- Caraduação

TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

Disruptive Architectures: Al and IoT

PROF. Arnaldo Viana

O Que Esperar do Curso

Dinâmica das aulas:

As aulas terão conteúdos teóricos e práticos.

1. INTERNET DAS COISAS

- 1. Onde você usa IoT (Internet das Coisas)?
- 1. Quais exemplos de dispositivos "coisas" você conhece que estão conectados à internet dentro da sua casa?
- 1. Quais oportunidades de negócio a loT/IA pode gerar. Quais problemas ela pode ajudar a resolver?

Por que estudar IA e IoT?

1. São buzzwords, e eu quero entender esse negócio...

1. São áreas do conhecimento dentro da Computação e faz parte do curso

Quero montar minha startup de tecnologia.

Internet das Coisas

- Internet of Things (IoT): cenário onde dispositivos eletrônicos univocamente identificados, dotados de sensores, atuadores e/ou capacidade computacional e potencial de escalabilidade estão conectados à internet
 - Sensores e atuadores comunicando-se em escala global
- Representa a evolução de tecnologias baseadas em dispositivos distribuídos focada na conectividade entre eles. Exemplos:
 - Celular com câmera □ celular com câmera conectado
 - GPS □ Waze
- A conectividade gera uma explosão de possíveis aplicações
 - Mais do que uma nova tecnologia, é uma nova perspectiva para tecnologias que já conhecíamos

IA e loT na crista da onda

- Andrew Ng: a nova eletricidade
- Gartner Hype Cycle (2018)

Hype Cycle for Emerging Technologies, 2018

Time

gartner.com/SmarterWithGartner

5001

Expectativa de aparelhos conectados à internet em 2020

Mercado global de loT em dólares

Dispositivos conectados: estimativa do site Statista

O que esperar do futuro

Internet of Everything (IoE)
Internet de Tudo ou Internet de Todas as Coisas

- Virtualmente todos os dispositivos estarão conectados à internet enviando informações (sensores) e/ou executando tarefas (atuadores).
- Você estará plugado na internet através de tudo o que faz.

Tecnologias Habilitadoras

Permitem a integração dos objetos e ambientes à internet

- Identificação de objetos
 - Tags de RFID/NFC
 - Código de Barras, Qrcode
 - Reconhecimento de Imagens, etc.
- Formação de redes de comunicações com/entre objetos (tecnologias M2M)
 - Zigbee, 6LoWPAN, Bluetooth, GSM Data, RS-485, WiFi
- Computação Ubíqua
 - Arduíno, Raspberry Pi, Edson, Beagle Bone, esp32, mbed
- Interação com o ambiente (sensores e atuadores)
 - Monitoramento de variáveis ambientais
 - Sensores de temperatura, luminosidade etc.
 - GPS e localização física em rede sem fio
 - Execução de tarefas por meio de atuadores
 - Acionadores, interruptores, motores

Desafio: integração de tecnologias

 Tecnologias na raiz do IoT existem em abundância

 Embora seja um campo a explorar, existem aplicações bem definidas para a loT

 O que falta para a loT? Integração...

— ...entre as tecnologias habilitadoras

 — ...entre as tecnologias e os domínios de aplicação

 — ...principalmente, entre os diferentes elementos das áreas de aplicação

Fonte: www.internet-of-things-research.eu [5]

Analogia de aplicação: arquitetura de automação

Sensores

- Consumo de energia
- Temperatura
- Altitude

Atuadores

- Comportas
- Válvulas de fluxo
- Superfícies de controle

Planta ou Processo

- Vazão de uma hidroelétrica
- Fabricação de aço
- Piloto automático

Arquitetura simplificada da loT

Exemplos de loT no mundo

Exemplos de loT no mundo

Instalação da infra

- 1^a Parte: Instalação do Arduino IDE (win/linux).
 - https://www.arduino.cc/en/software

Interface de programação

- 2^a. Parte: Instalação SimulIDE(win/linux)
 - https://www.simulide.com/p/downloads.html
- 3ª. Parte: Instalação emulador de serial port
 - Com0Com (Win)
 - https://sourceforge.net/projects/com0com/
 - ttyOtty (Linux)
 - https://github.com/freemed/tty0tty

Simulado quando não tenho um arduino

Sugestão para usar o simulador com VM

- VM com a infra toda instalada no linux.
 - https://drive.google.com/drive/folders/1HrtLCN FSyUQ0nkCwthz7dv5RqcHx7h4t?usp=sharin

senha: iot

lembrete: instalar o VirtualBox, e instalar extension pack.

sugestão: rodar com 2cpu e 4G de ram

Sensor / Atuador

Atuadores (AÇÃO):

Permitem ao agente modificar ou influenciar o ambiente, ou sua percepção sobre o mesmo

Meio no qual o agente está inserido

Sensores(PERCEPÇÃO):

Permitem ao agente detectar ou medir características do ambientes que sejam importante para o seu desempenho

Bora colocar a mão no código?

Com base no exemplo anterior faça:

1. Monte este circuito com 2 LEDs, igual da imagem acima, e faça eles piscarem de forma síncrona a cada 0,5 segundos.

Com base no desafio anterior faça:

1. Agora, faça os leds acenderem conforme a carta de tempo abaixo. Onde:

1 = nível lógico alto (HIGH)

0 = nível lógico baixo (LOW)

delay = 500ms

LED2

LED1

t (ms)

Faça seu nome em Código Morse - use como referência a tabela abaixo.

	CÓDIGO	MORSE	
Α	J •	S	2 · ·
В	K	T	3
C	L L	U	4
D	M	V	5
E.	N	W	6
F	0	X	7
G	Р	Y	8
Н	Q	Z	9
1	R	1	0

Utilizando o simulador de sua preferência, Monte o circuito acima (simulide ou thinkercad):

1. Escreva um programa simples capaz de fazer a leitura das chaves. Discuta com seu grupo a diferença no acionamento da chave 1 e chave 2. existe diferença de usar um ou outro?

REFERÊNCIAS

- 1. Notas de aula professor Antônio Selvatici, 2020
- Fórum IoT Brasil. Conceitos básicos sobre IOT (Internet of Things). url: http://www.iotbrasil.com.br/new/atividades-e-dowload/ Acesso em 15/01/2015
- Gartner. Gartner IT Glossary. url: http://www.gartner.com/it-glossary/internet-of-things/ Acesso em 17/01/2016
- O. Vermesan e P. Fries. Internet of Things:
 Converging Technologies for Smart Environments
 and Integrated Ecosystems. Rivers, 2013. url:
 http://www.internet-of-things-research.eu/pdf/Converging Technologies for Smart Environments and Integrated Ecosystems IERC Book_Open_Access_2013.pdf
 Acesso em 15/02/2015
- Ventura Team. The Case for Smart City Communications Operators. MEFC, 2016. url: http://www.venturateam.com/assets/Uploads/Presentation-of-Campus-Operator-White-Paper.pdf Acesso em 01/02/2018

Copyright © 2020 Prof. Antonio Henrique Pinto Selvatici

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).