Exercícios de Cálculo Diferencial e Integral III

(DF - 2019/20)

Capítulo II - Análise Complexa

- 1. Determine geometricamente o conjunto de pontos $(x,y) \in \mathbb{R}^2$ tais que:
 - a) x + i2y = |x + iy|;
 - b) $-\pi/2 < \arg(x + iy) < \pi/2, |x + iy| > 2;$
 - c) 1 < |x + iy 2i| < 2;
 - d) $2|x + iy| \le |x + iy 1|$.
- 2. Determine e represente geometricamente:
 - a) as raízes cúbicas de 2; b) as raízes quartas de i.
- 3. Escreva na forma polar e represente geometricamente os números 2+2i, $\frac{\sqrt{3}}{2}+i\frac{1}{2}$ e $(2+2i)(\frac{\sqrt{3}}{2}+i\frac{1}{2})$.
- 4. Se z é uma raiz cúbica de -1, verifique que $z^2 + \bar{z} = 0$.
- 5. No primeiro quadrante (fechado):
 - (i) quantas soluções tem a equação $z^9 + 1 = 0$?
 - (ii) quantos zeros tem o polinómio $z^5 + z^4 16z 16$?
- 6. Para $z \in \mathbb{C}, z \neq 0$, mostre que |z| = 1 se e só se $z^{-1} = \bar{z}$.
- 7. a) Qual a imagem do segundo quadrante pela aplicação $z \mapsto z^3$?
 - b) Qual a imagem do complementar do círculo unitário pela aplicação $z\mapsto 1/z$?
- 8. Represente geometricamente o conjunto de pontos em \mathbb{C} da forma:

a)
$$-2 + e^{i\theta}$$
, $-\pi \le \theta \le \pi$; b) $Im z = 1, z \in \mathbb{C}$; c) e^{x+i} , $x \in \mathbb{R}$.

- 9. Diga se são verdadeiras ou falsas as seguintes afirmações:
 - a) A função e^z é sobrejectiva.
 - b) A função z^3 é sobrejectiva.
 - c) Nenhuma das funções z^3 e e^z é injectiva.
 - d) $|\sin z| < 1, \forall z \in \mathbb{C}$.
- 10. Escreva na forma x + iy com $x, y \in \mathbb{R}$ os complexos: e^{3+i} , $\sin i$, $\cos(1+i)$, $\log(1+i)$.
- 11. Resolva as equações (fixado um ramo conveniente do logaritmo para e) e f)):

a)
$$e^z = 3i$$
; b) $e^z = e^{iz}$; c) $\sin z = 0$; d) $\cos z = 3$; e) $\log z = 1 + 2i$; f) $\log z = 1 + i2\pi$.

- 12. Fixemos o ramo principal do logaritmo (correspondente ao intervalo $[-\pi, \pi[)$. Sob que condições se tem: (i) $\log(a^b) = b \log a$? (ii) $\log(\frac{1}{z}) = -\log z$ ($z \neq 0$)?
- 13. Fixemos o ramo principal do logaritmo. Qual a imagem do conjunto Re z > 0 pela aplicação $z \mapsto \sqrt{z}$.

1

- 14. Para as funções seguintes, determine o conjuntos dos pontos onde são holomorfas e calcule a sua derivada:
 - a) $z + \frac{1}{z}$; b) $\frac{1}{(z^3 1)(z^2 + i)}$; c) $\sin(\sqrt{z})$ (ramo principal do logaritmo).
- 15. Para as funções $f:\mathbb{C}\to\mathbb{C}$ seguintes, e com z=x+iy, determine o conjuntos dos pontos onde são diferenciáveis e calcule a sua derivada:
 - a) f(z) = xy iy; b) $f(z) = 2i\bar{z}$; c) $f(z) = z |z|^2 + (1 + 2i)(\text{Re}z)^2$; d) $f(z) = iz + \frac{1}{8}(z + \bar{z})^2 + i\operatorname{Im} z$; e) $f(z) = x^2y + i(xy + x^2)$; f) $f(z) = 2x^2 + y + i(y^2 x)$.
- 16. Calcule, se existirem:

a)
$$\lim_{z \to 0} \frac{e^z - 1}{z}$$
; b) $\lim_{z \to 0} \frac{\sin z}{z}$; c) $\lim_{z \to 0} \frac{\sin |z|}{z}$; d) $\lim_{z \to 0} \frac{|z|^2}{z}$.

- 17. Se $f:D\subset\mathbb{C}\to\mathbb{C}$ é uma função holomorfa num aberto conexo D e $u(x,y)=\mathrm{Re}\,f(z)$ é constante, onde $z = x + iy \in D(x, y \in \mathbb{R})$, mostre que f é constante.
- 18. Determine para que valores de $a, b \in \mathbb{R}$:
 - a) $u(x,y)=x^3+axy^2+bxy$ é a parte real de uma função <u>inteira</u> (holomorfa em $\mathbb C$); b) $\alpha(x,y)=ax^2-3xy+by^3$ é a parte imaginária de uma função inteira; c) $h(x,y)=ax^2+2xy+by^2+i(y^2-x^2)$ é uma função inteira.
- 19. Verifique que aplicação $u(x,y) = x^2 y^2$ é harmónica em C e determine um seu harmónico conjugado.
- 20. Determine, se possível, uma função inteira f tal que $Re(f(x+iy)) = xy x, \ \forall x, y \in \mathbb{R}$, e: (i) f(-1) = 1; (ii) f(i) = i.
- 21. Determine, se possível, uma função inteira f tal que

$$Im(f(x+iy)) = e^x(x\cos y - y\sin y), \ \forall x, y \in \mathbb{R}, \quad f(0) = 1.$$

- 22. Diga se são verdadeiras ou falsas as seguintes afirmações:
 - a) A aplicação $x^2 + y^2$ é a parte real de uma função inteira.
 - b) Se $f:\mathbb{C}\to\mathbb{C}$ é inteira, então $g(z)=f(\bar{z})$ é sempre inteira.
 - c) Se $f: \mathbb{C} \to \mathbb{C}$ é inteira, então $g(z) = \overline{f(\overline{z})}$ é sempre inteira.
 - d) Se f é holomorfa num aberto conexo D e Im f = 0, então f é constante em D.
- 23. Seja f holomorfa numa bola B tal que |f| é constante em B. Justifique que f é constante em B. (Sugestão: Derive em ordem a x e y a expressão $|f|^2$ =constante.)
- 24. Calcule os seguintes integrais de caminho (quando omitido, o sentido dos caminhos é o directo e as circunferências são percorridas uma vez):
 - a) $\int_{\gamma} |z| dz$, onde γ é a semi-circunferência unitária de centro em 0, desde -i até i;
 - b) $\int_{\gamma} Im z dz$, onde γ é a fronteira do rectângulo $0 \to i \to 2 + i \to 2 \to 0$; será Im zprimitivável num aberto que contenha o rectângulo?

- c) $\int_{\gamma} \sin(2z) dz$, onde γ é o segmento de recta unindo 1+i a -i.
- d) $\int_{\gamma} e^{\pi \bar{z}} dz$, onde γ é o segmento de recta unindo 0 a a-ai ($a \in \mathbb{N}$ ímpar).
- e) $\int_{\gamma} \frac{z+2}{z}, dz$, onde γ é a semi-circunferência unitária centrada em 0 de i a -i, com a orientação negativa.
- f) $\int_{\gamma} \frac{z+2}{z}, dz$, onde γ é a semi-circunferência unitária centrada em 0 de 1 a -1.

(Sol: a)
$$2i$$
 b) $2.$ c) $\frac{e^2}{4}(1-e^{-2i}) + \frac{e^{-2}}{4}(1-e^{2i})$. d) $i(e^{a\pi}+1)/\pi$. e) $-2i(1+\pi)$. f) $-2+2i\pi$.)

- 25. Diga se é verdadeira ou falsa a afirmação: Re $\int_{\gamma} f = \int_{\gamma} \operatorname{Re} f$, para quaisquer $f:D\subset$ $C \to C$ contínua e γ curva secc C^1 contida em D.
- 26. Considerando o ramo principal do logaritmo, calcule $\int_{\gamma} \log z \, dz$, onde γ é o segmento (Sol. $1 - \frac{\pi}{2} - i$.) de recta [1, i].
- 27. Sendo C a semi- circunferência unitária $C = \{e^{i\theta} : 0 \le \theta \le \pi\}$ percorrida num dos sentidos, mostre que $\left| \int_C \frac{\sin z}{z^2} dz \right| \le \pi e$. (Sugestão: mostre que $|\sin z| \le e$ em C).
- 28. Diga se é verdadeira ou falsa a afirmação $\int_{\gamma} f = 0$, no caso em que (por defeito, a circunferência unitária está centrada em 0 e o sentido dos caminhos é o directo):
 - a) $f(z) = z^3 + 3$, γ é a circunferência unitária;
 - b) $f(z) = z^3 + 3z$, γ é a semi-circunferência unitária de 1 a -1;
 - c) $f(z) = z^2 + \bar{z}$, γ é a circunferência unitária;
 - d) $f(z) = e^{1/z}$, γ é a circunferência de centro 2 + 5i e raio 3;
 - e) $f(z) = \frac{1}{z^2}$, γ é a circunferência unitária;
 - f) $f(z) = \sqrt[\infty]{z}$, γ é a circunferência unitária (considere o ramo principal de $\log z$);
 - g) $f(z) = \frac{e^z}{z}$, γ é a circunferência de raio 1/2 centrada em 0;
 - h) $f(z) = \frac{\log(z+i)}{z^2+9}$, γ é a circunferência de raio 2 centrada em 2. (Sol: V, V, F, V, V, F, F,V.)
- 29. Calcule os seguintes integrais, onde o sentido dos caminhos é o directo (esboce as curvas e apresente o resultado na forma a + ib):
 - a) $\int \frac{3z-10}{z^2-6z+8} dz$, onde γ é a circunferência de raio 3 centrada em 0;
 - b) $\int_C \frac{dz}{z^2 1}$, onde C é a circunferência de raio 1 centrada em 1;
 - c) $\int_{\Gamma} \frac{dz}{z^2(z^2+2)}$, onde Γ é a circunferência de raio 2 centrada em 0;
 - d) $\int_{\mathbb{R}} \frac{e^z \cos z}{(z-1)} dz$, onde E é a elipse de equação $4(x-1)^2 + y^2 = 1$;
 - e) $\int_E \frac{e^z \cos z}{(z-1)^2} dz$, onde E é a elipse de equação $4(x-1)^2 + y^2 = 1$;
 - f) $\int_{|z|=1} \frac{e^z}{z^4} dz$; g) $\int_{|z|=2} \frac{z^3}{z^2+1} dz$.
 - h) $\int_C \frac{\sin(\pi z/2)}{z^2(z-1)} dz$, onde C a circunferência de centro 1 e raio 2.

(Sol.: a) $4\pi i$. b) πi . c) $-2\pi i$. d) $2\pi i e \cos 1$. e) $2\pi i e (\cos 1 - \sin 1)$. f) $\pi i/3$ g) $-2\pi i$. h) $i\pi(2-\pi)$

- 30. Justifique que, para qualquer $A \subset \mathbb{C}$ aberto, a função $h(x+iy) = 2x(1-y) + i(x^2 + y)$ $2y - y^3$) não tem primitiva em A.
- 31. Seja f holomorfa na bola $B_6(-2)$ e tal que f(-2)=2i. Calcule $\int_0^{2\pi} f(-2+3e^{it}) dt$. (Sol.: $4\pi i$)
- 32. Calcular o integral de caminho $\int_{\gamma} \frac{z^2}{(1+z^3)^2} dz$, sendo γ o segmento de recta com origem 0 e extremidade i; obter a partir desses cálculos o valor de $\int_0^1 \frac{t^2 - t^8}{(1 + t^6)^2} dt$. (Sol.: (1-i)/6, 1/6)
- 33. Verifique se são convergentes ou divergentes as séries: (i) $\sum_{n\geq 1} \frac{e^{3ni}}{n^2}$; (ii) $\sum_{n>0} \frac{\cos(ni)}{e^n}$.
- 34. Dada a série $\sum_{n=0}^{\infty} \frac{z^n}{1+z^{2n}}$, mostre que:
 - (i) a série converge no interior da circunferência unitária.
 - (ii) a série converge no exterior da circunferência unitária. (Sug.: Use (i).)
- 35. Desenvolva em série de potências de $z-z_0$, indicando o raio de convergência, as funções f, onde:

 - a) $f(z) = \frac{1}{z}$, $z_0 = 3$; b) $f(z) = e^{z/2}$, $z_0 = i\pi$; c) $f(z) = z^3$, $z_0 = 1$ d) $f(z) = \frac{1}{1+z^2}$, $z_0 = 0$; e) $f(z) = \frac{1}{(1-z)^2}$, $z_0 = 0$; f) $f(z) = \log(1-z^3/3)$, $z_0 = 0$.
- 36. Para as funções f das alíneas d), e) do exercício anterior, calcule $f^{(4)}(0)$ e $f^{(11)}(0)$. (Sol.: $4!, 0 \in 5!, 12!$.)
- 37. Justifique se as afirmações são verdadeiras ou falsas para qualquer sucessão $(a_n) \subset \mathbb{C}$:
 - (a) Se $\sum_{n=1}^{\infty} a_n (z-2)^n$ converge para z=0, então a série também converge para z=3.
 - (b) Se $\sum_{n=1}^{\infty} a_n(z-i)^n$ converge para z=0, então a série também converge para z=1.
 - (c) Se $\sum_{n=1}^{\infty} a_n (z-1)^n$ converge para z=0, então $\int_{|z-1|=\frac{1}{2}} \left(\sum_{n=1}^{\infty} a_n (z-1)^n\right) dz = 0$.
 - (d) Sendo $\log(2i+z) = \sum_{n\geq 0} a_n(z-1)^n$ (ramo principal do logaritmo), o raio r da maior bola $B_r(1)$ onde este desenvolvimento é válido é r=2.
- 38. Em que domínio (aberto conexo) definem as seguintes séries funções holomorfas?
 - (a) $\sum_{n\geq 1} \left(\frac{z}{n}\right)^n$; (b) $\sum_{n\geq 1} \frac{(-z)^n}{2n+1}$.
- 39. Seja f uma função analítica num aberto $D \in z_0$ o único zero de f num disco $B_r(z_0) \subset D$. Sendo γ uma curva de Jordan contida em $B_r(z_0)$ com $z_0 \in \text{int } \gamma$, mostre que

$$\frac{1}{2\pi i} \int_{\gamma^+} \frac{f'(z)}{f(z)} dz = m,$$

onde m é a ordem do zero de f. (Sugestão: escreva f na forma $f(z) = (z - z_0)^m g(z)$.)

40. Determine a série de Laurent de $\frac{1}{z(z-4)}$, válida: (a) numa vizinhança de 0 privada de 0, indicando o maior anel de convergência; (b) para |z| > 4. Qual o resíduo da função em z = 0?

41. Escreva a série de Laurent das funções f seguintes num anel $0 < |z-z_0| < R$, indicando o maior valor possível de R:

(a)
$$z^3 e^{1/z}$$
, $z_0 = 0$; (b) $\frac{1-\cos z}{z^2}$, $z_0 = 0$; (c) $\frac{1}{(z-2)(z-i)}$, $z_0 = 2$; (d) $z \sin \frac{1}{z}$, $z_0 = 0$.

Em cada um dos casos, calcule $\int_{|z-z_0| < R/2} f(z) dz$.

- 42. Determine o tipo de singularidade da origem, e a ordem como pólo se for esse o caso, de: (a) $\frac{\cos z}{z^2}$; (b) $\frac{e^z-1}{z^2}$; (c) $\frac{1}{z} \frac{1}{\sin z}$; (d) $\frac{1}{z-\sin z}$; (e) $\frac{z}{(e^z-1)^2}$.
- 43. Sejam g, h analíticas em z_0 , com $g(z_0) \neq 0$ e z_0 um zero simples de h. Mostre que $f(z) = \frac{g(z)}{h(z)}$ tem um pólo simples em z_0 e que $\operatorname{Res}(f, z_0) = \frac{g(z_0)}{h'(z_0)}$.

44. Calcule
$$\int_C \frac{1}{e^z - 1} dz$$
, onde $C(t) = -2\pi i + \pi e^{it}$, $0 \le t \le 2\pi$. (Sol. $2\pi i$.)

45. (a) Calcule
$$\int_{|z|=r} \frac{dz}{z(2+z^2)}$$
 para $r=1$ e $r=2$. (Sol. $\pi i, 0$.)

- (b) A partir do cálculo do integral para r=1 em a), obtenha $\int_0^{2\pi} \frac{2+\cos 2t}{5+4\cos 2t} dt$. (Sol. π)
- 46. Calcule $\int_{|z-\pi|=4} \frac{e^z}{\sin z} dz$. (Sol. $2\pi i (1 e^{\pi} + e^{2\pi})$.)
- 47. Usando resíduos, calcule $\oint_{\gamma} \left(\frac{1}{z-4} + (z-z^3)e^{1/z}\right) dz$, onde: (i) $\gamma = C_1(2)$; (ii) $\gamma = C_1(4)$; (iii) $\gamma = C_2(0)$; (iv) $\gamma = C_5(0)$. (Sol. $0, 2\pi i, \frac{11\pi i}{12}, \frac{35\pi i}{12}$.)

48. Usando resíduos, calcule
$$\int_{-\infty}^{+\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx.$$
 (Sol. $\frac{\pi}{3}$.)

(Sugestão: Note que $\lim_{R\to+\infty}\int_{\gamma_R}\frac{z^2}{(z^2+1)(z^2+4)}\,dz=0$, onde γ_R é a semi-circunferência de centro 0 e raio R contida em no semi-plano $\operatorname{Im} z\geq 0$.)

Algumas fórmulas úteis

Fórmula Integral de Cauchy (incluindo a das derivadas): nas condições conhecidas,

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz, \quad n = 0, 1, 2, \dots, \quad \text{com} \quad z_0 \in \text{int } \gamma$$

Fórmula dos Resíduos:
$$\oint_{\gamma} f(z) dz = 2\pi i \sum_{i=1}^{p} \text{Res}(f, z_i), \quad \text{com} \quad z_i \in \text{int } \gamma, i = 1, \dots, p$$

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots, \quad z \in \mathbb{C}$$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + z^3 + \dots, \quad |z| < 1$$

$$\log(1+z) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n} = z - \frac{z^2}{2} + \frac{z^3}{3} + \dots, \quad |z| < 1$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots, \ z \in \mathbb{C}$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \cdots, \quad z \in \mathbb{C}$$