

Année universitaire : 2019-2020

Section: GEA1

Travaux Dirigés : Électronique Numérique (Logique séquentielle)

Responsable : Majda LTAIEF

Exercie 1

FIGURE 1 -

- 1. Le fonctionnement de ces bascules est-il synchrone ou asynchrone? Argumenter votre réponse.
- 2. Tracer les chronogrammes des sorties Q_a , Q_b et Q_c (à l'état initial, $Q_a = Q_b = Q_c = 0$).
- 3. Convertir en décimal les trois bits binaires Q_a , Q_b et Q_c en prenant Q_a pour bit de poids faible.
- 4. Quelle est la fonction réalisée?
- 5. Donner le modulo du compteur. Soit la figure suivante :

FIGURE 2 -

- 6. Tracer les chronogrammes des sorties Q_a , Q_b et Q_c (à l'état initial, $Q_a = Q_b = Q_c = 0$).
- 7. Convertir en décimal les trois bits binaires Q_a , Q_b et Q_c en prenant Q_a pour bit de poids faible.
- 8. Quelle est la fonction réalisée ? Comparer ce schéma structurel avec celui de la figure précédente et conclure sur l'incidence de la fonction réalisée.

9. Donner le modulo du compteur.

Exercie 2

Soit la figure suivante :

FIGURE 3 -

- 1. Donner la table de vérité de l'opérateur logique $(/R = f(Q_a, Q_c))$
- 2. Quel est le role de l'entrée /R? A quel niveau est elle active?
- 3. Tracer les chronogrammes des sorties Q_a, Q_b, Q_c et /R (à l'état initial, $Q_a = Q_b = Q_c = 0$).
- 4. Convertir en décimal les trois bits binaires Q_c , Q_b et Q_a en prenant Q_a pour bit de poids faible.
- 5. Quelle est la fonction réalisée?

Exercie 3

- 1. Donner la table des transitions d'une bascule JK.
 - Dans un premier temps, on désire réaliser un compteur synchrone modulo 7 à l'aide de bascules JK synchronisées sur front montant.
- 2. De combien de bascules JK on aura besoin pour réaliser ce compteur.
- 3. À l'aide de la table des transitions, remplir le tableau des états futurs de ce compteur.
- 4. Donner les équations des entrées des différentes bascules.
- 5. Donner le schéma de câblage correspondant.
 - On désire maintenant réaliser un compteur synchrone, modulo 8 en code Gray, à l'aide de bascules JK synchronisées sur front descendant.
- 6. Remplir le tableau des états futurs de ce compteur.
- 7. Donner les équations des entrées J_i, K_i correpondantes.

Exercie 4

1. Remplir le chronogramme relatif au montage suivant :

Figure 4 -

2. Que fait ce montage?

FIGURE 5 -

Exercie 5

On considère le registre à décalage 74AC11194 dont la table de vérité et le schéma logique sont donnés en ce qui suit.

- 1. Quelles doivent être les valeurs des entrées pour avoir un fonctionnement du registre en mode parallèle parallèle ?
- 2. Quelles doivent être les valeurs des entrées pour avoir un fonctionnement du registre en mode série avec un décalage vers la droite?
- 3. Même question pour avoir un décalage vers la gauche.
- 4. Compléter le chronogramme de la Figure 7. en considérant que toutes les sorties Q_i sont au niveau bas à l'instant initial.

SCASDIO - NOVEMBER 1989 - REVISED APRIL 1983

Function Table

INPUTS										OUTPUTS			
CLEAR	MODE		CL OOK	SERIAL		PARALLEL				W 272	100	No.	-
	81	50	CLOCK	LEFT	RIGHT	A	В	C	D	QA	QB	QC	QD
L	X	X	×	×	×	×	X	X	×	L.	L	L	L
3H	X	×	1.	×	×	X	×	×	×	QA0.	QBD	QC0	Qpo
H	H	H	*	×	×	25	b	C	d	- 88	b	0	d
H	L	H	(\$)	×	H	X	×	X	X	H	OAn	OBn	Q _{Cn}
H	L	H	T	×	L	×	×	×	×	L	QAn	Qen	Qon
H	H	L	(1)	H	×	×	×	X	×	Qgn	QCn	Opn	H
H	H	L	1	L	×	X	X	X	×	QBn	Qcn	Qpn	1
H	L	L	. ×	×	×	×	×	×	×	QAD	OBO	000	Opp

- H = high level (steady state)
- L = low leval (steady state)
- X = irrelevant (any input, including transitions)
- T = transition from low to high level
- a,b,c,d = the level of steady-state input at inputs A, B, C, or D, respectively.

 QAO, QBO, QCO, QDO = the level of QA, QB, QC, or QD, respectively, before the indicated steady-state input conditions were
- QAn. QBn. QCn. QDn = the level of QA. QB, QC, or QD respectively, before the most recent T transition of the clock.

logic diagram (positive logic)

FIGURE 6 -

Figure 7 –