Quiz #3

Q1. Assume all input are available both uncomplemented and complemented, show a two-level implementation of:

$$G(a,b,c,d) = ab + ad + a'b' + a'c'd' = (a'+b+d)(a+b'+c')(a+b'+d')$$

a- Using Nand gates of any size

b- Using nor gates of any size

$$G = (a'+b+d)(a+b'+c')(a+b'+d')$$

Winter 2014

c- Using tow-input NAND gates (none of which may be used as a NOT)

$$g = ab + ad + a'b' + a'c'd' = a(b+d) + a'(b'+c'd')$$

Q2. Given the following truth table

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1
			I

a- Write the sum of minterm function in numeric form $F = \Sigma m(1,2,4,6,7)$

b- Write the sum of minterm function in Algbraic form

$$F = x'y'z + x'yz'+xy'z'+xyz'+xyz$$

c- Find the minimum sum of products expression

$$F = x'y'z + \underline{x'yz'} + \underline{xy'z'} + \underline{xyz'} + xyz = x'y'z + x'yz' + xyz + xz'(y'+y)$$

$$= x'y'z + yx'z' + xyz + xz' = x(z'+yz) + z'(x+yx') + x'y'z = \underline{xz'} + xy + \underline{xz'} + yz' + x'y'z$$

$$= xz' + xy + yz' + x'y'z$$

d- Find the minimum product of sum expression

$$F = = xz' + xy + yz' + x'y'z = z'(x+y) + x'y'z + xy$$

$$= (z'+x'y')(z+x+y) + xy = (xy+(z'+x'y'))(xy+(z+x+y)) = ((x+y')(x'+y)+z')(z+x+y) =$$

$$= (x+y'+z')(x'+y+z')(z+x+y)$$

- Q3. Given the following sequence of 6 state: $4 \quad 7 \quad 2 \quad 0 \quad 3 \quad 1$
 - a) Design a counter to generate the sequence using *T Flip Flop*.
 - b) Show the state diagram indicating what happens if it, initially, is in one of the unused states.

Pag

Fatma A. El-Licy May 7, 2014

Quiz #3 Solution

- c) Propose a solution for the problems caused by the unused states.
- d) Design the solution you proposed in 'c'
 Sol
 a)

0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 <th>Q2 Q1 Q0</th> <th>Q2*</th> <th>Q1*</th> <th>Q0*</th> <th>T2</th> <th><i>T1</i></th> <th>T0</th>	Q2 Q1 Q0	Q2*	Q1*	Q0*	T2	<i>T1</i>	T0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1		1 0 0 0 1 X	1 0 0 1 1 X	1 0 0 0 X	1 1 X	

$$T0 = \Sigma M(0,1,4,7) + \Sigma D(5,6)$$

 $T1 = \Sigma M(0,2,3,4) + \Sigma D(5,6)$
 $T2 = \Sigma M(1,7) + \Sigma D(5,6)$

	00	01	11	10
0	1		х	1
1	1		1	х

$$T0=Q2+Q1$$
'
 $T1=\Sigma M(0,2,3,4) + \Sigma D(5,6)$

	00	01	11	10		
0	1	1	х	1		
1		1		х		
T1=Q0'+Q2'Q1						

$$T2 = \Sigma M(1,7) + \Sigma D(5,6)$$

	00	01	11	10
0			х	
1	1		1	х

$$T2 = Q1Q2/q2q0 + Q1'Q0$$

Fatma A. El-Licy May 7, 2014

CS504 Winter 2014

Quiz #3 Solution

T0=Q2+Q1' T1=Q0'+Q2'Q1 T2=Q1Q2/q2q0+Q1'Q0

T2 T1 T0

101	1/1	0	1	000/000 used states
110	1/0	1	1	001/101 USED 1, unused 5

b) State Diagram

4 7 2 0 3 1

c) THE FIRST SOLUTION IS A SELF STATED DESIGN SOLUTION
OR IF YOU HAVE TO USE THE SECOND SOLUTION THEN YOU must REDESIGN IT.
It SHOULD BE REDESIGNED WITH THE STATE '110' AS A USED STATE

Fatma A. El-Licy May 7, 2014

CS504 Quiz #3 Solution

d) design for the same sequence with state '110' \rightarrow '001'

Q2 Q1 Q0	Q2*	Q1*	Q0*	<i>T</i> 2	<i>T1</i>	TO
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	0 1 0 0 0 1 x	1 0 0 0 1 x	1 0 0 1 1 x	0 1 0 0 0 x	1 0 1 1 1 x	1 1 0 0 1 x
1 1 0 1 1 1	0	0	1 0	1	1 0	1

$$T0 = \Sigma M(0,1,4,6,7) + \Sigma D(5)$$

$$T1 = \Sigma M(0,2,3,4,6) + \Sigma D(5)$$

$$T2=\Sigma M(1,6,7)+\Sigma D(5)$$

T0

	00	01	11	10
0	1		1	1
1	1		1	х

$$T0 = Q2 + Q1'$$

7	7 1
•	•
_	

	00	01	11	10
0	1	1	1	1
1		1		х
			101	

$$T1 = Q0' + Q2'Q1$$

T2

	00	01	11	10
0			1	
1	1		1	х

$$T2 = Q1Q2 + Q1'Q0$$

$$T0 = Q2 + Q1$$

$$T1 = Q0' + Q2'Q1$$

$$T2 = Q1Q2 + Q1'Q0$$

Check self starting

000 USED 0

Fatma A. El-Licy May 7, 2014

The state diagram

