- Seminar 5 --gr 911-912-913-914-A. Type and stability of linear planar systems. Let $X' = A \cdot X$, $A \in \mathcal{M}_{2}(\mathbb{R})$, det A + 0. Denote: $\lambda_1 \lambda_2 \in \mathbb{C}$ the eigenvalues of A.

o'det $(A - \lambda J_2) = 0$ - eigenvalues. out $A \neq 0$ (=> $0 \in \mathbb{R}^2$ the only eq. point. out $A \neq 0$ (=> $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$. Definition: We say that the equilibrium $(0,0) \in \mathbb{R}^2$ is: · NODE: when In, 22 ER and, either $\lambda_{1} \leq \lambda_{2}$ < 0 or $0 < \lambda_{1} \leq \lambda_{2}$ · SADDLE: when hi, 2 Ell and 2, <0 < 22 · Focus : when $\lambda_{1/2} = \angle \pm i\beta$, $\angle \pm 0$, $\beta \pm 0$. · CENTER: when \(\lambda_{12} = \pm i\beta\), \(\beta \forall 0 \) Jheorem 1: Inverse m 1:

If Re (λ_1) <0 and Re(λ_2) <0 =) eg = global attractor

If Re (λ_1) >0 and Re (λ_2) >0 =) eg = global repeller Theorem 2: · Any SADDLE is stable.

ex1: Decide the type and the stability of the linear systems: a) $\int x' = -y$ b) $\int x' = -x$ c) $\int x' = -3x$ d) $\int x' = x-y$ $\int y' = 5x$ b) $\int x' = 5y$ c) $\int x' = -2y$ d) $\int x' = x+y$ e) $\begin{cases} x' = 4x - 5y \\ y' = x - 2y \end{cases}$ Also, decide whether the system has a global first integer. If there is a possibility to have, try to find it. Represent the phase portrait. a) $\begin{cases} x' = -y \\ y' = 5x \end{cases}$ There: $X' = A \cdot X$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$, $A = \begin{pmatrix} 0 - 1 \\ 5 - 0 \end{pmatrix}$.

We find the eigenvalues of A: $det(A - \lambda J_2) = 0 \quad (=) \quad det(-\lambda - 1) = 0.$ (=> /2+5=0 => /112= ± ils The equilibrium is a CENTER -> stable. • We try to find the first integral: $\frac{dy}{dx} = \frac{5x}{-y} \frac{\text{superate}}{\text{variables}} - y \, dy = 5x \, dx$ integrate of the first integral: integrate $-\int y \, dy = 5 \int x \, dx = 3 - \frac{1}{2} = 5 \frac{x^2}{2} + c, CEIR$ $=D - \frac{3}{3} - \frac{5}{2}x^{2} = x = D \left[\frac{5}{3}x^{2} + \frac{3}{3}x^{2} = x \right] \left[\frac{1}{3}x^{2} + \frac{3}{3}x^{2} + \frac{$

Define: $H(x,y) = 5x^2 + y^2$ $3+(x,y) \in \mathbb{R}^2$ H: R2 -> R Note $H \in C^1(\mathbb{R})$ is not locally constant. \longrightarrow It is a good randidate for a global first intege. Let's check this: $\frac{3 + 1}{3 + 1} \cdot f_1 + \frac{3 + 1}{3 + 1} \cdot f_2 = 0$ in \mathbb{R}^2 , where $\begin{cases} x' = -y' = f_1 \\ y' = 5x = -f_2 \end{cases}$ (=) 10x.(-y) + 2y.(5x) = 0.=> We can rondude that: $H: \mathbb{R}^2 \rightarrow \mathbb{R}$, $H(x,y) = 5x^2 + y^2$ is a global first int. of the system. · We want to drow the phase portrait. -> We know that the orbit's lie on the level eurnes of the first integral. -s. The level curres of IH are: $H(x_{(y)}) = c$ $\tilde{\zeta} = 0$ $5x^2 + y^2 = c$, $c \in \mathbb{R}$

c)
$$\begin{cases} x' = -3x \\ y' = -2y \end{cases}$$

$$A = \begin{pmatrix} -3 & 0 \\ 0 & -2 \end{pmatrix} - \text{diagonal matrix}$$

$$\lambda_1 = -3, \lambda_2 = -2$$

$$\lambda_1 = \lambda_2 \in \mathbb{R}, \lambda_1, \lambda_2 < 0 \Rightarrow \frac{\text{Node}}{\text{ottractor}}$$

If-global attractor = No global first integral ! We try to find a first integral in a region U such that $02 \notin U$.

$$= 2 \frac{dy}{dx} = \frac{-2y}{-3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= 2 \frac{dy}{dx} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= 2 \frac{dy}{dx} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= 2 \frac{dy}{dx} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= 2 \frac{dy}{dx} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= 2 \frac{dy}{dx} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= 2 \frac{dy}{dx} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= 2 \frac{dy}{dx} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= 2 \frac{dy}{dx} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= 2 \frac{dy}{dx} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -\frac{2y}{3x} = 3 \frac{dy}{y} = 2 \cdot \frac{dx}{x}$$

$$= -\frac{2y}{3x} = -$$

=D
$$\frac{\sqrt{3}}{\sqrt{2}} = R$$
, $R \in \mathbb{R}$
. We take $H(x,y) = \frac{\sqrt{3}}{\sqrt{2}}$, $x \neq 0$.
 $U_1 := \frac{1}{2}(x,y) \in \mathbb{R}^2$, $x \neq 0$.
 $U_2 := \frac{1}{2}(x,y) \in \mathbb{R}^2$, $x \neq 0$.
. Check that H is a first integral in U_1 and $\frac{3H}{3x} \cdot f_1 + \frac{3H}{3y} \cdot f_2 = 0$. in U_1, U_2
(=) $y^3 \cdot (-2x^3) \cdot (-3x) + x^{-2} \cdot 3y^2 \cdot (-2y) = 0$. $\frac{1}{2}RUE$.
. The shape of the orbits: $\frac{3}{2} = C$, $\frac{3}{2} \cdot C \in \mathbb{R}$ =D $y = C \cdot x^3$, $C \in \mathbb{R}$
 $\frac{1}{2} = C$, $C \in \mathbb{R}$ =D $y = C \cdot x^3$, $C \in \mathbb{R}$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$
 $\frac{1}{2} = -3x < 0$ $y' = -2y < 0$

d)
$$\begin{cases} x' = x - y \\ y' = x + ny \end{cases}$$
 $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$
 $\det(A - \lambda J_2) = 0 \iff A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = 0$
 $(=) (1 - \lambda)^2 + 1 = 0 \iff A = \lambda_{12} + 0$, ke $\lambda_{12} \ge 0$
 $\Rightarrow \lambda_{1,2} = 1 \pm i \implies A = \lambda_{12} + 0$, ke $\lambda_{12} \ge 0$

To cus, alobal repeller

The system does not have a global first integral.

We look if we can find a first integral in a region U such that $0 \ge QU$.

 $\Rightarrow \frac{dy}{dx} = \frac{x + ny}{x - y} \implies \frac{dy}{dx} = \frac{y + x}{y - x} = \text{hot separalk}$

(we did not learn how to solve this, yet).

 $\Rightarrow \text{ decture } g - \text{ the phase postrait with palar coordinates}$.

B. Type and stability of the equilibrium points of nonlinear planar systems using the linearifation method. X' = f(X) (1) • Find the equilibrium: $f(n^*)=0$ $\eta^* \in \mathbb{R}^2$. The lineau tation method: -> the linearized system: $X' = Jf(\eta^*) \cdot X$ (2) The Jacobian matrix of f computed in (x_1y) $\mathcal{J}f(x_1y) = \left(\frac{\partial f_1}{\partial x}(x_1y) - \frac{\partial f_2}{\partial y}(x_1y)\right)$ $\left\langle \frac{\partial f_2}{\partial x}(x,y) \right\rangle = \left\langle \frac{\partial f_2}{\partial y}(x,y) \right\rangle$ Det: The equilibrium point n' is hyperbolic if Re (21) # 0 and Re(22) #0, where 1, 22- are the ligenvalues of Jf(n*) Theorem: Let n* = hyperbolic ep. The ego of the linearized system is an attractor (repeller), follows that you is the same. If the epo of the linearised system is a

saddle, follows that not is unstable.

ex2: Study the stability of the equilibrium points of the nonlinear system:

$$x' = x(1-x) \\
y' = y(3-y)$$
• First we find the equilibrium points by finding the solutition of the system:

$$x(1-x) = 0 \quad \Rightarrow \quad x = 0, \quad x = 1 \\
y(3-y) = 0 \quad \Rightarrow \quad y = 0, \quad y = 3$$
=D The equilibrium points are:

$$y'' = (0,0); \eta_2^+ = (0,3); \eta_3^+ = (1,0); \eta_4^+ = (1,3).$$
• The function:
$$f(x,y) = \begin{pmatrix} x-x^2 \\ 3y-y^2 \end{pmatrix}$$
=D We find the Jacobian:

$$f(x,y) = \begin{pmatrix} 2f_1 \\ 3f_2 \\ 3f_3 \\ 3y \end{pmatrix} = \begin{pmatrix} 1-2x \\ 0 \\ 3-2y \end{pmatrix}$$
• We study the stability of each eq. point.

$$f(x,y) = \begin{pmatrix} 3f_1 \\ 3f_2 \\ 3f_3 \\ 3f_3 \end{pmatrix}$$
=D the eigenvalues:
$$h_1 = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_2 = 3$$
=D the linearized system:
$$x = 1, h_3 = 3$$
=D the linearized system:
$$x = 1, h_3 = 3$$
=D the linearized system:
$$x = 1, h_3 = 3$$
=D the linearized system:
$$x = 1, h_3 = 3$$
=D the linearized system:
$$x = 1, h_3 = 3$$
=D the linearized system:
$$x = 1, h_3 = 3$$
=D the linearized system:
$$x = 1, h_3 = 3$$
=D the linearized system:
$$x = 1, h_3 = 3$$
=D the linearized system:
$$x = 1, h_3 = 3$$
=D the linearized system:
$$x = 1, h_3 = 3$$
=D the linearized system:
$$x =$$