Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 = 2 \\ u_{n+1} = 1 + \frac{1}{u_n} \end{cases}$$

- 1. Calculer u_1 .
- 2. Etudiez la fonction $f: x \mapsto 1 + \frac{1}{x}$. (Domaine de définition, limites et variations)
- 3. Résoudre f(x) = x. On note α l'unique solution dans \mathbb{R}_+^* .
- 4. Montrer que $u_1 < \alpha < 2$.
- 5. On note $I = [1, \alpha]$ et $J = [\alpha, 2]$. Montrer que $f(I) \subset J$ et $f(J) \subset I$.
- 6. On considère les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par

$$a_n = u_{2n}$$
 $b_n = u_{2n+1}$.

Enfin on note A la fonction définie pour tout x par $A(x) = f \circ f(x)$. Montrer que $a_{n+1} = A(a_n)$. On peut montrer de manière similaire que $b_{n+1} = A(b_n)$, on ne demande pas de le prouver.

- 7. Soit F une fonction réelle. Soient \mathcal{E} et \mathcal{F} deux sous-ensembles de \mathbb{R} . Montrer que si $\mathcal{E} \subset \mathcal{F}$ alors $F(\mathcal{E}) \subset F(\mathcal{F})$. En déduire que I est stable par A. De même, on pourrait montrer que J est stable par A, on ne demande pas de le prouver.
- 8. Montrer que pour tout $x \in D_f$, $A(x) x = \frac{-x^2 + x + 1}{x + 1}$
- 9. Résoudre $A(x) \ge x$ sur $]0, +\infty[$.
- 10. En déduire que $(a_n)_{n\in\mathbb{N}}$ est décroissante et $(b_n)_{n\in\mathbb{N}}$ est croissante.
- 11. Montrer que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ convergent, calculer leur limite.
- 12. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.
- 13. (a) Ecrire une fonction Python u qui prend en paramètre un entier n et qui renvoie la valeur de u_n
 - (b) Ecrire une fonction Python limiteu qui prend en paramètre un reel $\epsilon > 0$ et qui renvoie la valeur de du premier rang $n_0 \ge 0$ tel que $|u_{n_0} \ell| \le \epsilon$