CALCUL D'UNE THERMISTANCE

MF58 NTC Thermistor Kit		
Resistance Value(Ω)	B Value(K)	Quantity
1K	3275	10pcs
2K	3470	10pcs
5K	3470	10pcs
10K	3950	10pcs
20K	3950	10pcs
50K	3950	10pcs
100K	3950	10pcs
200K	4250	10pcs
500K	4300	10pcs
1M	3950	10pcs

Valeur de la thermistance R_t

$$R_t = R_{ref} \cdot e^{\beta(\frac{1}{T} - \frac{1}{T_0})}$$

 $R_{ref}:$ Valeur de la thermistance à la température de référence (donné dans le tableau ci-dessus)

 T_0 : Température de référence en Kelvins (souvent 25°C, soit 298.15 K)

 $oldsymbol{eta}$: Béta associé à la thermo résistance (donné dans le tableau ci-dessus en Kelvins)

T: température mesurée en Kelvins

Exemple : Calculons la valeur de R d'une thermistance de 20k du tableau ci-dessus à 17°C

 R_{ref} = 20 k ohms, T_0 =298.15, β =3950, T=273.15+17=290.15

$$R_t = 20.10^3.e^{3950.(\frac{1}{290.15} - \frac{1}{298.15})} = 28,818 \, k\Omega$$

Maintenant, il faut inverser l'équation, c'est-à-dire trouver la valeur de la température pour une valeur de résistance R_t mesurée.

On trouve :
$$T = \frac{1}{\frac{1}{T_0} + \frac{1}{\beta} \cdot \ln{(\frac{R_t}{R_{ref}})}}$$

Maintenant, pour mesurer cette résistance, nous devons appliquer un pont diviseur de tension et mesurer la tension avec une entrée analogique d'un Arduino, ESP32 ou autre.

$$Vt = \frac{R_0}{R_0 + R_t} V_{cc} = V_{cc} \frac{ADC}{1024} \rightarrow \frac{1024}{ADC} = 1 + \frac{R_t}{R_0} \rightarrow R_t = R_0 (\frac{1024}{ADC} - 1)$$

Donc la température mesurée est :

$$T = \frac{1}{\frac{1}{T_0} + \frac{1}{\beta} \cdot \ln\left(\frac{R_0(\frac{1024}{ADC} - 1)}{R_{ref}}\right)}$$

https://www.youtube.com/watch?v=smGJSL ghfk