

Ing. Carlos Olmos

Año: 2007

Realimentación:

Un sistema realimentado esta conformado por las siguientes etapas:

Fig. 1

Del siguiente diagrama nosotros podemos definir la ganancia de lazo cerrrado:

A_f =
$$\frac{X_o}{X_s} = \frac{A(X_s - X_f)}{X_s} = A(1 - \frac{X_f}{X_s})$$
 $P / X_f = \beta X_o$
 $A_f = A(1 - \beta \frac{X_o}{X_s}) = (A - \beta A \frac{X_o}{X_s})$
 $A_f = \frac{X_o}{X_s} = A - \beta A \frac{X_o}{X_s}$
 $\frac{X_o}{X_s} + \beta A \frac{X_o}{X_s} = A$
 $A = Ganancia \ de \ Lazo \ Abierto$
 $A_f = \frac{X_o}{X_s} = \frac{A}{(1 + \beta A)}$
 $A_f = \frac{A}{(1 + \beta A)}$

Tipos de amplificadores:

Con el concepto de realimentación se puede diseñar cuatro combinaciones de amplificadores con las diferentes formas de muestreo y mezcla.

Amplificador de Tensión con muestra de tensión en serie.

Amplificador de Transconductancia con muestra de corriente en serie.

Amplificador de Corriente con muestra de corriente en paralelo.

Amplificador de Transresistencia con muestra de tensión en paralelo.

Se debe destacar de esto que la realimentación tiene sus aspectos positivos y negativos.

Desventajas: Reduce la ganancia. Esto se debe al grafico de ganancia – ancho de banda.

Ventajas: Estabilidad de la amplificación de transferencia frente a las variaciones por:

- Envejecimiento.
- Temperatura.
- Sustitución de componentes pasivos y activos.

Sensibilidad de la Ganancia:

Definimos sensibilidad de la ganancia a la relación entre la variación relativa de la amplificación con realimentación y sin ella.

Conciderese una variacion de la ganancia de lazo cerrado. Entonces:

$$\frac{dA_{f}}{dA} = \frac{d\left(\frac{A}{1+\beta A}\right)}{dA} = \frac{1(1+\beta A) - A(\beta)}{\left(1+\beta A\right)^{2}}$$

$$\frac{dA_{f}}{dA} = \frac{1+\beta A - A\beta}{\left(1+\beta A\right)^{2}} = \frac{1}{\left(1+\beta A\right)^{2}} \frac{A}{A}$$

$$\frac{dA_{f}}{dA} = \underbrace{\frac{A}{\left(1+\beta A\right)} \frac{1}{\left(1+\beta A\right)} \frac{1}{A}}_{A_{f}}$$

$$\frac{dA_{f}}{dA} = A_{f} \frac{1}{\left(1+\beta A\right)} \frac{1}{A}$$

$$\frac{dA_{f}}{dA} = \frac{1}{\left|1+\beta A\right|} \frac{dA}{A} \implies D: |1+\beta A| = Desensibilidad$$

Cuando a un amplificador se le agrega realimentación la ganancia queda dividida por la desensibilidad, pero también la variación de la ganancia por cualquiera de los motivos antes mencionados se divide por el mismo factor.

Distorsión de Frecuencia:

Si la red de realimentación no tiene elementos reactivos la ganancia es independiente de la frecuencia.

Si concideramos el producto $\beta A \square$ 1 entonces la ganancia a lazo cerrado es :

$$A_f = \frac{A}{1 + \beta A} \Box \frac{\lambda}{\beta \lambda} = \frac{1}{\beta}$$

En caso de estar compuesto con elementos reactivos la amplificación a distintas frecuencias va a depender notablemente de la misma.

Distorsión no lineal: Permite reducir la distorsión no lineal % por D.

Reducción de ruido: Es dividido por el factor D.

Ahora para aplicar todos los conceptos definidos con anterioridad realizaremos el estudio completo sobre un sistema compuesto por dos amplificadores en cascada.

1) Realimentación de Tensión en Serie:

Calcular: Av_f , Ro_f , Ri_f con los siguientes datos:

Datos: Rs = 0, hfe = 50, $hie = 1.1K\Omega$, hre = hoe = 0, $Q_1 = Q_2$

Consignas:

- a. Identificar el tipo de topología para la cual vamos a analizar si la señal realimentada es una tensión o una corriente o dicho otro modo esta en serie o en paralelo con la señal? La señal muestreada es una tensión o una corriente? O dicho de otro modo es tomado del nudo de salida o de la malla de salida?
- b. Construir el circuito equivalente del amplificador son realimentación pero considerando los elementos que componen la red de realimentación β, reemplazando los dispositivos activos por el modelo apropiado (por ejemplo, el modelo híbrido – II para un transistor de alta frecuencia, o el modelo de parámetros h para baja frecuencia).

Para construir el circuito de entrada se debe eliminar la señal de realimentación para lo cual hacemos:

$$V_0 = 0$$
 (para muestreo de tensión)

$$I_0 = 0$$
 (para muestreo de corriente)

Para construir el circuito de salida debemos hacer:

$$V_i = 0$$
 (para mezcla en paralelo)

$$I_i = 0$$
 (para mezcla en serie)

- c. Reemplazar la fuente de tensión por una de corriente aplicando Norton/Thevenin
- d. Hallar la ganancia aplicando Kirchhoff.
- e. Calcular el β que dependiendo de la topología podrá ser :

$$\beta = \frac{X_f}{X_o} \cong \frac{V_f}{V_o} \cong \frac{I_f}{I_o} \cong \frac{V_f}{I_o} = \frac{I_f}{V_o}$$

f. Con A y β, calcular D, A_f, Z_{if}, Z_{of}.

Desarrollo:

a. Muestreo de tensión – comparación en serie.

b. A continuación se grafica el circuito equivalente híbridos – II.

Una vez que se determino el circuito equivalente podremos realizar los análisis correspondientes a las ganancias y demás parámetros de nuestro amplificador. Recuérdese que este circuito se encuentra a lazo abierto, es decir, que luego tendremos que encontrar los parámetros a lazo cerrado mediante algunas consideraciones teóricas.

d.

$$R_{b1} = \frac{150k\Omega.47K\Omega}{150k\Omega + 47K\Omega} = 35,78K\Omega$$

$$R_{b1} = \frac{47k\Omega.33K\Omega}{47k\Omega + 33K\Omega} = 19,38K\Omega$$

Cálculo de A, =

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{v_{o}}{i_{b2}} \frac{i_{b2}}{i_{b1}} \frac{i_{b1}}{v_{i}}$$

$$\left(\frac{\frac{i_{b2}}{i_{b2}} = -hfe \left[R_{C2} // (R_{1} + R_{2}) \right] = 118,7 K\Omega}{\frac{i_{b2}}{i_{b1}} = -hfe \left[\frac{R_{C1} // R_{b2} // hie_{2}}{hie_{2}} = 42,84 \right]}{\frac{i_{b1}}{v_{i}}} = \frac{1}{hie_{1} + \left[\left(R_{1} + R_{2} \right) \left(hfe + 1 \right) \right]} = 0,822 \square$$

 $A_{v} = 118,7 K\Omega.42,84.0,822 \square$

$$A_{\nu} = 828$$

e. $C\'{a}lculo de la red \beta =$

$$\begin{split} v_o &= i \left(R_1 + R_2 \right) \\ v_f &= i R_1 \\ \beta &= \frac{v_f}{v_o} = \frac{f R_1}{f \left(R_1 + R_2 \right)} = \frac{R_1}{R_1 + R_2} = \frac{0.1 K \Omega}{4.8 K \Omega} \\ \boxed{\beta &= 0.02 = \frac{1}{48}} \\ D &= 1 + A_v \beta = 1 + \frac{828}{48} = 18,25 \\ A_{vf} &= \frac{A_v}{D} = \frac{828}{18,25} \\ \boxed{A_{vf} &= 45,36} \end{split}$$

f.

Solo nos queda calcular las impedacias de lazo abierto como de lazo cerrado:

Lazo abierto:

$$Z_i = R_{b1} / \{ hie_1 + [(R_1 + R_2)(hfe + 1)] \} = 35,78K\Omega / / 6K\Omega$$

$$Z_i = 5, 2K\Omega$$

$$Z_o = R_{c2} //(R_1 + R_2)$$

$$Z_o = 2,37K\Omega$$

Lazo cerrado:

$$^{P}/D = 18,25$$

$$Z_{if} = Z_i D = 5,2K\Omega \ 18,25$$
 \Rightarrow $Z_{if} = 94,9K\Omega$

$$Z_{of} = \frac{Z_0}{D} = \frac{2,37K\Omega}{18,25}$$
 \Rightarrow $Z_{of} = 129\Omega$

Conclusiones:

La ganancia de la tensión se ve disminuida por el factor *D* mientras que la impedancia de entrada aumenta y la de salida baja mejorando las condiciones y propiedades del amplificador.

Como regla general:

Muestreó de tensión $\equiv Z_o$ se ve disminuido D veces.

Muestreó de corriente $\equiv Z_i$ *se ve aumentado D veces.*

Mezcla de tensión $\equiv Z_i$ se ve aumentada D veces.

Mezcla de corriente $\equiv Z_i$ se ve disminuido D veces.

2) Muestreo de Corriente en Paralelo:

Datos:

$$R_{c1} = 3K\Omega$$

$$R'=1,2K\Omega$$

$$hie = 1,1K\Omega$$

$$R_{c2} = 500\Omega$$

$$R_s = 1, 2K\Omega$$

$$R_{e2} = 50\Omega$$

$$hfe = 50$$

Se pide calcular idem al punto anterior

Desarrollo:

Circuito equivalente:

$$A_{i} = \frac{i_{o}}{i_{i}} = \frac{i_{o}}{i_{b2}} \frac{i_{b1}}{i_{b1}} \frac{i_{b1}}{i_{i}} \qquad \therefore \qquad i_{o} = -hfe \, i_{b2} \rightarrow \frac{i_{o}}{i_{b2}} = -50$$

$$i_{b2} = -hfe \, i_{b1} \frac{R_{c1} \, \Box \Big[hie_{2} + hfe \Big(R_{e2} \, \Box R_{f} \Big) \, \Big]}{hie_{2} + hfe \Big(R_{e2} \, \Box R_{f} \Big)} \rightarrow \frac{i_{b2}}{i_{b1}} = -22,907$$

$$i_{s} = i_{i} \quad \therefore \qquad i_{b1} = i_{s} \frac{\Big[R_{s} \, \Box \Big(R_{e2} \, \Box R_{f} \Big) \, \Box hie_{1} \Big]}{hie_{1}} \rightarrow \frac{i_{b1}}{i_{i}} = 0,357$$

$$A_i = \frac{i_o}{i_o} = 409,55 \therefore A_i = 409,55$$

Red de Realimentacion:

$$\begin{aligned} para \quad & v_{e2} \, \Box \quad v_{i1} \\ i_f &= \frac{v_{i1} - v_{e2}}{R_f} \quad tambien \, \middle| v_{e2} = R_{e2}.i_e \\ i_e &= i_f - i_o \end{aligned}$$

$$i_f \, \Box - \frac{v_{e2}}{R_f} = -\frac{R_{e2} \left(i_f - i_o\right)}{R_f}$$

$$i_f \, R_f = R_{e2} \, i_o - R_{e2} \, i_f$$

$$i_f \left(R_f + R_{e2}\right) = R_{e2} \, i_o$$

$$\beta = \frac{i_f}{i_o} = \frac{R_{e2}}{R_{e2} + R_f} = 0,04$$

$$\beta = 0,04$$

$$D = 1 + \beta A_i = 1 + 0,04409,55$$

$$D = 17,38$$

$$A_{if} = \frac{A_i}{D} = \frac{409,55}{17,38} = 23,56$$

$$A_{if} = 23,56$$

Calculo de Impedancias:

$$Z_{i} = R_{s} \square (R_{f} + R_{e2}) \square hie_{1} \qquad Z_{if} = \frac{Z_{i}}{D}$$

$$Z_{i} = 393,32\Omega \qquad Z_{if} = 22,62\Omega$$

$$Z_{o} = R_{c} \qquad Z_{of} = Z_{o} D$$

$$Z_{o} = 500\Omega \qquad Z_{of} = 8,69 K\Omega$$

3) Realimentación de tensión en paralelo:

$$R_c = 4K\Omega$$

$$R' = 40K\Omega$$

$$hie = 1,1K\Omega$$

$$hfe = 50$$

$$R_s = 10K\Omega$$

$$Calcular egin{cases} R_{mj} \ A_{vf} \ Z_{if} \ Z_{of} \end{cases}$$

Circuito equivalente:

$$R_{m} = \frac{v_{o}}{i_{s}} = \frac{v_{o}}{i_{b}} \frac{i_{b}}{i_{s}} \qquad \Rightarrow \qquad \frac{v_{o}}{i_{b}} = hfe(R_{c} \square R') = 181,81K\Omega$$

$$\frac{i_{b}}{i_{s}} = \frac{R' \square R_{s}}{(R' \square R_{s}) + hie} = 879,12\Omega$$

$$R_m = 159,84K\Omega$$

Red de Realimentacion:

$$para \quad v_i \square \quad v_o$$

$$i_f = \frac{v_i - v_o}{R_f}$$

$$i_f \square - \frac{v_o}{R_f}$$

$$\beta = \frac{i_f}{v_o} = \frac{-\frac{v_o}{R_f}}{v_o}$$

$$\beta = -\frac{1}{R_f} \rightarrow \boxed{\beta = -0.025} \text{ mM/v}$$

Desensibilidad:

$$D = 1 + \beta R_m = 1 + \left(-0.025 \frac{mA}{V}\right).159,84K\Omega$$
$$D = 4.99 \Rightarrow \boxed{D = 5}$$

$$R_{mf} = \frac{R_m}{D} = \frac{159,84K\Omega}{5} \Rightarrow \boxed{R_{mf} = 31,968K\Omega}$$

Impedancias Z_{if} , Z_{of}

$$Z_i = R_s \square hie \square R' = 10K\Omega \square 1,1K\Omega \square 40K\Omega$$

$$Z_i = 967,02K\Omega$$

$$Z_o = R_c \square R' = 4K\Omega \square 40K\Omega$$

$$Z_o = 3,63K\Omega$$

$$Z_{if} = \frac{Z_i}{D} = \frac{967,02K\Omega}{5}$$

$$Z_{if}=178,29\Omega$$

$$Z_{of} = \frac{Z_o}{D} = \frac{3,63K\Omega}{5}$$

$$Z_{of} = 727, 27\Omega$$

4) Realimentación de Corriente en Serie:

$$G_{mf} = 1 \frac{mA}{V}$$
 $A_{vf} = -4$
 $D = 50$
 $hfe = 150$
 $R_{S} = 1K\Omega$

$$Calcular \begin{cases} R_{L} \\ R_{e} \\ Z_{if} \\ i_{Co} \end{cases}$$

Circuito equivalente:

Desarrollo:

$$G_{mf} = \frac{G_m}{D} = -1 \frac{mA}{V} \Rightarrow G_m = G_{mf}D = -1 \frac{mA}{V}.50$$

$$G_m = -50 \frac{mA}{V}$$

$$\beta = \frac{V_f}{i_o} = \frac{-i_o R_e}{i_o}$$
$$\beta = -R_e$$

 $Como \beta = -R_e$, entonces

$$D = 1 + \beta G_m = 1 + 50 R_e = 50$$

$$R_e = \frac{D - 1}{G_m} = \frac{50 - 1}{50} = 0,98 K\Omega$$

$$R_e \square 1K\Omega$$

$$A_{vf} = G_{mf} R_L \Rightarrow R_L = \frac{A_{vf}}{G_{mf}} = \frac{-4}{-1} \Rightarrow \boxed{R_L = 4K\Omega}$$

$$como \ G_m = -50 = \frac{-hfe}{R_s + hie + R_e} = \frac{-150}{1 + hie + 1}$$

$$\boxed{hie = 1K\Omega}$$

$$R_{i} = R_{s} + hie + R_{e} = 1K\Omega + 1K\Omega + 1K\Omega$$

$$R_{i} = 3K\Omega$$

$$R_{if} = R_{i}D = 3K\Omega \ 50 \Rightarrow \boxed{R_{if} = 150K\Omega}$$

$$como\ hie = hfe \frac{V_T}{i_{Co}} \Rightarrow i_{Co} = hfe \frac{V_T}{hie} = 150 \frac{25mV}{1K\Omega}$$

$$\boxed{i_{Co} = 3.9mA}$$

5) Análisis de Circuitos Realimentados:

a. Del siguiente circuito se debe realizar un análisis completo en el cual se debe usar todas las técnicas de realimentación estudiadas hasta el momento.

Datos:

Calcular:

$$hfe_1 = hfe_2 = 50$$

$$hie_1 = hie_2 = 1K\Omega$$

$$R_s = 100K\Omega \quad ; \qquad R_{e2} = 1K\Omega$$

$$Z_{of}$$

$$R_{c1} = 2K\Omega \quad ; \qquad R_{e3} = 1K\Omega$$

$$R_{e3} = 100\Omega$$

 $R_{c2} = 2K\Omega$; $R_{e1} = 100\Omega$ $R_f = 10K\Omega$; $R_L = 10\Omega$

Desarrollo:

Circuito equivalente:

Electrónica Aplicada II

^(*) No se incluyen las resistencias de polarización de base para simplificar el calculo

$$A_{i} = \frac{i_{o}}{i_{i}} = \frac{i_{o}}{i_{b2}} \frac{i_{b2}}{i_{b1}} \frac{i_{b1}}{i_{i}}$$

donde

$$i_o = -hfe i_{b2} \frac{R_{c2}}{R_{c2} + R_L} \Rightarrow \frac{i_o}{i_{b2}} = hfe \frac{R_{c2}}{R_{c2} + R_L} = -2487,56$$

$$i_{b2} = -hfe \, i_{b1} \frac{R_{c1}}{R_{c1} + \left\lceil hie_1 + R_{e2} + \left(R_f \, \Box \, R_{e3} \right) \left(hfe + 1 \right) \right\rceil} \Rightarrow \frac{i_{b2}}{i_{b1}} = -1,9927$$

$$i_{b1} = i_i \frac{R_f + R_{e3}}{R_f + R_{e3} + hie_1} \Rightarrow \frac{i_{b1}}{i_i} = \frac{R_f + R_{e3}}{R_f + R_{e3} + hie_1} = 0,9166$$

$$A_i = \frac{i_o}{i_{b2}} \frac{i_{b2}}{i_{b1}} \frac{i_{b1}}{i_i} = (-2487, 56)(-1,9927)0,9166$$
 $\Rightarrow \qquad \boxed{A_i = 45,44}$

Red de Realimentacion:

$$i_o = i_f + i_e$$

donde
$$i_f = \frac{v_{e3} - v_i}{R_f}$$
 ; $i_e = \frac{v_{e3}}{R_{e3}}$

 $reemplazando i_f, i_e$

$$i_o = \frac{v_{e3} - v_i}{R_f} + \frac{v_{e3}}{R_{e3}}$$

$$donde v_i \square v_{e3} :: i_f = \frac{v_{e3}}{R_f}$$

$$i_o = \frac{v_{e3}}{R_f} + \frac{v_{e3}}{R_{e3}}$$

$$i_o = v_{e3} \left(\frac{1}{R_f} + \frac{1}{R_{e3}} \right) \Rightarrow \frac{i_o}{v_{e3}} = \frac{R_f + R_{e3}}{R_f R_{e3}}$$

$$i_o \frac{1}{\frac{V_{e3}}{R_f}} = \frac{R_f + R_{e3}}{R_{e3}} \Longrightarrow \frac{i_o}{i_f} = \frac{R_f + R_{e3}}{R_{e3}}$$

invirtiendo ambos miembros

$$\beta = \frac{i_f}{i_o} = \frac{R_{e3}}{R_f + R_{e3}} = \frac{1K\Omega}{10K\Omega + 1K\Omega} \therefore \quad \boxed{\beta = 0,09}$$

Desensibilidad: $D = 1 + \beta A_{\beta}$

$$D = 1 + \beta A$$

$$D = 1 + 0.09.45,44$$

$$D = 5,1309$$

$$A_{if} = \frac{A_i}{D} = \frac{45,44}{5,1309}$$

$$A_{if} = 8,85$$

Impedancias:

$$Z_i = R_s \square hie_1 \square (R_f + R_{e3}) = 100K\Omega \square 1K\Omega \square (10K\Omega + 1K\Omega)$$

$$Z_i = 908,34\Omega$$

$$Z_o = R_{c2} \square R_L = 2K\Omega \square 10\Omega$$

$$Z_{o} = 9,95\Omega$$

$$Z_{if} = \frac{Z_i}{D} = \frac{908,34\Omega}{5,1309}$$

$$Z_{if} = 177,03\Omega$$

$$Z_{of} = Z_o D = 9,95\Omega .5,1309$$

$$Z_{of} = 51,05\Omega$$

b. Dado el esquema circuital, aplicar al circuito una realimentación negativa de manera que cumpla con los siguientes requerimientos:

$$A_{vf} = 45,4$$

$$donde \quad \Delta A_{vf} = 0.271\% \quad para \quad \Delta A_{v} = 5\%$$

$$\begin{array}{c} Rb2 \\ Rb2 \\ 150k \\ \hline \end{array}$$

$$\begin{array}{c} Rb2 \\ 150k \\ \hline \end{array}$$

$$\begin{array}{c} Rc1 \\ 10k \\ \hline \end{array}$$

$$\begin{array}{c} Rc2 \\ 4.7k \\ \hline \end{array}$$

$$\begin{array}{c} Rc3 \\ 4.7k \\ \hline \end{array}$$

$$\begin{array}{c} Rc3 \\ 4.7k \\ \hline \end{array}$$

$$\begin{array}{c} Ce2 \\ 4.7k \\ \hline \end{array}$$

Desarrollo:

Debido a la configuración del esquema circuital se aplica una *Realimentación de Tensión en Serie*. El circuito con la realimentación se muestra a continuación:

 $A_{\rm vf} = \frac{A_{\rm v}}{D} \, si \, se \, aplica \, una \, variacion \, a \, la \, \, funsion \, anterior$

donde
$$\Delta A_{vf} = \frac{\Delta A_{v}}{D}$$
 para $\Delta A_{vf} = 0,271\%$ $y \quad \Delta A_{v} = 5\%$

$$D = \frac{\Delta A_{v}}{\Delta A_{vf}} = \frac{5\%}{0,271\%} = 18,4$$

$$para A_{vf} = 45, 4 \Rightarrow A_{v} = A_{vf}D = 45, 4.18, 4 \Rightarrow \boxed{A_{v} = 835, 36}$$

Con los datos obtenidos se puede, a continuación, encontrar el valor de la resistencia de realimentación $R_{\rm f}$.

Cálculo de la red β =

$$v_{o} = i(R_{e1} + R_{f})$$

$$v_{f} = iR_{e1}$$

$$\beta = \frac{v_{f}}{v_{o}} = \frac{fR_{e1}}{f(R_{e1} + R_{f})} = \frac{R_{e1}}{R_{e1} + R_{f}}$$

$$D = 1 + \beta A$$

$$\beta = \frac{D-1}{A} = \frac{18,4-1}{835,36} = 0,0208$$

$$\beta = \frac{R_{e1}}{R_{e1} + R_{f}} \implies R_{f} = \frac{R_{e1} - R_{e1}\beta}{\beta} = R_{e1} \frac{1 - \beta}{\beta} = 100\Omega \frac{1 - 0,0208}{0,0208}$$

$$R_{f} = 4,7K\Omega$$

c. Al siguiente circuito:

Desarrollo:

Circuito equivalente: En este caso consideramos que la carga es R_{C2}.

 $hie_1 = hie_2 = 1,1K\Omega$

Realimentacion de Corriente en Paralelo

$$\begin{split} A_{i} &= \frac{i_{o}}{i_{i}} = \frac{i_{o}}{i_{b2}} \frac{i_{b2}}{i_{b1}} \frac{i_{b1}}{i_{i}} \\ i_{o} &= -hfe \, i_{b2} \quad \Rightarrow \quad \frac{i_{o}}{i_{b2}} = -50 \\ i_{b2} &= -hfe \, i_{b1} \frac{R_{c1} \square R_{b3\%b4}}{\left(R_{c1} \square R_{b3\%b4}\right) + \left[hie_{2} + \left(R_{f} \square R_{e}\right)\left(hfe + 1\right)\right]} \Rightarrow \frac{i_{b2}}{i_{b1}} = -hfe \frac{R_{c1} \square R_{b3\%b4}}{\left(R_{c1} \square R_{b3\%b4}\right) + \left[hie_{2} + \left(R_{f} \square R_{e}\right)\left(hfe + 1\right)\right]} \\ & \qquad \qquad \frac{i_{b2}}{i_{b1}} = -11,28 \\ i_{b1} &= i_{i} \frac{R_{s} \square R_{b1\%b2} \square \left(R_{f} + R_{e}\right)}{\left[R_{s} \square R_{b1\%b2} \square \left(R_{f} + R_{e}\right)\right] + hie_{1}} \Rightarrow \qquad \frac{i_{b1}}{i_{i}} = \frac{R_{s} \square R_{b1\%b2} \square \left(R_{f} + R_{e}\right)}{\left[R_{s} \square R_{b1\%b2} \square \left(R_{f} + R_{e}\right)\right] + hie_{1}} = 0,2522 \\ A_{i} &= \frac{i_{o}}{i_{b2}} \frac{i_{b2}}{i_{b1}} \frac{i_{b1}}{i_{i}} = (-50)(-11,28)0,2522 \\ \hline A_{i} &= 142,24 \end{split}$$

Red de Reali mentacio

$$\beta = \frac{i_f}{i_o} = \frac{\frac{v_e}{R_f}}{\frac{v_e}{R_f} + \frac{v_e}{R_e}}$$

$$\beta = \frac{\frac{\frac{v_e}{R_f}}{R_f}}{v_e \frac{R_e + R_f}{R_f R_e}} = \frac{R_e}{R_e + R_f}$$

$$\beta = \frac{50\Omega}{50\Omega + 1.2K\Omega} \Rightarrow \beta = 0.04$$

$$D = 1 + \beta A_i = 1 + 0,04.142,24$$

$$D = 6,69$$

$$A_{ij} = \frac{A_i}{D} = \frac{142,24}{6,69}$$
 \Rightarrow $A_{ij} = 21,26$

Impedancias:

$$Z_{i} = R_{b1//b2} \square \left(R_{f} + R_{e} \right) \square hie_{1} = \left(1K\Omega \square 8K\Omega \right) \square \left(1, 2K\Omega + 50\Omega \right) \square 1, 1K\Omega$$

$$Z_{if} = \frac{Z_{i}}{D} = \frac{352, 84\Omega}{6,69}$$

$$Z_{i} = 352, 84\Omega$$

$$Z_{of} = R_{c2}$$

$$Z_{of} = Z_{o} D = 500\Omega.6, 69$$

$$Z_{of} = 3,34K\Omega$$

d. Con el siguiente circuito, se pide:

Datos: Calcular:
$$hfe = 40 \qquad A_{v} \; ; \; A_{vf}$$

$$hib = 10 \qquad Z_{i} \; ; Z_{o}$$

$$Z_{if} \; ; \; Z_{of}$$

Desarrollo:

Circuito equivalente:

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{v_{o}}{i_{b2}} \frac{i_{b2}}{i_{b1}} \frac{i_{b1}}{v_{i}}$$

$$v_{o} = -hfe i_{b2} \left[R_{c2} \square \left(hib + \frac{R_{b3}}{hfe + 1} \right) \right] \implies \frac{v_{o}}{i_{b2}} = -hfe \left[R_{c2} \square \left(hib + \frac{R_{b3}}{hfe + 1} \right) \right] = -0,5703$$

$$i_{b2} = -hfe i_{b1} \frac{R_{c1}}{R_{c1} + \left[hie_{2} + R_{e2} \left(hfe + 1 \right) \right]} \implies \frac{i_{b2}}{i_{b1}} = -hfe \frac{R_{c1}}{R_{c1} + \left[hie_{2} + R_{e2} \left(hfe + 1 \right) \right]} = -21,97$$

$$i_{b1} = \frac{v_{i}}{hie_{1} + R_{e1} \left(hfe + 1 \right)} \implies \frac{i_{b1}}{v_{i}} = \frac{1}{hie_{1} + R_{e1} \left(hfe + 1 \right)} = 1,2195$$

$$A_{v} = \frac{v_{o}}{i_{b2}} \frac{i_{b2}}{i_{b1}} \frac{i_{b1}}{v_{i}} = (-0,5703)(-21,97)1,2195$$

$$\overline{A_{v}} = 15,28$$

Recuerdese que:

$$hib = \frac{hie}{hfe + 1} \qquad hie = hib(hfe + 1) \Rightarrow hie = 410\Omega$$

$$-\alpha = hfb = \frac{hfe}{hfe + 1} \qquad \Rightarrow \qquad hfb = 0,9756$$

Red de Reali mentacion:

$$\beta = \frac{v_f}{v_o} = \frac{R_{e1} hfb i_{e3}}{i_{e3} \left(hib + \frac{R'}{hfe + 1} \right)} = \frac{R_{e1} hfb}{hib + \frac{R'}{hfe + 1}}$$

$$donde hfb = \frac{hfe}{hfe + 1} = 0,9756$$

$$\beta = 0,283$$

$$D = 1 + \beta A_{v} = 1 + 0,283.15,28$$

$$D = 5,33$$

$$A_{vf} = \frac{A_v}{D} = \frac{15,28}{5,33} \qquad \Rightarrow \qquad \boxed{A_{vf} = 2,864}$$

Impedancia:

$$Z_{i} = R_{b1} \square \Big[hie_{1} + R_{e1} (hfe + 1) \Big] = 100K\Omega \square \Big[410\Omega + 10\Omega (40 + 1) \Big]$$

$$Z_{if} = Z_{i} D = 850\Omega.5,33$$

$$Z_{i} = 850\Omega$$

$$Z_{ig} = A_{c2} \square \Big(hib + \frac{R'}{hfe + 1} \Big) = 1K\Omega \square \Big(10\Omega + \frac{1K\Omega}{40 + 1} \Big)$$

$$Z_{of} = \frac{Z_{o}}{D} = \frac{14,26\Omega}{5,33}$$

$$Z_{o} = 14,26\Omega$$

$$Z_{of} = 4,8\Omega$$