Import Library

```
In [611...
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          import plotly.express as px
          import warnings
          warnings.filterwarnings('ignore')
```

Import Dataset

```
In [550...
         df = pd.read_csv('ArifReport.csv')
         df.head()
In [551...
Out[551]:
              ProductID
                          StoreID ReportDate SalesCumulativeSum
                                                             7
          0 5469144250 53949207
                                   2021-04-23
                                                             9
          1 5936880091
                       17737769
                                  2021-04-23
          2 4845674243 237606391
                                  2021-04-23
                                                             8
          3 5726226400 124489135
                                                             5
                                  2021-04-23
            2892619493 156415596
                                  2021-04-23
                                                             11
In [552...
         # Cek informasi data
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 96753 entries, 0 to 96752
        Data columns (total 4 columns):
           Column
                               Non-Null Count Dtype
        --- -----
                                -----
         0
           ProductID
                              96753 non-null int64
         1 StoreID
                               96753 non-null int64
                          96753 non-null object
             ReportDate
             SalesCumulativeSum 96753 non-null int64
        dtypes: int64(3), object(1)
        memory usage: 3.0+ MB
In [553...
         # cek data duplikat
          df.duplicated().sum()
Out[553]: 0
In [554... # cek data kosong
          df.isnull().sum()
```

```
Out[554]: ProductID
          StoreID
          ReportDate
          SalesCumulativeSum
          dtype: int64
In [555...
          # mengubah tipe data
          df['ReportDate'] = pd.to_datetime(df['ReportDate'],errors='coerce')
          df['ProductID'] = df['ProductID'].astype(str)
          df['StoreID'] = df['StoreID'].astype(str)
          df['SalesCumulativeSum'] = df['SalesCumulativeSum'].astype(int)
          # mengurutkan data
In [556...
          df = df.sort values(by=['ProductID', 'StoreID', 'ReportDate'])
In [557...
Out[557]:
                    ProductID
                                StoreID ReportDate SalesCumulativeSum
          13966 10000317232 39145153
                                        2021-04-28
                                                                     0
          20562 10000317232 39145153
                                        2021-04-29
                                                                     0
          27268 10000317232 39145153
                                        2021-05-01
                                                                     0
          31286 10000317232 39145153
                                        2021-05-04
                                                                     0
          36661 10000317232 39145153
                                        2021-05-05
                                                                     0
                   998298981 54722738
          77257
                                       2021-05-15
                                                                     0
          82381
                   998298981 54722738 2021-05-16
                                                                     0
          86586
                   998298981 54722738
                                       2021-05-17
                                                                     0
          91709
                   998298981 54722738
                                       2021-05-18
                                                                     0
          21119
                   999044353 58889343 2021-04-29
                                                                     8
```

96753 rows × 4 columns

Pada rentang tanggal berapa Arif hilang fokus?

```
In [558... data = df.copy()

In [559... # step 1: mengurutkan data
    data = data.sort_values(by=['ProductID', 'StoreID', 'ReportDate'])

# Step 2: Calculate DailySales
    data['DailySales'] = data.groupby(['ProductID', 'StoreID'])['SalesCumulativeSum'

# Detect Anomalies
    # Anomaly 1: Daily Sales Negative, sales cumulatif harusnya terus naik tidak tur
    data['Anomaly_DailySales_Negative'] = data['DailySales'] < 0

# Anomaly 2: Sales on Holidays
    holidays = ['2021-05-07', '2021-05-12']</pre>
```

\cap	ı+	Γ	5	5	9	1	0
		L	_	_	_	Т	۰

	ProductID	StoreID	ReportDate	SalesCumulativeSum	DailySales	Anomaly_l
40441	100023558	12621218	2021-05-05	11	-6.0	
45474	100023558	12621218	2021-05-06	10	-1.0	
55530	100023558	12621218	2021-05-09	9	-7.0	
28416	1011122810	53740401	2021-05-03	30	-17.0	
36339	1011122810	53740401	2021-05-05	27	-26.0	
•••						
41205	9935593420	251219523	2021-05-06	11	-11.0	
51173	9935593420	251219523	2021-05-09	11	-4.0	
51758	9938865748	272054971	2021-05-09	2	-1.0	
51827	9949378375	150298732	2021-05-09	4	-4.0	
61858	9949378375	150298732	2021-05-11	4	-4.0	

3350 rows × 10 columns

```
In [578... print('Tanggal yang memiliki anomali:')
    anomalies.groupby('ReportDate').size()
```

Tanggal yang memiliki anomali:

```
Out[578]: ReportDate
          2021-05-01
                        35
          2021-05-02
                        72
          2021-05-03
                        282
          2021-05-04
                       439
                        523
          2021-05-05
          2021-05-06 493
          2021-05-08
                        486
          2021-05-09
                        980
                       25
          2021-05-10
          2021-05-11
                        14
                         1
          2021-05-13
          dtype: int64
```

namun kita perlu mengecek untuk tanggal awal dan akhir, karena daily sales negatif belum tentu di tanggal tersebut

yang menjadi anomali, kemungkinan juga anomali di tanggal sebelumnya

```
date_min = anomalies['ReportDate'].min()
In [586...
          date_max = anomalies['ReportDate'].max()
          productanom = anomalies[anomalies['ReportDate']==date_max]["ProductID"].unique()
In [595...
          productanom
Out[595]: array(['2432635060'], dtype=object)
          # cari produkID anonim di tanggal 13
In [597...
          df[df['ProductID']=='2432635060']
Out[597]:
                   ProductID
                               StoreID ReportDate SalesCumulativeSum
                                                                    19
            7158 2432635060 77502887
                                        2021-04-26
           22090 2432635060 77502887
                                        2021-04-30
                                                                    26
           66107 2432635060 77502887
                                        2021-05-13
                                                                    20
           71159 2432635060 77502887
                                        2021-05-14
                                                                    20
           80980 2432635060 77502887
                                        2021-05-15
                                                                    20
           86108 2432635060 77502887
                                        2021-05-16
                                                                    21
           88137 2432635060 77502887
                                        2021-05-17
                                                                    21
           93325 2432635060 77502887
                                        2021-05-18
                                                                    21
          dari data, yang mungkin anomali adalah 30 april bukan 13 mei
          productanom = anomalies[anomalies['ReportDate']==date min]["ProductID"].unique()
In [601...
          productanom
Out[601]: array(['1825889122', '2343231517', '2671794318', '2899402331',
                  '3100087879', '3341968687', '3422773117', '3459561909',
                  '3633905780', '385170423', '4020080217', '4055208010',
                  '4400457690', '4577315519', '4662534174', '4807923851',
                  '5054475715', '5119270317', '6130032238', '6131017144',
                  '6732563650', '6835417376', '7134064011', '7271595110',
                  '7453403606', '7937330208', '7937931627', '848223431',
                  '8500690704', '8718579163', '8746401534', '915919306',
                  '9302127937', '9413973156', '9418460897'], dtype=object)
In [602...
          # cari produkID anonim di tanggal 13
          df[df['ProductID']=='1825889122']
```

Out[602]:

	ProductID	StoreID	ReportDate	SalesCumulativeSum
96	1825889122	10011932	2021-04-23	128
2437	1825889122	10011932	2021-04-24	128
9576	1825889122	10011932	2021-04-27	128
16120	1825889122	10011932	2021-04-28	128
21808	1825889122	10011932	2021-04-29	128
22104	1825889122	10011932	2021-04-30	238
23202	1825889122	10011932	2021-05-01	136
27403	1825889122	10011932	2021-05-02	137
28405	1825889122	10011932	2021-05-03	256
30641	1825889122	10011932	2021-05-04	234
36224	1825889122	10011932	2021-05-05	213
41171	1825889122	10011932	2021-05-06	250
46247	1825889122	10011932	2021-05-08	170
51231	1825889122	10011932	2021-05-09	128
56263	1825889122	10011932	2021-05-10	128
61306	1825889122	10011932	2021-05-11	128
66335	1825889122	10011932	2021-05-13	128
71394	1825889122	10011932	2021-05-14	128
80915	1825889122	10011932	2021-05-15	128
86043	1825889122	10011932	2021-05-16	128
88654	1825889122	10011932	2021-05-17	128
93847	1825889122	10011932	2021-05-18	128

dari data dapat disimpulkan bahwa data mulai anomali adalah di tanggal 30 april

dst. sehingga data anomali didapatkan pada rentang 30 April hingga 10 Mei 2021

mari kita cek, misalkan tanggal 30 april - 10 mei dihapus, seharusnya daily sales tidak ada yang negatif!

```
In [612... # Pastikan kolom tanggal dalam format datetime
df2 = df.copy()

df2['ReportDate'] = pd.to_datetime(df2['ReportDate'])

# Membuat rentang tanggal yang ingin dikecualikan
exclude_dates = pd.date_range(start="2021-04-30", end="2021-05-10")
```

Jumlah daily sales negatif: 0

```
# Filter data untuk menghilangkan tanggal dalam rentang tersebut
filtered_data = df2[~df2['ReportDate'].isin(exclude_dates)]

filtered_data['DailySales'] = filtered_data.groupby(['ProductID', 'StoreID'])['S
daily_sales_negatif = (filtered_data['DailySales']<0).sum()
print(f"Jumlah daily sales negatif : {daily_sales_negatif}")</pre>
```

Sehingga Arif kehilangan fokus dari tanggal 30 April 2021 - 10 Mei 2021

Bagaimana membersihkan data agar dapat digunakan untuk analisis penjualan?

```
In [561...
          data2 = df.copy()
In [562...
          # Menentukan rentang tanggal yang bermasalah
          start_date = pd.to_datetime('2021-04-30')
          end_date = pd.to_datetime('2021-05-10')
          # mengatasi masalah penjualan kumulatif pada rentang tanggal bermasalah dengan i
          def fix_sales_cumulative(group):
              # Menandai tanggal sebelum 30 April dan setelah 10 Mei
              before_start = group[group['ReportDate'] < start_date]</pre>
               after_end = group[group['ReportDate'] > end_date]
               problem_dates = group[(group['ReportDate'] >= start_date) & (group['ReportDa']
               # Mengganti nilai kumulatif berdasarkan kondisi
               if not before_start.empty and not after_end.empty:
                   # Jika ada tanggal sebelum dan sesudah rentang
                   start_value = before_start['SalesCumulativeSum'].iloc[-1]
                   end value = after end['SalesCumulativeSum'].iloc[0]
                   # Membagi nilai secara linier ke tanggal yang bermasalah
                   n_dates = len(problem_dates)
                   increments = (end_value - start_value) / (n_dates + 1)
                   # Perbarui nilai kumulatif untuk tanggal yang bermasalah
                   new_values = [start_value + increments * (i + 1) for i in range(n_dates)
                   group.loc[problem_dates.index, 'SalesCumulativeSum'] = [round(val) for v
               elif not before start.empty:
                   # Jika hanya ada tanggal sebelum 30 April, gunakan nilai sebelum 30 Apri
                   group.loc[problem_dates.index, 'SalesCumulativeSum'] = before_start['Sal
               elif not after end.empty:
                   # Jika hanya ada tanggal setelah 10 Mei, gunakan nilai setelah 10 Mei
                   group.loc[problem_dates.index, 'SalesCumulativeSum'] = after_end['SalesCumulativeSum'] = after_end['SalesCumulativeSum']
               else:
                       # Jika tidak ada nilai sebelum maupun setelah rentang, hapus baris
                       group = group.drop(problem_dates.index)
               # Pastikan nilai SalesCumulativeSum adalah bilangan bulat
               group['SalesCumulativeSum'] = group['SalesCumulativeSum'].round().astype(int
               return group
          # Terapkan fungsi untuk setiap pasangan ProductID dan StoreID
```

```
df_cleaned = data2[['ReportDate', 'SalesCumulativeSum']].reset_index().drop('leve
In [563...
          def handle missing dates(df):
              Mengisi missing date pada kolom SalesCumulativeSum berdasarkan kombinasi uni
              Parameters:
              - df: DataFrame input dengan kolom ['ProductID', 'StoreID', 'ReportDate', 'S
              Returns:
              - DataFrame dengan nilai SalesCumulativeSum yang telah diisi.
              # Tentukan rentang tanggal, mengabaikan hari libur
              start_date = '2021-04-23'
              end date = '2021-05-18'
              holidays = ['2021-05-07', '2021-05-12']
              date_range = pd.date_range(start=start_date, end=end_date).difference(pd.to_
              # Dapatkan kombinasi unik ProductID dan StoreID
              unique_combinations = df[['ProductID', 'StoreID']].drop_duplicates()
              # Buat DataFrame dengan semua kombinasi ProductID, StoreID, dan tanggal
              expanded_data = (
                  unique_combinations.assign(key=1) # Tambahkan kolom dummy 'key' untuk p
                  .merge(pd.DataFrame({'ReportDate': date_range, 'key': 1}), on='key') #
                  .drop('key', axis=1) # Hapus kolom 'key' setelah digunakan
              )
              # Gabungkan data yang diperluas dengan data asli
              df_cleaned = expanded_data.merge(df, on=['ProductID', 'StoreID', 'ReportDate
              # Isi missing value pada SalesCumulativeSum dengan nilai hari sebelumnya (fo
              df_cleaned['SalesCumulativeSum'] = df_cleaned.groupby(['ProductID', 'StoreID']
              # Isi missing value yang tersisa dengan nilai hari berikutnya (backward fill
              df_cleaned['SalesCumulativeSum'] = df_cleaned.groupby(['ProductID', 'StoreID'])
              # Hitung DailySales sebagai selisih antar nilai SalesCumulativeSum
              df cleaned['DailySales'] = df cleaned.groupby(['ProductID', 'StoreID'])['Sal
              # Isi nilai yang tersisa dengan 0 (jika masih ada)
              df_cleaned = df_cleaned.fillna(0)
              return df cleaned
In [564...
         df cleaned = handle missing dates(df cleaned)
In [565...
         df_kotor = handle_missing_dates(df)
In [566...
         # export dataset yang telah dibersihkan
          # df cleaned.to csv('data bersih.csv')
          # df_kotor.to_csv('data_kotor.csv')
```

data2 = data2.groupby(['ProductID', 'StoreID']).apply(fix_sales_cumulative)

Bagaimana perbandingan data sebelum dan sesudah dibersihkan?

Data sebelum dibersihkan

```
In [567... # data kotor kumulatif

cmltv = df_kotor.groupby('ReportDate')['SalesCumulativeSum'].sum().reset_index()
fig = px.line(cmltv, x='ReportDate', y='SalesCumulativeSum', title='Trend Penjua
fig.update_traces(line=dict(color='#800020'), fill='tozeroy')

# Mengatur sumbu y agar tidak dimulai dari 0
y_min = cmltv['SalesCumulativeSum'].min() * 0.99
y_max = cmltv['SalesCumulativeSum'].max() * 1.001
fig.update_yaxes(range=[y_min, y_max])
fig.show()
```

```
In [568...
trend = df_kotor.groupby('ReportDate')['DailySales'].sum().reset_index()
fig = px.line(trend, x='ReportDate', y='DailySales', title='Trend Penjualan Hari
fig.update_traces(line=dict(color='#800020'))
fig.show()
```

Data setelah dibersihkan

```
In [569... # data bersih kumulatif

cmltv = df_cleaned.groupby('ReportDate')['SalesCumulativeSum'].sum().reset_index fig = px.line(cmltv, x='ReportDate', y='SalesCumulativeSum', title='Trend Penjua fig.update_traces(line=dict(color='#800020'), fill='tozeroy')

# Mengatur sumbu y agar tidak dimulai dari 0
y_min = cmltv['SalesCumulativeSum'].min() * 0.99
y_max = cmltv['SalesCumulativeSum'].max() * 1.001
fig.update_yaxes(range=[y_min, y_max])
fig.show()
```

```
In [570...
trend = df_cleaned.groupby('ReportDate')['DailySales'].sum().reset_index()
fig = px.line(trend, x='ReportDate', y='DailySales', title='Trend Penjualan Hari
fig.update_traces(line=dict(color='#800020'))
fig.show()
```

Insight:

- Data bersih memiliki nilai kumulatif yang terus naik dan tidak mengalami penurunan, sedangkan data kotor memiliki nilai kumulatif yang naik turun.
- Data bersih hanya memiliki nilai penjualan harian yang positif, sedangkan data kotor memiliki nilai penjualan harian yang positif dan negatif.

Analisis Lanjutan

Data Preview

```
In [571...
    total_sales = df_cleaned['DailySales'].sum()
    total_pesanan = df_cleaned[df_cleaned['DailySales']>0]['DailySales'].sum()
    date_max = df_cleaned['ReportDate'].max()
    total_cumulative_sales = df_cleaned[df_cleaned['ReportDate']==date_max]['SalesCu
    avg_sales = df_cleaned.groupby('ReportDate')['DailySales'].sum().reset_index()[1
    total_produk = df_cleaned['ProductID'].nunique()
    total_store = df_cleaned['StoreID'].nunique()

print(f"Total_penjualan_kumulatif : {int(total_cumulative_sales):,}")
    print(f"Total_penjualan_harian : {int(total_sales):,}")
    print(f"Rata-rata_penjualan_harian : {avg_sales:,.1f}")
```

```
print(f"Total produk : {total_produk:,}")
print(f"Total toko : {total_store:,}")

Total penjualan kumulatif : 505,121

Total Pesanan : 10,116

Total penjualan harian : 10,116

Rata-rata penjualan harian : 439.8

Total produk : 6,855

Total toko : 4,985
```

Bagaimana trend penjualan harian?

```
In [572... plt.figure(figsize=(12,5))
    trend_daily = df_cleaned.groupby('ReportDate')['DailySales'].sum()
    trend_daily.plot()
    plt.title('Penjualan Harian');
```


Pada awal setelah restock, penjualan cenderung meningkat, namun saat mendekati tanggal 20 (sebelum restock lagi), penjualan cenderung menurun! Hal ini mungkin terjadi karena kehabisan barang, sehingga mengakibatkan penjualan melambat.

Apa produk yang paling banyak terjual?

```
In [573...
topprod = df_cleaned.groupby('ProductID')['DailySales'].sum().nlargest(10).reset
sns.barplot(topprod, y='ProductID', x='DailySales')
plt.title('Top 10 Produk Paling Banyak Terjual');
```

Top 10 Produk Paling Banyak Terjual

Toko mana yang memiliki penjualan terbesar?

```
In [574...
topstr = df_cleaned.groupby('StoreID')['DailySales'].sum().nlargest(10).reset_in
sns.barplot(topstr, y='StoreID', x='DailySales')
plt.title('Top 10 Toko yang Memiliki Penjualan Terbesar');
```


Kontribusi Top 10 Produk Terhadap Penjualan

```
In [575...
          kumulatif = df_cleaned[df_cleaned['ReportDate']==date_max]
In [576...
          # Menghitung total penjualan kumulatif per toko
          total_sales = kumulatif['SalesCumulativeSum'].sum()
          top_10_prod = kumulatif.groupby('ProductID')['SalesCumulativeSum'].sum().nlarges
          # Menghitung kontribusi persentase
          top_10_contribution = top_10_prod.sum() / total_sales * 100
          other_contribution = 100 - top_10_contribution
          # Membuat DataFrame untuk visualisasi
          contribution_data = pd.DataFrame({
              'Kategori': ['10 Produk Teratas', 'Produk Lainnya'],
              'Persentase': [top_10_contribution, other_contribution]
          })
          # Membuat diagram pie
          fig = px.pie(
              contribution_data,
              names='Kategori',
              values='Persentase',
              title='Kontribusi Penjualan Kumulatif 10 Produk Teratas terhadap Semua Penju
              labels={'Persentase': 'Persentase Penjualan'}
          )
          # Menampilkan grafik
          fig.show()
```

Kontribusi Top 10 Store Terhadap Penjualan

```
In [577...
          # Menghitung total penjualan kumulatif per toko
          total_sales = kumulatif['SalesCumulativeSum'].sum()
          top_10_stores = kumulatif.groupby('StoreID')['SalesCumulativeSum'].sum().nlarges
          # Menghitung kontribusi persentase
          top_10_contribution = top_10_stores.sum() / total_sales * 100
          other_contribution = 100 - top_10_contribution
          # Membuat DataFrame untuk visualisasi
          contribution_data = pd.DataFrame({
              'Kategori': ['10 Toko Teratas', 'Toko Lainnya'],
              'Persentase': [top_10_contribution, other_contribution]
          })
          # Membuat diagram pie
          fig = px.pie(
              contribution data,
              names='Kategori',
              values='Persentase',
              title='Kontribusi Penjualan Kumulatif 10 Toko Teratas terhadap Semua Penjual
              labels={'Persentase': 'Persentase Penjualan'}
```

Menampilkan grafik
fig.show()

Rekomendasi

1. Pola Penjualan Setelah dan Sebelum Restock

- Analisis: Penjualan cenderung meningkat segera setelah restock, namun melambat sebelum restock.
- Rekomendasi:
 - Frekuensi Restock: Pertimbangkan untuk memperpendek siklus restock agar stok tetap tersedia di toko, terutama untuk produk dengan permintaan tinggi.
 - **Promosi Pra-Restock**: Jalankan kampanye promosi atau diskon seminggu sebelum restock untuk mendorong penjualan produk yang tersisa.
 - Optimalisasi Stok: Gunakan analisis data historis untuk memprediksi kebutuhan stok setiap toko dan produk, sehingga tidak ada kekurangan stok sebelum restock.

2. Konsentrasi Penjualan pada 10 Produk Teratas

- Analisis: Sepuluh produk terlaris menyumbang 42% dari total penjualan.
- Rekomendasi:

■ Fokus pada Produk Unggulan: Tingkatkan produksi, stok, dan promosi untuk 10 produk terlaris ini.

- **Diversifikasi Penawaran**: Analisis produk lain yang memiliki potensi pertumbuhan untuk mengurangi ketergantungan pada produk tertentu.
- Penempatan Strategis: Pastikan produk-produk unggulan ini tersedia di semua toko dengan visibilitas tinggi (rak depan atau area promosi).

3. Dominasi Penjualan pada 10 Toko Teratas

- **Analisis**: Sepuluh toko terlaris menyumbang 46% dari total penjualan.
- Rekomendasi:
 - **Replikasi Keberhasilan**: Analisis strategi operasional, lokasi, dan promosi dari toko-toko ini, lalu replikasi di toko lain yang memiliki potensi serupa.
 - Pengembangan Toko Non-Teratas: Fokus pada toko dengan penjualan rendah tetapi potensi pasar tinggi (lokasi strategis, populasi pelanggan besar, atau permintaan belum terpenuhi).
 - **Program Insentif**: Berikan program insentif kepada toko dengan performa rendah untuk mendorong penjualan, seperti bonus target atau diskon tambahan.

Strategi Pendukung

- 1. **Penggunaan Data Realtime**: Implementasikan sistem monitoring stok dan penjualan secara real-time untuk merespons kebutuhan pasar lebih cepat.
- 2. **Pemasaran Digital**: Gunakan kampanye digital yang menargetkan produk unggulan di toko tertentu, misalnya melalui media sosial atau aplikasi.
- 3. **Penawaran Bundling**: Ciptakan paket produk yang menggabungkan produk unggulan dengan produk yang kurang laris untuk meningkatkan volume penjualan.

Terima Kasih

In []: