Hyperbolicity of the curve complex Goal: Prove a theorem of Musur and minsky; The The core complex is Groman hyperbolic. Outline: Curve ramplex. notions of hyperbolicity Singular Art structures [s.schleimer@warwick,ac.uk] website for course D Surface S : Connected, compact, mierstable surfaces are determined by their genus and the number of boundary components, (I) Covres: A corre & CS is a embedding of Star S Q: cures can be compliated?!? Isotopy: An isotopy is a continuous map F: Sx I -> S s.t. if we define Ft: S-> S by Ft(x)=F(x,t) then Ft is a homeomorphism Ht&I=[0,1] Def: < pc 5 are 3 stopic cures if there is an isotopy F s.t. * $F_s = Id_S$ [Exercise: Show \simeq
** $F_s(\alpha) = \beta$ [is an equivalence relation [Write <= B.]

are stotopic.

Del: x is separation if Six not
Def: & is separating if S.X not connected.
Def: If & separates and SIX has a { disk } component than X is { peripheral }
disk component than dis peripheral
Def: (a) =
per iness [pacere pacere]
per iness
Def: C(s) = Scal & resented and }
Def: Cos) = {(a) a essential and }
Bigons: If B < S < (dup) is <
disk and B meets x, p each in a
single are then B is a bigon.
B Thus can reduce
B l angl
If x,p et (S) defne the geometric
•
intersection number
$(\alpha, \beta) = \min \{ \alpha' \cap \beta' \alpha' = \alpha, \beta' = \beta \}$
Bign Criturian [Epstein 1966]
(*) xub = : (a1b) iff 2 - (xub) pre no
(**) Eppoce d'= d, p=p and
$ \alpha \cap \beta = \alpha' \cap \beta = i(\alpha, \beta)$
Than there is an isotopy F s.t. F.= Ids and F. (dup) = dup.
and f (dup) = dup
Exercise: Read enough of Epoten 1966, or of Farb Mangalit
of Epstein 1966, or of Fails Mangelit (See course website) to prove this,
NB: The second pint does not hold for
a triple of arres
1
Definition: Say «, p fill S if HX = [(5)
either $i(Y,\alpha)>0$ or $i(Y,\beta)>0$
(~ pt/)
For example of this, see above.
Exercise: Find such filling pairs for all
Surfaces S.
The core complex [Harvey]
Def: $\Delta \leq C(S)$ is a nulticard if $\forall \alpha, \beta \in \Delta$, $c(\alpha, \beta) = 0$.
1 1

Exercice: $|\Delta| \le \xi(s) = 3g-3+m$.

where $S = S_{g,n}$ $\frac{\pi}{|\Delta| = 3}$

DS C(S) is a simplex if it is a multicure.

Open problem: Draw the rest of C(S,2). Check: C(S,2) contains no triangles.

D Locally infinite

Any vertex in Crs) has so-many neighbors.

Rmk: T°(5) 15 countable, Proxe (+)

Clam: i(pipn) = n so all
pn and datanet.

Exercise,