

Group Theory

Solutions to the Problems in Homework Assignment 03

Spring, 2020

- 1. Γ is a faithful representation of a non-Abelian group G. If the representation matrix of each element in the group is transformed as in the following, determine whether the resultant set of matrices forms a representation of the group G.
 - (a) $\Gamma(T)^{\dagger}$ (Hermitian conjugate).
 - (b) $\Gamma(T)^t$ (transpose).
 - (c) $\Gamma(T)^{-1}$ (inverse).
 - (d) $\Gamma(T)^*$ (complex conjugate).
 - (e) $(\Gamma(T)^{-1})^{\dagger}$ (Hermitian conjugate of the inverse).
 - (f) $\det \Gamma(T)$ (determinant).
 - (g) $\operatorname{Tr}\Gamma(T)$ (trace).
 - (a) For $T_1, T_2 \in G$, we have

$$\Gamma(T_1T_2)^{\dagger} = \left[\Gamma(T_1)\Gamma(T_2) \right]^{\dagger} = \Gamma(T_2)^{\dagger}\Gamma(T_1)^{\dagger} \neq \Gamma(T_1)^{\dagger}\Gamma(T_2)^{\dagger}.$$

Thus, the set of matrices $\Gamma(T)^{\dagger}$ does not form a representation of G.

(b) For $T_1, T_2 \in G$, we have

$$\Gamma(T_1T_2)^t = \left[\Gamma(T_1)\Gamma(T_2) \right]^t = \Gamma(T_2)^t \Gamma(T_1)^t \neq \Gamma(T_1)^t \Gamma(T_2)^t.$$

Thus, the set of matrices $\Gamma(T)^t$ does not form a representation of G.

(c) For $T_1, T_2 \in G$, we have

$$\Gamma(T_1T_2)^{-1} = \left[\Gamma(T_1)\Gamma(T_2)\right]^{-1} = \Gamma(T_2)^{-1}\Gamma(T_1)^{-1} \neq \Gamma(T_1)^{-1}\Gamma(T_2)^{-1}.$$

Thus, the set of matrices $\Gamma(T)^{-1}$ does not form a representation of G.

(d) For $T_1, T_2 \in G$, we have

$$\Gamma(T_1T_2)^* = [\Gamma(T_1)\Gamma(T_2)]^* = \Gamma(T_1)^*\Gamma(T_2)^*.$$

Thus, the set of matrices $\Gamma(T)^*$ forms a representation of G.

(e) For $T_1, T_2 \in G$, we have

$$\left[\Gamma(T_1T_2)^{-1}\right]^{\dagger} = \left\{\left[\Gamma(T_1)\Gamma(T_2)\right]^{-1}\right\}^{\dagger} = \left[\Gamma(T_2)^{-1}\Gamma(T_1)^{-1}\right]^{\dagger} = \left[\Gamma(T_1)^{-1}\right]^{\dagger}\left[\Gamma(T_2)^{-1}\right]^{\dagger}.$$

Thus, the set of matrices $\left[\Gamma(T)^{-1}\right]^{\dagger}$ forms a representation of G.

(f) For $T_1, T_2 \in G$, we have

$$\det \Gamma(T_1 T_2) = \det \left[\Gamma(T_1) \Gamma(T_2) \right] = \det \Gamma(T_1) \det \Gamma(T_2).$$

Thus, the set of values det $\Gamma(T)$ forms a representation of G.

(g) For $T_1, T_2 \in G$, we have

$$\operatorname{tr}\Gamma(T_1T_2) = \operatorname{tr}\left[\Gamma(T_1)\Gamma(T_2)\right] = \sum_{ij}\Gamma(T_1)_{ij}\Gamma(T_2)_{ji} \neq \left(\sum_i\Gamma(T_1)_{ii}\right)\left(\sum_j\Gamma(T_2)_{jj}\right) = \operatorname{tr}\Gamma(T_1)\Gamma(T_2).$$

Thus, the set of values $\operatorname{tr}\Gamma(T)$ does not form a representation of G.

2. A two-dimensional representation of $C_2 = \{E, a\}$ is given by

$$\Gamma(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \; \Gamma(a) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Find the similarity transformation that reduces the above two-dimensional representation of C_2 into the direct sum of two irreducible one-dimensional representations.

To reduce $\Gamma(a)$, we first diagonalize it. We use λ to denote the eigenvalue of $\Gamma(a)$ and $\psi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ to denote its corresponding eigenvector. The eigenequation of $\Gamma(a)$, $\Gamma(a)\psi = \lambda\psi$, reads

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \lambda \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

That is,

$$-\lambda\alpha + \beta = 0,$$

$$\alpha - \lambda\beta = 0.$$

The necessary and sufficient condition for the existence of nontrivial solutions is given by the following secular equation

$$\det \begin{vmatrix} -\lambda & 1\\ 1 & -\lambda \end{vmatrix} = 0,$$
$$\lambda^2 - 1 = 0.$$

Thus, the eigenvalues are $\lambda_{1,2}=\pm 1$. For $\lambda_1=+1$, we have

$$-\alpha + \beta = 0,$$

$$\alpha - \beta = 0.$$

Thus, $\alpha = \beta$. The normalized eigenvector corresponding to $\lambda_1 = +1$ is then given by

$$\psi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Similarly, The normalized eigenvector corresponding to $\lambda_2 = -1$ is given by

$$\psi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

The matrix in the similarity transformation that diagonalizes $\Gamma(a)$ is then given by

$$S = \begin{pmatrix} \psi_1 & \psi_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

The inverse of S is given by

$$S^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

Using S, we have

$$S^{-1}\Gamma(E)S=\Gamma(E)=\begin{pmatrix}1&0\\0&1\end{pmatrix},\ S^{-1}\Gamma(a)S=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.$$

Thus, the similarity transformation given by S indeed reduces the given two-dimensional representation of C_2 into the direct sum of two irreducible one-dimensional representations.

3. Consider the following two-dimensional representation Γ of the group $G = \{E, a, b\}$ of order g = 3

$$\Gamma(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \; \Gamma(a) = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}, \; \Gamma(b) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}.$$

(a) Check the orthogonality relation

$$\frac{1}{g} \sum_{T \in G} \Gamma(T)_{jk}^* \Gamma(T)_{st} = \frac{1}{d} \delta_{js} \delta_{kt}$$

for all the possible combinations of j, k, s, and t. Note that j, k, s, t = 1, 2 and that d = 2.

(b) Is the representation Γ reducible?

(a) We list the results respectively for j=s=1,2 and k=t=1,2, j=s=1,2 and $k\neq t=1,2,$ $j\neq s=1,2$ and $k\neq t=1,2,$ and $j\neq s=1,2$ and $k\neq t=1,2.$

For j = s = 1, 2 and k = t = 1, 2, we have

$$\sum_{T \in G} \Gamma(T)_{11}^* \Gamma(T)_{11} = 1^2 + \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 = \frac{3}{2} = \frac{g}{d},$$

$$\sum_{T \in G} \Gamma(T)_{12}^* \Gamma(T)_{12} = 0^2 + \left(\frac{\sqrt{3}}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{2} = \frac{g}{d},$$

$$\sum_{T \in G} \Gamma(T)_{21}^* \Gamma(T)_{21} = 0^2 + \left(-\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{2} = \frac{g}{d},$$

$$\sum_{T \in G} \Gamma(T)_{22}^* \Gamma(T)_{22} = 1^2 + \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 = \frac{3}{2} = \frac{g}{d}.$$

We see that the orthogonality relation is satisfied for j=s=1,2 and k=t=1,2. For j=s=1,2 and $k\neq t=1,2$, we have

$$\sum_{T \in G} \Gamma(T)_{11}^* \Gamma(T)_{12} = \sum_{T \in G} \Gamma(T)_{12}^* \Gamma(T)_{11} = 1 \times 0 + \left(-\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(-\frac{1}{2}\right) \left(-\frac{\sqrt{3}}{2}\right) = 0,$$

$$\sum_{T \in G} \Gamma(T)_{21}^* \Gamma(T)_{22} = \sum_{T \in G} \Gamma(T)_{22}^* \Gamma(T)_{21} = 0 \times 1 + \left(-\frac{\sqrt{3}}{2}\right) \left(-\frac{1}{2}\right) + \left(\frac{\sqrt{3}}{2}\right) \left(-\frac{1}{2}\right) = 0.$$

We see that the orthogonality relation is satisfied for j=s=1,2 and $k\neq t=1,2$. For $j\neq s=1,2$ and k=t=1,2, we have

$$\sum_{T \in G} \Gamma(T)_{11}^* \Gamma(T)_{21} = \sum_{T \in G} \Gamma(T)_{21}^* \Gamma(T)_{11} = 1 \times 0 + \left(-\frac{1}{2}\right) \left(-\frac{\sqrt{3}}{2}\right) + \left(-\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right) = 0,$$

$$\sum_{T \in G} \Gamma(T)_{12}^* \Gamma(T)_{22} = \sum_{T \in G} \Gamma(T)_{22}^* \Gamma(T)_{12} = 0 \times 1 + \left(\frac{\sqrt{3}}{2}\right) \left(-\frac{1}{2}\right) + \left(-\frac{\sqrt{3}}{2}\right) \left(-\frac{1}{2}\right) = 0.$$

We see that the orthogonality relation is satisfied for $j \neq s = 1, 2$ and k = t = 1, 2. For $j \neq s = 1, 2$ and $k \neq t = 1, 2$.

$$\sum_{T \in G} \Gamma(T)_{11}^* \Gamma(T)_{22} = \sum_{T \in G} \Gamma(T)_{22}^* \Gamma(T)_{11} = 1 \times 1 + \left(-\frac{1}{2}\right) \left(-\frac{1}{2}\right) + \left(-\frac{1}{2}\right) \left(-\frac{1}{2}\right) = \frac{3}{2} \neq 0,$$

$$\sum_{T \in G} \Gamma(T)_{12}^* \Gamma(T)_{21} = \sum_{T \in G} \Gamma(T)_{21}^* \Gamma(T)_{12} = 0 \times 0 + \left(\frac{\sqrt{3}}{2}\right) \left(\frac{-\sqrt{3}}{2}\right) + \left(\frac{-\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) = -\frac{3}{2} \neq 0.$$

We see that the orthogonality relation is not satisfied for $j \neq s = 1, 2$ and $k \neq t = 1, 2$.

- (b) In consideration that the orthogonality relation is not satisfied for $j \neq s = 1, 2$ and $k \neq t = 1, 2$, we conclude that the representation Γ is reducible.
- 4. Show that the sum of the characters of all the elements of a finite group in an irreducible representation except the identity representation is zero.

Setting the irreducible representation Γ^p to be the identity representation Γ^1 with $\chi^1(T) = 1 \ \forall T \in G$ in the first orthogonality theorem for characters,

$$\frac{1}{g} \sum_{T \in G} \chi^p(T)^* \chi^q(T) = \delta_{pq},$$

we have

$$\frac{1}{g} \sum_{T \in G} \chi^q(T) = \delta_{1q}.$$

For $q \neq 1$, we have

$$\sum_{T \in G} \chi^q(T) = 0, \ q \neq 1.$$

Thus, the sum of the characters of all the elements of a finite group in an irreducible representation except the identity representation is zero.

- 5. Consider the group $G = \{E, a, b, b^2, b^3, b^4, b^5, ab, ab^2, ab^3, ab^4, ab^5\}$ with $a^2 = b^6 = E$ and $a^{-1}ba = b^{-1}$.
 - (a) Find all the elements in each class of G.
 - (b) Γ^1 and Γ^2 are two representations of G. In the representation Γ^1 , $\Gamma^1(a)$ and $\Gamma^1(b)$ are respectively given by

$$\Gamma^1(a) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \Gamma^1(b) = \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}$$

with $\omega = e^{i2\pi/3}$. In the representation Γ^2 , $\Gamma^2(a)$ and $\Gamma^2(b)$ are respectively given by

$$\Gamma^2(a) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ \Gamma^2(b) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Find the partial character table of G with entries only for the representations Γ^1 and Γ^2 .

- (c) Are the representations Γ^1 and Γ^2 equivalent?
- (d) Is the representation Γ^1 reducible?
- (e) Is the representation Γ^2 reducible?
- (a) The multiplication table of the group is found to be given by

	E	a	b	b^2	b^3	b^4	b^5	ab	ab^2	ab^3	ab^4	ab^5
\overline{E}	E	a	b	b^2	b^3	b^4	b^5	ab	ab^2	ab^3	ab^4	ab^5
a	a	E	ab	ab^2	ab^3	ab^4	ab^5	b	b^2	b^3	b^4	b^5
b	b	ab^5	b^2	b^3	b^4	b^5	E	a	ab	ab^2	ab^3	ab^4
b^2	b^2	ab^4	b^3	b^4	b^5	E	b	ab^5	a	ab	ab^2	ab^3
b^3	b^3	ab^3	b^4	b^5	E	b	b^2	ab^4	ab^5	a	ab	ab^2
b^4	b^4	ab^2	b^5	E	b	b^2	b^3	ab^3	ab^4	ab^5	a	ab
b^5	b^5	ab	E	b	b^2	b^3	b^4	ab^2	ab^3	ab^4	ab^5	a
ab	ab	b^5	ab^2	ab^3	ab^4	ab^5	a	E	b	b^2	b^3	b^4
ab^2	ab^2	b^4	ab^3	ab^4	ab^5	a	ab	b^5	E	b	b^2	b^3
ab^3	ab^3	b^3	ab^4	ab^5	a	ab	ab^2	b^4	b^5	E	b	b^2
ab^4	ab^4	b^2	ab^5	E	ab	ab^2	ab^3	b^3	b^4	b^5	E	b
ab^5	ab^5	b	a	ab	ab^2	ab^3	ab^4	b^2	b^3	b^4	b^5	E

From the above multiplication table, we can easily infer that the inverses of all the elements of G are respectively given by

$$E^{-1} = E, \ a^{-1} = a, \ b^{-1} = b^5, \ (b^2)^{-1} = b^4, \ (b^3)^{-1} = b^3, \ (b^4)^{-1} = b^2, \ (b^5)^{-1} = b, \ (ab)^{-1} = ab, \ (ab^2)^{-1} = ab^2, \ (ab^3)^{-1} = ab^3, \ (ab^4)^{-1} = ab^4, \ (ab^5)^{-1} = ab^5.$$

We now find the classes of G.

i. $C_1 = \{E\}$.

Since E commutes with all the elements of G, it is in a class by itself.

ii. $C_2 = \{b^3\}.$

From the element b^3 of G, we have

$$a^{-1}b^3a = b^3, \ b^{-1}b^3b = (b^2)^{-1}b^3b^2 = (b^4)^{-1}b^3b^4 = (b^5)^{-1}b^3b^5 = b^3,$$

$$(ab)^{-1}b^3ab = (ab^2)^{-1}b^3ab^2 = (ab^3)^{-1}b^3ab^3 = (ab^4)^{-1}b^3ab^4 = (ab^5)^{-1}b^3b^5 = b^3.$$

iii. $C_3 = \{b, b^5\}.$

From the element b of G, we have

$$\begin{split} a^{-1}ba &= b^5, \ (b^2)^{-1}bb^2 = (b^3)^{-1}bb^3 = (b^4)^{-1}bb^4 = (b^5)^{-1}bb^5 = b, \\ (ab)^{-1}bab &= (ab^2)^{-1}bab^2 = (ab^3)^{-1}bab^3 = (ab^4)^{-1}bab^4 = (ab^5)^{-1}ab^5 = b^5. \end{split}$$

iv. $C_4 = \{b^2, b^4\}.$

From the element b^2 of G, we have

$$a^{-1}b^2a = b^4, \ b^{-1}b^2b = (b^3)^{-1}b^2b^3 = (b^4)^{-1}b^2b^4 = (b^5)^{-1}b^2b^5 = b^2,$$

$$(ab)^{-1}b^2ab = (ab^2)^{-1}b^2ab^2 = (ab^3)^{-1}b^2ab^3 = (ab^4)^{-1}b^2ab^4 = (ab^5)^{-1}b^2b^5 = b^4.$$

v. $C_5 = \{a, ab^2, ab^4\}.$

From the element a of G, we have

$$b^{-1}ab = ab^2, \ (b^2)^{-1}ab^2 = ab^4, \ (b^3)^{-1}ab^3 = a, \ (b^4)^{-1}ab^4 = ab^2, \ (b^5)^{-1}ab^5 = ab^4, \ (ab)^{-1}a(ab) = ab^2, \ (ab^2)^{-1}a(ab^2) = ab^4, \ (ab^3)^{-1}a(ab^3) = a, \ (ab^4)^{-1}a(ab^4) = ab^2, \ (ab^5)^{-1}a(ab^5) = ab^4.$$

vi. $C_6 = \{ab, ab^3, ab^5\}.$

From the element ab of G, we have

$$a^{-1}aba=ab^5,\ b^{-1}abb=ab^3,\ (b^2)^{-1}abb^2=ab^5,\ (b^3)^{-1}abb^3=ab,\ (b^4)^{-1}abb^4=ab^3,\ (b^5)^{-1}abb^5=ab^5,\ (ab^2)^{-1}abab^2=ab^3,\ (ab^3)^{-1}abab^3=ab^5,\ (ab^4)^{-1}abab^4=ab,\ (ab^5)^{-1}abb^5=ab^3.$$

In consideration that G has six classes, we see that G has six inequivalent irreducible representations. Let n_p be the dimension of the pth inequivalent irreducible representation. From

$$\sum_{p=1}^{n_C} n_p^2 = g$$

with $N_C = 6$ and g = 12, we see that four irreducible representations are one-dimensional and two irreducible representations are two-dimensional.

(b) In consideration that the two representations Γ^1 and Γ^2 are both two-dimensional, we have $\chi^1(E) = \chi^2(E) = 2$. We thus have

$$\chi^1(C_1) = \chi^2(C_1) = 2.$$

From the given expressions of $\Gamma^{1,2}(a)$ and $\Gamma^{1,2}(b)$, we can infer the following characters of classes C_3 and

 C_5 in the two representations Γ^1 and Γ^2

$$\chi^{1}(C_{3}) = \operatorname{tr} \Gamma^{1}(b) = \operatorname{tr} \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix} = \omega + \omega^{-1} = e^{i2\pi/3} + e^{-i2\pi/3} = 2\cos(2\pi/3) = -1,$$

$$\chi^{2}(C_{3}) = \operatorname{tr} \Gamma^{2}(b) = \operatorname{tr} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = 0,$$

$$\chi^{1}(C_{5}) = \operatorname{tr} \Gamma^{1}(a) = \operatorname{tr} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 0,$$

$$\chi^{2}(C_{5}) = \operatorname{tr} \Gamma^{2}(a) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = 0.$$

To find $\chi^{1,2}(C_2)$, we make use of $\Gamma^{1,2}(b^3) = \Gamma^{1,2}(b)^3$. We have

$$\begin{split} \Gamma^1(b^3) &= \Gamma^1(b)^3 = \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}^3 = \begin{pmatrix} \omega^3 & 0 \\ 0 & \omega^{-3} \end{pmatrix} = \begin{pmatrix} e^{i2\pi} & 0 \\ 0 & e^{-i2\pi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \\ \Gamma^2(b^3) &= \Gamma^2(b)^3 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}^3 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}. \end{split}$$

We thus have

$$\chi^{1}(C_{2}) = \operatorname{tr} \Gamma^{1}(b^{3}) = \operatorname{tr} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2,$$

 $\chi^{2}(C_{2}) = \operatorname{tr} \Gamma^{2}(b^{3}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = 0.$

To find $\chi^{1,2}(C_4)$, we make use of $\Gamma^{1,2}(b^2) = \Gamma^{1,2}(b)^2$. We have

$$\Gamma^{1}(b^{2}) = \Gamma^{1}(b)^{2} = \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}^{2} = \begin{pmatrix} \omega^{2} & 0 \\ 0 & \omega^{-2} \end{pmatrix} = \begin{pmatrix} e^{i4\pi/3} & 0 \\ 0 & e^{-i4\pi/3} \end{pmatrix} = \begin{pmatrix} -e^{i\pi/3} & 0 \\ 0 & -e^{-i\pi/3} \end{pmatrix},$$

$$\Gamma^{2}(b^{2}) = \Gamma^{2}(b)^{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}^{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

We thus have

$$\chi^{1}(C_{4}) = \operatorname{tr} \Gamma^{1}(b^{2}) = \operatorname{tr} \begin{pmatrix} -e^{i\pi/3} & 0\\ 0 & -e^{-i\pi/3} \end{pmatrix} = -e^{i\pi/3} - e^{-i\pi/3} = -2\cos(\pi/3) = -1,$$
$$\chi^{2}(C_{4}) = \operatorname{tr} \Gamma^{2}(b^{2}) = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = 2.$$

To find $\chi^{1,2}(C_6)$, we make use of $\Gamma^{1,2}(ab) = \Gamma^{1,2}(a)\Gamma^{1,2}(b)$. We have

$$\Gamma^{1}(ab) = \Gamma^{1}(a)\Gamma^{1}(b) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix} = \begin{pmatrix} 0 & \omega^{-1} \\ \omega & 0 \end{pmatrix} = \begin{pmatrix} 0 & e^{-i2\pi/3} \\ e^{i2\pi/3} & 0 \end{pmatrix},$$

$$\Gamma^{2}(ab) = \Gamma^{2}(a)\Gamma^{2}(b) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

We thus have

$$\chi^{1}(C_{6}) = \operatorname{tr} \Gamma^{1}(ab) = \operatorname{tr} \begin{pmatrix} 0 & e^{-i2\pi/3} \\ e^{i2\pi/3} & 0 \end{pmatrix} = 0,$$

$$\chi^{2}(C_{6}) = \operatorname{tr} \Gamma^{2}(ab) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -2.$$

Collecting the above-obtained results, we have the following partial character table for G.

	$C_1 = \{E\}$	$C_2 = \{b^3\}$	$C_3 = \{b, b^5\}$	$C_4 = \{b^2, b^4\}$	$C_5 = \{a, ab^2, ab^4\}$	$C_6 = \{ab, ab^3, ab^5\}$
Γ^1	2	2	-1	-1	0	0
Γ^2	2	0	0	2	0	-2

- (c) Because Γ^1 and Γ^2 possess different character systems, they are not equivalent.
- (d) To determine whether the representation Γ^1 is reducible, we make use of the following necessary and sufficient condition for a representation of G to be irreducible

$$\frac{1}{g} \sum_{T \in G} |\chi(T)|^2 = 1.$$

For Γ^1 , we have

$$\frac{1}{g} \sum_{T \in G} |\chi^1(T)|^2 = \frac{1}{12} \left[\, 2^2 + 2^2 + 2 \times (-1)^2 + 2 \times (-1)^2 \, \right] = 1.$$

Thus, Γ^1 is irreducible.

(e) For Γ^2 , we have

$$\frac{1}{g} \sum_{T \in G} |\chi^2(T)|^2 = \frac{1}{12} \left[2^2 + 2 \times 2^2 + 3 \times (-2)^2 \right] = 2 \neq 1.$$

Thus, Γ^2 is reducible.