MODELING ACTS AND PARTNERSHIPS: the building blocks of the transmission network

NME WORKSHOP 2017

Darcy Rao, MPH

Objectives

- Delve deeper into how compartmental, agent-based, and network models represent partnership dynamics
 - How are sex partners selected?
 - Can persistent partnerships be represented?
 - How (if at all) is temporal overlap in partnerships represented?
 - How are partnerships dissolved?
 - What are the implications for representation of observed network features and how those features evolve over time?

- The population is divided into discrete states or "compartments"
- Simplest division: susceptible and infected (SI model)

- In this simple model:
 - Partner selection: random
 - Persistent partnerships: no

- Representing patterns of selective sexual mixing
 - Define mixing matrices for discrete attributes (e.g. race, sex, disease state, marital status, sexual activity class)

Baggaley, R. F., & Fraser, C. (2010). Curr Opin HIV AIDS, doi:10.1097/COH.0b013e32833a51b2

- In this more complex model:
 - Partner selection: selective (limited to discrete attributes)
 - With each additional attribute group, need to define:
 - transitions between states for time-varying attributes (i.e. age, sexual risk group, CD4 count)
 - mixing patterns between each combination of attributes
 - transitions from susceptible to infected states
 - Persistent partnerships: no

 In the standard compartmental framework, sexual contact is modeled as independent acts or instantaneous partnerships

 Neither approach captures temporal overlap in partnerships (concurrency) or multiple acts within partnerships

Pair formation models

States are defined for each partnership configuration

- In this model:
 - Partner selection: random or selective
 - Persistent partnerships: yes
 - Overlapping persistent partnerships: no

Example: Johnson et al. (2009)

Figure 1: Multi-state model of sexual behaviour of 'high risk' females

LT = long-term (spousal); ST=short-term (non-spousal) "High" and "low" refer to the risk group of the sexual partner

Example: Johnson et al. (2009)

Control over the resulting network statistics (i.e. number of individuals who are single, degree distribution...)? No

Stochastic agent-based models

Individuals are explicitly modeled

Easier to incorporate heterogeneity

Partnership formation and dissolution

- Simple models (poker chips and lecture 4):
 - Partner selection: random
 - Persistent partnerships: no
- Complex models (more common in the literature):
 - Define mixing matrices
 - Calculate each individual's propensity for partnership formation at time t
 - Select new partners
 - Update partnership status attribute
 - Simulate acts within partnerships
 - Dissolve partnership according to specified duration parameters, or with death or migration (EMOD-HIV)

Example: EMOD-HIV

Copyright © 2015 Intellectual Ventures Management, LLC (IV). All rights reserved.

INSTITUTE FOR DISEASE MODELING

INTELLECTUAL VENTURES

Daniel Klein, lecture in EPI 554 on October 15, 2015

Stochastic agent-based models

Individual models from a network perspective...

- Individual at the head of the queue
- O High probability matches

Stochastic agent-based models

- Complex agent-based models
 - Partner selection: **selective**
 - Persistent partnerships: yes
 - Overlapping persistent partnerships: yes (some)
 - Control over resulting network statistics: Limited

Stochastic network models

Partnerships are the unit of analysis

Stochastic network models

- Calculate network statistics from sampled data
 - Joint distribution of sexual mixing by attributes (age, race, sex, dyadic age difference, etc.)
 - Degree distribution
 - Partnership duration
- Feed network statistics into a statistical model to estimate parameter coefficients
- Simulate stochastic networks from the statistical model
- Simulate stochastic epidemic processes within the simulated network
 - Simulations will preserve the joint distribution of the observed network statistics in expectation and allow them to evolve with changes in demographic and epidemic conditions

Stochastic network models

- Partner selection: selective
- Persistent partnerships: yes
- Overlapping persistent partnerships: yes
- Control over resulting network statistics: yes

More details on how all this works in the coming days!

Summary

Deterministic compartmental models

- Assume homogeneity within compartments
- Selective mixing can be specified by a limited set of discrete attributes
- Limited ability to represent partnerships with duration and dynamic network structures

Stochastic individual models

- Can represent persistent concurrent partnerships
- Easier to incorporate individual and partnership heterogeneity
- Network structures emerge as a byproduct of individual level processes

Stochastic network models

- Statistically principled representation of partnership formation and dissolution processes and resulting network structures
- Network, demographic, and epidemic dynamics as dependent processes

Examples

Deterministic compartmental models

- Johnson, L. F., Hallett, T. B., Rehle, T. M., & Dorrington, R. E. (2012). The effect of changes in condom usage and antiretroviral treatment coverage on human immunodeficiency virus incidence in South Africa: a model-based analysis. *J R Soc Interface*, *9*(72), 1544-1554. doi:10.1098/rsif.2011.0826
- Cremin, I., McKinnon, L., Kimani, J., Cherutich, P., Gakii, G., Muriuki, F., . . . Hallett, T. B. (2017). PrEP for key populations in combination HIV prevention in Narobi: a mathematical modelling study. *Lancet HIV*. doi:10.1016/s2352-3018(17)30021-8
- Smith, J. A., Anderson, S. J., Harris, K. L., McGillen, J. B., Lee, E., Garnett, G. P., & Hallett, T. B. (2016). Maximising HIV prevention by balancing the opportunities of today with the promises of tomorrow: a modelling study. *Lancet HIV, 3*(7), e289-296. doi:10.1016/s2352-3018(16)30036-4

Pair formation models

- Ferguson, N. M., & Garnett, G. P. (2000). More realistic models of sexually transmitted disease transmission dynamics: sexual partnership networks, pair models, and moment closure. *Sex Transm Dis. 27*(10), 600-609. Agent-based models
- Powers, K. A., Ghani, A. C., Miller, W. C., Hoffman, I. F., Pettifor, A. E., Kamanga, G., . . . Cohen, M. S. (2011). The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: a modelling study. *Lancet, 378*(9787), 256-268. doi:10.1016/s0140-6736(11)60842-8
- Johnson, L., Dorrington, R., Bradshaw, D., Pillay-Van Wyk, V., & Rehle, T. (2009). Sexual behaviour patterns in South Africa and their association with the spread of HIV: insights from a mathematical model. *Demographic Research*, *21*(11), 289-340.

Stochastic agent-based models

- Bershteyn, A., Klein, D. J., & Eckhoff, P. A. (2016). Age-targeted HIV treatment and primary prevention as a 'ring fence' to efficiently interrupt the age patterns of transmission in generalized epidemic settings in South Africa. *International Health, 8*(4), 277-285. doi:10.1093/inthealth/ihw010
- Johnson, L. F., & Geffen, N. (2016). A Comparison of Two Mathematical Modeling Frameworks for Evaluating Sexually Transmitted Infection Epidemiology. Sex Transm Dis, 43(3), 139-146. doi:10.1097/olq.00000000000012

· Stochastic network models

- Jenness, S. M., Goodreau, S. M., Morris, M., & Cassels, S. (2016). Effectiveness of combination packages for HIV-1 prevention in sub-Saharan Africa depends on partnership network structure: a mathematical modelling study. Sex Transm Infect, 92(8), 619-624. doi:10.1136/sextrans-2015-052476
- Jenness, S. M., Sharma, A., Goodreau, S. M., Rosenberg, E. S., Weiss, K. M., Hoover, K. W., . . . Sullivan, P. (2017). Individual HIV Risk versus Population Impact of Risk Compensation after HIV Preexposure Prophylaxis Initiation among Men Who Have Sex with Men. *PLoS One, 12*(1), e0169484. doi: 10.1371/journal.pone.0169484
- Goodreau, S. M., Rosenberg, E. S., Jenness, S. M., Luisi, N., Stansfield, S. E., Millett, G. A., & Sullivan, P. S. (2017). Sources of racial disparities in HIV prevalence in men who have sex with men in Atlanta, GA, USA: a modelling study. *Lancet HIV, 4*(7), e311-e320. doi:10.1016/s2352-3018(17)30067-x