

TEXAS Code Composer™ INSTRUMENTS Studio

Embedded Systems 2

TIVA: HW/FW-Beschreibung & Erklärungen

Contents

1	1 Grundstruktur		
	2 Registerbezeichnungen beim TM4C1294NCPDT		
3	3 Detailierter Aufbau		
	-		
	3.2 Beispiel ADC – ADC0		
	3.2.1 Abfolge Registerkonfiguration		

1 Grundstruktur

Abbildung 1 TIVA Mikrocontroller - Vereinfachtes Blockschaltbild

2 Registerbezeichnungen beim TM4C1294NCPDT

Der Aufbau der Registerbezeichnungen im Code Composer Studio ist wie folgt:

2.1 Beispiel Direction Register of PortA

Abbildung 2 Registerbezeichnungen - TM4C1294ncpdt.h

3 Detailierter Aufbau

3.1 Beispiel GPIO - PortA

3.1.1 Struktur

3.1.2 Abfolge Registerkonfiguration

Wichtige Schritte und dessen Abfolge:

- 1. Run Mode Clock Gating Control (**SYSCTL_RCGCGPIO_R**) für den Port Clock setzten. Dadurch wird der Clock zur Peripherie durchgeschalten und die Register sind nun les-/schreibbar
- 2. Festlegen der Richtung (GPIO_PORTA_DIR_R). Eine "1" ist ein Ausgang, eine "0" ein Eingang (default).
- 3. Modus festlegen (GPIO_PORTA_AFSEL_R) für das Digital I/O Pad
 - a. Falls Pin für eine andere Peripherie benutzt werden soll, noch den Port Control Mux konfigurieren (GPIO_PORTA_PCTL_R)
- 4. Evtl. Pad konfigurieren gemäss Tabelle "GPIO Pad Configuration Examples" im User Manual, meist genügen die default Einstellungen
 - a. Stromstärke (GPIO_PORTA_DR2R_R, GPIO_PORTA_DR4R_R, GPIO_PORTA_DR8R_R)
 - b. Pullup-Widerstand (GPIO_PORTA_PUR_R)
 - c. Pulldown-Widerstand (GPIO_PORTA_PDR_R)
 - d. Open Drain-Ausgang (GPIO_PORTA_ODR_R)
 - e. Slew rate (GPIO_PORTA_SLR_R)
- 5. Um als digital I/O zu verwenden, Bit im digital Enable Register setzten (GPIO_PORTA_DEN_R)
- 6. Falls Interrupt-Funktionalität benötigt wird
 - a. Interrupt-Sense (GPIO PORTA IS R)
 - b. Falls beide Flanken auszuwerden sind (GPIO_PORTA_IBE_R)
 - c. Interrupt-Event (GPIO_PORTA_EV_R)
 - d. Interrupt-Maske (GPIO_PORTA_IM_R)
 - e. Interrupt der Peripherie beim NVIC aktivieren (NVIC_ENn_R)

3.2 Beispiel ADC – ADCO

3.2.1 Abfolge Registerkonfiguration

Wichtige Schritte und dessen Abfolge:

Dazugehörige GPIO – Peripherie konfigurieren (gemäss 3.1.2 Abfolge Registerkonfiguration)

- Speziell:
 - o Digital I/O Bit löschen (GPIO_PORTx_DEN_R)
 - Alternative Funktion selektieren (GPIO_PORTx_AFSEL_R)
 - Ausschalten der analogen Isolation (GPIO_PORTx_AMSEL) mittels eines "1"

ADC - Peripherie konfigurieren

- 1. Run Mode Clock Gating Control (SYSCTL_RCGCADC_R) für den ADC Clock setzten. Dadurch wird der Clock zur Peripherie durchgeschalten und die Register sind nun les-/schreibbar
- 2. Festlegen der Sample-Sequenz Prioritäten (ADCO_SSPRI_R)
- 3. Sample Sequenz konfigurieren
 - a. Sequenz deaktivieren (ADCO_TSSEL_R)
 - b. Trigger Event festlegen (ADC0_EMUX_R)
 - c. Für jedes Sample der Sequenz die Eingangsquelle festlegen (ADC0_SSMUXn_R & ADC0_SSEMUXn_R)
 - d. Für jedes Sample der Sequenz die Kontrolle festlegen (beim letzten zusätzlich Ende markieren) (ADC0_SSCTLn_R)
- 4. Falls benötigt Interrupt konfigurieren
 - a. Interrupt-Maske festlegen (ADCO_IM_R)
 - b. Interrupt der Peripherie beim NVIC aktivieren (NVIC_ENn_R)
- 5. Logik der Sample Sequenz aktivieren (ADCO_ACTSS_R)