RE	GION:12					NUMERIC	STANDARDS			
BAS	SIN: Upper Colorado River	Desig	Classifications			NOWERIC	STANDARDS			TEMPORARY MODIFICATIONS
Strea	am Segment Description	Desig	Classifications	PHYSICAL and BIOLOGICAL		GANIC g/l		METALS ug/l		AND QUALIFIERS
1.	Mainstem of the Colorado River, including all tributaries and wetlands, within Rocky Mountain National Park, or which flow into Rocky Mountain National Park.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O. = 6.0 mg/l D.O. (sp)=7.0 mg/l pH = 6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
2.	Mainstem of the Colorado River, including all tributaries and wetlands within, or flowing into Arapahoe National Recreation Area.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O. = 6.0 mg/l D.O. (sp)=7.0 mg/l pH = 6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=50(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
3.	Mainstem of the Colorado River from the outlet of Lake Granby to the confluence with Roaring Fork River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II)°C D.O. = 6.0 mg/l D.O. (sp)=7.0 mg/l pH = 6.5-9.0 E.Coli=126/100ml Chla=150 mg/m² ^C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
4.	All tributaries to the Colorado River, including all wetlands, from the outlet of Lake Granby to the confluence with the Roaring Fork River, which are on National Forest lands, except for those tributaries included in Segments 1 and 2, and specific listings in Segments 8, 9 and 10a.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	$\begin{array}{l} \text{S=}0.002\\ \text{B=}0.75\\ \text{NO}_2 = 0.05\\ \text{NO}_3 = 10\\ \text{CI=}250\\ \text{SO}_4 = \text{WS}\\ \text{P=}110 \text{ ug/l (tot)} \end{array}$	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
5.	Deleted.									
6a.	All tributaries to the Colorado River, including all wetlands, from the source to a point immediately above the confluence with the Blue River and Muddy Creek, which are not on National Forest lands, except for specific listings in Segments 1, 2, 4, 5, 6b, 6c, 8, 9 and 10a-c.		Aq Life Cold 1 Recreation P Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=205/100ml Chla=150 mg/m²C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 NO ₂ =0.05 B=0.75 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS	Cu(ac/ch)=TVS Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS) Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
6b.	Mainstem of un-named tributary from the headwaters (Sec 32, T3N, R76W) to Willow Creek Reservoir Road (Section 8, T2N, R76W).		Aq Life Cold 2 Recreation N Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	CN(ac)=0.2	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=110 ug/l (tot) ^C	As(ac)=340(dis) As(ch)=100 Cd(ch)=10 Crlll(ch)=100 CrVI(ch)=100	Cu(ac)=200 Pb(ch)=100 Mn(ch)=200 Mo(ch)=160 Ni(ac/ch)=200	Se(ch)=20 Zn(ch)=2000	All metals are Trec unless otherwise noted.
6c.	Mainstem of un-named tributary to Willow Creek from the Willow Creek Reservoir Rd (Sec. 8, T2N, R76W) to the confluence with Willow Creek (Sec. 17, T2N, R76W).		Aq Life Cold 2 Recreation N Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100	As(ac)=340 As(ch)=100(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac/ch)=TVS CrIII(ch)=100(Trec) CrVI(ac/ch)=TVS	Cu(ac/ch)=TVS Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	

REGION:12					NUMERIC	STANDARDS			
BASIN: Upper Colorado River Stream Segment Description	Desig	Classifications	PHYSICAL and BIOLOGICAL		GANIC g/l		METALS ug/l		TEMPORARY MODIFICATIONS AND QUALIFIERS
7a. All tributaries to the Colorado River, including all wetlands, from a point immediately above the confluence with the Blue River and Muddy Creek to a point immediately below the confluence with the Roaring Fork River, which are not on National Forest lands, except for specific listings in Segment 7b, 7c and in the Blue River, Eagle River, and Roaring Fork River basins.		Aq Life Cold 1 Recreation N Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
7b. Mainstem of Muddy Creek, including all tributaries and wetlands, from the outlet of Wolford Mountain Reservoir to the confluence with the Colorado River; mainstems of Rock Creek, Deep Creek, Sheephorn Creek, Sweetwater Creek and the Piney River, including all tributaries and wetlands, from their sources to their confluences with the Colorado River, which are not on National Forest lands.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ^{2 C}	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ah)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
7c. Mainstem of Muddy Creek from the source to a point immediately below the confluence with Eastern Gulch as well as all tributaries to and wetlands of Muddy Creek from the source to the outlet of Wolford Mountain Reservoir, except for listings in Segment 4. The mainstems of Derby, Blacktail, Cabin, and Red Dirt Creeks (all below Wolford Mountain Reservoir), including all tributaries and wetlands, from their sources to their confluences with the Colorado River, except for listings in Segment 4.		Aq Life Cold 1 Recreation N Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TV S Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
8. Mainstem of the Williams Fork River, including all tributaries and wetlands from the source to the confluence with the Colorado River, except for those tributaries listed in Segment 9.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100 Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=190(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Point of compliance for Fe and Mn at Aspen Canyon Ranch well. Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
All tributaries to the Colorado and Fraser Rivers, including all wetlands, within the Never Summer, Indian Peaks, Byers, Vasquez, Eagles Nest and Flat Tops Wilderness Areas.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
10a. Mainstem of the Fraser River from the source to a point immediately below the Rendezvous Bridge. All tributaries to the Fraser River, including wetlands, from the source to the confluence with the Colorado River, except for those tributaries included in Segment 9.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ² C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 CI=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac-340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.

REGION:12 BASIN: Upper Colorado River					NUMERIC	STANDARDS			TEMPORARY MODIFICATIONS
Stream Segment Description	Desig	Classifications	PHYSICAL and BIOLOGICAL		GANIC g/I		METALS ug/l		AND QUALIFIERS
Mainstem of the Fraser River from a point immediately below the Rendezvous Bridge to a point immediately below the Hammond Ditch.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 CI=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
Mainstem of the Fraser River from a point immediately below the Hammond Ditch to the confluence with the Colorado River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
All lakes and reservoirs within Rocky Mountain National Park and within the Never Summer, Indian Peaks, Byers, Vasquez, Eagles Nest and Flat Tops Wilderness Areas.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CL,CLL)°C D.O. = 6.0 mg/l D.O. (sp)=7.0 mg/l pH = 6.5-9.0 E.Coli=126/100ml Chla=8 ug/l ^B	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^B	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
Lakes and reservoirs within Arapahoe National Recreation Area, including Grand Lake, Shadow Mountain Lake and Lake Granby.		Aq Life Cold 1 Recreation E Water Supply Agriculture DUWS*	T=TVS(CL,CLL)°C Shadow Mtn Res April-Dec T _(WAT) =19.3°C ^D Lake Granby April-Dec T _(WAT) =19.6°C ^D D.O. = 6.0 mg/l D.O. (sp)=7.0 mg/l pH = 6.5-9.0 E.Coli=126/100ml Chla=8 ug/l ^{B,C}	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	*DUWS Applies only to Grand Lake See ** for narrative clarity standard. July through September Grand Lake Clarity =4 meter secchi disk depth, effective January 1, 2017.
All lakes and reservoirs tributary to the Colorado River from the boundary of Rocky Mountain National Park and Arapahoe National Recreation Area to a point immediately below the confluence with the Roaring Fork River, except for specific listings in Upper Colorado Segments 11 and 12 and the Blue and Eagle River subbasins.		Aq Life Cold 1 Recreation E Water Supply Agriculture DUWS*	T=TVS(CL,CLL)°C Wolford Mtn Res April-Dec T _(WAT) = 21.3°C ^D Williams Fork Res April-Dec T _(WAT) =21.6°C ^D D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l B.C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 CI=250 SO ₄ =WS P=25 ug/l (tot) ^{B,C}	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	*DUWS Applies only to Ute Creek Res

^{**}Narrative standard for Segment 12, Grand Lake: The highest level of clarity attainable, consistent with the exercise of established water rights, the protection of aquatic life, and protection of water quality throughout the Three Lakes system.

REGION:12					NUMERIO	C STANDARDS			
BASIN: Blue River	Desig	Classifications	PHYSICAL and		GANIC		METALS		TEMPORARY MODIFICATIONS AND QUALIFIERS
Stream Segment Description			BIOLOGICAL	ii.	g/l		ug/l		
Mainstem of the Blue River from the source to the confluence with French Gulch.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
Mainstem of the Blue River from the confluence with French Gulch to a point one half mile below Summit County Road 3.	UP	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ^{2 C}	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac/ch)=4 CrIll(ac)=50(Trec) CrIll(ch)=TVS CrVl(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=e ^{(1.25} (ln(hard)+0.799))	
Mainstem of the Blue River from a point one half mile below Summit County Road 3 to the confluence with the Swan River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac/ch)=1/2e ⁽¹ - 0166(In(hard)-3.132)) CrIII(ac)=50(Trec) CrIII(ac)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=e ^{(0.980} 5(ln(hard)+1.402))	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
Mainstem of the Blue River from the confluence with the Swan River to Dillon Reservoir.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIll(ac)=50(Trec) CrIll(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
3. Deleted.						, ,			
 All direct tributaries to Dillon Reservoir and all tributaries and wetlands in the Blue River drainage above Dillon Reservoir, except for specific listings in Segments 1, 2a, 2b, 4b, 5, 6, and 10-14. 		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
4b. North Fork of the Swan River, including all tributaries and wetlands, from the source to the confluence with the Swan River.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
Mainstem of Soda Creek from the source to Dillon Reservoir.		Aq Life Cold 1 Recreation E Agriculture Water Supply	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/oh)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	

REGION:12									
BASIN: Blue River	Desig	Classifications			NUMERIC ST	TANDARDS			TEMPORARY MODIFICATIONS
Stream Segment Description			PHYSICAL and BIOLOGICAL		GANIC ng/l		METALS ug/l		AND QUALIFIERS
6a. Mainstem of the Snake River, including all tributaries and wetlands from the source to Dillon Reservoir, except for specific listings in Segments 6b, 7, 8 and 9.	UP	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m² C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIV(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
6b. Mainstem of Camp Creek, including all tributaries and wetlands from the source to confluence with the Snake River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) zinc (acute) = 0.978*e ^{0.8537(n} Hardness)+1.5227 zinc (chronic) = 0.986*e ^{0.8537(n} Hardness)+1.519	
 Mainstem of Peru Creek, including all tributaries and wetlands from the source to the confluence with the Snake River, except for specific listing in Segment 8. 	UP	Aq Life Cold 1 Recreation N	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 NO ₂ =0.05 P=110 ug/l (tot)	As(ac)=340 As(ch)=7.6(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIll(ac/ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
8. Mainstem of Keystone Gulch, including all tributaries and wetlands from the source to the confluence with the Snake River. Mainstem of Chihuahua Creek including all tributaries, and wetlands from the source to the confluence with Peru Creek. Mainstem of the North Fork of the Snake River, including all tributaries and wetlands from the source to the confluence with the Snake River. Mainstem of Jones Gulch, including all tributaries and wetlands from the source to the confluence with the Snake River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.:=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m² ^C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
 Mainstem of Deer Creek, including all tributaries and wetlands from the source to the confluence with the Snake River. 		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=50(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
 Mainstem of French Gulch including all tributaries and wetlands from the source to a point 1.5 miles below Lincoln. 		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=50(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
Mainstem of French Gulch from a point 1.5 miles below Lincoln to the confluence with the Blue River.	UP	Aq Life Cold 1 Recreation P Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=205/100ml Chla=150 mg/m ²	NH 3(ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=110 ug/l (tot)	As(ac)=340 As(ch)=7.6(Trec) Cd(ac/ch)=existing quality CrIII(ac/ch)=TVS CrIII(ac/ch)=TVS CrVI(ac/ch)=TVS Cu(ac)=TVS	Cu(ch)=TVS Fe(ch)=1000(Trec) Pb(ac/ch)=existing quality Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=existin g quality	

REGION:12									
BASIN: Blue River	Desig	Classifications			NUMERIO	STANDARDS			TEMPORARY MODIFICATIONS AND
Stream Segment Description			PHYSICAL and BIOLOGICAL	INORGANIC mg/l		METALS ug/l			QUALIFIERS
Mainstem of Illinois Gulch and Fredonia Gulch from their source to their confluence with the Blue River.		Aq Life Cold 2 Recreation P Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=205/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
Mainstem of Tenmile Creek from the Climax Parshall Flume to a point immediately above the confluence of West Tenmile Creek and all tributaries and wetlands from the source of Tenmile Creek to a point immediately above the confluence with West Tenmile Creek, except for the specific listing in Segment 15.		Aq Life Cold 1 Recreation P Agriculture	T=TVS(CS-I) °C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=205/100ml Chla=150 mg/m ^{2 C}	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=7.6(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS Crill(ac/ch)=TVS Crill(ac/ch)=TVS CrVI(ac/ch)=TVS	Cu(ac/ch)=TVS Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Any water quality based effluent limit shall take into consideration the water quality standards of downstream waters and shall not cause or contribute to exceedances of water quality standards adopted to protect downstream uses.
Mainstem of Tenmile Creek, including all tributaries and wetlands from a point immediately above the confluence with West Tenmile Creek to Dillon Reservoir, except for the specific listing in Segment 16.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ^{2 C}	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS Crill(ac)=50(Trec) Crill(ac)=50(Trec) Crill(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=210(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21. Temporary modification: Mo(ch)="current conditions" Expiration date of 12/31/16.
Mainstem of Clinton Creek from the source to the confluence with Tenmile Creek.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS Crill(ac)=50(Trec) Crill(ac)=50(Trec) CrVl(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=210(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
All tributaries to the Blue River, including all wetlands, within the Eagles Nest and Ptarmigan Peak Wilderness Areas.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS Crill(ac)=50(Trec) Crill(ac)=50(Trec) Cril(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
Mainstem of the Blue River from the outlet of Dillon Reservoir to the confluence with the Colorado River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS Crill(ac)=50(Trec) Crill(ac)=50(Trec) CrV(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	

REGION:12					NUMERIC S	STANDARDS			
BASIN: Blue River	Desig	Classifications	PHYSICAL	INOR	GANIC		METALS		TEMPORARY MODIFICATIONS AND QUALIFIERS
Stream Segment Description			and BIOLOGICAL	m	g/I		ug/l		
All tributaries to the Blue River, including all wetlands, from the outlet of Dillon Reservoir to the outlet of Green Mountain Reservoir, except for the specific listing in Segment 16.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I) °C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS Crill(ac)=50(Trec) Crill(ac)=50(Trec) Cril(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
 All tributaries to the Blue River, including all wetlands, from the outlet of Green Mountain Reservoir to the confluence with the Colorado River, except for specific listings in Segment 20. 		Aq Life Cold 1 Recreation N Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
 Mainstems of Elliot Creek and Spruce Creek including all tributaries and wetlands, from their sources to the confluence with the Blue River. 		Aq Life Cold 1 Recreation N Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 CI=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrIV(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
All lakes and reservoirs within the Eagles Nest and Ptarmigan Peak Wilderness Areas.	ow	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CL,CLL)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l ^B	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^B	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
Dillon Reservoir and all lakes and reservoirs in the Blue River drainage above Dillon Reservoir, except for specific listings in Segment 21.		Aq Life Cold 1 Recreation E Water Supply Agriculture DUWS*	T=TVS(CL,CLL)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l ^{B.C}	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^{B,C}	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	*DUWS Applies only to Goose Pasture Tarn Special standards for Dillon Reservoir only: Total Phosphorus as P=0.0074 mg/l in the top 15 meters of the water column for the months of July, August, September & October. Additional total phosphorus or Chla standards adopted for this segment do not apply to Dillon Reservoir. Temporary modification:
									As(ch)=hybrid Expiration date of 12/31/21.

REGION:12 BASIN: Blue River		0		NUMERIC STANDARDS							
Stream Segment Description	Desig	Classifications	PHYSICAL and BIOLOGICAL	INORGANIC mg/l			AND QUALIFIERS				
All lakes and reservoirs in the Blue River drainage below Dillon Reservoir, except for specific listings in Segment 21.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CL,CLL)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l B.C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^{B,C}	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS			

DE	GION:12		1			· · · · · · · · · · · · · · · · · · ·				
KE	GION. 12					NUMERIC	STANDARDS			TEMPORARY
BAS	SIN: Eagle River	Desia	Classifications							MODIFICATIONS
Strea	am Segment Description	Desig	Ciassilications	PHYSICAL and BIOLOGICAL		GANIC g/I		METALS ug/l		AND QUALIFIERS
1.	All tributaries and wetlands to the Eagle River system within the Gore Range - Eagles Nest and Holy Cross Wilderness Area.	ow ¹	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
		¹ Consiste					h respect to the Homest		Cities of Aurora and Co	olorado Springs.
2.	Mainstem of the Eagle River from the source to the compressor house bridge at Belden.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l Ph=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m² ^C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
3.	All tributaries to the Eagle River, including wetlands, from the source to the compressor house bridge at Belden, except for the specific listing in Segment 4 and those waters included in Segment 1.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
4.	Mainstem of Homestake Creek from the confluence of the East Fork to the confluence with the Eagle River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrV(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/oh)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
5a	Mainstem of the Eagle River from the compressor house bridge at Belden to a point immediately above the Highway 24 Bridge near Tigiwon Road.	9/30/00 Baseline does not apply	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=(1.101672- [In(hardness)*(0.04 1838)]]* e(0.7998 [in (hardness)]*3.1725) CrIII(ac)=50(Trec) CrIIII(ch)=TVS CrV((ac)-0.96*e 0.960*[In(hardness)] - 1.1073 Cu(ch)=0.96*e 0.569*[In(hardness)] - 0.0053	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac) = 0.978°e 0.8537 (nfndress) ±1.1902 Zn(ch) = 0.986°e 0.8537 (nfnardness) ±1.9593	

	GION:12					NUMER	C STANDARDS			TEMPORARY
	SIN: Eagle River am Segment Description	Desig	Classifications	PHYSICAL and BIOLOGICAL	INORG mg			METALS ug/l		MODIFICATIONS AND QUALIFIERS
5b.	Mainstem of the Eagle River from a point immediately above the Highway 24 Bridge near Tigiwon Road to a point immediately above the confluence with Martin Creek.	9/30/00 Baseline does not apply	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=(1.101672- [In(hardness)*(0.04 1838])* e (0.7998 in (hardness)+3.1725) CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac) = 0.96*e 0.9801[in(hardness)+0.4845	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) January 1 through April 30 Zn(ac) = 0.978*e 0.8537[in(hardness)]+ 1.9593 May 1 through December 31 Zn(ac) = 0.978*e 0.8537[in(hardness)]+ 1.4189 Zn(ch) = 0.986*e 0.8537[in(hardness)]+ 1.4189	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
5c.	Mainstem of the Eagle River from a point immediately above Martin Creek to a point immediately above the confluence with Gore Creek.	9/30/00 Baseline does not apply	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=(1.101672- [In(hardness)*(0.04 1838]))* (0.798 [in (nardness)]*3.1725) CrIII(ac)=50(Trec) CrIII(ah)=TVS CrV(ac/ch)=TVS CV(ac)=0.96*e 0.980*[In(hardness)]*1.5865 Cu(ch)=0.96*c	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac) = 0.978*e 0.8537[in(thardness)]+1.4189 Zn(ch) = 0.986*e 0.8537[in(thardness)]+1.2481	
6.	All tributaries to the Eagle River, including all wetlands, from the compressor house bridge at Belden to a point immediately below the confluence with Lake Creek, except for the specific listings in Segments 1, 7a, 7b, and 8.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrV(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
7a.	Mainstem of Cross Creek from the source to a point immediately below the Minturn Middle School, except for those waters included in Segment 1.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ch)=TVS Ag(ch)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
7b.	Mainstem of Cross Creek from a point immediately below the Minturn Middle School to the confluence with the Eagle River, except for those waters included in Segment 1.	9/30/00 Baseline does not apply	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=(1.101672- [In(hardness)*(0.04 1838]))** (0.7998 [in (hardness)]*.3.1725) CrIII(ac)=50(Trec) CrIII(ac)=50(Trec) CrIII(ac)=TVS CrVI(ac/ch)=TVS Cu(ac) = 0.96*e 0.9801[In(hardness)]*.5865 Cu(ch) = 0.96*e 0.5897[In(hardness)]*-0.4845	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ac)=TVS(tr) January 1 through April 30 Zn(ac) = 0.978*e 0.8537[in(hardness)]+2.1002 Zn(ch) = 0.986*e 0.8537[in(hardness)]+1.9593 May 1 through December 31 Zn(ac) = 0.978*e 0.8537[in(hardness)]+1.189 Zn(ch) = 0.986*e 0.8537[in(hardness)]+1.189	

REGIO						NUMERIO	C STANDARDS			TEMPORARY
	E Eagle River	Desig	Classifications	PHYSICAL and BIOLOGICAL	INORO mo			METALS ug/l		MODIFICATIONS AND QUALIFIERS
	instem of Gore Creek from the confluence with Black Gore sek to the confluence with the Eagle River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I) °C Jun 1 - Jun 30 T _(MMAT) = 14°C Oct 1 - Oct 15 T _(MMAT) = 12°C D.O. =6.0 mg/I D.O. (sp)=7.0 mg/I pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ² °C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CVV(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
	instem of the Eagle River from Gore Creek to a point mediately below the confluence withSquaw Creek.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I) °C Jun 1 - Jun 30 T _(MMAT) = 16°C Oct 1 - Oct 15 T _(MMAT) = 12°C Oct 16 - Oct 31 T _(MMAT) = 11°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 CI=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
con	instem of the Eagle River from a point immediately below the nfluence with Squaw Creek to a point immediately below the nfluence with Rube Creek.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II) °C Apr 1 - May 31 T_(MM-AT)= 12°C T_(DM)= 15°C Oct 1 - Oct 15 T_(DM)= 15°C Oct 16 - Oct 31 T_(DM)= 15°C Oct 16 - Oct 31 T_(DM)= 15°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrV((ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=100(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
	instem of the Eagle River from a point immediately below the offluence with Rube Creek to the confluence with the Colorado rer.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
poii con	tributaries to the Eagle River, including all wetlands, from a nt immediately below the confluence with Lake Creek to the nfluence with the Colorado River, except for specific listings in gments 10b, 11 and 12, and those waters included in Segment		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
sou	rams Creek, including all tributaries and wetlands, from the urce to the eastern boundary of the United States Bureau of nd Management lands.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.

	EGION:12 ASIN: Eagle River Desig					TEMPORARY MODIFICATIONS				
	m Segment Description	Desig	Classifications	PHYSICAL and BIOLOGICAL	INORO mo			METALS ug/l		AND QUALIFIERS
11.	Mainstem of Alkali Creek from the source to the confluence with the Eagle River. Mainstem of Milk Creek from the source to the confluence with the Eagle River.		Aq Life Cold 2 Recreation P Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=205/100ml Chla=150 mg/m ²	CN(ac)=0.2	B=0.75 Cl=250 NO ₂ =10 NO ₃ =100 P=110 ug/l (tot)	As(ac)=340 As(ch)=100(Trec) Be(ch)=100(Trec) Cd(ch)=10(Trec) CrIII(ch)=100(Trec)	CrVI(ch)=100(Trec) Cu(ch)=200(Trec) Pb(ch)=100(Trec) Mn(ch)=200(Trec) Mo(ch)=160(Trec)	Ni(ch)=200(Trec) Se(ac/ch)=TVS Zn(ch)=2000(Trec)	
12.	Mainstem of Brush Creek, from the source to the confluence with the Eagle River, including the East and West Forks.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
13.	All lakes and reservoirs within the Gore Range - Eagles Nest and Holy Cross Wilderness Areas.	ow	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CL,CLL)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l ^B	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^B	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
14.	All lakes and reservoirs tributary to the Eagle River except for specific listings in Segment 13.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CL,CLL)°C D.O.=6.0 mg/l D.O.(sp)=T.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l ^B	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^B	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	

RE	GION:12					NUMERIC	CTANDADDC			
BAS	SIN: Roaring Fork River	Desig	Classifications		1	NUMERIC	STANDARDS			TEMPORARY MODIFICATIONS
Strea	m Segment Description	· ·		PHYSICAL and BIOLOGICAL		GANIC ig/l		METALS ug/l		AND QUALIFIERS
1.	All tributaries to the Roaring Fork River system, including all wetlands, within the Maroon Bells/Snowmass, Holy Cross, Raggeds, Collegiate Peaks and Hunter/Fryingpan Wilderness Areas.	ow	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
2.	Mainstem of the Roaring Fork River, including all tributaries and wetlands, from the source to a point immediately below the confluence with Hunter Creek, except for those tributaries included in Segment 1.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
За.	Mainstem of the Roaring Fork River, from a point immediately below the confluence with Hunter Creek, to a point immediately below the confluence with the Fryingpan River. All tributaries to the Roaring Fork River, including wetlands, from a point immediately below the confluence with Hunter Creek to the confluence with the Colorado River, except for those tributaries included in Segment 1 and specific listings in Segments 3b-10.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ² C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
3b.	Mainstem of Red Canyon and all tributaries and wetlands from the source to the confluence with the Roaring Fork River, except for Landis Creek from its source to the Hopkins Ditch Diversion.		Aq Life Cold 2 Recreation N Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02- 10(Trec) ^A Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
3c.	Mainstem of the Roaring Fork River, from a point immediately below the confluence with the Fryingpan River, to the confluence with the Colorado River. Mainstem of Three Mile Creek, including all tributaries and wetlands, from the source to the confluence with the Roaring Fork River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ² C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
3d.	Mainstem of Cattle Creek, including all tributaries and wetlands, from the source to the most downstream White River National Forest boundary.	ow	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	

RE	GION:12					NUMERIC:	STANDARDS			TEMPORARY
	IN: Roaring Fork River m Segment Description	Desig	Classifications	PHYSICAL and BIOLOGICAL		GANIC g/I		METALS ug/l		MODIFICATIONS AND QUALIFIERS
4.	Mainstem of Brush Creek from the source to the confluence with the Roaring Fork River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ² C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)= 0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
5.	Mainstem of the Fryingpan River from the source to the confluence with the North Fork.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ac)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
6.	Mainstem of the Fryingpan River from the confluence with the North Fork to the confluence with the Roaring Fork River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
7.	All tributaries to the Fryingpan River, including all wetlands, except for those tributaries included in Segment 1.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
8.	Mainstem of the Crystal River, including all tributaries and wetlands, from the source to the confluence with the Roaring Fork River, except for specific listings in Segments 1, 9 and 10.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ² C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrV(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
9.	Mainstem of Coal Creek including all tributaries and wetlands from the source to the confluence with the Crystal River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
10a.	Mainstem of Thompson Creek, including all tributaries and wetlands, from the source to the confluence with the Crystal River, except for specific listings in Segment 10b.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.:=6.0 mg/l D.O.:(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.

	REGION:12 ASIN: Roaring Fork River		Classifications		TEMPORARY MODIFICATIONS					
Strea	Stream Segment Description		Ciacomodions	PHYSICAL and BIOLOGICAL	and INORGANIC METALS			AND QUALIFIERS		
10b.	Mainstem of North Thompson Creek, including all tributaries and wetlands, from the source to the White River National Forest boundary. Mainstem of Middle Thompson Creek, including all tributaries and wetlands, from the source to a point immediately below the confluence with the South Branch of Middle Thompson Creek.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
11.	All lakes and reservoirs within the Maroon Bells/Snowmass, Holy Cross, Raggeds, Collegiate Peaks and Hunter/Fryingpan Wilderness Areas.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CL,CLL)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l ^B	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^B	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=50(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS (tr) Zn(ac/ch)=TVS	
12.	All lakes and reservoirs tributary to the Roaring Fork River except for specific listings in Segment 11.		Aq Life Cold 1 Recreation E Water Supply Agriculture DUWS*	T=TVS(CL,CLL)°C Ruedi Res April-Dec T _(WAT) =20.3°C ^D D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5=9.0 E.Coli=126/100ml Chla=8 ug/l ^B	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^B	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	*DUWS Applies only to Leonard Thomas Res and Wildcat Res

RE	GION:12					NUMERIO	OTANDA DDO			
ВА	SIN: North Platte River	Desig	Classifications		1	NUMERIC	STANDARDS			TEMPORARY MODIFICATIONS AND
Stre	eam Segment Description			PHYSICAL and BIOLOGICAL	INORGANIC mg/l			METALS ug/l		QUALIFIERS
1.	All tributaries to the North Platte and Encampment Rivers, including all wetlands, within the Mount Zirkel, Never Summer, and Platte River Wilderness Areas.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
2.	Mainstem of the Encampment River, including all tributaries and wetlands, from the source to the Colorado/Wyoming border, except for those tributaries included in Segment 1.		Aq Life Cold 1 Recreation P Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=205/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
3.	Mainstem of the North Platte River from the confluence of Grizzly Creek and Little Grizzly Creek to the Colorado/Wyoming border.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ² C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
4a.	All tributaries to the North Platte River system, including all wetlands, except for those tributaries included in Segment 1, and specific listings in Segments 4b, 6, 7a and 7b.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Mn(ch)=WS(dis) Mn(ac/ch)=TVS Pb(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
4b.	Mainstem of the Illinois River, including all tributaries and wetlands, from a point immediately below the confluence with Indian Creek to the confluence with the Michigan River except for specific listings in Segments 7a and 7b. Mainstem of the Canadian River below 12E Road to the confluence with the North Platte River. All tributaries which enter the mainstem of the Canadian River from the southwest side of the mainstem.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS Crill(ac)=50(Trec) Crill(ac/ch)=TVS CrVl(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Mn(ch)=WS(dis) Mn(ac/ch)=TVS Pb(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
5a.	Mainstem of the Michigan River from the source to a point immediately below the confluence with the North Fork Michigan River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS	Cu(ac/ch)=TVS Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Mn(ch)=WS(dis) Mn(ac/ch)=TVS Pb(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
5b.	Mainstem of the Michigan River from a point immediately below the confluence with the North Fork Michigan River to the confluence with the North Platte River.		Aq Life Cold 1 Recreation N Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS	Cu(ac/ch)=TVS Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Mn(ch)=WS(dis) Mn(ac/ch)=TVS Pb(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.

RE	GION:12									
ВА	SIN: North Platte River	Desia	Classifications			NUMERI	CSTANDARDS			TEMPORARY MODIFICATIONS
Stre	am Segment Description	Desig	Ciassilications	PHYSICAL and BIOLOGICAL	INORO mo			METALS ug/l		AND QUALIFIERS
6.	Mainstem of Pinkham Creek from the Routt National Forest boundary to the confluence with the North Platte River.		Aq Life Cold 1 Recreation N Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)= 0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS	Cu(ac/ch)=TVS Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
7a.	Mainstem of Government Creek from the boundary of the Colorado State Forest to the confluence with the Canadian River. Mainstem of Spring Creek from the source to the outlet of Spring Creek (Number 31) Reservoir.		Aq Life Cold 2 Recreation N Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=110 ug/l (tot)	As(ac)=340 As(ch)=7.6(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac/ch)=TVS CrIII(ch)=100(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec) Ni(ac/ch)=TVS	Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Fish Ingestion
7b.	Mainstem of Spring Creek from the outlet of Spring Creek (Number 31) Reservoir to the confluence with the Illinois River.		Aq Life Cold 2 Recreation N Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=110 ug/l (tot)	As(ac)=340 As(ch)=7.6(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac/ch)=TVS CrIII(ch)=100(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec) Ni(ac/ch)=TVS	Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Fish Ingestion
8.	All lakes and reservoirs within the Mount Zirkel, Never Summer, and Platte River Wilderness Areas.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CL,CLL)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l ^B	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^B	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrV(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
9.	All lakes and reservoirs tributary to the North Platte and Encampment Rivers except for specific listings in Segment 8.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CL,CLL)°C Lake John April-Dec T _(WAT) =1.2°C North Delaney Lake April-Dec T _(WAT) =20.1°C South Delaney Lake April-Dec T _(WAT) =18.8°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l B	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^B	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIll(ac)=50(Trec) CrIll(ac)=50Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	

RE	GION:12					NUMERIC S	STANDARDS			TEMPODARY
BAS	SIN: Yampa River	Desia	Classifications		_	NOWLING				TEMPORARY MODIFICATIONS AND
Strea	am Segment Description	Desig	Classifications	PHYSICAL and BIOLOGICAL	INORGANIC mg/l			METALS ug/l		QUALIFIERS
1.	All tributaries to the Yampa River, including all wetlands, which are within the Mount Zirkel, Flat Tops and Sarvis Creek Wilderness Areas.	OW	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
2a.	Mainstem of the Yampa River from the confluence with Wheeler Creek to a point immediately above the confluence with Oak Creek.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ^{2C}	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
2b.	Mainstem of the Yampa River from a point immediately above the confluence with Oak Creek to a point immediately below the confluence with Elkhead Creek.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
3.	All tributaries to the Yampa River, including all wetlands, from the source to the confluence with Elk River, except for specific listings in Segments 4-8, 13a-f and 19. Mainstem of the Bear River, including all tributaries and wetlands from the boundary of the Flat Tops Wilderness Area to the confluence with the Yampa River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ² ^C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
4.	Mainstem of Little White Snake Creek from the source to the confluence with the Yampa River.		Aq Life Cold 2 Recreation N Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340(dis) As(ch)=0.02- 10(Trec) ^A Cd(ac)=5 CrIII(ac)=50 CrVI(ac)=50 Cu(ch)=200	Fe(ch)=WS(dis) Pb(ac)=50 Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ac)=2.0 Mo(ch)=160	Ni(ch)=100 Se(ch)=20 Ag(ac)=100 Zn(ac/ch)=2000	All metals are Trec unless otherwise noted.
5.	Mainstem of Chimney Creek, including all tributaries and wetlands, which are not on National Forest lands, from the source to the confluence with the Yampa River.		Aq Life Cold 1 Recreation P Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=205/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=110 ug/l (tot)	As(ac)=340 As(ch)=7.6(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac/ch)=TVS CrIII(ch)=100(Trec) CrVI(ac/ch)=TVS	Cu(ac/ch)=TVS Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
6.	Mainstem of Oak Creek, including all tributaries and wetlands, from the source to a point 0.25 mile below County Road 27.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/I D.O.(sp)=7.0 mg/I pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 CI=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII((ac)=50(Trec) CrIII((ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.

DE	GION:12									
INL	SION. 12					NUMERIC S	STANDARDS			TEMPORARY
BAS	SIN: Yampa River	Desia	Classifications							MODIFICATIONS AND
Strea	am Segment Description	Desig	Classifications	PHYSICAL and BIOLOGICAL		GANIC ng/l		METALS ug/l		QUALIFIERS
7.	Mainstem of Oak Creek, including all tributaries and wetlands, from a point 0.25 mile below County Road 27 to the confluence with the Yampa River.		Aq Life Cold 1 Recreation P Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=205/100ml Chla=150 mg/m ² C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)= 0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS	Cu(ac/ch)=TVS Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
8.	Mainstem of the Elk River including, all tributaries and wetlands, from the source to the confluence with the Yampa River, except for those tributaries included in Segments 1, 20a and 20b.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m² C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot) ^C	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
9.	Deleted.									
10.	Deleted. Fish Creek, including all tributaries and wetlands, from the source to County Road 27, except for specific listings in Segment 20.		Aq Life Cold 2 Recreation N Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	CN(ac)=0.2	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=110 ug/l (tot)	As(ac)=340(dis) As(ch)=100 Cd(ch)=10 Crlll(ch)=100 CrVl(ch)=100 Cu(ac)=200	Pb(ch)=100 Mn(ch)=200 Mo(ch)=160 Ni(ch)=200	Se(ch)=20 Zn(ch)=2000	All metals are Trec unless otherwise noted.
12.	All tributaries to the Yampa River, including all wetlands, from the confluence with the Elk River to the confluence with Elkhead Creek, which are not on National Forest lands, except for specific listings in Segments 11 and 13a-fj.		Aq Life Cold 2 Recreation N Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	CN(ac)=0.2	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=110 ug/l (tot)	As(ac)=340(dis) As(ch)=100 Cd(ch)=10 CrIII(ch)=100 CrVII(ch)=100 Cu(ac)=200	Pb(ch)=100 Mn(ch)=200 Mo(ch)=160 Ni(ch)=200	Se(ch)=20 Zn(ch)=2000	All metals are Trec unless otherwise noted.
13a.	Mainstem of Trout Creek, including all tributaries and wetlands, from the source to the confluence with the Yampa River, which are not on National Forest lands, except for specific listings in Segments 13b, 13c, 13f, and 13g.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
13b.	Mainstem Fish Creek, including all tributaries from County Road 27 downstream to the confluence with Trout Creek, except for specific listings in Segment 13g. Middle Creek and all tributaries, from County Road 27 downstream to the confluence with Trout Creek.		Aq Life Warm 1 Recreation E Agriculture	T=TVS(WS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=110 ug/l (tot)	As(ac)=340 As(ch)=7.6(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac/ch)=TVS CrIII(ch)=100(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=1000(Trec) Middle Creek Mar-Jun Fe(ch)=2090(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	See section 33.6(4) for iron assessment locations. Temporary modification:, Se(ch): "current conditions" for Foidel and Middle Creeks. Expiration date of 12/31/18.
13c.	Mainstem of Trout Creek from the headgate of Spruce Hill Ditch (approximately 2,500 feet north of where County Road 27 crosses Trout Creek) to its confluence with Fish Creek. All tributaries to Trout Creek from the headgate of Spruce Hill Ditch (approximately 2,500 feet north of where County Road 27 crosses Trout Creek) to County Road 179 except for specific listings in 13b.		Aq Life Cold 1 Recreation E Agriculture June through February Water Supply	T=TVS(CS-II)°C D.O.:e6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=110 ug/l (tot) June through February NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=7.6(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac/ch)=TVS CrIII(ac/ch)=TVS Cu(ac/ch)=TVS Cu(ac/ch)=TVS June through February As(ch)=0.02(Trec) CrIII(ac)=50(Trec) CrIII(ac)=TVS	Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec) June through February Fe(ch)=WS(dis) Mn(ch)=WS(dis)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: June through February As(ch)=hybrid Expiration date of 12/31/21.

REGION:12										
11.01011.12					NUME	RIC STANDARDS			TEMPORARY	
BASIN: Yampa River	Desig	Classifications							MODIFICATIONS AND	
Stream Segment Description			PHYSICAL and BIOLOGICAL	and INORGANIC METALS			QUALIFIERS			
Mainstem of Dry Creek, including all tributaries and wetlands, from the source to just above the confluence with Temple Gulch.	UP	Aq Life Warm 2 Recreation E Agriculture	T=TVS(WS-II)°C D.O.=5.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TV S Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=170 ug/l (tot)	As(ac)=340 As(ch)=100(Trec) Cd(ac/ch)=TVS CrIII(ac/ch)=TVS CrIII(ch)=100(Trec) CrV(ac/ch)=TVS Cu(ac/ch)=TVS	Mar-Apr Fe(ch)=3040(Trec) May-Feb Fe(ch)=1110(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac/ch)=TVS Zn(ac/ch)=TVS	See section 33.6(4) for iron assessment locations. Temporary modifications: Fe(ch): Mar-Apr "current condition" Expiration date of 12/31/16. Se(ch): "current conditions" Expiration date of 12/31/18.	
13e. Mainstem of Sage Creek, including all tributaries and wetlands, from its sources to the confluence with the Yampa River.	UP	Aq Life Warm 2 Recreation N Agriculture	T=TVS(WS-II)°C D.O.=5.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TV S Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100 P=170 ug/l (tot)	As(ac)=340 As(ch)=100(Trec) Cd(ac/ch)=TVS CrIII(ac/ch)=TVS CrIII(ch)=100(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Upper Sage Creek Fe(ch)=1250(Trec) Lower Sage Creek Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac/ch)=TVS Zn(ac/ch)=TVS	Break between Upper and Lower Sage Creek is the west border of Section 18, T5N, R87W. See section 33.6(4) for iron assessment locations. Temporary modification: Se(ch): "current conditions" Expiration date of 12/31/18. □	
13f. Mainstem of Trout Creek, including all tributaries and wetlands, from a point immediately below its confluence with Fish Creek to the confluence with the Yampa River.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TV S Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.	
13g. All tributaries to Fish Creek from the confluence with Cow Camp Creek to the confluence with Trout Creek,		Aq Life Warm 1 Recreation E Agriculture	T=TVS(WS-II)°C D.O.=5.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH3(ac/ch)=TV S Cl2(ac)=0.019 Cl2(ch)=0.011 CN=0.005	S=0.002 B=0.75 NO2=0.05 NO3=100 P=170 ug/l (tot)	As(ac)=340 As(ch)=7.6(Trec) Cd(ac)=TVS(Tr) Cd(ch)=TVS CrIII(ac/ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec) Ni(ac/ch)=TVS	Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(Tr) Zn(ac/ch)=TVS	Temporary modification: Se(ch): "current conditions" Expiration date of 12/31/18	
Mainstem of Dry Creek, including all tributaries and wetlands, from the confluence with Temple Gulch to the confluence with the Yampa River near Hayden.	UP	Aq Life Warm 2 Recreation E Agriculture	T=TVS(WS-II)°C D.O.=5.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH3(ac/ch)=TV S Cl2(ac)=0.019 Cl2(ch)=0.011 CN=0.005	S=0.002 B=0.75 NO2=0.05 NO3=100 P=170 ug/l (tot)	As(ac)=340 As(ch)=7.6(Trec) Cd(ac)=TVS(Trec) Cd(ch)=TVS CrIll(ac/ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec) Ni(ac/ch)=TVS	Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(Trec) Zn(ac/ch)=TVS	See section 33.6(4) for iron assessment locations.	

DE	GION:12									1
	SIN: Yampa River		Classifications			NUMER	IC STANDARDS			TEMPORARY MODIFICATIONS
	am Segment Description	Desig		PHYSICAL and BIOLOGICAL	INORGANIC mg/l		METALS ug/l			AND QUALIFIERS
13i.	Mainstem of Grassy Creek, including all tributaries and wetlands, from the source to immediately above the confluence with Scotchmans Gulch.	UP	Aq Life Warm 2 Recreation N Agriculture	T=TVS(WS-II)°C D.O.=5.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH3(ac/ch)=TVS Cl2(ac)=0.019 Cl2(ch)=0.011 CN=0.005	S=0.002 B=0.75 NO2=0.05 NO3=100 P=170 ug/l (tot)	As(ac)=340 As(ch)=100(Trec) Cd(ac/ch)=TVS CrIII(ac/ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec) Ni(ac/ch)=TVS	Se(ac/ch)=TVS Ag(ac/ch)=TVS Zn(ac/ch)=TVS	Temporary modification. Fe(ch): "current conditions" for Grassy Creek. Expiration date of 12/31/16. Temporary modification: Se(ch): "current conditions" Expiration date of 12/31/18. See section 33.6(4) for iron assessment
13j.	Mainstem of Grassy Creek, including all tributaries and wetlands, from the confluence with Scotchmans Gulch to the confluence with the Yampa River near Hayden.	UP	Aq Life Warm 2 Recreation N Agriculture	T=TVS(WS-II)°C D.O.=5.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH3(ac/ch)=TVS Cl2(ac)=0.019 Cl2(ch)=0.011 CN=0.005	S=0.002 B=0.75 NO2=0.05 NO3=100 P=170 ug/l (tot)	As(ac)=340 As(ch)=100(Trec) Cd(ac/ch)=TVS CrIII(ac/ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec) Ni(ac/ch)=TVS	Mar-Jun Se(ac/ch)=TVS Ag(ac/ch)=TVS Zn(ac/ch)=TVS	locations. See section 33.6(4) for selenium assessment locations.
14.	Mainstem of Elkhead Creek, including all tributaries and wetlands, from the boundary of the National Forest lands, to a point immediately below the confluence with Calf Creek. Dry Fork of Elkhead Creek, including all tributaries and wetlands, from the source to a point immediately below 80A Road.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ac)=50(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
15.	Mainstem of Elkhead Creek, including all tributaries and wetlands, from a point immediately below the confluence with Calf Creek to the confluence with the Yampa River. Dry Fork of Elkhead Creek, including all tributaries and wetlands, from a point immediately below 80A Road to the confluence with the Yampa River.		Aq Life Warm 1 Recreation E Water Supply Agriculture	T=TVS(WS-II)°C D.O.=5.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m ²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=170 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrV(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
16.	Deleted									
17. 18.	Deleted. Mainstem of the Little Snake River, including all tributaries and wetlands, from the Routt National Forest boundary to the Colorado/Wyoming border.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	
19.	All tributaries to the Little Snake River, including all wetlands, which are on National Forest lands in Routt County.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch) Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn(ch)=TVS(sc)	

REGION:12			1			II SIANDA			
BASIN: Yampa River	Desig	Classifications			NUMERIO	CSTANDARDS			TEMPORARY MODIFICATIONS
Stream Segment Description	Desig	Classifications	PHYSICAL and BIOLOGICAL		GANIC g/I		METALS ug/l		AND QUALIFIERS
All tributaries to the Yampa River, including wetlands, above the confluence with Elkhead Creek that are within National Forest boundaries, except for specific listings in segment 20b.		Aq Life Cold 1 Recreation U Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=150 mg/m²	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
Mainstem of First Creek from the eastern boundary of state lands in California Park to the confluence with Elkhead Creek. Mainstem of Elkhead Creek from the eastern boundary of state lands in California Park to the National Forest boundary.		Aq Life Cold 1 Recreation N Water Supply Agriculture	T=TVS(CS-I)°C D.O.=6.0 mg/l D.O.(sp)=T.0 mg/l pH=6.5-9.0 E.Coli=630/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=110 ug/l (tot)	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
All lakes and reservoirs which are within the Mount Zirkel, Flat Tops and Sarvis Creek Wilderness Areas.	ow	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CL,CLL)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l ^B	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^B	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
22. All lakes and reservoirs tributary to the Yampa River from the source to the confluence with Elkhead Creek, except for those listed in Segment 21. All lakes and reservoirs tributary to Elkhead Creek from the source to the confluence with the Yampa River, except for specific listings in Segment 23. All lakes and reservoirs tributary to the Little Snake River, including those on National Forest lands.		Aq Life Cold 1 Recreation E Water Supply Agriculture DUWS*	T=TVS(CL,CLL)°C Pearl Lake April-Dec T _(WAT) =19.6°C ^D Stagecoach Res April-Dec T _(WAT) =21.7°C ^D Steamboat Lake April-Dec T _(WAT) =21.6°C ^D D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 Challes ug/l B.C	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^{B,C}	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	*DUWS Applies only to Stagecoach Res. Steamboat Lake and Yampa River Holding Pond
23. Elkhead Reservoir		Aq Life Warm 1 Recreation E Water Supply Agriculture	T=TVS(WL)°C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH=6.5-9.0 E.Coli=126/100ml Chla=8 ug/l ^{B.C}	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS P=25 ug/l (tot) ^{B,C}	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	

STREAM CLASSIFICATIONS and WATER QUALITY STANDARDS - FOOTNOTES

- (A) Whenever a range of standards is listed and referenced to this footnote, the first number in the range is a strictly health-based value, based on the Commission's established methodology for human health-based standards. The second number in the range is a maximum contaminant level, established under the federal Safe Drinking Water Act that has been determined to be an acceptable level of this chemical in public water supplies, taking treatability and laboratory detection limits into account. Control requirements, such as discharge permit effluent limitations, shall be established using the first number in the range as the ambient water quality target, provided that no effluent limitation shall require an "end-of-pipe" discharge level more restrictive than the second number in the range. Water bodies will be considered in attainment of this standard, and not included on the Section 303(d) List, so long as the existing ambient quality does not exceed the second number in the range.
- (B) Total phosphorus (TP) and chlorophyll a standards apply only to lakes and reservoirs larger than 25 acres surface area.
- (C) Total phosphorus and chlorophyll a standards apply only above the facilities listed at 33.5(4).
- (D) Assessment of adequate refuge shall rely on the Cold Large Lake table value temperature criterion and applicable dissolved oxygen standard rather than the site-specific temperature standard.