

Thesis Defense

The AFIT of Today is the Air Force of Tomorrow.

CLOUD BENCHMARK TESTING OF CASSANDRA ON RASPBERRY PI FOR INTERNET OF THINGS CAPABILITY

Daniel Richardson, Capt, USAF 17M-GE

Overview

- Motivation
- Problem Statement
- Contributions
- Background and Related Works
- Experiments
- Results
- Conclusions

Motivation

Motivation

The AFIT of Today is the Air Force of

Motivation

Problem Statement

The AFIT of Today is the Air Force of Tomorrow.

 This research seeks to characterize, if any, conditions for feasible operation of distributed database technology on limited hardware.

Research Questions

- Effect Characterization: Timing and Scalability
 - Variation in RAM
 - Wired vs. Wireless
 - Hardware vs. Virtual

Contributions

- Framework for Evaluation
- Insight into Scalability for Both a Wired and Wireless Configurations
- Performance Comparison between physical devices and virtual devices

Related Work

- Cooper et al. [1]
 - Initial Presentation YCSB
 - Surveys Many Different Databases Optimally Tuned
- Abramova et al. [2]
 - Same Database: Cassandra
 - Expands on Configurations
 - Expands on Workload
- Waddington and Lin [3]
 - Specific Workload for IoT
 - Specific, Custom Database

Background

The AFIT of Today is the Air Force of Tomorrow.

- Cassandra and other databases
- Raspberry Pi and other Hardware

Image licensed By Apache Software Foundation [Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0)], via Wikimedia Commons

Background

The AFIT of Today is the Air Force of Tomorrow.

Write Path -- What Counts as a Write in Stress Testing

Adapted from https://wiki.apache.org/cassandra/WritePathForUsers

Background

The AFIT of Today is the Air Force of Tomorrow.

Read Path - Nominal

Adapted from http://wiki.apache.org/cassandra/ReadPathForUsers

Raspberry Pi Series

- Multiple Models: 0, 1, 2, 3; A, B, +
- ARM Processor
- 1 GB RAM
- Designed for education
- Website https://www.raspberrypi.org/help/
- Example image courtesy of https://en.wikipedia.org/wiki/Raspberry_Pi

cassandra-stress

The AFIT of Today is the Air Force of Tomorrow.

Operations Per Second - Reads Only

network_type

Experimental Setup

Workload	Read	Update	Scan	Insert
A	0.50	0.50	0.00	0.00
С	1.00	0.00	0.00	0.00
E	0.00	0.00	0.95	0.05
I	0.01	0.00	0.00	0.99

Communication	Platform	RAM
Nodal	Virtual Machine	1 GB
Nodal	Virtual Machine	2 GB
Nodal	Virtual Machine	4 GB
Ethernet LAN	Raspberry Pi	1 GB
802.11 LAN	Raspberry Pi	1 GB

Experimental Setup (cont)

1GB 2GB 4GB

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload A

NumberOfNodes

Air University: The Intellectual and Leadership Center of the Air Force
Aim High...Fly - Fight - Win

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload C

NumberOfNodes

1GB 2GB

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload E

NumberOfNodes

Air University: The Intellectual and Leadership Center of the Air Force Aim High...Fly - Fight - Win

1GB

2GB 4GB

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload E

NumberOfNodes

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload I

NumberOfNodes

Linear Regression (A)

Cluster Size (nodes)	Slope (ms per GB RAM)	Intercept (ms)	r-Value	p-Value	Standard Error
1	-68.8	6.45e+03	-0.509	2.08e-05	14.9
3	120	1.01e+04	0.458	0.000162	29.9
6	147	1.43e+04	0.514	1.67e-05	31.5

The AFIT of Today is the Air Force of Tomorrow.

 These results fail to suggest a linear prediction of performance based on RAM.

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload A

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload C

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload E

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload E

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload I

The AFIT of Today is the Air Force of Tomorrow.

 These results seem to suggest Cassandra's scalability may a bit threatened by wireless. Additional testing may be of value to see if this trend continues or if something could ameliorate it, such as employing the request-to-send.

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload A

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload C

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload E

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload I

Absolute Differentials

NT 1 C	1 N. J. 2 N. J. CN. J. OVEDA					
Number of	1-Node	3-Node	6-Node	OVERALL		
Nodes	Cluster	Cluster	Cluster			
1,0000	3.11.3	210.001	0.1012.001			
Count	21	21	21	63		
Mean (ms)	1.28e+04	3.16e+04	1.95e+04	2.13e+04		
Standard	1.12e+03	1.65e+03	1.78e+03	7.96e+03		
Deviation (ms)						
Minimum (ms)	1.03e+04	2.81e+04	1.64e+04	1.03e+04		
25% (ms)	1.23e+04	3.07e+04	1.83e+04	1.35e+04		
Median (ms)	1.28e+04	3.14e+04	1.94e+04	1.94e+04		
75% (ms)	1.35e+04	3.22e+04	2.02e+04	3.06e+04		
Maximum	1.52e+04	3.49e+04	2.37e+04	3.49e+04		
(ms)						

Conclusions

The AFIT of Today is the Air Force of Tomorrow.

Available RAM

 Results and interpretation fail to suggest any utilitarian linear model of performance.

Workload

 Results suggest that workload can make a difference in performance, and such differences were accentuated with hardware changes.

Scalability

 Results suggest reasonable scalability of wired and virtual clusters over cluster size... wireless less so and results suggest the utility of additional experimentation.

Raspberry Pis versus Virtual Machines

- Results suggest confirmation of a cost in execution time.
- Results also suggest more experimentation could lead to a correction factor for simulated applications.

Future Work

- Varying Database Size
- Wireless Configurations (request-to-send, maximum transmission unit)
- Varying Hardware, not just the Raspberry Pi
- Testing Larger Clusters
- Varying Thread Count

Future Work

- WiFiPi Prototype
 - Sniff traffic with scapy
 - Filter out probe requests
 - Extract SSIDs (plaintext), IP Addresses
 - Append to Distributed Database

Sources

- [1] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010). Benchmarking cloud serving systems with YCSB. Proceedings of the 1st ACM Symposium on Cloud Computing SoCC '10, 143–154. http://doi.org/10.1145/1807128.1807152
- [2] Abramova, V., Bernardino, J., & Furtado, P. (2014). Testing Cloud Benchmark Scalability with Cassandra. 2014 IEEE World Congress on Services, 434–441. http://doi.org/10.1109/SERVICES.2014.81
- [3] Waddington, D. G., & Lin, C. (2016). A Fast Lightweight Time-Series Store for IoT Data.
- [4] Lourenco, J. R., Abramova, V., Cabral, B., Bernardino, J., Carreiro, P., & Vieira, M. (2015). No SQL in Practice: A Write-Heavy Enterprise Application. *Proceedings 2015 IEEE International Congress on Big Data, BigData Congress 2015*, 584–591. http://doi.org/10.1109/BigDataCongress.2015.90
- [5] Abramova, V., & Bernardino, J. (2013). NoSQL databases: MongoDB vs cassandra. *Proceedings of the International C* Conference on Computer Science and Software Engineering, ACM 2013*, 14–22. http://doi.org/10.1145/2494444.2494447

End

I 1GB

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload E

NumberOfNodes

The AFIT of Today is the Air Force of Tomorrow.

Execution Time, Workload I

NumberOfNodes