B.TECH/EE/3RD SEM/ELEC 2103 /2020

ELECTRICAL & ELECTRONIC MEASUREMENT (ELEC 2103)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

(Multiple Choice Type Questions)			
1.	Choo	wing: $10 \times 1 = 10$	
	(i)	A set of readings has a wide range and th (a) low precision (c) high accuracy	erefore it has (b) high precision (d) low accuracy
	(ii)	Electrostatic instrument is suitable to me (a) high current (c) high voltage	easure (b) low voltage (d) low current
	(iii)	In an electrodynamometer type wattmet (a) the current coil is made fixed (c) any of the two coils can be made fixed	(b) the pressure coil is fixed
	(iv)	The Maxwell's Inductance-Capacitance be measurement inductance of coil if the Q f (a) less than 1 only (c) less than 1 and greater than 10 both	actor is (b) greater than 10 only
	(v)	The role of the permanent magnet in a m (a) generate power (c) balance the circuit	egger is to (b) provide voltage (d) provide field
	(vi)	Linear ramp technique is based on (a) voltage measurement (c) current measurement	(b) time measurement (d) time measurement
	(vii)	If δ is the loss angle then the dissipation fall (a) $\sin \delta$ (c) $\tan \delta$	factor is given by (b) $\cos \delta$ (d) $\cot \delta$

B.TECH/EE/3RD SEM/ELEC 2103 2020

- (viii) Phantom loading for testing of energy meter is used
 - (a) to isolate current and potential circuit
 - (b) for meter having low current rating
 - (c) for meter having high current rating
 - (d) none of the above
- (ix) A 0-300V voltmeter has an error of $\pm 2\%$ of full scale deflection. What would be the range of readings if true voltage is 30V?
 - (a) 24V-36V

(b) 29.4V-30.6V

(c) 20V-40V

(d) 28V-32V

- (x) Frequency can be measured by using
 - (a) Maxwell's bridge

(b) Schering bridge

(c) Hay's bridge

(d) Wien bridge

Group - B

- 2. (a) Compare a permanent magnet moving coil (PMMC) instrument with a dynamometer type instrument on the basis of their operation and application.
 - (b) Why controlling torque is necessary in an analog indicating instrument? What would happen in the absence of a controlling torque?
 - (c) A permanent magnet moving coil instrument has a coil of dimension 15mm x 12mm. The flux density in the air gap is $1.8 \times 10^{-6} \text{Nm/rad}$. Determine the number of turns required to produce an angular deflection of 90° when a current of 5mA is flowing through the coil.

5 + 3 + 4 = 12

- 3. (a) Derive the equation for deflection of an electrodynamometer instrument.
 - (b) In an electrodynamometer instrument the total resistance of the voltage coil circuit are 8Ω and the mutual inductance changes uniformly from -173µH at zero deflection to +175µH at full scale, the angle of full scale being 95°. If a potential difference of 100V is applied across the voltage circuit and a current of 3A at a power factor of 0.75 is passed through the current coil, what will be the deflection? The spring control constant is $4.63 \times 10^{-6}\,\text{N-m/rad}$.
 - (c) Define accuracy and precision.

5 + 5 + 2 = 12

Group - C

- 4. (a) A wattmeter has a current coil of 0.03Ω resistance and a pressure coil of 6000Ω resistance. Calculate the percentage error if the wattmeter is so connected that: (i) the current coil is on the load side, (ii) the pressure coil is on the load side, if the load takes 20A at a voltage of 220V and 0.6 power factor in each case.
 - (b) What is creeping? How is it avoided?

ELEC 2103 2

B.TECH/EE/3RD SEM/ELEC 2103 2020

(c) How friction compensation is done in an induction type energy meter?

$$5 + (2 + 2) + 3 = 12$$

- 5. (a) Draw the equivalent circuit and phasor diagram of a potential transformer (PT).
 - (b) Define ratio error and phase angle error in current transformer (CT).
 - (c) A current transformer with a bar primary has 300 turns in its secondary winding. The resistance and reactance of the secondary circuit are 1.5Ω and 1Ω respectively including the transformer winding. With 5 A flowing in the secondary winding, the magnetizing m.m.f is 100 AT and the iron loss is 1.2 watt. Determine the ratio error.

4 + 4 + 4 = 12

Group - D

- 6. (a) Draw and derive the balance equations for Schering bridge. Draw the phasor diagram under balance conditions.
 - (b) A Maxwell's capacitance bridge is used to measure an unknown inductance in comparison with capacitance. The various values at balance: R_2 = 400 Ω , R_3 = 600 Ω , R_4 = 1000 Ω , C_4 =0.5 μ F. Calculate the values of R_1 and L_1 .Calculate also the value of storage (Q) factor of coil if frequency is 1000 Hz.

(2+3+3)+4=12

- 7. (a) Write the functions of the following when the test terminals are open in a megger:
 - (i) Current coil (ii) Pressure coil
 - (b) Explain various application of DC potentiometer.
 - (c) A basic potentiometer has 200 cm slide wire with a resistance of 100 ohm. A 4 V battery in series with a variable resistance R_1 provides current through the slide wire. The standard cell potential is 1.018 V and the potentiometer is calibrated when the sliding contact is set to 101.8 cm from the zero voltage end of the slide wire.
 - (i) Calculate R₁ and the current through R₁
 - (ii) Determine the measured voltage when zero galvanometer deflection is obtained with the slide rule at 94.3 cm from the zero voltage end.

2 + 4 + 6 = 12

Group - E

- 8. (a) Draw and describe the block diagram of dual slope integrating type digital voltmeter.
 - (b) A Wheastone bridge is connected for a Varley Loop test. When the switch is in position 1 the bridge is balanced with $R_1=1000\Omega$, $R_2=2000\Omega$, $R_3=100\Omega$. When

B.TECH/EE/3RD SEM/ELEC 2103 2020

switch is in position 2 the bridge is balanced with R_1 =1000 Ω , R_2 = 2000 Ω , R_3 = 99 Ω . If the resistance of the earthed wire is 0.15 Ω /Km, how many metres from the bridge have the ground fault occurred.

6 + 6 = 12

- 9. (a) The reference voltage of a dual slope ADC is 5 V. The integrator has a capacitor of $1\mu f$ and resistance of $100~k\Omega$. The time taken to read an unknown voltage V_x is 0.2 seconds. Find V_x .
 - (b) Explain with the help of a block diagram, the various parts of an electronic multimeter.

$$6 + 6 = 12$$

Department & Section	Submission Link	
EE	https://classroom.google.com/c/MTIxOTkwOTkyOTkz/a/MjcxNTgzODE1NDY2/details	
regular students		
EE	https://classroom.google.com/c/MjQ4ODk2ODE4NzMw/a/MjcxNTg4MzQxMjcy/details	
backlog students		