Aussagelogik und Elementare Mengenlehre

Aussagelogik

Aussageverbindungen

Wahrheitstabellen

A	B	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Umformungen

Logische Operationen:

$A \Rightarrow B$	\Leftrightarrow	$(\neg A) \lor B$
$\neg(A \Rightarrow B)$	\Leftrightarrow	$A \wedge (\neg B)$
$(A \Rightarrow B)$	\Leftrightarrow	$(\neg A \Rightarrow \neg B)$
$(A \Rightarrow B) \land A$	\Leftrightarrow	В
$(A \Rightarrow B) \land \neg B$	\Leftrightarrow	$\neg A$
$(A \Rightarrow B) \land (B \Rightarrow C)$	\Leftrightarrow	$(A \Rightarrow C)$
$\neg(A \land B)$	\Leftrightarrow	$(\neg A) \lor (\neg B)$
$\neg(A \lor B)$	\Leftrightarrow	$(\neg A) \wedge (\neg B)$
$(A \lor B) \land \neg A$	\Leftrightarrow	В

Wenn A richtig ist, muss B auch richtig sein Wenn A richtig ist, darf B nicht richtig sein

A oder B muss falsch sein, damit das ganze richtig ist A und B müssen falsch sein, damit das ganze richtig ist

Zusätzlich:

OR	$(\neg A \implies B)$	\Leftrightarrow	$(\neg B \implies A)$	\Leftrightarrow	$(A \lor B)$	\Leftrightarrow	
XOR	$(A \land \neg B) \lor (\neg A \land B)$	\Leftrightarrow	$(A \vee B) \wedge (\neg A \vee \neg B)$	\Leftrightarrow	$(A\dot{\lor}B)$	\Leftrightarrow	$\neg(A \leftrightarrow B)$
XNOR	$(A \wedge B) \vee (\neg A \wedge \neg B)$	\Leftrightarrow	$(A \lor \neg B) \land (\neg A \lor B)$	\Leftrightarrow	$(A \Leftrightarrow B)$	\Leftrightarrow	$(A \Rightarrow B) \land (B \Rightarrow A)$

Elementare Mengenlehre

Mengenoperationen

Gesetze

Kommutativgesetz	$A \cup B$	=	$B \cup A$	a+b	=	b+a
Assoziativgesetz	$A \cup (B \cup C)$	=	$(A \cup B) \cup C$	a+(b+c)	=	(a+b)+c
Dristributivgesetzt	$A \cup (B \cap C)$	=	$(A \cup B) \cap (A \cup C)$	a*(b+c)	=	ab + ac
Neutralelement	$\exists x \forall a$:	=	x + a = a + x = a	,		
Inverses	$\forall x \exists y$:	=	x + y = 0			
Gruppe	$\exists Neutral element$	\wedge	$\exists Inverses$			

Produktmenge

 $A=\{a,b,c\}$ und $B=\{1,2\}$, dann ist die Produkmenge $AxB=\{a1,a2,b1,b2,c1,c2\}$.

Potenzmenge

$$A = \{a, b\}$$
, dann ist die Potenzmenge $P(A) = \{\{\}, \{a\}, \{b\}, \{a, b\}\}$

Bespiel Mengenlehre

Gegeben seien die Mengen A (30 Elemente), B (50 Elemente) und C (60 Elemente).

Wie viele Elemente enhält $B \setminus (A \cup C)$, falls $A \cap B$, $A \cap C$, $B \cap C$ je 5 Elemente und $A \cup B \cup C$ 127 Elemente enhalten?

Gesucht, die Menge $X(A \cap B \cap C)$, mit Hilfe derer man alle Teilmengen bestimmen kann.

X kann nun wie folgt bestummen werden:

$$\begin{split} A \cup B \cup C &= A + B + C - A \cap B - A \cap C - B \cap C + X \\ \text{Einsetzen:} &\rightarrow 127 = 30 + 50 + 60 - 5 - 5 - 5 + X \\ X &= 2 \\ &\Rightarrow (B \cap C) \setminus X = 3 \\ &\Rightarrow (B \cap C) \setminus X = 3 \\ &\Rightarrow B \setminus (A \cup C) = 42 \end{split}$$

Funktionen

Funktionen (Grundlagen)

Trigonometrische Funktionen

Polynome

Ein Polynom n-ter Ordnung: $p(x) = a_n x^n + ... + a_2 x^2 + a_1 x + a_0 x \in \mathbb{R}, a_n \neq 0$

Eigenschaften:

- Differenzen und Summen von Polynomen sind wieder Polynome.
- Produkte von Polynomen sind wieder Polynome. Bsp: $p(2) \times p(3) = p(5)$
- Die Division von Polynomen ergiebt wieder ein Polynom und ev. einen Rest.

Beispiel für Polynomdivision:

Hornerschema

Auswertung einer Funktion an einer bestimmten Stelle.

Sei die Funktion
$$F(x) = x^3 - 3x^2 - 10x + 24 = (x - 2)(x^2 - x - 12)$$

Diese an x = 2 ausgewertet:

x=2	x^3	$-3x^2$	-10x	24
	1	-3	-10	24
		2	-2	-24
	1	-1	-12	0
Rest:	x^2	-x	-12	

Hier wurde die Nullstelle x=2 abgespalten.

Begriffe der Funktionen

Ganz-Rationale Funktion

Eine Ganz-Rationale Funktion lässt sich so schreiben: $f(x) = a_n x^n + ... + a_2 x^2 + a_1 x + a_0$

Gebrochen-Rationale Funktion

Eine Gebrochen-Rationale Funktion: $f(x) = \frac{a_n x^n + \dots + a_2 x^2 + a_1 x + a_0}{b_n x^n + \dots + b_2 x^2 + b_1 x + b_0} = \frac{p(m)}{p(n)}$, wobei der Grad der Polynome nicht gleich sein muss.

3

Definitionslücken

Sie sind Stellen, an denen die Funktion nicht definiert ist. Z.B.: Nenner der gleich 0 ist. Man unterscheidet 2 Arten von Definitionslücken:

- Polstellen: Nach dem vollständigen Kürzen, besteht immernoch die Nullstelle des Nenners.
- hebbare Definitionslücken: Nach vollständigem Kürzen verschwindet die Nullstelle des Nenners.
- Stopfen der Def. Lücke: Wert der hebbaren Lücke in den gekürzten Bruch einsetzen.

Wichtig: Kommt eine Polstelle mehrmals vor: $(x-a)^n$, so ist dies eine n-fache Polstelle. Ist die Vielfachheit gerade, so findet kein Vorzeichenwechsel statt.

Nullstellen

Man kann die Nullstellen bestimmen, indem man:

- bei einer ``Ganz-Rationalen Funktion" diese gleich NULL setzt.
- bei einer ``Gebrochen-Rationalen Funktion" den Zähler gleich NULL setzt.

Asymptoten

Sind Geraden, denen sich eine Kurve beliebig nahe annähert. Wir unterscheiden 2 Arten:

• bei Polstellen: Die Kurve einer gebrochen-rationalen Funktion schmiegt sich der Gerade bei x=Polstelle an. Es bildet sich eine senkrechte Asymptote.

4

- für grosse x: $f(x) = \frac{g(x)}{h(x)}$ im Falle:
 - grad(g) < grad(h): x-Achse als wagrechte Asymptote
 - grad(g) = grad(h): Gerade mit der Gleichung: $f(x) = \frac{g(x)}{h(x)}$
 - grad(g) = 1 + grad(h): schiefe Asymptote, durch Polynomdivision

Man beachte beim Zeichnen die Vielfachheit der Polstelle:

- · Gerade Anzahl: Vorzeichenwechsel
- · Ungerade Anzahl: Kein Vorzeichenwechsel

Beispiele:

	Funktion	Definitionslücke	Nullstelle	
f($(x) = \frac{(x+2)^2}{(x+4)^3 x^2}$	P:-4(x3), 0(x2), H: keine	N:-2(x2)	

Betrachten wir die Funktion: $f(x) = \frac{2x^2 + x^2 + x}{1 - x^2}$

Nullstelle: x = 0

Definitionslücken: x = 1 (Polstelle, 1fach), x = -1 (Polstelle, 1fach) Asymptoten: x = 1, x = -1, x = -2x - 1 (durch Poly.division)

Umkehrfunktionen

Begriffe

injektive Funktion	surjektive Funktion	bijektive funktion
$\begin{array}{c c} X & Y \\ \hline 1 & \rightarrow D \\ 2 & \rightarrow B \\ 3 & \leftarrow A \end{array}$	X Y D B C A	X Y $1 \cdot \longrightarrow \cdot D$ $2 \cdot \longrightarrow \cdot B$ $3 \cdot \longrightarrow \cdot C$ $4 \cdot \longrightarrow \cdot A$

Monotonie

Die Funktion f(x) ist im Intervall [a, b] injektiv, falls sie:

- streng monoton wachsend: auf $x_1, x_2 \in [a, b]$: $x_1 < x_2 : f(x_1) < f(x_2)$ ist oder
- streng monoton fallend: auf $x_1, x_2 \in [a, b]$: $x_1 < x_2 : f(x_1) > f(x_2)$ ist.

Bestimmung der Umkehrung

- Definitionsbereich so festlegen, dass f auf D injektiv ist
- Funktionsgleichung nach x auflösen: $x = f^{-1}(y)$
- Variabeln x und y vertauschen: $y = f^{-1}(x)$

Grundsätzlich kann man sagen, dass f^{-1} die Spiegelung von f an der Geraden x = y ist. Dabei werden auch der Definitionsbereich und Wertebereich getauscht.

Folgen und Reihen

Folgen

Eine reelle Zahlenfolge $a_1, a_2, a_3, ...$, die nach irgendeiner Vorschrift geordnet sind. Die Folge kann endlich viele Glieder haben (abbrechende Folge) oder unendlich viele Glieder umfassen. Bsp: 1, 4, 9, 16...

5

Summenzeichen

$$\sum_{k=m}^n a_k = a_m + a_{m+1} + a_{m+2} + \ldots + a_n = \text{``Summe aller } a_k \text{ von } k = m \text{ bis } k = n \text{''}$$
 Zu jeder Folge a_1, a_2, a_3, \ldots kann man die Folge s_n der Teilsummen, die sogenannte **Reihe** der Folge bilden:

- $s_1 = a_1$
- $s_2 = a_1 + a_2$
- $s_3 = a_1 + a_2 + a_3$
- $s_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k$

Produktzeichen

$$\prod\limits_{k=m}^n a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdot \ldots \cdot a_n$$
 = ``Produkt aller a_k von $k=m$ bis $k=n$ "

Rechenregeln

c sei konstant:	$\sum_{n=0}^{\infty} c = (n-m+1) \cdot c$	$\prod_{n=0}^{n} c = c^{n-m+1}$
	k=m	k=m
c = Konstanter Faktor:	$\sum_{k=m}^{n} c \cdot a_k = c \cdot \sum_{k=m}^{n} a_k$	$\prod_{k=m}^{n} c \cdot a_k = c^{n-m+1} \cdot \prod_{k=m}^{n} a_k$
Zerlegung:	$\sum_{k=m}^{n} (a_k \pm b_k) = \sum_{k=m}^{n} a_k \pm \sum_{k=m}^{n} b_k$	$\prod_{k=m}^{n} (a_k \cdot b_k) = \prod_{k=m}^{n} a_k \cdot \prod_{k=m}^{n} b_k$

Beispiele:

•
$$\sum_{k=5}^{25} a_k = \sum_{k=1}^{25} a_k - \sum_{k=1}^4 a_k$$

•
$$\sum_{k=3}^{5} (i^2 - 3) = \sum_{k=3}^{5} i^2 + \sum_{k=3}^{5} -3$$

Arithmetische Folgen

Eine Folge bei der die Differenz d zweier aufeinander folgender Glieder konstant ist heisst arithmetische Folge (AF).

$$a_1, a_1 + d, a_1 + 2d, a_1 + 3d, a_1 + 4d, \dots$$

Rekursive Definition

Jedes Glied a_n ist durch ein oder mehrere Vorgänger definiert:

$$a_{n+1} = a_n + d$$

Explizite Definition

 a_n ist durch eine Rechnung von n gegeben:

$$a_n = a_1 + (n-1) \cdot d \mid d = \frac{a_i - a_k}{i - k}$$

Summen von arithmetischen Folgen

Die Summe eine Arithmetischen Folge lässt sich wie folgt berechnen:

$$s_n = \frac{(a_1 + a_n)}{2} \cdot n = \frac{1}{2} \cdot n \cdot (a_1 + a_n) = n \cdot a_1 + \frac{n \cdot (n-1)}{2} \cdot d$$

Speziell:

$$s_n = \sum_{k=1}^n k^2 = \sum_{k=1}^n \sum_{i=k}^n i = \frac{n(n+1)(2n+1)}{6}$$

Geometrische Folgen

Eine Folge, bei der der Quotient zweier aufeinander folgender Glieder gleich gross ist, heisst geometrische Folge (GF).

6

$$a_1,a_1\cdot q,a_1\cdot q^2,a_1\cdot q^3,\dots$$

Rekursive Definition

Jedes Glied a_n ist durch ein oder mehrere Vorgänger definiert:

$$a_{n+1} = a_n \cdot q$$

Explizite Definition

 a_n ist durch eine Rechnung von n gegeben:

$$a_n = a_1 \cdot q^{n-1}$$

Summen von geometrischen Folgen

Die Summe eine geometrischen Folge lässt sich wie folgt berechnen:

$$s_n = a_1 \cdot \frac{1-q^n}{1-q} = a_1 \cdot \frac{q^n-1}{q-1}$$
$$s_\infty = a_1 \cdot \frac{1}{1-q}$$

Anwendung in der Finanzmathematik (GF)

Zinseszinsrechnung

 K_0 =Startkapital; p =Zinssatz (in %); n =Anzahl Jahre; K_n =Kapital nach n Jahren;

$$K_n = K_0 \cdot (1 + \frac{p}{100})^n = K_0 \cdot q^n$$

Bemerkung: q = Zinsfaktor

$$q=1+\frac{p}{100},$$
 also wenn z.B. $p=6\% \rightarrow q=1.06$

Rentenrechnung

r =Rente; q =Zinsfaktor; n =Anzahl Jahre

$$K_n = r \cdot \frac{q^n - 1}{q - 1}$$

Wenn noch ein Startkapital K_0 vorhanden ist:

$$K_n = K_0 \cdot q^n + r \cdot \frac{q^n - 1}{q - 1}$$

Ratenzahlungen

 $K_0 = Schuld; q = Zinsfaktor; n = Anzahl Jahre; r = Rate$

$$\left[K_0 \cdot q^n = r \cdot \frac{q^n - 1}{q - 1} \right]$$

Ist nun die höhe der Raten gefragt, so kann der Zinsfaktor und die Schuld eingesetzt werden, und nach r aufgelöst werden.

Grenzwerte

Monotonie

- Eine Folge a_n heisst monoton wachsend (streng monoton wachsend), wenn $a_n \le a_{n+1}(a_n < a_{n+1})$ ist für alle n
- Eine Folge a_n heisst monoton fallend (streng monoton fallend), wenn $a_n \ge a_{n+1}(a_n > a_{n+1})$ ist für alle n

Beschränktheit

- Eine Folge a_n heisst nach oben beschränkt, wenn es eine Zahl S gibt, so dass $a_n \leq S$ für alle n gilt. S heisst obere Schranke der Folge. Eine gegen oben beschränkte Folge hat stets einen Grenzwert. Der Grenzwert ist die kleinste obere Schranke.
- Eine Folge a_n heisst nach unten beschränkt, wenn es eine Zahl S gibt, so dass $a_n \ge s$ für alle n gilt. s heisst untere Schranke der Folge. Eine gegen unten beschränkte Folge hat stets einen Grenzwert. Der Grenzwert ist die grösste untere Schranke.
- Hat eine Folge sowohl eine obere als auch eine untere Schranke, so nennt man sie kurz eine beschränkte Folge.

Der Grenzwertbegriff

Wird eine Folge beliebig fortgesetzt, so nähert sie sich im unendlichen einem Wert. Dieser Wert wird Grenzwert (Limes) genannt.

7

$$\lim_{n \to \infty} a_n = a$$

Man sagt, die Folge konvergiert gegen a.

Exp. Grad	Beispiel	Grenzwert
Zähler > Nenner	$\lim_{n\to\infty} a_n \frac{n+1}{1}$	∞
	$\lim_{n\to\infty} \frac{2n^2+1}{n}$	∞
Zähler < Nenner	$\lim_{n\to\infty} \frac{2n^2+1}{3n^3}$	0
	$\lim_{n\to\infty} a_n \frac{1}{n}$	0
Zähler = Nenner	$\lim_{n\to\infty} a_n \frac{2n+3}{2n+5}$	1
	$\lim_{n\to\infty} a_n \frac{n+1}{2n+1}$	$\frac{1}{2}$
	$\lim_{n\to\infty} a_n \frac{2n+1}{n+1}$	$\frac{2}{1}$

Beschreibung

(Der Zähler geht gegen ∞, der Nenner nicht)

(Der Zähler geht schneller gegen ∞ , als der Nenner)

(Der Nenner geht schneller gegen ∞, als der Zähler)

(Der Nenner geht gegen ∞, der Zähler nicht)

Der Grenzwert kann anhand der Faktoren von n abgelesen werden

Bedingung

Die Zahl a heisst Grenzwert der Folge a_n , falls gilt:

Zu jedem $\varepsilon > 0$ gibt es eine Stelle n_{ε} so, dass alle $n > n_{\varepsilon}$ gilt :

$$|a_n - a| < \varepsilon$$

Beispiel:
$$a_n = \frac{n}{n+1}, \qquad \varepsilon = \frac{1}{100} \qquad \text{Behauptung:} \quad \lim_{n \to \infty} a_n = 1$$
Bedingung: $|a_n - 1| < \frac{1}{100} \Rightarrow |\frac{n}{n+1} - 1| < \frac{1}{100} |\text{gleichnamig machen}|$

$$|\frac{n-(n+1)}{n+1}| < \frac{1}{100} |\text{vereinfachen}|$$

$$|\frac{-1}{n+1} < \frac{1}{100}| |\text{nach n auflösen}|$$

$$99 < n \qquad \text{Nach 99 Gliedern ist man das erste mal um } \frac{1}{100} \text{ am Grenzwert dran.}$$

Konvergenz, Divergenz

- Eine Folge heisst konvergent, falls sie einen Grenzwert hat.
- Eine Folge heisst divergent, wenn sie keinen Grenzwert hat.

Rechnen mit Grenzen

 a_n und b_n seien konvergente Folgen mit $\lim_{n \to \infty} a_n = a$ bzw. $\lim_{n \to \infty} b = ab$, dann gilt:

$\lim_{n \to \infty} (a_n \pm b_n) = a \pm b$	$a_n = \frac{2 + \frac{3}{n}}{5 + \frac{6}{n}} + \frac{50}{n^2}$	$\lim_{n \to \infty} a_n = \frac{2}{5} + 0 = \frac{2}{5}$
$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$	$a_n = \frac{6n}{2n} \cdot \frac{2n}{n}$	$\lim_{n \to \infty} a_n = 3 \cdot 2 = 6$
$\lim_{\substack{n\to\infty\\n\to\infty}} \frac{a_n}{b_n} = \frac{a}{b} \text{ (für } b_n, b \neq 0)$	$a_n = \frac{\frac{36n}{n}}{6 + \frac{6}{n}}$	$\lim_{n \to \infty} a_n = \frac{36}{6+0} = \frac{36}{6} = 6$
$\lim_{n \to \infty} (a_n^k) = a^k, k \in \mathbb{R}$	$a_n = \frac{6n}{2n}^3$	$\lim_{n \to \infty} a_n = 3^3 = 27$

Spezielle Grenzwerte

Reihenwerte

Gegeben sei eine unendliche Folge a_n . Wir betrachten die zu dieser Folge gehörige Reihe s_n . Konvergiert die Folge s_n , so definiert man die Summe der unendliche Reihe als:

$$s_{\infty} = a_1 + a_2 + \dots = \sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n$$

 s_{∞} heisst auch der Reihenwert der Folge a_n

- Geometrische Folgen mit |q| > 1 sind **divergent**.
- Geometrische Folgen mit |q| < 1 sind **konvergent** mit dem Grenzwert 0. Zudem gilt:

$$s_{\infty} = \sum_{k=1}^{\infty} a_k = \frac{a_1}{1-q}$$

Differentialrechnung

Grenzwert und Stetigkeit

Symmetrien:

Grenzwert bei Definitionslücken

Bsp: $f: y = \frac{x^2 - 1}{x - 1}, D = R \setminus \{1\}$	Bsp: $f: y = \frac{\sin(x)}{x}, D = R \setminus \{0\}$
Kürzen möglich: $f: y = x + 1$,	Kürzen nicht möglich
Definitionslücke: $x = 1$	Definitionslücke: $x = 0$
Art: hebbar	Art: normale (nicht hebbare)
$\lim_{x \to 1} (x+1) = 2$	$\lim_{x\to 0} \left(\frac{\sin(x)}{x}\right) = 1$

Konvergenz

Als $\lim_{x\to x_0} f(x) = g$ - Aussage: f(x) konvergiert für x gegen x_0 gegen den Grenzwert $g \in \mathbb{R}$. $\forall \varepsilon \exists \delta : \forall x \mid x - x_0 \mid < \delta, \mid f(x) - g \mid < \varepsilon, g$ Grenzwert, dann konvergiert die Funktion gegen g

Divergenz

- Polstelle $(lim_{x\to x_0} = ^+_- \infty)$
- Sprung $(lim_{-\to x_0} \neq lim_{+\to x_0})$
- oszilliert

Stetigkeit

Definition: $\lim_{x\to x_0} f(x) = f(x_0)$, dann ist die Funktion stetig in x_0 .

- Alle Polynome in R sind stetig
- Alle gebrochen-rationalen Funktionen in R sind stetig (ausser Nullstellen des Nenners)
- Ist f(x) in einem Intervall stetig, so ist auch $f(x)^n$ und $e^{f(x)}$ im selben Intervall stetig

Grundlagen der Diff.rechnung

Differenzenquotient

$$Geradensteigung = m = tan(\alpha) = \frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{y - \ddot{A}nderung}{x - \ddot{A}nderung} = \frac{y_1 - y_0}{x_1 - x_0}$$

Differentialquotient

$$Differential quotien = lim(Differenzen quotient) = lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Existiert de Differentialquotient so heisst die Funktion f(x) an der Stelle x_0 differenzierbar. Geometrisch bedeutet die Ableitund der Funktion an einer Stelle deren Tangentensteigung.

Ableitungsfunktion

Beispiel: Finden der abgeleiteten Funktion mit Diff.quot.:

$$f(x) = x^2, Diff.quot = m = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
$$Diff.quot = \frac{(x_0 + \Delta x)^2 - (x_0)^2}{\Delta x} = \frac{2x_0 \Delta x + \Delta x^2}{\Delta x} = 2x_0 + \Delta x$$
$$f'(x) = \lim_{\Delta x \to 0} (2x_0 + \Delta x) = 2x_0$$

Orte, an denen dieser Grenzwert nicht existieren kann:

- Graph hat eine Ecke oder Knick: $lim(links) \neq lim(rechts)$ deshalb hat f'(x) einen Sprung bei x_0 .
- Der Graph kann eine senkrechte Tangente aufweisen: $\lim (f(x)) = \infty$.

Tangente

$$Tangente(f(x)) = f'(x) = \frac{y-y_0}{x-x_0} = m_t$$

Für Tangentengleichung:

- 1. Gleichung aufstellen: $\frac{y-y_0}{x-x_0} = f'(x_0)$
- 2. $y_0, x_0, f'(x_0)$ einsetzen
- 3. Nach y auflösen

Normale

$$Normale(f(x)) = \frac{-1}{f'(x)} = \frac{y - y_0}{x - x_0} = m_n$$

Für Normalengleichung:

- 1. Gleichung aufstellen: $\frac{y-y_0}{x-x_0} = \frac{-1}{f'(x_0)}$
- 2. $y_0, x_0, f'(x_0)$ einsetzen
- 3. Nach y auflösen

Linearisierung

Eine NICHT lineare Funktion y = f(x) lässt sich in der Umgebung eines Kurvenpunktes $P(x_0, y_0)$ durch die dortige Tangente ersetzen.

$$\frac{y - y_0}{x - x_0} = f'(x) \Rightarrow y - y_0 = f'(x_0)(x - x_0) \Rightarrow y = y_0 + f'(x_0)(x - x_0)$$

$$f(x_0 + \Delta x) \simeq y_0 + f'(x_0) \times \Delta x$$

Bsp:

$$\begin{array}{c|c} f(x) = x^3 & f'(x) = 3x^2 \\ \hline x_0 = 1 & f(1) = y_0 = 1 & f'(1) = 3 & f(1.01) \approx f(1) + f'(1) \times 0.01 = 1.03 \\ \hline f(1.01) = (1.01)^3 = 1.030301 \\ \hline \text{Fehler: } 0.3\% & \text{Fehler: } 0.3\% \end{array}$$

Ableitungsregeln

(c)' = c	$ln(x)' = \frac{1}{x}$	sin' = cos
$(x^n)' = n \cdot x^{n-1}$	$(e^x)' = e^x$	cos' = -sin
	$(a^x)' = a^x \cdot ln(a)$	$tan' = \frac{1}{cos^2}$
	$(log_a x)' = \frac{1}{x \cdot ln(a)}$	$arctan' = \frac{1}{1+x^2}$
		$arcsin' = \frac{1}{\sqrt{1-x^2}}$
		$arccos' = \frac{-1}{\sqrt{1-x^2}}$

$f(x) = c \cdot g(x)$	\Longrightarrow	$f'(x) = c \cdot g'(x)$
f(x) = u(x) + v(x)	\Longrightarrow	f'(x) = u'(x) + v'(x)
$f(x) = u(x) \cdot v(x)$	\Longrightarrow	$f'(x) = u' \cdot v + u \cdot v'$
$f(x) = \frac{u(x)}{v(x)}$	\Rightarrow	$f'(x) = \frac{u' \cdot v - u \cdot v'}{v^2}$
f(x) = g(h(x))	\Longrightarrow	$f'(x) = g'(h) \cdot h'(x)$
$(f^{-1})'$	=	$\frac{1}{f'(x_0)}$

Untersuchung von Funktionen

Aussagen der 1ten Ableitung

f(x) in Intervall I differenzierbar, dann:

- f'(x) = 0: Extremum (min/max) auf dem Intervall I
- f'(x) > 0: f(x) in I monoton wachsend
- f'(x) < 0: f(x) in I monoton fallend

Das heisst, dass das Vorzeichen der ersten Ableitung uns sagt, ob die Funktion steigt oder fällt.

Aussagen der 2ten Ableitung

f(x) in Intervall I 2 mal differenzierbar, dann:

- f''(x) > 0: f'(x) ist (streng) monoton wachsend: f(x) ist **konvex**
- f''(x) < 0: f'(x) ist (streng) monoton fallend: f(x) ist **konkav**

Extremwerte

Durch die erste Ableitung f'(x) = 0 erhalten wir Kandidatstellen x_i für Minimum und Maximum.

- Ist in der Umgebung der Stelle x_i die Funktion f(x) konkav, so liegt ein Maximum vor.
- Ist in der Umgebung der Stelle x_i die Funktion f(x) konvex, so liegt ein Minimum vor.

Wendepunkte

f(x) ist im Intervall I 3 mal differenzierbar, dann:

- f'' = 0, f''' < 0: blau : Links- zu Rechtskurve
- f'' = 0, f''' > 0: rot: Rechts- zu Linkskurve

Newtonverfahren

Newtonsches Tangentenverfahren:

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, n = 1, 2, 3, \dots$$

Kriterium, das für Startwert und während des ganzen Verfahrens gelten soll:

$$\mid \frac{f \cdot \mathbf{f'}}{(f'')^2} \mid < 1$$

11

Startwert: nicht Stellen, an denen die Kurventangente (fast) parallel zur x-Achse verläuft.

Bernoulli de l'Hopital

Mittelwertsatz der Diff.rechnung

Allgemeiner Mittelwertsatz der Diff.rechnung

f(x), g(x) in [a, b] stetig und in [a, b] differenzierbar sowie $g'(x) \neq 0$ in [a, b], dann $\exists \xi \in]a, b[$:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Regel von Bernoulli de l'Hopital

Die Funktionen seien auf einen offenen Intervall stetig:]a,b[(wobei das Intervall auch unendlich sein kann). Falls:

$$lim_{x\to b}f(x) = lim_{x\to b}g(x) = 0 \ oder \ lim_{x\to b}f(x) = lim_{x\to b}g(x) = ^+_- \infty \ und \ lim_{x\to b}\frac{f'}{g'} = d$$

so ist:

$$\lim_{x \to b} \frac{f(x)}{g(x)} = \lim_{x \to b} \frac{f'(x)}{g'(x)} = d$$

Potenzen

Gesetze

$a^n \cdot a^m = a^{n+m}$			$\frac{a^n}{b^n} = (\frac{a}{b})^n$	$(a^n)^m = a^{n \cdot m}$
$a^{-n} = \frac{1}{a^n}$	$\sqrt[n]{a} = a^{\frac{1}{n}}$	$\sqrt[n]{a^m} = (\sqrt[n]{a})^m = a^{\frac{m}{n}}$	$-a^n = -(a^n)$	$(-a)^n = (-1)^n \cdot a^n$

Additionstheoreme

Sätze

•
$$sin(\alpha + \beta) = sin(\alpha) \cdot cos(\beta) + cos(\alpha) \cdot sin(\beta)$$

•
$$sin(\alpha - \beta) = sin(\alpha) \cdot cos(\beta) - cos(\alpha) \cdot sin(\beta)$$

•
$$cos(\alpha + \beta) = cos(\alpha) \cdot cos(\beta) + sin(\alpha) \cdot sin(\beta)$$

•
$$sin(\alpha - \beta) = cos(\alpha) \cdot cos(\beta) - sin(\alpha) \cdot sin(\beta)$$

Trigonometrische Funktionen

Definition

Bogenmass eines Winkels

Länge des zugehörigen Bogens im Einheitskreis.

$$\alpha = 90^{\circ} \leftrightarrow \alpha = \frac{\Pi}{2}$$

Dreiecke

Anwendung in der Schwingungslehre

A = Amplitude w = Kreisfrequenz
$$\varphi$$
 = Phase der Schwingung Periode p = $\frac{alte\ Periode}{w}$, also bei sin/cos z.B.: $\frac{2\Pi}{w}$ $y = A \cdot sin[w \cdot t + \varphi] = A \cdot sin[w \cdot (t + \frac{\varphi}{w})]$

Allgemein:

- 1. Streckung in y-Richtung mit Faktor a ⇒ Wertebereich [-a,a]
- 2. Streckung in x-Richtung mit Faktor $\frac{1}{b}$ \Rightarrow neue Periode $\frac{alte\ Periode}{b}$, also bei $\sin/\cos z$.B.: $\frac{2\Pi}{b}$
- 3. Verschiebung in x-Richtung um $-\frac{\varphi}{b}$

$$y = a \cdot f[b \cdot (x - c)] + d$$

Beispiel:

$$y = 3 \cdot \sin\left[\frac{1}{2} \cdot x + \frac{\Pi}{4}\right] = 3 \cdot \sin\left[\frac{1}{2} \cdot \left(x + \frac{\Pi}{2}\right)\right]$$

Amplitude = 3 Kreisfrequenz = $\frac{1}{2}$ \Rightarrow Neue Periode = $\frac{2\Pi}{w} = \frac{2\Pi}{\frac{1}{2}} = 4\Pi$ Verschiebung in x-Richtung = $-\frac{\Pi}{2}$

Computed by Wolfram | Alpha

Exponetial- und Logarithmusfunktion

Jede Exponentielle Funktion lässt sich mit der Basis e schreiben:

$$y = b^x = (e^{\ln(b)})^x$$

Wachstums- und Zerfallfunktion

Allgemein:

a=Wert für t^0 , ``Startwert" b=Wachstumsfaktor pro Zeiteinheit t=Zeiteinheit $\Delta t=$ Zeitdifferenz z.B. t^2-t^1

 $y = a \cdot b^t$

Wachstumsfunktion: b > 1, Zerfallsfunktion: 0 < b < 1

Umformungen:

$$b^{\Delta t} = \frac{f(t_2)}{f(t_1)} \Rightarrow b = \sqrt[\Delta t]{\frac{f(t_2)}{f(t_1)}}$$

Halbwertszeit:

$$b^{\Delta t} = \frac{1}{2} \Rightarrow \Delta t \cdot ln(b) = ln(\frac{1}{2}) \Rightarrow \Delta t = \frac{ln(\frac{1}{2})}{ln(b)}$$

Verdoppelungszeit:

$$b^{\Delta t} = 2 \Rightarrow \Delta t \cdot ln(b) = ln(2) \Rightarrow \Delta t = \frac{ln(2)}{ln(b)}$$

Logarithmusfunktion

Rechenregeln:

$$log_a(u \cdot v) = log_a(u) + log_a(v)$$

$$log_a(\frac{u}{v}) = log_a(u) - log_a(v)$$

$$log_a(u^k) = k \cdot log_a(u)$$

$$log_a(\sqrt[n]{u}) = \frac{1}{n} \cdot log_a(u)$$

Allgemein:

$$y = a^x \Rightarrow ln(y) = x \cdot ln(a) \Rightarrow x = \frac{ln(y)}{ln(a)}$$
$$y = a^x \Rightarrow log_a(y) = x \cdot log_a(a) \Rightarrow x = log_a(y)$$

Umkehrfunktion:

$$y = log_a(x)$$

Basiswechsel:

$$\log_a(x) = \frac{\log_{10}(x)}{\log_{10}(a)} = \frac{\ln(x)}{\ln(a)}$$
 Umformungsbeispiele:

$log_{10}(x) = -4.0404$	\Rightarrow	$x = 10^{-4.0404} = \frac{1}{10^{4.0404}}$
ln(x) = -9.0907	\Rightarrow	$x = e^{-9.0907} = \frac{1}{e^{9.0907}}$
$log_3(x) = 5$	\Rightarrow	$x = 3^5 = 243$