

Program with Siebert applies of y -> D is a nice tonic
degeneration.
(e.y. omplete mércedois in toic vaneties).
This talk: . Construction of theta functions
This tame, of the timestale
(works in any dimercian but will focus on two day &, where it works
more generally)
· Solve (2) in two dimensions
(joint w/ Paul Hicking & Sean Keel)
+ Hys? (joint wik Abouzaid + Siebert.)
Start with y max. unipotent degen. of k3 surfaces,
max. unipotent degen. of KS surfaces,
Start with grant unipotent degen. of k3 surfaces, normal crossings, relatively minimal.
1 / y / \
$A_1(y/D)$ = abelian group generated by curves in y mapping to
points in D modulo numerical equivalence (fir. ronk)
mavag.
NE (Y/D) = A2 (Y/D)
cho'n Pa
cone questo by effective curves toric monaid
Circles of satil
1
for some strictly convex rational polyhodral one pois u/ lattice,
for some strictly convex rational polyhedral one polyhedral one u/ lattice, or $A_1 \otimes_{\mathbb{Z}} \mathbb{R}$. or $A_2(y/p)$
Let J=P\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
a monomial odeal in k[P]. Let k[P] be the complete it k[P] w.r.t. J.
W.r.t. J.

mountment	
HEROTOCKOCK CONTRACTOCK	Goal: Construct a morror family over Spec K[P].
Service de la company de la co	rike kähler modalispers.
Secretarion of the second second	Construct an affine manifold with singularities from y -> D
AMERICAN STREET	B is the dual intersection complex of you in vertices of B
distance and the second	correspond to moducible amponents of you
and the second desired second	v ←¬ / _v
HORSE BOSTON STREET, STREET	<vo,, vn=""> is a simplex of B if y n-n/ ##</vo,,>
CONTRACTOR INCOME.	B is a simplicial complex honeomorphic to 5?
day and an analysis and an analysis and	(rel. minimal max unipokat implies this)
of the seasons of the	
Total columns	Each 2-dun't cell can be given an affine structure in its interior
ates according	via an identification with the standard simplex. (1)
12023555555	
RECURSOR SECURE AND A SECURE AN	We extend the office shotue along edges as follows: $(0,0)$ $(1,0)$ $(-1,-1)^2 \frac{\sqrt{3}}{\sqrt{2}}$ $(-1,-1)^2 \frac{\sqrt{3}}{\sqrt{2}}$
CONTRACT CONTRACTOR	$(-1,-1)^2 \sqrt{3}$
Spring Street Springs	(, v _o v ₂)
The same	10 V3 = 7
CONTRACTOR	Vo V ₁
AND DESCRIPTION OF THE PARTY OF	(-,0)
**************************************	7/
AND THE PROPERTY OF THE PARTY O	Looks asymmetric, but it works out: (Dvove + Dvzvo = -2
oco con processor and a con-	implies nell-defined).
entratement of the second	singularity are now on verticer.
SECONDARION SECOND	This offine of votel extends across vertex v :ff (7, Sing (y), X)
TOTAL SOCIETY SERVICE	is a toric pair.

Let DEB be the set of reatices; we now have an offine structure on Bo = B \ D. e.g. J yo which is a union of 12 del Rezzo surfaces of degree 5, gived lite a dode cahedron. B is an icos ahedron with edges flattered. B can be thought of as the intersection complex for the cortal fibre of our family over the closed point of Spec K(P). Deforming central fibre Let A & JBo be the sheaf of flat Integral vector fields (locally generate) by % y, , = /0y, , = 2) where y, , y, utegral affire coordinates. for panelye f B, $x \in Int(p)$, and chose a linear function $p : \Lambda \otimes \mathbb{R} \to \mathbb{P}^{gp} \otimes \mathbb{R}$. / MxOR In men x maps to a primitive generator of 1x/sp. lives in 1. 1

The bend of Pp is Pp (m) + Pp (-m) = (Dp)

p = <v,u> p= Dvw = Yv Yw

