Am25LS2538

One-of-Eight Decoder with Three-State Outputs and Polarity Control

DISTINCTIVE CHARACTERISTICS

- Three-state decoder outputs
- Buffered common output polarity control
- Inverting and non-inverting enable inputs
- A. C. parameters specified over operating temperature and power supply ranges

GENERAL DESCRIPTION

The Am25LS2538 is a three-line to eight-line decoder/demultiplexer fabricated using advanced Low-Power Schottky technology. The decoder has three buffered select inputs-A, B, and C-that are decoded to one-of-eight Y outputs. Two active-HIGH and two active-LOW enables can be used for gating the decoder or can be used with incoming data for demultiplexing applications.

A separate polarity (POL) input can be used to force the function active-HIGH or active-LOW at the output. Two separate active-LOW output enables (OE) inputs are pro-

vided. If either \overline{OE} input is HIGH, the output is in the high-impedance (off) state. When the POL input is LOW, the Y outputs are active-HIGH and when the POL input is HIGH, the Y outputs are active-LOW.

The device is packaged in a space saving (0.3-inch row spacing) 20-pin package. It also features Am25LS family improved switching specifications, higher noise margin, and twice the fan-out over the military temperature range when compared with Am54LS/74LS devices.

BLOCK DIAGRAM

03664B

RELATED PRODUCTS

Part No.	Description
Am25LS2536	8-Bit Decoder
Am25LS2537	1-of-10 Decoder
Am25LS2539	Dual 1-of-4 Decoder
Am25LS2548	Chip Select Address Decoder
Am2921	1-of-8 Decoder
Am2924	3-to-8 Line Decoder/Demultiplexer

CD001970

Note: Pin 1 is marked for orientation

CONNECTION DIAGRAM
Top View

METALLIZATION AND PAD LAYOUT

DIE SIZE 0.081" x 0.096"

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Device type 1-of-8 Decoder

Valid Cor	nbinations
Am25LS2538	PC DC, DM FM LC, LM XC, XM

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

036648

PIN DESCRIPTION

Pin No.	Name	1/0	Description
6, 7, 17	A, B, C	1	The three select inputs to the decoder/demultiplexer.
16, 15	E ₁ , E ₂	l i	The active LOW enable inputs. A HIGH on either the E1 or E2 input forces all decoded functions to be disabled.
14, 13	E3, E4	- 1	The active HIGH enable inputs. A LOW on either the E ₃ or E ₄ input forces all the decoded functions to be inhibited.
12	POL	Ī	Polarity Control. A LOW on the polarity control input forces the output to the active-HIGH state while a HIGH on the polarity control input forces the Y outputs to the active-LOW state.
4, 5	OE ₁ , OE ₂	1	Output Enable. When both the \overline{OE}_1 and \overline{OE}_2 inputs are LOW, the Y outputs are enabled. If either \overline{OE}_1 or \overline{OE}_2 input is HIGH, the Y outputs are in the high-impedance state.
	Yi	0	The eight outputs for the decoder/demultiplexer.

FUNCTION TABLE

High-Impedance X I	INPUTS								OUTPUTS									
FUNCTION	ŌE ₁	ŌĒ2	E ₁	Ē ₂	E ₃	E4	POL	С	В	A	Yo	Y1	Y ₂	Y ₃	Y4	Y ₅	Y ₆	Y7
High-Impedance	н	х	х	х	х	х	х	х	х	х	Z	Z	z	z	2	z	z	Z
. ng.v mipous.no	×	н	x	×	×	×	x	x	х	x	z	z	z	z	z	z	z	Z
	L	L	н	х	×	×	L	Х	X	х	L	L	L	L	L	L	L	L
		L	Н	X	×	X	H	х	×	X	H	H	н	Н	H	н	н	Н
	L	L	×	H	×	х	l L	Х	×	X	L	L	Ł	L	L	L	L	L
Dieshla	L	L	×	Н	X	х	Н	х	×	X	Н	н	н	н	н	H	н	Н
Disable	L	L	Х	X	L	X	L	х	×	X	L	L	L	L	L	L	L	L
	L	l L	X	X	L	X	H	х	X	X	H	Н	н	н	н	н	H	Н
		L	×	×	×	L	L	×	×	X	L	L	L	L	1	L	L	L
	L	L	X	×	Χ	L	Н	X	Х	X	Н	Н	Н	н	Н	Н	н	н
	L	L	L	L	н	Н	L	7	L	L	Н	L	٦	L	ī	L	L	Ł
	L	L	L	L	Н	н	L	L	L	H	L	н	L	L	l L	L	L	L
	L	L	L	L	ļ H	H	L	L	н	L	L	L	н	L	L	L	L	L
Active HIGH Output	L	L	L	L	H	H	L	L	н	H	L	L	L	H	L	L	L	L
Acare-man Caper	l L	L	L	L	H	H	L.	н	L.	L	L	L	L	L	H	L	L	L
	L	L	L	L	Н	Н	L	н	L	H	L	L	L	L	L	H	L	L
	L	L	L	L	H	H	L	н	н	L	L	L	L	L	L	L	Н	L
	L	L	L	L	н	H	L	H	H	Н	L	L	L	L	1	L	L	H
	L	L	L	L	H	н	н	٦	L	L	L	Н	н	н	H	Н	н	Н
	L	L	L	l L	н	Н	Н	L	L	н	н	L	н	H	H	H	H	H
	L	L	L	L	H	H	l H	L	H	L	ļ н	Н	L	H	н	н	H	н
And a Cotta Commit	L	L	L	L	н	н	н	j L	н	Н	н	н	н	L	н	н	Н	н
Active-LOW Output	L	L	L	L	H	H	н	н	L	L	H	н	н	Н	L	H	н	Н
	L	L	L	l L	Н	н	Н	н	L	Н	н	н	н	H	Н	L	н	Н
	L	L	L	L	H	н	н	н	H	L	H	н	н	ļн	Н	н	L	i H
	L	L	L	L	н	н	н	н	H	L	н	н	H	H	H	н	н	L

H = HIGH L = LOW X = Don't Care Z = High-Impedance

APPLICATIONS

AF001091

One-of-thirty-two decoder without additional decoding devices. Can be used for I/O decoding in an Am9080A system.

AF001081

Two Am25LS2538s can be used to perform a one-of-sixteen-bit mask function or a one-of-sixteen-bit select function to perform bit manipulation in a microprocessor system.

Examples:

																					Function
0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	Bit Select Bit Select Bit Mask Bit Mask
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Bit Select
0	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	Bit Mask
1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	Bit Mask

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +150°C
Ambient Temperature Under Bias55°C to +125°C
Supply Voltage to Ground Potential
Continuous0.5V to +7.0V
DC Voltage Applied to Outputs For
High Output State0.5V to +V _{CC} max
DC Input Voltage0.5V to +7.0V
DC Output Current, Into Outputs 30mA
DC Input Current30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature	0°C to +70°C
Supply Voltage	+ 4.75V to + 5.25V
Military (M) Devices	
Temperature	55°C to +125°C
Supply Voltage	+ 4.5V to + 5.5V
Operating ranges define those limits ality of the device is guaranteed.	over which the function-

DC CHARACTERISTICS over operating range unless otherwise specified

Parameters	Description	Test Con	ditions (No	te 2)	Min	Typ (Note 1)	Max	Units	
	_	V _{CC} = MIN	2.4	3.4					
VOH	Output HIGH Voltage	VIN = VIH or VIL			2.4	3.4		Volts	
			IOL = 4.0	mA			0.4		
VOL	Output LOW Voltage	V _{CC} = MIN V _{IN} = V _{IH} or V _{IL}	IOL = 8.0r	nA			0.45	Volts	
_	(Note 5)	AIN - AIH OL AIL	I _{OL} = 12m	ıA			0.5	1	
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts	
•		Guaranteed input to	Guaranteed input logical LOW MIL				0.7		
VIL	Input LOW Level	voltage for all input					0.8	Volts	
VI	Input Clamp Voltage	VCC = MIN, I _{IN} = ~1	8mA	•			→1.5	Volts	
liL	Input LOW Current	V _{CC} = MAX, V _{IN} = 0	.4V				-0.36	mA	
l _{IH}	Input HIGH Current	V _{CC} = MAX, V _{IN} = 2	.7V				20	μА	
h	Input HIGH Current	V _{CC} = MAX, V _{IN} = 7	.0V				0.1	mA	
	Off-State (High-Impedance)		VO = 0.4V	,			- 20		
loz	Output Current	V _{GC} = MAX	V _{CC} = MAX V _O = 2.4V				20	μA	
Isc	Output Short Circuit Current (Note 3)	V _{CC} = MAX			- 15		-85	mA	
loc	Power Supply Current (Note 4)	V _{CC} = MAX				21	34	mA	

- Notes: 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

 2. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.

 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

 4. Test conditions: A = B = C = D = £1 = E2 = GND: E3 = E4 = POL = OE1 = OE2 = 4.5V.

 5. V_{OL} is specified with total device I_{OL} = 60mA (max).

SWITCHING CHARACTERISTICS (T_A = +25°C, V_{CC} = 5.0V)

Parameters	Description	Test Conditions	Min	Тур	Max	Units
t PLH				20	30	
t _{PHL}	A, B, C to Y _i			15	22	ns
tецн				19	28	
t _{PHL}	E ₁ , E ₂ to Y _i			20	30	ns
t p LH	E ₃ . E ₄ to Y _i	C _L = 15pF		21	31	
t _{PHL}		RL = 2.0kΩ		23	34	T ns
t _{PLH}			16	24		
t _{PHL}	POL to Yi			20	30	ns
^t zh	AR AR			17	25	
₹ZL	OE ₁ , OE ₂ to Y _i			14	21	ns
Чz		C _L = 5.0pF		17	25	
t _{LZ}	OE ₁ , OE ₂ to Y _i	R _L = 2.0kΩ		20	30	ns

SWITCHING CHARACTERISTICS over operating range unless otherwise specified*

			COMM	ERCIAL	MILI	-		
			Am25l	LS2538	Am251			
Parameters	Description	Test Conditions	Min	Max	Min	Max	Units	
ФСН				36		42		
tpHL	A, B, C to Y,			29		37	ns	
t PLH	E ₁ , E ₂ to Y _i			34		39		
tPHL				38		45	ns	
tp _{LH}		C _L = 50pF		38		45		
t _{PHL}	E ₃ , E ₄ to Y _i	R _L = 2.0kΩ		43		52	ns	
t _{PLH}				29		34		
tpHL	POL to Yi			39		49	ns ns	
tzH				38		45		
tzL	OE ₁ , OE ₂ to Y _i			23		25	ns	
t _{HZ}		Cura 5 OnE		29		33		
\LZ	OE ₁ , OE ₂ to Y _i	C _L = 5.0pF R _L = 2.0kΩ		33		36	ns	

^{*}AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

Am25L\$2538 LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.