ниу итмо

Задача А. Обход в ширину

Имя входного файла: bfs.in
Имя выходного файла: bfs.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 16 мегабайт

Дан неориентированный граф. В нём необходимо найти расстояние от одной заданной вершины до другой.

Формат входного файла

В первой строке входного файла содержится три натуральных числа N, S и F ($1 \le S, F \le N \le 100$) — количество вершин в графе и номера начальной и конечной вершин соответственно. Далее в N строках задана матрица смежности графа. Если значение в j-м элементе i-й строки равно 1, то в графе есть направленное ребро из вершины i в вершину j.

Формат выходного файла

В единственной строке должно находиться минимальное расстояние от начальной вершины до конечной. Если пути не существует, выведите 0.

Пример

bfs.in	bfs.out
4 4 3	2
0 1 1 1	
1 0 1 0	
1 1 0 0	
1 0 0 0	

Задача В. Поиск цикла

Имя входного файла: cycle.in
Имя выходного файла: cycle.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо определить есть ли в нём циклы, и если есть, то вывести любой из них.

Формат входного файла

В первой строке входного файла находятся два натуральных числа N и M ($1 \le N \le 100000$, $M \le 100000$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходного файла

Если в графе нет цикла, то вывести «NO», иначе — «YES» и затем перечислить все вершины в порядке обхода цикла.

Пример

cycle.in	cycle.out
2 2	YES
1 2	2 1
2 1	
2 2	NO
1 2	
1 2	

Задача C. TopSort

Имя входного файла: topsort.in Имя выходного файла: topsort.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо его топологически отсортировать.

Формат входного файла

В первой строке входного файла два натуральных числа N и M ($1 \le N \le 10^3, 1 \le M \le 10^4$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задается парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходного файла

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, вывести -1.

Пример

topsort.in	topsort.out
6 6	4 6 3 1 2 5
1 2	
3 2	
4 2	
2 5	
6 5	
4 6	
3 3	-1
1 2	
2 3	
3 1	