# Week 6 Lab Notes

## A. Localisation of the Robot (Dead Reckoning)

### **Objective**

The purpose of this lab is to understand how to implement a motion-based linearisation technique for mobile robot.

### **Learning outcomes**

At the end of this exercise, you should be able to:

- Implement a Dead Reckoning Localisation for a two-wheel mobile robot and navigate the robot along a predefined trajectory.
- Assess the performance of the robot under the motion-based localisation.
- Observe and analyse the performance when the robot performing a continuous task.



### Task 1: Preparation

- Download 'test\_localisation.py' and 'dead\_reckoning.py' files from Ultra, and put them into the "my examples" folder.
- Open the GUI by running puzz\_gui.py



• Select 'Module' with 'test\_localisation.py'. Note, there is a basic control program at this file for testing 'dead reckoning.py'.



#### **Task 2: Localisation**

Implement a Dead Reckoning Localisation algorithm following the next steps:

- Open 'dead reckoning.py' file.
- Write your code for localisation in 'dead\_reckoning.py' file in the allocated section for this task.



The following parameters are used in the program.

| Parameter | Notation        | Description                                    |
|-----------|-----------------|------------------------------------------------|
| self.pose | μk              | Robot pose mean (3x1) $[x\ y\ \theta]^T$ where |
|           |                 | x[m], y[m] and $	heta[rad]$                    |
| self.Sig  | Σk              | Robot pose covariance (3x3)                    |
| dt        | $\Delta t$      | Sampling time (1x1) in seconds [s]             |
| self.w_l  | ωι              | Left motor encoder reading $[rad/s]$           |
| self.w_r  | $\omega_{ m r}$ | Right motor encoder reading [rad/s]            |
| self.R    | r               | Radius of the wheels (0.05 $[m]$ )             |
| self.L    | I               | Robot wheel base (1x1) (0.09[m])               |
| self.k    | $k_r = k_1$     | Error associated with computing the            |
|           |                 | angular velocity for each wheel                |

Note that, self.pose and self. Sig are the parameters to be updated by your code

- Run your code using GUI by clicking the icon .
- You will see the robot covariance like the following figure if your codes are correct.



[End of Lab]