Kriptoloji

Crypt : Gizli, saklı graphien: yazı

Kriptografi: Tasarım Kriptoanaliz: Sağlam mı?

Veri Güvenliği

Hassas verinin güvenliği deyince ne anlıyoruz?

Verinin korunması? Ama nerede? Depolarken, transfer ederken?

Veriye üçüncü şahısların ulaşamaması?

Veriyi yetkisizlerin değiştirememesi?

Veriyi yetkisizlerin oluşturamaması?

Yetkililerin veride yaptığı değişiklikleri kabullenmesi?

Ama nasıl?

Her yiğidin bir yoğurt yiyişi var: Kriptolojinin yöntemi matematiksel problemler! Bu dersin ana kapsamı kriptolojinin temel yöntemlerini tanımak

Kriptoloji nedir?

Kriptolojinin Tanımı

Gizlilik, veri bütünlüğü, kimlik doğrulama inkar edemezlik gibi bilgi güvenliği problemlerine matematiksel yöntemler kullanarak çözüm getirme ve bu çözümleri çürütme bilimidir.

Kriptoloji sadece şifreleme/şifre kırma değildir!

Matematiksel Yöntem?

- Bilgi güvenliği hizmetini bir matematik probleminin çözümünün zorluğuna dayandırma
- Problemi çözen kripto hizmetini de çözümü oranında ihlal eder (sistemi kırar!)
- Çözüm zorluğu: Çözüm algoritmasının karmaşık olması. Eksponansiyel ya da alteksponansiyel zamanda çözüm
- Örnek: Ayrık logaritma problemi, çarpanlara ayırma problemi, doğrusalsız denklem sistemi çözme problemi

Kriptoanaliz: Şifre Kırmak

Güvenlik Yaklaşımları

- Şartsız güvenlik (Mükemmel güvenlik)
- Hesapsal güvenlik

Kripto Sistemini Kırmak: Belirlenmiş bir hesaplama gücüne karşı sağlandığı iddia edilen bir kripto hizmetinin daha az hesaplama gücüyle engellenmesi

Kriptoanaliz: Kripto sistemini kırma çalışmaları

Hesapsal Güvenlik: Bütün kriptolar kırılabilir!

Hesapsal güvenlik ile sağladığı güvenlik: 10⁴ şifre denemesi

Daha az deneme ile şifreyi bulan sistemi kırmış olur!

Kriptografi-Steganografi

Kriptografi ile gizlilik: gizli yazının yapıtaşlarının matematiksel işlemlerden geçirilip karıştırılması ve değiştirilmesi

Steganografi ile gizlilik: gizli yazının varlığının saklanması

Steganografi

Kriptografik Hizmetler

- Gizlilik
- Veri Bütünlüğü
- Asıllama (Doğrulama)
 - Kimlik doğrulama
 - Kaynak doğrulama
- İnkar Edememe
- Anonimlik/ Mahremiyet
- Tazelik
- Erişebilirlik/Kullanılırlık

Kripto Protokolleri

Kriptografik algoritmalar kullanarak bir ya da birden fazla kriptografik hizmeti bir arada sağlayan kurallar dizisi

SSL/TLS, IPSec, WEP, WPA, PGP: Anahtar dağıtımı, kimlik doğrulama, gizlilik, bütünlük

Gizlilik: Şifreleme

Gizlilik

Simetrik Şifreleme

Simetrik Şifreleme Algoritmaları

- AES: Blok şifreleme, 128 bit blok, 128,192,256 bit anahtar
 - Vincent Rijmen, John Daemen, 2001 NIST standardı, SSL, TLS, PGP, WEP, WPA, IPSec,...
- DES: Blok şifreleme, 64 bit blok, 56 bit anahtar
 - IBM, 1976. 3DES, ATM cihazlarında...
- A5/1,A5/2: Dizi şifreleme, 64 bit anahtar, GSM
- E0: Dizi şifreleme, 128 bit anahtar, Bluetooth

- Açık metin bloklara bölünür ve her blok diğerlerinden bağımsız şifrelenir
- Döngüseldir: Her döngü bir çevrim
- Her çevrimde farklı bir gizem kullanılır: alt anahtar
- Alt anahtarlar ana anahtardan anahtar şeması algoritmasıyla türetilir
- Hafızasızdır

 EKK (Elektronik Kod Kitabı) olarak kullanım: Aynı açık metin blokları aynı kapalı metin blokları oluşturur!

Dizi Şifreleme

Üretecin hafızasında zamanla değişen içsel durum kayıtlı

Kayan Anahtar

101111010100100001110100011000100....

P 111110010100010101000001010100011...

C 010001000101101011100100100100101...

- Blok şifreleme daha esnektir
 - Blok şifreleme dizi şifreleme modunda kullanılabilir
 - Özet fonksiyonu
 - Kimlik doğrulama, RSÜ
- Dizi şifreleme genellikle daha hızlıdır ve daha az yer kaplar
 - Yazılım:HC128 3 c/byte, AES 12 c/byte
 - Donanım: Trivium 3000 GE, Grain 2400 GE, AES 5000-100.000 GE, KATAN 600 GE
- Dizi şifrelemenin tasarım kriterleri gelişmemiş
- Dizi şifrelemede eş zamanlama için ek mekanizma gerekli: Mekanizmada zayıflık riski
- Dizi şifrelemede güvenlik riski yüksek:
 - Kayan anahtarın tek kullanımlık özelliği
 - Kayan anahtarın rastsallığı
 - Bütünlük gereken uygulamalar

Asimetrik Şifreleme (Açık Anahtarlı Şifreleme)

Açık Anahtarlı Kripto Sistemler

- Diffie-Hellman 1976
- RSA: Rivest Shamir Adleman, 1977
- ElGamal, 1985
- Sayısal imzalar:

DSA: Sayısal İmza Algoritması

ECDSA: Eliptik Eğri Tabanlı Sayısal

İmza Algoritması

Diffie Hellman Anahtar Paylaşım Protokolü

Ortak Anahtar: gab

Veri Bütünlüğü: Özet fonksiyonları

- Herhangi uzunlukta mesajdan sabit uzunlukta veri
- Aynı özeti veren iki mesaj bulunamasın! (Hesapsal Güvenlik)
- Kullanım yerleri

Sayısal imza

Parola Saklama

Arşivleme

Internette dosya indirme

- SHA ailesi: SHA-1, SHA-2
- MD ailesi: MD4, MD5

Özet fonksiyonları

X%^+dfesdf43343434 43434343kjkl34j3l4o34ıj34 Jkl34jkl3j4kl34345jkl324432 Jk43ljlk3j4kl3j4kl343234ffdf J4k3l4jkl34jlk3j4kl3j4lk3fdsdf324 Jk4l3j4kl3j4kl3j4kl3j4lk3432344 J4kl3j4kl3j4kl3j4lkj3l432344 4jkl34jlk3j4lk3j4ljdfklsf34234432 34jkl234j2l43234234234234

Mesaj (herhangi uzunlukta olabilir)

Özet mesajın parmak izi olsun, Mesajı temsil etsin!

Mesajın Özeti (sabit uzunlukta)

Özet fonksiyonunun güvenlik özellikleri

- Çakışmaya dayanıklılık (Collision Resistance):
 Aynı özeti veren iki mesaj bulmak hesapsal olarak imkansız. Eşik güvenlik 2^{n/2}, n: özet boyu
- Ters Görüntüye dayanıklılık Tek yönlülük
 (Preimage Resistance one way function):
 Verilmiş bir özet değerine sahip mesaj bulmak hesapsal olarak imkansız. Eşik güvenlik 2ⁿ, n: özet boyu
- İkinci Ters Görüntüye dayanıklılık (Second Preimage Resistance): Verilmiş bir mesajla aynı özeti veren başka bir mesaj bulmak hesapsal olarak imkansız. Eşik güvenlik 2ⁿ n: özet boyu

Anahtarlı Özet: HMAC

- Anahtar ve mesajdan özet üretiliyor
- HMAC(k,m)=H(k || m)? Mesaj uzatma atağı!
- HMAC(k,m)=H(m || k)? Çakışma olan mesajlar!
- FIPS PUB 198 standardı: SHA-1 ve MD-5 kullanılıyor
- HMAC-SHA-1, HMAC-MD5
- IPSec ve TLS protokollerinde

$$HMAC(k,m)=H(k_2||opad||H((k_1||ipad)||m))$$

opad ve ipad sabit değerler

Özet fonksiyonu kullanım alanı

Doğrulama (Asıllama)

IFF

- Sayısal imza
- •ATM cihazları
- •İnternet bankacılığı
- •Çağrı merkezleri
- Parolalar

www.internetbank.com.tr

İnkar Edememe

TÜBİTAK

- Asimetrik sistem
- Sayısal imza
- e-Ticaret

İnternet bankacılığı

İnternet alışverişi

Sayısal İmza

Açık Anahtarlı İmzalama

