

Sistema de Gestión de BD - SGBD

(Data Base Management System - DBMS)

- Brinda a los usuarios una <u>vista</u>
 <u>abstracta de los datos almacenados</u>,
 es decir, oculta detalles:
 - como están almacenados y
 - como se los mantiene

El SGBD actúa como interfaz entre los Usuarios y la Base de Datos

¿Cómo puede hacerlo?

A través de la arquitectura ANSI-SPARK

Vista Abstracta de los Datos

Arquitectura ANSI-SPARK

- Nivel Externo (Tablas): Varios esquemas/vistas externas (OJO! no refiere a tablas virtuales, es decir, vistas de SQL generadas por un create view...)
 - Cada vista deja ver la porción de los datos que se necesita
 - Permisos de acceso
- Nivel Conceptual (Tablas):
 - Un solo esquema/vista
 - Incluye:
 - Totalidad de los datos de la bd
 - Restricciones de seguridad e integridad definidas
- Nivel Interno (Archivos Físicos):
 - Un esquema/vista
 - Incluye:
 - La totalidad de los datos organizados en archivos de registros

Vista Abstracta de los Datos

Arquitectura ANSI-SPARK

Mapeo/Correspondencia Externo-Conceptual:

- Implementado por la definición de las tablas virtuales del SQL (create view ...)
- Mapeo/Correspondencia Conceptual-Interno:
 - Implementado de diferentes formas:
 - En el create de las tablas
 - Configuración
 - Etc.

Sistema de Gestión de BD - SGBD

2. **Software de propósito general**: El mismo SGBD puede <u>administrar</u> <u>diferentes bases de datos</u> como por ej. de Alumnos, de Bancos, etc.

¿Cómo puede hacerlo?

Gracias a la información de los esquemas y correspondencias

¿Dónde está guardada la información de los esquemas y correspondencias?

Catálogo o Diccionario de Datos

Ver en PostgreSQL

Sistema de Gestión de BD - SGBD

¿Quién mantiene los esquemas y las correspondencias?

El Administrador de la Base de Datos (DBA)

Es responsable de que el <u>sistema opere</u> y lo haga con la <u>performance</u> adecuada

++ Contribuye a la Independencia de los Datos!!!

-- Gasto extra en compilación y ejecución de los programas, es decir, menor eficiencia

Independencia de los Datos

Inmunidad de las aplicaciones ante cambios en el nivel conceptual y/o interno

- El nivel externo permanece intacto
- Las aplicaciones no se ven afectadas ante estos cambios

Independencia de los Datos

- ¿Qué elementos intervienen?
 - Arquitectura de 3 niveles
 - Lenguaje SQL Lenguaje declarativo (qué y no cómo)

Tipos de Independencia

- Independencia Lógica: Capacidad de cambiar el esquema lógico sin afectar los esquemas externos ni las aplicaciones.
 - Implica modificar el/los mapeo/s externos/conceptuales
- Independencia Física: Capacidad de cambiar el esquema físico sin afectar el esquema conceptual.
 - Ej. Reorganizar algún archivo.
 - Implica modificar el mapeo conceptual/interno

SGBD: Componentes

- PreCompilador
- Compilador (+Optimizador)
- Procesador de BD en Tiempo de Ejecución
- Manejador de Datos
 Almacenados
- Subsistema de Recuperación/ Concurrencia/ Respaldo

Compilación y Ejecución de un Programa que contiene SQL embebido

Compilador SQL (Optimizador)

Etapas en el Procesamiento de Consultas:

- 1. Identificar y controlar los componentes del lenguaje (sintaxis, nombres de tablas y atributos)
- 2. Traducir la consulta a una representación interna (Algebra). Consulta: Obtener los productos de la sucursales de San Juan.

select num, cod, nombre, precio from producto natural join sucursal where provincia='San Juan'

π _{num, cod, nombre, precio} σ _{provincia='San Juan'}, producto ∞ sucursal

QUERY PLAN

text

Hash Join (cost=13.78..31.88 rows=4 width=94)

Hash Cond: (producto.num = sucursal.num)

- -> Seq Scan on producto (cost=0.00..16.40 rows=640 width=94)
- -> Hash (cost=13.75..13.75 rows=2 width=4)
 - -> Seq Scan on sucursal (cost=0.00..13.75 rows=2 width=4)

Filter: ((provincia)::text = 'San Juan'::text)

3. Buscar el Plan de Ejecución Optimo (2 pasos)

Búsqueda del Plan de Aplicación Óptimo

Paso1: Optimización heurística

Ordena las operaciones considerando diferentes estrategias de ejecución. <u>Ejemplo:</u>

- Ejecutar operaciones de restricción tan pronto como sea posible
- Ejecutar primero las restricciones más restrictivas (producen menor cantidad de tuplas)

Paso2: Estimación de costes

Estima el costo de cada estrategia de ejecución encontrada y <u>elige el plan</u> (estrategia) con menor costo estimado. <u>Ejemplo, para implementar la restricción</u>:

- Búsqueda Lineal
- Búsqueda Binaria
- Empleo de Índice
- Ftc.

Repasando...

Arquitectura de 3 niveles

- Componentes:
 - PreCompilador
 - Compilador
 - Procesador de Base de Datos en Tiempo de Ejecución
 - Manejador de Datos Almacenados (Archivos): Usa al Manejador de Buffer (Disco) propio del SO
 - Subsistema de Recuperación/ Concurrencia/ Respaldo

