Introducció als Computadors

Tema 9: Entrada/Sortida http://personals.ac.upc.edu/enricm/Docencia/IC/IC9.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ (1) (3)

E/S per Enquesta vs. Interrupcions

Analogia amb mitjans de comunicació encara existents

[2]

Enquesta-Espera activa (Polling-Busy waiting)

Ho veurem a IC

Interrupcions (Interrrupts)

Ho veureu a EC

Índex

Introducció

- Afegint espai d'adreces d'entrada i de sortida
- Protocol de comunicació asíncron
- Efecte lateral al llegir/escriure el port de dades
- Computador amb espais d'adreces (UCE+UPG+I/O Key-Print)
- Exemple: MCD amb entrada/sortida per teclat i impressora
- Exercicis
- Conclusions
- Miscel·lània

Full de ruta

	Tema							
	7	8	9	10	11	12	13	14
Unitat de Control	UCE	UCE	UCE	UCG	UCG	UCG	UCG	UCG
Unitat de Procés	UPE	UPG	UPG	UPG	UPG	UPG	UPG	UPG
Entrada/Sortida	-	-	10	10	Ю	Ю	Ю	Ю
Memòria RAM	-	-	-	-	MEM	MEM	MEM	MEM
Harvard unicicle	-	-	-	-	-	\checkmark	-	-
Harvard multicicle	-	-	-	-	-	\checkmark	-	-
Von Neumann	-	-	-	-	-	-	\checkmark	\checkmark
Lleng. assembler	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

IC tema 9

- Connectarem perifèrics al nostre computador
 - Dispositius mitjançant els quals es comunica amb l'exterior
 - teclat, impressora,
 - Els perifèrics realitzen operacions d'entrada/sortida (E/S)
 - Input/Output (I/O)
- Categorització dels perifèrics:
 - Els perifèrics d'entrada enviaran dades a través del bus RD-IN
 - Exemple: teclat
 - Els perifèrics de sortida rebran les dades a través del bus WR-OUT
 - Exemple: impressora
- La comunicació entre UPG i perifèrics serà asíncrona
 - Els perifèrics no poden compartir senyal de rellotge amb el PPE
 - Diferents velocitats de procés
 - Distància entre PPE i perifèric

IC tema 9

- La documentació del tema a Atenea presenta el procés de creació del sistema d'E/S amb diversos passos intermedis
- A aquestes transparències s'explica el procés més directament
- Assumirem que connectarem un "teclat" i una "impressora"
 - Però serà generalitzable a altres dispositius
 - Esquema lògic disponible al simulador Logic Works
- A efectes pràctics, heu de saber com fer que la UPG pugui comunicar-se amb els perifèrics d'E/S
 - 3 nodes al graf d'estats de la UC

Índex

- Introducció
- Afegint espai d'adreces d'entrada i de sortida
- Protocol de comunicació asíncron
- Efecte lateral al llegir/escriure el port de dades
- Computador amb espais d'adreces (UCE+UPG+I/O Key-Print)
- Exemple: MCD amb entrada/sortida per teclat i impressora
- Exercicis
- Conclusions
- Miscel·lània

ports d'E/S

commissar - se amb un per ferie volta dir

- Per a la UPG, un perifèric d'E/S serà un conjunt de registres
 - Llegir/escriure sobre aquests registres la comunicarà amb el perifèric
 - Aquests registres rebran el nom de ports d'E/S
- Tots aguests registres s'agruparan a un dispositiu controlador (K) a traves del contro
 - K estarà connectat als busos RD-IN i WR-OUT
 - Farà d'intermediari entre la UPG i els perifèrics
 - No veurem com s'implementa cada perifèric, p
 - La UPG llegirà/escriurà els ports amb les accions IN/OUT
- Potencialment, podrem connectar diversos perifèrics a la UPG i cada perifèric podrà tenir associats varis ports
- Caldrà identificar quin *port* es vol llegir/escriure
 - Cada port tindrà associat un nombre natural de 8 bits
 - 2⁸=256 ports d'entrada i 256 ports de sortida
 - Aquest identificador l'anomenarem ADDR-IO
 - ADDR-IO formarà part de la paraula de control generada per la UC

Reformulació de les accions IN i OUT

- · Reformulació acció IN Hem D'indican amb grun pot llegum
 - Llegeix un dels 256 ports d'entrada i, al final del cicle, escriu el seu valor a un registre
 - Exemple:
 - IN R1, 5
- Wrent sengel similar a bled gre medicare que volem gravar a um port
- Llegeix el port d'entrada número 5 i guarda el seu contingut a R1
- Reformulació acció OUT
 - Escriu a un dels 256 *ports* de sortida el valor d'un dels registres del banc de registres de la UPG
 - Exemple:
 - OUT 4, R2
 - Escriu el valor de R2 al port de sortida número 4
 - La UC generarà un nou bit de control: Wr-Out
 - Pels busos WR-OUT i ADDR-IO sempre hi ha algun valor
 - Wr-Out indica si en aquest cicle realment s'està fent una acció OUT
 - És a dir, si aquest cicle el valor dels busos WR-OUT i ADDR-IO és vàlid
 - Anàleg al bit de control WrD del banc de registres

Connectant ports d'entrada amb UPG

- Un multiplexor de busos 256-1 seleccionarà el contingut de quin port d'entrada s'encaminarà cap al bus RD-IN
 - ADDR-IO actua com a senyal de selecció del multiplexor 256-1

Connectant UPG amb ports de sortida

- El bus WR-OUT s'encamina a l'entrada de tots els *ports* de sortida
- Un descodificador amb senyal d'enable genera el senyal de rellotge sobre els ports de sortida
 - El senyal Wr-Out s'utilitza com a entrada enable del descodificador
 - Anàleg al senyal WrD al REGFILE
 - Si enable val "0", cap port de sortida es modifica
 - Si enable val "1", només es modifica el port ADDR-IO
- Exemple: implementació amb 3 ports de sortida
 - Dels 8 bits de ADDR-IO, s'ignoren els 6 bits de més pes

Observacions

- Hem creat un espai d'adreces d'E/S
 - 0..255 ports d'entrada i 0..255 ports de sortida
- Quan s'escrigui a un port de sortida, cal que el valor al bus WR-OUT sigui estable abans que el senyal de control Wr-Out passi a "1"
 - Altrament, podríem escriure un valor incorrecte al port de sortida
 - De moment no ho solucionem, ho farem a un tema posterior

Índex

- Introducció
- Afegint espai d'adreces d'entrada i de sortida
- Protocol de comunicació asíncron
- Efecte lateral al llegir/escriure el port de dades
- Computador amb espais d'adreces (UCE+UPG+I/O Key-Print)
- Exemple: MCD amb entrada/sortida per teclat i impressora
- Exercicis
- Conclusions
- Miscel·lània

Comunicació asíncrona

- Comunicar un emissor i un receptor sense compartir senyal de rellotge
 - Cal utilitzar un protocol de comunicació asíncron
 - Four-phase handshake
- Senyals que hi intervendran:
 - De control: request i acknowledgment d'un bit cadascun
 - Estat inicial: senyals request i acknowledgment a "0"

- Assumim comunicació iniciada per l'emissor
 - Típic a perifèrics d'entrada com ara el teclat
 - El teclat fa el paper d'emissor i la UPG fa el paper de receptor
 - El senyal request indica que hi ha una dada disponible

- Des de l'estat inicial (request =acknowledgment ="0")
 - L'emissor posa la dada a transmetre al bus de dades i la manté estable
 - L'emissor indica al receptor que hi ha una dada disponible
 - Posa el senyal request a "1" i el manté estable
- És clau l'ordre d'activació dels senyals
 - Altrament, el receptor podria llegir una dada que encara no és estable

- Quan el receptor observa el canvi al senyal request
 - El receptor llegeix la dada del bus de dades
 - El receptor indica a l'emissor que ja l'ha llegida
 - Posa a el senyal acknowledgment a "1" i el manté estable
 - A partir d'ara, l'emissor pot retirar la dada del bus
- És clau l'ordre d'activació dels senyals
 - Altrament, l'emissor podria retirar la dada abans de ser llegida

- Quan l'emissor observa el canvi al senyal acknowledgment
 - L'emissor torna al seu estat inicial
 - El senyal request torna a valer "0" i el manté estable
 - Return to zero (RZ)
 - Ja no cal mantenir la dada estable al bus

- Quan el receptor observa el canvi al senyal request
 - El receptor torna al seu estat inicial
 - El senyal acknowledgment torna a valer "0" i el manté estable
 - Return to zero (RZ)
- A partir d'ara, l'emissor pot iniciar una nova transferència

Protocol 4 fases: diagrama d'estats

• Fragments dels grafs d'estats de l'emissor i del receptor per fer una transferència

Protocol 4 fases: observacions

- Funciona sigui quina sigui la velocitat de l'emissor i del receptor
- També es pot adaptar per a perifèrics de sortida (ex.: impressora)
 - Cal canviar el sentit d'enviament dels senyals de control i els papers
 - El senyal request indica que la impressora està disponible per acceptar nous caràcters
 - La UPG fa el paper d'emissor i la impressora de receptor

Protocol 4 fases a la UPG: senyals control

· Com representem els senyals request i acknowledgment?

- - Opció 1: afegir-les com a senyals de control a la UC
 - Calen dos senyals per a cada perifèric!
 - Necessitariem UC's amb moltes entrades de control
 - Opció 2: incorporar aquests senyals a un port del perifèric
 - Tindrem ports d'entrada de dades i ports d'entrada d'estat Escrits pel perifèric i llegits per la UPG
 - Tindrem ports de sortida de dades i ports de sortida de control Escrits per la UPG i llegits pel perifèric
- Triarem l'opció 2:
 - La UC tindrà únicament un bit de entrada (z)
 - Els grafs d'estats de la UC seran molt senzills
 - Com a molt, cada estat tindrà dos possibles estats futurs
 - El preu és que seguint l'opció 2 els grafs d'estats de la UC poden necessitar més cicles que amb l'opció 1

Protocol 4 fases a la UPG: lectura

- El perifèric és l'emissor i la UPG el receptor
- Implementarà la part del receptor del protocol
- Com esperar que el perifèric activi el seu senyal request?
 - Cal saber en quin port estarà mapejat aquest senyal
 - Ens especifiquen que estarà en el bit de menys pes del port 1
 - La resta de bits del port ens asseguren que sempre valdran "0"
- Representació com a accions de la UPG:

- La UPG està fent una espera activa (polling)
 - La UPG continuament comprova el valor de request fins que valgui "1"

Protocol 4 fases a la UPG: lectura

 REQ, DATA-IN i ACK són els identificadors dels ports que emmagatzemen senyal de request (port d'estat), busos de dades i senyal de acknowledgment (port de control)

Protocol 4 fases a la UPG: escriptura

- El perifèric és el receptor i la UPG l'emissor
- DATA-OUT és l'identificador del *port* que emmagatza bus de dades

Protocol 4 fases a la UPG: observacions

- Llegir/escriure una dada requereix 7 nodes del graf d'estats de la UC
 - En són molts!
- A continuació ho reduirem a 3 nodes
 - El controlador K implementarà els 4 darrers nodes
 - La lectura d'un port de dades tindrà efecte lateral en un port d'estat
 - La lectura d'un port de dades modificarà un altre port
 - Anàlogament amb l'escriptura sobre el port de dades d'un perifèric
 - Modificarà el port d'estat del perifèric

Índex

- Introducció
- Afegint espai d'adreces d'entrada i de sortida
- Protocol de comunicació asíncron
- Efecte lateral al llegir/escriure el port de dades
- Computador amb espais d'adreces (UCE+UPG+I/O Key-Print)
- Exemple: MCD amb entrada/sortida per teclat i impressora
- Exercicis
- Conclusions
- Miscel·lània

Efecte lateral accedint als ports de dades

De forma automatica quantegimen els ports de dides • K implementarà les 4 darreres accions que hauria de realitzar la UPG

- Fins ara la UPG tots els cicles estava llegint el port ADDR-IO
 - No era un problema perquè les lectures no tenien cap efecte lateral
 - Els bits de control In-ALU i WrD acabaven descartant aguesta dada
- Com ara les lectures poden tenir efecte lateral...
 - La UC afegeix el senyal del control Rd-In per indicar els cicles en que realment s'està fent una acció IN
- La lectura del *port* de dades d'un perifèric provocarà que el bit de control acknowledgment i el bit d'estat request tornin a valer "0"
 - Anàlogament amb l'escriptura sobre el port de dades d'un perifèric
- K haurà de detectar quan es llegeix/escriu sobre el *port* de dades
 - Monitoritzarà els senyals Rd-In, Wr-Out i ADDR-IO

Implementació ports de control

- Utilitza biestable D activat per flanc ascendent i amb entrades asíncrones de posada a "0" (R) i a "1" (S)
 - Quan es produeixi flanc ascendent a Clk, el valor a D passa a Q
 - Si S val 1, Q es posa a "0" immediatament
 - Si R val 1, Q es posa a "1" immediatament
- Implementació del port de control
 - Bit 0:
 - Aquest biestable definirà el bit 0 del port de control
 - Quan hi hagi flanc ascendent a Clk, Q valdrà "1" (request = "1")
 - L'entrada R el posarà a "0" asíncronament (request = "0")
 - Mai el posarem a "1" asíncronament
 - La resta de bits del port valdran "0"

Efecte lateral llegint port dades teclat

- Key-Req es posa a "1" amb el *Binary switch* que fa de Clk als *ports*
- Al fer IN sobre el port KEY-DATA
 - El valor de KEY-DATA surt per RD-IN
 - La AND-4 fa que Key-Ack valgui "1"
 - Té l'efecte lateral que Key-Req, request del teclat, torni a "0"

Efecte lateral escrivint port dades impressor

- Print-Req es posa a "1" amb el *Binary switch* que fa de Clk als *ports*
- Al fer OUT sobre el *port* de PRINT-DATA
 - S'escriu el valor del bus WR-OUT al port PRINT-DATA
 - La AND-4 fa que Print-Ack val "1"
 - Té l'efecte lateral que Print-Req, request de la impressora, torni a "0"

Efecte lateral: accions i graf d'estats UC

- Fragments graf d'estats UC
 - KEY-DATA i PRINT-DATA són constants que representen els identificadors dels *ports* de dades de teclat i impressora
 - KEY-STATUS i PRINT-STATUS són constants que representen els identificadors dels *ports* d'estat del teclat i impressora, senyal *request* és al bit de menys pes del *port* (i resta de bits del *port* a "0")

Lectura de teclat (a R3)

Escriptura a impressora (de R3)

Índex

- Introducció
- Afegint espai d'adreces d'entrada i de sortida
- Protocol de comunicació asíncron
- Efecte lateral al llegir/escriure el port de dades
- Computador amb espais d'adreces (UCE+UPG+I/O Key-Print)
- Exemple: MCD amb entrada/sortida per teclat i impressora
- Exercicis
- Conclusions
- Miscel·lània

Subsistema E/S: encapsulat

- Senyals d'entrada:
 - Senyals de control Rd-In i Wr-Out
 - Bus d'adreça ADDR-IO
 - Bus de dades WR-OUT
- Senyals de sortida:
 - Bus de dades RD-IN

Subsistema E/S: esquema final

Subsistema E/S: observacions

- Identificadors de ports:
 - D'entrada:
 - 0 (KEY-DATA): port de dades de teclat
 - 1 (KEY-STATUS): port d'estat del teclat
 - 2 (PRINT-STATUS): port d'estat de la impressora
 - De sortida:
 - 0 (PRINT-DATA): port de dades de la impressora
- Com utilitzem pocs ports, la implementació del mòdul INPUT/OUTPUT descarta els 6 bits alts i només considera els 2 bits baixos de ADDR-IO

Esquema UPG + I/O Key-Print

Demostració: E/S a Logic-Works

- Descripció del programa:
 - Llegeix un nombre de teclat N
 - Hem de generar manualment el request amb el Binary Switch per indicar que hi ha una dada disponible al teclat
 - A continuació llegeix N bytes del teclat
 - Hem de generar manualment els request amb el Binary Switch després de cada byte per indicar que hi ha una dada disponible al teclat
 - Els emmagatzema a memòria (s'explicarà als propers temes)
 - Finalment, mostra els N bytes per impressora
 - Hem de generar manualment els request amb el Binary Switch després de cada byte per indicar que la impressora està disponible
- Video captura:
 - http://personals.ac.upc.edu/enricm/Docencia/IC/IC9_demo.mp4
 - N = 4, dades = 0x40, 0x41, 0x42, 0x43
 - A 0:19 i 1:02 es pot apreciar l'efecte lateral a la lectura i escriptura

Nova paraula de control

- S'afegeixen 10 bits a la paraula de control del tema anterior
 - ADDR-IO: bus de 8 bits amb l'identificador de port
 - Wr-Out: senyal binari que indica si en aquest cicle es fa l'acció OUT
 - Rd-In: senyal binari que indica si en aquest cicle es fa l'acció IN
- La nova paraula de control té 43 bits:

	@A			@B			AO Ob		F			In/Alu			WrD	Wr-Out Rd-In		N (hexa)				ADDR-IO (hexa)			
IN R2, 33	х	х	х	х	х	х	х	х	х	х	х	х	1	0	1	0	1	0	1	Х	Χ	Χ	Χ	2	1.
OUT 0x50, R1	0	0	1	х	х	х	х	х	х	х	х	х	х	х	х	х	0	1	0	Х	Χ	Χ	Χ	5 ;	0
ADD R1, R2, R3	0	1	0	0	1	1	1	0	0	1	0	0	0	0	0	1	1	0	0	Х	Х	Х	Х	Χ	Χ

wrd maix
Rd-In

Connexió UC / UPG

- Introducció
- Afegint espai d'adreces d'entrada i de sortida
- Protocol de comunicació asíncron
- Efecte lateral al llegir/escriure el port de dades
- Computador amb espais d'adreces (UCE+UPG+I/O Key-Print)
- Exemple: MCD amb entrada/sortida per teclat i impressora
- Exercicis
- Conclusions
- Miscel·lània

MCD: especificació

- Fer el graf d'estats de la UC que calcula el MCD
- Especificació:
 - Els dos operands es llegiran del teclat
 - Caldrà fer una espera activa per obtenir cada operand
 - El resultat es mostrarà per la impressora
 - Caldrà fer una espera activa per esperar que estigui disponible

MCD: Graf d'estats UC amb E/S

- Introducció
- Afegint espai d'adreces d'entrada i de sortida
- Protocol de comunicació asíncron
- Efecte lateral al llegir/escriure el port de dades
- Computador amb espais d'adreces (UCE+UPG+I/O Key-Print)
- Exemple: MCD amb entrada/sortida per teclat i impressora
- Exercicis
- Conclusions
- Miscel·lània

Exercicis típics

- Conversió entre paraula de control de 43 bits i mnemotècnic
 - Paraula de control corresponent a
- Afegir E/S asíncrona a PPE
 - Fer l'entrada/sortida utilitzant teclat/impressora

Exercicis a entregar a Atenea

- Enunciat disponible a Atenea
 - https://atenea.upc.edu/pluginfile.php/3603444/mod_ assign/introattachment/0/Tema%209%20-%20Exercicis%20en% 20paper.pdf?forcedownload=1
- Entrega a Atenea fins el dimecres 18/11
 - Format PDF
 - Per fer els grafs d'estats us pot resultat útil l'editor on-line https://www.cs.unc.edu/~otternes/comp455/fsm_designer/
 - Els esquemes lògics els podeu fer a mà i posteriorment fotografiar-los/escanejar-los o utilitzar alguna eina d'edició de circuits (Logic Works, ...)

- Introducció
- Afegint espai d'adreces d'entrada i de sortida
- Protocol de comunicació asíncron
- Efecte lateral al llegir/escriure el port de dades
- Computador amb espais d'adreces (UCE+UPG+I/O Key-Print)
- Exemple: MCD amb entrada/sortida per teclat i impressora
- Exercicis
- Conclusions
- Miscel·lània

Conclusions

- Hem afegit al nostre computador subsistema d'E/S
 - Des del punt de vista de la UPG, un perifèric serà un conjunt de ports
 - D'entrada (de dades i d'estat), de sortida (de dades)
 - Identificats amb un nombre natural de 8 bits, ADDR-IO
- La comunicació entre UPG i perifèrics serà asíncrona
 - Four-phase handshaking
 - Utilitza senvals de control request i acknowledgment
 - Els senyals request s'emmagatzemaran als ports d'estat
- La UC generarà una paraula de control de 43 bits
 - Afegim camps ADDR-IO (8b), Wr-Out (1b) i Rd-In (1b)
- Gràcies a l'efecte lateral a la lectura/escriptura als ports de dades, cada comunicació només requereix de tres nodes al graf d'estats de la UC
 - Dos nodes per fer una espera activa sobre el port d'estat
 - Un node per fer la transferència de dades
- No oblideu fer el güestionari ET9 i els exercicis en paper (slide 45)

- Introducció
- Afegint espai d'adreces d'entrada i de sortida
- Protocol de comunicació asíncron
- Efecte lateral al llegir/escriure el port de dades
- Computador amb espais d'adreces (UCE+UPG+I/O Key-Print)
- Exemple: MCD amb entrada/sortida per teclat i impressora
- Exercicis
- Conclusions
- Miscel·lània

Miscel·lània

- Sincronització per enquesta vs. sincronització per interrupcions
 - Hem vist la sincronització per enquesta
 - Un altre tipus de sincronització és per interrupcions
 - En general, més eficient que per enquesta
 - La veureu a EC
 - Analogia:
 - Enquesta ≡ Mirar si tenim correu postal a la bústia
 - ullet Interrupcions \equiv Rebre una trucada telefònica
- Protocol Two-phase handshake
 - Variant del protocol four-phase handshake
 - Quan request i acknowledgment passen de "1" a "0" es fa una nova transferència
 - No Return to zero (NRZ)
 - A IC no l'utilitzarem

Referències I

Llevat que s'indiqui el contrari, les figures, esquemes, cronogrames i altre material gràfic o bé han estat extrets de la documentació de l'assignatura elaborada per Juanjo Navarro i Toni Juan, o corresponen a enunciats de problemes i exàmens de l'assignatura, o bé són d'elaboració pròpia.

- [1] [Online]. Available: https://www.algru.es/default/buzones/buzones-verticales/buzones-verticales-interior.html.
- [2] [Online]. Available: https://www.amazon.es/GPO-746-Rotary-Telephone-Importado/dp/BO0YAE5K48/ref=asc_df_BO0YAE5K48.

Introducció als Computadors

Tema 9: Entrada/Sortida http://personals.ac.upc.edu/enricm/Docencia/IC/IC9.pdf

> Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @(1)(\$)(=)

