- 1. A biased coin with probability of head P(H) = p is tossed seven times.
 - (a) Find the probability of getting the sequence HHHHTTT, i.e. in this particular order.
 - (b) How many ways four heads and three tails can be obtained (i.e. please count the number of ways 4 H's and 3 T's can occur)?
 - (c) Find the probability of getting exactly four heads regardless of the order.
- 2. Consider a discrete random variable X with the following probability mass function (pmf):

k	1	2	3	4
P(X=k)	.1	.2	.3	.4

Let now $Y = X^2$.

- (a) Find the distribution of Y. Please make sure to specify what values Y takes.
- (b) Using the distribution you obtained in (a), find E[Y].
- (c) Compute $\sum_{k=1}^{4} k^2 P(X=k)$. Compare it with E[Y]. Discuss.

3. Which is more likely: 9 heads in 10 tosses of a fair coin or 18 heads in 20 tosses? Please justify.

4. Fix some $\lambda > 0$. Let X be a continuous random variable with the following probability density function (pdf):

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Find E[X]. (**Hint**: Integrate by parts.)

- 5. Let $X \sim \text{Unif}[0, 1]$. Find
 - (a) E[X]
 - (b) $E[X^2]$
 - (c) $E[\sqrt{X}]$

6. If f(x) and g(x) are two probability density functions, show that for any $\alpha \in [0,1]$,

$$\alpha f(x) + (1 - \alpha)g(x)$$

is a probability density function.

Hint:

A function $\psi(x)$ is a density of some continuous random variable if and only if

- $\psi(x) \ge 0$ for all $x \in \mathbb{R}$ and
- $\bullet \int_{-\infty}^{+\infty} \psi(x) dx = 1$

7. (a) Let X be a continuous random variable with a probability density function (pdf) that is symmetric about some point, μ . Provided E[X] exists, show that $E[X] = \mu$.

(b) Fix some $\mu \in \mathbb{R}$ and $\sigma \in (0, +\infty)$. Let $X \sim N(\mu, \sigma^2)$, that is, it has the following probability density function (pdf):

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 for all $x \in \mathbb{R}$.

Find E[X].

8. The gamma function, $\Gamma(x)$, is defined as

$$\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} du \text{ for } x > 0.$$

(a) Calculate $\Gamma(1)$.

(b) Calculate $\Gamma(2)$.

(c) Show that $\Gamma(x+1) = x\Gamma(x)$ for any x > 0.