# Sprawozdanie

Problem transportowy wielu produktów

Bartosz Wlazło, Przemysław Jekiel 22 stycznia 2019

### 1 Wstęp

#### 1.1 Problematyka

Celem niniejszego ćwiczenia było rozwiązanie problemu transportowego wielu produktów.

#### 1.2 Cel ćwiczenia

Po wykonaniu tego ćwiczenia powinniśmy opanować importowanie danych (przy użyciu biblioteki Pandas), umieć skonfigurować i poprawnie wyświetlić dane w cześci frontend oraz umieć korzystać z biblioteki opymalizacyjnej pyscipopt.

#### 1.3 Przyjęty przypadek użycia

Osoba X prowadzi sieć sklepów spożywczych. Największe koszty, które ponosi firma są związane z transportem produków z magazynów do sklepów. W celu obniżenia ich udała się ona do firmy OPTTech w celu opracowania narzędzia do planowania tras i ilości zabieranych produktów.

# 2 Narzędzia

Do obliczeń oraz wizualizacji danych i wyników zostały użyte następujące narzędzia:

- Python mikroframework Flask realizacja zadania frontend tj. wizualizacja danych i wyników oraz GUI użytkownika
- Python biblioteka Pyscipopt realizacja zadania backend tj. stworzenia modelu problemu i obliczenia wyniku
- Python biblioteka Pandas realizacja zadania backend tj. import i obróbka importowanych z pliku bazowodanego danych

# 3 Założenia projektowe

#### 3.1 Uproszczające

W celu szybszej pracy kody próbka danych został ograniczona do:

• 5 sklepów

- 3 magazynów
- 4 typów produktów
- nieskończonej liczby środków transportu
- wartości ograniczeń są wyrażone w liczbach całkowitych

Zostało także przyjęte uproszczenie iż każdy produkt jest magazowany w tej samej liczbie.

#### 3.2 Przyjęte zmienne

- $\bullet$  I zbiór sklepów i
- $\bullet$  *i t*-ty sklep
- $\bullet$  J zbiór magazynów j
- j j-ty magazyn
- $\bullet~K$  zbiór produktów k
- k k-ty produkt
- $\bullet$   $M_j$  pojemność j-tego magazynu
- $\bullet$   $c_{i,j,k}$  koszt dostawy do <br/> i-tegosklepu zj-tegomagazyn<br/>uk-tegoproduktu
- $d_{i,k}$  zapotrzebowanie i-tegosklepu na k-ty produkt

#### 3.3 Szukane

 $x_{i,j,k}$  - ilość wysłanych sztuk produktu k do i sklepu z j magazynu

#### 3.4 Model matematyczny

#### 3.4.1 Funkcja celu

$$minimize \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{K} c_{i,j,k} * x_{i,j,k}$$

### 3.4.2 Ograniczenia

1. 
$$\sum_{j=1}^{m} x_{i,j,k} = d_{i,k}$$
 dla i=1,...,n, k=1,...,K

2. 
$$\sum_{i=1}^{n} \sum_{k=1}^{K} x_{i,j,k} \leq M_j \text{ dla j=1,...,m}$$

3. 
$$x_{i,j,k} \ge 0$$
 dla i=1,...,n, j=1,...,m, k=1,...,K

# 4 Założenia projektowe

### 4.1 Dane ograniczeń

#### 4.1.1 Pojemności magazynów

| Magazyn   | Pojemność |
|-----------|-----------|
| Magazyn 1 | 3000      |
| Magazyn 2 | 3000      |
| Magazyn 3 | 3000      |

#### 4.1.2 Dostępność produktów w danych magazynach

| Magazyn   | Produkt |
|-----------|---------|
| Magazyn 1 | 2, 4    |
| Magazyn 2 | 1, 2, 3 |
| Magazyn 3 | 2, 3, 4 |

### 4.2 Dane

# $4.2.1 \quad Zapotrzebowanie\ sklep\'ow\ na\ dany\ produkt$

| Magazzo | Produkt | Zanatozahawania |
|---------|---------|-----------------|
| Magazyn |         | Zapotrzebowanie |
| Sklep 1 | 1       | 80              |
| Sklep 1 | 2       | 85              |
| Sklep 1 | 3       | 300             |
| Sklep 1 | 4       | 6               |
| Sklep 2 | 1       | 270             |
| Sklep 2 | 2       | 160             |
| Sklep 2 | 3       | 400             |
| Sklep 2 | 4       | 7               |
| Sklep 3 | 1       | 250             |
| Sklep 3 | 2       | 130             |
| Sklep 3 | 3       | 350             |
| Sklep 3 | 4       | 4               |
| Sklep 4 | 1       | 160             |
| Sklep 4 | 2       | 60              |
| Sklep 4 | 3       | 200             |
| Sklep 4 | 4       | 3               |
| Sklep 5 | 1       | 180             |
| Sklep 5 | 2       | 40              |
| Sklep 5 | 3       | 150             |
| Sklep 5 | 4       | 5               |

# $4.2.2 \quad Wagi\ produkt\'ow$

| Produkt   | Waga |
|-----------|------|
| Produkt 1 | 5    |
| Produkt 2 | 2    |
| Produkt 3 | 3    |
| Produkt 4 | 4    |

# 4.2.3 Koszt dostawy do danego sklepu z magazynu

| Sklep   | Magazyn   | Koszt |
|---------|-----------|-------|
| Sklep 1 | Magazyn 1 | 4     |
| Sklep 2 | Magazyn 1 | 5     |
| Sklep 3 | Magazyn 1 | 6     |
| Sklep 4 | Magazyn 1 | 8     |
| Sklep 5 | Magazyn 1 | 10    |
| Sklep 1 | Magazyn 2 | 6     |
| Sklep 2 | Magazyn 2 | 4     |
| Sklep 3 | Magazyn 2 | 3     |
| Sklep 4 | Magazyn 2 | 5     |
| Sklep 5 | Magazyn 2 | 8     |
| Sklep 1 | Magazyn 3 | 9     |
| Sklep 2 | Magazyn 3 | 7     |
| Sklep 3 | Magazyn 3 | 4     |
| Sklep 4 | Magazyn 3 | 3     |
| Sklep 5 | Magazyn 3 | 4     |

# 5 Interfejs użytkownika

# 5.1 Widok strony głównej



# 5.2 Widok strony z wynikami



# 6 Wynik

Dla podanych danych całkowity koszt wynosi: 43536.0

Tabela z wynikami

| Sklep   | Magazyn   | Produkt   | Ilość sztuk |
|---------|-----------|-----------|-------------|
| Sklep 5 | Magazyn 3 | Produkt 4 | 5.0         |
| Sklep 1 | Magazyn 1 | Produkt 2 | 85.0        |
| Sklep 3 | Magazyn 3 | Produkt 4 | 4.0         |
| Sklep 1 | Magazyn 1 | Produkt 4 | 6.0         |
| Sklep 4 | Magazyn 3 | Produkt 2 | 60.0        |
| Sklep 4 | Magazyn 3 | Produkt 3 | 200.0       |
| Sklep 3 | Magazyn 2 | Produkt 2 | 130.0       |
| Sklep 3 | Magazyn 2 | Produkt 3 | 350.0       |
| Sklep 2 | Magazyn 2 | Produkt 1 | 270.0       |
| Sklep 4 | Magazyn 2 | Produkt 1 | 160.0       |
| Sklep 2 | Magazyn 1 | Produkt 4 | 7.0         |
| Sklep 2 | Magazyn 2 | Produkt 3 | 400.0       |
| Sklep 2 | Magazyn 2 | Produkt 2 | 160.0       |
| Sklep 5 | Magazyn 2 | Produkt 1 | 180.0       |
| Sklep 3 | Magazyn 2 | Produkt 1 | 250.0       |
| Sklep 1 | Magazyn 2 | Produkt 3 | 300.0       |
| Sklep 5 | Magazyn 3 | Produkt 3 | 150.0       |
| Sklep 5 | Magazyn 3 | Produkt 2 | 40.0        |
| Sklep 4 | Magazyn 3 | Produkt 4 | 3.0         |
| Sklep 1 | Magazyn 2 | Produkt 1 | 80.0        |

# 7 Analiza otrzymanych wyników

Analiza wyników jest trudna do osiągnięcia ze względu na charakter zadania. Porównanie z wynikami rzeczywistymi jest niemożliwe ze względu na brak dostępu do takowych. Model został wykonany na czysto teoretycznym wycinku rzeczywistości.

#### 8 Wnioski

Zbudowanie modelu w skali pozwala na uniknięcie kosztów związanych z wykonywaniem testów w rzeczywistym środowisku. Oszczędzane są również inne zasoby takie jak chociażby czas.

Dzięki temu ćwiczeniu opanowaliśmy wiedzę z zakresu:

• Frontend - konfiguracji oraz obsługi mikroframeworku flask w języku programowania Python

- Backend operacji na danych dzięki obsłudze biblioteki Pandas w języku programowania Python
- $\bullet$  Backend optymalizacji dzięki bibliotece pyscipopt w języku programowania Python
- tworzenia plików teskstowych z wykorzytaniem LaTeX

# 9 Kod

Kod jest dostępny w repozytorium: https://github.com/pj30/Projekt-MMPPiZ