EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto)

Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos DATA ESPECIAL

2003

PROVA ESCRITA DE MATEMÁTICA

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui cinco questões de resposta aberta, algumas subdivididas em alíneas, num total de nove.

Na página 9 deste enunciado encontra-se um formulário.

Grupo I

- As sete questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas apenas a letra correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos, nem justificações.
- 1. Uma função f, de domínio \mathbb{R} , tem um zero no intervalo [-1,2]. Qual das expressões seguintes define uma função que tem, necessariamente, um zero no intervalo [-5, -2] ?

(A)
$$f(x+4)$$

(B)
$$|f(x)| + 4$$

(C)
$$f(x) - 4$$

(D)
$$f(x-4)$$

2. Na figura está representada parte do gráfico de uma função h, de domínio \mathbb{R} , bem como parte da recta tangente ao gráfico de h, no ponto (0,3). Esta recta intersecta o eixo Ox no ponto de abcissa 3.

> Qual das expressões seguintes pode definir h', função derivada de h?

(A)
$$2 - \frac{x}{3}$$

(B)
$$1 - \frac{x}{2}$$

(A)
$$2 - \frac{x}{3}$$
 (B) $1 - \frac{x}{2}$ (C) $\frac{x}{3} - 2$

(D)
$$\frac{x}{2} - 1$$

3. Indique qual das expressões seguintes é, para qualquer número real a superior a 1, igual a $a^{2+\log_a 3}$

(A)
$$3 a^2$$

(B)
$$2a^3$$

(C)
$$3 + a^2$$

(D)
$$2 + a^3$$

4. Na figura está a representação gráfica da função f, definida, no intervalo $[0,2\pi]$, por $f(x)=\cos x\,.$

Tem-se que $f(k) = f\Big(\frac{7\,\pi}{12}\Big)$

Qual é o valor de k?

(A)
$$\frac{11 \, \pi}{12}$$

(B)
$$\frac{14\pi}{12}$$

(C)
$$\frac{17\pi}{12}$$

(D)
$$\frac{19\,\pi}{12}$$

5. Numa conferência de alto nível, encontram-se doze políticos de quatro países, sendo três de cada país (o Presidente da República, o Primeiro-Ministro e o Ministro dos Negócios Estrangeiros).

De quantas maneiras diferentes se podem dispor as doze pessoas, em fila, para uma fotografia, de tal modo que os representantes de cada país fiquem juntos?

- **(A)** 13 198
- **(B)** 21 106
- **(C)** 31 104
- **(D)** 41 162
- **6.** Seja Ω o espaço de resultados (com um número finito de elementos) associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos ($A \subset \Omega$ e $B \subset \Omega$). Sabe-se que o valor da probabilidade condicionada P(A|B) é igual a 1. Qual das afirmações seguintes é necessariamente verdadeira?
 - (A) Os acontecimentos $A \in B$ são incompatíveis.
 - **(B)** Os acontecimentos A e B são independentes.
 - (C) Se A se realiza, então B também se realiza.
 - (D) Se B se realiza, então A também se realiza.
- **7.** Seja w um número complexo.

A imagem geométrica, no plano complexo, de uma das raízes cúbicas de w pertence à região definida pela condição $0 < arg\left(z\right) < \frac{\pi}{6}$

A que quadrantes pertencem as imagens geométricas das outras raízes cúbicas de $\,w$?

- (A) Primeiro e terceiro.
- (B) Segundo e terceiro.
- (C) Segundo e quarto.
- **(D)** Terceiro e quarto.

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o **valor exacto**.

1. Em \mathbb{C} , conjunto dos números complexos, considere:

$$z_{\scriptscriptstyle 1}=1+\sqrt{3}\;i$$
 $z_{\scriptscriptstyle 2}=\,cis\left(-\,\,rac{\pi}{5}
ight)$

- **1.1.** Resolva a equação $\ (1+2\,i)\,z=6+z_{_1}\times\overline{z_{_1}}$ Apresente a solução na forma algébrica.
- **1.2.** Determine o menor valor de n natural para o qual $(z_1 \times z_2)^n$ é um número real positivo.
- 2. Numa turma do 12.º ano, a distribuição dos alunos por idades e sexo é a seguinte:

	Raparigas	Rapazes
16 anos	5	6
17 anos	7	8

Para formar uma comissão que vai preparar um baile de finalistas, vão ser sorteados três rapazes e duas raparigas desta turma.

- **2.1.** Qual é a probabilidade de a comissão ficar constituída apenas por jovens de 16 anos? Apresente o resultado na forma de dízima, com quatro casas decimais.
- 2.2. Admita agora que já estão sorteados quatro dos cinco jovens que vão constituir a comissão: os três rapazes e uma das raparigas, a qual tem 16 anos de idade. Para a comissão ficar completa, falta, portanto, escolher aleatoriamente uma rapariga.

Seja X a variável aleatória: número de raparigas de 17 anos que a comissão vai incluir.

Construa a tabela de distribuição de probabilidades da variável $\, X. \,$ Apresente as probabilidades na forma de fracção.

$$\textbf{3.} \quad \text{Seja } f \text{ a função, de domínio } \mathbb{R}, \text{ definida por } f(x) = \begin{cases} \frac{x}{3-\sqrt{9-x}} & se \ x<0 \\ 6 & se \ x=0 \\ \frac{\ln{(1+x)}+5\,x}{x} & se \ x>0 \end{cases}$$

- **3.1.** Utilizando métodos exclusivamente analíticos, estude a função f quanto à continuidade.
- **3.2.** A equação $f(x)=x^2$ tem exactamente duas soluções. Utilizando a sua calculadora, determine-as **graficamente**. Apresente os valores arredondados às décimas. Explique como procedeu, apresentando o gráfico, ou gráficos, obtido(s) na calculadora.
- 4. Numa sala de laboratório está a decorrer uma experiência de óptica.

Na figura ao lado está um esquema dessa experiência.

Nela estão representadas:

- uma fonte luminosa F, que se encontra suspensa do tecto da sala (essa fonte pode subir e descer, pelo que a sua distância x ao chão da sala pode variar);
- uma circunferência de raio $\sqrt{8}$, traçada no chão da referida sala (o seu centro O está sob a fonte luminosa, no prolongamento do fio que a suspende do tecto).

Admita que a intensidade I da luz recebida num ponto P dessa circunferência é dada, numa certa unidade de medida, por:

$$I = \frac{\cos \alpha}{d^2}$$

- α é o ângulo de incidência, assinalado na figura, e $\,d\,$ é a distância do ponto $\,P\,$ à fonte luminosa.
- **4.1.** Mostre que a intensidade da luz recebida no ponto $\,P\,$ é dada, em função de $\,x,\,$ por

$$I(x) = \frac{x}{(x^2 + 8)^{\frac{3}{2}}}$$

4.2. Utilizando métodos exclusivamente analíticos, determine o valor de $\,x\,$ para o qual é máxima a intensidade da luz recebida no ponto $\,P.\,$

5. Para estudar a evolução das marcas obtidas pelos vencedores da prova da Maratona (masculina), nos Jogos Olímpicos da Era Moderna, representaram-se, num referencial xOy, tantos pontos quantas as provas sobre as quais existem registos do tempo do vencedor (cada ponto corresponde a uma prova).

Para cada ponto,

- a abcissa corresponde ao ano em que a prova se realizou (tomando para origem o ano 1896, ano em que se realizaram os primeiros Jogos Olímpicos da Era Moderna);
- a ordenada é o tempo, medido em horas, feito pelo vencedor.

Por exemplo, o ponto correspondente à Maratona dos Jogos Olímpicos de 1984 tem abcissa 88 (número de anos decorridos desde 1896) e ordenada $2{,}156$ (tempo, em horas, obtido pelo vencedor, o atleta português Carlos Lopes).

Depois de representados os pontos, obteve-se a recta de regressão (recta ajustada a esse conjunto de pontos). Essa recta, que designaremos por r, é o gráfico de uma função afim f, que se pode utilizar como modelo da situação em estudo.

Considere agora as seguintes questões:

- O declive da recta r é negativo. Porquê?
- Em 1916, 1940 e 1944 não se realizaram Jogos Olímpicos, em virtude das duas Guerras Mundiais. Como poderemos utilizar a função f para estimar o tempo que os vencedores teriam feito se os jogos se tivessem realizado?
- Admitindo que os Jogos Olímpicos se vão realizar durante vários milénios, será que a função f é um bom modelo para prever, a muito longo prazo, a evolução do tempo do vencedor da Maratona? Porquê?

Analise as três questões colocadas e, numa pequena composição, com cerca de quinze linhas, refira a sua opinião sobre cada uma delas.

FIM

COTAÇÕES

Cac	la resposta certala resposta erradala questão não respondida ou anuladala	- 3
Not	a: um total negativo neste grupo vale 0 (zero) pontos.	
П		
1		21
	1.1.	
2		32
	2.1.	
3		33
	3.1.	
4		34
	4.1.	
5		17

Formulário

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

($r - raio da base; g - geratriz$)

Área de uma superfície esférica:
$$4\,\pi\,r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$cos(a+b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \cdot (\rho' \operatorname{cis} \theta') = \rho \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \frac{\theta + 2 k \pi}{n}, k \in \{0, ..., n - 1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$