Lamberts Problem

Ulysse McConnell

5. Februar 2022

Übersicht

Problemstellung

Lamberts Problem

Parameter

Lösung

Lagrange-Gleichung

Bisektion

Konstruktion

Geschwindigkeit

Anwendung

Johann Heinrich Lambert

Johann Heinrich Lambert

Schweizer Mathematiker, Physiker, Astronom und Philosoph.

- * August 1728, Mühlhausen
- † September 1777, Berlin
- Autodidaktisches Studium
- Gründungsmitglied der Bayerischen Akademie der Wissenschaften
- Mitglied der Preußischen AdW

-Johann Heinrich Lambert

- Lambert muss früh (mit 12 Jahren) in der Schneiderei seines Vaters helfen und kann deshalb die Schule nicht mehr besuchen
- Reist als Hauslehrer durch Europa
- 1758: Mitbegründer der Bayerischen Akademie der Wissenschaften, damals die "Churfürstliche Akademie der Wissenschaften"
- 1764: Wird auf Vorschlag Leonhard Eulers Mitglied der Preußischen Akademie der Wissenschaften
 - \rightarrow Kontakt zu Euler, Lagrange, ...

Johann Heinrich Lambert

Einige Errungenschaften:

- 1761: Beweis der Irrationalität von π
- 1761: "Cosmologische Briefe"
 - → Moderne Kosmosvorstellung
- 1766: "Theorie der Parallellinien"
 - ightarrow Rigorose Weiterentwicklung der nichteuklidischen (hyperbolischen) Geometrie

→ Rigorose Weiterentwicklung der nichteuklidischen (hyperbolischen) Geometrie

└Johann Heinrich Lambert

- Beweis der Irrationalität von π über Kettenbrüche
- Stellt in den "Cosmolgische[n] Briefen" ein modernes kosmologisches Verständnis auf, wonach der gesamte Kosmos aus Ansammlungen von Galaxien, ähnlich der Milchstraße, bestehe
- Studium von Hyperbelfunktionen (sinh, cosh, tanh) und Beweis vieler Sätze der nichteuklidischen Geometrie

Problemstellung

Lamberts Problem: Früher

"Es sei die grosse Axe AB, die Summe der Radienvectoren FN + FM und die Sehne MN gegeben; man soll die Zeit finden, in welcher der Bogen NM durchlaufen wird."

— Johann H. Lambert, §210 Abhandlungen zur Bahnbestimmung der Cometen (1761)

- Schon Newton beschäftigte sich im Buch III der "Principia Mathematica" mit der Bahnbestimmung von Kometen anhand dreier Beobachtungen
- Auch Euler, der in Kontakt mit Lambert stand, stellte Überlegungen zur Bahnbestimmung an
- Lambert lieferte keinen wirklichen Beweis für sein Problem, sondern eher graphische Begrünungen
- Erst Lagrange konnte Lamberts Problem beweisen
 (s. Lagrange Gleichung)

Lamberts Problem: Heute

Definition

Umlaufbahnbestimmung anhand zweier Punkte R_1 und R_2 und einer Flugzeit ΔT .

Lamberts Problem - Problemstellung - Lamberts Problem - Lamberts Problem: Heute

- Heutige Formulierung als Umkehrung des ursprünglichen Problems von Lambert
- Neuentdeckung während des Wettlaufs ins All (Space Race)
- Anwendung in moderner Himmelsmechanik zur Planung von interplanetären Missionen, Raketenabwehr, ...

Parameter: Sehne

$$c^{2} = r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}\cos(\Delta f)$$
$$c = ||\vec{r_{2}} - \vec{r_{1}}||$$

—Problemstellung

-Parameter

—Parameter: Sehne

Parameter: Schne $\begin{matrix} f_1 & \Delta t \\ \hline \\ c & \\ c & \\ c^2 = r_1^2 + r_2^2 - 2n_0 \cot(\Delta f) \\ c & \\ c & \\ |[\beta - K]| \end{matrix}$

• Länge der Sehne über den Kosinussatz:

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

oder über die Differenz der Radienvektoren:

$$c = ||\vec{a} - \vec{b}||$$

Parameter: Semiperimeter

Definition

Semi*perimeter s* (Halber Umfang):

$$s=\frac{r_1+r_2+c_2}{2}$$

7

Lamberts Problem Problemstellung Parameter Parameter: Semiperimeter

- Nicht zu Verwechseln mit parameter
- Semiperimeter := Halber Umfang (lat. semi - halb, perimeter - Umfang)
- Semiperimeter nicht bei Lambert erwähnt, aber nützliche Größe in der Formulierung von Lagrange
- Keine zusätzliche Größe, sondern nur Vereinfachung/Zusammenfassung der anderen Größen

Lösung

Lagrange-Gleichung

$$\Delta t = \sqrt{rac{{ extit{a}}^3}{\mu}} \cdot \left[\left(lpha - eta
ight) - \left(extit{sin} lpha - ext{sin} eta
ight)
ight]$$

$$\sin(\frac{\alpha}{2}) = \sqrt{\frac{s}{2a}} \qquad \sin(\frac{\beta}{2}) = \sqrt{\frac{s-c}{2a}}$$

```
Lamberts Problem

└─Lösung

└─Lagrange-Gleichung

└─Lagrange-Gleichung
```

$$\begin{split} & \Delta r - \sqrt{\frac{s^2}{\mu}} \cdot [(\alpha - \beta) - (\sin\alpha - \sin\beta)] \\ & \sin(\frac{\alpha}{2}) - \sqrt{\frac{s}{2s}} - \sin(\frac{\beta}{2}) - \sqrt{\frac{s - c}{2s}} \end{split}$$

- Große Halbachse a, Gravitationsparameter μ (= GM)
- Beweis der Hypothese Lamberts im Jahr 1773 durch den Mathematiker Joseph-Louis Lagrange
- Möglichkeit der Formulierung einer Laufzeit-Gleichung anhand der drei geometrischen Elemente (große Halbachse, zwei Radienvektoren) beweist die Vermutung Lamberts
- Umkehrung der Gleichung rechnerisch aufwändig; andere Methoden, zB. Näherung durch Kettenbrüche, sind möglich (s. https://arxiv.org/pdf/2104.05283.pdf)

Graphischer Verlauf i

Abbildung 1: Graphischer Verlauf der Lagrange-Gleichung

- ullet Abbildung von großer Halbachse a auf Transferzeit Δt
- Vier verschiedene Transferzeiten erkennbar
 - ightarrow Vier mögliche Transfers sind möglich, aber nur einer mit gesuchten Zeit (s. ightharpoonup Konstruktion)
- Möglichkeiten ergeben sich aus Uneindeutigkeit von Sinus und Cosinus (zB. $\sin 45^\circ = \sin 135^\circ$)
- Aus der Periodizität der trigonometrischen Funktionen ergeben sich außerdem unendlich viele Lösungen. Diese entsprechen Transfers mit mehreren Umrundungen (multi-revolution transfers)

Graphischer Verlauf ii

Gesucht:

Große Halbachse

Problem 1:

Abbildung auf die falsche Größe

 $\rightarrow \, \mathsf{Umkehrabbildung} \,\, \mathsf{gesucht} \,\,$

Problem 2:

Umkehrung der Lagrange-Gleichung nicht trivial

Lösung

Numerisches Näherungsverfahren

Bisektion

Animation 1: Bisektions Algorithmus

(© Ralf Pfeifer, CC BY-SA 3.0, commons.wikimedia.org)

Bisektion

Association 1: Essiktions Algorithmus
(5 the Palm CE VIA h.k. summa estimate red

- Nullstellensuche durch Intervallhalbierung (= Bisektion)
- Voraussetzung: Funktion ist auf dem Suchintervall streng monoton
- Beispiel: $\sqrt{2}$ durch geschicktes Raten annähern ([1;2] \rightarrow [1, 1.5] \rightarrow [1.25, 1.5] \rightarrow ...)
- Weitere Möglichkeit: Newton-Raphson Iteration (schneller)
 Nachteile:
 - Ableitung (nicht trivial) benötigt
 - Konvergenz nicht garantiert
- Bisektion langsamer, aber simpler und konvergiert sicher

Konstruktion i

Bekannt:

- Große Halbachse (durch Bisektion)
- Einer der beiden Brennpunkte (Zentralkörper)
- Zwei Punkte auf der Ellipse (R_1 und R_2)

Definition

Ellipseneigenschaft: $r_1 + r_2 = 2a$

Folgerung

Kreise mit Radius $2a - r_n$ (Abstand zum ges. Brennpunkt) um jeweilige Punkte R_1 und R_2 schneiden sich im gesuchten zweiten Brennpunkt.

Konstruktion ii

Abbildung 2: Konstruktion

(online: geogebra.org/m/w4uycw6x)

Konstruktion iii

Kleinstmögliche Halbachse:

Beide Kunstruktionskreise berühren sich.

$$Radius_1 + Radius_2 = \overline{R_1R_2}$$

$$2a_{min} - r_1 + (2a_{min} - r_2) = c$$

$$a_{min} = \frac{r_1 + r_2 + c}{4}$$

- Kleinstmögliche Halbachse wenn Konstruktionskreise sich berühren
 - → Summe der Radien = Abstand der Mittelpunkte
 - ightarrow Abstand der Mittelpunkte gleichzeitig Sehne
- a_{min} ist längster Transferzeit auf der kurzen Strecke
 (s. Graphischer Verlauf)
 - ightarrow Ab einer längeren Transferzeit muss ein längerer Transferweg verwendet werden

Transfergeschwindigkeit

Transfergeschwindigkeit

Bestimmung über vis-viva-Gleichung:

$$v^2 = \mu \left(\frac{2}{r} - \frac{1}{a}\right)$$

Startgeschwindigkeit

Einsetzen von r_1 für r

Anwendung

- Planung interplanetarer Flüge
- Planung Rendezvous-Manöver
- Raketenabwehr
- ..

Vielen Dank!

umcconnell.net/lamberts-problem

Bisektions-Algorithmus

```
Methode BISEKTION(f, a, b, ziel = 0, N = 100)
   y \leftarrow 0
   für i \leftarrow 1, N tue
       m \leftarrow (a+b)/2
                                  y \leftarrow f(m) - ziel
       wenn y \approx ziel dann
          Ausgabe m; Fertig
       sonst wenn f(a) - ziel gl. Vorzeichen wie y dann
          a \leftarrow m
       sonst
          b \leftarrow m
    Ausgabe m
                                  Näherung ausgeschöpft
```

Weiterführende Lektüre

Richard H. Battin.

An Introduction to the Mathematics and Methods of Astrodynamics.

AIAA, 1999.

Matthew M. Peet.

Lecture 10: Rendezvous and Targeting - Lambert's Problem.

AEE 462: Spacecraft Dynamics and Control, 2021