Stefan Fischer Benjamin Neidhardt Merle Kammer

Übungsblatt Nr. 3

(Abgabetermin 11.05.2017)

Aufgabe 1

- a)
- b)
- c)
- d)

Aufgabe 2

Aufgabe 3

a)

 $A = \{9, 7, 21, 14, 88, 23, 10, 26, 13\}$

Bilden des Heaps:

Einfügen von $9\,$

Einfügen von 7

Wiederherstellen des Heap mit Beachtung des Kriteriums

Einfügen von 21

Einfügen von 14

Einfügen von 88

Einfügen von $23\,$

Einfügen von 10

Wiederherstellen des Heap mit Beachtung des Kriteriums

Einfügen von 26

Einfügen von 13

Wiederherstellen des Heap mit Beachtung des Kriteriums

b)

EXTRACTMIN Operation ausführen und Heap-Eigenschaft wiederherstellen:

Tutor: Benjamin Coban

Entnehme das Minimum d.h. die Wurzel des Baumes und füge 14 als neue Wurzel hinzu:

Vergleiche 14 mit beiden Kindelementen und tausche mit kleinerem, also der 9:

Vergleiche 14 wieder mit beiden Kindelementen, falls kleiner, tausche mit dem kleinsten, in dem Fall der 13:

Dies ist der finale Heap, da die Heap-Eigenschaft nun komplett wiederhergestellt ist.

c)

Neues Element 6 zu Heap hinzufügen:

Heap-Eigenschaft nach und nach wiederherstellen:

d)

Schritte in O-Notation um maximales Element aus dem Heap zu löschen? \to man vergleicht alle Blätter, aber nicht die Elternknoten, da diese nach der Heap-Eigenschaft nicht das größte Element sein können

Schritt 1: Das Maximum finden $\to \left[\frac{n}{2}\right]$ mit
n Anzahl der Elemente d.h. $\mathcal{O}(\left[\frac{n}{2}\right])$

Schritt 2: Maximum an unterstes Blatt,, welches am weitesten rechts steht \rightarrow O(1)

Schritt 3: Heap-Eigenschaft wiederherstellen: max $O(\log n)$, da Höhe von Baum ausgewogen

Schritt 4: Maximum aus Baum entfernen (Heap-Eigenschaft bleibt durch Schritt 1 immer erhalten)

$$\rightarrow \left[\frac{n}{2}\right] + 1 + \log n + 1 = \left[\frac{n}{2}\right] + \log n + 2 \rightarrow \mathrm{O(n)}$$

Aufgabe 4

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

a)

- (a) Die Wahrscheinlichkeit für das Ereignis $A=\{2\}$ ist: $P(A)=\frac{|A|}{|\Omega|}=\frac{1}{6}$
- (b) Die Wahrscheinlichkeit für das Ereignis $A=\{2,4,6\}$ ist: $P(A)=\frac{|A|}{|\Omega|}=\frac{3}{6}$

b)

Zu zeige: Falls
$$A \cap B = \emptyset$$
, dann gilt $P(A \cap B) = P(A) + P(B)$ (1)

$$P(A \cup B) \stackrel{(*)}{=} P((A \setminus B) \dot{\cup} (A \cap B) \dot{\cup} (B \setminus A))$$

$$= P(A \setminus B) + P(A \cap B) + P(B \setminus A) \leftarrow \sigma\text{-additivität}$$

$$= \underbrace{P(A \setminus B) + P(A \cap B)}_{=P(A)} + \underbrace{P(B \setminus A) + P(A \cap B)}_{=P(B)} - P(A \cap B)$$

$$= P(A) + P(B) + P(A \cap B)$$
für $A \cap B = \emptyset$ gilt somit
$$= P(A) + P(B)$$

(*): $A \cup B = (A \setminus B)\dot{\cup}(A \cap B)\dot{\cup}(B \setminus A)$

Für $A \cap B \neq \emptyset$ gilt $P(A \cup B) \leq P(A) + P(B)$ denn: $P(A \cup B) = P(A) + P(B) - P(A \cap B) \leftarrow$ siehe Beweis (1) $\Rightarrow P(A \cup B) \leq P(A) + P(B)$

c)

$$\Omega = \{1, 2, 3, 4, 5, 6\}^3$$

Das Ereignis, dass Älle drei Würfel ein Auge zeigen ist $A = \{(1,1,1)\}$. Die Wahrscheinlichkeit für dieses Ereignis ist: $P(A) = P(\{(1,1,1)\}) = \frac{|\{(1,1,1)\}|}{|\Omega|} = \frac{1}{6^3} = \frac{1}{216}$

d)

$$\Omega = \{1, 2, 3, 4, 5, 6\}^2$$

(a)

$$[X = 4] = \{(x, y) \in \Omega \mid X(x, y) = 4\}$$
$$= \{(4, 4), (4, 4), (4, 5), (5, 4), (4, 6), (6, 4)\}$$

Es werden zwei Würfel geworfen. Das Ereignis [X=4] tritt ein, wenn einer der Würfel eine 4 zeigt und die Augenzahl des anderen Würfels ≥ 4 ist. Das heißt das Minimum der gewürfelten Augenzahlen muss 4 sein, damit das Ereignis [X=4] eintrifft.

(b) $P([X=4]) = P(\{(4,4),(4,4),(4,5),(5,4),(4,6),(6,4)\}) = \frac{|\{(4,4),(4,4),(4,5),(5,4),(4,6),(6,4)\}|}{|\Omega|} = \frac{6}{6^2} = \frac{6}{36} = \frac{1}{6}$ Unter Annahme der Gleichverteilung der Ereignisse ist $P([X=4]) = \frac{1}{6}$.