Introduction to MLflow

Nima Nooshiri

16 May 2023

What is MLflow?

- MLflow is an open source platform for managing ML and DL projects and experiments.
- It is specifically built to **optimise the entire model lifecycle**, i.e. from training to production.

Comparison of MLflow features with some other experiment tracking and management tools (resource):

	Neptune	Weights & Biases	Comet	Sacred & Omniboard	MLflow	TensorBoard
Focus	Metadata Storage, Experiment Tracking, Model Registry	Experiment Management	Experiment Management	Experiment Management	Entire Lifecycle	Experiment Management
Price	Individual: Free (+ usage above free quota) Academia: Free Team: Paid	Individual: Free (+ usage above free quota) Academia: Free Team: Paid	Individual: Free (+ usage above free quota) Academia: Free Team: Paid	Free	Free	Free
Standalone component or a part of a broader ML platform?	Standalone component. ML metadata store that focuses on experiment tracking and model registry	Standalone component	Stand-alone tool with community, self-serve and managed deployment options	Omniboard is a web dashboard for the Sacred machine learning experiment management tool	Open-source platform which offers four separate components for experiment tracking, code packaging, model deploymnet, and model registry	Open source tool which is a part of the TensorFlow ecosystem
Commercial software, open- source software, or a managed cloud service?	Managed cloud service	Managed cloud service	Managed cloud service	Open-source	The standalone product is open-source, while the Databricks managed version is commercial	TensorBoarsd is open- source, while TensorBoard.dev is available as a free managed cloud service
Hosted version or deployed on- premise?	Tracking is hosted on a managed server, and can also be deployed on- premises and in a public/private cloud server	Yes	Yes, you can deploy Comet on any cloud environment or on-premise	Can be deployed both on- premises and/or on the cloud, but has to be self- managed	Tracking is hosted on a local/remote server (on- prem or cloud). Is also available on a managed server as part of the Databricks platform	TensorBoard is hosted locally. TensorBoard.dev is available on a managed server as a free service
How much do you have to change in your training process?	Minimal. Just a few lines of code needed for tracking	Minimal. Just a few lines of code needed for tracking	Minimal. Few lines of code needed for tracking	Minimal. Only a few lines of code need to be added	Minimal. Few lines of code needed for tracking	Minimal if already using the TensorFlow framework, else significant
Web UI or console-based?	Web UI	Web UI	Web UI	Web UI	Web UI	Web UI

MLflow Components

MLflow has four primary components:

- Tracking: an API and UI for logging parameters, metrics, results and so on when running ML codes.
- Models: to manage models from a variety of ML libraries to a variety of model serving and inference platforms.
- **Projects:** to package models in reusable and reproducible form to transfer to production.
- Model Registry: a centralized model store managing the full lifecycle of a trained model (model versioning, stage transitions etc).

Concepts: MLflow Experiment and Run

🧎 Run

- An MLflow run corresponds to a single execution of model code.
- It is a specific ML model with a certain set of hyperparameters, corresponding metrics and results.
- Each run has a unique Run ID.

Experiment

- An MLflow experiment is the primary unit of organisation and access control for MLflow runs.
- An experiment groups together runs for a specific task (all MLflow runs belong to an experiment).
- For each experiment, the results of different runs can be analysed and compared.

Example

• Create and set an experiment as the active experiment:

```
import mlflow
from mlflow.exceptions import MlflowException

EXPERIMENT_NAME = "IRIS Classifier Exp."

# The experiment must either be specified by name or by ID.
# The experiment name and ID cannot both be specified.

try:
    experiment_id = mlflow.create_experiment(name=EXPERIMENT_NAME)
    experiment = mlflow.get_experiment(experiment_id)
except MlflowException:
    print(f"Experiment {EXPERIMENT_NAME} already exists")
    experiment = mlflow.get_experiment_by_name(EXPERIMENT_NAME)

mlflow.set_experiment(experiment_name=experiment.name)
```

• Run an experiment to train a model:

```
with mlflow.start_run() as run:
    print(f"Starting run with 'run_id': {run.info.run_id}")

# Do the actual model training
# ...
```

MLflow Stores

Where runs are recorded?

MLflow runs can be recorded:

- to local files,
- to a database,
- remotely to a tracking server.

How runs and artifacts are recorded?

MLflow uses two components for storage:

- 1. **Backend store**: persists MLflow entities (runs, parameters, metrics etc).
 - Supported types: file store and database-backed store.
- 2. **Artifact store**: persists artifacts (files, models, images, model summary etc).
 - Supported types: local file paths and storage systems (e.g., AWS S3, GCS)

MLflow Storage Configuration

Common scenarios

- 1. MLflow on **localhost**:
 - Both the backend and artifact stores share a directory on the local filesystem.
- 2. MLflow on localhost with SQLite:
 - Artifacts are stored in a directory on the local filesystem, and MLflow entities are inserted in a SQLite database.
- 3. MLflow on localhost with Tracking Server:
 - Similar to scenario 1 but a tracking server is launched, listening for REST request calls.
- 4. MLflow with **remote Tracking Server**, backend and artifact stores:
 - The tracking server, backend store, and artifact store reside on remote hosts.

Example

- Use a SQLite database file as backend store,
- Use a local directory as artifact store,
- Set a tracking server to log runs remotely.

```
$ mlflow server \
    --backend-store-uri="sqlite://my_database.db" \
    --default-artifact-root="./my_mlruns/" \
    --host="0.0.0.0" \
    --port="5000"
```


Log Data to Runs

Basic things to track

- Parameters: key-value input parameters using log_param() or log_params().
- **Metrics**: key-value metrics using log_metric() or log_metrics()
- Artifacts: local files or directories as artifacts using log_artifact() or log_artifacts().

Example

```
with mlflow.start_run() as run:
    print(f"Starting run with 'run_id': {run.info.run_id}")

# Log the hyperparameters
mlflow.log_params(train_params: dict[str: Any])

# Do the actual model training
# ...

# Log the train and test accuracy
mlflow.log_metric('train_acc', train_acc)
mlflow.log_metric('test_acc', test_acc)
```

10

MLflow Model API

MLflow includes integrations with several common libraries.

Built-In Model Flavors

- PyTorch
- Keras
- TensorFlow
- Scikit-learn
- XGBoost
- ..

Key functions

- mlflow.<model-flavor>.save_model() : to save the model to a local directory.
- mlflow.<model-flavor>.log_model() : to log the model as an artifact in the current run using MLflow Tracking.
- mlflow.<model-flavor>.load_model() : to load a model from a local directory or from an artifact in a previous run.

11

Example

```
with mlflow.start_run() as run:
    print(f"Starting run with 'run_id': {run.info.run_id}")

# Log the hyperparameters
# ...

# Do the actual model training
# ...

# Log the train and test accuracy
# ...

# Log the trained model (called "logged model")
    mlflow.pytorch.log_model(pytorch_model=my_model, artifact_path='pytorch_models')
```

MLflow Model Registry Concept

Model

- An MLflow Model is created from an experiment or run that is logged with one of the model flavor's methods: mlflow.<model-flavor>.log_model().
- Once logged, this model can then be registered with the Model Registry.

Registered Model

- An MLflow Model can be registered with the Model Registry.
- A registered model has a unique name, contains versions, associated transitional stages, model lineage, and other metadata.

Register a Model

There are three ways to add a model to the registry:

```
    Using the mlflow.<model-flavor>.log_model(..., registered_model_name=<name>) method.
    Using the mlflow.register_model() method.
    Using the create_registered_model() method.
```

Example

```
import mlflow
from mlflow.tracking import MlflowClient
from mlflow.exceptions import RestException

MODEL_URI = "runs:/3f2a871bfe944121a2372586ec4ae17f/pytorch_models"
REGISTERED_MODEL_NAME = "IRIS_CLF_MLP"

# Create registered model (registery point)
client = MlflowClient()

try:
    registered_model = client.create_registered_model(REGISTERED_MODEL_NAME)
except RestException:
    print(f"Model already exists in the registry: '{REGISTERED_MODEL_NAME}'")

# Register experiment run to that model
model_version = mlflow.register_model(MODEL_URI, REGISTERED_MODEL_NAME)
```

Load a Model

- To load a previously logged model for inference or development, use mlflow.<model-flavour>.load_model(model_uri).
- The location of the model, model_uri, can be one of the following:
 - o A run-relative path: runs:/<run-id>/<run-relative-path-to-model> ,
 - A registered-model path: models:/<model-name>/<model-version> or models:/<model-name>/<stage> .

Example: Classification with PyTorch and MLflow

This example demonstrates training a classification model on the IRIS dataset, creating the model with PyTorch, logging the model to MLflow, registering the trained model, and loading it back for inference.

Step 1: Set up the tracking server

NOTE: In order to use model registry functionality, we must run the server using a database-backed backend store.

```
$ mlflow server \
    --backend-store-uri="sqlite://mlflow.db" \
    --default-artifact-root="./mlruns/" \
    --host="0.0.0.0" \
    --port="5000"
```

Now, we are able to see the tracking URI in the browser at http://0.0.0.0:5000.

Step 2: Train and Log the Model

To start a run to train a model and then log the trained model:

```
$ python s02_train_and_log.py --lr=0.005 --dropout-prob=0.1 --num-epochs=150
```

The tracking URI and the experiment name are already set (hard-coded) in the file.

To use a different tracking URI and/or change the experiment name, they can be changed in the python file:

TRACKING_SERVER_URI = "http://0.0.0.0:5000"

EXPERIMENT NAME = "Classification Experiment"

Step 3: Register the Logged Model

```
$ python s03_register \
    --logged-model-uri='runs:/0bc56a73394c4a65bdd3b9d69e3aa0f8/pytorch_models' \
    --registered-model-name='MLP_Classifier'
```


Step 4: Use the Model for Inference

Now, we can select a model, load it and make a prediction.

```
# Use model version 1
$ python s04_predict --logged-model-uri="models:/MLP_Classifier/1"
```

We can also specify the model **tag** instead of model version. For example, if we want to use a model with tag champion, we need to replace /1 with <code>@champion</code> in the model URI above.

Resources

- MLflow documentation.
- MLflow examples.
- Neptune.ai blog