Polinômios de Legendre

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi
 regi@mat.ufmg.br

26 de setembro de 2001

Proposição 1. Seja V um espaço vetorial com produto interno. Seja \mathcal{X} um subconjunto de \mathbb{V} de vetores ortogonais não nulos.

- (a) Então o conjunto \mathcal{X} é linearmente independente (L.I.).
- (b) Se V pertence ao espaço de todas as combinações lineares de elementos de \mathcal{X} , ou seja, se $V \in [\mathcal{X}]$ (espaço gerado por \mathcal{X}), então existem $W_1, \ldots, W_n \in \mathcal{X}$ tal que

$$V = \sum_{i=1}^{n} \frac{\langle V, W_i \rangle}{||W_i||^2} W_i.$$

Demonstração. (a) Sejam V_1, \ldots, V_k vetores quaisquer de \mathcal{X} . Considere a equação vetorial

$$x_1 V_1 + \ldots + x_k V_k = \bar{0} \,. \tag{1}$$

Fazendo o produto escalar de ambos os membros de (1) com V_i , $i=1,\ldots,k$ e aplicando as propriedades do produto escalar, obtemos

$$x_1 \langle V_1, V_i \rangle + \ldots + x_i \langle V_i, V_i \rangle + \ldots + x_k \langle V_k, V_i \rangle = 0.$$
 (2)

Mas, $\langle V_i, V_j \rangle = 0$, se $i \neq j$. Assim, de (2) obtemos que

$$x_i||V_i||^2=0.$$

Mas, como $V_i \neq \bar{0}$, então $||V_i|| \neq 0$ e assim $x_i = 0$, para $i = 1 \dots, k$. Portanto o conjunto \mathcal{X} é L.I.

(b) Seja $V \in [\mathcal{X}]$. Então existem vetores $W_1, \ldots, W_n \in \mathcal{X}$ e escalares $\alpha_1, \ldots, \alpha_n$ tais que

$$V = \sum_{i=1}^{n} \alpha_i W_i. \tag{3}$$

Fazendo o produto escalar de V com W_j , para $j=1,\ldots,n,$ obtemos que

$$\langle V, W_j \rangle = \left\langle \sum_{i=1}^n \alpha_i W_i, W_j \right\rangle = \sum_{i=1}^n \alpha_i \left\langle W_i, W_j \right\rangle = \alpha_j ||W_j||^2.$$

Assim,

$$\alpha_j = \frac{\langle V, W_j \rangle}{||W_j||^2}, \quad \text{para } j = 1, \dots, n.$$

Substituindo-se este valor de α_i em (3) obtemos o resultado.

Seja $\mathbb{V} = \mathcal{C}^0[-1,1]$ o conjunto das funções contínuas do intervalo [-1,1] em \mathbb{R} com o produto interno definido por

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt.$$

Vamos aplicar o processo de ortogonalização de Gram-Schmidt à base $\mathcal{B}_n = \{1, t, \dots, t^n\}$ do subespaço das funções polinomiais de grau menor ou igual a n, que podemos identificar com \mathcal{P}_n .

$$\begin{aligned} p_0(t) &=& 1, \\ p_1(t) &=& t - \left(\mathrm{proj}_{p_0} t \right)(t) = t - \frac{\langle t, p_0 \rangle}{||p_0||^2} p_0(t) = t - \frac{\int_{-1}^1 t p_0(t) dt}{\int_{-1}^1 (p_0(t))^2 dt} p_0(t) \\ &=& t - \frac{\int_{-1}^1 t dt}{\int_{-1}^1 dt} = t - 0 = t \\ p_2(t) &=& t^2 - \left(\mathrm{proj}_{p_0} t^2 \right)(t) - \left(\mathrm{proj}_{p_1} t^2 \right)(t) \\ &=& t^2 - \frac{\langle t^2, p_0 \rangle}{||p_0||^2} p_0(t) - \frac{\langle t^2, p_1 \rangle}{||p_1||^2} p_1(t) \\ &=& t^2 - \frac{\int_{-1}^1 t^2 p_0(t) dt}{\int_{-1}^1 (p_0(t))^2 dt} p_0(t) - \frac{\int_{-1}^1 t^2 p_1(t) dt}{\int_{-1}^1 (p_1(t))^2 dt} p_1(t) \\ &=& t^2 - \frac{\int_{-1}^1 t^2 dt}{\int_{-1}^1 t^2 t dt} - \frac{\int_{-1}^1 t^2 t dt}{\int_{-1}^1 t^2 dt} t = t^2 - \frac{2/3}{2} - 0 = t^2 - \frac{1}{3} \end{aligned}$$

Se continuarmos desta forma não encontraremos uma fórmula para todo $p_n(t)$. Vamos encontrar uma tal fórmula de outra maneira. Para isso defina

$$q_n(t) = \frac{d^n}{dt^n} (t^2 - 1)^n. (4)$$

(a) O conjunto $\{q_n \mid n = 0, 1, \ldots\}$ é ortogonal. Com efeito, se m < n, então

$$\langle q_n, q_m \rangle = \sum_{k=0}^m \alpha_k \langle q_n, t^k \rangle = \sum_{k=0}^m \alpha_k \int_{-1}^1 q_n(t) t^k dt = \sum_{k=0}^m \alpha_k 0 = 0,$$

pois se, $w_n(t) = (t^2 - 1)^n$, então $\frac{d^k w_n}{dt^k}$ se anula em $t = \pm 1$, para $k = 0, 1, \dots, n - 1$.

(b) Como dim $(\mathcal{P}_n) = n + 1$, então, pela Proposição 1 na página 1, q_0, \ldots, q_n formam uma base de \mathcal{P}_n . Assim, se $p \in \mathcal{P}_{n-1}$, então

$$\langle p, q_n \rangle = \left\langle \sum_{k=0}^{n-1} \alpha_k q_k, q_n \right\rangle = \sum_{k=0}^{n-1} \alpha_k \langle q_k, q_n \rangle = 0.$$
 (5)

Como, também, p_0, \ldots, p_n formam uma base ortogonal de \mathcal{P}_n , então pela Proposição 1 na página 1 temos que

$$q_n = \sum_{k=1}^n \frac{\langle q_n, p_k \rangle}{||p_k||^2} p_k = \frac{\langle q_n, p_n \rangle}{||p_n||^2} p_n.$$

Ou seja, q_n é um múltiplo escalar de p_n . Comparando os coeficientes dos termos de grau n em p_n e q_n concluimos que

$$p_n = \frac{n!}{(2n)!} q_n.$$

Portanto os polinômios p_n que são obtidos aplicando-se o processo de ortogonalização de Gram-Schmidt aos polinômios $\{1, t, t^2, \dots, t^n, \dots\}$ são dados por

$$p_n(t) = \frac{n!}{(2n)!} \frac{d^n}{dt^n} (t^2 - 1)^n.$$
(6)

Esta é conhecida como fórmula de Rodrigues.

Vamos, agora, calcular $||p_n||$. Seja $w_n(t) = (t^2 - 1)^n$. Então $\frac{d^k w_n}{dt^k}$ se anula em $t = \pm 1$, para $k = 0, 1, \ldots, n-1$. Por isso, integrando-se por partes várias vezes temos que

$$\int_{-1}^{1} \frac{d^{n} w_{n}}{dt^{n}} \frac{d^{n} w_{n}}{dt^{n}} dt = (2n)! \int_{-1}^{1} (1 - t^{2})^{n} dt = (2n)! \int_{-1}^{1} (1 - t)^{n} (1 + t)^{n} dt = \frac{(n!)^{2}}{2n + 1} 2^{2n + 1}.$$

Usando este resultado e (6) obtemos

$$\langle p_n, p_n \rangle = \left(\frac{n!}{(2n)!}\right)^2 \int_{-1}^1 \frac{d^n w_n}{dt^n} \frac{d^n w_n}{dt^n} dt = \left(\frac{n!}{(2n)!}\right)^2 \frac{(n!)^2}{2n+1} 2^{2n+1} = \frac{2^{2n+1}(n!)^4}{(2n+1)[(2n)!]^2}$$

Assim,

$$||p_n|| = \sqrt{\langle p_n, p_n \rangle} = \frac{\sqrt{2} \, 2^n (n!)^2}{\sqrt{2n+1} (2n)!}.$$
 (7)

Dividindo p_n por $\frac{2^n(n!)^2}{(2n)!}$, obtemos um polinômio com norma mais favorável

$$P_n(t) = \frac{(2n)!}{2^n (n!)^2} p_n(t) = \frac{1}{2^n n!} \frac{d^n}{dt^n} (t^2 - 1)^n$$
(8)

que possui norma dada por

$$||P_n|| = \sqrt{\frac{2}{2n+1}}. (9)$$

Os polinômios P_n , para $n=0,1,2,\ldots$ são chamados **polinômios de Legendre** e aparecem também no estudo de certas equações diferenciais.

Figura 1: Polinômios de Legendre $P_n(t),$ para $n=1,\dots,6$

$p_0(t) = 1$	$P_0(t) = 1$
$p_1(t) = t$	$P_1(t) = t$
$p_2(t) = t^2 - \frac{1}{3}$	$P_2(t) = \frac{3}{2}t^2 - \frac{1}{2}$
$p_3(t) = t^3 - \frac{3}{5}t$	$P_3(t) = \frac{5}{2}t^3 - \frac{3}{2}t$
$p_4(t) = t^4 - \frac{6}{7}t^2 + \frac{3}{35}$	$P_4(t) = \frac{35}{8}t^4 - \frac{15}{4}t^2 + \frac{3}{8}$
$p_5(t) = t^5 - \frac{10}{9}t^3 + \frac{5}{21}t$	$P_5(t) = \frac{63}{8}, t^5 - \frac{35}{4}t^3 + \frac{15}{8}t$
$p_6(t) = t^6 - \frac{15}{11}t^4 + \frac{5}{11}t^2 - \frac{5}{231}$	$P_6(t) = \frac{231}{16}t^6 - \frac{315}{16}t^4 + \frac{105}{16}t^2 - \frac{5}{16}$

Exercícios

1. Seja $\mathbb{V} = \mathcal{C}^0[-1,1]$ o conjunto das funções contínuas do intervalo [-1,1] em \mathbb{R} com o produto interno definido por

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt.$$

Prove a seguinte fórmula de recorrência para os polinômios $p_n(t)$ que são obtidos aplicando-se o processo de ortogonalização de Gram-Schmidt aos polinômios $\{1, t, t^2, \ldots, t^n\}$:

$$p_{n+1}(t) = tp_n(t) - \frac{n^2}{(2n+1)(2n-1)}p_{n-1}(t).$$

Para isso siga os seguintes passos:

(a) Pela Proposição 1 na página 1, $tp_n(t)$ pode ser escrito em termos de p_0, \ldots, p_{n+1} .

$$tp_n(t) = \sum_{k=0}^{n+1} \alpha_{nk} p_k(t),$$
 (10)

onde
$$\alpha_{nk} = \frac{\langle tp_n(t), p_k(t) \rangle}{||p_k||^2} = \frac{\langle p_n(t), tp_k(t) \rangle}{||p_k||^2}.$$

Os coeficientes $\alpha_{nk} = 0$, para k < n-1, pois neste caso $tp_k(t) \in \mathcal{P}_{n-1}$ e da mesma forma que em (5) p_n é ortogonal a todo polinômio de \mathcal{P}_{n-1} . O coeficiente $\alpha_{nn} = 0$, pois $t(p_n(t))^2$ é uma função ímpar. O coeficiente $\alpha_{n(n+1)} = 1$, pois os coeficientes de grau n+1 nos dois membros de (10) são iguais a 1. Mostre que

$$\alpha_{n(n-1)} = \frac{\langle p_n(t), t p_{n-1}(t) \rangle}{||p_{n-1}||^2} = \frac{\alpha_{(n-1)n} ||p_n||^2}{||p_{n-1}||^2} = \frac{||p_n||^2}{||p_{n-1}||^2} = \frac{n^2}{(2n+1)(2n-1)}$$
(11)

- (b) Substituindo-se os valores de α_{nk} encontrados no item anterior, em (10), obtenha a fórmula de recorrência que dá o polinômio p_{n+1} em função de p_n e p_{n-1}
- 2. Seguindo os mesmos passos do exercício anterior mostre a seguinte fórmula de recorrência para os polinômios de Legendre:

$$P_{n+1}(t) = \frac{2n+1}{n+1} t P_n(t) - \frac{n}{n+1} P_{n-1}(t)$$

3. Seja $\mathbb{V} = \mathcal{C}^0[a, b]$ o conjunto das funções contínuas do intervalo [a, b] em \mathbb{R} com o produto interno definido por

$$\langle f, g \rangle = \frac{2}{b-a} \int_a^b f(t)g(t)dt.$$

- (a) Mostre que os polinômios $Q_n(t) = P_n(\frac{2t-a-b}{b-a})$ são ortogonais e que $||Q_n|| = \sqrt{\frac{2}{2n+1}}$, em que $P_n(t)$ são os polinômios de Legendre, para n = 0, 1, 2, ...
- (b) Mostre que o conjunto

$$1/\sqrt{2}$$
, $\cos\frac{2\pi t}{b-a}$, $\sin\frac{2\pi t}{b-a}$, ..., $\cos\frac{2n\pi t}{b-a}$, $\sin\frac{2n\pi t}{b-a}$, ...

é ortonormal.

Referências

- [1] Donald Kreider, Donald R. Ostberg, Robert C. Kuller, and Fred W. Perkins. *Introdução à Análise Linear*. Ao Livro Técnico S.A., Rio de Janeiro, 1972.
- [2] Erwin Kreiszig. *Matemática Superior*. Livros Técnicos e Científicos Editora S.A., Rio de Janeiro, 2a. edition, 1985.
- [3] Reginaldo J. Santos. Geometria Analítica e Álgebra Linear. Imprensa Universitária da UFMG, Belo Horizonte, 2000.