北京理工大学 2020 - 2021 学年 第 一 学期

_<u>2019_级 电路分析基础 B</u>课程试卷_B_卷

考试日期:_	2021年1月27日	所需时间: <u>120</u> 分钟	
班级.	学号 •	姓名.	

题序	_	11	111	四	五.	六	七	八	合计
满分	12	24	12	10	12	10	10	10	100
得分									

注意: 所有题要写清过程。

一、本题包含2个小题(每小题6分,共12分)

1. 将图 1.1 (a) 所示电路等效变换为图 1.1 (b) 所示电路, 求等效后 U 和 R 的数值。

2. 电路如图 1.2 所示,求电流 I_1 、 I_2 和 I_3 。

二、本题包含3个小题(每小题8分,共24分)

1、电路如图 2.1 所示,N 为线性电阻网络,内部没有电源。已知: (1) 当 $u_s=8V$, $i_{s1}=6A$, $i_{s2}=2A$ 时,u=12V; (2) 当 $u_s=2V$, $i_{s1}=-6A$, $i_{s2}=3A$ 时,u=-2V; (3) 当 $u_s=6V$, $i_{s1}=0A$, $i_{s2}=-1A$ 时,u=22V。试求: $u_s=9V$, $i_{s1}=3A$, $i_{s2}=-2A$ 时 u 的值。

2. 单口网络如图 2.2 所示,(1) 试求并画出此单口网络的戴维南等效电路;(2) 试求并画出此单口网络的诺顿等效电路。

3. 电路如图 2.3 所示,(1) 求电流 I; (2) 求电压 U_{ab} ;

三、 $(12 \, \text{分})$ 电路如图 3 所示,求电流 i_1 、 i_2 、 i_3 、 i_4 和 i_5 。

四、 $(10 \, \text{分})$ 电路如图 4 所示,(1) 当 $R_L = 2\Omega$ 时,求电流 I_L ;(2) 当 R_L 为何值时, R_L 能获得最大功率,并求此最大功率。

五、(12 分)正弦稳态电路如图 5 所示,已知 $u_s(t)=500\cos 50t$ V, $R_1=100\Omega$, $R_2=200\Omega$,L=6H,C=200 μ F,(1)求电流 $i_L(t)$ 、 $i_C(t)$ 和 $i_R(t)$;(2)求电源 u_S 提供的有功功率 P、无功功率 Q 和视在功率 S;(3)若电感 L 的参数可调节改变,试求 L 调节改变为何值时,可使 u_S (t)和 $i_L(t)$ 同相位,并求此情况时的电流 $i_L(t)$ 。

六、(10 分) 电路如图 6 所示,已知开关 S 在 t=0 时闭合,开关 S 闭合前电路已处于稳态。(1) 求 $t\ge0$ 时的 $u_{\rm C}(t)$,并画出 $u_{\rm C}(t)$ 的波形;(2) 求 t>0 时的 i(t) ,并画出 i(t)的波形。

七、(10 分)二阶电路如图 7 所示,已知 $u_{S1}(t)=8\epsilon(t)V$, $i_{S1}(t)=4\epsilon(t)A$, $u_{C}(0)=2V$, $i_{L}(0)=5A$, $R_{1}=1\Omega$, $R_{2}=4\Omega$, $R_{3}=2\Omega$, $R_{4}=1\Omega$, L=2H,C=0.25F。(1)试列出 $t\geq 0$ 时,以电流 $i_{L}(t)$ 为变量的电路二阶微分方程式;(2)求电路的特征根(固有频率),并判断响应的类型(过阻尼,临界阻尼,欠阻尼);(3)写出电流 $i_{L}(t)$ 全响应的表达式($t\geq 0$)。

八、(10 分) 稳态电路如图 8 所示,已知 $u_s(t)$ =48+80cos(2t+60°) V , $i_s(t)$ =6cos4tA,(1) 求电流 $i_1(t)$;(2) 求电流 $i_1(t)$ 的有效值 I_1 ;(3) 求 6Ω电阻消耗的平均功率 P_{R1} ;(4) 求电流 $i_2(t)$ 。

