Solutions to selected exercises of Chapters 7–11

Bas Luttik

August 20, 2018

This document contains solutions to the following exercises in the book [1]:

$$7.2(c)$$
, $8.2(e)$, $8.7(c)$, $8.9(b)$, (d) , $9.6(b)$, $11.4(c)$, 11.6 .

We **strongly** advise you to first try all these exercises by yourself, before looking at all at the solutions below. There is not a lot of variation possible in the way solutions to exercises should be written down. So if your solution in one way or another deviates from a solution below, then consider discussing the differences with your instructor.

- 7.2 (c) The proposition is not valid for all abstract propositions P, Q and R. To see this, let a and b are distinct propositional variables and let $P = a \wedge b$, Q = a and R = b. Then both $P \stackrel{val}{\rightleftharpoons} Q$ and $P \stackrel{val}{\rightleftharpoons} R$ hold (by \land - \lor -weakening), but $Q \stackrel{val}{\neq} R$.
- 8.2 (e) $\exists_x [x \in \mathbf{M} :$ There is a person that is $Younger(x, Bernard) \wedge$ younger than Bernard and $Man(x) \wedge$ male and $\forall_{y}[y \in \mathbf{M} : Child(x, y) \Leftrightarrow Child(Bernard, y)]]$ with the same parents. Comment: The formula above expresses the predicate "x is a sibling of y" as $\forall_z[z \in \mathbf{M} : Child(x,z) \Leftrightarrow Child(y,z)]$. This formalisation is based on the interpretation that x and y are siblings if they have the same parents, and (implicitly) assumes that every person has parents (for: people without parents are siblings according to this formula!). An alternative interpretation of "x is a sibling of y" could be "x and y have a parent in common", which can be formalised as $\exists_z[z \in \mathbf{M}]$: $Child(x,z) \wedge Child(y,z)$]. Note that this formulation does imply that x and y are siblings if they only have one parent in common (i.e., they are actually 'half-siblings').
- 8.7 (c) $\exists_x [x \in \mathbf{D} : \forall_y [y \in \mathbf{D} : x = y]].$
- 8.9 (b) The tree associated with $\exists_m [(m \in \mathbf{D}) \land (m > 2) : m^2 < 15]$ is:

(d) The tree associated with $\forall_m [m \in \mathbb{N} \Rightarrow m^2 > m] \lor (2+2=4)$ is

- 9.6 (b) To show that ∃_k[P : Q] ∧ ∃_k[P : R] ≠ ∃_k[P : Q ∧ R] we need to find a counterexample, i.e., concrete predicates P, Q and R for which the equivalence does not hold.
 Let P = (k ∈ Z), let Q = (k > 0) and let R = (k < 0). Then, since 1 ∈ Z and 1 > 0, the proposition ∃_k[P : Q] is true, and since −1 ∈ Z and −1 < 0, the proposition ∃_k[P : R] is true. But ∃_k[P : Q ∧ R] is not true, for there does not exist an integer that is both positive and negative.
- 11.4 (c) The proposition is true, for 29 is a prime number that is 1 plus a multiple of 7 (29 = $1 + 4 \cdot 7$).
- 11.6 We need to prove that the square of an odd integer is 1 plus a multiple of 8. To this end, let n be the square of an odd integer. Then there exists $x \in \mathbb{Z}$ such that $n = (2x+1)^2 = 4x^2 + 4x + 1$. Clearly, it now remains to establish that $4x^2 + 4x$ is a multiple of eight; we distinguish two cases:
 - (a) If x is even, then there exists $y \in \mathbb{Z}$ such that x = 2y, so

$$4x^2 + 4x = 4(2y)^2 + 4 \cdot 2y = 16y^2 + 8y = 8(2y^2 + y)$$
.

(b) If x is odd, then there exists $y \in \mathbb{Z}$ such that x = 2y + 1, so

$$4x^{2} + 4x = 4(2y+1)^{2} + 4(2y+1) = 4(4y^{2} + 4y + 1) + 4(2y+1)$$
$$= 16y^{2} + 24y + 8 = 8(2y^{2} + 3y + 1).$$

In both cases it is clear that $4x^2 + 4x$ is indeed a multiple of 8.

References

[1] Rob Nederpelt and Fairouz Kamareddine. Logical Reasoning: A First Course, volume 3 of Texts in Computing. King's College Publications, second revised edition edition, 2011.