Trabajo #1 Ecuaciones Diferenciales

Presentado por
Grupo 10
Sergio Pabón
Christian Girón
Evert Acosta

Universidad De Antioquia 2021

Introducción

En el siguiente documento se sustentan las preguntas realizadas en el trabajo, importante tener en cuenta que al momento de ejecutar el archivo de Python se generaran dos figuras o imágenes diferentes, en la primera se tiene las gráficas de las soluciones y los diagramas de pendientes, cada uno con su respectiva comparación respecto a la solución particular y en la segunda se tiene la comparación entre la solución y la solución de open modélica. Los archivos adjuntos en la entrega de la tarea serán un archivo .py, un archivo .om, este pdf y un archivo .csv que contiene los puntos generados por om para realizar la comparación.

A continuación, se adjuntan imágenes de la figura 1 y figura 2 generadas en Python

Punto 4: solución de las ecuaciones diferenciales empleando los métodos vistos en clase. Se adjuntan los procedimientos que sustentan las soluciones particulares de cada ecuación.

Ecuación 2

$$3\frac{dy}{dx} + 9y = 5 + \cos(x)$$

$$3\frac{dy}{dx} + 9y = 5 + \cos(x)$$

$$\frac{dy}{dx} + 3y = \frac{5}{3} + \frac{\cos(x)}{3}$$

$$\frac{dy}{dx} + 3 = \frac{3}{3} + \frac{\cos(x)}{3}$$

$$\frac{dy}{dx} + 3 = \frac{3}{3} + \frac{\cos(x)}{3} + \frac{3}{3} \cos(x) = \frac{3}{3} + \frac{3}{3} \cos(x) = \frac{3$$

Multiplication for 9 para simplified,
$$y \in 3^{3}$$
 conto facts commun.

$$\int \cos x e^{3x} dx = \frac{1}{10} e^{3x} \left[3\cos x + \sin x + C \right]$$

$$\left[e^{3x} y^{7} \right] = \begin{cases} 8e^{3x} + 1e^{3x} \left[3\cos x + \sin x \right] + e \end{cases}$$

$$y = \frac{1}{2} \cdot \frac{5}{9} \cdot \frac{2^{3x}}{9} + \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{e^{3x}}{3^{3}} \left[3\cos x + \sin x \right] + \frac{1}{2} \cdot c$$

$$y = \frac{1}{2} \cdot \frac{5}{9} \cdot \frac{e^{3x}}{9} + \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{e^{3x}}{3^{3}} \left[3\cos x + \sin x \right] + e^{-3x} \cdot c$$

$$y = \frac{5}{9} + \frac{1}{30} \left[3\cos x + \sin x \right] + e^{-3x} \cdot c$$

$$0 = \frac{5}{9} + \frac{1}{30} \left[3\cos x + \sin x \right] + e^{-3x} \cdot c$$

$$0 = \frac{5}{9} + e$$

$$0 = \frac{5}{9} +$$

Punto 6: Las graficas obtenidas de la solución particular concuerdan increíblemente bien con el grafico de pendientes, lo que sugiere que la solución esta correcta, realizamos un aumento en la figura 1 para poder apreciar la similitud

Punto 7: Adjuntamos grafica obtenida en open modélica

Punto 8: Las gráficas generadas en Python a partir de la solución especifica encontrada a mano concuerda con las generadas en open modélica, con la única diferencia que OM solamente genera las gráficas en x desde 0, esto es algo propio de su filosofía en la que los sistemas no se exponen a tiempos negativos