Derivatives and Structured Products

Prof. Tony Berrada Geneva Finance Research Institute - University of Geneva

GemWem 2022

Course outline

Part I: Pricing and hedging

- 1. A review of discrete time option pricing
- 2. Martingale pricing Black and Scholes model
- 3. Hedging
- 4. Options on non-traded assets
- 5. Monte Carlo simulation for option pricing

Part II: Structured equity derivatives

- Special features
- Index-linked cash flows
- Financial architecture and problem solving
- 4. Applications

Course organisation

- Class notes available on Moodle
- Office hours: by appointment (tony.berrada@unige.ch)
- Office hours: Friday 14-16: Maxime Auberson (office 311)
- Lecture on monday w/ me
- Exercises on wednesday w/ Maxime

Evaluation

- 40 % : written exam
- 60 % : project and presentation

Session plan

1. Introduction and Definitions

2. Payoff Structure

3. Forward price

4. Rational bounds for option prices

Introduction and Definitions

- Derivative: A derivative is a financial contract which provides its holder with a payoff stream which depends on the past and or current value of one, or many, underlying assets
- Underlying: An underlying asset may actually be anything you want: a stock, an interest rate, a currency, an index, any combination of the previous.
- Forward Contract: A forward contract is an agreement for future delivery of an underlying at a specified date (the maturity), price (the forward price) and location.
- Option: An option is a contract which grants its holder the right, but not the obligation, to buy or sell an underlying, or a function of the current and past value of the underlying, at a specified price (the strike price), on or before a specified date (the maturity).

Introduction and Definitions

- Call An option which grants its holder the right to buy an underlying at a specified price (the strike price), on or before a specified date (the maturity).
- Put An option which grants its holder the right to sell an underlying at a specified price (the strike price), on or before a specified date (the maturity).
- European Option A European option can be exercised only at the maturity date.
- American Option An American option can be exercised at or before the maturity date.
- Bermudean Option An Bermudean option can be exercised at different predetermined dates prior to maturity and at the maturity date.

Introduction and Definitions

The use of derivatives falls into one of the following two categories

- The idea is to reduce (or eliminate) the financial risk associated with a future uncertain situation
 - Protective put to limit downside risk
 - Forward contract to lock in a future sale

Speculation

Investment with (a priori) positive expected profit

Course plan

1. Introduction and Definitions

2. Payoff Structure

Forward price

4. Rational bounds for option prices

Payoff at maturity

• Forward Contract with delivery price K

$$(S(T)-K)$$

• Call Option with exercise price K

$$(S(T)-K)^+$$

Put Option with exercise price K

$$(K-S(T))^+$$

Payoff Structure

- It is possible to combine derivatives to create particular payoffs corresponding to a particular view of the evolution of the market
- Derivatives allow to make 2-dimensional bets, in term of market direction (bullish / bearish) or in terms of market volatility
- Typical examples of option combinations are $(K_1 < K_2 < K_3 < K_4)$:

```
Spread: [C(K_2) - C(K_1)]
```

Straddle: $[C(K_1) + P(K_1)]$

Butterfly Spread: $[C(K_1) + C(K_4) - C(K_2) - C(K_3)]$

Course plan

1. Introduction and Definitions

Payoff Structure

3. Forward price

4. Rational bounds for option prices

Arbitrage

An arbitrage strategy requires no (positive) initial investment, never yields a negative terminal value and has a strictly positive expected terminal value

In finance, we price derivatives by assuming that there are

NO ARBITRAGE OPPORTUNITIES

 Introducing a new derivative in the market at price P should not give rise to the possibility of an arbitrage

- Let S(t) denote the underlying stock with price at time t
- Let F(t, T) denote the forward price at time t for delivery at time T
- Let *r* denote the constant, continuously compounded, interest rate
- The arbitrage free forward price is given by the formula

$$F(t,T) = S(t)e^{r(T-t)}$$

- We will verify that this is indeed an arbitrage free price by setting up a strategy that would generate an arbitrage for any other price
- This strategy is called a (Reverse) Cash and Carry
- Given a delivery price *K* the long position payoff is

$$S(T) - K$$

the payoff to theshort position is

$$K-S(T)$$

Cash and Carry

time 0

Long S(0)

Short F(0, T)

Borrow an amount S(0)

0

time T

S(T)

F(0,T) - S(T)

 $-S(0)e^{rT}$

 $F(0,T) - S(0)e^{rT}$

Reverse Cash and Carry

time 0

Short S(0)

Long F(0,T)

Lend an amount S(0)

0

time T

-S(T)

$$S(T) - F(0,T)$$

 $S(0)e^{rT}$

 $S(0)e^{rT}-F(0,T)$

• If $F(0,T) > S(0)e^{rT}$ setting up a Cash and Carry generates a positive payoff without any risk

$$\Rightarrow F(0,T) \leq S(0)e^{rT}$$

 If F(0, T) < S(0)e^{rT} setting up a Reverse Cash and Carry generates a positive payoff without any risk

$$\Rightarrow F(0,T) \geq S(0)e^{rT}$$

The absence of arbitrage opportunities implies

$$F(0,T) = S(0)e^{rT}$$

- This result is valid provided that there are no short sales restrictions
- Notice that we have not assumed anything about the evolution of the underlying stock price between time 0 and time T
- This is a pure arbitrage result, and it is valid for any evolution of the stock price

- When the underlying security generates an intermediate flow of capital (dividends,...) the forward price formula is modified
- Let us denote by D the certain dividend payment to be received at time t
- The arbitrage free forward price is then given by

$$F(0,T) = [S(0) - e^{-rt}D]e^{rT}$$

 This result is obtained using a slightly modified Cash and Carry strategy

Cash and Carry

time 0

time T

S(T)

F(0,T) - S(T)

 $-[S(0)-e^{-rt}D]e^{rT}$

 $F(0,T) - [S(0) - e^{-rt}D]e^{rT}$

Long S(0)

Short F(0, T)

Borrow $[S(0)-e^{-rt}D]$

Borrow $e^{-rt}D$

time t

+D

-D

Value of a Forward Contract

- Assume that at time t we hold a long position in a forward contract that was entered at time 0, with delivery price F(0, T)
- What should the value of this position be at time t?
- We can guarantee a terminal payoff at time T by taking a short position at time t
- the guaranteed payoff will be

$$[S(T) - F(0,T)] + [F(t,T) - [S(T)] = [F(t,T) - F(0,T)]$$

Value of a Forward Contract

• Since this terminal payoff is riskless, its value at time *t* is

$$e^{-r(T-t)}[F(t,T)-F(0,T)]$$

• This is the value of the forward contract entered at time 0 which we can further simplify to obtain

$$S(t) - e^{-r(T-t)}F(0,T)$$

Course plan

1. Introduction and Definitions

2. Payoff Structure

Forward price

4. Rational bounds for option prices

Rational bounds for option prices

- It is possible to obtain forward prices with pure arbitrage arguments
- Option prices can not be obtained similarly
- Assumptions must be made regarding
 - 1. The statistical properties of the underlying asset
 - The market's valuation of risk
- We can however provide upper and lower bounds for the price of simple derivatives, irrespective of these assumptions
- Again these bounds will rely on arbitrage arguments

Put-Call Parity

- Consider a european call c and a european put p written on the same underlying S, with the same maturity T, and the same exercise price K
- Consider a portfolio composed of a long position in the call option and a short position in the put option
- The terminal payoff is (S(T) K) for all possible S(T)
- The payoff of this strategy corresponds to a forward contract with delivery price K
- It follows that by absence of arbitrage the following must hold

$$c(0) - p(0) = S(0) - Ke^{-rT}$$

Rational Bounds

- Let C(t) denote the price at time t of an American Call, and P(t) the price of an American put.
- An american option can be exercised at any time prior to maturity, which would generate the following payoff for a Call

$$(S(t)-K)^+$$

 It then follows from the absence of arbitrage that the american option's price is larger than its intrinsic value

$$C(t) \geq (S(t) - K)^+)$$

$$P(t) \geq (K - S(t))^+)$$

Rational Bounds

- This is however not the strictest bound
- An american option grants strictly more right than an otherwise identical european option, so is must be the case that

$$C(t) \ge c(t)$$

$$P(t) \geq p(t)$$

Using the Put-Call parity, we obtain

$$C(t) \ge c(t) = p(t) + S(t) - Ke^{-r(T-t)}$$

Rational Bounds

We also know that an option can only have a positive price and that
it is necessarily bounded from above by the underlying price, for a
call, and by the strike price for a put so we finally obtain

$$S(t) \ge C(t) \ge c(t) \ge (S(t) - Ke^{-r(T-t)})^+$$

$$K \ge P(t) \ge p(t) \ge (Ke^{-r(T-t)} - S(t))^+$$