

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE171003202

FCC REPORT

(Bluetooth)

Applicant: Interglobe Connection Corp

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: Star G58

Trade mark: EKO

FCC ID: 2AC7IEKOSG58

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Oct., 2017

Date of Test: 17 Oct., to 31 Oct., 2017

Date of report issued: 02 Nov., 2017

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE171003202

2 Version

Version No.	Date	Description
00	02 Nov., 2017	Original

Tested by: Mike. DU Date: 02 Nov., 2017

Test Engineer

Reviewed by: Date: 02 Nov., 2017

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		3
4		4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
		5
		6
		6
		6
_		
6	6 TEST RESULTS AND MEASUREMENT DA	TA8
		8
		9
		12
		EQUENCE
		28
		28
		32
		48
7	7 TEST SETUP PHOTO	53
8	8 EUT CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Items	Section in CFR 47	Result			
Antenna Requirement	15.203/15.247 (c)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(1)	Pass			
20dB Occupied Bandwidth	15.247 (a)(1)	Pass			
Carrier Frequencies Separation	15.247 (a)(1)	Pass			
Hopping Channel Number	15.247 (a)(1)	Pass			
Dwell Time	15.247 (a)(1)	Pass			
Spurious Emission	15.205/15.209	Pass			
Band Edge 15.247(d) Pass					
Pass: The EUT complies with the essential requirements in the standard.					

5 General Information

5.1 Client Information

Applicant:	Interglobe Connection Corp				
Address:	8228 NW 30th Terrace. Doral, Miami, FL 33122				
Manufacturer/Factory:	Interglobe Connection Limited				
Address:	UNIT1302(A), 13/F, PROSPERITY COMMERCIAL CENTRE, 982 CANTON ROAD, MONGKOK, KOWLOON, HONG KONG				

5.2 General Description of E.U.T.

Product Name:	mobile phone
Model No.:	Star G58
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-0.6 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2500mAh
AC adapter with two plugs:	Model: Star G58
	Input: AC100-240V 50/60Hz 0.15A
	Output: DC 5.0V, 1000mA

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz		
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz		
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz		
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz		
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz		
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz		
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz		
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz		
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz		
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz		
19 2421MHz 39 2441MHz 59 2461MHz									
Remark: Cl	Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.								

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 5 of 54

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure: 1010 mbar				
Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark	GFSK (1 Mbps) is the worst case mode.			

Report No: CCISE171003202

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty			
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)			
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)			
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)			
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)			
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)			

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE171003202

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:								
Test Equipment	est Equipment Manufacturer		Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020			
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2017	02-24-2018			
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2017	02-24-2018			
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2017	02-24-2018			
EMI Test Software	AUDIX	E3 6.110919b		N/A	N/A			
Pre-amplifier	HP	8447D	2944A09358	02-25-2017	02-24-2018			
Pre-amplifier	CD	PAP-1G18	11804	02-25-2017	02-24-2018			
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-25-2017	02-24-2018			
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-25-2017	02-24-2018			
Cable	ZDECL	Z108-NJ-NJ-81	1608458	02-25-2017	02-24-2018			
Cable	MICRO-COAX	MFR64639	K10742-5	02-25-2017	02-24-2018			
Cable	SUHNER	SUCOFLEX100	58193/4PE	02-25-2017	02-24-2018			

Conducted Emission:								
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	02-25-2017	02-24-2018			
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	02-25-2017	02-24-2018			
LISN	CHASE	MN2050D	1447	02-25-2017	02-24-2018			
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018			
Cable	HP	10503A	N/A	02-25-2017	02-24-2018			
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A			

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an External antenna which permanently attached, and the best case gain of the antenna is -0.6dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 1	5 207					
'							
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz, Sweep time=auto					
Limit:	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the log	arithm of the frequency.					
Test setup:	Reference	Plane					
	E.U.T Equipment E.U.T EMI Receiver Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table Impedence Stabilization Network						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Hopping mode						
Test results:	Pass						

Measurement Data:

Line:

Site : CCIS Shielding Room

Condition : FCC PART15 B QP LISN LINE EUT : Mobile Phone

Model : EKO Star G58
Test Mode : BT mode
Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

enark	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
-	MHz	dBu₹	dB	₫₿	dBu√	dBuV	dB	
1	0.178	41.33	-0.54	10.77	51.56	64.59	-13.03	QP
2	0.182	24.57	-0.53	10.77	34.81	54.42	-19.61	Average
3	0.234	34.45	-0.52	10.75	44.68		-17.62	
2 3 4 5 6 7 8 9	0.242	19.99	-0.52	10.75	30.22	52.04	-21.82	Average
5	0.518	32.93	-0.49	10.76	43.20	56.00	-12.80	QP
6	0.601	21.61	-0.48	10.77	31.90	46.00	-14.10	Average
7	0.904	24.20	-0.49	10.84	34.55	46.00	-11.45	Average
8	0.968	22.54	-0.49	10.86	32.91	46.00	-13.09	Average
9	1.032	35.16	-0.49	10.87	45.54	56,00	-10.46	QP
10	1.111	36.40	-0.48	10.88	46.80	56.00	-9.20	QP
11	1.160	36.24	-0.48	10.89	46.65	56.00	-9.35	QP
12	1.269	22.16	-0.47	10.90	32.59	46.00	-13.41	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Mobile Phone EUT : EKO Star G58 Model Test Mode : BT mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	₫₿	₫B	dBu∀	dBu∛	₫B	
1	0.178	41.11	-0.36	10.77	51.52	64.59	-13.07	QP
2	0.182	22.87	-0.35	10.77	33.29	54.42	-21.13	Average
3	0.238	37.05	-0.33	10.75	47.47	62.17	-14.70	QP
2 3 4 5 6 7 8 9	0.238	18.80	-0.33	10.75	29.22	52.17	-22.95	Average
5	0.365	19.52	-0.32	10.73				Average
6	0.518	35.91	-0.30	10.76	46.37	56.00	-9.63	QP
7	0.608	18.70	-0.30	10.77	29.17	46.00	-16.83	Average
8	0.647	34.39	-0.30	10.77	44.86	56.00	-11.14	QP
9	0.647	18.77	-0.30	10.77	29.24	46.00	-16.76	Average
10	1.043	18.24	-0.29	10.88	28.83			Average
11	1.106	36.58	-0.29	10.88	47.17	56.00	-8.83	QP
12	1.166	36.91	-0.28	10.89	47.52	56.00	-8.48	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
	GFSK mode					
Lowest	0.15	30.00	Pass			
Middle	1.49	30.00	Pass			
Highest	2.05	30.00	Pass			
	π/4-DQPSK ι	mode				
Lowest	-0.30	21.00	Pass			
Middle	1.01	21.00	Pass			
Highest	1.56	21.00	Pass			
	8DPSK mode					
Lowest	-0.06	21.00	Pass			
Middle	1.22	21.00	Pass			
Highest	1.74	21.00	Pass			

Test plot as follows:

Modulation mode: GFSK

Date: 18.OCT.2017 10:51:23

Lowest channel

Date: 18.0CT.2017 10:51:06

Date: 18.OCT.2017 10:50:48

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Date: 18.OCT.2017 10:49:16

Lowest channel

Date: 18.0CT.2017 10:49:39

Middle channel

Date: 18.0CT.2017 10:50:06

Highest channel

Date: 18.OCT.2017 10:48:52

Lowest channel

Date: 18.0CT.2017 10:48:27

Middle channel

Date: 18.0CT.2017 10:48:02

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	20dB Occupy Bandwidth (kHz)			
rest channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	828	1120	1168	
Middle	832	1120	1164	
Highest	848	1120	1168	

Test plot as follows:

Modulation mode: GFSK

Date: 18.OCT.2017 10:52:51

Lowest channel

Date: 18.OCT.2017 10:54:39

Date: 18.OCT.2017 10:55:31

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Date: 18.OCT.2017 10:56:17

Lowest channel

Date: 18.0CT.2017 10:57:01

Middle channel

Date: 18.0CT.2017 10:58:44

Highest channel

Date: 18.OCT.2017 10:59:49

Lowest channel

Date: 18.OCT.2017 11:00:34

Middle channel

Date: 18.OCT.2017 11:01:32

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
	GFSK					
Lowest	1004	565.33	Pass			
Middle	1004	565.33	Pass			
Highest	1004	565.33	Pass			
	π/4-DQPSK mode					
Lowest	1004	746.67	Pass			
Middle	1004	746.67	Pass			
Highest 1004		746.67	Pass			
8DPSK mode						
Lowest	1004	778.67	Pass			
Middle	1004	778.67	Pass			
Highest	1004	778.67	Pass			

Note: According to section 6.4

rtote. / toporaling to booken b. i				
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)		
GFSK	848	565.33		
π/4-DQPSK	1120	746.67		
8DPSK	1168	778.67		

Test plot as follows:

Modulation mode: GFSK

Date: 18.OCT.2017 11:03:04

Lowest channel

Date: 18.OCT.2017 11:04:02

Date: 18.OCT.2017 11:04:45

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Date: 18.0CT.2017 11:07:53

Lowest channel

Date: 18.0CT.2017 11:06:57

Middle channel

Date: 18.0CT.2017 11:05:52

Highest channel

Date: 18.OCT.2017 11:10:14

Lowest channel

Date: 18.0CT.2017 11:11:12

Middle channel

Date: 18.0CT.2017 11:12:12

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

Date: 18.OCT.2017 11:19:57

Date: 18.0CT.2017 11:17:12

π/4-DQPSK

Date: 18.0CT.2017 11:14:25

8DPSK

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB DA00-705		
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	124.80		
GFSK	DH3	267.84	0.4	Pass
	DH5	313.17		
π/4-DQPSK	2-DH1	126.72	0.4	Pass
	2-DH3	265.92		
	2-DH5	311.47		
	3-DH1	126.08		
8DPSK	3-DH3	265.92	0.4	Pass
	3-DH5	316.59		

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.390*(1600/(2*79))*31.6=124.80ms DH3 time slot=1.674*(1600/(4*79))*31.6=267.84ms DH5 time slot=2.936*(1600/(6*79))*31.6=313.17ms

Test plot as follows:

DH1

Date: 18.0CT.2017 11:24:01

Date: 18.OCT.2017 11:25:49

DH3

DF

Modulation mode: π/4-DQPSK

Date: 18.0CT.2017 11:22:30

2-DH1

Date: 18.0CT.2017 11:24:45

2-DH3

Date: 18.0CT.2017 11:31:00

DH5 2-DH5

Date: 18.OCT.2017 11:23:16

3-DH1

Date: 18.OCT.2017 11:25:15

3-DH3

Date: 18.OCT.2017 11:30:14

3-DH5

Report No: CCISE171003202

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9-1 = 511$ bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Tark Data Sarana	500 Post 45 0 0 order 45 047 (1)					
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and DA00-705					
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Non-hopping mode and hopping mode					
Test results:	Pass					

Test plot as follows:

GFSK

Lowest Channel

Date: 19.0CT.2017 14:03:59 Date: 19.0CT.2017 14:20:23

No-hopping mode

Hopping mode

Date: 19.OCT.2017 14:14:36

No-hopping mode

Hopping mode

Date: 19.OCT.2017 14:17:52

π/4-DQPSK

Lowest Channel

Date: 19.0CT.2017 14:07:16

No-hopping mode

Hopping mode

Highest Channel

Date: 19.OCT.2017 14:22:59

Date: 19.OCT.2017 14:11:52

Date: 19.0CT.2017 14:13:01

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

Date: 19.0CT.2017 14:08:21

No-hopping mode

Hopping mode

Date: 19.OCT.2017 14:26:23

Date: 19.OCT.2017 14:10:30

Date: 19.0CT.2017 14:09:20

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Toot Poquirement:		Continu 4	5 200	and 15 205			
Test Requirement: Test Method:	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10: 2013						
	2.3GHz to 2.5GHz						
Test Frequency Range:							
Test Distance:	3m						
Receiver setup:	Frequency	Detecto			VBW		Remark
	Above 1GHz	Peak		1MHz		1Hz	Peak Value
	_	RMS		1MHz	3MHz		Average Value
Limit:	Frequen	it (dBuV/m @3	3m)	<i>'</i>			
	Above 10	Hz -		54.00		Average Value	
Test setup:				74.00		ŀ	Peak Value
	Horn Anienna Antenna Tower Ground Reference Plane Test Receiver Amplier Controller						
Test Procedure:	ground at a determine the second second at a determine the second	3 meter cane position as set 3 me inch was eading. Seeiver system and width we inch level of ed, then test be reported in would be	was to turned the Esting of the Esting of the Esting of the re-testing of the re-testing of the testing of the	r. The table was en highest radial away from the ed on the top of the ed on the top of the ed on the EUT was ed from 0 degrees set to Peak aximum Hold I EUT in peak moduld be stoppherwise the emplement of the ed on t	ter to for the frantenials arranged as arranged by the frantenials arranged by the frantenials from the frantenials frantenials from the frantenials f	ted 360 erence-liable-ha four me ield stre na are s anged to 1 mete 360 de t Functi as 10dE d the pe s that d ng peak	receiving eight antenna sters above the ength. Both set to make the coits worst case are to 4 meters grees to find the sion and solver than the eak values of the lid not have a, quasi-peak or
Test Instruments:	Refer to section			- 1			
Test mode:	Non-hopping m	node					
Test results:	Passed						
	•						

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

: Mobile Phone EUT Model : EKO Star G58 Test mode : DH1-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55% 101KPa

Test Engineer: Mike REMARK

		Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	The same of the	dB/m	San Property and		100000000000000000000000000000000000000	- Charles		
1 2	2390.000 2390.000								

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Mobile Phone Model : EKO Star G58
Test mode : DHI-L mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Mike REMARK

	Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
- 19	MHz	dBu₹	dB/m	dB	₫B	dBuV/m	dBuV/m	₫B	
	2390, 000 2390, 000								Peak Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Mobile Phone Condition

EUT Model : EKO Star G58
Test mode : DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C

Huni:55% 101KPa

Test Engineer: Mike REMARK :

mar	w :	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	−−−dB	dBuV/m	dBu∀/m	₫₿	
1 2	2483.500 2483.500		25.66 25.66	000.00		48.18 38.54			Peak Average

Vertical:

Site : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

: Mobile Phone

Model : EKO Star G58

Test mode : DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Mike
REMARK :

1 2

Freq	ReadAntenna Cabl Freq Level Factor Los		Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	MHz	dBuV	dB/m	₫₿	dB	dBuV/m	dBuV/m	<u>dB</u>	****	-
	2483.500 2483.500	19.39 8.09	25.66 25.66	4.81 4.81	0.00 0.00	49.86 38.56	74.00 54.00	-24.14 -15.44	Peak Average	

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

Model : EKO Star G58
Test mode : 2DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Mike
REMARK

Huni:55% 101KPa

EMAR	CK :	Read	Ant enna	Cable	Presmo		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∇	dB/m	dB	dB	dBuV/m	dBuV/m	d₿	
1 2	2390.000 2390.000								

Site Condition EUT : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

: Mobile Phone Model : EKO Star G58 Test mode : 2DH1-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55% 101KPa

Test Engineer: Mike REMARK :

MOI!	100	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∛	dB/m	₫₿	d₿	dBuV/m	dBuV/n	₫B	
1 2	2390.000 2390.000					49.08 37.51			

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Mobile Phone Model : EKO Star G58
Test mode : 2DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK :

			ReadAntenna Level Factor		Cable Preamp Loss Factor				
	MHz	₫₿u₹	<u>dB</u> /m	dB	₫₿	dBuV/m	dBuV/m	dB	
1 2	2483,500 2483,500	18.58 8.09	25, 66 25, 66	4.81 4.81	0.00 0.00	49.05 38.56	74.00 54.00	-24.95 -15.44	Peak Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Mobile Phone Model : EKO Star G58
Test mode : 2DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C

Huni:55% 101KPa

Test Engineer: Mike

REMARK

(TO 1/25)	Freq		Antenna Factor						Remark
	MHz	dBuV	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

8DPSK mode

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

: Mobile Phone : EKO Star G58 EUT Model Test mode : 3DH1-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK

2

ia.	/V :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
	2390,000 2390,000		25.45 25.45			47.20 37.52			Peak Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Mobile Phone Model : EKO Star G58
Test mode : 3DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C

Huni:55% 101KPa

Test Engineer: Mike REMARK

נמונט	0000	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB/n	₫B	dB	dBuV/n	dBuV/m	dB	
1 2	2390,000 2390,000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

: Mobile Phone

Model : EKO Star G58

Test mode : 3DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Mike
REMARK :

EMA	nn :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	₫B	d₿	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								Peak Average

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

EUT : Mobile Phone Model : EKO Star G58 Test mode : 3DH1-H mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK :

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	MHz dBuV		₫B	₫B	dBuV/m	dBuV/m	₫₿	
1 2	2483, 500 2483, 500								

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

 $\pi/4$ -DQPSK

Lowest channel

Test plot as follows:

GFSK

30MHz~25GHz

Middle channel

Date: 18.0CT.2017 10:37:30

Date: 18.OCT.2017 10:42:53

Date: 18.OCT.2017 10:38:50

Date: 18.0CT.2017 10:40:12

30MHz~25GHz Highest channel

30MHz~25GHz

30MHz~25GHz Highest channel

Date: 18.0CT.2017 10:42:05

Date: 18.OCT.2017 10:41:22

30MHz~25GHz

8DPSK

Lowest channel **RM* 100 Mts | Marker* 1 (71) | -44.12 dbm | -44.12

Date: 18.0CT.2017 10:44:26

30MHz~25GHz Middle channel

Date: 18.0CT.2017 10:45:35

30MHz~25GHz Highest channel

Date: 18.0CT.2017 10:46:29

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission Test Requirement:	FCC Part 15 C	Section 15	.209						
Test Method:		ANSI C63.10: 2013							
Test Frequency Range:	9 kHz to 25 GH								
Test Distance:	3m								
Receiver setup:	Frequency	Detecto	or	RBW	VBW	' Rema	ırk		
·	30MHz-1GHz	Quasi-pe		120kHz	300kl	Iz Quasi-peal	k Value		
	4011	Peak		1MHz	ЗМН				
	Above 1GHz	RMS		1MHz	ЗМН	z Average	Value		
Limit:	Frequency Limit (dBuV/m @3m) Remark								
	30MHz-88N	ИНz		40.0		Quasi-peak \	Value		
	88MHz-216	88MHz-216MHz 43.5 Quasi-peak Value							
	216MHz-960MHz 46.0 Quasi-peak Value								
	960MHz-10	SHz		54.0		Quasi-peak \	Value		
	54.0 Average Value								
	Above 101	Above 1GHz 74.0 Peak Value							
Test setup:	7/////	Jame Jame James Ja	4m	Ground Reference Plane	Horn Antenna Amplifier Cor	Antenna Tower Search Antenna RF Test Receiver Antenna Tower			

1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)
/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Refer to section 5.8 for details
Non-hopping mode
Pass
 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL : Mobile Phone Condition

EUT : EKO Star G58 Model Test mode : BT mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Mike REMARK

AAAMA									
	Freq		Antenna Factor						
_	MHz	dBu∜	dB/m	d₿	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	81.497	45.83	8.92	1.72	29.63	26.84	40.00	-13.16	
2	89.905	40.81	10.60	2.04	29.57	23.88	43.50	-19.62	
3	175.037	40.65	9.30	2.69	29.01	23.63	43.50	-19.87	
4	230.099	38.47	11.51	2.83	28.65	24.16	46.00	-21.84	
5	549.020	31.91	17.07	3.88	29.09	23.77	46.00	-22.23	
6	810.265	31.58	19.81	4.32	28.16	27.55	46.00	-18.45	

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL Condition

: Mobile Phone

Model : EKO Star G58
Test mode : BT mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Mike
REMARK :

emar.	23								
	Freq		Antenna Factor				Limit Line		
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1	104.903	35.15	12.12	2.00	29.49	19.78	43.50	-23.72	
2	187.753	45.43	10.22	2.78	28.92	29.51	43.50	-13.99	
3	206, 398	42.82	11.30	2.86	28.79	28.19	43.50	-15.31	
4	308.913	35.76	13.48	2.97	28.47	23.74	46.00	-22.26	
5	631.688	29.41	18.58	3.89	28.84	23.04	46.00	-22.96	
6	810.265	36.31	19.81	4.32	28.16	32.28	46.00	-13.72	

Above 1GHz:

Te	st channel:		Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.55	30.85	6.80	41.81	42.39	74.00	-31.61	Vertical
4804.00	47.07	30.85	6.80	41.81	42.91	74.00	-31.09	Horizontal
Test channel:			Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.42	30.85	6.80	41.81	32.26	54.00	-21.74	Vertical
4804.00	38.10	30.85	6.80	41.81	33.94	54.00	-20.06	Horizontal

Te	st channel		Middle		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	46.72	31.20	6.86	41.84	42.94	74.00	-31.06	Vertical
4882.00	46.08	31.20	6.86	41.84	42.30	74.00	-31.70	Horizontal
Test channel:			Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	35.62	31.20	6.86	41.84	31.84	54.00	-22.16	Vertical
4882.00	36.60	31.20	6.86	41.84	32.82	54.00	-21.18	Horizontal

Te	st channel:		Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.08	31.63	6.91	41.87	42.75	74.00	-31.25	Vertical
4960.00	47.42	31.63	6.91	41.87	44.09	74.00	-29.91	Horizontal
Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.60	31.63	6.91	41.87	33.27	54.00	-20.73	Vertical
4960.00	37.20	31.63	6.91	41.87	33.87	54.00	-20.13	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.