In [1]:

```
import numpy as np
import pandas as pd
from numpy import mean,std
import matplotlib.pyplot as pp
from numpy import cov
from scipy.stats import pearsonr
from scipy.stats import spearmanr
```

In [29]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\4_drug200.csv")
a
```

Out[29]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

a) Find mean, median, mode and describe

In [30]:

```
a.mean()
```

Out[30]:

Age 44.315000 Na_to_K 16.084485

dtype: float64

```
In [31]:
a.median()
Out[31]:
           45.0000
Age
Na_to_K
           13.9365
dtype: float64
In [32]:
a.mode()
Out[32]:
   Age Sex
              BP Cholesterol Na_to_K Drug
0 47.0
                       HIGH
                               12.006 drugY
          M
            HIGH
1 NaN NaN
             NaN
                        NaN
                               18.295
                                      NaN
In [33]:
a.describe()
```

Out[33]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

b) Find sum(), cumsum(), count, min and max values

```
In [34]:
```

a.sum()

Out[34]:

Age 8863
Sex FMMFFFFMMMFFMFFFMFMFMFMMFMMMFMFFMFF...
BP HIGHLOWLOWNORMALLOWNORMALLOWNORMALLOWNORMALLOWLOW...
Cholesterol HIGHHIGHHIGHHIGHHIGHHIGHHIGHHIGHNORMALHIGH...
Na_to_K 3216.897

Drug drugYdrugCdrugCdrugXdrugYdrugXdrugYdrugCdrugYd...

dtype: object

In [35]:

a.cumsum()

Out[35]:

	Age	Sex	
0	23	F	
1	70	FM	
2	117	FMM	
3	145	FMMF	
4	206	FMMFF	
195	8732	${\sf FMMFFFFMMMFMMFFMFFMFMMFMMMMFMFFMMFF}$	HIGHLOWLOWI
196	8748	${\sf FMMFFFFMMMFMMFFMFFMFMMFMMMMFMFFMMFF}$	HIGHLOWLOWI
197	8800	${\sf FMMFFFFMMMFMMFFMFFMFMMFMMMMFMFFMMFF}$	HIGHLOWLOWI
198	8823	${\sf FMMFFFFMMMFMMFFMFFMFMMFMMMMFMFFMMFF}$	HIGHLOWLOWI
199	8863	FMMFFFFMMMFFMFFMMMFMMMFFFMFMMFMMMMMFMFFMMFF	HIGHLOWLOWI

200 rows × 6 columns

In [36]:

a.count()

Out[36]:

Age 200
Sex 200
BP 200
Cholesterol 200
Na_to_K 200
Drug 200

dtype: int64

```
In [37]:
a.count()
Out[37]:
              200
Age
              200
Sex
              200
BP
Cholesterol
              200
Na_to_K
              200
              200
Drug
dtype: int64
In [38]:
a.max()
Out[38]:
                  74
Age
Sex
                   Μ
BP
              NORMAL
Cholesterol
              NORMAL
              38.247
Na_to_K
Drug
               drugY
dtype: object
c) Find covariance and correlation (spearman and
pearsons)
In [39]:
d1=a["Age"]
d2=a["Na_to_K"]
cov(d1,d2)
Out[39]:
array([[273.71434673, -7.54375153],
       [ -7.54375153, 52.18553348]])
In [40]:
pearsonr(d1,d2)
Out[40]:
(-0.06311949726772592, 0.3745756399034559)
```

spearmanr(d1,d2)

Out[41]:

In [41]:

SpearmanrResult(correlation=-0.047273882688479915, pvalue=0.50622005813874 18)

In []:		