Learning the transition matrix for the weighted inverted PageRank problem

The PageRank algorithm

Why called inverted and weighted?

- Let's assume we know the relative importance of each node
 (p) in advance according to some oracle → inverted
- Find a transition matrix such that a random walker's stationary distribution (q) converges to a previously defined oracle distribution \rightarrow weighted

A simple solution

• Why not set $w_{ij} \propto p_j$? E.g. p = [0.25, 0.25, 0.2, 0.1, 0.1, 0.1]

A better solution

• Reminder: p = [0.25, 0.25, 0.2, 0.1, 0.1, 0.1]

What do we optimize for?

$$\min_{M} KL(p||q) = \min_{M} \sum_{j=1}^{|V|} p_j \cdot \log \frac{p_j}{q_j}$$
 (1)

We can apply the recursive definition of a node's (weighted) PageRank value, i.e.

$$q_j = \sum_{i \in In(j)} q_i \cdot Prob(i \to j) \tag{2}$$

 $P(i \rightarrow j)$ can be determined applying the softmax function over the unconstrained edge weights, i.e.

$$P(i \to j) = \frac{\exp m_{ij}}{\sum_{k \in Out(i)} \exp m_{ik}}$$
(3)

Putting parts together

The final unconstrained objective:

$$\min_{M} J(M) = \min_{M} \sum_{j=1}^{|V|} p_{j} \log \frac{p_{j}}{\sum\limits_{i \in In(j)} q_{i} \frac{\exp m_{ij}}{\sum\limits_{k \in Out(i)} \exp m_{ik}}}$$

- For a graph G = (V, E), we have |E| variables
 - ullet |E| is often around $10^7-10^9
 ightarrow ext{quasi-Newton optimization}$

$$\frac{\partial J}{\partial m_{ij}} = \frac{q_i \cdot \exp m_{ij}}{\left(\sum\limits_{k \in Out(i)} \exp m_{ik}\right)^2} \cdot \sum\limits_{k \in Out(i)} \left(\frac{p_j}{q_j} - \frac{p_k}{q_k}\right) \cdot \exp m_{ik}$$

• $O(|E| \cdot |V|)$ computation (luckily $|E| \ll |V|^2$ tends to hold)

A constrained setting

An alternative constrained objective could have been:

$$egin{aligned} \min_{W} J(W) = & \min_{W} \sum_{j=1}^{|V|} p_{j} \log rac{p_{j}}{\sum\limits_{i \in \mathit{In}(j)} q_{i} w_{ij}} \ & \text{subject to} & w_{ij} \geq 0, \; orall i, j = 1, \ldots, |V| \ & \sum_{j=1}^{m} w_{ij} = 1, \; orall i = 1, \ldots, |V|. \end{aligned}$$

- O(|E|) computation for the unconstrained gradient
- Projected quasi-Newton method
 - Instead of $W_{i+1} \leftarrow W_i \alpha B(W_i)^{-1} \nabla_{W_i}$ use $W_{i+1} \leftarrow P[W_i \alpha B(W_i)^{-1} \nabla_{W_i}]$ for updating
 - Downside
 - Projection takes $O(|V|^2 \log(|V|))$ (worst case) computation
 - We lose some of the nice properties of the optimizer

Experiments on collaboration networks

- Let G = (V, E) be a graph in which
 - $i \in V$ are authors, $|V| \approx 16.6K$
 - $(i,j) \in E \Leftrightarrow i$ and j are co-authors, $|E| \approx 114K$

Avgd. projecte	ed	PMI baseline	
Berend, Gabor	W		PMI
->Farkas, Richard	0.189	->Berend, Gabor	-2.89
->Vincze, Veronika	0.186	->Hangya, Viktor	-3.58
->Berend, Gabor	0.158	->Nagy, Istvan	-5.01
->Zarriess, Sina	0.157	->Vincze, Veronika	-5.72
->Nagy, Istvan	0.156	->Farkas, Richard	-6.2
->Hangya, Viktor	0.153	->Zarreiss, Sina	-6.3

- 226 authors with >=5 collaborators such that the nodes with biggest weight are themselves
 - Typically big players including e.g. Oren Etzoni, Dan Klein, Jun'ichi Tsujii, Janyce Wiebe, György Szarvas

Language usage graphs and language modeling

- Let G = (V, E) be a graph in which
 - Vertices represent *n* consecutive tokens (n-grams)
 - $(i,j) \in E \Leftrightarrow \text{n-gram } j \text{ succeeds n-gram } i$
 - i and j has to be such that $j[k-1] = i[k], \forall 2 \le k \le n$
- w_{ij} can then be interpreted as the probability of seeing n-gram j after n-gram i is observed, i.e. P(j[n]|i)
 - P(j[n]|i) can be calculated in a ML fashion
 - Doing so, however, requires the maintenance of co-occurrence counts for any possible pairs of n-grams

Language modeling

- 40K/2.5K English train/test sentences (950K/57K words)
- Projected and softmax models with 25 initializations each

n	V	E	$MSE_{projected}$	$MSE_{softmax}$
	'	325,607	8.4e-2	2.1e-2
2	325,609	643,958	7.5e-3	5.1e-3
3	643,960	802,160	2.5e-3	2.0e-3

Language model quality

- Perplexity = $2^{-LL(\text{test set})}$
- Cut-off (smoothing) has to be applied

(a) 1st order models

(b) 2nd order models

Exemplar generated sentences

- The country abandoned its former devotion to a glitzy life that drilling for gas supply. " said William Seidman, who had the power of government employees' favored charities.
- The bank made emergency loans to less-developed countries .
- The markets are returning to normalcy .

Experiments on Wikipedia

- Hungarian (20/10/2015) and English (02/10/2015) Wikipedia
 - $|V_{hu}| \approx 500K$, $|E_{hu}| \approx 40M$
 - $|V_{en}| \approx 12M$, $|E_{en}| \approx 375M$
- Node importances were the relative query hits each page received during 20/10/2015
- 5 iterations run for both the projected and softmax models

Avg. runtime/iter.	hu	en
Projected	<3h	<8h
Softmax	<0.5h	<3h

- Almost no variance in the runtime of the softmax models
 - However, runtimes for the projected models were \in [1.25, 5.25] hours for Hungarian and \in [4, 13] hours for English

Quantitative results on Wikipedia

• Baseline KLs of 1.05 and 1.74 for Hungarian and English

Model	Projected	Softmax
1	$1.07 \rightarrow 0.44$	1.07 ightarrow 1.07
2	$1.09 \rightarrow 0.51$	1.07 ightarrow 1.07
3	$1.10 \rightarrow 0.32$	1.07 ightarrow 1.07
4	$1.09 \rightarrow 0.29$	1.07 ightarrow 1.07
5	$1.10 \rightarrow 0.38$	1.07 ightarrow 1.06

Table: Results on the Hungarian Wikipedia

Model	Projected	Softmax
1	1.82 o 0.70	1.82 ightarrow 1.79
2	1.86 o 0.72	1.82 ightarrow 1.79
3	1.80 o 0.75	1.82 ightarrow 1.79
4	1.78 ightarrow 0.72	1.82 ightarrow 1.79
5	1.84 ightarrow 0.79	1.82 ightarrow 1.79

Table: Results on the English Wikipedia

Qualitative results on Wikipedia – strong pairs

- For each node $i \in V$ of graph G = (V, E), its strongest neighbor is $s_i = \underset{j \in V, j \neq i}{\operatorname{arg max}} w_{ij}$
- (i,j) is a strong pair if $s_i = j$ and $s_j = i$ holds
- There were approx. 16K such pairs on the English Wikipedia

Article;	Article _j
Johnelle Hunt	Johnnie Bryan Hunt
Wendy Mesley	Peter Mansbridge
Kaley Cuoco	Ryan Sweeting
Labyrinth	Daedalus
Element 115	Ununpentium
MITI	Ministry of International Trade and Industry

Table: Sample strong pairs of the English Wikipedia

Qualitative results on Wikipedia – 'Association chains'

- Given a starting article always proceed along edges with the highest weight
 - Machine learning→Data science→Genomics→Illumina dye sequencing→Cytosine→APOBEC
 - Hungary→Hungarian notation→Varchar→Data→Standard deviation→68–95–99.7 rule
 - $\bullet \ \, \mathsf{Sagrada} \ \, \mathsf{Familia} \!\!\to\! \mathsf{Catalan} \ \, \mathsf{Modernism} \!\!\to\! \mathsf{Modernisme} \!\!\to\! \mathsf{Turn} \ \, \mathsf{of} \\ \, \mathsf{the} \ \, \mathsf{century} \!\!\to\! \mathsf{Information} \ \, \mathsf{Age} \!\!\to\! \mathsf{Mark} \ \, \mathsf{Zuckerberg} \\$

Conclusion

- Edge weights reflecting the strength of connections seems to be a task that can be learned
- The network topology and the relative importances of the nodes are needed for that
- Determining the relative importance scores of the nodes is a crucial part
 - Most likely requires some domain knowledge and/or luck
- The softmax model is faster but the projected model produced nicer numbers (not always)

Future directions

- Find shortest path in a graph based on the edge weights as kind of a 'heuristic' (6 degrees of separation)
- Link prediction and frequent itemset mining?
- Possible relation to the previous talks of the semester?
- Analyzing how regularization affect these models

