## CLINICAL ENZYMES

Ryan Collison, MLS(ASCP)<sup>CM</sup>SC<sup>CM</sup>

## Amylase (AMY/AMYL)

- Hydrolase that breaks down starch and glycogen
  - Requires Cl and Ca<sup>2+</sup> activators
  - Acinar cells of pancreas and salivary glands are sources of amylase
    - Smallest enzyme, found in urine
    - Salivary amylase deactivated by stomach
  - Acute pancreatitis- AMY rises in 5-8 hours, peaks @ 24, and normal at 3-5 days





## Amylase

- Somogyi Units
  - Specifically amount of reducing sugar liberated (multiple products) We don't use.
  - U/L with our own ref. range
- Measurement Methods
  - Separate out salivary with wheat germ lectin
  - Immunoassay for specific

Isoenzymes

■ Macroamylasemia: benign

| TABLE 13-6                                                             | AMYLASE METHODOLOGIES                                                                   |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Amyloclastic                                                           | Measures the disappearance of starch substrate                                          |  |
| Saccharogenic                                                          | Measures the appearance of the product                                                  |  |
| Chromogenic                                                            | Measures the increasing color from production of product coupled with a chromogenic dye |  |
| Continuous<br>monitoring                                               | Coupling of several enzyme systems to monitor amylase activity                          |  |
| Copyright © 2014 Wolters Kluwer Health   Lippincott Williams & Wilkins |                                                                                         |  |

## Lipase (LIPA/LPS)

- Hydrolyzes ester bonds to produce alcohol and fatty acids
  - Specifically partially hydrolyzes triglyceride into 2-monoglyceride and 2 fatty acids
  - Pancreatic lipase is specific for the fatty acids at positions 1 & 2
    - Substrate must be emulsified to occur, bile salts and colipase accelerate

#### Lipase

- Lipase is primarily found in pancreas
  - Specific for pancreas!
  - Increases 4-8 hours after acute pancreatitis
  - Peaks at 24 hours
  - Normal at 8-14 days
    - Longer lasting marker for pancreatitis

#### Assay

- Early method Cherry-Crandall used olive oil to measure
- Turbidimetric assay sees decrease in turbidity caused by fats
- Colorimetric also based on glycerol kinase coupled reaction



#### **Pancreatitis**

- Exocrine secretions digest foods
  - Safeguards prevent activation of enzymes
  - Intrapancreatic secretion and activation
    - "autodigestion"



- Treatments usually supportive
- TPN only has given way to EN (Enteral Nutrition)



## Alkaline phosphatase (ALp)

- Group of enzymes that catalyze hydrolysis of phosphomonoesters at alkaline pH
  - Liberates inorganic phosphate from organic molecule
  - Production of alcohol as a result

$$\begin{array}{c|c} O & O & O \\ \parallel & & \parallel \\ R-P-O^- + H_2O \xrightarrow{ALP} R-OH + HO-P-O^- \\ \mid & O^- & O^- \\ \end{array}$$
 Phosophomonoester Alcohol Phosphate ion (Eq. 13-14)

- Optimal pH 9-10 but varies with substrate
  - Requires Mg<sup>2+</sup> as activator
- Present on most cell outer surfaces
  - Liver, bone, spleen, intestine, placenta and kidneys are highest



#### Alkaline phosphatase

- Diagnostic Significance (specificity?)
  - Liver and Bone
    - Biliary tract obstruction- inducible enzyme will rise high
    - Bone disorders
      - Paget's, osteomalacia & rickets, hyperparathyroidism, osteogenic sarcoma
      - Also present after fracture and during bone growth
  - Pregnancy- rises significantly from placental origin



#### Alkaline phosphatase

- Isoenzymes
  - Electrophoresis to separate, Liver fastest, then bone, placental, intestinal
  - Heat stability, measure before and after 56°C for 10'
    - Liver lives if <20% left, bone is source if >20% liver is source
      - Placental even more, will resist 65°C for 30'
  - Chemical inhibition
    - Phenylalanine inhibits intestinal and placental ALP more than liver and bone
  - Regan and Nago isoenzymes- carcinoplacental ALP
    - Occur in 3-15% of cancer patients, ectopically produced
- Assay: leverage nonspecificity
  - Bower & McComb

#### Acid Phosphatase (ACP)

- Hydrolase that catalyzes similar reactions to ALP
  - Ideal pH is approx. 5.0

- Found in prostate, bone, liver, spleen, kidney, RBCs, platelets
  - Prostate is largest source
  - Insensitive- Only detects prostate cancer after metastasis
    - Replaced by PSA
  - Inhibition: Prostatic ACP inhibited by tartrate
- Other usage? Rape kit test for ACP + up to 4 days

#### Phosphatases Side-by-Side



#### Alkaline Phosphatase

- Optimal pH 9-10
- Tissue source: Liver, bone, spleen, intestine, placenta, kidneys
- Undemanding preanalytics
- Routine part of CMP, HFP

#### Acid Phosphatase

- Optimal pH ~5
- Tissue source: prostate
- Special storage (buffered, frozen, NO HEMOLYSIS)
- Esoteric test, rarely performed

## Aspartate aminotransferase (AST)

- Transferase/transaminase
  - Moves amino group from aspartate to α-keto acid
    - May be called SGOT (old name)
  - Requires pyridoxal phosphate coenzyme
    - Ketoacids formed are eventually used in TCA cycle
  - Mostly found in heart, liver, skeletal muscle, with little in kidney, pancreas, RBCs
    - Largely raised in liver disorders and skeletal muscle issues
      - Also seen in cases of pulmonary emboli
      - In cirrhosis some elevation 4xULN vs. hepatitis 100xULN
- Assay:





#### Alanine aminotrasferase (alt)

- Another transferase similar to AST
  - Also requires pyridoxal phosphate coenzyme
  - May also be called SGPT
- Distributed widely by highly concentrated in liver
  - More specific for hepatic disorders
  - ALT often rises higher than AST, remains high longer
- Assay:

occurs best at pH 7.3-7.8





## Transferases Side-by-Side



#### **AST**

- Found in liver, heart, skeletal muscle, RBCs
- Forms oxaloacetate and glutamate
- Requires pyridoxal phosphate coenzyme
- Rises in cases of pulmonary emboli, cirrhosis (mild), hepatitis (steep)

#### **ALT**

- Very liver specific
- Forms pyruvate and glutamate
- Requires pyridoxal phosphate coenzyme
- Rises higher than AST, but in only from liver disorders

## γ-Glutamyltransferase (GGT)

- Transfers γ-glutamyl group from peptides to amino acids
  - Clinically only important for the liver and biliary tract
- Very sensitive to hepatobiliary disorders
  - High elevations largely seen in blockage of biliary tract
- Inducible enzyme
  - Also raised by some drugs (warfarin, phenobarbital, phenytoin)
  - May indicate chronic alcoholism, monitor compliance
- Assay conversion to a colored compound
  - γ-glutamyl p-nitroaniline (GGPNA)



## Creatine Kinase (CK)

- ATP regeneration in muscle
- Dimeric enzyme composed of M and/or B subunits
  - CK1 (BB)- Brain, most anodal
    - Short half-life doesn't contribute to total
  - CK2 (MB)- Heart
    - Predominantly in heart, but also skeletal muscle
  - CK3 (MM)- Muscle, most cathodal
    - Predominantly skeletal, but also cardiac muscle





FIGURE 13-5 Electrophoretic migration pattern of normal and atypical creatine kinase (CK) isoenzymes.

#### Creatine Kinase

- Significance
  - Frequently seen in disorders of cardiac and skeletal muscle
    - MI, rhabdomyolysis, muscular dystrophy
      - Extremely high in Duchenne MD 50-100x ULN
  - Not very specific for MI, also seen in strokes, seizures, nerve degeneration, CNS shock etc...
  - Separation into isoenzymes improves specificity
    - In healthy person <6% of total is MB, mostly MM ~ 94%
    - CK-MB is high in cardiac tissue

- Begin to rise after 4-8 hours, peak at 12-24 hours, normal at 48-72 hours

 Replaced by troponin, released earlier and lasts longer

#### Creatine Kinase

Assay: can go either way with PK & LD

Creatine + ATP 
$$\stackrel{CK}{\longleftarrow}$$
 Creatine phosphate + ADP

ADP + phosphoenolpyruvate  $\stackrel{PK}{\longleftarrow}$  Pyruvate + ATP

Pyruvate + NADH + H<sup>+</sup>  $\stackrel{LD}{\longleftarrow}$  Lactate + NAD<sup>+</sup>

(Eq. 13-5)

Or with Hexokinase and G6-PDH

Creatine phosphate + ADP 
$$\stackrel{\text{CK}}{\Longleftrightarrow}$$
 Creatine ADP

ATP + glucose  $\stackrel{\text{KH}}{\Longleftrightarrow}$  ADP + glucose-6-phosphate

Glucose 6-phosphate + NADPH  $\stackrel{\text{G-6-PD}}{\Longleftrightarrow}$ 

6-phosphogluconate + NADPH (Eq. 13-6)

## Lactate Dehydrogenase (LD)

Converts lactic acid to pyruvic acid and generates NADH

- High amounts found in the heart, liver, muscle, kidney, and RBCs
  - Elevated in numerous disorders
    - Cardiac, hepatic, skeletal muscle, renal, hematological, and neoplasms
    - Highest total levels from anemias

#### Lactate dehydrogenase

- Viral hepatitis, cirrhosis
  - Minimal increase
- AMI & pulmonary infarct
  - Same minimal increase
    - LD rises within 12-24 hours, peaks at 24-48 hours, stays up for 10 days
- Leukemia
  - Marked elevation in ALL possible
- Isoenzymes allow greater specificity

| TABLE 13-5 | LACTATE DEHYDROGENASE<br>(LD) ISOENZYMES AS A<br>PERCENTAGE OF TOTAL LD                                     |
|------------|-------------------------------------------------------------------------------------------------------------|
| ISOENZYME  | %                                                                                                           |
| LD-1       | 14–26                                                                                                       |
| LD-2       | 29–39                                                                                                       |
| LD-3       | 20–26                                                                                                       |
| LD-4       | 8–16                                                                                                        |
| LD-5       | 6–16                                                                                                        |
|            | rang JM. Serum enzymes and isoenzymes in the erential diagnosis of myocardial ischemia and m. 1980;26:1241. |

#### Lactate Dehydrogenase

- Each enzyme consists of 4 peptide chains
  - LD-1 (HHHH)- Heart & RBCs
  - LD-2 (HHHM)- Heart and RBCs
  - LD-3 (HHMM)- Lung, WBCs, spleen, pancreas
  - LD-4 (HMMM)- Liver
  - LD-5 (MMMM)- Skeletal muscle
- In AMI and intravascular hemolysis LD-1 > LD-2
  - This is not the normal state, so this is known as the LD flipped pattern
- LD-6?
  - Alcohol dehydrogenase that migrates to LD-5 spot

# Glucose-6-Phosphate dehydrogenase (G-6-PD)

- Oxidoreductase that is part of the pentose phosphate shunt glucose metabolism
- Protects cells from oxidative damage
  - Tissue sources: adrenal cortex, spleen, thymus, lymph nodes, mammary gland, and RBCs
    - Little activity in normal serum
  - Most of its importance is in the RBC
    - Maintains NADPH in reduced form
      - Insufficiency results in low NADPH, exposure to oxidizing agents, cells will burst from damage
  - Deficiency is Sex-Linked trait
    - Drug induced hemolytic anemia



#### Cytochrome Oxidase

- Cytochrome p450 oxidase (CYP 450)
  - Superfamily of enzymes (absorb light at 450 nm)
    - Metabolize more than 50% of all drugs
    - More than 500 different enzymes
  - Different alleles allow different speeds of drug metabolism
  - Also found in steroid forming tissues
    - Synthesize steroid hormones from cholesterol
- Pharmacogenomics depends upon these enzymes to determine effective therapies



#### Cholinesterases



- Break down choline neurotransmitters
- Target of organophosphate pesticides and some therapeutic drugs
  - Acetylcholinesterase (AChE) intracellular
  - Pseudocholinesterase or Serumcholinesterase (SChE) extracellular
    - Butyrylcholinesterase (BChE) preferred, new name
      - Butyrylcholine a synthetic choline used to distinguish from AChE
- Sarin, Tabun, Soman, VX
  - Chemical weapons, nerve gas
- Chronic toxicity- wide neurological symptoms
- Ref: 4-12k U/L
  - Symptoms with a decrease of 40%

