# 음성인식 실습 (5/5)

WFST 기반의 디코딩 네트워크를 사용한 end-to-end 음성인식과 언어 모델 실습

김지환

서강대학교 컴퓨터공학과



#### **Table of contents**

- 0. 실습 소개
- 1. Nemo 소개
- 2. Google colab 소개
- 3. Nemo 설치 및 환경 세팅 (Colab 기준)
- 4. Nemo ASR 실습
- 5. k2 소개
- 6. k2 설치 및 기본 환경 세팅
- 7. k2를 이용한 WFST 구현
- 8. 음성인식을 위한 WFST 구현
- 9. 결론



- End-to-end에 WFST가 필요한 이유
  - end-to-end는 인간이 정한 '가정'들과의 전쟁
    - 1) HMM에 의해 정해진 가정들
      - \* 음성은 음소로 이루어진다. (음소의 수 n개)
      - \* 하나의 음소는 앞, 뒤 context를 통해 n^2종류로 세분화된다. (총 음소의 수 n^3개)
      - \* 세분화된 음소는 너무 많기 때문에 k-means algorithm을 통해 decision tree를 만들어 임의의 숫자로 clustering한다.
      - \* 결국 어떤 음소에 대하여, 음성 cluster의 생성 확률을 구한다. (ex> 'a' 음소는 어떤 벡터공간에 분포되어 있는가)
      - \* 가정 1: 음성인식을 위해서는 사전에 음소가 정의되어야 하며, 음소는 고정된 벡터 차원 위의 정규 분포로 표현된다.



- End-to-end에 WFST가 필요한 이유
  - 2) DNN에 의해 정해진 가정
    - \* 하나의 음소는 복수개의 프레임으로 이루어진다. (many-to-one 문제를 연속적으로 반복)
    - \* DNN은 복수개의 프레임을 받아 하나의 음소를 출력하는 과정을 반복하며, 이를 위해 HMM의 segmentation 결과를 필요로 한다.
    - \* 가정 2: DNN으로 학습된 음향 모델은 독립된 음소(출력)과 그에 대응하는 frame의 열(입력)의 반복으로 이루어짐
  - 3) WFST에 의해 정해진 가정
    - \* 음소의 열은 단어를 구성하고, 단어의 열은 문장을 구성한다.
    - \* 가정 3: 인식 가능한 음소와 단어는 사전 정의되어야 한다.



- End-to-end에 WFST가 필요한 이유
  - 3개의 가정은 음성인식 성능 향상을 위해 극복해야 할 과제
  - 1) 음성인식을 위해서는 사전에 음소가 정의되어야 하며, 음소는 고정된 벡터 차원 위의 정규 분포로 표현된다.
    - 인식 가능한 음성의 최소단위는 음소가 맞는가?
    - 음성은 정규 분포가 맞는가?
  - 2) 가정 2: DNN으로 학습된 음향 모델은 독립된 음소(출력)과 그에 대응하는 frame의 열(입력)의 반복으로 이루어짐
    - 음소 간의 관계성은 WFST를 통해 표현되며, 모델이 음소 간의 관계성을 표현하지 못함
  - 3) 인식 가능한 음소와 단어는 사전 정의되어야 한다.
    - 최적화된 음소, 단어의 개수는 어떻게 결정되는가?



- End-to-end는 위 가정들을 극복하여 학습이 가능하기 때문에 높은 성능을 보임
  - 가정을 제거할 수 있었던 이유: 많은 데이터, 복잡한 모델
  - 가정 1,2를 극복한 모델
    - CTC, LF-MMI, AED, RNN-T, transformer 등 대부분을 이루는 모델
  - 가정 3을 극복한 모델
    - 없음(wav2vec2.0 일부 극복)
      - \* Wav2vec2.0은 self-supervised learning을 통해 target에 구애받지 않는 speech representation을 학습 가능하지만, fine-tuning을 통해서 단어를 결정해 주어야 하기 때문
  - 결국, end-to-end라 할지라도 output unit은 아직까지 사람이 지정해 주어야 함



- WFST가 잘하는 것
  - 지정된 unit들의 sequence를 가장 최적화해서 모델링할 수 있음
    - (입력, 출력이 정해져 있는 경우에 대해 가장 좋은 모델링 방법)
  - WFST의 효과
    - 빠른 처리 속도 (shortest path가 지정되어 있으므로)
- 높은 성능을 보이는 음향 모델인 end-to-end 모델에 대하여, WFST로 표현된 word set과 언어 모델을 결합해 성능을 높임

#### Nemo 소개

- NeMo (NVIDIA, 2019)
  - <a href="https://developer.nvidia.com/nvidia-nemo">https://developer.nvidia.com/nvidia-nemo</a> (homepage)
  - https://github.com/NVIDIA/NeMo (source)
  - NVIDIA NeMo<sup>™</sup> is an open-source framework for developers to build and train state-of-the-art (SOTA) conversational AI models.
  - PyTorch, PyTorch Lightning을 기반으로 작성된 E2E toolkit
  - SOTA model들의 pretrained model을 제공
    - ASR pretrained models : <a href="https://catalog.ngc.nvidia.com/">https://catalog.ngc.nvidia.com/</a>





NeMo

PyTorch Lightning

O PyTorch

NEM<sub>0</sub>

## Google colab 소개

- Google Colaboratory (Google)
  - <a href="https://colab.research.google.com/">https://colab.research.google.com/</a>
  - 웹 브라우저에서 파이썬을 작성하고 실행할 수 있는 서비스
  - 클라우드 기반의 주피터 노트북 개발환경
  - 기본적으로 파이썬을 사용가능
    - Tensorflow, PyTorch, mataplotlib, scikit-learn, pandas 등의 ML/DL에 사용하는 라이브러리들을 기본적으로 지원
  - K80 GPU를 무료로 사용 가능
    - 사용량의 제한이 있으나 일반적으로 교육용으로 사용하기에는 문제 없음

|                        | Colab Free  | Colab Pro        | Colab Pro +       |
|------------------------|-------------|------------------|-------------------|
| Guarantee of resources | Low         | High             | Even Higher       |
| GPU                    | K80         | K80, T4 and P100 | K80, T4 and P100  |
| RAM                    | 16 GB       | 32 GB            | 52 GB             |
| Runtime                | 12 hours    | 24 hours         | 24 hours          |
| Background execution   | No          | No               | Yes               |
| Costs                  | Free        | 9.99\$ per month | 49.99\$ per month |
| Target group           | Casual user | Regular user     | Heavy user        |





colab

## Nemo 설치 및 환경 세팅 (Colab 기준)

- Nemo 설치
  - PIP를 이용한 설치 (colab 권장)
    - \$pip install nemo\_toolkit['all']
  - Source code를 이용한 설치
    - \$apt-get update && apt-get install -y libsndfile1 ffmpeg
    - \$git clone <a href="https://github.com/NVIDIA/NeMo">https://github.com/NVIDIA/NeMo</a>
    - \$cd NeMo
    - \$./reinstall.sh



# Nemo 설치 및 환경 세팅 (Colab 기준)

- Nemo 설치 (실습)
  - Pip 명령어를 통해 nemo 설치
  - 주요 library import
    - omegaconf: yaml, json등의 configuration 파일을 읽고 쓸 수 있는 lib. Nemo에서 기본적으로 사용함
    - nemo.collections.asr: Nemo ASR class
    - nemo.utils.exp\_manager: 학습 로그, conf등에 사용되는 lib
    - datasets.load\_dataset: 학습 및 테스트 데이터 관리 lib 로, huggingface에서 사용됨

#### Prerequisities

```
!pip install nemo toolkit['all']
숨겨진 출력 표시
    import copy
    from omegaconf import OmegaConf, open_dict
    import nemo
     import nemo.collections.asr as nemo_asr
    from nemo.utils import exp_manager
    [NeMo W 2022-07-07 05:02:01 optimizers:55] Ape:
```

!pip install datasets

from datasets import load\_dataset



#### ■ 실습 순서

- 1) Pre-trained 모델 불러오기 (영어)
- 2) Small data를 통한 모델 확인 (영어)
- 3) Train/test 데이터 불러오기 및 데이터 확인 (한국어)
- 4) 한국어 fine-tuning을 위한 모델 설정
- 5) 한국어 output unit 설정 및 training 세팅
- 6) 학습
- 7) 테스트



- 1) Pre-trained 모델 불러오기 (영어)
  - Nemo pretrained catalog에서 모델을 받아 사용 가능
    - https://catalog.ngc.nvidia.com/models
  - 본 실습에서는 Conformer을 사용함 (실습용)
    - Transformer block에 convolution module을 추가한 모델
    - 2020년 이후 계속해서 SOTA 성능을 보이고 있음
    - Librispeech test set 기준 2.7%의 word error rate (WER) 을 보임



Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang, Z., Wu, Y., Pang, R. (2020) Conformer: Convolution-augmented Transformer for Speech Recognition. Proc. Interspeech 2020, 5036-5040, doi: 10.21437/Interspeech.2020-3015



- 1) Pre-trained 모델 불러오기 (영어)
  - 모델 불러오기

```
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(model_name="stt_en_conformer_ctc_large_ls")
```

- 다른 추천 ASR 모델
  - Citrinet, Contextnet, Quartznet 등



- 2) Small data를 통한 모델 확인 (영어)
  - Huggingface의 librispeech test corpus를 불러와 사용
    - 모델 동작 확인용
  - 임의의 sample에 대해 재생 및 인식 과정 수행
  - 모델에 대한 음성인식
    - {model}.transcribe({listOfFilepath})를 통해 결과 확인 가능

#### Pre-trained model

```
[5] char_model = nemo_asr.models.ASRModel.from_pretrained("stt_en_quartznet15x5", map_location='cpu'
숨겨진 출력 표시
[6] ds = load_dataset("kresnik/librispeech_asr_test", "clean")
숨겨진 출력 표시
[7] test_ds = ds['test']
     sample = test_ds[0]
     sample
숨겨진 출력 표시
[8] import IPython
     IPython.display.Audio(sample['file'])
       0:04 / 0:04
[9] result = char_model.transcribe([sample['file']])
     results = char_model.transcribe(test_ds['file'][:10])
                                                              1/1 [00:12<00:00, 12.23s/it]
     Transcribing: 100%
                                                              3/3 [00:11<00:00, 3.22s/it]
     Transcribing: 100%
    print("Hypothesis: "+ result[0])
     print("Reference: " +sample['text'].lower())
Hypothesis: it is sixteen years since john bergson died
     Reference: it is sixteen years since john bergson died
```

#### K2 소개

- k2-fsa (k2)
  - OpenFST를 개량한 python 기반의 WFST 패키지
  - End-to-end 모델과 WFST를 결합할 목적으로 제작됨
  - FSA, FST를 tensor 형태로 구현하여 GPU에서 WFST 연산을 가능하게 함
    - Pytorch에서 동작 가능
  - Open-source: https://github.com/k2-fsa/k2



- Kaldi 이후 세대의 ASR toolkit 중, WFST를 담당하는 toolkit
  - 등산 시리즈 (가칭)
    - \* Lhotse: data preparation, feature extraction
    - \* K2-fsa: WFST 구현
    - \* Icefall: lhotse와 k2, pytorch를 이용한 ASR recipe 제공
    - \* Sherpa: ASR streaming server
  - Icefall에서 제공하는 recipe는 state-of-the-art 성능을 보이지 않아서, 실습에서는 Nvidia Nemo를 사용



#### K2 설치 및 기본 환경 세팅

#### ■ K2 설치 방법

- Prerequisities (pip 기준)
  - Python >= 3.6
  - CUDA >= 10.1
  - PyTorch == 1.7.1 (conda 설치의 경우 >=1.7.1)
- PyPI (PIP)를 이용한 설치 방법 (권장, but colab에선 비권장)
  - \$pip install k2
    - \* Prerequisities 자동으로 설치됨
- Colab에서 돌아가는 pip 설치 방법
  - \$pip install torch==1.7.1
  - = \$pip install k2==1.8.dev20210916+cuda10.2.torch1.7.1 -f-https://k2-fsa.org/nightly/
  - <sup>-</sup> \$pip install k2==1.17.dev20220710+cuda10.2.torch1.7.1 -f https://k2-fsa.org/nightly/
- Source code (github)을 이용한 설치 방법
  - \$git clone https://github.com/k2-fsa/k2.git
  - \$cd k2
  - \$python3 setup.py install





### K2 설치 및 기본 환경 세팅

- K2 설치 실습 (Google colab)
  - 1) 새 colab notebook 생성



• 2) 새 colab notebook 생성

```
📤 k2 playground.ipynb 🕱
                                                                                                   ■ 댓글 🚉
                                                                                                RAM I
+ 코드 + 텍스트
                                                                                               디스크 🚃 🗆
                                                                                                    ↑ ↓ ⊕ 🗏
    Downloading torch-1.7.1-cp37-cp37m-manylinux1_x86_64.whl (776.8 MB)
```



#### K2 설치 및 기본 환경 세팅

- K2 설치 실습 (Google colab)
  - 3) 설치 확인



#### ■ 기본 사용법

- 표현법
  - Openfst와 동일함
    - \* WFSA: StartState \t EndState \t Symbol \t Weight
  - Symbol은 기본적으로 index로 표현/계산됨.
    - \* 시각화할 일이 있을 때만 symbol을 표현.
    - \* Symbol table 정의가 필요함.
- Weighted Finite-state Acceptor (WFSA)
  - End-to-end 음성인식의 출력 및 최종 결과 생성을 위해 사용
  - 일반적으로 k2.Fsa.from\_str()를 사용하여 생성함
  - Openfst의 결과를 이용할 경우, k2.Fsa.from\_openfst()를 사용
  - draw() or to\_dot() methods를 이용하여 시각화

```
0 1 1 1
0 1 3 5
0 2 1 3
0 2 2 4
0 2 3 7
0 2 4 8
0 2 5 9
1 3 6 9
1 3 5 8
2 3 6 12
3 4 -1 0
a fsa = k2.Fsa.from str(s)
 <eps> 0
a_fsa.symbols = k2.SymbolTable.from_str(sym_str)
a_fsa.labels_sym = k2.SymbolTable.from_str(sym_str)
a fsa = k2.arc sort(a fsa)
a_fsa.draw('a_fsa.svg')
```





- 기본 사용법
  - 표현법
    - Openfst와 동일함
      - \* WFST: StartState \t EndState \t InputSymbol \t OutputSymbol\t Weight
    - 시각화된 표현은 arc당 InputSymbol:OutputSymbol/weight
  - Weighted Finite-state Transducer (WFST)
    - CTC, lexicon, language model의 최적화된 표현을 위해 사용함
    - k2.Fsa.from\_str의 acceptor=False option을 이용하여 생성함

```
0 1 1 1 1
0 1 3 3 5
0 2 1 1 3
0 2 2 2 4
02337
0 2 4 4 8
0 2 5 5 9
13669
1 3 5 5 8
2 3 6 6 12
3 4 -1 -1 0
#a_fsa = k2.Fsa.from_str(s)
a fst = k2.Fsa.from str(s, acceptor=False)
 <eps> 0
 c 3
 d 4
 f 6
#a_fsa.symbols = k2.SymbolTable.from_str(sym_str)
#a_fsa.labels_sym = k2.SymbolTable.from_str(sym_str)
a_fst.symbols = k2.SymbolTable.from_str(sym_str)
a_fst.labels_sym = k2.SymbolTable.from_str(sym_str)
a_fst.aux_labels_sym = k2.SymbolTable.from_str(sym_str)
a fst = k2.arc sort(a fst)
a_fst.draw('a_fst.svg')
```





- 기본 사용법 (실습)
  - WFST 생성 실습



- 1) Symbol table 정의
  - <eps>는 k2 내부로 -1로 정의되어 있지만, 표기 편의를 위해 1부터 symbol을 설정함
- 2) Arcs 정의
  - K2는 종료 state를 별도로 두도록 되어 있어, eps symbol을 사용해 종료 state를 정의함

```
sym_str = '''
  <eps> 0
  a 1
  b 2
'''
```

```
s = '''
0 1 1 2 0.1
1 2 2 2 0.3
1 3 2 2 0.4
2 3 1 2 0.5
3 3 1 1 0.6
3 4 -1 -1 0
4
'''
```

- 기본 사용법 (실습)
  - WFST 생성 실습



- 1) Symbol table 정의
  - <eps>는 k2 내부로 -1로 정의되어 있지만, 표기 편의를 위해 1부터 symbol을 설정함
- 2) Arcs 정의
  - K2는 종료 state를 별도로 두도록 되어 있어, eps symbol을 사용해 종료 state를 정의함

- 기본 사용법 (실습)
  - WFST 생성 실습



- 1) Symbol table 정의
  - <eps>는 k2 내부로 -1로 정의되어 있지만, 표기 편의를 위해 1부터 symbol을 설 1 1 2 1 0.2
- 2) Arcs 정의
  - K2는 종료 state를 별도로 두도록 되어 있어, eps symbol을 사용해 종료 state를 sym\_str =

```
s = '''
0 1 1 2 0.1
1 2 2 2 0.3
1 3 2 2 0.4
2 3 1 2 0.5
3 3 1 1 0.6
3 4 -1 -1 0
4
'''
a_fsa = k2.Fsa.from_str(s, acceptor=False)
sym_str = '''
<eps> 0
a 1
b 2
'''
a_fsa.symbols = k2.SymbolTable.from_str(sym_str)
a_fsa.labels_sym = k2.SymbolTable.from_str(sym_str)
a_fsa.aux_labels_sym = k2.SymbolTable.from_str(sym_str)
a_fsa.aux_labels_sym = k2.SymbolTable.from_str(sym_str)
a_fsa.aux_labels_sym = k2.SymbolTable.from_str(sym_str)
a_fsa.aux_labels_sym = k2.SymbolTable.from_str(sym_str)
a_fsa = k2.arc_sort(a_fsa)
a_fsa.draw('fsa_symbols.svg')
```

import k2

```
s = '''
0 1 2 2 0.1
1 1 2 1 0.2
1 2 1 2 0.3
2 3 2 1 0.5
3 4 -1 -1 0.6
4
'''
b_fsa = k2.Fsa.from_str(s, acceptor=False)
sym_str = '''
<eps> 0
a 1
b 2
'''
b_fsa.symbols = k2.SymbolTable.from_str(sym_str)
b_fsa.labels_sym = k2.SymbolTable.from_str(sym_str)
b_fsa.aux_labels_sym = k2.SymbolTable.from_str(sym_str)
b_fsa.aux_labels_sym = k2.SymbolTable.from_str(sym_str)
b_fsa.aux_labels_sym = k2.SymbolTable.from_str(sym_str)
b_fsa.aux_labels_sym = k2.SymbolTable.from_str(sym_str)
```

- 기본 사용법 (실습)
  - Composition 연산



• K2 내장 method k2.compose()를 사용하여 연산 가능함







#### ■ 기본 사용법

- Determinization 연산
  - 'af', 'cf '에 대해 non-deterministic이 발생함
  - 디코딩 최적화를 위해 꼭 필요한 operation







- 기본 사용법 (실습)
  - Determinization 연산



```
0 1 1 1
0 1 3 5
0 2 1 3
0 2 2 4
0 2 3 7
1 3 6 9
1 3 5 8
2 3 6 12
3 4 -1 0
a_fsa = k2.Fsa.from_str(s)
sym_str = '''
 <eps> 0
 a 1
b 2
 c 3
f 6
a_fsa.symbols = k2.SymbolTable.from_str(sym_str)
a_fsa.labels_sym = k2.SymbolTable.from_str(sym_str)
a_fsa = k2.arc_sort(a_fsa)
a_fsa.draw('fsa_symbols.svg')
a fsa deter = k2.determinize(a fsa)
```

```
a_fsa_deter = k2.arc_sort(a_fsa_deter)
a_fsa_deter.labels_sym = k2.SymbolTable.from_str(sym_str)
a_fsa_deter.draw('deter.svg')
```



- 개요
  - 음성인식 decoding을 위해 필요한 것
    - U (utterance) WFSA: End-to-end 모델로부터 생성 (본 실습에서는 CTC 기반의 모델)
    - C (CTC) WFST: CTC output을 subword로 collapsing할 수 있는 transducer
    - L (Lexicon) WFST: subword를 word로 바꿔주는 trasducer
    - G (Grammar) WFST: 언어 모델을 사용하여 scoring하는 transducer
  - 각 transducer의 구현 및 composition & determinization을 통해 디코딩 네트워크 구성



- 실습 순서
  - 1) U, C, L, G를 만들기 위한 data preparation (Nemo)
  - 2) C WFST 만들기
  - 3) L WFST 만들기
  - 4) G WFST 만들기
  - 5) LG composition&determinization, CLG composition&determinization
  - 6) U WFSA 만들기
  - 7) Lattice 생성 및 음성인식 결과 확인

- 1) U, C, T, G를 만들기 위한 data preparation (Nemo)
  - End-to-end 모델의 word 정보, token 정보, test 데이터에 대한 음성인식 결과 확률 분포가 필요함
  - 언어 모델, word 정보
    - 별도 제공
    - 출처: http://openslr.org/11/
  - Nemo 모델을 불러와 정보를 추출

```
import nemo.collections.asr as nemo_asr

asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(model_name="stt_en_conformer_ctc_large_ls")
```



- 1) U, C, T, G를 만들기 위한 data preparation (Nemo)
  - Token (subword)와 word 정보를 얻기 위한 tokenizer loading
  - Token 추출

```
vocab = asr_model.tokenizer.vocab
print(vocab)

['<unk>', 'e', 's', '__', 't', 'a', 'o', 'i', '__the']

with open('tokens.txt', 'w') as f:
  for k, v in enumerate(vocab):
    f.write(str(v) + ' '+str(k)+ '\n')

with open('word.raw', 'r') as f:
  wlist = f.read().splitlines()
```

• Words 추출

len(wlist)

with open('words.txt', 'w') as f:
 for k, v, in enumerate(wlist):
 f.write(str(v)+' '+str(k)+'₩n')

976754

```
tokenizer = asr_model.tokenizer.tokenizer
print(tokenizer.encode_as_pieces('hello world'))
['_he', 'll', 'o', '_w', 'or', 'l', 'd']
```

- 1) U, C, L, G를 만들기 위한 data preparation (Nemo)
  - Word 와 subword의 관계를 정리한 lexicon 만들기

```
pieces = []
for i in wlist:
   pieces.append(tokenizer.encode_as_pieces(i))

lexicon = list(zip(wlist, pieces))

with open('lexicon.txt', "w", encoding="utf-8") as f:
   for word, tokens in lexicon[1:-1]: # special symbol removal
      f.write(f"{word} {' '.join(tokens)}\n")
```

```
COHNAH _co h n a h
COHNAN'S _co h n an ' s
COHNER _co h n er
COHNFELD _co h n f e l d
COHNFELD'S _co h n f e l d ' s
COHNFIEL _co h n f i e l
COHNHEIM _co h n h e i m
COHNINGSBY _co h n ing s b y
COHNS _co h n s
COHO _co h o
```

- 1) U, C, L, G를 만들기 위한 data preparation (Nemo)
  - U FSA를 만들기 위한 output probabilities 추출
  - LibriSpeech test set에 대해 모델의 output 추출
    - Huggingface에서 test set을 받아와 모델로부터 결과 추출

```
!pip install datasets
from datasets import load_dataset
ds = load_dataset("kresnik/librispeech_asr_test", "clean")
test_ds = ds['test']
fl = test_ds['file']

r = asr_model.transcribe(fl, logprobs=True)
```

Transcribing: 0%

0/655 [00:00<?, ?it/s]

[NeMo W 2022-07-13 08:29:37 nemo\_logging:349] /usr/local/lib/python3.7/dis warnings.warn('User provided device\_type of \'cuda\', but CUDA is no



- 1) U, C, L, G를 만들기 위한 data preparation (Nemo)
  - 'logits.pt' 이름으로 output probabilites를 저장함
  - Output probabilities 설명
    - Shape: [2620, T, 129]
    - 2620개의 test file에 대해 길이가 T이고
    - Output unit이 129(128+blank)인 tensor

```
import torch
out list = []
for i in r:
   out_list.append(torch.tensor(i))
out list
[tensor([[-68.8626, -23.0890, -24.1295, ..., -27.1258, -29.3522,
                                                                   0.0000],
         [-70.4840, -25.3311, -24.9210, ..., -28.4772, -28.4988,
                                                                   0.0000],
        [-71.2156, -26.0197, -27.0724, ..., -31.1981, -29.9467,
                                                                   0.00001,
         [-77.4005, -26.6909, -25.8251, ..., -34.9537, -33.7952,
        [-77.6541, -28.4947, -27.5985, ..., -35.2744, -34.1950,
                                                                   0.0000],
         [-73.8650, -28.6409, -28.6736, ..., -33.5648, -33.0858,
                                                                   0.000011),
tensor([[-6.8194e+01, -2.2865e+01, -2.4683e+01, ..., -2.8076e+01,
          -3.5040e+01, 0.0000e+00],
        [-6.8657e+01, -2.3835e+01, -2.3681e+01, ..., -2.9930e+01,
         -3.3698e+01, 0.0000e+00],
         [-6.8468e+01, -2.2803e+01, -2.4785e+01, ..., -3.2392e+01,
         -3.3759e+01, 0.0000e+00],
         [-6.6545e+01, -2.6771e+01, -2.7661e+01, ..., -4.0800e+01,
         -3.5352e+01, -7.1526e-07],
        [-6.7504e+01, -2.6293e+01, -2.9085e+01, ..., -3.9639e+01,
         -3.6268e+01, -1.1921e-07],
         [-6.4749e+01, -2.3709e+01, -2.7339e+01, ..., -3.5628e+01,
torch.save(out list, 'logits.pt')
```



- 2) C FST 만들기
  - Nemo에서 만들어진 준비물



• Word정보와 token 정보를 symbol table 형식으로 불러옴

```
words_values = k2.SymbolTable.from_file('lang/lm/words.txt')
tokens_values = k2.SymbolTable.from_file('lang/lm/tokens.txt')
```



- 2) C FST 만들기
  - CTC transducer의 경우 k2의 내장 함수를 이용해서 쉽게 구현할 수 있음

```
C = k2.ctc_topo(max_token = 129, modified=False)
```

• 2개 token으로 단순화한 CTC transducer 예시(0이 blank)

```
import k2

C_draw = k2.ctc_topo(max_token=2)

C_draw.draw('asdf.svg')

2:2/0

0:0/0

1:0/0

1:1/0

1:1/0

1:1-1/0

3
```



- 3) L FST 만들기
  - 제공된 read\_lexicon() method를 이용하여 lexicon을 불러옴
  - Composition을 위한 disambig symbols 추가
  - 추가된 disambig. Symbol을 token\_values에 추가 후 확인

```
words values = k2.SymbolTable.from file('lang/lm/words.txt')
tokens_values = k2.SymbolTable.from_file('lang/lm/tokens.txt')
C = k2.ctc topo(max token=129, modified=False)
from utils import read_lexicon
lexicon = read_lexicon("lang/lm/lexicon.txt")
from utils import add_disambig_symbols
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
max disambig
tokens_values.add('#0', 128)
tokens_values.add('#1', 129)
print(tokens_values.get('#0'), tokens_values.get('#1'))
128 129
```

- 3) L FST 만들기
  - lexicon\_to\_fst() method를 이용하여 lexicon을 fst로 변경

```
from utils import lexicon_to_fst

L = lexicon_to_fst(
    lexicon_disambig,
    token2id=tokens_values._sym2id,
    word2id=words_values._sym2id,
    need_self_loops=True
)
```



- 3) L FST 만들기
  - 시각화 확인을 위해 일부 lexicon을 이용해 fst를 구성
    - Lexicon.txt의 일부를 잘라 lexicon\_mini.txt를 구성함 (아래 예시)

```
1 GLAYMORE _g la y m o re
2 GLAYSHAL _g la y s h al
3 GLAYSHERS _g la y s h er s
```



```
from lexicon import read lexicon
lexicon = read_lexicon("lang/lm/lexicon_mini.txt")
from utils import add_disambig_symbols
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
max_disambig
from utils import lexicon to fst
L = lexicon_to_fst(
   lexicon disambig,
   token2id=tokens values. sym2id,
   word2id=words_values._sym2id,
    need self loops=True
L.labels_sym=tokens_values
L.aux_labels_sym=words_values
re=L.draw('asdf.svg')
re.format = 'png'
re.render(filename='/home/hosung/works/nemo_nb/s1/asdf')
```



- 4) G FST 만들기
  - Arpa format을 openFST 스타일의 fst로 변환할 수 있는 kaldilm library 설치 및 실행
  - OpenFST 스타일의 fst.txt를 불러와서 k2스타일로 저장

```
!pip install kaldilm
!python3 -m kaldilm --read-symbol-table="lang/lm/words.txt" --disambig-symbol='#0' --max-order=3 lang/lm/libri_3_gram_1e-8.arpa > lang/G.fst.txt

import torch

with open("lang/G.fst.txt") as f:
    G = k2.Fsa.from_openfst(f.read(), acceptor=False)
    torch.save(G.as_dict(), "lang/G.pt")
```



- 5) LG composition&determinization, CLG composition&determinization
  - WFST간 통합 최적화 순서
    - 1) Arc sorting: arc의 배치 순서를 index 순서대로 조정하여 연산 최적화
    - 2) Composition
    - 3) Connect: composition 이후, final state에 도달하지 못하는 arc를 삭제
    - 4) Determinization
    - 5) epsilon removal: composition 과정에 필요했던 epsilon symbol들을 제거



- 5) LG composition&determinization, CLG composition&determinization
  - arc\_sort() 를 통해 arc의 배치 순서를 index 순서대로 조정함
    - Composition & determinization의 연산 최적화를 위함

```
L = k2.arc_sort(L)
G = k2.arc_sort(G)

LG = k2.compose(L, G)
#L_inv = L.invert()
#L_inv = k2.arc_sort(L_inv)
#L_inv.rename_tensor_attribute_('aux_labels', 'left_labels')
#LG = k2.intersect(L_inv, G, treat_epsilons_specially=True)
#LG.rename_tensor_attribute_('left_labels', 'labels')
LG = k2.connect(LG)
print(LG.shape)
LG = k2.determinize(LG)
LG = k2.connect(LG)
print(LG.shape)
```



- 5) LG composition&determinization, CLG composition&determinization
  - Compose() and determinize()

```
L = k2.arc_sort(L)
G = k2.arc_sort(G)

LG = k2.compose(L, G)
#L_inv = L.invert()
#L_inv = k2.arc_sort(L_inv)
#L_inv.rename_tensor_attribute_('aux_labels', 'left_labels')
#LG = k2.intersect(L_inv, G, treat_epsilons_specially=True)
#LG.rename_tensor_attribute_('left_labels', 'labels')
LG = k2.connect(LG)

print(LG.shape)
LG = k2.determinize(LG)
LG = k2.connect(LG)
print(LG.shape)
```



- 5) LG composition&determinization, CLG composition&determinization
  - Token 과 Word index 상 '#0'보다 높은 index를 가진 label을 모두 epsilon으로 치환함
    - 실제 음성인식의 결과로 쓰이지 않기 때문
  - remove\_epsilon()을 통해 epsilon을 모두 삭제함
  - 완료된 LG FST를 torch.save로 저장

```
LG.labels[LG.labels >= tokens_values["#0"]] = 0

# See https://github.com/k2-fsa/k2/issues/874

# for why we need to set LG.properties to None

LG.__dict__["_properties"] = None

assert isinstance(LG.aux_labels, k2.RaggedTensor)

LG.aux_labels.values[LG.aux_labels.values >= words_values["#0"]] = 0

LG = k2.remove_epsilon(LG)

#logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")

LG = k2.connect(LG)

LG.aux_labels = LG.aux_labels.remove_values_eq(0)

print(LG.shape)

torch.save(LG.as_dict(), "lang/LG.pt")
```

```
torch.save(LG.as_dict(), lang/LG.pt )
```



- 5) LG composition&determinization, CLG composition
  - 같은 방법으로 C와 LG를 composition한 뒤, 저장함

```
C = k2.arc_sort(T)
LG = k2.arc_sort(LG)

CLG = k2.compose(C, LG)

CLG = k2.connect(CLG)

print(CLG.shape)

torch.save(CLG.as_dict(), 'lang/CLG.pt')
```

- 6) U WFSA 만들기
  - 1)에서 만들어졌던 'logits.pt' 파일로부터 end-to-end의 output probabilites를 불러옴
  - End-to-end 모델은 맨 뒤 index가 epsilon인데, WFST는 맨 앞 0번 index가 epsilon이기 때문에 이를 통일시켜 주기 위해 method를 정의해서 변경함

```
import torch
nnet_outputs = torch.load('logits.pt')
print(len(nnet_outputs))
print(nnet_outputs[0].shape)
2620
torch.Size([88, 129])
def rearrange blksym(nnet outputs):
    nnet_t = nnet_outputs.T
    tmp = nnet_t[1:-1]
    tmp2 = nnet t[-1:]
    logits = torch.cat([tmp2, tmp])
   logits = logits.T
    logits = torch.tensor([logits.numpy()])
    return logits
#logits = torch.tensor([nnet outputs[0]])
```

```
logits = rearrange_blksym(torch.tensor(nnet_outputs[0]))
```



- 6) U WFSA 만들기
  - Segments정의
    - 파일 별 구분을 두기 위해, 파일의 길이 정보를 입력함
  - DenseFsaVec method를 사용하여 logits정보를 Torch tensor 형태의 U WFSA로 변경

```
supervision_segments = torch.tensor([[0, 0, logits.shape[1]]], dtype=torch.int32)

dense_fsa_vec = k2.DenseFsaVec(
    logits,
    supervision_segments)
```



- 7) Lattice 생성 및 음성인식 결과 확인
  - Intersect\_dense\_pruned() method를 사용해서 U FSA를 CLG에 통과 시켜 accept되는 lattice를 출력함
    - Method parameter
      - \* WFST: CLG
      - \* U FSA: dense\_fsa\_vec
      - \* Search\_beam: 음성인식 결과를 내기 위한 디코딩 과정에서 고려하는 beam의 개수. 낮을수록 인식 속도가 빨라지고, 높을 수록 성능이 좋아짐
      - \* Output\_beam: 음성인식의 최종 결과의 개수 (8의 경우, 최고 확률 순서대로 8개까지의 결과를 출력)
      - \* Min\_active\_states: 하나의 음성 프레임 입력에서 고려하는 최소 state의 개수
      - \* Max\_active\_states: 하나의 음성 프레임 입력에서 고려하는 최대 state의 개수

```
lattice = k2.intersect_dense_pruned(CLG, dense_fsa_vec, 20.0, 8, 30, 1000000)

best_path = k2.shortest_path(lattice, use_double_scores=True)

from utils import get_texts

token_ids = get_texts(best_path)
#token_ids = f
hyp = [[words_values[i] for i in ids] for ids in token_ids]
print(" ".join(hyp[0]))
```



- 7) Lattice 생성 및 음성인식 결과 확인
  - Shortest\_path() method를 통해 가장 확률이 높은 경로를 추출함
    - use\_double\_score가 false인 경우, float을 사용함 (본 실습에서는 차이 없음)
  - 결과는 lattice의 word index로 나타내어지므로, get\_texts 를 통해 자연어로 변경함

```
lattice = k2.intersect_dense_pruned(CLG, dense_fsa_vec, 20.0, 8, 30, 1000000)

best_path = k2.shortest_path(lattice, use_double_scores=True)

from utils import get_texts

token_ids = get_texts(best_path)
#token_ids = f
hyp = [[words_values[i] for i in ids] for ids in token_ids]
print(" ".join(hyp[0]))
```

```
from utils import get_texts

token_ids = get_texts(best_path)
hyp = [[words_values[i] for i in ids] for ids in token_ids]
print(" ".join(hyp[0]))

CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS

token_ids

[[2468, 420162, 565318, 346919, 859237, 683846, 162514, 313855]]
#ref
CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS
```



- 7) Lattice 생성 및 음성인식 결과 확인
  - Best path 이외에 N-best 결과를 보고자 lattice로부터 nbest결과를 추출

```
from utils import Nbest
nb = Nbest.from lattice(lattice, num paths=20)
max indices = nb.tot_scores().argmax()
max_indices
tensor([1], dtype=torch.int32)
nb = nb.intersect(lattice)
nb.tot_scores().tolist()
[[-56.097835540771484, -63.19219207763672]]
[sorted(nb.tot scores().tolist()[0]).index(x) for x in nb.tot scores().tolist()[0]]
[1, 0]
```

```
best_path = k2.index_fsa(nb.fsa, max_indexes)

for i in range(0, len(nb.tot_scores().tolist()[0])):
    best_path = k2.index_fsa(nb.fsa, torch.tensor([i], dtype=torch.int32))
    token_ids = get_texts(best_path)
    hyp = [[words_values[j] for j in ids] for ids in token_ids]
    hyp_text = " ".join(hyp[0])
    print(hyp_text)

CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS
```

CONCORD RETURN TO ITS PLACE AMIDST THE TENTS

- 7) Lattice 생성 및 음성인식 결과 확인
  - 현재까지 진행한 내용들을 토대로 전체 test set에 대한 음성인식 결과를 출력함
    - Transcribes list에 결과가 저장됨
    - 만일 결과가 나오지 않는 test file이 있으면, isolated 에 저장됨.
      - \* 이 경우, beam size 조정 등으로 결과를 낼 수 있음



- 7) Lattice 생성 및 음성인식 결과 확인
  - 저장해놓은 reference text를 불러와서 성능 확인
    - 약 2.3%의 WER을 보임 (baseline: 2.7%)

```
ref = []
with open('ref.txt', 'r') as f:
    ref = f.read().splitlines()
```

from jiwer import wer
wer(transcribes, ref)

0.02301537525894673

#### 결론

- Summary / things to remember
  - End-to-end는 현재 시점 가장 성능이 좋은 음향 모델
  - WFST는 현재 시점 가장 최적화된 End-to-end 모델+언어 모델의 디코딩 네트워크를 구성하는 방법
    - 준비물: 언어 모델의 arpa format, word set, end-to-end 모델의 token set, test set의 output probabilities
    - Utterance acceptor, CTC transducer, lexicon transducer, grammar transducer의 구현으로 이루어짐
  - K2-fsa와 Nemo를 이용하여 각각 WFST와 end-to-end를 구현
    - Nemo toolkit은 논문 성능 재현이 가장 잘 되어 있음
    - k2는 python 기반으로 WFST를 구현할 수 있는 library
  - 구현 결과, end-to-end 모델에 비해 0.4%의 절대적 성능 개선을 보임

