

Exact Solutions > Basic Handbooks > A. D. Polyanin and V. F. Zaitsev, *Handbook of Nonlinear Partial Differential Equations*, Chapman & Hall/CRC, Boca Raton, 2004

CONTENTS

Authors	XV
Foreword	xvii
Some Notations and Remarks	xix
1. Parabolic Equations with One Space Variable	1
1.1. Equations with Power-Law Nonlinearities	1
1.1.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + bw + cw^2$	1
1.1.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b_0 + b_1 w + b_2 w^2 + b_3 w^3$	2
1.1.3. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(w)$	6
1.1.4. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$	9
1.1.5. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(w) \frac{\partial w}{\partial x} + g(w)$	9
1.1.6. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$	13
1.1.7. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b \left(\frac{\partial w}{\partial x}\right)^2 + f(x, t, w)$	15
1.1.8. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$	17
1.1.9. Equations of the Form $\frac{\partial w}{\partial x} = aw^k \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$	18
1.1.10. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right)$	25
1.1.11. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial x}{\partial x} \left(w^m \frac{\partial x}{\partial x} \right) + b w^k$	32
1.1.12. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial w}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right) + bw + c_1 w^{k_1} + c_2 w^{k_2} + c_3 w^{k_3} \dots$	37
1.1.13. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left f(w) \frac{\partial w}{\partial x} \right + g(w)$	40
1.1.14. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + g(x, t, w, \frac{\partial w}{\partial x})$	42
1.1.15. Other Equations	46
1.2. Equations with Exponential Nonlinearities	52
1.2.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b_0 + b_1 e^{\lambda w} + b_2 e^{2\lambda w}$	52
1.2.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial x}{\partial x} \left(e^{\lambda w} \frac{\partial w}{\partial x}\right) + f(w)$	53
1.2.3. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + g(w)$	56 58
1.2.5. Equations Explicitly Dependent of x and t	61
1.3. Equations with Hyperbolic Nonlinearities	62
1.3.1. Equations Involving Hyperbolic Cosine	62
1.3.2. Equations Involving Hyperbolic Sine	63
1.3.3. Equations Involving Hyperbolic Tangent	63
1.3.4. Equations Involving Hyperbolic Cotangent	64
1.4. Equations with Logarithmic Nonlinearities	64
1.4.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$	64
1.4.2. Other Equations	66
1.5. Equations with Trigonometric Nonlinearities	68
1.5.1. Equations Involving Cosine 1.5.2. Equations Involving Sine	68 69
1.5.3. Equations Involving Sine 1.5.3. Equations Involving Tangent	70
1.5.4. Equations Involving Cotangent	70
1.5.5 Equations Involving Inverse Trigonometric Functions	71

vi Contents

1.6.	Equations Involving Arbitrary Functions	71
	1.6.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$	71
	1.6.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t,w)$	75
	1.6.3. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$	78
	1.6.4. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b \left(\frac{\partial w}{\partial x}\right)^2 + f(x, t, w)$	81
	1.6.5. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b \left(\frac{\partial w}{\partial x}\right)^2 + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$	83
	1.6.6. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w) \left(\frac{\partial w}{\partial x}\right)^2 + g(x, t, w) \frac{\partial w}{\partial x} + h(x, t, w)$	84
	1.6.7. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$	88
	1.6.8. Equations of the Form $\frac{\partial w}{\partial t} = f(x,t) \frac{\partial^2 w}{\partial x^2} + g(x,t,w,\frac{\partial w}{\partial x})$	89
	1.6.9. Equations of the Form $\frac{\partial w}{\partial t} = aw \frac{\partial^2 w}{\partial x^2} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$	92
	1.6.10. Equations of the Form $\frac{\partial w}{\partial t} = (aw + b)\frac{\partial^2 w}{\partial x^2} + f(x, t, w)\left(\frac{\partial w}{\partial x}\right)^2 + g(x, t, w)\frac{\partial w}{\partial x} + h(x, t, w)$	94
	1.6.11. Equations of the Form $\frac{\partial w}{\partial t} = aw^m \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t,w)$	97
	1.6.12. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w \frac{\partial w}{\partial x} \right) + f(x, t) \frac{\partial w}{\partial x} + g(x, t, w) \dots$	98
	1.6.13. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right) + f(x,t) \frac{\partial w}{\partial x} + g(x,t,w)$	100
	1.6.14. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(e^{\lambda w} \frac{\partial w}{\partial x} \right) + f(x, t, w) \dots$	102
	1.6.15. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + g\left(x, t, w, \frac{\partial w}{\partial x}\right)$	104
	1.6.16. Equations of the Form $\frac{\partial w}{\partial t} = f(x, w) \frac{\partial^2 w}{\partial x^2}$	111
	1.6.17. Equations of the Form $\frac{\partial w}{\partial t} = f(x, t, w) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$	113
	1.6.18. Equations of the Form $\frac{\partial w}{\partial t} = f\left(x, w, \frac{\partial w}{\partial x}\right) \frac{\partial^2 w}{\partial x^2} + g\left(x, t, w, \frac{\partial w}{\partial x}\right)$	120 124
1.7.	Nonlinear Schrödinger Equations and Related Equations	125
	1.7.1. Equations of the Form $i\frac{\partial w}{\partial t} + \frac{\partial^2 w}{\partial x^2} + f(w)w = 0$ Involving Arbitrary Parameters	125
	1.7.2. Equations of the Form $i\frac{\partial w}{\partial t} + \frac{1}{x^n}\frac{\partial}{\partial x}\left(x^n\frac{\partial w}{\partial x}\right) + f(w)w = 0$ Involving Arbitrary	120
	Parameters	128 130
	1.7.4. Equations with Cubic Nonlinearities Involving Arbitrary Functions	131
	1.7.5. Equations of General Form Involving Arbitrary Functions of a Single Argument	134
	1.7.6. Equations of General Form Involving Arbitrary Functions of Two Arguments	137
2 П	Dougholia Equations with Two on Mone Space Variables	1./1
	Parabolic Equations with Two or More Space Variables	141
2.1.	Equations with Two Space Variables Involving Power-Law Nonlinearities	
	2.1.1. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + aw^p$	
		142
	2.1.3. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + h(w)$	147
2.2.	Equations with Two Space Variables Involving Exponential Nonlinearities	154
	2.2.1. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + ae^{\lambda w}$	154
	2.2.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(e^{\beta w} \frac{\partial w}{\partial x} \right) + b \frac{\partial}{\partial y} \left(e^{\lambda w} \frac{\partial w}{\partial y} \right) + f(w)$	155
2,3.	Other Equations with Two Space Variables Involving Arbitrary Parameters	157
	2.3.1. Equations with Logarithmic Nonlinearities	
	2.3.2. Equations with Trigonometrical Nonlinearities	

CONTENTS vii

2.4.2. Equations of the Form $\frac{\partial w}{\partial x} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + h(w)$. 16 2.4.3. Equations of the Form $\frac{\partial w}{\partial x} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + h(t, w)$. 16 2.4.4. Other Equations Linear in the Highest Derivatives . 16 2.4.5. Nonlinear Diffusion Boundary Layer Equations . 16 2.5. Equations with Three or More Space Variables . 16 2.5. Linear Equations of Mass Transfer in Quiescent or Moving Media with Chemical Reactions . 16 2.5. Linear Equations with Power-Law or Exponential Temperature-Dependent Thermal Diffusivity . 17 2.5. Equations of Heat and Mass Transfer in Anisotropic Media . 17 2.5. Equations of Heat and Mass Transfer in Anisotropic Media . 17 2.5. Equations with Three Space Variables . 17 2.5. Equations with n Space Variables . 17 2.6. Nonlinear Schrödinger Equations . 18 2.6.1. Two-Dimensional Equations . 18 2.6.2. Three and n-Dimensional Equations . 18 3. Hyperbolic Equations with One Space Variable . 19 3.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$. 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$. 19 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x} + f(x, t, w)$. 20 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x} + f(x, t, w)$. 20 3.2.2. Equations	2.4.		ons Involving Arbitrary Functions	159
2.4.2. Equations of the Form $\frac{\partial w}{\partial x} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + h(w)$. 16 2.4.3. Equations of the Form $\frac{\partial w}{\partial x} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + h(t, w)$. 16 2.4.4. Other Equations Linear in the Highest Derivatives . 16 2.4.5. Nonlinear Diffusion Boundary Layer Equations . 16 2.5. Equations with Three or More Space Variables . 16 2.5. Linear Equations of Mass Transfer in Quiescent or Moving Media with Chemical Reactions . 16 2.5. Linear Equations with Power-Law or Exponential Temperature-Dependent Thermal Diffusivity . 17 2.5. Equations of Heat and Mass Transfer in Anisotropic Media . 17 2.5. Equations of Heat and Mass Transfer in Anisotropic Media . 17 2.5. Equations with Three Space Variables . 17 2.5. Equations with n Space Variables . 17 2.6. Nonlinear Schrödinger Equations . 18 2.6.1. Two-Dimensional Equations . 18 2.6.2. Three and n-Dimensional Equations . 18 3. Hyperbolic Equations with One Space Variable . 19 3.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$. 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$. 19 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$. 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x} + f(x, t, w)$. 20 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial w}{\partial x} + f(x, t, w)$. 20 3.2.2. Equations		2.4.1.		
2.4.3. Equations of the Form $\frac{\partial w}{\partial x} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + h(t, w)$ 16. 2.4.4. Other Equations Linear in the Highest Derivatives 16. 2.4.5. Nonlinear Diffusion Boundary Layer Equations 16. 2.4.5. Nonlinear Diffusion Boundary Layer Equations 16. 2.5. Equations with Three or More Space Variables 16. 2.5.1. Equations of Mass Transfer in Quiescent or Moving Media with Chemical Reactions 16. 2.5.2. Heat Equations with Power-Law or Exponential Temperature-Dependent Thermal Diffusivity 17. 2.5.3. Equations of Heat and Mass Transfer in Anisotropic Media 17. 2.5.4. Other Equations with Three Space Variables 17. 2.5.5. Equations with n Space Variables 17. 2.5.6. Nonlinear Schrödinger Equations 18. 2.6.1. Two-Dimensional Equations 18. 2.6.2. Three and n-Dimensional Equations 18. 3. Hyperbolic Equations with One Space Variable 19. 3.1.1. Equations with Power-Law Nonlinearities 19. 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial x^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$ 19. 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial x^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 19. 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial x^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 19. 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial x^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 19. 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial x^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 19. 3.1.7. Other Equations 2.2. Equations of the Form $\frac{\partial^2 w}{\partial x^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 21. 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial x^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 21. 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial x^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 21. 3.2.4. Other Equations 22. 3.3. Other Equations Nonlinearities 22. 3.3.1. Equations with Hyperbolic Nonlinearities 22. 3.3.2. Equations with Hyperbolic Nonlinearities 22. 3.3.3. Equations with Logarithmic Nonlinearities 22.				159
2.4.4. Other Equations Linear in the Highest Derivatives			Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + h(w) \dots$	161
2.4.5. Nonlinear Diffusion Boundary Layer Equations 160 2.5.1. Equations with Three or More Space Variables 160 2.5.1. Equations of Mass Transfer in Quiescent or Moving Media with Chemical Reactions 160 2.5.2. Heat Equations with Power-Law or Exponential Temperature-Dependent Thermal Diffusivity 170 2.5.3. Equations of Heat and Mass Transfer in Anisotropic Media 170 2.5.4. Other Equations with Three Space Variables 170 2.5.5. Equations with no Space Variables 170 2.6.1. Two-Dimensional Equations 180 2.6.2. Three and n-Dimensional Equations 180 2.6.3. Hyperbolic Equations with One Space Variable 190 3.1. Equations with Power-Law Nonlinearities 190 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$ 190 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 190 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w,\frac{\partial w}{\partial x})$ 190 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w,\frac{\partial w}{\partial x})$ 190 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w,\frac{\partial w}{\partial x})$ 190 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w,\frac{\partial w}{\partial x})$ 190 3.1.7. Other Equations 100 nollinearities 200 3.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 201 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 201 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 211 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 211 3.2.4. Other Equations 221 3.3.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 211 3.2.4. Other Equations 222 3.3.1. Equations with Hyperbolic Nonlinearities 222 3.3.2. Equations with Hyperbolic Nonlinearities 222		2.4.3.	Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + h(t, w)$	162
2.5. Equations with Three or More Space Variables 2.5.1. Equations of Mass Transfer in Quiescent or Moving Media with Chemical Reactions 2.5.2. Heat Equations with Power-Law or Exponential Temperature-Dependent Thermal Diffusivity 2.5.3. Equations of Heat and Mass Transfer in Anisotropic Media 2.5.4. Other Equations with Three Space Variables 1.7. 2.5.5. Equations with n Space Variables 2.6.1. Two-Dimensional Equations 2.6.2. Three and n -Dimensional Equations 3. Hyperbolic Equations with One Space Variable 3.1.1. Equations with Power-Law Nonlinearities 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + t(x, t, w)$ 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, w) \frac{\partial w}{\partial x}$ 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, w) \frac{\partial w}{\partial x}$ 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, w) \frac{\partial w}{\partial x}$ 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, w) \frac{\partial w}{\partial x}$ 3.1.7. Other Equations 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, w)$ 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, w)$ 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, w)$ 3.2.4. Other Equations 3.3. Other Equations 3.4. Other Equations 3.5. Equations with Hyperbolic Nonlinearities 3.6. Other Equations 3.7. Other Equations 3.8. Equations with Hyperbolic Nonlinearities 3.9. Other Equations 3.1. Equations with Hyperbolic Nonlinearities 3.1. Equations with Hyperbolic Nonlinearities 3.1. Equations with Hyperbolic Nonlinearities 3.2. Equations with Hyperbolic Nonlinearities 3.3. Equations with Hyperbolic Nonlinearities				
2.5.1. Equations of Mass Transfer in Quiescent or Moving Media with Chemical Reactions				
Reactions 2.5.2. Heat Equations with Power-Law or Exponential Temperature-Dependent Thermal Diffusivity 17. 2.5.3. Equations of Heat and Mass Transfer in Anisotropic Media 17. 2.5.4. Other Equations with Three Space Variables 17. 2.5.5. Equations with n Space Variables 17. 2.6. Nonlinear Schrödinger Equations 18. 2.6.1. Two-Dimensional Equations 18. 2.6.2. Three and n -Dimensional Equations 18. 3. Hyperbolic Equations with One Space Variable 19. 3.1. Equations with Power-Law Nonlinearities 19. 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial x^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$ 19. 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 19. 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 19. 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a(x)\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 19. 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a(x)\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 20. 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a(x)\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 20. 3.1.7. Other Equations 3.2. Equations with Exponential Nonlinearities 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 21. 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 22. 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 21. 3.2.4. Other Equations 22. 3.3. Other Equations 3.4. Other Equations 3.5. Equations Involving Arbitrary Parameters 3.6. Equations with Hyperbolic Nonlinearities 3.7. Equations with Logarithmic Nonlinearities 3.8. Equations with Logarithmic Nonlinearities	2.5.	-	<u> •</u>	169
2.5.2. Heat Equations with Power-Law or Exponential Temperature-Dependent Thermal Diffusivity		2.5.1.		169
Diffusivity 2.5.3. Equations of Heat and Mass Transfer in Anisotropic Media 17. 2.5.4. Other Equations with Three Space Variables 17. 2.5.5. Equations with n Space Variables 17. 2.6. Nonlinear Schrödinger Equations 2.6.1. Two-Dimensional Equations 2.6.2. Three and n -Dimensional Equations 18. 3. Hyperbolic Equations with One Space Variable 19. 3.1. Equations with Power-Law Nonlinearities 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$ 19. 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x} + f(x, t, w)$ 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x} + f(x, t, w)$ 3.1.7. Other Equations 3.2. Equations with Exponential Nonlinearities 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x} + be^{\beta w} + ce^{\gamma w}$ 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2.4. Other Equations 3.5. Other Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\partial^2 w$		2.5.2.		109
2.5.3. Equations of Heat and Mass Transfer in Anisotropic Media 1.7 2.5.4. Other Equations with Three Space Variables 1.7 2.5.5. Equations with n Space Variables 1.7 2.6. Nonlinear Schrödinger Equations 2.6.1. Two-Dimensional Equations 1.8 2.6.2. Three and n -Dimensional Equations 3. Hyperbolic Equations with One Space Variable 1.9 3.1. Equations with Power-Law Nonlinearities 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$ 1.9 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n \frac{\partial^2 w}{\partial x^2} + f(x, w, w)$ 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n \frac{\partial^2 w}{\partial x^2} + f(x, w)$ 3.1.7. Other Equations 3.2. Equations with Exponential Nonlinearities 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2.4. Other Equations 3.5. Other Equations 3.6. Other Equations 3.7. Other Equations 3.8. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.9. Square $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial t^2} + \partial^2$			•	173
2.5.5. Equations with n Space Variables		2.5.3.	·	174
2.6. Nonlinear Schrödinger Equations 2.6.1. Two-Dimensional Equations 2.6.2. Three and n -Dimensional Equations 3. Hyperbolic Equations with One Space Variable 3.1. Equations with Power-Law Nonlinearities 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$ 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 19.3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 19.3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w,\frac{\partial w}{\partial x})$ 19.3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n \frac{\partial^2 w}{\partial x^2} + f(x,w)$ 20.3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n \frac{\partial^2 w}{\partial x} + f(x,w)$ 21.3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x} + be^{\partial w} + ce^{\gamma w}$ 21.3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\partial w} + ce^{\gamma w}$ 21.3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 21.3.2.4. Other Equations 22.3.3. Other Equations 23.3. Other Equations involving Arbitrary Parameters 23.3.1. Equations with Hyperbolic Nonlinearities 22.3.3.2. Equations with Hyperbolic Nonlinearities 22.3.3.3.2. Equations with Logarithmic Nonlinearities				177
2.6.1. Two-Dimensional Equations 2.6.2. Three and n -Dimensional Equations 188 2.6.2. Three and n -Dimensional Equations 189 3. Hyperbolic Equations with One Space Variable 19 3.1. Equations with Power-Law Nonlinearities 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$ 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 19 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w,\frac{\partial w}{\partial x})$ 19 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x)\frac{\partial^2 w}{\partial x^2} + g(x,t,w,\frac{\partial w}{\partial x})$ 19 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n\frac{\partial^2 w}{\partial x^2} + f(x,w)$ 20 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n\frac{\partial^2 w}{\partial x^2} + f(x,w)$ 20 3.1.7. Other Equations 20 3.2. Equations with Exponential Nonlinearities 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 21: 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 21: 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 21: 3.2.4. Other Equations 3.5. Other Equations 3.6. In Equations Involving Arbitrary Parameters 3.7. Equations with Hyperbolic Nonlinearities 3.8. Equations with Logarithmic Nonlinearities 3.9. Equations with Logarithmic Nonlinearities		2.5.5.	Equations with <i>n</i> Space Variables	179
2.6.2. Three and n -Dimensional Equations 189 3. Hyperbolic Equations with One Space Variable 190 3.1. Equations with Power-Law Nonlinearities 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$ 190 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 191 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 192 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x)\frac{\partial^2 w}{\partial x^2} + g(x,t,w,\frac{\partial w}{\partial x})$ 193 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n\frac{\partial^2 w}{\partial x^2} + f(x,w)$ 205 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial}{\partial x}(w^n\frac{\partial w}{\partial x}) + f(w)$ 3.1.7. Other Equations 3.2. Equations with Exponential Nonlinearities 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 2.1. 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 2.1. 3.2.4. Other Equations 3.3. Other Equations 3.3.1. Equations with Hyperbolic Nonlinearities 3.3.2. Equations with Hyperbolic Nonlinearities 3.3.3. Equations with Hyperbolic Nonlinearities	2.6.	Nonlin	near Schrödinger Equations	186
3. Hyperbolic Equations with One Space Variable 3.1. Equations with Power-Law Nonlinearities 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$ 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 19 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 19 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x)\frac{\partial^2 w}{\partial x^2} + f(x,t,w,\frac{\partial w}{\partial x})$ 19 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n\frac{\partial^2 w}{\partial x^2} + f(x,w)$ 20 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x} + f(x,w)$ 3.1.7. Other Equations 3.2.1. Equations with Exponential Nonlinearities 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 21: 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 21: 3.2.4. Other Equations 3.3. Other Equations Involving Arbitrary Parameters 3.3.1. Equations with Hyperbolic Nonlinearities 22: 3.3.2. Equations with Logarithmic Nonlinearities			•	186
3.1. Equations with Power-Law Nonlinearities 19 3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$ 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 19 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w,\frac{\partial w}{\partial x})$ 19 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x)\frac{\partial^2 w}{\partial x^2} + g(x,t,w,\frac{\partial w}{\partial x})$ 19 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n\frac{\partial^2 w}{\partial x^2} + f(x,w)$ 20 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial}{\partial x}\left(w^n\frac{\partial w}{\partial x}\right) + f(w)$ 20 3.1.7. Other Equations 20 3.2. Equations with Exponential Nonlinearities 21 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 21 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 21 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$ 21 3.2.4. Other Equations 22 3.3. Other Equations Involving Arbitrary Parameters 22 3.3.1. Equations with Hyperbolic Nonlinearities 22 3.3.2. Equations with Logarithmic Nonlinearities 22 3.3.3. Equations with Logarithmic Nonlinearities 22 3.3.4. Equations with Logarithmic Nonlinearities 22 3.3.5. Equations with Logarithmic Nonlinearities 22 3.3.6. Equations with Logarithmic Nonlinearities 22 3.3.7. Equations with Logarithmic Nonlinearities 22 3.3.8. Equations with Logarithmic Nonlinearities 22 3.3.9. Equations with Logarithmic Nonlinearities 22 3.3.1. Equations with Logarithmic Nonlinearities 22 3.3.2. Equations with Logarithmic Nonlinearities 22 3.3.3. Equations with Logarithmic Nonlinearities 22 3.3.4. Equations with Logarithmic Nonlinearities 22 3.3.5. Equations with Logarithmic Nonlinearities 22 3.3.1. Equations with Logarithmic Nonlinearities 22 3.3.2. Equations with Logarithmic Nonlinearities 22 3.3.3. Equations with Logarithmic Nonlinearities 22 3.3.4. Equations with Logarithmic Nonlinearities 22 3.3.5. Equations with Logarithmic Nonlinearities 22 3.3. Equations with Logarithmic Nonlinearities 22 3.3. Equations with Loga		2.6.2.	Three and <i>n</i> -Dimensional Equations	189
3.1.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$. 19 3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$. 19 3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w,\frac{\partial w}{\partial x})$. 19 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x)\frac{\partial^2 w}{\partial x^2} + g(x,t,w,\frac{\partial w}{\partial x})$. 19 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n\frac{\partial^2 w}{\partial x^2} + f(x,w)$. 20 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial}{\partial x}(w^n\frac{\partial w}{\partial x}) + f(w)$. 20 3.1.7. Other Equations . 20 3.2. Equations with Exponential Nonlinearities . 21 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$. 21 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$. 21 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x,t,w)$. 21 3.2.4. Other Equations . 22 3.3. Other Equations Involving Arbitrary Parameters . 22 3.3.1. Equations with Hyperbolic Nonlinearities . 22 3.3.2. Equations with Logarithmic Nonlinearities . 22 3.3.3. Equations with Logarithmic Nonlinearities . 22 3.3. Equations	3. I	- Typerb	olic Equations with One Space Variable	191
3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$	3.1.	Equati	ons with Power-Law Nonlinearities	191
3.1.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$		3.1.1.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial^2 w}{\partial x^2} + aw + bw^n + cw^{2n-1}$	191
3.1.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 196 3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$ 197 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a w^n \frac{\partial^2 w}{\partial x^2} + f(x, w)$ 207 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x} \left(w^n \frac{\partial w}{\partial x} \right) + f(w)$ 207 3.1.7. Other Equations 207 3.2. Equations with Exponential Nonlinearities 217 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + b e^{\beta w} + c e^{\gamma w}$ 217 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 217 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 217 3.2.4. Other Equations 227 3.3. Other Equations Involving Arbitrary Parameters 227 3.3.1. Equations with Hyperbolic Nonlinearities 227 3.3.2. Equations with Logarithmic Nonlinearities 227				193
3.1.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$ 199 3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n \frac{\partial^2 w}{\partial x^2} + f(x, w)$ 200 3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial}{\partial x}\left(w^n \frac{\partial w}{\partial x}\right) + f(w)$ 200 3.1.7. Other Equations 200 3.2. Equations with Exponential Nonlinearities 211 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 211 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 211 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x)\frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$ 211 3.2.4. Other Equations 222 3.3.0. Other Equations Involving Arbitrary Parameters 3.3.1. Equations with Hyperbolic Nonlinearities 222 3.3.2. Equations with Logarithmic Nonlinearities 223				196
3.1.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw^n \frac{\partial^2 w}{\partial x^2} + f(x, w)$ 20.3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial}{\partial x}\left(w^n \frac{\partial w}{\partial x}\right) + f(w)$ 20.3.1.7. Other Equations 20.3.2. Equations with Exponential Nonlinearities 21.3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 21.3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 21.3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a\frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 21.3.2.4. Other Equations 22.3.3.1. Equations Involving Arbitrary Parameters 22.3.3.1. Equations with Hyperbolic Nonlinearities 22.3.3.2. Equations with Logarithmic Nonlinearities 22.3.3.3.2. Equations with Logarithmic Nonlinearities 22.3.3.3.3.3.				198
3.1.6. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial}{\partial x} \left(w^n \frac{\partial w}{\partial x} \right) + f(w)$ 3.1.7. Other Equations				202
3.1.7. Other Equations				
3.2. Equations with Exponential Nonlinearities 3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$ 3.2.4. Other Equations 22. 3.3. Other Equations Involving Arbitrary Parameters 3.3.1. Equations with Hyperbolic Nonlinearities 22. 3.3.2. Equations with Logarithmic Nonlinearities				209
3.2.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$ 213 3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$ 213 3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$ 214 3.2.4. Other Equations 225 3.3.1. Equations Involving Arbitrary Parameters 225 3.3.2. Equations with Hyperbolic Nonlinearities 225 3.3.3.2. Equations with Logarithmic Nonlinearities 226	3 2		•	213
3.2.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$	3.2.	3 2 1	Equations of the Form $\frac{\partial^2 w}{\partial x^2} = a \frac{\partial^2 w}{\partial x^2} + be^{\beta w} + ce^{\gamma w}$	
3.2.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$ 21' 3.2.4. Other Equations				
3.2.4. Other Equations22.3.3. Other Equations Involving Arbitrary Parameters22.3.3.1. Equations with Hyperbolic Nonlinearities22.3.3.2. Equations with Logarithmic Nonlinearities22.				
3.3. Other Equations Involving Arbitrary Parameters 22: 3.3.1. Equations with Hyperbolic Nonlinearities 22: 3.3.2. Equations with Logarithmic Nonlinearities 22:		3.2.4.	Equations of the Form $\frac{\partial t^2}{\partial t^2} = f(x) \frac{\partial x^2}{\partial x^2} + g(x, t, w, \frac{\partial x}{\partial x})$	222
3.3.1. Equations with Hyperbolic Nonlinearities 22: 3.3.2. Equations with Logarithmic Nonlinearities 22:	3.3.	Other 1	Equations Involving Arbitrary Parameters	225
		3.3.1.	Equations with Hyperbolic Nonlinearities	225
				226
3.3.3. Sine-Gordon Equation and Other Equations with Trigonometric Nonlinearities . 22		3.3.3.	Sine-Gordon Equation and Other Equations with Trigonometric Nonlinearities .	227
3.3.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a \frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right]$		3.3.4.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a \frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right]$	230
3.3.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} + f(w) \frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[g(w) \frac{\partial w}{\partial x} \right]$		3.3.5.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} + f(w) \frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[g(w) \frac{\partial w}{\partial x} \right]$	232
3.4. Equations Involving Arbitrary Functions	3.4.	Equati	ons Involving Arbitrary Functions	234
"? "?		3.4.1.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$	234
				239
3.4.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$				
3.4.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(w) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$				
3.4.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(x, w) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$				

viii Contents

	3.4.6. 3.4.7.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = f(t,w) \frac{\partial^2 w}{\partial x^2} + g(x,t,w,\frac{\partial w}{\partial x})$ Other Equations Linear in the Highest Derivatives	259 260
3.5.	Equati	ons of the Form $\frac{\partial^2 w}{\partial x \partial y} = F\left(x, y, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}\right)$	266
		Equations Involving Arbitrary Parameters of the Form $\frac{\partial^2 w}{\partial x \partial y} = f(w)$	266
	3.5.2.	Other Equations Involving Arbitrary Parameters	270
	3.5.3.	Equations Involving Arbitrary Functions	271
4. I	Hyperb	olic Equations with Two or Three Space Variables	275
4.1.		ons with Two Space Variables Involving Power-Law Nonlinearities	275
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + a w^p \dots$	275
	4.1.2.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial}{\partial x} \left(w^n \frac{\partial w}{\partial x} \right) + b \frac{\partial}{\partial y} \left(w^k \frac{\partial w}{\partial y} \right) \dots$	277
	4.1.3. 4.1.4.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right]$	285 290
4.2.		ons with Two Space Variables Involving Exponential Nonlinearities	292
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + ae^{\lambda w} \dots$	292
	4.2.2. 4.2.3.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial}{\partial x} \left(e^{\beta w} \frac{\partial w}{\partial x} \right) + b \frac{\partial}{\partial y} \left(e^{\lambda w} \frac{\partial w}{\partial y} \right)$ Other Equations	294 299
4.3.	Nonlin	near Telegraph Equations with Two Space Variables	299
		Equations Involving Power-Law Nonlinearities	299
		Equations Involving Exponential Nonlinearities	303
4.4.	Equati	ons with Two Space Variables Involving Arbitrary Functions	305
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + h(w)$	305
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + h(w)$	308 313
4.5.	-	ons with Three Space Variables Involving Arbitrary Parameters	317
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[h(z) \frac{\partial w}{\partial z} \right] + aw^p$	317
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[h(z) \frac{\partial w}{\partial z} \right] + ae^{\lambda w}$	318
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial}{\partial x} \left(w^n \frac{\partial w}{\partial x} \right) + b \frac{\partial}{\partial y} \left(w^m \frac{\partial w}{\partial y} \right) + c \frac{\partial}{\partial z} \left(w^k \frac{\partial w}{\partial z} \right) + s w^p$	320
	4.5.4.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial}{\partial x} \left(e^{\lambda_1 w} \frac{\partial w}{\partial x} \right) + b \frac{\partial}{\partial y} \left(e^{\lambda_2 w} \frac{\partial w}{\partial y} \right) + c \frac{\partial}{\partial z} \left(e^{\lambda_3 w} \frac{\partial w}{\partial z} \right) + se^{\beta w}$	327
4.6.	Equati	ons with Three Space Variables Involving Arbitrary Functions	334
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f_1(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[f_3(z) \frac{\partial w}{\partial z} \right] + g(w)$	334
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f_1(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(w) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[f_3(w) \frac{\partial w}{\partial z} \right] + g(w)$	338
	4.6.3.	Other Equations	344
	_	Equations with Two Space Variables	347
5.1.		ons with Power-Law Nonlinearities	347
		Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = aw + bw^n + cw^{2n-1}$	347
		Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = f(x, y, w)$	349
		Equations of the Form $\frac{\partial^2 w}{\partial x^2} + a \frac{\partial^2 w}{\partial y^2} = F\left(x, y, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}\right) \dots$	350
	5.1.4.	Equations of the Form $\frac{\partial}{\partial x} \left[f_1(x, y) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(x, y) \frac{\partial w}{\partial y} \right] = g(w)$	351
	5.1.5.	Equations of the Form $\frac{\partial}{\partial x} \left[f_1(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(w) \frac{\partial w}{\partial y} \right] = g(w)$ Other Equations Involving Arbitrary Parameters	353 358
	5.1.0.	Once Equations involving Arbitrary Latenticies	220

CONTENTS ix

5.2.	Equations with Exponential Nonlinearities	364
	5.2.1. Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = a + be^{\beta w} + ce^{\gamma w}$	364
	5.2.2. Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = f(x, y, w)$	367
	5.2.3. Equations of the Form $\frac{\partial}{\partial x} \left[f_1(x, y) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(x, y) \frac{\partial w}{\partial y} \right] = g(w)$	367
	5.2.4. Equations of the Form $\frac{\partial}{\partial x} \left[f_1(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(w) \frac{\partial w}{\partial y} \right] = g(w)$	370 373
5 3	Equations Involving Other Nonlinearities	376
	5.3.1. Equations with Hyperbolic Nonlinearities	376
	5.3.2. Equations with Logarithmic Nonlinearities	377
	5.3.3. Equations with Trigonometric Nonlinearities	380
5.4.	Equations Involving Arbitrary Functions	382
	5.4.1. Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = F(x, y, w)$	382
	5.4.2. Equations of the Form $a \frac{\partial^2 w}{\partial x^2} + b \frac{\partial^2 w}{\partial y^2} = F(x, y, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}) \dots$	387
	5.4.3. Heat and Mass Transfer Equations of the Form $\frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] = h(w)$	391
	5.4.4. Equations of the Form $\frac{\partial}{\partial x} \left[f(x, y, w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(x, y, w) \frac{\partial w}{\partial y} \right] = h(x, y, w)$	393
	5.4.5. Other Equations	399
6. E	Elliptic Equations with Three or More Space Variables	405
6.1.	Equations with Three Space Variables Involving Power-Law Nonlinearities	405
	6.1.1. Equations of the Form $\frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[h(z) \frac{\partial w}{\partial z} \right] = aw^p \dots$	405
	6.1.2. Equations of the Form $\frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[g(w) \frac{\partial w}{\partial z} \right] = 0 \dots$	408
6.2.	Equations with Three Space Variables Involving Exponential Nonlinearities	413
	6.2.1. Equations of the Form $\frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[h(z) \frac{\partial w}{\partial z} \right] = ae^{\lambda w} \dots$	413
	6.2.2. Equations of the Form $a_1 \frac{\partial}{\partial x} \left(e^{\lambda_1 w} \frac{\partial w}{\partial x} \right) + a_2 \frac{\partial}{\partial y} \left(e^{\lambda_2 w} \frac{\partial w}{\partial y} \right) + a_3 \frac{\partial}{\partial y} \left(e^{\lambda_2 w} \frac{\partial w}{\partial y} \right) = b e^{\beta w}$	416
6.3.	Three-Dimensional Equations Involving Arbitrary Functions	420
	$\frac{\partial}{\partial z} \left[f_3(z) \frac{\partial w}{\partial z} \right] = g(w) \qquad \dots $	420
	6.3.2. Heat and Mass Transfer Equations with Complicating Factors	423
	6.3.3. Other Equations	426
6.4.	Equations with <i>n</i> Independent Variables	428
	6.4.1. Equations of the Form $\frac{\partial}{\partial x_1} \left[f_1(x_1) \frac{\partial w}{\partial x_1} \right] + \dots + \frac{\partial}{\partial x_n} \left[f_n(x_n) \frac{\partial w}{\partial x_n} \right] = g(x_1, \dots, x_n, w)$	428
	6.4.2. Other Equations	430
7. E	Equations Involving Mixed Derivatives and Some Other Equations	433
7.1.	Equations Linear in the Mixed Derivative	433
	7.1.1. Calogero Equation	433
	7.1.2. Khokhlov–Zabolotskaya Equation	435
	7.1.3. Equation of Unsteady Transonic Gas Flows	440
	7.1.4. Equations of the Form $\frac{\partial w}{\partial y} \frac{\partial^2 w}{\partial x \partial y} - \frac{\partial w}{\partial x} \frac{\partial^2 w}{\partial y^2} = F\left(x, y, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}\right)$	443 445
	7.1.6. Other Equations with Three Independent Variables	448
7.2	Equations Quadratic in the Highest Derivatives	449
	7.2.1. Equations of the Form $\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} = F(x, y)$	449
	7.2.2. Monge–Ampère equation $\left(\frac{\partial^2 w}{\partial x \partial y}\right)^2 - \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} = F(x, y)$	451
	7.2.3. Equations of the Form $\left(\frac{\partial^2 w}{\partial x \partial y}\right)^2 - \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} = F\left(x, y, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}\right) \dots$	461
	$ (\partial x \partial y) \partial x^2 \partial y^2 (x, y, x, y, y, y) $	

K CONTENTS

		Equations of the Form $\left(\frac{\partial^2 w}{\partial x \partial y}\right)^2 = f(x,y) \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} + g(x,y)$	465 469
7.3.	7.3.1.	an Type Equations and Related Equations	472 472
8 5		Equations with Power-Law Nonlinearities	475 479
8.1.		ons Involving the First Derivative in t	479 479
	0.1.1.	Equations of the Form $\frac{\partial w}{\partial t} = F\left(w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial x^2}\right)$	
		Equations of the Form $\frac{\partial w}{\partial t} = F(t, w, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2})$	486
		Equations of the Form $\frac{\partial w}{\partial t} = F\left(x, w, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2}\right)$	490
		Equations of the Form $\frac{\partial w}{\partial t} = F\left(x, t, w, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2}\right)$	494
	8.1.5.	Equations of the Form $F(x, t, w, \frac{\partial w}{\partial t}, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2}) = 0$	499
0.0		Equations with Three Independent Variables	500
8.2.		ons Involving Two or More Second Derivatives	501
	8.2.1.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = F\left(w, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2}\right) \dots$	501
	8.2.2.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = F\left(x, t, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial t}, \frac{\partial^2 w}{\partial x^2}\right)$	505
		Equations Linear in the Mixed Derivative	508
	0.2.4.	Derivatives	509
	8.2.5.	Equations with <i>n</i> Independent Variables	512
9. 1		order Equations	515
9.1.	Equati	ons Involving the First Derivative in t	515
		Korteweg-de Vries Equation $\frac{\partial w}{\partial t} + a \frac{\partial^3 w}{\partial x^3} + bw \frac{\partial w}{\partial x} = 0$	515
	9.1.2.	Cylindrical, Spherical, and Modified Korteweg–de Vries Equations	521
	9.1.3.	Generalized Korteweg–de Vries Equation $\frac{\partial w}{\partial t} + a \frac{\partial^3 w}{\partial x^3} + f(w) \frac{\partial w}{\partial x} = 0$	524
		Equations Reducible to the Korteweg–de Vries Equation	526
	9.1.5.	Equations of the Form $\frac{\partial w}{\partial t} + a \frac{\partial^3 w}{\partial x^3} + f(w, \frac{\partial w}{\partial x}) = 0$	529
	9.1.6.	Equations of the Form $\frac{\partial w}{\partial t} + a \frac{\partial^3 w}{\partial x^3} + F(x, t, w, \frac{\partial w}{\partial x}) = 0$	530
	9.1.7.	Burgers–Korteweg–de Vries Equation and Other Equations	532
9.2.		ons Involving the Second Derivative in t	536
		Equations with Quadratic Nonlinearities	536
0.0		Other Equations	539
9.3.	•	dynamic Boundary Layer Equations	540
	9.3.1.	Steady Hydrodynamic Boundary Layer Equations for a Newtonian Fluid Steady Boundary Layer Equations for Non-Newtonian Fluids	540 547
		Unsteady Boundary Layer Equations for a Newtonian Fluid	553
		Unsteady Boundary Layer Equations for Non-Newtonian Fluids	564
	9.3.5.	Related Equations	568
9.4.	Equati	ons of Motion of Ideal Fluid (Euler Equations)	570
	9.4.1.	Stationary Equations	570
		Nonstationary Equations	574
9.5.		Γhird-Order Nonlinear Equations	580
		Equations Involving Second-Order Mixed Derivatives	580
		Equations Involving Third-Order Mixed Derivatives	
	9.5.3.	Equations Involving $\frac{\partial^3 w}{\partial x^3}$ and $\frac{\partial^3 w}{\partial y^3}$	587

CONTENTS xi

10. Fourth-Order Equations	589
10.1. Equations Involving the First Derivative in t	589
10.1.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^4 w}{\partial x^4} + F(x, t, w, \frac{\partial w}{\partial x})$	589
10.2. Equations Involving the Second Derivative in t	595
10.2.1. Boussinesq Equation and Its Modifications	
10.2.2. Equations with Quadratic Nonlinearities	
10.2.3. Other Equations	
10.3. Equations Involving Mixed Derivatives	
10.3.1. Kadomtsev–Petviashvili Equation	
10.3.2. Stationary Hydrodynamic Equations (Navier–Stokes Equations)	
10.3.3. Nonstationary Hydrodynamic Equations (Navier–Stokes equations)	
•	
11. Equations of Higher Orders	
11.1. Equations Involving the First Derivative in t and Linear in the Highest Derivative \dots	
11.1.1. Fifth-Order Equations	631
11.1.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^n w}{\partial x^n} + f(x, t, w)$	633
11.1.3. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^n w}{\partial x^n} + f(w) \frac{\partial w}{\partial x}$	
11.1.4. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^n w}{\partial x^n} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$	63
11.1.5. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^m w}{\partial x^n} + F(x, t, w, \frac{\partial w}{\partial x}) \dots$	640
11.1.6. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^n w}{\partial x^n} + F(x, t, w, \frac{\partial w}{\partial x}, \dots, \frac{\partial^{n-1} w}{\partial x^{n-1}}) \dots$	
11.1.7. Equations of the Form $\frac{\partial w}{\partial t} = aw \frac{\partial^n w}{\partial x^n} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$	647
11.1.8. Other Equations	
11.2. General Form Equations Involving the First Derivative in t	65
11.2.1. Equations of the Form $\frac{\partial w}{\partial t} = F\left(w, \frac{\partial w}{\partial x}, \dots, \frac{\partial^n w}{\partial x^n}\right)$	05.
11.2.2. Equations of the Form $\frac{\partial w}{\partial t} = F\left(t, w, \frac{\partial w}{\partial x}, \dots, \frac{\partial^n w}{\partial x^n}\right)$	030
11.2.3. Equations of the Form $\frac{\partial w}{\partial t} = F\left(x, w, \frac{\partial w}{\partial x}, \dots, \frac{\partial n}{\partial x^n}\right)$	055
11.3. Equations Involving the Second Derivative in t	
11.3.1. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^n w}{\partial x^n} + f(x, t, w)$	
11.3.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^n w}{\partial x^n} + F(x, t, w, \frac{\partial w}{\partial x}) \dots \dots$	66
11.3.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^n w}{\partial x^n} + F(x, t, w, \frac{\partial w}{\partial x}, \dots, \frac{\partial^{n-1} w}{\partial x^{n-1}})$	67.
11.3.4. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = aw \frac{\partial^n w}{\partial x^n} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w) \dots$	
11.3.5. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = F\left(x, t, w, \frac{\partial w}{\partial x}, \dots, \frac{\partial^n w}{\partial x^n}\right)$	
11.4. Other Equations	
11.4.1. Equations Involving Mixed Derivatives	676
11.4.2. Equations involving $\frac{\partial}{\partial x^n}$ and $\frac{\partial}{\partial y^m}$	680
${\bf Supplements.} \ \ {\bf Exact\ Methods\ for\ Solving\ Nonlinear\ Partial\ Differential\ Equations} \ \ \dots$	683
S.1. Classification of Second-Order Semilinear Partial Differential Equations in Two	
Independent Variables	
S.1.1. Types of Equations. Characteristic Equation	
S.1.2. Canonical Form of Parabolic Equations	
S.1.4. Canonical Form of Elliptic Equations	

xii Contents

S.2.	Transformations of Equations of Mathematical Physics S.2.1. Point Transformations S.2.2. Hodograph Transformation S.2.3. Contact Transformations. Legendre and Euler Transformations S.2.4. Bäcklund Transformations. Differential Substitutions	685 685 686 688 690
S.3.	Traveling-Wave Solutions and Self-Similar Solutions. Similarity Methods	693 693 694 695
S.4.	Method of Generalized Separation of Variables S.4.1. Introduction S.4.2. Structure of Generalized Separable Solutions S.4.3. Solution of Functional-Differential Equations by Differentiation S.4.4. Solution of Functional-Differential Equations by Splitting S.4.5. Simplified Scheme for Constructing Generalized Separable Solutions S.4.6. Titov–Galaktionov Method	698 698 700 701 705 709 710
S.5.	Method of Functional Separation of Variables S.5.1. Structure of Functional Separable Solutions S.5.2. Special Functional Separable Solutions S.5.3. Differentiation Method S.5.4. Splitting Method. Reduction to a Functional Equation with Two Variables S.5.5. Solutions of Some Nonlinear Functional Equations and Their Applications	713 713 713 718 721 723
S.6.	Generalized Similarity Reductions of Nonlinear Equations	728 728 731 732
S.7.	Group Analysis Methods	735 735 744
S.8.	Differential Constraints Method S.8.1. Description of the Method S.8.2. First-Order Differential Constraints S.8.3. Second- and Higher-Order Differential Constraints S.8.4. Connection Between the Differential Constraints Method and Other Methods	747 747 749 754 756
S.9.	Painlevé Test for Nonlinear Equations of Mathematical Physics S.9.1. Movable Singularities of Solutions of Ordinary Differential Equations S.9.2. Solutions of Partial Differential Equations with a Movable Pole. Description of the Method S.9.3. Examples of the Painlevé Test Applications	758 758 760 761
S.10	Inverse Scattering Method	764 764 766 767
S.11	Conservation Laws	769 769 770

CONTENTS	xiii
----------	------

S.12.	Hyperb	olic Systems of Quasilinear Equations	772
		Conservation Laws. Some Examples	
	S.12.2.	Cauchy Problem, Riemann Problem, and Initial-Boundary Value Problem	773
	S.12.3.	Characteristic Lines. Hyperbolic Systems. Riemann Invariants	773
	S.12.4.	Self-Similar Continuous Solutions. Rarefaction Waves	777
	S.12.5.	Shock Waves. Rankine–Hugoniot Jump Conditions	779
	S.12.6.	Evolutionary Shocks. Lax Condition (Various Formulations)	780
	S.12.7.	Solutions for the Riemann Problem	782
	S.12.8.	Initial-Boundary Value Problems of Special Form	786
	S.12.9.	Examples of Nonstrict Hyperbolic Systems	786
Refer	ences		791
Index			809