

Finsler-Laplace-Beltrami Operators 🖫 тесниюм with Application to Shape Analysis

Simon Weber^{1*}, Thomas Dagès^{2*}, Maolin Gao¹, Daniel Cremers¹

¹Technical University of Munich, ²Technion - Israel Institute of Technology *Equal contribution

Differential Geometry

Symmetric

 $\mathcal{R}_{x}(v) = \mathcal{R}_{x}(-v) \implies \operatorname{dist}_{\mathcal{R}}(x, y) = \operatorname{dist}_{\mathcal{R}}(y, x)$

Asymmetric

Finsler Geometry

Asymmetric

 $\mathcal{F}_{x}(v) \neq \mathcal{F}_{x}(-v) \implies \operatorname{dist}_{\mathcal{F}}(x,y) \neq \operatorname{dist}_{\mathcal{F}}(y,x)$ • Randers $\mathscr{F}_{x}(v) = \sqrt{v^{\mathsf{T}} M(x) v + \omega(x)^{\mathsf{T}} v}$

Laplace-Finsler

 $\Delta_X f = -\operatorname{div}_X \left(\mathscr{F}_X^* (\nabla_X f) \nabla_X \mathscr{F}_X^* (\nabla_X f) \right)$

$\Delta_X f = -\operatorname{div}_X(\nabla_X f)$

● Laplace-Beltrami (LBO)

Journey Through Finsler Geometry

Finding Riemann anisotropy via Randers asymmetry

Finsler-Laplace-Beltrami Operator (FLBO)

Theoretically Motivated Anisotropic LBO

$$\Delta_{FLBO} f = -\operatorname{div}_X \left(\left(M^* - \omega^* \omega^{*\top} \right) \nabla_X f \right) \qquad \phi_k^{FLBO} = \lambda_k \Delta_{FLBO} \phi_k$$

Discretisation

- [1] Heuristic Diffusivity $D_{\alpha\theta} = R_{\theta}U_{ijk} \left(\frac{1}{1+\alpha} \right) U_{ijk}^{\top} R_{\theta}^{\top}$
- Metric construction $M_{\alpha\theta} = D_{\alpha\theta}^{-1}$ $\omega_{\theta} = \tau R_{\theta} \hat{u}_{M}$
- FLBO "Cotangent" [1] $w_{(i,j) \in E} = \frac{1}{2} \left(\frac{\langle \hat{e}_{kj}, \hat{e}_{ki} \rangle_{D_{\mathcal{F}_{x}}^{\alpha\theta}}}{\sin \alpha_{ij}} + \frac{1}{2} \right)$

Convolution in the Spectral Domain

$$\begin{cases} (f * g)_{\alpha\theta} = \sum \hat{f}(\lambda_{\alpha\theta,k})\hat{g}(\lambda_{\alpha\theta,k})\phi_{\alpha\theta,k} & (f * g)_{\alpha}(x) = \int_{\theta} (f * g)_{\alpha\theta}(x)d\theta \\ \text{Chebychev polynomial convolution filter} & \hat{g}(\lambda_{\alpha\theta,k}) = \sum c_{\alpha\theta,s}T_{s}(\lambda_{\alpha\theta,k}) \end{cases}$$

Chebychev polynomial convolution filter $\hat{g}(\lambda_{\alpha\theta,k}) = \sum c_{\alpha\theta,s} T_s(\lambda_{\alpha\theta,k})$

Discretisation $(f * g)_{\alpha\theta} = \sum c_{\alpha\theta,s} T_s(\Delta_{FLBO}^{\alpha\theta}) f$

[1] Boscaini, D, et al. "Learning shape correspondence with anisotropic convolutional neural networks." NeurIPS (2016).

[2] Li, Q, et al. "Shape correspondence using anisotropic Chebyshev spectral CNNs." CVPR (2020).

Shape Matching Supervised CNN

