$12a_{1219} (K12a_{1219})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 8.75661 \times 10^{64} u^{63} + 2.76997 \times 10^{65} u^{62} + \dots + 1.65696 \times 10^{65} b + 2.96457 \times 10^{65},$$

$$1.00296 \times 10^{66} u^{63} + 3.44551 \times 10^{66} u^{62} + \dots + 8.28478 \times 10^{64} a + 2.84103 \times 10^{65}, \ u^{64} + 4u^{63} + \dots - 10u + I_2^u = \langle b - 1, \ a + 2, \ u + 1 \rangle$$

$$I_3^u = \langle b + 1, \ a^2 - 4a + 2, \ u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 67 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{c} \text{I. } I_1^u = \\ \langle 8.76 \times 10^{64} u^{63} + 2.77 \times 10^{65} u^{62} + \cdots + 1.66 \times 10^{65} b + 2.96 \times 10^{65}, \ 1.00 \times 10^{66} u^{63} + \\ 3.45 \times 10^{66} u^{62} + \cdots + 8.28 \times 10^{64} a + 2.84 \times 10^{65}, \ u^{64} + 4u^{63} + \cdots - 10u + 1 \rangle \end{array}$$

(i) Arc colorings

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -12.1060u^{63} - 41.5885u^{62} + \dots + 205.872u - 3.42922 \\ -0.528476u^{63} - 1.67172u^{62} + \dots + 7.65402u - 1.78916 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^2 + 1 \\ u^4 - 2u^2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 13.7729u^{63} + 46.8393u^{62} + \dots - 229.931u + 4.46101 \\ 0.181537u^{63} + 0.533529u^{62} + \dots - 1.36851u + 1.37956 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 4.35303u^{63} + 10.6700u^{62} + \dots - 32.5922u - 0.381251 \\ -3.47471u^{63} - 8.31368u^{62} + \dots + 28.6251u - 2.38908 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 8.57909u^{63} + 30.0107u^{62} + \dots - 140.536u - 4.30529 \\ 5.95601u^{63} + 19.1387u^{62} + \dots - 97.4281u + 9.72466 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -7.27418u^{63} - 25.7859u^{62} + \dots + 120.459u + 3.84863 \\ -5.36032u^{63} - 17.4743u^{62} + \dots + 93.0670u - 9.06702 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -8.95289u^{63} - 28.0262u^{62} + \dots + 182.432u - 36.5824 \\ -5.59890u^{63} - 20.4560u^{62} + \dots + 122.657u - 8.92048 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-112.789u^{63} 383.132u^{62} + \cdots + 2107.64u 184.302$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$u^{64} + 5u^{63} + \dots - 6u - 2$
c_3, c_7	$u^{64} - 2u^{63} + \dots + 6u - 1$
c_4	$u^{64} + 16u^{63} + \dots - 397046u + 45841$
<i>C</i> ₆	$u^{64} - 18u^{63} + \dots - 8u + 1$
c_8, c_9, c_{11} c_{12}	$u^{64} - 4u^{63} + \dots + 10u + 1$
c_{10}	$u^{64} - 2u^{63} + \dots - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$y^{64} - 61y^{63} + \dots + 12y + 4$
c_3, c_7	$y^{64} - 52y^{63} + \dots + 6y + 1$
c_4	$y^{64} - 440y^{63} + \dots + 63549675954y + 2101397281$
<i>c</i> ₆	$y^{64} - 504y^{63} + \dots - 638y + 1$
c_8, c_9, c_{11} c_{12}	$y^{64} - 76y^{63} + \dots - 106y + 1$
c_{10}	$y^{64} - 8y^{63} + \dots - 114y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.626252 + 0.772749I		
a = -0.442645 - 0.836072I	1.37703 - 2.62298I	0
b = 1.282870 - 0.069070I		
u = -0.626252 - 0.772749I		
a = -0.442645 + 0.836072I	1.37703 + 2.62298I	0
b = 1.282870 + 0.069070I		
u = 0.892186 + 0.475186I		
a = 1.45927 - 1.01010I	5.33163 + 8.09564I	0
b = -1.37477 - 0.41692I		
u = 0.892186 - 0.475186I		
a = 1.45927 + 1.01010I	5.33163 - 8.09564I	0
b = -1.37477 + 0.41692I		
u = -0.885933 + 0.573263I		
a = 0.924110 + 0.935341I	4.82419 - 0.31393I	0
b = -1.224840 - 0.045601I		
u = -0.885933 - 0.573263I		
a = 0.924110 - 0.935341I	4.82419 + 0.31393I	0
b = -1.224840 + 0.045601I		
u = 0.866924 + 0.614790I		
a = -1.33885 + 1.11410I	-0.85685 + 11.92020I	0
b = 1.36865 + 0.42563I		
u = 0.866924 - 0.614790I		
a = -1.33885 - 1.11410I	-0.85685 - 11.92020I	0
b = 1.36865 - 0.42563I		
u = -1.088320 + 0.183319I		
a = -1.033310 + 0.040437I	-3.32236 + 0.09828I	0
b = 0.007127 - 0.240948I		
u = -1.088320 - 0.183319I		
a = -1.033310 - 0.040437I	-3.32236 - 0.09828I	0
b = 0.007127 + 0.240948I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.727414 + 0.497209I		
a = 0.517608 - 0.186664I	-5.57662 + 7.00157I	0
b = -0.136718 - 0.955922I		
u = 0.727414 - 0.497209I		
a = 0.517608 + 0.186664I	-5.57662 - 7.00157I	0
b = -0.136718 + 0.955922I		
u = 0.086190 + 0.869107I		
a = -0.161462 - 0.186514I	-3.24005 - 7.03352I	0
b = 1.276990 - 0.329837I		
u = 0.086190 - 0.869107I		
a = -0.161462 + 0.186514I	-3.24005 + 7.03352I	0
b = 1.276990 + 0.329837I		
u = 0.826064 + 0.274343I		
a = -1.68330 + 0.81928I	4.75434 + 3.17966I	0
b = 1.39853 + 0.42614I		
u = 0.826064 - 0.274343I		
a = -1.68330 - 0.81928I	4.75434 - 3.17966I	0
b = 1.39853 - 0.42614I		
u = -1.20392		
a = 1.35869	2.67121	0
b = -0.745445		
u = -0.735824		
a = -4.70570	2.92949	-31.0790
b = 1.05067		
u = -0.061375 + 0.731517I		
a = -0.056369 + 0.272785I	2.42658 - 4.10040I	5.18854 + 6.65155I
b = -1.230620 + 0.271880I		
u = -0.061375 - 0.731517I		
a = -0.056369 - 0.272785I	2.42658 + 4.10040I	5.18854 - 6.65155I
b = -1.230620 - 0.271880I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.156350 + 0.575363I	·	
a = -1.056810 - 0.610432I	0.45977 + 2.04940I	0
b = 1.251050 + 0.169381I		
u = -1.156350 - 0.575363I		
a = -1.056810 + 0.610432I	0.45977 - 2.04940I	0
b = 1.251050 - 0.169381I		
u = 0.645610 + 0.280609I		
a = -0.622762 - 0.084173I	0.39947 + 3.16035I	2.81338 - 10.76378I
b = 0.227169 + 0.986896I		
u = 0.645610 - 0.280609I		
a = -0.622762 + 0.084173I	0.39947 - 3.16035I	2.81338 + 10.76378I
b = 0.227169 - 0.986896I		
u = -0.537409 + 0.416579I		
a = -0.908169 + 1.049400I	-3.30500 - 1.49850I	-1.71841 + 4.52498I
b = -0.301281 + 0.283446I		
u = -0.537409 - 0.416579I		_
a = -0.908169 - 1.049400I	-3.30500 + 1.49850I	-1.71841 - 4.52498I
b = -0.301281 - 0.283446I		
u = 0.171438 + 0.641396I		
a = -0.810739 + 0.661600I	-7.24617 - 3.15234I	-4.81813 + 1.66839I
b = -0.011504 + 0.735189I		
u = 0.171438 - 0.641396I		
a = -0.810739 - 0.661600I	-7.24617 + 3.15234I	-4.81813 - 1.66839I
b = -0.011504 - 0.735189I		
u = -0.622251 + 0.147718I		
a = 0.623442 - 0.530311I	1.153010 - 0.371044I	8.52101 + 0.53269I
b = 0.140050 - 0.093500I		
u = -0.622251 - 0.147718I		
a = 0.623442 + 0.530311I	1.153010 + 0.371044I	8.52101 - 0.53269I
b = 0.140050 + 0.093500I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.625236		
a = -32.6722	-2.29108	-335.850
b = -0.982597		
u = 0.571354 + 0.216286I		
a = 1.058770 - 0.384713I	-2.52737 + 1.49035I	-1.46490 - 10.14674I
b = -1.136650 + 0.669884I		
u = 0.571354 - 0.216286I		
a = 1.058770 + 0.384713I	-2.52737 - 1.49035I	-1.46490 + 10.14674I
b = -1.136650 - 0.669884I		
u = -1.58313		
a = 2.77393	3.83757	0
b = -1.86821		
u = 1.58050 + 0.10884I		
a = 0.006317 - 0.340356I	3.96868 + 3.34904I	0
b = -0.242493 - 0.631350I		
u = 1.58050 - 0.10884I		
a = 0.006317 + 0.340356I	3.96868 - 3.34904I	0
b = -0.242493 + 0.631350I		
u = -1.58979 + 0.03598I		
a = 1.41098 + 0.68557I	4.95069 - 2.27479I	0
b = -1.17421 - 1.06495I		
u = -1.58979 - 0.03598I		
a = 1.41098 - 0.68557I	4.95069 + 2.27479I	0
b = -1.17421 + 1.06495I		
u = -1.60546 + 0.05832I		
a = -0.671440 + 0.764979I	8.17400 - 4.30296I	0
b = 0.437967 - 1.302070I		
u = -1.60546 - 0.05832I		
a = -0.671440 - 0.764979I	8.17400 + 4.30296I	0
b = 0.437967 + 1.302070I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.60877 + 0.03569I		
a = 0.077213 + 0.292537I	8.93615 + 1.02069I	0
b = 0.219375 + 0.411958I		
u = 1.60877 - 0.03569I		
a = 0.077213 - 0.292537I	8.93615 - 1.02069I	0
b = 0.219375 - 0.411958I		
u = 0.385731		
a = 4.06256	-3.33490	-8.92110
b = -1.41196		
u = 0.129453 + 0.356601I		
a = 1.25594 - 0.67953I	-1.019940 - 0.841014I	-4.44164 + 2.44385I
b = -0.129998 - 0.580705I		
u = 0.129453 - 0.356601I		
a = 1.25594 + 0.67953I	-1.019940 + 0.841014I	-4.44164 - 2.44385I
b = -0.129998 + 0.580705I		
u = -0.151171 + 0.347893I		
a = 1.51053 - 0.33569I	1.93096 - 1.01785I	2.25227 - 1.57609I
b = 1.087870 - 0.202838I		
u = -0.151171 - 0.347893I		
a = 1.51053 + 0.33569I	1.93096 + 1.01785I	2.25227 + 1.57609I
b = 1.087870 + 0.202838I		
u = -1.61625 + 0.13512I		
a = 0.579253 - 0.473421I	2.39807 - 9.34049I	0
b = -0.254582 + 1.128060I		
u = -1.61625 - 0.13512I		_
a = 0.579253 + 0.473421I	2.39807 + 9.34049I	0
b = -0.254582 - 1.128060I		
u = 1.63116 + 0.01107I		_
a = -1.17537 + 1.13475I	5.71807 + 0.01867I	0
b = -0.795270 + 0.143585I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.63116 - 0.01107I		
a = -1.17537 - 1.13475I	5.71807 - 0.01867I	0
b = -0.795270 - 0.143585I		
u = 1.62771 + 0.23629I		
a = -1.53783 + 0.68857I	8.99118 + 6.39006I	0
b = 1.350810 + 0.224077I		
u = 1.62771 - 0.23629I		
a = -1.53783 - 0.68857I	8.99118 - 6.39006I	0
b = 1.350810 - 0.224077I		
u = -1.65093 + 0.07673I		
a = -2.22460 - 0.22306I	13.36180 - 4.53477I	0
b = 1.61684 - 0.49505I		
u = -1.65093 - 0.07673I		
a = -2.22460 + 0.22306I	13.36180 + 4.53477I	0
b = 1.61684 + 0.49505I		
u = -1.67065 + 0.13316I		
a = 2.09031 + 0.47257I	14.1665 - 10.4624I	0
b = -1.51390 + 0.48815I		
u = -1.67065 - 0.13316I		
a = 2.09031 - 0.47257I	14.1665 + 10.4624I	0
b = -1.51390 - 0.48815I		
u = -1.66778 + 0.18149I		
a = -2.03991 - 0.65692I	7.7777 - 15.0108I	0
b = 1.46024 - 0.47787I		
u = -1.66778 - 0.18149I		
a = -2.03991 + 0.65692I	7.7777 + 15.0108I	0
b = 1.46024 + 0.47787I		
u = 1.68055		
a = -2.49868	11.5859	0
b = 1.25013		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.68516 + 0.14611I		
a = 1.76330 - 0.59949I	13.75650 + 3.08420I	0
b = -1.328680 - 0.151173I		
u = 1.68516 - 0.14611I		
a = 1.76330 + 0.59949I	13.75650 - 3.08420I	0
b = -1.328680 + 0.151173I		
u = 1.73966		
a = -2.03600	11.5124	0
b = 1.32403		
u = 0.102209		
a = 13.6904	-3.39768	-3.12270
b = -1.15668		

II.
$$I_2^u=\langle b-1,\; a+2,\; u+1 \rangle$$

(i) Arc colorings

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -2\\1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	u
c_3, c_8, c_9 c_{10}	u+1
$c_4, c_6, c_7 \\ c_{11}, c_{12}$	u-1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	y
c_3, c_4, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -2.00000	3.28987	12.0000
b = 1.00000		

III.
$$I_3^u = \langle b+1, \ a^2-4a+2, \ u+1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\-1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a\\-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -a+1\\1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -a+1\\-a+2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\a-2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	u^2-2
c_3, c_{10}, c_{11} c_{12}	$(u-1)^2$
c_4	$u^2 + 2u - 1$
c_6	$u^2 - 2u - 1$
c_7, c_8, c_9	$(u+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-2)^2$
c_3, c_7, c_8 c_9, c_{10}, c_{11} c_{12}	$(y-1)^2$
c_4, c_6	$y^2 - 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.585786	-1.64493	4.00000
b = -1.00000		
u = -1.00000		
a = 3.41421	-1.64493	4.00000
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_2,c_5	$u(u^2 - 2)(u^{64} + 5u^{63} + \dots - 6u - 2)$
c_3	$((u-1)^2)(u+1)(u^{64}-2u^{63}+\cdots+6u-1)$
C ₄	$(u-1)(u^2+2u-1)(u^{64}+16u^{63}+\cdots-397046u+45841)$
<i>c</i> ₆	$(u-1)(u^2-2u-1)(u^{64}-18u^{63}+\cdots-8u+1)$
C ₇	$(u-1)(u+1)^{2}(u^{64}-2u^{63}+\cdots+6u-1)$
c_8,c_9	$((u+1)^3)(u^{64} - 4u^{63} + \dots + 10u + 1)$
c_{10}	$((u-1)^2)(u+1)(u^{64}-2u^{63}+\cdots-2u-1)$
c_{11}, c_{12}	$((u-1)^3)(u^{64} - 4u^{63} + \dots + 10u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$y(y-2)^2(y^{64}-61y^{63}+\cdots+12y+4)$
c_3, c_7	$((y-1)^3)(y^{64} - 52y^{63} + \dots + 6y + 1)$
c_4	$(y-1)(y^2 - 6y + 1)$ $\cdot (y^{64} - 440y^{63} + \dots + 63549675954y + 2101397281)$
c_6	$(y-1)(y^2-6y+1)(y^{64}-504y^{63}+\cdots-638y+1)$
c_8, c_9, c_{11} c_{12}	$((y-1)^3)(y^{64} - 76y^{63} + \dots - 106y + 1)$
c_{10}	$((y-1)^3)(y^{64} - 8y^{63} + \dots - 114y + 1)$