## Περιεχόμενα

- Επισκόπηση των Δυνάμεων
- Εκθετική Συνάρτηση
- Λογαριθμική Συνάρτηση
- Φυσική Εκθετική Συνάρτηση και Φυσικός Λογάριθμος
- Γιατί ο αριθμός *e* είναι σημαντικός
- Λογαριθμικές Κλίμακες

Ορισμός: 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi \circ \rho \varepsilon \varsigma}$$

**Ορισμός:** 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi \circ \rho \varepsilon \varsigma}$$

$$\Pi.\chi.\ 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

**Ορισμός:** 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma}$$

$$\Pi.\chi.\ 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

$$a^1 = a$$

**Ορισμός:** 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi \circ \rho \varepsilon \varsigma}$$

$$\Pi.\chi.\ 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

$$a^1 = a$$

$$(ab)^n = \underbrace{(ab)(ab)(ab)\dots(ab)}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{aaa\dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{bbb\dots b}_{n-\varphi o \rho \varepsilon \varsigma} = a^n b^n$$

Ορισμός: 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma}$$

$$\Pi.\chi.\ 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

$$(ab)^n = \underbrace{(ab)(ab)(ab)\dots(ab)}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{aaa\dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{bbb\dots b}_{n-\varphi o \rho \varepsilon \varsigma} = a^n b^n$$

$$a^1 = a$$

$$(ab)^n = a^n b^n$$

Ορισμός: 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma}$$

$$\Pi.\chi.\ 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

$$(ab)^n = \underbrace{(ab)(ab)(ab)\dots(ab)}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{aaa\dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{bbb\dots b}_{n-\varphi o \rho \varepsilon \varsigma} = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b}\frac{a}{b}\frac{a}{b}...\frac{a}{b}}_{n-\varphi o \rho \varepsilon \varsigma} = \frac{a^n}{b^n}$$

$$a^1 = a$$

$$(ab)^n = a^n b^n$$

**Ορισμός:** 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi \circ \rho \varepsilon \varsigma}$$

$$\Pi.\chi.\ 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

$$(ab)^n = \underbrace{(ab)(ab)(ab)\dots(ab)}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{aaa\dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{bbb\dots b}_{n-\varphi o \rho \varepsilon \varsigma} = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b}\frac{a}{b}\frac{a}{b}...\frac{a}{b}}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{\frac{a^n}{b^n}}_{n-\varphi o \rho \varepsilon \varsigma}$$

$$a^1 = a$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

**Ορισμός:** 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi \circ \rho \varepsilon \varsigma}$$

$$(ab)^n = \underbrace{(ab)(ab)(ab)\dots(ab)}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{aaa\dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{bbb\dots b}_{n-\varphi o \rho \varepsilon \varsigma} = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b}\frac{a}{b}\frac{a}{b}...\frac{a}{b}}_{n-\varphi \circ \rho \varepsilon \varsigma} = \frac{a^n}{b^n}$$

$$a^{m}a^{n} = \underbrace{a \ a \ a \dots a}_{m-\varphi o \rho \varepsilon \varsigma} \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{a \ a \ a \dots a}_{m+n-\varphi o \rho \varepsilon \varsigma} = a^{m+n}$$

$$a^1 = a$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

**Ορισμός:** 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi \circ \rho \varepsilon \varsigma}$$

$$\Pi.\chi.\ 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

$$(ab)^n = \underbrace{(ab)(ab)(ab)\dots(ab)}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{aaa\dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{bbb\dots b}_{n-\varphi o \rho \varepsilon \varsigma} = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b}\frac{a}{b}\frac{a}{b}...\frac{a}{b}}_{n-\varphi o \rho \varepsilon \varsigma} = \frac{a^n}{b^n}$$

$$a^{m}a^{n} = \underbrace{a \ a \ a \dots a}_{m-\varphi o \rho \varepsilon \varsigma} \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{a \ a \ a \dots a}_{m+n-\varphi o \rho \varepsilon \varsigma} = a^{m+n}$$

$$a^1 = a$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$a^m a^n = a^{m+n}$$

**Ορισμός:** 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi \circ \rho \varepsilon \varsigma}$$

$$\Pi.\chi. 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

$$(ab)^n = \underbrace{(ab)(ab)(ab)\dots(ab)}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{aaa\dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{bbb\dots b}_{n-\varphi o \rho \varepsilon \varsigma} = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b} \frac{a}{b} \frac{a}{b} \dots \frac{a}{b}}_{n-\varphi \circ \rho \varepsilon \varsigma} = \frac{a^n}{b^n}$$

$$a^{m}a^{n} = \underbrace{a \ a \ a \dots a}_{m-\varphi o \rho \varepsilon \varsigma} \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{a \ a \ a \dots a}_{m+n-\varphi o \rho \varepsilon \varsigma} = a^{m+n}$$

$$\frac{a^m}{a^n} = \underbrace{\frac{\overrightarrow{a} \ \overrightarrow{a} \ \overrightarrow{a$$

$$a^1 = a$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$a^m a^n = a^{m+n}$$

**Ορισμός:** 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi \circ \rho \varepsilon \varsigma}$$

$$\Pi.\chi.\ 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

$$(ab)^n = \underbrace{(ab)(ab)(ab)\dots(ab)}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{aaa\dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{bbb\dots b}_{n-\varphi o \rho \varepsilon \varsigma} = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b}\frac{a}{b}\frac{a}{b}...\frac{a}{b}}_{n-\varphi o \rho \varepsilon \varsigma} = \frac{a^n}{b^n}$$

$$a^m a^n = \underbrace{a \ a \ a \dots a}_{m - \varphi \circ \rho \varepsilon \varsigma} \underbrace{a \ a \ a \dots a}_{n - \varphi \circ \rho \varepsilon \varsigma} = \underbrace{a \ a \ a \dots a}_{m + n - \varphi \circ \rho \varepsilon \varsigma} = a^{m + n}$$

$$\frac{a^m}{a^n} = \underbrace{\frac{\overrightarrow{a} \cdot \overrightarrow{a} \cdot \overrightarrow{a} \cdot \overrightarrow{a}}{\overrightarrow{a} \cdot \overrightarrow{a} \cdot \overrightarrow{a}}_{n-\varphi \circ \rho \varepsilon \varsigma} = \underbrace{aaa \dots a}_{(m-n)-\varphi \circ \rho \varepsilon \varsigma} = a^{m-n}$$

$$a^1 = a$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$a^m a^n = a^{m+n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

Ορισμός: 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi \circ \rho \varepsilon \varsigma}$$

$$\Pi.\chi. 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

$$(ab)^n = \underbrace{(ab)(ab)(ab)\dots(ab)}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{aaa\dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{bbb\dots b}_{n-\varphi o \rho \varepsilon \varsigma} = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b}\frac{a}{b}\frac{a}{b}...\frac{a}{b}}_{n-\varphi o \rho \varepsilon \varsigma} = \frac{a^n}{b^n}$$

$$a^m a^n = \underbrace{a \ a \ a \dots a}_{m - \varphi o \rho \varepsilon \varsigma} \underbrace{a \ a \ a \dots a}_{n - \varphi o \rho \varepsilon \varsigma} = \underbrace{a \ a \ a \dots a}_{m + n - \varphi o \rho \varepsilon \varsigma} = a^{m + n}$$

$$\frac{a^m}{a^n} = \underbrace{\frac{\overbrace{a\ a\ a\ ...\ a}^{m-\varphi o \rho \varepsilon \varsigma}}{\underbrace{a\ a\ ...\ a}_{n-\varphi o \rho \varepsilon \varsigma}} = \underbrace{\underbrace{aaa ...\ a}_{(m-n)-\varphi o \rho \varepsilon \varsigma}}_{n-\varphi o \rho \varepsilon \varsigma} = a^{m-n}$$

$$(a^n)^m = \underbrace{\underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \dots \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \dots \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \dots \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \dots \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \dots \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma}$$

$$a^1 = a$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$a^m a^n = a^{m+n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

Ορισμός: 
$$a^n = \underbrace{a \ a \ a \dots a}_{n-\varphi \circ \rho \varepsilon \varsigma}$$

$$\Pi.\chi. 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

$$(ab)^n = \underbrace{(ab)(ab)(ab)\dots(ab)}_{n-\varphi o \rho \varepsilon \varsigma} = \underbrace{aaa\dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{bbb\dots b}_{n-\varphi o \rho \varepsilon \varsigma} = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \underbrace{\frac{a}{b}\frac{a}{b}\frac{a}{b}...\frac{a}{b}}_{n-\varphi o \rho \varepsilon \varsigma} = \frac{a^n}{b^n}$$

$$a^m a^n = \underbrace{a \ a \ a \dots a}_{m - \varphi o \rho \varepsilon \varsigma} \underbrace{a \ a \ a \dots a}_{n - \varphi o \rho \varepsilon \varsigma} = \underbrace{a \ a \ a \dots a}_{m + n - \varphi o \rho \varepsilon \varsigma} = a^{m + n}$$

$$\frac{a^m}{a^n} = \underbrace{\frac{\overrightarrow{a} \ \overrightarrow{a} \ \overrightarrow{a$$

$$(a^n)^m = \underbrace{\underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \dots \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \dots \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \dots \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \dots \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma} \dots \underbrace{a \ a \ a \dots a}_{n-\varphi o \rho \varepsilon \varsigma}$$

$$a^1 = a$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$a^m a^n = a^{m+n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$(a^n)^m = a^{mn}$$

$$a^{1} = a$$

$$(ab)^{n} = a^{n}b^{n}$$

$$a^{m}a^{n} = a^{m+n}$$

$$(a^{n})^{m} = a^{mn}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

$$a^{1} = a$$

$$(ab)^{n} = a^{n}b^{n}$$

$$a^{m}a^{n} = a^{m+n}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

Σημείωση: 
$$a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$$

$$a^{1} = a \qquad a^{0} = 0 \ (a \neq 0)$$

$$(ab)^{n} = a^{n}b^{n} \qquad a^{m}a^{n} = a^{m+n} \qquad (a^{n})^{m} = a^{mn}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} \qquad \frac{a^{m}}{a^{n}} = a^{m-n}$$

Σημείωση: 
$$a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$$

$$a^{1} = a \qquad a^{0} = 0 \ (a \neq 0)$$

$$(ab)^{n} = a^{n}b^{n} \qquad a^{m}a^{n} = a^{m+n} \qquad (a^{n})^{m} = a^{mn}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} \qquad \frac{a^{m}}{a^{n}} = a^{m-n}$$

Σημείωση: 
$$a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$$

Σημείωση: 
$$a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^n}$$

$$a^{1} = a \qquad a^{0} = 0 \ (a \neq 0)$$

$$(ab)^{n} = a^{n}b^{n} \qquad a^{m}a^{n} = a^{m+n} \qquad (a^{n})^{m} = a^{mn}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} \qquad \frac{a^{m}}{a^{n}} = a^{m-n}$$

$$a^{-n} = \frac{1}{a^{n}}$$

Σημείωση: 
$$a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$$

Σημείωση: 
$$a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^n}$$

$$a^{1} = a \qquad a^{0} = 0 \ (a \neq 0)$$

$$(ab)^{n} = a^{n}b^{n} \qquad a^{m}a^{n} = a^{m+n} \qquad (a^{n})^{m} = a^{mn}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} \qquad \frac{a^{m}}{a^{n}} = a^{m-n}$$

$$a^{-n} = \frac{1}{a^{n}} \qquad a^{-1} = \frac{1}{a}$$

Σημείωση: 
$$a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$$

Σημείωση: 
$$a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^n}$$

$$a^{1} = a \qquad a^{0} = 0 \ (a \neq 0)$$

$$(ab)^{n} = a^{n}b^{n} \qquad a^{m}a^{n} = a^{m+n} \qquad (a^{n})^{m} = a^{mn}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} \qquad \frac{a^{m}}{a^{n}} = a^{m-n}$$

$$a^{-n} = \frac{1}{a^{n}} \qquad a^{-1} = \frac{1}{a}$$

Σημείωση: 
$$a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$$

Σημείωση: 
$$a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^n}$$

Τι είναι το  $a^{1/n}$ 

$$a^{1} = a \qquad a^{0} = 0 \ (a \neq 0)$$

$$(ab)^{n} = a^{n}b^{n} \qquad a^{m}a^{n} = a^{m+n} \qquad (a^{n})^{m} = a^{mn}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} \qquad \frac{a^{m}}{a^{n}} = a^{m-n}$$

$$a^{-n} = \frac{1}{a^{n}} \qquad a^{-1} = \frac{1}{a}$$

Σημείωση: 
$$a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$$

Σημείωση: 
$$a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^n}$$

Τι είναι το 
$$a^{1/n} = ?$$
 Σημειώστε:  $(a^{1/n})^n = a^1 = a$ 

$$a^{1} = a \qquad a^{0} = 0 \ (a \neq 0)$$

$$(ab)^{n} = a^{n}b^{n} \qquad a^{m}a^{n} = a^{m+n} \qquad (a^{n})^{m} = a^{mn}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} \qquad \frac{a^{m}}{a^{n}} = a^{m-n}$$

$$a^{-n} = \frac{1}{a^{n}} \qquad a^{-1} = \frac{1}{a}$$

Σημείωση: 
$$a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$$

Σημείωση: 
$$a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^n}$$

Τι είναι το 
$$a^{1/n} = ?$$
 Σημειώστε:  $(a^{1/n})^n = a^1 = a$  Άρα  $a^{1/n} = \sqrt[n]{a}$ 

$$a^1 = a \qquad \qquad a^0 = 0 \ (a \neq 0)$$

$$(ab)^n = a^n b^n a^m a^n = a^{m+n} (a^n)^m = a^{mn}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \qquad \frac{a^m}{a^n} = a^{m-n} \qquad a^{1/n} = \sqrt[n]{a}$$

$$a^{-n} = \frac{1}{a^n} \qquad \qquad a^{-1} = \frac{1}{a}$$

Σημείωση: 
$$a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$$

Σημείωση: 
$$a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^n}$$

Τι είναι το 
$$a^{1/n} = ?$$
 Σημειώστε:  $(a^{1/n})^n = a^1 = a$  Άρα  $a^{1/n} = \sqrt[n]{a}$ 

$$a^{1} = a$$
  $a^{0} = 0 \ (a \neq 0)$   $a^{m}a^{n} = a^{m+n}$   $(a^{n})^{m} = a^{mn}$ 

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \qquad \frac{a^m}{a^n} = a^{m-n} \qquad a^{1/n} = \sqrt[n]{a}$$

$$a^{-n} = \frac{1}{a^n}$$
  $a^{-1} = \frac{1}{a}$ 

Σημείωση: 
$$a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$$

Σημείωση: 
$$a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^n}$$

Τι είναι το 
$$a^{1/n} = ?$$
 Σημειώστε:  $(a^{1/n})^n = a^1 = a$  Άρα  $a^{1/n} = \sqrt[n]{a}$ 

Επομένως 
$$a^{m/n} = (a^{1/n})^m = \sqrt[n]{a}^m$$

$$a^1 = a$$

$$a^0 = 0 \ (a \neq 0)$$

$$(ab)^n = a^n b^n$$

$$a^m a^n = a^{m+n}$$

$$(a^n)^m = a^{mn}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-1} = \frac{1}{a}$$

$$a^{m/n} = \sqrt[n]{a}^m = \sqrt[n]{a^m}$$

Σημείωση:  $a^0 = a^{1-1} = \frac{a^1}{a^1} = 1$ 

Σημείωση:  $a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^n}$ 

Τι είναι το  $a^{1/n} = ?$  Σημειώστε:  $(a^{1/n})^n = a^1 = a$  Άρα  $a^{1/n} = \sqrt[n]{a}$ 

Επομένως  $a^{m/n} = \sqrt[n]{a}^m$ 

$$a^1 = a$$

$$a^0 = 0 \ (a \neq 0)$$

$$(ab)^n = a^n b^n$$

$$a^m a^n = a^{m+n}$$

$$(a^n)^m = a^{mn}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-1} = \frac{1}{a}$$

$$a^{m/n} = \sqrt[n]{a}^m = \sqrt[n]{a^m}$$

$$10^{\frac{4}{3}} =$$

$$a^1 = a$$

$$a^0 = 0 \ (a \neq 0)$$

$$(ab)^n = a^n b^n$$

$$a^m a^n = a^{m+n}$$

$$(a^n)^m = a^{mn}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-1} = \frac{1}{a}$$

$$a^{m/n} = \sqrt[n]{a}^m = \sqrt[n]{a^m}$$

$$10^{\frac{4}{3}} = \sqrt[3]{10^4}$$

$$a^1 = a$$

$$a^0 = 0 \ (a \neq 0)$$

$$(ab)^n = a^n b^n$$

$$a^m a^n = a^{m+n}$$

$$(a^n)^m = a^{mn}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-1} = \frac{1}{a}$$

$$a^{m/n} = \sqrt[n]{a}^m = \sqrt[n]{a^m}$$

$$10^{\frac{4}{3}} = \sqrt[3]{10^4} = 21.5443469 \dots$$

$$a^1 = a$$

$$a^0 = 0 \ (a \neq 0)$$

$$(ab)^n = a^n b^n$$

$$a^m a^n = a^{m+n}$$

$$(a^n)^m = a^{mn}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-1} = \frac{1}{a}$$

$$a^{m/n} = \sqrt[n]{a}^m = \sqrt[n]{a^m}$$

$$10^{\frac{4}{3}} = \sqrt[3]{10^4} = 21.5443469 \dots$$

$$25^{-1.5} =$$

$$a^1 = a$$

$$a^0 = 0 \ (a \neq 0)$$

$$(ab)^n = a^n b^n$$

$$a^m a^n = a^{m+n}$$

$$(a^n)^m = a^{mn}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-1} = \frac{1}{a}$$

$$a^{m/n} = \sqrt[n]{a}^m = \sqrt[n]{a^m}$$

$$10^{\frac{4}{3}} = \sqrt[3]{10^4} = 21.5443469 \dots$$

$$25^{-1.5} = 25^{-3/2} =$$

$$a^1 = a$$

$$a^0 = 0 \ (a \neq 0)$$

$$(ab)^n = a^n b^n$$

$$a^m a^n = a^{m+n}$$

$$(a^n)^m = a^{mn}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-1} = \frac{1}{a}$$

$$a^{m/n} = \sqrt[n]{a}^m = \sqrt[n]{a^m}$$

$$10^{\frac{4}{3}} = \sqrt[3]{10^4} = 21.5443469 \dots$$

$$25^{-1.5} = 25^{-3/2} = \frac{1}{25^{3/2}}$$

$$a^1 = a$$

$$a^0 = 0 \ (a \neq 0)$$

$$(ab)^n = a^n b^n$$

$$a^m a^n = a^{m+n}$$

$$(a^n)^m = a^{mn}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \qquad \frac{a^m}{a^n} = a^{m-n}$$

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-1} = \frac{1}{a}$$

$$a^{m/n} = \sqrt[n]{a}^m = \sqrt[n]{a^m}$$

$$10^{\frac{4}{3}} = \sqrt[3]{10^4} = 21.5443469 \dots$$

$$25^{-1.5} = 25^{-3/2} = \frac{1}{25^{3/2}} = \frac{1}{\sqrt{25}^3} = \frac{1}{5^3} = \frac{1}{125}$$

## Εκθετικές συναρτήσεις

Μια εκθετική συνάρτηση είναι μια συνάρτηση της μορφής  $f(x) = \alpha^x$ 

όπου  $x \in \mathbb{R}$  και  $\alpha \in \mathbb{R}$  με τους περιορισμούς ότι  $\alpha \neq 1$  και  $\alpha > 0$ 

## Εκθετικές συναρτήσεις

Μια εκθετική συνάρτηση είναι μια συνάρτηση της μορφής  $f(x) = \alpha^x$ 

όπου  $x \in \mathbb{R}$  και  $\alpha \in \mathbb{R}$  με τους περιορισμούς ότι  $\alpha \neq 1$  και  $\alpha > 0$ 

- Αν  $\alpha = 1$  τότε πρόκειται για την σταθερή συνάρτηση  $1^x = 1$
- Αν  $\alpha = 0$  τότε το  $a^x$  δεν ορίζεται για αρνητικές τιμές του εκθέτη  $(0^{-1} = 1/0)$
- Αν  $\alpha < 0$  τότε το  $a^x$  δεν ορίζεται για διάφορες τιμές του x όπως για παράδειγμα:  $(-3)^{1/2} \stackrel{?}{\rightarrow} \sqrt{-3}$

# Εκθετικές συναρτήσεις

• Παράδειγμα  $f(x) = 2^x$ 

## Εκθετικές συναρτήσεις

• Παράδειγμα  $f(x) = 2^x$ 

| X       | 2×          |  |
|---------|-------------|--|
| -3      | 1/8<br>1/4  |  |
| -2<br>1 | 1/4         |  |
| -1      | 1/2         |  |
| 0       | 1           |  |
|         | 2           |  |
| 1 2 3   | 2<br>4<br>8 |  |
| 3       | 8           |  |

## Εκθετικές συναρτήσεις

• Παράδειγμα  $f(x) = 2^x$ 

| X     | 2×          |  |
|-------|-------------|--|
| -3    | 1/8<br>1/4  |  |
| -2    |             |  |
| -1    | 1/2         |  |
| 0     | 1           |  |
| 1     | 2           |  |
| 1 2 3 | 2<br>4<br>8 |  |
| 3     | 8           |  |



## Εκθετικές συναρτήσεις $a^x$ με $\alpha > 1$



#### Ιδιότητες της εκθετικής συνάρτησης $f(x) = a^x$ με a > 1

- Πεδίο ορισμού:  $\mathbb R$
- Σύνολο τιμών:  $(0, +\infty)$
- Δεν υπάρχουν σημεία τομής με τον άξονα xx'
- Σημείο τομής με τον yy': (0,1)
- Αύξουσα στο  $(-\infty, +\infty)$
- Το γράφημα της f περιέχει τα σημεία  $\left(-1,\frac{1}{\alpha}\right)$ , (0,1),  $(1,\alpha)$
- $\bullet \frac{f(x+1)}{f(x)} = a$
- Αν x = y τότε  $a^x = a^y$  (η f είναι συνάρτηση)
- Av  $a^x = a^y$  τότε x = y (η f είναι 1-1)

## Εκθετικές συναρτήσεις $a^x$ με $0 < \alpha < 1$



#### Ιδιότητες της εκθετικής συνάρτησης $f(x) = a^x$ με 0 < a < 1

- Πεδίο ορισμού:  $\mathbb R$
- Σύνολο τιμών:  $(0, +\infty)$
- Δεν υπάρχουν σημεία τομής με τον άξονα xx'
- Σημείο τομής με τον yy': (0,1)
- Φθίνουσα στο  $(-\infty, +\infty)$
- Το γράφημα της f περιέχει τα σημεία  $\left(-1,\frac{1}{\alpha}\right)$ , (0,1),  $(1,\alpha)$
- $\bullet \frac{f(x+1)}{f(x)} = a$
- Αν x = y τότε  $a^x = a^y$  (η f είναι συνάρτηση)
- Av  $a^x = a^y$  τότε x = y (η f είναι 1-1)

### Σχεδίαση με μετασχηματισμό

Σχεδιάστε το γράφημα της  $f(x) = 3^{-x} - 2$  και προσδιορίστε το πεδίο ορισμού και το σύνολο τιμών της

## Σχεδίαση με μετασχηματισμό

Σχεδιάστε το γράφημα της  $f(x) = 3^{-x} - 2$  και προσδιορίστε το πεδίο ορισμού και το σύνολο τιμών της



## Σχεδίαση με μετασχηματισμό

Σχεδιάστε το γράφημα της  $f(x) = 3^{-x} - 2$  και προσδιορίστε το πεδίο ορισμού και το σύνολο τιμών της

Πεδίο ορισμού:  $\mathbb{R}$ 

Σύνολο τιμών:  $(-2, +\infty)$ 

$$3^{2} > 0$$
 $3^{2} > 0$ 
 $3^{2} > 0$ 
 $3^{2} > 0$ 
 $3^{2} > 0$ 
 $3^{2} > 0$ 





## Λογάριθμοι

### Λογάριθμος

• Ο λογάριθμος με βάση  $\alpha$  ενός αριθμού x είναι η τιμή του εκθέτη που θα πρέπει να χρησιμοποιηθεί έτσι ώστε υψώνοντας τη βάση  $\alpha$  σε αυτόν τον εκθέτη να ληφθεί ο αριθμός x

$$log_a x = b \Leftrightarrow a^b = x \gamma \iota \alpha \alpha > 0 \kappa \alpha \iota \alpha \neq 1$$

#### • Συνηθέστεροι λογάριθμοι είναι:

•  $log_{10}x$  (δεκαδικός ή κοινός λογάριθμος)

•  $log_e x = lnx$  (φυσικός ή νεπέριος λογάριθμος)

•  $log_2x$  (δυαδικός λογάριθμος – χρησιμοποιείται ιδιαίτερα στην πληροφορική)

Το πεδίο ορισμού του λογαρίθμου είναι το  $(0,\infty)$  και το πεδίο τιμών του είναι  $(-\infty,\infty)$ 

## Λογαριθμικές συναρτήσεις

```
Μια λογαριθμική συνάρτηση με βάση a, όπου \alpha \neq 1 και \alpha > 0 συμβολίζεται με y = log_a x και ορίζεται από τη σχέση y = log_a x \Leftrightarrow x = a^y
```

Η λογαριθμική συνάρτηση  $y = log_a x$  ορίζεται για κάθε x > 0

ΜΕ ΛΟΓΙΑ Ο λογάριθμός είναι ένας εκθέτης. Δηλ. αν  $y = log_a x$  , τότε το y είναι ο εκθέτης στην  $x = a^y$ 

### Λογαριθμικές συναρτήσεις

Μια λογαριθμική συνάρτηση με βάση a, όπου  $\alpha \neq 1$  και  $\alpha > 0$  συμβολίζεται με  $y = log_a x$  και ορίζεται από τη σχέση  $y = log_a x \Leftrightarrow x = a^y$ 

Η λογαριθμική συνάρτηση  $y = log_a x$  ορίζεται για κάθε x > 0

• ΑΡΑ η λογαριθμική συνάρτηση είναι η αντίστροφη συνάρτηση της εκθετικής  $f(x) = a^x \cdot \Delta \eta \lambda$ 

$$f^{-1}(x) = log_a x$$

### Λογαριθμικές συναρτήσεις

Μια λογαριθμική συνάρτηση με βάση a, όπου  $\alpha \neq 1$  και  $\alpha > 0$  συμβολίζεται με  $y = log_a x$  και ορίζεται από τη σχέση  $y = log_a x \Leftrightarrow x = a^y$ 

Η λογαριθμική συνάρτηση  $y = log_a x$  ορίζεται για κάθε x > 0

#### Παράδειγματα

$$log_3(27) = 3$$
 γιατί  $3^3 = 27$ 

$$\log_3(9) = 2$$
 γιατί  $3^2 = 9$ 

$$log_3(1) = 0$$
 γιατί  $3^0 = 1$ 

#### Παράδειγματα

$$\log_3\left(\frac{1}{9}\right) = -2$$
 γιατί  $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$ 

$$\log_3(\sqrt{3}) = \frac{1}{2}$$
 γιατί  $3^{1/2} = \sqrt{3}$ 

## Η εκθετική συνάρτηση είναι αντίστροφη της λογαριθμικής συνάρτησης

- Η εκθετική συνάρτηση με βάση α αποτελεί αντίστροφη συνάρτηση της λογαριθμικής συνάρτησης με βάση α
- $f(x) = log_a x$
- $\bullet f^{-1}(x) = a^x$
- $\bullet f^{-1}(f(x)) = x$
- $\bullet f(f^{-1}(x)) = x$

- $log(10^x) = x$
- $10^{\log(x)} = x$
- $\ln(e^x) = x$
- $e^{ln(x)} = x$



## Υπενθύμιση: Βασικές ιδιότητες λογαρίθμων

- $log_a 1 = 0$
- $log_a a = 1$
- $log_a a^x = x$
- $a^{log_ax} = x$
- $log_a x^n = nlog_a x$
- $log_a(x * y) = log_a(x) + log_a(y)$
- $log_a\left(\frac{x}{y}\right) = log_a(x) log_a(y)$

## Γραφικές παραστάσεις λογαριθμικών συναρτήσεων $log_a x$

$$\alpha > 1$$



## Γραφικές παραστάσεις λογαριθμικών συναρτήσεων $log_a x$



#### Ιδιότητες της $f(x) = log_a x$ με a > 0, $a \ne 1$

- Πεδίο ορισμού: (0, +∞)
- Σύνολο τιμών:  $\mathbb R$
- Δεν υπάρχουν σημεία τομής με τον άξονα *yy'*
- Σημείο τομής με τον xx': (1,0)
- Αύξουσα στο  $(0, +\infty)$  αν a > 1
- Φθίνουσα στο (0, +∞) αν 0 < a < 1
- Το γράφημα της f περιέχει τα σημεία  $\left(\frac{1}{\alpha}, -1\right)$ , (1,0),  $(\alpha,1)$
- Αν x = y τότε  $log_a x = log_a y$
- Αν  $log_a x = log_a y$  τότε x = y

(η f είναι συνάρτηση)

(η *f* είναι '1-1')

## Επίλυση εκθετικών και λογαριθμικών εξισώσεων

• Για την επίλυση εκθετικών και λογαριθμικών εξισώσεων συχνά χρησιμοποιείται η ιδιότητα ότι η εκθετική είναι η αντίστροφη της λογαριθμικής συνάρτησης (άρα η μια ακυρώνει την άλλη)

## Επίλυση εκθετικών και λογαριθμικών εξισώσεων

#### Παράδειγμα 1:

• 
$$10^{2x} = 17 \Leftrightarrow$$
  
 $\log(10^{2x}) = \log(17) \Leftrightarrow$   
 $2x = \log(17) \Leftrightarrow x = \frac{\log(17)}{2} \approx 0.615$ 

#### Παράδειγμα 2:

• 
$$\log(x - 3) = 2 \Leftrightarrow$$
  
 $10^{\log(x - 3)} = 10^2 \Leftrightarrow$   
 $x - 3 = 100 \Leftrightarrow x = 103$ 

## Φυσική Εκθετική Συνάρτηση και Φυσικός Λογάριθμος

## Μια ειδική βάση εκθετικής συνάρτησης Ένας ειδικός αριθμός: e = 2.712812845904 ...

#### Μια ειδική βάση εκθετικής συνάρτησης

Ένας ειδικός αριθμός: e = 2.712812845904...

Η εκθετική συνάρτηση  $f(x) = e^x$  ονομάζεται φυσική εκθετική συνάρτηση



#### Μια ειδική βάση εκθετικής συνάρτησης

Ένας ειδικός αριθμός:  $e = 2.712812845904 \dots$ 

Η εκθετική συνάρτηση  $f(x) = e^x$  ονομάζεται φυσική εκθετική συνάρτηση.

Η αντίστροφη της  $\log_e(x)$  ονομάζεται φυσική λογαριθμική συνάρτηση

Συμβολισμός:  $\log_e(x) = ln(x) = lnx$ 



#### Βασικές ιδιότητες φυσικού λογαρίθμου

$$\ln(e) = 1, \qquad \ln(1) = 0$$

$$\ln(e^x) = x$$

$$e^{\ln(x)} = x$$

$$\ln(xy) = \ln(x) + \ln(y)$$

$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

$$\ln(x^y) = y\ln(x)$$

$$\ln\left(\frac{1}{y}\right) = -\ln(y)$$

## Παράδειγμα

Nα λυθεί η εξίσωση 
$$3^{4x-1} = 2 \cdot 10^x$$

$$ln(3^{4x-1}) = ln(2 \cdot 10^x)$$

$$(4x-1) ln3 = ln2 + ln10^x$$

$$(4x-1) ln3 = ln2 + x ln10$$

$$4 \times ln3 - ln3 = ln2 + x ln10$$

$$4 \times ln3 - ln3 = ln2 + ln3$$

$$(4ln3 - ln10) = ln2 + ln3$$

$$(4ln3 - ln10) = ln(2 \cdot 3)$$

$$X = \frac{\ln 6}{\ln 3^4 - \ln 10} = \frac{\ln 6}{\ln 64 - \ln 10}$$

#### Παράδειγμα:

Επιλύστε ως προς y την εξίσωση  $a^y = x$ 

#### Παράδειγμα:

Επιλύστε ως προς y την εξίσωση  $a^y = x$ 

$$a^{y} = x$$

$$\log_{a} a^{y} = \log_{a} x$$

$$y \log_{a} a = \log_{a} x$$

$$y = \log_{a} x$$

#### Παράδειγμα:

Επιλύστε ως προς y την εξίσωση  $a^y = x$ 

$$a^{y} = x$$

$$\log_{a} a^{y} = \log_{a} x$$

$$y \log_{a} a = \log_{a} x$$

$$y = \log_{a} x$$

#### Παράδειγμα:

Επιλύστε ως προς y την εξίσωση  $a^y = x$ 

$$a^{y} = x$$

$$ln a^{y} = ln x$$

$$y ln a = ln x$$

$$v = \frac{ln x}{ln x}$$

#### Παράδειγμα:

Επιλύστε ως προς y την εξίσωση  $a^y = x$ 

$$a^y = x$$

$$\log_a a^y = \log_a x$$

$$y \log_a a = \log_a x$$

$$y = \log_a x$$

#### Παράδειγμα:

Επιλύστε ως προς y την εξίσωση  $a^y = x$ 

$$a^y = x$$

$$ln a^y = ln x$$

$$y \ln a = \ln x$$

$$y = \frac{\ln x}{\ln a}$$

\_\_logx

loga

Τύπος Αλλαγής Βάσης: 
$$\log_a x = \frac{t_a}{t_a}$$

## Παράδειγμα

Υπολογίστε

$$log_2 9 =$$

### Παράδειγμα

#### Υπολογίστε

$$\log_2 9 = \frac{\ln 9}{\ln 2} = 3.169925001 \dots$$

# Γιατί ο αριθμός *e* είναι σημαντικός

### Εισαγωγή στον αριθμό e

- Ο αριθμός  $e \approx 2.71828$  είναι ένας άρρητος αριθμός.
- Παρουσιάζει φυσικά και μαθηματικά φαινόμενα όπως η εκθετική ανάπτυξη και ο συνεχής ανατοκισμός.
- Είναι γνωστός ως η βάση του **φυσικού λογαρίθμου** ln(x)

#### Ιδιότητες του e

• Η συνάρτηση  $e^x$  είναι **η μοναδική συνάρτηση** που η παράγωγός της είναι η ίδια

$$(e^x)' = e^x$$

- Ο αριθμός *e* συνδέεται με τη συνεχή αύξηση ή συνεχή μείωση που παρατηρείται σε ορισμένες καταστάσεις
  - Εκθετική αύξηση (k>0)
  - Εκθετική μείωση (k < 0)

$$y = y_0 e^{kx}$$

#### Υπολογισμός του *e*

| n         | $\left(\frac{1}{n}+1\right)^n$ |
|-----------|--------------------------------|
| 1         | 2                              |
| 2         | 2.25                           |
| 3         | 2.370270370370370              |
| 4         | 2.44140625                     |
| 5         | 2.48832                        |
| 10        | 2.5937424601                   |
| 100       | 2.704813829421526              |
| 1000      | 2.716923932235892              |
| 10000     | 2.718145926825225              |
| 100000    | 2.718268237174495              |
| 1000000   | 2.718280469319337              |
| 10000000  | 2.718281692544966              |
| 100000000 | 2.718281814867636              |
| ↓ ↓       | ↓                              |
| $\infty$  | е                              |

• Ο αριθμός e προσεγγίζεται με την τιμή της συνάρτησης  $\left(1 + \frac{1}{n}\right)^n \kappa\alpha\theta \dot{\omega}\varsigma \, n \rightarrow \infty$ 

$$\left(1+\frac{1}{n}\right)^n$$
 καθώς  $n \to \infty$ 

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n$$

#### Ο αριθμός ε σε φυσικά φαινόμενα

- Εκθετική Ανάπτυξη: Περιγράφει φαινόμενα όπως:
  - Ο Ανάπτυξη πληθυσμών
  - Ραδιενεργή αποσύνθεση
  - ο Μεταβολή θερμοκρασίας
- Συνεχής Ανατοκισμός: Στον ανατοκισμό, η συνάρτηση

$$P = Ae^{rt}$$

περιγράφει την ανάπτυξη του κεφαλαίου.

#### Παρουσία του ε στη Φυσική

- Ο *e* εμφανίζεται σε λύσεις διαφορικών εξισώσεων:
  - Ο Ηλεκτρικά κυκλώματα (πυκνωτές/πηνία)
  - Θερμική διάχυση
  - ο Αποσύνθεση ουσιών
- Τα φυσικά φαινόμενα συχνά ακολουθούν εκθετική μορφή εξαιτίας της αναλογικής αλλαγής με το χρόνο

#### Ο e στις Πιθανότητες και τη Στατιστική

- Ο αριθμός e εμφανίζεται σε κατανομές πιθανοτήτων όπως:
  - Εκθετική κατανομή (χρόνος αναμονής)
  - Κατανομή Poisson (συμβάντα ανά μονάδα χρόνου)
- Κεντρικός στη θεωρία πιθανοτήτων λόγω των εκθετικών μοντέλων.

- Μια λογαριθμική κλίμακα χρησιμοποιεί τον λογάριθμο μιας φυσικής ποσότητας αντί για την ίδια την ποσότητα.
- Η παρουσίαση δεδομένων σε λογαριθμική κλίμακα μπορεί να είναι χρήσιμη όταν τα δεδομένα καλύπτουν μεγάλο εύρος τιμών.
- Ο λογάριθμος μειώνει το μεγάλο εύρος τιμών σε ένα πιο διαχειρίσιμο εύρος.
- Η πιο κοινή μορφή λογαριθμικής κλίμακας χρησιμοποιεί λογάριθμους βάσης 10.

$$\log_{10} 100 = x$$
$$10^{x} = 100$$
$$x = 2$$

n 1 10 1000  $10^5$   $10^8$   $10^{14}$ 

Πώς θα τοποθετήσουμε αυτούς τους αριθμούς σε ένα άξονα συντεταγμένων;



$$\log_{10} 100 = x$$
$$10^x = 100$$
$$x = 2$$



Οι αριθμοί 1, 10, 1000 πολύ κοντά στο 0

$$\log_{10} 100 = x$$
$$10^{x} = 100$$
$$x = 2$$

n 1

10

1000

 $10^{5}$ 

 $10^{8}$ 

 $10^{14}$ 

Ποια είναι η λύση;

$$\log_{10} 100 = x$$

$$10^{x} = 100$$

$$x = 2$$

| n             | 1 | 10 | 1000 | $10^{5}$ | $10^8$ | $10^{14}$ |
|---------------|---|----|------|----------|--------|-----------|
| $\log_{10} n$ | 0 | 1  | 3    | 5        | 8      | 14        |

$$\log_{10} 100 = x$$
$$10^{x} = 100$$
$$x = 2$$



Οι αριθμοί με εύρος [0,14] μπορούν εύκολα να αναπαρασταθούν σε ένα σύστημα συντεταγμένων

Για φαινόμενα που μεταβάλλονται ραγδαία Χρησιμοποιούμε λογάριθμους

- Η κλίμακα Ρίχτερ είναι μια κλίμακα μέτρησης της σεισμικής δραστηριότητας
- Είναι λογαριθμική κλίμακα





Μ: το πλάτος των σεισμικών κυμάτων





#### Λογαριθμικές Κλίμακες σε Γραφήματα

Σχεδιάστε το γράφημα της  $y=x^{\frac{1}{2}}=\sqrt{x}$  σε καρτεσιανό και σε λογαριθμικό σύστημα

#### Παράδειγμα

Σχεδιάστε το γράφημα της  $y=x^{\frac{1}{2}}=\sqrt{x}$  σε καρτεσιανό και σε λογαριθμικό σύστημα

Λύση: Κατασκευάζουμε πίνακα τιμών

| x | 0 | 1 | 4 | 9 | 16 |
|---|---|---|---|---|----|
| y | 0 | 1 | 2 | 3 | 4  |

# Παράδειγμα



#### Παράδειγμα

Σχεδιάστε το γράφημα της  $y=x^{\frac{1}{2}}=\sqrt{x}$  σε καρτεσιανό και σε λογαριθμικό σύστημα

Λύση: Κατασκευάζουμε πίνακα τιμών

| X     | 0 | 1 | 4      | 9      | 16     |
|-------|---|---|--------|--------|--------|
| у     | 0 | 1 | 2      | 3      | 4      |
| ln(x) | - | 0 | 1.3863 | 2.1972 | 2.7726 |
| ln(y) | - | 0 | 0.6931 | 1.0986 | 1.3863 |

## Λογαριθμική κλίμακα - $y = \sqrt{x}$



# Παράδειγμα $y = \sqrt{x}$



