Virtual Worlds

Lecture 02. Modeling

Kang Hoon Lee

Department of Software Kwangwoon University

3D Models

Numerical representations of visual appearances of objects in the 3D space

□ Use one or more numbers, or coordinates, to uniquely determine the positions of the points

□ Left-handed vs. Right-handed cartesian coordinates

 Coordinate systems used in popular game engines and 3D software packages including Unity and Unreal

 Coordinate systems used in popular game engines and 3D software packages including Unity and Unreal

Polygonal Meshes

 A collection of vertices, edges and faces that defines the shape of a polyhedral object

Data Structures

- □ Vertex-vertex
 - The simplest representation
- ☐ Face-vertex
 - The most widely used representation
- Winged edge
 - The most flexible representation

Vertex-Vertex Meshes

A set of vertices connected to other vertices

The simplest representation, but not widely used since the face and edge information is implicit

v0 0,0,0 v1 v5 v4 v3 v v1 1,0,0 v2 v6 v5 v0 v v2 1,1,0 v3 v7 v6 v1 v v3 0,1,0 v2 v6 v7 v4 v	
v2 1,1,0 v3 v7 v6 v1 v	9
	9
v3 0,1,0 v2 v6 v7 v4 v	9
CONTRACTOR	9
v4 0,0,1 v5 v0 v3 v7 v	8
v5 1,0,1 v6 v1 v0 v4 v	8
v6 1,1,1 v7 v2 v1 v5 v	8
v7 0,1,1 v4 v3 v2 v6 v	8
v8 .5,.5,1 v4 v5 v6 v7	
v9 .5,.5,0 v0 v1 v2 v3	

□ A set of faces and a set of vertices

Most widely used representation, being the input typically accepted by modern graphics hardware

Winged Edge

Explicitly represent the vertices, faces and edges

Widely used in modeling programs to provide the greatest flexibility in dynamically changing the mesh geometry

Face List			
fO	489		
f1	0 10 9		
f2	5 10 11		
f3	1 12 11		
f4	6 12 13		
f5	2 14 13		
f6	7 14 15		
f7	3 8 15		
f8	4 16 19		
f9	5 17 16		
f10	6 18 17		
f11	7 19 18		
f12	0 23 20		
f13	1 20 21		
f14	2 21 22		
f15	3 22 23		

Edge List				
e0	v0 v1	f1 f12	9 23 10 20	
e1	v1 v2	f3 f13	11 20 12 21	
e2	v2 v3	f5 f14	13 21 14 22	
e3	v3 v0	f7 f15	15 22 8 23	
e4	v4 v5	f0 f8	19 8 16 9	
e5	v5 v6	f2 f9	16 10 17 11	
e6	v6 v7	f4 f10	17 12 18 13	
e7	v7 v4	f6 f11	18 14 19 15	
e8	v0 v4	f7 f0	3 9 7 4	
e9	v0 v5	f0 f1	8 0 4 10	
e10	v1 v5	f1 f2	0 11 9 5	
e11	v1 v6	f2 f3	10 1 5 12	
e12	v2 v6	f3 f4	1 13 11 6	
e13	v2 v7	f4 f5	12 2 6 14	
e14	v3 v7	f5 f6	2 15 13 7	
e15	v3 v4	f6 f7	14 3 7 15	
e16	v5 v8	f8 f9	4 5 19 17	
e17	v6 v8	f9 f10	5 6 16 18	
e18	v7 v8	f10 f11	6 7 17 19	
e19	v4 v8	f11 f8	7 4 18 16	
e20	v1 v9	f12 f13	0 1 23 21	
e21	v2 v9	f13 f14	1 2 20 22	
e22	v3 v9	f14 f15	2 3 21 23	
e23	v0 v9	f15f12	3 0 22 20	
		7.7		

Vertex List				
vO	0,0,0	8 9 0 23 3		
v1	1,0,0	10 11 1 20 0		
v2	1,1,0	12 13 2 21 1		
٧3	0,1,0	14 15 3 22 2		
٧4	0,0,1	8 15 7 19 4		
v5	1,0,1	10 9 4 16 5		
v6	1,1,1	12 11 5 17 6		
٧7	0,1,1	14 13 6 18 7		
v8	.5,.5,0	16 17 18 19		
v9	.5,.5,1	20 21 22 23		

Winged Edge Structure

77

File Formats for Polygonal Meshes

- □ OBJ
- □ FBX
- ☐ STL
- DAE
- □ 3DS
- POV
- □ X3D
- □ VRML
- Ш ...

OBJ

E.g. OBJ File Formats

- Geometry definition file formats first developed by Wavefront Technologies
- □ Simple data format that represents 3D geometry alone
 - The position of each vertex
 - The texture coordinate of each vertex
 - The normal of each vertex
 - The faces that make each polygon defined as a list of vertices, optionally with texture coordinates and normals

E.g. OBJ File Formats

```
# List of geometric vertices, with (x, y, z, [w]) coordinates, w is optional and defaults to 1.0.
v 0.123 0.234 0.345 1.0
٧ ...
# List of texture coordinates, in (u, [v, w]) coordinates, these will vary between 0 and 1. v, w are optional and
default to 0.
vt 0.500 1 [0]
vt ...
# List of vertex normals in (x,y,z) form; normals might not be unit vectors.
vn 0.707 0.000 0.707
vn ...
# Parameter space vertices in (u, [v, w]) form; free form geometry statement (see below)
vp 0.310000 3.210000 2.100000
vp ...
# Polygonal face element (see below)
f 1 2 3
f 3/1 4/2 5/3
f 6/4/1 3/5/3 7/6/5
f 7//1 8//2 9//3
f ...
# Line element (see below)
1581249
```

Points vs. Vectors

Similarity

- Both can be numerically encoded as coordinates
 - \Box p = (1.5, 1)
 - \Box v = (1.5, 1)

Difference

- Points represent location in the space
- Vectors represent direction and magnitude (without location)

Questions

- Points can be multiplied with a scalar?
- How about vectors?

is same with

가

Vector Algebra

- □ Scalar Multiplication
- Addition
- □ Subtraction
- □ Dot Product
- □ Cross Product

Scalar Multiplication

□ Change only magnitude without modifying direction

Addition

☐ Translate two vectors such that the head of one vector coincides with the tail of the other vector

Addition

☐ Then, the addition corresponds to the vector from the tail of the former vector to the head of the latter one

Addition

Create a parallelogram such that given two vectors form its two adjacent sides, then the addition corresponds to the diagonal of the parallelogram

Subtraction

$$\vec{a} - \vec{b}$$

Subtraction

Subtraction

$$\vec{a} - \vec{b}$$

Coordinates of Vectors

Location of the head of a vector when its tail coincides with the origin of the coordinate system

Numerical Computation

 Addition/subtraction of vectors can be obtained by adding/subtracting their associated coordinates

Numerical Computation

Component-wise add/sub

Numerical Computation

 Scalar multiplication of a vector can also be obtained by multiplying its associated coordinates

Length and Direction

Given a vector, calculate its length and direction?

Length by Pythagorean Theorem

$$\square \quad x^2 + y^2 = L^2$$

Length by Pythagorean Theorem

$$\square \quad x^2 + y^2 = L^2$$

Ex) length of $\vec{v} = (1, 2)$?

Normalization into Unit Vector

Scale a vector such that its length becomes one while keeping its direction

Direction by Trigonometry

 $\Box \tan \theta = \frac{y}{x}$

Direction by Trigonometry

$$\Box \tan \theta = \frac{y}{x}$$

Ex) length and angle of $\vec{v} = (1, \sqrt{3})$?

가 (가)

- \square Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ be vectors in \mathbf{R}^n
- \square Let $c_1, c_2, ..., c_k$ be scalars
- □ Then, the vector $b = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k$ is called a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$
 - $c_1, c_2, ..., c_k$ are commonly called the "weights"

Example

Affine Combination

- \square Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ be vectors in \mathbb{R}^n
- \square Let $c_1, c_2, ..., c_k$ be scalars such that

$$\sum_{i=1}^k c_i = 1$$

- ☐ Then, the vector $b = c_1v_1 + c_2v_2 + \cdots + c_kv_k$ is called an affine combination of $v_1, v_2, ..., v_k$
 - $c_1, c_2, ..., c_k$ are commonly called the "weights"

```
? 1/2 ? 1/2 weight 1 ? affine
```

Convex Combination

- \square Let $v_1, v_2, ..., v_k$ be vectors in \mathbb{R}^n
- \square Let $c_1, c_2, ..., c_k$ be scalars such that

$$c_i \geq 0 \text{ and } \sum_{i=1}^{k} c_i = 1$$

- □ Then, the vector $b = c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$ is called an convex combination of $v_1, v_2, ..., v_k$
 - $\mathbf{c}_1, c_2, ..., c_k$ are commonly called the "weights"

? 가

Vector Space

- □ For all vectors u, v, w and scalars a, b:
 - $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
 - $\bullet \ \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
 - There exists a *zero vector* " $\mathbf{0}$ " such that $\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$
 - For every \mathbf{v} there is a vector " $-\mathbf{v}$ " such that $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$
 - $1\mathbf{v} = \mathbf{v}$
 - $a(b\mathbf{v}) = (ab)\mathbf{v}$
 - $\bullet \ a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
 - $(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$
- □ Any collection of objects satisfying all of this properties is a vector space (e.g. polynomials, functions, etc.)

Euclidean Vector Space

- Most common example: Euclidean n-dimensional space
- \square Typically denoted by \mathbb{R}^n , meaning "n real numbers"
- \Box E.g., (1.23, 4.56, 1.57) is a point in \mathbb{R}^3
- Why such a common example?
 - Looks a lot like the space we live in!
 - That's what we can easily encode on a computer (a list of floating-point numbers)

 \mathbb{R}^3

Span

- ☐ Q: Geometrically, what is the *span* of two vectors u, v?
- A: The span is the set of all vectors that can be written as a linear combination of u and v, i.e., vectors of the form:

$$a\mathbf{u} + b\mathbf{v}$$

for any two numbers a, b

☐ More generally:

$$span(\mathbf{u}_1, \dots, \mathbf{u}_k) = \left\{ \mathbf{x} \in V \middle| \mathbf{x} = \sum_{i=1}^k a_i \mathbf{u}_i, a_1, \dots, a_k \in \mathbf{R} \right\}$$

- □ Span is closely related to the idea of a basis
- In particular, if we have exactly n vectors $\mathbf{e}_1, \cdots, \mathbf{e}_n$ such that

$$span(\mathbf{e}_1, \cdots, \mathbf{e}_n) = \mathbf{R}^n$$
 , ...

- \square Then we say that these vectors are a basis for \mathbb{R}^n
- Note: many different choices of basis!
- Q: Which of the following are bases for the 2D plane (n=2)?

Orthonormal Basis

- Most often, it is convenient to have basis vectors that are (i) unit length and (ii) mutually orthogonal.
- \square In other words, if e_1, \dots, e_n are our basis vectors then

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \begin{cases} 1, & i = j \\ 0, & \text{otherwise.} \end{cases}$$

This way, the geometric meaning of the sum $u_1^2 + \cdots + u_n^2$ is maintained: it is the length of the vector u

=>

Revisiting Operations on Points

- Points can be added?
- Points can be subtracted?
- Points can be multiplied with scalars?

Point - Point = Vector

Relative location of one point with respect to another point

Point - Point = Vector

Relative location of one point with respect to another point
Point 7:

Point + Vector = Point

Translate a point toward a direction by a magnitude

Point + Vector = Point

Translate a point toward a direction by a magnitude

Point + Point ?

- □ What is $10 \cdot p_1$?
- \square What is $p_1 + p_2$?

가

Point t + Point(1-t) = Point

□ What is $p_1 \cdot 0.5 + p_2 \cdot 0.5$?

affine combination

?? 가

Point·t + Point·(1-t) = Point

$$p_1 \cdot t + p_2 \cdot (1 - t) = p_2 + (p_1 - p_2) \cdot t$$

Additional Vector Operations

- □ Dot product ? N 7
 - Also called scalar product
 - ? 가
- □ Cross product ?
 - Also called vector product

가

- $||\vec{a}|| = 4$
- $\|\vec{\boldsymbol{b}}\| = 3$
- $\theta = 45^{\circ}$
- $\vec{a} \cdot \vec{b} = ?$

 $\vec{a} \cdot \vec{b} = ?$

How can we get the angle?

Angle between Two Vectors

Angle between Two Vectors

$$\Box \quad cos\theta = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}$$

$$\Box \quad \theta = \arccos \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}$$

Angle between Two Vectors

$$\Box \quad cos\theta = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}$$

$$\Box \quad \theta = \arccos \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}$$

1

Project One Vector onto Another

 $\overrightarrow{a'}$ = projection of \overrightarrow{a} onto \overrightarrow{b}

 $\overrightarrow{a'}$ = projection of \overrightarrow{a} onto \overrightarrow{b}

- $\overrightarrow{a'}$ = projection of \overrightarrow{a} onto \overrightarrow{b}
 - Length of $\overrightarrow{a'} = ||\overrightarrow{a}|| \cos \theta$

- \square $\overrightarrow{a'}$ = projection of \overrightarrow{a} onto \overrightarrow{b}
 - Length of $\overrightarrow{a'} = ||\overrightarrow{a}|| \cos \theta$

$$= \|\vec{a}\| \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|}$$

- $\overrightarrow{a'}$ = projection of \overrightarrow{a} onto \overrightarrow{b}
 - Length of $\overrightarrow{a'} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{b}\|}$
 - Direction of $\overrightarrow{a'} = \frac{\overrightarrow{b}}{\|\overrightarrow{b}\|}$

$$\square \quad \overrightarrow{a'} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{b}\|} \cdot \frac{\overrightarrow{b}}{\|\overrightarrow{b}\|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{b}\|^2} \cdot \overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\overrightarrow{b} \cdot \overrightarrow{b}} \cdot \overrightarrow{b}$$

$$\vec{a} = (0,2)$$

$$\vec{a'} = (?,?)$$

$$\vec{b} = (1,1)$$

Dot Product in Practice

- lacktriangle Given two unit vectors \overrightarrow{a} and \overrightarrow{b} , they are:
 - Collinear, if $\vec{a} \cdot \vec{b} = 1$
 - Collinear but opposite, if $\vec{a} \cdot \vec{b} = -1$
 - Perpendicular, if $\vec{a} \cdot \vec{b} = 0$
 - In the same direction, if $\vec{a} \cdot \vec{b} > 0$
 - In the opposite direction, if $\vec{a}\cdot\vec{b}<0$

Dot Product in Practice

□ Checking if an enemy at E is in front of or behind the player character at P facing in \vec{f} direction:

Dot Product in Practice

Checking if an enemy at *E* is in front of or behind the player character at *P* facing in *f* direction:

$$d = \overrightarrow{v} \cdot \overrightarrow{f} (\overrightarrow{v} = E - P)$$

Cross Product

- - \vec{n} is a unit vector that is perpendicular to both \vec{a} and \vec{b} (Only defined in 3D Euclidean space)

Direction: Handedness

Under right-hand rule, the direction of $\vec{a} \times \vec{b}$ is the direction of thumb of right hand when index and middle fingers coincide with \vec{a} and \vec{b}

Magnitude: Area of Parallelogram

Coordinate notation

 $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$

Matrix determinant

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$

Ex 1)
$$\vec{a} = (1,0,0), \vec{b} = (0,1,0), \vec{a} \times \vec{b} = ?$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$

Ex 2)
$$\vec{a} = (3, -3, 1), \vec{b} = (4, 9, 2), \vec{a} \times \vec{b} = ?$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$

Ex 3) Given $\vec{a} = (3, -3, 1)$ and $\vec{b} = (4, 9, 2)$, calculate the area of the parallelogram spanned by the vectors \vec{a} and \vec{b} ?

$$\overrightarrow{a} \times \overrightarrow{b}$$

$$\overrightarrow{a} \times \overrightarrow{b}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

Ex 4) Given $\vec{a} = (3, -3, 1)$ and $\vec{b} = (-12, 12, -4)$, calculate the area of the parallelogram spanned by the vectors \vec{a} and \vec{b} ?

$$\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}} \times \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

In computer graphics, we often need to get a unit vector that is perpendicular to a curved surface at a point

In polygonal model, it can be approximated as a plane normal

$$\square \overrightarrow{N} = \overline{(p_2 - p_1)} \times \overline{(p_3 - p_1)}$$

$$\square \vec{n} = \vec{N}/_{\|\vec{N}\|}$$

$$\square \overrightarrow{N} = \overrightarrow{(p_2 - p_1)} \times \overrightarrow{(p_3 - p_1)}$$

$$\square \vec{n} = \vec{N}/_{\parallel \vec{N} \parallel}$$

- $p_1 = (0, 0, 0)$
- $p_2 = (1, 1, 1)$
- $p_3 = (0, 0, 1)$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

