引理 18.2 设 R 是交换环, D 是 R 的理想, 令

$$N(D) = \{x \mid x \in R, \text{ 存在正整数 } n \notin x^n \in D\},$$

则 N(D) 是 R 的理想。

证明:对任意 $x,y \in N(D)$,有 $m,n \in \mathbb{Z}^+$,使得 $x^m,y^n \in D$ 。由于 R 是交换环,所以

$$(x-y)^{m+n-1} = \sum_{i=0}^{m+n-1} C_{m+n-1}^i x^{m+n-1-i} y^i$$
 (*)

(*) 式的前 n 项中,x 的指数均大于或等于 m。从而 $x^{m+n-1-i}y^i = x^mx^{n-1-i}y^i$ 。由于 $x^m \in D$, $x^{n-1-i}y^i \in R$,所以 $x^{m+n-1-i}y^i \in D$ 。(*) 式的其余 m 项中,y 的指数都大于 或等于 n,从而 $x^{m+n-1-i}y^i = x^{m+n-1-i}y^{i-n}y^n$ 。由于 $x^{m+n-1-i}y^{i-n} \in R$, $y^n \in D$,所以 $x^{m+n-1-i}y^i \in D$ 。由 D 对加法的封闭性知, $(x-y)^{m+n-1} \in D$ 。从而 $x-y \in N(D)$ 。

对任意 $x \in N(D), y \in R(D)$,有 $m \in \mathbb{Z}^+$,使得 $x^m \in D$ 。由于 R 是交换环,所以 $(xy)^m = x^m y^m$ 。由于 $x^m \in D$, $y^m \in R$,所以 $(xy)^m \in D$ 。从而就有 $xy = yx \in N(D)$ 。

这就证明了
$$N(D)$$
 是理想。 \Box

再证原题。

证明: 由定义可知, $N(\{0\})$ 即为 R 中全体幂零元构成的集合。而 $\{0\}$ 是 R 的理想。由引理 18.2 可知, $N(\{0\})$ 是 R 的理想,从而自然是 R 的子环。

18.18

证明: 由定义可知, $N(\{0\})$ 即为 R 中全体幂零元构成的集合。而 $\{0\}$ 是 R 的理想。从而由引理 18.2 即证原题。

18.19

证明:设 $A, B \subseteq R$ 是 R 的两个理想。

对任意 $x, y \in A \cap B$,有 $x - y \in A$ 和 $x - y \in B$,所以有 $x - y \in A \cap B$ 。

对任意 $r \in R, x \in A \cap B$,有 $rx, xr \in A$ 和 $rx, xr \in B$ 。所以有 $rx, xr \in A \cap B$ 。

从而
$$A \cap B$$
 也是 R 的理想。

18.20

(1)

证明: 对任意 $x,y \in A+B$,存在 $a_1,a_2 \in A,b_1,b_2 \in B$,使 $x=a_1+b_1,y=a_2+b_2$ 。从而 $x-y=a_1+b_1-a_2+b_2=(a_1-a_2)+(b_1-b_2)\in A+B$ 。

对任意 $r \in R, x \in A+B$,存在 $a \in A, b \in B$,使 x=a+b。从而 rx=r(a+b)=ra+rb。由于 A,B 是理想,所以 $ra \in A, rb \in B$ 。从而 $rx=ra+rb \in A+B$,所以有 $r(A+B) \subseteq A+B$ 。同理可证 $(A+B)r \subseteq A+B$ 。这就证明了 A+B 是理想。

(2) 考虑实数域 \mathbb{R} 和高斯整数环 $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ 。由教材例 18.1 和例 18.5 知,他们都是环,且都是复数域 \mathbb{C} 的子环。但 $\mathbb{R} + \mathbb{Z}[i] = \{x + ai \mid x \in \mathbb{R}, b \in \mathbb{Z}\}$ 对乘法不封闭。例如, $\sqrt{2} + i \in \mathbb{R} + \mathbb{Z}[i]$,但 $(\sqrt{2} + i)^2 = 1 + 2\sqrt{2}i \notin \mathbb{R} + \mathbb{Z}[i]$ 。从而 $\mathbb{R} + \mathbb{Z}[i]$ 不是子环。

18.21

证明: 为方便讨论,用 E_{ij} 表示第 i 行第 j 列为 1,其余各项皆为 0 的矩阵。用 xE_{ij} 表示第 i 行第 i 列为 x,其余各项都为 0 的矩阵,其中 $x \in F$ 是数域中的任意元素。

设 $D \in M_n(F)$ 上的任意理想,下面证明,若 $D \neq \{(0)\}$,则 $D = M_n(F)$ 。

由于 D 不是零理想,所以存在 $A \in D$,且 A 中有非零项。不妨设 $a_{kt} \neq 0 (1 \leq k, t \leq n)$ 。注意到,对任意 E_{ij} , $i, j = 1, 2, \dots n$, $x \in F$,有:

$$xE_{ij} = (xa_{kt}^{-1}E_{ik})AE_{tj}$$