Alejandro Aldridge Arabaolaza Álvaro Gómez Manzanares Andrei Marius Smintina

- Un decodificador es un circuito combinacional cuya característica fundamental es que, para cada combinación de las entradas, sólo una de las salidas tiene un nivel lógico diferente a las demás.
- Este circuito realiza la operación inversa a la de un codificador de datos y es análoga a la de un demultiplexor, pero sin entrada de información.

Funcionamiento

• Recibe **n** entradas y produce 2ⁿ salidas. De todas las salidas, solo se generará un 1 en la salida cuyo subíndice corresponde al código binario de la combinación de entrada.

Decodificador 1 a2

• Tabla de verdad

A1	B1	B2
0	1	0
1	0	1

• Función lógica

$$B1=\overline{A1}$$

 $B2=A1$

• Circuito correspondiente dec 1 a2

A la entrada introducimos un código BCD, Binario...

Dependiendo del valor que metamos en la entrada se activara solo una salida.

Circuito simplificado:

Decodificador 2 a4

• Tabla de verdad

Al	A2	Bl	B2	B3	B4
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

• Función lógica

• Circuito correspondiente dec 2 a4

Circuito simplificado:

Aplicaciones

 La función principal del decodificador es la de direccionar espacios de memoria. Un decodificador de N entradas puede direccionar 2^N espacios de memoria.

Para poder direccionar 1kb de memoria necesitaría 10 bits, ya que la cantidad de salidas seria 2¹⁰, igual a 1024.

De esta manera:

Con 20 bits tengo 2²⁰ que es 1Mb.

Con 30 bits tengo 2³⁰ que es 1Gb

- Como hemos dicho, un demultiplexor es un circuito análogo al del decodificador.
- En este caso la selección de las salidas se consigue aplicando a las entradas de control (selectores) la combinación binaria correspondiente a la salida que se desea seleccionar.

• La relación entre las entradas y las salidas es la misma que en el decodificador, es decir, recibe **n** entradas de control y produce 2ⁿ salidas.

Demultiplexor 1 a 4

• Tabla de verdad

Α1	A0	00	O1	02	О3
0	0		0	0	0
0	1	0	-	0	0
1	0	0	0	I	0
1	1	0	0	0	- 1

• Función lógica

$$O0 = \overline{A1} \overline{A0} I$$
 $O1 = \overline{A1} A0 I$
 $O2 = A1 \overline{A0} I$ $O3 = A1 A0 I$

• Circuito correspondiente demux 1 a 4

• El decodificador funciona como un demultiplexor si contamos el Enable como una entrada.

2 a 4 DEC

A1	Α0	O0	O1	O2	О3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Е	A1	A0	O0	O1	O2	О3
0	Χ	Χ	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

$$O0 = \overline{A1} \ \overline{A0}$$
 $O1 = \overline{A1} \ A0$ $O2 = A1 \ \overline{A0}$ $O3 = A1 \ A0$

$$O0 = \overline{A1} \ \overline{A0} \ E$$
 $O1 = \overline{A1} \ A0 \ E$
 $O2 = A1 \ \overline{A0} \ E$ $O3 = A1 \ A0 \ E$

2 a 4 DEC

1 de 4 DEMUX

• <u>74139</u>

Esta formado por dos demultiplexores 1 de 4 con salidas invertidas (lógica negada) o dos decodificadores 2 de 4.

TRUTH TABLE

(S	INPUTS	•		OUTPUTS					
Ē	A ₀ A ₁		\overline{o}_0	01	\overline{o}_2 \overline{o}_3				
Н	Χ	Χ	Н	Н	Н	Н			
L	L	L	L	Н	Н	Н			
L	Н	L	Н	L	Н	Н			
L	L	Н	Н	Н	L	Н			
L	Н	Н	Н.	Н	Н	L			

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

LOGIC DIAGRAM

V_{CC} = PIN 16 GND = PIN 8 = PIN NUMBERS

74LS47

Este tipo de decodificador acepta código BCD en sus entradas y proporciona salidas capaces de excitar un display de 7 segmentos para indicar un dígito decimal.

• Los segmentos que se deben activar para cada uno de los dígitos se muestran en la tabla

Dígito	Segmentos activados
Digito	Segmentos activados
0	a, b, c, d, e, f
1	b, c
2	a, b, d, e, g
3	a, b, c, d, g
4	b, c, f, g
5	a, c, d, f, g
6	a, c, d, e, f, g
7	a, b, c
8	a, b, c, d, e, f, g
9	a, b, c, d, f, g

La tabla de verdad de salida múltiple es:

B1 11						_					
Dígito		Entra	adas			5	alidas	de se	gment	os	
Decimal	D	С	В	Α	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0	Х	X	X	X	X	X	х
11	1	0	1	1	X	X	X	X	X	X	х
12	1	1	0	0	X	X	X	X	X	X	х
13	1	1	0	1	X	X	X	X	X	X	х
14	1	1	1	0	Х	X	X	X	X	X	х
15	1	1	1	1	X	X	X	X	X	X	х

Modelo VHDL de un 2 a 4 DEC (ó 1 de 4 DEMUX)

```
library ieee;
use.ieee.std_logic_1164.all;

entity dec2to4 is
port (A: in std_logic_vector(1 downto 0); -- Entradas de dirección
E: in std_logic; -- Entrada de habilitación
O: out std_logic_vector(3 downto 0)); -- Salidas
end dec2to4;
```

```
architecture DEC of dec2to4 is
begin
process (A, E)
   begin
   if \vec{E} = '0' then
      O \le "0000";
   else
       case A is
        when "00" => O <= "0001";
        when "01" => O <= "0010";
        when "10" => O <= "0100";
when "11" => O <= "1000";
         when others \Rightarrow 0 <= "0000":
      end case:
    end if:
end process:
end DEC:
```

Decodificador 2 a 4

```
architecture DEMUX of dec2to4 is begin process (A, E) begin case A is when "00" => O(0) <= E; O(1) <= '0'; O(2) <= '0'; O(3) <= '0'; when "01" => O(0) <= '0'; O(1) <= E; O(2) <= '0'; O(3) <= '0'; when "10" => O(0) <= '0'; O(1) <= '0'; O(2) <= E; O(3) <= '0'; when "11" => O(0) <= '0'; O(1) <= '0'; O(2) <= E; O(3) <= E; when others => O(0) <= '0'; O(1) <= '0'; O(2) <= '0'; O(3) <= E; when others => O(0) <= '0'; O(3) <= O(1); end case; end process; end DEMUX;
```

Demultiplexor 1 a 4

Ejercicios

1- Se quiere diseñar un decodificador de 40 direcciones de 0 a 39 utilizando decodificadores binarios (2 a 4, 3 a 8, 4 a 16,etc). Indicar cuál es el número mínimo de decodificadores binarios que hay que utilizar y realizar el diseño del decodificador utilizando los decodificadores binarios y las puertas lógicas que sean necesarias

2- Diseñar un decodificador 3 a8 utilizando decodificadores 2 a4.

Tabla de verdad correspondiente a un dec 3 a8

A2	A1	A0	B7	B6	B5	B4	B3	B2	B1	B0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Solución:

Analizamos la tabla de verdad y observamos que:

Cuando A2=0, las señales B7, B6, B5, B4 están inactivas,

y las señales B3, B2,B1,B0 se comportan igual que el decodificador de 2 a4.

A2	A1	A0	B7	B6	B5	B4	B3	B2	B1	B0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
									1	

Identico al dec 2x4

Cuando y A2=1, las señales B3, B2, B1, B0 están inactivas, y las señales B7, B6, B5, B4 se comportan igual que el decodificador de 2 a4.

A2	A1	A0	B7	B6	B5	B4	B3	B2	B1	B0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Por tanto, podemos usar dos decodificadores de 2 a 4, uno para B3, B2, B1, B0 que se activará cuando A2=0, y otro decodificador para B7, B6, B5, B4 que se activará cuando A2=1.

Bibliografía

- Apuntes de la asignatura (Electrónica Digital I)
- http://medusa.unimet.edu.ve/sistemas/bpis03/decodificad ores.htm
- http://es.wikipedia.org/wiki/Decodificador
- http://www.datasheetcatalog.org/datasheet/motorola/SN5
 4LS139J.pdf