Programação para Dispositivos Móveis

Introdução ao Desenvolvimento para Dispositivos Móveis Sistema Operativo Android

2º Ano 1º Semestre 2020-2021

Sumário

- o Introdução ao Desenvolvimento para Dispositivos Móveis
 - História
 - Vantagens / Desvantagens
 - Aplicações Nativas / Web / Híbridas
- Sistema Operativo Android
 - Android Studio
 - o Instalação: versão atual: 4.0. I
 - Execução
 - Criação do I.º Projeto
 - Anatomia
 - SDK Manager
 - AVD Manager
 - Editor de Temas
 - Explorar

"Evolução" do telemóvel

- Era do "tijolo" (1974-1984)
 - Era portátil (mas não muito)

- Baterias gigantescas
- Principais utilizadores:
 - Vendedores, corretores de bolsa, ...
- Passado algum tempo passaram a existir mais torres de rede celular e... os dispositivos foram ficando (um pouco) mais pequenos!

Martin Cooper

chamadas

SMS

- Era do "Candy Bar" (1984-1993)
 - Rede 2G network : GSM, CDMA, TDMA, iDEN
 - Alargamento da rede de torres celulares:
 - Menores necessidades de energia
 - Melhor qualidade de voz
 - Surge o SMS
 - Devido à prosperidade económica todos desejam possuir um telemóvel: EU, USA, e JP

chamadas

SMS

música & fotos

- Era do "Telemóvel com extras" (1991-2008)
 - Rede 2.5G: GPRS
 - o Câmara
 - MMS
 - Capacidades de transmissão limitada de dados
 - Internet no telemóvel (fraca qualidade):
 - Preços elevados
 - Pouco consistente em termos de visualização de informação

chamadas

SMS

música & fotos

- Era do "Smartphone" (2001-2010)
 - 3G, HSDPA, WI-FI
 - Como um telefone "com extras", mas que imitava um PC
 - Com o seu próprio sistema operativo (ex. Symbian)
 - Grandes écrans (usavam "stylus")
 - A plataforma Mobile começa a ganhar alguma relevância
 - Email como aplicação principal

chamadas

SMS

música & fotos

apps

- Era do "Touch" (2007-agora)
 - o 3G, 4G
 - Acelerómetros
 - GPS/Baseados na localização
 - Design centrado no utilizador
 - o Impacto na utilização diária
 - Interfaces ricos
 - Plataforma multimédia pessoal
 - Web móvel uso comum e diário

Vantagens e desvantagens

Vantagens

- Experiência rápida e agradável por parte do utilizador
- Acesso ao conteúdo em modo offline
- Menor custo de acesso, dado que a grande parte da interface já se encontra instalada no dispositivo
- Acesso a recursos do próprio dispositivo móvel (GPS, Calendário, Contactos, Câmara Fotográfica, etc.)

Desvantagens

- Existem demasiadas atualizações de versões
- Existem várias plataformas (IOS, Android, etc.), o que requer desenvolver a mesma aplicação para cada plataforma

Aplicações Nativas / Web / Híbridas

Aplicações Nativas

- Desenvolvidas para um sistema específico (Android, IOS, etc.)
- Descarregadas a partir de uma Loja de Aplicações (Play Store, iStore, etc.)
- Linguagens de Programação específicas (Java, Swift, etc.)
- Maior rapidez e oferecem uma experiência de utilização otimizada ao dispositivo
- Utilização dos recursos existentes no dispositivo (câmara fotográfica, GPS, serviço de notificações, calendário, etc.)
- Desenvolver aplicação para cada sistema. Aguardar aprovação da Loja de Aplicações.
- Cada atualização, será necessário atualizar para todos os sistemas

Aplicações Nativas / Web / Híbridas

Web

- Acesso através de um browser, não requerendo a sua instalação no dispositivo móvel
- A maioria é desenvolvida em JavaScript, CSS e HTML5 (Linguagens Web)
- Apresentação de dados
- Não permitem a utilização de recursos do dispositivo móvel
- Desenvolvimento mais curto e menos dispendioso
- Difíceis de encontrar, não existindo uma loja de aplicações associada a estes tipos de aplicações
- Necessário ligação à Internet

Aplicações Nativas / Web / Híbridas

Híbridas

- Aplicações com comportamento nativo, mas desenvolvidas com tecnologias web
- Desenvolvidas com recursos a Frameworks específicas, como o React Native (<u>https://facebook.github.io/react-native/</u>)
- Desenvolvimento mais curto e com menos custos que as aplicações nativas
- Acesso pelas Lojas de Aplicações, sendo invisível a diferença entre este tipo de aplicações das aplicações nativas
- Permite usar os recursos do dispositivo, mas de uma forma menos eficiente que as aplicações nativas

Web

- Acesso aos recursos do dispositivo é limitado.
 Embora haja APIs para o GPS e outras, a flexibilidade é menor.
- Mais complexidade na manutenção do estado da aplicação (modo offline, multitasking).

- O acesso aos recursos é efetuada de uma forma rápida, aumentado o leque de oportunidades e possibilidades.
- Manutenção do estado da aplicação é muito mais fácil e versátil.

Web

- Qualquer dispositivo (móvel ou desktop) com um browser pode aceder.
- Qualquer lançamento efetuado fica disponível logo de imediato.

- Apenas destinados a um sistema. Qualquer aplicação terá que ser desenvolvida para cada sistema.
- O processo de deployment pode durar algum tempo e até pode ser recusado pela Loja.

Web

- Tempo de desenvolvimento menor, tanto no lançamento como nas atualizações. As alterações são rápidas.
- Usam tecnologias standard e já conhecidas (html, css, javascript).
- Imensos dispositivos e browsers, sendo um ecossistema aberto e instável

- Menos programadores de aplicações nativas. Terá que haver programador para cada tipo de programação. Alterações (mesmo pequenas), terá que haver um deploy.
- Usam tecnologias nativas, o que terá que haver um período de aprendizagem.
- São oferecidos SDK, frameworks e sistemas de base aos programadores.

Web

- É preciso implementar um sistema de pagamento se quiser criar uma aplicação paga.
- Usabilidade complexa e difícil de gerir

- Havendo uma loja, já existe um sistema de pagamento integrado
- Velocidade superior, pois em código nativo não há download da interface.

Desenvolvimento para Dispositivos Móveis

• Qual usar ?

o Para a melhor escolha é necessário ter em conta vários

fatores:

- Objetivos
- Funcionalidades
- Público-alvo
- Orçamento
- Tempo de desenvolvimento

Android - Conceito e Evolução

- Sistema operativo mobile baseado em Linux
- Criado pela Android Inc. (suportada pelo Google)
 - Android Inc. comprada pelo Google em 2005
- Revelado em 2007 no contexto do Open Handset Alliance
- Open-source sob a licença Apache
- Out 2012: 700,000 apps

Android – Conceito e Evolução

Versão ♦	Codinome ¢	Data de lançamento ¢	Nível API ♦	Distribuição •
10	Android 10 (Q)	3 de setembro de 2019	29	16,12%
9	Pie	6 de agosto de 2018	28	37,4%
8.1	Oreo	15 de dezembro de 2017	27	11,29%
8.0		21 de agosto de 2017	26	7,37%
7.1.x	Nougat	5 de dezembro de 2016	25	4,3%
7.0.x		22 de agosto de 2016	24	6,24%
6.06.0.1	Marshmallow	05 de Outubro de 2015	23	8,72%
5.1-5.1.1	Lollipop	10 de março de 2015	22	4,84%
5.0-5.0.2		12 de novembro de 2014	21	1,21%
4.4.4.4	KitKat	31 de outubro de 2013	19	1,87%
4.3.x	Jelly Bean	24 de julho de 2013	18	menos de 0,1%
4.2.x		13 de novembro de 2012	17	menos de 0,1%
4.1.x		9 de julho de 2012	16	menos de 0,1%
4.0.3-4.0.4	Ice Cream Sandwich	16 de dezembro de 2011	15	menos de 0,1%
2.3.3-2.3.7	Gingerbread	9 de fevereiro de 2011	10	menos de 0,1%
2.2-2.2.3	Froyo	20 de maio de 2010	8	menos de 0,1%
2.0-2.1	Eclair	26 de outubro de 2009	5	menos de 0,1%
1.6	Donut	15 de setembro de 2009	4	menos de 0,1%
1.5	Cupcake	27 de abril de 2009	2	menos de 0,1%
1.0-1.1	Petit Four ou Beta	23 de setembro de 2008	1	não há registros

Fonte: https://pt.wikipedia.org/wiki/Android/

Android – Conceito e Evolução

- Sistema Operativo Móvel.
- Fornece uma estrutura de aplicativo avançado, permitindo a criação de aplicativos e jogos inovadores para dispositivos móveis.
- Ambiente de Linguagem Java.
- Estrutura de aplicativo adaptativa, permitindo fornecer recursos consoante as configurações dos dispositivos.
 - É possível criar diferentes arquivos XML de layout para vários tipos de tamanhos de ecrã. Assim, o sistema determina qual dos arquivos XML deverá aplicar tendo em conta o ecrã.

Android - Arquitetura

- Pilha de software com base em Linux de código aberto criada para diversos dispositivos.
- o 6 Componentes (camadas):
 - Kernel do Linux
 - Camada de Abstração de Hardware (HAL)
 - Android Runtime
 - Bibliotecas C/C++ nativas
 - Estrutura da Java API
 - Aplicativos do sistema

Fonte: https://developer.android.com/guide/platform/

Android - Arquitetura

Kernel do Linux:

o Aproveitar os **recursos de segurança** e que os fabricantes dos dispositivos **desenvolva**m drivers de hardware para um kernel conhecido.

Camada de Abstração de Hardware (HAL):

o módulos de biblioteca que implementam uma interface para um tipo específico de componente de hardware (ex: módulo de câmera ou Bluetooth)

Android Runtime:

 cada aplicativo executa o próprio processo com uma instância própria do Ándroid Runtime (ART) – dispositivos a partir da versão 5.0 do Android (API nível 21)

Bibliotecas C/C++ nativas:

 A plataforma Android fornece as Java Framework APIs para expor a funcionalidade de algumas dessas bibliotecas nativas aos aplicativos.

Estrutura da Java API:

 O conjunto completo de recursos do SO Android está disponível pelas APIs programadas na linguagem Java.

Aplicativos do sistema:

 Os aplicativos do sistema funcionam como aplicativos para os utilizadores. Assim, o programador pode usar, por exemplo, o aplicativo de SMS para enviar mensagem SMS, não sendo necessário desenvolver esse aplicativo.

Android - Funcionalidades

- Ambiente de aplicações que permite a reutilização e substituição de componentes
- Máquina virtual Dalvik optimizada para dispositivos móveis (substituída no Lollipop, pelo ART)
- Browser integrado (inicialmente) baseado no projecto open-source Webkit
- Gráficos baseados em biblioteca gráfica; gráficos 3D baseados em OpenGL
- SQLite para armazenamento de informação estruturada
- Suporte para diversos formatos de áudio, vídeo e imagem (MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, GIF)
- Telefonia GSM (dependente do hardware)
- Bluetooth, EDGE, 3G, e WiFi (dependente do hardware)
- Camera, GPS, bússola, e acelerómetro (dependente do hardware)
- Ambiente de desenvolvimento rico que inclui um emulador de dispositivos, ferramentas de debug, profiling de memória e de desempenho, e um plugin para o IDE Eclipse (actualmente o Android Studio, baseado no InteliJ)

Como começar?

Android Developers

Developers

- https://developer.android.com/guide/
- Xamarin Developers

Xamarin

- https://developer.xamarin.com/pt-br/guides/
 - Xamarin Forms
 - Cross-Plataform
 - Android
 - o iOS
 - Mac
 - o ...

- Plataforma de desenvolvimento para Android.
 - Criada pela Google.
 - Baseada no IDE IntelliJ IDEA da Jetbrains, semelhante ao popular Eclipse ou ao Netbeans.
 - Linguagem de Programação Java.
 - Versão atual:

Android Studio provides the fastest tools for building apps on every type of Android device.

DOWNLOAD ANDROID STUDIO

4.0.1 for Windows 64-bit (871 MB)

- Instalação grátis
 - https://developer.android.com/studio/

Executar

CTeSP DWDM

Criação do primeiro projeto

Aplicação para ser executada em

Adicionar Atividades pré-definidas

Criar uma Atividade vazia

Anatomia do Android Studio

Anatomia do Android Studio

Um projeto Android é constituído por módulos.

Aplicações

Biblioteca

Testes

Select the form factors and minimum SDK

 Quando existe apenas uma plataforma de execução e selecionado a opção "Phone and Tablet" é criado a app Android

manifests

AndroidManifest.xml

com.neddiec.aula1 (androidTest)

com.neddiec.aula1 (test)

com.neddiec.aula1

drawable

▼ **mobile**

java

▶ res

java

java

▶ res

manifests

manifests

manifests

Gradle Scripts

lavout mipmap ▶ 🖿 values Gradle Scripts

- Anatomia do Android Studio
 - Ficheiro de Manifesto
 - Descrição dos componentes da aplicação
 - Exemplos: Atividades, Serviços
 - Definição de permissões de acesso a recursos
 - Exemplos: GPS, Internet

```
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"</pre>
    package="com.neddiec.aula1">
    <application
        android:allowBackup="true"
        android:icon="@mipmap/ic_launcher"
        android: label="Aula 1"
        android:roundIcon="@mipmap/ic_launcher_round"
        android:supportsRtl="true"
        android:theme="@style/AppTheme">
        <activity android:name=".Atividade_Principal">
            <intent-filter>
                <action android:name="android.intent.action.MAIN" />
                <category android:name="android.intent.category.LAUNCHER" />
            </intent-filter>
        </activity>
    </application>
</manifest>
```


- Anatomia do Android Studio
 - Código Fonte JAVA
 - Separação do código principal da aplicação em relação aos ficheiros de testes.

Código gerado automaticamente pelo Android Studio

- Anatomia do Android Studio
 - Recursos
 - Separação entre a atividade e os recursos => não juntar a lógica do negócio com a interface gráfica

Ficheiros bitmap (png, gif, jpeg), imagens e ficheiros XML que descrevam formas e objetos

Ficheiros XML que definem layouts gráficos. Existe a possibilidade de alterar de forma visual (design) ou por texto (XML)

Ícones em diferentes densidades. Possibilidade de escolher o ícone dependendo da resolução do dispositivo

Ficheiros XML que definem valores usados na aplicação. Por exemplo, variáveis das cores, dimensões das margens de ecrã, texto usado e temas gráficos.

CTeSP DWDM

Alterar o texto, usando "resource"

SDK Manager

 Separa ferramentas, plataformas e outros componentes em pacotes que podem ser descarregados individualmente.

SDK Manager

AVD Manager

- Android Virtual Device
- Emulador para testar aplicações Android sem a necessidade de instalar a aplicação num dispositivo físico
- Um AVD pode ser configurado para emular uma variedade de recursos de hardware:
 - Tamanho do ecrã
 - Memória
 - Câmara
 - o GPS
 - Acelerómetro ...

AVD Manager

Editor de Temas

- Estilo de interface gráfica que determina a aparência gráfica da aplicação
- O estilo é associado no ficheiro de manifesto do projeto

Editor de Temas

Vamos explorar o Android Studio

Adaptação de:

Nuno Costa

CTeSP DWDM