Table 13. Performance of ATT in JiNan, HangZhou. "-" implies that traditional algorithms are not adapted to MinQ and MAD attacks. Our RobustLight recovers the state of traditional and RL-based TSC algorithms to evaluate the performance.

Dataset	Noise Type	Noise Scale	FixedTime	MaxPressure		Advanced-MaxPressure		Advanced-MpLight		CoLight		Advanced-CoLight	
			base	base	RobustLight	base	RobustLight	base	RobustLight	base	RobustLight	base	RobustLight
$JiNan_2$	Gaussian	3.5	368.76±0.00	279.05±1.56	276.14±1.49	275.95±1.22	274.67±1.58	383.41±58.34	276.02±1.72	295.87±17.16	265.21±2.02	326.04±10.78	289.84±4.68
		4.0		282.99±1.22	279.89±1.41	279.63±1.15	276.56±1.74	455.56±110.18	281.88±2.91	336.38±61.85	271.65±1.57	340.84±17.41	298.63±5.04
	U-rand	3.5		301.51±2.82	290.84±2.46	299.75±1.16	297.34±1.39	548.04±98.46	323.93±11.34	653.03±150.29	380.63±68.09	717.76±169.73	361.72±28.89
		4.0		306.29±3.09	294.39±3.25	304.75±1.09	302.97±1.91	514.01±116.27	327.93±11.35	359.26±12.55	354.02±53.63	741.76±181.97	361.66±30.15
	MAD	3.5		-	-	-	-	285.67±11.23	263.21±1.17	565.93±39.44	262.05±1.48	325.87±8.34	271.58±1.52
		4.0		-	-	-	-	297.97±18.32	268.94±1.13	588.27±47.11	263.45±1.65	337.42±8.64	271.65±1.57
	MinQ	3.5		-	-	-	-	283.37±3.09	264.48±1.83	516.49±102.73	261.41±1.34	323.07±7.45	300.31±5.44
		4.0		-	-	-	-	289.43±3.78	270.98±1.83	541.17±112.48	268.17±2.29	346.51±3.85	314.29±3.67
$HangZhou_2$	Gaussian	3.5	406.65±0.00	360.56±2.45	358.57±1.71	345.27±1.23	342.52±1.23	564.65±103.29	362.27±3.85	349.75±5.13	344.63±2.01	396.61±9.59	368.79±6.27
		4.0		363.64±2.77	359.93±2.02	348.40±1.11	346.66±1.02	418.41±12.43	371.71±3.65	352.25±4.43	351.58±3.75	410.64±10.02	371.54±6.94
	U-rand	3.5		371.21±3.44	365.23±2.07	362.11±2.13	289.62±2.09	504.63±9.71	437.93±14.49	442.07±26.52	353.67±3.26	472.11±20.71	379.27±11.97
		4.0		373.89±3.09	366.52±2.14	366.69±3.53	359.17±2.02	513.83±11.21	445.99±11.53	383.27±9.41	356.79±4.07	487.33±19.17	384.24±13.31
	MAD	3.5		-	-	-	-	345.74±29.73	344.52±4.49	478.25±15.39	349.37±2.54	405.37±12.33	359.03±9.23
		4.0		-	-	-	-	349.48±26.63	348.61±5.77	490.25±18.66	356.53±4.33	406.75±5.01	359.06±9.23
	MinQ	3.5		-	-	-	-	347.04±24.07	343.38±9.54	473.48±11.07	347.73±3.85	399.87±15.12	372.84±4.84
		4.0	-	-	-	-	350.15±24.27	347.44±9.43	484.52±12.88	352.13±2.72	408.28±8.71	385.43±8.06	

Table 14. Performance Compared with DiffLight.

Dataset	Noise Type	Noise Scale	DiffLight	Advanced-Colight-RobustLight		
	Gaussian	3.5	289.45±3.37	294.57±2.02		
	U-rand	3.5	311.53±4.17	358.22±7.02		
$JiNan_1$	MAD	3.5	384.71±13.25	283.13±1.56		
	MinQ	3.5	321.98±6.37	323.25±20.54		
	Mask (Kriging and Random)	25%	353.45±34.31	320.31±3.21		
	Gaussian	3.5	325.05±2.58	327.98±2.45		
	U-rand	3.5	365.05±20.67	473.85±32.68		
$HangZhou_1$	MAD	3.5	366.14±5.34	309.24±0.94		
	MinQ	3.5	426.14±10.56	406.32±6.41		
	Mask (Kriging and Random)	25%	346.05±41.27	296.69±4.67		