1 cm Thick Silicon(Ge)Detectors at Liquid Helium Temperature

From Surface to Volume (Neutrino Physics)

C.Braggio₁,G.Bressi₂,M.Boscardin₃ G.Carugno₁,G.Galeazzi₄,N.Zorzi₃

INFN Sez. Padova
 INFN Sez. Pavia , 3) IRST-ITC Trento
 INFN Lab.Naz.Legnaro

1.Large Drifting Distances: Requirements

2. Silicon Processing Stages

3. Experimental Set-Up

5. Conclusions

Freeze-out Effect at Low Temperature

Ec-Ed = 10 meV, Ea - Ev = 30 meV

E KT@4 Kelvin = 0,3 meV

At T 10 kelvin Silicon is Intrinsically depleted

Cap. Detector = Geometrical Cap.

BENEFITS:

No leakage current

Low Bias Voltage

But not enough

Charge Collection + Trapping at Low Temperature

Cascade Capture Model Developed by Pitaevskii

Review Paper from Abakumov Sov.Phy.Sem.1978

- 2 Type of competiting processes:
- a) Scattering Cross Section from Coulomb center
- b) S.C.S from "forming dipoles"

For High Purity Material (less 10^14 imp/cm3) process b is dominating

b) Type Cross Section is proportional to (Nd,a)3/4

To Decrease Dipoles SCS We Need High Purity Silicon

Silicon Detector study at low Temperature for Dark Matter

Schotky type junctions @ 30 mKelvin

Cabrera et J.Appl.Phys.79-1996-8179

Spooner et al IEEE Trans. Nucl. Scien. 40-1993-105

Mobility and Mean Free Path

At LHe Temp.mobility increases almost 3 O.M. respect to R.T.

Electron mean free path increases at Low Temp.

q E(V/cm) I = E ion (eV)

Tau = mobility * mass / e

Mobility increases more than a factor 100

E avalanche from 10⁵ to 10³ V/cm

Silicon Processing Stages

Experimental Set-Up

20 Lt LHe Dewar with LN2 Shielding

Liq. Helium Evaporation Rate:1,3 Liq.Liter/hour

Silicon detector chamber Filled up with 2 mbar He Gas To attain good thermalization

P-Type Silicon PiN diode

Preliminar meas on test diodes and single PAD diodes

Topsil material 40 KOhm*cm RT

Capacitance + Leakage Current

C and I vs Vbias measurements for 3 cm diam.

Capacity is costant vs Vbias at 4 Kelvin C = 9,5 pF = Geom. Cap.

At 77 K C doesn't saturate

Detector Leakage Current 1 pA/cm2 at 100V

Cold Electronic Chain

Si Detector at 4,7 Kelvin

► To Silena Shaping Amplifier + EGG MCA

Charge Amplifier at 120 K

Electronic Noise = 1,9 KeV

FWHM (Right side) 60 Kev =4,2 KeV

Peak Positions vs Vbias
60 KeV + Cosmic Rays ------

100 % Charge Collection Efficiency

PIN diode P-type 40 KOhm*cm

Plateau value at 90 - 100 V/cm

Collection efficiency vs Purity

E (V/cm) @ 100% charge coll.eff. VS Resistivity (KOhm*cm @ RT)

a) 1000	6,8	n - type	Wacker
b) 125	12	n – type	Wacker
c) 90	40	p – type	Top-Sil

- a) Braggio et al NIMA 568 (2006) 412
- b) Braggio et al NIMA accepted for pub.
- c) Braggio et this work

Charge Collection Efficiency Depends Critically from Purity Sample

Home Made Germanium Schotky Barrier Detector

Cleaning procedure and electrode evaporation made in our lab.

1 Cm thick 3 cm Diam.

Vbias = 25 Volt

Germanium purity 2 OfM Better than Silicon

Germanium detector cost 50 times Lower than same planar device

Energy Resolution comparable With a standard Germanium

Conclusions Perspectives at 4K

- 1) Freeze-out effect observed clearly through Capacity at LHe Temperature
- 2) Leakage Current less than 1 pA/cm²
- 3) Low E Field 100% Charge Collection Efficiency depends on Samples Purity
- 4) Detectors Processing easy to arrange also with X-Y Strips
- 5) High Purity Samples can be processed to have 5 cm Thick Detectors TPC
- 6) Large electron mean free path decreases the Avalanche Electric Field
- 7) 4 Kelvin Cryocooler available nowadays No Liquid Helium handling