

Lecture 18

- Bipolar Junction Transistor
- Operation Bias and Currents
- Current gain
- Application as amplifier
- Characteristics, Load Line

Bipolar Transistor Current flow Summary

- (1) Injected holes lost to recombination in n-type base
- (3) Thermally generated electrons and
- (2) Injected holes which reach the reverse biased collector junction

- (4) Electrons supplied to replace those lost by recombination with holes in the base
- (5) Electrons injected across the forward biased emitter junction

Operational Bias – p+-n-p

Terminal Currents

- Ideally $I_E \approx I_C$ and I_B is small
- Amplification is from comparing I_B to I_E or I_C
- We can derive relationships for ratios of these three currents

Emitter efficiency

- fraction of emitter current due to holes (or electrons in n⁺-p-n devices)

$$\gamma = \frac{I_{Eh}}{I_{Ee} + I_{Eh}}$$

 $I_C = B I_{Fh}$

B - Base transport factor – fraction of holes from the emitter which reach the collector

For a high gain transistors both need to be very close to 1

Terminal Currents (2)

Ratio of
$$I_E$$
 and I_C $\frac{I_C}{I_E} = \frac{BI_{Eh}}{I_{Ee} + I_{Eh}} = B\gamma = \alpha \approx 1$

 α is the **current transfer ratio** between the emitter and collector and is slightly less than 1 i.e. ~0.99

Base current
$$I_B = I_{Ee} + (1-B)I_{Eh}$$

Ratio of
$$I_B$$
 and I_C (current gain)
$$\frac{I_C}{I_B} = \frac{BI_{Eh}}{I_{Ee} + (1 - B)I_{Eh}}$$

The University Of Sheffield. Terminal Currents (3)

Expand by using previous equations and divide top and bottom by total emitter current

$$\frac{I_C}{I_B} = \frac{BI_{Eh}}{I_{Ee} + (1-B)I_{Eh}} = \frac{B(I_{Eh}/I_{Ee} + I_{Eh})}{(I_{Ee}/I_{Ee} + I_{Eh}) + (1-B)(I_{Eh}/I_{Ee} + I_{Eh})}$$

Cancel terms and then substitute for y

$$\frac{I_C}{I_B} = \frac{B \left[\frac{I_{Eh}}{I_{Ee} + I_{Eh}}\right]}{1 - B \left[\frac{I_{Eh}}{I_{Ee} + I_{Eh}}\right]} = \frac{B\gamma}{1 - B\gamma} = \frac{\alpha}{1 - \alpha} \equiv \beta$$

- β is the **current gain** or current amplification factor
- Since $B\gamma = \alpha \sim 1$, β can be large (typically up to 100)

Current Gain, β

The expression for the current gain, β , indicates that we need the E-B current to consist mainly of majority carriers from the emitter (defined by the emitter efficiency γ - need p⁺>>n in a p⁺-n-p device or n^+ >>p in a n⁺-p-n device) and that most of these majority carriers reach the collector without recombining in the base (defined by base transport factor, B – length of the base, L_B , must be much smaller than the minority carrier diffusion length, W_h (holes in this case))

e.g. if $\gamma = 0.98$, B = 0.95, current gain, $\beta = 0.98 \times 0.95/(1-0.98 \times 0.95) \sim 13.5$ if $\gamma = 0.99$, B = 0.995, current gain, $\beta = 0.99 \times 0.995/(1-0.99 \times 0.995) \sim 66$

- In a similar way to gate bias controlling the output current in a FET so the E-B bias controls the collector current a small ΔV_{BF} can control a large ΔI_{C}
- Hence voltage gain = $(\Delta I_C R_L)/\Delta V_{BE}$ where R_L is the load resistor in the collector circuit
- Usually we use current gain = $\frac{I_C}{I_B}$ and I_B depends on V_{BF}
- Transconductance $g_m = \frac{\Delta I_C}{\Delta V_{BE}}$

Assumes emitter efficiency $\gamma = 1$

- The base must remain neutral i.e. the free carrier density equals donor atom density
- Excess holes injected into the base spend a short time there they transit the base by diffusion in a time τ_t (base transit time)
- To maintain neutrality while there are excess holes in the base an equal number of balancing excess electrons enter the base from the contact
- On average these excess electrons last for the same time as the lifetime of the holes in the base i.e. τ_p
- For each electron entering the base to balance the excess holes, $\tau_p/\tau_t = \beta$ holes pass from emitter to collector i.e. get β holes traversing the base for every electron entering from the contact \rightarrow current gain

Common Emitter Amplifier

(Up to now we have looked at common-base connection)

The base emitter is in \sim forward bias so gives $V_{BE} \sim V_0$

Input voltage varies I_B

$$\Delta I_C = \beta \Delta I_B$$

Important characteristics are V_{CE} , I_{C} , and I_{B}

Characteristics (common emitter connection) Saturation

$$V_{CF} = V_{CB} + V_{BF}$$

- Saturation region (note: different from FET!) both junctions in forward bias and $V_{CB} \approx V_{BE}$ and V_{CE} small
- Remainder of region is "normal operation" where emitter-base forward biased and base-collector reverse biased

$$\Delta I_C = \beta \Delta I_B$$

Common Emitter Amplifier (2)

$$V_{CC} = I_c R_L + V_{CE}$$

What are the bias extremes?

•
$$I_C$$
=0 - device "off" $\rightarrow V_{CE} = V_{CC}$

•
$$V_{CE}$$
=0 - device "on" \rightarrow $I_c = \frac{V_{CC}}{R_L}$

Load Line

Summary

- In bipolar transistors output (collector) current is controlled by injection from the emitter-base junction
- Current gain is affected by nature of emitter-base doping and the thickness of the base
- The common-emitter configuration acts as a current amplifier