# CMT307 Applied Machine Learning

Session 12

Activation Functions, Regularisation, Dropout Introduction to Convolutional Neural Networks

#### **Activation Functions**

- Why needed?
  - Inspiration from bio-neurons
  - Achieving more than a simple linear mapping
    - linear mappings combined are still a linear mapping, e.g.
    - f(x) = 2x + 3, g(x) = 5x 1
    - f(g(x)) = 2(5x 1) + 3 = 10x 1
  - Essential for neural networks to have strong learning capabilities



# Typical Activation Function: Step Function

#### • Step function:

$$\bullet \ \sigma(z) = \begin{cases} 0 & z < 0 \\ 1 & z \ge 0 \end{cases}$$

- Easy to compute
- Disadvantages:
  - Not differentiable at z = 0
  - 0 gradient elsewhere: not good for gradient descent



# Typical Activation Function: Sigmoid Function

#### Sigmoid function

• 
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

- Well-defined, non-zero gradient everywhere
- Slow to compute with exp
- The output is bounded: (0, 1)
- Especially suitable for the output layer when range (0, 1) is expected
- But: the gradient can be small => Vanishing gradient problem



### Typical Activation Function: tanh Function

- Hyperbolic tangent (tanh) function:
  - $\sigma(z) = \frac{2}{1 + e^{-2z}} + 1$
  - Similar to sigmoid, well-defined non-zero gradients everywhere
  - Similar to sigmoid, slow to compute due to exp.
  - Output bound to the range (-1, 1)
  - Gradients in general stronger than sigmoid
  - Similar to sigmoid, the gradient can be small => Vanishing gradient problem
  - A popular choice, e.g. for output layer or recurrent network (covered later)



## Typical Activation Function: ReLU function

- ReLU (Rectified Linear Unit)
  - $\sigma(z) = \begin{cases} 0 & z < 0 \\ z & z \ge 0 \end{cases}$
  - Zero gradients for negative z, and constant gradient (1) for positive z
  - Simple and efficient to compute
  - Works surprisingly well, often better convergence than sigmoid and tanh
  - Default choice for hidden layers, normally not used for output layers
  - Output true zeros, and unbounded positive values
  - "Dying ReLU" problem: zero gradients for negative z => once neurons get into negative zone, unlikely to recover



# Variants of ReLU: Leaky ReLU

- To fix the "Dying ReLU" problem
  - Add a small slope for negative input
  - $LeakyReLU_{\alpha}(z) = \max(az, z)$
  - Hyperparameter  $\alpha$ : how much to leak, e.g. 0.3
  - Variants:
    - Randomized Leaky ReLU (RReLU):  $\alpha$  is randomised during training and fixed to the average during testing
    - Parametric Leaky ReLU (PReLU):  $\alpha$  is a learning parameter during training.
      - Better performance for large datasets, risk of overfitting for small datasets



#### Variants of ReLU: ELU

- ELU (Exponential Linear Unit):
  - $ELU_{\alpha}(z) = \begin{cases} \alpha(e^z 1) & z < 0 \\ z & z \ge 0 \end{cases}$
  - Same as ReLU for positive z
  - Non-zero gradients for z < 0
  - If  $\alpha = 1$ , ELU is differentiable everywhere
  - Disadvantage: ELU is slower to compute
  - Results: Training time is fine as it has better convergence; evaluation time longer with ELU
- SELU (Scaled ELU):
  - self-normalise: output of each layer will tend to preserve a mean of 0 and standard deviation of 1 during training => addressing vanishing/exploding gradients problem



#### Activation Function: softmax

- Softmax activation:
  - Processes a vector  $\mathbf{z} = (z_1, z_2, ..., z_K)$
  - $\sigma(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$
  - Each value in the range of (0, 1) and add up to 1: can be interpreted as probabilities
  - Larger input leads to larger output
  - Often used in output layer for multiclass classification

#### Activation Function: linear

- Linear activation:
  - $\sigma(z) = z$
  - Input/output both unbounded
  - Not suitable for hidden layers (as equivalent to one layer)
  - Often used for output layer



#### Activation Functions with Keras

- Two ways:
  - Through activation argument when creating layers

```
    model.add(keras.layers.Dense(100, activation="relu"))
    Here, relu can be changed to any supported activation functions: sigmoid, tanh, relu, elu, selu, softmax, linear, otr
```

• For more advanced options, including Leaky ReLU, use:

```
model.add(keras.layers.Dense(100, activation=keras.layers.LeakyReLU()))
```

Add as activation layers

```
model.add(keras.layers.Dense(100))
model.add(keras.layers.Activation("relu"))
```

Second approach: allows other layers such as BatchNormalization to be applied before non-linear activation

```
model.add(keras.layers.Dense(100))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation("relu"))
```

[Demo] Comparison of activation functions

#### Choice of Activation Functions

- Tips for choosing activation functions:
  - Hidden layers:
    - ReLU is often a good choice
    - If "DyingReLU" becomes a problem, consider ELU, SELU or Leaky ReLU
  - Output layers:
    - If normalised outputs are expected, consider tanh, sigmoid, etc.
    - If output is like probabilities, softmax is often used
    - If output is unbounded, no activation function (equivalent to Linear activation)
  - Use Batch Normalisation to help address vanishing/exploding gradient problems

#### Regularisation

- Why using regularisation?
  - Deep models often have many parameters (typical millions)
  - This can easily lead to *overfitting* problem
  - The model works well for the training set, but does not generalise well to validation/test sets



#### Regularisation: Constraining Connection Weights

- Constraining connection weights:
  - L2 regularisation: adding a loss term corresponding to the L2 norm of the connection weights
  - L1 regularisation: adding a loss term corresponding to the L1 norm of the connection weights
    - => favours sparse connection weights (i.e. more connection weights that are close to 0)
  - Regularisation factor: controls how much regularisation to add
- Keras example:
  - (12 can be changed to , 0.01 is the regularisation factor)

```
model.add(keras.layers.Dense(300, activation="relu", kernel_r
egularizer=keras.regularizers.12(0.01)))
```

[Demo] Regularisation

# Regularisation: Early Stopping

- More training epochs do not always lead to better models
  - The learned model may overfit the training data
  - This can be monitored using the performance on the validation set
  - Can be seen as a powerful regularisation



#### Keras Implementation: Saving and Loading Models

- To save a trained model, using
  - model.save("my keras model.h5")
  - my\_keras\_model => can be changed to the name of choice
  - .h5 => standard HDF5 (Hierarchical Data Format) format
- To load the model back, using
  - model = keras.models.load\_model("my\_keras\_model.h5")
  - Change the filename to match the model file

### Keras Implementation: Checkpoint

- Training can take very long time
- It is good practice to save the model once in a while

```
[...] # build and compile the model
checkpoint_cb =
keras.callbacks.ModelCheckpoint("my_keras_model.h5")
history = model.fit(X_train, y_train, epochs=10,
callbacks=[checkpoint cb])
```

- This will save the model after each epoch of training
- The model can be later reloaded to continue training

# Keras Implementation: saving the best model

 To avoid overfitting, the best model on the validation set can be saved, and loaded back later (setting save best only to True):

# Keras Implementation: early stopping

 Alternatively, stopping early if no progress after a few epochs (defined by patience)

#### Dropout

- Dropout
  - A popular regulariser
  - Simple idea but effective
  - Often leads to performance gain
- How does Dropout work?
  - At every training step
  - Each involved neuron has a probability *p* of being temporarily "dropped out" (output 0)
  - Different random neurons are dropped out in different steps
  - Hyperparameter *p*: typically 10%-50%
  - May apply to the input layer but not the output layer
  - Often applied to top 1-3 layers (excluding the output layer)



#### Dropout

- Why Dropout works?
  - Every step, a different (but related) network is trained
  - The network needs to be effective, even with part of it disabled
  - It cannot rely on specific neurons to work effectively
  - Better robustness and resilience
  - Imagine a team with random members not attending...



#### Dropout

- Dropout: training and testing
  - Dropout is only applied in training, and disabled in testing
  - Suppose p=0.5, on average, during testing, each neuron will be connected to twice as many input neurons
  - To address this, we need to perform either of the following
    - Do nothing during training. After training, multiply connection weight of each neuron input by 0.5 (1-p, i.e. keep probability)
    - During training, divide each neuron's output by (1-p). Do nothing during testing
  - These two approaches are not identical, but both work well.
  - Keras implements Dropout layers that use the second option (so no adjustment needed once the model is trained)

#### Dropout Keras Implementation

Create a Dropout layer using e.g.

```
keras.layers.Dropout(rate=0.2)
```

- 0.2: dropout rate, can be adjusted
- Not used after the output layer (otherwise you lose part of the output!)

• [Demo] Using Dropout

### Convolutional Neural Networks (CNNs)

- Problem with fully connected layers:
  - Too many connection weights, especially for images
    - E.g.  $100 \times 100$  image input, with only 1,000 first layer neurons => 10M connection weights
    - More with more layers and neurons
  - Harder to train, does not generalise well
  - Does not work except for very small images

## CNN: inspired by biological neurons

- Inspired by biological neurons for visual cortex
  - Patterns in small regions (receptive fields)
  - Higher layer neurons correspond to more complex patterns with larger receptive fields



#### **CNN**

- Convolutional Neural Networks
  - Widely used for image processing
  - Also useful for speech recognition, natural language processing, etc.
  - Key: convolutional layers
- Convolution layer:
  - Local receptive fields: increasing as it goes deeper
  - Shared weights [corresponding to 'convolution' operation]
    - Substantial reduction of connection weights
    - Translation equivariance: an object should be recognised the same even moving around



#### Convolutional Layer

#### Convolutional layer

- Keep the 2D image structure (no Flatten layer)
- Zero Padding
  - Without padding, the output is smaller than the input (padding = "valid")
  - Zero padding: add zeros such that the output size is not lost at image boundaries (padding = "same")

#### Stride

- The shift from one receptive field to the next
- Stride = 1: the output is roughly the same size as input
- Stride = 2: the output is approx. half the size (in each dimension)





#### Convolutional Filters

- Each filter is useful to extract certain local image characteristic
  - A feature map is created when a filter is applied
  - Multiple filters are often used to extract different information

• In this example, the filters are hard-coded, but in practice, filters are learnable parameters.



# Stacking Multiple Feature Maps

#### Power of CNN

- Each layer: 3-dimensional (2D for images, third dimension for channels/filters)
- Input: colour images (red, green, blue channels)
- Convolutions apply local receptive fields and across all input channels



### Convolutional Layer: Keras implementation

- keras.layers.Conv2D: (2D convolutional layer).
- Example:

#### Memory usage:

- Convolutional layers are better than fully connected layers
- May still use a large amount of memory depending on number of filters, kernel size, number of layers, and batch size (during training)
- If running out of memory, try reducing the batch size, or using multiple GPUs, etc.

## Pooling Layers

- Subsample the input
  - Reduce computational load, memory usage, and number of parameters
  - Increase robustness to some (small) transformations
  - Example: max pooling; pool\_size = 2; stride = 2 (usually match)



# Pooling Layers

• Max pooling: invariance to small translation



### Types of Pooling Layers

- Types of pooling
  - Max pooling, e.g. keras.layers.MaxPool2D (pool\_size = 2)
  - Average pooling, e.g. keras.layers.AvgPool2D (pool\_size = 2)
  - Max pooling is more often used/often more effective:
    - keeping the strongest features; getting rid of meaningless features => cleaner signal to process
  - Global average pooling: keras.layers.GlobalAvgPool2D()
    - Output a single average over the whole spatial locations per filter (feature map)
    - Useful to obtain global aggregation

# Typical CNN Architecture



• [Demo] CNN-based approach for image recognition

#### Intermediate Report

- 1-page report due next Thursday
  - Not contributed to your project marks
  - A chance to get feedback
  - Email it to your supervisor

# Talk next Monday

• I will give a talk at 1:30pm on Monday 2<sup>nd</sup> March (here at the Turing suite)

Title: Deep Generative Models for Images and 3D Shapes

• Time for Practice!