Evolutionary Feature Selection using Integer Encoding

Gregor Bankhamer, Tobias Buchner, Rene Maier, Christian Müller

Problem

- **Given**: Samples with n features and Knn classifier

- **Goal**: Find optimal feature subset w.r.t classification accuracy
- Difficulty: Huge search space of 2ⁿ
- Solution:
 - Generate initial population of subsets
 - Compute fitness of each subset (classification (Knn) accuracy on training patterns)
 - Recombine best/good subsets to generate new subsets (+Mutation)

Solution Encoding (Revisited)

Solution == Subset

Assign to each feature an unique integer

I.e: Age = 1, Color=2, Length = 3

Possible solution:

- s =(3,2,2) ... means classify only considering Length and Color as features

Old approach (previous group):

- Solution has to be a **valid permutation** of the features eg. $\{(x_1,x_2,x_3),(x_2,x_1,x_3),(x_3,x_2,x_1)...\}$
- But: order not relevant for euclidean distance

Distance between two patterns p1, p2 using solution (x_2,x_1,x_3) :

$$(p1.x_2 - p2.x_2)^2 + (p1.x_1 - p2.x_1)^2 + (p1.x_3 - p2.x_3)^2$$

Distance between two patterns p1, p2 using solution (x_3,x_2,x_1) :

$$(p1.x_3 - p2.x_3)^2 + (p1.x_2 - p2.x_2)^2 + (p1.x_1 - p2.x_1)^2$$

same classification, same fitness, no purpose for evolution

Fix

Solution has to be a **valid permutation** of the features eg. $\{(x_1,x_2,x_3),(x_2,x_1,x_3),(x_3,x_2,x_1)...\}$

But: only part of evolved solution is used for classification: $\{(x_1,x_2,x_3),(x_2,x_1,x_3),(x_3,x_2,x_1)...\} \rightarrow \{(x_1,x_2),(x_2,x_1),(x_3,x_2)...\}$

Question: Where do we crop the solution?

New Solution

No real permutations eg. (3,2,2) is a valid solution => no cropping, number of used features is evolved

But: How should we calculate distance between patterns?

- Distance between two patterns p1, p2 using solution (x₃,x₂,x₂):
 - $(p1.x_3 p2.x_3)^2 + (p1.x_2 p2.x_2)^2 + (p1.x_2 p2.x_2)^2$, add "weight"
- Distance between two patterns p1, p2 using solution (x₃,x₂,x₂):
 - $(p1.x_3 p2.x_3)^2 + (p1.x_2 p2.x_2)^2$, disallow duplicates

Outlook

- More generations with other datasets (not only ionosphere)
- How do evolved solutions look like? Analyse evolved individuals
- Summarize results and key findings