*§8. Сравнение бесконечно больших функций.

Для бесконечно больших функций можно ввести классификацию, подобную той, которая описана в определениях 6.1–6.4.

Пусть f(x) и g(x) – бесконечно большие функции при $x \to a$, где a может быть не только числом, но и одним из символов ∞ , $+\infty$, $-\infty$.

Определение 8.1. Если $\exists \lim_{x\to a} \frac{f(x)}{g(x)}$ конечный и не равный нулю, то функции f(x) и g(x) называются бесконечно большими одного порядка при $x\to a$. Если этот предел равен нулю, то функция f(x) называется бесконечно большой более низкого порядка роста по сравнению с функцией g(x) при $x\to a$, в этом случае принято обозначение f(x)=o(g(x)). Если данный предел бесконечен, то функция f(x) называется бесконечно большой более высокого порядка роста по сравнению с функцией g(x) при $x\to a$, при этом g(x)=o(f(x)). Если $\exists \lim_{x\to a} \frac{f(x)}{g(x)}$, то функции f(x) и g(x) называются несравнимыми при $x\to a$.

Рассмотрим два многочлена: $P_k(x) = a_0 x^k + a_1 x^{k-1} + ... + a_{k-1} x + a_k$, $Q_n(x) = b_0 x^n + b_1 x^{n-1} + ... + b_{n-1} x + b_n$, при этом $a_0 \neq 0$, $b_0 \neq 0$. В п.1 §5 рассмотрен предел отношения этих многочленов при $x \to \infty$ (см. (5.1)). В силу равенства (5.1) и определения 8.1, заключаем:

- а) если k=n, то $P_k(x)$ и $Q_n(x)$ бесконечно большие одного порядка при $x\to\infty$:
- б) если k < n, то $P_k(x)$ имеет более низкий порядок роста при $x \to \infty$, чем $Q_n(x)$, или $P_k(x) = o(Q_n(x))$ при $x \to \infty$;
- в) если k > n, то $P_k(x)$ имеет более высокий порядок роста при $x \to \infty$, чем $Q_n(x)$.

Пример 8.1. Показать, что функция $f(x) = x^2(3 - \sin x)$ – бесконечно большая и несравнима с функцией $g(x) = x^2$ при $x \to +\infty$.

▶ Неравенство $2x^2 \le f(x) \le 4x^2$ верно для $\forall x \in \mathbb{R}$. Так как $2x^2 \to +\infty$, $4x^2 \to +\infty$ при $x \to +\infty$, то функция $f(x) \to +\infty$ при $x \to +\infty$ по теореме о сжатой функции (теорема 2.3), которая справедлива и для бесконечно больших функций. Поскольку не существует $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} (3 - \sin x)$ (ибо не существует $\lim_{x \to +\infty} \sin x$, пример 1.3, замена x = 1/u), то функции f(x) и g(x) несравнимы при $x \to +\infty$ (определение 8.1). \blacktriangleleft

Определение 8.2. Бесконечно большая функция f(x) называется бесконечно большой k-го порядка роста по отношению к бесконечно

большой функции g(x) при $x \to a$, если существует $\lim_{x \to a} \frac{f(x)}{g^k(x)} = C \neq 0, \infty$.

Пример 8.2. Определить порядок роста функции $f(x) = \frac{2x^3 + 5x}{7x - 3}$ относительно функции g(x) = x при $x \to \infty$.

►
$$\lim_{x\to\infty} \frac{f(x)}{g^k(x)} = \lim_{x\to\infty} \frac{2x^3 + 5x}{x^k(7x - 3)} = \lim_{x\to\infty} \frac{x^3(2 + 5x^{-2})}{x^{k+1}(7 - 3x^{-1})} = \frac{2}{7} \neq 0, \infty$$
 при $k = 2$, порядок роста функции $f(x)$ относительно $g(x)$ при $x\to\infty$ равен 2. ◀

Определение 8.3. Если существует $\lim_{x\to a} \frac{f(x)}{g(x)} = 1$ то функции f(x) и g(x) называются эквивалентными бесконечно большими при $x\to a$.

Обозначение: $f(x) \sim g(x)$ при $x \rightarrow a$.

Многочлен $P_n(x)=a_0x^n+a_1x^{n-1}+...+a_{n-1}x+a_n$ эквивалентен его первому члену a_0x^n при $x\longrightarrow\infty$, так как $\lim_{x\to\infty}\frac{P_n(x)}{a_0x^n}=\lim_{x\to\infty}(1+\frac{a_1}{a_0}\,x^{-1}+...+\frac{a_{n-1}}{a_0}\,x^{1-n}+\frac{a_n}{a_0}\,x^{-n})=1.$

Замечание 8.1. Эквивалентные бесконечно большие функции — частный случай бесконечно больших одного порядка. Их свойства аналогичны свойствам эквивалентных бесконечно малых функций.

Пример 8.3. Показать, что функции $f(x) = \text{ctg}\pi x$ и $g_1(x) = 1/(\pi(x-1))$, f(x) и $g_2(x) = 1/(2\pi(\sqrt{x}-1))$ эквивалентны при $x \to 1$.

 $\lim_{x \to 1} \frac{f(x)}{g_1(x)} = \lim_{y \to 0} \frac{\pi y \cos \pi y}{\sin \pi y} = \lim_{y \to 0} \frac{\pi y \cos \pi y}{\pi y} = 1, \text{ поэтому функции } f(x) \text{ и } g_1(x)$ эквивалентны при $x \to 1$ по определению 8.3. Поскольку $\frac{f(x)}{g_2(x)} = 2\pi (\sqrt{x} - 1) \text{ctg } \pi x = \frac{2\pi (x - 1) \text{ctg } \pi x}{\sqrt{x} + 1} = \frac{2}{\sqrt{x} + 1} \cdot \frac{f(x)}{g_1(x)}, \text{ то } \lim_{x \to 1} \frac{f(x)}{g_2(x)} = 1 \text{ и,}$

следовательно, функции f(x) и $g_2(x)$ также эквивалентны при $x \to 1$.

Определение 8.4. Пусть даны функции f(x) и g(x), являющиеся бесконечно большими при $x \rightarrow a$. Функция g(x) называется главной частью функции f(x) при $x \rightarrow a$, если f(x) при $x \rightarrow a$ можно представить в виде:

$$f(x) = g(x) + o(g(x)),$$
 (8.1)

где o(g(x)) имеет смысл, описанный в определении 8.1.

Из (8.1) следует утверждение: "функция g(x) есть главная часть бесконечно большой функции f(x) при $x \rightarrow a$ в том и только том случае, если эти функции эквивалентны при $x \rightarrow a$ ". Поэтому функция f(x) может иметь несколько главных частей при $x \rightarrow a$. Так, функции $1/(\pi(x-1))$, $1/(2\pi(\sqrt{x}-1))$ — главные части сtg πx при $x \rightarrow 1$, ибо обе они эквивалентны

 $ctg\pi x$ при $x \rightarrow 1$ (пример 8.3).

Обычно главную часть функции, бесконечно большой при $x \to a$, находят в наиболее простом виде, например, в виде степенной функции $C(x-a)^{-k}$ при $a \in \mathbb{R}$ или Cx^k при $a = \infty$ (k > 0). Найти для функции f(x) такую главную часть — значит определить константу C и порядок k этой функции относительно дроби 1/(x-a) или относительно x. Для $\operatorname{ctg}\pi x$ при $x \to 1$ главной частью указанного вида является функция $1/(\pi(x-1))$, при этом $C = 1/\pi$, k = 1, а для многочлена $P_n(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n$ при $x \to \infty$ — его первый член $a_0 x^n$.

Пример 8.4. Выделить главную часть вида Cx^k из бесконечно большой функции $f(x) = \frac{2x^3 + 5x}{7x - 3}$ при $x \to \infty$.

▶ $\lim_{x\to\infty} \frac{f(x)}{Cx^k} = 1$ при $C = \frac{2}{7}$ и k = 2 (пример 8.2), поэтому $\frac{2x^2}{7}$ – главная часть функции f(x) при $x\to\infty$. ◀