GEORGE MASON UNIVERSITY, MATHEMATICAL SCIENCES DEPARTMENT

Advanced Calculus - Math 315

Carlos N. Rautenberg Summer 2025, Homework 3:

Due date: 18 June



Show all your work. A right answer is a correct result together with the correct steps used to obtain it:

Right Answer = Correct Result + Correct Steps

## Chapter 3

- 7. Let  $x_n := 1/\ln(n+1)$  for  $n \in \mathbb{N}$ .
  - (a) Use the definition of limit to show that  $\lim(x_n) = 0$ .
  - (b) Find a specific value of  $K(\varepsilon)$  as required in the definition of limit for each of (i)  $\varepsilon = 1/2$ , and (ii)  $\varepsilon = 1/10$ .
- 8. Prove that  $\lim(x_n) = 0$  if and only if  $\lim(|x_n|) = 0$ . Give an example to show that the convergence of  $(|x_n|)$  need not imply the convergence of  $(x_n)$ .
- 9. Show that if  $x_n \ge 0$  for all  $n \in \mathbb{N}$  and  $\lim(x_n) = 0$ , then  $\lim(\sqrt{x_n}) = 0$ .
- 10. Prove that if  $\lim(x_n) = x$  and if x > 0, then there exists a natural number M such that  $x_n > 0$  for all  $n \ge M$ .
- 2. Give an example of two divergent sequences X and Y such that:
  - (a) their sum X + Y converges,
- (b) their product XY converges.
- 3. Show that if X and Y are sequences such that X and X + Y are convergent, then Y is convergent.
- 4. Show that if X and Y are sequences such that X converges to  $x \neq 0$  and XY converges, then Y converges.
- 7. If  $(b_n)$  is a bounded sequence and  $\lim(a_n) = 0$ , show that  $\lim(a_n b_n) = 0$ . Explain why Theorem 3.2.3 *cannot* be used.