<матан, 4 сем>

Лектор: А. А. Лодкин Записал :ta_Xus

31 мая 2017 г.

Оглавление

еория м	еры и интегралы по мере
§ 1	Системы множеств
§ 2	Борелевская сигма-алгебра
§ 3	Mepa
§ 4	Свойства меты
§ 5	Объём в \mathbb{R}^n . Мера Лебега
§ 6	Измеримые функции
§ 7	Интеграл по мере
§ 8	Теорема Беппо Ле́ви
§ 9	Свойства интеграла от суммируемых функций
§ 10	Счётная аддитивность интеграла
§ 11	Абсолютная непрерывность интеграла
§ 12	Интеграл от непрерывной функции по мере Лебега
§ 13	Сравнение подходов Римана и Лебега
§ 14	Сравнение несобственного интеграла и интеграла Лебега
§ 15	Интеграл по дискретной мере и мере, задаваемой плотностью
§ 16	Мера Лебега-Стилтьеса. Интеграл по распределению
§ 17	Интеграл Эйлера-Пуассона
§ 18	Вероятностный смысл мемы
§ 19	Геометрический смысл меры Лебега. Принцип Кавальери
	Сведение кратного интеграла к повторному

Глава 1: Теория меры и интегралы по мере

§1 Системы множеств

Определение 1. Пусть здесь (и дальше) X — произвольное множество. Тогда $\mathcal{P}(X) \equiv 2^X$ — множество всех подмножеств X.

E.g.
$$X = \{1 ... n\} \Rightarrow \#\mathcal{P}(X) = 2^n$$
 (это количество элементов, если что)

Определение 2 (Алгебра). Пусть $\mathcal{A} \subset \mathcal{P}(X)$. Тогда \mathcal{A} — алгебра множеств, если

- 1. $\varnothing \in \mathcal{A}$
- 2. $X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \Rightarrow A \cap B, A \cup B, A \setminus B \in \mathcal{A}$

Замечание. Заметим, что в алгебре пересечение (или объединение) конечного числа её элементов лежит в алгебре. Это можно доказать простой индукцией. А вот для бесконечных объединений пользоваться индукцией уже нельзя, ведь $\infty \notin \mathbb{N}$.

Определение 3 (σ -алгбера). Пусть $\mathcal{A} \in \mathcal{P}(X)$. Тогда $\mathcal{A} - \sigma$ -алгебра, если

- $1. \, \mathcal{A}$ алгебра
- 2. $A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}, \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$

Определение 4. Пусть $\mathcal{E} \subset \mathcal{P}(X)$. Тогда

$$\sigma(\mathcal{E}) := \bigcap \left\{ \mathcal{A} \mid \mathcal{A} - \sigma$$
-алгебра, $\mathcal{A} \supset \mathcal{E}
ight\}$

эта конструкция — сигма-алгебра, просто аксиомы проверить.

§ 2 Борелевская сигма-алгебра

Определение 1. Пусть \mathcal{O} — все открытые множества в \mathbb{R}^n . Тогда $\mathcal{B}_n = \sigma(\mathcal{O})$ — борелевская σ -алгебра в \mathbb{R}^n .

Определение 2 (Ячейка в \mathbb{R}^n). Обозначать её будем Δ^n , по размерности соответствующего пространства.

$$\Delta^{1} = \begin{cases} [a; b) \\ (-\infty; b) \\ [a; +\infty) \\ (-\infty; +\infty) \end{cases} \quad \forall n \ \Delta = \prod_{k=1}^{n} \Delta_{k}^{1}$$

Ещё введём алгебру $\mathcal{A} = \mathcal{C}ell_n = \{A \mid A = \bigcup_{k=1}^p \Delta_k\}$

Лемма 1. Пусть \mathcal{E}_1 , $\mathcal{E}_2 \subset \mathcal{P}(X)$, $\sigma(\mathcal{E}_1) \supset \mathcal{E}_2$. Тогда $\sigma(\mathcal{E}_1) \supset \sigma(\mathcal{E}_2)$

Теорема 2. $\mathcal{B}_n = \sigma(\mathcal{Cell}_n)$.

Пример 1. Все множества нижё — борелевские.

- $\langle 1 \rangle \mathcal{O}$.
- $\langle 2 \rangle \ \mathcal{F} = \{ A \mid \overline{A} \in \mathcal{O} \}.$

$$\langle 3 \rangle \left(A = \bigcap_{\substack{k=1 \ G_k \in \mathcal{O}}}^{\infty} G_k \right) \in G_{\delta}.$$

$$\langle 4 \rangle \left(B = \bigcup_{\substack{k=1 \ F_k \in \mathcal{F}}}^{\infty} F_k \right) \in F_{\sigma}.$$

$$\langle 5 \rangle \left(C = \bigcup_{\substack{k=1\\A_k \in G_\delta}}^{\infty} A_k \right) \in G_{\delta\sigma}.$$

У всех этих множеств со сложными индексами δ — пересечение, σ — объединение, G — операция над открытыми в самом начале, F — над замкнутыми.

Определение 1. Пусть задано X, $\mathcal{A} \subset \mathcal{P}(X)$, $A_k \in \mathcal{A}$. Тогда $\mu \colon \mathcal{A} \to [0; +\infty]$ — мера, если

1.
$$\mu(\emptyset) = 0$$

2.
$$\mu(\underbrace{\bigsqcup_{k=1}^{\infty} A_{k}}) = \sum_{k=1}^{\infty} \mu(A_{k})$$
. Здесь никто не обещает, что будет именно σ -алгебра.

Множества $A \in \mathcal{A}$ в таком случае называются μ -измеримыми.

Пример 1.
$$a \in X$$
, $\mu(A) = \begin{cases} 1, & a \in A \\ 0, & a \notin A \end{cases} - \delta$ -мера Дирака.

Пример 2.
$$a_k \in X$$
, $m_k \geqslant 0$, $\mu(a) := \sum_{k: a_k \in a} m_k - «молекулярная» мера.$

она считает, не считыва ет $\stackrel{\smile}{\smile}$

Пример 3. $\mu(A) = \#A$ — считающая мера.

§ 4 Свойства меты

Здесь всюду будем рассматривать тройку $(X, \mathcal{A} \subset \mathcal{P}(X), \mu)$

Утверждение 1 (Монотонность меры). Пусть $A, B \in \mathcal{A}, A \subset B$. Тогда $\mu(A) \leqslant \mu(B)$.

Утверждение 2. Пусть $A, B \in \mathcal{A}, A \subset B, \mu(B) < +\infty.$ Тогда $\mu(B \setminus A) = \mu(B) - \mu(A).$

Утверждение 3 (Усиленная монотонность). Пусть $A_{1...n}$, $B \in \mathcal{A}$, $A_{1...n} \subset B$ и дизъюнктны.

Тогда
$$\sum_{k=1}^n \mu(A_k) \leqslant \mu B$$

Утверждение 4 (Полуаддитивность меры). Пусть $B_{1..n}$, $A \in \mathcal{A}$, $A \subset \bigcup_{k=1}^n B_k$.

Тогда
$$\mu A \leqslant \sum_{k=1}^n \mu(B_k)$$
.

▼

Сделать B_k дизъюнктными: $C_k = B_k \setminus \bigcup_{j < k} B_k$. Затем представить A как дизъюнктное объединение D_k : $D_k = C_k \cap A$. Так можно сделать, потому что

$$A = A \cap \bigcup_{k=1}^{n} B_k = A \cap \bigcup_{k=1}^{n} C_k = \bigcup_{k=1}^{n} A \cap C_k$$

Ну а тогда

$$\mu(A) = \sum_{k} \mu D_{k} \leqslant \sum_{k} \mu C_{k} \leqslant \sum_{k} \mu B_{k}$$

 \blacktriangle

Опять-таки никто не сказал, что $\mathcal{A} - \sigma$ -алгебра. **Утверждение 5** (Непрерывность меры снизу). Пусть $A_1\subset A_2\subset \cdots$, $A_k\in \mathcal{A}$, $A=\bigcup_{k=1}^\infty A_k\in \mathcal{A}$. Тогда $\mu A=\lim_{k\to\infty}\mu A_k$

Утверждение 6 (Непрерывность меры сверху). Пусть $A_1 \supset A_2 \supset \cdots$, $A_k \in \mathcal{A}$, $A = \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$, $\mu A_1 < +\infty$.

Tогда $\mu A = \lim_{n \to \infty} \mu A_n$

<+Тут будет картинка про метод исчерпывания Евдокса+>

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$. Тогда μ — полная, если

$$\forall \in \mathcal{A}: \mu A = 0 \ \forall B \subset A, B \in \mathcal{A} :: \mu B = 0$$

Определение 2. Мера μ на $\mathcal A$ называется σ -конечной, если

$$\exists X_n \in \mathcal{A}, \mu X_n < +\infty :: \bigcup_{n=1}^{\infty} X_n = X$$

Определение 3. Пусть \mathcal{A}_1 , \mathcal{A}_2 — сигма-алгебры подмножеств X, $\mathcal{A}_1 \subset \mathcal{A}_2$, $\mu_1 \colon A_1 \to [0; +\infty]$, $\mu_2 \colon A_2 \to [0; +\infty]$. Тогда μ_2 называется продолжением μ_1 .

Теорема 7 (Лебега-Каратеодора). Пусть μ — сигма-конечная мера на \mathcal{A} . Тогда

- 1. Существуют её полные сигма-конечные продожения
- 2. Среди них есть наименьшее: п. Её ещё называют стандартным продолжением.

<+идея доказательства+> Пока надо запомнить, что стандратное продолжение — сужение внешней «меры» на хорошо разбивающие множества.

$\S 5$ Объём в \mathbb{R}^n . Мера Лебега

Определение 1. Пусть $\Delta = \Delta_1 \times \cdots \times \Delta_n$, $\Delta_k = [a_k, b_k)$. Тогда

Для всего, что $\in \mathcal{Cell}_n$, представим его в виде дизъюнктного объединения Δ_j . Тогда $vA:=\sum_{j=1}^q v\Delta_j$.

Замечание. Здесь радикально всё равно, входят ли концы — у них мера ноль.

Теорема 1. *v* — конечно-аддитивен, то есть

$$\forall A, A_{1..p} \in Cell, A = \bigsqcup_{k=1}^{p} A_k \Rightarrow vA = \sum_{k=1}^{p} vA_k$$

Теорема 2. *v — счётно-аддитивен, то есть*

$$\forall A, A_{1..} \in \mathcal{C}ell, A = \bigsqcup_{k=1}^{\infty} A_k \implies vA = \sum_{k=1}^{\infty} vA_k$$

□ Здесь в конспекте лишь частный случай про ячейки.

Определение 2 (Мера Лебега). $X = \mathbb{R}^n$, $\mathcal{A} = \mathcal{Cell}_n$. Тогда $\lambda_n = \overline{v_n}$, $\mathcal{M} = \overline{\mathcal{A}}$ — мера Лебега и алгебра множеств, измеримых по Лебегу, соответственно.

Свойства меры Лебега

- $(1) \triangleright \lambda\{x\} = 0$
- $(2) \triangleright \lambda(\{x_k\}_k) = 0$
- $(3) \triangleright \mathcal{B} \subset \mathcal{M}$
- $(4) \triangleright L \subset \mathbb{R}^m, m < n \Rightarrow \lambda_n L = 0$

А это уже целая теормема.

Теорема 3 (Регулярность меры Лебега). Пусть $A \in \mathcal{M}$, $\varepsilon > 0$. Тогда

$$\exists G \in \mathcal{O}, F \in \mathcal{F} :: F \subset A \subset G \land \begin{cases} \lambda(G \setminus A) < \varepsilon \\ \lambda(A \setminus F) < \varepsilon \end{cases}$$

§6 Измеримые функции

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$. Пусть ещё $f: X \to \mathbb{R}$. Тогда f называется измеримой относительно \mathcal{A} , если

$$\forall \Delta \subset \mathbb{R} :: f^{-1}(\Delta) \in \mathcal{A}$$

Теорема 1. Пусть f измеримо относительно A. Тогда измеримы и следующие (Лебеговы) множества

1 типа $\{x \in X \mid f(x) < a\} \equiv X[f < a]$

2 типа $\{x \in X \mid f(x) \leqslant a\} \equiv X[f \leqslant a]$

3 типа $\{x \in X \mid f(x) > a\} \equiv X[f > a]$

4 типа $\{x \in X \mid f(x) \geqslant a\} \equiv X[f \geqslant a]$

При этом верно и обратное: если измеримы множества какого-то отдного типа, то f измерима.

Теорема 2. Пусть f_1,\ldots,f_n измеримы относительно $\mathcal A$ и $g\colon\mathbb R^n\to R$ непрерывна. Тогда измерима и $\varphi(x)=g(f_1(x),\ldots,f_n(x))$.

Замечание. В частности, $f_1 + f_2$ измерима.

Теорема 3. Пусть f_1, f_2, \ldots измеримы относительно $\mathcal A$. Тогда измеримы $\sup f_n$, $\inf f_n$, $\lim \inf f_n$, $\lim \sup f_n$, $\lim f_n$. Последний, правда, может не существовать.

□ Следует из непрерывности меры.

Определение 2. Пусть $f: X \to \mathbb{R}$ — измерима. Тогда она называется простой, если принимает конечное множество значений.

Определение 3 (Индикатор множества).

$$E \subset X, \mathbb{1}_E := \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$$

Он, как видно совсем простая функция.

Утверждение 4. $f - простая \Rightarrow f = \sum_{k=1}^{p} c_{k} \mathbb{1}_{E_{k}}$

Теорема 5. Пусть $f: X \to \mathbb{R}$, измерима, $f \geqslant 0$. Тогда

$$\exists (\varphi_n) \colon 0 \leqslant \varphi_1 \leqslant \varphi_2 \leqslant \cdots \ :: \ \varphi_n \nearrow f$$
 (поточечно)

§7 Интеграл по мере

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$, f — измерима.

[1] f — простая.

$$\int\limits_X f\,\mathrm{d}\mu:=\sum\limits_{k=1}^p c_k\mu E_k$$

[2] $f \ge 0$.

$$\int\limits_X f \,\mathrm{d}\mu := \sup \left\{ \int\limits_X g \,\mathrm{d}\mu \, \middle| \, g$$
-простая, $0\leqslant g\leqslant f
ight\}$

[3] f общего вида.

$$f_{+} = \max\{f(x), 0\}$$

$$f_{-} = \max\{-f(x), 0\}$$

$$\int\limits_{X} f \, \mathrm{d}\mu = \int\limits_{X} f_{+} \, \mathrm{d}\mu - \int\limits_{X} f_{-} \, \mathrm{d}\mu$$

Здесь нужно, чтобы хотя бы один из интегралов в разности существовал.

Замечание 1.
$$\int\limits_A f \,\mathrm{d}\mu := \sum_{k=1}^p c_k \mu(E_k \cap A)$$

Замечание 2. Дальше измеримость и неотрицательность или суммируемость f будет периодически называться «обычными» условиями.

Утверждение 1.
$$\int\limits_A f \, \mathrm{d}\mu = \int\limits_X f \cdot \mathbb{1}_A \, \mathrm{d}\mu.$$

Свойства интеграла от неотрицательных функций Здесь всюду функции неотрицательны и измеримы, что не лишено отсутствия внезапности.

$$oxed{\mathsf{A}_1} 0 \leqslant f \leqslant g$$
. Тогда $\int\limits_X f \,\mathrm{d}\mu \leqslant \int\limits_X g \,\mathrm{d}\mu$.

$$oxed{A_2}$$
 $A\subset B\subset X$, $A,B\in \mathcal{A}$, $f\geqslant 0$, измерима. Тогда $\int\limits_A f\,\mathrm{d}\mu\leqslant \int\limits_B f\,\mathrm{d}\mu$

$$A_3$$
 см теорему 1.8.1.

$$\boxed{\mathsf{A}_4} \int\limits_X (f+g) \, \mathrm{d}\mu = \int\limits_X f \, \mathrm{d}mu + \int\limits_X g \, \mathrm{d}mu$$

§8 Теорема Беппо Ле́ви

Теорема 1. Пусть (f_n) — измеримы на X, $0 \leqslant f_1 \leqslant \cdots$, $f = \lim_n f_n$. Тогда

$$\int\limits_X f \, \mathrm{d}\mu = \lim_{n \to \infty} \int\limits_X f_n \, \mathrm{d}\mu$$

§ 9 Свойства интеграла от суммируемых функций

Определение 1. f — суммируемая (на X,μ), если $\int\limits_X f \,\mathrm{d}\mu < \infty$. Весь класс суммируемых (на X,μ) функций обозначается через $\mathcal{L}(X,\mu)$.

Здесь всюду функции $\in \mathcal{L}$

$$\boxed{\mathsf{B}_1} \ f \leqslant g \Rightarrow \int\limits_{\mathsf{Y}} f \, \mathrm{d}\mu \leqslant \int\limits_{\mathsf{Y}} g \, \mathrm{d}\mu.$$

$$\boxed{\mathsf{B}_2} \int\limits_{\mathsf{Y}} (f\pm g) \,\mathrm{d}\mu = \int\limits_{\mathsf{Y}} f \,\mathrm{d}\mu \pm \int\limits_{\mathsf{Y}} g \,\mathrm{d}\mu.$$

$$\boxed{\mathsf{B}_3} \int\limits_{\mathsf{X}} \lambda f \, \mathrm{d}\mu = \lambda \int\limits_{\mathsf{X}} f \, \mathrm{d}\mu.$$

$$\boxed{\mathbb{B}_4} |f| \leqslant g \Rightarrow \left| \int\limits_{X} f \, \mathrm{d}\mu \right| \leqslant \int\limits_{X} g \, \mathrm{d}\mu.$$

$$\boxed{\mathsf{B}_5} \left| \int\limits_X f \, \mathrm{d}\mu \right| \leqslant \int\limits_X |f| \, \mathrm{d}\mu.$$

$$\boxed{\mathsf{B}_7} |f| \leqslant M \leqslant +\infty \Rightarrow \left| \int_X f \, \mathrm{d}\mu \right| \leqslant M\mu X$$

§ 10 Счётная аддитивность интеграла

Теорема 1. Пусть задана тройка (X, \mathcal{A}, μ) , f — измерима и $f \geqslant 0 \lor f \in \mathcal{L}$. Пусть к тому же

$$A, A_{1..} \subset X, A = \bigcup_{n=1}^{\infty} A_n$$

Тогда

$$\int\limits_A f \, \mathrm{d}\mu = \sum_{n=1}^\infty \int\limits_{A_n} f \, \mathrm{d}\mu$$

§ 11 Абсолютная непрерывность интеграла

Теорема 1. Пусть $f \in \mathcal{L}(X, \mathcal{A}, \mu)$. Тогда

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ :: \ \forall A \in \mathcal{A}, A \subset X : \mu A < \delta \ :: \ \left| \int_A f \ \mathrm{d}\mu \right| < \varepsilon$$

§ 12 Интеграл от непрерывной функции по мере Лебега

Теорема 1. Пусть $f \in C([a;b])$, λ — мера Лебега на X=[a;b]. Тогда

$$f \in \mathcal{L}, \int_{[a;b]} f d\mu = \int_a^b f = F(b) - F(a),$$

где F — первообразная f.

§ 13 Сравнение подходов Римана и Лебега

Сначала вспомним определения того, о чём собираемся рассуждать.

Определение 1 (Интеграл Римана). Пусть $f \in C([a;b])$ $a < x_1 < \cdots < x_{n-1} < x_n = b$, $\xi_i \in [x_i; x_{i+1}]$. Тогда

•
$$\tau = \{x_1, \dots, x_{n-1}\}$$
 — разбиение отрезка $[a; b]$

ullet $\xi = \{\xi_1, \ldots, \xi_{n-1}\}$ — оснащение разбиения au

• $\Delta x_i = x_{i+1} - x_i$ — длина *i*-го отрезка

• $r = r(\tau) = \max_{i} \{\Delta x_i\}$ — ранг разбиения

•
$$\sigma = \sigma(au, \xi, f) := \sum_{i=0}^{n-1} f(\xi_i) \cdot \Delta x_i$$
 — сумма Римана

Сам интеграл определяется как-то так

$$\int_{a}^{b} f \, dx = \lim_{r(\tau) \to 0} \sigma(\tau, \xi, f)$$

Определение 2 (Интеграл Лебега). см. 1.7.1. В качестве множества X понятное дело, отрезок [a;b].

Пример 1. Пусть X = [0;1]. Тогда $f(x) = \begin{cases} 0, & x \not\in \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$ интегрируема по Лебегу, но не по Риману.

<+картиночка с обоими интегралами+>

§ 14 Сравнение несобственного интеграла и интеграла Лебега

Теорема 1. Пусть
$$f\geqslant 0 \lor f\in \mathcal{L}\big([a;b),\lambda\big)$$
. Тогда $\int\limits_{[a;b)}f\,\mathrm{d}\lambda=\int\limits_a^{\to b}f$.

□ 🛠 Свести к собственному, а дальше непрерывность меры. ■

§ 15 Интеграл по дискретной мере и мере, задаваемой плотностью

Теорема 1. Пусть $\mu = \sum_k m_k \delta_{a_k}$, $\{a_k\} \in X$ и $f: X \to \mathbb{R}$, $f \geqslant 0$ или $f \in \mathcal{L}(X, \mu)$. Тогда

$$\int\limits_X f \, \mathrm{d}\mu = \sum\limits_k f(a_k) \cdot \underbrace{m_k}_{\mu\{a_k\}}$$

□ ХСчётная аддитивность интеграла поможет. 1.10.1 ■

Пример 1. Пусть $\mu A = \# A$. Тогда

$$\sum_{m,n\in\mathbb{N}}=\int_{\mathbb{N}^2}f(m,n)\,\mathrm{d}\mu$$

здесь объявим бесконечность приличным значением суммы ряда

Причем условия суммируемости ряда такие же, как у интеграла Лебега:

$$\begin{bmatrix}
\forall m, n \in \mathbb{N} :: a_{m,n} \geqslant 0 \\
\sum_{m,n \in \mathbb{N}} |a_{m,n}| < \infty
\end{bmatrix}$$

тройка, но все же поняли, что сигма-алгебра имелась в виду **Определение 1.** Пусть задана пара $(X, \mu), \rho: X \to \mathbb{R}$, измерима, $\rho \geqslant 0$. Тогда

- $\nu(E) := \int\limits_E \rho \,\mathrm{d}\mu$ мера, задаваемая плотностью ho
- ρ плотность меры ν относительно меры μ .

Замечание. Она правда мера, интеграл счётно-аддитивен.

Теорема 2. Пусть выполнены «обычные» условия на f. Тогда $\int\limits_X f \, \mathrm{d} \nu = \int\limits_X f \rho \, \mathrm{d} \mu$.

§ 16 Мера Лебега-Стилтьеса. Интеграл по распределению

А можно и без. Тогда $\nu([a;b)) = F(b-0) - F(a-0)$, см. ??

Определение 1. Пусть $I \subset \mathbb{R}$, $F \colon I \to \mathbb{R}$, $F \not \nearrow$, F(x) = F(x-0) (непрерывна слева).. Рассмотрим порождённую полуинтервалами $[a;b) \subset I$ σ -алгебру. Введём «объём» $\nu_F \colon \nu([a;b)) = F(b) - F(a)$.

Тогда мера Лебега-Стилтьеса μ_F — стандартное продолжение ν_F на некоторую σ -алгебру \mathcal{M}_F .

Замечание 1. Здесь надо доказывать счётную аддитивность, а то как продолжать ν , если она — не мера?

Свойства мемы Лебега-Стилтьеса

Утверждение 1. Пусть $\Delta = [a; b]$. Тогда $\mu \Delta = F(b+0) - F(a)$.

Утверждение 2. Пусть $\Delta = \{a\}$. Тогда $\mu\Delta = F(a+0) - F(a)$.

Утверждение 3. Пусть $\Delta=(a;b)$. Тогда $\mu\Delta=F(b)-F(a+0)$.

Лемма 4. Пусть $F \in C(I)$, $\Delta \subset I$. Тогда $\mu_F(\Delta) = \int\limits_{\Delta} F'(t) \, \mathrm{d}\lambda$.

Теорема 5. Пусть $F \nearrow$, кусочно-гладка на $I \subset \mathbb{R}$, а для f выполнены обычные условия $(X = \mathcal{B}, \mu = \mu_F)$. Промежутки гладкости F обозначим за (c_k, c_{k+1}) . Тогда

$$\int\limits_X f \, \mathrm{d}\mu_F = \sum\limits_k \int\limits_{c_k}^{c_{k+1}} f F' \, \mathrm{d}\lambda + \sum\limits_k f(c_k) \underbrace{\Delta_{c_k} F}_{c_{KAYOK B} c_k}$$

Определение 2 (Образ мемы). Пусть (X, \mathcal{A}, μ) — пространство с мемой, $f: X \to Y$. Превратим и Y в пространство с мемой.

- 1. $\mathcal{A}' = \{ E \subset Y \mid f^{-1}(E) \in \mathcal{A} \}.$
- 2. $\mu' \equiv \nu = \mu \circ f^{-1}$.

Теорема 6. Пусть для $g:Y\to\mathbb{R}$ выполнены обычные условия $(\mathcal{A}=\mathcal{A}',\,\mu=\nu)$. Тогда $\int\limits_{Y}g\,\mathrm{d}\nu=\int\limits_{X}(g\circ f)\,\mathrm{d}\mu$.

Определение 3 (Функция распределения). Пусть задано (X,μ) , $\mu X < +\infty$, $f: X \to \mathbb{R}$. Тогда $F(t) := \mu X[f < t]$. Как видно, она возрастает и непрерывна слева.

Теорема 7. Пусть задано (X,μ) , $\mu X<+\infty$, выполнены обычные условия для f. Тогда $\int\limits_X f \,\mathrm{d}\mu = \int\limits_{-\infty}^{\infty} t \,\mathrm{d}\mu_F$.

§ 17 Интеграл Эйлера-Пуассона

Утверждение 1. $\int\limits_{\mathbb{R}^2}e^{-(x^2+y^2)}\,\mathrm{d}\lambda_2=\pi$

§ 18 Вероятностный смысл мемы

<+Табличка с соответствием+>

§ 19 Геометрический смысл меры Лебега. Принцип Кавальери

Определение 1. Пусть задано (X, μ) , P(x) — предикат. Говорят, что P(x) = 1 почти везде (п.в.), если $\mu\{x \mid P(x) = 0\} = 0$.

Определение 2. $f \sim g \Leftrightarrow f(x) = g(x)$ п.в. .

Лемма 1 (Беппо-Леви для рядов). Пусть заданы (X, μ) , $u_n \colon X \to \mathbb{R}$, $n \in \mathbb{N}$, u_n измеримы, $u_n \geqslant 0$. Тогда

a)
$$\int_{x} \sum_{n=1}^{\infty} u_n \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{x} u_n \, \mathrm{d}\mu.$$

b) Если эти числа конечны, то ряд $\sum_{n} u_{n} \ cx \ n.в.$

Лемма 2 (Беппо-Леви «вверх ногами»). Пусть задано (X, μ) , (f_n) , измеримы, $f_1 \geqslant f_2 \geqslant \cdots \geqslant 0$. Пусть ещё $f_1 \in \mathcal{L}$. Тогда

$$\lim_{n\to\infty}\int\limits_X f_n\,\mathrm{d}\mu=\int\limits_X\lim_{n\to\infty}f_n\,\mathrm{d}\mu$$

<+Здесь была ещё пара лемм, но они не особо используются дальше. Вроде+>

Определение 3. Пусть $E \subset \mathbb{R}^m \times \mathbb{R}^n \in \mathcal{M}_{m+n}$

$$\triangleright E_x = \{y \in \mathbb{R}^n \mid (x, y) \in E\}$$
 — «cpe3»

$$\triangleright$$
 П₁(E) = { x ∈ \mathbb{R}^m | $E_x \neq \emptyset$ } — «проекция»

<+картиночка для \mathbb{R}^2 +>

Теорема 3. Пусть $E \in \mathcal{M}_{m+n}$, $E_x \in \mathcal{M}_n$ п.в. x, $\varphi(x) = \lambda_n(E_x)$ измерима относительно \mathcal{M}_m . Тогда

$$\lambda_{m+n}(E) = \int_{\mathbb{R}^m} \lambda_n(E_x) \, \mathrm{d}\lambda_m$$

<+много букв+>

Определение 4 (График). $\Gamma^f = \{(x, t) \in \mathbb{R}^{n+1} \mid t = f(x)\}.$

Определение 5 (Подграфик). $\Gamma_{-}^{f} = \{(x, t) \in \mathbb{R}^{n+1} \mid 0 \leqslant t \leqslant f(x)\}.$

Определение 6 (Надграфик). $\Gamma_{+}^{f} = \{(x, t) \in \mathbb{R}^{n+1} \mid t \geqslant f(x)\}.$

Теорема 4 (Геометрический смысл интеграла). Пусть $f: \mathbb{R}^n \to \mathbb{R}$, измерима, $\geqslant 0$. Тогда

- 1. Γ_{-}^{f} измеримо.
- 2. $\lambda_{n+1}\Gamma_-^f = \int_{\mathbb{R}^n} f \, \mathrm{d}\lambda_n$ измеримо.

§ 20 Сведение кратного интеграла к повторному

Будем в дальнейшем обозначать интегрирование по мере Лебега через dx (ну или dy), размерность определяется из размерности x. Еще обозначим d(x, y) через dxdy.

Теорема 1 (Тонелли). Пусть $f: \mathbb{R}^{m+n} \to \mathbb{R}$, измерима, $\geqslant 0$, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Тогда

$$\iint_{\mathbb{R}^m \times \mathbb{R}^n} f(x, y) \, dx dy = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^n} f(x, y) \, dy$$

Теорема 2 (Фубини). Пусть $f: \mathbb{R}^{m+n} \to \mathbb{R}$, измерима, $\in \mathcal{L}(\mathbb{R}^{n+m}, \lambda_{m+n})$, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Тогда

$$\iint_{\mathbb{R}^m \times \mathbb{R}^n} f(x, y) \, dx dy = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^n} f(x, y) \, dy$$

Глава А: Обозначения

Обозначения с лекции

```
a:=b — определение a. \bigsqcup_k A_k — объединение дизъюнктных множеств.
```

 ${\mathcal A}$ Алгебра множеств

Нестандартные обозначения

🛠 — ещё правится. Впрочем, относится почти ко всему.

□ · · · ■ — начало и конец доказательства теоремы

▼ · · · ▲ — начало и конец доказательства более мелкого утверждения

:set aflame — набирающему зело не нравится билет

<+что-то+> — тут будет что-то, но попозже

$$a ... b - [a; b] \cap \mathbb{Z}$$

 \equiv — штуки эквивалентны. Часто используется в этом смысле в определениях, когда вводится два разных обозначения одного и того же объекта.

:: В кванторах, «верно, что»

 \mathcal{A}_{σ} Сигма-алгебра множеств