Short Syllabus

BCSE427L Cognitive Robotics (2-0-0-2)

Introduction - Cybernetic View of Robot Cognition and Perception - Intelligent System Design, Cognition Development and control - Properties of Complete Agents, Agent Design Principle, Developmental Robot Design, Matching brain and Body Dynamics, Artificial Neural Networks, Fuzzy Logic, Genetic Algorithms and Other Nature Inspired Methods, Optimal Control using ANN, Introduction to CNN; Map Building - Randomized Path Planning - Simultaneous Localization and Mapping - Robot Programming methods.

Course Code	Corse Title	L	T	Р	С
BCSE427L	Cognitive Robotics	2	0	0	2
Pre-requisite	NIL	Syllabus Version			
		1.0			

Course Objectives:

- 1. To understand the main types of cognitive (vision, motor control, language, social skills) robots and their driving requirements (engineering operations, navigation, cooperation)
- 2. To understand advanced methods for creating efficient and dynamic cognitive robots.
- 3. To understand the recent literature, and collectively synthesize, clearly explain and evaluate the state of the art in cognitive robotics.
- 4. To apply one or more core reasoning methods to create a simple agent that is driven by goals or rewards.

Course Outcomes:

After the completion of the course, student will be able to:

- 1. Understand how our psychology and neuroscience understanding of behavior and intelligence informs the design of robotics models and applications
- 2. Compare, select and apply different machine learning methods for intelligent behavior in robots.
- 3. Analyze the methods and software/hardware technologies for robotics research and applications.
- 4. Discuss the state of the art in cognitive and intelligent robotics models, and how this leads to the design of future robot applications.

Module:1	Introduction	2 hours					
Thinking, Cognition, and Intelligence, Defining Intelligence - Embodiment and Its							
Implications, Synthetic Methodology for Intelligence.							
	Cybernetic View of Robot Cognition and Perception	4 hours					
Introduction	Introduction to the Model of Cognition, Visual Perception, Visual Recognition, Machine						
Learning, an	d Robot Cognition.						
Module:3	Module:3 Intelligent System Design, Cognition Development and						
	control						
	f Complete Agents, Agent Design Principle, Developmental Robot l						
	ain and Body Dynamics, Artificial Neural Networks (ANN), Fuzzy Lo						
	nd Other Nature Inspired Methods, Optimal Control using ANN, Int	roduction to					
CNN.							
Module:4	Map Building	5 hours					
Introduction, Constructing a 2D World Map, Data Structure for Map Building, Explanation of							
the Algorithm, An Illustration of Procedure Map Building.							
Module:5	Randomized Path Planning	5 hours					
Introduction, Representation of the Robot's Environment, Review of configuration spaces,							
Visibility Graphs, Voronoi diagrams, Potential Fields and Cell Decomposition, Planning with							
moving obstacles, Probabilistic Roadmaps, Rapidly exploring random trees, Execution of the							
Quad tree-Based Path Planner Program.							
	Simultaneous Localization and Mapping (SLAM)	5 hours					
Problem Definition, Mathematical Basis, Examples: SLAM in Landmark Worlds, Taxonomy							
of the SLAM Problem, Extended Kalman filter, Graph-Based Optimization Techniques,							
Particle Methods Relation of Paradigms.							
Module:7	Robot Programming methods	3 hours					

Python Robot Programming Methods-: Go-to-Goal Behavior, Avoid-Obstacles Behavior, Hybrid Automata (Behavior State Machine), Follow-Wall Behavior. A Complete Program for autonomous mobile robot.

aut	autonomous mobile robot.								
Мо	dule:8	Contemporary issues	1 hours						
			7	Total Lectui	re hours:	30 hours			
Tex	Text Book(s)								
1.	Patnaik, Srikanta, "Robot Cognition and Navigation – An Experiment with Mobile Robots", Springer Verlag Berlin and Heidelberg, 2007								
	Howie Choset, Kevin LynchSeth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki, and Sebastian Thrun, "Principles of Robot Motion-Theory, Algorithms, and Implementation", MIT Press, Cambridge, 2005.								
3	David Vernon, "Artificial Cognitive Systems: A Primer" ,The MIT Press, 1st Edition,2014								
Re	Reference Book(s)								
1.	HoomanSomani, "Cognitive Robotics", CRC Press, 2015								
2.	Jared Kroff, "Cognitive Robotics: Intelligent Robotic Systems", Wilford Press, 2016								
3.	https://www.toptal.com/robotics/programming-a-robot-an-introductory-tutorial								
Re	commend	led by Board of Studies	13-05-202	13-05-2022					
Ap	proved by	Academic Council	No. 66	Date	16-06-20	22			