Sparse Polynomial Optimization

Theory and its application to deep neural networks

Tong Chen (toch@di.ku.dk)
Machine Learning Section, DIKU

Outline

1 Part I: Motivation and Background

Part II: Polynomial Optimization

3 Part III: Experiments and Future work

Motivation: Adversarial Example

This is a panda!

This is a gibbon!

Motivation: Adversarial Example

This is a panda!

This is a gibbon!

Adversarial Example

Adversarial Training

Adversarial Example

Adversarial Training

Certified Training

• \tilde{I} convex, and $\tilde{I}(\mathbf{x}, y, \varepsilon; \theta) \ge \max_{\|\delta\| \le \varepsilon} I(\mathbf{x} + \delta, y; \theta)$.

Lipschitz Constant Controls Robustness

• Let $f: \mathcal{X} \to \mathbb{R}$:

$$L_f^p = \inf_{\mathbf{x}, \mathbf{y} \in \mathcal{X}} \{L : |f(\mathbf{x}) - f(\mathbf{y})| \le L \cdot ||\mathbf{x} - \mathbf{y}||_p\}.$$

• Let $L(\theta)$ be the (global) Lipschitz constant of $I(\mathbf{x}, y; \theta)$, then

$$\max_{\|\delta\| \leq \varepsilon} I(\mathbf{x} + \delta, y; \theta) \leq I(\mathbf{x}, y; \theta) + L(\theta) \cdot \varepsilon =: \tilde{I}(\mathbf{x}, y, \varepsilon; \theta).$$

Lischitz Constants of Neural Networks

• Let $f: \mathcal{X} \to \mathbb{R}$,

$$L_f^p = \inf_{\mathbf{x}, \mathbf{y} \in \mathcal{X}} \{ L : |f(\mathbf{x}) - f(\mathbf{y})| \le L \cdot ||\mathbf{x} - \mathbf{y}||_p \}.$$

• If \mathcal{X} is convex, f is smooth,

$$L_f^p = \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla f(\mathbf{x})\|_p^* = \sup_{\mathbf{x} \in \mathcal{X}} \{\mathbf{t}^T \nabla f(\mathbf{x}) : \|\mathbf{t}\|_p \le 1\}.$$

Outline

1 Part I: Motivation and Background

Part II: Polynomial Optimization

3 Part III: Experiments and Future work

Polynomial Optimization

Polynomial optimization problem:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 (POP)
s.t. $g_i(\mathbf{x}) \ge 0, i = 1, \dots, p,$

where f, g_i are polynomials.

Non-convex, NP-hard.

From Hard to Easy:

$$\mathbf{K} := \{\mathbf{x} : g_i(\mathbf{x}) \geq 0, \ i = 1, \dots, p\}$$
 $\min_{\mathbf{x}} \{f(\mathbf{x}) : \mathbf{x} \in \mathbf{K}\} \qquad \qquad \text{(non-convex)}$
 $\max_{\rho} \{\rho : f - \rho \geq 0 \text{ over } \mathbf{K}\}$
 \vee
 $\max_{\rho} \{\rho : f - \rho = \sigma^2 + \sum_{i=1}^{p} \lambda \cdot g_i, \ \lambda \geq 0\}$

semidefinite program (SDP)

(convex)

An Example:

$$\mathbf{K} := \{(x_1, x_2) : g(x_1, x_2) = 1 - x_1^2 - x_2^2 \ge 0\} \subseteq \mathbb{R}^2$$

$$\min_{\substack{x_1, x_2 \\ x_1, x_2 \\ \rho}} \left\{ x_1 x_2 : (x_1, x_2) \in \mathbf{K} \right\}$$

$$\lim_{\substack{\rho \\ \rho}} \left\{ \rho : x_1 x_2 - \rho \ge 0 \text{ over } \mathbf{K} \right\}$$

$$\lim_{\substack{\rho \\ \rho}} \left\{ \rho : x_1 x_2 - \rho = \sigma^2 + \lambda \cdot g, \ \lambda \ge 0 \right\}$$

$$\lim_{\substack{\rho \\ \rho}} \left\{ \left(\frac{x_1 + x_2}{\sqrt{2}} \right)^2 + \underbrace{\frac{1}{2}}_{\lambda \ge 0} \cdot \underbrace{\left(1 - x_1^2 - x_2^2 \right)}_{g \ge 0} \right\}$$

Recall: Lischitz Constants of NN

• Let $f: \mathcal{X} \to \mathbb{R}$,

$$L_f^p = \inf_{\mathbf{x}, \mathbf{y} \in \mathcal{X}} \{ L : |f(\mathbf{x}) - f(\mathbf{y})| \le L \cdot ||\mathbf{x} - \mathbf{y}||_p \}.$$

• If \mathcal{X} is convex, f is smooth,

$$L_f^p = \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla f(\mathbf{x})\|_p^* = \sup_{\mathbf{x} \in \mathcal{X}} \{\mathbf{t}^T \nabla f(\mathbf{x}) : \|\mathbf{t}\|_p \le 1\}.$$

Semialgebraicity

Outline

1 Part I: Motivation and Background

Part II: Polynomial Optimization

3 Part III: Experiments and Future work

Algorithms

- LP-3/4: 3rd-/4th-degree Linear Programming (LP);
- **SDP-1/2**: 1st-/2nd-order Semidefinite Programming (SDP);
- LBS: lower bound by random sampling.

Random (80,80) MLP

Random (80,80) MLP

MNIST (784, 500) MLP

	SDP-2	SDP-1	LP-3	LBS
bound	14.56	17.85	OfM	9.69
time (s)	12246	2869	OfM	-

Future Work

Exploiting sparsity:

$$I = \{x_i, y_j, z_k\} = I_1 \cup I_2$$

$$I_1 = \{x_i, y_j\}$$
 $I_2 = \{y_j, z_k\}$

$$81 = 9^2 = |I_1 \cup I_2|^2 \longrightarrow |I_1|^2 + |I_2|^2 = 6^2 + 6^2 = 72$$

Thank you!

Attack v.s. Defense

NN Verification

Robustness Verification

- $F: \mathcal{X} \to \mathbb{R}^K$, classification;
- $F_k := F(\cdot)_k, \ y(\mathbf{x}_0) = \arg\max_k F_k(\mathbf{x}_0);$
- Fix $\bar{\mathbf{x}}$, take $\mathcal{B} := {\mathbf{x} : ||\mathbf{x} \bar{\mathbf{x}}||_p \le \varepsilon}$.

$$\forall \mathbf{x}_0 \in \mathcal{B}, \ y_0 := y(\mathbf{x}_0) = y(\bar{\mathbf{x}}) =: \bar{y},$$

$$\updownarrow$$

$$F_k(\mathbf{x}_0) < F_{\bar{y}}(\mathbf{x}_0), \ \forall k \neq \bar{y},$$

$$\updownarrow$$

$$F_k(\mathbf{x}_0) - F_{\bar{v}}(\mathbf{x}_0) < 0, \ \forall k \neq \bar{y}.$$

Completeness and soundness

Examples

• sound (not complete) approach:

• complete (not sound) approach:

Sound Verification

• Robustness verification: given input x_0 and its prediction y_0 ,

$$\forall \mathbf{x} \in \mathcal{N}(\mathbf{x}_0), \ y(\mathbf{x}) = y_0$$
?

• Lipschitz constant estimation: given network F and input domain \mathcal{X} , find

$$L_{\mathcal{X}}^{F} \leq \tilde{L}_{\mathcal{X}}^{F}$$
.

History of NN Verification

(complete verifiers)

Inc

Lasserre's Hierarchy [Lasserre01]

	convexity	type	bound	complexity	
	non-convex	POP	f*	NP-hard	_
	\uparrow	\uparrow	II	\uparrow	
	:	:	:	:	
	\uparrow	\uparrow	\vee I	↑	
	convex	SDP_d	$ ho_{\sf d}$	$O(n^d)$	
	\uparrow	\uparrow	\vee I	\uparrow	
	:	:	÷	:	
	\uparrow	\uparrow	\vee I	†	
	convex	SDP_2	$ ho_2$	$O(n^2)$	
	\uparrow	↑	VI	↑	
Tong Chen (toch@di.ku.dk) (Machine I	earning Section, DIKU) Sparse Po	SDP ₁	$-$ Marc P_{2} 1 $_{2024}$	O(n)	

Slide 23/23

Future Work

Paradox of certified training [Jovanovic22]:

Table 1: The Paradox of Certified Training: training with tighter relaxations leads to worse certified robustness, failing to outperform the loose IBP relaxation. Tightness formalization and further details given in Section 3.

Relaxation	Tightness	Certified (%)
IBP / Box	0.73	86.8
hBox / Symbolic Intervals	1.76	83.7
CROWN / DeepPoly	3.36	70.2
DeepZ / CAP / FastLin / Neurify	3.00	69.8
CROWN-IBP (R)	2.15	75.4

Future Work

Adversarial accuracy suffers from certified training [Bartolomeis23]:

Figure 1: Standard and robust error of adversarial (dotted bars) and certified training (solid bars) on the CIFAR-10 test set. Models were trained for robustness against: (a) ℓ_{∞} -ball perturbations with radius $\epsilon_{\infty} = 1/255$, and (b) ℓ_2 -ball perturbations with radius $\epsilon_2 = 36/255$. We report the best performing certified training method among many convex relaxations (FAST-IBP [32], IBP [9], CROWN-IBP [40, 43] and COAP [38, 39]). We refer the reader to Section 2 for further details on the models and robust evaluation.

