# DATA COMMUNICATION - EDA415

Solution to Final Exam 23 May 2000

#### Problem 1

- a) False. Lecture 3, slide 10
- b) False. Lecture 4, slide 12
- c) False. Lecture 6, slide 16
- d) True. Lecture 10, slide 26
- e) False. Lecture 12, slide 7
- f) True. Lecture 13, slide 11

#### Problem 2

- a) Lecture 12, slide 3.
- b) Lecture 12, slide 7.
- c) Lecture 12, slides 14-15.
- **d)** Lecture 12, slide 17 and lecture 10, slide 8. Tanenbaum pp. 527–528, pp. 538–539.

#### Problem 3

- a) Lecture 5, slide 19.
- **b)** Lecture 5, slides 19–20.
- c) Lecture 5, slides 22–23. There are 4 check bits per codeword.

  The message polynomial is

$$a(x) = x^5 + x^2 + x + 1$$

The CRC check bits are the remainder of  $(a(x) \cdot x^4)/g(x)$ .

$$\frac{a(x) \cdot x^4}{g(x)} = \frac{x^9 + x^6 + x^5 + x^4}{x^4 + x + 1} = x^5 + 1 + \frac{x + 1}{x^4 + x + 1}$$

So the codeword is

$$c(x) = x^9 + x^6 + x^5 + x^4 + x + 1 = 1001110011$$

d) Lecture 5, slide 23.

## Problem 4

a) Lecture 8, slides 2–3.

Tanenbaum pp. 252-255, pp. 288-289, pp. 292-293.

- b) Lecture 8, slides 2 and 4-5, lecture 7, slide 20
- c) Lecture 8, slide 5.

$$\frac{8 \cdot 64 \text{ bits}}{10 \text{ Mbits}} \text{ s} = 51.2 \cdot 10^{-6} \text{ s}$$

$$t_p = \frac{51.2 \cdot 10^{-6}}{2} \text{ s} = 25.6 \cdot 10^{-6} \text{ s}$$

## Problem 5

- a) Lecture 13, slide 4
- b) "if I can decrypt this message I get two marks"

| S | О            | U            | T | Η | P | Α | R | K |
|---|--------------|--------------|---|---|---|---|---|---|
| 7 | 4            | 9            | 8 | 2 | 5 | 1 | 6 | 3 |
| i | f            | i            | c | a | n | d | e | С |
| r | y            | p            | t | t | h | i | S | m |
| e | $\mathbf{s}$ | $\mathbf{S}$ | a | g | e | i | g | e |
| t | t            | w            | 0 | m | а | r | k | S |

c) Lecture 13, slides 6 and 9.

Secret key systems: DES, IDEA.

Public key systems: RSA.

d) Tanenbaum pp. 664-666.

## Problem 6

- a) Lecture 2, slide 4.
- **b)** Lecture 4, slide 3–4.
- **c**)

$$p_1(t) \Rightarrow p_1 \qquad (\sqrt{2}/2)(p_1(t) + p_3(t)) \Rightarrow q_1$$

$$p_2(t) \Rightarrow p_2 \qquad (\sqrt{2}/2)(p_2(t) + p_4(t)) \Rightarrow q_2$$

$$p_3(t) \Rightarrow p_3 \qquad (\sqrt{2}/2)(p_2(t) + p_3(t)) \Rightarrow q_3$$

$$p_4(t) \Rightarrow p_4 \qquad (\sqrt{2}/2)(p_1(t) + p_4(t)) \Rightarrow q_4$$



d) Lecture 4, slide 12, lecture 2, slide 14.

## Problem 7

- a) Lecture 13, slide 20, Tanenbaum pp. 38–44, pp. 63–65.
- **b)** Lecture 9, slides 21-22.
- c) Lecture 9, slide 23.

| n A to |    |   |                 |  |  |  |  |  |  |
|--------|----|---|-----------------|--|--|--|--|--|--|
| A      | 10 | В |                 |  |  |  |  |  |  |
| В      | 6  | В | updated routing |  |  |  |  |  |  |
| C      | 8  | В | table           |  |  |  |  |  |  |
| D      | 7  | D |                 |  |  |  |  |  |  |
| E      | 8  | Е |                 |  |  |  |  |  |  |
| F      | 0  | - |                 |  |  |  |  |  |  |

d) Lecture 10, slide 22.