

Norges teknisk—naturvitenskapelige universitet

Institutt for matematiske fag

MA1102 Grunnkurs i Analyse II Vår 2017

Løsningsforslag — Øving 6

12.3:1 c) Avgjør om rekken

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

konvergerer eller divergerer.

Løsning:

Vi vet at \sqrt{n} er en voksende funksjon som går mot uendelig. Da vil $1/\sqrt{n}$ være en synkende funksjon som går mot null. Dermed konvergerer rekken ved testen for alternerende rekker.

12.3:2 c) Avgjør om rekken

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - 1\right)^n$$

konvergerer eller divergerer.

Løsning:

Vi har at

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - 1\right)^n = \sum_{n=1}^{\infty} (-1)^n \left(1 - \frac{1}{n}\right)^n.$$

Ved definisjonen av e^x , så er $\lim_{n\to\infty} (1-1/n)^n = e^{-1}$. Dermed går heller ikke leddene i rekken mot 0, og rekken divergerer ved divergenstesten.

12.3:3 a) Finn en tilnærming av summen til rekken

$$\sum_{n=1}^{\infty} a_n, \qquad a_n = \frac{(-1)^n}{(n+1)^2}$$

men en feil mindre enn $\epsilon = 0.05$.

Løsning:

Dette er er en alternerende rekke der $|a_n| \to 0$. Vi vet da at rekken konvergerer, dvs.

grensen $s=\lim_{N\to\infty}s_N$ eksisterer der $s_N=\sum_{n=1}^Na_n.$ Vi vet også at feilen $|s-s_N|$ er begrenset ved

$$|s - s_n| \le |a_{N+1}|.$$

Vi finner N slik at $|a_{N+1}| \leq \epsilon$:

$$\frac{1}{(N+2)^2} = |a_{N+1}| \le \epsilon$$

$$\iff$$

$$N \ge \frac{1}{\sqrt{\epsilon}} - 2$$

$$= 2(\sqrt{5} - 1) \approx 2.47.$$

Altså er

$$s_3 = a_1 + a_2 + a_3$$

$$= -\frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2}$$

$$= -\frac{29}{144}$$

en tilnærming til rekken med en feil mindre enn 0.05.

12.3:4 |x| < 1.

- a) Vis at $\frac{1}{1+x} = 1 x + x^2 \cdots$
- b) Forklar hvorfor $\left|\frac{1}{1+x} \sum_{n=0}^{N} (-x)^n\right| \le x^{N+1}$ for $x \ge 0$.
- c) Vis at $\left| \ln(1+x) + \sum_{n=0}^{N} \frac{(-x)^{n+1}}{n+1} \right| \le \frac{x^{N+2}}{N+2}$ for $x \ge 0$.
- d) Finn ln(3/2) med en nøyaktighet på 0.01.

Løsning: a)

 $\sum_{n=0}^{\infty} (-x)^n$ er en geometrisk rekke (se setning 12.1.1) med sum $\frac{1}{1-(-x)} = \frac{1}{1+x}$.

Løsning: b)

Dette er bare feilestimatet for konvergerende alternerende rekker: La $s_N = \sum_{n=1}^N a_n$ der $a_n = (-x)^n$ og la $s = \lim_{N \to \infty} s_N = \frac{1}{1+x}$. Da er

$$\left| \frac{1}{1+x} - \sum_{n=0}^{N} (-x)^n \right| = |s - s_N| \le |a_{N+1}| = |(-x)^{N+1}| = x^{N+1}.$$

Merk at vi bare kan bruke dette feilestimatet når $x \geq 0$. Rekken er ikke alternerende for x < 0.

Løsning: c)

$$\left| \ln(1+x) + \sum_{n=0}^{N} \frac{(-x)^{n+1}}{n+1} \right| = \left| \int_{0}^{x} \left(\frac{1}{1+t} - \sum_{n=0}^{N} (-t)^{n} \right) dt \right|$$

$$\leq \int_{0}^{x} \left| \frac{1}{1+t} - \sum_{n=0}^{N} (-t)^{n} \right| dt$$

$$\leq \int_{0}^{t} |t|^{N+1} dt, \quad \text{fra b}$$

$$= \left| \int_{0}^{x} \frac{t^{N+2}}{N+2} - \frac{x^{N+2}}{N+2} \right|$$

(Takk til P. Nyland for denne løsningen.)

Løsning: d)

Vi bruker feilestimatet fra oppgave c). $\ln(3/2) = \ln(1+1/2)$, så vi må finne N slik at $\frac{(1/2)^{N+2}}{N+2} \le \epsilon := 0.01$. Dvs

$$(N+2)2^{N+2} \ge 100.$$

Dette gjøres enklest med en tabell.

N	$(N+2)2^{N+2}$
1	24
2	64
3	160

Altså er

$$\ln(3/2) \approx -\sum_{n=0}^{3} \frac{(-1/2)^{n+1}}{n+1}$$

$$= \sum_{n=0}^{3} \frac{(-1)^n}{(n+1)2^{n+1}}$$

$$= \frac{1}{2} - \frac{1}{8} + \frac{1}{24} - \frac{1}{64}$$

$$= \frac{77}{192} \approx 0.401$$

med en feil mindre enn 0.01.

12.4:1 c) Absolutt konvergent, betinget konvergent eller divergent?

$$\sum_{n=1}^{\infty} a_n, \qquad a_n = (-1)^n \arcsin \frac{1}{n}.$$

Løsning:

Vi vet at $\arcsin 1/n \approx 1/n$ når n er stor, så leddene er alternerende og går mot null. Vi har derfor konvergens ved alternerende rekke-testen.

Konvergensen er ikke absolutt ved grensesammenligningstesten: La $b_n=1/n$. Da er

$$\lim_{n \to \infty} \frac{|a_n|}{b_n} = \lim_{n \to \infty} n \arcsin(1/n)$$

$$= \lim_{x \to 0} \frac{\arcsin x}{x}$$

$$\stackrel{\text{l'H}}{=} \lim_{x \to 0} \frac{1}{\sqrt{1 - x^2}}$$

$$= 1 > 0$$

så $\sum |a_n|$ divergerer. Altså $\sum a_n$ er **betinget konvergent.**

12.4:1 e) Absolutt konvergent, betinget konvergent eller divergent?

$$\sum_{n=1}^{\infty} a_n, \qquad a_n = (-1)^n \frac{\sqrt{n}}{n+1}.$$

Løsning:

Vi ser at $|a_n| \sim 1/\sqrt{n} =: b_n$ så rekken konvergerer fordi leddene er alternerende og går mot null. Konvergensen er betinget fordi $\sum b_n$ divergerer og ved grensesammenligningstesten er

$$\lim_{n \to \infty} \frac{|a_n|}{b_n} = \lim_{n \to \infty} \frac{\sqrt{n}}{n+1} \sqrt{n}$$
$$= \lim_{n \to \infty} \frac{n}{n+1}$$
$$= 1 > 0.$$

12.4:1 g) Absolutt konvergent, betinget konvergent eller divergent?

$$\sum_{n=1}^{\infty} a_n, \qquad a_n = (-1)^n \frac{n^{2n}}{(2n)!}.$$

Løsning:

Vi forsøker forholdstesten:

$$\frac{|a_{n+1}|}{|a_n|} = \frac{(n+1)^{2n+2}(2n)!}{(2n+2)!n^{2n}}$$
$$= \left(\frac{n+1}{n}\right)^{2n} \frac{(n+1)^2}{(2n+1)(2n+2)}.$$

Vi har at

$$\left(\frac{n+1}{n}\right)^{2n} = \left(1 + \frac{2}{2n}\right)^{2n} \to e^2$$

når $2n \to \infty$ (dette skal nå være en kjent grense), så

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \frac{e^2}{4} > \frac{2^2}{4} = 1$$

og rekken divergerer.

12.4:2 d) Absolutt konvergent, betinget konvergent eller divergent?

$$\sum_{n=1}^{\infty} a_n, \qquad a_n = (-2)^n \frac{n!}{(2n)!}.$$

Løsning: Vi ser at $a_n = (-1)^n \frac{2^n n!}{(2n)!}$, så

$$\frac{|a_{n+1}|}{|a_n|} = \frac{2^{n+1}(n+1)!(2n)!}{2^n n!(2n+2)!} = 2\frac{n+1}{(2n+1)(2n+2)} \underset{n \to \infty}{\longrightarrow} 0 < 1$$

og rekken konvergerer absolutt ved forholdstesten.