第十一章 级数

11.1 级数的概念及其性质

11.1.1 无穷级数的概念

设有数列 $\{u_n\}$, 由这个数列所有项的和构成的表达式

$$u_1 + u_2 + \dots + u_n + \dots$$

称为(常数项) 无穷级数, 简称 (常数项) 级数, 并简记为 $\sum\limits_{n=1}^{\infty}u_n$, 即

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots,$$

其中的第n 项 u_n 称为级数的一般项(或通项). 级数 $\sum_{n=1}^{\infty} u_n$ 的前 n 项和

$$s_n = u_1 + u_2 + \dots + u_n = \sum_{k=1}^n u_k$$

称为级数 $\sum\limits_{n=1}^{\infty}u_n$ 的前 n 项部分和, 当 n 取 $1,2,3,\cdots$ 时, 它们构成一个数列 s_n , 称为级数 $\sum\limits_{n=1}^{\infty}u_n$ 的部分和数列.

如果部分和数列 s_n 有极限 s, 即 $\lim_{n\to\infty} s_n=s$, 就称 级数 $\sum\limits_{n=1}^\infty u_n$ 是收敛的, 并称极限 s 为 级数 $\sum\limits_{n=1}^\infty u_n$ 的和, 并写成

$$s = \sum_{n=1}^{\infty} u_n.$$

如果部分和数列没有极限, 就称级数 $\sum_{n=1}^{\infty} u_n$ 是发散的.

级数收敛的充要条件是其部分和数列的极限存在.

数列 $\{u_n\}$ 收敛等价于级数 $\sum_{n=2}^{\infty} (u_n - u_{n-1})$ 收敛.

若级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 其和是 s. 称

$$r_n = s - s_n = \sum_{k=1}^{\infty} u_k - \sum_{k=1}^{n} u_k = \sum_{k=n+1}^{\infty} u_k$$

为收敛级数 $\sum_{n=1}^{\infty} u_n$ 的余项. 显然有

$$\lim_{n \to \infty} r_n = \lim_{n \to \infty} (s - s_n) = 0.$$

例 1.1. 讨论级数 (等比级数)

$$\sum_{n=0}^{\infty} aq^n = a + aq + aq^2 + \dots + aq^n + \dots \quad (a \neq 0)$$

的收敛性.

解: 若 q ≠ 1, 则部分和

$$s_n = a + aq + aq^2 + \dots + aq^{n-1} = a\frac{1 - q^n}{1 - q}.$$

当 |q| < 1 时,由于 $\lim_{n \to \infty} q^n = 0$,于是 $\lim_{n \to \infty} s_n = \frac{a}{1-q}$,此时原级数收敛. 当 |q| > 1 时,由于 $\lim_{n \to \infty} q^n = \infty$,于是 $\lim_{n \to \infty} s_n = \infty$,此时原级数发散. 当 q = 1 时,由于 $s_n = na \to \infty$,因此原级数发散. 当 q = -1 时,由于 $s_n = \begin{cases} a, & \exists n \to a \to a = 0 \\ 0, & \exists n \to a = 0 \end{cases}$ 故部分和数列 s_n 没有极限,因此原级数发散.

例 1.2. 证明级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ 是收敛的.

解:由于

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1},$$

所以

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1,$$

故所给级数是收敛的且其和为1.

例 1.3. 讨论级数 $\sum\limits_{n=1}^{\infty} \frac{2n}{5n-3}$ 的敛散性.

解: 由于 $\frac{2n}{5n-3} > \frac{2n}{5n} = \frac{2}{5}$, 故 $s_n > \frac{2}{5}n$. 从而 $\lim_{n \to \infty} s_n = +\infty$, 因此级数 $\sum_{n=1}^{\infty} \frac{2n}{5n-3}$ 发散.

例 1.4. 判断级数 $\sum_{n=1}^{\infty} \frac{n}{2^n}$ 的敛散性, 若收敛求其和.

解: 由于

$$\begin{split} s_n &= \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n-1}{2^{n-1}} + \frac{n}{2^n}, \\ 2s_n &= 1 + \frac{2}{2} + \frac{3}{2^2} + \dots + \frac{n-1}{2^{n-2}} + \frac{n}{2^{n-1}}, \\ s_n &= 2s_n - s_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} - \frac{n}{2^n} = \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} - \frac{n}{2^n}, \end{split}$$

所以

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(\frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} - \frac{n}{2^n} \right) = 2,$$

故所给级数是收敛的且其和 s=2.

11.1.2 无穷级数收敛的条件

定理 1.1 (级数收敛的一个必要条件). 若级数 $\sum\limits_{n=1}^{\infty}u_n$ 收敛,则

$$\lim_{n\to\infty}u_n=0.$$

- 若级数的一般项不趋于零,则级数一定发散;
- 若级数的一般项趋于零,级数也可能发散.

例 1.5. 判断级数 $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n}\right)$ 的收敛性.

例 1.6. 判断级数 $\sum_{n=2}^{\infty} \frac{1}{\sqrt[n]{\ln n}}$ 的收敛性.

$$\lim_{n\to\infty} \frac{1}{\sqrt[n]{\ln n}} = 1$$

定理 1.2 (级数收敛的柯西准则). 级数 $\sum\limits_{n=1}^{\infty}u_n$ 收敛的充要条件是: 任给正数 ε , 总存在正整数 N, 使得当 n>N 以及对任意的正整数 m>n, 都有

$$|u_{n+1} + u_{n+2} + \dots + u_m| < \varepsilon.$$

级数 $\sum\limits_{n=1}^{\infty}u_n$ 发散的充要条件: 存在某正数 ε_0 , 对任何正整数 N, 总存在正整数 $n_0(>N)$ 和 $m_0>n_0$, 有

$$|u_{n_0+1} + u_{n_0+2} + \dots + u_{m_0}| \ge \varepsilon_0.$$

例 1.7. 证明级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 是收敛的.

证明: 对于 m > n, 有

$$0 \le a_{n+1} + a_{n+2} + \dots + a_m = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{m^2}$$

$$< \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(m-1)m} = \frac{1}{n} - \frac{1}{m} < \frac{1}{n}.$$

所以对于任意的 $\varepsilon > 0$, 存在 $N = \left[\frac{1}{\varepsilon}\right] + 1$, 当 n > N 时, 对任意的自然数 m, 有

$$\left| \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{m^2} \right| < \frac{1}{n} - \frac{1}{m} < \frac{1}{n} < \varepsilon,$$

故原级数收敛.

例 1.8. 证明调和级数

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

是发散的.

解: 该级数的前 2^{m+1} 项的部分和

$$\begin{split} s_{2^{m+1}} &= \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) \\ &+ \dots + \left(\frac{1}{2^m + 1} + \frac{1}{2^m + 2} + \dots + \frac{1}{2^{m+1}}\right) > \frac{m+1}{2} \to \infty, \quad (m \to \infty) \end{split}$$

所以级数

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

是发散的.

11.1.3 收敛级数的基本性质

性质 1.3. 当 c 是常数 $(c \neq 0)$ 时, 级数 $\sum_{n=1}^{\infty} cu_n$ 和级数 $\sum_{n=1}^{\infty} u_n$ 有相同的敛散性. 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 且其和是 s, 则级数

$$\sum_{n=1}^{\infty} c u_n = c u_1 + c u_2 + \dots + c u_n + \dots$$

也收敛, 其和是 cs.

例 1.9. 若级数 $\sum_{n=1}^{\infty} u_n$ 发散,问 $\sum_{n=1}^{\infty} cu_n$ 的敛散性?(c) 为常数).

解: 当 c = 0 时, 收敛; 当 $c \neq 0$ 时, 发散.

性质 1.4. 若级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 分别收敛于和 A, B, 则级数 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 也收敛, 其和为 $A \pm B$, 即有

$$\sum_{n=1}^{\infty} (u_n \pm v_n) = \sum_{n=1}^{\infty} u_n \pm \sum_{n=1}^{\infty} v_n.$$

上式所表示的运算法则称为收敛级数可逐项相加(减). 但要注意的是, 只有两个级数都收敛时才可逐项相加或逐项相减, 当 $\sum\limits_{n=1}^\infty u_n$ 或 $\sum\limits_{n=1}^\infty v_n$ 发散时此运算法则就不能用.

例如级数 $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1$, 但级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 和级数 $\sum_{n=1}^{\infty} \frac{1}{n+1}$ 都是发散的, 因此

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) \neq \sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=1}^{\infty} \frac{1}{n+1}.$$

两个发散的级数相减不一定发散.

推论 1.5. 若级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 一个收敛一个发散, 则级数 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 一定发散.

推论 1.6 (收敛级数的线性性质). 设级数 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 均收敛, α , β 为两个常数, 则级数 $\sum_{n=1}^{\infty} (\alpha u_n \pm \beta v_n)$ 也收敛, 且有

$$\sum_{n=1}^{\infty} (\alpha u_n \pm \beta v_n) = \alpha \sum_{n=1}^{\infty} u_n \pm \beta \sum_{n=1}^{\infty} v_n.$$

例 1.10. 讨论级数 $\sum_{n=1}^{\infty} \left(\frac{1}{3n} - \frac{\ln^n 3}{3^n} \right)$ 的收敛性.

发散

性质 1.7. 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则任意加括号后所得级数也收敛,且和不变.

注意

从级数加括号后的收敛,不能推断它在未加括号前也收敛. 如 $\sum_{i=1}^{\infty} (-1)^{n+1}$.

例 1.11. 判别级数 $\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}-1} - \frac{1}{\sqrt{3}+1} + \frac{1}{\sqrt{4}-1} - \frac{1}{\sqrt{4}+1} + \cdots$ 的敛散性.

解: 考虑加了括号后的级数

$$\left(\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1}\right) + \left(\frac{1}{\sqrt{3}-1} - \frac{1}{\sqrt{3}+1}\right) + \left(\frac{1}{\sqrt{4}-1} - \frac{1}{\sqrt{4}+1}\right) + \cdots,$$

其一般项 $u_n = \frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n+1}} = \frac{2}{n-1}$. 由于 $2\sum_{n=2}^{\infty} \frac{1}{n-1}$ 发散,故原级数发散.

性质 1.8. 在级数 $\sum_{n=1}^{\infty} u_n$ 中去掉、增加或改变有限项,级数的敛散性不变;但在收敛时,级数的和可 能改变.

注意

11.1.4 思考与练习 练习 271. 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则()必发散. (A) $\sum_{n=1}^{\infty} \left(u_n - \frac{1}{1000}\right)$ (B) $\sum_{n=1}^{\infty} \left(u_n - u_{n+1}\right)$ (C) $\sum_{n=1}^{\infty} u_{n+1000}$ (D) $\sum_{n=1}^{\infty} \frac{u_n}{10000}$

(A)
$$\sum_{n=1}^{\infty} \left(u_n - \frac{1}{1000} \right)$$

(B)
$$\sum_{n=0}^{\infty} (u_n - u_{n+1})$$

(C)
$$\sum_{n=1}^{\infty} u_{n+1000}$$

(D)
$$\sum_{n=1}^{\infty} \frac{u_n}{100}$$

练习 272. 证明级数 $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$ 是收敛的.

解: 由于

$$s_n = \sum_{k=1}^n \frac{2k+1}{k^2(k+1)^2} = \sum_{k=1}^n \left(\frac{1}{k^2} - \frac{1}{(k+1)^2} \right) = 1 - \frac{1}{(n+1)^2},$$

所以

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{(n+1)^2} \right) = 1,$$

故所给级数是收敛的且其和为1.

练习 273. 讨论级数 $\sum_{n=1}^{\infty} \left(\frac{2}{n} - \frac{1}{2^n}\right)$ 的收敛性.

解: 因级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 故 $\sum_{n=1}^{\infty} \frac{2}{n}$ 发散. 又级数 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ 收敛, 故级数 $\sum_{n=1}^{\infty} \left(\frac{2}{n} - \frac{1}{2^n}\right)$ 发散.

练习 274. 判别级数 $\sum_{n=1}^{\infty} \frac{(n+\frac{1}{n})^n}{n^{n+\frac{1}{n}}}$ 的敛散性.

解: 因为

$$\lim_{n \to \infty} \frac{\left(n + \frac{1}{n}\right)^n}{n^{n + \frac{1}{n}}} = \lim_{n \to \infty} \frac{\left(n + \frac{1}{n}\right)^n}{n^n n^{\frac{1}{n}}} = \lim_{n \to \infty} \frac{\left[\left(1 + \frac{1}{n^2}\right)^{n^2}\right]^{\frac{1}{n}}}{n^{\frac{1}{n}}} = 1 \neq 0,$$

所以该级数发散.

练习 275. 判别级数 $\sum_{n=2}^{\infty} \ln \left(1 - \frac{1}{n^2}\right)$ 的敛散性.

$$\ln\left(1 - \frac{1}{n^2}\right) = \ln(n+1) + \ln(n-1) - 2\ln n$$
, 收敛, 和为 $-\ln 2$.

练习 276. 判断下列级数的敛散性, 若收敛求其和:

$$(1) \sum_{n=1}^{\infty} \frac{e^n n!}{n^n};$$

(2)
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n^2 + 2n};$$

(3)
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$$
.

(1)
$$\lim_{n\to\infty}u_n\neq 0$$
, 发散;

(2)
$$\frac{1}{n^3+3n^2+2n} = \frac{1}{2} \left[\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \right]$$
, 收敛, 和为 $\frac{1}{4}$