Note del corso di Analisi matematica 1

Gabriel Antonio Videtta

21 marzo 2023

Limiti di funzioni e funzioni continue

Nota. Nel corso del documento, per un insieme X, qualora non specificato, si intenderà sempre un sottoinsieme generico dell'insieme dei numeri reali esteso $\overline{\mathbb{R}}$. Analogamente per f si intenderà sempre una funzione $f: X \to \overline{\mathbb{R}}$.

Definizione. (continuità in un punto) Sia $\overline{x} \in X$. Allora f si dice continua su \overline{x} se e solo se $\forall I$ intorno di $f(\overline{x}) \exists J$ intorno di \overline{x} tale che $f(J \cap X) \subseteq I$. Conseguentemente f si dirà discontinua su \overline{x} se non è continua su \overline{x} .

Definizione. (continuità di una funzione) Si dice che f è una funzione continua se e solo se f è continua su $\overline{x} \ \forall \overline{x} \in X$.

Definizione. (punti di accumulazione e punti isolati) Si dice che $\overline{x} \in \mathbb{R}$ è un punto di accumulazione di X se $\forall I$ intorno di $x \exists x \in X, x \neq \overline{x} \mid x \in I$, o equivalentemente se $I \cap X \setminus \{\overline{x}\} \neq \emptyset$. Analogamente un punto che non è di accumulazione e che appartiene a X si dice punto isolato.

Definizione. (derivato di un insieme) Si definisce derivato di X l'insieme dei punti di accumulazione di X, e si denota con D(X).

Definizione. (chiusura di un insieme) Si definisce chiusura di X l'unione di X ai suoi punti di accumulazione, ossia $\bar{X} = X \cup D(X)$.

Proposizione. Sono equivalenti i seguenti fatti:

- 1. \overline{x} è un punto di accumulazione di X,
- 2. esiste una successione $(x_n) \subseteq X \setminus \{\overline{x}\}$ tale che $x_n \xrightarrow[n \to \infty]{} \overline{x}$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Se $\overline{x} \in \mathbb{R}$, per ogni n si consideri l'intorno $I_n = [\overline{x} - \frac{1}{n}, \overline{x} + \frac{1}{n}]$, e si estragga un elemento $k \in I_n \cap X \setminus \{\overline{x}\}$ (che per ipotesi esiste, dacché \overline{x} è un punto di accumulazione). Si ponga dunque $x_n = k$. Poiché $\lim_{n \to \infty} \overline{x} - \frac{1}{n} = \lim_{n \to \infty} \overline{x} + \frac{1}{n} = \overline{x}$ e $x_n \in I_n \ \forall n \in \mathbb{N}$, allora $x_n \xrightarrow[n \to \infty]{} \overline{x}$.

Altrimenti, se \overline{x} non è finito, si consideri il caso $\overline{x} = +\infty$. Per ogni n si consideri allora l'intorno $I_n = [n, \infty]$, e si estragga, come prima, $k \in I_n \cap X \setminus \{\overline{x}\}$, ponendo infine $x_n = k$. Poiché $I_n \xrightarrow[n \to \infty]{} \{\infty\}$, $x_n \xrightarrow[n \to \infty]{} \overline{x}$. Analogamente si dimostra il caso $\overline{x} = -\infty$.

(\Leftarrow) Se esiste una tale successione, allora $\forall I$ intorno di $\overline{x} \exists n_k \in \mathbb{N} \mid n \geq n_k \implies x_n \in I$, ed in particolare, poiché per ipotesi $x_n \neq \overline{x}, x_n \in X \forall n \in \mathbb{N}$, I contiene sempre un punto diverso da \overline{x} ed appartenente ad X, ossia $I \cap X \setminus \{\overline{x}\}$.

Osservazione. Negando la definizione di punto di accumulazione, si ricava che $\overline{x} \in X$ è un punto isolato $\iff \exists I$ intorno di $\overline{x} \mid I \cap X = \{\overline{x}\}.$

Definizione. (limite di una funzione) Sia $\overline{x} \in D(X)$. Allora $\lim_{x \to \overline{x}} f(x) = L \stackrel{\text{def}}{\Longrightarrow} \forall I$ intorno di L, $\exists J$ intorno di $\overline{x} \mid f(J \cap X \setminus \{\overline{x}\}) \subseteq I$.

Osservazione. La definizione di limite di una funzione richiede che \overline{x} sia un punto di accumulazione di X per due principali motivi, uno teorico e uno strettamente pratico:

- 1. se \overline{x} fosse un punto isolato, allora esisterebbe sicuramente un suo intorno J tale che $J \cap X \setminus \{\overline{x}\} = \emptyset$, e quindi $f(J \cap X \setminus \{\overline{x}\}) = f(\emptyset) = \emptyset \in I$, per qualsiasi intorno I scelto, a prescindere da L; si perderebbe dunque una proprietà fondamentale del limite, ovverosia la sua unicità.
- 2. se \overline{x} fosse un punto isolato, non vi sarebbe alcun modo di "predirre" il comportamento di f nel momento in cui tende a \overline{x} , dacché non si potrebbero computare valori per x "vicine" a \overline{x} .

Proposizione. Se $\overline{x} \in D(X)$, sono equivalenti i seguenti fatti:

- 1. $\lim_{x\to \overline{x}} f(x) = L$,
- 2. \forall successione $(x_n) \subseteq X \setminus \{\overline{x}\}$ tale che $x_n \xrightarrow[n \to \infty]{} \overline{x}$, $f(x_n) \xrightarrow[n \to \infty]{} L$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia $(x_n)\subseteq X\setminus\{\overline{x}\}$ una successione tale che $x_n\xrightarrow[n\to\infty]{}\overline{x}$. Poiché $\lim_{x\to\overline{x}}f(x)=L,\,\forall\,I$ intorno di $L,\,\exists\,J$ intorno di \overline{x} tale che $f(J\cap X\setminus\{\overline{x}\})\subseteq I$. Allo stesso tempo, poiché $x_n\xrightarrow[n\to\infty]{}\overline{x}$ e J è un intorno di \overline{x} , esiste un $n_k\in\mathbb{N}$ tale che $n\geq n_k\implies x_n\in J\implies f(x_n)\in I$ (infatti x_n per definizione appartiene a X ed è sempre diverso da \overline{x}). Allora $\forall\,I$ intorno di $L,\,\exists\,n_k$ tale che $n\geq n_k\implies f(x_n)\in I$, ossia $f(x_n)\xrightarrow[n\to\infty]{}L$.

 (\Leftarrow) Si ponga per assurdo che $\lim_{x \to \overline{x}} f(x) \neq L$. Allora esiste almeno un intorno I di L tale per cui non esista alcun intorno J di $\overline{x} \mid f(J \cap X \setminus \{\overline{x}\}) \subseteq I$. Si consideri adesso il caso $\overline{x} \in \mathbb{R}$ ed il suo intorno $J_n = [\overline{x} - \frac{1}{n}, \overline{x} + \frac{1}{n}]$: da ogni J_n si può estrarre un $k \in X \setminus \{\overline{x}\}$ (infatti \overline{x} è un punto di accumulazione), tale che $f(k) \notin I$. Si ponga allora $x_n = k$. Dal momento che $J_n \xrightarrow[n \to \infty]{} \{\overline{x}\}$, $x_n \xrightarrow[n \to \infty]{} \overline{x}$. Allo stesso tempo, per $n \to \infty$, $f(x_n)$ non può tendere a L, dacché per costruzione $f(x_n)$ non appartiene all'intorno I. Tuttavia ciò contraddice l'ipotesi, e quindi $\lim_{x \to \overline{x}} f(x) = L$.

Altrimenti, se $\overline{x} = \infty$, si consideri per ogni n l'intorno $J_n = [n, \infty]$, e se ne estragga $k \in X \setminus \{\overline{x}\}$ tale che $f(k) \notin I$ (come prima, questo deve esistere dacché \overline{x} è un punto di accumulazione). Si ponga dunque $x_n = k$. Poiché $J_n \xrightarrow[n \to \infty]{} \{\infty\}$, $x_n \xrightarrow[n \to \infty]{} \overline{x}$. Tuttavia $f(x_n)$ non può tendere a L per $n \to \infty$, dal momento che $f(x_n)$ per costruzione non appartiene mai all'intorno I. Questo contraddice nuovamente l'ipotesi, e quindi $\lim_{x \to \overline{x}} f(x) = L$. \square

Esercizio 1. Si dimostri che $\overline{\overline{X}} = \overline{X}$.

Esercizio 2. Si mostri che l'ipotesi che la successione (x_n) non abbia elementi uguali a \overline{x} sia necessaria, riportando un controesempio.