三菱半導体(トランジスタ) 2SA798

低雑音差動増幅用 シリコンPNPエピタキシァル形 デュアルトランジスタ

概要

2SA798は、シリコンPNPエピタキシアル形デュアルトランジスタで、低雑音差動増幅用として設計されたものです。特性の良く揃ったトランジスタ2個が樹脂封止形の5ピン・シングルラインの小形外装に組み立てられているので、ステレオのプリアンプ、メインアンプ初段の低雑音差動増幅用、またペア特性が要求される回路等に最適です。

特長

- ●耐圧が高い V_{CEO}=-50V
- ●雑音指数が小さい NF=0.5dB標準・NV=100mV標準
- ●ペア特性が良い h_{FE1}/h_{FE2}=0.98標準

|V_{BE1}−V_{BE2}| = 1mV標準

● 直流電流増幅率が高い h_{FF} = 250~800

用 途

低雑音・低レベル差動増幅、直流増幅用

最大定格 (Ta = 25℃)

記号	項 目	定格値	単位
VcBo	コレクタ・ベース間電圧	-50	V
VEBO	エミッタ・ベース間電圧	-5	V
VCEO	コレクタ・エミッタ間電圧	- 50	V
lo	コレクタ電流	-100	mA
Pc	コレクタ損失(Ta=25℃)	200	mW/Unit
PT	全損失(Ta=25℃)	400	mW
T _j	接合部温度	+ 125	2
Tstg	保存温度	-55-+125	°C

電気的特性 (Ta=25℃)

記号	項	目	測 定 条 件	特性值		値	
			, , , , , , , , , , , , , , , , , , ,	最小	標準	最大	単位
V(BR)CB0	コレクタ・ベース	降伏電圧	$I_C = -10\mu A, I_E = 0$	-50	-		V
V(BR)EBO	エミッタ・ベース	降伏電 圧	$I_E = -10\mu A, I_C = 0$	-5	-		\ \ \
V(BR)CEO	コレクタ・エミッ	タ降伏電圧	I _C = -100μA, R _{BE} =∞	-50			V
Ісво	コレクタしゃ断	電流	V _{CB} = -35V, I _E =0			-0.1	μΑ
I _{EBO}	エミッタしゃ断	電流	V _{EB} =-2V, I _C =0			-0.1	μА
ICEO	コレクタしゃ断	電流	V _{CE} = -35V, R _{BE} = ∞		,-=14	-10	μА
h _{FE} †	直流電流増幅率		V _{CE} = -6V, I _C = -1mA	250		800	_
VcE(sat)	コレクタ・エミッ	夕飽和電圧	I _C = -10mA, I _B =-1mA			-0.6	
VBE1-VBE2	ベース・エミッタ	電圧差	$V_{CE} = -6V$, $I_C = -1mA$		1	10	mV
hFE1/hFE2	直流電流增幅率.	比(注1)	$V_{CE} = -6V, 1_{C} = -1mA$	0.8	0.98	1.0	<u> </u>
f⊤	利得帯域幅積		$V_{CE} = -6V$, $I_E = 1mA$,		100		MHz
Cob	コレクタ出力容	#	V _{CB} =-6V, I _E =0, f=1MHz		3		pF
NF	雑音指数		$V_{CE} = -6V$, $I_E = 0.1 \text{mA}$, $f = 1 \text{kHz}$, $R_G = 10 \text{k}\Omega$		0.5		dB
NV	低周波広帯域	実効値	$V_{CE} = -10V$, $I_{E} = 1mA$, $R_{G} = 100k\Omega$		100		mV
N·VM	雑音電圧	せん頭値	Gv=80dB, 測定回路参照		0.5		V

(注1) 2つの秦子のうちで、h_{FE}の低い方をh_{FE1}とする。

†:秦子1のhFEの値により右表のようにアイテム分類を行っています。

アイテム	F	G
h _{FE}	250 ~ 500	400~800

2SA798

低雑音差動增幅用 シリコンPNPエピタキシャル形 デュアルトランジスタ

標準特性

低周波広帯域雑音電圧測定回路

エミッタ接地出力特性(1)

コレクタ・エミッタ間電圧 V_{CE}(V)

エミッタ接地出力特性(2)

コレクタ・エミッタ間電圧 V_{CE} (V)

エミッタ接地伝達特性

ベース・エミッタ間電圧 V_{BE} (V)

低周波広帯域雑音電圧(実効値)— エミッタ電流特性

エミッタ電流 I_E (mA)

2SA798

低雑音差動増幅用 シリコンPNPエピタキシァル形 デュアルトランジスタ

低周波広帯域雑音電圧(実効値)― コレクタ・エミッタ間電圧特性

雑音指数特性(f=10Hz)

エミッタ電流 IE(μA)

雑音指数特性(f=100Hz)

コレクタ・エミッタ間電圧 V_{CE} (V)

エミッタ電流 I_E (μA)

雑音指数特性(f=1kHz)

エミッタ電流 IE(μA)

雑音指数一周波数特性

周波数 f(Hz)

直流電流増幅率一コレクタ電流特性

コレクタ電流 I_C (mA)

2SA798

低雑音差動増幅用 シリコンPNPエピタキシァル形 デュアルトランジスタ

利得帯域幅積―エミッタ電流特性

h定数一エミッタ電流特性

h定数―コレクタ・エミッタ間電圧特性

コレクタ・エミッタ間電圧 V_{CE}(V)

エミッタ接地ト定数(標準値)

記号	項目	測定条件	特 性 値	単位
hie	閉路小信号入力インピーダンス	Ta=25℃	16	kΩ
h _{re}	開路小信号逆電圧增幅率	V _{CE} = -6 V	0.13	×10 ⁻³
h fe	閉路小信号順電流增幅率	IE=1mA	600	_
hoe	開路小信号出力アドミタンス	f=270Hz	30	μS