POLYTHIOL

Patent Number:

JP1090168

Publication date:

1989-04-06

Inventor(s):

KANEMURA YOSHINOBU; others: 02

Applicant(s):

MITSUI TOATSU CHEM INC

Requested Patent:

JP1090168

Application Number: JP19870244951 19870929

Priority Number(s):

IPC Classification:

C07C149/20

EC Classification:

Equivalents:

JP2077582C, JP7116127B

Abstract

NEW MATERIAL: A polythiol expressed by the formula (m and n are 1-3; p is 1 or 2).

EXAMPLE:Bis(2-mercaptoethyl thioglycolate).

USE: Useful as a polymerization regulator, raw material for synthetic resins, crosslinking agent, vulcanizing agent, curing agent for epoxy resins, agent for forming metallic complexes, biochemical drug and additive for lubricating oils. Especially, sulfur-containing polyurethane resins obtained by thermally polymerizing a polyisocyanate, such as xylylene diisocyanate, isophorone diisocyanate or hexamethylene diisocyanate, have a high-degree refractive index and low decomposability and excellent other various physical properties and are useful as optical parts, etc.

PREPARATION:2-Mercaptoethanol is reacted with thiodiglycolic acid, thiodipropionic acid, etc., in the presence of an acid catalyst, such as p-toluenesulfonic acid, at 60-200 deg.C while removing formed water to the outside of the system to afford the aimed compound expressed by the formula.

Data supplied from the esp@cenet database - 12

⑲ 日本国特許庁(JP)

⑩特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭64-90168

@Int.Cl.4	識別記号	庁内整理番号	•	43公開	昭和64年(198	39)4月6日
C 07 C 149/20 // C 08 G 18/38 59/66	NQD NIK	7188-4H 7602-4J 7602-4J		•		
C 09 K 3/00 15/12	106	7537—4H 6926—4H	•			
C 10 M 135/26 C 10 N 30:10		6926—4H 8217—4H	審査請求	未請求	発明の数 1	(全4 頁)

❷発明の名称 ポリチオール

②特 願 昭62-244951

20出 願 昭62(1987)9月29日

砂発 明 者 村 神奈川県横浜市栄区飯島町2882 金 芳 信 明者 73発 笹 Ш 矷 神奈川県横浜市港北区北折吉田町151 73発 明者 井 夫 神奈川県横浜市瀬谷区橋戸町1-11-10 雅 の出 願人 三井東圧化学株式会社 東京都千代田区霞が関3丁目2番5号

明和中国

1.発明の名称

ポリチオール

2.特許請求の範囲

1) 一般式(I)

HS(CH₂), OC(CH₂) = - S _{P-}(CH₂) = CO(CH₂) = SH

(式中、m、nは1~3の整数を示し、pは1または2の整数を示す。)で表されるポリチオール。
3.発明の詳細な説明

〔産業上の利用分野〕

本発明は、新規なポリチオールに関するものである。これらのポリチオールは、重合調整剤、合成樹脂の原料、架橋剤、加硫剤、エポキシ樹脂の硬化剤、酸化防止剤、金属器体生成剤、生化学的薬物、潤滑油添加剤等として広範囲な用途を有するものである。

〔従来の技術〕

近年ポリチオール化合物は、樹脂の改賞すなわ

ち架構や酸化防止に利用され始めている。

(発明が解決しようとする問題点)

例えば、ペンタエリスリトールテトラキス(2 ーメルカプトアセテート)および、ペンタエリス リトールテトラキス(3ーメルカプトプロピオネ ート)をポリイソシアネートと反応させた含硫ウ レタン樹脂は、ポリオレフィン系樹脂に比べ、良 好な精物性を有しているが、特に屈折率と分散の パランスの面からは未だ高度なものとは含えない。 (問題点を解決するための手段)

そこで、本発明者らは、ベンタエリスリトール
テトラキス(2ーメルカプトアセテート)、ベン
タエリスリトールテトラキス(3ーメルカプトア
ロピオネート)を用いた場合よりもより高度の歴
哲率と分散特性を有し、かつ、それら以外の諸物
性でも同等又はより高度の物性を有する樹脂原料
について鋭意研究を行った。その結果、本発明の
ポリチオールを用いることにより、この目的を成
就しうることを見出し、本発明に至った。

すなわち、本発明は、ポリウレタン樹脂の原料

としても有用な、一般式 (1)

O CCH.) _ O CCH.) _ - S _-(CH.) _ CO(CH.) _SH

(式中、m、nは1~3の整数を示し、pは1又は2の整数を示す。) で表されるポリチオールを 提供するものである。

本発明の新規なポリチオールは具体的には、 チオジグリコール酸ビス(2-メルカプトエチルエ ステル)、チオジプロピオン酸ビス(2-メルカプ トエチルエステル)、4,4-チオジブチル酸ビス(2-メルカプトエチルエステル)、ジチオジグリコ ール酸ビス(2-メルカプトエチルエステル)、ジ チオジプロピオン酸ビス(2-メルカプトエチルエ ステル)、4,4-ジチオジプチル酸ビス(2-メルカ プトエチルエステル)等の化合物である。

これらの化合物は、2-メルカプトエタノールと チオジグリコール酸、チオジプロピオン酸、4.4-チオジブチル酸、ジチオジグリコール酸、ジチオ ジプロピオン酸または4.4-ジチオジブチル酸とを

キス(2ーメルカプトアセテート)や、ベンタエリスリトールテトラキス(3ーメルカプトプロビオネート)を用いた樹脂に比べ、高度の屈折率と低分散性を有し、かつ、その他の諸物性も良好な、光学部品などに有用な合硫ポリウレタン樹脂である。

(実施例)

以下実施例を示す。

実施例-1

チオジグリコール酸15.02g、をベンゼン100 対に懸濁させ、2-メルカプトエタノール17.19gと p-トルエンスルフォン酸 0.3gを加え、加熱退 流させた。反応の進行に従い生成する水を留去し 、その量が3.4gとなったところで加熱を終了した。 次に5%重炭酸ソーダ水溶液で系を洗浄したの ち、水で洗浄し、ベンゼン層を硫酸ナトリウムで 乾燥後、活性炭で処理し、液圧濃縮して、無色の シロップ 25.15g を得た。 、無溶媒または、溶媒中で、pートルエンスルホン酸、硫酸、塩酸などの触媒を加えたのち、60~200 でに加熱し、生成する水を系外に除去しながら反応させ、反応終了後、反応液を冷却し、希マルカリ水溶液、水で洗浄し、溶媒を用いた場合は、溶媒を除去して得ることができる。なお、溶媒を用いる場合は、原料と反応性を有しないへキサン、トルエン、ベンゼン、シクロヘキサン、キシレンなどの炭化水素類、テトラクロルエタン、クロホルム、モノクロルベンゼンなどのハロゲン化炭化水素類などを使用する。

(作用)

かくして得られる本発明の新規なポリチオールは、重合調整剤、合成樹脂の原料、架構剤、加碳 剤、エポキシ樹脂の硬化剤、金属媒体生成剤、生 化学的薬物、潤滑油添加剤として広範囲な用途を 有し、特にキシリレンジイソシアネート、イソホ ロンジイソシアネート、ヘキサメチレンジイソシ アネートなどのポリイソシアネートと加熱重合し て得られる樹脂は、ペンタエリスリトールチトラ

C H S 元素分析値(%) 35.31 5.38 35.32 計算値(%) 35.54 5.22 35.57 NMR & CDC & 。

 δ =1.45(t, 2H, $SH\times 2$)

2.65(t, 4H, $BSCH_2CH_2O \times 2$)

3.32(\pm 4H $SCH_{\pm}COOCH_{\pm}CH_{\pm}SH \times 2$)

3.75(t, 4H, $HSCH_2CH_2O \times 2$)

実施例2~6

実施例1と同様に第1衷の原料よりボリチオールを合成した。合成したポリチオールの元素分析値とNMR分析値を第1衷に記した。

使用例1

実施例 4 で得られたジチオジグリコール酸(2-メルカプトエチルエステル)24.2 g、ベンタエリスリトールテトラキス(2-メルカプトアセテート)4.3 g、mーキシリレンジイソシアネート18.8 gを混合し、ジブチルチンラウレート0.01 gを加均一とした後、シリコン系焼付タイプの魁型剤で処理をしたガラスモールドとテフロン製ガス

特開昭64-90168 (3)

T 1 要

实运列 鼓 成 分 番号	アルコール チオール	ポリチオール	元本分析值(日)知道)(%)			NMR分析结果 In CDC 2:	
			С	н	s	8 ррм	
1	チオジグリコール役	2-メルカプトエクノール	チオジグリコール位 ピス(2・メルカプトエチルエステル)	35.31 (35.54)	5.38 (5.22)	35.32 (35.57)	1.45(t. 21. 51/2) 2.65(m. 41. 18501_01.0 ×2) 3.32 (s. 41. 18501_00×2) 3.75(t. 41. 18501_01_0 ×2)
2	チオジブロピオン協	阿上	チオジプロビオン酸 ビス (2・メルカプトエチルエステル)	40.14 (40.25)	6.21 (6.08)	32.46 (32.22)	1.45(t, 2ft, Sft×2) 2.61(m, 8ft, COCH_COL_S ×2) 2.66(m, 4ft, ISCH_COL_O ×2) 3.74(t, 4ft, ISCH_COL_O ×2)
3	4,4-ジチオジブチル酸	同上	4,4-ジチオジブチル位 ピス(2-メルカブトエチルエステル)	43.87 (44.15)	6.95 (6.79)	29.03 (29.46)	1.44(t. 28. SIX2) 1.91(m. 48. SCH_CH_CH_CH_CO-) ;) 2.38(m. 48. SCH_CH_CH_CO-) ;) 2.64(m. 48. SCH_CH_CH_CO-) ;) 2.69(m. 48. SCH_CH_CH_CO-) ;) 3.73(t. 48. ISCH_CH_CH_CO-2)
4	ジチオジグリコール位	同上	ジチオジグリコール役 ビス (2-メルカプトエチルエステル)	31.67 (31.77)	4.41 (4.67)	42.68 (42.40)	1.45(t. 21, SII×2) 2.64(s. 48, ISCII;CII;0 ×2) 3.64(s. 48, SCII;CO×2) 3.75(t. 48, ISCII;CII;0×2)

第 1 表 (つづき)

实验的 数 成 分 番号	アルコール・チオール ポリ		元本分析值(計算值)(%)			NMR分析結束 in CDC & 。	
		ポリチオール	С	н	S	8 ррм	
5	ジチオジプロピオン数	2-メルカプトエタノール	ジチオジプロビオン酸 ビス (2・メルカプトエチルエステル)	36.00 (36.34)	5.63 (5.49)	38.65 (38.80)	1.44(L, 28, SIX2) 2.66(m, 48, ISSIJ_CII,CII,O ×2) 2.78(m, 81, COCI_CII_S ×2) 3.73(L, 48, RSCH_CII_O ×2)
6	4.4-ジチオジブチル位	同上	4.4・ジチオジブチ・ル値 ピス (2・メルカプトエチルエステル)	. 40.56 (40.20)	6.38 (6.18)	35.48 (35.77)	1.45(t. 21. 51.×2) 1.92(m. 41. (501.01.01.01.00.) ;) 2.39(m. 41. (501.01.01.01.00.) ;) 2.65(m. 41. (501.01.01.0.2) 2.75(m. 41. (501.01.01.0.2) 3.74(t. 41. (501.01.01.0 ×2)

トよりなるモールド型中に泡入した。次いで80℃で 3時間、100℃で 2時間、120℃で 3時間加熱した後、冷却し、モールドから取り出した。この 樹脂は屈折率1.62、アッペ数35であり、無色透明 で加工性、耐衝撃性も良好であった。

比較例1

ペンタエリスリトールテトラキス(2ーメルカープトアセテート)21.6g、mーキシリレンジイソシアネート18.8gを混合し、使用例1と同様の方法で重合を行い樹脂を得た。得られた樹脂は、屈折率1.60、アッペ数35であり、無色透明で加工性耐衝撃性も良好であった。

出願人 三井東圧化学株式会社