Started on	Saturday, 24 September 2022, 8:45 AM
State	Finished
Completed on	Saturday, 24 September 2022, 9:10 AM
Time taken	24 mins 14 secs
Marks	12.00/18.00
Grade	6.67 out of 10.00 (67 %)

Correct

Mark 1.00 out of 1.00

Find the sum 1 - 1/2 + 1/4 - 1/8 + 1/16 - 1/32 + ...

- a. 1
- b. 2/3
- c. 4/5
- od. None of the other choices is correct
- e. 3/4

Your answer is correct.

geometric progression with common ratio
$$r = -\frac{1}{2}$$

$$\frac{1}{1} - \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{8} \cdot \frac{1}{16} \cdot \frac{1$$

Use the formula:

$$s_n = a_1 + a_2 + a_3 + \dots + a_n = a_1 \cdot \frac{1 - r}{1 - r}$$

$$S_{\infty} = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(a_1 \frac{1 - r^n}{1 - r} \right) = \frac{a_1}{1 - r}, \quad (if |r| < 1)$$

The correct answer is:

2/3

Question 2

Correct

Mark 1.00 out of 1.00

What are the values of these sums, where $S = \{1, 3, 5, 7\}$?

$$M = \sum_{j \in S} j \qquad N = \sum_{j \in S} 1$$

- a. None of these
- b. M = 16, N = 7
- \odot c. M = 16, N = 4
- od. M = 16, N = 1

Your answer is correct.

The correct answer is: M = 16, N = 4

- a. True, True
- b. True, False
- o. False, False
- od. False, True

×

The correct answer is: False, False

Correct

Mark 1.00 out of 1.00

In the questions below assume that the universe for x is all people and the universe for y is the set of all movies. Write the English statement using the following predicates and any needed quantifiers:

$$S(x, y)$$
: x saw y $L(x, y)$: x liked y

"No one liked every movie he/she has seen."

- a. (i)
- b. None of these
- C. (iii)
- d. (ii)

The correct answer is: (ii)

Correct

Mark 1.00 out of 1.00

The proposition $p \rightarrow q$ is equivalent to ____.

- (i) $q \rightarrow p$
- $(ii) \, \neg p \to \neg q$
- $(iii) \, \neg q \to \neg p$
- $\text{(iv) } p \vee q$
- a. (ii)
- b. (iv)
- C. (iii)
- od. (i)

The correct answer is: (iii)

Correct

Mark 1.00 out of 1.00

Given f(x) = 3 - x, g(x) = 3x. Then $(f \circ g)(x) = ____.$

- \bigcirc a. 3x(3-x)
- b. None of these
- c. 3 3x

The correct answer is: 3 - 3x

Correct

Mark 1.00 out of 1.00

Let Q(x, y) be the statement "2x - y = xy", where the domain of x and y consists of all **integers**.

Which of the following statements is/are true?

- (i) Q(2,-1)
- (ii) $\forall yQ(2,y)$
- a. true, false
- b. true, true
- oc. false, false
- d. false, true

The correct answer is: false, false

Question 8				
Incorrect				
Mark 0.00 out of 1.00				
Suppose the truth value of $p \lor q \lor r$ is false. Find the truth values of $p \to q$ and $q \oplus r$.				
□ a. false, false				
☑ b. false, true	×			
c. true, true				
□ d. true, false				

The correct answer is: true, false

Question 9	
Correct	
Mark 1.00 out of 1.00	
The power set of the set {1, 3, 5} has elements.	
	✓
○ b. 9	
○ c. 6	
○ d. 3	

The correct answer is: 8

Correct

Mark 1.00 out of 1.00

Consider the sets $Z = \{..., -2, -1, 0, 1, 2, ...\}$, $N = \{0, 1, 2, ...\}$ and the function

 $f: \mathbb{Z} \to \mathbb{N}$,

$$f(n) = \begin{cases} 2n+1, & \text{if } n \ge 0 \\ -2n, & \text{if } n < 0 \end{cases}$$

Which statement is true?

- (i) f is **one-to-one**
- (ii) f is onto
- a. Both
- b. Neither
- c. Only (i)
- d. Only (ii)

Your answer is correct.

(ii) No n such that f(n) = 0.

The correct answer is: Only (i)

Correct

Mark 1.00 out of 1.00

"Prof" of
$$\lambda = 1$$

(1) $\alpha = b \neq 0$

(2) $ab = b^{2}$

(3) $ab - a^{2} = b^{2} - a^{2}$

(4) $a(b-a) = (b-a)(b+a)$

(5) $a = b+a$

(6) $a = 2a$

(7) $1 = \lambda$ (!)

Given a = b, which step is the first false statement?

- a. (4)
- b. (7)
- o. (6)
- d. (5)

/

The correct answer is: (5)

Question 12	
Incorrect	
Mark 0.00 out of 1.00	
Find the negation of the statement "Bob knows Python or Java".	
a. Bob doesn't know Python and Java.	
○ b. Bob knows Python and Java.	
⊚ c. Bob doesn't know Python or Java.	×

The correct answer is: Bob doesn't know Python and Java.

Correct

Mark 1.00 out of 1.00

Rewrite $\sum_{i=-3}^{4} (i^2 + 1)$ so that the index of summation has lower limit 0.

Select one.

(i)
$$\sum_{i=0}^{7} (i-3)^2 +1$$
.

(ii)
$$\sum_{i=0}^{6} \left(i^2 + 1 \right)$$

(ii)
$$\sum_{i=0}^{6} (i^2 + 1)$$

(iii) $\sum_{i=0}^{6} ((i-3)^2 + 1)$
(iv) $\sum_{i=0}^{7} (i^2 + 1)$

(iv)
$$\sum_{i=0}^{7} (i^2 + 1)$$

- a. (ii)
- o. (iv)
- d. (iii)
- e. None of the other choices is correct

Your answer is correct.

The correct answer is:

(i)

Not answered

Marked out of 1.00

Suppose $g: A \to B$ and $f: B \to C$ where $A = B = C = \{1,2,3,4\}, g = \{(1,4),(2,1),(3,1),(4,2)\}$ and $f = \{(1,3),(2,2),(3,4),(4,2)\}.$

Find $f \circ g$.

- a. {(1,2), (2,3), (3,3), (4,2)}
- b. {(1,1), (2,1), (3,2), (4,1)}
- c. {(1,1), (2,2), (3,3), (4,4)}
- d. None of the other choices is correct
- e. {(1,2), (2,4), (3,4), (4,1)}

Your answer is incorrect.

$$(f \circ g)(1) = f(g(1)) = f(4) = 2 \Rightarrow (f \circ g)(1) = 2 \text{ or } (1, 2) \in f \circ g$$

$$1 \xrightarrow{g} 4 \xrightarrow{f} 2 \Rightarrow (1, 2) \in f \circ g$$

$$2 \xrightarrow{g} 1 \xrightarrow{f} 3 \Rightarrow (2, 3) \in f \circ g$$

$$3 \xrightarrow{g} 1 \xrightarrow{f} 3 \Rightarrow (3, 3) \in f \circ g$$

$$4 \xrightarrow{g} 2 \xrightarrow{f} 2 \Rightarrow (4, 2) \in f \circ g$$

The correct answer is: {(1,2), (2,3), (3,3), (4,2)}

Not answered

Marked out of 1.00

The set $\{1, 2\} \times \{3\}$ has ____ subsets.

- o a. 3
- o b. 2
- oc. 8
- od. 4

The correct answer is: 4

Correct

Mark 1.00 out of 1.00

Let F(A) be the predicate "A is a finite set" and S(A,B) be the predicate "A is contained in B".

Suppose the universe of discourse consists of all sets. Translate the statement into symbols.

"The empty set is a subset of every finite set."

Select one.

- $(i) \forall B(F(B) \rightarrow S(\varnothing,B))$
- $(ii) \ \forall \, \mathbf{B} \big(F \big(B \big) \wedge S \big(\varnothing, B \big) \big)$
- $(iii) \,\forall \, \mathbf{B} \big(\varnothing \to S \big(\varnothing, B \big) \big)$
- $(iv) \forall BS(\varnothing,F(B))$
- a. (iii)
- b. (iv)
- o. (ii)
- od. None of the other choices is correct
- e. (i)

/

Your answer is correct.

"The empty set is a subset of every finite set."

$$\emptyset$$
 S(···) $\forall B$ $F(B)$

$$\forall B (F(B) \rightarrow S(\Phi, B))$$

The correct answer is:

Incorrect

Mark 0.00 out of 1.00

Which rules are functions?

$$(i) f: \mathbb{R} \to \mathbb{Z}; f(x) = \frac{1}{x^2 + 3}$$

$$(i) f: \mathbb{R} \to \mathbb{Z}; f(x) = \frac{1}{x^2 + 3}$$
$$(ii) f: \mathbb{R} \to \mathbb{R}; f(x) = \frac{1}{x^2 - 3}$$

- a. Both
- o. (i)
- d. Neither

The correct answer is: Neither

×

Correct

Mark 1.00 out of 1.00

Suppose $A = \{x, y\}$ and $B = \{x, \{x\}\}.$

Which one is true?

- (i) $\{x\} \subseteq B A$.
- (ii) $x \in A \oplus B$
- a. Both
- b. Only (i)
- c. Only (ii)
- d. Neither

Your answer is correct.

- (i) $B-A = \{\{x\}\}$ and $x \notin \{\{x\}\}\}$
- (ii) $A \oplus B = \{y, \{x\}\}$ and $x \notin \{y, \{x\}\}$

The correct answer is: Neither

