SHADERS

QUÉ SON LOS SHADERS?

- Son pequeños programas que corren en la placa de video (GPU).
- Hay distintos tipos y se utilizan para cosas específicas (vertex, fragment, geometry, tesselation).
- Tienen un set de instrucciones mucho más pequeño que los programas que corren en CPU...
- ... pero corren en paralelo en forma masiva.

PARA QUÉ SE USAN?

- Son la herramienta que tenemos para lograr mostrar cosas en pantalla
- Texturizar e iluminar un modelo 3D
- Mostrar un sprite 2D
- Efectos especiales
- Deformaciones de los modelos
- Etc.

CÓMO SE USAN EN UNITY?

CÓMO SE USAN EN UNITY?

PARA EXPERIMENTAR: BUILT-IN SHADERS

https://unity3d.com/get-unity/download/archive

```
Shader "Folder/Shader" {
       Properties
3
5
6
       SubShader
8
           Pass
10
11
                CGPROGRAM
12
13
                ENDCG
14
15
16 }
17
```

ANTES QUE NADA: CÓMO SE REPRESENTA UN COLOR?

RGBA

(0,0,0,1) Negro

(1,1,1,1) Blanco

(.5,.5,.5,1) Gris medio

(1,0,1,1) Magenta (Errores)

(1,1,0,1) Amarillo

(0,1,1,1) Cyan

CREEMOS UN SHADER DESDE CERO

UV MAPPING (QUAD)

TIME

_Time float4 Time (t/20, t, t*2, t*3), use to animate things inside the shaders.

_SinTime float4 Sine of time: (t/8, t/4, t/2, t).

_CosTimefloat4 Cosine of time: (t/8, t/4, t/2, t).

unity_DeltaTime float4 Delta time: (dt, 1/dt, smoothDt, 1/smoothDt).

Fuente: http://docs.unity3d.com/462/Documentation/Manual/SL-BuiltinValues.html

EJERCICIO

- 1) Abrir escena en "Ejercicios/1 Endless Scroller/"
- 2) Editar shader "Endless Scroller" para que el fondo haga scroll indefinidamente

SOLUCIÓN

SOLUCIÓN

```
fixed4 frag (v2f i) : COLOR
{
  fixed4 col = tex2D(_MainTex, i.texcoord + fixed2(_Time.x,0));
  return col;
}
```

(Y QUE EL WRAP MODE DE LA TEXTURA SEA "REPEAT" Y NO "CLAMP")

BLENDING MODES

BLENDING MODES

ADDITIVE (ÚTIL PARA ILUMINAR)

MULTIPLY (ÚTIL PARA SOMBREAR)

OTROS BLENDING MODES ÚTILES

Si trabajamos con artistas que usan Photoshop, conviene usar la misma nomenclatura:

MULTIPLY	A * B
COLOR BURN	1-(1-B)/A
LINEAR BURN	A+B-1
SCREEN	1-(1-A)*(1-B)
COLOR DODGE	B/(1-A)
LINEAR DODGE	A+B
SUBTRACT	B-A
DIVIDE	B/A

Fuente: http://photoblogstop.com/photoshop/photoshop-blend-modes-explained

BLENDING MODES EN UNA SCENE

http://docs.unity3d.com/Manual/SL-Blend.html

SPRITES CON ALPHA

Blend SrcAlpha OneMinusSrcAlpha

EFECTOS FULL SCREEN

EFECTOS FULL SCREEN

```
using UnityEngine;
public class CameraEffect : MonoBehaviour
{
   public Material material;
   void OnRenderImage ( RenderTexture src, RenderTexture dst)
   {
      Graphics.Blit(src, dst, material);
   }
}
```

EJERCICIO

- 1) Abrir escena en "Ejercicios/2 Vignetting/"
- 2) Editar shader "Vignetting" para lograr un fade radial desde afuera al centro
- 3) Usar una propiedad para modificar el radio del vignette

HINT: USAR DISTANCIA (LENGTH) Y PROPIEDAD RANGE()

SOLUCIÓN

SOLUCIÓN

```
Properties
     _Radius ("Radius", Range(0,1)) = 0.9
[...]
float _Radius;
[...]
fixed4 frag (v2f i) : COLOR
     fixed4 col = tex2D(_MainTex, i.texcoord );
fixed vignetting = _Radius - length(i.texcoord - 0.5);
     return col * vignetting;
```

"ILUMINACIÓN" 2D

"ILUMINACIÓN" 2D

Utilizando shaders con **blending mode aditivo**, podemos crear luces para darle más vida a nuestro juego.

"ILUMINACIÓN" 2D

Utilizando shaders con **blending mode aditivo** podemos crear luces para darle más variedad a la escena.

Utilizando shaders con blending mode multiplicativo podemos crear sombras que dan profundidad a la escena.

Podemos utilizar funciones matemáticas para hacer cosas interesantes.

sin(x)

$$-1 < \sin(x) < 1$$

$$-1 < \sin(x) < 1$$

smoothstep(a,b,v)

smoothstep(a,b,v)

hace interpolación lineal

entre 0 y 1, comparando a y b con v.

Sirve para hacer transiciones suaves.

lookup tables (LUT)

Efecto muy usado en la demoscene durante los 90s y 2000s por ser

poco costoso de ejecutar y lograr muy buenos resultados visuales.

Un poco drástico para usar en videojuegos pero siempre algo se puede hacer.

MODIFICAR LAS TEXTURAS PROCEDURALMENTE Manejo de canales RGB

Podemos modificar individualmente los canales RGB para hacer

correcciones de color o efectos de offsetting.

EJEMPLOS EN NUESTROS JUEGOS

PREGUNTAS?

PARA APRENDER MÁS

http://docs.unity3d.com/460/Documentation/Manual/SL-Reference.html

Iñigo Quillez: http://www.iquilezles.org/www/index.htm

Libros:

Graphics Shaders: Theory and practice Second edition

Real-Time Rendering Third Edition http://www.realtimerendering.com/

Para divertise y asombrarse:

https://www.shadertoy.com/ (Proyecto de Iñigo Quillez!)

SANDBOX HASTA LAS 17:30 !!!

A VER QUÉ HICIERON?

MUCHAS GRACIAS!

MUCHAS GRACIAS!

AHORA A ESCRIBIR SHADERS PARA MOSTRAR EN EVA15

info@franciscotufro.com

@franciscotufro