Задача A. Наивный RMQ

 Имя входного файла:
 stupid_rmq.in

 Имя выходного файла:
 stupid_rmq.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Вам дан массив a[] из n элементов и m – количество запросов, состоящих из двух чисел l и r, выведите минимальный элемент в массиве a[] с индексами от l до r.

Формат входного файла

В первой строке входного файла содержится число n – длинна массива a [] $(1 \le n \le 1000)$. Во второй строке содержится n чисел a_i – элементы массива $(-10^9 \le a_i \le 10^9)$. В следующей строке содержится число m – количество запросов $(1 \le m \le 1000)$. В последних m строках содержаться запросы l, r $(1 \le l, r \le n)$.

Формат выходного файла

Для каждого запроса выведите ответ в новой строке.

Примеры

stupid_rmq.in	stupid_rmq.out
5	-2
1 -2 3 4 1	3
3	-2
1 3	
3 4	
1 5	
2	-100000
-100000 -1111111	-1111111
2	
1 1	
1 2	

Задача В. Запрос изменения на отрезке

Имя входного файла: rvq.in
Имя выходного файла: rvq.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В начальный момент времени последовательность a_n задана следующей формулой: $a_n=n^2 \mod 12345+n^3 \mod 23456$.

Требуется много раз отвечать на запросы следующего вида:

- найти разность между максимальным и минимальным значением среди элементов $a_i, a_{i+1}, ..., a_j;$
- присвоить элементу a_i значение j.

Формат входного файла

Первая строка входного файла содержит натуральное число k — количество запросов ($k \le 100\,000$). Следующие k строк содержат запросы, по одному на строке. Запрос номер i описывается двумя целыми числами x_i, y_i .

Если $x_i > 0$, то требуется найти разность между максимальным и минимальным значением среди элементов $a_{x_i}...a_{y_i}$. При этом $1 \le x_i \le y_i \le 100\,000$.

Если $x_i < 0$, то требуется присвоить элементу $a_{|x_i|}$ значение y_i . При этом $-100\,000 \leqslant x_i \leqslant -1$ и $|y_i| \leqslant 100\,000$.

Формат выходного файла

Для каждого запроса первого типа в выходной файл требуется вывести одну строку, содержащую разность между максимальным и минимальным значением на соответствующем отрезке.

Пример

rvq.in	rvq.out
7	34
1 3	68
2 4	250
-2 -100	234
1 5	1
8 9	
-3 -101	
2 3	

Задача С. Сумма

Имя входного файла: sum.in
Имя выходного файла: sum.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайта

Дан массив из N элементов, нужно научиться находить сумму чисел на отрезке.

Формат входного файла

Первая строка входного файла содержит два целых числа N и K—число чисел в массиве и количество запросов. ($1 \le N \le 100\,000$), ($0 \le K \le 100\,000$). Следующие K строк содержат запросы:

- 1. А 1 г х присвоить элементам массива с позициями от l до r значение x (1 \leqslant l \leqslant r \leqslant n, $0 \leqslant x \leqslant 10^9$)
- 2. Q 1 \mathbf{r} найти сумму чисел в массиве на позициях от l до r. $(1 \le l \le r \le n)$

Изначально массив заполнен нулями.

Формат выходного файла

На каждый запрос вида Q 1 r нужно вывести единственное число — сумму на отрезке.

Примеры

sum.in	sum.out
5 9	3
A 2 3 2	2
A 3 5 1	3
A 4 5 2	4
Q 1 3	2
Q 2 2	7
Q 3 4	
Q 4 5	
Q 5 5	
Q 1 5	

Задача D. Сумма 2

Имя входного файла: sum2.in
Имя выходного файла: sum2.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Вам дан массив a[] из n элементов и m – количество запросов, состоящих из двух чисел l и r, выведите сумму элементов в массиве a[] с индексами от l до r.

Формат входного файла

В первой строке входного файла содержится число n – длинна массива a [] $(1 \le n \le 100000)$. Во второй строке содержится n чисел a_i – элементы массива $(-10^9 \le a_i \le 10^9)$. В следующей строке содержится число m – количество запросов $(1 \le m \le 100000)$. В последних m строках содержаться запросы l, r $(1 \le l, r \le n)$.

Формат выходного файла

Для каждого запроса выведите ответ в новой строке.

Примеры

sum2.in	sum2.out
5	15
1 2 3 4 5	1
3	9
1 5	
1 1	
4 5	
6	0
-1 1 -1 1 -1 1	-1
2	
1 6	
3 3	

Задача Е. Разреженные таблицы

Имя входного файла: sparse.in
Имя выходного файла: sparse.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайт

Дан массив из n чисел. Требуется написать программу, которая будет отвечать на запросы следующего вида: найти минимум на отрезке между u и v включительно.

Формат входного файла

В первой строке входного файла даны три целых числа $n, m \ (1 \le n \le 10^5, 1 \le m \le 10^7)$ и $a_1 \ (0 \le a_1 < 16714589)$ — количество элементов в массиве, количество запросов и первый элемент массива соответственно. Вторая строка содержит два натуральных числа u_1 и $v_1 \ (1 \le u_1, v_1 \le n)$ — первый запрос.

Элементы a_2, a_3, \ldots, a_n задаются следующей формулой:

$$a_{i+1} = (23 \cdot a_i + 21563) \mod 16714589$$

Например, при $n=10,\,a_1=12345$ получается следующий массив: $a=(12345,\,305498,\,7048017,\,11694653,\,1565158,\,2591019,\,9471233,\,570265,\,13137658,\,1325095).$

Запросы генерируются следующим образом:

$$u_{i+1} = ((17 \cdot u_i + 751 + ans_i + 2i) \mod n) + 1$$

 $v_{i+1} = ((13 \cdot v_i + 593 + ans_i + 5i) \mod n) + 1$

где ans_i — ответ на запрос номер i.

Формат выходного файла

В выходной файл выведите u_m , v_m и ans_m (последний запрос и ответ на него).

Пример

sparse.in	sparse.out
10 8 12345 3 9	5 3 1565158

Задача RMQ. Range Minimum Query

Имя входного файла: rmq.in
Имя выходного файла: rmq.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Компания Giggle открывает свой новый офис в Судиславле, и вы приглашены на собеседование. Ваша задача — решить поставленную задачу 1 .

Вам нужно создать структуру данных, которая представляет из себя массив целых чисел. Изначально массив пуст. Вам нужно поддерживать две операции:

- запрос: «? і j» возвращает минимальный элемент между i-ым и j-м, включительно;
- изменение: «+ і х» добавить элемент x после i-го элемента списка. Если i=0, то элемент добавляется в начало массива.

Конечно, эта структура должна быть достаточно хорошей.

Формат входного файла

Первая строка входного файла содержит единственное целое число n — число операций над массивом ($1 \le n \le 200\,000$). Следующие n строк описывают сами операции. Все операции добавления являются корректными. Все числа, хранящиеся в массиве, по модулю не превосходят 10^9 .

Формат выходного файла

Для каждой операции в отдельной строке выведите её результат.

Пример

rmq.in	rmq.out
8	4
+ 0 5	3
+ 1 3	1
+ 1 4	
? 1 2	
+ 0 2	
? 2 4	
+ 4 1	
? 3 5	

Нижеследующая таблица показывает процесс изменения массива из примера.

Операция	Массив после её выполнения
изначально	nycm
+ 0 5	5
+ 1 3	5, 3
+ 1 4	5, 4, 3
+ 0 2	2, 5, 4, 3
+ 4 1	2, 5, 4, 3, 1

¹Капитан Очевидность намекает