Surfaces orientables de type fini

- On note $\Sigma_{g,n,b}$ la surface (orientable) de genre g à laquelle on a retiré n points et b disques ouverts. On a là défini toutes les surfaces compactes orientables avec ou sans bord privées d'un nombre fini de points.
- En particulier, elle est à bord si et seulement si $b \neq 0$ et alors b est le nombre de composantes connexes (qui sont des cercles) de ce bord.
- $\Sigma_{g,n,b}$ est toujours de genre g quels que soient les valeurs, nulles ou non, de n et b mais sa caractéristique d'Euler est $\chi(\Sigma_{g,n,b}) = 2 2g n b$.
- Les surfaces de type fini sont considérées à homéomorphisme près, mais on mentionne certaines équivalences d'homotopie intéressantes.
- Il y a un certain désagrément à tout appeler « trou » : anse, pointage, disque ouvert retiré ? Elles correspondent chacune à un paramètre différent.

	Réalisation(s)	Caractéristique
$\Sigma_{0,0,0}$	sphère S^2 , ${f R}^3$ privé d'un point	2
$\Sigma_{0,1,0}$	sphère privée d'un point, plan $\mathbf{R}^2 \simeq \mathbf{C}$ $\cong \{*\}$	1
$\Sigma_{0,0,1}$	$\begin{array}{l} \operatorname{disque} D^2 = B^2 \\ \cong \{*\} \end{array}$	1
$\Sigma_{0,0,2}$	cylindre $S^1 \times [0,1]$ $\cong S^1$, sphère « à deux trous »	0
$\Sigma_{0,0,3}$	pantalon, disque « à deux trous »	-1
$\Sigma_{1,0,0}$	tore, sphère à une anse	0
Σ _{1,1,0}	tore troué = pointé $\cong S^1 \vee S^1$	-1
$\Sigma_{2,0,0}$	bouée à deux trous, sphère à deux anses	-2

Et pour les curieux : pour les surfaces compactes non orientables privées d'un nombre fini de points, on a la même description en remplaçant les sommes connexes de tore par des sommes connexes de plan projectif. On peut citer alors :

	Réalisation(s)	Caractéristique
$V_{0,0,0}$	n'existe pas	×
$V_{1,0,0}$	plan projectif réel $RP^3 = PR^3$	1
$V_{1,0,1}$	ruban de Möbius	1
$V_{2,0,0}$	bouteille de Klein, recollement de deux rubans de Möbius le long de leurs bords	0
V _{2,0,1}	slip de Möbius	2