ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 57700.21— 2020

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В ПРОЦЕССАХ РАЗРАБОТКИ, ПРОИЗВОДСТВА И ОБЕСПЕЧЕНИЯ ЭКСПЛУАТАЦИИ ИЗДЕЛИЙ

Термины и определения

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Акционерным обществом «Научно-исследовательский центр «Прикладная логистика» (АО НИЦ «Прикладная логистика»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 700 «Математическое моделирование и высокопроизводительные вычислительные технологии» совместно с Техническим комитетом по стандартизации ТК 482 «Интегрированная логистическая поддержка экспортируемой продукции военного назначения»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 18 ноября 2020 г. № 1131-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1	Область применения	. "
2	Нормативные ссылки	
3	Термины и определения	. 1
A	лфавитный указатель терминов на русском языке	. 7

Введение

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий данной области знания.

Для каждого понятия установлен один стандартизованный термин.

Термины расположены по тематическим подразделам.

Заключенная в круглые скобки часть термина может быть опущена при использовании термина в документах по стандартизации, при этом не входящая в круглые скобки часть термина образует его краткую форму. Для отдельных стандартизованных терминов краткие формы приведены в качестве справочных, которые применяют в случаях, исключающих возможность их различного толкования.

В алфавитном указателе термины приведены отдельно с указанием номера статьи.

Приведенные определения можно, при необходимости, изменять, вводя в них производные признаки, раскрывая значения используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, — светлым.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В ПРОЦЕССАХ РАЗРАБОТКИ, ПРОИЗВОДСТВА И ОБЕСПЕЧЕНИЯ ЭКСПЛУАТАЦИИ ИЗДЕЛИЙ

Термины и определения

Computer modelling in the processes of development, manufacturing and maintenance of products.

Terms and definitions

Дата введения — 2021-06-01

1 Область применения

Настоящий стандарт устанавливает терминологию в области компьютерного моделирования в процессах разработки, производства и обеспечения эксплуатации машиностроительных изделий, включая моделирование собственно изделий (свойств изделий) и связанных с изделием процессов.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт: ГОСТ Р 57412 Компьютерные модели в процессах разработки, производства и эксплуатации изделий. Общие положения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку

3 Термины и определения

В настоящем стандарте применены термины в соответствии с ГОСТ Р 57412, а также следующие термины с соответствующими определениями:

Общие термины в области компьютерного моделирования

 3.1 виртуальное испытание: Испытание, производимое методами компьютерного моделирования. 3.2

изделие: Предмет или набор предметов производства, подлежащих изготовлению в организации (на предприятии) по конструкторской документации.

Поимечания

- Изделиями могут быть: устройства, средства, машины, агрегаты, аппараты, приспособления, оборудование, установки, инструменты, механизмы, системы и др.
 - 2 Число изделий может измеряться в штуках (экземплярах).
- 3 К изделиям допускается относить завершенные и незавершенные предметы производства, в том числе заготовки.

[FOCT 2.101-2016, nyhkt 3.1]

3.3

ислытания: Экспериментальное определение количественных и (или) качественных характеристик свойств объекта испытаний как результата воздействия на него, при его функционировании, при моделировании объекта и (или) воздействий.

Примечание — Определение включает оценивание и (или) контроль.

[ГОСТ 16504—81, статья 1]

3.4

модель: Сущность, воспроизводящая явление, объект или свойство объекта реального мира. [ГОСТ Р 57188—2016, статья 2.1.1]

3.5

моделирование: Изучение свойств и/или поведения объекта моделирования, выполненное с использованием его моделей.

[ГОСТ Р 57412-2017, лункт 3.1.6]

3.6

компьютерная модель (электронная модель): Модель, выполненная в компьютерной (вычислительной) среде и представляющая собой совокупность данных и программного кода, необходимого для работы с данными.

ГГОСТ Р 57412-2017, пункт 3.1.71

3.7

компьютерная модель изделия: Компьютерная модель, в которой объектом моделирования является изделие.

[ГОСТ Р 57412-2017, пункт 3.1.10]

 компьютерная модель процесса: Компьютерная модель, в которой объектом моделирования является процесс.

3.9

компьютерное моделирование изделия: Моделирование, выполненное с использованием компьютерной модели изделия.

Примечание — Компьютерное моделирование изделия выполняют с целью получения данных, необходимых для принятия решений в процессах разработки, проектирования, производства, сопровождения эксплуатации и других задач в ходе жизненного цикла изделия.

[FOCT P 57412-2017, пункт 3.1.11]

3.10 компьютерное моделирование процесса: Моделирование, выполненное с использованием компьютерной модели процесса.

3.11

программное обеспечение компьютерного моделирования; ПО КМ: Программы, выполняющие математические расчеты, и программы, предназначенные для подготовки исходных данных, обработки результатов расчета, а также другие вспомогательные программы. Программное обеспечение компьютерного моделирования не является программным обеспечением средств измерений согласно ГОСТ Р 8.654.

[FOCT P 57700.2-2017, пункт 3.1.1]

3.12 экземпляр изделия: Индивидуально идентифицируемый образец определенной конструкции.

Объекты и аспекты компьютерного моделирования

3.13

объект моделирования: Явление, объект или свойство объекта реального мира. [ГОСТ Р 57412—2017, пункт 3.1.2]

3.14

аспект моделирования: Отдельное свойство или совокупность свойств объекта моделирования, являющихся предметом исследования с помощью моделирования.

[ГОСТ Р 57412—2017, пункт 3.1.3]

Примечание — По исследуемому аспекту моделирования КМ подразделяют на:

- функциональные, аспектом моделирования в которых является выделение и описание функций изделия, их структуры и взаимосвязи;
 - структурные, аспектом моделирования в которых являются структуры изделия (например, по ГОСТ 2.053);
- геометрические, аспектом моделирования в которых являются преимущественно форма, размеры и свойства, связанные с формой и размерами (например, размеры и допуски по ГОСТ 2.307, шероховатость по ГОСТ 2.309, допустимые отклонения формы по ГОСТ 2.308 и др.);
- физико-механические, аспектом моделирования в которых являются физико-механические свойства изделия и взаимодействие изделия с внешней средой (статика, кинематика, динамика твердого тела, гидро- и газодинамика, деформации, теплопроводность и др.);
- физико-химические, аспектом моделирования в которых являются изменения свойств материалов изделия (коррозионное разрушение материала, старение и т. д.);
- техническо-экономические, аспектом моделирования в которых являются взаимосвязанные технические и экономические свойства изделия (например, стоимость жизненного цикла изделия, стоимость послепродажного обслуживания изделий);
- процессные, аспектом моделирования в которых являются процессы, непосредственно связанные с изделием (например, модель технологического процесса изготовления изделия или модель процесса технической эксплуатации изделия).

Компьютерные математические модели, их виды и методы моделирования

3.15 математическая модель компьютерная: Модель, в которой сведения об объекте моделирования представлены в виде математических символов и выражений.

Примечание — Математические модели в зависимости от метода нахождения решения (определения вида зависимости одних параметров модели от других) подразделяют на аналитические, численные и имитационные по ГОСТ Р 57412.

3.16 математическая модель компьютерная аналитическая: Математическая модель, в которой свойства объекта моделирования описываются системой уравнений, для которой может быть найдено аналитическое решение в явном виде.

Приме чание — Примерами математических моделей указанного типа являются уравнения динамики, для которых могут существовать аналитические решения в явном виде.

3.17 математическая модель компьютерная численная: Математическая модель, в которой свойства объекта управления описываются системой уравнений, для которых нахождение решения осуществляется с использованием численных методов.

ГОСТ Р 57700.21—2020

П р и м е ч а н и е — Математические модели указанного вида используются для решения задач механики деформируемого твердого тела, теплообмена, гидродинамики и электродинамики и т. д.

3.18 математическая модель компьютерная имитационная: Математическая модель, в которой форму и коэффициенты зависимости между параметрами находят путем многократного виртуального испытания с различными входными данными.

Примечание — Примерами математических моделей указанного типа являются модели массового обслуживания.

- 3.19 математическая модель компьютерная динамическая (динамическое математическое моделирование): Математическая модель, в которой отображаются возникновение событий во времени или движение объектов через пространство.
- 3.20 математическая модель компьютерная интерактивная: Модель, в которой для ввода исходных данных в ходе моделирования требуется участие человека.
- 3.21 методы численного моделирования: Способы моделирования, основанные на решении уравнений, составляющих математическую модель, методами вычислительной математики.

Примечание — К основным методам численного моделирования относят по ГОСТ Р 57188 разностные методы, метод конечных элементов, конечных или граничных объемов и другие.

Виды компьютерных информационных моделей

- 3.22 информационная модель компьютерная: Компьютерная модель, в которой сведения об объекте моделирования представлены в виде совокупности элементов данных и отношений между ними
- 3.23 информационная модель компьютерная знаковая: Компьютерная информационная модель, в которой описание объекта моделирования представлено с использованием специализированных языков.

Примечание — Примером такого языка является язык Express ГОСТ Р ИСО 10303-11, используемый для описания информационных моделей в серии стандартов ГОСТ Р ИСО 10303, ГОСТ Р ИСО 13584 и других.

3.24 информационная модель компьютерная описательная: Компьютерная информационная модель, в которой описание объекта моделирования представлено с использованием текста или изображения.

3.25

информационный набор: Идентифицированная (именованная) совокупность информационных объектов (ИО), отобранных с какой-либо целью или по какому-либо признаку (совокупности признаков).

Примечание — Информационный набор образуется установлением связи между заголовком набора и входящими в него информационными объектами.

[FOCT 2.054—2013, пункт 3.1.8]

Виды гибридных (прикладных) компьютерных моделей

3.26 гибридная компьютерная модель изделия: Совокупность взаимосвязанных математических и информационных моделей, описывающих (моделирующих) отдельные свойства конструкции или экземпляра изделия с заданной степенью точности.

3.27

электронный макет изделия; ЭМИ: Комплекс взаимосвязанных ИН разных видов (в т. ч. компьютерных моделей), отражающих или подтверждающих совокупность свойств изделия, важных для решения задач определенной стадии разработки или этапа ЖЦ.

Примечание — Термины «ЭМИ» и «составная (комплексная) модель изделия» по ГОСТ Р 57412 являются синонимами.

[ГОСТ Р 58300-2018, статья 18]

3.28

электронная структура изделия; ЭСИ: Структурная компьютерная модель изделия, описывающая составные части изделия, выделенные на разных уровнях разукрупнения, иерархические отношения между этими составными частями и другие данные в зависимости от назначения.

Примечания

- 1 ЭСИ может быть выполнена в виде ИН в АС УДИ или в виде ДЭ по ГОСТ 2.053. ЭСИ в виде ДЭ может быть получена из соответствующего ИН как производный ДЭ или копия ИН (в зависимости от сути выполняемого преобразования).
- 2 Различают следующие виды ЭСИ (вне зависимости от вида выполнения): функциональная, конструктивная, производственно-технологическая, физическая, эксплуатационная. Назначение ЭСИ каждого вида в соответствии с ГОСТ 2.053—2013 (подраздел 6.2).
- 3 В зависимости от вида изделия и назначения модели в ЭСИ в качестве составных частей могут быть включены: материалы, комплекты (в т. ч. запчастей), описания процессов, связанных с изделием, и т. п.

[ГОСТ Р 58300-2018, статья 21]

3.29

(электронная) геометрическая модель (изделия): Электронная модель изделия, описывающая преимущественно геометрическую форму, размеры и иные свойства изделия, зависящие от его формы и размеров.

[FOCT 2.052-2015, пункт 3.1.11]

3.30

каркасная (геометрическая) модель изделия: Трехмерная геометрическая модель, представленная совокупностью точек, отрезков и кривых, определяющих в пространстве форму изделия.

[FOCT 2.052—2015, пункт 3.1.4]

3.31

поверхностная (геометрическая) модель: Трехмерная геометрическая модель изделия, представленная множеством ограниченных поверхностей, определяющих в пространстве форму изделия. [ГОСТ 2.052—2015, пункт 3.1.8]

3.32

твердотельная (геометрическая) модель: Трехмерная геометрическая модель, представляющая форму изделия как результат композиции множества геометрических элементов с применением операций булевой алгебры к этим геометрическим элементам.

[ГОСТ 2.052-2015, статья 3.1.10]

3.33 интегрированное электронное описание изделия: Совокупность компьютерных моделей, относящихся к изделию определенного типа, используемых на разных стадиях его жизненного цикла.

Примечание — В составе электронного описания изделия выделяют его часть, касающуюся конструкции изделия, и часть, описывающую изготовленные (физические) экземпляры изделия. Часть электронного описания изделия, касающаяся конструкции изделия, может быть представлена в виде набора специализированных электронных макетов изделия (ЭМИ) по ГОСТ Р 58300. Часть электронного описания изделия, объединяющая данные об изготовляемых или уже изготовленных экземплярах изделия, может быть представлена в виде электронного дела изделия (ЭДИ).

3.34

электронное дело изделия; ЭДИ: Систематизированная совокупность данных, формируемая в автоматизированной системе управления данными об изделии на стадиях разработки и производства, сопровождаемая на последующих стадиях жизненного цикла экземпляра изделия и включающая сведения об особенностях конструкции изделия, его изготовлении, применении по назначению и технической эксплуатаций (техническом обслуживаний, ремонте, модификации), а также о техническом состоянии экземпляра изделия и его составных частей.

[FOCT P 54089-2018, пункт 3.1.1]

ГОСТ Р 57700.21—2020

- 3.35 электронное дело изделия технологическое: Совокупность данных об изготовленном экземпляре изделия (компьютерная информационная модель), описывающих с необходимой степенью детализации его состав, характеристики составных частей, основные результаты технологического процесса изготовления и окончательной сборки, контроля и испытаний составных частей и изделия в целом.
- 3.36 электронное дело изделия эксплуатационное: Совокупность данных об эксплуатируемом экземпляре изделия (компьютерная информационная модель), описывающих с необходимой степенью детализации его состав, характеристики составных частей, а также события, произошедшие с изделием в процессах применения по назначению, технического обслуживания и ремонта (наработка, изменения состава изделия, изменения характеристик изделия и его составных частей, отказы и неисправности и т. д.).
- 3.37 цифровой двойник изделия: Связанная совокупность компьютерных моделей различных видов, описывающих с требуемым уровнем адекватности свойства и поведение экземпляра изделия, изменение его характеристик и внутренние процессы в зависимости от состояния внешней среды (управляющих воздействий), решаемых задач и условий их выполнения.
- 3.38 модель требований: Формализованное описание требуемых свойств объекта с заданной степенью подробности (с заданным уровнем абстракции).

Жизненный цикл компьютерных моделей, их адекватность и корректность

3.39 жизненный цикл компьютерной модели: Набор фиксированных состояний компьютерной модели в ходе ее создания и применения.

Примечание — Типовой набор этапов жизненного цикла включает в себя: постановку задачи моделирования, описание моделируемого изделия или процесса, задание допустимого уровня адекватности, создание компьютерной модели, верификация модели, валидация модели, проведение моделирования (получение результатов), обработка результатов моделирования.

- 3.40 уровень адекватности модели: Заданная степень соответствия компьютерной модели объекту моделирования с учетом принимаемых допущений и ограничений.
- 3.41 проверка корректности компьютерного моделирования (верификация модели): Совокупность действий с моделью, результатом которых является подтверждение соответствия компьютерной реализации модели ее исходной математической или информационной модели.

Примечание — Для программного обеспечения также используется термин «квалификация программного обеспечения», для численных методов также используется термин «верификация математической модели» (подтверждение корректности решений уравнений математической модели) по ГОСТ Р 57188.

3.42 проверка адекватности компьютерной модели (валидация модели): Совокупность действий с моделью, результатом которых является подтверждение ее адекватности моделируемому объекту моделирования.

Примечание — Для численных методов также используется термин «валидация математической модели» (подтверждение адекватности математической модели моделируемому объекту) по ГОСТ Р 57188.

Алфавитный указатель терминов на русском языке

аспект моделирования	3.14
валидация модели	3.42
верификация модели	3.41
виртуальное испытание	3.1
двойник изделия цифровой	3.37
дело изделия технологическое электронное	3.35
дело изделия эксплуатационное электронное	3.36
дело изделия электронное	3.34
изделие	3.2
испытания	3.3
макет изделия электронный	3.27
методы численного моделирования	3.21
моделирование	3.5
моделирование изделия компьютерное	3.9
моделирование математическое динамическое	3.19
моделирование процесса компьютерное	3.10
модель	3.4
модель (геометрическая) поверхностная	3.31
модель (геометрическая) твердотельная	3.32
модель (изделия) (электронная) геометрическая	3.29
модель изделия (геометрическая) каркасная	3.30
модель изделия компьютерная	3.7
модель изделия компьютерная гибридная	3.26
модель компьютерная	3.6
модель компьютерная аналитическая математическая	3.16
модель компьютерная динамическая математическая	3.19
модель компьютерная имитационная математическая	3.18
модель компьютерная интерактивная математическая	3.20
модель компьютерная информационная	3.22
модель компьютерная информационная знаковая	3.23
модель компьютерная информационная описательная	3.24
модель компьютерная математическая	3.15
модель компьютерная численная математическая	3.17
модель процесса компьютерная	3.8
модель требований	3.38
модель электронная	3.6
набор информационный	3.25
объект моделирования	3.13
NO KM	3.11
проверка адекватности компьютерной модели	3.42
проверка корректности компьютерного моделирования	3.41
программное обеспечение компьютерного моделирования	3.11
структура изделия электронная	3.28
уровень адекватности модели	3.40
цикл жизненный компьютерной модели	3.39
эди	3.34
экземпляр изделия	3.12
электронное описание изделия интегрированное	3.33
эми	3.27
эси	3.28

УДК 006.1: 006.354 OKC 01.040.01

Ключевые слова: компьютерное моделирование, модель, электронный макет, виртуальные испытания, электронное дело изделия

Редактор П.К. Одинцов Технический редактор В.Н. Прусакова Корректор М.И. Першина Компьютерная верстка И.А. Налейкиной

Сдано в набор 20.11.2020. Подписано в печать 02.12.2020. Формат $60 \times 84^{1/8}$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,12. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта