Large deviations in random graphs

Wojciech Samotij

(joint works with Matan Harel, Gady Kozma, and Frank Mousset)

Shanghai Center for Mathematical Sciences
Online Seminar

June 11, 2020

Suppose that Y_1, \ldots, Y_N are independent, identically distributed (i.i.d.) random variables (each taking finitely many values).

Suppose that Y_1, \ldots, Y_N are independent, identically distributed (i.i.d.) random variables (each taking finitely many values).

Define

$$X=X_N:=Y_1+\cdots+Y_N.$$

Suppose that Y_1, \ldots, Y_N are independent, identically distributed (i.i.d.) random variables (each taking finitely many values).

Define

$$X=X_N:=Y_1+\cdots+Y_N.$$

Letting $\mu := \mathbb{E}[Y_1]$, we have

$$\mathbb{E}[X_N] = \mathbb{E}[Y_1] + \cdots + \mathbb{E}[Y_N] = \mu N.$$

Suppose that Y_1, \ldots, Y_N are independent, identically distributed (i.i.d.) random variables (each taking finitely many values).

Define

$$X=X_N:=Y_1+\cdots+Y_N.$$

Letting $\mu := \mathbb{E}[Y_1]$, we have

$$\mathbb{E}[X_N] = \mathbb{E}[Y_1] + \cdots + \mathbb{E}[Y_N] = \mu N.$$

Question

How 'concentrated' is X_N around its expectation?

The (Weak) Law of Large Numbers (Bernoulli 1713)

For every fixed $\varepsilon > 0$,

$$\lim_{N\to\infty}\Pr\left(|X_N-\mu N|\geqslant \varepsilon N\right)=0.$$

The (Weak) Law of Large Numbers (Bernoulli 1713)

For every fixed $\varepsilon > 0$,

$$\lim_{N\to\infty}\Pr\left(|X_N-\mu N|\geqslant \varepsilon N\right)=0.$$

In other words, X_N typically takes values between $(\mu - \varepsilon)N$ and $(\mu + \varepsilon)N$.

The (Weak) Law of Large Numbers (Bernoulli 1713)

For every fixed $\varepsilon > 0$,

$$\lim_{N\to\infty}\Pr\left(|X_N-\mu N|\geqslant \varepsilon N\right)=0.$$

In other words, X_N typically takes values between $(\mu - \varepsilon)N$ and $(\mu + \varepsilon)N$.

Two possible ways to strengthen this result:

The (Weak) Law of Large Numbers (Bernoulli 1713)

For every fixed $\varepsilon > 0$,

$$\lim_{N\to\infty} \Pr\left(|X_N - \mu N| \geqslant \varepsilon N\right) = 0.$$

In other words, X_N typically takes values between $(\mu - \varepsilon)N$ and $(\mu + \varepsilon)N$.

Two possible ways to strengthen this result:

• How fast can ε tend to zero as $N \to \infty$?

The (Weak) Law of Large Numbers (Bernoulli 1713)

For every fixed $\varepsilon > 0$,

$$\lim_{N\to\infty} \Pr\left(|X_N - \mu N| \geqslant \varepsilon N\right) = 0.$$

In other words, X_N typically takes values between $(\mu - \varepsilon)N$ and $(\mu + \varepsilon)N$.

Two possible ways to strengthen this result:

- How fast can ε tend to zero as $N \to \infty$?
- What is the rate of convergence?

Typical deviations - Central Limit Theorem

The standard deviation σ of Y_1 is defined by

$$\sigma := \sqrt{\mathsf{Var}(\mathit{Y}_1)} = \left(\mathbb{E}[\mathit{Y}_1^2] - \mathbb{E}[\mathit{Y}_1]^2\right)^{1/2}.$$

Typical deviations - Central Limit Theorem

The standard deviation σ of Y_1 is defined by

$$\sigma := \sqrt{\mathsf{Var}(\mathsf{Y}_1)} = \left(\mathbb{E}[\mathsf{Y}_1^2] - \mathbb{E}[\mathsf{Y}_1]^2\right)^{1/2}.$$

The Central Limit Theorem (Laplace 1810)

For every fixed $x \geqslant 0$,

$$\lim_{N\to\infty} \Pr\left(|X_N - \mu N| \geqslant x \cdot \sigma \sqrt{N}\right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^\infty e^{-u^2/2} du.$$

Typical deviations - Central Limit Theorem

The standard deviation σ of Y_1 is defined by

$$\sigma := \sqrt{\mathsf{Var}(\mathsf{Y}_1)} = \left(\mathbb{E}[\mathsf{Y}_1^2] - \mathbb{E}[\mathsf{Y}_1]^2\right)^{1/2}.$$

The Central Limit Theorem (Laplace 1810)

For every fixed $x \geqslant 0$,

$$\lim_{N\to\infty} \Pr\left(|X_N - \mu N| \geqslant x \cdot \sigma \sqrt{N}\right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^{\infty} e^{-u^2/2} du.$$

The quantity $\sigma\sqrt{N}$ is the standard deviation of X_N .

Typical deviations – Central Limit Theorem

The standard deviation σ of Y_1 is defined by

$$\sigma := \sqrt{\mathsf{Var}(\mathsf{Y}_1)} = \left(\mathbb{E}[\mathsf{Y}_1^2] - \mathbb{E}[\mathsf{Y}_1]^2\right)^{1/2}.$$

The Central Limit Theorem (Laplace 1810)

For every fixed $x \geqslant 0$,

$$\lim_{N\to\infty} \Pr\left(|X_N - \mu N| \geqslant x \cdot \sigma \sqrt{N}\right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^{\infty} e^{-u^2/2} du.$$

The quantity $\sigma \sqrt{N}$ is the standard deviation of X_N .

It is already unlikely that $|X_N - \mu N| \gg \sqrt{N}$.

Typical deviations – Central Limit Theorem

The standard deviation σ of Y_1 is defined by

$$\sigma := \sqrt{\mathsf{Var}(Y_1)} = \left(\mathbb{E}[Y_1^2] - \mathbb{E}[Y_1]^2\right)^{1/2}.$$

The Central Limit Theorem (Laplace 1810)

For every fixed $x \ge 0$,

$$\lim_{N\to\infty} \Pr\left(|X_N - \mu N| \geqslant x \cdot \sigma \sqrt{N}\right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^\infty e^{-u^2/2} du.$$

The quantity $\sigma\sqrt{N}$ is the standard deviation of X_N .

It is already unlikely that $|X_N - \mu N| \gg \sqrt{N}$.

The limiting behaviour depends only on $\mathbb{E}[Y_1]$ and $\mathbb{E}[Y_1^2]$.

Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$\Pr\left(X_N\geqslant (\mu+\varepsilon)N\right)=\exp\left(-\left(I(\varepsilon)+o(1)\right)\cdot N\right).$$

Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$\Pr(X_N \geqslant (\mu + \varepsilon)N) = \exp(-(I(\varepsilon) + o(1)) \cdot N).$$

Proof of the upper bound (sketch).

For every $\lambda>0$, the function $x\mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$\Pr(X_N \geqslant t)$$

Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$\Pr\left(X_{N} \geqslant (\mu + \varepsilon)N\right) = \exp\left(-\left(I(\varepsilon) + o(1)\right) \cdot N\right).$$

Proof of the upper bound (sketch).

For every $\lambda>0$, the function $x\mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$\Pr(X_N \geqslant t) = \Pr\left(e^{\lambda X_N} \geqslant e^{\lambda t}\right)$$

Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$\Pr\left(X_{N}\geqslant\left(\mu+\varepsilon\right)N\right)=\exp\left(-\left(I(\varepsilon)+o(1)\right)\cdot N\right).$$

Proof of the upper bound (sketch).

For every $\lambda > 0$, the function $x \mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$\Pr(X_N \geqslant t) = \Pr\left(e^{\lambda X_N} \geqslant e^{\lambda t}\right) \leqslant e^{-\lambda t} \cdot \mathbb{E}\left[e^{\lambda X_N}\right],$$

by Markov's inequality.

Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$\Pr\left(X_{N}\geqslant\left(\mu+\varepsilon\right)N\right)=\exp\left(-\left(I(\varepsilon)+o(1)\right)\cdot N\right).$$

Proof of the upper bound (sketch).

For every $\lambda > 0$, the function $x \mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$\Pr(X_N \geqslant t) = \Pr\left(e^{\lambda X_N} \geqslant e^{\lambda t}\right) \leqslant e^{-\lambda t} \cdot \mathbb{E}\left[e^{\lambda X_N}\right],$$

by Markov's inequality. Morevoer,

$$\mathbb{E}\left[e^{\lambda X_{N}}\right] = \mathbb{E}\left[e^{\sum_{i=1}^{N}\lambda Y_{i}}\right]$$

Theorem (Cramér 1938)

There is a function $I = I_{Y_1}: (0, \infty) \to (0, \infty]$ such that

$$\Pr(X_N \geqslant (\mu + \varepsilon)N) = \exp(-(I(\varepsilon) + o(1)) \cdot N).$$

Proof of the upper bound (sketch).

For every $\lambda > 0$, the function $x \mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$\Pr(X_N \geqslant t) = \Pr\left(e^{\lambda X_N} \geqslant e^{\lambda t}\right) \leqslant e^{-\lambda t} \cdot \mathbb{E}\left[e^{\lambda X_N}\right],$$

by Markov's inequality. Morevoer,

$$\mathbb{E}\left[e^{\lambda X_{N}}\right] = \mathbb{E}\left[e^{\sum_{i=1}^{N} \lambda Y_{i}}\right] = \mathbb{E}\left[\prod_{i=1}^{N} e^{\lambda Y_{i}}\right]$$

Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$\Pr\left(X_{\mathcal{N}}\geqslant (\mu+\varepsilon)\mathcal{N}\right)=\exp\left(-\left(I(\varepsilon)+o(1)\right)\cdot\mathcal{N}\right).$$

Proof of the upper bound (sketch).

For every $\lambda > 0$, the function $x \mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$\Pr(X_N \geqslant t) = \Pr\left(e^{\lambda X_N} \geqslant e^{\lambda t}\right) \leqslant e^{-\lambda t} \cdot \mathbb{E}\left[e^{\lambda X_N}\right],$$

by Markov's inequality. Morevoer,

$$\mathbb{E}\left[e^{\lambda X_N}\right] = \mathbb{E}\left[e^{\sum_{i=1}^N \lambda Y_i}\right] = \mathbb{E}\left[\prod_{i=1}^N e^{\lambda Y_i}\right] = \prod_{i=1}^N \mathbb{E}\left[e^{\lambda Y_i}\right] = \mathbb{E}\left[e^{\lambda Y_1}\right]^N,$$

as Y_1, \ldots, Y_N are i.i.d.

Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$\Pr\left(X_{\mathcal{N}}\geqslant (\mu+\varepsilon)\mathcal{N}\right)=\exp\left(-\left(I(\varepsilon)+o(1)\right)\cdot\mathcal{N}\right).$$

Proof of the upper bound (sketch).

For every $\lambda > 0$, the function $x \mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$\Pr(X_N \geqslant t) = \Pr\left(e^{\lambda X_N} \geqslant e^{\lambda t}\right) \leqslant e^{-\lambda t} \cdot \mathbb{E}\left[e^{\lambda X_N}\right],$$

by Markov's inequality. Morevoer,

$$\mathbb{E}\left[e^{\lambda X_N}
ight] = \mathbb{E}\left[e^{\sum_{i=1}^N \lambda Y_i}
ight] = \mathbb{E}\left[\prod_{i=1}^N e^{\lambda Y_i}
ight] = \prod_{i=1}^N \mathbb{E}\left[e^{\lambda Y_i}
ight] = \mathbb{E}\left[e^{\lambda Y_1}
ight]^N,$$

as Y_1, \ldots, Y_N are i.i.d. We choose the optimal value of λ (\ldots)

The proof of Cramér's theorem crucially uses the assumption that X is a linear function of independent random variables.

The proof of Cramér's theorem crucially uses the assumption that X is a linear function of independent random variables.

What happens if we take away the linearity property and assume that X is a more complicated function of the Y_i s?

The proof of Cramér's theorem crucially uses the assumption that X is a linear function of independent random variables.

What happens if we take away the linearity property and assume that X is a more complicated function of the Y_i s?

Perhaps a low degree polynomial?

The proof of Cramér's theorem crucially uses the assumption that X is a linear function of independent random variables.

What happens if we take away the linearity property and assume that X is a more complicated function of the Y_i s?

Perhaps a low degree polynomial?

A natural example coming from random graph theory:

$$X_N = \#$$
triangles in $G_{n,p}$;

The proof of Cramér's theorem crucially uses the assumption that X is a linear function of independent random variables.

What happens if we take away the linearity property and assume that X is a more complicated function of the Y_i s?

Perhaps a low degree polynomial?

A natural example coming from random graph theory:

$$X_N = \#$$
triangles in $G_{n,p}$;

here, $N = \binom{n}{2}$ and X_N may be expressed as degree-three polynomial in N independent Bernoulli random variables.

The binomial random graph $\mathit{G}_{n,p}$ has vertex set $[\![n]\!] := \{1,\ldots,n\}$ and

$$\Pr\left(ij \in G_{n,p}\right) = p \quad \text{for all } i,j \in \llbracket n \rrbracket,$$

independently of all other pairs.

The binomial random graph $G_{n,p}$ has vertex set $[\![n]\!]:=\{1,\ldots,n\}$ and

$$\Pr\left(ij \in G_{n,p}\right) = p \quad \text{for all } i,j \in \llbracket n
rbracket,$$

independently of all other pairs.

A triangle in $G_{n,p}$ is a triple $\{i,j,k\}$ of vertices such that $ij,ik,jk\in G_{n,p}$.

The binomial random graph $G_{n,p}$ has vertex set $\llbracket n
rbracket = \{1,\ldots,n\}$ and

$$\Pr\left(ij \in G_{n,p}\right) = p \quad \text{for all } i,j \in \llbracket n
rbracket,$$

independently of all other pairs.

A triangle in $G_{n,p}$ is a triple $\{i,j,k\}$ of vertices such that $ij,ik,jk\in G_{n,p}$.

Let X_N denote the number of triangles in $G_{n,p}$ and note that

$$X_N = \sum_{i,j,k} Y_{ij} Y_{ik} Y_{jk}$$
 and $\mathbb{E}[X_N] = \binom{n}{3} p^3$,

where $Y_{ij} = 1_{ij \in G_{n,p}} \sim \text{Bernoulli}(p)$.

The binomial random graph $G_{n,p}$ has vertex set $\llbracket n \rrbracket := \{1,\ldots,n\}$ and

$$Pr(ij \in G_{n,p}) = p$$
 for all $i, j \in [n]$,

independently of all other pairs.

A triangle in $G_{n,p}$ is a triple $\{i,j,k\}$ of vertices such that $ij,ik,jk \in G_{n,p}$.

Let X_N denote the number of triangles in $G_{n,p}$ and note that

$$X_N = \sum_{i,j,k} Y_{ij} Y_{ik} Y_{jk}$$
 and $\mathbb{E}[X_N] = \binom{n}{3} p^3$,

where $Y_{ij} = 1_{ij \in G_{n,p}} \sim \text{Bernoulli}(p)$.

Remark

We will allow p to depend on n. In fact, assume $p = p(n) \to 0$ as $n \to \infty$.

Typical deviations of triangle count

If $\mathbb{E}[X_N] \to \infty$, then X_N obeys a Central Limit Theorem.

Typical deviations of triangle count

If $\mathbb{E}[X_N] \to \infty$, then X_N obeys a Central Limit Theorem.

Theorem (Ruciński 1988)

If $p \gg 1/n$, then, for every fixed $x \geqslant 0$,

$$\lim_{N\to\infty} \Pr\left(|X_N - \mathbb{E}[X_N]| \geqslant x \cdot \sigma_N\right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^\infty e^{-u^2/2} du,$$

where σ_N is the standard deviation of X_N .

Typical deviations of triangle count

If $\mathbb{E}[X_N] \to \infty$, then X_N obeys a Central Limit Theorem.

Theorem (Ruciński 1988)

If $p \gg 1/n$, then, for every fixed $x \geqslant 0$,

$$\lim_{N\to\infty} \Pr\left(|X_N - \mathbb{E}[X_N]| \geqslant x \cdot \sigma_N\right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^\infty e^{-u^2/2} du,$$

where σ_N is the standard deviation of X_N .

The standard deviation of X_N is straightforward to compute:

$$\sigma_N^2 = \text{Var}(X_N) = \binom{n}{3} p^3 (1 - p^3) + \binom{n}{4} \binom{4}{2} p^5 (1 - p).$$

Large deviations of triangle count

Problem

For a given $\delta >$ 0, determine the asymptotics of

$$\Pr(|X - \mathbb{E}[X]| \geqslant \delta \mathbb{E}[X]).$$

Large deviations of triangle count

Problem

For a given $\delta > 0$, determine the asymptotics of

$$\Pr(|X - \mathbb{E}[X]| \geqslant \delta \mathbb{E}[X]).$$

Problem (upper tail)

For a given $\delta >$ 0, determine the asymptotics of

$$\Pr(X \geqslant (1+\delta)\mathbb{E}[X]).$$

Large deviations of triangle count

Problem

For a given $\delta >$ 0, determine the asymptotics of

$$\Pr(|X - \mathbb{E}[X]| \geqslant \delta \mathbb{E}[X]).$$

Problem (upper tail)

For a given $\delta > 0$, determine the asymptotics of

$$\Pr(X \geqslant (1+\delta)\mathbb{E}[X]).$$

Problem (lower tail)

For a given $\delta \in$ (0,1], determine the asymptotics of

$$\Pr(X \leqslant (1-\delta)\mathbb{E}[X]).$$

(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$.

(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$. By classical large deviation theory, the 'cost' is $\exp(-c_{\delta}n^2p)$.

(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$. By classical large deviation theory, the 'cost' is $\exp(-c_{\delta}n^2p)$.

(2nd guess) Plant a subgraph with many triangles!

(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$. By classical large deviation theory, the 'cost' is $\exp(-c_{\delta}n^2p)$.

(2nd guess) Plant a subgraph with many triangles! If $G_{n,p}$ contains a graph G with $(1 + \delta)\mathbb{E}[X]$ triangles, then $X \geqslant (1 + \delta)\mathbb{E}[X]$.

(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$. By classical large deviation theory, the 'cost' is $\exp(-c_{\delta}n^2p)$.

(2nd guess) Plant a subgraph with many triangles! If $G_{n,p}$ contains a graph G with $(1+\delta)\mathbb{E}[X]$ triangles, then $X\geqslant (1+\delta)\mathbb{E}[X]$. The 'cost' of planting any G in $G_{n,p}$ is $p^{e(G)}$.

(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$. By classical large deviation theory, the 'cost' is $\exp(-c_{\delta}n^2p)$.

(2nd guess) Plant a subgraph with many triangles!

If $G_{n,p}$ contains a graph G with $(1+\delta)\mathbb{E}[X]$ triangles, then $X\geqslant (1+\delta)\mathbb{E}[X]$.

The 'cost' of planting any G in $G_{n,p}$ is $p^{e(G)}$.

Letting G be the complete graph with $(1+\delta)^{1/3}np$ vertices (which has the required number of triangles), we get a lower bound of $p^{c_\delta n^2p^2}$.

(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$. By classical large deviation theory, the 'cost' is $\exp(-c_{\delta}n^2p)$.

(2nd guess) Plant a subgraph with many triangles!

If $G_{n,p}$ contains a graph G with $(1+\delta)\mathbb{E}[X]$ triangles, then $X\geqslant (1+\delta)\mathbb{E}[X]$.

The 'cost' of planting any G in $G_{n,p}$ is $p^{e(G)}$.

Letting G be the complete graph with $(1+\delta)^{1/3}np$ vertices (which has the required number of triangles), we get a lower bound of $p^{c_\delta n^2p^2}$.

If $p \ll 1$, then $p^2 \log(1/p) \ll p$ and the second strategy is more effective!

(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$. By classical large deviation theory, the 'cost' is $\exp(-c_{\delta}n^2p)$.

(2nd guess) Plant a subgraph with many triangles!

If $G_{n,p}$ contains a graph G with $(1+\delta)\mathbb{E}[X]$ triangles, then $X\geqslant (1+\delta)\mathbb{E}[X]$.

The 'cost' of planting any G in $G_{n,p}$ is $p^{e(G)}$.

Letting G be the complete graph with $(1+\delta)^{1/3}np$ vertices (which has the required number of triangles), we get a lower bound of $p^{c_\delta n^2p^2}$.

If $p \ll 1$, then $p^2 \log(1/p) \ll p$ and the second strategy is more effective!

We conclude that

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)\geqslant \exp\left(-c_{\delta}n^{2}p^{2}\log(1/p)\right).$$

Progression of upper bounds on $\Pr(X \ge (1 + \delta)\mathbb{E}[X])$:

Progression of upper bounds on $\Pr(X \ge (1 + \delta)\mathbb{E}[X])$:

$$\exp\left(-c_\delta(np)^{3/2}\right)$$

Progression of upper bounds on $\Pr(X \ge (1 + \delta)\mathbb{E}[X])$:

Vu (2001) $\exp\left(-c_{\delta}(np)^{3/2}\right)$

Janson–Ruciński (2002) $\exp(-c_{\delta}n^2p^3)$

Progression of upper bounds on $\Pr(X \geqslant (1+\delta)\mathbb{E}[X])$:

Vu (2001)
$$\exp\left(-c_{\delta}(np)^{3/2}\right)$$

Janson–Ruciński (2002)
$$\exp(-c_{\delta}n^2p^3)$$

Kim–Vu (2004)
Janson–Oleszkiewicz–Ruciński (2004)
$$\exp\left(-c_{\delta}n^{2}p^{2}\right)$$

Progression of upper bounds on $Pr(X \ge (1 + \delta)\mathbb{E}[X])$:

Vu (2001)
$$\exp\left(-c_{\delta}(np)^{3/2}\right)$$

Janson–Ruciński (2002)
$$\exp\left(-c_{\delta}n^2p^3\right)$$

Kim–Vu (2004)

Lancar Olaszkiaviaz Busiáski (2004)

$$\exp(-c_{\delta}n^{2}p^{2})$$

Chatterjee (2012)
$$\exp \left(-c_{\delta}n^{2}p^{2}\log(1/p)\right)$$

Progression of upper bounds on $Pr(X \ge (1 + \delta)\mathbb{E}[X])$:

Vu (2001)
$$\exp\left(-c_{\delta}(np)^{3/2}\right)$$

Janson–Ruciński (2002)
$$\exp(-c_{\delta}n^2p^3)$$

Kim–Vu (2004)
Janson–Oleszkiewicz–Ruciński (2004)
$$\exp(-c_{\delta}n^2p^2)$$

Chatterjee (2012)
$$\exp(-c_{\delta}n^2p^2\log(1/p))$$
 DeMarco–Kahn (2012)

Theorem (Chatterjee / DeMarco-Kahn)

If $p \gg \log n/n$, then, for every fixed $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]
ight)=\exp\left(-\Theta_{\delta}ig(n^2p^2\log(1/p)ig)
ight).$$

Janson-Ruciński (2002)

Progression of upper bounds on $\Pr(X \ge (1 + \delta)\mathbb{E}[X])$:

```
Vu (2001) \exp\left(-c_{\delta}(np)^{3/2}\right)
```

 $\exp\left(-c_{\delta}n^2p^3\right)$

Janson–Oleszkiewicz–Ruciński (2004)
$$\exp(-c_{\delta}n^2p^2)$$

Chatterjee (2012)
$$\exp \left(-c_\delta n^2 p^2 \log(1/p)\right)$$
 DeMarco–Kahn (2012)

Theorem (Chatterjee / DeMarco-Kahn)

If $p \gg \log n/n$, then, for every fixed $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)=\exp\left(-\Theta_{\delta}\left(n^{2}p^{2}\log(1/p)\right)\right).$$

The assumption $p \gg \log n/n$ is necessary.

Question

Can we compute log Pr $(X \ge (1 + \delta)\mathbb{E}[X])$ asymptotically?

Question

Can we compute $\log \Pr \left(X \geqslant (1+\delta)\mathbb{E}[X] \right)$ asymptotically? (What for?)

Question

Can we compute $\log \Pr \left(X \geqslant (1+\delta)\mathbb{E}[X] \right)$ asymptotically? (What for?)

Define

$$\psi(\delta) = \min \big\{ e(G) : \mathbb{E}[X \mid G \subseteq G_{n,p}] \geqslant (1+\delta)\mathbb{E}[X] \big\}.$$

Question

Can we compute $\log \Pr (X \geqslant (1 + \delta)\mathbb{E}[X])$ asymptotically? (What for?)

Define

$$\psi(\delta) = \min \big\{ e(G) : \mathbb{E}[X \mid G \subseteq G_{n,p}] \geqslant (1+\delta)\mathbb{E}[X] \big\}.$$

Proposition (easy)

If $\psi(\delta) \to \infty$, then

$$\mathsf{Pr}\left(X\geqslant (1+\delta)\mathbb{E}[X]
ight)\geqslant p^{(1+o(1))\cdot\psi(\delta)}.$$

Question

Can we compute log $\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)$ asymptotically? (What for?)

Define

$$\psi(\delta) = \min \big\{ e(G) : \mathbb{E}[X \mid G \subseteq G_{n,p}] \geqslant (1+\delta)\mathbb{E}[X] \big\}.$$

Proposition (easy)

If $\psi(\delta) \to \infty$, then

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]
ight)\geqslant p^{(1+o(1))\cdot\psi(\delta)}.$$

Theorem (Lubetzky–Zhao 2014)

$$\psi(\delta)/n^2p^2 \to \begin{cases} \delta^{2/3}/2 & \text{if } n^{-1} \ll p \ll n^{-1/2}, \\ \min\{\delta^{2/3}/2, \delta/3\} & \text{if } n^{-1/2} \ll p \ll 1. \end{cases}$$

The constants $\delta^{2/3}/2$ and $\delta/3$ come from the following:

The constants $\delta^{2/3}/2$ and $\delta/3$ come from the following:

clique containing $\delta \mathbb{E}[X]$ triangles

The constants $\delta^{2/3}/2$ and $\delta/3$ come from the following:

clique containing $\delta \mathbb{E}[X]$ triangles

 \mathcal{K}_3 -free 'hub' with $\delta \mathbb{E}[X]/p$ copies of $\mathcal{K}_{1,2}$

The constants $\delta^{2/3}/2$ and $\delta/3$ come from the following:

clique containing $\delta \mathbb{E}[X]$ triangles

 K_3 -free 'hub' with $\delta \mathbb{E}[X]/p$ copies of $K_{1,2}$ (each becomes a triangle with probability p)

The constants $\delta^{2/3}/2$ and $\delta/3$ come from the following:

clique containing $\delta \mathbb{E}[X]$ triangles

 \mathcal{K}_3 -free 'hub' with $\delta \mathbb{E}[X]/p$ copies of $\mathcal{K}_{1,2}$ (each becomes a triangle with probability p)

The 'hub' works only when $np^2 \gg 1$, as $(\delta/3)np^2$ is assumed an integer.

We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $\mathit{n}^{-\alpha} \ll \mathit{p} \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)\leqslant p^{(1-o(1))\cdot\psi(\delta)}.$$

We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $\mathit{n}^{-\alpha} \ll \mathit{p} \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)\leqslant p^{(1-o(1))\cdot\psi(\delta)}.$$

autilois on arXiv assumption	authors	on arXiv	assumption
------------------------------	---------	----------	------------

We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $n^{-\alpha} \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)\leqslant p^{(1-o(1))\cdot\psi(\delta)}.$$

authors	on arXiv	assumption
Chatterjee–Dembo	2014	lpha=1/42

We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $n^{-\alpha} \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)\leqslant p^{(1-o(1))\cdot\psi(\delta)}.$$

authors	on arXiv	assumption
Chatterjee–Dembo	2014	$\alpha = 1/42$
Eldan	2016	lpha=1/18

We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $n^{-\alpha} \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)\leqslant p^{(1-o(1))\cdot\psi(\delta)}.$$

authors	on arXiv	assumption
Chatterjee–Dembo	2014	$\alpha = 1/42$
Eldan	2016	lpha=1/18
Cook-Dembo	Sep 2018	$\alpha = 1/3$

We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $n^{-\alpha} \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)\leqslant p^{(1-o(1))\cdot\psi(\delta)}.$$

authors	on arXiv	assumption
Chatterjee–Dembo	2014	$\alpha = 1/42$
Eldan	2016	$\alpha = 1/18$
Cook-Dembo	Sep 2018	$\alpha = 1/3$
Augeri	Oct 2018	$\alpha = 1/2$

Our contribution

Theorem (Harel–Mousset–S. 2019+)

If $\log n/n \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)=p^{(1+o(1))\cdot\psi(\delta)}.$$

Our contribution

Theorem (Harel–Mousset–S. 2019+)

If $\log n/n \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)=p^{(1+o(1))\cdot\psi(\delta)}.$$

Moreover, conditioned on the upper tail event, $G_{n,p}$ typically contains either an 'almost-clique' or an 'almost-hub' of the right size

Theorem (Harel–Mousset–S. 2019+)

If $\log n/n \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)=p^{(1+o(1))\cdot\psi(\delta)}.$$

Moreover, conditioned on the upper tail event, $G_{n,p}$ typically contains either an 'almost-clique' or an 'almost-hub' of the right size ... or a combination of the two if $p = \Theta(n^{-1/2})$.

Theorem (Harel–Mousset–S. 2019+)

If $\log n/n \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)=p^{(1+o(1))\cdot\psi(\delta)}.$$

Moreover, conditioned on the upper tail event, $G_{n,p}$ typically contains either an 'almost-clique' or an 'almost-hub' of the right size ... or a combination of the two if $p = \Theta(n^{-1/2})$.

The assumption $p \gg \log n/n$ is necessary.

Theorem (Harel–Mousset–S. 2019+)

If $\log n/n \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)=p^{(1+o(1))\cdot\psi(\delta)}.$$

Moreover, conditioned on the upper tail event, $G_{n,p}$ typically contains either an 'almost-clique' or an 'almost-hub' of the right size ... or a combination of the two if $p = \Theta(n^{-1/2})$.

The assumption $p \gg \log n/n$ is necessary. But what if $p \ll \log n/n$?

Theorem (Harel–Mousset–S. 2019+)

If $\log n/n \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr\left(X\geqslant (1+\delta)\mathbb{E}[X]\right)=p^{(1+o(1))\cdot\psi(\delta)}.$$

Moreover, conditioned on the upper tail event, $G_{n,p}$ typically contains either an 'almost-clique' or an 'almost-hub' of the right size ... or a combination of the two if $p = \Theta(n^{-1/2})$.

The assumption $p \gg \log n/n$ is necessary. But what if $p \ll \log n/n$?

Theorem (Harel–Mousset–S. 2019+)

If $1/n \ll p \ll \log n/n$, then, for every $\delta > 0$,

$$\mathsf{Pr}\left(X\geqslant (1+\delta)\mathbb{E}[X]
ight)=\mathsf{exp}\left(-(1+o(1))\mathsf{Po}(\delta)\cdot\mathbb{E}[X]
ight).$$

where $Po(\delta) = (1 + \delta) \log(1 + \delta) - \delta$.

Problem (lower tail)

For a given $\delta \in$ (0,1], determine the asymptotics of

$$\Pr(X \leqslant (1-\delta)\mathbb{E}[X]).$$

Problem (lower tail)

For a given $\delta \in (0,1]$, determine the asymptotics of

$$\Pr(X \leqslant (1-\delta)\mathbb{E}[X]).$$

Harris's correlation inequality implies

$$\Pr(X = 0) \geqslant \max\left\{ (1 - p^3)^{\binom{n}{3}}, (1 - p)^{\binom{n}{2}} \right\}.$$

Problem (lower tail)

For a given $\delta \in (0,1]$, determine the asymptotics of

$$\Pr(X \leqslant (1-\delta)\mathbb{E}[X]).$$

Harris's correlation inequality implies

$$\Pr(X = 0) \geqslant \max\left\{ (1 - p^3)^{\binom{n}{3}}, (1 - p)^{\binom{n}{2}} \right\}.$$

On the other hand, Janson's inequality gives, for every $\delta \in (0,1]$,

$$\Pr\left(X\leqslant (1-\delta)\mathbb{E}[X]\right)\leqslant \exp\left(-c_\delta\cdot\min\left\{n^2p,n^3p^3\right\}\right).$$

Problem (lower tail)

For a given $\delta \in (0,1]$, determine the asymptotics of

$$\Pr\left(X\leqslant (1-\delta)\mathbb{E}[X]\right).$$

Harris's correlation inequality implies

$$\Pr(X=0) \geqslant \max\left\{ (1-p^3)^{\binom{n}{3}}, (1-p)^{\binom{n}{2}} \right\}.$$

On the other hand, Janson's inequality gives, for every $\delta \in (0,1]$, $\Pr\left(X \leqslant (1-\delta)\mathbb{E}[X]\right) \leqslant \exp\left(-c_{\delta} \cdot \min\left\{n^2 p, n^3 p^3\right\}\right).$

Corollary (Harris 1960 / Janson 1990)

If p < .99, then, for every $\delta \in (0,1]$,

$$\Pr\left(X\leqslant (1-\delta)\mathbb{E}[X]\right)=\exp\left(-\Theta_{\delta}\left(\min\{n^2p,n^3p^3\}\right)\right).$$

Question

Can we compute $\log \Pr (X \geqslant (1 + \delta)\mathbb{E}[X])$ asymptotically?

Question

Can we compute $\log \Pr (X \geqslant (1 + \delta)\mathbb{E}[X])$ asymptotically?

Here, we assume that $p \gg n^{-1/2}$, so that $n^3 p^3 \gg n^2 p$.

Question

Can we compute $\log \Pr (X \ge (1 + \delta)\mathbb{E}[X])$ asymptotically?

Here, we assume that $p \gg n^{-1/2}$, so that $n^3 p^3 \gg n^2 p$.

If G has no triangles, then

$$\Pr(X=0)\geqslant \Pr(G_{n,p}\subseteq G)=(1-p)^{\binom{n}{2}-\mathsf{e}(G)}.$$

Question

Can we compute log Pr $(X \ge (1 + \delta)\mathbb{E}[X])$ asymptotically?

Here, we assume that $p \gg n^{-1/2}$, so that $n^3 p^3 \gg n^2 p$.

If G has no triangles, then

$$\Pr(X=0)\geqslant \Pr(G_{n,p}\subseteq G)=(1-p)^{\binom{n}{2}-e(G)}.$$

The right-hand side is maximised when G is complete bipartite, giving

$$\Pr(X=0) \geqslant (1-p)^{n^2/4}.$$

Question

Can we compute $\log \Pr(X \ge (1 + \delta)\mathbb{E}[X])$ asymptotically?

Here, we assume that $p \gg n^{-1/2}$, so that $n^3 p^3 \gg n^2 p$.

If G has no triangles, then

$$\Pr(X=0)\geqslant \Pr(G_{n,p}\subseteq G)=(1-p)^{\binom{n}{2}-e(G)}.$$

The right-hand side is maximised when G is complete bipartite, giving

$$\Pr(X=0) \geqslant (1-p)^{n^2/4}.$$

Theorem (Łuczak 2000)

If $p \gg n^{-1/2}$, then $\Pr(X = 0) \leqslant (1 - p)^{n^2/4 - o(n^2)}$.

If $\delta < 1$, then we could consider a graph G_{δ} with at most $(1 - \delta)\binom{n}{3}$ triangles and as many edges as possible to obtain

$$\Pr\left(X\leqslant (1-\delta)\mathbb{E}[X]\right)\gtrapprox \Pr(G_{n,p}\subseteq G_{\delta})=(1-p)^{\binom{n}{2}-e(G_{\delta})}.$$

If $\delta < 1$, then we could consider a graph G_{δ} with at most $(1 - \delta)\binom{n}{3}$ triangles and as many edges as possible to obtain

$$\Pr\left(X\leqslant (1-\delta)\mathbb{E}[X]\right)\gtrapprox \Pr(G_{n,p}\subseteq G_{\delta})=(1-p)^{\binom{n}{2}-e(G_{\delta})}.$$

Choose $q: \binom{\lfloor n \rfloor}{2} \to [0,1]$ and let $G_{n,q}$ be the random graph on $\llbracket n \rrbracket$ s.t.:

$$\Pr(ij \in G_{n,q}) = q_{ij} \text{ for all } i,j \in \llbracket n \rrbracket.$$

If $\delta < 1$, then we could consider a graph G_{δ} with at most $(1 - \delta)\binom{n}{3}$ triangles and as many edges as possible to obtain

$$\mathsf{Pr}\left(X\leqslant (1-\delta)\mathbb{E}[X]
ight)\gtrapprox \mathsf{Pr}(\mathit{G}_{n,p}\subseteq \mathit{G}_{\delta})=(1-p)^{\binom{n}{2}-e(\mathit{G}_{\delta})}.$$

Choose $q: \binom{\llbracket n \rrbracket}{2} \to \llbracket 0,1 \rrbracket$ and let $G_{n,q}$ be the random graph on $\llbracket n \rrbracket$ s.t.:

$$\Pr(ij \in G_{n,q}) = q_{ij}$$
 for all $i, j \in [n]$.

Proposition

Suppose that q is such that $\mathbb{E}\big[\#K_3(G_{n,q})\big]\leqslant (1-\delta)\mathbb{E}[X]=(1-\delta)\binom{n}{3}p^3$. Then,

$$\Pr\left(X\leqslant (1-\delta)\mathbb{E}[X]
ight)\geqslant \exp\left(-(1+o(1))\cdot \sum_{i,j}I_{p}(q_{ij})
ight),$$

where
$$I_p(q) = q \log \frac{q}{p} + (1-q) \log \frac{1-q}{1-p}$$
.

Define, for every $\delta \in (0,1]$,

$$\Phi(\delta) = \min \left\{ \sum_{i,j} I_p(q_{ij}) : \mathbb{E}[\# K_3(G_{n,q})] \leqslant (1 - \delta) \mathbb{E}[X] \right\}.$$

Define, for every $\delta \in (0,1]$,

$$\Phi(\delta) = \min \left\{ \sum_{i,j} I_p(q_{ij}) : \mathbb{E}[\# \mathcal{K}_3(G_{n,q})] \leqslant (1-\delta)\mathbb{E}[X]
ight\}.$$

We have

$$\frac{\Phi(1)}{\log(1-p)} = \exp(n, K_3) - \binom{n}{2} = \left\lfloor \frac{n^2}{4} \right\rfloor - \binom{n}{2},$$

Define, for every $\delta \in (0,1]$,

$$\Phi(\delta) = \min \left\{ \sum_{i,j} I_p(q_{ij}) : \mathbb{E}[\#K_3(G_{n,q})] \leqslant (1-\delta)\mathbb{E}[X]
ight\}.$$

We have

$$\frac{\Phi(1)}{\log(1-p)} = \exp(n, K_3) - \binom{n}{2} = \left\lfloor \frac{n^2}{4} \right\rfloor - \binom{n}{2},$$

but computing the function $\Phi(\delta)$ for all δ seems very hard.

Define, for every $\delta \in (0,1]$,

$$\Phi(\delta) = \min \left\{ \sum_{i,j} I_p(q_{ij}) : \mathbb{E}[\# \mathcal{K}_3(G_{n,q})] \leqslant (1-\delta)\mathbb{E}[X]
ight\}.$$

We have

$$\frac{\Phi(1)}{\log(1-p)} = \exp(n, K_3) - \binom{n}{2} = \left\lfloor \frac{n^2}{4} \right\rfloor - \binom{n}{2},$$

but computing the function $\Phi(\delta)$ for all δ seems very hard.

Theorem (Kozma–S. 2019++)

If $n^{-1/2} \ll p \leqslant .99$, then, for every $\delta \in (0,1]$,

$$\Pr\left(X \leqslant (1-\delta)\mathbb{E}[X]\right) = \exp\left(-(1+o(1))\cdot\Phi(\delta)\right).$$

Thank you for your attention!