Armazenamento de Dados Abertos com NoSQL: Um estudo de caso com Dados do Bolsa Família e NoSQL Cassandra

Jorge Luiz Andrade

Defesa de Trabalho de Conclusão de Curso
Universidade de Brasília

8 de dezembro de 2017

Fundamentação Teórica

Dados Abertos

NoSQL

Modelos NoSQL

Cassandra

Metodologia

Bolsa Família

Modelo de Dados

Arquitetura do Ambiente

Aplicação

Resultados

Carga de Dados

Consultas

Conclusão

Resultados

Trabalhos futuros

Bibliografia

Bancos não relacionais, conhecidos como NoSQL, tem se tornado uma alternativa para o armazenamento de grandes volumes de dados em ambientes distribuídos.

Problema

Órgãos da administração pública brasileira disponibilizam seus dados de forma aberta na web. Entretanto, o grande volume desses dados pode gerar um desempenho não satisfatório ao se realizar inserções e consultas em um banco de dados relacional.

Hipótese

O uso de múltiplas máquinas em um ambiente Cassandra distribuído pode oferecer uma melhora do desempenho que justifique sua utilização na análise de dados abertos.

Objetivos

Comparar o desempenho de um banco Cassandra para inserções e consultas em diferentes tamanhos de *cluster* e de volumes de dados;

- Desenvolver uma aplicação para inserção e busca dos dados do Bolsa Família;
- Realizar testes de inserção e busca com diferentes configurações;
- Comparar o desempenho do Cassandra nas diferentes configurações;

Fundamentação Teórica

Dados Abertos

Contextualização e Características

- Termo "dados abertossurgiu em 1995, no contexto de abertura de dados geofísicos e ambientais;
- Open Knowledge Foundation define um dado como aberto se qualquer pessoa está livre para acessa-lo, utiliza-lo, modifica-lo e compartilha-lo;

Dados Abertos

Classificação

Tim Berners-Lee propõs em 2010 o princípio de cinco estrelas para classificação de dados abertos:

- 1 estrela: O dado está disponível na Internet, em qualquer formato, acompanhado de licença aberta.
- ▶ 2 estrelas: O dado está disponível de maneira estruturada, em um formato que permita sua leitura por máquinas.
- ▶ 3 estrelas: Deve estar em formato não proprietário.
- 4 estrelas: Deve estar dentro dos padrões estabelecidos pela W3C para identificar recursos, que podem ser apontados por outras pessoas.
- ▶ 5 estrelas: Ter conexão com outros dados para fornecer contexto.

Dados Abertos

Dados Governamentais

Governo tem papel fundamental devido à grande quantidade de dados que coleta.

- Transparência;
- ▶ Vida Pessoal;
- Econômica;
- Eficiência governamental;

Contexto Brasileiro

- Open Government Partnership, aliança de 65 países firmada em 2011;
- Portal dados.gov.br;
- ► INDA(Infraestrutura Nacional de Dados Abertos), conjunto de padrões, tecnologias, procedimentos e mecanismos de controle, criada em 2012;

Bancos de Dados

NoSQL

Modelos relacionais possuem restrições, como as propriedades ACID e Normalização, gerando problemas de escalabilidade e rigidez de esquema.

- ► Termo utilizado pela primeira vez em 1998(Strozzi NoSQL)
- Evitam complexidade desnecessária;
- Buscam alto rendimento, escalabilidade e disponibilidade;

NoSQL

Teorema CAP

Proposto em 2000 por Eric Brewer, define limitações em sistemas distribuídos;

- Consistência;
- Disponibilidade;
- Tolerância a partições;
- Revisado em 2012 também por Eric Brewer;

Modelos NoSQL

Chave-Valor

Consiste em uma tabela *hash*, com consultas a um valor a partir de uma chave.

- Berkeley DB;
- Amazon DynamoDB;

Modelo Orientado a Documentos

Acesso à um documento de esquema flexível a partir de uma chave.

- CouchDB;
- MongoDB;

Modelos NoSQL

Modelo Orientado a Grafos

Dados altamente conectados, com consultas baseadas em relacionamentos.

- ► Neo4j
- ▶ OrientDB

Modelo Orientado a Colunas

Dados armazenados em famílias de colunas. Possui esquema flexível, permitindo a modificação de colunas a qualquer momento.

- ► HBase
- Cassandra

Cassandra

Histórico

- Criado em 2007 pelo Facebook, buscando alta performance, confiabilidade, eficiência e que suportasse contínuo crescimento;
- ► Aberto em 2008 e adotado pela Apache em 2009;
- Utilizado por companhias como Netflix e Spotify;

Cassandra

Características

- Distribuído e Descentralizado: Execução em múltiplas máquinas, utilizando protocolos peer-to-peer;
- Elasticamente Escalável: Suporta adição e remoção de máquinas de forma transparente;
- Altamente disponível e Tolerante a falhas: Replicação e redundância de dados;
- Variavelmente consistente: Consistência ajustada por aplicação;

Cassandra

Características

- Keyspace contendo famílias de colunas, ou tabelas;
- ► Tabelas são agrupamentos de colunas;
- Colunas são compostas por um nome, valor e um timestamp;
- Linguagem CQL, introduzida na versão 0.8;

Programa Bolsa Família

Programa de transferência de renda criado em 2003. Em 2016, atendia 13,9 milhões de famílias, que recebiam uma média de R\$182,00 cada, totalizando R\$27,4 bilhões.

- Dados disponibilizados no Portal da Transparência;
- Arquivos mensais em formato .csv;

Dados Utilizados

Foram utilizados um total de trinta arquivos, referentes aos meses de Julho de 2014 a Dezembro de 2016. Os arquivos totalizam 16Gib de tamanho, com cerca de 14 mil registros.

Campo	Utilizado	Tipo
UF	Sim	Text
Código SIAFI Município	Sim	Int
Nome Município	Sim	Text
Código Função	Não	-
Código Subfunção	Não	-
Código Programa	Não	-
Código Ação	Não	-
NIS Favorecido	Sim	Bigint
Nome Favorecido	Sim	Text
Fonte-Finalidade	Sim	Text
Valor Parcela	Sim	Double
Mês Competência	Sim	Timestamp

Modelo de Dados

- Fator de replicação de 1 (sem tolerância a falhas);
- SimpleStrategy (datacenter único);
- Criação do ambiente com uso de CQL;

Código 1: Código CQL para criação do keyspace

Modelo de Dados

 nis_favorecido, periodo e valor identificam unicamente cada registro;

Código 2: Código CQL para criação da tabela

```
CREATE TABLE bolsa_familia.dados (uf TEXT,

→ periodo TIMESTAMP, valor DOUBLE,

→ nis_favorecido BIGINT, cod_municipio INT,

→ fonte TEXT, nome_favorecido TEXT,

→ nome_municipio TEXT, PRIMARY KEY(

→ nis_favorecido, periodo, valor));
```

Arquitetura do Ambiente

- Cluster composto por seis máquinas Intel i5-4570 3.20GHz, 16GB de RAM, com sistema operacional Ubuntu;
- Cliente Cassandra versão 3.0.4;
- Configuração do arquivo cassandra.yaml;

Configurações do Linux:

- Remoção do limite de memória;
- Aumento do limite do número de arquivos abertos;
- Desativação do swap;

Código 3: Configuração cassandra yaml

```
cluster name: 'BolsaFamilia ∪ Cluster ∪ C2M ∪ FR1'
num tokens: 256
partitioner: org.apache.cassandra.dht.
   → Murmur3 Partitioner
seed provider:

    class name: org.apache.cassandra.locator.

   → SimpleSeedProvider
parameters:
— seeds: "164.41.40.35"
endpoint snitch: SimpleSnitch
```

Desenvolvimento da Aplicação

Foi desenvolvida uma aplicação em Java responsável pela leitura dos arquivos de entrada, inserção no banco e busca de dados:

- Driver Datastax;
- Tratamento e filtragem dos campos;
- Interações com o banco por meio de CQL;

Carga dos Dados

A aplicação desenvolvida realiza a filtragem dos campos e tratamento dos valores:

- Remoção do separador de milhares(,) em Valor Parcela;
- Alteração do padrão de data de MM/AAAA para DD/MM/AAAA;

Foi realizada a carga com dois volumes de dados, correspondentes a dezoito e trinta meses do programa Bolsa Família.

Tabela: Volume de dados

Carga	Tamanho
18 meses	8,79 GB
30 meses	14,69 GB

Carga dos Dados

- Inserção realizada com uso do driver da Datastax, por meio de query CQL, tendo seus parâmetros substituídos;
- Em cada configuração de cluster foram realizadas 10 repetições das operações de inserção;

Código 4: Código CQL para inserção

Tempos de Inserção

Tabela: Tempos de Inserção

Volume	2 nós	4 nós	6 nós
18 meses	1h	55m	52m
30 meses	2h31m	2h19m	2h06m

Tabela: Comparativo

Volume	2 para 4 máquinas	4 para 6 máquinas	Média
18 meses	8,70%	4,22%	6,46%
30 meses	8,13%	8,94%	8,54%

Figura: Tempos de Inserção

Consultas

- As consultas também foram realizadas por meio do driver da Datastax. Foram realizadas 30 consultas, buscando um registro específico por chave primária, escolhido de forma aleatória.
- Em cada configuração de cluster foram realizadas 10 repetições das operações de busca;

Código 5: Código CQL para consulta

```
SELECT * FROM dados WHERE nis_favorecido =

→ 00020915229557 AND periodo = '2014-07-01'

→ AND valor = 147.00
```

Tempos de Consulta

Tabela: Tempos de Consulta

Volume	2 nós	4 nós	6 nós
18 meses	10,26 s	1,95 s	1,73 s
30 meses	12,98 s	4,38 s	1,43 s

Tabela: Comparativo

Volume	2 para 4 máquinas	4 para 6 máquinas	Média
18 meses	81,00%	11,41%	46,20%
30 meses	66,21%	67,48%	66,85%

Figura: Tempos de Consulta

Tempos de Consulta

O gráfico a seguir apresenta os resultados das dez consultas efetuadas em cada configuração do *cluster* com volume de dados de 18 meses.

Figura: Detalhamento dos tempos de consulta

Conclusão

Conclusão

Resultados

Comparação do aumento do número de máquinas:

- ► Melhora média de 7,5% na inserção dos dados;
- ► Melhora média de 56,53% na busca dos dados;

Conclusão

Trabalhos Futuros

- ▶ Isolamento da rede no ambiente utilizado;
- Comparação com outros bancos;
- Implementar diferentes modelagens no banco Cassandra;

Bibliografia

C.J. Date.

An Introduction to Database Systems.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 8 edition, 2003.

Eben Hewitt.

Cassandra: The Definitive Guide.

O'Reilly Media, 2016.

Seiji Isotani and Ig I. Bittencourt.

Dados Abertos Conectados.

Novatec, 2015.

Pramod J. Sadalage and Martin Fowler.

NoSQL Essencial.

Novatec, 2013.