QUESTIONS BRÈVES - D

On admet que pour tout réel x, il existe un unique entier $n \in \mathbb{Z}$ tel que $n \le x < n+1$. Cet entier, appelé « partie entière du réel x » est noté $\lfloor x \rfloor$.

D1	$\lfloor -\pi \rfloor = -3$	
D2	$\forall t \in \mathbb{R}, \lfloor t+1 \rfloor = \lfloor t \rfloor + 1$	
D3	$\forall (x, y) \in \mathbb{R}^2, [x + y] = [x] + [y]$	
D4	$\forall x \in \mathbb{R}, x - \lfloor x \rfloor \in [0, 1[$	
D5	$\forall x \in \mathbb{R}, \lfloor x \rfloor = \lfloor x \rfloor $	
D6	$\lim_{x \to +\infty} \frac{\lfloor x \rfloor}{x} = 1$	
D7	$\exists x \in \mathbb{R} - \mathbb{Z}, \left\lfloor x^2 \right\rfloor = \left\lfloor x \right\rfloor^2$	
D8	$\forall n \in \mathbb{N}^*, \left\lfloor \sqrt{n^2 + 1} \right\rfloor = n$	
D9	Pour tout $n \in \mathbb{N}^*$, l'entier $\left[2\sqrt{n^2+n+1}\right]$ est impair	
D10	$\forall (n, x) \in \mathbb{Z} \times \mathbb{R}, n < x \Leftrightarrow n < \lfloor x \rfloor$	
D11	$\forall (x,y) \in \mathbb{R}^2, \lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor$	
D12	$\forall n \in \mathbb{N}, \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n+1}{2} \right\rfloor = n$	
D13	$\forall n \in \mathbb{N}^{\star}, \ 4\sum_{k=1}^{n} \left\lfloor \frac{k}{2} \right\rfloor \leqslant n (n+1)$	

D14	$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n \left\lfloor \frac{k}{2} \right\rfloor \geqslant \frac{1}{2} \left(\sum_{k=1}^n k \right) - n$
D15	La fonction $x \mapsto \lfloor x \rfloor$ est impaire
D16	La fonction $x \mapsto x - \lfloor x \rfloor$ est périodique
D17	La fonction $x \mapsto \lfloor 3\sin(x) \rfloor$ prend exactement 7 valeurs
D18	Pour tout $n \in \mathbb{N}$, $2^{2n} = 4^n$
D19	Pour tout $n \in \mathbb{N}$, $3^n 4^n = 12^n$
D20	Pour tout $n \in \mathbb{N}$, $3^n + 4^n \neq 5^n$
D21	La suite $\left(2^{1/n}\right)_{n\geqslant 1}$ est décroissante
D22	Les suites $((-1)^{n^2})_{n\geqslant 0}$ et $((-1)^n)_{n\geqslant 0}$ sont égales
D23	La suite $(n^{(-1)^n})_{n\geqslant 0}$ est bornée
D24	La suite $(n + (-1)^n)_{n \in \mathbb{N}}$ est monotone