$c \equiv 299792458 \text{ m/s}$ SpeedOfLight $h \equiv 6.62607015 \times 10^{-34} \text{ Js}$ PlanckConstant PlanckHbar $\hbar \equiv h/(2\pi)$

ElectronRadius

ProtonMass

SIMu0

ProtonRadius

BoltzmannConstant

Physical constants available in FFS are:

$$\alpha$$
 m
 cl
 m

$$e_e \equiv 1.602176634 \times 10^{-19} \text{ C}$$

 $\alpha = 1/137.035999084$
 $m_e = 0.51099895000 \times 10^6 \text{ eV}$
classical radius of electron in m, $r_e \equiv \alpha \hbar c/(e_e m_e)$
 $m_p = 938.27208816 \times 10^6 \text{ eV}$
classical radius of proton in m
 $\mu_0 \equiv 2\alpha h/(ce_e^2)$
 $\varepsilon_0 \equiv 1/(\mu_0 c^2)$

$$m_p = 938.27208816 \times 10^6 \text{ eV}$$

classical radius of proton in m
 $\mu_0 \equiv 2\alpha h/(ce_e^2)$

 $1.380649 \times 10^{-23} \text{ J/K}.$

$$(a)$$
 is of pro (a)

$$\mathbf{n} = 0.0011596521812800$$

 $\varepsilon_0 \equiv 1/(\mu_0 c^2)$ SIEpsilon0 (g-2)/2 of electron = 0.001159652181280002ElectronGminus2over2