Deleting Substrings 解题报告

长郡中学 陈胤伯

1 试题来源

http://codeforces.com/contest/392/problem/E

2 试题大意

有一个正整数序列 $a_{1\sim n}$ 。 每次你可以删除连续的一段 $a_{l\sim r}$,满足:

- 1. $|a_i a_{i+1}| = 1$ 对于任意 $l \le i < r$ 成立;
- 2. $2a_i a_{i+1} a_{i-1} \ge 0$ 对于任意 l < i < r 成立。

删除长为 l 的连续一段可以获得 v_l 的收益。 你需要进行若干次删除,最大化总收益。 $n \le 400$, $|v_i| \le 2000$, $1 \le a_i \le 10^9$ 。

3 算法介绍

由于每次删除后序列会重新接起来,导致我们不太好设计DP状态。 我们需要有序地考虑这个问题。

3.1 计算 ansi

我们定义 ans_i 表示序列 $a_{1\sim i}$ 的答案。 ans_n 即为所求。对于 $a_{1\sim i}$,我们关注其最后一个元素 a_i 。如果最终 a_i 未被删除,则直接转移到 ans_{i-1} 。

否则, a_i 一定可以作为最后一次删除的右端点,那么我们枚举最后一次删除的左端点 j,从 $ans_{i-1} + solve(j,i)$ 转移过来。

3.2 计算 *solve*(*j*, *i*)

solve(j,i) 表示把 $a_{j\sim i}$ 这一段消光,并且最后一次删除的左右端点分别为 j,i,最大的总收益。

我们考虑最后一次删除,根据题意,删除的一段一定是一段凸的:

比如图中的绿色标记位置。

我们枚举这一段中的最高点 t,于是最后一次删除的长度也确定了(为 $1+(a_t-a_l)+(a_t-a_r)$),剩下的只需要确定 $j\sim t$ 、 $t\sim i$ 这两段的中间位置该如何选择。

我们先考虑 $i \sim t$ 这一段,另一半同理。

由于最后一次删除的收益已被计算,我们只需要考虑在凑出最后局面之前的最大总收益。换言之,我们要决策 $j \sim t$ 这一段中间哪些位置放到最后消。

设所求为 work(j,t), 显然有:

$$work(j, t) = \min_{j < j' \le t \text{ and } a_{j'} = a_j + 1} \{ work(j', t) + solve'(j + 1, j' - 1) \}$$

其中 solve'(l,r) 表示把 $a_{l\sim r}$ 这段消完的最大总收益。

3.3 计算 solve'(j,i)

这个求法和 solve(i,i) 类似。

依然考虑最后一次删除,如果这次删除的左右端点恰好为 j,i,那就是 solve(j,i)。

否则,我们一定能在这一段中找个位置断开,使得两边的删除互不影响。 也就是枚举一个 $mid \in [j,i)$,转移到 solve'(j,mid) + solve'(mid + 1,i)。

3.4 总结

通过不断转化为递归子问题,我们最终用 DP 解决了这个问题。 事实上这道题也可以看做是在用 DP 转移 DP。