

Universidade do Estado do Rio de Janeiro.

Instituto de Matemática e Estatística.

Disciplina: Cálculo IV.

Código: 01-10828

Professor: Ditter Adolfo Yataco Tasayco.

TRABALHO: Parte 1

1) (a) Mostre que, se $\lim_{n \to \infty} a_{2n} = L$ e $\lim_{n \to \infty} a_{2n+1} = L$, então $(a_n)_{n \ge 1}$ é convergente e $\lim_{n \to \infty} a_n = L$.

(b) Se $a_1 = 1$ e $a_{n+1} = 1 + \frac{1}{1+a_n}$, encontre os oito primeiros mebros da sequência $(a_n)_{n\geq 1}$. Então use a parte (a) para mostrar que $\lim_{n\to\infty} a_n = \sqrt{2}$.

COMENTÁRIO: Isto dá a expansão em frações contínuas

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \dots}}$$

2) (a) Suponha que $\sum_{n\geq 1} a_n$ e $\sum_{n\geq 1} b_n$ sejam séries com termos positivos e $\sum_{n\geq 1} b_n$ seja convergente. Demonstre que se

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

então, $\sum_{n>1} a_n$ é convergente

(b) Use a parte (a) para mostrar que as séries convergem.

(a)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}.$$

(b)
$$\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}e^n}.$$

3) Mostre que a série é convergente. Quantos termos da série precisamos somar para encontrar a soma parcial com a precisão indicada? Determine se a sequência converge ou diverge. Se ela convergir, encontre o limite.

(a)
$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n^6} (|\text{erro}| < 0,00005).$$

(b)
$$\sum_{n\geq 1} \frac{(-1)^n}{10^n n!} (|\text{erro}| < 0,000005).$$

(c)
$$\sum_{n>1}^{\infty} \frac{(-1)^n}{n5^n} (|\text{erro}| < 0,0001).$$

(d)
$$\sum_{n>1}^{\infty} \frac{(-1)^{n+1}n}{e^n} (|\text{erro}| < 0,01).$$

4) Determine se a série é absolutamente convergente, condicionalmente convergente ou divergente:

(a)
$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$$
.

(b)
$$\sum_{n>1} n \left(\frac{2}{3}\right)^n$$
.

(c)
$$\sum_{n\geq 1}^{n\geq 1} \frac{(-1)^n \arctan n}{n^2}.$$

(d)
$$\sum_{n\geq 1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$$
.

- 5) Encontre o raio de convergência e o intervalo de convergência da série.

(a)
$$\sum_{n\geq 1} (-1)^n n 4^n x^n$$
.
(c) $\sum_{n\geq 1} \frac{3^n (x+4)^n}{\sqrt{n}}$.

- (b) $\sum_{n\geq 0} \frac{(x-2)^n}{n^2+1}.$ (d) $\sum_{n\geq 0} \frac{x^n}{n!}.$