Bachelor of Science (B.Sc. I.T.) Semester—I (C.B.S.) Examination APPLIED MATHEMATICS—I

Paper—VI

Time: Three Hours] [Maximum Marks: 50 **N.B.:**— (1) All questions are compulsory and carry equal marks. (2) Draw neat and labelled diagram wherever necessary. **EITHER** 1. (A) Show that $\exists (P \land Q) \rightarrow (\exists P \lor (\exists P \lor Q)) \iff (\exists P \lor Q)$ without using the truth table. 5 (B) Constant the truth table for 5 OR (C) Express $P \to (\neg P \to Q)$ in terms of \uparrow only. Express the same formula in terms of \downarrow only. 5 (D) Show that $(P \rightarrow (O \rightarrow R)) \Rightarrow (P \rightarrow O) \rightarrow (P \rightarrow R).$ 5 **EITHER** 2. (A) Show that a formula: $Q \lor (P \land \neg Q) \lor (\neg P \lor \neg Q)$ is a tautology by using conjunctive normal form. 5 (B) Obtain principal disjunctive normal form of $(P \land Q) \lor (\neg P \land R) \lor (Q \land R).$ 5 OR (C) Obtain principal disjunctive normal form of $P \rightarrow ((P \rightarrow Q) \land \neg (\neg Q \lor \neg P))$ 5 (D) Obtain conjunctive normal form of $\exists (P \lor Q) \rightleftarrows (P \land Q)$ 5 **EITHER** (A) Prove that R is a valid inference from the premises: 3. $P \rightarrow Q$, $Q \rightarrow R$ and P. 5 (B) Show that the conclusion C follows from the premises H₁, H₂ and H₃ $H_2: \neg (Q \land \neg R) \quad H_2: \neg R$ $C: \exists P$ 5 $H_1: \exists P \land Q$ OR (C) Show that the following premises are inconsistent: $P \rightarrow O, P \rightarrow R, O \rightarrow \exists R, P$ 5 (D) Show that $R \rightarrow S$ can be derived from the premises : $P \rightarrow (Q \rightarrow S)$, $\neg R \land P$ and Q. 5

EITHER

4.	(\mathbf{A})	Show	that	•
	\ 4 } /	DIIOW	unu	•

••	(1) Show that	
	$(x) (P(x) \lor Q(x)) \Rightarrow (x) P(x) \lor (\exists x) Q(x)$	5
	(B) What are rules of generalization and specifications?	5
	OR	
	(C) Show that:	
	$(x) \ (P(x) \to Q(x)) \land (x) \ (Q(x) \to R(x)) \Longrightarrow (x) \ (P(x) \to R(x))$	5
	(D) Show that	
	$(\exists x) (P(x) \land Q(x)) \Rightarrow (\exists x) P(x) \land (\exists x) Q(x)$	5
5.	Attempt ALL :	
	(A) Construct the truth table for	
	$(P \lor Q) \lor \neg P$	21/2
	(B) Obtain the principal disjunctive normal form of $\exists P \lor Q$.	21/2
	(C) What are the rules of inference ?	21/2
	(D) Symbolize the expression :	

21/2

"All the world loves a lover".