correctement identifier la racine

• Estimer au mieux l'arborescence

Sommaire

- Le sujet de stage
- État de l'art

Visual Migration Map

- Les transformations sont directionnelles
- Relation parent-enfant si tous les détecteurs s'accordent sur la direction
- Simplification du graphe par sélection des plus longs chemins

[2]

^{2.} Lyndon Kennedy et Shih-Fu Chang. "Internet image archaeology: automatically tracing the manipulation history of photographs on the web". In : Proceedings of the 16th ACM international conference on Multimedia. ACM. 2008, p. 349-358.

Visual Migration Map

- Les transformations sont directionnelles
- Relation parent-enfant si tous les détecteurs s'accordent sur la direction
- Simplification du graphe par sélection des plus longs chemins

[2]

^{2.} Lyndon Kennedy et Shih-Fu Chang. "Internet image archaeology: automatically tracing the manipulation history of photographs on the web". In : Proceedings of the 16th ACM international conference on Multimedia. ACM. 2008, p. 349-358.

Visual Migration Map

- Les transformations sont directionnelles
- Relation parent-enfant si tous les détecteurs s'accordent sur la direction
- Simplification du graphe par sélection des plus longs chemins

[2]

^{2.} Lyndon Kennedy et Shih-Fu Chang. "Internet image archaeology: automatically tracing the manipulation history of photographs on the web". In : Proceedings of the 16th ACM international conference on Multimedia. ACM. 2008, p. 349-358.

Au plus récent

Image phylogeny tree

- Calcul d'une dissimilarity matrix
- Calcul d'un arbre couvrant de poids min (Kruskal ou autre)

[2] [3]

^{2.} Zanoni Dias, Anderson Rocha et Siome Goldenstein. "First steps toward image phylogeny". In: Information Forensics and Security (WIFS), 2010 IEEE International Workshop on. IEEE. 2010, p. 1–6.

^{3.} Zanoni Dias, Anderson Rocha et Siome Goldenstein. "Image phylogeny by minimal spanning trees". In: Information Forensics and Security, IEEE Transactions on 7.2 (2012), p. 774-788.

Sommaire

- 1 Le sujet de stage
- 2 État de l'art
- 3 Analyse des recompressions
- 4 Notre approche

But

Compter le nombre de compressions

3 types de blocs

- Les blocs plats
- Les blocs stables
- Les blocs cycliques

Comment?

plus petit commun multiple de la longueur des cycles

[4]

4. Matthias Carnein, Pascal Schöttle et Rainer Böhme. "Telltale Watermarks for Counting JPEG Compressions". In: Proceedings of the Electronic Imaging 2016. Publication status: Published. San Francisco, USA, 2016: 201

Utilisation des blocs

- Les blocs de l'image
- Insérer des blocs

^{5.} Matthias Carnein, Pascal Schöttle et Rainer Böhme. "Telltale Watermarks for Counting JPEG Compressions". In: Proceedings of the Electronic Imaging 2016. Publication status: Published. San Francisco, USA, 2016. ♣ ♦ ♦ ♦ ♦

Le sujet de stage

5. Matthias Carnein, Pascal Schöttle et Rainer Böhme. "Telltale Watermarks

Utilisation des blocs

- Les blocs de l'image
- Insérer des blocs

Les inconvénients

- Nécessite du padding
- Limité à la même table de quantification
- Résultats moyens pour Q < 100

[5]

^{5.} Matthias Carnein, Pascal Schöttle et Rainer Böhme, "Telltale Watermarks for Counting JPEG Compressions". In: Proceedings of the Electronic Imaging 2016. Publication status: Published. San Francisco, USA, 2016. ■ ■ 999 13/20

Analyse des valeurs manquantes de l'histogramme

Artefacts distincts pour $Q^1 > Q^2$ et $Q^1 < Q^2$

Analyse des valeurs manquantes de l'histogramme

Artefacts distincts pour $Q^1 > Q^2$ et $Q^1 < Q^2$

Limites

- $Q^1 = Q^2$
- Q^1 est facteur de Q^2

Notre approche

Principe de leur méthode

Comparer l'histogramme de l'image originale et l'histogramme des images compressées avec des tables de quantification modèles puis compressées avec Q^2 et enfin garder la table pour laquelle la différence entre histogramme est la plus faible

Sommaire

- 1 Le sujet de stage
- 2 État de l'art
- 3 Analyse des recompressions
- 4 Notre approche

Notre approche

Matrice de parenté

- Tentative de preuve qu'une image n'est pas le parent d'une autre
- Si c'est impossible, l'image doit alors être le parent
- Extraction d'une matrice de parenté
- Calcul de l'arbre

Calcul de l'IPT

Le sujet de stage

```
Data: M a n*n parentage matrix
   Result: the root of the tree
 1 nextRoot ← row with min sum of elements;
 2 treeRoot ← nextRoot;
 3 forall the rows row of M do
       root \leftarrow nextRoot:
       mark root as done:
       for i \leftarrow 0 to n do
6
           row[i] \leftarrow 0;
7
           if sum of elements of row == 0 then
              add i as child of root;
10
           end
           if row has the smallest sum of elements and is not marked
11
           as done then
              nextRoot \leftarrow i;
12
13
           end
       end
14
15 end
16 return treeRoot
```

Notre approche

La suite

La problématique

Identifier un ensemble de marqueurs qui permettraient de réfuter qu'une image est le parent d'une autre

Les pistes

- Distance entre les histogrammes des coefficients DCT
- Valeurs manquantes à cause des compressions successives

Point clé

Réduction d'un problème de reconstruction d'un arbre de phylogénie à un problème de négation de parenté

La suite

