

### 시간대를 고려한 신용카드 이상탐지 기법 연구

A Study on Credit Card Anomaly Detection Considering Time Sequences

숙명여자대학교 빅데이터분석융합학(협동과정)

양 소 연



# 목차

- 1. 연구 배경 및 목적
- 2. 관련 연구
- 3. 시스템 모델
- 4. LSTM Autoencoder
- 5. 결론 및 향후 계획



# 1. 연구 배경 및 목적



핀테크(FinTech)



#### 보안상의 취약점을 노린 금융사기 급증

[금융위원회] 가족과 지인을 사칭하여 카카오톡, 휴대전화문자 등을 통해 돈과 개인정보를 요구하는 메신저피싱이 증가하고 있으니, 유의하시기 바랍니다.

> [금융위원회] (대처방법)가족, 지인 여부를 통화 등을 통해 확인! 출처 불분명한 앱설치 거절! 신고는 금감원 21332, 경찰청 2112

草 2:01



## 1. 연구 배경 및 목적

### 이상금융거래 탐지시스템

(FDS, Fraud Detection System)



"분석 및 탐지" 기능에 대한 실험 수행



### 1. 연구 배경 및 목적

#### 연구 문제 정의 및 해결방안

#### 데이터 라벨링(Labeling)

- Labeled data 확보가 어려움
- 혼재되어 있음



- Labeled data를 활용한 지도학습
- Unlabeled data를 활용한 비지도 학습



LSTM Autoencoder를 사용한 비지도학습

#### 데이터 불균형

- FDS는 이진 분류 예측 모델
- 정상 / 이상 비율의 차이가 큼



- 오버샘플링 (Over-sampling)
- 언더샘플링 (Under-sampling)



• CTGAN을 활용한 합성 데이터 생성



# 2. 관련 연구

### 데이터 라벨링(Labeling)

- 이상 데이터와 레이블 데이터 확보의 어려움
- 이상 패턴의 기준이 바뀌면 새로운 레이블 데이터 생성해야 함

#### • 지도학습

- LSTM과 Adaboost를 활용하여 0.996%의 민감도를 얻음(Esenogho et al, 2022)
- Random Forest를 활용하여 98.6%의 accuracy를 얻음(Gaikwad et al, 2022)

#### • 비지도학습

• Autoencoder를 사용하여 변수를 추출하고 SVM 모델과 결합(Deng et al, 2020)



### 2. 관련 연구

#### 데이터 불균형

- 리샘플링(resampling)을 활용하여 클래스 분포를 재조정
- **SMOTE**(Synthetic Minority Over-sampling Technique)
- SMOTE를 활용한 리샘플링 데이터로 0.9262의 accuracy를 얻음(Ishaq et al, 2021)

- GAN(Generative Adversarial Networks)
- GAN을 활용한 리샘플링 데이터로 recall 점수를 5% 상승시킴(Ngwenduna et al, 2021)



#### 데이터 설명

- Kaggle, "Credit Card Fraud Detection" (https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud)
  - 2013년 유럽에서 사용된 신용카드 거래 데이터
  - 약 28만개 데이터 중 492개만이 사기 데이터 → 0.172%
- 주요 변수는 V1, V2, ··· V28 과 'Time', 'Amount' 그리고 'Class'
  - Time: 첫번째 거래와 마지막 거래 사이의 결과 시간(초)
  - Amount : 거래 금액, 비용을 고려한 학습에 사용 가능
  - Class: 사기 데이터는 1, 그렇지 않으면 0으로 표기
- 주성분 분석(PCA, Principal Component Analysis)을 통한 비식별화



#### 데이터 전처리

• Time을 일중 시간으로 변환





• Amount의 편차가 크므로 log를 이용하여 변환







#### CTGAN(Conditional Tabular Generative Adversarial Networks)

- 일반적으로 정형데이터는 연속형 변수와 카테고리 변수가 섞여 있음
- 기존의 tabular data GAN은 metric 문제가 발생
- 이러한 문제를 해결하기 위해 조건부 생성기를 사용하는 CTGAN을 설계





#### CTGAN을 활용한 합성 데이터 생성



GAN 알고리즘 중
Tabular data에 최적화 되어있는 CTGAN을 활용하여
소수의 이상 데이터를 오버샘플링



#### CTGAN을 활용한 합성 데이터 분포





#### 변수 선택(Feature Selection)

- 모델을 개발할 때 입력 변수를 줄이는 과정
- 입력 데이터의 개수를 줄여 모델링의 계산 비용을 절감
- 모델의 성능을 개선
- 일반적으로 통계적 기법을 사용 → XAI 기법 활용
- 입력 데이터와 목적 변수의 상관관계를 살펴본 후 선택



### XAI(eXplainable Artificial Intelligence)

AI의 블랙박스 문제를 해결하고, 인간에게 AI의 행동을 이해하기 쉽게 설명해주는 것이 목적

#### SHAP

(Shapley Additive exPlanations)



#### LIME

(Local Interpretable Model-agnostic Explanation)





#### Feature Selection 기법에 따른 성능 비교



Random Forest를 사용하여 비교 분석

- 통계적 기법(STATS): 피어슨 상관 계수, 카이제곱 검정, 차이분석, 회귀분석을 이용하여 선별
- LIME: 국소 회귀의 적합성만을 고려
- SHAP: 전체 데이터 샘플을 활용



#### SHAP를 활용하여 추출한 주요 속성값





#### 평가 방식 (Metric)

|          |       | 실제 정답                          |                               |
|----------|-------|--------------------------------|-------------------------------|
|          |       | True                           | False                         |
| 분류<br>결과 | True  | True <b>P</b> ositive<br>(정답)  | False Positive<br>(오답)        |
|          | False | False <b>N</b> egative<br>(오답) | True <b>N</b> egative<br>(정답) |

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Precision과 Recall의 조화평균

$$F1 - Score = 2 * \frac{Precison * Recall}{Precison + Recall}$$



### 제안 알고리즘

#### 데이터 라벨링

- 현실적으로 라벨링 된 데이터가 부족 → Autoencoder 기반의 모델 사용
- 과거의 패턴도 일부 반영하여 참고하기 위해 시계열 기반의 LSTM 모델 활용
  - Autoencoder에 정상 데이터만 학습시켜 **특징을 기억**하도록 함 → LSTM의 메모리 활용
  - 해당 정상치 범위에서 벗어나는 데이터를 이상치로 감지

#### 데이터 불균형

- 보통의 기계학습 모델은 클래스 비율이 동일하다고 가정
- 이상 탐지 모델 특성에 따라 Conditional Tabular GAN을 활용
- 이상 데이터의 비율을 각각 0.3%, 0.7%으로 리샘플링



### 4. LSTM Autoencoder





### 4. LSTM Autoencoder

#### 전통적 비지도학습 기법과의 비교



- Shared data에서는 Isolation Forest 와 제안 알고리즘이 비슷한 성능
- 이상치 비율이 높아질수록 제안 알고리즘인 SHAP-ed LSTM 의 성능이 우수



### 4. LSTM Autoencoder

#### 최근 데이터 반영 개수에 따른 모델 성능 비교



이상치 비율이 낮으면 데이터의 전반적인 흐름을 보아야 하지만 이상치 비율이 높으면 최근 데이터만 보는 것이 이상금융거래탐지에 유리



# 5. 결론 및 향후 계획

데이터 라벨링

• Autoencoder 모델을 기반으로 데이터 라벨링 문제 완화

데이터 불균형

• Conditional Tabular GAN을 이용하여 리샘플링

컴퓨팅 파워 절약

• XAI 기법을 활용하여 Feature 추출

최근 데이터 반영

- 사기 데이터 비율이 낮을 때는 전반적인 추이 분석
- 사기 데이터 비율이 높을 때는 최근 데이터에 집중

모델 해석

XAI 기법의 SHAP 사용

향후 계획

• 최근 데이터를 얼마나 반영해야 하는지 optimization 연구 진행