

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математической физики

Гилязова Алсу Филюсовна

Метод автоматической генерации масок слизистых желез на гистологических изображениях

Научный руководитель:

к.ф-м.н. Д. В. Сорокин

Partment of Computational Mathematics and Cyberne
Lomonosov Moscow State University

Москва, 2022

Введение

Гистология — раздел биологии, который изучает строение, жизнедеятельность и развитие тканей живых организмов. Обычно это делается путем рассечения тканей на тонкие слои и с помощью микротома. Анализ гистологических изображений используется для обнаружения и изучения различных заболеваний.

Введение

- Необходимо разработать и реализовать метод генерации синтетических гистологических изображений с железами.
- Даны существующие наборы гистологических изображений с масками. Необходимо разработать метод синтеза подобных изображений и соответствующих им масок.
- Современные методы сегментации в основном основаны на нейронных сетях, для обучения большинства которых требуется большая обучающая выборка. Современные наборы данных, содержащие отсегментированные примеры гистологических изобра жения достаточно малы.

Введение

Для генерации синтетических изображений со слизистыми железами важным этапом является генерация реалистичных масок желез. Для генерации маски необходимо уметь синтезировать маски отдельных желез.

Постановка задачи

В рамках курсовой работы необходимо разработать метод генерации бинарных масок отдельных желез (то есть из левого изображения получить правое).

Анализ и обработка данных

Выделение связных компонент.

Анализ и обработка данных

Анализ и обработка данных

Выделение контуров и параметризация кривой.

Верхний ряд – изображения до поворота, нижний – после.

Statistical Shape Models

Statistical Shape Models

$$\overline{x} = rac{1}{N} \sum_{i=1}^{N} x_i$$
 - средняя форма

$$lpha = rac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x}) (x_i - \overline{x})^T$$
 - ковариационная матрица

$$ilde{x} = \overline{x} + \sum_{i=1}^N b_i * arepsilon_i,$$
 - новая форма

 \mathcal{E}_i — собствернные векторы ковариационной матрицы

 b_i — коэффициенты

Результат Statistical Shape Models

Нейросетевое решение

Нейросетевое решение (DCGAN)

(Deep Convolutional Generative Adversarial Network)

Результат нейросетевого решения (DCGAN)

Заключение

- Оба рассмотренных метода показали хороший результат, и могут быть использованы для последующего синтеза гистологических изображений
- Нейросетевой подход показал более гибкие результаты по сравнению с SSMs
- В SSMs отклонение от средней формы почти всегда незначительно
- SSMs работает горазо быстрее, чем нейросеть
- Плюсом SSMs является интерпретируемость результатов, что нельзя сказать про генеративно-состязательные сети

Спасибо за внимание!

https://imaging.cs.msu.ru/