

ÚNKP ÖSZTÖNDÍJASAINAK KONFERENCIÁJA

Háromrészecske Bose-Einstein korrelációk vizsgálata

Bagoly Attila

Témavezető: Csanád Máté

2017. május 5.

Áttekintés

- Kutatás során nehézion ütközésekből származó adatok analízise történt
- Gyorsító: Brookhaven nemzeti laboratorium relativisztikus nehézion ütköztetője (BNL RHIC)
- Adatfelvétel: 2010, 200 GeV Au+Au ütközések
- Mérés: PHENIX detektorrendszer
- Adatmennyiség: 2.3 TB
- Eredmények Quark Matter 2017 konferencián kerültek bemutatásra

HBT effektus

- 1956. Robert Hanbury Brown és Richard Q. Twiss: A test of a new type of stellar interferometer on Sirius
- Két photomultiplier, különböző távolságok ⇒ korreláció a két mért intenzitáseloszlásban
- \blacksquare Korrelációs függvény a detektor távolság függvényében \to Sirius átmérője

HBT effektus a részecskefizikában

- 1959. G. Goldhaber, S. Goldhaber, W.Y. Lee and A. Pais: proton-antiproton ütközések 1.05 GeV/c energián:
 - lacksquare vizsgálták $ho^0 o \pi^+\pi^-$ bomlást
 - lacktriangle nem várt korreláció a π^+ és π^+ , π^- és π^-
 - 1960: oka pionok bozonok mint a fotonok
- Később kiderült, hogy a korrelációk információt hordoznak a forrás geometriájáról
- 200 GeV Au+Au ütközésekben a RHIC gyorsítóban kvark-gluon plazma keletkezik
- Ennek az "ősanyagnak" a tulajdonságait vizsgáljuk a belőle kifagyott pionok közti korreláció mérésével

イロン イ御 トイラン イラン ラ りゅつ

Háromrészecske Bose-Einstein korrelációk

- Invariáns momentum eloszlás: $N_1(p_i)$, $N_2(p_1, p_2)$, $N_3(p_1, p_2, p_3)$
- Korrelációs függvény definíciója:

$$C_n(p_1,\ldots,p_n)=\frac{N_n(p_1,\ldots,p_n)}{N_1(p_1)\cdots N_1(p_n)}$$

kaotikus emisszió esetén:

$$N_n(p_1,...,p_n) = \int \prod_{i=1}^n S(x_i,p_i) |\Psi_n(\{x_i\})|^2 d^4x_1...d^4x_n$$

 $\mathcal{S}(x,p)$ forrásfüggvény (általában Gaussian eloszlás - Levy általánosabb)

Core-Halo modell

- nem minden részecske származik a QGP kifagyásból
- már kifagyott részecskék bomlásából is származnak beütések
- Mindkét rész hozzájárul a forrásfüggvényhez:

$$S = S_{core} + S_{halo}$$

Részecskeszám eloszlás:

$$N_n(p_1,\ldots,p_n)=N_n^c(p_1,\ldots,p_n)+N_n^h(p_1,\ldots,p_n)$$

Két részecske korreláció:

$$C_2(k_1, k_2) = 1 + \lambda_2 |\mathcal{S}(q)|^2$$

ahol

$$\sqrt{\lambda_2} = f_C \equiv \frac{N^c}{N^c + N^h}$$

Koherencia

Ha a mag részeben koherens módon kelt részecskéket:

$$S_{\text{core}} = S_{\text{core}}^{\text{pc}} + S_{\text{core}}^{i}$$

ahol pc a koherens részre, i az inkoherens részre utal

Részecskeszám eloszlás:

$$N_n^c(p_1,...,p_n) = N_n^{c,pc}(p_1,...,p_n) + N_n^{c,i}(p_1,...,p_n)$$

- lacksquare Két részecske korreláció: $\mathit{C}_2(\mathit{k}_1,\mathit{k}_2) = 1 + \lambda_2 |\mathcal{S}(q)|^2$, de $\lambda_2
 eq \mathit{f}_C^2$
- Koherensen keltett pionok aránya:

$$p_C \equiv \frac{N_{\text{coherent}}}{N^{\text{coherent}} + N^{\text{incoherent}}} \rightarrow \lambda_2(f_C, p_C)$$

Háromrészecske HBT analízis mögötti motiváció

- lacksquare Emlékeztető: $C_2(k)=1+\lambda_2|\mathcal{S}(q)|^2$
- lacktriangle Kétrészecske korreláció erőssége: $\lambda_2 \equiv \mathcal{C}_2(q=0)-1$
- lacktriangle Hasonlóan háromrészecske korrelációs erősség: $\lambda_3 \equiv \mathcal{C}_3(0) 1$
- Core-Halo: $\lambda_2=f_C^2,\quad \lambda_3=2f_C^3+3f_C^2$ $\kappa_3=\left(\lambda_3-3\lambda_2\right)/\left(2\sqrt{\lambda_2^3}\right)=1$

Parciális koherencia (p_C koherensen keltett pionok aránya):

$$\lambda_2 = f_C^2 [(1 - p_C)^2 + 2p_C (1 - p_C)]$$

$$\lambda_3 = 2f_C^3 [(1 - p_C)^3 + 3p_C (1 - p_C)^2] + 3f_C^2 [(1 - p_C)^2 + 2p_C (1 - p_C)]$$

$$\kappa_3 = \kappa_3 (p_C)$$

 \blacksquare A $\lambda_2,\,\lambda_3$ konzisztens analíziséből vizsgálhatjuk az eltéréseket a Core-Halo modelltől

Háromrészecske BE korrelációk vizsgálata

Korrelációs függvény

- $C_3(p_1, p_2, p_3)$ (9D)
- különböző $p_T = |p_{T1} + p_{T2} + p_{T3}|/3$ binekben mérjük a $C_3(k_{12}, k_{23}, k_{13})$ (6D) függvényt, ahol $k_{ij} = p_i p_j$
- side-out-longitudinal felbontást használunk:
 - long irány: nyalábirány
 - out irány: átlagos transzverz irány
 - side: merőleges előző kettőre
- Koordináta rendszer: háromrészecske LCMS (longitudinális együttmozgó rendszer): Lorentz boost long irányba
- lacktriangle A $k_{ij}^{
 m LCMS}$ helyett a korrelációs függvényt változói:

$$k_{ij} = |\mathbf{k}_{ij}^{\text{LCMS3}}| \tag{3D}$$

Ok: nincs elég statisztika

Coulomb kölcsönhatás nélküli modell

■ Feltevés a forrásra: Levy-eloszlás

$$\mathcal{L}(\alpha, R, r) = (2\pi)^{-3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$$

• C_3 közelíthető a következőképpen ($\mathcal{L}_3=2f_{\mathcal{C}}^3$):

$$C_3^{(0)}(k_{12}, k_{13}, k_{23}) = 1 + \ell_3 e^{-0.5(|2k_{12}R_C|^{\alpha} + |2k_{13}R_C|^{\alpha} + |2k_{23}R_C|^{\alpha})}$$
$$+ \ell_2 \left(e^{|2k_{12}R_C|^{\alpha}} + e^{|2k_{13}R_C|^{\alpha}} + e^{|2k_{23}R_C|^{\alpha}} \right)$$

- Háttér: $N(1 + \epsilon k_{12})(1 + \epsilon k_{13})(1 + \epsilon k_{23})$
- Illesztési paraméterek: ℓ_3 , ℓ_2 , R_C , α , N, ϵ
- Keressük: $\lambda_3 \equiv C_3(k_{12} = k_{13} = k_{23} = 0) 1 = \ell_3 + 3\ell_2$

Coulomb korrekció

■ Korrigált modell:

$$C_3(k_{12}, k_{13}, k_{23}) = C_3^{(0)}(k_{12}, k_{13}, k_{23}) \cdot K_3(k_{12}, k_{13}, k_{23})$$

"Generalized Riverside" közelítő módszer a Coulomb korrekció becslésére:

Illesztés szemléltetése

Diagonális korrelációs függvény

Háromrészecske korrelációs erősség: λ_3

lacksquare λ_3 Core-Halo + kaotikus forrás által adott tartományban minden m_T

Core-Halo független paraméter

- $\kappa_3 \equiv \frac{\lambda_3 3\lambda_2}{2\sqrt{\lambda_2^3}}$ nem függ f_C -től ($f_C = \text{core}/(\text{core} + \text{halo})$)
- Core-Halo + kaotikus mag: $\kappa_3 = 1$
- új effektusok (pl. nem teljesen kaotikus forrás): $\kappa_3 \neq 1$
- lacksquare Statisztikailag szignifikáns eltérés a $\kappa_3=1$

Mag aránya (f_c) a parciális koherencia (p_c) függvényében

- Egyszerű elméleti modell: $\lambda_2(f_c, p_c)$, $\lambda_3(f_c, p_c)$
- Mért $\lambda_2^{
 m meas.} o \lambda_2^{
 m meas.} = \lambda_2(f_c, p_c) \Longrightarrow f_c(p_c)$ (zöld vonalak)
- $lack ext{M\'ert} \ \lambda_3^{ ext{meas.}} o \lambda_3^{ ext{meas.}} = \lambda_3(f_c, p_c) \Longrightarrow f_c(p_c) \ ext{(k\'ek vonalak)}$
- $f_c < 0.82$ és $p_c > 0.5$ kizárható, $p_C < 0.5$ nem zárható ki

Összefoglaló

- RHIC gyorsító 200GeV Au+Au ütközések során a PHENIX detektorrendszerrel mért adatok analízisét végeztem
- Háromrészecske korrelációs függvényeket mértem
- Korrelációs függvény modelljében forrás leírására: Lévy eloszlás
- A cél a háromrészecske korreláció erősségének meghatározása volt
- Kétrészecske és háromrészecske korrelációs erősségek analíziséből kiderült:
 - \blacksquare statisztikailag szignifikáns eltérés az egyszerű Core-Halo + kaotikus mag modelltől
 - 82%-nál kisebb magarány és 50%-nál nagyobb koherencia kizárható a vizsgált p_T-n
 - 50%-nál kisebb koherencia nem zárható ki az analízis alapján