Plánování a hry - PDDL

Peter Boráros

I. FORMALIZACE PROBLÉMU

Predikáty:

expert-mode - robot je v expertnom mode

advanced-mode - robot pracuje v rozšírenom mode

in-hand-board - robot drží desku

in-hand-saw - robot drží pilu

in-hand-paint - robot drží štětěc

hand-free - robot nedrží nic at - deska je na halde halde

mounted - deska je pripevnená k stolu

empty - pracovne místo je prázdné

cuted - deska je orezaná

has-shape - deska ma daný tvar

painted - deska je natretá

has-color - deska ma danou barvu

Prítomnosť nástroja / dosky v ruke robota je určená predikátmi in-hand a navyše predikát hand-free je pomocný. Doska dalej može byť primontovaná - pred. mounted na konkrétnom pracovnom mieste (možu byt 2 na jednom stole). Navyše pomocný predikát empty hovoríči je pozícia na stole je prázdna. Po úprave dosky platia predikáty has-shape, has-color a pomocné cuted, painted. Pri prechode do rozšíreného / expertného módu nastane platnosť axiómov expert-mode a advanced-mode.

II. PLÁNOVAČE

Seznam vybraných plánovaču:

fd-autotune-1
lama2008
roamer

III. PARAMETRY TESTOVACÍHO PROSTREDÍ

Bol použitý balik signs.tgz v natívnom prostredí Debian Wheezy x86_64.

IV. GRAFICKÉ ZÁVISLOSTI

Tabulka I: Závislosť doby výpočtu (v sekundách) od velikosti instance pre vybrané plánovače

planovac / vel. instance	2	3	4	5	6
fd-autotune-1	.087	.196	.975	4.289	24.047
lama2008	.091	.652	1.805	22.358	67.804
roamer	.098	.743	4.198	37.046	343.356

Peter Boráros, Czech technical university, Faculty of Electrical Engineering, see http://www.pborky.sk/contact for a contact infomation

1

Obrázek 1: Graf závislosti rýchlosti riešenia od veľkosti inštance

Obrázek 2: Graf závislosti ceny riešenia od veľkosti inštancie (všechny plánovače našli řešení se stejnou cenou)

V. ZÁVĚR

Ako metriku kvality plánovača je možne použiť funckiu odvodenú od ceny najlepšieho nájdeného riešenia. Takouto funkciou by mohla byť $f_x = \frac{1}{|Y|} \sum_{y \in Y} \frac{p_{x,y}}{p_{ymin}}$, kde f_x je kvalita plánovača x, Y je množina kardinalít testovaných inštancií, $p_{x,y}$ je cena najlepšieho riešenia plánovača x pri kardinalite inštancie y a p_{ymin} je najlepšia možná cena riešenia pri kardinalite y. Nevýhoda takejto metriky je obtiažnosť určenia p_{ymin} . Pre zafixovanú veľkosť instancie k je možné priamo porovnať hodnoty $p_{x,k}$.

Na obr. 2 je závislosť ceny najlepšieho riešenia od veľkosti inštancie pre jednotlivé plánovače. S ohľadom na toto kritérium, plánovače dosiahli rovnakých výsledkov. V tab. 1 a na obr. 1 je závislosť doby výpočtu od veľkosti inštancie. Grafická závislosť je v semilogaritmickej mierke. V tomto experimente bol najrýchleším plánovač fd-autotune-1 a najpomalším roamer, no nutné podotknúť, že napriek tomu sa na tejto malej vzorke javí, že aymptotická zložitosť žiadneho z nich, nie je lepšia ako $O(e^n)$.