```
% problem 1
clear;
close all;
clc;
p = 0.5;
q = 1-p;
n = 1000;
trials = 10000;
s = 0.1;
x = cumsum((rand(n,trials) < p).*2*s-s); % generate 10000 random walks. each
column represent one random walk.
figure(1);
hold on;
plot(x((1:n),1),'r');
plot(x((1:n),2),'b');
plot(x((1:n),3),'g');
plot(x((1:n),4));
plot(x((1:n),5));
hold off;
mean sim = mean(x(n,(1:trials)))
mean_est = n*(p-q)*s
var\_sim = var(x(n,(1:trials)))
var est = 4*n*p*q*s^2
       100 200 300 400 500 600 700 800 900 1000
mean sim = -0.0465
mean est = 0
var sim = 10.1783
var est = 10.0000
```

```
% problem 2
clear;
close all;
clc;
p = 0.5;
q = 1-p;
n = 1000;
          % the number of steps in a random walk
T = 0.5;
            % each time step length
t = n*T;
trials = 10000;
s = 1;
alpha = s^2/T;
x = cumsum((rand(n,trials) < p).*2*s-s); % generate 10000 random walks. each
column represent one random walk
y = cumsum((rand(n, trials) < p).*2*s-s);
x = x(n,1:trials);
                          % end points of 10000 random walk
y_est = y(n,1:trials);
z = sqrt(x est.^2+y est.^2);
x = 0:1:150;
z actual = raylpdf(x actual, sqrt(alpha*t)); % parameters: (x, std)
figure(1); hold on;
histogram(z est, 'normalization', 'pdf'); % estimated plot for z(rayleigh)
plot(z actual);
legend('estimate', 'actual');
xlabel('z');
ylabel('pdf of z');
  0.025
                                 estimate
   0.02
  0.015
   0.01
  0.005
```

Analytical parts for 1,2

Carle	
	一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
	1 1 10004
	1. b) because each step in a vandom walk is litely to increase more than to decrease
	c) because the distribution of random walks will spread more
	2 By Pa(10-52) on P. 446 When + ST (Whener process)
	$ \oint f_{\chi}(x,t) = 1 e^{-x/2}dt \qquad f_{\chi}(y,t) = 1 e^{-\frac{x}{2\pi}dt} $ $ \sqrt{2\pi}dt \qquad \sqrt{2\pi}dt $
	$\sqrt{2\pi at}$
	Since Z(t) = [x*(t) + x*(t), by eq(6-70) on p. 190
	$f_2(z) = \frac{z}{C^2} e^{-z^2/20^2} U(z)$
	In this case the variances of fx(x,t) and fy(x,t) are at instead of or
	This (2 (2, t) = 2 e-2/1de U(2) 5'=dT => d= 5h
	12 VC

3.
$$H_{1}(i) = \frac{1}{1(c^{5}+Rci+1)}$$
 $V(1)$ is owlph, $P_{1}(i)$ is imposed by P_{2} , $(q-14q)$, $(10-12)$, $(10-14)$
 $S_{2}(i) = S_{1}(i)$, $|I_{1}(i)|^{2} = 2ATR$
 $|I_{1}(i)|^{2} = |I_{1}(i)|$, $|I_{1}(i)|^{2} = 2ATR$
 $|I_{1}(i)|^{2} = |I_{1}(i)|$, $|I_{1}(i)|^{2} = |I_{1}(i)|^{2} = |$

4. $p(2n=1)=p$, $p(2n=-1)=q=1-p$ $S=1$
$\chi_{ij} = \frac{2}{2i}$
a) $X_4 = Z_1 + Z_2 + Z_3 + Z_4 = -2$ $P(Y_4 = -1) = P q^3$
b) $E[x_0] = n(p-a)$ by eq (10-55)
c) Var X(t) = 4npg
d) $R_{X}(n,m) = E[X_{n}X_{n}] = \frac{2}{2} = E[Z_{i}Z_{j}]$ $= \frac{2}{2} = E[Z_{i}Z_{j}] + \frac{2}{2} = E[Z_{i}Z_{j}] = \frac{2}{2} = E[Z_{i}] + \frac{2}{2} = E[Z_{i}] = \frac{2}{2} = $
$E[2;] = p(1)^{2} + q(1)^{2} = p+q=1$ $= \begin{cases} min(n,m) \times 1 + (nm - min(n,m)) (p-q)^{2} \\ \text{if the occurrence} \end{cases}$ $= \begin{cases} min(n,m) \times 1 + (nm - min(n,m)) (p-q)^{2} \\ \text{if the occurrence} \end{cases}$
e) no, because the mean of Xn changes us n changes