

ESPACIOS LP

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 23) 24.ABRIL.2O23

En esta sección estudiamos algunos espacios de medida (X, A, μ) , en donde además, X es un espacio vectorial normado, y X es un espacio topológico.

Definición

Sea $(X,+,\cdot,K)$ un espacio vectorial. Una **norma** en X es una función $||\cdot||:X\to\mathbb{R}$ que satisface:

- i) $||\mathbf{x}|| \ge 0$, $\forall \mathbf{x} \in X$ y (i.i) $||\mathbf{x}|| = 0 \Leftrightarrow \mathbf{x} = 0$.
- ii) $||\alpha \mathbf{x}|| = |\alpha| \cdot ||\mathbf{x}||$, $\forall \mathbf{x} \in X$, $\forall \alpha \in K$.
- iii) $||x + y|| \le ||x|| + ||y||, \forall x, y \in X.$

Obs!

- Cuando $||\cdot||$ no satisface (i.i) se llama una **seminorma** o una **pseudonorma**.
- La estructura $(X, +, \cdot, K, ||\cdot||)$ se llama un **espacio normaldo**.

Ejemplo 1: $(\mathbb{R}^n, +, \cdot, \mathbb{R}, ||\cdot||_p)$ es un espacio normado, con la norma

$$||\mathbf{x}||_p = \Big(\sum_{i=1}^n |x_i|^p\Big)^{1/p}, \qquad p \ge 1.$$

Ejemplo 2: $(\mathbb{R}^{n\times n},+,\cdot,\mathbb{R},||\cdot||_F)$ es un espacio normado, con la norma de Frobenius

$$||A||_F = \Big(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\Big)^{1/2}.$$

Estamos particularmente interesados en espacios de funciones.

Ejemplo 3: $(C(a,b),+,\cdot,\mathbb{R},||\cdot||)$, el espacio de funciones continuas en el intervalo (a,b), es un espacio normado, con la norma 1

$$||f||_1=\int_a^b|f(x)|\,dx.$$

o con la norma infinito $||f||_{\infty} = \sup_{x \in (a,b)} |f(x)|$.

Ejemplo 4: Consideremos el espacio de medida $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda^1)$, y sea $(\mathcal{M}(\mathcal{B}(\mathbb{R})), +, \cdot, \mathbb{R}, ||\cdot||)$, el espacio de funciones Borel-mesurables en \mathbb{R} . Este es un espacio normado, con la norma supremo

$$||f||_1 = \sup_{x \in \mathbb{R}} |f(x)| dx.$$

Ejemplo 5: Consideremos un espacio de medida (X, A, μ) , y recordemos que

$$\mathsf{L}^1(\mu) = ig\{ f: \mathsf{X} o \mathbb{R}: \ f \ ext{es μ-integrable} ig\} = ig\{ f: \mathsf{X} o \mathbb{R}: \ f \in \mathcal{M}(\mathcal{A}), \ \int_{\mathsf{X}} |f| \ d\mu < +\infty ig\}.$$

Definimos una función de norma en $L^1(\mu)$, dada por

$$||f||_{\mu}=\int_{\mathbf{X}}|f|\,\mathrm{d}\mu.$$

Lema

 $\mathsf{L^1}(\mu)$ es un espacio vectorial sobre $\mathbb R$ y $||\cdot||_\mu$ es una seminorma. Mas aún

$$||f||_{\mu} = 0 \Leftrightarrow f = 0, \ \mu$$
-c.t.p.

Prueba: Ya hemos visto que $L^1(\mu)$ es un espacio vectorial sobre \mathbb{R} $(f, g \in L^1(\mu) \Rightarrow \alpha f + \beta g \in L^1(\mu))$.

Mostramos que $||\cdot||_{\mu}$ es una seminorma:

•
$$||f||_{\mu} = \chi \int |f| \, d\mu \geq ext{o, para toda } f \in L^1(\mu).$$

•
$$||\alpha f||_{\mu} = \int_{\mathsf{X}} = |\alpha f| \, d\mu = \int_{\mathsf{X}} |\alpha| \, |f| \, d\mu = |\alpha| \int_{\mathsf{X}} |f| \, d\mu = |\alpha| \, ||f||_{\mu}.$$

$$\bullet \ ||fg||_{\mu} = \int_{\mathsf{X}} |f+g| \, d\mu \leq \int_{\mathsf{X}} \big(|f|+|g|\big) \, d\mu = \int_{\mathsf{X}} |f| \, d\mu + \int_{\mathsf{X}} |g| \, d\mu = ||f||_{\mu} + ||g||_{\mu}.$$

Esto muestra que $||\cdot||_{\mu}$ es una seminorma en $L^{1}(\mu)$.

Finalmente,
$$||f||_{\mu} = 0 \iff \int_{Y} f \, d\mu = 0 \iff |f| = 0 \; \mu\text{-c.t.p.} \iff f = 0 \; \mu\text{-c.t.p.}$$

Corregimos a continuación el problema de que $||\cdot||_f$ no sea una norma en $L^1(\mu)$.

Definición

Dos funciones $f, g \in L^1(\mu)$ son μ -equivalentes si $f = g \mu$ -c.t.p.

Proposición

La relación de ser μ -equivalentes es una relación de equivalencia en $L^1(\mu)$. \square

Notación: \sim_{μ} .

Definición

Sea (X, A, μ) espacio de medida. Definimos el **espacio de Lebesgue** $L^1(X)$ como

$$L^{1}(X) = \frac{L^{1}(\mu)}{\sim_{\mu}} = \{ [f] : f \in L^{1}(\mu) \}.$$

Teorema

 $||\cdot||_1$ define una norma sobre $L^1(X)$, de modo que $(L^1(X),+,\cdot,\mathbb{R},||\cdot||_1)$ es un espacio vectorial normado.

Prueba: Por el lema anterior, $||\cdot||_1$ es una seminorma sobre $L^1(X)$. Además,

$$||[f]||_1 = 0 \iff \int_X |f| d\mu = 0 \iff |f| = 0 \mu\text{-c.t.p.} \iff [f] = [0].$$

Esto muestra que $||\cdot||_{\mu}$ define una norma en $L^1(X)$. \square

De igual manera, para $1 \le p < \infty$, definimos el **espacio de Lebesgue** $L^p(X)$ como

$$\mathsf{L}^p(\mathsf{X}) = \frac{\mathsf{L}^p(\mu)}{\sim_\mu} = \big\{ [f]: \ f \in \mathsf{L}^p(\mu) \big\} = \Big\{ [f]: \ f \in \mathcal{M}(\mathcal{A}), \ \int_{\mathsf{X}} |f|^p \, \mathrm{d}\mu < +\infty \Big\}.$$

y tenemos la seminorma

$$||f||_p=\int_X|f|^p\,d\mu,\qquad \mathsf{para}\,f\in L^p(\mu).$$

El mismo argumento usado en el caso de $L^1(X)$ muestra que

Teorema

 $||\cdot||_p$ define una norma sobre $L^p(X)$, de modo que $(L^p(X),+,\cdot,\mathbb{R},||\cdot||_p)$ es un espacio vectorial normado, para todo $1 \le p < \infty$.

Obs:

- Los espacios $L^p(X)$ tienen propiedades importantes: son normados, son completos.
- $L^p(\mu)$ son los primeros ejemplos (no triviales) de un espacio de Banach.

Tenemos un caso adicional de espacio $L^p(X)$, cuando $p = \infty$.

Definición

Sea (X, \mathcal{A}, μ) espacio de medida. Definimos el espacio de Lebesgue $L^{\infty}(\mu)$ como el espacio de **funciones esencialmente acotadas**, esto es $|f| \leq C \mu$ -c.t.p., para alguna $C \geq o$.

$$\mathsf{L}^\infty(\mu) = \{f: f \in \mathcal{M}(\mathcal{A}), |f| \leq \mathsf{C}, \; \mu\text{-c.t.p.}, \; \mathsf{para} \; \mathsf{alguna} \; \mathsf{C} \geq \mathsf{o}\}.$$

Definición

Sea (X,\mathcal{A},μ) espacio de medida. Definimos el **espacio de Lebesgue** $L^\infty(X)$ como

$$\mathsf{L}^\infty(\mathsf{X}) = rac{\mathsf{L}^\infty(\mu)}{\sim_\mu} = \{[f]: f \in \mathsf{L}^\infty(\mu)\}.$$

Para $f \in L^1(X)$, definimos el **supremo esencial** de f por

$$||f||_{\infty}=\inf\{\mathsf{C}\geq\mathsf{O}:\ |f|\leq\mathsf{C},\ \mu\text{-c.t.p.}\}.$$

Teorema

 $||\cdot||_{\infty}$ define una norma sobre $L^{\infty}(X)$, de modo que $(L^{\infty}(X),+,\cdot,\mathbb{R},||\cdot||_{\infty})$ es un espacio vectorial normado. \square

En esta sección estudiamos algunas desigualdades importantes que se cumplen dentro de los espacio $L^p(X)$.

Teorema (Desigualdad de Hölder)

Sea (X,\mathcal{A},μ) espacio de medida, $f\in L^p(X)$, $g\in L^q(X)$, con $p,q\geq 1$, $\frac{1}{p}+\frac{1}{q}=1$. Entonces $fg\in L^1(X)$ y $||fg||_1\leq ||f||_p\,||q||_q$. Esto es,

$$\int_X \left|fg\right| d\mu \le \Big(\int_X |f|^p d\mu\Big)^{1/p} \Big(\int_X |g|^q d\mu\Big)^{1/q}.$$

Prueba:

- Si $||f||_p = 0$, entonces f = 0 μ -c.t.p. y el producto fg = 0 μ -c.t.p., lo que muestra que el lado izquierdo de la desigualdad es cero, y la desigualdad es válida.
- Si $||f||_p \infty$ ó $||g||_q \infty$, entonces el lado derecho de la desigualdad es infinito, y la desigualdad se cumple.

Supongamos entonces que $||f||_p, ||g||_q \in (1, \infty)$.

• Si $p=\infty$ y q= 1, entonces $|fg|\leq ||f||_{\infty}\,|g|\,\,\mu$ -c.t.p. Por la monotonicidad de la integral de Lebesgue, tenemos

$$||fg||_1 = \int_X |fg| d\mu \le \int_X ||f||_\infty |g| d\mu = ||f||_\infty \int_X |g| d\mu = ||f||_\infty ||g||_1.$$

- Similarmente para el caso p = 1 y $q = \infty$.
- Supongamos que $p, q \in (1, \infty)$. Dividiendo f por $||f||_p$ y g por $||g||_q$, y por la linealidad de la integral de Lebesgue, podemos asumir que $||f||_p = 1$ y $||g||_q = 1$.

Usando la Desigualdad de Young, con $a = |f(\mathbf{x})|$, $b = |g(\mathbf{x})|$, tenemos

$$|f(\mathbf{x})g(\mathbf{x})| \leq \frac{|f(\mathbf{x})|^p}{p} + \frac{|g(\mathbf{x})|^q}{q}, \ \forall \mathbf{x} \in X.$$

Integrando de ambos lados

$$||fg||_1 = \int_X |fg| d\mu \le \int_X \frac{|f(\mathbf{x})|^p}{p} d\mu + \int_X \frac{|g(\mathbf{x})|^q}{q} d\mu = \frac{||f||_p^p}{p} + \frac{||g||_q^q}{q}.$$

Lo anterior muestra que $||fg||_1 \le \frac{1}{p} + \frac{1}{q} = 1$, lo que muestra la Desigualdad de Hölder. \Box

Obs!

- Cuando $||f||_p = ||g||_q =$ 1 La desigualdad de Hölder se vuelve una igualdad cuando $||f||_p^p = ||g||_q^q \mu$ -c.t.p. (Ejercicio!)
- En el caso general, esto implica que existen constante $\alpha, \beta > 0$ tales que $\alpha ||f||_p^p = \beta ||g||_a^q \mu$ -c.t.p.
- Existe otra forma de probar la Desigualdad de Hölder usando la Desigualdad de Jensen.

Definición

Dos números p, q, > 1 que cumplen con $\frac{1}{p} + \frac{1}{q} = 1$ se llaman **índices conjugados**.

Observe que si p=2, entonces q=2, y este es el único índice auto-conjugado.

Tomando la Desigualdad de Hölder con p=2, obtenemos que $||fg||_1 \le ||f||_2 ||g||_2$. Esto es

$$\int_X \left| fg \right| d\mu \leq \Big(\int_X |f|^2 \, d\mu \Big)^{1/2} \Big(\int_X |g|^2 \, d\mu \Big)^{1/2}, \ \, f,g \in L^2(X),$$

$$\Big(\int_X \left|fg\right| d\mu\Big)^2 \leq \Big(\int_X |f|^2 \, d\mu\Big) \Big(\int_X |g|^2 \, d\mu\Big), \ \ f,g \in L^2(X).$$

Obs! Toda la teoría de Análisis Armónico y Análisis de Fourier se desarrolla en $L^2(X)$.

Teorema (Desigualdad de Cauchy-Schwarz)

Sea (X, \mathcal{A}, μ) espacio de medida, y sean $f, g \in L^2(X)$. Entonces, fg es μ -integrable y

$$\Big| \int_X fg \, d\mu \Big| \leq \int_X |fg| \, d\mu \leq ||f||_2 \, ||g||_2. \quad \Box$$

Teorema (Desigualdad de Jensen)

Sea (X, \mathcal{A}, μ) espacio de medida, con $\mu(X) = 1$. Sea $f \in L^1(X)$, y $\varphi : \mathbb{R} \to \mathbb{R}$ una función convexa. Entonces,

 $arphi \Big(\int_{\mathsf{X}} f \, \mathsf{d} \mu \Big) \leq \int_{\mathsf{X}} (arphi \circ f) \, \mathsf{d} \mu.$

Prueba: Sea $x_0 = \int_X f \, d\mu < +\infty$. Como φ es convexa, existen constante $a,b \in \mathbb{R}$ tales que $ax + b \le \varphi(x)$, para todo $x \in \mathbb{R}$. (Esto se debe a la existencia, siempre, de un subdiferencial para funciones convexas).

Entonces, $ax_0 + b \leq \varphi(x_0)$.

Por otro lado, $\varphi(f(\mathbf{x})) \geq af(\mathbf{x}) + b$, para todo $\mathbf{x} \in X \mu$ -c.t.p. Por monotonicidad

$$\int_X (\varphi \circ f) \, d\mu \geq \int_X \left(a f(\mathbf{x}) + b \right) \, d\mu = a \int_X f(\mathbf{x}) \, d\mu + b \int_X \, d\mu = a x_0 + b = \varphi(x_0) = \varphi \Big(\int_X f \, d\mu \Big).$$

Teorema (Desigualdad de Minkowski)

Sea (X, A, μ) espacio de medida. Si $f, g \in L^p(X)$, con $p \ge 1$, entonces

$$||f+g||_p \leq ||f||_p + ||g||_p$$
.

Prueba: Primero, mostramos que f+g es p-integrable. Del hecho que $\varphi(x)=|x|^p$ es convexa, por la Desigualdad de Jensen (para funciones en \mathbb{R}), tenemos

$$\left| \frac{1}{2}f + \frac{1}{2}g \right|^p \le \left| \left| \frac{1}{2}f \right| + \left| \frac{1}{2}g \right| \right|^p \le \frac{1}{2}|f|^p + \frac{1}{2}|g|^p.$$

Luego, $\frac{1}{2^p}|f+g|^p \le \frac{1}{2}|f|^p + \frac{1}{2}|g|^p \implies |f+g|^p \le 2^{p-1} \, (|f|^p + |g|^p).$ Esto muestra que $f+g \in L^p(X)$.

Usando la desigualdad triangular, y la Desigualdad de Hölder

$$||f+g||_p^p = \int_X |f+g|^p d\mu = \int_X |f+g| |f+g|^{p-1} d\mu \le \int_X \left(|f|+|g|\right) |f+g|^{p-1} d\mu$$

$$\begin{split} ||f+g||_{p}^{p} &= \int_{X} |f+g|^{p} d\mu = \int_{X} |f+g| |f+g|^{p-1} d\mu \leq \int_{X} \left(|f|+|g|\right) |f+g|^{p-1} d\mu \\ &\leq \int_{X} |f| |f+g|^{p-1} d\mu + \int_{X} |g| |f+g|^{p-1} d\mu \\ &\leq \left[\left(\int_{X} |f|^{p} d\mu \right)^{1/p} + \left(\int_{X} |g|^{p} d\mu \right)^{1/p} \right] \left(\int_{X} |f+g|^{(p-1)\frac{p}{p-1}} d\mu \right)^{1-1/p} \\ &\leq \left(||f||_{p} + ||g||_{p} \right) \frac{||f+g||_{p}^{p}}{||f+g||_{p}}. \end{split}$$

Multplicando ambos lados por
$$\dfrac{||f+g||_p}{||f+g||_p^p}$$
, obtenemos $||f+g||_p \leq ||f||_p + ||g||_p$. \Box

Teorema de Completitud

Definición

Una secuencia $\{f_n\}_{n\geq 1}\subset L^p(X)$ es una **secuencia de Cauchy** si para todo $\varepsilon>0$ existe $n_0\in\mathbb{N}$ tal que

$$m, n \geq n_0 \implies ||f_n - f_m||_p < \varepsilon.$$

Una secuencia $\{f_n\}_{n\geq 1}\subset L^p(X)$ converge a $f\in L^p(X)$ si para todo $\varepsilon>0$ existe $n_0\in\mathbb{N}$ tal que

$$n \geq n_0 \implies ||f_n - f||_p < \varepsilon.$$

Obs! Toda secuencia convergente $\{f_n\}$ $\{f_n\}$ es de Cauchy. El Recíproco no siempre vale.

Definición

Un espacio vectorial S es **completo** si toda secuencia de Cauchy $\{f_n\}_{n\geq 1}$ en S, converge a una función $f \in S$.

Teorema de Completitud

Teorema (Teorema de Completitud)

Para todo $1 \le p < \infty$, el espacio $L^p(X)$ es un espacio lineal, normado con la norma

$$||f||_p = \Big(\int_X |f|^p \, \mathrm{d}\mu\Big)^{1/p},$$

y completo. Esto es, $L^p(X)$ es un espacio de Banach.