(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 14. April 2005 (14.04.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/034256 A3

- H01L 41/187, (51) Internationale Patentkiassifikation7: 41/24, 41/083, C04B 35/491
- PCT/DE2004/002168 (21) Internationales Aktenzeichen:
- (22) Internationales Anmeldedatum: 29. September 2004 (29.09.2004)
- (25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 103 45 499.3 / 30. September 2003 (30.09.2003)
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): EPCOS AG? [DB/DE]; St-Martin-Str. 53, 81669 München (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): FELTZ, Adulbert? [DE/AT]; Burgegger Str. 50, A-8530 Deutschlandsberg (AT). FLORIAN, Heinz? [AT/AT]; Klunkeraberg 🗸 79, A-8524 Bad Gams (AT). OTTLINGER, Marion? [DE/AT]; Flurweg 52, A-8530 Deutschlandsberg (AT). RAGOSSNIG, Sigrid? [AT/AT]; Eisenweg 1, A-9360 √(88) Friesach (AT). SEDLMAIER, Peter? [AT/AT]; St Lorenzen 3, A-9113 Ruden (AT).
- (74) Anwalt: EPPING HERMANN FISCHER PATEN-TANWALTSGESELLSCHAFT MBH; Ridlerstrasse 55, 80339 München (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegehen, für jede verfügbare nationale Schutzrechtsart): AH, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, BC, EB, BG, ES, FL GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), curasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), curopäisches (AT, BB, BG, CH, CY, CZ, DE, DK, EE, ES, FL FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

mit internationalem Recherchenbericht vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Veröffentlichungsdatum des internationalen 24. November 2005 Recherchenberichts:

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guldance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Guzette verwiesen.

(54) Title: PIEZOELECTRIC CERAMIC MATERIAL, MULTI-LAYERED COMPONENT AND METHOD FOR THE PRODUC-TION OF A CERAMIC MATERIAL

(54) Bezeichnung: PIEZOELEKTRISCHES KERAMIKMATERIAL, VIELSCHICHTBAUELEMENT UND VERFAHREN ZUR HERSTELLUNG DES KERAMIKMATERIALS

(57) Abstract: The invention relates to a piezoelectric coramic material having a general composition ABO3, with at least one part of the PZT-ceramic of the inventive composition containing Cu-cations. The part of Zr- and Ti-cations are selected according to the content of Cu-cations, such that the ceramic material is adjusted to the morphotropic phase limit. The invention also relates to a method for the production of said type of ceramic material.

(57) Zusammensassung: Die Erfindung betrifft ein piezoelektrisches Keramikmaterial der allgemeinen Zusammensetzung ABO3 mit zumindest einem Anteil der PZT-Keramik einer erfindungsgemäßen Zusammensetzung mit Cu-Kationen. Der Anteil von Zrund Ti-Kationen wird je nach Gehalt der Cu-Kationen so gewählt, daß das Keramikmaterial auf die morphotrope Phatengrenze eingestellt ist. Die Erfindung gibt des weiteren ein Verfahren zur Herstellung eines solchen Keramikmaterials an.

15

20

25

30

Beschreibung

Piezoelektrisches Keramikmaterial, Vielschichtbauelement und Verfahren zur Herstellung des Keramikmaterials

Die Erfindung betrifft ein piezoelektrisches Keramikmaterial der allgemeinen Zusammensetzung ABO2, das im Wesentlichen Bleizirkonattitanat enthålt und ein Perowskitgitter aufweist, wobei A für A-Plätze und B für B-Plätze des Kristallgitters steht. Die Erfindung betrifft des weiteren ein Verfahren zur Herstellung dieses Keramikmaterials.

Ein solches Keramikmaterial ist insbesondere für Vielschicht-Bauelemente mit einem Stapel aus mehreren Keramikschichten und zwischen Keramikschichten angeordneten Elektrodenschichten geeignet.

Derartige piezokeramische Bauelemente sind zum Beispiel als Aktoren in Piezostapeln (Piezostacks) nutzbar, indem durch Spannungsansteuerung eine trägheitsarme mechanische Auslenkung vergleichsweise hoher Kraft erreicht wird, oder sie gestatten die Erzeugung hoher elektrischer Spannungen beziehungsweise dienen in entsprechenden Vorrichtungen der Dedektion mechanischer oder der Erzeugung akustischer Schwingungen.

Bisherige technische Lösungen basieren vorwiegend auf Keramikmassen vom Strukturtyp der Perowskite der allgemeinen Formel ABO3, wobei die piezoelektrischen Eigenschaften im ferroelektrischen Zustand zum Tragen kommen. Als besonders vorteilhaft haben sich durch bestimmte Zusätze modifizierte Bleizirkonattitanat - Keramiken, $Pb(Zr_{1-x}Ti_x)O_3 = PZT$, erwiesen, deren Zusammensetzung auf die sogenannte morphotrope Phasengrenze zweier koexistierender ferroelektrischer Phasen eingestellt ist. Zwischen den nach typischen Verfahren der Keramik insbesondere Folientechnologie hergestellten Keramikschichten befinden sich mittels Siebdruck aufgebrachte

Edelmetall - Innenelektroden, zum Beispiel Ag/ Pd im Molverhältnis 70 /30. Bei bis zu mehreren hundert Elektrodenschichten pro Bauelement sind die Bauelemente dadurch mit erheblichen Kosten belastet. Die Edelmetallelektroden ermöglichen es, die im Prozeß der Keramikfolienherstellung angewandten Dispergatoren und Binder sowie die weiteren organischen Additive und ebenso die organischen Bestandteile der Siebdruck - Metallpaste aus den Vielschichtstapeln thermisch an der Luft durch Depolymerisation und Oxidation zu eliminieren, so dass anschließend eine Sinterverdichtung bei ca. 1100 bis 1150°C ermöglicht wird, ohne daß Reduktionseffekte, etwa bedingt durch verbliebene Kohlenstoffreste, wirksam werden, die die Eigenschaften der Keramik infolge von Reduktionsreaktionen negativ beeinflussen.

15

10

In der Druckschrift DE 20023051 Ul ist ein Verfahren zur Herstellung piezoelektrischer Bauelemente angegeben, die anstelle der teuren Ag/Pd Innenelektroden kupferhaltige Elektroden aufweisen, wobei die piezoelektrischen Kenndaten auf Keramikmassen der bevorzugten Zusammensetzung $Pb_{0,97}Nd_{0,02}\square_{0,01}(Zr_{0,54}Ti_{0,46})O_3$ beruhen. Das Zeichen "U" steht für eine Leerstelle im Kristallgitter. Keramikmassen einer derartigen Zusammensetzung sind insbesondere für Ag/Pd-Innenelektroden und Sinterung an Luft bei 1120°C geeignet und bezüglich ihrer piezoelektrischen Eigenschaften darauf 25 eingestellt, daß sie partiell Silber aus den Innenelektroden aufnehmen. Die Aufnahme des Silbers wird dabei durch die Gegenwart von Luftsauerstoff beim Sintern ermöglicht. Gleichzeitig wird das Kornwachstum gefördert, so daß sich im 30 fertigen Bauelement eine Keramikzusammensetzung $Pb_{0,96}Nd_{0,02}Ag_{0,02}(Zr_{0,54}Ti_{0,46})O_3$ mit einem für die Anwendung günstigen Korngefüge ergibt.

Demgegenüber weisen die piezoelektrischen Vielschicht35 Bauelemente mit der gleichen Ausgangszusammensetzung der
Keramik und kupferhaltigen Innenelektroden einen derartigen
Silbergehalt nicht auf, was zur Folge hat, daß die für

S. 10/36

30

35

optimale piezoelektrische Eigenschaften vorteilhafte morphotrope Phasengrenze in der Keramik nicht mehr vorliegt und die mittlere Korngröße geringer ausfällt. Letzteres ist vor allem auch ein Resultat der niedrigeren Sintertemperatur von ca. 1000°C, die bei der Anwendung von kupferhaltigen Innenelektroden einzuhalten ist, um ein Aufschmelzen der Elektroden zu vermeiden.

Während das Silber bei der Sinterung von Vielschicht-Bauelementen auf der Basis der PZT-Keramik der 10 Zusammensetzung $Pb_{0,97}Nd_{0,02}\square_{0,01}(Zr_{0,54}Ti_{0,46})O_3$ mit Ag/Pd-Innenelektroden an Luft bei 1120°C im Querschnitt über die gesamte gesinterte Keramikschicht gleichmäßig eingebaut wird, so daß sich in der Piezokeramik die Zusammensetzung $Pb_{0,96}Nd_{0,02}Ag_{0,02}(Zr_{0,54}Ti_{0,46})O_3$ einstellt, beträgt der 15 Kupfergehalt in Keramikschichten der o.g. Zusammensetzung bei der Sinterung eines keramischen Vielschicht-Bauelements mit kupferhaltigen Innenelektroden nur ca. 0,1 m %.

Die Abweichung von der morphotropen Phasengrenze wird z. B. 20 an einer kleineren Dielektrizitätskonstante ε sowie einer Zunahme des Temperaturkoeffizienten TK: der DK (gemessen z. B. zwischen -20°C und 60°C aufsteigend) und ebenso an einem qeringer ausfallenden Betrag der Auslenkung S3 bei gleicher Feldstärke E3 erkannt (DK = Dielektrizitätskonstante). 25

Der Auslenkungsparameter d33 (= piezoelektrische Ladungskonstante) ist durch die Beziehung S3 = d33 · E3 definiert. Darüber hinaus ist für die Beurteilung der Eignung einer Piezokeramik in Vielschichtbauelementen der dielektrische Verlust L maßgebend, der je nach der elektrischen Ansteuerung eine mehr oder weniger starke Erwärmung im Bauelement hervorruft und durch den Wirkungsgrad $\eta = E_a/E_e$ ($E_a = auskoppelbare Ener$ qie, E = eingekoppelte Energie) in Verbindung mit der für eine bestimmte Auslenkung verbundenen elektrischen Feldstärke E = U/d (d = Dicke der Keramikschicht) gemäß der Beziehung $L = (1/2)U^2C(1 - \eta)$ beschrieben werden kann (C = Kapazität).

Es ist die Aufgabe der Erfindung, ein insbesondere für keramische Vielschicht-Bauelemente geeignetes Keramikmaterial oben genannter Art anzugeben, das einen verringerten dielektrischen Verlust L und daher im Dauerbetrieb eine geringe Erwärmung der Vielschicht-Bauelemente bei zugleich einer hinreichenden Auslenkung S3 gewährleistet.

Die Aufgabe der Erfindung wird durch ein piezoelektrisches

10 Keramikmaterial eingangs genannter Art mit dem Kennzeichen

des Anspruchs 1 gelöst.

Das erfindungsgemäße Keramikmaterial zeichnet sich durch eine Zusammensetzung aus, die zumindest einen Anteil von

Bleizirkonattitanat der allgemeinen Formel

Pb1-3x/2-y/2SExDx/2-y/2Cu^Iy(Zr0,5515-2Ti0,4485+2)O3 mit 0,01 < x < 0,04

und 0 < y < x/2 aufweist. Der Parameter z kann einen

beliebigen Wert zwischen -0,15 < z < +0,15 annehmen,

vorzugsweise -0,016 < z < 0,0205. SE steht für ein

Seltenerdmetall, ausgewählt aus La, Nd, Sm, Gd, Tb, Dy, Ho,

Er, Tu, Yb, Lu und Y. Der Parameter x ist durch die

Wertigkeit des Seltenerdmetalls bestimmt. Das durch den

Parameter z gegebene Verhältnis Zr/Ti ist in Abhängigkeit vom

Kupfergehalt, d. h. vom Parameter y, so gewählt, daß das

Die Phasengrenze im Sinne der Erfindung ist nicht zwangs-30 läufig scharf definiert, sondern kann im Phasenzustandsdiagramm einem morphotropen Phasenbereich z. B. zwischen zwei definierten Kristallmodifikationen entsprechen.

Phasenzustandsdiagramm) auf die morphotrope Phasengrenze

Keramikmaterial bezüglich seines Phasenzustands (im

eingestellt ist.

Erfindungsgemäß wird der Einbau des zweiwertigen Cu²⁺.Kations auf den B-Plätzen des Keramikgitters aus unten dargelegten Gründen verhindert. Das Kupfer bleibt auch nach der Sinterung der Keramikmasse einwertig.

Als Folge des Einbaus von Cu⁺-Kationen auf A-Plätzen des Keramikgitters wird im Hinblick auf die physikalischen Eigenschaften insbesondere die Verminderung der dielektrischen Verluste L im Keramikmaterial erreicht, vgl. Tabelle 5.

Eine vorteilhafte Veränderung der Massezusammensetzung der Piezokeramik ergibt sich zum Beispiel, indem das Molverhältnis Zr/Ti durch Variation des Parameters z entsprechend der Formel Pb_{1-3x/2}SE_xO_{x/2}(Zr_{0,5515-z}Ti_{0,4485+z})O₃ soweit verändert wird, daß die morphotrope Phasengrenze auch in der Keramik erreicht wird, die infolge einer Sinterung bei ca. 1000°C in Gegenwart von Cu-Innenelektroden unter Inertbedingungen, das heißt ohne den Einbau von Silber, entsteht. Dadurch können besonders günstige piezoelektrische Eigenschaften der Keramik erhalten werden.

Es ist in einer anderen Variante von Vorteil, die Anpassung der Zusammensetzung des Keramikmaterials an die kupferhaltigen Innenelektroden dadurch zu erreichen, daß man der keramischen Masse – zur Variation des Parameters y entsprechend der allgemeinen Formel

Pb1-3x/2-y/2SExOx/2-y/2Cuy(Zro,5515-zTio,4485+z)O3 mit 0,01 < x < 0,04 und 0 < y < x/2 einen bestimmten Anteil von Kupferoxid hinzufügt.

Wird der Ausgangsstoffmischung bei einem PZT-Masseansatz bestimmter Zusammensetzung etwas CuO zugesetzt, ist davon auszugehen, daß bei der anschließenden Kalzination an der Luft ein Einbau von Cu²+-Ionen in das Perowskitgitter der Keramik zustande kommt, wobei Cu²+ als Akzeptor die Besetzung von B-Plätzen bevorzugt, so daß sich im Ergebnis der Kalzination unter der Annahme eines vollständigen Umsatzes zunächst die Formel Pb1-3x/2SExOx/2[(Zr0,5515-zTi0,4485+z)]1-yCu^{II}yO3-yOy ergibt. Cu²+ ist jedoch unter den Bedingungen einer Gemeinsamsinterung mit kupferhaltigen Innenelektroden nicht beständig. Es bilden sich Cu⁺-Ionen, die aufgrund ihres

09-FEB-2006 15:09

großen Ionenradius in der Perowskitstruktur die Besetzung von A-Plätzen bevorzugen.

Dementsprechend wird die gesinterte Keramik eine

Zusammensetzung gemäß der Formel

Pb1-3x/2-y/2SExOx/2-y/2Cuy(Zr0,5515-zTi0,4485+z)O3 mit Cu⁺-Ionen auf A
Plätzen, zum Beispiel im Fall y = x mit

Pb1-3x/2SExCu^Ix(Zr0,5515-zTi0,4485+z)O3 zugeordnet. Die Sauerstoff
leerstellen, die beim Einbau von Cu²⁺ auf B-Plätzen ausgebil
det werden, sind durch den Umbau des Gitters während der

Sinterung infolge Cu⁺-Bildung nicht mehr vorhanden. Beim

Erreichen des (für das jeweilige SE-Kation) maximalen Cu
Gehalts wird das in Form eines Kupferoxids zugesetzte Cu

durch das Perowskitgitter nicht mehr aufgenommen.

Um den Einbau von Cu²⁺-Ionen auf B-Plätzen zu umgehen, wird der Masseansatz einer betreffenden Zusammensetzung vorteilhaft zunächst ohne den Zusatz von CuO umgesetzt, das Kupferoxid aber anschließend als Cu₂O dem Schlicker

20 hinzugefügt, so daß der Einbau auf den A-Plätzen des Perowskitgitters nach erfolgter Entbinderung des piezoelektrischen Vielschicht-Bauelements während des Sinterns unmittelbar erfolgen kann.

Die Erfindung wird an folgendem Ausführungsbeispiel näher erläutert.

Eine aus

- 1) TiO₂, ZrO₂ bzw. einem durch Mischfällung hergestellten 30 Precursor (Zr,Ti)O₂,
 - 2) PbCO₃ bzw. Pb₃O₄,
 - 3) Dotierstoffen aus einem Oxid eines Seltenerdmetalls, z. B. Nd_2O_3 , und
 - 4) einem Zusatz von CuO
- 35 bestehende Rohstoffmischung wird mit a) einer Zusammensetzung, die der morphotropen Phasengrenze entspricht oder dieser nahe kommt und b) einem PbO-Überschuß von maximal 5 %

T.

P2003,0658

49

7

zur Förderung der Sinterverdichtung eingewogen. Diese Mischung wird zur Gleichverteilung der Komponenten in einer wässrigen Suspension einer Mahlstufe unterzogen und nach dem Filtrieren und Trocknen z. B. bei 900 bis 950°C an der Luft kalziniert.

In einer weiteren vorteilhaften Variante wird der Zusatz von Kupferoxid auf der Stufe der Kalzination nicht angewendet. Es bildet sich bei der Kalzination eine piezokeramische Perowskit-Mischkristallphase.

Um bereits bei 1000°C, d. h. unterhalb der Schmelztemperatur von Kupfer innerhalb von 2 bis 8 Stunden eine Sinterverdichtung der Keramikmasse zu erreichen, wird eine Feinmahlung des Keramikpulvers bis auf eine mittlere Korngröße < 0,4 µm durchgeführt. Die Sinteraktivität des Pulvers erweist sich dann als ausreichend, um eine Keramikdichte von mehr als 97% der theoretischen Dichte bei zugleich hinreichendem Kornwachstum und ausreichender mechanischer Festigkeit im Gefüge zu ergeben.

Das fein gemahlene Keramikpulver wird unter Verwendung eines Dispergators zu einem wässrigen Schlicker mit ca. 70 m-% (= Masseprozent) Feststoffgehalt, das entspricht etwa 24 Vol-%, suspensiert. Dabei wird der für eine optimale Dispergierung 25 gerade notwendige Dispergatoranteil, zum Beispiel Ammoniumcitrat, in einer Versuchsreihe gesondert ermittelt, was am Erreichen eines Viskositätsminimums erkannt werden kann. Im Fall der Herstellung einer Kupferoxid enthaltenden Keramik aus einem Umsatzpulver, dem vor der Kalzination noch 30 kein Kupferoxid hinzugefügt worden war, mischt man einen bestimmten Anteil des Kupfer(I)-Oxids Cu₂O zu. Man setzt für die Ausbildung der Piezokeramik-Grünfolien zu den dispergierten Feststoffpulversuspensionen ca. 6 m-% eines handelsüblichen thermohydrolytisch abbaubaren Binders hinzu. Dafür erweist sich eine wässrige Polyurethandispersion als vorteilhaft. Man mischt zum Beispiel in einer Dispermat-Mühle

.20

25

30

35

und erhält auf diesem Weg einen für den Folienziehprozeß geeigneten Schlicker.

ERPING HERMANN FISCHER

Die Entbinderung erfolgt thermohydrolytisch mittels Wasserdampf in einer Stickstoffatmosphäre. Die hydrolytische Spaltung des Binders gelingt zum Hauptteil bei einer relativ niedrigen Temperatur von 220 ± 50°C bei einem Wasserdampfpartialdruck > 200 mbar. Der Sauerstoffpartialdruck wird auf einen Wert eingestellt, der mit den Cu-haltigen Elektroden verträglich ist, d. h. bei dem das metallische Kupfer nicht oxidiert und bei dem die Keramik nicht reduziert wird. Die Einstellung des Sauerstoffpartialdrucks erfolgt durch Gettern des Sauerstoffs aus der wasserdampfhaltigen Stickstoffatmosphäre an großen Oberflächen von Cu oder durch Zudosierung von Wasserstoff.

Zur Ermittlung der optimalen Keramik-Zusammensetzung, z. B. des der morphotropen Phasengrenze entsprechenden Verhältnisses Ti/Zr bzw. des günstigsten Gehalts an Kupfer, wird zunächst eine Reihe kompakter scheibchenförmiger Keramikkörper hergestellt, die durch Übereinanderstapeln und Laminieren mehrerer 40 bis 50 μ m dicker Grunfolien erhalten werden. Nach dem Sintern werden die fertigen Keramikproben beidseitig kontaktiert und deren elektrische Eigenschaften gemessen.

Die elektrischen Eigenschaften der kompakten Keramikproben in den Reihen variabler Zusammensetzung sind in den Tabellen 2 bis 4 angegeben. Die elektrischen Eigenschaften von Aktoren mit kupferhaltigen Innenelektroden bei optimierter Keramikzusammensetzung sind in der Tabelle 5 angegeben.

Beispiele für die Entbinderungsführung für die kompakten Keramikproben sind unter Angabe des verbleibenden Restkohlenstoffgehaltes der erhaltenen Bauteile in Tabelle 1 zu finden. Der Taupunkt für Wasserdampf des Entbinderungsprogrammes liegt bei 97°C.

Tabelle 1: Entbinderung von kompakten Keramikproben (MLP) und den entsprechenden keramischen Vielschicht-Bauelementen (Aktoren)

10

15

<u></u>

Bedingungen: R Rampe, H Haltezeit	Proben	Erreichter Rest- kohlenstoffgehalt C
R: 6,5 K/h \Rightarrow 100°C, R: 6,2 K/h \Rightarrow 220°C, R: 5 K/h \Rightarrow 350°C, R: 15K/h \Rightarrow 580°C, H: 15h R: 150K/h, Ende: 25°C	Keramikproben MLP	220 ppm
	Aktoren mit 338 Cu- Elektroden	184 ppm

Nach dem beschriebenen Entkohlungsregime und angegebenen Restkohlenstoffgehalt gelingt bei der anschließenden Sinterung bei ca. 1000°C eine Verdichtung der Keramik von > 97% der theoretischen Dichte ohne schädliche reduktive Degradation.

Die Keramikproben MLP wurden für die Messung der dielektrischen Eigenschaften beidseitig durch Bedampfen mit einer Goldelektrode versehen.

In Tabelle 2 sind die Eigenschaften von kompakten, aus Folien gefertigten Keramikproben

Pb_{1-3x/2-y/2}SE_xO_{x/2-y/2}Cu_y (Zr_{0,5515-z}Ti_{0,4485+z})O₃ mit Nd₂O₃ als Dotand 20 und x = 0,02 ohne Kupferoxidzusatz (y = 0) zusammengestellt, wobei das Zr/Ti-Verhāltnis der Proben variiert wurde. Die Herstellung erfolgte in N₂-Atmosphäre bei einem durch den Wasserdampfpartialdruck p₆₂₀ und den Wasserstoffpartialdruck p_{H2} eingestellten Restsauerstoffpartialdruck p₀₂ = 10⁻² - 10⁻³

25 Pa. Gemessen wurde nach einer Polung mit E = 2 kV/mm bei Raumtemperatur.

نوز. نواير. د

10

Tabelle 2. Eigenschaften kompakter quadratischer Keramikproben MLP (Kantenlänge a = 11,5 mm, Dicke h = 1 mm) in der Reihe $Pb_{0,97}Nd_{0,02}\square_{0,01}(Zr_{0,5515-z}Ti_{0,4485+z})O_3$ zwecks Ermittlung der morphotropen Phasengrenze mit Angabe des mittleren statistischen Fehlers aus 5 bis 10 Einzelproben.

z	Dielektrizi- tätskonstante	Temperatur- koeffizient	Piezoelektr. Ladungs-	Dichte p [g cm ⁻¹]
	8	TKE	konstante	
			d ₃₃ [pm V ⁻¹]	
0	1339 ± 9	6037 ± 225	720 ± 5	7,76 ± 0,04
0,0025	1360 ± 23	4985 ± 91	728 ± 12	$7,54 \pm 0,10$
0,005	1330 ± 15	5094 ± 150	723 ± 8	7,59 ± 0,02
0,009	1527 ± 28	3913 ± 247	753 ± 14	7.89 ± 0.02
0,0125	1436 ± 74	3083 ± 265	714 ± 40	7,90 ± 0,02
0,0205	1598 ± 21	2740 ± 110	707 ± 20	$7,88 \pm 0,02$

Man erkennt, daß die Kleinsignal-Dielektrizitätskonstante ϵ bei der vorgenommenen Variation der z-Werte ansteigt und der Temperaturkoeffizient TKs abfällt, während der d33-Wert bei z=0,009 einen Maximalwert durchläuft. Demnach entspricht die Formel $Pb_{0,97}Nd_{0,02}\Box_{0,01}(Zr_{0,5425}Ti_{0,4575})O_3$ einer Keramikmasse, die bei einer Zubereitung ohne CuO-Zusatz an die morphotrope Phasengrenze angepaßt ist. 15

In Tabelle 3 sind die Eigenschaften von kompakten, aus Folien gefertigten Keramikproben der Zusammensetzung $Pb_{1-3x/2-y/2}SE_{x}\square_{x/2-y/2}Cu_{y}(Zr_{0,5515-z}Ti_{0,4485+z})O_{3} \text{ mit } Nd_{2}O_{3} \text{ als Dotand}$ und x = 0.02 sowie z = 0 zusammengestellt, wobei der 20 Kupfergehalt mit dem Parameter y variiert wurde, der in einem Fall (bei y = 0.04) die durch x = y definierte obère Grenze der homogenen Löslichkeit im Perowskitgitter überschreitet. Die Herstellung erfolgte unter N2 bei einem durch ph20 und ph2 eingestellten Restsauerstoffpartialdruck $p_{02} = 10^{-2}$ - 10^{-3} Pa. 25 Gemessen wurde nach einer Polung mit E = 2 kV/mm bei der Raumtemperatur.

20

Tabelle 3 Eigenschaften kompakter quadratischer Keramikproben MLP (Kantenlänge a = 11,5 mm, Dicke h = 1 mm) in der Reihe $Pb_{0,97-y/2}Nd_{0,02}Cu_y(Zr_{0,5515}Ti_{0,4485})O_3$ zwecks Ermittlung eines optimalen Kupfergehalts mit Angabe des mittleren statistischen Fehlers aus 5 bis 10 Einzelproben.

11

У	Dielektrizi- tätskonstante	Temperatur- koeffizient	Piezoelektr. Ladungs- konstante	Dichte p [g cm ⁻³]	
•	ε	TKE	d_{33} [pm V^{-1}]		
Ó	1339 ± 9	6037 ± 225	720 ± 5	7,76 ± 0,04	
0,005	1125 ± 6	4202 ± 19	645 ± 6	$7,78 \pm 0,03$	
0,010	1100 ± 21	3466 ± 136	540 ± 11	7,58 ± 0,11	
0,020	1317 ± 11	4107 ± 105	739 ± 4	7,71 ± 0,03	
0,040	1151 ± 16	4112 ± 406	641 ± 11	$7,93 \pm 0,11$	

Aus den Werten der Tabelle geht hervor, daß die Keramikzusam10 mensetzung mit y = 0.02 einem optimalen Kupfergehalt entspricht.

Folgerichtig wurde in Tabelle 4 nochmals das Verhältnis Zr/Ti variiert, um auch für einen Cu-Gehalt y=0.02 die morphotrope Phasengrenze festzustellen.

Tabelle 4 Eigenschaften kompakter quadratischer Keramikproben MLP (Kantenlänge a = 11,5 mm, Dicke h = 1 mm) in der Reihe $Pb_{0,96}Nd_{0,02}Cu_{0,02}(Zr_{0,5515-2}Ti_{0,4485+2})O_3$ zwecks Ermittlung der morphotropen Phasengrenze mit Angabe des mittleren statistischen Fehlers aus 5 bis 10 Einzelproben.

Z	Dielektrizi- tätskonstante £	Temperatur- koeffizient TKz	Piezoelektr. Ladungs- konstante d ₃₃ [pm V ⁻¹]	Dichte p [g cm ⁻³]
-0,016	1005 ± 13	4970 ± 52	500 ± 6	7,40±0,03
-0,008	1037 ± 15	4484 ± 207	454 ± 9	7,40±0,03

15

P2003,0658

12					
0	1317 ± 1	4107 ± 105	739 ± 4	7,71±0,03	
0,009	1208 ± 32	3717 ± 58	581 ± 26	7,88±0,02	
0,0125	1214 ± 37	3707 ± 67	566 ± 11	7,89±0,03	
0.0205	1226 + 39	3380 ± 115	513 ± 18	7,90±0,02	

Man findet, daß bei dem offensichtlich durch den Gehalt an SE-Kationen, in diesem Fall Nd^{3+} , gesteuerten optimalen Cu-Gehalt y=0.02 der Bestwert für die piezoelektrische Ladungskonstante d_{33} wieder bei einem Wert z=0 liegt, das heißt die morphotrope Phasengrenze stellt sich beim Einbau von Cu⁺-Ionen anstelle von Ag^+ -Ionen etwa bei dem gleichen Gehalt von Ti und Zr, d. h. beim Zr/Ti-Verhältnis von ca. 1 ein.

Piezoelektrische Vielschicht-Bauelemente (Aktoren), z.B. Piezostacks mit mehreren hundert kupferhaltigen Innenelektroden, auf der Basis der erfindungsgemäßen Keramikmassen werden standardmäßig durch Bedrucken der Keramikschichten mit einer Kupferpaste, Verstapeln der bedruckten Keramikschichten, Laminieren, Entbindern und Sintern erhalten.

In Tabelle 5 sind die Eigenschaften von drei Aktoren unterschiedlicher Keramikzusammensetzung

- 1) Pb_{0,97}Nd_{0,02}D_{0,01}(Zr_{0,5515}Ti_{0,4485})O₃ ohne Anpassung an Cu Innenelektroden;
 - 2) Pb_{0,97}Nd_{0,02}D_{0,01}(Zr_{0,5425}Ti_{0,4575})O₃ mit Anpassung des Zr/Ti-Verhältnisses an Cu-Innenelektroden;
- 3) Pb_{0,96}Nd_{0,02}Cu_{0,02}(Zr_{0,5515}Ti_{0,4485}) mit an die Dotierung 25 angepaßtem Cu-Gehalt und eingestellter morphotroper Phasengrenze

mit jeweils 360 Innenelektroden und einer Keramikschichtdicke von 80 μm zusammengestellt, wie sie nach einer Polung mit E = 2 kV/mm (a) bei Raumtemperatur und (b) bei 180 °C gemessen werden. Neben den Kleinsignal-Eigenschaften ϵ und TKs ist hier auch die Großsignal-Dielektrizitätskonstante angegeben, die sich aus der Polarisation durch eine Spannung berechnen

läßt, welche z. B. bei den Aktoren zu einer Auslenkung von 40 μm führt.

Tabelle 5: Eigenschaften von Aktoren mit kupferhaltigen Innenelektroden auf der Basis der Keramik

- 1) $Pb_{0,97}Nd_{0,02}\square_{0,01}(Zr_{0,5515}Ti_{0,4485})O_3$ ohne Kupferoxidzusatz und ohne Anpassung an die morphotrope Phasengrenze,
- 2) $Pb_{0,97}Nd_{0,02}\square_{0,01}(Zr_{0,5425}Ti_{0,4575})O_3$ mit Anpassung des Zr/Ti-Verhältnisses an die morphotrope Phasengrenze, sowie
- 3) einer durch Kupferoxidzusatz modifizierten Keramik Pb_{0,96}Nd_{0,02}Cu_{0,02}(Zr_{0,5515}Ti_{0,4485}), deren Zr/Ti-Verhältnis an die morphotrope Phasengrenze angepaßt ist. Gemessen wurde nach einer Polung mit 2 kV/mm

(a) bei Raumtemperatur und (b) bei 180°C.

15

z	Dielekt	rizi-	Temperatur-	Piezoel.	Wirkungs	Dielek-
-	tätskonstante ε		koeffizient	Ladungs-	grad	trische
1	Klein-	Groß-	TK ε	konstante	η	Verlust-
	signal	signal	(Klein-	d ₃₃ [pm V ⁻¹]		energie
	-		signal)			L [mJ]
(1)	1214±30	3110±87	3936±82	592 ± 18	50,4±0,4	50 ± 2
(a)				·		
(b)		2772±50		632 ± 11	56,5±0,4	34 ± 1
(2)	1358±27	2984±118	2949±41	568 ± 15	51±0,7	51 ± 2
(a)_						
(b)		2841±57		614 ± 11	57± 1	37 ± 2
(3)	1216±8	2747±102	2860±42	569 ± 11	55± 1	44 ± 1
(a)						<u> </u>

Die Werte der Tabelle 5 lassen im Vergleich der Aktoren mit den beiden Keramiken (1) und (2) eine Eigenschaftsverbesserung hinsichtlich einer Verringerung des TKE bei der Keramik 20 2a gegenüber der Keramik la erkennen. Eine signifikante Verminderung der dielektrischen Verlustenergie L kommt aber erst durch den Kupfereinbau zustande. Mit 44 mJ liegt der Wert für den dielektrischen Verlust L bei der Keramik (3) mit

Polung bei Raumtemperatur deutlich unter den Werten jener Aktoren, die mit der Keramik ohne Kupferoxidzusatz hergestellt wurden. Eine weitere Verbesserung kann durch die Warmpolung bei zum Beispiel 180°C erreicht werden. Außerdem ist auch hier die Abhängigkeit der Kleinsignalkapazität von der Temperatur geringer.

Obwohl die Erfindung nur anhand weniger Ausführungsbeispiele erläutert wurde, kann sie zur Herstellung von Keramikmaterialien mit beliebigen Werten der Parameter x, y und z verwendet werden. Im Prinzip können auch andere hier nicht genannte, zur Herstellung der Keramik mit der angegebenen allgemeinen Zusammensetzung geeignete Rohstoffmassen und kupfer- oder kupferoxidhaltige Zusätze verwendet werden. Geeignete Rohstoffmassen sind beispielsweise aus der Druckschrift DE 20023051 U1 bekannt.

30

15

patentansprüche

- 1. Piezoelektrisches Keramikmaterial der allgemeinen Zusammensetzung ABO3,
- das im wesentlichen Bleizirkonattitanat enthält und Perowskitgitter aufweist, wobei A für A-Plätze und B für B-Plätze des Kristallgitters steht.

gekennzeichnet durch

- eine Zusammensetzung, die zumindest einen Anteil von 10 Bleizirkonattitanat der allgemeinen Formel $Pb_{1-3x/2-y/2}SE_{x}O_{x/2-y/2}Cu^{T}_{y}(Zr_{0,5515-z}Ti_{0,4485+z})O_{3} \quad \text{mit } 0,01 < x < 0,04$ und 0 < y < x/2 aufweist, wobei SE ein Seltenerdmetall ist, ausgewählt aus La, Nd, Sm,
- 15 Gd, Tb, Dy, Ho, Er, Tu, Yb, Lu und Y, wobei der Parameter x durch die Wertigkeit des Seltenerdmetalls bestimmt ist, wobei der Parameter z in Abhängigkeit vom Parameter y so gewählt ist, daß das Keramikmaterial auf die morphotrope Phasengrenze eingestellt ist.
 - 2. Keramikmaterial nach Anspruch 1, bei dem Cu in das Perowskitgitter des Keramikmaterials zumindest teilweise auf A-Plätzen eingebaut ist, wobei das auf A-Platzen eingebaute Cu als einwertig positives Kation Cut vorliegt.
 - 3. Keramikmaterial nach Anspruch 1 oder 2 mit der Zusammensetzung Pb0,96Nd0,02Cu0,02 (Zr0,5515Ti0,4485)O3.
 - 4. Verfahren zur Herstellung eines Keramikmaterials nach einem der Ansprüche 1 bis 3, bei dem eine Kupferoxid CuO enthaltene Keramik-Rohstoffmischung bereitgestellt wird,
- bei dem die Keramik-Rohstoffmischung unter inerten Bedingungen kalziniert wird, wobei die Kalzination in einer reduzierten Atmosphäre unter einem Sauerstoffpartialdruck

durchgeführt wird, bei dem Cu und Kupferoxid im Gleichgewicht sind und koexistieren, bei dem das kalzinierte Keramikprodukt fein gemahlen, homogenisiert und anschließend gesintert wird.

- 5. Verfahren nach Anspruch 4, bei dem die Kalzination in einer feuchten Stickstoffatmosphäre durchgeführt wird.
- 6. Verfahren zur Herstellung eines Keramikmaterials nach einem der Ansprüche 1 bis 3, bei dem eine Keramik-Rohstoffmischung ohne einen Kupferoxid-Zusatz kalziniert wird, wobei bei der Kalzination eine piezokeramische Perowskit-Mischkristallphase gebildet wird, bei dem in einen Schlicker Kupferoxid Cu₂O hinzugefügt wird, wobei das Kupferoxid im Schlicker gleichmäßig verteilt wird, bei dem das Produkt der Kalzination fein gemahlen und mit dem Schlicker vermischt wird, wodurch eine Keramikmasse gebildet wird, bei dem die Keramikmasse unter inerten Bedingungen gesintert wird.
 - 7. Verfahren nach einem der Ansprüche 4 bis 6, bei dem die Sinterung in einer feuchten Stickstoffatmosphäre durchgeführt wird.
 - 8. Piezoelektrisches Vielschichtbauelement
 mit Keramikschichten aus einem Keramikmaterial nach einem der
 Ansprüche 1 bis 3 und innen liegenden Elektrodenschichten,
 wobei die Keramikschichten und die Elektrodenschichten in
 abwechselnder Reihenfolge übereinander angeordnet sind,
 wobei die innen liegenden Elektroden zumindest einen Anteil
 des metallischen Kupfers enthalten.

7. B

25

Zusammenfassung

Piezoelektrisches Keramikmaterial, Vielschichtbauelement und Verfahren zur Herstellung des Keramikmaterials

Die Erfindung betrifft ein piezoelektrisches Keramikmaterial der allgemeinen Zusammensetzung ABO3 mit zumindest einem Anteil der PZT-Keramik einer erfindungsgemäßen Zusammensetzung mit Cu-Kationen. Der Anteil von Zr- und Ti-Kationen wird je nach Gehalt der Cu-Kationen so gewählt, daß das Keramikmaterial auf die morphotrope Phasengrenze eingestellt ist. Die Erfindung gibt des weiteren ein Verfahren zur Herstellung eines solchen Keramikmaterials an.

5