

rec'd Tymb 029/ Nar 2005 1 8. 12. 03

INVESTOR IN PEOPLE

The Patent Office Concept House Cardiff Road Newport South Wales NP10-800

REC'D 15 JAN 2004

PCT **WIPO**

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

I also certify that the application is now proceeding in the name as identified herein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely

subjects the company to certain additional company law rules.

COMPLIANCE WITH RULE 17.1(a) OR (b)

Dated

20 October 20

Best Available Copy

An Executive Agency of the Denartment of Trade and Industry

GB 0222549.8

By virtue of a direction given under Section 30 of the Patents Act 1977, the application is proceeding in the name of:

MARCONI INTELLECTUAL PROPERTY (RINGFENCE) INC., 3000 Marconi Drive, Warrendale, Pennsylvania 15086, United States of America

Incorporated in USA - Delaware,

[ADP No. 08708836002]

GB 0222549.8

By virtue of a direction given under Section 30 of the Patents Act 1977, the application is proceeding in the name of a APPLICATION FILED 25 /a (03

MARCONI COMMUNICATIONS INC,

3000 Marconi Drive,

Warrendale, PA 15086,

United States of America

Patents Form 1/77 30SEP02 E751818-1 ct 1977 SEP 2002 The Patent Office Cardiff Road JEWPORT Newport Gwent NP108QQ Request forlgrant (See-the notes on the back of this form._You can also get_ an explanatory leaflet from the Patent Office to help you fill in this form) P/63751.GBA Your reference 1. 0222549.8 Patent application number (The Patent Office will fill in this part) Marconi Communications Limited P MARCOLAR COMMUNICATIONS OPTIC Full name, address and postcode of the or of-P O Box 53 each applicant (underline all surnames) New Century Park NECKORK LIMITED COVERTY CV3 1414 ALEST PARK BUSINESS CAMPUS D DUNLEARY ROAD Patents ADP number (if you know it) DUN LACIRE 08516791001 Ca DuBun If the applicant is a corporate body, give the RELAND country/state of its incorporation "Monitoring Telecommunication Network Title of the invention Elements" 4. Rosi Armstrong Name of your agent (if you have one) 5. Marconi Intellectual Property "Address for service" in the United Kingdom Marrable House to which all correspondence should be sent The Vineyards (including the postcode) **Great Baddow** Chelmsford Essex CM2 7QS 787330.0002 _40527004~ Patents ADP number (if you know it) Date of filing Priority application number If you are declaring priority from one or more Country (day / month / year) (if you know it) earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number Date of filing Number of earlier application If this application is divided or otherwise (day / month / year) derived from an earlier UK application, give the number and the filing date of the earlier application Is a statement of inventorship and of right to grant of a patent required in support of YES this request? (Answer 'Yes' if: a) any applicant named in part 3 is not an inventor, or

b) there is an inventor who is not named as an

c) any named applicant is a corporate body

applicant, or

9. Enter the number of sheets following items you are filing with this form. Do not count copies of the same document

110 not count copies of the same document	• •	
Continuation sheets of this form	0	
Description	12 .	
Claim(s)	7	
Abstract	1 (,	
Drawing(s)	1 AL CX	
O. If you are also filing any of the following, state how many against each item.		
Priority documents	0	
Translations of priority documents	.0	•
Statement of inventorship and right to grant of a patent (Patents Form 7/77)	0	
Request for preliminary examination and search (Patents Form 9/77)	1 .	
Request for substantive examination (Patents Form 10/77)	0	
Any other documents (please specify)		

Signature

Date

27 September 2002

ROSI ARMSTRONG

12. Name and daytime telephone number of person to contact in the United Kingdom Rosi Armstrong 024 76 56 3618

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505. a)
- Write your answers in capital letters using black ink or you may type them. b)
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate c) sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed. d)
- Once you have filled in the form you must remember to sign and date it. e)
- For details of the fee and ways to pay please contact the Patent Office. Ð

MONITORING TELECOMMUNICATION NETWORK ELEMENTS

This invention relates to monitoring the status of telecommunication network elements.

Telecommunication networks commonly comprise network elements (NEs) and a network management system (NMS). One function of the NMS is to monitor the status of the NEs, i.e. to determine whether the status of each NE is operational i.e. 'up', or non-operational i.e. 'down'. The NMS may also inform a customer of the network of the status of one or more of the NEs. This is particularly important if the status of a NE is down. In current networks, the NMS monitors the status of the NEs by polling each NE in turn to determine its status. If the NE replies its status is up, if it does not reply its status is down. As the NEs are polled in turn, such a monitoring method can be slower than that required by a customer of the network, especially if the customer is to take action concerning a down status of a NE. For example, in a 5000 element network, 4999 NEs will first be polled before determining the status of the 5000th element. If the status of the 5000th element is down, the time taken to determine this and inform the customer may be too long. In addition, the speed of this monitoring method will depend on the number of NEs in the network. For example, if it takes 10sec to query a NE, it will take 100sec to determine the status of all the NEs in a 10 element network, but will take 100,000sec to determine the status of all the NEs in a 10,000 element network. The status of a NE, especially a down status, needs to be reported in a given, bounded

The status of a NE; especially a down status, needs to be reported in a given, bounded time, for the information to be useful to a customer of the network, and the bounded time should not increase if the network size increases. It is therefore desirable to use a

THOTWEN

10

15

method of monitoring the status of NEs which can quickly determine the status of any NE, and which does not slow down as the size of the network increases.

According to a first aspect of the invention there is provided a method of monitoring the status of one or more network elements (NEs) linked together in a telecommunication network, comprising

receiving a down status notification from a NE in the network, identifying one or more other NEs which are linked to the NE, polling the or each other NE to determine the status thereof.

10

15

5

On receipt of a down status notification, identifying and polling of the or each other NE can be carried out quickly. A customer of the network can therefore be informed of the status of a NE in a satisfactorily short period of time. Additionally, if it takes, for example, 0.2sec for a notification to be received, and, for example, 10sec to identify and poll an other NE, it will take 10.2sec to determine the status of the other NE. It will take the same amount of time if there are 10 NEs or 10,000 NEs in the network. There will therefore be a bounded time for notifying a customer of the status of a NE, and the invention removes the relationship between time taken to report a NE status and network size.

20

The status of a NE may be operational i.e. up. The status of a NE may be non-operational i.e. down.

A down status notification may be received from a NE if the NE determines that the status of any other NE linked thereto is down. Each NE may poll the or each other NE linked thereto to determine the status of the other NE. Each NE may poll the or each other NE linked thereto by signalling to the other NE, using a signalling protocol such as the public network to network interface (PNNI) protocol. If the or each other NE replies, its status may be considered to be up. If the or each other NE does not reply, its status may be considered to be down. The down status notification may contain information on the NE which has output the notification.

5

10

15

20

A down status notification may be received from a NE if the NE determines that the status of an interface thereof linked to one or more other NEs is down. The status of an interface may be down if the status of the or any of the other NEs linked to the interface is down. The down status notification may contain information on the NE which has output the notification, and information on the or each interface of the NE which is down. The or each interface may comprise a hardware port. The down status notification may comprise a hardware port down trap.

The down status notification may be received using a signalling protocol, for example the simple network management protocol (SNMP). The SNMP used preferably has down status notification resend functionality, such that notifications which do not arrive at their intended destination may be resent a configurable number of times. SNMP version 3 has such resend functionality.

P/63751.

Identifying the or each other NE may comprise accessing the down status notification to obtain information on the NE which has output the notification. Identifying the or each other NE may comprise accessing the down status notification to obtain information on the NE which has output the notification and information on the or each interface of the NE which is down. Identifying the or each other NE may comprise accessing a links database containing details of each NE and the or each other NE linked thereto, and using the information to obtain the identification of the or each other NE. Identifying the or each other NE may comprise accessing the links database and using the information to obtain the IP address of the or each other NE.

10

Polling the or each other NE may comprise sending at least one SNMP get request to the NE. Polling the or each other NE may comprise using the SNMP over transmission Polling the or each other NE may control protocol/internet protocol (TCP/IP). comprise using internet control message protocol (ICMP) over IP.

15

20

The method may comprise using a network management system (NMS) of the telecommunication network. The NMS may perform a number of functions, including monitoring the status of one or more NEs of the network. The NMS may be run on a computer system, which may comprise, for example, a Solaris computer system, or a HPUX computer system, or a Windows NT/2000 computer system. The NMS computer system may be linked to the or each or some of the NEs of the network. The NMS computer system may be able to communicate with the or each or some of the NEs of the network over IP.

The NMS may comprise a fault manager module. The fault manager module may receive the down status notification from the NE. The fault manager module may receive the down status notification using a signalling protocol, for example SNMP. The fault manager module may place the down status notification in a notification database of the NMS. The fault manager module may output a message on receipt of a down status notification.

10

15

20

The NMS may comprise a monitoring module. The monitoring module may receive a message output from the fault manager module when it receives a down status notification. The monitoring module may access the down status notification, to obtain information on the NE which has output the notification. The monitoring module may access the down status notification, to obtain information on the NE which has output the notification, and information on the or each interface of the NE which is down. The monitoring module may access a links database of the NMS containing details of each NE and the or each other NE linked thereto, and use the information to obtain the identification of the or each other NE. The monitoring module may access a links table of the links database and use the information to obtain the identification of the or each The monitoring module may access the links database and use the other NE. information to obtain the IP address of the or each other NE. The monitoring module may poll the or each other NE to determine the status thereof. The monitoring module may poll the or each other NE by sending at least one SNMP get request to the NE. The monitoring module may poll the or each other NE using the SNMP over TCP/IP. The monitoring module may determine the status of the or each or some of the NEs of the network, and may add the status information to a status database of the NMS.

The NMS may comprise a graphical user interface (GUI) module. The GUI module may receive information on the status of one or more of the NEs of the network from the status database. The GUI module may receive information on changes in the status of one or more of the NEs of the network from the status database. The GUI module may be used to report the status of one or more NEs of the network to a customer of the network. The GUI module may be used to report changes in the status of one or more NEs of the network to a customer of the network. The GUI module may use a NEs listing screen to report the status and/or changes in the status of one or more NEs in the network to a customer of the network. The GUI module may report an up status of a NE using a green ball in the NEs listing screen next to the NE. The GUI module may report a down status of a NE using a red ball in the NEs listing screen next to the NE.

The network elements in the telecommunication network may comprise, for example, nodes, switches or routers. The telecommunication network may comprise, for example, an asynchronous transfer mode (ATM) network or an internet protocol (IP) network, or a multiprotocol label switching (MPLS) network.

The method may run in parallel with polling each NE in the telecommunication network in turn.

20

5

10

15

According to a second aspect of the invention there is provided a computer program product for monitoring the status of one or more network elements (NEs) linked together in a telecommunication network, comprising

computer readable program means for receiving a down status notification from a NE of the network,

computer readable program means for identifying one or more other NEs which are linked to the NE,

5 computer readable program means for polling the or each other NE to determine the status thereof.

The computer program product may be comprised in a network management system (NMS) of the telecommunication network. The NMS may run on a computer system, which may comprise, for example, a Solaris computer system, a HPUX computer system, or a Windows NT/2000 computer system.

10

15

The computer readable program means for receiving a down status notification from a NE of the network may comprise a fault manager module of the NMS. The fault manager module may receive the down status notification using a signalling protocol, for example SNMP. The fault manager module may place the down status notification in a notification database of the NMS. The fault manager module may output a message on receipt of a down status notification.

The computer readable program means for identifying one or more other NEs which are linked to the NE may comprise a monitoring module of the NMS. The computer readable program means for polling the or each other NE to determine the status thereof may comprise the monitoring module of the NMS. The monitoring module may receive a message output from the fault manager module when it receives a down status

notification. The monitoring module may access the down status notification, to obtain information on the NE which has output the notification. The monitoring module may access the down status notification, to obtain information on the NE which has output the notification, and information on the or each interface of the NE which is down. The monitoring module may access a links database of the NMS containing details of each NE and the or each other NE linked thereto, and use the information to obtain the identification of the or each other NE. The monitoring module may access a links table of the links database and use the information to obtain the identification of the or each The monitoring module may access the links database and use the other NE. information to obtain the IP address of the or each other NE. The monitoring module may poll the or each other NE to determine the status thereof. The monitoring module may poll the or each other NE by sending at least one SNMP get request to the NE. The monitoring module may poll the or each other NE using the SNMP over TCP/IP. The monitoring module may determine the status of the or each or some of the NEs of the network, and may add the status information to a status database of the NMS.

10

15

20

The computer program product may further comprise a graphical user interface (GUI) module of the NMS. The GUI module may receive information on the status of one or more of the NEs of the network from the status database. The GUI module may receive information on changes in the status of one or more of the NEs of the network from the status database. The GUI module may be used to report the status of one or more NEs of the network to a customer of the network. The GUI module may be used to report changes in the status of one or more NEs of the network to a customer of the network. The GUI module may use a NEs listing screen to report the status and/or changes in the

status of one or more NEs in the network to a customer of the network. The GUI module may report an up status of a NE using a green ball in the NEs listing screen next to the NE. The GUI module may report a down status of a NE using a red ball in the NEs listing screen next to the NE.

5

10

15

According to a third aspect of the invention there is provided a computer system in which the status of one or more network elements (NEs) linked together in a telecommunication network are monitored, comprising receiving means for receiving a down status notification from a NE of the network, identification means for identifying one or more other NEs which are linked to the NE, polling means for polling the or each other NE to determine the status thereof.

According to a fourth aspect of the invention there is provided a computer system whose operation is directed by the computer program product according to the second aspect of the invention.

The computer system of the third or fourth aspect of the invention may comprise, for example, a Solaris computer system, a HPUX computer system, or a Windows NT/2000 computer system.

20

According to a fifth aspect of the invention there is provided a computer readable medium on which is stored a computer program of instructions for a computer system which monitors the status of one or more network elements (NEs) linked together in a telecommunication network, comprising

means for receiving a down status notification from a NE of the network, means for identifying one or more other NEs which are linked to the NE, means for polling the or each other NE to determine the status thereof.

According to a sixth aspect of the invention there is provided a program storage device readable by a machine and encoding a program of instructions for executing the method according to the first aspect of the invention.

An embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

Figure 1 is a schematic representation of a telecommunication network, comprising network elements whose status are monitored using the method of the first aspect of the invention, and

15

20

Figure 2 is a schematic representation of a network management system of the telecommunication network of Figure 1.

Figure 1 illustrates a telecommunications network 1, comprising network elements (NEs) 2, 3, 4, 5 and 6, and a network management system (NMS) 7. The NEs each comprise a node, and are linked together as shown, using cables. Each NE is additionally linked to the NMS as shown using cables.

The NMS 7 is further illustrated in Figure 2. This is run on a Windows NT computer system. The NMS 7 comprises a fault manager module 20, a monitoring module 21, a database, 22 and a graphical user interface (GUI) module 23, linked together as shown.

5 The status of one or more of the NEs in the network is monitored as follows.

Each NE 2 to 6 will regularly poll the or each other NE linked thereto to determine the status of the other NE. This is carried out using the PNNI signalling protocol. If the or each other NE replies, its status is considered to be up, if the or each other NE does not reply, its status is considered to be down. If an NE determines that the status of any other NE linked thereto is down, it issues a down status notification which is received by the fault manager module 20 of the NMS 7, using SNMP. The fault manager module 20 places the down status notification in the database 22 of the NMS 7, and outputs a message to the monitoring module 21 of the NMS 7.

15

20

10

The monitoring module 21 receives a message output from the fault manager module 20 when it receives a down status notification. The monitoring module 21 accesses the down status notification, to obtain information on the NE which has output the notification. The monitoring module 20 then accesses the database 22 of the NMS 7, which contains details of each NE and the or each other NE linked thereto, and uses the information from the notification to obtain the identification of the or each other NE, e.g. the IP address of the or each other NE.

The monitoring module 20 polls the or each other NE to determine the status thereof, by sending at least one SNMP get request to the NE, using the SNMP over TCP/IP. Once the status of the or each other NE has been determined, this is added to the database 22

5

10

15

of the NMS 7.

The GUI module 23 of the NMS 7 receives information on the status of the NEs of the network from the database 22, and reports changes in the status of the NEs to a customer of the network. This is carried out using a NEs listing screen, wherein an up status of a NE is reported using a green ball in the screen next to the NE, and a down status of a NE is reported using a red ball in the screen next to the NE.

Thus if a NE goes down, this will be detected by a neighbouring NE, and a down status notification issued to the NMS. The NMS can then poll the down NE to determine/verify its status. This will be carried out on receipt of a down status notification, i.e. the time delay associated with polling in a queue is eliminated. A customer of the network can therefore be informed of the down status of a NE in a satisfactorily short period of time. Additionally, it will take the same amount of time to determine the status of a NE if there are 10 NEs or 10,000 NEs in the network. There will therefore be a bounded time for notifying a customer of the status of a NE.

CLAIMS

- 1. A method of monitoring the status of one or more network elements (NEs) linked together in a telecommunication network, comprising receiving a down status notification from a NE in the network, identifying one or more other NEs which are linked to the NE, polling the or each other NE to determine the status thereof.
- 2. A method according to claim 1 in which the status of a NE is operational i.e. up.
- 3. A method according to claim 1 in which the status of a NE is non-operational i.e. down.
- 4. A method according to any preceding claim in which a down status notification is received from a NE if the NE determines that the status of any other NE linked thereto is down.
- 5. A method according to claim 4 in which each NE polls the or each other NE linked thereto to determine the status of the other NE.
- 6. A method according to claim 5 in which each NE polls the or each other NE linked thereto by signalling to the other NE, using a signalling protocol.
- 7. A method according to claim 5 or claim 6 in which, if the or each other NE replies, its status is considered to be up.

- 8. A method according to claim 5 or claim 6 in which, if the or each other NE does not reply, its status is considered to be down.
- 9. A method according to any preceding claim in which the down status notification contains information on the NE which has output the notification.
- 10. A method according to any preceding claim in which a down status notification is received from a NE if the NE determines that the status of an interface thereof linked to one or more other NEs is down.
- 11. A method according to claim 10 in which the status of an interface is down if the status of the or any of the other NEs linked to the interface is down.
- 12. A method according to claim 10 or claim 11 in which the down status notification contains information on the NE which has output the notification, and information on the or each interface of the NE which is down.
- 13. A method according to any of claims 10 to 12 in which the or each interface comprises a hardware port, and the down status notification comprises a hardware port down trap.
- 14. A method according to any preceding claim in which the down status notification is received using a signalling protocol.

- 15. A method according to claim 14 in which signalling protocol comprises the simple network management protocol (SNMP).
- 16. A method according to any preceding claim in which identifying the or each other NE comprises accessing the down status notification to obtain information on the NE which has output the notification.
- 17. A method according to claim 16 in which identifying the or each other NE comprises accessing a links database containing details of each NE and the or each other NE linked thereto, and using the information to obtain the identification of the or each other NE.
- 18. A method according to claim 17 in which identifying the or each other NE comprises accessing the links database and using the information to obtain the IP address of the or each other NE.
- 19. A method according to any preceding claim in which polling the or each other NE comprises sending at least one SNMP get request to the NE.
- 20. A method according to claim 19 in which polling the or each other NE comprises using the SNMP over transmission control protocol/internet protocol (TCP/IP).

ζ

- 21. A method according to any preceding claim which comprises using a network management system (NMS) of the telecommunication network.
- 22. A method according to claim 20 in which the NMS comprises a fault manager module.
- 23. A method according to claim 22 in which the fault manager module receives the down status notification from the NE.
- 24. A method according to claim 23 in which the fault manager module places the down status notification in a notification database of the NMS.
- 25. A method according to claim 23 or claim 24 in which the fault manager module outputs a message on receipt of a down status notification.
- 26. A method according to any of claims 20 to 25 in which the NMS comprises a monitoring module.
- 27. A method according to claim 26 in which the monitoring module receives a message output from the fault manager module when it receives a down status notification.

- 28. A method according to 26 or claim 27 in which the monitoring module accesses the down status notification, to obtain information on the NE which has output the notification.
- 29. A method according to claim 28 in which the monitoring module accesses a links database of the NMS containing details of each NE and the or each other NE linked thereto, and use the information to obtain the identification of the or each other NE.
- 30. A method according to any of claims 26 to 29 in which the monitoring module polls the or each other NE to determine the status thereof.
- 31. A method according to any of claims 26 to 30 in which the monitoring module determines the status of the or each or some of the NEs of the network, and adds the status information to a status database of the NMS.
- 32. A method according to any of claims 20 to 32 in which the NMS comprises a graphical user interface (GUI) module.
- 33. A method according to claim 32 in which the GUI is used to report the status of one or more NEs of the network to a customer of the network.
- 34. A method according to any preceding claim in which the network elements in the telecommunication network comprise nodes, switches or routers.

- 35. A computer program product for monitoring the status of one or more network elements (NEs) linked together in a telecommunication network, comprising computer readable program means for receiving a down status notification from a NE of the network, computer readable program means for identifying one or more other NEs which are linked to the NE, computer readable program means for polling the or each other NE to determine the status thereof.
- 36. A computer program product according to claim 35 comprised in a network management system (NMS) of the telecommunication network.
- 37. A computer program product according to claim 35 or claim 36 in which the computer readable program means for receiving a down status notification from a NE of the network comprises a fault manager module of the NMS.
- 38. A computer program product according to any of claims 35 to 37 in which the computer readable program means for identifying one or more other NEs which are linked to the NE comprise a monitoring module of the NMS.
- 39. A computer program product according to any of claims 35 to 38 in which the

 computer readable program means for polling the or each other NE to determine

 the status thereof comprises the monitoring module of the NMS.

- 40. A computer system in which the status of one or more network elements (NEs) linked together in a telecommunication network are monitored, comprising receiving means for receiving a down status notification from a NE of the network, identification means for identifying one or more other NEs which are linked to the NE, polling means for polling the or each other NE to determine the status thereof.
- 41. A computer system whose operation is directed by the computer program product according to the any of claims 35 to 39.
- 42. A computer readable medium on which is stored a computer program of instructions for a computer system which monitors the status of one or more network elements (NEs) linked together in a telecommunication network, comprising

 means for receiving a down status notification from a NE of the network, means for identifying one or more other NEs which are linked to the NE, means for polling the or each other NE to determine the status thereof.
- 43. A program storage device readable by a machine and encoding a program of instructions for executing the method according to any of claims 1 to 34.

ABSTRACT

MONITORING TELECOMMUNICATION NETWORK ELEMENTS

A method of monitoring the status of one or more network elements (NEs) (2 to 6) linked together in a telecommunication network (1), comprising receiving a down status notification from a NE in the network (1), identifying one or more other NEs which are linked to the NE, polling the or each other NE to determine the status thereof.

The status of a NE may be operational i.e. up, or non-operational i.e. down. A down status notification may be received from a NE if the NE determines that the status of any other NE linked thereto is down. The down status notification may contain information on the NE which has output the notification. Identifying the or each other NE may comprise accessing the down status notification to obtain information on the NE which has output the notification, and using the information to obtain the identification of the or each other NE. Polling the or each other NE may comprise sending at least one SNMP get request to the NE. The method may be carried out using a network management system (NMS) (7) of the network (1).

To be accompanied on publication, by Figure 1 of the drawings.

AND THE BALL

NEWPORT

Fig. 1

Fig. 2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.