A small chunk of material (the "tan cube") is placed above a solenoid. It magnetizes, weakly, as shown by small arrows inside. What kind of material must the cube be?

- A. Dielectric
- B. Conductor
- C. Diamagnetic
- D. Paramagnetic
- E. Ferromagnetic

Predict the results of the following experiment: a paramagnetic bar and a diamagnetic bar are pushed inside of a solenoid.

- A. The paramagnet is pushed out, the diamagnet is sucked in
- B. The diamagnet is pushed out, the paramagnet is sucked in
- C. Both are sucked in, but with different force
- D. Both are pushed out, but with different force

ANNOUNCEMENTS

- 3 Classes left!
 - Today and Wednesday: normal lecture (finish Ch. 6)
 - Friday: conceptual assessment
 - Participation? Drop second lowest homework grade
- Final Exam
 - Thursday 12:45-2:45pm in this room
 - Details on Friday!

A solid cylinder has uniform magnetization \mathbf{M} throughout the volume in the x direction as shown. What's the magnitude of the total magnetic dipole moment of the cylinder?

- A. $\pi R^2 LM$
- B. $2\pi RLM$
- C. $2\pi RM$
- D. $\pi R^2 M$
- E. Something else/it's complicated!

A solid cylinder has uniform magnetization M throughout the volume in the z direction as shown. Where do bound currents show up?

- A. Everywhere
- B. Volume only, not surface
- C. Top/bottom surface only
- D. Side (rounded) surface only
- E. All surfaces, but not volume

A solid cylinder has uniform magnetization **M** throughout the volume in the *x* direction as shown. Where do bound currents show up?

- A. Top/bottom surface only
- B. Side (rounded) surface only
- C. Everywhere
- D. Top/bottom, and parts of (but not all of) side surface (but not in the volume)
- E. Something different/other combination!

A solid cylinder has uniform magnetization M throughout the volume in the ϕ direction as shown. In which direction does the bound surface current flow on the (curved) sides?

- A. There is no bound surface current.
- B. The current flows in the $\pm \phi$ direction.
- C. The current flows in the $\pm s$ direction.
- D. The current flows in the $\pm z$ direction.
- E. The direction is more complicated.

A sphere has uniform magnetization M in the +z direction. Which formula is correct for this surface current?

- A. $M \sin \theta \hat{\theta}$
- B. $M \sin \theta \hat{\phi}$
- C. $M\cos\phi\,\hat{\theta}$
- D. $M\cos\phi\,\hat{\phi}$
- E. Something else

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction. What is the direction of the bound volume current?

- A. \mathbf{J}_B points parallel to I
- B. \mathbf{J}_B points anti-parallel to I
- C. It's zero!
- D. Other/not sure

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction. What is the direction of the bound volume current?

- A. \mathbf{J}_B points parallel to I
- B. \mathbf{J}_B points anti-parallel to I
- C. It's zero!
- D. Other/not sure

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction. We know \mathbf{B} will be CCW as viewed from above. (Right?) What about \mathbf{H} and \mathbf{M} inside the cylinder?

- A. Both are CCW
- B. Both are CW
- C. \mathbf{H} is CCW, but \mathbf{M} is CW
- D. \boldsymbol{H} is CW, \boldsymbol{M} is CCW
- E. ???

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction. What is the direction of the bound surface current?

- A. \mathbf{K}_B points parallel to I
- B. \mathbf{K}_B points anti-parallel to I
- C. Other/not sure

