





Time Series Analysis Seasonal Models

#### Seasonal Models

## **Contents**

#### Contents

- Seasonal ARIMA Models
- Multiplicative Seasonal ARMA Models
- Nonstationary Seasonal ARIMA Models
- Model Specification, Fitting, and Checking
- Forecasting Seasonal Models

#### Seasonal Models

## **Seasonal ARIMA Models**

#### So far:

- Included seasonal patterns in deterministic models but not ARIMA models.
- In deterministic models, correlations are not exploited.
- Associated residuals are often highly autocorrelated.
- Need for stochastic seasonal models.

**Illustration:** Deterministic linear trend plus seasonal effects for monthly airline passenger numbers from 1949(1) to 1960(12).

```
R> data("AirPassengers", package = "datasets")
R> ap <- log(AirPassengers)
R> ap_lm <- dynlm(ap ~ trend(ap) + season(ap))</pre>
```







Residuals are not white noise and may even be nonstationary.

**Idea:** Introduce AR and/or MA effects at seasonal lag s, e.g., s=4 for quarterly data or s=12 for monthly data.

**Example:** MA(12) model with only one non-zero coefficient.

$$Y_t = e_t - \Theta e_{t-12}$$

**Properties:** Stationary with nonzero autocorrelation only at lag 12.

$$Cov(Y_t, Y_{t-1}) = Cov(e_t - \Theta e_{t-12}, e_{t-1} - \Theta e_{t-13}) = 0$$
  
 $Cov(Y_t, Y_{t-12}) = Cov(e_t - \Theta e_{t-12}, e_{t-12} - \Theta e_{t-24}) = -\Theta \sigma_e^2$ 

**Definition:** Seasonal MA(Q) model of order Q with seasonal period s.

$$Y_t = e_t - \Theta_1 e_{t-s} - \Theta_2 e_{t-2s} - \dots - \Theta_Q e_{t-Qs}$$

#### **Characteristic polynomial:**

$$\Theta(x) = 1 - \Theta_1 x^s - \Theta_2 x^{2s} - \dots - \Theta_Q x^{Qs}$$

**Autocorrelation:** Zero except at seasonal lags  $s, 2s, \ldots, Qs$ .

$$\rho_{ks} \ = \ \frac{\Theta_k + \Theta_1 \Theta_{k+1} + \dots + \Theta_{Q-k} \Theta_Q}{1 + \Theta_1^2 + \dots + \Theta_Q^2} \qquad \text{for } k = 1, \dots, Q$$

**Invertibility condition:** All roots of  $\Theta(x) = 0$  must exceed 1 in absolute value (i.e., lie outside the complex unit circle).

**Analogously:** AR(12) model with only one nonzero coefficient.

$$Y_t = \Phi Y_{t-12} + e_t$$

**Properties:** Stationary with nonzero autocorrelation only at seasonal lags 12, 24, 36, ...

$$\rho_k = \Phi \rho_{k-12} \quad \text{for } k \ge 1$$
 $\rho_{12} = \Phi \rho_0 = \Phi$ 
 $\rho_{24} = \Phi \rho_{12} = \Phi^2$ 
 $\rho_{12k} = \Phi^k \quad \text{for } k \ge 1$ 
 $\rho_1 = \Phi \rho_{11}$ 
 $\rho_{11} = \Phi \rho_1$ 

and hence  $\rho_1 = \rho_{11} = 0$ .

**Definition:** Seasonal AR(P) model of order P with seasonal period s.

$$Y_t = \Phi_1 Y_{t-s} + \Phi_2 Y_{t-2s} + \ldots + \Phi_P Y_{t-Ps} + e_t$$

#### **Characteristic polynomial:**

$$\Phi(x) = 1 - \Phi_1 x^s - \Phi_2 x^{2s} - \dots - \Phi_P x^{Ps}$$

**Autocorrelation:** Zero except at seasonal lags  $s, 2s, 3s, \ldots$  E.g., for seasonal AR(1)

$$\rho_{ks} = \Phi^k$$
 for  $k = 1, 2, \dots$ 

**Stationarity condition:** All roots of  $\Phi(x) = 0$  must exceed 1 in absolute value (i.e., lie outside the complex unit circle).

#### Seasonal Models

# Multiplicative Seasonal ARMA Models

**Idea:** Combine autocorrelations at seasonal lags with those at neighboring lags.

**Conceivable approaches:** Illustrated for MA model with one seasonal and one nonseasonal coefficient.

 Subset MA: Consider subset of MA(12) with nonzero coefficients at lags 1 and 12.

$$Y_t = e_t - \theta_1 e_{t-1} - \theta_{12} e_{t-12}$$

Multiplicative seasonal MA: Consider MA characteristic polynomial

$$(1 - \theta x)(1 - \Theta x^{12}) = 1 - \theta x - \Theta x^{12} + \theta \Theta x^{13}$$

leading to the model

$$Y_t = e_t - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}$$

The latter is more commonly used in practice.

**Properties:** Stationary with nonzero autocorrelations only at lags 1, 11, 12, 13.

$$\gamma_0 = (1 + \theta^2)(1 + \Theta^2)\sigma_e^2$$

$$\rho_1 = -\frac{\theta}{1 + \theta^2}$$

$$\rho_{11} = \rho_{13} = \frac{\theta\Theta}{(1 + \theta^2)(1 + \Theta^2)}$$

$$\rho_{12} = -\frac{\Theta}{1 + \Theta^2}$$

**Example:** ACF for  $\Theta = -0.8$  and  $\theta = \pm 0.5$ .





**Definition:** Multiplicative seasonal ARMA model with orders p and q and seasonal orders P and Q at seasonal lag s, ARMA(p, q)(P, Q) $_s$  for short.

$$\phi(B)\Phi(B)Y_t = \theta(B)\Theta(B)e_t$$

with polynomials

$$\phi(x) = 1 - \phi_1 x^1 - \phi_2 x^2 - \dots - \phi_p x^p 
\Phi(x) = 1 - \Phi_1 x^s - \Phi_2 x^{2s} - \dots - \Phi_p x^{ps} 
\theta(x) = 1 - \theta_1 x^1 - \theta_2 x^2 - \dots - \theta_q x^q 
\Theta(x) = 1 - \Theta_1 x^s - \Theta_2 x^{2s} - \dots - \Theta_0 x^{Qs}$$

**Note:** A mean or intercept can be included as before.

#### Remarks:

- ARMA $(p, q)(P, Q)_s$  is a special case of ARMA(p + Ps, q + Qs).
- Coefficients are not completely free but determined by p + P + q + Q parameters.
- Typically, much more parsimonious, especially if s is large.
- Sometimes also called SARMA.

**Special case:** ARMA $(0, 1)(1, 0)_{12}$ .

$$Y_t = \Phi Y_{t-12} + e_t - \theta e_{t-1}$$

which has

$$\gamma_1 = \Phi \gamma_{11} - \theta \sigma_e^2$$
  
 $\gamma_k = \Phi \gamma_{k-12} \quad \text{for } k \ge 2$ 

#### Hence:

$$\begin{array}{rcl} \gamma_0 & = & \frac{1+\theta^2}{1-\Phi^2} \ \sigma_{\rm e}^2 \\ & & \\ \rho_{12k} & = & \Phi^k & {\rm for} \ k \geq 1 \\ & & \\ \rho_{12k-1} & = & \rho_{12k+1} & = & -\frac{\theta}{1+\theta^2} \Phi^k & {\rm for} \ k = 0, 1, 2, \dots \end{array}$$

**Example:** ACF for  $\Phi = 0.75$  and  $\theta = \pm 0.4$ .





#### Seasonal Models

# Nonstationary Seasonal ARIMA Models

## Nonstationary seasonal ARIMA models

**Idea:** Analogous to differencing in nonstationary series, seasonal nonstationarity may be captured by *seasonal differences*.

$$\Delta_s = 1 - B^s$$
  
$$\Delta_s Y_t = Y_t - Y_{t-s}$$

The resulting series is then of length n - s.

**Example:** Seasonal random walk  $\{S_t\}$  plus independent noise.

$$Y_t = S_t + e_t$$
  
 $S_t = S_{t-s} + \varepsilon_t$ 

If  $\sigma_{\varepsilon} \ll \sigma_{e}$ ,  $\{S_{t}\}$  captures a slowly changing seasonal component.

## Nonstationary seasonal ARIMA models

**Nonstationarity:**  $Y_t$  inherits nonstationarity from  $S_t$ . This can be removed via seasonal differences.

$$\Delta_s Y_t = S_t + e_t - S_{t-s} - e_{t-s}$$
$$= \varepsilon_t + e_t - e_{t-s}$$

which is stationary and has the ACF of a seasonal  $MA(1)_s$  model (depending on ratio of noise variances).

**Analogously:** Consider an additional nonseasonal stochastic trend.

$$Y_t = M_t + S_t + e_t$$

$$S_t = S_{t-s} + \varepsilon_t$$

$$M_t = M_{t-1} + \xi_t$$

with  $\{e_t\}$ ,  $\{\varepsilon_t\}$ ,  $\{\xi_t\}$  mutually independent white noise series.

## Nonstationary seasonal ARIMA models

**Nonstationarity:** Can be removed by taking both seasonal and nonseasonal differences.

$$\Delta \Delta_{s} Y_{t} = \Delta (M_{t} - M_{t-s} + \varepsilon_{t} + e_{t} - e_{t-s}) 
= (\xi_{t} + \varepsilon_{t} + e_{t}) - (\varepsilon_{t-1} + e_{t-1}) - (\xi_{t-s} + e_{t-s}) + e_{t-s-1}$$

This process is stationary and has nonzero autocorrelations only at lags 1, s-1, s, s+1. ACF is equivalent to seasonal ARMA(0, 1)(0, 1) $_s$ .

**Definition:** Multiplicative seasonal ARIMA model with orders p, d, and q and seasonal orders P, D, and Q at seasonal lag s, denoted ARIMA(p, d, q)(P, D, Q) $_s$  for short.

$$\phi(B)\Phi(B)(1-B)^{d}(1-B^{s})^{D}Y_{t} = \theta(B)\Theta(B)e_{t}$$

**Note:** This can capture the structure of a wide range of empirical time series, often with just a few parameters.

#### Seasonal Models

**Approach:** Employ the same ideas as for nonseasonal models.

- Model specification: Inspect time series plot, ACF and PACF of suitably differenced series. Can also be accompanied by stationarity or (seasonal) unit root tests.
- Model fitting: Fit a preliminary (seasonal) ARIMA model.
- Diagnostic checking: Inspect (standardized) residuals (series, QQ plot, ACF, Ljung-Box tests, . . . ).

#### In R:

- diff(y, s) can also compute seasonal differences.
- arima() can also include seasonal orders.
- tsdiag() can be applied as before.

Illustration: Revisit AirPassengers data.











**Model fitting:** Employ seasonal ARIMA $(0, 1, 1)(0, 1, 1)_{12}$ .

**Model fitting:** Employ seasonal ARIMA $(0, 1, 1)(0, 1, 1)_{12}$ .







#### ACF of Residuals



#### p values for Ljung-Box statistic



Furthermore: The same model would be selected by an information-criteria-based approach, e.g., auto.arima(ap, d = 1, D = 1, approx = FALSE, stepwise = FALSE) or auto.arima(ap, d = 1, D = 1, approx = FALSE) etc.

#### **Summary:**

- ARIMA(0, 1, 1)(0, 1, 1)<sub>12</sub> model leads to satisfactory fit and has appealing simple interpretation.
- The model for this data was popularized by Box & Jenkins (1976) and is hence also called *airline model*.
- It is also found to yield satisfactory fits for many other time series.

#### Seasonal Models

## **Forecasting Seasonal Models**

**Again:** The same strategies for computing forecasts and associated standard errors can be used as in the nonseasonal case.

In R: As before, predict() or forecast().

**Example:** Seasonal  $AR(1)_{12}$ .

$$Y_t = \Phi Y_{t-12} + e_t$$

$$\widehat{Y}_t(\ell) = \Phi \widehat{Y}_t(\ell - 12)$$

$$= \Phi^{k+1} Y_{t+r-11}$$

where k is the integer part and r/12 is the fractional part of  $(\ell-1)/12$ .

The  $MA(\infty)$  weights are nonzero only for multiple lags of 12.

$$\psi_j \; = \; \left\{ egin{array}{ll} \Phi^{j/12} & {
m for} \, j=0,12,24, \ldots \ 0 & {
m otherwise} \end{array} 
ight.$$

**Hence:** With *k* defined as before.

$$Var(e_t(\ell)) = \left(\frac{1 - \Phi^{2k+2}}{1 - \Phi^2}\right) \sigma_e^2$$

**Example:** Seasonal  $MA(1)_{12}$  with intercept.

$$Y_t = \theta_0 + e_t - \Theta e_{t-12}$$
 $\widehat{Y}_t(1) = \theta_0 - \Theta e_{t-11}$ 
 $\widehat{Y}_t(2) = \theta_0 - \Theta e_{t-10}$ 
 $\vdots$ 
 $\widehat{Y}_t(12) = \theta_0 - \Theta e_t$ 
 $\widehat{Y}_t(\ell) = \theta_0 \text{ for } \ell > 12$ 

**Thus:** The MA( $\infty$ ) weights are simply  $\psi_0=1$ ,  $\psi_{12}=\Theta$ , and  $\psi_j=0$  otherwise. This yields

$$\mathsf{Var}(\mathsf{e}_t(\ell)) \ = \ \left\{ egin{array}{ll} \sigma_\mathsf{e}^2 & 1 \leq \ell \leq 12 \ (1 + \Theta^2)\sigma_\mathsf{e}^2 & \ell > 12 \end{array} 
ight.$$

**Example:** ARIMA $(0, 1, 1)(0, 1, 1)_{12}$  (airline model).

$$Y_t = Y_{t-1} + Y_{t-12} - Y_{t-13} + e_t - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}$$

Then, the forecasts combine properties of AR and MA forecasts:

and

$$\widehat{Y}_t(\ell) = \widehat{Y}_t(\ell-1) + \widehat{Y}_t(\ell-12) - \widehat{Y}_t(\ell-13)$$
 for  $\ell > 13$ 

#### Forecasts from ARIMA(0,1,1)(0,1,1)[12]

