Chapitre 11. Déterminants

1 Déterminants

Définition 1.1. Soit $f \in \mathcal{L}^n(E^n, K)$ (fonctions *n*-linéaires)

On dit que f est alternée si $f(x_1, ..., x_n) = 0$ dès qu'il existe deux x_i identiques. Une fonction alternée est antisymétrique.

Proposition 1.2. Soit E un K-ev de dim finie, $f \in \mathcal{L}_a^n(E)$ (fonctions n-linéaires alternées)

Si
$$(x_1, ..., x_n)$$
 est lié, $f(x_1, ..., x_n) = 0$

Si dim E < n alors f = 0

1.1 Théorème fondamental

Théorème 1.3. Si E est de dimension finie n, alors $\mathcal{L}_a^n(E)$ est de dimension 1 Plus précisément, si $(e_1, ..., e_n) = \mathcal{B}$ est une base de E, on pose

$$\det_{\mathcal{B}}: \begin{cases} E \to K \\ (x_1, ..., x_n) \mapsto \sum_{\sigma \in S_n} \varepsilon(\sigma) x_{\sigma(1), 1} ... x_{\sigma(n), n} \end{cases}$$

où
$$x_j = \sum_{i=1}^n x_{ij} e_i$$

Et alors

$$\mathcal{L}_a^n(E) = K \det_{\mathcal{B}}$$

et de plus

$$\det_{\mathcal{B}}(e_1,...,e_n)=1$$

Théorème 1.4. Soit $(e_1, ..., e_n) = \mathcal{B}$ et $(f_1, ..., f_n) = \mathcal{C}$ deux bases de E Alors pour tout $(x_1, ..., x_n) \in E^n$

$$\det_{\mathcal{B}}(x_1,...,x_n) = \det_{\mathcal{C}}(x_1,...,x_n) \det_{\mathcal{B}}(f_1,...,f_n)$$

Corollaire 1.5. Soit E un K-ev de dim finie n, $(e_1, ..., e_n) = \mathcal{B}$ base de E et $(x_1, ..., x_n) \in E^n$ Alors

$$(x_1,...,x_n)$$
 libre \iff $(x_1,...,x_n)$ base \iff $\det_{\mathcal{R}}(x_1,...,x_n) \neq 0$

1.2 Déterminant d'un endomorphisme

Soit E un K-ev de dim finie n, $(e_1, ..., e_n) = \mathcal{B}$ une base de E et $u \in \mathcal{L}(E)$

On considère $f:(x_1,...,x_n)\mapsto \det_{n}(u(x_1),...,x(n))$ n-linéaire alternée.

Il existe alors $\lambda \in K$ tel que $f = \tilde{\lambda} \det_{\mathcal{B}}$, qui ne dépend pas de la base choisie.

Définition 1.6. λ est appelé déterminant de u: il vérifie pour toute base \mathcal{B} , en notant $\lambda = \det u$

$$\det_{\mathcal{B}}(u(x_1), ..., u(x_n)) = \det u \det_{\mathcal{B}}(x_1, ..., x_n)$$

$$\det u = \det_{(e_1,...,e_n)}(u(e_1),...,u(e_n))$$

Théorème 1.7. Soit $u, v \in \mathcal{L}(E)$, E de dim finie.

- * det $Id_E = 1$
- $* \det(v \circ u) = \det v \det u$
- $* u \in GL(E) \iff \det u \neq 0$

et dans ces conditions

$$\det(n^{-1}) = \frac{1}{\det n}$$

1.3 Déterminant d'une matrice

Définition 1.8. Soit $A = (a_{ij})_{1 \le i,j \le n} \in M_n(K)$

Le déterminant de A est

$$\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{\sigma(1),1} \dots a_{\sigma(n),n}$$

Proposition 1.9. Soit $n \in \mathcal{L}(E)$, E de dim finie, $\mathcal{B} = (e_1, ..., e_n)$ base de E

Alors

$$\det u = \det \left(\underset{\mathcal{B}}{\mathsf{Mat}}(u) \right)$$

Proposition 1.10. Soit $A \in M_n(K)$

- * det A est une forme K-linéaire alternée sur des colonnes (ou lignes) de A. Elle est aussi antisymétrique.
- $* \det A^T = \det A$

Proposition 1.11.

$$\det \begin{pmatrix} \lambda_1 & & & (*) \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix} = \lambda_1 \lambda_2 ... \lambda_n$$

Théorème 1.12. Soit $M, N \in M_n(K)$

- * $\det I_n = 1$
- $* \det MN = \det M \det N$
- $* M \in GL_n(K) \iff \det M \neq 0$

Dans ces conditions

$$\det M^{-1} = \frac{1}{\det M}$$

* On a

$$\det MN = \det(u_{MN}) = \det(u_{M} \circ u_{N}) = \det(u_{M}) \det(u_{N}) = \det M \det N$$

Corollaire 1.13. Si M et N sont semblables dans $M_n(K)$ alors det $M = \det N$

Proposition 1.14. Soit $A \in M_p(K)$, $B \in M_q(K)$, $C \in M_{p,q}(K)$

Alors

$$\det\left(\begin{array}{c|c} A & C \\ \hline 0 & B \end{array}\right) = \det A \det B$$

Extension:

$$\det \begin{pmatrix} A_1 & & * \\ & A_2 & & \\ & & \ddots & \\ 0 & & A_r \end{pmatrix} = \det A_1 \det A_2 \dots \det A_r$$

1.4 Développement selon une rangée

Définition 1.15. Soit $M = (a_{i,j})_{1 \le i,j \le n} \in M_n(\mathbb{C})$

On note $M_{i,j}$ la matrice obtenue en supprimant la i-ème ligne et la j-ème colonne pour $i,j \in [\![1,n]\!]$ Alors

- $* M_{i,j}$ est appelé mineur de $a_{i,j}$ dans M
- * $D_{i,j} = (-1)^{i+j} \det M_{i,j}$ est appelé cofacteur de $a_{i,j}$ dans M

Théorème 1.16 (Développement selon une rangée). Avec les notations précédentes

* Fixons la colonne j_0 . On a alors

$$\det M = \sum_{i=1}^n a_{i,j_0} D_{i,j_0}$$

* Fixons la ligne i_0 . On a alors

$$\det M = \sum_{j=1}^{n} a_{i_0,j} D_{i_0,j}$$

Théorème 1.17 (Déterminant de Vandermonde). Soit $\lambda_1,...,\,\lambda_n\in K$ On a

$$V(\lambda_1,...,\lambda_n) = \det \begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{n-1} \\ \vdots & & & & \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{n-1} \end{pmatrix} = \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i)$$

1.5 Comatrice

Définition 1.18. Soit $M=(a_{i,j})_{1\leq i,j\leq n}\in M_n(K)$, $D_{i,j}$ le cofacteur de $a_{i,j}$ dans M La comatrice de M est

$$com(M) = (D_{i,j})_{1 \le i,j \le n}$$

Théorème 1.19. Soit $M \in M_n(K)$

Alors

$$M(\operatorname{com} M)^T = (\operatorname{com} M)^T M = (\det M) I_n$$

Corollaire 1.20. Si $M \in GL_n(K)$ alors

$$M^{-1} = \frac{1}{\det M} (\operatorname{com} M)^T$$

En particulier, si $K = \mathbb{K} = \mathbb{R}$ ou \mathbb{C} , $M \in GL_n(K) \mapsto M^{-1}$ est une application rationnelle donc continue.

À savoir : Si $ad - bc \neq 0$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

2 Système linéaire

2.1 Écriture d'un système

Soit $u \in \mathcal{L}(E,F)$, $b \in F$, $(e_1,...,e_n) = \mathcal{B}$ base de E et $(f_1,...,f_n) = \mathcal{C}$ base de F Une équation linéaire du type u(x) = b est équivalente à AX = B (avec $A = \operatorname{Mat}(u)$, X colonne de x dans \mathcal{B} et B colonne de b dans \mathcal{C})

Si on écrit
$$A = (a_{ij})_{\substack{1 \le i \le p \\ 1 \le j \le n}} \in M_{p,n}(K)$$
, $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ et $B = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix}$ alors on obtient le système linéaire équivalent

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{p1}x_1 + \dots + a_{pn}x_n = b_p \end{cases}$$

Proposition 2.1. On ne change pas l'ensemble des solutions d'un système en faisant des opérations élémentaires (permutations, dilatations et transvections des lignes)

2.2 Solutions d'un système linéaire

Proposition 2.2. Soit (*S*) AX = B avec $A \in M_{pn}(K)$, $X \in K^n$, $B \in K^p$ et $r = \operatorname{rg} A$

- * $S_0 = \ker A$ est une sous-espace de K^n de dimension n-2
- * Si $B \notin \text{im } A \text{ alors } S_{(S)} = \emptyset$ (le système n'a pas de solutions)
- * Si $B=AX_0$ alors $\mathcal{S}_{(S)}=X_0+\ker A$ (sous-espace affine de dim n-r)

Définition 2.3. Si $A \in GL_n(K)$, (S) AX = B est dit de Cramer.

Proposition 2.4. Soit $(S): AX = B, A \in M_{p,n}(K), B \in K^p$

- * Si rg $A = P_{r}(S)$ admet au moins une solution (cas lignes libres).
- * Si rg A = n, (S) admet au plus une solution (cas colonnes libres).
- * Si rg A = n = p ie. $A \in GL_n(K)$, (S) admet une solution.

Proposition 2.5 (Formule de Cramer). Soit $A = (C_1|...|C_n) \in GL_n(K)$ et (S) : AX = B Alors l'unique solution de (S) est

$$X_{0} = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \quad \text{avec} \quad x_{i} = \frac{\det(c_{1}, ..., c_{i-1}, B, c_{i+1}, ..., c_{n})}{\det A}$$

$$\underline{\text{Dans le cas } n=2}: A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, B = \begin{pmatrix} \lambda \\ \mu \end{pmatrix}, ad-bc \neq 0 \text{ alors } X_0 = \begin{pmatrix} x \\ y \end{pmatrix} \text{ est solution avec}$$

$$x = \frac{\begin{vmatrix} \lambda & b \\ \mu & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} \quad \text{et} \quad y = \frac{\begin{vmatrix} a & \lambda \\ c & \mu \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$$

4

2.3 Pivot de Gauss

Théorème 2.6. À l'aide d'opérations élémentaires et quitte à numéroter les inconnues, tout système est équivalent à un système échelonné :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1r}x_r + a_{1,r+1}x_{r+1} + \dots + a_{1n}x_n = b_1 \\ 0 + a_{22}x_2 + \dots + a_{2r}x_r + a_{2,r+1}x_{r+1} + \dots + a_{2n}x_n = b_2 \\ \vdots \\ 0 + \dots + 0 + a_{rr}x_r + a_{r,r+1}x_{r+1} + \dots + a_{rn}x_n = b_r \\ 0 = b_{r+1} \\ \vdots \\ 0 = b_p \end{cases}$$

avec les pivots $a_{ii} \neq 0$

Si
$$(b_{r+1}, ..., b_p) \neq (0, ..., 0)$$
 alors $S = \emptyset$

Sinon, on appelle $x_1, ..., x_r$ inconnues principales et $x_{r+1}, ..., x_n$ inconnues secondaires. L'espace des solutions est alors un sous-espace affine de K^n de dimension n-r qu'on décrit de manière paramétrique à l'aide des paramètres $x_{r+1}, ..., x_n$ (inconnues secondaires).

2.4 Matrices d'opérations élémentaires

Définition 2.7. On note $E_{i,j} = (\delta_{i,k}\delta_{j,l})_{1 \le k,l \le n}$ On définit pour $i \ne j$, $\lambda \in K$

$$T_{i,j} = I_n + \lambda E_{i,j}$$

C'est une matrice de transvection.

Pour $i \in [1, n]$ et $\mu \in K^*$ on pose

$$D_i(\mu) = I_n + (n-1)E_{i,i}$$

C'est une matrice de dilatation.

Pour $\sigma \in S_n$ on pose

$$P_{\sigma} = \left(e_{\sigma(1)} \mid e_{\sigma(2)} \mid \cdots \mid e_{\sigma(n)} \right)$$

C'est une matrice de permutation.

Proposition 2.8.

*
$$\begin{cases} (K^*, \times) \to GL_n(K) \\ \mu \mapsto D_i(\mu) \end{cases}$$
 est un morphisme de groupes injectif et on a

$$D_i(\mu)D_i(\mu') = D_i'(\mu\mu')$$

*
$$\begin{cases} (K,+) \to SL_n(K) \\ \lambda \mapsto T_{i,j}(\lambda) \end{cases}$$
 est un morphisme injectif de groupes et on a

$$T_{i,i}(\lambda)T_{i,i}(\lambda') = T_{i,i}(\lambda + \lambda')$$

*
$$\begin{cases} (S_n, \circ) \to GL_n(K) \\ \sigma \mapsto P_{\sigma} \end{cases}$$
 est un morphisme injectif de groupes et on a

$$P_{\sigma'}P_{\sigma}=P_{\sigma'\circ\sigma}$$

* Quand on multiplie à gauche par ces matrices on agit sur les lignes. Quand on multiplie à droite on agit sur les colonnes.

2.5 Générateurs de $SL_n(K)$ et $GL_n(K)$

Théorème 2.9.

- * Les transvections engendrent $SL_n(K)$ Plus précisément, toute matrice de $SL_n(K)$ est un produit fini de transvections.
- * Toute matrice $M \in GL_n(K)$ s'écrit $M = T_1...T_rD_n(\det A)$ Les matrices de dilatation et de transvections engendrent $GL_n(K)$

3 Dualité

3.1 Dual d'un espace vectoriel

Définition 3.1. Soit *E* un *K*-ev.

L'espace dual de E est $E^* = \mathcal{L}(E, K)$

Proposition 3.2. Soit *E* un *K*-ev, *H* un hyperplan et $l, l' \in E^*$

- * Si $e \in E \setminus H$ alors $E = H \oplus Ke$
- * Si L est un sev de E avec $H \subset L$ alors L = H ou L = E
- * Si $H = \ker l = \ker l'$ alors il existe $\lambda \in K^*$ tel que $l' = \lambda l$

Définition 3.3. Soit $(e_1, ..., e_n)$ une base de E

On note pour tout $k \in [1, n]$

$$e_k^*: \begin{cases} E \to K \\ x = \sum\limits_{i=1}^n x_i e_i \mapsto x_k \end{cases}$$

 $(e_1^*,...,e_n^*)$ est appelée la base duale de $(e_1,...,e_n)$

Pour tout $i, j \in [1, n]$ on a alors

$$e_i^*(e_i) = \delta_{i,i}$$

Proposition 3.4. Soit $l \in E^*$ qui s'écrit $l = a_1 e_1^* + ... + a_n e_n^*$

Alors

$$l = \sum_{i=1}^{n} l(e_i)e_i^*$$

Si $x \in E$, il s'écrit

$$x = \sum_{i=1}^{n} e_i^*(x)e_i$$

3.2 Complément ENS : espace bidual, base biduale

Définition 3.5. On appelle $E^{**} = \mathcal{L}(E^*, K)$ l'espace bidual de E

Proposition 3.6. Dans le cas où E est de dimension finie, E est canoniquement isomorphe à E^{**}

$$\Phi: \begin{cases} E \to E^{**} \\ x \mapsto \tilde{x} : \begin{cases} E^* \to K \\ l \to l(x) \end{cases} \end{cases}$$

Définition 3.7. Si $(l_1, ..., l_n)$ est une base de E^* , on peut retrouver à l'aide le d'isomorphisme précédent une base $(\varepsilon_1, ..., \varepsilon_n)$ dont $(l_1, ..., l_n)$ est la base duale. On appelle alors $(\varepsilon_1, ..., \varepsilon_n)$ la base antéduale.

6

4 Polynôme caractéristique

4.1 Polynôme caractéristique d'une matrice carrée

Définition 4.1. Soit $A = (a_{i,j})_{1 \le i,j \le n} \in M_n(K)$

Le polynôme caractéristique de A, noté χ_A est

$$\chi_A = \det(XI_n - A) = \begin{vmatrix} X - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & X - a_{22} & \cdots & -a_{2n} \\ \vdots & & \ddots & \vdots \\ -a_{n1} & \cdots & \cdots & X - a_{nn} \end{vmatrix} \in K[X]$$

Proposition 4.2. Soit $A \in M_n(K)$, $\lambda \in K$

Alors

$$\lambda$$
 racine de $\chi_A \iff \lambda$ valeur propre de $A \iff \lambda \in \operatorname{Sp}(A)$

Théorème 4.3. Soit $A \in M_n(K)$

Alors χ_A est un polynôme unitaire de deg n dont le coefficient constant est $(-1)^n$ det A et celui de X^{n-1} est $-\operatorname{Tr} A$

$$\chi_A = X^n - \text{Tr } AX^{n-1} + ... + (-1)^n \det A$$

Corollaire 4.4. Toute matrice carrée complexe admet une valeur propre.

Définition 4.5. Soit $A \in M_n(K)$

Si χ_A est scindé sur K, ses racines différentes ou égales sont appelées valeurs propres de A comptées avec multiplicité.

Proposition 4.6. Si $A \in M_n(K)$ alors $\chi_{A^T} = \chi_A$

Exemple fondamental: Polynôme caractéristique d'une matrice compagnon.

Soit
$$P = X^n + a_{n-1}X^{n-1} + ... + a_0 \in K[X]$$

La matrice compagnon de *P* est

$$C_p = egin{pmatrix} 0 & & 0 & -a_0 \ 1 & \ddots & & -a_1 \ & \ddots & 0 & dots \ 0 & & 1 & -a_{n-1} \end{pmatrix}$$

Sot polynôme caractéristique est

$$\chi_{C_v} = P = X^n + a_{n-1}X^{n-1} + \dots + a_0$$

4.2 Polynôme caractéristique d'un endomorphisme

Proposition 4.7. Deux matrices semblables de $M_n(K)$ ont le même polynôme caractéristique.

Définition 4.8. Soit *E* un *K*-ev de dim finie n et $u \in \mathcal{L}(E)$

Si \mathcal{B} est une base de E, $A = \operatorname{Mat}(u)$ on définit $\chi_u = \chi_A$ le polynôme caractéristique de u Par la proposition précédente χ_u est indépendant du choix de \mathcal{B}

Corollaire 4.9. Soit *E* un *K*-ev de dim finie *n* et $u \in \mathcal{L}(E)$

Alors χ_u est unitaire de degré n et plus précisément

$$\chi_u = X^n - \text{Tr} \, X^{n-1} + ... + (-1)^n \det u$$

Si $\lambda \in K$

 λ racine de $\chi_u \iff \lambda$ valeur propre de u

Si χ_u est scindé sur K

$$\chi_u = (X - \lambda_1)...(X - \lambda_n)$$

 $\lambda_1, ..., \lambda_n$ sont appelées valeurs propres de u comptées avec multiplicité.

Proposition 4.10. Soit E un K-ev de dim finie, $u \in \mathcal{L}(E)$ et F un sous-espace de E stable par u Alors $\chi_{u_F} \mid \chi_u$ (où $u_F : x \in F \mapsto u(x) \in F$)

4.3 L'ouvert dense $GL_n(\mathbb{K})$

Théorème 4.11.

- * $GL_n(\mathbb{K})$ est un ouvert dense de $M_n(\mathbb{K})$
- * $GL_n(E)$ est un ouvert dense de $\mathcal{L}(E)$ (avec E de dimension finie)

5 Exercices classiques

5.1 Rang de la comatrice

Soit $A \in M_n(K)$

Montrer que

$$\operatorname{rg} \operatorname{com} A = \begin{cases} n & \text{si } \operatorname{rg} A = n \\ 1 & \text{si } \operatorname{rg} A = n - 1 \\ 0 & \text{si } \operatorname{rg} A < n - 1 \end{cases}$$

5.2 Matrices réelles semblables dans $M_n(\mathbb{C})$

Soit $A, B \in M_n(\mathbb{R})$. On suppose qu'elles sont semblables dans $M_n(\mathbb{C})$ Montrer que elles sont semblables dans $M_n(\mathbb{R})$

5.3 Le groupe $GL_n(\mathbb{Z})$

On note $GL_n(\mathbb{Z}) = \{ M \in M_n(\mathbb{Z}) \mid M \text{ inversible dans } M_n(\mathbb{R}), M^{-1} \in M_n(\mathbb{Z}) \} = M_n(\mathbb{Z})^{\times}$ C'est un groupe pour \times (et même un sous-groupe de $GL_n(\mathbb{R})$) Montrer que si $M \in M_n(\mathbb{Z})$

$$M \in GL_n(\mathbb{Z}) \iff \det M = \pm 1$$

A anneau commutatif ($A = \mathbb{Z}_{|n\mathbb{Z}}$, A = K[X]) Si $M \in M_n(A)$, $GL_n(A) = M_n(A)^{\times}$

$$M \in GL_n(A) \iff \det M \in A^{\times}$$

5.4 Dual de $M_n(K)$

- 1. Si $A \in M_n(K)$ on note $l_A : M \in M_n(K) \mapsto \operatorname{Tr}(AM) \in K$ Montrer que $A \in M_n(K) \mapsto l_A \in M_n(K)^*$ est un isomorphisme entre $M_n(K)$ et $M_n(K)^*$ En déduire que $\forall l \in M_n(K)^* \exists ! A \in M_n(K) : \forall M, l(M) = \operatorname{Tr}(AM)$
- 2. Soit $f \in M_n(K)^*$ telle que f(XY) = f(YX) pour tout $X, Y \in M_n(K)$ Montrer qu'il existe $\lambda \in K$ tel que $f = \lambda$ Tr
- 3. Montrer que tout hyperplan contient une matrice inversible.

5.5 Otrhogonalité duale

Soit l_1 , ..., l_p , u des formes linéaires sur E, K-ev.

- 1. Montrer que si u s'annule sur $\bigcap_{i=1}^p \ker l_i$ alors $u \in \operatorname{Vect}(l_1, l_2, ..., l_p)$ ie. u s'écrit $u = \lambda_1 l_1 + ... + \lambda_p l_p$ avec $\lambda_1, ..., \lambda_p \in K$ (multiplicateurs de Lagrange)
- 2. On suppose que E est de dimension p et que $\bigcap_{i=1}^{p} \ker l_i = \{0\}$ Montrer que $(l_1, ..., l_n)$ est une base de E^*

5.6 L'identité $\chi_{AB} = \chi_{BA}$

Soit $A, B \in M_n(K)$

- 1. On suppose que $K = \mathbb{C}$ Montrer que $\chi_{AB} = \chi_{BA}$ quand A est inversible, puis pour A quelconque.
- 2. Montrer que $\chi_{AB} = \chi_{BA}$ dans le cas général.