

Examen de Admitere - subiecte test grilă

- Să se rezolve LA ALEGERE 2 din cele 4 seturi de întrebări propuse.
- Fiecare întrebare are UN SINGUR răspuns corect.
- Timp de lucru: 60 minute

A – Mecanică

1) Pornind de la capătul unui culoar dintr-un bazin olimpic de 50 m lungime, un sportiv înoată dus-întors cu viteza constantă 2 m/s. Adversarul său pornește din același capăt, de pe un alt culoar, după ce primul sportiv a parcurs 20 m. Cei doi sportivi ajung simultan în punctul de pornire.

Viteza celui de-al doilea sportiv este:

a) 3 m/s	b) 9 km/h	c) 12 km/h

2) Graficul alăturat descrie viteza unui corp aflat în mișcare rectilinie. La ce moment se află corpul la distanța maximă față de punctul în care se afla la t=0 s?

3) Accelerația gravitațională poate fi calculată din analiza mișcării unui punct material aruncat pe verticală în sus, prin măsurarea timpului necesar trecerii succesive (la urcare și la coborâre) a punctului material prin dreptul a două repere A și B. Știind că distanța dintre cele două repere este h, accelerația gravitațională se poate calcula din:

a)
$$g = \frac{8h}{T_A^2 - T_B^2}$$

b)
$$g = \frac{4h}{T_A^2 - T_B^2}$$

c)
$$g = \frac{4h}{T_A - T_B}$$

4) O maşină accelerează cu accelerația constantă $a = 5 \text{ m/s}^2 \text{ timp de 8 s pornind din repaus, apoi îşi continuă mişcarea cu viteză constantă. Distanța parcursă în primele 12 s ale mişcării este:$

a) <i>d</i> = 320 m	b) $d = 360 \text{ m}$	c) $d = 480 \text{ m}$

5. Într-un lift stă o persoană a cărei masă este 56 kg. Liftul se mișcă în sus, frânat cu accelerația 4 m/s². Știind că $g = 10 \text{ m/s}^2$, forța care acționează asupra persoanei din partea podelei liftului este:

a) 784 N b) 560 N c) 336 N

6. Un corp paralelipipedic este așezat pe un plan înclinat de unghi variabil. Unghiul planului se mărește cu pași mici și după fiecare modificare a unghiului, corpul primește un mic impuls spre baza planului înclinat, urmat de un timp de așteptare. Pentru un unghi al planului înclinat mai mic decât 45°, corpul se oprea după aplicarea impulsului. Se constată că la unghiul de 45°, corpul nu se mai oprește după aplicarea impulsului. Concluzionăm că:

a) coeficientul de frecare	b) coeficientul de frecare	c) la unghiul de 45°,
dintre corp și plan este	dintre corp și plan este	mișcarea corpului pe
$\sqrt{2}$	$\sqrt{3}$	planul înclinat este
$\mu = \frac{\sqrt{2}}{2}$	$\mu = \frac{\sqrt{3}}{2}$	mișcare cu viteză
2	2	constantă.

7. Corpul de masă m = 4 kg se află în poziția A, în care ambele resorturi sunt nedeformate. Constantele elastice sunt k_1 =5 N/m și respectiv k_2 =8 N/m. Corpul este deplasat în poziția B (AB = 20 cm) și apoi lăsat liber. Considerând că nu există frecare, energia cinetică a corpului atunci când trece prin poziția A va fi:

B - Termodinamică

1) Pornind de la o stare inițială identică încălzim cu aceeași cantitate de căldură două cantității identic
din același gaz. Una este încălzită izocor iar cealaltă izobar. În care dintre aceste procese este mai mar
variația de temperatură?

a) În procesul izocor.	a) În procesul izobar.	b) Este la fel în ambele
		procese.

2) Punctele **A** și **B** de pe grafic reprezintă două stări ale unei cantități date de azot. Care dintre aceste stări are o temperatură mai mare?

3) Volumul de aer dintr-o pompă se înjumătățește prin compresie foarte rapidă. Care va fi presiunea finală a aerului, p_1 , în acest caz, în comparație cu presiunea aerului p_2 , când comprimarea se face foarte încet, până la jumătate din volumul său?

a) $p_1 > p_2$	b) $p_1 < p_2$	c) $p_1 = p_2$

4) La încălzirea unui gaz de heliu la presiune constantă cantitatea de căldură transferată gazului este *Q* Care este lucrul mecanic efectuat de gaz?

a) Q/2	b) <i>Q</i> /3	c) 2 <i>Q</i> /5

5) O mașină termică funcționează după ciclul de mai jos. Procesele AB și CD sunt transformări izoterme. În care dintre aceste procese transferă sistemul căldură către mediul înconjurător?

a) În	b) În	c) În
transformärile	transformärile	transformările
BC și CD.	CD și DA.	DA și AB.

6) Un vas izolat este împărțit în două compartimente printr-un perete termoconductor. Inițial gazele din compartimente au temperaturile $t_1=17\,^{\circ}\text{C}$ respectiv $t_2=127\,^{\circ}\text{C}$ iar raportul presiunilor este $\frac{P_1}{P_2}=2,9$. Care va fi va raportul presiunilor $\frac{P_1'}{P_2'}$ după terminarea schimbului de căldura:

a)
$$\frac{P_1'}{P_2'} = \frac{P_1}{P_2} \frac{T_1}{T_2} = 2,1$$

b)
$$\frac{P_1'}{P_2'} = \frac{P_1}{P_2} \frac{T_2}{T_1} = 4$$

c)
$$\frac{P_1'}{P_2'} = \frac{P_2}{P_1} \frac{T_1}{T_2} = 0.25$$

7) Un vas cilindric orizontal, închis la ambele capete, este împărțit de un piston termoconductor, care se poate mișca fără frecare, în două compartimente. Într-un compartiment se află $m_1=4\cdot 10^{-3}kg$ de hidrogen atomic $\mu_H=1$ kg/kmol, iar în celălalt $m_2=16\cdot 10^{-3}kg$ de oxigen atomic $\mu_O=16$ kg/kmol. Câte procente din volumul total este ocupat de oxigen, la echilibru:

a)
$$\frac{V_{oxigen}}{V_{total}}$$
= 80%

b)
$$\frac{V_{oxigen}}{V_{total}} = 20\%$$

c)
$$\frac{V_{oxigen}}{V_{total}}$$
= 50%

C - Electricitate

1) Două surse de tensiune continuă, E_1 = 1,5 V și E_2 = 2 V, au intensitățile de scurtcircuit I_{sc1} = 3000 mA și
respectiv I_{sc2} = 10 A. Atunci când sunt legate în serie pentru a avea o tensiune utilă mai mare, au curentul
de scurtcircuit:

a) 17,5 A	b) 13 A	c) 5 A

2) La bornele unei surse de tensiune continuă reală se conectează un rezistor variabil. Atunci când se modifică rezistența acestuia, tensiunea la bornele sursei:

a) nu depinde de	b) creste odată cu creșterea	c) scade odată cu creșterea
intensitatea curentului din	intensității curentului din	intensității curentului din
circuit;	circuit;	circuit;

3) O lanternă folosește două baterii de tensiune continuă E= 1,5 V și rezistență internă de 0,5 Ω fiecare, legate în serie, care alimentează un bec de rezistență electrică 4 Ω . Randamentul lanternei este:

a) 80% b) 88%	c) 90%
---------------	--------

4) De la o baterie de mașină, cu tensiunea electromotoare de 12 V și rezistență internă neglijabilă, este alimentat un difuzor care este folosit la puterea de 24 W. Intensitatea curentului electric prin difuzor este:

a) 0,5 A	b) 1 A	c) 2 A

5) Patru sarcini electrice identice, q, sunt așezate în vârfurile unui pătrat de latură a. Asupra fiecărei sarcini va acționa o forță de respingere electrostatică de valoare:

a) $\frac{q^2}{4\pi s_1 q^2}$	b) $\frac{q^2}{4\pi s_0 c^2} \left(\sqrt{2} + \frac{1}{2}\right)$	c) $\frac{3q^2}{4-q^2}$
$4\pi\varepsilon_0\cdot a^2$	$4\pi\varepsilon_0 \cdot a^2 $ (2)	$4\pi\varepsilon_0 \cdot a^2$

6) Rezistența electrică echivalentă a doi rezistori legați în serie:

a) este mai mare decât	b)	este	mai	mică	decât	c)	este	egală	cu	suma
suma rezistențelor celor doi	rezi	stență	fiecăr	uia din	tre cei	rez	istențel	or celor o	doi rea	zistori.
rezistori.	doi	rezisto	ri							

7) Două fire conductoare au fiecare lungimea I, rezistivitatea electrică ρ și secțiunea S. Rezistența echivalentă a grupării paralel a celor două fire este dată de relația:

a) $\frac{\rho \cdot l}{S}$	b) $\frac{\rho \cdot l}{2 \cdot S}$	c) $\frac{2 \cdot \rho \cdot l}{S}$
	1	

D - Optică

1) Folosind o lentilă subțire cu distanța focală necunoscută obținem o imagine virtuală a unui obiect real. Dacă distanța între obiect și lentilă este de 5 cm, atunci distanța între imagine și lentilă este de 10 cm. Ce valoare are distanța focală a lentilei?					
a) -10 cm	b) 10 cm	c) 10/3 cm			
2) Pe suprafața plană a unui bloc d de 60°. După refracție, unghiul din refracție al blocului de sticlă este:		-			
a) 2*3 ^{-1/2}	b) 2 ^{1/2}	c) 3 ^{1/2}			
3) Imaginea unui obiect luminos formată de o lentilă necunoscută este reală, răsturnată și de 4 ori mai mare decât obiectul. Ce valoare are distanța focală a lentilei, dacă distanța între obiect și imagine este 100 cm?					
a) 16cm	b) -16 cm	c) 10 cm			
4) Valoarea interfranjei observată pe ecranul unui dispozitiv de tip Young, este de 1 mm. Care va fi valoarea interfranjei dacă imersăm dispozitivul de tip Young într-un lichid cu indicele de refracție $n = 1,5$.					
a) 1,25 mm	b) 1,00 mm	c) 0,(6) mm			
5) Distanța focală a unui sistem format din două lentile subțiri alipite, având fiecare distanța focală f este:					
a) 2 <i>f</i>	b) f/2	c) 0			
6) Care din sursele de mai jos este cea mai potrivită pentru observarea fenomenului de interferență utilizând dispozitivul lui Young?					
a) bec incandescent	b) diodă laser	c) lumânare			
7) O sursă de lumină emite două unde monocromatice cu lungimi de undă λ_1 și λ_2 ($\lambda_1 < \lambda_2$). Dacă folosim aceasta sursă de lumină în dispozitivul de interferență Young, să se indice care dintre cele două unde formează cea mai apropiata franjă față de centrul ecranului?					
a) cea cu lungimea de undă λ₂	b) cea cu lungimea de undă λ₁	c) nu depinde de lungimea de undă			