Priority Queues

A priority greve has to perform these two operations fast!

1_ Insert an element into the set

2. Find the smallest element in the set

	Insert	Find Min
Array Implementation		
Sorted array	O(n)	0(1)
Linked List	0(1)	O(n)
Sorted Linked List "	O(n)	0(1)

Traversing a as an array.	complete binary tree stored
Parent (i)	is at life I if i = 1
Lchild (i)	is at zi if zi < n
Rchild (i)	Otherwise, it has no left child
	is at 2i+1 if zi+1 < n otherwise, it has no right child

Def. A binary heap is a complete binary
tree with the property that the value of the
key at each node is at least as
Def. A binary heap is a complete binary tree with the property that the value of the key at each node is at least as large as the key values at its children
(Max heap)

n) time using n
-

T= Maximum number of swaps needed

T= n/4+1+ n/8+2+n/16+3+...

T/2= n/8*1+n/6*2+n/32*3+...

T-T/2= n/4*1+ n/8*1+n/16*1+...

n/2

T/2 = n/2

T = n

Bottom up construction takes O(n)

Q: What is the best run time to merge two binary heaps of size n?

A: O(n) using linear time construction