Kombinatoryka & teoria grafów

by a fish

21.03.2137

SYLABUS - teoria grafów:

- 1. Basic concepts: graphs, paths and cycles, complete andbipartite graphs
- 2. Matchings: Hall's Marriage theorem and its variations
- 3. Forbidden subgraphs: complete bipartite and r-partite subgraphs, chromatic numbers, Tur"an's thorem, asymptotic behaviour og edge density, Erd"os-Stone theorem
- 4. Hamiltonian cycles (Dirac's Theorem), Eulerian circuits
- 5. Connectivity: connected and k-connected graphs, Menger's theorem
- 6. Ramsey theory: edge colourings of graphs, Ramsey's theorem and its variations, asymptotic bounds on Ramsey numbers
- 7. Planar graphs and colourings: statements of Kuratowski's and Four Colour theorems, proof of Five Colour theorem, graphs on other surfaces and Euler chracteristics, chromatic polynomial, edge colourings and Vizing's theorem
- 8. Random graphs: further asymptotic bounds on Ramsey numbers, Zarankiewicz numbers and their bounds, graphs of large firth and high chromatic number, cmplete subgraphs in random graphs.
- 9. Algebraic methods: adjavenvy matrix and its eigenvalues, strongly regular graphs, Moore graphs and their existence.

Contents

1	Structural properties	5
	1.1 Basic definitions	5
	1.2 Hall's Marriage Theorem	6
	1.3 Menger's Theorem	10
	1.4 Menger's Theorem (so edgy)	13

Structural properties

1.1 Basic definitions

Graph - an ordered pair G = (V, E): \hookrightarrow vertices := V [singular: vertex] \hookrightarrow edges := E, $\{v, w\} := vw$

For an edge vw, $v \neq w$ we say that v, w are its endpoints and that it is incident to v (or w).

Dla krawedzi vw, $v \neq w$ mowimy, ze v,w sa jej koncami i ze jest krawedzia padajaca na v (lub w).

Graphs G and H are isomorfic (G \simeq H) if there exists $f: V(G) \xrightarrow{1-1} onV(H)$ such that $(\forall v, w \in V(G)) \ vw \in E(G) \iff f(v)f(w) \in E(H)$ Meaning that edges are like an operation on a group of vertices

G is a subgraph of H $[G \leq H]$ if $V(G) \subseteq V(H)$ and $E(G) \subseteq E(H)$.

If G is H-free if it is has no subgraphs isomorfphic to H.

Grafy G i G sa izomorficzne, jezeli istnieje $f: V(G) \xrightarrow{na} V(H)$ takie, ze $(\forall v, w \in V(G)) vw \in E(G) \iff f(v)f(w) \in E(H)$

G jest podgrafem H $[G \le H]$ jezeli $V(G) \subseteq V(H)$ oraz $E(G) \subseteq E(H)$.

G jest H-free (wolny od H?), jezeli nie ma podgrafow izomorficznych z H.

A cycle of length $n \geq 3$ [C_n] is a graph with vertices

$$V(C_n) = [n]$$

and edges:

$$E(C_n) = \{i(i+1) : i \le i \le n-1\} \cup \{1n\}.$$

A path of length $n - 1 [P_{n-1}]$ is a graph with vertices

$$V(P_{n-1}) = [n]$$

and edges

$$E(P_{n-1}) = \{i(i+1) : 1 \le i \le n-1\}.$$

Cykl dlugosci n \geq 3 [C_n] to graf z wierzcholkami

$$V(C_n) = [n]$$

i krawiedziami:

$$E(C_n) = \{i(i+1) : i \le i \le n-1\} \cup \{1n\}.$$

Sciezka dlugosci n - 1 $[P_{n-1}]$ to graf z wierzcholkami

$$V(P_{n-1}) = [n]$$

i krawedziami

$$E(P_{n-1}) = \{i(i+1) : 1 \le i \le n-1\}.$$

An induced by $A \subseteq V(G)$ subgraph of G is $G[A] = (A, E_A)$

A connected component of G is a subgraph $\mathbb{G}[\mathtt{W}] \ \leq \ \mathbb{G}$ where $\mathtt{W} \subseteq \mathtt{V}$ is an equivalence class under \approx given by

 $v \approx w \iff \text{exists a path } v...w \text{ in } G$

A graph is connected if $v \approx w$ for every $v, w \in$

V (G has at most one connected component).

If v is a vertex in graph G, we say that its neighbourhood is $N_G(v) = \{w \in G : vw \in E(G)\}.$ Furthermore, the degree of v is $|N_G(v)|$.

If
$$A \subseteq V$$
, then $N(A) := \bigcup_{v \in A} N(v)$.

We define:

- \hookrightarrow minimal degree $\delta(G) = \min_{v \in G} d(v)$
- \hookrightarrow maximal degree $\Delta(G) = \max_{v \in G} d(v)$
- \hookrightarrow average degree $d(G) = \frac{\sum d(v)}{|G|}$.

If there exists an r > 0 such that

$$\delta(G) = \Delta(G) = d(G) = r$$

then we say that the graph is r-regular or, more generally, it is regular for some r.

Handshaking Lemma: for any graph G we have $e(G) = \frac{1}{2} \sum d(v) = \frac{|G|}{2} d(G)$

1.2 Hall's Marriage Theorem

Graph G is bipartite with vertex classes U and W if $V = U \cup W$ so that every edge has form uw for some $u \in U$ and $w \in W$.

G is bipartite iff it has no cycles of odd length.

Graf G jest dwudzielny z klasami wierz-cholkow U i W, jesli V = U \cup W takimi, ze kazda krawedz jest formy uw dla pewnych u \in U oraz w \in W.

G jest dwudzielny wtw kiedy nie ma cykli o nieparzystej dlugosci.

[💥]

 \Longrightarrow

Let U,W be the vertex classes and v_1,v_2,\ldots,v_n,v_1 be a cycle in G. WLG suppose that $v_1\in U$. Then $v_2\in W$ etc. Specifically we have $v_i\in U$ if i is odd and $v_i\in W$ if i is even. Then, we have v_nv_i , so n must be even.

 \Leftarrow

Suppose G has no cycles of odd length. WLOG, assume that $V(G) \neq \emptyset$ and that G is connected, because G will be bipartite if all its connected components are bipartite. Fix $v \in G$ and for all other $w \in G$ define distance dist(v,w) as the smallest $n \geq 0$ such that there exists a path $v \dots w$ in G of length n.

Now, let $V_n := \{w \in G : dist(v, w) = n\}$ and set

$$U = V_0 \cup V_2 \cup V_4 \cup \dots$$
$$W = V_1 \cup V_3 \cup V_5 \cup \dots$$

We want to show that there are no edges in G of the form v'v'' where $v',v''\in U$ or $v',v''\in W$. Suppose that $v'v''\in E(G)$ with $v'\in V_m$, $v''\in V_n$ and $m\leq n$. Then, we have a path

$$v \dots v'v'' \in G$$

of length m+1, implying that

$$n \in \{m, m+1\}.$$

Supose that n=m. Let $v_0'v_1'\ldots v_m'$ and $v_0''v_1''\ldots v_m''$ be paths in G with $v=v_0'=v_0''$, $v'=v_m'$ and $v''=v_m''$. Note that v_i' , $v_i''\in V_i$ for $0\leq i\leq m$. Let $k\geq 0$ be largest such that

$$v'_k = v''_k$$

and note that $k \le m-1$ as $v' \ne v''$. Then

$$v'_k v'_{k+1} \dots v'_m v''_m v''_{m-1} \dots v''_k$$

is a cycle of odd length, which is a contradiction.

Therefore, we can only have n=m+1 and then exactly one of n,m is even meaning that exactly one of v' and v'' is in U as required for G to be bipartite.

Niech U,W beda klasami wierzcholkow oraz niech v_1,v_2,\ldots,v_n,v_1 niech bedzie cyklem w G. BSO $\texttt{zalozmy, ze} \ \ \texttt{v}_1 \ \in \ \ \texttt{U}. \quad \ \texttt{W} \ \ \texttt{takim} \ \ \texttt{razie, v}_2 \ \in \ \ \texttt{W} \ \ \texttt{etc.} \quad \ \texttt{W} \ \ \texttt{szczegolnosci, mamy} \ \ \texttt{v}_i \ \in \ \ \texttt{U} \ \ \texttt{jezeli} \ \ i \ \ \texttt{jest}$ nieparzyste oraz $v_i \in W$ jezeli i jest parzyste. W takim razie, skoro v_nv_1 , to n musi byc parzyste.

Zalozmy, ze G nie ma cykli o nieparzystej dlugosci. BSO zalozmy, ze $V(G) \neq \emptyset$ i ze G jest spojny, poniewaz G bedzie dwudzielny, wtw gdy wszystkie jego skladowe spojne (????) beda dwudzielne. Ustalmy $v \in G$ i dla kazdego innego $w \in G$ zdefiniujmy dystans dist(v, w) jako najmniejsze $n \ge 0$ takie, ze istnieje sciezka v...w w G o dlugosci n.

Niech $V_n := \{w \in G : dist(v, w) = n\}$ i zbiory

$$U = V_0 \cup V_2 \cup V_4 \cup \dots$$
$$V = V_1 \cup V_3 \cup V_5 \cup \dots$$

Chcemy pokazac, ze nie istnieja w G krawedzie postaci v'v'', gdzie $v',v''\in U$ lub $v',v''\in W$. Zalozmy, ze $v'v'' \in E(G)$ z $v' \in V_m$, $v'' \in V_n$ oraz $m \le n$. Wtedy istnieje sciezka

$$v \dots v' v'' \in G$$

dlugosci m+1, co implikuje, ze

$$n \in \{m, m+1\}.$$

Zalozmy, ze n = m. Niech $v_0'v_1'\ldots v_m'$ oraz $v_0''v_1''\ldots v_m''$ sa sciezkami w G takimi, ze $v=v_0'v_0''$, $v'=v_m'$ oraz $v''=v_m''$. Zauwazmy, ze v_i' , $v_i''\in V_i$ dla $0\leq i\leq m$. Niech $k\geq 0$ bedzie najwiksze takie, ze

$$v'_k = v''_k$$

i zauwazmy, ze $k \le m-1$ poniewaz $v' \ne v''$. Wtedy

$$v'_{k}v'_{k+1}...v'_{m}v'''_{m}v'''_{m-1}...v''_{k}$$

jest cyklem o nieparzystej dlugosci, co daje nam sprzecznosc.

W takim raize, mozemy miec tylko n = m + 1 i wtedy dokladnie jedno z n,m moze byc parzystem, co daje nam dokladnie jedno z v' i v'' w U tak, jak jest wymagane zeby to byl graf dwudzielny.

 ${\tt W}' \subseteq {\tt W}$, a partial matching in G from ${\tt W}'$ to M $\,$ oraz ${\tt W}' \subseteq {\tt W}$, wtedy czesciowe skojarzenie w G

$$\{wv_w : w \in W'\} \subseteq E(G)$$

for some $v_w \in M$ such that $w \neq w'$ $v_w \neq v_{w'}$. A partial matching from W to M is called a matching.

Sufficient condition:

$$|N(A)| \ge |A| \quad (\clubsuit)$$

for every $A \subseteq W$

A bipartite graf G contains a matching from W to M iff (G, W) satisfies Hall's condition

If G is a bipartite graph with $V = W \cup M$ and Jesli G jest grafem dwudzielnym z $V = W \cup M$ z W' do M to

$$\{wv_w : w \in W'\} \subseteq E(G)$$

dla pewnych $v_w \in M$ takich, ze $w \neq w' \implies$ $v_w \neq v_{w'}$. Czesciowe kojarzenie z W do M jest nazywane kojarzeniem.

Wystarczajacy warunek:

$$|N(A)| \geq |A| \quad (\clubsuit)$$

dla kazdego $A \subseteq W$

Dwudzielny graf G zawiera kojarzeniem iff

gdy (G,W) zadowala warunek Halla (👛).

(*).

Trivial.

 \Leftarrow

Using induction on |W|. For |W| = 0, 1 it is trivial.

We gonna break it into parts: |N(A)| > |A| and |N(A)| = |A|

Suppose that |N(A)| > |A| for every non-empty subset $A \subsetneq W$. Take any $w \in W$ and $v \in N(w)$ and construct a new graph

$$G_{\emptyset} = G - \{w, v\}.$$

For any non-empty $B \subseteq W - \{w\}$ we have

$$N_{G_{\alpha}}(B) = N_{G}(B) - \{v\}$$

and therefore

$$|N_{G_{\alpha}}(B)| \ge |N_{G}(B)| - 1 \ge |B|$$

and so $(G_0, W - \{w\})$ satisfies Hall's condition. From induction we have a matching P in G_0 from $W - \{w\}$ to $M - \{v\}$ and so $P \cup \{wv\}$ is a matching from W to M.

Now, suppose that |N(A) = |A| for some non-empty subset $A \subseteq W$. Let

$$G_1 = G[A \cup N(A)]$$

and

$$g_2 = G[(W-A) \cup (M-N(A))].$$

We will show that both those graphs satisfy Hall's condition. Let us take any $B\subseteq A$ in $G_1\,.$ We have

$$N_G(B) \subseteq N_G(A) \subseteq V(G_1)$$

$$|N_{G_4}(B)| = |N_G(B)| \ge |B|$$

and so graph G_1 satisfies Hall's condition.

Now, let us take any $B \subseteq W - A$ in G_2 . We know that $N_{G_2}(B) \subseteq M - N(A)$ so

$$N_{G_2}(B) = N_G(B) - N_G(A) = N_G(A \cup B) - N_G(A)$$

$$|N_{G_2}(B)| = |N_G(A \cup B) - N_G(A)| \geq |N_G(A \cup B)| - |N_G(A)| \geq |A \cup B| - |A| = |A| + |B| - |A| = |B|$$

Therefore, graph G_2 also satisfies Hall's condition.

Using inductive hypothesis, we have that there exists a matching P_1 in G_1 and a matching P_2 in G_2 . The first one is from A to $N_G(A)$ while the second is from W - A to M - $N_G(A)$, so they are disjoint. Therefore, $P_1 \cup P_2$ is a matching in G from W to M.

 \Longrightarrow

Trywialne.

 \Leftarrow

Uzyjemy indukcji na |W|. Dla |W| = 0,1 jest trywialne.

Podzielimy dowod na dwie czesci: |N(A)| > |A| oraz |N(A)| = |A|.

Zalozmy, że |N(A)| > |A| dla kazdego niepustego podzbioru $A \subsetneq W$. Wezmy dowolne $w \in W$ oraz $v \in N(w)$ i skonstruujmy nowy graf

$$G_{\emptyset} = G - \{w, v\}.$$

Dla kazdego niepustego $B \subseteq W - \{w\}$ mamy

$$N_{G_{\varnothing}}(B) = N_{G}(B) - \{v\}$$

i w takim razie

$$|N_{G_0}(B)| \ge |N_G(B)| - 1 \ge |B|$$
,

czyli $(G_0, W - \{w\})$ spelnia warunek Halla. Z zalozenia indukcyjnego istnieje kojarzenie P w G_0 z $W - \{w\}$ do $M - \{v\}$, w takim razie $P \cup \{wv\}$ jest kojarzeniem z W do M.

Zalozmy teraz, ze |N(A) = A| dla pewnego niepustego podzbioru $A \subsetneq W$. Niech

$$G_1 = G[A \cup N(A)]$$

$$g_2 = G[(W - A) \cup (M - N(A))].$$

Pokazemy, ze oba te grafy zaspokajaja warunek Halla.

Wezmy dowolny $B \subseteq A \ w \ G_1$. Mamy

$$N_G(B) \subseteq N_G(A) \subseteq V(G_1)$$

$$|N_{G_1}(B)| = |N_G(B)| \ge |B|$$

a wiec graf G_1 zaspokaja warunek Halla.

Teraz, wezmy dowolny $B \subseteq W - A$ w G_2 . Wiemy, ze $N_{G_2}(B) \subseteq M - N(A)$, a wiec

$$N_{G_2}(B) = N_G(B) - N_G(A) = N_G(A \cup B) - N_G(A)$$

$$|N_{G_2}(B)| = |N_G(A \cup B) - N_G(A)| \ge |N_G(A \cup B)| - |N_G(A)| \ge |A \cup B| - |A| = |A| + |B| - |A| = |B|$$

W takim razie G_2 spelnia warunek Halla.

Z zalozenia indukcyjnego wiemy, ze istnieje kojarzenie P_1 w G_1 oraz P_2 w G_2 . Pierwsze jest z A do $N_G(A)$, natomiast drugie jest z W-A do M- $N_G(A)$, czyli sa rozlaczne. W takim razie $P_1 \cup P_2$ jest kojarzeniem w G z W do M.

Let G be a finite group and let H $\,\leq\,$ G be a $\,$ Niech G bedzie skonczona grupa i niech H $\,\leq\,$ G subgroup with $\frac{|G|}{|H|} = k$, then $g_1H \cup \ldots \cup g_kH = G = Hg_1 \cup \ldots \cup Hg_k$ for some $g_1, \ldots, g_k \in G$.

bedzie podgrupa z $\frac{|G|}{|H|} = k$, wtedy $g_1H \cup \ldots \cup g_kH = G = Hg_1 \cup \ldots \cup Hg_k$ fdla pewnych $g_1, \ldots, g_k \in G$.

Oznaczmy

$$L = \{a_1H, \ldots, a_kH\}$$

$$R = \{Hb_1, \ldots, Hb_k\}$$

jako zbiory odpowiednio lewych i prawych wrastw H w G. Niech K bedzie grafem dwudzielnym z klasami wierzcholkow L i R. Wprowadzmy na K relacje rownowaznosci

$$a_i H \sim Hb_i \iff a_i H \cap Hb_i \neq \emptyset w G.$$

Dla dowolnego podzbioru $A \subseteq L$ zachodzi

$$|\bigcup_{U\in A}U|=|A|\cdot|H|$$

jako podzbiorow G. $\it Chodzi$ o to, ze kazda warstwa ma moc |H|, a mamy ich |A| sztuk w zbiorze |A|. Wiec jak bedziemy je dodawac, to one sa rozlaczne, wiec smiga. Dla kazdego V \in R mamy |V| = |H| bo kazda warstwa ma te sama moc co H, a wiec $\bigcup_{u \in A} U$ thie sie niepusto z co najmniej |A| elementami z R. Z tego wynika, ze

$$|N_K(A)| \geq |A|$$
,

wiec istnieje kojarzenie P w K z L do R. Wezmy wiec dowolny ${
m g_i}$ w ${
m a_i}$ H \cap Hb $_{
m j}$ eq \emptyset . Wtedy jest czescia krawedzi $(a_iH)(Hb_i)$ w P dla $1 \le i \le k$. Mamy wiec $a_iH = g_iH$ oraz $Hb_i = Hg_i$.

Hall's Missing Soulmate Theorem

Let G be a bipartite graph with vertex classes W and M, and let $d \ge 1$. Then G contains a partial matching from W'to M for some W' \subseteq W with $|W'| \ge |W| - d$ iff $|N(A)| \ge |A| - d$ for every $A \subseteq W$.

Twierdzenie Halla o brakujacym mezu(????)

Niech G bedzie grafem dwudzielnym z klasami wierzcholkow W i M i niech d ≥ 1 . Wtedy G zaiwera kojarzenie z W' do M dla pewnego W' \subseteq W z |W'| \geq |W| - d iff $|N(A)| \ge |A| - d$ dla kazdego $A \subseteq W$.

```
[ = ]
```

Trywialne :3

Zapoznajmy panie z d wyobrazonymi idealnymi dla kazdej pani kawalerami. Wtedy twierdzenie Halla jest spelnione, wiec mozemy ozenic kazda kobiete do odpowiedniego, prawdziwego czy wyobrazonego, meza. W prawdziwym zyciu, co najwyzej d kobiet jest niezameznych.

Hall's Polygamous Marriage Theorem

Let G be a bipartite graph with vertex classes W and M, and let $d \ge 1$.

Then G contains a subgraph H with $W \subseteq V(H)$ in which each $w \in W$ has degree d and each $v \in M \cap$ V(H) has degree 1 iff $|N(A)| \ge d|A|$ for every $A \subseteq W$

```
Twierdzenie Halla o polimalzenstwach
```

Niech G bedzie grafem dwudzielnym z klasami wierzcholkow W i M i niech d ≥ 1 . Wtedy G zaiwera podgraf H z W \subseteq V(H) w ktorym kazdy $w \in W$ ma stopien d i kazdy $v \in M \cap V(H)$ ma stopien 1 iff $|N(A)| \ge d|A|$ dla kazdego A \subseteq W.

```
[ 💥 ]
[ = ]
```

Trywialne :3

Sklonujmy kazda kobiete d - 1 razy. Wtedy warunek Halla jest zaspokojony, wiec mozemy kazda z nich ozenic (klony i oryginaly) do odpowiednich mezow. Teraz scisnijmy klony z oryginalami do jednej osoby. Koniec!

1.3 Menger's Theorem

Cut vertex v is a vertex in a connected

Graph G is a k-connected graph if for any $A \subseteq V(G)$, |A| < k, G - A is connected.

Complete graph has all vertices connected by an edge, that is for all $v, w \in G$ $v \neq w$ we have $\vee w \in G$.

Tnacy wierzcholek v jest wierzcholkiem w spograph G such that $G - \{v\}$ is not connected. jnym grafie G takim, ze $G - \{v\}$ jest niespojny.

> Graf G jest k-spojnym grafem, jezeli dla kazdego $A \subseteq V(G)$, |A| < k, G - A jest spojny.

Graf pelny ma wszystkie wierzcholki polaczone krawedzia, to znaczy dla kazdego $v, w \in G, v \neq w \text{ mamy } vw \in G.$

(A, B)-path is a path in G for some A, B \subseteq V of the form a...b for some $a \in A$ and $b \in B$. (A, B)-cut in G is $C \subseteq V$ such that G - C contains no (A-C,B-C)-paths.

If we take vertices a, $v \in$ V we call an $({a}, {b})$ -path an (a, b)-path. Given a collection of (a, b)-paths

$$P^{(1)}, \ldots, P^{(k)}$$

we say such a collection is independent if $P^{(i)}$ - {a,b} and $P^{(j)}$ - {a,b} have no common vertices for $i \neq j$.

(A, B)-sciezka to sciezka w G dla pewnych A, B \subseteq V postaci a...b dla jakis a \in A i b \in B. (A, B)-ciecie w G to $C \subseteq V$ takie, ze G - C nie zawiera zadnych (A-C,B-C)-sciezek.

Jesli wezmiemy wierzcholki a,v $({a}, {b})$ -sciezke nazywamy (a, b)-sciezka. Jesli dana jest kolekcja (a,b)-sciezek

$$P^{(1)}, \ldots, P^{(k)}$$

mowimy, ze ta kolekcja jest niezalezna, $jezeli P^{(i)} - \{a, b\} i P^{(j)} - \{a, b\} nie maja$ wspolnych wierzcholkow dla $i \neq j$.

Given A, B, C \subseteq V(G) and if A \subseteq C or B \subseteq C, Dla danych A, B, C \subseteq V(G), jezeli A \subseteq C then C is an (A,B)-cut and if C is an (A,B)cut then $A \cap B \subseteq C$.

Let G be a graph, A, B \subseteq V(G) and k \ge 0. Suppose that for every (A, B)-cut C in G we have $|C| \geq k$.

Then G contains a collection of k vertexdisjoint (A, B)-paths.

albo B \subseteq C, to C jest (A, B)-cieciem i jesli C jest (A, B)-cieciem, to $A \cap B \subseteq C$.

Niech G bedzie grafem, A,B \subseteq V(G) i k \ge 0. Zalozmy, ze dla kazdego (A,B)-ciecia C w Gjest $|C| \ge k$.

Wtedy G zawiera zbior k rozlacznych wierzcholkami (A, B)-sciezek.

Uzyjemy indukcji na e(G) [definicja dla debila].

Jako przypadek bazowy mamy $e(G) = \emptyset$, wtedy $A \cap B$ jest (A, B)-cieciem i w takim razie $k \leq |A \cap B|$, ale kazdy wierzcholek $A \cap B$ jest (A,B)-sciezka dlugosci 0 i wszystkie z nich sa rozlaczne, tak jak wymagamy.

Zalozmy, ze $e(G) \ge 1$, wybiezmy krawedz $e \in E(G)$ i niech $H = G - \{e\}$.

Jesli dla kazde (A,B)-ciecie w H ma stopien co najmniej k, to przez hipoteze indukcyjna sa one k wierzcholkowo rozlacznymi (A,B)-sciezkami w H i w takim razie w G, wiec koniec.

Zalozmy teraz, bez starty ogolnosci, ze w H istnieje co najmniej jedno (A,B)-ciecie C takie, ze |C| < k. W takim razie C nie jest (A,B)-cieciem w G, wiec G - C zawiera co najmniej jedna (A, B)-sciezke postaci

dla pewnych $a \in A$, $b \in B$, gdzie $v, w \in G$ sa koncami e. Co wiecej, kazda (A, B)-sciezka $w \in G$ zawiera wierzcholek v, co implikuje ze

$$C' = C \cup \{v\}$$

jest (A,B)-cieciem w G. Co wiecej, $|C'| = |C| + 1 \ge k$. Poniewaz a...vw...b bylo jedyna sciezka ktora blokowala C przed zostaniem (A,B)-cieciem w G, ale juz |C'| nim jest, to |C| = k-1i mozemy przyjac, ze

$$C = \{c_1, \ldots, c_{k-1}.$$

Teraz, poniewaz v \in C', to kazde (A,C')-ciecie D w H jest takze (A,C')-cieciem w G. Poniewaz kazda (A, B)-sciezka w G zawiera wierzcholek C', to D jest takze (A, B)-cieciem w G i dlatego $|\mathsf{D}| \geq \mathsf{k}$. Korzystajac wiec z hipotezy indukcyjnej, wiemy, ze istnieja rozlaczne wierzcholkami (A,C')-sciezki

$$P^{(1)}, \ldots, P^{(k-1)}, P^{(k)}$$

 $\text{w H konczace sie odpowiednio w } c_1, \ldots, c_{k-1}, \text{v.} \quad \text{Niech } C'' \ = \ C \ \cup \ \{\text{w}\}. \quad \text{Wtedy analogicznie, mamy}$ takie (C'', B)-sciezki

$$Q^{(1)}, \ldots, Q^{(k-1)}, Q^{(k)}$$

w H zaczynające sie od odpowiednio wierzcholkow c_1, \ldots, c_{k-1}, v . Co wiecej, poniewaz C' jest (A,B)-cieciem w G, to $P^{(i)}$ oraz $Q^{(j)}$ nie moga miec wspolnego wierzcholka u poza przypadkiem $i = j \le k-1$ i $u = c_i$. To sugeruje, ze

$$P^{(1)}Q^{(1)}, \ldots, P^{(k-1)}Q^{(k-1)}, P^{(k)}eQ^{(k)}$$

sa k rozlacznymi wzgledem wierzcholkow (A,B)-sciezkami w G. Koniec.

Hall's Marriage Theorem may be deduced from this lemma:

Let G be a bipartite graph with vertex classes W and M and suppose that (G, W) satisfies Hall's condition. Let C be a (W, M)cut in G. Then

$$N(W-C) \subseteq M \cap C$$

Twierdzenie Halla o malzenstwach moze byc wyprowadzone z tego lematu:

Niech G bedzie grafem dwudzielnym z klasami wierzcholkow W i M i zalozmy, ze (G, W) zadowala warunek Halla. Niech C bedzie (W,M)cieciem w G. Wtedy

$$N(W-C) \subseteq M \cap C$$

and therefore

$$\begin{aligned} |C| &= |W \cap C| + |M \cap C| \geq \\ |W \cap C| &+ |N(W - C)| \geq \\ |W \cap C| &+ |W - C| &= |W| \end{aligned}$$

thus |W| contains vertex-disjoint (W, M)paths, each of length 1 implying that such a collection of paths is a matching.

i z tego

$$|C| = |W \cap C| + |M \cap C| \ge |W \cap C| + |N(W - C)| \ge |W \cap C| + |W - C| = |W|$$

a wiec |W| zawiera rozlaczne wzgledem wierzcholkow (W, M)-sciezki, kazda o dlugosci 1, implikujac ze taki zbior sciezek jest kojarzeniem.

Let G be an incomplete graph and let k $\,\geq\,$ 0. Niech G bedze niepelnym grafem i niech k \geq 0. dependent (a, b)-paths in G.

Then G is k-connected iff for every a, b \in G Wtedy G jest k-spojne iff dla kazdego a, b \in G with a \neq b, there exists a collection of k in- z a \neq b istnieje zbior k niezaleznych (a,b)sciezek w G.

Niech C \subseteq V(G) i zalozmy, ze G - C jest niespojny. Wybierzmy dowolne a,b \in G - C nalezace do roznych skladowych spojnosci G - C. Na mocy tego zalozenia, G zawiera k niezaleznych (a,b)sciezek. Kazda z tych sciezek musi miec wierzcholek w C, ale zadne dwie sciezki nie maja wspolnego wierzcholka poza a i b. Z tego wynika, ze $|C| \ge k$, tak jak wymagamy.

Bedziemy robic indukcje po k.

Przypadek bazowy dla k = 0 jest trywialny.

Niech wiec $k \ge 1$ i niech a, $b \in G$ beda rozne.

Zalozmy najpierw, ze a \checkmark b. Niech A = N(a) oraz B = N(b). Grafy G-A i G-B sa niespojne, bo nie maja ani jednej sciezki a....b. Daje to $|A| \ge k$ oraz $|B| \ge k$. Jezeli C jest (A,B)-cieciem w G, to G-C rowniez nie ma sciezem miedzy elementami A-C oraz B-C. Dlatego, albo A \subseteq C albo $\mathsf{B}\subseteq\mathsf{C}$, albo $\mathsf{G}-\mathsf{C}$ jest niespojne. W kazdym razie, mamy $|\mathsf{C}|\geq\mathsf{k}$ wiec z lematu wyzej, G ma k rozlacznych wzgledem wierzcholkow (A, B)-sciezek:

 $a_1 \dots b_1$, ..., $a_k \dots b_k$.

Wtedy,

$$aa_1 \dots b_1 b$$
, \dots , $aa_k \dots b_k b$

sa k niezaleznymi sciezkami (a,b) tak jak wymagamy.

Zalozmy teraz, ze a \sim b i niech $H=G-\{ab\}$. Pokazemy najpiew, ze H jest (k-1)-spojne.

Zalozmy, ze tak nie jest. Niech C \subseteq V(H) bedzie takim podzbiorem, ze |C| < k - 1 i niech H - C bedzie niespojne. Poniewaz G jest k-spojne, to G-C jest spojne i nie ma wierzcholkow tnacych (cut vertices), co implikuje ze H-C dokladnie dwie skladowe spojne, kazda zawierajaca jeden z wierzcholkow a lub b. Ale wtedy $|G| = |H| = 2 + |C| \le k$, wiec G jest grafem k-spojnym z $|G| \le k$, co daje sprzecznosc z tym, ze G nie jest pelne.

W takim raize, H musi byc (k-1)-spojne. Z hipotezy indukcyjnej zawiera wiec k-1 niezaleznych (a,b)-sciezem. Razem z krawedzie ab te sciezki tworza zbior k niezaleznych (a,b) sciezek w G, co konczy dowod.

1.4 Menger's Theorem (so edgy)

Graph G is k-edge-connected for k \geq 0 if for every F \subseteq E(G), |F| < k, G-F is connected.

Line graph of graph G $[L_G]$ is a graph with $V(L_G) = E(G)$ and for e, f $\in L_G$ with e \neq f we have

 $e \sim f \text{ in } L_G \iff e$, f common endpoint in G

n G

spojny.

Twierdzenie Megera wersja krawedzie

Niech G bedzie grafem i niech $k \ge 0$. Wtedy G jest k-spojny krawedziowo z a \ne b, wtedy istnieje zbior k rozlacznych krawedziami (a,b)-krawedzi w G.

Graf G jest k-spojny krawedziowo dla k \geq 0

jesli dla kazdego $F \subseteq E(G)$, |F| < k, G - F jest

Graf krawedziowy grafu G [L_G] jest grafem z

 $e \sim f \; w \; L_G \iff e \, , \; f \; wspolny \; koniec \; w \; G$

 $V(L_G) = E(G)$ i dla e, $f \in L_G$ z e $\neq f$ mamy

Menger's Theorem edge version

Let G be a graph and let $k \ge 0$. Then G is k-edge-connected iff for every a, b \in G with a \ne b, there exists a collection of k edge-disjoint (a,b)-paths in G.

SOMEBONY ONCE TOLD ME THE WORLD IS GONNA ROLL ME

[-]

 \Longrightarrow

Niech L_G bedzie grafem liniowym grafu G. Wezmy a, $b \in G$ takie, ze a $\neq b$. Niech

 $A = \{av \in E(G) : v \in N_G(a)\}$

i niech

 $B=\left\{bv\in E(G)\ :\ v\in N_G(b)\right\}.$

Oznaczmy przez C (A,B)-ciecie w L_G , wiec

 $C \subseteq E(G)$.

Wtedy nie istnieje (a,b)-sciezka w G - C, co implikuje, ze $|C| \ge k$. W takim razie, na mocy lematu z poprzedniego podrozdzialu, istnieje k rozlaczna wzgledem wierzcholkow (A,B)-sciezka w L_G i z tego powodu jest k rozlaczna wzgledem krawedzi (a,b)-sciezka w G.

Mozemy wyprowadzic te implikacje z twierdzenia "max-flow min-cut" przez zamienianie kazdej krawedzi vw przez pare skierowanych krawedzi v \to w i w \to v. Ale my nie znamy tego twierdzenia, wiec nie chce mi sie pisac dalej :v

 \Leftarrow

Niech f \subseteq E(G) i zalozmy, ze G - F jest niespojny. Wybierzmy a,b \in G - F nalezacy do roznych skladowych spojnosci G - F. Zgodnie z zalozeniem, G zawiera k rozlaczne wzgledem krawedzi (a,b)-sciezki i kazda z tych sciezek musi miec krawedzie w F. Z tego tez powodu $|F| \ge k$ tak jak chcielismy.