

Analyse et réduction de modèle Modelica via Persalys

JU OpenTURNS - 21 juin 2021

Claire-Eleuthèriane Gerrer Ingénieure d'études et de recherche

Les collecteurs solaires paraboliques permettent la production d'électricité à échelle industrielle.

 On modélise sur OpenModelica les panneaux réfléchissant le soleil sur le tuyau.

▶ On s'intéresse à 9 variables de ce modèle.

Groupe de variable	Nom	Unité	Rôle
	L	m	Longueur du tube PTSC
Géométriques	solarCollector.RimAngle	0	Angle du rebord
Geometriques	solarCollector.f	m	Longueur focale
	solarCollector.h	$W/m^2/K$	Coefficient de transfert
État da muamustá	solarCollector.R	-	Réflectivité du miroir
État de propreté	solarCollector.TauN	-	Transmittivité du verre
	T_atm.k	°K	Température atmosphérique
Météo	angle_incidence.k	0	Angle d'incidence du soleil
	radiation.k	W/m^2	Rayonnement normal

► Sortie : le flux de chaleur transmis au fluide.

- Enjeu 1 : compréhension du modèle.
 - ightarrow Quelles sont les variables les plus influentes ?
- Enjeu 2 : rapidité du modèle.
 - → Peut-on accélérer la simulation de ce modèle ?

On considère toutes les variables constantes au cours de la simulation :

modèle physique
$$\Leftrightarrow f(x_1,...,x_9)$$

nparameter" et "input" étant des types Modelica, on utilise le terme "variable" pour l'analyse statistique.

Communication Modelica - OpenTURNS

- Le standard FMI (Functional Mock-up Interface) définit un contener et une interface pour échanger des modèles entre logiciels.
- On nomme FMU le fichier zip rassemblant ces éléments.
- Ce standard est compatible avec OpenModelica, Dymola, Amesim, Simulink, Python, etc.
- ► Les bibliothèques PyFMI et FMPy permettent de simuler des FMUs en Python.

Persalys, l'interface graphique d'OpenTURNS

- contourner les difficultés de la syntaxe Python/OpenTURNS,
- guider l'utilisateur dans la démarche d'analyse.

Un petit tour en Persalys ?

Import du FMU

On étudie le collecteur solaire exporté comme FMU.

► Le screening fournit de premières informations sur l'importance relative des variables.

▶ On conserve les 5 variables les plus influentes.

Groupe de variable	Nom	Unité	Rôle
	L	m	Longueur du tube PTSC
Géométriques	solarCollector.RimAngle solarCollector.f	0	Angle du rebord Longueur focale
•		m	<u> </u>
	solarCollector.h	$W/m^2/K$	Coefficient de transfert
État de propreté	solarCollector.R	-	Réflectivité du miroir
Etat de proprete	solarCollector.TauN	-	Transmittivité du verre
	T_atm.k	°K	Température atmosphérique
Météo	angle_incidence.k	0	Angle d'incidence du soleil
	radiation.k	W/m^2	Rayonnement normal

▶ Pour aller plus loin, on définit les lois de probabilité des variables conservées.

► Les indices de Sobol' quantifient, pour chaque entrée, la part de variance de la sortie dont elle est responsable.

On conserve les variables influentes et susceptibles d'évoluer dans le temps.

Groupe de variable	Nom	Unité	Rôle
	L	m	Longueur du tube PTSC
Géométriques	solarCollector.RimAngle	0	Angle du rebord
Geometriques	solarCollector.f	m	Longueur focale
	solarCollector.h	$W/m^2/K$	Coefficient de transfert
État de propreté	solarCollector.R	-	Réflectivité du miroir
Etat de proprete	solarCollector.TauN	-	Transmittivité du verre
	T_atm.k	°K	Température atmosphérique
Météo	angle_incidence.k	٥	Angle d'incidence du soleil
	radiation.k	W/m^2	Rayonnement normal

▶ On considère donc un modèle à 3 entrées et 1 sortie.

Et maintenant?

On réduit le temps de calcul du modèle par métamodélisation.

Création du métamodèle

▶ La fidélité et le temps d'exécution du métamodèle sont satisfaisants.

Métamodèle (Python)		Modèle	
		(Modelica)	
	$5 \times 10^{-5} \text{ s.}$	3×10^{-3} s.	

Pour résumer...

- L'analyse de sensibilité a permis de cibler les variables les plus influentes.
- Le métamodèle, 100 fois plus rapide, remplacera le modèle pour l'étude statistique (propagation d'incertitude, fiabilité...).
- Mais le métamodèle ne peut être utilisé en connexion avec d'autres modèles Modelica.

Impossible, vraiment?

Utilisation du métamodèle dans Modelica

- ▶ But : connecter le métamodèle à d'autres blocs Modelica.
- ► Enjeu : utiliser des modèles de divers outils de modélisation dans un environnement de simulation.
- Moyen : appel au métamodèle OpenTURNS via un wrapper Modelica.

Utilisation du métamodèle dans Modelica

Utilisation du métamodèle dans Modelica

Conclusion

- Démonstration : utilisation de Persalys, interface graphique à OpenTURNS, pour un FMU.
- Exploration : inclusion d'un métamodèle OpenTURNS dans l'environnement de simulation Modelica.
- Remerciements :
 - Julien Schueller pour l'adaptation d'OTFMI,
 - Hubert Blervaque pour la modélisation Modelica,
 - Daniel Bouskela pour son aide sur ThermoSysPro.

