Introduction:

Internal Border Gateway Protocol (iBGP) is a bit different than External Border Gateway Protocol (eBGP). This lab was designed to build our understanding of iBGP and its difference from eBGP which we used in our previous BGP lab. In this lab, we used both iBGP, eBGP, and a form of IGP, which in this case we chose OSPF.

Background Information:

Internal Border Gateway Protocol (iBGP) is a form of BGP used within an autonomous system (AS). Unlike External Boarder Gateway Protocol (eBGP), which is used to connect different ASes together, iBGP is used in transitional ASes and backup routes within ASes due to its extensive scalability. Due to this difference iBGP and eBGP have many differences in the way the act but the main one we saw during this lab was that iBGP has routers within the same AS while eBGP has routers in different ASes. IBGP also has a different Administrative Distance (AD) of 200 compared to eBGP's of 20.

IBGP uses a full mesh configuration with other iBGP routers within the AS. Creating a full mesh requires a router to maintain a connection with every other iBGP router. This is a downside in large networks as having to maintain a session with every other iBGP router within the AS will degrade the performance of those routers. Route Reflectors (RRs) mitigate this issue by reducing the number of connections required within the AS. Using RRs multiple client routers will peer into a central router which is the RR which acts like a server. This lowers the amount of peering happening within the AS as routers will only have to peer into the RR instead of all other routers. The RR system does have its flaws as RRs are single points of failure which is why a backup RR should be configured to provide redundancy. A RR and its clients form a cluster which include a cluster ID on all RRs and clients.

IBGP is used extensively today by large enterprise networks to ensure best routes are chosen and no routing loops are present. IBGP can be used within these networks similar to how an Interior Gateway Protocol (IGP) like OSPF or EIGRP. However iBGP offers greater scalability, stability and flexibility than IGPs can

which fits the requirements of many large enterprise networks that handle tens of thousands of packets per second, enough to break a IGP network.

Lab Summary:

This lab uses 5 routers in a daisy chain configuration. The middle 3 routers are an AS running both iBGP and OSPF while the two outer routers, R1 and R5, are running eBGP running in separate ASes acting as outside networks from routers 2, 3, and 4. Routers 1, 2, 4, and 5 have loopback interfaces. Router 2 and 4s loopback interface is used as loopback interfaces don't go down and used for the update-source loopback command. This command creates a BGP neighbor relation between router 2 and 4 without them being physically connected to each other directly which in turn creates a full mesh network within AS 2. The loopback interfaces on R1 and R5 are meant for pinging across as proof of connectivity. OSPF is used as iBGP itself doesn't have enough routing information alone requiring the use of a IGP as a backbone protocol.

Refer below for a visual reference.

Network Diagram:

Lab Commands:

Rx(config)#interface go/o/x

Rx(config)#ip address 192.168.x.x 255.255.255.0

Rx(config)#interface loopbacko

Rx(config)#ip address x.x.x.x 255.255.255.255

Rx(config)#router bgp x

Rx(config-router)#address-family ipv4

Rx(config-router)#network x.x.x.x mask 255.255.255.255

Rx(config-router)#network 192.168.x.x area o

Rx(config-router)#neighbor 192.168.x.x remote-as x

Rx(config-router)#neighbor 192.168.x.x activate

 $Rx(config-router)\#redistribute\ OSPF$

Rx(config-router)#neighbor x.x.x.x update-source loopback

Rx(config)#router ospf 1

Rx(config-router)#network 192.168.x.x area o

Rx(config-router)#redistribute bgp x subnets

Configurations:

R1:

```
Building configuration...
Current configuration: 1473 bytes
version 15.5
service timestamps debug datetime msec
service timestamps log datetime msec
no platform punt-keepalive disable-kernel-core
hostname R1
boot-start-marker
boot-end-marker
vrf definition Mgmt-intf
address-family ipv4
exit-address-family
address-family ipv6
exit-address-family
no aaa new-model
subscriber templating
multilink bundle-name authenticated
license udi pid ISR4321/K9 sn FD0214421CF
```

spanning-tree extend system-id

redundancy

mode none

vlan internal allocation policy ascending

interface Loopback0

ip address 1.1.1.1 255.255.255.255

interface GigabitEthernet0/0/0

ip address 192.168.1.1 255.255.255.0

negotiation auto

interface GigabitEthernet0/0/1

no ip address

negotiation auto

interface Serial0/1/0

no ip address

interface Serial0/1/1

no ip address

interface GigabitEthernet0

vrf forwarding Mgmt-intf

no ip address

negotiation auto

interface Vlan1

no ip address

router bgp 1

bgp log-neighbor-changes

neighbor 192.168.1.2 remote-as 2

address-family ipv4

network 1.1.1.1 mask 255.255.255.255

neighbor 192.168.1.2 activate

```
exit-address-family
ip forward-protocol nd
no ip http server
no ip http secure-server
ip tftp source-interface GigabitEthernet0
control-plane
line con 0
stopbits 1
line aux 0
stopbits 1
line vty 0 4
login
end
Gateway of last resort is not set
1.0.0.0/32 is subnetted, 1 subnets
C 1.1.1.1 is directly connected, Loopback0
2.0.0/32 is subnetted, 1 subnets
B 2.2.2.2 [20/0] via 192.168.1.2, 00:55:45
4.0.0.0/32 is subnetted, 1 subnets
B 4.4.4.4 [20/0] via 192.168.1.2, 00:54:43
5.0.0.0/32 is subnetted, 1 subnets
B 5.5.5.5 [20/0] via 192.168.1.2, 00:54:43
192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.1.0/24 is directly connected, GigabitEthernet0/0/0
L 192.168.1.1/32 is directly connected, GigabitEthernet0/0/0
B 192.168.2.0/24 [20/0] via 192.168.1.2, 00:55:45
```

B 192.168.3.0/24 [20/2] via 192.168.1.2, 00:55:14

R2:

Building configuration... Current configuration: 1981 bytes version 15.5 service timestamps debug datetime msec service timestamps log datetime msec no platform punt-keepalive disable-kernel-core hostname R2 boot-start-marker boot-end-marker vrf definition Mgmt-intf address-family ipv4 exit-address-family address-family ipv6 exit-address-family no aaa new-model subscriber templating multilink bundle-name authenticated license udi pid ISR4321/K9 sn FDO211216BL spanning-tree extend system-id redundancy mode none vlan internal allocation policy ascending interface Loopback0 ip address 2.2.2.2 255.255.255.255

interface GigabitEthernet0/0/0

ip address 192.168.2.1 255.255.255.0

negotiation auto

interface GigabitEthernet0/0/1

ip address 192.168.1.2 255.255.255.0

negotiation auto

interface Serial0/1/0

no ip address

interface Serial0/1/1

no ip address

interface GigabitEthernet0

vrf forwarding Mgmt-intf

no ip address

negotiation auto

interface Vlan1

no ip address

router ospf 1

redistribute bgp 2 subnets

network 192.168.1.0 0.0.0.255 area 0

network 192.168.2.0 0.0.0.255 area 0

network 192.168.3.0 0.0.0.255 area 0

router bgp 2

bgp log-neighbor-changes

neighbor 1.1.1.1 remote-as 1

neighbor 1.1.1.1 update-source Loopback0

neighbor 4.4.4.4 remote-as 2

neighbor 4.4.4.4 update-source Loopback0

neighbor 192.168.1.1 remote-as 1

```
neighbor 192.168.2.2 remote-as 2
address-family ipv4
network 1.1.1.1 mask 255.255.255.255
network 2.2.2.2 mask 255.255.255.255
redistribute ospf 1
neighbor 1.1.1.1 activate
neighbor 4.4.4.4 activate
neighbor 192.168.1.1 activate
neighbor 192.168.2.2 activate
exit-address-family
ip forward-protocol nd
no ip http server
no ip http secure-server
ip tftp source-interface GigabitEthernet0
control-plane
line con 0
stopbits 1
line aux 0
stopbits 1
line vty 0 4
login
end
```

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 1 subnets

B 1.1.1.1 [20/0] via 192.168.1.1, 00:56:47

2.0.0.0/32 is subnetted, 1 subnets

C 2.2.2.2 is directly connected, Loopback0

```
4.0.0.0/32 is subnetted, 1 subnets
```

O E2 4.4.4.4 [110/1] via 192.168.2.2, 00:56:29, GigabitEthernet0/0/0

5.0.0.0/32 is subnetted, 1 subnets

O E2 5.5.5.5 [110/1] via 192.168.2.2, 00:56:29, GigabitEthernet0/0/0

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.1.0/24 is directly connected, GigabitEthernet0/0/1

L 192.168.1.2/32 is directly connected, GigabitEthernet0/0/1

192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.2.0/24 is directly connected, GigabitEthernet0/0/0

L 192.168.2.1/32 is directly connected, GigabitEthernet0/0/0

O 192.168.3.0/24 [110/2] via 192.168.2.2, 00:56:29, GigabitEthernet0/0/0

O 192.168.4.0/24 [110/3] via 192.168.2.2, 00:56:29, GigabitEthernet0/0/0

R3:

Building configuration...

Current configuration: 1625 bytes

version 15.5

service timestamps debug datetime msec

service timestamps log datetime msec

no platform punt-keepalive disable-kernel-core

hostname R3

boot-start-marker

boot-end-marker

vrf definition Mgmt-intf

address-family ipv4

exit-address-family address-family ipv6 exit-address-family no aaa new-model subscriber templating multilink bundle-name authenticated license udi pid ISR4321/K9 sn FDO214420G7 spanning-tree extend system-id redundancy mode none vlan internal allocation policy ascending interface GigabitEthernet0/0/0 ip address 192.168.3.1 255.255.255.0 negotiation auto int ip address 192.168.2.2 255.255.255.0 negotiation auto interface Serial0/1/0 no ip address shutdown interface Serial0/1/1 no ip address shutdown interface GigabitEthernet0 vrf forwarding Mgmt-intf no ip address shutdown negotiation auto

```
interface Vlan1
no ip address
shutdown
router ospf 1
redistribute bgp 2 subnets
network 192.168.2.0 0.0.0.255 area 0
network 192.168.3.0 0.0.0.255 area 0
router bgp 2
bgp log-neighbor-changes
neighbor 192.168.2.1 remote-as 2
neighbor 192.168.3.2 remote-as 2
address-family ipv4
neighbor 192.168.2.1 activate
neighbor 192.168.3.2 activate
exit-address-family
ip forward-protocol nd
no ip http server
no ip http secure-server
ip tftp source-interface GigabitEthernet0
control-plane
line con 0
stopbits 1
line aux 0
stopbits 1
line vty 0 4
login
end
```

- Gateway of last resort is not set
- 1.0.0.0/32 is subnetted, 1 subnets
- O E2 1.1.1.1 [110/1] via 192.168.2.1, 00:57:11, GigabitEthernet0/0/1
- 2.0.0/32 is subnetted, 1 subnets
- O E2 2.2.2.2 [110/1] via 192.168.2.1, 00:57:11, GigabitEthernet0/0/1
- 4.0.0.0/32 is subnetted, 1 subnets
- O E2 4.4.4.4 [110/1] via 192.168.3.2, 00:57:21, GigabitEthernet0/0/0
- 5.0.0.0/32 is subnetted, 1 subnets
- O E2 5.5.5.5 [110/1] via 192.168.3.2, 00:57:21, GigabitEthernet0/0/0
- O 192.168.1.0/24 [110/2] via 192.168.2.1, 00:57:11, GigabitEthernet0/0/1
- 192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
- C 192.168.2.0/24 is directly connected, GigabitEthernet0/0/1
- L 192.168.2.2/32 is directly connected, GigabitEthernet0/0/1
- 192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks
- C 192.168.3.0/24 is directly connected, GigabitEthernet0/0/0
- L 192.168.3.1/32 is directly connected, GigabitEthernet0/0/0
- O 192.168.4.0/24 [110/2] via 192.168.3.2, 00:57:21, GigabitEthernet0/0/0
- BGP table version is 19, local router ID is 192.168.3.1
- Status codes: s suppressed, d damped, h history, * valid, > best,
 i internal,
- r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
- x best-external, a additional-path, c RIB-compressed,
- Origin codes: i IGP, e EGP, ? incomplete
- RPKI validation codes: V valid, I invalid, N Not found

Network Next Hop Metric LocPrf Weight Path r>i 1.1.1.1/32 192.168.1.1 0 100 0 1 i r>i 2.2.2.2/32 192.168.2.1 0 100 0 i r>i 4.4.4.4/32 192.168.3.2 0 100 0 i r>i 5.5.5.5/32 192.168.4.2 0 100 0 3 i r>i 192.168.1.0 192.168.2.1 0 100 0 ? r>i 192.168.2.0 192.168.2.1 0 100 0 ? r>i 192.168.3.0 192.168.3.2 0 100 0 ? r>i 192.168.3.0 192.168.3.2 0 100 0 ?

R4:

Building configuration... Current configuration: 2012 bytes version 15.5 service timestamps debug datetime msec service timestamps log datetime msec no platform punt-keepalive disable-kernel-core hostname R4 boot-start-marker boot-end-marker vrf definition Mgmt-intf address-family ipv4 exit-address-family address-family ipv6 exit-address-family no aaa new-model subscriber templating multilink bundle-name authenticated

license udi pid ISR4321/K9 sn FD021442B21

spanning-tree extend system-id

redundancy

mode none

vlan internal allocation policy ascending

interface Loopback0

ip address 4.4.4.4 255.255.255.255

interface GigabitEthernet0/0/0

ip address 192.168.4.1 255.255.255.0

negotiation auto

interface GigabitEthernet0/0/1

ip address 192.168.3.2 255.255.255.0

negotiation auto

interface Serial0/1/0

no ip address

interface Serial0/1/1

no ip address

interface GigabitEthernet0/2/0

no ip address

negotiation auto

interface GigabitEthernet0/2/1

no ip address

negotiation auto

interface GigabitEthernet0

vrf forwarding Mgmt-intf

no ip address

negotiation auto

interface Vlan1

```
no ip address
router ospf 1
redistribute bgp 2 subnets
network 192.168.1.0 0.0.0.255 area 0
network 192.168.2.0 0.0.0.255 area 0
network 192.168.3.0 0.0.0.255 area 0
network 192.168.4.0 0.0.0.255 area 0
router bgp 2
bgp log-neighbor-changes
neighbor 2.2.2.2 remote-as 2
neighbor 2.2.2.2 update-source Loopback0
neighbor 192.168.3.1 remote-as 2
neighbor 192.168.4.2 remote-as 3
address-family ipv4
network 4.4.4.4 mask 255.255.255.255
redistribute ospf 1
neighbor 2.2.2.2 activate
neighbor 192.168.3.1 activate
neighbor 192.168.4.2 activate
exit-address-family
ip forward-protocol nd
no ip http server
no ip http secure-server
ip tftp source-interface GigabitEthernet0
control-plane
line con 0
stopbits 1
```

line aux 0

```
stopbits 1
line vty 0 4
login
end
Gateway of last resort is not set
1.0.0.0/32 is subnetted, 1 subnets
O E2 1.1.1.1 [110/1] via 192.168.3.1, 00:59:01,
GigabitEthernet0/0/1
2.0.0.0/32 is subnetted, 1 subnets
O E2 2.2.2.2 [110/1] via 192.168.3.1, 00:59:01,
GigabitEthernet0/0/1
4.0.0.0/32 is subnetted, 1 subnets
C 4.4.4.4 is directly connected, Loopback0
5.0.0.0/32 is subnetted, 1 subnets
B 5.5.5.5 [20/0] via 192.168.4.2, 00:59:50
O 192.168.1.0/24 [110/3] via 192.168.3.1, 00:59:01,
GigabitEthernet0/0/1
O 192.168.2.0/24 [110/2] via 192.168.3.1, 00:59:11,
GigabitEthernet0/0/1
192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.3.0/24 is directly connected, GigabitEthernet0/0/1
L 192.168.3.2/32 is directly connected, GigabitEthernet0/0/1
192.168.4.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.4.0/24 is directly connected, GigabitEthernet0/0/0
```

R5:

Building configuration...

L 192.168.4.1/32 is directly connected, GigabitEthernet0/0/0

Current configuration: 3782 bytes

version 16.9

service timestamps debug datetime msec

service timestamps log datetime msec

platform qfp utilization monitor load 80

platform punt-keepalive disable-kernel-core

hostname R5

boot-start-marker

boot-end-marker

vrf definition Mgmt-intf

address-family ipv4

exit-address-family

address-family ipv6

exit-address-family

no aaa new-model

login on-success log

subscriber templating

multilink bundle-name authenticated

crypto pki trustpoint TP-self-signed-2270144787

enrollment selfsigned

subject-name cn=IOS-Self-Signed-Certificate-2270144787

revocation-check none

rsakeypair TP-self-signed-2270144787

crypto pki certificate chain TP-self-signed-2270144787

certificate self-signed 01

30820330 30820218 A0030201 02020101 300D0609 2A864886 F70D0101 05050030

31312F30 2D060355 04031326 494F532D 53656C66 2D536967 6E65642D 43657274

69666963 31363239	6174652D	32323730	31343437	3837301E	170D3234	30333037
34335A17 03132649	0D333030	31303130	30303030	305A3031	312F302D	06035504
4F532D53 32373031	656C662D	5369676E	65642D43	65727469	66696361	74652D32
34343738 00308201	37308201	22300D06	092A8648	86F70D01	01010500	0382010F
0A028201 C1A36BD1	0100AD04	57BC8DA9	B8D45E4D	3A1EF181	D8CEB3E9	AFDB3597
413452CF 821EB73F	531997D8	B1DD6DD0	9550A68A	7D7B6D01	D200BD53	30AD877D
3A2E1851 17769BE5	0A1E4979	902E4957	F0A3D1F1	B10E1609	B77C5BB9	78E2E8DD
AF488D8C 136FCD5F	OC5C4CE2	2A2905ED	30B5D104	0B019DE0	278A34E5	1A2EEEC0
C147BB86 4DA4FD5D	E4869C22	150FFA8D	CD8E85B0	6A6E8290	43071C83	1C29C396
A1A935DA A5031A84	4DBA7218	92398BF4	ADE801D9	E687E13F	FF4FEE8D	E3F891E3
00E3427F B6059680	327B5DCD	108AF61C	24AD76C2	314E099C	96AD023B	B09F4806
33218C60 36EB870C	E40D4AE0	F69090EB	675A7232	41F3A27E	FF6045DE	6585687E
C5CAED56 030101FF	BF310203	010001A3	53305130	0F060355	1D130101	FF040530
301F0603 DB6ECD28	551D2304	18301680	14BAA654	1EA898A2	ED5A1AF3	C603E221
5E301D06 6ECD285E	03551D0E	04160414	BAA6541E	A898A2ED	5A1AF3C6	03E221DB
300D0609 8C8E4F8A	2A864886	F70D0101	05050003	82010100	0207C166	41D11656
146DD04B C5C53BDD	59121822	5CE7562B	79AA6669	D7351530	D9544732	4D7D9C3A
0208D2A7 3012001A	1B68189F	800BAEA6	33165649	4443EDE3	DD8EDBC9	BBA956B9
3E4F1531	B092E04B	5E3419D5	3F03BE53	65CAA480	FA722790	A882FD3E

```
2286E97C
```

2FD22AB6 58C76DEA 7F43C255 4C223508 F36DD419 2134D0DA 5A258E40 1C7233FA

C7C7305B 20138E75 2EC362A2 09D61E3B 6E44FFAC 24A83FF0 7A2A7399 E318F272

DA9D67A9 4AAFCD1E 2747F195 DC413859 6A1D2F1D 00D69486 8D0A9052 7270C8DF

2E8D4E11 A968A77C FAA11230 B317BF9B 3600A7CB 86C00025 C9D816EF E036064F

10E72AF7 5CD42E8D EAA7B877 0B1D50BB A1151AFA

quit

license udi pid ISR4321/K9 sn FLM24060912

no license smart enable

diagnostic bootup level minimal

spanning-tree extend system-id

redundancy

mode none

interface Loopback0

ip address 5.5.5.5 255.255.255.255

interface GigabitEthernet0/0/0

no ip address

negotiation auto

interface GigabitEthernet0/0/1

ip address 192.168.4.2 255.255.255.0

negotiation auto

interface GigabitEthernet0/2/0

no ip address

negotiation auto

interface GigabitEthernet0/2/1

no ip address

```
negotiation auto
interface GigabitEthernet0
vrf forwarding Mgmt-intf
no ip address
negotiation auto
router bgp 3
bgp log-neighbor-changes
neighbor 192.168.4.1 remote-as 2
address-family ipv4
network 5.5.5.5 mask 255.255.255.255
neighbor 192.168.4.1 activate
exit-address-family
ip forward-protocol nd
no ip http server
ip http secure-server
ip tftp source-interface GigabitEthernet0
control-plane
line con 0
transport input none
stopbits 1
line aux 0
stopbits 1
line vty 0 4
login
end
```

Gateway of last resort is not set 1.0.0.0/32 is subnetted, 1 subnets

```
B 1.1.1.1 [20/0] via 192.168.4.1, 00:56:53

2.0.0.0/32 is subnetted, 1 subnets

B 2.2.2.2 [20/0] via 192.168.4.1, 00:56:53

4.0.0.0/32 is subnetted, 1 subnets

B 4.4.4.4 [20/0] via 192.168.4.1, 00:58:03

5.0.0.0/32 is subnetted, 1 subnets

C 5.5.5.5 is directly connected, Loopback0

B 192.168.1.0/24 [20/3] via 192.168.4.1, 00:56:53

B 192.168.2.0/24 [20/2] via 192.168.4.1, 00:57:23

B 192.168.3.0/24 [20/0] via 192.168.4.1, 00:58:03

192.168.4.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.4.0/24 is directly connected, GigabitEthernet0/0/1

L 192.168.4.2/32 is directly connected, GigabitEthernet0/0/1
```

Issues:

We experienced an issue where we couldn't the end routers couldn't the other end router's loopback while all 3 of the middle routers were able to see all routers. We still are not sure the why this happened, however I believe it was due to iBGP not working yet as there was no full mesh configuration yet as we didn't set up the update-source loopbacks on R2 and R4. When this issue occurred, we didn't understand that iBGP needed to be configured with a full mesh meaning we didn't have loopbacks on R2 and R4 nor update-source loopback commands. We redid the lab using a guide online with a similar 5 router configuration as the lab requires and with a bit of modification to fit this lab's requirements, we got pings across the network and were able to see all loopbacks from all routers.

Conclusion:

I learned a lot from this lab, for most of the time doing the lab I didn't have much knowledge of iBGP and how it works. Only when doing this writeup I learned a lot more how iBGP and how an IGP is important in this lab. I now understand

how iBGP works as well as how update-source loopbacks. I also learned the difference between iBGP and eBGP in not only their use case (only knew that eBGP was used for connecting networks in the web) but also how they function. This lab was important in building on our understanding of BGP from our previous BGP lab. It also creates a scenario that we could run into outside the lab environment.