Comprehensive Review: The AdaBoost Algorithm

Master's Level Data Science

Contents

1	Introduction	1
2	Motivation: Weak Learners and Boosting	1
3	The AdaBoost Algorithm	2
4	Theoretical Guarantee	2
5	Worked Example (Freund-Schapire) 5.1 Example Data and Results	2 2
6	Geometric Illustration	3
7	Algorithm Summary	3
8	Practical Considerations	3
9	Future Directions	3

1 Introduction

This review synthesizes the lecture slides (ensemble-2.pdf) and audio transcript (AdaBoostAlgorithm.txt) on the AdaBoost algorithm. We cover the motivation for boosting weak learners, the AdaBoost procedure, theoretical guarantees, a worked example, and practical considerations.

2 Motivation: Weak Learners and Boosting

A weak learner is an algorithm that, on any distribution over examples (x_i, y_i) with labels $y_i \in \{-1, +1\}$, returns a hypothesis h with error

$$\Pr(h(X) \neq Y) \leq \frac{1}{2} - \epsilon,$$

for some $\epsilon > 0$. Boosting is a method to convert such weak learners into a *strong learner* with arbitrarily low training error by combining multiple hypotheses in a weighted vote.

3 The AdaBoost Algorithm

Given a training set $\{(x_i, y_i)\}_{i=1}^n$, initialize weights

$$D_1(i) = \frac{1}{n}, \quad i = 1, 2, \dots, n.$$

For rounds t = 1, ..., T:

- 1. Train weak learner on weighted sample D_t to obtain $h_t: X \to \{-1, +1\}$.
- 2. Compute weighted error

$$\varepsilon_t = \sum_{i=1}^n D_t(i) \mathbf{1}[h_t(x_i) \neq y_i].$$

3. Compute classifier weight

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right).$$

4. Update weights for all *i*:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{\sum_{j=1}^n D_t(j) \exp(-\alpha_t y_j h_t(x_j))}.$$

The final strong classifier is

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

4 Theoretical Guarantee

If each weak hypothesis has edge $\gamma_t = \frac{1}{2} - \varepsilon_t > 0$, then the training error of H satisfies

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}[H(x_i) \neq y_i] \leq \exp\left(-2\sum_{t=1}^{T} \gamma_t^2\right) \leq \exp\left(-2T\gamma^2\right),$$

where $\gamma = \min_t \gamma_t$. Thus training error decays exponentially in T.

5 Worked Example (Freund-Schapire)

We illustrate on a toy set with decision stumps as weak learners.

5.1 Example Data and Results

$$\begin{array}{|c|c|c|c|c|} \hline & D_1 & D_2 & D_3 \\ \hline h_1 & \varepsilon_1 = 0.40, \ \alpha_1 = 0.42 \\ h_2 & \varepsilon_2 = 0.42, \ \alpha_2 = 0.37 \\ h_3 & \varepsilon_3 = 0.30, \ \alpha_3 = 0.42 \\ \hline \end{array}$$

After three rounds, the combined classifier is

$$H(x) = sign(0.42 h_1(x) + 0.37 h_2(x) + 0.42 h_3(x)),$$

which can perfectly separate the training set.

6 Geometric Illustration

Figure 1: Exponential decay of the training error bound with rounds of boosting.

7 Algorithm Summary

- 1. Initialize uniform weights on examples.
- 2. For each round:
 - (a) Train weak learner on weighted data.
 - (b) Compute error and hypothesis weight.
 - (c) Reweight examples to emphasize mistakes.
- 3. Output sign of weighted vote of hypotheses.

8 Practical Considerations

- Choice of Weak Learner: Decision stumps are common; deeper trees can be used.
- Overfitting: Monitor validation error; limiting T or adding shrinkage can help.
- Computational Cost: Each round requires retraining on weighted data.
- Extensions: Gradient boosting generalizes to arbitrary losses.

9 Future Directions

- Gradient Boosting Machines: Use differentiable loss and regression trees.
- Regularization Schemes: Subsample data (bagging), shrinkage.
- Multi-class Boosting: SAMME and variants for multiple labels.
- Applications: Ranking, regression, anomaly detection.