Appendix D. Covariance matrices

Although the concepts presented below apply identically to vector <u>fields</u>, for brevity present discussion is limited to simple vectors.

Consider a two-component force vector response F:

$$\boldsymbol{F}_j = \begin{bmatrix} F_{xj} & F_{yj} \end{bmatrix}^\top \tag{D.1}$$

where j indexes the responses, and there are a total of J responses. After computing the mean force vector \overline{F} as:

$$\overline{F} = \begin{bmatrix} \overline{F_x} \\ \overline{F_y} \end{bmatrix} = \frac{1}{J} \sum_{j=1}^{J} \overline{F}_j$$
 (D.2)

the covariance matrix \boldsymbol{W} can be assembled as follows:

$$\mathbf{W} = \begin{bmatrix} W_{xx} & W_{xy} \\ W_{yx} & W_{yy} \end{bmatrix}$$
 (D.3)

where the elements of \boldsymbol{W} are:

$$W_{xx} = \frac{1}{J-1} \sum_{j=1}^{J} (F_{xj} - \overline{F}_x)^2$$
 (D.4)

$$W_{yy} = \frac{1}{J-1} \sum_{j=1}^{J} (F_{yj} - \overline{F}_y)^2$$
 (D.5)

$$W_{xy} = W_{yx} = \frac{1}{J-1} \sum_{i=1}^{J} (F_{xj} - \overline{F}_x)(F_{yj} - \overline{F}_y)$$
 (D.6)

Thus the diagonal elements W_{xx} and W_{yy} are the intra-component variances (i.e. squared

standard deviations), and the off-diagonal elements W_{xy} and W_{yx} are the inter-component covariances between F_x and F_y over multiple responses. Importantly, changes in F_x and F_y are completely uncorrelated if and only if $W_{xy}=0$.

One contention of this paper is that separate (univariate) analysis of F_x and F_y is biased when testing non-directed hypotheses. The main reason is that F_x analysis considers only W_{xx} and F_y analysis considers only W_{yy} . This is equivalent to assuming $W_{xy}=0$, an assumption which may not be valid (Appendix B).

A geometric interpretation of W is useful both for visualizing vector variance (Fig.S3) and for appreciating canonical correlation analysis (Appendix E). Consider that W represents an ellipse whose geometry is defined by the solutions to the eigenvalue problem:

$$\mathbf{W}\mathbf{v} = \lambda \mathbf{v} \tag{D.7}$$

Here v and λ are the eigenvectors and eigenvalues, respectively, and there are two unique eigensolutions unless both $(W_{xx} = W_{yy})$ and $(W_{xy} = 0)$, in which case there is only one eigensolution and W represents a circle. When there are two solutions the eigenvectors represent the ellipse axes (or equivalently: principal axes), and the eigenvalues represent the axes' lengths (or variance in the direction of the principal axes). An equivalent interpretation is that one eigenvector of W represents the direction of maximum variance within the dataset. This means that we can rotate our original coordinate system xy to a new coordinate system x'y' so that variance along the new x' axis is the maximum possible variance obtainable for all possible x'.