Chemistry 605 (Reich)

THIRD HOUR EXAM

Mon. May 14, 2012

Question/Points

R-11P____/15

R-11Q____/15

R-11R____/20

R-11S____/10

R-11T____/20

R-11U____/20

Total _____/100

Practice Exam 3

Ν

If you place answers anywhere else except in the spaces provided, (e.g. on the spectra or on extra pages) clearly indicate this on the answer sheets.

Problem R-11P ($C_8H_8F_2Si$. Below is a 300 MHz 1H NMR spectrum of vinyl difluorophenylsilane, Analyze the spectrum, and label the spectrum with coupling trees, and label them with H_g , H_c and H_t . Report all coupling in the standard format ($^nJ_{X-Y} = 00.0 \text{ Hz}$). Apart from intensities, the spectrum is basically first order.

Problem R-11Q ($C_{11}H_{19}NO_8$). This problem requires you to determine the stereochemistry of two isomers of sialic acid (**A** and **B**). Below is shown a portion of the 126 MHz ¹³C NMR spectrum (D_2O solvent) of a 10:1 mixture of two isomers (Hori, H.; Nakajima, T.; Nishida, Y.; Ohrui, H.; Meguro, H. *Tetrahedron Lett.* **1988**, *29*, 6317). Spectrum 1 is the fully proton decoupled. Spectrum 2 has the decoupler turned off.

- (a) Which carbons of the sialic acid are being shown here? Mark the shifts on the structures.
- (b) Interpret the multipicity of the signal at 177.7 ppm in the coupled spectrum (2). Estimate coupling constants, and assign them.
 - (c) Which is the major isomer (A or B)? _____ Give your reasoning below. Be specific and brief.

Problem R-11R ($C_{18}H_{22}Se_2$) You are given the structure, and asked to interpret the spectrum (complete spectrum on next page).

(a) Analyze the multiplet at δ 2.1 and report couplings.

(b) Analyze the multiplet at δ 3.7. Identify all peaks. Obtain exact shifts and report all shifts and couplings in the form: δ 0.00, $^nJ_{XY}=00$ Hz. An enlarged copy of the multiplet is shown below. The Hz values are from TMS at 0 Hz.

Problem R-11S ($C_{16}H_{22}Fe_2O_2P_2$). Below are the 60 MHz ¹H NMR spectra of two stereoisomers (E and Z) of the iron Cp complexes shown (*J. Am. Chem. Soc* **1963**, *85*, 3120).

- (a) Which isomer corresponds to Spectrum 1 _____, and which to Spectrum 2 _____? Explain
- (b) Explain the appearance of the multiplet at δ 1.6 (i.e. why does it look like this).
- (c) Would you expect the spectrum to look significantly different at 300 MHz (instead of the 60 MHz of the spectra shown)?

Problem R-11T ($C_{19}H_{25}FO_2$). Below are part of the 60 MHz ¹H NMR spectra of two stereoisomers (**A** and **B**) of the fluorinated steroids shown. To aid in your analysis, a conformational drawing is also provided (*J. Am. Chem. Soc.* **1963**, *85*, 3038).

(a) Which protons are being shown here? Analyze the coupling, and report them in the standard format (give δ and identify any couplings you found).

Spectrum 1:

Spectrum 2:

(b) Which isomer corresponds to Spectrum 1 _____, which to Spectrum 2____. Explain briefly.

Problem R-11U ($C_{02}H_{03}AsF_7NXe$). This problem requires you to interpret the ¹²⁹Xe and ¹⁴N spectra of $[CH_3C\equiv N-Xe-F]^+AsF_6^-$ (Emara, A. A. A; Schrobilgen, G. J. *Chem. Commun.* **1987**, 1644)

(a) Analyze Spectrum **1** and **2**. Spectrum **2** is of a compound labeled >99% with 13 C at the CN carbon. Report coupling constants. Use the form $^{n}J_{X-Y} = 00.0$ Hz.

(b) Analyze Spectrum **3**. Make sure you understand and explain the origin of all peaks. Why are the signals somewhat broadened?