3 Indialize a new landmark

After computing the likelihord for the landmark on the picture the algorithm determines that this landmark is a new landmark and it should be morporated anto the list of landmarks for the particle the algorithm is writing with.

. With Pit and sod compute the seawner's pose

· With $\frac{\pi}{2}$ compute (X_{sk}, Y_{sk}) , i.e., the laudmark's condinates in

The scamer's reference frame.

(sensor).

Throke legologite. scanner-to-world (scanner-pose, (Xsk. Yok))

translated the uncertainty in the landmark's position, Σ_{K} , into an uncertainty in the (propagates)

expected measurement, Qx

Now, the situation is different. The robot takes a scan and the algorithm makes an observation in the scan (detects a cylinder), i.e., $Z = \begin{pmatrix} D_{k} \\ P_{k} \end{pmatrix}$. The nucertainty in this observation, Q_{k} , translates into an uncertainty in the landmark's position, Z_{k} . (error) so we need the Jacobian of $h_{k}^{-1}(.)$, i.e., the inverse of $H_{k} \Rightarrow H_{kk}^{-1}$

$$\sum_{k} = H_{kk}^{-1} \cdot Q_{2} \cdot (H_{kk}^{-1})^{T} = (V_{||} V_{\perp}) \cdot \begin{bmatrix} \lambda_{||}^{2} & 0 \\ 0 & \lambda_{\perp}^{2} \end{bmatrix} \cdot (V_{||} V_{\perp})^{T}$$

$$V_{\perp} = \begin{bmatrix} V_{||} & V_{\perp} \\ V_{||} & V_{\perp} \end{bmatrix} \cdot \begin{bmatrix} \lambda_{||}^{2} & 0 \\ 0 & \lambda_{\perp}^{2} \end{bmatrix} \cdot (V_{||} V_{\perp})^{T}$$

$$V_{\perp} = \begin{bmatrix} V_{||} & V_{\perp} \\ V_{||} & V_{\perp} \end{bmatrix} \cdot \begin{bmatrix} \lambda_{||}^{2} & 0 \\ 0 & \lambda_{\perp}^{2} \end{bmatrix} \cdot (V_{||} V_{\perp})^{T}$$

$$V_{\perp} = \begin{bmatrix} V_{||} & V_{\perp} \\ V_{||} & V_{\perp} \end{bmatrix} \cdot \begin{bmatrix} \lambda_{||}^{2} & 0 \\ 0 & \lambda_{\perp}^{2} \end{bmatrix} \cdot (V_{||} V_{\perp})^{T}$$
ellipsic than the direction of the direction

VIX.

V_{II}: Eigenvector showing the direction of the axis parallel to the scan ray

V_I: Eigenvector showing the direction of the axis perpendicular to the scan ray

Au: Senilength of the axis parallel to the scan ray.

AL: Similar of the axis perpendicular to the scan ray