Instituto Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica Curso de Taller Integrador

Avance 2 - Proyecto final

Integrantes:

Kevin Barquero Loría - 2016038605 - kevin050998@gmail.com
Pablo Chaves Alfaro -2017007204 - pchavesa11@gmail.com
Agustín Delgado Sancho - 2017149137 - ahusjads@gmail.com

Repositorio: github.com/kevinbarlo/ProyectoAireCartago.git

Profesor:

José Alberto Díaz

I Semestre

2021

Diagrama de primer nivel: En la siguiente tabla se encuentran los detalles del sistema y en la figura posterior el diagrama respectivo.

Sistema de medición de emisiones y control de tráfico 16 Control de semáforos 8 Información en pantallas 4

	Nombre	Objetivo	Explicación
Entradas	Muestra de aire	Extraer de la muestra la concentración de Monóxido de Carbono (CO) y Dióxido de Nitrógeno (NO2).	Muestra de aire con potencial de contener sustancias contaminantes que serán medidas por los sensores.
Salidas	Control de semáforos	Controlar el modo de operación de los semáforos.	El semáforo posee modo normal y modo especializado.*
	Información de pantallas	Mostrar mensaje en pantallas	Mensaje de información sobre la concentración de sustancias contaminantes presentes en el aire.

^{*}Modos de operación: Según los niveles determinados de CO y NO2 el sistema tendrá dos modos de operación. El primero es el normal, con los tiempos de duración predeterminados para luz verde y luz roja. En caso de que los niveles de dichos químicos sobrepasen los umbrales definidos en el sistema, los semáforos modificarán los tiempos de operación para agilizar el tráfico en la vía.

Diagrama de segundo nivel: En la siguiente imagen se muestra el diagrama de segundo nivel.

Descripción general: En general este diagrama debería dividirse en tres principales etapas, la primera de ellas el bloque de color verde y correponde a las estaciones de medición. Estas estaciones deben estar ubicadas en puntos estratégicos de las vías. La segunda etapa es la unidad central del proyecto y es el sistema que según las mediciones determina dónde se deben aplicar controles, genera información para desplegar en pantallas y almacena los datos obtenidos. Geográficamente, la segunda etapa debe estar en un lugar céntrico, entre las estaciones, de modo que sea posible transmitir desde todas las etapas de monitoreo. Finalmente, la tercera etapa se ubica ya en el lugar del semáforo y corresponde a su sistema de control, así como la pantalla en carretera también.

Sensor de Monóxido de Carbono_#	Nombre	Objetivo	Explicación
Entradas	Muestra de aire_#	Extraer concentración de Monóxido de Carbono (CO) de la muestra.	Obtiene señal eléctrica a partir de la información química.
Salidas	Sig_sensor_#	Transmitir la señal eléctrica obtenida	Esta señal es analógica y se

por el sensor.	obtiene directamente del sensor.
----------------	----------------------------------

Sensor de Dióxido de Nitrógeno_#	Nombre	Objetivo	Explicación
Entradas	Muestra de aire_#	Medir concentración de Dióxido de Nitrógeno(NO2).	Obtiene señal eléctrica a partir de la información química.
Salidas	Sig_sensor_#	Transmitir la señal eléctrica obtenida por el sensor.	Esta señal es analógica y se obtiene directamente del sensor.

Conversión de señal analógica a digital.	Nombre	Objetivo	Explicación
Entradas	Sig_sensor_#	Señal analógica que será convertida.	Esta señal debe ser convertida a digital para su posterior manejo y procesamiento.
Salidas	Sig_digital_#	Señal eléctrica digital obtenida por el sensor.	Esta señal es digital y se transmite a la siguiente etapa.

Transmisión de la señal	Nombre	Objetivo	Explicación
Entradas	Sig_digital_# (CO) y Sig_digital_# (NO2)	Recibir la señal digital a modular y transmitir.	Cada transmisor recibe una señal de CO y otra de NO2.
Salidas	S_Inalambrica_#	Transmitir señal inalámbricamente.	En total se transmiten 8 señales.

Recepción de la señal	Nombre	Objetivo	Explicación
Entradas	S_Inalambrica_#	Recibir la señal digital para demodularla.	Según la modulación de transmisión se debe demodular para procesamiento.
Salidas	S_a_procesar	Enviar señal demodulada para procesamiento.	Es una sola salida mediante la cual se envían todas las señales.

Procesamiento de los datos	Nombre	Objetivo	Explicación
Entradas	S_a_procesar	Recibir la señal ya demodulada para procesarla y tomar decisiones en el control de los semáforos.	Según estas señales actuará un algoritmo que determinará el modo de operación de los semáforos así como se generará la información para pantallas y almacenamiento.
Salidas	Info_datos	Enviar señal a las pantallas (4 señales).	En esta señal se envían los mensajes a desplegar en pantallas.
	Señal_control	Enviar señales a los semáforos (8 señales).	En esta señal se envían las indicaciones para el sistema de control de cada semáforo.
	Datos	Almacenar información en base de datos.	En esta señal se envían los datos que se desean almacenar en la base de datos.

Control de semáforos	Nombre	Objetivo	Explicación
Entradas	Señal_control	Recibir la señal que determina el control que se debe ejecutar en cada semáforo.	El sistema modifica el modo de operación del semáforo.

Decodificación de info pantalla	Nombre	Objetivo	Explicación
Entradas	info_datos	Recibir la señal para decodificación y despliegue en pantalla.	La señal debe decodificarse primero y luego se muestra en pantalla.

Almacenamiento de datos	Nombre	Objetivo	Explicación
Entradas	Datos	Recibir la señal para almacenamiento.	La información obtenida por el sistema será guardada.

Diagrama de tercer nivel: En las siguientes tablas se encuentran los detalles por bloque y en la figura posterior el diagrama respectivo. En este caso, debido a la especificidad del diagrama, se ilustra solo el flujo de datos de una pareja de sensores.

Descripción general: En este diagrama se muestra cómo a partir del aire se mide la concentración de las sustancias químicas de interés, dióxido de nitrógeno y monóxido de carbono, mediante los sensores electroquímicos. La señal producida por estos sensores es de corriente, por lo tanto, debe utilizarse un amplificador de transimpedancia para obtener una señal de tensión. Posteriormente se utiliza un conversor de analógico a digital, pues de una señal continua se requiere trabajar con una señal discreta. Luego se utiliza un multiplexor para enviar las señales en un orden específico, para que sean moduladas y enviadas inalámbricamente hacia la unidad de control en una sola señal.

Para ser recibidas en la unidad de control se usa una antena y un demodulador. Posteriormente se utiliza un demultiplexor para separar las señales y, por separado, ser empleadas por la unidad de control. Esta unidad es la encargada de decidir si la concentración supera los niveles de riesgo o no. En caso de superarse ese umbral, se envía una señal hacia el controlador del semáforo para que extienda los tiempos de paso de vehículos, o sea que mantenga la luz verde por más tiempo, y también envía una señal que contiene la información que debe desplegar la pantalla. Por último, debe almacenar los datos que se van recopilando en una unidad de memoria.

Sensor CO	Nombre	Objetivo	Explicación
Entradas	Muestra de aire_1	Medir concentración de Monóxido de Carbono (CO).	Obtiene señal eléctrica a partir de la información química del aire.
Salidas	Sig_med_1	Transmitir la señal eléctrica obtenida por el sensor.	Una señal de corriente analógica que debe ser convertida en voltaje.

Sensor NO2	Nombre	Objetivo	Explicación
Entradas	Muestra de aire_2	Medir concentración de Dióxido de Carbono (NO2).	Obtiene señal eléctrica a partir de la información química del aire.
Salidas	Sig_med_2	Transmitir la señal eléctrica obtenida por el sensor.	Una señal de corriente analógica que debe ser convertida en voltaje.

Amp_1	Nombre	Objetivo	Explicación
Entradas	Sig_med_1	Transmitir la señal eléctrica obtenida por el sensor.	Una señal de corriente analógica que debe ser convertida en voltaje.
Salidas	CO_amp	Transmitir la señal eléctrica obtenida	Se debe convertir de corriente a

	por el sensor,pero ya en términos de tensión.	

Amp_2	Nombre	Objetivo	Explicación
Entradas	Sig_med_2	Transmitir la señal eléctrica obtenida por el sensor.	Una señal de corriente analógica que debe ser convertida en voltaje
Salidas	NO2_amp	Transmitir la señal eléctrica obtenida por el sensor,pero ya en términos de tensión.	Se debe convertir de corriente a tensión la señal para poder manejarla.

ADC (Convertidor analógico a digital)	Nombre	Objetivo	Explicación
Entradas	CO_amp / NO2_amp	Señal por digitalizar.	Obtiene señal de tensión con el valor de la medición del sensor que va a ser convertida a un formato digital.
Salidas	CO_bcd / NO2_amp	Señal digital con el valor de la medición.	Las señales provenientes del sensor son convertidas a señales digitales con codificación BCD.

MUX(TDM)	Entrada	Objetivo	Explicación

Entradas	CO_bcd	Señal digital con el valor de la medición de la concentración de monóxido de carbono.	Señal proveniente del sensor de CO que ha sido convertida a una señal digital.
	NO2_bcd	Señal digital con el valor de la medición de la concentración de dióxido de nitrógeno.	Señal proveniente del sensor de NO2 que ha sido convertida a una señal digital.
	CLK	Señal de sincronización.	Para efectuar modulación por división de tiempo se requiere una señal de reloj.
Salidas	TDM	Señal digital multiplexada por división de tiempo.	Se hace una multiplexación para poder enviar los datos hacia el modulador en un orden específico.

Modulador	Nombre	Objetivo	Explicación
Entradas	TDM	Acondicionar la señal para ser transmitida inalámbricamente.	Se recibe la señal con la información de ambos sensores para ser enviada por RF hacia el centro de procesamiento. La modulación utiliza el protocolo LoRa.
	CLK	Señal de reloj	La modulación es digital, por lo que se requiere un reloj.
Salidas	TDM_mod	Prepara la señal para ser transmitida por la antena.	Señal con modulación de espectro ensanchado, compatible con el

			protocolo LoRa.
--	--	--	-----------------

Antena transmisora	Nombre	Objetivo	Explicación
Entradas	TDM_MOD	Señal preparada para ser transmitida mediante la antena.	Señal con modulación de espectro ensanchado, compatible con el protocolo LoRa.
Salidas	señal_RF	Señal inalámbrica que se transmite hacia un nodo central.	Los datos deben ser enviados hacia el lugar donde se ubica la unidad de procesamiento de todo el sistema.

Antena receptora	Nombre	Objetivo	Explicación
Entradas	señal_RF	Señal de RF recibida por la antena.	Esta antena recibe la señal que contiene los datos de concentración de CO y NO ₂ . La antena debe ser capaz de recibir las señales provenientes de cualquiera de los 8 sensores.
Salidas	TDM_MOD_R	Convertir la señal electromagnética a una tensión eléctrica.	La señal recibida por la antena es amplificada, filtrada y ecualizada, para ser enviada al demodulador.

Demodulador	Nombre	Objetivo	Explicación
Entradas	TDM_MOD_R	Señal que será demodulada.	La señal es recibida de la antena.

Salidas TDM_D	MOD Señal digital recibida con información de los sensores.	La señal es demodulada para obtener la información en codificación BCM.
---------------	---	---

DEMUX (TDM)	Nombre	Objetivo	Explicación
Entradas	TDM_DEMOD	Señal digital demodulada que se envía de los sensores	La información es modulada para su transmisión por lo que posteriormente debe ser demodulada para ser procesada
	CLK	Señal de sincronización.	Para efectuar demodulación por división de tiempo se requiere una señal de reloj.
Salidas	Cant_NO2_R	Señal que transporta los datos del sensor de NO2.	Luego de transportar ambos datos en conjunto se separan nuevamente para procesar cada concentración por aparte.
	Cant_CO_R	Señal que transporta los datos del sensor de CO.	Luego de transportar ambos datos en conjunto se separan nuevamente para procesar cada concentración por aparte.

Unidad de Control	Nombre	Objetivo	Explicación
Entradas	Cant_NO2_R	Señal para ser	La señal binaria

		utilizada por el algoritmo de control.	con información de la concentración de NO2 que es utilizada para determinar el modo de funcionamiento del semáforo asociado a ese sector.
	Cant_CO_R	Señal para ser utilizada por el algoritmo de control.	La señal binaria con información de la concentración de CO que es utilizada para determinar el modo de funcionamiento del semáforo asociado a ese sector.
Salidas	DAT	Enviar los datos de los sensores a una base de datos.	La información obtenida de los sensores es guardada en memoria a través de un bus de datos de 32 bits.
	WR	Escribir datos en memoria.	Señal de control de la memoria, que permite efectuar operaciones de escritura.
	Pantalla_dat	Enviar información para ser proyectada en las pantallas.	La información recibida de los sensores es enviada a las pantallas en carretera.
	Pantalla_ctrl	Dar instrucciones a la pantalla.	Señal que permite controlar la información que se muestra en pantalla.
	Sem_ctrl	Controlar los semáforos.	Señal que indica al semáforo su modo

|--|

Memoria	Nombre	Objetivo	Explicación
Entradas	DAT	Dato de 32 bits que se almacena	Se envía datos digitales para ser almacenados en la unidad de almacenamiento
	WR	Señal de escritura	Señal de control utilizada para indicar que se quiere realizar una escritura en la memoria

Controlador de semáforo	Nombre	Objetivo	Explicación
Entradas	Sem_Ctrl	Señal que envía la unidad de procesamiento para definir el control	La señal indica el modo de operación del semáforo
	CLK	Señal de sincronización	Ya que el controlador a implementar es una circuito secuencial se requiere señal de reloj
Salidas	Sem_RF	Señal que se envía al semáforo para controlar su estado	Por medio de esta señal se le indica directamente al semáforo que operación realizar

Entradas	Pantalla_Dat	Señal de 32 bits que transporta la información	Esta información debe ser codificada para ser desplegada en la pantalla y alertar a conductores y transeúntes
	Pantalla_ctrl	Señal de control	Señal que indica al decodificador que hay información para enviar hacia la pantalla
Salidas	Pantalla_RF	Señal codificada	Esta info es interpretada por la pantalla para elaborar su salida visual