PhD in Energy and Mineral Engineering at PSU Nicolás's Research - Reports

Nicolás Bueno¹ Advisor: Dr. Ayala¹

¹Department of Energy and Mineral Engineering Penn State University

Table of Contents

- **1** Spring 2022
 - Report Jan 24 2022
 - Report Jan 31 2022
 - \bullet Meeting with LBM questions
 - template

Table of Contents

- **1** Spring 2022
 - \bullet Report Jan 24 2022
 - Report Jan 31 2022
 - \bullet Meeting with LBM questions
 - template

Report Jan 24 - 2022

Main discussion points:

- Cheng's paper
- LBM Code state
- Short-term Medium-term objectives

Cheng's paper

Bulk equation for the Shan-Chen force:

$$\mathbf{F} = -G\psi(x)\sum_{i}\omega_{i}\psi(x+\mathbf{c}_{i}\delta t)\mathbf{c}_{i} \quad \psi := \sqrt{\frac{2(P^{\text{EoS}} - c_{s}^{2}\rho)}{G\delta tc_{s}^{2}}}$$

- MRT model
- Multi-component partially miscible

LBM state

This I advanced before last state:

- Tried the binary printing (unsuccessful)
- Run the single component multi-phase model (successful)
- Equation to count the number of molecules in a lattice.
- Short-term mid-term objectives

van der Waals validation

Peng Robinson validation

Figure

Where I am going?

I was rediscovering the concept of ψ that now belongs to the bulk (phase) entity. In Kruger's book is assigned to each component, so each components computes its own SC force. Other forces split according to ρ_i . Two components structure is ready to start building the 2-component case that Cheng uses for validation.

Actions

- Dry-run of research proposal for qualifying exam. Deep dive into literature looking for problems in current problems and interesting applications (reactions-solute transport-energy-multiphase).
- LBM tutorials is the next short-term project
- Finish my own code to run the Cheng's cases in our simulator.
- Long-term: evaluate the Kruger's perspective of calculating SC per component.

Report Jan 31 - 2022

- Code and Cheng's paper
- SPH for EME 521
- Time demand
- Others
 - Dr. Mehmani meetings (I'll start slow).
 - Summer 2022
 - Almost null offer research-related. Italian courses.
 - STAP (Summer Tuition Assistance Program)
 - Penn State Vita (Taxes)
 - 2022 Fuel Science Graduate Awards
 - Own website
- Lost.

Code

Multiphase validations: van der Waals (flat interface, droplet), Peng-Robinson (making use of velocity redefinition and β parameter). Cheng redefined the velocity for the Guo's scheme as:

$$\mathbf{u}^{mod} = \mathbf{u} + \frac{\beta \mathbf{F}}{(\tau - 0.5)\psi^2} \tag{1}$$

The other velocity definitions remain. Without this term, the PR case diverges.

Code

Can the pressure of the gas be higher than the liquid? What if we initialize a bubble instead of a droplet?

Validate Young-Laplace?

I am now setting a 2C 2P problem to validate the code. I can try both, immiscible and miscible, as both implementations are there and the only change is the ψ definition.

Ready for meeting with Pr. Orlando for program. language discussions, questions about implementations, and possible feedback (I need the time to compile the material).

Code - PBM

RR procedure. I'll program the minimization algorithm, but try to implement Eigen, a library to solve $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$.

Research

I definitely want to use my research for applying the LBM to a particular field. In contrast, my Master's Thesis was only computational, with validations, but did not include any experimental/real data of any type. Questions I have:

- Bubbles, coalescence, and their viscosity effect
- CO₂ plume generation
- Interaction between fluids and rock (swelling, mineralization, adsorption)
- Rock deformation? Does imply FEM? Too complicated?
- Questions about σ in 3-P systems. I don't know? Nobody knows? Film drainage. Oil spills. Receding / advancing θ

Meeting with LBM questions

Questions:

- LBM Formulation
 - Are the equations molar/mass based? Which one should it be for efficiency?
- Boundary conditions
 - Composition for pressure BC at outlet or inlet

Present

Present...

template

 \mathbf{a}

- A
- A

Report XXX XX - 202X

Main discussion points:

- Topic 1
- Topic 2

21 / 27

23 / 27

This is a text in second frame. For the sake of showing an example.

• Text visible on slide 1

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slides 3

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 4

In this slide

In this slide the text will be partially visible In this slide the text will be partially visible And finally everything will be there

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".

Two-column slide

This is a text in first column.

$$E = mc^2$$

- First item
- Second item

This text will be in the second column and on a second tought this is a nice looking layout in some cases.