### Fast Multidimensional Signal Processing with Shearlab.jl

Héctor Andrade Loarca (github: arsenal9971)

Notebook and Beamer:

https://github.com/arsenal997/Shearlab.jl/presentations/JuliaCon2017

TU Berlin, BMS

22th of June, 2017





### What is a signal?

#### Our definition

Function (or something that can be represented as) that contains information about the behavior or attributes of some phenomenon. It can be digital (discrete) or analog (continuous).

## What is a signal?

#### Our definition

Function (or something that can be represented as) that contains information about the behavior or attributes of some phenomenon. It can be digital (discrete) or analog (continuous).



Figure: Digital and continuous one-dimensional signals

## What is a signal?

#### Our definition

Function (or something that can be represented as) that contains information about the behavior or attributes of some phenomenon. It can be digital (discrete) or analog (continuous).



Figure: Digital and continuous one-dimensional signals



Figure: White noise, not a signal

#### Sparse representations of signals

▶ Relevant information in structured data is sparse, due the high correlation of its elements.

#### Sparse representations of signals

- Relevant information in structured data is sparse, due the high correlation of its elements.
- ▶ Goal: Find the right dictionary to represent optimally our data.



Sparse Coefficients  $\hat{\alpha}$ 

### Fourier Transform (Fourier, 1822)

$$\hat{f}(\omega) := \int_{\mathbb{R}^n} f(x) e^{-i\langle x, \omega \rangle} dx$$

### Fourier Transform (Fourier, 1822)

$$\hat{f}(\omega) := \int_{\mathbb{R}^n} f(x) e^{-i\langle x, \omega \rangle} dx$$



### Short Time Fourier Transform (Gabor, 1946)

$$S_g f(t,\omega) = \int_{\mathbb{R}} f(x) \overline{g(x-t)} e^{-ix\omega} dx$$

### Short Time Fourier Transform (Gabor, 1946)

$$S_{g}f(t,\omega)=\int_{\mathbb{R}}f(x)\overline{g(x-t)}e^{-ix\omega}dx$$





SPECTRAL FRAMES

### Wavelet Transform (Morlet and Grossman, 1984)

$$egin{aligned} \mathcal{W}_{\psi}f(a,b) &= \int_{\mathbb{R}} f(t)a^{-rac{1}{2}}\overline{\psi\left(rac{t-b}{a}
ight)}dt \ &= (f*D_a\overline{\psi}^*)(b), \quad (a,b) \in \mathbb{R}^+ imes \mathbb{R} \ &\int_{0}^{\infty} rac{|\hat{\psi}(\omega)|^2}{\omega}d\omega < \infty \end{aligned}$$

where

### Wavelet Transform (Morlet and Grossman, 1984)

$$egin{aligned} \mathcal{W}_{\psi}f(a,b) &= \int_{\mathbb{R}} f(t)a^{-rac{1}{2}}\overline{\psi\left(rac{t-b}{a}
ight)}dt \ &= (f*D_a\overline{\psi}^*)(b), \quad (a,b) \in \mathbb{R}^+ imes \mathbb{R} \end{aligned}$$

where

$$\int_0^\infty \frac{|\hat{\psi}(\omega)|^2}{\omega} d\omega < \infty$$





#### Cartoon-like functions

#### Definition

Let  $f: \mathbb{R}^2 \longrightarrow \mathbb{C}$ ,  $f \in \mathcal{E}^2(\mathbb{R}^2)$  if  $f = f_0 + \chi_B f_1$ , with  $B \subset [0,1]^2$ ,  $\partial B \in C^2$  and with bounded curvature. Moreover,  $f_i \in C^2(\mathbb{R}^2)$  with  $||f_i||_{C^2} \leq 1$  and  $\text{supp} f_i \subset [0,1]^2$  for i=0,1.

#### Cartoon-like functions

#### **Definition**

Let  $f: \mathbb{R}^2 \longrightarrow \mathbb{C}$ ,  $f \in \mathcal{E}^2(\mathbb{R}^2)$  if  $f = f_0 + \chi_B f_1$ , with  $B \subset [0,1]^2$ ,  $\partial B \in C^2$ and with bounded curvature. Moreover,  $f_i \in C^2(\mathbb{R}^2)$  with  $||f_i||_{C^2} \leq 1$  and  $supp f_i \subset [0, 1]^2 \text{ for } i = 0, 1.$ 



### Optimal error for 2D signals

#### Best N-term approx. error (Donoho, 2001)

Let  $\{\psi_{\lambda}\}_{{\lambda}\in{\Lambda}}\subset L^2(\mathbb{R}^2)$  a frame. The optimal best N-Term approximation error for any  $f\in\mathcal{R}^2(\mathbb{R}^2)$  is

$$\sigma_N(f, \{\psi_\lambda\}_{\lambda \in \Lambda}) = O(N^{-1})$$

### Optimal error for 2D signals

#### Best N-term approx. error (Donoho, 2001)

Let  $\{\psi_{\lambda}\}_{{\lambda}\in{\Lambda}}\subset L^2(\mathbb{R}^2)$  a frame. The optimal best N-Term approximation error for any  $f\in\mathcal{R}^2(\mathbb{R}^2)$  is

$$\sigma_{N}(f, \{\psi_{\lambda}\}_{\lambda \in \Lambda}) = O(N^{-1})$$

#### Error of 2D-wavelets

$$\sigma_{N}(f, \{\psi_{j,m}\}_{j,m}) \sim N^{-1/2}$$

## Optimal error for 2D signals

#### Best N-term approx. error (Donoho, 2001)

Let  $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}\subset L^2(\mathbb{R}^2)$  a frame. The optimal best N-Term approximation error for any  $f \in \mathcal{R}^2(\mathbb{R}^2)$  is

$$\sigma_{N}(f, \{\psi_{\lambda}\}_{\lambda \in \Lambda}) = O(N^{-1})$$

#### Error of 2D-wavelets

$$\sigma_{N}(f, \{\psi_{j,m}\}_{j,m}) \sim N^{-1/2}$$





Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$

Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$



► Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$





► Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$





Shearing

$$S_k := \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$

► Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$





► Shearing

$$S_k := \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$



Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$





► Shearing

$$S_k := \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$





## Shearlet Transform (Kutyniok, Guo, Labate, 2005)

#### Classical Shearlet Transform

$$\langle f, \psi_{j,k,m} \rangle = \int_{\mathbb{R}^2} f(x) \overline{\psi_{j,k,m}(x)} dx$$

## Shearlet Transform (Kutyniok, Guo, Labate, 2005)

#### Classical Shearlet Transform

$$\langle f, \psi_{j,k,m} \rangle = \int_{\mathbb{R}^2} f(x) \overline{\psi_{j,k,m}(x)} dx$$

where

$$\mathcal{SH}(\psi) = \{\psi_{j,k,m}(x) = 2^{3j/4}\psi(S_kA_jx - m) : (j,k) \in \mathbb{Z}^2, m \in \mathbb{Z}^2\}$$

## Shearlet Transform (Kutyniok, Guo, Labate, 2005)

#### Classical Shearlet Transform

$$\langle f, \psi_{j,k,m} \rangle = \int_{\mathbb{R}^2} f(x) \overline{\psi_{j,k,m}(x)} dx$$

where

$$\mathcal{SH}(\psi) = \{\psi_{j,k,m}(x) = 2^{3j/4}\psi(S_kA_jx - m) : (j,k) \in \mathbb{Z}^2, m \in \mathbb{Z}^2\}$$



#### Cone-based shearlet transform

$$\mathcal{SH}(\phi,\psi,\tilde{\psi},c) := \mathcal{P}_{\mathcal{R}}\Phi(\phi,c1) \cup \mathcal{P}_{\mathcal{C}_1}\Psi(\psi,c) \cup \mathcal{P}_{\mathcal{C}_2}\tilde{\Psi}(\tilde{\psi,c})$$

#### Cone-based shearlet transform

$$\mathcal{SH}(\phi,\psi,\tilde{\psi},c) := \mathcal{P}_{\mathcal{R}}\Phi(\phi,c1) \cup \mathcal{P}_{\mathcal{C}_1}\Psi(\psi,c) \cup \mathcal{P}_{\mathcal{C}_2}\tilde{\Psi}(\tilde{\psi,c})$$



► Separable

$$\psi^{\text{sep}}(x_1, x_2) = \psi_1(x_1)\phi_1(x_2)$$

Separable

$$\psi^{\text{sep}}(x_1, x_2) = \psi_1(x_1)\phi_1(x_2)$$

Non-separable

$$\hat{\psi}^{\mathsf{non}}(\xi) = P\left(\frac{\xi_1}{2}, \xi_2\right) \hat{\psi}^{\mathsf{sep}}(\xi)$$

Separable

$$\psi^{\text{sep}}(x_1, x_2) = \psi_1(x_1)\phi_1(x_2)$$

Non-separable

$$\hat{\psi}^{\mathsf{non}}(\xi) = P\left(rac{\xi_1}{2}, \xi_2
ight)\hat{\psi}^{\mathsf{sep}}(\xi)$$





Separable

$$\psi^{\text{sep}}(x_1, x_2) = \psi_1(x_1)\phi_1(x_2)$$

Non-separable

$$\hat{\psi}^{\mathsf{non}}(\xi) = P\left(rac{\xi_1}{2}, \xi_2
ight) \hat{\psi}^{\mathsf{sep}}(\xi)$$





Best N-term approximation error

$$\sigma_N(f, \{\psi_{j,k,m}\}_{j,k,m}) \sim N^{-1}(\log(N))^{3/2}$$

#### Current software

- Matlab
  - FFST- Fast Finite Shearlet Transform (Häuser, Steidl,TU Keiserlautern) http://www.mathematik.uni-kl.de/imagepro/software/ffst/
  - 2D/3D Shearlet Toolbox (D. Labate, University of Houston) https://www.math.uh.edu/~dlabate/software.html
  - ► **Shearlab3D** (G. Kutyniok, W.-Q.Lim, R. Reisenhoffer, TU Berlin) http://www.shearlab.org/

#### Current software

- Matlab
  - FFST- Fast Finite Shearlet Transform (Häuser, Steidl,TU Keiserlautern) http://www.mathematik.uni-kl.de/imagepro/software/ffst/
  - ▶ 2D/3D Shearlet Toolbox (D. Labate, University of Houston) https://www.math.uh.edu/~dlabate/software.html
  - Shearlab3D (G. Kutyniok, W.-Q.Lim, R. Reisenhoffer, TU Berlin) http://www.shearlab.org/
- Python
  - pyShearLab (Stefan Loock, U Götingen) http://na.math.uni-goettingen.de/pyshearlab/

#### Current software

- Matlab
  - ► FFST- Fast Finite Shearlet Transform (Häuser, Steidl, TU Keiserlautern)
    http://www.mathematik.uni-kl.de/imagepro/software/ffst/
  - ▶ 2D/3D Shearlet Toolbox (D. Labate, University of Houston) https://www.math.uh.edu/~dlabate/software.html
  - Shearlab3D (G. Kutyniok, W.-Q.Lim, R. Reisenhoffer, TU Berlin) http://www.shearlab.org/
- Python
  - pyShearLab (Stefan Loock, U Götingen) http://na.math.uni-goettingen.de/pyshearlab/
- Julia
  - ► **Shearlab.jl** (H. Andrade, TU Berlin) https://github.com/arsenal9971/Shearlab.jl

Extensive use of fft, well implemented in Julia.

- Extensive use of fft, well implemented in Julia.
- ▶ Fast vectorization and loops as well as JIT-compilation.

- Extensive use of fft, well implemented in Julia.
- ▶ Fast vectorization and loops as well as JIT-compilation.
- ▶ Plenty of image filtering, import and rescaling functions with Images. jl , Wavelets. jl .

- Extensive use of fft, well implemented in Julia.
- ▶ Fast vectorization and loops as well as JIT-compilation.
- ▶ Plenty of image filtering, import and rescaling functions with Images. jl , Wavelets. jl .
- Support of multithreading and painless GPU processing with ArrayFire . jl .











#### Thanks!

## Questions?

