Unidad 3.A. Diseño de sistemas mecatrónicos basado en modelos

Dr. Ing. Hernán Garrido

Control y sistemas
Universidad Nacional de Cuyo, Facultad de Ingeniería

carloshernangarrido@gmail.com

Diciembre de 2023

Contenidos

- Introducción
- 2 Etapas de diseño e integración
- 3 Verificación y validación de modelos
- 4 Conceptos de model-in-the-loop, software-in-the-loop, processor-in-the-loop y hardware-in-the-loop
- 5 Modelado de sistemas físicos: Modelado de la planta
- 6 Metodología para el modelado en espacio de estados

2 Etapas de diseño e integración

3 Verificación y validación de modelos

4 Conceptos de model-in-the-loop, software-in-the-loop, processor-in-the-loop y hardware-in-the-loop

5 Modelado de sistemas físicos: Modelado de la planta

6 Metodología para el modelado en espacio de estados

Diciembre de 2023

Introducción: Sistemas y modelos

Sistema (concreto)

Es un recorte de la realidad. Esto implica una *frontera* con el resto de la realidad, lo cual define:

- Entradas
- Salidas

Modelo (abstracto)

Es una representación *simplificada* de un recorte de la realidad, lo cual define:

- Entradas
- Salidas
- Suposiciones

Figura: Tomada de https: //moorepants.github. io/resonance/07/07_ vertical_vibration_of_ a_quarter_car.html

2 Etapas de diseño e integración

3 Verificación y validación de modelos

- Conceptos de model-in-the-loop, software-in-the-loop, processor-in-the-loop y hardware-in-the-loop
- Modelado de sistemas físicos: Modelado de la planta

Metodología para el modelado en espacio de estados

Diciembre de 2023

Etapas de diseño e integración

Analisis (conoce	r)					
Realidad	\rightarrow	Sistema	\rightarrow	Modelo(s)	\rightarrow	Predicción
	Recorte		Modelado		Simulación	
Síntesis (crear)						
Requerimientos	\rightarrow	Modelo	\rightarrow	Sistema	\rightarrow	Realidad
	Diseño		Implementaciór	1	Integración	

Etapas de diseño e integración

3 Verificación y validación de modelos

4 Conceptos de model-in-the-loop, software-in-the-loop, processor-in-the-loop y hardware-in-the-loop

5 Modelado de sistemas físicos: Modelado de la planta

Metodología para el modelado en espacio de estados

Verificación y validación

Modelos en el contexto de simulaciones:

- Modelo matemático (analítico): Ecuaciones diferenciales que aproximan la respuesta real.
- Modelo de simulación (numérico): Ecuaciones en diferencias que aproximan la solución analítica.

Verificación

Asegurar que el modelo numérico es una buena aproximación del modelo analítico.

- Se realiza mediante simulaciones de escenarios cuya solución es conocida, empezando por los obvios o intuitivos.
- Se comparan predicciones numéricas y analíticas.

Validación

Asegurar que los modelos (numérico y/o analítico) son una buena aproximación del sistema real.

- Se realiza mediante simulaciones y/o cálculos y ensayos experimentales.
- Se comparan predicciones y mediciones.

Predecir con modelos

¿Para qué predecir con modelos? – Para ahorrar dinero.

- Predecir el futuro: Pronóstico (forecasting)
- Predecir el pasado: Ingeniería forense
- Predecir escenarios hipotéticos:
 - Diseño iterativo
 - Evaluación de diseños
 - Estabilidad
 - Robustez
 - Durabilidad
 - ..

¿Cómo hacerlo mejor? – Con modelos validados, preferentemente con identificación de sistemas.

- Simular con el modelo → Predicciones
- Ensayar en el sistema → Mediciones
- Comparar: Mediciones <> Predicciones
- Actualizar el modelo:
 - en sus parámetros: calibrar
 - en su estructura: replantear
- Repetir ... hasta la convergencia

Predecir con modelos: El valor de la información

Soluciones de compromiso

- Ensayos parciales
- Múltiples modelos
 - Multi-escala
 - Multi-fidelidad
 - Multi-dominio (multifísica)
- Múltiples simulaciones

Recomendación: Lo mínimo que se espera de un trabajo profesional con control lineal son dos modelos:

- Un modelo de diseño, de fidelidad baja (e.g., CP CT LTI):
 Para ajustar los parámetros del controlador.
- Un modelo de evaluación, de fidelidad media (e.g., CP CT/DT -NL/TV): Para evaluar el diseño (en especial su rango de validez) antes de invertir en ensayos experimentales.

Etapas de diseño e integración

Verificación y validación de modelos

4 Conceptos de model-in-the-loop, software-in-the-loop, processor-in-the-loop y hardware-in-the-loop

5 Modelado de sistemas físicos: Modelado de la planta

6 Metodología para el modelado en espacio de estados

Conceptos de MIL, SIL, PIL y HIL

Diciembre de 2023

2 Etapas de diseño e integración

3 Verificación y validación de modelos

4 Conceptos de model-in-the-loop, software-in-the-loop, processor-in-the-loop y hardware-in-the-loop

6 Modelado de sistemas físicos: Modelado de la planta

6 Metodología para el modelado en espacio de estados

- Sub-estructuración
 - Dividir el sistema en subsistemas
 - Reconocer las variables del sistema
 - Señales de entrada y salida
 - Variables de estado
- Ecuaciones básicas
 - Leyes de conservación
 - Leyes constitutivas
- Espacio de estados
 - Elegir las variables de estado
 - Formar las ecuaciones de estado:

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u_c}(t), \mathbf{u_d}(t), t) \\ &pprox \mathbf{A}\mathbf{x}(t) + \mathbf{B_d}\mathbf{u_d}(t) + \mathbf{B_c}\mathbf{u_c}(t) \\ \mathbf{y_s}(t) &= \mathbf{C_s}\mathbf{x}(t) + ... \\ \mathbf{y_p}(t) &= \mathbf{C_p}\mathbf{x}(t) + ... \end{split}$$

Sub-estructuración

- Sub-estructuración
 - Dividir el sistema en subsistemas
 - Reconocer las variables del sistema
 - Señales de entrada y salida
 - Variables de estado
- Ecuaciones básicas
 - Leyes de conservación
 - Leyes constitutivas
- Sepacio de estados
 - Elegir las variables de estado
 - Formar las ecuaciones de estado:

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u_c}(t), \mathbf{u_d}(t), t) \\ \approx \mathbf{A}\mathbf{x}(t) + \mathbf{B_d}\mathbf{u_d}(t) + \mathbf{B_c}\mathbf{u_c}(t) \\ \mathbf{y_s}(t) &= \mathbf{C_s}\mathbf{x}(t) + ... \\ \mathbf{y_p}(t) &= \mathbf{C_p}\mathbf{x}(t) + ... \end{split}$$

Ecuaciones básicas

 Leyes de conservación: Acumuladores, fuentes y sumideros.

	En paralelo	En serie	
Eléctrico	voltaje	corriente	
Mecánico	velocidad	fuerza	
Hidráulico	presión diferencial	caudal vol.	
Neumático	presión y tempera-	caudal más.	
	tura absolutas		

$$\frac{dv_1(t)}{dt} = q_0(t) + d_1(t) - q_1(t)$$

- Sub-estructuración
 - Dividir el sistema en subsistemas
 - Reconocer las variables del sistema
 - Señales de entrada y salida
 - Variables de estado
- Ecuaciones básicas
 - Leyes de conservación
 - Leyes constitutivas
- Sepacio de estados
 - Elegir las variables de estado
 - Formar las ecuaciones de estado:

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u_c}(t), \mathbf{u_d}(t), t) \\ \approx \mathbf{A}\mathbf{x}(t) + \mathbf{B_d}\mathbf{u_d}(t) + \mathbf{B_c}\mathbf{u_c}(t) \\ \mathbf{y_s}(t) &= \mathbf{C_s}\mathbf{x}(t) + ... \\ \mathbf{y_p}(t) &= \mathbf{C_p}\mathbf{x}(t) + ... \end{split}$$

Ecuaciones básicas

 Leyes constitutivas: Comportamiento de los componentes.

	Leyes
Eléctrico	$v_L = L \frac{di}{dt}$, $v_R = Ri$, $v_C = \frac{1}{C} \int i dt$
Mecánico	$f_k = k\Delta x$, $f_c = c\Delta \dot{x}$, $f_m = m\ddot{x}$
Hidráulico	$v = Ah$, $\Delta p = qR_{hd}^{a}$, $p = \rho gh$
Neumático	$p = Z \rho RT$,

$$q_1(t) = \frac{p_1(t) - 0}{R_{hd}}, \ p_1(t) = \rho g h_1(t), \ v_1(t) = A_1 h_1(t)$$

^aLey de Poiseuille

- Sub-estructuración
 - Dividir el sistema en subsistemas
 - Reconocer las variables del sistema
 - Señales de entrada y salida
 - Variables de estado
- Ecuaciones básicas
 - Leves de conservación
 - Leyes constitutivas
- Section Sec
 - Elegir las variables de estado
 - Formar las ecuaciones de estado:

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u_c}(t), \mathbf{u_d}(t), t) \\ \approx \mathbf{A}\mathbf{x}(t) + \mathbf{B_d}\mathbf{u_d}(t) + \mathbf{B_c}\mathbf{u_c}(t) \\ \mathbf{y_s}(t) &= \mathbf{C_s}\mathbf{x}(t) + ... \\ \mathbf{y_p}(t) &= \mathbf{C_p}\mathbf{x}(t) + ... \end{split}$$

Ecuaciones básicas

$$\frac{dv_1(t)}{dt} = q_0(t) + d_1(t) - q_1(t)$$

$$q_1(t) = \frac{p_1(t) - 0}{R_{hd}}, p_1(t) = \rho g h_1(t), v_1(t) = A_1 h_1(t)$$

Combinando...

$$\frac{dv_1(t)}{dt} = q_0(t) + d_1(t) - \frac{\rho g}{A_1 R_{hd}} v_1(t)$$

Etapas de diseño e integración

3 Verificación y validación de modelos

- Conceptos de model-in-the-loop, software-in-the-loop, processor-in-the-loop y hardware-in-the-loop
- Modelado de sistemas físicos: Modelado de la planta

Metodología para el modelado en espacio de estados

- Sub-estructuración
 - Dividir el sistema en subsistemas
 - Reconocer las variables del sistema
 - Señales de entrada y salida
 - Variables de estado
- Ecuaciones básicas
 - Leyes de conservación
 - Leyes constitutivas
- Section Sec
 - Elegir las variables de estado
 - Formar las ecuaciones de estado:

$$egin{aligned} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u_c}(t), \mathbf{u_d}(t), t) \ &pprox \mathbf{A}\mathbf{x}(t) + \mathbf{B_d}\mathbf{u_d}(t) + \mathbf{B_c}\mathbf{u_c}(t) \ &\mathbf{y_s}(t) &= \mathbf{C_s}\mathbf{x}(t) + ... \ &\mathbf{y_n}(t) &= \mathbf{C_n}\mathbf{x}(t) + ... \end{aligned}$$

Espacio de estados

- Elegir las variables de estado: Al menos una por cada elemento acumulador en el sistema.
 Por ejemplo, un motor de CC conectado a un brazo flexible tiene:
 - Inductancia del motor
 - ② Elasticidad del brazo
 - Se Energía potencial gravitatoria del brazo
 - Inercia del rotor
 - Inercia del brazo

- Sub-estructuración
 - Dividir el sistema en subsistemas
 - Reconocer las variables del sistema
 - Señales de entrada y salida
 - Variables de estado
- Ecuaciones básicas
 - Leyes de conservación
 - Leyes constitutivas
- Sepacio de estados
 - Elegir las variables de estado
 - Formar las ecuaciones de estado:

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u_c}(t), \mathbf{u_d}(t), t) \\ &\approx \mathbf{A}\mathbf{x}(t) + \mathbf{B_d}\mathbf{u_d}(t) + \mathbf{B_c}\mathbf{u_c}(t) \\ \mathbf{y_s}(t) &= \mathbf{C_s}\mathbf{x}(t) + ... \\ \mathbf{y_p}(t) &= \mathbf{C_p}\mathbf{x}(t) + ... \end{split}$$

Espacio de estados

 Elegir las variables de estado: Al menos una por cada elemento acumulador en el sistema.

$$rac{dv_1(t)}{dt} = q_0(t) + d_1(t) - rac{
ho g}{A_1 R_{hd}} v_1(t)$$

$$rac{dv_2(t)}{dt} = rac{
ho g}{A_1 R_{hd}} v_1(t) + d_2(t) - q_2(t)$$

- 2 acumuladores, se puede elegir:
 - el volumen de cada tanque, o
 - la altura de cada tanque, o
 - combinaciones (no recomendable).

Método de las tres fases: Espacio de estados

Elijamos los volúmenes para ...

Formar las ecuaciones de estado

$$\mathbf{x}(t) = egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix} = egin{bmatrix} v_1(t) \ v_2(t) \end{bmatrix}$$
 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B_d}\mathbf{u_d}(t) + \mathbf{B_c}\mathbf{u_c}(t)$ $\mathbf{y_s}(t) = \mathbf{C_s}\mathbf{x}(t)$ $\mathbf{y_p}(t) = \mathbf{C_p}\mathbf{x}(t)$

$$\begin{split} \dot{\mathbf{x}}(t) &= \begin{bmatrix} -\frac{\rho g}{A_1 R_{hd}} v_1(t) + 0 \cdot v_2(t) + q_0(t) + d_1(t) \\ \frac{\rho g}{A_1 R_{hd}} v_1(t) + 0 \cdot v_2(t) - q_2(t) + d_2(t) \end{bmatrix} \\ \mathbf{u_c}(t) &= \begin{bmatrix} q_0(t) \\ q_2(t) \end{bmatrix}, \mathbf{u_d}(t) = \begin{bmatrix} d_1(t) \\ d_2(t) \end{bmatrix} \\ \mathbf{y_p}(t) &= \begin{bmatrix} v_1(t) + v_2(t) \\ v_1(t) - v_2(t) \end{bmatrix}, \mathbf{y_s}(t) = \begin{bmatrix} h_1(t) \\ h_2(t) \end{bmatrix} \end{split}$$

$$\boldsymbol{A} = \begin{bmatrix} -\frac{\rho g}{A_1 R_{hd}} & 0 \\ \frac{\rho g}{A_1 R_{hd}} & 0 \end{bmatrix}, \boldsymbol{B_c} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \boldsymbol{B_d} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\boldsymbol{C_p} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \boldsymbol{C_s} = \begin{bmatrix} 1/A_1 & 0 \\ 0 & 1/A_2 \end{bmatrix}$$

Bibliografía

- Warl J. Astrom and Richard M. Murray Feedback Systems. Version v3.0i. Princeton University Press. September 2018. Chapter 3.
- Karnopp, Dean et al. Systems Dynamics: Modeling, Simulation, and Control of Mechatronic Systems. Fith Edition. John Wiley and Sons, Inc. 2012. Chapters 1 2.1.
- 1 https://www.mathworks.com/