

# **Projective Geometry**

簡韶逸 Shao-Yi Chien

Department of Electrical Engineering

National Taiwan University

Fall 2018

### Outline

- Projective 2D geometry
- Projective 3D geometry



[Slides credit: Marc Pollefeys]

# Projective 2D Geometry

Points, lines & conics



Transformations & invariants







 1D projective geometry and the Cross-ratio



# Homogeneous Coordinates

Homogeneous representation of lines

$$ax + by + c = 0$$
  $(a,b,c)^{\mathsf{T}}$   
 $(ka)x + (kb)y + kc = 0, \forall k \neq 0$   $(a,b,c)^{\mathsf{T}} \sim k(a,b,c)^{\mathsf{T}}$   
equivalence class of vectors, any vector is representative

Homogeneous representation of points

$$x = (x, y)^{T}$$
 on  $1 = (a, b, c)^{T}$  if and only if  $ax + by + c = 0$   
 $(x, y, 1)(a, b, c)^{T} = (x, y, 1) = 0$   $(x, y, 1)^{T} \sim k(x, y, 1)^{T}, \forall k \neq 0$ 

The point x lies on the line I if and only if  $x^TI = I^Tx = 0$ 

Homogeneous coordinates  $(x_1, x_2, x_3)^T$  but only 2DOF Inhomogeneous coordinates  $(x, y)^T$ 

The point  $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$  represent the point  $(x_1/x_3, x_2/x_3)^{\mathrm{T}}$  in  $\mathbb{R}^2$ 

### Points and Lines

Intersections of lines

The intersection of two lines 1 and 1' is  $x = 1 \times 1$ '

• Line joining two points The line through two points x and x' is  $1 = x \times x'$ 

#### Example



# Ideal Points and the Line at Infinity

Intersections of parallel lines

$$1 = (a, b, c)^T$$
 and  $1' = (a, b, c')^T$   $1 \times 1' = (b, -a, 0)^T$ 



Example



(b,-a) tangent vector (a,b) normal direction

Ideal points

$$(x_1, x_2, 0)^T$$

Line at infinity

$$1_{\infty} = (0,0,1)^{\mathsf{T}}$$

$$\mathbf{P}^2 = \mathbf{R}^2 \cup \mathbf{1}_{\infty}$$

Note that in  $P^2$  there is no distinction between ideal points and others

# A Model for the Projective Plane



exactly one line through two points exactly one point at intersection of two lines

# Duality



$$x \longrightarrow 1$$

$$x^{\mathsf{T}} 1 = 0 \longrightarrow 1^{\mathsf{T}} x = 0$$

$$x = 1 \times 1' \longrightarrow 1 = x \times x'$$

#### Duality principle:

To any theorem of 2-dimensional projective geometry there corresponds a dual theorem, which may be derived by interchanging the role of points and lines in the original theorem

# Conics =

Curve described by 2<sup>nd</sup>-degree equation in the plane

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$
or homogenized  $x \mapsto \frac{x_{1}}{x_{3}}, y \mapsto \frac{x_{2}}{x_{3}}$ 

$$ax_{1}^{2} + bx_{1}x_{2} + cx_{2}^{2} + dx_{1}x_{2} + ex_{2}x_{3} + fx_{2}^{2} = 0$$

or in matrix form

$$\mathbf{x}^{\mathsf{T}} \mathbf{C} \mathbf{x} = \mathbf{0}$$
 with  $\mathbf{C} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$ 

symmetric

5DOF: 
$$\{a:b:c:d:e:f\}$$

#### Five Points Define a Conic

For each point the conic passes through

$$ax_i^2 + bx_iy_i + cy_i^2 + dx_i + ey_i + f = 0$$

or

$$(x_i^2, x_i y_i, y_i^2, x_i, y_i, f)$$
**c** = 0 **c** =  $(a, b, c, d, e, f)$ <sup>T</sup>

stacking constraints yields

$$\begin{bmatrix} x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{bmatrix} \mathbf{c} = 0$$

## Tangent Lines to Conics

The line I tangent to **C** at point x on **C** is given by I=**C**x



### **Dual Conics**



A line tangent to the conic **C** satisfies  $1^T \mathbf{C}^* 1 = 0$ 

In general (**C** full rank): 
$$\mathbf{C}^* = \mathbf{C}^{-1}$$

Dual conics = line conics = conic envelopes





# **Projective Transformations**

#### Definition:

A *projectivity* is an invertible mapping h from P<sup>2</sup> to itself such that three points  $x_1, x_2, x_3$  lie on the same line if and only if  $h(x_1), h(x_2), h(x_3)$  do.

#### Theorem:

A mapping  $h: P^2 \to P^2$  is a projectivity if and only if there exist a non-singular 3x3 matrix **H** such that for any point in  $P^2$  reprented by a vector x it is true that h(x) = Hx

**Definition:** Projective transformation

$$\begin{bmatrix}
x'_{1} \\
x'_{2} \\
x'_{3}
\end{bmatrix} = \begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{bmatrix} \begin{bmatrix}
x_{1} \\
x_{2} \\
x_{3}
\end{bmatrix} 

\text{ or } x' = \mathbf{H} \times 8DOF$$

projectivity=collineation=projective transformation=homography 14

# Mapping between Planes



central projection may be expressed by x'=Hx (application of theorem)

# Removing Projective Distortion





select four points in a plane with know coordinates

$$x' = \frac{x'_1}{x'_3} = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}} \qquad y' = \frac{x'_2}{x'_3} = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

$$x' (h_{31}x + h_{32}y + h_{33}) = h_{11}x + h_{12}y + h_{13}$$

$$y' (h_{31}x + h_{32}y + h_{33}) = h_{21}x + h_{22}y + h_{23} \qquad \text{(linear in } h_{ij})$$

(2 constraints/point, 8DOF ⇒ 4 points needed)

Remark: no calibration at all necessary

# More Examples



#### Transformation of Lines and Conics

For a point transformation

$$x' = H x$$

Transformation for lines

$$1' = \mathbf{H}^{-\mathsf{T}} 1$$



Transformation for conics

$$C' = H^{-T}CH^{-1}$$

Transformation for dual conics

$$\mathbf{C'}^* = \mathbf{HC}^* \mathbf{H}^\mathsf{T}$$

# A Hierarchy of Transformations

- Projective linear group
- Affine group (last row (0,0,1))
- Euclidean group (upper left 2x2 orthogonal)
- Oriented Euclidean group (upper left 2x2 det 1)

Alternative, characterize transformation in terms of elements or quantities that are preserved or *invariant* e.g. Euclidean transformations leave distances unchanged







Affine Projective

### Class I: Isometries

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} \varepsilon \cos \theta & -\sin \theta & t_x \\ \varepsilon \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \qquad \varepsilon = \pm 1$$

orientation preserving:  $\varepsilon = 1$  (Euclidean transform) orientation reversing:  $\varepsilon = -1$ 

$$\mathbf{x'} = \mathbf{H}_E \mathbf{x} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0^\mathsf{T} & \mathbf{1} \end{bmatrix} \mathbf{x} \qquad \mathbf{R}^\mathsf{T} \mathbf{R} = \mathbf{I}$$

3DOF (1 rotation, 2 translation), can be computed from 2 point correspondences special cases: pure rotation, pure translation

Invariants: length, angle, area

## Class II: Similarities

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\mathbf{x'} = \mathbf{H}_S \ \mathbf{x} = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ 0^\mathsf{T} & \mathbf{1} \end{bmatrix} \mathbf{x} \qquad \qquad \mathbf{R}^\mathsf{T} \mathbf{R} = \mathbf{I}$$

4DOF (1 scale, 1 rotation, 2 translation)),
can be computed from 2 point correspondences
also know as *equi-form* (shape preserving)

metric structure = structure up to similarity (in literature)

Invariants: ratios of length, angle, ratios of areas, parallel lines

## Class III: Affine Transformations

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\mathbf{x'} = \mathbf{H}_A \mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ 0^{\mathsf{T}} & 1 \end{bmatrix} \mathbf{x}$$

$$\mathbf{A} = \mathbf{R}(\theta) \mathbf{R}(-\phi) \mathbf{D} \mathbf{R}(\phi)$$

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

6DOF (2 scale, 2 rotation, 2 translation), can be computed from 3 point correspondences non-isotropic scaling! (2DOF: scale ratio and orientation)

Invariants: parallel lines, ratios of parallel lengths, ratios of areas

## Class VI: Projective Transformations

$$\mathbf{x'} = \mathbf{H}_P \mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^\mathsf{T} & \mathbf{v} \end{bmatrix} \mathbf{x} \qquad \mathbf{v} = (v_1, v_2)^\mathsf{T}$$

8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity) can be computed from 4 point correspondences

Action non-homogeneous over the plane

**Invariants:** cross-ratio of four points on a line, (ratio of ratio)

# Action of Affinities and Projectivities on Line at Infinity

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & \mathbf{v} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ \mathbf{0} \end{pmatrix}$$

Line at infinity stays at infinity, but points move along line

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^\mathsf{T} & \mathbf{v} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ v_1 x_1 + v_2 x_2 \end{pmatrix}$$

Line at infinity becomes finite, allows to observe vanishing points, horizon

# Decomposition of Projective Transformations

$$\mathbf{H} = \mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P} = \begin{bmatrix} s\mathbf{R} & t \\ 0^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{K} & 0 \\ 0^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & 0 \\ v^{\mathsf{T}} & v \end{bmatrix} = \begin{bmatrix} \mathbf{A} & t \\ v^{\mathsf{T}} & v \end{bmatrix}$$
S: similarity

A: Affine

P: Projective

decomposition unique (if chosen s>0)

$$\mathbf{A} = s\mathbf{R}\mathbf{K} + t\mathbf{v}^{\mathsf{T}}$$

 $\mathbf{K}$  upper-triangular,  $\det \mathbf{K} = 1$ 

#### Example:

$$\mathbf{H} = \begin{bmatrix} 1.707 & 0.586 & 1.0 \\ 2.707 & 8.242 & 2.0 \\ 1.0 & 2.0 & 1.0 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 2\cos 45^{\circ} & -2\sin 45^{\circ} & 1.0 \\ 2\sin 45^{\circ} & 2\cos 45^{\circ} & 2.0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.5 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

# **Summary of Transformations**

Projective 8dof

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

Affine 6dof

$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Similarity 4dof

$$\begin{bmatrix} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$



Euclidean 3dof





#### **Invariant Properties**

Concurrency, collinearity, order of contact (intersection, tangency, inflection, etc.), cross ratio

Parallellism, ratio of areas, ratio of lengths on parallel lines (e.g midpoints), linear combinations of vectors (centroids).

The line at infinity  $I_{\infty}$ 

Ratios of lengths, angles. The circular points I,J

lengths, areas.

## Number of Invariants?

The number of functional invariants is equal to, or greater than, the number of degrees of freedom of the configuration less the number of degrees of freedom of the transformation

e.g. configuration of 4 points in general position has 8 dof (2/pt) and so 4 similarity, 2 affinity and zero projective invariants

# Projective Geometry of 1D

$$(x_1, x_2)^T$$
  $x_2 = 0$   $\overline{\mathbf{x}}' = \mathbf{H}_{2 \times 2} \overline{\mathbf{x}}$  3DOF (2x2-1)

The cross ratio

$$Cross(\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}, \overline{\mathbf{x}}_{3}, \overline{\mathbf{x}}_{4}) = \frac{|\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}||\overline{\mathbf{x}}_{3}, \overline{\mathbf{x}}_{4}|}{|\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{3}||\overline{\mathbf{x}}_{2}, \overline{\mathbf{x}}_{4}|} \qquad |\overline{\mathbf{x}}_{i}, \overline{\mathbf{x}}_{j}| = \det\begin{bmatrix} x_{i1} & x_{j1} \\ x_{i2} & x_{j2} \end{bmatrix}$$

Invariant under projective transformations



# Recovering Metric and Affine Properties from Images

- Parallelism
- Parallel length ratios

- Angles
- Length ratios

# The Line at Infinity

$$\mathbf{1}'_{\infty} = \mathbf{H}_{A}^{-\mathsf{T}} \mathbf{1}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & \mathbf{0} \\ -\mathbf{A} \mathbf{t} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ 1 \end{pmatrix} = \mathbf{1}_{\infty}$$

The line at infinity  $I_{\infty}$  is a fixed line under a projective transformation H if and only if H is an affinity

Note: not fixed pointwise

# Affine Properties from Images



$$\mathbf{H}_{PA} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l_1 & l_2 & l_3 \end{bmatrix} \mathbf{H}_A \qquad \mathbf{l}_{\infty} = \begin{bmatrix} l_1 & l_2 & l_3 \end{bmatrix}^{\mathsf{T}}, l_3 \neq 0$$

$$\mathbf{H}_{P}^{\mathsf{T}}(l_1, l_2, l_3)^{\mathsf{T}} = (0, 0, 1)^{\mathsf{T}} = l_{\infty}$$

## Affine Rectification







### **Distance Ratios**



### The Circular Points

$$\mathbf{I} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$$

$$\mathbf{I}' = \mathbf{H}_{S} \mathbf{I} = \begin{bmatrix} s \cos \theta & -s \sin \theta & t_{x} \\ s \sin \theta & s \cos \theta & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = se^{i\theta} \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = \mathbf{I}$$

The circular points I, I are fixed points under the projective transformation **H** iff **H** is a similarity

### The Circular Points

"circular points"



Algebraically, encodes orthogonal directions

$$I = (1,0,0)^T + i(0,1,0)^T$$

## Conic dual to the Circular Points

$$\mathbf{C}_{\infty}^{*} = \mathbf{I}\mathbf{J}^{\mathsf{T}} + \mathbf{J}\mathbf{I}^{\mathsf{T}} \qquad \mathbf{C}_{\infty}^{*} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

$$\mathbf{C}_{\infty}^* = \mathbf{H}_S \mathbf{C}_{\infty}^* \mathbf{H}_S^\mathsf{T}$$

The dual conic  ${f C}_{_\infty}^*$  is fixed conic under the projective transformation  ${f H}$  if  ${f H}$  is a similarity

# **Angles**

Euclidean: 
$$1 = (l_1, l_2, l_3)^T$$
  $m = (m_1, m_2, m_3)^T$   

$$\cos \theta = \frac{l_1 m_1 + l_2 m_2}{\sqrt{(l_1^2 + l_2^2)(m_1^2 + m_2^2)}}$$

Projective: 
$$\cos \theta = \frac{\mathbf{l}^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{m}}{\sqrt{\left(\mathbf{l}^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{l}\right) \left(\mathbf{m}^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{m}\right)}}$$

(This equation is Invariant to projective transform)

$$1^T \mathbf{C}_{\infty}^* \mathbf{m} = 0$$
 If orthogonal

# Length Ratios

$$\frac{d(b,c)}{d(a,c)} = \frac{\sin \alpha}{\sin \beta}$$

 $\cos \alpha$  and  $\cos \beta$  can be derived with the equations in the previous page



# Metric Properties from Images

$$\mathbf{C}_{\infty}^{*}' = (\mathbf{H}_{P}\mathbf{H}_{A}\mathbf{H}_{S})\mathbf{C}_{\infty}^{*}(\mathbf{H}_{P}\mathbf{H}_{A}\mathbf{H}_{S})^{\mathsf{T}}$$

$$= (\mathbf{H}_{P}\mathbf{H}_{A})\mathbf{H}_{S}\mathbf{C}_{\infty}^{*}\mathbf{H}_{S}^{\mathsf{T}}(\mathbf{H}_{P}\mathbf{H}_{A})^{\mathsf{T}}$$

$$= (\mathbf{H}_{P}\mathbf{H}_{A})\mathbf{C}_{\infty}^{*}(\mathbf{H}_{P}\mathbf{H}_{A})^{\mathsf{T}}$$

$$= \begin{bmatrix} \mathbf{K}\mathbf{K}^{\mathsf{T}} & \mathbf{K}^{\mathsf{T}} \mathbf{v} \\ \mathbf{v}^{\mathsf{T}} \mathbf{K} & \mathbf{v}^{\mathsf{T}} \mathbf{v} \end{bmatrix}$$

Rectifying transformation from SVD

$$\mathbf{C}_{\infty}^* = \mathbf{U} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{U}^\mathsf{T} \qquad \mathbf{H} = \mathbf{U}$$

## Metric from Affine

Suppose an image has been affinely rectified ( $\mathbf{v}=0$ )

$$\begin{pmatrix} l_1' & l_2' & l_3' \end{pmatrix} \begin{bmatrix} \mathbf{K} \mathbf{K}^\mathsf{T} & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} m_1' \\ m_2' \\ m_3' \end{pmatrix} = 0$$

$$(l'_1m'_1, l'_1m'_2 + l'_2m'_1, l'_2m'_2)(k_{11}^2 + k_{12}^2, k_{11}k_{12}, k_{22}^2)^{\mathsf{T}} = 0$$





## Metric from Projective

$$1^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{m} = 0 \qquad \begin{pmatrix} l_{1}' & l_{2}' & l_{3}' \end{pmatrix} \begin{bmatrix} \mathbf{K} \mathbf{K}^{\mathsf{T}} & \mathbf{K}^{\mathsf{T}} \mathbf{v} \\ \mathbf{v}^{\mathsf{T}} \mathbf{K} & \mathbf{v}^{\mathsf{T}} \mathbf{v} \end{bmatrix} \begin{pmatrix} m_{1}' \\ m_{2}' \\ m_{3}' \end{pmatrix} = 0$$

$$(l'_1m'_1, 0.5(l'_1m'_2 + l'_2m'_1), l'_2m'_2, 0.5(l'_1m'_3 + l'_3m'_1), 0.5(l'_2m'_3 + l'_3m'_2), l'_3m'_3)c = 0$$

$$\mathbf{c} = (a, b, c, d, e, f)^{\mathrm{T}}$$





# Projective 3D Geometry

• Points, lines, planes and quadrics



### 3D Points

#### 3D point

$$(X,Y,Z)^T$$
 in  $\mathbb{R}^3$ 

$$X = (X_1, X_2, X_3, X_4)^T$$
 in  $P^3$ 

$$X = \left(\frac{X_1}{X_4}, \frac{X_2}{X_4}, \frac{X_3}{X_4}, 1\right)^{T} = (X, Y, Z, 1)^{T} \qquad (X_4 \neq 0)$$

projective transformation

$$X' = H X$$
 (4x4-1=15 dof)

#### Dual: points $\leftrightarrow$ planes, lines $\leftrightarrow$ lines

## **Planes**

#### 3D plane

$$\pi_1 X + \pi_2 Y + \pi_3 Z + \pi_4 = 0$$

$$\pi_1 X_1 + \pi_2 X_2 + \pi_3 X_3 + \pi_4 X_4 = 0$$

$$\pi^\mathsf{T} X = 0$$

#### **Transformation**

$$X' = \mathbf{H} X$$
$$\pi' = \mathbf{H}^{-\mathsf{T}} \pi$$

#### **Euclidean representation**



## Planes from Points

Solve  $\pi$  from  $X_1^T \pi = 0$ ,  $X_2^T \pi = 0$  and  $X_3^T \pi = 0$ 

$$\begin{bmatrix} X_1^\mathsf{T} \\ X_2^\mathsf{T} \\ X_3^\mathsf{T} \end{bmatrix} \pi = 0 \quad \text{(solve } \boldsymbol{\pi} \text{ as right nullspace of } \begin{bmatrix} X_1^\mathsf{T} \\ X_2^\mathsf{T} \\ X_3^\mathsf{T} \end{bmatrix} \text{)}$$

Or implicitly from coplanarity condition

$$\det\begin{bmatrix} X_1 & (X_1)_1 & (X_2)_1 & (X_3)_1 \\ X_2 & (X_1)_2 & (X_2)_2 & (X_3)_2 \\ X_3 & (X_1)_3 & (X_2)_3 & (X_3)_3 \\ X_4 & (X_1)_4 & (X_2)_4 & (X_3)_4 \end{bmatrix} = 0$$

$$X_1 D_{234} - X_2 D_{134} + X_3 D_{124} - X_4 D_{123} = 0$$

$$\pi = \begin{pmatrix} D_{234}, -D_{134}, D_{124}, -D_{123} \end{pmatrix}^{\mathsf{T}}$$

## Points from Planes

Solve X from 
$$\pi_1^T X = 0$$
,  $\pi_2^T X = 0$  and  $\pi_3^T X = 0$ 

$$\begin{bmatrix} \pi_1^\mathsf{T} \\ \pi_2^\mathsf{T} \\ \pi_3^\mathsf{T} \end{bmatrix} \mathbf{X} = \mathbf{0} \ \ (\text{solve } \mathbf{X} \ \text{as right nullspace of} \ \begin{bmatrix} \pi_1^\mathsf{T} \\ \pi_2^\mathsf{T} \\ \pi_3^\mathsf{T} \end{bmatrix})$$

### Points and Planes

Projective transformation

Under the point transformation X' = HX, a plane transforms as  $\pi' = H^{-T}\pi$ 

Parametrized points on a plane

Representing a plane 
$$\pi = (a, b, c, d)^T$$
 by its span

X = Mx x is a 3-vector parameter (a point on the projective plane)

$$\mathbf{m}^{\mathsf{T}} \mathbf{M} = 0$$
M is not unique  $\mathbf{M} = \begin{bmatrix} \mathbf{p} \\ \mathbf{I} \end{bmatrix}$ 
 $p = \left( -\frac{b}{a}, -\frac{c}{a}, -\frac{d}{a} \right)^{\mathsf{T}}$ 

## Lines



Defined as the join of two points A, B

$$W = \begin{bmatrix} A^{\mathsf{T}} \\ B^{\mathsf{T}} \end{bmatrix} \qquad \lambda A + \mu B$$

(Dual) Defined as the intersection of two planes P, Q

$$W^* = \begin{bmatrix} P^T \\ Q^T \end{bmatrix} \qquad \lambda P + \mu Q$$

$$\mathbf{W}^*\mathbf{W}^\mathsf{T} = \mathbf{W}\mathbf{W}^{*\mathsf{T}} = \mathbf{0}_{2\times 2}$$

Example: *X*-axis

$$\mathbf{W} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{W}^* = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

## Points, Lines and Planes

$$\mathbf{M} = \begin{bmatrix} \mathbf{W} \\ \mathbf{X}^\mathsf{T} \end{bmatrix} \qquad \mathbf{M} \, \boldsymbol{\pi} = \mathbf{0}$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{W}^* \\ \mathbf{\pi}^T \end{bmatrix} \quad \mathbf{M} \, \mathbf{X} = \mathbf{0}$$





## Plücker Matrices

Plücker matrix (4x4 skew-symmetric homogeneous matrix)

$$l_{ij} = A_i B_j - B_i A_j$$
$$L = AB^{\mathsf{T}} - BA^{\mathsf{T}}$$

- 1. L has rank 2  $LW^{*T} = 0_{4\times 2}$
- 2. 4dof
- 3. generalization of  $1 = x \times y$
- 4. L independent of choice A and B
- 5. Transformation  $L' = HLH^T$

Example: X-axis
$$L = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

## Plücker matrices

Dual Plücker matrix  $L^*$ 

$$L^* = PQ^{\mathsf{T}} - QP^{\mathsf{T}}$$

$$L^{*'} = H^{-T}LH^{-1}$$

Correspondence

$$l_{12}: l_{13}: l_{14}: l_{23}: l_{42}: l_{34} = l_{34}^*: l_{42}^*: l_{23}^*: l_{14}^*: l_{13}^*: l_{12}^*$$

Join and incidence

$$\pi = L^*X$$
 (plane through point and line)

$$L^*X = 0$$
 (point on line)

$$X = L\pi$$
 (intersection point of plane and line)

$$L\pi = 0$$
 (line in plane)

$$[L_1, L_2, ...] \pi = 0$$
 (coplanar lines)

# Quadrics and dual quadrics

$$X^TQX = 0$$
 (Q : 4x4 symmetric matrix)

- 2. in general 9 points define quadric  $Q = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \circ & \cdot & \cdot & \cdot \\ \circ & \circ & \cdot & \cdot \end{bmatrix}$ 3. det Q=0  $\leftrightarrow$  degree A
- 4. Polar plane  $\pi = QX$
- 5. (plane  $\cap$  quadric)=conic  $C = M^TQM \quad \pi: X = Mx$
- 6. transformation  $Q' = H^{-T}QH^{-1}$

Q\*: dual quadric, equations on planes

$$\boldsymbol{\pi}^{\mathsf{T}}\boldsymbol{Q}^*\boldsymbol{\pi} = 0$$

- 1. relation to quadric  $Q^* = Q^{-1}$  (non-degenerate)
- 2. transformation  $Q'^* = HQ^*H^T$

# Quadric Classification

| Rank | Sign. | Diagonal    | Equation              | Realization      |
|------|-------|-------------|-----------------------|------------------|
| 4    | 4     | (1,1,1,1)   | $X^2+Y^2+Z^2+1=0$     | No real points   |
|      | 2     | (1,1,1,-1)  | $X^2 + Y^2 + Z^2 = 1$ | Sphere           |
|      | 0     | (1,1,-1,-1) | $X^2 + Y^2 = Z^2 + 1$ | Hyperboloid (1S) |
| 3    | 3     | (1,1,1,0)   | $X^2 + Y^2 + Z^2 = 0$ | Single point     |
|      | 1     | (1,1,-1,0)  | $X^2 + Y^2 = Z^2$     | Cone             |
| 2    | 2     | (1,1,0,0)   | $X^2 + Y^2 = 0$       | Single line      |
|      | 0     | (1,-1,0,0)  | $X^2 = Y^2$           | Two planes       |
| 1    | 1     | (1,0,0,0)   | $X^2 = 0$             | Single plane     |

## Quadric Classification

Projectively equivalent to sphere:



sphere

ellipsoid



Ruled quadrics: (contain straight line)



Degenerate ruled quadrics:



hyperboloids of one sheet





## Twisted Cubic

conic

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = A \begin{pmatrix} 1 \\ \theta \\ \theta^2 \end{pmatrix} = \begin{pmatrix} a_{11} + a_{12}\theta + a_{13}\theta^2 \\ a_{21} + a_{22}\theta + a_{23}\theta^2 \\ a_{31} + a_{32}\theta + a_{33}\theta^2 \end{pmatrix}$$

twisted cubic

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = A \begin{pmatrix} 1 \\ \theta \\ \theta^2 \end{pmatrix} = \begin{pmatrix} a_{11} + a_{12}\theta + a_{13}\theta^2 \\ a_{21} + a_{22}\theta + a_{23}\theta^2 \\ a_{31} + a_{32}\theta + a_{33}\theta^2 \end{pmatrix} \qquad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = A \begin{pmatrix} 1 \\ \theta \\ \theta^2 \\ \theta^3 \end{pmatrix} = \begin{pmatrix} a_{11} + a_{12}\theta + a_{13}\theta^2 + a_{14}\theta^3 \\ a_{21} + a_{22}\theta + a_{23}\theta^2 + a_{24}\theta^3 \\ a_{31} + a_{32}\theta + a_{33}\theta^2 + a_{34}\theta^3 \\ a_{41} + a_{42}\theta + a_{43}\theta^2 + a_{44}\theta^3 \end{pmatrix}$$







- 3 intersection with plane (in general)
- 12 dof (15 for A 3 for reparametrisation (1  $\theta$   $\theta^2\theta^3$ )
- 3. 2 constraints per point on cubic, defined by 6 points
- projectively equivalent to  $(1 \theta \theta^2 \theta^3)$
- Horopter & degenerate case for reconstruction 5.

# Hierarchy of Transformations

Projective 15dof

$$\begin{bmatrix} A & t \\ v^{\mathsf{T}} & v \end{bmatrix}$$

**Invariant Properties** 

Intersection and tangency

5 for affine scaling

Affine 12dof

$$\begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix}$$



Parallellism of planes, Volume ratios, centroids, The plane at infinity  $\pi_{\infty}$ 

3 for rotation3 for translation1 for isotropic scaling

Similarity 7dof

$$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \\ 0^{\mathsf{T}} & 1 \end{bmatrix}$$



The absolute conic  $\Omega_{\infty}$ 

Euclidean 6dof

$$\begin{bmatrix} R & t \\ 0^{\mathsf{T}} & 1 \end{bmatrix}$$



Volume



# **Screw Decomposition**

Any particular translation and rotation is equivalent to a rotation about a screw axis and a translation along the screw axis.





## **Screw Decomposition**

Any particular translation and rotation is equivalent to a rotation about a screw axis and a translation along the screw axis.



screw axis // rotation axis

$$t=t_{/\!/}+t_{\perp}$$

# The Plane at Infinity

$$oldsymbol{\pi}_{\infty}' = oldsymbol{H}_{A}^{-\mathsf{T}} oldsymbol{\pi}_{\infty} = egin{bmatrix} \mathbf{A}^{-\mathsf{T}} & 0 \ 0 \ -\mathbf{A} \ t & 1 \end{bmatrix} egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix} = oldsymbol{\pi}_{\infty}$$

The plane at infinity  $\pi_{\infty}$  is a fixed plane under a projective transformation H iff H is an affinity

- 1. canical position  $\pi_{\infty} = (0,0,0,1)^{\mathsf{T}}$
- 2. contains directions  $D = (X_1, X_2, X_3, 0)^T$
- 3. two planes are parallel  $\Leftrightarrow$  line of intersection in  $\pi_{\infty}$
- 4. line // line (or plane)  $\Leftrightarrow$  point of intersection in  $\pi_{\infty}$

## The Absolute Conic

The absolute conic  $\Omega_{\infty}$  is a (point) conic on  $\pi_{\infty}$ .

In a metric frame:

or conic for directions:

$$(X_1, X_2, X_3)I(X_1, X_2, X_3)^T$$

(with no real points)

The absolute conic  $\Omega_{\infty}$  is a fixed conic under the projective transformation H iff H is a similarity

- 1.  $\Omega_{\infty}$  is only fixed as a set
- 2. Circle intersect  $\Omega_{\infty}$  in two points
- 3. Spheres intersect  $\pi_{\scriptscriptstyle \infty}$  in  $\Omega_{\scriptscriptstyle \infty}$

## The Absolute Conic

Euclidean:

$$\cos \theta = \frac{\left(\mathbf{d}_{1}^{\mathsf{T}} \mathbf{d}_{2}\right)}{\sqrt{\left(\mathbf{d}_{1}^{\mathsf{T}} \mathbf{d}_{1}\right)\left(\mathbf{d}_{2}^{\mathsf{T}} \mathbf{d}_{2}\right)}}$$

Projective:

$$\cos \theta = \frac{\left(d_1^\mathsf{T} \Omega_{\infty} d_2\right)}{\sqrt{\left(d_1^\mathsf{T} \Omega_{\infty} d_1\right) \left(d_2^\mathsf{T} \Omega_{\infty} d_2\right)}}$$

$$d_1^\mathsf{T}\Omega_\infty d_2 = 0$$
 (orthogonality=conjugacy)





## The Absolute Dual Quadric

$$\Omega_{\infty}^* = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & \mathbf{0} \end{bmatrix}$$

The absolute conic  $\Omega^*_{\infty}$  is a fixed conic under the projective transformation H iff H is a similarity

- 1. 8 dof
- 2. plane at infinity  $\pi_{\infty}$  is the nullvector of  $\Omega_{\infty}$

3. Angles: 
$$\cos \theta = \frac{\pi_1^\mathsf{T} \Omega_{\infty}^* \pi_2}{\sqrt{\left(\pi_1^\mathsf{T} \Omega_{\infty}^* \pi_1\right) \left(\pi_2^\mathsf{T} \Omega_{\infty}^* \pi_2\right)}}$$