Guide d'onde à section rectangulaire

Table des matières

1	Généralité		2	
	1.1 Défin	<mark>ition</mark>	2	
	1.2 Onde	transverse électrique-Onde transverse magnétique	2	
	1.3 Cond	itions aux limites	2	
		ide d'onde à section rectangulaire		
		Elisation		
	2.2 Notio	n du mode de propagation	3	
	2.3 Mode	es $\mathrm{TE}_{n,0}$	3	
	2.4 Mode	es $\mathrm{TE}_{0,m}$	5	
		es TE _{n m}		

1 Généralité

1.1 Définition

•Définition: Un guide d'onde est une portion d'espace vide ou remplie par un diélectrique (milieu isolant) et limité par un conducteur supposée parfait, il sert à canaliser l'OEM dans cette portion de l'espace sans dissipation de son énergie. Le guide d'onde est invariant par translation dans une direction qui sera la direction de propagation de l'OEM.

Exemples

1.2 Onde transverse électrique-Onde transverse magnétique

- ▶ une onde électromagnétique est dite transverse électrique (TE) si le champ électrique est perpendiculaire à la direction de propagation
- une onde électromagnétique est dite transverse magnétique (TM) si le champ magnétique est perpendiculaire à la direction de propagation
- une onde électromagnétique est dite transverse électromagnétique (TEM) si le champ électrique et magnétique sont perpendiculaire à la direction de propagation

1.3 Conditions aux limites

Considérons l'OEMPPH de la forme : $\overrightarrow{\underline{E}} = \overrightarrow{\underline{E}}_0 \exp i(\omega t - kz)$ avec $\overrightarrow{E}_0 \perp \overrightarrow{e}_z$

- la composante tangentielle du champ électrique doit être nulle sur les bords du guide donc E₀ doit être nul sur les bords,donc nécessairemet doit dépendre des coordonnées *x*, *y*,donc l'onde plane plane ne peut être solution de ce problème
- il est de même pour le champ magnétique (continuité de la composante normale)
- Conclusion : les conditions aux limites interdisent la propagation des ondes électromagnétiques planes progressives monochromatiques et imposent une forme plus complexe.

2 Guide d'onde à section rectangulaire

2.1 Modélisation

le guide d'onde à section rectangulaire est constitué de quatres planes métalliques parfaitement conducteurs : x = 0, x = a, y = 0 et y = b, la longuer de ce guide est infini suivant Oz.

2.2 Notion du mode de propagation

•Définition : On appelle mode de propagation toute solution de l'équation de propagation vérifiant les conditions aux limites du guide d'onde.

chaque mode de propagation est caractérisé par deux entiers $n, m \in \mathbb{N}^*$

- n: caractérise la quantification de l'amplitude en x
- *m* : caractérise la quantification de l'ampltide en *y*
- si l'amplitude de l'onde ne dépend pas de l'une des variables en le remplace par l'indice 0
- ▶ Modes $\text{TE}_{n,m}$: dans ces modes l'onde électromagnétique est transverse électrique, et l'amplitude de l'onde dépend des deux variables x et y
- ▶ Modes $TM_{n,m}$: dans ces modes l'onde électromagnétique est transverse magnétique, et l'amplitude de l'onde dépend des deux variables x et y

2.3 Modes $TE_{n,0}$

- on suppose qu'il y a pas de dissipation de l'énergie électromagnétique donc l'amplitude du champ électrique ne dépend pas de z
- On cherche le champ électrique sous la forme

$$\overrightarrow{\underline{E}} = f(x) \exp i(\omega t - k_g z) \overrightarrow{e}_y$$

• l'équation de propagation dans le vide : $\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial^2 t} = \vec{0}$

$$\frac{d^2f}{dx^2} + \left(\frac{\omega^2}{c^2} - k_g^2\right)f = 0$$

- l'équation caractéristique : $r^2 + \frac{\omega^2}{c^2} k_g^2 = 0 \Leftrightarrow r^2 = k_g^2 k_0^2$, avec $k_0^2 = \frac{\omega^2}{c^2}$
- ► cas n°1 : $k_g > k_0$
 - la solution : $f(x) = A \exp\left(x\sqrt{k_g^2 k_0^2}\right) + C \exp\left(-x\sqrt{k_g^2 k_0^2}\right)$, avec A et B sont des constantes
 - la continuité de la composante tangentielle du champ électrique en x = 0 et x = a: f(0) = 0 et f(a) = 0

$$f(0) = 0 \Leftrightarrow A + C = 0 \Leftrightarrow f(x) = A \left[\exp\left(x\sqrt{k_g^2 - k_0^2}\right) - \exp\left(-x\sqrt{k_g^2 - k_0^2}\right) \right]$$
$$f(b) = 0 \Leftrightarrow A \left[\exp\left(a\sqrt{k_g^2 - k_0^2}\right) - \exp\left(-a\sqrt{k_g^2 - k_0^2}\right) \right] = 0 \Leftrightarrow A = 0$$
$$f(x) = 0$$

- Conclusion : pour $k_g > k_0$ il n'y a pas de propagation de l'onde électromagnétique dans le guide
- ► Cas n°2 : $k_g < k_0$
 - la solution : $f(x) = A' \cos \left(x \sqrt{k_0^2 k_g^2} \right) + C' \sin \left(x \sqrt{k_0^2 k_g^2} \right)$
 - $f(0) = 0 \Leftrightarrow A' = 0 \Leftrightarrow f(x) = C' \sin\left(x\sqrt{k_0^2 k_g^2}\right)$
 - $f(a) = 0 \Leftrightarrow C' \sin\left(a\sqrt{k_0^2 k_g^2}\right) = 0 \Leftrightarrow \sin\left(a\sqrt{k_0^2 k_g^2}\right) = 0 \Leftrightarrow a\sqrt{k_0^2 k_g^2} = n\pi$ avec $n \in \mathbb{N}^*$

$$\sqrt{k_0^2 - k_g^2} = \frac{n\pi}{a}; n \in \mathbb{N}$$

$$k_g^2 = k_n^2 = \frac{\omega^2}{c^2} - \left(\frac{n\pi}{a}\right)^2$$

• on pose $C' = E_n$

$$f(x) = E_n \sin\left(\frac{n\pi}{a}x\right)$$
 et $\overrightarrow{E} = E_n \sin\left(\frac{n\pi}{a}x\right) \cos(\omega t - k_g z) \overrightarrow{e}_y$

- à z = cte, l'onde est stationnaire vibrant sur place avec une pulsation ω et une amplitude $E_n \sin\left(\frac{n\pi}{a}x\right)$
- à x = cte, l'onde est monchromatique et progressive dans le sens des z croissants
- les modes TE_{n,0} sont caractérisés par des pulsations de coupure ω_{nc} il y a propagation : $k_g^2 > 0 \Leftrightarrow \frac{\omega^2}{c^2} \left(\frac{n\pi}{a}\right)^2 > 0 \Leftrightarrow \omega > \omega_{cn} = \frac{n\pi c}{a}$

pulsations de coupure des
$$TE_{n,0}$$
: $\omega_{nc} = \frac{n\pi c}{a}$

•Conclusion : L'existence des conditions aux limites entraîne une quantification des vecteurs d'onde. À chaque valeur de *n* correspnd un mode de propagation différent, et une pulsation de coupure au dessous de laquelle ce mode ne se propage pas.

Exemples

• mode TE_{1,0}:
$$k_1^2 = \frac{\omega^2}{c^2} - \frac{\pi^2}{a^2}$$
; $\omega_{1c} = \frac{\pi c}{a}$

• mode TE_{2,0}:
$$k_2^2 = \frac{\omega^2}{c^2} - \frac{4\pi^2}{a^2}$$
; $\omega_{2c} = \frac{2\pi c}{a}$

▶ Champ magnétique

•
$$\overrightarrow{rot}\overrightarrow{E} = \overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

• après tout calcul fait on trouve

$$\begin{cases}
B_x = \frac{k_g}{\omega} E_n \sin\left(\frac{n\pi}{a}x\right) \cos(\omega t - k_g z) \\
B_y = 0 \\
B_z = -\frac{E_n}{\omega} \left(\frac{n\pi}{a}\right) \cos\left(\frac{n\pi}{a}x\right) \sin(\omega t - k_g z)
\end{cases}$$

• le champ magnétique n'est pas perpendiculaire à direction de propagation (\vec{e}_z) , donc n'est pas transversal

•Conclusion: dans un guide d'onde à section rectangulaire le mode TEM n'existe pas

▶ Vitesse de phase-Vitesse de groupe

• vitesse de phase :
$$v_{\phi} = \frac{\omega}{k_g}$$

$$\nu_{\varphi} = \frac{c}{\sqrt{1 - \left(\frac{\omega_{nc}}{\omega}\right)^2}} > c$$

• vitesse de groupe : $v_g = \frac{d\omega}{dk_g}$

$$v_g = c\sqrt{1 - \left(\frac{\omega_{nc}}{\omega}\right)^2} < c$$

$$v_{\varphi}.v_g = c^2$$

• $v_{\varphi} \neq v_g$: il y a dispersion

2.4 Modes $TE_{0,m}$

• on cherche le champ électrique sous la forme

$$\vec{\underline{E}} = f(y) \exp i(\omega t - k_g z) \vec{e}_x$$

les résultats restent les mêmes,il suffit de remplacer n par m et x par y et a par b

• la relation de dispersion

$$k_g^2 = \frac{\omega^2}{c^2} - \left(\frac{m\pi}{b}\right)^2$$

• le champ électrique

$$\overrightarrow{E} = E_m \sin\left(\frac{m\pi}{b}y\right) \cos(\omega t - k_g z) \overrightarrow{e}_x$$

• les fréquences de coupure

$$\omega_{mc} = \frac{m\pi c}{b}$$

• le champ magnétique

$$\begin{cases} B_x = 0 \\ B_y = \frac{k_g}{\omega} E_m \sin\left(\frac{m\pi}{b}y\right) \cos(\omega t - k_g z) \\ B_z = \frac{m\pi}{b\omega} E_m \cos\left(\frac{m\pi}{b}y\right) \sin(\omega t - k_g z) \end{cases}$$

2.5 Modes $TE_{n,m}$

• le champ électrique doit vérifié les conditions aux limites

$$\overrightarrow{\underline{E}} = \underline{\underline{E}}_{1}(x)\sin\left(\frac{m\pi}{b}y\right)\exp i(\omega t - k_{g}z)\overrightarrow{e}_{x} + \underline{\underline{E}}_{2}(y)\sin\left(\frac{n\pi}{a}x\right)\exp i(\omega t - k_{g}z)\overrightarrow{e}_{y}$$

•
$$div \overrightarrow{\underline{E}} = 0 \Leftrightarrow \frac{d\underline{E}_1(x)}{dx} \sin\left(\frac{m\pi}{b}y\right) + \frac{d\underline{E}_2(y)}{dy} \sin\left(\frac{n\pi}{a}x\right) = 0$$

•
$$\underline{\mathbf{E}}_1(x) = \underline{\mathbf{E}}_{10}\cos\left(\frac{n\pi}{a}x\right); \underline{\mathbf{E}}_2(y) = \underline{\mathbf{E}}_{20}\cos\left(\frac{m\pi}{b}y\right); \frac{n}{a}\underline{\mathbf{E}}_{10} + \frac{m}{b}\underline{\mathbf{E}}_{20} = 0 \text{ avec } m, n \neq 0$$

$$\vec{\underline{E}} = \left[\underline{\underline{E}}_{10}\cos\left(\frac{n\pi}{a}x\right)\sin\left(\frac{m\pi}{b}y\right)\vec{e}_x + \underline{\underline{E}}_{20}\cos\left(\frac{m\pi}{b}y\right)\sin\left(\frac{n\pi}{a}x\right)\vec{e}_y\right]\exp i(\omega t - k_g z)$$

• si
$$m = 0$$
, $\overrightarrow{\underline{E}} = \underline{\underline{E}}_{20} \sin\left(\frac{n\pi}{a}x\right) \exp i(\omega t - k_g z) \overrightarrow{e}_y$

• si
$$n = 0$$
, $\overrightarrow{\underline{E}} = \underline{E}_{10} \sin\left(\frac{m\pi}{h}y\right) \exp i(\omega t - k_g z) \overrightarrow{e}_x$

• l'équation de propagation pour la composante suivant Ox

$$\Delta \underline{\underline{E}}_{x}(x, y) - \frac{1}{c^{2}} \frac{\partial^{2} \underline{\underline{E}}_{x}(x, y)}{\partial t^{2}} = 0$$

$$\Leftrightarrow \left[\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} + \frac{\omega^{2}}{c^{2}} \right] \left(\underline{\underline{E}}_{10} \cos \left(\frac{n\pi}{a} x \right) \sin \left(\frac{m\pi}{b} y \right) \exp i(\omega t - k_{g} z) \right) = 0$$

$$\Leftrightarrow -\left(\frac{n\pi}{a} \right)^{2} - \left(\frac{m\pi}{b} \right)^{2} - kg^{2} + \frac{\omega^{2}}{c^{2}} = 0$$

$$k_g^2 = \frac{\omega^2}{c^2} - \left[\left(\frac{n\pi}{a} \right)^2 + \left(\frac{m\pi}{b} \right)^2 \right]$$

• les pulsations de coupure pour $TE_{n,m}$

$$\omega_{m,n,c} = c\sqrt{\left(\frac{n\pi}{a}\right)^2 + \left(\frac{m\pi}{b}\right)^2}$$

• si a < b: $\omega_{c,min} = \frac{\pi c}{b}$: pulsation de coupure du mode $TE_{0,1}$

- si $\frac{\pi c}{b}$ < ω < $\pi c \sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$: seule le mode $\text{TE}_{0,1}$ se propage dans le guide,on dit qu'il s'agit d'un guide monomode
- le mode pour lequel k_g est plus grand est appelé le fondamental,
ici $\mathrm{TE}_{0,1}$