Chapter 1 Functions and Limits

1.1 Four Ways of Representing a Function

A **function** f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Machine visualization.

Domain: Every admissible inputs

Range: Every possible outputs

Graph of a function.

Dependant variable.

- Usually represents the output.
- Its value depends on the input.

Independant variable.

- Usually represents the input.
- Its value does not depend on anything else.

EXAMPLE 1 The graph of a function f is shown in Figure 6.

- (a) Find the values of f(1) and f(5).
- (b) What are the domain and range of f?

Figure 6

(a)
$$f(1) = 3$$
 $f(5) \approx -0.7$

(a)
$$f(i) = 3$$
 $f(5) \approx -0.7$
(b) Dom $f = [0,7]$
 $Im f = [-2,4]$

EXAMPLE 2 Sketch the graph and find the domain and range of each function.

(a)
$$f(x) = 2x - 1$$

(b)
$$g(x) = x^2$$

b) Dom
$$f = \mathbb{R}$$

 $Im f = [0, \infty)$

EXAMPLE 3 If $f(x) = 2x^2 - 5x + 1$ and $h \ne 0$, evaluate $\frac{f(a+h) - f(a)}{h}$.

$$\frac{2(a+h)^{2}-5(a+h)+1-2a^{2}+5a-1}{h}$$
=\frac{4ah+2h^{2}-5h}{h}
=\frac{4a+2h-5}{}

Representations of functions.

There are four possible ways to represent a function:

- verbally (by a description in words)
- numerically (by a table of values)
- visually (by a graph)
- algebraically (by an explicit formula)

EXAMPLE 5 A rectangular storage container with an open top has a volume of 10 m³. The length of its base is twice its width. Material for the base costs \$10 per square meter; material for the sides costs \$6 per square meter. Express the cost of materials as a function of the width of the base.

$$10 = wlh = 2w^2h$$

$$l = 2w$$

$$10 = \omega lh = 2\omega^2 h \Rightarrow h = \frac{10}{2\omega^2} = \frac{5}{\omega^2}.$$

$$C = 10 \cdot \omega \cdot l + 12 \omega h + 12 l h$$

$$= 20 \omega^{2} + \frac{60}{\omega} + \frac{60}{\omega}$$

$$= 20 \omega^{2} + \frac{120}{\omega}$$

Domain of functions given by an explicit formula.

EXAMPLE 6 Find the domain of each function.

(a)
$$f(x) = \sqrt{x+2}$$

(b)
$$g(x) = \frac{1}{x^2 - x}$$

The Vertical Line Test A curve in the *xy*-plane is the graph of a function of *x* if and only if no vertical line intersects the curve more than once.

- (a) This curve represents a function.
- (b) This curve doesn't represent a function.

Example. The parabola $\ x=y^2-2$ is not the graph of a function. Show it using the Vertical Line Test.

The functions in the following four examples are defined by different formulas in different parts of their domains. Such functions are called **piecewise defined functions**.

EXAMPLE 7 A function f is defined by

$$f(x) = \begin{cases} 1 - x & \text{if } x \le -1\\ x^2 & \text{if } x > -1 \end{cases}$$

Evaluate f(-2), f(-1), and f(0) and sketch the graph.

$$f(-2) = |-l-z| = 3$$

 $f(-1) = |-l-1| = 2$
 $f(0) = 0^2 = 0$

Absolute Value.

$$|a| = a$$
 if $a \ge 0$

$$|a| = -a$$
 if $a < 0$

What are the properties of the absolute value:

EXAMPLE 8 Sketch the graph of the absolute value function f(x) = |x|.

EXAMPLE 9 Find a formula for the function f graphed in Figure 17.

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2-x, & 1 \le x \le 2 \\ 0, & x > 2 \end{cases}$$

Even functions

$$f(-x) = f(x)$$

Odd functions.

$$f(-x) = -f(x)$$

EXAMPLE 11 Determine whether each of the following functions is even, odd, or neither even nor odd.

(a)
$$f(x) = x^5 + x$$

(b)
$$g(x) = 1 - x^4$$

(b)
$$g(x) = 1 - x^4$$
 (c) $h(x) = 2x - x^2$

(a)
$$f(-x) = (-x)^5 + (-x) = -x^5 - x = -(x^5 + x) = -f(x)$$

=> $f(-x) = (-x)^5 + (-x) = -x^5 - x = -(x^5 + x) = -f(x)$

(b)
$$g(-x) = |-(-x)^4| = |-x^4| = g(x)$$

 $\Rightarrow g \text{ even}.$

(c)
$$h(-x) = -2x - 6x^2 = -2x - x^2 \neq -h(x) + -h(x)$$

nuther odd or even.

A function f is called **increasing** on an interval I if

$$f(x_1) < f(x_2)$$

whenever $x_1 < x_2$ in I

It is called **decreasing** on I if

$$f(x_1) > f(x_2)$$

whenever $x_1 < x_2$ in I

· From A to B:

Increasing

• From B to C:

decreasing

. From C to D:

increasing

Example. Where is the function $f(x) = x^2$ increasing? Where is it decreasing?

increasing on (0,00)
decreasing on (-00,0).

Chapter 1 Functions and Limits

1.2 Mathematical Models: A catalog of Essential Functions

$$y = f(x) = mx + b$$

.m: the slope

.b: y-intercept

Another formulation (point-slope):

$$y - y_0 = m(x - x_0)$$

Example. A line passes through the points (0, 1) and (3, 1/2). Find the equation of the line and sketch its graph.

$$m = \frac{1/2 - 1}{3 - 0} = \frac{-1}{6}$$

$$\Rightarrow \qquad \forall -1 = -\frac{1}{6}(x-0)$$

$$\Rightarrow y = -\frac{\pi}{6} + 1$$

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

Coefficients

Leading coefficient

Degree of polynomial

Domain: All the numbers (real numbers).

Examples.

a) Concrete example.

22

$$x^{10} + x^5 + 2$$

$$x^{2} + 2x + 9$$

b) Degree 1.

c) Degree 2.

quadratic finnula:

$$x = -\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$

d) Degree 3.

$$f(x) = x^a$$

i) a is a positive integer or is zero.

Domain: All the numbers (real numbers).

ii) a is the reciprocal of a positive integer.

Domain: For odd integer ---> all the numbers (Real numbers).

For even integer ----> Positive numbers or zero.

iii) When a is a negative integer.

Domain: All the numbers except zero.

Rational Functions.

$$f(x) = \frac{P(x)}{Q(x)}$$

P: polynomial

Q: polynomial

Domain: all the numbers except the number x such that Q(x) = 0.

Example. Find the domain of the function $f(x) = \frac{2x^4 - x^2 + 1}{x^2 - 4}$.

$$x^{2}-4 \neq 0 \quad \text{if} \quad x \neq \pm 2$$

$$\Rightarrow \quad \text{Dom} f = (-\infty, -2) \cup (-7, 7) \cup (7, \infty)$$

Algebraic Functions.

An algebraic function f is a function that can be expressed only in term of the basic operations :

summation;

division;

substraction;

multiplication;

• extracting roots (i.e. taking $\sqrt[n]{\cdot}$).

Domain: Depends on the components of the function.

Examples. Find the domain of the following function $g(x) = \frac{x^4 - 16x^2}{x + \sqrt{x}} + (x - 2)\sqrt[3]{x + 1}$.

$$\chi_{+}\sqrt{2} \neq 0 \Rightarrow \chi_{+}0$$

$$\sqrt{x} \rightarrow x \ge 0$$
.

So,
$$Dom f = (0, \infty)$$
.

Trigonometric Functions.

$$\cos z = \frac{a}{c}$$

$$3in sc = \frac{b}{c}$$

$$AICZ = \frac{1}{\cos z}$$

i) Cosine function.

Domain: All of the numbers

Range: the interval [-1, 1]

Zeros:
$$x = \frac{(2k+1)\pi}{2}, k = \dots, -2, -1, 0, 1, 2, \dots$$

Other: $\cos(-x) = \cos(x)$

ii) Sine Function.

Domain: All the numbers

Range: [-1, 1]

Zeros: $x = k\pi, k = \dots, -2, -1, 0, 1, 2, \dots$

Other: $\sin(-x) = -\sin(x)$

•
$$\sin^2(x) + \cos^2(x) = 1$$

• See trigonometric sheet

iii) Tangent Function.

Domain: $(-\infty, \infty) - \{\dots, -3\pi/2, -\pi/2, \pi/2, 3\pi/2\}$

Range: all numbers

Zeros: same as the cos(x).

Other:

EXAMPLE 5 What is the domain of the function $f(x) = \frac{1}{1 - 2\cos x}$?

$$1-2\cos x = 0 \quad \text{if} \quad \cos x = \frac{1}{2} \quad \text{if} \quad x = \frac{\pi}{3} + 2k\pi$$
or
$$x = \frac{5\pi}{3} + 2k\pi$$

So,
$$Dom f = \mathbb{R} / \{ \frac{\pi}{3} + 2k\pi, \frac{5\pi}{3} + 7k\pi, k = ..., -1, 0, 1, ... \}$$

Chapter 1 Functions and Limits

1.3 New Functions from Old Functions

Transformations of Functions.

Translation.

Vertical and Horizontal Shifts Suppose c > 0. To obtain the graph of

y = f(x) + c, shift the graph of y = f(x) a distance c units upward y = f(x) - c, shift the graph of y = f(x) a distance c units downward y = f(x - c), shift the graph of y = f(x) a distance c units to the right y = f(x + c), shift the graph of y = f(x) a distance c units to the left

Stretching and reflecting.

Vertical and Horizontal Stretching and Reflecting Suppose c>1. To obtain the graph of

y=cf(x), stretch the graph of y=f(x) vertically by a factor of c y=(1/c)f(x), shrink the graph of y=f(x) vertically by a factor of c y=f(cx), shrink the graph of y=f(x) horizontally by a factor of c y=f(x/c), stretch the graph of y=f(x) horizontally by a factor of c y=-f(x), reflect the graph of y=f(x) about the x-axis y=f(-x), reflect the graph of y=f(x) about the y-axis

EXAMPLE 1 Given the graph of $y = \sqrt{x}$, use transformations to graph $y = \sqrt{x} - 2$, $y = \sqrt{x - 2}$, $y = -\sqrt{x}$, $y = 2\sqrt{x}$, and $y = \sqrt{-x}$.

EXAMPLE 5 Sketch the graph of the function $y = |x^2 - 1|$.

$$|x^2-1|$$

Adding.

$$(f+g)(x) = f(x) + g(x)$$

 $\mathsf{Domain} = \mathrm{Dom}(f) \cap \mathrm{Dom}(g)$

Substracting.

$$(f-g)(x) = f(x) - g(x)$$

 $\mathsf{Domain} \ = \ \mathrm{Dom}(f)\cap\mathrm{Dom}(g)$

Multiplying.

$$(fg)(x) = f(x)g(x)$$

 $Domain = Dom(f) \cap Dom(g)$

Dividing.

$$(f/g)(x) = f(x)/g(x)$$

Example. Find the domain of the function $h(x) = \sqrt{x} + \sqrt{2-x} \;\; .$

because

Example Find the domain of the function $h(x) = \frac{x^2}{x-1}$.

Composite of two functions (Composition).

Definition Given two functions f and g, the **composite function** $f \circ g$ (also called the **composition** of f and g) is defined by

$$(f \circ g)(x) = f(g(x))$$

Domain = $\begin{array}{c} \text{every } x \text{ in the } \text{Dom}(g) \\ \text{such that } g(x) \text{ is in } \text{Dom}(f). \end{array}$

EXAMPLE 6 If $f(x) = x^2$ and g(x) = x - 3, find the composite functions $f \circ g$ and $g \circ f$.

$$f(g(x)) = (x-3)^2 = x^2 - (ex + 9)$$

 $g(f(x)) = x^2 - 3$

EXAMPLE 9 Given $F(x) = \cos^2(x+9)$, find functions f, g, and h such that $F = f \circ g \circ h$.

$$h(x) = x + 9$$

$$q(x) = \cos x$$

$$f(x) = x^2$$