PCT

世界知的所有養機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 215/14, 263/38, 263/32, 277/24, 277/28, A61K 31/425, 31/47

(11) 国際公開番号 $\mathbf{A}\mathbf{1}$

(43) 国際公開日

WO98/57935

1998年12月23日(23.12.98)

(21) 国際出願番号

PCT/JP98/02585

(22) 国際出願日

1998年6月12日(12.06.98)

(30) 優先権データ

特類平9/176458

1997年6月17日(17.06.97)

〒607-8042 京都府京都市山科区四ノ宮南河原町14番地

(71) 出願人 (米国を除くすべての指定国について) 科研製薬株式会社

(KAKEN PHARMACEUTICAL CO., LTD.)[JP/JP]

〒113-8650 東京都文京区本駒込二丁目28番8号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

市川祥啓(ICHIKAWA, Yoshihiro)[JP/JP]

〒426-8646 静岡県藤枝市源助301番地

科研製薬株式会社 静岡工場内 Shizuoka, (JP)

西田時子(NISHIDA, Tokiko)[JP/JP]

中野 潤(NAKANO, Jun)[JP/JP]

須田昌宏(SUDA, Masahiro)[JP/JP]

〒607-8042 京都府京都市山科区四ノ宮南河原町14番地

科研製薬株式会社 創薬研究所内 Kyoto, (JP)

綿貫 充(WATANUKI, Mitsuru)[JP/JP]

〒113-8650 東京都文京区本駒込二丁目28番8号

科研製薬株式会社内 Tokyo, (JP)

中村 勉(NAKAMURA, Tsutomu)[JP/JP]

科研製薬株式会社 総合研究所内 Kyoto, (JP)

(81) 指定国 AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, GW, HU, ID, IL, IS, JP, KR, LC, LK, LR, LT, LV, MG, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ARIPO特許 (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), ユー ラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調查報告書

(54)Title: 2-SULFAMOYLBENZOIC ACID DERIVATIVES

(54)発明の名称 2ースルファモイル安息香酸誘導体

(57) Abstract

2-Sulfamoylbenzoic acid derivatives represented by general formula (1) or saits thereof, having both a leucotriene D, receptor antagonism and thromboxane A₂ receptor antagonism; and a pharmaceutical, an antiallergic agent, and an antagonist for both leucotriene and thromboxane A, each containing the same as the active ingredient.

(57)要約

ロイコトリエンD. 受容体拮抗作用とトロンボキサンA2 受容体拮抗作用をあわせ持つ一般式(|)

$$R_2$$
 X
 A
 O
 O
 $COOR_4$
 (CH_2) n
 R_3

で表わされる2-スルファモイル安息香酸誘導体またはその塩並びにそれらを有効成分とする医薬、抗アレルギー剤およびロイコトリエン・トロンボキサンAz 両拮抗剤を提供する。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AM T イストライン F G G B E F イーストトライン C G G E G H G G N C G G N C G R A T オーストトライン ア イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イ	フィンラス	S 1 スロヴェニア S K スロヴァキア S L シエラ・レオネ S N セネガル S Z スワジランド T D トーゴー T J タジキスタン T M トルタースタン
--	-------	--

明細書

2-スルファモイル安息香酸誘導体

技術分野

本発明は、ロイコトリエンD4(以下LTD4と略す)受容体拮抗作用とトロンボキサンA2(以下TXA2と略す)受容体拮抗作用をあわせ持つ新規な2ースルファモイル安息香酸誘導体、その合成中間体およびその塩並びにそれらを含有する医薬に関するものである。

背景技術

15

気管支喘息を初めとするアレルギー性疾患の治療には、ヒスタミン受容体拮抗剤や肥満細胞からのメディエーター遊離抑制剤等の抗アレルギー剤やステロイド剤が用いられ、気管支喘息では上記薬剤以外にキサンチン誘導体、β交換神経受容体刺激剤等の気管支拡張剤が用いられている。

近年、アレルギー性疾患は、その病態像からアレルギー性炎症として 認識され、種々炎症性細胞やメディエーターの関与が明らかにされてい る。気管支喘息を例に挙げると、気管支喘息は種々刺激に対する気道反 応性の亢進を特徴とし、可逆的な気道狭窄、気道粘膜の浮腫、粘液分泌 の亢進、気道壁への炎症性細胞の浸潤を伴う疾患であると認識されてい る。

20 さらに、関与するメディエーターについて、LTD。が強い気管支収 縮作用を始め気道血管透過性亢進、粘液分泌作用を有することが、また TXA2が強力な気管支収縮作用のみならず気道過敏性を支配すること が示唆されている。 WO 98/57935 PCT/JP98/02585

2

このような気管支喘息を始めとするアレルギー性疾患の治療研究の動向の中で、LTD4 受容体拮抗剤やTXA2 合成阻害剤、TXA2 受容体拮抗剤が上市され、従来までの抗アレルギー剤に比してより高い有効性が確認されている。

5 しかしながら、気管支喘息を始めとするアレルギー性疾患は、上述したように種々メディエーターが同時に関与した結果、その病態が惹起されているため、単一メディエーターに対する受容体拮抗作用や合成阻害作用だけではその有効性に限界があり、アレルギーの病態において主要なメディエーターであるLTD、およびTXA2の両メディエーターを同時に抑制することにより、より優れた治療効果が期待できる新規な抗アレルギー剤の開発が望まれている。

してD。およびTXA2の両メディエーターに対する受容体拮抗作用を併せ持つ化合物として、特開平3-258759号公報、特開平4-154757号公報、特開平4-154766号公報、特開平5-262736号公報、特開平5-262736号公報、特開平5-279336号公報、特開平6-41051号公報、WO96/11916に開示された化合物が挙げられるが、これらの化合物は本発明の化合物とは構造的に異なり、また、気管支収縮で主要なメディエーターとして考えられているしてD。に対する受容体拮抗作用強度およびしてD4、TXA2の両拮抗作用の相対活性比については抗アレルギー剤として十分な治療効果を期待するには不十分であると考えられる。

本発明は、このようなアレルギー性疾患の治療および治療研究の現状に鑑みてなされたものであり、本発明の目的は、アレルギー性疾患の発症に主要な役割を担っているLTD。およびTXA2の両メディエーターに対する強力な受容体拮抗作用を併せ持つことにより、より優れた治療効果が期待できる新規化合物およびこれらを有効成分とする医薬を提

20

15

供することにある。

発明の開示

本発明者らは、アレルギー性疾患の治療および上述した研究動向の中にあって、上記目的を達成するために鋭意研究を重ねた結果、本発明の2ースルファモイル安息香酸誘導体がアレルギー性疾患の発症に主要な役割を担っているLTD。およびTXA2の両メディエーターに対する受容体拮抗作用を併せ持ち、上述した単一メディエーター受容体拮抗剤または合成阻害剤に比してより優れた治療効果を有することを見い出し、本発明を完成するに至った。

10 すなわち本発明は、一般式(|)

$$R1$$
 $R2$
 X
 A
 O
 $COOR4$
 (CH_2) n
 $R3$

(式中R 1、R 2は同一または異なって水素原子、 C_{s-s} のシクロアルキル基、置換されていてもよい C_{1-s} のアルキル基、置換されていてもよい C_{1} と一体となって

式 で示される縮合環を形成していてもよく、これらの縮合環は、置換されていてもよい C1-6のアルキル基、アミノ基、シアノ基、ニトロ基、水酸基、ハロゲン原子または C1-5のアルコキシ基で置換されていてもよい。 X は酸素原子、窒素原子、硫黄原子または - C H = C H - 、R 3 は置換されていてもよいフェニルスルホニルアミノ基、

置換されていてもよいフェニルスルホニル基または置換されていてもよいフェニルスルホキシド基、R4は水素原子またはエステル残基、nは2から6の整数を示す。Aは一〇一B一、一B一〇一、一S一B一、一B一S一または一B一で示され、BはC、のアルキレン基またはC。のアルケニレン基を示す。ただし、R1がC、のアルキル基、C。のフルケニレン基を示す。ただし、R1がC、のアルキル基、C。のシクロアルキル基またはフェニル基であり、R2が水素原子、Aがビニレン基、Xが硫黄原子である場合は除く。)で示される2ースルファモイル安息香酸誘導体、その塩、その水和物またはその溶媒和物を提供する。

10 また、その製造中間体として有用な一般式(11)

(式中R1、R2は同一または異なって水素原子、 C_{3-8} のシクロアルキル基、置換されていてもよい C_{1-6} のアルキル基、置換されていてもよい C_{1-6} のアルキル基、置換されていてもよいアリール基またはR1、R2は環

15 式 で示される縮合環を形成していてもよく、これらの縮合環は、置換されていてもよい C₁-。のアルキル基、アミノ基、シアノ基、ニトロ基、水酸基、ハロゲン原子または C₁-。のアルコキシ基で置換されていてもよい。 X は酸素原子、窒素原子、硫黄原子または - C H = C H - 、R 3 は置換されていてもよいフェニルスルホニルアミノ基、 置換されていてもよいフェニルスルホニル基または置換されていてもよ

いフェニルスルホキシド基、nは2から6の整数を示す。Aは-O-B-、-B-O-、-S-B-、-B-S-または-B-で示され、BはC₁₋₅のアルキレン基またはC₂₋₅のアルケニレン基を示す。ただし、R1がC₁₋₅のアルキル基、C₃₋₆のシクロアルキル基またはフェニル基であり、R2が水素原子、Aがビニレン基、Xが硫黄原子である場合は除く。)で示されるペンジルアミン誘導体またはその塩、一般式(I-I-a)

R1 N CHO

式 で示される縮合環を形成していてもよく、この縮合環は、置換されていてもよい C_{1-s} のアルキル基、アミノ基、シアノ基、ニトロ基、水酸基、ハロゲン原子または C_{1-s} のアルコキシ基で置換されていてもよく、A'は一B'-O-または一B'-で示され、B'は C_{1-s} のアルキレン基を示す。)で示されるベンズアルデヒド誘導体またはその塩、一般式(IV)

で示される縮合環を形成していてもよく、これらの縮合環は、置換されていてもよいCi-。のアルキル基、アミノ基、シアノ基、ニトロ基、水酸基、ハロゲン原子またはCi-。のアルコキン基で置換されていてもよく、Xは酸素原子、窒素原子、硫黄原子または-CH=CH-を示す。)で示されるベンゾニトリル誘導体またはその塩および一般式(V)

 $H_2N - (CH_2)_n - R_3$

(式中nは2から6の整数、R3は置換されていてもよいフェニルスルホニルアミノ基、置換されていてもよいフェニルスルホニル基または置換されていてもよいフェニルスルホキシド基を示す。)で示されるアミン誘導体またはその塩を提供する。並びに一般式(I)で示される2ースルファモイル安息香酸誘導体、その塩、その水和物またはその溶媒和物を有効成分として含有する医薬、抗アレルギー剤およびロイコトリエンおよびトロンボキサンA2両拮抗剤を提供する。

15 上記一般式(!)、(!!)、(!!!a)、(!V)および(V)における「C₃-๑のシクロアルキル基」としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基などがあげられ、好ましくはシクロプロピル基、シクロブチル基である。

「Ci-sのアルキル基」としては、メチル基、エチル基、プロピル基、イソプロピル基、ローブチル基、イソブチル基、tertーブチル基、ローペンチル基、ローヘキシル基などの直鎖または分枝鎖状のアルキル基があげられ、好ましくはイソプロピル基、tertーブチル基である。

「置換されていてもよいアリール基」としては、炭化水素環アリール 25 基を意味し具体的にはフェニル基、ナフチル基などがあげられ、その置

20

25

換基としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子、メチル基、エチル基などのCi-sのアルキル基、メトキシ基、エトキシ基などのCi-sのアルコキシ基があげられ、好ましくはフッ素原子、塩素原子、臭素原子、メチル基、メトキシ基である。

「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ 素原子があげられる。

「C₁₋₅ のアルコキシ基」としては、メトキシ基、エトキシ基、 nープロポキシ基、 nープトキシ基、イソプトキシ基、 t e r t ープトキシ基、 nーペントキシ基があげられ、好ましくはメトキシ基、エトキシ基である。

「置換されていてもよいフェニルスルホニルアミノ基」、「置換されていてもよいフェニルスルホニル基」、「置換されていてもよいフェニルスルホキシド基」の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子、メチル基、エチル基などのCi-sのアルキル基、メトキシ基などのCi-sのアルコキシ基があげられ、好ましくはフッ素原子、塩素原子、メチル基、メトキシ基であり、置換位置としてはオルト位、メタ位、パラ位があげられ、好ましくはパラ位である。

「エステル残基」としては、C₁₋₆のアルキル基、ベンジル基、フェネチル基、1ーナフチル基などのエステル残基または生体内で代謝を受け加水分解されるエステル残基、例えば、アセチルオキシメチル基等の低級アルカノイルオキシ低級アルキル基、ビニルカルボニルオキシメチル基等の近級アルケノイル低級アルキル基、シクロプロピルカルボニルオキシメチル基等のシクロアルキルカルボニルオキシメチル基等の低級アルケノイルオキシ低級アルキル基、メトキシメチル基等の低級アルコキシ低級アルキル基、メトキシメチル基等の低級アルコキシ低級アルキル基、メトキシメトキ

シメチル基等の低級アルコキシ低級アルコキシ低級アルキル基、メトキシカルボニルオキシメチルメチル基等の低級アルコキシカルボニルオキシ低級アルキル基、ベンゾイルオキシメチル基等のベンゾイルオキシ低級アルキル基、2ーオキソー5ー低級アルキルー1、3ージオキソレンー4ーイルメチル基などがあげられる。ここにおいて「低級」とは炭素数1~6の直鎖または分枝鎖状の炭素鎖を意味する。

「С:-。のアルキレン基」としてはメチレン基、エチレン基、メチル メチレン基、トリメチレン基、プロピレン基、ジメチルメチレン基、テ トラメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン 基、3-メチルトリメチレン基、1-エチルエチレン基、2-エチルエ チレン基、2,2ージメチルエチレン、1,1ージメチルエチレン、エ チルメチルメチレン基、ペンタメチレン基、1-メチルテトラメチレン、 2-メチルテトラメチレン、3-メチルテトラメチレン基、4-メチル テトラメチレン基、1, 1ージメチルトリメチレン基、2, 2ージメチ ルトリメチレン基、3,3-ジメチルトリメチレン基、1,3-ジメチ ルトリメチレン基、2,3-ジメチルトリメチレン基、1,2-ジメチ ルトリメチレン、1, 1, 2-トリメチルエチレン基、ジェチルメチレ ン基、ヘキサメチレン基、1ーメチルペンタメチレン基、1.1-ジメ チルテトラメチレン基、2,2-ジメチルテトラメチレン基などの直鎖 20 または分枝鎖状のアルキレン基があげられ、好ましくはメチレン基、エ チレン基、プロピレン基、メチルメチレン基、ジメチルメチレン基であ る。

「C2-5 のアルケニレン基」としてはビニレン基、プロペニレン基、 25 プテニレン基などがあげられ、好ましくはビニレン基である。

一般式(|)、(||)、(|||a)、(|V)および(V)で示:

される本発明の化合物において1個またはそれ以上の不斉炭素が存在する場合には、そのラセミ体、ジアステレオ異性体および個々の光学異性体のいずれも本発明に包含されるものであり、また幾何異性体が存在する場合には(E)体、(Z)体およびその混合物のいずれも本発明に包含されるものである。

一般式(I)、(II)、(IIIa)、(IV)および(V)で示される本発明の化合物の塩としてはフッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩などのハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩、炭酸塩などの無機酸塩、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩などの低級アルキルスルホン酸塩、ベンゼンスルホン酸塩、ロートルエンスルホン酸塩などのアリールスルホン酸塩、マレイン酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩などのカルボン酸塩、グリシン塩、アラニン塩、グルタミン酸塩、アスパラギン酸塩などのアミノ酸塩、ナトリウム塩、カリウム塩などのアルカリ金属塩などがあげられる。溶媒和物としてはアセトン、2ープタノール、2ープロパノール、エタノール、酢酸エチル、テトラヒドロフラン、ジエチルエーテルなどとの溶媒和物があげられる。

一般式(I)、(III)、(IIIIa)、(IV)および(V)で示。

1.0

[製法A] 一般式(I) および(II) で示される本発明化合物の製法

5 (式中、R1、R2、X、R3、nおよびAは前記と同じであり、R4 aはエステル残基を示す。)

第一工程は一般式(| | | |) で示されるアルデヒドを一般式(V)で示されるアミンを用いて常法によって還元的アミノ化し一般式(| |) で示されるベンジルアミン誘導体を得る工程である。

15.

2.5

1 1

本工程は通常一般式(|||)で示されるアルデヒドと一般式(V) で示されるアミンから一般式(11)で示されるイミン中間体を系中 で生成させこれを適宜還元剤により還元することにより達成される。イ ミン中間体生成過程における反応溶媒は本反応を著しく阻害しなければ 特に限定されないがメタノール、エタノール、イソプロパノールまたは ベンゼン、トルエンなどが好ましく、反応温度は20℃~140℃が好 ましく、反応時間は1~24時間が好ましい。イミン中間体を還元する 過程における還元剤としてはイミノ基をアミノ基に還元する通常の還元 剤であれば特に限定されないが、たとえば水素化ホウ素ナトリウム、水 素化アルミニウムリチウムなどが好ましい。反応の各成分の使用量は一 般式(111)の化合物に対し一般式(V)の化合物を1~5当量用い るのが好ましく、還元剤は一般式(111)の化合物に対し1~5当量 用いるのが好ましい。反応溶媒は本反応を著しく阻害しなければ特に限 定されないがメタノール、エタノール、イソプロパノールなどが好まし い。反応温度は0℃~70℃が好ましく、反応時間は30分~12時間 が好ましい。

第二工程は、第一工程で得られたペンジルアミン誘導体(1-1)を2ークロロスルホニル安息香酸エステルで塩基存在下常法によりスルホンアミド化し一般式(1)のうちR4がエステル残基である2ースルファモイル安息香酸誘導体(1-a)を得る工程である。塩基は脂肪族アミン、芳香族アミンいずれも好ましく、例えばトリエチルアミン、ピリジンなどがあげられる。反応の各成分の使用量はベンジルアミン誘導体(1-1)に対し2ークロロスルホニル安息香酸エステルを1~3当量用いるのが好ましく、塩基はベンジルアミン誘導体(1-1)に対し1~5当量用いるのが好ましい。反応溶媒は本反応を著しく阻害しなければ特に限定されないが、クロロホルム、ジクロロメタン、1、2ージクロロエタン、れないが、クロロホルム、ジクロロメタン、1、2ージクロロエタン、

20

25

1, 1, 2, 2ーテトラクロロエタンなどが好ましい。反応温度は0℃~100℃が好ましく、反応時間は30分~12時間が好ましい。

第三工程は第二工程で得られた一般式(1a)で示される化合物を常法により加水分解することによりR4が水素原子である一般式(1b)に示される本発明化合物を得る工程である。この反応においては、塩基存在下加水分解する常法が適用できる。塩基としては金属水酸化物および炭酸金属塩などが好ましく、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、などがあげられ、反応の各成分の使用量はエステル化合物(1a)に対し塩基を1~50当量使用するのが好ましい。反応溶媒は本反応を著しく阻害しなければ特に限定されないが、水、メタノール、エタノール、テトラヒドロフランおよびそれらの混合溶媒が好ましい。反応温度は0℃~100℃が好ましく、反応時間は30分~24時間が好ましい。

本発明化合物(1a)は本発明化合物(1b)をエステル化することにより製造することもできる。本工程はチオニルクロライド、オキサリルクロライド、チオニルブロマイドなどのハロゲン化試薬を用い本発明化合物(1b)を酸ハライドに変換し塩基存在下または非存在下アルコールと反応させ製造することができる。酸ハライドを得る過程の反応溶媒は本反応を著しく阻害しない溶媒であれば特に限定されないが、ジクロロメタン、クロロホルム、1、2ージクロロエタン、1、1、2、2ーテトラクロロエタン、トルエンなどが好ましい。反応温度は0℃~100℃が好ましく、反応時間は1~12時間が好ましい。

エステル化の過程に用いる塩基は脂肪族アミン、芳香族アミンいずれ も好ましく、例えばトリエチルアミン、ピリジンなどがあげられる。反 応の各成分の使用量は酸ハライドに対しアルコールを1~10当量用い るのが好ましい。塩基は酸ハライドに対し1~5当量使用するのが好ま

15

しい。反応溶媒としては本反応を著しく阻害しない溶媒であれば特に限定されないがジクロロメタン、クロロホルム、1,2ージクロロエタン、1,1,2,2ーテトラクロロエタン、トルエンまたはエステル化に用いるアルコールを溶媒に用いることができる。反応温度は0℃~80℃が好ましく、反応時間は30分~12時間が好ましい。

また、本発明化合物(1a)は本発明化合物(1b)とジシクロヘキシルカルボジイミド、1ーエチルー3ー(3″ージメチルアミノプロピル)カルボジイミド、1, 1′ーカルボニルジイミダゾールなどのの給 育しいないができる。 により製造することにより製造することをある。 におりままして、 反応 発明化合物(1b)に対し1~2当量用いるのが好ましく、 反応 存成できましく 阻害しなければ特に限定されないが N, ハージメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、オキサン、ジクロロメタン、クロロホルム、1, 2ージクロロエタンなオキサン、ジクロロメタン、クロロホルム、1, 2ージクロロエタンなが好ましい。 反応温度は〇℃~70℃が好ましく、 反応時間は1~48時間が好ましい。 反応溶媒の種類によってはあらかじめ当量以上のNーヒドロキシスクシイミドやNーヒドロギシベンゾトリアゾールなどを加えることにより反応を円滑に進行させることができる。

〔製法 B〕 一般式(I I I) において X が硫黄原子、 A が − C H₂ O · −である化合物(I I I b)の製法 S

(式中、R1、R2は前記と同じであるが縮合環を形成せず、Halは 臭素原子または塩素原子を示す。)

はじめに式(a)で示される化合物と化合物(b)を塩基存在下反応 させ化合物(c)を得る。反応に使用する塩基としては炭酸カリウム、 炭酸ナトリウムなどの炭酸金属塩や水素化ナトリウム、水素化カリウム などの金属水素化物などが好ましい。反応溶媒としては本反応を著しく 阻害しなければ特に限定されないがN、N-ジメチルホルムアミド、ジ メチルスルホキシド、アセトンなどがあげられ、反応温度は0℃~10 ○℃が好ましく、反応時間は30分~8時間が好ましい。次に得られた 化合物(c)とジチオリン酸O、Oージエチル(d)と反応させ化合物 (e)を得る。反応に使用するジチオリン酸O, O-ジェチルは化合物 (c) に対し1~5当量用いるのが好ましい。反応溶媒としては本反応 を著しく阻害しなければ特に限定されないが水または有機溶媒/水の混 合溶媒系が好ましく、用いる有機溶媒としてはジメトキシエタン、テト ラヒドロフラン、アセトンなどが好ましい。反応温度としては25℃~ 100℃が好ましく、反応時間としては30分~8時間が好ましい。得 られた化合物(e)と式(f)で示されるプロモケトンと反応させ一般 式(111b)で示される化合物を得ることができる。反応に使用する 各成分の使用量は化合物(e)に対し式(f)で示されるプロモケトン を1~2当量用いるのが好ましい。反応溶媒としては本反応を著しく阻 害しなければ特に限定されないが、メタノール、エタノール、イソプロ パノールなどの低級アルコール類があげられ、反応温度は25℃~10 ○℃が好ましく、反応時間は30分~24時間が好ましい。

〔製法 C 〕 一般式 (I I I) においてAが − C H₂ O − である化合物(I I I c) の製法

WO 98/57935

1.5

(式中、R1、R2、XおよびHalは前記と同じである。)

式(g)で示される化合物と化合物(b)を塩基存在下アルキル化することにより一般式(1-1-c)で示される化合物を得ることができる。 反応に使用する塩基としては炭酸カリウム、炭酸ナトリウムなどの炭酸金属塩や水素化ナトリウム水素化カリウムなどの金属水酸化物などが好ましく、使用する塩基の量は化合物(b)に対し1~10当量用いるのが好ましい。 反応溶媒としては本反応を著しく阻害しなければ特に限定されないがN, N-ジメチルホルムアミド、ジメチルスルホキシド、アセトンなどがあげられ、反応温度は30℃~100℃が好ましく、反応時間は30分~8時間が好ましい。

〔製法 D〕一般式 (I I I) において A がエチレン基である化合物 (I I I d) および一般式 (I V) で示される本発明化合物の製法

10

15

(1114)

(式中、R1、R2、XおよびHalは前記と同じである。)

PCT/JP98/02585

20

式(h)で示される化合物と化合物(i)を塩基存在下反応させ一般 式(IV)で示される化合物を得る。使用する塩基としてはnープチル リチウム、tertーブチルリチウム、リチウムジイソプロピルアミド、 カリウムtert-ブトキシドなどのアルキル金属塩が好ましい。使用 する塩基の量は式(h)の化合物に対し1~5当量が好ましい。反応溶 媒としては本反応を著しく阻害する溶媒でなければ特に限定されないが、 テトラヒドロフラン、ジェチルエーテル、トルエンなどが好ましい。反 応温度は−100℃~50℃が好ましく、反応時間は30分~12時間 が好ましい。次に得られた一般式(IV)で示される化合物のニトリル 基を還元剤を用いアルデヒド基に還元し一般式(111d)で示される 化合物を得ることができる。還元剤としてはニトリル基をアルデヒド基 に変換できる還元剤なら特に限定されないが金属水素化物が好ましく、 水素化ジイソプロピルアルミニウムが特に好ましく、一般式(1V)の 化合物に対し1~2当量用いるのが好ましい。反応溶媒は本反応を著し く阻害する溶媒でなければとくに限定されないがテトラヒドロフラン、 ジエチルエーテル、トルエンなどがあげられ、反応温度は−100℃~ 50℃が好ましく、反応時間は30分~12時間が好ましい。

〔製法E〕一般式(III)においてAがエチレン基である化合物 (IIId)の製法

(式中、R1、R2およびXは前記と同じである。)

一般式(| | | e) で示される化合物を触媒存在下接触水素添加反応 を行い一般式(| | | d) の化合物を得ることができる。水素添加反応 に用いる触媒としては5%パラジウム炭素、10%パラジウム炭素、30%パラジウム炭素、酸化白金、ウイルキンソン触媒などが好ましい。使用する触媒量としては化合物(111e)の重量の1/10~等量使用するのが好ましく、用いる水素圧は1~5気圧が好ましい。反応溶媒としては本反応を著しく阻害しなければ特に限定されないが、メタノール、エタノール、酢酸エチル、テトラヒドロフランなどが好ましい。反応温度は25℃~70℃が好ましく、反応時間は1~72時間が好ましい。

[製法F] 一般式(V)においてR3が置換されていてもよいフェニ 10. ルスルホニル基である化合物(Va)の製法

(式中、nおよびHalは前記と同じであり、Pは保護基を示し、Zは 水素原子、ハロゲン原子、Cι-。のアルキル基またはCι-。のアルコキン基を示す。)

式(k)で示されるアミノアルコール化合物のアミノ基を保護し一般式(l)の化合物を得る。アミノ基の保護はフタルイミド基、tertーブトキシカルボニル基、ベンジルオキシカルボニル基などの保護基を

WO 98/57935

2.0

常法に従い利用することができる。得られた式(1)の化合物の水酸基をハロゲン原子に変換し式(m)の化合物を得る。ハロゲン化は三臭化リン、四臭化炭素/トリフェニルホスフィンなどによるブロム化またはチオニルクロライド、五塩化リンなどによるクロル化などの常法を利用することができる。得られた式(m)の化合物を得る。置換反応は炭酸カリウムまたは水素化ナトリウムなどの塩基を利用し反応させることができる。得られた式(o)の化合物を酸化し式(p)で示される化合物を得る。得られた式(o)の化合物を酸化し式(p)で示される化合物を得る。酸化反応はメタクロロ過安息香酸などの酸化剤を利用することができる。脱保護はそれぞれの保護基に応じて常法を使用し脱保護することができる。

〔製法G〕一般式(V)においてR3が置換されていてもよいフェニルスルホニルアミノ基である化合物(Vb)の製法

15
$$H_{2}N - (CH_{2})n - NH_{2}$$

$$Z \longrightarrow S CI$$

$$(Vb)$$

$$A D = NH_{2}N - (CH_{2})n - NH_{2}$$

$$Q = S - Q$$

(式中、 n および Z は前記と同じである。)

式(q)で示されるジアミン化合物と式(r)で示されるフェニルスルホニルクロライドと反応させ一般式(V b)の化合物を製造することができる。反応の各成分の使用量は式(r)の化合物に対しジアミン化合物(q)を1~20当量用いるのが好ましい。反応溶媒としては特に限定されないがクロロホルム、1,2~ジクロロエタン、ジクロロメタン、1,1、2,2~テトラクロロエタンなどがあげられ、反応温度としては0°~50°が好ましく、反応時間は1~8時間が好ましい。

25

上記の製法で製造される本発明化合物および中間体は遊離化合物、その塩、その水和物もしくはエタノール和物などの各種溶媒和物または結晶多形の物質として単離精製される。本発明化合物の製薬学的に許容される塩は常法の造塩反応により製造することができる。単離精製は抽出分別、結晶化、各種分画クロマトグラフィー等の化学操作を適用して行われる。また光学異性体は適当な原料化合物を選択することによりまたはラセミ化合物のラセミ分割法により立体化学的に純粋な異性体に導くことができる。

このようにして得られる一般式(1)の2-スルファモイル安息香酸誘導体はLTD4受容体拮抗作用とTXA2受容体拮抗作用をあわせ持つため、優れた抗アレルギー作用を有しており、アレルギー性の気管支喘息、鼻炎および結膜炎、アトピー性皮膚炎、胃腸炎、大腸炎、春季カタル、腎炎などの各種アレルギー性疾患の予防および治療剤として優れた効果を示す。また、ロイコトリエン類およびTXA2が関与する疾患の予防および治療剤としても有用であり、例えば虚血性心・脳疾患、血栓症、狭心症、炎症消化性潰瘍、肝疾患の予防および治療に広く適用することができる。

本発明の2-スルファモイル安息香酸誘導体はそれ自体単独あるいは 公知の製剤方法を利用して各種の剤型にして用いることができる。たと えば錠剤、カプセル剤、顆粒剤、細粒剤、散剤、液剤、シロップ剤など の経口剤や、注射剤、点鼻剤、点眼剤、点滴剤、軟膏剤、坐剤、吸入剤、 経皮吸収剤、貼付剤などの非経口剤に用いることができる。

本発明の医薬のヒトへの投与量は患者の症状、年齢、体重、治療効果、 投与方法、投与期間により異なるが、通常経口投与の場合、成人1日当 り、O. 1mg~10gの範囲で投与するのが好適である。

発明を実施するための最良の形態

[実施例]

以下に実施例をあげて本発明の化合物および製造法をさらに詳しく説明するが本発明はかかる実施例のみに限定されるものではない。なお、「H-NMRスペクトルはテトラメチルシラン(TMS)を内部標準として使用し、JNM-EX270型スペクトルメーター(270MHz、日本電子(株)製)で測定し、δ値はppmで示した。DI-EIマススペクトルはQP1000EX型スペクトルメーター((株)島津製作所製)で測定した。FABマススペクトルはJMN-HX110A型高分解能質量分析装置(日本電子(株)製)で測定した。

〔実施例1〕

3-[(4-イソプロピルー2ーチアゾリル)メトキシ]ベンズアルデヒドの製造

m-ハイドロキシベンズアルデヒド5 Og (O. 41 mol) とプロモアセトニトリル4 9g (O. 41 mol)をN, N-ジメチルホルムアミド3 OOmlに溶解し炭酸カリウム85g (O. 62 mol)とヨウ化ナトリウム6. Og (O. O4 mol)を加え室温で1. 5時間攪拌した。溶媒を減圧下留去し水と酢酸エチルを加え、抽出した。酢酸エチル層を飽和食塩水で洗浄し硫酸マグネシウムで乾燥し、溶媒を減圧下20 溶媒を留去し、残さをシリカゲルカラムクロマトグラフィー(溶出液;クロロホルム)で精製すると3-シアノメトキシベンズアルデヒド58gを収率88%で得た。

'H-NMR(CDCl₃): 4.86(2H,s) 7.25-7.30(1H,m) 7.44-7.64(3H,m) 10.0 1(1H,s)

次いで、3-シアノメトキシベンズアルデヒド50g(0.31mo)1) を 1, 2-ジメトキシエタン500m 1 に溶解し水5.6m 1 1

31mol)とジチオリン酸O, Oージェチル52ml(O.31mol)を加え70℃で3時間攪拌した。減圧下溶媒を留去し、残さをエーテルで洗浄しろ取すると3ー(チオカルバモイルメトキシ)ベンズアルデヒド31gを収率51%で得た。

Mass(m/z): 195(M+) 160 121

'H-NMR(CDCl₃): 4.94(2H,s) 7.20-7.29(1H,m) 7.44-7.58(3H,m) 7.97 (2H,br) 9.99(1H,s)

次いで、メチルイソプロピルケトン32.9g(Q.38mol)をメタノール291mlに溶解し25%HBr-AcOH2.9mlを氷冷下加え臭素18.7ml(O.36mol)を氷冷下滴下し、2時間攪拌した。水を加え室温で30分攪拌し、3-(チオカルバモイルメトキシ)ベンズアルデヒドを加え室温で5.5時間攪拌した。水と飽和炭酸水素ナトリウムを加えpH8.Oとし酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥し減圧下溶媒を留去し残さをシリカゲルカラムクロマトグラフィー(溶出液;nーへキサン:酢酸エチル=20:1)で精製し標記化合物64.3gを収率68%で得た。

'H-NMR(CDCl₃): 1.33(6H,d,J=6.9Hz) 3.12(1H,) 5.40(2H,s) 6.92(1H,d,J=0.99Hz) 7.26-7.31(1H,m) 7.47-7.54(3H,m) 9.98(1H,s)

20 実施例1と同様にして実施例2、実施例3に示す化合物を合成した。 [実施例2]

3-[(4-シクロプチルー2-チアゾリル)メトキシ] ベンズアルデヒド

Mass(m/z): 273(M+) 254 152

25 H-NMR(CDCl₃): 1.90-2.10(2H,m) 2.20-2.43(4H,m) 3.68(1H,quint) 5.40(2H,s) 6.94(1H,s) 7.26-7.30(1H,m) 7.47-7.54(3H,m) 9.98(1H,s)

〔実施例3〕

3-[(4-シクロプロピル-2-チアゾリル)メトキシ]ベンズアル デヒド

 $^{1}H-NMR(CDCI_{3}): 0.86-1.00(4H,m) 2.06(1H,m) 5.35(2H,s) 6.87(1H,s)$ 7.24-7.31(1Hm) 7.44-7.53(3H,m)9.98(1H,s)

〔実施例4〕

3-[2-(4-シクロプチル-2-チアゾリル) エチル] ベンゾニト リルの製造

4-シクロプチルー2-メチルチアゾール766mg (5mmol) を無水テトラヒドロフラン15mlに溶解し、カリウムtertーブト 10 キシド561mg(5mmol)を加え、-78℃でn-ブチルリチウ ム (1.68Mヘキサン溶液) 3ml (5mmol)を滴下した。同温 下3時間攪拌した後、3ープロモメチルベンゾニトリル1270mg (6 mmol)を無水テトラヒドロプラン3 mlに溶解して滴下し、さ らに1時間40分攪拌した。飽和塩化アンモニウム水を加えてジエチル エーテルで2回抽出し、有機層を飽和食塩水で洗浄し無水硫酸マグネシ ウムで乾燥後、溶媒を減圧下留去した。残さをシリカゲルカラムクロマ トグラフィー(溶出液; n-ヘキサン:酢酸エチル=4:1)で精製し、 標記化合物を黄色油状物として876mg、収率64%で得た。

Mass(m/z): 268(M+) 20

15

25

H-NMR(CDCl₃): 1.84-2.11(2H,m) 2.15-2.42(4H,m) 3.11-3.19(2H,m) 3.25-3.52(2H,m) 3.57-3.70(1H,m) 6.75(1H,s) 7.35-7.52(4H,m) [実施例5]

3-[2-(4-シクロブチル-2-チアゾリル)エチル]ベンズアル デヒドの製造

3-[2-(4-シクロプチルー2-チアゾリル)エチル] ベンゾニ

2.3

トリル875mg(3.3mmol)をトルエン20mlに溶解し、一78℃で1.01M水素化ジイソブチルアルミニウム(トルエン溶液)3.6ml(3.60mmol)を滴下した後、室温まで昇温し2時間 攪拌した。飽和塩化アンモニウム水ついで2N塩酸を加えて1時間攪拌した後、有機層を飽和炭酸水素ナトリウム水ついで飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残さをシリカゲルカラムクロマトグラフィー(溶出液;nーヘキサン:酢酸エチル=4:1)で精製し、標記化合物を無色油状物として792mg収率89%で得た。

Mass(m/z): 271(M+) 242

H-NMR(CDCl₃):1.84-2.42(6H,m) 3.20(2H,m) 3.32(2H,m) 3.64(1H,q. uint) 6.74(1H,d J=0.66Hz) 7.47(2H,m) 7.73(2H,m) 9.99(1H,s) [実施例6]

3-[2-(2-キノリル)エチル]ベンズアルデヒド]の製造
3-[2-(2-キノリル)エテニル]ベンズアルデヒド5.5g
(21.2mmol)を500mlに溶解し10%パラジウム炭素1.
1gを加え常圧で水素添加反応を行い、室温で10時間攪拌した。10%パラジウム炭素をセライトろ過し、ろ液を減圧下留去して残さをシリカゲルカラムクロマトグラフィー(溶出液;n-ヘキサン:酢酸エチル = 9:1)で精製し標記化合物2.8g(10.7mmol)を収率51%で得た。

Mass(m/z): 261(M+) 156

'H-NMR(CDCl₃): 7.46-7.60(3H.m) 7.65-7.91(6H.m) 8.05-8.17(3H.m) 10.07(1H.s)

25 [実施例7]

5-(4-クロロフェニルスルホニル)ペンタナミンの製造

5-アミノー1-ペンタノール10g(96.9mmo)をトルエン300mlに溶解し無水フタル酸17.2g(116mmol)を加え120℃で24時間還流した。減圧下溶媒を留去し残さをシリカゲルクロマトグラフィー(溶出液;クロロホルム)で精製し5-フタルイミドー1-ペンタノール16.6gを収率74%で得た。

Maas(m/z): 233(M+) 203 160

'H-NMR(CDCl₃): 1.37-1.48(2H,m) 1.58-1.78(4H,m) 3.62-3.73(4H,m) 7.68-7.74(2H,m) 7.81-7.87(2H,m)

次いで、5-フタルイミド-1-ペンタノール16.2gをジェチルエーテル350mlに溶解し三臭化リン4.3mlを0℃下滴下し、室温で9時間攪拌した。飽和炭酸水素ナトリウムで中和し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し減圧下溶媒を留去し残さをシリカゲルカラムクロマトグラフィー(溶出液;n-ヘキサン:酢酸エチル=9:1)で精製し1-プロモ-5-フタルイミドペンタン9.2gを収率45%で得た。

Mass(m/z): 296(M+) 216 160

20

「H-NMR(CDCl₃): 1.44-1.55(2H,m) 1.63-1.77(2H,m) 1.86-2.00(2H,m) 3.37-3.42(2H,m) 3.67-3.73(2H,m) 7.68-7.75(2H,m) 7.81-7.88(2H,m) 次いで、1ープロモー5ーフタルイミドペンタン9. 2g(31mm o l)をN, Nージメチルホルムアミド100mlに溶解し炭酸カリウム8.6g(62mmol)ヨウ化ナトリウム465mg(3.1mm o l)、4ークロロチオフェノール4.5g(31mmol)を加え室温で15時間攪拌した。溶媒を減圧下留去して水と酢酸エチルを加え抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去し残さをヘキサンで洗浄し1ー(4ークロロフェニルチオ)-5-フタルイミドペンタン9.6gを収率86%で得

た。

Mass(m/z): 359(M+) 216 160

'H-NMR(CDCI₃): 1.47-1.51(2H,m) 1.64-1.72(4H,m) 2.88(2H,t J=7.2 6Hz) 3.68(2H,t J=7.26Hz) 7.23(4H,s) 7.71-7.23(2H,m) 7.82-7.86(2H,m)

次いで、1-(4-クロロフェニルチオ)-5-フタルイミドペンタン9.4g(26.1mmol)を1,2-ジクロロエタン350mlに溶解しメタクロロ過安息香酸9.9g(57.4mmol)を加え室温で18時間攪拌した。5%チオ硫酸ナトリウム、3%炭酸水素ナトリウム、飽和食塩水で洗浄し、無水硫酸マグネシウム乾燥し、溶媒を減圧下留去し1-(4-クロロフェニルスルホニル)-5-フタルイミドペンタン9.7gを収率95%で得た。

Mass(m/z): 391(M+) 216 160

H-NMR(CDCl₃): 1.37-1.48(2H,m) 1.61-1.81(4H,m) 3.05-3.11(2H,m) 3.62-3.93(3H,m) 7.52-7.57(2H,m) 7.69-7.75(2H,m) 7.80-7.86(2H,m) 次いで、1-(4-クロロフェニルスルホニル) - 5-スタルイミドペンタン4. Og(10.2mmol)を120mlジクロロメタンと20mlエタノールに溶解し80%抱水ヒドラジン6mlを加え室温で36時間攪拌した。不溶物をろ過して除きろ液を減圧下留去して標記化合物3.2gを得た。

〔実施例8〕

15

20

4-(4-クロロフェニルスルホニルアミノ) ブタナミンの製造
1,4-ジアミノブタン26.4g(O.3mol)を100ml1,
2-ジクロロエタンに溶解し、4-クロロフェニルスルホニルクロライド6.3g(O.03mol)を加え室温で4時間攪拌した。クロロホルムを加え、セライトろ過して、ろ液を3回水洗し、つづけて飽和食塩

水で洗浄し、無水硫酸マグネシウムで乾燥して溶媒を減圧下留去し標記 化合物5、1gを収率65%で得た。

[実施例9]

N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル] -3-[(4-イソプロピル-2-チアゾリル) メトキシ] ベンジルアミン (化合物番号1a) の製造

3-[(4-イソプロピルー2ーチアゾリル)メトキシ]ベンズアルデヒド2.27g(8.69mmol)と4ー(4ークロロフェニルスルホニルアミノ)ブタナミン2.27g(8.69mmol)をエタノール150mlに溶解し、モレキュラーシーブス3A4.0gを加え16時間透流した。モレキュラーシーブス3Aをろ別してろ液に水素化ホウ素ナトリウム873mgを加え室温で3時間攪拌した。エタノールを減圧下溶媒を留去し、水と酢酸エチルを加え酢酸エチルで抽出。酢酸エチル層を飽和食塩水で洗浄し硫酸マグネシウムで乾燥し減圧下溶媒を留去した。残さをシリカゲルカラムクロマトグラフィー(溶出液;クロロホルムからクロロホルム:メタノール=98:2)で精製しNー[4ー(4ークロベンゼンスルホニルアミノ)ブチル]ー3ー[(4ーイソプロピルー2ーチアゾリル)メトキシ]ベンジルアミン(化合物番号1a)を得た。

20 同様にして化合物番号2aから90aを合成した。マススペクトルデータを表1に示した。

表 1

Y.					
化合物 番 号	R2 X	A	R 3	n	F A B - M S (m/z)
1a	J _N S	— Сн₂О—	SO₂NH — CI	4	508 (M ⁺) 315 246
2.a	I S	— сн ₋ о—	\$0 ₂ NH − F	4	504 (M ⁺) 330 258
3 а	D _N	— СН ₇ О—	SO _z NiH —	. 1	566 (M ⁺) 331 258
4 a	S S	— сн ₂ о—	SO _Z NH — OCH ₃	4	516 (M ⁺) 330 258
5 a	S, N	— СН ₂ О—	SO ₂ NH -	4	500 (M ⁺) 330 258
6 a	S N N N N N N N N N N N N N N N N N N N	— Сн₂О—	SO _z NH −	4	486 (M ⁺) 330 258
7 a	U N N	— СН ₇ О—	SO₂NH — Ci	3	506 (M ⁺) 316 258

	<u> </u>			1.5	
8a	T _N	— СН ₇ О—	SO ₂ NH −	2	492(M ⁺) 302 258
9 a	S'N	— CH ₂ O—	SO₂NH — Br	2	536 (M ⁺) 301 258
10a	N S	— сн ₂ о—	SO ₂ NH	2	476 (M ⁺) 302 258
lla	N S	— СН ₂ О—	SO ₂ NH −	2	458 (M ⁺) 302 258
12a	D Z Z	— СН ₂ О—	SO ₂ NH −	5	534 (M ⁺) 344 258
13a	S S	— Сн ₂ О—	SO ₂ NH —	.4	520 (M ⁺) 329 258
14a	TN S	— CII ₂ O—	SO ₂ NH —	4	492(M ⁺) 318 246
15a	N S	— СН ₂ О—	SO₂NH — Br	4	552(M ⁺) 317 246
16a	J'N S'X	— СН ₂ О—	SO ₂ NH −	4	504 (M ⁺) 319 246
17a	J.N.	- CII ₂ O	SO ₂ NH −	- 1 :-	488 (M ⁺) 318 246
18a	N S	— Си ₂ о—	SO ₂ NH —	1	474 (M*) 318 246

	M. & M.				4
19a		— Сн ₂ О—	SO₂NH —	4	542 (M ⁺) 352 280
20 a	N S	— CH ₂ O—	SO ₂ NH —	4	506 (M ⁺) 316 244
21a	Z N	— сн ₂ о—	SO ₂ NH —	4	490 (M ⁺) 316 244
22a	A N	— Сн₂О—	SO ₂ NH — Br	4	552 (M ⁺) 317 244
23a	N S	— Сн₁о—	SO₂NH —	4	47.2 (M ⁺): 316. 244
24a	N N S	— СH ₂ О—	SO₂NH — CH₃	4	486 (M ⁺): 316 244
25 a	A N	CH ₂ O	SO ₂ NH -	4	502(M ⁺) 316 244
26a	A N	— СН₂О—	SO ₂ NH —	3	492 (M ⁺) 302 244
27 a	A No.	— СН ₁ О—	SO₂NH —	2	478 (M ⁺) 288 244
28a	A N	— Сн ₇ О—	SO₂NH —	2	462 (M ⁺) 288 244
29 a	S S	— CH₂CH₂ —	SO₂NH − C1	4	518 (M ⁺) 328 256

				-	
30 a	S. Y.	— СН₂СН₂ —	SQ₂NH — Br	4	562 (M ⁺) 327 256
31a	□ N N N N N N N N N N N N N N N N N N N	— СН ₂ СН ₂ —	SO _Z NH −	4	485 (M ⁺) 329 256
32a	S, S	— ЄН ₂ СН ₂ —	SO ₂ NH —	4.	499 (M ⁺) 329 256
33a	√ _S N	— СН₂СН₂ —	SO ₂ NH —	4-	490 (M ⁺) 316 244
34a	J,N	— GH ₂ CH ₂ —	SO ₂ NH −	4	487 (M ⁺) 317 244
35a	€ C	H H	SO₂NH —	4	490 (M ⁺) 316 244
36a	\bigcirc	H H	SO ₂ NH — Br	4	550(M ⁺) 315 244
37a	\mathcal{L}_{N}	н	SO₂NH — OCH₃	4 1	502(M ⁺) 316 244
38 a		н — Н	SO ₂ NH —	4	486 (M ⁺) 316 244
39a		HH	SO ₂ NH —	4	472(M ⁺) 316 244
40a		H H	SO₂NH —	3	492(M ⁺) 302 244

41a		H/	SO ₂ NH — CI	2	479 (M+) 289 244
42a		н /	SO ₂ NH —	2	524 (M ⁺) 289 278
43a		H —	SO₂NH —	2	462 (M*) 288 244
44a	(In)	н /	SO ₂ NH −	2	444 (M ⁺) 288 244
45a	CILLI	H (SO _Z NH —	4	540 (M*) 350 278
46a	CI N	н	SO ₂ NH —	4.	519(M ⁺) 345 278
47a	CI	H = (SO₂NH — Br	4	586(M ⁺) 351 278
48a	CI (IN)	H H	SO ₂ NH —	4	536 (M ⁺) 350 278
49a	CI N	н — (SO _Z NH — CH ₃	4	520 (M ⁺) 350 278
50 a	CI (IN)	H —	SO ₂ NH —	4	506 (M ⁺) 350 278
5la	CI N	H +	SO _z NH −	3	526 (M ⁺) 336 278

				0.7	
52a	CICIN	H H	SO₂NH −	2	512(M*) 322 278
53a		— Сн₂О—	SO ₂ NH —	4	494 (M*) 320 248
54a	C(N)	— сн₂о—	SO ₂ NH —	4	555 (M ⁺) 322 - 248
55a		— Сн₂о—	SO _Z NH — OCH ₃	d	506 (M ⁺) 320 248
56a	O(n)	— сн₂о—	SO ₂ NH —	4	490 (M ⁺) 320 248
57a	(In)	— Сн₂О—	SO ₂ NH —	4	476 (M ⁺) 320. 248
58a	(I)	— сн _т о—	SO ₂ NH —	3	490 (M ⁺) 300 248
59a	(I)	— Сн₂О—	SO ₂ NH —	2	482(M ⁺) 292 248
60a		— сн ₂ о—	SO ₂ NH —	2	466 (M ⁺) 292 248
61a		— сн ₂ о—	SO ₂ NH —	2	526 (M ⁺) 291 248
62a		— СН ₂ О—	SO ₂ NH —	2	449(M ⁺) 293 248

					
63a	On.	— Сн₂О—	SO₂NH —	.5	537 (M ⁺) 347 248
64â	CI	— СН ₂ О—	SO₂NH —	2	516 (M ⁺). 326 282
65a	CILLY	— Сн₁о—	SO₂NH — CI	4	546 (M ⁺) 356 282
66a		— СН ₂ СН ₂ —	SO ₂ NH —	4	508 (M ⁺) 318 246
67a		— СН ₂ СН ₂ —	SO₂NH —	4	492 (M ⁺) 318 246
68a		— СН ₂ СН ₂ —	SO ₂ NH — CH ₃	4	488 (M ⁺) 318 246
69a		— СН ₂ СН ₂ —	SO ₂ NH —	4	504 (M ⁺) 318 246
70 a		— СН ₂ СН ₂ —	SO₂NH — Br	4	554 (M ⁺) 319 246
71a		— сн ₂ сн ₂ —	SO _Z NH — Cl	2	480 (M ⁺) 290 246
72a		— СН ₂ СН ₂ —	SO ₂ NH — GI	3	494 (M ⁺) 304 246
73 a	On.	— СН ₂ СН ₂ —	SO ₂ NH —	5	522(M ⁺) 332 246

		1 1		-	
74a	CI	— СН ₂ СН ₂ —	SO ₂ NH —	4	542(M ⁺) 352 280
75a	CI N	— СН ₂ СН ₂ —	SO ₂ NH —	4	526 (M ⁺) 352 280
76 a	CI	— СН ₂ СН ₂ —	SO₂NH — CH₃	4	522 (M*) 352 280
77a	CI	— СН ₂ СН ₂ —	SO ₂ NH OCH ₃	4	538 (M ⁺) 353 280
78 a	CI	— СН ₂ СН ₂ —	SO _z NH −	4	588 (M ⁺) 353 280
79a	CI (IN)	— СН₂СН₂ —	SO ₂ NH — CI	2	515(M ⁺) 325 280
80a	CI	— СН ₂ СН ₂ —	SO _Z NH —	3	528 (M+) 338 280
81a	O N S	—.ĆH₂O—	SO ₂ -	5	519 (M ⁺) 344 256
82a	S N N N	— Сн ₂ О—	SO ₂ -	5	505(M ⁺) 330 244
83a	J _N ,	— СН ₂ О—	SO ₂ -	5	507 (M ⁺) - 332 246
84a		H H	SO ₂ -	5	505(M ^T) 330 244

	* -				
85a	CILINI	н >={	SO ₂ —	5	539 (M ⁺) 364 278
86a	CICINI	— CH ₂ CH ₂ —	SO _z -	5	507 (M ⁺) 332 280
87a	CI NI	— СН ₂ СН ₂ —	SO ₂ −	5	541 (M ⁺) 366 280
88a		— сн ₂ о—	SO ₂ –	5	509 (M ⁺) 334 248
89a		— СН₂О—	SO₂NH —	4	510 (M ⁺)-
90 a		н	SO ₂ NH —	4	506 (M ⁺) 315

[実施例10]

[2-{N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル] -N-{3-[(4-イソプロピルー2-チアゾリル) メトキシ] ベンジル} スルファモイル安息香酸メチルエステル(化合物番号1b) の製造

実施例9の生成物(化合物1a)3.5g(6.89mmol)を1,2-ジクロロエタン150mlに溶解し、トリエチルアミン1.4ml(10.34mmol)、2-クロロスルホニル安息香酸メチルエステル1.9g(8.27mmol)を加え室温で4時間攪拌した。1,2-ジクロロエタンを減圧下留去し、水と酢酸エチルを加え、酢酸エチルを飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧下溶媒を

留去した。残さをシリカゲルクロマトグラフィー(溶出液;クロロホルム)で精製して2-(N-[4-(4-クロロベンゼンスルホニルアミノ)ブチル]-N-(3-[(4-イソプロピル-2-チアゾリル)メトキシ]ベンジル}}スルファモイル安息香酸メチルエステル(化合物番号1b)3.5g(4.95mmol)を収率72%で得た。

同様にして化合物番号2bから90bを合成した。マススペクトルデータを表2に示した。

3.7

表 2

化合物 番 号	R1 R2 X	A	R 3	n	FAB-MS (m/z)
1 b	N N N N N N N N N N N N N N N N N N N	— СН ₂ О—	SO ₂ NH —	4	706 (M ⁺) 506
2b		— CH ₇ O—	SO ₂ NH —	4	702 (M*)
3b	J'N S'	— СН ₂ О—	SO ₂ NH — Br	4,	764 (M ⁺) 564
40	D N S	—сн _• о−	SO ₂ NH -	4	714 (M*) 514
5 b	N S	— СН ₂ О—	SO ₂ NH -	4	698 (M*) 498
66		— СН ₂ О—	SO₂NH -	1	684 (M ⁺) 484
7ъ	O N N N N N N N N N N N N N N N N N N N	— Сн₂О—	SO ₂ NH CI	3	704 (M ⁺) 504

·				(
8 b	N S	— СH ₂ O—	SO _z NH —	2	690 (M ⁺) 490
9 b	N S	— СН ₂ О	SO ₂ NH —	2.	734 (M ⁺). 534
106	N S	— СН ₂ О—	SO₂NH —	2	674 (M*) 474
11b	N S	— СН ₂ О—	SO ₂ NH —	2	656(M*) 456
126	N S	— CH ₂ O—	SO₂NH — CI	5	732 (M ⁺) 532
136	D N N N N N N N N N N N N N N N N N N N	— СН₂О—	SO ₂ NH —	4	718 (M ⁺) 518
14b	N N N N N N N N N N N N N N N N N N N	— СИ ₂ О—	SO₂NH —	4	690 (M ⁺) 490
156	J _N	— Сн₂О—	SO₂NH — Br	4	750(M ⁺) 550
16b	N S	— СH ₂ O—	SO₂NH — OCH₃	4 .	702 (M ⁺) 502
17Ь	The state of the s	— Сн ₂ О—	SO₂NH — CĤ₃	4	686 (M ⁺) 486
186	J'N S''	— CH ₂ O—	SO₂NH —	4	672 (M ⁺) 472

		•			
195	N S	— CH ₂ O—	SO₂NH — CI	4	740 (M ⁺) 540
20 b	N S	— СН _Т О—	SO₂NH —	4	704 (M ⁺) 504
21b	AN S	— СН ₂ О—	SO ₂ NH —	4	684(M ⁺) 484
22b	J'N S'L	— СН ₇ О.—	SO ₂ NH —	4	750 (M ⁺) ,550
236	Z N	— СН₂О—	SO ₂ NH —	4	670 (M ⁺) 470
246	A N N S N S N S N S N S N S N S N S N S	— СН₁О —	SO ₂ NH − CH ₃	4	684 (M*) 484
25ъ	N N N N N N N N N N N N N N N N N N N	— CH ₂ O —	SO ₂ NH — OCH ₃	4	700 (M ⁺) 500
26b	A N N N N N N N N N N N N N N N N N N N	— сн _ұ о—	SO ₂ NH —	3	690 (M ⁺) 490
27 Б	AN SX	— Сн20—	SO ₂ NH —	2	676 (M ⁺) 476
286	N S	— СН ₂ О	SO ₂ NH −	2	660 (M*) 460
29b	D N S	— СН ₂ СН ₂ —	SO ₂ NH —	4	716 (M ⁺) 516

			•		
30 Ь	N S	— СH ₂ CH ₂ —	SO ₂ NH -	4	760 (M ⁺) 562
316	S, N	— Сн ₂ Сн ₂ —	SO ₂ NH —	4	683 (M ⁺) 483
32b	U _N N _N S	— СН ₂ СН ₂ —	SO ₂ NH —	4	697 (M ⁺) 497
336	SN	— СН ₂ СН ₂ —	SO₂NH −	4	688 (M ⁺) 488
346	J, N	— СН₂СН₂ —	SO ₂ NH —	4	685(M ⁺) 485
35b	CIN	H	SO ₂ NH −	4	688(M ⁺) 488
36b		H	SO ₂ NH —	4	748 (M ⁺) 548
37b	On l	н — н	SO ₂ NH −	4	700 (M ⁺) 500
38b	(In)	H	SO ₂ NH −	4	684(M ⁺) 484
396	(In)	H	SO ₂ NH —	4	670 (M*) 470
405		H	SO₂NH —	3	690 (M+)

	100	_			
41b		H	SO ₂ NH −	2	677 (M+)- 477
42b		H H H	SO ₂ NH —	2	722(M ⁺) 522
436	C N 1	HH	SO₂NH —	2	660 (M ⁺) 460
44b	CT)	H —	SO ₂ NH —	2	642(M ⁺) 442
45b	$C_1 \bigcirc N_1$	н >={ н	SO ₂ NH —	4	738 (M ⁺) 538
46b	CICINI	H — (SO ₂ NH −	4	717 (M*) 517
47b	CICUNT	н (SO _Z NH —	i	784 (M ⁺) 584
48b	CI N	н	SO₂NH — OCH₃	4	734(M ⁺) 534
495	CI	H = (SO ₂ NH −	4	718 (M ⁺) 518
50b	CI CIN	H	SO ₂ NH −	4	704 (M ⁺) 504
516	$CI \longrightarrow N$	H	SO _Z NH —	3	724(M ⁺) 524

		,			
526	CICINI	H >={	SO₂NH — CI	2	710 (M ⁺) 510
53b	(I)	— СН₂О—	SO _z NH -	4	692 (M ⁺) 492
54b		— Сн ₂ О <i>—</i>	SO ₂ NH —	1	753 (M+) 553
55b	(I _N)	— СН ₂ О—	SO ₂ NH − OCH ₃	4	704 (M ⁺) 504
56b		— СН₂О—	SO₂NH — CH₃	4	688 (M ⁺) 488
57b	(I)	— Сн₂О—	SO₂NH —	± 4 .571	674 (M ⁺) 474
58b		— Сн₂О—	SO _z NH —	3.	688 (M ⁺) 488
59b	$\mathbb{O}_{\mathbb{N}}^{\mathbb{N}}$	— си ₁ о—	SO ₂ NH —	2	680 (M°) 480
60b		— СН₂О—	SO ₂ NH −	2	664 (M ⁺) 464
61b	C N	— Сн₂О—	SO₂NH — Br	2	724 (M ⁺) 524
625		— СН₂О—	SO ₂ NH —	2	657 (M ⁺) 457

	<u></u>				
63b		— CH ₂ O—	SO ₂ NH —	5	735(M ⁺) 535
646	CI CINZ	— Сн₂О—	SO₂NH —	2	714 (M ⁺) 514
65b	CI	— Сн₂О—	SO ₂ NH −	4	744 (M ⁺) 544
56b		— Сн ₂ Сн ₂ —	SO ₂ NH —	4	706 (M ⁺) 506
676	\mathbb{Q}_{N}^{2}	— СН ₂ СН ₂ —	SO₂NH —	4	690(M ⁺) 490
886		— CH ₂ CH ₂ —	SO₂NH — CH₃	4	686(M ⁺) 486
69b	ON.	— СН ₂ СН ₂ —	SO ₂ NH −	4	70.2 (M ⁺) 50.2
70ь		— Сн ₂ Сн ₂ —	SO ₂ NH —	4	752(M ⁺) 552
716		— СН₂СН₂ —	SO ₂ NH —	. 2	678 (M ⁺) 478
12ь		— СН₂СН₂ —	SO ₂ NH —	3	692(M ⁺)
73b	ON.	— СН ₂ СН ₂ —	SO₂NH —	5	720(M ⁺) 520

	•				
74b	CILIN	— СН ₂ СН ₂ —	SO ₂ NH —	4	740 (M ⁺) 540
75 Б	CI	— СН2СН2 —	SO ₂ NH —	4	724(M ⁺) 524
76 b	CILLIN	— СН ₂ СН ₂ —	SO₂NH — CH₃	4.	720 (M ⁺) 520
77ъ	CICIN	— СН₂СН₂ —	SO ₂ NH — OCH₃	4	736 (M ⁺) 536
78 b	CI	— CH₂CH₂ —	SO₂NH — Br	4	786(M ⁺) 586
79b	CICIN	— СН ₂ СН ₂ —	SO _Z NH −	2	713 (M ⁺) 513
80Ъ	CIUNI	— СН ₂ СН ₂ —	SO ₂ NH	3.	726 (M ⁺) 526
81b	D N S	— СН₂О—	SO ₂ –	5	717 (M ⁺) 517
82b	A N N N N N N N N N N N N N N N N N N N	— Сн ₂ О—	SO ₂ -	5	703(M ⁺) 503
835	J.N.	— сн₂о.—	SO₂ − CI	5	705 (M ⁺) 505
84b		н Н	SO ₂ -	5	703(M ⁺) 503

85b	CI	н	\$0 ₂ -	5	737(M ⁺) 537	
86b	CI LINI	— Сн ₂ Сн ₂ —	SO ₂ -	5	705(M ⁺) 505	iii.
876	CILINI	— СН ₂ СН ₂ —	SO ₂ -	5	739(M ⁺) 539	
88b		— Сн₂0—	SO ₂ -	5	707 (M ⁺) 507	
896		— СН ₂ О—	SO ₂ NH —	4	708(M ⁺) 509	
90b		^H >=⟨	SO ₂ NH —	4	704 (M ⁺) 505	

〔実施例11〕

2-{N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル] - N-{3-[(4-イソプロピル-2-チアゾリル) メトキシ] ベンジル}} スルファモイル安息香酸(化合物番号1)の製造

- 実施例10の生成物(化合物番号1b)3.2g(4.53mmol)をメタノール70ml、テトラヒドロフラン70mlに溶解し、1N水酸化ナトリウム50mlを加え80℃で3時間攪拌した。減圧下溶媒を留去して水を加え1N塩酸で中和し析出した沈殿を3取すると標記化合物(化合物番号1)2.7g(3.9mmol)を収率86%で得た。
- 10 同様にして化合物番号2から90を製造した。得られた化合物の物理 化学的性質を表3に示した。

表3

物理化学的性質	(CDC13) (CD	(CDC1,) (CDC1,) (H.m.) 1.88-2.12(2H.m.) 2.17-2. (m.) 2.75(2H.br.s.) 3.14(2H.br. 2(1H.quint) 4.0(2H.s.) 5.12 5(1H.d.guint) 7.08-7.14(3H. 5(1H.d.guint) 7.08-7.14(3H. 54-7.68(3H.m.) 7.08-7.14(3H.
и	4 FAB-MS 1 H NMR 1 3 1 (11 1 = 3 1 (11 1 = 6 8 H - 6 7 7 7 1 (2) 2 6 H 2)	F A B - MS (1 1 3 4 M M R (1 1 3 4 M M M R (1 1 4 3 (4 M M M M M M M M M M M M M M M M M M
R 3	N-000-00-00-00-00-00-00-00-00-00-00-00-0	LA L
V	— СН2О —	— Сн,о—
R1 X X	z = \sqrt{s}	Z=(
子 母 中		c1
	合物 A R 3 n 物理化学的性 号 A R 3 n	

	4	
FAB-MS: (m/z) 750; (M+1) 670 564 11. 26 (4.H.m) 1.87-2.10 (2.H.m) 2.06-2. 40 (4.H.m) 2.71 (2.H.br.s) 3.13 (2.H.br.s) 3.65 (1.H.quint) 4.38 (2.H.s) 5.28 (2.H.s) 5.68 (1.H.br.s) 6.83 (2.H.m) 6.9 (2.H.s) 7.14 (1.H.t) 1=7.91 (2.7.7) 7.45-7.50 (5.H.m) 7.61 (2.H.d) 1=8.58 (2.H.m) 7.61 (2.H.d) 1=8.58 (2.H.m) 7.81 (2.H.d) 1=8.58 (2.H.m) 7.81 (2.H.d) 1=8.58 (2.H.m) 7.81 (2.H.d) 1=8.58 (2.H.d) 7.82	FAB-MS: (m/z) 700(M ⁺) 516 365 240 ¹ II NMR(CDCI.) 1. 26 (4 H, m) 1. 83-2. 09 (2 H, m) 2. 17-2. 36 (4 H, m) 3. 11 (2 H, br. s) 3. 67 (1 H, quint) 1. 3. 79 (3 H, s) 4. 35 (2 H, br. s) 5. 26 (2 H, br. s) 6. 72-7. 09 (5 H, m) 7. 12 (1 H, br. s) 7. 26 (1 H, s) 7. 30-7. 90 (6 H, m)	FAB-MS: (m/z) 684(M ⁺) 645 500 "H NMR(CDCI.") 1. 22-1 32(4 H. m) 1 86-2 10(2 H. m) 2 16-2 31(4 H. m) 2 36(3 H. s) 2 71(2 H. br s) 3 72(1 H. quint) 4. 38(2 H. s) 5. 29(2 H. s) 6. 81-6. 92(4 H. m) 7. 10-7. 21(3 H. m) 7. 44-7. 59(3 H. m) 7. 55(2 H. d) J=8. 25 Hz) 7. 87(1 H. d) J= 7. 59 Hz)
4	•	4
NZON-	SO ₂ NH –	SO2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
— Сн ¹ 0—	— СН ₂ О —	
Z=(S	N. S.	Z = S
79	· ·	V 2

<u> </u>		0.77
FAB-MS: (m/z) 670 (M°) 486 346 "H NMR(CDCIs) 1. 23 - 1. 34 (4 H, m) 1. 91 - 2. 16 (2 H, m) 2. 19 - 2. 42 (4 H, m) 2. 73 (2 H, br s) 3. 71 (1 H, quint) 4. 39 (2 H, s) 5. 11 (1 H, br s) 5. 34 (2 H, s) 6. 81 - 6. 94 (4 H, m) 7. 13 (1 H, t J = 7.76 Hz) 7. 41 - 7 6. 6 (6 H, m) 7. 78 (2 H, d J = 6. 93 Hz) 7. 92. (1 H, d J = 7.59 Hz)	FAB-MS: (m/z) 690(M ⁺) 346 258 'II NAR(CDC.3) 1. 41 (2 H. br s) 1. 92-2. 12 (2 H. m) 2. 20 -2. 42 (4 H. m) 2. 73 (2 H. br s) 3. 22 (2 H. br s) 3. 20 (2 H. br s) 3. 20 (2 H. br s) 5. 30 (1 H. quint) 4. 38 (2 H. s) 5. 31 (2 H. s) 5. 74 (1 H. br s) 6.80-6.94 (4 H. m) 7. 14 (1 H. t) 7. 35 (2 H. d) 1=8.58 Hz 7. 52-7.60 (3 H. m) 7.69-(2 H. d) 1=8.57 Hz) 7.85 (1 H. d) 1=7.26 Hz)	F A B - M S : (m/z) . 676 (M °) 492 458 "H NAR (CDC1.) 1 . 92 - 2 . 40 (6 H · m) 2 . 70 (2 H · br s) 3 . 26 (2 H · br s) 3 . 71 (1 H · m) 4 . 34 (2 H · s) 5 40 (2 H · s) 6 . 19 (1 H · br s) 6 . 77 - 6 . 97 (4 H · m) 7 . 12 (1 H · m) 7 . 25 - 7 . 31 (3 H · m) 7 . 50 - 7 . 62 (5 H · m) 7 . 93 (1 H · d·)
	e	2
I HN COS	0 HZ 0 HZ 0 T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T	- HNZ-OS-
- CH ₂ O-	- Сн.,о –	— Сн ₂ о—
Z = 0	Z	Z=\ \ \ \ \
•		ల

B - M S ; (H MMR (CDC1.) 8 5 - 2 1 3 (2 H, 2 B) 0 (2 H bf s) 3 (2 H, 2 C) (2 H, s) 5 4 2 (2 H, 3 C) 17 (1 H, d) 1 = 7	AB-MS: (m/z) 6.60 (M ⁺) 476 258 I NAR (CDC1.) 85-2.43 (4H.m) 2.71 (2H, br s) 3.	(2H, m) 3.74(1H, quint) 4.33(2H, s) 5.46(2H, s) 5.97(1H, br s) 6.77(1H, d) 1=7.58Hz) 6.85-6.92(2H, m) 6.98-7.15 (4H, m) 7.54-7.69(5H, m) 8.00(1H.d)	AB - MS: (m/2) 6/2 (M ⁺) 458 H NMR(CDCl ₁) 89-2, 43 (6H, m) 2, 73 (2H, br s) 2 H m) 3, 24 (1H, cuiror) 4, 31 (2H	5. 43(2 H, s) 5. 89(1H, br s) 6. 77(1H, d 3. 7. 11(1H, t J=7.92 Hz) 7. 35-7. 70(8 H, m) 8. 00(1H, d J=7.58 Hz)
2		2		2	
*	- HN2002	- HW.OS		HN ² OS	
	- CH ₁ O		- CH ₂ O -		— СН,0
	Z Z		Z S		S
6		10			

	(CDC13) (CDC13) (EDC13) 78 (2H.m) 4.4.40(2H S) 6.82 HZ) 7.16 4(3H.m) 7.96(1H.	FAB-MS: (m/z) 704(M ⁺) 520 1 NWR (CDCl ³) 1 30 (4 H, m) 1 90-2 08 (2 H, m) 2 16-2 39 (4 H, m) 2 72 (2 H, br s) 3 14 (2 H, br s) 3 11 (1 H, quint) 4 40 (2 H, s) 5 22 (1 H, br s) 5 36 (2 H, s) 6 80-6 94 (4 H, m) 7 13 (1 H, d J=7 59 Hz) 7 38 (2 H, d) = 6 92 Hz) 7 54-7 72 (5 H, m) 7 89 (1 H, d)	FAB-MS: (m/z) 676 (M°) 492 228 II NMR (CDC1:) 1. 31 (10H; m) 2. 77 (2H; m) 3. 14 (3H; m) 4. 43 (2H; s) 5. 14 (1H; t 1 = 5. 78 Hz) 5. 3 7 (2H; s) 6. 81 - 6. 95 (4H; m) 7. 0.8 - 7. 18 (3H; m) 7. 53 - 7. 70 (3H; m) 7. 81 - 7. 92 (2H; m) 7. 94 (1H; d J=7. 59 Hz)
-1	SO	4	₹
	HN2008	SO	Z OS - L
	— сн ₂ о—	— CH ₂ O—	- CH ₂ O -
	z do	N. S.	Z Ó S
	2 1		-

1.0		
FAB-MS: (m/z) 736(M°) 552 246 11 31 (10H, m) 2.74 (2H, m) 3.14 (3H, m) 4.41 (2H, s) 5.35 (2H, s) 5.25 (1H, br S) 6.81-6.92 (4H, m) 7.14 (1H, t J=7.92 Hz) 7.51-7.81 (7H, m) 7.90 (1H, m)	FAB-MS: (m/z) 688 (M ⁺) 504 11. 24-1. 33 (10 H, m) 2. 73 (2 H, m) 3. 10- 3. 23 (3 H, m) 3. 84 (3 H, s) 4. 39 (2 H, s) 4 64 (1 H, br s) 4. 92 (1 H, br s) 5. 36 (2 H, s) 6. 82-6. 94 (6 H, m) 7. 15 (1 H, t) 1=7. 92 Hz) 7. 53-7. 74 (5 H, m) 7. 95 (1 H, d) 1=7. 7. 59 Hz)	FAB-MS: (m/z) 672 (M ⁺) 488 334 246 "I WAR(CDC), 1. 09-1.33 (10H, m) 2.39 (3H, s) 2.72 (2 H, m) 3.11-3.22 (3H, m) 4.40 (1H, br s) 4.97 (1H, br s) 5.36 (2H, s) 5.59 (1H. br s) 6.82-6.93 (4H, m) 7.14 (1H, t) 1=7 92 Hz) 7.25 (2H, d) 1=8.24 Hz) 7.52-7. 68 (4H, m) 7.94 (1H, d) 1=7.26 Hz)
	. 14.	
NosoNH −	SO ₂ NH -	SO ₂ NH
— Сн ¹ 0 —	— CH3O —	— CH,0—
Z= 0	N= S	Z Z
5.	1.0	5 ×

		*		· /
F A.BM.S.: (m/z) 658 (M¹) 518 474 'H NMR(CDCIs) 1 25-1 33 (10H m) 2.76 (2H m) 3.11-3 '18 (3H m) 4.40 (2H s) 5.13 (1H br s) 5.34 (2H,s) 6.82-6 93 (4H m) 7.15 (1H t J=7.92 Hz) 7.43-7.67 (6H m) 7.79 (H, d J=6, 93H2) 7.93(1H, d J=7.59H2) AB-MS: (m/z) 726(M ²) 542 T NMR(CDC ₁₃) 25-1.33(4H, m) 2.72(2H, br. s) 3.17 24, m) 4.39(2H, s) 5.33(2H, s) 6.82-	AB-MS: (m/z) 690(M°) 504 AB-MS: (m/z) 690(M°) 504 BS-0.93(4H, m) 1.13(4H, d) 1=6.26H	2. 05(1H, br. s) 211, br. s) 4, 38 0 6, 90(3H, m) 90(811, m) AB-MS:(m/2) 6	0.82-0.94(4H, m) 1.13(4H, d J=6.26Hz) 2.08(1H, m) 2.75(2H, br. s) 3.12(2H m) 4.40(2H, s) 5.23(1H, br. s) 6.81- 6.89(4H, m) 7.07-7 17(3H, m) 7.51-7 6.84(H, m) 7.77-7 17(3H, m) 7.51-7
	•	4	7	,
HN20S	SO ₂ NH	SO ₂ NH		OS-CO-H
€H ₂ 0) 0 5		CH ₂ O	CH ₂ O
24	2	\(\frac{1}{2}\)	z (z-{
©	6-	2.0	2.1	

*		
FAB-MS: (m/z) 736 (M+1) 550 244 246 'H NMR(CDCL') 0.80-0.95 (4H, m) 1.18-1.23 (4H, m) 2 23 (1H, m) 2.62 (2H, br s) 3.06 (2H, br s) 4.33 (2H, s) 6.88 (4H; br s) 7.12 (1H, m) 7.26-7.47 (6H, m) 7 5.62 H.d. J=8.58 Hz) 7.63 (1H.d. J=7.92 Hz)	F A B - M S : (M / Z) 6 5 6 (M †) 4 7 2 3 3 2 1 NMR (CDC1,) 0 8 6 - 0 9 6 (4 H, m) 1. 2 5 (4 H, m) 2 . 0 9 (3 H m) 2 . 7 6 (2 H, b r s) 3 . 15 (2 H, b r s) 4. 3 9 (2 H, s) 5 . 2 9 (2 H, s) 6 . 8 3 - 6 . 9 0 (4 H, m) 7 . 14 (1 H, m) 7 . 4 6 - 7 . 6 6 (6 H, m) 7 . 8 0 (2 H, d) 1 = 7 . 2 6 H z) 7 . 9 3 (1 H, d) 1 = 7 . 2 6 H z	FAB-MS(m/z) 670 (M°) 486 349 244 "H NMR(CDC1.) 0.81-0.94 (444, m) 1.24-1.32 (44, m) 2. 02-2.12 (14, m) 2.31 (34.s) 2.73 (24.b) 1.5) 3.15 (24, m) 4.39 (24, s) 5.25 (24.b) 2.5) 6.82-6.87 (44, m) 7.11-7.26 (44, m) 7.47-7.67 (54, m) 7.87 (14, d) 3=7.26 Hz)
₹	4	-
SOS - NO SOS	0 0 - ()	SO ₂ NH CH ₃
- СН3О	— СН ₁ о—	— сн,о—
z=\sqrt{\sq}\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Z	Z
2.2	8 2	2.4

FAB-MS: (m/2) 686 (M ⁺) 'II NMR(CDC1.) 0.84-0.99 (4H, m) 1.25-1.36 (4H, m) 2. 0.9 (1H, m) 2.74 (2H, br s) 3.15 (2H, d) = 6.93 Hz) 3.84 (3H, s) 4.39 (2H, s) 5.0 1 (1H, br s) 5.29 (2H, s) 6.82-6.94 (6H, m) 7.15 (1H, t J=7.92 Hz) 7.52-7.75 (5H, m) 7.93 (1H, d) J=7.59 Hz)	FAB-MS: (m/2) 676 (M ⁺) 493 318 244 ¹ H NMR(CDC1,) 0.82-0.99 (4H, m) 1.40 (2H, d) 1=5.94 Hz) 2.08 (1H, m) 2.77 (2H, br s) 3.26 (2H, m) 4.38 (2H, s) 5.28 (1H, s) 5.66 (1H, m) 4.38 (2H, s) 5.28 (1H, s) 5.66 (1H, m) 7 br s) 6.80-6.88 (4H, m) 7.15 (1H, m) 7 39 (2H, dd J=6.92 1.98 Hz) 7.52-7.63 (3H, m) 7.71 (2H, dd J=6.93 1.98 Hz) 7.86 Hz) 86 (1H d J=7.26 Hz)	FAB-MS: (m/2) 662(M*) 478 341 1H NAR(CDC1,) 0.82-0.98(4H,m) 2.09(1H,m) 2.73(2H, br s) 3.30(2H,t J=5.75Hz) 4.35(2H,s) 5.36(2H,c) 5.36(2H,c) 6.02(1H,br s) 6.78-6.91(4H,m) 7.13(1H,t J=7.76Hz) 7.33 (2H,d J=8.58Hz) 7.53-7.67(5H,m) 7.96(1H,d) J=7.59Hz)
.	er.	2
SO2NH CH30	SO_NH	HNZOS - IO
_ CH,O_	— CH20—	CH20
2 = \	Z= ()	25.59
2 5	2 6	2.7

FAB-MS: (m/2) 646(M°) "H NMR(CDCI*) 0.82-0.97(4H.m) 2.09(1H.m) 2.74(2H.pt.s) 3.30(2H.t J=5.78H2) 4.35(2H.s) 5.34(2H.s) 5.94(1H.br.s) 6.78-6.89(4H.m) 7.00-7.16(3H.m) 7.53-7.65(5H.m) 7.95(1H.d J=7.92Hz)	FAB-MS: (m/z) 702(M*) 518 256 244 'H NMR(CDCI,) 1.20-1.40(4H, m) 1.82-2.41(6H, m) 2. 75(2H, br s) 3.01(2H, t) 3.14(2H, t) 3.31(2H, t) 3.66(1H, quint) 4.39(2H, s) 5.38(1H, br s) 6.77(1H, s) 7.02-7 17(4H, m) 7.50-7.65(3H, m) 7.71(2H, s) 4.38(2H, d) 1=8.53Hz) 7.38(2H, d) 1=8.57Hz) 7.02-7	FAB-MS: (m/z) 748(M ⁺) 670 564 11 20-1, 40 (4 H, m) 11 81-2; 41 (5 H, m) 2 73 (2 H, br s) 3: 03 (2 H, m) 3: 13 (2 H, m) 3: 32 (2 H, m) 3: 66 (1 H, quint) 4: 39 (2 H, s) 5: 38 (1 H, br s) 6: 77 (1 H, s) 7: 02-7 7: 16 (5 H, m) 7: 52-7: 65 (6 H, m) 7: 89 (1 H, d) 1 = 7: 59 Hz)
2	~	•
SO ₂ NH	HN2000	
CH10	— CH ₂ CH ₂ —	— сн,сн,
Z . N	Z Z	Z d
200	2 9	3.0

. "		
FAB-MS: (m/z) 669(M ⁺) 'H NMR(CDCI ₃) 0.82-0.99(4H, m) 1.40(2H, d) 1=5.94Hz) 2.08(1H, m) 2.77(2H, br s) 3.26(2H .m) 4.38(2H, s) 5.28(1H, s) 5.66(1H, br s) 6.80-6.88(4H, m) 7.15(1H, m) 7 39(2H, dd) 1=6.92 1:98Hz) 7.52-7.63 (3H, m) 7.71(2H, dd) 1=6.93 1:98Hz) 7 86(1H d) 1=7.26Hz)	FAB-MS: (m/z) 683(M°) 1 20-1.40(4H, m) 1.82-2.37(6H, m) 2.39(3H, m) 2.72(2H, m) 3.01(2H, t) 3.1 3 (2H, t) 3.33(2H, t) 3.67(1H, quint) 4.38(2H, s) 6.76(1H, d) 1-0.66Hz) 7.0 4-7.26(7H, m) 7.51-7.68(4H, m) 7.92(1H, d) 1=7.59Hz)	FAB-MS: (m/z) 674 (M°) 'H NMR(CDC1.) 1. 28 (10 H, m) 2. 70-2. 78 (2 H, m) 2. 99-3 66 (4 H, m) 3. 34 (2 H, m) 4. 39 (2 H. s) 5. 21 (1 H, br t) 6. 74 (1 H, s) 7. 16 (6 H. m) 52-7. 67 (3 H, m) 7. 77-7. 82 (2 H, m) 7. 91 (1 H, d J=7. 59 Hz)
		-
- HN.505	- HN2 CH3	- N- SO ₂ NH
— СН,СН, —	— сн ₂ сн ₂ —	— сн,сн,
z ×	Z S	Z=\ \S
3.1	3.2	3 3

_	() () () () () () () () () ()			
	F A B - M S: (m/z) 671(M°) 11 28 (10 H, m) 2.39 (3 H, s) 2.68 (2 H, m) 2.99-3.19 (4 H, m) 3.34 (2 H, m) 4.38 (2 H, m) 3.5.00 (1 H, br t) 6.73 (1 H, s) 7.03-7.26 (6 H, m) 7.51-7.68 (5 H, m) 7.56 (1 H, m)	FAB-MS(m/z) 674(M ⁺) 645 'H KMR(CDCl ₁) 1.23-1.35(4H.m) 2.65(2H, br. s) 3.20 (2H, br. s) 4.52(2H, s) 5.77(1H, br. s) 6.81-7.05(3H, m) 7.15-7.17(2H.m) 7.39-7.95(13H, m) 8.25(2H, m)	FAB-MS: (m/z) 734(MT) 550 244 'H NMR(CDCI,) 1. 22-1. 33 (4 H, m) 2. 63 (2 H, br s) 3 19 (2 H, br s) 4. 52 (2 H, s) 5. 96 (1 H, br s) 7. 05-7. 16 (2 H, m) 7. 38-7. 93 (16 H, m) 8. 25 (2 H, m)	FAB-MS: (m/z) 686 (M ⁺) 645 'H NMR(CDCI*) 1. 22-1 35 (411. m) 2. 66 (211. br. s) 3. 21 (241. br. s) 3. 77 (311. s) 4. 52 (211. s) 5. 29 (111. br. s) 6. 82 (211. m) 5. 29 (111. br. s) 6. 82 (211. m) 5. 29 (111. br. s) 6. 82 (211. m) 7. 19 (211. d) 1=4. 62 11. d) 7. 40-7. 94 (1411. m) 8. 25 (211. m)
	•	4	4	•
-	1 H _N ² OS CH ₃	SO ₂ NH	J H ⁷ √2 M <u>M</u>	SO ₂ NH —
	— сн,сн,	Ţ	I I	ı,
	√ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\(\frac{1}{2}\)	Z Z	
	₹ £	e.	w	3 7

FAB-MS: (m/z) 670 (M ⁺) 645 553 'II NWR (CDG1s) 1. 19-1. 32 (4 H. m) 2 31 (3 H. s) 2. 63 (2 H. br. s) 3 19 (2 H. br. s) 4. 50 (2 H. s) 5. 44 (1 H. br. s) 7. 26 (4 H. m) 7. 39-7. 78 (1. 3 H. m) 7. 87 (1 H. d. J=7. 92 Hz) 8. 24 (2 H. m.)	FAB-MS: (m/z) 656(M ⁺) 'H NAR(CDC1.) 1.20-1.32(4H,m) 2.64(2H,bts) 3.18 (2H,brs) 4.51(2H,s) 5.58(1H,brs) 7.12-7.92(19H.m) 8.24(2H,m)	FAB-MS: (m/z) 676 (M ⁺) ¹ H NMR (CDC1 ₃) 1. 25-1. 33 (2 H, m) 2. 63-2. 70 (2 H, m) 3. 10 -3. 21 (4 H, m) 3. 50 (2 H, t, J = 7. 92 Hz) 4. 34 (2 H, s) 6. 17 (1 H, br s) 6. 99-7. 14 (3 H, m) 7. 26 (4 H, m) 7. 39-7. 78 (13 H, m) 7. 87 (1 H, d J = 7. 92 Hz) 8. 24 (2 H, m)	FAB-MS: (m/2) 663(MT) 608 476 244 ¹ H NMR(CDC) ₃) 2.75(2H.s) 3.30(2H.s) 4.48(2H.s) 5 98(1H.brs) 7.13(2H.m) 7.43-7.93(14H.m) 8.30(1H.d J=8.57Hz) 8.35(1H.d J=8.91Hz)
4	•	m	2
SOS-VAHO	- HZ2005	SO ₂ NH —	H _Z ZOS - () O
Ţ) T	I I	T T
\$\bigg\z^2	Z = =	Z Z	5
ю В	6 6	0 7	=

	T	T	
H 1)	4 2	H	3 × × 8 × 8 × 8
2 . 2 H	S L Z H	1 2 . 5	E S 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2
(211	(2 H H 2) 5 8	2 2 2 2 1 . d	
2 8 = 8	2 4 8 2 2 9 2 8 = 8) 3 7 H z) (1 H) 2 (2 (2 (2 (2 (2 (2 (2 (2 (2
5 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 6 0 d J	4 8 3 4 8 3 8 3 8 9 8 2 8 9 H Z H Z D H Z	7 5 7 5 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6
() H	S (S)) 9	6 8 - 2 H . 2 H . 8 9 (
2 H 9 L	(M † H . H . H . B . H . C . H . C . H . C . H . C . H . C . L . C . L . C . C . C . C . C . C	(M + 5 (4 5 (0) 8 8) 8 8] = 8	M + 6 H Z H Z / / / / / / / / / / / / / / / /
9 0 0 8	1 (2 (2) 9 1 9 1	2 2 8 D Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z) 2 4 (9 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 6	8 T 8) 6] = 1 s) 0 0 (1 1 5 1 H	H. m J = 6 J = 6 J = 6
s) 1 (s) 1 (7 (= 1	2 / Z H H	/z) (4H H m (14
- 7 10.00	(m) (m) (l)	(C13) H d O (33) 7	E (1) 7 2 2 8 8 8
- M S: - M (CDC) 3 (2 H, (2 H,) = 8	- M S MR (CD 5 (2 H (2 H 9 2 (CCD CCD	M S C C D
F A B - H NMR 2 7 3 2 1 2 (A B H N 7 7 99 6	A B - B - B - B - B - B - B - B - B - B	A B - 2 1 2 (2 2 2 6 9 - 5 9 - 5 9 0) 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
£ - ~ .	L- 2 . 1 80	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	E020-0
1			
8	2	69	4
2	2	2	
		Z - L	I I
SO ₂ NH - 2	SO2NH -	2 - HM 500 - 1	SO ₂ NH -
		SOS - HANGS	SOS-MH -
H _N ² OS		S O N H	
H _N ² OS		SO ₂ NH —	
		SOS-HNSOS	SO2NH — H — CI
H _N ² OS		SOS-NH-	
H _N ² OS		2 H SO2NH N N N N N N N -	
H _N ² OS		SO ₂ NH — H	
H _N ² OS		SOS-NH T	
H _N ² OS – J _B		2 - HNSCOS - H	
H _N ² OS – J _B		H SO2NH -	

	·	
FAB-MS(m/z) 108(M+) 'H NMR(CDCls) 1.22-1.42(4H, m) 2.68-2.72(2H, m) 3. 2.1(2H, br t) 4.50(2H, s) 5.54-5.60(1H : m) 7.00-7.06(2H, m) 7.15-7.17(2H, m) 7.41(2H, d) 3=1.98 8.58 Hz) 7.47-7 : 78(10H, m) 7.88(1H, d) 3=7.26 Hz) 8.1 3-8.17(2H; m)	FAB-MS: (m/z) 768(M ⁻) "H NNR:(CDCI ₃) 1. 21-1. 40 (4 H, m) 2. 67-2. 75 (2 H, m) 3. 21 (2 H, br t J = 6.60 Hz) 4. 50 (2 H, s) 5. 58-5. 63 (1 H, m) 7. 70 (2 H, d J = 4.62 Hz) 7. 38-7. 66 (12 H, m) 7. 71 (2 H, d J = 8.9 Hz) 7. 8.8 (1 H, d J = 7.26 Hz) 8. 13-8. 17 (2 H, m) m)	FAB-MS: (m/z) 720(M ⁻) 'H NMR(CDCl ₃) 1 21-1 41 (4H.m) 2.67-2.74 (2H.m) 3. 23 (2H.br t J=6.93H2) 3.78 (3H.s) 4. 50 (2H.s) 5.10-5.15 (1H.m) 6.86 (2H.d) 1 = 8.91H2) 7.19-7.21 (2H.m) 7.44 (2H.d) 1 = 1.81 8.75 H2) 7.50-7.73 (10H.m) 1.91 (1H.d J=7.92H2) 8.08-8.17 (2H.m)
	ч а	-
SO	SO ₂ NH B	SO NET OCCH3
ı,	ı T	T.
\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)	Z Z S	Z
9		∞ ∞

· · · · · · · · · · · · · · · · · · ·		
FAB-MS: (m/z) 704(M ⁺) 'H NMR(CDCI,) 1. 20-1. 41 (4 H, m) 2. 32 (3 H, s) 2. 67-2 70 (2 H, m) 3. 21 (2 H, br t J = 6. 93 Hz) 4. 49 (2 H, s) 5. 22-5. 29 (1 H, m) 7. 12-7. 21 (4 H, m) 7. 41 (2 H, dd J = 1. 98 8. 58 Hz) 7. 47-7. 72 (10 H, m) 7. 89 (1 H, d J = 7, 92 Hz) 8. 07-8. 16 (2 H, m)	FAB-MS: (m/z) 690 (M ⁷) 'H MAR (CDCl ₃) 1. 20-1.40 (4H, m) 2.67-2.75 (2H, m) 3. 21 (2H, br t J=6.93Hz) 4.50 (2H, s) 5. 30-5.37 (1H, m) 7.06 (1H, d J=6.27Hz) 7. 18 (2H, d J=4.62Hz) 7.36-7.75 (14H, m) 7.90 (1H, d J=7.92Hz) H. m)	FAB-MS: (m/z) 710(M') 1. 46-1. 53(2H, m) 2. 51-2. 60(2H, m) 3. 22(2H, br t J=7.09Hz) 4. 48(2H, s) 7. 25(1H, d J=7.26Hz) 7. 36-7. 43(2H, m) 7. 58-7. 76(10H, m) 7. 82(1H, d J=16.2Hz) 7. 93(2H, m) 7. 82(1H, d J=16.2Hz) 7. 93(2H, d J=8.58Hz) 7. 98-8. 06(2H, m) 8. 41(1H, d J=8.91Hz)
- (- (- (- (- (- (- (- (- (- (- (- (- (-	•	67
HNSOS-(P-C)	- HN ² OS	N 0
I,	T T	ı
√ 2 □ ∑ □ Z	Z Z	Z
6.	5.0	vs

	<u> </u>	* .
FAB-MS: (m/z) 696(M ⁺) 'H NMR(CDCL ₃) 2 75-2 79(2H, m) 3 30-3 35(2H, m) 4 48(2H, s) 7 14(2H, d) 1=4 29Hz) 7 25- 7 29(2H, m) 7 42-7 64(10H, m) 7 70-7 7 7 (2H, m) 7 90(1H, d) 1=7 59Hz) 8 22 (1H, d) 1=8 9Hz)	FAB-MS: (m/z) 678 (M*) 494 248 14 RMR(CDC1s) 1. 10-1. 28 (4H.m) 2. 62-2. 68 (2H.m) 3. 0.7 (2H. br t J=6.60Hz) 4.37 (2H.s) 5. 36 (1H. br s) 5.42 (1H.s) 6.78 (1H.d) J =7.58 Hz) 6.91 (1H.dd J=8.25 Hz) 7.00 -7.14 (4H.m) 7.45-7.76 (8H.m) 7.85 (2H.t J=7.43 Hz)	FAB-MS: (m/z) 737(M°) 11. 08-1. 28 (4H, m) 2. 58-2. 66 (2H, m) 3. 10. 0-3. 10 (2H, m) 4. 34 (2H, s) 5. 33 (2H, s) 6. 71 (1H, d) 1=7. 25 Hz) 6. 88 (1H, dd) 1 = 8. 25 Hz) 6. 94 (1H, s) 7. 10 (1H, d) 1 2 = 7. 5 Hz) 7. 30-7. 80 (12H, m) 8. 12 (1H, d) 1 2 = 7. 5 Hz) 8. 92 Hz) 8. 17 (1H, d) 1=8. 25 Hz)
2	•	₩.
- HN OO O	SO THE	SO NH
I	— CH ₂ O—	— СН2О—
\(\sigma\) 0 0	z Z	Z Z
5.2	S	4

FAB-MS: (m/z) 690(M ⁺) 11.08-1.18(2H, m) 1.20-1.31(2H, m) 12.60-2.65(2H, m) 3.03(2H, m) 13.03(2H, m) 14.05 3.81(3H, m) 3.03(2H, s) 15.10 4.36(2H, s) 16.10 5.85 4.86 17.12(1H, br. s) 18.10 7.12(1H, r) 19.10 7.67-779(5H, m) 19.10 7.67-779(5H, m) 10.10 7.67-779(5H, m)	F A B - M S: (m/z) 674 (M†) 'H NMR (CDCl ₃) 1. 07 - 1 1.6 (2 H, m) 1.18 - 1:29 (2 H, m) 2. 3 6 (3 H, s) 2.59 - 2.65 (3 H, m) 3.04 (2 H, 1. 3 6 (3 H, s) 4.35 (3 H, s) 4.95 - 5.02 (1 H, 1. 5 4 4 (2 H, s) 6.78 (1 H, d) 1 = 7.58 H 2. 6 9 1 (1 H, d) 1 = 7.92 H 2. 7 0 1 (1 H, s) 7 11 (1 H, t) 1 = 7.76 H 2. 12 H 2. 13 1 (1 H, d) 1 = 7.76 H 2. 14 2 H 2. 15 1 1 1 (1 H, d) 1 = 7.76 H 2. 16 2 H 2. 17 3 1 1 (1 H, d) 1 = 7.76 H 2. 18 3 1 H, d) 1 = 7.76 H 2. 19 1 2 H 2. 10 1 2 H 2. 11 2 2 H 3. 11 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
S S S N H O C H 2	SO SO CH2
O E CH	N → CH ₂ O −
\$ 25	9 9

r			
	F A B - M S : (m/z) 660(M ⁺) 11 NMR (CDC1 ₃) 12 0 5 - 1 15 (2 H, m) 1 1 7 - 1 29 (2 H, m) 2 80 - 2 67 (2 H, m) 3 02 (2 H, t) = 6 93 Hz) 4 35 (2 H, s) 4 94 - 4 98 (1 H, m) 5 50 (2 H, s) 5 1 8 (1 H, d) 1 = 7 58 Hz) 6 93 (1 H, dd) 1 = 7 58 Hz) 7 05 (1 H, s) 7 12 (1 H, t) = 7 92 Hz) 7 40 - 7 62 (6 H, m) 7 69 - 7 80 (5 H, m) 7 85 (1 H, d) 1 = 7 92 Hz) 7 95 (1 H, d) d) 1 = 7 92 Hz) 8 27 - 8 32 (2 H, m)	FAB-MS: (m/z) 674(M°) 539 'H NMR(CDCI _A) 1. 25-1.37(2 H, m) 2. 58-2. 67(2 H, m) 3. 14(2 H, t J = 6.43 Hz.) 4.34(2 H, s) 5.52(2 H, s) 6.55-6.63(1 H, m) 6.77(1 H, d J = 7.58 Hz.) 6.93(1 H, m) 6.77(1 H, d J = 7.58 Hz.) 7.32(2 H, d J = 8.58 Hz.) 7.32(2 H, d J = 8.58 Hz.) 7.31(1 H, d J = 7.67(6 H, m) 7.71-7.	FAB-MS: (m/z) 666(M ⁺) 14 NMR(CDCL ₃) 2 66 (2H, br s) 3.21 (2H, br s) 4.32 (2 H, br s) 5.54 (2H, br s) 6.75 (1H, d) 1= 8.93 Hz) 6.91 (1H, d) 1=8.58 Hz) 7.00 (2 1H. s) 7.10 (1H, t) 1=7.75 Hz) 7.24-7.2 7 (2H, m) 7.47-7.61 (6H, m) 7.75-7.93 (4H, m) 8.26-8.43 (2H, m)
	-	c.	2
	HN ^c OS	H OS C T T T T T T T T T T T T T T T T T T	NZ OS - () - O
-	—CH2O—		— сн,0—
	z S		Z
	5.7	89	G.

		*
FAB-MS: (m/z) 650(M°) 'H NMR(CDC1,) 2. 65-2.70(2H, m) 3.23(2H, br t) 4.33 (2H, S) 5.50(2H, S) 6.76(1H, d) = 7.59 Hz) 6.89-7.00(4H, m) 7.10(1H, t J = 7.59 75Hz) 7.42-7.62(6H, m) 7.73-7.92(4H, m) "m) 8.23-8.32(2H, m)	FAB - MS: (m/z) 710(M*) 1. MAR(CDCL ₃) 2. 64-2.70(2H, m) 3.21(2H, t J=5, 6 Hz 3. 4.32(2H, s) 5.57(2H, s) 6.75(1H, d 1=7.26Hz) 6.92(1H, dd J=2.31 8.24Hz 7.01(1H, s) 7.11(1H, t J=7.92Hz) 46(4H, m) 7.49-7, 65(4H, m) 7.77-7.9 5 (4H, m) 8.28-8.36(2H, m)	F A B - M S: (m / z) 633 (M °) 1 NMR (CDC1,) 2 65 - 2 70 (2 H · m) 3 18 (2 H · br 1 J = 5 · 6 1 H z) 4 29 (2 H · s 5 · 59 (2 H · s) 6 · 73 (1 H · d) d J = 7 59 H z) 6 9 6 (1 H · dd J = 1 · 98 8 · 25 H z) 7 · 00 (1 H · s) 7 · 09 (1 H · t J = 7 · 92 H z) 7 34 (2 H · t J = 7 4 3 H z) 7 · 42 - 7 71 (7 H · m) 7 76 - 7 84 (2 H · m) 7 · 8 8 (1 H · d J = 7 · 9 2 H z) 7 · 9 8 (1 H · d J = 7 · 59 H z) 8 · 33 (1 H · d J = 8 · 9 1 H z) 8 · 34 (1 H · d J = 8 · 25 H z)
۲۵	0	2
SO ₂ NH -	SO ₂ NH	SO ₂ NH
— СН,О—	— CH ₂ O —	- Сн.о
z =	Z Z	Z S
0 9	<u> </u>	2

FAB-MS: (m/z) 721(M ⁺) 1. H MAR(CDCl ₃) 0. 89-0. 99 (211. m) 1. 11-1. 27 (411. m) 2. 67-2. 74 (211. m) 3. 04 (211. t J=6. 93 Hz) 1. 38 (211. s) 5. 42 (211. s) 6. 79 (111. d J=7. 92 Hz) 1. 26 Hz) 6. 91 (111. d d J=1. 65 8. 25 Hz) 1. 02 (111. s) 7. 13 (111. t J=7. 92 Hz) 7. 91 (111. d J=7. 92 Hz) 1. 84 (111. d J=8. 58 Hz) 7. 91 (111. d J=7. 92 Hz) 5. 91 Hz) 8. 24 (211. d J=8. 58 Hz)	FAB-MS: (m/z) 700 (MT) "H NMR(CDCIs) 2: 70-2: 79 (2H, m) 3: 26 (2H, t) = 5: 78 Hz) 4: 34 (2H, s) 5: 47 (2H, s) 5: 99-6: 08 (1H, m) 6: 78 (1H, d) = 7: 58 Hz) 6: 91 (1H, d) dd J=1: 98 8: 25 Hz) 6: 98 (1H, s) 7: 12 (1H, t J=7: 92 Hz) 7: 28 (2H, d) = 8: 58 Hz) 7: 50-7: 81 (8H, m) 7: 93 (1H, d) = 7: 26 H z) 8: 21 (1H, d-J=1: 98 Hz) 8: 27 (1H, d) J=8: 58 Hz)	FAB-MS: (m/2) 730 (M ⁷) 1 18-1 36 (4 H, m) 2 68-2 74 (2 H, m) 3. 13 (2 H, t J=6, 76 Hz) 4 39 (2 H, s) 6 80 (11 d J=7, 59 Hz) 6 90 (1 H, dd J=7, 92 Hz) 6 97 (1 H, m) 7. 14 (1 H, t) = 7. 92 Hz) 7 6 (1 H, d J=8, 58 Hz) 7. 98 (1 H, d J=7, 92 Hz) 7 6 (1 H, d J=8, 58 Hz) 7. 98 (1 H, d J=7, 92 Hz) 8 6 97 (1 H, d J=8, 58 Hz) 7 98 (1 H, d J=7, 16 (1 H, d J=8, 58 Hz)) 7 98 (1 H, d J=7, 16 (1 H, d J=8, 58 Hz)) 7 98 (1 H, d J=7, 16 (1 H, d J=8, 58 Hz)) 8. 20 (1 H, d J=8, 58 Hz)
- 20	2	4
00	SO ₂ NH	SO-77-12
—CH ₂ O—	— Сн,0—	— СН,0—
Z Z	\(\frac{7}{2}\) \(\frac{7}{5}\) \(\text{5}\)	Z Z O
E7 10	∀	a o

692(M ⁺) 600 508 246 1, m) 3 60-2 68 (2 H, m) 3. 1, 74-5 81 (1 H, m) 7 01-7. 1, 53-7 68 (5 H, m) 7 1, 53-7 68 (5 H, m) 7 1, 8 22 (1 H, d J=8 25 Hz)	676(M ⁺) 492 246 1. m) 2.59-2.67(2H, m) 3. 50-5.44(2H, t 1=7.92Hz) 60-5.70(1H, m) 6.99-7. 6(1H, s) 7.35(1H, d 1=8. 64(4H, m) 7.71-7.88(5Hd) d 1=8 58Hz) 8.34(1H, d	(M ⁺) 488 246 - m) 2. 34(3H, s) 2. 59-2. 4-3. 12(4H, m) 3. 42(2H, 1 37(2H, s) 5. 25-5. 32(1H, 1 2(3H, s) 7. 17(2H, d) = 7. H, d J = 7. 59 H z) 7. 32(1H, 1 7. 42-7. 54(6H, m) 7. 71-7 87(1H, d) = 7. 26 H z) 8. 18 2.) 8. 34(1H, d) = 8. 25 H z
4 FAB-MS: (m/z) 11 NMR(CDC1.) 1 10-1.30 (4 H) 0 5-3.13 (4 H) m 4.38 (2 H, s) 5 11 (3 H, m) 7.2 d J=1.32-7.8 72-7.88 (3 H, m) 8.34 (1 H, d J=	4 FAB-MS: (m/z) 1 HAMR(CDCl ₃) 1 14-1 30 (4 H 0 8-3 13 (4 H · m 4 · 3 8 (2 H · s) 13 (5 H · m) 7 · 2 5 8 H z) 7 · 4 3 - 7 5 8 H z) 7 · 4 3 - 7 5 8 H z) 7 · 4 3 - 7 5 8 H z) 7 · 4 3 - 7	4 MS: (m/2) 672 11. 10-1. 30 (4 H 65 (2 H m) 3. 0 1 = 7. 75 H 2) 4 1 m) 7. 00-7. 1 92 H 2) 7. 25 (1 d J = 8. 58 H 2) 81 (2 H m) 7.
00	SO ₂ NH -	SOSNH CH3
— CH ₁ CH ₁	— СН,СН,	— СН1СН1-
Z	Z Z	Z S

F A B - M S: (m/z) 688 (M') 596 504 246 'H NAR (CDC1.) 1.09-1.33 (4H, m) 2.59-2.68 (2H, m) 3 04-3.12 (4H, m) 3.42 (2H, m) 7 8.91 H z) 7.00-7.12 (3H, m) 7.25 (1H, d) 1=6.27 H z) 7.32 (1H, d) 1=8.58 H z) 7.42 -7.58 (3H, m) 7.62-7.81 (5H, m) 7.88 (1H, d) 1=7.26 H z) 8.24 (1H, d) 1=8.58 H z)	F A B - M S : (m/z) 736(M*) 552 246 14 NMR (CDC1.) 1 11-1 29(4H, m) 2.58-2.64(2H, m) 3. 07-3.12(4H, m) 3.43(2H, t J=7.75Hz) 4.37(2H, s) 5.78-5.82(1H, m) 7.01-7. 13(3H, m) 7.25(1H, d J=2.97Hz) 7.34(1H, d J=8.54Hz) 7.42-7.47(3H, m) 7.5 2-7.62(5H, m) 7.71-7.87(3H, m) 8.21(1H, d J=8.58Hz) 8.33(1H, d J=8.58Hz)	F A B - M S : (m/z) 664(M ^T) 480 246 14 NMR(CDCI ₃) 2.57-2.69(2 H, m) 2.99-3.07(2 H, m) 3.10-3.18(2 H, m) 3.18-3.27(2 H, m) 4.41 (2 H, m) 7.00-7.04(1 H, m) 7.09(1 H, br s) 7.18-7.21(2 H, m) 7.41(1 H, d J=8.2 5 H z) 7.52-7.79(9 H, m) 7.85-8.00(3 H. m) 8.25(1 H, d J=8.58 H z)
	₹	7
SOZ-N-	SOS-V-	H2000
— СН,СН,	— CH ₂ CH ₂ —	— СН2СН2 —
Z Z	Z Z	\(\frac{1}{z}\)
6.9	7.0	1.1

	i i i i i i i i i i i i i i i i i i i		000		
B - 30	H NMR(CDC1 ₃) 1. 25-1. 33(2H, m) 2. 63-2. 70(2H, m) 3. 10-3. 21(4H, m) 3 50(2H, t J=7. 92Hz) 4. 34(2H, s) 6. 17-6. 24(1H, m) 6. 99-7. 14(3H, m) 7. 26-7. 33(3H, m) 7. 40(1H, d) J=8. 58Hz) 7. 48(1H, td J=7. 59 1. 54Hz) 2) 7. 56-7. 67(5H, m) 7. 79-7. 88(3H, m) 8. 27(1H, d) J=8. 58Hz) 8. 42(1H, d) J=8. 58Hz)	A B - M S : (m /	H NMK(CDCLs) 0.89-1.01(2H.m) 1.09-1.25(4H.m) 2. 64-2.72(2H,m) 3.02-3.14(4H.m) 3.47 (2H,t J=7.75Hz) 4.38(2H.s) 5.63-5. 70(1H,m) 7.00-7.13(3H,m) 7.26-7.29 (1H,m) 7.36(2H,d J=7.26Hz) 7.44-7 83(9H,m) 7.91(1H,d J=7.26Hz) 8.23(11H,d J=8.58Hz) 8.41(1H,d J=8.58Hz)	FAB-MS: (m/z) 726 (M¹) 542 383 280 11. 18 - 1. 35 (4 H, m) 2. 69 (2 H, br d J = 4. 6 2 H z) 3. 05 - 3. 13 (4 H, m) 3. 35 (2 H, t J = 7. 6 H Z) 4. 37 (1 H, s) 5. 42 + 5. 50 (1 H, m) 7. 20 (1 H, m) 7. 39 - 7. 36 (3 H, m) 7. 4 (7 H, m) 7. 87 (1 H, d. 1 = 7. 59 H z) 8. 2	
				т.	
62		, ون		4	-
	SOS-4		SONH NZOZ NZOZ	HN OS	
	— сн,сн,		— Сн,сн, —	— сн ₂ сн ₂ —	
	Z Z		Z	Z Z Z	
7.2		7.3		7	

_		·	
B-MS: (m/z) 710(M°) 526 228 NMR(CDCis) 19-1.37(411.m) 2.70(211.br d J=4 z) 3.05-3.15(411.m) 3.36(2.11.br t	=7 76H2) 4 38 (2H, s m) 7 02-7 15 (5H, m) H, d J=8 25H2) 7 44 (1H, d J=7 59Hz) 8) 8 21 (1H, s)	FAB-MS: (m/z) 706(M ⁻) 614 522 349 "H NMR(CDC1;) 1. 15-1.38 (4H, m) 2.37 (3H, s) 2.67-2. 73 (2H, m) 3.05-3.13 (4H, m) 3.34 (2H, t) 7. 92Hz) 4.37 (2H, s) 5.05-5.13 (1H, m) 7. 01-7.1.4 (3H, m) 7.20-7.30 (4H, m) 7 44-7.69 (6H, m) 7.72 (1H, d) 1=8.58 Hz) 7. 90 (1H, d) 1=7.92 Hz) 8.05 (1H, d) 1=8.25 Hz)	FAB-MS: (m/2) 722(M') 688 538 'H NAR(CDC1.) 1. 15-1. 39 (4H, m) 2. 63-2. 71 (2H. m) 3. 0. 4-3. 13 (4H, m) 3. 34 (2H. t. J=7.92 Hz) 3. 80 (3H, s) 4. 37 (2H, s) 6. 88 (2H, d. J=8.91 Hz) 7. 28 (1H, d. J=8.58 Hz) 7. 4 (3H, m) 7. 19 (1H, m) 7. 88 (1H, d. J=8.58 Hz) 7. 43-7. 73 (7H. m.) 7. 88 (1H, d. J=7.59 Hz) 8. 09 (1H, d. J=8.58 Hz) 7. 8 (1H, d. J=7.59 Hz) 8. 58 Hz)
		- 	-
HN.OS	<u></u>	SO ₂ NH —	SO ₂ NH -
	— СН,СН, —	— CH ₂ CH ₃ —	— сн,сн,
(ū Ō	Z - - - - - -	√ 2
7.5		7 6	

F A B - M S : (m / z) 770 (M*) 1 12 - 1 : 32 (4 H ; m) 2 : 6 5 - 2 : 72 (2 H ; m) 3 : 6 5 - 3 : 72 (2 H ; m) 3 : 6 5 - 3 : 72 (2 H ; m) 3 : 7 : 6 (2 H ; m) 1 : 7 : 92 H z) 4 : 38 (2 H ; s) 7 : 02 - 7 : 15 (3 H ; m) 7 : 20 (1 H ; m) 7 : 20 (1 H ; m) 7 : 30 (1 H ; m) 7 : 73	FAB-MS: (m/z) 699(M ⁺) 'H NMR(CDC1.) 2. 70-2. 77(2H, m) 3. 10(2H, t J=7.75Hz) 3. 23-3. 28(2H, m) 3. 43(2H, t J=7.91 Hz) 4. 35(2H, s) 6. 99-7. 13(3H, m) 7. 2 6-7. 29(3H, m) 7. 36(1H, d J=8.58Hz) 7 48-7. 54(4H, m) 7. 57-7. 64(2H, m) 7. 7 6(1H, d J=8.91Hz) 7. 91(1H, d J=7.92Hz) 2) 8. 18(1H, d J=8.58HZ) 8. 25(1H, d J=7.92Hz) =1. 65Hz)	FAB-MS: (m/z) 712(M¹) 528 'H NMR(CDCl ₃) 1.28-1.38(2H, m) 2.68-2.75(2H, m) 3.09(2H, t J=7.76Hz) 3.20-3.25(2H, m) 3.39(2H, t J=7.92Hz) 4.35(2H, s) 5.86(1H, br t) 7.00-7.15(3H, m) 7.25-7.26(2H, m) 7.35(2H, d) 1=8.58Hz) 7.48-7.66(2H, m) 7.59-7.68(4H, m) 7.76(1H, d) 1=8.58Hz) 7.86(1H, d) 1=7.92Hz) 8.17(1H, d) 1=8.58Hz) 8.27(1H, d)
4 4	2	9
S S - () - E	NSO2NH	SOS AT
— СН3СН3 —	— СН2СН3 —	— СН2СН3 —
\(\sigma_z\)	Z = J	z T
7.8	07	0 8

69 519 36(2H.m) 1. 3(2H.m) 2.17 2H.m) 2.87-2 7.26H2) 3.74 39(2H.s) 5.3) 6.94-6.96(1 Hz) 7.50-7.7 58Hz) 7.96(1	5 5 5 0 5 2 4 4. 0 0 (2 H, m) 1. 8 (2 H, m) 1. 5 1. 7 26 H Z) 4. 3 9. 1 3 9 (3 H, m) 1 3 7 9 2 H Z) 5 6 - 7 7 1 (3 H, m) 7 9 5 (1 H, d) 5 =
F A B - M S: (m/z) 703(M ⁺) 6 1 11-1 19(2H, m) 1.25-1 47-1 58(2H, m) 1.85-2.1 -2.31(2H, m) 2.34-2.45(96(2H, m) 3.10(2H, t) 1 (1H, quint J=8.49Hz) 4 8(2H, s) 6.80-6.88(2H, m) 2H, m) 7.13(1H, t J=7.92 0 (5H, m) 7.13(1H, t J=7.92	FAB-MS: (m/2) 689(M°) 6 "H NMR(CDC1.) 0.83-0.91(2H,m) 0.91-1 14-1.22(2H,m) 1.26-1.3 -1.62(2H,m) 3.12(2H, J= (2H,s) 5.30(2H,S) 6.81 6.93(1H,brs) 7.12(1H, J= 7.52(2H,d J=8.57Hz) 7 7.81(2H,d J=8.57Hz) 7 7.51(2H,d J=8.57Hz) 7
. CΩ	γx
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °) S-(
- c+;о-	— CH ₂ O —
Z =	Z = ()
-T	80

FAB-MS: (m/z) 691(M°) 657 507 473 111-1:19(2H, m) 1:26-1:33(8H, m) 1:11-1:19(2H, m) 2:88-2:94(2H, m) 3:08 -3:13(2H, m) 3:19(1H, quint J=6:93Hz) 4:39(2H, s) 5:38(2H, s) 6:81-6:88(2H, s) 6:93(1H, s) 6:95(1H, br s) 7:1 3(1H, t J=7:92Hz) 7:52(2H, d J=8:58Hz) 7:56-7:70(3H, m) 7:79(2H, d J=8:58Hz) 58Hz) 7:96(1H, d J=7:59Hz)	FAB-MS: (m/z) 689(M ⁺) 244 II NMR(CDCI.) 1. 18-1. 11(2H.m) 1. 22-1. 39(2H.m) 1. 42-1. 50(2H.m) 2. 78-2. 84(2H.m) 3. 20 (2H.b.r t J=6. 78Hz) 4. 50(2H.s) 7. 14 -7. 16(2H.s) 7. 42-7. 82(15H.m) 7. 91(1H,d J=7. 26Hz) 8. 22-8. 27(2H.m)	FAB-MS: (m/z) 723(M+) 1 NMR(CDC1,) 1 17-1.23(2H.m) 1.24-1.37(2H.m) 1. 4.2-1.55(2H.m) 2.82-2.87(2H.m) 3.21 (2H.br t J=6.93Hz) 4.50(2H.s) 7.17 -7.22(2H.m) 7.42-7.88(14H.m) 7.91(1H.d J=7.59Hz) 8.13-8.16(2H.m)
S	· wa	5 9
- CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-C	- 500 - 50 - 500 -	S-{_}-2
— сн,о—	T T	I I
Z=\square	Z Z	Z Z
& &	3	₹ .

6 FAB-MS: (m/z) 691(M°) 507 H NN(CDCL) 113,2H m) 1.21-1.32(2H m) 1. -1.16(4H m) 3.37-2.8(2H m) 3.7(2H m) 3.7(2H m) 1. -1.16(4H m) 3.37-3.5(2H m) 3.7(2H m) 3.7(2H m) 3.7(2H m) 3.7(2H m) 1. -1.16(4H m) 3.37-3.5(2H m) 3.7(2H		*	
SO2 — CH ₂ CH ₂ — CH	(m/z) 691(M ⁺) 507 (Cl ₁) 1 (2H, m) 1.21-1.32(2H, m) 1 1 (2H, m) 2.81-2.8.8 (2H, m) 3.0 4H, m) 3.37-3.45(2H, m) 4.37 (97-7.07(3H, m) 7.26-7.31(2H 7-7.61(5H, m) 7.67-7.82(5H, m H, d J=7.26H2) 8.16(1H, d J=8 8.36(1H, d J=8.25H2)	(m/z) 725(M ⁺) (Cl ₃) 18(2H, m) 1.22-1.23(2H, m) 1 6(2H, m) 2.85-2.91(2H, m) 3.0 (2H, m) 3.38(2H, t J=7.76H2) (s) 6.99-7.15(3H, m) 7.20-7. 7.44-7.68(5H, m) 7.68-7.83 7.92(1H, d J=6.93H2) 8.08(1H 5.8H2) 8.24(1H, d J=1.65H2)	5: (m/z) 693 (MT) 1 06 (2 H, m) 1 16 - 1 27 (2 H, m) 1 19 (2 H, m) 2 8 1 - 2 86 (2 H, m) 3 0 19 (2 H, m) 2 8 1 - 2 86 (2 H, m) 3 0 19 (2 H, m) 2 8 1 - 2 86 (2 H, m) 3 0 17 (1 H, d) 1 = 7 5 8 H z) 6 90 (1 H, d) 2 8 0 8 H z) 7 03 (1 H, s) 7 11 (1 H, d) 2 8 0 8 H z) 7 47 - 7 64 (5 H, m) 7 6 9 3 H, m) 7 8 5 (1 H, d) 1 = 7 91 H z) 7 14 J = 1 49 7 7 6 H z) 8 2 5 - 8 3 1 (
	P A B B - 1 0 5 4 1 - 1 1 2 5 H R S 7 7 9 2 5 H	F A B 1	F A B - M 1 NMR (0 . 9 5 - 3 7 - 1 . (2 H , 6 . 1 = 1 . 1 . 8 0 (1 . m)
	05 - C	0 0 0 0 0	0° -{
	N CH ₁ CH ₁	Z - CH,CH2 -	CH.30
00 00	9 8	2 C C C C C C C C C C C C C C C C C C C	

0 4 H H H H H H H H H H H H H H H H H H	0.5
2 7 2 5 3 3	8 2 1 1 2 3 .
S 2 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 - 1 - 3 - 1 - 1
8 4 8 8	4 X 80 40 4 .
1.00,55	6 6 6 6 6 6
0 7 7 7 7 7 7	6 7 (
5 1 5 1 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 0 5 0 7)
7 - 2 - 2 - 1 H H L) s s s s s s s s s s s s s
+ 1 () E	K + 6 0 6 0 1 2 H 2 2 H 2 2 H 2 2 H 2 2 H 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 (M 2 . 6 1 (2 7 (2 = 7 .]
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 0 C P
897708	E 4 C D .
(= 7 8 (= 7	3 - 1 - 1 - 1 - 1 - 1 - 1
C C C C C C C C C C C C C C C C C C C	/ 2 / 2 (4 (4 (1 (1
C D C D 2 2 7 7 8 8 3 2 2 4 8	(m C D 3 9 2 7 7 7 8 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
7. D. D. C. C.	SS (1 ()))
ZXI) 2 0 X L
B ~ ~ ~ E .	н В В В В В В В В В В В В В В В В В В В
F 4 7 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	т. Н Н
30.4	4
1	1
N2.	N − 50
S	აგ-(/ Ŋ-ნ
	· \/
0	
CH ₂ O	Ĭ.
CHO	
CH ₂ O	
CH20	
- CF	
- CH,O	
- CE20	
- CE	
- Cito	
0°10	
8 9 CH20	

[実施例12]

2- {N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル] - N- {3-[(4-イソプロピル-2-チアゾリル) メトキシ] ベンジル}) スルファモイル安息香酸エチルエステル(化合物番号 1 c) の製造

2- (N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル] -N-(3-[(4-イソプロピルー2-チアゾリル) メトキシ] ベンジル} > スルファモイル安息香酸(化合物番号1)2. 15g(3. 1 1 mmol) に1, 2-ジクロロエタン16mlを加えオキサリルクロライドO. 41ml(4. 7mmol)を加えN, N-ジメチルムアミドを触媒量加え室温で攪拌した、減圧下溶媒を留去し、エタノール12 mlおよび1, 2-ジクロロエタン12ml、トリエチルアミンO. 6 5ml(4. 66mmol)を加え室温で1時間攪拌した。水と飽和炭酸水素ナトリウム溶液を加え中和レクロロホルム抽出した。クロロホルム層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し溶媒を減圧下留去した。残さをシリカゲルカラムクロマトグラフィー(溶出液;nーヘキサン:酢酸エチル=3:1)で精製すると標記化合物1. 42gを収率63.5%で得た。

'H-NMR (CDCl₃): 1.23-1.41(13H,m) 2.82(2H,m) 3.06-3.17(3H,m) 4. 38-4.45(4H,m) 4.83(1H,t) 5.26(2H,s) 6.90(4H,d J=0.66Hz) 7.22(1H,m) 7.45(2H,d J=1.98 6.6Hz) 7.51-7.65(3H,m) 7.74(2H,d J=1.98 6.6Hz) 7.83(1H,m)

実施例12と同様にして実施例13、14に示す化合物を製造した。 [実施例13]

25 $2 - \{N - [4 - (4 - \cancel{y} + \cancel{y}$

ル)) スルファモイル安息香酸エチルエステル (化合物番号5c)

H-NMR(CDCl₃): 1.22-1.41(7H,m) 1.84-2.39(6H,m) 2.41(3H,s) 2.80(2H,m) 3.16(2H,m) 3.67(1H,quint) 4.37-4.45(4H,m) 4.61(1H,t) J=6.2(7Hz) 5.27(2H,s) 6.88-6.92(4H,m) 7.22-7.29(3H,m) 7.50-7.62(3H,m) 7.68(2H,d) J=8.24Hz) 7.82(1h,d) J=7.25Hz)

〔実施例14〕

2-{N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル]-N-{3-[4-シクロブチル-2-チアゾリル) エチル] ベンジル}}
スルファモイル安息香酸エチルエステル (化合物番号29c)

10 'H-NMR(CDCl₃): 1.21.41(7H,m) 1.87-2.39(6H,m) 2.80(2H,m) 3.14(2 H,br s) 3.22(2H,m) 4.40(4H,m) 5.04(1H,t J=5.94Hz) 6.75(1H,s) 7.0 8(3H,m) 7.20(1H,m) 7.45(2H,dd J=6.6 1.98Hz) 7.51-7.65(3H,m) 7.73 (2H,d J=8.25Hz) 7.82(1H,d J=8.24Hz)

[実施例15]

15 5-{2-{N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル]-N-{3-[(4-イソプロピル-2-チアゾリル) メトキシ] ベンジル} スルファモイルフェニル}-1H-テトラゾール(化合物番号91)の製造

実施例9の生成物(化合物1a)の塩酸塩3.5g(6.4mmol)を1,2ージクロロエタン75mlに溶解し、トリエチルアミン2.7ml、2ークロロスルホニルベンゾニトリル1.7g(1.3eq)を加え室温で一晩攪拌した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残さをシリカゲルクロマトグラフィー(溶出液;クロロホルムからクロロホルム:メタノール=99:1)で精製して2ー(Nー[4ー(4ークロロベンゼンスルホニルアミノ)ブチル]ーNー(3ー[(4ーイソプロピルー2ーチアゾリル)メトキシ]ベンジル} スルファモイルベンゾニトリル(化合物番号91b)3.9gを収率89%で得た。

FAB-MS (m/z) : 673 (M^{+})

15

20

25

'H-NMR (CDCl₃): 1.32(6H,d,J=6.93Hz),1.42(4H,m),2.85(2H,m),3.11 (1H,m),3.29(2H,m),4.42(2H,m),4.62,(1H,m),5.29(2H,s),6.84-6.89(3H,m),6.91(1H,s),7.22(1H,m),7.47(2H,dd,J=8.58,1.82Hz),7.65-7.78(4H,m),7.88(1H,dd,J=1.98,7.26Hz),8.07(1H,m)

上記生成物(化合物番号91b)3.8g(5.6mmol)をトルエン100mlに溶解し、トリメチルシリルアジド3.7ml(5.0eq)、ジブチルチンオキシド702mg(0.5eq)を加え70℃で28時間加熱撹拌した。減圧下溶媒を留去し、残さに1N水酸化ナトリウム50ml、水50mlを加え不溶物をろ別し、ろ液をエーテル100mlで洗浄した。水層を6N塩酸で酸性にしクロロホルムで抽出した。減圧下溶媒を留去し、残さをシリカゲルクロマトグラフィー(溶出液;クロロホルムからクロロホルム:メタノール=99:1~95:5)で精製し、油状物質3.1gを収率78%で得た。得られた油状物質を1N水酸化ナトリウム8.4ml、水50mlに溶解し1N塩酸で酸性(pH3.0)として析出した沈殿をろ取し標記化合物(化合物番号9

1) 2. 4gを得た。

FAB-MS (m/z) : 716 (M^+)

'H-NMR (CDCl₃): 1.16(4H,m),1.27(6H,d,J=6.93Hz),2.73(2H,m),2.87 (2H,m),3.07(1H,m),4.08(2H,s),5.30(2H,m),6.74-6.91(4H,m),7.20(1H,t,J=7.76Hz),7.46(2H,m),7.68-7.80(4H,m),7.97(1H,dd,J=1.65,7.32Hz),8.08(1H,dd,J=1.65,5.66Hz)

[試験例]

つぎに本発明の2ースルファモイル安息香酸誘導体がLTD、および TXA2の両メディエーターに対する優れた受容体拮抗作用および抗ア レルギー作用を有することについて試験例をあげて説明する。

本発明化合物について、抗LTD、作用、抗TXA2作用および抗喘息作用に対する試験を行った。その試験方法および試験結果を以下に示す。

[試験例1] (抗しTD₄作用)

- 15 モルモットを放血致死させた後、回腸を摘出し、回腸標本を作製した。この標本を95%O₂-5%CO₂混合ガスを通気し、37℃に保ったタイロード(Tyrode)液2mlを満たしたマグヌス槽中で、標本に1gの負荷を掛け懸垂し、LTD₄の添加により生ずる収縮反応を等張性に記録した。
- 20 標本を安定化させた後、LTD4 O. O5-3、5 ng/mlを累積的に処置し収縮反応を観察した。安定した収縮反応が得られたら、被験物質をLTD4添加の5分前に前処置し、その後再びLTD4を累積的に添加し収縮反応を得た。pA2値はパン・ロッサム(Van Rossum)の方法に従って算出した。その結果を以下の表4に示す。
- 25 〔試験例2〕 (抗TXA2作用)

モルモットを放血致死させた後、気管を摘出し、高木らの方法に従い

短冊型の気管筋標本を作製した。この標本を95%O2-5%CO2混合 ガスを通気し、37℃に保ったタイロード(Tyrode)液2mlを 満たしたマグヌス槽中で、標本に1gの負荷を掛け懸垂し、U-466 19の添加により生ずる収縮反応を等張性に記録した。

標本を安定化させた後、U-46619、 10^{-10} ~ 10^{-7} Mを累積的に処置し収縮反応を観察した。安定した収縮反応が得られたら、被験物質をU-46619添加の5分前に前処置し、その後再び<math>U-46619を累積的に添加し収縮反応を得た。DA2 値はバン・ロッサム(Van Rossum)の方法に従って算出した。その結果を以下の表4に示す。

それらの結果から本発明の化合物は、LTD、およびTXA2の両メディエーターに対する優れた受容体拮抗作用を有することが確認された。 表4 試験例1、2の結果

化合物番号	抗LTD₄作用(pA₂)	抗TXA₂作用(pA₂)
1	9. 73	8.30
2	9.59	7.99
3	9.26	8. 12
13	9. 92	7. 90
1.4	9. 92	8.06
15	9. 47	8.03
16	10.03	7. 99
17	9.80	7. 97
20	9.43	8. 17
21	9. 65	7. 99

22	9. 45	8. 31
2 4	9.65	8.17
29	9. 92	7. 90
53	9.82	8.69
5 4	9.71	7. 90
5 5	9.82	8. 78
71	9. 12	8.40
72	9. 58	8.05
91	9.05	7. 7.3
	<u> </u>	

[試験例3] (抗喘息作用)

1.0

15

抗喘息作用は受動感作モルモット即時型喘息反応にて検討した。すなわち、実験前日、モルモットに、10倍に希釈した抗DNP/ovalbuminモルモット血清(モルモットPCA titer;×1024)を耳静脈より投与し、感作を行った。実験当日、ピリラミン(10mg/kg i.p.)を前処置の後、正常の気道抵抗値をペンノック(Pennock)らの方法に従い、ダブルフロープレチスモグラフ法にて測定した。被験物質(3mg/kg)はDMSOに溶解させた後、50%正常モルモット血清一生理食塩溶液にて溶解させ、抗原吸入の5分前に耳静脈より投与した。即時型喘息反応は抗原である1%卵白アルプミン生食液を超音波ネブライザーにより3分間吸入曝露により誘発し、吸入終了後5分(4~6分)における気道抵抗値を測定した。データは以下の式で算出される抑制率で表した。

抑制率(%)=(1-(A-B)/(C-D))×100

A:被験物質群における抗原吸入後の気道抵抗値

B:被験物質群における抗原吸入前の気道抵抗値

C:対照群における抗原吸入後の気道抵抗値

D:対照群における抗原吸入前の気道抵抗値

その結果を表5に示す。その結果から本発明の化合物は、優れた抗喘息作用を有することが確認された。

5

表5 試験例3の結果

化合物番号	抗喘息作用 抑制率 (%)
1 24 38 70	53. 5 40. 5 59. 5 54. 0

[急性毒性試験]

化合物番号1、5、29の化合物についてICRマウスで100mg/kgの静脈内投与および1000mg/kgの経口投与を行ったが、いずれも死亡例は見られなかった。

10 〔製剤例〕

つぎに本発明化合物の製剤例を示すが、これらの処方に特に限定されるものではない。

〔製剤例1〕

下記の処方にしたがって1錠当り有効成分100mgを含有する錠剤 15 を調製した。

 (成分)
 (mg)

 化合物番号1の化合物
 100

ラクトース 30

WO 98/57935

PCT/JP98/02585

83

コーンスターチ	40
結晶セルロース	1 5
メチルセルロース	 3
ステアリン酸マグネシウム	2

5 〔製剤例2〕

下記の処方にしたがって有効成分100mgを含有する190mgの 混合成分をカプセルに充填してカプセル剤を調製した。

	(成分)		(mg)
	化合物番号1の化合物		100
10	ラクトース	- +	50
	コーンスターチ		30
	結晶セルロース		8
	ステアリン酸マグネシウム		2

産業上の利用可能性

15 本発明の一般式(I)で示される新規な2-スルファモイル安息香酸誘導体は、LTD 、受容体拮抗作用とTXA 2 受容体拮抗作用をあわせ持ち、優れた抗喘息作用を示す。したがって、本発明の化合物はアレルギー性の気管支喘息などの各種アレルギー性疾患の治療および予防のための抗アレルギー剤として有用である。

請求の範囲

1. 一般式(1)

10.

15

$$R1$$
 $R2$
 X
 A
 O
 O
 $COOR4$
 (CH_2) n
 $R3$

(式中R 1、R 2は同一または異なって水素原子、 C_3 -。のシクロアルキル基、置換されていてもよい C_1 -。のアルキル基、置換されていてもよい C_1 -のアルキル基を置換されていてもよいアリール基または C_1 -のアルキルをなって

式で示される縮合環を形成していてもよく、これらの縮合環は、置換されていてもよいC1-。のアルキル基、アミノ基、シアフ基、シアノ基、ホ酸基、ハロゲン原子またはC1-。のアルコキシ基で置換されていてもよい。 X は酸素原子、窒素原子、硫黄原子または一CH=CHー、R3は置換されていてもよいフェニルスルホニルアミノ基、置換されていてもよいフェニルスルホニルを基またはエステル残基、いフェニルスルホキシド基、R4は水素原子またはエステル残基、ロは2から6の整数を示す。 A はーローBー、一Bーロー、一SーBー、一BーSーまたは一Bーで示され、BはC1-。のアルキレン基またはC2-。のアルケニレン基を示す。ただし、R1がC1-。のアルキル基またはフェニル基であり、R2が水素原子、Aがビニレン基、Xが硫黄原子である場合は除く。)で示される2ースルファモイル安息香酸誘導体、その塩、その水和物またはその溶媒和物。

- 2. 一般式(1)におけるXが硫黄原子で、Aが一CH2O一またはエチレン基である請求項1記載の2ースルファモイル安息香酸誘導体、その塩、その水和物またはその溶媒和物。
- 3. 一般式(I)におけるR1、R2が同一または異なって水素原子、
- 5 C₃₋₈ のシクロアルキル基、置換されていてもよいC₁₋₈ のアルキル基 または置換されていてもよいアリール基である請求項2記載の2-スル ファモイル安息香酸誘導体、その塩、その水和物またはその溶媒和物。
- 10 ジル》》スルファモイル安息香酸、

- 2-{N-[4-(4-メチルベンゼンスルホニルアミノ) プチル]-N-{3-[(4-イソプロピル-2-チアゾリル) メトキシ] ベンジル} スルファモイル安息香酸、
- 2- (N-[4-(4-メトキシベンゼンスルホニルアミノ) ブチル] -N-(3-[(4-イソプロピル-2-チアゾリル) メトキシ] ベン ジル) } スルファモイル安息香酸、
 - $2-\{N-[4-(4-プロモベンゼンスルホニルアミノ) プチル] N-\{3-[(4-イソプロピル-2-チアゾリル) メトキシ] ベンジル} <math>\}$ スルファモイル安息香酸、
- - 2-{N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル]-N-{3-[(4-シクロブチル-2-チアゾリル) メトキシ] ベンジ
- 25 ル》》スルファモイル安息香酸、
 - 2- (N-[4-(4-プロモベンゼンスルホニルアミノ) プチル]-

- $N = \{3 [(4 シクロプチルー2 チアゾリル) メトキシ] ベンジル \} \} スルファモイル安息香酸、$
- 2-{N-[4-(4-フルオロベンゼンスルホニルアミノ) ブチル] -N-{3-[(4-シクロブチル-2-チアゾリル) メトキシ] ベン 5 ジル}}スルファモイル安息香酸、
 - 2-{N-[4-(ベンゼンスルホニルアミノ) ブチル]-N-{3-[(4-シクロブチル-2-チアゾリル) メトキシ] ベンジル}} スルファモイル安息香酸、
- 2-{N-[4-(4-メチルベンゼンスルホニルアミノ) ブチル]10 N-(3-[(4-シクロブチル-2-チアゾリル) メトキシ] ベンジル} スルファモイル安息香酸、
 - 2-{N-[4-(4-メトキシベンゼンスルホニルアミノ) ブチル] -N-(3-[(4-シクロブチル-2-チアゾリル) メトキシ] ベン ジル}) スルファモイル安息香酸、
- 15 2-{N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル] N-{3-[2-(4-シクロプロピル-2-チアゾリル) メトキシ] ベンジル}} スルファモイル安息香酸、
 - $2-\{N-[5-(4-クロロベンゼンスルホニル) ペンチル]-N-\{3-[2-(4-シクロプチルー2-チアゾリル) メトキシ] ベンジ$
- 20 ル》》スルファモイル安息香酸、
 - $2-\{N-[5-(4-クロロベンゼンスルホニルアミノ) ペンチル]$ $-N-\{3-[(4-イソプロピル-2-チアゾリル) メトキシ] ベンジル <math>\}$ スルファモイル安息香酸、
- 2-{N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル] N-{3-[2-(4-シクロブチルー2-チアゾリル) エチル] ベンジル}}スルファモイル安息香酸、

10.

25

2-(N-[4-(4-フルオロベンゼンスルホニルアミノ) ブチル] -N-(3-[2-(4-シクロブチル-2-チアゾリル) エチル] ベンジル) } スルファモイル安息香酸および

2-{N-[4-(4-ブロモベンゼンスルホニルアミノ) ブチル] - N-(3-[2-(4-シクロブチル-2-チアゾリル) エチル] ベンジル) > スルファモイル安息香酸、またはこれらの塩、水和物もしくは溶媒和物。

5. 一般式(I)におけるXが一CH=CH-で、Aが一CH2O-、エチレン基またはビニレン基である請求項1記載の2-スルファモイル安息香酸誘導体、その塩、その水和物またはその溶媒和物。

6. 一般式(|) におけるR1、R2が環

と一体となって

式 で示される縮合環を形成し、これらの縮合環が、置換されていてもよい C₁₋₈ のアルキル基、アミノ基、シアノ基、ニトロ基、水酸基、ハロゲン原子または C₁₋₈ のアルコキシ基で置換されていても

15 よい請求項5記載の2-スルファモイル安息香酸誘導体、その塩、その水和物またはその溶媒和物。

7. 2-{N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル]-N-(3-[2-(2-キノリル) エチル] ベンジル} > スルファモイル安息香酸、

20 $2-\{N-[4-(4-プロモベンゼンスルホニルアミノ) プチル] - N-{3-[2-(2-キノリル) エチル] ベンジル}} スルファモイル安息香酸、$

2- (N-[4-(4-フルオロベンゼンスルホニルアミノ) ブチル] -N- (3-[2-(2-キノリル) エチル] ベンジル) } スルファモ イル安息香酸、

- 2-{N-[4-(4-メチルベンゼンスルホニルアミノ) ブチル]-N-{3-[2-(2-キノリル) エチル] ベンジル}} スルファモイル安息香酸、
- 2-{N-[4-(4-メトキシベンゼンスルホニルアミノ) ブチル] -N-{3-[2-(2-キノリル) エチル] ベンジル}} スルファモイル安息香酸、
 - 2-{N-[4-(ベンゼンスルホニルアミノ)ブチル]-N-{3-[2-(2-キノリル)エチル]ベンジル}}スルファモイル安息香酸、
 - 2- (N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル]-
- 10 N-{3-[2-(7-クロロ-2-キノリル)エチル]ベンジル}} スルファモイル安息香酸、
 - 2-{N-[4-(4-プロモベンゼンスルホニルアミノ) ブチル]-N-{3-[2-(7-クロロー2-キノリル) エチル] ベンジル}} スルファモイル安息香酸、
- 15 2-{N-[4-(4-フルオロベンゼンスルホニルアミノ) ブチル] -N-{3-[2-(7-クロロ-2-キノリル) エチル] ベンジル}} スルファモイル安息香酸、
 - 2- $\{N-[4-(4-メチルベンゼンスルホニルアミノ) ブチル]-N-<math>\{3-[2-(7-クロロ-2-キノリル) エチル] ベンジル\}\}$
- 20 スルファモイル安息香酸、

イル安息香酸、

- 2-{N-[4-(4-メトキシベンゼンスルホニルアミノ) ブチル] -N-{3-[2-(7-クロロ-2-キノリル) エチル] ベンジル}} スルファモイル安息香酸、
- 2-{N-[4-(ベンゼンスルホニルアミノ)ブチル]-N-(3-25 [2-(7-クロロー2-キノリル)エチル]ベンジル}} スルファモ

WO 98/57935 PCT/JP98/02585

8 9

スルファモイル安息香酸、

(2-{N-[5-(4-クロロベンゼンスルホニルアミノ)ペンチル]-N-(3-[2-(2-キノリル)エチル]ベンジル})スルファモイル安息香酸、

2-{N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル]-N-{3-[(2-キノリル) メトキシ] ベンジル}} スルファモイル 安息香酸、

10 2-{N-[4-(4-クロロベンゼンスルホニルアミノ)ブチル]-N-{3-[(7-クロロー2-キノリル)メトキシ]ベンジル}}ス ルファモイル安息香酸、

15 イル安息香酸および

2-{N-[4-(4-クロロベンゼンスルホニルアミノ) ブチル] - N-{3-[(7-クロロー2-キノリル) エテニル] ベンジル}) スルファモイル安息香酸、またはこれらの塩、水和物もしくは溶媒和物。

20 -N-{3-[(4-イソプロピル-2-チアゾリル)メトキシ]ベンジル}} スルファモイル安息香酸、

 $2-\{N-[5-(4-クロロベンゼンスルホニルアミノ) ペンチル]$ $-N-\{3-[(4-イソプロピル-2-チアゾリル) メトキシ] ベンジル\}) スルファモイル安息香酸、$

 ジル〉〉スルファモイル安息香酸、

2-{N-[5-(4-クロロベンゼンスルホニルアミノ) ペンチル] -N-{3-[2-(7-クロロ-2-キノリル) エチル] ベンジル}} スルファモイル安息香酸および

5 2-(N-[5-(4-クロロベンゼンスルホニルアミノ) ペンチル] -N-(3-[2-(2-キノリル) エチル] ベンジル) } スルファモ イル安息香酸、またはこれらの塩、水和物もしくは溶媒和物。

9. 一般式(11)

15

20

10 (式中R1、R2は同一または異なって水素原子、 C_{3-8} のシクロアルキル基、置換されていてもよい C_{1-8} のアルキル基、置換されていてもよい C_{1} と一体となって

式で示される縮合環を形成していてもよく、これらの縮合環は、置換されていてもよいCinsのアルキル基、アミノ基、シアノ基、ニトロ基、水酸基、ハロゲン原子またはCinsのアルコキシ基で置換されていてもよい。 X は酸素原子、窒素原子、硫黄原子または一CH=CHー、R3は置換されていてもよいフェニルスルホニルアミノ基、置換されていてもよいフェニルスルホニル基または置換されていてもよいフェニルスルホキシド基、nは2から6の整数を示す。Aは一〇-Bー、一B-〇-、一S-B-、一B-S-または一B-で示され、Bは

C₁₋₆ のアルキレン基またはC₂₋₅ のアルケニレン基を示す。ただし、R₁ がC₁₋₅ のアルキル基、C₃₋₈ のシクロアルキル基またはフェニル基であり、R₂が水素原子、Aがビニレン基、Xが硫黄原子である場合は除く。)で示されるベンジルアミン誘導体またはその塩。

5 10. 一般式(|||a)

(式中R1、R2は同一または異なって水素原子、C3-0のシクロアルキル基、置換されていてもよいC1-0のアルキル基、置換されていてもよいアリール基またはR1、R2は環

10 式 で示される縮合環を形成していてもよく、この縮合環は、置換されていてもよい C₁-。のアルキル基、アミノ基、シアノ基、ニトロ基、水酸基、ハロゲン原子または C₁-。のアルコキシ基で置換されていてもよく、A'は-B'-O-または-B'-で示され、B'は C₁-。のアルキレン基を示す。)で示されるベンズアルデヒド誘導体またはその塩。

11. 一般式(|V)

(式中R1、R2は同一または異なって水素原子、C3-8 のシクロアルキル基、置換されていてもよいC1-6 のアルキル基、置換されていてもよいアリール基またはR1、R2は環

式 で示される縮合環を形成していてもよく、これらの縮合環は、置換されていてもよい Ci-s のアルキル基、アミノ基、シアノ基、ニトロ基、水酸基、ハロゲン原子または Ci-s のアルコキシ基で置換されていてもよく、Xは酸素原子、窒素原子、硫黄原子または一CH=CH-を示す。)で示されるベンゾニトリル誘導体またはその塩。12. 一般式 (V)

 $H_2N - (C_1H_2)_{-n} - R_3$

(式中 n は 2 から 6 の 整数、 R 3 は 置換 されていてもよいフェニルスルホニルアミノ基、 置換 されていてもよいフェニルスルホニル基または 置換 されていてもよいフェニルスルホキシド基を示す。) で示されるアミン誘導体またはその塩。

- 13. 請求項1記載の2-スルファモイル安息香酸誘導体、その塩、その水和物またはその溶媒和物を有効成分として含有する医薬。
- 14. 請求項1記載の2-スルファモイル安息香酸誘導体、その塩、その水和物またはその溶媒和物を有効成分として含有する抗アレルギー剤。 15. 請求項1記載の2-スルファモイル安息香酸誘導体、その塩、その水和物またはその溶媒和物を有効成分として含有するロイコトリエンおよびトロンボキサンA。両拮抗剤。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/02585

	A CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07D215/14, 263/38, 263/32, 277/24, 277/28, A61K31/425, 31/47				
According	to International Patent Classification (IPC) or to both n	ational classification and IPC			
L	OS SEARCHED				
Minimum o	documentation searched (classification system followed . C1 6 C07D215/14, 263/38, 263/3	by classification symbols) 2, 277/24, 277/28, A611	K31/425, 31/47		
Documenta	ition searched other than minimum documentation to the	e extent that such documents are include	d in the fields searched		
8			<i>p</i>		
Electronic (data base consulted during the international search (name (STN), REGISTRY (STN), WPI/L (me of data base and, where practicable, se QUESTEL)	earch terms used)		
·			ž.		
C. DOCL	JMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	· · · · · ·	Relevant to claim No.		
A	JP, 62-142168, A (Mitsubish Ltd.),	i Chemical Industries	1-15		
	25 June, 1987 (25. 06. 87) & EP, 219436, A & US, 4902	700, A			
A	JP, 3-501477, A (Leo Pharmac	eutical Products, Ltd.	1-15		
	A/S), 4 April, 1991 (04. 04. 91) & WO, 89/05294, Al & EP, 4	20844, A			
A	US, 4876346, A (American Hor 24 October, 1989 (24. 10. 89	me Products Corp.),) (Family: none)	1-15		
A	WO, 96/11916, Al (Yamanouch: Co., Ltd.),	i Pharmaceutical	1-15		
	25 April, 1996 (25. 04. 96) & EP, 786457, A				
		4. · · · · · · · · · · · · · · · · · · ·			
	i i	, * · · · · · · · · · · · · · · · · · ·	*		
Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
	* Special categories of cited documents: "T" later document published after the international filling date or priority document defining the general state of the art which is not date and not in conflict with the application but cited to understand				
.considered to be of particular relevance: "E" earlier document but published on or after the international filing date: "X" document of particular relevance: the claimed invention cannot be					
document which may throw doubts on priority claim(s) or which is considered novel or cannot be considered to involve an inventive step cited to establish the publication date of another citation or other when the document is taken alone					
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is					
means combined with one or more other such documents, such combination being obvious to a person skilled in the art the priority date claimed "&" document member of the same patent (amily					
Date of the actual completion of the international search Date of mailing of the international search report					
10 August, 1998 (10. 08. 98) 25 August, 1998 (25. 08. 98)					
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer					
Facsimile N	fo.	Telephone No.	χ.		

国際調查報告

国際出願番号 PCT/JP98/02585

発明の属する分野の分類(国際特許分類(IPC)) Α.

> Int. CI* C07D215/14, 263/38, 263/32, 277/24, 277/28, A61K31/425, 31/47

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl* C07D215/14, 263/38, 263/32, 277/24, 277/28, A61K31/425, 31/47

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CA (STN), REGISTRY (STN), WPI/L (QUESTEL)

	ちと認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, 62-142168, A (三菱化成工業株式会社)、25. 6月. 1987 (25. 06. 87) & EP, 219436, A& US, 4902700, A	1-15
A ()	JP, 3-501477, A (レオ・ファーマシューティカル・プロダクツ・リミテツド・エイ/エス) 4 4月, 1991 (04, 04, 91) &WO, 89/05294, A1&EP, 42084	1-15
A	4, A US, 4876346, A (アメリカン・ホーム・プロダクツ・コーボレーション)、24.10月.1989 (24.10.89) (ファミリーなし)	1-15
A	WO, 96/11916, A1 (山之内製薬株式会社)、25.4月.1996(25.04.96)&EP, 786457, A	1-15
□ C欄の続き	きにも文献が列挙されている。	紙を参照。

パテントファミリーに関する別紙を参照。

- 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたも
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に含及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願
- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 25.08.98 10.08.98 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 C 7019 日本国特許庁(ISA/JP) 佐野 整 博 郵便番号100-8915 東京都千代田区羅が関三丁目4番3号 電話番号 03-3581-1101 内線 3452

様式PCT/ISA/210 (第2ページ) (1992年7月)