Reinforcement Learning Exercise 8

Jim Mainprice, Philipp Kratzer, Yoojin Oh, Janik Hager Machine Learning & Robotics lab, U Stuttgart Universitätsstraße 38, 70569 Stuttgart, Germany

June 15, 2021

1 n-step and eligibility traces (4P)

a) The nonplanning method looks particularly poor in the figure below; a method using n-step bootstrapping would do better. Do you think one of the n-step bootstrapping methods could do as well as the Dyna-Q method? Explain why or why not. (2P)

WITHOUT PLANNING (n=0)

G
S
S

b) The λ -return is given by:

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n}$$

with:

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

Give the λ -return G_t^{λ} as recursive function in terms of the first reward R_{t+1} and itself one step later G_{t+1}^{λ} . (2P)

2 n-step sarsa on the FrozenLake (5P)

The code template can be found on github (https://github.com/humans-to-robots-motion/rl-course) in ex08-nstep/ex08-nstep.py.

Implement n-step Sarsa and evaluate it on the 8×8 Frozen Lake environment. Evaluate the performance for different choices of n and α . Visualize your results (plot the performance over α for different choices of n, similar to lecture 8 slide 9).