Chapitre 15 - TD - 23 mars 2020

Exercice 18:

 $\varphi \circ \psi$ (rang, noyau, image).


```
4(P)=P-(-2)P'
x Sort P \in P. [x-2) P en un johnème on a deg (x-2) P') = deg (x-2) + deg (P') \leq deg (P) \leq 2
  als for some deg P-(x-2)p' <2 dox U(P) <1Re/k].
· Sort Pr. Pz E /2/x] eld = 12 et on colonle
  V(dP,+P2) = XP,+P2-(X-2)(dP,+P2)
  laderivation of lineaine danc
     W/xP,+P2)= XP,-(x-2)P2')+B-(x-2)P2'
              = XU (P1) + Y(P2)
      donc y cost liméaire.
* Soil PEIR (x) PEKUY => Y(P)=0
=> P-(X-2)P'= > => P=(X-2)P'
 ayore P= a x2+bx+c => ax2+bx+c -(x-e)(2ax+b)=0
           = -a x2+(b-b+4a)+c+2b=0
          an résult ces equations: an jarametre avec b = & EIR
    (a15,c)= 2(0,1,-2)=> P= 2(x-2)
 on on de duct | Ker Y = Vect (1x-2)) charte engenilier par x 2.
* four Im 4, as suit que (y(ax 2, b X+c) = -ax2+4ax +2b+c
  Im Y = \-u x2 + 4u x + 2b+c / (a,b,c) \in R3 }
  mais y6x2+6x+1)= a(-x2+4x)+(b+c)2
  on endéduct Im \psi = Vect ((-x^2+4x), 1)
  les deux jolynamis - x2+4 x et 1 me sont jus cominéres
         donc Im y est un plun
```

Exercice 19:

Soit $A = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$ et f l'application de $\mathcal{M}_2(\mathbb{R})$ définie par f(M) = AM. Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$. Déterminer le noyau et l'image de f.

Exercice 9:

Soit
$$F = \left\{ \begin{pmatrix} a & 2a+b \\ -b & -a \end{pmatrix} \middle| (a,b) \in \mathbb{R}^2 \right\}$$
 et $G = \left\{ \begin{pmatrix} a & 3a+b \\ -b & -2a+b \end{pmatrix} \middle| (a,b) \in \mathbb{R}^2 \right\}$.

Montrer que F et G sont deux sev supplémentaires de $\mathcal{M}_2(\mathbb{R})$. Déterminer une base de F et une

base de *G*.

Exercice 13:

Dans l'espace $E = \mathbb{R}^4$, on pose $\overrightarrow{u}_1 = (1,0,0,0)$, $\overrightarrow{u}_2 = (1,1,0,0)$, $\overrightarrow{u}_3 = (1,1,1,0)$ et $\overrightarrow{u}_4 = (1,1,1,1)$. Puis on définit $F = \text{Vect}(\overrightarrow{u}_1, \overrightarrow{u}_2)$ et $G = \text{Vect}(\overrightarrow{u}_3, \overrightarrow{u}_4)$.

Déterminer des équations de F et G. Montrer que F et G sont des sev supplémentaires de E. Déterminer l'expression analytique de la projection vectorielle p sur F parallèlement à G.

Exercice 10:

Soit E l'espace des fonctions réelles à valeurs réelles. Soit a,b deux réels. On définit :

$$F = \{ f \in E | \forall x \in \mathbb{R}, f(x) = f(2a - x) \} \text{ et } G = \{ f \in E | \forall x \in \mathbb{R}, f(x) = 2b - f(2a - x) \}$$

Montrer que G est un sous-espace vectoriel de E si et seulement si b=0. Montrer que F et G sont supplémentaires dans E.

Exercice 21:

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$ tel que $u^2 - 3u + 2id_E = 0$.

- 1. Montrer que u est un automorphisme et calculer u^{-1} .
- 2. Montrer que $\forall x \in E, u(x) 2x \in \text{Ker}(u id_E)$ et $u(x) x \in \text{Ker}(u 2id_E)$.
- 3. Montrer que $\operatorname{Ker}(u-id_E)$ et $\operatorname{Ker}(u-2id_E)$ sont supplémentaires dans E.

Exercice xx:

Exercice xx:

