II.I Hydrostatic Hollon 2.4.3 "An Entroduction to Ognamic Medeorology " 1979
Boussiness KC 4.18

SCALING |

Q: when is $\frac{\partial A}{\partial z} = -\ell \eta$ a good idea?

Equations

[x, y mon] (Dt = - VHP

UH= (U,U)

UH= (1, 1)

[mail] & Df + OH · WH + 3W = 0

let [A] denote the scale of A" and let

e = e + e'(x,t)

 $p = \bar{p}(z) + p'(x,t)$

strictly spenking this would also howe to include the free surface in order for

assume that we observe

Velocity scale [4] = U

horing. tength scale [fx, fm] = \(\) * For most simportant of m/och vertical length scale [fz] = \(\) + \(\) H * H * \(\) H * \(\)

Define [w] = W unknown to for

Objure [[] = [,]

* assume (. K lo (when is this not a good idea?)

Bowsinesq approximation":

A assume [\fe] = 21 advective time scale +

(4)

and
$$\frac{U}{L} = \frac{W}{H}$$
 \Rightarrow $W = UH$ (and so $\left(\frac{D}{Dt}\right) = \frac{U}{L}$)

Then , scaling [Mmn]

$$\begin{bmatrix}
\rho & \Omega & - \nabla_{H} & \rho
\end{bmatrix}$$

$$\begin{cases}
\rho & \Omega & - \nabla_{H} & \rho
\end{bmatrix}$$

$$\begin{cases}
\rho & \Omega & - \nabla_{H} & \rho
\end{bmatrix}$$
Think of promise pressure "

- Stand here

Note: we can define \$\bar{p}\$ as being in hydrostodic balance with \$\bar{p}\$. ** so \$\bar{p} = -\bar{p}\$ (**)

$$\begin{bmatrix}
\rho & \Omega & - \rho & - \rho & - \rho & \rho
\end{bmatrix}$$

$$\begin{bmatrix}
\rho & \Omega & - \rho & - \rho & - \rho & \rho
\end{bmatrix}$$

$$\begin{bmatrix}
\rho & \Omega & - \rho & - \rho & - \rho & \rho
\end{bmatrix}$$

$$\begin{bmatrix}
\rho & \Omega & - \rho & - \rho & - \rho & \rho
\end{bmatrix}$$

$$\begin{bmatrix}
\rho & \Omega & - \rho & - \rho & - \rho & \rho
\end{bmatrix}$$

$$\begin{bmatrix}
\rho & \Omega & - \rho & - \rho & - \rho
\end{bmatrix}$$

$$\begin{bmatrix}
\rho & \Omega & - \rho & - \rho & - \rho
\end{bmatrix}$$

$$\begin{bmatrix}
\rho & \Omega & - \rho & - \rho
\end{bmatrix}$$

$$\begin{bmatrix}
\rho & \Omega & - \rho & - \rho
\end{bmatrix}$$

$$\begin{bmatrix}
\rho & \Omega & - \rho & - \rho
\end{bmatrix}$$

$$\begin{bmatrix}
\rho & \Omega & - \rho
\end{bmatrix}$$

$$\begin{bmatrix}$$

Cushing (++)

or
$$\frac{\partial f'}{\partial z} = -e'g$$
 ($\Rightarrow \frac{\partial f}{\partial z} = -eg$ much $\frac{\partial f}{\partial z} = -eg$ well)

$$\boxed{\pm \text{ mant}} \quad O = \frac{24}{12} - 69 \quad (\checkmark)$$

Dousinesq Large asped