Design of Welded Joints

ME 310: Mechanical Design

Sappinandana Akamphon

Department of Mechanical Engineering, TSE

Outline

Welding Types

Weld Geometry and Terminology

Weld Stress Analysis

Welded Joints under Fatigue

Shielded Metal Arc Welding

Electric arc to produce heat

MIG Welding

- · uses consumable electrode
- · simple to learn
- · welds aluminum, nonferrous, and stainless steel
- · expensive
- · neat but difficult to troubleshoot

3

TIG welding

- · nonconsumable electrode
- difficult to learn and troubleshoot
- · welds almost all materials
- preferred welding in precision and fabrication industry

/ı

Resistance Welding

- uses Joules heating (i²R) to generate heat
- often require large current (1000 - 100000 A)
- widespread use in automotive industry

Gas Welding

- uses combustion (Acetylene + O_2) to generate heat
- · slow but cheap
- · mainly for maintenance purposes.

Outline

Welding Types

Weld Geometry and Terminology

Weld Stress Analysis

Welded Joints under Fatigue

Weld type

- butt welds
- fillet welds

Good Welds vs Bad Welds

Outline

Welding Types

Weld Geometry and Terminology

Weld Stress Analysis

Welded Joints under Fatigue

Welding Electrodes

AWS Number	Electrode	Tensile Strength (MPa)	Yield Strength (MPa)	Percent Elongation
E60XX		427	345	17-25
E70XX		482	393	22
E80XX		551	426	19
E90XX		620	531	14-17
E100XX		689	600	13-16
E120XX		827	737	14

Stress in Butt Welds

$$\sigma = \frac{F_n}{A_w} = \frac{F_n}{HL}$$
$$\tau = \frac{F_s}{A_w} = \frac{F_s}{HL}$$

Stress in Fillet Welds

$$\tau = \frac{F_{s}}{HL}$$
$$\tau = \frac{F_{n}}{HL}$$

Stress in weld groups

Assumptions

- · parts being joined are rigid
- · torsional and bending stresses can be found by

$$\tau = \frac{Tr}{J}$$
$$\sigma = \frac{My}{I}$$

must determine I and J of welds

Finding | and | of welds

- Need to find center of rotation / neutral axis → weld center
- · Single weld centroid of weld cross-section
- · Multiple weld centroid of weld group

$$x_{c} = \frac{\int_{A} x dA}{A} = \frac{\sum x_{ci} A_{i}}{\sum A_{i}}$$
$$y_{c} = \frac{\int_{A} y dA}{A} = \frac{\sum y_{ci} A_{i}}{\sum A_{i}}$$

Evaluating / and / for Individual Weld

 for weld whose neutral axis passes through centroid / center of rotation coincides with centroid

$$I_{c} = \frac{LH^{3}}{12}$$

$$J_{c} = \frac{LH^{3}}{12} + \frac{HL^{3}}{12}$$

 with multiple welds, neutral axis and/or center of rotation rarely coincides with individual centroids.

Finding / and / for multiple welds

• Once weld center is found, find I and J according to the center

Need to apply parallel axis theorem (if applicable)

Weld Joints under Torsion Example

Determine the critical point in the welds and its state of stress. The weld throat thickness is 8 mm.

Break It Down

- Problem of shear loading + torsion
- · Splitting the resultant stresses to analyze critical point

Combination of Stresses

Shear Force

$$au_{shear} = rac{P}{2HL} = rac{20000}{2(0.008)(0.05)}$$

$$= 25 \text{ MPa}$$

Torsion

- Symmetric welds \rightarrow center of weld is at O

$$\begin{split} \tau_{torsion} &= \frac{Tr}{J_{group}} = \frac{PL_{o}r_{o}}{J_{group}} \\ &= \frac{20000(0.12-0.05/2)r_{o}}{J_{group}} \end{split}$$

$$r_o = \sqrt{\left(\frac{L}{2}\right)^2 + d_o^2}$$

$$r_o = \sqrt{\left(\frac{0.05}{2}\right)^2 + 0.02^2}$$
= 0.032 m

J_c of Welds

$$J_{group} = J_c + Ad_o^2$$

$$= 2 \left[\frac{HL^3}{12} + \frac{LH^3}{12} + LHd_o^2 \right]$$

$$= 2 \left[\frac{(0.008)(0.05)^3}{12} + \frac{(0.05)(0.008)^3}{12} + (0.05)(0.008)(0.02)^2 \right]$$

$$= 1.70 \times 10^{-5} \text{ m}^4$$

Shear Stress from Torsion

Now we have all the parameters we need, so we can substitute them back into the torsional shear stress equation, which gives

$$\tau_{torsion} = \frac{20000(0.12 - 0.05/2)r_o}{J_{group}}$$

$$= \frac{20000(0.095)(0.032)}{1.7 \times 10^{-5}}$$

$$= 3.58 \text{ MPa}$$

Combining the Stress

· Combine using vector addition equation

$$\begin{split} \left| \vec{\tau}_{torsion} + \vec{\tau}_{shear} \right|^2 &= \left| \vec{\tau}_{torsion} \right|^2 + \left| \vec{\tau}_{shear} \right|^2 + 2 \vec{\tau}_{torsion} \cdot \vec{\tau}_{shear} \\ &= \left| \vec{\tau}_{torsion} \right|^2 + \left| \vec{\tau}_{shear} \right|^2 + 2 \left| \vec{\tau}_{torsion} \right| \left| \vec{\tau}_{shear} \right| \cos \alpha \end{split}$$

Finding α

· We don't really need α , just $\cos \alpha$

$$\cos \alpha = \frac{L/2}{r_0} = \frac{L}{2r_0}$$
$$= \frac{0.05}{2(0.032)} = 0.78$$

• Substitute α into the vector addition formula to obtain the combined shear stress

$$|\vec{\tau}_{torsion} + \vec{\tau}_{shear}|^2 = 25^2 + 3.58^2 + 2(25)(3.58)(0.78)$$

= 778
 $|\vec{\tau}_{torsion} + \vec{\tau}_{shear}| = |\vec{\tau}_{total}| = 27.9 \text{ MPa}$

Stress in Weld joints under Bending

Weld under Bending Example

Determine the maximum load *P* that can be applied to the structure as shown below, given that the safety factor of the weld is 3. The weld has the effective throat thickness of 3 mm, and is made with E70XX series electrode.

Break It Down

- · Shear force + bending
- · Same stresses throughout
- · From shear force

$$\tau = \frac{P}{2HL} = \frac{P}{2(0.003)(0.4)} = 417P$$

Finding Bending Stress

$$\sigma = \frac{My}{I} = \frac{P(1)(0.06)}{I} = 0.06 \frac{P}{I}$$

$$I_y = 2 \left(\frac{LH^3}{12} + LHa^2\right)$$

$$= 2 \left(\frac{(0.4)(0.003)^3}{12} + (0.4)(0.003)(0.06)^2\right)$$

$$= 8.64 \times 10^{-6} \text{ m}^4$$

$$\sigma = 0.06 \frac{P}{8.64 \times 10^{-6}} = 6944P$$

Evaluating Weld Strength

Welds are considered brittle → MNST

$$\sigma_{1} = \frac{6944P}{2} + \sqrt{\left(\frac{6944P}{2}\right)^{2} + (417P)^{2}}$$

$$= 6969P$$

$$N_{s} = \frac{\text{strength}}{\text{stress}}$$

$$3 = \frac{482 \times 10^{6}}{6969P}$$

$$P = 23000 \text{ N}$$

- · Weld strength only
- Actual allowable force may be less, depending on the strength of the beam itself.

Outline

Welding Types

Weld Geometry and Terminology

Weld Stress Analysis

Welded Joints under Fatigue

Weld geometry and Fatigue

Reinforcement under static loading is not a problem

· under fatigue it is

Fatigue stress concentration factor, K_f

Type of Weld	
Reinforced butt weld	
Toe of transverse fillet weld	
End of parallel fillet weld	
T-butt joint with sharp corners	

Fatigue in Welded Joint Example

A butt weld is subjected to a repeated axial load *F* ranging from 50000 to 100000 N as shown. The thickness of the material is 0.5 cm. The joint is welded with E60 series electrode. Determine the proper weld length if the required safety factor is 3.

Faigue in Welded Joint Solution

Based on Soderberg relation, we have that

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_y} = \frac{1}{N_s}$$

We can simply calculate the amplitude and average stresses.

$$\sigma_m = \frac{100000 + 50000}{2HL} = \frac{75000}{0.5 \times 10^{-2}L} = \frac{1.5 \times 10^7}{L}$$
$$\sigma_a = \frac{100000 - 50000}{2HL} = \frac{25000}{0.5 \times 10^{-2}L} = \frac{5 \times 10^6}{L}$$

However, due to stress concentration from reinforced butt weld, the actual average stress and stress amplitudes are

$$\sigma_m = 1.2 \left(\frac{1.5 \times 10^7}{L} \right) = \frac{1.8 \times 10^7}{L}$$

$$\sigma_a = 1.2 \left(\frac{5 \times 10^6}{L} \right) = \frac{6 \times 10^6}{L}$$

The yield strength and endurance limit for E60 series are 345 MPa and $0.45 \times 427 = 192$ MPa, respectively. Substituting the values into Soderberg relation, we have

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_y} = \frac{1}{N_s}$$

$$\frac{1}{L} \left(\frac{6 \times 10^6}{192 \times 10^6} + \frac{1.8 \times 10^7}{345 \times 10^6} \right) = \frac{1}{3}$$

$$L = 2.5 \times 10^{-1} = 25 \text{ cm}$$