作業二

1.作業簡介

本作業照片有三種焦距 18mm, 53mm, 135mm, 三種拍攝 距離 600mm, 1200mm, 1800mm 共 9 種拍攝參數, 每種參 數有 5 張圖片分別位移距離為 Q 1mm, 5mm, 10mm, 20mm, 共計 36 張圖片。

要做的目標有:

- 1. 相機的校正, 即計算物體位移 (#mm/像素)
- 2. 用角度去計算水平的視野(以角度為單位)。
- 3. 計算理論值 (FOV) 並與測量值進行比較。

實現方法:

1. 選取其中位移為 0 的圖像, 設定參考點為路飛的第一個紐扣, 如圖

相關參數

手動標定其坐標,從 18mm_600mm 到 135mm_1800mm 分 別為: [2252, 1738], [2324, 1653], [2317, 1620], [2220, 1859], [2362, 1757], [2382, 1398], [2115, 1980], [2427, 1820], [2269, 1308]。

選取的塊大小 block_size, 從 18mm 到 135mm 分別為[50, 150, 250]。

搜尋範圍 search range, 焦距 18mm 時, 1mm-20mm 位移 距離下分別為[15, 50, 80, 120], 焦距 53mm 時, 分別爲[30, 100, 150, 300], 焦距 135mm 時, 分別爲[100, 200, 300, 500]。

2. 使用作業 1 的方法計算運動向量 (MV), 其中爲了增加精 確度, 更改絕對值差匹配 (SAD) 為平方差匹配 (SQD), 演算法如下圖:

```
if 0 <= x1 < width - block_size and 0 <= y1 < height - block_size:
block_a = trucka[y:y + block_size, x:x + block_size]
block_b = truckb[y1:y1 + block_size, x1:x1 + block_size]
# Sum of Absolute Differences (SAD)
# sad = np.sum(np.abs(block_a - block_b))
sad = np.sum(np.square(block_a-block_b))
if sad < best_sad:
     best_sad = sad
     best_dx, best_dy = dx, dy</pre>
```

3. 根據 MV 計算 FOV

$$FOV = 2 \times \arctan(\frac{Image\ width(in\ pixel) \times mm\ per\ pixel}{2 \times object\ distance}) \times \frac{180}{\pi}$$

與理論值比較

$$FOV = 2 \times \arctan(\frac{sensor\ width}{2 \times f}) \times \frac{180}{\pi}$$

算法如下:

2.作業結果

生成圖表如下

相機焦距(mm)	物體距離(mm)	物體實際位移(mm)	物體位移(pixels)	mm/pixel	FOV估計值	FOV理論值
18	600	1	7	0.142857	58. 16479	66.047735
18	600	5	26	0.192308	88. 45156	66.047735
18	600	10	54	0.185185	46. 785903	66.047735
18	600	20	102	0.196078	73.645714	66.047735
18	1200	1	2	0.5	62. 627087	66.047735
18	1200	5	16	0.3125	71.582277	66.047735
18	1200	10	30	0.333333	71.582277	66.047735
18	1200	20	55	0.363636	65. 958182	66.047735
18	1800	1	3	0.333333	68.669351	66.047735
18	1800	5	9	0.555556	74. 716134	66.047735
18	1800	10	19	0.526316	70. 587735	66.047735
18	1800	20	45	0.444444	59. 951847	66.047735
53	600	1	22	0.045455	20.071421	24.897316
53	600	5	63	0.079365	22.031618	24.897316
53	600	10	129	0.077519	12.344885	24.897316
53	600	20	263	0.076046	34. 341745	24.897316
53	1200	1	10	0.1	24. 94729	24.897316
53	1200	5	44	0.113636	19.894225	24.897316
53	1200	10	78	0.128205	33. 588551	24. 897316
53	1200	20	161	0.124224	28.026392	24.897316
53	1800	1	12	0.083333	25. 224916	24.897316
53	1800	5	37	0.135135	32. 984985	24. 897316
53	1800	10	58	0.172414	27.188794	24.897316
53	1800	20	99	0.20202	29.382013	24. 897316
135	600	1	59	0.016949	7.550801	9.906515
135	600	5	160	0.03125	-6.553773	9.906515
135	600	10	264	0.037879	35. 950734	9.906515
135	600	20	500	0.04	13.873784	9.906515
135	1200	1	-34	-0.029412	17.844002	9.906515
135	1200	5	62	0.080645	22. 248635	9.906515
135	1200	10	58	0.172414	16.778422	9.906515
135	1200	20	-443	-0.045147	37.10682	9.906515
135	1800	1	4	0.25	16.778422	9.906515
135	1800	5	33	0.151515	17.703519	9.906515
135	1800	10	88	0.113636	-10.045142	9.906515
135	1800	20	208	0.096154	14. 225923	9.906515

可以看到除了個別 FOV 估計值與實際值有較大差別, 大部分估計值與實際值類似。

運動向量繪圖可以作證:

如圖可以看到運動向量準確指向了移動后的參考點(第一個 紐扣)。

(所有運動向量繪圖詳見文件夾 Move Vector) 由於繪圖原因程序執行較慢,可以注解掉繪圖部分代碼。