التطورات الرتبيبة

الكتاب الأول

تطور جملة ميكانيكية

الوحدة 05

GUEZOURI Aek – lycée Maraval - Oran

v(m/s)

0,2

0.12 -

تمارين الكتاب

حسب الطبعة الحديدة للكتباب

التمرين 37

t (ms)	60	120	180	240	300
v (m/s)	0,18	0,24	0,30	0,36	0,42

v = f(t) رسم البيان (1 - 1

 $v = at + v_0$

 $v \times a > 0$ و الميل) ، وبالتالي v > 0 و لدينا ولدينا متسارعة بانتظام .

أو نقول: بما أن معادلة السرعة من الدرجة الأولى بالنسبة

للزمن ، إذن الحركة متغيرة بانتظام

رس ، ہِن اعترات شعیرہ باستام CB 2 5×0.05

 $a = \frac{CB}{AB} = \frac{2,5 \times 0,05}{5 \times 25 \times 10^{-3}} = 1 \ m/s^2$: التسارع

 $v_0 = 0.12 \; m/s$ نمدّد البيان إلى أن يقطع محور السرعة فنتحصل على قيمة السرعة في اللحظة t=0 ، وهي السرعة الابتدائية

t(ms)

100

 $ec{R}$ - اختصارا في كل التمارين نرمز لتأثير الطريق على الجسم بـ $ec{R}$

أ) بتطبيق القانون الثاني لنيوتن:

القوة $ec{f}$ هي محصلة القوى المقاومة المؤثّرة على الجسم .

وبإسقاط هذه العلاقة على المحور ، $ec{F}+ec{f}+ec{F}+ec{R}=m$ $ec{a}$

 $F\cos\alpha - f = m\ a$: الموضح في الشكل

$$f = F \cos \alpha - ma = 1,4 \times \frac{1}{2} - 0,5 \times 1 = 0,2N$$

ب) عمل قوة تنسحب على مسار مستقيم:

: تنتقل نقطة تأثير القوة $ec{F}$ من A إلى B . العمل المنجز من طرف هذه القوة هو

 $W_{AB}(\vec{F}) = F \times AB \times \cos \alpha$

$$W_{AB}\left(\vec{P}
ight) = P\! imes\!L\! imes\!\cos90 = 0$$
 : عمل قوة الثقل

$$W_{AB}(\vec{R}) = R \times L \times \cos 90 = 0$$
: عمل قوة رد فعل الطريق

$$W_{AB}\left(AB
ight) = F imes L imes \cos lpha = 1, 4 imes 2 imes \cos 60 = 1, 4J$$
 : $ec{F}$ عمل القوة -

$$W_{AB}\left(ec{f}
ight)=f imes L imes \cos 180=0, 2 imes 2 imes (-1)=-0, 4J$$
 : $ec{f}$ عمل قوة الاحتكاك -

$$\Delta E_C = \sum W = 1, 4-0, 4=1 \, J$$
 : الطاقة المخزنة خلال هذا الانتقال

التمرين 38

1 - بما أن الجملة متوازنة ، فإن المجموع الشعاعي للقوى المؤثرة على كل جزء منها يكون معدوما .

: A الجسم

وبإسقاط هذه العلاقة الشعاعية $\vec{P}_A + \vec{T}_A + \vec{R}' = 0$ على المحور الموازي للمستوي المائل ، نكتب :

$$(1) T_A - P_A \sin \alpha = 0$$

ملاحظة: يمكن أن نسقط العلاقة على المحور المعاكس، ونجد نفس النتيجة لأن المجموع الشعاعي يساوي الصفر.

: B

: مواري المستوي المائل ، نكتب ، $\vec{P}_{\!\scriptscriptstyle R} + \vec{T}_{\!\scriptscriptstyle R} + \vec{R} = 0$

$$(2) P_B \sin \beta - T_B = 0$$

: g واختصار m g ب q ب وبتعویض $P_A \sin \alpha = P_B \sin \beta$: نجد (2) و (1) نجد $T_A = T_B$

$$m_B = m_A \frac{\sin \alpha}{\sin \beta} = 500 \times \frac{0.5}{0.707} = 353.6g$$
 $m_A \sin \alpha = m_B \sin \beta$: $m_A \sin \alpha = m_B \sin \beta$

(B - 1) لكي نستنتج طبيعة الحركة يجب أن نجد عبارة التسارع ، وذلك بدراسة حركة الجسمين (B - 1) و (B - 1) الحركة في جهة (B - 1) الحركة في حركة الحركة في جهة (B - 1) الحركة في جهة (B - 1) الحركة في حركة الحركة الحركة في حركة الحركة في حركة الحركة في حركة الحركة في حركة الحركة الحركة في حركة الحركة الحر

: نكتب ، وبإسقاط هذه العلاقة الشعاعية على المحور الموازي للمستوي المائل (الموجّه في جهة الحركة) ، نكتب :

$$(3) T_A - P_A \sin \alpha = m_A a_A$$

: B

: نكتب ، نكتب ، وبإسقاط هذه العلاقة الشعاعية على المحور الموازي للمستوي المائل ، نكتب ، $\vec{P}_B^{\,\prime} + \vec{T}_B + \vec{R} = (m_B + m) \; \vec{a}_B$

(4)
$$P_B' \sin \beta - T_B = (m_B + m) a_B$$

: بجد (4) و (3) بجد ، وبجمع العلاقتين (3) بان كتلة البكرة مهملة ، $a_{A}=a_{B}=a$. الأن كتلة البكرة مهملة ، $T_{A}=T_{B}$

، ومنه ،
$$m_A=m_B+m$$
 أن $m_A=m_B+m$ ، ومنه ، $a=\frac{(m_B+m)\,g\sineta-m_Ag\sinlpha}{m_A+m_B+m}$

$$a = \frac{g(\sin \beta - \sin \alpha)}{2}$$
 : وبالنالي $a = \frac{m_A g \sin \beta - m_A g \sin \alpha}{2 m_A}$

أثناء الحركة لا تتغير المقادير g , α , β ، إذن التسارع يبقى ثابتا ، ومنه الحركة متغيرة بانتظام .

$$a = \frac{10(0,707 - 0,5)}{2} = 1,03 \ m/s^2$$
: قيمة التسارع

. المدة الزمنية المستغرقة t ميث t ميث ، $\Delta v = at$: الحركة المستغرقة المستغرقة .

$$v=1,03\times 5=5,15~m/s$$
 (لأن الجملة أقلعت من السكون) ، وبالتالي $\Delta v=v-0=v$

التمرين 39

1 – الشروط التي يجب احترامها عند انجاز الفيلم: يجب اجراء التجربة في مكان لا توجد به تيارات هوائية. مثلا في المخبر مع غلق الباب والنوافذ. وإلا تصبح حركة الكرة أكثر تعقيدا.

2 - أوجد الخواص التالية: سؤال غير دقيق!! (المطلوب مميزات شعاعي السرعة والتسارع)

حسب السلم المعطى ، فإن : 4,5 cm على الرسم يوافق m على الواقع .

 $1 \text{ cm} \rightarrow 0.22 \text{ m}$ وبالتالي

أ) طويلة السرعة اللحظية في الموضع G2 تعطى بالعلاقة:

$$v_2 = \frac{G_1 G_3}{2\tau} = \frac{1,7 \times 0,22}{0,08} = 4,7 \ m/s$$

طويلة السرعة اللحظية في الموضع G_4 تعطى بالعلاقة :

$$v_4 = \frac{G_3 G_5}{2\tau} = \frac{1,6 \times 0,22}{0,08} = 4,4 \ m/s$$

. G_4 و G_2 السرعتين في G_3 التمثيل شعاعي السرعتين في G_3 و

. \vec{g} نفس اتجاه وجهة تسارع الجاذبية الأرضية \vec{v}_3 نفس اتجاه وجهة تسارع الجاذبية الأرضية

 $\Delta v_3 = 0.8 imes 1 = 0.8 \; m/s$ هي $\Delta ec{v}_3 = 0.8 imes 1$ طويلة الشعاع

$$a = \frac{\Delta v_3}{2\tau} = \frac{0.8 \times 1}{0.08} = 10 \ m/s^2$$
 فحسب تسارع الكرية بالعلاقة (ب

 $1~{
m cm}$ ب $4~{
m m/s}^2$ ک ، ونمثل کل $4~{
m m/s}^2$ ب

. (رغم أن g لم يُعطى في التمرين) a=g نلاحظ أن التسارع a=g نلاحظ أن التسارع a=g

التمرين 40

1 - أ) دراسة حركة الجسم S .

بتطبیق القانون الثاني لنیوتن : $\vec{P}+\vec{R}=m$ \vec{a} : بتطبیق القانون الثاني لنیوتن : $a=-g\sin\alpha$ ، ومنه $-P\sin\alpha=m$ a : x ، ومنه

. $(x^{2} x^{2} + x^{2} + x^{2})$ بما أن التسارع ثابت وسالب فإن الحركة متباطئة بانتظام

. v العلاقة النظرية هي : $v^2 - v_0^2 = 2a x$ المسافة المقطوعة لبلوغ السرعة ب

: بعلاقة التجريبية من الشكل : $v^2 = bx + c$ ، وبمطابقة العلاقة النظرية والعلاقة التجريبية نجد

$$c = v_0^2$$
 $b = -2g \sin \alpha$

$$\sin \alpha = \frac{-10}{-2g} = \frac{10}{20} = 0,5$$
 نجد : $b = -\frac{OA}{OB} = -\frac{6 \times 1,5}{6 \times 0,15} = -10$ نحسب ميل البيان $b = -\frac{OA}{OB} = -\frac{6 \times 1,5}{6 \times 0,15} = -10$

 $\alpha = 30^{\circ}$: each

 $v_0=3~m/s$ من البيان لدينا c=6 imes1,5=9 ، وبالتالي c=6 imes1,5=9

x'x ، وبإسقاط هذه العلاقة على المحور ، $\vec{P} + \vec{R} + \vec{f} = m \; \vec{a}'$

$$a' = -g \sin \alpha - \frac{f}{m}$$
 ومنه $-P \sin \alpha - f = m a'$

$$E_c-E_{c.0}=\sum W$$
: بتطبيق نظرية الطاقة الحركية

$$(\vec{R} \perp x' x')$$
 عمل \vec{R} معدوم لأن $\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = -fx - mgh$

$$\frac{1}{2}mv^{2} - \frac{1}{2}mv_{0}^{2} = -fx - mg \ x \sin \alpha$$

$$f = 0.125N$$
 $0, 2 - \frac{1}{2} \times 0.1 \times 9 = -f \times 0.4 - 0.1 \times 10 \times 0.4 \times 0.5$

التمرين 41

$$(v_A = 0)$$
 $\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2 = mgh$

$$N$$
 $h = \frac{v_B^2}{2g} = \frac{100}{20} = 5 \ m$ ومنه $v_B^2 = 2gh$

$$m B$$
 بتطبیق القانون الثانی لنیوتن بین $m A$ و

ومنه $a=g\sin\alpha$ ، ومنه ، $P\sin\alpha=m$ a

: مومنه ،
$$v_B^2 - v_A^2 = 2a(AB)$$
 : ومنه ومنه ، ومنه التسارع نطبق العلاقة

$$\sin \alpha = \frac{5}{10}$$
 ، $a = g \sin \alpha$ خيث ، $a = \frac{v_B^2}{2AB} = \frac{100}{2 \times 10} = 5 \; m/s^2$

В

2 - أ) القوى المطبّقة على الجسم 2

ب) نطبق القانون الثاني لنيوتن : $ec{P}+ec{f}+ec{R}=m\;ec{a}'$ ، وباسقاط العلاقة الشعاعية

(1) $a' = \frac{-f}{m}$ ، ومنه $-f = m \ a$: على المحور الموضّح في الشكل

التسارع a ثابت ، إذن الحركة متغيّرة بانتظام .

$$a' = \frac{v_C^2 - v_B^2}{2(BC)} = \frac{9 - 100}{2 \times 22,75} = -2 \ m/s^2$$
 : نحسب النسارع من العلاقة

 $f=-m\;a'=-0.1 imes(-2)=0.2N$ ، التعويض في العلاقة (1) نحسب شدة قوة الاحتكاك ،

2 - أ) عبارة السرعة في النقطة N

ملاحظة: في الحقيقة ، وما دام الجسم يملك سرعة أفقية في النقطة C ، يمكن أن يغادر المسار في النقطة C (قذيفة بسرعة أفقية) لكن يمكن أن نقبل ما تبقى من التمرين لسبب واحد ، وهو أن نصف قطر المسار الدائري كبير C ، وبهذا يمكن أن يكون مسار القذيفة (القطع المكافئ) يقع أسفل المسار الدائري ، مما يجعل الجسم يبقى يمس هذا المسار الدائري أثناء حركته ويغادره لاحقا . C بتطبيق نظرية الطاقة الحركية بين النقطتين C و C .

المسار المسار على الجسم (\vec{R}) معدوم لأن هذه القوة تبقى عمودية على المسار المسار على الجسم (\vec{R}) معدوم لأن هذه القوة تبقى عمودية على المماس المسار المسار في قطة وجود الجسم لعدم وجود احتكاك على المسار الدائري . (OD = OC = ON = r)

(2)
$$v_N^2 = 2gh + v_C^2$$

h=r-x مقدار الارتفاع الذي نزله الجسم هو

 $h = r - r \sin \beta = r(1 - \sin \beta)$: ومنه $x = r \sin \beta$

وبالتعويض في العلاقة (2):

(3)
$$v_N^2 = 2g \ r(1-\sin\beta) + 9$$

ب) حساب الزاوية β:

. (N هو التسارع عند \vec{a}): N بتطبيق القانون الثاني لنيوتن على الجسم في النقطة \vec{a}): $\vec{R}+\vec{P}=m\;\vec{a}$: وبإسقاط هذه العلاقة على المحور الناظمي \vec{R} من معلم فريني $\vec{R}+\vec{P}=m\;\vec{a}$ $P\sin\beta-R=m\;a_n$

(4)
$$P\sin\beta - R = m \frac{2g \ r(1-\sin\beta) + 9}{r}$$

في اللحظة الذي يغادر فيها الجسم المسار تنعدم قوة رد الفعل ، لأن الجسم لا يصبح يمس المسار ، نضع R=0 في (4) في اللحظة الذي يغادر فيها الجسم المسار تنعدم قوة رد الفعل ، لأن الجسم لا يصبح يمس المسار ، نضع $\beta=0,766$ ونجد : $\beta=0,766$ ، ومنه $\beta=0,766$ ، وبالتالي $\beta=0,766$.

التمرين 42

في هذا التمرين حدث ما يلي: أخذ اللاعب الكرة بيده وقذفها نحو الأعلى شاقوليا ، ولما ارتفعت بمقدار $0,40~\mathrm{m}$ (وهو أعلى إرتفاع وصلت إليه ، أي انعدام سرعتها) ضربها بواسطة المضرب فأعطاها سرعة إبتدائية أفقية \vec{v}_0 .

يده : u التي أعطاها اللاعب للكرة بيده : u

: نجد Oz نجد ، $\vec{P}=m$ \vec{a} ، وبالإسقاط على Oz نجد : $\vec{P}=m$ ، ومنه الحركة متباطئة بانتظام ، ولحساب طويلة السرعة v_1 نطبق العلاقة :

$$v_{1} = \sqrt{2g\left(AB\right)} = \sqrt{2 \times 9,8 \times 0,4} = 2,8 \; m/s$$
 ولدينا ، $v_{B} = 0$ ، ولدينا ، $v_{B}^{2} - v_{1}^{2} = -2g\left(AB\right)$

-2

لم نحترم سلم الرسم في هذا التمثيل من أجل أن يكون الشكل واضحا . اخترنا المعلم (Bx, Bz) لدراسة حركة الكرة .

بتطبيق القانون الثاني لنيوتن:

$$m \vec{g} = m \vec{a} \cdot \vec{P} = m \vec{a}$$
$$\vec{a} = \vec{g}$$

إحداتيات شعاع التسارع هما $\vec{a}(0\,,g)$ ، ومنه الحركة على المحور B_X منتظمة ، وعلى المحور B_Z متغيرة بانتظام . $\vec{v}_0(v_0\,,0)$.

. نعتبر اللحظة t=0 هي لحظة ضرب الكرة بالمضرب

(1) $x = v_0 t$: Bx المعادلة الزمنية على المحور

(2) $z = \frac{1}{2}g t^2$: Bz المحور

(3) $z = \frac{g}{2v_0^2}x^2$: بستخرج عبارة الزمن من المعادلة (1) ونعوضه في المعادلة (2) نجد معادلة المسار عبارة الزمن من المعادلة (1)

- 3

. $z_{C} = (0,9+0,1) = 1 \, m$ ، حيث ، (12 m , 1 m) ذات الإحداثيات C مر الكرة في النقطة نام الكرة في النقطة .

(3) النقطة $z=1 \, \mathrm{m} \, \cdot \, x=12 \, \mathrm{m}$ نتتمي لمسار الكرة ، وبالتالي إحداثياتها تحقق معادلة المسار ، نعوّض

$$v_0 = 26,5 \ m/s$$
 ومنه $1 = \frac{g}{2v_0^2} \times (12)^2$

منحى شعاع السرعة:

C المقصود بمنحى شعاع السرعة هو إيجاد الزاوية eta بين شعاع السرعة في النقطة \vec{v}_C ومحور الفواصل \vec{v}_C ، \vec{v}_C و \vec{v}_c .

(4)
$$\cos \beta = \frac{v_x}{v_C}$$
 Legis

نحسب طويلة شعاع السرعة v_{C} في النقطة C ، وذلك بتطبيق نظرية الطاقة الحركية بين النقطتين D و C .

.
$$v_0$$
 v_B v_B ($h = 2 - 1 = 1m$ ($h = 1 \text{ m}$) v_0 v

$$v_C = \sqrt{v_B^2 + 2g \ h} = \sqrt{(26,5)^2 + 2 \times 9,8 \times 1} = 26,8 \ m/s$$

بالتعويض في العلاقة (4):

(
$$Ox$$
 ومنه Ox ومنه O

التمرين 43

المستوي الذي ندرس فيه حركة الكرة هو المستوي الشاقولي (Ox, Oy).

1 – معادلة مسار الكرة:

نطبّق القانون الثاني لنيوتن ، مع العلم أن الهواء لا يؤثر على الكرة .

$$\sum \vec{F} = m \ \vec{a}$$

: من الطرفين ش من الطرفين ، $\vec{P}=m\;\vec{a}$

 $\vec{a} = \vec{g}$ نجد

 $ec{a}(0\ ,\ -g)$ مركبتا شعاع التسارع في المعلم هما

 $\vec{v}_0 \left(v_0 \cos lpha \; , \; v_0 \sin lpha
ight)$ مركبتا شعاع السرعة الابتدائية هما

بما أن التسارع على المحور $v_x = v_0 \cos \alpha$ معدوم ، إذن الحركة على هذا المحور منتظمة ، وسرعتها Ox معدوم ، وبالتالي :

(2)
$$x = v_0 \cos \alpha t$$

بما أن التسارع على المحور Oy ثابت ، إذن الحركة على هذا المحور متغيّرة بانتظام ، وبالتالي :

(3)
$$y = -\frac{1}{2}g t^2 + v_0 \sin \alpha t$$

: من العلاقة (2) نستخرج $\frac{x}{v_0\cos\alpha}$ ، ثم نعوّض عبارة الزمن في العلاقة (3) ونجد معادلة المسار

. وهي معادلة قطع مكافئ
$$y = -\frac{g}{2 v_0^2 \cos^2 \alpha} x^2 + x tg\alpha$$

(25 m , 2,44 m) هما B هما (25 m , 2,44 m) هما و الكرة نقطة D هما D هما (25 m , 2,44 m) هما و $V_0 = 18,6 \; m/s$ هما النقطة $V_0 = 18,6 \; m/s$

3 - لكي نحسب طويلة شعاع سرعة الكرة عند النقطة B نطبق نظرية الطاقة الحركية بين النقطتين O و B

$$v_B^2 = -2g h + v_0^2$$
 ومنه $\frac{1}{2}mv_B^2 - \frac{1}{2}mv_0^2 = -mg h$

$$v_B = \sqrt{-2g \ h + v_0^2} = \sqrt{-2 \times 10 \times 2,44 + (18,6)^2} = 17,2 \ m/s$$

وبما أن فاصلة الذروة هي نصف فاصلة المدى
$$x_P = \frac{v_0^2 \sin 2\alpha}{g} = \frac{\left(18,6\right)^2 \times \sin 60}{10} \approx 30 \; m$$
 : فاصلة المدى - 4

. أي $x_{S}=15\ m$ ، إذن عمود المرمى يوجد على يمين الذروة (S) ، وبالتالي يكون شعاع السرعة متجه نحو الأسفل

لكي نحدد منحى شعاع السرعة ، نحسب الزاوية β بين شعاع السرعة والمحور Ox ، أي بين شعاع السرعة والمركبة الأفقية لها .

مع العلم أن $v_{B,x} = v_0 \cos lpha$ لأن الحركة على محور الفواصل منتظمة .

$$\cos \beta = \frac{v_0 \cos \alpha}{v_B} = \frac{18,6 \times \cos 30}{17,2} = 0,936$$

β = 20.6° ومنه

التمرين 44

1 - نعتبر أن الكرة نقطة مادية ، ونعتبر السلة كذلك نقطة (A) من نقط مسار الكرة .

. (Ox,Oz) ندرس حركة الكرة في المعلم

نطبّق القانون الثاني لنيوتن ، مع العلم أن الهواء لا يؤثر على الكرة .

 $\sum \vec{F} = m \ \vec{a}$

: من الطرفين $\vec{p}=m\; \vec{q}$ واختصار m من الطرفين $\vec{q}=m\; \vec{q}$ نجد $\vec{q}=\vec{q}$

 $ec{a}(0\;,\;-g)$ مركبتا شعاع التسارع في المعلم هما

 $\vec{v}_0\left(v_0\cos\theta_0\ ,\ v_0\sin\theta_0
ight)$ مركبتا شعاع السرعة الابتدائية هما معدوم ، إذن الحركة على هذا بما أن التسارع على المحور Ox معدوم ، إذن الحركة على هذا المحور منتظمة ، وسرعتها $v_x=v_0\cos\theta_0$ ، وبالتالي :

 $(2) x = v_0 \cos \theta_0 t$

(3)
$$z = -\frac{1}{2}g t^2 + v_0 \sin \theta_0 t$$
 : بما أن التسارع على المحور $z = -\frac{1}{2}g t^2 + v_0 \sin \theta_0 t$: بما أن التسارع على المحور $z = -\frac{g}{2 v_0^2 \cos^2 \theta_0} x^2 + x t g \theta_0$ بحذف الزمن بين العلاقتين (2) و (3) نجد معادلة المسار

 $h=-rac{g}{2\,v_{\,0}^2\,\cos^2 heta_0}\,L^2+L\,\,tg heta_0\,\,$ النقطة A ذات الإحداثيات (L,h) تحقق معادلة المسار ، أي A النقطة

$$\frac{h}{L} = \frac{-gL}{2v_0^2\cos^2\theta_0} + tg\theta_0$$
: نكتب ، L نكتب ، L بقسمة طرفي المعادلة على

$$(4) \qquad v_{0}^{2} = \frac{gL}{2\cos^{2}\theta_{0}\bigg(tg\theta_{0} - \frac{h}{L}\bigg)} \ : \ \frac{gL}{2v_{0}^{2}\cos^{2}\theta_{0}} = tg\theta_{0} - \frac{h}{L}$$

مجرّد من $tg heta_0$: في المقام لا نطرح عددا مجردا من الوحدة من طول $lpha=rac{2h}{L-tg heta_0}$) مجرّد من

الوحدة ، اما L وحدته المتر (m) .

العلاقة الصحيحة: المقصود من السؤال هو الزاوية α التي يصنعها شعاع سرعة الكرة مع المحور الأفقي.

: ، وبتربيع طرفي هذه العلاقة ، نكتب ، $tglpha=rac{v_{A,z}}{v_{A,x}}$

(5)
$$tg^{2}\alpha = \frac{v_{A,z}^{2}}{v_{A,x}^{2}}$$

(6)
$$v_{Ax} = v_0 \cos \theta_0$$
 لدينا

لأن الحركة منتظمة على المحور $O_{\mathcal{X}}$ ، أي السرعة ثابتة .

الدينا كذلك الحركة متغيّرة بانتظام على المحور Oz ، وبالتالي :

مربع السرعة : مربع السرعة .
$$v_{A,z}^2 - v_0^2 \sin^2 \theta_0 = -2gh$$

النهائية ناقص مربع السرعة الابتدائية يساوي ضعف التسارع في المسافة من 0 إلى الذروة ، ثم من الذروة إلى A وجمعنا العلاقتين . مع العلم أن $v_{z,s}=0$ (تنعدم السرعة على المحور 0z عند الذروة)

(7)
$$v_{A,z}^2 = v_0^2 \sin^2 \theta_0 - 2gh$$
 ومنه

 $tg^2 \alpha = rac{v_0^2 \sin heta_0 - 2gh}{v_0^2 \cos^2 heta_0}$: نكتب نكتب (5) في العلاقة (7) و (7) و (7) و (7) و (7) و (8) و (8)

(8)
$$tg^{2}\alpha = \frac{v_{0}^{2} \sin^{2}\theta_{0}}{v_{0}^{2} \cos^{2}\theta_{0}} - \frac{2gh}{v_{0}^{2} \cos^{2}\theta_{0}}$$

: (8) ولدينا من العلاقة
$$v_0^2\cos^2\theta_0=\frac{gL}{2\Big(tg\theta_0-\frac{h}{L}\Big)}$$
 : (4) ولدينا من العلاقة (8)

$$tg^{2}\alpha = tg^{2}\theta_{0} - \frac{2gh}{\frac{gL}{2\left(tg\theta_{0} - \frac{h}{L}\right)}} = tg^{2}\theta_{0} - \frac{4h\left(tg\theta_{0} - \frac{h}{L}\right)}{L} = tg^{2}\theta_{0} - \frac{4h}{L} \times tg\theta_{0} + 4\frac{h^{2}}{L^{2}} = \left(tg\theta_{0} - 2\frac{h}{L}\right)^{2}$$

 $tglpha=\mp\left(tg heta_0-rac{2h}{L}
ight)$: ومنه ، $tg^2lpha=\left(tg heta_0-rac{2h}{L}
ight)^2$: هذه العلاقة الأخيرة عبارة عن متطابقة شهيرة ، أي

$$\begin{cases} tg\alpha = tg\theta_0 - \frac{2h}{L} & (1) \\ tg\alpha = \frac{2h}{L} - tg\theta_0 & (2) \end{cases}$$

$$\int tg\alpha = \frac{2h}{L} - tg\theta_0 \tag{2}$$

نعلم أن في نقطتين من المسار واقعتين على استقامة واحدة تكون للسرعة نفس القيمة ، معنى هذا أن $v_A < v_0$ ، وبالتالي تكون ، أي $tg \, lpha < tg \, heta_0$ ، وبالتالي المعادلة (2) مرفوضة (على عكس ما أعطى في التمرين) . $lpha < heta_0$

: نجد : $\theta_0 = 45^\circ$ و $z = 1 \, \mathrm{m}$ و بتعویض $z = -\frac{g}{2 \, v_0^2 \, \cos^2 \theta_0} x^2 + x \, tg \theta_0$ و نجد : $z = -\frac{g}{2 \, v_0^2 \, \cos^2 \theta_0} x^2 + x \, tg \theta_0$

(9)
$$\frac{10}{v_0^2}x^2 - x + 1 = 0 \quad \text{eas} \quad 1 = -\frac{10}{v_0^2}x^2 + x$$

$$x = \frac{1 \pm \sqrt{1 - \frac{40}{v_0^2}}}{\frac{20}{v_0^2}}$$
 : نجد x نجد الثانية بالنسبة لـ x

 $v_0 > 6,32\ m/s$ نالحظ في هذه العبارة أن x معرف من أجل $v_0^2 > 40$ نالحظ في هذه العبارة أن من أجل كل قيمة لـ $v_0 > 6,32 \; m/s$ يمكن تسجيل الهدف .

. x=2m من أجل $v_0=6,32 \; m/s$ ، نعوّض في العلاقة (9) نجد

يجب على اللاعب أن لا يقترب أكثر من m 2 نحو السلة بزيادة أو نقصان القيمة 22cm ، وإلا لا يمكنه تسجيل الهدف . l=46-24=22cm مركز عطالة الكرة داخل السلة بإمكانه أن يتحرك على خط طوله

ملاحظة : في السؤال المطروح ، يجب أن نقول : ما هي أقل مسافة تفصل اللاعب عن الشاقول المار من السلة حتى يتمكن من تسجيل الهدف ؟ ...