Задача 1. Пусть Ω – открытое и ограниченное множество в \mathbb{R}^n . Пусть

$$Lu = \Delta u + \langle b, \nabla u \rangle + cu,$$

где b, c — гладкие функции на Ω . Предположим, что существует такая функция w, что w>0 и $Lw\leq 0$ на Ω . Докажите, что если $Lu\geq 0$, то u не может иметь неотрицательный максимум внутри Ω , кроме случая, когда u постоянная функция.

Задача 2. Докажите, что если граница $\partial\Omega$ ограниченной области Ω является гладкой (класса C^2) поверхностью, то построенное методом Перрона решение задачи Дирихле

$$\Delta u = 0$$
 в $\Omega, u|_{\partial\Omega} = g,$

где $g \in C(\partial\Omega)$, продолжается по непрерывности до функции $C(\overline{\Omega})$ и на границе совпадает с функцией g.

Задача 3. Пусть Ω – открытое и ограниченное множество в \mathbb{R}^n . Пусть f — ограниченная липшицева функция на \mathbb{R} , причем f(0)=0 и $f'(0)>\lambda_1$, где λ_1 — главное собственное значение оператора Лапласа — Δ на Ω с нулевыми граничными значениями. Применяя метод субрешений и суперрешений обоснуйте существование положительного внутри Ω решения u задачи Дирихле — $\Delta u \geq f(u)$ в Ω и $u|_{\partial\Omega}=0$.

Задача 4. Используя метод характеристик решите задачу Коши

$$uu_{x_1} + u_{x_2} = 1$$
, $u(x_1, x_1) = x_1/2$.

Задача 5. Выясните, какие из следующих задач $u_t + f'(u)u_x = 0$, $u|_{t=0} = u_0$, имеют гладкое решение на всей полуплоскости t>0, а какие – не имеют гладких решений ни в какой полосе $0 < t < \tau$: (a) $f(u) = \cos u$, $u_0(x) = \sin x$, (b) $f(u) = u^4$, $u_0(x) = x$, (c) $f(u) = u^4$, $u_0(x) = -x$.

Задача 6. Пусть Ω – открытое и ограниченное множество в \mathbb{R}^n и на Ω задана функция

$$u(x) = \operatorname{dist}(x, \partial\Omega) = \inf_{y \in \partial\Omega} |x - y|.$$

Докажите, что u — вязкостное решение уравнения |Du|=1 в Ω .

Задача 7. Докажите, что

$$u_s(x) = \frac{1}{4} \max\{0, s - |x|\}^2$$

для каждого $s \in [0,1]$ является вязкостным решением уравнения $|Du| - \sqrt{u} = 0$ в шаре |x| < 1 и u = 0 при |x| = 1. Таким образом, задача Дирихле для данного уравнения имеет континуально много различных вязкостных решений.

Надо решить любые четыре задачи и прислать решения до первого ноября!

1