Connected Stocks: Evidence from Tehran Stock Exchange

S.M. Aghajanzadeh M. Heidari

M. Mohseni

Tehran Institute for Advanced Studies

July, 2021

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Methodology
- 6 Results
- 6 Further Evidence
- Business Group Effect

Motivation

Research Question

- Can the common ownership cause stock return comovement ?
 - We connect stocks through the common ownership by blockholders (ownership > 1%)
 - We focus on excess return comovement for a pair of the stocks
 - We use common ownership to forecast cross-sectional variation in the realized correlation of four-factor + industry residuals

Why does it matter?

- Covariance
 - Covariance is a key component of risk in many financial applications.
 (Portfolio selection, Risk management, Hedging and Asset pricing)
 - Covariance is a significant input in risk measurement models (Such as Value-at-Risk)
- Return predictability
 - If it's valid, we can build a profitable buy-sell strategy

Table of Contents

- Motivation
- 2 Literature
 - Common-ownership measurements
 - Main Effect
- 3 Empirical Studies
- 4 Methodology
- Results
- 6 Further Evidence

Common-ownership measurements

Model based measures

- HJL $_I^A(A, B) = \sum_{i \in I^A, B} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
- $\bullet \ \ \mathsf{Top5}_j = \frac{1}{n-1} \sum_i^5 \sum_{j \neq k} \nu_{ik}$ Antón et al. (2020)
- $\kappa_{ij} = \cos(\nu_i, \nu_j) \cdot \sqrt{\frac{IHHI_j}{IHHI_i}}$ Backus et al. (2020)
- $\operatorname{GGL}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020) , Lewellen and Lewellen (2021)
- MHHI_{Delta} = $\sum_{j=1}^{J} \sum_{k\neq j}^{K} \frac{\sum_{i=1}^{N} w_j * w_k * \mu_{i,j} * \mu_{i,k}}{\sum_{i=1}^{N} \mu_{i,j} * \mu_{i,k}}$ Lewellen and Lowry (2021)

Common-ownership measurements

Model based measures

- HJL $_I^A(A, B) = \sum_{i \in I^A, B} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
- lacktriangledown $\operatorname{Top5}_j = rac{1}{n-1} \sum_i^5 \sum_{j
 eq k}
 u_{ik}$ Antón et al. (2020)
- $\kappa_{ij} = \cos(\nu_i, \nu_j) \cdot \sqrt{\frac{IHHI_j}{IHHI_i}}$ Backus et al. (2020)
- GGL^A(A, B) = $\sum_{i=1}^{I} \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020), Lewellen and Lewellen (2021)
- MHHI_{Delta} = $\sum_{j=1}^{J} \sum_{k\neq j}^{K} \frac{\sum_{i=1}^{N} w_j * w_k * \mu_{i,j} * \mu_{i,k}}{\sum_{i=1}^{N} \mu_{i,j} * \mu_{i,k}}$ Lewellen and Lowry (2021)

Ad-hoc measures

- Overlap_{AP}(A, B) = $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_{A}}{\bar{\nu}_{A} + \bar{\nu}_{B}} + \alpha_{i,B} \frac{\bar{\nu}_{B}}{\bar{\nu}_{A} + \bar{\nu}_{B}}$ Anton and Polk (2014)
- Overlap $Count(A, B) = \sum_{i \in I^A, B} 1$ He and Huang (2017), He et al. (2019)
- Overlap_{Min}(A, B) = $\sum_{i \in I^{A,B}} \min\{\alpha_{i,A}, \alpha_{i,B}\}$ Newham et al. (2018)
- Overlap_{HL} $(A, B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)

Common-ownership measurements

Model based measures

- HJL $_I^A(A, B) = \sum_{i \in I^A, B} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
- $\bullet \quad \mathsf{Top5}_j = \tfrac{1}{n-1} \sum_i^5 \sum_{j \neq k} \nu_{ik}$ Antón et al. (2020)
- $\kappa_{ij} = \cos(\nu_i, \nu_j) \cdot \sqrt{\frac{IHHI_j}{IHHI_i}}$ Backus et al. (2020)
- GGL^A(A, B) = $\sum_{i=1}^{I} \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020) , Lewellen and Lewellen (2021)
- MHHI_{Delta} = $\sum_{j=1}^{J} \sum_{k \neq j}^{K} \frac{\sum_{i=1}^{N} w_j * w_k * \mu_{i,j} * \mu_{i,k}}{\sum_{i=1}^{N} \mu_{i,j} * \mu_{i,k}}$ Lewellen and Lowry (2021)

Ad-hoc measures

- Overlap_{AP}(A, B) = $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_{A}}{\bar{\nu}_{A} + \bar{\nu}_{B}} + \alpha_{i,B} \frac{\bar{\nu}_{B}}{\bar{\nu}_{A} + \bar{\nu}_{B}}$ Anton and Polk (2014)
- Overlap $Count}(A, B) = \sum_{i \in I^A, B} 1$ He and Huang (2017), He et al. (2019)
- Overlap_{Min}(A, B) = $\sum_{i \in I^{A,B}} \min\{\alpha_{i,A}, \alpha_{i,B}\}$ Newham et al. (2018)
- Overlap_{HL} $(A, B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)

Selected measure

We need a pair-level measure, which is bi-directional, so we use the AP measure.

Comovement effect

Common-ownership

Comovement effect

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
 - Measuring Common-ownership
 - Correlation Calculation
 - Controls
- 4 Methodology
- Results
- 6 Further Evidence

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t} P_{i,t} + S_{j,t} P_{j,t}}$$

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

SQRT

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

SQRT

Quadratic

$$\frac{\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

Intuition

If for a pair of stocks with n mutual owners, all owners have even shares of each firm's market cap, then the proposed indexes will be equal to n. Proof

Example of three common owner

Firm X

Example of three common owner

Common owner 1

Firm Y

Common owner 2

Firm X

Common owner 3

Example of three common owner

Common owner 3

Example of three common owner

Example of three common owner

Ownership	Type I	Type II	Type III	Type IV	Type V	Type VI	Type VII
α_1	1/3	20	10	20	10	5	1
β_1	1/3	10	10	20	10	5	1
α_2	1/3	10	80	20	10	5	1
β_2	1/3	20	80	20	10	5	1
α_3	1/3	70	10	20	10	5	1
eta_3	1/3	70	10	20	10	5	1
SQRT	3	2.56	2.33	1.8	0.9	0.45	0.09
SUM	1	1	1	0.6	0.3	0.15	0.03
Quadratic	3	1.85	1.52	8.33	33.33	133.33	3333.33

Comparison

- For better comparison we relax previous assumptions:
 - Two Firms with different market caps.

	$(\alpha_1,\beta_1),(\alpha_2,\beta_2)$								
	(10,40),(10,40)		(15,35)	(15,35)	(20,30),(20,30)				
MarketCap _x MarketCap _y	SQRT	SUM	SQRT	SUM	SQRT	SUM			
1	0.90	0.50	0.96	0.50	0.99	0.50			
2	0.80	0.40	0.89	0.43	0.96	0.47			
3	0.75	0.35	0.85	0.40	0.94	0.45			
4	0.71	0.32	0.83	0.38	0.92	0.44			
5	0.69	0.30	0.81	0.37	0.91	0.43			
6	0.67	0.29	0.80	0.36	0.91	0.43			
7	0.65	0.28	0.79	0.35	0.90	0.43			
8	0.64	0.27	0.78	0.34	0.90	0.42			
9	0.63	0.26	0.77	0.34	0.89	0.42			
10	0.62	0.25	0.76	0.34	0.89	0.42			

Comparison

Comparison of two methods for calculating common ownership

Conclusion

We use the SQRT measure because it has an acceptable variation and has fair values at a lower level of aggregate common ownership.

Business Group

Ultimate Owner

Business Group

Business Group

Pair in the Business Group

Pair not in any of Business Groups

Data Summary

- \bullet We use blockholders' data from 2015/03/25 (1394/01/06) to 2020/03/18 (1398/12/28)
 - Includes of 1203 Days and 60 Months
 - Consists of 600 firm inculding 548 firm with common owners

Year		2016	2017	2018	2019	2020	Meann
No. of Firms	355	383	520	551	579	602	498
No. of Blockholders	724	887	1274	1383	1409	1390	1178
No. of Groups	41	42	46	45	40	40	42
No. of Firms not in Groups	113	128	207	224	247	270	198
No. of Firms in Groups	242	265	332	339	332	332	307
Mean Number of Members	6	6	7	8	8	8	7
Med. of Number of Members	4	4	6	5	6	6	5
Mean Of each Blockholder's ownership	21.30	22.00	20.80	20.50	21.90	23.00	21.58
Med. of Owners' Percent	7.94	7.55	6.95	6.34	8.31	9	8
Mean Number of Blockholders	5	5	5	5	5	4	5
Med. Number of Owners	4	4	4	4	4	3	4
Mean Block. Ownership	71.6	71.2	68	67.7	65.4	62.00	67.65
Med. Block. Ownership	79.9	80.1	77	77.1	72.9	69.70	76.12

Pair Composition

- Pairs consist of two firms with at least one common owner
 - 18692 unique pairs which is 10% of possible pairs ($\frac{548*547}{2}$ = 149878)

	mean	min	median	max
Number of unique paris	7448	5642	7451	8759

Year	2015	2016	2017	2018	2019	2020	Mean
No. of Pairs	8188	9934	11925	12998	12055	8195	10549
No. of Groups	40	41	43	43	38	38	41
No. of Pairs not in Groups	3491	3879	5213	5876	6175	4466	4850
No. of Pairs in the same Group	675	795	1016	1120	1062	807	913
No. of Pairs not in the same Group	3853	4845	5221	5339	4440	2817	4419
Mean Number of Common owner	1.21	1.19	1.19	1.16	1.17	1.16	1.18
Med. Number of Common owner	1	1	1	1	1	1	1.00
Mean Number of Pairs in one Group	24	26	27	29	28	21	25.83
Med. Number of Pairs in one Group	10	11	9	6	7	6	8.17
Mean Percent of each Blockholder	16.53	17.12	16.82	16.87	16.73	16.61	16.78
Med. Percent of each Blockholder	9.92	9.95	9.78	9.65	10.03	10.57	9.98
Mean Number of Owners	5.82	5.79	5.7	5.78	5.91	6.08	5.85
Med. Number of Owners	5.91	5.88	5.77	5.84	5.95	6.09	5.91
Mean Block. Ownership	71.68	72.82	71.38	72.09	71.79	72.55	72.05
Med. Block. Ownership	73.37	74.57	72.89	73.61	73.14	73.79	73.56

Number of Pairs

FCA vs. FCAP Summary

	variable	$count({\scriptstylemonth}_{id})$	mean	std	min	25%	median	75%	max
Total	FCA	454343	0.144	0.235	0.003	0.025	0.058	0.151	3.967
TOLAT	FCAP	454343	0.123	0.164	0.003	0.024	0.054	0.144	0.992
Cama Cana	FCA	44109	0.491	0.418	0.005	0.170	0.435	0.691	3.967
Same Group	FCAP	44109	0.396	0.259	0.004	0.145	0.405	0.608	0.985
Not Same Croup	FCA	410234	0.107	0.168	0.003	0.023	0.050	0.119	3.734
Not Same Group	FCAP	410234	0.094	0.117	0.003	0.022	0.048	0.117	0.992
Same Industry	FCA	56549	0.345	0.409	0.007	0.055	0.189	0.512	3.967
	FCAP	56549	0.258	0.242	0.006	0.051	0.165	0.431	0.992
Not Same Industry	FCA	397794	0.116	0.181	0.003	0.024	0.051	0.124	2.619
Not Same industry	FCAP	397794	0.104	0.140	0.003	0.023	0.048	0.122	0.985

Results

- By the proposed measurement, common ownership increases
- Common ownership is greater in pairs that are in the same business group and insutry

FCA's time series

FCA's time series

Group affiliated firm's time series

FCA vs. FCAP Distributions

Monthly

FCA vs. FCAP Distributions

Monthly

FCA vs. FCAP Distributions

Monthly

- Kernel Density

Density

Correlation Calculation

4 Factor + Industry

Frist Step:

Estimate each of these models on periods of three month:

• CAPM + Industry (2 Factor):

$$R_{i,t} = \alpha_i + \beta_{mkt,i} R_{M,t} + \beta_{Ind,i} R_{Ind,t} + \boxed{\varepsilon_{i,t}}$$

• 4 Factor :

$$\begin{split} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{split}$$

• 4 Factor + Industry (5 Factor) :

$$\begin{split} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \beta_{\textit{Ind},i} R_{\textit{Ind},t} \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{split}$$

Second Step: Calculate monthly correlation of each stock pair's daily abnormal returns (residuals)

Correlation Calculation Results

Factors	mean	std	min	max
SMB	0.19	1.47	-5.64	19.52
HML	-0.12	1.39	-4.90	23.20
Winner – Loser	0.69	1.06	-2.61	8.58
Market	0.24	1.23	-4.71	4.89

$\rho_{ij,t}$	mean	std	min	25%	50%	75%	max
CAPM + Industry	0.01	0.33	-1	-0.194	0.006	0.208	1
4 Factor	0.04	0.34	-1	-0.172	0.035	0.249	1
4 Factor + Industry	0.01	0.33	-1	-0.194	0.005	0.206	1
4 Factor $+$ Industry (With Lag)	0.01	0.32	-1	-0.194	0.006	0.206	1

Conclusion

We use the 4 Factor + Industry model to control for exposure to systematic risk because it almost captures all correlations between two firms in each pair.

Future Correlation via FCA

Controls

- $oldsymbol{
 ho}_t$: Current period correlation
- **SameGroup**: Dummy variable for whether the two stocks belong to the same business group.
- **SameIndustry**: Dummy variable for whether the two stocks belong to the same Industry.
- SameSize: The negative of absolute difference in percentile ranking of size across a pair
- SameBookToMarket : The negative of absolute difference in percentile ranking of the book to market ratio across a pair
- **CrossOwnership**: The maximum percent of cross-ownership between two firms

Industry & Business group

Type of Pairs	Yes	No
SameIndustry	1760 (10%)	16739 (90%)
SameGroup	1118 (6%)	17381 (94%)
SameGroup & SameIndustry	492 (3%)	18007 (97%)

Business group

Pairs' characteristic

Summary of Controls

Variables' distribution

	mean	std	min	25%	50%	75%	max
SameIndustry	0.10	0.29	0.00	0.00	0.00	0.00	1.00
SameGroup	0.06	0.23	0.00	0.00	0.00	0.00	1.00
Size1	0.72	0.21	0.01	0.58	0.78	0.91	1.00
Size2	0.43	0.25	0.00	0.23	0.42	0.62	0.99
SameSize	-0.29	0.21	-0.97	-0.42	-0.24	-0.12	0.00
BookToMarket1	0.53	0.26	0.00	0.34	0.54	0.73	1.00
BookToMarket2	0.52	0.24	0.00	0.34	0.52	0.71	1.00
SameBookToMarket	-0.30	0.19	-0.99	-0.42	-0.26	-0.15	0.00
MonthlyCrossOwnership	0.01	0.05	0.00	0.00	0.00	0.00	0.96

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Methodology
- 6 Results
- 6 Further Evidence
- Business Group Effect

Fama-MacBeth Estimation

- Fama-MacBeth regression analysis is implemented using a two-step procedure.
 - The first step is to run periodic cross-sectional regression for dependent variables using data of each period.
 - The second step is to analyze the time series of each regression coefficient to determine whether the average coefficient differs from zero.

Fama-MacBeth (1973)

- Two Step Regression
 - First Step

$$Y_{i1} = \delta_{0,1} + \delta_{1,1}^{1} X_{i,1}^{1} + \dots + \delta_{k,1}^{k} X_{i,1}^{k} + \varepsilon_{i,1}$$

$$\vdots$$

$$Y_{iT} = \delta_{0,1} + \delta_{1,T}^{1} X_{i,T}^{1} + \dots + \delta_{k,T}^{k} X_{i,T}^{k} + \varepsilon_{i,T}$$

Second Step

$$\begin{bmatrix} \bar{Y}_1 \\ \vdots \\ \bar{Y}_T \end{bmatrix}_{T \times 1} = \begin{bmatrix} 1 & \delta_1^0 & \delta_1^1 & \dots & \delta_1^k \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \delta_T^0 & \delta_T^1 & \dots & \delta_T^k \end{bmatrix}_{T \times (k+2)} \times \begin{bmatrix} \lambda \\ \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix}_{(k+2) \times 1}$$

• Fama-MacBeth technique was developed to account for correlation between observations on different firms in the same period

Calculating standard errors

- In most cases, the standard errors are adjusted following Newey and West (1987).
 - Newey and West (1987) adjustment to the results of the regression produces a new standard error for the estimated mean that is adjusted for autocorrelation and heteroscedasticity.
 - Only input is the number of lags to use when performing the adjustment

$$Lag = 4(T/100)^{\frac{2}{9}}$$

where T is the number of periods in the time series

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Methodology
- Results
 - Normalized Rank-Transformed
 - Discontinuity
- 6 Further Evidence

Future Correlation via FCA

Normalized Rank-Transformed

Estimation model

Use Fama-MacBeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} \\ &+ \beta_3 * \mathsf{FCA}^*_{ij,t} \times \mathsf{SameGroup}_{ij} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split} \tag{1}$$

- Estimate the model on a monthly frequency
- Adjust standard errors by Newey and West adjustment with 4 lags $(4(60/100)^{\frac{2}{9}}=3.57\sim4)$

Model Estimation

Normalized Rank-Transformed

		Depend	ent Variable	: Future Mo	nthly Correla	ation of 4F+	Industry Re	siduals	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
FCA*	0.00320***	0.00235***			0.00154	0.00105	0.00103	0.000548	0.000948
	(4.05)	(3.90)			(1.73)	(1.51)	(1.12)	(0.80)	(1.37)
Same Group			0.0194***	0.0183***	0.0176***	0.0172***	0.0111***	0.00952**	0.00829*
			(9.72)	(6.03)	(7.15)	(5.09)	(3.53)	(2.73)	(2.25)
(FCA*) × SameGroup							0.00679*	0.00744**	0.00734*
							(2.41)	(3.32)	(3.30)
Observations	436735	434850	436735	434850	436735	434850	436735	434850	434850
Group Effect	No	No	No	No	No	No	No	No	Yes
Controls	No	Yes	No	Yes	No	Yes	No	Yes	Yes
R^2	0.000306	0.0360	0.000496	0.0363	0.000719	0.0364	0.000909	0.0366	0.0432

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Business group & Common-ownership

regression

		Future M	onthly Correla	ation of 4F+Ind	lustry Residuals	5
	(1)	(2)	(3)	(4)	(5)	(6)
(FCA > Median[FCA])	, ,	-0.00168 (-1.45)	-0.00337** (-2.89)	0.00855** (2.76)	. ,	-0.00513*** (-4.32)
SameGroup	0.0122*** (5.81)		0.0135*** (6.48)			0.00574* (2.02)
$(FCA > \mathit{Median}[FCA]) \times SameGroup$						0.0181*** (5.91)
FCA*					0.00174* (2.43)	
Observations	5148109	5148109	5148109	76240	76240	5148109
Sub Sample	Total	Total	Total	SameGroups	SameGroups	Total
Controls	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.000455	0.000439	0.000485	0.0136	0.0135	0.000513

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Business group & Common-ownership

regression

		Future Mo	onthly Correlat	tion of 4F+Indu	stry Residuals	
	(1)	(2)	(3)	(4)	(5)	(6)
Common Ownership	, ,	-0.00350** (-3.30)	-0.00445*** (-4.22)	0.00651* (2.48)	, ,	-0.00527*** (-4.72)
SameGroup	0.0122*** (5.81)		0.0140*** (7.01)			0.00607* (2.09)
${\sf Common\ Ownership}\times{\sf SameGroup}$						0.0157*** (5.51)
FCA*					0.00174* (2.43)	
Observations	5148109	5148109	5148109	76240	76240	5148109
Sub Sample	Total	Total	Total	SameGroups	SameGroups	Total
Controls	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.000455	0.000456	0.000504	0.0135	0.0135	0.000528

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Business group return

		Re	$eturn_i - r_f$	$= R_i$	
	(1)	(2)	(3)	(4)	(5)
R_M	0.801***	0.643***	0.701***	0.257***	0.280***
	(29.99)	(10.68)	(11.05)	(8.84)	(9.02)
R _{Industry}		-2.085	-1.878	-0.150	-0.148
*		(-0.92)	(-0.93)	(-0.48)	(-0.50)
R _{Businessgroup}				0.493***	0.493***
				(11.36)	(11.34)
SMB			0.104***		0.0770***
			(3.52)		(5.24)
UMD			0.0282		0.0218
			(1.23)		(1.94)
HML			0.102***		0.0395***
			(6.05)		(6.39)
Constant	0.0442	0.0145	-0.0297	0.0499***	0.0198
	(1.92)	(0.53)	(-0.83)	(3.87)	(1.25)
Observations	207552	207552	207552	207552	207552
R^2	0.123	0.196	0.213	0.672	0.679

t statistics in parentheses

 $^{^*}$ p < 0.05, ** p < 0.01, *** p < 0.001

Future Correlation via FCA

Discontinuity

4 Factor + Industry Future Correlation via FCA*

Discontinuity & Business Groups

Quarter summary

Quarter summary

Fama-MacBeth Estimation

Discontinuity (sub-sample)

	Dependent	: Variable: F	uture Month	ly Correlatio	n of 4F+Indu	ıstry Residuals
	(1)	(2)	(3)	(4)	(5)	(6)
FCA*	0.0284***	0.0237***	0.0207***	0.0103	0.00914	0.00686
	(5.92)	(5.74)	(4.81)	(1.98)	(1.73)	(1.30)
Same Group				0.0154***	0.0153**	0.0136**
				(3.63)	(3.23)	(2.87)
$ ho_{t}$		0.148***	0.148***	0.147***	0.147***	0.146***
71		(6.59)	(6.60)	(6.55)	(6.54)	(6.56)
SameIndustry			0.00645**	0.00289	0.00118	0.00317
			(2.76)	(0.94)	(0.43)	(1.00)
SameSize					0.00672	0.00651
					(1.32)	(1.25)
SameBookToMarket					0.0165***	0.0139*
					(3.57)	(2.62)
CrossOwnership					0.0114	0.0107
					(0.53)	(0.50)
Observations	110827	110387	110387	110387	110387	110387
Group FE	No	No	No	No	No	Yes
R ²	0.00119	0.0389	0.0397	0.0408	0.0429	0.0660

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- Methodology
- 6 Results
- 6 Further Evidence
- Business Group Effect

Random Pairs from Same Business Group

eta_3 in model 1

Random Pairs from Same Size

β_3 in model 1

Random Pairs from Same Industry

β_3 in model 1

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Methodology
- 6 Results
- 6 Further Evidence
- Business Group EffectTrade Analyze

Ins Imbalance

$$InsImbalance_i = \frac{InsBuy - InsSell}{InsBuy + InsSell}$$

		F	uture Month	nly Corr. of	4F+Ind. Residua	als	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
FCA*	0.00116 (1.66)	0.00114 (1.66)	0.00106 (1.53)		0.00574* (2.44)	0.00107 (1.56)	0.00154* (2.14)
Same Group	0.0165*** (4.74)	0.0166*** (4.61)	0.00974* (2.40)	0.0108** (2.82)		0.00977* (2.40)	0.00850* (2.05)
Low Imbalance std		-0.000538 (-0.48)	-0.00249 (-1.92)	-0.00260 (-1.97)	0.0222*** (5.40)	-0.00249 (-1.92)	-0.00177 (-0.54)
Low Imbalance std \times SameGroup			0.0284*** (5.95)	0.0285*** (6.00)		0.0282*** (4.09)	0.0286*** (3.99)
Low Imbalance std \times SameGroup \times FCA*						-0.000322 (-0.06)	-0.000725 (-0.13)
Observations	434850	434850	434850	434850	38382	434850	434850
Group Effect	No	No	No	No	No	No	Yes
Sub-sample	Total	Total	Total	Total	Same Groups	Total	Total
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.0364	0.0366	0.0369	0.0367	0.0691	0.0370	0.0433

t statistics in parentheses

[&]quot; p < 0.05, "" p < 0.01, """ p < 0.001

TrunOver

$$\Delta \mathsf{TurnOver} = \mathsf{In}(\frac{\mathsf{TurnOver}_{i,t}}{\mathsf{TurnOver}_{i,t-1}}) = \mathsf{In}(\frac{\mathsf{volume}_{i,t}}{\mathsf{MarketCap}_{i,t}}) - \mathsf{In}(\frac{\mathsf{volume}_{i,t-1}}{\mathsf{MarketCap}_{i,t-1}})$$

	Dep	endent Varia	ble: ΔTurn(Over;
	(1)	(2)	(3)	(4)
∆TurnOver _{Market}	0.448***	0.387***	0.445***	0.353***
	(5.61)	(7.80)	(11.13)	(10.18)
Δ TurnOver _{Group}		0.231**	0.234*	0.245***
		(2.67)	(2.07)	(8.22)
Δ TurnOver _{Industry}	0.0993	-0.0558	-0.0970	0.0365
	(1.55)	(-0.61)	(-0.84)	(0.68)
$ln(size)_{i,t}$	-0.00571	-0.0136***	-0.0210**	-0.0119**
	(-0.03)	(-5.21)	(-3.06)	(-3.24)
Constant	-0.303	0.380***	0.610**	0.334**
	(-0.05)	(5.03)	(2.86)	(3.11)
Observations	293264	184699	184699	184699
Group Weight	-	$MC \times CR$	MC	Equal
R ²	0.111	0.213	0.215	0.124

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Amihud

$$\Delta \mathsf{Amihud} = \mathsf{In}(\frac{\mathsf{Amihud}_{i,t}}{\mathsf{Amihud}_{i,t-1}}) = \mathsf{In}(\frac{|\mathsf{Return}_{i,t}|}{\mathsf{volume}_{i,t}}) - \mathsf{In}(\frac{|\mathsf{Return}_{i,t-1}|}{\mathsf{volume}_{i,t-1}})$$

		D	ependent Va	riable: ΔAm	nihud;	
	(1)	(2)	(3)	(4)	(5)	(6)
Δ Amihud _{Market}	0.324***	0.598*	0.373***	0.327***	0.391***	0.346***
	(6.46)	(2.17)	(13.09)	(12.07)	(13.09)	(12.27)
Δ Amihud _{Group}			0.165**	0.150*	0.143*	0.126*
			(2.60)	(2.58)	(2.07)	(1.98)
$\Delta Amihud_{Industry}$	0.0567	0.118	-0.00390	-0.00278	-0.00322	0.0000345
-	(1.21)	(1.58)	(-0.06)	(-0.04)	(-0.04)	(0.00)
Observations	293264	291933	184699	183301	184699	183301
Weight	-	-	$MC \times CR$	$MC \times CR$	MC	MC
Control	No	Yes	No	Yes	No	Yes
R ²	0.0976	0.149	0.194	0.235	0.199	0.239

t statistics in parentheses

^{*} $\rho < 0.05$, ** $\rho < 0.01$, *** $\rho < 0.001$

Trading

Antón et al. (2018):

$$CQ_{ijt} = \sum_{d=1}^{D_t} \omega_{dt} corr(NQ_{idt}, NQ_{jdt})$$
 $\omega_{dt} = rac{\min(TQ_{idt}, TQ_{jdt})}{\sum_{d=1}^{D} \min(TQ_{idt}, TQ_{idt})}$

Ivashina and Sun (2011):

$$\frac{1}{N} \sum_{i=1}^{N} \frac{\sum_{j=1}^{M_i} D_{ji} CAR_i}{M_i}$$

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Methodology
- 6 Results
- 6 Further Evidence
- 7 Business Group Effect

Conclusion

- We derive a measure that captures the extent of common ownership distribution.
- The common ownership comovement effect with a extra explanation:
 - Common ownership that crosses a threshold affect on comovement
 - Be in the same business group has a major effect on comovement

References I

- Antón, M., Ederer, F., Giné, M., and Schmalz, M. C. (2020). Common ownership, competition, and top management incentives. Ross School of Business Paper, (1328).
- Antón, M., Mayordomo, S., and Rodríguez-Moreno, M. (2018). Dealing with dealers: Sovereign cds comovements. Journal of Banking & Finance, 90:96–112.
- Anton, M. and Polk, C. (2014). Connected stocks. The Journal of Finance, 69(3):1099-1127.
- Azar, J., Schmalz, M. C., and Tecu, I. (2018). Anticompetitive effects of common ownership. The Journal of Finance, 73(4):1513–1565.
- Backus, M., Conlon, C., and Sinkinson, M. (2020). Theory and measurement of common ownership. In AEA Papers and Proceedings, volume 110, pages 557–60.
- Barberis, N., Shleifer, A., and Wurgler, J. (2005). Comovement. Journal of financial economics, 75(2):283-317.
- Boubaker, S., Mansali, H., and Rjiba, H. (2014). Large controlling shareholders and stock price synchronicity. *Journal of Banking & Finance*, 40:80–96.
- Freeman, K. (2019). The effects of common ownership on customer-supplier relationships. *Kelley School of Business Research Paper*, (16-84).
- Gilje, E. P., Gormley, T. A., and Levit, D. (2020). Who's paying attention? measuring common ownership and its impact on managerial incentives. *Journal of Financial Economics*, 137(1):152–178.
- Greenwood, R. and Thesmar, D. (2011). Stock price fragility. Journal of Financial Economics, 102(3):471-490.
- Hansen, R. G. and Lott Jr, J. R. (1996). Externalities and corporate objectives in a world with diversified shareholder/consumers. *Journal of Financial and Quantitative Analysis*, pages 43–68.
- Harford, J., Jenter, D., and Li, K. (2011). Institutional cross-holdings and their effect on acquisition decisions. *Journal of Financial Economics*, 99(1):27–39.
- He, J. and Huang, J. (2017). Product market competition in a world of cross-ownership: Evidence from institutional blockholdings. The Review of Financial Studies, 30(8):2674–2718.
- He, J., Huang, J., and Zhao, S. (2019). Internalizing governance externalities: The role of institutional cross-ownership. *Journal of Financial Economics*, 134(2):400–418.

References II

- Ivashina, V. and Sun, Z. (2011). Institutional stock trading on loan market information. Journal of financial Economics, 100(2):284–303.
- Khanna, T. and Thomas, C. (2009). Synchronicity and firm interlocks in an emerging market. *Journal of Financial Economics*, 92(2):182–204.
- Koch, A., Ruenzi, S., and Starks, L. (2016). Commonality in Liquidity: A Demand-Side Explanation. The Review of Financial Studies, 29(8):1943–1974.
- Lewellen, J. W. and Lewellen, K. (2021). Institutional investors and corporate governance: The incentive to be engaged. *Journal of Finance, Forthcoming.*
- Lewellen, K. and Lowry, M. (2021). Does common ownership really increase firm coordination? Journal of Financial Economics.
- Newham, M., Seldeslachts, J., and Banal-Estanol, A. (2018). Common ownership and market entry: Evidence from pharmaceutical industry.
- Pantzalis, C. and Wang, B. (2017). Shareholder coordination, information diffusion and stock returns. Financial Review, 52(4):563–595.

Table of Contents

- Appendix I
- Appendix II

Measuring Common Ownership

- If two stocks in pair have n mutual owner, which total market cap divides them equally, the mentioned indexes equal n.
 - Each holder owns 1/n of each firm.
 - Firm's market cap is α_1 and α_2 :
 - So for each holder of firms we have $S_{i,t}^f P_{i,t} = \alpha_i$
 - SQRT

$$\left[\frac{\sum_{f=1}^{n} \sqrt{\alpha_1/n} + \sum_{f=1}^{n} \sqrt{\alpha_2/n}}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = \left[\frac{\sqrt{n}(\sqrt{\alpha_1} + \sqrt{\alpha_2})}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = n$$

Quadratic

$$\left[\frac{\sum_{f=1}^{n} (\alpha_1/n)^2 + \sum_{f=1}^{n} (\alpha_2/n)^2}{\alpha_1^2 + \alpha_2^2}\right]^{-1} = \left[\frac{\alpha_1^2 + \alpha_2^2}{n(\alpha_1^2 + \alpha_2^2)}\right]^{-1} = n$$

2/9

Table of Contents

- 9 Appendix I
- Appendix II
 - Synchronicity and firm interlocks
 - Large controlling shareholder and stock price synchronicity
 - Connected Stocks
 - Measures' Detail

Main Effect

Common-ownership and comovement effect

[Anton and Polk (2014)]

Stocks sharing many common investors tend to comove more strongly with each other in the future than otherwise similar stocks.

• Common-ownership and liquidity demand

[Koch et al. (2016), Pastor and Stambaugh (2003), Acharya and Pedersen (2005)] Commonality in stock liquidity is likely driven by correlated trading among a given stock's investors. Commonality in liquidity is important because it can influence expected returns

• Trading needs and comovement

[Greenwood and Thesmar (2011)]

If the investors of mutual funds have correlated trading needs, the stocks that are held by mutual funds can comove even without any portfolio overlap of the funds themselves

Stock price synchronicity and poor corporate governance

[Boubaker et al. (2014), Khanna and Thomas (2009), Morck et al. (2000)] Stock price synchronicity has been attributed to poor corporate governance and a lack of firm-level transparency. On the other hand, better law protection encourages informed trading, which facilitates the incorporation of firm-specific information into stock prices, leading to lower synchronicity

Synchronicity and firm interlocks

JFE-2009-Khanna

- Three types of network
 - Equity network
 - 2 Director network
 - Owner network
- Dependent variables

Using deterended weekly return for calculation

- **1** Pairwise returns synchronicity = $\frac{\sum_{\mathbf{t}} (n_{i,j,\mathbf{t}}^{i,j,\mathbf{t}}, n_{i,j,\mathbf{t}}^{down})}{T_{i,j}}$
- 2 Correlation = $\frac{Cov(i,j)}{\sqrt{Var(i).Var(j)}}$
- Tobit estimation of

$$f_{i,j}^d = \alpha I_{i,j} + \beta (1 * N_{i,j}) + \gamma Ind_{i,j} + \varepsilon_{i,j}$$

being in the same director network has a significant effect

Large controlling shareholder and stock price synchronicity JBF-2014-Boubaker

Stock price synchronicity:

$$SYNCH = \log(\frac{R_{i,t}^2}{1 - R_{i,t}^2})$$

where $R_{i,t}^2$ is the R-squared value from

$$RET_{i,w} = \alpha + \beta_1 MKRET_{w-1} + \beta_2 MKRET_w + \beta_3 INDRET_{i,w-1} + \beta_4 INDRET_{i,w} + \varepsilon_{i,w}$$

OLS estimation of

$$\begin{aligned} \textit{SYNCH}_{i,t} &= \beta_0 + \beta_1 \textit{Excess}_{i,t} + \beta_2 \textit{UCF}_{i,t} + \sum_k \beta_k \textit{Control}_{i,t}^k \\ &+ \textit{IndustryDummies} + \textit{YearDummies} + \varepsilon_{i,t} \end{aligned}$$

- + industry Duminies + rear Duminies + $\varepsilon_{i,t}$
- Firms with substantial excess control are more likely to experience stock price crashes

Stock price synchronicity increases with excess control

- Common active mutual fund owners
- Measuring Common Ownership

•
$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

- ullet Using normalized rank-transformed as $FCAP_{ij,t}^*$
- $\rho_{ij,t}$: within-month realized correlation of each stock pair's daily four-factor returns

0

$$ho_{ij,t+1} = a + b_f \times FCAPF_{ij,t}^* + \sum_{k=1}^{n} CONTROL_{ij,t,k} + \varepsilon_{ij,t+1}$$

Estimate these regressions monthly and report the time-series average as in Fama-MacBeth

Commonownership measurements

Model-based measures

- $\mathsf{HJL}^A_I(A,B) = \sum_{i \in I^{A,B}} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
 - Bi-directional
 - Pair-level measure of common ownership
 - Its potential impact on managerial incentives
 - Measure not necessarily increases when the relative ownership increases
 - Accounts only for an investor's relative holdings
- $\bullet \ \ \mathsf{MHHI} = \textstyle \sum_{j} \sum_{k} \mathsf{s}_{j} \mathsf{s}_{k} \frac{\sum_{i} \mu_{ij} \nu_{ik}}{\sum_{i} \mu_{ij} \nu_{ij}} \ \ \mathsf{Azar} \ \mathsf{et} \ \mathsf{al}. \ (2018)$
 - Capture a specific type of externality
 - Measured at the industry level
 - Assumes that investors are fully informed about the externalities
- $\operatorname{\mathsf{GGL}}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020)
 - Bi-directional
 - Less information
 - Not sensitive to the scope
 - Measure increases when the relative ownership of firm A increases

Commonownership measurements

Ad hoc common ownership measures

- $Overlap_{Count}(A, B) = \sum_{i \in I^{A,B}} 1$ He and Huang (2017),He et al. (2019)
- $Overlap_{Min}(A,B) = \sum_{i \in I^{A,B}} min\{\alpha_{i,A},\alpha_{i,B}\}$ Newham et al. (2018)
- Overlap_{AP}(A,B) = $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_A}{\bar{\nu}_A + \bar{\nu}_B} + \alpha_{i,B} \frac{\bar{\nu}_B}{\bar{\nu}_A + \bar{\nu}_B}$ Anton and Polk (2014)
- $Overlap_{HL}(A,B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)
- Unappealing properties
 - Unclear is whether any of these measures represents an economically meaningful measure of common ownership's impact on managerial incentives.
 - Both Overlap_{Count} and Overlap_{AP} are invariant to the decomposition of ownership between the two firms, which leads to some unappealing properties.

9/9