Lecture notes for SSY150: Multimedia and video communications

Video compression (I, II)

(for lecture 5,7)

Irene Y.H. Gu, Dept. of Signals and Systems, Chalmers Univ. of Technology, Sweden March 31 + April 28, 2008

Contents

- 1. Fundamental of video compression: MC
- 2. Video coding modes
- 3. Block matching for motion compensation (MC)
- 4. I,P,B image frames, and uni-directional versus bidirectional MC
- 5. A typical video codec
- 6. Tradeoffs: select inter and intra modes
- 7. Video coding standards
- 8. Why video communications: brief introduction+ examples
- 9. Other applications of object-based video processing
- 10. Lab.3 descriptions and demonstration
- 11. References

1. Fundamental of video compression: how compression is achieved?

High redundancy in consecutive image frames: only a small part has changed due to the motion

Only encode and send change parts to the channel (using motion compensation techniques)

2. Video Coding modes

Switch between 2 modes:

- **Intra** mode (= 2D still image coding):
 - + (DCT) encoding of an image frame is independent of other frames.
 - + Used in: 1st frame, refreshing frames (Intra or I frames)

• **Inter** mode:

Block matching for motion compensation (MC), the simplest method

Apply MC to P (predicted) frames and B (bidirectional predicted) frames

Inter mode: Block matching for MC

Find the "best" matching block within the searching region

3. Block matching for MC

The block-matching scheme for Motion Compensation:

$$I_{t}(x, y) = I_{t-k}(x-d_{x}, y-d_{y})$$

need to find the 'best' displacement vector $(d_{\mathbf{x}}, d_{\mathbf{y}})$ for the block

Frequently used objective criteria:

(a) Mean Square Error (MSE) criterion

$$MSE(d_{x}, d_{y}) = \frac{1}{M_{x}M_{y}} \sum_{(x,y) \in B_{i}} \left[I_{t}(x, y) - I_{t-k}(x - d_{x}, y - d_{y}) \right]^{2}$$

$$(d_x^*, d_y^*) = \arg\min_{(d_x, d_y)} MSE(d_x, d_y)$$

Block matching for MC (cont'd)

(b) Mean Absolute Error (MAE) criterion

$$MAE(d_{x}, d_{y}) = \frac{1}{M_{x}M_{y}} \sum_{(x,y) \in B_{t}} \left| I_{t}(x, y) - I_{t-k}(x - d_{x}, y - d_{y}) \right|$$

$$(d_x^*, d_y^*) = \arg\min_{(d_x, d_y)} MAE(d_x, d_y)$$

4. I,P,B image frames, uni-directional vs. bi-directional MC

I,B,P frames in video coding:

(courtesy Dr.Y.Wang)

MC can be done by forward and backward prediction using one or more frames

Unidirectional and bidirectional MC:

Unidirectional MC

MC is done by using a unidirectional predicted block from one previous frame:

$$I_{t}(x, y) = I_{t-k}(x - d_{x}, y - d_{y})$$

Bidirectional MC

MC is done by weighted sum of forward/backward predicted blocks from one/several previous frames and one/several future frames:

$$I_{t}(x, y) = \sum_{k} w_{k} I_{t-k}(x - d_{x_{k}}, y - d_{y_{k}})$$

5. A typical video codec

A typical encoder using block matching MC:

(courtesy Dr. Y. Wang)

6 Tradeoffs: select inter and intra modes

Intra coding: apply to first frame and refreshing (I) frames; low compression ratio ⊗ purely dependent on the current frame ⊚

Inter coding: apply to P frames and B frames, encode motion vectors (and residuals in the DCT domain); high compression ratio ☺ motion errors may propagate through frames ☺

Inter and intra mode selection: tradeoff between rate and performance

7. Video coding standards (brief)

H.26x (ITU-T video coding standards):

(ITU-T: the ITU Telecommunication Standardization Sector)

H261, H263, H.264/AVC (advanced video coding standard)

MPEG-x: (MPEG audio and video coding & compression standards) (MPEG: Moving Picture Experts Group)

MPEG-1, 2, 4, 7 (for multimedia applications, especially object based coding)

MPEG for multimedia applications

• Content / object-based coding

Separate coding of foreground and background parts foreground: moving objects background: static

SPRITE video coding

A segmentation-based video coding algorithm

Basic features of video coding standards

	MPEG-1 (1993)	MPEG-2 (1995)	MPEG-4 (2000)	H.261 (1993)	H.263 (1995)	H.264/ MPEG-4 AVC (2002)
Transform	8x8 DCT	8x8 DCT	8x8 DCT	8x8 DCT	8x8 DCT	4x4
MC Block Size	16 x 16	16 x 16 8x16	8 x 8, 16 x 16	16 x 16	8 x 8, 16 x 16	16x16, 16x8, 8x8, 8x4, 4x4
MC Accuracy	pel	pel	pel	1-pel	pel	1/8 -pel
Additional Motion Prediction Modes	- B-Frames	- B-Frames - Interlace	- B-Frames - Interlace - GMC (Global MC) - SPRITE Coding	-	- B-Frames	- B-Frames - Long term frame memory - in-loop deblocking filter - CAVLC/CABAC

MPEG-4: multimedia applications, object-based coding

Ref: T.Sikora, proc.IEEE, Vol.93, No.1, 2005

Media	Narrow- band (H.320)	lowbitrate (H.324)	ISO Ethernet (H.322)	Ethernet (H.323)	ATM (H.321)	High Res. ATM (H.310)
video	H.261	H.261, H.263	H.261	H.261, H.263	H.261	MPEG-2 H.261
audio	G.711, G.722 G.728	G.723	G.711,G.722 G.723,G.728	G.711,G.722 G.723,G.728 G.729	G.711,G.722 G.728	MPEG-1 MPEG-2
data	T.120	T.120,T.84, T.434,	T.120	T.120	T.120,H.281 (H.224)	T.120
Multiplex	H.221	H.223	H.221	H.221	H.221	H.222.1 H.221
signaling	H.230 H.242	H.245	H.230, H.242	H.230,H.245 H.225.0	H.230 H.242	H.245
Multi- point	H.243	NA	H.243	NA	H.243	NA
Encryption	H.233 H.234	H233/324, H.234	H.320	TBD	H.233 H.234	NA

Video Compression: H.264/MPEG-4 AVC standard

• Macro-blocks, slices, slice groups

Slice # 0	
Slice #2	
Slice #3	

divide image into slices

Slice types: I slice / P slice / B slice ...

• Integer transform (4x4 blocks, to replace 8x8 DCT!)

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix}$$

Zigzag and alternative scanning

Two types of DCT and two types of scan pattern:

- Frame DCT: divides an MB into 4 blocks for Lum, as usual
- Field DCT: reorder pixels in an MB into top and bottom fields.

Alternate scan

Figure 13.19 The zigzag scan as known from H.261, H.263, and MPEG-1 is augmented by the alternate scan in MPEG-2, in order to code interlaced blocks that have more correlation in the horizontal than in the vertical direction.

(Courtesy Dr. Y.Wang)

Features in the codec

- SNR scalability
- Spatial scalability
- Temporal scalability

Temporal scalability: option-1

- Use the base layer to predict the B images in the enhanced layer.
- Errors in the enhanced layer does not propagation.

Temporal scalability: option-2

(courtesy Dr. Y.Wang)

Use both the base layer and the enhanced layer for image prediction in the enhanced layer

MPEG-4: Object-based coding

- Each image scene consists of multiple objects

 (require object segmentation which is non-standardized)
- Each object is specified by its shape, motion, texture (e.g. color)

Some features of MPEG-7

MPEG-7 allows one to find the content one needs!

- Enable multimedia document indexing, browsing, and retrieval
- Define the syntax for the metadata (e.g. index and summary) attached to the document

(Generation of index and summary is not in the standard)

Content description in MPEG-7

- Descriptor (D): describing low-level features
- Description scheme (DS): combining Ds to describe high-level features/structures
- Description definition language (DDL): define how Ds and DSs can be defined/modified
- System tools

Visual Descriptors

Color:

Histogram, dominant color, etc.

Texture:

- + Homogeneity: energy in different orientation and frequency bands (Gabor transform)
- + Coarseness, directionarity, regularity
- + Edge orientation histogram

Motion:

- + Camera motion
- + Motion trajectory of feature points in a non-rigid object
- + Motion parameters of a rigid object
- + Motion activity

Shape:

Boundary-based vs. region-based

Summary

- H.261:
 - First video coding standard, targeted for video conferencing over ISDN
 - Uses block-based hybrid coding framework with integer-pel MC
- H.263:
 - Improved quality at lower bit rate, to enable video conferencing/telephony below 54 bkps (modems or internet access, desktop conferencing)
 - Half-pel MC and other improvement
- MPEG-1 video
 - Video on CD and video on the Internet (good quality at 1.5 mbps)
 - Half-pel MC and bidirectional MC
- MPEG-2 video
 - TV/HDTV/DVD (4-15 mbps)
 - Extended from MPEG-1, considering interlaced video

(Courtesy Dr. Y.Wang)

Summary

- MPEG-4
 - To enable object manipulation and scene composition at the decoder -> interactive TV/virtual reality
 - Object-based video coding: shape coding
 - Coding of synthetic video and audio: animation
- MPEG-7
 - To enable search and browsing of multimedia documents
 - Defines the syntax for describing the structural and conceptual content
- Newer standards
 - H.264: improved coding efficiency (by having more options for optimization)
 - MPEG-21: beyond MPEG-7, considering intellectual property protection, etc.

(Courtesy Dr. Y.Wang)

More information on H.264/MPEG-4 AVC and multimedia standards

Wikipedia, the free encyclopedia on H.264/MPEG-4AVC:

http://en.wikipedia.org/wiki/H.264

Multimedia Standards:

http://www.dtic.mil/ieb_cctwg/contrib-docs/CKing/CK-multi.html

8. Why video communications: brief introduction + examples

Applications:

Video phone

Video conferencing

Video streaming

. . . .

Example: multiple description codes (MDC)

MDC is a source coding method for error prone network using: consisting of a central coder and a side coder

9. Other applications of object-based video processing

Multimedia applications: tracking moving objects in video

Example: Bayesian framework-based video object tracking

pdf: Mixture of Gaussians

Dynamic training and maintenance of background reference image

e.g: multi-person tracking in crowded environment

Each row shows a few video frames where persons are tracked, indicated by different colored boxes

Foreground detection + sequential tracking

Track moving targets: this video shows 2 tracked cars in red and blue boxes (in poor weather conditions)

File name: 'TrackedCars'

Tracking results...

Red box: proposed method

Tracking results ...

 $compare_result_prdestrian.avi$

 $compare_result_occlussion.avi$

compare_result_hand.avi

compare_result_JAM.avi

Monitor eye movement: sleepy?

10: Lab.-3: Video compression using blockmatching motion compensation

Task-1: Learn how to handle video data in Matlab

e.g. read /save *.avi video files, play movies, extract video frames, convert image formats in Matlab.

Task-2. Obtain blocks containing motion

compute the difference of 2 image frames, and apply a threshold.

Task-3: Estimate motion vectors

apply block matching with the MAE criterion

Task-4: Inter coding through motion compensation

use matched blocks specified by motion vectors

Task-5: Intra coding

copy previous blocks for non-motion blocks

Task-6: Objective quality measure using PSNR

11. References

- J.W.Woods, Subband image coding, Kluwer Academic Publisher,1991.
- D.S.Taubman and M.W.Marcellin, JPEG 2000, Kluwer Academic Pub., 2002.
- JVT /H.26L/ AVC Standard
- K.G.Nganm C.W.Yap, K.T.Tan, Video coding for wireless communication systems, Marcel Dekker Inc., 2001
- B.G. Haskell, A.Puri, A.N. Netraval,
 Digital Video: an introduction to MPEG 2, Chapman & hall, 1997.
- Proceedings of the IEEE, Vol.93, No.1, 2005:
 Special Issue on advances in video coding and delivery