Projektbericht zum Modul Information Retrival und

Visualisierung Sommersemester 2021

Richard Brennecke

Matrikelnummer:

Inhaltsverzeichnis

1.		Inhaltsverzeichnis 2					
2.		Einleitung	3				
	2.1	Anwendungshintergrund 3					
	2.2	Zielgruppen	3				
	2.3	Überblick und Beiträge 4					
3.		Daten 4					
	3.1	Technische Breitstellung der Daten					
	3.2	Datenvorverarbeitung 4					
4.		Visualisierung 4					
	4.1	Analyse der Anwendungsfälle 5					
	4.2	Anforderungen an die Visualisierungen 5				5	
	4.3	Präsentation	der Visua	llisierung	g 5		
	4.	3.1 Visua	alisierung	Eins	6		
	4.	3.2 Visua	alisierung	Zwei	6		
	4.	3.3 Visua	alisierung	Drei	6		
	4.4	Interaktion	6				
5.		Implementierung 6					
6.		Anwendungs	sfälle	7			
	6.1	Anwendung Visualisierung Eins 7					
	6.2	Anwendung Visualisierung Zwei 7				7	
	6.3	Anwendung Visualisierung Drei 7					
7.		Verwandte Arbeiten 7					
8.		Zusammenfassung und Ausblick				8	
9.		Anhang 10					
Seitenabstand Ränder alle 2							
Sc	Schriftart: Times new roman						

Zitierung: mit eckige Klammer mit Nummer dahinter

Zeilenabstand: 1,5

1. Einleitung

- Zielproblem:
 - Analyse von verschiedenen Wein Daten
 - Interessante Zusammenhänge herausfinden
 - Erkenntnisgewinn aus diesen Daten
- Fragen welche Beantwortet werden sollen
 - Gibt es Zusammenhänge zwischen dem Körper/Body/Süße/Alk. und dem Preis eines Weines?
 - Scatterplot
 - o Hängen Daten über mehrere Dimensionen zusammen?
 - Parallele Koordinaten
 - o Wo kommen die meisten Weine her?
 - Baumhierarchie

1.1 Anwendungshintergrund

- Erklärung der Informationsvisualisierungen
 - o Was ist ein Scatterplott/ parallele Koordinaten/ Baumhierachie?
- Hintergrund Daten bereitstellen?
 - o Informationen zu verschiedenen Daten
 - Wie kann der Körper/ Süße/ Säure/ Gerbstoffe bestimmt werden?
 - Was haben die Jahre für Einfluss auf die Weine?
 - Was bedeuten die Felder Verwendung und Type (Sorte, Lokal, Produzent)

1.2 Zielgruppen

- Weininteressierte
 - Vorwissen
 - Kaum bis gar nicht
 - Erkenntnisse:
 - Zusammenhang von verschiedenen Kriterien beim Wein
 - Zusammenhänge kurz erklären
 - Informationsgewinnung
 - Kennenlernen von Weinen
 - Entdeckung neuer Weine welche sie trinken möchten
- Weineinkäufer
 - o Vorwissen
 - Vorhanden bis Exzellent
 - o Erkenntnisse:
 - Entdecken von neuen Sorten die sein Sortiment ergänzen
 - Entdeckung von neuen Sorten die ggf. Außergewöhnlich sind
 - Beratung der Kunden die gewisse Vorlieben haben
- Weinexperte
 - Vorwissen
 - Gut bis ausgeprägt
 - Erkenntnisse:
 - Entdecken von neuen Sorten die seinem Geschmack entsprechen
 - Bessere Einschätzung seiner bisherigen Weine

1.3 Überblick und Beiträge

- Erklären welche Daten verwendet wurden
 - Oberkategorien kurz erklären
- Visualisierungstechniken erklären
- Beiträge
 - o Mehrwert der Techniken für die Darstellung der Daten
 - Sacatterplott -> Gegenüberstellung von Dimensionen

2. Daten

- Beschreibung der gegebenen Daten
- Eignung der Daten für die Zielgruppen
 - Weintressierte
 - Gut
 - Weinexperte/ Weinverkäufer
 - Teilweise
 - Daten können unvollständig sein -> und haben zu wenig Aussagekraft mit Body, Süße usw.
- Fragestellungen
 - o Gut da Dimensionen erkannt werden können
 - o Herkunft der Daten erkennbar -> Teilweise aber unvollständig
- Daten Ergänzung
 - Mussten mit Geo Daten ergänzt werden für Baumhierarchie da sonst kein Ursprungsknoten
 - O Und wo kommen die her?

2.1 Technische Breitstellung der Daten

- Daten Zugänglich?
 - o Sind über GitHub für die verschiedenen Darstellungen erreichbar
- Formate
 - O CSV -> Für alle Daten die nicht ergänzt wurden
 - JSON -> Für alle Geo Daten
- Besonderheiten
 - o CSV
- 0 oder nichts bedeutet dort ist nichts vorhanden
- Trennung durch normales komma
- o JSON
 - Nur Name und Beziehung (Eltern Kind) in der Datei vorhanden
 - Länder welche keine Weine Produzieren wurden außen vor gelassen

2.2 Datenvorverarbeitung

- Datenverarbeitungsschritte
 - o Bekanntmachen mit den Daten (Umwandeln in besser Lesbares Format -> Excel)
 - Bearbeitung der Daten
 - Namen überarbeiten (aus den Zahlen entfernen)
 - Zahlen bearbeiten

- Umrechnung von WON in Euro
- Durchschnitte Bilden
- Namen werden Überarbeitet (Umlaute und Apostrophe nicht richtig konvertiert)
- Übersetzten der Spaltenüberschriften
- Bereitstellung der Daten für JSON
- Herauslösen der Datensätze, welche nicht komplett sind
- o Überführung der Daten
- Daten weggelassen
 - Daten nicht mehr lesbar (eine Japanischer Wein wo nicht mehr Rückschlüsse gezogen werden könnten)
 - Nichts Werte
- Durschnitte
 - o Gebildet über die Trinktemperatur, Alkoholgehalt
 - O Daten konnten ansonsten nicht eingelesen werden
 - o Außerdem lag der unterschied durchschnittlich nicht bei mehr als 2 Gard
- Aussagekräftiger?
 - So hat man noch Toleranz beim der Temperatur und Alkohol ohne dass sich die anderen Werte ändern müssten (Body, Süße usw.)

3. Visualisierung

- Analyse kann erst gemacht werden, wenn Visualisierungen fertig sind

3.1 Analyse der Anwendungsaufgaben

- Analyse kann erst gemacht werden, wenn Visualisierungen fertig sind
- Anwendungsaufgaben
 - o Wie helfen die Darstellungen die genannten Problemstellungen zu beantworten?
 - o Hauptziel möglich viele Einblicke in das Thema der Weine zu erhalten
 - Zusammenhänge zwischen den einzelnen Eigenschaften
 - o Zusammenhang von Produktionsmenge eines Landes und der Anzahl der Weine
 - Hervorstechen von Datensätze aus Allgemeinheit, Zusammenhänge oder Trends von Eigenschaften
- Mentale Modelle
 - Welche Visualisieren eigenen sich um das alles zu kombinieren von Wissen und den Modellen (intuitiv erkennbar)

3.2 Anforderungen an die Visualisierungen

- Analyse kann erst gemacht werden, wenn Visualisierungen fertig sind

3.3 Präsentation der Visualisierung

- Analyse kann erst gemacht werden, wenn Visualisierungen fertig sind
- Vorstellen, Interaktivität, Designentschiedungen begründen Diskutieren wieso nicht anderen Techniken verwenden worden sind

3.3.1 Visualisierung Eins

- Wird ein Scatterplot
- Präsentation -> Abbildung, Kodierung der Daten, Interaktionsmöglichkeiten
- Erfüllung und wie gut die Anforderungen erfüllt werden
- Warum ist die Visuelle Darstellung passend für das Problem? (Diskussion der Auswahl von Darstellungen)

3.3.2 Visualisierung Zwei

- Wird Parallele Koordinaten
- Präsentation -> Abbildung, Kodierung der Daten, Interaktionsmöglichkeiten
- Erfüllung und wie gut die Anforderungen erfüllt werden
- Warum ist die Visuelle Darstellung passend für das Problem? (Diskussion der Auswahl von Darstellungen)

3.3.3 Visualisierung Drei

- Wird eine Baumhierarchie
- Präsentation -> Abbildung, Kodierung der Daten, Interaktionsmöglichkeiten
- Erfüllung und wie gut die Anforderungen erfüllt werden
- Warum ist die Visuelle Darstellung passend für das Problem? (Diskussion der Auswahl von Darstellungen)

3.4 Interaktion

- Scatterplot und Parallele Koordinaten
 - o Buttons zum verändern/ verschieben der Dimensionen
- Baumhierarchie
 - Keine nur anschauen
- Zweck der Interaktion
- Warum wurden andere Interaktionen umgesetzt und nicht andere?
- Begründung Interaktion zwischen denen nicht mit dabei

4. Implementierung

- Kann erst eingeschätzt werden, nachdem es fertig gestellt worden ist
 - Aktuell hoher Aufwand und nur Baumhierarchie konnte sehr einfach aus Übung übernommen werden
- Gliederung des ELM Codes

- Übungsadaption
- Datenstruktur Modells bei den verschiedenen Interaktionen
- Bei uns in einem Record gespeichert im Main und dann im Update wird auf einen record zugegriffen

5. Anwendungsfälle

- Erst nach Fertigstellung der Visualisierungen möglich
- Spezifischer Anwedungsfall -> wo Muster da sind oder nicht was es zu was besonderen macht
- Relevanz für die Zielgruppe
- Möglichkeit Umsetzung mit anderen Personen

5.1 Anwendung Visualisierung Eins

- Anwendungsfall für Scatterplot
- Preis und Körper -> Je höher der Preis desto höher kann der Körper des Weines sein. -> Es muss aber nicht immer ganz teuer sein
- Teuersten Weine haben tendenziell einen größeren Körper

5.2 Anwendung Visualisierung Zwei

- Anwendungsfall für Parallele Koordinaten
- Zusammenhang von Körper, Gerbstoffe, Süße, Säuregehalt
- Keine Erkennbares Muster -> Bedeutet weine können je nach Wunsch des Kunden unterschiedliche Schmecken
- Nur Süße 5 kann maximal 4 Säure haben und Säure 5 nur maximal 3 Süße
- Viele Hohe gerbstoffe 5 maximal 2 in süße
- Ansonsten gehen alle Gerbstoffe auch auf die 5 in Süße
- Niederoger Körper hat wenig Gerbstoffe -> Hinweis auf Zusammenhang dieser

5.3 Anwendung Visualisierung Drei

- Anwendungsfall für Baumhierarchie
- Heraussuchen verschiedener Asiatischer Weine
- Georgien hat die meisten Weine
- Israel die wenigsten
- Japan und Süd-Korea gleich viele

6. Verwandte Arbeiten

- Aktuell noch nicht recherchiert
- Zwei Artikel diskutieren
 - o Gemeinsamkeiten und Unterschiede dabei herausstellen

- Visualisierung von Krankenhausdaten
- o https://www.nm.informatik.uni-muenchen.de/common/pub/Fopras/petr02/PDF-Version/petr02.pdf
- Daten zur Multiplen Sklerose (S.7)
- Unterschiede
 - Vorherrein Berechnung von statistischen Größen (Median, Normalverteilung)
 (s.10)
 - Dateneinteilung mithilfe von Klassen -> dient der Übersichtlichkeit (s.10)
 - Datenaufbereitung erfolgt mithilfe von ColdFusion (s.10) und die Datendarstellung (s.24)
 - Drop Down Liste der Benutzeroberfläche (für x und y Achse) (s.38)
 - Visualisierung und Interaktion bezieht sich auf ein Balkendiagramm, welches durch weitere Interaktionen verändert werden kann (s.39)
 - Scatterplot nur das Ergebnis, welcher aber um Konfidenzintervalle und Regressionsgerade erweitert (s.41)
- Gemeinsamkeiten
 - Einfache Benutzeroberfläche welche auch Auswahl der Attribute zulässt (s.11)
 - Verwendung des Scatterplots als Darstellung (s.11)
- Visualisierung von Patientendaten mithilfe eines Programms
- o https://repositum.tuwien.at/bitstream/20.500.12708/4082/2/Fels%20Ulrich%20-%202015%20-
 - %20Usability%20Analyse%20des%20Programms%20Animated%20Scatter%20Plot.pd f
- o Daten zur Diabetespatienten (s. V) (Daten mit Zeitorientierung)
- Unterschiede
 - Analyse über die Nutzbarkeit des Scatterplots (s. V)
 - Animierung des Scatterplots über die zeitreihen hinweg bedient erfolgt dabei ähnlich die eines Videorecorders (s.55)
 - Auswahl der Achsen ist möglich (s.53) über drop down Menüs (s.54)
 - Anpassungen der Darstellung in Größe, Form, Farbe (s.58)
 - Anpassung von Größe und Form anhand von Attributen (s.59)
 - Verschieden Grenzwerte k\u00f6nnen angezeigt werden und sind individuell anpassbar (s.57)
 - Nachverfolg der Daten mithilfe von Spuren (zeitliche) (s.58)
 - Möglichkeit des herein Zoomens in die Abbildung (s.60)
 - Daten können gefiltert werden nach wünschen des Benutzers (s.60)
 - "Berühren" der Maus eines Punktes gibt genaue Werte der Untersuchung wieder (inkl. Spurennachverfolgung) (s.62)
- o Gemeinsamkeiten
 - Darstellung der Daten über einen Scatterplot (s. V)

7. Zusammenfassung und Ausblick

- Ausblick er bei fertigem Projekt möglich
- Zusammenfassung der Beiträge

- o Einfache Benutzer Oberfläche Darstellung der Wein Daten
- o Einfache Analyse der verschieden Weindaten
- o Herausfinden von Trends, Mustern und Zusammenhängen
- Mehrwert für Zielgruppe und Personen
 - o Einfache Analyse der verschieden Weindaten
 - o Herausfinden von Präferenzen
 - Entdeckung neuer Sorten
 - Weine nach Geschmack finden
 - Weinwissen aufbessern
 - o Zusammenhänge zwischen Weinen besser verstehen
- Erweiterungen für Visualisierungen und Datenebene
 - Visualisierungen
 - Erweiterung der Interaktivität
 - Hervorheben der Daten
 - Daten über mehrere Diagramme kenntlich machen
 - Weitere Visualisierungen hinzufügen
 - Filtermöglichkeiten in den Darstellungen
 - Datenebene
 - Daten weiter vervollständigen
 - Weitere Weine hinzufügen
 - Daten konkretisieren

Anhang