Vorlesung 1 02.11.2020

Ziele:

- 1. Maßtheorie \to Lebesgue-Maß (Volumen von Teilmengen des \mathbb{R}^n bestimmen)
- 2. Integral
rechnung für Funktionen $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ \to Lebesgue-Integrale (Satz von Fubini, ...)
- 3. Version des Hauptsatzes \rightarrow Satz von Gauß

iiiiiii HEAD

Ι Maße und messbare Funktionen

Notation:

Menge X, Potenzmenge $\mathcal{P}(X)$, eine Teilmenge von $\mathcal{P}(X)$ heißt Mengensystem

Def. I.1

Ein Mengensystem $\mathcal{A} \subseteq \mathcal{P}(X)$ heißt σ -Algebra, falls:

- (i) $X \in \mathcal{A}$
- (ii) $A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$
- (iii) $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$

Das Paar (X, A) heißt dann **messbarer Raum**.

Bem.:

1. $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcap_{i \in \mathbb{N}} A_i \in \mathcal{A}$ Denn: $\bigcap_{i \in \mathbb{N}} A_i = X \setminus (\bigcup_{i \in \mathbb{N}} X \setminus A_i)$

Denn:
$$\bigcap_{i \in \mathbb{N}} A_i = X \setminus (\bigcup_{i \in \mathbb{N}} X \setminus A_i)$$

- 2. $\emptyset = X \setminus X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \implies A \setminus B \in \mathcal{A}$ Denn: $A \setminus B = A \cap (X \setminus B)$

Bsp.:

- 1. $\mathcal{P}(X)$ ist σ -Algebra, $\{\emptyset, X\}$ ist σ -Algebra
- 2. später: Menge aller messbaren Mengen eines äußeren Maßes bildet eine σ -Algebra.

Satz I.2

Jeder Durchschnitt von (endlich oder unendlich vielen) σ -Algebren auf der selben Menge X ist wieder eine σ -Algebra.

Beweis. $(A_i)_{i\in I}$ sei eine Familie von σ -Algebren bezüglich X.

Offensichtlich gilt:
$$X \in \bigcap_{i \in I} \mathcal{A}_i$$

Sei $A \in \bigcap_{i \in I} \mathcal{A}_i \implies A \in \mathcal{A}_i \ \forall i \in I \implies X \setminus A \in \mathcal{A}_i \ \forall i \in I \implies X \setminus A \in \bigcap_{i \in I} A_i$

Analog für die abzählbare Vereinigung.

Def. I.3

Für ein Mengensystem $\mathcal{E} \subseteq \mathcal{P}(X)$ heißt $\sigma(\mathcal{E}) := \bigcap \{\mathcal{A} | \mathcal{A} \text{ ist } \sigma\text{-Algebra in } X \text{ mit } \mathcal{E} \subseteq \mathcal{A} \}$ die von \mathcal{E} erzeugte $\sigma\text{-Algebra}$. Man nennt \mathcal{E} das erzeugende System von $\sigma(\mathcal{E})$.

Bem.:

Dieser Durchschnitt ist nicht-trivial, denn $\mathcal{P}(X)$ ist σ -Algebra mit $\mathcal{E} \subseteq \mathcal{P}(X)$.

Bsp.:

- 1. Ist $E \subseteq X$ und $\mathcal{E} = \{E\} \implies \sigma(\mathcal{E}) = \{\emptyset, E, X \setminus E, X\}$
- 2. Sei (X, d) ein metrischer Raum. $\mathcal{O} \subseteq \mathcal{P}(X)$ sei das System der offenen Mengen. Die von \mathcal{O} erzeugte σ -Algebra heißt **Borel-\sigma-Algebra** $\mathbb{B}(\mathcal{O}) = \mathbb{B}$. Ihre Elemente heißen **Borelmengen**.
- 3. Seien $X \neq \emptyset$, (Y, \mathcal{C}) messbarer Raum, $f: X \to Y$ eine Abbildung und das Urbild von $C \subseteq Y$: $f^{-1}(C) := \{x \in X | f(x) \in C\}$. Dann ist $f^{-1}(\mathcal{C}) := \{f^{-1}(C) | C \in \mathcal{C}\}$ eine σ -Algebra bzgl. X. Begründung:
 - $-X \in f^{-1}(\mathcal{C})$, denn $f^{-1}(Y) = X$ und $Y \in \mathcal{C}$
 - $f^{-1}(C) \in f^{-1}(\mathcal{C}) \iff C \in \mathcal{C},$ $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$
 - Erinnerung: $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- 4. Sei X eine beliebige Menge und $(E)_i \subseteq \mathcal{P}(X)$, $i \in I$, Mengensysteme, dann gilt: $\sigma(\bigcup_{i \in I} \mathcal{E}_i) = \sigma(\bigcup_{i \in I} \sigma(\mathcal{E}_i))$ Begründung:
 - Klar: ⊆
 - Andererseits enthält $\sigma(\bigcup_{i \in I} \mathcal{E}_i)$ das System $\bigcup_{i \in I} \sigma(\mathcal{E}_i)$ und ist eine σ -Algebra $\Longrightarrow \sigma(\bigcup_{i \in I} \sigma(\mathcal{E}_i)) \subseteq \sigma(\bigcup_{i \in I} \mathcal{E}_i)$

Notation:

 $\bar{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\} \text{ mit } -\infty < a < +\infty, \ \forall a \in \mathbb{R}$

Def. I.4

Eine Folge $(s_k) \subseteq \overline{\mathbb{R}}$ $(k \in \mathbb{N})$ konvergiert gegen $s \in \overline{\mathbb{R}}$, falls eine der folgenden Alternativen gilt:

- (i) $s \in \mathbb{R}$ und $\forall \epsilon > 0$ gilt: $s_k \in (s \epsilon, s + \epsilon) \subseteq \mathbb{R}$ für k hinreichend groß
- (ii) $s = \infty$ und $\forall r \in \mathbb{R} : s_k \in (r, \infty]$ für k hinreichend groß
- (iii) $s = -\infty$ und $\forall r \in \mathbb{R} : s_k \in [-\infty, r)$ für k hinreichend groß
- $(s_k) \subseteq \mathbb{R}$ ist genau dann in \mathbb{R} konvergent, wenn sie entweder in \mathbb{R} konvergiert, oder bestimmt gegen $\pm \infty$ divergiert.

Bsp.:

- $-s_k$ monoton $\implies s_k$ konvergiert in $\bar{\mathbb{R}}$
- $-a_k \ge 0 \implies \sum_{k \in \mathbb{N}} a_k \in \bar{\mathbb{R}}$
- Eine Menge $U \subseteq \mathbb{R}$ ist genau dann offen, wenn $U \cap \mathbb{R}$ offen ist und im Fall +∞ ∈ U (bzw. $-\infty \in U$) ein $a \in \mathbb{R}$ existiert, sodass $(a, \infty] \subseteq U$ (bzw. $[-\infty, a) \subset U$) ist.
- Die Borel- σ -Algebra $\bar{\mathbb{B}}$ auf $\bar{\mathbb{R}}$ wird durch die offenen Mengen in $\bar{\mathbb{R}}$ erzeugt. Es gilt: $\bar{\mathbb{B}} = \{B \cup E | B \in \mathbb{B}, E \subseteq \{-\infty, +\infty\}\}$

Notation:

 $\sup \emptyset := -\infty$, $\inf \emptyset := +\infty$ konsistent mit $A, B \subseteq \mathbb{R}$ gilt $A \subseteq B \implies \sup A < \sup B$ und $\inf A \ge \inf B$

Def. I.5

Sei $\mathcal{A} \subseteq \mathcal{P}(X)$ eine σ -Algebra, eine nicht-negative Mengenfunktion $\mu : \mathcal{A} \to [0, \infty]$ heißt **Maß** auf \mathcal{A} , falls:

- (i) $\mu(\emptyset) = 0$
- (ii) für beliebige paarweiße disjunkte $A_i \in \mathcal{A}, i \in \mathbb{N}$, gilt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i) \qquad (\sigma\text{-Additivität})$

Das Tripel (X, \mathcal{A}, μ) heißt **Maßraum**.

Bem.:

1. Für endlich viele paarweiße disjunkte $A_i \in \mathcal{A}, i = 1, ..., n$, folgt aus (ii) indem man $A_i = \emptyset$ für i = n + 1, ... setzt: $\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$

2. Monotonie des Maßes: $A, B \in \mathcal{A}$ mit $A \subseteq B \implies \mu(A) \leq \mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A)$

Def. I.6

Sei (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt **endlich**, wenn $\mu(A) < \infty \ \forall A \in \mathcal{A}$ und σ -endlich, wenn es eine Folge $(X_i) \in \mathcal{A}$ mit $\mu(X_i) < \infty$ gibt, sodass $X = \bigcup_{i \in \mathbb{N}} X_i$.

Falls $\mu(X) = 1$, so wird μ Wahrscheinlichkeits-Maß genannt.

Bsp.:

- 1. Sei X eine beliebige Menge, $\mathcal{A} = \mathcal{P}(X)$, für $x \in X$ sei $\delta_x(A) := \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$ (Dirac-Maß)
 - Es gilt $\delta_x(A) \in \{0,1\}, \, \delta_x(\emptyset) = 0, \, \delta_x(X) = 1.$
 - Sei $A=\bigcup_{k\in\mathbb{N}}A_k$ gegeben mit A_k paarweiße disjunkt und $x\in A\implies x\in A_k$ für genau ein $k\in\mathbb{N}\implies \sigma$ -Additivität.
 - Für $x \notin A$ gilt sowieso $\delta_x A = 0$
 - ⇒ Das Dirac-Maß ist ein Wahrscheinlichkeits-Maß
- 2. **Zählmaß:** X beliebige Menge

Vorlesung 2

06.11.2020

$$card: \mathcal{P}(X) \to [0, \infty]$$

$$card(A) := \begin{cases} \text{Anzahl der Elemente von A,} & \text{falls A endlich} \\ \infty, sonst \end{cases}$$
Für $A = \bigcup_{i=1}^{n} A_i$ endlich und paarweiße disjunkt ist die σ_i A

Für $A = \bigcup_{k \in \mathbb{N}} A_k$ endlich und paarweiße disjunkt ist die σ -Additivität klar.

Sei A unendlich und $A = \bigcup_{k \in \mathbb{N}} A_k$.

- (a) nur endlich viele A_k nicht-trivial $\implies \exists k_0 : A_{k_0}$ ist unendlich
- (b) abzählbar viele A_k sind nicht-trivial \implies Behauptung
- ⇒ Behauptung

Zählmaß ist σ -endlich $\Leftrightarrow X$ ist abzählbar Zählmaß ist endlich $\Leftrightarrow X$ ist endlich

Bsp.:

X beliebige Menge, $A \subseteq \mathcal{P}(X)$ σ-Algebra, $\mu(A) = 0 \ \forall A \in \mathcal{A}$

Satz I.7 (Stetigkeitseigenschaften von Maßen)

Sei (X, \mathcal{A}, μ) Maßraum. Dann gelten für Mengen $A_i \in \mathcal{A}, i \in \mathbb{N}$ folgende Aussagen:

(i) Aus
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$$
 folgt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(ii) Aus
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$
 mit $\mu(A_1) < \infty$, folgt: $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(iii)
$$\mu(\bigcup_{i\in\mathbb{N}} A_i) \le \sum_{i\in\mathbb{N}} \mu(A_i)$$

Bem.:

- 1. (i) Stetigkeit von unten
 - (ii) Stetigkeit von oben
 - (iii) σ -Subadditivität von μ
- 2. Bedingung $\mu(A_i) \leq \infty$ in (ii) kann durch $\mu(A_k) \leq \infty$ für ein $k \in \mathbb{N}$ ersetzt werden, kann aber nicht weggelassen werden.

Begründung:

$$\begin{aligned} A_k &= k, k+1, \ldots \subseteq \mathbb{N} \\ & card(A_k) = \infty \ \forall k \in \mathbb{N} \\ & \text{Aber: } card(\bigcap_{i \in \mathbb{N}} A_i) = card(\emptyset) = 0 \end{aligned}$$

Beweis.

(i)
$$\tilde{A}_1 := A_1, \ \tilde{A}_k := A_k \setminus A_{k-1}, \ k \ge 2$$
 $\tilde{A}_i \text{ sind paarweiße disjunkt.}$

$$\bigcup_{i \in \mathbb{N}} \tilde{A}_i = \bigcup_{i \in \mathbb{N}} A_i$$

$$\mu(\bigcup_{i \in \mathbb{N}} A_i) = \mu(\bigcup_{i \in \mathbb{N}} \tilde{A}_i) = \sum_{i \in \mathbb{N}} \mu(\tilde{A}_i) = \lim_{k \to \infty} (\sum_{i=1}^k \mu(\tilde{A}_i)) = \lim_{k \to \infty} \mu(\bigcup_{i=1}^k A_k) = \lim_{k \to \infty} \mu(A_k)$$

(ii)
$$A'_k := A_1 \setminus A_k \implies A'_1 \subseteq A'_2 \subseteq \dots$$

Es gilt: $\mu(A_1) = \mu(A_1 \cap A_k) + \mu(A_1 \setminus A_k) = \mu(A_k) + \mu(A'_k)$
 $\implies \mu(A_1) - \lim_{k \to \infty} \mu(A_k) = \lim_{k \to \infty} \mu(A'_k) \stackrel{(i)}{=} \mu(\bigcup_{k \in \mathbb{N}} A'_i) = \mu(A_1 \setminus \bigcap_{i \in \mathbb{N}})$
 $= \mu(A_1) - \mu(\bigcap_{i \in \mathbb{N}} A_i)$

(iii) Es genügt, die Folge $B_1 = A_1, \ B_i \stackrel{i \geq 2}{=} A_i \setminus \bigcup_{j=1}^{i-1} A_j$ zu betrachten. $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} B_i \text{ und } (B_i) \text{ ist paarweiße disjunkt.}$ $\Longrightarrow \mu(\bigcup_{i \in \mathbb{N}} A_i) = \mu(\bigcup_{i \in \mathbb{N}} B_i) = \sum_{i \in \mathbb{N}} \mu(B_i) \leq \sum_{i \in \mathbb{N}} \mu(A_i)$

Def. I.8

 (X, \mathcal{A}, μ) Maßraum.

Jede Menge $A \in \mathcal{A}$ mit $\mu(A) = 0$ heißt μ -Nullmenge. Das System aller μ -Nullmengen bezeichnen wir mit $\mathcal{N}(\mu)$. Das Maß μ heißt vollständig, wenn gilt:

$$N \subseteq A$$
 für ein $H \in \mathcal{A}$ mit $\mu(A) = 0$ $\Longrightarrow N \in \mathcal{A}$ und $\mu(N) = 0$

Bem.:

Nicht jedes Maß ist vollständig:

$$\mathcal{A} \neq \mathcal{P}(X) \ \mu(A) = 0 \ \forall A \in \mathcal{A}$$

Allerdings lässt sich jedes Maß vervollständigen:

Sei (X, \mathcal{A}, μ) Maßraum und \mathcal{T}_{μ} sei das System aller Mengen $N \subseteq X$ für die keine μ Nullmenge $B \in \mathcal{N}(\mu)$ existiert mit $N \subseteq B$. Es gilt:

$$\mu$$
 vollständig $\Leftrightarrow \mathcal{T}_{\mu} \subseteq \mathcal{A}$

Definiere auf $\bar{A}_{\mu} := \{A \cup N | A \in \mathcal{A}, N \in \mathcal{T}_{\mu}\}$ die Mengenfunktion $\bar{\mu}$ durch $\bar{\mu}(A \cup N) := \mu(A) \ \forall A \in \mathcal{A}, N \in \mathcal{T}_{\mu}$

Bem.:

$$\bar{\mu}$$
 ist wohldefiniert: $A \cup N = B \cup P$ mit $A, B \in \mathcal{A}, P, N \in \mathcal{T}_{\mu} \implies \exists C \in \mathcal{A}, \mu(C) = 0$: $P \subseteq C \implies A \subseteq B \cup C \implies \mu(A) \le \mu(B) + \mu(C) = \mu(B)$ Symm $\implies \mu(A) = \mu(B)$

 $\bar{\mu}$ heißt **Vervollständigung** von μ

Satz I.9

 (X, \mathcal{A}, μ) Maßraum. Dann ist $\bar{\mathcal{A}}_{\mu}$ eine σ -Algebra und $\bar{\mu}$ ein vollständiges Maß auf $\bar{\mathcal{A}}_{\mu}$, welches mit μ auf \mathcal{A} übereinstimmt.

Beweis. Offensichtlich:

- 1. $\mathcal{A} \subseteq \bar{\mathcal{A}}_{u}$
- 2. \mathcal{T}_{μ} ist abgeschlossen unter Abz. \bigcup

 \mathcal{A} ist auch abgeschlossen unter abzählbarer Vereinigung

 $\implies A_{\mu}$ abgeschlossen unter abzählbarer Vereinigung

Sei $x \in \bar{\mathcal{A}}_{\mu}$. Für $E \in \bar{\mathcal{A}}_{\mu}$ ex. ein $A \in \mathcal{A}$, $N \in \mathcal{T}_{\mu}$ und $B \in \mathcal{A}$ und $N \subseteq B$ mit $\mu(B) = 0$, sodass $E = A \cup N$

$$\implies B \setminus N \in \mathcal{T}_{\mu}$$

$$\implies X \setminus E = (X \setminus (A \cup B)) \cup (B \setminus N) \in \bar{\mathcal{A}}_{\mu}$$

 $\implies \mathcal{A}_{\mu}$ ist σ -Algebra

 $\bar{\mu}$ ist Maß (ist klar)

Sei $M \subseteq B = A \cup N$ mit $A \in \mathcal{A}, N \in \mathcal{T}_{\mu}$ und $\bar{\mu}(B) = \mu(A) = 0$

Aus $M = (M \cap A) \cup (M \cap N) \in \mathcal{T}_{mu} \cup \mathcal{T}_{\mu} = \mathcal{T}_{\mu} \in \bar{\mathcal{A}}_{\mu}$

 $\implies \bar{\mu}$ ist vollständig.

Satz I.10

 (X, \mathcal{A}, μ) Maßraum und $(X, \bar{\mathcal{A}}_{\mu}, \bar{\mu})$ sei Vervollständigung. Ferner sei (X, \mathcal{B}, ν) ein vollständiger Maßraum mit $\mathcal{A} \subseteq \mathcal{B}$ und $\mu = \nu$ auf \mathcal{A} . Dann ist $\bar{\mathcal{A}}_{\mu} \subseteq \mathcal{B}$ und $\bar{\mu} = \nu$ auf $\bar{\mathcal{A}}_{\mu}$.

Beweis. Aus $\mathcal{A} \subseteq \mathcal{B}$ und $\mu = \nu$ auf \mathcal{A} folgt: $\mathcal{N}(\mu) \subseteq \mathcal{N}(\nu) \implies \mathcal{T}_{\mu} \subseteq \mathcal{T}_{\mu}$ vollständig $\implies \mathcal{T}_{\nu} \subseteq \mathcal{B} \implies \mathcal{T}_{\mu} \subseteq \mathcal{B} \implies \bar{\mathcal{A}}_{\mu} \subseteq \mathcal{B}$

Da $\bar{\mu}$ auf $\bar{\mathcal{A}}_{\mu}$ vollständig durch μ auf \mathcal{A} bestimmt ist, folgt sofort $\bar{\mu} = \nu$ auf $\bar{\mathcal{A}}_{\mu}$, da $\mu = \nu$ auf \mathcal{A} .

Def. I.11

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume. Eine Abbildung $f: X \to Y$ heißt $\mathcal{A} - \mathcal{C} - \mathbf{messbar}$, falls $f^{-1}(\mathcal{C}) \subseteq \mathcal{A}$

Notation:

Falls \mathcal{A}, \mathcal{C} klar sind, bezeichnen wir f einfach als messbar.

Bsp.:

1. $(X, \mathcal{A}), (Y, \mathcal{C})$ beliebige messbare Räume. Sei $y_0 \in Y$ und $f: X \to Y, f(x) = y_0 \ \forall x \in X$ $\implies f \text{ ist } \mathcal{A}\text{-}\mathcal{C}\text{-messbar}$

2. $\chi_R: X \to \mathbb{R}, \chi_R(x) = \begin{cases} 1, \text{ falls } x \in E \subseteq X \\ 0, \text{ sonst} \end{cases}$

 \mathbb{R} wird versehen mit Borel- σ -Algebra \mathcal{B} . Für (X, \mathcal{A}) messbarer Raum gilt: $\chi_R \mathcal{A}$ - \mathcal{B} -messbar $\Leftrightarrow E \in \mathcal{A}$

3. Komposition messbarer Abbildungen ist messbar.

 $(X, \mathcal{A}), (Y, \mathcal{C}), (Z, \mathcal{D})$ messbare Räume.

 $f: X \to Y \mathcal{A}\text{-}\mathcal{C}\text{-messbar}$

 $g: Y \to Z$ C-D-messbar

 $\implies g \circ f: X \to Z \text{ ist } A\text{-}\mathcal{D}\text{-messbar, denn:}$

 $(g \circ f)^{-1}(\mathcal{D}) = f^{-1}(g^{-1}(\mathcal{D})) \subseteq f^{-1}(\mathcal{C}) \subseteq \mathcal{A}$

Lemma I.12

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume und $\mathcal{C} := \sigma(\mathcal{E})$. Jede Abbildung $f : X \to Y$ mit $f^{-1}(\mathcal{E}) \subseteq \mathcal{A}$ ist \mathcal{A} - \mathcal{C} -messbar.

Beweis. Es gilt: $f^{-1}(\mathcal{C}) = f^{-1}(\sigma(\mathcal{E})) \stackrel{s.Blatt1}{=} \sigma(f^{-1}(\mathcal{E})) \subseteq \sigma(\mathcal{A}) = \mathcal{A}$

Bsp.:

1. Jede stetige Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$ ist \mathbb{B}^n - \mathbb{B}^n -messbar (man sagt: f ist **borel-messbar**). Denn $\mathbb{B}^n = \sigma(\{\text{offene Teilmengen des } \mathbb{R}^n\})$ und Urbilder offener Mengen sind offen für f stetig (siehe. Ana 1)

2. Sei $X \neq \emptyset$ Menge, (Y, \mathcal{C}) messbarer Raum, $f: X \to Y$ Abbildung. Nach Bsp. aus 1. Vorlesung ist $f^{-1}(\mathcal{C})$ σ -Algebra. Offensichtlich ist $f^{-1}(\mathcal{C}) \subseteq \mathcal{P}(X)$ die kleinste σ -Algebra und f messbar.

Notation:

Multiplikation und Division in $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$

$$s * (\pm \infty) = (\pm \infty) * s = \begin{cases} \pm \infty &, \text{ falls } s \in (0, \infty] \\ 0 &, \text{ falls } s = 0 \\ \mp \infty &, \text{ falls } s \in [-\infty, 0) \end{cases}$$

$$\frac{1}{t} = 0 \text{ für } t = \pm \infty$$

Def. I.13

 (X, \mathcal{A}) messbarer Raum und $D \in \mathcal{A}$.

Eine Funktion $f: D \to \overline{\mathbb{R}}$ heißt numerische Funktion.

Lemma I.14

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f: D \to \mathbb{R}$.

Dann sind folgende Aussagen äquivalent:

(i) f ist \mathcal{A} - \mathbb{B}^1 -messbar

(ii) $\forall \mathcal{U} \subseteq \mathbb{R}$ offen ist $f^{-1}(\mathcal{U}) \in \mathcal{A}$ und $f^{-1}(\{\infty\}), f^{-1}(\{-\infty\}) \in \mathcal{A}$

(iii) $\{f \le s\} := \{x \in D \mid f(x) \in [-\infty, s]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(iv) $\{f < s\} := \{x \in D \mid f(x) \in [-\infty, s)\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(v) $\{f \ge s\} := \{x \in D \mid f(x) \in [s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(vi) $\{f > s\} := \{x \in D \mid f(x) \in (s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

Beweis. \mathbb{B}^1 wird erzeugt durch die offenen Mengen und $\pm \infty \implies (i) \Leftrightarrow (ii)$

 $(iii) \Leftrightarrow (iv) \Leftrightarrow (v) \Leftrightarrow (vi) denn:$

(iv)
$$\Longrightarrow$$
 (iii): $f \le s = \bigcap_{k \in \mathbb{N}} \{f < s + \frac{1}{k}\}$
(iii) \Longrightarrow (vi): $\{f > s\} = D \setminus \{f \le s\}$
(vi) \Longrightarrow (v): $\{f \ge \bigcap_{k \in \mathbb{N}} \{f > s - \frac{1}{k}\}\}$
(v) \Longrightarrow (iv): $\{f < s\} = D \setminus \{f \ge s\}$

(iii)
$$\implies$$
 (vi): $\{f > s\} = D \setminus \{f \le s\}$

(vi)
$$\implies$$
 (v): $\{f \ge \bigcap_{k \in \mathbb{N}} \{f > s - \frac{1}{k}\}\}$

(v)
$$\Longrightarrow$$
 (iv): $\{f < s\} = D \setminus \{f \ge s\}$

(ii)
$$\implies$$
 (vi), denn: $\{f > s\} = f^{-1}(s, \infty) \cup f^{-1}(\{\infty\}) \in \mathcal{A}$

Für ein offenes Intervall (a,b) gilt: $f^{-1}((a,b)) = \{f > a\} \cap \{f < b\} \in \mathcal{A}$ Eine der Aussagen (und damit alle) (iii) - (vi) gelte.

Mann kann zeigen: Jede offene Menge $U \subseteq \mathbb{R}$ lässt sich als abzählbare Vereinigung $\mathcal{U} = \bigcup I_k$ von offenen Intervallen $I_k = (a_k, b_k)$ schreiben (siehe Blatt 2).

In (iii) - (vi) reicht es aus, $s \in \mathbb{Q}$, statt $s \in \mathbb{R}$ zu haben, denn es gilt z.B.: $\{f \ge s\} = \bigcap \{f > q\}$

> Vorlesung 3 09.11.20

Lemma I.15

Sei (X, \mathcal{A}) ein messbarer Raum, $D \in \mathcal{A}$ und $f, g : D \to \mathbb{R}$ \mathcal{A} -messbar. Dann sind die Mengen $\{f < g\} := \{x \in D : f(x) < g(x)\}\$ und $\{f \le g\} := \{x \in D : f(x) \le g(x)\}\$ Elemente aus \mathcal{A} .

Beweis. Es gilt:
$$\{f < g\} = \bigcup_{q \in \mathbb{Q}} (\{f < g\} \cap \{g > q\}) \in \mathcal{A}$$
, denn: $\{f < g\}, \{g > q\} \in \mathcal{A}$ (s. Lemma I.14) $\{f \leq g\} = D \setminus \{f > g\} \in \mathcal{A}$

Bem.:

Im folgenden Satz sind die Grenzfunktionen paarweiße definiert, z.B.: $\liminf f_x: X \to \mathbb{R}$ ist definiert durch: $(\liminf f_k)(x) := \liminf f_k(x)$

Satz I.16

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f_k : D \to \mathbb{R}$ Folge von \mathcal{A} -messbaren Funktionen. Dann sind auch folgende Funktionen A-messbar:

$$\inf_{k \in \mathbb{N}} f_k, \sup_{k \in \mathbb{N}} f_k, \lim_{k \to \infty} \inf_{k \to \infty} f_k, \lim_{k \to \infty} \sup_{k \to \infty} f_k$$

Beweis. Für $s \in \mathbb{R}$ gilt:

$$\{\inf_k f_k \ge s\} = \bigcap_{k \in \mathbb{N}} \{f_k \ge s\} \in \mathcal{A}, \text{ denn nach Lemma I.14 ist } \{f_k \ge s\} \in \mathcal{A}$$

$$\{\sup_k f_k \le s\} = \bigcap_{k \in \mathbb{N}} \{f_k \le s\} \in \mathcal{A}$$

$$\text{Lemma I.14}, \text{ a.c. } f_k = 1.44$$

 $\stackrel{\text{Lemma I.14}}{\Longrightarrow}$ inf f_k , sup f_k sind \mathcal{A} -messbar

 $\liminf_{k\to\infty} f_k = \sup_{k\in\mathbb{N}} (\inf_{l\geq k} f_l) \text{ ist } \mathcal{A}\text{-messbar.}$

 $\limsup_{k \to \infty} f_k = \inf_{k \in \mathbb{N}} (\sup_{l \ge k} f_l) \text{ ist } \mathcal{A}\text{-messbar.}$

Notation:

Seien $D \in \mathcal{A}$ und $f: D \to \overline{\mathbb{R}}$, dann sind $f^{\pm}: D \to [0, \infty]$ definiert durch: $f^+ := max(f,0) \ge 0$ und $f^- := max(-f,0) = -min(f,0) \ge 0$ $\implies f = f^+ - f^-, |f| = f^+ + f^-$

Satz I.17

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}, f, g : D \to \mathbb{R}$ \mathcal{A} -messbar, $\alpha \in \mathbb{R}$. Dann sind die Funktionen

$$f+g, \ \alpha f, \ f^{\pm}, \ max(f,g), \ min(f,g), \ |f|, \ fg, \ rac{f}{g}$$

auf ihren Definitionsbereichen, die in \mathcal{A} liegen \mathcal{A} -messbar.

Beweis.

1. $f, g: D \to \mathbb{R}$

$$- \{f + g < t\} = \bigcup_{\substack{r,s \in \mathbb{Q} \\ r + s < t}} \{f < r\} \cap \{g < s\} \in \mathcal{A}$$

$$\{-f < t\} = \{f > -t\} \in \mathcal{A}$$

$$\Longrightarrow f + g, -f\mathcal{A}\text{-messbar. Ebenso } \alpha f \text{ für } \alpha \in \mathbb{R}$$

- Für $\mathcal{C} \in C^{\infty}(\mathbb{R})$ ist $\mathcal{C} \circ f$ messbar, denn für $\mathcal{U} \subseteq \mathbb{R}$ offen ist $\mathcal{C}^{-1}(\mathcal{U})$ offen und damit $(\mathcal{C} \circ f)^{-1}(\mathcal{U}) = f^{-1}(\mathcal{C}^{-1}(\mathcal{U})) \in \mathcal{A}$ $\implies f^{\pm} \text{ sind } \mathcal{A}\text{-messbar (wähle } \mathcal{C}(s)) = max(\pm s, 0))$ $\Rightarrow |f| = f^{+} + f^{-},$ $max(f,g) = \frac{1}{2}(f+g+|f-g|) \text{ und}$ $min(f,g) = \frac{1}{2}(f+g-|f-g|) \text{ sind } \mathcal{A}\text{-messbar}$

$$min(f,g) = \frac{1}{2}(f+g-|f-g|)$$
 sind \mathcal{A} -messbar

$$-f^2 = \mathcal{C} \circ f$$
 mit $\mathcal{C}(s) = s^2$ und
$$fg = \frac{1}{4}((f+g)^2 - (f-g)^2) \mathcal{A}\text{-messbar}$$

$$-\frac{1}{g}$$
 ist A -messbar, denn:

$$\left\{\frac{1}{g} < s\right\} = \begin{cases} \left\{\frac{1}{s} < g < 0\right\} & , s < 0\\ \left\{g < 0\right\} & s = 0\\ \left\{g < 0\right\} \cup \left\{g > \frac{1}{2}\right\} & s > 0 \end{cases}$$

2. f, g beliebig

Betrachte
$$f_k(x) = \begin{cases} k & , f(x) \ge k \\ -k & , f(x) \le -k \in \mathbb{R} \\ f(x) & , \text{ sonst} \end{cases}$$

Analog $g_k(x)$. f_k, g_k sind \mathcal{A} -messbar $\forall k$

Punktweise gilt: $f_k(x) \to f(x), g_k(x) \to g(x)$

Ebenso: $f_k + g_k \to f + g, \alpha f_k \to \alpha f, ..., f_k g_k \to f g$ punktweise.

Der Allgemeine Fall folgt aus 1. und Satz I.16.

Notation:

Sei (X, \mathcal{A}, μ) Maßraum. Man sagt, die Aussage A[x] ist wahr für μ -fast alle $x \in M \in \mathcal{A}$ oder μ -fast überall auf M, falls es eine μ -Nullmenge N gibt mit

$$\{x \in M : A[x] \text{ ist falsch}\} \subseteq N$$

Dabei wird nicht verlangt, dass $\{x \in M : A[x] \text{ ist falsch}\}$ selbst zu \mathcal{A} gehört. Zum Beispiel bedeutet für Funktionen $f,g:X \to \overline{\mathbb{R}}$ die Aussage " $f(x) \leq g(x)$ für μ -fast alle $x \in X$ ", dass es eine Nullmenge N gibt, so dass $\forall x \in X \setminus N$ gilt: $f(x) \leq g(x)$. Eine Funktion h ist " μ -fast überall auf X definiert", wenn h auf $D \in \mathcal{A}$ definiert ist und $\mu(X \setminus D) = 0$.

Bsp.: ("Konvergenz μ -fast überall")

Eine Folge von Funktionen $f_k: D \to \overline{\mathbb{R}}$ konvergiert punktweise μ -fast überall gegen $f: D \to \overline{\mathbb{R}}$, wenn es eine μ -Nullmenge N gibt, so dass $\forall x \in D \setminus N$ gilt:

$$\lim_{k \to \infty} f_k(x) = f(x)$$

Ziel:

Messbarkeit für Funktionen, die nur μ -fast überall definiert sind.

Def. I.18

 (X, \mathcal{A}, μ) Maßraum. Eine auf $D \in \mathcal{A}$ definierte Funktion $f : D \to \overline{\mathbb{R}}$ heißt μ -messbar (auf X), wenn $\mu(X \setminus D) = 0$ und $f \mathcal{A}|_{\mathcal{D}}$ -messbar ist. $(\mathcal{A}|_{\mathcal{D}} := \{A \cap D | A \in \mathcal{A}\}$, siehe Blatt 1)

Bem.:

- 1. Unterscheiden zwischen A-messbaren Funktionen (auf X), die <u>überall</u> auf X definiert sind, und μ -messbaren Funktionen (auf X), die in der Regel nur μ -fast <u>überall</u> definiert sind.
- 2. Analog zu \mathcal{A} -Messbarkeit verwenden wir μ -Messbarkeit auf für Funktionen, die nur auf Teilmengen definiert sind:

Sei (X, \mathcal{A}, μ) Maßraum, $D \in \mathcal{A}$. $f : E \to \mathbb{R}$ heißt μ -messbar (auf D), wenn $E \subseteq D$ in \mathcal{A} liegt mit $\mu(D \setminus E) = 0$ und $f \mathcal{A}|_{E}$ -messbar.

- 3. " $f = g \mu$ -fast überall"ist eine Äquivalenzrelation auf der Menge aller Funktionen
- 4. Sei $D \in \mathcal{A}, f: D \to \mathbb{R}$ μ -messbar. Dann ex. eine \mathcal{A} -messbare Funktion $g: X \to \mathbb{R}$ mit f = g auf D, z.B.: $g = \begin{cases} f & \text{, auf } D \\ 0 & \text{, auf } X \setminus D \end{cases}$

Somit übertragen sich die Sätze I.16 und I.17 auf μ -messbare Funktionen.

Vorlesung 4 13.11.20

Lemma I.19

 (X, \mathcal{A}, μ) vollständiger Maßraum. f μ -messbar auf X. Dann ist auch jede Funktion \tilde{f} mit $\tilde{f} = f$ μ -fast überall μ -messbar.

 $\begin{array}{l} \textit{Beweis.} \text{ Sei } f \text{ auf } D \in \mathcal{A} \text{ definiert mit } \mu(X \setminus D) = 0 \text{ und sei } \tilde{f} \text{ auf } \tilde{D} \subseteq X \text{ definiert.} \\ \text{Vor.} \implies \exists \text{ Nullmenge } N \text{ mit } X \setminus N \subseteq \cap \tilde{D} \text{ und } \tilde{f}(x) = f(x) \ \forall x \in X \setminus N \\ \implies X \setminus \tilde{D} \subseteq N \\ \stackrel{\mu\text{-vollständig}}{\Longrightarrow} X \setminus \tilde{D} \in \mathcal{A} \implies \tilde{D} \in \mathcal{A}. \end{array}$

Weiter gilt:

$$\{x \in \tilde{D} | \tilde{f}(x) < s\} = \{x \in \tilde{D} \cap N | \ \tilde{f}(x) < s\} \cup \{x \in \tilde{D} \cap (X \setminus N) | \ \tilde{f}(x) < s\}$$

$$= \{x \in \tilde{D} \cap N | \ \tilde{f}(x) < s\} \cup \{x \in D \cap (X \setminus N) | \ f(x) < s\}$$

$$= \{x \in \tilde{D} \cap N | \ \tilde{f}(x) < s\} \cup \{x \in D | \ f(x) < s\} \setminus \{x \in D \cap N | \ f(x) < s\}$$

$$=: A \cup B$$
Do f u -messbar ist, folgt, dass $B \in A$

Da f μ -messbar ist, folgt, dass $B \in \mathcal{A}$ μ -vollständig $\implies A \in \mathcal{A} \implies \{x \in \tilde{D} | \tilde{f}(x) < s\} \in \mathcal{A} \ \forall s$

Weiter ist $\{x \in \tilde{D} | \ \tilde{f}(x) < s\} \subseteq \tilde{D} \implies \{x \in \tilde{D} | \ \tilde{f}(x) < s\} \in \mathcal{A}|_{\tilde{D}} \Leftrightarrow \tilde{f} \ \mu\text{-messbar}$

Satz I.20

 (X, \mathcal{A}, μ) vollständiger Maßraum und seien $f_k, k \in \mathbb{N}, \mu$ -messbar. Falls f_k punktweise μ -fast überall gegen f konvergiert, dann ist f auch μ -messbar.

Beweis. Sei f_k auf $D_k \in \mathcal{A}$ definiert. Dann sind alle f_k , $k \in \mathbb{N}$, auf $D := \bigcap_{k \in \mathbb{N}} D_k$ definiert und $X \setminus D$ ist μ -Nullmenge $E := \{x \in D | \lim_{k \to \infty} f_k(x) \neq f(x)\}$ und betrachte

$$\tilde{f}_k(x) = \begin{cases} f_k(x) &, \forall x \in D \setminus E \\ 0 &, \text{ sonst} \end{cases}, \ \tilde{f}(x) = \begin{cases} f(x) &, \forall x \in D \setminus E \\ 0 &, \text{ sonst} \end{cases}$$

Es gilt $\tilde{f} = \lim_{k \to \infty} \tilde{f}_k \stackrel{\text{Satz I.16}}{\Longrightarrow} \tilde{f}$ ist \mathcal{A} -messbar

Vor.: $(X \setminus D) \cup E$ ist μ -Nullmenge $\stackrel{\text{Lemma I.14}}{\Longrightarrow} f$ ist μ -messbar.

Satz I.21 (Egorov)

 (X, \mathcal{A}, μ) Maßraum, $D \in \mathcal{A}$ Menge mit $\mu(D) < \infty$ und f_n, f μ -messbare, μ -fast überall endliche Funktionen auf D mit $f_n \to f$ μ -fast überall. Dann existiert $\forall \epsilon > 0$ eine Menge $B \in \mathcal{A}$ mit $B \subseteq D$ und

- (i) $\mu(D \setminus B) < \epsilon$
- (ii) $f_n \to f$ gleichmäßig auf B

Beweis.
$$E := \{x \in D | f_n(x), f(x) \text{ sind endlich und } f_n(x) \to f(x) \}$$

Vor. $\Longrightarrow \exists \mu\text{-Nullmenge } N \text{ mit } D \setminus E \subseteq N$
O.B. $E = D$ (sonst erstetze D durch $D \setminus N$)
Sei $C_{i,j} := \bigcup_{n=j}^{\infty} \{x \in D | |f_n(x) - f(x)| > 2^{-i} \}, i, j \in \mathbb{N}$
Satz I.17 $\Longrightarrow C_{i,j} \in \mathcal{A} \text{ und } C_{i,j+1} \subseteq C_{i,j} \ \forall i,j \in \mathbb{N}$
 $\mu(D) < \infty \stackrel{\text{Satz I.7}}{\Longrightarrow} \lim_{j \to \infty} \mu(C_{i,j}) = \mu(\bigcap_{j \in \mathbb{N}} C_{i,j}) = 0, \text{ denn } f_n \to f$
Sei $\epsilon > 0$ gegeben
 $\Longrightarrow \forall i \in \mathbb{N} \ \exists N(i) \in \mathbb{N} \text{ mit } \mu(C_{i,N(i)}) < \epsilon * 2^{-i}$
Setze $B := D \setminus \bigcup_{i \in \mathbb{N}} C_{i,N(i)} \in \mathcal{A} \text{ und } \mu(D \setminus B) = \mu(\bigcup_{i \in \mathbb{N}} C_{i,N(i)}) \stackrel{\text{Satz I.7}}{\le} \sum_{i \in \mathbb{N}} \mu(C_{i,N(i)}) < \epsilon$
 $\forall i \in \mathbb{N} \ \forall x \in B \ \forall n > N(i) \text{ gilt:}$

$$|f_n(x) - f(x)| \le 2^{-i} \implies f_n \to f \text{ auf } B$$

II Äußere Maße

Def. II.1

Sei X eine Menge. Eine Funktion $\mu: \mathcal{P}(X) \to [0, \infty]$ mit $\mu(\emptyset) = 0$ heißt **äußeres Maß** auf X, falls gilt:

$$A \subseteq \bigcup_{i \in \mathbb{N}} A_i \implies \mu(A) \le \sum_{i \in \mathbb{N}} \mu(A_i)$$

Bem.:

- 1. Die Begriffe σ -additiv, σ -subadditiv, σ -endlich, endlich, monoton sowie Nullmenge und μ -fast überall werden wie für Maße definiert. (Man ersetze überall \mathcal{A} durch $\mathcal{P}(X)$)
- 2. Ein äußeres Maß ist monoton, σ -subadditiv und insbesondere endlich subadditiv (d.h. $A \subseteq \bigcup_{i=1}^n A_i \implies \mu(A) \le \sum_{i=1}^n \mu(A_i)$)

Def. II.2

Sei μ äußeres Maß auf X. Die Menge $A \subseteq X$ heißt μ -messbar, falls $\forall S \subseteq X$ gilt:

$$\mu(S) \ge \mu(S \cap A) + \mu(S \setminus A).$$

Das System aller μ -messbaren Mengen wird mit $\mathcal{M}(\mu)$ bezeichnet.

Bem.

Da $S = (S \cap A) \cup (S \setminus A)$ folgt aus Def. II.1:

$$\mu(S) < \mu(S \cap A) + \mu(S \setminus A)$$

d.h.: A messbar $\Leftrightarrow \mu(S \cap A) + \mu(S \setminus A) \ \forall S \subseteq X$

Bsp.:

Jedes auf $\mathcal{P}(X)$ definierte Maß ist ein äußeres Maß (Satz I.7), also sind das DiracMaß und das Zählmaß äußere Maße.

Satz II.3

Sei $\mathcal Q$ ein System von Teilmengen einer Menge X, welches die leere Menge enthält, und sei $\lambda:\mathcal Q\to[0,\infty]$ eine Mengenfunktion auf $\mathcal Q$ mit $\lambda(\emptyset)=0$. Definiere die Mengenfunktion $\mu(E):=\inf\{\sum_{i\in\mathbb N}\lambda(P_i)|\ P_i\in\mathcal Q, E\subseteq\bigcup_{i\in\mathbb N}P_i\}.$

Dann ist μ ein äußeres Maß.

 $(\inf \emptyset = \infty)$

Beweis. Mit $\emptyset \subseteq \emptyset \in \mathcal{Q}$ folgt $\mu(\emptyset) = 0$. Sei $E \subseteq \bigcup_{i \in \mathbb{N}} E_i$ mit $E, E_i \subseteq X$ und $\mu(E_i) < \infty$.

$$\underline{\text{z.z.:}} \ \mu(E) \leq \sum_{i \in \mathbb{N}} \mu(E_i)$$

Wähle Überdeckungen $E_i \subseteq \bigcup_{j \in \mathbb{N}} P_{i,j}$ mit $P_{i,j} \in \mathcal{Q}$, so dass zu $\epsilon > 0$ gegeben gilt:

$$\sum_{j\in\mathbb{N}} \lambda(P_{i,j}) < \mu(E_i) + 2^{-i} * \epsilon , \forall i \in \mathbb{N}$$

$$\implies E \subseteq \bigcup_{i,j \in \mathbb{N}} P_{i,j} \text{ und damit } \mu(E) \le \sum_{i,j \in \mathbb{N}} \lambda(P_{i,j}) \le \sum_{i \in \mathbb{N}} (\mu(E_i) + 2^{-i} * \epsilon) = \sum_{i \in \mathbb{N}} \mu(E_i) + \epsilon$$

Mit $\epsilon > 0$ folgt $\mu(E) \le \sum_{i \in \mathbb{N}} \mu(E_i)$

Satz II.4

Sei $\mu: \mathcal{P}(X) \to [0,\infty]$ äußeres Maß auf X. Für M $\subseteq X$ gegeben erhält man durch $\mu \llcorner M: \mathcal{P}(X) \to [0,\infty], \mu \llcorner M(A) := \mu(A \cap M)$ ein äußeres Maß $\mu \llcorner M$ auf X, welches wir **Einschränkung** von μ auf M nennen. Es gilt:

 $A \mu$ -messbar $\implies A \mu \sqcup M$ -messbar

Beweis. Aus der Definition folgt sofort, dass $\mu \sqcup M$ ein äußeres Maß ist. Weiter gilt für $A \subseteq X$ μ -messbar und $S \subseteq X$ beliebig:

$$\begin{split} \mu \llcorner M(S) &= \mu(S \cap M) \\ &\geq \mu((S \cap M) \cap A) + \mu((S \cap M) \setminus A) \\ &= \mu((S \cap A) \cap M) + \mu((S \setminus A) \cap M) \\ &= \mu \llcorner M(S \cap A) + \mu \llcorner M(S \setminus A) \end{split}$$

⇒ Behauptung

Satz II.5

 μ äußeres Maß auf X. Dann gilt:

$$N \text{ μ-Nullmenge} \implies N \text{ μ-messbar}$$

$$N_k, k \in \mathbb{N}, \mu\text{-Nullmengen} \implies \bigcup_{k \in \mathbb{N}} N_k \text{ μ-Nullmenge}$$

Beweis. Sei $\mu(N)=0$. Für $S\subseteq X$ folgt aus Monotonie: $\mu(S\cap N)\leq \mu(N)=0,\ \mu(S)\geq \mu(S\setminus N)=\mu(S\cap N)+\mu(S\setminus N)\implies N$ μ -messbar Zweite Behauptung folgt aus σ -Subadditivität.

Bem.:

 $\mathcal{M}(\mu)$ enthält alle Nullmengen $N\subseteq X$ und damit auch deren Komplemente (siehe Satz II.7). Es kann sein, dass keine anderen Mengen μ -messbar sind.

Bsp.:

Auf X bel. definiere: $\beta(A) = \begin{cases} 0 & , A = \emptyset \\ 1 & , \text{ sonst} \end{cases} \beta$ ist äußeres Maß.

Es sind nur \emptyset und X β -messbar, denn für X = S folgt aus der Annahme, dass A β -messbar ist: $1 \ge \beta(A) + \beta(X \setminus A)$

Vorlesung 5 16.11.20

Lemma II.6

Seien $A_i \in \mathcal{M}(\mu), i = 1, ..., k$, paarweiße disjunkt und μ äußeres Maß. Dann gilt $\forall S \subseteq X$:

$$\mu(S \cap \bigcup_{i=1}^{k} A_i) = \sum_{i=1}^{k} \mu(S \cap A_i)$$

Beweis. $\underline{k} = 1$: trivial $k \ge 2$: $A_k \mu$ -messbar

$$\mu(S \cap \bigcup_{i=1}^{k} A_i) = \mu((S \cap \bigcup_{i=1}^{k} A_i) \cap A_k) + \mu((S \cap \bigcup_{i=1}^{k} A_i) \setminus A_k)$$

$$= \mu(S \cap A_k) + \mu(S \cap \bigcup_{i=1}^{k} A_k)$$

$$\stackrel{\text{IV}}{=} \sum_{i=1}^{k} \mu(S \cap A_i)$$

Satz II.7

Sei $\mu : \mathcal{P}(X) \to [0, \infty]$ ein äußeres Maß. Dann ist $\mathcal{M}(\mu)$ eine σ -Algebra und μ ist ein vollständiges Maß auf $\mathcal{M}(\mu)$.

Beweis. Notation: Schreibe \mathcal{M} statt $\mathcal{M}(\mu)$ Es gilt:

$$-x \in \mathcal{M}$$
, denn: $\forall S \subseteq X$ ist:
 $\mu(S \cap X) + \mu(S \setminus X) = \mu(S) + \mu(\emptyset) = \mu(S)$

- Sei
$$A \in \mathcal{M} \implies X \setminus A \in \mathcal{M}$$
, denn $\forall S \subset X$ gilt: $\mu(S \cap (X \setminus A)) + \mu(S \setminus (X \setminus A)) = \mu(S \setminus A) + \mu(S \cap A) = \mu(S)$

Als nächstes zeigen wir:

 $A, B \in \mathcal{M} \implies A \cap B \in \mathcal{M} \ \forall S \subseteq X$ gilt:

$$\mu(S) = \mu(S \cap A) + \mu(S \setminus A)$$

$$\mu(S \cap A) = \mu(S \cap A \cap B) + \mu((S \cap A) \setminus B)$$

$$\mu(S \setminus (A \cap B)) = \mu((S \setminus (A \cap B)) \cap A) + \mu((S \setminus (A \cap B)) \setminus A)$$

$$= \mu((S \cap A) \setminus B) + \mu(S \setminus A)$$

$$\implies \mu(S) = \mu(S \cap (A \cap B)) + \mu(S \setminus (A \cap B))$$

$$\implies A \cup B \in \mathcal{M}, \text{ denn:}$$

$$A \cup B = X \setminus ((X \setminus A) \cap (X \setminus B))$$

Per Induktion:

 \mathcal{M} ist abgeschlossen unter endlichen Durchschnitten und Vereinigungen.

<u>Jetzt:</u> μ ist σ -additiv auf \mathcal{M} .

Seien $A_j, j \in \mathbb{N}$, paarweiße disjunkt mit $A_j \in \mathcal{M} \ \forall j \in \mathbb{N}$

Wähle $S = A_1 \cup A_2$ und benutze $A_1 \in \mathcal{M}$

$$\implies \mu(S) = \mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) \ \ (= \mu(S \cap A_1) + \mu(S \setminus A_1))$$

Induktion: Dasselbe gilt für endliche disjunkte Vereinigungen.

$$\sum_{j \in \mathbb{N}} \mu(A_j) = \lim_{k \to \infty} \sum_{j=1}^k \mu(A_j) = \lim_{k \to \infty} \mu(\bigcup_{j=1}^k A_j)$$

$$\leq \mu(\bigcup_{j \in \mathbb{N}} A_j) \stackrel{\sigma\text{-Subadd.}}{\leq} \sum_{j=1}^k \mu(A_j)$$

$$\implies \mu(\bigcup_{j\in\mathbb{N}} A_j) = \sum_{j\in\mathbb{N}} \mu(A_j) \implies \text{Behauptung}$$

Als letztes: \mathcal{M} ist abgeschlossen unter abzählbaren Vereinigungen Seien $A_j \in \mathcal{M}, j \in \mathbb{N}$. O.B. seien A_j paarweise disjunkt, sonst betrachte

$$\begin{split} \tilde{A}_i &:= A_i \setminus (A_1 \cup \ldots \cup A_{i-1}) \\ \text{Für } S \subseteq X \text{ folgt mit } \bigcup_{i=1}^k A_i \in \mathcal{M} : \end{split}$$

$$\mu(S) = \mu(S \cap \bigcup_{i=1}^{k} A_i) + \mu(S \setminus \bigcup_{i=1}^{k} A_i)$$

$$\stackrel{\text{Lemma II.6}}{\geq} \sum_{i=1}^{k} \mu(S \cap A_i) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i) \quad \forall k \in \mathbb{N}$$

Lasse $k \to \infty$

$$\implies \mu(S) \ge \sum_{i \in \mathbb{N}} \mu(S \cap A_i) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$\stackrel{\sigma\text{-Subadd.}}{\ge} \mu(\bigcup_{i \in \mathbb{N}} (S \cap A_i)) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$= \mu(S \cap (\bigcup_{i \in \mathbb{N}} A_i)) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$\implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{M}$$

Vollständigkeit von μ : siehe Lemma II.5

Lemma II.8

 μ äußeres Maß, $A_i \in \mathcal{M}(\mu), i \in \mathbb{N}$.

Dann gelten:

i) Aus
$$A_1 \subseteq ... \subseteq A_i \subseteq A_{i+1} \subseteq ...$$
 folgt $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

ii) Aus
$$A_1 \supseteq ... \supseteq A_i \supseteq A_{i+1} \supseteq ...$$
 mit $\mu(A_1) < \infty$ folgt $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

Beweis. Folgt aus Satz I.7 und Satz II.7

Def. II.9

Ein Mengensystem $\mathcal{A} \subseteq \mathcal{P}(X)$ heißt \bigcup -stabil (bzw. \bigcap -stabil, \-stabil), wenn $A \cup B \in \mathcal{A}$ (bzw. $A \cap B \in \mathcal{A}$, $A \setminus B \in \mathcal{A}$) $\forall A, B \in \mathcal{A}$ gilt.

Bem.:

J-stabil impliziert Stabilität bzgl. endlicher Vereinigung. Ebenso ∩-stabil.

Def. II.10

Ein Mengensystem $\mathcal{R} \subset \mathcal{P}(X)$ heißt **Ring** über X, falls:

- i) $\emptyset \in \mathcal{R}$
- ii) $A, B \in \mathcal{R} \implies A \setminus B \in \mathcal{R}$
- iii) $A, B \in \mathcal{R} \implies A \cup B \in \mathcal{R}$

 \mathcal{R} heißt **Algebra**, falls zusätzlich $X \in \mathcal{R}$.

Bsp.:

- i) Für $A \subset X$ ist $\{\emptyset, A\}$ ein Ring, aber für $A \neq X$ keine Algebra.
- ii) System aller endlichen Teilmengen einer bel. Menge ist ein Ring.
- iii) Ebenso System aller höchstens abzählbaren Teilmengen.

Bem.:

Für $A, B \in \mathcal{R}$ gilt: $A \cap B = A \setminus (A \setminus B) \in \mathcal{R}$ Ringe sind \bigcup -stabil, \bigcap -stabil, \bigvee -stabil

Def. II.11 (Im Aufschrieb II.10)

Sei $\mathcal{R} \subseteq \mathcal{P}(X)$ Ring. Eine Funktion $\lambda : \mathcal{R} \to [0, \infty]$ heißt **Prämaß** auf \mathcal{R} , falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{R}, i \in \mathbb{N}$, paarweiße disjunkt mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt:

$$\lambda(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\lambda(A_i)$$

Bem.:

 σ -subadditiv, subadditiv, σ -endlich, endlich, monoton, Nullmenge und fast-überall werden wie für Maße definiert.

Bsp.:

- i) \mathcal{R} Ring über X. $\lambda(A) = \begin{cases} 0 & H = \emptyset \\ \infty & \text{sonst} \end{cases}$
- ii) \mathcal{R} sei Ring der endlichen Teilmengen einer beliebigen Menge X und $\lambda = card|_{\mathcal{R}}$ ist Prämaß
- iii) Alle Maße sind Prämaße. Inbesondere äußere Maße eingeschränkt auf die messbaren Mengen.

Def. II.12 (Im Aufschrieb II.11)

 λ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Ein äußeres Maß μ auf X (bzw. ein Maß auf \mathcal{A}) heißt **Fortsetzung** von λ , falls gilt:

i)
$$\mu|_{\mathcal{R}} = \lambda$$
, d.h. $\mu(A) = \lambda(A) \ \forall A \in \mathcal{R}$

ii) $\mathcal{R} \subseteq \mathcal{M}(\mu)$ (bzw. $\mathcal{R} \subset \mathcal{A}$), d.h. alle $A \in \mathcal{R}$ sind μ -messbar

Satz II.13 (Caratheodory-Fortsetzung — Im Aufschrieb II.12)

 $\lambda: \mathcal{R} \to [0, \infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Sei $\mu: \mathcal{P}(X) \to [0, \infty]$ das in Satz II.3 aus \mathcal{R} konstruierte äußere Maß, d.h. $\forall E \subseteq X$:

$$\mu(E) := \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{R}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ .

 μ heißt induziertes äußeres Maß oder Caratheodory-Fortsetzung von λ .

Beweis.

i) $\mu(A) = \lambda(A) \ \forall A \in \mathcal{R}$

Wir haben $\mu(A) \leq \lambda(A)$ aus Def. mit $A_1 = A, A_2 = ... = \emptyset$

Für $\lambda(A) \leq \mu(A)$ reicht es zz, dass:

$$A \subseteq \bigcup_{i \in \mathbb{N}} A_i \text{ mit } A_i \in \mathcal{R} \implies \lambda(A) \le \sum_{i \in \mathbb{N}} \lambda(A_i)$$

Betrachte paarweise disjunkte Mengen $B_i = (A_i \setminus \bigcup_{j=1}^{i-1} A_j) \cap A \in \mathcal{R}$

$$\implies \lambda(A) = \lambda(\bigcup_{i \in \mathbb{N}} B_i) = \sum_{i \in \mathbb{N}} \lambda(B_i) \le \sum_{i \in \mathbb{N}} \lambda(A_i)$$

ii) Jedes $A \in \mathcal{R}$ ist μ -messbar.

Sei $A \in \mathcal{R}, S \subseteq X$ bel. mit $\mu(S) < \infty$. Zu $\epsilon > 0$ wähle $A_i \in \mathcal{R}$, sodass $S \subseteq \bigcup_{i \in \mathbb{N}} (A_i \cap A)$ und $S \setminus A \subseteq \bigcup_{i \in \mathbb{N}} (A_i \setminus A)$

$$\implies \mu(S \cap A) + \mu(S \setminus A) \le \sum_{i \in \mathbb{N}} \lambda(A_i \cap A) + \sum_{i \in \mathbb{N}} \lambda(A_i \setminus A)$$
$$= \sum_{i \in \mathbb{N}} \lambda(A_i) \le \mu(S) + \epsilon$$

Lasse $s \downarrow 0 \implies A \in \mathcal{M}(\mu)$

Für $\mu(S) = \infty$ ist das trivial.

Lemma II.14 (Im Aufschrieb II.13)

 μ sei Caratheodory-Fortsetzung des Prämaßes $\lambda: \mathcal{R} \to [0, \infty]$ auf dem Ring \mathcal{R} über X. Sei $\tilde{\mu}$ ein Maß auf $\sigma(\mathcal{R})$ mit $\tilde{\mu} = \mu$ auf \mathcal{R} , dann gilt $\forall E \in \sigma(\mathcal{R})$: $\tilde{\mu}(E) \leq \mu(E)$

Beweis.
$$\forall E \in \sigma(\mathcal{R}) : E \subseteq \bigcup_{i \in \mathbb{N}} P_i \text{ mit } P_i \in \mathcal{R}$$

$$\implies \tilde{\mu}(E) \le \sum_{i \in \mathbb{N}} \tilde{\mu}(P_i) = \sum_{i \in \mathbb{N}} \lambda(P_i)$$

Bilde Infimum über alle solche Überdeckungen $\implies \tilde{\mu}(E) \leq \mu(E)$

> Vorlesung 6 20.11.20

Satz II.15 (Im Aufschrieb II.14)

Sei $\lambda: \mathcal{R} \to [0, \infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Dann ex. ein Maß μ auf $\sigma(\mathcal{R})$ mit $\mu = \lambda$ auf \mathcal{R} . Diese Fortsetzung ist eindeutig, falls λ σ -endlich ist.

Beweis. Existenz folgt aus Satz II.13 und Satz II.7 $(\sigma(\mathcal{R}) \subseteq \mathcal{M}(\mu))$. Sei $\tilde{\mu}$ ein Maß auf $\sigma(\mathcal{R})$ mit $\tilde{\mu} = \lambda$ auf \mathcal{R} . Für $A_i \in \mathcal{R}$ und $\bigcup_{i=1}^n A_i = A \in \sigma(\mathcal{R})$ folgt aus Satz I.7.

$$\tilde{\mu}(A) = \lim_{n \to \infty} \tilde{\mu}(\bigcup_{i=1}^{n} A_i) = \lim_{\substack{n \to \infty \\ \infty}} \mu(\bigcup_{i=1}^{n} A_i) = \mu(A). \text{ Für } E \in \sigma(\mathcal{R}) \text{ mit } \mu(E) < \infty \text{ und } \epsilon > 0$$

ex. Mengen
$$A_i \in \mathcal{R}, A = \bigcup_{i=1}^{\infty} A_i$$
 mit $E \subseteq A$ und $\mu(A) \le \mu(E) + \epsilon \implies \mu(A \setminus B) \le \epsilon$.

Aus $\mu(A) = \tilde{\mu}(A)$ und Lemma II.14 (i.A. II.13) folgt

$$\mu(E) \le \mu(A) = \tilde{\mu}(A) = \tilde{\mu}(E) + \tilde{\mu}(A \setminus E) \le \tilde{\mu}(E) + \mu(A \setminus E) \le \tilde{\mu}(E) + \epsilon.$$

Lasse $\epsilon > 0$ und betrachte $\tilde{\mu}(E) \le \mu(E)$ (Lemma II.14 / i.A. II.13) $\implies \mu(E) = \tilde{\mu}(E)$. Sei nun λ σ -endlich. Dann ex. o.B.d.A. paarweise disjunkte $X_n \in \mathcal{R}$ mit $\mu(X_n) < \infty$

und
$$X = \bigcup_{n=1}^{\infty} X_n$$
. Für $E \in \sigma(\mathcal{R})$ bel. folgt:

$$\mu(E) = \sum_{n=1}^{\infty} \mu(E \cap X_n) = \sum_{n=1}^{\infty} \tilde{\mu}(E \cap X_n) = \tilde{\mu}(E) \implies \mu = \tilde{\mu} \text{ auf } \sigma(\mathcal{R}).$$

Satz II.16 (Regularität der Caratheodory-Fortsetzung — i.A. II.15)

Sei μ Caratheodory-Fortsetzung des Prämaßes $\lambda : \mathcal{R} \to [0, \infty]$ auf Ring \mathcal{R} über X. Dann ex. $\forall D \subseteq X \text{ ein } E \in \sigma(\mathcal{R}) \text{ mit } E \supseteq D \text{ und } \mu(E) = \mu(D).$ $(\mu \text{ ist "reguläres "äußeres Maß})$

Beweis.

$$\mu(D) = \infty \to \text{W\"ahle } E = X$$

 $\mu(D) \leq \infty$: Aus Def. von Caratheodory-Fortsetzung folgt $\forall n \in D \subseteq E^n = \bigcup_{i=1}^{\infty} A_i^n$ mit

$$A_i^n \in \mathcal{R} \text{ und } \sum_{i=1}^\infty \lambda(A_i^n) \leq \mu(D) + \tfrac{1}{n}. \text{ W\"{a}hle } E := \bigcap_{n=1}^\infty E^n \implies E \in \sigma(\mathcal{R}) \text{ mit } D \subseteq E \text{ und } E = 0$$

SS20/21Prof. Lamm

 $\forall n \in \mathbb{N} \text{ gilt:}$

$$\mu(D) \leq \mu(E) \leq \mu(E^n) \leq \sum_{i=1}^{\infty} \mu(A_i^n) = \sum_{i=1}^{\infty} \lambda(A_i^n) \leq \mu(D) + \frac{1}{n} < \infty. \ n \to \infty \implies \mu(E) = \mu(D).$$

Satz II.17 (i.A. II.16)

Sei λ ein σ -endliches Prämaß auf Ring \mathcal{R} über X und sei $\mu: \mathcal{P}(X) \to [0, \infty]$ die Caratheodory-Fortsetzung von λ . Dann ist $\mu|_{\mathcal{M}(\mu)}$ die Vervollständigung von $\mu|_{\sigma(\mathcal{R})}$ und $\mathcal{M}(\mu)$ ist die vervollständigte σ -Algebra von $\overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}}$

D.h. $\overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}} = \mathcal{M}(\mu)$. Insbesondere ex. genau eine Fortsetzung von $\lambda : \mathcal{R} \to [0, \infty]$ zu einem vollständigen Maß auf $\mathcal{M}(\mu)$.

Beweis. Satz II.7 $\Longrightarrow \mu|_{\mathcal{M}(\mu)}$ ist vollständiges Maß. Satz I.10 $\Longrightarrow \sigma(\mathcal{R})_{\mu|_{\sigma(\mathcal{R})}} \subseteq \mathcal{M}(\mu)$. Sei $D \in \mathcal{M}(\mu)$ mit $\mu(D) < \infty$. Wähle $E \in \sigma(\mathcal{R})$ mit $D \subseteq E$.

Aus Satz II.16 (i.A. II.15) $\implies \mu(D) = \mu(E) = \mu(E \cap D) + \mu(E \setminus D) = \mu(D) + \mu(E \setminus D)$ $(D)) \implies \mu(E \setminus D) = 0.$

 $\lambda \text{ σ-endlich} \implies \exists X_n \in \mathcal{R} \text{ mit } X = \bigcup_{n=1}^{\infty} X_n \text{ und } \mu(X_n) < \infty \ \forall n \in \mathbb{N}.$ Für $D \in \mathcal{M}(\mu)$ bel. setze $D_n := \bigcup_{k=1}^n D \cap X_k \implies D_n \subseteq D_{n+1} \ \forall n \in \mathbb{N} \text{ mit } \mu(D_n) < \infty,$ $D = \bigcup_{n=1}^{\infty} D_n.$

Wie bewiesen ex. $E_n \supset D_n$ mit $E_n \in \sigma(\mathcal{R})$ und $\mu(E_n \setminus D_n) = 0$. Für $E = \bigcup_{n=1}^{\infty} E_n \supset D$

folgt $E \in \sigma(\mathcal{R})$ mit $\mu(E \setminus D) \leq \sum_{n=1}^{\infty} \mu(E_n \setminus D_n) = 0$. Satz II.16 (i.A. II.15) $\Longrightarrow \exists N \in \sigma(\mathcal{R}) \text{ mit } N \supset (E \setminus D) \text{ und } \mu(E \setminus D) = \mu(N) = 0 \Longrightarrow D = (E \setminus N) \cup (D \cap N) \Longrightarrow \mathcal{M}(\mu) = \overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}} \Longrightarrow \text{Vervollständigung von } \mu|_{\sigma(\mathcal{R})} \text{ ist}$ $\mu|_{\mathcal{M}(\mu)}$.

Eindeutigkeit folgt jetzt daraus und aus Satz II.15 (i.A. II.14).

Lemma II.18 (i.A. II.17)

 $\lambda:\mathcal{R}\to [0,\infty]$ σ -endliches Prämaß auf Ring $\mathcal{R}\subseteq\mathcal{P}(X)$ mit Caratheodory-Fortsetzung $\mu.$ $D\subseteq X$ ist genau dann μ -messbar, wenn eine der folgenden Bedingungen gilt:

- i) $\exists E \in \sigma(\mathcal{R}) \text{ mit } E \supseteq D \text{ und } \mu(E \setminus D) = 0$
- ii) $\exists C \in \sigma(\mathcal{R})$ mit $C \subseteq D$ und $\mu(D \setminus C) = 0$

Def. II.19

Ein Mengensystem $\mathcal{Q} \subseteq \mathcal{P}(X)$ heißt **Halbring** über X, falls:

- i) $\emptyset \in \mathcal{Q}$
- ii) $P, Q \in \mathcal{Q} \implies P \cap Q \in \mathcal{Q}$
- iii) $P,Q\in\mathcal{Q}\implies P\setminus Q=\bigcup_{i=1}^kP_i$ mit endlich vielen paarweise disjunkten $P_i\in\mathcal{Q}$

Bsp.:

X beliebige Menge. $\mathcal{Q} := \{\emptyset\} \cup \{\{a\} \mid a \in X\}$

Bem.:

 $I \subseteq \mathbb{R}$ heißt Intervall, wenn es $a, b \in \mathbb{R}$ mit $a \leq b$ gibt, sodass: $(a, b) \subseteq I \subseteq [a, b]$. Das System aller Intervalle bezeichnen wir mit \mathcal{I} .

Ein achsenparalleler n-dim. Quader (kurz: Quader) ist Produkt $Q = I_1 \times ... \times I_n \subseteq \mathbb{R}^n$ von Intervallen. Das System aller Quader wird mit \mathcal{Q}^n bezeichnet.

Satz II.20 (i.A. II.19)

 \mathcal{I} ist ein Halbring.

Beweis. $\varnothing \in \mathcal{I}$, denn $\varnothing = (a,a)$ für $a \in \mathbb{R}$ bel. Seien $I,J \subset \mathbb{R}$ Intervalle mit Grenzen $a \leq b$ bzw. $c \leq d$. Für $I \cap J \neq \varnothing$ ist $max(a,c) \leq min(b,d)$ und $(max(a,c), min(b,d)) \subset I \cap J \subset [max(a,c), min(b,d)] \implies I \cap J \in \mathcal{I}$.

Wegen $I \setminus J = I \setminus (I \cap J)$ können wir o.B. $J \subset I$ annehmen.

Setze $I' = x \in I \setminus J : x \le c$, $II' = x \in I \setminus J : x \ge d$.

Falls $I' \cap II' \neq \emptyset \implies c = d \in I \setminus J \implies J = \emptyset \implies I \setminus J = I$.

Andernfalls $(I' \cap II' = \emptyset)$ gilt: $I \setminus J = I' \cup II'$ wobei $(a, c) \subset I' \subset [a, c], (d, b) \subset II' \subset [d, d].$

Satz II.21 (i.A. II.20)

Für i=1,...,n sei \mathcal{Q}_i Halbring über X_i . Dann ist $\mathcal{Q}:=\{P_1\times...\times P_n\mid P_i\in\mathcal{Q}_i\}$ ein Halbring über $X_1\times...\times X_n$.

Beweis. Nur für n = 2 (Rest per Induktion)

1 Es ist $\emptyset = \emptyset \times \emptyset \in \mathcal{Q}$

2 Für
$$P = I_1 \times I_2$$
 und $Q = J_1 \times J_2$ gilt: $P \cup Q = (I_1 \cup J_1) \times (I_2 \cup J_2) \in \mathcal{Q}$

 $3 P \setminus Q = ((I_1 \cup J_1) \times I_2 \setminus J_2) \cup ((I_1 \setminus J_1) \times I_2)$

Sowohl $I_2 \setminus J_2$ als auch $I_1 \setminus J_1$ sind als disjunkte Verbindungen darstellbar, da \mathcal{Q}_1 , \mathcal{Q}_2 Halbringe sind. $\Longrightarrow P \setminus Q \in \mathcal{Q}$.

Satz II.22 (i.A. II.21)

 Q^n ist ein Halbring.

Vorlesung 7 23.11.20

Satz II.23 (i.A. II.22)

 \mathcal{Q} Halbring über X und \mathcal{F} sei das System aller endlichen Vereinigungen $F = \bigcup_{i=1}^{\kappa} P_i$ von Mengen $P_I \in \mathcal{Q}$. Dann ist \mathcal{F} der von \mathcal{Q} erzeugte Ring.

Beweis. Jeder Ring \mathcal{R} mit $\mathcal{Q} \supset \mathcal{R}$ enthält $\mathcal{F} \Longrightarrow$ Reicht zu zeigen: \mathcal{F} ist ein Ring. Es gilt: $\emptyset \in \mathcal{F}$

$$E, F \in \mathcal{F}. \text{ Sei } E = \bigcup_{i=1}^{k} P_i, F = \bigcup_{j=1}^{m} Q_j, P_1, Q_i \in \mathcal{Q}$$

$$\Longrightarrow E \setminus F = (\bigcup_{i=1}^{k} P_i) \setminus (\bigcup_{j=1}^{m} Q_j) = \bigcup_{i=1}^{k} (P_i \setminus (\bigcup_{j=1}^{m} Q_j)) = \bigcup_{i=1}^{k} (\bigcap_{j=1}^{m} P_i \setminus Q_j)$$

$$E, F \in \mathcal{F} \Longrightarrow E \cup F \in \mathcal{F}.$$

$$z.z. \mathcal{F} \text{ ist } \cap \text{-stabil}$$

$$E \cap F = (\bigcup_{j=1}^{m} kP_i) \cap (\bigcup_{j=1}^{m} Q_j) = \bigcup_{i=1}^{m} k \bigcup_{j=1}^{m} (P_i \cap Q_j) \in \mathcal{F}.$$

Bsp.:

- 1. Q^n alle Quader $Q \subseteq \mathbb{R}^n$ \Longrightarrow erzeugter Ring \mathcal{F}^n . Elemente davon nennen wir **Figuren**.
- 2. $Q := \{\emptyset\} \cup \{\{a\} \mid a \in X\}$ \implies erzeugter Ring \mathcal{F} : Ring der endlichen Teilmengen von X.

Lemma II.24 (i.A. II.23)

 \mathcal{Q} Halbring über X, \mathcal{F} der von \mathcal{Q} erzeugte Ring. $\Longrightarrow \sigma(\mathcal{Q}) = \sigma(\mathcal{F})$

Beweis.
$$Q \subset \mathcal{F} \implies \sigma(Q) \subset \sigma(\mathcal{F})$$

 $\sigma(Q) \cup \text{-stabil} \implies \mathcal{F} \subset \sigma(Q) \implies \sigma(\mathcal{F}) \subset \sigma(Q)$

Lemma II.25 (i.A. II.24)

 $\mathcal Q$ Halbring über X, $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. Zu jedem $F\in\mathcal F$ existieren paarweise disjunkte $P_1,...,P_k\in\mathcal Q$ mit $F=\bigcup_{i=1}^k P_i$

Beweis. Sei $F \in \mathcal{F}$.

Satz II.22 (i.A. Satz II.21)
$$\implies F = \bigcup_{l=1}^{m} Q_l \text{ mit } Q_l \in \mathcal{Q} \implies F = \bigcup_{l=1}^{m} (Q_l \setminus \bigcup_{j=1}^{l-1} Q_j),$$

(wobei $Q_l \setminus \bigcup_{j=1}^{l-1}$ paarweise disjunkt).

z.z. $Q \setminus \bigcup_{i=1}^{m} Q_i$ mit $Q, Q_1, ..., Q_n$ besitzt eine disjunkte Zerlegung in Q.

Induktion: n=1 Folgt aus Definition von Halbring. Sei $Q\setminus\bigcup_{i=1}^mQ_i$ disjunkte Zerlegung

schon gefunden: $Q \setminus \bigcup_{i=1}^{m} Q_i = \bigcup_{j=1}^{k} P_j$

$$\implies Q \setminus \bigcup_{i=1}^{n+1} Q_i = (\bigcup_{j=1}^k P_j) \setminus Q_{n+1} = \bigcup_{j=1}^k (P_j \setminus Q_{n+1}) \ (P_j \setminus Q_{n+1} \text{ paarweise disjunkt}).$$

Nach Def. von \mathcal{Q} ist $P_i \setminus Q_{n+1}$ disjunkte Ver. von Elementen in \mathcal{Q} .

Def. II.26 (i.A. II.25)

Sei $\mathcal{Q} \subseteq \mathcal{P}(X)$ Halbring. Eine Funktion $\lambda : \mathcal{Q} \to [0, \infty]$ heißt **Inhalt** auf \mathcal{Q} , falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{Q}$ paarweiße disjunkt mit $\bigcup_{i=1}^n A_i \in \mathcal{Q}$ gilt: $\lambda(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \lambda(A_i)$

 λ heißt **Prämaß** auf $\mathcal Q,$ falls λ $\sigma\text{-additiv}$ auf $\mathcal Q$ ist.

D.h. für $A_i \in \mathcal{Q}$ paarweiße disjunkt $(i \in \mathbb{N})$ mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{Q} : \lambda(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \lambda(A_i)$

Bem.:

 σ -subadditiv, subadditiv, σ -endlich, endlich, monoton, ... sind wie vorher definiert. Ist $\mathcal Q$ in Def. II.26 [i.A. II.25] ein Ring, so stimmt die Definition des Prämaßes mit Def. II.11 [i.A. II.10] überein.

Satz II.27 (i.A. II.26)

 λ Inhalt auf Halbring $\mathcal Q$ und $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. Dann ex. genau ein Inhalt $\bar\lambda:\mathcal F\to[0,\infty]$ mit $\bar\lambda(Q)=\lambda(Q)\ \forall Q\in\mathcal Q.$

Beweis. $F = \bigcup_{i=1}^{k} P_i$ mit $P_i \in \mathcal{Q}$ paarweise disjunkt.

Lemma II.24 (i.A. Lemma II.23), so muss für jede Fortsetzung gelten:

$$\bar{\lambda}(F) = \sum_{i=1}^{k} \bar{\lambda}(P_i) = \sum_{i=1}^{k} \lambda(P_i)$$

Ex: Definiere $\bar{\lambda}$ durch $\bar{\lambda}(F) = \sum_{i=1}^{k} \lambda(P_i)$.

 $\bar{\lambda}$ wohldefiniert. Sei $F = \bigcup_{i=1}^k P_i = \bigcup_{j=1}^l Q_j$ paarweise disjunkt mit $Q_j \in \mathcal{Q}$.

$$\implies Q_j = \bigcup_{i=1}^k Q_j \cap P_i, \ j = 1, ..., l, \ P_i = \bigcup_{j=1}^l P_i \cap Q_j, \ i = 1, ..., k$$

$$\implies \sum_{j=1}^{l} \lambda Q_j = \sum_{j=1}^{l} \sum_{i=1}^{k} \lambda(P_i \cap Q_j) = \sum_{j=1}^{l} \sum_{i=1}^{k} \lambda(Q_k \cap P_i) = \sum_{i=1}^{k} \lambda(P_i)$$

 $\Longrightarrow \bar{\lambda}$ wohldefiniert Sei $F = \bigcup_{i=1}^{k} F_i$ paarweise disjunkt mit $F_i \in \mathcal{F}$, $F \in \mathcal{F}$. Schreibe $F_i = \bigcup_{j=1}^{m_i} P_{i,j}$ mit $P_{i,j} \in \mathcal{Q}$

$$\implies \bar{\lambda}(F) = \sum_{i=1}^k \sum_{i=1}^{m_i} \bar{\lambda}(P_{i,j}) = \sum_{i=1}^k \sum_{j=1}^{m_i} \lambda(P_{i,j}) = \sum_{i=1}^k \bar{\lambda}(F_i) \implies \bar{\lambda} \text{ Inhalt.}$$

Lemma II.28 (i.A. II.27)

 λ Inhalt auf Halbring \mathcal{Q} über X

 λ ist monoton und subadditiv

Beweis. Satz II.27 (i.A. Satz II.26) \implies o.B. Q ist Ring

$$\implies P, Q \in \mathcal{Q}, Q \supset P \implies \lambda(Q) = \lambda(P) + \lambda(Q \setminus P) \ge \lambda(P) \to \lambda \text{ ist monoton.}$$

Für
$$P_i \in \mathcal{Q}$$
, $i = 1, ..., k$ folgt
$$\lambda(\bigcup_{i=1}^k P_i) = \lambda(\bigcup_{i=1}^k (P_i \setminus (\bigcup_{j=1}^{i-1} P_j))) = \sum_{i=1}^k \lambda(P_i \setminus (\bigcup_{j=1}^{i-1} P_j)) \le \sum_{i=1}^k \lambda(P_i)$$

Bsp.:

Auf Q^n elementargeometrisches Volumen vol^n .

Sei $Q \in \mathcal{Q}$ mit $Q = I_1 \times ... \times I_n, I_j \subseteq \mathbb{R}$ Intervall mit Intervallgrenzen $a_j \leq b_j$

$$vol^n(Q) = \prod_{j=1}^n (b_j - a_j) \ge 0$$

Satz II.29 (i.A. II.28)

 $vol^n(.)$ ist ein Inhalt auf \mathcal{Q}^n

Beweis. $vol^n(\varnothing) = 0$

Endliche Additivität per Induktion

Für n=1 sind \mathcal{Y}_{I_j} Riemann-Int. und für $I_1,...,I_k$ paarweise disjunkt gilt:

$$\begin{aligned} & vol^1(\bigcup_{i=1}^k I_i) = \int\limits_{\mathbb{R}} \sum_{i=1}^k \mathcal{Y}_{I_i}(x) dx = \sum_{i=1}^k \int\limits_{\mathbb{R}} \mathcal{Y}_{I_i}(x) dx = \sum_{i=1}^k vol^1(I_i). \\ \text{Sei jetzt Aussage für } vol^{n-1} \text{ im } \mathbb{R}^{n-1} \text{ schon bewiesen. Betrachte für } Q = I_1 \times \ldots \times I_m \in \mathcal{Q}^n \end{aligned}$$

den y-Schnitt.

 $Q^y = x \in \mathbb{R}^{n-1} : (x,y) \in Q = I_1 \times ... \times I_{n-1}$ falls $y \in I_n$ (\varnothing sonst). Es gilt: $vol^{n-1}(Q^y) = vol^{n-1}(I_1 \times ... \times I_{n-1})\mathcal{Y}_{I_n}(y)$ und für jede paarweise disjunkte Zerlegung von $Q = \bigcup i = 1^k Q_i$ mit $Q_i \in \mathcal{Q}^n$ gilt:

$$Q^{y} = (\bigcup_{i=1}^{k} Q_{i})^{y} = \bigcup_{i=1}^{k} Q_{i}^{y}$$

$$\implies vol^{n}(\bigcup_{i=1}^{k} Q_{i}) = vol^{n}(Q) = vol^{n-1}(I_{1} \times ... \times I_{n-q})vol^{1}(I_{n})$$

$$= vol^{n-1}(I_{1} \times ... \times I_{n-1}) \int_{\mathbb{R}} \mathcal{Y}_{I_{n}}(y)dy = \int_{\mathbb{R}} vol^{n-1}(\bigcup_{i=1}^{k} Q_{i}^{y})dy = \sum_{i=1}^{n} \int_{\mathbb{R}} vol^{n-1}(Q_{i}^{y})dy$$

$$= \sum_{i=1}^{l} vol^{n}(Q_{i})$$

Satz II.30 (i.A. II.29)

 $\lambda: \mathcal{Q} \to [0,\infty]$ Prämaß auf Halbring $\mathcal{Q} \subseteq \mathcal{P}(X)$, \mathcal{R} der von \mathcal{Q} erzeugte Ring und $\bar{\lambda}: \mathcal{R} \to [0,\infty]$ der eindeutig bestimmte Inhalt auf \mathcal{R} mit $\bar{\lambda}|_{\mathcal{Q}} = \lambda$ (Satz II.27 / i.A. II.26), so ist $\bar{\lambda}$ ein Prämaß auf \mathcal{R} .

Beweis. Sei $F = \bigcup_{i=1}^{\infty} F_i$ mit $F, F_i \in \mathcal{R}$ und F_i paarweise disjunkt.

Lemma II.25 (i.A. Lemma II.24) $\implies \exists$ paarweise disjunkte Zerlegungen $F = \bigcup_{j=1}^k P_j$

und
$$F_i = \bigcup_{k=1}^{k_i} P_{i,k}$$
 mit $P_j, P_{i,k} \in \mathcal{Q}$

$$\implies P_j = \bigcup_{i=1}^{\infty} (P_j \cap F_i) = \bigcup_{i=1}^{\infty} \bigcup_{k=1}^{k_i} (P_j \cap P_{i,k}) \text{ paarweise disjunkt}$$

$$\lambda \text{ Prämass} \implies \lambda(P_j) = \sum_{i=1}^{\infty} \sum_{k=1}^{k_i} \lambda(P_j \cap P_{i,k}) = \sum_{i=1}^{\infty} \bar{\lambda}(P_j \cap F_i)$$

$$\implies \bar{\lambda}(F) = \sum_{j=1}^{k} \lambda(P_j) = \sum_{j=1}^{k} \sum_{i=1}^{\infty} \bar{\lambda}(P_j \cap F_i) = \sum_{i=1}^{\infty} \sum_{j=1}^{k} \bar{\lambda}(p_j \cap F_i) = \sum_{i=1}^{\infty} \bar{\lambda}(F_i)$$

$$\implies \bar{\lambda} \text{ ist Prämass}$$

Vorlesung 8 27.11.20

Bem.:

Satz II.27 (i.A. II.26) $\implies \bar{\lambda}(F) = \sum_{i=1}^{n} \lambda(Q_i)$ für $F \in \mathcal{R}$ mit $F = \bigcup_{i=1}^{n} Q_i$ mit paarweise disjunkten $Q_i \in \mathcal{Q}$ (Lemma II.25 / i.A. II.24). Betrachte äußere Maße für λ auf \mathcal{Q} und $\bar{\lambda}$ auf \mathcal{R} aus Satz II.3.

Es gilt: $Q \subseteq \mathcal{R}, \lambda = \bar{\lambda}$ auf Q

$$\begin{split} &\inf\{\sum_{k\in\mathbb{N}}\lambda(Q_k)\mid Q_k\in\mathcal{Q}, E\subseteq\bigcup_{k\in\mathbb{N}}Q_k\}\\ &\geq\inf\{\sum_{i\in\mathbb{N}}\lambda(\bar{F}_i)\mid F_i\in\mathcal{R}, E\subseteq\bigcup_{i\in\mathbb{N}}F_i\}\\ &=\inf\{\sum_{i\in\mathbb{N}}\sum_{j=1}^{j_i}\lambda(Q_{i,j})\mid F_i=\bigcup_{j=1}^{j_i}Q_{i,j}, Q_{i,j}\in\mathcal{Q}, E\subseteq\bigcup_{i\in\mathbb{N}}\bigcup_{j=1}^{j_i}Q_{i,j}\}\\ &=\inf\{\sum_{k\in\mathbb{N}}\lambda(Q_k)\mid Q_k\in\mathcal{Q}, E\subseteq\bigcup_{k\in\mathbb{N}}Q_k\} \end{split}$$

Satz II.31 ((i.A. II.30))

 $\lambda: \mathcal{Q} \to [0, \infty]$ Prämaß auf Halbring $\mathcal{Q} \subseteq \mathcal{P}(X)$. Sei $\mu: \mathcal{P}(X) \to [0, \infty]$ das in Satz II.3 aus \mathcal{Q} konstruierte äußere Maß, d.h. $\forall E \subseteq X$ ist:

$$\mu(E) = \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{Q}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ .

Bem.:

Satz II.16 (i.A. II.15) $\implies \mu$ ist reguläres äußere Maß

Satz II.7 $\implies \mu$ ist vollständiges Maß auf $\mathcal{M}(\mu)$

 $(X, \mathcal{M}(\mu), \mu|_{\mathcal{M}(\mu)})$ ist Vervollständigung von $(X, \sigma(\mathcal{Q}), \mu|_{\sigma\mathcal{Q}})$ und ist auf $\mathcal{M}(\mu)$ eindeutig bestimmt (Satz II.17 / i.A. II.16).

Speziell: $D \subseteq X$ μ -messbar $\Leftrightarrow \exists C \in \sigma(Q)$ mit $C \subseteq D$ und $\mu(D \setminus C) = 0$ (Lemma II.18 / i.A. II.17)

Satz II.32 ((i.A. II.31))

Für einen Inhalt λ auf Ring \mathcal{R} und $A_i \in \mathcal{R}, i \in \mathbb{N}$, betrachte:

- i) λ ist Prämaß auf \mathcal{R}
- ii) Für $A_i \subseteq A_{i+1} \subseteq \dots$ mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt: $\lambda(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{n \to \infty} \lambda(A_n)$
- iii) Für $A_i\supseteq A_{i+1}\supseteq\dots$ mit $\lambda(A_1)<\infty$ und $\bigcap_{i\in\mathbb{N}}A_i\in\mathcal{R}$ gilt: $\lambda(\bigcap_{i\in\mathbb{N}}A_i)=\lim_{n\to\infty}\lambda(A_n)$
- iv) Für $A_i \supseteq A_{i+1} \supseteq \dots$ mit $\lambda(A_1) < \infty$ und $\bigcap_{i \in \mathbb{N}} A_i = \emptyset$ gilt: $\lim_{i \to \infty} \lambda(A_i) = 0$

Dann gilt: i) \Leftrightarrow ii) \Longrightarrow iv)

Ist λ endlich, d.h. $\lambda(A) < \infty \ \forall A \in \mathcal{R}$, dann sind i) - iv) äquivalent.

 $Beweis. i) \implies ii) \implies iii)$ Siehe Beweis von Satz I.7

- iii) \implies iv) ist trivial
- ii) \implies i) Seien $A_n \in \mathcal{R}$ paarweise disjunkt mit $\bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$

$$\Rightarrow B_n := \bigcup_{i=1}^n A_i \text{ erfüllt Bed. von ii) mit } \bigcup_{n=1}^\infty B_n = \bigcup_{i=1}^\infty A_i \in \mathcal{R}$$

$$\Rightarrow \lambda(\bigcup_{n=1}^\infty A_n) = \lim_{n \to \infty} \lambda(B_n) = \lim_{n \to \infty} \sum_{i=1}^n \lambda(A_i) = \sum_{i=1}^\infty \lambda(A_i)$$

$$\lambda \text{ endlich. z.z. iv)} \Rightarrow \text{ii)}$$

$$\implies \lambda(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \lambda(B_n) = \lim_{n \to \infty} \sum_{i=1}^{n} \lambda(A_i) = \sum_{i=1}^{\infty} \lambda(A_i)$$

Sei $(A_i) \subset \mathcal{R}$ monoton aufsteigende Folge mit $A := \bigcup_{i=1}^{\infty} A_i \in \mathcal{R}$. Für $B_n := A \setminus A_n$ gilt

$$B_n > B_{n+1} \text{ und } \bigcap^{\infty} B_n = \varnothing.$$

$$B_n > B_{n+1} \text{ und } \bigcap_{n=1}^{\infty} B_n = \emptyset.$$
iv) $\Longrightarrow \lim_{n \to \infty} \lambda(B_n) = 0 \Longrightarrow \lambda(B_n) = \lambda(A \setminus A_n) = \lambda(A) - \lambda(A_n)$
 $\Longrightarrow \lim_{n \to \infty} \lambda(A_n) = \lambda(A) = \lambda(\bigcup_{i=1}^{\infty} A_i) \Longrightarrow \text{ ii)}$

$$\implies \lim_{n \to \infty} \lambda(A_n) = \lambda(A) = \lambda(\bigcup_{i=1}^{\infty} A_i) \implies \text{ii})$$

Das Lebesgue-Maß III

Der elementargeometrische Inhalt $vol^n: \mathcal{Q}^n \to [0, \infty]$ ist ein Prämaß auf dem Halbring Q^n im \mathbb{R}^n

Beweis. Sei
$$P = \bigcup_{i=1}^{\infty} P_i$$
 mit $P_i \cap P_j = \emptyset$ für $i \neq j, P, P_i \in \mathcal{Q}^n \ \forall i \in \mathbb{N}$.

Satz II.27 (i.A. Satz II.26) $\implies vol^n$ ist Inhalt auf Ring $\mathcal{F}^n \implies \sum_{i=1}^{\infty} vol^n(P_i)$

$$= \lim_{k \to \infty} \sum_{i=1}^{k} vol^{n}(P_{i}) = \lim_{k \to \infty} vol^{n}(\bigcup_{i=1}^{k} P_{i}) \le vol^{n}(P).$$

 $= \lim_{k \to \infty} \sum_{i=1}^k vol^n(P_i) = \lim_{k \to \infty} vol^n(\bigcup_{i=1}^k P_i) \leq vol^n(P).$ Wähle zu $\epsilon > 0$ offene Quader $Q_i \supset P_i$ und einen kompakten Quader $Q \subset P$ mit $\sum_{i=1}^\infty vol^n(Q_i) < \sum_{i=1}^\infty vol^n(P_i) + \frac{\epsilon}{2}, \ vol^n(P) < vol^n(Q) + \frac{\epsilon}{2}.$ Satz von Heine-Borel (Satz (XIV).22 Ana1): Q wird von endlich vielen Quadern $Q_i \times ... \times Q_k$ überdeckt $Q \subset P = \bigcup_{i=1}^\infty P_i \subset \bigcup_{i=1}^\infty Q_i)$

$$Q_i \times ... \times Q_k$$
 überdeckt $(Q \subset P = \bigcup_{i=1}^{\infty} P_i \subset \bigcup_{i=1}^{\infty} Q_i)$

$$\implies vol^n(P) < vol^n(Q) + \frac{\epsilon}{2} \le \sum_{i=1}^k vol^n(Q_i) + \frac{\epsilon}{2} < \sum_{i=1}^\infty vol^n(P_i) + \epsilon.$$

Lasse
$$\epsilon > 0 \implies vol^n(P) \le \sum_{i=1}^{\infty} vol^n(P_i)$$
.

Das n-dimensionale äußere Lebesgue-Maß einer Menge $E \subseteq \mathbb{R}^n$ ist definiert durch

$$\lambda^{n}(E) := \inf\{\sum_{k \in \mathbb{N}} vol^{n}(Q_{k}) \mid Q_{k} \in \mathcal{Q}^{n}, E \subseteq \bigcup_{k \in \mathbb{N}} Q_{k}\}$$

 $\lambda^n|_{\mathcal{M}(\lambda^n)}$ ist das **n-dimensionale Lebesguemaß**.

Bem nach Satz II.31 (i.A. II.30) $\implies \lambda^n$ regulär und vollständig auf $\mathcal{M}(\lambda^n)$

Lemma III.3

Betrachte für $k \in \mathbb{N}_0$ die Würfelfamilie $\mathcal{W}_k = \{Q_{k,m} := 2^{-k}(m+[0,1]^n) \mid m \in \mathbb{R}^n\}$

und definiere für $E \subseteq \mathbb{R}^n$ die Mengen

$$F_k(E) := \left\{ \begin{array}{l} \{Q \in \mathcal{W}_k \mid Q \subseteq E\} & F^k(E) := \left\{ \begin{array}{l} \{Q \in \mathcal{W}_k \mid Q \cap E \neq \emptyset\} \end{array} \right. \end{array} \right.$$

Dann gilt:

- i) $F_k(E)$ und $F^k(E)$ sind abgeschlossene Vereinigungen von abzählbar vielen kompakten Quadern mit paarweise disjunktem Inneren.
- ii) $F_1(E) \subseteq F_2(E) \subseteq ... \subseteq E \subseteq ... \subseteq F^2(E) \subseteq F^1(E)$
- iii) $F_k(E) \supseteq \{x \in \mathbb{R}^n \mid dist(x, \mathbb{R}^n \setminus E) > s^{-k}\sqrt{n}\}\$ $F^k(E) \subseteq \{x \in \mathbb{R}^n \mid dist(x, \mathbb{R}^n \setminus E) \leq s^{-k}\sqrt{n}\}\$
- iv) $\dot{E} \subseteq \bigcup_{k \in \mathbb{N}} F_k(E) \subseteq E$, $\bar{E} \supseteq \bigcap_{k \in \mathbb{N}} F^k(E) \supseteq E$

Beweis. $\bigcup \{Q : Q \in W_k\} = \mathbb{R}^n \ \forall k \in \mathbb{N}.$

 W_k hat abzählbar viele Elemente, die Würfel aus W_k sind kompakt mit paarweise disjunktem Inneren und jede beschränkte Menge wird nur von endlich vielen Würfeln aus W_k getroffen. $\Longrightarrow F_k(E)$, $F^k(E)$ sind abgeschlossen \Longrightarrow i)

 $Q_{k,m}$ ist Vereinigung der 2^n Teilwürfel $Q_{k+1,2m+l}$ mit $l \in \{0,1\}^n$ und es gilt

$$Q_{k,m} \subset E \implies Q_{k+1,2m+l} \subset E \ \forall l \in \{0,1\}^n$$

 $Q_{k+1,2m+l} \cap E \neq \emptyset \implies Q_{k,m} \cap E \neq \emptyset$ wobei $l \in \{0,1\}^n$

$$\Longrightarrow F_k(E) \subset F_{k+1}(E), F^k(E) \supset F^{k+1}(E) \Longrightarrow \text{ ii)}$$

Denn für $x \in E$ bel. existiert ein $Q \in W_k$ mit $x \in Q$.

Sei nun $x \in \mathbb{R}^n$ mit $dist(x, \mathbb{R}^n \setminus E) > 2^{-k}\sqrt{n} \implies \exists Q \in W_k \text{ mit } x \in Q \text{ und aus } dist(Q) = 2^{-k}\sqrt{n} \text{ folgt } Q \subset E \implies x \in F_k(E) \implies \{x \in \mathbb{R}^n : dist(x, \mathbb{R}^n \setminus E) > 2^{-k}\sqrt{n}\} \subset F_k(E).$

Ist $x \in F^k(E) \implies \exists Q \in W_k \text{ mit } x \in Q \text{ und } Q \cap E \neq \emptyset \implies x \in F^k(E) \implies dist(x, E) \leq dist(Q) \leq 2^{-k} \sqrt{n} \implies \text{iii})$

iv) folgt sofort aus iii) und Def. von E bzw. E.

Vorlesung 9 30.11.20

Lemma III.4

Die Borelmengen \mathcal{B}^n sind die vom Halbring \mathcal{Q}^n der Quader, dem Ring \mathcal{F}^n der Figuren, und dem System \mathcal{C}^n der abgeschlossenen Mengen des \mathbb{R}^n erzeugten σ -Algebra, d.h. $\sigma(\mathcal{Q}^n) = \mathcal{B}^n = \sigma(\mathcal{Q}^n) = \sigma(\mathcal{F}^n) = \sigma(\mathcal{C}^n)$

Beweis. Jeder Quader ist Borelmenge:

Ein Intervall $I \subset \mathbb{R}$ ist entweder offen oder abzählbarer Schnitt von offenen Intervallen und liegt damit in \mathcal{B}^1 , z.B. $[a,b) = \bigcap_{k=1}^{\infty} (a - \frac{1}{k}, b)$.

Für einen Quader $Q = I_1 \times ... \times I_n \subset \mathbb{R}^n$ schreibe $I_j = \bigcap_{k=1}^{\infty} U_{j,k}$ und damit

$$Q = \bigcap_{k=1}^{\infty} (U_{1,k} \times ... \times U_{n,k}) \in \mathcal{B}^n \implies \mathcal{Q}^n \subset \mathcal{F}^n \subset \mathcal{B}^n.$$

Da Figuren endl. Vereinigungen von Quadern sind und \mathcal{B}^n U-stabil ist $\implies \sigma(\mathcal{Q}^n) \subset \sigma(\mathcal{F}^n) \subset \mathcal{B}^n$.

Andererseits folgt aus Lemma III.3, dass $U \subset \mathbb{R}^n$ offen als abzählbare Vereinigung von kompakten Würfeln geschrieben werden kann.

$$\implies \mathcal{O}^n \subset \sigma(\mathcal{Q}^n) \implies \mathcal{B}^n \subset \sigma(\mathcal{Q}^n) \subset \sigma(\mathcal{F}^n)$$

$$\implies \mathcal{B}^n = \sigma(\mathcal{Q}^n) = \sigma(\mathcal{F}^n)$$

Abgeschlossene mengen sind Komplemente von offenen Mengen

$$\implies \sigma(\mathcal{C}^n) = \sigma(\mathcal{O}^n) = \mathcal{B}^n$$

Satz III.5

Für λ^n gilt:

- 1. Alle Borelmengen sind Lebesgue-messbar
- 2. Zu $E \subseteq \mathbb{R}^n \exists$ Borelmenge $B \supseteq E$ mit $\lambda^n(B) = \lambda^n(E)$
- 3. $\lambda^n(K) < \infty \ \forall K \subseteq \mathbb{R}^n \ \text{kompakt}$

Beweis.

- 1 Satz II.31 (i.A. Satz II.30) $\implies \mathcal{Q}^n \subset \mathcal{M}(\lambda^n) \implies \sigma(\mathcal{Q}^n) = \mathcal{B}^n \subset \mathcal{M}(\lambda^n)$ nach Lemma III.4
- 2 Folgt aus Bem. nach Satz II.31 (i.A. Satz II.30)
- 3 Es gilt $\lambda^n = vol^n$ auf \mathcal{Q}^n

$$\Longrightarrow$$
 Für $a>0$ bel. ist $\lambda^n([-a,a]^n)=vol^n([-a,a]^n)=(2a)^n<\infty\ \forall K\subset\mathbb{R}^n$ kompakt $\exists a<\infty:K\subset[-a,a]^n\Longrightarrow$ Beh.

Lemma III.6

Für $E \subseteq \mathbb{R}^n$ beliebig gilt:

i)
$$\lambda^n(E) = \inf\{\lambda^n(U) \mid U \text{ offen }, U \supset E\}$$

ii)
$$\lambda^n(E) = \inf\{\lambda^n(K) \mid K \text{ kompakt }, K \subset E\}, \text{ falls } E \lambda^n\text{-messbar}$$

Beweis.

i) Trivial: $\lambda^n(E) \leq \inf\{\lambda^n(U) : U \text{ offen, } U \supset E\}$

"\gequiv": O.B.
$$\lambda^n(E) < \infty$$
. Def. von $\lambda^n \implies \text{Zu } \epsilon > 0 \; \exists \; \text{Überdeckung } E \subset \bigcup_{i=1}^{\infty} P_i \; \text{mit}$

$$P_i \in \mathcal{Q}^n$$
, sodass gilt: $\sum_{i=1}^{\infty} vol^n(P_i) < \lambda^n(E) + \epsilon$.

O.B. $\forall P_i \text{ sind offen}$

$$\implies U = \bigcup_{i=1}^{\infty} P_i \text{ offen}$$

$$\implies E \subset U \text{ und } \lambda^n(U) \leq \sum_{i=1}^{\infty} vol^n(P_i) < \lambda^n(E) + \epsilon.$$

ii) Klar: $\lambda^n(E) \ge \sup\{\lambda^n(K) : K \text{ kompakt}, K \subset E\}$ "\le ":

a) B beschränkt

Wähle $K_0 \subset \mathbb{R}^n$ kompakt mit $E \subset K_0 \implies \operatorname{Zu} \epsilon > 0 \; \exists U \subset \mathbb{R}^n$ offen mit $U \supset K_0 \setminus E \text{ und } \lambda^n(U) < \lambda^n(K_0 \setminus E) + \epsilon = \lambda^n(K_0) - \lambda^n(E) + \epsilon$ Nun ist $K := K_0 \setminus U \subset K_0 \setminus (K_0 \setminus E) = E \text{ kompakt}$ $\implies \lambda^n(K) = \lambda^n(K_0) - \lambda^n(K_0 \cap U) \ge \lambda^n(K_0) - \lambda^n(U) > \lambda^n(E) - \epsilon$ $\epsilon \to 0 \implies \operatorname{Beh}.$

b) $E \lambda^n$ -messbar beliebig

Betrachte $E_j := E \cap \{x \in \mathbb{R}^n : ||x|| \le j\}$ E_j beschränkt und λ^n -messbar $\implies \lambda^n(E_j) = \sup\{\lambda^n(K) : K \text{ kompakt}, \ K \subset E_j\} \le \sup\{\lambda^n(K) : K \text{ kompakt}, \ K \subset E_j\}$

Aber $\lambda^n(E_j) \to \lambda^n(E)$ mit $j \to \infty$ nach Satz I.7 \Longrightarrow Beh.

Satz III.7

 $D\subseteq\mathbb{R}^n$ ist genau dann λ^n -messbar, wenn eine der beiden Bedingungen gilt:

i) \exists Borlemenge $E \supset D$ mit $\lambda^n(E \setminus D) = 0$

ii) \exists Borlemenge $C \subset D$ mit $\lambda^n(D \setminus C) = 0$

Es kann $E=\bigcap_{i\in\mathbb{N}}U_i$ mit U_i offen und $C=\bigcup_{j\in\mathbb{N}}A_j$ mit A_j abgeschlossen gewählt werden.

Beweis. Äquivalenz von i) bzw. ii) mit λ^n -Messbarkeit von (?) wurde in Lemma II.18 (i.A. Lemma II.17) gezeigt.

Sei D λ^n -messbar. Schreibe $D = \bigcup_{j=1}^{\infty} D_j$ mit $D_j = \{x \in D : j-1 \le ||x|| < j\}$

Lemma III.6 $\Longrightarrow \exists U_{i,j}$ offen bzw. $K_{i,j}$ kompakt mit $U_{i,j} \supset D_j \supset K_{i,j}$ und $\lambda^n(U_{i,j}) < \lambda^n(D_j) + \frac{2^{-j}}{i}, \ \lambda^n(K_{i,j}) > \lambda^n(D_j) - \frac{2^{-j}}{i}$

 $\implies U_i := \bigcup_{j=1}^{\infty} U_{i,j}$ offen und $A_i := \bigcup_{j=1}^{\infty} K_{i,j}$ abgeschlossen $(K_{i,j} \cap K_{i,m} = \emptyset \text{ for } j \neq m)$

und es gilt: $U_i \supset D \supset A_i$

Mit $E := \bigcap_{i=1}^{\infty} U_i$, $C := \bigcup_{i=1}^{\infty} A_i$ gelten für $i \in \mathbb{N}$:

$$\lambda^n(E \setminus D) \le \lambda^n(U_i \setminus D) \le \sum_{j=1}^{\infty} \lambda^n(U_{i,j} \setminus D_j) = \sum_{j=1}^{\infty} (\lambda^n(U_{i,j}) - \lambda^n(D_j)) \le \frac{1}{i}$$

$$\lambda^n(D \setminus C) \le \lambda^n(D \setminus A_i) \le \sum_{j=1}^{\infty} \lambda^n(D_j \setminus K_{i,j}) = \sum_{j=1}^{\infty} (\lambda^n(D_j) - \lambda^n(K_{i,j})) \le \frac{1}{i}$$

Mit $i \to \infty$ folgt Beh.

Satz III.8 (Satz von Lusin)

Sei $A \subseteq \mathbb{R}^n$ offen mit $\lambda^n(A) < \infty$ und sei $f \lambda^n$ -messbar auf A mit Werten in \mathbb{R} . Dann existiert $\forall \epsilon > 0$ ein $K = K_{\epsilon} \subseteq A$ kompakt, mit:

- i) $\lambda^n(A \setminus K) < \epsilon$
- ii) $f|_k$ ist stetig

Beweis. Kap II. \implies oBdA ist f auf ganz A definiert, d.h. $f: A \to \mathbb{R}$. Für $i \in \mathbb{N}$ setze $B_{i(2k+1)} := \left[\frac{k}{i}, \frac{k+1}{i}\right], k \in \mathbb{N}_0$

$$B_{i(2k)} := \left[-\frac{k}{i}, -\frac{k-1}{i} \right], k \in \mathbb{N}_0$$

 $B_{i(j)}, j \in \mathbb{N}_0$, sind paarweise disjunkt mit $\bigcup_{j \in \mathbb{N}_o} B_{i(j)} = \mathbb{R}$ und $(?)(B_{i(j)} = \frac{1}{i})$

$$A_{i,j} := f^{-1}(B_{i(j)}) \text{ sind } \lambda^n\text{-messbar und } A = \bigcup_{j \in \mathbb{N}_0}^{j \in \mathbb{N}_0} A_{ij}.$$

Lemma III.6 ii)
$$\implies \exists K_{ij} \subset A_{ij} \text{ kompakt mit } \lambda^n(A_{ij\setminus K_{ij}}) < \frac{\epsilon}{2^{i+j}}$$

$$\implies \lambda^n(A\setminus \bigcup_{l=1}^{\infty} K_{il}) = \lambda^n(\bigcup_{j=1}^{\infty} A_{ij}\setminus \bigcup_{l=1}^{\infty} K_{il}) \leq \lambda^n(\bigcup_{j=1}^{\infty} (A_{ij}\setminus K_{ik})) < \frac{\epsilon}{2^i}$$

Satz I.7 ii)
$$\implies \lim_{N \to \infty} \lambda^n (A \setminus \bigcup_{l=1}^N K_{il}) = \lambda^n (A \setminus \bigcup_{l=1}^\infty K_{il}) < \frac{\epsilon}{2^i}$$

$$\implies \exists N(i) \text{ mit } \lambda^n(A \setminus \bigcup_{j=1}^{N(i)} K_{ij}) < \frac{\epsilon}{2^i}$$

$$\implies D_i := \bigcup_{j=1}^{N(i)} K_{ik}$$
 ist kompakt.

 $\forall i, j$ wählen wir $b_{ij} \in B_{i(j)}$ und definiere $g_i : D_i \to \mathbb{R}$ durch $g_i(x) := b_{ij} \ \forall x \in K_{ij}$ $(j \leq N(i))$

 $K_{i1}, ..., K_{iN(i)}$ sind kompakt, paarweise disjunkt

⇒ Sie haben positiven Abstand voneinander

 $\implies g_i \text{ ist stetig}$

Aus Konstruktion folgt

$$|f(x) - g_i(x)| \le \frac{1}{i} \ \forall x \in D_i$$
 (III.1)

Setze $K := \bigcap_{i=1}^{\infty} D_i \implies K$ ist kompakt und $\lambda^n(A \setminus K) \leq \sum_{i=1}^{\infty} \lambda^n(A \setminus D_i) < \epsilon$

Aus III.1 und Def von K folgt: g_i konvergiert gleichmäßig gegen f auf $K \implies f$ ist stetig auf K.

Vorlesung 10 4.12.20

Def. III.9

Ein äußeres Maß μ auf \mathbb{R}^n heißt **Borelmaß**, falls gilt:

- 1. Alle Borelmengen sind μ -messbar
- 2. $\mu(K) < \infty \ \forall K \subseteq \mathbb{R}^n \ \text{kompakt}$

Bem.:

 λ^n ist Borelmaß nach Satz III.5.

Ein äußeres Maß μ auf \mathbb{R}^n heißt translationsinvariant, falls

$$\mu(E+a) = \mu(E) \ \forall E \subset \mathbb{R}^n, a \in \mathbb{R}^n \text{ mit } E+a := \{x+a \mid x \in E\}$$

Bemerke: $vol^n: \mathcal{Q}^n \to [0, \infty]$ ist translationsinvariant $\implies \lambda^n$ ist translationsinvariant.

Lemma III.10

Ist μ translations invariantes Borelmaß auf \mathbb{R}^n , so ist jede Koordinaten-Hyperebene $H := \{x \in \mathbb{R}^n \mid x_i = c\} (i = 1, ..., n) \text{ eine } \mu\text{-Nullmenge.}$

Beweis. Sei $Q = [0,1]^n$ und $F = \{x \in Q : x_i = 0\}$. Für $a \in \mathbb{R}^n$ ist F + a abgeschlossen $\implies \mu\text{-messbar}.$ Für $\{s_i,...,s_k\}\subset [0,1]$ folgt:

$$k\mu(F) = \sum_{j=1}^{k} \mu(s_j e_i + F) = \mu(\bigcup_{j=1}^{k} (s_j e_i + F)) \le \mu(Q) < \infty$$

k kann beliebig groß gewählt werden $\implies \mu(F) = 0$.

Hist Vereinigung abzählbar vieler Translationen von $F \implies \mu(H) = 0$

Satz III.11

Sei μ translationsinvariantes Borelmaß auf \mathbb{R}^n . Dann gilt mit $\theta := \mu([0,1]^n)$:

$$\mu(E) = \theta \lambda^n(E) \quad \forall \ \lambda^n$$
-messbaren $E \subseteq \mathbb{R}^n$

Beweis. Setze $Q_{k,j}=2^{-k}(j+[0,1]^n)$ für $k\in\mathbb{N}_0,\,j\in\mathbb{R}^n\Longrightarrow [0,1]^n$ ist Vereinigung der 2^{nk} abgeschlossenen Teilwürfel $\{Q_{k,j}:j\in J_k\}$ mit $J_k=\{j=(j_1,....,j_n)\in\mathbb{R}^n:0\}$ $leq j_i \leq 2^k - 1$ mit paarweise disjunktem Inneren. Lemma III.10

$$\implies \mu([0,1]^n) = \sum_{k} \mu(Q_{k,j})$$

$$\Longrightarrow \mu([0,1]^n) = \sum_{j \in J_k} \mu(Q_{k,j})$$
$$\lambda^n([0,1]^n) = \sum_{j \in J_k} \lambda^n(Q_{k,j})$$

Translations invarianz $\implies \mu(Qk,j) = \mu(Q_{k,0})$

$$\lambda^n(Q_{k,j}) = \lambda^n(Q_{k,0}) \ \forall j \in \mathbb{R}^n$$

$$\Rightarrow \theta = \frac{\mu([0,1]^n)}{\lambda^n([0,1]^n)} = \frac{\mu(Q_{k,0})}{\lambda^n(Q_{k,0})} = \frac{\mu(Q_{k,j})}{\lambda^n(Q_{k,j})} \ \forall j \in \mathbb{R}^n$$
Lemma III.3, Lemma III.10 $\implies \mu(U) = \theta \lambda^n(U) \ \forall U \supset \mathbb{R}^n$ offen

 \implies Beh. gilt für alle $Q \in \mathcal{Q}^n$ und damit $\forall \lambda^n$ -messbaren Teilmengen nach Eindeutigkeit der Massfortsetzung, Satz II.17 (i.A. Satz II.16).

Lemma III.12

 $U \subseteq \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^n$ lipschitz-stetig mit Konstante Λ bzgl. $||.||_{\infty}$. Dann gilt:

$$\lambda^n(f(E)) \le \Lambda^n \lambda^n(E) \quad \forall E \subseteq U$$

Beweis. O.E. $\lambda^n(E) < \infty$

Setze $Q_{\rho}(x_0) = \{x \in \mathbb{R}^n : ||x - x_0||_{\infty} < \rho\} \ \forall x_0 \in \mathbb{R}^n, \ \rho > 0$

Vor $\implies ||f(x) - f(x_0)||_{\infty} \le \Lambda ||x - x_0||_{\infty}$ für $x, x_0 \in U$

Also $Q_{\rho}(x_0) \subset U \implies f(Q_{rho}(x_0)) \subset Q_{\Lambda\rho}(f(x_0))$

Lemma III.6 $\implies \exists V \text{ offen mit } E \subset V \text{ und } \lambda^n(V) < \lambda^n(E) + \epsilon \ \forall \ \epsilon > 0.$

(O.E. $V \subset U$)

Weiter existiert Q_j Würfel mit paarweise disjunktem Inneren und $V = \bigcup_{j=1}^{\infty} Q_j$

$$\implies \lambda^n(f(E)) \leq \lambda^n(f(V)) \leq \sum_{j=1}^\infty \lambda^n(f(Q_j)) \leq \Lambda^n \sum_{j=1}^\infty \lambda^n(Q_j) \leq \Lambda^n(\lambda(E) + \epsilon)$$

Lasse $\epsilon \to 0 \implies \text{Beh.}$

Satz III.13

 $U \subseteq \mathbb{R}^n$ offen und $f \in C^1(U, \mathbb{R}^n)$. Dann gilt:

- 1. $N \subseteq U \lambda^n$ -Nullmenge $\implies f(N) \lambda^n$ -Nullmenge
- 2. $E \subseteq U \lambda^n$ -messbar $\implies f(E) \lambda^n$ -messbar

Beweis. Lemma III.3 $\Longrightarrow U = \bigcup_{i=1}^{\infty} K_i, K_i$ kompakte Würfel

$$\implies N = \bigcup_{i=1}^{\infty} K_i \cap N$$

 $f|_K$ ist Lipschitz $\forall K \subset U$ Kpt

 \implies 1) folgt aus Lemma III.12

zu 2): O.B. E beschränkt (sonst betrachte $E_m := \{x \in E : ||x|| \leq m\}$ $E = \bigcup_{i=1}^{\infty} E_i$)

Satz III.7 $\implies \exists A_j \text{ kompakt und } \lambda^n\text{-Nullmenge } N \text{ mit } E = (\bigcup_{j=1}^{\infty} A_j) \text{ und } f(A_j) \text{ ist}$

kompakt und $\lambda^n(f(N)) = 0$ nach 1)

$$\implies f(E) = \bigcup_{j=1}^{\infty} f(A_j) \cup f(N) \implies \lambda^n$$
-messbar

Satz III.14

Sei $S \in O(\mathbb{R}^n)$ und $a \in \mathbb{R}^n$, dann gilt:

$$\lambda^n(S(E) + a) = \lambda^n(E) \quad \forall E \subseteq \mathbb{R}^n$$

Beweis. λ^n translations invariant \implies O.E. a = 0.

Sei jetzt $S \in GL(\mathbb{R}^n)$ und $T := S^{-1}$.

Definiere $\mu := T(\lambda^n) : \mathcal{P}(\mathbb{R}^n) \to [0, \infty], E \to \mu(E) := \lambda^n(T^{-1}(E)), d.h.$ $\lambda^n(S(E)) = \mu(E).$

Beh.: μ ist translations invariantes Borelmaß.

Ist $B \subset \mathbb{R}^n$ Borelmenge $\to B$ λ^n -messbar (Satz III.5) $\Longrightarrow T^{-1}(B) = S(B)$ λ^n -messbar (Satz III.13) $\Longrightarrow B$ ist μ -messbar (s. Blatt 2)

Für $K \subset \mathbb{R}^n$ kompakt ist $T^{-1}(K) = S(K)$ kompakt $\Longrightarrow \mu(K) < \infty \Longrightarrow \mu$ Borelmaß. Sei $b \in \mathbb{R}^n$, $E \subset \mathbb{R}^n$ beliebig

$$\implies \mu(E+b) = \lambda^n(S(E+b)) = \lambda^n(S(E)+S(b)) = \lambda^n(S(E)) = \mu(E) \implies \text{Beh.}$$

Satz III.11 $\Longrightarrow \mu(E) = \theta(S)\lambda^n(E) \ \forall E \subset \mathbb{R}^n \ \lambda^n$ -messbar, wobei $\theta(S) = \mu([0,1]^n) = \lambda^n(S([0,1]^n)) \in [0,\infty].$

Für $E \subset \mathbb{R}^n$ bel. gilt mit Lemma III.6

$$\mu(E) = \lambda^n(S(E)) = \inf\{\lambda^n(V) : S(E) \subset V \text{ offen}\} = \inf\{\lambda^n(S(U)) : E \subset U \text{ offen}\}$$

$$=\theta(S)inf\{\lambda^n(U): E\subset U \text{ offen}\}$$

$$\implies \mu(E) = \lambda^n(S(E)) = \theta(S)\lambda^n(E) \ \forall E \subset \mathbb{R}^n$$

Ist
$$S \in O(\mathbb{R}^n)$$
, so wähle $E = B_1(O) \implies S(B_1(O) = B_1(O))$

$$\implies \mu(B_1(O)) = \lambda^n(B_1(O)) \implies \theta(S) = 1 \ \forall S \in O(\mathbb{R}^n)$$

$$\implies \lambda^n(S(E)) = \lambda^n(E) \ \forall S \in O(\mathbb{R}^n)$$

Lemma III.15 (Polarzerlegung)

 $\forall S \in GL(\mathbb{R}^n) \exists$ Diagonalmatrix Λ mit Einträgen $\lambda_i > 0, i = 1, ..., n$ und $T_1, T_2 \in O(\mathbb{R}^n)$, sodass $S = T_1 \Lambda T_2$

Beweis. S^TS ist symmetrisch und hat positive EW, denn für $v \in \mathbb{R}^n \setminus \{0\}: \langle S^TSv, v \rangle = ||Sv||^2 > 0$

 $\Longrightarrow \exists T \in O(\mathbb{R}^n)$ und Λ Diagonalmatrix mit Einträgen $\lambda_i>0$ i=1,...,n, sodass $S^TS=T\Lambda^2T^{-1}.$

 $R := T\Lambda T^{-1}$ ist symmetrisch mit $R^2 = S^T S \implies$ mit $Q := SR^{-1}$ gilt

$$Q^T Q = (R^{-1})^T S^{T} S R^{-1} = R^{-1} R^2 R^{-1} = \mathbb{I}_n \implies Q \in O(\mathbb{R}^n)$$

$$\implies S = QR = QT\Lambda T^{-1} = T_1\Lambda T_2 \text{ mit } T_1 := QT \in O(\mathbb{R}^n), T_2 := T^{-1} \in O(\mathbb{R}^n)$$

Satz III.16 (Lineare Transformationsformel)

Für eine lineare Abbildung $S: \mathbb{R}^n \to \mathbb{R}^n$ gilt:

$$\lambda^n(S(E)) = |det(S)| \ \lambda^n(E) \quad \forall E \subseteq \mathbb{R}^n$$

Beweis. Ist $det(S) = 0 \implies S(E)$ liegt in Hyperebene \implies Beh. folgt aus Lemma III.10.

Ist $det(S) \neq 0 \implies$ (*) aus Beweis von Satz III.14, d.h. $\lambda^n(S(E)) = \theta(S)\lambda^n(E)$ z.z. $\theta(S) = |det(S)|$

i) S diagonal mit Einträgen $\lambda_i > 0 \implies \theta(S) = \lambda^n(S([0,1]^n)) = \lambda^n([0,\lambda_1] \times ... \times [0,\lambda_n]) = \prod_{i=1}^n \lambda_i = |\det(S)|$

ii) $S \in GL(\mathbb{R}^n)$ bel. $\Longrightarrow S = T_1 \Lambda T_2$ s.Lemma III.15, $T_1, T_2 \in O(\mathbb{R}^n)$

$$\implies \theta(S) = \lambda^{n}(T_{1}\Lambda T_{2}([0,1]^{n})) = \lambda^{n}(\Lambda T_{2}([0,1]^{n})) = |det(\Lambda)|\lambda^{n}(T_{2}([0,1]^{n}))$$

$$= |det(\Lambda)|\lambda^{n}([0,1]^{n}) = |det(S)|$$

Bsp.:

Bsp.: (Vitali 1905)

 $\mathcal{P}(\mathbb{R}^n) \neq \mathcal{M}(\lambda^n)$

Beweis siehe Aufschrieb.

IV Lebesgue-Integral

Def IV 1

X Menge, μ äußeres Maß. Eine funktion $\zeta: X \to \mathbb{R}$ heißt μ -Treppenfunktion, wenn sie μ -messbar ist und nur eindlich viele Funktionswerte annimmt.

Die Menge $\mathcal{T}(\mu)$ der μ -Treppenfunktionen ist ein \mathbb{R} -Vektorraum. Wir setzen

$$\mathcal{T}^+(\mu) = \{ \zeta \in \mathcal{T}(\mu) \mid \zeta \ge 0 \}$$

Bsp.:

 $E \subseteq X, \psi_E : X \to \mathbb{R}, \psi_E(x) = \begin{cases} 1 & , x \in E \\ 0 & , \text{ sonst} \end{cases}$ Es ist: $\psi_E \mu$ -Treppenfunktion $\Leftrightarrow E \in \mathcal{M}(\mu)$

Sei $\zeta \geq 0, \zeta = \sum_{i=1}^k s_i \psi_{A_i}$ mit A_i messbar und $s_i \geq 0$ und die A_i sind paarweise disjunkt. So eine Darstellung heißt **einfach**.

Wir setzen:

$$(\star) I(\zeta) := \sum_{i=1}^{k} s_i \mu(A_i)$$

Für $\zeta = 0$ folgt $I(\zeta) = 0 \cdot \mu(X) = 0$

Jedes $\zeta \in \mathcal{T}^+(\mu)$ besitzt eine einfache Darstellung, z.B. können wir für s_i die endlich vielen Funktionswerte wählen und $A_i = \{\zeta = s_i\}$

Lemma IV.2

Das Integral $I: \mathcal{T}^+(\mu) \to [0, \infty]$ ist durch (\star) wohldefiniert. Für $\zeta, \phi \in \mathcal{T}^+(\mu)$ und $\alpha, \beta \in [0, \infty)$ gilt:

i)
$$I(\alpha \zeta + \beta \psi) = \alpha I(\zeta) + \beta I(\psi)$$

ii)
$$\zeta \leq \psi \implies I(\zeta) \leq I(\psi)$$

Beweis. siehe Aufschrieb

Bem.:

Für A_i messbar und $s_i \ge 0$ folgt aus i) auch für A_i nicht disjunk:

$$I(\zeta) = \sum_{i=1}^{k} s_i \mu(A_i) \quad \text{für } \zeta = \sum_{i=1}^{k} s_i \psi_{A_i}$$

Def. IV.3 (Lebesgue-Integral)

Für $f: X \to [0, \infty]$ μ -messbar, setze

$$\int f d\mu = \sup\{I(\zeta) \mid \zeta \in \mathcal{T}^+(\mu), \zeta \le f\}$$

 ζ heißt **Unterfunktion** von f.

Ist $f:X\to [-\infty,\infty]$ μ -messbar und sind die Integrale von f^\pm nicht beide unendlich, so setzen wir

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu \in [-\infty, \infty]$$

Bem.:

Für $f \geq 0$ sind beide Schritte kompatibel, denn dann gilt $f = f^+$ und $f^- = 0$

Lemma IV.4

Für $f \in \mathcal{T}^+(\mu)$ gilt: $\int f d\mu = I(f)$

Beweis. siehe Aufschrieb

Bsp.:

 $\chi_{\mathbb{O}}$ ist eine λ^1 -Treppenfunktion und es gilt:

$$\int_{0}^{\infty} \chi_{\mathbb{Q}} d\lambda^{1} = I(\chi_{\mathbb{Q}}) = 0 \cdot \lambda^{1}(\mathbb{R} \setminus \mathbb{Q}) + 1 \cdot \lambda^{1}(\mathbb{Q}) = 0 + 1 \cdot 0 = 0$$

Def. IV.5

 $f: X \to \mathbb{R}$ heißt integrierbar bzgl. μ , wenn sie μ -messbar ist und wenn gilt:

$$\int f d\mu \in \mathbb{R} \Leftrightarrow \int f^+ d\mu + \int f^- d\mu < \infty$$

Bsp.:

 $\mu = card, X = \mathbb{N}_0$

z.z.: $f: \mathbb{N}_0 \to \mathbb{R}$ ist bzgl. card auf \mathbb{N}_0 integrierbar $\implies \sum_{k \in \mathbb{N}} f(k)$ absolut konvergent

Dann gilt: $\int f dcard = \sum_{k \in \mathbb{N}} f(k)$

Beweis siehe Aufschrieb

Satz IV.6

 $f,g:X\to \mathbb{R}$ μ -messbar. Ist $f\leq g$ μ -fast überall und $\int f^-d\mu<\infty$, so existieren beide Integrale und es ist: $\int fd\mu\leq \int gd\mu$

"≥"gilt entsprechend wenn $f^+d\mu < \infty$

Beweis. siehe Aufschrieb

Bem.:

$$f, g: X \to \overline{\mathbb{R}}, f \mu$$
-messbar und $g = f \mu$ -fast überall $\stackrel{\text{Kapitel II}}{\Longrightarrow} g \mu$ -messbar Satz IV.6 $\Longrightarrow \int g^{\pm} d\mu = \int f^{\pm} d\mu \Longrightarrow \int f d\mu = \int g d\mu$

Vorlesung 12 11.11.2020

Bem.:

Einschub: zum Beweis von Satz III.7 siehe Aufschrieb

Lemma IV.7 (Tschebyscheff-Ungleichung)

Für $f: X \to [0, \infty]$ μ -messbar mit $\int f d\mu < \infty$ gilt:

$$\mu(\{f \geq s\}) \leq \begin{cases} \frac{1}{s} \cdot \int f d\mu & \text{ für } s \in (0, \infty) \\ 0 & \text{ für } s = \infty \end{cases}$$

Beweis. siehe Aufschrieb

Lemma IV.8

Sei $f: X \to \overline{\mathbb{R}}$ μ -messbar.

- i) ist $\int f d\mu < \infty \implies \{f = \infty\}$ ist μ -Nulllmenge
- ii) ist $f \ge 0$ und $\int f d\mu = 0 \implies \{f > 0\}$ ist μ -Nullmenge

Beweis. siehe Aufschrieb

Satz IV.9

Zu $f: X \to [0, \infty]$ μ -messbar gibt es eine Folge $f_k \in \mathcal{T}^+(\mu)$ mit $f_0 \leq f_1 \leq \dots$ und $\lim_{k \to \infty} f_k(x) = f(x) \ \forall x \in X.$

Beweis. siehe Aufschrieb

Satz IV.10 (Monotonie Konvergenz / Beppo-Levi)

Seien $f_k: X \to [0,\infty]$ μ -messbar mit $f_1 \le f_2 \le \dots$ und $f: X \to [0,\infty]$ mit $f(x):=\lim_{k\to\infty} f_k(x)$. Dann gilt:

$$\int f d\mu = \lim_{k \to \infty} \int f_k \ d\mu$$

Beweis. siehe Aufschrieb

Satz IV.11

 $f,g:X\to \overline{\mathbb{R}}$ integrierbar bzgl. μ , so ist auch $\alpha f+\beta g$ integrierbar $\forall \alpha,\beta\in\mathbb{R}$ und es gilt:

$$\int (\alpha f + \beta g) \ d\mu = \alpha \int f d\mu + \beta \int g d\mu$$

Beweis. siehe Aufschrieb

Def. IV.12

Sei μ ein äußeres Maß auf X und $E\subseteq X$ sei μ -messbar. Dann setzen wir, falls das rechte Integral existiert

$$\int_{E} f d\mu = \int f \chi_E d\mu$$

f heißt auf E integrierbar, wenn $f\chi_E$ integrierbar ist.

Bem.:

Wegen $(f\chi_E)^{\pm} = f^{\pm}\chi_E \leq f^{\pm}$ existiert das Integral von f über E auf jeden Fall dann, wenn $\in fd\mu$ existiert. (Speziell für $f \geq 0$)

Bsp.:

$$\alpha \in \mathbb{R}, \ f: \mathbb{R}^n \to \mathbb{R}, \ f(x) = ||x||^{-\alpha}$$
 Beh:

$$\int_{\mathbb{R}^n \setminus B_1(0)} f d\lambda^n < \infty \Leftrightarrow \alpha > n$$

$$\int_{B_1(0)} f d\lambda^n < \infty \Leftrightarrow \alpha < n$$

Beweis siehe Aufschrieb

Maße und messbare Funktionen

Notation:

Menge X, Potenzmenge $\mathcal{P}(X)$, eine Teilmenge von $\mathcal{P}(X)$ heißt Mengensystem

Def. V.1

Ein Mengensystem $\mathcal{A} \subseteq \mathcal{P}(X)$ heißt σ -Algebra, falls:

- (i) $X \in \mathcal{A}$
- (ii) $A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$
- (iii) $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$

Das Paar (X, A) heißt dann **messbarer Raum**.

Bem.:

1. $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcap_{i \in \mathbb{N}} A_i \in \mathcal{A}$ Denn: $\bigcap_{i \in \mathbb{N}} A_i = X \setminus (\bigcup_{i \in \mathbb{N}} X \setminus A_i)$

Defin.
$$\bigcap_{i \in \mathbb{N}} A_i - A \setminus \bigcup_{i \in \mathbb{N}} A \setminus A$$

- 2. $\emptyset = X \setminus X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \implies A \setminus B \in \mathcal{A}$ Denn: $A \setminus B = A \cap (X \setminus B)$

Bsp.:

- 1. $\mathcal{P}(X)$ ist σ -Algebra, $\{\emptyset, X\}$ ist σ -Algebra
- 2. später: Menge aller messbaren Mengen eines äußeren Maßes bildet eine σ -Algebra.

Satz V.2

Jeder Durchschnitt von (endlich oder unendlich vielen) σ -Algebren auf der selben Menge X ist wieder eine σ -Algebra.

Beweis. $(A_i)_{i\in I}$ sei eine Familie von σ -Algebren bezüglich X.

Offensichtlich gilt:
$$X \in \bigcap_{i \in I} \mathcal{A}_i$$

Sei $A \in \bigcap_{i \in I} \mathcal{A}_i \implies A \in \mathcal{A}_i \ \forall i \in I \implies X \setminus A \in \mathcal{A}_i \ \forall i \in I \implies X \setminus A \in \bigcap_{i \in I} A_i$

Analog für die abzählbare Vereinigung.

Def. V.3

Für ein Mengensystem $\mathcal{E} \subseteq \mathcal{P}(X)$ heißt $\sigma(\mathcal{E}) := \bigcap \{\mathcal{A} | \mathcal{A} \text{ ist } \sigma\text{-Algebra in } X \text{ mit } \mathcal{E} \subseteq \mathcal{A} \}$ die von \mathcal{E} erzeugte $\sigma\text{-Algebra}$. Man nennt \mathcal{E} das erzeugende System von $\sigma(\mathcal{E})$.

Bem.:

Dieser Durchschnitt ist nicht-trivial, denn $\mathcal{P}(X)$ ist σ -Algebra mit $\mathcal{E} \subseteq \mathcal{P}(X)$.

Bsp.:

- 1. Ist $E \subseteq X$ und $\mathcal{E} = \{E\} \implies \sigma(\mathcal{E}) = \{\emptyset, E, X \setminus E, X\}$
- 2. Sei (X, d) ein metrischer Raum. $\mathcal{O} \subseteq \mathcal{P}(X)$ sei das System der offenen Mengen. Die von \mathcal{O} erzeugte σ -Algebra heißt **Borel-\sigma-Algebra** $\mathbb{B}(\mathcal{O}) = \mathbb{B}$. Ihre Elemente heißen **Borelmengen**.
- 3. Seien $X \neq \emptyset$, (Y, \mathcal{C}) messbarer Raum, $f: X \to Y$ eine Abbildung und das Urbild von $C \subseteq Y$: $f^{-1}(C) := \{x \in X | f(x) \in C\}$. Dann ist $f^{-1}(\mathcal{C}) := \{f^{-1}(C) | C \in \mathcal{C}\}$ eine σ -Algebra bzgl. X. Begründung:
 - $-X \in f^{-1}(\mathcal{C})$, denn $f^{-1}(Y) = X$ und $Y \in \mathcal{C}$
 - $f^{-1}(C) \in f^{-1}(\mathcal{C}) \iff C \in \mathcal{C},$ $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$
 - Erinnerung: $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- 4. Sei X eine beliebige Menge und $(E)_i \subseteq \mathcal{P}(X), i \in I$, Mengensysteme, dann gilt: $\sigma(\bigcup_{i \in I} \mathcal{E}_i) = \sigma(\bigcup_{i \in I} \sigma(\mathcal{E}_i))$ Begründung:
 - Klar: ⊆
 - Andererseits enthält $\sigma(\bigcup_{i \in I} \mathcal{E}_i)$ das System $\bigcup_{i \in I} \sigma(\mathcal{E}_i)$ und ist eine σ -Algebra $\Longrightarrow \sigma(\bigcup_{i \in I} \sigma(\mathcal{E}_i)) \subseteq \sigma(\bigcup_{i \in I} \mathcal{E}_i)$

Notation:

 $\bar{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\} \text{ mit } -\infty < a < +\infty, \ \forall a \in \mathbb{R}$

Def. V.4

Eine Folge $(s_k) \subseteq \overline{\mathbb{R}}$ $(k \in \mathbb{N})$ konvergiert gegen $s \in \overline{\mathbb{R}}$, falls eine der folgenden Alternativen gilt:

- (i) $s \in \mathbb{R}$ und $\forall \epsilon > 0$ gilt: $s_k \in (s \epsilon, s + \epsilon) \subseteq \mathbb{R}$ für k hinreichend groß
- (ii) $s = \infty$ und $\forall r \in \mathbb{R} : s_k \in (r, \infty]$ für k hinreichend groß
- (iii) $s = -\infty$ und $\forall r \in \mathbb{R} : s_k \in [-\infty, r)$ für k hinreichend groß
- $(s_k) \subseteq \mathbb{R}$ ist genau dann in \mathbb{R} konvergent, wenn sie entweder in \mathbb{R} konvergiert, oder bestimmt gegen $\pm \infty$ divergiert.

Bsp.:

- $-s_k$ monoton $\implies s_k$ konvergiert in $\bar{\mathbb{R}}$
- $-a_k \ge 0 \implies \sum_{k \in \mathbb{N}} a_k \in \bar{\mathbb{R}}$
- Eine Menge $U \subseteq \overline{\mathbb{R}}$ ist genau dann offen, wenn $U \cap \mathbb{R}$ offen ist und im Fall $+\infty \in U$ (bzw. $-\infty \in U$) ein $a \in \mathbb{R}$ existiert, sodass $(a, \infty] \subseteq U$ (bzw. $[-\infty, a) \subset U$) ist.
- Die Borel- σ -Algebra $\bar{\mathbb{B}}$ auf $\bar{\mathbb{R}}$ wird durch die offenen Mengen in $\bar{\mathbb{R}}$ erzeugt. Es gilt: $\bar{\mathbb{B}} = \{B \cup E | B \in \mathbb{B}, E \subseteq \{-\infty, +\infty\}\}$

Notation:

 $\sup \emptyset := -\infty$, $\inf \emptyset := +\infty$ konsistent mit $A, B \subseteq \mathbb{R}$ gilt $A \subseteq B \implies \sup A < \sup B$ und $\inf A \ge \inf B$

Def. V.5

Sei $\mathcal{A} \subseteq \mathcal{P}(X)$ eine σ -Algebra, eine nicht-negative Mengenfunktion $\mu : \mathcal{A} \to [0, \infty]$ heißt **Maß** auf \mathcal{A} , falls:

- (i) $\mu(\emptyset) = 0$
- (ii) für beliebige paarweiße disjunkte $A_i \in \mathcal{A}, i \in \mathbb{N}$, gilt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i) \qquad (\sigma\text{-Additivität})$

Das Tripel (X, \mathcal{A}, μ) heißt **Maßraum**.

Bem.:

1. Für endlich viele paarweiße disjunkte $A_i \in \mathcal{A}, i = 1, ..., n$, folgt aus (ii) indem man $A_i = \emptyset$ für i = n + 1, ... setzt: $\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$

2. Monotonie des Maßes: $A, B \in \mathcal{A}$ mit $A \subseteq B \implies \mu(A) \le \mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A)$

Def. V.6

Sei (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt **endlich**, wenn $\mu(A) < \infty \ \forall A \in \mathcal{A}$ und σ -endlich, wenn es eine Folge $(X_i) \in \mathcal{A}$ mit $\mu(X_i) < \infty$ gibt, sodass $X = \bigcup_{i \in \mathbb{N}} X_i$.

Falls $\mu(X) = 1$, so wird μ Wahrscheinlichkeits-Maß genannt.

Bsp.:

- 1. Sei X eine beliebige Menge, $\mathcal{A} = \mathcal{P}(X)$, für $x \in X$ sei $\delta_x(A) := \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$ (Dirac-Maß)
 - Es gilt $\delta_x(A) \in \{0,1\}, \, \delta_x(\emptyset) = 0, \, \delta_x(X) = 1.$
 - Sei $A = \bigcup_{k \in \mathbb{N}} A_k$ gegeben mit A_k paarweiße disjunkt und $x \in A \implies x \in A_k$ für genau ein $k \in \mathbb{N} \implies \sigma$ -Additivität.
 - Für $x \notin A$ gilt sowieso $\delta_x A = 0$
 - ⇒ Das Dirac-Maß ist ein Wahrscheinlichkeits-Maß
- 2. **Zählmaß:** X beliebige Menge

Vorlesung 2

06.11.2020

$$\begin{array}{l} \operatorname{card}: \mathcal{P}(X) \to [0,\infty] \\ \operatorname{card}(A) := \begin{cases} \operatorname{Anzahl} \ \operatorname{der} \ \operatorname{Elemente} \ \operatorname{von} \ A, & \operatorname{falls} \ A \ \operatorname{endlich} \\ \infty, \operatorname{sonst} \end{cases} \\ \operatorname{F\"{u}r} A = \bigcup_{k \in \mathbb{N}} A_k \ \operatorname{endlich} \ \operatorname{und} \ \operatorname{paarweiße} \ \operatorname{disjunkt} \ \operatorname{ist} \ \operatorname{die} \ \sigma\operatorname{-Additivit\"{a}t} \ \operatorname{klar}. \end{array}$$

Sei A unendlich und $A = \bigcup_{k \in \mathbb{N}} A_k$.

- (a) nur endlich viele A_k nicht-trivial $\implies \exists k_0 : A_{k_0}$ ist unendlich
- (b) abzählbar viele A_k sind nicht-trivial \implies Behauptung
- ⇒ Behauptung

Zählmaß ist σ -endlich $\Leftrightarrow X$ ist abzählbar Zählmaß ist endlich $\Leftrightarrow X$ ist endlich

Bsp.:

X beliebige Menge, $A \subseteq \mathcal{P}(X)$ σ-Algebra, $\mu(A) = 0 \ \forall A \in \mathcal{A}$

Satz V.7 (Stetigkeitseigenschaften von Maßen)

Sei (X, \mathcal{A}, μ) Maßraum. Dann gelten für Mengen $A_i \in \mathcal{A}, i \in \mathbb{N}$ folgende Aussagen:

(i) Aus
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$$
 folgt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(ii) Aus
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$
 mit $\mu(A_1) < \infty$, folgt: $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(iii)
$$\mu(\bigcup_{i\in\mathbb{N}} A_i) \le \sum_{i\in\mathbb{N}} \mu(A_i)$$

Bem.:

- 1. (i) Stetigkeit von unten
 - (ii) Stetigkeit von oben
 - (iii) σ -Subadditivität von μ
- 2. Bedingung $\mu(A_i) \leq \infty$ in (ii) kann durch $\mu(A_k) \leq \infty$ für ein $k \in \mathbb{N}$ ersetzt werden, kann aber nicht weggelassen werden.

Begründung:

$$A_k = k, k+1, \dots \subseteq \mathbb{N}$$

$$card(A_k) = \infty \ \forall k \in \mathbb{N}$$
Aber: $card(\bigcap_{i \in \mathbb{N}} A_i) = card(\emptyset) = 0$

Beweis.

(i)
$$\tilde{A}_1 := A_1, \ \tilde{A}_k := A_k \setminus A_{k-1}, \ k \ge 2$$
 $\tilde{A}_i \text{ sind paarweiße disjunkt.}$

$$\bigcup_{i \in \mathbb{N}} \tilde{A}_i = \bigcup_{i \in \mathbb{N}} A_i$$

$$\mu(\bigcup_{i \in \mathbb{N}} A_i) = \mu(\bigcup_{i \in \mathbb{N}} \tilde{A}_i) = \sum_{i \in \mathbb{N}} \mu(\tilde{A}_i) = \lim_{k \to \infty} (\sum_{i=1}^k \mu(\tilde{A}_i)) = \lim_{k \to \infty} \mu(\bigcup_{i=1}^k A_k) = \lim_{k \to \infty} \mu(A_k)$$

(ii)
$$A'_k := A_1 \setminus A_k \implies A'_1 \subseteq A'_2 \subseteq \dots$$

Es gilt: $\mu(A_1) = \mu(A_1 \cap A_k) + \mu(A_1 \setminus A_k) = \mu(A_k) + \mu(A'_k)$
 $\implies \mu(A_1) - \lim_{k \to \infty} \mu(A_k) = \lim_{k \to \infty} \mu(A'_k) \stackrel{(i)}{=} \mu(\bigcup_{k \in \mathbb{N}} A'_i) = \mu(A_1 \setminus \bigcap_{i \in \mathbb{N}} A_i)$
 $= \mu(A_1) - \mu(\bigcap_{i \in \mathbb{N}} A_i)$

(iii) Es genügt, die Folge $B_1 = A_1$, $B_i \stackrel{i \geq 2}{=} A_i \setminus \bigcup_{j=1}^{i-1} A_j$ zu betrachten. $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} B_i \text{ und } (B_i) \text{ ist paarweiße disjunkt.}$ $\implies \mu(\bigcup_{i \in \mathbb{N}} A_i) = \mu(\bigcup_{i \in \mathbb{N}} B_i) = \sum_{i \in \mathbb{N}} \mu(B_i) \leq \sum_{i \in \mathbb{N}} \mu(A_i)$

Def. V.8

 (X, \mathcal{A}, μ) Maßraum.

Jede Menge $A \in \mathcal{A}$ mit $\mu(A) = 0$ heißt μ -Nullmenge. Das System aller μ -Nullmengen bezeichnen wir mit $\mathcal{N}(\mu)$. Das Maß μ heißt vollständig, wenn gilt:

$$N \subseteq A$$
 für ein $H \in \mathcal{A}$ mit $\mu(A) = 0$ $\Longrightarrow N \in \mathcal{A}$ und $\mu(N) = 0$

Bem.:

Nicht jedes Maß ist vollständig:

$$\mathcal{A} \neq \mathcal{P}(X) \ \mu(A) = 0 \ \forall A \in \mathcal{A}$$

Allerdings lässt sich jedes Maß vervollständigen:

Sei (X, \mathcal{A}, μ) Maßraum und \mathcal{T}_{μ} sei das System aller Mengen $N \subseteq X$ für die keine μ Nullmenge $B \in \mathcal{N}(\mu)$ existiert mit $N \subseteq B$. Es gilt:

$$\mu$$
 vollständig $\Leftrightarrow \mathcal{T}_{\mu} \subseteq \mathcal{A}$

Definiere auf $\bar{A}_{\mu} := \{A \cup N | A \in \mathcal{A}, N \in \mathcal{T}_{\mu}\}$ die Mengenfunktion $\bar{\mu}$ durch $\bar{\mu}(A \cup N) := \mu(A) \ \forall A \in \mathcal{A}, N \in \mathcal{T}_{\mu}$

Bem.:

$$\bar{\mu}$$
 ist wohldefiniert: $A \cup N = B \cup P$ mit $A, B \in \mathcal{A}, P, N \in \mathcal{T}_{\mu} \implies \exists C \in \mathcal{A}, \mu(C) = 0$: $P \subseteq C \implies A \subseteq B \cup C \implies \mu(A) \le \mu(B) + \mu(C) = \mu(B)$ Symm $\implies \mu(A) = \mu(B)$

 $\bar{\mu}$ heißt **Vervollständigung** von μ

Satz V.9

 (X, \mathcal{A}, μ) Maßraum. Dann ist $\bar{\mathcal{A}}_{\mu}$ eine σ -Algebra und $\bar{\mu}$ ein vollständiges Maß auf $\bar{\mathcal{A}}_{\mu}$, welches mit μ auf \mathcal{A} übereinstimmt.

Beweis. Offensichtlich:

- 1. $\mathcal{A} \subseteq \bar{\mathcal{A}}_{u}$
- 2. \mathcal{T}_{μ} ist abgeschlossen unter Abz. \bigcup

 \mathcal{A} ist auch abgeschlossen unter abzählbarer Vereinigung

 $\implies A_{\mu}$ abgeschlossen unter abzählbarer Vereinigung

Sei $x \in \bar{\mathcal{A}}_{\mu}$. Für $E \in \bar{\mathcal{A}}_{\mu}$ ex. ein $A \in \mathcal{A}$, $N \in \mathcal{T}_{\mu}$ und $B \in \mathcal{A}$ und $N \subseteq B$ mit $\mu(B) = 0$, sodass $E = A \cup N$

$$\implies B \setminus N \in \mathcal{T}_{\mu}$$

$$\implies X \setminus E = (X \setminus (A \cup B)) \cup (B \setminus N) \in \bar{\mathcal{A}}_{\mu}$$

 $\implies \mathcal{A}_{\mu}$ ist σ -Algebra

 $\bar{\mu}$ ist Maß (ist klar)

Sei $M \subseteq B = A \cup N$ mit $A \in \mathcal{A}, N \in \mathcal{T}_{\mu}$ und $\bar{\mu}(B) = \mu(A) = 0$

Aus $M = (M \cap A) \cup (M \cap N) \in \mathcal{T}_{mu} \cup \mathcal{T}_{\mu} = \mathcal{T}_{\mu} \in \bar{\mathcal{A}}_{\mu}$

 $\implies \bar{\mu}$ ist vollständig.

Satz V.10

 (X, \mathcal{A}, μ) Maßraum und $(X, \bar{\mathcal{A}}_{\mu}, \bar{\mu})$ sei Vervollständigung. Ferner sei (X, \mathcal{B}, ν) ein vollständiger Maßraum mit $\mathcal{A} \subseteq \mathcal{B}$ und $\mu = \nu$ auf \mathcal{A} . Dann ist $\bar{\mathcal{A}}_{\mu} \subseteq \mathcal{B}$ und $\bar{\mu} = \nu$ auf $\bar{\mathcal{A}}_{\mu}$.

Beweis. Aus $\mathcal{A} \subseteq \mathcal{B}$ und $\mu = \nu$ auf \mathcal{A} folgt: $\mathcal{N}(\mu) \subseteq \mathcal{N}(\nu) \implies \mathcal{T}_{\mu} \subseteq \mathcal{T}_{\mu}$ vollständig $\implies \mathcal{T}_{\nu} \subseteq \mathcal{B} \implies \mathcal{T}_{\mu} \subseteq \mathcal{B} \implies \bar{\mathcal{A}}_{\mu} \subseteq \mathcal{B}$

Da $\bar{\mu}$ auf $\bar{\mathcal{A}}_{\mu}$ vollständig durch μ auf \mathcal{A} bestimmt ist, folgt sofort $\bar{\mu} = \nu$ auf $\bar{\mathcal{A}}_{\mu}$, da $\mu = \nu$ auf \mathcal{A} .

Def. V.11

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume. Eine Abbildung $f: X \to Y$ heißt $\mathcal{A} - \mathcal{C} - \mathbf{messbar}$, falls $f^{-1}(\mathcal{C}) \subseteq \mathcal{A}$

Notation:

Falls \mathcal{A}, \mathcal{C} klar sind, bezeichnen wir f einfach als messbar.

Bsp.:

1. $(X, \mathcal{A}), (Y, \mathcal{C})$ beliebige messbare Räume. Sei $y_0 \in Y$ und $f: X \to Y, f(x) = y_0 \ \forall x \in X$ $\implies f \text{ ist } \mathcal{A}\text{-}\mathcal{C}\text{-messbar}$

2. $\chi_R: X \to \mathbb{R}, \chi_R(x) = \begin{cases} 1, \text{ falls } x \in E \subseteq X \\ 0, \text{ sonst} \end{cases}$

 \mathbb{R} wird versehen mit Borel- σ -Algebra \mathcal{B} . Für (X, \mathcal{A}) messbarer Raum gilt: $\chi_R \mathcal{A}$ - \mathcal{B} -messbar $\Leftrightarrow E \in \mathcal{A}$

3. Komposition messbarer Abbildungen ist messbar.

 $(X, \mathcal{A}), (Y, \mathcal{C}), (Z, \mathcal{D})$ messbare Räume.

 $f: X \to Y \mathcal{A}\text{-}\mathcal{C}\text{-messbar}$

 $g: Y \to Z$ C-D-messbar

 $\implies g \circ f: X \to Z \text{ ist } A\text{-}\mathcal{D}\text{-messbar, denn:}$

 $(g \circ f)^{-1}(\mathcal{D}) = f^{-1}(g^{-1}(\mathcal{D})) \subseteq f^{-1}(\mathcal{C}) \subseteq \mathcal{A}$

Lemma V.12

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume und $\mathcal{C} := \sigma(\mathcal{E})$. Jede Abbildung $f : X \to Y$ mit $f^{-1}(\mathcal{E}) \subseteq \mathcal{A}$ ist \mathcal{A} - \mathcal{C} -messbar.

Beweis. Es gilt: $f^{-1}(\mathcal{C}) = f^{-1}(\sigma(\mathcal{E})) \stackrel{s.Blatt1}{=} \sigma(f^{-1}(\mathcal{E})) \subseteq \sigma(\mathcal{A}) = \mathcal{A}$

Bsp.:

1. Jede stetige Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$ ist \mathbb{B}^n -messbar (man sagt: f ist **borel-messbar**). Denn $\mathbb{B}^n = \sigma(\{\text{offene Teilmengen des } \mathbb{R}^n\})$ und Urbilder offener Mengen sind offen für f stetig (siehe. Ana 1)

2. Sei $X \neq \emptyset$ Menge, (Y, \mathcal{C}) messbarer Raum, $f: X \to Y$ Abbildung. Nach Bsp. aus 1. Vorlesung ist $f^{-1}(\mathcal{C})$ σ -Algebra. Offensichtlich ist $f^{-1}(\mathcal{C}) \subseteq \mathcal{P}(X)$ die kleinste σ -Algebra und f messbar.

Notation:

Multiplikation und Division in $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$

$$s * (\pm \infty) = (\pm \infty) * s = \begin{cases} \pm \infty &, \text{ falls } s \in (0, \infty] \\ 0 &, \text{ falls } s = 0 \\ \mp \infty &, \text{ falls } s \in [-\infty, 0) \end{cases}$$

$$\frac{1}{t} = 0$$
 für $t = \pm \infty$

Def. V.13

 (X, \mathcal{A}) messbarer Raum und $D \in \mathcal{A}$.

Eine Funktion $f: D \to \overline{\mathbb{R}}$ heißt numerische Funktion.

Lemma V.14

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f: D \to \mathbb{R}$.

Dann sind folgende Aussagen äquivalent:

(i) f ist \mathcal{A} - \mathbb{B}^1 -messbar

(ii) $\forall \mathcal{U} \subseteq \mathbb{R}$ offen ist $f^{-1}(\mathcal{U}) \in \mathcal{A}$ und $f^{-1}(\{\infty\}), f^{-1}(\{-\infty\}) \in \mathcal{A}$

(iii) $\{f \le s\} := \{x \in D \mid f(x) \in [-\infty, s]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(iv) $\{f < s\} := \{x \in D \mid f(x) \in [-\infty, s)\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(v) $\{f \ge s\} := \{x \in D \mid f(x) \in [s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(vi) $\{f > s\} := \{x \in D \mid f(x) \in (s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

Beweis. \mathbb{B}^1 wird erzeugt durch die offenen Mengen und $\pm \infty \implies (i) \Leftrightarrow (ii)$

 $(iii) \Leftrightarrow (iv) \Leftrightarrow (v) \Leftrightarrow (vi) denn:$

(iv)
$$\Longrightarrow$$
 (iii): $f \le s = \bigcap_{k \in \mathbb{N}} \{f < s + \frac{1}{k}\}$
(iii) \Longrightarrow (vi): $\{f > s\} = D \setminus \{f \le s\}$
(vi) \Longrightarrow (v): $\{f \ge \bigcap_{k \in \mathbb{N}} \{f > s - \frac{1}{k}\}\}$
(v) \Longrightarrow (iv): $\{f < s\} = D \setminus \{f \ge s\}$

(iii)
$$\implies$$
 (vi): $\{f > s\} = D \setminus \{f \le s\}$

(vi)
$$\implies$$
 (v): $\{f \ge \bigcap_{k \in \mathbb{N}} \{f > s - \frac{1}{k}\}\}$

(v)
$$\Longrightarrow$$
 (iv): $\{f < s\} = D \setminus \{f \ge s\}$

(ii)
$$\implies$$
 (vi), denn: $\{f > s\} = f^{-1}(s, \infty) \cup f^{-1}(\{\infty\}) \in \mathcal{A}$

Für ein offenes Intervall (a,b) gilt: $f^{-1}((a,b)) = \{f > a\} \cap \{f < b\} \in \mathcal{A}$ Eine der Aussagen (und damit alle) (iii) - (vi) gelte.

Mann kann zeigen: Jede offene Menge $U \subseteq \mathbb{R}$ lässt sich als abzählbare Vereinigung $\mathcal{U} = \bigcup I_k$ von offenen Intervallen $I_k = (a_k, b_k)$ schreiben (siehe Blatt 2).

In (iii) - (vi) reicht es aus, $s \in \mathbb{Q}$, statt $s \in \mathbb{R}$ zu haben, denn es gilt z.B.: $\{f \ge s\} = \bigcap \{f > q\}$

> Vorlesung 3 09.11.20

Lemma V.15

Sei (X, \mathcal{A}) ein messbarer Raum, $D \in \mathcal{A}$ und $f, g : D \to \mathbb{R}$ \mathcal{A} -messbar. Dann sind die Mengen $\{f < g\} := \{x \in D : f(x) < g(x)\}\$ und $\{f \le g\} := \{x \in D : f(x) \le g(x)\}\$ Elemente aus A.

Beweis. Es gilt:
$$\{f < g\} = \bigcup_{q \in \mathbb{Q}} (\{f < g\} \cap \{g > q\}) \in \mathcal{A}$$
, denn: $\{f < g\}, \{g > q\} \in \mathcal{A}$ (s. Lemma I.14) $\{f \leq g\} = D \setminus \{f > g\} \in \mathcal{A}$

Bem.:

Im folgenden Satz sind die Grenzfunktionen paarweiße definiert, z.B.: $\liminf f_x: X \to \mathbb{R}$ ist definiert durch: $(\liminf f_k)(x) := \liminf f_k(x)$

Satz V.16

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f_k : D \to \mathbb{R}$ Folge von \mathcal{A} -messbaren Funktionen. Dann sind auch folgende Funktionen A-messbar:

$$\inf_{k \in \mathbb{N}} f_k, \sup_{k \in \mathbb{N}} f_k, \lim_{k \to \infty} \inf_{k \to \infty} f_k, \lim_{k \to \infty} \sup_{k \to \infty} f_k$$

Beweis. Für $s \in \mathbb{R}$ gilt:

$$\{\inf_k f_k \ge s\} = \bigcap_{k \in \mathbb{N}} \{f_k \ge s\} \in \mathcal{A}, \text{ denn nach Lemma I.14 ist } \{f_k \ge s\} \in \mathcal{A}$$

$$\{\sup_k f_k \le s\} = \bigcap_{k \in \mathbb{N}} \{f_k \le s\} \in \mathcal{A}$$

$$\text{Lemma I.14}, \text{ of } f_k = 1, 1, 2, \dots, n$$

 $\stackrel{\text{Lemma I.14}}{\Longrightarrow}$ inf f_k , sup f_k sind \mathcal{A} -messbar

 $\liminf_{k\to\infty} f_k = \sup_{k\in\mathbb{N}} (\inf_{l\geq k} f_l) \text{ ist } \mathcal{A}\text{-messbar.}$

 $\limsup_{k \to \infty} f_k = \inf_{k \in \mathbb{N}} (\sup_{l \ge k} f_l) \text{ ist } \mathcal{A}\text{-messbar.}$

Notation:

Seien $D \in \mathcal{A}$ und $f: D \to \overline{\mathbb{R}}$, dann sind $f^{\pm}: D \to [0, \infty]$ definiert durch: $f^+ := max(f,0) \ge 0$ und $f^- := max(-f,0) = -min(f,0) \ge 0$ $\implies f = f^+ - f^-, |f| = f^+ + f^-$

Satz V.17

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}, f, g : D \to \mathbb{R}$ \mathcal{A} -messbar, $\alpha \in \mathbb{R}$. Dann sind die Funktionen

$$f+g, \ \alpha f, \ f^{\pm}, \ max(f,g), \ min(f,g), \ |f|, \ fg, \ \frac{f}{g}$$

auf ihren Definitionsbereichen, die in \mathcal{A} liegen \mathcal{A} -messbar.

Beweis.

1. $f, g: D \to \mathbb{R}$

$$- \{f + g < t\} = \bigcup_{\substack{r,s \in \mathbb{Q} \\ r + s < t}} \{f < r\} \cap \{g < s\} \in \mathcal{A}$$

$$\{-f < t\} = \{f > -t\} \in \mathcal{A}$$

$$\Longrightarrow f + g, -f\mathcal{A}\text{-messbar. Ebenso } \alpha f \text{ für } \alpha \in \mathbb{R}$$

- Für $\mathcal{C} \in C^{\infty}(\mathbb{R})$ ist $\mathcal{C} \circ f$ messbar, denn für $\mathcal{U} \subseteq \mathbb{R}$ offen ist $\mathcal{C}^{-1}(\mathcal{U})$ offen und damit $(\mathcal{C} \circ f)^{-1}(\mathcal{U}) = f^{-1}(\mathcal{C}^{-1}(\mathcal{U})) \in \mathcal{A}$ $\implies f^{\pm} \text{ sind } \mathcal{A}\text{-messbar (wähle } \mathcal{C}(s)) = max(\pm s, 0))$ $\Rightarrow |f| = f^{+} + f^{-},$ $max(f,g) = \frac{1}{2}(f+g+|f-g|) \text{ und}$ $min(f,g) = \frac{1}{2}(f+g-|f-g|) \text{ sind } \mathcal{A}\text{-messbar}$

$$min(f,g) = \frac{1}{2}(f+g-|f-g|)$$
 sind \mathcal{A} -messbar

$$-f^2 = \mathcal{C} \circ f$$
 mit $\mathcal{C}(s) = s^2$ und
$$fg = \frac{1}{4}((f+g)^2 - (f-g)^2) \mathcal{A}\text{-messbar}$$

$$-\frac{1}{g}$$
 ist A -messbar, denn:

$$\left\{\frac{1}{g} < s\right\} = \begin{cases} \left\{\frac{1}{s} < g < 0\right\} & , s < 0\\ \left\{g < 0\right\} & s = 0\\ \left\{g < 0\right\} \cup \left\{g > \frac{1}{2}\right\} & s > 0 \end{cases}$$

2. f, g beliebig

Betrachte
$$f_k(x) = \begin{cases} k & , f(x) \ge k \\ -k & , f(x) \le -k \in \mathbb{R} \\ f(x) & , \text{ sonst} \end{cases}$$

Analog $g_k(x)$. f_k, g_k sind \mathcal{A} -messbar $\forall k$

Punktweise gilt: $f_k(x) \to f(x), g_k(x) \to g(x)$

Ebenso: $f_k + g_k \to f + g, \alpha f_k \to \alpha f, ..., f_k g_k \to f g$ punktweise.

Der Allgemeine Fall folgt aus 1. und Satz I.16.

Notation:

Sei (X, \mathcal{A}, μ) Maßraum. Man sagt, die Aussage A[x] ist wahr für μ -fast alle $x \in M \in \mathcal{A}$ oder μ -fast überall auf M, falls es eine μ -Nullmenge N gibt mit

$$\{x \in M : A[x] \text{ ist falsch}\} \subseteq N$$

Dabei wird nicht verlangt, dass $\{x \in M : A[x] \text{ ist falsch}\}$ selbst zu \mathcal{A} gehört. Zum Beispiel bedeutet für Funktionen $f,g:X \to \overline{\mathbb{R}}$ die Aussage " $f(x) \leq g(x)$ für μ -fast alle $x \in X$ ", dass es eine Nullmenge N gibt, so dass $\forall x \in X \setminus N$ gilt: $f(x) \leq g(x)$. Eine Funktion h ist " μ -fast überall auf X definiert", wenn h auf $D \in \mathcal{A}$ definiert ist und $\mu(X \setminus D) = 0$.

Bsp.: ("Konvergenz μ -fast überall")

Eine Folge von Funktionen $f_k: D \to \overline{\mathbb{R}}$ konvergiert punktweise μ -fast überall gegen $f: D \to \overline{\mathbb{R}}$, wenn es eine μ -Nullmenge N gibt, so dass $\forall x \in D \setminus N$ gilt:

$$\lim_{k \to \infty} f_k(x) = f(x)$$

Ziel:

Messbarkeit für Funktionen, die nur μ -fast überall definiert sind.

Def. V.18

 (X, \mathcal{A}, μ) Maßraum. Eine auf $D \in \mathcal{A}$ definierte Funktion $f : D \to \mathbb{R}$ heißt μ -messbar (auf X), wenn $\mu(X \setminus D) = 0$ und $f \mathcal{A}|_{\mathcal{D}}$ -messbar ist. $(\mathcal{A}|_{D} := \{A \cap D | A \in \mathcal{A}\}$, siehe Blatt 1)

Bem.:

- 1. Unterscheiden zwischen A-messbaren Funktionen (auf X), die <u>überall</u> auf X definiert sind, und μ -messbaren Funktionen (auf X), die in der Regel nur μ -fast <u>überall</u> definiert sind.
- 2. Analog zu \mathcal{A} -Messbarkeit verwenden wir μ -Messbarkeit auf für Funktionen, die nur auf Teilmengen definiert sind:

Sei (X, \mathcal{A}, μ) Maßraum, $D \in \mathcal{A}$. $f : E \to \mathbb{R}$ heißt μ -messbar (auf D), wenn $E \subseteq D$ in \mathcal{A} liegt mit $\mu(D \setminus E) = 0$ und $f \mathcal{A}|_{E}$ -messbar.

- 3. " $f = g \mu$ -fast überall"ist eine Äquivalenzrelation auf der Menge aller Funktionen
- 4. Sei $D \in \mathcal{A}, f: D \to \mathbb{R}$ μ -messbar. Dann ex. eine \mathcal{A} -messbare Funktion $g: X \to \mathbb{R}$ mit f = g auf D, z.B.: $g = \begin{cases} f & \text{, auf } D \\ 0 & \text{, auf } X \setminus D \end{cases}$

Somit übertragen sich die Sätze I.16 und I.17 auf μ -messbare Funktionen.

Vorlesung 4 13.11.20

Lemma V.19

 (X, \mathcal{A}, μ) vollständiger Maßraum. f μ -messbar auf X. Dann ist auch jede Funktion \tilde{f} mit $\tilde{f} = f$ μ -fast überall μ -messbar.

 $\begin{array}{l} \textit{Beweis.} \text{ Sei } f \text{ auf } D \in \mathcal{A} \text{ definiert mit } \mu(X \setminus D) = 0 \text{ und sei } \tilde{f} \text{ auf } \tilde{D} \subseteq X \text{ definiert.} \\ \text{Vor.} \implies \exists \text{ Nullmenge } N \text{ mit } X \setminus N \subseteq \cap \tilde{D} \text{ und } \tilde{f}(x) = f(x) \ \forall x \in X \setminus N \\ \implies X \setminus \tilde{D} \subseteq N \\ \stackrel{\mu\text{-vollständig}}{\Longrightarrow} X \setminus \tilde{D} \in \mathcal{A} \implies \tilde{D} \in \mathcal{A}. \end{array}$

Weiter gilt:

$$\{x \in \tilde{D} | \tilde{f}(x) < s\} = \{x \in \tilde{D} \cap N | \tilde{f}(x) < s\} \cup \{x \in \tilde{D} \cap (X \setminus N) | \tilde{f}(x) < s\}$$

$$= \{x \in \tilde{D} \cap N | \tilde{f}(x) < s\} \cup \{x \in D \cap (X \setminus N) | f(x) < s\}$$

$$= \{x \in \tilde{D} \cap N | \tilde{f}(x) < s\} \cup \{x \in D | f(x) < s\} \setminus \{x \in D \cap N | f(x) < s\}$$

$$=: A \cup B$$
Da $f \mu$ -messbar ist, folgt, dass $B \in \mathcal{A}$

Da f μ -messbar ist, folgt, dass $B \in \mathcal{A}$ μ -vollständig $\Longrightarrow A \in \mathcal{A} \Longrightarrow \{x \in \tilde{D} | \tilde{f}(x) < s\} \in \mathcal{A} \ \forall s$

Weiter ist $\{x \in \tilde{D} | \tilde{f}(x) < s\} \subseteq \tilde{D} \implies \{x \in \tilde{D} | \tilde{f}(x) < s\} \in \mathcal{A}|_{\tilde{D}} \Leftrightarrow \tilde{f} \mu\text{-messbar}$

Satz V.20

 (X, \mathcal{A}, μ) vollständiger Maßraum und seien $f_k, k \in \mathbb{N}, \mu$ -messbar. Falls f_k punktweise μ -fast überall gegen f konvergiert, dann ist f auch μ -messbar.

Beweis. Sei f_k auf $D_k \in \mathcal{A}$ definiert. Dann sind alle f_k , $k \in \mathbb{N}$, auf $D := \bigcap_{k \in \mathbb{N}} D_k$ definiert und $X \setminus D$ ist μ -Nullmenge $E := \{x \in D | \lim_{k \to \infty} f_k(x) \neq f(x)\}$ und betrachte

$$\tilde{f}_k(x) = \begin{cases} f_k(x) &, \forall x \in D \setminus E \\ 0 &, \text{ sonst} \end{cases}, \ \tilde{f}(x) = \begin{cases} f(x) &, \forall x \in D \setminus E \\ 0 &, \text{ sonst} \end{cases}$$

Es gilt $\tilde{f} = \lim_{k \to \infty} \tilde{f}_k \stackrel{\text{Satz I.16}}{\Longrightarrow} \tilde{f}$ ist \mathcal{A} -messbar

Vor.: $(X \setminus D) \cup E$ ist μ -Nullmenge $\stackrel{\text{Lemma I.14}}{\Longrightarrow} f$ ist μ -messbar.

Satz V.21 (Egorov)

 (X, \mathcal{A}, μ) Maßraum, $D \in \mathcal{A}$ Menge mit $\mu(D) < \infty$ und f_n, f μ -messbare, μ -fast überall endliche Funktionen auf D mit $f_n \to f$ μ -fast überall. Dann existiert $\forall \epsilon > 0$ eine Menge $B \in \mathcal{A}$ mit $B \subseteq D$ und

- (i) $\mu(D \setminus B) < \epsilon$
- (ii) $f_n \to f$ gleichmäßig auf B

Beweis.
$$E := \{x \in D | f_n(x), f(x) \text{ sind endlich und } f_n(x) \to f(x) \}$$

Vor.
$$\implies \exists \mu$$
-Nullmenge N mit $D \setminus E \subseteq N$

O.B.
$$E = D$$
 (sonst erstetze D durch $D \setminus N$)

Sei
$$C_{i,j} := \bigcup_{n=i}^{\infty} \{x \in D | |f_n(x) - f(x)| > 2^{-i} \}, i, j \in \mathbb{N}$$

Satz I.17
$$\implies C_{i,j} \in \mathcal{A} \text{ und } C_{i,j+1} \subseteq C_{i,j} \ \forall i,j \in \mathbb{N}$$

Sei
$$C_{i,j} := \bigcup_{n=j}^{\infty} \{x \in D | |f_n(x) - f(x)| > 2^{-i} \}, i, j \in \mathbb{N}$$

Satz I.17 $\Longrightarrow C_{i,j} \in \mathcal{A} \text{ und } C_{i,j+1} \subseteq C_{i,j} \ \forall i, j \in \mathbb{N}$
 $\mu(D) < \infty \xrightarrow{\text{Satz I.7}} \lim_{j \to \infty} \mu(C_{i,j}) = \mu(\bigcap_{j \in \mathbb{N}} C_{i,j}) = 0, \text{ denn } f_n \to f$

Sei $\epsilon > 0$ gegeben

$$\implies \forall i \in \mathbb{N} \ \exists N(i) \in \mathbb{N} \ \mathrm{mit} \ \mu(C_{i,N(i)}) < \epsilon * 2^{-i}$$

Setze
$$B := D \setminus \bigcup_{i \in \mathbb{N}} C_{i,N(i)} \in \mathcal{A} \text{ und } \mu(D \setminus B) = \mu(\bigcup_{i \in \mathbb{N}} C_{i,N(i)}) \stackrel{\text{Satz I.7}}{\leq} \sum_{i \in \mathbb{N}} \mu(C_{i,N(i)}) < \epsilon$$

 $\forall i \in \mathbb{N} \ \forall x \in B \ \forall n > N(i) \text{ gilt:}$

$$|f_n(x) - f(x)| \le 2^{-i} \implies f_n \to f \text{ auf } B$$

VI Äußere Maße

Def VI 1

Sei X eine Menge. Eine Funktion $\mu: \mathcal{P}(X) \to [0, \infty]$ mit $\mu(\emptyset) = 0$ heißt **äußeres** Maß auf X, falls gilt:

$$A \subseteq \bigcup_{i \in \mathbb{N}} A_i \implies \mu(A) \le \sum_{i \in \mathbb{N}} \mu(A_i)$$

Bem.:

- 1. Die Begriffe σ -additiv, σ -subadditiv, σ -endlich, endlich, monoton sowie Nullmenge und μ -fast überall werden wie für Maße definiert. (Man ersetze überall \mathcal{A} durch $\mathcal{P}(X)$)
- 2. Ein äußeres Maß ist monoton, σ -subadditiv und insbesondere endlich subadditiv (d.h. $A\subseteq\bigcup_{i=1}^n A_i \implies \mu(A)\le\sum_{i=1}^n \mu(A_i)$)

Def. VI.2

Sei μ äußeres Maß auf X. Die Menge $A \subseteq X$ heißt μ -messbar, falls $\forall S \subseteq X$ gilt:

$$\mu(S) \ge \mu(S \cap A) + \mu(S \setminus A).$$

Das System aller μ -messbaren Mengen wird mit $\mathcal{M}(\mu)$ bezeichnet.

Bem.:

Da $S = (S \cap A) \cup (S \setminus A)$ folgt aus Def. II.1:

$$\mu(S) < \mu(S \cap A) + \mu(S \setminus A)$$

d.h.: A messbar $\Leftrightarrow \mu(S \cap A) + \mu(S \setminus A) \ \forall S \subseteq X$

Bsp.:

Jedes auf $\mathcal{P}(X)$ definierte Maß ist ein äußeres Maß (Satz I.7), also sind das DiracMaß und das Zählmaß äußere Maße.

Satz VI.3

Sei $\mathcal Q$ ein System von Teilmengen einer Menge X, welches die leere Menge enthält, und sei $\lambda:\mathcal Q\to[0,\infty]$ eine Mengenfunktion auf $\mathcal Q$ mit $\lambda(\emptyset)=0$. Definiere die Mengenfunktion $\mu(E):=\inf\{\sum_{i\in\mathbb N}\lambda(P_i)|\ P_i\in\mathcal Q, E\subseteq\bigcup_{i\in\mathbb N}P_i\}.$

Dann ist μ ein äußeres Maß.

 $(\inf \emptyset = \infty)$

Beweis. Mit $\emptyset \subseteq \emptyset \in \mathcal{Q}$ folgt $\mu(\emptyset) = 0$. Sei $E \subseteq \bigcup_{i \in \mathbb{N}} E_i$ mit $E, E_i \subseteq X$ und $\mu(E_i) < \infty$.

$$\underline{\text{z.z.:}} \ \mu(E) \leq \sum_{i \in \mathbb{N}} \mu(E_i)$$

Wähle Überdeckungen $E_i \subseteq \bigcup_{j \in \mathbb{N}} P_{i,j}$ mit $P_{i,j} \in \mathcal{Q}$, so dass zu $\epsilon > 0$ gegeben gilt:

$$\sum_{j\in\mathbb{N}} \lambda(P_{i,j}) < \mu(E_i) + 2^{-i} * \epsilon , \forall i \in \mathbb{N}$$

$$\implies E \subseteq \bigcup_{i,j \in \mathbb{N}} P_{i,j} \text{ und damit } \mu(E) \le \sum_{i,j \in \mathbb{N}} \lambda(P_{i,j}) \le \sum_{i \in \mathbb{N}} (\mu(E_i) + 2^{-i} * \epsilon) = \sum_{i \in \mathbb{N}} \mu(E_i) + \epsilon$$

Mit $\epsilon > 0$ folgt $\mu(E) \le \sum_{i \in \mathbb{N}} \mu(E_i)$

Satz VI.4

Sei $\mu: \mathcal{P}(X) \to [0, \infty]$ äußeres Maß auf X. Für M $\subseteq X$ gegeben erhält man durch $\mu \llcorner M: \mathcal{P}(X) \to [0, \infty], \mu \llcorner M(A) := \mu(A \cap M)$ ein äußeres Maß $\mu \llcorner M$ auf X, welches wir **Einschränkung** von μ auf M nennen. Es gilt:

 $A \mu$ -messbar $\Longrightarrow A \mu \sqcup M$ -messbar

Beweis. Aus der Definition folgt sofort, dass $\mu \sqcup M$ ein äußeres Maß ist. Weiter gilt für $A \subseteq X$ μ -messbar und $S \subseteq X$ beliebig:

$$\mu \llcorner M(S) = \mu(S \cap M)$$

$$\geq \mu((S \cap M) \cap A) + \mu((S \cap M) \setminus A)$$

$$= \mu((S \cap A) \cap M) + \mu((S \setminus A) \cap M)$$

$$= \mu \llcorner M(S \cap A) + \mu \llcorner M(S \setminus A)$$

⇒ Behauptung

Satz VI.5

 μ äußeres Maß auf X. Dann gilt:

$$N \text{ μ-Nullmenge} \implies N \text{ μ-messbar}$$

$$N_k, k \in \mathbb{N}, \mu\text{-Nullmenge} \implies \bigcup_{k \in \mathbb{N}} N_k \text{ μ-Nullmenge}$$

Beweis. Sei $\mu(N)=0$. Für $S\subseteq X$ folgt aus Monotonie: $\mu(S\cap N)\leq \mu(N)=0,\ \mu(S)\geq \mu(S\setminus N)=\mu(S\cap N)+\mu(S\setminus N)\implies N$ μ -messbar Zweite Behauptung folgt aus σ -Subadditivität.

Bem.:

 $\mathcal{M}(\mu)$ enthält alle Nullmengen $N\subseteq X$ und damit auch deren Komplemente (siehe Satz II.7). Es kann sein, dass keine anderen Mengen μ -messbar sind.

Bsp.:

Auf X bel. definiere: $\beta(A) = \begin{cases} 0 & , A = \emptyset \\ 1 & , \text{ sonst} \end{cases} \beta$ ist äußeres Maß.

Es sind nur \emptyset und X β -messbar, denn für X = S folgt aus der Annahme, dass A β -messbar ist: $1 \ge \beta(A) + \beta(X \setminus A)$

Vorlesung 5 16.11.20

Lemma VI.6

Seien $A_i \in \mathcal{M}(\mu), i = 1, ..., k$, paarweiße disjunkt und μ äußeres Maß. Dann gilt $\forall S \subseteq X$:

$$\mu(S \cap \bigcup_{i=1}^{k} A_i) = \sum_{i=1}^{k} \mu(S \cap A_i)$$

Beweis. $\underline{k=1}$: trivial $\underline{k \geq 2}$: A_k μ -messbar

$$\mu(S \cap \bigcup_{i=1}^{k} A_i) = \mu((S \cap \bigcup_{i=1}^{k} A_i) \cap A_k) + \mu((S \cap \bigcup_{i=1}^{k} A_i) \setminus A_k)$$

$$= \mu(S \cap A_k) + \mu(S \cap \bigcup_{i=1}^{k} A_k)$$

$$\stackrel{\text{IV}}{=} \sum_{i=1}^{k} \mu(S \cap A_i)$$

Satz VI.7

Sei $\mu : \mathcal{P}(X) \to [0, \infty]$ ein äußeres Maß. Dann ist $\mathcal{M}(\mu)$ eine σ -Algebra und μ ist ein vollständiges Maß auf $\mathcal{M}(\mu)$.

Beweis. Notation: Schreibe \mathcal{M} statt $\mathcal{M}(\mu)$ Es gilt:

$$-x \in \mathcal{M}$$
, denn: $\forall S \subseteq X$ ist:
 $\mu(S \cap X) + \mu(S \setminus X) = \mu(S) + \mu(\emptyset) = \mu(S)$

- Sei
$$A \in \mathcal{M} \implies X \setminus A \in \mathcal{M}$$
, denn $\forall S \subset X$ gilt: $\mu(S \cap (X \setminus A)) + \mu(S \setminus (X \setminus A)) = \mu(S \setminus A) + \mu(S \cap A) = \mu(S)$

Als nächstes zeigen wir:

 $A, B \in \mathcal{M} \implies A \cap B \in \mathcal{M} \ \forall S \subseteq X$ gilt:

$$\mu(S) = \mu(S \cap A) + \mu(S \setminus A)$$

$$\mu(S \cap A) = \mu(S \cap A \cap B) + \mu((S \cap A) \setminus B)$$

$$\mu(S \setminus (A \cap B)) = \mu((S \setminus (A \cap B)) \cap A) + \mu((S \setminus (A \cap B)) \setminus A)$$

$$= \mu((S \cap A) \setminus B) + \mu(S \setminus A)$$

$$\implies \mu(S) = \mu(S \cap (A \cap B)) + \mu(S \setminus (A \cap B))$$

$$\implies A \cup B \in \mathcal{M}, \text{ denn:}$$

$$A \cup B = X \setminus ((X \setminus A) \cap (X \setminus B))$$

Per Induktion:

 \mathcal{M} ist abgeschlossen unter endlichen Durchschnitten und Vereinigungen.

<u>Jetzt:</u> μ ist σ -additiv auf \mathcal{M} .

Seien $A_j, j \in \mathbb{N}$, paarweiße disjunkt mit $A_j \in \mathcal{M} \ \forall j \in \mathbb{N}$

Wähle $S = A_1 \cup A_2$ und benutze $A_1 \in \mathcal{M}$

$$\implies \mu(S) = \mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) \ \ (= \mu(S \cap A_1) + \mu(S \setminus A_1))$$

Induktion: Dasselbe gilt für endliche disjunkte Vereinigungen.

$$\sum_{j \in \mathbb{N}} \mu(A_j) = \lim_{k \to \infty} \sum_{j=1}^k \mu(A_j) = \lim_{k \to \infty} \mu(\bigcup_{j=1}^k A_j)$$

$$\leq \mu(\bigcup_{j \in \mathbb{N}} A_j) \stackrel{\sigma\text{-Subadd.}}{\leq} \sum_{j=1}^k \mu(A_j)$$

$$\implies \mu(\bigcup_{j\in\mathbb{N}} A_j) = \sum_{j\in\mathbb{N}} \mu(A_j) \implies \text{Behauptung}$$

Als letztes: \mathcal{M} ist abgeschlossen unter abzählbaren Vereinigungen Seien $A_j \in \mathcal{M}, j \in \mathbb{N}$. O.B. seien A_j paarweise disjunkt, sonst betrachte

$$\begin{split} \tilde{A}_i &:= A_i \setminus (A_1 \cup \ldots \cup A_{i-1}) \\ \text{Für } S \subseteq X \text{ folgt mit } \bigcup_{i=1}^k A_i \in \mathcal{M} : \end{split}$$

$$\mu(S) = \mu(S \cap \bigcup_{i=1}^{k} A_i) + \mu(S \setminus \bigcup_{i=1}^{k} A_i)$$

$$\stackrel{\text{Lemma II.6}}{\geq} \sum_{i=1}^{k} \mu(S \cap A_i) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i) \quad \forall k \in \mathbb{N}$$

Lasse $k \to \infty$

$$\implies \mu(S) \ge \sum_{i \in \mathbb{N}} \mu(S \cap A_i) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$\stackrel{\sigma\text{-Subadd.}}{\ge} \mu(\bigcup_{i \in \mathbb{N}} (S \cap A_i)) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$= \mu(S \cap (\bigcup_{i \in \mathbb{N}} A_i)) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$\implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{M}$$

Vollständigkeit von μ : siehe Lemma II.5

Lemma VI.8

 μ äußeres Maß, $A_i \in \mathcal{M}(\mu), i \in \mathbb{N}$. Dann gelten:

Jann genen:

i) Aus
$$A_1 \subseteq ... \subseteq A_i \subseteq A_{i+1} \subseteq ...$$
 folgt $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

ii) Aus
$$A_1 \supseteq ... \supseteq A_i \supseteq A_{i+1} \supseteq ...$$
 mit $\mu(A_1) < \infty$ folgt $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

Beweis. Folgt aus Satz I.7 und Satz II.7

Def. VI.9

Ein Mengensystem $\mathcal{A} \subseteq \mathcal{P}(X)$ heißt \bigcup -stabil (bzw. \bigcap -stabil, \-stabil), wenn $A \cup B \in \mathcal{A}$ (bzw. $A \cap B \in \mathcal{A}$, $A \setminus B \in \mathcal{A}$) $\forall A, B \in \mathcal{A}$ gilt.

Bem.:

J-stabil impliziert Stabilität bzgl. endlicher Vereinigung. Ebenso ∩-stabil.

Def. VI.10

Ein Mengensystem $\mathcal{R} \subset \mathcal{P}(X)$ heißt **Ring** über X, falls:

- i) $\emptyset \in \mathcal{R}$
- ii) $A, B \in \mathcal{R} \implies A \setminus B \in \mathcal{R}$
- iii) $A, B \in \mathcal{R} \implies A \cup B \in \mathcal{R}$

 \mathcal{R} heißt **Algebra**, falls zusätzlich $X \in \mathcal{R}$.

Bsp.:

- i) Für $A \subset X$ ist $\{\emptyset, A\}$ ein Ring, aber für $A \neq X$ keine Algebra.
- ii) System aller endlichen Teilmengen einer bel. Menge ist ein Ring.
- iii) Ebenso System aller höchstens abzählbaren Teilmengen.

Bem.:

Für $A, B \in \mathcal{R}$ gilt: $A \cap B = A \setminus (A \setminus B) \in \mathcal{R}$ Ringe sind \bigcup -stabil, \bigcap -stabil, \bigvee -stabil

Def. VI.11 (Im Aufschrieb II.10)

Sei $\mathcal{R} \subseteq \mathcal{P}(X)$ Ring. Eine Funktion $\lambda : \mathcal{R} \to [0, \infty]$ heißt **Prämaß** auf \mathcal{R} , falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{R}, i \in \mathbb{N}$, paarweiße disjunkt mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt:

$$\lambda(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\lambda(A_i)$$

Bem.:

 σ -subadditiv, subadditiv, σ -endlich, endlich, monoton, Nullmenge und fast-überall werden wie für Maße definiert.

Bsp.:

- i) \mathcal{R} Ring über X. $\lambda(A) = \begin{cases} 0 & H = \emptyset \\ \infty & \text{sonst} \end{cases}$
- ii) \mathcal{R} sei Ring der endlichen Teilmengen einer beliebigen Menge X und $\lambda = card|_{\mathcal{R}}$ ist Prämaß
- iii) Alle Maße sind Prämaße. Inbesondere äußere Maße eingeschränkt auf die messbaren Mengen.

Def. VI.12 (Im Aufschrieb II.11)

 λ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Ein äußeres Maß μ auf X (bzw. ein Maß auf \mathcal{A}) heißt **Fortsetzung** von λ , falls gilt:

i)
$$\mu|_{\mathcal{R}} = \lambda$$
, d.h. $\mu(A) = \lambda(A) \ \forall A \in \mathcal{R}$

ii) $\mathcal{R} \subseteq \mathcal{M}(\mu)$ (bzw. $\mathcal{R} \subset \mathcal{A}$), d.h. alle $A \in \mathcal{R}$ sind μ -messbar

Satz VI.13 (Caratheodory-Fortsetzung — Im Aufschrieb II.12)

 $\lambda: \mathcal{R} \to [0, \infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Sei $\mu: \mathcal{P}(X) \to [0, \infty]$ das in Satz II.3 aus \mathcal{R} konstruierte äußere Maß, d.h. $\forall E \subseteq X$:

$$\mu(E) := \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{R}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ .

 μ heißt induziertes äußeres Maß oder Caratheodory-Fortsetzung von λ .

Beweis.

i) $\mu(A) = \lambda(A) \ \forall A \in \mathcal{R}$

Wir haben $\mu(A) \leq \lambda(A)$ aus Def. mit $A_1 = A, A_2 = ... = \emptyset$

Für $\lambda(A) \leq \mu(A)$ reicht es zz, dass:

$$A \subseteq \bigcup_{i \in \mathbb{N}} A_i \text{ mit } A_i \in \mathcal{R} \implies \lambda(A) \le \sum_{i \in \mathbb{N}} \lambda(A_i)$$

Betrachte paarweise disjunkte Mengen $B_i = (A_i \setminus \bigcup_{j=1}^{i-1} A_j) \cap A \in \mathcal{R}$

$$\implies \lambda(A) = \lambda(\bigcup_{i \in \mathbb{N}} B_i) = \sum_{i \in \mathbb{N}} \lambda(B_i) \le \sum_{i \in \mathbb{N}} \lambda(A_i)$$

ii) Jedes $A \in \mathcal{R}$ ist μ -messbar.

Sei $A \in \mathcal{R}, S \subseteq X$ bel. mit $\mu(S) < \infty$. Zu $\epsilon > 0$ wähle $A_i \in \mathcal{R}$, sodass $S \subseteq \bigcup_{i \in \mathbb{N}} (A_i \cap A)$ und $S \setminus A \subseteq \bigcup_{i \in \mathbb{N}} (A_i \setminus A)$

$$\implies \mu(S \cap A) + \mu(S \setminus A) \le \sum_{i \in \mathbb{N}} \lambda(A_i \cap A) + \sum_{i \in \mathbb{N}} \lambda(A_i \setminus A)$$
$$= \sum_{i \in \mathbb{N}} \lambda(A_i) \le \mu(S) + \epsilon$$

Lasse $s \downarrow 0 \implies A \in \mathcal{M}(\mu)$

Für $\mu(S) = \infty$ ist das trivial.

Lemma VI.14 (Im Aufschrieb II.13)

 μ sei Caratheodory-Fortsetzung des Prämaßes $\lambda: \mathcal{R} \to [0, \infty]$ auf dem Ring \mathcal{R} über X. Sei $\tilde{\mu}$ ein Maß auf $\sigma(\mathcal{R})$ mit $\tilde{\mu} = \mu$ auf \mathcal{R} , dann gilt $\forall E \in \sigma(\mathcal{R})$: $\tilde{\mu}(E) \leq \mu(E)$

Beweis.
$$\forall E \in \sigma(\mathcal{R}) : E \subseteq \bigcup_{i \in \mathbb{N}} P_i \text{ mit } P_i \in \mathcal{R}$$

$$\implies \tilde{\mu}(E) \le \sum_{i \in \mathbb{N}} \tilde{\mu}(P_i) = \sum_{i \in \mathbb{N}} \lambda(P_i)$$

Bilde Infimum über alle solche Überdeckungen $\implies \tilde{\mu}(E) \leq \mu(E)$

> Vorlesung 6 20.11.20

Satz VI.15 (Im Aufschrieb II.14)

Sei $\lambda: \mathcal{R} \to [0, \infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Dann ex. ein Maß μ auf $\sigma(\mathcal{R})$ mit $\mu = \lambda$ auf \mathcal{R} . Diese Fortsetzung ist eindeutig, falls λ σ -endlich ist.

Beweis. Existenz folgt aus Satz II.13 und Satz II.7 $(\sigma(\mathcal{R}) \subseteq \mathcal{M}(\mu))$. Sei $\tilde{\mu}$ ein Maß auf $\sigma(\mathcal{R})$ mit $\tilde{\mu} = \lambda$ auf \mathcal{R} . Für $A_i \in \mathcal{R}$ und $\bigcup_{i=1}^n A_i = A \in \sigma(\mathcal{R})$ folgt aus Satz I.7.

$$\tilde{\mu}(A) = \lim_{n \to \infty} \tilde{\mu}(\bigcup_{i=1}^{n} A_i) = \lim_{\substack{n \to \infty \\ \infty}} \mu(\bigcup_{i=1}^{n} A_i) = \mu(A). \text{ Für } E \in \sigma(\mathcal{R}) \text{ mit } \mu(E) < \infty \text{ und } \epsilon > 0$$

ex. Mengen $A_i \in \mathcal{R}, A = \bigcup_{i=1}^{\infty} A_i$ mit $E \subseteq A$ und $\mu(A) \le \mu(E) + \epsilon \implies \mu(A \setminus B) \le \epsilon$.

Aus $\mu(A) = \tilde{\mu}(A)$ und Lemma II.14 (i.A. II.13) folgt

$$\mu(E) \le \mu(A) = \tilde{\mu}(A) = \tilde{\mu}(E) + \tilde{\mu}(A \setminus E) \le \tilde{\mu}(E) + \mu(A \setminus E) \le \tilde{\mu}(E) + \epsilon.$$

Lasse $\epsilon > 0$ und betrachte $\tilde{\mu}(E) \le \mu(E)$ (Lemma II.14 / i.A. II.13) $\implies \mu(E) = \tilde{\mu}(E)$. Sei nun λ σ -endlich. Dann ex. o.B.d.A. paarweise disjunkte $X_n \in \mathcal{R}$ mit $\mu(X_n) < \infty$

und
$$X = \bigcup_{n=1}^{\infty} X_n$$
. Für $E \in \sigma(\mathcal{R})$ bel. folgt:

$$\mu(E) = \sum_{n=1}^{\infty} \mu(E \cap X_n) = \sum_{n=1}^{\infty} \tilde{\mu}(E \cap X_n) = \tilde{\mu}(E) \implies \mu = \tilde{\mu} \text{ auf } \sigma(\mathcal{R}).$$

Satz VI.16 (Regularität der Caratheodory-Fortsetzung — i.A. II.15)

Sei μ Caratheodory-Fortsetzung des Prämaßes $\lambda : \mathcal{R} \to [0, \infty]$ auf Ring \mathcal{R} über X. Dann ex. $\forall D \subseteq X \text{ ein } E \in \sigma(\mathcal{R}) \text{ mit } E \supseteq D \text{ und } \mu(E) = \mu(D).$ $(\mu \text{ ist "reguläres "äußeres Maß})$

Beweis.

$$\mu(D) = \infty \to \text{W\"ahle } E = X$$

 $\mu(D) \leq \infty$: Aus Def. von Caratheodory-Fortsetzung folgt $\forall n \in D \subseteq E^n = \bigcup_{i=1}^{\infty} A_i^n$ mit

$$A_i^n \in \mathcal{R} \text{ und } \sum_{i=1}^\infty \lambda(A_i^n) \leq \mu(D) + \tfrac{1}{n}. \text{ W\"{a}hle } E := \bigcap_{n=1}^\infty E^n \implies E \in \sigma(\mathcal{R}) \text{ mit } D \subseteq E \text{ und } E = 0$$

 $\forall n \in \mathbb{N} \text{ gilt:}$

$$\mu(D) \leq \mu(E) \leq \mu(E^n) \leq \sum_{i=1}^{\infty} \mu(A_i^n) = \sum_{i=1}^{\infty} \lambda(A_i^n) \leq \mu(D) + \frac{1}{n} < \infty. \ n \to \infty \implies \mu(E) = \mu(D).$$

Satz VI.17 (i.A. II.16)

Sei λ ein σ -endliches Prämaß auf Ring \mathcal{R} über X und sei $\mu: \mathcal{P}(X) \to [0, \infty]$ die Caratheodory-Fortsetzung von λ . Dann ist $\mu|_{\mathcal{M}(\mu)}$ die Vervollständigung von $\mu|_{\sigma(\mathcal{R})}$ und $\mathcal{M}(\mu)$ ist die vervollständigte σ -Algebra von $\overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}}$

D.h. $\overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}} = \mathcal{M}(\mu)$. Insbesondere ex. genau eine Fortsetzung von $\lambda : \mathcal{R} \to [0, \infty]$ zu einem vollständigen Maß auf $\mathcal{M}(\mu)$.

Beweis. Satz II.7 $\Longrightarrow \mu|_{\mathcal{M}(\mu)}$ ist vollständiges Maß. Satz I.10 $\Longrightarrow \sigma(\mathcal{R})_{\mu|_{\sigma(\mathcal{R})}} \subseteq \mathcal{M}(\mu)$. Sei $D \in \mathcal{M}(\mu)$ mit $\mu(D) < \infty$. Wähle $E \in \sigma(\mathcal{R})$ mit $D \subseteq E$.

Aus Satz II.16 (i.A. II.15) $\implies \mu(D) = \mu(E) = \mu(E \cap D) + \mu(E \setminus D) = \mu(D) + \mu(E \setminus D)$ $(D)) \implies \mu(E \setminus D) = 0.$

 $\lambda \text{ σ-endlich} \implies \exists X_n \in \mathcal{R} \text{ mit } X = \bigcup_{n=1}^{\infty} X_n \text{ und } \mu(X_n) < \infty \ \forall n \in \mathbb{N}.$ Für $D \in \mathcal{M}(\mu)$ bel. setze $D_n := \bigcup_{k=1}^n D \cap X_k \implies D_n \subseteq D_{n+1} \ \forall n \in \mathbb{N} \text{ mit } \mu(D_n) < \infty,$

 $D = \bigcup_{n=1}^{\infty} D_n.$

Wie bewiesen ex. $E_n \supset D_n$ mit $E_n \in \sigma(\mathcal{R})$ und $\mu(E_n \setminus D_n) = 0$. Für $E = \bigcup_{n=1}^{\infty} E_n \supset D$

folgt $E \in \sigma(\mathcal{R})$ mit $\mu(E \setminus D) \leq \sum_{n=1}^{\infty} \mu(E_n \setminus D_n) = 0$. Satz II.16 (i.A. II.15) $\Longrightarrow \exists N \in \sigma(\mathcal{R}) \text{ mit } N \supset (E \setminus D) \text{ und } \mu(E \setminus D) = \mu(N) = 0 \Longrightarrow D = (E \setminus N) \cup (D \cap N) \Longrightarrow \mathcal{M}(\mu) = \overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}} \Longrightarrow \text{Vervollständigung von } \mu|_{\sigma(\mathcal{R})} \text{ ist}$ $\mu|_{\mathcal{M}(\mu)}$.

Eindeutigkeit folgt jetzt daraus und aus Satz II.15 (i.A. II.14).

Lemma VI.18 (i.A. II.17)

 $\lambda:\mathcal{R}\to [0,\infty]$ σ -endliches Prämaß auf Ring $\mathcal{R}\subseteq\mathcal{P}(X)$ mit Caratheodory-Fortsetzung $\mu.$ $D\subseteq X$ ist genau dann μ -messbar, wenn eine der folgenden Bedingungen gilt:

- i) $\exists E \in \sigma(\mathcal{R}) \text{ mit } E \supseteq D \text{ und } \mu(E \setminus D) = 0$
- ii) $\exists C \in \sigma(\mathcal{R})$ mit $C \subseteq D$ und $\mu(D \setminus C) = 0$

Def. VI.19

Ein Mengensystem $\mathcal{Q} \subseteq \mathcal{P}(X)$ heißt **Halbring** über X, falls:

- i) $\emptyset \in \mathcal{Q}$
- ii) $P, Q \in \mathcal{Q} \implies P \cap Q \in \mathcal{Q}$
- iii) $P,Q\in\mathcal{Q}\implies P\setminus Q=\bigcup_{i=1}^kP_i$ mit endlich vielen paarweise disjunkten $P_i\in\mathcal{Q}$

Bsp.:

X beliebige Menge. $\mathcal{Q} := \{\emptyset\} \cup \{\{a\} \mid a \in X\}$

Bem.:

 $I \subseteq \mathbb{R}$ heißt Intervall, wenn es $a, b \in \mathbb{R}$ mit $a \leq b$ gibt, sodass: $(a, b) \subseteq I \subseteq [a, b]$. Das System aller Intervalle bezeichnen wir mit \mathcal{I} .

Ein achsenparalleler n-dim. Quader (kurz: Quader) ist Produkt $Q = I_1 \times ... \times I_n \subseteq \mathbb{R}^n$ von Intervallen. Das System aller Quader wird mit \mathcal{Q}^n bezeichnet.

Satz VI.20 (i.A. II.19)

 \mathcal{I} ist ein Halbring.

Beweis. $\varnothing \in \mathcal{I}$, denn $\varnothing = (a,a)$ für $a \in \mathbb{R}$ bel. Seien $I,J \subset \mathbb{R}$ Intervalle mit Grenzen $a \leq b$ bzw. $c \leq d$. Für $I \cap J \neq \varnothing$ ist $max(a,c) \leq min(b,d)$ und $(max(a,c), min(b,d)) \subset I \cap J \subset [max(a,c), min(b,d)] \implies I \cap J \in \mathcal{I}$.

Wegen $I \setminus J = I \setminus (I \cap J)$ können wir o.B. $J \subset I$ annehmen.

Setze $I' = x \in I \setminus J : x \le c$, $II' = x \in I \setminus J : x \ge d$.

Falls $I' \cap II' \neq \emptyset \implies c = d \in I \setminus J \implies J = \emptyset \implies I \setminus J = I$.

Andernfalls $(I' \cap II' = \emptyset)$ gilt: $I \setminus J = I' \cup II'$ wobei $(a, c) \subset I' \subset [a, c], (d, b) \subset II' \subset [d, d].$

Satz VI.21 (i.A. II.20)

Für i=1,...,n sei \mathcal{Q}_i Halbring über X_i . Dann ist $\mathcal{Q}:=\{P_1\times...\times P_n\mid P_i\in\mathcal{Q}_i\}$ ein Halbring über $X_1\times...\times X_n$.

Beweis. Nur für n=2 (Rest per Induktion)

1 Es ist $\emptyset = \emptyset \times \emptyset \in \mathcal{Q}$

2 Für
$$P = I_1 \times I_2$$
 und $Q = J_1 \times J_2$ gilt: $P \cup Q = (I_1 \cup J_1) \times (I_2 \cup J_2) \in \mathcal{Q}$

 $3 P \setminus Q = ((I_1 \cup J_1) \times I_2 \setminus J_2) \cup ((I_1 \setminus J_1) \times I_2)$

Sowohl $I_2 \setminus J_2$ als auch $I_1 \setminus J_1$ sind als disjunkte Verbindungen darstellbar, da \mathcal{Q}_1 , \mathcal{Q}_2 Halbringe sind. $\Longrightarrow P \setminus Q \in \mathcal{Q}$.

Satz VI.22 (i.A. II.21)

 Q^n ist ein Halbring.

Vorlesung 7 23.11.20

Satz VI.23 (i.A. II.22)

 \mathcal{Q} Halbring über X und \mathcal{F} sei das System aller endlichen Vereinigungen $F = \bigcup_{i=1}^{\kappa} P_i$ von Mengen $P_I \in \mathcal{Q}$. Dann ist \mathcal{F} der von \mathcal{Q} erzeugte Ring.

Beweis. Jeder Ring \mathcal{R} mit $\mathcal{Q} \supset \mathcal{R}$ enthält $\mathcal{F} \Longrightarrow$ Reicht zu zeigen: \mathcal{F} ist ein Ring. Es gilt: $\emptyset \in \mathcal{F}$

$$E, F \in \mathcal{F}. \text{ Sei } E = \bigcup_{i=1}^{k} P_i, F = \bigcup_{j=1}^{m} Q_j, P_1, Q_i \in \mathcal{Q}$$

$$\implies E \setminus F = (\bigcup_{i=1}^{k} P_i) \setminus (\bigcup_{j=1}^{m} Q_j) = \bigcup_{i=1}^{k} (P_i \setminus (\bigcup_{j=1}^{m} Q_j)) = \bigcup_{i=1}^{k} (\bigcap_{j=1}^{m} P_i \setminus Q_j)$$

$$E, F \in \mathcal{F} \implies E \cup F \in \mathcal{F}.$$
z.z.: \mathcal{F} ist \cap -stabil

$$E \cap F = (\bigcup_{i=1}^{m} kP_i) \cap (\bigcup_{j=1}^{m} Q_j) = \bigcup_{i=1}^{m} k \bigcup_{j=1}^{m} (P_i \cap Q_j) \in \mathcal{F}.$$

Bsp.:

- 1. Q^n alle Quader $Q \subseteq \mathbb{R}^n$ \Longrightarrow erzeugter Ring \mathcal{F}^n . Elemente davon nennen wir **Figuren**.
- 2. $Q := \{\emptyset\} \cup \{\{a\} \mid a \in X\}$ \implies erzeugter Ring \mathcal{F} : Ring der endlichen Teilmengen von X.

Lemma VI.24 (i.A. II.23)

 \mathcal{Q} Halbring über X, \mathcal{F} der von \mathcal{Q} erzeugte Ring. $\Longrightarrow \sigma(\mathcal{Q}) = \sigma(\mathcal{F})$

Beweis.
$$Q \subset \mathcal{F} \implies \sigma(Q) \subset \sigma(\mathcal{F})$$

 $\sigma(Q) \cup \text{-stabil} \implies \mathcal{F} \subset \sigma(Q) \implies \sigma(\mathcal{F}) \subset \sigma(Q)$

Lemma VI.25 (i.A. II.24)

 $\mathcal Q$ Halbring über X, $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. Zu jedem $F \in \mathcal F$ existieren paarweise disjunkte $P_1,...,P_k \in \mathcal Q$ mit $F = \bigcup_{i=1}^k P_i$

Beweis. Sei $F \in \mathcal{F}$.

Satz II.22 (i.A. Satz II.21)
$$\implies F = \bigcup_{l=1}^{m} Q_l \text{ mit } Q_l \in \mathcal{Q} \implies F = \bigcup_{l=1}^{m} (Q_l \setminus \bigcup_{j=1}^{l-1} Q_j),$$

(wobei $Q_l \setminus \bigcup_{j=1}^{l-1}$ paarweise disjunkt).

z.z. $Q \setminus \bigcup_{i=1}^{m} Q_i$ mit $Q, Q_1, ..., Q_n$ besitzt eine disjunkte Zerlegung in Q.

Induktion: n=1 Folgt aus Definition von Halbring. Sei $Q\setminus\bigcup_{i=1}^mQ_i$ disjunkte Zerlegung

schon gefunden: $Q \setminus \bigcup_{i=1}^{m} Q_i = \bigcup_{j=1}^{k} P_j$

$$\implies Q \setminus \bigcup_{i=1}^{n+1} Q_i = (\bigcup_{j=1}^k P_j) \setminus Q_{n+1} = \bigcup_{j=1}^k (P_j \setminus Q_{n+1}) \ (P_j \setminus Q_{n+1} \text{ paarweise disjunkt}).$$

Nach Def. von \mathcal{Q} ist $P_i \setminus Q_{n+1}$ disjunkte Ver. von Elementen in \mathcal{Q} .

Def. VI.26 (i.A. II.25)

Sei $\mathcal{Q} \subseteq \mathcal{P}(X)$ Halbring. Eine Funktion $\lambda : \mathcal{Q} \to [0, \infty]$ heißt **Inhalt** auf \mathcal{Q} , falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{Q}$ paarweiße disjunkt mit $\bigcup_{i=1}^n A_i \in \mathcal{Q}$ gilt: $\lambda(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \lambda(A_i)$

 λ heißt **Prämaß** auf $\mathcal Q,$ falls λ $\sigma\text{-additiv}$ auf $\mathcal Q$ ist.

D.h. für $A_i \in \mathcal{Q}$ paarweiße disjunkt $(i \in \mathbb{N})$ mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{Q} : \lambda(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \lambda(A_i)$

Bem.:

 σ -subadditiv, subadditiv, σ -endlich, endlich, monoton, ... sind wie vorher definiert. Ist $\mathcal Q$ in Def. II.26 [i.A. II.25] ein Ring, so stimmt die Definition des Prämaßes mit Def. II.11 [i.A. II.10] überein.

Satz VI.27 (i.A. II.26)

 λ Inhalt auf Halbring $\mathcal Q$ und $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. Dann ex. genau ein Inhalt $\bar{\lambda}:\mathcal F\to [0,\infty]$ mit $\bar{\lambda}(Q)=\lambda(Q)\ \forall Q\in\mathcal Q.$

Beweis. $F = \bigcup_{i=1}^{k} P_i$ mit $P_i \in \mathcal{Q}$ paarweise disjunkt.

Lemma II.24 (i.A. Lemma II.23), so muss für jede Fortsetzung gelten:

$$\bar{\lambda}(F) = \sum_{i=1}^{k} \bar{\lambda}(P_i) = \sum_{i=1}^{k} \lambda(P_i)$$

Ex: Definiere $\bar{\lambda}$ durch $\bar{\lambda}(F) = \sum_{i=1}^{k} \lambda(P_i)$.

 $\bar{\lambda}$ wohldefiniert. Sei $F = \bigcup_{i=1}^k P_i = \bigcup_{j=1}^l Q_j$ paarweise disjunkt mit $Q_j \in \mathcal{Q}$.

$$\implies Q_j = \bigcup_{i=1}^k Q_j \cap P_i, \ j = 1, ..., l, \ P_i = \bigcup_{j=1}^l P_i \cap Q_j, \ i = 1, ..., k$$

$$\implies \sum_{j=1}^{l} \lambda Q_j = \sum_{j=1}^{l} \sum_{i=1}^{k} \lambda(P_i \cap Q_j) = \sum_{j=1}^{l} \sum_{i=1}^{k} \lambda(Q_k \cap P_i) = \sum_{i=1}^{k} \lambda(P_i)$$

 $\Longrightarrow \bar{\lambda}$ wohldefiniert Sei $F = \bigcup_{i=1}^{k} F_i$ paarweise disjunkt mit $F_i \in \mathcal{F}$, $F \in \mathcal{F}$. Schreibe $F_i = \bigcup_{j=1}^{m_i} P_{i,j}$ mit $P_{i,j} \in \mathcal{Q}$

$$\implies \bar{\lambda}(F) = \sum_{i=1}^k \sum_{i=1}^{m_i} \bar{\lambda}(P_{i,j}) = \sum_{i=1}^k \sum_{j=1}^{m_i} \lambda(P_{i,j}) = \sum_{i=1}^k \bar{\lambda}(F_i) \implies \bar{\lambda} \text{ Inhalt.}$$

Lemma VI.28 (i.A. II.27)

 λ Inhalt auf Halbring \mathcal{Q} über X

 $\implies \lambda$ ist monoton und subadditiv

Beweis. Satz II.27 (i.A. Satz II.26) \implies o.B. Q ist Ring

$$\implies P, Q \in \mathcal{Q}, \ Q \supset P \implies \lambda(Q) = \lambda(P) + \lambda(Q \setminus P) \ge \lambda(P) \to \lambda \text{ ist monoton.}$$

$$\Rightarrow P, Q \in \mathcal{Q}, Q \supset P \Rightarrow \lambda(Q) = \lambda(P) + \lambda(Q \setminus P) \geq \lambda(P) \to \lambda \text{ ist monoton.}$$

$$\text{Für } P_i \in \mathcal{Q}, i = 1, ..., k \text{ folgt}$$

$$\lambda(\bigcup_{i=1}^k P_i) = \lambda(\bigcup_{i=1}^k (P_i \setminus (\bigcup_{j=1}^{i-1} P_j))) = \sum_{i=1}^k \lambda(P_i \setminus (\bigcup_{j=1}^{i-1} P_j)) \leq \sum_{i=1}^k \lambda(P_i)$$

Bsp.:

Auf Q^n elementargeometrisches Volumen vol^n .

Sei $Q \in \mathcal{Q}$ mit $Q = I_1 \times ... \times I_n, I_j \subseteq \mathbb{R}$ Intervall mit Intervallgrenzen $a_j \leq b_j$

$$vol^n(Q) = \prod_{j=1}^n (b_j - a_j) \ge 0$$

Satz VI.29 (i.A. II.28)

 $vol^n(.)$ ist ein Inhalt auf \mathcal{Q}^n

Beweis. $vol^n(\varnothing) = 0$

Endliche Additivität per Induktion

Für n=1 sind \mathcal{Y}_{I_j} Riemann-Int. und für $I_1,...,I_k$ paarweise disjunkt gilt:

$$vol^{1}(\bigcup_{i=1}^{k}I_{i}) = \int_{\mathbb{R}}\sum_{i=1}^{k}\mathcal{Y}_{I_{i}}(x)dx = \sum_{i=1}^{k}\int_{\mathbb{R}}\mathcal{Y}_{I_{i}}(x)dx = \sum_{i=1}^{k}vol^{1}(I_{i}).$$
 Sei jetzt Aussage für vol^{n-1} im \mathbb{R}^{n-1} schon bewiesen. Betrachte für $Q = I_{1} \times ... \times I_{m} \in \mathcal{Q}^{n}$

den y-Schnitt.

 $Q^y = x \in \mathbb{R}^{n-1} : (x,y) \in Q = I_1 \times ... \times I_{n-1}$ falls $y \in I_n$ (\varnothing sonst). Es gilt: $vol^{n-1}(Q^y) = vol^{n-1}(I_1 \times ... \times I_{n-1})\mathcal{Y}_{I_n}(y)$ und für jede paarweise disjunkte Zerlegung von $Q = \bigcup i = 1^k Q_i$ mit $Q_i \in \mathcal{Q}^n$ gilt:

$$Q^{y} = (\bigcup_{i=1}^{k} Q_{i})^{y} = \bigcup_{i=1}^{k} Q_{i}^{y}$$

$$\implies vol^{n}(\bigcup_{i=1}^{k} Q_{i}) = vol^{n}(Q) = vol^{n-1}(I_{1} \times ... \times I_{n-q})vol^{1}(I_{n})$$

$$= vol^{n-1}(I_{1} \times ... \times I_{n-1}) \int_{\mathbb{R}} \mathcal{Y}_{I_{n}}(y)dy = \int_{\mathbb{R}} vol^{n-1}(\bigcup_{i=1}^{k} Q_{i}^{y})dy = \sum_{i=1}^{n} \int_{\mathbb{R}} vol^{n-1}(Q_{i}^{y})dy$$

$$= \sum_{i=1}^{l} vol^{n}(Q_{i})$$

Satz VI.30 (i.A. II.29)

 $\lambda: \mathcal{Q} \to [0, \infty]$ Prämaß auf Halbring $\mathcal{Q} \subseteq \mathcal{P}(X)$, \mathcal{R} der von \mathcal{Q} erzeugte Ring und $\bar{\lambda}: \mathcal{R} \to [0, \infty]$ der eindeutig bestimmte Inhalt auf \mathcal{R} mit $\bar{\lambda}|_{\mathcal{Q}} = \lambda$ (Satz II.27 / i.A. II.26), so ist $\bar{\lambda}$ ein Prämaß auf \mathcal{R} .

Beweis. Sei $F = \bigcup_{i=1}^{\infty} F_i$ mit $F, F_i \in \mathcal{R}$ und F_i paarweise disjunkt.

Lemma II.25 (i.A. Lemma II.24) $\implies \exists$ paarweise disjunkte Zerlegungen $F = \bigcup_{j=1}^{k} P_j$

und
$$F_i = \bigcup_{k=1}^{k_i} P_{i,k}$$
 mit $P_j, P_{i,k} \in \mathcal{Q}$

$$\implies P_j = \bigcup_{i=1}^{\infty} (P_j \cap F_i) = \bigcup_{i=1}^{\infty} \bigcup_{k=1}^{k_i} (P_j \cap P_{i,k}) \text{ paarweise disjunkt}$$

$$\lambda \text{ Prämass } \implies \lambda(P_j) = \sum_{i=1}^{\infty} \sum_{k=1}^{k_i} \lambda(P_j \cap P_{i,k}) = \sum_{i=1}^{\infty} \bar{\lambda}(P_j \cap F_i)$$

$$\implies \bar{\lambda}(F) = \sum_{j=1}^{k} \lambda(P_j) = \sum_{j=1}^{k} \sum_{i=1}^{\infty} \bar{\lambda}(P_j \cap F_i) = \sum_{i=1}^{\infty} \sum_{j=1}^{k} \bar{\lambda}(p_j \cap F_i) = \sum_{i=1}^{\infty} \bar{\lambda}(F_i)$$

$$\implies \bar{\lambda} \text{ ist Prämass}$$

Vorlesung 8 27.11.20

Bem.:

Satz II.27 (i.A. II.26) $\implies \bar{\lambda}(F) = \sum_{i=1}^{n} \lambda(Q_i)$ für $F \in \mathcal{R}$ mit $F = \bigcup_{i=1}^{n} Q_i$ mit paarweise disjunkten $Q_i \in \mathcal{Q}$ (Lemma II.25 / i.A. II.24). Betrachte äußere Maße für λ auf \mathcal{Q} und $\bar{\lambda}$ auf \mathcal{R} aus Satz II.3.

Es gilt: $Q \subseteq \mathcal{R}, \lambda = \bar{\lambda}$ auf Q

$$\begin{split} &\inf\{\sum_{k\in\mathbb{N}}\lambda(Q_k)\mid Q_k\in\mathcal{Q}, E\subseteq\bigcup_{k\in\mathbb{N}}Q_k\}\\ &\geq\inf\{\sum_{i\in\mathbb{N}}\lambda(\bar{F}_i)\mid F_i\in\mathcal{R}, E\subseteq\bigcup_{i\in\mathbb{N}}F_i\}\\ &=\inf\{\sum_{i\in\mathbb{N}}\sum_{j=1}^{j_i}\lambda(Q_{i,j})\mid F_i=\bigcup_{j=1}^{j_i}Q_{i,j}, Q_{i,j}\in\mathcal{Q}, E\subseteq\bigcup_{i\in\mathbb{N}}\bigcup_{j=1}^{j_i}Q_{i,j}\}\\ &=\inf\{\sum_{k\in\mathbb{N}}\lambda(Q_k)\mid Q_k\in\mathcal{Q}, E\subseteq\bigcup_{k\in\mathbb{N}}Q_k\} \end{split}$$

Satz VI.31 ((i.A. II.30))

 $\lambda: \mathcal{Q} \to [0, \infty]$ Prämaß auf Halbring $\mathcal{Q} \subseteq \mathcal{P}(X)$. Sei $\mu: \mathcal{P}(X) \to [0, \infty]$ das in Satz II.3 aus \mathcal{Q} konstruierte äußere Maß, d.h. $\forall E \subseteq X$ ist:

$$\mu(E) = \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{Q}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ .

Bem.:

Satz II.16 (i.A. II.15) $\implies \mu$ ist reguläres äußere Maß

Satz II.7 $\implies \mu$ ist vollständiges Maß auf $\mathcal{M}(\mu)$

 $(X, \mathcal{M}(\mu), \mu|_{\mathcal{M}(\mu)})$ ist Vervollständigung von $(X, \sigma(\mathcal{Q}), \mu|_{\sigma\mathcal{Q}})$ und ist auf $\mathcal{M}(\mu)$ eindeutig bestimmt (Satz II.17 / i.A. II.16).

Speziell: $D \subseteq X$ μ -messbar $\Leftrightarrow \exists C \in \sigma(Q)$ mit $C \subseteq D$ und $\mu(D \setminus C) = 0$ (Lemma II.18 / i.A. II.17)

Satz VI.32 ((i.A. II.31))

Für einen Inhalt λ auf Ring \mathcal{R} und $A_i \in \mathcal{R}, i \in \mathbb{N}$, betrachte:

- i) λ ist Prämaß auf \mathcal{R}
- ii) Für $A_i \subseteq A_{i+1} \subseteq \dots$ mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt: $\lambda(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{n \to \infty} \lambda(A_n)$
- iii) Für $A_i\supseteq A_{i+1}\supseteq\dots$ mit $\lambda(A_1)<\infty$ und $\bigcap_{i\in\mathbb{N}}A_i\in\mathcal{R}$ gilt: $\lambda(\bigcap_{i\in\mathbb{N}}A_i)=\lim_{n\to\infty}\lambda(A_n)$
- iv) Für $A_i \supseteq A_{i+1} \supseteq \dots$ mit $\lambda(A_1) < \infty$ und $\bigcap_{i \in \mathbb{N}} A_i = \emptyset$ gilt: $\lim_{i \to \infty} \lambda(A_i) = 0$

Dann gilt: i) \Leftrightarrow ii) \Longrightarrow iv)

Ist λ endlich, d.h. $\lambda(A) < \infty \ \forall A \in \mathcal{R}$, dann sind i) - iv) äquivalent.

Beweis. i) \implies ii) \implies iii) Siehe Beweis von Satz I.7

- iii) \implies iv) ist trivial
- ii) \implies i) Seien $A_n \in \mathcal{R}$ paarweise disjunkt mit $\bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$

$$\implies B_n := \bigcup_{i=1}^n A_i \text{ erfüllt Bed. von ii) mit } \bigcup_{n=1}^\infty B_n = \bigcup_{i=1}^\infty A_i \in \mathcal{R}$$

$$\implies \lambda(\bigcup_{n=1}^\infty A_n) = \lim_{n \to \infty} \lambda(B_n) = \lim_{n \to \infty} \sum_{i=1}^n \lambda(A_i) = \sum_{i=1}^\infty \lambda(A_i)$$

$$\lambda \text{ endlich. z.z. iv)} \implies \text{ii)}$$

$$\implies \lambda(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \lambda(B_n) = \lim_{n \to \infty} \sum_{i=1}^{n} \lambda(A_i) = \sum_{i=1}^{\infty} \lambda(A_i)$$

Sei $(A_i) \subset \mathcal{R}$ monoton aufsteigende Folge mit $A := \bigcup_{i=1}^{\infty} A_i \in \mathcal{R}$. Für $B_n := A \setminus A_n$ gilt

$$B_n > B_{n+1} \text{ und } \bigcap^{\infty} B_n = \varnothing.$$

$$B_n > B_{n+1} \text{ und } \bigcap_{n=1}^{\infty} B_n = \emptyset.$$
iv) $\Longrightarrow \lim_{n \to \infty} \lambda(B_n) = 0 \Longrightarrow \lambda(B_n) = \lambda(A \setminus A_n) = \lambda(A) - \lambda(A_n)$
 $\Longrightarrow \lim_{n \to \infty} \lambda(A_n) = \lambda(A) = \lambda(\bigcup_{i=1}^{\infty} A_i) \Longrightarrow \text{ ii)}$

$$\implies \lim_{n \to \infty} \lambda(A_n) = \lambda(A) = \lambda(\bigcup_{i=1}^{\infty} A_i) \implies \text{ii})$$

Das Lebesgue-Maß VII

Der elementargeometrische Inhalt $vol^n: \mathcal{Q}^n \to [0, \infty]$ ist ein Prämaß auf dem Halbring Q^n im \mathbb{R}^n

Beweis. Sei
$$P = \bigcup_{i=1}^{\infty} P_i$$
 mit $P_i \cap P_j = \emptyset$ für $i \neq j, P, P_i \in \mathcal{Q}^n \ \forall i \in \mathbb{N}$.

Satz II.27 (i.A. Satz II.26) $\implies vol^n$ ist Inhalt auf Ring $\mathcal{F}^n \implies \sum_{i=1}^{\infty} vol^n(P_i)$

$$= \lim_{k \to \infty} \sum_{i=1}^{k} vol^{n}(P_{i}) = \lim_{k \to \infty} vol^{n}(\bigcup_{i=1}^{k} P_{i}) \le vol^{n}(P).$$

 $=\lim_{k\to\infty}\sum_{i=1}^k vol^n(P_i)=\lim_{k\to\infty}vol^n(\bigcup_{i=1}^k P_i)\leq vol^n(P).$ Wähle zu $\epsilon>0$ offene Quader $Q_i\supset P_i$ und einen kompakten Quader $Q\subset P$ mit $\sum_{i=1}^\infty vol^n(Q_i)<\sum_{i=1}^\infty vol^n(P_i)+\frac{\epsilon}{2},\ vol^n(P)< vol^n(Q)+\frac{\epsilon}{2}.$ Satz von Heine-Borel (Satz (XIV).22 Ana1): Q wird von endlich vielen Quadern $Q_i\times\ldots\times Q_k$ überdeckt $(Q\subset P=\bigcup_{i=1}^\infty P_i\subset\bigcup_{i=1}^\infty Q_i)$

$$Q_i \times ... \times Q_k$$
 überdeckt $(Q \subset P = \bigcup_{i=1}^{\infty} P_i \subset \bigcup_{i=1}^{\infty} Q_i)$

$$\implies vol^n(P) < vol^n(Q) + \frac{\epsilon}{2} \le \sum_{i=1}^k vol^n(Q_i) + \frac{\epsilon}{2} < \sum_{i=1}^\infty vol^n(P_i) + \epsilon.$$

Lasse
$$\epsilon > 0 \implies vol^n(P) \le \sum_{i=1}^{\infty} vol^n(P_i)$$
.

Das n-dimensionale äußere Lebesgue-Maß einer Menge $E \subseteq \mathbb{R}^n$ ist definiert durch

$$\lambda^{n}(E) := \inf\{\sum_{k \in \mathbb{N}} vol^{n}(Q_{k}) \mid Q_{k} \in \mathcal{Q}^{n}, E \subseteq \bigcup_{k \in \mathbb{N}} Q_{k}\}$$

 $\lambda^n|_{\mathcal{M}(\lambda^n)}$ ist das **n-dimensionale Lebesguemaß**.

Bem nach Satz II.31 (i.A. II.30) $\implies \lambda^n$ regulär und vollständig auf $\mathcal{M}(\lambda^n)$

Lemma VII.3

Betrachte für $k \in \mathbb{N}_0$ die Würfelfamilie $\mathcal{W}_k = \{Q_{k,m} := 2^{-k}(m+[0,1]^n) \mid m \in \mathbb{R}^n\}$

und definiere für $E \subseteq \mathbb{R}^n$ die Mengen

$$F_k(E) := \left\{ \begin{array}{l} \{Q \in \mathcal{W}_k \mid Q \subseteq E\} & F^k(E) := \left\{ \begin{array}{l} \{Q \in \mathcal{W}_k \mid Q \cap E \neq \emptyset\} \end{array} \right. \end{array} \right.$$

Dann gilt:

- i) $F_k(E)$ und $F^k(E)$ sind abgeschlossene Vereinigungen von abzählbar vielen kompakten Quadern mit paarweise disjunktem Inneren.
- ii) $F_1(E) \subseteq F_2(E) \subseteq ... \subseteq E \subseteq ... \subseteq F^2(E) \subseteq F^1(E)$
- iii) $F_k(E) \supseteq \{x \in \mathbb{R}^n \mid dist(x, \mathbb{R}^n \setminus E) > s^{-k}\sqrt{n}\}\$ $F^k(E) \subseteq \{x \in \mathbb{R}^n \mid dist(x, \mathbb{R}^n \setminus E) \leq s^{-k}\sqrt{n}\}\$
- iv) $\dot{E} \subseteq \bigcup_{k \in \mathbb{N}} F_k(E) \subseteq E$, $\bar{E} \supseteq \bigcap_{k \in \mathbb{N}} F^k(E) \supseteq E$

Beweis. $\bigcup \{Q : Q \in W_k\} = \mathbb{R}^n \ \forall k \in \mathbb{N}.$

 W_k hat abzählbar viele Elemente, die Würfel aus W_k sind kompakt mit paarweise disjunktem Inneren und jede beschränkte Menge wird nur von endlich vielen Würfeln aus W_k getroffen. $\Longrightarrow F_k(E)$, $F^k(E)$ sind abgeschlossen \Longrightarrow i)

 $Q_{k,m}$ ist Vereinigung der 2^n Teilwürfel $Q_{k+1,2m+l}$ mit $l \in \{0,1\}^n$ und es gilt

 $Q_{k,m} \subset E \implies Q_{k+1,2m+l} \subset E \ \forall l \in \{0,1\}^n$

 $Q_{k+1,2m+l} \cap E \neq \emptyset \implies Q_{k,m} \cap E \neq \emptyset$ wobei $l \in \{0,1\}^n$

 $\implies F_k(E) \subset F_{k+1}(E), F^k(E) \supset F^{k+1}(E) \implies \text{ii}$

Denn für $x \in E$ bel. existiert ein $Q \in W_k$ mit $x \in Q$.

Sei nun $x \in \mathbb{R}^n$ mit $dist(x, \mathbb{R}^n \setminus E) > 2^{-k}\sqrt{n} \implies \exists Q \in W_k \text{ mit } x \in Q \text{ und aus } dist(Q) = 2^{-k}\sqrt{n} \text{ folgt } Q \subset E \implies x \in F_k(E) \implies \{x \in \mathbb{R}^n : dist(x, \mathbb{R}^n \setminus E) > 2^{-k}\sqrt{n}\} \subset F_k(E).$

Ist $x \in F^k(E) \implies \exists Q \in W_k \text{ mit } x \in Q \text{ und } Q \cap E \neq \emptyset \implies x \in F^k(E) \implies dist(x, E) \leq dist(Q) \leq 2^{-k} \sqrt{n} \implies \text{iii})$

iv) folgt sofort aus iii) und Def. von $\stackrel{\circ}{E}$ bzw. \bar{E} .

Vorlesung 9 30.11.20

Lemma VII.4

Die Borelmengen \mathcal{B}^n sind die vom Halbring \mathcal{Q}^n der Quader, dem Ring \mathcal{F}^n der Figuren, und dem System \mathcal{C}^n der abgeschlossenen Mengen des \mathbb{R}^n erzeugten σ -Algebra, d.h. $\sigma(\mathcal{Q}^n) = \mathcal{B}^n = \sigma(\mathcal{Q}^n) = \sigma(\mathcal{F}^n) = \sigma(\mathcal{C}^n)$

Beweis. siehe Aufschrieb

Satz VII.5

Für λ^n gilt:

1. Alle Borelmengen sind Lebesgue-messbar

- 2. Zu $E \subseteq \mathbb{R}^n \exists$ Borelmenge $B \supseteq E$ mit $\lambda^n(B) = \lambda^n(E)$
- 3. $\lambda^n(K) < \infty \ \forall K \subseteq \mathbb{R}^n$ kompakt

Beweis. siehe Aufschrieb

Lemma VII.6

Für $E \subseteq \mathbb{R}^n$ beliebig gilt:

- i) $\lambda^n(E) = \inf\{\lambda^n(U) \mid U \text{ offen }, U \supset E\}$
- ii) $\lambda^n(E) = \inf\{\lambda^n(K) \mid K \text{ kompakt }, K \subset E\}, \text{ falls } E \lambda^n\text{-messbar}$

Satz VII.7

 $D \subseteq \mathbb{R}^n$ ist genau dann λ^n -messbar, wenn eine der beiden Bedingungen gilt:

- i) \exists Borlemenge $E \supset D$ mit $\lambda^n(E \setminus D) = 0$
- ii) \exists Borlemenge $C \subset D$ mit $\lambda^n(D \setminus C) = 0$

Es kann $E=\bigcap_{i\in\mathbb{N}}U_i$ mit U_i offen und $C=\bigcup_{j\in\mathbb{N}}A_j$ mit A_j abgeschlossen gewählt werden.

Satz VII.8 (Satz von Lusin)

Sei $A \subseteq \mathbb{R}^n$ offen mit $\lambda^n(A) < \infty$ und sei f λ^n -messbar auf A mit Werten in \mathbb{R} . Dann existiert $\forall \epsilon > 0$ ein $K = K_{\epsilon} \subseteq A$ kompakt, mit:

- i) $\lambda^n(A \setminus K) < \epsilon$
- ii) $f|_k$ ist stetig

Vorlesung 10 4.12.20

Def. VII.9

Ein äußeres Maß μ auf \mathbb{R}^n heißt **Borelmaß**, falls gilt:

- 1. Alle Borelmengen sind μ -messbar
- 2. $\mu(K) < \infty \ \forall K \subseteq \mathbb{R}^n \ \text{kompakt}$

Bem.:

 λ^n ist Borelmaß nach Satz III.5.

Ein äußeres Maß μ auf \mathbb{R}^n heißt translationsinvariant, falls

 $\mu(E+a) = \mu(E) \ \forall E \subset \mathbb{R}^n, a \in \mathbb{R}^n \ \mathrm{mit} \ E+a := \{x+a \mid x \in E\}$

Bemerke: $vol^n: \mathcal{Q}^n \to [0, \infty]$ ist translationsinvariant $\implies \lambda^n$ ist translationsinvariant.

Lemma VII.10

Ist μ translations invariantes Borelmaß auf \mathbb{R}^n , so ist jede Koordinaten-Hyperebene $H:=\{x\in\mathbb{R}^n\mid x_i=c\}(i=1,...,n)$ eine μ -Nullmenge.

Beweis. siehe Aufschrieb

Satz VII.11

Sei μ translationsinvariantes Borelmaß auf \mathbb{R}^n . Dann gilt mit $\theta := \mu([0,1]^n)$:

$$\mu(E) = \theta \lambda^n(E) \quad \forall \ \lambda^n$$
-messbaren $E \subseteq \mathbb{R}^n$

Beweis. siehe Aufschrieb

Lemma VII.12

 $U \subseteq \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^n$ lipschitz-stetig mit Konstante Λ bzgl. $||.||_{\infty}$. Dann gilt:

$$\lambda^n(f(E)) \le \Lambda^n \lambda^n(E) \quad \forall E \subseteq U$$

Satz VII.13

 $U \subseteq \mathbb{R}^n$ offen und $f \in C^1(U, \mathbb{R}^n)$. Dann gilt:

- 1. $N \subseteq U \lambda^n$ -Nullmenge $\implies f(N) \lambda^n$ -Nullmenge
- 2. $E \subseteq U \lambda^n$ -messbar $\implies f(E) \lambda^n$ -messbar

Beweis. siehe Aufschrieb

Satz VII.14

Sei $S \in O(\mathbb{R}^n)$ und $a \in \mathbb{R}^n$, dann gilt:

$$\lambda^n(S(E) + a) = \lambda^n(E) \quad \forall E \subseteq \mathbb{R}^n$$

Beweis. siehe Aufschrieb

Lemma VII.15 (Polarzerlegung)

 $\forall S \in GL(\mathbb{R}^n) \; \exists \; \text{Diagonal matrix} \; \Lambda \; \text{mit Einträgen} \; \lambda_i > 0, i = 1, ..., n \; \text{und}$ $T_1, T_2 \in O(\mathbb{R}^n)$, sodass $S = T_1 \Lambda T_2$

Beweis. siehe Aufschrieb

Satz VII.16 (Lineare Transformationsformel)

Für eine lineare Abbildung $S: \mathbb{R}^n \to \mathbb{R}^n$ gilt:

$$\lambda^n(S(E)) = |det(S)| \ \lambda^n(E) \quad \forall E \subseteq \mathbb{R}^n$$

Beweis. siehe Aufschrieb

Bsp.:

$$\lambda_1, ..., \lambda_n > 0, \ E = \{x \in \mathbb{R}^n \mid (\frac{x_1}{\lambda_1})^2 + ... + (\frac{x_n}{\lambda_n})^2 < 1\}$$

$$\lambda_1, \dots, \lambda_n > 0, \ E = \{ x \in \mathbb{R}^n \mid (\frac{x_1}{\lambda_1})^2 + \dots + (\frac{x_n}{\lambda_n})^2 < 1 \}$$

$$\text{mit } \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \in GL(\mathbb{R}^n) \text{ gilt } E = \Lambda(B_1(0))$$

Satz III.16 $\implies \lambda^n(E) = \lambda^n(\Lambda(B_1(0))) = \lambda_1 \cdot ... \cdot \lambda_n \cdot \lambda^n(B_1(0))$

Bsp.: (Vitali 1905)

 $\mathcal{P}(\mathbb{R}^n) \neq \mathcal{M}(\lambda^n)$

VIII Lebesgue-Integral

Def. VIII.1

X Menge, μ äußeres Maß. Eine funktion $\zeta: X \to \mathbb{R}$ heißt μ -Treppenfunktion, wenn sie μ -messbar ist und nur eindlich viele Funktionswerte annimmt.

Die Menge $\mathcal{T}(\mu)$ der μ -Treppenfunktionen ist ein \mathbb{R} -Vektorraum. Wir setzen

$$\mathcal{T}^+(\mu) = \{ \zeta \in \mathcal{T}(\mu) \mid \zeta \ge 0 \}$$

Bsp.:

 $E \subseteq X, \psi_E : X \to \mathbb{R}, \psi_E(x) = \begin{cases} 1 & , x \in E \\ 0 & , \text{ sonst} \end{cases}$ Es ist: $\psi_E \mu$ -Treppenfunktion $\Leftrightarrow E \in \mathcal{M}(\mu)$

Sei $\zeta \geq 0, \zeta = \sum_{i=1}^k s_i \psi_{A_i}$ mit A_i messbar und $s_i \geq 0$ und die A_i sind paarweise disjunkt. So eine Darstellung heißt **einfach**.

Wir setzen:

$$(\star) I(\zeta) := \sum_{i=1}^{k} s_i \mu(A_i)$$

Für $\zeta = 0$ folgt $I(\zeta) = 0 \cdot \mu(X) = 0$

Jedes $\zeta \in \mathcal{T}^+(\mu)$ besitzt eine einfache Darstellung, z.B. können wir für s_i die endlich vielen Funktionswerte wählen und $A_i = \{\zeta = s_i\}$

Lemma VIII.2

Das Integral $I: \mathcal{T}^+(\mu) \to [0, \infty]$ ist durch (\star) wohldefiniert. Für $\zeta, \phi \in \mathcal{T}^+(\mu)$ und $\alpha, \beta \in [0, \infty)$ gilt:

i)
$$I(\alpha \zeta + \beta \psi) = \alpha I(\zeta) + \beta I(\psi)$$

ii)
$$\zeta \leq \psi \implies I(\zeta) \leq I(\psi)$$

Beweis. siehe Aufschrieb

Bem.:

Für A_i messbar und $s_i \ge 0$ folgt aus i) auch für A_i nicht disjunk:

$$I(\zeta) = \sum_{i=1}^{k} s_i \mu(A_i) \quad \text{für } \zeta = \sum_{i=1}^{k} s_i \psi_{A_i}$$

Def. VIII.3 (Lebesgue-Integral)

Für $f: X \to [0, \infty]$ μ -messbar, setze

$$\int f d\mu = \sup \{ I(\zeta) \mid \zeta \in \mathcal{T}^+(\mu), \zeta \le f \}$$

 ζ heißt **Unterfunktion** von f.

Ist $f: X \to [-\infty, \infty]$ μ -messbar und sind die Integrale von f^{\pm} nicht beide unendlich, so setzen wir

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu \in [-\infty, \infty]$$

Bem.:

Für $f \geq 0$ sind beide Schritte kompatibel, denn dann gilt $f = f^+$ und $f^- = 0$

Lemma VIII.4

Für $f \in \mathcal{T}^+(\mu)$ gilt: $\int f d\mu = I(f)$

Beweis. siehe Aufschrieb

Bsp.:

 $\chi_{\mathbb{O}}$ ist eine λ^1 -Treppenfunktion und es gilt:

$$\int_{0}^{\infty} \chi_{\mathbb{Q}} d\lambda^{1} = I(\chi_{\mathbb{Q}}) = 0 \cdot \lambda^{1}(\mathbb{R} \setminus \mathbb{Q}) + 1 \cdot \lambda^{1}(\mathbb{Q}) = 0 + 1 \cdot 0 = 0$$

Def. VIII.5

 $f: X \to \mathbb{R}$ heißt integrierbar bzgl. μ , wenn sie μ -messbar ist und wenn gilt:

$$\int f d\mu \in \mathbb{R} \Leftrightarrow \int f^+ d\mu + \int f^- d\mu < \infty$$

Bsp.:

 $\mu = card, X = \mathbb{N}_0$

z.z.: $f: \mathbb{N}_0 \to \mathbb{R}$ ist bzgl. card auf \mathbb{N}_0 integrierbar $\implies \sum_{k \in \mathbb{N}} f(k)$ absolut konvergent

Dann gilt: $\int f dcard = \sum_{k \in \mathbb{N}} f(k)$

Beweis siehe Aufschrieb

Satz VIII.6

 $f,g:X\to \overline{\mathbb{R}}$ μ -messbar. Ist $f\leq g$ μ -fast überall und $\int f^-d\mu<\infty$, so existieren beide Integrale und es ist: $\int fd\mu\leq \int gd\mu$

"≥"gilt entsprechend wenn $f^+d\mu < \infty$

Bem.:

$$f, g: X \to \overline{\mathbb{R}}, f \mu$$
-messbar und $g = f \mu$ -fast überall $\stackrel{\text{Kapitel II}}{\Longrightarrow} g \mu$ -messbar Satz IV.6 $\Longrightarrow \int g^{\pm} d\mu = \int f^{\pm} d\mu \Longrightarrow \int f d\mu = \int g d\mu$

Vorlesung 12 11.11.2020

Bem.:

Einschub: zum Beweis von Satz III.7 siehe Aufschrieb

Lemma VIII.7 (Tschebyscheff-Ungleichung)

Für $f: X \to [0, \infty]$ μ -messbar mit $\int f d\mu < \infty$ gilt:

$$\mu(\{f \ge s\}) \le \begin{cases} \frac{1}{s} \cdot \int f d\mu & \text{ für } s \in (0, \infty) \\ 0 & \text{ für } s = \infty \end{cases}$$

Beweis. siehe Aufschrieb

Lemma VIII.8

Sei $f: X \to \overline{\mathbb{R}}$ μ -messbar.

- i) ist $\int f d\mu < \infty \implies \{f = \infty\}$ ist μ -Nulllmenge
- ii) ist $f \ge 0$ und $\int f d\mu = 0 \implies \{f > 0\}$ ist μ -Nullmenge

Beweis. siehe Aufschrieb

Satz VIII.9

Zu $f: X \to [0, \infty]$ μ -messbar gibt es eine Folge $f_k \in \mathcal{T}^+(\mu)$ mit $f_0 \leq f_1 \leq \dots$ und $\lim_{k \to \infty} f_k(x) = f(x) \ \forall x \in X$.

Beweis. siehe Aufschrieb

Satz VIII.10 (Monotonie Konvergenz / Beppo-Levi)

Seien $f_k:X\to [0,\infty]$ μ -messbar mit $f_1\le f_2\le\dots$ und $f:X\to [0,\infty]$ mit $f(x):=\lim_{k\to\infty}f_k(x)$. Dann gilt:

$$\int f d\mu = \lim_{k \to \infty} \int f_k \ d\mu$$

Satz VIII.11

 $f,g:X\to \overline{\mathbb{R}}$ integrierbar bzgl. μ , so ist auch $\alpha f+\beta g$ integrierbar $\forall \alpha,\beta\in\mathbb{R}$ und es gilt:

$$\int (\alpha f + \beta g) \ d\mu = \alpha \int f d\mu + \beta \int g d\mu$$

Beweis. siehe Aufschrieb

Def. VIII.12

Sei μ ein äußeres Maß auf X und $E\subseteq X$ sei μ -messbar. Dann setzen wir, falls das rechte Integral existiert

$$\int_{E} f d\mu = \int f \chi_{E} d\mu$$

f heißt auf E integrierbar, wenn $f\chi_E$ integrierbar ist.

Bem.:

Wegen $(f\chi_E)^{\pm} = f^{\pm}\chi_E \leq f^{\pm}$ existiert das Integral von f über E auf jeden Fall dann, wenn $\in fd\mu$ existiert. (Speziell für $f \geq 0$)

Bsp.:

 $\alpha \in \mathbb{R}, \ f : \mathbb{R}^n \to \mathbb{R}, \ f(x) = ||x||^{-\alpha}$ Beh:

$$\int_{\mathbb{R}^n \setminus B_1(0)} f d\lambda^n < \infty \Leftrightarrow \alpha > n$$

$$\int_{B_1(0)} f d\lambda^n < \infty \Leftrightarrow \alpha < n$$

Beweis siehe Aufschrieb

Vorlesung 13 14.12.20

Satz VIII.13

Sei $f: X \to \overline{\mathbb{R}}$ μ -messbar. Dann gelten:

- i) f integrierbar $\Leftrightarrow |f|$ integrierbar
- ii) Es gilt: $|\int f d\mu| \leq \int |f| d\mu$, falls das Integral von f existiert
- iii) Ist $g: X \to [0, \infty]$ μ -messbar mit $|f| \le g$ μ -fast überall und $\int g d\mu < \infty$, so ist f integrierbar

Bsp.:

 $f: \mathbb{R}^n \to \overline{\mathbb{R}} \ \lambda^n\text{-messbar und es gelte für ein } C \in [0, \infty]:$ $|f(x)| \leq C||x||^{-\alpha} \text{ fast überall in } B_{\epsilon}(0) \text{ mit } (\alpha < n) \text{ bzw.}$ $|f(x)| \leq C||x||^{-\alpha} \text{ fast überall in } \mathbb{R}^n \setminus B_{\epsilon}(0) \text{ mit } \alpha > n$ $\implies f \text{ ist auf } B_{\epsilon}(0) \text{ bzw. } \mathbb{R}^n \setminus B_{\epsilon}(0) \text{ integrierbar}$

IX Konvergenzsätze und L^n -Räume

Bsp.:

Punktweise Konvergenz reicht nicht für Konvergenz der Integrale.

Für
$$\epsilon > 0$$
 sei $f_{\epsilon} : \mathbb{R} \to \mathbb{R}, f_{\epsilon} = \frac{1}{2\epsilon} \chi_{[-\epsilon, \epsilon]}$
Es gilt $f_{\epsilon}(x) = 0$ für $\epsilon < |x|$
 $\implies f(x) := \lim_{\epsilon \downarrow 0} f_{\epsilon}(x) = \begin{cases} 0, & \text{für } x \neq 0 \\ \infty, & \text{für } x = 0 \end{cases}$
Weiter $\int f_{\epsilon} d\lambda^{1} = \frac{1}{2\epsilon} \lambda^{1}([-\epsilon, \epsilon]) = 1 \ \forall \epsilon > 0$
 $\implies \int f d\lambda^{1} = 0 < 1 = \lim_{\epsilon \downarrow 0} f_{\epsilon} d\lambda^{1}$

Satz IX.1 (Lemma von Fatou)

 $f_k: X \to [0, \infty]$ Folge von μ -messbaren Funktionen.

Für $f: X \to \overline{\mathbb{R}}, f(x) = \liminf_{k \to \infty} f_k(x)$ gilt:

$$\int f d\mu \le \liminf_{k \to \infty} \int f_k d\mu$$

Beweis. siehe Aufschrieb

Satz IX.2 (Dominierte Konvergenz bzw. Satz von Lebesgue)

 f_1, f_2, \dots Folge von μ -messbare Funktionen und $f(x) = \lim_{k \to \infty} f_k(x)$ für μ -fast alle $x \in X$. Es gebe eine integrierbare Funktion $g: X \to [0, \infty]$ mit $\sup_{k \in \mathbb{N}} |f_k(x)| \leq g(x)$

für μ -fast alle x. Fann ist f integrierbar und $\int f d\mu = \lim_{k \to \infty} \int f_k d\mu$.

Es gilt sogar $||f_k \cdot f||_{L^1(y)} := \int |f_k - f| d\mu \to 0$

Beweis. siehe Aufschrieb

Bem.: (Anwendung)

Vergleich Riemann- \int mit Lebesgue- \int

Sei I=[a,b] kompaktes Intervall, $f:I\to\mathbb{R}$ beschränkt. Unterteilungspunkte $a=x_0\leq\ldots\leq x_N=b\to \text{Zerlegung }Z$ von I mit Teilintervallen $I_j=[x_{j-1},x_j]$

$$\bar{S}_Z(f) = \sum_{j=1}^{N} (\sup_{I_j} f)(x_j - x_{j-1}), \quad \underline{S}_Z(f) = \sum_{j=1}^{N} (\inf_{I_j} f)(x_j - x_{j-1})$$

Für Zerlegungen Z_1,Z_2 mit Verfeinerung $Z_1 \cup Z_2$

$$\implies \underline{\mathbf{S}}_{Z_1}(f) \leq \underline{\mathbf{S}}_{Z_1 \cup Z_2}(f) \leq \bar{S}_{Z_1 \cup Z_2}(f) \leq \bar{S}_{Z_2}(f)$$

f heißt Riemann-integrierbar mit Integral $\int_{a}^{b} f(x)dx = S$, falls gilt:

$$\sup_{Z} \underline{S}_{Z}(f) = \inf_{Z} \bar{S}_{Z}(f) = S$$

Satz IX.3

 $f:I\to\mathbb{R}$ beschränkt auf kompaktem Intervall I=[a,b]. Dann gilt:

f Riemann-integrierbar $\Leftrightarrow \lambda^1(\{x \in I \mid f \text{ ist nicht stetig in } x\}) = 0$

In diesem Fall ist f auch Lebesgue-integrierbar und die Integrale stimmen überein.

Beweis. siehe Aufschrieb

Satz IX.4

X metrischer Raum, μ Maß auf Y und $f: X \times Y \to \mathbb{R}$ mit $f(x, \cdot)$ integrierbar bzgl. $\mu \ \forall x \in X$.

Betrachte $F: X \to \mathbb{R}, F(x) = \int f(x, y) d\mu(y)$

Sei $f(\cdot,y)$ stetig in $x_0 \in X$ für μ -fast alle $y \in Y$. Weiter gebe es eine μ -integrierbare Funktion $g: Y \to [0,\infty]$, so dass für alle $x \in X$ gilt: $|f(x,y)| \leq g(y) \ \forall y \in Y \setminus N_X$ mit einer μ -Nullmenge N_x .

Dann ist F stetig in x_0 .

Beweis. siehe Aufschrieb

Vorlesung 14

18.12.20

Satz IX.5

Sei $I \subseteq \mathbb{R}$ offenes Intervall, μ Maß auf Y und $f: I \times Y \to \mathbb{R}$ mit $f(x, \cdot)$ integrierbar bzgl. μ für alle $x \in I$.

Setze $F: U \to \mathbb{R}, F(x) = \int f(x, y) d\mu(y)$

Es sei $f(\cdot, y)$ in x_0 differenzierbar für μ -fast alle $y \in Y$ und es existiere $g: Y \to [0, \infty]$ μ -integrierbar mit

$$\frac{|f(x,y) - f(x_0,y)|}{|x - x_0|} \le g(y) \ \forall x \in I \ \forall y \in Y \setminus N_x$$

mit einer μ -Nullmenge N_x . Dann folgt:

$$F'(x_0) = \int \frac{\partial f}{\partial x}(x_0, y) d\mu(y)$$

Lemma IX.6

 $\mathcal{U} \subseteq \mathbb{R}^n$ offen, μ Maß auf Y und $f: \mathcal{U} \times Y \to \mathbb{R}$ mit f integrierbar bzgl. $\mu \ \forall x \in \mathcal{U}$. Betrachte $F: \mathcal{U} \to \mathbb{R}, F(x) = \int f(x,y) d\mu(y)$

Es gebe eine μ -Nullmenge $N \subseteq Y$, so dass $\forall y \in Y \setminus N$ gilt:

$$f(\cdot,y) \in C^1(\mathcal{U})$$
 und $|D_x f(x,y)| \leq g(y)$ mit $g: Y \to [0,\infty]$ integrierbar

 $\implies F \in C^1(\mathcal{U}) \text{ und } \forall x \in \mathcal{U} \text{ gilt:}$

$$\frac{\partial F}{\partial x_i}(x) = \int \frac{\partial f}{\partial x_i}(x,y) d\mu(y)$$

Beweis. siehe Aufschrieb

Bsp.:

$$\int_{0}^{\infty} \frac{\sin(x)}{x} dx = ? \quad \text{Betrachte } F : [0, \infty] \to \mathbb{R}, F(t) = \int_{0}^{\infty} e^{-tx} \frac{\sin x}{x} dx$$

 $f(t,x):=e^{-tx}\frac{\sin(x)}{x}$ hat für $t\geq \delta$ die Abschätzungen $|f(t,x)|, |\partial_t f(t,x)|\leq e^{-\delta x}=:g(x)\in L^1([0,\infty))$ Lemma V.6 $\Longrightarrow \forall t>0$ gilt:

$$F'(t) = \int_0^\infty e^{-tx} (-\sin x) dx$$

$$= [e^{-tx} \cos x]_{x=0}^{x=\infty} + t \int_0^\infty e^{-tx} \cos x dx$$

$$= -1 + t^2 \int_0^\infty e^{-tx} \sin x dx$$

$$= -1 - t^2 F'(t)$$

$$\implies F'(t) = \frac{-1}{1+t^2}$$

... (siehe Aufschrieb)

$$\int_{0}^{\infty} \frac{\sin(x)}{x} dx = \frac{\pi}{2}$$

Def. IX.7 (L^p -Norm)

Für μ -messbares $f: X \to \overline{\mathbb{R}}$ und $1 \le p \le \infty$ setzen wir

$$||f||_{L^p(\mu)} := \begin{cases} (\int |f|^p d\mu)^{1/p} & \text{, für } 1 \le p < \infty \\ \inf\{s > 0 \mid \mu(\{|f| > s\}) = 0\} & \text{, für } p = \infty \end{cases}$$

auf $\mathcal{L}^p(\mu) = \{ f : X \to \bar{\mathbb{R}} \mid f\mu - \text{messbar }, ||f||_{L^p(\mu)} < \infty \}$

Betrachte Äquivalenzrelation $f \sim g \Leftrightarrow f(x) = g(x)$ für μ -fast alle $x \in X$, und definiere den L^p -Raum durch $\mathcal{L}^p(\mu)/_{\sim}$.

Def. IX.8

Für $E \subseteq X$ messbar und $f: E \to \overline{\mathbb{R}}$ sei $f_0: X \to \overline{\mathbb{R}}$ die Fortsetzung mit $f_0(x) = 0 \ \forall x \in X \setminus E$. Wir setzen dann

$$\mathcal{L}^p(E) := \{ f : E \to \bar{\mathbb{R}} \mid f_0 \in \mathcal{L}^p(\mu) \}$$

und $L^p(E,\mu) := \mathcal{L}^p(E)/_{\sim}$.

Proposition IX.9

Für $1 \leq p \leq \infty$ ist $(L^p(\mu), ||\cdot||_{L^p(\mu)})$ ein normierter Vektorraum. Insbesondere gelten für $\lambda \in \mathbb{R}$ und $f, g \in L^p(\mu)$:

- 1. $||f||_{L^p} = 0 \implies f = 0 \mu$ -fast überall
- 2. $f \in L^p(\mu), \lambda \in \mathbb{R} \implies \lambda f \in L^p(\mu), ||\lambda f||_{L^p} = |\lambda| ||f||_{L^p}$
- 3. $f, g \in L^p(\mu) \implies f + g \in L^p(\mu) \text{ und } ||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$

Beweis. siehe Aufschrieb

Lemma IX.10 (Youngsche Ungleichung)

Für
$$1 < p, q < \infty$$
 mit $\frac{1}{p} + \frac{1}{q} = 1$ und $x, y \ge 0$ gilt: $xy \le \frac{x^p}{p} + \frac{y^q}{q}$

Satz IX.11 (Höldersche Ungleichung)

Für μ -messbare $f, g: X \to \mathbb{R}$ gilt: $|\int fgd\mu| \le ||f||_{L^p}||g||_{L^p}$, falls $1 \le p, q \le \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$

Beweis. siehe Aufschrieb

Satz IX.12 (Minkowski-Ungleichung)

Für $f, g \in L^p(\mu)$ mit $1 \le p \le \infty$ gilt: $||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$

Beweis. siehe Aufschrieb

Lemma IX.13

Sei $1 \le p < \infty$ und $f_k = \sum_{j=1}^k u_j$ mit $u_j \in L^p(\mu)$. Falls $\sum_{j=1}^k ||u_j||_{L^p} < \infty$, so gelten:

- i) $\exists \mu$ -Nullmenge $N: f(x) = \lim_{k \to \infty} f_k(x) \ \forall x \in X \setminus N$ ex.
- ii) mit f := 0 auf gilt $f \in L^p(\mu)$
- iii) $||f f_k||_{L^p} \to 0$ mit $k \to \infty$

Beweis. siehe Aufschrieb

נְנָנָנָנָנָ upstream/main