ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1 Разработка математической модели	4
2 Информационное представление модели	7
2.1 Вычислительный эксперимент с использованием Excel	7
2.2 Вычислительный эксперимент с использованием языка Pascal	10
ЗАКЛЮЧЕНИЕ	14
ЛИТЕРАТУРА	15
ПРИЛОЖЕНИЕ А	16

ВВЕДЕНИЕ

Для большинства составляющих ЭВМ, в зависимости от решаемых ею задач, необходимо оптимальное и разумное охлаждение. В этом заключается актуальность представленной работы.

Практическая значимость курсовой работы обуславливается тем, что правильный расчет необходимого охлаждения помогает не только сэкономить затрачиваемую энергию (ведь охлаждение не будет избыточным), но и сохранить видеокарту, т.к. недостаточное охлаждение приводит к перегреву, что в свою очередь приводит к порче видеокарты.

Цель курсовой работы: исследовать и найти оптимальные значения охлаждения для представленных характеристик видеокарты.

Для достижения цели необходимо решить следующие задачи:

- Разработать математическую модель процесса нагревания охлаждения видеокарты.
- Исследовать процесс нагревания охлаждения на основе разработанной математической модели.
- Используя адекватные поставленной задаче информационные технологии представить и опубликовать полученные результаты.

Предмет исследования: исследование охлаждения видеокарты с использованием средств информационных технологий.

Курсовая работа включает в себя следующие части:

- Теоретическая часть в 3-х страницах;
- Практическая часть в 2-х главах, 7-и страницах;
- Вывод из полученных результатов исследования;

- Список литературы.

1 Разработка математической модели

В современном мире использование видеокарт встречается повсеместно. Видеокарты выполняют множество немаловажных функций в процессе работы компьютера. Они нужны не только для рендера изображения игр, но и для графического представления физических процессов, вывода 3D моделей на экран для более наглядного представления, некоторые программы отдают часть своих вычислений видеокарте, таким образом облегчая работу процессора. Видеокарту задействуют даже некоторые процессы браузера, что подчеркивает ее важность в работе любого компьютера. Именно поэтому проблема охлаждения видеокарты актуальна для всех пользователей, даже для тех, кто никогда не задумывался о ее важности.

Согласно Основам элементарной физики [4] для исследования имеющийся темы формулу можно вывести следующим образом:

$$Q_1 = c * m * (t \kappa - t H),$$
 где (1

- $-Q_1$ выделенное тепло в результате нагрева тела;
- с удельная теплоемкость вещества, из которого изготовлено тело;
- m масса тела;
- тк конечная температура тела после нагрева;
- tн начальная температура тела до нагрева.

$$Q_2 = I^2 * R * t(c)$$
, где (2)

- $-\ \ Q_2^{}$ выделенное тепло в результате нагрева тела;
- I − сила тока, проходящего через тело;
- R электрическое сопротивление тела;
- t(c) время, в течении которого ток проходил через тело.

Заменим в (1) tк-tн на Δt . І в (2) представим в виде (3)

$$I = \frac{U}{R}$$
(3)

получим:

$$Q_2 = \frac{U^2 * R}{R^2} * t(c) = \frac{U^2}{R} * t(c)$$
, где (4)

– U – электрическое напряжение.

Приравняем (1) и (3), получим:

$$c * m * t = \frac{U^2}{R} * t(c)$$
 (4)

Из получившейся формулы выведем Δt :

$$t = \frac{U^2 * t(c)}{R^* c^* m} \tag{5}$$

Мы получили формулу, с помощью которой можно рассчитать изменение температуры, в зависимости от времени. Данную формулу применим для расчета охлаждения видеокарты под воздействием кулера, следовательно, для расчета охлаждения в (5):

- U электрическое напряжение кулера;
- R сопротивление кулера;
- с удельная теплоемкость кулера;
- m масса кулера.

Но стоит учитывать, что и видеокарта находится под напряжением и нагревается со временем, поэтому (5) можно преобразовать:

$$t = \frac{U_2^{2*}t(c)}{R_2^{*}c_2^{*}m_2} - \frac{U_1^{2*}t(c)}{R_1^{*}c_1^{*}m_1},$$
где (6)

- U1 напряжение видеокарты;
- R1 сопротивление видеокарты;
- с1 удельная теплоемкость видеокарты;
- m1 масса видеокарты;
- U2 напряжение кулера;
- R2 сопротивление кулера;
- с2 удельная теплоемкость кулера;
- m2 масса кулера.

Полученную математическую модель (6) будем использовать для проведения вычислительного эксперимента, который представлен в части 2 настоящей работы.

2 Информационное представление модели

Разработанная модель должна быть представлена с помощью информационных технологий и отвечать следующим требованиям:

- достоверность (модель должна соответствовать моделируемому процессу);
- результативность (результаты моделирования должны найти успешное применение);
- существенность (модель должна позволять вскрыть сущность поведения системы);
- открытость (модель должна быть легко модифицируема).

Вычислительный эксперимент был реализован 2 способами:

- модель, построенная на основе Microsoft Excel;
- модель, представленная программой, написанной на языке Pascal.

2.1 Вычислительный эксперимент с использованием Excel

Для построения модели была создана книга Excel, используя [6], на листе которого были размещены необходимые характеристики видеокарты и кулера – Рисунок 1.

4	Α	В	С	D	E	F	G	Н	1	J	K
1	Кулер			-	Видеокарта				Результат		
2	U	20	В		U	2	В		t(c)	2573	сек
3	R	150	Ом		R	20	Ом		Ткон	59,98167	С
4	С	400			С	400					
5	m	0,4	КГ		m	0,1	КГ				
6	dt	42,88333	С		t	90	С				
7			7.5		dt	12,865	С				
8											
0											

Рисунок 1

Где $dt(\Delta t)$ рассчитывались по формуле (5) для каждого тела, а конечная температура видеокарты вычислялась в ячейке J3 по формуле =F6-B6+F7. В создании формул мы обращались к [5].

В дальнейшем, для проведения исследования лист был перестроен следующим образом (Рисунок 2).

A	Α	В	С	D	Е	F	G	Н	1	J	K
1		Кулер			В	идеокарта				Результат	
2	U	20	В		U	2	В		t(c)	1500	сек
3	R	150	Ом		R	20	Ом		Ткон	72,5	С
4	С	400			С	400					
5	m	0,4	КГ		m	0,1	КГ				
6	dt	25	С		t	90	С				
7					dt	7,5	С				
8											
9		Кулер 2			ı	Результат					
10	U	20	В		t(c)	1500	сек				
11	R	100	Ом		Ткон	60	С				
12	С	400									
13	m	0,4	КГ								
14	dt	37,5	С								
15											
16		Кулер 3				Результат					
17	U	25	В		t(c)	1500	сек				
18	R	150	Ом		Ткон	58,4375	С				
19	С	400									
20	m	0,4	КГ								
21	dt	39,0625	С								
22											
23		Кулер 4				Результат					
24	U	20	В		t(c)	1500	сек				
25	R	150	Ом		Ткон	87,5	С				
26	С	400									
27	m	1	КГ								
28	dt	10	С								
29											
	()	Расчет	охлажде	ния	÷						

Рисунок 2

Где каждый новый кулер имел 1 характеристику, отличающуюся от изначального для возможности сравнения и выводов.

Суть эксперимента была выяснить, кулер с какими характеристиками быстрее охлаждает видеокарту с постоянными характеристиками. Для эксперимента было взято одно и то же время — 1500 секунд, температура, с которой видеокарту необходимо было охладить, была принята 90 градусов по Цельсию, характеристики видеокарты были взяты с сайта производителя:

- U. Напряжение, проходящее через видеокарту составляет в среднем 1500-2000 мВ;
- R. Сопротивление видеокарты равно 20 Ом;
- с. Удельная теплоемкость нагревающегося элемента видеокарты равна 400;
- т. Масса нагревающегося элемента видеокарты равна 0,1 кг.

В результате проведенного эксперимента был получен график с помощью [7], представленный на рисунке 3.

Рисунок 3

Для полного понимания и возможности обоснования выводов необходимо привести характеристики кулеров.

Таблица 1 – характеристики кулеров, использованные для эксперимента

Название	U	R	С	m
Кулер 1	20 B	150 Ом	400	0,4 кг
Кулер 2	20 B	100 Ом	400	0,4 кг
Кулер 3	25 B	150 Ом	400	0,4 кг
Кулер 4	20 B	150 Ом	400	1 кг

Таблица 2 – результаты охлаждения разных кулеров

Название	Δt
Кулер 1	25 C
Кулер 2	37,5 C
Кулер 3	39,0625 C
Кулер 4	10 C

2.2 Вычислительный эксперимент с использованием языка Pascal

Чтобы правильно разработать программу, которая не будет делать ничего лишнего, необходимо изначально поставить четкую задачу, которую она будет выполнять.

Постановка задачи: разработать программу способную рассчитать охлаждение видеокарты с помощью кулера при разных характеристиках кулера.

Исходя из постановки задачи характеристики видеокарты должны быть в коде программы заложены изначально, а характеристики кулера пользователь должен вводить с клавиатуры во время работы программы. В результате разработки была создана блок-схема, представленная на рисунке 4

Рисунок 4

В коде программы были использованы следующие идентификаторы:

Таблица 3 – список идентификаторов

Имя	Смысл	Тип
U1	Напряжение видеокарты	Integer
U2	Напряжение кулера	Integer
R1	Сопротивление видеокарты	Integer
R2	Сопротивление кулера	Integer
c1	Удельная теплоемкость видеокарты	Integer
c2	Удельная теплоемкость кулера	Integer
m1	Масса видеокарты	Real
m2	Масса кулера	Real
t	Время охлаждения	Integer
dt	Температура охлаждения	Real
Temp	Температура видеокарты	Real
A	Переменная для формулы расчета изменения температуры, представляет U	Integer
В	Переменная для формулы расчета изменения температуры, представляет R	Integer
D	Переменная для формулы расчета изменения температуры, представляет с	Integer
X	Переменная для формулы расчета изменения температуры, представляет t	Integer
Е	Переменная для формулы расчета изменения температуры, представляет m	Real

В результате разработки мы обращались к [2], [3], [4], у нас получился код, который выглядит следующим образом:

```
program mda;
var
 U1, U2, R1, R2, c1, c2, t: integer;
 m1, m2, dt, temp: real;
function heat(a, b, d, x: integer; e: real): real;
  result := (a * a * x) / (b * d * e)
end;
begin
 dt := 0;
  t := 0;
 U1 := 2;
 R1 := 20;
  c1 := 400;
 m1 := 0.1;
  write('Введите характеристики кулера через пробел - U, R, c, m : ');
  readln(U2, R2, c2, m2);
  write('Введите температуру видеокарты: ');
  readln(temp);
  while temp - dt >= 60 do
    dt := heat(U2, R2, c2, t, m2) - heat(U1, R1, c1, t, m1);
    t := t + 1;
  end;
  temp := temp - dt;
  writeln('| Tkoh: ', temp:3:2, ' | dt: ', dt:3:2, ' | t(c): ', t);
end.
```

Результат работы программы представлен на рисунке 5.

```
Введите характеристики кулера через пробел - U, R, c, m : 25 100 400 0.4
Введите температуру видеокарты: 90
| Ткон: 59.99 | dt: 30.01 | t(c): 882
```

Рисунок 5

ЗАКЛЮЧЕНИЕ

В результате курсовой работы были выполнены следующие задачи:

- Была разработана математическая модель, отвечающая всем представленным требованиям.
- На основе разработанной модели был исследован процесс охлаждения – нагревания видеокарты.
- Были созданы 2 вычислительных эксперимента.

Вычислительный эксперимент на основе Excel позволяет сравнить несколько кулеров с разными характеристиками и оценить до какой температуры они охладят видеокарту за определенное время.

Вычислительный эксперимент с использованием языка Pascal позволяет рассчитать время, за которое кулер с введенными характеристиками охладит видеокарту до приемлемой температуры.

Исходя из полученных результатов обеих моделей можно сделать следующий вывод: кулер тем лучше охлаждает видеокарту, чем выше напряжение, которое поступает ему, чем ниже его сопротивление и чем ниже его масса.

ЛИТЕРАТУРА

- 1. Алексеев Е.Р. Free Pascal и Lazarus: Учебник по программированию. 2010. 442.
 - 2. Культин Н. Turbo Pascal в задачах и примерах. 2006. 256.
 - 3. Меженный О.А. Turbo Pascal. Самоучитель. 2008. 336.
- 4. Селезнев Ю.А. Основы элементарной физики. М.: Физматлит, 1974. 544 с.
- 5. Уокенбах Д. Формулы в Excel 2013. Киев: Вильямс, 2017. 720 c.
- 6. Уокенбах Д. Excel 2013. Библия пользователя. Киев: Вильямс, 2017. 928 с.
- 7. Фрай К. Microsoft Excel 2013. Шаг за шагом. М.: ЭКОМ Паблишерз, 2014. 524 с.

ПРИЛОЖЕНИЕ А

РГПУ им А.И. Герцена

Курсовая работа на тему «Исследование охлаждения видеокарты с использованием средств информационных технологий»

Разработчик: Войтин Е.В. 1ИВТ

Цель курсовой работы: исследовать и найти оптимальные значения охлаждения для представленных характеристик видеокарты.

Задачи курсовой:

- Разработать математическую модель процесса нагревания – охлаждения видеокарты.
- Исследовать процесс нагревания охлаждения на основе разработанной математической модели.
- Используя адекватные поставленной задаче информационные технологии представить и опубликовать полученные результаты.

Математическая модель

$$\Delta t = \frac{{U_2}^2*t(c)}{R_2*c_2*m_2} - \frac{{U_1}^2*t(c)}{R_1*c_1*m_1}$$
, где

U1 – напряжение видеокарты;

R1 – сопротивление видеокарты;

с1 – удельная теплоемкость видеокарты;

m1 – масса видеокарты;

U2 – напряжение кулера;

R2 – сопротивление кулера;

с2 – удельная теплоемкость кулера;

m2 – масса кулера.

Информационное представление модели в Excel

	RMN	Смысл	Тип
- 1	U1	Напряжение видеокарты	Integer
1	U2	Напряжение кулера	Integer
-	R1	Сопротивление видеокарты	Integer
1	R2	Сопротивление кулера	Integer
	c1	Удельная теплоемкость видеокарты	Integer
	c2	Удельная теплоемность кулера	Integer
	m1	Масса видеокарты	Real
	m2	Масса кулера	Real
1	t	Время оклаждения	Integer
	dt	Температура охлаждения	Real
p i	Tem	Температура видеокарты	Real
	A	Переменная для формулы расчета изменения температуры, представляет U	Integer
-	В	Переменная для формулы расчета изменения температуры, представляет R	Integer
-	D	Переменная для формулы расчета изменения температуры, представляет с	Integer
:	х	Переменная для формулы расчета изменения температуры, представляет t	Integer
ı	E	Переменная для формулы расчета изменения температуры, представляет m	Real

Заключение

В результате курсовой работы были выполнены следующие задачи:

- Была разработана математическая модель, отвечающая всем представленным требованиям.
- На основе разработанной модели был исследован процесс охлаждения – нагревания видеокарты.
- Были созданы 2 вычислительных эксперимента

Исходя из полученных результатов обеих моделей можно сделать следующий вывод: кулер тем лучше охлаждает видеокарту, чем выше напряжение, которое поступает ему, чем ниже его сопротивление и чем ниже его масса.