NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Xiong Xi, Lin Mingyan Simon

MA1104 Multivariable Calculus AY 2010/2011 Sem 2

Question 1

(a) By the Chain Rule, one has

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}$$

$$= \frac{1}{x+y} \cdot e^t + \frac{1}{x+y} \cdot (-e^{-t})$$

$$= \frac{x-y}{x+y},$$

$$\frac{d^2w}{dt^2} = \frac{d}{dt} \left(\frac{dw}{dt}\right)$$

$$= \left(\frac{\partial}{\partial x} \left(\frac{dw}{dt}\right)\right) \frac{dx}{dt} + \left(\frac{\partial}{\partial y} \left(\frac{dw}{dt}\right)\right) \frac{dy}{dt}$$

$$= \frac{x+y-(x-y)}{(x+y)^2} \cdot e^t + \frac{-(x+y)-(x-y)}{(x+y)^2} \cdot (-e^{-t})$$

$$= \frac{2y}{(x+y)^2} \cdot e^t + \frac{2x}{(x+y)^2} \cdot e^{-t}$$

$$= \frac{4}{(e^t+e^{-t})^2}.$$

At t = 0, we have $\frac{d^2w}{dt^2} = \frac{4}{(e^0 + e^{-0})^2} = 1$.

(b) (i) By definition, one has

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{\sqrt{h^2}}\right)}{h}$$
$$= \lim_{h \to 0} h \sin\left(\frac{1}{\sqrt{h^2}}\right).$$

Since $\left|\sin(\frac{1}{\sqrt{h^2}})\right| \leq 1$, one has $\left|h\sin(\frac{1}{\sqrt{h^2}})\right| \leq |h|$. As $\lim_{h\to 0} |h| = 0$, it follows from the Squeeze Theorem that $\lim_{h\to 0} h\sin\left(\frac{1}{\sqrt{h^2}}\right) = 0$. Hence, $f_x(0,0) = 0$. Similarly, by symmetry one has $f_y(0,0) = 0$.

(ii) Suppose on the contrary that the function $f_x(x,y)$ is continuous at (0,0). We have

$$f_x(x,y) = 2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) + (x^2 + y^2) \left(-\frac{1}{2} \cdot \frac{2x}{(x^2 + y^2)^{3/2}}\right) \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$
$$= 2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{x}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right).$$

By letting $x = r \cos \theta$, $y = r \sin \theta$, the above expression becomes

$$f_x(x,y) = 2r\cos\theta\sin\frac{1}{r} - \cos\theta\cos\frac{1}{r} = \cos\theta\left(2r\sin\frac{1}{r} - \cos\frac{1}{r}\right). \tag{1}$$

Since $f_x(x,y)$ is continuous at (0,0), it follows that the limit $\lim_{(x,y)\to(0,0)} f_x(x,y)$ exists, and by equation (1), one has

$$\lim_{(x,y)\to(0,0)} f_x(x,y) = \lim_{r\to 0} \cos\theta \left(2r \sin\frac{1}{r} - \cos\frac{1}{r} \right). \tag{2}$$

By a similar argument in Question 1b(i), we see that the limit $\lim_{r\to 0} 2r\cos\theta\sin\frac{1}{r}$ exists. However, the limit $\lim_{r\to 0}\cos\theta\cos\frac{1}{r}$ does not exist. Hence, the limit on the RHS (and hence LHS) of equation (2) does not exist, which is a contradiction. So $f_x(x,y)$ is not continuous at (0,0).

(iii) Note that f is differentiable at (a,b) if and only if $f_x(a,b)$ and $f_y(a,b)$ exist, and $\triangle f(x,y)$ satisfies some equation $\triangle f(x,y) = f_x(a,b)\triangle x + f_y(a,b)\triangle y + \epsilon_1\triangle x + \epsilon_2\triangle y$, in which each of ϵ_1, ϵ_2 tends to 0 as both $\triangle x, \triangle y$ tends to 0. Clearly, we note that $f_x(0,0) = f_y(0,0) = 0$, and

$$\Delta f(x,y) = f(\Delta x, \Delta y) - f(0,0)$$

$$= ((\Delta x)^2 + (\Delta y)^2) \sin\left(\frac{1}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}\right)$$

$$= (\Delta x)^2 \sin\left(\frac{1}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}\right) + (\Delta y)^2 \sin\left(\frac{1}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}\right)$$

$$= f_x(0,0) \cdot \Delta x + f_y(0,0) \cdot \Delta y$$

$$+ \left[\Delta x \sin\left(\frac{1}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}\right)\right] \cdot \Delta x + \left[\Delta y \sin\left(\frac{1}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}\right)\right] \cdot \Delta y$$

Let $\epsilon_1 = \triangle x \sin\left(\frac{1}{\sqrt{(\triangle x)^2 + (\triangle y)^2}}\right)$ and $\epsilon_2 = \triangle y \sin\left(\frac{1}{\sqrt{(\triangle x)^2 + (\triangle y)^2}}\right)$. Then by a similar argument in Question 1b(i), we note that each of ϵ_1 and ϵ_2 tends to 0 as both $\triangle x, \triangle y$ tend to 0. So f is differentiable at (0,0).

Question 2

(a) A parametrization of the ellipse is $\mathbf{r}(\theta) = \langle \sqrt{6}\cos\theta, \sqrt{3}\sin\theta \rangle, 0 \le \theta \le 2\pi$.

At (2,1), we have $\sqrt{6}\cos\theta=2$ and $\sqrt{3}\sin\theta=1$, which gives us $\cos\theta=\frac{2}{\sqrt{6}}$ and $\sin\theta=\frac{1}{\sqrt{3}}$. Thus

$$\mathbf{r}'(\theta) = \left\langle -\sqrt{6}\sin\theta, \sqrt{3}\cos\theta \right\rangle$$
$$= \left\langle -\sqrt{6}\cdot\frac{1}{\sqrt{3}}, \sqrt{3}\cdot\frac{2}{\sqrt{6}} \right\rangle$$
$$= \left\langle -\sqrt{2}, \sqrt{2} \right\rangle.$$

Thus, a unit direction vector is $\mathbf{u} = \left\langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$. Next, from the equation $T(x,y) = 100 - 6xy - 5y^2$, we get $\nabla T(x,y) = \langle -6y, -6x - 10y \rangle$. Thus $\nabla T(2,1) = \langle -6, -22 \rangle$. Hence

$$\begin{split} D_{\mathbf{u}}T(x,y) &= \nabla\,T(x,y)\cdot\mathbf{u} \\ &= \langle -6, -22\rangle\cdot\langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\rangle = -8\sqrt{2}. \end{split}$$

Therefore, the rate of change of the temperature is $-8\sqrt{2}$ °C/m.

(b) Let $P(x_0, y_0, z_0)$ be a point on the paraboloid $z = \frac{x^2}{4} + \frac{y^2}{4}$. Then the distance from P to (3, 0, 0) is equal to $\sqrt{(x_0 - 3)^2 + y_0^2 + z_0^2}$. Let $f(x, y, z) = (x - 3)^2 + y^2 + z^2$. In order to find the shortest possible distance between P and (3, 0, 0), we need to find the smallest value of f(x, y, z) subject to the constraint $\frac{x^2}{4} + \frac{y^2}{4}$.

(3,0,0), we need to find the smallest value of f(x,y,z), subject to the constraint $\frac{x^2}{4} + \frac{y^2}{25} - z = 0$. Let $g(x,y,z) = \frac{x^2}{4} + \frac{y^2}{25} - z$. Then $\nabla f(x,y,z) = \langle 2x - 6, 2y, 2z \rangle$ and $\nabla g(x,y,z) = \langle \frac{x}{2}, \frac{2y}{25}, -1 \rangle$. By

the Method of Lagrange Multipliers, one has

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$$

$$\Rightarrow \langle 2x_0 - 6, 2y_0, 2z_0 \rangle = \lambda \left\langle \frac{x_0}{2}, \frac{2y_0}{25}, -1 \right\rangle$$

$$\Rightarrow 2x_0 - 6 = \frac{\lambda x_0}{2}, \quad y_0 = \frac{\lambda y_0}{25}, \quad 2z_0 = -\lambda.$$

From the equation $y_0 = \frac{\lambda y_0}{25}$, one has $y_0 = 0$ or $\lambda = 25$.

If $\lambda = 25$, then this forces $z_0 = -\frac{25}{2}$. However, by the equation $z_0 = \frac{x_0^2}{4} + \frac{y_0^2}{25}$, we must have $z_0 \ge 0$, which is a contradiction. So there are no solutions for this case.

If $y_0=0$, then we must have $2x_0-6=\frac{\lambda x_0}{2}$ and $z_0=\frac{x_0^2}{4}+\frac{y_0^2}{25}=\frac{x_0^2}{4}=-\frac{\lambda}{2}$. By solving the simultaneous equations, one has $\lambda=-2$, $x_0=2$ and $z_0=1$. Thus the point closest to (3,0,0) is P(2,0,1), and the distance is equal to $\sqrt{(3-2)^2+0^2+1^2}=\sqrt{2}$.

Question 3

(a) First Solution:

Let the solid that we are integrating over be denoted V. Note that all the points (x, y, z) in V must satisfy the following set of inequalities:

$$0 \le x \le 4, \quad 0 \le y \le \frac{4-x}{2}, \quad 0 \le z \le \frac{12-3x-6y}{4},$$

which is equivalent to the following set of inequalities:

$$x \ge 0$$
, $y \ge 0$, $z \ge 0$, $0 \le 3x + 6y + 4z \le 12$.

From the above, if we integrate with respect to y, followed by x and finally z, then we see that the limits of integration must be the following:

$$0 \le 6y \le 12 - 3x - 4z$$

$$\Rightarrow 0 \le y \le \frac{12 - 3x - 4z}{6},$$

$$0 \le 3x \le 12 - 6y - 4z \le 12 - 4z$$

$$\Rightarrow 0 \le x \le \frac{12 - 4z}{3},$$

$$0 \le 4z \le 12 - 3x - 6y \le 12$$

$$\Rightarrow 0 \le z \le 3.$$

Hence, by Fubini's Theorem, one has

$$\int_0^4 \int_0^{(4-x)/2} \int_0^{(12-3x-6y)/4} dz \, dy \, dx = \int_0^3 \int_0^{(12-4z)/3} \int_0^{(12-3x-4z)/6} dy \, dx \, dz.$$

Second Solution:

Note that

$$\int_0^4 \int_0^{(4-x)/2} \int_0^{(12-3x-6y)/4} dz \, dy \, dx = \iiint_E dV,$$

where E is the solid bounded by the planes z=0, x=0, y=0 and z=(12-3x-6y)/4. We see that the projection D of solid E onto the xz-plane is the triangle formed by the x-axis, z-axis and the line 3x+4z=12. For a fixed point $(x,z)\in D$, we shall integrate f(x,y,z) from the left boundary curve y=0 to the right boundary curve z=(12-3x-6y)/4, which can be rewritten as y=(12-3x-4z)/6. Therefore, by Fubini's Theorem,

$$\iiint_E dV = \iint_D \left[\int_0^{(12-3x-4z)/6} dy \right] dA$$
$$= \int_0^3 \int_0^{(12-4z)/3} \int_0^{(12-3x-4z)/6} dy \, dx \, dz$$

(b) First Solution:

Let the solid that we are integrating over be denoted E. Since E is bounded by y=1, y=7 and $y^2+2=x^2+z^2$, it follows that all points (x,y,z) in E must satisfy the following set of inequalities:

$$1 \le y \le 7$$
, $0 \le x^2 + z^2 \le y^2 + 2$.

By converting to polar coordinates in the xz – plane, i.e. $x = r\cos\theta$, $z = r\sin\theta$, where $r \ge 0$ and $0 \le \theta \le 2\pi$, the above set of inequalities is equivalent to:

$$1 \le y \le 7$$
, $0 \le r \le \sqrt{y^2 + 2}$.

Hence,

Volume of
$$E = \iiint_E dV$$

$$= \int_1^7 \int_{-\sqrt{y^2+2}}^{\sqrt{y^2+2}} \int_{-\sqrt{y^2-x^2+2}}^{\sqrt{y^2-x^2+2}} dz \, dx \, dy$$

$$= \int_1^7 \int_0^{2\pi} \int_0^{\sqrt{y^2+2}} r \, dr \, d\theta \, dy$$

$$= 2\pi \int_1^7 \left[\frac{r^2}{2} \right]_0^{\sqrt{y^2+2}} \, dy$$

$$= \pi \int_1^7 y^2 + 2 \, dy$$

$$= \pi \left[\frac{y^3}{3} + 2y \right]_1^7$$

$$= 126\pi.$$

Second Solution (By the method suggested in the textbook):

Let the solid that we are integrating over be denoted E. Let us break E into two parts E_1 and E_2 , where E_1 is bounded by the curves $x^2 + z^2 = 3$, y = 1 and y = 7, and $E_2 = E - E_1$. Note that the volume of E_1 is equal to $3 \cdot \pi \cdot (7 - 1) = 18\pi$.

For E_2 , let the projection of E_2 on xz-plane be D. Note that at y = 1, we have $x^2 + z^2 = 1^2 + 2 = 3$, and at y = 7, we have $x^2 + z^2 = 7^2 + 2 = 51$.

Hence, we see that the equation of D is the annulus $3 \le x^2 + z^2 \le 51$. Moreover, the left boundary curve of E_2 is the curve $y = \sqrt{x^2 + z^2 - 2}$ (since y > 0) and the right boundary curve of E_2 is the curve y = 7.

By converting to polar coordinates in the xz – plane, i.e. $x = r\cos\theta$, $z = r\sin\theta$, where $r \ge 0$ and $0 \le \theta \le 2\pi$, we see that one must have $\sqrt{3} \le r \le \sqrt{51}$. Hence,

Volume of
$$E_2 = \iiint_{E_2} dV$$

$$= \iiint_D \left[\int_{\sqrt{x^2 + z^2 - 2}}^7 dy \right] dA$$

$$= \iint_D 7 - \sqrt{x^2 + z^2 - 2} dA$$

$$= \int_0^{2\pi} \int_{\sqrt{3}}^{\sqrt{51}} \left(7 - \sqrt{r^2 - 2} \right) r dr d\theta$$

$$= 2\pi \left[\frac{7r^2}{2} - \frac{\sqrt{(r^2 - 2)^3}}{3} \right]_{\sqrt{3}}^{\sqrt{51}}$$

$$= 108\pi.$$

Thus, Volume of $E = \text{Volume of } E_1 + \text{Volume of } E_2 = 18\pi + 108\pi = 126\pi$.

Question 4

From $x=u^{1/3}v^{2/3}$ and $y=u^{2/3}v^{1/3}$, we get $u=\frac{x^2}{y}$ and $v=\frac{y^2}{x}$. Note that R is bounded by the curves $y=\sqrt{x},\,y=\sqrt{2x},\,y=\frac{x^2}{3}$ and $y=\frac{x^2}{4}$.

By letting the image of R under the change of variables to be S, we get that the boundaries of Sto be u = 1, u = 2, v = 3 and v = 4.

The Jacobian is

$$\begin{split} \frac{\partial(x,y)}{\partial(u,v)} &= \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \\ &= \left(\frac{1}{3} u^{-\frac{2}{3}} v^{\frac{2}{3}}\right) \left(\frac{1}{3} u^{\frac{2}{3}} v^{-\frac{2}{3}}\right) - \left(\frac{2}{3} u^{\frac{1}{3}} v^{-\frac{1}{3}}\right) \left(\frac{2}{3} u^{-\frac{1}{3}} v^{\frac{1}{3}}\right) \\ &= \frac{1}{9} - \frac{4}{9} = -\frac{1}{3}. \end{split}$$

Thus, one has

Area of Region
$$R = \iint_R dA$$

$$= \iint_S \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dA$$

$$= \int_1^2 \int_3^4 \frac{1}{3} du dv = \frac{1}{3}.$$

Question 5

(i) Let $\mathbf{F}(x, y, z) = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$ where $P(x, y, z) = y^2 \cos x + z^3$, $Q(x, y, z) = y^2 \cos x + z^3$ $2y \sin x - 4$ and $R(x, y, z) = 3xz^2 + 2$. Then one sees that $\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z} = 0$, $\frac{\partial R}{\partial x} = \frac{\partial P}{\partial z} = 3z^2$ and $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 2y \cos x$.

As P, Q and R all have continuous partial derivatives on \mathbb{R} , by the Component Test for Conservative Fields, we have that \mathbf{F} is a conservative vector field on \mathbb{R} .

(ii) Let a potential function of **F** be f. Then $\mathbf{F}(x,y,z) = \nabla f(x,y,z)$ so one has $f_x(x,y,z) =$ $y^2 \cos x + z^3$, $f_y(x, y, z) = 2y \sin x - 4$ and $f_z(x, y, z) = 3xz^2 + 2$. By integrating f_x with respect to x, we get $f(x, y, z) = y^2 \sin x + z^3 x + g(y, z)$, where g is some function of y and z with continuous first partial derivatives.

By differentiating the above with respect to y, we get $f_y(x,y,z) = 2y\sin x + g_y(y,z)$, so one has $g_y(y,z) = -4$.

By integrating g_y with respect to y, we get g(y,z) = -4y + h(z), where h is some continuously differentiable function of z. This implies that $f(x, y, z) = y^2 \sin x + z^3 x - 4y + h(z)$.

By differentiating the above with respect to z, we get $f_z(x,y,z) = 3xz^2 + h'(z)$, so one has h'(z) = 2.

Hence one has h(z) = 2z + C for some constant C so this implies that $f(x, y, z) = y^2 \sin x + C$ $z^3x - 4y + 2z + C.$

Page: 6 of 8

Therefore, by the Fundamental Theorem for Line Integrals, one has

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(\pi, \pi, \pi) - f(0, 1, -1)$$

$$= (\pi^{2} \sin \pi + \pi^{3} \pi - 4\pi + 2\pi + C) - (1^{2} \sin 0 + (-1)^{3}(0) - 4(1) + 2(-1) + C)$$

$$= \pi^{4} - 2\pi + 6.$$

(b) To find the boundary curve C of S, we need to solve the simultaneous equations $x^2+y^2+z^2=5^2$ and $z=5\sqrt{2}$. Then the equation of C is given by $z=\frac{5}{\sqrt{2}}$, and $x^2+y^2=25/2$. Hence, a parametrization of the curve C is $\mathbf{r}(t)=\left\langle \frac{5}{\sqrt{2}}\cos t, \frac{5}{\sqrt{2}}\sin t, \frac{5}{\sqrt{2}}\right\rangle$, $0\leq t\leq 2\pi$. Also we have

$$\mathbf{F}(\mathbf{r}(t)) = \left\langle \frac{5}{\sqrt{2}} \sin t, \left(\frac{5}{\sqrt{2}} \cos t - 2 \cdot \frac{5}{\sqrt{2}} \cos t \cdot \frac{5}{\sqrt{2}} \right), \left(\frac{5}{\sqrt{2}} \sin t \cdot \frac{5}{\sqrt{2}} \cos t \right) \right\rangle$$
$$= \left\langle \frac{5}{\sqrt{2}} \sin t, \left(\frac{5}{\sqrt{2}} - 25 \right) \cos t, \frac{25}{2} \sin t \cos t \right\rangle,$$
$$\mathbf{r}'(t) = \left\langle -\frac{5}{\sqrt{2}} \sin t, \frac{5}{\sqrt{2}} \cos t, 0 \right\rangle.$$

Therefore, by Stokes' Theorem,

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{r} \\
= \int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt \\
= \int_{0}^{2\pi} \left\langle \frac{5}{\sqrt{2}} \sin t, \left(\frac{5}{\sqrt{2}} - 25 \right) \cos t, \frac{25}{2} \sin t \cos t \right\rangle \cdot \left\langle -\frac{5}{\sqrt{2}} \sin t, \frac{5}{\sqrt{2}} \cos t, 0 \right\rangle dt \\
= \int_{0}^{2\pi} -\frac{25}{2} \sin^{2} t + \left(\frac{25}{2} - \frac{125}{\sqrt{2}} \right) \cos^{2} t dt \\
= \int_{0}^{2\pi} -\frac{125}{2\sqrt{2}} + \left(\frac{25}{2} - \frac{125}{2\sqrt{2}} \right) \cos 2t dt \\
= \left[-\frac{125t}{2\sqrt{2}} + \left(\frac{25}{4} - \frac{125}{4\sqrt{2}} \right) \sin 2t \right]_{0}^{2\pi} = -278 \, (3.\text{s.f.}).$$

Question 6

Let $\mathbf{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$ where $P(x,y,z) = -\frac{z}{y}$, $Q(x,y,z) = y \sin y$ and $R(x,y,z) = z^2$. Then

$$\operatorname{curl} \mathbf{F} = \left\langle \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\rangle$$
$$= \left\langle 0 - 0, -\frac{1}{y} - 0, 0 - \frac{z}{y^2} \right\rangle = \left\langle 0, -\frac{1}{y}, -\frac{z}{y^2} \right\rangle.$$

By Stokes' Theorem, we have

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \iint_{S_1} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}, \ \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \iint_{S_2} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S},$$

where S_1 and S_2 denote the surfaces with the boundary curves C_1 and C_2 respectively. Note that the projection D of both S_1 and S_2 on the xz – plane is the disk $x^2 + z^2 \le 1$. For S_1 , let $y = g(x, z) = 10 + x^2 + 3z^2$. Then one has

$$\mathbf{r}_{x} \times \mathbf{r}_{z} = \left\langle -\frac{\partial g}{\partial x}, 1, -\frac{\partial g}{\partial z} \right\rangle = \left\langle -2x, 1, -6z \right\rangle$$

$$\Rightarrow \operatorname{curl} \mathbf{F} \cdot (\mathbf{r}_{x} \times \mathbf{r}_{z}) = \left\langle 0, -\frac{1}{y}, -\frac{z}{y^{2}} \right\rangle \cdot \left\langle -2x, 1, -6z \right\rangle$$

$$= \frac{6z^{2} - y}{y^{2}}$$

$$= \frac{6z^{2} - (10 + x^{2} + 3z^{2})}{(10 + x^{2} + 3z^{2})^{2}} = \frac{3z^{2} - 10 - x^{2}}{(10 + x^{2} + 3z^{2})^{2}},$$

$$\Rightarrow \iint_{S_{1}} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \operatorname{curl} \mathbf{F} \cdot (\mathbf{r}_{x} \times \mathbf{r}_{z}) dA = \iint_{D} \frac{3z^{2} - 10 - x^{2}}{(10 + x^{2} + 3z^{2})^{2}} dA.$$

For S_2 , let y = h(x, z) = 2 - x. Then one has

$$\begin{split} \mathbf{r}_x' \times \mathbf{r}_z' &= \left\langle -\frac{\partial h}{\partial x}, 1, -\frac{\partial h}{\partial z} \right\rangle = \langle 1, 1, 0 \rangle \\ \Rightarrow \operatorname{curl} \mathbf{F} \cdot (\mathbf{r}_x' \times \mathbf{r}_z') &= \left\langle 0, -\frac{1}{y}, -\frac{z}{y^2} \right\rangle \cdot \langle 1, 1, 0 \rangle \\ &= -\frac{1}{y} = -\frac{1}{2-x}, \\ \Rightarrow \iint_{S_2} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} &= \iint_D \operatorname{curl} \mathbf{F} \cdot (\mathbf{r}_x' \times \mathbf{r}_z') \, dA = \iint_D -\frac{1}{2-x} \, dA. \end{split}$$

Note that for all points (x, z) on D, we have

$$\frac{3z^2-10-x^2}{(10+x^2+3z^2)^2} \geq \frac{3(0)^2-10-1^2}{(10+0^2+3(0)^2)^2} = -\frac{11}{100} > -\frac{1}{3} = -\frac{1}{2-(-1)} \geq -\frac{1}{2-x}.$$

Thus,

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \iint_{S_1} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

$$= \iint_{D} \frac{3z^2 - 10 - x^2}{(10 + x^2 + 3z^2)^2} dA$$

$$> \iint_{D} -\frac{1}{2 - x} dA$$

$$= \iint_{S_2} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r},$$

so the given assertion is not true.