Reminder: interior points in metric space (S, d)

Definition (Open ball – not in textbook)

Suppose $s_0 \in S$, r > 0. The open ball with center s_0 and radius r is $\mathbf{B}_r^o(s_0) = \{s \in S : d(s, s_0) < r\}$.

Definition (13.6 – interior of $E \subset S$)

 $s_0 \in S$ is called interior to E if $\exists r > 0$ s.t. $\mathbf{B}_r^o(s_0) \subset E$. The set of interior points is denoted by E^o , and called the interior of E.

Definition (13.6 - open sets in S)

 $E \subset S$ is called open if $E = E^o$.

Reminder: open sets in metric space (S, d)

Fact (13.7 – (iii) and (iv) proved in Homework 4)

- S is open.
- ∅ is open.
- A union of any collection of open sets is open.
- An intersection of finitely many open sets is open.

Proposition (not in textbook)

- Any open ball is open.
- ② For any E, E° is open that is, $(E^{\circ})^{\circ} = E^{\circ}$.

Proposition (not in textbook)

A set is open iff it is a union of open balls.

Closed sets in metric space (S, d)

Definition (13.6 - closed sets in S)

 $E \subset S$ is called closed if $S \setminus E$ is open.

Fact (obtained from 13.7 using de Morgan's laws)

- S is closed.
- Ø is closed.
- An intersection of any collection of closed sets is closed.
- A union of finitely many closed sets is closed (does not generalize to infinite unions).

Fact (some de Morgan's laws, proved in Homework 4)

Suppose $(A_i)_{i \in I}$ are subsets of S. Then

$$S\setminus (\cup_i A_i) = \cap_i (S\setminus A_i), \ S\setminus (\cap_i A_i) = \cup_i (S\setminus A_i).$$

Examples of open and closed sets

Example: finite sets are closed.

Conisder $E = \{x_1, \ldots, x_n\} \subset S$.

For $1 \le i \le n$, $S \setminus \{x_i\}$ is open, hence $\{x_i\}$ is closed.

 $E = \{x_1\} \cup \ldots \cup \{x_n\}$ is closed, as a finite union of closed sets.

Example: intervals in \mathbb{R} . Suppose a < b.

(a, b) is open, not closed. [a, b] is closed, not open.

(a, b], [a, b) are neither.

Example: discrete metric. For
$$x, y \in S$$
, $d(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$.

Describe open and closed sets.

Hint. Suppose $s \in S$. Is $\{s\}$ closed? open?

Every set is both open and closed!

Moral of the story: sometimes a set can be both open and closed.

Being open or closed depends on the ambient space

Suppose (S, d) is a metric space, and $E \subset S$.

Being open or closed is a property of the position of E inside of S, and not of E itself.

Example: Suppose d is the usual metric on \mathbb{R} , which is inherited by $E = \mathbb{Q}$.

If $S = \mathbb{Q}$ itself: E is both open and closed in S.

If $S = \mathbb{R}$: E is neither open nor closed in S.

Indeed, if E were closed, then $\mathbb{R}\backslash\mathbb{Q}$ would have to be open.

That is, for any $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, there would exist r > 0 s.t.

 $(x_0 - r, x_0 + r) = \mathbf{B}_r^o(x_0) \subset \mathbb{R} \setminus \mathbb{Q}$. This is impossible, due to the denseness of rationals.

The possibility of *E* being open is ruled out similarly.

Closure and boundary of a set

Definition (13.6 – closure)

The closure of $E \subset S$ (denote by by E^-) is the intersection of all closed sets containing E.

Observations. (1) $E \subset E^-$.

(2) E^- is closed, as an intersection of closed sets; this is the smallest closed set containing E.

Definition (13.6 – boundary)

The boundary of $E \subset S$ is $\partial E = E^- \setminus E^o$.

Descriptions of closure and boundary

Proposition (13.9)

- \bullet $E = E^-$ iff E is closed.
- **5** E is closed iff the limit of any sequence of points in E is in E.

Proof. (a) is clear.

(c) \Rightarrow (b): E^- is the set of limits of sequences from E. (b) implies that $E^- = E$, hence by (a), E is closed.

More about E^-

Lemma (not in textbook)

 $x_0 \notin E^- \text{ iff } \exists r > 0 \text{ s.t. } \mathbf{B}_r^o(x_0) \cap E = \emptyset.$

Proof. \Leftarrow : $S \setminus \mathbf{B}_r^o(x_0)$ is closed, contains E. E^- is the smallest closed set containing E, hence $E^- \subset S \setminus \mathbf{B}_r^o(x_0)$.

 \Rightarrow : If $x_0 \notin E^-$, then x_0 belongs to open set $F = S \setminus E^-$. $F = F^o$, hence $\mathbf{B}_r^o(x_0) \subset F$ for some F.

Proof: $s \in E^-$ iff it is a limit of a sequence of points in E.

If $s \notin E^-$, then $\exists r \text{ s.t. } \mathbf{B}_r^o(s) \cap E = \emptyset$. No sequence $(s_n) \subset E$ can converge to s, since $d(s_n, s) \geqslant r$.

If $s \in E^-$, then for any $n \in \mathbb{N}$ we can find $s_n \in \mathbf{B}^o_{1/n}(s) \cap E$; then $\lim s_n = s$.

Further examples

Example. Find the closure of $E = \{\frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R}$. $E^- = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$ Recall: $s \in E^-$ iff $\mathbf{B}^o_r(s) \cap E \neq \emptyset$, $\forall r > 0$. Clearly all points of E has this property, as does 0 (due to the Archimedean Property of reals). If s < 0, then $\mathbf{B}^o_{|s|}(s) \cap E = \emptyset$, so $s \notin E^-$. If s > 1, then $\mathbf{B}^o_{s-1}(s) \cap E = \emptyset$, so $s \notin E^-$. If $s \in (0,1) \setminus E$, let $n = \lfloor \frac{1}{s} \rfloor$, then $\frac{1}{n+1} < s < \frac{1}{n}$. Thus, $\mathbf{B}^o_r(s) \cap E = \emptyset$, for $r = \min \left\{ \frac{1}{n} - s, s - \frac{1}{n+1} \right\}$. Conclude: $E^- = E \cup \{0\}$.