## In [1]:

## **#FLIGHT PRICE PREDICTION**

# In [ ]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
```

## In [2]:

```
train_data = pd.read_csv("Data_Train.csv")
```

## In [3]:

```
pd.set_option('display.max_columns', None)
```

# In [4]:

```
train_data.head()
```

## Out[4]:

|   | Airline        | Date_of_Journey | Source   | Destination | Route                       | Dep_Time | Arrival_Time | Duration | Total_Stops | Additio |
|---|----------------|-----------------|----------|-------------|-----------------------------|----------|--------------|----------|-------------|---------|
| 0 | IndiGo         | 24/03/2019      | Banglore | New Delhi   | BLR<br>→<br>DEL             | 22:20    | 01:10 22 Mar | 2h 50m   | non-stop    |         |
| 1 | Air<br>India   | 1/05/2019       | Kolkata  | Banglore    | CCU  IXR  BBI  BLR          | 05:50    | 13:15        | 7h 25m   | 2 stops     |         |
| 2 | Jet<br>Airways | 9/06/2019       | Delhi    | Cochin      | DEL                         | 09:25    | 04:25 10 Jun | 19h      | 2 stops     |         |
| 3 | IndiGo         | 12/05/2019      | Kolkata  | Banglore    | CCU<br>→<br>NAG<br>→<br>BLR | 18:05    | 23:30        | 5h 25m   | 1 stop      |         |
| 4 | IndiGo         | 01/03/2019      | Banglore | New Delhi   | BLR<br>→<br>NAG<br>→<br>DEL | 16:50    | 21:35        | 4h 45m   | 1 stop      |         |
| 4 |                |                 |          |             |                             |          |              |          |             | •       |

```
In [5]:
```

```
train data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10683 entries, 0 to 10682
Data columns (total 11 columns):
#
    Column
                     Non-Null Count Dtype
    ----
                     -----
---
0
     Airline
                     10683 non-null
                                     object
    Date_of_Journey 10683 non-null object
 1
 2
    Source
                     10683 non-null object
 3
    Destination
                     10683 non-null
                                     object
 4
     Route
                     10682 non-null object
 5
    Dep_Time
                     10683 non-null object
 6
    Arrival Time
                    10683 non-null object
 7
    Duration
                     10683 non-null object
 8
    Total Stops
                     10682 non-null object
 9
    Additional_Info 10683 non-null object
10 Price
                     10683 non-null int64
dtypes: int64(1), object(10)
memory usage: 918.2+ KB
In [6]:
train_data["Duration"].value_counts()
Out[6]:
           550
2h 50m
           386
1h 30m
2h 45m
           337
2h 55m
           337
2h 35m
           329
31h 30m
            1
30h 25m
            1
42h 5m
            1
4h 10m
            1
47h 40m
            1
Name: Duration, Length: 368, dtype: int64
In [7]:
train_data.dropna(inplace = True)
In [8]:
train_data.isnull().sum()
Out[8]:
Airline
                   0
Date_of_Journey
                   0
                   0
Source
Destination
                   0
Route
Dep_Time
Arrival_Time
Duration
Total Stops
Additional_Info
Price
dtype: int64
```

```
In [9]:
```

```
train_data["Journey_day"] = pd.to_datetime(train_data.Date_of_Journey, format="%d/%m/%Y").dt.day
```

### In [10]:

```
train_data["Journey_month"] = pd.to_datetime(train_data["Date_of_Journey"], format = "%d/%m/%Y").dt.month
```

### In [11]:

train\_data.head()

#### Out[11]:

|   | Airline        | Date_of_Journey | Source   | Destination | Route                                                          | Dep_Time | Arrival_Time | Duration | Total_Stops | Additio     |
|---|----------------|-----------------|----------|-------------|----------------------------------------------------------------|----------|--------------|----------|-------------|-------------|
| 0 | IndiGo         | 24/03/2019      | Banglore | New Delhi   | BLR<br>→<br>DEL                                                | 22:20    | 01:10 22 Mar | 2h 50m   | non-stop    |             |
| 1 | Air<br>India   | 1/05/2019       | Kolkata  | Banglore    | CCU  IXR  BBI  BLR                                             | 05:50    | 13:15        | 7h 25m   | 2 stops     |             |
| 2 | Jet<br>Airways | 9/06/2019       | Delhi    | Cochin      | DEL  → LKO  → BOM  → COK                                       | 09:25    | 04:25 10 Jun | 19h      | 2 stops     |             |
| 3 | IndiGo         | 12/05/2019      | Kolkata  | Banglore    | $\begin{array}{c} CCU \\ \to \\ NAG \\ \to \\ BLR \end{array}$ | 18:05    | 23:30        | 5h 25m   | 1 stop      |             |
| 4 | IndiGo         | 01/03/2019      | Banglore | New Delhi   | BLR<br>→<br>NAG<br>→<br>DEL                                    | 16:50    | 21:35        | 4h 45m   | 1 stop      |             |
| 4 |                |                 |          |             |                                                                |          |              |          |             | <b>&gt;</b> |

# In [12]:

```
train_data.drop(["Date_of_Journey"], axis = 1, inplace = True)
```

## In [13]:

```
train_data["Dep_hour"] = pd.to_datetime(train_data["Dep_Time"]).dt.hour
train_data["Dep_min"] = pd.to_datetime(train_data["Dep_Time"]).dt.minute
train_data.drop(["Dep_Time"], axis = 1, inplace = True)
```

## In [14]:

train\_data.head()

## Out[14]:

|   | Airline        | Source   | Destination | Route                       | Arrival_Time | Duration | Total_Stops | Additional_Info | Price | Journey_day |
|---|----------------|----------|-------------|-----------------------------|--------------|----------|-------------|-----------------|-------|-------------|
| 0 | IndiGo         | Banglore | New Delhi   | BLR<br>→<br>DEL             | 01:10 22 Mar | 2h 50m   | non-stop    | No info         | 3897  | 24          |
| 1 | Air<br>India   | Kolkata  | Banglore    | CCU  → IXR  → BBI  → BLR    | 13:15        | 7h 25m   | 2 stops     | No info         | 7662  | 1           |
| 2 | Jet<br>Airways | Delhi    | Cochin      | DEL  → LKO  → BOM  → COK    | 04:25 10 Jun | 19h      | 2 stops     | No info         | 13882 | 9           |
| 3 | IndiGo         | Kolkata  | Banglore    | CCU<br>→<br>NAG<br>→<br>BLR | 23:30        | 5h 25m   | 1 stop      | No info         | 6218  | 12          |
| 4 | IndiGo         | Banglore | New Delhi   | BLR<br>→<br>NAG<br>→<br>DEL | 21:35        | 4h 45m   | 1 stop      | No info         | 13302 | 1           |
| 4 |                |          |             |                             |              |          |             |                 |       | •           |

# In [15]:

train\_data["Arrival\_hour"] = pd.to\_datetime(train\_data.Arrival\_Time).dt.hour
train\_data["Arrival\_min"] = pd.to\_datetime(train\_data.Arrival\_Time).dt.minute
train\_data.drop(["Arrival\_Time"], axis = 1, inplace = True)

```
In [16]:
```

```
train_data.head()
```

### Out[16]:

|   | Airline        | Source   | Destination | Route                       | Duration | Total_Stops | Additional_Info | Price | Journey_day | Journey_mor |
|---|----------------|----------|-------------|-----------------------------|----------|-------------|-----------------|-------|-------------|-------------|
| 0 | IndiGo         | Banglore | New Delhi   | BLR<br>→<br>DEL             | 2h 50m   | non-stop    | No info         | 3897  | 24          |             |
| 1 | Air<br>India   | Kolkata  | Banglore    | CCU  → IXR  → BBI  → BLR    | 7h 25m   | 2 stops     | No info         | 7662  | 1           |             |
| 2 | Jet<br>Airways | Delhi    | Cochin      | DEL  → LKO  → BOM  → COK    | 19h      | 2 stops     | No info         | 13882 | 9           |             |
| 3 | IndiGo         | Kolkata  | Banglore    | CCU<br>→<br>NAG<br>→<br>BLR | 5h 25m   | 1 stop      | No info         | 6218  | 12          |             |
| 4 | IndiGo         | Banglore | New Delhi   | BLR<br>→<br>NAG<br>→<br>DEL | 4h 45m   | 1 stop      | No info         | 13302 | 1           |             |
| 4 |                |          |             |                             |          |             |                 |       |             | •           |

#### In [17]:

```
duration = list(train_data["Duration"])

for i in range(len(duration)):
    if len(duration[i].split()) != 2:
        if "h" in duration[i]:
            duration[i] = duration[i].strip() + " 0m"
        else:
            duration[i] = "0h " + duration[i]

duration_hours = []
duration_mins = []
for i in range(len(duration)):
    duration_hours.append(int(duration[i].split(sep = "h")[0]))
    duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1]))
```

# In [18]:

```
train_data["Duration_hours"] = duration_hours
train_data["Duration_mins"] = duration_mins
```

## In [19]:

```
train_data.drop(["Duration"], axis = 1, inplace = True)
```

# In [20]:

train\_data.head()

# Out[20]:

|   | Airline        | Source   | Destination | Route                       | Total_Stops | Additional_Info | Price | Journey_day | Journey_month | Dep_h |
|---|----------------|----------|-------------|-----------------------------|-------------|-----------------|-------|-------------|---------------|-------|
| 0 | IndiGo         | Banglore | New Delhi   | BLR<br>→<br>DEL             | non-stop    | No info         | 3897  | 24          | 3             |       |
| 1 | Air<br>India   | Kolkata  | Banglore    | CCU  IXR  BBI  BLR          | 2 stops     | No info         | 7662  | 1           | 5             |       |
| 2 | Jet<br>Airways | Delhi    | Cochin      | DEL  → LKO  → BOM  → COK    | 2 stops     | No info         | 13882 | 9           | 6             |       |
| 3 | IndiGo         | Kolkata  | Banglore    | CCU<br>→<br>NAG<br>→<br>BLR | 1 stop      | No info         | 6218  | 12          | 5             |       |
| 4 | IndiGo         | Banglore | New Delhi   | BLR<br>→<br>NAG<br>→<br>DEL | 1 stop      | No info         | 13302 | 1           | 3             |       |
| 4 |                |          |             |                             |             |                 |       |             |               | •     |

# In [21]:

train\_data["Airline"].value\_counts()

# Out[21]:

| Jet Airways                       | 3849 |
|-----------------------------------|------|
| IndiGo                            | 2053 |
| Air India                         | 1751 |
| Multiple carriers                 | 1196 |
| SpiceJet                          | 818  |
| Vistara                           | 479  |
| Air Asia                          | 319  |
| GoAir                             | 194  |
| Multiple carriers Premium economy | 13   |
| Jet Airways Business              | 6    |
| Vistara Premium economy           | 3    |
| Trujet                            | 1    |
| Name: Airline, dtype: int64       |      |

### In [22]:



### In [23]:

```
Airline = train_data[["Airline"]]
Airline = pd.get_dummies(Airline, drop_first= True)
Airline.head()
```

# Out[23]:

|   | Airline_Air<br>India | Airline_GoAir | Airline_IndiGo | Airline_Jet<br>Airways | Airline_Jet<br>Airways<br>Business | Airline_Multiple carriers | Airline_Multiple<br>carriers<br>Premium<br>economy | Airline_Spice. |
|---|----------------------|---------------|----------------|------------------------|------------------------------------|---------------------------|----------------------------------------------------|----------------|
| 0 | 0                    | 0             | 1              | 0                      | 0                                  | 0                         | 0                                                  |                |
| 1 | 1                    | 0             | 0              | 0                      | 0                                  | 0                         | 0                                                  |                |
| 2 | 0                    | 0             | 0              | 1                      | 0                                  | 0                         | 0                                                  |                |
| 3 | 0                    | 0             | 1              | 0                      | 0                                  | 0                         | 0                                                  |                |
| 4 | 0                    | 0             | 1              | 0                      | 0                                  | 0                         | 0                                                  |                |
| 4 |                      |               |                |                        |                                    |                           |                                                    | <b>•</b>       |

### In [24]:

train\_data["Source"].value\_counts()

## Out[24]:

Delhi 4536 Kolkata 2871 Banglore 2197 Mumbai 697 Chennai 381

Name: Source, dtype: int64

## In [25]:



### In [26]:

```
Source = train_data[["Source"]]
Source = pd.get_dummies(Source, drop_first= True)
Source.head()
```

## Out[26]:

|   | Source_Chennai | Source_Delhi | Source_Kolkata | Source_Mumbai |
|---|----------------|--------------|----------------|---------------|
| 0 | 0              | 0            | 0              | 0             |
| 1 | 0              | 0            | 1              | 0             |
| 2 | 0              | 1            | 0              | 0             |
| 3 | 0              | 0            | 1              | 0             |
| 4 | 0              | 0            | 0              | 0             |

## In [27]:

train\_data["Destination"].value\_counts()

### Out[27]:

Cochin 4536 Banglore 2871 Delhi 1265 New Delhi 932 Hyderabad 697 Kolkata 381

Name: Destination, dtype: int64

```
In [28]:
```

```
Destination = train_data[["Destination"]]
Destination = pd.get_dummies(Destination, drop_first = True)
Destination.head()
```

### Out[28]:

|   | Destination_Cochin | Destination_Delhi | Destination_Hyderabad | Destination_Kolkata | Destination_New Delhi |
|---|--------------------|-------------------|-----------------------|---------------------|-----------------------|
| 0 | 0                  | 0                 | 0                     | 0                   | 1                     |
| 1 | 0                  | 0                 | 0                     | 0                   | 0                     |
| 2 | 1                  | 0                 | 0                     | 0                   | 0                     |
| 3 | 0                  | 0                 | 0                     | 0                   | 0                     |
| 4 | 0                  | 0                 | 0                     | 0                   | 1                     |

### In [29]:

```
train_data["Route"]
```

```
Out[29]:
```

```
0
                        BLR → DEL
          CCU \rightarrow IXR \rightarrow BBI \rightarrow BLR
1
2
          DEL → LKO → BOM → COK
3
                 CCU → NAG → BLR
4
                 BLR → NAG → DEL
10678
                        CCU → BLR
                        CCU → BLR
10679
10680
                        BLR → DEL
10681
                        BLR → DEL
10682
          DEL → GOI → BOM → COK
Name: Route, Length: 10682, dtype: object
```

### In [30]:

```
train_data.drop(["Route", "Additional_Info"], axis = 1, inplace = True)
```

### In [31]:

```
train_data["Total_Stops"].value_counts()
```

## Out[31]:

```
1 stop 5625
non-stop 3491
2 stops 1520
3 stops 45
4 stops 1
Name: Total_Stops, dtype: int64
```

### In [32]:

```
train_data.replace({"non-stop": 0, "1 stop": 1, "2 stops": 2, "3 stops": 3, "4 stops": 4}, inplace = True
```

## In [33]:

train\_data.head()

## Out[33]:

|   | Airline        | Source   | Destination | Total_Stops | Price | Journey_day | Journey_month | Dep_hour | Dep_min | Arrival_r |
|---|----------------|----------|-------------|-------------|-------|-------------|---------------|----------|---------|-----------|
| 0 | IndiGo         | Banglore | New Delhi   | 0           | 3897  | 24          | 3             | 22       | 20      |           |
| 1 | Air<br>India   | Kolkata  | Banglore    | 2           | 7662  | 1           | 5             | 5        | 50      |           |
| 2 | Jet<br>Airways | Delhi    | Cochin      | 2           | 13882 | 9           | 6             | 9        | 25      |           |
| 3 | IndiGo         | Kolkata  | Banglore    | 1           | 6218  | 12          | 5             | 18       | 5       |           |
| 4 | IndiGo         | Banglore | New Delhi   | 1           | 13302 | 1           | 3             | 16       | 50      |           |
| 4 |                |          |             |             |       |             |               |          |         | •         |

### In [34]:

data\_train = pd.concat([train\_data, Airline, Source, Destination], axis = 1)

## In [35]:

data\_train.head()

## Out[35]:

| 16       | Source   | Destination | iotai_Stops | FIICE | Journey_uay | Journey_month | Dep_nour | Deb_iiiiii | Allivai_lioui | AIIIV |
|----------|----------|-------------|-------------|-------|-------------|---------------|----------|------------|---------------|-------|
|          |          |             |             |       |             |               |          |            |               |       |
| io       | Banglore | New Delhi   | 0           | 3897  | 24          | 3             | 22       | 20         | 1             |       |
| ir<br>ia | Kolkata  | Banglore    | 2           | 7662  | 1           | 5             | 5        | 50         | 13            |       |
| et<br>/s | Delhi    | Cochin      | 2           | 13882 | 9           | 6             | 9        | 25         | 4             |       |
| io       | Kolkata  | Banglore    | 1           | 6218  | 12          | 5             | 18       | 5          | 23            |       |
| io       | Banglore | New Delhi   | 1           | 13302 | 1           | 3             | 16       | 50         | 21            |       |
| •        |          |             |             |       |             |               |          |            |               | •     |

## In [36]:

data\_train.drop(["Airline", "Source", "Destination"], axis = 1, inplace = True)

# In [37]:

data\_train.head()

## Out[37]:

|   | Total_Stops | Price | Journey_day | Journey_month | Dep_hour | Dep_min | Arrival_hour | Arrival_min | Duration_hou |
|---|-------------|-------|-------------|---------------|----------|---------|--------------|-------------|--------------|
| 0 | 0           | 3897  | 24          | 3             | 22       | 20      | 1            | 10          | _            |
| 1 | 2           | 7662  | 1           | 5             | 5        | 50      | 13           | 15          |              |
| 2 | 2           | 13882 | 9           | 6             | 9        | 25      | 4            | 25          | ,            |
| 3 | 1           | 6218  | 12          | 5             | 18       | 5       | 23           | 30          |              |
| 4 | 1           | 13302 | 1           | 3             | 16       | 50      | 21           | 35          |              |
| 4 |             |       |             |               |          |         |              |             | •            |

In [38]:

data\_train.shape

Out[38]:

(10682, 30)

In [ ]:

TEST SET

In [39]:

test\_data = pd.read\_csv("Test\_set.csv")

In [40]:

test\_data.head()

Out[40]:

|   | Airline              | Date_of_Journey | Source   | Destination | Route                       | Dep_Time | Arrival_Time    | Duration | Total_Stops | Additio        |
|---|----------------------|-----------------|----------|-------------|-----------------------------|----------|-----------------|----------|-------------|----------------|
| 0 | Jet<br>Airways       | 6/06/2019       | Delhi    | Cochin      | DEL<br>→<br>BOM<br>→<br>COK | 17:30    | 04:25 07 Jun    | 10h 55m  | 1 stop      |                |
| 1 | IndiGo               | 12/05/2019      | Kolkata  | Banglore    | CCU<br>→<br>MAA<br>→<br>BLR | 06:20    | 10:20           | 4h       | 1 stop      |                |
| 2 | Jet<br>Airways       | 21/05/2019      | Delhi    | Cochin      | DEL<br>→<br>BOM<br>→<br>COK | 19:15    | 19:00 22<br>May | 23h 45m  | 1 stop      | In-fli₁<br>not |
| 3 | Multiple<br>carriers | 21/05/2019      | Delhi    | Cochin      | DEL<br>→<br>BOM<br>→<br>COK | 08:00    | 21:00           | 13h      | 1 stop      |                |
| 4 | Air Asia             | 24/06/2019      | Banglore | Delhi       | BLR<br>→<br>DEL             | 23:55    | 02:45 25 Jun    | 2h 50m   | non-stop    | <b>&gt;</b>    |
| 1 |                      |                 |          |             |                             |          |                 |          |             |                |

### In [41]:

```
print("Test data Info")
print("-"*75)
print(test_data.info())
print()
print()
print("Null values :")
print("-"*75)
test_data.dropna(inplace = True)
print(test_data.isnull().sum())
test_data["Journey_day"] = pd.to_datetime(test_data.Date_of_Journey, format="%d/%m/%Y").dt.day
test_data["Journey_month"] = pd.to_datetime(test_data["Date_of_Journey"], format = "%d/%m/%Y").dt.month
test_data.drop(["Date_of_Journey"], axis = 1, inplace = True)
# Dep_Time
test_data["Dep_hour"] = pd.to_datetime(test_data["Dep_Time"]).dt.hour
test_data["Dep_min"] = pd.to_datetime(test_data["Dep_Time"]).dt.minute
test_data.drop(["Dep_Time"], axis = 1, inplace = True)
test_data["Arrival_hour"] = pd.to_datetime(test_data.Arrival_Time).dt.hour
test_data["Arrival_min"] = pd.to_datetime(test_data.Arrival_Time).dt.minute
test_data.drop(["Arrival_Time"], axis = 1, inplace = True)
duration = list(test data["Duration"])
for i in range(len(duration)):
    if len(duration[i].split()) != 2:
                                         # Check if duration contains only hour or mins
        if "h" in duration[i]:
            duration[i] = duration[i].strip() + " 0m"
                                                        # Adds 0 minute
        else:
            duration[i] = "Oh " + duration[i]
                                                        # Adds 0 hour
duration_hours = []
duration_mins = []
for i in range(len(duration)):
    duration hours.append(int(duration[i].split(sep = "h")[0]))
                                                                  # Extract hours from duration
    duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1])) # Extracts only minutes from
# Adding Duration column to test set
test_data["Duration_hours"] = duration_hours
test_data["Duration_mins"] = duration_mins
test data.drop(["Duration"], axis = 1, inplace = True)
print("Airline")
print("-"*75)
print(test data["Airline"].value counts())
Airline = pd.get_dummies(test_data["Airline"], drop_first= True)
print()
print("Source")
print("-"*75)
print(test_data["Source"].value_counts())
Source = pd.get_dummies(test_data["Source"], drop_first= True)
print()
print("Destination")
print("-"*75)
print(test_data["Destination"].value_counts())
Destination = pd.get_dummies(test_data["Destination"], drop_first = True)
test_data.drop(["Route", "Additional_Info"], axis = 1, inplace = True)
test_data.replace({"non-stop": 0, "1 stop": 1, "2 stops": 2, "3 stops": 3, "4 stops": 4}, inplace = True)
```

```
data_test = pd.concat([test_data, Airline, Source, Destination], axis = 1)

data_test.drop(["Airline", "Source", "Destination"], axis = 1, inplace = True)

print()
print()
print("Shape of test data : ", data_test.shape)
```

#### Test data Info

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2671 entries, 0 to 2670 Data columns (total 10 columns): # Column Non-Null Count Dtype 0 Airline 2671 non-null object Date\_of\_Journey 2671 non-null object 1 Source 2671 non-null object
Destination 2671 non-null object
Route 2671 non-null object
Dep\_Time 2671 non-null object
Arrival\_Time 2671 non-null object
Duration 2671 non-null object
Total\_Stops 2671 non-null object 2 3 4 5 6 7 8 9 Additional Info 2671 non-null object dtypes: object(10) memory usage: 208.8+ KB None

#### Null values :

\_\_\_\_\_\_ Airline 0 Date\_of\_Journey a Source Destination Route Dep Time Dep\_rime Arrival\_Time Duration Total Stops Additional\_Info dtype: int64 Airline ------897

Jet Airways IndiGo 511 Air India 440 Multiple carriers 347 208 SpiceJet Vistara 129 Air Asia 86 GoAir 46 Multiple carriers Premium economy Vistara Premium economy 2 Jet Airways Business Name: Airline, dtype: int64

#### Source

\_\_\_\_\_\_ Delhi 1145 Kolkata 710 710

555 Banglore Mumbai 186 Chennai 75

Name: Source, dtype: int64

#### Destination

Cochin 1145 Banglore Delhi 317 New Delhi 238 Hyderabad 186 Kolkata 75

Name: Destination, dtype: int64

```
Shape of test data: (2671, 28)
In [42]:
data_test.head()
```

#### Out[42]:

| Total_Stops | Journey_day | Journey_month | Dep_hour | Dep_min | Arrival_hour | Arrival_min | Duration_hours | Dura |
|-------------|-------------|---------------|----------|---------|--------------|-------------|----------------|------|
|             |             |               |          |         |              |             |                |      |

| 0 | 1 | 6  | 6 | 17 | 30 | 4  | 25 | 10          |
|---|---|----|---|----|----|----|----|-------------|
| 1 | 1 | 12 | 5 | 6  | 20 | 10 | 20 | 4           |
| 2 | 1 | 21 | 5 | 19 | 15 | 19 | 0  | 23          |
| 3 | 1 | 21 | 5 | 8  | 0  | 21 | 0  | 13          |
| 4 | 0 | 24 | 6 | 23 | 55 | 2  | 45 | 2           |
| 4 |   |    |   |    |    |    |    | <b>&gt;</b> |

#### In [ ]:

```
#FEATURE SELECTION
```

### In [43]:

```
data_train.shape
```

#### Out[43]:

(10682, 30)

### In [44]:

```
data_train.columns
```

### Out[44]:

#### In [45]:

#### Out[45]:

| ps | Journey_day | Journey_month | Dep_hour | Dep_min | Arrival_hour | Arrival_min | Duration_hours | Duration_mins | Ai |
|----|-------------|---------------|----------|---------|--------------|-------------|----------------|---------------|----|
| 0  | 24          | 3             | 22       | 20      | 1            | 10          | 2              | 50            |    |
| 2  | 1           | 5             | 5        | 50      | 13           | 15          | 7              | 25            |    |
| 2  | 9           | 6             | 9        | 25      | 4            | 25          | 19             | 0             |    |
| 1  | 12          | 5             | 18       | 5       | 23           | 30          | 5              | 25            |    |
| 1  | 1           | 3             | 16       | 50      | 21           | 35          | 4              | 45            |    |
| 4  |             |               |          |         |              |             |                |               | •  |

#### In [46]:

```
y = data_train.iloc[:, 1]
y.head()
```

# Out[46]:

0 3897

1 7662

2 13882

3 6218

4 13302

Name: Price, dtype: int64

### In [47]:

```
plt.figure(figsize = (18,18))
sns.heatmap(train_data.corr(), annot = True, cmap = "RdYlGn")
plt.show()
```



# In [48]:

```
from sklearn.ensemble import ExtraTreesRegressor
selection = ExtraTreesRegressor()
selection.fit(X, y)
```

## Out[48]:

ExtraTreesRegressor()

#### In [49]:

```
print(selection.feature_importances_)
```

```
[2.34765605e-01 1.44308213e-01 5.34872060e-02 2.45388780e-02 2.12346579e-02 2.79562653e-02 1.94912228e-02 9.77197432e-02 1.75050671e-02 9.42115992e-03 1.74455454e-03 1.74682473e-02 1.44687039e-01 6.79946043e-02 1.86904256e-02 8.60664305e-04 3.03588528e-03 1.25347115e-04 5.04457440e-03 8.41503687e-05 4.03888347e-04 1.31164257e-02 3.01961064e-03 6.77256821e-03 1.59923839e-02 1.71426706e-02 8.03409644e-03 5.13522659e-04 2.48413234e-02]
```

### In [50]:

```
plt.figure(figsize = (12,8))
feat_importances = pd.Series(selection.feature_importances_, index=X.columns)
feat_importances.nlargest(20).plot(kind='barh')
plt.show()
```



#### In [ ]:

## #FITTING MODEL USING RANDOM FOREST

#### In [51]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
```

#### In [52]:

```
from sklearn.ensemble import RandomForestRegressor
reg_rf = RandomForestRegressor()
reg_rf.fit(X_train, y_train)
```

#### Out[52]:

RandomForestRegressor()

### In [53]:

```
y_pred = reg_rf.predict(X_test)
```

### In [54]:

```
reg_rf.score(X_train, y_train)
```

### Out[54]:

0.9533368127862233

#### In [55]:

```
reg_rf.score(X_test, y_test)
```

#### Out[55]:

0.7976494001965726

## In [56]:

```
sns.distplot(y_test-y_pred)
plt.show()
```

C:\Users\shaik\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `d istplot` is a deprecated function and will be removed in a future version. Please adapt you r code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)



### In [57]:

```
plt.scatter(y_test, y_pred, alpha = 0.5)
plt.xlabel("y_test")
plt.ylabel("y_pred")
plt.show()
```



## In [58]:

from sklearn import metrics

## In [59]:

```
print('MAE:', metrics.mean_absolute_error(y_test, y_pred))
print('MSE:', metrics.mean_squared_error(y_test, y_pred))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```

MAE: 1174.9125929131571 MSE: 4363095.030189421 RMSE: 2088.802295620488

## In [60]:

```
2090.5509/(max(y)-min(y))
```

### Out[60]:

0.026887077025966846

#### In [61]:

```
metrics.r2_score(y_test, y_pred)
```

## Out[61]:

0.7976494001965726

## In [ ]:

```
#Hyperparameter Tuning
```

### In [62]:

```
from sklearn.model_selection import RandomizedSearchCV
```

#### In [63]:

```
n_estimators = [int(x) for x in np.linspace(start = 100, stop = 1200, num = 12)]
max_features = ['auto', 'sqrt']
max_depth = [int(x) for x in np.linspace(5, 30, num = 6)]
min_samples_split = [2, 5, 10, 15, 100]
min_samples_leaf = [1, 2, 5, 10]
```

### In [64]:

### In [65]:

```
rf_random = RandomizedSearchCV(estimator = reg_rf, param_distributions = random_grid,scoring='neg_mean_square
```

In [66]:

rf\_random.fit(X\_train,y\_train)

```
Fitting 5 folds for each of 10 candidates, totalling 50 fits
[CV] END max depth=10, max features=sqrt, min samples leaf=5, min samples split=5, n estima
tors=900; total time=
                       7.4s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estima
tors=900; total time=
                        7.3s
[CV] END max depth=10, max features=sqrt, min samples leaf=5, min samples split=5, n estima
tors=900; total time=
                       7.3s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estima
tors=900; total time=
                       7.4s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estima
tors=900; total time=
                       7.4s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estim
ators=1100; total time= 11.3s
[CV] END max depth=15, max features=sqrt, min samples leaf=2, min samples split=10, n estim
ators=1100; total time= 11.4s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estim
ators=1100; total time= 11.7s
[CV] END max depth=15, max features=sqrt, min samples leaf=2, min samples split=10, n estim
ators=1100; total time= 11.3s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estim
ators=1100; total time= 11.7s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_esti
                        7.1s
mators=300; total time=
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_esti
mators=300; total time= 6.8s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_esti
                        7.2s
mators=300; total time=
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_esti
mators=300; total time=
                        7.3s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_esti
mators=300; total time=
                        7.3s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estima
tors=400; total time= 13.6s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estima
tors=400; total time= 13.3s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estima
tors=400; total time= 13.2s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estima
tors=400; total time= 13.2s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estima
tors=400; total time= 13.2s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_split=5, n_estim
ators=700; total time= 20.1s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_split=5, n_estim
ators=700; total time= 20.2s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_split=5, n_estim
ators=700; total time= 20.1s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_split=5, n_estim
ators=700; total time= 19.6s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_split=5, n_estim
ators=700; total time= 19.9s
[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estima
tors=1000; total time= 17.5s
[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estima
tors=1000; total time= 17.3s
[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estima
tors=1000; total time= 18.4s
[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estima
tors=1000; total time= 17.8s
[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estima
tors=1000; total time= 17.4s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_split=15, n_estim
ators=1100; total time=
                        6.0s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_split=15, n_estim
ators=1100; total time=
                         5.8s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_split=15, n_estim
ators=1100; total time=
                         5.8s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_split=15, n_estim
ators=1100; total time=
                          5.8s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_split=15, n_estim
```

```
ators=1100; total time=
                         5.8s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_split=15, n_estim
ators=300; total time= 2.9s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_split=15, n_estim
ators=300; total time=
                         2.9s
[CV] END max depth=15, max features=sqrt, min samples leaf=1, min samples split=15, n estim
ators=300; total time=
                        2.9s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_split=15, n_estim
ators=300; total time=
                         2.9s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_split=15, n_estim
ators=300; total time=
                         2.9s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estima
tors=700; total time=
                       3.7s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estima
tors=700; total time=
                       3.7s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estima
tors=700; total time=
                      3.6s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estima
tors=700; total time= 3.7s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estima
tors=700; total time=
                       3.7s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_split=15, n_estim
ators=700; total time= 24.2s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_split=15, n_estim
ators=700; total time= 24.0s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_split=15, n_estim
ators=700; total time= 23.6s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_split=15, n_estim
ators=700; total time= 23.8s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_split=15, n_estim
ators=700; total time= 23.9s
Out[66]:
RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(), n_jobs=1,
                   param_distributions={'max_depth': [5, 10, 15, 20, 25, 30],
                                        'max_features': ['auto', 'sqrt'],
                                        'min_samples_leaf': [1, 2, 5, 10],
                                        'min samples split': [2, 5, 10, 15,
                                                              100],
                                        'n_estimators': [100, 200, 300, 400,
                                                         500, 600, 700, 800,
                                                         900, 1000, 1100,
                                                         1200]},
                   random_state=42, scoring='neg_mean_squared_error',
                   verbose=2)
```

## In [67]:

```
rf_random.best_params_
```

```
Out[67]:
```

```
{'n_estimators': 700,
  'min_samples_split': 15,
  'min_samples_leaf': 1,
  'max_features': 'auto',
  'max_depth': 20}
```

## In [68]:

```
prediction = rf_random.predict(X_test)
```

## In [69]:

```
plt.figure(figsize = (8,8))
sns.distplot(y_test-prediction)
plt.show()
```

C:\Users\shaik\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `d
istplot` is a deprecated function and will be removed in a future version. Please adapt you
r code to use either `displot` (a figure-level function with similar flexibility) or `histp
lot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)



## In [70]:

```
plt.figure(figsize = (8,8))
plt.scatter(y_test, prediction, alpha = 0.5)
plt.xlabel("y_test")
plt.ylabel("y_pred")
plt.show()
```



## In [71]:

```
print('MAE:', metrics.mean_absolute_error(y_test, prediction))
print('MSE:', metrics.mean_squared_error(y_test, prediction))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, prediction)))
```

MAE: 1165.6821239351436 MSE: 4052649.1265631523 RMSE: 2013.1192529413534

# In [ ]: