Bioestatística

Cláudio Roberto Thiersch Monica Fabiana Bento Moreira Thiersch

Monitor: Lucas Kröhling Bernardi

PPGPUR - Programa de Pós-Graduação em Planejamento e Uso de Recursos Renováveis

Universidade Federal de São Carlos - Campus Sorocaba

Introdução

O que é estatística?

"A estatística é um conjunto de métodos e técnicas que auxiliam a tomada de decisão sob a presença de incerteza."

Estatística

"A estatística é um conjunto de técnicas que permite, de forma sistemática, organizar, descrever, analisar e interpretar dados oriundos de estudos ou experimentos, realizados em qualquer área de conhecimento.

Áreas da estatística:

- Estatística descritiva
 É a etapa inicial da análise utilizada para descrever e resumir os dados.
- Probabilidade
 A teoria de probabilidades nos permite descrever os fenômenos aleatórios, ou seja, aqueles em que está presente a incerteza.
- Inferência Estatística
 É o estudo de técnicas que possibilitam a extrapolação, a um
 grande conjunto de dados, das informações e conclusões
 obtidas a partir da amostra.

População

É o conjunto de elementos com pelo menos uma característica em comum. Essas características comuns devem delimitar inequivocamente quais os elementos que pertencem a população e quais os que não pertencem.

Amostra

Qualquer subconjunto da população. É necessariamente finita pois todos os elementos serão examinados para efeito da realização do estudo estatístico desejado.

Variável

Característica pela qual deseja-se que a população seja descrita.

Tipos de variáveis

- Variáveis qualitativas: Correspondem a atributos ou categorias.
 - Nominal: Os atributos não são passíveis de ordenação.
 - Ordinal: Os atributos são passíveis de ordenação.
- Variáveis quantitativas: Correspondem a números resultantes de contagem ou medidas
 - Discreta: São próprias dos dados de contagem.
 - Contínua: As observações são resultantes de uma medida que pode assumir qualquer valor real entre os dois extremos.

Dado ou observação

É o valor que assume a variável para um elemento em particular.

Notação

- Tamanho da população (N): Número de elementos da população.
- Tamanho da amostra (n): Número de elementos da amostra.
- Variável (X, Y, Z, etc): São letras maiúsculas e geralmente as últimas do alfabeto.

Técnicas de somatório

- Notação por índice
 O símbolo X_j (leia-se X índice "j") representa qualquer um dos "n" valores de X₁, X₂, ..., X_n assumidos por uma variável X.
- Notação de somatório
 ∑ é a letra grega sigma maiúscula que é utilizada para representar a soma de todos os valores de X_j, desde X₁ até X_n.
 ∑_{j=1}ⁿ X_j = X₁ + X₂ + ... + X_n

Técnicas de somatório

• Propriedades (a, b e k são constantes e X e Y variáveis)

•
$$\sum_{j=1}^{n} aX_j = aX_1 + aX_2 + ... + aX_n = a\sum_{j=1}^{n} X_j$$

•
$$\sum_{j=1}^{n} (aX_j + bY_j) = a \sum_{j=1}^{n} X_j + b \sum_{j=1}^{n} Y_j$$

$$\bullet \ \sum_{j=1}^n k = nk$$

Estatística descritiva

Preocupa-se com a organização, apresentação e análise dos dados quantitativos ou qualitativos, sejam eles amostrais ou populacionais, utilizando alguma representação que pode ser tabular ou gráfica.

Dados brutos

Tabela 1: Informações sobre estado civil, grau de instrução, número de filhos, salário (expresso como fração do salário mínimo), idade (medida em anos e meses) e procedência de 36 empregados da seção de orçamentos da Companhia MB.

	Estado	Grau de		Salário	ld	ade	Região de
$-N^0$	civil	instrução	N ⁰ de filhos	(× sal. mín.)	anos	meses	procedência
i	Solteiro	ensino fundamental		4	26	3	Interior
2	Casado	ensino fundamental	1	4,56	32	10	Capital
3	Casado	ensino fundamental	2	5,25	36	5	Capital
4	Solteiro	ensino médio	_	5,73	21	10	Outra
5	Solteiro	ensino fundamental	_	6,26	41	7	Outra
36	Casado	superior	3	23,3	42	2	Interior

Fonte:Bussab e Morettin(2002)

Dados agrupados

Tabela 2: Frequências e porcentagens dos 36 empregados da seção de orçamentos da Companhia MB segundo o grau de instrução

Grau de instrução	Frequência (n_i)	Proporção (fr _i)	Porcentagem $(100 fr_i)$
Fundamental	12	0,3333	33,33
Médio	18	0,5000	50,00
Superior	6	0,1667	16,67

Fonte:Tabela 1 - Bussab e Morettin(2002)

Tabela 3: Frequências e porcentagens dos 36 empregados da seção de orçamentos da Companhia MB por faixa de salário

Classe de salários	Frequência (n_i)	Proporção (fr _i)	Porcentagem (100fr _i)
[4,00; 8,00)	10	0,2778	27,78
[8,00;12,00)	12	0,3333	33,33
[12, 00; 16, 00)	8	0,2222	22,22
[16, 00; 20, 00)	5	0,1389	13,89
[20, 00; 24, 00)	1	0,0278	2,78
Total	36	1,0000	100,00

Fonte: Tabela 1 - Bussab e Morettin (2002)

• Gráficos para variáveis qualitativas

Figura 1: Gráfico em barras para a variável grau de instrução

Figura 2: Gráfico em setores para a variável grau de instrução

Gráficos para variáveis quantitativas

Figura 3: Gráfico em barras para a variável número de filhos

Figura 4: Histograma e polígono de frequências da variável salários

Medidas de posição e variabilidade

		Simbologia		
Tipo da medida	Medida	Amostra (n)	População (N)	
	Média	\overline{x}	μ	
Posição	Mediana	md	Md	
. 00.940	Moda	mo	Мо	
	Variância	s^2	σ^2	
Variabilidade	Desvio Padrão	s	σ	
Variabiliaaas	Coeficiente de Variação	CV	CV	

Medidas de posição

Média Aritmética

Se x_1, \ldots, x_n são os n valores da variável X, a média de X pode ser escrita como:

$$\bar{x} = \frac{x_1 + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

Se $f_i = \frac{n_i}{n}$ representar a frequência relativa da observação x_i , então a média pode ser escrita como

$$\bar{x} = \sum_{i=1}^{k} f_i x_i$$

- a) Calcular a média aritmética dos valores: 82,89,90,102.
- b) Calcule o número médio de filhos que os funcionários da empresa MB possuem.

Número de filhos	Frequência (n_i)
0	4
1	5
2	7
3	3
5	1
Total	20

Mediana

Mediana de um conjunto de dados é o valor ao qual metade dos dados são iguais ou inferiores e metade dos dados são iguais ou superiores.

Ex.: Encontre a mediana para os dados abaixo:

- i) 3,4,10,6,7
- ii) 3,11,7,9,4,10

Moda

Moda de um conjunto de dados é o valor que ocorre com maior frequência.

Ex.: Encontre a moda para os dados abaixo:

- i) 3,4,7,7,9
- ii) 3,3,5,7,10,10,11
- iii) 1,2,7,10

• Média Ponderada Dado um conjunto de n valores observados (x_1, \ldots, x_n) e conhecidos os respectivos fatores de ponderação (q_1, \ldots, q_n) , a média ponderada de x é

$$w = \frac{\sum_{i=1}^{n} x_i q_i}{\sum_{i=1}^{n} q_i}$$

Ex.: Calcular a média final da disciplina Estatística dado que os pesos das 3 avaliações são 25%, 45% e 30%. Suponhamos que as notas de um determinado aluno tenha sido: 80, 30, 50, respectivamente. Qual foi o resultado deste aluno?

Medidas de dispersão

Variância

A variância amostral de um conjunto de dados, x_1, x_2, \dots, x_n é definida por

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{1} - \bar{x})^{2}}{n - 1}$$

e para dados de frequência

$$S^{2} = \sum_{i=1}^{k} f_{i}(x_{i} - \bar{x})^{2}$$

Desvio Padrão

$$S = \sqrt{\text{Variância}} = \sqrt{S^2}$$

Coeficiente de Variação

$$CV(\%) = \frac{S}{\bar{x}}100$$

Ex.: Calcule a variância, o desvio padrão e o coeficiente de variação dos dados abaixo:

- i) 3, 4, 6, 7, 10
- ii) -20, 5, 15, 24.

Percentil

O p-ésimo percentil é um valor tal que pelo menos p por cento das observações são menores ou iguais a esse valor e pelo menos (100-p) por cento das observações são maiores ou iguais a esse valor.

Para calcular o p-ésimo percentil temos:

- 1) Organize os dados em ordem crescente;
- 2) Calcule um índice i, $i = \frac{p}{100}n$, onde p é o percentil procurado e n é o número de observações.
- 3) Se i for um número inteiro, o p-ésimo percentil será a média dos valores que ocupam as posições i e i+1. Caso contrário, arredonde i para cima.

Ex.: Determinar o 85° percentil e a mediana dos dados de salários iniciais:

3450, 3550, 3650, 3480, 3355, 3310, 3490, 3730, 3540, 3925, 3520, 3480.

Box plot

Box plot (Desenho Esquemático)

Para a construção do gráfico são necessárias as estatísticas: Mediana, Q_1 , Q_3 e amplitude interquartil dada por $AIQ = Q_3 - Q_1$. Passos:

- 1) Desenhe um retângulo em que suas extremidades são Q_1 e Q_3 ;
- 2) Desenhe uma linha no retângulo na posição da mediana;
- 3) Desenhe os **limites**. Eles estão a 1,5AIQ abaixo de Q_1 e 1,5AIQ acima de Q_3 . Dados fora desses limites são considerados dados fora da curva.
- 4) Desenhe as costeletas;
- 5) Desenhe todos os pontos fora da curva utilizando um símbolo *.

Box plots - Exemplo

Tabela 4: Salários mensais iniciais de uma amostra de 12 graduados da escola de administração.

Graduado	Salário (<i>US</i> \$)	Graduado	Salário (<i>US</i> \$)
1	2850	7	2890
2	2950	8	3130
3	3050	9	2940
4	2880	10	3325
5	2755	11	2920
6	2710	12	2880

Bibliografia

ANDERSON, D. R., SWEENEY, D. J. e WILLIAMS, T. A. **Estatística Aplicada à Administração e Economia**. São Paulo, Pioneira Thomson Learning, 2002.

BUSSAB, W. O.; MORETTIN, P. A. **Estatística Básica**. Editora Saraiva, 2007.

COCHRAN, W.G. **Técnicas de Amostragem (Tradução)**. Ed. Fundo de Cultura. Rio de Janeiro. 555p.1965.

COSTA NETO, P. L. de O., 1939-. **Estatística**. São Paulo: Edgard Blücher, 2005. 266 p.

KISH, L. Survey sampling. Wiley, Nova York. 1965.

