

FASHION

CAPTIONING ////

BLIP # Finetuning

EURON 67I FINAL PROJECT

FASHION CAPTIONING WITH BLIP FINETUNING

INDEX

Introduction 1. Image Captioning 소개 2. 주제 선정 동기	01
Related Works 1. Image Captioning Models 2. BLIP	02
Dataset	03

Modeling & Experiments

1. Setup

2. Modeling 1

a. trial 1

b. trial 3

3. Modeling 2

a. Backgrounds - ALS, SLS

b. trial 2

c. trial 4

Conclusion

05

1. Evaluation

2. Inference

3. 기대효과

INTRODUCTION

Image Captioning

- ❖ 이미지 캡셔닝(Image Captioning)은 이미지의 내용을 단어로 설명하는 task
- ❖ 컴퓨터 비전과 자연어 처리 둘 다에 대한 종합적인 이해가 필요 [멀티모달]
- ❖ 목표 : 주어진 이미지에 대한 높은 수준의 이해와 텍스트 생성 능력을 모델에 부여

Output: silhouette of a girl on the beach at sunset

Output: ice cream in a glass bowl

1. Image Captioning

❖ 대부분의 이미지 캡셔닝 구조는 '이미지 인코더'와 '텍스트 디코더'가 결합된 형태

❖ 단계

- 1. 이미지 입력
- 2. 이미지 특성 추출
- 3. 문맥 학습
- 자연어 설명 생성
- 5. 평가 및 최적화

2. 주제 선정 동기

- ❖ 이미지 캡셔닝이라는 큰 주제는 정한 상태에서 세부 분야를 정해야했음
- ❖ e-commerce 분야를 살펴보다가 구할 수 있었던 데이터가 패션이미지 + 캡션 데이터였음
 - ▶ 온라인 패션 플랫폼 제품 자동 생성 / 패션 트렌드분석 등 활용도가 많다고 생각
- ❖ But 일반적인 이미지 캡셔닝과 패션 이미지 캡셔닝은 본질적으로 비슷한 작업이지만 차이가 있음
 - ▶ 전체적인 내용 설명 vs 특정한 패션 아이템에 대한 특징 (디자인, 색상, 재질 등)
 - ▶ 패션에 특화된 정보가 중요
 - ▶ 패션 도메인에 대한 특화된 어휘 학습을 목표로

Image Captioning Models

- 이미지 인코더 + 텍스트 디코더 구조
- input:이미지 / output : 텍스트
- train data
 - 。 [이미지 + 해당 이미지에 대한 캡션] pair

Image Captioning Models

• 대표적인 모델로는 BLIP, mPLUG, ExpansionNet 등이 있음

- 。 그중에서 가장 널리 쓰이는 BLIP에 대한 논문 리뷰를 진행하고, 파인튜닝할 모델로 선정
- 。 BLIP: 이미지와 텍스트 간의 상호작용 모델
- 。 이미지 캡셔닝 뿐만 아니라 이미지-텍스트 매칭, 이미지 기반 질의응답 등 다양한 task에서 활용 가능

• 평가 지표

- 。 이미지 분류에서의 Accuracy, 이미지 생성에서의 FID 처럼 대표적인 평가지표의 부재
- BLEU, METEOR, ROUGE, CIDEr, SPICE를 종합하여 평가

- 이해와 생성 능력을 갖춘 통합 모델을 사전 학습하기 위해 멀티모달 인코더-디코더 혼합(MED) 모델을 제안
- BLIP의 MED 모델 아키텍처는 다음과 같은 세 가지 기능을 수행할 수 있음
 - Unimodal Encoder
 - Image-grounded Text Encoder
 - Image-grounded Text Decoder

Unimodal Encoder

- Image Encoder는 이미지를 패치로 분할하고시퀀스로 인코딩하는 ViT를 사용
- Text Encoder는 BERT 활용, 문장 요약을 위해text 입력의 시작 부분에 [CLS] 토큰 추가

- Image-grounded Text Encoder
 - Text Encoder에 cross-attention 층을 추가하여 시각 정보를 주입
 - 。 텍스트 끝에 task-specific [Encode] 토큰을 추가하고, 이 토큰의 출력 임베딩을 이미지-텍스트 쌍의 multi-modal 표현으로 사용

- Image-grounded Text Decoder
 - 。 Text Encoder의 self-attention 층을 causal self-attention 층으로 대체
 - 。 [Decode] 토큰을 사용하여 시퀀스의 시작을 알리며, end-of-sequence 토큰을 사용하여 끝을 알림

1. 데이터셋 소개

COCO Captions

- ➤ Microsoft에서 개발
- > 330000개 이상의 이미지와 80개 이상의 객체 카테고리 포함
- ▶ 각 이미지에 객체의 위치와 label이 주석으로 달려있음

* FACAD

- ▶ 다양한 계절, 연령대, 의류/액세서리 카테고리, 포즈 등의 패션 이미지를 포함
- ▶ 패션 아이템에 대한 상세하고 섬세한 캡션을 제공
- ▶ FACAD의 캡션은 평균 21단어로 COCO Captions의 10.4단어보다 길고, 더 풍부한 표현을 사용함("pearly", "so-simple yet so-chic", "retro flair" 등)

2. 데이터셋 구축 방법

- 1. FACAD 데이터셋 불러오기
- 2. 사물을 정면에서 바라보고 있는 이미지 데이터 추출
 - 0번 id, 색상이 여러개인 경우 첫 번째 이미지 활용
- 1. 이미지 파일 압축, annotation 파일 전처리
- 2. 데이터 개수 나누기
 - a. train: 10000
 - b. val: 1000
 - c. test: 2000

2. 데이터셋 구축 방법

5. 이후 모델링 단계에서 BLIP 모델에 넣기 위해 COCO Captions format으로 맞춤

- images, annotations, info, licenses
- json 파일로 저장

```
{
    "images": [
        {
            "id": 1,
            "file_name": "image_1.jpg"
        },
```


Setup General

- ❖ 모델: BLIP w/ ViT-L(blip-image-captioning-large)
 - > 0 □ | X | size: 384 × 384
 - > max caption length: 50
 - train:validation:test = 10000:2000:1000
 - ➤ fine-tuning 시 PEFT 방식 적용
- batch_size: 16
- optimizer: AdamW
 - → initial learning rate: 2e⁻⁵
 - Ir scheduler: cosine_schedule_with_warmup
 - warmup 비율: 10%
 - weight decay: 0.05
- num_epochs: 10

Setup; PEFT+LoRA 설정

- LoRA(Lo-Rank Adaptation)
 - ▶ 대규모 모델 파인 튜닝 시 행렬의 랭크를 줄이는 방법
 - ▶ 기존 모델의 가중치 행렬을 저랭크 행렬로 분해하여 적은수의 파라미터만을 학습하는 방식
 - ▶ 메모리와 계산 비용을 줄이면서도 성능을 유지함

```
[] ## PEFT + LoRA 설정

## LoRA Configuration
lora_config = LoraConfig(
    r = 16, # LoRA의 rank
    lora_alpha = 32, # LoRA의 alpha
    lora_dropout = 0.05, # LoRA의 dropout 비율
    target_modules = target_modules,
    bias = "none"
)

# LoRA 적용 모델
peft_model = get_peft_model(model, lora_config)
```

Modeling Overview

Trials

#	fine-tuned layers	semantic metrics
1	Decoder only	X
2	Decoder only	0
3	Decoder + Encoder의 마지막 6개 layer	X
4	Decoder + Encoder의 마지막 6개 layer	0

Modeling Overview

Layers

➤ Decoder only

(모든 layer에 대해)

- attention layer의 query/key/value
- dense layers
 (Feed-Forward Neural Networks)

➤ Decoder + Encoder

(마지막 6개 layer에 대해)

- attention layer의 query/key/value
- dense layers (Feed-Forward Neural Networks)

Recap: Evaluation Metrics

❖ BLEU-4

- ➤ 생성된 캡션과 기준 캡션(= 참고 캡션) 간의 4-gram 일치 정도를 측정
- ➤ 0 ~ 1의 범위를 가지며, 점수가 높을수록 good
 - → 점수가 높을수록 생성된 텍스트가 참고 텍스트와 더 잘 일치한다는 것을 의미

❖ METEOR

- ➤ 단어의 형태소 일치, 어휘적 의미, 동의어 등을 고려하여 번역 품질을 평가하는 지표
- ➤ 0 ~ 1의 범위를 가지며, 점수가 높을수록 good

❖ ROUGE

- ➤ 텍스트 요약의 평가를 위해 개발된 지표
- ➤ 0 ~ 1의 범위를 가지며, 점수가 높을수록 good
 - → 점수가 높을수록 요약이 원본 텍스트의 중요한 부분을 잘 포함하고 있음을 의미

❖ CIDEr

- ➤ 다수의 기준 캡션과 생성된 캡션 사이의 유사도를 n-gram으로 계산. 특히, 인간이 작성한 캡션과의 합의(consensus)를 기반으로 평가
- ➤ 0 ~ 10의 범위를 가지며, 점수가 높을수록 good
 - → 점수가 높을수록 사람이 작성한 캡션과 유사함을 의미

❖ SPICE

- ➤ 이미지 캡션의 의미론적 구조(객체, 관계 등)를 그래프로 표현하고 이를 비교하여 평가
- ➤ 0 ~ 1의 범위를 가지며, 점수가 높을수록 good
 - → 점수가 높을수록 이미지 캡셔닝의 의미적 정확성이 높음을 의미

❖ Trial 1

- > Decoder만 fine-tuning
 - attention layer의 query/key/value
 - dense layers
- ⊳ 평가지표

	BLEU-4	METEOR	ROUGE	CIDEr	SPICE
scores	0.0193	0.0872	0.1812	0.2492	0.0863

❖ Trial 3

- ➤ Encoder의 마지막 6개 layer 또한 fine-tuning
 - attention layer의 query/key/value
 - dense layers
- ⊳ 평가지표

	BLEU-4	METEOR	ROUGE	CIDEr	SPICE
scores	0.0202	0.0915	0.1848	0.2750	0.0930

- Background
 - ▶ 패션 캡셔닝은 아이템의 <mark>내재적 속성</mark>을 정확히 설명해야 한다는 독특한 과제를 가지고 있음
 - ▶ 패션 캡셔닝의 정확도를 높이기 위해 두 가지 semantic metric을 도입
 - attribute-level semantic(ALS): 이미지 <u>속성</u>들을 더 많이 포함한 문장을 생성하도록 유도
 - sentence-level semantic(SLS): 패션 아이템의 <u>카테고리</u>를 더 정확하게 설명하도록 생성된 문장을 유도
 - 기존 수식을 구현 상의 편의성을 위해 조금 변경하여 활용

- Background
 - > attribute-level semantic(ALS)
 - 가능한 올바른 속성(attribute)을 많이 생성하도록 모델을 유도
 - attributes: 명사(NOUN), 형용사(ADJ)
 - 생성된 caption이 데이터의 속성을 얼마나 잘 포함하고 있는지 평가
 - 생성된 문장과 참조 문장에서 "공통" attributes의 비율을 계산
 - reference_caption에 적절한 속성이 없는 경우 보상을 0으로 설정

```
def extract_attributes(caption):
    doc = nlp(caption)
    attributes = [token.text for token in doc if token.pos_ in ['NOUN', 'ADJ']]
    return attributes

    def compute_als(generated_caption, reference_attributes):
        generated_attributes = extract_attributes(generated_caption)

# 패딩된 속성 제거(공백)
    reference_attributes if attr != ""]

    common_attributes = set(generated_attributes) & set(reference_attributes) return len(common_attributes) / len(reference_attributes) if reference_attributes else 0
```

- Background
 - > sentence-level semantic(SLS)
 - 패션 아이템의 카테고리를 더 정확하게 설명하도록 생성된 문장을 유도
 - 생성된 caption이 category를 반영하고 있는지 평가
 - 포함되면 1, 아니면 0

```
"1": "backpack",
   "2": "bag",
   "3": "belt",
   "4": "blazer",
   "5": "blouse",
   "6": "bodysuit",
   "7": "boot",
   "8": "bottom",
   "9": "bra",
   "10": "bracelet",
```

Background

- computing gradient(update rule)
 - 앞에서 정의한 두 보상을 합하여 활용:
 - reward의 목표: 최대화 ⇔ loss의 목표: 최소화
 - 위의 두 보상 최적화 정책은 미분이 불가능함
 - MLE training 동안 강화 학습 과정으로 보완
 - lacktriangle Monte Carlo Estimate를 활용하여 $p_{ heta}$ 로부터 샘플링 된 H개의 sample로 근사

$$abla_{ heta}L_r(heta)\simeq rac{1}{H}\sum_{j=1}^H[(r_j(Y_j')-b)
abla_{ heta}\log p_{ heta}(Y_j')]$$
 $\circ b=rac{1}{H}\sum_{j=1}^Hr(Y_j')$
 $\circ Y_j'\sim p_{ heta}$: 모델 $p_{ heta}$ 로부터 샘플링 된 j 번째 문장
 $\circ r_j(Y_j')$: 그에 해당하는 보상

$$egin{aligned} r &= r_{ ext{ALS}} + r_{ ext{SLS}} \ L_r &= -\mathbf{E}_{Y^{\prime} \sim p_{ heta}}[r(Y^{\prime})] \end{aligned}$$

- Background
 - > computing gradient(update rule)
 - gradient descent를 2번 적용

```
model.train()
epoch_train_loss = 0
for images, captions, attributes, categories in tqdm(train_loader, desc=f"Training Epoch {epoch+1}/{num_epochs}")
    images = images.to(device)
                                                                                                   # REINFORCE를 통한 reward gradient 계산
    inputs = processor(images=images, text=captions, return_tensors="pt", padding=True).to(device)
                                                                                                   log_probs = torch.nn.functional.log_softmax(outputs.logits, dim=-1)
                                                                                                   input_ids_expanded = inputs.input_ids.unsqueeze(-1)
   outputs = model(**inputs, labels=inputs.input_ids)
                                                                                                   gathered_log_probs = log_probs.gather(2, input_ids_expanded).squeeze(-1)
   mle loss = outputs.loss
    generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
                                                                                                   batch_size, seq_length = gathered_log_probs.size()
   generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
                                                                                                   reward = torch.tensor(als_rewards, device=device).unsqueeze(1).expand(batch_size, seq_length)
   als_rewards, sls_rewards = compute_rewards(generated_texts, attributes, categories)
                                                                                                   baseline = reward.mean()
   # MLE 손실 및 gradient 계산
                                                                                                   reinforce_loss = -torch.mean((reward - baseline) * gathered_log_probs)
   optimizer.zero_grad()
                                                                                                   reinforce_loss.backward()
   mle_loss.backward(retain_graph=True)
                                                                                                   optimizer.step()
                                                                                                   scheduler.step()
                                                                                                   total_loss = 0.5 * mle_loss + 0.5 * reinforce_loss
                                                                                                   epoch_train_loss += total_loss.item()
```

- ❖ Trial 2
 - > Decoder만 fine-tuning
 - attention layer의 query/key/value
 - dense layers
 - ⊳ 평가지표
- ❖ Trial 4
 - > Encoder의 마지막 6개 layer 또한 fine-tuning
 - attention layer의 query/key/value
 - dense layers
 - ⊳ 평가지표

	BLEU-4	METEOR	ROUGE	CIDEr	SPICE
scores	0.0172	0.0855	0.1789	0.2347	0.0870

	BLEU-4	METEOR	ROUGE	CIDEr	SPICE
scores	0.0180	0.0876	0.1782	0.2442	0.0905

1. Evaluation

* Test scores

Trials	BLEU-4	METEOR	ROUGE	CIDEr	SPICE
1	0.0171	0.0873	0.1816	0.2448	0.0909
2	0.0168	0.0864	0.1797	0.2355	0.0889
3	0.0200	0.0888	0.1820	0.2592	0.0916
4	0.0190	0.0883	0.1818	0.2504	0.0912

- > Trial 1 vs 3: Decoder만 fine-tuning하는 것보다 Encoder도 일부 fine-tuning을 하는 것이 더 효과적임
- ➤ Trial 3 vs 4: RL metric을 활용하지 않는 경우가 일반화된 성능은 더 높게 나타남

2. Inference(Human Evaluation)

Trial 1 vs 3

➤ Encoder도 일부 fine-tuning을 실행한 경우 더 풍부한 caption이 생성됨

Trial 1: a sporty tee with a sporty side stripe and a logo graphic at the chest for a sporty look

Trial 3: a classic logo graphic and a classic tape sleeve make this t tee a classic staple of the adidas brands iconic adidas brand

2. Inference(Human Evaluation)

- Trial 3 vs 4
 - ➤ RL Metric을 추가하는 경우 fashion item의 속성 및 카테고리를 더 잘 반영

Trial 3: a classic logo graphic and a classic tape sleeve make this t tee a classic staple of the adidas brands iconic adidas brand

Trial 4: a t shirt with a logo and a logo embroidered on the chest and a white stripe down the chest

기대효과

- ❖ 패션 이미지를 이해하고, 이에 대한 적절한 캡션을 자동으로 생성하는 모델을 구축함으로써 패션 산업에 새로운 기술적 도약을 도모할 수 있다.
- ❖ 이미지 캡션을 자동으로 생성하고, 이를 검색 엔진에 최적화(SEO)하여 검색 엔진에서 높은 순위를 차지하도록 할 수 있다.
- ❖ 번역 모델과 결합하여, 다국어 이미지 캡셔닝을 통해 전 세계적으로 다양한 언어로 패션 카탈로그를 제공할 수 있다.
- ❖ 시각장애인을 위한 대체 텍스트 생성에 활용할 수 있다.

FASHION CAPTIONING WITH BLIP FINETUNING

QUESTIONS # AND # OPINIONS

