# 

## 王石嵘

## April 2, 2020

## Contents

| 6 | Maı | Many-body Perturbation Theory                         |                                                 |   |
|---|-----|-------------------------------------------------------|-------------------------------------------------|---|
|   | 6.1 | RS Pe                                                 | rturbation Theory                               | 2 |
|   | 6.2 | Diagrammatic Representation of RS Perturbation Theory |                                                 | 2 |
|   |     | 6.2.1                                                 | Diagrammatic Perturbation Theory for Two States | 2 |
|   |     |                                                       | Ex 6.1                                          | 2 |
|   |     | 6.2.2                                                 | Diagrammatic Perturbation Theory for $N$ States | 3 |
|   |     |                                                       | Ex 6.2                                          | 3 |

### 6 Many-body Perturbation Theory

#### 6.1 RS Perturbation Theory

### 6.2 Diagrammatic Representation of RS Perturbation Theory

6.2.1 Diagrammatic Perturbation Theory for Two States

Ex 6.1

Similarly,



thus, the sum of above terms is

while

$$\frac{V_{12}V_{21}(V_{22}^3 - V_{11}^3)}{(E_1^{(0)} - E_2^{(0)})^4} + 3 \times \frac{V_{12}V_{21}(V_{11}^2V_{22} - V_{11}V_{22}^2)}{(E_1^{(0)} - E_2^{(0)})^4} = \frac{V_{12}V_{21}(V_{22} - V_{11})^3}{(E_1^{(0)} - E_2^{(0)})^4}$$
(6.2.1)

#### 6.2.2 Diagrammatic Perturbation Theory for N States

Ex 6.2 The 4th-order perturbation energy of state i can be expressed as

$$\sum_{k,n,m\neq i} \frac{V_{ki}V_{nk}V_{mn}V_{im}}{(E_{i}^{(0)} - E_{k}^{(0)})(E_{i}^{(0)} - E_{n}^{(0)})(E_{i}^{(0)} - E_{m}^{(0)})} + \sum_{n\neq i} \frac{V_{ii}^{2}V_{ni}V_{in}}{(E_{i}^{(0)} - E_{n}^{(0)})^{3}} - \sum_{m,n\neq i} \frac{V_{ii}V_{mi}V_{in}V_{nm}}{(E_{i}^{(0)} - E_{m}^{(0)})^{2}(E_{i}^{(0)} - E_{n}^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{in}V_{in}V_{in}}{(E_{i}^{(0)} - E_{m}^{(0)})^{2}(E_{i}^{(0)} - E_{n}^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{in}V_{ni}}{(E_{i}^{(0)} - E_{m}^{(0)})(E_{i}^{(0)} - E_{n}^{(0)})(E_{i}^{(0)} - E_{n}^{(0)})(E_{i}^{(0)} - E_{n}^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{in}V_{in}}{(E_{i}^{(0)} - E_{n}^{(0)})^{2}(2E_{i}^{(0)} - E_{n}^{(0)} - E_{m}^{(0)})}$$

$$(6.2.2)$$

$$\left\langle n\left|\,\mathcal{H}\left|\,\Psi_{i}^{(3)}\right.\right\rangle + \left\langle n\left|\,\mathcal{V}\left|\,\Psi_{i}^{(2)}\right.\right\rangle = E_{i}^{(0)}\left\langle n\left|\,\Psi_{i}^{(3)}\right.\right\rangle + E_{i}^{(1)}\left\langle n\left|\,\Psi_{i}^{(2)}\right.\right\rangle + E_{i}^{(2)}\left\langle n\left|\,\Psi_{i}^{(1)}\right.\right\rangle \right. \tag{6.2.3}$$

$$E_{i}^{(4)} = \left\langle i \middle| \mathcal{V} \middle| \Psi_{i}^{(3)} \right\rangle$$

$$= \sum_{n \neq i} \left\langle i \middle| \mathcal{V} \middle| n \right\rangle \left\langle n \middle| \Psi_{i}^{(3)} \right\rangle$$
(6.2.4)