EE 204: Analog Circuits

Assignment 1 : Solution

$$Gain = \frac{V_{out}}{V_{in}} = \frac{Av}{1 + Av\beta}$$

where,
$$\beta = \frac{R2}{R1 + R2}$$

(a) Gain =
$$AV$$
 = 10^4 = 9.99
 $1 + A_V\beta$ $1 + 10^4 \times 0.1$ [1 mont]

Gain =
$$\frac{AV}{1+AV\beta}$$
 $\approx \frac{1}{\beta}$ $(2.8 \text{ AVB} >>1) = \frac{1}{0.1} = [10]$

[1 Mark]

(b) Vout = Gain x Vin = 9.99× 0.15 = [1.4985 V] [1 mark] Vout = Gain X Vin $= 10 \times 0.15$ [IMark] = 1.5V (C) Voltage at (-) re terminal = B x Vout $= 0.1 \times 1.4985$ = 0.14985 V [1 mark] OR Voltage at (-) re terminal = B x Vout = 0.1 × 1.5 = 0.15V [1 Mak]

2(6) Sample Cal 1 to 10
2(b) Sample Calculations:
Set 1: VGS = 0.6 V
Ohmic region calculations:
Vps < VGS - Vt
VDS < 0.6-0.24 V
Nos < 0.2 V
[0.5 Marks] Point 1: VDS = 0.15 V
$I_{D} = \mu C_{ox} \frac{W}{L} \left[\left(V_{Gs} - V_{t} \right) V_{DS} - V_{DS}^{2} \right]$
$= 260 \times 3 \times \left[(0.6 - 0.4) \times 0.15 = 0.15^{2} \right] \mu A$
=14.625 µA
0.5 Marks] point 2 : Vos = 0.08 V
$I_D = \mu_n(o_x \frac{W}{L} \left((V_{qs} - V_t) V_{Ds} - \frac{V_{Ds}}{2} \right)$
= 260 ×3 × (0.6-0.4) × 0.08 - 0.08 / MA
= 9.984 MA

Saturation Region Calculations :-VDS > VGS-VE Vps > 0.6 - 0.4 V V05 > 0.2 V [0.5 Marks] point 1: VDS = 0.4V ID = 1 μ Cox W (VG5 - V+) $=\frac{1}{2} \times 260 \times 3 \times (0.6 - 0.4)^{2} \mu A$ $= 15.6 \mu A$ [0.5 Marks] point 2: VDS = 0.8V ID = 1 p Cox W (Vas- Vt)2 = 1 × 260+3 × (0.6-0.4) MA = 15.6 MA Similarily for Set 2 there will be 4 points [0.5 Marks] for each calculation. Then fill in the Table.

		Set 1		Set	2	
				Vors =		
		Voc	Ib	Vos (in V)	ID	
	, U Z	0.08	9.984			
	Ohne	0.15	14.625			
	Sativation	0.4	15.6			
	Satin	0.8	15.6			
+)
					•	, pr
						-y-

