Segundo Parcial - 29 de junio de 2016.

Primera parte: Múltiple Opción

Ejercicio 1. Austria y Bielorusia quieren acordar una clave común utilizando el protocolo Diffie-Hellman. Para ello toman el primo p=499 y g=7 raíz primitiva módulo p. Austria elije el número m=394 y le envía el número 489 a Bielorusia. Bielorusia elije el número n=18. ¿Cuál es la clave k común que acordaron Austria y Bielorusia?

Indicar cuál de las opciones es correcta:

A.
$$k = 331$$
.

B.
$$k = 77$$
.

C.
$$k = 80$$
.

D.
$$k = 64$$
.

Solución:

Tenemos que calcular $489^{18} \pmod{499} \equiv (-10)^{18} \pmod{499} \equiv ((-10)^3)^6 \pmod{499} \equiv (-1000)^6 \pmod{499} \equiv (-2)^6 \pmod{499} \equiv \frac{64}{99} \pmod{499}$.

Ejercicio 2. Sean n=209 y e=7. Para los datos anteriores sea función de descifrado $D: \mathbb{Z}_n \to \mathbb{Z}_n$ definida por el protocolo RSA. Indicar cuál de las opciones es correcta:

A.
$$D(y) = y^{103} \pmod{n}$$
.

C.
$$D(y) = y^{119} \pmod{n}$$
.

B.
$$D(y) = y^{30} \pmod{n}$$
.

D.
$$D(y) = y^{163} \pmod{n}$$
.

Solución:

La función de descifrado es $D(y) = y^d \pmod{n}$ donde d es tal que $d \equiv e^{-1} \pmod{\varphi(n)}$. La factorización de n es $209 = 11 \cdot 19$, por lo que $\varphi(11 \cdot 19) = 10 \cdot 18 = 180$. Utilizando el algoritmo extendido de Euclides obtenemos $d \equiv 103 \pmod{180}$.

Segunda parte: Desarrollo

Ejercicio 3.

a. Sea (G, *) un grupo finito y H un subgrupo de G. Definimos la siguiente relación en G:

$$g \sim g' \Leftrightarrow g * (g')^{-1} \in H.$$

Probar que la relación definida es una relación de equivalencia.

- b. Sean G, K grupos finitos y $f: G \to K$ un homomorfismo de grupos. Probar que $\mathrm{Ker}(f)$ es un subgrupo de G
- c. Probar el teorema de órdenes para grupos:

Sean G y K dos grupos finitos y $f:G\to K$ un homomorfismo de grupos. Entonces

$$|G| = |\operatorname{Ker}(f)| |\operatorname{Im}(f)|.$$

Solución: Ver la segunda demostración del Teorema de Ordenes de las notas, Teorema 3.9.8.

Ejercicio 4.

- a. Sean G un grupo finito, $g \in G$ y $n \in \mathbb{N}$, probar que o $(g^n) = \frac{o(g)}{\text{mcd}(o(g),n)}$. Solución: Ver Proposición 3.7.8 parte 7 de las notas.
- b. Probar que 2 es raíz primitiva módulo 101 y hallar un elemento de U(101) con orden 10. Solución: Para ver que 2 es r.p. módulo 101, alcanza con ver $2^{50} \not\equiv 1 \pmod{101}$ y $2^{20} \not\equiv 1 \pmod{101}$, ya que $\varphi(101) = 100 = 2^25$ y 100/2 = 50, 100/5 = 20. Entonces $2^{20} = (2^{10})^2 \equiv (1024)^2 \pmod{101} \equiv 14^2 \pmod{101} \equiv 196 \pmod{101} \equiv 95 \pmod{101} \not\equiv 1 \pmod{101}$. También $2^{50} = (2^{20})^2 \cdot 2^{10} \equiv (95)^2 \cdot 14 \pmod{101} \equiv (-6)^2 \cdot 14 \pmod{101} \equiv 36 \cdot 14 \pmod{101} \equiv 504 \pmod{101} \equiv -1 \pmod{101}$. Con es probamos que 2 es r.p. módulo 101.

Para hallar un elemento de orden 10 utilizamos la parte anterior y el hecho que que el orden de 2 es 100. Utilizamos n=10 y obtenemos

$$o\left(2^{10}\right) = \frac{o(2)}{\gcd(o(2), 10)} = \frac{100}{\gcd(100, 10)} = \frac{100}{10} = 10.$$

Por lo tanto o(14) = 10.

Ejercicio 5. Sean los grupos $G = \mathbb{Z}_{100}$ y K = U(101).

a. Probar que los grupos G y K son isomorfos.

Solución: Dado que $\bar{1}$ es generador de G y tiene orden 100 que es el orden de 2 en K, el morfismo $f: G \to K$ dado por $f(\bar{n}) = 2^n \pmod{101}$ es un morfismo bien definido. Es fácil ver que es inyectivo ya que f(n) = 1 si y solo si $2^n \equiv 1 \pmod{101}$, o sea si $n \equiv 0 \pmod{100}$. Como G y K tienen igual orden entonces es biyectivo y por lo tanto es un isomorfismo.

b. Describir todos los isomorfismos entre G y K.

Solución: En la parte anterior podemos cambiar f por f_k donde $f_k(n) = 2^{kn}$ (mód 101) y k otro elemento de orden 100 de \mathbb{Z}_{100} . El nuevo f_k es isomorfismo de igual manera que antes. Por el ejercicio anterior vemos que los k que cumplen que son generadores de \mathbb{Z}_{100} son los que cumplen $\operatorname{mcd}(k, 100) = 1$. Y por lo tanto obtuvimos todos los isomorfismos entre G y K.