Física II Ondas mecánicas y sonido

Ondas sonoras

■ Ondas de presión, percepción del sonido. Rapidez de las ondas sonoras.

Intensidad del sonido. La escala de decibeles.

Sonido es una onda longitudinal en un medio

Infrasonido

Gama audible 20 a 20,000 Hz

Ultrasonido

El movimiento hacia delante del émbolo crea una compresión (una zona de alta densidad); el movimiento hacia atrás crea una expansión (una zona de baja densidad).

La longitud de onda λ es la distancia entre los puntos correspondientes de ciclos sucesivos.

©2011. Dan Russell

©2011. Dan Russell

 \rightarrow \mathcal{Y}

$$y(x,t) = A\cos(kx - \omega t)$$

Las ondas longitudinales se muestran a intervalos de $\frac{1}{8}$ T para un periodo T.

Ondas sonoras como fluctuaciones de presión

$$y(x,t) = A\cos(kx - \omega t)$$

p(x,t) Variación de presión instantánea: es la cantidad en que la presión difiere de la presión atmosférica normal.

$$V = S\Delta x$$

$$B = \frac{\text{Esfuerzo volumétrico}}{\text{Deformación volumétrica}} = -\frac{\Delta p}{\Delta V/V_0} \quad \text{(módulo volumétrico)}$$

$$\Delta V = S(y_2 - y_1) = S \left[y(x + \Delta x, t) - y(x, t) \right]$$

$$\frac{dV}{V} = \lim_{\Delta x \to 0} \frac{S \left[y \left(x + \Delta x, t \right) - y \left(x, t \right) \right]}{S \Delta x}$$
$$= \frac{\partial y \left(x, t \right)}{\partial x}$$

Módulo volumétrico B [ecuación (11.13)]

$$B = -\frac{p(x,t)}{\left(\frac{dV}{V}\right)}$$

$$p(x,t) = -B \frac{\partial y(x,t)}{\partial x}$$

Aumento de volumen Disminución de presión

$$y(x,t) = A\cos(kx - \omega t)$$

$$p(x,t) = -B \frac{\partial y(x,t)}{\partial x}$$

$$p(x,t) = BkA\sin(kx - \omega t)$$

Gráfica de desplazamiento y contra posición x en t = 0

y < 0

b) Representación del desplazamiento de partículas individuales en el fluido a t = 0

Partículas desplazadas Expansión: Las partículas s

las partículas se separan; la presión es negativa.

Longitud de onda λ

y > 0

Compresión:
las partículas se juntan;
la presión es positiva.

y < 0

Las partículas se

desplazan a la izquierda

cuando y < 0.

 $p_{\text{máx}} = BkA$ (onda sonora sinusoidal)

Pregunta 1

Se produce una onda sonora sinusoidal en el aire con un generador de señales electrónico. Luego, se aumenta la frecuencia de la onda de 100 a 400 Hz manteniendo constante la amplitud de presión.

¿Qué efecto tiene esto sobre la amplitud de desplazamiento de la onda sonora?

- i. Se cuadruplica
- ii. Se duplica
- iii. Permanece sin cambio
- iv. Se reduce a la mitad
- v. Se reduce a la cuarta parte.

$$\omega = vk \quad \Rightarrow \quad \frac{1}{k} = \frac{v}{\omega} = \frac{v}{2\pi f}$$

$$p_{\text{máx}} = BkA$$
 (onda sonora sinusoidal)

$$f_0 = 100 \, Hz \quad f = 400 \, Hz \rightarrow \quad f = 4f_0$$

$$A = \frac{p_{max}}{Bk} = \frac{p_{max}v}{B(2\pi f)} = \frac{Constante}{f}$$

$$A_0 = \frac{C}{f_0} \qquad A = \frac{C}{f} = \frac{C}{4f_0}$$

$$\rightarrow A = \frac{A_0}{4}$$

Percepción de las ondas sonoras

A una frecuencia dada, cuanto mayor sea la amplitud de presión de una onda sonora sinusoidal, mayor será el volumen percibido

La frecuencia de una onda sonora es el factor principal que determina el tono

Timbre: Contenido armónico

Ruido blanco

Rapidez de las ondas sonoras

$$v = \sqrt{\frac{\text{Fuerza de restitución que vuelve el sistema al equilibrio}}{\text{Inercia que se opone al retorno al equilibrio}}}$$

$$v = \sqrt{\frac{F}{\mu}}$$

Módulo volumétrico B

$$v = \sqrt{\frac{B}{\rho}}$$

rapidez de una onda longitudinal en un fluido

Gas ideal

$$v = \sqrt{\frac{\gamma RT}{M}}$$

Y es el módulo de Young,

$$v = \sqrt{\frac{Y}{\rho}}$$

rapidez de una onda longitudinal en una varilla sólida

$$v = \sqrt{\frac{B}{\rho}}$$
 $v = \sqrt{\frac{Y}{\rho}}$

Un medio más denso tiene mayor inercia que resulta en menor rapidez de onda.

Tabla 16.1 Rapidez del sonido en varios materiales

Material	Rapidez del sonido (m/s)	
Gases		
Aire (20°C)	344	
Helio (20°C)	999	
Hidrógeno (20°C)	1330	
Líquidos		
Helio líquido (4 K)	211	
Mercurio (20°C)	1451	
Agua (0°C)	1402	
Agua (20°C)	1482	
Agua (100°C)	1543	
Sólidos		
Aluminio	6420	
Plomo	1960	
Acero	5941	

Un medio que es más elástico se recupera más rápidamente y resulta en mayor rapidez.

Ejemplo 1: Encuentre la rapidez del sonido en una barra de acero.

$$\rho = 7800 \text{ kg/m}^3$$

$$Y = 2.07 \times 10^{11} Pa$$

$$v_s = i?$$

$$v = \sqrt{\frac{Y}{\rho}} = \sqrt{\frac{2.07 \text{ x } 10^{11} \text{Pa}}{7800 \text{ kg/m}^3}}$$

v = 5150 m/s

$$v = \sqrt{\frac{\gamma RT}{M}}$$

Ejemplo 2: ¿Cuál es la rapidez del sonido en el aire cuando la temperatura es 20°C?

Dado: $\gamma = 1.4$; R = 8.314 J/mol K; M = 29 g/mol

$$T = 20^{\circ} + 273^{\circ} = 293 \text{ K}$$
 $M = 29 \times 10^{-3} \text{ kg/mol}$

$$v = \sqrt{\frac{\gamma RT}{M}} = \sqrt{\frac{(1.4)(8.314 \text{ J/mol K})(293 \text{ K})}{29 \text{ x } 10^{-3} \text{kg/mol}}}$$

v = 343 m/s

Dependencia de la temperatura

Nota: v depende de T absoluta:

Ahora νa 273 K es 331 m/s. γ, R, M no cambian, de modo que una fórmula simple puede ser:

$$v = \sqrt{\frac{\gamma RT}{M}}$$

Ejemplo 3: ¿Cuál es la velocidad del sonido en el aire en un día cuando la temperatura es de 27°C?

Solución 1: $v = 331 \text{ m/s} \sqrt{\frac{T}{273 \text{ K}}}$

T = 27⁰ + 273⁰ = 300 K;
$$v = 331 \text{ m/s} \sqrt{\frac{300 \text{ K}}{273 \text{ K}}}$$

v = 347 m/s

Pregunta 2

El mercurio es 13.6 veces más denso que el agua. De acuerdo con la tabla 16.1, a 20°C, ¿cuál de estos líquidos tiene el mayor módulo volumétrico?

- i. El mercurio.
- ii. El agua
- iii. Ambos tienen el mismo
- iv. No se dispone de suficiente información para determinarlo

$$v = \sqrt{\frac{B}{\rho}} \qquad \Rightarrow B = v^{2}\rho$$

$$B_{Hg} = v_{Hg}^{2}\rho_{Hg} \qquad B_{a} = v_{a}^{2}\rho_{a}$$

$$\frac{B_{Hg}}{B_{a}} = \frac{v_{Hg}^{2}\rho_{Hg}}{v_{a}^{2}\rho_{a}} = \left(\frac{1451}{1482}\right)^{2} (13.6) = 13$$

Rapidez del sonido en varios materiales

Material	Rapidez del sonido (m/s)	
Gases		
Aire (20°C)	344	
Helio (20°C)	999	
Hidrógeno (20°C)	1330	
Líquidos		
Helio líquido (4 K)	211	
Mercurio (20°C)	1451	
Agua (0°C)	1402	
Agua (20°C)	1482	
Agua (100°C)	1543	
Sólidos		
Aluminio	6420	
Plomo	1960	
Acero	5941	

Intensidad del sonido

$$v_y(x,t) = \frac{\partial y(x,t)}{\partial t} = \omega A \operatorname{sen}(kx - \omega t)$$

$$p(x,t)v_y(x,t) = \left[BkA \operatorname{sen}(kx - \omega t)\right] \left[\omega A \operatorname{sen}(kx - \omega t)\right]$$

$$= B\omega kA^2 \operatorname{sen}^2(kx - \omega t)$$

$$I = \frac{1}{2}B\omega kA^2 \qquad \text{La intensidad es el valor promedio en el tiempo de la potencia por unidad de área}$$

$$\omega = vk \ y \ v = \sqrt{B/\rho}$$

La potencia sonora total media emitida por una persona que habla con voz normal es del orden de 10^{-5} W, en tanto que un grito fuerte corresponde a 3×10^{-2} W aproximadamente

Intensidad de una onda sonora sinusoidal en un $I = \frac{1}{2} \sqrt{\rho B} \omega^2 A^2$ Amplitud de fluido Densidad del fluido Modulo volumétrico del fluido

Intensidad de una onda sonora sinusoidal $I = \frac{p_{\text{máx}}^2}{2\rho v} = \frac{p_{\text{máx}}^2}{2\sqrt{\rho B}}$ en un fluido

Densidad del fluido.

Amplitud de presión $\frac{p_{\text{máx}}^2}{2\sqrt{\rho B}} = \frac{p_{\text{máx}}^2}{2\sqrt{\rho B}}$ Rapidez
del fluido

Densidad del fluido.

Intensidad del sonido: escala de Decibeles

Niveles de intensidad de sonido de diversas fuentes (valores representativos)

Fuente o descripción del sonido	Nivel de intensidad del sonido, β (dB)	Intensidad, I (W/m²)
Avión militar a reacción a 30 m de distancia	140	10 ²
Umbral de dolor	120	1
Remachador	95	3.2×10^{-3}
Tren elevado	90	10^{-3}
Tránsito urbano intenso	70	10^{-5}
Conversación ordinaria	65	3.2×10^{-6}
Automóvil silencioso	50	10^{-7}
Radio con volumen bajo en el hogar	40	10^{-8}
Murmullo normal	20	10^{-10}
Susurro de hojas	10	10^{-11}
Umbral del oído a 1000 Hz	0	10^{-12}

¿A qué nivel de intensidad del sonido corresponde una intensidad de 1 W/m^2 ?

Una intensidad de 1 W/m^2 corresponde a 120 dB

Pregunta 3

Se duplica la intensidad de una onda sonora en el aire, sin alterar su frecuencia (la presión, la densidad y la temperatura del aire también permanecen constantes).

¿Qué efecto tiene esto sobre la amplitud de desplazamiento, la amplitud de presión, el módulo volumétrico, la rapidez del sonido y el nivel de intensidad del sonido?

$$I = cte A^{2} \quad A = cte \sqrt{I}$$

$$A' = cte \sqrt{2I} \qquad A' = \sqrt{2}A$$

$$p_{\text{máx}} = BkA$$
 (onda sonora sinusoidal)

$$A' = \sqrt{2}A \qquad p' = \sqrt{2}p$$

$$\beta' = (10 \text{ dB}) \log \frac{I'}{I_0}$$

$$\beta' - \beta = (10 \text{ dB}) \log \frac{I'/I_0}{I/I_0} = (10 \text{ dB}) \log \frac{I'}{I} = (10 \text{ dB}) \log 2 = 3 \text{ dB}$$

Ejemplo

Una exposición de 10 min a un sonido de 120 dB suele desplazar temporalmente el umbral del oído a 1000 Hz, de 0 dB a 28 dB. Diez años de exposición al sonido de 92 dB causan un desplazamiento permanente a 28 dB. ¿Qué intensidades corresponden a 28 y 92 dB?

GRACIAS