Lecture Jan 27

From Mondag

- Falling object (1-Dim)

$$Q = -g$$

$$\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{a_2} \cdot \vec{e_2} + \vec{e_3} \cdot \vec{e_3} \right)$$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{a_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{e_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{e_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{e_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{e_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{e_1} \cdot \vec{e_1} + \vec{e_3} \cdot \vec{e_3} \right)$
 $\left(\vec{a} = \vec{e_1} \cdot \vec{e_1} + \vec{e_1} \cdot \vec{e_$

- Define initial com du tions inithal height yo = y(to) to = initial time

en trac nelocity $v_0 = v(t_0)$ $v_0 = o m/s$

$$dt = \sqrt{\frac{1}{at}} = \sqrt{\frac{1}{at}}$$

$$\Delta t = \sqrt{\frac{1}{at}} - \frac{1}{4}$$

$$\Delta t = 0.01$$

$$t = mp. anange (to; to; st)$$

$$m = mp. size (t)$$

$$(ti) = to + i \Delta t$$

$$x(t) = xi$$

$$x(t) = xi$$

$$x(t) = xi$$

$$x(to) = xo \qquad v(to) = xi$$

$$x(to) = xo \qquad v(to) = vo$$

$$a(t) = xo \qquad v(to) = vo$$

$$a(t) = xi$$

$$x(to) = xo \qquad v(to) = vo$$

$$a(t) = xi$$

$$x(to) = xo \qquad v(to) = vo$$

$$x(to) = xi + xi$$

$$x(to) = xi + xi$$

$$x(to) =$$

v[1+1] = v[i] + sta[i] x [i+1] = x [i] + st / [i] time. neu physics care (1-Dim), just change Drag Fonce $\alpha = -g + D \mathcal{N}(t)$ $D \mathcal{N}(t)$ analy blookly on Friday,

Force from

Force from

floor.

Combact

Baoyanag:

Form

Floor

Banganag:

Form

Floor

And Stande

onggenerce

non an

pressure $\frac{1}{T} = \frac{1}{S + N} + \frac{1}{T} + \frac{1}{T} + \frac{1}{T} = \frac{1}{N + T} =$