Fault Simulation

- Introduction
- Classical Fault Simulation
- Modern Fault Simulation for Combinational Circuits
- Hardware Approaches to Fault Simulation

Why Fault Simulation?

- 1. To evaluate the quality of a test set
 - usually in terms of fault coverage
- 2. To incorporate into ATPG for test generation
 - due to its lower complexity

ATPG 是電腦幫忙產生

3. To construct fault dictionary

所有好情況 壞的情況 的輸出

- for post-test diagnosis

Conceptual Fault Simulation

Logic simulation on both good (fault-free) and faulty circuits

Some Basics for Logic Simulation

- For fault simulation purpose, mostly the gate delay is assumed to be zero unless the delay faults are considered. Our main concern is the functional faults.
- The logic values can be either two (0, 1) or three values (0, 1, X). For delay fault, more values will be needed.

Complexity of Fault Simulation

- Complexity = $P * F * G \sim O(G^3)$ with single s-a faults
- The complexity is higher than logic simulation, $O(G^2)$, but is much lower than test pattern generation.
- In reality, the complexity is much lower due to fault dropping and advanced techniques.

Characteristics of Fault Simulation

一個訊號 要能同時找到 多個錯誤 才會比較有效率

- Fault activity with respect to fault-free circuit is often sparse both in time and in space.
- For example, F1 is not activated by the given pattern, while F2 affects only the lower part of this circuit.

 The efficiency of a fault simulator depends on its ability to exploit these characteristics.

Classical Fault Simulation Techniques

- Common Characteristics:
 - In general, no restriction on the circuit types.
 - Developed before VLSI era.
- Serial Fault Simulation
 - trivial single-fault single-pattern
- Parallel Fault Simulation
- Deductive Fault Simulation
- Concurrent Fault Simulation

Parallel Fault Simulation

可以同時看不同的 錯誤

- Taking advantage of inherent parallel operation of computer words to simulate faulty circuits in parallel with fault-free circuit
 - the number of faulty circuits, or faults, can be processed parallelly is limited by the word length.
- Straightforward and memory efficient
- Some weaknesses:
 - An event, a value change, of a single fault or fault-free circuit leads to the computation of the entire word.
 - The fault-free logic simulation is repeated for the number of passes.

Example of Parallel Fault Simulation

現在要看這三個 錯誤的狀況

Deductive Fault Simulation

- Each line contains a list of faults that have fault effects on this line.
 - Only the faults with fault effects, or difference w.r.t. fault-free circuit, is retained in the list.
- The propagation of such lists can be based on set operations considering the gate types and values.
 - The list update is performed with each new pattern, which is not efficient in computer.
 - The list may dynamically grow is size, which incurs memory explosion problem.

Fault List Propagation Rule

- Let the gate G = F(A,B) with input lists LA and LB and output list LG to be updated.
- If in the fault-free circuit,
 - the value of G is 0(1), use F(F-)
 - the value of gate input A is 0(1), replace A in logic expression by LA(LA-) and A- by LA-(LA).
- Replace * by intersection and + by union.
- Add G/1(G/0) to the list LG.

錯誤 列表 傳遞

Fault List Propagation

Logic deduction instead of circuit simulation

當輸入時 a = 0 b = 1 分別會有 a卡1 b卡0 的錯誤

$$L_a = \{a/1\}$$
 $a=0$
 $b=1$

a=0

$$e=0$$

L_e = {a/1,c/1,e/1}

c=0

 $_{c} = \{a/1, c/1\}$

因為這裡b 是 1 正常就會是 會讓另一邊問題 傳遞下去

Illustration of Fault List Propagation

Consider a two-input AND gate

LA LB 在 1 1 1的狀況 他們單獨錯誤 都可以自己傳到LC去

Case 1: A=1, B=1, C=1 at fault-free, LC = LA + LB + {C/0}

Case 2: A=1, B=0, C=0 at fault-free,

 $LC = LA-*LB + \{C/1\}$

Case 3: A=0, B=0, C=0 at fault-free,

 $LC = LA * LB + {C/1}$

這裡LA-*代表 LA-不可以錯 LB的錯誤才能出去

LA- is the set of all fault not in LA

0 0 0的狀況 要 A B 都錯誤了 才能傳出去

Example of Deductive Simulation la

$$LB = \{B/1\}, LF = \{F/0\}, LA = 0$$

 $LC=LD = \{B/1\}$

Example of Deductive Simulation Ib

$$LB = \{B/1\}, LF = \{F/0\}, LA = 0, LC = LD = \{B/1\}$$

 $LG = (LA-*LC) = \{B/1\}, LE = LD = \{B/1\}$

Example of Deductive Simulation Ic

因爲B 正常 和 B卡在1 最後的輸出 都是一樣的 所以這樣叫做 B傳不出去 所以才要改變 A的輸入

Example of Deductive Simulation Id

$$LB = \{B/1\}, LF = \{F/0\}, \\ LC = LD = \{B/1\}, LG = \{B/1\}, \\ LE = \{B/1\}, LH = \{B/1, F/0\}, LJ = \{F/0, J/0\}$$
 這裡B卡O測不到

Example of DeductiveSimulation II

When A changes from 1 to 0

Concurrent Fault Simulation

- Each gate retains a list of fault copies each of which stores the status of a fault exhibiting difference from fault-free values.
- Simulation mechanism is similar to the conceptual fault simulation except that only the dynamical difference w.r.t. fault-free circuit is retained.
- Very versatile in circuit types and gate delays
- Although theoretically all faults in a circuit can be processed in one pass, memory explosion problem restricts the fault number in each pass.

Concurrent Fault Simulation

Example of ConcurrentSimulation I

Consider 3 faults: B/1, F/0, and J/0

> 最後輸出

Fault simulation.21

Example of Concurrent Simulation II

When A changes from 1 to 0

Modern Combinational Simulation Techniques

- Parallel pattern
- Other sophisticated techniques

Parallel-Pattern Single-Fault Propagation (PPSFP)

- Many patterns are simulated in parallel for both fault-free and faulty circuits.
- Coincident logic events of fault-free circuit from these patterns can be simulated in parallel.
 - reduction of logic event simulation time
- Coincident fault events of faulty circuits from these patterns can also be simulated in parallel.
 - reduction of fault event simulation time
- Simple and extremely efficient
 - basis of all modern combinational fault simulators

Comparison with Parallel-Fault

- Fault event maps for parallel-pattern (upper) and parallel-fault (lower)
- Parallel-Pattern case:
 Consider three patterns:
 P1, P2, P3.
- Parallel-Fault case:
 Consider three faults: F1,
 F2, F3.
- The overlapping of fault events is inherently much higher in parallel-pattern simulation, and hence more event can be done at the same time.

Example of Parallel Pattern Simulation

有四種 pattern 是要看誰可以測出 F卡0

Consider one fault F/0 and four patterns: P3,P2,P1,P0

— Bit-space: P3 P2 P1 P0 faulty value in red

Fault simulation.26

用軟體測太慢這裡用硬體的方法去測

Hardware Approache to Fault Simulation (FPGA)

可以直接要把測試的訊號 弄成硬體

A CLB with a dynamic fault injected (activated with x=1)

- FPGA is a reconfigurable gate array which can be mapped from any logic circuits and emulated much faster than software simulation.
- The fault insertion process is slow. One way to minimize the insertion is to have both good gates and faulty gates within FPGA as shown left [FPGA95].

Hardware Approache to Fault Simulation (FPGA)

這裡 黑色的邏輯閘 是為了測試那條電線的錯誤