## 9 Main Class

Every program must have a class Main. Furthermore, the Main class must have a method main that takes no formal parameters. The main method must be defined in class Main (not inherited from another class). A program is executed by evaluating (new Main).main().

The remaining sections of this manual provide a more formal definition of Cool. There are four sections covering lexical structure (Section 10), grammar (Section 11), type rules (Section 12), and operational semantics (Section 13).

## 10 Lexical Structure

The lexical units of Cool are integers, type identifiers, object identifiers, special notation, strings, keywords, and white space.

### 10.1 Integers, Identifiers, and Special Notation

Integers are non-empty strings of digits 0-9. Identifiers are strings (other than keywords) consisting of letters, digits, and the underscore character. Type identifiers begin with a capital letter; object identifiers begin with a lower case letter. There are two other identifiers, **self** and **SELF\_TYPE** that are treated specially by Cool but are not treated as keywords. The special syntactic symbols (e.g., parentheses, assignment operator, etc.) are given in Figure 1.

### 10.2 Strings

Strings are enclosed in double quotes "...". Within a string, a sequence '\c' denotes the character 'c', with the exception of the following:

```
\b backspace \t tab \n newline \f formfeed
```

A non-escaped newline character may not appear in a string:

```
"This \
is OK"
"This is not
OK"
```

A string may not contain EOF. A string may not contain the null (character \0). Any other character may be included in a string. Strings cannot cross file boundaries.

#### 10.3 Comments

There are two forms of comments in Cool. Any characters between two dashes "--" and the next newline (or EOF, if there is no next newline) are treated as comments. Comments may also be written by enclosing text in (\*...\*). The latter form of comment may be nested. Comments cannot cross file boundaries.

### 10.4 Keywords

The keywords of cool are: class, else, false, fi, if, in, inherits, isvoid, let, loop, pool, then, while, case, esac, new, of, not, true. Except for the constants true and false, keywords are case insensitive. To conform to the rules for other objects, the first letter of true and false must be lowercase; the trailing letters may be upper or lower case.

# 10.5 White Space

White space consists of any sequence of the characters: blank (ascii 32), \n (newline, ascii 10), \f (form feed, ascii 12), \r (carriage return, ascii 13), \t (tab, ascii 9), \v (vertical tab, ascii 11).

# 11 Cool Syntax

Figure 1 provides a specification of Cool syntax. The specification is not in pure Backus-Naur Form (BNF); for convenience, we also use some regular expression notation. Specifically,  $A^*$  means zero or more A's in succession;  $A^+$  means one or more A's. Items in square brackets [...] are optional. Double brackets [] are not part of Cool; they are used in the grammar as a meta-symbol to show association of grammar symbols (e.g.  $a[bc]^+$  means a followed by one or more bc pairs).

#### 11.1 Precedence

The precedence of infix binary and prefix unary operations, from highest to lowest, is given by the following table:

```
.
@
~
isvoid
* /
+ -
<= < =
not
<-
```

All binary operations are left-associative, with the exception of assignment, which is right-associative, and the three comparison operations, which do not associate.

# 12 Type Rules

This section formally defines the type rules of Cool. The type rules define the type of every Cool expression in a given context. The context is the *type environment*, which describes the type of every unbound identifier appearing in an expression. The type environment is described in Section 12.1. Section 12.2 gives the type rules.

```
program ::= [class;]^+
   class ::= class TYPE [inherits TYPE] { [feature;]^*}
 feature ::= ID( [formal[, formal]^*] ) : TYPE { expr }
              ID: TYPE [ <- expr ]
 formal ::= ID : TYPE
   expr ::= ID <- expr
              expr[@TYPE].ID([expr[,expr]^*])
              ID([expr[,expr]^*])
              if expr then expr else expr fi
              while expr loop expr pool
              \{ [expr;]^+ \}
              let ID : TYPE [ <- expr ] [, ID : TYPE [ <- expr ]]* in expr
              case expr of [ID : TYPE => expr;]^+esac
              new TYPE
              isvoid expr
              expr + expr
              expr - expr
              expr*expr
              expr/expr
              \tilde{expr}
              expr < expr
              expr <= expr
              expr = expr
              \mathbf{not}\ expr
              (expr)
              ID
              integer
              string
              true
```

Figure 1: Cool syntax.

false