Orthogonal Projection

In some applications, we have a vector \mathbf{x} that's not in a space we want, and can sometimes be content with the "closest" vector to \mathbf{x} that lives in our space W.

Definition

Orthogonal Projection: We call this vector \mathbf{x}_W to be the orthogonal projection of \mathbf{x} onto the space W.

Why call it Orthogonal? An \mathbb{R}^2 Figure

If we take any other point as \mathbf{x}_W , then we see that it would be further from \mathbf{x} . See that the vector $\mathbf{x} - \mathbf{x}_W$ is orthogonal to W!

Orthogonal Decomposition

Let's suppose we can compute this x_W , and note something.

Definition

Orthogonal Decomposition: Let W be a subspace of \mathbb{R}^n , and $\mathbf{x} \in \mathbb{R}^n$. Then, we can write \mathbf{x} as

$$\mathbf{x} = \mathbf{x}_W + \mathbf{x}_{W^{\perp}}$$

This is called the orthogonal decomposition of \mathbf{x} . Where \mathbf{x}_W is the orthogonal projection of \mathbf{x} onto W and $\mathbf{x}_{W^{\perp}} = \mathbf{x} - \mathbf{x}_W$

Computing an Orthogonal Projection

Theorem

Let $A \in \mathbb{R}^{m \times n}$, $W = \operatorname{Col}(A)$, and $\mathbf{x} \in \mathbb{R}^m$. Then the system of linear equations given by

$$A^{\top}A\mathbf{c} = A^{\top}\mathbf{x}$$

is consistent and $\mathbf{x}_W = A\mathbf{c}$ where \mathbf{c} is some solution.

Note: We sometimes call this equation the "normal equations", which is particularly important for statistics applications when finding covariances of random variables.

Note that if n = 1, then we have inner products instead of matrix multiplications!

Finding Orthogonal Projection Example

Let
$$W = \operatorname{Span}\left(\begin{bmatrix}1\\0\\-1\end{bmatrix},\begin{bmatrix}1\\1\\0\end{bmatrix}\right)$$
. Find an orthogonal projection of $\mathbf{x} = \begin{bmatrix}2\\1\\4\end{bmatrix}$ We will first solve $A^{\top}A\mathbf{c} = A^{\top}\mathbf{x}$

$$A^{\top}A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad A^{\top}\mathbf{x} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} A^{\top}A \mid A^{\top}\mathbf{x} \end{bmatrix} = \begin{bmatrix} 2 & 1 & -2 \\ 1 & 2 & 3 \end{bmatrix} \xrightarrow{R_{2} = R_{2} - \frac{1}{2}R_{1}} \begin{bmatrix} 2 & 1 & -2 \\ 0 & \frac{3}{2} & 4 \end{bmatrix} \xrightarrow{R_{1} = R_{1} - \frac{2}{3}R_{2}} \begin{bmatrix} 2 & 0 & -\frac{14}{3} \\ 0 & \frac{3}{2} & 4 \end{bmatrix}$$
$$\frac{R_{1} = \frac{1}{2}R_{1}}{R_{2} = \frac{2}{3}R_{2}} \begin{bmatrix} 1 & 0 & -\frac{7}{3} \\ 0 & 1 & \frac{8}{3} \end{bmatrix} \qquad \mathbf{x}_{W} = A\mathbf{c} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -7 \\ 8 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 8 \\ 7 \end{bmatrix}$$

Finding Orthogonal Projection Practice

Let
$$W = \operatorname{Span}\left(\begin{bmatrix}1\\0\\-1\end{bmatrix},\begin{bmatrix}1\\1\\0\end{bmatrix}\right)$$
. Find an orthogonal projection of $\mathbf{x} = \begin{bmatrix}1\\2\\4\end{bmatrix}$

$$\mathbf{x}_W = \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$$

Orthogonal Projection as a Linear Transformation

Let's define this orthogonal projection to be the transformation T.

$$T: \mathbb{R}^n \to W$$
 $T(\mathbf{x}) = \mathbf{x}_W$

Theorem

T is a linear transformation

Proof.

We will show that for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $a \in \mathbb{R}$, we have that $T(a\mathbf{x} + \mathbf{y}) = aT(\mathbf{x}) + T(\mathbf{y})$. For our convenience, we define $\mathbf{z} = a\mathbf{x} + \mathbf{y}$. Remember that $\mathbf{z}_W = A\mathbf{c}_z$ where \mathbf{c}_z is a solution to $A^{\top}A\mathbf{c}_z = A^{\top}\mathbf{z}$, and similarly for \mathbf{x}, \mathbf{y} , so we need only show that $\mathbf{c}_z = a\mathbf{c}_x + \mathbf{c}_y$ is a solution to our system above.

$$A^{\top}A\mathbf{c}_z = A^{\top}A(a\mathbf{c}_x + \mathbf{c}_y) = aA^{\top}A\mathbf{c}_x + A^{\top}A\mathbf{c}_y = aA^{\top}\mathbf{x} + A^{\top}\mathbf{y} = A^{\top}(a\mathbf{x} + \mathbf{y}) = A^{\top}\mathbf{z}$$

Properties of Orthogonal Projection

Let ${\cal T}$ be our orthogonal projection as defined in the previous slide, then the following properties are true

- 1. $T(\mathbf{x}) = \mathbf{x}$ if and only if $\mathbf{x} \in W$
- 2. $T(\mathbf{x}) = \mathbf{0}$ if and only if $\mathbf{x} \in W^{\perp}$
- 3. $T \circ T = T$
- 4. *T* is surjective.