

CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

V. Országos Magyar Matematikaolimpia XXXII. EMMV

országos szakasz, Arad, 2023. február 20–23.

XI-XII. osztály – II. forduló

1. feladat (10 pont). Oldd meg a valós számok halmazán a következő egyenletet:

$$2^{\cos 3x} + \cos^3 x = 8^{-\cos x}.$$

dr. Bencze Mihály, Brassó

Első megoldás. Hivatalból (1 pont)

Tudjuk, hogy $\cos 3x = 4\cos^3 x - 3\cos x$. (1 pont)

$$2^{\cos 3x} + \cos^3 x = 8^{-\cos x} \iff 2^{4\cos^3 x - 3\cos x} + \cos^3 x = 2^{-3\cos x} \iff \\ \iff \cos^3 x = 2^{-3\cos x} - 2^{4\cos^3 x - 3\cos x} \iff \cos^3 x = 2^{-3\cos x} (1 - 2^{4\cos^3 x}).$$
 (2 pont)

Az $y = \cos x \in [-1, 1]$ helyettesítéssel az

$$y^3 = 2^{-3y}(1 - 2^{4y^3}) \iff y^3 \cdot 2^{3y} = 1 - 2^{4y^3} \iff y^3 \cdot 2^{3y} + 2^{4y^3} = 1$$

egyenlethez jutunk. (2 pont)

Ekkor tekintsük a következő $f: [-1,1] \to \mathbb{R}$, $f(y) = y^3 \cdot 2^{3y} + 2^{4y^3}$ függvényt. Mivel ez a függvény szigorúan növekvő függvények összege, így f is szigorúan növekvő, tehát injektív. Vagyis az

$$y^3 \cdot 2^{3y} + 2^{4y^3} = 1$$

egyenletnek csak egy megoldása van a valós számok halmazán, ez pedig az y = 0. (3 pont)

Tehát $\cos x = 0$, ahonnan $x \in \left\{ \pm \frac{\pi}{2} + 2k\pi \mid k \in \mathbb{Z} \right\}$. (1 pont)

Második megoldás. Hivatalból (1 pont)

Tudjuk, hogy $\cos 3x = 4\cos^3 x - 3\cos x$. (1 pont)

$$2^{\cos 3x} + \cos^3 x = 8^{-\cos x} \iff 2^{\cos 3x} + 4\frac{\cos^3 x}{4} = 2^{-3\cos x}$$

$$\iff 2^{\cos 3x} + \frac{4\cos^3 x - 3\cos x}{4} = 2^{-3\cos x} - \frac{3\cos x}{4}$$

$$\iff 2^{\cos 3x} + \frac{\cos 3x}{4} = 2^{-3\cos x} - \frac{3\cos x}{4}.$$
(3 pont)

Ekkor tekintsük a következő $f: \mathbb{R} \to \mathbb{R}$, $f(t) = 2^t + \frac{t}{4}$ függvényt. Ez szigorúan növekvő, tehát injektív. (1 pont)

$$2^{\cos 3x} + \frac{\cos 3x}{4} = 2^{-3\cos x} - \frac{3\cos x}{4} \iff f(\cos 3x) = f(-3\cos x).$$

Mivel a függvény injektív, így $f(\cos 3x) = f(-3\cos x)$ egyenértékű a $\cos 3x = -3\cos x$ összefüggéssel. (2 pont)

$$\cos 3x = -3\cos x \iff 4\cos^3 x - 3\cos x = -3\cos x \iff \cos x = 0.$$
 Tehát $\cos x = 0$, ahonnan $x \in \left\{ \pm \frac{\pi}{2} + 2k\pi \mid k \in \mathbb{Z} \right\}.$ (2 pont)

2. feladat (10 pont). Az ABC háromszögben AB = AC és $\widehat{A} = 30^{\circ}$. Legyen M és N a B és C pontok AC, illetve AB oldalak szerinti szimmetrikusa. Az MN egyenes D és E pontokban metszi az AB, illetve AC oldalakat. Ha DE = 2 cm, számítsd ki a BC oldal hosszát!

Zajzon Csaba, Barót

Megoldás. Hivatalból (1 pont)

Mivel a B és M pontok szimmetrikusak az AC oldalra nézve, következik, hogy $\widehat{CAM} = \widehat{CAB} = 30^\circ$ és AB = AM. Hasonlóan $\widehat{NAB} = \widehat{BAC} = 30^\circ$ és NA = AC. Ezek alapján következik, hogy MAN_{\triangle} derékszögű és egyenlő szárú. (1 pont)

Mivel B és M, valamint N és C szimmetrikusak az AC, illetve AB oldalakra nézve, ezért BC = CM és BE = EM. (1 pont)

Legyen $BM \cap AC = \{P\}$. A BPA derékszögű háromszögben $\widehat{B} = 60^{\circ}$. A BAC egyenlő szárú háromszög $\widehat{BAC} = 30^{\circ}$, tehát $\widehat{ABC} = 75^{\circ}$. Ezek alapján $\widehat{PBC} = 15^{\circ}$. (1 pont)

Mivel a MAN háromszög derékszögű és egyenlő szárú, következik, hogy $\widehat{AMN}=45^\circ$. Az \widehat{APM} háromszögben $\widehat{AMP}=90^\circ-30^\circ=60^\circ$. Ezek alapján $\widehat{EMP}=15^\circ=\widehat{EBP}$, és ezen kívül $\widehat{PBC}=15^\circ$, ahonnan következik, hogy BE=BC=CM=EM, tehát BCME rombusz. (2 pont) Hasonlóan igazoljuk, hogy BCDN rombusz, ahonnan EM=ND=BC és $EM\parallel BC\parallel ND$, tehát $DE\parallel BC$.

Bevezetjük az AB=x és BC=y jelöléseket. Az MAN derékszögű háromszögben Pitagorasz tételét alkalmazva felírhatjuk, hogy

$$x^{2} + x^{2} = (2y + 2)^{2} \iff x^{2} = 2(y + 1)^{2}.$$
 (1)

(1 pont)

Az ABC háromszögben a koszinusz tételt alkalmazva felírhatjuk, hogy

$$y^2 = x^2 + x^2 - 2x^2 \cos 30^\circ,$$

tehát

$$y^2 = 2x^2 \left(1 - \frac{\sqrt{3}}{2} \right). {2}$$

(1 pont)

Így az (1) és a (2) összefüggésekből következik, hogy

$$y^{2} = 4(y+1)^{2} \cdot \frac{2-\sqrt{3}}{2}$$

$$\iff y^{2} = (y+1)^{2}(4-2\sqrt{3}), \quad y > 0$$

$$\iff y = (y+1)\sqrt{4-2\sqrt{3}}$$

$$\iff y = \frac{\sqrt{3}-1}{2-\sqrt{3}}$$

$$\iff y = \sqrt{3}+1.$$

Tehát
$$BC = \sqrt{3} + 1$$
. (1 pont)

3. feladat (10 pont). Legyen $x, y, z \in (1, +\infty)$ és $x \cdot y \cdot z = p$. Igazold, hogy

$$\log_p x \cdot \sqrt[3]{1 + \log_p y - \log_p z} + \log_p y \cdot \sqrt[3]{1 + \log_p z - \log_p x} + \log_p z \cdot \sqrt[3]{1 + \log_p x - \log_p y} \le 1.$$

Longáver Lajos, Nagybánya

Megoldás. Hivatalból (1 pont)

Az $a = \log_p x$, $b = \log_p y$ és $c = \log_p z$ jelöléseket bevezetve az $a + b + c = \log_p xyz = \log_p p = 1$ összefüggést kapjuk. (1 **pont**)

A fenti jelölésekkel a bizonyítandó egyenlőtlenség

$$a \cdot \sqrt[3]{1+b-c} + b \cdot \sqrt[3]{1+c-a} + c \cdot \sqrt[3]{1+a-b} \le 1.$$
 (1 pont)

Igazoljuk, hogy a, b, c > 0. Mivel x > 1 és xyz > 1, így $a = \log_p x = \log_{xyz} x > \log_{xyz} 1 = 0$. Hasonlóan b > 0, c > 0. Mivel a, b, c > 0 és a + b + c = 1, következik, hogy $a, b, c \in (0, 1)$. Ezért 1 + b - c > 1 + 0 - 1 = 0.

Mivel az 1+b-c, 1 és 1 pozitív valós számok, a mértani és számtani közepek közti egyenlőtlenséget felhasználva kapjuk, hogy

$$\sqrt[3]{(1+b-c)\cdot 1\cdot 1} \le \frac{1+b-c+1+1}{3},$$

vagyis

$$\sqrt[3]{(1+b-c)} \le \frac{3+b-c}{3}$$
. (3 pont)

Az egyenlőtlenség mindkét oldalát megszorozzuk az a pozitív számmal. Igy

$$a \cdot \sqrt[3]{1+b-c} \le \frac{3a+ab-ac}{3}.$$
 (1 pont)

Hasonlóan

$$b \cdot \sqrt[3]{1+c-a} \le \frac{3b+bc-ab}{3},$$
$$c \cdot \sqrt[3]{1+a-b} \le \frac{3c+ac-bc}{3}.$$

A három egyenlőtlenséget összeadjuk, így az

$$a \cdot \sqrt[3]{1+b-c} + b \cdot \sqrt[3]{1+c-a} + c \cdot \sqrt[3]{1+a-b} \le \frac{3(a+b+c)}{3} = 1$$
 (2 pont)

egyenlőtlenséghez jutunk.

4. feladat (10 pont). Határozd meg azokat az $f: \mathbb{R} \setminus \{0,1\} \to \mathbb{R}$ függvényeket, amelyek teljesítik az

$$f\left(\frac{x-1}{x}\right) + f\left(\frac{1}{1-x}\right) = 4 + \frac{2}{x-1}, \quad \forall x \in \mathbb{R} \setminus \{0, 1\}$$

összefüggést!

Kovács Béla, Szatmárnémeti

Megoldás. Hivatalból (1 pont) A megadott összefüggésben az $y=\frac{x-1}{x}$ helyettesítést végezzük. Innen yx=x-1, tehát $\frac{1}{1-x}=\frac{y-1}{y}$. (1 pont)

Így kapjuk, hogy $f(y) + f\left(\frac{y-1}{y}\right) = 4 + \frac{2-2y}{y}$, minden $y \in \mathbb{R} \setminus \{0,1\}$. Tehát

$$f(x) + f\left(\frac{x-1}{x}\right) = 4 + \frac{2-2x}{x}, \quad \forall x \in \mathbb{R} \setminus \{0, 1\}.$$
 (3)

(**2 pont**)

Most a $z = \frac{1}{1-x}$ helyettesítést végezzük a megadott egyenletben, így $\frac{x-1}{x} = \frac{1}{1-z}$. (1 pont) Ez alapján az adott egyenletből kapjuk, hogy $f(z) + f\left(\frac{1}{1-z}\right) = 4 - 2z$, minden $z \in \mathbb{R} \setminus \{0,1\}$, tehát

$$f(x) + f\left(\frac{1}{1-x}\right) = 4 - 2x, \quad \forall x \in \mathbb{R} \setminus \{0, 1\}.$$
 (4)

(**2** pont)

Összeadva a (3)-as és a (4)-es egyenletek megfelelő oldalait, kapjuk, hogy

$$2f(x) + 4 + \frac{2}{x-1} = 6 - 2x + \frac{2}{x}, \quad \forall x \in \mathbb{R} \setminus \{0, 1\}.$$
 (2 pont)

Ha ezt elosztjuk 2-vel és átrendezzük, megkapjuk a keresett függvényt $f: \mathbb{R} \setminus \{0,1\} \to \mathbb{R}$,

$$f(x) = 1 - x + \frac{1}{x} - \frac{1}{x - 1} = 1 - x - \frac{1}{x(x - 1)}, \quad \forall x \in \mathbb{R} \setminus \{0, 1\}.$$
 (1 pont)

5. feladat (10 pont). Az $a_1, a_2, \ldots, a_{2023}$ olyan természetes számok, amelyekre létezik $n \in \mathbb{N}$ úgy, hogy

$$a_1^2 + a_2^2 + \ldots + a_{2023}^2 = n^2 + 2.$$

Igazold, hogy az $a_1, a_2, \dots, a_{2023}$ számok nem lehetnek mind páratlanok!

Szilágyi Judit, Kolozsvár

Megoldás. Hivatalból (1 pont)

Ha n páros, akkor n^2+2 páros szám. Ha a_1,a_2,\ldots,a_{2023} mind páratlan számok lennének, akkor négyzetösszegük is páratlan lenne, ami így nem lehet egyenlő az n^2+2 páros számmal. Tehát a számok nem lehetnek mind páratlanok. (2 pont)

Ha n páratlan, felételezzük, hogy az $a_1, a_2, \ldots, a_{2023}$ számok mind páratlanok. Ekkor

$$a_i = (2k+1)^2 = 4k^2 + 4k + 1 = 4k(k+1) + 1 = 8m + 1$$

alakú, minden $i = \overline{1,2023}$ esetén. (2 pont)

Így
$$\sum_{i=1}^{2023} a_i^2 = 8M + 2023 = 8M + 8 \cdot 252 + 7 = 8M + 7$$
 alakú. (2 pont)

Mivel n páratlan szám, az n lehet 8k+1, 8k+3, 8k+5 vagy 8k+7 alakú. Így n^2 mindenik esetben 8k+1 alakú, tehát $n^2+2=8M+3$ alakú, ami nem lehet egyenlő a 8M+7 alakú számmal.

(**2** pont)

Tehát az $a_1, a_2, \ldots, a_{2023}$ számok nem lehetnek mind páratlanok.

(1 pont)

6. feladat (10 pont). Legyen P az ABC hegyesszögű háromszög egy belső pontja. Jelöljük rendre a PB, PC és PA szakaszok hosszát x, y és z-vel, a \widehat{BPC} , \widehat{CPA} és \widehat{APB} szögek mértékét α , β és γ -val. Igazold, hogy $(x\cos\alpha-y)(z\cos\beta-y)$ kifejezés értéke akkor maximális, ha P a C-ből húzott szögfelezőn helyezkedik el!

Mészár Julianna, Nagyszalonta és Pálhegyi-Farkas László, Nagyvárad

Megoldás. Hivatalból (1 pont

Bevezetjük az BC = a, AC = b, $\widehat{PCB} = \widehat{C_1}$ és $\widehat{ACP} = \widehat{C_2}$ jelöléseket. A PBC és PAC háromszögekben a koszinusz tételt alkalmazva felírhatjuk, hogy $\cos \alpha = \frac{x^2 + y^2 - a^2}{2xy}$ és $\cos \beta = \frac{y^2 + z^2 - b^2}{2yz}$. (1 pont)

Innen

$$(x\cos\alpha - y)(z\cos\beta - y) = \left(x \cdot \frac{x^2 + y^2 - a^2}{2xy} - y\right) \cdot \left(z \cdot \frac{y^2 + z^2 - b^2}{2yz} - y\right)$$
$$= \frac{x^2 - y^2 - a^2}{2y} \cdot \frac{z^2 - y^2 - b^2}{2y}.$$
 (2 pont)

A PBC és ABC háromszögekben a koszinusz tétel alapján $\cos \widehat{C}_1 = \frac{a^2 + y^2 - x^2}{2ay}$ és $\cos \widehat{C}_2 = \frac{y^2 + b^2 - z^2}{2by}$. (1 pont)

Tehát

$$(x\cos\alpha - y)(z\cos\beta - y) = \frac{-2ay\cos\widehat{C_1}}{2y} \cdot \frac{-2by\cos\widehat{C_2}}{2y} = ab\cos\widehat{C_1} \cdot \cos\widehat{C_2}$$

$$= \frac{1}{2}ab\left(\cos(\widehat{C_1} + \widehat{C_2}) + \cos(\widehat{C_1} - \widehat{C_2})\right)$$

$$= \frac{1}{2}ab\left(\cos\widehat{C} + \cos(\widehat{C_1} - \widehat{C_2})\right).$$
(2 pont)

Mivel a koszinusz függvény csökkenő a $\left[0, \frac{\pi}{2}\right]$ intervallumon, ez a kifejezés pontosan akkor lesz maximális, ha $\cos(\widehat{C}_1 - \widehat{C}_2) = 1$, vagyis $\widehat{C}_1 = \widehat{C}_2$, tehát CP az \widehat{ACB} szögfelezője. (1 pont)

6/6