MA 102 (Mathematics II) IIT Guwahati

Tutorial Sheet No. 2 Linear Algebra January 24, 2019

1. Let A be 4×3 matrix such that $\operatorname{rank}(A) = 3$. Then show that there exists a 3×4 matrix B such that $BA = I_3$.

Solution: The rref of A is of the form $[I_3, \mathbf{0}]^T$. Hence there exists a invertible P such that $PA = [I_3, \mathbf{0}]^T$. Take $B = [I_3, \mathbf{0}]P$, then $BA = I_3$.

2. Find all the solutions of the linear system with the augmented matrix $[A|\mathbf{b}]$ as given below:

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & 3 & 4 & 2 \\
5 & 6 & 7 & 8 & 5 \\
9 & 10 & 11 & 12 & 8
\end{array}\right]$$

- (a) Find \mathbf{b}' such that $A\mathbf{x} = \mathbf{b}'$ does not have a solution.
- (b) By changing exactly one entry of A, find an A' such that $A'\mathbf{x} = \mathbf{b}$ will be consistent for all $\mathbf{b} \in \mathbb{R}^3$.

Solution: Solution set=
$$\left\{ \begin{bmatrix} -\frac{1}{2} \\ \frac{5}{4} \\ 0 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix} | \alpha, \beta \in \mathbb{R} \right\}.$$

- a) Since $R_3 = 2R_2 R_1$, where R_i is the *i*th row of A, take **b**' such that $b_3' \neq 2b_2' b_1'$.
- b) Since $R_3 = 2R_2 R_1$, and no two rows are LD, change any one entry of A then the rows of A will be LI or rank(A) = 3.
- 3. Let $A \in \mathcal{M}_5(\mathbb{R})$ be invertible with row sums 1. Show that the sum of all the elements of A^{-1} is 5.

Solution: Let $\mathbf{1} = [1, 1, 1, 1, 1]^T$. Then $A\mathbf{1} = [1, 1, 1, 1, 1]^T = \mathbf{1}$, which gives $A^{-1}\mathbf{1} = \mathbf{1}$, i.e., A^{-1} has row sums 1 and the result follows.

- 4. True or False? Give justifications.
 - (a) If for all $A \in \mathcal{M}_n(R)$, AB = A then $B = I_n$.
 - (b) If A and B are square matrices of order n with $AB = I_n$ then A and B are invertible and $BA = I_n$.

Hint: If P is invertible then rank(P) = n. AB = I implies there exists an invertible P such that PAB = P, where PA is in ref.

(c) If A is an $m \times n$ matrix with at least one nonzero row (at least one entry of this row is nonzero) then A is row equivalent to a matrix B, with all nonzero rows.

- (d) If all the columns of an $n \times m$ nonzero matrix (it has at least one nonzero entry) A are equal then rank(A) = 1.
- (e) If A is an $m \times n$ matrix with a zero column (all entries of the column is zero) then the rref of A will again have a zero column.
- (f) If P is any invertible matrix such that PA is defined then, Ax = b and PAx = Pb are equivalent.

Solution:

- (a) True, take $A = I_n$.
- (b) True. Observation: If P is invertible then $\operatorname{rank}(P) = n$. AB = I implies there exists an invertible P such that PAB = P, where PA is in ref. Since P is invertible, PAB cannot have a zero row, hence PA cannot have a zero row. So $PA = I_n$ or $A = P^{-1}$ and B = P. AB = I implies $B(AB)B^{-1} = I = BA(BB^{-1}) = BA$.
- (c) True. If the rref of A has a zero row, say \tilde{a}_i , then replace \tilde{a}_i with $\tilde{a}_i + \tilde{a}_j$, where \tilde{a}_j is some nonzero row of the rref.
- (d) True. (Each row of A is a multiple of some nonzero row of A.)
- (e) True.
- (f) True.
- 5. Using Gauss Jordan elimination prove that

$$\left\{\alpha \begin{bmatrix} 2\\1\\1 \end{bmatrix} : \alpha \in \mathbb{R} \right\} + \left\{\alpha \begin{bmatrix} 1\\1\\0 \end{bmatrix} : \alpha \in \mathbb{R} \right\} + \left\{\alpha \begin{bmatrix} 0\\1\\1 \end{bmatrix} : \alpha \in \mathbb{R} \right\} = \mathbb{R}^3.$$

Solution: Check that the rref of A is I_3 . Therefore, for any $\mathbf{b} \in \mathbb{R}^3$, the system $A\mathbf{x} = \mathbf{b}$ is consistent, where the columns of A are given by $[2,1,1]^T, [1,1,0]^T$ and $[0,1,1]^T$. Thus, \mathbf{b} is a linear combination of $[2,1,1]^T, [1,1,0]^T$ and $[0,1,1]^T$, and therefore, \mathbb{R}^3 is a subset of the set in the left. That the set in the left is a subset of \mathbb{R}^3 is obvious.

6. If A is upper triangular and B is any matrix such that AB = I, then show that each diagonal entry of A is nonzero.

Solution: Note that A is square, suppose of order n. Suppose R = RREF(A) = PA, where P is invertible. Now, if A has at least one zero diagonal entry, consider the least i such that $a_{ii} = 0$, then the corresponding column of R is a nonleading column. Thus, R has less than n leading columns, and so has a zero row. Consequently, RB = PAB = PI = P has a zero row, which is not possible because P is invertible.

7. Show that
$$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 = 2x_3 + x_2 \right\}$$
 is a subspace of \mathbb{R}^3 .

- (a) Find $\{\mathbf{u}, \mathbf{v}\}$ such that $span\{\mathbf{u}, \mathbf{v}\} = S$.
- (b) Find a \mathbf{v}' such that $span\{\mathbf{u}, \mathbf{v}'\} = span\{\mathbf{v}, \mathbf{v}'\} = S$.
- (c) Find an \mathbf{u}' such that $span\{\mathbf{u}',\mathbf{v}'\}$ is not a subspace of S. Geometrically what will be the picture of S and $span\{\mathbf{u}',\mathbf{v}'\}$?

Solution: a) Since
$$S = \{ \alpha \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} | \alpha, \beta \in \mathbb{R} \}$$
, one choice can be $\mathbf{u} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ and

$$\mathbf{v} = \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right].$$

- b) Take any $\mathbf{v}' \in S$ but not in $span\{\mathbf{u}\}$ or $span\{\mathbf{v}\}$. For example take $\mathbf{v}' = \mathbf{u} + \mathbf{v}$.
- c) Take \mathbf{u}' not in S, then $span\{\mathbf{u}', \mathbf{v}'\}$ will correspond to a plane in \mathbb{R}^3 and will intersect the plane associated with S in a line given by $span\{\mathbf{v}'\}$.
- 8. By using Gauss Jordan elimination find the inverse of the matrix

$$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 12 \end{array}\right].$$

9. Using LU factorization of the matrix A solve the system of linear equations with the augmented matrix $[A|\mathbf{b}]$ as given below:

$$\left[\begin{array}{cccc|cccc}
1 & 1 & 1 & 1 & 10 \\
1 & 2 & 3 & 4 & 30 \\
1 & 4 & 8 & 15 & 93 \\
1 & 3 & 6 & 10 & 65
\end{array}\right].$$

10. Show that $S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 = 2x_3 - x_2, \ 2x_2 = x_3 \right\}$ is a subspace of \mathbb{R}^3 .

Find an **u** such that $span\{\mathbf{u}\} = S$. Find an **u**' such that $span\{\mathbf{u}, \mathbf{u}'\}$ gives a plane in \mathbb{R}^3 . Find a **v** such that $span\{\mathbf{v}\}$ is not a subspace of $span\{\mathbf{u}, \mathbf{u}'\}$. What will be the $span\{\mathbf{u}, \mathbf{u}', \mathbf{v}\}$?