MA 503: Homework 10

Dane Johnson

October 12, 2020

Problem 17

a. Let P be the nonmeasurable set from section 4. Suppose that $m^*(A \cap P) + m^*(A \cap P^c) \leq m^*(A)$ for each $A \subset \mathbb{R}$. This would give the contradiction that P is measurable. So there must exist an $A \subset \mathbb{R}$ such that $m^*(A \cap P) + m^*(A \cap P^c) > m^*(A)$. Set $E_1 = A \cap P$, $E_2 = A \cap P^c$ and $E_i = \emptyset$ for $i \geq 3$.

$$m^* \left(\bigcup E_i \right) = m^*(A) < m^*(A \cap P) + m^*(A \cap P^c) = \sum m^*(E_i)$$
.

b. Suppose that the nonmeasurable set P from section 4 has outer measure zero. Then by Theorem 10, P would be measurable. So it must be the case that $m^*(P) > 0$. Let (r_n) be an enumeration of the rationals in [0,1) and $E_i = \bigcup_{n=i}^{\infty} (P+r_n)$. Then $E_i \supset E_{i+1}$ for each i as $P \subset [0,1)$, $m^*(E_i) < \infty$ for each i.

$$m^* \left(\bigcap_{i=1}^{\infty} E_i \right) = m^*(\emptyset) = 0 < m^*(P) \le \lim m^*(E_i)$$
.

Problem 18 Show that (v) does not imply (iv) in Proposition 18 by constructing a function f such that $\{x: f(x) > 0\} = E$, a given nonmeasurable set, and such that f assumes each value at most once.

Let E be a given nonmeasurable set. The existence of a nonmeasurable set comes from section 4. Define the function $f: \mathbb{R} \to \overline{\mathbb{R}}$ by

$$f(x) = \begin{cases} 2^x & x \in E \\ -2^x & x \notin E \end{cases}.$$

Then f is an extended real-valued function whose domain is measurable. We will show that part (v) of Proposition 18 holds yet part (iv) fails.

If f(x) = f(y), then since $2^z > 0$ for all z and $-2^z < 0$ for all z, this means that either $2^x = 2^y$ or $-2^x = -2^y$. In either case, x = y. By this construction, f(x) > 0 if $x \in E$ and f(x) < 0 if $x \notin E$ so that $\{x : f(x) > 0\} = E$ is nonmeasurable. By the injectivity of f, for each $\alpha \in \mathbb{R}$, $\{x : f(x) = \alpha\}$ is either a singleton or empty. In either situation, $m^*(\{x : f(x) = \alpha\}) = 0$. This means for each $\alpha \in \mathbb{R}$, $\{x : f(x) = \alpha\}$ is measurable (Lemma 6 or Theorem 10). However, for $\alpha = 0$, if the set $\{x : f(x) \le 0\}$ were a measurable set, then $\{x : f(x) \le 0\}^c = \{x : f(x) > 0\} = E$ must also be measurable as \mathfrak{M} is a σ -algebra (Theorem 10). This is a contradiction so conclude that although (v) holds, there exists an $\alpha \in \mathbb{R}$ such that $\{x : f(x) \le \alpha\}$ is not measurable so that (iv) does not necessarily follow from (v).

Problem 19 Let D be dense in \mathbb{R} and let $f: \mathbb{R} \to \overline{\mathbb{R}}$ such that $\{x: f(x) > \alpha\}$ is measurable for each $\alpha \in D$. Prove that f is measurable.

If $D = \mathbb{R}$ then f is measurable by immediate application of Proposition 18 (i) and the definition of a Lebesgue measurable function. If $D \neq \mathbb{R}$, consider $\alpha \in \mathbb{R} \setminus D$. As D is dense in \mathbb{R} , for each $n \in \mathbb{N}$, $D \cap (\alpha, \alpha + 1/n) \neq \emptyset$. For each n pick an element $d_n \in D \cap (\alpha, \alpha + 1/n)$ to construct the sequence (d_n) . Since \mathfrak{M} is a σ -algebra, each set $\{x : f(x) \leq d_n\} = \{x : f(x) > d_n\}^c$ is measurable and the countable intersection of measurable sets $\bigcap_{n=1}^{\infty} \{x : f(x) \leq d_n\}$ is measurable. Let us prove that

$$\{x: f(x) \le \alpha\} = \bigcap_{n=1}^{\infty} \{x: f(x) \le d_n\}.$$

If $y \in \{x: f(x) \leq \alpha\}$, then $f(y) \leq \alpha < d_n$ for each $n \in \mathbb{N}$. Since $f(y) < d_n$, $f(y) \leq d_n$ so $y \in \{x: f(x) \leq d_n\} \subset \bigcap_{n=1}^{\infty} \{x: f(x) \leq d_n\}$. If $y \in \bigcap_{n=1}^{\infty} \{x: f(x) \leq d_n\}$, then $f(y) \leq d_n$ for each n. Suppose that $f(y) > \alpha$. Since $\alpha < d_n < \alpha + 1/n$ for each n, (d_n) converges to α (note that D cannot be closed if $D \neq \mathbb{R}$ so we are not in danger of the contradiction $\alpha \in D$ here). This means there is an N such that $f(y) > d_n > \alpha$ for each $n \geq N$, which contradicts $f(y) \leq d_n$ for each n. So $f(y) \leq \alpha$ and $y \in \{x: f(x) \leq \alpha\}$. Conclude that $\{x: f(x) \leq \alpha\}$ is measurable for each $\alpha \in \mathbb{R} \setminus D = D^c$. Since $\{x: f(x) > \alpha\}$ is measurable for each $\alpha \in D$, each complement $\{x: f(x) \leq \alpha\}$ is measurable for each $\alpha \in \mathbb{R}$. By Proposition 18 (iv) and the definition of a Lebesgue measurable function.