The following table of hydrogen transition data is from "Atomic Transition Probabilities," 1966.

Transition	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(\mathrm{sec^{-1}})$	fik
$ \begin{array}{c} 1s - 2p \\ 1s - 3p \\ 1s - 4p \\ 1s - 5p \end{array} $	1215.67 1025.72 972.537 949.743	0 0 0 0	82259 97492 102824 105292	2 2 2 2 2 2	6 6 6	$\begin{array}{c} 6.265 \times 10^{8} \\ 1.672 \times 10^{8} \\ 6.818 \times 10^{7} \\ 3.437 \times 10^{7} \end{array}$	0.4162 7.910×10^{-2} 2.899×10^{-2} 1.394×10^{-2}
1s-6p $2p-3s$ $2p-4s$ $2p-5s$ $2p-6s$	937.804 6562.86 4861.35 4340.48 4101.75	82259 82259 82259 82259	97492 102824 105292 106632	6 6 6	6 2 2 2 2 2		7.800×10^{-3} 1.359×10^{-2} 3.045×10^{-3} 1.213×10^{-3} 6.180×10^{-4}
2s - 3p $ 2s - 4p $ $ 2s - 5p $ $ 2s - 6p$	6562.74 4861.29 4340.44 4101.71	82259 82259 82259 82259	97492 102824 105292 106632	2 2 2 2	6 6 6	$\begin{array}{c} 2.245 \times 10^{7} \\ 9.668 \times 10^{6} \\ 4.948 \times 10^{6} \\ 2.858 \times 10^{6} \end{array}$	$\begin{array}{c} 0.4349 \\ 0.1028 \\ 4.193 \times 10^{-2} \\ 2.163 \times 10^{-2} \end{array}$
2p-3d $2p-4d$ $2p-5d$ $2p-6d$	6562.81 4861.33 4340.47 4101.74	82259 82259 82259 82259	97492 102824 105292 106632	6 6 6	10 10 10 10	$ \begin{vmatrix} 6.465 \times 10^7 \\ 2.062 \times 10^7 \\ 9.425 \times 10^6 \\ 5.145 \times 10^6 \end{vmatrix} $	$\begin{array}{c} 0.6958 \\ 0.1218 \\ 4.437 \times 10^{-2} \\ 2.163 \times 10^{-2} \end{array}$

The $3 \to 2$ transitions emit the bright red H- α line.

Transition	λ (Å)	$A_{ki} (\operatorname{second}^{-1})$
2p-3s	6562.86	6.313×10^{6}
2s-3p	6562.74	2.245×10^{7}
2p-3d	6562.81	6.465×10^{7}

Let us compute A_{ki} for the H- α line and see if the results match the table.

The orbitals correspond to the following angular momenta.

Letter	Angular momentum ℓ
s	0
p	1
d	2

Because of the magnetic quantum number m_ℓ there are multiple processes for each transition.

There are three processes for the transition $3s \to 2p$.

$$\psi_{3,0,0} \to \psi_{2,1,0}$$
 $\psi_{3,0,0} \to \psi_{2,1,0}$
 $\psi_{3,0,0} \to \psi_{2,1,-1}$

There are three processes for the transition $3p \rightarrow 2s$.

$$\psi_{3,1,1} \to \psi_{2,0,0}$$

$$\psi_{3,1,0} \to \psi_{2,0,0}$$

$$\psi_{3,1,-1} \to \psi_{2,0,-1}$$

Finally, there are fifteen processes for the transition $3d \rightarrow 2p$.

For each process, A_{ki} can be computed using the following Heisenberg formula.

$$A_{ki} = \frac{e^2}{3\pi\varepsilon_0\hbar c^3} \,\omega_{ki}^3 \,|r_{ki}|^2$$

The transition frequency ω_{ki} is given by Bohr's frequency condition.

$$\omega_{ki} = \frac{1}{\hbar} (E_k - E_i)$$

The transition probability (multiplied by a physical constant) is

$$|r_{ki}|^2 = |x_{ki}|^2 + |y_{ki}|^2 + |z_{ki}|^2$$

For wave functions ψ in spherical coordinates we have the following transition amplitudes.

$$x_{ki} = \int \psi_k^* (r \sin \theta \cos \phi) \, \psi_i \, dV$$
$$y_{ki} = \int \psi_k^* (r \sin \theta \sin \phi) \, \psi_i \, dV$$
$$z_{ki} = \int \psi_k^* (r \cos \theta) \, \psi_i \, dV$$

The average A_{ki} is obtained by summing over m_{ℓ} states and dividing by the number of distinct initial states.

Using Eigenmath we obtain

$$A_{3s2p} = 6.31358 \times 10^6 \text{ second}^{-1}$$

 $A_{3p2s} = 2.24483 \times 10^7 \text{ second}^{-1}$
 $A_{3d2p} = 6.4651 \times 10^7 \text{ second}^{-1}$

which is very close to the values shown in the table.