RÉPUBLIQUE TUNISIENNE	EXAMEN DU BACCALAURÉAT SESSION 2022	NOUVEAU RÉGIME
MINISTÈRE DE L'ÉDUCATION	Épreuve : INFORMATIQUE Sections : Mathématiques, Scien expérimentales et Sciences techni	
	Durée : 1h 3 0	Coefficient de l'épreuve : 0.5

Corrigé et barème de notation

Exercice 1 (3 points)

Soient le tableau de déclaration des objets globaux ci-dessous :

Objet	Type/Nature	
n	entier	
У	réel	
Traitement	Procédure	

et l'entête de la procédure Traitement suivant :

Procédure Traitement (a) x : réel, a : entier)

Compléter le tableau ci-dessous en mettant une croix (\times) dans la case correspondante (<u>Valide</u> ou <u>Invalide</u>) pour chacun des appels de la procédure **Traitement**. Justifier yotre réponse pour les appels invalides. {3pts=6 \times 0.5}

Appel	Valide	Invalide	Justification
Traitement (y, n)	×		
Traitement (y, n, 2)		×	Les paramètres effectifs et formels ne s'accordent pas en nombre
Traitement (5.5, 6)		×	Le premier paramètre effectif doit être une variable
Traitement (y, 3)	Ж		

Exercice 2 (7 points)

Soient le tableau de déclaration des nouveaux types et les deux algorithmes des fonctions f1 et f2 dessous :

Nouveau type

Tab = tableau de 50 entiers

ci-

Algorithme de la fonction fl		Algorithme de la fonction f2			
Fonction f1 (T : Tab , n, x : entier) : entier		Fonction f2 (T: Tab, n: entier): entier			
DEBUT		DEBUT			
Cpt←0		M←T[1]			
Pour i de 1 à n Faire		Pour i de 2 à n Faire			
Si T[i]=x Alors		Si T[i]>M Alors			
Cpt← Cpt+1		M←T[i]			
Fin Si	1		Fin si	,	
Fin Pour	TDOL		Fin Pour	ļ	TDOL
Retourner Cpt	Objet	Type/Nature	Retourner M	Objet	Type/Nature
-	Cpt, i	entier		M, i	entier
FIN		+	FIN	Li.	

N.B: n est un entier strictement positif et inférieur ou égal à 50

Questions

1) Pour le tableau T suivant :

- a. Donner le résultat de chacun des appels ci-dessous de la fonction $f1. \{0.5pt=2\times0.25\}$
 - * $f1(T, 10, 6) = \dots 3 \dots$
 - * $fl(T, 6, 3) = \dots 2$
- b. Déduire le rôle de la fonction f1. [0.5pt]

Permet de retourner le nombre d'occurrences d'un entier x dans les n premières cases du tableau T.

- c. Donner le résultat de chacun des appels suivants de la fonction f2. [0.5pt=2×0.25]
 - f2(T, 10) = 8
 - f2(T, 5) = 6
- d. Déduire le rôle de la fonction 12.

Permet de retourner le maximum parmi les n premiers éléments du tableau T {0.5pt}

2) Compléter la colonne "Réponse" du tableau ci-après par "Valide" si l'algorithme de la procédure remplir permet le remplissage aléatoire de n cases d'un tableau T par des chiffres de 1 à 9 ou par "Invalide" dans le cas contraire. [1.5pt=3×0.5]

La définition de la procédure remplir	Réponse (valide/invalide)
Procédure remplir (@ T: Tab, n: entier)	
DEBUT	
Pour i de 1 à n faire	Valide
$T[i] \leftarrow al\acute{e}a(1,9)$	
Fin Pour	
FIN	
Procédure remplir (@ T : Tab , n : entier)	
DEBUT	
Pour i de 1 à n faire	
$T[i] \leftarrow aléa(1,10)$	Invalide
Fin Pour	
FIN	
Procédure remplir (@ T : Tab , n : entier)	
DEBUT	
Pour i de 1 à n faire	Invalide
T[i]←aléa(0,9)	
Fin Pour	
FIN	

3) Soient T un tableau de n entiers $(5 \le n \le 50)$ rempli par des chiffres compris entre 1 et 9 et V un tableau de 9 cases de type entier et dont leurs indices sont de 1 à 9.

Travail demandé:

a) Ecrire un algorithme d'un module intitulé remplissage qui permet de remplir le tableau V par le nombre d'occurrences de chaque chiffre du tableau T. [1.5pt]

NB: Pour calculer le nombre d'occurrences l'algorithme solution doit faire appel à la fonction f1.

Exemple:

Pour n=10 et le tableau T suivant :

Suite à l'appel du module remplissage on obtient le tableau V suivant :

 $\{1.5pt=0.25 \ entête+0.25 \ boucle+0.5 \ appel \ def1+0.25 \ affectation+0.25 \ TDOL\}$ $Procédure\ remplissage\ (T:\ Tab\ ,\ n:\ entier\ ,\ @\ V:\ Tab)$

DEBUT

Pour i de 1 à 9 faire

Vfi] \leftarrow f[(T, n, i)

Fin Pour

FIN

TDOL		
Objet	Type/Nature	
i	entier	
fl	fonction	

- b) Ecrire un algorithme d'un module intitulé Afficher qui permet d'afficher, à partir du tableau V, le(s) chiffre(s) ayant le plus grand nombre d'occurrences dans le tableau T. [2pts]
 - NB: Pour déterminer le plus grand nombre d'occurrences l'algorithme solution doit faire appel à la fonction f2.

Exemple:

Pour le tableau V suivant :

Suite à l'appel du module Afficher on obtient l'affichage suivant :

Les chiffres les plus fréquents dans le tableau sont : 3 6

 $\{2pts=0.25\ ent\hat{e}te+0.25\ affichage\ titre+0.25\ boucle+0.25\ condition+0.5\ appel\ de\ f2+0.25\ affichage\ +0.25\ TDOL\}$

 $Procédure \ Afficher (V: Tab)$ DEBUT

Ecrire ("Les chiffres les plus fréquents dans le tableau sont :") Pour i de 1 à 9 faire

Si (V[i] = f2 (V, 9)) alors Ecrire (" ", i)

Fin si

Fin Pour

FIN

TDOL		
Objet	Type/Nature	
i	entier	
f2	fonction	

Problème (10 points)

1) Algorithme du programme principal:

```
ALGORITHME VACCIN
DEBUT
```

saisir(n)
remplir(T,n)
afficher(T,n)

FIN

Déclaration des nouveaux types utilisateurs

Nouveau type
Tab= tableau de 100 chaînes

Déclaration des objets globaux

Objet	Type/Nature
T	Tab
n	Entier
saisir	Procédure
remplir	Procédure
afficher	Procédure

- 2) Les algorithmes des modules :
- 1. Algorithme de la procédure saisir

```
Procédure saisir (@ n:entier)

DEBUT

Répéter

Ecrire ("Donner le nombre de citoyens : ")

Lire(n)

Jusqu'à (5 \le n \le 100)

FIN
```

2. Algorithme de la procédure remplir

```
Procédure remplir (@ T : tab , n:entier)

DEBUT

Pour i de l à n faire

Répéter

Ecrire ("donner les informations du citoyen n° ",i," : ")

Lire(T[i])

Jusqu'à (Valide(T[i]))

Fin Pour

FIN
```

Déclaration des objets locaux

Objet	Type/Nature	
i	Entier	
Valide	Fonction	

3. Algorithme de la procédure afficher

Procédure afficher (T: tab, n:entier) **DEBUT** Pour i de 1 à n faire ch←T[i] $p \leftarrow pos("-",ch)$ NomVac←sous_chaine(ch,p+1,long(ch)-2) d←ch[long(ch)-1] code ← sous chaine(ch,0,9) Si ((d="2") ou((d="1") ET (NomVac ="Johnson"))) alors Ecriré (" Le titulaire du code ", code," vous pouvez télécharger votre pass vaccinal") Sinon Ecrire (" Le titulaire du code ", code," vous êtes appelé à compléter votre schéma vaccinal") Fin Si Fin Pour Déclaration des objets locaux FIN

Objet Type/Nature Entier

i,p ch, NomVac, code chaine caractère d

Barème détaillé:

Programme principal:	2.5 points =
- Modularité	0.5
- Cohérence (appels + conformité des paramètres)	1 = (0.5 + 0.5)
- Déclaration des nouveaux types + déclaration des objets globaux	1 = (0.5 + 0.5)
Saisie du nombre de citoyens N :	1 point =
- Choix de la boucle	0.25
- Lecture de N	0.25
- Contrôle de la saisie	0.5
Remplissage du tableau T :	2 points =
- Parcours du tableau	0.5
- Choix de la boucle de la saisie de T[i]	0.25
- Lecture de T[i]	0.5
- Contrôle des contraintes : appel de la fonction Valide (T[i])	0.75
Affichage des messages :	3.5 points =
- Parcours du tableau	0.5
- Extraction du nom de vaccin, code et le nombre de doses	1 = (0.5 + 0.25 + 0.25)
- Test du schéma vaccinal complet (2 doses ou 1 dose & Johnson)	0.5+0.5
- Affichage du message pour le retrait du pass vaccinal	0.5
- Affichage du message pour compléter le schéma vaccinal	0.5
Déclaration des objets locaux	1 point

N.B.: On accepte toutes autres solutions correctes.