ODHAD KONCENTRÁCIE DONOROV V LiNbO₃:Fe NA ZÁKLADE VYŠETROVANIA FOTOREFRAKTÍVNEHO JAVU

AN ESTIMATION OF DONOR CONCENTRATION IN LinbO₃:Fe USING THE PHOTOREFRACTIVE EFFECT

Norbert Tarjányi, Ivan Turek

Katedra fyziky, Elektrotechnická fakulta, Žilinská Univerzita, Veľký diel, 010 26 Žilina

Abstrakt: V práci sa prezentujú výsledky experimentálneho vyšetrovania záznamu optického poľa vytvoreného prostredníctvom fotorefraktívneho javu v LiNbO₃ dopovanom železom. Časové závislosti amplitúdy záznamu získaných pri rôznych intenzitách zaznamenávaného poľa ukazujú, že štandartne používaný model procesu vzniku záznamu v LiNbO₃ je treba modifikovať zavedením ďalšej (záchytnej) hladiny. Jednoduchá približná analýza takto modifikovaného modelu umožnila na základe nameraných závislostí odhadnúť koncentráciu obsadenia donorov v skúmanom materiáli.

Summary: Results of an experimental investigation of optical field record created by photorefractive effect in iron doped $LiNbO_3$ is presented in the paper. According to time dependences of record amplitude obtained at different intensities of recorded field it was shown that the standard model of process description should be modified by adding another level (trap level). A simple and approximative analyse of the suggested model with respect to experimentally obtained results allowed to estimate the concentration of occupied donor centres in investigated material.

1. ÚVOD

Z veľkého počtu prác týkajúcich sa záznamu optických polí v LiNbO₃ sa väčšina venuje technike vytvárania záznamov so zameraním sa na dosiahnutie čo najväčšej hustoty záznamu, časovej stability záznamu, odolnosti voči mazaniu pri čítaní informácie ako i ďalším technickým aplikáciám, ale len relatívne malá časť sa zaoberá fyzikálnym popisom procesov prispievajúcich k javu, ktorý sa označuje ako fotorefraktivita [1,2,3,4]. V tejto práci sa preto chceme venovať práve mechanizmu vzniku záznamov optických polí.

Ukazuje sa, že záznamy vytvorené pri malých expozíciách (expozíciou rozumieme súčin intenzity osvetlenia a doby vytvárania záznamu) neposkytujú dostatok informácií pre podrobnejšie vyšetrenie procesu. Pri malých expozíciách je amplitúda záznamu lineárnou funkciou času a pozorovaný vznik záznamu môžeme charakterizovať jediným parametrom – "citlivosťou". Z toho dôvodu sme vyšetrovali vytváranie záznamov pri vysokých expozíciách, čo umožňuje získať viac informácií o procese záznamu. Na základe analýzy experimentálne získaných závislostí intenzity fotorefraktívneho záznamu od času je možné (za určitých predpokladov a zjednodušení) odhadnúť i niektoré materiálové parametre konkrétnej vzorky kryštálu.

2. POPIS EXPERIMENTU A JEHO VÝSLEDKY

Pri experimentálnom vyšetrovaní sme mali k dispozícii vzorky LiNbO₃:Fe od firmy KRYTUR Turnov, CZ. Experimenty boli realizované zariadením pre holografické vyšetrovanie fotorefraktívneho javu, schéma

ktorého je na obr.1. Až na He-Ne laser určený pre registráciu záznamu je zhodné so zariadením použitým v našej predchádzajúcej práci [5]. Pri vyšetrovaní bolo štandardne zaznamenávané optické pole, ktoré vzniklo interferenciou dvoch koherentných zväzkov Ar lasera s vlnovou dĺžkou 488 nm. Tieto lúče sa v mieste vzorky prekrývali s malým uhlom (cca 0.004 rad), v dôsledku čoho vytvárali optické pole s harmonickou závislosťou od súradnice x. Vzorka bola orientovaná tak, že jej kryštalografická os c bola rovnobežná so smerom gradientu osvetlenia I(x). Pre čítanie vytvoreného záznamu sa spravidla použil zväzok He - Ne lasera s vlnovou dĺžkou 633 nm. Intenzita tohto čítacieho lúča bola zvolená tak, aby boli jeho prípadné účinky na čítaný záznam čo najmenšie, ale aby zároveň poskytoval dostatočne intenzívne difragované zväzky.

Obr. 1. Schéma zariadenia pre holografické vyšetrovanie fotorefraktívneho javu. Fig. 1. A scheme of the experimental set—up for holographic investigation of photorefractive effect.

Keďže záznam bol vytvorený periodickým optickým poľom, má charakter mriežky a dochádza na ňom k difrakcii ako lúčov Ar lasera, ktoré záznam vytvárajú (tzv. samodifrakcia), tak i čítacieho lúča He–Ne lasera. Pri čítaní bol použitý lúč z He–Ne lasera s vektorom

polarizácie rovnobežným s kryštalografickou osou c kryštálu (mimoriadna polarizácia).

Hlavná pozornosť bola venovaná časovej závislosti intenzity difragovaného lúča pri veľkých expozíciách*. Merania sme mnohonásobne opakovali za rovnakých podmienok na rôznych miestach vzorky. Aby sme mohli na jednej vzorke urobiť viacej záznamov, pomocou kruhovej clonky sme zmenšili priemer použitých zväzkov na cca 1.5 mm. Po "zaplnení" vzorky záznamami sme vytvorené záznamy vymazali temperáciou vzorky [6] pri teplote 110 °C po dobu cca 30 minút. Osvetlením vzorky čítacím lúčom bolo možné sa presvedčiť, že záznamy takouto temperáciou boli naozaj vymazané. Reprodukovateľnosť meraní, ktoré boli uvedeným spôsobom uskutočnené, nie je absolútna. Krivky získané pri opakovaní sa líšili cca o 10% - 15% avšak ich charakter zostával rovnaký. Na základe toho sa môžeme domnievať, že výsledky sú v rámci spomenutej presnosti spoľahlivé.

Obr. 2. Intenzity difragovaných lúčov (v relatívnych jednotkách) v závislosti od doby expozície pri rôznych intenzitách zaznamenávaného poľa. Krivky sú pre intenzity poľa 8,7 mWmm⁻², 5,2 mWmm⁻², 3,5 mWmm⁻², 1,7 mWmm⁻², 0,9 mWmm⁻² a 0,2 mWmm⁻².

Fig. 2. Temporal dependences of diffracted beams intensities at different intensities of recorded field. The plotted curves are for following intensities: 8.7 mWmm⁻², 5.2 mWmm⁻², 3.5 mWmm⁻², 1.7 mWmm⁻², 0.9 mWmm⁻² a 0.2 mWmm⁻².

Na obr.2 sú vynesené časové závislosti intenzity prvého difrakčného maxima vytvoreného na zázname harmonického rozloženia intenzity záznamového osvetlenia v LiNbO₃:Fe pri rôznych intenzitách zaznamenávaného poľa.

Je známe [6,7,8,9], že záznam optického poľa je tiež možné vymazať homogénnym svetlom, čo umožňuje niekoľkonásobnú expozíciu v tom istom mieste kryštálu. Priebeh intenzity na zázname difragovaného lúča pri pomerne krátkej a mnohonásobne opakovanej expozícii vzorky LiNbO3:Fe priestorovo periodickým osvetlením vytvoreným interferenciou dvoch koherentných laserových zväzkov je uvedený na obr.3. Po každej expozícii priestorovo modulovaným osvetlením bolo miesto záznamu následne osvetlené neperiodickým ("homogénnym") osvetlením na dobu niekoľkonásobne prevyšujúcu dobu vytvárania záznamu, v dôsledku čoho sa záznam prakticky "vymazal". Pri ďalšom osvetlení toho istého miesta kryštálu periodickým poľom sa záznam vytvoril, ale s menšou intenzitou.

Obr. 3. Závislosť relatívnych hodnôt intenzity difragovaného lúča od času pri mnohonásobne opakovanom nahrávaní a optickom "vymazávaní" záznamu optického poľa.

Fig. 3. Time dependence of relative intensities of diffracted beam during multiple recording and optical "erasing" of the optical field record.

Pri tomto experimente ako mazací lúč bol použitý jeden z lúčov spolupodieľajúcich sa na vytváraní zaznamenávaného interferenčného poľa. Ukazuje sa tak, že priebehy pri opakovanom zázname na vzorkách LiNbO₃:Fe majú analogický charakter ako pri "čistých" vzorkách LiNbO₃, ktoré sme uviedli v našej predchádzajúcej práci [5].

3. ANALÝZA PROCESU

Pri výklade mechanizmu vzniku dlhotrvajúceho záznamu sa predpokladá existencia donorovej hladiny v zakázanom páse dostatočne hlboko na to, aby z nej nedochádzalo k tepelnej excitácii nosičov náboja už pri izbovej teplote [10].

Osvetlením s vlnovou dĺžkou, pri ktorej energia dopadajúcich fotónov je väčšia (alebo rovná) než rozdiel

^{*} Amplitúda svetelného zväzku vytvoreného difrakciou zo zväzku, ktorým sa záznam osvetľuje je úmerná intenzite záznamu, takže intenzita difrakciou vytvoreného zväzku je pri lineárnom náraste amplitúdy záznamu úmerná štvorcu amplitúdy záznamu a teda štvorcu expozície. Kvadratickú závislosť intenzity difragovaného zväzku od expozície považujeme preto za kritérium, podľa ktorého hodnotíme expozíciu ako "malú" (lineárny záznam), resp. pri prekročení tejto oblasti ako "veľkú". Pri procesoch s fázovou moduláciou, môže k odklonu od kvadratickej závislosti intenzity difragovaného zväzku dôjsť skôr, než dôjde k nelinearitám v procese záznamu. Ale i v tomto prípade budeme hovoriť o "veľkých" expozíciách, keď závislosť intenzity difragovaného zväzku prestane byť kvadratická.

energie dna vodivostného pásu a donorovej hladiny, dôjde k absorpcii fotónov a excitácii elektrónov vodivostného pásu a následne k ich záchytu. Pri nehomogénnom osvetlení elektróny vo vodivostnom páse difundujú z miest s vyššou intenzitou osvetlenia do miest s nižšou intenzitou, takže sa vytvorí priestorová závislosť koncentrácie objemového náboja (dôjde k zmene obsadenia donorovej hladiny nosičmi náboja) a vzniká vnútorné elektrostatické pole, ktoré v dôsledku elektrooptického javu vyvoláva lokálnu zmenu indexu lomu kryštálu. Táto zmena indexu lomu vyvolaná osvetlením predstavuje záznam. V našej predchádzajúcej práci [5] bolo na základe jednoduchého rozboru kinetických rovníc popisujúcich uvedený proces ukázané, že záznam je v ustálenom stave jednoznačne určený rozložením koncentrácie elektrónov na donorovej hladine, takže stav predstavujúci záznam nie je závislý od histórie kryštálu. Výsledok experimentu, pri ktorom dochádzalo k opakovanému vytváraniu a mazaniu záznamu na tom istom mieste (obr.3) je však v rozpore s uvedeným záverom, ktorý vyplýva z riešenia rovníc popisujúcich "jednohladinový" model v ustálenom stave.

Potreba interpretovať pozorovaný pokles citlivosti pri opakovanom nahrávaní a mazaní nás viedla k predpokladu existencie ďalších "záchytných" centier nachádzajúcich sa v zakázanom páse medzi vodivostným pásom a donorovou hladinou. Oprávnenosť takéhoto predpokladu vyplýva i z pozorovanej závislosti intenzity difragovaného lúča od času pri rôznych intenzitách zaznamenávaných polí (obr.2).

Zo závislostí uvedených na obr.2 je vidieť, že po dostatočne dlhej expozícii dochádza k ustáleniu záznamu, a že táto "ustálená" hodnota nezávisí od intenzity zaznamenávaného poľa. Ustálenie záznamu môže byť spôsobené vytvorením rovnováhy medzi difúznym prúdom a ohmickým prúdom vyvolaným elektrickým poľom, ktoré v dôsledku nehomogenity difúzneho prúdu vzniká. Ustálenie záznamu ale môže byť i dôsledkom vyčerpania donorovej (prímesovej) hladiny.

Obr. 4. Schéma "dvojhladinového" modelu. Fig. 4. A scheme of the "two-level" model.

Navrhnutý "dvojhladinový" model (obr.4) je popísaný kinetickými rovnicami, ktoré v prípade, že závislosť intenzity zaznamenávaného poľa od súradnice sa redukuje na jeho závislosť od súradnice x, t.j., že absorpcia

v prostredí je taká malá, že na hrúbke vzorky sa zanedbateľne prejavuje, majú tvar:

$$\frac{\partial n_D(t,x)}{\partial t} = -g_D I(x) n_D(t,x) + + R_D n(t,x) (N_D - n_D(t,x)) ,$$
(1)

$$\frac{\partial n_T(t,x)}{\partial t} = -g_T I(x) n_T(t,x) + + R_T n(t,x) (N_T - n_T(t,x)) ,$$
(2)

$$\frac{\partial n(t,x)}{\partial t} = -\frac{\partial n_D(t,x)}{\partial t} - \frac{\partial n_T(t,x)}{\partial t} - \frac{1}{e} \frac{\partial j_x}{\partial x}.$$
(3)

Pre prúdovú hustotu a elektrické pole pritom platí:

$$j_x = \sigma E_x + D \frac{\partial}{\partial x} (n(t, x)), \qquad (4)$$

$$\frac{\partial E(t,x)}{\partial x} = \frac{\rho(t,x)}{\varepsilon} \ . \tag{5}$$

Význam jednotlivých symbolov je nasledovný: $n_D(t,x)$ je koncentrácia elektrónov na donorovej hladine ako funkcia času a súradnice, g_D je pravdepodobnosť generácie elektrónu do vodivostného pásu z donorovej hladiny za jednotku času pri jednotkovej intenzite osvetlenia I(x)a jednotkovej koncentrácii $n_D(t,x)$, R_D je pravdepodobnosť záchytu na donorovú hladinu za jednotku času pri jednotkovej koncentrácii n(t, x) a $n_D(t,x)$, n(t,x) je koncentrácia elektrónov vo vodivostnom páse, N_D je celková koncentrácia donorov, $n_7(t,x)$ je koncentrácia elektrónov na záchytných centrách, g_T je pravdepodobnosť generácie elektrónu do vodivostného pásu zo záchytných centier za jednotku času pri jednotkovej intenzite osvetlenia a jednotkovej koncentrácii $n_T(t,x)$, R_T je pravdepodobnosť záchytu elektrónu na záchytnom centre za jednotku času pri jednotkovej koncentrácii $n_T(t,x)$ a n(t,x), N_T je celková koncentrácia záchytných centier, e je náboj elektrónu, j_x je zložka vektora prúdovej hustoty, σ je merná vodivosť, Ex je zložka vektora elektrického poľa, D je difúzna konštanta voľných elektrónov vo vodivostnom páse, $\rho(t, x)$ je celkový objemový náboj a ε je permitivita daného prostredia. Riešenie rovníc (1) -(5) umožňuje vyjadriť časovú a priestorovú závislosť elektrického poľa E(t,x).

Pre vyšetrovanie fotorefraktívneho javu (PRE) holografickou metódou je výhodné použiť ako predlohu pre záznam optické polia s čo najjednoduchšou štruktúrou. Preto sme používali harmonické pole, ktoré vzniklo interferenciou dvoch rovinných koherentných vĺn.

Ako už bolo spomenuté vyššie, záznam periodického optického poľa sa správa ako fázová difrakčná mriežka tvorená oblasťou s priestorovo modulovaným indexom lomu. Z teórie difrakcie [11] je možné ukázať ako sa mení

intenzita jednotlivých difrakčných maxím so zmenou modulácie indexu lomu.

Predpokladajme, že celý proces vzniku záznamu (vzniku elektrického poľa a ako dôsledku modulácie indexu lomu) je lineárnou funkciou času. Intenzity jednotlivých difrakčných maxím môžeme vypočítať z difrakčného integrálu [11]:

$$I(\theta, t) = \sin^{2}\left(\frac{N \pi d \theta}{\lambda}\right) / \sin^{2}\left(\frac{\pi d \theta}{\lambda}\right) \times \left(\left|\int_{0}^{t} \exp(-i k \Delta \varphi(t, x)) \exp(-i k \theta \xi) d\xi\right|\right)^{2},$$
(6)

kde $I(\vartheta,t)$ predstavuje smerové rozloženie intenzity difragovaného zväzku v čase t a v smere určenom difrakčným uhlom ϑ , d je mriežková konštanta, λ je vlnová dĺžka difragovaného svetla, k je veľkosť vlnového vektora a $\Delta \varphi(t,x)$ znamená zmenu fáze vyvolanú zmenou indexu lomu zapríčinenou elektrickým poľom E(t,x). Ak je zmena indexu lomu spôsobená lineárnym elektrooptickým javom, pre zmenu fázy pri usporiadaní experimentu odpovedajúcemu nášmu platí [10,13]:

$$\Delta \varphi(t,x) = \frac{1}{2} n_e^3 r_{33} L E_3(t,x)$$
, (6 a)

kde n_e je index lomu prostredia vtedy, keď elektrické pole je rovné nule, r_{33} je príslušný prvok elektrooptického tenzoru, L je hrúbka vzorky a E_3 je zložka elektrického poľa v smere kryštalografickej osi c.

Porovnaním priebehov intenzity vypočítaných zo vzťahu (6) (obr.5) s experimentálne získanými krivkami (obr.2) vidíme, že ich charakter je rovnaký len v prvej fáze expozície. Z pozorovaného nesúladu sa dá usudzovať, že vývoj záznamu nie je v čase lineárny (resp. môžeme ho považovať za lineárny len veľmi krátku dobu po začatí nahrávania).

Intenzita difragovaných lúčov sa v čase mení a ako možno vidieť z obr.2 najprv intenzita narastá, dosiahne maximálnu hodnotu a s narastajúcim časom klesá až na určitú, takmer ustálenú hodnotu. Tento fakt by mohol naznačovať, že existuje obmedzujúci mechanizmus, ktorý spôsobuje, že index lomu sa v čase mení inak ako lineárne. Nie je nerozumné predpokladať, že dlhodobým svietením sa dosiahne istá maximálna hodnota zmeny indexu lomu. V prípade, že ustálený stav je dôsledkom kompenzácie difúzneho prúdu prúdom ohmickým, by maximálna hodnota elektrického poľa v zázname (maximálna modulácia indexu lomu) bola úmerná amplitúde intenzity zaznamenávaného optického poľa. Ak ale dôjde v priebehu tvorby objemového náboja k vyprázdneniu donorovej hladiny, z ktorej sa nosiče osvetlením čerpali, dôjde k zastaveniu rastu intenzity elektrického poľa skôr, ako sa dosiahne stav rovnováhy medzi difúznym a ohmickým prúdom. Je evidentné, že pri istej koncentrácii nosičov náboja na prímesových centrách pred započatím vytvárania záznamu $n_{D\theta}$ existuje istá prahová hodnota intenzity optického poľa I_{th} taká, že pre $I >> I_{th}$ sa obmedzenie nárastu intenzity elektrického poľa vyprázdňovaním donorovej hladiny prejavuje a pre $I << I_{th}$ ohmický prúd dosiahne hodnotu difúzneho prúdu skôr ako k obmedzeniu dôjde.

Závislosť amplitúdy modulácie indexu lomu od intenzity zaznamenávaného optického poľa tak poskytuje principiálnu možnosť určiť, v ktorej oblasti intenzít sa experiment uskutočňuje. Z toho dôvodu sme závislosť intenzity difragovaného lúča od intenzity zaznamenávaného optického poľa (obr.2) premerali v pomerne širokom intervale intenzít (cca 0,2 mWmm⁻² – cca 9 mWmm⁻²). Pozorovaná nezávislosť ustálenej hodnoty od intenzity zaznamenávaného optického poľa presvedčivo ukazuje, že v celej tejto oblasti intenzít sú intenzity optického poľa značne väčšie ako je prahová hodnota Ith. Znamená to, že v priebehu vykonaných experimentov bol ohmický prúd značne menší než difúzny prúd.

Obr. 5. Závislosť relatívnych hodnôt intenzity prvého difrakčného maxima fázovej harmonickej mriežky od amplitúdy modulácie.

Fig. 5. Relative values of intensity of the first diffracted maximum generated by the harmonic phase grating as a function of amplitude of the refractive index modulation.

Vyprázdnenie donorovej hladiny ale znamená, že nosiče, ktoré pôvodne boli na donorovej hladine, sú zachytené inými (záchytnými) centrami. Nezávislosť amplitúdy ustáleného záznamu od intenzity osvetlenia tak ukazuje, že pre proces vytvárania záznamu vo vyšetrovanej vzorke je záchyt nosičov na záchytnej hladine rozhodujúci.

Predpokladajme teda, že $R_D N_D \le R_T N_T$. Rovnica (1) tak nadobudne tvar

$$\frac{\partial n_D(t,x)}{\partial t} = -g_D I(x) n_D(t,x) . \tag{7}$$

Pre závislosť populácie na donorovej hladine od času tak bude platiť

$$n_D(t,x) = n_{D0} \exp\left(-\frac{t}{\tau(x)}\right), \qquad (8)$$

čo znamená, že hladina sa bude v čase exponenciálne vyprázdňovať s časovou konštantou τ blízkou hodnote

$$\tau = \frac{1}{g_D I(x)}$$
, čo možno nahradiť

$$\tau = \frac{1}{g_D I_m} \tag{9}$$

kde I_m je intenzita svetla v interferenčnom maxime, pretože práve v tejto oblasti dochádza k najväčšej generácii elektrónov.

Obr. 6. Porovnanie nameraných závislostí intenzity prvého difrakčného maxima od času s hodnotami vyplývajúcimi zo vzťahu (6) pre fázovú mriežku, keď amplitúda modulácie indexu lomu sa asymptoticky blíži k nasýtenej hodnote. ◊ - namerané hodnoty, --- vypočítané hodnot (v relatívnych jednotkách).

Fig. 6. Comparison between measured dependences of the first diffracted maximum and values following from the relation (6) when the amplitude of the refractive index modulation is approaching asymptotically a saturate value. \Diamond -measured values, — calculated values (in relative units).

Pretože amplitúda modulácie indexu lomu podľa (6a) je úmerná elektrickému poľu, ktoré závisí od koncentrácie nábojov na jednotlivých hladinách, exponenciálny charakter vyplývajúci z (8) sa prejaví i na koncentrácii elektrónov vo vodivostnom páse a záchytnej hladine a z toho dôvodu i na amplitúde modulácie indexu lomu, pre ktorú potom môžeme použiť približné vyjadrenie

$$\Delta n = \Delta n_{\text{max}} \left(1 - \exp\left(-\frac{t}{\tau}\right) \right) \sin(K x), \tag{10}$$

kde Δn_{max} je maximálna zmena indexu lomu, t je čas, τ je časová konštanta procesu, K je priestorová frekvencia charakterizujúca mriežku.

Dosadením (10) do (6) a vyjadrením $\Delta \varphi(t,x)$ dostaneme závislosti, ktoré sa relatívne dobre zhodujú s experimentálne zistenými závislosťami (obr.6). Hodnoty τ pre rôzne hodnoty intenzity zaznamenávaného poľa boli určené fitovaním. Podľa (9) hodnoty τ majú byť nepriamo úmerné intenzite poľa, čo získané hodnoty plne

potvrdzujú (obr.7). Na tomto obrázku je pre porovnanie vynesená i funkcia $1/g_D I_m$, pre hodnotu $g_D = 10^{-5}$.

Obr. 7. Závislosť časovej konštanty dosahovania ustálenej hodnoty záznamu od intenzity záznamenávaného poľa.

Fig. 7. Time constant of reaching the saturate value of the record in dependence on intensity of recorded field.

Dobrá zhoda (9) s nameranou závislosťou τ od I je významná i preto, že umožňuje v spojení s meraním koefi cientu absorpcie určiť počiatočnú koncentráciu nosičov na donorovej hladine.

Vychádzajúc z predpokladu, že k absorpcii svetla dochádza tým istým mechanizmom ktorým sa nosiče z donorovej hladiny excitujú do vodivostného pásu, a že

sa jedná o jednofotónový proces, môžeme $\frac{\partial n_D}{\partial t}$ v (7)

nahradiť $\frac{\partial n_f}{\partial t}$, pričom koncentrácia fotónov je

$$n_f = \frac{I}{h v c},\tag{11}$$

kde h je Planckova konštanta, ν frekvencia svetla a c rýchlosť svetla v danom prostredí.

Využitím definičného vzťahu pre koeficient absorpcie α :

$$\frac{\partial I}{\partial x} = \alpha I$$

a vzťahov (7) a (11) tak pre počiatočnú koncentráciu $n_{D\theta}$ dostávame

$$n_{D0} = \frac{\alpha}{g_D} \frac{1}{h\nu} \,. \tag{12}$$

Priamym meraním priepustnosti vzorky pre svetlo s vlnovou dĺžkou 488 nm sme určili, že koeficient absorpcie v použitom materiáli LiNbO₃:Fe je približne rovný 1,27 cm⁻¹. Po dosadení hodnôt α a g_D do (12) dostávame pre n_{D0} hodnotu $5\cdot 10^{25}$ m⁻³. Táto hodnota je v dobrej zhode s údajom výrobcu. Výrobca pre

koncentráciu Fe vo vzorke udáva hodnotu 400 ppm, z ktorej vyplýva koncentrácia rádu 10²⁴ m⁻³.

4. ZÁVER

Z porovnania závislostí intenzity difragovaných lúčov od času vyplývajúcich z teórie difrakcie s experimentálne zistenými závislosťami vyplýva, že pri vysokých expozíciách dochádza k dosiahnutiu ustálenej hodnoty záznamu, ktorá nezávisí od intenzity zaznamenávaného optického poľa. Takéto správanie sa zhoduje s priebehmi, ktoré vyplývajú z predloženého dvojhladinového modelu za predpokladu, že pravdepodobnosť záchytu na záchytných centrách je väčšia ako na prímesových centrách $(R_D N_D \ll R_T N_T)$. Tento predpoklad o dominantnom vplyve záchytných centier na priebeh procesov dovoľuje určiť generačný faktor nosičov (parameter g_D) a na základe toho zo známej hodnoty koeficientu absorpcie zaznamenávaného svetla určiť pôvodnú koncentráciu nosičov na donorových centrách. Relatívne dobrá (rádová) zhoda takto určenej koncentrácie iónov Fe určených výrobcom potvrdzuje opodstatnenosť použitia dvojhladinového modelu pri popise vzniku záznamov vo vyšetrovanom materiáli a tým i možnosť využitia fotorefraktívneho javu na určenie koncentrácie prímesí.

LITERATÚRA

- [1] CHEN, F. S.: Optically induced change of refractive indices in LiNbO₃ and LiTaO₃, Journal of Applied Physics 40, 3389 (1969)
- [2] JOHNSTON, W. D. Jr.: Optical index damage in LiNbO₃ and other pyroelectric insulators, Journal of Applied Physics **41**, 3279 (1970)
- [3] YUTAKA OHMORI, YOSHIYUKI YASOJIMA, YOSHIO INUISHI: *Japanese Journal of Applied Physics* 14, 1291, 1975
- [4] AVANESYAN, G. T. VARTANYAN, E. S. MIKAELYAN, R. S. HOVSEPYAN, R. K. -. POGOSYAN, A. R: Mechanisms of photochromic and photorefractive effects in doubly doped Lithium Niobate Crystals, Phys. Stat. Sol. (a) 126, 245 (1991)

- [5] TUREK, I. TARJÁNYI, N. MUSIL, C. ŠTELINA, J. GRONDŽÁK, K.: Poznámky k popisu fotorefraktívneho javu v LiNbO₃, JMO 7 8 (2000) 205 207
- [6] ARIZMENDI, L. TOWNSEND, P. D. CARRASCOSA, M. BAQUEDANO, J. CABRERA, J. M. Photorefractive fixing and related thermal effects in LiNbO₃, J. Phys.: Condens. Matter 3 (1991) 5399 5406
- [7] BUSE, K. JERMANN, F. KRÄTZIG, E.: *Infrared holographic recording in LiNbO*₃: Fe and LiNbO₃: Cu, Optical Materials 4 (1995) 237 240
- [8] YOUWEN LIU, LIREN LIU, LIANGYING XU: CHANGHE ZHO: Experimental study of non volatile holographic storage in doubly and triply doped lithium niobate crystals, Optics Communications 181 (2000) 47 52
- [9] YOUWEN LIU, LIREN LIU, DE'AN LIU, LIANGYING XU, CHANGHE ZHOU: Intensity dependence of two center nonvolatile holographic recording in LiNbO₃:Cu:Ce crystals, Optics Communications **190** (2001) 339 343
- [10] POCHI YEH: Introduction to photorefractive nonlinear optics, John Wiley & Sons, Inc., New York 1993
- [11] BORN, M. WOLF, E.: Principles of optics, Moscow 1970
- [12] ČTYROKÝ, J. HÜTTEL, I. SCHRÖFEL, J. ŠIMÁNKOVÁ, L.: *Integrovaná optika*, SNTL Praha, 1986
- [13] NAY, J.: Fizičeskije svojstva kristallov, Moskva 1960