Bike Counter

Data from NYCDOT Data Bike Counter

All imports for notebook contained in the below cell.

```
In [25]: import pandas as pd import numpy as np import os import glob pd.options.display.max_rows = 400 import matplotlib.pyplot as plt import seaborn as sns; sns.set(style="white", color_codes=True)
```

Creates a list of hles to be used in for loop

```
In [26]:
                                                 ['https://raw.githubusercontent.com/aaarista/Website/master/NYCDOT 20Bicyc
            files
            le 20Counts 20- 20East 20River 20Bridges/04%20April%202016%20Cyclist%20Numbers%20f
                                                                                                        or%20Web.csv'.
            'https://raw.githubusercontent.com/aaarista/Website/master/NYCDOT 2
            0Bicycle 20Counts 20- 20East 20River 20Bridges/05%20May%202016%20Cyclist%20Numbers
            %20for%20Web.csv'.
                      'https://raw.githubusercontent.com/aaarista/Website/master/NYCDOT 20Bicvcl
            e 20Counts 20- 20East 20River 20Bridges/06%20June%202016%20Cyclist%20Numbers%20fo r%20Web.csv',
            'https://raw.githubusercontent.com/aaarista/Website/master/NYCDOT 20
            Bicycle 20Counts 20- 20East 20River 20Bridges/07%20July%202016%20Cyclist%20Numbers
            %20for%20Web.csv',
                      'https://raw.githubusercontent.com/aaarista/Website/master/NYCDOT 20Bicycl
            e 20Counts 20- 20East 20River 20Bridges/08%20August%202016%20Cyclist%20Numbers%20f
                                                                                                      or%20Web.csv'.
                      'https://raw.githubusercontent.com/aaarista/Website/master/NYCDOT 20Bicycl
            e 20Counts 20- 20East 20River 20Bridges/09%20September%202016%20Cyclist%20Numbers%
            20for%20Web.csv',
                                          'https://raw.githubusercontent.com/aaarista/Website/master/NYCDO
            T 20Bicycle 20Counts 20- 20East 20River 20Bridges/10%20October%202016%20Cyclist%20
```

Numbers%20for%20Web.csv']

Creates empty dataframe and for loop to parse and read data from each hie as well as concatenate to one dataframe for further manipulation.

```
In [27]: all_data = pd.DataFrame()

for fin glob.glob("/Users/macbookair/NYCDOT_20Bicycle_20Counts_20-_20East_20River_20Bridges/*"):

dateparse = lambda x: pd.datetime.strptime(x, '%m-%d %M:%S') df = pd.read_csv(f, error_bad_lines=False,
thousands=',') all_data = all_data.append(df,ignore_index=True, sort=True)
```

In [29]: all_data.shape

Out[29]: (320, 14)

Transforms the 'Date' column to datetime format

In [30]:

 $all_{data['Date']} = pd.to_{datetime(all_{data['Date']}, format = "%m/%d")}$

Sets the dataframe to the columns that will be used.

Repair the Date column year to 2016

There was no year given in the initial datasource. The default was 1900 which makes the data unclear. The correct year of the datasource is 2016. The following codes achieves this task:

In [32]:

all_data['Date'] = all_data['Date'].mask(all_data['Date'].dt.year == 1900, all_data['Date'] + pd.offsets.DateOffset(year=2016))

all_data.head()

	Date	Brooklyn Bridge	Day	High Temp (°F)	Low Temp (°F)	Manhattan Bridge	Williamsburg Bridge	P r e
0	2016- 09-01	1608.0	Thursday	78.1	70.0	3012.0	4435.0	Т
1	2016- 09-02	3594.0	Friday	80.1	66.0	6657.0	7116.0	0. 0
2	2016- 09-03	2850.0	Saturday	73.9	68.0	7357.0	5115.0	0. 0
3	2016- 09-04	2871.0	Sunday	79.0	64.9	6949.0	4800.0	0. 0
4	2016- 09-05	2465.0	Monday	82.9	66.0	6248.0	4904.0	0. 0

Set index to date

```
In [33]: all_data.index = all_data['Date']

del all_data['Date']
```

Drops all rows that have Nan value in 'Total' column.

In [34]: all_data.dropna(subset=['Total'], inplace=**True**)

To make the data more user-friendly the 'Date' column will be sorted ascending from the earliest date.

In [35]:

 $all_data.sort_values(by = 'Date').head()$

Out[35]:

	Brooklyn Bridge	Day	High Temp (°F)	Low Temp (°F)	Manhattan Bridge	Williamsburg Bridge	Precipi t
Date							
2016- 04-01	1704.0	Friday	78.1	66.0	3126.0	4115.0	0.01
2016- 04-02	827.0	Saturday	55.0	48.9	1646.0	2565.0	0.15
2016- 04-03	526.0	Sunday	39.9	34.0	1232.0	1695.0	0.09
2016- 04-04	521.0	Monday	44.1	33.1	1067.0	1440.0	0.47 (S)
2016- 04-05	1416.0	Tuesday	42.1	26.1	2617.0	3081.0	0.00

In [36]:

all_data['Precipitation'] = all_data['Precipitation'].replace("T", 0) all_data['Precipitation'] = all_data['Precipitation'].replace("0.47 (S)", 0.47)

In [37]:

all_data['Precipitation'] = all_data['Precipitation'].convert_objects(convert_nume ric=True)

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: FutureWarning: convert_objects is deprecated. To re-infer data dtypes for object columns, us e Series.infer_objects()

For all other conversions use the data-type specific converters pd.to_datetim
e, pd.to_timedelta and pd.to_numeric.

"""Entry point for launching an IPython kernel.

Change datatype to float

In [38]:

all_data[['Manhattan Bridge', 'Williamsburg Bridge', 'Queensboro Bridge']].astype(float).head()

Out[38]:

	Manhattan Bridge	Williamsburg Bridge	Queensboro Bridge
Date			
2016-09-0 1	3012.0	4435.0	3498.0
2016-09-0 2	6657.0	7116.0	5376.0
2016-09-0 3	7357.0	5115.0	3961.0
2016-09-0 4	6949.0	4800.0	3275.0
2016-09-0 5	6248.0	4904.0	3583.0

In [39]:	all_data.dtypes		
Out[39]:	Brooklyn Bridge Day	float64	
	High Temp (°F)	object	
	Low Temp (°F) Manhattan	float64	
	Bridge Williamsburg	float64	
	Bridge Precipitation	float64	
	Queensboro Bridge Total	float64	
	dtype: object	float64	
		float64	
		float64	

***The data is now tranformed correctly so that analysis can be done.

Data Grouping and Preliminary Analysis

Verify the correct number of days for each month

In [40]: all_data.resample('M').size() Date Out[40]: 2016-04-30 30 2016-05-31 31 2016-06-30 30 2016-07-31 31 2016-08-31 31 2016-09-30 30 2016-10-31 Freq: M, dtype: int64 ³¹

Basic statistical description of 'all_data' dataframe.

In [41]:

all_data.describe().round()

Out[41]:

	Brookly n Bridg e	High Tem p (° F)	Low Tem p (° F)	Manhatta n Bridg e	Williamsbu rg Bridg e	Precipitati on	Q u 4
coun t	214.0	214.0	214.0	214.0	214.0	214.0	21 ⁰ 6
mean	3031.0	75.0	62.0	5052.0	6161.0	0.0	430
std	1134.0	13.0	12.0	1745.0	1911.0	0.0	129
min	504.0	40.0	26.0	997.0	1440.0	0.0	134
25%	2388.0	66.0	53.0	3713.0	4884.0	0.0	340
50%	3076.0	78.0	65.0	5132.0	6334.0	0.0	439
75%	3685.0	85.0	71.0	6610.0	7858.0	0.0	53
max	8264.0	96.0	82.0	9152.0	9148.0	2.0	63

Charts

Total pedestrian cyclists aggregated by month

```
In [42]: ttl_month = all_data[['Manhattan Bridge', 'Williamsburg Bridge', 'Queensboro Bridg e']].resample('M').sum().round()
ax1 = ttl_month.plot(kind='bar', title ="Total by Month", figsize=(15, 10), legend=True, fontsize=12)
ax1.set_xticklabels(['Apr', 'May', 'June', 'July', 'Aug', 'Sep', 'Oct'])

Out[42]: [Text(0,0,'Apr'),
```


Median monthly pedestrian cyclists

```
In [43]: med_month = all_data[['Manhattan Bridge', 'Williamsburg Bridge', 'Queensboro Bridg e']].resample('M').median().round() ax2 = med_month.plot(kind='bar', title ="Median by Month", figsize=(15, 10), legend=True, fontsize=12) ax2.set_xticklabels(['Apr', 'May', 'June', 'July', 'Aug', 'Sep', 'Oct'])
```

```
Out[43]: [Text(0,0,'Apr'),

Text(0,0,'May'),

Text(0,0,'June'),

Text(0,0,'July'),

Text(0,0,'Aug'),

Text(0,0,'Sep'),

Text(0,0,'Oct')]
```


Mean pedestrian cyclists by month

```
mean_month = all_data[['Manhattan Bridge', 'Williamsburg Bridge', 'Queensboro Brid ge']].resample('M').mean().round() ax3 = mean_month.plot(kind='bar', title ="Mean by Month", figsize=(15, 10), legend=True, fontsize=12) ax3.set_xticklabels(['Apr', 'May', 'June', 'July', 'Aug', 'Sep', 'Oct'])
```

```
Out[44]: [Text(0,0,'Apr'),

Text(0,0,'May'),

Text(0,0,'June'),

Text(0,0,'July'),

Text(0,0,'Aug'),

Text(0,0,'Sep'),

Text(0,0,'Oct')]
```


Seaborn pairplot to show temperature and precipitation impact on cyclists

pp = sns.pairplot(all_data, hue='Day') sns.set(font_scale=1.5)

Time Series Analysis

In [46]:

```
grp_line = all_data[['Manhattan Bridge', 'Queensboro Bridge', 'Brooklyn Bridge']] pp = grp_line.plot()
fig = plt.gcf()
fig.set_size_inches(18.5, 10.5)
```

