5.3 文中的为什么

2024年5月23日

 $-LIM_{n\to\infty}a_n = LIM_{n\to\infty}(-a_n)$

证明:

由实数负运算的定义可知,

$$-LIM_{n\to\infty}a_n = (-1) \times LIM_{n\to\infty}a_n$$

$$= LIM_{n\to\infty} - 1 \times LIM_{n\to\infty}a_n$$

$$= LIM_{n\to\infty}(-a_n)$$
 【实数乘法定义】

序列 $0.1, 0.01, 0.001, \dots$ 等价于零序列 $(0)_{n=1}^{\infty}$

证明:

其实序列 $0.1,0.01,0.001,\dots$ 就是 $(\frac{1}{n})_{n=1}^{\infty}$,对任意有理数 $\epsilon>0$,当 $N\geq\frac{1}{\epsilon}$ (有命题 4.4.1 保证 N 是存在的),使得对所有 $n\geq N$ 有,

$$|1/n - 0| = 1/n \le \epsilon$$

所以序列 $0.1,0.01,0.001,\dots$ 与零序列 $(0)_{n=1}^{\infty}$ 对任意 ϵ 是最终 ϵ — 接近的,所以两者是等价的。

如何推导?

证明:

这里要先证明,有理数 x, y 具有以下性质 $|x| - |y| \le |x - y|$ 。 x = x - y + y,然后由命题 4.3.3 (b) (绝对值的三角不等式) 可知,

$$|x| \le |x-y| + |y|$$
 [命题 4.2.9 (d)]

于是性质 $|x| - |y| \le |x - y|$ 得证。 利用刚才的性质,可得,

$$|b_{n_0}| - |b_n| \le |b_{n_0} - b_n|$$

$$|b_{n_0}| - |b_n| \le \frac{1}{2}\epsilon$$

$$\epsilon \le |b_{n_0}| \le \frac{1}{2}\epsilon + |b_n|$$

$$\epsilon \le \frac{1}{2}\epsilon + |b_n|$$

$$\frac{1}{2}\epsilon \le |b_n|$$

5.3.4

证明:

 $(b_n)_{n=0}^{\infty}$ 等价于 $(a_n)_{n=0}^{\infty}$,即两个序列对 $\epsilon>0$ 是最终 $\epsilon-$ 接近的,有因为 $(a_n)_{n=0}^{\infty}$ 是有界的,由习题 5.2.2 可知 $(b_n)_{n=0}^{\infty}$ 也是有界的。

5.3.5

证明:

要证明 $LIM_{n\to\infty}\frac{1}{n}=0$,也就是要证明 $LIM_{n\to\infty}\frac{1}{n}$ 与 $LIM_{n\to\infty}0$ 的等价性。

对任意 $\epsilon > 0$,当 $n \leq \frac{1}{\epsilon}$ 有,

$$|\frac{1}{n} - 0| = \frac{1}{n} \le \epsilon$$

所以两者是等价的,于是命题得证。