

Problème de révision

Démonstrations probabilistes de la Formule de Stirling Énoncé

Ce problème propose deux démonstrations probabilistes de la formule de Stirling

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2n\pi}$$

Partie I: Première preuve

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes suivant la loi exponentielle de paramètre 1. Pour $n\in\mathbb{N}$, on pose $S_n=\sum_{k=0}^n X_k$ et pour tout $n\geqslant 1$ on pose $S_n^*=\frac{S_n-n}{\sqrt{n}}$. On admet que S_n^* converge en loi vers la loi $\mathcal{N}\left(0,1\right)$

- 1. Énoncer le théorème central limite
- 2. (a) Montrer, par récurrence sur n, que S_n est de loi $\Gamma(n+1,1)$.
 - (b) En déduire que la densité de S_n^* s'écrit $g_n(x) = a_n h_n(x)$, avec

$$a_n = \frac{n^{n + \frac{1}{2}} e^{-n} \sqrt{2\pi}}{n!}$$

et

$$h_n(x) = \frac{1}{\sqrt{2\pi}} e^{-\sqrt{n}x} \left(1 + \frac{x}{\sqrt{n}}\right)^n \chi_{]-\sqrt{n}, +\infty[}$$

3. En utilisant le théorème central limite, montrer que

$$\lim_{n \to +\infty} \int_0^1 g_n(x) \, \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \int_0^1 e^{-\frac{x^2}{2}} \, \mathrm{d}x$$

4. En utilisant le théorème de la convergence dominée, montrer que

$$\lim_{n \to +\infty} \int_0^1 h_n(x) \, \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \int_0^1 e^{-\frac{x^2}{2}} \, \mathrm{d}x$$

5. En déduire la formule de Stirling :

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

Partie II: Deuxième preuve

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant la loi de poisson de paramètre 1. On pose $S_n = \sum_{k=1}^n X_k \text{ et } S_n^* = \frac{S_n - n}{\sqrt{n}}$

- 6. Soit X une variable aléatoire réelle qui suit une loi de Poisson de paramètre $\lambda > 0$
 - (a) Caractériser la loi de X
 - (b) Donner l'espérance, la variance et la fonction génératrice de X
- 7. Soit X et Y deux variables aléatoires indépendantes suivant les lois de poisson de paramètres respectifs λ et μ . Quelle est la loi de X+Y
- 8. Montrer que S_n est de loi $\mathcal{P}(n)$.
- 9. Montrer que S_{n}^{*} converge en loi vers $S=\mathcal{N}\left(0,1\right)$. En déduire que

$$\forall t \in \mathbb{R}, \quad \mathbb{P}\left(S_n^* > t\right) \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{2\pi}} \int_t^{+\infty} e^{-\frac{x^2}{2}} \, \mathrm{d}x = \mathbb{P}\left(S > t\right)$$

Problème de révision

Démonstrations probabilistes de la Formule de Stirling Énoncé

10. Soit $t \in \mathbb{R}_+^*$

(a) Montrer que
$$\mathbb{P}\left(S_{n}^{*}>t\right)\leqslant\frac{\mathbb{E}\left(S_{n}^{*2}\right)}{t^{2}}$$

(b) En déduire que

$$\int_{0}^{+\infty} \mathbb{P}\left(S_{n}^{*} > t\right) \, \mathrm{d}t \xrightarrow[n \to +\infty]{} \int_{0}^{+\infty} \mathbb{P}\left(S > t\right) \, \mathrm{d}t$$

11. On admet que
$$\int_0^{+\infty} \left(\int_t^{+\infty} e^{-\frac{x^2}{2}} \, \mathrm{d}x \right) \, \mathrm{d}t = \int_0^{+\infty} \left(\int_0^x e^{-\frac{x^2}{2}} \, \mathrm{d}t \right) \, \mathrm{d}x. \text{ Montrer que}$$

$$\int_0^{+\infty} \mathbb{P}(S > t) \, \mathrm{d}t = \frac{1}{\sqrt{2\pi}}$$

12. En appliquant le TCVD pour les séries à la série du terme général $\mathbb{P}(S_n = k) \chi_{\left]0, \frac{k-n}{\sqrt{n}}\right[}$, montrer que

$$\int_0^{+\infty} \mathbb{P}\left(S_n^* > t\right) \, \mathrm{d}t = \frac{1}{\sqrt{n}e^n} \frac{n^{n+1}}{n!}$$

13. En déduire la formule de Stirling