Informatica Teorica II Esame del 7 febbraio 2008 Tempo a disposizione: 100 minuti Regole del gioco: Libri e quaderni chiusi, vietato scambiare informazioni con altri; indicare su tutti i fogli, con chiarezza, nome e numero di matricola; consegnare solo i fogli con le domande (questi). Esercizio 1 (20%) Un grafo è Hamiltoniano quando contiene un ciclo semplice che passa per tutti i				
suoi vertici. Stabilire se un grafo è Hamiltoniano è un problema NP-completo. Dato un grafo $G(V,E)$, il <i>sottografo indotto</i> da un sottoinsieme $V'\subseteq V$ dei suoi vertici è il grafo $G(V',E')$ in cui $E'\subseteq E$ è il sottoinsieme degli archi di G i cui vertici estremi appartenono entrambi a V' . Considera il problema di decisione PartitionIntohamiltonianSubgraphs. Istanza: Grafo $G=(V,E)$, intero non negativo $K\subseteq V$. Predicato: Posso partizionare i vertici di V in K sottoinsiemi disgiunti V_i in modo tale che per ogni $1\le i\le K$ il sottografo indotto da V_i sia Hamiltoniano?				
1.1 Dimostra che PartitionIntoHamiltonianSubgraphs appartiene alla classe NP.				
1.2 Mostra un'istanza positiva di PARTITIONINTOHAMILTONIANSUBGRAPHS.	1.3 Mostra un'istanza negativa con almeno 8 vertici e con K=3 di PARTITIONINTOHAMILTONIANSUBGRAPHS.			

Cognome			
<u>Esercizio 2 (20%)</u> Descrivi in dettaglio una MT mononastro monotraccia M con alfabeto $\{1\}$ tale che la configurazione finale di M sia $q_F \underline{b}$ sia nel caso in cui la la configurazione iniziale è $1\underline{b}^*q_0\underline{b}$ sia			
Esercizio 3 (20%) Sia ALL _{CFG} il problema di decidere se il linguaggio generato da una grammatica CF coincide con Σ^* . Supponi sia noto il seguente teorema:			
Teorema 1: ALL _{CFG} è indecidibile. Sfruttando il teorema 1 mostra che è indecidibile stabilire se due grammatiche CF generano lo			
stesso linguaggio.			

Cognome	Nome	Matric ola	
Esercizio 4 (20%) Considera il linguaggio L delle stringhe a ⁱ b ^j con i≤j≤2i.			
4.1 Mostra una grammatica CF che generi L.			
4.2 Mostra una grammatica CF non ambigua che generi L. Se la grammatica che hai proposto al punto 4.1 è non ambigua scrivi "non ambigua" in questo spazio.			

Cognome	Nome	Matric ola
F (2004) D:		M (0.1) 1 W F.1
Esercizio 5 (20%) Dimo	stra il seguente teorema. Sia	$M = <\{0,1\}, \underline{b}, K, q_0, F, d>$ una MT con nastro
seminfinito; esistono una	RAM ed un programma P ta	li che se M computa $q_0x \mid *q_Fy$ e la RAM ha
		putazione la RAM ha la stringa y nelle celle
2,, y +1; moltre la RAM	simula T passi di M in temp	o O(T log T) nel modello a costi logaritmici.
1		