Powerlaw Explained

A Guided Tour Through the Mysteries of Force-based Motion Planning

Alex Day

Ph.D. Student Motion Planning Lab @ Clemson University

April 28, 2022

Overview

- 1. Basics of Motion Planning
- 2. Great, now what does that actually mean?
- 3. Explaining my Visualization Choices
- 4. Conclusions and Future Work

Overview

1. Basics of Motion Planning

- 2. Great, now what does that actually mean?
- 3. Explaining my Visualization Choices
- 4. Conclusions and Future Work

Motion Planning

- Motion planning is one of the most fundamental skills a human being possesses
- Being able to avoid collisions allows us to interact with other humans
- Teaching a robot how to approach this problem is very hard

Problem Definition

- Given a set of agents A, each agent has:
 - p^t position at time t
 - v^t velocity at time t
 - g a goal position
 - r a radius
- Each agent is non-holonomic, DOF of the control space equals DOF of the state space
- We want:
 - $|\mathsf{p}_\mathsf{a}^{-1} \mathsf{g}_\mathsf{a}| < \epsilon$
 - $\bullet || \mathsf{p}_{\mathsf{a}}^t \mathsf{p}_{\mathsf{b}}^t| < r_{\mathsf{a}} + r_{\mathsf{b}}$

- Defined as the vector pointing directly at the goal
- Getting to the goal is a robots prime directive

$$\mathsf{F}_{goal} = \mathsf{g} - \mathsf{p}$$

Current Ecosystem

- Geometric approaches
 - RVO & ORCA
 - PowerLaw
 - Helbing
- Learning approaches
 - KDMA
 - CrowdNav/CADRL
 - NavDreams

Time to Collision

• Humans use *Time-to-Collision (ttc)*, or τ , as a metric for avoiding collisions

Time to Collision

• Humans use *Time-to-Collision (ttc)*, or τ , as a metric for avoiding collisions

Time to Collision

• Humans use *Time-to-Collision (ttc)*, or τ , as a metric for avoiding collisions

Powerlaw

- Humans use Time-to-Collision (ttc), or τ , as a metric for avoiding collisions
- When plotting the ttc against a pairwise density function a clear trend emerges

Powerlaw

• From that we can generate a model for approximating the energy of a state based on the ttc:

$$E(\tau) = \frac{k}{\tau^2} e^{-\tau/\tau_0}$$

 $\begin{array}{c} \text{where } \tau \text{ is the ttc,} \\ k \text{ is a constant that sets the units,} \\ \text{and } \tau_0 \text{ is the time horizon} \end{array}$

Powerlaw

 This directly implies that the gradient of the energy is the repulsive force experienced by pedestrians

$$\mathsf{F}(au) = -
abla_\mathsf{r} \left(rac{k}{ au^2} e^{- au/ au_0}
ight)$$

where ∇_{r} is the spacial gradient

- Integrating this force results in a collision free velocity
- Combining this with the goal-directed force satisfies both goal-directed behavior and collision-free behavior

High Level

- There is a force driving each agent to the goal
- Each agent enacts some sort of force on every other agent
- This inter-agent force is sufficient to avoid all collisions between agents
- This combination results in a SOTA decentralized motion planning algorithm

Overview

- 1. Basics of Motion Planning
- 2. Great, now what does that actually mean?
- 3. Explaining my Visualization Choices
- 4. Conclusions and Future Work

Context

• Thus far everything has been abstract, so lets contextualize

- Defined as the vector pointing directly at the goal
- Getting to the goal is a robots prime directive

$$\mathsf{F}_{goal} = \mathsf{g} - \mathsf{p}$$

Goal Driving Surface

Combined Induced Forces

Combined Induced Forces

Powerlaw Forces

Powerlaw Surface

Overview

- 1. Basics of Motion Planning
- 2. Great, now what does that actually mean?
- 3. Explaining my Visualization Choices
- 4. Conclusions and Future Work

Simplicity of the Output

- Motion planning algorithms work mostly with velocities and forces
- While there are a decent number of steps in the pipeline, they all deal with something that is relatively basic to visualize
- I wanted to build intuition in a similar way to the way a spiral wishing well works

Spiral Wishing Well

Vector Fields

- I couldn't just jump straight to a surface
- Vector fields are a good middle ground that show both directionality and magnitude of velocities
- Still have the problem of not really being able to convey how "strong" the repulsive force is

Delaunay Triangulation

- With the Powerlaw algorithm being based on something similar to gradient descent I knew I would have to develop some sort of surface to convey this
- Delanunay was a simple way to create that surface
- I could vary which of the magnitudes to plot as the z axis, the spacial derivative is something I left to the reader

Overview

- 1. Basics of Motion Planning
- 2. Great, now what does that actually mean?
- 3. Explaining my Visualization Choices
- 4. Conclusions and Future Work

Conclusions

- Bringing nice visualizations to fruition is both incredibly frustrating and rewarding
- A lot of my intuition as to how Powerlaw would look was wrong
- As robots become more involved in daily life it will be important to understand how they work

Future Work

- Visualize in velocity space rather than positional space
- Include a "true" geometric planner like ORCA
- Try to visualize something non-numerical, like CrowdNav