

COMP0130: Robotic Vision and Navigation

Lecture 06C: Examples of Graphs

Structure

- Motivation
- 2D Particle Linear Observation Example
- Interpreting the Distribution in the Graph
- 2D Particle Nonlinear Observation Example

Motivation

 We have shown that we can represent estimates using the joint density

$$f\left(\mathbf{x}_{0:k}|\mathbb{I}_{k}\right)\widehat{\propto} f\left(\mathbf{x}_{0}\right)\prod_{i=1}^{k}f\left(\mathbf{x}_{i}|\mathbf{x}_{i-1},\mathbf{u}_{i}\right)$$

$$\times \prod_{i=1}^{k} L(\mathbf{x}_i; \mathbf{z}_i)$$

Motivation

- This equation is exact (up to proportionality):
 - It is the full functional form of the distribution
 - There is no integration or marginalization
- So what does it look like to implement?
- And what do the probability distributions in the graph mean?

2D Particle Linear Observation Example

- Motivation
- 2D Particle Linear Observation Example
- Interpreting the Distribution in the Graph
- 2D Particle Nonlinear Observation Example

Linear Example

- We are tracking a particle in 2D:
 - The target state is position and velocity in 2D
 - The movement is piecewise constant velocity
 - The observations are the platform position
 - Observation noise is linear and additive
 - Observations are only available once every 50 timesteps

Graph with Infrequent Observations

Linear System

Once we have the equations, we substitute

$$f(\mathbf{x}_{0:k}|\mathbb{I}_k) \propto f(\mathbf{x}_0) \prod_{i=1}^k f(\mathbf{x}_i|\mathbf{x}_{i-1},\mathbf{u}_i)$$

$$\times \prod_{i=1}^{k} \underbrace{L(\mathbf{x}_i; \mathbf{z}_i)}_{\mathcal{Z}(\mathbf{x}_i; \mathbf{y}_i, \mathbf{y}_i, \mathbf{y}_i)}$$

LUCL

Linear System

State vector is:

$$\mathbf{x}_k = \begin{bmatrix} x_k & \dot{x}_k & y_k & \dot{y}_k \end{bmatrix}^\top$$

Process model:

$$\mathbf{x}_{k} = \mathbf{F} \mathbf{x}_{k-1} + \mathbf{v}_{k}$$

$$\mathbf{F} = \begin{bmatrix} 1 & \Delta T & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \Delta T \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{Q} = q \begin{bmatrix} \Delta T^3/3 & \Delta T^2/2 & 0 & 0\\ \Delta T^2/2 & \Delta T & 0 & 0\\ 0 & 0 & \Delta T^3/3 & \Delta T^2/2\\ 0 & 0 & \Delta T^2/2 & \Delta T \end{bmatrix}$$

Observation vector:

$$\mathbf{z}_k = \begin{bmatrix} x_k & y_k \end{bmatrix}^\top$$

Observation model:

$$\mathbf{z}_k = \mathbf{H}\mathbf{x}_k + \mathbf{w}_k$$

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{R} = \sigma^2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Linear System

 We need to define the state transition probabilities and the measurement likelihoods

 As explained in the last lecture, we get these from the process and observation models

State Transition Probabilities

Recall that the state transition probability

$$f(\mathbf{x}_k|\mathbf{x}_{k-1},\mathbf{u}_k) = f_{\mathbf{v}}(\mathbf{v}_k = \mathbf{e}[\mathbf{x}_k,\mathbf{x}_{k-1},\mathbf{u}_k])$$

From the process model,

$$\mathbf{e}\left[\mathbf{x}_{k}, \mathbf{x}_{k-1}, \mathbf{y}_{k}\right] = \mathbf{x}_{k} - \mathbf{F}\mathbf{x}_{k-1}$$

$$\mathbf{x}_{k} = \mathbf{F}\mathbf{x}_{k-1} \quad \mathbf{y}_{k}$$

$$\mathbf{y}_{k} = \mathbf{F}\mathbf{x}_{k-1} \quad \mathbf{y}_{k}$$

State Transition Probabilities

- We have modelled the process as a zero-mean Gaussian with covariance $oldsymbol{Q}_k$
- Therefore, the state transition probability is

$$f\left(\mathbf{x}_{k}|\mathbf{x}_{k-1},\mathbf{u}_{k}\right) \propto \exp\left\{-\frac{1}{2}\left(\mathbf{x}_{k}-\mathbf{F}\mathbf{x}_{k-1}\right)^{\top}\mathbf{Q}_{k}^{-1}\left(\mathbf{x}_{k}-\mathbf{F}\mathbf{x}_{k-1}\right)\right\}$$

Recall the measurement likelihood function is

$$f(\mathbf{z}_k|\mathbf{x}_k) = f_{\mathbf{w}}\left(\mathbf{w}_k = \mathbf{l}\left[\mathbf{x}_k^{\ell}, \mathbf{z}_k^{\ell}\right]\right)$$

From the observation model,

$$\begin{array}{ccc}
\mathbf{1}[\mathbf{x}_k,\mathbf{z}_k] = \mathbf{z}_k - \mathbf{H}\mathbf{x}_k \\
\mathbf{z}_k = \mathbf{h} \mathbf{x}_h^{1/2} \mathbf{k} & \mathbf{w}_k = \mathbf{z}_k - \mathbf{h} \mathbf{x}_k \\
\uparrow & \uparrow
\end{array}$$

Again, using the Gaussians, we get

$$L(\mathbf{x}_k; \mathbf{z}_k) \propto \exp\left\{-\frac{1}{2} \left(\mathbf{z}_k - \mathbf{H} \mathbf{x}_k\right)^{\top} \mathbf{R}_k^{-1} \left(\mathbf{z}_k - \mathbf{H} \mathbf{x}_k\right)\right\}$$

Using the Probabilities and Likelihoods

Substitute for the Gaussians in this expression

$$f\left(\mathbf{x}_{0:k}|\mathbb{I}_{k}\right) \propto f\left(\mathbf{x}_{0}\right) \prod_{i=1}^{k} f\left(\mathbf{x}_{i}|\mathbf{x}_{i-1},\mathbf{u}_{i}\right)$$

$$\downarrow \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{k \in \mathbb{Z}_{k}} \sum_{k \in \mathbb{Z}_{k}} \sum_{k \in \mathbb{Z}_{k}} \sum_{j=1}^{k} L\left(\mathbf{x}_{i};\mathbf{z}_{i}\right)$$

$$\downarrow \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{k \in \mathbb{Z}_{k}} \sum_{k \in \mathbb{Z}_{k}} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{k \in \mathbb{Z}_{k}} \sum_{j=1}^{k} \sum_{j=$$

Interpreting the Distribution in the Graph

- Motivation
- 2D Particle Linear Observation Example
- Interpreting the Distribution in the Graph
- 2D Particle Nonlinear Observation Example

Interpreting the Distribution in the Graph

 Recall that the graph stores the entire history of the platform as the state vector

Therefore, a single instance describe the entire

run

A Single Target State

Interpreting Uncertainty Using Sampling

- We'd like to interpret the uncertainty in the state estimate caused by the graph
- At the moment we can't use moments because we don't have the normalization constant
- However, instead we can use sampling techniques
- Sampling generates a lot of particles to represent

Sampling and Linear Measurements

Sampling and Very Nonlinear Measurements

Sampling from the Graph

- To get a sense of what's actually stored in the graph, we'd like to draw samples of it and plot them
- It turns out that we can sample from a graph without normalizing it
- We use an approach called Riemannian Hamiltonian Monte Carlo
- This is out of scope of the module, but the code for it is provided as part of the lab model answers

≜UCL

UCL

UCL

Plume

≜UCL

Regular "Pulses"

2D Particle Nonlinear Observation Example

- Motivation
- 2D Particle Linear Observation Example
- Interpreting the Distribution in the Graph
- 2D Particle Nonlinear Observation Example

2D Particle Nonlinear Observation Example

• We now change the example by replacing the sensor with a sensor which measures range and bearing from a sensor is located at (x_s, y_s)

The sensors are corrupted by additive Gaussian noise

Setup

2D Particle Nonlinear Observation Example

The observation models are now

$$r_k = \sqrt{(x_k - x_s)^2 + (y_k - y_s)^2} + w_k^r$$

$$\beta_k = \tan^{-1}\left(\frac{y_k - y_s}{x_k - x_s}\right) + w_k^{\beta}$$

Recall that

$$f(\mathbf{z}_k|\mathbf{x}_k) = f_{\mathbf{w}}(\mathbf{w}_k = \mathbf{l}[\mathbf{x}_k, \mathbf{z}_k])$$

This time, however, the equations are nonlinear and so

$$\mathbf{l}\left[\mathbf{x}_{k}, \mathbf{z}_{k}\right] = \underbrace{\begin{bmatrix}l_{r}\left[\mathbf{x}_{k}, \mathbf{z}_{k}\right]\\l_{\beta}\left[\mathbf{x}_{k}, \mathbf{z}_{k}\right]\end{bmatrix}}_{l_{\beta}\left[\mathbf{x}_{k}, \mathbf{z}_{k}\right]}$$

 We need to make the measurement noise the subject of the formula En= (= JA/2+1) + W W=(n-JA/2+0)2

Therefore

$$l_r \left[\mathbf{x}_k, \mathbf{z}_k \right] = r_k - \sqrt{(x_k - x_s)^2 + (y_k - y_s)^2}$$

$$l_\beta \left[\mathbf{x}_k, \mathbf{z}_k \right] = \beta_k - \tan^{-1} \left(\frac{y_k - y_s}{x_k - x_s} \right)$$

$$\mathsf{N} \sim \mathcal{G} \left(\mathfrak{d} \right) \, \mathsf{l}_{\mathsf{N}} \right)$$

Using the Gaussian assumptions,

$$L(\mathbf{x}_k; \mathbf{z}_k) \propto \exp\left\{-\frac{1}{2}\mathbf{l}[\mathbf{x}_k, \mathbf{z}_k]\right\}$$

Polar Measurement Results

Cartoon Version of Vehicle Prediction

 The control input is the wheel speed and front wheel steer angle,

$$\mathbf{u}_k = \begin{bmatrix} s_k & \delta_k \end{bmatrix}^\top$$

· The new pose is computed from

$$\begin{cases} x_k = x_{k-1} + s_k \Delta T \cos(\psi_{k-1} + \delta_k) \\ y_k = y_{k-1} + s_k \Delta T \sin(\psi_{k-1} + \delta_k) \\ \psi_k = \psi_{k-1} + \frac{s_k \Delta T \sin \delta_k}{B} \end{cases}$$

Cartoon Version of Vehicle Prediction

