

Linear Model

Son Nguyen

A review of Linear Model for Regression

• Given the data

ullet How are y and x related?

A review of Linear Model for Regression

• Given the data

• Linear model predicts y is a linear combination of x_1 , x_2

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2$$

A review of Linear Model for Regression

• Given the data

• Linear model predicts y is a linear combination of x_1 , x_2

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2$$

- The goal of linear model is to solve for w_0 , w_1 and w_2
- To **train** a linear model is to find w_0 , w_1 and w_2

• Step 1: Define the loss function $l(y,\hat{y})$

- **Step 1**: Define the loss function $l(y,\hat{y})$
- **Step 2**: Find w that minimizes the total loss function.

• Define the loss function: We will use the **square loss**

$$l(\hat{y},y) = (\hat{y}-y)^2$$

• Define the loss function: We will use the **square loss**

$$l(\hat{y},y) = (\hat{y} - y)^2$$

• We want to find w_0 , w_1 and w_2 that minimizes a **loss function**.

x_1	$oldsymbol{x_2}$	y	$\hat{y} = w_0 + w_1 x_1 + w_2 x_2$	$(\hat{y}-y)^2$
1	0	-2	$w_0 + w_1 \cdot 1 + w_2 \cdot 0$	$(w_0 + w_1 \cdot 1 + w_2 \cdot 0 + 2)^2$
2	1	0	$w_0+w_1\cdot 2+w_2\cdot 1$	$(w_0 + w_1 \cdot 2 + w_2 \cdot 1 - 0)^2$
3	-2	-1	$w_0+w_1\cdot 3+w_2\cdot -2$	$(w_0 + w_1 \cdot 3 + w_2 \cdot -2 + 1)^2$
4	3	1	$w_0 + w_1 \cdot 4 + w_2 \cdot 3$	$(w_0 + w_1 \cdot 4 + w_2 \cdot 3 - 1)^2$

• Define the loss function: We will use the **square loss**

$$l(\hat{y},y) = (\hat{y}-y)^2$$

• We want to find w_0 , w_1 and w_2 that minimizes a **loss function**.

x_1	$oldsymbol{x_2}$	y	$\hat{y} = w_0 + w_1 x_1 + w_2 x_2$	$(\hat{y}-y)^2$
1	0	-2	$w_0 + w_1 \cdot 1 + w_2 \cdot 0$	$(w_0 + w_1 \cdot 1 + w_2 \cdot 0 + 2)^2$
2	1	0	$w_0 + w_1 \cdot 2 + w_2 \cdot 1$	$(w_0 + w_1 \cdot 2 + w_2 \cdot 1 - 0)^2$
3	-2	-1	$w_0+w_1\cdot 3+w_2\cdot -2$	$(w_0 + w_1 \cdot 3 + w_2 \cdot -2 + 1)^2$
4	3	1	$w_0 + w_1 \cdot 4 + w_2 \cdot 3$	$(w_0 + w_1 \cdot 4 + w_2 \cdot 3 - 1)^2$

• The total loss function:

$$L = L(w_0, w_1, w_2) = (w_0 + w_1 + 2)^2 + (w_0 + 2w_1 + w_2)^2 \ + (w_0 + 3w_1 - 2w_2 + 1)^2 + (w_0 + 4w_1 + 3w_2 - 1)^2$$

How about other loss functions?

• Absolute loss:

$$L(\hat{y},y) = |\hat{y} - y|$$

• Least absolute deviations regression

Linear Models

How about other loss functions?

Ordinary least squares regression	Least absolute deviations regression
Not very robust	Robust
Stable solution	Unstable solution
Always one solution	Possibly multiple solutions

`

x_1	x_2	y
1	0	1
2	1	0
3	-2	0
4	3	1

• How are y and x related?

• Logistic Regression models $P(y=1|x)=\hat{y}$ as:

$$\hat{y} = rac{1}{1 + e^{-(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2)}}$$

• OR,

$$\log\left(rac{\hat{y}}{1-\hat{y}}
ight)=w_0+w_1\cdot x_1+w_2\cdot x_2$$

where \hat{y} is the predicted value of the probability of y=1 given x_1 and x_2 .

• Logistic Regression models $P(y=1|x)=\hat{y}$ as:

$$\hat{y} = rac{1}{1 + e^{-(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2)}}$$

• OR,

$$\log\left(rac{\hat{y}}{1-\hat{y}}
ight)=w_0+w_1\cdot x_1+w_2\cdot x_2$$

where \hat{y} is the predicted value of the probability of y=1 given x_1 and x_2 .

How to find w_0, w_1, w_2 ?

- **Step 1**: Define the loss function $l(\hat{y}, y)$
- **Step 2**: Find w that minimizes the total loss function

• Define the loss function: We use the log-loss or cross-entropy loss function

$$l(\hat{y}, y) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

• Total Loss:

$$egin{split} L(w_0,w_1,w_2) &= -\log\left(rac{1}{1+e^{-w_0-w_1}}
ight) \ &-\log\left(1-rac{1}{1+e^{-w_0-2w_1-w_2}}
ight) \ &-\log\left(1-rac{1}{1+e^{-w_0-3w_1+w_2}}
ight) \ &-\log\left(rac{1}{1+e^{-w_0-4w_1-3w_2}}
ight) \end{split}$$

• We need to find w_0, w_1, w_2 that minimizes the total loss

A general framework

- **Problem**: Given the data of x_1, x_2, \ldots, x_d, y , establish the *best* relation between y and $x = [x_1, x_2, \ldots, x_d]$.
- A solution framework:
 - \circ Step 1: Assume the model function $\hat{y} = f(x, w)$, where w is a parameter vector.
 - \circ Step 2: Define the loss function $l(y,\hat{y})$
 - \circ Step 3: Find w that minimizes the loss function using gradient descent

LASSO

• Consider a linear model

$$y = 100x_1 + 0.01x_2 + 50x_3 - 0.002x_4$$

- x_2 and x_4 are not important because the coefficients are too small.
- ullet We want to get rid of x_2 and x_4

.

LASSO - Principle

- LASSO forces the sum of the absolute value of the coefficients to be less than a fixed value.
- which forces certain coefficients to be set to zero
- effectively making the model simpler

LASSO - Demonstration

- SAS
- Python