

Description

The VSM100N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 30V, I_D = 100A$ $R_{DS(ON)} < 5.5m\Omega @ V_{GS} = 10V$ (Typ:4m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

· · · · · · · · · · · · · · · · · · ·						
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity	
VSM100N03-T2	VSM100N03	TO-252	_	-	-	

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	100	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	70	А	
Pulsed Drain Current	I _{DM}	400	А	
Maximum Power Dissipation	P _D	110	W	
Single pulse avalanche energy (Note 5)	E _{AS}	350	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{0JC}	1.36	°C/W
---	------------------	------	------

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	-	-	V
Zero Gate Voltage Drain Current	Gate Voltage Drain Current I _{DSS} V _{DS} =30V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1	1.6	3	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	4.0	5.5	mΩ
Forward Transconductance	G FS	V _{DS} =10V,I _D =20A	50	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V,		3400		PF
Output Capacitance	C _{oss}			356		PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz		308		PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	11	-	nS
Turn-on Rise Time	t _r	V_{DD} =15V, I_{D} =60A V_{GS} =4.5V, R_{GEN} =1.8 Ω	-	160	-	nS
Turn-Off Delay Time	t _{d(off)}		-	25	-	nS
Turn-Off Fall Time	t _f		-	60	-	nS
Total Gate Charge	Qg	V 451/1 00A		70		nC
Gate-Source Charge	Q _{gs}	V_{DS} =15V, I_{D} =30A, V_{GS} =10V		8.8		nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V		16.3		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	100	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 60A	-	56	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	110	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=15V,V_G=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance