## Math G180 Blank Lecture Notes Chapter 3 – Section 3.9

# 3.9 | Derivatives of Exponential and Logarithmic Functions

#### Theorem 3.16: Derivatives of General Exponential and Logarithmic Functions

Let b > 0,  $b \ne 1$ , and let g(x) be a differentiable function.

i. If,  $y = \log_b x$ , then

$$\frac{dy}{dx} = \frac{1}{x \ln b}.$$
 (3.32)

More generally, if  $h(x) = \log_h(g(x))$ , then for all values of x for which g(x) > 0,

$$h'(x) = \frac{g'(x)}{g(x)\ln b}.$$
 (3.33)

ii. If  $y = b^x$ , then

$$\frac{dy}{dx} = b^x \ln b. ag{3.34}$$

More generally, if  $h(x) = b^{g(x)}$ , then

$$h'(x) = b^{g(x)}g'(x)\ln b.$$
 (3.35)

## Example 3.79

### **Applying Derivative Formulas**

Find the derivative of  $h(x) = \frac{3^x}{3^x + 2}$ .

## Example 3.80

## Finding the Slope of a Tangent Line

Find the slope of the line tangent to the graph of  $y = \log_2(3x + 1)$  at x = 1.

#### Problem-Solving Strategy: Using Logarithmic Differentiation

- 1. To differentiate y = h(x) using logarithmic differentiation, take the natural logarithm of both sides of the equation to obtain  $\ln y = \ln(h(x))$ .
- 2. Use properties of logarithms to expand ln(h(x)) as much as possible.
- 3. Differentiate both sides of the equation. On the left we will have  $\frac{1}{y}\frac{dy}{dx}$
- 4. Multiply both sides of the equation by y to solve for  $\frac{dy}{dx}$ .
- 5. Replace y by h(x).

#### Example 3.81

#### Using Logarithmic Differentiation

Find the derivative of  $y = (2x^4 + 1)^{\tan x}$ .

#### Solution

Use logarithmic differentiation to find this derivative.

$$\ln y = \ln(2x^4 + 1)^{\tan x}$$

product rule on the right.

$$\ln y = \tan x \ln(2x^4 + 1)$$

$$\ln y = \tan x \ln (2x^4 + 1)$$

$$\frac{1}{y}\frac{dy}{dx} = \sec^2 x \ln(2x^4 + 1) + \frac{8x^3}{2x^4 + 1} \cdot \tan x$$

$$\frac{dy}{dx} = y \cdot \left( \sec^2 x \ln(2x^4 + 1) + \frac{8x^3}{2x^4 + 1} \cdot \tan x \right)$$

$$\frac{dy}{dx} = (2x^4 + 1)^{\tan x} \left( \sec^2 x \ln(2x^4 + 1) + \frac{8x^3}{2x^4 + 1} \cdot \tan x \right)$$
 Step 5. Substitute  $y = (2x^4 + 1)^{\tan x}$ .

Step 5. Substitute 
$$y = (2x^4 + 1)^{\tan x}$$

#### Example 3.82

#### **Using Logarithmic Differentiation**

Find the derivative of  $y = \frac{x\sqrt{2x+1}}{e^x \sin^3 x}$ .

#### Solution

This problem really makes use of the properties of logarithms and the differentiation rules given in this chapter.

$$\ln y = \ln \frac{x\sqrt{2x+1}}{e^x \sin^3 x}$$

$$\ln y = \ln x + \frac{1}{2} \ln(2x+1) - x \ln e - 3 \ln \sin x$$
 Step 2. Expand using properties of logarithms.

3

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{x} + \frac{1}{2x+1} - 1 - 3\frac{\cos x}{\sin x}$$

$$\frac{dy}{dx} = y\left(\frac{1}{x} + \frac{1}{2x+1} - 1 - 3\cot x\right)$$

$$\frac{dy}{dx} = y\left(\frac{1}{x} + \frac{1}{2x+1} - 1 - 3\cot x\right)$$
 Step 4. Multiply by y on both sides 
$$\frac{dy}{dx} = \frac{x\sqrt{2x+1}}{e^x \sin^3 x} \left(\frac{1}{x} + \frac{1}{2x+1} - 1 - 3\cot x\right)$$
 Step 5. Substitute  $y = \frac{x\sqrt{2x+1}}{e^x \sin^3 x}$ .

Step 5. Substitute 
$$y = \frac{x\sqrt{2x+1}}{e^x \sin^3 x}$$

#### 3.9 EXERCISES

For the following exercises, find f'(x) for each function.

331. 
$$f(x) = x^2 e^x$$

332. 
$$f(x) = \frac{e^{-x}}{x}$$

333. 
$$f(x) = e^{x^3 \ln x}$$

334. 
$$f(x) = \sqrt{e^{2x} + 2x}$$

335. 
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

336. 
$$f(x) = \frac{10^x}{\ln 10}$$

337. 
$$f(x) = 2^{4x} + 4x^2$$

338. 
$$f(x) = 3^{\sin 3x}$$

339. 
$$f(x) = x^{\pi} \cdot \pi^{x}$$

340. 
$$f(x) = \ln(4x^3 + x)$$

341. 
$$f(x) = \ln \sqrt{5x - 7}$$

342. 
$$f(x) = x^2 \ln 9x$$

343. 
$$f(x) = \log(\sec x)$$

344. 
$$f(x) = \log_7 (6x^4 + 3)^5$$

345. 
$$f(x) = 2^x \cdot \log_3 7^{x^2 - 4}$$

For the following exercises, use logarithmic differentiation to find  $\frac{dy}{dz}$ .

346. 
$$y = x^{\sqrt{x}}$$

347. 
$$y = (\sin 2x)^{4x}$$

348. 
$$y = (\ln x)^{\ln x}$$

$$349. \quad y = x^{\log_2 x}$$

350. 
$$y = (x^2 - 1)^{\ln x}$$

351. 
$$y = x^{\cot x}$$

352. 
$$y = \frac{x+11}{\sqrt[3]{x^2-4}}$$

353. 
$$y = x^{-1/2}(x^2 + 3)^{2/3}(3x - 4)^4$$

354. **[T]** Find an equation of the tangent line to the graph of  $f(x) = 4xe^{(x^2-1)}$  at the point where x = -1. Graph both the function and the tangent line.

355. **[T]** Find the equation of the line that is normal to the graph of  $f(x) = x \cdot 5^x$  at the point where x = 1. Graph both the function and the normal line.

356. **[T]** Find the equation of the tangent line to the graph of  $x^3 - x \ln y + y^3 = 2x + 5$  at the point where x = 2.

(*Hint*: Use implicit differentiation to find  $\frac{dy}{dx}$ .) Graph both the curve and the tangent line.

357. Consider the function  $y = x^{1/x}$  for x > 0.

- Determine the points on the graph where the tangent line is horizontal.
- Determine the points on the graph where y' > 0 and those where y' < 0.</li>