Índice general

1.	Prir	icipios	de la Mecánica	1.1
	1.1.	La Me	ecánica como Teoría Científica	1.1
	1.2.	Sistem	nas de Referencia; Espacio y Tiempo	1.5
	1.3.	Princi	pio de la Relatividad de Galileo	1.6
	1.4.	Las Le	eyes de Newton	1.7
	1.5.	Conce	ptos de Masa y Fuerza	1.10
	1.6.	La Le	y de la Gravitación Universal	1.14
		1.6.1.	Masa Gravitatoria y Masa Inerte	1.15
2.	Din	ámica	de la Partícula	2.1
	2.1.	Princi	pios y Teoremas Generales	2.2
		2.1.1.	Cantidad de Movimiento	2.2
		2.1.2.	Momento Cinético	2.3
		2.1.3.	Energía Cinética	2.5
	2.2.	Expre	siones de Velocidad y Aceleración	2.10
		2.2.1.	Coordenadas Cartesianas	2.10
		2.2.2.	Coordenadas Cilíndricas / Polares	2.11
		2.2.3.	Coordenadas Esféricas	2.12
		2.2.4.	Triedro Intrínseco	2.13
	2.3.	Movin	niento de una Partícula Libre	2.16
		2.3.1.	Proyectil Pesado en el Vacío	2.16
		2.3.2.	Proyectil Pesado en Medio Resistente	2.19
	2.4.	Movin	niento de una Partícula sobre una Curva	2.22
	2.5.	Movin	niento de una Partícula sobre una Superficie	2.24
3.	Osc	ilacion	es Lineales con 1 Grado de Libertad	3.1
	3.1.	El Oso	cilador Armónico Simple	3.2
		3.1.1.	Ecuación del Movimiento	3.2
		3.1.2.	Energía	3.3
		3.1.3.		
	3.2.	Oscila	ciones en 2 Dimensiones	
	3.3.	Oscila	ciones con amortiguamiento	3.7
		3.3.1.	Ecuación del movimiento	3.7
		3.3.2.	Integración de la ecuación	3.9

	3.4.	Oscilaciones Forzadas	3.12
		3.4.1. Ecuación del movimiento	3.12
		3.4.2. Integración de la ecuación	3.13
	3.5.	Amplificación dinámica y resonancia	3.17
	3.6.	El Espacio de las Fases	
	3.7.	Análisis mediante Series de Fourier	3.22
		3.7.1. Carácter Lineal de las Ecuaciones	3.22
		3.7.2. Análisis de Series de Armónicos	
		3.7.3. Desarrollo en Serie de Fourier	3.24
	3.8.	Análisis de Transitorios mediante la Función de Green	
		3.8.1. Respuesta a una Función Impulso	
		3.8.2. Análisis de Transitorios para una Excitación Arbitraria	
	3.9.	Métodos Numéricos para Integración Directa	
		3.9.1. Método de Euler	
		3.9.2. Método de Runge-Kutta	
4.		emática de Sistemas Rígidos	4.1
		Derivación de Vectores en Sistemas Móviles	
		Velocidad y Aceleración en Sistemas Móviles	
	4.3.	Campo de Velocidades del Sólido Rígido	
		4.3.1. Movimiento Helicoidal Tangente	
		4.3.2. Axoides del Movimiento	
	4.4.	1	
	4.5.	Composición de Movimientos	
		4.5.1. Composición del Movimiento de 2 Sistemas	
		4.5.2. Composición del Movimiento de n Sistemas	
		4.5.3. Movimiento de Sólidos Tangentes	
	4.6.	Movimiento Plano	
		4.6.1. Centro Instantáneo de Rotación	
		4.6.2. Curvas Polares	4.21
		4.6.3. Aceleraciones	4.23
5	Fue	rzas Centrales y Órbitas Gravitatorias	5.1
ο.		Reducción del Sistema Binario	
	0.1.	5.1.1. Sistema Binario Gravitatorio	
	5.2.	Movimiento bajo Fuerzas centrales	
	0.2.	5.2.1. Propiedades del Movimiento	
		5.2.2. Ecuaciones del Movimiento	
		5.2.3. Fórmula de Binet	
	5.3.	Órbitas Gravitatorias	
	5.4.		
	J.4.	Energía de las órbitas gravitatorias	
	55		
	5.5. 5.6	Leyes de Kepler	5.17 5.19
	. 1 ()	CALITACIONES LIGITALIAS	. 1 1 4

		5.6.1.	Trayectoria elíptica	. 5.19
		5.6.2.	Movimiento hiperbólico	
		5.6.3.	Movimiento parabólico	
	5.7.	Estud	io del Sistema Ternario	. 5.23
		5.7.1.	Planteamiento de las Ecuaciones	. 5.23
		5.7.2.	Movimiento Alineado	. 5.24
		5.7.3.	Movimiento Equilátero	. 5.25
6.	Sist	emas o	de Varias Partículas.	6.1
	6.1.	Morfo	logía de los Sistemas	. 6.1
		6.1.1.	Sistema mecánico	. 6.1
		6.1.2.	Fuerzas	. 6.2
		6.1.3.	Enlaces	
	6.2.	Princi	pios y Teoremas de la Dinámica de Newton-Euler	. 6.8
		6.2.1.	Principio de la Cantidad de Movimiento	. 6.8
		6.2.2.	Principio del Momento Cinético	. 6.10
		6.2.3.	Teorema de la Energía Cinética	. 6.13
		6.2.4.	Teorema del Virial	
	6.3.	El Sist	tema del Centro de Masas	
		6.3.1.	Cantidad de movimiento	
		6.3.2.		
		6.3.3.	Energía cinética	
			Constantes del Movimiento en Sistemas Aislados	
	6.4.		jos Virtuales	
		6.4.1.	ı v	
			El Principio de D'Alembert	
	6.5.		nica en Sistemas no Inerciales	
		6.5.1.		
		6.5.2.	Dinámica de Sistemas de varias Partículas	
	c c	6.5.3.	Ejes Ligados a la Superficie de la Tierra	
	6.6.		nas de masa variable	
		6.6.1.	Sistema puntual: ecuación fundamental	
		6.6.2.	Sistema con masa distribuida	
		6.6.3.	Aplicaciones	. 0.40
7.	Din	ámica	Analítica	7.1
	7.1.		enadas Generalizadas	
	7.2.	Ecuac	iones de Lagrange	. 7.5
		7.2.1.	El Principio de D'Alembert en Coordenadas Generali-	
			zadas	
		7.2.2.	Forma básica de las Ecuaciones de Lagrange	. 7.7
		7.2.3.	Caso en que las fuerzas provienen de un potencial. Fun-	
			ción Lagrangiana	
		7.2.4	Desarrollo explícito de las ecuaciones del movimiento	7 11

		7.2.5.	Integrales Primeras		7.13
		7.2.6.	Teorema de Noether		7.16
		7.2.7.	Sistemas naturales		7.17
		7.2.8.	Sistemas Giroscópicos		7.19
	7.3.	Poten	cial dependiente de la velocidad		7.21
	7.4.	Sistem	nas con Ligaduras		7.24
		7.4.1.	Método de los Multiplicadores de Lagrange		7.25
	7.5.	Introd	lucción al Cálculo de Variaciones		7.30
		7.5.1.	Los Principios Variacionales		7.30
		7.5.2.	El Problema Fundamental del Cálculo de Variaciones		7.31
	7.6.	El Pri	ncipio de Hamilton		7.34
		7.6.1.	Las Ecuaciones de Lagrange a Partir del Principio de Hamilton		7 25
		769			
	77	7.6.2.	r r		
	7.7.		námica a Partir del Principio de Hamilton		
		7.7.1.	0 0		
		1.1.2.	Teoremas de Conservación	•	<i>(</i> .41
8.			del Sólido Rígido		8.1
	8.1.		ptos generales		
			Ecuaciones Cardinales de la dinámica		
	8.2.	-	sión de las magnitudes cinéticas		
		8.2.1.	Movimiento de rotación instantánea		
		8.2.2.			
			Dinámica del sólido con un eje fijo		
	8.3.		sor de inercia		
	8.4.		edades del Tensor de Inercia		
		8.4.1.	Momentos y Productos de Inercia		
		8.4.2.	Elipsoide de Inercia		
		8.4.3.	Ejes Principales de Inercia		
		8.4.4.			
	8.5.		o Tensorial de Inercia		
	8.6.		ión Finita del Sólido		
		8.6.1.	Rotaciones infinitesimales y su composición		
		8.6.2.	Composición de rotaciones finitas		
		8.6.3.	La Rotación finita como cambio de base		8.27
		8.6.4.	La Rotación finita como transformación ortogonal		
		8.6.5.	Teorema de Euler		
		8.6.6.	Relación entre rotaciones finitas e infinitesimales		8.32
		8.6.7.	Parametrización de la rotación; fórmula de Rodrigues	}	
			y parámetros de Euler		8.34
		8.6.8.	Ángulos de Euler		8.36
		8.6.9.	Expresiones de la velocidad de rotación		
	8.7.	Ecuac	iones de la Dinámica		8.41

		8.7.1.	Ecuaciones de Euler	-
		8.7.2.	Ecuaciones de Euler derivando respecto al triedro in-	
			termedio	j
		8.7.3.	Ecuaciones de Euler derivando respecto al triedro fijo . 8.44	
		8.7.4.	Ecuaciones de Lagrange)
		8.7.5.	Cálculo de Reacciones en los Enlaces 8.46	;
9.	Apli	icacion	es de la Dinámica del Sólido 9.1	
	9.1.	Movim	niento por inercia; Descripción de Poinsot 9.1	
		9.1.1.	Propiedades del movimiento 9.1	
		9.1.2.	Ejes permanentes de rotación 9.6	
		9.1.3.	Ecuaciones del movimiento	
	9.2.	Dinám	ica del sólido en sistemas no inerciales 9.11	
	9.3.	El Gire	óscopo	
		9.3.1.	Ecuaciones del movimiento de una peonza 9.14	
		9.3.2.	Efecto giroscópico	,
		9.3.3.	Estabilidad de la peonza dormida 9.22	,
	9.4.	El Pén	dulo Esférico	;
10			de Impulsiones 10.1	
	10.1.	Introd	ucción	
	10.2.	Teoría	de impulsiones	
		10.2.1.	Impulsión sobre una partícula	
			Fuerzas impulsivas; Función Delta de Dirac 10.2	
		10.2.3.	Axiomática	
		10.2.4.	Teorema Fundamental)
		10.2.5.	Aplicación del Principio de los Trabajos Virtuales 10.6	j
		10.2.6.	Aplicación del Principio de la Cantidad de Movimiento 10.7	,
		10.2.7.	Aplicación del Principio del Momento Cinético 10.8	,
	10.3.	Consid	leraciones Energéticas)
			Energía Cinética	
		10.3.2.	Coeficiente de Restitución	0
		10.3.3.	Teorema de Carnot	2
	10.4.	Choqu	e Entre Sólidos Rígidos	.3
		10.4.1.	La Deformabilidad de los sólidos	.3
		10.4.2.	Caso general de choque entre dos sólidos 10.1	4
		10.4.3.	Choque directo	6
		10.4.4.	Impulsiones tangenciales	7
	10.5.	Dinám	ica Analítica de Impulsiones	7
11	.Osci	ilacion	es Lineales con varios Grados de Libertad 11.1	
	11.1.	Ecuaci	ones del Movimiento	
		11.1.1.	Linealización de las Ecuaciones	-
		11.1.2.	Formulación Matricial	c

11.2. Oscilaciones Libres	. 11.7
11.2.1. Oscilaciones sin amortiguamiento; problema de auto-	
valores	. 11.7
11.2.2. Frecuencias propias y modos normales de vibración	
11.2.3. Caso de autovalores múltiples	
11.2.4. Análisis Modal; Coordenadas normales	
11.2.5. Condiciones iniciales	
11.2.6. Oscilaciones libres con amortiguamiento	
11.3. Oscilaciones Forzadas	
11.3.1. Oscilaciones sin amortiguamiento; Resonancia	
11.3.2. Oscilaciones con amortiguamiento; régimen transitorio	
y permanente	. 11.24
11.4. Métodos para la obtención de modos y frecuencias propias	
Titi incoodes para la escencier de modes y mecacinetas propras	. 11.20
12. Ecuaciones de Hamilton	12.1
12.1. Introducción	. 12.1
12.2. La Transformada de Legendre y sus propiedades	. 12.2
12.3. Ecuaciones de Hamilton	. 12.3
12.4. Obtención práctica de las ecuaciones	. 12.6
12.5. Integrales Primeras	. 12.7
12.6. Generalización para fuerzas no conservativas	. 12.7
12.7. El Método de Routh	. 12.8
12.8. El principio de Hamilton aplicado a la función Hamiltoniana	. 12.10
12.9. Estructura de las ecuaciones canónicas	. 12.11
12.9.1. Transformaciones Canónicas	. 12.12
12.10Ejemplos	. 12.14
40 F 140	
	13.1
13.1. Consideraciones Generales	
13.2. Condiciones Analíticas del Equilibrio	
13.2.1. Unicidad del Equilibrio. Condición de Lipschitz	
13.3. Estabilidad del Equilibrio	
13.3.1. Concepto de Estabilidad	. 13.6
13.3.2. Condiciones de Estabilidad: Teorema de Lejeune-	10.
Dirichlet	
13.4. Equilibrio de una partícula	
13.4.1. Partícula libre	
13.4.2. Partícula ligada a una superficie	
13.4.3. Partícula ligada a una curva	
13.5. Equilibrio de un sistema de partículas	
13.5.1. Ecuaciones cardinales de la estática	
13.5.2. Principio de los Trabajos Virtuales	
13.6. Equilibrio del Sólido Rígido	
13 6 1 Aplicación del Principio de los Trabajos Virtuales	13 18

		13.6.2. Sistemas isostáticos e hiperestáticos		13.20
	13.7.	Reacciones en los enlaces		13.22
		13.7.1. Enlaces lisos		13.22
		13.7.2. Enlaces con resistencias pasivas; Rozamiento		13.26
	13.8.	Sistemas de barras articuladas		
		13.8.1. Clasificación		13.31
		13.8.2. Método de los nudos		
		13.8.3. Método de las secciones		
11	Eat á	itica de Hilos	1	11
14			_	4.1
		Consideraciones Generales		
	14.2.	Ecuaciones de equilibrio bajo cargas continuas		
		14.2.1. Ecuación vectorial del equilibrio		
		14.2.2. Ecuaciones en coordenadas intrínsecas		
		14.2.3. Ecuaciones en coordenadas cartesianas		
		14.2.4. Casos de fuerzas conservativas		
		14.2.5. Casos de Fuerzas centrales o paralelas		
		14.2.6. Analogía dinámica		
	14.3.	Configuraciones de equilibrio de hilos		
		$14.3.1.\ {\rm Hilo\ homogéneo\ sometido\ a\ peso\ propio\ (Catenaria)}$.		14.10
		14.3.2. Hilo sometido a carga constante por unidad de abscisa		
		(parábola)		
		14.3.3. Efecto de cargas puntuales		14.20
		14.3.4. Algunos tipos de condiciones de apoyo en los extremos		
	14.4.	Hilos apoyados sobre superficies		14.25
		14.4.1. Superficie lisa sin cargas		14.25
		14.4.2. Superficie lisa con cargas		14.25
		14.4.3. Enrollamiento sobre tambor rugoso		14.28
Α.	Álge	ebra vectorial y tensorial	4	4.1
		Escalares, puntos y vectores		A.1
		Producto escalar y vectorial		
		Bases y coordenadas		
		Tensores de orden dos		
		Cambio de base		
		Operaciones y clases especiales de tensores		
		Cambio de coordenadas de un tensor		
		Coeficientes de permutación		
		Forma cuadrática asociada a un tensor		
		.Vector axial asociado a un tensor hemisimétrico		
		Traza y determinante		
			-	