Zadanie 8. *(1 pkt)*

Prosta o równaniu $y = \frac{2}{m}x + 1$ jest prostopadła do prostej o równaniu $y = -\frac{3}{2}x - 1$. Stąd wynika, że

A.
$$m = -3$$

B.
$$m = \frac{2}{3}$$

D.
$$m = 3$$

Zadanie 9. (1 pkt)

Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

Jakie znaki mają współczynniki a i b?

A.
$$a < 0 \text{ i } b < 0$$

B.
$$a < 0 \text{ i } b > 0$$

C.
$$a > 0$$
 i $b < 0$

C.
$$a > 0$$
 i $b < 0$ **D.** $a > 0$ i $b > 0$

Zadanie 10. (1 pkt)

Najmniejszą liczbą całkowitą spełniającą nierówność $\frac{x}{2} \le \frac{2x}{3} + \frac{1}{4}$ jest

Zadanie 11. *(1 pkt)*

Na rysunku 1 przedstawiony jest wykres funkcji y = f(x) określonej dla $x \in \langle -7, 4 \rangle$.

Rysunek 2 przedstawia wykres funkcji

$$\mathbf{A.} \quad y = f\left(x+2\right)$$

$$\mathbf{B.} \quad y = f(x) - 2$$

C.
$$y = f(x-2)$$

B.
$$y = f(x) - 2$$
 C. $y = f(x-2)$ **D.** $y = f(x) + 2$

Zadanie 12. *(1 pkt)*

Ciąg (27, 18, x+5) jest geometryczny. Wtedy

A.
$$x = 4$$

$$\mathbf{B.} \quad x = 5$$

B.
$$x = 5$$
 C. $x = 7$

D.
$$x = 9$$