1

Assignment 12

KUSUMA PRIYA EE20MTECH11007

Download codes from

https://github.com/KUSUMAPRIYAPULAVARTY/assignment12

1 QUESTION

Let V be the set of real numbers.Regard V as a vector space over the field of rational numbers, with usual operations.Prove that this vector space is not finite-dimensional.

2 Solution

Given V is a vector space over field Q (rational numbers)

It is finite dimensional if every vector \mathbf{v} in \mathbf{V} can be written as

$$\mathbf{v} = \sum_{i=1}^{n} c_i \alpha_i \tag{2.0.1}$$

where
$$c_i \in Q$$
 (2.0.2)

and
$$\mathbf{B} = (\alpha_1, \alpha_2, \dots, \alpha_n)$$
 (2.0.3)

is the basis with linearly independent α_i Let e^n is one of the basis vectors and no other higher powers of e are in the basis

$$e^{n+1} = e.e^n (2.0.4)$$

$$= e^2 \cdot e^{n-1} \tag{2.0.5}$$

$$\div$$
 (2.0.6)

So, for rational
$$c_i$$
, (2.0.7)

$$e^{n+1} \neq \sum c_i \alpha_i \tag{2.0.8}$$

Since e^{n+1} does not lie in span of **B**

$$\mathbf{B}' = \mathbf{B} \cup \left(e^{n+1}\right) \tag{2.0.9}$$

also has linearly independent vectors and can be the basis of V. But B' also cannot span the whole

V since it cannot generate e^{n+2} by any combinations of **B**'

From this we can conclude that the vector space V of real numbers is not finite dimensional over the field of rational numbers Q