SDSC Summer Institute 2020

Overview

Highlights of data prep

Variable Selection and Reduction

The Importance of Data Prep

- "Garbage in, garbage out"
- Sometimes takes 60-80% of the whole data mining effort
- Preparing data is based on statistical principles

The Importance of Data Prep

- "Garbage in, garbage out"
- Sometimes takes 60-80% of the whole data mining effort
- Preparing data is based on statistical principles

But also heuristics

- Data Preparation:
 - Cleaning outliers, missing data

- Data Preparation:
 - Cleaning outliers, missing data
 - Filtering select rows or columns

- Data Preparation:
 - Cleaning outliers, missing data
 - Filtering select rows or columns
 - Transforming normalize or combine

- Data Preparation:
 - Cleaning outliers, missing data
 - Filtering select rows or columns
 - Transforming normalize or combine
 - Organizing data aka 'data wrangling' or 'data munging'

- Data Preparation:
 - Cleaning outliers, missing data
 - Filtering select rows or columns
 - Transforming normalize or combine
 - Organizing data aka 'data wrangling' or 'data munging'
 - Variable Selection/Dimension Reduction

- Data Preparation:
 - Cleaning outliers, missing data
 - Filtering select rows or columns
 - Transforming normalize or combine
 - Organizing data aka 'data wrangling' or 'data munging'
 - Variable Selection/Dimension Reduction

In a nutshell, prepare data for modeling

Missing Data – explore them

Get frequency counts and indices of missing variables

Are the missing entries missing-at-random?

Quick Approaches

Delete instances

In R: X_data = na.omit(X_data)

Quick Approaches

Delete instances

In R: X_data = na.omit(X_data)

and/or

Delete attributes with high missing-ness

In R use the is.na() function, returns 0 or 1

Quick Approaches

Delete instances
 In R: X_data = na.omit(X_data)

Delete attributes with high missing-ness

```
In R use the is.na() function, returns 0 or 1

foo = function(x){sum(is.na(x))} #a count of 'na' in x

sapply(X_data,foo) #apply foo to each column

X_data = subset(X_data,select=-c(your_col_name)) #delete a column
```


Imputation

Simple: Replace missing values with the mean

Imputation

Simple: Replace missing values with the mean

Complicated but most accurate:

Use a model (based on other attributes) to infer missing values

R and imputation

- Several packages, such as 'mice', 'amelia'
- Iteratively estimate missing data in one column using data in other columns

Mice uses Gibbs sampling (slower)

Amelia uses Expectation Maximization (faster)

R and imputation

'Amelia' package example

300K+ rows and 50 attributes from UN voting data 1K-100K entries missing per col for about 20 cols

Not run on user's laptop; took about 1 hour on a Comet compute node

R and imputation

'Amelia' package example

300K+ rows and 50 attributes from UN voting data 1K-100K entries missing per col for about 20 cols

Not run on user's laptop; took about 1 hour on a Comet compute node

Identify the 'id' variables

```
library('amelia')
a.out <- amelia(data,
idvars = ...c("country-id"),
m=10, parallel = "multicore")
```

Run 10 models in parallel

Variable Transformations

- Normalize or Scale data (if needed)
- Engineer new features (if it helps)
- Combine attributes (e.g. rates and ratios)
- Discretize data into bins (maybe more intuitive)

Variable Transformations

- Normalize or Scale data (if needed)
- Engineer new features (if it helps)
- Combine attributes (e.g. rates and ratios)
- Discretize data into bins (maybe more intuitive)

If variables are on different scales

Use prior knowledge

Normalizing or scaling

Mean center

$$x_{new} = x - \text{mean}(x)$$

z-score

$$score = \frac{x - \text{mean}(x)}{\text{std}(x)}$$

• Scale to [0...1]

$$x_{new} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

log scaling

$$x_{new} = \log(x)$$

Data Wrangling

Organizing data for modeling

lots of R packages and functions for date strings, matching, selecting, grouping, gathering, reading, etc...

We'll look at a couple of examples

4	Α	В	C	D	E	F	G	Н	1	J
1	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDi	WindGustSp	WindDir9a
2	11/1/2007	Canberra	8	24.3	0	3.4	6.3	NW	30	SW
3	11/2/2007	Canberra	14	26.9	3.6	4.4	9.7	ENE	39	E
1	11/3/2007	Canberra	13.7	23.4	3.6	5.8	3.3	NW	85	N
5	11/4/2007	Canberra	13.3	15.5	39.8	7.2	9.1	NW	54	WNW
5	11/5/2007	Canberra	7.6	16.1	2.8	5.6	10.6	SSE	50	SSE
7	11/6/2007	Canberra	6.2	16.9	0	5.8	8.2	SE	44	SE
	11/7/2007	Cambanna	C 1	10.7	0.3	4.3	0.4	CE	42	CE

date, location and the rest identify the row

WindGustDir and
WindGustSpeed are
repeatedly measured and
measurements are on
different rows

4	A	В	C	D	E	F	G	Н	1	J
ı	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDi	WindGustSp	WindDir9
	11/1/2007	Canberra	8	24.3	0	3.4	6.3	NW	30	SW
	11/2/2007	Canberra	14	26.9	3.6	4.4	9.7	ENE	39	E
	11/3/2007	Canberra	13.7	23.4	3.6	5.8	3.3	NW	85	N
	11/4/2007	Canberra	13.3	15.5	39.8	7.2	9.1	NW	54	WNW
	11/5/2007	Canberra	7.6	16.1	2.8	5.6	10.6	SSE	50	SSE
	11/6/2007	Canberra	6.2	16.9	0	5.8	8.2	SE	44	SE
	11/7/2007	Cambanna	C 1	10.7	0.2	4.3	0.4	CE	42	CE

date, location and the rest identify the row

WindGustDir and
WindGustSpeed are
repeatedly measured and
measurements are on
different rows

How to get all repeated measurements into 1 row?

4	A	В	C	D	E	F	G	Н	1	J
1	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDi	WindGustSp	WindDir9a
	11/1/2007	Canberra	8	24.3	0	3.4	6.3	NW	30	SW
	11/2/2007	Canberra	14	26.9	3.6	4.4	9.7	ENE	39	E
	11/3/2007	Canberra	13.7	23.4	3.6	5.8	3.3	NW	85	N
	11/4/2007	Canberra	13.3	15.5	39.8	7.2	9.1	NW	54	WNW
	11/5/2007	Canberra	7.6	16.1	2.8	5.6	10.6	SSE	50	SSE
	11/6/2007	Canberra	6.2	16.9	0	5.8	8.2	SE	44	SE
	11/7/2007	Cambanna	C 1	10.7	0.2	4.2	0.4	CE	42	CE

date, location and the rest identify the row

WindGustDir and
WindGustSpeed are
repeatedly measured and
measurements are on
different rows

How to get all repeated measurements into 1 row? Let's try "reshape2" library

		2 1	2			-	-			
4	A	В	C	D	E	F	G	H		J
1	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDi	WindGustSp	WindDir9am
2	11/1/2007	Canberra	8	24.3	0	3.4	6.3	NW	30	SW
3	11/2/2007	Canberra	14	26.9	3.6	4.4	9.7	ENE	39	E
4	11/3/2007	Canberra	13.7	23.4	3.6	5.8	3.3	NW	85	N

date, location and the rest identify the row

```
library(reshape2)
W_long =dcast(W_df,
formula=Date+Location+ ...~
```

1	Α	В	C	D	E	F	G	Н	1	J
1	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDi	WindGustSp	WindDir9an
2	11/1/2007	Canberra	8	24.3	0	3.4	6.3	NW	30	SW
3	11/2/2007	Canberra	14	26.9	3.6	4.4	9.7	ENE	39	E
4	11/3/2007	Canberra	13.7	23.4	3.6	5.8	3.3	NW	85	N

date, location and the rest identify the row

Put variable that has labels for the repeated measures

```
library(reshape2)
```

W_wide =dcast(W_df,

formula=Date+Location+ ... ~ <<<variable-name>>>,

A1	* 1	✓ Jx	Date							
4	Α	В	C	D	E	F	G	Н	1	J
1	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDi	WindGustSp	WindDir9an
2	11/1/2007	Canberra	8	24.3	0	3.4	6.3	NW	30	SW
3	11/2/2007	Canberra	14	26.9	3.6	4.4	9.7	ENE	39	E
4	11/3/2007	Canberra	13.7	23.4	3.6	5.8	3.3	NW	85	N

date, location and the rest identify the row

Put variable that has labels for the repeated measures

Indicate variable that has the repeated measurement values

Transformed Data Matrix

After running dcast: WindGustDir category labels are new columns

Data Wrangling – grouping

date, location and the rest identify the row

WindGustDir and WindGustSpeed are repeatedly measured

How to get mean speed for each direction?

Data Wrangling – grouping

date, location and the rest identify the row

WindGustDir and WindGustSpeed are repeatedly measured

How to get mean speed for each direction?

Let's try "dplyr" library

Data Wrangling - grouping

Identify groups of the values of WindGustDir

library(dplyr)

a1 <- group_by(na.omit(W_df), WindGustDir)

Data Wrangling - grouping

Identify groups of the values of WindGustDir

Select columns to aggregate

library(dplyr)

a1 <- group_by(na.omit(W_df), WindGustDir)

a2 <- select(a1, WindSpeed9am, Temp9am)

Data Wrangling - grouping

į	Α	В	C	D	E	F	G	H	1	J
	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDi	WindGustSp W	indDir9an
	11/1/2007	Canberra	8	24.3	0	3.4	6.3	NW	30 SV	N
	11/2/2007	Canberra	14	26.9	3.6	4.4	9.7	ENE	39 E	
I	11/3/2007	Canberra	13.7	23.4	3.6	5.8	3.3	NW	85 N	

Identify groups of the values of WindGustDir

Select columns to aggregate

library(dplyr)

```
a1 <- group_by(na.omit(W_df), WindGustDir)
```

a2 <- select(a1, WindSpeed9am, Temp9am)

a3 <- summarise(a2,

```
avg_speed = mean(WindSpeed9am, na.rm = TRUE),
```

avg_temp = mean(Temp9am, na.rm = TRUE))

Summarise

R exercise

Use "reshape2" library to

1. "cast" repeated measurements into one row (long to wide): <<< fill-in variable names >>>

[Extra: "melt" row back into repeated measurements]

2. Use "dplyr" library to perform grouping and aggregations: <<< fill-in variable names >>> and compare that to 'reshape' with 'sum'

pause

Reading Material

- Data Preparation for Data Mining by Dorian Pyle
 - http://www.ebook3000.com/Data-Preparation-for-Data-Mining_88909.html
- Data mining Practical Machine learning tools and techniques by Witten & Frank
 - http://books.google.com

Many Variables

- More variables => more information, but also more noise and more ways of interactions
- 2 ways to handle many variables
 - Variable Selection
 - Dimension reduction methods

Variable selection

 Heuristically, pick off or put in 1 variable at a time (step wise)

based on some criteria, like correlation with outcomes

Given a numeric matrix, can we reduce the number of columns?

Given a numeric matrix, can we reduce the number of columns?

• Yes, if features are constant or redundant

Given a numeric matrix, can we reduce the number of columns?

- Yes, if features are constant or redundant
- Yes, if features only contribute noise

Given a numeric matrix, can we reduce the number of columns?

- Yes, if features are constant or redundant
- Yes, if features only contribute noise

Conversely, want features that contribute to variations of the data

Note that (0,0) and (1,0.8) are points on the line that are combinations of H,W

1. The vector in HxW space:
$$v = \begin{pmatrix} W = 1 \\ H = 0.8 \end{pmatrix}$$
 other points also satisfy H=0.8*W : $\alpha * v$

The next direction of most variance.

You can rotate the axes

New axes (i.e., new features or latent factors) are combinations of old axis

Note: this factorization conserves total variance

Best Known Algorithms

SVD (singular value decomposition) PCA (principle component analysis)

SVD more generally works on non square matrices

X = U S V'

For U,S,V with less than P dimensions it is an approximation $X \sim U S V'$

The V here is same as in Principle Components (up to a sign change) of cov(X) matrix

Using PCs

SVC or PCA:

only use numeric columns, center and normalize

Use for dimension reduction, visualization, examine factor scores/loadings

Combine with clustering, regression, classification, etc...

Run the SVD exercise for practice and later it with K-means clustering

Note, the SVD command in R looks like this:

```
> Xsvd=svd(X)

> str(Xsvd)

List of 3
$ d: num [1:9] 27442.7 231.2 96.4 68.2 44.5 ...
$ u: num [1:363, 1:9] -0.0524 -0.0521 -0.052 -0.0519 -0.0525 ...
$ v: num [1:9, 1:9] -0.005042 -0.014276 -0.000969 -0.00314 -0.005491 ...
```


• end

