Fundraise Predictor

Why fundraise prediction is needed

- For making better Investment Decisions.
- Making Investment Strategies.
- Helps investors (VCs, angels) prioritize startups with higher chances of success. are a part of overall market analysis.
- Replaces intuition-based decisions with data-driven models.
- Identifies potential red flags early, reducing the chances of bad investments.

Challenges

- Available data can be inconsistent, outdated, or exaggerated (e.g., pitch exaggerations).
- Elements like founder charisma, networking ability, and investor sentiment are hard to model.
- Successful fundraising events are fewer compared to unsuccessful ones, leading to class imbalance in training data.
- Trends and investor behavior shift rapidly; models can become outdated if not regularly retrained.

Data Description

- The study collected datasets from http://crunchbase.com/.
- The data has 36 features.

Feature Extraction

- The funding velocity were calculated based on funding total_usd and age_last_funding_year features.
- The funding velocity provides velocity of funding and has 26 percent spearman correlation with target feature.

Handling missing values

- The collected data underwent rigorous preprocessing to address any inconsistencies or missing values
- We systematically identified and removed null values to ensure the integrity and reliability of the dataset.

Feature scaling

- To address the issue of widely varying data ranges, normalization was performed to scale the data values to a consistent range.
- Specifically, min-max normalization was employed, which rescales the data to a range of 0 to 1.
- This normalization technique ensures that all variables contribute equally to the analysis, regardless of their original scale.

Feature selection

- In the feature selection process, we calculated the correlation of each feature with the "Status" variable.
- Features exhibiting a correlation higher than 10 percent were selected for further analysis.
- This threshold was chosen to focus on variables that demonstrate a relatively strong relationship with the target variable, "Status".

Feature selection

- Correlations used were linear correlation, spearman, kendall and mutual info correlation.
- Feature selection aim to prioritize those features that are likely to have a meaningful impact on predicting or understanding cryptocurrency market trends.

Evaluation Criteria

 The evaluation of the proposed scheme is done using mean absolute precision, recall ,f1-score, support and Accuracy (Acc).

Machine Learning and Deep Learning Model Used

- Machine Learning and Deep Learning Model used are GaussianNB,KNeighborsClassifier,LGBMClassifier,Support Vector Classifier, LogisticRegression and Artificial Neural Network.
- LogisticRegression and Artificial Neural Network gave best results with 75 percent accuracy.

COMPARISON OF RMSE, MAPE AND ACCURACY VALUES FOR ETH.

Model	Train Accuracy(%)	Test Accuracy(%)
GaussianNB	57.45	53.51
KNeighborsClassifier	80.35	72.97
LGBMClassifier	100	74.59
Support Vector Classifier	77.91	74.59
LogisticRegression	76.82	75.67
Artificial Neural Network	80.71	76.75

Table. 1. Accuracy loss comparison for each model

Conclusion

- Our comparative analysis of prediction models showed that artificial neural network performed best.
- Predictions models gave good generalized results.

Thank You