Notas de Leitura em Química

2025-05-08

Índice

Estrutura do Átomo	2
Introdução	
Modelos Históricos do Átomo	
Modelo de Dalton (1803)	
Modelo de Thomson (1897)	
Modelo de Rutherford (1911)	
Modelo de Bohr (1913)	
Modelo Quântico (1926 –)	
Ilustração com Python: Níveis de Energia no Modelo de Bohr	
Estrutura Atual do Átomo	. 4
Considerações Didáticas	. 4
Estequiometria	4
Introdução	
Leis Fundamentais	
Equações Químicas e Balanceamento	
Cálculos Estequiométricos	
Exemplo com Python: Massa de Produto	
Aplicações	
Considerações Didáticas	. 6
Lei de Dalton da Pressão Parcial	6
Introdução	6
Fundamentos	. 6
Exemplo com Python: Pressão Parcial	. 6
Aplicações	. 7
Considerações Didáticas	. 7
Referências	. 7
RASS	

Estrutura do Átomo

- "A estrutura do átomo é um dos pilares da ciência moderna."
- Niels Bohr

Introdução

A compreensão da estrutura atômica é essencial para o estudo da matéria. Esta nota de leitura resume os principais modelos atômicos propostos ao longo da história da ciência.

Modelos Históricos do Átomo

Modelo de Dalton (1803)

- O átomo seria uma esfera maciça, indivisível e indestrutível.
- Cada elemento químico possui átomos com massa e propriedades únicas.

Modelo de Thomson (1897)

- Descoberta do elétron.
- Modelo conhecido como "pudim de passas": uma esfera positiva com elétrons incrustados.

Modelo de Rutherford (1911)

- Experimento da lâmina de ouro.
- Descoberta do núcleo atômico: pequeno, denso e positivo.
- Atomos compostos majoritariamente por espaço vazio.

Modelo de Bohr (1913)

- Elétrons em órbitas circulares com energia quantizada.
- Explica linhas espectrais do hidrogénio.

RASCUNHO

2

Modelo Quântico (1926 - ...)

- Elétrons descritos por funções de onda (Schrödinger).
- Princípio da Incerteza (Heisenberg): impossível conhecer simultaneamente a posição e a velocidade do elétron.
- Orbitais: regiões com maior probabilidade de encontrar um elétron.

Ilustração com Python: Níveis de Energia no Modelo de Bohr

```
import matplotlib.pyplot as plt
import numpy as np

n = np.arange(1, 6)
energia = -13.6 / n**2

plt.figure()
plt.plot(n, energia, marker='o')
plt.xlabel('n (nível quântico)')
plt.ylabel('Energia (eV)')
plt.title('Níveis de Energia do Átomo de Hidrogênio (Modelo de Bohr)')
plt.grid(True)
plt.show()
```

RASCUNHO
RASCUNHO
RASCUNHO
RASCUNHO
RASCUNHO
RASCUNHO
RASCUNHO
RASCUNHO

SCUNHO

3CUNHO RASCUNHO

Níveis de Energia do Átomo de Hidrogênio (Modelo de Bohr)

Estrutura Atual do Átomo

- Núcleo: prótons e nêutrons.
- Eletrosfera: nuvem de elétrons distribuídos em níveis de energia.
- Número atômico (Z) determina o elemento.
- Massa atômica (A) corresponde à soma de prótons e nêutrons.

Considerações Didáticas

- Importância de usar analogias para explicar os modelos.
- Interligação com conteúdos de química e física moderna.

Estequiometria

Introdução

A estequiometria é a parte da química que estuda as relações quantitativas em reações químicas, baseando-se na Lei de Conservação da Massa.

4

Leis Fundamentais

- Lei de Lavoisier: "Na natureza nada se cria, nada se perde, tudo se transforma."
- Lei de Proust: proporções constantes na composição de compostos.

Equações Químicas e Balanceamento

• O balanceamento assegura que o número de átomos de cada elemento seja o mesmo nos reagentes e produtos.

$$2H_2 + O_2 \rightarrow 2H_2O$$

Cálculos Estequiométricos

- Conversões mol massa volume (gases).
- Rendimento da reação, reagente limitante e excesso.

Exemplo com Python: Massa de Produto

```
m_molar_H2 = 2.02
m_molar_02 = 32.00
m_molar_H20 = 18.02

massa_H2 = 4.04  # g
mol_H2 = massa_H2 / m_molar_H2
mol_H20 = mol_H2  # proporção 1:1
massa_H20 = mol_H20 * m_molar_H20

print(f"Massa de água formada: {massa_H20:.2f} g")
```

Massa de água formada: 36.04 g

Aplicações

- Indústria: controle de qualidade e formulações.
- Meio ambiente: quantificação de poluentes.

3CUNHO RASCUNHO

RASCUNHO

Considerações Didáticas

- Utilização de diagramas e analogias com receitas.
- Importância da prática com exercícios variados.

Lei de Dalton da Pressão Parcial

Introdução

A Lei de Dalton afirma que, numa mistura de gases ideais, a pressão total é igual à soma das pressões parciais de cada componente.

$$P_{total} = P_1 + P_2 + \dots + P_n$$

Fundamentos

• A pressão parcial de um gás é proporcional ao número de mols:

$$P_i = \chi_i \cdot P_{total}$$

onde χ_i é a fração molar do gás i.

Exemplo com Python: Pressão Parcial

```
P_total = 1.00 # atm
mol 02 = 2
mol N2 = 3
mol_total = mol_02 + mol_N2
chi_02 = mol_02 / mol_total
P_02 = chi_02 * P_total
print(f"Pressão parcial do 02: {P_02:.2f} atm")
```

Pressão parcial do 02: 0.40 atm

Aplicações

- Misturas respiratórias (mergulho, medicina).
- Processos industriais e atmosferas controladas.

Considerações Didáticas

- Uso de modelos com balões e frações.
- Relação com o comportamento de gases ideais.

Referências

Atkins, P., & Jones, L. (2010). Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente. Bookman.

Autor, A. (2025). Exemplo de Referência. Editora Exemplo.

Oliveira, M. C. (2017). Introdução à Química Geral e Inorgânica. Lidel.

Tipler, P. A., & Mosca, G. (2009). Física para Cientistas e Engenheiros. LTC.

RASCUNHO