Penser avec les catégories

2024-2025

Table des matières

1	Yor	ıeda	5
2	Foncteurs 2.1 Foncteurs représentables		7 7
3	Obj	ets universels dans les catégories abéliennes	9
	3.1	Remarques sur la variance	9
		3.1.1 Le plongement de Yoneda	9
		3.1.2 Spécialisation, foncteur représentable	9
	3.2	Exactitude du foncteur Hom	9
		3.2.1 Preuves du deuxième cas	10
		3.2.2 Preuves du premier cas	12
	3.3	Injectifs et projectifs	12
	3.4	Monomorphismes et épimorphismes	12
		3.4.1 Détail	13
	3.5	Ker et coker	13
	3.6	Snake Lemma	14
	3.7	Obtenir des flèches	14
	3.8		15

TABLE DES MATIÈRES

Chapitre 1

Yoneda

Chapitre 2

Foncteurs

2.1 Foncteurs représentables

2.1 Foncteurs représentables

Chapitre 3

Objets universels dans les catégories abéliennes

3.1 Remarques sur la variance

Le bi-foncteur $h_{-}(-)$ est celui qu'on a besoin pour la cohomologie. Et on a $h_{M}(A) = h^{A}(M)$.

3.1.1 Le plongement de Yoneda

Le foncteur $I \mapsto h_I$ est covariant et pleinement fidèle, via $I \to I'$ et $M \to I$ fournit $M \to I \to I'$. Mais ca c'est Yoneda. À l'inverse $P \mapsto h^P$ est contravariant vu que étendre naturellement $P' \to M$ c'est par pullback.

3.1.2 Spécialisation, foncteur représentable

Donc une fois I fixé, h_I est contravariant, vu que $M \to I$ s'étend par pullback. Et h^P est covariant vu que $P \to A$ s'étend par pushforward. Et surtout que $h_I(M) \to h_I(M') = h^M(I) \to h^{M'}(I)$ donc on a la variance de h^- .

3.2 Exactitude du foncteur Hom

Ducoup, l'exactitude de $A \to B \to C \to 0$ via h_M est toujours vraie. On obtient

$$0 \to h_M(C) \to h_M(B) \to h_M(A)$$

et pour obtenir l'exactitude à droite, il faut que M = I soit un injectif.

On a deux suites exactes à traiter

$$0 \to A \to B \to C$$

et

$$A \to B \to C \to 0$$

c'est la deuxième qui m'interesse pour la cohomologie via h_I . Je regarde que

$$A \to B \to C \to 0$$

On en déduit deux suites exactes

$$0 \to h_I(C) \to h_I(B) \to h_I(A)$$

et

$$0 \to h^C \to h^B \to h^A$$

la deuxième donne pas la propriété des injectifs. L'exactitude de la deuxième se vérifie terme à terme donc c'est équivalent l'autre.

3.2.1 Preuves du deuxième cas

Injectivité et surjectivité sur les côtés

Le cas $0 \to h^C \to h^B$ est clair l'injectivité c'est le fait que un épi $B \to C \to 0$ vient de $(C \to M) \mapsto (B \to C \to M)$ est injectif. Et ça se traduit en mono dans la catégorie opposée où cette fois un mono $0 \to A \to B$ fournit un mono

$$0 \rightarrow h_A \rightarrow h_B$$

par la variance et $M \to A \mapsto M \to A \to B$ uniquement.

Remarque 1. Marrant y'a ptet un truc philosophique sur cette asymétrie?

Exactitude au milieu où ker et coker

Remarque 2. Pour rappel un noyau K est donné par une injection exacte :

$$0 \to h_K \to h_B \to h_C$$

et un conoyau par

$$0 \to h^{coK} \to (h^B \to h^A) = \ker(h^B \to h^A)$$

l'image elle c'est

$$0 \to h_{Im} \to h_B \to h_{coK(A \to B)} = \ker(h_B \to h_{coK(A \to B)})$$

Objets universels dans les catégories abéliennes

Maintenant on veut pas exactement montrer que $h_K = h_{im}$ sachant K = im vu que c'est immédiat. On veut montrer que $\ker(h_I(B) \to h_I(A)) = \operatorname{im}(h_I(C) \to h_I(B))$ pour tout I mais le problème c'est que ça se traduit en

$$\ker(h^B \to h^A) = \operatorname{im}(h^C \to h^B)$$

et donc on a pas a priori la propriété universelle direct. Le fait que ce soit pas intuitif c'est que on demande que de $B \to M$ on ait $A \to B \to M = 0$ ssi $A \to B \to M$ se factorise par $A \to B \to C \to M$ i.e.

$$A \longrightarrow B \longrightarrow C$$

$$\downarrow \qquad \qquad \qquad M$$

On dirait que M est un projectif. Ça s'éclaircit en rappelant que

$$A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow \qquad \qquad M$$

et là on peut définir $C \to M$ parce que $B \to C$ est un épi intuitivement. Plus concrètement l'idée c'est une extension de celle du théorème d'iso. Étant donné coim comment je déf $coim \to im!$ Là c'est l'inverse! En fait on prouve que

$$C = \operatorname{coker}(A \to B)$$

via $coim(B \to C) \simeq C$ dans la catégorie abélienne et

$$\operatorname{coker}(A \to B) = \operatorname{coker}(\operatorname{im}(A \to B) \to B) = \operatorname{coker}(\ker(B \to C) \to B) = \operatorname{coim}(B \to C)$$
 par exactitude au milieu.

Exactitude au milieu en bref

On veut que $\ker(h^B \to h^A) = \operatorname{im}(h^C \to h^B)$, ça revient à dire que $C = \operatorname{coker}(A \to B)$. Et on utilise l'exactitude pour voir que $\operatorname{coker}(A \to B) = \operatorname{coim}(B \to C) = \operatorname{im}(B \to C) = C$. En termes de foncteurs. La coimage vérifie

$$0 \to h^{\operatorname{coim}(B \to C)} \to h^B \to h^{\ker(B \to C)}$$

$$h^{\operatorname{coim}(B \to C)}$$

et on a un pont $h^{\text{coim}(B\to C)} = h_{\text{im}(B\to C)}$.

Le théorème d'iso est un pont entre h- et h_

3.2.2 Preuves du premier cas

Pour l'exactitude au milieu, on utilise seulement que

$$0 \to A \to B$$

exact implique $A \simeq \operatorname{im}(A \to B)$ en particulier, $M \to B$ tel que $M \to B \to C = 0_{M,C}$ implique $M \to B = M \to \operatorname{im}(A \to B) \to B$ et via l'isomorphisme on obtient naturellement $M \to A$ tel que $M \to B$ et $M \to A \to B$.

3.3 Injectifs et projectifs

Pour rappel $h_I(_) := \text{Hom}(_, I)$ et $h^P(_) := \text{Hom}(P, _)$. Être injectif I ça revient à ce que l'exactitude de

$$0 \to M' \to M$$

devienne l'exactitude de $h_I(M) \to h_I(M') \to 0$. C'est un peu bizarre à intuiter au sens où le diagramme est

et que de $M' \to I$ on a une flèche qui induit l'existence de $M \to M$. C'est une condition de surjectivité! I.e. h_I est exacte à droite (en passant à la catégorie opposée). À l'inverse pour les projectifs

3.4 Monomorphismes et épimorphismes

En résumé $A \to B$ est un mono veut dire que

$$h_A \rightarrow h_B$$

est injectif via $i_* = h_i := (M \to A) \mapsto (M \to A \to B)$. (ca se vérif bien terme à terme) et pour la remarque, h_A est un foncteur de \mathcal{A} dans Ab dans le cadre des catégories abéliennes donc c'est une catégorie abélienne et l'injectivité se traduit en $0 \to h_A \to h_B$.

Objets universels dans les catégories abéliennes

3.4.1 Détail

On a $0 \to A \to B$ est exacte c'est pareil que

$$0 \to \operatorname{Hom}_{\mathcal{C}}(M, A) \to \operatorname{Hom}_{\mathcal{C}}(M, B)$$

est injective via le pushforward : $i \circ f = i \circ g \implies f = g$. En passant à la catégorie opposée dans \mathcal{C} , on obtient les épis par $B \to A \to 0$ et les flèches c'est :

$$\operatorname{Hom}_{\mathcal{C}^{o_p}}(B,M) \to \operatorname{Hom}_{\mathcal{C}^{o_p}}(A,M) \to 0$$

est surjective via i_*^{op} . D'où

$$\operatorname{Hom}_{\mathcal{C}}(M,B) \to \operatorname{Hom}_{\mathcal{C}}(M,A) \to 0$$

est surjective.

Remarque 3. C'est comme ça que les flèches s'inversent! La condition

$$Hom_{\mathcal{C}}(B,M) \to Hom_{\mathcal{C}}(A,M) \to 0$$

via le pullback est bizarre. Ça veut dire que toutes les flèches $A \to M$ proviennent de $B \to M$ sachant que $A \hookrightarrow B$ s'injecte dans B. C'est pas exactement tout de suite en lien avec les injectifs.

En résumé,

3.5 Ker et coker

Un ker c'est ça :

$$K \longrightarrow A \longrightarrow B$$

$$\downarrow O_{M,B}$$

Maintenant, on peut le traduire en

$$h_K \to h_A \to h_B$$

est exacte. En plus, $K \to A$ est un mono par le propriété universelle. D'où

$$0 \to h_K \to h_A \to h_B$$

est exacte.

3.6 Snake Lemma

Avec élément c'est assez clair comment on construit δ la flèche de connexion. Sans élément ça l'es moins. J'ai eu une idée et je me suis spoil la suite. On peut faire comme ça, donc on regarde $\ker(w) \to C \to B \to B' \to A \to \operatorname{coker}(u)$. Et l'idée c'est que on regarde des éléments dans B tels que $B \to C \to C'$ est nulle, et pour qu'y soient bien définis, on les regarde modulo A. En résumé, on regarde

$$\ker(B \to C \to C') = B''$$

on sait que $(B'' \to B \to B') \to C' = 0$ donc on obtient $B'' \to A'$. Pour conclure on a clairement $A \to B''$ et ça fournit

$$B''/A \to A'/A = \operatorname{coker}(u)$$

en plus comme $B \to C$ est un épi, $B'' \to B$ est un mono, et $A \to B \to C$ est exacte, on obtient que

$$B''/A = B''/\ker(B \to C) \simeq \operatorname{im}(B'' \to B \to C) = \ker(w)$$

d'où

$$\ker(w) \to \operatorname{coker}(u)$$

3.7 Obtenir des flèches

Quelques tricks pour obtenir des flèches. Étant donné $A \to B \to C$, on a $\ker(A \to B) \to \ker(A \to B \to C)$. Parce que

$$\ker(A \to B) \to A \to B \to C = (\ker(A \to B) \to A \to B) \to C$$

est nulle d'où la flèche. À l'inverse on a

$$\operatorname{coker}(A \to B \to C) \to \operatorname{coker}(B \to C)$$

via

$$A \to B \to C \to \operatorname{coker}(B \to C) = A \to (B \to C \to \operatorname{coker}(B \to C)) = 0$$

d'où la flèche. Aussi, on a

$$\operatorname{coker}(A \to B) \to \operatorname{coker}(A \to B \to C)$$

via

$$A \to B \to (C \to \operatorname{coker}(A \to B \to C)) = (A \to B \to C \to \operatorname{coker}(A \to B \to C)) = 0$$

d'où la flèche. En particulier on obtient la flèche du théorème d'isomorphisme.

Objets universels dans les catégories abéliennes

3.8 Théorème d'isomorphisme

On regarde $\ker(A \to B) \to A \to B$, alors $\mathrm{coim}(A \to B) = \mathrm{coker}(\ker(A \to B) \to A) \to \mathrm{coker}((\ker(A \to B) \to A) \to B) = \mathrm{coker}(0 \to B) = B$ et la flèche est bien induite pas $A \to B$.