

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE FISICA 9/6/2008

SEGUNDO PARCIAL DE FISICA I (35%)

Nombre: Wis Ribeiro	
Carnet: 07-01 1130	Sección: 10

Instrucciones:

- El valor de las preguntas de selección es de 14 puntos, y la parte de desarrollo de 21 puntos.
- Lea cuidadosamente los enunciados de las preguntas y cualquier duda relacionada con estos comuníquese con su profesor.
- Sea claro en su desarrollo y coloque los resultados obtenidos dentro de un recuadro.
- No se permite el uso de calculadoras.
- Apague su celular

Cuando lo necesite use como valor numérico para la aceleración de gravedad, $\mathbf{g} = 10 \, \mathbf{m}/\mathbf{s}^2$ En este examen se usará, para los vectores unitarios cartesianos, la siguiente notación:

$$\mathbf{i} = \hat{i} = \hat{x} = \hat{u}_x \; ; \; \mathbf{j} = \hat{j} = \hat{y} = \hat{u}_x \; ; \; \mathbf{k} = \hat{k} = \hat{z} = \hat{u}_z \; ; \; \hat{\mathbf{r}} = \hat{\mathbf{u}}_{\mathbf{r}} \; ; \; \hat{\boldsymbol{\theta}} = \hat{\mathbf{u}}_{\boldsymbol{\theta}} = \hat{\mathbf{v}}$$

Mi firma da testimonio de mi comportamiento honesto y correcto durante la realización de este examen.

Firma:

Parte I: Selección Simple

En esta sección del examen debe escoger solamente una opción en cada pregunta. Cada pregunta tiene un valor de 2 puntos.

	1. Sobre un cuerpo en movimiento actúa una fuerza neta diferente de cero, repentinamente la fuerza neta se anula. Como consecuencia de esto el cuerpo:	
7	() Se detiene abruptamente. () Se detiene durante un breve intervalo de tiempo () Cambia la dirección de su movimiento. (X) Se mueve con velocidad constante. (Cambia su velocidad de manera impredecible.	
	2. Las tensiones en los extremos de la cuerda (ideal) de la figura:	
	() Constituyen un par de acción y reacción. () Son fuerzas iguales y opuestas. () Dependen de las propiedades de la cuerda. (X) Son fuerzas de igual magnitud. (X) Ninguna de las anteriores es cierta.	
	3. La fuerza de fricción que actúa sobre una caja colocada sobre una mesa horizontal rugosa (x) Es nula. () Es la fuerza de reacción entre la mesa y la caja. () Siempre depende de la masa de la caja. () Es perpendicular a la mesa. () Ninguna de las anteriores es cierta.	
	 4. Un cuerpo se mueve con velocidad constante. ¿Cuál de las siguientes afirmaciones es cierta? () Sobre el cuerpo no actúan fuerzas. () Una sola fuerza constante paralela al movimiento está actuando sobre el cuerpo. () La fuerza neta que actúa sobre el cuerpo es nula. () La fuerza neta que actúa sobre el cuerpo es opuesta y de igual magnitud que el peso del cuerpo. () Ninguna de las anteriores. 	
	5. La aceleración de gravedad en la superficie lunar es aproximadamente 1/6 de la tierra (asuma g=10m/s²). Un astronauta cuyo peso en la tierra es de 600 N viaja a la luna. Su masa medida con una balanza en la luna será:	
	() 600 Kg. () 9.81 Kg. () 100 Kg. () 360 Kg. () 60 Kg.	

- 6. Una partícula de masa m se mueve en una linea recta de manera tal que su posición con respecto a un sistema inercial cartesiano está dada por: $x(t) = A\cos(\omega_0 t)$ y y(t) = 0 (donde A y ω_0 son constantes). La fuerza neta que actúa sobre la partícula:
 -) Es una fuerza constante.
- () Es nula.
- () Se puede calcular de acuerdo a la formula $\vec{F} = -mg \hat{j} + m\omega_o x \hat{i}$
- () No puede calcularse con los datos que aparecen en el enunciado.
- (x) Está dada por $\vec{F} = -m\omega_o^2 x \hat{i}$
- 7. Como se muestra en la figura, el bloque B está sobre el bloque A. Existe roce entre los bloques, pero no entre el bloque A y la rampa. Escoja el diagrama que mejor representa las fuerzas que actúan sobre el bloque A suponiendo que ambos suben juntos sin deslizamiento entre ellos.

 $\bar{N}_{s/A}$: Normal ejercida por la rampa.

 $\bar{N}_{A/B}$: Normal entre los bloques A y B.

 \vec{P}_A : Peso del bloque A

 \vec{P}_B : Peso del bloque B

T: Tensión de la cuerda

f_{sA/B}: Fuerza de roce estática entre los bloques A y B

8. Tres bloques de masas M, 12 kg y 9 kg están conectados con una polea y dos cuerdas como muestra la figura. El bloque de masa 9 kg reposa sobre una superficie horizontal sin fricción y está unido con una de las cuerdas al bloque de masa M que queda colgando al otro lado de la polea. El bloque de 12 kg está atado a la pared por la otra cuerda y está colocado encima del bloque de 9 kg, y entre ellos los coeficientes de fricción estática y dinámico son $\mu_e = 0.6$ y $\mu_d = 0.3$ respectivamente. Las cuerdas y la polea son ideales.

1. Qué valor tiene la masa M si se observa que cae con rapidez constante (una vez puesto en movimiento)? (4 puntos)

H = 3,6 kg

2. Si ahora cambiamos M = 5 kg, ¿Cuál es la magnitud de la aceleración del sistema y cuanto valen los módulos de las tensiones en las cuerdas? (6 puntos)

