SOLUTIONS DE L'EXAMEN FINAL

13 janvier 2017

[durée : 3 heures]

Exercice 1 (Géométrie du plan complexe)

On se place dans le plan complexe. Soit l'application $\phi: \mathbb{C} \setminus \{3i\} \to \mathbb{C}$ définie par

$$\phi(z) = \frac{z-2}{iz+3}$$
 pour $z \neq 3i$.

- a) Déterminer et dessiner l'ensemble $\phi^{-1}(\mathbb{R})$.
- **b)** Déterminer et dessiner l'ensemble $\phi^{-1}(i\mathbb{R})$.

Indication : Dans les deux questions, vous pouvez déterminer les couples de réels (x, y) tels que z = x + iy soit dans l'ensemble recherché.

Solution : Soit z = x + iy avec $x, y \in \mathbb{R}$ (comme suggéré dans l'indication), alors

$$\phi(z) = \frac{x + iy - 2}{i(x + iy) + 3} = \frac{(x - 2 + iy)(3 - y - ix)}{x^2 + (3 - y)^2} = \frac{(3x + 2y - 6) + i(x(2 - x) + y(3 - y))}{x^2 + (3 - y)^2}.$$

- a) Comme le $x^2 + (3 y)^2$ est réel, nous avons $\phi(z) \in \mathbb{R}$ si et seulement si $\left(x(2-x)+y(3-y)\right) = 0 \iff (x-1)^2+(y-\frac{3}{2})^2 = 1^2 + \frac{3}{2}^2 = \frac{13}{4}$ et $(x,y) \neq (0,3)$. Ainsi on trouve que $\phi^{-1}(\mathbb{R})$ est le cercle de centre $(1,\frac{3}{2})$ et de rayon $\frac{\sqrt{13}}{2}$ $(\approx 1,8)$ privé du point d'affixe 3i.
- b) Comme le $x^2 + (3 y)^2$ est réel, nous avons $\phi(z) \in i\mathbb{R}$ si et seulement si (3x + 2y 6) = 0 et $(x, y) \neq (0, 3)$. Ainsi on trouve que $\phi^{-1}(i\mathbb{R})$ est la droite d'équation 3x + 2y = 6 privée du point d'affixe 3i.

Exercice 2 (Espaces affines et transformations affines)

Soit \mathcal{E} un espace affine. Pour $\Omega \in \mathcal{E}$ et $\lambda \in \mathbb{R}$, on note $H_{\Omega,\lambda}$ l'homothétie de centre Ω et de rapport $\lambda \neq 1$. Et pour $\overrightarrow{v} \in \overrightarrow{E}$, on désigne par $T_{\overrightarrow{v}}$ la translation du vecteur \overrightarrow{v} .

- a) Déterminer la nature et les paramètres de $H_{\Omega,\lambda} \circ T_{\vec{v}}$.
- b) Déterminer la nature et les paramètres de $T_{\vec{v}} \circ H_{\Omega,\lambda}$.
- c) Soit \mathcal{E} l'espace affine des polynômes de degré 2. Déterminer l'image de $P(X) = X^2 + 2X$ par l'homothétie de centre $\Omega(X) = (X 1)(X + 1)$ et de rapport -2.

Solution:

Pour $M \in \mathcal{E}$ nous avons $H_{\Omega,\lambda}(M) = (1 - \lambda)\Omega + \lambda M$.

- a) Pour $M \in \mathcal{E}$ nous avons $H_{\Omega,\lambda} \circ T_{\overrightarrow{v}}(M) = (1-\lambda)\Omega + \lambda(M+\overrightarrow{v})$. Ainsi $H_{\Omega,\lambda} \circ T_{\overrightarrow{v}}(M) = (1-\lambda)(\Omega + \frac{\lambda}{1-\lambda}\overrightarrow{v}) + \lambda M = H_{\Omega + \frac{\lambda}{1-\lambda}\overrightarrow{v},\lambda}(M)$ est l'homothétie du même rapport λ et de centre $\Omega + \frac{\lambda}{1-\lambda}\overrightarrow{v}$.
- **b)** Pour $M \in \mathcal{E}$ nous avons $T_{\vec{v}} \circ H_{\Omega,\lambda}(M) = (1 \lambda)\Omega + \lambda M + \vec{v}$. Ainsi $T_{\vec{v}} \circ H_{\Omega,\lambda}(M) = (1 \lambda)(\Omega + \frac{1}{1-\lambda}\vec{v}) + \lambda M = H_{\Omega + \frac{1}{1-\lambda}\vec{v},\lambda}(M)$ est l'homothétie du même rapport λ et de centre $\Omega + \frac{1}{1-\lambda}\vec{v}$.
- c) $H_{\Omega,-2}(P) = (1+2)\Omega 2P$, ainsi l'image de P(X) par cette homothétie est le polynôme $3(X-1)(X+1) 2(X^2+2X) = X^2 7X$.

Exercice 3 (Espaces euclidiens et isométries)

On considère l'espace affine \mathbb{R}^3 muni de sa structure euclidienne standard. Soit l'application $\phi: \mathbb{R}^3 \to \mathbb{R}^3$, dont l'expression dans la base canonique est

$$\phi(x,y,z) = \frac{1}{3}(-x+2y+2z+3,2x-y+2z,2x+2y-z).$$

- a) Montrer que ϕ est une application affine.
- **b)** Donner la matrice $M_{\vec{\phi}}$ de la partie linéaire de ϕ .
- c) Montrer que ϕ est une isométrie.
- d) Déterminer la nature et les paramètres de la partie linéaire $\overline{\phi}$.
- e) Déterminer la nature et les paramètres de ϕ .

Solution:

a) $\phi(x,y,z) = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et donc ϕ est une application de \mathbb{R}^3 de la

forme $X \mapsto AX + B$, et donc d'après le cours c'est une application affine.

- **b)** D'après la question précédente $M_{\vec{\phi}} = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$.
- c) Comme les trois vecteurs colonnes forment une base orthonormée (à vérifier), la matrice $M_{\overrightarrow{\phi}}$ est orthogonale et donc ϕ est une isométrie.
- d) Comme det $M_{\vec{\phi}}=1$, la partie linéaire $\vec{\phi}$ est une rotation. On trouve facilement que l'ensemble des vecteurs fixes (l'axe de rotation) est $\langle (1,1,1) \rangle$ et que l'angle de rotation θ vérifie $2\cos(\theta)+1=\operatorname{tr} M_{\vec{\phi}}=-1 \implies \theta=\pi(\operatorname{mod} 2\pi)$. Donc $\vec{\phi}$ est une symétrie * axiale d'axe $\langle (1,1,1) \rangle$.
- e) On décompose le vecteur $(1,0,0) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) + (\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$ avec $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \in \langle (1,1,1) \rangle$ et $(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}) \in \langle (1,1,1) \rangle^{\perp}$. D'après le cours

$$T_{\frac{2}{3},-\frac{1}{3},-\frac{1}{3}} \circ M_{\vec{\phi}} = \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \end{pmatrix}$$

est une symétrie axiale d'axe de direction $\langle (1,1,1) \rangle$. En cherchant ses points fixes qui vérifient $\frac{1}{3}(-x+2y+2z+2,2x-y+2z-1,2x+2y-z-1)=(x,y,z)$ on trouve que son axe de symétrie est $(\frac{1}{2},0,0)+\langle (1,1,1) \rangle$. Pour finir on peut dire, d'après le cours, que comme $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ est dans la direction de l'axe de rotation de $T_{(\frac{2}{3},-\frac{1}{3},-\frac{1}{3})} \circ M_{\vec{\phi}}$ alors ϕ est une symétrie axiale glissée d'axe $(\frac{1}{2},0,0)+\langle (1,1,1) \rangle$ et de vecteur de translation $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$.

Exercice 4 (Coniques)

a) Soient deux cercles C_1 et C_2 de centres respectifs O_1 et O_2 et de rayons respectifs R_1 et R_2 avec $R_1 > R_2$. Donner et justifier la condition nécessaire et suffisante pour que C_2 soit tangent intérieurement à C_1 .

Soient F et G deux points du plan euclidien, et $\mathcal C$ un cercle de centre G et de rayon R > d(F,G).

- b) On considère l'ensemble \mathcal{S} des centres Ω des cercles tangents intérieurement à \mathcal{C} et passant par G. Déterminer et dessiner l'ensemble \mathcal{S} .
- c) On considère l'ensemble \mathcal{E} des centres M des cercles tangents intérieurement à \mathcal{C} et passant par F. Montrer que cet ensemble est une ellipse, appelée ellipse de cercle directeur \mathcal{C} et de foyer F, dont on précisera les paramètres.

- d) Décrire et indiquer sur une figure les points de l'intersection $\mathcal{S} \cap \mathcal{E}$.
- e) Est-ce que toute ellipse est l'ellipse d'un certain cercle directeur $\mathcal C$ et d'un certain foyer F?

Solution:

On note C(M, r) le cercle de centre M et de rayon r.

a) Pour un point $M \in \mathcal{C}_1$, par l'inégalité triangulaire, on a $d(O_2, M) \geq d(O_1, M) - d(O_1, O_2)$, avec égalité seulement pour $M \equiv P$ tel que $O_2 \in [O_1, P]^{\dagger}$. Ainsi \mathcal{C}_1 est extérieur à \mathcal{C}_2 si et seulement si $\forall M \in \mathcal{C}_1, d(O_2, M) \geq R_2 \iff R_1 - d(O_1, O_2) \geq R_2 \iff d(O_1, O_2) \leq R_1 - R_2$. Et les deux cercles se touchent (en P) si et seulement si cette inégalité est une égalité.

c) Soit $P \in \mathcal{C}$ le point de tangence entre un cercle C(M,r) qui passe par F et qui touche \mathcal{C} . Nous avons d(M,P)=d(M,F)=r et d(G,M)=R-r, donc d(G,M)+d(M,F)=R. Ainsi $M\in\mathcal{E}$, où \mathcal{E} est l'ellipse de foyers F et G et «longueur de la corde» 2a=R. Réciproquement si $M\in\mathcal{E}$ alors le cercle C(M,r) avec r=d(M,F) touche intérieurement \mathcal{C} car d(G,M)=R-r.

On trouve les autres paramètres de l'ellipse $c=d(F,G)/2,\ b=\sqrt{a^2-c^2}=\frac{1}{2}\sqrt{R^2-d(F,G)^2},$ et finalement $\varepsilon=\frac{c}{a}=\frac{d(F,G)}{R}.$

Note : la question précédente correspond au cas particulier $F\equiv G,$ où $a=b=\frac{R}{2}$ et $\varepsilon=0.$

- **d)** Soit $M \in \mathcal{S} \cap \mathcal{E}$, alors d(F, M) = R d(G, M) = R R/2 = R/2 = d(G, M). Donc M est à l'un des deux points équidistants à R/2 de F et G.
- e) La réponse est «oui» car étant donnée une ellipse de foyers F et G et de grand rayon a, d'après la question (c), elle coïncide avec l'ellipse de foyer F et de cercle directeur C(G, 2a).

^{†.} Pour $O_1 \equiv O_2$ les deux cercles ne se touchent pas, et pour $O_1 \not\equiv O_2$ le point P est unique.