Hugo Marquerie 24/02/2025

Condición necesaria y suficiente para ser base de una topología concreta

Proposición 1. Sea (X, \mathcal{T}) un espacio topológico y $\mathcal{B} \subset \mathcal{T}$, \mathcal{B} es una base de \mathcal{T}

$$\iff \forall G \in \mathcal{T} : \forall x \in G : \exists B_x \in \mathcal{B} : x \in B_x \subset G.$$

Demostración:

 \implies Suponemos que \mathcal{B} es una base de \mathcal{T} y sean $G \in \mathcal{T}$ y $x \in G$ arbitrarios. Por la definición de una base, $\exists \{B_{\alpha}\}_{{\alpha} \in I} \subset \mathcal{B} : G = \bigcup_{{\alpha} \in I} B_{\alpha}$.

$$x \in G \implies \exists \beta \in I : x \in B_{\beta} \in \mathcal{B} \text{ y como } B_{\beta} \subset G \implies B_{x} = B_{\beta} \in \mathcal{B} : x \in B_{x} \subset G.$$

El Suponemos que \mathcal{B} cumple que $\forall G \in \mathcal{T} : \forall x \in G : \exists B_x \in \mathcal{B} : x \in B_x \subset G \text{ y sea } G \in \mathcal{T}$ arbitrario. Entonces sabemos que $\{x\} \subset B_x$.

$$\implies G = \bigcup_{x \in G} \{x\} \subset \bigcup_{x \in G} B_x \subset G \implies G = \bigcup_{x \in G} B_x \implies \mathcal{B} \text{ es una base de } \mathcal{T}.$$

1