Signal Processing Challenge

Ranaji Krishna

October 9, 2015

Problem Statement

Assume a data matrix X with the following model:

$$X = A_s B_s^T + A_n B_n^T + Z \tag{1}$$

where

- X is a real $(m \times n)$ matrix;
- A_n is an unknown $(m \times d)$ matrix, where the exact value of d is not known, but d << m, n;
- B_n is an unknown $(n \times d)$ matrix;
- A_s is an unknown $(m \times q)$ matrix, where q is known, and q << m, n. Also each column of A_s is in the column span of a *known* matrix S;
- B_s is an unknown $(n \times q)$ matrix. But each row of B_s has at most one non-zero element.
- It is assumed that $\operatorname{span}(A_n) \not\subset \operatorname{span}(A_s)$.
- ▶ Find a computation efficient method to estimate A_s and B_s .

Approach

- ▶ Use the technique of Singular Value Decomposition to estimate A_s and B_s .
- ▶ Matrix *X* can be expressed as:

$$X = U\Sigma V^{T} \tag{2}$$

where

- U is a real $(m \times m)$ matrix of eigenvectors of XX^T ;
- Σ is a real $(m \times m)$ diagonal matrix of eigenvalues of XX^T ;
- V is a real $(n \times m)$ matrix of eigenvectors of X^TX that correspond to non-zero eigenvalues.
- Setting $A_s = U\Sigma$, places A_s in the column span of matrix U, a *known* matrix. This implies $B_s = V$. When the eigenvectors of the highest q eigenvalues are selected, U is an $(m \times q)$, Σ is a $(q \times q)$ and V is a $(n \times q)$ matrix.

Simulation Framework

- ► The performance was tested for the following simulation parameters:
 - Entries of A_s are derived from the class of random staircase functions, of integer step heights and width 32. In the Matlab notation: kron(randi(8, m/32, 1), ones(32, 1)),

and in R notation: kronecker(runif(m/32, 1, 8), rep(1, 32))

- Rows of B_s are zero except for possibly one random location where it is one.
- Entries of B_n are i.i.d samples from a Gaussian process of a given variance.
- Columns of A_n are random traces of a random walk process.
- m = 256, q = 4, d = 16, n = 1024.

► LHS: Plot of Signal (typical column of matrix X); RHS: Actual and Estimated values of $A_s B_s^T$ for the Signal.

contd.

▶ Similarity between the actual $(A_s B_s^T)$ and estimated matrix $(\hat{A}_s \hat{B}_s^T)$ is used as a performance measure. Similarity is evaluated using Root-Mean-Square,

$$rms = \frac{1}{nm} \sqrt{\sum_{j=1}^{m} \sum_{i=1}^{n} \left((A_s B_s^T)_{j,i} - (\hat{A}_s \hat{B}_s^T)_{j,i} \right)^2}$$
 (3)

contd.

▶ Sensitivity to variance in A_n and in Z,

contd.

▶ Sensitivity to variance in *q* and in *d*,

END

