## 0

## Digital Logic Design



Assignment # 02

Name: AOUN-HAIDER

1D: FA21-BSE-133

(8.5)

Minimize literals:

$$= M + my' + my + 0$$

Apply De-morgans lan

$$= aa'b' + ac + a'bb' + cc'$$

$$= (0)b' + ac + a'(0) + 0$$

$$=) ac$$

$$f$$
)  $a'bc + abc' + abc + a'bc'$ 

= 
$$(M'+H) y'z'+y$$
  
=>  $y'z+y$ 

b) 
$$n'y(n'+z') + x'y + xyz$$

$$= ny + x'y2' + x'y + ny2$$

$$= (n+x')y + x'y2' + xy2$$

| 10000 | 0 0   | F 00 |   |
|-------|-------|------|---|
| 0     | !   0 |      | 2 |
| 1     | 0 0   | 00   | 3 |
| 1     | 10    | 1    | 6 |
| 1     |       | (    | 1 |

Reduce to \$

number

minimur

literal

```
(n+y2) 4 (x+y'2')
   (n')(y'+z1) + (n1) (y+2)
   19/+ x/2/+ x/y+ x/2
   n'(y'+y) + x'2'+x'2
   2/+2/2/+2/2
                       BSE-133
    n'(1+2'+2)
  d) (w/+x)(w+y)(n/+y)(w+nyz)
= (w/a + w/y + 7w + 4y) (x/+y) (w+xy2)
   (1/w/y + w/y + 17/w + xwy + xx/y + x y) (w+xy2)
   ( N'W'y + W'y + TWY + MY) (w+ MY2)
    n'w/hy + nn/h'yz + ww/y + w'yz + nwy
    + 104/2+ 104+ 14/2
     Wy2+nwy+nwy2+ny2
   wxy2+ wy+ wxy2
e)
    wy'z'( x+x') + wy'
    wy'2'+wy'
```

(2.6) Draw circuit of simplified equations in 2.3. My 2+ My + My 2' -> simplified: Y c) n'y'<- (x+y)'(n'+y') f) (n'+2') (n+y'+2') 9) -F (simplified) (7+4)/ Florignal) F (simplified)

 $\frac{4}{2} \left( \frac{1}{4} + \frac{1}{2} \right) \left( \frac{1}{4} + \frac{1}{2} \right) = \text{orignal}$   $\frac{2}{4} + \frac{1}{4} \cdot \frac{1}{4} = \text{sim plified}$ 



Find Complement

Show that FF'= 0 & F+F'=1

$$F' = (x'y+y'')'$$
= (x'y)'(y'')' => (x+y')(y'+z)

$$\begin{aligned}
O &= F' = (n'y + yz')(x + y')(y' + z) \\
&= n'n'y + x'y'y' + nyz' + yy'z' \\
&= n'y'y + x'y'y' + nyz' + yy'z' \\
&= n'y'z'(y' + z) \\
&= n'y'z' + nyzz' => 0 + 0 = 0
\end{aligned}$$

$$F+F'=1$$

$$F+F'= \frac{1}{1}$$

$$F=\frac{1}{1}$$

 $E = F_{1} + F_{2} = \frac{1}{4} \frac{1}{4}$ 

= \(\ge (3) -> the common term in both Minterms.

(2.12)

Apply logical operators:

A = 11001010 , B= 10010011

a) AND b) OR c) XOR d) NOT A

|     | , |     | 00 1 | XOR  | NOTA     |
|-----|---|-----|------|------|----------|
|     | B | AND | OR   | XOIN | 100 1 11 |
| H   | 1 | 1   | 1    | Ð    | 0        |
| \ 1 | \ | 1   |      | 1    | 0        |
| 1   | 0 | 0   | 1 6  | 0    |          |
| 0   | 0 | 0   | l ĭ  | 1    |          |
| 0   |   | 0   | \ i  | 1 ;  | 0        |
| 1   | 0 | 0   | 10   | 1 6  |          |
| 0   | 0 | ! ! | \ i  | 1 0  | 1 0 1    |
| 1   | 1 | 1   | l i  | 1    |          |
| 10  |   |     | -    |      |          |

(2.14)

Implement boolean function

F= 7'y+ ny'+12

a) with AND, OR & inverter gate



With OR & inverter only

Apply De-morgan's law



c) With AND and inverter

(10



with NAND and invertor



AND andinvertes NOR & inverted F= n'y+ny/+xz = (M+y')'+ (n+y)+(x42') (2.16) Logical sum of all minterms = 1 a) prove when Emi=1 where i=3 Let input vasiables are x, y& z F ( M, y, 2) = n'y'z' + n'y'z + n'yz' + n'yz + My'2/+ My'2+ xy2/+ xy2 n'(y'z'+y'z'+y\*z'+yz)+般n'(y'z'+y'z+ (n/+x)(y/2/+y/2+y2/+y2) 9/2/+ 9/2+ 92/+42 y'(2'+2) + y(2'+2) (y'+y)(2'+z)

=

Emi has 2" no. of terms

- 1) Emi has (2") minterms with M, & 2" 2 will have my which can be factorize & remove.
- (2) Remaining 2n-1 terms will have (2n-1) terms with M2 & (27-1) minterms will have 1/2 which can also be fuctorize & remove. Continues this process until the last term is left and Mn+ Nn'=1

$$F = (\pi n + \pi n')G = 1$$

$$(2.13)$$

$$F = w' \pi y + w' \pi y' + w' \eta' + w \eta'$$

a) Truth table:

| W | 21 | у   | 2 | F    |
|---|----|-----|---|------|
| 0 | 0  | 900 | 0 | 00   |
|   | 0  | 0   |   | 1.1  |
| 0 | 0  |     | 0 | 0 2  |
| 0 | 0  |     |   |      |
| 0 |    | 0   | 0 | 0 4  |
| D |    | 0   |   | . 5  |
| 0 |    | -!- | 0 | 16   |
| 0 |    | -   |   | 1 7  |
| - | 0  | 0   | 0 | 0 2  |
|   | 0  | O   |   | 19   |
| T | 0  |     | 0 | 01   |
| 1 | 0  | 1   |   | 0 11 |
| 1 | 1  | 0   | 0 | 0 12 |
| T | 1  | 0   |   | 1 13 |
|   | 1  | 1   | 0 | 1 14 |
| 1 |    | 1   |   | 1 15 |

= E(1, 3, 5, 6, 7, 9, 13, 14,15) =>m,, m3, m5, m6, m7, ma, m13, m14, m15

Logic diagram: c) Simplify: w/xy+w/y2+wy/2+w/y/2+xy = (1+w)xy+w/y2+w/2+w/y/2 11y+wy2+wy/2+wy/2 ny+軍 2(w'y+wy'+w'y') ny+2(w'(y+y')+wy') ay + 2(w'+wy')

=> 1/4 W/2 + wy/2

 $\frac{2}{14}$   $\frac{14}{14}$   $\frac{14}{14}$ 

.

(2.20) Express the complement in Sum of minterms (E).

7) 
$$F(w, y, z) = \Sigma(1,5,7,11,12,14,15)$$
  
 $F'(w, y, z) = \Sigma(0,2,3,4,6,8,9,10,13)$ 

F(
$$x,y,z$$
) =  $\pi(a,y,5)$   
F'( $x,y,z$ ) =  $\pi(a,y,5)$   
=  $\Sigma(a,y,5)$   
(2.22)  
Covert to sop & pos:

a) (w+ny')(n+y'z)

= wx + wy'z + xy'+xy'z

= wx +wy'z +x(y'+y'z)

= wz + wy'z + x (y'(1+z))

= wx + wy'z + xy'z

SOP = wx + 4/(wz+ 2z)

= wx(y+y')(x+x')+wy'z(x+21')+ xy'z(w+w)

= (wx+y)(wx+y')(wx+z)(wx+z')+(wy'2+x)

(wy'z+z') (xy'z+w) (wxy'z +w')
= (w+y) (x+y') (w+y') (w+z) (x+z) (w+z')
(x+z') (w+z) (y'+x) (x+z) (x'+w) (x'+y') (x'+z)
(x+z') (w+z) (y'+w) (w+z) (w'+x) (w'+y') (w'+z)

```
(w+x)(w+y')(x+y')(x+z)
b) ny+ (w'+y'z')(z'+n'y')
 = xy + w'z' + w'x'y' + y'z'+ n'y'z'
    ny + w'z' + n'(w'y'+y'z') + y'z'
     29 + w'z'+ x'wy'+y'z'+y'z'
     219 + w'z' + y'(w'y'+ 2'+ n'z')
    ny + w'2' + g'(w'x' + 2'(1+ n'))
  = my + w'z' + y' (w'4'+2'2')
    4y + w'z' + w'z'y' + d'y'z'
  = xy(2+2')(w+w) + (w+y') (w+2') (x+2')
     (g' +2')
  = (x+x)+(y+x')(w+w')+(w+y')(w+x')
     (++2')(g'+2')
= (x+w'+y'z')(y+w'+y'z')(z'+x'y')
= wet (w'+x+y')(w'+x+z')(w'+y+y')(w'+y+z')
  ( n42')(y'+2')
(M'+x+y') (w'+x+2') w'(w'+y+2')(4'+2')(y'+2')(y'+2')(y'+2')(w'+y+2')(w'+y+2')(y'+2')(y'+2')
```

Find dual:

Using De-morgans rule

Again Applying same rule

Dual => [(M+y')(x'z'+x'y)]'

F' = Dual of F

(2.26)

Show Inat tive logic NAND gate is a let two

tive NAND) input 12B

| A | / B | Out put |
|---|-----|---------|
| 0 | 0   | 1       |
| 0 | 1   | 1       |
| 1 | 0   |         |
| 1 |     | 0       |
|   |     |         |

Hence, proved by outputs.

- ire NOR)
A B Output

0 0 0 0

BSE-193

1

(2.23) expression & truth table. Write boolean (9) (a(bcd)'e) y = a(kd)'e (bcd) for  $\alpha = 0$ (bcd)' a (bcd)'e 0 000 000000 0000 0000000

0

0

0

a=1 b d a (bed)'e (bcd) D aD(c+d+e) y, = aDk+dre) (b'(c+d+e)1)' - y = b'(cidie)p c+d+e Expression: y = a (c+d+e)

Expression:  $y_1 = a \oplus (c+d+e)$  $y_2 = b'(c+d+e)f$  for y = a (c+de) => a (c+d+e) y,
ab (c+d+e) 24= 8 8005 C+d+E d e 

BSE-133

| ya           | = b'(             | c+d            | +e) f                      | ,                                       | c+d+e                                   | y2<br>b/c+dee)f   |
|--------------|-------------------|----------------|----------------------------|-----------------------------------------|-----------------------------------------|-------------------|
| p 0000000000 | 000000011         |                | e 00 1 1 0 0 1 0 1 0 0 0 1 | b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | c+d+e                                   | b(c+dee)f         |
| 000000111111 | 1111100000000     | 00-11-00000111 | 10000000000000             | 111110000000000                         | 000111111111111111111111111111111111111 | -0-0-000000000000 |
|              | 0   1   1   1   1 | 000001111      | 0 0 0                      | 1                                       |                                         | 0000000           |

write in Sum of product formi (w+x+y)(1/4/4/21) = wx'+wy'+wz'+nn'+ny'+nz'+n'y+yy+yz' = ux'+ny'+uz'+xy'+xz'+xy+yz' = wx'(y+y')(z+z')+wy'(x+w')(z+z')+ wz'(m+n')(y+y')+ny'(w+w')(z+2')+ + x2'( w+w')(y-1y') + x'4(w+w')(z+2') +421( n+41)(w+w1) = wxy'z' + wx'yz+ wxy'z+ wxy'z+ wxyz' + wayy'z' + way 2 + way 2' + way 2' + way 2' + wxy2 + wxy2'+ wxy2'+ wxy2'+ wxy2' > wx'y'2'+ wx'y2 + wxy'2 + wxy2' + w'xy'2'

| Truth    | table:            | 0           | 23= Brow     |         |               | 1 (0176  | tc)', |
|----------|-------------------|-------------|--------------|---------|---------------|----------|-------|
| 00000111 | b 0 0 1 1 0 0 1 1 | 0 1 0 1 0 1 | abc 00000001 | 9+b+c   | 1 1 1 1 1 1 0 | 10000000 |       |
|          |                   | The         |              | BSE-133 |               |          |       |