◆ 有限状态自动机 ⇔ 正规表达式

- ◆ 有限自动机与正规表达式的关系
- ◆ 几个转换算法的复杂度(选讲)

- ◆ 结论:有限自动机所表示的语言是正规语言
 - 证明策略

FL&A

\diamondsuit 从正规表达式构造等价的 ε - NFA

- 定理: L 是正规表达式 R 表示的语言,则存在一个 ε - NFA E ,满足 L(E) = L(R) = L.

证明: 构造性证明. 可以通过结构归纳法证明从 R 可以构造出与其等价的,满足如下条件的 ε - NFA:

- (1)恰好一个终态;
- (2)没有弧进入初态;
- (3)没有弧离开终态;

♦ 归纳构造过程 (从正规表达式构造等价的 ε - NFA) (Thompson 构造法)

- 基础:

1对于 ε ,构造为

3对于a,构造为

FL&A

♦ 归纳构造过程 (从正规表达式构造等价的 ε - NFA) (Thompson 构造法)

- 归纳:

1 对于 E+F, 构造为

FL&A

Φ 归纳构造过程 (从正规表达式构造等价的 ε - NFA) (Thompson 构造法)

- 归纳:

2对于 EF,构造为

3对于 E*,构造为

FL&A

♦ 举例 (从正规表达式构造等价的 ε - NFA)

设正规表达式 1*0(0+1)*, 构造等价的 ε - NFA.

FL&A

♦ 举例 (从正规表达式构造等价的 ε - NFA)

♦ 从 DFA 构造等价的正规表达式

-定理: L是某个 DFA D 的语言,则存在一个 正规表达式 R,满足 L(R) = L(D) = L.

证明: 构造性证明。以下是两种构造方法

- (1) 路径迭代法 (Kleene 构造法);
- (2) 状态消去法

- ◆路径迭代法(从DFA构造等价的正规表达式)
 - 步骤:
 - (1) 将 DFA D 的状态集用 {1, 2, ..., n}表达, 且初态为1
 - (2) 对所有 $1 \le i, j \le n, 0 \le k \le n$, 迭代计算 R(k) ; 这里, R(k) 为表示如下语言的正规表达式: $w \in L(R(k))$ iff 从 i 到 j 有一条标记为 w 的 路径,且这条路径上除 i 和 j 之外的所有状态的编号均不大于 k
 - (3) 通过(2)的迭代过程,最终可计算出 R(n)(i, j = 1, 2, ..., n)
 - (4) 将所有 R(n) (j 为任一终态) 相 "+"

\Rightarrow 计算 R(k) 的迭代过程

- 基础: k = 0

Case 1 i≠j

若不存在从 i 到 j 的弧,则 $R(i) = \phi$; 若仅存在一条从 i 到 j 的弧,且标记为 a ,则 R(i) = a; 若存在多条从 i 到 j 的弧,且标记为 a_1 , a_2 , ..., a_m , 则 $R(i) = a_1 + a_2 + ... + a_m$;

Case 2 i=j

若不存在从 i 到自身的圈,则 $R(\rho) = \varepsilon$; 若存在一个从 i 到自身的圈且标记为a ,则 $R(\rho) = \varepsilon + a$; 若存在多个从 i 到自身的圈,且标记为 a_1, a_2, \ldots, a_m ,则 $R(\rho) = \varepsilon + a_1 + a_2 + \ldots + a_m$;

圖消華大学

◆ 计算 R(k) 的迭代过程

- 归纳: 假设 $R^{(k_{ij}^{-1})}$ (i, j = 1, 2, ..., n) 已经求出. 则迭代 公式为 $R^{(k)} = R^{(k_{ij}^{-1})} + R^{(k_{ik}^{-1})} (R^{(k_{ik}^{-1})}) R^{(k_{ij}^{-1})}$

分析:考虑从i到j的路径(除i和j之外的所有状态的编号不大于k)

Case 1 路径不经过 k. 此时,标记该路径的字符串属于 $L(R^{(k_{i,j}^{(1)})});$

Case 2 路径经过 k至少一次。此时,标记该路径的字符 串属于 $L(R^{(k_{ik}^{-1})}(R^{(k_{ik}^{-1})})^* R^{(k_{ki}^{-1})})$ 。如下图所示:

◇ 路径迭代法举例

$R_{II}^{(0)}$	ε + 1
$R_{12}^{(0)}$	0
$R_{2}^{(0)}$	ϕ
$R_{22}^{(0)}$	ε + 0 + 1

◇ 路径迭代法举例

$R_{11}^{(0)}$	ε + 1
$R_{I2}^{(0)}$	0
$R_{2I}^{(0)}$	ϕ
$R_{22}^{(0)}$	ε + 0 + 1

	直接替换	化简
$R^{(1)}$	$\varepsilon+1+(\varepsilon+1)(\varepsilon+1)^*(\varepsilon+1)$	1*
$R_{12}^{(1)}$	$0+(\varepsilon+1)(\varepsilon+1)*0$	1*0
$R_{2\ I}^{(1)}$	$\phi + \phi(\varepsilon + 1)^*(\varepsilon + 1)$	ϕ
$R_{22}^{(1)}$	ε +0+1+ ϕ (ε +1)*0	ε +0+1

$$R_{ij}^{(1)} = R_{ij}^{(0)} + R_{il}^{(0)} (R_{il}^{(0)})^* R_{ij}^{(0)}$$

♦ 路径迭代法举例

R (1)	1*
$R_{12}^{(1)}$	1*0
$R_{2\ I}^{(1)}$	ϕ
$R_{22}^{(1)}$	ε + 0 + 1

	直接替换	化简
$R_{11}^{(2)}$	$1*+1*0(\varepsilon+0+1)*\phi$	1*
$R_{12}^{(2)}$	$1*0+1*0(\varepsilon+0+1)*(\varepsilon+0+1)$	1 *0(0 + 1)*
$R_{2I}^{(2)}$	$\phi + (\varepsilon + 0 + 1)(\varepsilon + 0 + 1)^* \phi$	ϕ
$R_{22}^{(2)}$	$\varepsilon+0+1+(\varepsilon+0+1)(\varepsilon+0+1)^*(\varepsilon+0+1)$	(0+1)*

$$R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)} (R_{22}^{(1)})^* R_{2j}^{(1)}$$

◇ 路径迭代法举例

结果: 初态为1,终态只有一个2,所以,一个与上图的 DFA 等价的正规表达式为

$$R^{(2)}_{12} = 1*0(0+1)*$$

◆ 状态消去法(从 DFA 构造等价的正规表达式)

- 思路:

- (1)扩展自动机的概念,允许正规表达式作为转移弧的标记。这样,就有可能在消去某一中间状态时,保证自动机能够接受的字符串集合保持不变。
- (2) 在消去某一中间状态时,与其相关的转移弧也 将同时消去,所造成的影响将通过修改从每一个 前趋状态到每一个后继状态的转移弧标记来弥补。

以下分别介绍中间状态的消去与正规表达式构造过程。

◇中间状态的消去

- ◆ 状态消去法(从 DFA 构造等价的正规表达式)
 - 步骤: (假设自动机已转化为扩展的形式)
 - (1) 对每一终态q,依次消去除 q 和初态 q_0 之外的其它状态;
 - (2) 若q≠q₀,最终可得到一般形式如下左图两状态自动机,该自动机对应的正规表达式可表示为(R+SU*T)*SU*.
 - (3) 若 $q=q_0$,最终可得到如下右图的自动机,它对应的正规 表达式可以表示为 R^* .

(4) 最终的正规表达式为每一终态对应的正规表达式之和(并)。

◆ 状态消去法举例(推广至非DFA的情形)

FL&A

◇ 状态消去法举例

对于终态D

FL&A

◇ 状态消去法举例

◇ 状态消去法举例

等价的正规表达式

(0+1)*1(0+1)+(0+1)*1(0+1)(0+1)

FL&A

◇ 几个转换算法

- 从 DFA 构造 NFA
- 从 NFA 构造 DFA
- 从 DFA 构造 ε- NFA
- 从 ε- NFA 构造 DFA
- 从 DFA 构造正规表达式
- 从正规表达式构造 ε NFA

◆ 从 DFA 构造 NFA

- 回顾: 设 DFA $D = (Q, \Sigma, \delta_D, q_o, F)$, 构造 NFA $N = (Q, \Sigma, \delta_N, q_o, F_N)$, 其中 δ_N 定义为
 - 对 $q \in Q$ 和 $a \in \Sigma$, 若 $\delta_D(q,a) = p$, 则 $\delta_N(q,a) = \{p\}$.
- 设 /Q/=n, 该构造过程复杂度为 O(n), 即线性时间.

◆ 从 NFA 构造 DFA

- 回顾: 设 NFA $N = (Q, \Sigma, \delta_N, q_o, F)$,构造 $D = (Q_D, \Sigma, \delta_D, \{q_o\}, F_D)$,其中
 - $\bullet Q_D = \{ S \mid S \subseteq Q \}$
 - 对 $S \in Q_D$ 和 $a \in \Sigma$, $\delta_D(S, a) = \bigcup \delta_N(q, a)$.
 - $F_D = \{ S \mid S \subseteq Q \land S \cap F \neq \emptyset \}$ $q \in S$
- 设 / Q /=n, 该构造过程复杂度为 $O(n^22^n)$. 但实际运行时间的上界可以是 $O(n^2s)$, 其中 s 为 DFA 实际状态数。

几个转换算法的复杂度(这讲)

◆ 从 DFA 构造 ε- NFA

- 回顾: 设 DFA $D = (Q, \Sigma, \delta_D, q_0, F)$, 构造 $E = (Q, \Sigma, \delta_E, q_0, F_E)$, 其中 δ_E 定义为
 - 对任何q∈Q, δ_E(q, ε) = φ
 - 对任何 $q \in Q$ 和 $a \in \Sigma$, 若 $\delta_D(q,a) = p$, 则 $\delta_N(q,a) = \{p\}$
- 设 /Q/=n, 该构造过程复杂度为 O(n).

几个转换算法的复杂度(这讲)

♦ 从 ε- NFA 构造 DFA

- 回顾: 设 ε NFA $E = (Q_E, \Sigma, \delta_E, q_0, F_E)$, 构造 $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$, 其中
 - $Q_D = \{ S \mid S \subseteq Q_E \land S = ECLOSE(S) \}$
 - $q_D = ECLOSE(q_0)$
 - $F_D = \{ S \mid S \in Q_D \land S \cap F_E \neq \phi \}$
 - 对 $S \in Q_D$ 和 $a \in \Sigma$, 令 $S = \{p_1, p_2, ..., p_k\}$, 并设 $\bigcup_{i=1}^{k} \delta_E(p_i, a) = \{r_1, r_2, ..., r_m\}$, 则 $\delta_D(S, a) = \bigcup_{i=1}^{m} ECLOSE(r_i).$
- 设 / Q_E /= n, 该构造过程复杂度为 $O(n^32^n)$.但实际运行时间的上界可以是 $O(n^3s)$,其中 s 为 DFA 实际状态数。

几个转换算法的复杂度(这讲)

FL&A

♦ 从 DFA 构造正规表达式

- 回顾: (路径迭代法)
 - (1) 将 DFA D的状态集用 {1, 2, ..., n}表达,且初态为1;
 - (2) 对所有i, j, k = 1, 2, ..., n, 迭代计算R(/;);
 - (3) 将所有 R(n) (j为任一终态) 相 "+"
- 该构造过程复杂度为O(n³4n)(考虑表达式的大小)
- 采用状态消去法具有同样的复杂度

\diamondsuit 从正规表达式构造 ε - NFA

- 回顾:

归纳于正规表达式的结构,或通过构造一棵表达式树,然后根据归纳构造规则得到 ε - NFA;每一结点上的工作只是增加不超过两个新的状态,以及不超过四条新的弧。

- 该构造过程复杂度为 O(n), 这里 n 为正规表达式的 大小.

课后练习

◇ 必做题:

- Ex.3.2.1 (c),(d)
- Ex. 3.2.3
- Ex.3.2.4 (b),(c)

◆ 思考题:

•! Ex.3.2.6

课后练习

◆ 自测题:

- 下图表示一个 DFA.使用状态消去技术,求出与此DFA等价的一个正规表达式.(分主要步骤或直接写出结果均可))

 若严格依课程所介绍的算法(Thompson 构造法)将某个 正规表达式转换为等价的 ε-NFA,下图所示为该ε-NFA的 转移图表示。试给出这个正规表达式。

That's all for today.

Thank You

