On the homotopy type of the spaces of Morse functions on surfaces

E. A. Kudryavtseva

Let M be a smooth closed orientable surface. Let F be the space of Morse functions on M having fixed number of critical points of each index, moreover at least $\chi(M)+1$ critical points are labeled by different labels (enumerated). A notion of a skew cylindric-polyhedral complex, which generalizes the notion of a polyhedral complex, is introduced. The skew cylindric-polyhedral complex $\widetilde{\mathbb{K}}$ (the "complex of framed Morse functions"), associated with the space F, is defined. In the case when $M=S^2$, the polyhedron $\widetilde{\mathbb{K}}$ is finite; its Euler characteristic $\chi(\widetilde{\mathbb{K}})$ is evaluated and the Morse inequalities for its Betti numbers $\beta_j(\widetilde{\mathbb{K}})$ are obtained. A relation between the homotopy types of the polyhedron $\widetilde{\mathbb{K}}$ and the space F of Morse functions, endowed with the C^{∞} -topology, is indicated.

Key words: Morse functions, complex of framed Morse functions, polyhedral complex, C^{∞} -topology, universal moduli space.

MSC-class: 58E05, 57M50, 58K65, 46M18 УДК 515.164.174+515.164.22+515.122.55

О гомотопическом типе пространств функций Морса на поверхностях

Е. А. Кудрявцева

Аннотация

Пусть M — гладкая замкнутая ориентируемая поверхность. Пусть F — пространство функций Морса на M с фиксированным количеством критических точек каждого индекса, причем не менее чем $\chi(M)+1$ критических точек помечены различными метками (пронумерованы). Введено понятие косого цилиндрически-полиэдрального комплекса, обобщающее понятие полиэдрального комплекса. Определен косой цилиндрически-полиэдральный комплекс $\widetilde{\mathbb{K}}$ ("комплекс оснащенных функций Морса"), ассоциированный с пространством F. В случае $M=S^2$ полиэдр $\widetilde{\mathbb{K}}$ конечен; вычислена его эйлерова характеристика $\chi(\widetilde{\mathbb{K}})$ и получены неравенства Морса для его чисел Бетти $\beta_j(\widetilde{\mathbb{K}})$. Указана связь гомотопических типов полиэдра $\widetilde{\mathbb{K}}$ и пространства F функций Морса, снабженного C^∞ -топологией.

Библиография: 41 название.

Ключевые слова: функции Морса, комплекс оснащенных функций Морса, полиэдральный комплекс, C^{∞} -топология, универсальное пространство модулей.

1 Введение

Настоящая работа является продолжением работы [1].

Задача изучения гладких функций с "умеренными" особенностями на гладком многообразии M является классической. Изучение топологии пространства таких функций как правило состоит из двух частей:

 $^{^{0}}$ Работа выполнена при поддержке РФФИ (грант № 10–01–00748-а), Программы поддержки ведущих научных школ РФ (грант № НШ-3224.2010.1), Программы "Развитие научного потенциала высшей школы" (грант № 2.1.1.3704), ФЦП "Научные и научно-педагогические кадры инновационной России" (грант № 14.740.11.0794).

- 1) сведение к комбинаторной задаче, т.е. построение комбинаторного объекта (например, конечномерного полиэдра), гомотопически эквивалентного изучаемому пространству функций;
- 2) решение полученной комбинаторной задачи (изучение топологии построенного полиэдра).

Одним из таких подходов является (параметрический) h-принцип М. Громова [2], изучаемый, например, в работах [3], [4], [5, теорема 2.3], [6, 7] (см. также [1]). Невыполнение 1-параметрического h-принципа для пространств функций Морса на некоторых компактных многообразиях размерности большей 5 показано в работах [7, 6] (см. также [1, §1]).

Рассмотрим задачу о вычислении гомотопического типа пространства F(M) функций Морса на компактном гладком многообразии M, например, на гладкой поверхности. Для пространства $F(S^1)$ функций Морса на окружности $M=S^1$ имеется следующий метод решения. Сопоставим каждой функции Морса $f \in F_r(S^1)$, имеющей ровно 2r критических точек, множество ее критических точек локальных минимумов (т.е. некоторую r-точечную конфигурацию на поверхности M). Нетрудно доказывается, что построенное отображение $F_r(S^1) \to Q_r(S^1)$ сюръективно и является гомотопической эквивалентностью. Тем самым, описанный метод сводит задачу к изучению топологии конфигурационного пространства $Q_r(S^1)$, т.е. пространства r-точечных конфигураций на S^1 . Гомотопический тип последнего пространства легко находится и равен S^1 .

В настоящей работе изучается топология пространства F = F(M) функций Морса на компактной двумерной поверхности M. Предлагаемый нами метод аналогичен "методу конфигурационных пространств", описанному выше. А именно, в настоящей работе описывается построение комбинаторного объекта – комплекса $\widetilde{\mathbb{K}} = \widetilde{\mathbb{K}}(M)$ оснащенных функций Морса (определение 4.1 и теорема 4.2), аналогичного комплексу функций Морса $\widetilde{K} = \widetilde{K}(M)$ из работы [8]. Комплекс $\widetilde{\mathbb{K}}$ является конечномерным косым цилиндрически-полиэдральным комплексом (см. определение 2.4), т.е. допускает разбиение на "косые цилиндрические ручки" (см. определение 2.3), аналогичные круглым ручкам, и приклеенные друг к другу "регулярным" образом. При этом ручки находятся во взаимно однозначном соответствии с классами изотопности функций Морса из $F^1 \subset F$ (см. определения 1.1(B), 1.3), а подошва ручки $\mathbb{D}_{[f]_{\mathrm{isot}}}$, отвечающей классу изотопности $[f]_{\mathrm{isot}}$ функции f, содержится в объединении ручек $\mathbb{D}_{[g]_{\mathrm{isot}}}$, отвечающих классам изотопности функций, полученных малыми возмущениями функции f. Важным свойством комплекса $\widetilde{\mathbb{K}}$ является то, что в большинстве случаев (см. (2.2)) пространство F функций Морса на компактной поверхности M гомотопически эквивалентно полиэдру $R \times \widetilde{\mathbb{K}}$:

$$F \sim R \times \widetilde{\mathbb{K}},\tag{1.1}$$

где R=R(M) — одно из многообразий $\mathbb{R}P^3$, S^1 , $S^1\times S^1$ и точка (см. (2.1)), а $\widetilde{\mathbb{K}}=\widetilde{\mathbb{K}}(M)$ — "комплекс оснащенных функций Морса", построенный в настоящей работе (см. замечание 2.7). Тем самым, изучение топологии пространства F функций Морса сводится к комбинаторной задаче — изучению топологии полиэдра $\widetilde{\mathbb{K}}$.

В некоторых случаях гомологии полиэдра $\widetilde{\mathbb{K}}$ могут быть изучены методами теории Морса, ввиду естественного разложения полиэдра $\widetilde{\mathbb{K}}$ на косые цилиндрические ручки. В качестве иллюстрации мы получаем обобщенные неравенства Морса для чисел Бетти пространства $\widetilde{\mathbb{K}}$ и находим его эйлерову характеристику в случае, когда $M=S^2$ и у каждой функции $f\in F$ не менее трех критических точек помечены разными метками, т.е. занумерованы (следствие 2.8).

Наши комплексы K и \mathbb{K} функций Морса и оснащенных функций Морса аналогичны известным (абстрактным симплициальным флаговым) комплексам, рассматриваемым при изучении группы классов отображений поверхности M (см. [9], [10, 11, 12], [13], [14]), кубическим комплексам [15], и обобщают граф разрезов (см. [16]). В случае $M = S^1$ аналогичный комплекс $\widetilde{\mathbb{K}}$ состоит из одной точки и $R = S^1$.

Связные компоненты пространств функций Морса на поверхности изучались С.В. Матвеевым [16], Х. Цишангом, В.В. Шарко [17], Е.А. Кудрявцевой [16], С.И. Максименко [18], а также Ю.М. Бурманом [19, 20] (для пространств гладких функций без критических точек на открытых поверхностях) и Е.А. Кудрявцевой [8] (для пространств функций Морса с фиксированным множеством критических точек). Комбинаторные и топологические свойства пространств функций Морса на поверхностях изучались в работах [21], [22]. В работах [23], [24], [25, 26], [27], [28] и [29] функции Морса изучались в связи с задачей классификации (лиувиллевой, орбитальной) невырожденных интегрируемых гамильтоновых систем с двумя степенями свободы. Группы гомологий и гомотопий пространств функций с умеренными особенностями (с допущением не-морсовских особенностей) на окружности изучался В.И. Арнольдом [30].

Перейдем к точным формулировкам.

Определение 1.1. Пусть M — гладкая (т.е. класса C^{∞}) компактная связная поверхность, край которой пуст или не пуст, $\partial M = \partial^+ M \sqcup \partial^- M$, где $\partial^+ M$ — объединение некоторых граничных окружностей M.

- (A) Обозначим через $C^{\infty}(M)$ пространство гладких (т.е. класса C^{∞}) вещественнозначных функций f на M. Обозначим через $C^{\infty}(M,\partial^+M,\partial^-M)\subset C^{\infty}(M)$ подпространство, состоящее из таких функций $f\in C^{\infty}(M)$, что все ее критические точки (т.е. такие точки $x\in M$, что $df|_x=0$) принадлежат int M, а любая граничная точка $x\in \partial M$ имеет такую окрестность U в M, что $f(U\cap\partial M)=f(x)$, причем $\inf(f|_U)=f(x)$ при $x\in \partial^-M$, и $\sup(f|_U)=f(x)$ при $x\in \partial^+M$.
- (В) Функцию f на M назовем функцией Морса на $(M, \partial^+ M, \partial^- M)$, если $f \in C^\infty(M, \partial^+ M, \partial^- M)$ и все ее критические точки невырождены (т.е. квадратичная форма в $T_x M$, заданная матрицей вторых частных производных f в критической точке x, невырождена). Пусть

$$F := F_{p,q,r}(M, \partial^+ M, \partial^- M)$$

— пространство функций Морса f на поверхности $(M, \partial^+ M, \partial^- M)$, имеющих ровно p+q+r критических точек, из которых p точек локальных минимумов, q седловых точек и r точек локальных максимумов. Пусть $d^+, d^- \geq 0$ — число граничных окружностей в $\partial^+ M$ и $\partial^- M$ соответственно. Будем предполагать, что выполнены неравенства Морса:

$$\chi(M) = p - q + r, \quad p + d^{+} > 0, \quad r + d^{-} > 0, \tag{1.2}$$

так как в противном случае $F = \emptyset$. Пространство F мы наделим C^{∞} -топологией, см. [1, §4(a)], и назовем его пространством функций Морса на поверхности $(M, \partial^+ M, \partial^- M)$. Обозначим через $F^1 \subset F$ подпространство в F, состоящее из таких функций Морса $f \in F$, что все локальные минимумы равны $f(\partial^- M) = -1$, а все локальные максимумы равны $f(\partial^+ M) = 1$.

(C) Обозначим через F^{num} (соотв. $F^{1,\text{num}}$) пространство, полученное из пространства F (соотв. F^{1}) введением нумерации у некоторых из критических точек (называемых *отмеченными* критическими точками) функций Морса $f \in F$ (соответственно $f \in F^{1}$). Наделим его C^{∞} -топологией как в $[1, \S4(a)]$. Если количество отмеченных критических точек локальных минимумов, максимумов и седловых точек равно $\widehat{p}, \widehat{r}, \widehat{q}$ соответственно (где $0 \le \widehat{p} \le p, \ 0 \le \widehat{q} \le q, \ 0 \le \widehat{r} \le r$), то имеем $C_{p}^{\widehat{p}}C_{q}^{\widehat{q}}C_{r}^{\widehat{r}}\widehat{p}!\widehat{q}!\widehat{r}!$ -листные накрытия $F^{\text{num}} \to F$ и $F^{1,\text{num}} \to F^{1}$.

Обозначение 1.2. Пусть $\mathscr{D}^{\pm} = \mathrm{Diff}(M, \partial^+ M, \partial^- M)$ — группа всех (не обязательно сохраняющих ориентацию и компоненты края) диффеоморфизмов поверхности M, переводящих каждое множество $\partial^+ M, \partial^- M$ в себя. Пространство \mathscr{D}^{\pm} наделим C^{∞} -топологией, см. [1, §4(6)]. Пусть $\mathscr{D}^0 \subset \mathscr{D}^{\pm}$ — подгруппа, состоящая из всех диффеоморфизмов $h \in \mathscr{D}^{\pm}$, гомотопных id_M в классе гомеоморфизмов M.

Определение 1.3. (A) Две функции Морса $f,g \in F$ назовем эквивалентными, если найдутся такие диффеоморфизмы $h_1 \in \mathscr{D}^{\pm}$ и $h_2 \in \mathrm{Diff}^+(\mathbb{R})$, что $f = h_2 \circ g \circ h_1$ (и h_1 сохраняет нумерацию критических точек, если $f,g \in F^{\mathrm{num}}$), и обозначаем $f \sim g$. Класс эквивалентности функции f обозначим через [f].

(Б) Две функции Морса f и g назовем изотопными, если они эквивалентны и $h_1 \in \mathcal{D}^0$ (т.е. h_1 изотопен тождественному), и обозначаем $f \sim_{\text{isot}} g$. Множество всех функций из F^1 , изотопных функции f, обозначим через $[f]_{\text{isot}}$.

Классификация функций Морса из F с точностью до эквивалентности легко получается из классификации функций Морса с точностью до послойной эквивалентности (см. [26, гл. 2, теоремы 4 и 8]). Автором доказаны критерии (послойной) эквивалентности (соотв. изотопности) пары "возмущенных" функций Морса $\widetilde{f}, \widetilde{g} \in C^{\infty}(M, \partial^+ M, \partial^- M)$, полученных малыми возмущениями из пары (послойно) эквивалентных (соотв. изотопных) функций Морса $f, g \in F$ (см. §3, шаг 3, или [27, утверждение 1.1 и §3]), и доказана классификация функций Морса с точностью до изотопности (см. [31, лемма 1 и теорема 2]).

В работе [1] введено понятие *оснащенных* функций Морса на компактной поверхности M и доказана гомотопическая эквивалентность пространства F функций Морса и пространства $\mathbb F$ оснащенных функций Морса на M. Также доказан аналог последнего утверждения для ограничений указанных гомотопических эквивалентностей на классы изотопности $[f]_{isot}$ ([1, теорема 2.5]). Последнее дает положительный ответ на вопрос, поставленный В.И. Арнольдом.

Статья имеет следующую структуру. В §2 определяется более общее пространство функций Морса, вводится понятие косого цилиндрически-полиэдрального комплекса и формулируются основные результаты настоящей работы (теорема 2.6 и следствие 2.8). В §3 описывается построение стандартной косой цилиндрической ручки $\mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}}$, отвечающей классу изотопности $[f]_{\mathrm{isot}}$ функции Морса $f \in F^1$, и изучены отображения инцидентности между парами ручек, отвечающими парам примыкающих друг к другу классов изотопности $[f]_{\mathrm{isot}} \prec [g]_{\mathrm{isot}}$ функций (определение 2.4(D), леммы 3.1–3.5). В §4 описывается построение комбинаторного объекта – комплекса $\widetilde{\mathbb{K}}$ оснащенных функций Морса (и содержащего его многообразия $\widetilde{\mathcal{M}}$) и доказывается, что он является косым цилиндрически-полиэдральным комплексом (теоремы 4.2, 4.3).

Автор приносит благодарность В.И. Арнольду, С.А. Мелихову, А.А. Ошемкову, Д.А. Пермякову, А.Т. Фоменко и Х. Цишангу за внимание к работе и полезные обсуждения.

2 Точные формулировки основных результатов

Следующее пространство обобщает пространства $F_{p,q,r}(M, \partial^+ M, \partial^- M)$, F^{num} и состоит из функций Морса, у которых некоторые из отмеченных критических точек закреплены.

Определение 2.1. (A) Пусть $0 \le p^* \le \widehat{p}$, $0 \le q^* \le \widehat{q}$, $0 \le r^* \le \widehat{r}$ (см. определение 1.1(C)). Обозначим

$$(p',p'';q',q'';r',r''):=(\widehat{p}-p^*,p-\widehat{p};\widehat{q}-q^*,q-\widehat{q};\widehat{r}-r^*,r-\widehat{r}).$$

Для каждой функции $f \in F^{\text{num}}$ обозначим через $\mathcal{C}_{f,0},\,\mathcal{C}_{f,1},\,\mathcal{C}_{f,2}$ множества ее критических точек ло-кальных минимумов, седловых критических точек и точек локальных максимумов соответственно, и через $\widehat{\mathcal{C}}_{f,\lambda} \subseteq \mathcal{C}_{f,\lambda},\,\lambda = 0,1,2$, множества отмеченных критических точек. В каждом из множеств отмеченных (а потому занумерованных) критических точек рассмотрим подмножество, обозначаемое через $\mathcal{C}_{f,0}^*,\,\mathcal{C}_{f,1}^*,\,\mathcal{C}_{f,2}^*$ и состоящее из первых $p^*,\,q^*,\,r^*$ точек соответственно. Фиксируем "базисную" функцию $f_* \in F^{\text{num}}$. Пусть

$$F := F_{p^*,p',p'';q^*,q',q'';r^*,r',r''}(M,\partial^+M,\partial^-M)$$

— пространство функций Морса $f \in F^{\text{num}}$ на поверхности $(M, \partial^+ M, \partial^- M)$ (см. определение 1.1(B)), таких что $\mathcal{C}_{f,\lambda}^* = \mathcal{C}_{f_*,\lambda}^*$ для любого $\lambda = 0, 1, 2$. Пространство F мы наделим C^{∞} -топологией, см. [1, §4], и назовем его обобщенным пространством функций Морса на поверхности $(M, \partial^+ M, \partial^- M)$. Определим подпространство $F^1 \subset F$ аналогично определению 1.1(B).

Пространства F, F^{num} из определения 1.1 имеют вид

$$F = F_{0,0,v;0,0,a;0,0,r}(M, \partial^+ M, \partial^- M), \quad F^{\text{num}} = F_{0,\widehat{v},v'';0,\widehat{a},a'';0,\widehat{r},r''}(M, \partial^+ M, \partial^- M)$$

соответственно. Из теоремы С.В. Матвеева (см. [16]) и ее обобщения в [16] для пространства F^{num} получаем следующее ее обобщение: любое обобщенное пространство $F = F_{p^*,p',p'';0,\widehat{q},q'';r^*,r',r''}(M,\partial^+M,\partial^-M)$ функций Морса без закрепленных седловых точек (т.е. при $q^*=0$) линейно связно.

Всюду в статье мы предполагаем, что поверхность M ориентирована. Случай неориентируемой поверхности M рассматривается как в [1, замечание 2.7].

Следующие группы диффеоморфизмов обобщают группы \mathcal{D}^{\pm} и \mathcal{D}^{0} , см. обозначение 1.2 выше. Мы их вводим для изучения обобщенного пространства F функций Морса (и по-прежнему обозначаем их через \mathcal{D}^{\pm} и \mathcal{D}^{0}).

Обозначение 2.2. (А) Множества $C_{f,0}^*, C_{f,1}^*, C_{f,2}^*$ фиксированных критических точек совпадают для разных функций $f \in F$, будем их обозначать через C_0, C_1, C_2 соответственно, положим $C := C_0 \cup C_1 \cup C_2$. Обозначим через $\mathscr{D}^\pm = \mathrm{Diff}(M, \partial^+ M, \partial^- M, C_0, C_1, C_2)$ группу всех (не обязательно сохраняющих ориентацию и компоненты края) диффеоморфизмов поверхности M, переводящих каждое множество $\partial^+ M, \partial^- M, C_\lambda$ в себя, $0 \le \lambda \le 2$. Пространство \mathscr{D}^\pm тоже наделим C^∞ -топологией, см. [1, §4(б)]. Если M ориентируема, обозначим через $\mathscr{D} \subset \mathscr{D}^\pm$ подгруппу сохраняющих ориентацию диффеоморфизмов (с индуцированной топологией). Пусть $\mathscr{D}^0 = \mathrm{Diff}^0(M, C) \subset \mathscr{D}^\pm$ — подгруппа (с индуцированной топологией), состоящая из всех диффеоморфизмов $h \in \mathscr{D}^\pm$, гомотопных id_M в классе гомеоморфизмов пары (M, C).

(В) Обозначим через \bar{M} замкнутую поверхность, полученную из поверхности M стягиванием в точку каждой граничной окружности. Обозначим через $\mathcal{T} \subset \mathcal{D}$ группу (называемую группой Торелли), состоящую из всех диффеоморфизмов $h \in \mathcal{D}$, переводящих в себя каждую компоненту края M, и таких что индуцированный гомеоморфизм $\bar{h} \colon \bar{M} \to \bar{M}$ индуцирует тождественный автоморфизм группы гомологий $H_1(\bar{M})$. Имеем $\mathcal{D}^0 \subset \mathcal{T}$.

Из результатов [32, 33] К.Дж. Эрля и Дж. Иллса (мл.) следует, что имеется гомотопическая эквивалентность

$$\mathcal{D}^0 \sim R_{\mathcal{D}^0},\tag{2.1}$$

где $R_{\mathscr{D}^0}$ — одно из четырех многообразий, определяемое парой $(M,|\mathcal{C}|)$, а именно: $SO(3)=\mathbb{R}P^3$ (при $M=S^2, \mathcal{C}=\varnothing)$, $SO(2)=S^1$ (при $0\leq \chi(M)-|\mathcal{C}|\leq 1$ и $d^++d^-+|\mathcal{C}|>0$), $T^2=S^1\times S^1$ (при $M=T^2$, $\mathcal{C}=\varnothing$) и точка (при $\chi(M)<|\mathcal{C}|$) (см., например, [34, 32]). В частности, группа \mathscr{D}^0 линейно связна.

2.1 Косые цилиндрически-полиэдральные комплексы

Всюду в статье многогранники выпуклы и имеют размерность $\leq 2q$, а евклидовы многогранники $\leq q-1$. Под выпуклым многогранником (соответственно евклидовым выпуклым многогранником) понимаем выпуклую оболочку конечного подмножества векторного пространства \mathbb{R}^{2q} (соответственно евклидова пространства \mathbb{E}^{q-1}), а под изоморфизмом многогранников — биекцию между многогранниками, продолжающуюся до аффинного изоморфизма (соответственно изометрии) объемлющих пространств.

Утолщенный цилиндр — это главное расслоение над выпуклым многогранником со слоем стандартный цилиндр $\mathbb{R}^c \times (S^1)^d$ (где прямые сомножители S^1 в разложении цилиндра не упорядочены), а стандартная цилиндрическая ручка — это прямое произведение евклидова выпуклого многогранника и утолщенного цилиндра. Уточним и обобщим эти понятия.

Определение 2.3 (стандартная косая цилиндрическая ручка). (A) *Утолщенным цилиндром* назовем прямое произведение $\mathbb{S} := (\mathbb{R}^c \times (S^1)^d) \times P$, где P — выпуклый многогранник, $S^1 = \mathbb{R}/\mathbb{Z}$, $c, d \in \mathbb{N} \cup \{0\}$. Гомеоморфизм $h : \mathbb{S}_1 \to \mathbb{S}_2$ между утолщенными цилиндрами назовем допустимым,

если $c_1=c_2=:c,\ d_1=d_2=:d,$ существуют биекции $\pi\in\Sigma_c$ и $\rho\in\Sigma_d$, изоморфизм многогранников $a\colon P_1\to P_2$ и непрерывное отображение $\delta=(\delta_1,\ldots,\delta_{c+d})\colon P_1\to\mathbb{R}^c\times(S^1)^d,$ такие что для любого $(x_1,\ldots,x_c,\varphi_1,\ldots,\varphi_d,u)\in\mathbb{S}_1$ выполнено

$$h(x_1, \dots, x_c, \varphi_1, \dots, \varphi_d, u) = (x_{\pi(1)}, \dots, x_{\pi(c)}, \varphi_{\rho(1)}, \dots, \varphi_{\rho(d)}, 0) + (\delta_1(u), \dots, \delta_{c+d}(u), a(u)).$$

Автоморфизм $b\colon D\to D$ евклидова многогранника (т.е. изоморфизм на себя) назовем допустимым, если он тривиален или не имеет неподвижных вершин, а для любой грани $\tau\subset\partial D$ выполнено либо $b(\tau)=\tau$, либо $\tau\cap b(\tau)=\varnothing$.

(В) Стандартной цилиндрической ручкой назовем прямое произведение $D \times \mathbb{S}$ евклидова выпуклого многогранника D и утолщенного цилиндра \mathbb{S} (см. (А)). Гомеоморфизм $D_1 \times \mathbb{S}_1 \to D_2 \times \mathbb{S}_2$ между стандартными цилиндрическими ручками назовем изоморфизмом, если он является прямым произведением изоморфизма $b \colon D_1 \to D_2$ евклидовых многогранников и допустимого гомеоморфизма $\mathbb{S}_1 \to \mathbb{S}_2$ утолщенных цилиндров (см. (А)).

Автоморфизм $D \times \mathbb{S} \to D \times \mathbb{S}$ стандартной цилиндрической ручки назовем *допустимым*, если либо он совпадает с тождественным, либо хотя бы один из соответствующих автоморфизмов многогранников $b\colon D\to D, a\colon P\to P$ и перестановок $\pi\in\Sigma_c$ и $\rho\in\Sigma_d$ нетривиален, причем автоморфизм $b\colon D\to D$ допустим (см. (A)) и выполнены следующие (необязательные в общем случае, но выполненые для комплексов оснащенных функций Морса в случае (2.2)) дополнительные условия: перестановка $\pi\in\Sigma_c$ всегда тривиальна, в случае тривиальности автоморфизма $a\colon P\to P$ автоморфизм $b\colon D\to D$ тривиален, а в случае тривиальности b перестановка $\rho\in\Sigma_d$ и автоморфизм $a^2\colon P\to P$ тривиальны.

- (С) Стандартной косой цилиндрической ручкой назовем пространство орбит $\mathbb{D}^{\mathrm{st}} := (D \times \mathbb{S})/\Gamma$ свободного действия (автоматически конечной) группы Γ на стандартной цилиндрической ручке $D \times \mathbb{S}$ допустимыми автоморфизмами (см. (B)). Размерность k многогранника $D = D^k$ назовем undekcom ручки $\mathbb{D} = \mathbb{D}^{\mathrm{st}}$, подмножество $\partial \mathbb{D} := ((\partial D) \times \mathbb{S})/\Gamma \subset \mathbb{D}$ назовем ее подошвой, а дополнение $\mathbb{D} := \mathbb{D} \setminus \partial \mathbb{D} omkpumoù cmandapmnoù (косой) цилиндрической ручкой, отвечающей ручке <math>\mathbb{D}$. Для любой грани $D' \subset \partial D$ образ подмножества $D' \times \mathbb{S} \subset D \times \mathbb{S}$ при проекции $D \times \mathbb{S} \to \mathbb{D}^{\mathrm{st}}$ назовем (косой) гранью стандартной (косой) ручки \mathbb{D}^{st} . (Косая грань всегда является стандартной косой цилиндрической ручкой ввиду допустимости автоморфизма $b \colon D \to D$ из (B), см. (A).) Гомеоморфизм $\mathbb{D}_1^{\mathrm{st}} \to \mathbb{D}_2^{\mathrm{st}}$ между стандартными косыми цилиндрическими ручками назовем изоморфизмом, если он поднимается до изоморфизма $D_1 \times \mathbb{S}_1 \to D_2 \times \mathbb{S}_2$ соответствующих стандартных цилиндрических ручек. Автоморфизм $\mathbb{D}^{\mathrm{st}} \to \mathbb{D}^{\mathrm{st}}$ стандартной косой цилиндрической ручки назовем допустимым, если он поднимается до допустимого автоморфизма $D \times \mathbb{S} \to D \times \mathbb{S}$ соответствующей стандартной цилиндрической ручки (см. (B)).
- (D) Погружение $i: \mathbb{S}_1 \hookrightarrow \mathbb{S}_2$ между утолщенными цилиндрами $\mathbb{S}_j = (\mathbb{R}^{c_j} \times (S^1)^{d_j}) \times P_j, \ j=1,2$ (см. (A)), назовем допустимым, если существуют отображения $\pi: \{1,\ldots,c_2+d_2\} \to \{0,1,\ldots,c_1+d_1\}$ и $\eta: \{1,\ldots,c_1+d_1\} \to \{1,-1\}$, такие что $\{1,\ldots,c_1\} \subset \pi(\{1,\ldots,c_2\}) \subset \{0,1,\ldots,c_1\}, \pi|_{\{1,\ldots,c_2\}\cap\pi^{-1}\{1,\ldots,c_1\}}$ инъективно, $\{c_1+1,\ldots,c_1+d_1\} \subset \pi(\{c_2+1,\ldots,c_2+d_2\}), \ \eta(\{1,\ldots,c_1\}) = 1$, а также существуют отображение $a: P_1 \to P_2$, продолжающееся до аффинного, и непрерывное отображение $\delta = (\delta_1,\ldots,\delta_{c_2+d_2}): P_1 \to \mathbb{R}^{c_2} \times (S^1)^{d_2}$, такие что

$$i(x_1, \dots, x_{c_1+d_1}, u) = (\eta(\pi(1)) x_{\pi(1)}, \dots, \eta(\pi(c_2 + d_2)) x_{\pi(c_2+d_2)}, 0)$$
$$+ (\delta_1(u), \dots, \delta_{c_2+d_2}(u), a(u))$$

для любого $(x_1,\ldots,x_{c_1+d_1},u)\in\mathbb{S}_1$, где последние d_j координат любой точки из $\mathbb{R}^{c_j}\times(S^1)^{d_j}$ рассматриваются по модулю 1 при $j=1,2,\ x_0:=0,\ \eta(0):=1$. Погружение $D_1\times\mathbb{S}_1 \hookrightarrow D_2\times\mathbb{S}_2$ между стандартными цилиндрическими ручками (см. (B)) назовем допустимым, если оно является прямым произведением изоморфизма $D_1\to D_2$ евклидовых многогранников и допустимого погружения

 $\mathbb{S}_1 \hookrightarrow \mathbb{S}_2$ утолщенных цилиндров. Вложение $\mathbb{D}_1^{\mathrm{st}} \hookrightarrow \mathbb{D}_2^{\mathrm{st}}$ между стандартными *косыми* цилиндрическими ручками (см. (С)) назовем *мономорфизмом*, если оно поднимается до допустимого погружения $D_1 \times \mathbb{S}_1 \hookrightarrow D_2 \times \mathbb{S}_2$ соответствующих стандартных цилиндрических ручек.

Пусть X — топологическое пространство.

Определение 2.4 (косой цилиндрически-полиэдральный комплекс). (А) Будем говорить, что на подмножестве $\mathbb{D} \subset X$ задана структура (косой) цилиндрической ручки, и называть это подмножество (косой) цилиндрической ручкой, если \mathbb{D} замкнуто в X, и фиксированы стандартная (косая) цилиндрическая ручка \mathbb{D}^{st} с точностью до изоморфизма, и гомеоморфизм $\varphi_{\mathbb{D}} \colon \mathbb{D}^{\mathrm{st}} \xrightarrow{\approx} \mathbb{D}$ (называемый характеристическим отображением (косой) ручки \mathbb{D}) с точностью до допустимых автоморфизмов стандартной (косой) ручки \mathbb{D}^{st} . Подмножество $\partial \mathbb{D} := \varphi_{\mathbb{D}}(\partial \mathbb{D}^{\mathrm{st}})$ назовем подошвой (косой) ручки \mathbb{D} . Вложение $i \colon \mathbb{D}_1 \hookrightarrow \mathbb{D}_2$ между (косыми) цилиндрическими ручками назовем мономорфизмом, если вложение $\varphi_{\mathbb{D}_2}^{-1} \circ i \circ \varphi_{\mathbb{D}_1}$ соответствующих стандартных (косых) ручек является мономорфизмом.

- вложение $\varphi_{\mathbb{D}_2}^{-1} \circ i \circ \varphi_{\mathbb{D}_1}$ соответствующих стандартных (косых) ручек является мономорфизмом. (В) Пространство X назовем (косым) цилиндрически-полиэдральным комплексом, если фиксировано разбиение $X = \bigcup_{i=1}^n \mathring{\mathbb{D}}_i$, где $n \leq \infty$, на попарно непересекающиеся подмножества $\mathring{\mathbb{D}}_i$, называемые открытыми (косыми) цилиндрическими ручками разбиения, и для каждой открытой ручки $\mathring{\mathbb{D}}_i$ фиксирована структура (косой) цилиндрической ручки на ее замыкании $\mathbb{D}_i := \mathring{\mathbb{D}}_i$, называемом (косой) цилиндрической ручкой разбиения, такая что $\mathring{\mathbb{D}}_i = \mathbb{D}_i \setminus \partial \mathbb{D}_i$, причем выполнены следующие условия:
 - (c) для любой (косой) ручки \mathbb{D}_i ограничение характеристического отображения $\varphi_{\mathbb{D}_i} \colon \mathbb{D}_i^{\mathrm{st}} \xrightarrow{\approx} \mathbb{D}_i$ на произвольную (косую) грань $(\mathbb{D}_i^{\mathrm{st}})' \subset \partial \mathbb{D}_i^{\mathrm{st}}$ соответствующей стандартной (косой) ручки $\mathbb{D}_i^{\mathrm{st}}$ является мономорфизмом $(\mathbb{D}_i^{\mathrm{st}})' \hookrightarrow \mathbb{D}_j$ в некоторую (косую) ручку \mathbb{D}_j (см. (A) и определение $2.3(\mathrm{C},\mathrm{D})$), откуда подошва $\partial \mathbb{D}_i$ любой (косой) ручки \mathbb{D}_i индекса k содержится в объединении конечного числа (косых) ручек индекса k-1;
 - (w) подмножество $Y \subset X$ замкнуто тогда и только тогда, когда для любой (косой) ручки \mathbb{D}_i замкнуто пересечение $Y \cap \mathbb{D}_i$.

Максимальный индекс (косых) цилиндрических ручек (косого) цилиндрическиполиэдрального комплекса назовем *рангом* этого комплекса.

- (C) Если для каждой (косой) цилиндрической ручки $\mathbb{D}_i \subset X$ выполнено $c = d = \dim P = 0$, получаем определение *строго полиэдрального комплекса* (см. [8]). Определение *полиэдрального комплекса* имеется, например, в [35].
- (D) Пусть $\sigma, \tau \subset X$ два непересекающихся подмножества топологического пространства X (например, две открытые клетки клеточного комплекса). Будем говорить, что σ примыкает κ τ и писать $\tau \prec \sigma$ (и $\bar{\tau} \prec \bar{\sigma}$), если $\tau \subset \partial \sigma := \bar{\sigma} \setminus \sigma$. Пишем $\tau \preceq \sigma$, если $\tau \prec \sigma$ или $\tau = \sigma$.

Обозначение 2.5. Для любой функции Морса $f \in F$ рассмотрим граф G_f в поверхности int (M), полученный из графа $f^{-1}(f(\mathcal{C}_{f,1}))$ выкидыванием всех компонент связности, не содержащих седловых критических точек (см. определение 2.1). Этот граф имеет q вершин (являющихся седловыми точками $y \in \mathcal{C}_{f,1}$), степени всех вершин равны 4, а значит в графе 2q ребер. Если поверхность M ориентирована, то на ребрах графа G_f имеется естественная ориентация, такая, что в любой (внутренней) точке ребра репер, составленный из положительно ориентированного касательного вектора к ребру и вектора grad f (по отношению к какой-нибудь фиксированной римановой метрике), задает положительную ориентацию поверхности. Аналогично вводится ориентация на любой связной компоненте линии уровня $f^{-1}(a)$ функции f, не содержащей критическую точку, $a \in \mathbb{R}$.

Сформулируем основной результат данной работы, описывающий комбинаторный объект – комплекс $\widetilde{\mathbb{K}}$ оснащенных функций Морса, ассоциированный с пространством F.

Теорема 2.6. Пусть M- связная компактная ориентируемая поверхность с разбиением края $\partial M=\partial^+M\sqcup\partial^-M$ на положительные и отрицательные граничные окружности. Рассмотрим обобщенные пространства $F=F_{p^*,p',p'';q^*,q',q'';r^*,r',r''}(M,\partial^+M,\partial^-M)$ и $F^1\subset F$ функций Морса на поверхности $(M,\partial^+M,\partial^-M)$, у которых могут быть отмеченные критические точки, из которых некоторые точки могут быть закрепленными (см. определение 2.1). Предположим, что

$$\widehat{p} + \widehat{q} + \widehat{r} > \chi(M) \tag{2.2}$$

 $(m.e.\ количество\ omмеченных\ критических\ moчек\ npeвocxodum\ \chi(M)).\ Torda:$

(А) Имеется косой цилиндрически-полиэдральный комплекс

$$\widetilde{\mathbb{K}} = \widetilde{\mathbb{K}}_{p^*+d^-,p',p'';q^*,q',q'';r^*+d^+,r',r''}$$

(называемый комплексом оснащенных функций Морса) ранга q-1 и размерности $\dim \widetilde{\mathbb{K}}=3q-2$ при $q\geq 2$ и $\dim \widetilde{\mathbb{K}}=0$ при $q\leq 1$, косые цилиндрические ручки которого находятся во взаимно однозначном соответствии с классами изотопности $[f]_{\mathrm{isot}}$ функций Морса $f\in F^1$. Индекс ручки $\mathbb{D}_{[f]_{\mathrm{isot}}}$, отвечающей классу изотопности $[f]_{\mathrm{isot}}$, равен q-s(f), где s(f) — количество седловых критических значений функции f. Подошва $\partial \mathbb{D}_{[f]_{\mathrm{isot}}}$ ручки $\mathbb{D}_{[f]_{\mathrm{isot}}}$ содержится в объединении ручек $\mathbb{D}_{[g]_{\mathrm{isot}}}$, таких что $[f]_{\mathrm{isot}} \prec [g]_{\mathrm{isot}}$.

- (В) Дискретная группа $\mathscr{D}/\mathscr{D}^0$ действует на $\widetilde{\mathbb{K}}$ автоморфизмами косого цилиндрически-полиэдрального комплекса, причем индуцированное действие на множестве ручек согласовано с естественным действием на множестве F^1/\sim_{isot} классов изотопности функций. В частности, для
 любого класса изотопности $[f]_{\mathrm{isot}}$ все ручки $\mathbb{D}_{[fh]_{\mathrm{isot}}}$, $h\in\mathscr{D}$, изоморфны одной и той же стандартной косой цилиндрической ручке $(D_{[f]}\times\mathbb{S}_{[f]})/\Gamma_{[f]}$, см. определение $2.3(\mathbb{B})$. Имеется $\mathscr{D}/\mathscr{D}^0$ эквивариантный гомеоморфизм полиэдра $\widetilde{\mathbb{K}}$ на $\mathscr{D}/\mathscr{D}^0$ -инвариантное подмножество некоторого гладкого 3q-мерного многообразия $\widetilde{\mathcal{M}}$ с плоской аффинной связностью, на котором группа $\mathscr{D}/\mathscr{D}^0$ действует диффеоморфизмами, сохраняющими связность.
- (C) Для каждой ручки $\mathbb{D}_{[f]_{\mathrm{isot}}} \approx (D_{[f]} \times \mathbb{S}_{[f]})/\Gamma_{[f]} \approx (D_{[f]} \times (\mathbb{R}^{c([f])} \times (S^1)^{d([f])}) \times P_{[f]})/\Gamma_{[f]} \sim (S^1)^d/\Gamma_{[f]}$ размерность d = d([f]) тора $(S^1)^d$ обладает свойствами (3.25), c + d = n([f]) (см. (3.14)) $u \ d \leq \min\{p' + p'' + r' + r'', t 1\}$, где $t = t([f]) \leq q$ количество связных компонент графа G_f (см. обозначение 2.5). Если число фиксированных критических точек $p^* + q^* + r^* \leq \chi(M) + 1$, то d = t 1, а при дополнительном условии t = q выполнено d = p' + p'' + r' + r''.

Замечание 2.7. Согласно [1], пространства F^1, \mathbb{F}^1 суть сильные деформационные ретракты пространств F, \mathbb{F} соответственно, а забывающие отображения $\mathbb{F} \to F, \mathbb{F}^1 \to F^1$ суть гомотопические эквивалентности, где $\mathbb{F}^1 \subset \mathbb{F}$ – пространства оснащенных функций Морса. Можно показать, что многообразие $\widetilde{\mathcal{M}}$ из теоремы 2.6(B) в действительности гомеоморфно $\mathbb{F}^1/\mathscr{D}^0$ (т.е. является универсальным пространством модулей оснащенных функций Морса), причем действие группы \mathscr{D}^0 на \mathbb{F}^1 свободно, проекция $\mathbb{F}^1 \to \mathbb{F}^1/\mathscr{D}^0$ является тривиальным расслоением со слоем \mathscr{D}^0 , а $\widetilde{\mathbb{K}}$ есть сильный деформационный ретракт $\widetilde{\mathcal{M}}$. Отсюда и из (2.1) следует требуемая гомотопическая эквивалентность (1.1). Можно также показать, что ограничения указанных гомотопических эквивалентностей на любой класс $[f]_{\mathrm{isot}}$ изотопности функций из F^1 или на любую косую ручку комплекса $\widetilde{\mathbb{K}}$ являются гомотопическими эквивалентностями.

Пусть k – поле (например, \mathbb{R} , \mathbb{Q} или \mathbb{Z}_p). Для топологического пространства X рассмотрим числа Бетти $\beta_j(X) := \dim_k H_j(X; k)$ и полином Пуанкаре $P(X,t) := \sum_{j=0}^{\infty} t^j \beta_j(X)$. Следующее утверждение выводится из теоремы 2.6 стандартными методами теории Морса (см., например, [36, §45]).

Следствие 2.8. (A) *Если количество* $\hat{p}+\hat{q}+\hat{r}$ *отмеченных критических точек превосходит* $\chi(M)$, то $\beta_j(\widetilde{\mathbb{K}})=0$ при любом $j\geq 3q-2$.

(В) Пусть $\bar{M} = S^2$ (см. обозначение 2.2), $p^* + q^* + r^* \le \chi(M) + 1 \le \widehat{p} + \widehat{q} + \widehat{r}$. Тогда $\mathscr{D} = \mathscr{D}^0$, комплекс $\widetilde{\mathbb{K}} = \mathbb{K}$ является конечным, связным и компактным косым торически-полиэдральным комплексом ранга q-1 и размерности 3q-2 или 0 (при $q\ge 2$ и $q\le 1$ соответственно); числа Бетти $\beta_i=\beta_i(\mathbb{K})$ комплекса \mathbb{K} удовлетворяют неравенствам Морса-Смейла:

$$\beta_j - \beta_{j-1} + \beta_{j-2} - \beta_{j-3} + \dots \le q_j - q_{j-1} + q_{j-2} - q_{j-3} + \dots, \qquad j \ge 0,$$

где $Q(t)=\sum_{j=0}^{\infty}t^{j}q_{j}:=\sum_{[f]\in F^{1}/\sim}t^{q-s(f)}P(\mathbb{D}_{[f]},t)$. В частности, справедливы неравенства Морса:

$$\chi(\mathbb{K}) = (-1)^{q-1} \left| \{ [f] \in F^1 / \sim | \ s(f) = 1 \} \right|, \quad \beta_j \le q_j, \quad j \ge 0.$$

Замечание 2.9. Всюду в формулировках утверждений настоящей статьи рассматриваются произвольные обобщенные пространства функций Морса $F = F_{p^*,p',p'';q^*,q',q'';r^*,r',r''}(M,\partial^+M,\partial^-M)$ и F^1 , состоящие из функций Морса, у которых могут быть как отмеченные (пронумерованные), так и неотмеченные (непронумерованные) критические точки. Однако в доказательствах иногда будем считать, что $F = F^{\text{num}}$ и $F^1 = F^{1,\text{num}}$ (см. определение 2.1), т.е. что все критические точки функций Морса $f \in F$ пронумерованы. Это не ограничивает общности, так как все отображения, построенные в настоящей статье, согласованы с перенумерациями тех критических точек, которые изначально не были отмечены (т.е. $\Sigma_{p''} \times \Sigma_{q''} \times \Sigma_{r''}$ -эквивариантны относительно действия группы $\Sigma_{p''} \times \Sigma_{q''} \times \Sigma_{r''}$ на пространстве F^{num} перенумерациями изначально неотмеченных критических точек). Аналогично определению 2.1 и обозначению 2.2 обозначим через

$$C_f := C_{f,0} \cup C_{f,1} \cup C_{f,2}, \qquad \widehat{C}_f := \widehat{C}_{f,0} \cup \widehat{C}_{f,1} \cup \widehat{C}_{f,2}$$

множество всех критических точек (соответственно всех отмеченных критических точек) функции $f \in F$. Имеем включения $\mathcal{C} \subseteq \widehat{\mathcal{C}}_f \subseteq \mathcal{C}_f$ и $\mathcal{C}_\lambda \subseteq \widehat{\mathcal{C}}_{f,\lambda} \subseteq \mathcal{C}_{f,\lambda}$ множеств фиксированных критических точек, отмеченных критических точек и всех критических точек (соответственно индекса λ) функции $f, \lambda = 0, 1, 2$.

3 Построение стандартных косых цилиндрических ручек $\mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}}$ и отображений инцидентности $\chi_{[f]_{\mathrm{isot}},[g]_{\mathrm{isot}}}$

В данном параграфе предполагается, что выполнено условие (2.2) (т.е. количество $\widehat{p}+\widehat{q}+\widehat{r}$ отмеченных критических точек превосходит $\chi(M)$). Для каждого класса изотопности $[f]_{isot}$ функций Морса мы опишем построение стандартной косой цилиндрической ручки $\mathbb{D}^{st}_{[f]_{isot}}$, а для каждой пары примыкающих классов изотопности – соответствующее отображение инцидентности. В §4 будет описано построение "комплекса оснащенных функций Морса" $\widetilde{\mathbb{K}}$, полученного из описанных ручек при помощи описанных отображений инцидентности. Проведем построение в несколько шагов.

3.1 Построение многогранника $D_{[f]_{\mathrm{isot}}}$ для класса изотопности $[f]_{\mathrm{isot}}$

Шаг 1 (определение пермутоэдра \mathcal{P}^{q-1} порядка q и описание его граней). Пермутоэдр порядка q — это выпуклый (q-1)-мерный многогранник \mathcal{P}^{q-1} , вложенный в q-мерное пространство, вершины которого получены перестановками координат вектора $(1,\ldots,q)$ (впервые такие многогранники изучал Schoute (1911), название появилось в книге Guiband & Rosenstiehl (1963), более общие "перестановочные многогранники" с множеством вершин Σ_q изучены Bowman (1972), см. также [8, доказательство теоремы 3, шаг 1]). Опишем его подробнее: пусть e_1,\ldots,e_q — стандартный базис \mathbb{R}^q , и пусть $\mathcal{P}^{q-1} \subset \mathbb{R}^q$ — выпуклая оболочка множества точек $P_\pi = \sum_{k=1}^q \left(k - \frac{q+1}{2}\right) e_{\pi_k}, \ \pi \in \Sigma_q$. Известно [37], что $\mathcal{P}^{q-1} - (q-1)$ -мерный выпуклый многогранник в евклидовом пространстве $\mathbb{E}^{q-1} := (e_1 + \ldots + e_q)^{\perp}$,

имеющий ровно q! вершин P_{π} , $\pi \in \Sigma_q$, причем его (q-s)-мерные грани находятся во взаимно однозначном соответствии с упорядоченными разбиениями $J=(J_1,\ldots,J_s)$ множества $\{1,\ldots,q\}$ на s непустых подмножеств J_1,\ldots,J_s (т.е. $\{1,\ldots,q\}=J_1\sqcup\ldots\sqcup J_s$), $1\leq s\leq q$. А именно, грань $\tau_J\subset \mathcal{P}^{q-1}$, отвечающая разбиению $J=(J_1,\ldots,J_s)$, — это выпуклая оболочка множества точек $(\Sigma_{r_1}\times\Sigma_{r_2-r_1}\times\ldots\times\Sigma_{r_s-r_{s-1}})(P_{\pi})$, где числа $0=r_0< r_1<\ldots< r_{s-1}< r_s=q$ и перестановка $\pi\in\Sigma_q$ однозначно определяются условиями

$$J_1 = \{\pi_1, \dots, \pi_{r_1}\}, \ J_2 = \{\pi_{r_1+1}, \dots, \pi_{r_2}\}, \ \dots, \ J_s = \{\pi_{r_{s-1}+1}, \dots, \pi_{r_s}\},$$
(3.1)

 $\pi_1 < \ldots < \pi_{r_1}, \pi_{r_1+1} < \ldots < \pi_{r_2}, \ldots, \pi_{r_{s-1}+1} < \ldots < \pi_{r_s}$. Здесь $\Sigma_{r_1} \times \Sigma_{r_2-r_1} \times \ldots \times \Sigma_{r_s-r_{s-1}}$ – подгруппа группы Σ_q , отвечающая разбиению $\{1,\ldots,q\}=\{1,\ldots,r_1\} \sqcup \{r_1+1,\ldots,r_2\} \sqcup \ldots \sqcup \{r_{s-1}+1,\ldots,r_s\}$, и действие перестановки $\rho \in \Sigma_q$ на точке P_π дает точку $P_{\rho\pi}$, где $(\rho\pi)_i := \pi_{\rho_i}, \ 1 \leq i \leq q$.

Упорядоченные разбиения $J=(J_1,\ldots,J_s)$ множества $\{1,\ldots,q\}$ можно рассматривать как отношения частичного порядка на множестве $\{1,\ldots,q\}$. Если разбиение \widehat{J} получается из разбиения $J=(J_1,\ldots,J_s)$ путем измельчения (т.е. разбиения некоторых множеств J_k на несколько подмножеств), будем писать $\widehat{J} \prec J$. Из описания граней многогранника \mathcal{P}^{q-1} следует, что условие $\widehat{J} \prec J$ равносильно $\tau_{\widehat{J}} \prec \tau_J$, т.е. примыканию граней (см. определение 2.4(D)).

Лемма 3.1 (о гранях пермутоэдра \mathcal{P}^{q-1}). Пусть фиксирована грань $\widehat{\tau} \prec \mathcal{P}^{q-1}$. Для любой грани $\tau \prec \mathcal{P}^{q-1}$, такой что $\widehat{\tau} \prec \tau$, рассмотрим соответствующее разбиение $J = (J_1, \ldots, J_s)$ и последовательность чисел $(|J_1|, \ldots, |J_s|)$. Тогда сопоставление $\tau \mapsto (|J_1|, \ldots, |J_s|)$ (для $\widehat{\tau} \prec \tau \prec \mathcal{P}^{q-1}$) инъективно. В частности, любой автоморфизм пермутоэдра $\mathcal{P}^{q-1} \subset \mathbb{R}^q$, индуцированный перестановкой координатных осей, допустим (см. определение 2.3(A)).

Доказательство. Пусть $\widehat{\tau} = \tau_{\widehat{J}}, \ \widehat{J} = (\widehat{J}_1, \dots, \widehat{J}_{\widehat{s}}).$ Ввиду $\widehat{J} \prec J$ упорядоченное разбиение J получается из упорядоченного разбиения \widehat{J} путем объединения некоторых соседних подмножеств в одно подмножество, т.е. $J_k = \bigcup_{i=a_{k-1}+1}^{a_k} \widehat{J}_i, \ 1 \leq k \leq s,$ для некоторых $a_0 = 0 < a_1 < \dots < a_s = \widehat{s}.$ Поэтому

 $|J_k| = \sum_{i=a_{k-1}+1}^{a_k} |\widehat{J_i}|$. Отсюда следует, что по разбиению \widehat{J} и набору чисел $(|J_1|,\dots,|J_s|)$ последовательность $a_0=0< a_1<\dots< a_s=\widehat{s},$ а потому и разбиение J, определяются однозначно. Лемма доказана.

Шаг 2. Для каждой функции Морса $f \in F$ рассмотрим множество $\mathcal{C}_{f,1} =: \{y_j\}_{j=1}^q \approx \{1,\dots,q\}$ ее седловых критических точек (см. замечание 2.9) и евклидово векторное пространство 0-коцепей

$$H_f^0 := C^0(\mathcal{C}_{f,1}; \mathbb{R}) = \mathbb{R}^{\mathcal{C}_{f,1}} \cong \mathbb{R}^q$$
(3.2)

со стандартной евклидовой метрикой. В этом векторном пространстве рассмотрим многогранник $\mathcal{P}_f^{q-1}\subset H_f^0$, являющийся образом многогранника $\mathcal{P}^{q-1}\subset \mathbb{R}^q$ при какой-либо биекции $\mathcal{C}_{f,1}\to \{1,\dots,q\}$. Рассмотрим "вычисляющую" 0-коцепь

$$c = c(f) := f|_{\mathcal{C}_{f,1}} = (c_1, \dots, c_q) \in H_f^0,$$

т.е. функцию $\boldsymbol{c}\colon \mathcal{C}_{f,1}\to\mathbb{R}$, сопоставляющую каждой седловой точке $y_j\in\mathcal{C}_{f,1}$ значение $c_j:=f(y_j)$ функции f в этой точке, $1\leq j\leq q$. Сопоставим 0-коцепи $\boldsymbol{c}=(c_1,\ldots,c_q)$ число $s(\boldsymbol{c}):=|\{c_1,\ldots,c_q\}|$ различных седловых значений и упорядоченное разбиение $J=J(\boldsymbol{c})=(J_1,\ldots,J_s)$ множества седловых точек $\mathcal{C}_{f,1}\approx\{1,\ldots,q\}$, определяемое свойствами (3.1) и $c_{\pi_1}=\ldots=c_{\pi_{r_1}}< c_{\pi_{r_1+1}}=\ldots=c_{\pi_{r_2}}<\ldots< c_{\pi_{r_{s-1}+1}}=\ldots=c_{\pi_{r_s}}.$ (То есть, J – это отношение частичного порядка на множестве $\mathcal{C}_{f,1}$ седловых критических точек функции f значениями функции $f|_{\mathcal{C}_{f,1}}$.) Можно также рассматривать $J=J(\boldsymbol{c})$ как сюръекцию $\mathcal{C}_{f,1}\to\{1,\ldots,s\}$, переводящую $y_{\pi_j}\mapsto k$ при $r_{k-1}< j\leq r_k, 1\leq j\leq q$.

В каждом классе эквивалентности $[f] \in F^1/\sim$ (соответственно классе изотопности $[f]_{isot} \in F^1/\sim_{isot}$) отметим ровно одну функцию Морса f этого класса, так чтобы любая функция $f \in F^1$, являющаяся отмеченной функцией класса эквивалентности [f], являлась отмеченной функцией класса изотопности $[f]_{isot}$. Сопоставим классу изотопности $[f]_{isot}$ с отмеченной функцией f и разбиению $J(\mathbf{c}(f))$ грань

 $D_{[f]_{\mathrm{isot}}} = D_f := \tau_{J(\boldsymbol{c}(f))} \subset \mathcal{P}_f^{q-1}.$

 $extit{\it Шаг}$ 3. Изучим взаимосвязь многогранников $D_{[f]_{\rm isot}}, D_{[g]_{\rm isot}}$ для примыкающих классов изотопности $[f]_{\rm isot} \prec [g]_{\rm isot}$. Для любой функции $f \in F$ и соответствующего q-мерного евклидова пространства $H_f^0 \cong \mathbb{R}^q$ (см. шаг 2) выполнены следующие два свойства:

- 1) для любого вектора $\mathbf{c} \in H_f^0 \cong \mathbb{R}^q$ существует $\varepsilon_0 > 0$, такое что (i) для любого $\mathbf{c}' \in H_f^0 \cong \mathbb{R}^q$ со свойством $|\mathbf{c}' \mathbf{c}| < \varepsilon_0$ выполнено $J(\mathbf{c}') \preceq J(\mathbf{c})$, и (ii) для любых $\varepsilon \in (0, \varepsilon_0]$ и разбиения $\widehat{J} \preceq J(\mathbf{c})$ существует $\mathbf{c}' \in \mathbb{R}^q$ со свойствами $|\mathbf{c}' \mathbf{c}| < \varepsilon$ и $J(\mathbf{c}') = \widehat{J}$;
- 2) согласно [27, утверждение 1.1 и §3], любая ("невозмущенная") функция $f \in F$ имеет столь малую окрестность \mathbb{U}_f в F, что для любых ("возмущенных") функций $\widetilde{f}, \widetilde{f}_1 \in \mathbb{U}_f$ равенства $[\widetilde{f}h_{0;f,\widetilde{f}}^{-1}]_{\mathrm{isot}}^{\mathrm{fix}} = [\widetilde{f}_1h_{0;f,\widetilde{f}_1}^{-1}]_{\mathrm{lisot}}^{\mathrm{fix}}$ и $J((h_{0;f,\widetilde{f}}^{-1})^{*0}(\mathbf{c}(\widetilde{f}))) = J((h_{0;f,\widetilde{f}_1}^{-1})^{*0}(\mathbf{c}(\widetilde{f}_1)))$ равносильны, где через $h_{0;f,\widetilde{f}} \in \mathscr{D}^0$ обозначен диффеоморфизм, близкий к тождественному, такой что $h_{0;f,\widetilde{f}}^{-1}(\mathcal{C}_f) = \mathcal{C}_{\widetilde{f}},$ через $h_{0;f,\widetilde{f}}^{*0} : H_f^0 \to H_{\widetilde{f}}^0$ индуцированный изоморфизм групп 0-коцепей, а через $[\widetilde{f}h_{0;f,\widetilde{f}}^{-1}]_{\mathrm{isot}}^{\mathrm{fix}}$ обозначен класс изотопности функции $\widetilde{f}h_{0;f,\widetilde{f}}^{-1}$ с фиксированным множеством критических точек (при фиксированной функции f); в частности, при выполнении указанных равносильных равенств существует диффеоморфизм $h_{1;\widetilde{f}h_{0;f,\widetilde{f}}^{-1},\widetilde{f}_{0;f,\widetilde{f}}^{-1}} \in \mathscr{D}^0$, гомотопный id_M в пространстве гомеоморфизмов пары (M,\mathcal{C}_f) и переводящий линии уровня функции $\widetilde{f}h_{0;f,\widetilde{f}}^{-1}$ с сохранением направления роста.

В силу этих свойств, для любой функции $f \in F^1$ имеется сюръекция $\delta[f]_{\text{isot}}$ множества всех граней $\tau' \prec \tau := \tau_{J(\mathbf{c}(f))}$ на множество всех классов изотопности $[g]_{\text{isot}} \succ [f]_{\text{isot}}$ (см. определение 2.4(D)), такая что $\delta[f]_{\text{isot}} : \tau' \mapsto \delta_{\tau'}[f]_{\text{isot}} := [\widetilde{f}]_{\text{isot}}$ тогда и только тогда, когда

$$\tau' = \tau_{J((h_{0:f,\tilde{f}}^{-1})^{*0}(\mathbf{c}(\tilde{f})))} = \tau_{J((h_{f,\tau'}^{-1})^{*0}(\mathbf{c}(g)))}, \tag{3.3}$$

где $\widetilde{f} \in \mathbb{U}_f$ и $h_{0;f,\widetilde{f}}$ как во втором свойстве выше, g — отмеченная функция класса изотопности $[\widetilde{f}]_{\mathrm{isot}}$,

$$h_{f,\tau'} := h_{0;f,\tilde{f}} h_{1;\tilde{f},g} \in \mathcal{D}^0, \qquad h_{f,\tau'}^{*0} : H_f^0 \to H_g^0$$
 (3.4)

— индуцированный изоморфизм, а диффеоморфизм $h_{1;\tilde{f},g}\in \mathscr{D}^0$ переводит линии уровня функции g в линии уровня функции \tilde{f} с сохранением направления роста (он существует ввиду изотопности функций \tilde{f},g), откуда $\tilde{f}=h_2gh_{1;\tilde{f},g}^{-1}$ для некоторого $h_2\in \mathrm{Diff}^+[-1;1]$. Корректность определения сюръекции $\delta[f]_{\mathrm{isot}}$, т.е. независимость класса изотопности $\delta_{\tau'}[f]_{\mathrm{isot}}=[\tilde{f}]_{\mathrm{isot}}$ от выбора функции $\tilde{f}\in \mathbb{U}_f$ с заданным значением $J((h_{0;f,\tilde{f}}^{-1})^{*0}(\boldsymbol{c}(\tilde{f})))$, следует из второго свойства (см. выше). Если диффеоморфизм $\tilde{h}_{f,\tau'}=h_{0;f,\tilde{f}_1}h_{1;\tilde{f}_1,g}$ построен с помощью функции $\tilde{f}_1\in \mathbb{U}_f$, такой что $J((h_{0;f,\tilde{f}}^{-1})^{*0}(\boldsymbol{c}(\tilde{f})))=J((h_{0;f,\tilde{f}_1}^{-1})^{*0}(\boldsymbol{c}(\tilde{f}_1)))$, то диффеоморфизм $h_{f,\tau'}^{-1}h_{1;\tilde{f}}h_{0;f,\tilde{f}_1}^{-1}\tilde{h}_{f,\tau'}$ (см. второе свойство выше) переводит линии уровня функции g в линии уровня функции g с сохранением направления роста, а потому ввиду [31, лемма 1] принадлежит (stab $g_0 g$) (Diffg) (Diffg), откуда

$$h_{f,\tau'}^{-1} \tilde{h}_{f,\tau'} \in (\operatorname{stab}_{\mathscr{D}^0} g) \ (\operatorname{Diff}^0(M, \mathcal{C}_g)),$$
 (3.5)

где через $\operatorname{stab}_{\mathscr{D}^0} g$ обозначена группа изотропии элемента g относительно естественного правого действия группы \mathscr{D}^0 на F^1 , а через $\operatorname{Diff}^0(M,\mathcal{C}_g)\subset \mathscr{D}^0$ группа диффеоморфизмов пары (M,\mathcal{C}_g) , гомотопных id_M в классе гомеоморфизмов пары, где \mathcal{C}_g — множество критических точек функции g.

Пусть $f \in F^1$ — отмеченная функция Морса класса изотопности $[f]_{isot}$. Для любой грани $\tau' \prec \tau_{J(\boldsymbol{c}(f))} =: D_{[f]_{isot}}$ обозначим через $g \in F^1$ отмеченную функцию класса изотопности $\delta_{\tau'}[f]_{isot}$ и фиксируем диффеоморфизм $h_{f,\tau'} \in \mathscr{D}^0$ как в (3.3) и (3.4). Тогда, ввиду равенств (3.3) и $(h_{f,\tau'}^{-1})^{*0}(\tau_{J(\boldsymbol{c})}) = \tau_{J((h_{f,\tau'}^{-1})^{*0}(\boldsymbol{c}))}$, имеем изоморфизм граней

$$h_{f,\tau'}^{*0}|_{\tau'} \colon \tau' \longrightarrow h_{f,\tau'}^{*0}(\tau') = \tau_{J(\boldsymbol{c}(g))} = D_{[g]_{isot}}.$$
 (3.6)

Из указанных в начале шага двух свойств мы также получаем, что из $[h]_{isot} \succ [g]_{isot} \succ [f]_{isot}$ следует $[h]_{isot} \succ [f]_{isot}$, и

$$\delta_{\tau''}[f]_{\text{isot}} = \delta_{h_{f,\tau'}^{*0}(\tau'')}\delta_{\tau'}[f]_{\text{isot}}$$
 для любых граней $\tau'' \prec \tau' \prec \tau_{J(\boldsymbol{c}(f))}$. (3.7)

Пусть $g,g_1\in F^1$ — отмеченные функции классов изотопности $\delta_{\tau'}[f]_{\mathrm{isot}}, \delta_{\tau''}[f]_{\mathrm{isot}}$ соответственно, и пусть $\widetilde{g}\in \mathbb{U}_g$ и $h_{f,\tau'}^{*0}(\tau'')=\tau_{J((h_{0;g,\widetilde{g}}^{-1})^{*0}(\boldsymbol{c}(\widetilde{g})))}$ (см. (3.3), (3.7)). Покажем, что выполнен следующий аналог соотношения транзитивности:

$$h_{f,\tau''}^{-1} h_{f,\tau'} h_{g,h_{f,\tau'}^{*0}(\tau'')} \in (\operatorname{stab}_{\mathscr{D}^0} g_1) \ (\operatorname{Diff}^0(M, \mathcal{C}_{g_1})),$$
 (3.8)

где \mathcal{C}_{g_1} — множество критических точек функции g_1 . Действительно, функция $\widetilde{f}_1:=h_2\widetilde{g}h_{1;\widetilde{f},g}^{-1}\in [g_1]_{\mathrm{isot}}$ близка к функции $\widetilde{f}=h_2gh_{1;\widetilde{f},g}^{-1}$ (а потому и к функции f); диффеоморфизм $h_{1;\widetilde{f},g}h_{0;g,\widetilde{g}}h_{1;\widetilde{f},g}^{-1}$ близок к id_M и переводит критические точки "возмущенной" функции \widetilde{f}_1 в критические точки "невозмущенной" функции \widetilde{f} , а потому диффеоморфизм

$$\widetilde{h}_{0;f,\widetilde{f}_1}:=h_{0;f,\widetilde{f}}\;h_{1;\widetilde{f},g}h_{0;g,\widetilde{g}}h_{1;\widetilde{f},g}^{-1}\in\mathscr{D}^0$$

близок к id_M и переводит критические точки "возмущенной" функции \widetilde{f}_1 в критические точки "невозмущенной" функции f; диффеоморфизм $h_{1;\widetilde{f},g}\in \mathscr{D}^0$ переводит линии уровня функции \widetilde{g} в линии уровня функции \widetilde{f}_1 с сохранением направления роста, а потому диффеоморфизм

$$\widetilde{h}_{1;\widetilde{f}_{1},g_{1}}:=h_{1;\widetilde{f},g}h_{1;\widetilde{g},g_{1}}\in\mathscr{D}^{0}$$

переводит линии уровня функции g_1 в линии уровня функции \widetilde{f}_1 с сохранением направления роста. Отсюда

$$h_{f,\tau'}h_{g,h_{f,\tau'}^{*0}(\tau'')} = h_{0;f,\widetilde{f}}h_{1;\widetilde{f},g}\ h_{0;g,\widetilde{g}}h_{1;\widetilde{g},g_1} = \widetilde{h}_{0;f,\widetilde{f}_1}\widetilde{h}_{1;\widetilde{f}_1,g_1},$$

т.е. мы разложили диффеоморфизм $h_{f,\tau'}h_{g,h_{f,\tau'}^{*0}(\tau'')}$ в композицию, аналогичную разложению $h_{f,\tau''}=h_{0;f,\widetilde{f}_1}h_{1;\widetilde{f}_1,g_1},$ см. (3.4). Ввиду (3.5) это доказывает (3.8).

Если $h \in \operatorname{stab}_{\mathscr{D}^0} f$, а τ', g как выше, то ввиду (3.3) выполнено $h^{*0}(\tau') = \tau_{J((h_{0;f,\tilde{f}h}^{-1})^{*0}(\boldsymbol{c}(\tilde{f}h)))}$ и $\delta_{h^{*0}(\tau')}[f]_{\mathrm{isot}} = [gh]_{\mathrm{isot}} = [g]_{\mathrm{isot}}$ (ввиду $h \in \mathscr{D}^0$), откуда $h_{f,h^{*0}(\tau')} = h_{0;f,\tilde{f}h} h_{1;\tilde{f}h,g}$ $= h_0 h^{-1} h_{0;f,\tilde{f}} h \ h^{-1} h_{1;\tilde{f},g} h_1 = h_0 h^{-1} h_{f,\tau'} h_1$ для некоторых $h_0 \in \operatorname{Diff}^0(M,\mathcal{C}_f)$ и $h_1 \in \mathscr{D}^0$, таких что h_1 переводит линии уровня функции g в линии уровня функции g с сохранением направления роста, поэтому $h_1 \in (\operatorname{stab}_{\mathscr{D}^0} g)(\operatorname{Diff}^0(M,\mathcal{C}_g))$ ввиду [31, лемма 1], откуда

$$h_{f,\tau'}^{-1} h h_{f,h^{*0}(\tau')} \in (\operatorname{stab}_{\mathscr{D}^0} g) \ (\operatorname{Diff}^0(M,\mathcal{C}_g)). \tag{3.9}$$

3.2 Построение утолщенного цилиндра $\mathbb{S}_{[f]_{\mathrm{isot}}}$ для класса изотопности $[f]_{\mathrm{isot}}$

Шаг 4. Пусть $f \in F^1$ — отмеченная функция Морса класса изотопности $[f]_{isot}$. По аналогии с пространством 0-коцепей $H_f^0 \cong \mathbb{R}^q$ (см. (3.2)) введем двойственные друг другу векторные пространства относительных 1-гомологий и относительных 1-когомологий над полем \mathbb{R} :

$$H_{f,1} := H_1(M \setminus (\mathcal{C}_{f,0} \cup \mathcal{C}_{f,2}), \mathcal{C}_{f,1}; \mathbb{R}) \cong \mathbb{R}^{2q},$$

$$H_f^1 := H^1(M \setminus (\mathcal{C}_{f,0} \cup \mathcal{C}_{f,2}), \mathcal{C}_{f,1}; \mathbb{R}) \cong \operatorname{Hom}_{\mathbb{R}}(H_{f,1}, \mathbb{R}) \cong \mathbb{R}^{2q},$$
(3.10)

где изоморфизм $H_f^1 \cong \operatorname{Hom}_{\mathbb{R}}(H_{f,1},\mathbb{R})$ индуцирован равенством $C^q(X,A;\mathbb{R}) = \operatorname{Hom}(C_q(X)/C_q(A),\mathbb{R})$ для пары Борсука $(X,A) := (M \setminus (\mathcal{C}_{f,0} \cup \mathcal{C}_{f,2}),\mathcal{C}_{f,1})$ при q=1 (см. [36, §§12.5, 15.2, 15.5]). Рассмотрим ориентированный граф $G_f \subset M \setminus (\mathcal{C}_{f,0} \cup \mathcal{C}_{f,2})$, см. обозначение 2.5. Этот граф имеет q вершин (являющихся седловыми точками $y_1, \ldots, y_q \in \mathcal{C}_{f,1}$), степени всех вершин равны 4, а значит в графе 2q ребер, которые обозначим e_1, \ldots, e_{2q} . Обозначим относительный гомологический класс ориентированного ребра e_i через $[e_i] \in H_{f,1}, 1 \leq i \leq 2q$.

Определим в векторном пространстве $H^1_f\cong \mathbb{R}^{2q}$ выпуклые подмножества

$$U_{[f]_{\text{isot}}} \subset U_{[f]_{\text{isot}}}^{\infty} \subset H_f^1 \tag{3.11}$$

системами из 4q и 2q неравенств соответственно:

$$U_{[f]_{isot}} = U_f := \left\{ u \in H_f^1 \mid 1 \le u([e_i]) \le \frac{(2q-1)!!}{(2q-2s+1)!!}, \ 1 \le i \le 2q \right\},\tag{3.12}$$

$$U_{[f]_{\text{isot}}}^{\infty} = U_f^{\infty} := \left\{ u \in H_f^1 \mid u([e_i]) > 0, \ 1 \le i \le 2q \right\}, \tag{3.13}$$

где $s = s(\mathbf{c}(f)) := |f(\mathcal{C}_{f,1})|$ – количество седловых значений функции f.

Шаг 5. Каждая компонента связности пространства $M \setminus G_f$ содержит не более одной критической точки функции f (а именно, точки минимума или максимума) и не более одной компоненты связности края ∂M , и гомеоморфна либо открытому кругу (с одной критической точкой), либо полуоткрытому цилиндру $S^1 \times [-1;0)$ или $S^1 \times (0;1]$ (с одной компонентой края $S^1 \times \{\pm 1\} \subset \partial^{\pm} M$), либо "открытому цилиндру"

$$Z_{\ell} = Z_{\ell}(f) \approx S^1 \times (0; 1), \quad 1 \le \ell \le n = n(f),$$
 (3.14)

которые вместе со своим замыканием содержатся в (int M) \ ($\mathcal{C}_{f,0} \cup \mathcal{C}_{f,2}$), где n = n(f) — количество открытых цилиндров. Сопоставим открытому цилиндру Z_{ℓ} его серединную окружность

$$\gamma_{\ell} = \gamma_{\ell}(f) = S^1 \times \left\{ \frac{1}{2} \right\} \subset Z_{\ell} = S^1 \times (0; 1)$$
(3.15)

и следующее линейное векторное поле v_ℓ на векторном пространстве H^1_f . Значение $v_\ell(u) \in H^1_f$ поля v_ℓ в любой точке $u \in H^1_f$ — это относительный 1-коцикл, значение которого на любом относительном 1-цикле $a \in H_1(M \setminus (\mathcal{C}_{f,0} \cup \mathcal{C}_{f,2}), \mathcal{C}_{f,1}) \subset H_{f,1}$ определяется формулой

$$v_{\ell}(u)([a]) := \langle [\gamma_{\ell}], a \rangle \ u([\gamma_{\ell}]), \quad u \in H_f^1, \ a \in H_1(M \setminus (\mathcal{C}_{f,0} \cup \mathcal{C}_{f,2}), \mathcal{C}_{f,1}),$$
 (3.16)

где $\langle [\gamma_\ell], a \rangle$ — индекс пересечения цикла $[\gamma_\ell] \in H_1(M \setminus \mathcal{C}_f) \subset H_{f,1}$ и относительного цикла a, $1 \leq \ell \leq n$. Другими словами, линейное векторное поле v_ℓ на H_f^1 задается \mathbb{R} -линейным оператором $H_f^1 \to H_f^1$, являющимся обратным образом при изоморфизме $H_f^1 \cong \operatorname{Hom}_{\mathbb{R}}(H_{f,1},\mathbb{R})$ \mathbb{R} -линейного оператора $H_{f,1} \to H_{f,1}, a \mapsto \langle [\gamma_\ell], a \rangle [\gamma_\ell]$. На шаге 6 мы установим свойства векторных полей v_1, \ldots, v_n . Определим диффеоморфизм

$$h_{\ell} := t_{\gamma_{\ell}} \in \operatorname{stab}_{\mathcal{D}} f \subset \mathcal{D}, \quad 1 \le \ell \le n,$$
 (3.17)

как скручивание Дэна t_{γ_ℓ} (см. [38]) вокруг окружности γ_ℓ (скручивание Дэна t_{γ_ℓ} совпадает с id_M вне открытого цилиндра Z_ℓ и получается с помощью разрезания поверхности вдоль окружности γ_ℓ , перекручивания одного конца разреза на 2π и склеивания). Диффеоморфизмы h_ℓ , $1 \leq \ell \leq n$, попарно коммутируют, так как их носители попарно не пересекаются. Рассмотрим порожденную ими абелеву группу

$$\Theta_{[f]_{\text{isot}}} = \Theta_f := \langle h_1, \dots, h_n \rangle \subset \operatorname{stab}_{\mathscr{D}} f \subset \mathscr{D}.$$

Рассмотрим индуцированные автоморфизмы $h_{\ell}^* \in \operatorname{Aut}(H_f^1), 1 \le \ell \le n$, и порожденную ими абелеву группу

$$\Theta_{[f]_{\text{isot}}}^* = \Theta_f = \langle h_1^*, \dots, h_n^* \rangle \subset \text{Aut}(H_f^1). \tag{3.18}$$

Нетрудно показать, что подгруппа $\Theta_f^* \subset \operatorname{Aut}(H_f^1)$ изоморфна свободной абелевой группе ранга n, и что автоморфизм h_ℓ^* совпадает с потоком $g_{v_\ell}^1 \colon H_f^1 \to H_f^1$ векторного поля v_ℓ за время $1, \ 1 \le \ell \le n$. Рассмотрим в группе $\Theta_f^* \cong \mathbb{Z}^n$ подгруппу $(\mathscr{D}^0 \cap \Theta_f)^* \subset \Theta_f^*$ и рассмотрим пространства орбит

$$\mathbb{S}_{[f]_{\mathrm{isot}}} = \mathbb{S}_f := U_f / (\mathscr{D}^0 \cap \Theta_f)^*, \quad \mathbb{S}_{[f]_{\mathrm{isot}}}^{\infty} = \mathbb{S}_f^{\infty} := U_f^{\infty} / (\mathscr{D}^0 \cap \Theta_f)^*.$$

Рассуждения на следующих шагах проводятся для U_f , но верны и для U_f^∞ .

Шаг 6. На этом шаге определяется свободное действие цилиндра $\mathbb{R}^{n-d} \times (S^1)^d$ на пространстве \mathbb{S}_f , где d = d([f]) — ранг группы $(\mathscr{D}^0 \cap \Theta_f)^*$ (как свободной абелевой группы).

Построим явно базис векторного пространства $H_f^1 \cong \mathbb{R}^{2q}$. Если количество n=n(f) открытых цилиндров $Z_\ell \subset M \setminus G_f$ (см. (3.14)) равно нулю, положим $\widetilde{G}_f := G_f$. Если n>0, будем выкидывать из графа G_f по одному (открытому) ребру, чтобы каждый раз количество компонент связности дополнения графа в M, не пересекающихся с $(\partial M) \cup \mathcal{C}_{f,0} \cup \mathcal{C}_{f,2}$, уменьшалось на 1. Так как для графа G_f указанное количество равно n, то после выкидывания из него n ребер (для определенности e_1,\ldots,e_n) указанным алгоритмом их количество станет равным нулю, и получится подграф с q вершинами и 2q-n ребрами e_{n+1},\ldots,e_{2q} . В каждом открытом цилиндре Z_ℓ проведем (отрытое) ориентированное ребро \widetilde{e}_ℓ , гладко вложенное в этот цилиндр, с концами в седловых точках, такое, что ограничение функции f на это ребро монотонно возрастает. Добавим к полученному подграфу n ориентированных ребер

$$\widetilde{e}_{\ell} \subset Z_{\ell}, \qquad 1 < \ell < n$$

(взамен выброшенных e_1,\ldots,e_n). В результате получим граф $\widetilde{G}_f\subset (\operatorname{int} M)\setminus (\mathcal{C}_{f,0}\cup \mathcal{C}_{f,2})$ с 2q ребрами $\widetilde{e}_1,\ldots,\widetilde{e}_n,\,e_{n+1},\ldots,e_{2q}$ и q вершинами y_1,\ldots,y_q . Так как дополнение графа \widetilde{G}_f в поверхности M состоит из открытых кругов (содержащих по одной точке минимума или максимума) и полуоткрытых цилиндров (содержащих по одной компоненте края M), то граф \widetilde{G}_f является сильным деформационным ретрактом поверхности $M\setminus (\mathcal{C}_{f,0}\cup \mathcal{C}_{f,2})$. Следовательно, вложение $\widetilde{G}_f\hookrightarrow M\setminus (\mathcal{C}_{f,0}\cup \mathcal{C}_{f,2})$ индуцирует изоморфизмы 2q-мерных векторных пространств

$$H_1(\widetilde{G}_f, \mathcal{C}_{f,1}; \mathbb{R}) \cong H_{f,1}, \quad H^1(\widetilde{G}_f, \mathcal{C}_{f,1}; \mathbb{R}) \cong H_f^1.$$

Относительные классы гомологий $[\widetilde{e}_1], \ldots, [\widetilde{e}_n], [e_{n+1}], \ldots, [e_{2q}] \in H_1(\widetilde{G}_f, \mathcal{C}_{f,1}; \mathbb{R})$ ориентированных ребер графа \widetilde{G}_f образуют базис векторного пространства $H_1(\widetilde{G}_f, \mathcal{C}_{f,1}; \mathbb{R}) \cong H_{f,1} \cong \mathbb{R}^{2q}$. Переход к двойственному базису дает базис $[\widetilde{e}_1]^*, \ldots, [\widetilde{e}_n]^*, [e_{n+1}]^*, \ldots, [e_{2q}]^*$ векторного пространства $H^1(\widetilde{G}_f, \mathcal{C}_{f,1}; \mathbb{R}) \cong H_f^1 \cong (H_{f,1})^* \cong \mathbb{R}^{2q}$.

Пусть $\widetilde{u}_1, \dots, \widetilde{u}_n, u'_{n+1}, \dots u'_{2q}$ – координаты в H^1_f по отношению к базису $[\widetilde{e}_1]^*, \dots, [\widetilde{e}_n]^*, [e_{n+1}]^*, \dots, [e_{2q}]^*$. Рассмотрим разложение

$$H_f^1 = \langle [\widetilde{e}_1]^*, \dots, [\widetilde{e}_n]^* \rangle \oplus \langle [e_{n+1}]^*, \dots, [e_{2q}]^* \rangle. \tag{3.19}$$

Представим любой относительный коцикл $u \in H^1_f$ как сумму $u = \widetilde{u} + u'$ его проекций на подпространства в разложении (3.19). Нетрудно доказывается, что

$$[e_i] \in \langle [e_{n+1}], \dots, [e_{2q}] \rangle = \operatorname{Im} [H_1(G_f, \mathcal{C}_{f,1}; \mathbb{R}) \to H_{f,1}], \quad 1 \le i \le 2q,$$
 (3.20)

$$\langle [\widetilde{e}_{\ell}]^* \rangle_{\ell=1}^n = \ker \left[H_f^1 \to H^1(G_f, \mathcal{C}_{f,1}; \mathbb{R}) \right], \quad \langle [e_i]^* \rangle_{i=n+1}^{2q} \cong H^1(G_f, \mathcal{C}_{f,1}; \mathbb{R}).$$

Отсюда $u([e_i]) = u'([e_i]), 1 \le i \le 2q$. Положим

$$U'_{f} := \left\{ u' \in \langle [e_{i}]^{*} \rangle_{i=n+1}^{2q} \mid 1 \le u'([e_{\ell}]) \le \frac{(2q-1)!!}{(2q-2s+1)!!}, \ 1 \le \ell \le 2q \right\}, \tag{3.21}$$

ср. (3.12). Тогда $u \in U_f$ в том и только том случае, когда $u' \in U_f'$, причем U_f' – выпуклый многогранник. Поэтому справедливо разложение

$$U_f = \langle [\widetilde{e}_1]^*, \dots, [\widetilde{e}_n]^* \rangle \oplus U_f', \quad \text{где} \quad U_f' \subset \langle [e_{n+1}]^*, \dots, [e_{2q}]^* \rangle.$$
 (3.22)

В базисе $[\widetilde{e}_1]^*,\ldots,[\widetilde{e}_n]^*,[e_{n+1}]^*,\ldots,[e_{2q}]^*$ пространства H^1_f линейные векторные поля v_1,\ldots,v_n на H^1_f имеют вид

$$v_{\ell}(u) = u([\gamma_{\ell}]) \left[\widetilde{e}_{\ell}\right]^{*}, \quad \langle v_{\ell}(u) \rangle_{\ell=1}^{n} \subseteq \langle [\widetilde{e}_{\ell}]^{*} \rangle_{\ell=1}^{n} = \ker \left[H_{f}^{1} \to H^{1}(G_{f}, \mathcal{C}_{f, 1}; \mathbb{R})\right], \tag{3.23}$$

т.е. касательны каждой n-мерной плоскости $\langle [\widetilde{e}_1]^*, \ldots, [\widetilde{e}_n]^* \rangle + u' \subset H_f^1, \ u' \in \langle [e_{n+1}]^*, \ldots, [e_{2q}]^* \rangle$, и всюду на ней имеют постоянные коэффициенты ввиду (3.20). Поэтому каждая такая n-мерная плоскость инвариантна относительно потоков векторных полей v_1, \ldots, v_n на H_f^1 и эти поля коммутируют. Так как при $u' \in U_f'$ эти векторные поля (с постоянными коэффициентами) линейно независимы в указанной плоскости, то их потоки $g_{v_1}^{t_1} \ldots g_{v_n}^{t_n}$ порождают свободное действие группы \mathbb{R}^n на пространстве U_f , см. (3.22), причем орбиты этого действия являются n-мерными плоскостями $\langle [\widetilde{e}_1]^*, \ldots, [\widetilde{e}_n]^* \rangle + u' \subset U_f, \ u' \in U_f'$. Так как группа \mathbb{R}^n действует свободно на U_f , то ее стандартная целочисленная решетка \mathbb{Z}^n совпадает с ℓ -ым базисным элементом $g_{v_\ell}^1 = h_\ell^* \in \operatorname{Aut}(H_f^1)$ группы $\Theta_f^* \cong \mathbb{Z}^n$ (см. (3.17), (3.18)), то действие группы $\Theta_f^* \subset \operatorname{Aut}(H_f^1)$ на U_f свободно и коммутирует с действием \mathbb{R}^n на U_f (заданным при помощи потоков векторных полей v_1, \ldots, v_n). Поэтому действие группы \mathbb{R}^n на U_f индуцирует корректно определенное свободное действие цилиндра $\mathbb{R}^n/Z^d \cong \mathbb{R}^{n-d} \times (S^1)^d$ на факторпространстве $\mathbb{S}_f = U_f/(\mathcal{D}^0 \cap \Theta_f)^*$, где $(\mathcal{D}^0 \cap \Theta_f)^* \cong Z^d \subset \mathbb{Z}^n$ — подгруппа группы $\Theta_f^* \cong \mathbb{Z}^n \subset \mathbb{R}^n$, и через d = d([f]) обозначен ее ранг (как ранг свободной абелевой группы).

Все рассуждения данного шага верны для U_f^{∞} , $(U_f')^{\infty}$ вместо U_f, U_f' , где $(U_f')^{\infty}$ определяется аналогично (3.21).

Шаг 7. На этом шаге вводится на пространстве \mathbb{S}_f структура утолщенного цилиндра (см. определение 2.3). Для этого будут построены специальные (криволинейные) координаты на выпуклом множестве $U_f \subset H^1_f$ и на утолщенном цилиндре $\mathbb{S}_f = U_f/(\mathscr{D}^0 \cap \Theta_f)^*$, в которых построенные выше свободные действия группы \mathbb{R}^n на U_f и цилиндра $\mathbb{R}^n/Z^d \cong \mathbb{R}^{n-d} \times (S^1)^d$ на \mathbb{S}_f "выпрямляются".

Построим явно набор образующих группы $(\mathscr{D}^0 \cap \Theta_f)^* \subset \Theta_f^* \subset \operatorname{Aut}(H_f^1)$. Напомним, что набором свободных образующих группы $\Theta_f^* \cong \mathbb{Z}^n$ является набор автоморфизмов $h_1^*, \ldots, h_n^* \in \operatorname{Aut}(H_f^1)$, отвечающих открытым цилиндрам Z_1, \ldots, Z_n , где n = n(f), см. (3.14). Покажем, что после подходящей перенумерации цилиндров Z_ℓ (и отвечающих им автоморфизмов h_ℓ^*) подгруппа $(\mathscr{D}^0 \cap \Theta_f)^* \subset \Theta_f^* \cong \mathbb{Z}^n$ раскладывается в прямое произведение подгрупп

$$(\mathscr{D}^0 \cap \Theta_f)^* = \Theta_{f,0}^* \times \Theta_{f,1}^* \times \ldots \times \Theta_{f,e}^*, \qquad \text{где} \quad \Theta_{f,0}^* = \langle h_1^*, \ldots, h_{\nu_0}^* \rangle,$$

$$\Theta_{f,k}^* = \langle (h_{\nu_{k-1}+1}^*)^{-1} h_{\nu_{k-1}+2}^*, \ (h_{\nu_{k-1}+2}^*)^{-1} h_{\nu_{k-1}+3}^*, \ \ldots, \ (h_{\nu_k-1}^*)^{-1} h_{\nu_k}^* \rangle, \ 1 \le k \le e,$$

$$(3.24)$$

где целые числа $0 \le e \le n$ и $0 = \nu_{-1} \le \nu_0 < \nu_1 < \ldots < \nu_e \le n$ зависят от [f]. Отсюда следует, что ранг группы $(\mathscr{D}^0 \cap \Theta_f)^*$ равен

$$\operatorname{rank}(\mathscr{D}^0 \cap \Theta_f)^* = d = \nu_e - e. \tag{3.25}$$

Из (3.25) нетрудно вывести, что он не превосходит числа p'+p''+r'+r'' "плавающих" точек локальных минимумов и максимумов, а также получить остальные оценки для d из теоремы 2.6(C).

Описание построения подгруппы $\Theta_{f,0} \subset \mathcal{D}^0 \cap \Theta_f$. Пусть (после подходящей перенумерации цилиндров Z_1, \ldots, Z_n в (3.14) и соответствующей перенумерации окружностей $\gamma_1, \ldots, \gamma_n$) окружности $\gamma_\ell \subset M \setminus \mathcal{C}_f \subset M \setminus \mathcal{C}$, $1 \leq \ell \leq \nu_0$ – это все такие окружности множества $\{\gamma_1, \ldots, \gamma_n\}$, каждая из которых разбивает поверхность $M \setminus \mathcal{C}$ на две части (см. определение 2.1, обозначение 2.2, замечание 2.9), причем объединение одной из этих двух частей с окружностью γ_ℓ гомеоморфно либо кругу, либо проколотому кругу (т.е. кругу без одной внутренней точки), либо цилиндру $S^1 \times [0;1]$. Рассмотрим скручивания Дэна $h_j \in \operatorname{stab}_{\mathcal{D}} f$ вокруг этих окружностей, $1 \leq j \leq \nu_0$. Каждое такое скручивание Дэна принадлежит группе \mathcal{D}^0 , т.е. компоненте связности тождественного диффеоморфизма id_M в $\operatorname{Diff}(M,\mathcal{C})$. Значит, все элементы построенного подмножества $\{h_1,\ldots,h_{\nu_0}\}\subset\{h_1,\ldots,h_\ell\}$ принадлежат группе $\mathcal{D}^0 \cap \Theta_f$. Определим подгруппу $\Theta_{f,0} \subset \Theta_f$ как порожденную диффеоморфизмами h_ℓ , $1 \leq \ell \leq \nu_0$.

Описание построения подгрупп $\Theta_{f,1},\ldots,\Theta_{f,e}\subset \mathscr{D}^0\cap\Theta_f$. Рассмотрим объединение всех цилиндров в поверхности $M \setminus C$, ограниченных парами различных окружностей из множества $\{\gamma_{\nu_0+1}, \dots, \gamma_n\}$ и не содержащих внутри себя других окружностей этого множества. Это объединение является либо несвязным объединением $e \ge 0$ цилиндров, либо тором (в этом случае $M = T^2$, $p^* = q^* = r^* = 0$ и $\widehat{p} + \widehat{q} + \widehat{r} \ge 1$ ввиду (2.2), т.е. все критические точки "плавают" и по крайней мере одна из них отмечена, а окружности $\gamma_{\nu_0+1},\ldots,\gamma_n$ попарно изотопны в торе M); в последнем случае положим e=1, $\nu_1 = n$, и заменим указанное объединение цилиндров на один цилиндр, содержащий все окружности $\gamma_{\nu_0+1},\ldots,\gamma_n$ и ограниченный двумя из этих окружностей, причем этот цилиндр не содержит первую отмеченную критическую точку (эти условия определяют цилиндр однозначно). Пусть (после подходящей перенумерации цилиндров Z_{ν_0+1},\ldots,Z_n в (3.14) и соответствующей перенумерации окружностей $\gamma_{\nu_0+1},\ldots,\gamma_n)$ окружности $\gamma_\ell,\ \nu_{k-1}<\ell\le\nu_k$ – это все окружности в k-ом из этих eцилиндров, причем можем и будем считать, что нумерация окружностей идет в порядке следования этих окружностей в k-ом цилиндре, $1 \le k \le e$. Композиция $h_{\ell}^{-1} \circ h_{\ell+1}$ скручиваний Дэна h_{ℓ} и $h_{\ell+1}$, взятых в противоположных степенях, принадлежит группе $\hat{\mathcal{D}}^0$ при $\nu_{k-1} < \ell < \nu_k, \ 1 \le k \le e$. При $1 \le k \le e$ определим подгруппу $\Theta_{f,k} \subset \Theta_f$ как порожденную диффеоморфизмами $h_\ell^{-1} \circ h_{\ell+1}$, $\nu_{k-1} < \ell < \nu_k.$

Покажем, что группа $(\mathscr{D}^0 \cap \Theta_f)^*$ допускает разложение (3.24). Осталось показать, что $\mathscr{D}^0 \cap \Theta_f \subseteq \Theta_{f,0} \times \Theta_{f,1} \times \ldots \times \Theta_{f,e}$. Дополним набор диффеоморфизмов $h_1,\ldots,h_{\nu_0} \in \Theta_{f,0},\ h_\ell^{-1} \circ h_{\ell+1} \in \Theta_{f,k},\ \nu_{k-1} < \ell < \nu_k,\ 1 \le k \le e$, до набора образующих группы $\Theta_f \cong \mathbb{Z}^n$ набором скручиваний Дэна $h_i,\ i \in A = A(f)$, где

$$A = A(f) := \{\nu_1, \nu_2, \dots, \nu_e, \nu_e + 1, \nu_e + 2, \dots, n\} \subset \{1, \dots, n\}, |A| = n - \nu_e + e.$$

Пусть некоторая композиция $h \in \Theta_f$ целых степеней диффеоморфизмов полученного набора образующих принадлежит группе $\mathscr{D}^0 \cap \Theta_f$. Покажем, что показатель степени каждого из $|A| = n - \nu_e + e$ диффеоморфизмов h_i , $i \in A$, в этой композиции равен нулю. Произведение \widetilde{h} этих $n - \nu_e + e$ диффеоморфизмов в тех степенях, в которых они входят в композицию h, также является элементом группы $\mathscr{D}^0 \cap \Theta_f$, так как отличается от исходной композиции h домножением на элемент из подгруппы $\Theta_{f,0} \times \Theta_{f,1} \times \ldots \times \Theta_{f,e}$, содержащейся в $\mathscr{D}^0 \cap \Theta_f$ по построению. Значит, $\widetilde{h} \in \mathscr{D}^0 \cap \Theta_f \subset \mathscr{D}^0$. Так как окружности $\gamma_i \subset (\operatorname{int} M) \setminus \mathcal{C}, i \in A$, попарно не пересекаются, никакая из них не ограничивает цилиндр или (проколотый или непроколотый) круг в $M \setminus \mathcal{C}$, и никакие две из них не ограничивают цилиндр в $M \setminus \mathcal{C}$, то скручивания Дэна h_i , $i \in A$, вокруг этих окружностей (рассматриваемые с точностью до гомотопии в пространстве непрерывных отображений пары (M, \mathcal{C})) порождают подгруппу

группы Нотео $(M, \mathcal{C}_0, \mathcal{C}_1, \mathcal{C}_2)$ /Нотео $^0(M, \mathcal{C}_0, \mathcal{C}_1, \mathcal{C}_2) \cong \mathscr{D}/\mathscr{D}^0$ классов отображений, изоморфную свободной абелевой группе ранга $|A| = n - \nu_e + e$ (см., например, [39, лемма 2.1(1)] или [40]). Поэтому показатели степеней всех диффеоморфизмов h_i , $i \in A$, равны 0. Это завершает доказательство разложения (3.24).

Построим специальные (криволинейные) координаты в $U_f \subset U_f^{\infty}$, в которых свободное действие цилиндра $\mathbb{R}^n/Z^d \cong \mathbb{R}^{n-d} \times (S^1)^d$ (см. конец шага 6) "выпрямляется". Пусть нумерация цилиндров Z_1, \ldots, Z_n такая же, как в (3.24). Для любого $u' \in U_f'$ рассмотрим базис $v_1(u'), \ldots, v_n(u')$ в плоскости $\langle [\widetilde{e}_1]^*, \ldots, [\widetilde{e}_n]^* \rangle + u' \subset U_f$ и новый базис

$$\widetilde{v}_i(u') := v_i(u'), \ i \in A \cup \{1, \dots, \nu_0\}, \quad \widetilde{v}_i(u') := v_i(u') - v_{i+1}(u'), \ j \in B \setminus \{1, \dots, \nu_0\},$$
 (3.26)

а также отвечающее этому базису разложение

$$\ker \left[H_f^1 \to H^1(G_f, \mathcal{C}_{f,1}; \mathbb{R}) \right] = \langle [\widetilde{e}_\ell]^* \rangle_{\ell=1}^n = \langle \widetilde{v}_i(u') \rangle_{i \in A} \oplus \langle \widetilde{v}_j(u') \rangle_{j \in B},$$

где $B=B(f):=\{1,\ldots,n\}\setminus A$. Тогда для каждого $u'\in U_f'\subset (U_f')^\infty$ любой коцикл $\widetilde{u}=\sum_{\ell=1}^n\widetilde{u}_j[\widetilde{e}_j]^*\in \langle [\widetilde{e}_\ell]^*\rangle_{\ell=1}^n$ имеет вид

$$\widetilde{u} = \sum_{i \in A} x_i \ \widetilde{v}_i(u') + \sum_{j \in B} \varphi_j \ \widetilde{v}_j(u'),$$

где координаты x_i, φ_j $(i \in A, j \in B)$ в n-мерной плоскости $\langle [\widetilde{e}_1]^*, \dots, [\widetilde{e}_n]^* \rangle + u'$ выражаются через координаты $\widetilde{u}_1, \dots, \widetilde{u}_n, u'_{n+1}, \dots, u'_{2q}$, по формулам

$$x_{i} = \frac{\widetilde{u}_{i}}{u'([\gamma_{i}])}, \quad \nu_{e} < i \le n, \qquad x_{\nu_{k}} = \frac{\widetilde{u}_{\nu_{k-1}+1}}{u'([\gamma_{\nu_{k-1}+1}])} + \dots + \frac{\widetilde{u}_{\nu_{k}}}{u'([\gamma_{\nu_{k}}])}, \quad 1 \le k \le e,$$

$$\varphi_{j} = \frac{\widetilde{u}_{j}}{u'([\gamma_{j}])}, \quad 1 \le j \le \nu_{0}, \qquad \varphi_{j} = \frac{\widetilde{u}_{\nu_{k-1}+1}}{u'([\gamma_{\nu_{k-1}+1}])} + \dots + \frac{\widetilde{u}_{j}}{u'([\gamma_{j}])}, \quad \nu_{k-1} < j < \nu_{k}.$$
(3.27)

Знаменатели в выражениях для x_i и φ_j положительны, так как $u' \in (U'_f)^\infty$. Таким образом, на множестве U_f^∞ мы ввели гладкие регулярные координаты $x_i \in \mathbb{R}, \ \varphi_j \ \mathrm{mod} \ 1 \in S^1 = \mathbb{R}/\mathbb{Z} \ (i \in A, j \in B), \ (u'_{n+1}, \ldots, u'_{2q}) \in U'_f$. В этих координатах векторные поля $\widetilde{v}_1, \ldots, \widetilde{v}_n$ имеют вид $\widetilde{v}_i = \partial/\partial x_i, \ \widetilde{v}_j = \partial/\partial \varphi_j \ (i \in A, j \in B)$, а множества U_f и \mathbb{S}_f имеют вид

$$U_{[f]_{isot}} = U_f \approx (\mathbb{R}^A \times \mathbb{R}^B) \times U_f' \approx (\mathbb{R}^{n-\nu_e+e} \times \mathbb{R}^{\nu_e-e}) \times U_f' = \mathbb{R}^n \times U_f',$$

$$\mathbb{S}_{[f]_{isot}} = \mathbb{S}_f \approx (\mathbb{R}^A \times (S^1)^B) \times U_f' \approx (\mathbb{R}^{n-\nu_e+e} \times (S^1)^{\nu_e-e}) \times U_f'.$$

Отсюда действие группы $\Theta_f^* \cong \mathbb{Z}^n$ на U_f совпадает с целочисленными сдвигами вдоль координат $x_i, \varphi_j \ (i \in A, j \in B)$, действие группы $(\mathscr{D}^0 \cap \Theta_f)^* \cong \mathbb{Z}^{\nu_e - e}$ на U_f совпадает с целочисленными сдвигами вдоль координат $\varphi_j, j \in B$, а действие цилиндра $\mathbb{R}^A \times (S^1)^B \cong \mathbb{R}^{n-\nu_e+e} \times (S^1)^{\nu_e-e}$ на \mathbb{S}_f совпадает с естественным действием цилиндра сдвигами по себе. Итак, мы ввели на $\mathbb{S}_f := U_f/(\mathscr{D}^0 \cap \Theta_f)^*$ структуру стандартного утолщенного цилиндра (см. определение 2.3).

Подмножества $U_f \subset U_f^{\infty} \subset H_f^1$ инвариантны относительно правого действия группы $(\operatorname{stab}_{\mathscr{D}^0} f)^* \subset \operatorname{Aut}(H_f^1)$ на H_f^1 , а подгруппа $(\mathscr{D}^0 \cap \Theta_f)(\operatorname{stab}_{\mathscr{D}^0} f)^0$ нормальна в $\operatorname{stab}_{\mathscr{D}^0} f$, где через $(\operatorname{stab}_{\mathscr{D}^0} f)^0$ обозначена подгруппа группы $\operatorname{stab}_{\mathscr{D}^0} f$, состоящая из всех диффеоморфизмов поверхности M, сохраняющих функцию f и гомотопных id_M в классе гомеоморфизмов M, сохраняющих функцию f. Поэтому имеется индуцированное правое действие дискретной группы

$$\Gamma_{[f]_{\text{isot}}} = \Gamma_f := (\operatorname{stab}_{\mathscr{D}^0} f) / ((\mathscr{D}^0 \cap \Theta_f) (\operatorname{stab}_{\mathscr{D}^0} f)^0)$$
(3.28)

на пространствах орбит $\mathbb{S}_f = U_f/(\mathscr{D}^0 \cap \Theta_f)^*$ и $\mathbb{S}_f^\infty = U_f^\infty/(\mathscr{D}^0 \cap \Theta_f)^*$. Так как действие группы Θ_f на H_f^0 тривиально (поскольку не переставляет седловые критические точки), имеем также индуцированное правое действие группы Γ_f на многограннике D_f (см. шаг 2).

Лемма 3.2. Если выполнено условие (2.2), то индуцированное покомпонентное правое действие любого диффеоморфизма $h \in \operatorname{stab}_{\mathscr{Q}^0} f$ на прямом произведении

$$D_f \times \mathbb{S}_f = \tau_{J(\boldsymbol{c}(f))} \times \left(U_f / (\mathscr{D}^0 \cap \Theta_f)^* \right) \approx \tau_{J(\boldsymbol{c}(f))} \times \left(\mathbb{R}^{A(f)} \times (S^1)^{B(f)} \times U_f' \right)$$
(3.29)

является допустимым автоморфизмом стандартной цилиндрической ручки (см. определение 2.3(В)).

Доказательство. Пусть для определенности окружности $\gamma_\ell \subset Z_\ell$ определены условием $f(\gamma_\ell) =$ $\frac{1}{2}(\sup f|_{Z_\ell}+\inf f|_{Z_\ell})$. Тогда любой диффеоморфизм $h\in\operatorname{stab}_{\mathscr{D}^0}f$ индуцирует перестановку на множестве окружностей γ_{ℓ} , $1 \leq \ell \leq n = n(f)$. При этой перестановке каждая окружность $\gamma_{\nu_0+1}, \ldots, \gamma_n$ переходит в себя (см. доказательство леммы 3.3, шаг 1). То есть, переставляются только окружности $\gamma_{\ell}, \ \ell \in \{1, \dots, \nu_0\} \subset B(f)$ (и отвечающие им векторные поля \widetilde{v}_{ℓ}), а соответствующая перестановка $\pi \in \Sigma_{|A(f)|}$ тривиальна (см. определение 2.3(A)). Если тривиальны также соответствующие автоморфизмы многогранников $b\colon D_f\to D_f,\ a\colon U_f'\to U_f'$ и перестановка $\rho\in \Sigma_{|B(f)|},$ то h переводит в себя каждое седло, каждое ориентированное ребро графа G_f , и каждую окружность γ_ℓ , а потому принадлежит $(\mathscr{D}^0 \cap \Theta_f)(\operatorname{stab}_{\mathscr{D}^0} f)^0$, откуда его действие на $D_f \times \mathbb{S}_f$ совпадает с тождественным отображением. Если автоморфизм многогранника $b\colon D_f\to D_f$ тривиален (что равносильно тому, что hпереводит каждое седло в себя), то перестановка $\rho \in \Sigma_{|B(f)|}$ окружностей γ_{ℓ} тоже тривиальна, так как в противном случае h нетривиально действует на $H_1(M)$; тривиальность автоморфизма $a^2\colon U_f'\to U_f'$ следует из того, что h^2 переводит каждое ребро графа G_f в себя. Пусть теперь автоморфизм многогранника $a\colon U_f'\to U_f'$ тривиален. Покажем, что автоморфизм многогранника $b\colon D_f\to D_f$ тоже тривиален. Если количество седловых значений s(f)>1, то U_f' является (2q-n(f))-мерным многогранником, поэтому из тривиальности автоморфизма $a\colon U_f' \overset{\flat}{ o} U_f'$ следует, что h переводит в себя каждое ребро графа G_f , а потому и каждое седло, откуда $b: D_f \to D_f$ тривиален. Если s(f) = 1, то по лемме 3.3 ниже отображение h переводит в себя хотя бы одно ребро графа G_f (а потому и каждое его ребро ввиду связности графа G_f , а потому и каждую седловую точку), откуда автоморфизм $b\colon D_f o D_f$ тривиален. Так как автоморфизм $b\colon D_f o D_f$ является ограничением автоморфизма многогранника \mathcal{P}_f^{q-1} , индуцированного перестановкой координатных осей, то по лемме 3.1 он допустим. Лемма 3.2 доказана.

Шаг 8. Изучим взаимосвязь утолщенных цилиндров $\mathbb{S}_{[f]_{isot}}$, $\mathbb{S}_{[g]_{isot}}$ для примыкающих классов изотопности $[f]_{isot} \prec [g]_{isot}$. Пусть $f \in F^1$ — отмеченная функция Морса класса изотопности $[f]_{isot}$. Для любой грани $\tau' \prec \tau_{J(\mathbf{c}(f))} =: D_{[f]_{isot}} = D_f$ обозначим через $g \in F^1$ отмеченную функцию класса изотопности $\delta_{\tau'}[f]_{isot}$ (см. (3.3)) и фиксируем диффеоморфизм $h_{f,\tau'} \in \mathscr{D}^0$ как в (3.3) и (3.4). Рассмотрим индуцированный изоморфизм

$$h_{f,\tau'}^* \colon H_f^1 \to H_g^1$$

векторных пространств, аналогичный изоморфизму $h_{f,\tau'}^{*0}\colon H_f^0 \to H_g^0$ из (3.4). Докажем включения

$$h_{f,\tau'}^*(U_f) \subset U_g, \qquad h_{f,\tau'}^*(U_f^\infty) \subset U_g^\infty.$$
 (3.30)

Пусть, как и выше, s=s(f) – количество седловых критических значений функции f, и k:=q-s — размерность многогранника D_f (см. шаги 1, 2). С учетом определения $U_f \subset U_f^\infty \subset H_f^1$ (см. (3.12), (3.13)), нам достаточно показать, что сопряженный к изоморфизму $h_{f,\tau'}^*$ изоморфизм $(h_{f,\tau'})_* \colon H_{g,1} = H_1(M \setminus (\mathcal{C}_{g,0} \cup \mathcal{C}_{g,2}), \mathcal{C}_{g,1}; \mathbb{R}) \to H_1(M \setminus (\mathcal{C}_{f,0} \cup \mathcal{C}_{f,2}), \mathcal{C}_{f,1}; \mathbb{R}) = H_{f,1}$ переводит гомологический класс любого ориентированного ребра графа G_g в сумму гомологических классов некоторых ориентированных ребер графа G_f (см. определение графа G_f в обозначении 2.5), и что количество этих ребер всегда $\leq 2k+1$.

Обозначим через C_g компоненту связности графа G_g , в которой лежит рассматриваемое ребро графа G_g . Дополнение графа G_f в поверхности M распадается на "открытые цилиндры" $Z_\ell(f) \approx$

 $S^1 \times (0;1), \ 1 \le \ell \le n = n([f])$, "полуоткрытые цилиндры" $S^1 \times [0;1)$ и открытые круги, содержащие ровно одну критическую точку минимума или максимума функции f. Поэтому имеется ретракция

$$\varrho_f \colon M'_f := (M \setminus (\mathcal{C}_{f,0} \cup \mathcal{C}_{f,2})) \setminus \left(\bigcup_{\ell=1}^n \gamma_\ell(f)\right) \to G_f,$$

где $\gamma_\ell(f)=S^1 imes\{\frac{1}{2}\}\subset Z_\ell(f)$. Более точно, определим эту ретракцию так, чтобы она переводила любую точку поверхности M_f' в точку пересечения проходящей через нее интегральной траектории векторного поля $\operatorname{grad} f|_{M_f'}$ (в смысле некоторой фиксированной римановой метрики ds_0^2 на M) с графом G_f . Без ограничения общности мы также будем считать, что функция \widetilde{f} и диффеоморфизм $h_{0;f,\widetilde{f}}$ в определении диффеоморфизма $h_{f,\tau'}$ (см. (3.4)) строились так: фиксируем попарно непересекающиеся круги вокруг седловых точек функции $f\in F^1$ и потребуем, чтобы в каждом из них $\widetilde{f}=f+\operatorname{const}$, и чтобы $h_{0;f,\widetilde{f}}=\operatorname{id}_M$ и функция $\widetilde{f}\in F^1$ была получена при помощи C^2 -малого возмущения функции f. Тогда $h_{f,\tau'}(G_g)\subset M_f'$, причем отображение

$$p_{f,\tau'} := \varrho_f \circ h_{f,\tau'}|_{C_g} \colon C_g \to G_f \tag{3.31}$$

является погружением графов, переводит множество вершин на множество вершин согласно биекции $h_{f,\tau'}|_{\mathcal{C}_g}\colon \mathcal{C}_g \to \mathcal{C}_f$ и сохраняет ориентацию ребер. Отсюда получаем, что $p_{f,\tau'}$ переводит любое ориентированное ребро графа G_g в ориентированный путь на графе G_f , ориентация которого согласована с ориентацией ребер графа G_f .

Осталось показать, что длина указанного пути на графе G_f (т.е. количество проходимых этим путем ребер графа G_f) не превосходит 2k+1. Пусть C_f – компонента связности графа G_f , в которой лежит рассматриваемый путь. Граф C_f имеет не более k+1 вершины (так как число компонент связности графа G_f не меньше чем s=q-k), а потому он имеет не более 2k+2 ребер. Но наше ребро является собственным подграфом графа C_g , а потому наш путь является собственным подграфом графа $p_{f,\tau'}(C_g) \subset C_f$. Так как граф C_f имеет не более 2k+2 ребер, наш путь имеет не более 2k+1 ребер, что и требовалось. Это завершает доказательство включений (3.30).

Изоморфизм $h_{f,\tau'}^* \colon H_f^1 \stackrel{\cong}{\longrightarrow} H_g^1$ индуцирует изоморфизм

$$\widehat{h}_{f,\tau'}\colon \operatorname{Aut}(H_f^1) \xrightarrow{\cong} \operatorname{Aut}(H_g^1), \quad h^* \mapsto h_{f,\tau'}^* h^* (h_{f,\tau'}^*)^{-1}, \qquad h^* \in \operatorname{Aut}(H_f^1).$$

Рассмотрим вложение множеств окружностей $\{\gamma_\ell(f)\}_{\ell=1}^{n(f)} \hookrightarrow \{\gamma_m(g)\}_{m=1}^{n(g)}$, сопоставляющее окружности $\gamma_\ell(f)$ окружность $\gamma_{m(\ell)}(g)$, такую что $h_{f,\tau'}^{-1}(\gamma_\ell(f)) \subset Z_{m(\ell)}(g)$. Тогда для каждого векторного поля $v_\ell(f)$ на H_f^1 (см. (3.16) и (3.23)) выполнено $(h_{f,\tau'}^*)_*(v_\ell(f)) = v_{m(\ell)}(g)$. Отсюда $\hat{h}_{f,\tau'}(\Theta_f^*) \subset \Theta_g^*$, а потому

$$\widehat{h}_{f,\tau'}((\mathscr{D}^0\cap\Theta_f)^*)\subset(\mathscr{D}^0\cap\Theta_g)^*.$$

Поэтому вложение $h_{f,\tau'}^*|_{U_f}\colon U_f\hookrightarrow U_g$ (см. (3.30)) индуцирует корректно определенное отображение пространств орбит

$$[h_{f,\tau'}^*|_{U_f}]: U_f/(\mathscr{D}^0 \cap \Theta_f)^* \hookrightarrow U_g/(\mathscr{D}^0 \cap \Theta_g)^*, \tag{3.32}$$

являющееся погружением утолщенных цилиндров (так как группа Θ_f^* действует свободно и дискретно на U_f , см. шаги 6 и 7).

Докажем, что погружение (3.32) утолщенных цилиндров является допустимым (см. определение 2.3,(D)). Из $(h_{f,\tau'}^*)_*(v_\ell(f)) = v_{m(\ell)}(g), \ 1 \le \ell \le n, \ (3.26)$ и описания подгруппы $\Theta_{f,k} \subset \mathscr{D}^0 \cap \Theta_f$ (см. шаг 7) следует, что при $\nu_{k-1}(f) < j < \nu_k(f), \ 1 \le k \le e(f)$, выполнено

$$(h_{f,\tau'}^*)_*(\widetilde{v}_j(f)) = (h_{f,\tau'}^*)_*(v_j(f) - v_{j+1}(f)) = v_{m(j)}(g) - v_{m(j+1)}(g)$$

$$= (v_{m(j)}(g) - v_{m(j)+\eta_k}(g)) + (v_{m(j)+\eta_k}(g) - v_{m(j)+2\eta_k}(g)) + \dots$$

$$= \eta_k(\widetilde{v}_{m(j)+(\eta_k-1)/2}(g) + \widetilde{v}_{m(j)+(3\eta_k-1)/2}(g) + \dots + \widetilde{v}_{m(j+1)-(1+\eta_k)/2}(g)),$$

где $\eta_k = \eta_k(f,g) := \mathrm{sgn}\,(m(\nu_k-1)-m(\nu_k))$. Отсюда следует, что при вложении $h_{f,\tau'}^*|_{U_f}\colon U_f \hookrightarrow U_g$ коммутирующие векторные поля (a) $\widetilde{v}_i(f), \ i \in A(f),$ (b) $\widetilde{v}_j(f), \ j \in B(f),$ на U_f (потоки которых задают свободное действие группы $\mathbb{R}^{A(f)} \times \mathbb{R}^{B(f)}$ на U_f и свободное действие цилиндра $\mathbb{R}^{A(f)} \times (S^1)^{B(f)}$ на $U_f/(\mathscr{D}^0 \cap \Theta_f)^*$) переходят в следующие векторные поля на U_g :

- (a) $\widetilde{v}_{m(i)}(g)$ (при $\nu_e(g) < m(i) \le n(g)$) или $\widetilde{v}_{m(i)}(g) + \widetilde{v}_{m(i)+1}(g) + \ldots + \widetilde{v}_{\nu_t(g)}$ (при $\nu_{t-1}(g) < m(i) \le \nu_t(g), \ 1 \le t \le e(g)$),
- (b) $\widetilde{v}_{m(j)}(g)$ (при $1 \leq j \leq \nu_0(f)$) или $\eta_k(\widetilde{v}_{m(j)+(\eta_k-1)/2}(g)+\widetilde{v}_{m(j)+(\eta_k-1)/2+\eta_k}(g)+\ldots+\widetilde{v}_{m(j+1)-(1+\eta_k)/2}(g))$ (при $\nu_{k-1}(f) < j < \nu_k(f), \ 1 \leq k \leq e(f)),$

причем каждое поле $\widetilde{v}_m(g)$, $1 \le m \le n(g)$, входит в качестве слагаемого (с коэффициентом \pm) не более чем в одно из полей $(h_{f,\tau'}^*)_*(\widetilde{v}_\ell(f))$, $1 \le \ell \le n(f)$.

Из описанного поведения векторных полей \tilde{v}_{ℓ} , $1 \leq \ell \leq n$, при погружении (3.32) следует, что это погружение является допустимым погружением утолщенных цилиндров (см. определение 2.3(D)).

3.3 Построение косой цилиндрической ручки $\mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}}$ для класса изотопности $[f]_{\mathrm{isot}}$

Шаг 9. Рассмотрим стандартную цилиндрическую ручку $D_{[f]_{\text{isot}}} \times \mathbb{S}_{[f]_{\text{isot}}} = D_f \times \mathbb{S}_f = \tau_{J(\boldsymbol{c}(f))} \times (U_f/(\mathscr{D}^0 \cap \Theta_f)^*)$ и покомпонентное правое действие на ней дискретной группы

$$\Gamma_{[f]_{\mathrm{isot}}} = \Gamma_f \cong \widetilde{\Gamma}_f / \left(((\mathscr{D}^0 \cap \Theta_f)(\mathrm{stab}_{\mathscr{D}^0} f)^0) / (\mathrm{stab}_{\mathscr{D}^0} f)^0 \right),$$

где

$$\widetilde{\Gamma}_{[f]_{\text{isot}}} = \widetilde{\Gamma}_f := (\operatorname{stab}_{\mathscr{D}^0} f) / (\operatorname{stab}_{\mathscr{D}^0} f)^0, \tag{3.33}$$

допустимыми автоморфизмами (см. (3.28) и лемму 3.2). Покажем, что это действие (а также действие группы $\widetilde{\Gamma}_f$ на U_f^{∞}) свободно. Докажем две леммы.

Пемма 3.3. Если выполнено условие (2.2), то для любого диффеоморфизма $h \in \operatorname{stab}_{\mathcal{T}} f$ найдется ребро графа G_f (см. обозначения 2.2(B) и 2.5), переходящее в себя при отображении h.

Доказательство. Шаг 1. Пусть W_f – граф Кронрода-Риба функции f (см. [41] или [16]), т.е. граф W_f получен из поверхности M стягиванием в точку каждой компоненты связности линии уровня функции f. Обозначим через $p_f \colon M \to W_f$ естественную проекцию. Вершину графа W_f назовем $c\phi e$ puческой, если прообраз достаточно малой ее окрестности при отображении p_f гомеоморфен сфере с проколами. Вершину графа W_f назовем граничной (соответственно отмеченной), если ее прообраз при отображении p_f является компонентой края M (соответственно содержит отмеченную критическую точку функции f). Подграф графа W_f назовем $\mathrm{stab}_{\mathcal{T}} f$ -неподвиженым, если при автоморфизме $p_f \circ h \circ p_f^{-1}$ графа W_f , индуцированном любым диффеоморфизмом $h \in \mathrm{stab}_{\mathcal{T}} f$, любая вершина и любое ребро этого подграфа переходят в себя. Обозначим через W_f^\prime минимальный связный подграф графа W_f , содержащий каждый простой цикл графа W_f , каждую граничную вершину, каждую отмеченную вершину и каждую несферическую вершину. Он непуст и содержит неграничную вершину в силу (2.2). Покажем, что подграф W'_f является $\mathrm{stab}_{\mathcal{T}} f$ -неподвижным. Пусть $h \in \mathrm{stab}_{\mathcal{T}} f$. Так как hсохраняет неподвижными все отмеченные критические точки функции f и переводит в себя каждую компоненту края, то все отмеченные вершины и все граничные вершины $\mathrm{stab}_{\mathcal{T}}f$ -неподвижны. Ввиду $h \in \mathcal{T}$ индуцированный автоморфизм гомологий $h^* \in H_1(M)$ (см. обозначение 2.2(B)) совпадает с тождественным, поэтому каждая несферическая вершина $v \in W_f$ является $\mathrm{stab}_{\mathcal{T}} f$ -неподвижной, а каждый простой цикл на графе W_f переходит в себя с сохранением ориентации при отображении $p_f \circ h \circ p_f^{-1}$. Если пересечение двух простых циклов непусто и связно, то оно $\mathrm{stab}_{\mathcal{T}} f$ -неподвижно, поэтому такие циклы $\mathrm{stab}_{\mathcal{T}} f$ -неподвижны. Поэтому каждая компонента связности объединения простых циклов, не являющаяся простым циклом (или содержащая несферическую или отмеченную вершину), stab $_{\mathcal{T}}f$ -неподвижна. Пусть $W''_f \subset W_f$ — объединение всех простых циклов, множества несферических вершин и множества отмеченных вершин графа W_f , и пусть простой путь в графе W_f соединяет две компоненты связности графа W''_f и пересекается с W''_f только в концах. Такой путь единствен (для фиксированной пары компонент), а потому stab $_{\mathcal{T}}f$ -неподвижен (в силу $p_f \circ h \circ p_f^{-1}$ -инвариантности подграфа W''_f). Отсюда следует stab $_{\mathcal{T}}f$ -неподвижность подграфа W'_f .

Uаг 3. Вершину графа W_f назовем cunbho stab $_{\mathcal{T}}f$ -инвариантной, если ее степень в графе W_f больше 1 и при любом диффеоморфизме $h \in \operatorname{stab}_{\mathcal{T}} f$ каждая вершина и каждое ребро графа $p_f^{-1}(v) \subset G_f$ переходят в себя. Докажем, что в W_f' существует сильно $\mathrm{stab}_{\mathcal{T}} f$ -инвариантная вершина. Если вершина $v \in W'_f$ не является сильно $\mathrm{stab}_{\mathcal{T}} f$ -инвариантной, то либо ее степень в W_f равна 1, либо найдется такой диффеоморфизм $h \in \mathrm{stab}_{\mathcal{T}} f$, что количество неподвижных точек соответствующего индуцированного гомеоморфизма $\bar{h}\colon \overline{M'} o \overline{M'}$ (см. шаг 2 выше) согласно формуле Лефшеца равно $\chi(\overline{M'})$ и не меньше суммы $k_v + \deg_{W'_f} v$ числа k_v отмеченных критических точек в $p_f^{-1}(v)$ и степени $\deg_{W'_f} v$ вершины v в графе W'_f (т.е. $\chi(\overline{M'}) \ge k_v + \deg_{W'_f} v \ge 0$), откуда вершина vявляется сферической и $k_v + \deg_{W'_f} v \le 2$ (так как в противном случае $\chi(\overline{M'}) = k_v + \deg_{W'_f} v = 0$, откуда $W_f' = \{v\}, M$ — тор и все критические точки неотмечены, что противоречит (2.2)). Если все вершины графа W_f' не являются сильно $\mathrm{stab}_{\mathcal{T}} f$ -инвариантными, то по доказанному выше каждая вершина $v \in W_f'$ сферическая и либо имеет степень 1 в W_f , либо имеет степень $\deg_{W_f'} v \le 2 - k_v \le 2$ в W_f' , откуда граф W_f' является простой ломаной, все его внутренние вершины неотмечены (так как $k_v = 0$ в случае $\deg_{W'_f} v = 2$), а сумма значений k_v для концевых вершин $v \in \partial W'_f$, не являющихся граничными, не превосходит $2-d^+-d^-=\chi(M)$ (так как $k_v\leq 1$ при $\deg_{W'_x}v=1$, и $k_v\leq 2$ при $\deg_{W'_{\epsilon}} v = 0$), откуда общее количество отмеченных критических точек $\leq \chi(M)$, что противоречит (2.2). Лемма 3.3 доказана.

Лемма 3.4. Пусть выполнено условие (2.2). Пусть функция Морса $f \in F^1$, класс относительных 1-когомологий $u \in U_f^{\infty}$, диффеоморфизм $h \in \operatorname{stab}_{\mathcal{T}} f$ (см. обозначение 2.2(B)) и мультискручивание Дэна $h_1 \in \Theta_f$ удовлетворяют условию $h^*(u) = h_1^*(u)$. Тогда $hh_1^{-1} \in (\operatorname{stab}_{\mathscr{D}} f)^0$, см. (3.28).

Доказательство. По лемме 3.3 найдется ребро графа G_f , переходящее в себя при отображении h. Пусть C_f — компонента связности графа G_f , содержащая это ребро, и пусть Z_ℓ — открытый цилиндр, одна из компонент границы которого (скажем, нижнее основание $\partial^- Z_\ell$) имеет общее ребро с графом C_f (см. (3.14)). Тогда любое ребро графа $C_f \cup \partial^- Z_\ell$ и цилиндр Z_ℓ тоже переходят в себя при отображении h. Так как пути $\widetilde{e}_\ell, h_1(\widetilde{e}_\ell) \subset \overline{Z_\ell}$ выходят из одной и той же точки (принадлежащей $\partial^- Z_\ell$), то 1-цепь $h(\widetilde{e}_\ell) - h_1(\widetilde{e}_\ell)$ гомологична некоторой линейной комбинации $\sum_{i=1}^{2q} \lambda_i e_i$ ориентированных ребер основания $\partial^+ Z_\ell$ с целыми коэффициентами, причем все коэффициенты λ_i

либо неотрицательны, либо неположительны одновременно. Но

$$\sum_{i=1}^{2q} \lambda_i u([e_i]) = u([h(\widetilde{e}_{\ell})] - [h_1(\widetilde{e}_{\ell})]) = (h^*(u) - h_1^*(u))([\widetilde{e}_{\ell}]) = 0$$

по предположению. Так как значение 1-коцикла $u \in U_f^{\infty}$ на каждом ориентированном ребре $e_1,\ldots,e_{2q} \subset G_f$ положительно (см. (3.13)), то линейная комбинация тривиальна. Значит, $[h(\widetilde{e}_{\ell})] = [h_1(\widetilde{e}_{\ell})]$, откуда $hh_1^{-1}|_{\overline{Z}_{\ell}}$ гомотопно $\mathrm{id}_{\overline{Z}_{\ell}}$ в классе гомеоморфизмов, сохраняющих функцию $f|_{\overline{Z}_{\ell}}$ и переводящих вершины графа ∂Z_{ℓ} в себя. Эти рассуждения показывают (с использованием связности M), что $hh_1^{-1} \in (\mathrm{stab}_{\mathscr{D}^0}f)^0$. Лемма доказана.

В силу (3.28) и леммы 3.4 группа Γ_f действует свободно на утолщенном цилиндре $\mathbb{S}_f = U_f/(\mathscr{D}^0 \cap \Theta_f)^*$, поэтому она действует свободно на стандартной цилиндрической ручке $D_f \times \mathbb{S}_f$ допустимыми автоморфизмами (см. лемму 3.2), а потому конечна (см. определение 2.3(В)). Значит, пространство орбит

$$\mathbb{D}_{[f]_{\text{isot}}}^{\text{st}} = \mathbb{D}_{f}^{\text{st}} := (D_f \times \mathbb{S}_f)/\Gamma_f \approx (\tau_{J(\boldsymbol{c}(f))} \times U_f)/\widetilde{\Gamma}_f$$
(3.34)

является стандартной косой цилиндрической ручкой (см. (3.33) и определение 2.3(С)).

Шаг 10. Изучим взаимосвязь стандартных косых цилиндрических ручек $\mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}}$, $\mathbb{D}^{\mathrm{st}}_{[g]_{\mathrm{isot}}}$ для примыкающих классов изотопности $[f]_{\mathrm{isot}} \prec [g]_{\mathrm{isot}}$. Пусть $f \in F^1$ — отмеченная функция Морса класса изотопности $[f]_{\mathrm{isot}}$. Для любой грани $\tau' \prec \tau_{J(\mathbf{c}(f))} = D_{[f]_{\mathrm{isot}}} = D_f$ обозначим через $g \in F^1$ отмеченную функцию класса изотопности $[g]_{\mathrm{isot}} = \delta_{\tau'}[f]_{\mathrm{isot}}$ (см. (3.3)). Рассмотрим погружение

$$h_{f,\tau'}^{*0}|_{\tau'} \times [h_{f,\tau'}^*|_{U_f}] \colon \tau' \times \mathbb{S}_f \hookrightarrow D_g \times \mathbb{S}_g,$$

$$(\mathbf{c}, (\mathscr{D}^0 \cap \Theta_f)^*(u)) \mapsto (h_{f,\tau'}^{*0}(\mathbf{c}), (\mathscr{D}^0 \cap \Theta_g)^* h_{f,\tau'}^*(u)),$$
(3.35)

являющееся прямым произведением изометрии (3.6) евклидовых многогранников и допустимого погружения (3.32) утолщенных цилиндров, т.е. допустимым погружением стандартных цилиндрических ручек (см. определение 2.3(D)). Рассмотрим орбиту грани $\tau' \subset \partial D_f$ при действии группы Γ_f (см. (3.33)) изометриями многогранника D_f , и следующие два объединения его граней:

$$\Gamma_f(\tau') := \bigcup_{h \in \operatorname{stab}_{\mathscr{D}^0} f} h^{*0}(\tau') \subseteq \bigcup_{\delta_{\tau'_1}[f]_{\text{isot}} = [g]_{\text{isot}}} \tau'_1 =: \partial_{[g]_{\text{isot}}} D_{[f]_{\text{isot}}} = \partial_g D_f, \tag{3.36}$$

см. (3.3). Включение в (3.36) следует из того, что $\delta_{h^{*0}(\tau')}[f]_{\mathrm{isot}} = [gh]_{\mathrm{isot}} = [g]_{\mathrm{isot}}$ ввиду включения $h \in \mathscr{D}^0$. Итак, (допустимые) погружения, отвечающие этим граням, имеют одну и ту же область значений – стандартную цилиндрическую ручку $D_g \times \mathbb{S}_g$. Любые две такие грани либо совпадают, либо не пересекаются в силу леммы 3.1. Рассмотрим погружение, составленное из (допустимых) погружений этих граней:

$$(\partial_g D_f) \times \mathbb{S}_f \hookrightarrow D_g \times \mathbb{S}_g, \quad (\mathbf{c}, (\mathscr{D}^0 \cap \Theta_f)^*(u)) \mapsto (h_{f,\tau_1'}^{*0}(\mathbf{c}), (\mathscr{D}^0 \cap \Theta_g)^* h_{f,\tau_1'}^*(u)),$$

 $(c,u) \in \tau_1' \times U_f$. Это отображение корректно определено (и является погружением), так как грани $\tau_1' \in (\delta[f]_{\mathrm{isot}})^{-1}([g]_{\mathrm{isot}})$ попарно не пересекаются (см. выше). Оно переводит любую Γ_f -орбиту в некоторую Γ_g -орбиту, так как ввиду (3.9) для любого $h \in \mathrm{stab}_{\mathscr{D}^0}f$ точки $(c,u) \in \tau_1' \times U_f$ и $(h^{*0}(c),h^*(u)) \in (h^{*0}(\tau_1')) \times U_f$ переходят в элементы $(h_{f,\tau_1'}^{*0}(c),(\mathscr{D}^0\cap\Theta_g)^*h_{f,\tau_1'}^*(u))$ и

 $(h_{f,h^{*0}(\tau_1')}^{*0}h^{*0}(\mathbf{c}), (\mathscr{D}^0 \cap \Theta_g)^*h_{f,h^{*0}(\tau_1')}^*h^*(u)) \stackrel{?}{=} (h_1^{*0}h_{f,\tau_1'}^{*0}(\mathbf{c}), (\mathscr{D}^0 \cap \Theta_g)^*h_1^*h_{f,\tau_1'}^*(u))$ одной и той же Γ_g -орбиты, где $h_1 \in \operatorname{stab}_{\mathscr{D}^0}g$. Поэтому это погружение индуцирует корректно определенное погружение пространств орбит:

$$\chi_{[f]_{\mathrm{isot}},[g]_{\mathrm{isot}}} = \chi_{f,g} \colon \left(\left(\partial_g D_f \right) \times \mathbb{S}_f \right) / \Gamma_f \hookrightarrow \left(D_g \times \mathbb{S}_g \right) / \Gamma_g,$$

$$\Gamma_f(\boldsymbol{c}, (\mathscr{D}^0 \cap \Theta_f)^*(u)) \mapsto \Gamma_g(h_{f,\tau_1'}^{*0}(\boldsymbol{c}), (\mathscr{D}^0 \cap \Theta_g)^*h_{f,\tau_1'}^*(u)), \qquad (\boldsymbol{c}, u) \in \tau_1' \times U_f,$$

где $[g]_{\mathrm{isot}}=\delta_{ au_1'}[f]_{\mathrm{isot}}$ (см. (3.3)). (Оно является погружением, так как группы Γ_f,Γ_g конечны и действуют свободно.) Рассмотрим его ограничение:

$$\chi_{[f]_{\mathrm{isot},\tau'}} = \chi_{f,\tau'} := \chi_{f,g}|_{\left(\left(\Gamma_f(\tau')\right)\times\mathbb{S}_f\right)/\Gamma_f} \colon \left(\left(\Gamma_f(\tau')\right)\times\mathbb{S}_f\right)/\Gamma_f \stackrel{(*)}{\approx} \left(\tau'\times\mathbb{S}_f\right)/\Gamma_{f,\tau'} \approx$$

$$\approx \left(\tau'\times U_f\right)/\widetilde{\Gamma}_{f,\tau'} \hookrightarrow \mathbb{D}^{\mathrm{st}}_{[g]_{\mathrm{isot}}} = \mathbb{D}^{\mathrm{st}}_g = (D_g\times\mathbb{S}_g)/\Gamma_g \approx (D_g\times U_g)/\widetilde{\Gamma}_g,$$

$$\widetilde{\Gamma}_{f,\tau'}(\boldsymbol{c},u) \mapsto \widetilde{\Gamma}_g(h_{f,\tau'}^{*0}(\boldsymbol{c}),h_{f,\tau'}^*(u)), \quad (\boldsymbol{c},u) \in \tau'\times U_f,$$

$$\Gamma_{f,\tau'} := \widetilde{\Gamma}_{f,\tau'}/\left(((\mathscr{D}^0 \cap \Theta_f)(\mathrm{stab}_{\mathscr{D}^0}f)^0)/(\mathrm{stab}_{\mathscr{D}^0}f)^0\right), \quad \widetilde{\Gamma}_{f,\tau'} := \mathrm{stab}_{\widetilde{\Gamma}_f}\tau',$$

где гомеоморфизм (*) следует из того, что при $h \in \mathrm{stab}_{\mathscr{D}^0} f$ грани $\tau', h^{*0}(\tau')$ либо совпадают, либо не пересекаются (см. выше). Итак, областью определения погружения $\chi_{f,\tau'}$ является косая грань

$$\partial_{\tau'} \mathbb{D}_{[f]_{\text{isot}}}^{\text{st}} = \partial_{\tau'} \mathbb{D}_{f}^{\text{st}} := \left(\left(\Gamma_{f}(\tau') \right) \times \mathbb{S}_{f} \right) / \Gamma_{f}$$
(3.37)

стандартной косой цилиндрической ручки $\mathbb{D}_f^{\mathrm{st}} = (D_f \times \mathbb{S}_f)/\Gamma_f$, т.е. образ грани $\tau' \times \mathbb{S}_f$ стандартной цилиндрической ручки $D_f \times \mathbb{S}_f$ при проекции $D_f \times \mathbb{S}_f \to \mathbb{D}_f^{\mathrm{st}}$. А областью определения погружения $\chi_{f,g}$ является объединение попарно непересекающихся косых граней ручки $\mathbb{D}_f^{\mathrm{st}}$:

$$\partial_{[g]_{\text{isot}}} \mathbb{D}_{[f]_{\text{isot}}}^{\text{st}} = \partial_g \mathbb{D}_f^{\text{st}} := \left(\left(\partial_g D_f \right) \times \mathbb{S}_f \right) / \Gamma_f. \tag{3.38}$$

Подчеркнем, что $\partial_{\tau'} \mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}} = \partial_{\tau_1'} \mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}}, \, \chi_{f,\tau'} = \chi_{f,\tau_1'}$ для любой грани $\tau_1' \in \Gamma_f(\tau')$. Пусть $[f]_{\mathrm{isot}} \prec [g]_{\mathrm{isot}} \prec [g_1]_{\mathrm{isot}}, \,$ причем $[g]_{\mathrm{isot}} = \delta_{\tau'}[f]_{\mathrm{isot}}, \, [g_1]_{\mathrm{isot}} = \delta_{\tau''}[f]_{\mathrm{isot}}$ для некоторых граней $\tau'' \prec \tau' \prec \tau_{J(\mathbf{c})}$, и пусть f, g, g_1 — отмеченные функции своих классов изотопности. Из (3.8) и того, что группы $\mathrm{Diff}^0(M,\mathcal{C}_{g_1})$ и $\mathrm{stab}_{\mathscr{D}^0}g_1$ действуют тривиально на косой ручке $\mathbb{D}_{q_1}^{\mathrm{st}}$, получаем

$$\chi_{g,g_1} \circ \chi_{f,g}|_{\partial_{\tau''}\mathbb{D}_f^{\mathrm{st}}} = \chi_{g,h_{f,\tau'}^{*0}(\tau'')} \circ \chi_{f,\tau'}|_{\partial_{\tau''}\mathbb{D}_f^{\mathrm{st}}} = \chi_{f,\tau''} = \chi_{f,g_1}|_{\partial_{\tau''}\mathbb{D}_f^{\mathrm{st}}}.$$
(3.39)

Покажем, что погружение $\chi_{f,g}$ является вложением (а потому $\chi_{f, au'}$ является мономорфизмом стандартных косых цилиндрических ручек, см. определение 2.3(D), ввиду допустимости погружения (3.35)). Предположим, что $u_1, u_2 \in U_f^{\infty}$ и $h_{f,\tau'}^*(u_1) = h^* h_{f,\tau'}^*(u_2)$ для некоторых $h \in \operatorname{stab}_{\mathscr{D}^0} g$ и $\tau'_1 \prec D_f$, таких что $\delta_{\tau_1'}[f]_{\mathrm{isot}} = \delta_{\tau'}[f]_{\mathrm{isot}} = [g]_{\mathrm{isot}}$. Покажем, что $u_1 \in \widetilde{\Gamma}_f^*(u_2)$, где $\widetilde{\Gamma}_f^* \subset \mathrm{Aut}(H_f^1)$ — группа автоморфизмов относительных когомологий, индуцированная группой классов отображений $\widetilde{\Gamma}_f =$ $(\operatorname{stab}_{\mathscr{D}^0} f)/(\operatorname{stab}_{\mathscr{D}^0} f)^0$. Имеем

$$u_{1} = (h_{f,\tau'}^{*})^{-1}h^{*}h_{f,\tau'_{1}}^{*}(u_{2}) = (h_{f,\tau'_{1}}hh_{f,\tau'}^{-1})^{*}(u_{2})$$

$$= (h_{0;f,\tilde{f}_{1}}h_{1;\tilde{f}_{1},g}hh_{1;\tilde{f}_{1}}^{-1}h_{0;f,\tilde{f}}^{-1})^{*}(u_{2}) = (h_{0;f,\tilde{f}_{1}}h_{1;\tilde{f}_{1},\tilde{f}}h_{0;f,\tilde{f}}^{-1})^{*}(u_{2}) = h_{1}^{*}(u_{2}),$$

$$(3.40)$$

где "возмущенным" функциям $\widetilde{f},\widetilde{f}_1$ отвечают грани τ',τ'_1 по правилу (3.3), $h_{1;\widetilde{f}_1,\widetilde{f}}:=h_{1;\widetilde{f}_1,g}hh_{1;\widetilde{f},g}^{-1}$ $h_1:=h_{0;f,\widetilde{f}_1}h_{1;\widetilde{f}_1,\widetilde{f}}h_{0;f,\widetilde{f}}^{-1}$. Так как диффеоморфизм $h_{1;\widetilde{f}_1,\widetilde{f}}\in\mathscr{D}^0$ переводит линии уровня функции \widetilde{f} в линии уровня функции \widetilde{f}_1 с сохранением направления роста (в силу $h \in \operatorname{stab}_{\mathscr{D}^0} g$), то $\widetilde{f} = h_2 \widetilde{f}_1 h_{1;\widetilde{f}_1,\widetilde{f}}$ для некоторого $h_2\in {\rm Diff}^+[-1;1],$ откуда $\widetilde{f}=h_2\widetilde{f}_1(h_{0;f,\widetilde{f}_1}^{-1}h_1h_{0;f,\widetilde{f}}),$ т.е. диффеоморфизм $h_1\in \mathscr{D}^0$ переводит линии уровня функции $\widetilde{f}^*:=\widetilde{f}h_{0:f,\widetilde{f}}^{-1}$ в линии уровня функции $\widetilde{f}_1^*:=\widetilde{f}_1h_{0:f,\widetilde{f}_1}^{-1}$ с сохранением направления роста. Отсюда и из того, что обе "возмущенные" функции $\widetilde{f}^*, \widetilde{f}_1^*$ близки к f и имеют те же критические точки, что и "невозмущенная" функция f, следует, что $h_1 \in \mathrm{Diff}(M,\mathcal{C}_{f,0},\mathcal{C}_{f,1},\mathcal{C}_{f,2})$. Осталось доказать, что $h_1 \in (\mathrm{stab}_{\mathscr{D}^0} f)(\mathrm{Diff}^0(M,\mathcal{C}_f))$. Так как $\widetilde{f}^* = h_2 \widetilde{f}_1^* h_1$, то

$$h_1(G_{\widetilde{f}^*}) = G_{\widetilde{f}_1^*}, \ J(c(\widetilde{f}_1^*h_1)) = J(c(\widetilde{f}^*)) =: \widehat{J}, \ \Rightarrow \ J(c(fh_1)) = J(c(f)) =: J$$
 (3.41)

(так как из того, что перестановка $h_1|_{\mathcal{C}_{f,1}}\colon \mathcal{C}_{f,1}\to \mathcal{C}_{f,1}$ седловых точек переводит отношение частичного порядка $J(\mathbf{c}(\widetilde{f}_1^*))$ на множестве $\mathcal{C}_{f,1}$ значениями одной "возмущенной" 0-коцепи $\mathbf{c}(\widetilde{f}_1^*)=\widetilde{f}_1^*|_{\mathcal{C}_{f,1}}\in C^0(\mathcal{C}_{f,1};\mathbb{R})$ в отношение частичного порядка $J(\mathbf{c}(\widetilde{f}^*))$ на множестве $\mathcal{C}_{f,1}$ значениями другой "возмущенной" 0-коцепи $\mathbf{c}(\widetilde{f}^*)=\widetilde{f}^*|_{\mathcal{C}_{f,1}}\in C^0(\mathcal{C}_{f,1};\mathbb{R})$, следует сохранение этой перестановкой "более слабого" отношения частичного порядка на $\mathcal{C}_{f,1}$ значениями "невозмущенной" 0-коцепи $\mathbf{c}(f)=f|_{\mathcal{C}_{f,1}}\in C^0(\mathcal{C}_{f,1};\mathbb{R})$). Так как функции f,fh_1 имеют одни и те же множества $\mathcal{C}_{f,0},\mathcal{C}_{f,1},\mathcal{C}_{f,2}$ критических точек минимумов, седловых точек и точек максимумов, то, согласно (3.41) и достаточному условию изотопности функций Морса (см. [31, лемма 1]), достаточно показать совпадение графов $G_{fh_1}=h_0(G_f)$ для некоторого диффеоморфизма $h_0\in \mathrm{Diff}^0(M,\mathcal{C}_f)$, см. обозначение 2.5 и (3.8) (т.е. что графы G_f и G_{fh_1} изотопны в поверхности $M':=M\setminus (\mathcal{C}_{f,0}\cup \mathcal{C}_{f,2})$ относительно множества вершин $\mathcal{C}_{f,1}$). Обозначим $\mathcal{C}_{f,0,2}:=\mathcal{C}_{f,0}\cup \mathcal{C}_{f,2}$.

Лемма 3.5. Пусть $f \in F^1$, $u \in U_f^\infty \subset H_f^1$, и пусть в обозначениях (3.3) возмущенной функции $\widetilde{f}^* := \widetilde{f}h_{0;f,\widetilde{f}}^{-1}$ отвечает грань $\tau' := \tau_{J(\mathbf{c}(\widetilde{f}^*))} \prec \tau_{J(\mathbf{c}(f))}$. Тогда граф $G_f \subset M$ (см. обозначение 2.5) совпадает с точностью до диффеоморфизмов из $\mathrm{Diff}^0(M,\mathcal{C}_f)$ с некоторым графом $G := G_{M,\mathcal{C}_{f,0,2},G_{\widetilde{f}^*},u,\widehat{J},J} \subset M$, рассматриваемым с точностью до диффеоморфизмов из $\mathrm{Diff}^0(M,\mathcal{C}_{f,0,2} \cup V(G))$ и определяемым следующим набором данных: (i) поверхность M; (ii) подмножество $C_{f,0,2} := C_{f,0} \cup C_{f,2} \subset M$; (iii) граф $G_{\widetilde{f}^*} \subset M' := M \backslash C_{f,0,2}$, рассматриваемый с точностью до диффеоморфизмов из $\mathrm{Diff}^0(M,\mathcal{C}_{f,0,2} \cup V(G_{\widetilde{f}^*}))$; (iv) класс относительных 1-когомологий $u \in U_f^\infty \subset H_f^1 = H^1(M',V(G_{\widetilde{f}^*});\mathbb{R})$; (v) два отношения частичного порядка $\widehat{J} := J(\mathbf{c}(\widetilde{f}^*)) \prec J := J(\mathbf{c}(f))$ на множестве $V(G_{\widetilde{f}^*})$ вершин графа $G_{\widetilde{f}^*}$ значениями функций f,\widetilde{f}^* на вершинах (соответственно), где через $V(G) \subset G$ обозначено множество вершин графа G. То есть, если набор данных (i)–(v) построен указанным способом по паре "невозмущенной" и "возмущенной" функций f,\widetilde{f}^* , имеющих одно и то же множество критических точек, то $G_f \in (\mathrm{Diff}^0(M,\mathcal{C}_f))(G)$ для $G := G_{M,\mathcal{C}_{f,0,2},G_{\widetilde{f}^*},u,\widetilde{f},J}$ (т.е. графи G_f и G изотопны в поверхности G0 относительно множества вершин G1.

Доказательство. Сначала проведем доказательство в случае, когда $\tau':=\tau_{\widehat{J}}$ является гипергранью грани $\tau:=\tau_J$. Обозначим "возмущенную" функцию через $\widetilde{f}_1:=\widetilde{f}^*$. Граф $G=G_{M,\mathcal{C}_{f,0,2},G_{\widetilde{f}_1},u,\widehat{J},J}\subset M$ строится так. Так как $\tau':=\tau_{\widehat{J}}\prec\tau:=\tau_J$ – гипергрань, то ровно одно из седловых критических значений $c\in f(\mathcal{C}_{f,1})$ "невозмущенной" функции f распадается на два седловых критических значения $c^-< c^+$ "возмущенной" функции \widetilde{f}_1 . Пусть $Z_\ell\subset M\setminus G_{\widetilde{f}_1}$ – такая компонента связности множества $M\setminus G_{\widetilde{f}_1}$, что inf $\widetilde{f}_1|_{Z_\ell}=c^-$ и sup $\widetilde{f}_1|_{Z_\ell}=c^+$ (т.е. Z_ℓ является открытым цилиндром для функции \widetilde{f}_1 , см. (3.14)). Ориентированный граф $G\subset \overline{Z_\ell}$ назовем Z_ℓ -допустимым, если его множество вершин содержится в множестве вершин графа $G_{\widetilde{f}_1}$, а внутренность каждого его ребра содержится в Z_ℓ ; Z_ℓ -допустимый однореберный ориентированный граф γ_0 с параметризацией $\gamma_0\colon [0;1]\to \overline{Z_\ell}$ назовем (Z_ℓ,u) -минимальным, если

$$u([\gamma_0]) = \min \left\{ u([\gamma]) \ \middle| \ \gamma \in Z_\ell^{\mathrm{adm}}, \ \gamma|_{[0;1/2]} = \gamma_0|_{[0;1/2]}, \ u([\gamma]) > 0 \right\},$$

где через Z_ℓ^{adm} обозначено множество Z_ℓ -допустимых однореберных графов. Из включений $u\in U_f^\infty\subset U_{\widetilde{f}_1}^\infty$ и определения подмножества $U_{\widetilde{f}_1}^\infty\subset H_f^1$ следует, что указанный минимум достигается

для любого Z_ℓ -допустимого однореберного графа γ_0 , причем ровно на одном Z_ℓ -допустимом однореберном графе с точностью до гомотопии в классе Z_ℓ -допустимых графов. Более того, имеется Z_ℓ -допустимый ориентированный граф $G_\ell \subset \overline{Z_\ell}$, каждое ребро которого является (Z_ℓ, u) -минимальным и который содержит в качестве ровно одного из своих ребер любой (Z_ℓ, u) -минимальный однореберный граф с точностью до гомотопии в классе Z_ℓ -допустимых графов. Причем граф G_ℓ с указанным свойством единствен с точностью до гомотопии в классе Z_ℓ -допустимых графов. Обозначим через $G \subset M$ граф, полученный из графа $G_{\widetilde{f}_1}$ заменой подграфа ∂Z_ℓ соответствующим графом G_ℓ для каждой компоненты связности $Z_\ell \subset M \setminus G_{\widetilde{f}_1}$, такой что $Z_\ell \subset \widetilde{f}_1^{-1}([c^-;c^+])$. Нетрудно показывается, что $G_f \in (\mathrm{Diff}^0(M,\mathcal{C}_f))(G)$.

В общем случае имеются такие последовательности граней $\tau',\tau'',\ldots,\tau^{(j-1)}$ грани $\tau=:\tau^{(j)}$ и соответствующих отношений частичного порядка $\widehat{J}=:J',J'',\ldots,J^{(j-1)},J^{(j)}:=J,$ что $\tau^{(i-1)}=\tau_{J^{(i-1)}}$ является гипергранью грани $\tau^{(i)}=\tau_{J^{(i)}},$ $2\leq i\leq j.$ Пусть $\widetilde{f}_j:=f$ – невозмущенная функция, и \widetilde{f}_i – возмущенная функция, которой отвечает грань $\tau^{(i)}$ по правилу (3.3), причем $\mathcal{C}_{\widetilde{f}_i}=\mathcal{C}_f,$ $1\leq i\leq j-1.$ Определим индуктивно по графу $G':=G_{\widetilde{f}_1}=G_{\widetilde{f}^*}\subset M$ графы $G^{(i+1)}:=G_{M,\mathcal{C}_{f,0,2},G^{(i)},u,J^{(i)},J^{(i+1)}}$ при $i=1,2,\ldots,j-1.$ Положим $G_{M,\mathcal{C}_{f,0,2},G_{\widetilde{f}_1},u,\widehat{J},J}:=G^{(j)}.$ Из доказанного выше следует (по индукции), что $G_{\widetilde{f}_{i+1}}\in (\mathrm{Diff}^0(M,\mathcal{C}_f))(G^{(i+1)})$ при $i=1,2,\ldots,j-1.$ В частности, $G_f=G_{\widetilde{f}_j}\in (\mathrm{Diff}^0(M,\mathcal{C}_f))(G^{(j)}).$ Лемма 3.5 доказана.

Из леммы 3.5 следует ввиду (3.40) и (3.41), что

$$\begin{split} G_f \in (\mathrm{Diff}^0(M,\mathcal{C}_f))(G_{M,\mathcal{C}_{f,0,2},G_{\tilde{f}^*},u_1,\widehat{J},J}), \\ G_f \in (\mathrm{Diff}^0(M,\mathcal{C}_f))(G_{M,\mathcal{C}_{f,0,2},G_{\tilde{f}^*},u_2,J(\mathbf{c}(\tilde{f}^*_1)),J}), \\ G_{fh_1} \in (\mathrm{Diff}^0(M,\mathcal{C}_{fh_1}))(G_{M,h_1^{-1}(\mathcal{C}_{f,0,2}),h_1^{-1}(G_{\tilde{f}^*_1}),h_1^*(u_2),J(\mathbf{c}(\tilde{f}^*_1h_1)),J(\mathbf{c}(fh_1))}) \\ = (\mathrm{Diff}^0(M,\mathcal{C}_f))(G_{M,\mathcal{C}_{f,0,2},G_{\tilde{f}^*},u_1,\widehat{J},J}) = (\mathrm{Diff}^0(M,\mathcal{C}_f))(G_f), \end{split}$$

т.е. следует требуемое включение $G_{fh_1} \in (\mathrm{Diff}^0(M,\mathcal{C}_f))(G_f)$. Таким образом, $h_1 \in (\mathrm{stab}_{\mathscr{D}^0}f)(\mathrm{Diff}^0(M,\mathcal{C}_f))$, откуда $u_1 \in \widetilde{\Gamma}_f^*(u_2)$, а значит, отображение $\chi_{f,g}$ является вложением.

4 Построение комплекса $\widetilde{\mathbb{K}}$ оснащенных функций Морса

В данном параграфе строится косой цилиндрически-полиэдральный комплекс $\widetilde{\mathbb{K}}$ (см. определение $2.4(\mathrm{B})$), удовлетворяющий условиям теоремы 2.6. Мы получим комплекс $\widetilde{\mathbb{K}}$ из стандартных косых цилиндрических ручек, описанных в §3, путем приклеивания друг к другу по построенным там отображениям инцидентности. Конструкция, приведенная в данном параграфе, является обобщением конструкции из [8, §5], где были построены (при дополнительном ограничении $p=p^*, q=q^*, r=r^*$, т.е. когда все критические точки фиксированы) более простые комплексы \widetilde{K} и K (комплексы функций Морса), являющиеся строго полиэдральными комплексами (см. определение 2.4,(C)).

Пусть $f_* \in F^1$ – базисная функция Морса (см. определение 2.1(A)). В каждом классе изотопности $[f]_{\text{isot}}$ рассмотрим отмеченную функцию $f \in [f]_{\text{isot}}$ этого класса с множествами критических точек $\mathcal{C}_{f,\lambda} = \mathcal{C}_{f_*,\lambda}$, $\lambda = 0,1,2$ (см. §3, шаг 2), тогда $H_f^0 = H_{f_*}^0$, $H_f^1 = H_{f_*}^1$. Рассмотрим топологическое пространство

$$(F^1/\sim_{\mathrm{isot}})^{\mathrm{discr}} \times \mathcal{P}_{f_*}^{q-1} \times H_{f_*}^1 \approx (F^1/\sim_{\mathrm{isot}})^{\mathrm{discr}} \times \mathcal{P}^{q-1} \times \mathbb{R}^{2q},$$

где $(F^1/\sim_{\mathrm{isot}})^{\mathrm{discr}}:=F^1/\sim_{\mathrm{isot}}$ с дискретной топологией, а евклидов многогранник $\mathcal{P}_{f_*}^{q-1}\approx\mathcal{P}^{q-1}$ и векторное пространство $H_{f_*}^1\approx\mathbb{R}^{2q}$ определены как в §3, шаги 1, 4 и (3.10). Рассмотрим в этом

топологическом пространстве подпространство

$$\widetilde{\mathbb{X}} := \bigcup_{[f]_{\text{isot}} \in F^1/\sim_{\text{isot}}} \{ [f]_{\text{isot}} \} \times D_{[f]_{\text{isot}}} \times U_{[f]_{\text{isot}}}$$

$$\tag{4.1}$$

с индуцированной топологией (см. §3, шаг 2 и (3.12)).

Определение 4.1 (комплекс $\widetilde{\mathbb{K}}$ оснащенных функций Морса). Рассмотрим факторпространство $\widetilde{\mathbb{K}} := (\widetilde{\mathbb{X}}/\sim)/\sim_{\mathrm{glue}}$ с фактортопологией, где отношения эквивалентности \sim , \sim_{glue} на пространствах $\widetilde{\mathbb{X}}$, $\widetilde{\mathbb{Y}} := \widetilde{\mathbb{X}}/\sim$ порождены следующими отношениями соответственно:

(отношение \sim на $\widetilde{\mathbb{X}}$; стандартная косая цилиндрическая ручка $\mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}}$) для каждого класса изотопности $[f]_{\mathrm{isot}}$ рассмотрим проекцию $D_{[f]_{\mathrm{isot}}} \times U_{[f]_{\mathrm{isot}}} \to (D_{[f]_{\mathrm{isot}}} \times U_{[f]_{\mathrm{isot}}})/\widetilde{\Gamma}_{[f]_{\mathrm{isot}}} = \mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}}$ на стандартную косую цилиндрическую ручку $\mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}}$ индекса $k = \dim D_{[f]_{\mathrm{isot}}}$ (см. §3, шаг 9), рассмотрим проекцию $\{[f]_{\mathrm{isot}}\} \times D_{[f]_{\mathrm{isot}}} \to \{[f]_{\mathrm{isot}}\} \times \mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}} =: \boldsymbol{v}_{[f]_{\mathrm{isot}}},$ являющуюся прямым произведением отображения $\{[f]_{\mathrm{isot}}\} \to \{[f]_{\mathrm{isot}}\}$ и этой проекции, и назовем точки множества $\{[f]_{\mathrm{isot}}\} \times D_{[f]_{\mathrm{isot}}} \times U_{[f]_{\mathrm{isot}}} \times U_{[f]_{\mathrm{isot}}}$ \sim -эквивалентными, если их образы в $\boldsymbol{v}_{[f]_{\mathrm{isot}}}$ при последней проекции совпадают; тогда $\widetilde{\mathbb{Y}} := \widetilde{\mathbb{X}}/\sim = \bigcup_{[f]_{\mathrm{isot}}} \boldsymbol{v}_{[f]_{\mathrm{isot}}};$

(отношение \sim_{glue} на $\widetilde{\mathbb{Y}}$; отображения инцидентности) для каждой пары примыкающих классов $[f]_{\text{isot}} \prec [g]_{\text{isot}}$ рассмотрим вложение, называемое *отображением инцидентности*: $\chi_{[f]_{\text{isot}},[g]_{\text{isot}}} : \partial_{[g]_{\text{isot}}} \mathbb{D}^{\text{st}}_{[f]_{\text{isot}}} \hookrightarrow \mathbb{D}^{\text{st}}_{[g]_{\text{isot}}}$ (см. §3, шаги 3 и 10), где $\partial_{[g]_{\text{isot}}} \mathbb{D}^{\text{st}}_{[f]_{\text{isot}}}$ содержится в подошве $\partial \mathbb{D}^{\text{st}}_{[f]_{\text{isot}}}$ стандартной косой цилиндрической ручки $\mathbb{D}^{\text{st}}_{[f]_{\text{isot}}}$ и является объединением ее попарно непересекающихся косых граней $\partial_{\tau'} \mathbb{D}^{\text{st}}_{[f]_{\text{isot}}} \subset \partial \mathbb{D}^{\text{st}}_{[f]_{\text{isot}}}$, см. (3.37), (3.38); рассмотрим индуцированное вложение $\partial_{[g]_{\text{isot}}} \boldsymbol{v}_{[f]_{\text{isot}}} := \{[f]_{\text{isot}}\} \times (\partial_{[g]_{\text{isot}}} \mathbb{D}^{\text{st}}_{[f]_{\text{isot}}}) \hookrightarrow \boldsymbol{v}_{[g]_{\text{isot}}}$ (которое тоже обозначим через $\chi_{[f]_{\text{isot}},[g]_{\text{isot}}}$); назовем любую точку множества $\partial_{[g]_{\text{isot}}} \boldsymbol{v}_{[f]_{\text{isot}}} \subset \widetilde{\mathbb{Y}}$ и ее образ в $\boldsymbol{v}_{[g]_{\text{isot}}} \subset \widetilde{\mathbb{Y}}$ при данном вложении \sim_{glue} -эквивалентными.

Пусть $p_Y \colon \widetilde{\mathbb{Y}} \to \widetilde{\mathbb{K}}$ – каноническая проекция. Рассмотрим подмножество $\mathring{\widetilde{\mathbb{Y}}} \coloneqq \bigcup_{[f]_{\mathrm{isot}}} \mathring{\boldsymbol{v}}_{[f]_{\mathrm{isot}}} \subset \widetilde{\mathbb{Y}},$ где $\mathring{\boldsymbol{v}}_{[f]_{\mathrm{isot}}} \coloneqq \{[f]_{\mathrm{isot}}\} \times \mathring{\mathbb{D}}_{[f]_{\mathrm{isot}}}^{\mathrm{st}}$ (см. определение 2.3,(С)). Обозначим $\mathbb{D}_{[f]_{\mathrm{isot}}} \coloneqq p_Y(\boldsymbol{v}_{[f]_{\mathrm{isot}}}), \ \mathring{\mathbb{D}}_{[f]_{\mathrm{isot}}} \coloneqq p_Y(\boldsymbol{v}_{[f]_{\mathrm{isot}}}), \ \partial \mathbb{D}_{[f]_{\mathrm{isot}}} \coloneqq p_Y(\partial \boldsymbol{v}_{[f]_{\mathrm{isot}}}), \ \partial \tau' \boldsymbol{v}_{[f]_{\mathrm{isot}}} \coloneqq \{[f]_{\mathrm{isot}}\} \times (\partial_{\tau'}\mathbb{D}_{[f]_{\mathrm{isot}}}^{\mathrm{st}}), \ \text{и через } \mathring{\partial}_{[g]_{\mathrm{isot}}} \boldsymbol{v}_{[f]_{\mathrm{isot}}} \text{ обозначим объединение открытых (косых) граней } \{[f]_{\mathrm{isot}}\} \times \left(((\mathring{\tau}') \times \mathbb{S}_{[f]_{\mathrm{isot}}})/\Gamma_{[f]_{\mathrm{isot}}}\right) \text{ стандартной (косой) цилиндрической ручки } \boldsymbol{v}_{[f]_{\mathrm{isot}}}, \text{ таких что } \tau' \prec D_{[f]_{\mathrm{isot}}} \text{ и } \delta_{\tau'}[f]_{\mathrm{isot}} = [g]_{\mathrm{isot}}.$

Теорема 4.2. Пространство $\widetilde{\mathbb{K}} = \widetilde{\mathbb{Y}}/\sim_{\text{glue}}$ обладает структурой косого цилиндрически-полиэд-рального комплекса ранга q-1 с косыми цилиндрическими ручками $\mathbb{D}_{[f]_{\text{isot}}} = p_Y(\boldsymbol{v}_{[f]_{\text{isot}}}) \subset \widetilde{\mathbb{K}}, [f]_{\text{isot}} \in F^1/\sim_{\text{isot}}$. При этом для любого класса изотопности $[f]_{\text{isot}}$ отображение $\varphi_{[f]_{\text{isot}}} := p_Y|_{\boldsymbol{v}_{[f]_{\text{isot}}}} : \boldsymbol{v}_{[f]_{\text{isot}}} \to \widetilde{\mathbb{K}}$ является характеристическим отображением ручки $\mathbb{D}_{[f]_{\text{isot}}}$ (откуда отображение $p_Y|_{\widetilde{\mathbb{Y}}} : \widetilde{\widetilde{\mathbb{Y}}} \to \widetilde{\mathbb{K}}$ биективно), и выполнено

$$\partial \mathbb{D}_{[f]_{\text{isot}}} \subset \bigcup_{[g]_{\text{isot}} \succ [f]_{\text{isot}}} \mathbb{D}_{[g]_{\text{isot}}}, \quad \mathbb{D}_{[f]_{\text{isot}}} \cap \mathring{\mathbb{D}}_{[g]_{\text{isot}}} = \varphi_{[f]_{\text{isot}}}(\mathring{\partial}_{[g]_{\text{isot}}} \boldsymbol{v}_{[f]_{\text{isot}}}), \tag{4.2}$$

$$\varphi_{[g]_{\text{isot}}} \circ \chi_{[f]_{\text{isot}},[g]_{\text{isot}}} = \varphi_{[f]_{\text{isot}}}|_{\partial_{[g]_{\text{isot}}} \boldsymbol{v}_{[f]_{\text{isot}}}} \quad \partial \text{ns nobux} \quad [f]_{\text{isot}} \prec [g]_{\text{isot}}. \tag{4.3}$$

Дискретная группа $\mathscr{D}/\mathscr{D}^0$ действует на $\widetilde{\mathbb{K}}$ автоморфизмами косого цилиндрически-полиэдрального комплекса.

Доказательство. Шаг 1. При любом $k \in \mathbb{Z}$ рассмотрим подмножества

$$\widetilde{\mathbb{Y}}^{(k)} := \bigcup_{\dim D_{[f]_{\mathrm{isot}}} \leq k} \boldsymbol{v}_{[f]_{\mathrm{isot}}} \ \subset \widetilde{\mathbb{Y}} = \widetilde{\mathbb{X}}/\sim, \quad \overset{\circ}{\widetilde{\mathbb{Y}}}^{(k)} := \bigcup_{\dim D_{[f]_{\mathrm{isot}}} \leq k} \mathring{\boldsymbol{v}}_{[f]_{\mathrm{isot}}} \ \subset \widetilde{\mathbb{Y}}^{(k)}$$

с индуцированной топологией, и множество $\widetilde{\mathbb{K}}^{(k)} := \widetilde{\mathbb{Y}}^{(k)} / \sim_{\text{glue}}$ с фактортопологией. Докажем лемму (индукцией по k) для пространств $\widetilde{\mathbb{Y}}^{(k)}$, $\widetilde{\mathbb{K}}^{(k)}$, $\widetilde{\mathbb{Y}}^{(k)} \subset \widetilde{\mathbb{Y}}^{(k)}$ и проекции $p_{Y,k} := p_Y|_{\widetilde{\mathbb{Y}}^{(k)}} \colon \widetilde{\mathbb{Y}}^{(k)} \to \widetilde{\mathbb{K}}^{(k)}$. При k < 0 доказывать нечего, так как $\widetilde{\mathbb{K}}^{(k)} = \varnothing$.

Пусть $k \geq 1$, и доказываемое утверждение верно для $\widetilde{\mathbb{Y}}^{(k-1)}$, $\widetilde{\mathbb{K}}^{(k-1)}$. Покажем, что для каждого $[f]_{\mathrm{isot}}$, такого что ind $\boldsymbol{v}_{[f]_{\mathrm{isot}}} = k$, имеется ("приклеивающее") отображение $\varphi'_{[f]_{\mathrm{isot}}} : \partial \boldsymbol{v}_{[f]_{\mathrm{isot}}} \to \widetilde{\mathbb{K}}^{(k-1)}$ подошвы $\partial \boldsymbol{v}_{[f]_{\mathrm{isot}}}$ косой цилиндрической ручки $\boldsymbol{v}_{[f]_{\mathrm{isot}}}$, такое что $\varphi'_{[f]_{\mathrm{isot}}} : \partial_{[g]_{\mathrm{isot}}} \boldsymbol{v}_{[f]_{\mathrm{isot}}} = p_{Y,k-1} \circ \chi_{[f]_{\mathrm{isot}}}$ для любого $[g]_{\mathrm{isot}} \succ [f]_{\mathrm{isot}}$ (а потому ind $\boldsymbol{v}_{[g]_{\mathrm{isot}}} \succ [g]_{\mathrm{isot}} \succ [f]_{\mathrm{isot}} \boldsymbol{v}_{[f]_{\mathrm{isot}}}$ действительно, это отображение однозначно, так как для любых $[g_1]_{\mathrm{isot}} \succ [g]_{\mathrm{isot}} \succ [f]_{\mathrm{isot}} \boldsymbol{v}_{[f]_{\mathrm{isot}}}$, таких что $\delta_{\tau''}[f]_{\mathrm{isot}} = [g_1]_{\mathrm{isot}}$, выполнено $p_{Y,k-1} \circ \chi_{[f]_{\mathrm{isot}},[g_1]_{\mathrm{isot}}} |_{\partial_{\tau''}\boldsymbol{v}_f} = p_{Y,k-1} \circ \chi_{[g]_{\mathrm{isot}},[g_1]_{\mathrm{isot}}} \circ \chi_{[f]_{\mathrm{isot}},[g]_{\mathrm{isot}}} |_{\partial_{\tau''}\boldsymbol{v}_f} = p_{Y,k-1} \circ \chi_{[f]_{\mathrm{isot}},[g]_{\mathrm{isot}}} \circ \chi_{[f]_{\mathrm{isot}},[g]_{\mathrm{isot}}} \circ \chi_{[f]_{\mathrm{isot}}} = p_{Y,k-1} \circ \chi_{[f]_{\mathrm{isot}},[g]_{\mathrm{isot}}} \circ \chi_{[f]_{\mathrm{isot}}} \circ \chi_{$

Отображение топологических пространств назовем xopouum, если оно переводит любое замкнутое подмножество в замкнутое подмножество. Отображение $\varphi'_{[f]_{\mathrm{isot}}}$ является хорошим, так как его ограничение на каждую косую грань $\partial_{\tau'} v_{[f]_{\mathrm{isot}}} \subset \partial_{[g]_{\mathrm{isot}}} v_{[f]_{\mathrm{isot}}}$ (для $\tau' \prec D_{[f]_{\mathrm{isot}}}$, $\delta_{\tau'}[f]_{\mathrm{isot}} = [g]_{\mathrm{isot}}$) есть композиция $p_{Y,k-1}|_{v_{[g]_{\mathrm{isot}}}} \circ \chi_{[f]_{\mathrm{isot}},\tau'}$ (автоматически хорошего, см. определение 2.3) мономорфизма $\chi_{[f]_{\mathrm{isot}},\tau'}$ косых цилиндрических ручек (см. §3, шаг 10) и (автоматически хорошего) характеристического отображения $p_{Y,k-1}|_{v_{[g]_{\mathrm{isot}}}}$ косой ручки $p_{Y,k-1}(v_{[g]_{\mathrm{isot}}}) \subset \widetilde{\mathbb{K}}^{(k-1)}$ (по предположению индукции), а каждая косая грань замкнута и их конечное число. Отсюда следует, что $\widetilde{\mathbb{K}}^{(k)}$ гомеоморфно пространству (с фактортопологией), полученному из $\widetilde{\mathbb{K}}^{(k-1)}$ приклеиванием косых цилиндрических ручек $v_{[f]_{\mathrm{isot}}}$ индекса k при помощи инъективных непрерывных хороших отображений

дрических ручек $v_{[f]_{\text{isot}}}$ индекса k при помощи инъективных непрерывных хороших отображений $\varphi'_{[f]_{\text{isot}}}$: $\partial v_{[f]_{\text{isot}}} \to \widetilde{\mathbb{K}}^{(k-1)}$ их подошв, а потому $\widetilde{\mathbb{K}}^{(k)}$ удовлетворяет условию (w) из определения 2.4(B). Поэтому $\widetilde{\mathbb{K}}^{(k)}$ обладает свойствами (4.2) и (4.3), отображение $p_{Y,k}|_{v_{[f]_{\text{isot}}}}$ является инъективным, непрерывным и хорошим, а потому задает структуру косой цилиндрической ручки на $p_{Y,k}(v_{[f]_{\text{isot}}})$ и является характеристическим отображением этой ручки. Пространство $\widetilde{\mathbb{K}}^{(k)}$ с полученным разбиением на косые цилиндрические ручки $p_{Y,k}(v_{[f]_{\text{isot}}})$ удовлетворяет условию (c) из определения 2.4(B), так как ограничение характеристического отображения $p_{Y,k}|_{v_{[f]_{\text{isot}}}}$ любой ручки $v_{[f]_{\text{isot}}}$ индекса k на каждую свою косую грань $\partial_{\tau'}v_{[f]_{\text{isot}}}$ есть композиция $p_{Y,k}|_{\partial_{\tau'}v_{[f]_{\text{isot}}}} = i_{k-1} \circ \varphi'_{[f]_{\text{isot}}}|_{\partial_{\tau'}v_{[f]_{\text{isot}}}} = i_{k-1} \circ \varphi'_{[f]_{\text{isot}}} \circ \chi_{[f]_{\text{isot}},\tau'}$ мономорфизма $\chi_{[f]_{\text{isot}},\tau'}$ стандартных косых цилиндрических ручек и характеристического отображения $p_{Y,k}|_{v_{[g]_{\text{isot}}}}$ косой цилиндрической ручки $p_{Y,k}(v_{[g]_{\text{isot}}})$, где $i_{k-1} \colon \widetilde{\mathbb{K}}^{(k)}$ – отображение включения. Значит, $\widetilde{\mathbb{K}}^{(k)}$ является косым цилиндрически-

полиэдральным комплексом ранга k, что завершает доказательство индукционного перехода.

Шаг 2. Определим (естественное) правое действие $\rho_Y \colon \mathscr{D}/\mathscr{D}^0 \times \widetilde{\mathbb{Y}} \to \widetilde{\mathbb{Y}}$ дискретной группы $\mathscr{D}/\mathscr{D}^0$ на пространстве $\widetilde{\mathbb{Y}}$ формулой

$$(h\mathscr{D}^0, [f]_{\mathrm{isot}}, \widetilde{\Gamma}_{[f]_{\mathrm{isot}}}(\boldsymbol{c}, u)) \mapsto ([fh]_{\mathrm{isot}}, \widetilde{\Gamma}_{[fh]_{\mathrm{isot}}}(h^{*0}_{1;[f]_{\mathrm{isot}},[fh]_{\mathrm{isot}}}(\boldsymbol{c}), h^*_{1;[f]_{\mathrm{isot}},[fh]_{\mathrm{isot}}}(u)))$$

при любых $h \in \mathcal{D}$, $([f]_{isot}, \boldsymbol{c}, u) \in \widetilde{\mathbb{X}}$ (см. §3, конец шага 9), где $h_{1;[f]_{isot},[fh]_{isot}} \in h\mathcal{D}^0 \subset \mathcal{D}$ – диффеоморфизм, переводящий линии уровня отмеченной функции класса изотопности $[fh]_{isot}$ в линии уровня отмеченной функции класса изотопности $[f]_{isot}$ с сохранением направления роста. Это действие определено корректно, так как в силу [31, лемма 1] для любых $h_1, h_2 \in \mathcal{D}$ выполнено

$$h_{1;[f]_{\text{isot}},[fh_1h_2]_{\text{isot}}}^{-1}h_{1;[f]_{\text{isot}},[fh_1]_{\text{isot}}}h_{1;[fh_1]_{\text{isot}},[fh_1h_2]_{\text{isot}}} \in (\operatorname{stab}_{\mathscr{D}^0}g)(\operatorname{Diff}^0(M,\mathcal{C}_g))$$

и действие групп $\operatorname{stab}_g \mathscr{D}^0$ и $\operatorname{Diff}^0(M,\mathcal{C}_g)$ на косой цилиндрической ручке $\mathbb{D}^{\operatorname{st}}_{[g]_{\operatorname{isot}}}$ тривиально (см. (3.34), (3.33)), где g – отмеченная функция класса изотопности $[fh_1h_2]_{\operatorname{isot}}$. Для любых $[f]_{\operatorname{isot}} \prec [g]_{\operatorname{isot}}$ (а потому $[fh]_{\operatorname{isot}} \prec [gh]_{\operatorname{isot}}$ для любого $h \in \mathscr{D}$) определим отображение инцидентности

$$\chi_{[f],[g]} \colon \bigcup_{h \in \mathscr{D}} (\partial_{[gh]_{\mathrm{isot}}} oldsymbol{v}_{[fh]_{\mathrm{isot}}}) o \bigcup_{h \in \mathscr{D}} oldsymbol{v}_{[gh]_{\mathrm{isot}}}$$

правилом $\chi_{[f],[g]}|_{\partial_{[gh]_{\mathrm{isot}}} \boldsymbol{v}_{[fh]_{\mathrm{isot}}}}:=\chi_{[fh]_{\mathrm{isot}},[gh]_{\mathrm{isot}}}:\partial_{[gh]_{\mathrm{isot}}}\boldsymbol{v}_{[fh]_{\mathrm{isot}}}+\boldsymbol{v}_{[gh]_{\mathrm{isot}}}$ для любого $h\in\mathscr{D}.$ Отображение $\chi_{[f],[g]}$ определено корректно, так как для любых $[f]_{\mathrm{isot}}$ и $h_1\in\mathrm{stab}_{\mathscr{D}^0}f$ подмножества $\partial_{[g]_{\mathrm{isot}}}\boldsymbol{v}_{[f]_{\mathrm{isot}}}$, $\partial_{[gh_1]_{\mathrm{isot}}}\boldsymbol{v}_{[f]_{\mathrm{isot}}}\subset\partial\boldsymbol{v}_{[f]_{\mathrm{isot}}}$ либо совпадают (откуда $[g]_{\mathrm{isot}}=[gh_1]_{\mathrm{isot}}$), либо не пересекаются ввиду леммы 3.1 (см. §3, шаг 10). Отображение $\chi_{[f],[g]}$ является $(\mathscr{D}/\mathscr{D}^0)$ -эквивариантным (т.е. $\chi_{[f],[g]}\circ\rho_Y(h,\cdot)=\rho_Y(h,\chi_{[f],[g]}(\cdot))$ для любого $h\in\mathscr{D}$), так как ввиду (3.5) выполнено $h^{-1}h_{[f]_{\mathrm{isot}},\tau'}^{-1}hh_{[fh]_{\mathrm{isot}},h_{1;[f]_{\mathrm{isot}}}^*(\tau')\in(\mathrm{stab}_{\mathscr{D}^0}g_1)(\mathrm{Diff}^0(M,\mathcal{C}_{g_1}))$ и действия групп $\mathrm{stab}_{\mathscr{D}^0}g_1$ и $\mathrm{Diff}^0(M,\mathcal{C}_{g_1})$ на стандартной косой цилиндрической ручке $\mathbb{D}_{[g_1]_{\mathrm{isot}}}^{\mathrm{st}}$ тривиальны, где $\tau' \prec D_{[f]_{\mathrm{isot}}},\delta_{\tau'}[f]_{\mathrm{isot}}=[g]_{\mathrm{isot}},g_1$ — отмеченная функция класса изотопности $[gh]_{\mathrm{isot}},h\in\mathscr{D}.$ Поэтому правое действие ρ_Y индуцирует правое действие $\rho^*\colon\mathscr{D}/\mathscr{D}^0\times\widetilde{\mathbb{K}}\to\widetilde{\mathbb{K}}$ автоморфизмами косого цилиндрически-полиэдрального комплекса, такое что $\rho^*(h\mathscr{D}^0,p_Y(y)):=p_Y\circ\rho_Y(h\mathscr{D}^0,y)$ для любых $h\in\mathscr{D},y\in\widetilde{\mathbb{Y}}.$

В частности, действие $\rho^*(h\mathscr{D}^0,\cdot)$ любого элемента $h\mathscr{D}^0\in\mathscr{D}/\mathscr{D}^0$ на комплексе $\widetilde{\mathbb{K}}$ индуцирует изоморфизм $\mathbb{D}_{[f]_{\mathrm{isot}}}\to\mathbb{D}_{[fh]_{\mathrm{isot}}}$ косых цилиндрических ручек $\mathbb{D}_{[f]_{\mathrm{isot}}},\mathbb{D}_{[fh]_{\mathrm{isot}}}\subset\widetilde{\mathbb{K}}$ для любой функции $f\in F$. Поэтому эти ручки изоморфны одной и той же стандартной ручке $(D_{f_0}\times\mathbb{S}_{f_0})/\Gamma_{f_0}$, где f_0 отмеченная функция класса эквивалентности [f]=[fh]. Теорема 4.2 полностью доказана.

Аналогично определению 4.1 определим гладкое многообразие $\widetilde{\mathcal{M}}$. А именно, рассмотрим в евклидовом пространстве $H_f^0 = \mathbb{R}^{\mathcal{C}_{f,1}} \cong \mathbb{R}^q$ открытый куб $(-1;1)^{\mathcal{C}_{f,1}} \cong (-1;1)^q$, и для любой грани $\tau = \tau_J \subset \mathcal{P}_f^{q-1}$ рассмотрим ее внутренность $\mathring{\tau}$ и обозначим через $(\mathring{\tau})^*$ множество таких 0-коцепей $\mathbf{c}' \in (-1;1)^{\mathcal{C}_{f,1}} \subset H_f^0 \cong \mathbb{R}^q$, что $J(\mathbf{c}') = J$ (см. §3, шаг 1), а через τ^* обозначим множество таких 0-коцепей $\mathbf{c}' \in (-1;1)^{\mathcal{C}_{f,1}} \cong (-1;1)^q$, что $J(\mathbf{c}') \preceq J$. Назовем $(\mathring{\tau})^*$ стратом, а $\tau^* - 3663\partial \mathring{u}$ этого страта (отвечающими грани τ). Тогда звезда τ^* открыта в H_f^0 ,

$$(\mathring{\tau})^* \subseteq \tau^*, \qquad \tau \subset \tau^*, \tag{4.4}$$

страт $(\mathring{\tau})^*$ есть выпуклое открытое подмножество некоторого $|f(\mathcal{C}_{f,1})|$ -мерного линейного подпространства в H_f^0 , грань τ есть выпуклый $(q-|f(\mathcal{C}_{f,1})|)$ -мерный многогранник, причем грань τ и страт $(\mathring{\tau})^*$ пересекаются трансверсально в барицентре грани τ , являющемся внутренней точкой каждого из них. Положим $D_{[f]_{\mathrm{isot}}}^* := \tau_{J(\boldsymbol{c}(f))}^*, \ (\mathring{D}_{[f]_{\mathrm{isot}}})^* := (\mathring{\tau}_{J(\boldsymbol{c}(f))})^*$. Рассмотрим в пространстве $(F^1/\sim_{\mathrm{isot}})^{\mathrm{discr}} \times (-1;1)^{\mathcal{C}_{f,1}} \times H_{f_*}^1$ подпространства

$$\widetilde{\mathbb{X}}^{\infty,*} := \bigcup_{[f]_{\mathrm{isot}} \in F^1/\sim_{\mathrm{isot}}} \{ [f]_{\mathrm{isot}} \} \times D^*_{[f]_{\mathrm{isot}}} \times U^\infty_{[f]_{\mathrm{isot}}},$$

$$\widetilde{\mathbb{X}}^{\infty,\circ*} := \bigcup_{[f]_{\mathrm{isot}} \in F^1/\sim_{\mathrm{isot}}} \{ [f]_{\mathrm{isot}} \} \times (\overset{\circ}{D}_{[f]_{\mathrm{isot}}})^* \times U^{\infty}_{[f]_{\mathrm{isot}}},$$

где $U^{\infty}_{[f]_{\mathrm{isot}}}$ определено как в (3.13). Имеем включения $\widetilde{\mathbb{X}} \subset \widetilde{\mathbb{X}}^{\infty,*}$ и $\widetilde{\mathbb{X}}^{\infty,\circ*} \subset \widetilde{\mathbb{X}}^{\infty,*}$.

Аналогично определению 4.1 определим отношение эквивалентности \sim на $\widetilde{\mathbb{X}}^{\infty,*}$ с помощью покомпонентного действия на $D^*_{[f]_{\mathrm{isot}}} \times U^\infty_{[f]_{\mathrm{isot}}}$ дискретной группы $\widetilde{\Gamma}_{[f]_{\mathrm{isot}}}$ (см. §3, шаг 9). Определим "окрестность" стандартной ручки $\mathbb{D}^{\mathrm{st}}_{[f]_{\mathrm{isot}}}$

$$(\mathbb{D}^{\infty,*}_{[f]_{\mathrm{isot}}})^{\mathrm{st}} := (D^*_{[f]_{\mathrm{isot}}} \times U^{\infty}_{[f]_{\mathrm{isot}}}) / \widetilde{\Gamma}_{[f]_{\mathrm{isot}}} \approx (D^*_{[f]_{\mathrm{isot}}} \times \mathbb{S}^{\infty}_{[f]_{\mathrm{isot}}}) / \Gamma_{[f]_{\mathrm{isot}}},$$
$$\boldsymbol{v}^{\infty,*}_{[f]_{\mathrm{isot}}} := \{ [f]_{\mathrm{isot}} \} \times (\mathbb{D}^{\infty,*}_{[f]_{\mathrm{isot}}})^{\mathrm{st}} \subset \widetilde{\mathbb{Y}}^{\infty,*} := \widetilde{\mathbb{X}}^{\infty,*} / \sim.$$

Определим отношение эквивалентности \sim_{glue} на $\widetilde{\mathbb{Y}}^{\infty,*}:=\widetilde{\mathbb{X}}^{\infty,*}/\sim$ с помощью вложений $\chi_{[f]_{\text{isot}},[g]_{\text{isot}}}^{\infty,*}:\partial_{[g]_{\text{isot}}}(\mathbb{D}_{[f]_{\text{isot}}}^{\infty,*})^{\text{st}}\hookrightarrow (\mathbb{D}_{[g]_{\text{isot}}}^{\infty,*})^{\text{st}},$ определяемых теми же формулами, что и вложения $\chi_{[f]_{\text{isot}},[g]_{\text{isot}}}:\partial_{[g]_{\text{isot}}}\mathbb{D}_{[f]_{\text{isot}}}^{\text{st}}\hookrightarrow \mathbb{D}_{[g]_{\text{isot}}}^{\text{st}}$ (см. §3, шаг 10). Рассмотрим пространства

$$\widetilde{\mathbb{Y}}^{\infty,\circ*} := \widetilde{\mathbb{X}}^{\infty,\circ*}/\sim, \qquad \widetilde{\mathbb{Y}}^{\infty,*} := \widetilde{\mathbb{X}}^{\infty,*}/\sim, \qquad \widetilde{\mathcal{M}} := \widetilde{\mathbb{Y}}^{\infty,*}/\sim_{\mathrm{glue}}$$

с фактортопологией, тогда $\widetilde{\mathbb{K}} \subset \widetilde{\mathcal{M}}$. Пусть

$$p_X \colon \widetilde{\mathbb{X}}^{\infty,*} \to \widetilde{\mathcal{M}}, \qquad p_Y \colon \widetilde{\mathbb{Y}}^{\infty,*} \to \widetilde{\mathcal{M}}$$

– канонические проекции. Рассмотрим "окрестность" $\mathbb{D}_{[f]_{\mathrm{isot}}}^{\infty,*}:=p_Y(\boldsymbol{v}_{[f]_{\mathrm{isot}}}^{\infty,*})$ косой цилиндрической ручки $\mathbb{D}_{[f]_{\mathrm{isot}}}\subset\widetilde{\mathbb{K}}$ в $\widetilde{\mathcal{M}}.$

Так как $\widetilde{\mathbb{X}}^{\infty,*}$ является гладким открытым 3q-мерным многообразием с естественной плоской аффинной связностью, и каждая группа $\widetilde{\Gamma}_{[f]_{\mathrm{isot}}}$ действует на нем диффеоморфизмами, сохраняющими связность, то $\mathbb{Y}^{\infty,*}$ тоже является гладким открытым 3q-мерным многообразием с плоской аффинной связностью

Теорема 4.3. Пространство $\widetilde{\mathcal{M}}:=\widetilde{\mathbb{Y}}^{\infty,*}/\sim_{\mathrm{glue}}$ обладает структурой гладкого 3q-мерного многообразия и естественной плоской аффинной связностью, гладкой относительно этой структуры. Πpu этом для каждого класса изотопности $[f]_{isot}$ выполнены следующие условия:

- (i) подмножество $\mathbb{D}^{\infty,*}_{[f]_{\mathrm{isot}}} = p_Y(\boldsymbol{v}^{\infty,*}_{[f]_{\mathrm{isot}}}) \subset \widetilde{\mathcal{M}}$ открыто, где $p_Y \colon \widetilde{\mathbb{Y}}^{\infty,*} \to \widetilde{\mathcal{M}}$ проекция, (ii) отображение $p_Y|_{\boldsymbol{v}^{\infty,*}_{[f]_{\mathrm{isot}}}} \colon \boldsymbol{v}^{\infty,*}_{[f]_{\mathrm{isot}}} \to \widetilde{\mathcal{M}}$ является гладким регулярным вложением гладких 3qмерных многообразий, сохраняющим аффинную связность.

Отображение $p_Y|_{\widetilde{\mathbb{Y}}^{\infty,\circ*}}\colon \widetilde{\mathbb{Y}}^{\infty,\circ*}\to \widetilde{\mathcal{M}}$ биективно. Дискретная группа $\mathscr{D}/\mathscr{D}^0$ и группа $\mathrm{Diff}^+[-1;1]$ действуют на $\widetilde{\mathcal{M}}$ справа и слева соответственно диффеоморфизмами, сохраняющими аффинную связность и области $\mathbb{D}_{[f]_{\text{isot}}}^{\infty,*}$.

Доказательство. Аналогично доказательству теоремы 4.2 доказательство проводится индукцией, а именно, доказывается однозначность, непрерывность и инъективность соответствующих приклеивающих отображений, а также биективность отображения $p_Y|_{\widetilde{\mathbb{Y}}^{\infty,\circ*}}\colon \widetilde{\mathbb{Y}}^{\infty,\circ*}\to \widetilde{\mathcal{M}}$. Так как каждое приклеивающее отображение $(\varphi_{[f]_{\mathrm{isot}}}^{\infty,*})'$ определено на открытом подмножестве открытого подмножества $m{v}_{[f]_{\mathrm{isot}}}^{\infty,*}\subset\widetilde{\mathbb{Y}}^{\infty,*}$ и является непрерывным и инъективным отображением 3q-мерных многообразий, то $\mathbb{D}^{\infty,*}_{[f]_{\mathrm{isot}}}$ открыто в $\widetilde{\mathcal{M}}$ и $p_Y|_{\boldsymbol{v}^{\infty,*}_{[f]_{\mathrm{isot}}}}\colon \boldsymbol{v}^{\infty,*}_{[f]_{\mathrm{isot}}}\to \mathbb{D}^{\infty,*}_{[f]_{\mathrm{isot}}}\subset \widetilde{\mathcal{M}}$ является гомеоморфизмом (в индуцированной топологии). В частности, каждая точка пространства $\widetilde{\mathcal{M}}$ обладает окрестностью, гомеоморфной \mathbb{R}^{3q} . Так как пространство $\widetilde{\mathcal{M}}$ хаусдорфово (см. ниже), а все отображения $\chi_{[f]_{\mathrm{isot}},[g]_{\mathrm{isot}}}^{\infty,*}$ (а потому и все приклеивающие отображения) являются гладкими и сохраняют плоскую аффинную связность, то $\widetilde{\mathcal{M}}$ является гладким 3q-мерным многообразием с естественной плоской аффинной связностью.

Осталось доказать, что пространство \mathcal{M} хаусдорфово. Рассмотрим естественное непрерывное "вычисляющее" отображение

$$\operatorname{Ev}^*: \widetilde{\mathbb{X}}^{\infty,*} \to \mathbb{R}^q/\Sigma_q, \qquad ([f]_{\operatorname{isot}}, \boldsymbol{c}, u) \mapsto \Sigma_q \boldsymbol{c},$$

где группа перестановок Σ_q действует на любом наборе $\mathbf{c} \in \mathbb{R}^{\mathcal{C}_{f,1}} \cong \mathbb{R}^q$ перестановками компонент. Легко проверяется, что оно индуцирует (автоматически непрерывное) отображение $\widetilde{\mathcal{M}} \to \mathbb{R}^q/\Sigma_q$, которое тоже будем обозначать через Ev^* . Пусть $m_1, m_2 \in \widetilde{\mathcal{M}}$. Если $\mathrm{Ev}^*(m_1) \neq \mathrm{Ev}^*(m_2)$, то точки m_1, m_2 обладают непересекающимися окрестностями ввиду хаусдорфовости \mathbb{R}^q/Σ_q и непрерывности Ev^* . Пусть $\mathrm{Ev}^*(m_1) = \mathrm{Ev}^*(m_2)$ и $m_i \in \mathbb{D}^{\infty,*}_{[f_i]_{\mathrm{isot}}}$, i = 1, 2. Если $[f_1]_{\mathrm{isot}} \neq [f_2]_{\mathrm{isot}}$, то в силу леммы 3.1 не существует класса изотопности $[g]_{\mathrm{isot}}$, такого что $[g]_{\mathrm{isot}} \succ [f_i]_{\mathrm{isot}}$, i = 1, 2, а потому образы приклеивающих отображений ($\varphi_{[f_i]_{\mathrm{isot}}}^{\infty,*}$)', i = 1, 2, имеют пустое пересечение, откуда окрестности $\mathbb{D}^{\infty,*}_{[f_i]_{\mathrm{isot}}}$ точек m_i , i = 1, 2, в $\widetilde{\mathcal{M}}$ имеют пустое пересечение. Если $[f_1]_{\mathrm{isot}} = [f_2]_{\mathrm{isot}}$ и $m_1 \neq m_2$, то точки $m_1, m_2 \in \mathbb{D}^{\infty,*}_{[f_1]_{\mathrm{isot}}}$ обладают непересекающимися окрестностями ввиду открытости $\mathbb{D}^{\infty,*}_{[f_1]_{\mathrm{isot}}}$, хаусдорфовости стандартного пространства ($\mathbb{D}^{\infty,*}_{[f_1]_{\mathrm{isot}}}$) $^{\mathrm{st}}$ и гомеоморфности $\mathbb{D}^{\infty,*}_{[f_1]_{\mathrm{isot}}} \approx \mathbf{v}^{\infty,*}_{[f_1]_{\mathrm{isot}}} \approx (\mathbb{D}^{\infty,*}_{[f_1]_{\mathrm{isot}}})^{\mathrm{st}}$ (см. выше). Таким образом, пространство $\widetilde{\mathcal{M}}$ является хаусдорфовым. Теорема 4.3 доказана.

Теоремы 4.2 и 4.3 доказывают основную теорему 2.6(A,B). Утверждение п.(C) теоремы 2.6 нетрудно выводится из (3.25) и явного описания (3.24) набора образующих свободной абелевой группы $\mathcal{D}^0 \cap \Theta_f$ (см. §3, шаг 7).

Список литературы

- [1] Е.А. Кудрявцева, Д.А. Пермяков. Оснащенные функции Морса на поверхностях. Матем. Сб. 201, No. 4 (2010), 501-567.
- [2] М. Громов. Дифференциальные Соотношения с Частными Производными. М.: Мир, 1990.
- [3] K. Igusa. Higher singularities of smooth functions are unnecessary. Ann. Math. 119 (1984), 1-58.
- [4] В.А. Васильев. Топология пространств функций без сложных особенностей. Функ. Ан. Прил. 23(4) (1989), 24-36.
- [5] J. Franks. Homology and Dynamical Systems. CBMS Regional Conf. 49 (1982), Amer. Math. Soc.
- [6] A. Hatcher. Higher simple homotopy theory. Annals of Math. (2) 102 (1975), 101-137.
- [7] A. Chenciner, F. Laudenbach. Morse 2-jet space and h-principle. arXiv:0902.3692v1 [math.GT] 23 Feb 2009
- [8] Е.А. Кудрявцева. Связные компоненты пространств функций Морса с фиксированными критическими точками. Вестн. Моск. Ун-та. Сер. 1, Математика. Механика, в печати (2011). arXiv:1007.4398.
- [9] B. Farb, N.V. Ivanov. The Torelli geometry and its applications. Research announcement. arXiv:math.GT/0311123 v1.
- [10] W.J. Harvey. Geometric structure of surface mapping class groups. In Homological group theory (Proc. Sympos., Durham, 1977), 255-269. Cambridge: Cambridge Univ. Press, 1979.

- [11] J. Harer. The virtual cohomological dimension of the mapping class group of an orientable surface. Invent. Math. 84(1) (1986), 157-176.
- [12] N. Ivanov. Automorphisms of complexes of curves and of Teichmüller spaces. In: Progress in knot theory and related topics, 113-120. Paris: Hermann, 1997.
- [13] A. Hatcher, W. Thurston. A presentation for the mapping class group of a closed orientable surface. Topology 19(3) (1980), 221-237.
- [14] D. Margalit. The automorphism group of the complex of pants decompositions. arXiv:math/0201319v1 [math.GT].
- [15] S.V. Matveev, M. Polyak. Cubic complexes and finite types invariants. Geom. Topol. Monogr. 4 (2002), 215-233. arXiv: math.GT/0204085, 2002.
- [16] Е.А. Кудрявцева. Реализация гладких функций на поверхностях в виде функций высоты. Матем. Сборник 190 (1999), No. 3, 29-88.
- [17] В.В. Шарко. Функции на поверхностях, І. В книге: Труды Матем. Инст. Укр. НАН "Некоторые проблемы современной математики", ред. В.В.Шарко, 25, Киев, Наукова Думка, 1998. С. 408-434.
- [18] S.I. Maksymenko. Path-components of Morse mappings spaces of surfaces. Comment. Math. Helv. 80 (2005), 655-690.
- [19] Ю.М. Бурман. Теория Морса для функций двух переменных без критических точек. Функц. Дифф. Ур. 3(1-2) (1995), 31-31.
- [20] Yu.M. Burman. Triangulations of surfaces with boundary and the homotopy principle for functions without critical points. Annals of Global Analysis and Geometry 17(3) (1999), 221-238.
- [21] E.V. Kulinich. On topologically equivalent Morse functions on surfaces. Methods of Funct. Anal. Topology 4 (1) (1998), 59-64.
- [22] S.I. Maksymenko. Stabilizers and orbits of Morse functions. arXiv:math.GT/0310067 v5 14 Aug 2006.
- [23] А.Т. Фоменко. Теория Морса интегрируемых гамильтоновых систем. ДАН СССР 287, No. 5 (1986), 1071-1075.
- [24] А.Т. Фоменко, Х. Цишанг. Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы. Изв. АН СССР 54, No. 3 (1990), 546-575.
- [25] А.В. Болсинов, А.Т. Фоменко. Траекторная эквивалентность интегрируемых гамильтоновых систем с двумя степенями свободы. Теорема классификации. I: Матем. Сб. 185, No. 4 (1994), 27-89; II: Матем. Сб. 185, No. 5 (1994), 27-28.
- [26] А.В. Болсинов, А.Т. Фоменко. Введение в топологию интегрируемых гамильтонорвых систем. М.: Наука, 1997.
- [27] Е.А. Кудрявцева. Устойчивые топологические и гладкие инварианты сопряженности гамильтоновых систем на поверхностях. В книге: Топологические методы в теории гамильтоновых систем. Ред. А.Т. Фоменко и А.В. Болсинов. М.: Факториал, 1998. С. 147-202.
- [28] Кудрявцева Е.А., Устойчивые инварианты сопряженности гамильтоновых систем на двумерных поверхностях. Докл. Акад. Наук 361, N.3 (1998), 314-317.

- [29] Brailov, Yu. A. and Kudryavtseva, E. A., Stable topological nonconjugacy of Hamiltonian systems on two-dimensional surfaces. Vestnik Moskov. Univ. Ser. I Mat. Mekh. **No. 2** (1999), 20-27, 72 (in Russian).
- [30] В.И. Арнольд. Пространства функций с умеренными особенностями. Функц. Анал. Прил. 23(3) (1989), 1-10.
- [31] Е.А. Кудрявцева. Равномерная лемма Морса и критерий изотопности функций Морса на поверхностях. Вестн. Моск. Ун-та. Сер. 1, Математика. Механика, No. 4 (2009), 13-22.
- [32] C.J. Earle, J. Eells, Jr. The diffeomorphism group of a compact Riemann surface. Bull. Amer. Math. Soc. 73, no. 4 (1967), 557-559.
- [33] C.J. Earle, J. Eells, Jr. A fibre bundle description of Teichmüller theory. J. Diff. Geometry 3 (1969), 19-43.
- [34] S. Smale. Diffeomorphisms of the 2-sphere. Proc. Amer. Math. Soc. 10 (1959), 621-626.
- [35] Bridson M.R., Haefliger A., Metric spaces of non-positive curvature // Berlin, Heidelberg, N.Y., Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo: Springer, 1999.
- [36] А.Т. Фоменко, Д.Б. Фукс. Курс гомотопической топологии. М.: Наука, 1989.
- [37] A. Postnikov. Permutohedra, associahedra, and beyond. arXiv:math/0507163v1 [math.CO] 7 Jul 2005.
- [38] M. Dehn. Die Gruppe der Abbildungsklassen (Das arithmetische Feld auf Flächen). Acta mathematica 69 (1938), 135-206.
- [39] J.S. Birman, A. Lubotzky, J. McCarthy. Abelian and solvable subgroups of the mapping class group. Duke Math. J. 50, No.4 (1983), 1107-1120.
- [40] Д.А. Пермяков. Линейная независимость скручиваний Дэна. Дипломная работа. http://dfgm.math.msu.su/files/0students/2009-dip-permyakov.pdf
- [41] А. Кронрод. О функциях двух переменных. Успехи Матем. Наук 5 (1950), No. 1, 24-134.