Homework 7 for probability & statistics

- 1. Study the following knowledge points carefully, and then copy them to your homework answer sheet, and remember them:
 - (1). Suppose X_1, X_2, \dots, X_n is a random sample from a population X. Then,

the sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$;

the sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \overline{X}^2 \right);$

$$\hat{S}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n} \left(\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2} \right);$$

the *k*th moment about origin of the sample: $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$.

the *k*th moment about central of the sample: $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k$.

- (2). Given a random sample $X_1, X_2, ..., X_n$ from a **standard normal** population $X \sim N(0, 1)$. Then the statistic $\chi^2(n) = X_1^2 + X_2^2 + \cdots + X_n^2$ has a chi-square distribution with n degrees of freedom.
- (3). Given two **independent** random variables $X \sim N(0, 1)$ and $Y \sim \chi^2(n)$. The random variable $t = \frac{X}{\sqrt{Y/n}}$ has a probability distribution called t distribution with n degrees of freedom, denoted by $t \sim t(n)$.
- (4). Given two **independent** chi-squared random variables $U \sim \chi^2(n_1)$ and $V \sim \chi^2(n_2)$. The random variable $F = \frac{U/n_1}{V/n_2}$ has a probability distribution called F distribution with n_1, n_2 degrees of freedom, denoted by $F \sim F(n_1, n_2)$.
- (5). Given a random sample X_1, X_2, \ldots, X_n from a normal population $X \sim N(\mu, \sigma^2)$. Then,

$$\textcircled{1} \underline{X_{i-\mu}}_{\sigma} \sim N(0,1) \qquad \textcircled{2} \, \overline{X} \sim N(\mu,\sigma^2/n); \qquad \textcircled{3} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1);$$

- (6). If random variables X_1, X_2, \ldots, X_n are independent, and have normal distributions as $X_i \sim N(\mu_i, \sigma_i^2)$. Then $\frac{X_i \mu_i}{\sigma_i} \sim N(0, 1)$, $c_1 X_1 + c_2 X_2 + \cdots + c_n X_n \sim N\left(\sum_{i=1}^n c_i \mu_i, \sum_{i=1}^n c_i^2 \sigma_i^2\right)$.

Particularly, if $X_i \sim N(\mu, \sigma^2)$, then $X_1 - X_2 \sim N(0, 2\sigma^2)$, which can be standardized as: $\frac{X_1 - X_2}{\sqrt{2}\sigma} \sim N(0, 1)$.