Section 1.6 - Surface Area

Consider a curve y = f(x) on an interval [a, b], where f is a nonnegative function with a continuous first derivative on [a, b]. Revolving the curve about the x-axis to generate a surface of revolution.

Consider the graph of $f(x) = \frac{r}{h}x$ on the interval [0, h], where h > 0 and r > 0. When this line segment is revolved about the *x-axis*, it generates the surface of a cone of radius r and height h,

The surface area of a right circular cone, excluding the base, is $\pi r \sqrt{r^2 + h^2} = \pi r \ell$

One way to derive the formula for the surface area of a cone to cut the cone on a line from its base to its vertex. When the cone is unfolded it forms a sector of a circular disk of radius ℓ . So the area of the sector, which is also the surface area of the cone, is $\pi \ell^2 \frac{r}{\ell} = \pi r \ell$

Definition

If the function $f(x) \ge 0$ is continuously differentiable on [a, b], the area of the surface generated by revolving the graph of y = f(x) about the *x-axis* is

$$S = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = 2\pi \int_{a}^{b} f(x) \sqrt{1 + \left(f'(x)\right)^2} dx$$

Example

Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 3$, about the *x-axis*. **Solution**

$$\frac{dy}{dx} = \frac{1}{\sqrt{x}}, \quad a = 1, \quad b = 3$$

$$\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \left(\frac{1}{\sqrt{x}}\right)^2}$$

$$= \sqrt{1 + \frac{1}{x}}$$

$$= \sqrt{\frac{x+1}{x}}$$

$$S = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$= 4\pi \int_{1}^{3} (\sqrt{x}) \frac{\sqrt{x+1}}{\sqrt{x}} dx$$

$$= 4\pi \int_{1}^{3} (x+1)^{1/2} dx$$

$$= \frac{8\pi}{3} (x+1)^{3/2} \Big|_{1}^{3}$$

$$= \frac{8\pi}{3} (4^{3/2} - 2^{3/2})$$

$$= \frac{8\pi}{3} (8 - 2\sqrt{2})$$

$$= \frac{16\pi}{3} (4 - \sqrt{2}) \quad unit^2$$

Example

A spherical cap is produced when a sphere of radius a is sliced by a horizontal plane that is a vertical distance h below the north pole of the sphere, where $0 \le h \le 2a$. We take the spherical cap to be that part of the sphere above the plane, so that h is the depth of the cap. Show that the area of a spherical cap of depth h cut from sphere of radius a is $2\pi ah$.

Solution

To generate the spherical surface, we revolved the curve $f(x) = \sqrt{a^2 - x^2}$ on the interval [-a, a] about the *x-axis*.

The spherical cap of height h corresponds to that part of the sphere on the interval [-a+h, a] for $0 \le h \le 2a$

$$f'(x) = -x \left(a^2 - x^2\right)^{-1/2}$$

$$1 + f'(x)^2 = 1 + \frac{x^2}{a^2 - x^2} = \frac{a^2}{a^2 - x^2}$$

$$S = 2\pi \int_a^b f(x) \sqrt{1 + f'(x)^2} dx$$

$$= 2\pi \int_{a-h}^a \sqrt{a^2 - x^2} \frac{a}{\sqrt{a^2 - x^2}} dx$$

$$= 2\pi \int_{a-h}^a a dx$$

$$= 2\pi ax \begin{vmatrix} a \\ a-h \end{vmatrix}$$

$$= 2\pi ah \quad unit^2$$

Surface Area for revolution about the y-axis

If $x = g(y) \ge 0$ is continuously differentiable on [c, d], the area of the surface generated by revolving the graph of x = g(y) about the y-axis is

$$S = \int_{c}^{d} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy = \int_{c}^{d} 2\pi g(y) \sqrt{1 + \left(g'(y)\right)^{2}} dy$$

Example

The line segment x = 1 - y, $0 \le y \le 1$, is revolved about the *y*-axis to generate the cone. Find its lateral surface area (which excludes the base area)

Solution

Lateral Surface Area =
$$\frac{ba \text{ se } circumference}{2} \times slant \ height = \pi \sqrt{2}$$

$$x = 1 - y$$
 $\frac{dx}{dy} = -1$, $c = 0$, $d = 1$

$$S = \int_{c}^{d} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

$$= \int_{0}^{1} 2\pi (1 - y) \sqrt{1 + (-1)^2} dy$$

$$= 2\pi \int_{0}^{1} (1 - y) \sqrt{2} dy$$

$$= 2\pi \sqrt{2} \left[y - \frac{y^2}{2} \right]_{0}^{1}$$

$$= 2\pi \sqrt{2} \left(1 - \frac{1}{2} \right)$$

$$= \pi \sqrt{2} \quad unit^2$$

Example

Consider the function $y = \ln\left(\frac{x + \sqrt{x^2 - 1}}{2}\right)$

Find the area of the surface generated when the part of the curve between the points $\left(\frac{5}{4}, 0\right)$ and $\left(\frac{17}{8}, \ln 2\right)$ is revolved about *y-axis*.

Solution

$$y = \ln\left(\frac{x + \sqrt{x^2 - 1}}{2}\right) \rightarrow e^y = \frac{x + \sqrt{x^2 - 1}}{2}$$

$$\left(2e^y - x\right)^2 = \left(\sqrt{x^2 - 1}\right)^2$$

$$4e^{2y} - 4xe^y + x^2 = x^2 - 1$$

$$4xe^y = 4e^{2y} + 1 \Rightarrow x = e^y + \frac{1}{4}e^{-y} = g(y)$$

$$g'(y) = e^y - \frac{1}{4}e^{-y}$$

$$\sqrt{1 + g'(y)^2} = \sqrt{1 + \left(e^y - \frac{1}{4}e^{-y}\right)^2}$$

$$= \sqrt{1 + e^{2y} - \frac{1}{2} + \frac{1}{16}e^{-2y}}$$

$$= \sqrt{e^{2y} + \frac{1}{2} + \frac{1}{16}e^{-2y}}$$

$$= \sqrt{e^y + \frac{1}{4}e^{-y}}$$

$$S = 2\pi \int_0^{\ln 2} \left(e^y + \frac{1}{4}e^{-y}\right)^2 dy$$

$$= 2\pi \int_0^{\ln 2} \left(e^2 + \frac{1}{2} + \frac{1}{16}e^{-2y}\right) dy$$

$$= 2\pi \left(\frac{1}{2}e^{2y} + \frac{y}{2} - \frac{1}{32}e^{-2y}\right) \Big|_0^{\ln 2}$$

$$= 2\pi \left(2 + \frac{\ln 2}{2} - \frac{1}{128} - \frac{1}{2} + \frac{1}{32}\right)$$

$$= \pi \left(\frac{195}{64} + \ln 2\right) \quad unit^2$$

Exercises Section 1.6 – Surface Area

- 1. Find the lateral (side) surface area of the cone generated by revolving the line segment $y = \frac{x}{2}$, $0 \le x \le 4$, about the *x*-axis. Check your answer with the geometry formula Lateral surface area = $\frac{1}{2} \times ba$ se circumference \times slant height
- 2. Find the lateral surface area of the cone generated by revolving the line segment $y = \frac{x}{2}$, $0 \le x \le 4$, about the y-axis. Check your answer with the geometry formula Lateral surface area = $\frac{1}{2} \times ba$ se circumference \times slant height
- 3. Find the lateral surface area of the cone frustum generated by revolving the line segment $y = \frac{x}{2} + \frac{1}{2}$, $1 \le x \le 3$, about the *x*-axis. Check your answer with the geometry formula Frustum surface area = $\pi \left(r_1 + r_2 \right) \times slant\ height$
- **4.** Find the lateral surface area of the cone frustum generated by revolving the line segment $y = \frac{x}{2} + \frac{1}{2}$, $1 \le x \le 3$, about the *y*-axis. Check your answer with the geometry formula Frustum surface area = $\pi \left(r_1 + r_2 \right) \times slant\ height$

Find the area of the surface generated by revolving the curve about the x-axis

5.

6.

7.
$$y = \frac{x^3}{9}, \quad 0 \le x \le 2$$

8.
$$y = \sqrt{x+1}, \quad 1 \le x \le 5$$

9.
$$y = \sqrt{2x - x^2}$$
, $0.5 \le x \le 1.5$

10.
$$y = 3x + 4, \quad 0 \le x \le 6$$

11.
$$y = 12 - 3x$$
, $1 \le x \le 3$

12.
$$y = x^{3/2} - \frac{1}{3}x^{1/2}, \quad 1 \le x \le 2$$

13.
$$y = \sqrt{4x+6}, \quad 0 \le x \le 5$$

14.
$$y = \frac{1}{4} \left(e^{2x} + e^{-2x} \right), -2 \le x \le 2$$

15.
$$y = \frac{1}{8}x^4 + \frac{1}{4x^2}, \quad 1 \le x \le 2$$

16.
$$y = 8\sqrt{x}, 9 \le x \le 20$$

17.
$$y = x^3$$
, $0 \le x \le 1$

18.
$$y = \frac{1}{3}x^3 + \frac{1}{4x}, \quad \frac{1}{2} \le x \le 2$$

19.
$$y = \sqrt{5x - x^2}$$
, $1 \le x \le 4$

20.
$$y = \frac{1}{6}x^3 + \frac{1}{2x}, \quad 1 \le x \le 2$$

21.
$$y = \sqrt{4 - x^2}$$
, $-1 \le x \le 1$

22.
$$y = \sqrt{9 - x^2}$$
, $-2 \le x \le 2$

Find the area of the surface generated by revolving the curve about the y-axis

23.

24.

25.
$$y = (3x)^{1/3}; 0 \le x \le \frac{8}{3}$$

26.
$$x = \sqrt{12y - y^2}$$
; $2 \le y \le 10$

27.
$$x = 4y^{3/2} - \frac{1}{12}y^{1/2}; \quad 1 \le y \le 4$$

28.
$$y = 1 - \frac{1}{4}x^2$$
, $0 \le x \le 2$

29.
$$y = \frac{1}{2}x + 3$$
, $1 \le x \le 5$

- **30.** A right circular cone is generated by revolving the region bounded by $y = \frac{3}{4}x$, y = 3, and x = 0 about the *y-axis*. Find the lateral surface area of the cone.
- 31. A right circular cone is generated by revolving the region bounded by $y = \frac{h}{r}x$, y = h, and x = 0 about the *y-axis*. Verify that the lateral surface area of the cone is $S = \pi r \sqrt{r^2 + h^2}$
- **32.** Find the area of the zone of a sphere formed by revolving the graph of $y = \sqrt{9 x^2}$, $0 \le x \le 2$, about the *y-axis*
- **33.** Find the area of the zone of a sphere formed by revolving the graph of $y = \sqrt{r^2 x^2}$, $0 \le x \le a$, about the *y-axis*. Assume that a < r.
- **34.** Part of the curve y = 4x 1 between the points (1, 3) and (4, 15) about y-axis
- **35.** Part of the curve $y = \frac{1}{2} \ln \left(2x + \sqrt{4x^2 1} \right)$ between the points $\left(\frac{1}{2}, 0 \right)$ and $\left(\frac{17}{16}, \ln 2 \right)$ about y-axis

- **36.** $y = 1 + \sqrt{1 x^2}$ between the points (1, 1) and $\left(\frac{\sqrt{3}}{1}, \frac{3}{2}\right)$ about y-axis
- **37.** Find the area of the surface generated by $x = 2\sqrt{4 y}$ $0 \le y \le \frac{15}{4}$, y axis

- **38.** $y = \frac{1}{3}(x^2 + 2)^{3/2}$, $0 \le x \le \sqrt{2}$; y axis (Hint: Express $ds = \sqrt{dx^2 + dy^2}$ in terms of dy, and evaluate the integral $S = \int 2\pi y \, ds$ with appropriate limits.)
- **39.** Find the area of the surface generated by $x = \sqrt{2y-1}$ $\frac{5}{8} \le y \le 1$, y axis

40. Find the area of the surface generated by revolving the curve $x = \frac{1}{2} \left(e^y + e^{-y} \right)$, $0 \le y \le \ln 2$, about y-axis

41. Did you know that if you can cut a spherical loaf of bread into slices of equal width, each slice will have the same amount of crust? To see why, suppose the semicircle $y = \sqrt{r^2 - x^2}$ shown here is revolved about the *x*-axis to generate a sphere. Let *AB* be an arc of the semicircle that lies above an interval of length *h* on the *x*-axis. Show that the area swept out by *AB* does not depend on the location of the interval. (It does depend on the length of the interval.)

- **42.** The curved surface of a funnel is generated by revolving the graph of $y = f(x) = x^3 + \frac{1}{12x}$ on the interval [1, 2] about the *x-axis*. Approximately what volume of paint is needed to cover the outside of the funnel with a layer of paint 0.05 *cm* thick? Assume that *x* and *y* measured in centimeters.
- **43.** When the circle $x^2 + (y a)^2 = r^2$ on the interval [-r, r] is revolved about the *x-axis*, the result is the surface of a torus, where 0 < r < a. Show that the surface area of the torus is $S = 4\pi^2 ar$.
- **44.** A 1.5-mm layer of paint is applied to one side. Find the approximate volume of paint needed of the spherical zone generated when the curve $y = \sqrt{8x x^2}$ on the interval [1, 7] is revolved about the *x-axis*. Assume *x* and *y* are in *meters*.
- **45.** A 1.5-mm layer of paint is applied to one side. Find the approximate volume of paint needed of the spherical zone generated when the upper portion of the circle $x^2 + y^2 = 100$ on the interval [-8, 8] is revolved about the *x-axis*. Assume *x* and *y* are in *meters*.
- **46.** Suppose a sphere of radius r is sliced by two horizontal planes h units apart. Show that the surface area of the resulting zone on the sphere is $2\pi h$, independent of the location of the cutting planes.

47. An ornamental light bulb is designed by revolving the graph of $y = \frac{1}{3}x^{1/2} - x^{3/2}$, $0 \le x \le \frac{1}{3}$ about the *x-axis*, where *x* and *y* are mesured in *feet*. Find the surface area of the bulb and use the result to approximate the amount of glass needed to make the bulb.

(Assume that the glass is 0.015 *inch* thick)

