Container + DeepLearning: from working to scaling

Frank Zhao

Software Architect, EMC CTO Office zhaojp@gmail.com

WHO AM I?

- Frank Zhao, 赵军平, Junping Zhao
- Software Architect @ EMC CTO Office

- 10+year engineering in storage, virtualization, flash
 - 30+ patents (3 granted in U.S.)
- Now, working areas:
 - In-mem processing and analytics, perf acceleration
 - Micro-service, container
 - Streaming processing system
 - Software defined storage ...

AGENDA

- Motivations
- Deep learning and TensorFlow
- Distributed DL training
 - Docker + K8S + Tensorflow as example
- Distributed DL serving
 - Docker + K8S + Tensorflow as example
- Summary
- Outlook

Motivations

- Container + DL for
 - Easier deployment & management
 - Scalability: from infrastructure to typical DL framework
 - Smooth transition from training to serving, or Dev&Ops
 - Least performance overhead (vs. VM) especially CPU/mem
 - · Maximize heterogeneous env, computing, memory, networking etc
- > "DL as a Service" by container ecosystem?
 - In cloud env, scale-out & heterogeneous
- Focus on DL workload, practices sharing, opportunities
 - Non-goal: TF internal or deep dive

Deep learning

Photo from Google intro: "Diving into ML through Tensorflow"

Open-source DL frameworks

By 6/28/2016

	Star	Forks	Contributor
<u>Tensorflow</u>	26995	10723	286
<u>Caffe</u>	10973	6575	196
CNTK	5699	1173	69
<u>Torch</u>	4852	1360	100
<u>Theano</u>	4022	1448	234
MXNet	4173	1515	152
Apache SINGA	607	211	18

A more detailed summary and comparison <a>@ <a>https://github.com/zer0n/deepframeworks

TensorFlow

DL framework from Google

- GPU/CPU/TPU, heterogeneous: desktop, server, mobile etc
- C++, Python; Distributed training and serving
- DNN building blocks, ckpt/queue/ ..., TensorBoard
- Good docker/K8S supported

TF distribution overview

- Cluster
 - Jobs (ps, worker)
 - Tasks
 - Devices (CPU, GPU)

```
tf.train.ClusterSpec({
    "worker": [
        "worker0.example.com:2222",
        "worker1.example.com:2222",
        "worker2.example.com:2222"
],
    "ps": [
        "ps0.example.com:2222",
        "ps1.example.com:2222"
]})
```


Workflow & dataset

Dataset	Туре	Size
MNIST	Handwritten digit recognition	10 class. 60K training + 10K test
CIFAR- 10/100	Image classification	10/100 classes; (50K + 10K test) 160+MB
Inception-V3	Image classification	1000 classes; ~500GB dataset

Test environment

- 3-node bare metal (Dell?) servers
 - CPU only; GPU+CPU cluster is being setup
 - Docker images from Tensorflow official w/ modifications

TF: 0.8

K8S: 1.2.4

Docker: 1.10.3; AUFS

Ubuntu 15.10 (4.2.0-16)

E5-2643 v3 @ 3.40GHz,
2 *12 cores; 256GB DDR3
1000 Mbps

K8S cluster


```
root@sm-tower1:~# docker ps
CONTAINER ID
                                                                     COMMAND
                                                                                               CREATED
              IMAGE
              gcr.io/google containers/heapster grafana:v2.6.0-2
6605cec68471
                                                                     "/bin/sh -c /run.sh"
                                                                                               3 days ago
05102147185b
              gcr.io/google containers/heapster influxdb:v0.5
                                                                     "influxd --config /et"
                                                                                               3 days ago
e42bf1d27ce5
              gcr.io/google containers/pause:2.0
                                                                     "/pause"
                                                                                               3 days ago
90b53bc1341e
              gcr.io/google containers/skydns:1.0
                                                                     "/skydns"
                                                                                               3 days ago
527d600b9259
              gcr.io/google containers/kube2sky:1.15
                                                                     "/kube2sky"
                                                                                               3 days ago
de3633ab3fb0
              quay.io/coreos/flannel:0.5.5
                                                                     "/bin/sh -c '/opt/bin"
                                                                                               4 days ago
                                                                     "/flannel helper --ne"
                                                                                               4 days ago
ff9c894c47e0
              gcr.io/google containers/flannel-server-helper:0.1
              quay.io/smana/kubernetes-hyperkube:v1.2.4
                                                                     "/hyperkube proxy --v"
8b20a0d4a34b
                                                                                               4 days ago
373f4ad80b61
              quay.io/smana/kubernetes-hyperkube:v1.2.4
                                                                     "/hyperkube scheduler"
                                                                                               4 days ago
c661aa61186b
              quay.io/smana/kubernetes-hyperkube:v1.2.4
                                                                     "/hyperkube controlle"
                                                                                               4 days ago
4a4b30c7ccfb
              gcr.io/google containers/pause:2.0
                                                                     "/pause"
                                                                                               4 days ago
04ec408af28e
              gcr.io/google containers/pause:2.0
                                                                     "/pause"
                                                                                               4 days ago
              gcr.io/google containers/pause:2.0
                                                                     "/pause"
bc41b8f1f32b
                                                                                               4 days ago
              gcr.io/google containers/pause:2.0
                                                                     "/pause"
93e8cf10610c
                                                                                               4 days ago
```

Cluster setup

- Still not very easy!
 - TF official setup script doesn't work in my Ubuntu15

- Tips
 - DNS (skydns) service is highly recommended
 - Use Docker 1.10 if possible
 - Docker1.11 (RunC) may not work well
 - Kargo likely helps setup easier
 - https://docs.kubespray.io/ including K8S, etcd, flanneld, etc

- Workload profiling
- Scaling w/ CPU/GPU

Distribution efficiency?

- Communication overhead
- Synchronization the parameter overhead
- Test plan: containers in 1-node vs. in 3-node
 - To isolate networking overhead
 - Async vs. sync

DL workload profiling

CIFAR10 dataset, CNN, Intel E5 v3 CPU*24 core

Performance counter	stats for 'python cifar10_t	rain	.py':		
5263014.248826	task-clock (msec)	#	17.133	CPUs utilized	
22,264,167	context-switches	#	0.004	M/sec	
1,769,718	cpu-migrations	#	0.336	K/sec	
126,755,898	page-faults	#	0.024	M/sec	
18,645,619,419,538	cycles	#	3.543	GHz	(28.56%)
<not supported=""></not>	stalled-cycles-frontend				
<not supported=""></not>	stalled-cycles-backend				
21,654,529,625,343	instructions	#	1.16	insns per cycle	(36.24%)
1,170,696,486,325	branches	#	222.438	M/sec	(35.92%)
11,265,428,007	branch-misses	#	0.96%	of all branches	(35.80%)
4,000,366,119,368	L1-dcache-loads	#	760.090	M/sec	(21.86%)
327,032,499,068	L1-dcache-load-misses	#	8.18%	of all L1-dcache hits	(16.77%)
53,063,949,994	LLC-loads	#	10.082	M/sec	(16.70%)
11,964,635,507	LLC-load-misses	#	45.10%	of all LL-cache hits	(21.86%)
<not supported=""></not>	L1-icache-loads				
12,139,313,035	L1-icache-load-misses	#	2.307	M/sec	(28.53%)
3,996,507,473,413	dTLB-loads	#	759.357	M/sec	(21.46%)
4,198,057,989	dTLB-load-misses	#	0.11%	of all dTLB cache hits	(18.96%)
1,276,700,163	iTLB-loads	#	0.243	M/sec	(16.68%)
624,640,855	iTLB-load-misses	#	48.93%	of all iTLB cache hits	(21.60%)

- CPU intensive, consume 17+ cores
- Cache locality is not good

Balancing btw CPUs

Very good balancing btw cores

```
root@sm-tower1: /home/clariion/frank/tensorflow/tensorflow/tensorflow/models/image/cifar10
1 []]
                                                      0.0%1
                                                                                     0.9%1
                                                                                            19 [
                        2.4%]
                               8
                                 TH
                                                              14 []
                                                                                     0.5%1
                                                                                            20
                                                                                                                   0.0%1
                [[]][][]78.4%]
   [||||||79.7%]
   18 [|||||| 73.4%]
                                                                                            Mem[|||
                                               1877/257860MB1
                                                              Tasks: 49, 401 thr; 17 running
Swp[
                                                  0/262035MB1
                                                              Load average: 7.37 4.21 5.88
                                                              Uptime: 5 days, 13:42:49
19635 root
                            2300 S 0.0
                                      0.0
                                          0:01.25
19636 root
                0 21356
                       4024
                            3292 S 0.0 0.0
                                         0:00.24
3985 root
                       4272
                            3864 S 0.0 0.0
                                         0:00.00
                                                     /usr/lib/linux-tools/4.2.0-16-generic/perf stat -d -d -o 10k-16core-perfstat.log numac
3988 root
                       460M 35924 S 1270 0.2 8:07.11
                                                         python cifar10 train.py
                0 4080M
4041 root
                0 4080M
                       460M 35924 S 1.9 0.2 0:01.51
                                                           python cifar10 train.py
4040 root
            20
                0 4080M
                       460M 35924 S 0.0 0.2
                                         0:00.00
                                                           python cifar10 train.py
4039 root
            20
               0 4080M 460M 35924 S 0.9 0.2 0:00.38
                                                           python cifar10 train.py
4038 root
            20
                0 4080M 460M 35924 S 0.0 0.2 0:00.37
                                                           python cifar10 train.py
```


Performance Scaling w/ CPU

- 4X cores gains 1.8X faster
 - looks ok, but <u>not quite linear</u>. rooms to improve?

CNN-CIFAR10 training w/ multiple CPU cores

Performance Scaling w/ GPU

- 4X GPU achieves 2.4X faster
 - AWS g2.8xlarge, 4*K520 GPU

benchmark from http://www.bitfusion.io/2016/05/09/easy-tensorflow-model-training-aws/

Distribution: Parallelism & parameter update

Data parallel (Full-graph)	Model parallel (Btw-graph)
Deterministic model. Same codes in nodes/workers	fine-grained control of ops on node/workers; may different
Simple, easy to implement & control	Complex, may with high accuracy

Synchronous update	Asynchronous update
sync-point between workers. Prevents from "falling behind"	Worker runs as fast as they can w/o sync-point
high quality/accuracy, but slower* (or to optimize)	Usually fast, but relative lower accuracy due to fall-behind

Distributed training steps, by Docker+K8S

1. Construct the graph,

- full-graph (data parallel) for Inception and MNIST
- Sync or async; place worker on CPU or GPU
- Setup termination condition (training steps or accuracy)

2. Package as container

• Graph model, TF running lib, gRPC, or even dataset

3. Deploy by K8S

Specify job/worker and index

4. Feed dataset and start training

- Container bind-volume, and batch load
- 5. Monitoring, visualization & report

Training cluster config

K8S config yaml

- tools/dist_test/scripts/k8s_tensorflow.py

```
apiVersion: v1
                                                                            Model
                                                           Model
                                          Model
kind: ReplicationController
                                                                          gRPC, TF
metadata:
                                        gRPC, TF
                                                         gRPC, TF
 name: tf-worker0
spec:
                                                                             K8S
                                                            K8S
                                           K8S
 replicas: 1
 template:
   metadata:
     labels:
       t.f-worker: "0"
   spec:
                                                 Docker image w/
     containers:
     - name: tf-worker0
                                             model + TF+gRPC
       image: tensorflow/tf grpc test server
       args:
         - --cluster spec=worker|tf-worker0:2222;tf-worker1:2222;tf-worker2:2222,
         - -- job name=worker
         - --task id=0
                                                  Cluster spec;
       ports:
       containerPort: 2222
                                                 specify PS|worker and index
     nodeSelector:
       nodeName: "tower1"
```


Distribute containers in 1 node

- Scheduled 3 containers in 1 node using K8S "nodeSelector"
- Async vs. sync

MNIST training time and accuracy

Distribute containers in 3 nodes

Each node has 1 worker container

Async vs. sync

MNIST training time and accuracy

Running steps in workers

Observation and Considerations

- Async vs. Sync, Efficiency
 - Async is much faster than sync (68% in one node)
 - 143% in 3 nodes, but network is weak and stack is not fully optimized
 - Communication and sync overhead are bottlenecks
 - Fine tuned distributed training can achieve 13X faster w/ 16 nodes*
 - RDMA, parameter local cache + bulk async update back
 - Spark and Nvidia HPC etc claimed get 50+% higher perf
- Data parallel
 - Partition dataset across workers and proper mini-batch
 - shared bind-volume across workers
 - Not balanced in async way to dig out
- Pod placement on nodes
 - Automatic, or use K8S nodeSelector/nodeAffinity
- Ops placement on CPU/GPU device
 - Automatic, or explicit TF API: with tf.device(name): {ops}

Observation and Considerations(2)

Instance number

Moderate num per node to reduce communication overhead

CPU/Mem throttling

- Config "Request/Limit" only if necessary i.e., resource-shared env.
 - · Container level, K8S pod, K8S replica or quota
- Carefully set batch size to avoid OOM
- Fully exploit GPU mem at first

Networking concern, Flannel VLAN overhead

- Use "--net=host" with native network and map to ports
- RDMA is recommended; need powerful HW/driver

With GPU?

- Nvidia-Docker-plugin
- GPU memory is fast but capacity is limited a few GB
 - **Mem tiering**: GPU mem as Tier1, swap to CPU mem
 - Reference: "Scalable deep learning on distributed GPUs with a GPU-specialized parameter server" EuroSys16

 EMC²

Export model

- Checkpoint then export it
 - saver() : create a ckpt into files
 - Exporter(): set signature, version etc
 - CreateSessionBundle(): to load model at specific path

```
root@:/serving# 11 inception-export
total 107M
-rw-r--r- 69 Jun 21 09:25 checkpoint
-rw-r--r- 107M Jun 21 09:25 export
-rw-r--r- 140K Jun 21 09:25 export.meta
```


DL serving

- Online service to the world based on trained model
 - No label dataset, no lose function and backpropagation

Distributed Serving by Docker + K8S

- K8S features for deployment and management
 - Deployment
 - Auto-scale
 - Rolling-upgrade

Prepare the image

- + Include tensorflow,
- + tensorflow_serving
- + exported model/parameter

Export service port

Example: gcr.io/tensorflow-serving/inception

K8S: "deployment"

Highly recommended, rather than k8s RC, pod

- Auto manage desired state, i.e, autoscale (HPA)
 - With service and Replicaset
- Easy to rolling upgrade on the fly

K8S: auto-scale

Need Heapster (Influxdb) to collect matrix

# kubectl get podsall-namespaces -o	wide			
NAME	READY	STATUS	AGE	NODE
heapster-v1.0.2-3098241085-1yv64	4/4	Running	1h	sm-tower2
monitoring-influxdb-grafana-v3-pjib8	2/2	Running	2h	sm-tower1
inception.com-2008606290-16akw	1/1	Running	29s	sm-tower1
inception.com-2008606290-aluae	1/1	Running	29s	sm-tower2
inception.com-2008606290-va0co	1/1	Running	29s	sm-tower0
kube-controller-manager-sm-tower0	1/1	Running	14d	sm-tower0

kubectl autoscale deployment inception.com
--min=1 --max=3 --cpu-percent=50 --namespace="kube-system"

K8S: auto-scale result

Increase workload, CPU get hot

```
# kubectl get hpa --namespace="kube-system"

NAME REFERENCE TARGET CURRENT

inception.com Deployment/inception.com/scale 50% 878%
```

Auto-scale# ← in 4+ minutes # kubectl describe deployments inception.com

LastSeen	Count	Reason	Message
4m	1	ScalingReplicaSet	Scaled up replica set inception.co

K8S: rolling upgrade

- Minimize service impact via online rolling upgrade
- "apply"
 - Replace instance in graceful pace

kubectl apply -f inception-v2.json --validate=false deployment "inception.com" configured service "inception-service" configured

K8S: rolling-upgrade in-progress

• kubectl get pods --namespace="kube-system" -o wide

NAME	STATUS	RESTARTS	AGE	NODE
inception.com-2008606290-0w8w2	Terminating	0	8m	sm-tower1
inception.com-2008606290-2kxou	Terminating	0	37m	sm-tower0
inception.com-2008606290-vq977	Terminating	0	8m	sm-tower2
inception.com-2103174739-1cjic	Running	0	18s	sm-tower0
inception.com-2103174739-1cjic	Running	0	14m	sm-tower0
inception.com-2103174739-4kws4	Running	0	34s	<u>sm</u> -tower1
inception.com-2103174739-ypwlc	Running	0	4m	sm-tower2

Considerations, and gaps

- Overall, K8S deployment is wonderful for serving
- Pod placement, re-scheduling
 - Use nodeSelector or nodeAffinity, label based
 - Gap: only for initial placement, not for dynamic execution
- Auto-scaling matrix and rule
 - Now CPU usage based, need heapster config
 - Gap: need GPU support and advanced rules
- Auto scale-down?
 - K8S supports, but not stable in my test.
 - Use "resize" cmd to manually adjust
 - What if scaling meets auto-upgrade??

Summary

- Explore typical DL workload
- Practice end-end DL distributed training and serving
 - Docker + K8S + TF
 - More deep optimization work are in-progress, see next
- TF, as one of hottest DL frameworks, provides good docker/K8S support, distributed version is promising but still in early stage
 - Perf scaling w/ multiple CPU/GPU can be improved
 - Data distribution is not always balanced
 - Lack of deep guideline, and profiling/tuning module ("EEG") is not open-sourced
- K8S: auto-scale based on GPU usage or mixed?

In-progress & outlook

Community

- TF and Google
 - C++/Python optimization; More platforms (iOS, Windows, OpenCL etc)
 - Optimization for distribution, memcpy btw host and GPU etc
 - Google services: Datalab, dataflow(Apache Beam), cloud ML
- K8S: advanced matrix for auto-scale; node affinity

Our in-progress/plan

- Heterogeneous cluster w/ powerful HW
 - GPU + CPU, 100GbE+RDMA/GPUDirect, NVRAM/NVMe
- Unified memory and tiering for parameter update
- Smart container/ops placement and (re-)scheduling
- Efficient data partition/paralleling, like HPC
- → "DL as a Service"

References

- TensorFlow: A system for large-scale machine learning; on Heterogeneous Distributed Systems
 - http://arxiv.org/abs/1605.08695 and http://bit.ly/tf-workshop-slides
- K8S and TF serving
 - http://blog.kubernetes.io/2016/03/scaling-neural-network-image-classification-using-Kuberneteswith-TensorFlow-Serving.html
- GeePS: Scalable deep learning on distributed GPUs with a GPU-specialized parameter server EuroSys 2016
- Google cloud DL services, TPU
 - http://conferences.oreilly.com/strata/hadoop-big-data-ca/public/schedule/detail/50445
 - https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-withcustom-chip.html
- Scaling TF on Spark
 - https://spark-summit.org/east-2016/events/distributed-tensor-flow-on-spark-scaling-googlesdeep-learning-library/
- Docker SWARM vs K8s
 - https://blog.docker.com/2016/03/swarmweek-docker-swarm-exceeds-kubernetes-scale/

Thank You! 谢谢!

ありがとう!

Questions?

