Set Up

```
In [1]: # import modules and data
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

%matplotlib inline

countrycodes = pd.read_excel('Country-Code.xlsx')
restaurants = pd.read_excel('data.xlsx')

# merge datasets
df = pd.merge(countrycodes, restaurants, on='Country Code')
```

In [2]: df.head(2)

Out[2]:

	Country Code	Country	Restaurant ID	Restaurant Name	City	Address	Locality	Locality Verbose	Longitude	Latitı
0	1	India	2701	Orient Express - Taj Palace Hotel	New Delhi	Taj Palace Hotel, Diplomatic Enclave, Chanakya	The Taj Palace Hotel, Chanakyapuri	The Taj Palace Hotel, Chanakyapuri, New Delhi	77.170087	28.595(
1	1	India	309548	Tian - Asian Cuisine Studio - ITC Maurya	New Delhi	ITC Maurya, Diplomatic Enclave, Chanakyapuri, 	ITC Maurya, Chanakyapuri	ITC Maurya, Chanakyapuri, New Delhi	77.173455	28.597

```
In [3]: # summary of dataframe
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9551 entries, 0 to 9550
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	Country Code	9551 non-null	int64
1	Country	9551 non-null	object
2	Restaurant ID	9551 non-null	int64
3	Restaurant Name	9550 non-null	object
4	City	9551 non-null	object
5	Address	9551 non-null	object
6	Locality	9551 non-null	object
7	Locality Verbose	9551 non-null	object
8	Longitude	9551 non-null	float64
9	Latitude	9551 non-null	float64
10	Cuisines	9542 non-null	object
11	Average Cost for two	9551 non-null	int64
12	Currency	9551 non-null	object
13	Has Table booking	9551 non-null	object
14	Has Online delivery	9551 non-null	object
15	Price range	9551 non-null	int64
16	Aggregate rating	9551 non-null	float64

```
17 Rating color 9551 non-null object 18 Rating text 9551 non-null object 19 Votes 9551 non-null int64 dtypes: float64(3), int64(5), object(12) memory usage: 1.5+ MB
```

- the data has 20 columns and 9551 rows including headers
- cuisines appear to have an extra row
- datatypes appear correct

Data Wrangling

```
In [4]: # format columns to lower case
        df.columns = df.columns.str.lower()
        # remove spacing in columns
        df.columns = df.columns.str.replace(' ', '')
In [5]: df.columns
        Index(['countrycode', 'country', 'restaurantid', 'restaurantname', 'city',
Out[5]:
               'address', 'locality', 'localityverbose', 'longitude', 'latitude',
               'cuisines', 'averagecostfortwo', 'currency', 'hastablebooking',
               'hasonlinedelivery', 'pricerange', 'aggregaterating', 'ratingcolor',
               'ratingtext', 'votes'],
              dtype='object')
In [6]: # format to concise column names
        df = df.rename(columns={'averagecostfortwo':'averagecost', 'hastablebooking':'tablebooki
In [7]: # convert datatype for feature engineering
        df.countrycode = df.countrycode.apply(str)
In [8]: # check for duplicates
        df.duplicated().any()
        False
Out[8]:
In [9]: # % of missing values to assess most suitable treatment
        round(df.isnull().sum().sort values(ascending=False)/len(df)*100,2)
Out[9]: cuisines 0.09
       restaurantname 0.01 averagecost 0.00
       ratingtext
                          0.00
       ratingcolor rating
                         0.00
                        0.00
       pricerange 0.00
onlinedelivery 0.00
tablebooking 0.00
       currency 0.00 countrycode 0.00
                          0.00
        country
                          0.00
        latitude
       longitude 0.00
        localityverbose 0.00
       locality 0.00 address 0.00 city 0.00
        city
                          0.00
        restaurantid
                         0.00
```

```
dtype: float64
In [10]: # Arbitrary Imputation of missing values
        df.restaurantname.replace([np.nan], 'N/A - Missing Value', inplace=True)
In [11]: # fill cuisine missing values with mode
        df.fillna(value={'cuisines':df['cuisines'].mode()[0]}, inplace=True)
In [12]: # final missing value check
        df.isnull().sum()
Out[12]: countrycode
        country
        restaurantid
        restaurantname 0
        city
        address
        locality
        localityverbose 0
        longitude 0
        latitude
        cuisines
        averagecost
        currency
        tablebooking 0 onlinedelivery 0
        pricerange
        rating
        ratingcolor
        ratingtext
        votes
        dtype: int64
In [13]: # correct country names
        df.city.replace({'Brasì lia':'Brasil Lia', 'Sì£o Paulo':'Sao Paulo', '€;stanbul':'Istanb
In [14]: # drop irrelevant columns
        df.drop(['address', 'localityverbose'], axis=1, inplace=True)
        # reset df
        df.reset index(drop=True, inplace=True)
```

Exploratory Data Analysis

0.00

votes

```
In [15]: # statistics of df
    df.describe(include='all')
```

Out[15]:		countrycode	country	restaurantid	restaurantname	city	locality	longitude	latitude	cuisine
	count	9551	9551	9.551000e+03	9551	9551	9551	9551.000000	9551.000000	955
	unique	15	15	NaN	7446	141	1208	NaN	NaN	182
	top	1	India	NaN	Cafe Coffee Day	New Delhi	Connaught Place	NaN	NaN	Nort India
to free mea	freq	8652	8652	NaN	83	5473	122	NaN	NaN	94
	mean	NaN	NaN	9.051128e+06	NaN	NaN	NaN	64.126574	25.854381	Na
	std	NaN	NaN	8.791521e+06	NaN	NaN	NaN	41.467058	11.007935	Na
	min	NaN	NaN	5.300000e+01	NaN	NaN	NaN	-157.948486	-41.330428	Na

25%	NaN	NaN	3.019625e+05	NaN	NaN	NaN	77.081343	28.478713	Na
50%	NaN	NaN	6.004089e+06	NaN	NaN	NaN	77.191964	28.570469	Na
75%	NaN	NaN	1.835229e+07	NaN	NaN	NaN	77.282006	28.642758	Na
max	NaN	NaN	1.850065e+07	NaN	NaN	NaN	174.832089	55.976980	Na

- There are 15 unique countries, with India being the most common country, appearing 8652 times
- There are 140 unique cities
- 'Cafe Coffee Day' is the most common 'restaurantname', implying there should be numerous branches
- New Delhi is the most common 'city' with 5473 restaurants
- North Indian is the most common 'cuisine'
- 'Orange' and 'Average' are the most common rating indicators
- The max 'average rating' is 4.9

```
In [16]: # no. of unique restaurantid
    df.restaurantid.nunique()

Out[16]: 
# no. of unique restaurantname
    df.restaurantname.nunique()

Out[17]: 
7446
```

Geographical Distribution

Total Resturants by Countries

```
In [18]: # restaurant count and % by country
geodf = df.groupby(['country'], as_index=False)['restaurantid'].count()
geodf.rename(columns={'restaurantid':'totalrestaurants'}, inplace=True)
geodf['percent'] = (geodf.totalrestaurants/geodf.totalrestaurants.sum()*100).round(1)
geodf.sort_values(by='percent', ascending=False)
```

Out[18]: country totalrestaurants percent 3 90.6 India 8652 14 **United States** 434 4.5 13 United Kingdom 8.0 80 1 Brazil 60 0.6 9 South Africa 60 0.6 12 UAF 0.6 60 5 New Zealand 40 0.4 11 Turkey 34 0.4 0 Australia 24 0.3 Indonesia 21 0.2

Phillipines

22

0.2

6

7	Qatar	20	0.2
8	Singapore	20	0.2
10	Sri Lanka	20	0.2
2	Canada	4	0.0

Top 10 Cities with most Restaurants

```
In [20]: city_df = df.groupby(['city'], as_index=False)['restaurantid'].count()
    city_df.rename(columns={'restaurantid':'totalrestaurants'}, inplace=True)
    city_df['percent'] = (city_df.totalrestaurants/sum(city_df.totalrestaurants)*100).round(
In [21]: top_cities = city_df.nlargest(10, ['totalrestaurants'])
    top_cities
```

Out[21]:		city	totalrestaurants	percent
	89	New Delhi	5473	57.3
	50	Gurgaon	1118	11.7
	90	Noida	1080	11.3
	43	Faridabad	251	2.6
	48	Ghaziabad	25	0.3
	2	Ahmedabad	21	0.2

5	Amritsar	21	0.2
17	Bhubaneshwar	21	0.2
51	Guwahati	21	0.2
70	Lucknow	21	0.2

Ratings Distribution

```
In [23]: fig, axes=plt.subplots(1,2,figsize=(11,4), sharey=False)
    sns.histplot(df, x='rating', kde=True, palette='Spectral', ax=axes[0])
    axes[0].set_title('Rating Count with KDE')
    sns.kdeplot(df, x='rating', hue='ratingtext', ax=axes[1])
    axes[1].set_title('Rating Text Plot')
    sns.despine(right=True, top=True)
```


- Over 2000 ratings are 0, indicating no rating recorded
- Most valid ratings are between values 3 and 4
- 'Avearge' and 'Good' dominate 'textrating'
- 'Poor' and 'Excellent' appear almost equal in volume

Largest Franchises

```
In [24]: franchise = df.groupby(['country', 'restaurantname'], as_index=False)['restaurantid'].co
franchise.rename(columns={'restaurantid':'restcount'}, inplace=True)
In [25]: # select top 10 largest franchises
top_franchise = franchise.nlargest(10, ['restcount'])
top_franchise
```

```
Out[25]:
                   country
                              restaurantname restcount
            1061
                      India
                               Cafe Coffee Day
                                                        83
            1975
                      India
                                Domino's Pizza
                                                        79
            5523
                      India
                                                        63
                                       Subway
            2486
                      India
                             Green Chick Chop
                                                        51
            3689
                      India
                                   McDonald's
                                                        48
            3169
                      India
                                     Keventers
                                                        34
            2408
                      India
                                          Giani
                                                        29
            4480
                      India
                                      Pizza Hut
                                                        29
             705
                      India
                                Baskin Robbins
                                                        28
             690
                      India
                              Barbeque Nation
                                                        25
```

```
In [26]: # barplot
plt.figure(figsize=(12, 8))

plots = sns.barplot(top_franchise, x='restaurantname', y='restcount', palette='Spectral'

# annotate bars
for bar in plots.patches:
```

Total of Top 10 Franchise Restaurants

Ratio of Table Booking Service

Ratio of Table Booking Service

- The ratio of table booking services is approximately 9:1
- Majority of resturants do not offer booking services

% of Online Delivery Service

% of Online Delivery Services

- Almost 75% of resturants don't offer online delivery services
- Most restaurants do not provide delivery services

Votes vs Online Delivery

```
In [29]: sns.barplot(df, x='onlinedelivery', y='votes', ci=95, palette='Spectral')
    plt.title('Votes and Online Devliery Services')
    plt.xlabel('Online Delivery')
    plt.show()
```


• Higher volume of votes are seen for 'Yes' delivery services

Top Cuisines

```
# extract cuisines from string
In [30]:
        1 = []
        for i in df.cuisines.str.split(', '):
            l.extend(i)
         food = pd.Series([i.strip() for i in 1])
         # list of food value counts
        food.value counts()
        North Indian
                          3969
Out[30]:
        Chinese
                          2735
        Fast Food
                          1986
        Mughlai
                           995
        Italian
                           764
                           . . .
        Peranakan
                            1
        BÌ rek
        DÌ ner
                             1
        Fish and Chips
        Bubble Tea
        Length: 145, dtype: int64
In [31]: from wordcloud import WordCloud, STOPWORDS
```


Top 10 Cuisines served in Restaurants

Top 10 Cuisines

Total Cuisines served by Restaurant

```
In [33]: # create new column with cuisines count
df['cui_count'] = df.cuisines.apply(lambda x: len(x.split(', ')))
```

Maximum Cuisines

```
In [34]: # select top 5 largest counts
   maxfood = df.nlargest(5, ['cui_count'])
   maxfood[['restaurantname', 'city', 'rating', 'averagecost', 'currency', 'cui_count']]
```

Out[34]:	restaurantname		city	rating	averagecost	currency	cui_count
	939	R' ADDA	Mumbai	4.0	1200	Indian Rupees(Rs.)	8
	1200	Mumbai Vibe	Mumbai	3.8	1000	Indian Rupees(Rs.)	8
	2716	Bikanervala	Gurgaon	3.4	600	Indian Rupees(Rs.)	8
	3204	Indian Summer Cafe	Patna	3.4	600	Indian Rupees(Rs.)	8
	3290	Bikanervala	New Delhi	3.5	550	Indian Rupees(Rs.)	8

• The maximum count of cuisines served in a resturant is 8

Minimum Cuisines

```
In [35]: # select top smallest counts
minfood = df.nsmallest(5, ['cui_count'])
minfood[['restaurantname', 'city', 'rating', 'averagecost', 'currency', 'cui_count']]
```

Out[35]:		restaurantname	city	rating	averagecost	currency	cui_count
	0	Orient Express - Taj Palace Hotel	New Delhi	4.0	8000	Indian Rupees(Rs.)	1
	2	Bukhara - ITC Maurya	New Delhi	4.4	6500	Indian Rupees(Rs.)	1
	8	House of Ming - The Taj Mahal Hotel	New Delhi	4.0	5500	Indian Rupees(Rs.)	1
	10	Wildfire - Crowne Plaza	Gurgaon	3.7	5000	Indian Rupees(Rs.)	1
	12	Masala Library	New Delhi	4.9	5000	Indian Rupees(Rs.)	1

• The minimum amount of cuisines served is 1

Frequency of Cuisine Counts

Relationship of Ratings vs No. of Cuisines

• Restaurarnts serving less cuisines appear to receive higher averageratings than restaurants with more cuisines

Average Cost by Country

```
In [38]: sns.barplot(x='country', y='averagecost', palette="Spectral", data=df)
    plt.xticks(rotation='90')
    plt.show()
```


- it's difficult to compare the 'averagecost' amongst countries as each country's currency value and exchange rate is different
- Indonesia is appearing to have the highest 'averagecost' due to it's IDR currency which has many thousands but may not be equal in worth with other currencies

Relationships of Ratings

```
In [39]: sns.lmplot(df, x='rating', y='votes')
   plt.title('Rating by Votes')
   plt.show()
```


• Higher ratings are received with higher volume of votes

Correlations of Numerical Attributes

```
In [40]: # enumerate 'onlineodelivery' and 'tablebooking'
  dummy_df = df.copy()
  dummy_df = pd.get_dummies(dummy_df, columns=['onlinedelivery', 'tablebooking'], drop_fir
  dummy_df[['onlinedelivery_Yes', 'tablebooking_Yes']].head()
```

```
Out[40]: onlinedelivery_Yes tablebooking_Yes

0 0 0 1

1 0 0

2 0 0

3 0 1

4 0 1
```

```
In [41]: sns.heatmap(dummy_df.corr(), annot=True, fmt='.1f', cmap='coolwarm')
   plt.title('Correlations Heatmap')
   plt.show()
```


- 'rating' and 'votes' have a correlation of 0.3, indicating the number of 'votes' affect the 'rating'
- 'pricerange' and 'rating' have a correlation of 0.4, suggesting a higher rating is recevied for more 'pricerange'
- 'pricerange' and 'tablebooking_yes' have a correlation of 0.5, implying resturants with more 'pricerange' has the 'tablebooking' service

Pairplot of Ratings vs other Attributes

```
In [42]: to_pairplot = dummy_df[['rating', 'averagecost', 'pricerange', 'votes', 'cui_count', 'co
In [43]: plt.style.use('fast')
   plt.figure(figsize=(12,6))
   sns.pairplot(to_pairplot, palette='Spectral', corner=True)
   plt.suptitle('Ratings vs Numerical Attributes', fontsize='30', fontweight='heavy')
   plt.show()

<Figure size 1200x600 with 0 Axes>
```

Ratings vs Numerical Attributes

Conclusion

- From our EDA, the data presents that 'rating' is mostly correlated to 'pricerange', at 0.4. The higher the 'pricerange', the higher the 'rating' score.
- 'rating' and 'votes' are also correlated by 0.3 which suggests more 'votes' contributes to higher 'rating' scores.
- There appears to be more 'rating' scores for restuarants that have between 1-4 'cuisines' than others
- The 'rating' is not clealrly affected by restaurants providing 'onlinedelivery' or 'tablebooking; services.

In [44]: df.to_excel('checkedcapstonelrestaurants.xlsx')

Tableau Dashboard

Tableau Dashboard:

 $https://public.tableau.com/views/RestaurantRatings_16749023337480/RestaurantDash?: language=en-US\&publish=yes\&: display_count=n\&: origin=viz_share_link$