Quantum MCMC Speedup Analysis: Comprehensive Results (a) Quantum Speedup vs Classical Gap (b) Mixing Time Comparison **−−** Theory: $\propto 1/\sqrt{\text{(gap)}}$ -- No speedup 3×10^{1} 6×10^{0} Ouantum Mixing Time 5×10^{1} 10^{1} 2×10^{0} 6×10^{0} 10^{-1} 10² 10^{1} Classical Spectral Gap Classical Mixing Time (c) Circuit Complexity vs Speedup (d) Error Bound vs Speedup 9.825×10^{-2} 3×10^{1} 0.9 9.8×10^{-2} 9.775×10^{-2} o 2 Success Probability Circuit Depth 2 Circuit 2 Circuit Depth 2 Circuit Depth **Error Bound** 9.75×10^{-2} 9.725×10^{-2} 9.7×10^{-2} 0.6 9.675×10^{-2} 9.65×10^{-2} 0.5 2×10^{0} 3×10^{0} 4×10^{0} 2×10^{0} 3×10^{0} 4×10^{0} 6×10^{0} 6×10^{0}

Quantum Speedup Factor

Quantum Speedup Factor