Exercises for 2.4-2.6

- 1. Produce the syntax tree for each of the following:
 - (a) $(P \wedge Q) \wedge (P \vee Q)$

(b) $(S \wedge T) \vee \neg R$

(c) $P \wedge (Q \wedge R)$

(d) $(R \vee S) \wedge T$

(e) $R \vee (S \wedge T)$

(f) $\neg (P \lor R) \lor (Q \land S)$

2. Give the truth table for $P \wedge (Q \wedge R)$.

	P	Q	R	$Q \wedge R$	$P \wedge (Q \wedge R)$
-	T	T	T	T	T
	F	T	T	T	F
	T	F	T	F	F
Answer Key	F	F	T	F	F
	T	T	F	F	F
	F	T	F	F	F
	T	F	F	F	F
	F	F	F	F	F
				'	

3. Give the truth table for $(R \vee S) \wedge T$.

	R	S	T	$R \vee S$	$(R \vee S) \wedge T$
-	T	T	T	T	T
	F	T	T	T	T
	T	F	T	T	T
Answer Key	F	F	T	F	F
	T	T	F	T	F
	F	T	F	T	F
	T	F	F	T	F
	F	F	F	F	F

4. Give the truth table for $R\vee (S\wedge T)$.

	R	S	T	$S \wedge T$	$R \vee (S \wedge T)$
_	T	T	T	T	T
	F	T	T	T	T
	T	F	T	F	T
Answer Key	F	F	T	F	F
	T	T	F	F	T
	F	T	F	F	F
	T	F	F	F	T
	F	F	F	F	F

5. Give the truth table for $\neg(P \land Q)$.

	P	Q	$P \wedge Q$	$\neg (P \land Q)$
	T	T	T	F
Answer Key	F	T	F	T
	T	F	F	T
	F	F	F	T
				•

6. Give the truth table for $\neg P \vee \neg Q$.

Answer Key $egin{array}{c cccccc} T & T & F & F & F \\ \hline T & T & T & F & F \\ T & F & F & T & T \\ \hline F & F & T & T & T \\ \hline \end{array}$		P	Q	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$
T F F T T		T	T	F	F	F
$I F \mid F \mid I \mid \mid I$	Answer Key	F	T	T	F	T
F F T T T		T	F	F	T	T
		F	F	T	T	T

7. Give the truth table for $\neg(R\vee S)$.

	R	S	$R \vee S$	$\neg (R \lor S)$
	T	T	T	F
Answer Key	F	T	T	F
•	T	F	T	F
	F	F	F	T
			'	III

8. Give the truth table for $\neg R \land \neg S$.

	R	S	$\neg R$	$\neg S$	$\neg R \land \neg S$
Answer Key	T	T	F	F	F
	F	T	T	F	F
	T	F	F	T	F
	F	F	T	T	T

9. Show, using a truth table, that $P \vee \neg P$ is a tautology.

10. Show, using a truth table, that $P \land \neg P$ is a contradiction.

Answer Key
$$\begin{array}{c|c|c|c|c} P & \neg P & P \land \neg P \\ \hline T & F & F \\ F & T & F \end{array}$$

11. Explain why any sentence of the form $s \vee \neg s$ is a tautology (even if s is not an atomic sentence).

Answer Key

Given any interpretation, s is either true of false. If s is true in that interpretation, $s \vee \neg s$ is also true in that interpretation. If s is false, then $\neg s$ is true, so $s \vee \neg s$ is true in that interpretation. So $s \vee \neg s$ is true in every interpretation, which means that $s \vee \neg s$ is a tautology.

- 12. True or False?
 - (a) If one disjunct of a disjunction is a tautology, then the whole disjunction is a tautology.

(b)	If a disjunction is a tautology, one of the disjuncts is a tautology.
(c)	The negation of a contradiction is a tautology.
(d)	$s_1 \wedge s_2$ is consistent iff. s_1 and s_2 are consistent with each other.
(e)	If s_1 and s_2 are inconsistent with each other, then $s_1 \vee s_2$ is in-
	consistent.
	True/Folsa