# Восстановление значений многомерных временных рядов с помощью тензорного разложения и выделения временного индекса

#### Тихонов Денис Максимович

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

2024 г.

Восстановление значений многомерных временных рядов с помощью тензорного разложения и выделения временного индекса

**Цель работы:** Построение алгоритма восстановления пропущенных или зашумленных значений многомерного временного ряда сложной структуры с выделение индекса временной составляющей.

**Проблема:** Классические тензорные методы восстановления зашумленных значений временных рядов не используют априорное знание об особенности одного из индексов входных данных — времени.

**Гипотеза:** использование в методах априорного знания о временной составляющей повысит качество восстанавливаемого многомерного временного ряда.

**Требуется:** разработать алгоритм, основанный на классический методах тензорного разложения, учитывающий временной индекс с помощью маскирования данных.

### Постановка задачи восстановления временных рядов

1 Дан многомерный временной ряд одноканальных снимков МРТ

$$\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times I_3}$$

② Модель восстановления — модификация разложения Такера, представляющего тензор через  $\underline{\mathbf{G}}$  центральный тензор и фактор-матрицы  $\mathbf{U}^{(n)}$ :

$$\underline{\mathbf{X}} = \underline{\mathbf{G}} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \cdots \times_N \mathbf{U}^{(N)}$$

3 Решаемая задача оптимизации:

$$\begin{aligned} & \underset{(R_1, \dots, R_N)}{\text{minimize}} \sum_{m} R_m &, \\ & \text{s.t.} & & \| \underline{\mathbf{Q}}_T * (\underline{\mathbf{X}} - \underline{\hat{\mathbf{X}}}) \|_F^2 < \epsilon \end{aligned}$$

где  $(R_1,...,R_N)$  - ранги тензора в разложении Такера

### Зашумленный временной ряд МРТ

1 Дан многомерный временной ряд и тензор маскирования

$$\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \dots \times I_N}, \underline{\mathbf{Q}}_T \in \{0,1\}^{I_1 \times I_2 \times \dots \times I_N}$$

- 2 Индексы  $I_1, I_3$  обозначают координаты пикселей на снимке, индекс  $I_3$  обозначает номер снимка или время, в которое снимок был сделан.
  - **3** Предполагаем, что в моменты времени  $I_3 \in 3,4$  данные были сняты сильно зашумленными (или отсутствовали вовсе).



## Разложение Такера для восстановления зашумленных тензоров

**Input**: тензоры  $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times \cdots \times I_N}, \underline{\mathbf{Q}} \in \{0,1\}^{I_1 \times I_2 \times \cdots \times I_N}.$  **Output**: Разложение через тензор  $\underline{\mathbf{G}}$  и фактор-матрицы  $\mathbf{U}^{(n)} \in \mathbb{R}^{I_n \times R_n}.$ 

- **1** Случайная инициализация тензоров  $\underline{G}, \mathbf{U}^{(1)}, \dots, \mathbf{U}^{(N)}$
- 2 repeat

$$\hat{\mathbf{X}} = \underline{\mathbf{G}} \times_1 \mathbf{U}^{(1)} \cdots \times_N \mathbf{U}^{(N)}$$

$$\underline{\mathbf{Z}} = \underline{\mathbf{Q}} * \underline{\mathbf{X}} + (\underline{\mathbf{1}} - \underline{\mathbf{Q}}) * \hat{\underline{\mathbf{X}}}$$

- **5** for n = 1, ..., N do:
- **6**  $\underline{\mathbf{Y}} = \underline{\mathbf{Z}} \times_1 \mathbf{U}^{\mathsf{T}(1)} \cdots \times_N \mathbf{U}^{\mathsf{T}(N)}$  исключая  $\mathbf{U}^{(n)}$
- $\mathbf{U}_{(n)}$  матрица из  $R_n$  старших собств. векторов  $\mathbf{Y}_{(n)}$
- end for
- $\mathbf{0} \qquad \mathbf{G} = \mathbf{Z} \times_1 \mathbf{U}^{\mathsf{T}(1)} \cdots \times_N \mathbf{U}^{\mathsf{T}(N)}$
- 1 until разность норм  $\|\underline{\mathbf{X}}\|_F \|\hat{\underline{\mathbf{X}}}\|_F$  не перестанет убывать
- $oldsymbol{0}$  return тензор  $oldsymbol{\underline{G}}$  и фактор-матрицы  $oldsymbol{\mathsf{U}}^{(n)} \in \mathbb{R}^{I_n imes R_n}$

### Модификация разложения для временных рядов рядов

 Для учета временной составляющей ввести дополнительный тензор маскирования применяемый к случайным временным срезам на каждой итерации

$$\underline{\mathbf{Q}}_T \in \{0,1\}^{I_1 \times I_2 \times \cdots \times I_N}.$$

В него так же включаются восстанавливаемые временнные срезы.

- 2 Для выборка оптимальных рангов разложения Такера, предлагается начинать итеративный алгоритм с малых значений  $R_1 = R_2 = \cdots = R_N = 1$
- На каждой итерации выбирать моду для повышения ранга основываясь на остатках по выбранной моде

$$\|\hat{\underline{\mathbf{X}}} \times_1 \mathbf{U}^{\intercal(1)} \cdots \times_N \mathbf{U}^{\intercal(N)}\|_F$$

исключая  $\mathbf{U}^{\intercal(n)}$  из произведения

### Модифицированное разложение Такера

**Input**: тензоры  $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times \cdots \times I_N}, \underline{\mathbf{Q}} \in \{0,1\}^{I_1 \times I_2 \times \cdots \times I_N}.$  **Output**: Разложение через тензор  $\underline{\mathbf{G}}$  и фактор-матрицы  $\mathbf{U}^{(n)} \in \mathbb{R}^{I_n \times R_n}.$ 

- **1** Случайная инициализация тензоров  $\underline{G}, \mathbf{U}^{(1)}, \dots, \mathbf{U}^{(N)}$
- 2 repeat
- $oldsymbol{3}$  Случайный временной тензор маскирования  $oldsymbol{Q}_{\mathcal{T}}$
- $oldsymbol{0}$  Получить приближения классическим алгоритмом Такера  $oldsymbol{G}, oldsymbol{U}^{(n)} \in \mathbb{R}^{I_n imes R_n}$ , используя дополнительное маскирование  $oldsymbol{Q}_T$
- Быбрать моду для повышения ранга
- $\hat{m} = \underset{m}{\operatorname{argmax}} \|\hat{\mathbf{X}} \times_1 \mathbf{U}^{\intercal(1)} \cdots \times_N \mathbf{U}^{\intercal(N)}\|_F,$  исключая  $\mathbf{U}^{\intercal(m)}$  из произведения
- $\mathbf{7}$  Обновить ранг моды  $R_{\hat{m}}$
- $oldsymbol{0}$  return тензор  $oldsymbol{\underline{G}}$  и фактор-матрицы  $oldsymbol{\mathsf{U}}^{(n)} \in \mathbb{R}^{I_n imes R_n}$

### Вычислительный эксперимент



Сравнение методов на МРТ-изображениях головы человека

### Результаты работы

| Модель                        | Средний SSIM |
|-------------------------------|--------------|
| СР-разложение                 | 0.32         |
| Случайное маскирование        | 0.54         |
| Маскирование с учетом времени | 0.58         |

SSIM (Structural similarity index measure) исходных и восстановленных MPT-изображениях головы человека **Результаты**:

- Предложен модифицированный алгоритм восстановления тезорных временнях рядов, основанный на разложении Такера;
- Показано, что для задачи с временной структурой предложенный подход повышает точность восстанавливаемых данных.