### Statistiques spatiales

Juste Raimbault<sup>1,2,3,4,\*</sup>

\* juste.raimbault@ign.fr

<sup>1</sup>LASTIG, Univ Gustave Eiffel, IGN-ENSG <sup>2</sup>CASA, UCL <sup>3</sup>UPS CNRS 3611 ISC-PIF <sup>4</sup>UMR CNRS 8504 Géographie-cités

ING3 - Filière Data Science - UE2 Analyse de données 20/11/2023

# Statistiques spatiales

Introduction

- Régression Géographique Pondérée
- Auto-regressions spatiales
- Régression multi-niveaux

#### Non-stationnarité : définition

 $X_t$  processus stochastique avec loi de probabilité jointe  $F_X$ 

Stationnarité stricte : pour tous  $\tau$  et  $t_1,\ldots,t_n$ 

$$F_X(x_{t_1+\tau},\ldots,x_{t_n+\tau})=F_X(x_{t_1},\ldots,x_{t_n})$$

Stationnarité faible : pour tous  $t, \tau, t_1, t_2$ , et  $X_t$  de variance finie,

$$\mathbb{E}[X_t] = \mathbb{E}[X_{t+\tau}]$$

$$\operatorname{Cov}[X_{t_1}, X_{t_2}] = \operatorname{Cov}[X_{t_1-t_2}, X_0]$$

# Non-stationnarité temporelle : exemple



Séries temporelles financières avec moyenne et autocovariance variable dans le temps [Raimbault, 2019]

### Non-stationnarité spatiale : exemples

- Tout processus ponctuel dont les moyennes agrégées à d'autres niveaux géographiques varient dans l'espace
- Tout processus de moyenne constante mais dont la fonction d'autocorrélation varie dans l'espace ou n'est pas définie
- En fait la quasi totalité des processus impliquant des structures ou formes spatiales
- Même pour des processus pouvant être stationnaires (géographie physique, climat), celle-ci est locale

#### Tests de non-stationnarité spatiale

Méthodes variées dépendant de l'approche prise et du contexte :

- test de comparaison des moyennes entre zones géographiques
- variation du spectre [Fuentes, 2005]
- significativité statistique de la variation des coefficients d'une régression géographique pondérée [Leung et al., 2000]
- ...

## Auto-corrélation spatiale : définition et tests

 $\rightarrow$  corrélation entre valeurs voisines d'un processus spatial :  $\operatorname{Cov}[X_{x_1}, X_{x_2}] \neq 0$ 

Tests statistiques sur les résidus d'un modèle linéaire :

- Test de Moran
- Tests des multiplicateurs de Lagrange

#### Méthodes

#### Extensions spatiales des modèles statistiques :

- Régression géographique pondérée
- Auto-régressions spatiales
- Régression multi-niveaux

Méthodes avancées permettant de gérer la **non-stationnarité spatiale** (GWR et multi-niveau), **l'aspect multi-échelle** (multi-niveaux) et **l'autocorrélation spatiale** (GWR et auto-régressions)

### Préparation des données

#### Première partie du TP en R :

- $\rightarrow$  construction d'une base des prix immobiliers au niveau départemental, à partir de la base DVF et INSEE
- ightarrow premières explorations, cartes et diagnostics

# Statistiques spatiales

- Introduction
- Régression Géographique Pondérée
- Auto-regressions spatiales
- Régression multi-niveaux

# Exemple de résidus globaux structurés



## Régression géographique pondérée

Comment inclure des effets de voisinage et prendre en compte la non-stationnarité spatiale dans des modèles statistiques ? [Fotheringham et al., 2003]

Modèle GWR basique pour les variables  $y_i$  aux positions  $\vec{u_i}$  et variables explicatives  $x_{ik}$ 

$$y_i = \beta_0(\vec{u}_i) + \sum_k \beta_k(\vec{u}_i) x_{ik} + \varepsilon_i$$

avec les observations pondérées par un poids spatial  $w_i(r)$  en fonction de la distance à  $\vec{u_i}$ 

- Moindres-carrés pondérés, estimés à chaque localisation avec des poids spatiaux variables
- Différents kernels pour les poids spatiaux (gaussien, exponentiel, puissance, bisquare)
- Estimation de la taille de kernel optimale par optimisation de l'AIC
  par exemple

#### AIC : définition

Pour comparer des modèles statistiques ajustés sur le même jeu de données, le **Critère d'Information d'Akaike** permet de prendre en compte le nombre de paramètres :

$$AIC = 2k - 2 \ln L$$

pour un modèle de vraisemblance L et paramètres k

Correction pour les échantillons de petite taille (n observations) :

$$AICc = AIC + \frac{2k(k+1)}{n-k-1}$$

#### Distance optimale et sélection de modèles

- → sélection de distance optimale par algorithme d'optimisation GSS et minimisation de l'AlCc (ou d'un critère de validation croisée) : bw.gwr
- $\rightarrow$  sélection de modèle par méthode directe en minimisant l'AICc :  ${\tt gwr.model.selection}$

# Pour aller plus loin : cadre global pour GWR



### Application

Deuxième partie du TP en R : analyse GWR

**Données :** DVF agrégées au niveau départemental construites précédemment

# Statistiques spatiales

- Introduction
- Régression Géographique Pondérée
- Auto-regressions spatiales
- Régression multi-niveaux

### Modèles d'auto-régression spatiale

Ajout d'un terme auto-régressif dans le modèle linéaire :

$$y = \rho W y + \beta X + \varepsilon$$

- Introduction d'effets de voisinages : prise en compte de l'autocorrélation spatiale (spatial Durbin model)
- Correlation avec l'erreur par le terme Wy
- Estimation par Maximum de Vraisemblance : spatialreg::lagsarlm

## Modèles à erreur spatiale

Prise en compte de la structure spatiale dans le terme d'erreur :

$$y = \beta X + \varepsilon$$
$$\varepsilon = \lambda W \varepsilon + u$$

- Erreur auto-regressive dans l'espace
- Test des multiplieurs de Lagrange pour savoir si préférable à un modèle de Durbin spatial
- Estimation par Maximum de Vraisemblance : spatialreg::errorsarlm

## Test des multiplicateurs de Lagrange

Test générique pour des modèles statistiques avec maximum de vraisemblance  $\mathcal{L}(\vec{x},\theta)$ , avec le score défini par :

$$s(\theta) = \frac{\partial \log \mathcal{L}(\vec{x}, \theta)}{\partial \theta}$$

Alors  $\sqrt{s(\theta_0)/I(\theta_0)}$  avec  $I(\theta_0)$  information de Fisher, suit une distribution normale.

ightarrow application au modèles Durbin et d'erreur spatiale via leur maximum de vraisemblance

### Application

Troisième partie du TP en R : auto-régressions spatiales

**Données :** DVF agrégées au niveau départemental construites précédemment

# Statistiques spatiales

- Introduction
- Régression Géographique Pondérée
- Auto-regressions spatiales
- 4 Régression multi-niveaux

# Régression multi-niveau : exemple



Paramètres de l'effet de la distance pour un modèle de migration, spécifiques aux origines et destinations, calculés par une régression multi-niveaux [Dennett and Wilson, 2013]

### Régression multi-niveau

Lorsque des données peuvent être groupées par une variable catégorielle, une estimation au sein de chaque groupe est incluse dans la régression ("effets fixes") :

$$y = \alpha + \beta X + \sum_{j} (\alpha_j + \beta_j X_j + \varepsilon_j)$$

- Random intercepts : constantes  $\alpha_j$  uniquement
- Random slopes : coefficients  $\beta_j$

## Application aux données géographiques

- Groupement des observations selon des niveaux géographiques supérieurs, potentiellement plusieurs : régions, pays, . . .
- non-stationnarité prise en compte avec des coefficients variables
- pas de matrice de distance ou de poids spatiaux : niveau géographique exogène; mais prise en compte du caractère multi-échelle dans le cas de plusieurs niveaux
- pas de prise en compte de l'autocorrélation spatiale

### Application

Quatrième partie du TP en R : régressions multi-niveaux spatiales

**Données :** DVF agrégées au niveau départemental, groupement par régions

### Résumé des méthodes

| 5                                | Non-<br>stationnarité | Auto-corrélation | Multi-<br>échelles |
|----------------------------------|-----------------------|------------------|--------------------|
| Régression géographique pondérée | 1                     | ✓                | X                  |
| Auto-régression spatiale         | X                     | <b>√</b>         | X                  |
| Régression multi-niveau          | 1                     | X                | 1                  |

### Synthèse

- $\rightarrow$  méthodes statistiques adaptées à différents aspects des processus spatiaux
- $\rightarrow$  méthodes complémentaires, à appliquer selon le contexte et les propriétés des données (tests d'auto-corrélation, de non-stationnarité)
- $\rightarrow$  méthodes allant d'une application basique à un cadre complet plus avancé

A retenir : concepts et principes d'application, utilisation basique en R

#### References I

Comber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lü, Y., Murakami, D., Nakaya, T., Wang, Y., et al. (2021).

A route map for successful applications of geographically weighted regression.

Geographical Analysis.

Dennett, A. and Wilson, A. (2013). A multilevel spatial interaction modelling framework for estimating interregional migration in europe.

Environment and Planning A, 45(6):1491-1507.

Fotheringham, A. S., Brunsdon, C., and Charlton, M. (2003). Geographically weighted regression: the analysis of spatially varying relationships.

John Wiley & Sons.

#### References II

Fuentes, M. (2005).

A formal test for nonstationarity of spatial stochastic processes.

Journal of Multivariate Analysis, 96(1):30–54.

Leung, Y., Mei, C.-L., and Zhang, W.-X. (2000). Statistical tests for spatial nonstationarity based on the geographically weighted regression model. *Environment and Planning A*, 32(1):9–32.

Raimbault, J. (2019).

Second-order control of complex systems with correlated synthetic data.

Complex Adaptive Systems Modeling, 7(1):1-19.