Hun Chan (Bryan) Lee

Boston, MA | hunchanl.github.io | Google Scholar | hclee94@bu.edu

RESEARCH INTEREST

- Design, fabrication, and optimization of soft actuators and sensors for advanced soft robotic systems.
- System modeling and control for soft robotic systems
- Developing and integrating soft optics / visual sensors into the soft robotic platforms

EDUCATION

Boston University Boston, MA Ph.D. Candidate, Mechanical Engineering Sept. 2021 ~ Present

Advisor: Prof. Sheila Russo

Purdue University West Lafavette, IN Aug. 2016 ~ Aug. 2018

Master of Science, Mechanical Engineering Advisor: Prof. Raymond Cipra

Purdue University

Bachelor of Science, Mechanical Engineering Aug. 2012 ~ May. 2016 (Highest Distinction) GPA: 3.96 / 4.00

RESEARCH EXPERIENCE

Material Robotics Lab, Boston University

Advisor: Prof. Sheila Russo

Developed and optimized a monolithic layer-by-layer fabrication process for soft-rigid hybrid robots, achieving seamless

Designed and prototyped an innovative Miura-ori pattern-inspired soft retractor with capacitive sensor for neurosurgical applications, enhancing precision and adaptability in surgical procedures. [C1, C2]

system integration of a soft actuator, an ionic resistive sensor, and a rigid-flexible mechanical controller. [J1]

Leading a team of four people to develop an autonomous soft-rigid hybrid robotic system for laser-assisted surgery, incorporating optical proprioceptive sensors interpreted using machine learning. [Work in progress]

Cipra Lab. Purdue University

Advisor: Prof. Raymond Cipra

Aug. 2016 – Aug. 2018

Jan. 2015 - May. 2016

GPA: 3.81 / 4.00

West Lafavette, IN

Sept. 2021 – Present

- Developed and optimized the design of a wearable, 3-D printed prosthetic hand with compliant joints, leveraging rapid prototyping techniques. [J5]
- Utilized MATLAB image processing techniques to analyze the motion of the prosthetic hand [J5]

Vlachos Research Group, Purdue University

Advisor: Prof. Pavlos Vlachos

Constructed and optimized a realistic circulation loop and compliance chamber model, accurately replicating the intricate blood flow patterns in cerebral aneurysms

WORK EXPERIENCE

IntheSmart Co., Ltd.

Seoul, South Korea

Research and Design Team Member

Aug. 2018 – Aug. 2021

- Shadowed over 150 preclinical and clinical trial cases across various general surgery divisions and directly worked with clinicians to gather and incorporate their feedback to refine surgical imaging systems.
- Developed and integrated a YOLOv5 object detection machine learning model into a handheld RGB and NIR dualimaging system, enhancing parathyroid gland (PG) identification rates and viability diagnostic accuracy. [J3, J4]
- Led the research and development of hardware for the Laser Speckle Contrast Imaging (LSCI) system, a laser-based blood flow meter and acquired Korean Good Manufacturing Practice (K-GMP) certification for the system. [P1, J4, C3]
- Developed and implemented over 20 experimental protocols and designed electro-mechanical testing system instruments to improve the functionality of fluorescence laparoscopy systems that integrate RGB and NIR imaging.

PUBLICATIONS (J: Journal Article, C: Conference Proceeding, P: Patent, *Equally Contributed)

JOURNAL ARTICLES

J1. Lee, H.C., Elder, N., Leal, M., Stantial, S., Vergara Martinez, E., Jos, S., Cho, H. and Russo, S., 2024. A fabrication strategy for millimeter-scale, self-sensing soft-rigid hybrid robots. *Nature Communications*, 15(1), p.8456.

- **J2.** Lee, H.C., Pacheco, N.E., Fichera, L. and Russo, S., 2022. When the end effector is a laser: A review of robotics in laser surgery. *Advanced Intelligent Systems*, 4(10), p.2200130.
- **J3.** Kim, Y., Lee*, **H.C., Kim***, J., Oh*, E., Yoo, J., Ning, B., Lee, S.Y., Ali, K.M., Tufano, R.P., Russell, J.O. and Cha, J., 2022. A coaxial excitation, dual-red-green-blue/near-infrared paired imaging system toward computer-aided detection of parathyroid glands in situ and ex vivo. *Journal of Biophotonics*, 15(8), p.e202200008.
- **J4.** Oh, E., Lee, H.C., Kim, Y., Ning, B., Lee, S.Y., Cha, J. and Kim, W.W., 2022. A pilot feasibility study to assess vascularity and perfusion of parathyroid glands using a portable hand-held imager. *Lasers in Surgery and Medicine*, 54(3), pp.399-406. *Cover Article*
- **J5.** Lee, H.C. and Cipra, R., 2020. Design of a Novel Locking Ratcheting Mechanism for a Body-Powered Underactuated Hand. Journal of Medical Devices, 14(1), p.011101.

CONFERENCE PROCEEDINGS

- C1. Van Lewen D., Wang C., Lee H.C., Devaiah A., Upadhyay U., and Russo S., 2024. Monitoring Forces in Soft Robotic Brain Retraction via Origami Sensing Modules. *The Hamlyn Symposium on Medical Robotics*
- C2. Van Lewen, D., Wang, C., Lee, H.C., Devaiah, A., Upadhyay, U. and Russo, S., 2024, May. Capacitive Origami Sensing Modules for Measuring Force in a Neurosurgical, Soft Robotic Retractor. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5302-5308). IEEE.
- C3. Bhrugubanda, S., Lee, H.C., Kifle, N., Kim, Y. and Cha, J., 2023, March. Multi-directional adjustable two-camera housing module for medical applications. In Design and Quality for Biomedical Technologies XVI (Vol. 12370, p. 1237002). SPIE.

PATENT

P1. Jaepyeong, Cha. and Lee, H.C., Optosurgical LLC, 2023. Method and apparatus for biometric tissue imaging. U.S. Patent Application 17/854,084.

TEACHING EXPERIENCE

Teaching Assistant

Electromechanical Design

Sept. 2022 -Dec. 2022

Assisted the electromechanical system design lab sessions (Topics: Arduino, electromechanical system design)

Machine Design

Jan. – *May 2017 & Jan.* – *May 2018*

 Instructed the machine design lab sessions (Topics: the kinetics and kinematics of machine, the stress analysis of machine components)

Mechanical Engineering Design, Innovation, and Entrepreneurship

Aug. – Dec. 2016 & Aug. – Dec. 2017

Instructed the design lab session and guided in applying engineering principles to open-ended problems.

Conference Presentations

- A Monolithic Fabrication Strategy for Millimeter-Scale, Self-Sensing Actuators, Oral Presentation at Materials Research Society (MRS). San Francisco, CA, April 25-27, 2023
- A Monolithic Fabrication Method for Proprioceptive Soft-Foldable Robots, Oral Presentation at *Society of Engineering Science (SES)*, Minneapolis, MN, October 8-11, 2023

Honors and Awards

•	Distinguished Mechanical Engineering Fellowship	2021
•	Dean's List	2012-2016
•	Semester Honor	2012-2016
•	EPICS AMD Design Award	2014
•	School of Mechanical Engineering Scholarship	2013

Technical Skills

- 3D Modeling: SOLIDWORKS, CATIA
- Simulation: AbaqusPCB Designing: Altium
- **Programming**: Python, MATLAB, C, ROS / MicroROS, TensorFlow