1 Monic arrows

Monic arrows are an abstraction of injective functions.

Def: An arrow $f: a \to b$ in a category C is monic if for any g_1, g_2 with codomain a, the implication

$$f \circ g_1 = f \circ g_2 \implies g_1 = g_2$$

holds. Or, if the diagram

$$c \xrightarrow{g_1} a \xrightarrow{f} b$$

commutes, then $g_1 = g_2$.

Exercises

For both exercises in this section, take the situation to be as follows:

$$s \xrightarrow{h_1} a \xrightarrow{f} b \xrightarrow{g} c$$

Where f and g are fixed, and s, h_1, h_2 are 'any such' objects/arrows.

1. Suppose that f and g are both monic, and that $g \circ (f \circ h_1) = g \circ (f \circ h_2)$. Since g is monic, that implies $f \circ h_1 = f \circ h_2$. But since f is monic, that implies $h_1 = h_2$. So using associativity and collapsing the chain of implication gives

$$(g \circ f) \circ h_1 = (g \circ f) \circ h_2 \implies h_1 = h_2.$$

Conclude $g \circ f$ is monic.

2. Now suppose that $g \circ f$ is monic. If $f \circ h_1 = f \circ h_2$ then clearly $g \circ (f \circ h_1) = g \circ (f \circ h_2)$. Then $(g \circ f) \circ h_1 = (g \circ f) \circ h_2$ and since $g \circ f$ is monic, $h_1 = h_2$. So

$$f \circ h_1 = f \circ h_2 \implies h_1 = h_2,$$

meaning f is monic.

2 Epic arrows

Def: If f is epic then commutativity of

$$a \xrightarrow{f} b \xrightarrow{g_1} c$$

implies $g_1 = g_2$.

3 Iso arrows

Def: An arrow $f: a \to b$ is iso if there exists another arrow $f^{-1}: b \to a$ such that

$$f \circ f^{-1} = 1_b$$

and

$$f^{-1} \circ f = 1_a.$$

This diagram commutes when the identity loops are included:

Fact 1. If an arrow is iso then it is epic and monic, but the converse isn't necessarily true. The converse is true in **Set** and any Topos.

3.1 Exercises

1. For any object a, the identity morphism 1_a is an inverse to itself and therefore is iso. Simply because

$$1_a \circ 1_a = 1_a.$$

2. If $f:a\to b$ is iso then we can retrieve f^{-1} and then plug it right into the definition and find

$$f^{-1} \circ f = 1_a$$

and

$$f \circ f^{-1} = 1_b$$

indicating that f^{-1} is iso.

$$a \xrightarrow{f^{-1}} b$$

3. With $f: a \to b$ and $g: b \to c$ both iso, the situation looks like the following:

$$a \xrightarrow{f} b \xrightarrow{g} c$$

Now we find that

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ 1_b \circ f = f^{-1} \circ f = 1_a$$

and

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ 1_b \circ g^{-1} = g \circ g^{-1} = 1_c.$$

Thus $(f^{-1} \circ g^{-1})$ acts as an inverse to $g \circ f$, and $g \circ f$ is iso.

4 Isomorphic objects

Def: Two C-objects a and b are isomorphic, or

 $a \cong b$

if there exists an iso C-arrow

$$f: a \to b$$
.

Def: A category C is skeletal if $a \cong b$ implies a = b.

4.1 Exercises

- 1. We wish to show that object isomorphism is an equivalence relation, or that it's reflexive, symmetric, and transitive. Fortunately the exercises from section 3 correspond exactly to these properties.
 - (i) $a \cong a$ since 1_a is iso.
 - (ii) If $a \cong b$ then some $f: a \to b$ is iso, and therefore $f^{-1}: b \to a$ is iso.
 - (iii) If $a \cong b$ and $b \cong c$ then we have iso arrows $f: a \to b$ and $g: b \to c$. Then $g \circ f$ is iso, and $a \cong c$.
- 2. Suppose a and b are two **Finord**-objects such that $a \cong b$. Then there is some $f: a \to b$ that is iso. Since **Finord** is a subcategory of **Set**, iso arrows correspond to bijective functions. Then a and b must have the same cardinality, but by the definition of **Finord** distinct objects have distinct cardinalities. So a = b and **Finord** is skeletal.