GÖRÜNTÜ İŞLEME

Dersin Amacı

- Bu ders sayısal görüntü işlemenin temelleri ve uygulama alanlarını kapsamaktadır.
- Ders içeriği
 - · işaretlerin ayrıklaştırılması
 - o sayısal görüntü işlemeye giriş temelleri
 - o görüntü işlemedeki temel dönüşüm ve süzgeçleme yöntemleri
 - o görüntü iyileştirme yaklaşımları
 - o uzamsal ve frekans uzayında görüntü işleme teknikleri
 - o görüntü onarımı ve yeniden oluşturulmasına dair temel teknikler
 - o morfolojik işlemler, bölütleme ve nesne tanıma

Giriş

- Sayısal görüntü işleme bilgisayar algoritmaları kullanarak sayısal resimler üzerinde görüntü işlemenin gerçekleştirilmesidir.
- Sayısal sinyal işlemenin bir alt konusu olarak kabul edilen sayısal görüntü işleme, analog görüntü işlemeye göre birçok avantaja sahiptir.
- Sayısal görüntü işlemede giriş verilerine uygulanabilecek algoritmalar daha fazladır ve analog görüntü işlemeye göre işlem sırasında ortaya çıkabilecek gürültü artışı ya da sinyal bozulması gibi problemler önlenebilir.
- Görüntüler iki boyuttan daha fazla boyutta tanımlanabildiğinden beri sayısal görüntü işleme çok boyutlu sistemler şekline modellenebilmektedir.

Kullanım Alanları

Sayısal görüntü işleme oldukça karmaşık algoritmaların uygulanmasına olanak verir, bu sayede basit konularda ileri teknoloji içeren performans sağlar ve analog için imkansız olan gerçekleştirimleri sunar.

- Sayısal sinyal işlemenin kullanım alanları şu şekildedir:
 - Sınıflandırma
 - Özellik çıkarımı
 - Örüntü tanıma
 - Projeksiyon
 - Çok ölçekli sinyal analizi

Sayısal sinyal işleme aşağıda belirtilen konularda da kullanılmaktadır:

- Görüntü sayısallaştırma
- Doğrusal süzgeçleme
- Temel bileşenler analizi
- Bağımsız bileşen analizi
- Saklı Markov modelleri
- Yön bağımlı(anizotropik) dağılım
- Kısmi diferansiyel denklemler
- Öz örgütlemeli haritalar
- Sinir ağları
- Wavelet