Nichtdeterministische Endliche Automaten Lösungen

Aufgabe 1:

Gegeben ist das Alphabet $X = \{X, Y, Z\}$.

Konstruiere einen nichtdeterministischen endlichen Automaten, der alle Wörter akzeptiert, welche die Zeichenkette XXYZX enthalten.

A = $(\{X, Y, Z\}, \{S_0, S_1, S_2, S_3, S_4, S_5\}, \{S_0\}, \delta \text{ gemäß Graph}, \{S_5\})$

Aufgabe 2:

Gegeben sei folgender nichtdeterministischer endlicher Automat. L = ($\{a, b\}, \{S_0, S_1, S_2\}, \{S_0\}, \delta$ gemäß Graph, $\{S_2\}$)

Konstruiere den zugehörigen deterministischen endlichen Automaten in Form einer Zustandsübergangsfunktion als Tabelle und anschließend als Graphen.

Δ	а	b
{S ₀ } {S ₁ } {S ₀ , S ₂ }	$\{S_1\}$	{}
{S ₁ }	$\{S_0, S_2\}$	${S_0}$
$\{S_0, S_2\}$	${S_1}$	{}
{ }	{}	{}

 $A = (\{a,b\}, \{\{\}, \{S_0\}, \{S_1\}, \{S_0, S_2\}\}, \{S_0\}, \delta \text{ gemäß Tabelle}, \{\{S_0, S_2\}\})$

Aufgabe 3:

a) Gegeben sei folgender nichtdeterministischer endlicher Automat: $A=(\{a,\,b\},\,\{\{S_0\},\,\{S_1\},\,\{\{S_0\}\},\,\delta\text{ gemäß Tabelle},\,\{\{S_2\}\})$

δ	a	b
{S ₀ }	{S ₁ }	$\{S_2\}$
{S ₁ }	$\{S_1\}, \{S_2\}$	{}
{S ₂ }	{}	{}

Konstruiere den zugehörigen endlichen deterministischen Automaten. Gib das Tupel und die Zustandsübergangsfunktion als Tabelle an.

δ	а	b
$\{\{S_0\}\}$	{{S ₁ }}	$\{\{S_2\}\}$
{{S ₁ }}	$\{\{\{S_1\}\}, \{\{S_2\}\}\}$	{}
$\{\{S_2\}\}$	{}	{}
$\{\{\{S_1\}\}, \{\{S_2\}\}\}$	$\{\{\{S_1\}\}, \{\{S_2\}\}\}$	{}
{}	{}	{}

 $A = (\{a, b\}, \{\{\}, \{\{S_0\}\}, \{\{S_1\}\}, \{\{\{S_1\}\}\}, \{\{\{S_2\}\}\}\}, \{\{S_0\}\}\}, \delta \text{ gem\"{a}$B Tabelle}, \{\{\{\{S_1\}\}\}, \{\{\{S_2\}\}\}\}\})$

Aufgabe 4:

Konstruiere mit den mit dem Alphabet:

L = {x^n y^m x^k | n, m $\in \mathbb{N},$ k $\in \mathbb{N}_0 \land$ k mod 3 $\equiv 0$ } einen nicht deterministischen endlichen Automaten.

 $A = (\{x, y, k\}, \{S_0, S_1, S_2, S_3, S_4, S_5\}, \{S_0\}, \delta \text{ gem\"{a}B Graph}, \{S_2, S_5\})$