写像列の収束

Convergence of mapping sequence

大崎人士

産業技術総合研究所

1. 収束する写像列 (Convergent mapping sequence)

$$f_n(x) = x^n \quad (0 \le x \le 1)$$

$$f(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$

2. 各点で収束 (Pointwise convergence)

すべての点 $x \in [0,1]$ で、いかなる正数 ε についても $|f_k(x) - f(x)| < \varepsilon$ を満たす写像列 $\{f_k\}_{n \le k}$ が存在する

$$\forall x \in [0,1], \quad \forall \varepsilon \in \mathbb{R}_+, \quad \exists n \in \mathbb{N}, \quad \forall k \in \mathbb{N}:$$

$$n \le k \quad \Rightarrow \quad |f_k(x) - f(x)| < \varepsilon$$

3. 集合的な解釈 (Set theoretical interpretation)

各点で収束

$$\bigcup_{m \in \mathbb{N}} \left\{ x \in [0,1] \middle| \limsup_{n \to +\infty} |f_n(x) - f(x)| \ge \frac{1}{m} \right\} = \emptyset$$

4. 述語と集合 (Representation of convergence)

$$\forall x \in S, \quad \forall \varepsilon \in \mathbb{R}_{+}, \quad \exists n \in \mathbb{N}, \quad \forall k \in \mathbb{N}: \qquad n \leq k \quad \Rightarrow \quad |f_{k}(x) - f(x)| < \varepsilon$$

$$\Leftrightarrow$$

$$\forall x \in S, \quad \forall m \in \mathbb{N}, \quad \exists n \in \mathbb{N}, \quad \forall k \in \mathbb{N}: \quad n \leq k \quad \Rightarrow \quad |f_{k}(x) - f(x)| < \frac{1}{m}$$

$$\Leftrightarrow$$

$$\forall x \in S: \quad \neg \left(\exists m \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad \exists k \in \mathbb{N}: \quad n \leq k \quad \land \quad |f_{k}(x) - f(x)| \geq \frac{1}{m}\right)$$

$$\Leftrightarrow$$

$$\forall x \in S: \quad x \notin \bigcup_{m \in \mathbb{N}} \left\{ x \in S \ \middle| \ \limsup_{n \to +\infty} |f_{n}(x) - f(x)| \geq \frac{1}{m} \right\}$$

$$\Leftrightarrow$$

$$\bigcup_{m \in \mathbb{N}} \left\{ x \in S \ \middle| \ \limsup_{n \to +\infty} |f_{n}(x) - f(x)| \geq \frac{1}{m} \right\} = \emptyset$$

5. 一様収束 (Uniform convergence)

$$\forall \varepsilon \in \mathbb{R}_{+}, \ \exists n \in \mathbb{N}, \ \forall k \in \mathbb{N}, \ \forall x \in S \colon \quad n \leq k \ \Rightarrow \ |f_{k}(x) - f(x)| < \varepsilon$$

$$\Leftrightarrow$$

$$\forall m \in \mathbb{N}, \ \exists n \in \mathbb{N}, \ \forall k \in \mathbb{N}, \ \forall x \in S \colon \quad n \leq k \ \Rightarrow \ |f_{k}(x) - f(x)| < \frac{1}{m}$$

$$\Leftrightarrow$$

$$\neg \left(\exists m \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ \exists k \in \mathbb{N}, \ \exists x \in S \colon \quad n \leq k \ \land \ |f_{k}(x) - f(x)| \geq \frac{1}{m}\right)$$

$$\Leftrightarrow$$

$$\forall x \in S \colon \quad x \notin \bigcup_{m \in \mathbb{N}} \limsup_{n \to +\infty} \left\{ x \in S \ \middle| \ |f_{n}(x) - f(x)| \geq \frac{1}{m} \right\}$$

$$\Leftrightarrow$$

$$\bigcup_{m \in \mathbb{N}} \limsup_{n \to +\infty} \left\{ x \in S \ \middle| \ |f_{n}(x) - f(x)| \geq \frac{1}{m} \right\} = \emptyset$$

6. 各点収束と一様収束 (Pointwise or uniform convergence)

各点収束 pointwise convergence

$$\bigcup_{m \in \mathbb{N}} \left\{ x \in S \, \middle| \, \limsup_{n \to +\infty} |f_n(x) - f(x)| \ge \frac{1}{m} \right\} = \emptyset$$

一様収束 uniform convergence

$$\bigcup_{m \in \mathbb{N}} \limsup_{n \to +\infty} \left\{ x \in S \mid |f_n(x) - f(x)| \ge \frac{1}{m} \right\} = \emptyset$$

$$\forall m \in \mathbb{N}, \quad \exists n \in \mathbb{N}: \quad n \le k \quad \Rightarrow \quad |f_k(x) - f(x)| < \frac{1}{m}$$

$$\Rightarrow \quad \lim_{n \to +\infty} f_n(x) = f(x)$$

7. 各点収束 → 一様収束 ("pointwise" does not imply "uniform")

$$f_n(x) = x^n \quad (0 \le x \le 1)$$

$$\therefore \bigcup_{m \in \mathbb{N}} \limsup_{n \to +\infty} \left\{ x \in [0,1] \mid |f_n(x) - f(x)| \ge \frac{1}{m} \right\} \neq \emptyset$$

7. 各点収束 → 一様収束 ("pointwise" does not imply "uniform")

$$f_n(x) = x^n \quad (0 \le x \le 1)$$

∵ 連続写像列が、写像fに一様連続すれば、fは連続

$$f(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$
 不連続

8. いたるところ収束 (convergence a.e.)

いたるところ各点収束(概収束) pointwise convergence a.e.

$$P\left(\bigcup_{m\in\mathbb{N}}\left\{x\in S\,\middle|\,\limsup_{n\to+\infty}|f_n(x)-f(x)|\geq \frac{1}{m}\right\}\right)=0$$

いたるところ一様収束 uniform convergence a.e.

$$P\left(\bigcup_{m\in\mathbb{N}}\limsup_{n\to+\infty}\left\{x\in S\mid |f_n(x)-f(x)|\geq \frac{1}{m}\right\}\right)=0$$

いたるところ一様収束 uniform convergence a.e.

⇒ 概収束 pointwise convergence a.e.

一様収束 uniform convergence

各点収束 pointwise convergence

9. 測度収束 (convergence in measure)

$$\forall \varepsilon \in \mathbb{R}_{+}, \quad \forall n \in \mathbb{N}, \quad \exists k \in \mathbb{N}: \quad n \leq k \quad \land \quad P(\{x \in S \mid |f_{k}(x) - f(x)| \geq \varepsilon\}) = 0$$

$$\Leftrightarrow$$

$$\forall m \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad \exists k \in \mathbb{N}: \quad n \leq k \quad \land \quad P\left(\left\{x \in S \mid |f_{k}(x) - f(x)| \geq \frac{1}{m}\right\}\right) = 0$$

$$\Leftrightarrow$$

$$\forall m \in \mathbb{N}: \quad \limsup_{n \to +\infty} \quad P\left(\left\{x \in S \mid |f_{n}(x) - f(x)| \geq \frac{1}{m}\right\}\right) = 0$$

有限測度空間(finite measure space)では

🏋 逆ファトゥの補題(reverse Fatou's lemma)

10. 収束概念の関係 (Relationship of convergences)

11. 概一様収束 (almost uniform convergence)

任意の正数 ε で、測度 ε より小さい除外集合 A の外で、一様収束

$$\forall \varepsilon \in \mathbb{R}_+, \exists A \in A$$
:

$$P(A) < \varepsilon \qquad \bigwedge \qquad \bigcup_{m \in \mathbb{N}} \limsup_{n \to +\infty} \{x \in S - A \mid |f_n(x) - f(x)| \ge \varepsilon\} = \emptyset$$

12. 概一様収束 ⇒ 概収束 ("almost uniform" ⇒ "pointwise a.e.")

概収束 pointwise convergence a.e.

$$P\left(\bigcup_{m\in\mathbb{N}}\left\{x\in S\,\middle|\,\limsup_{n\to+\infty}|f_n(x)-f(x)|\geq \frac{1}{m}\right\}\right)=0$$

概一様収束 almost uniform convergence

$$\forall k \in \mathbb{N}, \quad \exists A \in \mathbb{A}: \qquad P(A) < \frac{1}{k} \qquad \bigwedge$$

$$\bigcup_{m \in \mathbb{N}} \limsup_{n \to +\infty} \left\{ x \in S - A \mid |f_n(x) - f(x)| \ge \frac{1}{m} \right\} = \emptyset$$

証明は次ページ (Proof in next page)

13. 証明 (Proof)

$$\forall k \in \mathbb{N}: \quad P(A_k) < \frac{1}{k} \quad \land \quad \bigcup_{m \in \mathbb{N}} \limsup_{n \to +\infty} \left\{ x \in S - A_k \; \middle| \; |f_n(x) - f(x)| \geq \frac{1}{m} \right\} = \emptyset$$

① $S-A_k: \{f_n\}_{n\in\mathbb{N}}$ 一様収束 (uniformly convergent)

 \triangle

各点収束 (pointwise convergent)

$$x \in S - \bigcap_{k \in \mathbb{N}} A_k \iff x \notin \bigcap_{k \in \mathbb{N}} A_k \iff \exists k \in \mathbb{N} : x \in S - A_k$$

 \triangle

$$\bigcup_{m \in \mathbb{N}} \left\{ x \in S - \bigcap_{k \in \mathbb{N}} A_k \middle| \limsup_{n \to +\infty} |f_n(x) - f(x)| \ge \frac{1}{m} \right\} = \emptyset$$

14. 収束概念の関係 (Relationship of convergences)

一様収束ではない例:

 $f_n(x) = x^n$

一様収束 uniform convergence

各点収束 pointwise convergence

有限測度空間(finite measure space)では

いたるところ一様収束 uniform convergence a.e. 概**収束** pointwise convergence a.e.

測度収束 convergence in measure

概一様収束 almost uniform convergence

概一様収束ではない例:

$$\left\{1_{[n-1,n]}\right\}_{n\in\mathbb{N}}$$

15. エゴロフの定理 (Egorov theorem)

始域の測度空間が有限のならば $(P(S) < +\infty)$

概一様収束

almost uniform convergence

概収束

pointwise convergence a.e.

証明(Proof of "⇐")

$$\exists N \subseteq S$$
, $\forall x \in S - N$: $P(N) = 0 \land \lim_{n \to +\infty} f_n(x) = f(x)$

$$\{A_{m,n}\}_{n\in\mathbb{N}}: A_{m,n} = \{x \in S - N \mid |f_n(x) - f(x)| \ge \frac{1}{m}\}$$

$$\lim_{n\to+\infty} \limsup_{m\to+\infty} A_{m,n} = \emptyset$$

$$\left\{B_{m,n}\right\}_{n\in\mathbb{N}}: \quad B_{m,n}=\bigcup_{n\leq k}A_{m,k}$$

$$\Longrightarrow \lim_{n\to+\infty} P(B_{m,n}) = 0$$

$$\forall n \in \mathbb{N}, \quad \forall \varepsilon \in \mathbb{R}_+, \quad \exists n_m \in \mathbb{N}: \qquad n \leq n_m \qquad \land \qquad P\big(B_{m,n_m}\big) < \frac{\varepsilon}{2^{m+1}}$$

 \triangle

$$P\left(N \cup \bigcup_{m \in \mathbb{N}} B_{m,n_m}\right) \leq P(N) + \sum_{m \in \mathbb{N}} P\left(B_{m,n_m}\right) < \varepsilon$$

 $\forall a \in S - N$:

$$a \in \bigcup_{m \in \mathbb{N}} B_{m,n_m} \iff a \in \bigcup_{m \in \mathbb{N}} \left\{ x \in S - N \middle| \limsup_{n \to +\infty} |f_n(x) - f(x)| \ge \frac{1}{m} \right\}$$

 $\hat{\Omega}$

 $\{f_n\}_{n\in\mathbb{N}}$ 概一様収束 (almost uniform convergence)

$$\therefore \left| \bigcup_{k \in \mathbb{N}} \limsup_{n \to +\infty} \left\{ x \in S - \left(N \cup \bigcup_{m \in \mathbb{N}} B_{m,n_m} \right) \middle| |f_n(x) - f(x)| \ge \frac{1}{k} \right\} = \emptyset$$

16. 例 (Example)

$$f_n(x) = \sin^n(x) \qquad \left(0 \le x \le \frac{\pi}{2}\right)$$

$$\bigcup_{m \in \mathbb{N}} \limsup_{n \to +\infty} \left\{ x \in \left[0, \frac{\pi}{2} - \varepsilon \right] \, \middle| \, \left| \sin^n(x) - 0 \right| \ge \frac{1}{m} \right\} = \emptyset$$

: エゴロフの定理 (Egorov theorem)

 $\{\sin^n\}_{n\in\mathbb{N}}: f=0$ に概一様収束 (almost uniform convergence)

ウォリスの積分 (Wallis's integral)

$$\int_0^{\frac{\pi}{2}} \lim_{n \to +\infty} \sin^n x \, dx = 0$$

17. 収束概念の関係 (Relationship of convergences)

一様収束 uniform convergence

各点収束

pointwise convergence

有限測度空間(finite measure space)では

いたるところ一様収束 uniform convergence a.e.

pointwise convergence a.e.

測度収束

convergence in measure

概一様収束

almost uniform convergence

概一様収束 almost uniform convergence

$$\forall k \in \mathbb{N}, \quad \exists A \in \mathbb{A} \colon \quad P(A) < \frac{1}{k} \qquad \bigwedge$$

測度収束 convergence in measure

$$\forall m \in \mathbb{N}$$
:

$$\bigcup_{m \in \mathbb{N}} \limsup_{n \to +\infty} \left\{ x \in S - A \mid |f_n(x) - f(x)| \ge \frac{1}{m} \right\} = \emptyset$$

$$\lim_{n \to +\infty} P\left(\left\{x \in S \mid |f_n(x) - f(x)| \ge \frac{1}{m}\right\}\right) = 0$$

18. 証明 (Proof)

$$\forall k \in \mathbb{N}, \quad \exists A \in \mathbb{A} \colon \quad P(A) < \frac{1}{k}$$

$$\forall k \in \mathbb{N}, \quad \exists A \in \mathbb{A} \colon \quad P(A) < \frac{1}{k} \qquad \bigwedge \qquad \bigcup_{m \in \mathbb{N}} \limsup_{n \to +\infty} \left\{ x \in S - A \ \middle| \ |f_n(x) - f(x)| \ge \frac{1}{m} \right\} = \emptyset$$

$$\forall m \in \mathbb{N}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, x \in S - A: N \leq n \Rightarrow |f_n(x) - f(x)| < \frac{1}{m}$$

$$\forall m \in \mathbb{N}, \quad \exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}: \quad N \leq n \quad \Rightarrow \quad P\left(\left\{x \in S \left| |f_n(x) - f(x)| \geq \frac{1}{m}\right\}\right) < \frac{1}{k} \right)$$

$$k \to +\infty$$

$$\forall m \in \mathbb{N}: \quad \lim_{n \to +\infty} P\left(\left\{x \in S \middle| |f_n(x) - f(x)| \ge \frac{1}{m}\right\}\right) = 0$$