Algoritmi in podatkovne strukture 1 Visokošolski strokovni študij Računalništvo in informatika

Ukoreninjena drevesa

Jurij Mihelič, UniLj, FRI

Osnovni pojmi

- drevo s korenom (ukoreninjeno drevo)
- vozlišče, koren, povezava, element
- notranje in končno (zunanje) vozlišče, list
- starš, otrok, prednik, potomec

• Pot

- povezave od izvora do cilja
- dolžina poti = št. povezav

- Poddrevo
 - vozlišče in vsi njegovi potomci
 - vozlišče je koren poddrevesa
 - poddrevo je drevo
- Gozd
 - množica dreves
- Urejeno in neurejeno drevo
 - glede na vrsti red otrok
 - glede na urejenost starš / otrok

- Definicija
 - Ukoreninjeno drevo T=(V,E,r) sestoji iz
 - končne množice vozlišč V in
 - končne množice povezav E
 - pri čemer
 - je eno vozlišče koren r (root)
 - ima vsako vozlišče 0 ali več otrok
 - potomci korena razpadejo na disjunktno unijo poddreves
- Grafična ponazoritev
 - povezan acikličen graf
 - po nivojih

- Globina vozlišča
 - dolžina poti od korena do vozlišča
 - nivo: vozlišča na isti globini

- Višina vozlišča
 - dolžina najdaljše poti od vozlišča do lista

- Višina (oz. globina) drevesa
 - je enaka višini korena
 - oz. dolžina najdaljše poti od korena do lista

- Stopnja (degree) vozlišča
 - št. otrok (oz. poddreves)
- Stopnja drevesa
 - največja stopnja vozlišča
 - dvojiško (binary) drevo
 - trojiško (ternary) drevo
 - d-tiško (d-ary) drevo
- Polno (full) vozlišče
 - stopnja vozlišča je enaka stopnji drevesa

- Polno drevo
 - vsa notranja vozlišča so polna

- Popolno (perfect) drevo
 - polno drevo
 - vsi listi so na istem nivoju
 - rekurzivna definicija
 - drevo višine 0 je popolno

- Celovito (complete) drevo
 - vsi nivoji (razen morda zadnji) so polni
 - vsi listi na zadnjem nivoju so levo

- Algoritmi
 - štetje vozlišč
 - štetje listov
 - štetje notranjih vozlišč
 - globina vozlišča
 - višina vozlišča
 - stopnja drevesa
 - vsota stopenj vozlišč

- Sistematičen obisk vseh vozlišč drevesa
- Vrste obhodov (traversal)
 - premi obhod (preorder)
 - obratni obhod (postorder)
 - vmesni obhod (inorder)
 - le za dvojiška drevesa
 - obhod po nivojih (level order)

- Premi (direktni, neposredni) obhod drevesa
 - koren nato otroci
- Ideja algoritma
 - obdelaj koren drevesa
 - obhodi poddrevesa otrok korena

- Obratni obhod
 - otroci nato koren
- Ideja algoritma
 - obhodi poddrevesa otrok korena
 - obdelaj koren drevesa

- Vmesni obhod
 - le na dvojiških drevesih
 - levo poddrevo, koren, desno poddrevo
- Ideja algoritma
 - obhodi poddrevo levega otroka
 - obdelaj koren
 - obhodi poddrevo desnega otroka

Drevo za aritmetični izraz

- Premi obhod
 - +*4+25-*45-71
- Obratni obhod
 - 425+*45*71--+
- Vmesni obhod
 - **-** ((4*(2+5))+((4*5)-(7-1)))

- Obhod po nivojih
 - zaporedoma obdelujemo nivoje
- Ideja algoritma
 - otroke shranjujemo v zbirko
 - katero zbirko uporabiti?

Predstavitev dreves

- S kazalci
 - otroci
 - zaporedje kazalcev na otroke
 - binarno drevo: kazalca na levega in desnega otroka
 - prvi otrok in sorojenci (sibling)
 - kazalec na prvega otroka
 - vsak otrok ima kazalec na naslednjega sorojenca
 - starš
 - kazalec na starša
 - za neurejena drevesa
 - za urejena drevesa s navadno kombinira s prejšnjima dvema metodama

Predstavitev dreves

- V polju (implicitna predstavitev)
 - dvojiška drevesa
 - vozlišče z indeksom i
 - otroka: l = 2i+1, r = 2i+2
 - starš: $p = \lfloor (i-1) / 2 \rfloor$
 - d-tiška drevesa
 - otroci: indeks *j*-tega otroka = $d \cdot i + 1 + j$
 - starš: $p = \lfloor (i-1) / d \rfloor$
 - otroci so torej na indeksih od $d \cdot i + 1$ do $d \cdot i + d$
 - učinkovitost predstavitve
 - kapaciteta polja in velikost drevesa
 - izrojena in celovita drevesa

Predstavitev dreves

- Celovita (dvojiška) drevesa v polju
 - items ... polje elementov
 - last ... indeks zadnjega
 - notranja vozlišča: prvih $\lfloor n/2 \rfloor$ elementov
 - listi: zadnjih $\lceil n/2 \rceil$ elementov

