Problem Sheet 9

discussion: week of Monday, 09.01.2023

9.1. Program Newton's method in 1D. To that end, realize a Matlab/python function newton(x, f, df) that realizes one step of the method. f and df are function handles for the function f and its derivative f'. Plot (use semilogy) the error versus the number of Newton steps for the following 3 functions:

$$f_1(x) = x^2$$
, $f_2(x) = e^x - 2$, $f_3(x) = |x|^{3/2}$.

Use $x_0 = 0.5$ as the starting value. What do you observe? Which assumptions that underlie the proof of quadratric convergence are not satisfied? Consider Newton's method for

$$f_4(x) = \frac{1}{x} - 1$$

and initial value $x_0 = 2.1$. What do you observe?

9.2. Consider the nonlinear system of equations $f(\mathbf{x}) = 0$ given by

$$3x_1 - \cos(x_2 x_3) - 3/2 = 0$$

$$4x_1^2 - 625x_2^2 + 2x_3 - 1 = 0$$

$$20x_3 + e^{-x_1x_2} + 9 = 0$$

Compute the derivative $\mathbf{f}'(\mathbf{x})$ and formulate Newton's method. Program Newton's method in matlab/python. The program should additionally estimate the error (e.g., in the $\|\cdot\|_2$ -norm) and also return it. Use the initial vector $(1,1,1)^{\top}$. Plot (using semilogy) the estimated error versus the iteration number.

9.3. Consider the system of equations

$$\mathbf{A}x = \mathbf{b} + \varepsilon \mathbf{f}(\mathbf{x}), \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$$

with

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \quad \mathbf{f}(\mathbf{x}) = \begin{pmatrix} (x_1 - x_2)^2 \\ 0 \end{pmatrix}, \quad \varepsilon = 0.01.$$

- a) Formulate the Newton method and write a program to compute the iterates \mathbf{x}_n , $n = 1, 2, \dots$. Initial value: $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$.
- b) Consider the following method with initial value \mathbf{x}_0 given by $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$: For $n = 0, 1, \ldots$ one determines $\mathbf{x}_{n+1} \in \mathbb{R}^2$ such that $\mathbf{A}\mathbf{x}_{n+1} = \mathbf{b} + \varepsilon \mathbf{f}(\mathbf{x}_n)$. Write a program to compute the iterates. Taking the last value of the Newton method as the "exact solution" you can compute the errors. Plot the error for both methods in loglog-plot (error versus iteration index n). Can you relate this "simple" method to Newton's method for small ε ?
- **9.4.** Show that $\|\mathbf{x}_{n+1} \mathbf{x}_n\|$ of Problem 9.4 is a good estimate for the error $\|\mathbf{x}_* \mathbf{x}_n\|$ for the method of Problem 9.4b. To see this, you may use the following facts and hints:
 - One step of Newton's method with starting value \mathbf{x}_n has the form $\mathbf{x}_{n+1}^{Newton} = \mathbf{x}_n (\mathbf{F}'(\mathbf{x}_n))^{-1}\mathbf{F}(\mathbf{x}_n)$ with $\mathbf{F}(x) = \mathbf{A}\mathbf{x} \mathbf{b} \varepsilon\mathbf{f}(\mathbf{x})$ and $\mathbf{F}'(\mathbf{x}) = \mathbf{A} \varepsilon\mathbf{f}'(\mathbf{x})$.
 - one has $\|\mathbf{F}(\mathbf{x}_n)\| \le C\|\mathbf{e}_n\|$ for the error $\mathbf{e}_n = \mathbf{x}_{\star} \mathbf{x}_n$.
 - Geometric series yield, for small ε and matrices **B**, **C** with **B** invertible: $(\mathbf{B} + \varepsilon \mathbf{C})^{-1} = \mathbf{B}^{-1} + O(\varepsilon)$ (here, $O(\varepsilon)$ is a matrix whose entries are of size $O(\varepsilon)$; the exact matrix entries depend in a complicated way on **B** and **C**, but are not so important for our purposes)
 - Try to estimate $\|\mathbf{x}_{n+1}^{Newton} \mathbf{x}_{n+1}\| \le O(\varepsilon)\|\mathbf{e}_n\|$
 - recall that $\|\mathbf{x}_{n+1}^{Newton} \mathbf{x}_n\|$ is an excellent estimator for $\|\mathbf{e}_n\|$

9.5. Newton's method converges only for initial values close to the zero x^* of f. One possibility to address this difficulty is the so-called *continuation method*: One considers a function H(x,s) with H(x,1) = f(x) and for which a zero x_0 of H(x,0) is known. One then selects points s_i , $i=1,\ldots,N$ and employs Newton's method to compute the zero x_{i+1} of $H(x,s_{i+1})$, taking x_i as the initial value. Perform the method for

$$f(x) = \arctan x,$$
 $H(x, s) = \arctan x - (1 - s)\arctan 4$

and initial value $x_0 = 4$. Select $s_i = i/10, i = 0, \dots, 10$.