Stochastik

1. Übung

Aufgabe 1 (4 Punkte)

Beispiel 1.1.2. Beweisen Sie die folgenden Aussagen für nicht-leere Mengen Ω, Ω' :

- (i) Seien \mathcal{F} eine σ -Algebra auf Ω und $\Omega_0 \subset \Omega$. Dann ist das Mengensystem $\mathcal{F} \cap \Omega_0 := \mathcal{F}|_{\Omega_0} := \{A \cap \Omega_0 : A \in \mathcal{F}\}$ eine σ -Algebra auf Ω_0 .
- (ii) Seien \mathcal{F}' eine σ -Algebra auf Ω' und $f:\Omega\to\Omega'$ eine Abbildung. Dann ist das Mengensystem $f^{-1}(\mathcal{F}'):=\{f^{-1}(A'):A'\in\mathcal{F}'\}$ eine σ -Algebra auf Ω , wobei $f^{-1}(A'):=\{\omega\in\Omega:f(\omega)\in A'\}$.

Aufgabe 2 (3 Punkte)

Beispiel 1.1.9. Beweisen Sie die folgenden Aussagen für eine nicht-leere Menge Ω :

- (i) Ist \mathcal{E} eine σ -Algebra auf Ω , dann gilt $\sigma(\mathcal{E}) = \mathcal{E}$.
- (ii) Sei $\mathcal{E} := \{A\}$ für ein $A \subseteq \Omega$. Dann gilt $\sigma(\mathcal{E}) = \{\emptyset, A, A^{c}, \Omega\}$.
- (iii) Für $\mathcal{E} := \{ A \subseteq \Omega : A \text{ endlich} \}$ gilt $\sigma(\mathcal{E}) = \{ A \subseteq \Omega : A \text{ oder } A^{\mathsf{c}} \text{ abz\"{ahlbar}} \}.$

Aufgabe 3 (4 Punkte)

Beweisen Sie die folgenden Aussagen:

- (i) Im Rahmen von Aufgabe 1 (i) sei \mathcal{E} ein Erzeugendensystem von \mathcal{F} . Dann ist das Mengensystem $\mathcal{E} \cap \Omega_0 := \{A \cap \Omega_0 : A \in \mathcal{E}\}$ ein Erzeugendensystem von $\mathcal{F} \cap \Omega_0$, d. h. es gilt $\sigma(\mathcal{E} \cap \Omega_0) = \mathcal{F} \cap \Omega_0$. Hinweis: Für " \supseteq "genügt es zu zeigen, dass $\mathcal{F}_1 := \{A \subseteq \Omega : A \cap \Omega_0 \in \sigma(\mathcal{E} \cap \Omega_0)\}$ eine σ -Algebra auf Ω ist. Warum?
- (ii) Im Rahmen von Aufgabe 1 (ii) sei \mathcal{E}' ein Erzeugendensystem von \mathcal{F}' . Dann ist das Mengensystem $f^{-1}(\mathcal{E}') := \{f^{-1}(A') : A' \in \mathcal{E}'\}$ ein Erzeugendensystem von $f^{-1}(\mathcal{F}')$, d. h. es gilt $\sigma(f^{-1}(\mathcal{E}')) = f^{-1}(\mathcal{F}')$.

Hinweis: Für " \supseteq "genügt es zu zeigen, dass $\mathcal{F}_1' := \{A' \subseteq \Omega' : f^{-1}(A') \in \sigma(f^{-1}(\mathcal{E}'))\}$ eine σ -Algebra auf Ω' ist. Warum?

Aufgabe 4 (5 Punkte)

Beispiel 1.1.14. Beweisen Sie die folgenden Aussagen für eine nicht-leere Menge Ω :

- (i) $\mathcal{R} := \{\emptyset\}$ ist ein Ring auf Ω .
- (ii) $\mathcal{R} := \{A \subseteq \Omega : A \text{ endlich}\}\$ ist ein Ring auf Ω , und nur dann eine Algebra, wenn Ω endlich ist.
- (iii) $\mathcal{A} := \{ A \subseteq \Omega : A \text{ oder } A^{\mathsf{c}} \text{ endlich} \}$ ist eine Algebra auf Ω , und nur dann eine σ -Algebra, wenn Ω endlich ist.