Technique for Order Preference by Similarity to Ideal Solution

(TOPSIS)

Origin and History

1980: development by Kwangsun Yoon and Hwang Ching-Lai

- Yoon, K., "System Selection by Multiple Attribute Decision Making," Ph. D. Dissertation, Kansas State University, Manhattan, Kansas, 1980.
- Yoon, K. and C. L. Hwang, "TOPSIS
 (Technique for Order Preference by
 Similarity to Ideal Solution)- A Multiple
 Attribute Decision Making," a paper to be
 published, 1980.

Basic Concept

The chosen Alternative should have the shortest distance from the ideal solution and the farthest from the negative-ideal solution.

Basic Concept ...

It is very difficult to justify the selection of A_1 or A_2

Decision Matrix

m Alternative, n Attributes (or criteria)

$$D = \begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ A_1 & \hat{e} & x_{11} & x_{12} & x_{13} & \cdots & x_{1n} & \hat{u} \\ A_2 & \hat{e} & x_{21} & x_{22} & x_{23} & \cdots & x_{2n} & \hat{u} \\ A_3 & \hat{e} & x_{31} & x_{32} & x_{33} & \cdots & x_{3n} & \hat{u} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \hat{u} \\ \vdots & \hat{e} & \ddots & \ddots & \ddots & \ddots & \hat{u} \\ \vdots & \hat{e} & \ddots & \ddots & \ddots & \ddots & \hat{u} \\ A_m & \hat{e} & x_{m1} & x_{m2} & x_{m3} & \cdots & x_{mn} & \hat{u} \end{pmatrix}$$

Hypothesis-1

Each Attribute in the Decision Matrix takes either monotonically increasing or monotonically decreasing utility

Hypothesis-2

A Set of Weights for the Attributes is required

Hypothesis-3

Any Outcome which is expressed in a non-numerical way, should be quantified through the appropriate scaling technique

- **Construct the Normalized Decision Matrix**
 - To transform the various attribute dimensions into non-dimensional attributes, which allows comparison across the attributes

$$\boldsymbol{r}_{ij} = \frac{\boldsymbol{x}_{ij}}{\sqrt{\frac{\dot{\mathbf{a}}}{\dot{\mathbf{a}}} \boldsymbol{x}_{ij}^2}}$$

Construct the Weighted Normalized Decision Matrix

	$\stackrel{ ext{\'e}}{\hat{c}} v_{11}$	V_{12}	•	•	•	\mathcal{V}_{1j}	•	•	•	v_{n}^{u}	é	$W_1 r_{11}$	$W_2 r_{12}$	•	•	•	$W_j r_{ij}$	•	•	•	$W_n r_{1n} \dot{\mathbf{u}}$
	ê·	•				•				·ú	ê	•	•				•				·ú
	ê.	•				•				. Ú	ê	•	•				•				. Ú
	ê ·	•				•				·ú	ê	•	•				•				· ú
$V = \frac{1}{2}$	$\hat{e}_{\hat{e}}^{v_{i1}}$	V_{i2}				${oldsymbol {\cal V}}_{ij}$				$oldsymbol{\mathcal{V}_{in}}_{\dot{u}}^{\dot{u}}$	$=\frac{\hat{\mathbf{e}}}{\hat{\mathbf{e}}}$	$W_1 r_{i1}$	$W_2 r_{i2}$				$W_j r_{ij}$				$W_n r_{in} \dot{\mathbf{u}}$
	ê.	•				•				٠ú	ê	•	•				•				· ú
	ê ê	•				•				u Ú	ê	•	•				•				· ú
ĺ	ê.	•				•				• ú	ê	•	•				•				• ú
	$\hat{\boldsymbol{y}}_{m1}$	V_{m2}	•	•	• 1	V_{mj}	•	•	•	${oldsymbol{\mathcal{V}}_{mn}}^{ m u}$	ê Î	$W_1 r_{m1}$	$W_2 r_{m2}$	•	•	•	$W_j r_{mj}$	•	•	•	

Determine Ideal and Negative-Ideal Solutions

$$A^{+} = \{(\max_{i} v_{ij} | j \in J), (\min_{i} v_{ij} | j \in J') | i = 1, 2, ...m\}$$

$$= \{v_{1}^{+}, v_{2}^{+}, ..., v_{j}^{+}, ..., v_{n}^{+}\}$$

$$A^{-} = \{(\min_{i} v_{ij} | j \in J), (\max_{i} v_{ij} | j \in J') | i = 1, 2, ...m\}$$

$$= \{v_{1}^{-}, v_{2}^{-}, ..., v_{j}^{-}, ..., v_{n}^{-}\}$$

$$where \quad J = \{j = 1, 2, ..., n | j \quad associated \quad with \quad benefit \quad criteria\}$$

$$J' = \{j = 1, 2, ..., n | j \quad associated \quad with \quad cost \quad criteria\}$$

- **Calculate the Separation Measure:**
 - Ideal Separation

$$S_i^+ = \sqrt{\sum_{j=1}^n (v_{ij} - v_j^+)^2}$$
 $i = 1, 2, ..., m$

Negative-Ideal Separation

$$S_i^- = \sqrt{\sum_{j=1}^n (v_{ij} - v_j^-)^2}$$
 $i = 1, 2, ..., m$

Calculate the Relative Closeness to the Ideal Solution

$$c_{i}^{*} = \frac{S_{i}^{-}}{(S_{i}^{+} + S_{i}^{-})}, \quad 0 < c_{i}^{+} < 1, \quad i = 1,2,...,m$$
 $c_{i}^{*} = 1 \quad if \quad A_{i} = A^{+}$
 $c_{i}^{*} = 0 \quad if \quad A_{i} = A^{-}$

- Rank the preference order
 - A set of alternatives can now be preference ranked according to the descending order of c_i

An example of using TOPSIS Method

Weight	0.1	0.4	0.3	0.2
	Style	Reliability	Fuel Eco	• Cost
Civic	7	9	9	8
Saturn	8	7	8	7
Ford	9	6	8	9
Mazda	6	7	8	6

Step 1: Calculate $(\Sigma x_{ij}^2)^{1/2}$ for each column and divide each column by that to get r_{ij}

	Style	Rel.	Fuel	Cost
Civic	0.46	0.61	0.54	0.53
Saturn	0.53	0.48	0.48	0.46
Ford	0.59	0.41	0.48	0.59
Mazda	0.40	0.48	0.48	0.40

Step 2: Multiply each Column by w_j to get V_{ij}.

	Style	Rel.	Fuel	Cost
Civic	0.046	0.244	0.162	0.106
Saturn	0.053	0.192	0.144	0.092
Ford	0.059	0.164	0.144	0.118
Mazda	0.040	0.192	0.144	0.080

Step 3 (a): Determine Ideal Solution A*.

 $A^* = \{0.059, 0.244, 0.162, 0.080\}$

	Style	Rel.	Fuel	Cost	
Civic	0.046	0.244	0.162	0.106	
Saturn	0.053	0.192	0.144	0.092	
Ford	0.059	0.164	0.144	0.118	
Mazda	0.040	0.192	0.144	0.080	
	TOPSIS Method in MADM				

Step 3 (b): Find Negative Ideal Solution A⁻.

 $A^{-} = \{0.040, 0.164, 0.144, 0.118\}$

	Style	Rel.	Fuel	Cost
Civic	0.046	0.244	0.162	0.106
Saturn	0.053	0.192	0.144	0.092
Ford	0.059	0.164	0.144	0.118
Mazda	0.040	0.192	0.144	0.080
	TOPSIS I			

19

Step 4 (a): Determine Separation From Ideal Solution

$$A^* = \{0.059, 0.244, 0.162, 0.080\}$$

$$S_i^* = [\Sigma (v_j^* - v_{ij})^2]^{1/2}$$
 for each row j

	Style	Rel.	Fuel	Cost
Civic	$(.046059)^2$	$(.244244)^2$	$(0)^2$	$(.026)^2$
Saturn	$(.053059)^2$	(.192- .244) ²	$(018)^2$	$(.012)^2$
Ford	$(.053059)^2$	$(.164244)^2$	$(018)^2$	$(.038)^2$
Mazda		(.192244) ² hod in MADM	$(018)^2$	(.0) ² 20

Step 4 (a): Determine Separation From Ideal Solution S_i*

	$\sum (v_j^* - v_{ij})^2$	$S_i^* = [\sum (v_j^* - v_{ij})^2]$	/2
Civic	0.000845	0.029	
Saturn	0.003208	0.057	
Ford	0.008186	0.090	

0.058

0.003389

Mazda

Step 4: Determine Separation From Negative Ideal Solution S_i-

	$\Sigma (v_j - v_{ij})^2$	$Si^{-} = [\Sigma (v_j^{-} - v_{ij}^{-})2]^{1/2}$
Civic	0.006904	0.083
Saturn	0.001629	0.040
Ford	0.000361	0.019
Mazda	0.002228	0.047

Step 5: Calculate the relative closeness to the ideal solution $Ci^* = S_i^- / (S_i^* + S_i^-)$

$$S_{i}^{-}/(S_{i}^{*}+S_{i}^{-}) \quad Ci^{*}$$
Civic 0.083/0.112 0.74 \leftarrow BEST

Saturn 0.040/0.097 0.41

Ford 0.019/0.109 0.17 \leftarrow WORSE

Mazda 0.047/0.105 0.45