Wykresy dla pomiarów

SIMD

SIMD			
	2048	4096	8192
Dodawanie	0.154	0.321	0.646
Usuwanie	0.168	0.406	0.988
Mnożenie	0.17	0.315	0.7
Dzielenie	0.311	0.681	1.156
SISD			
Liczba liczb	2048	4096	8192
		Czas(ms)	
Dodawanie	0.365	0.558	1.091
Usuwanie	0.262	0.563	1.144
Mnożenie	0.271	0.589	1.242
Dzielenie	0.32	0.741	1.325

SISD- Signle Instruction Single Data – instrukcja wykonywana jest sekwencyjnie

SIMD – Single Instruction Multiple Data – instrukcja wykonywana jest równolegle dla wielu strumieniach danych

Dlugość wykonania SISD względem SIMD

	2048	4096	8192
Dodawanie	237%	174%	169%
Usuwanie	156%	139%	116%
Mnożenie	159%	187%	177%
Dzielenie	103%	109%	115%

Wnioski

Na podstawie wykonanych pomiarów czasu można stwierdzić, iż metoda SIMD jest szybsza, prawdopodobnie spowodowane jest to tym, iż w przypadku SISD wykonywane jest więcej operacji (działań) na liczbach, każde kolejne dwie liczby 32 bitowe są osobno wpisywane do rejestru oraz wykonywane są działania osobno na każdym z rejestrów. W przypadku metody SIMD dwa wektory 128 bitowe są wpisywane do rejestru xmm, działania są wykonywane na 4 elementach wektorów niezależnie od siebie.

Czas mierzony jest przy pomocy funkcji clock z biblioteki time.h . Czas obliczany jest na podstawie cykli procesora wykonanych podczas trwania danego procesu (działania), otrzymany wynik z funkcji clock() dzielony jest przez (CLOCKS_PER_SEC/1000) w celu uzyskania czasu w milisekundach. Czas wykonania działań będzie więc się różnił w zależności od procesora.