Relazione di laboratorio: il volano

Ilaria Brivio (582116) brivio.ilaria@tiscali.it Matteo Abis (584206) webmaster@latinblog.org

14 marzo 2008

1 Obiettivo dell'esperienza

Obiettivo dell'esperienza è la verifica della legge di Hooke, che prevede una dipendenza lineare dell'allungamento di un corpo elastico dal modulo della forza applicata.

2 Descrizione dell'apparato strumentale

Sono stati utilizzati dieci estensimetri. L'estensimetro è uno strumento che permette di applicare una forza a un filo cilindrico di materiale, lunghezza e diametro noti e misurarne l'allungamento attraverso un minimetro di sensibilità $10^5 \, \mathrm{m}^{-1}$. La forza applicata è regolabile mediante la rotazione di una ghiera collegata a un dinamometro, la cui scala è in grammi-peso. Per l'elaborazione dei dati tali valori sono stati convertiti in Newton e moltiplicati per quattro, per l'effetto della leva. Come errore sulla forza è stata stimata la più piccola sottosuddivisione apprezzabile ad occhio nudo, che corrisponde a $0.05 \, \mathrm{N}$.

Tabella 2.1: Caratteristiche degli estensimetri utilizzati: materiale, lunghezza ℓ e diametro d.

n.	$_{ m materiale}$	$\ell \pm \sigma_\ell(\mathrm{m})$	$d \pm \sigma_d(\text{mm})$
1	tungsteno	1.000 ± 0.002	$0.250 {\pm} 0.005$
3	ottone	1.000 ± 0.002	0.500 ± 0.005
6	acciaio	0.950 ± 0.002	0.305 ± 0.003
7	acciaio	0.950 ± 0.002	$0.330 {\pm} 0.003$
8	acciaio	0.950 ± 0.002	$0.356 {\pm} 0.004$
9	acciaio	0.950 ± 0.002	$0.381 {\pm} 0.004$
14	acciaio	0.800 ± 0.002	0.279 ± 0.003
16	acciaio	0.600 ± 0.002	0.279 ± 0.003
17	acciaio	0.500 ± 0.002	0.279 ± 0.003
18	acciaio	0.400 ± 0.002	0.279 ± 0.003

3 Descrizione della metodologia di misura

Su ciascun estensimetro sono stati misurati gli allungamenti Δx corrispondenti ad una forza di 200, 300, ..., 1100 grammi-peso¹. Lo zero del minimetro è stato posizionato in modo da coincidere con la lunghezza del filo con forza 200 grammi-peso sul dinamometro. La misura è stata ripetuta partendo da 1100 fino a 200 grammi-peso, ovvero accorciando progressivamente il filo. Sono stati scelti quattro estensimetri con filo di acciaio di uguale lunghezza e diverso spessore, altri quattro con stesso spessore e lunghezza variabile e due di diverso materiale.

 $^{^1}$ Questi sono i valori letti sul dinamometro. Le forze applicate sono $\Delta F=0,\,3.92,\,7.84,\,11.77,\,15.69,\,19.61,\,23.53,\,27.46,\,31.38,\,35.30$ N, ovvero la forza, in Newton, moltiplicata per quattro.

4 Risultati sperimentali ed elaborazione dati

Per prima cosa sono stati riportati i dati sperimentali in grafico, con la variazione della forza applicata $\Delta F = F_{\rm app} - 200\,{\rm g}$ in ascissa e il corrispondente allungamento Δx in ordinata. Per la stima del modulo di Young su ogni estensimetro sono stati seguiti due approcci differenti:

1. Sono stati interpolati i dati in allungamento, con coefficiente angolare $K_1 \pm \sigma_{K_1}$ e in accorciamento $K_2 \pm \sigma_{K_2}$. È stata calcolata la media pesata $\bar{K} \pm \sigma_{\bar{K}}$ dei due valori e da questa è stato ricavato il valore di $\tilde{Y} = 4\ell/\pi d^2\bar{K}$ con il relativo errore $\sigma_{\tilde{Y}}$ (vedi formula). I risultati sono riportati in tabella, dove i prefissi μ e M indicano rispettivamente ordini di grandezza 10^{-6} e 10^9

n.	$K_1 \left(\mu \mathrm{m/N} \right)$	$K_2 \left(\mu \mathrm{m/N} \right)$	$ar{K}\left(\mu\mathrm{m/N} ight)$	\widetilde{Y} (MN/m 2)
1	54.0 ± 0.4	54.1 ± 0.3	54.1 ± 0.2	377 ± 2
3	51.4 ± 0.1	$54.4 {\pm} 0.2$	54.4 ± 0.1	99 ± 2
6	63.8 ± 0.2	63.7 ± 0.3	$63.8 {\pm} 0.2$	204 ± 4
7	$54.6 {\pm} 0.5$	$54.7 {\pm} 0.5$	$54.7 {\pm} 0.4$	203 ± 4
8	$44.8 {\pm} 0.1$	$44.7 {\pm} 0.2$	$44.8 {\pm} 0.1$	213 ± 4
9	42.0 ± 0.6	$42.4 {\pm} 0.2$	$42.3 {\pm} 0.2$	197 ± 4
14	$64.2 {\pm} 0.1$	63.7 ± 0.3	$64.1 {\pm} 0.1$	204 ± 4
16	$47.1 {\pm} 0.2$	$47.0 {\pm} 0.2$	$47.1 {\pm} 0.1$	208 ± 4
17	$39.8 {\pm} 0.2$	$39.7 {\pm} 0.2$	$39.7 {\pm} 0.1$	206 ± 4
18	$33.5 {\pm} 0.2$	$33.4 {\pm} 0.2$	$33.4 {\pm} 0.1$	196 ± 4

2. Sono stati calcolati direttamente da K_1 e K_2 due valori Y_1 e Y_2 , con i rispettivi errori per propagazione, e poi la loro media pesata $\bar{Y} \pm \sigma_{\bar{Y}}$.

n.	$Y_1 \left(\mathrm{MN/m^2} \right)$	$Y_2 \left(\mathrm{MN/m^2} \right)$	$ar{Y}\left(\mathrm{MN/m^{2}} ight)$
1	377 ± 2	376 ± 2	377 ± 1
3	99 ± 2	99 ± 2	99 ± 1
6	204 ± 4	204 ± 4	204 ± 3
7	203 ± 5	203 ± 5	203 ± 3
8	213 ± 4	213 ± 4	213 ± 3
9	198 ± 5	197 ± 4	197 ± 3
14	204 ± 4	205 ± 4	205 ± 3
16	208 ± 4	209 ± 4	208 ± 3
17	206 ± 4	206 ± 4	206 ± 3
18	195 ± 4	196 ± 4	196 ± 3

5 Discussione dei risultati

6 Conclusioni

7 Appendice