Econ 780 HW Week 2

Minh Cao, Grant Smith, Ella Barnes, Alexander Erwin and Mark Coomes

Due:

Exercises for chapter 3

- 1. Exercise 1
- 2. Exercise 2.

Consider augmented the matrix.

$$\overline{D} = \begin{bmatrix} 1 & 1 & 2 & 3 \end{bmatrix}$$
.

There is no arbitrage. since there only 1 matrix, so the only choice to make the value of the profolio is zero in day zero is buy nothing, but it will turnout that the value of the porlio at day 1 will be zero. So there will be no arbitrage opportunity.

let $Q(w_1)$, $Q(w_2)$, $Q(w_3)$ be Martingale measure for the market. We have the formular.

$$1 = \beta(Q(w_1 + 2Q(w_2) + 3Q(w_3)))$$

and

$$Q(w_1) + Q(w_2) + Q(w_3) = 1$$

For some β

For simplicity, I will use Q_1, Q_2, Q_3 instead of $Q(w_1), Q(w_2), Q(w_3)$

$$1 = \beta(Q(w_1 + 2Q(w_2) + 3Q(w_3)) \implies \frac{1}{\beta} = Q_1 + 2Q_2 + 3Q_3$$

Let write $Q_1 = 1 - Q_2 - Q_3$ and substitue to the equation above, we obtain:

$$\frac{1}{\beta} = 1 - Q_2 - Q_3 + 2Q_2 + 3Q_3 = 1 + Q_2 + 2Q_3 \implies Q_2 = \frac{1}{\beta} - 1 - 2Q_3$$

again, substitute $Q_2 = 1 - Q_1 - Q_3$ Obtain

$$\frac{1}{\beta} = Q_1 + 2(1 - Q_1 - Q_3) + 3Q_3 = 2 - Q_1 + Q_3 \implies Q_1 = 2 - \frac{1}{\beta} + Q_3$$

Now we will find the bounds for Q_2 to be legitimate probability measure.

•
$$0 < Q_1 < 1 \implies 0 < 2 - \frac{1}{\beta} + Q_3 < 1 \implies \frac{1}{\beta} - 2 < Q_3 < \frac{1}{\beta} - 1$$

•
$$0 < Q_2 < 1 \implies 0 < \frac{1}{\beta} - 1 - 2Q_3 < 1 \implies \frac{\frac{1}{\beta} - 2}{2} < Q_3 < \frac{\frac{1}{\beta} - 1}{2}$$
 Combine these two inequalities.

$$\frac{1-2\beta}{2\beta} < Q_3 < \frac{1-\beta}{2\beta}$$

Hence the family of martingale measure can be writte as:

$$\{2-\frac{1}{\beta}+Q_3, \frac{1}{\beta}-1-2Q_3, Q_3 \mid \frac{1-2\beta}{2\beta} < Q_3 < \frac{1-\beta}{2\beta}\}$$

Solve for this system of equation, we can find the family of martingale measure.