1 Introduction and Business Understanding

In this project, we will be looking at movie datasets in order to give recommendations to Microsoft's new movie studio.

Entertainment is a huge, global market. According to Forbes (https://www.forbes.com/sites/rosaescandon/2020/03/12/the-film-industry-made-a-record-breaking-100-billion-last-year/?sh=5404bc6634cd), the film industry made over 100 billion dollars in 2019. While that is a significant chunk of change, there is also a significant overhead in creating entertainment content. It is important for fledgling movie studios to research what type of content does well, so that they can use this information as a guide to replicate that success. As Microsoft is interested in making movies, the following project will focus on that component of the entertainment industry.

1.1 Data

In order to glean information relevant to movie-making we will be looking at two datasets from https://www.imdb.com/ (https://www.boxofficemojo.com/ (https://www.boxofficemojo.com/).

- IMDB stands for Internet Movie Database and is one of the most popular and comprehensive internet sources for movie and entertainment data. The dataset we are working with focuses on information about movies - the producers, the genres, the actors, the movies ratings, ect.
- Box Office Mojo is a site that tracks box-office revenue, and the data set we will be using from them contains this information.

By using these two datasets together, we can extract if certain aspects of a movie lead to higher box-office revenue, which is an industry standard for movie success.

Limitations

This data is only on movies, thus it can not be extrapolated to the entire entertainment industry. Additionally, as the dataset only contains the total gross, it will not include the costs of creating the movies. Finally, the dataset only looks at box office revenue, which means that the total revenue (from streaming sites or other sources) may be higher.

1.2 Objectives

- Import datasets and do an initial viewing.
- Ask some relevant questions!
- Find answers to those questions, and do some analysis.
- · Conclusion.

2 Method

2.1 Data Preparation

First we are going to import some required packages needed to process the data. Then we will connect to our datasets and take a peek inside.

```
In [1]: # found this here: https://jupyter-contrib-nbextensions.readthedocs.io/en/
!pip install autopep8

Requirement already satisfied: autopep8 in c:\users\15164\anaconda3\envs\
learn-env\lib\site-packages (1.6.0)
```

Requirement already satisfied: toml in c:\users\15164\anaconda3\envs\lear n-env\lib\site-packages (from autopep8) (0.10.2)

Requirement already satisfied: pycodestyle>=2.8.0 in c:\users\15164\anaco nda3\envs\learn-env\lib\site-packages (from autopep8) (2.8.0)

```
In [2]: # importing required packages
import warnings
import zipfile
import seaborn as sns
import sqlite3 as sql
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
warnings.filterwarnings("ignore")
```

```
In [3]: # unzip data - code from https://docs.python.org/3/library/zipfile.html
with zipfile.ZipFile('zipped_data/im.db.zip', 'r') as zip_ref:
    zip_ref.extractall('data')
```

2.1.1 IMDB Dataset

Out[4]:

```
[('movie_basics',),
  ('directors',),
  ('known_for',),
  ('movie_akas',),
  ('movie_ratings',),
```

Above we see 8 tables names - lets look into those tables now.

For the movie_basics table:

Out[5]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	ge
0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,D
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,D
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	D
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Comedy,D
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy,Drama,Fai
146139	tt9916538	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	2019	123.0	D
146140	tt9916622	Rodolpho Teóphilo - O Legado de um Pioneiro	Rodolpho Teóphilo - O Legado de um Pioneiro	2015	NaN	Docume
146141	tt9916706	Dankyavar Danka	Dankyavar Danka	2013	NaN	Cor
146142	tt9916730	6 Gunn	6 Gunn	2017	116.0	1
146143	tt9916754	Chico Albuquerque - Revelações	Chico Albuquerque - Revelações	2013	NaN	Docume

146144 rows × 6 columns

For the directors table:

```
In [6]:
         # creating a dataframe for the directors table
            imbd_directors = pd.read_sql("""
                                            SELECT *
                                            FROM directors;
                                            """, conn)
            imbd_directors
   Out[6]:
```

	movie_id	person_id
0	tt0285252	nm0899854
1	tt0462036	nm1940585
2	tt0835418	nm0151540
3	tt0835418	nm0151540
4	tt0878654	nm0089502
291169	tt8999974	nm10122357
291170	tt9001390	nm6711477
291171	tt9001494	nm10123242
291172	tt9001494	nm10123248
291173	tt9004986	nm4993825
	_	

291174 rows × 2 columns

For the known_for table:

```
In [7]:

    # getting data and creating the dataframe for the known_for table

            imbd_known_for = pd.read_sql("""
                                              SELECT *
                                              FROM known_for;
                                              """, conn)
            imbd_known_for
```

Out[7]:

	person_id	movie_id
0	nm0061671	tt0837562
1	nm0061671	tt2398241
2	nm0061671	tt0844471
3	nm0061671	tt0118553
4	nm0061865	tt0896534
1638255	nm9990690	tt9090932
1638256	nm9990690	tt8737130
1638257	nm9991320	tt8734436

5/24/2022, 4:12 PM 4 of 25

```
        person_id
        movie_id

        1638258
        nm9991320
        tt9615610

        1638259
        nm9993380
        tt8743182
```

For the movie_akas table:

Out[8]:

	movie_id	ordering	title	region	language	types	attributes	is_origin
0	tt0369610	10	Джурасик свят	BG	bg	None	None	
1	tt0369610	11	Jurashikku warudo	JP	None	imdbDisplay	None	
2	tt0369610	12	Jurassic World: O Mundo dos Dinossauros	BR	None	imdbDisplay	None	
3	tt0369610	13	O Mundo dos Dinossauros	BR	None	None	short title	
4	tt0369610	14	Jurassic World	FR	None	imdbDisplay	None	
331698	tt9827784	2	Sayonara kuchibiru	None	None	original	None	
331699	tt9827784	3	Farewell Song	XWW	en	imdbDisplay	None	
331700	tt9880178	1	La atención	None	None	original	None	
331701	tt9880178	2	La atención	ES	None	None	None	
331702	tt9880178	3	The Attention	XWW	en	imdbDisplay	None	

331703 rows × 8 columns

For the movie_ratings table:

Out[9]:

	movie_id	averagerating	numvotes
0	tt10356526	8.3	31
1	tt10384606	8.9	559
2	tt1042974	6.4	20
3	tt1043726	4.2	50352
4	tt1060240	6.5	21
73851	tt9805820	8.1	25
73852	tt9844256	7.5	24
73853	tt9851050	4.7	14
73854	tt9886934	7.0	5
73855	tt9894098	6.3	128

For the persons table:

Out[10]:

prim	death_year	birth_year	primary_name	person_id	
miscellaneous,production_m	NaN	NaN	Mary Ellen Bauder	nm0061671	0
composer,music_department,so	NaN	NaN	Joseph Bauer	nm0061865	1
miscellane	NaN	NaN	Bruce Baum	nm0062070	2
camera_department,cinematographer	NaN	NaN	Axel Baumann	nm0062195	3
production_designer,art_departme	NaN	NaN	Pete Baxter	nm0062798	4
	NaN	NaN	Susan Grobes	nm9990381	606643
	NaN	NaN	Joo Yeon So	nm9990690	606644
	NaN	NaN	Madeline Smith	nm9991320	606645

	person_id	primary_name	birth_year	death_year	prim
606646	nm9991786	Michelle Modigliani	NaN	NaN	
606647	nm9993380	Pegasus Envoyé	NaN	NaN	dire

For the principals table:

Out[11]:

	movie_id	ordering	person_id	category	job	characters
0	tt0111414	1	nm0246005	actor	None	["The Man"]
1	tt0111414	2	nm0398271	director	None	None
2	tt0111414	3	nm3739909	producer	producer	None
3	tt0323808	10	nm0059247	editor	None	None
4	tt0323808	1	nm3579312	actress	None	["Beth Boothby"]
1028181	tt9692684	1	nm0186469	actor	None	["Ebenezer Scrooge"]
1028182	tt9692684	2	nm4929530	self	None	["Herself","Regan"]
1028183	tt9692684	3	nm10441594	director	None	None
1028184	tt9692684	4	nm6009913	writer	writer	None
1028185	tt9692684	5	nm10441595	producer	producer	None

1028186 rows × 6 columns

For the writers table:

Out[12]:

	movie_id	person_id
0	tt0285252	nm0899854
1	tt0438973	nm0175726
2	tt0438973	nm1802864
3	tt0462036	nm1940585

```
        movie_id
        person_id

        4
        tt0835418
        nm0310087

        ...
        ...
        ...

        255868
        tt8999892
        nm10122246

        255879
        tt8999974
        nm10122357

        255871
        tt9001390
        nm6711477

        255872
        tt90010172
        nm8352242
```

2.1.2 Box Office Mojo (BOM) Dataset

First we are going to read and create the BOM dataframe. Then we will clean it a little, and check the column value types for the BOM dataset (bom_df).

```
# reaing the data and checking the columns data types
In [13]:
             bom_df = pd.read_csv('zipped_data/bom.movie_gross (1).csv.gz')
             print(bom_df.dtypes)
             # getting rid of commas before we make the transformation
             bom_df['foreign_gross'] = bom_df['foreign_gross'].str.replace(',', '')
             # transforming the string object into a float
             bom_df = bom_df.astype({'foreign_gross': np.float})
             # checking to see if it worked
             print(bom_df.dtypes)
             # check to see number of NaN values in `foreign_gross`
             print(
                 f"Number of null values in 'foreign_gross' column :{bom_df['foreign_gro
             # check to see number of NaN values in `title`
             print(
                 f"Number of null values in 'title' column :{bom_df['title'].isnull().si
             # drop rows with NaN values in `foreign_gross`
             bom_df.dropna(subset=['foreign_gross'], inplace=True)
             # check for NaN values in `foreign_gross`
             print(
                 f"Number of null values in 'foreign_gross' column after cleaning :{bom
```

title object
studio object
domestic_gross float64
foreign_gross object
year int64

dtype: object

title object

In [14]:

cleaned dataset!
bom df

Out[14]:

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000.0	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000.0	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000.0	2010
3	Inception	WB	292600000.0	535700000.0	2010
4	Shrek Forever After	P/DW	238700000.0	513900000.0	2010
3275	I Still See You	LGF	1400.0	1500000.0	2018
3286	The Catcher Was a Spy	IFC	725000.0	229000.0	2018
3309	Time Freak	Grindstone	10000.0	256000.0	2018
3342	Reign of Judges: Title of Liberty - Concept Short	Darin Southa	93200.0	5200.0	2018
3353	Antonio Lopez 1970: Sex Fashion & Disco	FM	43200.0	30000.0	2018

2037 rows × 5 columns

2.2 Questions about the Data and Data Analysis

- Do certain genres result in higher grossing films?
- Is there a relationship between specific actors and higher grossing films?
- Do movies with higher average ratings result in higher grossing films?

You may have noticed that all these questions are related to the gross of the movies. That's because in order for Microsoft's new movie studio to flourish, it needs to be able to make money, as usually production costs for movies are not cheap. Hopefully, after answering these questions we will have some recommendations for Microsoft in order to direct them on how to make high-grossing, successful films!

2.2.1 Do certain genres result in higher grossing films?

In order to answer this question we need to make sure our data types are the way we want them.

Lets start by saving bom_df in a SQLite database, so that we can then use SQLite to join and query the bom_df data set and the imbd_movie_basics data set.

Now we can query bom_df using SQLite.

Out[16]:

	index	title	studio	domestic_gross	foreign_gross	year
0	0	Toy Story 3	BV	415000000.0	652000000.0	2010
1	1	Alice in Wonderland (2010)	BV	334200000.0	691300000.0	2010
2	2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000.0	2010
3	3	Inception	WB	292600000.0	535700000.0	2010
4	4	Shrek Forever After	P/DW	238700000.0	513900000.0	2010
2032	3275	I Still See You	LGF	1400.0	1500000.0	2018
2033	3286	The Catcher Was a Spy	IFC	725000.0	229000.0	2018
2034	3309	Time Freak	Grindstone	10000.0	256000.0	2018
2035	3342	Reign of Judges: Title of Liberty - Concept Short	Darin Southa	93200.0	5200.0	2018
2036	3353	Antonio Lopez 1970: Sex Fashion & Disco	FM	43200.0	30000.0	2018

2037 rows × 6 columns

Now we're going to join the two tables based on movie title and year.

Out[17]:

title foreign_gross genres year movie_id

	title	foreign_gross	genres	year	movie_id	
0	Avengers: Age of Ultron	946400000.0	Action,Adventure,Sci-Fi	2015	tt2395427	
1	Jurassic World: Fallen Kingdom	891800000.0	Action,Adventure,Sci-Fi	2018	tt4881806	
2	Frozen	875700000.0	Adventure, Animation, Comedy	2013	tt2294629	
3	Transformers: Age of Extinction	858600000.0	Action,Adventure,Sci-Fi	2014	tt2109248	
4	Minions	823400000.0	Adventure, Animation, Comedy	2015	tt2293640	
1194	Client 9: The Rise and Fall of Eliot Spitzer	3500.0	Documentary	2010	tt1638362	
1195	Avenders: Infinity War	1369.5	Action.Adventure.Sci-Fi	2018	tt4154756	

Out[18]:

	title	foreign_gross	genres	year	movie_id
25	Coco	597400000.0	Horror	2017	tt7002100
333	The Artist	88800000.0	Thriller	2011	tt1825978
356	Lights Out	81600000.0	Documentary	2016	tt5328340
388	The Bounty Hunter	69300000.0	None	2010	tt1472211
451	Abduction	54000000.0	Horror, Thriller	2011	tt2447982
454	Truth or Dare	53900000.0	Comedy,Drama,Romance	2018	tt6869948
461	Spotlight	53200000.0	Drama	2015	tt7785302
477	The Walk	51000000.0	Adventure,Biography,Drama	2015	tt3488710
482	Burlesque	50100000.0	Drama	2010	tt1586713
534	Legend	41100000.0	Biography,Crime,Drama	2015	tt3569230
578	The Visit	33200000.0	Documentary	2015	tt3833746
733	Sisters	18000000.0	Biography,Documentary,Music	2015	tt4793074
776	Big Eyes	14800000.0	Documentary	2014	tt4317898
811	Sleepless	12100000.0	Drama,War	2017	tt4388844
831	The Forest	11000000.0	Drama,Fantasy,Horror	2016	tt4982356
858	The Night Before	9300000.0	Documentary	2015	tt6353886
915	Gone	6400000.0	Drama	2012	tt2230954
981	Stronger	4200000.0	Drama	2017	tt5738152
1019	The Wall	2700000.0	Documentary	2017	tt6845582
1020	The Wall	2700000.0	Documentary	2017	tt7578246
1024	Cyrus	2500000.0	Comedy,Drama,Romance	2010	tt1336617
1160	I'm Still Here	160000.0	None	2010	tt1701997
1178	The Tempest	68700.0	Drama	2010	tt1683003

We can use .shape to find the number of duplicated rows:

So we have 1199 rows in our complete joined file, and 23 duplicated rows within that. Accounting for the duplication, that means that around 46 lines are doubled. 46/1299 equals to a bit less than 4%. Since it's impossible without incorperating more data to tell these duplicated movies apart (and make sure the right profits/genres are ascribed to the right movie), I'm going to delete all of them from our dataset.

Out[20]:

	title	foreign_gross	genres	year	movie_id
0	Avengers: Age of Ultron	946400000.0	Action,Adventure,Sci-Fi	2015	tt2395427
1	Jurassic World: Fallen Kingdom	891800000.0	Action,Adventure,Sci-Fi	2018	tt4881806
2	Frozen	875700000.0	Adventure, Animation, Comedy	2013	tt2294629
3	Transformers: Age of Extinction	858600000.0	Action,Adventure,Sci-Fi	2014	tt2109248
4	Minions	823400000.0	Adventure, Animation, Comedy	2015	tt2293640
1194	Client 9: The Rise and Fall of Eliot Spitzer	3500.0	Documentary	2010	tt1638362
1195	Avengers: Infinity War	1369.5	Action,Adventure,Sci-Fi	2018	tt4154756
1196	Jurassic World	1019.4	Action,Adventure,Sci-Fi	2015	tt0369610
1197	The Fate of the Furious	1010.0	Action,Crime,Thriller	2017	tt4630562
1198	Chasing Mavericks	600.0	Biography,Drama,Sport	2012	tt1629757

1154 rows × 5 columns

Okay! Now we have our cleaned data, leaving us with a dataset of 1154 movies, with their foreign gross, the genres associated with them, the year they were released, and the movie ID.

Lets get back to our original question; Do certain genres result in higher grossing films? In order to look at this, we will need to seperate the listed genres.

Now lets take a look at our data:

title foreign_gross

genres year movie_id

	title	foreign_gross	genres	year	movie_id
0	Avengers: Age of Ultron	946400000.0	Action	2015	tt2395427
1	Avengers: Age of Ultron	946400000.0	Adventure	2015	tt2395427
2	Avengers: Age of Ultron	946400000.0	Sci-Fi	2015	tt2395427
3	Jurassic World: Fallen Kingdom	891800000.0	Action	2018	tt4881806
4	Jurassic World: Fallen Kingdom	891800000.0	Adventure	2018	tt4881806
2990	The Fate of the Furious	1010.0	Crime	2017	tt4630562
2991	The Fate of the Furious	1010.0	Thriller	2017	tt4630562
2992	Chasing Mavericks	600.0	Biography	2012	tt1629757
2993	Chasing Mavericks	600.0	Drama	2012	tt1629757
2994	Chasing Mavericks	600.0	Sport	2012	tt1629757

Okay! So now we have a full workable list of the movies and their genres. Let's find the average amount each genre made in the dataset.

We are using the average here, as the dataset is fairly large (2995 movies) and so we are not as concerned about outliers skewing the data.

Out[23]:

	genres	foreign_gross
0	Action	1.591982e+08
1	Adventure	2.297876e+08
2	Animation	2.518275e+08
3	Biography	4.951967e+07
4	Comedy	8.502199e+07
5	Crime	4.157536e+07
6	Documentary	1.201011e+07
7	Drama	4.738446e+07
8	Family	9.907607e+07
9	Fantasy	1.643918e+08
10	History	5.273703e+07
11	Horror	5.869045e+07
12	Music	5.320197e+07
13	Musical	9.681422e+07
14	Mystery	6.290475e+07

	genres	foreign_gross
15	Romance	3.829549e+07
16	Sci-Fi	2.127523e+08
17	Sport	2.323193e+07
18	Thriller	8.521993e+07
19	War	2.391725e+07

2.2.1.1 Visualization: Average Total Gross In Movie Genres: Top 10

```
In [24]:
          ▶ # setting universal font type for this and future graphs - from :https://d
             plt.rcParams.update({'font.family': 'serif'})
             # specify size of plot
             fig, ax = plt.subplots(figsize=(10, 5))
             # create bar plot of top 10 grossing genres
             sns.barplot(data=bom_movie_basics_exploded_avg.sort_values(by='foreign_gro
                         x='foreign_gross',
                         y='genres',
                         ci=None,
                         palette='Greens_r')
             # lable and define fontsize for main and axes titles
             plt.xlabel('Average Gross (USD)', fontsize=14)
             plt.ylabel('Movie Genres', fontsize=14)
             plt.title('Average Total Gross In Movie Genres: Top 10', fontsize=17)
             plt.tick_params(axis='both', which='major', labelsize=12)
             # set x-axes tick labels
             ax.set_xticklabels(['0', '50 Million', '100 Million',
                                '150 Million', '200 Million', '250 Million'])
             # get rid of scientific notation
             plt.tight_layout()
             plt.show()
```


2.2.1.2 Business recommendation: Do certain genres result in higher grossing films?

Based on the above graph, we see that there are genres that have on average higher grossing films

The top 5 genres according to the above graph are:

- animation
- adventure
- sci-fi
- fantasy
- action

As such, I would advise Microsoft to focus on these 5 genres in their initial films for their new movie studio. Many of these genres can and do overlap in films, so it may be best to focus on animated movies with sub-genres of adventure, sci-fi, fantasy, or action.

2.2.2 Is there a relationship between specific actors and higher grossing films?

In order to answer this question, we are going to have to create a cohesive data set where we have the actors, the various films they acted in, and the total amount the movies made once they were put out.

To do this, lets create an inner join between <code>bom_df</code> , <code>movie_basics</code> , <code>principles</code> , and <code>persons</code> .

```
In [25]:

    join actors gross = pd.read sql("""

                 SELECT bom.foreign_gross, bas.genres, per.person_id, per.primary_name
                 FROM bom df AS bom
                         /*joining bom_df and movie_basics*/
                     INNER JOIN
                     movie basics AS bas
                     ON bom.title=bas.original_title AND bom.year=bas.start_year
                         /*joining pricipals to dataset*/
                     INNER JOIN
                     principals AS pri
                     ON bas.movie_id=pri.movie_id
                         /*joining persons to dataset*/
                     INNER JOIN
                     persons AS per
                     ON pri.person_id=per.person_id
                         WHERE category='actor' OR 'actress'
                 ORDER BY foreign_gross DESC;
                 """, conn)
             join_actors_gross
```

Out[25]:

	foreign_gross	genres	person_id	primary_name
0	946400000.0	Action,Adventure,Sci-Fi	nm0000375	Robert Downey Jr.
1	946400000.0	Action,Adventure,Sci-Fi	nm0262635	Chris Evans
2	946400000.0	Action,Adventure,Sci-Fi	nm0749263	Mark Ruffalo
3	946400000.0	Action,Adventure,Sci-Fi	nm1165110	Chris Hemsworth
4	891800000.0	Action,Adventure,Sci-Fi	nm0695435	Chris Pratt
2913	1010.0	Action,Crime,Thriller	nm0004874	Vin Diesel
2914	1010.0	Action,Crime,Thriller	nm0005458	Jason Statham
2915	1010.0	Action,Crime,Thriller	nm0425005	Dwayne Johnson
2916	600.0	Biography,Drama,Sport	nm4103976	Jonny Weston
2917	600.0	Biography,Drama,Sport	nm0124930	Gerard Butler

2010 ----- 4 4 ------

```
In [26]:
```

```
# checking for null values - you can run this if you want, but there are not # print(pd.isnull(join_actors_gross['person_id']).values.sum()) # pd.isnull(join_actors_gross['primary_name']).values.sum()
```

Okay! Let's try to make a data set where we have the median foreign gross per movie that the actors/actresses appeared in.

We're using the median here as there may be actors who worked in only a few movies, and we want the data to be more resistant to outliers.

The total number of actors in this dataset is 1411.

```
In [27]:
```

```
median_foreign_gross_per_actor = join_actors_gross.groupby(
    ['person_id', 'primary_name'], as_index=False).median()
median_foreign_gross_per_actor
```

Out[27]:

	person_id	primary_name	foreign_gross
0	nm0000092	John Cleese	11722000.0
1	nm0000093	Brad Pitt	63200000.0
2	nm0000095	Woody Allen	56600000.0
3	nm0000100	Rowan Atkinson	153150000.0
4	nm0000101	Dan Aykroyd	101300000.0
1407	nm9061885	Gonzalo Moreno	597400000.0
1408	nm9061887	Leolo Moulin	597400000.0
1409	nm9133740	Huck Milner	634200000.0
1410	nm9377852	Yugesh Anil	600000.0

```
person_id primary_name foreign_gross

1411 nm9501548 Robert Jon Mello 8100000.0

In [28]: # checking for duplicate rows
    median_foreign_gross_per_actor[median_foreign_gross_per_actor['primary_name')]

Out[28]:
    person_id primary_name foreign_gross_
```

Woohoo! There are no duplicate rows, so we can use median_foreign_gross_per_actor to create our next graph. For this question, our final dataset has 1412 actors, along with their names, ID numbers, and their median foreign gross.

2.2.2.1 Visualization: Median Total Gross By Top 15 Actors

```
In [29]:
          # our data for this graph
             top15_med_gross_actor = median_foreign_gross_per_actor.sort_values(
                 by='foreign_gross', ascending=False).head(15)
             # specify size of plot
             fig, ax = plt.subplots(figsize=(10, 5))
             # create bar plot
             sns.barplot(data=top15_med_gross_actor,
                         x='foreign_gross',
                         y='primary_name',
                         ci=None,
                         palette='Greens_r')
             # lable and define fontsize for main and axes titles
             plt.xlabel('Median Gross (USD)', fontsize=14)
             plt.ylabel('Actors', fontsize=14)
             plt.title('Median Total Gross By Top 15 Actors', fontsize=17)
             plt.tick_params(axis='both', which='major', labelsize=12)
             # set x-axes tick labels
             ax.set_xticklabels(['0', '50 Million', '100 Million',
                                 '150 Million', '200 Million', '250 Million'])
             plt.tight_layout()
             plt.show()
```


2.2.2.2 Business recommendation: Is there a relationship between specific actors and higher grossing films?

At a glance, we do see that there is a significant difference between the median gross of films with different actors. Surprisingly, there are only a few household names in the final 15. This may relate back to our previous finding, which is that animated films are the highest grossing movie genre. In animated films, one doesn't see the actors' faces, and as such may be more 'anonymous' and unknown to the average movie watcher. On a separate note, it is surprising that this list is composed only of men.

Before, the analysis seemed to indicate that animated films are a direction for Microsoft's new movie studio to check out. Let's see if any of the top 15 actors were involved in animated films

Out[30]:

	name	gross	Is Animation in Genres
697	Jonathan Groff	875700000.0	1.0
1033	Pierre Coffin	823400000.0	1.0
516	lan McShane	804600000.0	0.0
1348	Tyrese Gibson	771400000.0	0.0
1339	Trey Parker	770200000.0	1.0
1071	Richard Armitage	700900000.0	0.0
845	Martin Freeman	700450000.0	0.0
515	lan McKellen	700000000.0	0.0
749	Ken Stott	700000000.0	0.0
1050	Rami Malek	687200000.0	0.0
486	Gwilym Lee	687200000.0	0.0
119	Ben Hardy	687200000.0	0.0
277	Craig T. Nelson	634200000.0	1.0
505	Huck Milner	634200000.0	1.0
991	Orlando Bloom	622300000.0	0.0

We see above that 5/15 were in at least one animated film - around 30%. It might be worth further analysis to see if any of these actors are a good fit Microsofts upcoming movies.

2.2.3 Do movies with higher average ratings result in higher grossing films?

Our final question! Let's look at the datset where we had the averagerating data again:

```
In [31]:  imbd_movie_ratings
Out[31]:
```

	movie_id	averagerating	numvotes
0	tt10356526	8.3	31
1	tt10384606	8.9	559
2	tt1042974	6.4	20
3	tt1043726	4.2	50352
4	tt1060240	6.5	21
73851	tt9805820	8.1	25
73852	tt9844256	7.5	24
73853	tt9851050	4.7	14
73854	tt9886934	7.0	5
73855	tt9894098	6.3	128

73856 rows × 3 columns

Okay! Let's do some inner joins so we can get the total gross and the average ratings.

Out[32]:

	foreign_gross	averagerating
0	652000000.0	8.3
1	535700000.0	8.8
2	513900000.0	6.3
3	398000000.0	5.0
4	311500000.0	7.0
1185	1200000.0	6.2
1186	2000000.0	6.9
1187	1500000.0	5.7
1188	229000.0	6.2

foreign_gross averagerating

2.2.3.1 Visualization: Total Movie Gross By Average Rating

Our final dataset for this question has 1190 average ratings, each representing a specific movie, and also contains the foreign gross for each film.

```
# save our dataframe as we want it
In [33]:
             sorted_join_ratings_gross = join_ratings_gross.sort_values(
                 by='foreign_gross', ascending=False)
             # specify size of plot
             fig, ax = plt.subplots(figsize=(10, 5))
             # set axis ticks and labels
                 # found inspiration for the following two lines of code from Kimberly
             plt.gca().set(xlim=(5, 9))
             plt.gca().set(ylim=(0, 1000000000))
             ax.set_yticklabels(['0', '200 Million', '400 Million',
                                 '600 Million', '800 Million', '1 Billion'])
             plt.tick_params(axis='both', which='major', labelsize=12)
             # add regression line - seaborn documentation:https://seaborn.pydata.org/g
             sns.regplot(sorted_join_ratings_gross.averagerating, sorted_join_ratings_g
                         scatter_kws={'color': 'g', 'alpha': 0.2}, line_kws={'color': '
                         robust=True)
             # specifiy axis and title labels
             plt.title('Total Movie Gross By Average Rating', fontsize=17)
             plt.xlabel('Average Rating', fontsize=14)
             plt.ylabel('Total Gross', fontsize=14)
             # adding note that x axis starts at 5
             plt.text(5.05, 9600000000, '*Note: Average Rating displayed from 5-9')
             plt.tight_layout()
             plt.show()
```


2.2.3.2 Business recommendation: Do movies with higher average ratings result in higher grossing films?

Hmm, it doesn't seem like there is a strong correlation between these ratings and the total gross. Let's check Pearson's correlation, and see if there is a significant correlation

```
In [34]:
          # pearsons correlation
            sorted join ratings gross.corr()
```

Out[34]:

	toreign_gross	averagerating
foreign_gross	1.000000	0.237023
averagerating	0.237023	1.000000

Anything under .25 is considered no correlation - so while there is a very, very slight positive correlation between ratings and total gross, it's not significant. Based on these results, one may conclude that you don't have to make amazing movies in order to end up with financially successful movies.

3 Conclusion

In summation, the three recommendations coming out of this analysis are:

- The data indicates that there are specific genres that in the past have (on average) done very well. In particular, animation seems to have high on-average box office returns. As such, I would recommend that Microsoft focus its initial film-making energies on animated films, with sub-genres of adventure, scifi, and fantasy.
- There are actors that have a high median total foreign gross. These actors should be further analyzed when the movie making process is farther along to see if they would be a good fit in any of the initial films. It should be noted that 5/15 of the actors (33.3%) have worked on at least one animation film, and as such these actors should especially be noted for possible future films.
- Finally, it seems that there is no significant correlation between film ratings and box office success - as such it is important to note that the quality of the movie has little to no bearing on a movie's box office success. In short, it's okay to skimp on film quality to a certain extent.

Initially focusing on animated films will enable the studio to step into a lucrative movie genre. Similarly, casting actors with a high median total gross will hopefully engender similar results particularly actors with prior experience in animated films. Finally, it is worthwhile to note that movies do not have to be exceptional to do well, which should be kept in mind if and when costs need to be cut.

25 of 25