EECS 489 Computer Networks

Winter 2025

Mosharaf Chowdhury

Material with thanks to Aditya Akella, Sugih Jamin, Philip Levis, Sylvia Ratnasamy, Peter Steenkiste, and many other colleagues.

Agenda

- Introductions
- Class policies, logistics, and roadmap
- Overview of the basics
 - How is the network shared?
 - How do we evaluate a network?
 - What is a network made of?

Staff

Aditya Singhvi

Efe Akinci

Alex de la Iglesia

- Office hours: See course webpage
- No office hours this week or discussions this week

Mosharaf Chowdhury

- @Michigan since 2016
- Research: SymbioticLab.org

- Office hours: Thursdays 2:45PM 3:45PM (in-person @ 4820 BBB)
- No office hours this week
- Lectures will be recorded

489 in EECS curriculum

EECS 281

- □ High-level logic ⇒ Programs
- Coding skills learned in 281 are critical for 489 assignments

EECS 482

- How do machines work?
- Execute programs, interact with users, etc.
- Prior 482 experience is not needed

What is missing?

• How do we access most services?

 Examples include search engines, social networks, video streaming, etc.

How do two machines communicate?

- When they are directly connected
- When they are not directly connected

Using a network

What is a network?

A system of "links" that interconnect "nodes" in order to move "information" between nodes

We will focus primarily on the Internet

What is EECS 489 about?

- To learn about (at a high level)
 - How the Internet works
 - Why it works the way it does
 - How to reason about complicated design problems
- What it's not about
 - How to write web services
 - How to design web pages

...

Class workload

- Four assignments/projects
 - First one is an individual assignment
 - The rest are done as groups
- Exams:
 - Midterm: Week of February 24 (TBD)
 - □ Final: April 29, 1:30 PM 3:30 PM
 - »Final covers only the materials after midterm

Grading

	Allocation
Assignment 1	5%
Assignment 2	15%
Assignment 3	15%
Assignment 4	15%
Midterm	25%
Final	25%

The assignments

- Assignment 1: measure end-to-end throughput and delay of networks (i.e., simple speed test)
- Assignment 2: video streaming from CDNs (i.e., simple Netflix)
- Assignment 3: reliable transport (i.e., how to transfer data over an unreliable network)
- Assignment 4: router design (i.e., how do internal elements of the network work)
- All on (emulated) realistic networks using *mininet*

Bonus Quizzes

- ~10 MCQ and solution key for each of the 20 lectures
- Made online sometime after the lecture; live for at least 48 hours
- Completing all counts for a maximum of 2% on top of your final grade
 - How well you do doesn't matter

Enrollment and wait list

Wait-listed students will be admitted in the order of wait list

If you're planning to drop, please do so soon!

Communication protocol

- Website: https://github.com/mosharaf/eecs489/
 - Assignments, lecture slides
- Confidential content on Canvas & Gradescope
- Ed for all communication
 - Sign up at https://edstem.org/us/join/jwtp2b
- Assignment submission via g489.eecs.umich.edu

Policies on late submission, re-grade request, cheating ...

- Detailed description in the course webpage
- Don't cheat!

LET'S TALK INTERNET

From the home...

Across the world....

The Internet consists of many end-systems

Managed by many parties

A federated system: Logical view

- The Internet ties together different networks by the IP protocol
 - A common interface binds them all together

A federated system: Physical view

https://kmcd.dev/posts/internet-map-2023/

INTERNET IS A SWITCHED NETWORK (OF NETWORKS)

Switched networks

- End-systems and networks connected by switches instead of directly connecting themWhy?
- Allows us to scale
 - For example, directly connecting N nodes to each other would require N² links!

When do we need to share the network?

Shared among many services

Two ways to share switched networks

- Circuit switching
 - Resource reserved per connection
 - Admission control: per connection
- Packet switching via statistical multiplexing
 - Packets treated independently, on-demand
 - Admission control: per packet

Circuit switching

Reservation establishes a "circuit" within a switch

Circuit switching

- src sends
 reservation request
 to dst
- 2. Switches create circuit *after* admission control
- 3. src sends data
- 4. src sends teardown request

Circuit switching

Pros

- Predictable performance
- Simple/fast switching (once circuit established)

Cons

- Complexity and delay from circuit setup/teardown
- Inefficient when traffic is bursty
- □ Switch fails → its circuit(s) fails

Packet switching

Each packet contains destination (dst)

Each packet treated independently

Packet switching

- Each packet contains destination (dst)
- Each packet treated independently
- With buffers to absolve transient overloads

Packet switching

Pros

- Efficient use of network resources
- Simpler to implement
- Robust: can "route around trouble"

Cons

- Unpredictable performance
- Requires buffer management and congestion control

Statistical multiplexing

- Allowing more demands than the network can handle
 - Hoping that not all demands are required at the same time
 - Results in unpredictability
 - Works well except for the extreme cases

MASSIVE Scale

- 5+ Billion users
- >1.1 Billion websites
- ~350 Billion emails sent per day
- >6.9 Billion smartphones
- >3 Billion monthly active Facebook users
- >1 Billion hours of YouTube watched per day

. . .

5-MINUTE BREAK!

HOW DO WE EVALUATE A NETWORK?

Performance metrics

Delay

Loss

Throughput

Delay

How long does it take to send a packet from its source to destination?

Delay

Consists of four components

- Transmission delay
- Propagation delay
- Queuing delay
- Processing delay

due to link properties

due to traffic mix and switch internals

A network link

Link bandwidth

Number of bits sent/received per unit time (bits/sec or bps)

Propagation delay

Time for one bit to move through the link (seconds)

1. Transmission delay

How long does it take to push all the bits of a packet into a link?

Packet size / Bandwidth of the link

- $_{\rm o}$ 1000 bits / 100 Mbits per sec = 10^{-5} sec
- \square 1000 bits / 1 Gbits per sec = 10^{-6} sec

2. Propagation delay

- How long does it take to move one bit from one end of a link to the other?
- Link length / Propagation speed of link
 - \Box E.g., 30 kilometers / $3*10^8$ meters per sec = 10^{-4} sec

January 8, 2025 EECS 489 – Lecture 1 43

Packet delay Sending a 100-byte packet

3. Queuing delay

How long does a packet have to sit in a buffer before it is processed?

Queueing delay

- How long does a packet have to sit in the buffer before it is processed?
- Depends on traffic pattern
 - Arrival rate at the queue
 - Nature of arriving traffic (bursty or not?)
 - Bandwidth of outgoing link
- Not easy to compute

Basic queueing theory terminology

- Arrival process: how packets arrive
 - Average rate A
- W: average time packets wait in the queue
 - W for "waiting time" (queuing delay)

- L: average number of packets waiting in the queue
 - L for "length of queue"

Little's Law (1961)

 \mathbb{P} L = A x W

Compute L: count packets in queue every second

- Why do you care?
 - Easy to compute L, harder to compute W

4. Processing Delay

- How long does the switch take to process a packet?
 - Negligible

End-to-end delay

```
transmission
       +propagation
               +queueing
               +processing
                    +transmission
                            +propagation
                                     +queueing
                                     +processing
                                          +transmission
                                                 +propagation
```

Round Trip Time (RTT)

Time for a packet to go from a source to a destination and to come back

- Why do we care?
 - Measuring delay is hard from one end
- RTT/2 equals average end-to-end delay
 - Why not exact?

Loss

What fraction of the packets sent to a destination are dropped?

Throughput

At what rate is the destination receiving data from the source

Link Throughput

Bandwidth R bits/sec

File of size F bits

Transfer time (T) F/R + propagation delay

Average throughput = F/T ≈ R

End-to-end throughput

Average throughput = min{R, R'} = R

Summary

- How is the network shared?
 - On-demand or via reservation
- How do we evaluate a network?
 - Bandwidth, delay, loss, ...

January 8, 2025 EECS 489 – Lecture 1 63

WHAT IS THE NETWORK MADE OF?

What is a network made of?

What is a network made of?

What is a network made of?

The last hop

How do we connect?

EECS 489 - Lecture 1 **January 8, 2025**

Digital Subscriber Line (DSL)

- Twisted pair copper
- 3 separate channels
 - downstream data channel
 - upstream data channel
 - 2-way phone channel
- up to 25 Mbps downstream
- up to 2.5 Mbps upstream

How about an cable provider as an ISP?

Connecting via cable

Cable

- Coaxial copper & fiber
- Up to 42.8 Mbps downstream
- Up to 30.7 Mbps upstream
- Shared broadcast medium

Any other means?

Ethernet

Ethernet

- Twisted pair copper
- 100 Mbps, 1 Gbps, 10 Gbps (each direction)

Many other ways

- Cellular (smart phones)
- Satellite (remote areas)
- Fiber to the Home (home)
- Optical carrier (Internet backbone)

Where is WiFi?

DETAILS ON CIRCUIT SWITCHING

Many kinds of circuits

- Time division multiplexing
 - divide time in time slots
 - separate time slot per circuit

- Frequency division multiplexing
 - divide frequency spectrum in frequency bands
 - separate frequency band per circuit

Why the delays?

January 8, 2025 92

January 8, 2025 93

Have we found the right solution?

We don't really know

What we do know

- The early Internet pioneers produced a solution that was successful beyond all imagining
- Several enduring architectural principles and practices emerged from their work

Still, it is just one design with many questions

The Internet is a lesson

- In how to reason through the design of a <u>very</u> complex system
 - What are our goals and constraints?
 - What's the right prioritization of goals?
 - How do we decompose a problem?
 - Who does what? How?
 - What are the interfaces between components?
 - What are the tradeoffs between design options?

Pipe view of a link

Transmission delay decreases as bandwidth increases

A network link: BDP

- Link bandwidth
 - Number of bits sent/received per unit time (bits/sec or bps)
- Propagation delay
 - Time for one bit to move through the link (seconds)
- Bandwidth-Delay Product (BDP)
 - Number of bits "in flight" at any time
- BDP = bandwidth × propagation delay

BDP Examples

Same city over a slow link:

- Bandwidth: ~100Mbps
- □ Propagation delay: ~0.1msec
- BDP: 10,000bits (1.25KBytes)

Cross-country over fast link:

- Bandwidth: ~10Gbps
- Propagation delay: ~10msec
- □ BDP: 108bits (12.5MBytes)

Packet delay Sending a 100-byte packet

Sending a large file using 100-byte packets

January 8, 2025

103

Persistent overload leads to packet drop/loss

