Yuanji Zou

(612)-552-8249 (Mobile)

bobby150928@outlook.com

HIGHLIGHTS

Skills: Optimal control, Multi-agent System (AI), Deep Reinforcement Learning, Robotics, Optimization.

EDUCATION

University of Minnesota (U of M), Minneapolis, MN, U.S.A.

Expected May 2025

▶ Ph.D. Candidate in Mechanical Engineering, Overall GPA: 3.9/4.0

Advisor: Dr. N. Elia

Jul 2019

Tsinghua University (THU), Beijing, China

> B.E. in Automotive Engineering.

Overall GPA: 3.7/4.0, Ranking 7th /71 (top 10%)

> Joint Degree (Honors Degree) in Xinya College

RESEARCH INTEREST

- Multi-agent AI, Networked control systems, Optimal control, Distributed gradient descent
- > Stochastic systems, Stochastic differential equation, Robustness

PUBLICATION & PATENT

- > [1] Y. Zou and N. Elia, "Algebraic Riccati equation approach for network distributed optimal H₂ synthesis," 2024 Conference on Decision and Control (CDC), Milan, Italy, 2024.
- ➤ [2] Y. Zou and N. Elia, "A synthesis approach for distributed H₂ control problems with communication delays," 2024 Allerton Conference, Urbana, USA, 2024.
- ➤ [3] Y. Zou and N. Elia, "Robust mean square stability," 2022 European Control Conference (ECC), London, United Kingdom, 2022, pp. 1623-1628.
- ▶ [4] L. Meng, Y. Zou, Y. Qin, Z. Hou. A new electric wheel and optimization on its suspension parameters. *Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering*. 2020;234(12):2759-2770.

RESEARCH EXPERIENCE

University of Minnesota, Minneapolis, MN, U.S.A. (Advisor: Dr. N. Elia) Cooperative Multi-agent Policy Design [1][2]

Aug 2019 - Present

2022 - Present

- Multi-Agent Systems Modeling: Developed mathematical models for multi-agent environment operating under observation noises and process disturbances, with a focus on distributed decision-making and shared objectives.
- Designed H2 Inspired Multi-agent Reinforcement Learning Framework: Formulated a dynamic programming-based recursive algorithm that blends optimal control principles with Markovian decision process to address cooperative regulation under communication delays.
- Achieved Networked Implementation: Implemented the regulator in network-distributed manner with minimal memory usage, enabling parallel execution.
- Multi-Robot Coordination Application: Validated the framework in a cooperative robotics task, achieving a 100% improvement in disturbance rejection compared to classical controllers.
- Federated Learning Application: Showcased the framework's effectiveness in enhancing

2020-2022

- Modeled Partially Observable Multi-Agent Systems: Developed a framework to analyze the stability and performance of agent-environment interactions under uncertainty and partial observability, reflecting real-world deployment constraints in RL settings.
- ➤ Introduced Robust Mean Square Stability (RMSS): Proposed RMSS as a new metric to assess robustness of learned policies against unmodeled dynamics and intermittent observations. Employed a frequency-domain analysis aligned with Lyapunov-based methods to quantify robustness margins.
- Synthesized and Evaluated Robust Policies: Designed suboptimal yet robust control policies via model-based techniques. Validated their performance on a partially modeled pendulum robot system, demonstrating improved resilience to unmodeled dynamics and observation dropout.

University of California, Berkeley, CA, U.S.A.

Jul 2018 - Sept 2018

Advisor: Dr. M. Tomizuka

Simulation of Urban Driving Behavior

- Modeled Vehicle Dynamics: Developed a discrete-time four-wheel vehicle dynamics model with full-car suspension to accurately capture dynamic interactions across the chassis, integrated into a ROS-based hardware-in-the-loop autonomous driving simulation platform.

 Identified suspension parameters from real-world data to ensure physical accuracy.
- ➤ <u>Hardware fine-tuning</u>: Optimized the translation of physical hardware inputs into virtual control commands to accurately replicate real-world driving haptic feedback.

Tsinghua University, Beijing, China

Dec 2017 - Jun 2019 Advisor: Dr. Z. Hou

Electric Wheels Design [4]

- Developed Prototype for Electric Wheel: Iteratively designed and fabricated a new electric wheel prototype using metal 3D printing for EV/HEV applications.
- > Optimized Vibration Performance: Analyzed the frequency characteristics of the in-wheel motor's vertical vibration and optimized by nonconvex optimization approach.

ACTIVITIES

Teaching Assistant at U of M (ME 3221, 3281, 2021, 2011)

Aug 2019 – Present

> Content includes control, numerical methods, microcomputer and machine design.

"Challenge Cup" National Undergraduate Scientific Competition, at THU

Nov 2019

> Developed an in-wheel driving, all wheel steering vehicle chassis equipped with simple autodriving system. The vehicle was able to do spin turn and lateral translation.

"Sunshine Boat" Volunteer Program, at THU

Jul 2016

- > Raised donations for orphaned children in the Hunan Province.
- > Conducted research on the mental and physical health of orphaned children

MISCELLANEOUS

- > Programming Languages & Frameworks: Python, C/C++, MATLAB, CUDA, PyTorch.
- Office Applications: Latex, Photoshop, SolidWorks, CoLab