(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-246728

(43)公開日 平成4年(1992)9月2日

(51) Int.Cl. ⁵ G 0 6 F	9/38 9/318	識別記号 3 1 0 /		FI	技術表示箇所	
	9/38	350	8725-5B 9189-5B	·	9/30 3 2 0 C	
				5	審査請求 未請求 請求項の数 2(全 6 頁)	
(21)出顧番号		特願平3-12191		(71)出願人	(71)出願人 000003078 株式会社東芝	
		平成3年(1991)2月1日		(72) 発明者	神奈川県川崎市幸区堀川町72番地中田 恭正 東京都府中市東芝町1番地 株式会社東芝 府中工場内	
				(74)代理人		

(54) 【発明の名称】 情報処理装置

(57)【要約】

【目的】命令自身を曹換えるソフトウェアが、主記憶か ら命令パッファに取込む命令数を制限することなく期待 通りに処理されるようにすることである。

【構成】主記憶装置10からフェッチされた命令がその 命令アドレスと対をなして保持される命令パッファ41 と、実行中命令の命令アドレスが保持される実行中命令 アドレスパッファ51が設けられる。命令実行機構50 は、命令曹換え命令を実行する際、その命令で指定され る命令審換え先アドレスの命令が、パッファ41或いは バッファ51に存在するか判別し、その判別結果によ り、パッファ41内の該当命令の書換え、或いは命令書 換え命令以降の命令の再フェッチを行う。また命令デコ ード機構40は、再フェッチされた命令を解読する際、 その命令のアドレスが命令曹換え先アドレスに一致する ならば、その命令が書換えられるのを待つ。

【特許請求の範囲】

【請求項1】 主記憶装置から命令を取込む命令フェッ チ手段と、この命令フェッチ手段によって取込まれた命 令およびその命令アドレスの対を一時格納する命令パッ ファを持ち、同バッファから格納順に命令を取出して解 読する命令デコード手段と、この命令デコード手段によ って解読された命令の実行を司り、実行中命令の命令ア ドレスを実行完了まで保持する命令実行手段であって、 命令を書換えるための命令書換え命令の実行に際して は、その命令書換え先アドレスと同じ命令アドレスが同 10 換えられるものの、CPU内にフェッチされている該当 命令実行手段および上記命令パッファのうちの上記命令 バッファだけに保持されているか否かを調べ、上記命令 バッファだけに保持されている場合には、上記主記憶装 置上の該当アドレスの命令と共に、上記命令パッファ上 の該当命令を書換える命令実行手段と、を具備し、命令 書換え命令実行時に、書換え対象命令が既に命令バッフ ァに取込まれていることをアドレス比較により検出し て、同パッファ上の該当命令も書換えるようにしたこと を特徴とする情報処理装置。

【請求項2】 上記命令実行手段は、上記命令書換え命 20 令の実行に際しては、その命令書換え先アドレスと同じ 命令アドレスが同命令実行手段内に保持されているか否 かを調べ、保持されている場合には、上記命令バッファ に保持されているか否かに無関係に、命令実行を全てキ ャンセルすると共に上記命令バッファを無効にし、且つ 上記命令書換え命令の命令アドレスからの命令取込みを 上記命令フェッチ手段に要求すると共に上記命令書換え 先アドレスを上記命令デコード手段に送り、上記命令デ コード手段は、上記命令実行手段から送られた命令書換 え先アドレスと同じ命令アドレスの命令を解読対象命令 30 として上記命令バッファから取出して解読する際には、 この命令が上記命令実行手段によって書換えられたこと を確認することを特徴とする請求項1記載の情報処理装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、主記憶装置から命令 を先取りしてから解読するまでの間、その先取りした命 令をバッファに格納する機構を備え、特に命令自身を書 換える命令(命令書換え命令)を実行する場合に好適な 40 情報処理装置に関する。

[0002]

【従来の技術】近年の情報処理装置では、処理の高速化 のために、主記憶装置からCPUに命令を先取りして命 令デコード機構内のバッファ(命令バッファ)に一時格 納し、同パッファから命令を順に取出して解読して命令 実行に供する命令フェッチデコード方式が適用されるこ とが多い。このような情報処理装置において、例えば計 算結果に応じて(その計算結果に合った命令を实行する ために)命令自身を書換えながら実行されるソフトウェ 50

アを走行させることがある。

【0003】さて従来は、命令自身を書換える命令(命 令書換え命令) が命令パッファから取出されて解読され 実行される場合、同書換え命令で指定される主記憶装置 上の命令アドレス(書換え対象アドレス)の命令(書換 え対象命令)が書換えられるだけであった。このため、 命令書換え命令が実行される前に、同書換え命令の書換 え対象となる命令が既にCPU内にフェッチされている と、同書換え命令で指定される主記憶装置上の命令は書 命令は書換えられないため、期待通りの処理が行われな いという問題があった。

2

[0004]

【発明が解決しようとする課題】上記したように、主記 憶装置から幾つかの命令を前もってデコード機構内の命 令バッファに取込み、その命令を順に取出して解読して 実行する従来の情報処理装置では、実行される命令が命 令書換え命令の場合、同書換え命令で指定される主記憶 装置上の命令アドレスの命令(書換え対象命令)が書換 えられるだけであったため、この書換え対象命令が既に 命令バッファ内にフェッチされていると、或いは実行中 であるならば、書換え前の命令が実行されてしまい、期 待通りの処理が行われないという問題があった。そこ で、従来は、あまり多くの命令を前もってフェッチしな いとか、或いはそのようなソフトウェアを実行させない という制限がつけられていた。

【0005】この発明は上記事情に鑑みてなされたもの でその目的は、命令自身を書換えるソフトウェアが、主 記憶装置から命令パッファに取込む命令数を制限するこ となく期待通り処理される情報処理装置を提供すること にある。

[0006]

【課題を解決するための手段】この発明は、命令フェッ チ手段によって主記憶装置から取込まれた命令とその命 令アドレスを一時格納する命令バッファを持つ命令デコ ード手段と、この命令デコード手段によって解読された 命令の実行を司り、実行中命令の命令アドレスを実行完 了まで保持する命令実行手段とを設け、上記命令実行手 段において命令書換え命令を実行する際には、その命令 書換え先アドレスと同じ命令アドレスが同命令実行手段 および命令バッファのうちの命令バッファだけに保持さ れているか否かを調べ、命令パッファだけに保持されて いる場合には、主記憶装置上の該当アドレスの命令の書 換えと共に、命令パッファ上の該当命令を書換えるよう にしたことを特徴とする。

【0007】また、命令実行手段は、上記命令書換え先 アドレスと同じ命令アドレスが自手段内に保持されてい る場合には、同アドレスが命令バッファに保持されてい るか否かに無関係に、命令実行を全てキャンセルすると 共に命令バッファを無効にし、且つ命令書換え命令の命

令アドレスからの命令取込みを命令フェッチ手段に要求 すると共に命令書換え先アドレスを命令デコード手段に 送り、これを受けた命令デコード手段は、送られた命令 書換え先アドレスと同じ命令アドレスの命令を解読対象 命令として命令バッファから取出して解読する際には、 この命令が命令実行手段によって書換えられたことを確 認することを特徴とする。

[0008]

【作用】上記の構成において、命令フェッチ手段は主記 億装置から命令を取込むと、同命令およびその命令アド 10 レスの対を命令デコード手段に送る。この命令デコード 手段に送られた命令および命令アドレスの対は命令デコ ード手段内の命令バッファに格納される。命令デコード 手段は、通常状態では命令バッファから格納順に命令を 取出して解読し、その解読結果と命令アドレスを命令実 行手段に送る。命令実行手段は、解読された命令を実行 すると共に同命令の命令アドレスを実行完了まで保持す

【0009】命令実行手段は、命令書換え命令を実行す レスが同実行手段内、或いは命令バッファに保持されて いるかを調べる。もし、同じ命令アドレスが命令パッフ ァだけに保持されている場合には、命令実行手段は主記 憶装置上の該当アドレスの命令の書換えと共に命令バッ ファ上の該当命令の書換えを行う。これにより、この命 令バッファ上の該当命令が解読されて実行された場合に は、期待通りの処理が行われる。

【0010】また、命令実行手段は、命令書換え命令の 命令事換え先アドレスと同じ命令アドレスを自身で保持 している場合には、この命令アドレスが命令バッファに 30 保持されているか否かに無関係に、命令実行を全てキャ ンセルすると共に命令パッファを無効にし、且つ命令書 換え命令の命令アドレスからの命令取込みを命令フェッ チ手段に要求すると共に命令曹換え先アドレスを命令デ コード手段に送る。命令フェッチ手段は、命令実行手段 からの要求に応じて、命令書換え命令の命令アドレスか らの命令取込みを行い、取込んだ命令とその命令アドレ スの対を命令デコード手段に送る。命令デコード手段に 送られた命令および命令アドレスの対は命令デコード手 段内の命令バッファに格納される。命令デコード手段 40 は、命令パッファから格納順に命令を取出して解読す る。この際、命令デコード手段は命令実行手段から命令 書換え先アドレスが送られていることから、解読しよう とする命令と対を成す命令アドレスと命令書換え先アド レスとを比較する。そして命令デコード手段は、両アド レスが一致していなければ、即ち解読しようとする命令 が書換えられるべき命令でなければ、そのまま解読を行 い、その解読結果を命令アドレスと共に命令実行手段に 送る。これに対して、両アドレスが一致していれば、即 ち解読しようとする命令が書換えられるべき命令であれ 50 解読された命令を実行すると共に、命令デコード機構4

は、命令デコード手段は、その命令(命令バッファ内の 解読対象命令) が命令実行手段によって書換えられるの を待ち、書換えられたことを確認してから解読を行う。 これにより、命令解読結果が命令実行手段に送られて実 行された場合には、期待通りの処理が行われる。

[0011]

【実施例】図1はこの発明の一実施例に係る情報処理装 置のブロック構成図である。図1において、10は命令 およびデータが格納される主記憶装置、20は主記憶装 置10に格納されている命令を取込んで実行するCPU である。 CPU20は、主記憶装置10から命令をフェ ッチし、同命令の命令アドレス(ここでは仮想アドレ ス) との対を次に述べる命令デコード機構40に送る命 令フェッチ機構30、命令フェッチ機構30によってフ ェッチされた命令の解読を行う命令デコード機構40、 および命令デコード機構40によって解読された命令を 実行する命令実行機構50を備えている。

【0012】命令デコード機構40は、命令フェッチ機 構30から送られた命令とその命令アドレスの対を格納 る際に、同命令の命令書換え先アドレスと同じ命令アド 20 する命令パッファ41と、命令実行機構50における命 令書換え命令の実行に際して特定条件が成立した場合に 同機構50から送られる命令書換え先アドレスを保持す るためのレジスタ42とを持つ。命令パッファ41に格 納される命令および命令アドレスの対には、同命令が (命令実行機構50による命令書換え命令の実行によっ て) 書換えられたか否かを示すフラグFが付されてい る。また命令実行機構50は、命令デコード機構40に よって解読された命令の命令アドレスを、その命令の実 行終了まで保持するための実行中命令アドレスパッファ 51を持つ。

> 【0013】図2は命令実行機構50における命令書換 え命令実行処理手順を説明するためのフローチャート、 図3は命令実行機構50から命令書換え先アドレスが与 えられている場合の命令デコード機構40における処理 手順を説明するためのフローチャートである。

【0014】次に、図1の構成の動作を、図2および図 3のフローチャートを適宜参照して説明する。まず命令 フェッチ機構30は、主記憶装置10から前もって幾つ かの命令をCPU20内に取込み、取込んだ命令とその 命令アドレスの対を命令デコード機構40に順に送る。 命令デコード機構40に送られた命令およびその命令ア ドレスの対は、命令デコード機構40内の命令パッファ 41に順に格納される。

【0015】命令デコード機構40は、命令パッファ4 1に格納された命令をその格納順に取出して解読する。 命令デコード機構40は、命令解読結果とその命令の命 令アドレスとを命令実行機構50に送ると共に、命令パ ッファ41上の該当命令とその命令アドレスを無効にす る。命令実行機構50は命令デコード機構40によって する。

0 から送られたその命令の命令アドレスを、命令アドレ スパッファ51に順に格納する。この命令アドレスパッ ファ51に格納された命令アドレスは、該当命令の実行 が終了すると、命令実行機構50によって無効にされ る。

【0016】さて、命令実行機構50では、命令デコー ド機構40によって解読された命令をパイプライン的に 連続的に実行することが可能となっている。ここで、命 令実行機構50において主記憶装置10上の命令自身を 書換えるための命令書換え命令が実行されるものとす 10 る。この場合、命令実行機構50は命令デコード機構4 0内の命令パッファ41(の命令アドレスフィール ド)、および自身が持つ実行中命令アドレスパッファ5 1を参照し、命令曹換え命令で指定される命令曹換え先 アドレス (例えば命令書換え命令が持つ命令書換え先を 示す仮想アドレス)に一致する命令アドレスを探す(図 2ステップS1)。

【0017】もし、命令書換え先アドレスに一致する命 令アドレスが、命令パッファ41および命令アドレスパ ッファ51のいずれにも存在しない場合には(図2ステ ップS2)、命令実行機構50は従来と同様の命令書換 え命令実行処理を行い、同命令の指定する主記憶装置1 0上の命令書き書換え先アドレスの命令(書換え対象命 令) を書換える(図2ステップS3)。この書換えを終 了すると、命令実行機構50は実行中命令アドレスパッ ファ51に保持されていた該当命令(命令書換え命令) の命令アドレスを無効にする。

【0018】また、命令曹換え先アドレスに一致する命 令アドレスが命令パッファ41(の命令アドレスフィー ルド)だけに存在する場合には(図2ステップS4)、 命令実行機構50は従来と同様に命令曹換え命令の指定 する主記憶装置10上の命令書き書換え先アドレスの命 令(審換え対象命令)を書換えると共に、同じ書換え を、その命令アドレスと対をなして命令パッファ41に 格納されている命令に対しても行う(図2ステップS 5)。命令実行機構50はステップS5にて命令バッフ ァ41上の命令を書換えた際、同命令とその命令アドレ スの対に付されているフラグFをオンし、同命令が書換 えられたことを示す。命令実行機構50は以上のステッ プS5を終了すると、実行中命令アドレスパッファ51 に保持されていた該当命令(命令書換え命令)の命令ア ドレスを無効にする。

【0019】次に、命令曹換え先アドレスに一致する命 令アドレスが(実行中命令の命令アドレスを保持するた めの) 実行中命令アドレスパッファ51に存在する場合 には、命令実行機構50は同アドレスが命令バッファ4 1のアドレスフィールドに存在するか否かに無関係に以 下の動作を行う。まず命令実行機構50は、命令バッフ ァ41を全て無効にすると共に、実行中命令アドレスパ ッファ51を最も古い命令アドレスを残して全て無効に 50 えられたか否かは、解読対象命令とその命令アドレスの

する(図2ステップS6)。この実行命令アドレスバッ ファ51に残された最も古い命令アドレスは、命令曹換 え命令の命令アドレスのはずであることから、命令実行 機構50はこの命令アドレスから再び命令フェッチをや り直すように命令フェッチ機構30に要求し、それと同 時に、この命令書換え命令の指定する命令書換え先アド レスを命令デコード機構40に送る(図2ステップS 7)。この際、命令実行機構50は、実行命令アドレス バッファ51に残された最も古い命令アドレスを無効に

【0020】さて、命令実行機構50から命令デコード 機構40に送られた命令書換え先アドレスは、同機構4 0内のレジスタ42に保持される。一方、命令フェッチ 機構30は命令実行機構50からの再フェッチ要求を受 けると、要求された命令アドレス(実質的に実行されな かった書換え命令の命令アドレス)からの再フェッチを 行う。これにより、上記書換え命令を先頭とする幾つか の命令が主記憶装置10からCPU20に順に取込まれ る。命令フェッチ機構30によってCPU20に順に取 込まれた命令は、その命令アドレスと対をなして命令デ コード機構40に送られる。命令デコード機構40に送 られた命令およびその命令アドレスの対は、命令デコー ド機構40内の命令パッファ41に順に格納される。

【0021】命令デコード機構40は、レジスタ42に 命令書換え先アドレスが保持されている場合には、図3 のフローチャートに従う動作を行う。即ち命令デコード 機構40は、命令パッファ41に格納された命令を順に 取出して解読しようとする際には、まず命令バッファ4 1 内で解読対象命令と対をなして保持されている命令ア ドレスと、レジスタ42に保持されている命令書換え先 アドレスとを比較する(図3ステップS11)。

【0022】もし、解読対象命令の命令アドレスと命令 **曹換え先アドレスとが一致していなければ(図3ステッ** プS12)、即ち解読対象命令が実質的に実行されなか った命令書換え命令によって書換えられるべき命令でな い場合には、命令デコード機構40はその解読対象命令 の解読を行う(図3ステップS13)。そして命令デコ ード機構40は、命令解読結果とその命令の命令アドレ スとを命令実行機構50に送ると共に、命令パッファ4 1上の該当命令とその命令アドレスを無効にする(図3 ステップS14)。

【0023】これに対し、解読対象命令の命令アドレス と命令書換え先アドレスとが一致していれば、即ち解読 対象命令が実質的に実行されなかった命令曹換え命令に よって曹換えられるべき命令である場合には、命令デコ ード機構40はその解読対象命令(命令書換え対象命 令)が(図2ステップS5に従う命令実行機構50の命 令書換え命令の実行により書換えられるのを待つ(ステ ップS15)。本実施例において、解読対象命令が書換 7

対に付されているフラグFを参照することにより判別可能であり、命令デコード機構40は同フラグFがオンされたことを検出すると、解読対象命令が曹換えられたものとして、その解読対象命令の解読を行う(図3ステップS13)。そして命令デコード機構40は、命令解読結果とその命令の命令アドレスとを命令実行機構50に送ると共に、命令パッファ41上の該当命令とその命令アドレス(およびフラグF)を無効にする(図3ステップS14)。

[0024]

【発明の効果】以上詳述したようにこの発明によれば、主記憶装置からCPUにフェッチされた命令を解読終了まで保持するための命令パッファに、命令と対をなしてその命令アドレスが保持される構成とすると共に、命令実行手段内に、実行中の命令の命令アドレスが保持される構成とすることにより、命令書換え命令を実行する際に、その命令で指定される命令書換え先アドレスの命令(書換え対象命令)が、命令パッファ内に存在するか、或いは実行中であるかが判別でき、その判別結果により命令パッファ内の該当命令の書換え、或いは命令書換え

命令以降の命令の再フェッチを行うことにより、命令書換え命令による命令書換えの対象となる命令を必ず書換えが施された後に実行することができるようになり、どんなに多くの命令を前もって主記憶装置から命令パッファにフェッチしていても、命令自身を書換えるソフトウェアを期待通りに処理することができる。

【図面の簡単な説明】

【図1】この発明の一実施例に係る情報処理装置のプロック構成図。

(図2)図1に示す命令実行機構50における命令書換え命令実行処理手順を説明するためのフローチャート。 (図3)図1に示す命令実行機構50から命令書換え先アドレスが与えられている場合の命令デコード機構40における処理手順を説明するためのフローチャート。

【符号の説明】

10…主記憶装置、20…CPU、30…命令フェッチ機構、40…命令デコード機構、41…命令パッファ、42…レジスタ、50…命令実行機構、51…命令アドレスパッファ。

[図1]

[図2]

【図3】

