© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°15

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Déterminants de Gram

n et p désignent des entiers naturels non nuls.

E est un ℝ-espace vectoriel muni d'un produit scalaire.

Partie I – Lemme préliminaire

- **I.1** Soit $Y \in \mathcal{M}_{p,1}(\mathbb{R})$. Montrer que $Y^TY = 0$ si et seulement si Y = 0.
- **I.2** Soit $A \in \mathcal{M}_{p,n}(\mathbb{R})$.
 - **I.2.a** Montrer que Ker $A \subset Ker A^T A$.
 - **I.2.b** A l'aide de la question **I.1**, montrer que Ker $A^TA \subset Ker A$.
 - **I.2.c** En déduire que $rg(A) = rg(A^TA)$.

Partie II - Déterminants de Gram

Si x_1, \ldots, x_n sont n vecteurs de E, on pose $G(x_1, \ldots, x_n)$ la matrice de $\mathcal{M}_n(\mathbb{R})$ dont le coefficient en position (i, j) est $\langle x_i, x_j \rangle$.

- **II.1** Soient $x_1, ..., x_n$ des vecteurs de E et F = vect $(x_1, ..., x_n)$. On note $(e_1, ..., e_p)$ une base orthonormale de F et A la matrice de la famille $(x_1, ..., x_n)$ dans la base $(e_1, ..., e_p)$.
 - **II.1.a** Montrer que $G(x_1, ..., x_n) = A^T A$.
 - **II.1.b** En déduire que det $G(x_1, ..., x_n) \ge 0$ et que det $G(x_1, ..., x_n) = 0$ si et seulement si la famille $(x_1, ..., x_n)$ est liée.
- **II.2** Soient F un sous-espace vectoriel de E de base (e_1, \dots, e_p) et x un vecteur de E. On ne suppose plus (e_1, \dots, e_p) orthonormée dans cette question.
 - **II.2.a** Justifier qu'il existe $y \in F$ et $z \in F^{\perp}$ tel que x = y + z.
 - **II.2.b** Montrer que det $G(e_1, ..., e_p, x) = ||z||^2 \det G(e_1, ..., e_p)$.
 - **II.2.c** En déduire que $d(x, F)^2 = \frac{\det G(e_1, \dots, e_p, x)}{\det G(e_1, \dots, e_p)}$.

Partie III – Applications

© Laurent Garcin MP Dumont d'Urville

III.1 Dans cette question, on suppose $E = \mathbb{R}[X]$ du produit scalaire $(P, Q) \mapsto \int_0^1 P(t)Q(t) dt$. Déterminer $d(X^3, \mathbb{R}_2[X])$.

III.2 Dans cette question, on suppose $E = \mathcal{C}([0,\pi],\mathbb{R})$ muni du produit scalaire $(f,g) \mapsto \int_0^{\pi} f(t)g(t) dt$. Déterminer

$$M = \inf_{(a,b) \in \mathbb{R}^2} \int_0^{\pi} \left(\sin t - at^2 - bt \right)^2 dt$$