Vehicle Detection and Classification from Images

Ali Şentaş & Melik Buğra Özçelik

2

Table of contents

01

Introduction

Overview

02

Detection

Progress in Vehicle Detection

03

Classification

Progress in Vehicle Classification

04

Conclusion

Next Steps

Introduction

Reminder of Our Project Goals

Detection

Progress in the Detection Task

Detection

- A vehicle/non-vehicle SVM classifier is trained on HOG features
- Detection is done with sliding windows

5

6

7

0

HOG Features

HOG Features

Input image

Histogram of Oriented Gradients

Dataset

Non-Vehicles

Vehicles

- 64x64 images
- 56201 vehicles
- 181788 non-vehicles

Model training

- An SVM with rbf kernel and 576 parameters is trained.
- Training takes ~10 minutes

	precision	recall	f1-score	support
vehicle	0.89	0.73	0.81	39253
non-vehicle	0.92	0.97	0.95	127340
accuracy			0.92	166593
macro avg	0.91	0.85	0.88	166593
weighted avg	0.92	0.92	0.91	166593

Sliding Window

Sliding Window

Classification

Progress in the Classification Task

- Dataset from TAU Vehicle Type Recognition
 Competition on Kaggle
 (https://www.kaggle.com/competitions/vehicle/data)
- Normally, it consists of 17 classes, but only 6 are used (Motorcycle, Car, Bicycle, Van, Bus, Truck)
- Dataset can be widened by combining other datasets or data augmentation

5

7

0

- ResNet50 is chosen an experimental training has been done
- The model seems to be trainable with default parameters
- Next Steps:
 - Data augmentation
 - HP tuning for real training
 - Obtaining the metrics (Precision, recall, F1)

5 7

Thanks!

Q&A

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

2