Annexes

Le motoréducteur est monté dans le support dérailleur fixé sur le cade du vélo.

Axe de sortie

Carte de commande

Moteur

Codeur incrémental

Les réducteurs sont implantés sous la carte de commande comme présenté par les ellipses pointillées sur l'image ci-dessous :

Réducteur 2

Réducteur 1

Roue vis sans fin

Annexe C.

Motoréducteur démonté.

Vues de côté de la transmission par chaîne.

Les points P_i sont les points limites de contact entre la chaîne et chacun des pignons ou plateau, dans l'ordre présenté sur la figure ci-dessus. On supposera que ces points restent fixes dans le repère lié au cadre du vélo au cours du mouvement et que le problème est plan.

On suppose que le cycliste applique un couple $\overrightarrow{C_c} = -C_c \overrightarrow{z_0}$ sur le pédalier.

On note T₁₂ la tension de la chaîne entre les points P₁ et P₂.

On note T₃₄ la tension de la chaîne entre les points P₃ et P₄. (P₃ P₄) est considérée horizontale.

On note T₅₆ la tension de la chaîne entre les points P₅ et P₆.

On note T₇₈ la tension de la chaîne entre les points P₇ et P₈.

Le vélo et le cycliste ont une masse globale de M = 90kg.

Le rayon des roues du vélo est de $R_{roue} = 280 \, mm$.

Le rayon du plateau est de Rp = 87mm.

Annexe D. Modélisation et paramétrage de la transmission

Soit un système du 2ème ordre de fonction de transfert : $H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$

Temps de réponse réduit ($t_{r5\%}$ * $\omega_{\scriptscriptstyle 0}$) en fonction de l'amortissement $\,\xi\,$

Dépassement relatif (en %) : $D_{\%}=e^{rac{-\pi\xi}{\sqrt{1-\xi^2}}}.100$

Annexe E. Rappels 2ème ordre