

SEQUENCE LISTING

<110> Miller, Duane D.

Tigyi, Gabor

Dalton, James T.

Sardar, Vineet M.

Elrod, Don B.

Xu, Huiping

Baker, Daniel L.

Wang, Dean

Liliom, Karoly

Fischer, David J.

Virág, Tamas

Nusser, Nora

<120> LPA RECEPTOR AGONISTS AND ANTAGONISTS AND METHODS OF
USE

<130> 20609/181

<140>

<141>

<150> 60/190,370

<151> 2000-03-17

<160> 26

<170> PatentIn Ver. 2.1

<210> 1

<211> 1095

<212> DNA

<213> Homo sapiens

<400> 1

atggctgcca tctctacttc catccctgtat atttcacagc cccagttcac agccatgaat 60
gaaccacagt gcttctacaa cgagtccatt gccttctttt ataaccgaag tggaaagcat 120
cttgccacag aatggaacac agtcagcaag ctggtgatgg gacttggaaat cactgttgt 180
atcttcatca tggtggccaa cctattggtc atggtgccaa tctatgtcaa ccggccgttc 240
cattttcccta tttattacct' aatggctaat ctggctgctg cagacttctt tgctgggttg 300
gcctacttct atctcatgtt caacacagga cccaaatactc ggagactgac tgtagcaca 360
tggctctgc gtcaggccct cattgacacc agcctgacgg catctgtggc caacttactg 420
gctattgcaa tcgagaggca cattacggtt ttccgcattgc agctccacac acggatgagc 480
aaccggcgaa tagtggttgt cattgtggtc atctggacta tggccatcgat tatgggtgt 540
ataccaggatg tggctggaa ctgtatctgt gatattgaaa attgttccaa catggcaccc 600
ctctacaggatg actcttactt agtcttctgg gccatttca acttggtgac ctttgggtgt 660
atggtggttc tctatgctca catcttggc tatgttcgcc agaggactat gagaatgtct 720.

cggcatagtt ctggaccccg gcggaatcgg gataccatga tgagtcttct gaagactgtg 780
gtcattgtgc ttggggcctt tatcatctgc tggactcctg gattggttt gttacttcta 840
gacgtgtgct gtccacagtg cgacgtgctg gcctatgaga aattcttct ttccttgct 900
gaattcaact ctgccatgaa ccccatcatt tactcctacc gcgacaaaga aatgagcgcc 960
accttttaggc agatcctctg ctgccagcgc agtgagaacc ccaccggccc cacagaaaagc 1020
tcagaccgct cggcttcctc cctcaaccac accatcttgg ctggagttca cagcaatgac 1080
cactctgtgg tttag 1095

<210> 2
<211> 364
<212> PRT
<213> Homo sapiens

<400> 2
Met Ala Ala Ile Ser Thr Ser Ile Pro Val Ile Ser Gln Pro Gln Phe
1 5 10 15

Thr Ala Met Asn Glu Pro Gln Cys Phe Tyr Asn Glu Ser Ile Ala Phe
20 25 30

Phe Tyr Asn Arg Ser Gly Lys His Leu Ala Thr Glu Trp Asn Thr Val
35 40 45

Ser Lys Leu Val Met Gly Leu Gly Ile Thr Val Cys Ile Phe Ile Met
50 55 60

Leu Ala Asn Leu Leu Val Met Val Ala Ile Tyr Val Asn Arg Arg Phe
65 70 75 80

His Phe Pro Ile Tyr Tyr Leu Met Ala Asn Leu Ala Ala Asp Phe
85 90 95

Phe Ala Gly Leu Ala Tyr Phe Tyr Leu Met Phe Asn Thr Gly Pro Asn
100 105 110

Thr Arg Arg Leu Thr Val Ser Thr Trp Leu Leu Arg Gln Gly Leu Ile
115 120 125

Asp Thr Ser Leu Thr Ala Ser Val Ala Asn Leu Ala Ile Ala Ile
130 135 140

Glu Arg His Ile Thr Val Phe Arg Met Gln Leu His Thr Arg Met Ser
145 150 155 160

Asn Arg Arg Val Val Val Ile Val Val Ile Trp Thr Met Ala Ile
165 170 175

Val Met Gly Ala Ile Pro Ser Val Gly Trp Asn Cys Ile Cys Asp Ile
180 185 190

Glu Asn Cys Ser Asn Met Ala Pro Leu Tyr Ser Asp Ser Tyr Leu Val
195 200 205

Phe Trp Ala Ile Phe Asn Leu Val Thr Phe Val Val Met Val Val Leu
210 215 220

Tyr Ala His Ile Phe Gly Tyr Val Arg Gln Arg Thr Met Arg Met Ser
225 230 235 240

Arg His Ser Ser Gly Pro Arg Arg Asn Arg Asp Thr Met Met Ser Leu
245 250 255

Leu Lys Thr Val Val Ile Val Leu Gly Ala Phe Ile Ile Cys Trp Thr
260 265 270

Pro Gly Leu Val Leu Leu Leu Asp Val Cys Cys Pro Gln Cys Asp
275 280 285

Val Leu Ala Tyr Glu Lys Phe Phe Leu Leu Leu Ala Glu Phe Asn Ser
290 295 300

Ala Met Asn Pro Ile Ile Tyr Ser Tyr Arg Asp Lys Glu Met Ser Ala
305 310 315 320

Thr Phe Arg Gln Ile Leu Cys Cys Gln Arg Ser Glu Asn Pro Thr Gly
325 330 335

Pro Thr Glu Ser Ser Asp Arg Ser Ala Ser Ser Leu Asn His Thr Ile
340 345 350

Leu Ala Gly Val His Ser Asn Asp His Ser Val Val
355 360

<210> 3

<211> 1056

<212> DNA

<213> Homo sapiens

<400> 3

atggtcatca tgggccagtg ctactacaac gagaccatcg gcttcttcta taacaacagt 60
ggcaaagacg tcagctccca ctggcgcccc aaggatgtgg tcgtgggtggc actggggctg 120
accgtcagcg tgctggtgct gctgaccaat ctgctggtca tagcagccat cgcctccaac 180
cgccgcttcc accagcccat ctactacctg ctcggcaatc tggccgcggc tgacaccttc 240
gcgggcgtgg cctaccttt cctcatgttc cacactggtc cccgcacagc ccgactttca 300

cttgagggct ggttcctgcg gcagggcttg ctggacaccaa gcctcactgc gtcgggtggcc 360
 acactgctgg ccacatcgccgt ggagcggcac cgcaagtgtga tggccgtgca gctgcacagc 420
 cgcctgcccc gtggccgcgt ggtcatgctc attgtgggcg tgtgggtggc tgccctgggc 480
 ctggggctgc tgccctgcca ctccctggcac tgcctctgtg ccctggaccg ctgctcacgc 540
 atggcacccc tgctcagccg ctccctatttg gccgtctggg ctctgtcgag cctgcttgtc 600
 ttccctgctca tggtggctgt gtacacccgc attttcttct acgtgcggcg gcgagtgtag 660
 cgcacatggcag agcatgtcag ctgccaccccc cgctaccgag agaccacgct cagcctggc 720
 aagactgttg tcatcatcct gggggcgttc gtggtctgct ggacaccagg ccaggtgta 780
 ctgctcctgg atggtttagg ctgtgagtc tgcaatgtcc tggctgtaga aaagtacttc 840
 ctactgttgg ccgaggccaa ctcactggtc aatgctgctg tgtactcttgc 900
 gagatgcgcc gcacccctccg ccgccttc tgctgcgcgt gcctccgcca gtccacccgc 960
 gagtctgtcc actatacatac ctctgcccag ggaggtgcca gcactcgcat catgcttccc 1020
 gagaacggcc acccaactgat ggactccacc cttag 1056

<210> 4

<211> 351

<212> PRT

<213> Homo sapiens

<400> 4

Met	Val	Ile	Met	Gly	Gln	Cys	Tyr	Tyr	Asn	Glu	Thr	Ile	Gly	Phe	Phe
1															

5

10

15

Tyr	Asn	Asn	Ser	Gly	Lys	Glu	Leu	Ser	Ser	His	Trp	Arg	Pro	Lys	Asp

20

25

30

Val	Val	Val	Val	Ala	Leu	Gly	Leu	Thr	Val	Ser	Val	Leu	Val	Leu	Leu

35

40

45

Thr	Asn	Leu	Leu	Val	Ile	Ala	Ala	Ile	Ala	Ser	Asn	Arg	Arg	Phe	His

50

55

60

Gln	Pro	Ile	Tyr	Tyr	Leu	Leu	Gly	Asn	Leu	Ala	Ala	Ala	Asp	Leu	Phe

65

70

75

80

Ala	Gly	Val	Ala	Tyr	Leu	Phe	Leu	Met	Phe	His	Thr	Gly	Pro	Arg	Thr

85

90

95

Ala	Arg	Leu	Ser	Leu	Glu	Gly	Trp	Phe	Leu	Arg	Gln	Gly	Leu	Leu	Asp

100

105

110

Thr	Ser	Leu	Thr	Ala	Ser	Val	Ala	Thr	Leu	Leu	Ala	Ile	Ala	Val	Glu

115

120

125

Arg	His	Arg	Ser	Val	Met	Ala	Val	Gln	Leu	His	Ser	Arg	Leu	Pro	Arg

130

135

140

Gly Arg Val Val Met Leu Ile Val Gly Val Trp Val Ala Ala Leu Gly
145 150 155 160

Leu Gly Leu Leu Pro Ala His Ser Trp His Cys Leu Cys Ala Leu Asp
165 170 175

Arg Cys Ser Arg Met Ala Pro Leu Leu Ser Arg Ser Tyr Leu Ala Val
180 185 190

Trp Ala Leu Ser Ser Leu Leu Val Phe Leu Leu Met Val Ala Val Tyr
195 200 205

Thr Arg Ile Phe Phe Tyr Val Arg Arg Arg Val Gln Arg Met Ala Glu
210 215 220

His Val Ser Cys His Pro Arg Tyr Arg Glu Thr Thr Leu Ser Leu Val
225 230 235 240

Lys Thr Val Val Ile Ile Leu Gly Ala Phe Val Val Cys Trp Thr Pro
245 250 255

Gly Gln Val Val Leu Leu Leu Asp Gly Leu Gly Cys Glu Ser Cys Asn
260 265 270

Val Leu Ala Val Glu Lys Tyr Phe Leu Leu Leu Ala Glu Ala Asn Ser
275 280 285

Leu Val Asn Ala Ala Val Tyr Ser Cys Arg Asp Ala Glu Met Arg Arg
290 295 300

Thr Phe Arg Arg Leu Leu Cys Cys Ala Cys Leu Arg Gln Ser Thr Arg
305 310 315 320

Glu Ser Val His Tyr Thr Ser Ser Ala Gln Gly Gly Ala Ser Thr Arg
325 330 335

Ile Met Leu Pro Glu Asn Gly His Pro Leu Met Asp Ser Thr Leu
340 345 350

<210> 5

<211> 1062

<212> DNA

<213> Homo sapiens

<400> 5

atgaatgagt gtcactatga caagcacatg gactttttt ataataggag caacactgat 60
actgtcgatg actggacagg aacaaagctt gtgattgttt tgtgtgttgg gacgttttc 120

Met Ser Ile Met Arg Met Arg Val His Ser Asn Leu Thr Lys Lys Arg
130 135 140

Val Thr Leu Leu Ile Leu Leu Val Trp Ala Ile Ala Ile Phe Met Gly
145 150 155 160

Ala Val Pro Thr Leu Gly Trp Asn Cys Leu Cys Asn Ile Ser Ala Cys
165 170 175

Ser Ser Leu Ala Pro Ile Tyr Ser Arg Ser Tyr Leu Val Phe Trp Thr
180 185 190

Val Ser Asn Leu Met Ala Phe Leu Ile Met Val Val Val Tyr Leu Arg
195 200 205

Ile Tyr Val Tyr Val Lys Arg Lys Thr Asn Val Leu Ser Pro His Thr
210 215 220

Ser Gly Ser Ile Ser Arg Arg Arg Thr Pro Met Lys Leu Met Lys Thr
225 230 235 240

Val Met Thr Val Leu Gly Ala Phe Val Val Cys Trp Thr Pro Gly Leu
245 250 255

Val Val Leu Leu Leu Asp Gly Leu Asn Cys Arg Gln Cys Gly Val Gln
260 265 270

His Val Lys Arg Trp Phe Leu Leu Leu Ala Leu Leu Asn Ser Val Val
275 280 285

Asn Pro Ile Ile Tyr Ser Tyr Lys Asp Glu Asp Met Tyr Gly Thr Met
290 295 300

Lys Lys Met Ile Cys Cys Phe Ser Gln Glu Asn Pro Glu Arg Arg Pro
305 310 315 320

Ser Arg Ile Pro Ser Thr Val Leu Ser Arg Ser Asp Thr Gly Ser Gln
325 330 335

Tyr Ile Glu Asp Ser Ile Ser Gln Gly Ala Val Cys Asn Lys Ser Thr
340 345 350

Ser

<210> 7
<211> 1260

<212> DNA

<213> Homo sapiens

<400> 7

atggtcttct cggcagtgtt gactgcgttc cataccggga catccaacac aacatttgc 60
gtgtatgaaa acacctacat gaatattaca ctccctccac cattccagca tcctgacctc 120
agtccattgc ttagatatac ttttgaacc atggctccc ctggtttag ttccttgacc 180
gtgaatagta cagctgtgcc cacaacacca gcagcattt agagcctaaa cttgcctt 240
cagatcaccc ttctgctat aatgatattc attctgttt tgctttct tgggaacttg 300
gttggggcc tcattgggta ccaaaaagct gccatgagggt ctgcaattaa catcctcctt 360
gccagcctag ctttgcaga catgtgctt gcagtgtga acatgccctt tgccctggta 420
actattctt ctacccgatg gatTTTGGG aaattcttct gttaggtatc tgctatgttt 480
ttctggttat ttgtgataga aggagtagcc atccgtctca tcattagcat agataggttc 540
cttattatac tccagaggca ggataagcta aacccatata gagctaagg tctgattgca 600
gtttcttggg caacttcctt ttgtgtagct ttccctttag ccgttagggaa ccccgacctg 660
cagataccctt cccgagctcc ccagtgtgt tttgggtaca caaccaatcc aggctaccag 720
gcttatgtga ttttgatttc tctcatttct ttcttcatac ctttcctggt aatactgtac 780
tcatttatgg gcatactcaa cacccttcgg cacaatgcct tgaggatcca tagctaccct 840
gaaggtatat gcctcagcca ggccagcaaa ctgggtctca tgagtctgca gagaccttc 900
cagatgagca ttgacatggg cttaaaaaca ctgccttca ccactatTTT gattctctt 960
gctgtcttca ttgtctgctg ggccccattc accacttaca gccttgtggc aacattcaagt 1020
aagcacttt actatcagca caacttttt gagattagca cctggctact gtggctctgc 1080
tacctaagt ctgcattgaa tccgctgatc tactactgga ggattaagaa attccatgat 1140
gcttcctgg acatgatgcc taagtccctc aagTTTTCG cgcagctccc tggcacaca 1200
aagcgacgga tacgtcctag tgctgtctat gtgtgtggg aacatcgac ggtgggtgta 1260

<210> 8

<211> 419

<212> PRT

<213> Homo sapiens

<400> 8

Met Val Phe Ser Ala Val Leu Thr Ala Phe His Thr Gly Thr Ser Asn

1

5

10

15

Thr Thr Phe Val Val Tyr Glu Asn Thr Tyr Met Asn Ile Thr Leu Pro

20

25

30

Pro Pro Phe Gln His Pro Asp Leu Ser Pro Leu Leu Arg Tyr Ser Phe

35

40

45

Glu Thr Met Ala Pro Thr Gly Leu Ser Ser Leu Thr Val Asn Ser Thr

50

55

60

Ala Val Pro Thr Thr Pro Ala Ala Phe Lys Ser Leu Asn Leu Pro Leu

65

70

75

80

Gln	Ile	Thr	Leu	Ser	Ala	Ile	Met	Ile	Phe	Ile	Leu	Phe	Val	Ser	Phe
						85				90				95	
Leu	Gly	Asn	Leu	Val	Val	Cys	Leu	Met	Val	Tyr	Gln	Lys	Ala	Ala	Met
							100		105				110		
Arg	Ser	Ala	Ile	Asn	Ile	Leu	Leu	Ala	Ser	Leu	Ala	Phe	Ala	Asp	Met
							115		120			125			
Leu	Leu	Ala	Val	Leu	Asn	Met	Pro	Phe	Ala	Leu	Val	Thr	Ile	Leu	Thr
						130			135			140			
Thr	Arg	Trp	Ile	Phe	Gly	Lys	Phe	Phe	Cys	Arg	Val	Ser	Ala	Met	Phe
						145		150		155			160		
Phe	Trp	Leu	Phe	Val	Ile	Glu	Gly	Val	Ala	Ile	Leu	Leu	Ile	Ile	Ser
						165			170			175			
Ile	Asp	Arg	Phe	Leu	Ile	Ile	Val	Gln	Arg	Gln	Asp	Lys	Leu	Asn	Pro
						180			185			190			
Tyr	Arg	Ala	Lys	Val	Leu	Ile	Ala	Val	Ser	Trp	Ala	Thr	Ser	Phe	Cys
						195		200			205				
Val	Ala	Phe	Pro	Leu	Ala	Val	Gly	Asn	Pro	Asp	Leu	Gln	Ile	Pro	Ser
						210		215			220				
Arg	Ala	Pro	Gln	Cys	Val	Phe	Gly	Tyr	Thr	Asn	Pro	Gly	Tyr	Gln	
						225		230		235			240		
Ala	Tyr	Val	Ile	Leu	Ile	Ser	Leu	Ile	Ser	Phe	Phe	Ile	Pro	Phe	Leu
						245			250			255			
Val	Ile	Leu	Tyr	Ser	Phe	Met	Gly	Ile	Leu	Asn	Thr	Leu	Arg	His	Asn
						260			265			270			
Ala	Leu	Arg	Ile	His	Ser	Tyr	Pro	Glu	Gly	Ile	Cys	Leu	Ser	Gln	Ala
						275			280			285			
Ser	Lys	Leu	Gly	Leu	Met	Ser	Leu	Gln	Arg	Pro	Phe	Gln	Met	Ser	Ile
						290			295			300			
Asp	Met	Gly	Phe	Lys	Thr	Arg	Ala	Phe	Thr	Thr	Ile	Leu	Ile	Leu	Phe
						305		310			315			320	
Ala	Val	Phe	Ile	Val	Cys	Trp	Ala	Pro	Phe	Thr	Thr	Tyr	Ser	Leu	Val
						325			330			335			

Ala Thr Phe Ser Lys His Phe Tyr Tyr Gln His Asn Phe Phe Glu Ile
340 345 350

Ser Thr Trp Leu Leu Trp Leu Cys Tyr Leu Lys Ser Ala Leu Asn Pro
355 360 365

Leu Ile Tyr Tyr Trp Arg Ile Lys Lys Phe His Asp Ala Cys Leu Asp
370 375 380

Met Met Pro Lys Ser Phe Lys Phe Leu Pro Gln Leu Pro Gly His Thr
385 390 395 400

Lys Arg Arg Ile Arg Pro Ser Ala Val Tyr Val Cys Gly Glu His Arg
405 410 415

Thr Val Val

<210> 9

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer,
forward EDG-1

<400> 9

tcatcgtccg gcattacaac ta

22

<210> 10

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer,
reverse EDG-1

<400> 10

gagtgagctt gtaggtggtg

20

<210> 11

<211> 21

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
forward EDG-2

<400> 11
agatctgacc agccgactca c

21

<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
reverse EDG-2

<400> 12
gttggccatc aagtaataaa ta

22

<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
forward EDG-3

<400> 13
cttggatc tgtagttca tc

22

<210> 14
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
reverse EDG-3

<400> 14
tgctgatgca gaaggcaatg ta

22

<210> 15
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
forward EDG-4

<400> 15
ctgctcagcc gctcctatTTT g

21

<210> 16
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
reverse EDG-4

<400> 16
aggagcacCC acaagtcatC ag

22

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
forward EDG-5

<400> 17
atgggcagCT tgtactcgga g

21

<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
reverse EDG-5

<400> 18
cagccagcag acgataaaaga c 21

<210> 19
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
forward EDG-6

<400> 19
tgaacatcac gctgagtgac ct 22

<210> 20
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
reverse EDG-6

<400> 20
gatcatcagc accgtttca gc 22

<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
forward EDG-7

<400> 21
agcaaacactg atactgtcga tg 22

<210> 22
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
reverse EDG-7

<400> 22
gcatcctcat gattgacatg tg 22

<210> 23
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
forward EDG-8

<400> 23
atctgtgcgc tctatgcaag ga 22

<210> 24
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
reverse EDG-8

<400> 24
ggtgttagatg ataggattca gca 23

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
forward PSP24

<400> 25
ctgcatcatc gtgtaccaga g 21

<210> 26
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer,
reverse PSP24

<400> 26
acgaactcta tgcaaggcctc gc

22

Creation date: 01-21-2004

Indexing Officer: ADOWNING - ANTONIO DOWNING

Team: OIPEBackFileIndexing

Dossier: 09811838

Legal Date: 04-02-2001

No.	Doccode	Number of pages
1	CRFL	6

Total number of pages: 6

Remarks:

Order of re-scan issued on