Lesson 4 6/6 points (100%)

Quiz, 6 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

For Questions 1-3, consider the following scenario:

In the example from Lesson 4.1 of flipping a coin 100 times, suppose instead that you observe 47 heads and 53 tails.

• Report the value of $\stackrel{\wedge}{p}$, the MLE (Maximum Likelihood Estimate) of the probability of obtaining heads.

0.47

Correct Response

This is simply 47/100, the number of successes divided by the number of trials.

1/1 points

2.

Coin flip:

Using the central limit theorem as an approximation, and following the example of Lesson 4.1, construct a 95% confidence interval for p, the probability of obtaining heads.

 Report the lower end of this interval and round your answer to two decimal places. 0.37

Lesson 4

Quiz, 6 questions

Correct Response

6/6 points (100%)

We have

$$\hat{p} - 1.96\sqrt{\hat{p}(1-\hat{p})/n} = .47 - 1.96\sqrt{(.47)(.53)/100} = .372,$$

which is the lower end of a 95% confidence interval for p.

1/1 points

3.

Coin flip:

 Report the upper end of this interval and round your answer to two decimal places.

0.57

Correct Response

We have

$$\hat{p} + 1.96\sqrt{\hat{p}(1-\hat{p})/n} = .47 + 1.96\sqrt{(.47)(.53)/100} = .568,$$

which is the upper end of a 95% confidence interval for p.

1/1 points

4.

The likelihood function for parameter θ with data y is based on which of the following?

 $P(\theta \mid \mathbf{y})$

 $P(\mathbf{y} \mid \theta)$

Correct

Lesson 4

The likelihood is based on the sampling distribution of the data, given the parameter. Note that although the likelihood has the same functional form as $P(y \mid \theta)$, it is considered a function of θ .

6/6 points (100%)

Quiz, 6 questions

 $P(\theta)$

 $P(\mathbf{y})$

None of the above.

1/1 points

5.

Recall from Lesson 4.4 that if $X_1,\ldots,X_n \overset{\text{iid}}{\sim} \operatorname{Exponential}(\lambda)$ (iid means independent and identically distributed), then the MLE for λ is $1/\bar{x}$ where \bar{x} is the sample mean. Suppose we observe the following data: $X_1=2.0,\ X_2=2.5,\ X_3=4.1,\ X_4=1.8,\ X_5=4.0.$

Calculate the MLE for λ . Round your answer to two decimal places.

0.35

The sample mean is $\bar{x} = 2.88$.

1/1 points

6.

It turns out that the sample mean \bar{x} is involved in the MLE calculation for several models. In fact, if the data are independent and identically distributed from a Bernoulli(p), Poisson(λ), or Normal(μ , σ^2), then \bar{x} is the MLE for p, λ , and μ respectively.

Suppose we observe n=4 data points from a normal distribution with unknown mean μ . The data are $\mathbf{x}=\{-1.2,0.5,0.8,-0.3\}$.

What is the MLE for μ ? Round your answer to two decimal places.

-0.05

Lesson 4

6/6 points (100%)

Quiz, 6 questions

Correct Response

This is (-1.2 + 0.5 + 0.8 - 0.3)/4.

