Lightweight Correlation-Aware Table Compression

Mihail Stoian, Alexander van Renen, Jan Kobiolka, Ping-Lin Kuo, Josif Grabocka, Andreas Kipf

University of Technology Nuremberg

Virtual: SPOILER

```
Compression
import pandas as pd
import virtual
# Read your data.
df = pd.read_csv('file.csv')
# Your operations.
df = \dots
# Virtualize + save to Parquet.
virtual
  .to format(df, 'file.parquet')
```

Virtual: Spoiler

```
Query
Compression
                                import virtual
import pandas as pd
import virtual
                                virtual.query('''
                                  select avg(price)
# Read your data.
df = pd.read_csv('file.csv')
                                  from read_parquet(
                                     "file.parquet"
# Your operations.
                                  ) where year \geq 2024''',
                                  engine = 'duckdb'
df = ...
# Virtualize + save to Parquet.
virtual
  .to format(df, 'file.parquet')
```

TABLE COMPRESSION: STATUS QUO

Columnar Encoding Schemes

- · Frame-of-Reference (FOR), Run-Length-Encoding (RLE) etc.
- Pretty lightweight \Rightarrow Fast decompression \checkmark
- File sizes: Could be better.. 🙄

TABLE COMPRESSION: STATUS QUO

Columnar Encoding Schemes

- · Frame-of-Reference (FOR), Run-Length-Encoding (RLE) etc.
- Pretty lightweight \Rightarrow Fast decompression \checkmark
- File sizes: Could be better.. 🙄

Open File Formats

- · Recent surge: Apache Parquet, ORC, etc.
- · Research prototypes: BTRBLOCKS, FASTLANES.

TABLE COMPRESSION: STATUS QUO

Columnar Encoding Schemes

- · Frame-of-Reference (FOR), Run-Length-Encoding (RLE) etc.
- Pretty lightweight ⇒ Fast decompression √
- File sizes: Could be better.. 🙄

Open File Formats

- · Recent surge: Apache Parquet, ORC, etc.
- · Research prototypes: BTRBLOCKS, FASTLANES.
- · Still using the standard encoding schemes.
 - \Rightarrow They have reached a plateau.

EXPLOITING HIDDEN FUNCTIONS

Property Total	Burglary	Larceny	Motor Vehicle Theft
5583	1884	3264	435
6368	1988	3878	502
6641	2246	3858	537

 ${\tt Property Total} = {\tt Burglary} + {\tt Larceny} + {\tt Motor Vehicle Theft}$

EXPLOITING HIDDEN FUNCTIONS

Property Total	Burglary	Larceny	Motor Vehicle Theft
5583	1884	3264	435
6368	1988	3878	502
6641	2246	3858	537

${\tt Property Total} = {\tt Burglary} + {\tt Larceny} + {\tt Motor Vehicle Theft}$

Property Total_offset	Burglary	Larceny	Motor Vehicle Theft
0	1884	3264	435
0	1988	3878	502
0	2246	3858	537

FUNCTIONS

Requirements

- (a) Make target column redundant \Rightarrow Zero storage fingerprint.
- (b) Touch as few columns as possible \Rightarrow Fast table scans.
- (c) Allow multiple functions \Rightarrow Even better compression.

Sparse Linear Regression

· Linear regression \Rightarrow linear functions.

Sparse Linear Regression

- Linear regression \Rightarrow linear functions.
- · However: We have to enforce (b).

Sparse Linear Regression

- Linear regression \Rightarrow linear functions.
- However: We have to enforce (b).
 ⇒ Optimize via L₀ penalty.

Sparse Linear Regression

- Linear regression \Rightarrow linear functions.
- However: We have to enforce (b).
 ⇒ Optimize via L₀ penalty.

K-Regression

• Train multiple linear (sparse) regressors.

Sparse Linear Regression

- Linear regression \Rightarrow linear functions.
- However: We have to enforce (b).
 ⇒ Optimize via L₀ penalty.

K-Regression

· Train multiple linear (sparse) regressors.

• Encode which regression we select via an auxiliary column.

5

EVALUATION: FILE SIZES

Figure 1: Comparison to Parquet+Snappy (parquet) on 103 data.gov tables

EVALUATION: QUERY LATENCY

Figure 2: Linear column scan slowdown

SUMMARY

Lightweight Correlation-Aware Compression

 $\boldsymbol{\cdot}$ Learn multiple sparse linear regressors.

SUMMARY

Lightweight Correlation-Aware Compression

- · Learn multiple sparse linear regressors.
- Exploit them in compression and query execution.

github.com/utndatasystems/virtual