K-Closest Clusters (KCC): A Novel Cluster-Based Alternative to KNN

Julia Chen and Yuan Yin

KNN

Problems

Limitations of KNN

- Time Complexity
 - Calculates distance to every data point
 - Sorts all distances
- Memory
 - Lazy learner → does not store model

Model

Model

Improvements

Time complexity issue

- KCC does not have to sort thousands of distances (not a lazy learner)

Memory issue

- KCC stores a model
 - Locations of centroids and their classifications

Determine K-value through validation

Research

"A New Method for Improving the Performance of K Nearest Neighbor using Clustering Technique"

- Similar technique
- Used arbitrary k-values
- Ensemble Learning

able 2. Results	s of Nearest Cluste	r method in co	mparison	with the traditional	KNN method over	SAHeart data s
				K=3	K=5	K=7
K-Nearest Neighbor				94.67±5.13	97.83±5.46	100.50±4.8
Nearest Cluster	Single Clustering	Single Classifier	M=1	94.83±3.74	98.67±6.65	100.17±4.7
		Ensemble	M=3	95.50±4.37	100.00±5.0	100.67±2.1
			M=5	99.33±2.25	101.00±4.6	100.83±1.8
	Clustering Ensemble	Single Classifier	M=1	96.83±4.22	94.50±6.92	96.83±5.60
		Ensemble	M=3	99.67±4.13	95.67±5.01	98.17±6.18
			M=5	99.17±2.93	98.83±3.76	100.17±7.6

Dataset

Generated dataset → Scikit-Learn (make_blobs)

KCC: (70-15-15 split)

- 980 Training instances
- 210 Validation instances
- 210 Testing instances

KNN:

- 980 Training instances
- 210 Testing instances

Methods: Pseudocode

- 1. Use K-Means to make clusters
- 2. Assign a class to each of the clusters
- 3. Test model with k clusters on validation dataset
- 4. Plot accuracy vs. k value
- 5. Choose optimal k value

Methods: Pseudocode

- 6. Use choose the model that has k clusters
- 7. Classify testing data set using KNN
 - Centroids as neighbors
 - k=1

Results: Performance Metrics

- **♦** Accuracy: 96.2%
- Macro Average Precision: 0.931
- Macro Average Recall: 0.981

Results: Hyperparameters

- Chose a k-value that balances accuracy and efficiency
- **♦** K = 15

Results: Clusters

Discussion: Comparing KNN and KCC

Metric	KNN	KCC	
Accuracy	95.7%	96.2%	
Precision	0.922	0.931	
Recall	0.979	0.981	
Classification Time	0.229s	0.007s	

Future Work

- Automate process for determining optimal k-value
- Research equations to better determine upper threshold of k-value calculations to avoid validation → model build time significantly decreases