

Proof. Suppose to the contrary that $\overrightarrow{AB} \not\parallel \overrightarrow{CD}$. Without the loss of generality, we may assume that $B \in$ $\overrightarrow{AB} \cap \overrightarrow{CD}$. Let E be a point given by Extension that A - B - E. Since A - B - E, we know that $\angle ADC = \angle ADB < \angle ADE$. Then $d_0 = m\angle ADC < m\angle ADE$ but $\overrightarrow{DE} \not | \overrightarrow{AB}$, which is a contradiction to d_0

being the least upper bound.

Proof. Suppose to the contrary that $\overrightarrow{AB} \not\parallel \overrightarrow{CD}$. Without the loss of generality, we may assume that $B \in \overrightarrow{AB} \cap \overrightarrow{CD}$. Let E be a point given by Extension that A - B - E. Since A - B - E, we know that $\angle ADC = \angle ADB < \angle ADE$. Then $d_0 = m\angle ADC < m\angle ADE$ but $\overrightarrow{DE} \not\parallel \overrightarrow{AB}$, which is a contradiction to d_0 being the least upper bound.