WELCOME TO PSY 653 LAB!

MODULE 02:

ORTHOGONAL CONTRASTS, POLYNOMIAL CONTRASTS AND MODERATED REGRESSION

*Thanks to Gemma Wallace for her help with these slides

OBJECTIVES

- Part 1: Orthogonal contrasts
- Part 2: Polynomial contrasts
- Part 3: Moderated regression

PART 1: ORTHOGONAL CONTRASTS

A Quick Review of Planned Contrasts

- Contrasts test a specific hypothesis related to group means based upon some prior information about the groups.
- Contrasts assign a weight to each of the groups in your predictor variable
 - Weights should add up to zero
 - Assigning a weight of zero means that group will not be included in the contrast
 - Order of the weights corresponds to order of groups in predictor variable

AN EXAMPLE OF A PLANNED CONTRAST SET-UP:

	Control	Drug A	Drug B
Contrast 1	-1	1/2	1/2
Contrast 2	0	-1	1

- Contrast 1 tests whether or not the control group differs from the groups that received a drug treatment
- Contrast 2 tests whether or not the two drugs differ in their effect.

ORTHOGONAL CONTRASTS

A set of contrasts is orthogonal if:

- The number of contrasts = df (number of groups -1)
- You have at least 3 groups to compare
- Two contrasts are *orthogonal* if the pairwise products of the corresponding coefficients for each term sum to zero:

	Control	Drug A	Drug B
Contrast 1	-1	1/2	1/2
Contrast 2	0	-1	1

These contrasts are orthogonal because: (-1 *0) + (1/2 * -1) + (1/2 * 1) = 0

RELEVANT FORMULAS

We can use orthogonal contrasts to get a lot of information about a dataset, even if we don't have a full ANOVA table!

Sums of Squares for each contrast:

$$SS_{\text{contrast}} = \frac{n(\Sigma C\overline{Y}_{j})^{2}}{\Sigma C_{j}^{2}}$$

Sum of Squares Treatments:

$$SS_{treatments} = SS_{contrast1} + SS_{contrast2} + ...SS_{contrastk}$$

Sum of Squares Total:

$$SS_{total} = SS_{contrast1} + SS_{contrast2} + ...SS_{contrastk} + SS_{error}$$

	Mean	Contrast 1	Contrast 2
Group 1	35	-1	1
Group 2	40	-1	-1
Group 3	45	2	0

Note: We could use different contrast weights, depending on our specific research question and a priori information.

N for this study was 90 (i.e., 30 subjects/cell in this design)

$$SS_{total} = 5000$$

	Mean	Contrast 1	Contrast 2
Group 1	35	-1	1
Group 2	40	-1	-1
Group 3	45	2	0

Contrast 1 tests whether the mean of Y for treatment group 3 was significantly different than the means of the other two groups.

Contrast 2 tests the hypothesis that the mean of group 1 was significantly different than the mean of group 2.

	Mean	Contrast 1	Contrast 2
Group 1	35	-1	1
Group 2	40	-1	-1
Group 3	45	2	0

In this demo we walk through how to test the hypothesis that the mean of group 3 was significantly different from the mean of participants in groups 1 and 2 (i.e., testing the significance of Contrast 1)

You will calculate contrast 2 by yourself on the practice activity ©

1) Calculate Sums of Squares for the contrast

	Mean	Contrast 1
Group 1	35	-1
Group 2	40	-1
Group 3	45	2

$$SS_{\text{contrast}} = \frac{n(\Sigma C\overline{Y}_{j})^{2}}{\Sigma C_{j}^{2}}$$

$$N/cell = 30$$

$$SS_{contrast1} = (30 * ((35 * -1) + (40 * -1) + (45 * 2))^2) / ((-1)^2 + (-1)^2 + (2)^2)$$
 $SS_{contrast1} = (30 * (15)^2)/6$
 $SS_{contrast1} = (30 * 225)/6$
 $SS_{contrast1} = 6750/6 = 1125$

2) CALCULATE ETA-SQUARED FOR CONTRAST

Note: if you are not given SS_{total} you can calculate this from the SD and mean of Y!

$$SS_{total} = SS_{contrast1} + SS_{contrast2} + SS_{error} = 5000$$
 (this was given to us)

$$Eta_{contrast1}^2 = 1125/5000 = 0.225$$

22.5% variance in Y explained by this contrast

2) CALCULATE ETA-SQUARED FOR CONTRAST

$$SS_{total} = SS_{contrast1} + SS_{contrast2} + SS_{error}$$

$$Eta^{2}_{contrast1} = 1125/5000 = 0.225$$

1125 is the SS_{contrast} from the previous -slide

5000 is the SS_{total} that was given to us beforehand

22.5% variance in Y explained by this contrast

RESOURCES ON ORTHOGONAL CONTRASTS

<u>http://www.jds-online.com/files/JDS-563.pdf</u>

PART 2: POLYNOMIAL CONTRASTS

WHAT ARE ORTHOGONAL POLYNOMIAL CONTRASTS (AKA TREND CONTRASTS) AND WHY USE THEM?

Allow us to evaluate non-linear relations between a categorical predictor and an outcome

- × With continuous predictors we can model these by squaring X to test a quadratic effect, cubing X to test a cubic effect, etc.
- × With categorical predictors, we can use specific polynomial contrasts to test different effects. These contrast levels can be found online, or in the table on slide 23!

This type of coding system should be used only with an ordinal variable in which the levels are equally spaced

EFFECTS WE CAN EVALUATE WITH MORE THAN 3 LEVELS OF A CATEGORICAL PREDICTOR:

Linear: If we increase the dose level the Y values will increase, and we can select the best level based on the highest dose. Y = a + bX

Quadratic: If we increase the dose level the Y values will be increased until certain dose after that the level of dosage will have a negative effect. $Y = a + b_1X + b_2X^2$

Cubic: The dosage would increase Y values after certain dosage and then decrease and if we increase more the dosage level, the Y values will increase. $Y = a + b_1X + b_2X^2 + b_3X^3$

CREATE A NEW R-PROJECT AND R-NOTEBOOK!

Download the "cogtest.csv" file from Canvas and save it into your R-project file

Load libraries

```
11 * ## Load libraries
12 * ```{r}
13  library(psych)
14  library(tidyverse)
15  library(olsrr)
16  ```
```

NEW DATASET DESCRIPTION

Researchers were interested in the effect of time spent in practice on the performance of a visual discrimination task. Subjects were randomly assigned to different levels of practice, following which a test of visual discrimination is administered, and the number of correct responses is recorded for each subject. 40 subjects were randomly assigned to practice 0 minutes, 2 minutes, 4 minutes, 6 minutes, 8 minutes, 10 minutes, 12 minutes, or 14 minutes.

There are two variables:

practice = minutes spent practicing, this
was assigned by the experimenter

score = the number of correct answers on the test

```
96 - cog <- read_csv("cogtest.csv")

98

Parsed with column specification:
cols(
   subject = col_double(),
   practice = col_double(),
   score = col_double()
)
```

FILTER PRACTICE TO ONLY 4 CONDITIONS

```
100 - # Filter prectice
101 - ```{r}
102 cog <- filter(cog, practice == 0 | practice == 4 | practice == 8 | practice == 12)
103 ```</pre>
```

We selected four evenly spaced conditions to test non-linear effects between practice and score

We could include more than four levels of practice if we wanted to, but we use four levels in this example for a simpler interpretation

The slope appears to become less steep as practice time increases. Since there may be a curve to the regression line, we should test for more than a linear effect. Since we have four levels of our categorical variable, we can test both a quadratic and cubic effect.

The coefficients used for calculating sums of squares are:

		Treatment totals						
Number of	Degree of							Divisor
treatment	polynomial	T1	T2	T3	T4	T5	T6	$k = \sum c_i^2$
2	1	-1	+1					2
3	1	-1	0	+1				2
	2	+1	-2	+1				6
4	1	2	1	. 1				20
4	1	-3	-1	+1	+3			20
	2	+1	-1	-1	+1			4
	3	-1	+3	-3	+1			20
5	1	-2	-1	0	+1	+2		10
	2	+2	-1	-2	-1	+2		14
	3	-1	+2	0	-2	+1		10
	4	+1	-4	+6	-4	+1		70
6	1	-5	-3	-1	+1	+3	+5	70
	2	+5	-1	-4	-4	-1	+5	84
	3	-5	+7	+4	-4	-7	+5	180
	4	+1	-3	+2	+2	-3	+1	28
	5	-1	+5	-10	+10	-5	+1	252

× We have 4 treatment levels

https://www.ndsu.edu/faculty/horsley/Polycnst.pdf

The coefficie	nts used for ca	alculati	ing sur	ns of s	quares	are:			
		Treatment totals							
Number of treatment	Degree of polynomial	T1	T2	Т3	T4	T5	Т6	Divisor $k = \sum c_i^2$	
2	1	-1	+1					2	
3	1 2	-1 +1	0 -2	+1 +1				2 6	7
4	1 2 3	-3 +1	-1 -1 +3	+1 -1 -3	+3 +1 +1			20 4 20	Linear Contrasts
	3	-1	+3	-3	⊤1			20	Quadratic contrasts
5	1	-2	-1	0	+1	+2		10	Cubic contrasts
	2	+2	-1	-2	-1	+2		14	
	3	-1	+2	0	-2	+1		10	
	4	+1	-4	+6	-4	+1		70	
6	1	-5	-3	-1	+1	+3	+5	70	
	2	+5	-1	-4	-4	-1	+5	84	
	3	-5	+7	+4	-4	-7	+5	180	
	4	+1	-3	+2	+2	-3	+1	28	
	5	-1	+5	-10	+10	-5	+1	252	

https://www.ndsu.edu/faculty/horsley/Polycnst.pdf

```
```{r}
cog <- mutate(cog,
 linear = ifelse(practice == 0, -3, NA),
 linear = ifelse(practice == 4, -1, linear),
 linear = ifelse(practice == 8, 1, linear),
 linear = ifelse(practice == 12, 3, linear),
 quadratic = ifelse(practice == 0, 1, NA),
 quadratic = ifelse(practice == 4, -1, quadratic),
 quadratic = ifelse(practice == 8, -1, quadratic),
 quadratic = ifelse(practice == 12, 1, quadratic),
 cubic = ifelse(practice == 0, -1, NA),
 cubic = ifelse(practice == 4, 3, cubic),
 cubic = ifelse(practice == 8, -3, cubic),
 cubic = ifelse(practice == 12, 1, cubic)
```



All of these contrasts come from the table on the previous slide!

We created three new variables:

<u>linear</u> specifies contrasts for testing a linear effect <u>quadratic</u> specifies contrasts for testing a quadratic effect <u>cubic</u> specifies contrasts for testing a cubic effect

### STEP 1: REGRESS SCORE ON LINEAR EFFECT

```
142 m3 <- lm(score ~ linear, data = cog)
 ols_regress(m3)
 Model Summary
 0.953
 2.635
 0.909
 Coef. Var
 17.400
 R-Squared
 Adj. R-Squared
 6.943
 Pred R-Squared
 2.207
 RMSE: Root Mean Square Error
 MSE: Mean Square Error
 MAE: Mean Absolute Error
 ANOVA
 Sum of
 Squares
 Mean Square
 Regression
 1240.975
 1240.975
 178.727
 0.0000
 Residual
 124.981
 6.943
 1365.957
 Total
 Parameter Estimates
 Std. Beta
 0.000
 13.906
 15.144
 0.589
 25.702
 (Intercept)
 4.076
 3.523
 linear
 0.264
 0.953
 13.369
 0.000
```

The model testing the linear effect between practice and score explained 90.9% of the variance in score, and the linear trend was statistically significant at p<0.001.

This model fits the data pretty well, but since we observed a potential curved relationship when we plotted the data, there could be a better way to examine this relationship.

Evidence of linear effect

### STEP 2: REGRESS SCORE ON LINEAR & QUADRATIC EFFECT

effect

```
m4 <- lm(score ~ linear + quadratic, data = cog)
 ols_regress(m4)
148
 Model Summary
 RMSE
 0.990
 1.274
 R-Squared
 0.980
 Coef. Var
 8.411
 Adj. R-Squared
 0.977
 1.623
 Pred R-Squared
 0.972
 MAE
 0.944
 RMSE: Root Mean Square Error
 MSE: Mean Square Error
 MAE: Mean Absolute Error
 ANOVA
 Sum of
 Squares
 Mean Square
 1338.373
 669.187
 Regression
 412.425
 0.0000
 Residual
 27.584
 17
 1.623
 Total
 1365.957
 Parameter Estimates
 Std. Beta
 model
 Std. Error
 upper
 (Intercept)
 15.144
 0.285
 53.168
 0.000
 14.543
 15.745
 linear
 3.523
 0.127
 0.953
 27.655
 3.254
 3.791
 0.000
 0.285
 -0.267
 0.000
 -2.808
 quadratic
 -2.207
 -7.748
 -1.606
 Evidence of quadratic
```

The model testing the linear and quadratic effects between practice and score explained 98.0% of the variance in score, which is 7.1% higher than the model that only tested the linear relation.

The quadratic term is statistically significant, indicating that there is a substantial curve to the relation between practice and score (i.e., it's not linear). We need to maintain the quadratic term in the model.

### STEP 3: REGRESS SCORE ON LINEAR, QUADRATIC & CUBIC EFFECT

```
155 m5 <- lm(score ~ linear + quadratic + cubic, data = cog)
 ols_regress(m5)
 Model Summary
 0.990
 1.309
 R-Squared
 8.641
 0.980
 Coef. Var
 0.976
 Adj. R-Squared
 1.712
 Pred R-Squared
 0.969
 0.954
 RMSE: Root Mean Square Error
 MSE: Mean Square Error
 MAE: Mean Absolute Error
 ANOVA
 Sum of
 Squares
 Mean Square
 Sig.
 1338.559
 446.186
 260.572
 0.0000
 Regression
 Residual
 27.397
 16
 1.712
 1365.957
 19
 Total
 Parameter Estimates
 Std. Error
 upper
 (Intercept)
 15.144
 0.293
 51.755
 0.000
 14.524
 15.764
 linear
 3.523
 0.131
 0.953
 26.921
 0.000
 3.245
 3.800
 quadratic
 -2.207
 0.293
 -0.267
 -7.542
 0.000
 -2.827
 -1.586
 cubic
```

We tested the cubic term to determine if there is a second bend to the relationship between practice and score. Since we have at least four levels of our categorical predictor, we can test the cubic effect.

This model explains the same amount of variance in score as the previous model that only included the linear and quadratic effects (i.e., adding the cubic effect does not increase the explanatory power of the model).

The cubic term is not significant, indicating that there is not a second bend to the relationship. **Therefore, the quadratic** model is the best fit for these data.

No evidence of cubic effect

## ADDITIONAL RESOURCES ON CATEGORICAL VARIABLE CODING SYSTEMS:

- x https://www.researchgate.net/post/Linear quadratic and cubic polynomial contrasts
- x https://www.ndsu.edu/faculty/horsley/Polycnst.pdf

## PART 3: MODERATED REGRESSION

### What is Moderation?

- A moderator is a variable that changes (i.e., moderates) the relationship between two (or more) other variables
- Moderation models are used to determine if the magnitude and/or direction of a certain regression slope varies as a function of some third variable



### What is moderation?



An interaction term = the predicted difference in the effect of x on y for a one-unit increase in z

(i.e., how the simple slope of x on y changes as z increases)

What does an interaction (aka moderation) effect look like?



Note: crossed lines would also indicate an interaction



## CREATE A NEW R-NOTEBOOK!

Download the "moderation\_demo.csv" file from Canvas and save it into your R-project file

### **Load libraries**

```
11 * ## Load libraries
12 * ```{r}
13 library(psych)
14 library(tidyverse)
15 library(olsrr)
16 ```
```

### Read in Data

```
18 - ## Read in data
19 • ```{r}
 dat <- read_csv("moderation_demo.csv")</pre>
21
 Parsed with column specification:
 cols(
 att1 = col_double(),
 att2 = col_double(),
 att3 = col_double(),
 att4 = col_double(),
 att5 = col_double(),
 group1 = col_double(),
 group2 = col_double(),
 out1 = col_double(),
 out2 = col_double(),
 out3 = col_double(),
 out4 = col_double()
```

## Calculate descriptives

This is a simulated dataset (i.e., the variables don't have specific meaning)

```
23 * ## Get descriptives
24 * ```{r, rows.print = 11}
25 describe(dat)
26
```

								ž.	⇒ ×
	vars <dbl></dbl>	<b>n</b> <dbl></dbl>	mean <db ></db >	<b>sd</b> <dbl></dbl>	median <dbl></dbl>	trimmed <dbl></dbl>	mad <dbl></dbl>	min <dbl></dbl>	max <dbl> ▶</dbl>
att1	1	692	1.14	1.52	0	0.88	0.00	0	9
att2	2	692	1.94	0.88	2	1.88	1.48	1	9
att3	3	692	1.48	1.44	1	1.30	1.48	0	9
att4	4	692	1.17	1.39	1	0.98	1.48	0	9
att5	5	692	1.26	1.51	1	1.06	1.48	0	9
group1	6	692	2.58	1.17	2	2.50	1.48	1	9
group2	7	692	1.59	0.49	2	1.62	0.00	1	2
out1	8	692	1.39	1.41	2	1.32	0.00	0	9
out2	9	692	1.21	1.55	1	0.97	1.48	0	9
out3	10	692	1.38	1.43	2	1.30	0.00	0	9
out4	11	692	1.39	1.48	2	1.29	0.00	0	9

<sup>1-11</sup> of 11 rows | 1-10 of 13 columns

#### Our variables of interest

1-11 of 11 rows | 1-10 of 13 columns

```
23 - ## Get descriptives
24 · ```{r, rows.print = 11}
 describe(dat)
 median
 trimmed
 sd
 mad
 min
 max

<dbl> ▶
 vars
 mean
 n
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
 att1
 692
 1.14
 1.52
 0.88
 0.00
 0
 0
 9
 att3
 3
 1.48
 1.44
 1.30
 1.48
 9
 692
 0
 Predictors
 Outcome
 11
 692
 1.39
 1.48
 1.29
 0.00
 out4
 0
```

## Create the cross-product of the two predictors

```
34 * ## Create the cross product of att1 & att3
35 * ```{r}
36 dat <- mutate(dat, att1att3 = att1*att3)
37</pre>
```

The cross-product is the interaction term. We'll include this as an additional predictor in the regression model.

## Create the cross product

```
34 * ## Create the cross product of att1 & att3
35 * ```{r}
36 dat <- mutate(dat, att1att3 = att1*att3)
37</pre>
```

^	att1 <sup>‡</sup>	att3 <sup>‡</sup>	att1att3
1	3	1	3
2	0	0	0
3	3	2	6
4	0	1	0
5	0	0	0
6	4	0	0
7	0	1	0
8	0	1	0
9	1	2	2
10	0	2	0
11	2	1	2
12	0	2	0
13	2	0	0
14	0	2	0
15	2	3	6
16	2	2	4

#### Run the main effects model

This is just a regular multiple linear regression. We first want to examine the main effects between each predictor and the outcome before adding the interaction term.

## Main effects model results

# Model Summary R 0.453 RMSE 1.317 R-Squared 0.206 Coef. Var 94.839 Adj. R-Squared 0.203 MSE 1.735

MAE

0.905

0.179

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

Pred R-Squared

#### ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	309.277 1195.156 1504.432	2 689 691	154.638 1.735	89.148	0.0000

#### Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept) att1 att3	0.655 0.049 0.458	0.080 0.033 0.035	0.050 0.448	8.185 1.480 13.190	0.000 0.139 0.000	0.498 -0.016 0.390	0.812 0.114 0.527

## Run the same model with the interaction term (aka a Moderated Regression)

```
49 - ### Interaction model
50 - ```{r}
51 modINT <- lm(out4 ~ att1 + att3 + att1att3 , data = dat)
52 ols_regress(modINT)
53</pre>
```

att1att3 is the cross-product variable we made earlier It represents att1\*att3

	Model Sui	y	
R	0.462	RMSE	1.311
R-Squared	0.213	Coef. Var	94.435
Adj. R-Squared	0.210	MSE	1.720
Pred R-Squared	0.176	MAE	0.907

Model results with interaction term

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

#### ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	321.154 1183.278 1504.432	3 688 691	107.051 1.720	62.243	0.0000

Simple Slopes

Interaction

#### Parameter Estimates

model	Beta	Std. Error	Std. Beta	<u>t</u>	Sig	lower	upper
(Intercept)	0.757	0.089		8.539	0.000	0.583	0.931
att1	-0.032	0.045	-0.033	-0.716	0.474	-0.121	0.056
att3	0.393	0.043	0.384	9.210	0.000	0.309	0.477
att1att3	0.049	0.019	0.140	2.628	0.009	0.012	0.085

## Interpreting the moderated regression

	Model Sui	mar y	
D	0.463	DMCE	1.311
R	0.462	RMSE	
R-Squared .	0.213	Coef. Var	94.435
Adj. R-Squared	0.210	MSE	1.720
Pred R-Squared	0.176	MAE	0.907

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

#### ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	321.154 1183.278 1504.432	3 688 691	107.051 1.720	62.243	0.0000

#### Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept) att1 att3 att1att3	0.757 -0.032 0.393 0.049	0.089 0.045 0.043 0.019	-0.033 0.384 0.140	8.539 -0.716 9.210 2.628	0.000 0.474 0.000 0.009	0.583 -0.121 0.309 0.012	0.931 0.056 0.477 0.085

att1: This is the predicted change in our outcome for every 1 unit increase in att1 when att3 is 0.

att3: This is the predicted change in our outcome for every 1 unit increase in att3 when att1 is 0.

att1att3: This is the predicted change in the effect of att1 on our outcome for every one unit increase in att3.

## Compare the two models via hierarchical regression

```
Compare the two models
```{r}
anova(modME, modINT)
Analysis of Variance Table
Model 1: out4 \sim att1 + att3
Model 2: out4 \sim att1 + att3 + att1att3
  Res.Df RSS Df Sum of Sq F Pr(>F)
     689 1195.2
 2 688 1183.3 1 11.877 6.9058 0.008783 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Does including the interaction term significantly improve the amount of variance our model explains in out4?

Compare the two models via hierarchical regression

```
# Compare the two models
 ``{r}
anova(modME, modINT)
Analysis of Variance Table
Model 1: out4 \sim att1 + att3
Model 2: out4 \sim att1 + att3 + att1att3
  Res.Df RSS Df Sum of Sq F Pr(>F)
     689 1195.2
     688 1183.3 1 11.877 6.9058 0.008783 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

At p<0.05, the moderated regression model explained significantly more variance in out4 than the main effects model

Our interaction - Visualized

att3

Our interaction - Visualized

ized
library(sjPlot)
library(sjmisc)

plot_model(modINT, type = "pred", terms = c("att3", "att1"), show.intercept = TRUE)
...

Alternative way to specify interactions: Specify the interaction in the regression equation using a "*"

```
56 * ### Interaction model

57 * ```{r}

58 modINT <- lm(out4 ~ att1 + att3 + att1*att3 , data = dat)

59 ols_regress(modINT)

60 * ```
```

R 0.462 RMSE 1.311	
R-Squared 0.213 Coef. Var 94.435 Adj. R-Squared 0.210 MSE 1.720 Pred R-Squared 0.176 MAE 0.907	35

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	321.154 1183.278 1504.432	3 688 691	107.051 1.720	62.243	0.0000

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept) att1 att3 att1:att3	0.757 -0.032 0.393 0.049	0.089 0.045 0.043 0.019	0.041 0.439 0.090	8.539 -0.716 9.210 2.628	0.000 0.474 0.000 0.009	0.583 -0.121 0.309 0.012	0.931 0.056 0.477 0.085

Example APA write up

The differential effect of att1 on out4, using att3 as a moderator, was examined among 692 participants. A moderation model was estimated, out4 was regressed on att1, att3, and the interaction between the two. The simple slope of att1 was not statistically significant (b = -0.03, 95%CI -0.12, 0.06) and the simple slope of att3 (b = 0.39, 95%CI 0.31, 0.48) was statistically significant. The interaction term is statistically significant (b = 0.05, 95%CI 0.01, 0.09), indicating that the effect of att1 on out4 is larger as att3 increases.

Additional considerations for moderation

- Power is important!
 - N needed to detect interaction effect can be up to 9x larger than for detecting main effects (e.g., Wahlsten, 1991)
 - For every interaction term you add, N needed to detect effect increases

- You can examine interactions between more than two variables
 - E.g., 3-way interactions
- Interpretation is easier with categorical predictors
 - E.g. You can turn continuous variables into categorical by using cut-off scores