Program-13

Objective: To implement 4X2 encoder and 8X3 encoder

Theory:

The combinational circuits that change the binary information into N output lines are known as Encoders. The binary information is passed in the form of 2^N input lines. The output lines define the N-bit code for the binary information. In simple words, the Encoder performs the reverse operation of the Decoder.

4X2 Encoder

Truth Table

	INP	OUTPUTS			
\mathbf{Y}_3	\mathbf{Y}_2	\mathbf{Y}_1	\mathbf{Y}_{0}	\mathbf{A}_{1}	\mathbf{A}_0
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Expression

$$A_1 = Y_3 + Y_2$$

$$A_0 = Y_3 + Y_1$$

8X3 Encoder

Truth Table

Y7	Y6	Y5	Y4	Y3	Y2	Yl	YO	A2	Al	A0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

