Reg. No.	1 1	-	1 1	1		1 1	
		_ 1 1		1 1	- 1		

B.Tech. DEGREE EXAMINATION, JUNE 2024

Fifth & Sixth Semester

18ECO108J – EMBEDDED SYSTEM DESIGN USING ARDUINO

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

- T	
- (%)	nta.
_ T_4	ULU.

(i) Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii) Part - B & Part - C should be answered in answer booklet.

(11)	Part - B & Part - C should be answere	ed in ar	nswer booklet.				
Time: 3	hours			Max. I	Mar]	ks: 1	.00
	$PART - A (20 \times 1)$	= 20	Marks)	Marks	BL	СО	PO
	Answer ALL	Questi	ions				
1.	Arduino IDE consists of 2 functions	they	are	1	1	1	1
	(A) Build () and Loop ()(C) Setup () and loop ()	(B) (D)	Setup () and Build () Loop (), build () and setup ()				
2	How many 16 hit and 1						
2.	How many 16 bit general purpose re (A) 1			1	1	1	1
	(C) 3	(B)					
	(C) 3	(D)	4				
3.	During 'CALL' instruction the stack	noin	ter	1	1	1	1
	(A) Increments by 1		Increments by 2	-	•	•	1
	(C) Decrements by 1		Decrements by 2				
		()	2				
4.	system to continue functioning.	CPU rial in	While allowing the SRAM, nterface, SPI port, and interrupt	1	1	1	1
	(A) Idle	(B)	Power-down .				
	(C) Power-save	(D)	Standby				
5.	j = 7 + k * 4; where K=5 and the ast	erick	(*) is the multiplication approximation	1	2	2	3
	The correct answer for j is	OITOR	() is the multiplication operator.	•	2	4	J
	(A) 27	(B)	48				
	(C) 16	(D)	32				
6.	Identify the statement given below If (expression 1 is logic true)			1	1	2	3
	//execute this if statement block is tru	ie					
	//statements following the if at the	1.1.	.1				
	//statements following the if statemer (A) an if						
	(C) cascading if	` '	if else				
	(-) vassautitis ii	(D)	switch case				

:	Consider the following code fragment int $C=5$; int k ; K=C;	nt		i	2	2	3
	what is the value of K and C?						
	(A) 4, 5	(B)	5, 4				
	(C) 4, 4	(D)	5, 5				
0	The statement:			1	1	2	3
	ptr = buffer;						
	Simply initialized ptr to point to buf	fer. Th	at is it, copies theof				
	buffer into theof the ptr.						
	(A) lvalue,rvalue		r value, l value				
	(C) I value, l value	(D)	r value, r value				
9.	In parallel communication, to tra	ansmit	8-bit data with clock signal,	1	1	3	5
	(A) 8	(B)	9				
	(C) 10	(D)	11				
10.	Arduino boards have	P	WM pins these are PPIN no	1	1	3	5
	(A) 6; A0, A1, A2, A3, A4, A5	(B)	4; 3, 5, 9, 11				
	(C) 6; 3, 5, 6, 9, 10, 11	(D)	4; PWMO, PWM1, PWM2, PWM3				
1 1				1	2	3	5
11.	void setup () { static byte PWM =0;						
	{						
	Void loop () { Analog write (11, PWM);						
	Delay (10); PWM ++;						
	}						
	The above code is for (A) Fading the LED using PWM	(B)	Check PWM				
	(C) Check delay		Check digital write				
	(C) Check delay	(2)	G11011 U-B-11				
12.	In SPI, MOSI line is			1	1	3	5
	(A) Master output/slave output		Master input/slave output				
	(C) Master output/slave input	(D)	Master input/slave input				
13.	If the pin is configured as an		writing avalue with	1 1	1	4	2
	digital write () will enable an inter	nal 20	k pull up resister.				
	(A) Input, high	(B)	Input, low				
	(C) Output, low	(D)	Output, high				
14.	are the analog-digital	contro	ol and status registers.	1		1 4	1 2
.	(A) ADATE and ADIF	(B)	ACME and ADIF				
	(C) ADCSRA and ADCSRB		ACME and ADATE				

15.	In ADMUX register, if the bits REFS 1-0 are 00, thenis	1	i	4	2
	selected as analog reference voltage. (A) Internal 1.1 volt (B) AVCC				
	(A) Internal 1.1 volt (B) AVCC (C) AREF pin (D) Reserved				
	(0)				2
16.	The Waveform Generation Mode (WGM) bits are positioned in	1	1	4	2
	bits of register.				
	(A) 2-0 TCCR2A (B) 2-0, TCCR2B				
	(C) 1-0, TCCR2A and 3, TCCR2B (D) 1-0, TCCR2B and 3, TCCR2A				
17	IEEE 802.15.4 standard is for	1	1	5	3
1/.	(A) USB (B) Bluetooth				
	(C) Zigbee (D) WiFi				
	(C) Zigoto			-	3
18.	RFID canover standard barcode technology by reading multiple	1	1	5	3
	tags at once.				
	(A) Increase efficiency (B) Decrease efficiency				
	(C) Increase power (D) Decrease power				
10	GPS stands for	1	1	5	3
19.	(A) Global power system (B) Global power source				
	(C) Global positioning system (D) Global positioning source				
		1	1	5	3
20	. To calculate your position (latitude and longitude) and track	1	1	,	,
	movement, a GPS receiver must be locked on to the signal of at least				
	satellites.				
	(A) 1-D, 2 (C) 1-D 3 (B) 2-D, 3 (D) 2-D, 2				
	(C) 1-D, 3 (D) 2-D, 2				
		Marilia	Dľ	60	PΩ
	$PART - B (5 \times 4 = 20 Marks)$	Marks	ВL	CO	10
	Answer ANY FIVE Questions				
0.1	. Show the format of status register and examine.	4	2	1	1
21	. Show the format of status register and examine.				
22	2. Enumerate the registers related to timer and describe.	4	2	1	1
		4	2	2	3
23	3. List the three general rules for naming variables or functions in C. Explain				
	with examples.				
2	4. Give the anatomy of a functions and explain.	4	2	2	3
22	4. Give the anatomy of a functions and expression		· .		-
2:	5. Test an RS-232 to TTL adaptor circuit with a code.	4	3	3	5
		4	3	4	2
2	6. Can we use digital pin 13 as either input or output? Justify your answer.	-	3		_
_	7. What is the purpose of H-bridge in interfacing a DC motor with Arduino?	4	3	5	3
- 0	/ What is the hilthose of mindigs in intellacing a DO molor will intelled				

	PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	со	P
28. a	. Elucidate the architecture of ATmegas 328 P with neat diagram.	12	3	1	1
ъ.	(OR) Design a circuit to control the brightness of the LED which is connected in any of the PWM pin. Write the sketch for the same.	12	3	1	1
29. a.	Explain the following (i) Structures (ii) Unions (iii) Data storage	12	2	2	3
b.i.	(OR) List the five program steps and explain with an examples.				
0.11	Esse and five program steps and explain with an examples.	6	3	2	3
ii.	Give the syntax of switch statement. With an example explain it.	6	3	2	3
30. a.	Execute the I ² C communication. With a code for the Arduino slave device.	12	3	3	5
b.	(OR) Apply the functions and statement to write a code to control LED using an IR sensor and a remote (Arduino) and explain with circuit arrangement.	12	3	3	5
31. a.	How normal mode in set in timer? Explain with code.	12	3	4	· 2
	(OR)				
b.	In CTC mode how internal interrupt is initiated? Explain with code.	12	3	4	2
32. a.	Design a software model to indicate the temperature in "Red", "Yellow", 'Green" LEDs and also send the value to terminal in PC via serial port. Note:	12	3	5	3
	Red LED should glow when temperature is greater than 150 degree Celsius. Yellow LED should glow when temperature is greater than 100 degree celsius and less than 150 degree celsius.				
	(OR)				
b _e	Execute the interfacing of a servometer using PWM signals and controlling speed and direction with a code	12	3	5	3

* * * * *