Review Questions 5

Algorithmic State Machines

1 – Given the state diagram below, generate the state table and design a sequential circuit using D flip fops.

Yanıt 1

Şimdiki durum		girdi	Sonraki durum		çıktı
Α	В	Х	Α	В	У
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	0	1	0

Çıktı sadece bir durumda 1 oluyor → Y= ABx'

Flip flop girdileri $D_A = A(t+1) D_B = B(t+1)$

 D_A ve D_B için Karnaugh Map kullanıyoruz.

$$\mathsf{D}_\mathsf{A} \texttt{=} \mathsf{B} \texttt{'} \mathsf{x} + \mathsf{B} \mathsf{x} \texttt{'} \texttt{=} \mathsf{B} \, \oplus \, \mathsf{x}$$

$$D_B = Ax + A'x' = (A \oplus x)'$$

2 – Given the state diagram below,

- a) Starting from state 00 determine state transitions and output sequence that will be generated when an input sequence of 01011011011110 is applied.
- b) Design a sequential circuit using D flip fops.

Yanıt 2

a)

Durum	00	00	01	00	01	11	00	01	11	00	01	11	10	10	00
Girdi	0	1	0	1	1	0	1	1	0	1	1	1	1	0	
Çıktı	0	0	1	0	0	1	0	0	1	0	0	0	0	1	

b)

Şimdiki durum		girdi	Sonraki	çıktı	
Α	В	Х	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

$$y = Bx' + Ax' = (A + B)x'$$

3 - Create a state diagram for a sequence detector that outputs a 1 when it detects the final bit in the serial data stream 1101

Yanıt 3

