The University of Queensland School of Earth and Environmental Sciences

Geophysical Imaging with Finite Elements and Python

Lutz Gross

E-mail: l.gross@uq.edu.au

FEM & Python 1/20

China Philippine Sea South Philippines China Sea Philippines Thailand Guit of Troisland Malaysia Indonesia Banda Sea Arafura Sea Coral Sea Coral Sea

Where is Home?

Kooringal

Amity Point

Stradbroke

FEM & Python 2/20

Course Outline

- AIM: Hands-on introduction to
 - Python
 - Finite element method and application in geophysics
 - Concepts of inversion
- Content:

Week 1 (3/11): Introduction to python (incl. practical with Jupyter notebooks)

Week 2 (10/11): More on python programming (incl. practical with Jupyter notebooks)

Week 3 (17/11): Introduction to the Finite Element Method (FEM)

Week 4 (24/11): FEM modeling in geophysics using esys-escript in python

Week 5 (1/12): Parameter Fitting (incl. practical with Jupyter notebooks)

Week 6 (8/12): The Concept of Inversion

Week 7 (15/2): FEM-based Inversion in Geophysics

Week 8 (22/12): Advanced Inversion Techniques

FEM & Python 3/20

We use Open Source software

- This is software with source code that anyone can inspect, modify, and enhance
 - But watch out for the license: Apache, GPL, etc.
- Developments are carried by communities
 - Need help: https://www.python.org/about/help/
 - Get help and help others!
- All documentation is on-line:
 - Not happy? Fix it!

FEM & Python 4/20

Software for the Course

- What software do I need for the course?
 - Python3
 - Arrays: Numpy
 - Visualization: Matplotlib
 - numerical algorithms: Scipy
 - FEM solver: esys-escript
- Jupyter notebook
 - Edit & run scripts via Web-based server
 - Integrating text & code

FEM & Python 5/20

Beyond Jupyter Notebook

- Integrated Development Environment (IDE)
 - PyCharm
 - PyDev with Eclipse
 - Spyder IDE
 - Python IDLE
 - etc

FEM & Python 6/20

Course Material on GitHub

FEM & Python 7/20

Software Access

A) Python distribution anaconda

- Install via https://www.anaconda.com/
- Includes many python modules
- Limited esys-escript support :-(
- B) install a web-server
 - Via a Docker virtual machine
 - See notes distributed

FEM & Python 8/20

C) use cloud server

- Visit https://esys-escript.github.io/
- Click on Jupyter logo

esys-escript

tool for implementing mathematical models in python using the structures it is very easy to use and scripts can run on desktop of t changes. Application areas for escript include earth mantle cor media flow, reactive transport, plate subduction, erosion, and ts

esys-escript online in a Jupyter Notebook. Choose your own u

Click here

asy-to-use environment for implementing mathematical models

FEM & Python 9/20

Create An Account

- Don't forget your password!
- Download your data at one point ...

FEM & Python 10/20

Navigate to Course Material

With preloaded course material

FEM & Python 11/20

After login

FEM & Python 12/20

Jupyter notebook

- web application → use your favorite browser
 - contain live python code
 - includes narrative text
 - contains equations
 - includes visualizations
 - to create and share documents
- See https://jupyter.org/

FEM & Python 13/20

A jupyter notebook

- is two things:
 - A document containing text and python code
 - Extension: ipynb
 - A session
 - to render the text
 - to run the code/sections of the code

FEM & Python 14/20

notebook page

Cells after 'run'

Matplotlib output is integrated

```
Out[14]: 2.8284271247461907

# Matplotlib

graphical output is shown in the notebook after run:

In []: 
import numpy as np
import matplotlib.pyplot as plt

# create 100 points from 0 to 2 (including 2)

4 z = np.linspace(0, 2, 100)

5 plt.plot(z, z, label='linear')
6 plt.plot(z, z, label='quadratic')
7 plt.plot(z, z**2, label='cubic')
8 plt.xlabel('z label')
9 plt.ylabel('y label')
10 plt.title("Simple Plot")
11 plt.legend()
12 plt.show()
```

Matplotlib

graphical output is shown in the notebook after run:

FEM & Python 17/20

File Menu

FEM & Python 18/20

Example report

FEM & Python 19/20

And more

- 'Edit' → copy & past & split & merge
- 'Insert' → add new cell
- 'Run' → run all cells, run cells above/below, ...
- For markdown text see for instance:
 - https://www.datacamp.com/community/tutorials/ markdown-in-jupyter-notebook

FEM & Python 20/20