北京理工大学《数学分析》

2011-2012 学年第二学期期末试题及参考答案(A卷)

班级_	学号							_	姓名				
(本试卷共6页,十一个大题. 试卷后面空白纸撕下做草稿纸,试卷不得拆散.)													
题号			==	四	五	六	七	八	九	十	+ -	总分	
得分													
签名													
一. 填空题 (每小题 2 分, 共 10 分)													
1. 平面 π_1 : $3x + 2y - z + 6 = 0$ 与 π_2 : $3x + 2y - z - 7 = 0$ 之间的距离 $d = $													
2. 设 $f(x,y) = \sqrt{x^2 + y ^3}$, 根据偏导数的定义, $f'_y(0,0) = $													
3. 设 $\vec{A} = e^{xy}\vec{i} + \sin(xy)\vec{j} + \sin(xz^2)\vec{k}$,则 $div\vec{A} = $													
4. 设曲面 $S: x^2 + y^2 + z^2 = a^2$, 则 $\iint_S (x^2 + \frac{1}{2}y^2 + \frac{1}{4}z^2) dS = $													
5. $f(x) = \ln x$ 在 $x_0 = 3$ 处的泰勒级数展开式为 $f(x) = $													
二. $(8 分)$ 已知 $e^z - xz = y$ 确定函数 $z = z(x,y)$,求 $\frac{\partial^2 z}{\partial x \partial y}$.													

三. (8 分) 证明曲线 $\begin{cases} x^2 - z = 0 \\ 3x + 2y + 1 = 0 \end{cases}$ 在点 P(1,-2,1) 处的切线与直线 $\begin{cases} 3x - 5y + 5z = 0 \\ x + 5z + 1 = 0 \end{cases}$ 垂直.

四. (11分) 求函数 z = xy(1-x-y) 的极值点和极值.

五. (9 分) 将 $I = \int_0^1 dx \int_{1-\sqrt{1-x^2}}^x \frac{dy}{\sqrt{(x^2+y^2)(4-x^2-y^2)}}$ 化成极坐标系中的累次积分,并求出积分的值.

六. (9 分) 求幂级数 $\sum_{n=0}^{\infty} \frac{x^n}{n+2}$ 的收敛域及和函数.

七. (9 分) 设V 是由柱面 $y=x^2$,平面 y+z=1以及 xOy 面所围成的空间有界闭区域,计算 $I=\iiint_V x^2 dx dy dz.$

八. (10 分) 已知 $\frac{ax+y}{x^2+y^2}dx - \frac{x-y+b}{x^2+y^2}dy$ 在右半平面 (x>0) 是函数 u(x,y) 的全微分,求 a,b 的值,并求 u(x,y).

九. $(8 \, \mathcal{G})$ 设 $f(x) = \begin{cases} -1 & -\pi \leq x < 0 \\ 1 & 0 \leq x < \pi \end{cases}$,求 f(x) 在 $[-\pi,\pi]$ 上以 2π 为周期的傅里叶级数展开 式中 $\sin nx$ 的系数 b_n ,并给出此傅里叶级数在 $[-\pi,\pi]$ 上的和函数 S(x) 的表达式.

十. (9 分) 利用高斯公式计算 $I = \iint_S xz^2 dydz + (x^2y - z^3)dzdx + (2xy + y^2z + 3)dxdy$, 其中 S 是曲面 $z = \sqrt{1 - x^2 - y^2}$ 的下侧.

十一. (9 分) 设函数 f(x) 在 $(-\infty, +\infty)$ 可导,且满足 $f(x) = \sin x + \int_0^x (x-u) f(u) du$,求 f(0), f'(0),并证明 $\sum_{n=1}^{\infty} f(\frac{1}{n})$ 发散, $\sum_{n=1}^{\infty} (-1)^n f(\frac{1}{n})$ 收敛.

(2011-2012-2)工科数学分析期末试题(A 卷)解答(2012.6)

$$-. 1. \frac{13}{\sqrt{14}}$$

3.
$$ye^{xy} + x\cos(xy) + 2xz\cos(xz^2)$$

4.
$$\frac{7}{3}\pi a^4$$

5.
$$\ln 3 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 3^n} (x - 3)^n$$

二.
$$e^{z} \frac{\partial z}{\partial x} - z - x \frac{\partial z}{\partial x} = 0 \qquad (2 \%)$$

解得 $\frac{\partial z}{\partial r} = \frac{z}{e^z - r}$ (3 分)

$$e^{z} \frac{\partial z}{\partial v} - x \frac{\partial z}{\partial v} = 1 \tag{5 \%}$$

解得
$$\frac{\partial z}{\partial y} = \frac{1}{e^z - x}$$
 (6 分)

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\frac{\partial z}{\partial y} (e^z - x) - z \cdot e^z \frac{\partial z}{\partial y}}{(e^z - x)^2}$$
 (7 \(\frac{\psi}{2}\))

$$=\frac{(e^z-x-ze^z)\frac{\partial z}{\partial y}}{(e^z-x)^2}=\frac{e^z-x-ze^z}{(e^z-x)^3}$$
 (8 $\%$)

三.
$$\begin{cases} 2x - \frac{dz}{dx} = 0\\ 3 + 2\frac{dy}{dx} = 0 \end{cases}$$
(2 分)

将点 P 代入解得
$$\frac{dy}{dx} = -\frac{3}{2}$$
 $\frac{dz}{dx} = 2$ (3分)

曲线的切向量为
$$\vec{T} = \{1, -\frac{3}{2}, 2\}$$
(4 分)

直线的方向向量为
$$\vec{s} = \{3,-5,5\} \times \{1,0,5\} = \{-25,-10,5\}$$
(7分)

设
$$S(x) = \sum_{n=0}^{\infty} \frac{x^{n+2}}{n+2}$$

$$S'(x) = \sum_{n=0}^{\infty} x^{n+1} = \frac{x}{1-x} \qquad (6 \%)$$

$$S(x) = -x - \ln(1-x) \qquad (8 \%)$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n+2} = \begin{cases} -\frac{1}{x} - \frac{1}{x^2} \ln(1-x) & x \in [-1,1), x \neq 0\\ \frac{1}{2} & x = 0 \end{cases}$$
(9 \(\frac{\frac{1}{2}}{x}\)

 $S(x) = -x - \ln(1-x)$

七.
$$I = 2\int_{0}^{1} dx \int_{x^{2}}^{1} dy \int_{0}^{1-y} x^{2} dz \qquad (4 \%)$$

$$= 2\int_{0}^{1} dx \int_{x^{2}}^{1} x^{2} (1-y) dy \qquad (6 \%)$$

$$= 2\int_{0}^{1} (\frac{1}{2}x^{2} - x^{4} + \frac{1}{2}x^{6}) dx \qquad (8 \%)$$

$$= \frac{8}{105} \qquad (9 \%)$$

$$-\frac{x^2+y^2-(x-y+b)\cdot 2x}{(x^2+y^2)^2} = \frac{x^2+y^2-(ax+y)\cdot 2y}{(x^2+y^2)^2} \dots (3 \ \%)$$

得
$$a=1$$
 $b=0$ (4分)

$$u(x,y) = \int_{(1,0)}^{(x,y)} \frac{x+y}{x^2+y^2} dx - \frac{x-y}{x^2+y^2} dy + C \qquad (6 \%)$$

$$= \int_{1}^{x} \frac{1}{x} dx - \int_{0}^{y} \frac{x - y}{x^{2} + y^{2}} dy + C \qquad (8 \%)$$

=
$$-\arctan\frac{y}{x} + \frac{1}{2}\ln(x^2 + y^2) + C$$
 (10 分)

九.
$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_0^{\pi} \sin nx dx$$
 (3 分)
$$= \frac{2}{n\pi} (1 - \cos n\pi) = \frac{2}{n\pi} (1 - (-1)^n)$$
 (5 分)
$$S(x) = \begin{cases} -1 & -\pi < x < 0 \\ 1 & 0 < x < \pi \\ 0 & x = 0.\pm \pi \end{cases}$$
 (8 分)

十. 设曲面
$$S_1: z = 0$$
 $(x^2 + y^2 \le 1)$

$$I = \iint_{S_+S_1^-} -\iint_{S_1^+} xz^2 dy dz + (x^2y - z^3) dz dx + (2xy + y^2z + 3) dx dy \qquad (1 \%)$$

$$\iint_{S_+S_1^+} xz^2 dy dz + (x^2y - z^3) dz dx + (2xy + y^2z + 3) dx dy$$

$$= -\iiint_{V} (z^2 + x^2 + y^2) dV \qquad (3 \%)$$

$$= -\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\varphi \int_0^1 r^4 \sin \varphi dr \qquad (5 \%)$$

$$= -\frac{2}{5}\pi \qquad (6 \%)$$

$$\iint_{S_1^+} xz^2 dy dz + (x^2y - z^3) dz dx + (2xy + y^2z + 3) dx dy$$

$$= \iint_{S_1^+} (2xy + 3) dx dy \qquad (7 \%)$$

$$= \iint_{D_{yy}} (2xy + 3) dx dy = \iint_{D_{yy}} 3dx dy = 3\pi \qquad (8 \%)$$

$$I = -\frac{2}{5}\pi - 3\pi = -\frac{17}{5}\pi \qquad (9 \%)$$

+-.
$$f(x) = \sin x + x \int_{0}^{x} f(u) du - \int_{0}^{x} u f(u) du \qquad ... (1 \%)$$

$$f'(x) = \cos x + \int_{0}^{x} f(u) du \qquad ... (2 \%)$$

$$f(0) = 0 \qquad f'(0) = 1 \qquad ... (3 \%)$$

$$\lim_{n \to \infty} f(\frac{1}{n}) = f(0) = 0$$

故
$$\sum_{n=1}^{\infty} (-1)^n f(\frac{1}{n}) 收敛 \qquad(9 分)$$