Якщо дві прямі, які перетинаються, паралельні іншим прямим, що перетинаються, то кут між першими прямими дорівнює куту між другими.

доведення.

Нехай прямі AB і AC, що перетинаються, паралельні відповідно прямим A_1B_1 і A_1C_1 . Доведемо, що кут між прямими AB і AC дорівнює куту між прямими A_1B_1 і A_1C_1 (мал. 252).

Розглянемо спочатку випадок, коли дані прямі лежать у різних площинах. Якщо $\angle BAC = \varphi$ — кут між прямими AB і AC ($\varphi \leq 90^\circ$), то через довільні точки B і C його сторін проведемо прямі BB_1 і CC_1 , паралельні AA_1 .

Мал. 252

Нехай прямі BB_1 і A_1B_1 перетинаються в точці B_1 , а прямі CC_1 і A_1C_1 — у точці C_1 . Чотирикутники AA_1B_1B і AA_1C_1C — паралелограми, оскільки їх протилежні сторони попарно паралельні. Відрізки BB_1 і CC_1 паралельні та рівні, оскільки кожний з них паралельний відрізку AA_1 і дорівнює йому. Отже, чотирикутник BB_1C_1C теж паралелограм, $CB = C_1B_1$. За трьома сторонами $\triangle ABC = \triangle A_1B_1C_1$, тому $\angle B_1A_1C_1 = \angle BAC = \emptyset$. Отже, кут між прямими A_1B_1 і A_1C_1 дорівнює куту між прямими AB і AC. \square