

DESCRIPTION

FIELD OF INVENTION

- A. ACTIVATED OXYGEN HAS BEEN USED SINCE 1982 FOR BACTERIA REDUCTION IN HYDROPONIC OPERATIONS
- B. ACTIVATED OXYGEN HAS BEEN SED SINCE 1982 TO REDUCE PESTICIDES, BIOCIDES,

RODENTCIDES, VOC'S ETC. ON FRUIT (APPLES ORANGES, PEARS, ETC).

- C. ACTIVATED OXYGEN HAS BEEN USED SINCE 1996 AT AN ALFALFA SEED . FACILITY FOR BACTERIA REDUCTION
- D. IN 1996 SPECIFIC TESTING WAS DONE AT AN ALFALFA SPROUT FACILITY IN HAWAII USING THE ACTIVATED OXYGEN TO REDUCE BACTERIA AND AID IN CONTROL OF BACTERIA DURING GERMANATION AND GROWTH PERIOD.
- E. IN 1996 SPECIFIC TESTING WAS DONE AT A HYDROPONIC FACILITY IN HAWAII

 TO REDUCE BACTERIA AND ALGAE GROWTH AND DECREASE WATER SURFACE

 TENSION (TO ENHANCE OXIDATION OF MICRO NUTRIENTS AND FOR BETTER

 ASSIMILATION BY THE ROOT SYSTEM).

DESCRIPTION OF RELATED ART

A. ACTIVATED OXYGEN HAS BEEN USED SINCE 1982 TO REDUCE BACTERIA
 ON THE EXTERIOR OF VEGETABLES (IE. TOMATO, PEPPER, CELERY, ETC)

AND TO EXTEND SHELF LIFE.

B. ACTIVATED OXYGEN HAS BEEN USED SINCE 1988 TO REDUCE BACTERIA IN FRUIT JUICES. (ORANGE, CRANBERRY, PRUNE, ETC) IN MICHIGAN.

CROSS REFERENCE TO RELATED APPLICATIONS---NOT APPLICABLE STATEMENT REGARDING FEDERALLY SPONSORED R ESEARCH ---NOT APPLICABLE REFERENCE TO MICROFICHE---NOT APPLICABLE

SUMMARY

- 1. BASED ON TECHNICAL INFORMATION OBTAINED FROM ACTIVITIES STATED IN "FIELD OF INVENTION" AND "DESCRIPTION OF RELATED ART" AND ON TESTING SINCE 1985 A SPECIFIC PROTOCOL HAS BEEN FORMULATED TO EFFICIENTLY AND AT A LOW COST REDUCE THE BACTERIA FROM VEGETABLE SEEDS USING ACTIVATED OXYGEN AND AT THE SAME TIME EXTEND SHELF LIVE.
- AT PRESENT THE ONLY FDA APPROVED METHOD TO OBTAIN A 5 LOG REDUCTION IS TO SOAK THE SEED IN A 20,000 PPM CHLORINE SOLUTION. (THIS VERY HIGH CHLORINE
 CONCENTRATION HAS MANY DRAWBACKS):
 - A. INHALING IS HAZARDOUS TO PERSONNEL.
 - B. STORING/HANDLING CAN BE HAZARDOUS TO PERSONNEL AND CAUSE EXTRA EXPENSES (INSURANCE, SPECIAL CLOTHING ETC).
 - C. AFTER THE SOAKING PROCESS, WITH A CHLORINE SOLUTION THE SEEDS
 REQUIRE A MINIMUM 3 RINSES TO 5 RINSES TO REMOVE THE CHLORINE
 RESIDUE. THIS IS AN ADDED EXPENSE, AND IF THE RINSE WATER IS
 CONTAMINATED YOU HAVE INTRODUCED ANOTHER PROBLEM (THE
 EXTRA COST INVOLVED IN REMOVING THE CHLORINE FROM THE WATER

BERORE DISCHARGING INTO THE SEWER).

D. THE EXTRA COST OF CHLORINE

3. DURING HYDROPONIC OPERATIONS WHEN WATER IS SATURATED WITH ACTIVATED OXYGEN THE SURFACE TENSION IS LOWERED (THIS MAKES IT EASIER FOR THE ROOTS

TO ACCESS THE MICRO NUTRIENTS IN THE WATER). ALSO, THE ACTIVATED OXYGEN SATURATED WATER WILL OXIDIZE THE NUTRIENTS IN MAKING IT EASIER FOR THE ROOTS TO ASSIMILATE THE NUTRIENTS.

- 4. IT HAS BEEN OBSERVED THE SHELF LIFE OF THE PRODUCT IS EXTENDED.
- 5. THE ACTIVATED OXYGEN SYSTEM REQUIRES NO CHEMICALS OR ADDITIVES.
- 6. THE ACTIVATED OXYGEN SYSTEM REQUIRES MINIMAL MAINTENANCE
- 7. THE ACTIVATED OXYGEN SYSTEM REQUIRES MINIMAL OPERATING COST.
- 8. THE ACTIVATED OXYGEN SYSTEM DOES NOT REQUIRE HIGHLY SKILLED WORKERS
- 9. THE ACTIVATED OXYGEN SYSTEM DOES NOT REQUIRE CONSTANT MONITORING
- 10. ALSO, SINCE THERE IS NO NEED FOR CHLORINE, THE EPA/OSHA REQUIREMENTS FOR A SAFE WORK PLACE ENVIRONNENT ARE EASILY MET.