

Segmentez des clients d'un site e-commerce

Armand FAUGERE Linked in armand-faugere@live.fr

Sommaire

- I) Cadrage du projet et données d'entrée
- II) Traitement et analyse des données
- III) Modélisations
- IV) Modèles retenus et analyses
- V) Maintenance des modèles
- VI) Conclusion

I) Cadrage du projet et données d'entrée

☐ Contexte : Projet de segmentation des Clients du site d'E-commerce Olist.

Olist a besoin d'une segmentation de ses clients à utiliser au quotidien pour ses campagnes de communication.

☐ But:

- Créer une segmentation Client pour l'équipe Marketing ainsi qu'une proposition de contrat de maintenance

□ Objectifs :

- Traiter et explorer le jeu de donnée
- Réaliser des modélisations de segmentation
- Evaluer les modèles
- Proposer la ou les segmentations pertinentes
- Proposer une maintenance adaptée

☐ Le jeu de données

https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce

- ☐ Base de données Client anonymisée
- 8 jeux de données

2) Traitement et analyse des données

2) Traitement et analyse des données

2) Traitement et analyse des données

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn, sklearn

Sélection des variables et encodages des variables catégorielles

Agrégation des variables par clients

Normalisation des variables

- encodage onehotencoder :
- → ['review_score', 'payment_type']
- ☐ Choix des variables

- → Sum
- → Mean
- → Min

□ Normalisation des variables (standardscaler)

Préparation du dataframe pour classification

Business:

- Nb cmde
- payment_value_sum
- Time_last_cmde_H

Type de colis :

- product_weight_g_mean
- Volume Colis cm3 mean

Type de paiement :

- · payment type boleto sum
- payment_type_credit_card_sum
- payment type debit card sum
- payment_type_voucher_sum

Satisfaction Client:

- review score 1 sum
- review_score_2_sum
- review_score_3_sum
- review_score_4_sum
- review_score_5_sum
- Time_Answer_Review_H
- Delay_H_mean

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn, Sklearn

Sans Analyse de composantes principales

- ☐ Elbow et coefficient de silhouette pour choix du nombre de clusters
- ☐ Avec 3 variables
- → [Nb_cmde', 'payment_value_sum', 'Time_last_cmde_H']
- ☐ Avec 2 variables
- → ['Nb_cmde', 'Time_last_cmde_H']
- → ['Nb_cmde', 'payment_value_sum']
- → ['payment_value_sum', 'Time_last_cmde_H']
- → ['Nb_cmde', 'review_score_1_sum']
- → ['Nb cmde', 'Time Answer Review H']
- → ['Nb_cmde', 'Delay_H_mean']
- → ['Nb_cmde', 'Volume_Colis_cm3_mean']

Avec Analyse de composantes principales

- □ Décomposition PCA
- ☐ Cercle des corrélations
- ☐ Création de nouveaux indicateurs
- ☐ Elbow et coefficient de silhouette pour choix du nombre de clusters
- Nouveaux indicateurs
- → Economique
- → Satisfaction
- → Performance

[Nb_cmde', 'payment_value_sum', 'Time_last_cmde_H']

coeff_silhouette → 0.482517

Difficile à interpréter

Sans PCA

['Nb_cmde', 'Time_last_cmde_H']

coeff silhouette → 0.523183

Cluster violet → Clients avec peu de cmde et ayant cmdé il y a très longtemps (Clients perdus)

Cluster rouge → Clients qui ont réalisés plusieurs cmdes dont certaines très récemment (à réactiver pour les plus anciens certains perdus)

Cluster Jaune → Très bon Clients mais certains sont perdus (à réactiver pour les plus anciens)

Cluster Bleu → Clients récents avec peu de cmdes

2023 Armand FAUGERE

Segmentez des clients d'un site e-commerce

['Nb_cmde', 'payment_value_sum']

coeff silhouette → 0.853683

Cluster violet → Très bon Clients (Champions)

Cluster rouge → Bon Clients

Cluster Bleu → Clients récents avec peu de cmde

Sans PCA

['payment_value_sum', 'Time_last_cmde_H']

coeff_silhouette → 0.526722

Cluster violet → Très bon Clients (Champions) à réactiver pour les perdus

Cluster rouge → Bon Clients et clients modérés mais perdus

Cluster Bleu

Bon Clients et clients modérés mais récents

2023 Armand FAUGERE

Segmentez des clients d'un site e-commerce

Nb_cmde

80

40

Nb_cmde

MODELISATION PCA → ECONOMIQUE

coeff_silhouette → 0.509136

Cluster violet → Clients Moyens perdus

Cluster rouge → Très Bon Clients mais certains sont perdus

Cluster Jaune → Bon clients mais certains sont perdus

Cluster Bleu → Clients fidèles mais clients moyens

Avec PCA

MODELISATION PCA ==> SATISFACTION

coeff_silhouette → 0.423568

Cluster violet → Clients moyennement satisfaits et perdus ou à risque

Cluster rouge → Clients moyennement satisfaits mais certains sont à risque

Cluster Bleu → Clients pas satisfaits et à risque

2023 Armand FAUGERE

Segmentez des clients d'un site e-commerce

MODELISATION PCA → PERFFORMANCE

coeff_silhouette → 0.775953

- Le retard n'empêche pas de mettre des bonnes notes
- Les mauvaises notes n'empêchent pas de de réaliser des cmde
- → La qualité des produits et le prix doivent être davantage déterminants pour les clients

Avec PCA

Pas adapté

☐ DBSCAN

→ eps: 0,1→ 2

→ samples_min : 30

Algorihtme pas adapté à la problématique

- □ Beaucoup de clusters → Interprétabilité difficile, représentativité pas pertinente.
- ☐ Le bruit exclut des milliers de Clients.

2023 Armand FAUGERE

Segmentez des clients d'un site e-commerce

3) Modèles retenus et analyse

4) Modèles retenus et analyse

☐ Focus PCA économique

Y)	AG MEAN	Nb_cmde	payment _value_s um	review_ score_1 _sum	review_ score_2 _sum	review_ score_3 _sum	review_ score_4 _sum	review_ score_5 _sum	payment _type_b oleto_su m	payment _type_cr edit_car d_sum	payment _type_d ebit_car d_sum	payment _type_v oucher_ sum	Time_la st_cmde _H	Time_An swer_Re view_H	Delay_H _mean	product _weight _g_mea n	Volume _Colis_c m3_mea n
	0	1.129811	164.694 358	0.11860 0	0.03504 9	0.09220 5	0.21582	0.66813 5	0.21106 2	0.86004 0	0.02216 6	0.03654 4	47960.6 05569	70.0530 79	258.386 111	1975.80 6786	13896.9 08501
	1	14.606061	12308.7 68182	4.69697 0	0.77272 7	1.39393 9	2.46969 7	5.27272 7	3.13636 4	5.65151 5	0.00000	5.81818 2	50445.9 48788	78.1304 55	278.690 606	4376.18 5303	28086.7 68939
2	2	1.134054	164.981 740	0.10550 2	0.03637 8	0.09858 4	0.22857 9	0.66501 1	0.23402 8	0.84554 0	0.01028 3	0.04420 4	54196.8 74032	83.8196 31	280.570 217	2185.11 0319	16376.0 39101
	3	3.949728	1299.27 2149	0.82324 7	0.20653 2	0.34005 8	0.67947 5	1.90041 6	0.74575 7	2.48831 3	0.03522 3	0.68043 5	50574.1 78719	71.8950 11	295.147 928	3190.16 9635	21897.9 02696

Nombre de clients par Clusters

Segmentez des clients d'un site e-commerce

4) Modèles retenus et analyse

☐ Focus PCA économique sur variable Nb_cmde

2023 Armand FAUGERE

Segmentez des clients d'un site e-commerce

25

MODELISATION PCA → ECONOMIQUE

coeff_silhouette → 0.509136

Cluster violet → Clients Moyens perdus

Cluster rouge → Très Bon Clients mais certains sont perdus

Cluster Jaune → Bon clients mais certains sont perdus

Cluster Bleu → Clients fidèles mais clients moyens

ARI : Le modèle tend à être obsolète à partir de 8 mois

MODELISATION PCA → SATISFACTION

coeff silhouette → 0.423568

Cluster violet → Clients moyennement satisfaits et perdus ou à risque

Cluster rouge → Clients moyennement satisfaits mais certains sont à risque

Cluster Bleu → Clients pas satisfaits et à risque

ARI : Le modèle devient obsolète à partir de 3 mois

Contrat de maintenance

I) Forfait de maintenance premium : mensuel

- + Forte réactivité :
- → Corriger rapidement des dysfonctionnements en limitant le risque de perdre des clients
- → Avoir des actions commerciales rapides et pertinentes

II) Forfait de maintenance medium : trimestriel -> recommandé

- + Forfait économique :
- → Corriger des dysfonctionnements
- → Avoir des opérations commerciales pertinentes, moins réactives mais aussi moins chères

III) Forfait de maintenance minimum : Semestriel

- + Forfait suivi :
- → Tirer des conclusions et de réajuster la stratégie

6) Conclusion

☐ But: Créer une segmentation Client pour l'équipe Marketing ainsi qu'une proposition de contrat de maintenance □ Objectifs : Traiter et explorer le jeu de donnée Réaliser des modélisations de segmentation Evaluer les modèles Proposer la ou les segmentations pertinentes Proposer une maintenance adaptée

- → Tableau de bord avec :
- □ PCA Economique
- □ PCA Satisfaction
- □ Nb_cmde & payment_sum
- □ Nb_cmde & answer_review_time
- □ Nb_cmde & volume_colis
- → Permet d'avoir une approche commerciale ciblée auprès des Clients

Merci

- Armand FAUGERE
- armand-faugere@live.fr

