OLS Regression Uncertainty

UC Berkeley, MIDS w203

Statistics for Data Science February 11, 2022

Large-Sample Regression

We assume that the best linear predictor, $\mathscr{P}[Y|X]$, of Y given X is $X\beta$.

$$Y = X\beta + \varepsilon$$
.

We have from Theorem ref(thm:blperror)

$$\mathbb{E} = o$$
, and $\mathbb{E} = o$.

1

We also assume that the dataset $\{(Y_i, X_i)\}$ is taken **i.i.d.** from the joint distribution of (Y, X). For each i, we can write

$$Y_i = X_i \beta + \varepsilon_i$$
.

In matrix notation, we can write

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}.$$

Then

$$\mathbb{E} = \mathbf{o}$$
, and $\mathbb{E} = \mathbf{o}$

We start by revealing an alternative expression for the OLS estimators $\widehat{\beta}$ using matrix notation.

$$\widehat{\boldsymbol{\beta}} = \left[\mathbb{X}^{\mathsf{T}} \mathbb{X} \right]^{-1} \mathbb{X}^{\mathsf{T}} \mathbf{Y}$$

$$= \left[\mathbb{X}^{\mathsf{T}} \mathbb{X} \right]^{-1} \mathbb{X}^{\mathsf{T}} (\mathbb{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon})$$

$$= \left[\mathbb{X}^{\mathsf{T}} \mathbb{X} \right]^{-1} (\mathbb{X}^{\mathsf{T}} \mathbb{X}) \boldsymbol{\beta} + \left[\mathbb{X}^{\mathsf{T}} \mathbb{X} \right]^{-1} \mathbb{X}^{\mathsf{T}} \boldsymbol{\varepsilon}$$

$$= \boldsymbol{\beta} + \left[\mathbb{X}^{\mathsf{T}} \mathbb{X} \right]^{-1} \mathbb{X}^{\mathsf{T}} \boldsymbol{\varepsilon}$$

So,

$$\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta} = \left[\mathbb{X}^\mathsf{T} \mathbb{X} \right]^{-1} \mathbb{X}^\mathsf{T} \boldsymbol{\varepsilon}$$
 (1)

We can then multiply by \sqrt{n} both sides of Equation ref(eq:beta) to get

$$\sqrt{n} \left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) = \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{X}_{i} \right)^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{X}_{i}^{\mathsf{T}} \varepsilon_{i} \right) \\
= \widehat{\mathbb{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{X}_{i}^{\mathsf{T}} \varepsilon_{i} \right)$$

From the consistency of OLS estimators, we already have

$$\widehat{\mathbb{Q}}_{XX} \xrightarrow{\quad p \quad} \mathbb{Q}_{XX}$$

Our aim now is to understand the distribution of the stochastic term (the second term) in the above expression.

We first note (from i.i.d. and Theorem ref(thm:blperror)) that

$$\mathbb{E}=\mathbb{E}=\mathbf{0}.$$

Let us compute the covariance matrix of $\mathbf{X}_{i}\varepsilon_{i}$. Since the expectation vector is zero, we have

$$\mathbb{V}[\mathbf{X}_{i}^{\mathsf{T}}\varepsilon_{i}]=\mathbb{E}=\mathbb{E}\overset{\mathsf{def}}{=}\mathbb{A}.$$

As any function of $\{(Y_i, X_i)\}$'s are independent, $\{X_i \varepsilon_i\}$'s are independent. By the (multivariate) **Central Limit Theorem**, as $n \to \infty$

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\boldsymbol{X}_{i}^{\mathsf{T}}\varepsilon_{i} \xrightarrow{d} \mathcal{N}(\boldsymbol{0},\mathbb{A}).$$

There is a small technicality here, we must have $\mathbb{A} < \infty$. This can be imposed by a stronger regularity condition

on the moments, e.g., $\mathbb{E},\mathbb{E}<\infty.$ Putting everything together, we conclude

$$\sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \xrightarrow{d} \mathbb{Q}_{\mathbf{XX}}^{-1} \mathcal{N}(\mathbf{0}, \mathbb{A}) = \mathcal{N}\left(\mathbf{0}, \left[\mathbb{Q}_{\mathbf{XX}}^{-1}\right]^{\mathsf{T}} \mathbb{A} \mathbb{Q}_{\mathbf{XX}}^{-1}\right) = \mathcal{N}\left(\mathbf{0}, \mathbb{Q}_{\mathbf{X}}^{-1}\right)$$

We assume the following

- 1. The observations $\{(Y_i, \mathbf{X}_i)\}_{i=1}^n$ are i.i.d from the joint distribution of (Y, \mathbf{X})
- 2. $\mathbb{E} < \infty$
- 3. $\mathbb{E} < \infty$
- 4. $\mathbb{Q}_{\mathbf{XX}} = \mathbb{E}$ is positive-definite.

Under these assumptions, as $n \to \infty$

$$\sqrt{n}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow[d]{d} \mathcal{N}\left(\boldsymbol{0}, \mathbb{V}_{\boldsymbol{\beta}}\right),$$

where

$$\mathbb{V}_{\boldsymbol{\beta}}\stackrel{\mathsf{def}}{=} \mathbb{Q}_{\boldsymbol{X}\boldsymbol{X}}^{-1}\mathbb{A}\mathbb{Q}_{\boldsymbol{X}\boldsymbol{X}}^{-1}$$

and $\mathbb{Q}_{XX} = \mathbb{E}$, $\mathbb{A} = \mathbb{E}$.

The covariance matrix \mathbb{V}_{β} is called the **asymptotic variance matrix** of $\widehat{\beta}$. The matrix is sometimes referred to as the **sandwich** form.

We now turn our attention to the estimation of the sandwich matrix using a finite sample.

Theorem ref(thm:asympvar) presented the asymptotic covariance matrix of $\sqrt{n}(\widehat{\beta} - \beta)$ is

$$\mathbb{V}_{\boldsymbol{\beta}} = \mathbb{Q}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \mathbb{A} \mathbb{Q}_{\boldsymbol{X}\boldsymbol{X}}^{-1}.$$

Without imposing any homoskedasticity condition, we

estimate \mathbb{V}_{β} using a plug-in estimator.

We have already seen that $\widehat{\mathbb{Q}}_{XX} = \frac{1}{n} \sum_{i=1}^{n} X_i^T X_i$ is a natural estimator for \mathbb{Q}_{XX} . For \mathbb{A} , we use the moment estimator

$$\widehat{\mathbb{A}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}^{\mathsf{T}} \mathbf{X}_{i} e_{i}^{\mathsf{2}},$$

where $e_i = (Y_i - \mathbf{X}_i \widehat{\boldsymbol{\beta}})$ is the *i*-th residual. As it turns out, $\widehat{\mathbb{A}}$ is a consistent estimator for \mathbb{A} .

As a result, we get the following plug-in estimator for V_{β} :

$$\widehat{\mathbb{V}}_{\boldsymbol{\beta}} = \widehat{\mathbb{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \widehat{\mathbb{A}} \widehat{\mathbb{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1}$$

The estimator is also consistent. For a proof, see Hensen 2013.

As a consequence, we can get the following estimator for the variance, $\mathbb{V}_{\widehat{\beta}}$, of $\widehat{\beta}$ in the heteroskedastic case.

$$\begin{split} \widehat{\mathbb{V}}\left[\widehat{\boldsymbol{\beta}}\right] &= \frac{1}{n} \widehat{\mathbb{V}}_{\boldsymbol{\beta}}^{HCO} \\ &= \frac{1}{n} \widehat{\mathbb{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \widehat{\mathbb{A}} \widehat{\mathbb{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \\ &= \frac{1}{n} \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}^{T} \boldsymbol{X}_{i} \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} e_{i}^{2} \boldsymbol{X}_{i}^{T} \boldsymbol{X}_{i} \right) \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}^{T} \boldsymbol{X}_{i} \right)^{-1} \\ &= \left(\mathbb{X}^{T} \mathbb{X} \right)^{-1} \mathbb{X}^{T} \mathbb{D} \mathbb{X} \left(\mathbb{X}^{T} \mathbb{X} \right)^{-1} \end{split}$$

where \mathbb{D} is an $n \times n$ diagonal matrix with diagonal entries $e_1^2, e_2^2, \dots, e_n^2$. The estimator, $\widehat{\mathbb{V}}\left[\widehat{\boldsymbol{\beta}}\right]$, is referred to as the **robust error variance estimator** for the OLS coefficients $\widehat{\boldsymbol{\beta}}$.