

Universidade Federal do Acre Pró-reitoria de Extensão e Cultura Diretoria de Ações de Extensão

1: Identificação da proposta	
Título	Python para a engenharia com aplicações
Local de realização	Realizado de forma remota em Rio Branco - AC.
Área temática	Tecnologia e Produção
Área de Conhecimento	Engenharias
Centro/Unidade Integradora	Centro de Ciências Exatas e Tecnológicas
Cidade de realização	Rio Branco
Outra(s) cidade(s) de realização da ação	Rio Branco
Data de início da execução	04/09/2020
Data de término da execução	18/12/2020
Carga horária semanal da ação	4
Carga horária total da ação	60
Carga horária semanal do coordenador	8
Carga horária total do coordenador	120

2: Previsão de pessoas envolvidas	
Número de alunos envolvidos	2
Número de professores envolvidos	3
Número de técnicos-administrativos envolvidos	0
Número de membros da comunidade externa envolvidos	0
Número de alunos público alvo	26
	1

Número de professores público alvo	6
Número de técnicos-administrativos público alvo	2
Número de membros da comunidade externa público alvo	6
A ação é desenvolvida ou tem parceria com alguma escola pública?	Não
Instituições envolvidas	Universidade Federal do Acre
Arquivo do termo de cooperação ou documento de intenção da parceria (email, ofício, etc.) (PDF)	Não enviado
Não se aplica o termo de cooperação	True

	3:	Parceria	com	Esco	las
--	----	----------	-----	------	-----

4: Detalhamento da Ação de Extensão

Apresentação/Introdução

A utilização das ferramentas de programação voltada para cálculos é cada vez mais necessária no cotidiano dos profissionais e estudantes da área da engenharia. Ditas ferramentas facilitam o desenvolvimento e aumentam a produtividade de tarefas complexas. O Python é uma linguagem de programação de código aberto e gratuita que tem se destacado nesta área, por isso, tem sido adotada por grandes empresas de tecnologia, como Google, Facebook, Spotify, Itaú e outras. Seu enfoque em clareza de código, a sua simplicidade e o suporte a diversos paradigmas de programação, tornam esta linguagem mais amigável para o aprendizado de programação do que outras linguagens como FORTRAN e C. Além disso, sua vasta variedades de módulos, pacotes e bibliotecas voltadas para aplicações de matemática, física e engenharia tornam essa linguagem competitiva para a resolução de problemas de engenharia elétrica, onde a comunidade de usuários geralmente é adepta ao uso de ferramentas de cálculos pagas como o MATLAB. Sendo assim, este curso tem como público alvo estudantes, profissionais e pesquisadores de engenharia que queiram aprimorar seus conhecimentos aprendendo uma nova ferramenta gratuita de cálculo e programação.

Resumo do Trabalho

Neste curso será ensinado o Python dentro do ambiente de desenvolvimento Jupyter Lab com aplicações voltadas para estudantes, profissionais e pesquisadores de engenharia. Este ambiente permite a criação de 'Notebooks', um conceito de documento que inclui textos tradicionais com títulos, figuras, equações, etc, e códigos Python. Os resultados da programação em Python são impressos dentro do documento, permitindo, inclusive, a criação de botões interativos dentro do Notebook, possibilitando a criação gráficos e outros elementos interativos. No curso, serão apresentados os conceitos básicos da linguagem de programação Python aplicados à alguns problemas da engenharia e da matemática, que serão previamente explicados ao decorrer das aulas. Além disso, o curso contará com atividades práticas semanais, que serão apresentadas nas aulas de videoconferências e em apostilas no formato de 'Notebooks'. Ao final do curso cada participante deverá fazer um projeto final de curso para consolidar o conhecimento adquirido. Finalmente, o participante pode contar com a ajuda dos bolsistas e/ou voluntários para tirar dúvidas durante as aulas e na resolução das tarefas semanais.

Justificativa e contextualização

Tradicionalmente os engenheiros utilizam muitas soluções pagas e fechadas para a execução das suas tarefas, podendo-se destacar diversos softwares como SolidWorks, MATLAB, Multisim, dentre outros. Embora estas ferramentas sejam eficientes nas funções que lhe agregam, elas acarretam em um custo adicional para a empresa, usuário ou instituição de ensino. Por outro lado, o Python e o Jupyter Lab são ferramentas gratuitas e de código aberto capazes de solucionar diversos problemas de engenharia. O uso do Jupyter Lab moderniza do ensino das aulas de engenharia, visto que os 'Notebooks' são documentos (ou relatórios) dinâmicos que permitem a inserção de códigos de programação com visualização de resultados de cálculos, gráficos e tabelas no próprio documento, podendo ser utilizado como um documento ou apresentação de um trabalho de engenharia e áreas afins. Além disso, vale destacar que o Python é uma das ferramentas líderes em pesquisa de ponta na área de inteligência artificial e ciências de dados. Sendo assim, o objetivo deste curso é estimular o aprendizado desta ferramenta livre e gratuita com ênfase em solução de problemas de matemática e engenharia. E ainda, como os softwares utilizados são gratuitos, não é necessário por parte dos participantes e nem da UFAC, a aquisição de licenças, sendo uma plataforma ideal para o ensino remoto.

Objetivo Geral

Introduzir a linguagem Python com aplicações no ambiente de desenvolvimento Jupyter Lab.

Objetivos Específicos

- Qualificar o discente para interagir com a ferramenta computacional Jupyter Lab;
- Desenvolver capacidades no discente a fim de realizar algoritmos para a resolução de problemas de engenharia e matemática utilizando os 'Notebooks' e a linguagem de programação Python;
- Estimular o discente à utilizar a ferramenta computacional Jupyter Lab em apresentações e na criação de relatórios;
- Criar precedente na região como um programa de capacitação e desenvolvimento em ferramentas computacionais para engenharia e áreas afins e projetar a universidade como um centro de capacitação de tecnologia que favorece o progresso do estado do Acre.

Metas

Abaixo seguem as metas que devem ser atingidas de acordo com o cronograma de semanas (e encontros) de curso:

1a semana) Instalação do ambiente de programação e execução do primeiro código:

- -> Os alunos deverão ser capazes de instalar o ambiente de desenvolvimento Jupyter Lab;
- -> Os alunos deverão ter familiaridade com o conceito de "Notebook";
- -> Os alunos deverão ser capazes de executar códigos em Python no Jupyter Lab e no terminal.

2a e 3a semanas) Fundamentos do Python:

- -> Os alunos devem ser capazes de criar textos simples que contenham um cabeçalho com título e nome no Jupyter Notebook;
- -> Os alunos devem ser capazes de criar os primeiros códigos em Python. 4a à 6a semana) Estruturas de controle:
- -> Os alunos deverão ser capazes de escrever textos ricos (Com imagens e tabelas) em 'Notebooks' utilizando a linguagem de marcação de texto Markdown;
- -> Os alunos deverão ser capazes de utilizar estruturas de controle no Python. 7a semana) Funções:
- -> Os alunos devem ser capazes de criar funções e utilizá-las em código no Python;
- -> Os alunos devem ser capazes de representar equações no Jupyter Lab utilizando a linguagem Markdown.

8a à 11a semana) Introdução às "frameworks" e pacotes de engenharia:

- -> Os alunos devem ser capazes de criar gráficos e tabelas;
- -> Os alunos devem ser executar cálculos matemáticos complexos;
- -> Os alunos deverão ser capazes de utilizar os 'Notebooks' para criar relatórios dinâmicos com botões interativos.

12a à 14a semana) Aplicações do Python na engenharia:

-> Os alunos deverão ser capazes de utilizar o Python para solucionar problemas práticos da matemática e engenharia.

15a semana) Trabalho final de curso:

-> Os alunos deverão ser capazes de utilizar os 'Notebooks' para criar relatórios profissionais e fazer apresentações.

Metodologia

A ação propõe ministrar o curso remoto com 60 horas de duração a iniciar no mês de setembro. Essas 60 horas serão divididas em 15 encontros, no formato de webconferências, considerando 4h para cada encontro. O curso contará com atividades semanais e ocorrerão de acordo com os itens abaixo:

- As atividades semanais serão apresentadas, em primeiro momento, em aulas no formato de videoconferências de quatro horas.
- Durante cada aulas será ensinado como resolver a primeira parte da respectiva atividade semanal, sendo que, o aluno poderá utilizar parte da aula para finalizar a primeira parte da atividade.
- A segunda parte da atividade deverá finalizada pelo aluno durante a semana.
- Serão disponibilizadas apostilas com os detalhes da primeira e segunda parte de cada atividade;
- Um dia antes da aula anterior o aluno deve carregar (Fazer "upload") a sua atividade, incluindo a primeira e segunda parte, em uma plataforma online, podendo haver flexibilização do prazo caso haja necessidade.

A última semana do curso serão reservadas para a apresentação do projeto final de curso de cada participante. Neste projeto o aluno deve aplicar algum conhecimento adquirido durante o curso em algum tema de seu interesse. Ao final, o projeto deve ser apresentado de através de um vídeo gravado previamente, os Notebooks e códigos relacionados devem ser enviados à comissão avaliadora.

Além disso, aplicam-se os seguintes itens:

- A frequência dos participantes serão computadas de acordo com as atividades carregadas na plataforma, incluindo as atividades semanais e o projeto final de curso, isto minimiza os efeitos relacionados à qualidade de internet, por parte dos participantes, durante o horário das aulas.
- O projeto final de curso contará como avaliação final do curso.
- Os alunos poderão contar com o auxílio de até dois monitores (Bolsistas e/ou voluntários) para tirar dúvidas em relação às tarefas semanais e no desenvolvimento do projeto final de curso. Eles estarão disponíveis durante os encontros semanais, tirando dúvidas e moderando a webconferência, e em plataformas de comunicação online, durante um horário pré-definidos durante a semana:
- Os bolsistas e/ou voluntários poderão ajudar na correção das atividades semanais e no projeto final;
- Dependendo do número de inscritos interessados no curso, haverá a possibilidade de abrir uma turma B seguindo o mesmo plano elaborado para a turma A;
- As infraestruturas utilizadas serão as plataformas de apoio institucional para ações remotas da UFAC, como o Moodle da UFAC e o serviço de webconferência RNP. Caso haja necessidade, poderão ser utilizadas outras plataformas gratuitas, como Youtube, Google Meet, Zoom, Google Classroom, Whatsapp, Discord, dentre outras.

Conteúdo programático

Abaixo segue o conteúdo programático e o cronograma de execução de cada item previsto em termos de encontros de curso:

1) Instalação do ambiente de programação e execução do primeiro código: No. de encontro(s): 1

Instalação e configuração do Anaconda para o uso do Jupyter Lab com o Python; Apresentação do ambiente de desenvolvimento Jupyter Lab; Criação de um Notebook e execução de um código Python em um Notebook e no terminal.

2) Fundamentos do Python:

No. de encontro(s): 2

Comentários; Variáveis; Operadores (Lógicos, aritméticos, relacionais, de atribuição); Tipos de dados (Numéricos, strings, listas, tuplas e dicionários); Introdução à linguagem de marcação de texto Markdown no ambiente do Jupyter Lab (Criação de um cabeçalho).

3) Estruturas de controle:

No. de encontro(s): 3

IF/ELSE; WHILE; FOR; Importância da indentação no Python; Comandos 'break' e 'continue'; Adição de figuras e tabelas na linguagem Markdown.

4) Funções:

No. de encontro(s): 1

Apresentação do conceito de funções e seus respectivos parâmetros; Criação de equações na linguagem Markdown e formatação de texto.

5) Introdução às "frameworks" e pacotes de engenharia e matemática (NUMPY, SCIPY, MATPLOTLIB e PANDAS):

No. de encontro(s): 4

Apresentação de "Arrays" e Matrizes voltados para os cálculos matemáticos (NUMPY Arrays); Plotagem e customização de gráficos; Técnicas de derivação, integração e limites; Transformada de Laplace; Resolução de equações diferenciais; Simplificação e operação com variáveis simbólicas; Apresentação dos conceitos de 'Series' e 'Dataframes' do PANDAS; Importação de dados de tabelas em Excel e CSV, e visualização na forma de 'tabelas'; Métodos estatísticos como média e desvio padrão.

6) Algumas aplicações da linguagem em aplicações da matemática e engenharia: No. de encontro(s): 3

Aplicação dos conceitos da série de Fourier; Aplicação em um circuito RLC em regime transitório; Aplicação de modelagem e controle, com funções de transferência, resposta ao degrau e resposta ao impulso utilizando a "framework" PYTHON-CONTROL; Aplicação em resolução de circuitos elétricos; Análise estatística e visualização de dados.

7) Projeto final de curso:

No. de encontro(s): 1

Vinculação com ensino e pesquisa

A vinculação deste curso com o ensino ocorre a partir do momento em que é ensinado uma nova ferramenta. Tal ferramenta contribuirá para a formação complementar dos participantes, e contribuirá durante a vida acadêmica e profissional dos mesmos. Em relação à pesquisa, vale destacar que o Python é uma das linguagens mais utilizadas em aplicações relacionadas a ciência de dados e inteligência artificial. Este curso dará os fundamentos para que o pesquisador possa aplicar a linguagem Python na sua área de pesquisa.

Compatibilidade com o Projeto Pedagógico do Curso (PPC) e Plano de Desenvolvimento Institucional (PDI) De maneira geral, tanto o Projeto Pedagógico do Curso (PPC) assim como o Plano de Desenvolvimento Institucional (PDI) estabelecem princípios e diretrizes destinados a orientar os desafios que a sociedade brasileira impõe em termos de ensino, pesquisa e extensão. Descrevem também, políticas e ações que possibilitem a pesquisa e investigação científica, visando o desenvolvimento da ciência e da tecnologia, em consonância com as particularidades da Amazônia. Da mesma forma, ambos os documentos promovem atividades que norteiam a formação integral dos discentes mediante ações de extensão, possibilitando junto a eles a participação da população, mediante a difusão das atividades geradas na instituição. O PDI (2012-2014) da Universidade Federal do Acre trata em diversos pontos de temas relacionados à área de engenharia, que por sua vez, estão relacionadas com as atividades a serem desenvolvidas nos projetos apresentados neste evento. Por outro lado, o perfil do profissional citado no currículo básico do Curso de Engenharia Elétrica em 2010, prevê aspectos que envolvem justamente a participação em atividades complementares à área de formação. Como exemplo de tais atividades, temos: o desenvolvimento ético, moral e crítico do aluno, a integralização entre ensino, pesquisa e extensão, a associação entre universidade e mercado e entre universidade e sociedade, dentre outras.

Nesse contexto, cursos oferecerão uma formação multidisciplinar, que proporcionará aos participantes uma vantagem competitiva ímpar no âmbito acadêmico e profissional. É desta maneira, a execução deste plano de trabalho também irá contribuir para a construção de agenda de especialização e soluções condizentes com o cenário local e a visão global da área na atualidade. Durante o curso, estudantes e profissionais participantes estarão expostos a um intenso aprendizado a uma ferramenta bem ampla e de alta aplicabilidade em diversas áreas da ciência e tecnologia.

Acompanhamento e Avaliação do projeto em relação aos objetivos, metas e metodologia O acompanhamento de cada participante será dado principalmente através da entrega das atividades semanais, sendo esta uma forma de computar a presença do aluno durante aquela semana. Por fim, a avaliação final de cada candidato será computada através do projeto final de curso observando a relevância do projeto, a qualidade da apresentação e do 'Notebook' e a aplicação dos conceitos aprendidos em aula. Os alunos que tiverem 75% de presença (75% das atividades entregues) e finalizarem o projeto final ganharão o certificado de conclusão de curso.

Resultados e/ou impactos esperados

- Ao final do curso os discentes, docentes e profissionais participantes terão uma visão mais ampla e atualizada das possibilidades da linguagem de programação em o seu cotidiano.
- É esperado que o conteúdo adquirido durante o curso seja aplicado em disciplinas de graduação e pós graduação, usando os Notebooks como relatórios e/ou ferramenta complementar para apresentação de aulas, projetos ou trabalhos.
- É esperado um maior interesse da comunidade local nas áreas de pesquisa que utilizam programação em Python, como ciências de dados e inteligência artificial;
- É esperado que os participantes deste curso possam usar as ferramentas para melhorar a abordagem em outros projetos, uma vez que saberão habilidades como tratar dados, plotar gráficos e apresentá-los na forma de 'Notebooks';
- É esperado um aumento da utilização da linguagem de programação Python na comunidade local, em detrimento de ferramentas pagas e fechadas como o MATLAB;
- É esperado a divulgação da linguagem, por parte dos participantes, como uma alternativa viável para execução de projetos na área de engenharia;
- Criar precedente na região como um programa de capacitação e desenvolvimento em ferramentas computacionais para engenharia e áreas afins e projetar a universidade como um centro de capacitação de tecnologia que favorece o progresso do estado do Acre.

Referências

- [1] Allen B. Downey, Sheila Gomes (Tradutora). "Pense em Python: Pense Como um Cientista da Computação", Novatec, 2016.
- [2] Jaan Kiusalaas. "Numerical Methods in Engineering with Python 2nd Edition", Cambridge University Press, 2010.
- [3] Robert Johansson. "Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib", Apress, 2015.
- [4] Jesse M. Kinder, Philip Nelson. "A Student's Guide to Python for Physical Modelin Updated Edition", Princeton University Press, 2018.

5: Caracterização do Curso

Caracterização do curso

Iniciação

Sub-caracterização do curso

À Distância

Data de início da realização

04/09/2020

Data de término da realização

18/12/2020

Carga horária de aulas teóricas

0

Carga horária de aulas práticas

60

Número de vagas oferecidas

40

avaliacao

Frequência, Trabalhos Escritos

Ementa/Conteúdo Programático do Curso/Programação do Evento

Abaixo segue o conteúdo programático e o cronograma de execução de cada item previsto em termos de encontros de curso:

1) Instalação do ambiente de programação e execução do primeiro código:

No. de encontro(s): 1

Instalação e configuração do Anaconda para o uso do Jupyter Lab com o Python; Apresentação do ambiente de desenvolvimento Jupyter Lab; Criação de um Notebook e execução de um código Python em um Notebook e no terminal.

2) Fundamentos do Python:

No. de encontro(s): 2

Comentários; Variáveis; Operadores (Lógicos, aritméticos, relacionais, de atribuição); Tipos de dados (Numéricos, strings, listas, tuplas e dicionários); Introdução à linguagem de marcação de texto Markdown no ambiente do Jupyter Lab (Criação de um cabeçalho).

3) Estruturas de controle:

No. de encontro(s): 3

IF/ELSE; WHILE; FOR; Importância da indentação no Python; Comandos 'break' e 'continue'; Adição de figuras e tabelas na linguagem Markdown.

4) Funções:

No. de encontro(s): 1

Apresentação do conceito de funções e seus respectivos parâmetros; Criação de equações na linguagem Markdown e formatação de texto.

5) Introdução às "frameworks" e pacotes de engenharia e matemática (NUMPY, SCIPY, MATPLOTLIB e PANDAS):

No. de encontro(s): 4

Apresentação de "Arrays" e Matrizes voltados para os cálculos matemáticos (NUMPY Arrays); Plotagem e customização de gráficos; Técnicas de derivação, integração e limites; Transformada de Laplace; Resolução de equações diferenciais; Simplificação e operação com variáveis simbólicas; Apresentação dos conceitos de 'Series' e 'Dataframes' do PANDAS; Importação de dados de tabelas em Excel e CSV, e visualização na forma de 'tabelas'; Métodos estatísticos como média e desvio padrão.

6) Algumas aplicações da linguagem em aplicações da matemática e engenharia: No. de encontro(s): 3

Aplicação dos conceitos da série de Fourier; Aplicação em um circuito RLC em regime transitório; Aplicação de modelagem e controle, com funções de transferência, resposta ao degrau e resposta ao impulso utilizando a "framework" PYTHON-CONTROL; Aplicação em resolução de circuitos elétricos; Análise estatística e visualização de dados.

7) Projeto final de curso:

No. de encontro(s): 1

Ministrantes

- Lucas Lima Rodrigues
- Ana Beatriz Alvarez
- Diodomiro Baldomero Luque Carcasi

Exercício: 01/09/2020 a 31/12/2020

Rubrica	Valor da rubrica
Auxílio Financeiro a Estudantes (33.90.18)	R\$ 3.200,00

7: Distribuição de Bolsas

Exercício: 01/09/2020 a 31/12/2020

uantidade de bolsistas Mês de início da vigência		Mês de término da vigência	
2	Setembro	Dezembro	

8: Equipe de Trabalho

Nome completo	CPF	modalidade	Instituição	Outras	Carga horária semanal	Carga horária
						total
Beatriz Nascimento Gomes	838.797.222- 34	Bolsista	UFAC		12	48
Leonardo Batista Vieira Barros	962.180.702- 63	Bolsista	UFAC		12	48
Diodomiro baldomero Luque carcasi	228.973.038- 67	Colaborador	UFAC		2	30
Ana Beatriz Alvarez	228.689.348- 97	Colaborador	UFAC		4	60
Lucas Lima Rodrigues	041.675.345- 09	Coordenador	UFAC		8	120

9: Infraestrutura (Opcional)

10:	Informações	Complementares
-----	-------------	----------------

Documentos complementares (PDF)	Não enviado
---------------------------------	-------------

Não A ação conta com Financiamento externo?

Nome da instituição	
CNPJ	
Valor do Financiamento	R\$ 0,00
Informações adicionais	
Informações adicionais	
Comprovante de parceria ou aprovação do Finaciamento (PDF)	Não enviado