P-curve Analysis

What do *p*-values look like from 100 studies with an effect size of 0?

What do *p*-values look like from 100 studies with a true effect?

P-curve analysis: Test whether a set of *p*-values has evidential value.

Key to the filedrawer: Test is only performed on p < 0.05!

P-curve.com

Does the p-value distribution look like one with or one without an effect?

Looking at Elderly Priming and Professor Priming.

P-Curve Elderly Priming

P-Curve Professor Priming

You can use this technique for small sets of p-values (with care!).

Science MAAAS

Home	News	Journals	Topics C	areers	
Science	Science Advances	Science Immunology	Science Robotics	Science Signaling	Science Translational Medicine

SHARE

Reading Literary Fiction Improves Theory of Min

David Comer Kidd*, Emanuele Castano*

- + Author Affiliations
- ^{*}Corresponding author. E-mail: kiddd305@newschool.edu (D.C.K.); castanoe@newschool.edu (E.C.)

Science 18 Oct 2013: Vol. 342, Issue 6156, pp. 377-380

Table 1. RMET and DANVA2-AF analyses.

Experiment	Independent variable	Test	P	$\omega_p^{\ 2}$
Exp. 1 RMET	Condition	$F_{1,82} = 6.40$	0.01	0.05
	Author Recognition Test	$\beta = 0.36$	0.0003	0.13
	Author Recognition Test x Condition	$F_{1.82} = 1.06$	0.30	0.00
Exp. 2 DANVA2-AF	Condition	$F_{2,108} = 2.57$	0.08	0.02
	Author Recognition Test	$\beta = -0.16$	0.08	0.01
	Author Recognition Test x Condition	$F_{2.108} = 1.17$	0.31	0.00
Exp. 3 RMET	Condition	$F_{1,65} = 4.07$	0.04	0.04
	Author Recognition Test	$\beta = -0.01$	0.90	-0.01
	Author Recognition Test x Condition	$F_{1.65} = 0.01$	0.90	-0.01
Exp. 4 RMET	Condition	$F_{1,68} = 4.39$	0.04	0.04
	Author Recognition Test	$\beta = 0.39$	< 0.001	0.15
	Author Recognition Test x Condition	$F_{1.68} = 1.50$	0.22	0.00
Exp. 5 RMET	Condition	$F_{2,352} = 3.10$	0.04	0.01
	Author Recognition Test	$\beta = 0.28$	< 0.001	0.07
	Author Recognition Test x Condition	$F_{2,352} = 1.37$	0.25	0.00

Full p-curve (p's<.05)

1) Studies contain evidential value (Right-skew)

p = .9375

Z=1.68, *p*=.9533

2) Evidential value, if any, is inadequate (Flatter than when power=33%)

p = .077

Z=-2.55, *p=.0054*

A theory might be true, the data just don't provide evidence for it.

P-curve tells you if significant p-values look more like a true or null effect.