

Laboratorio 8

Teorema de la maxima transferencia de potencia

Laboratorio de Circuitos eléctricos

Contenido

1. Procedimiento 3

1. Procedimiento

Figura 1: Circuito para comprobar el Teorema de la Mtp

Para poder encontrar el voltaje en la resistencia variable *RL* aplicamos un divisor de voltaje y a partir de ahí estructuramos una formula para que el cálculo sea mucho más sencillo y rápido, para este caso la formula quedaría de la siguiente manera:

$$V_{RL} = \frac{RL}{RL + 1.2K} * 15$$

Para poder hallar la corriente en la resistencia *RL* y evitar de llenarnos de cálculos podemos establecer una formula con la ayuda de la ley de ohm y como el circuito que estamos analizando es en serie la corriente será la misma para todo el circuito entonces la formula es la siguiente:

$$I_{RL} = \frac{15}{RL + 1200}$$

Para hallar la potencia consumida por la Resistencia aplicamos la siguiente formula

$$P_{RL} = V_{RL} * I$$

$$V_{RL} = \frac{220}{RL + 1,2K} * 15 = 2,32V$$

$$I_{RL} = \frac{15}{RL + 1200} = 10,56mA$$

$$P_{RL} = V_{RL} * I = 2,32 * 10,56 = 0,024w$$

$$V_{RL} = \frac{470}{RL + 1.2K} * 15 = 4.222V$$

$$I_{RL} = \frac{15}{RL + 1200} = 8,9820mA$$

$$P_{RL} = V_{RL} * I = 4,222 * 8,9820 = 0,03792w$$

$$V_{RL} = \frac{680}{RL + 1,2K} * 15 = 5,426V$$

$$I_{RL} = \frac{15}{RL + 1200} = 7,9787mA$$

$$P_{RL} = V_{RL} * I = 5,426 * 7,9787 = 0,04329w$$

$$V_{RL} = \frac{820}{RL + 1,2K} * 15 = 6,089V$$

$$I_{RL} = \frac{15}{RL + 1200} = 7,4257mA$$

$$P_{RL} = V_{RL} * I = 6,089 * 7,4257 = 0,04522w$$

Para RL = 1k

$$V_{RL} = \frac{1000}{RL + 1,2K} * 15 = 6,818V$$

$$I_{RL} = \frac{15}{RL + 1200} = 6,8182mA$$

$$P_{RL} = V_{RL} * I = 6,818 * 6,8182 = 0,04649w$$

Para RL = 1.5k

$$V_{RL} = \frac{1500}{RL + 1,2K} * 15 = 8,333V$$

$$I_{RL} = \frac{15}{RL + 1200} = 5,5556mA$$

$$P_{RL} = V_{RL} * I = 8,333 * 5,5556 = 0,04630w$$

Para RL = 1.8k

$$V_{RL} = \frac{1800}{RL + 1.2K} * 15 = 9,000V$$

$$I_{RL} = \frac{15}{RL + 1200} = 5,000 mA$$

$$P_{RL} = V_{RL} * I = 9.0 * 5.0 = 0.04500w$$

RL	VOLTAJE CALCULADO	VOLTAJE MEDIDO	CORRIENTE CALCULADA	CORRIENTE MEDIDA(mA)	POTENCIA CALCULADA	POTENCIA MEDIDA
220	2,324	2,32	0,01056	10,6	0,02455	0,02459
470	4,222	4,22	8,9820E-03	8,98	0,03792	0,03790
680	5,426	5,43	7,9787E-03	7,98	0,04329	0,04333
820	6,089	6,09	7,4257E-03	7,43	0,04522	0,04525
1000	6,818	6,82	6,8182E-03	6,82	0,04649	0,04651
1500	8,333	8,33	5,5556E-03	5,56	0,04630	0,04631
1800	9,000	9	5,0000E-03	5	0,04500	0,04500
2200	9,706	9,71	4,4118E-03	4,41	0,04282	0,04282
3900	11,471	11,5	2,9412E-03	2,94	0,03374	0,03381
4700	11,949	11,9	2,5424E-03	2,54	0,03038	0,03023