On connected-homogeneity in graphs and partial orders

Robert Gray

Combinatorics of Arc-Transitive Graphs and Partial Orders, August 2007

Outline

Introduction

Structures with symmetry

Graphs with symmetry

Homogeneous-graphs
Connected-homogeneous graphs

Treelike structures

Graphs with more than one end Cycle-free partial orders

Outline

Introduction

Structures with symmetry

Graphs with symmetry
Homogeneous-graphs
Connected-homogeneous graphs

Treelike structures
Graphs with more than one end
Cycle-free partial orders

Structures with symmetry

- ► Roughly speaking, the 'more' symmetry a mathematical object has the 'larger' its automorphism group will be (and vice versa).
- ▶ **Aim.** To obtain classifications of families of structures with a high degree of symmetry.
- ► In each case we impose a transitivity assumption on the automorphism groups of the structures and then attempt to describe all (countable) structures satisfying the property.

Range of classification problems

Outline

Introduction

Structures with symmetry

Graphs with symmetry

Homogeneous-graphs

Connected-homogeneous graphs

Treelike structures

Graphs with more than one end

Cycle-free partial orders

Homogeneous graphs

Definition

A graph Γ is called homogeneous if any isomorphism between finite induced subgraphs extends to an automorphism of the graph.

Homogeneity is the *strongest* possible symmetry condition we can impose.

Example

The line graph $L(K_{3,3})$ of the complete bipartite graph $K_{3,3}$ is a finite homogeneous graph.

$$K_{3,3}$$

Classification of finite homogeneous graphs

Gardiner classified the finite homogeneous graphs.

Theorem (Gardiner (1976))

A finite graph is homogeneous if and only if it is isomorphic to one of the following:

- 1. finitely many disjoint copies of a complete graph K_r (or its complement, complete multipartite graph)
- 2. the pentagon C_5
- 3. *line graph* $L(K_{3,3})$ *of the complete bipartite graph* $K_{3,3}$.

An infinite homogeneous graph

Definition (The random graph *R*)

Constructed by Rado in 1964. The vertex set is the natural numbers (including zero).

For $i, j \in \mathbb{N}$, i < j, then i and j are joined if and only if the ith digit in j (in base 2, reading right-to-left) is 1.

Example

Since $88 = 8 + 16 + 64 = 2^3 + 2^4 + 2^6$ the numbers less that 88 that are adjacent to 88 are just $\{3, 4, 6\}$.

Of course, many numbers greater than 88 will also be adjacent to 88 (for example 2^{88}).

The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

Theorem

There exists a countably infinite graph R satisfying property (*), and it is unique up to isomorphism. The graph R is homogeneous.

Existence. The random graph R defined above satisfies property (*).

The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

Theorem

There exists a countably infinite graph R satisfying property (*), and it is unique up to isomorphism. The graph R is homogeneous.

Existence. The random graph R defined above satisfies property (*).

Uniqueness and homogeneity. Both follow from a back-and-forth argument. Property (*) is used to extend the domain (or range) of any isomorphism between finite substructures one vertex at a time.

Building homogeneous graphs: Fraïssé's theorem

- ▶ The age of a graph Γ is the class of isomorphism types of its finite induced subgraphs.
- e.g. the age of the random graph *R* is the class of *all* finite graphs.

Building homogeneous graphs: Fraïssé's theorem

- ▶ The age of a graph Γ is the class of isomorphism types of its finite induced subgraphs.
- e.g. the age of the random graph *R* is the class of *all* finite graphs.

Fraïssé (1953) - gives necessary and sufficient conditions for a class C of finite graphs to be the age of a countably infinite homogeneous graph M. The key condition is the amalgamation property.

If Fraïssé's conditions hold, then M is unique, C is called a Fraïssé class, and M is called the Fraïssé limit of the class C.

Homogeneous graphs

Examples

- ► The class of all finite graphs is a Fraïssé class. Its Fraïssé limit is the random graph *R*.
- ▶ The class of all finite graphs not embedding K_n (for some fixed n) is a Fraïssé class. We call the Fraïssé limit the countable generic K_n -free graph.

Theorem (Lachlan and Woodrow (1980))

Let Γ be a countably infinite homogeneous graph. Then Γ is isomorphic to one of: the random graph, a disjoint union of complete graphs (or its complement), the generic K_n -free graph (or its complement).

Outline

Introduction
Structures with symmetry

Graphs with symmetry

Homogeneous-graphs

Connected-homogeneous graphs

Treelike structures

Graphs with more than one end

Cycle-free partial orders

Definition

A graph Γ is connected-homogeneous if any isomorphism between *connected* finite induced subgraphs extends to an automorphism.

Example

The hexagon C_6 is connected-homogeneous

Use rotations and reflections

Definition

A graph Γ is connected-homogeneous if any isomorphism between *connected* finite induced subgraphs extends to an automorphism.

Example

The hexagon C_6 is connected-homogeneous

Use rotations and reflections

Definition

A graph Γ is connected-homogeneous if any isomorphism between *connected* finite induced subgraphs extends to an automorphism.

Example

The hexagon C_6 is connected-homogeneous

Use rotations and reflections

Definition

A graph Γ is connected-homogeneous if any isomorphism between *connected* finite induced subgraphs extends to an automorphism.

Example

On the other hand the hexagon is **not** homogeneous.

There is no automorphism α such that $(u, v)^{\alpha} = (u, w)$.

Connected-homogeneity...

- 1. is a natural weakening of homogeneity;
- 2. gives a class of graphs that lie between the (already classified) homogeneous graphs and the (not yet classified) distance-transitive graphs.

 $homogeneous \Rightarrow connected-homogeneous \Rightarrow distance-transitive$

(A graph is distance-transitive if for any two pairs (u, v) and (u', v') with d(u, v) = d(u', v'), where d denotes distance in the graph, there is an automorphism taking u to u' and v to v'.)

Finite connected-homogeneous graphs

Gardiner classified the finite connected-homogeneous graphs.

Theorem (Gardiner (1978))

A finite graph is connected-homogeneous if and only if it is isomorphic to a disjoint union of copies of one of the following:

- 1. a finite homogeneous graph
- 2. bipartite "complement of a perfect matching" (obtained by removing a perfect matching from a complete bipartite graph $K_{s,s}$)
- 3. cycle C_n
- 4. the line graph $L(K_{s,s})$ of a complete bipartite graph $K_{s,s}$
- 5. Petersen's graph
- 6. the graph obtained by identifying antipodal vertices of the 5-dimensional cube Q₅

Treelike examples

Definition (Tree)

A tree is a connected graph without cycles. A tree is regular if all vertices have the same degree. We use T_r to denote a regular tree of valency r.

A graph is locally finite if each of its vertices has finite valency.

Fact. A regular tree T_r ($r \in \mathbb{N}$) is an example of an infinite locally-finite connected-homogeneous graph.

Definition (Semiregular tree)

 $T_{a,b}$: A tree $T = X \cup Y$ where $X \cup Y$ is a bipartition, all vertices in X have degree a, and all in Y have degree b.

Locally finite infinite connected-homogeneous graphs

Let $r, l \in \mathbb{N} \ (l \ge 2)$

Take the bipartite semiregular tree $T_{r+1,l}$.

The graph $X_{r,l}$ is given by:

Vertices = bipartite block of $T_{r+1,l}$ of vertices of degree l.

Edges = adjacent in $X_{r,l}$ if their distance in the tree is 2.

(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)

Locally finite infinite connected-homogeneous graphs

Let $r, l \in \mathbb{N} \ (l \ge 2)$

Take the bipartite semiregular tree $T_{r+1,l}$.

The graph $X_{r,l}$ is given by:

Vertices = bipartite block of $T_{r+1,l}$ of vertices of degree l.

Edges = adjacent in $X_{r,l}$ if their distance in the tree is 2.

(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)

Locally finite infinite connected-homogeneous graphs

Let $r, l \in \mathbb{N} \ (l \ge 2)$

Take the bipartite semiregular tree $T_{r+1,l}$.

The graph $X_{r,l}$ is given by:

Vertices = bipartite block of $T_{r+1,l}$ of vertices of degree l.

Edges = adjacent in $X_{r,l}$ if their distance in the tree is 2.

(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)

Infinite connected-homogeneous graphs

Theorem (RG, Macpherson (2007))

A countable graph is connected-homogeneous if and only if it is isomorphic to the disjoint union of a finite or countable number of copies of one of the following:

- 1. a finite connected-homogeneous graph;
- 2. a homogeneous graph;
- 3. the random bipartite graph;
- 4. bipartite infinite complement of a perfect matching;
- 5. the line graph of the infinite complete bipartite graph K_{\aleph_0,\aleph_0} ;
- 6. a treelike graph X_{κ_1,κ_2} with $\kappa_1,\kappa_2 \in (\mathbb{N} \setminus \{0\}) \cup \{\aleph_0\}$.

Weaker forms of homogeneity

Let Γ be a graph and let $k \in \mathbb{N}$.

Definition

 Γ is *k*-homogeneous if all isomorphisms between induced subgraphs of size *k* extend to automorphisms of the graph Γ .

 Γ is *k*-transitive if for any two isomorphic induced subgraphs *A* and *B* of Γ , each of size *k*, at least one isomorphism between *A* and *B* extends to an automorphism of Γ .

Weaker forms of homogeneity

Let Γ be a graph and let $k \in \mathbb{N}$.

Definition

 Γ is *k*-homogeneous if all isomorphisms between induced subgraphs of size *k* extend to automorphisms of the graph Γ .

 Γ is *k*-transitive if for any two isomorphic induced subgraphs *A* and *B* of Γ , each of size *k*, at least one isomorphism between *A* and *B* extends to an automorphism of Γ .

If we only insist that isomorphisms between *connected* substructures extend then we say Γ is *k-CS*-homogeneous (respectively *k-CS*-transitive).

Weaker forms of homogeneity

Let Γ be a graph and let $k \in \mathbb{N}$.

Definition

 Γ is *k*-homogeneous if all isomorphisms between induced subgraphs of size *k* extend to automorphisms of the graph Γ .

 Γ is *k*-transitive if for any two isomorphic induced subgraphs *A* and *B* of Γ , each of size *k*, at least one isomorphism between *A* and *B* extends to an automorphism of Γ .

If we only insist that isomorphisms between *connected* substructures extend then we say Γ is k-CS-homogeneous (respectively k-CS-transitive).

Strongest

Homogeneous	\Rightarrow	Connected-homogeneous
#		\downarrow
<i>k</i> -homogeneous	\Rightarrow	k-CS-homogeneous
₩		\downarrow
<i>k</i> -transitive	\Rightarrow	<i>k-CS</i> -transitive

Weakest

Classification problems

Outline

Introduction
Structures with symmetry

Graphs with symmetry
Homogeneous-graphs
Connected-homogeneous graphs

Treelike structures

Graphs with more than one end

Cycle-free partial orders

Number of ends of a graph

Definition

The number of ends of graph is the least upper bound (possibly ∞) of the number of infinite connected components that can be obtained by removing finitely many vertices.

Theorem (Diestel, Jung, Möller (1993))

A connected vertex transitive graph has either 1, 2 or ∞ many ends.

Examples: A grid, a tree and a line

s-arc-transitivity

Definition

- An *s*-arc in a graph is a sequence v_0, \ldots, v_s of vertices such that v_i is adjacent to v_{i+1} for all $0 \le i \le s-1$, and $v_j \ne v_{j+2}$ for $0 \le j \le s-2$.
- A graph is s-arc transitive if given any two s-arcs v_0, \ldots, v_s and u_0, \ldots, u_s there is an automorphism α such that

$$v_i^{\alpha} = u_i \quad (0 \le i \le s).$$

Fact. For locally finite graphs with more than one end *s*-arc-transitivity is a very restrictive condition.

Locally finite s-arc-transitive graphs

Let Γ be a locally finite connected graph with more than one end.

Theorem (Thomassen–Woess (93))

If Γ *is* 2-arc transitive then Γ *is a regular tree.*

Theorem (Thomassen–Woess (93))

If Γ is 1-arc transitive and all vertices have degree r, where r is a prime, then Γ is a regular tree.

Using ideas developed by Möller (1992) it is possible to obtain a classification in the case that Γ is 3-CS-transitive.

3-CS-transitive graphs

Figure: Local structure of the graphs $K_4(3)$, $X_{2,3}$ and Y_3 .

3-CS-transitive graphs

Figure: Local structure of the graphs $K_4(3)$, $X_{2,3}$ and Y_3 .

Theorem (RG (2007))

Let Γ be a connected locally finite graph with more than one end. Then Γ is 3-CS-transitive if and only if it is isomorphic to one of the following:

- 1. $X_{r,l}$ $(r \ge 1, l \ge 2)$
- 2. $Y_r (r \ge 3)$
- 3. $K_4(r)$ $(r \ge 1)$.

Outline

Introduction
Structures with symmetry

Graphs with symmetry
Homogeneous-graphs
Connected-homogeneous graphs

Treelike structures

Graphs with more than one end

Cycle-free partial orders

Cycle-free partial orders

The definition of cycle-free partial order is given in terms of an extension of a poset called its Dedekind–MacNeille completion.

Definition

A poset $P = (P, \leq)$ is called Dedekind–MacNeille complete if:

- any maximal chain is Dedekind-complete (so non-empty bounded subsets have suprema and infima);
- 2. any two-element subset bounded above has a supremum;
- 3. any two-element subset bounded below has an infimum.

Cycle-free partial orders

The definition of cycle-free partial order is given in terms of an extension of a poset called its Dedekind–MacNeille completion.

Definition

A poset $P = (P, \leq)$ is called Dedekind–MacNeille complete if:

- 1. any maximal chain is Dedekind-complete (so non-empty bounded subsets have suprema and infima);
- 2. any two-element subset bounded above has a supremum;
- 3. any two-element subset bounded below has an infimum.

Fact. For any poset M there is a unique minimal extension M^D of M which is Dedekind–MacNeille complete. We call M^D the Dedekind–MacNeille completion of M.

Examples of completions

Cycle-free partial orders (*CFPO*s)

Definition

A poset *P* is called cycle-free if its completion P^D does not embed a diamond or 2n-crown (for any $n \ge 3$).

In other words, P is cycle-free provided that its completion does not contain any 'cycles'.

Examples of completions

P is a CFPO since its completion P^D embeds no diamonds and no crowns.

Q is not a CFPO since its completion Q^D embeds a diamond.

Connection with bipartite graphs

Theorem (Warren 1997)

Let M be an infinite CFPO all of whose chains are finite. If M is k-CS-transitive for some $k \ge 2$ and C is a maximal chain in M, then |C| = 2.

- So *k-CS*-transitive ($k \ge 2$) finite chain *CFPO*s can be thought of both as partial orders and as bipartite graphs.
- ▶ The classification of countably infinite k-CS-transitive CFPOs ($k \ge 3$) is complete (due to Creed, Truss, and Warren).

Begin with (\mathbb{Z}, \leq)

Adjoin minimal and maximal elements α and β so that

$$\alpha < \mathbb{Z} < \beta$$
.

For each integer m in the original copy of \mathbb{Z} , adjoin a new copy of

$$[m, m+1, m+2, \ldots] \cup \beta$$

above m.

Now each point of the original copy of \mathbb{Z} ramifies upwards with order 2.

Dually for each integer m on the original copy of \mathbb{Z} , adjoin a new copy of

$$\alpha \cup [\ldots, m-2, m-1, m]$$

below m.

Now each point of the original copy of \mathbb{Z} ramifies downwards with order 2.

1- and 2-arc-transitive bipartite graphs

- ► The poset $\mathcal{A}_{2,2}^{\mathbb{Z}}$ is a *CFPO* and it has only has 2 levels (the blue and red points).
- ▶ However the completion of $\mathcal{A}_{2,2}^{\mathbb{Z}}$ contains infinite chains (the copies of \mathbb{Z}).

Fact 1. The two-level poset $\mathcal{A}_{2,2}^{\mathbb{Z}}$ is 3-CS-homogeneous.

Fact 2. As a bipartite graph $\mathcal{A}_{2,2}^{\mathbb{Z}}$ is 2-arc-transitive.

► *CFPO*s give rise to some interesting infinite 1- and 2-arc-transitive bipartite graphs.

Begin with P with $\alpha, \beta \in P$:

$$\alpha \leq P \leq \beta$$
,

and two functions assigning upward and downward ramification orders to the points of *P*.

For each $\gamma \in P$

we adjoin a number of copies of the interval $[\gamma, \beta]$ above γ .

The number of copies adjoined is determined by the upward ramification order of γ .

For each $\gamma \in P$

we adjoin a number of copies of the interval $[\gamma, \beta]$ above γ .

The number of copies adjoined is determined by the upward ramification order of γ .

For each new maximal point β' we require

$$[\alpha, \beta'] \cong [\alpha, \beta] \cong P.$$

We introduce new points and relations so that this is the case.

For each new maximal point β' we require

$$[\alpha, \beta'] \cong [\alpha, \beta] \cong P.$$

We introduce new points and relations so that this is the case.

This completes the first step of the construction.

The upward ramification order of the point γ has been dealt with.

We repeat the process 'dealing with' each point in turn.

Good news and bad news

Good news

Theorem (RG, Truss (2007))

The infinite 2-level partial orders arising from our construction are all 2-CS-transitive.

Consequently the construction above gives rise to new examples of infinite 1-arc-transitive bipartite graph.

Bad news

It does not give any 'new' examples of 2-arc-transitive graph.

Theorem (RG, Truss (2007))

If Γ is a bipartite graph arising from our construction and is Γ is 2-arc-transitive then Γ is a CFPO.

Cycle-free partial orders and ends of graphs

Let Γ be a locally finite bipartite graph.

Theorem (RG, Truss (2007))

 Γ has more than one end if and only if the Hasse graph of its completion Γ^D has more than one end.

Corollary (RG, Truss (2007))

If Γ is cycle-free then Γ has more than one end.