Computer Networks

Lecture on

ARP, IPv4, ICMP, DHCP, IPv6, NAT

Plan of This Lecture

- ARP & RARP Address Resolution Protocol & Reverse ARP
- IPv4
- ICMP Internet Control Message Protocol
- DHCP Dynamic Host Configuration Protocol
- IPv6
- ICMPv6
- NAT Network Address Translation

ARP & RARP – Address Resolution Protocol & Reverse ARP

ARP answers to:

"What is the physical address of a station with a given network address?"

RARP answers to:

"What is the network address of a station with a given physical address?"

The questions are broadcasted to the LAN segment

ARP

Who is asking?

Every node sending a network packet

Who is answering?

- Owner of the network address if exists in the LAN
- Router if the address do not belong to the LAN

Answers are collected in the ARP table

See it with: arp -a

RARP

Who is asking?

• Diskless station during a booting process: - What is my network address?

Who is answering?

RARP server

ARP & RARP were conceived for any kind of networks They support any 2nd & 3rd layer protocols

PAD is needed to get the minimum payload size of 46 octets

Version = 4

Header length = (5 + N) 32-bit words

for this reason PADding can be needed

ToS – Type of Service

• originally defined as

0	1	2	3	4	5	6	7	
	priority		low delay	throughput	low cost	0	0	

- not used in most past networks
- in today's network it is replaced by

0	1	2	3	4	5	6	7
		DS	CP			EC	CN

DSCP – Differentiated Services Code Point specifies differentiated services (DiffServ)

– priorities assigned to well defined services

Flags

- bit 0: Reserved; must be zero
- bit 1: Don't Fragment (DF)
- bit 2: More Fragments (MF)

ENC – Explicit Congestion Notification stamped by a congested router

IP fragmentation

Time-to-live

nowadays it is number of hops every router decrement it by 1 if =0 then packet is dropped

Protocol

defines payload – what is the next header e.g.: 6 – TCP, 17 – UDP, 1 – ICMP

Options

- rarely used
- for control, testing, probing, experimentation
- some considered as unsecure & are blocked by some routers, e.g.:
 - loose source routing
 - strict source routing

ICMP – Internet Control Message Protocol

<u>Aim</u>: self-recovery from errors in the network

PDU types:

- echo request, echo response Try: ping host host IP addr. or domain name
- destination unreachable
- packet too big
- stop packet source
- need to change the route
- TTL expired
- error in the IP header
- timestamp request, timestamp response
- subnet mask request, subnet mask response
- router solicitation, router advertisement

• ...

Path MTU Discovery

Jacek Wytrębowicz

OK

DHCP – Dynamic Host Configuration Protocol

Aim: to assign an IP address and other network configuration parameters to each device in the LAN

DHCP server delivers:

- IP address & mask for the asking interface
- Other addresses
 - o default router
 - DNS servers
 - o time servers
 - WINS servers
 - O ...
- Other parameters
 - o Domain name
 - Host name
 - File server & path to the operating system for booting

o ...

DHCP works over UDP

Examples of DHCP clients

- workstations
- lightweight WiFi access points
- IP phones
- ...

Address allocation methods

- Manually
 - o MAC addr. to IP addr. mapping
- Automatically permanently
 - o from a given address range, set by an admin
- Dynamically for a finite time (lease period)
 - o from a given address range, set by an admin
 - o client may also request its last known IP address

e.g. for servers

e.g. for workstations

After the lease period

- The address can be returned to the free addresses pool and allocated to the other client
- The client can also "refresh" the lease and retain the allocated address
- The client can be suspend from the network e.g. after the end of a laboratory class

Version = 6

Header length is constant = 40 B

Traffic class

- 6 bits Differentiated Services (DS) field
 - o well defined priorities for known services
- 2 bits Explicit Congestion Notification

Flow label – with src. addr. allow to recognize packet flows

- Routers can use it
 - o to speed-up forwarding
 - o to direct a flow via the same path

Main Features

- Huge address space
 - Optimistically around 4,000 trillions of addresses per 1 m² of the earth (considering different types of allocations)
 - o Most pessimistically, at least 1,564 addresses per 1 m² of the earth
- End-to-end connectivity without NATs
- Efficient autoconfiguration ad hoc & mobile networks
- Routers work faster
 - o 1st header is simple and has constant length
 - No checksums
 - o Simple subnetwork address aggregation
 - Flow label enables efficient packet processing

- Jumbograms
 - o Can be as large as 4 GiB
 - Since both TCP and UDP include fields limited to 16 bits transport-layer tweaks are needed – RFC 2675
- Simple multihoming access to the Internet via several ISPs
- Built in mobility mechanisms
- Built in security (IPSec)
- Header chain concept allows for future evolution
- Mechanism to co-work with IPv4 networks and to evolutionary migration from IPv4 to IPv6

IPv6 Addresses

Hierarchy of IPv6 addressing

64						64
# Regional Internet Registry	# ISP level 1	1	# ISP level N	# organization	# localization	# host

- Address autoconfiguration
 - o Important for mobility & ad hoc networking
 - Stateless (obtained IPv6 prefix, own EUI-64 address)
 LAN submask has constant length = 64 bits
 - Stateless (obtained IPv6 prefix, randomly generated address)
 - Stateful address from DHCPv6

- No broadcast addresses e.g. ARP broadcast load is replaced by ICMPv6 multicast
- Anycast addresses
 - Used by routing protocols, network security systems, ...
 - Selected from the unicast address space
 - Assigned to more than one interface
 Typically belonging to different nodes
 - Routed to the nearest interface having that address
 According to the routing protocols' measure of distance
- Addressing scopes

unicast	multicast
loopback	interface-local
link-local	link-local
	realm-local
	admin-local
	site-local
unique-local	organization-local
global	global

IPv6 Header Extensions

IP options have been moved to a set of optional Extension Headers

Extension Headers are chained together and placed between IPv6 and transport layer headers

IPv6 Header Next = TCP H.	TCP Header	Application Data

IPv6 Header	Routing Header	TCP Header	Application Data
Next = Routing H.	Next = TCP		

I	Pv6 Header	Security Header	Fragmentation Header	TCP Header	Application Data	
Nex	t = Security H.	Next = Fragmentation	Next = TCP	TCF Headel	Аррисации Васа	

IPv4 to IPv6 Transition Mechanisms

- Dual stack supports both IPv4 and IPv6
 - o Modern OSs do it

- Stateless IP/ICMP Translation translates packet header formats IPv6 ↔ IPv4
 - Address prefix ::ffff:0:0:0/96 ::ffff:0:a.b.c.d \leftrightarrow a.b.c.d
 - o IPv4 net can connect 2 IPv6 nets
 - o IPv6-only hosts can communicate with IPv4-only hosts

- Tunnelling encapsulating IPv6 packets within IPv4 tunnel broker is a service which provides a network tunnel
 - o encapsulated within IPv4 packets using protocol number 41
 - o encapsulated within UDP packets e.g. in order to cross a router or NAT device
 - o use generic encapsulation schemes, such as AYIYA or GRE
 - o SATAP treats the IPv4 network as a virtual IPv6 local link
 - Teredo an automatic tunnelling technique that uses UDP encapsulation (is claimed to be able to cross multiple NAT boxes)
 - o **6in4** configured tunnelling used by enterprises
- Proxying and translation
 - o dual-stack application-layer proxy
 - 464XLAT allows clients on IPv6-only networks to access IPv4-only Internet services e.g. Skype

o ...

ICMPv6

Supports IPv6 addresses

Covers functionalities of diverse IPv4 related protocols and adds more, e.g.:

• ICMP

• ARP & RARP – here is called Neighbour Discovery Protocol

• Internet Group Management Protocol – here is called Multicast Listener Discovery

• Multicast Router Discovery

• ...

Try: ping6 host

NAT – Network Address Translation

- Conceived as a short term solution for IPv4 address shortage
- Enables hosts an a private network to communicate with hosts on the Internet
- IP addresses and possibly port numbers are replaced at the boundary of a private network
- NAT server has address translation table
- Often installed on routers

Example Chain of NAT Servers

NAT Problems

- Outside IP address pool is smaller than inside pool
- How long to keep a translation record?
 - Many protocols are connectionless
- How to deal with
 - o protocols that do not carry a port number, e.g. ICMP?
 - o protocols that carry embedded IP addresses or port numbers?
 - e.g. in order to redirect responses or queries
 - o IP multicast?

NAT Advantages

- Public addressing space savings
- Elimination of need for LAN(s) readdressing when changing an ISP
- Elimination of need for ISP access readdressing when changing an ISP
- Local network security improvement is illusory
 even thought stated in many publications
 - o Many attacks starts from internal network, from infected computers
 - Internal host which started communication with an outside one is visible from outside and can be attacked from outside
 - If it is not TCP communication, then if it ends, then the host is still visible until timeout
 can be a few seconds

NAT Disadvantages

- Main Internet concept is broken the same visibility of every communication point
 - o difficulties for applications demanding full network visibility

 - (e.g., IP telephony, network games) mitting point or proxy servers are needed
 - o difficulties with server placing behind NATs dynamic DNS services are needed
 - o difficulties with sensor networks placement
- NAT server is a bottleneck for network throughput
 - o have to keep state of every connection
 - o cannot support many servers on local side
 - many users want to expose theirs HTTP servers
 - o implementation in hardware is impossible
- Battery save terminals (e.g., portable phones) cannot be placed behind a NAT
- Disable integrity verification of IP headers (IPSec)
- Application that use several ports usually needs a proxy installed on NAT server (e.g., FTP)
- Integration of two networks, which use the same private address space, is difficult

Iacek Wytrebowicz 28

Summary

- ARP & RARP Address Resolution Protocol & Reverse ARP
- IPv4
 - o IP fragmentation
- ICMP Internet Control Message Protocol
 - o Path MTU discovery
- DHCP Dynamic Host Configuration Protocol
- IPv6
 - Main features
 - o Addressing
 - Header Extensions
 - o IPv4 to IPv6 transition/coexistence mechanisms
- ICMPv6
- NAT Network Address Translation
 - o Problems
 - Advantages
 - Disadvantages

Exercises

Run in a terminal window the following commands and figure out the output

arp -a ping -c3 www.qzhu.edu.cn ping6 -c3 en.wikipedia.org traceroute www.ii.pw.edu.pl

Take a look into man tcpdump

To do the following exercises, you need to have the root permissions

1st terminal window	2 nd terminal window			
Run				
sudo tcpdump -vl icmp	Run			
Observe and explain the output	ping -c1 www.qzhu.edu.cn			
Stop it by pressing Ctrl-C				
Run				
sudo tcpdump -vl icmp6	Run			
Observe and explain the output	ping6 -c1 en.wikipedia.org			
Stop it by pressing Ctrl-C				

Questions

- 1. What for a host uses ARP and RARP (Reverse Address Resolution Protocol)?
- 2. How does ARP (Address Resolution Protocol) work?
- 3. What for is the hop count field in the IP header?
- 4. What for is the protocol field in the IP header?
- 5. What for is the Type of Service / Traffic Class field in the IP header?
- 6. What is the aim of the Time to Live field in IPv4 header (hope limit in IPv6)?
- 7. What is the aim of ICMP?
- 8. What for a host uses DHCP (Dynamic Host Configuration Protocol)?
- 9. How many DHCP servers can work in a network segment?
- 10. What are main advantages of IPv6?
- 11. What is it anycast address, and for what is it used (example of applications)?
- 12. What are the purposes of local-link and unique local IPv6 addresses?
- 13. Mention principal transition mechanism to use IPv6 in IPv4 world.
- 14. What is the IPv6 tunnel broker service?
- 15. How an IPv4 address is mapped into IPv6?
- 16. What is the difference between ICMPv4 and ICMPv6?
- 17. Why is better to process fragmentation/defragmentation on terminal devices than on routers?
- 18. What was the reason for introduction of NAT (Network Address Translation) into Internet?

19. What are main disadvantages of NAT?