Section 1.4 – Exact Differential Equations

A class of equations known as exact equations for which there is also a well-defined method of solution

Theorem

Let the function M, N, M_y and N_x , where M_y and N_x are partial derivatives, be continuous in the rectangular region R: $\alpha < x < \beta$, $\gamma < y < \delta$ then

$$M(x, y) + N(x, y)y' = 0$$

Is an exact differential equation in R, if and only if

$$M_{y}(x, y) = N_{x}(x, y)$$

At each point in R. That is, there exists a function ψ satisfying

$$\psi_{y}(x, y) = M(x, y)$$
 and $\psi_{x}(x, y) = N(x, y)$

Iff
$$M_{y}(x, y) = N_{x}(x, y)$$

Example

Solve the differential equation: $2x + y^2 + 2xyy' = 0$

$$\frac{\partial \psi}{\partial x} = M = 2x + y^2 \implies M_y = 2y$$

$$\frac{\partial \psi}{\partial y} = N = 2xy \implies N_x = 2y$$

$$\Rightarrow M_y = N_x$$

$$\frac{\partial \psi}{\partial x} = 2x + y^2 \implies \psi = \int (2x + y^2) dx = x^2 + xy^2 + h(y)$$

$$\psi_y = 2xy + h'(y) = 2xy \implies h'(y) = 0$$

$$\Rightarrow h(y) = C$$

$$\psi(x, y) = x^2 + xy^2 + C$$

$$\boxed{x^2 + xy^2 = C}$$

Example

Solve the differential equation:
$$y\cos x + 2xe^y + \left(\sin x + x^2e^y - 1\right)y' = 0$$

Solution

$$M = y\cos x + 2xe^{y} = \frac{\partial \psi}{\partial x} \implies M_{y} = \cos x + 2xe^{y}$$

$$\frac{\partial \psi}{\partial y} = N = \sin x + x^{2}e^{y} - 1 \implies N_{x} = \cos x + 2xe^{y}$$

$$\implies M_{y} = N_{x}$$

$$\psi = \int (y\cos x + 2xe^{y})dx = y\sin x + x^{2}e^{y} + h(y)$$

$$\psi_{y} = \sin x + x^{2}e^{y} + h'(y) = \sin x + x^{2}e^{y} - 1 \implies h'(y) = -1$$

$$\implies h(y) = -y$$

$$\psi(x, y) = y\sin x + x^{2}e^{y} - y = C$$

$$y\sin x + x^{2}e^{y} - y = C$$

Example

Solve the differential equation: $3xy + y^2 + (x^2 + xy)y' = 0$

Solution

$$M = 3xy + y^2 = \frac{\partial \psi}{\partial x} \implies M_y = 3x + 2y$$

 $N = x^2 + xy = \frac{\partial \psi}{\partial y} \implies N_x = 2x + y$
 $\implies M_y \neq N_x$

Can be solved by this procedure.

Integrating Factors

It is sometimes possible to convert a differential equation that is not exact equation by multiplying the equation by a suitable integrating factor.

Definition

An integrating factor for the differential equation $\omega = Mdx + Ndy = 0$ is a function $\mu(x, y)$ such that the form $\mu\omega = \mu(x, y)M(x, y)dx + \mu(x, y)N(x, y)dy$ is exact.

$$(\mu M)_{y} = (\mu N)_{x}$$

$$M\mu_{y} - N\mu_{x} + (M_{y} - N_{x})\mu = 0$$

Assuming that μ is a function of x only, we have

$$(\mu M)_{y} = \mu M_{y} & (\mu N)_{x} = \mu N_{x} + N \frac{d\mu}{dx}$$

$$\Rightarrow \mu M_{y} = \mu N_{x} + N \frac{d\mu}{dx}$$

$$\frac{d\mu}{dx} = \frac{M_{y} - N_{x}}{N} \mu$$

Example

Find an integrating factor for the equation $(3xy + y^2) + (x^2 + xy)y' = 0$

And then solve the equation.

$$M_{y} = \frac{\partial}{\partial y} \left(3xy + y^{2} \right) = 3x + 2y \qquad N_{x} = \frac{\partial}{\partial x} \left(x^{2} + xy \right) = 2x + y$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$\frac{M_{y} - N_{x}}{N} = \frac{3x + 2y - 2x - y}{x^{2} + xy} = \frac{x + y}{x(x + y)} = \frac{1}{x}$$

$$\frac{d\mu}{dx} = \frac{\mu}{x} \Rightarrow \int \frac{d\mu}{\mu} = \int \frac{dx}{x}$$

$$\ln \mu = \ln x$$

$$\mu = x$$

$$x(3xy + y^{2}) + x(x^{2} + xy)y' = 0$$

$$M_{y} = \frac{\partial}{\partial y}(3x^{2}y + xy^{2}) = 3x^{2} + 2xy \qquad N_{x} = \frac{\partial}{\partial x}(x^{3} + x^{2}y) = 3x^{2} + 2xy$$

$$\Rightarrow M_{y} = N_{x}$$

$$\Psi = \int (3x^{2}y + xy^{2})dx = x^{3}y + \frac{1}{2}x^{2}y^{2} + h(y)$$

$$\Psi_{y} = x^{3} + x^{2}y + h'(y) = x^{3} + x^{2}y \Rightarrow h'(y) = 0$$

$$\Rightarrow h(y) = C$$

$$\Psi(x, y) = x^{3}y + \frac{1}{2}x^{2}y^{2} = C$$

$$x^{3}y + \frac{1}{2}x^{2}y^{2} = C$$

Bernoulli Equations

An equation of the form $y' + P(x)y = Q(x)y^n$, $n \neq 0, 1$ is called a **Bernoulli equation**.

If $n = 0 \implies y' + Py = Q$ First-order linear differential equation

If $n=1 \implies y' + Py = Qy \implies y' + (P-Q)y = 0$ Separable equation.

For $n \neq 0$, 1, the Bernoulli equation can be written as $y^{-n} \frac{dy}{dx} + Py^{1-n} = Q$ (1)

Let
$$u = y^{1-n} \implies \frac{du}{dx} = (1-n)y^{-n}\frac{dy}{dx}$$

$$y^{-n}\frac{dy}{dx} = \frac{1}{1-n}\frac{du}{dx}$$

(1)
$$\Rightarrow \frac{1}{1-n}\frac{du}{dx} + Pu = Q$$

u' + (1-n)Pu = (1-n)Q Which is 1st-order linear differential equation.

Example

Find the general solution $y' - 4y = 2e^x \sqrt{y}$

$$\sqrt{y} = y^{1/2} \implies n = \frac{1}{2}$$
Let $u = y^{1-\frac{1}{2}} = y^{1/2} \implies y = u^2$

$$\frac{du}{dx} = \frac{1}{2}y^{-1/2}\frac{dy}{dx} \implies 2y^{1/2}\frac{du}{dx} = \frac{dy}{dx}$$

$$\frac{dy}{dx} - 4y = 2e^x u$$

$$2u\frac{du}{dx} - 4u^2 = 2ue^x \qquad \text{Divide by } 2u$$

$$u' - 2u = e^x$$

$$e^{\int -2dx} = e^{-2x}$$

$$\int e^x e^{-2x} dx = \int e^{-x} dx = -e^{-x}$$

$$u = \frac{1}{e^{-2x}} \left(-e^{-x} + C \right)$$

$$y^{1/2} = -e^x + Ce^{2x}$$

$$y = \left(Ce^{2x} - e^x \right)^2$$

Example

Find the general solution $xy' + y = 3x^3y^2$

$$y' + \frac{1}{x}y = 3x^{2}y^{2}$$
Let $u = y^{1-2} = y^{-1} \implies y = \frac{1}{u}$

$$\frac{du}{dx} = -\frac{1}{2}\frac{dy}{dx} \implies y' = -y^{2}u' = -\frac{1}{u^{2}}u'$$

$$-\frac{1}{u^{2}}u' + \frac{1}{x}\frac{1}{u} = 3x^{2}\frac{1}{u^{2}} \qquad \text{Multiply both sides by } -u^{2}$$

$$u' - \frac{1}{x}u = -3x^{2}$$

$$e^{\int -\frac{1}{x}dx} = e^{-\ln x} = e^{\ln x^{-1}} = x^{-1}$$

$$\int -3x^{2}x^{-1}dx = -3\int xdx = -\frac{3}{2}x^{2}$$

$$u = x\left(-\frac{3}{2}x^{2} + C_{1}\right)$$

$$\frac{1}{y} = \frac{-3x^{3} + 2C_{1}x}{2}$$

$$y = \frac{2}{Cx - 3x^{3}}$$

Homogeneous Equations $\frac{dy}{dx} = f(x, y)$

The form of a homogeneous equation suggests that it may be simplified by using a variable denoted by 'v', to represent the ratio of y to x. This

$$y = xv \implies \frac{dy}{dx} = F(v)$$

Let assume that v is a function of x, then

$$\frac{dy}{dx} = x\frac{dv}{dx} + v \quad or \quad y' = xv' + v$$

The most significant fact about this equation is that the variables x & v can always be *separated*, regardless of the form of the function F.

$$\frac{dx}{x} = \frac{dv}{F(v) - v}$$

Solving this equation and then replacing v by $\frac{y}{x}$ gives the solution of the original equation.

Example

Solve the differential equation

$$\frac{dy}{dx} = \frac{y^2 + 2xy}{x^2}$$

$$\frac{dy}{dx} = \left(\frac{y}{x}\right)^2 + 2\frac{y}{x} = v^2 + 2v$$

$$x\frac{dv}{dx} + v = v^2 + 2v \qquad \Rightarrow x\frac{dv}{dx} = v^2 + v$$

$$xdv = v(v+1)dx$$

$$\int \frac{dx}{x} = \int \frac{dv}{v(v+1)}$$

$$\int \frac{dx}{x} = \int \left(\frac{1}{v} - \frac{1}{v+1}\right) dv$$

$$\ln x + \ln C = \ln v - \ln \left(v + 1 \right)$$

$$\ln(Cx) = \ln\frac{v}{v+1}$$

$$Cx = \frac{v}{v+1} = \frac{\frac{y}{x}}{\frac{y}{x}+1} = \frac{y}{y+x} \implies Cxy + Cx^2 = y$$

$$Cx^2 = y - Cxy$$

$$y = \frac{Cx^2}{1 - Cx}$$

Example

Find the general solution

$$y' = \frac{x^2 e^{y/x} + y^2}{xy}$$

Let
$$y = xv \implies y' = v + xv'$$

$$v + xv' = \frac{x^2 e^{xv/x} + (xv)^2}{x(xv)}$$

$$xv' = \frac{x^2 e^v + x^2 v^2}{x^2 v} - v$$

$$x\frac{dv}{dx} = \frac{e^v + v^2}{v} - v$$

$$x\frac{dv}{dx} = \frac{e^v}{v}$$

$$\int \frac{v}{e^v} dv = \int \frac{dx}{x}$$

$$-ve^{-v} - e^{-v} = \ln x + C$$

$$-e^{-v}(v+1) = \ln x + C$$

$$-e^{-y/x}\left(\frac{y}{x}+1\right) = \ln x + C$$

$$y + x = -xe^{y/x} \left(\ln x + C \right)$$

Exercises Section 1.4 – Exact Differential Equations

Solve the differential equation

1.
$$(2x+y)dx+(x-6y)dy=0$$

2.
$$(2x+3)dx + (2y-2)dy = 0$$

3.
$$(1-y\sin x)+(\cos x)y'=0$$

$$4. \qquad \frac{dy}{dx} = -\frac{ax + by}{bx + cy}$$

5.
$$\frac{dy}{dx} = \frac{3x^2 + y}{3y^2 - x}$$

6.
$$2xydx + (x^2 - 1)dy = 0$$

7.
$$y' = \frac{x^2 + y^2}{2xy}$$

8.
$$2xyy' = x^2 + 2y^2$$

$$9. xy' = y + 2\sqrt{xy}$$

10.
$$xy^2y' = x^3 + y^3$$

11.
$$x^2y' = xy + x^2e^{y/x}$$

12.
$$x^2y' = xy + y^2$$

13.
$$xyy' = x^2 + 3y^2$$

14.
$$(x^2 - y^2)y' = 2xy$$

15.
$$xyy' = y^2 + x\sqrt{4x^2 + y^2}$$

16.
$$xy' = y + \sqrt{x^2 + y^2}$$

17.
$$y^2y' + 2xy^3 = 6x$$

18.
$$x^2y' + 2xy = 5y^4$$

19.
$$2xy' + y^3e^{-2x} = 2xy$$

20.
$$y^2(xy'+y)(1+x^4)^{1/2}=x$$

21.
$$3v^2v' + v^3 = e^{-x}$$

22.
$$3xy^2y' = 3x^4 + y^3$$

23.
$$xe^y y' = 2(e^y + x^3 e^{2x})$$

24.
$$(2x \sin y \cos y) y' = 4x^2 + \sin^2 y$$

25.
$$(x+e^y)y' = xe^{-y} - 1$$

26.
$$(x^2 + y^2)dx + (x^2 - xy)dy = 0$$

27.
$$x \frac{dy}{dx} + y = x^2 y^2$$

28.
$$(3x^2 - 2xy + 2) + (6y^2 - x^2 + 3)y' = 0$$

29.
$$(e^x \sin y - 2y \sin x) dx + (e^x \cos y + 2\cos x) dy = 0$$

30.
$$\left(\frac{y}{x} + 6x\right) dx + \left(\ln x - 2\right) dy = 0, \qquad x > 0$$

31.
$$(e^{2y} - y\cos x)dx + (2xe^{2y}x\cos xy + 2y)dy = 0$$

32.
$$\frac{xdx}{\left(x^2 + y^2\right)^{3/2}} + \frac{ydy}{\left(x^2 + y^2\right)^{3/2}} = 0$$

33.
$$(2x-1)dx + (3y+7)dy = 0$$

34.
$$(5x+4y)dx+(4x-8y^3)dy=0$$

35.
$$(\sin y - y \sin x) dx + (\cos x + x \cos y - y) dy = 0$$

36.
$$(2xy^2 - 3)dx + (2x^2y + 4)dy = 0$$

37.
$$\left(1 + \ln x + \frac{y}{x}\right) dx - \left(1 - \ln x\right) dy = 0$$

38.
$$(x-y^3+y^2\sin x)dx - (3xy^2+2y\cos x)dy = 0$$

$$39. \quad \left(x^3 + y^3\right) dx + 3xy^2 dy = 0$$

40.
$$(3x^2y + e^y)dx + (x^3 + xe^y - 2y)dy = 0$$

41.
$$xdy + (y - 2xe^x - 6x^2)dx = 0$$

42.
$$\left(1 - \frac{3}{y} + x\right) dy + \left(y - \frac{3}{x} + 1\right) dx = 0$$

43.
$$\left(x^2y^3 - \frac{1}{1+9x^2}\right)\frac{dx}{dy} + x^3y^2 = 0$$

44.
$$(5y-2x)y'-2y=0$$

45.
$$(x-y)dx - xdy = 0$$

46.
$$(x+y)dx + xdy = 0$$

47.
$$\frac{dy}{dx} = -\frac{2xy^2 + 1}{2x^2y}$$

48.
$$(1 + e^x y + xe^x y) dx + (xe^x + 2) dy = 0$$

49.
$$\left(2xy^3 + 1\right)dx + \left(3x^2y^2 - \frac{1}{y}\right)dy = 0$$

50.
$$(2x+y)dx+(x-2y)dy=0$$

51.
$$e^{x}(y-x)dx + (1+e^{x})dy = 0$$

52.
$$\left(ye^{xy} - \frac{1}{y} \right) dx + \left(xe^{xy} + \frac{x}{y^2} \right) dy = 0$$

53.
$$(\tan x - \sin x \sin y) dx + (\cos x \cos y) dy = 0$$

54.
$$(2x^3 - xy^2 - 2y + 3)dx - (x^2y + 2x)dy = 0$$

55.
$$(x + \sin y)dx + (x\cos y - 2y)dy = 0$$

56.
$$\left(x + \frac{1}{\sqrt{y^2 - x^2}}\right) dx + \left(1 - \frac{1}{y\sqrt{y^2 - x^2}}\right) dy = 0$$

57.
$$(2x + y^2 - \cos(x + y))dx + (2xy - \cos(x + y) - e^y)dy = 0$$

58.
$$\left(\frac{2}{\sqrt{1-x^2}} + y\cos(xy)\right)dx + \left(x\cos(xy) - y^{-1/3}\right)dy = 0$$

59.
$$(2x + y\cos(xy))dx + (x\cos(xy) - 2y)dy = 0$$

60.
$$\left(e^x \sin y - 3x^2\right) dx + \left(e^x \cos y + \frac{1}{3}y^{-2/3}\right) dy = 0$$

61.
$$\left(2y\sin x\cos x - y + 2y^2e^{xy^2}\right)dx = \left(x - \sin^2 x - 4xye^{xy^2}\right)dy$$

The given equation is not exact. However, if you multiply by the given integrating factor, then it becomes exact. Then solve the equation

62.
$$x^2y^3 + x(1+y^2)y' = 0$$
, $\mu(x, y) = \frac{1}{xy^3}$

63.
$$y^2 - xy + (x^2)y' = 0$$
, $\mu(x, y) = \frac{1}{xy^2}$

64.
$$x^2y^3 - y + x(1 + x^2y^2)y' = 0$$
, $\mu(x, y) = \frac{1}{xy}$

65.
$$\left(\frac{\sin y}{y} - 2e^{-x}\sin x\right)dx + \left(\frac{\cos y + 2e^{-x}\cos x}{y}\right)dy = 0, \qquad \mu(x, y) = ye^{x}$$

66.
$$(x+2)\sin y dx + x\cos y dy = 0$$
, $\mu(x, y) = xe^{x}$

67.
$$(x^2 + y^2 - x)dx - ydy = 0,$$
 $\mu(x, y) = \frac{1}{x^2 + y^2}$

68.
$$(2y-6x)dx + (3x-4x^2y^{-1})dy = 0, \mu(x, y) = xy^2$$

Find the general solution of each homogenous equation

69.
$$(x^2 + y^2)dx - 2xydy = 0$$

70.
$$(x+y)dx + (y-x)dy = 0$$

71.
$$\frac{dy}{dx} = \frac{y(x^2 + y^2)}{xy^2 - 2x^3}$$

Find an integrating factor and solve the given equation

72.
$$(3x^2y + 2xy + y^3)dx + (x^2 + y^2)dy = 0$$

73.
$$dx + \left(\frac{x}{y} - \sin y\right) dy = 0$$

74.
$$e^{x} dx + \left(e^{x} \cot y + 2y \csc y\right) dy = 0$$

75.
$$\left(3x + \frac{6}{y}\right)dx + \left(\frac{x^2}{y} + 3\frac{y}{x}\right)dy = 0$$

76.
$$(x+3x^3 \sin y) dx + (x^4 \cos y) dy = 0$$

77.
$$(2x^2 + y)dx + (x^2y - x)dy = 0$$

78.
$$(3x^2 + y)dx + (x^2y - x)dy = 0$$

79.
$$(2y^2 + 2y + 4x^2)dx + (2xy + x)dy = 0$$

80.
$$(x^4 - x + y)dx - xdy = 0$$

81.
$$(2xy)dx + (y^2 - 3x^2)dy = 0$$

Solve the given initial-value problem

82.
$$\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1 - x^2)}, \quad y(0) = 2$$

83.
$$(x+y)^2 dx + (2xy + x^2 - 1) dy$$
, $y(1) = 1$

84.
$$(e^x + y)dx + (2 + x + ye^y)dy$$
, $y(0) = 1$

85.
$$(2x-y)dx+(2y-x)dy$$
, $y(1)=3$

86.
$$(9x^2 + y - 1)dx - (4y - x)dy$$
, $y(1) = 0$

87.
$$(x+y^3)y'+y+x^3=0$$
, $y(0)=-2$

88.
$$y' = (3x^2 + 1)(y^2 + 1), \quad y(0) = 1$$

89.
$$(y^3 + \cos t)y' = 2 + y\sin t, \quad y(0) = -1$$

90.
$$(y^3 - t^3)y' = 3t^2y + 1$$
, $y(-2) = -1$

91.
$$\frac{dy}{dx} = (-2x + y)^2 - 7$$
, $y(0) = 0$

92.
$$(2y-x)y'-y+2x=0$$
, $y(1)=0$

93.
$$\left(e^{2y} + t^2y\right)y' + ty^2 + \cos t = 0, \quad y\left(\frac{\pi}{2}\right) = 0$$

94.
$$y' = -\frac{y\cos(ty) + 1}{t\cos(ty) + 2ye^{y^2}}, \quad y(\pi) = 0$$

95.
$$\left(2ty + \frac{1}{y}\right)y' + y^2 = 1, \quad y(1) = 1$$

96.
$$(ye^x + 1)dx + (e^x - 1)dy = 0$$
 $y(1) = 1$

97.
$$2xy^2 + 4 = 2(3 - x^2y)y'$$
 $y(-1) = 8$

98.
$$y' + \frac{4}{x}y = x^3y^2$$
 $y(2) = -1$

99.
$$y' = 5y + e^{-2x}y^{-2}$$
 $y(0) = 2$

100.
$$6y' - 2y = xy^4$$
 $y(0) = -2$

101.
$$y' + \frac{y}{x} - \sqrt{y} = 0$$
 $y(1) = 0$

102.
$$xyy' + 4x^2 + y^2 = 0$$
 $y(2) = -7$

103.
$$xy' = y(\ln x - \ln y)$$
 $y(1) = 4$

104.
$$y' - (4x - y + 1)^2 = 0$$
 $y(0) = 2$

105.
$$(e^{t+y} + 2y)y' + (e^{t+y} + 3t^2) = 0$$
, $y(0) = 0$

106.
$$(4y+2x-5)dx+(6y+4x-1)dy$$
, $y(-1)=2$

107.
$$\left(ye^{xy} - \frac{1}{y}\right)dx + \left(xe^{xy} + \frac{x}{y^2}\right)dy = 0$$
 $y(1) = 1$

108.
$$(2y \ln t - t \sin y) y' + \frac{1}{t} y^2 + \cos y = 0, \quad y(2) = 0$$

109.
$$(\tan y - 2) dx + \left(x \sec^2 y + \frac{1}{y}\right) dy = 0$$
 $y(0) = 1$

110.
$$2xy - 9x^2 + (2y + x^2 + 1)\frac{dy}{dx} = 0$$
 $y(0) = -3$

111.
$$\frac{2t}{t^2+1}y-2t+\left(2-\ln\left(t^2+1\right)\right)\frac{dy}{dt}=0$$
 $y(5)=0$

112.
$$3y^3e^{3xy} - 1 + (2ye^{3xy} + 3xy^2e^{3xy})y' = 0$$
 $y(0) = 1$

113.
$$2xydx + (1+x^2)dy = 0$$
; $y(2) = -5$

114.
$$\frac{dy}{dx} = -\frac{2x\cos y + 3x^2y}{x^3 - x^2\sin y - y}$$
; $y(0) = 2$

Find an integrating factor of the form $x^n y^m$ and solve the equation

115.
$$(2y^2 - 6xy)dx + (3xy - 4x^2)dy = 0$$

117.
$$(3y + 4xy^2)dx + (2x + 3x^2y)dy = 0$$

116.
$$(12+5xy)dx + (6xy^{-1}+3x^2)dy = 0$$

Find the general solution by using Bernoulli

118.
$$\frac{dy}{dx} - 5y = -\frac{5}{2}xy^3$$

121.
$$\frac{dy}{dx} + \frac{y}{x-2} = 5(x-2)y^{1/2}$$

119.
$$\frac{dy}{dx} + \frac{y}{x} = x^2 y^2$$

122.
$$\frac{dy}{dx} + y = e^x y^{-2}$$

120.
$$\frac{dy}{dx} - y = e^{2x}y^3$$

123.
$$\frac{dy}{dx} + y^3x + y = 0$$

Find the general solution by using homogeneous equations.

124.
$$(xy + y^2)dx - x^2dy = 0$$

125.
$$(x^2 + y^2)dx + 2xydy = 0$$

127.
$$\frac{dy}{d\theta} = \frac{\theta \sec\left(\frac{y}{\theta}\right) + y}{\theta}$$

126.
$$(y^2 - xy)dx + x^2dy = 0$$