	6.890					Lecture				6			5	iepi	t. c	. 23, 20		314	
2	U	Jou	<u>15</u>	to	, Y	Эp	res	sen	t	70	λγì0	bl	<u>e</u> s	ìn		35/	97	7	
	1	\mathcal{I}	lua	J - 1	ra	i D	lac	aic											
				va of	VI(abl 2	0 (5	g <u>a</u> sev	dge ni (2 <u>7</u> Wiv	tó es	1/	es (tv	e) ue	xcl &	usi fol	ve Ise		R
			_	<u>se</u>	Mi	Wil O	re lct	Co	7 7	ect Ny	5	to	c. en	lau	nos	s ə	Va	ria	ble
		<u>(</u> e	9.	N	inti	end it	lo, 3:	PU SA	ushi T	ing	bl luc	ock tia	451 15	PI	nut e've	bal	l see	- n	
	(a)																		
			_	ury Wi Spl	re 7;+	99	adg	et ,t	ho	λS W	2	(t)	ype	S C) }	So	li	tion	15
		(e	9.9.	fl	at-	(0)	dak	ole	CV	Ca	se	Po	itte	VNS	;)		-50		
			T C	irci	uit ete	Si	AT	ما	lso	N	1660	∮ ≤	te	rn	<u>in</u>	ator		<u>jad</u>	get
	<u></u>																		
	4	~ ~	tu	irn	00	ase	es,	N - + 1	7 7 7	10	nee ute	ed ? ((se	mi)	ωį	\ (e)	5		
			CI	oss	OVE		90	dge	21	to	CI	ros	S	(56	2 mi)Wi	ive	S	

Akari/Light Up: [Nikoli 2001]
— given square grid with some obstacles - some obstacles have a number - light illuminates like rook, up to obstacles - goal: place lights in blanks so that
- black space lit
- no lights light each other - satisfy numbers NP-complete by reduction from Circuit SAT: [McPhail 2005] - wire, turn gadgets
- split/negation gadget

> split & negation gadgets (via terminators)
- OR/XNOR gate
- crossover gadget: just XORs! Minesweeper: given square grid of numbers & unknowns & possibly mines

Consistency: does there exist a solution?

- e.g. see whether mine at x is consistent with (consistent) into so far: if not, play x

-> special case of interest

NP-complete by reduction from Circuit SAT [Kaye 2000]

- wire, terminator
- split/NOT/turn
- phase changer (shift by 2) via 2 NOTS
- crossover gadget: just use NANDs!
 [Goldschlager 1977]

	W	inv	ring) .	Co	m	I	fo	rce). (Wiv	,? 5qu	(n	0 9	ue	SSi	19)
			<u> </u>	/	î.e	+	Cal	we	σ	ut	al		59U	lar	e5	?			
														lHe	ari	1 2	UU	0	
	Iv	ite	rev	nce		ca	n	I	fig	ure	2 (nut	0 Jan	M	ı S	qu	ave	2S)
	-							LS	cott	, S	tego	2, 1	San	R	0011	ر ا	011		
									•	•	0				U			•	
		6	C_{c}	M	P:	ργο	of	of	N	0 =	- 0) d	liff	er	ìng	S	slui	tio	1S
		-				1								_	0			•	, –
		C	οΛΙ	P-	COY	nol	leta)	by	re	du	ctio	m -	fro	n				
		<u> </u>	C	ivo	uit	F. (JN	SF	H		ر ا	χ_{4}	n -	٦ · ·	· •	Xh	s.t	, fl	(K)
			-							=	A3	X1 2	χ_{a}	.	., X	10	7 -	$f(\bar{z})$	()
											•	, T	. 0						,
			- ,	Vil	e.	ti	lγN		ter	mi	na	tor							
				No															
				spl	1:1			_											
			_ (รรก	Nev	· :	il	ıst	(1<	۵,	Λ	OR	5					
		•		Spe	Cic	al .	CO	VP.	+	n	املاع	SUV	e s t	ea	(10)	#	m	în P	ς
				ìΝ	~(00	C 0.	50	c '	(#	-m	inp	< 1		+ ~	£ ,	5U7	7	$\widetilde{\circ}$
			2	Day	te	عر م)ic	100	Ď	m	44	V _O	at		3)				<i>-</i>
			\mathcal{C}	Pov	13	•	J	rice			. 00		Ů.						
		,	_ ,	110.5	-c.+;	cfi	ah	0.	⇔	\triangle	to	+	For	~0	1 4	7	~ 0	F	
			,	1 , 1) (() (511		N Z.		O	cip	<i>.</i>	101	Ce	, ,	0		•	
P0	0 40	0 IC	C	TICCI	.+	<	SAT	T:	0.50	10	10	M (الرحر	ر ج	40	<u></u>	VCC1	:+	
1	W/\	_		,	141	1/U			3,	VEN	_	ω/IC	Ly S	۱۱ د د ۸	り 100		1 ()	Cł 1	
		(0		ク・ル	V'	1		(۷.			U	Wy.	/\			[n	n (!	27
		(A	St) Ki II (a d)											Lui	ew.	⁻³)

NP-complete with simultaneous pops [Gualà, Leucci, by reduction from 1-in-3SAT Natale 2014] - works for many goals: - p points in k moves - p points -poppgems -p moves - pop a specific gem

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.