2. BOOLEAN ALGEBRA (O) SMITCHING ALGEBRA

Boolean algebra is used to simplety boolean equations, to make simple logic circuits.

Representation of Boolean function con switching function

Ex: y = ab + bc $\Rightarrow a, b, c$ are called variables (or) literals. which are inputs for the logic gates.

no. of gates we have to whimise variables of terms.

Boolean algebra rules:

(i) commutative law

A+B = B+A

A. 21 = 21 . A

was svitabozzA (ii)

A+(B+c) = (A+B)+C

(AB)c = A(Bc)

(iii) Distrabilitation (iii)

A(B+c) = AB + Ac

A+ Bc = (A+B)(A+C)

(iv) Additive (aw)

A+0 = A

A + A = A

A+1 = 1

A+A = 1

to a min. @ expressions rimplify tollowing poologn Crevall. variables or (B con B' both are 20 Samo 8 (A+B) (A+B) Sol- (A+B) (A+B) = A.A + A.B+BA+B.B = A + A. 8 + B. A + O = A (1+ B+B) (: 1+ onything = 1) (1+1)A = 28+ 28x + 28x + 8xx 2 Solv 24+ 245+ 245+ 245 = 28[1+2+5]+282 (: 14 awything =1) = xy.1+ xy = 7A5 + XA (A+BC = (A+BXA+C) 성[호호+지] = 성[(x+호)+(x+원] = 44[2+2] x'y + xy' + xy + x'y' 3 2 (8+8) x + [8+8] Sol: = x'[1]+x[1] = x+x' = ! (4) 28 + 28 + AB + A A + AB+ AE (1+ B) (BA + A) SA + BA + A = A+ AB+AZ() 5A+ 8A + A = = A+A(B+E) $= (A+\overline{A})(\overline{A}+B) + A\overline{c}$ (distribution 1 - A + AB+ A (1-c) = A+B+AC = A + A = + B = 1-A+AB+A-AC = (A+A)(A+E) + B Am

(3) ABC +
$$\overline{A}B$$
 + AB \overline{C}

30). ABC + $\overline{A}B$ + AB \overline{C}

30). ABC + $\overline{A}B$ + $\overline{A}B$

= AB ($C+\overline{C}$) + $\overline{A}B$

= AB + $\overline{A}B$

= B(A+ \overline{A}) = \overline{B}

(3) \overline{A} + \overline

```
P.T (A+C)(A+D)(B+C)(B+D) = AB+CD
2017 C A. A + AD+CA+CD][B.B+B.D+CB+C.D]
   = [A+AD+CA+CD][B+BD+CB+CD]x
                                ( A+BC = (A+B)(A+C)
      (A+C)(A+D)(B+C)(B+C)
    = (A+CD)(B+CD) & A
     = CD+ AB
D PIT AB+ AC + ABC (AB+C) = 1
      AB+ A+ c+ ABc. DBA + BC C ES
                                ( · B.B = 0)
   G AB+ AG+ & + ABC
    = (A+6)(3+A) + ABC 3x
      AB + AC + ABC
   = A(B+Bc) + AC
                               (: A+ BC = (A+B) (A+C) )
      A[(B+B)+(B+C)] + AC (: B+B=1)
    = AB+AC+AC
                     (: l+ainy thing =1)
      EA +1
    Prove that ABE + ABE + ABE = E
(II)
     [B+B] 5A + [B+B] 5A
       Ac+ Ac
      5 = [A+A] 5
```

Ex: Reduce the following Boolean expression Endicated no. of variables or literals. AZ+ ABC+ AZ to 3 literals. (E) 201: (A+A) = + ABC = c+ ABC. (: A+BC = (A+B)(A+C)) = 2+c. AB (A+A = 1) (2A+5)(2+3)== 2+ AB (3 (39+2)+ 2+xy+wz to 3 variables. 500 - (BE) + E + E + XY + WZ $(\mathcal{E} \cdot \overline{A} = \overline{\mathcal{B}} + \overline{A} \cdot \mathcal{E})$ X45+5+29+03 = Z+ E. xy + xy + wz (Q1) (A+BC = (A+B)(A+C)) = (Z+Z)(Z+Xy)+ xy+WZ = 74(1+2)+ Z(1+W) 500 + 6x + 6x + 2 = 74 + E (::1+ anything=1) = = (1+1) + xy(1+1) こ ミナガサ (B(1) (\$\overline{7}\overline{7}+2)+2+xy+wz to 3 variables. えらっき ナモナスタナルそ (7+ 1) = + = (+w)+xy = 748 + 384 + こ メミナラミナモナスタ = 2+ 72+ 42+ 74 = (Z+X)(Z+E) + y E+ xy 3+5+6+1)x = ZH++12+2)(2+2)

(1)

x + y + z (-: 1+ anything = 1 $A + \bar{A} = 1$).

(1) A'B (c'D+ b')+ B(A+ A'CD) +0 1 (CHEYO)

201: A'BC'D+ A'BD'+ AB+ A'BCD

= ABD (c+c') + AB + ABD (: A+BC = (A+B)(A+C)

= A'BD + AB + A'BD' $(A+\overline{A}=1)$

= AB (D+0')+ AB

= ('A+A') = BA + B'A =

reducing to a minimum number of variables.

(BZ+ AD) (AB+CD)

Sol: ofter taking complement

(BZ+BA)(AB+CB)

(*: A.A. = 0)

= 0 = 1

(B) x'(y'+z')(x+y+z')

SDN- x'(8'+2') (x+4+2')

= (x'y'+x'z')(x+y+2')

= (x'y'x+x'z'x+ x'y'y+x'y'z'+x'z'y+ x'z'z')

= x'y'z' + x'z'y+ x'.2'

= x'z'(4+4')+ x'. 2' = x'z+x'z' (= x'(24z)

 $= \frac{1}{2} \frac{$

= (3)+(2) = 7+2

Find dual of F = AB+BC+AC (E) Sub. x's - + Duality of F = (A+B)(B+c)(A+2) Sol: 210 20 Find dual of xy+ x'z = 0. 20021 (B) $Duality \Rightarrow (x+y)(x+z) = 1$ OGIC GATES 1. Inverter (01) NOT Boxe: NOT Gate performs inversion operation. It has i input and one output. cogic Symbol: A Truth Table: Truth table indicates outputs for different possibilities of input

ile	0/p	
Α	Y=A	
0	1	
1	0	

Timing diagram: The input 4 output wave forms 2° qu'hznoîtaler emit pusuons amot Timing diagram.

2. Buffer gate: output is same as the ile i|P = 0|Pused for time delay. FE 3. AND gate :-AND gate performs logical multiplication. was two or more tip's and one output. wase symbol :-Y = A and B and --- N = A.B. - . - . N = AB.....N . 2 1/P AND gate :--: Rodings sign Truth table :ilp's 0/0 B Y A 0 0 D 1 0 0 0 all sigh or sight upon all its are high. Timing diagram: (i/P) A 0:01:1 (ile) B (0/P) Y الدورام أدوي المراجع أو والمراجع 1. ILB YND BOTE :-

@ OB gate :-

(Ma)

on gate performs logical Addition. It was two or more inputs 4 one output.

1 1/b OB Box6 :-

--

2 ip OR gate:

USEC Symbol = A D Y = A+B

Truth table !-

į	lp's	-0/P
A	B	y
0	0	0
1	0	1
0	1	1
1	1	t

OR gave of is low when all the inputs are low.

(i(p) A _0 1 0 1 1 (o(p) y _0 1 1 1 1

NOTE: Logic circuits which use AND, OR, NOT gates only are called ADI logic circuits

20 Universal gates:-NAND 4 NOR are called universal gates because by using either NAND or NOR gates we can implement any logic circuit. 40 NOILENIAMED 2° CONDINATE ATT -: STEP CINAN AND 4 NOT. gates. Cogic Symbol: A DAB DO Y = AB 5 ! WHIND BOYS : $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} y_i = \sum_{i=1}^{n$ muth table :-2'91 OP B 0 1 0 0 0 ent lle ent nere avoi 29 910 etag onan illes are high. NOR BOTE: - The LELAN NOW IT a compliation of OR 4 NOT gates. logic Symbol: 2 ilp's NOR gate: Y= A+B

correct creek the correct of the second

1

-: slow very

į	2'9	OlP
AB		4
0	0	1
10		0
0	1	0
1	1	0

NOR gode of is high when all its are low.

EXOR (01) XOR (01) EXCLUSIVE-OR Sorte :-

logic symbol:

$$A \longrightarrow Y = A \text{ for } B$$

$$= AB + \overline{A}B$$

Fruth table:

ile	2 'c	Olp
A	B	y
0	0	0
0	1	1
١	0	1
1	1	0

XOR O(P % low when all i/p's are some.

EXMOR (OT) XMOR (OT) EXCLUSIVE MOR . gate:

· ladmy2 sign)

A
$$\Rightarrow$$
 $Y = A \times NDR B$

$$= \$ A \oplus B = \overline{A} \oplus \overline{B} + A \overline{B}$$

$$= \overline{A} \overline{B} + A B = \overline{A} B + A \overline{B}$$

23

Truth	DOLOT	10

1	2'9)	910
A	B	Y
0	0	1 -
0	1	0
1	0	0
1	1	1

EXNOR OIP is high when all ilp's are same.

MOLE: - dual of XOR gave is XNOR.

3010712014

* Dual of XOR gate is XNOR.

dual of $\overline{AB} + A\overline{B} = (\overline{A} + B)(A + \overline{B})$

= A.A + A.B + B.A + B.B

2A + BA =

Ex: Implement F = AB +ABE + BE using base logic gates.

Sal

EX: Implement NOT, AND, OR, NOR, EXNOR, EXOR gates

-: stop duan

EXMCB SOTE CIZIND FIND:-Y = AOB = AB+AB = AB+AB = AB. AB Ex. Implement all lodic dates expect now date riginal MOR gate. MOB Sofe :using NOR gate: gaze TOM Y = A -: step gase using NOR gase: $Y = AB = \overline{AB} = \overline{A} + \overline{B}$ Y= A+B using MOB BOTE :-OR Y= A+B = A+B

(A+B)

$$\frac{A}{B} = \overline{A} + \overline{B} = \overline{A} + \overline{B}$$

EXOR gate using NDR gate:

EXMOR gate ming MOR gate:

Ex: Implement $F = \overline{\chi}y + \overline{\chi}y + \overline{y} \overline{z}$ using (i) Basic gates

(ii) AND 4 NOT gates (iii) OR 4 NOT gates

(iv) only MAND gode (ii) ONLY MOR gate.

(1) Bussn Basic gates.

using AND 4 NOT godes (ii)

ousing or 4 Not gates.

F =
$$\overline{x}y + \overline{y}y + \overline{y}\overline{z}$$

= $\overline{x}y + \overline{x}y + \overline{y}\overline{z}$
= $\overline{x} + \overline{y} + \overline{x} + \overline{y} + \overline{y} + \overline{y} + \overline{z}$
= $\overline{x} + \overline{y} + \overline{x} + \overline{y} + \overline{y} + \overline{z}$

(W) stop ann gase

(v) using NOR gates.

$$F = \overline{3} + 3 + 3 + 3 = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + 3 = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

$$= \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} = 0$$

* Representation of switching functions (on logic functions (on Bodean function:

there are two standard forms in which

logic functions can be expressed.

- (i) Sum of products form (SOP)
- (ii) Product of Sum's (POS).
- (i) <u>sop</u>:- sop is a group of product terms ored together.

Ex: F= 34+ 24+ 82

```
POS is a group of sum terms ANDER together
 -209 (ii)
    B: E= (2+ B)(2+A)(A+5)
Standard coxing canonical sop + pos forms:
           Standard Sop 4 pas forms all the individual
terms do not contain all variables. It each term is
sop 4 pas form contains all variables than it is cononical
Stordard SOP 4 POS forms.
     Ex. of CISOP is,
              F(A,B,c) = ABC+ ABC+ ABC
      Ex. of GPOS is,
               F(A_1B_1c) = (\overline{A}+B+c)(A+B+c)(A+\overline{B}+c).
       convert the given expression is into
 Ex:
      form.
 902
(1)
      Y(AIB,C) = AB+ ABC.
                   (1=5+0.0) ABC (...c+=1)
Sol:
                 = ABC+ ABC+ ABC.
 (ii) Y(A,B,c) = AB+BC+CA
               = AB(C+2)+BC(A+A)+CA(B+B)
:102
                = ABC + ABC + ABC + ABC + ABC + ABC
                = ABC (1+1+1) + ABC + ABC + ABC (: 1+anyming = 1)
                22 A + 2 2 A + 2 2 A + 22 A =
       A(X,Y,Z) = X+ XY + XYZ
 (iii)
                = x(Y+7)(Z+Z)+ XY(Z+Z)+ XYZ
 30%.
                 = x ( YZ+YZ+ YZ+ YZ) + XY (Z+Z)+ XYZ
                = XX5+ XX5+ XA5+ XA5+ XX5+ XX5+ XX5
                 = XYZ(1+1+1) + XYZ+ XYZ + XYZ+ XYZ
                 - XYZ + XYZ + XYZ + XYZ + XYZ
                  - YUZ + XUZ + XYZ + XVZ
```

05/08/2014 Puto canonical given expression POS form. F(A1B,c) = (A+B)(B+c)(A+c) 0 ('A+BC = (A+B)(A+C)) Sol: = (A+B+CE)(B+C+AA)(A+C+BE) (distribution) = (A+B+c)(A+B+c)(B+C+A)(B+C+A)(A+C+B)(A+G+C) = (A+B+c)(A+B+c)(A+B+c)(A+B+c) F(x,y,+) = x(x+y)(x+y+) Sol:-= (x+yy+z=)(x+y+z=)(x+y+=) = (x+yg+z)(x+yg+E)(x+y+z)(x+y+E)(x+y+E) = (x+y+z)(x+y+z)(x+y+z)(x+y+z)(x+y+z)(x+y+z) = (x+y+8)(x+y+2)(x+y+8)(x+y+8) Maxterms:owd is called Mintern. ni Endividual -> Each CSOP term in coos is called maxtern. Individual term → Each * For in variable logic function there are and 2" maxterms. minterms BINDIAA variables: MOXFERMS and 2 mrstrin for 3 minterms (m:) variables Maxterm (M:) designation Term designation C Term A+B+c - Mo ABC MD m ABC A+B+c -0

ABC

ABC

ABE

ABC

ABC

ARC

W12

m3

0

0

0

0

\$ 0

my A+B+ (- My 200 ZM - S+R+A A+B+C - MC m6

A+&+c - M2

A+&+c - M3

-> the mintern is represented by m, maxtern by Mes - The subscript is is the decimal number equivalent of PENOUS IN DOT. *with these short hand notations, logic function can be represented as follows. EXTU Y = ABC + ABC + ABC + ABC = m2 + m3 + m2 + m4 = \sm(3,4,5,7) I demotes SOP = \(\((3,4,5,7) \) $(\ddot{3}+\ddot{3}+\ddot{4})(\ddot{5}+\ddot{2}+\ddot{6})(\ddot{3}+\ddot{2}+\ddot{4})=Y$ = Mo . Ms . M7 = TTM(0,5,7) IT denotes pos = π(o,s,7) func is it then it corresponds to mintern.

Aunc is o then it corresponds to maxtern.

Aunc is o then it corresponds to maxtern.

Sop and pos expressions from given truthtalle MOFE :-If OIP 010 Find EX! SOP i/p's OIP BC y 0 0 1 Note: 0 0 1 0 29 910 minterm = 10 1 OID ? O -> MOXYEVM. 1 1 1 00 0 101 0 1 10 0 1 1 1 Lal: SOP 7(A.B.c) = ABE + ABC + ABC+ ABC. $= m_0 + m_2 + m_3 + m_7 = \leq m(0, 2, 3, 7)$ **Pos** $Y(A_1B_1C) = (A+B+C)(\overline{A}+B+C)(\overline{A}+B+C)(\overline{A}+\overline{B}+C)$ = M1. M4. M5. M6 = TIM (1.4.5.6) * From the above expressions, there is a complementary

simplify the following is variable expressions prizu bodean algebra. (i) Y = Zm(1,3,5,7) considering A, B, c as 3 :10 variables. $V = m_1 + m_2 + m_4 + m_4$ 20%: = ABC + ABC + ABC + ABC = Ac(B+B)+ Ac(B+B) (. A+A= 1) = AC+ AC = c(A+A) = c (11) Y= TM(3,7) Y = M3.M7 = (A+B+C)(A+B+C) 5+58+A5 +58 +8 +8 A +5 A + B A + A.A = = AB+AC+ AB+B+CA+CA+C = (A+A) + (A+A) = (1+E) = = = 8+2+8+2 (: (+anything = 1) = 3+7. CONVELL THE SINGN EXPLETTION INTO WINTERMS CTINDS property, and simplify the expression complementary (1) F = TM (3,2,2) 29 pos form. 2:NT $F = M_3 \cdot M_5 \cdot M_3$ Solv .. SOP form is, F(AIB,C) = &m(0,1,2,4,6) = mo + m, + m, + mu+ m6 = ABC+ABC + ABC + ABC + ABC (\$ta) 3A + 58 A + (5+3) BA = - AR + ARC + AC

21

$$= \overline{A}\overline{B} + \overline{C}(\overline{A}B + A) \qquad (A + B\overline{A}) = A\overline{B} + \overline{C}(A + B\overline{A}) = A\overline{C}(A + B\overline{A}) = A\overline{C}(A + B\overline{A}) = A\overline{C}(A + B\overline{C}) = A\overline{C}(A$$

Ex: Express the following functions in sum of mintering (canonical canonical canonical canonical pos) forms.

(1) F(w,x,y,z) = wy+ xy+ yz+ xyz.

CSOP (01) SUM OF MINTERMS form,

 $E(\dot{m}'x'A'5) = w^{5} + w^{3} + w^{4} + w^{2} + w^{6} + w^{3} + w^{11} + w^{15} + w^{15}$

= \le m(2,3,4,5,6, 7,11,12,13,15)

Remaining terms are maxterns.

CPOS (OY) Product of Maxterms form.

F(w,x,y,2) = Mo.M. Mg. Mq. M10. M14

= TM(0,1,8,9,10,14)

(B+c)(Ac+B) = (AB+c)(Ac+B) Sol: F(A,B,C) = ABC + AB + AC + BC.

AC ABC ABC ABC ABC 1 11-3 md 110-mc .011-m3 0 1 - M2 111 -ma 111 -ma

Sum of minterms F = 2m(3,5,6,7). product of maxterms F = TIM(0,1,2,4)

06/08/2014 * Karnaugh Map (K-Map):-

Karnaugh Map (K-Map):
K-Map gives a systematic approach for simplifying a bodean expression. The basis of this method is a graphical chart known as "K-Map". It contains boxes called cells. Each of the cell represents one of the 2" possible products that can be formed from in variables.

2-variable K-Map

11) Representation using 2-variable k-Map

12 Representation using 2-variable k-Map a bodean expression. The basis of this method is

(i) Representation using 2 variable k-map WINTERM REPRESENTATION CHEINS MINTERMS B AB AB

o mo mi on mox terms

o mo mi on mox terms

o mo mi on mox terms

o mox terms

A B o mo

A B o mo

O mo mi

(ii) Representation using maxterns.

```
Ext. (1) Simplify F(A,B) = Em(O,1) Using K-Map.
                         F(A18) = {m(0,1)
                            = m_0 + m_1
                        Fill minterms with ".
         : (F(A1B) = A
                         ( F(A(B) = AB + AB
                                     = A(B+B) = A)
  (ii) Simplify F(A1B) = ≤m(0,2) Using K-Map.
             ABB B
                           F(A1B) = &(m(0,2)).
                             = mo+ m2.
             : F(A(B) = B
  (iii) simplify F(AIR)= ≤(0,3) using K-Map.
                          F(AIB) = $ (0,3)
                                 = 5m(0,3)
                                 = mo+m3
             : F(AIB) = AB + AB
   (iv) Simplify F(AIB) = TTM(AI3) Using K-Map.
                          F(A,B) = TM(1,3)
                                 = M,+M3
                          Fill Maxterms with 05.
             : (F(A,B) = B
    (V). Simplify F(X14)= TT(112) using k-map.
                       F(x,y) = \pi M(t,z)
                             A M:M2
                           . 20 with a smrsterms with os.
               : (F(x,y) = (x+y)(x+y)
```

Represemation using Minterns

AB	00	01	11	10
0	moo	m,	m3 3	m,
1	m4 4	ms s	m+ +	me e

Representation using waxfellut

simplify F(A,B,c) = \le m(1,5,2,6) using K-Map.

Sol-

1111111111111111

Fill minterms with i's.

$$F(A_1B_1c) = \overline{B}C + B\overline{C}$$

$$F(A_1B_1c) = \overline{B}C + B\overline{C}$$

$$F(A_1B_1C) = \overline{B}C + B\overline{C} \qquad (: F(A_1B_1C) = \overline{A}\overline{B}C + \overline{A}\overline{B}C + A\overline{B}C + A\overline{B$$

Simplify F(A,B,C) = \((1,3,5,7,6) \) wing k-map. (ii)

Sol:

= m1+ m3 +m2+m8+m+

Fill minterms with i's.

E(YIBIC) = MO+M++MT+WT+WT+WZ+MP

": E(A'B'C) = B+g.

Sol:	7 /4 £	95	28		11	10
-	0 1	c	1	1	3	1
	1 7	D 4	U	5	4	(Ic

don't care condition

X -> don't care symbol, it can be o or 1.

200-	VBC B	E 0 0 1	Be II	95
20.	A O	0 1	I 3	X 6
	R 1	4	× X +	X 6

consider $d_4 = 1$.

Ex: Simplify the following boolean expression and

Ext simplify the following boolean expression and draw "logic circuits using NAND gate ONly.

Logic circuit:
$$F = A\hat{c} + \hat{g} = A\hat{c} + \hat{g} = B \cdot A\hat{c}$$

$$= B \cdot A\hat{c}$$

$$= C \cdot A\hat{c} + B \cdot A\hat{c}$$

07/08/2014 (ix)

Sol:-

 $E(A_1B_1c) = \pi M(O_1I_13_14_17)$ $= M_0.M_1.M_3.M_4.M_7$ $= M_0.M_1.M_3.M_4.M_7$ $= M_0.M_1.M_3.M_4.M_7$ $= M_0.M_1.M_3.M_4.M_7$ $= M_0.M_1.M_3.M_4.M_7$ $= M_0.M_1.M_3.M_4.M_7$

Sol:-

AB	00	BIE	5+8	8+c.
A O	0	10	0	X),
٦ı	4	X.	0),	. 6

$$F = \pi M (0,1,3,7) + \pi d(2,5)$$

$$= M_0 \cdot M_1 \cdot M_3 \cdot M_7 + d_2 \cdot d_5.$$

e'o with emystram Ilia

consider dards as o's

<u>So</u>l:

A/BC	BĈ	BC	BC	BC
A O	1.		. 1	3
AI	W.		, W	

F = \(\sim \mathrm{(0,3,4,7)} \),

= m_0 + m_3 + m_4 + m_7

= m_0 + m_3 + m_4 + m_4 + m_7

= m_0 + m_3 + m_4 + m_7

= m_0 + m_3 + m_4 + m_4 + m_7

= m_0 + m_3 + m_4 + m_4 + m_7

= m_0 + m_3 + m_4 + m_4 + m_7

= m_0 + m_1 + m_2 + m_2 + m_3 + m_4 + m_4

= m_0 + m_1 + m_2 + m_3 + m_4 + m_4

= m_0 + m_1 + m_2 + m_3 + m_4 + m_4

= m_0 + m_1 + m_2 + m_3 + m_4

= m_0 + m_1 + m_2 + m_2 + m_3

= m_0 + m_1 + m_2

= m

F-> 405 SOP

$$\therefore F' = \pi(1,2,5,6)$$

$$\therefore F' = \text{dual of } F).$$

Ret	gnizu		
CD	GD	CD	cD.
ĀĒĒ	ĀBZD	ABCD	ĀĒĊĀ
ABCD	ABED	ARCD	ĀBCĀ
ABCO	ARED	ABCD	ABCD
ABCD	ABCD	ABCD	ARCD
	ĀBCĀ ĀBCĀ ĀBCĀ	ĀBCD ĀBCD ĀBCD ĀBCD ĀBCD ĀBCD ABCD ABCD	ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

Minte					
ABCD	00	01	-(1	10	
00	mo	m,	m3	m²	
01	m4	ms	w [≠]	m ₆	
u	m12	m_B	m _{is} .	mu	
10	m^8	mq	mu	mio	

ing maxterms

AB/CL	C+0	C+D_	Z+5	Z+D
A+R	/	A+8+0+0		
A+ <u>B</u>	AFB+GD	A+B+C+5	A+B+C+0	A+B+GD
Ā+B	Ā+Ē+0+0	Ā+Ā+Q+Ā	Ā+Ē+ē+	A+B+ G+D
Ā+B	A+B+C+D	A+8+c+D	Ã+&+Ĉ+Ď	Ā+B+č+O

160	00	01	н	10
00	Mo	w,	W3	Mz
01	M4	Ms	MŦ	Me
n	M	МВ	Mis	Mig
10	M8	Ma	MII	MID

Ex: (1) F(A,B,C,D) = Em(2,4,5,9,10,12,13)

$$F(A_1B_1C_1D) = \leq m(2,4,5,9,10,12,13)$$

$$= m_2 + m_4 + m_5 + m_9 + m_{10} + m_{12} + m_{13}$$

. zi His zmistrim lis

: F(A1B,C,D)= BC+ACD+BCB.

E(m, x, 8, 2) = < m(1,3,5,7,8,9,10,11,12,110). (ii) F(w,x,y, 2) = m,+m3+m5+m++ 201: A 5 Mx + Mq + M10+ M11 TWY OD + M12+ M14 10 xw il winterms with is. wy 11 WT 10 E(am'x'8'5) = ZW + WZ + WX wx+w≥+w≥ F(A,B,C,D) = S(0,1,2,3,5,7,8,9,10,11,13,15). (iii) Sol: +(A,B,C,D) = mo+m,+m2+ m3+m5+ 11 AB OD +11m+01m+6m+8m+tw AB OI m18+m12 1 0 AB II AB 10 is norw cill mintermy F(A1B, C, D) = D+B F= £ (0,5,7,8,10,15) + £d(2,6,13). (vi) A8/CD 25 CD 20 CD Sol: F = 5 (0,5,7,8,10,15) + Ed (2,6,13) X 00 BA + 21 M + 01 M + 8 M + 5 M + 2 M + 0 M = X c A B 01 d2+d6+d13. AB 11 OI DA .2'1 WINTERMS WITH 113 cill don't tems with x's. consider disids as i's. : F (A,B,C,D) = BD + BD = BOD. F = 2 (0,1,2,4,5,6,7,13,15)+ & \$ (3,12,14,9,11). (v) F = mo+m,+ m2+m4+ M5+M6, M7, M13+M15+ \$3+ \$12+ 2000 Pu+ \$9+ \$1, Minternia with consider dright as

$$F(A_1B,C_1D) = \overline{A} + D.$$
(ov)
$$\overline{A} + B.$$

ED 000 CD CD AB/CD Sol: 11 10 AB 00 AB 01 X 4 AB II 0. AB 10.

E = m1+m2+m8+m12+m13+W14+

 $egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$

consider da da ag is.

Sol:

ABCE	C+D	01 C+D	640	(0
Ats oo	0.		X	1
10 B+A	0,	2	ام	c
7+E 11	12	X	15	14
A+B 10		9		(O),

(: demorgan's law

 $\overline{Y \cdot X} = \overline{X \cdot Y}$

XY = X+Y)

Mote: (i) In k-map pair is a group of two adjecture which cancels one variable. cells

Quad is a group of 4 adjæent cells (ii)

cancels two variables. which

(iii) octet is a group of 8 adjecom celly

cancels three variables. which

@ using demorgan's law simplify the following.

(i)
$$Y_1 = ((a+b))(c'+d)$$

$$= (\overline{a+b}) + (\overline{c+d})$$

$$(5.5) + (\overline{3}.\overline{a}) =$$

$$= (\bar{a} \cdot b) + (c \cdot \bar{a}).$$

$$= \overline{a \cdot b} = \overline{a \cdot b}$$

$$Y_2 = \overline{a \cdot b}$$

Ex: 1 simplify the following expressions and implement 2-level NAND gate Pussu AB' + ABD + ABD' + A'c'D' + ABC' (i) (: A+Bc = (A+B)(A+c)) 800- AR'+ AB(D+0') + A'c'D'+ A'BC' = AB'+ AB + A'c'D'+ A'BC' = A + A'c'D'+ A'Bc' = (A+ A')(A+c'D') + A'Bc' = (x+ Ac'b'+ ABC') = A+c'b'+ A'Bc' = (A+ A')(A+Bc') + c'b' = A+Bc+c'b' = ((A+Bc+c'D')) 25.58.A = (or) (A'(Bc).(c'o')) Note:

ilp variables —
$$n$$

it is in the state of the state of

The minimum number of NAND gates required Ex: 3 Emplament A + AB'+ ABc'. to A (1+ B+BE) (: 1+ any thing = 1) = A the no. of NAND gates required = 0 rind complament of F = xyz+xyz (9) F = 243+ 242 complement of F of $F = \overline{x}y\overline{z} + \overline{x}\overline{y}z$ = 285.285 =(京+家+京)(京+家+京)= = (x+y+2)(x+y+2) E = (x+9+2)(x+4+2) operations in estampliment form the following Perform 3 8-bit Binary arthornetic. (ii) -2 - 6 (iii) +4-7 (1) +6-3

Sol: +4-7 Sol: -2-6 201: +6-3 = (+4)+(-4) = (-2)+(-6) = (+6)+(-8)

> Refer Arthametic Additions. Page No: - 1

@ Determine the value of Base x. convert both numbers imp decimal. (211) = (152)8 (1) 301: 2xx2+1xx+1xx = 1x8+5x8+2x80. =) 2x2+x+1 = 64+40+2. :. 2x2+x-105 = 0 2x2+ 15x-14x-105=0 2x(x-7)+15(x-7)=0 (x-7)(2x+15)=0 : x = 4 (01) -15 It count be -ve F=x .. (ii) $(193)_{\alpha} = (623)_{\beta}$ 1xx+ 9xx++ 3xx = 6x8+ 2x8+3x8 201:-=> x2+9x+8 = 384+16+8 :. x2+9x-400 = 0 2+25x-16x-400=0 X(x+25) -16(x+25)=0 .. X = 16 (O1) -25 It count be -ve' : X=16 (V4T) = 50 (iii) (V41) = 5 Sol: (41) = 52 : (41)x = 25 2.2 = "xx + xxp 4x = 24 : x=6

Α	В	ABB
0	0	0
0	Ť	1
1	O	1
	A	0

EXOR PROPERTIES :-

Alternative gate representation:

" MOT Gode :

$$\stackrel{A}{\longrightarrow} \stackrel{\overline{A}}{\Longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{\overline{A}}{\longrightarrow} \stackrel{\overline{$$

2. NAND Gate

