Trees

What is a Tree?

• A plant

What is a Tree?

• Family tree

Source: Wikipedia

What is a Tree?

Definition

- A tree is a collection of nodes.
- The collection
 - can be empty;
 - or consists of
 - a distinguished node, called the root,
 - and zero or more non-empty (sub) trees, each of whose roots are connected by a directed edge from the root.

ancestor : parent and parent's ancestors
descendant : children and children's descendants

• A *path* from node n_1 to node n_k is the sequence of nodes such that n_i is the parent of n_{i+1} for $1 \le i < k$.

• The *length* of this path is the number of edges on the path, namely k-1

а

• In a tree, there is exactly one path from the root to each node.

The *depth* of node n_d is 2

The depth of node n_b is 1

 The *depth* of n_i is the length of the unique path from the root to n_i.

10

• The *depth* of a tree

= the depth of the

depth of the tree

deepest leaf.

= 3

 The *height* of n_i is the length of the longest path from n_i to a leaf.

A *height* of node n_b is 2

The *height* of a tree
 the height of the root.

height of the tree
= depth of the tree

= 3

Tree Properties

- As long as a tree contains some nodes, there must be a *root* that forms the top of a hierarchy.
- Every other node is connected to the root by a unique line of descendants.

Applications

• Directory structure in UNIX etc.

- Listing the names of all files in the directory -- How?
- Calculating the total number of blocks used by all the files in the tree

Binary Trees

• A binary tree is a tree in which every node has at most 2 children.

Binary Trees

• A binary tree is a tree in which every node has at most 2 children.

A binary tree

Binary Trees

• In a binary tree, every node except the root is designated as either a *left child* or a *right child* of its parent.

Application of Binary Trees: expression tree

Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

Reverse Polish notation or Postfix : a b c * + d e * f + g * +

Traversal: conversion between the expression tree and the notation

Binary Search Trees

- A binary search tree (BST) is a binary tree with the following properties.
 - Every node contains a **key** that defines the order of the nodes.
 - Keys are *unique* in the tree.
 - At every node in the tree, the key of the node must be
 - greater than all the keys in its left subtree;
 - *less* than all the keys in its *right subtree*.

Binary Search Trees: Example

Exercise: Is This a BST?

- Every node contains a *unique* **key**.
- The key of a node must be *greater* than all those in its *left subtree*.
- The key of a node must be *less* than all those in its *right subtree*.

Exercise: Is This a BST?

- Every node contains a *unique* **key**.
- The key of a node must be *greater* than all those in its *left subtree*.
- The key of a node must be *less* than all those in its *right subtree*.

Exercise: Is This a BST?

- Every node contains a unique key.
- The key of a node must be *greater* than all those in its *left subtree*.
- The key of a node must be *less* than all those in its *right subtree*.