Proyecto2

Nosequiensoy007 12/11/2020

set libraries

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(ggplot2)
library(summarytools)
## Registered S3 method overwritten by 'pryr':
    method
##
                 from
   print.bytes Rcpp
## For best results, restart R session and update pander using devtool
s:: or remotes::install github('rapporter/pander')
library(cowplot)
```

#After downloadzip, file, unzip and then change wd where folder and file are in my case

```
setwd("C:/Users/juanfidel18/Desktop/Coursera/ReproducibleResearch")
```

reading and Procesing Data

```
stormdata <- read.csv("repdata_data_StormData.csv")</pre>
```

Check dimensions and structure

```
str(stormdata)
                 902297 obs. of 37 variables:
## 'data.frame':
   $ STATE : num 1 1 1 1 1 1 1 1 1 ...
    $ BGN DATE : chr "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1
951 0:00:00" "6/8/1951 0:00:00" ...
    $ BGN TIME : chr
                       "0130" "0145" "1600" "0900" ...
                       "CST" "CST" "CST" "CST" ...
    $ TIME ZONE : chr
##
    $ COUNTY
                       97 3 57 89 43 77 9 123 125 57 ...
##
               : num
    $ COUNTYNAME: chr
                       "MOBILE" "BALDWIN" "FAYETTE" "MADISON" ...
                      "AL" "AL" "AL" "AL" ...
    $ STATE
##
               : chr
                       "TORNADO" "TORNADO" "TORNADO" ...
    $ EVTYPE
##
               : chr
                       0 0 0 0 0 0 0 0 0 0 ...
##
    $ BGN RANGE : num
                       .... .... .... ....
    $ BGN AZI
              : chr
    $ BGN LOCATI: chr
##
    $ END DATE : chr
##
                       "" "" "" "" ...
    $ END TIME : chr
##
    $ COUNTY END: num
                       0 0 0 0 0 0 0 0 0 0 ...
##
    $ COUNTYENDN: logi
                       NA NA NA NA NA ...
##
##
    $ END RANGE : num
                       0 0 0 0 0 0 0 0 0 0 ...
                       .... .... .... ....
    $ END AZI
               : chr
                       "" "" "" "" ...
##
    $ END LOCATI: chr
    $ LENGTH
                       14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##
               : num
##
    $ WIDTH
               : num
                       100 150 123 100 150 177 33 33 100 100 ...
##
    $ F
               : int
                       3 2 2 2 2 2 2 1 3 3 ...
                       0 0 0 0 0 0 0 0 0 0 ...
##
    $ MAG
               : num
    $ FATALITIES: num
                       0 0 0 0 0 0 0 0 1 0 ...
##
    $ INJURIES
                       15 0 2 2 2 6 1 0 14 0 ...
               : num
    $ PROPDMG
                       25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 ...
##
              : num
                       "K" "K" "K" "K" ...
##
    $ PROPDMGEXP: chr
    $ CROPDMG
              : num
                       0 0 0 0 0 0 0 0 0 0 ...
##
    $ CROPDMGEXP: chr
##
##
    $ WFO
               : chr
##
    $ STATEOFFIC: chr
                       .... .... .... ....
                       "" "" "" "" ...
##
    $ ZONENAMES : chr
##
                      3040 3042 3340 3458 3412 ...
    $ LATITUDE : num
    $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
##
```

```
## $ LATITUDE E: num 3051 0 0 0 0 ...
## $ LONGITUDE : num 8806 0 0 0 0 ...
## $ REMARKS : chr "" "" "" ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
freq(stormdata$EVTYPE, order = "freq", rows = 1:10)
## Frequencies
## stormdata$EVTYPE
## Type: Character
##
##
                      Freq % Valid % Valid Cum. % Tota
1 % Total Cum.
## ----- --- --- ---- -----
               HAIL 288661 31.99
                                       31.99 31.9
##
      31.99
9
       TSTM WIND 219940 24.38 56.37 24.3
##
       56.37
8
      THUNDERSTORM WIND 82563 9.15 65.52 9.1
##
5
       65.52
##
             TORNADO 60652 6.72
                                       72.24 6.7
       72.24
2
          FLASH FLOOD 54277 6.02 78.26 6.0
##
2
       78.26
              FLOOD 25326 2.81 81.06 2.8
##
       81.06
1
##
     THUNDERSTORM WINDS 20843 2.31
                                       83.37 2.3
       83.37
1
##
            HIGH WIND 20212
                            2.24
                                       85.61
                                               2.2
       85.61
4
         LIGHTNING 15754 1.75 87.36 1.7
##
       87.36
5
##
           HEAVY SNOW 15708 1.74
                                       89.10 1.7
       89.10
4
             (Other) 98361 10.90
##
                                       100.00 10.9
       100.00
0
               <NA> 0
##
                                               0.0
       100.00
              Total 902297 100.00 100.00 100.0
##
       100.00
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
##
##
    0.0000 0.0000 0.0000 0.1557 0.0000 1700.0000
summary(stormdata$FATALITIES)
##
   Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.0168 0.0000 583.0000
summary(stormdata$PROPDMG)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
##
   0.00 0.00 0.00 12.06 0.50 5000.00
freq(stormdata$PROPDMGEXP)
## Frequencies
## stormdata$PROPDMGEXP
## Type: Character
##
                    Freq % Valid % Valid Cum. % Total
##
% Total Cum.
## ----- --- --- --- --- ---- ---- -----
   (Empty string) 465934 51.64 51.64 51.64
##
51.64
##
                 - 1
                             0.00
                                        51.64
                                                0.00
51.64
##
                 ?
                       8
                             0.00
                                         51.64
                                                 0.00
51.64
##
                      5 0.00
                                         51.64
                                                 0.00
                 +
51.64
##
                 0
                      216 0.02
                                         51.66
                                                 0.02
51.66
##
                 1
                       25
                             0.00
                                         51.67
                                                  0.00
51.67
##
                 2
                      13
                             0.00
                                         51.67
                                                  0.00
51.67
##
                 3
                              0.00
                                         51.67
                                                  0.00
                      4
51.67
                       4
                              0.00
                                         51.67
                                                  0.00
                 4
51.67
##
                 5
                       28
                              0.00
                                         51.67
                                                  0.00
51.67
##
                 6
                       4
                             0.00
                                         51.67
                                                 0.00
51.67
                 7
                        5
                             0.00
                                         51.67
                                                  0.00
51.67
```

##						
51.67	8	1	0.00	51.67	0.00	
## 51.68	В	40	0.00	51.68	0.00	
## 51.68	h	1	0.00	51.68	0.00	
## 51.68	Н	6	0.00	51.68	0.00	
## 98.74	K	424665	47.06	98.74	47.06	
## 98.74	m	7	0.00	98.74	0.00	
## 100.00	М	11330	1.26	100.00	1.26	
## 100.00	<na></na>	0			0.00	
## 100.00	Total	902297	100.00	100.00	100.00	
summary(stormd	ata\$CROPDMG	5)				
## Min. 1st	Qu. Media	n Mean	3rd Qu.	Max.		
## 0.000 0	.000 0.00	00 1.527	0.000	990.000		
f	*	- \				
rreq(stormdata	ŞCROPDMGEXE	?)				
_		?)				
## Frequencies		?)				
<pre>freq(stormdata ## Frequencies ## stormdata\$C: ## Type: Chara</pre>	ROPDMGEXP	?)				
## Frequencies ## stormdata\$C	ROPDMGEXP	?)				
## Frequencies ## stormdata\$C: ## Type: Chara	ROPDMGEXP		% Valid	% Valid Cum.	% Total	
## Frequencies ## stormdata\$C: ## Type: Chara ## ## ## ## ## ## % Total Cum.	ROPDMGEXP cter	Freq				
## Frequencies ## stormdata\$C: ## Type: Chara ## ## ## ## ## ## ** Total Cum.	ROPDMGEXP cter	Freq		% Valid Cum.		
## Frequencies ## stormdata\$C: ## Type: Chara ## ## ## ** ** ** ** ** ** ** ** ** **	ROPDMGEXP cter	Freq				
## Frequencies ## stormdata\$C: ## Type: Chara ## ## ** ** ** ** ** ** ** ** ** ** **	ROPDMGEXP cter	Freq 		68.54		
## Frequencies ## stormdata\$C: ## Type: Chara ## ## % Total Cum. ## ## (Empt) 68.54 ## 68.54	ROPDMGEXP cter	Freq 	68.54	68.54 68.54	68.54	
## Frequencies ## stormdata\$C ## Type: Chara ## ## % Total Cum. ##	ROPDMGEXP cter y string) ?	Freq 	68.54	68.54 68.54 68.54	68.54	
## Frequencies ## stormdata\$C: ## Type: Chara ## ## % Total Cum. ## ## (Empt) 68.54 ## 68.54	ROPDMGEXP cter y string) ?	Freq	68.54 0.00 0.00	68.54 68.54 68.54	68.54 0.00 0.00	

## 99.78	K	281832	31.23	99.78	31.23	
## 99.78	m	1	0.00	99.78	0.00	
## 100.00	М	1994	0.22	100.00	0.22	
##	<na></na>	0			0.00	

##	Total	902297	100.00	100.00	100.00	
100.00						

##Data Processing

stormpro <- select(stormdata, EVTYPE, FATALITIES, INJURIES, PROPDMG, P
ROPDMGEXP, CROPDMG, CROPDMGEXP)</pre>

#now we can transform

```
stormpro$EVTYPE <- as.character(stormpro$EVTYPE)</pre>
stormpro$EVTYPE <- toupper(stormpro$EVTYPE)</pre>
stormpro$PROPDMGEXP <- toupper(stormpro$PROPDMGEXP)</pre>
stormpro <- mutate(stormpro, propdmgexp2 = recode(PROPDMGEXP,</pre>
                                                 "1" = 10,
                                                 "2" = 100,
                                                 "3" = 1000,
                                                 "4" = 10000,
                                                 "5" = 100000,
                                                 "6" = 1000000,
                                                 "7" = 10000000,
                                                 "8" = 100000000,
                                                 "H" = 100,
                                                 "K" = 1000,
                                                 "M" = 1000000,
                                                 "B" = 1000000000,
                                                 .default = 1))
stormpro <- mutate(stormpro, propdmgvalue = PROPDMG*propdmgexp2)</pre>
```

#calculate damage

```
stormpro$CROPDMGEXP <- toupper(stormpro$CROPDMGEXP)
```

#subset injuries info

```
injuries <- aggregate(INJURIES~EVTYPE, data = stormpro, FUN = sum)
injuries <- injuries[order(injuries$INJURIES, decreasing = TRUE), ]
injuries <- injuries[1:5, ]</pre>
```

#fatality data by event

```
fatalities <- aggregate(FATALITIES~EVTYPE, data = stormpro, FUN = sum)
fatalities <- fatalities[order(fatalities$FATALITIES, decreasing = TRU E), ]
fatalities <- fatalities[1:5, ]</pre>
```

#Properly damage by type

```
propdamage <- aggregate(propdmgvalue~EVTYPE, data = stormpro, FUN = su
m)

propdamage <- propdamage[order(propdamage$propdmgvalue, decreasing = T
RUE), ]

propdamage <- propdamage[1:5, ]

cropdamage <- aggregate(cropdmgvalue~EVTYPE, data = stormpro, FUN = su
m)

cropdamage <- cropdamage[order(cropdamage$cropdmgvalue, decreasing = T
RUE), ]

cropdamage <- cropdamage[1:5, ]</pre>
```

#Results 1. Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?

```
injgraph <- ggplot(data = injuries, aes(x = EVTYPE, y = INJURIES)) + l
abs(x="Event", y="Injuries") + geom_col()

fatgraph <- ggplot(data = fatalities, aes(x = EVTYPE, y = FATALITIES))
+ labs(x="Event", y="Fatalities") + geom_col()

title <- ggdraw() + draw_label("Most harmful events to population heal
th", fontface = 'bold') + theme(plot.margin = margin(0,0,0,7))

plot_col <- plot_grid(injgraph, fatgraph, ncol = 1)</pre>
```

#plot

Most harmful events to population health


```
plot_grid(title,plot_col, ncol = 1, rel_heights = c(0.1,1))
```

#results of question 1 #Tornados are the most harmful to population health, causing the most injuries and fatalities(33.2%).

#now go for question 2/2. Across the United States, which types of events have the greatest economic consequences?

```
propdmg <- ggplot(data = propdamage, aes(x = EVTYPE, y = propdmgvalue
)) + labs(x="Event", y="Property Damage") + geom_col()</pre>
```

```
cropdmg <- ggplot(data = cropdamage, aes(x = EVTYPE, y = cropdmgvalue
)) + labs(x="Event", y="Crop Damage") + geom_col()

title2 <- ggdraw() + draw_label("Most harmful events to the economy",
fontface = 'bold') + theme(plot.margin = margin(0,0,0,7))

plot_col2 <- plot_grid(propdmg,cropdmg, ncol = 1)

plot_grid(title2,plot_col2, ncol = 1, rel_heights = c(0.1,1))</pre>
```

Most harmful events to the economy

#results of question 2

#Floods cause the most property damage while droughts cause the most crop damage (37.1%)