Section 2.2: More Predicates and Quantified Statements

Recall: The *negation* of a statement has the opposite truth value as the original statement.

If p is true, then $\sim p$ is false, and vice versa.

What do you think is the negation of the following statements?

- Every math class meets at 9am.
- Some students take Discrete Math.

Every math class meets at 9am

Some students take Discrete Math.

Theorem

Negating Quantified Statements:

Example. Negate the following. Start by writing them formally.

Every math class meets at 9am.

Rewrite: Y math classes x, x neets at 9am.

Negate: 3 math class x s.t. x does not meet at 9am.

Restated: There exists a math class that does not meet at 9am.

Some students take Discrete Math.

Rewrite: 3 student x s.t. x takes DM.

Negate: Y students x, x does not take DM.

Restated: All students do not take DM.
No students take DM.

Notes:

- When we say two quantified statements are logically equivalent, we mean they have the same truth value for every possible substitution of predicate, predicate variables, and choice of domain.
- An important summary:
 - The negation of a universal statement is
 - The negation of an existential statement is
 - The negation of a conditional statement is
 - ► The negation of an and statement is
 - The negation of an and statement

More examples: Negate the following. First rewrite them formally, then negate them formally, then rewrite the negation informally.

Every integer has a multiplicative inverse.

Rewrite: \forall xe Z, x has a mult. inverse

Negate: \exists xe Z s.t. x doesn't have a mult. inverse

Informal: There exists an integer without a mult. inverse.

2 There is a prime number greater than 1 million.

```
Rewrite: \exists prime n s.t. n > 1,000,000
Negote: \forall primes n, n \le 1,000,000
Informal: All primes are at most 1,000,000.
```

Negating Universal Conditional Statements

How can we rewrite $\sim (\underline{\forall} \underline{x} \in D, \underline{P(x)} \rightarrow \underline{Q(x)})$?

$$\exists x \in D \text{ s.t.} \sim (P(x) \rightarrow Q(x))$$

 $\exists x \in D \text{ s.t.} P(x) \land \sim Q(x)$

* Negate one loyer at a time!

Theorem

$$\sim (\forall x \in D, P(x) \rightarrow Q(x)) \equiv \exists x \in D \text{ s.t. } P(x) \land \sim Q(x)$$

Example. Negate the following. Write them formally.

• For every integer n, if n is even, then n/2 is an integer.

$$\forall$$
 $n \in \mathbb{Z}$, $(n \text{ even}) \rightarrow (\frac{n}{2} \in \mathbb{Z})$.

② For every real number x, if x is not rational, then 2x is not rational.

$$\forall x \in \mathbb{R}, (x \notin \mathbb{Q}) \rightarrow (ax \notin \mathbb{Q})$$

Negate:
$$\exists x \in \mathbb{R} \text{ s.t. } (x \notin \mathbb{Q}) \land (2x \in \mathbb{Q})$$

Revisiting vacuous truth AGAIN

as a conditional

Rewrite formally, and then negate: "All positive integers less than -5 are divisible by 3."

$$\forall$$
 $n \in \mathbb{Z}^+$, if $n < -5$ then n is divisible by 3.

Negate:
$$\exists n \in \mathbb{Z}^+$$
 3.t. $n < -5$ and n is not divisible by 3.

Recall that either a statement OR its negation must be true. Which of the statements above is true?

Certainly not the second! There doesn't exist a positive integer that is less than -5.

So the original must be. Vacuously.

Inverse, Converse, Contrapositive revisited

The inverse, converse, and contrapositive of a universal conditional statement yields a new universal conditional statement.

Given the statement, $\forall x \in D, P(x) \rightarrow Q(x)$, we can find the:

Given the statement,
$$\forall x \in D, P(x) \to Q(x)$$
, we can find the:

• inverse: $\forall x \in D, \sim P(x) \to \sim Q(x)$
• converse: $\forall x \in D, Q(x) \to P(x)$
• contrapositive: $\forall x \in D, \sim Q(x) \to P(x)$
• contrapositive: $\forall x \in D, \sim Q(x) \to P(x)$

(unlike the again:

Again:

- the contrapositive has the same truth value as the original statement, but
- there is no guaranteed relationship between the truth value of the original and its converse or inverse

Example. Consider the statement: $\forall n \in \mathbb{Z}^+$, if n is divisible by 6, then *n* is divisible by 3. Find the:

inverse:

V ne Z+ if n is not divisible by 6, then n is not divisible by 3.

verse:

converse:

Y ne Z+, if n is divisible by 3, then n is divisible by 6.

contrapositive:

Y ne Zt if n is not divisible by 6, then n is not divisible by 3.

Which of these has the same truth value as the original?

contrapositive both are true!

When you have finished the homework for 2.2, you should be able to:

- negate quantified statements really, really really, really, really well.
- find the inverse, converse, and contrapositive of a universal conditional statement.