Lecture 7 – Equivalence of Regular Expressions and Finite Automata COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall

- Operations in Languages
 - Union
 - Concatenation
 - Kleene Star
- 2 Nondeterministic Finite Automata (NFA)
 - Definition
 - Language of Regular Expressions
 - Extended Regular Expressions
 - Examples

Equivalence of Regular Expressions and Finite Autom

Contents

1. Regular Expressions to ϵ -NFA

2. DFA to Regular Expressions

Theorem (Regular Expressions to ϵ -NFA)

For a given regular expression R, $\exists \epsilon$ -NFA N_{ϵ} . $L(R) = L(N_{\epsilon})$.

For a given regular expression R and an integer i, we will construct an ϵ -NFA $N_{\epsilon}=(Q,\Sigma,\delta,q_i,F)$ that accepts the language of R. It satisfies the following properties:

- Exactly one final state q_j for some j greater than i $(F = \{q_j\} \land j > i)$
- States are q_i , q_{i+1} , \cdots , and q_j $(Q = \{q_k \mid i \leq k \leq j\})$
- No transition to the initial state $(\forall q \in Q. \ \forall a \in \Sigma \cup \{\epsilon\}. \ q_i \notin \delta(q, a))$
- No transition out of the final state $(\forall a \in \Sigma \cup \{\epsilon\}. \ \delta(q_i, a) = \varnothing)$


```
// The type definitions of states and symbols
type State = Int
type Symbol = Char
// A transition allowing epsilon
type Transition = (State, Option[Symbol], State)
// A simplified epsilon-NFA
case class SimpleENFA(from: State, trans: Set[Transition], to: State)
// Convert a regular expression to a simple epsilon-NFA with an initial state
def RE2SimpleENFA(rexp: RE, initSt: State): SimpleENFA = re match
 case REEmpty()
                            => ???
 case REEpsilon()
                   => ???
 case RESymbol(symbol) => ???
  case REUnion(left, right) => ???
 case REConcat(left, right) => ???
 case REStar(re)
                  => ???
 case REParen(re)
                         => ???
// Convert a simple epsilon-NFA to an epsilon-NFA
def SimpleENFA2ENFA(senfa: SimpleENFA): ENFA = ...
```

⚠PLRG

• $R = \emptyset$:

• $R = \epsilon$:

• R = a:

• $R = R_1 \mid R_2$:


```
case REUnion(left, right) =>
  val SimpleENFA(_, trans1, j) = RE2SimpleENFA(left, i + 1)
  val SimpleENFA(_, trans2, k) = RE2SimpleENFA(right, j + 1)
  SimpleENFA(
    from = i,
    trans = trans1 ++ trans2 ++ Set(
       (i, None, i + 1), (i, None, j + 1),
       (j, None, k + 1), (k, None, k + 1),
    ),
    to = k + 1,
  )
```


• $R = R_1 \cdot R_2$:

• $R = R_1^*$:

• $R = (R_1)$:

•
$$R = \epsilon \cdot a \mid \varnothing$$

• $R = \epsilon \cdot a \mid \varnothing$

•
$$R = 0 \cdot 1^*$$

• $R = 0 \cdot 1^*$

•
$$R = (0|1)^* \cdot 0 \cdot 0$$

• $R = (0|1)^* \cdot 0 \cdot 0$

Theorem (DFA to Regular Expressions)

For a given DFA
$$D=(\{q_1,q_2,\cdots,q_n\},\Sigma,\delta,q_1,F),\exists \ RE\ R.\ L(D)=L(R).$$

Let $R_{i,j}^{(k)}$ be the regular expression that accepts the paths from q_i to q_j whose *intermediate* states are q_1, q_2, \dots, q_k . Then,

$$R = R_{1,f_1}^{(n)} | \cdot | R_{1,f_m}^{(n)}$$
 where $F = \{q_{f_1}, q_{f_2}, \cdots, q_{f_m}\}$

Theorem (DFA to Regular Expressions)

For a given DFA
$$D=(\{q_1,q_2,\cdots,q_n\},\Sigma,\delta,q_1,F)$$
, \exists RE R. $L(D)=L(R)$.

Let $R_{i,j}^{(k)}$ be the regular expression that accepts the paths from q_i to q_j whose *intermediate* states are q_1, q_2, \dots, q_k . Then,

$$R = R_{1,f_1}^{(n)} | \cdot | R_{1,f_m}^{(n)}$$
 where $F = \{q_{f_1}, q_{f_2}, \cdots, q_{f_m}\}$

Theorem (DFA to Regular Expressions)

For a given DFA
$$D=(\{q_1,q_2,\cdots,q_n\},\Sigma,\delta,q_1,F)$$
, \exists RE R. $L(D)=L(R)$.

Let $R_{i,j}^{(k)}$ be the regular expression that accepts the paths from q_i to q_j whose *intermediate* states are q_1, q_2, \dots, q_k . Then,

$$R = R_{1,f_1}^{(n)} | \cdot | R_{1,f_m}^{(n)}$$
 where $F = \{q_{f_1}, q_{f_2}, \cdots, q_{f_m}\}$

- (Basis Case) k = 0It means that **no intermediate states** in the path.
 - If $i \neq j$,

$$R_{i,j}^{(0)}=\mathtt{a}_1\,|\,\mathtt{a}_2\,|\,\cdots\,|\,\mathtt{a}_m$$

where $q_i \xrightarrow{a_1} q_i, q_i \xrightarrow{a_2} q_i, \cdots, q_i \xrightarrow{a_m} q_i$ are transitions in D.

• If i = j,

$$R_{i,i}^{(0)} = \epsilon |\mathbf{a}_1| \mathbf{a}_2 | \cdots |\mathbf{a}_m|$$

where $q_i \xrightarrow{a_1} q_j, q_i \xrightarrow{a_2} q_j, \cdots, q_i \xrightarrow{a_m} q_j$ are transitions in D.

• (Induction Case) $R_{i,j}^{(k-1)}$ are given for all i and j.

$$R_{i,j}^{(k)} = R_{i,j}^{(k-1)} \mid R_{i,k}^{(k-1)} (R_{k,k}^{(k-1)})^* R_{k,j}^{(k-1)}$$

- $R_{i,j}^{(k-1)}$: paths from q_i to q_j do not use state q_k at all.
- $R_{i,k}^{(k-1)}(R_{k,k}^{(k-1)})^*R_{k,j}^{(k-1)}$: paths from q_i to q_j use state q_k at least once.

- $\bullet \ R_{1,1}^{(0)} = \epsilon \, | \, \mathbf{b} \qquad \bullet \ R_{1,2}^{(0)} = \mathbf{a} \qquad \bullet \ R_{2,1}^{(0)} = \varnothing \qquad \bullet \ R_{2,2}^{(0)} = \epsilon \, | \, \mathbf{a} \, | \, \mathbf{b}$

•
$$R_{1,1}^{(0)} = \epsilon \mid b$$
 • $R_{1,2}^{(0)} = a$ • $R_{2,1}^{(0)} = \emptyset$ • $R_{2,2}^{(0)} = \epsilon \mid a \mid b$

$$R_{1.2}^{(0)} = a$$

•
$$R_{2,1}^{(0)} = \emptyset$$

$$R_{2,2}^{(0)} = \epsilon |\mathbf{a}| \mathbf{b}$$

Note that
$$(\epsilon | R)^+ = R^*$$
, $(\epsilon | R)^* = R^*$, $\varnothing \cdot R = \varnothing$, $\varnothing | R = R$

•
$$R_{1,1}^{(1)} = R_{1,1}^{(0)} \mid R_{1,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,1}^{(0)} = (R_{1,1}^{(0)})^+ = (\epsilon \mid b)^+ = b^*$$

- $R_{1,1}^{(0)} = \epsilon | b$ $R_{1,2}^{(0)} = a$ $R_{2,1}^{(0)} = \emptyset$ $R_{2,2}^{(0)} = \epsilon | a | b$

Note that
$$(\epsilon | R)^+ = R^*$$
, $(\epsilon | R)^* = R^*$, $\varnothing \cdot R = \varnothing$, $\varnothing | R = R$

- $R_{1,1}^{(1)} = R_{1,1}^{(0)} \mid R_{1,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,1}^{(0)} = (R_{1,1}^{(0)})^+ = (\epsilon \mid b)^+ = b^*$
- $R_{1,2}^{(1)} = R_{1,2}^{(0)} \mid R_{1,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,2}^{(0)} = (R_{1,1}^{(0)})^* R_{1,2}^{(0)} = (\epsilon \mid b)^* a = b^* a$

•
$$R_{1,1}^{(0)} = \epsilon | \mathbf{b}$$

$$R_{1.2}^{(0)} = a$$

•
$$R_{2,1}^{(0)} = \emptyset$$

$$\bullet \ R_{1,1}^{(0)} = \epsilon \, | \, \mathbf{b} \qquad \bullet \ R_{1,2}^{(0)} = \mathbf{a} \qquad \bullet \ R_{2,1}^{(0)} = \varnothing \qquad \bullet \ R_{2,2}^{(0)} = \epsilon \, | \, \mathbf{a} \, | \, \mathbf{b}$$

Note that
$$(\epsilon | R)^+ = R^*$$
, $(\epsilon | R)^* = R^*$, $\varnothing \cdot R = \varnothing$, $\varnothing | R = R$

•
$$R_{1,1}^{(1)} = R_{1,1}^{(0)} \mid R_{1,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,1}^{(0)} = (R_{1,1}^{(0)})^+ = (\epsilon \mid b)^+ = b^*$$

•
$$R_{1,2}^{(1)} = R_{1,2}^{(0)} \mid R_{1,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,2}^{(0)} = (R_{1,1}^{(0)})^* R_{1,2}^{(0)} = (\epsilon \mid b)^* a = b^* a$$

•
$$R_{2,1}^{(1)} = R_{2,1}^{(0)} \mid R_{2,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,1}^{(0)} = R_{2,1}^{(0)} (R_{1,1}^{(0)})^* = \varnothing (\epsilon \mid b)^* = \varnothing$$

•
$$R_{1.1}^{(0)} = \epsilon \, | \, \mathbf{b} \,$$
 • $R_{1.2}^{(0)} = \mathbf{a} \,$ • $R_{2.1}^{(0)} = \varnothing \,$ • $R_{2.2}^{(0)} = \epsilon \, | \, \mathbf{a} \, | \, \mathbf{b} \,$

$$ho R_{1.2}^{(0)} = a$$

•
$$R_{2,1}^{(0)} = \emptyset$$

$$R_{2,2}^{(0)}=\epsilon$$
|a|b

Note that $(\epsilon | R)^+ = R^*$, $(\epsilon | R)^* = R^*$, $\varnothing \cdot R = \varnothing$, $\varnothing | R = R$

- $R_{1,1}^{(1)} = R_{1,1}^{(0)} \mid R_{1,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,1}^{(0)} = (R_{1,1}^{(0)})^+ = (\epsilon \mid b)^+ = b^*$
- $R_{1,2}^{(1)} = R_{1,2}^{(0)} \mid R_{1,1}^{(0)}(R_{1,1}^{(0)})^* R_{1,2}^{(0)} = (R_{1,1}^{(0)})^* R_{1,2}^{(0)} = (\epsilon \mid b)^* a = b^* a$
- $R_{2,1}^{(1)} = R_{2,1}^{(0)} \mid R_{2,1}^{(0)} (R_{1,1}^{(0)})^* R_{1,1}^{(0)} = R_{2,1}^{(0)} (R_{1,1}^{(0)})^* = \emptyset(\epsilon \mid b)^* = \emptyset$
- $R_{2,2}^{(1)} = R_{2,2}^{(0)} \mid R_{2,1}^{(0)}(R_{1,1}^{(0)})^* R_{1,2}^{(0)} = R_{2,2}^{(0)} \mid \varnothing = R_{2,2}^{(0)} = \epsilon \mid a \mid b$

- $R_{1,1}^{(1)} = b^*$ $R_{1,2}^{(1)} = b^*a$ $R_{2,1}^{(1)} = \emptyset$ $R_{2,2}^{(1)} = \epsilon |a|b$

•
$$R_{1,2}^{(2)} = R_{1,2}^{(1)} \mid R_{1,2}^{(1)}(R_{2,2}^{(1)})^* R_{2,2}^{(1)} = R_{1,2}^{(1)}(R_{2,2}^{(1)})^*$$

= $b^*a(\epsilon|a|b)^*$
= $b^*a(a|b)^*$

Summary

Next Lecture

• Properties of Regular Languages

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr