COMPARISON CNN

June 21, 2025

```
[8]: import tensorflow as tf
     from tensorflow.keras.utils import to_categorical
     import os
     from PIL import Image, UnidentifiedImageError
     import shutil
     # Configuration
     IMG SIZE = (28, 28)
     BATCH_SIZE = 32
     VALIDATION_SPLIT = 0.4
     SEED = 42
     ROOT_PATH = ''
     DATASET_PATH = os.path.join(ROOT_PATH,"raw_data")
     CORRUPT_PATH = os.path.join(ROOT_PATH,"corrupt_images")
     os.makedirs(CORRUPT_PATH, exist_ok=True)
     for root, dirs, files in os.walk(DATASET_PATH):
         for file in files:
             ext = os.path.splitext(file)[1].lower()
             if ext in [".jpg", ".jpeg", ".png", ".bmp", ".gif"]:
                 path = os.path.join(root, file)
                 try:
                     with Image.open(path) as img:
                         img.verify() # Check integrity
                 except (UnidentifiedImageError, OSError, IOError) as e:
                     # Move the corrupt image
                     print(f"Corrupt image found: {path} - moving to {CORRUPT_PATH}")
                     dest_path = os.path.join(CORRUPT_PATH, os.path.relpath(path,_
      →DATASET_PATH))
                     os.makedirs(os.path.dirname(dest_path), exist_ok=True)
                     shutil.move(path, dest_path)
     LANDMARK_DIR = os.path.join(ROOT_PATH,"data")
     RAW IMAGE DIR = os.path.join(ROOT PATH, "raw data")
     FILTERED_IMAGE_DIR = os.path.join(ROOT_PATH,"filtered_raw_data")
     DATASET PATH = FILTERED IMAGE DIR
     # Supported image extensions
```

```
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp']
# Create filtered output structure
os.makedirs(FILTERED_IMAGE_DIR, exist_ok=True)
for class_name in os.listdir(LANDMARK_DIR):
   if class name == 'debug':
        continue
   landmark class dir = os.path.join(LANDMARK DIR, class name)
   raw_class_dir = os.path.join(RAW_IMAGE_DIR, class_name)
   filtered class dir = os.path.join(FILTERED IMAGE DIR, class name)
   os.makedirs(filtered_class_dir, exist_ok=True)
   for file in os.listdir(landmark_class_dir):
        if not file.endswith("_landmarks.json"):
            continue
        # Get base filename without "_landmarks.json"
       base_name = file.replace("_landmarks.json", "")
        # Look for corresponding image in raw directory
       for ext in IMAGE EXTENSIONS:
            image_file = os.path.join(raw_class_dir, base_name + ext)
            if os.path.exists(image file):
                # Copy to filtered folder
                shutil.copy(image_file, os.path.join(filtered_class_dir, os.
 →path.basename(image_file)))
                break
# Load training dataset with validation split
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET PATH,
   validation_split=VALIDATION_SPLIT,
   subset="training",
   seed=SEED,
   color_mode="grayscale",
    image_size=IMG_SIZE,
   batch_size=BATCH_SIZE
num_classes = len(train_ds.class_names)
label_map = train_ds.class_names
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET_PATH,
   validation_split=VALIDATION_SPLIT,
    subset="validation",
   seed=SEED,
```

```
color_mode="grayscale",
          image size=IMG SIZE,
          batch_size=BATCH_SIZE
      test_ds = val_ds.shard(2,0)
      val ds = val ds.shard(2,1)
      # Normalize pixel values to [0, 1]
      normalization layer = tf.keras.layers.Rescaling(1./255)
      train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
      val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
      test_ds = test_ds.map(lambda x, y: (normalization_layer(x), y))
      # Cache and prefetch for performance
      AUTOTUNE = tf.data.AUTOTUNE
      train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
      val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
      test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)
     Found 2155 files belonging to 25 classes.
     Using 1293 files for training.
     Using 1293 files for training.
     Found 2155 files belonging to 25 classes.
     Using 862 files for validation.
[10]: from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, U
       →BatchNormalization, Input
      from tensorflow.keras.layers import Flatten, Dense, GlobalAveragePooling2D
      from tensorflow.keras.optimizers import Adam
      model = Sequential([
          Input((28, 28, 1)),
          Conv2D(16, (3, 3), activation='relu'),
          BatchNormalization(),
          MaxPooling2D(pool_size=(2, 2)),
          Dropout(0.1),
          Conv2D(32, (3, 3), activation='relu'),
          BatchNormalization(),
          MaxPooling2D(pool_size=(2, 2)),
          Dropout(0.2),
          GlobalAveragePooling2D(),
          Flatten(),
          Dense(128, activation='relu'),
          Dropout(0.2),
```

```
Dense(num_classes, activation='softmax')
     ])
      model.compile(optimizer=Adam(1e-3),
                    loss='sparse_categorical_crossentropy',
                    metrics=['accuracy'])
[11]: history = model.fit(train_ds, validation_data=val_ds, epochs=50)
     Epoch 1/50
     41/41
                       4s 30ms/step -
     accuracy: 0.0792 - loss: 3.1791 - val_accuracy: 0.0553 - val_loss: 3.2039
     Epoch 2/50
     41/41
                       Os 8ms/step -
     accuracy: 0.0990 - loss: 2.9955 - val_accuracy: 0.0721 - val_loss: 3.1999
     Epoch 3/50
     41/41
                       Os 8ms/step -
     accuracy: 0.1329 - loss: 2.8954 - val_accuracy: 0.0697 - val_loss: 3.2144
     Epoch 4/50
     41/41
                       Os 7ms/step -
     accuracy: 0.1812 - loss: 2.7469 - val_accuracy: 0.0457 - val_loss: 3.3359
     Epoch 5/50
     41/41
                       Os 8ms/step -
     accuracy: 0.1987 - loss: 2.6381 - val_accuracy: 0.0577 - val_loss: 3.5013
     Epoch 6/50
     41/41
                       0s 7ms/step -
     accuracy: 0.2533 - loss: 2.5510 - val_accuracy: 0.0385 - val_loss: 3.7691
     Epoch 7/50
     41/41
                       Os 7ms/step -
     accuracy: 0.3091 - loss: 2.4013 - val_accuracy: 0.0457 - val_loss: 3.9707
     Epoch 8/50
     41/41
                       Os 8ms/step -
     accuracy: 0.3289 - loss: 2.2726 - val_accuracy: 0.0962 - val_loss: 3.9763
     Epoch 9/50
     41/41
                       0s 8ms/step -
     accuracy: 0.3697 - loss: 2.1622 - val_accuracy: 0.0793 - val_loss: 4.0191
     Epoch 10/50
     41/41
                       0s 8ms/step -
     accuracy: 0.4231 - loss: 1.9860 - val_accuracy: 0.0697 - val_loss: 3.9028
     Epoch 11/50
     41/41
                       Os 8ms/step -
     accuracy: 0.4787 - loss: 1.8349 - val_accuracy: 0.0601 - val_loss: 3.8484
     Epoch 12/50
     41/41
                       Os 7ms/step -
     accuracy: 0.4719 - loss: 1.7966 - val_accuracy: 0.1010 - val_loss: 3.4286
     Epoch 13/50
     41/41
                       0s 8ms/step -
     accuracy: 0.4923 - loss: 1.6918 - val_accuracy: 0.1202 - val_loss: 3.2569
```

```
Epoch 14/50
41/41
                 Os 8ms/step -
accuracy: 0.5286 - loss: 1.5895 - val_accuracy: 0.1538 - val_loss: 3.2706
Epoch 15/50
41/41
                 Os 8ms/step -
accuracy: 0.5598 - loss: 1.5081 - val_accuracy: 0.1923 - val_loss: 2.5698
Epoch 16/50
41/41
                  Os 7ms/step -
accuracy: 0.5595 - loss: 1.3816 - val_accuracy: 0.2404 - val_loss: 2.4932
Epoch 17/50
41/41
                  Os 8ms/step -
accuracy: 0.5971 - loss: 1.3521 - val_accuracy: 0.2404 - val_loss: 2.4065
Epoch 18/50
41/41
                  Os 8ms/step -
accuracy: 0.6317 - loss: 1.3178 - val_accuracy: 0.3245 - val_loss: 2.1631
Epoch 19/50
41/41
                  Os 8ms/step -
accuracy: 0.6310 - loss: 1.2264 - val_accuracy: 0.3438 - val_loss: 2.1272
Epoch 20/50
41/41
                  Os 7ms/step -
accuracy: 0.6476 - loss: 1.2063 - val_accuracy: 0.5264 - val_loss: 1.5468
Epoch 21/50
41/41
                 Os 8ms/step -
accuracy: 0.6589 - loss: 1.1364 - val_accuracy: 0.5457 - val_loss: 1.5659
Epoch 22/50
41/41
                 0s 8ms/step -
accuracy: 0.6765 - loss: 1.0622 - val_accuracy: 0.5673 - val_loss: 1.4684
Epoch 23/50
41/41
                  Os 8ms/step -
accuracy: 0.6960 - loss: 1.0273 - val_accuracy: 0.6322 - val_loss: 1.2309
Epoch 24/50
41/41
                  Os 8ms/step -
accuracy: 0.6858 - loss: 1.0117 - val_accuracy: 0.5553 - val_loss: 1.3881
Epoch 25/50
41/41
                  Os 8ms/step -
accuracy: 0.6939 - loss: 1.0023 - val_accuracy: 0.6635 - val_loss: 1.1033
Epoch 26/50
41/41
                  Os 8ms/step -
accuracy: 0.7328 - loss: 0.8993 - val_accuracy: 0.7212 - val_loss: 1.0240
Epoch 27/50
41/41
                  0s 8ms/step -
accuracy: 0.7280 - loss: 0.9257 - val_accuracy: 0.4808 - val_loss: 1.6999
Epoch 28/50
41/41
                 Os 7ms/step -
accuracy: 0.7392 - loss: 0.8670 - val_accuracy: 0.6562 - val_loss: 1.1325
Epoch 29/50
41/41
                  Os 8ms/step -
accuracy: 0.7125 - loss: 0.9107 - val_accuracy: 0.7476 - val_loss: 0.9960
```

```
Epoch 30/50
41/41
                 Os 8ms/step -
accuracy: 0.7633 - loss: 0.8272 - val_accuracy: 0.5457 - val_loss: 1.5624
Epoch 31/50
41/41
                 Os 7ms/step -
accuracy: 0.7518 - loss: 0.8066 - val_accuracy: 0.6971 - val_loss: 1.0020
Epoch 32/50
41/41
                  Os 7ms/step -
accuracy: 0.7725 - loss: 0.7367 - val_accuracy: 0.6442 - val_loss: 1.1853
Epoch 33/50
41/41
                  Os 7ms/step -
accuracy: 0.7559 - loss: 0.7928 - val_accuracy: 0.7043 - val_loss: 0.9951
Epoch 34/50
41/41
                  Os 8ms/step -
accuracy: 0.7950 - loss: 0.7116 - val_accuracy: 0.8005 - val_loss: 0.7544
Epoch 35/50
41/41
                  Os 7ms/step -
accuracy: 0.7948 - loss: 0.6844 - val_accuracy: 0.6827 - val_loss: 1.0278
Epoch 36/50
41/41
                 Os 8ms/step -
accuracy: 0.7684 - loss: 0.7328 - val_accuracy: 0.7548 - val_loss: 0.8494
Epoch 37/50
41/41
                 Os 8ms/step -
accuracy: 0.7618 - loss: 0.7166 - val_accuracy: 0.8413 - val_loss: 0.6279
Epoch 38/50
41/41
                 Os 7ms/step -
accuracy: 0.8095 - loss: 0.6516 - val_accuracy: 0.8101 - val_loss: 0.6800
Epoch 39/50
                  Os 8ms/step -
accuracy: 0.8033 - loss: 0.6262 - val_accuracy: 0.8029 - val_loss: 0.6571
Epoch 40/50
41/41
                  Os 7ms/step -
accuracy: 0.7766 - loss: 0.7060 - val_accuracy: 0.7692 - val_loss: 0.8074
Epoch 41/50
41/41
                  Os 8ms/step -
accuracy: 0.7863 - loss: 0.6773 - val_accuracy: 0.7981 - val_loss: 0.7020
Epoch 42/50
41/41
                  Os 8ms/step -
accuracy: 0.8257 - loss: 0.5982 - val_accuracy: 0.7091 - val_loss: 0.9816
Epoch 43/50
41/41
                  0s 8ms/step -
accuracy: 0.8237 - loss: 0.5878 - val_accuracy: 0.6442 - val_loss: 1.1126
Epoch 44/50
41/41
                 Os 7ms/step -
accuracy: 0.7964 - loss: 0.6137 - val_accuracy: 0.7308 - val_loss: 0.8835
Epoch 45/50
41/41
                  Os 7ms/step -
accuracy: 0.7883 - loss: 0.6493 - val_accuracy: 0.7885 - val_loss: 0.7244
```

```
Epoch 46/50
     41/41
                       Os 7ms/step -
     accuracy: 0.8074 - loss: 0.5850 - val_accuracy: 0.7260 - val_loss: 0.8995
     Epoch 47/50
     41/41
                       0s 7ms/step -
     accuracy: 0.8247 - loss: 0.5645 - val_accuracy: 0.7620 - val_loss: 0.7885
     Epoch 48/50
     41/41
                       Os 7ms/step -
     accuracy: 0.8261 - loss: 0.5454 - val_accuracy: 0.8125 - val_loss: 0.6782
     Epoch 49/50
     41/41
                       Os 7ms/step -
     accuracy: 0.8410 - loss: 0.5211 - val_accuracy: 0.7163 - val_loss: 1.0502
     Epoch 50/50
     41/41
                       0s 7ms/step -
     accuracy: 0.8434 - loss: 0.5401 - val_accuracy: 0.7308 - val_loss: 0.9555
[12]: test_loss, test_accuracy = model.evaluate(test_ds)
      print(f"Test Accuracy: {test_accuracy:.4f}")
      print(f"Test Loss: {test_loss:.4f}")
     14/14
                       Os 16ms/step -
     accuracy: 0.7293 - loss: 0.9152
     Test Accuracy: 0.7399
     Test Loss: 0.9218
[13]: import matplotlib.pyplot as plt
      from sklearn.metrics import classification report, confusion matrix
      import seaborn as sns
      import numpy as np
[14]: plt.figure(figsize=(12, 4))
      plt.subplot(1, 2, 1)
      plt.plot(history.history['accuracy'])
      plt.plot(history.history['val_accuracy'])
      plt.title('Model accuracy')
      plt.ylabel('Accuracy')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      # Plot training & validation loss values
      plt.subplot(1, 2, 2)
      plt.plot(history.history['loss'])
      plt.plot(history.history['val_loss'])
      plt.title('Model loss')
      plt.ylabel('Loss')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      plt.show()
```



```
[15]: y_true, y_pred = [], []
      target_names = [label_map[i] for i in range(len(label_map))]
      for X_batch, y_batch in test_ds:
          y_true.append(y_batch.numpy())
          batch_pred = model.predict(X_batch, verbose=0)
          y_pred.append(np.argmax(batch_pred, axis=1))
      y_true = np.concatenate(y_true)
      y_pred = np.concatenate(y_pred)
      print(classification_report(
          y_true, y_pred,
          digits=3,
          target_names=target_names
      ))
      cm = confusion_matrix(y_true, y_pred, labels=range(len(label_map)))
      labels = [label_map[i] for i in range(len(label_map))]
      plt.figure(figsize=(10, 8))
      sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
                  xticklabels=labels, yticklabels=labels)
      plt.xlabel("Predicted Label")
      plt.ylabel("True Label")
      plt.title("Confusion Matrix - Test Set")
      plt.show()
```

c:\Users\chris\.conda\envs\ASLR\Lib\sitepackages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

	precision	recall	f1-score	support
baca	0.333	1.000	0.500	15
bantu	0.571	0.444	0.500	9
bapak	1.000	0.600	0.750	15
buangairkecil	0.875	1.000	0.933	7
buat	0.533	0.800	0.640	10
halo	0.857	0.800	0.828	15
ibu	1.000	1.000	1.000	5
kamu	0.786	0.524	0.629	21
maaf	0.676	1.000	0.806	25
makan	0.625	0.938	0.750	16
mau	0.760	0.905	0.826	21
nama	1.000	0.290	0.450	31
pagi	0.839	0.963	0.897	27
paham	0.738	0.969	0.838	32
sakit	0.000	0.000	0.000	7
sama-sama	0.786	0.423	0.550	26
saya	0.579	0.688	0.629	16
selamat	1.000	0.444	0.615	18
siapa	0.857	0.600	0.706	20
tanya	0.818	0.947	0.878	19
tempat	0.750	1.000	0.857	9
terima-kasih	1.000	0.476	0.645	21
terlambat	0.929	0.765	0.839	17
tidak	0.778	0.955	0.857	22
tolong	1.000	0.955	0.977	22
accuracy			0.740	446
macro avg	0.764	0.739	0.716	446
weighted avg	0.794	0.740	0.725	446

