

#### Week 7

FIT5202 Big Data Processing

K-Means Clustering

Model Selection

Updated by CM Ting – 11 April 2025



## Week 7 Agenda

- Part A
- Week 6 Review
- K-means Clustering
  - Shilouette Score
- Tutorial Instructions
  - Use case : Identify if 3 hackers were involved

- Part B
- Model Selection
  - Hyperparameter Tuning
  - Cross Validation
    - K-fold Cross Validation
  - TrainValidationSplit
- Model Persistance
  - Saving and Loading a Model



#### Model Selection (a.k.a Hyperparameter Tuning)

All models are wrong; some are useful (George E.P. Box)



Depth = 2



Depth = 3



- HyperParameter Tuning
- Finding the best model or parameters (e.g. maxDepth of DT, number of clusters in k-means clustering)
- Tuning can be done for individual Estimators or the entire Pipeline

Model selection for MLlib has the following tools:

- CrossValidator
- 2. TrainValidationSplit





## **Hyperparameter Tuning**

- Hyper-parameters are not model parameters: they cannot be trained from the data
- Hyperparameter tuning: choosing a set of optimal hyperparameters for a learning algorithm
- model.extractParamMap() to get the list of hyperparameters for the model

```
Hyperparameters
           n iter
  test size
             max depth
random state
                n_neighbors
 alpha
                    gamma
  n components
                 metric
      kernel
            n_folds
        penalty
                   CV
```



#### **Cross Validation (K-Fold)**

- Splitting dataset into a set of folds, which are used as separate training and test datasets.



#### **Model Selection:**

- Evaluate performance over a range of model hyper-parameters on validation set,
- ☐ Choose the model which give highest performance



Depth = 1



Depth = 2





Why not just tune hyperparamters on the test set?



#### **Categorical features**

Categorical variables represent types of data which may be divided into groups.



No ordering

The variables have natural, ordered categories

#### **DT Hyperparameter: maxBins**

#### Continuous features



Figure 4.11. Test condition for continuous attributes.

- The test condition can be expressed as a comparison test (A < v) and (A > v) with binary outcome, or a range of outcomes  $v_i < A < v_{i+1}$  for i=1,..., k
- ☐ For binary tree, algorithm will consider all split position *v* (splitting point / threshold)

Example

Consider variable *X* with instances

[1,3,4,6,2,5,18,10,-3,-5]

We can sort data, and cluster data into **bins** to choose splitting point (e.g., -1,2.5,4.5, and 8)

Maximum number of bins can be specified using maxBins.



If maxBins is large, more splitting points to consider in building the tree.



https://spark.apache.org/docs/1.1.0/mllib-decision-tree.html https://www-users.cs.umn.edu/~kumar001/dmbook/ch4.pdf

## **Cross Validation (Decision Tree)**

```
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator, CrossValidatorModel
from pyspark.ml.evaluation import BinaryClassificationEvaluator
# Create ParamGrid for Cross Validation
dtparamGrid = (ParamGridBuilder()
             .addGrid(dt.maxDepth, [2, 5, 10, 20, 30])
             .addGrid(dt.maxBins, [10, 20, 40, 80, 100])
                                                                                  maxBins
             .build())
dtevaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction")
dtcv = CrossValidator(estimator = pipeline,
                        estimatorParamMaps = dtparamGrid,
                        evaluator = dtevaluator,
                        numFolds = 3)
dtcvModel = dtcv.fit(train)
bestModel= dtcvModel.bestModel
print('Best Param (regParam): ', bestModel.stages[-1]. java obj.paramMap())
Best Param for DT: {
       DecisionTreeClassifier ba35db4d44b0-featuresCol: features,
       DecisionTreeClassifier ba35db4d44b0-labelCol: label,
       DecisionTreeClassifier_ba35db4d44b0-maxBins: 20,
       DecisionTreeClassifier_ba35db4d44b0-maxDepth: 20
```

## Grid-based Hyperparameter tuning

#### maxDepth

|     | 2 | 5 | 10 | 20 | 30 |
|-----|---|---|----|----|----|
| 10  |   |   |    |    |    |
| 20  |   |   |    |    |    |
| 40  |   |   |    |    |    |
| 80  |   |   |    |    |    |
| 100 |   |   |    |    |    |

- Evaluate performance for each pair of hyperparameters on validation set
- Choose the best set of hyperparameters



### **TrainValidationSplit**

- Creates a single dataset pair
- Only evaluates each combination of parameter once as opposed to k-times in case of CrossValidator
- Less expensive but not reliable if the training dataset is not large enough







## **K-Means Clustering**

Finds groups (or clusters) of data

A cluster comprises a number of "similar" objects

A member is closer to another member within the same group than to a member of a different group

Groups have no category or label

Unsupervised learning

Animation Demo, DEMO 2

**Silhouette Score** [-1 1] : calculates the goodness of a clustering technique

- 1 Clusters are well apart from each other and clearly distinguishes
- O Clusters are not clearly distinguished, the distance between the clusters is not significant (overlapping cluster)
- -1 Clusters assigned wrongly









# Use case: Was there a third hacker?

#### Assumption:

Each cluster should have the same number of records

**Assumption**: Hackers trade off attacks equally



#### Feature transformation:

- (1) Vector Assembler
- (2) StandardScaler (normalizing the features to have mean 0 and variance 1)



#### **Thank You!**

See you next week.