

Universidad Técnica Nacional Sede Central Alajuela - Campus CUNA

CURSO: IEL-525 LABORATORIO DE ELECTRÓNICA I

GRUPO 02

III CUATRIMESTRE DE 2020

DOCENTE: RONALD SABORÍO RODRÍGUEZ

LABORATORIO No.3: APLICACIONES DE LOS DIODOS: CIRCUITOS RECTIFICADORES MONOFÁSICOS

FECHA DE REALIZACIÓN: 05/10/2020 FECHA DE ENTREGA: 12/10/2020

NOMBRE ESTUDIANTE:______ CARNÉ:_____

1. RECTIFICADOR DE MEDIA ONDA

1.1 Construya el siguiente circuito en el simulador.

- 1.2 Obtenga el valor teórico del voltaje en el secundario del transformador y anótelo en la Tabla No.1.
- 1.3 Obtenga el valor teórico del voltaje en la carga (R1) y anótelo en la Tabla No.1.
- 1.4 Mida el voltaje en el secundario del transformador y anótelo en la Tabla No.1.
- 1.5 Mida el voltaje en la carga (R1) y anótelo en la Tabla No.1.

Tabla No.1

VALORES TEÓRICOS		VALORES MEDIDOS	
Voltaje en el secundario del transformador	VR1	Voltaje en el secundario del transformador	VR1
12 V	3.81 V	11.8 V	3,511 V

1.6 Observe con el osciloscopio las señales en el secundario del transformador y en la carga, proceda a realizar los ajustes en la ganancia y en la base de tiempos del osciloscopio para representar las formas de onda adecuadamente.

1.7 Construya el siguiente circuito en el simulador.

- 1.8 Mida la tensión en la carga (R1) y anótela en la Tabla No.2.
- 1.9 Observe con el osciloscopio la forma de onda en la carga y adjúntela en la Tabla No.2.
- 1.10 Cambie el valor del condensador de acuerdo con los valores indicados en la Tabla No.2, mida el voltaje en la carga y anote los valores; observe la forma de la señal en la carga para cada caso y adjúntelas en la Tabla No.2.

Tabla No. 2

2. RECTIFICADOR DE ONDA COMPLETA CON TRANSFORMADOR CON DERIVACIÓN CENTRAL

2.1 Construya el siguiente circuito en el simulador.

- 2.2 Obtenga el valor teórico del voltaje total en el secundario del transformador y el valor del voltaje entre uno de los extremos (cualesquiera) y la terminal central y anótelos en la Tabla No.2.
- 2.2 Obtenga el valor teórico del voltaje en la carga (R1) y anótelo en la Tabla No.2.
- 2.3 Mida el voltaje total en el secundario del transformador y también mida el voltaje entre uno de los extremos (cualesquiera) y la terminal central y anótelos en la Tabla No.2.
- 2.4 Mida el voltaje en la carga (R1) y anótelo en la Tabla No.2.

Tabla No.2

VALORES TEÓRICOS		VALORES MEDIDOS			
Voltaje total del secundario del transformador	Voltaje entre un extremo y el terminal central del secundario del transformador	VR1	Voltaje total del secundario del transformador	Voltaje entre un extremo y el terminal central del secundario del transformador	VR1
12 V	6 V	4.85 V	11.8 V	5.66 V	7 V

2.5 Observe con el osciloscopio las señales en el secundario del transformador (entre el extremo superior y tierra) y en la carga, proceda a realizar los ajustes en la ganancia y en la base de tiempos del osciloscopio para representar las formas de onda adecuadamente.

2.6 Al circuito anterior, agregue un condensador C1 del valor indicado y como se muestra en el siguiente diagrama.

- 2.7 Mida la tensión en la carga (R1) y anótela en la Tabla No.3.
- 2.8 Observe con el osciloscopio la forma de onda en la carga y adjúntela en la Tabla No.3.
- 2.9 Cambie el valor del condensador de acuerdo con los valores indicados en la Tabla No.3, mida el voltaje en la carga y anote los valores; observe la forma de la señal en la carga para cada caso y adjúntelas en la Tabla No.3.

Tabla No. 3

3. RECTIFICADOR DE ONDA COMPLETA CON PUENTE DE DIODOS

3.1 Busque las especificaciones más importantes del puente rectificador 3N246, anótelos y <u>explique el significado de cada uno de ellos.</u>

Especificaciones

 $V_{RRM} = 50 V$

Este es el voltaje máximo en reversa que soporta el puente rectificador.

 $V_{RMS} = 35 V$

Máximo voltaje rms que puede entrar al rectificador.

 $V_{DC} = 50 V$

Voltaje máximo de bloqueo en CD.

 $I_{AV} = 1.5 A$

Máxima corriente de salida del rectificador o puente de diodos.

Temperatura a la que funciona el 3N246, es desde -55 C a 150 C.

3.2 Construya el siguiente circuito en el simulador. Si utiliza el simulador Livewire use el puente (BR1) 2KBP01; si utiliza el Multisim use el puente 3N246.

- 3.3 Obtenga el valor teórico del voltaje en la carga (R1) y anótelo en la Tabla No.4.
- 3.4 Mida el voltaje en la carga (R1) y anótelo en la Tabla No.4.

Tabla No.4

VALOR MEDIDO DEL	
VOLTAJE EN R1	
6.661 V	

3.5 Observe con el osciloscopio las señales en el secundario del transformador y en la carga, proceda a realizar los ajustes en la ganancia y en la base de tiempos del osciloscopio para representar las formas de onda adecuadamente.

3.6 Al circuito anterior, agregue un condensador C1 del valor indicado y como se muestra en el siguiente diagrama.

- 3.7 Mida la tensión en la carga (R1) y anótela en la Tabla No.5.
- 3.8 Observe con el osciloscopio la forma de onda en la carga y adjúntela en la Tabla No.5.
- 3.9 Cambie el valor del condensador de acuerdo con los valores indicados en la Tabla No.5, mida el voltaje en la carga y anote los valores; observe la forma de la señal en la carga para cada caso y adjúntelas en la Tabla No.5.

Tabla No. 5

CAPACITOR (μF)	TENSIÓN EN LA CARGA (CD)	FORMAS DE ONDA		
100	10.36 V			
1 000	10.37 V			
4 700	10.38 V			

4. CONCLUSIONES.		