Comparing Classical and Nonclassical Symmetries of Nonlinear Partial Differential Equations

William Helman and Daniel Sinderson

Southern Oregon University

2023

Table of Contents

Introduction

Project Goal

What is a Symmetry?

What is a Differential Equation?

The Born-Infeld and Gibbons-Tsarev Equations

Results

Classical Symmetries Nonclassical Symmetries Something Unexpected

Conclusion

Future Work Open Questions

Project Goal

Our research objective for this project was to calculate the classical and nonclassical symmetry groups for the Born-Infeld equation and the reduced Gibbons-Tsarev equation and compare them.

Definition

A symmetry is a transformation that leaves an object invariant.

Definition

A symmetry is a transformation that leaves an object invariant.

Definition

A symmetry is a change that doesn't change anything.

Let's see this in action using the simple linear equation x - y = 0.

A Non-Example

Example (1)

- For our first transformation, let's define new variables $\bar{x} = x + 1$ and $\bar{y} = y$.
- ▶ Now let's rewrite our equation using these new variables.

$$\bar{x} - \bar{y} = 0$$
 by definition $x + 1 - y = 0$ by substitution $y = x + 1$ by rewriting in slope-intercept form

▶ This transformation is not a symmetry:

$$x - y + 1 \neq x - y$$

A Transformation that is a Symmetry

Example (2)

- Let's define some new variables again $\bar{x} = x + 1$ and $\bar{y} = y + 1$.
- ▶ Now let's rewrite our equation using these new variables.

▶ This transformation is a symmetry:

$$x - y = x - y$$

The graphs of our three equations.

Who cares?

➤ Symmetries help us to understand and to solve equations that we wouldn't normally be able to solve.

Who cares?

- Symmetries help us to understand and to solve equations that we wouldn't normally be able to solve.
- ➤ Symmetries also encode physically meaningful aspects of equations, like conservation laws.

Definition

▶ A differential equation is an equation that contains both an unknown function and information about how that function relates to its rates of change.

Definition

- ▶ A differential equation is an equation that contains both an unknown function and information about how that function relates to its rates of change.
- ➤ Differential equations show up everywhere we model something using information about how that thing changes. This includes everything from population dynamics to planetary orbits.

Definition

- ▶ A differential equation is an equation that contains both an unknown function and information about how that function relates to its rates of change.
- ▶ Differential equations show up everywhere we model something using information about how that thing changes. This includes everything from population dynamics to planetary orbits.
- ▶ Differential equations are different from algebraic equations, and they can't be solved in the same ways.

As an example, let's look a frictionless spring-mass system.

This system can be modeled by the following differential equation.

$$m\ddot{x} = -\kappa x$$

- ▶ Here m is the mass, \ddot{x} is the acceleration, κ is the spring constant, and x is the position.
- ▶ If we set both m and κ to 1, we get $\ddot{x} = -x$.
- This is a simple differential equation with the algebraic solution of $x(t) = c_1 \cos(t) + c_2 \sin(t)$.

This is the graph of our spring system where $c_1 = c_2 = 1$.

➤ The Born-Infeld equation comes from a relativistic formulation of quantum electrodynamics (circa 1930).

- ► The Born-Infeld equation comes from a relativistic formulation of quantum electrodynamics (circa 1930).
- ▶ In classical electrodynamics the energy of a particle grows to infinity as its radius becomes very small.

- ► The Born-Infeld equation comes from a relativistic formulation of quantum electrodynamics (circa 1930).
- ▶ In classical electrodynamics the energy of a particle grows to infinity as its radius becomes very small.
- ► This is a problem if you want to study electrodynamics on the quantum scale.

- ➤ The Born-Infeld equation comes from a relativistic formulation of quantum electrodynamics (circa 1930).
- ▶ In classical electrodynamics the energy of a particle grows to infinity as its radius becomes very small.
- ► This is a problem if you want to study electrodynamics on the quantum scale.
- Max Born and Leopold Infeld's "fix" was to introduce a relativistic factor, similar to how $E=mc^2$ becomes $E=mc^2(1-\sqrt{1-v^2/c^2})$ in special relativity.

► From this new theory, we can derive an equation for electromagnetic waves in space. We get

$$\left(1-\frac{1}{b^2}\bigg(\frac{\partial u}{\partial y}\bigg)^2\right)\frac{\partial^2 u}{\partial x^2}+2\,\frac{1}{b^2}\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^2 u}{\partial x\partial y}-\bigg(1-\frac{1}{b^2}\bigg(\frac{\partial u}{\partial x}\bigg)^2\bigg)\frac{\partial^2 u}{\partial y^2}=0,$$

where b is a constant.

► From this new theory, we can derive an equation for electromagnetic waves in space. We get

$$\left(1 - \frac{1}{b^2} \left(\frac{\partial u}{\partial y}\right)^2\right) \frac{\partial^2 u}{\partial x^2} + 2 \frac{1}{b^2} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial x \partial y} - \left(1 - \frac{1}{b^2} \left(\frac{\partial u}{\partial x}\right)^2\right) \frac{\partial^2 u}{\partial y^2} = 0,$$

where b is a constant.

Setting b = 1 for simplicity, we have our Born-Infeld equation

$$\left(1 - \left(\frac{\partial u}{\partial y}\right)^2\right) \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial x \partial y} - \left(1 - \left(\frac{\partial u}{\partial x}\right)^2\right) \frac{\partial^2 u}{\partial y^2} = 0.$$

$$\left(1 - \left(\frac{\partial u}{\partial y}\right)^2\right) \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial x \partial y} - \left(1 - \left(\frac{\partial u}{\partial x}\right)^2\right) \frac{\partial^2 u}{\partial y^2} = 0$$

Note that this is now a differential equation of a function of two variables, where u = u(x, y).

$$\left(1 - \left(\frac{\partial u}{\partial y}\right)^2\right) \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial x \partial y} - \left(1 - \left(\frac{\partial u}{\partial x}\right)^2\right) \frac{\partial^2 u}{\partial y^2} = 0$$

- Note that this is now a differential equation of a function of two variables, where u = u(x, y).
- ▶ This is called a partial differential equation, because it makes use of these "partial derivatives" where $\partial u/\partial x$ reads as "the partial derivative of u with respect to x".

$$\left(1-\left(\frac{\partial u}{\partial y}\right)^2\right)\frac{\partial^2 u}{\partial x^2}+2\,\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^2 u}{\partial x\partial y}-\left(1-\left(\frac{\partial u}{\partial x}\right)^2\right)\frac{\partial^2 u}{\partial y^2}=0$$

- Note that this is now a differential equation of a function of two variables, where u = u(x, y).
- ▶ This is called a partial differential equation, because it makes use of these "partial derivatives" where $\partial u/\partial x$ reads as "the partial derivative of u with respect to x".
- ▶ Not only is this a PDE, but it's also nonlinear. These equations are usually impossible to solve, and may not possess a general solution.

▶ The Gibbons-Tsarev equation arose from special solutions to the nonlinear Schrödinger equation in 1996.

- ➤ The Gibbons-Tsarev equation arose from special solutions to the nonlinear Schrödinger equation in 1996.
- ► Thus, it comes from studying some special behavior of light, gravitational waves, and plasma oscillations.

- ➤ The Gibbons-Tsarev equation arose from special solutions to the nonlinear Schrödinger equation in 1996.
- ► Thus, it comes from studying some special behavior of light, gravitational waves, and plasma oscillations.
- ▶ Aside from its physical meaning, it has experienced a lot of research interest in a purely mathematical context.

- ➤ The Gibbons-Tsarev equation arose from special solutions to the nonlinear Schrödinger equation in 1996.
- ► Thus, it comes from studying some special behavior of light, gravitational waves, and plasma oscillations.
- Aside from its physical meaning, it has experienced a lot of research interest in a purely mathematical context.
- ▶ By studying the behavior and geometry of equations like Gibbons-Tsarev, we can learn more about how PDE work in general.

▶ Our equation is a reduced form of the Gibbons-Tsarev equation, dropping a +1, term as it arises naturally that way from its so-called "quotient construction". We studied

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial y^2} = 0.$$

► The goal of our project was to find symmetry transformations for these two PDE, both classical and nonclassical, and compare them.

- ► The goal of our project was to find symmetry transformations for these two PDE, both classical and nonclassical, and compare them.
- ▶ It turns out that there's a standard method for calculating both kinds of symmetry transformations for differential equations.

- ► The goal of our project was to find symmetry transformations for these two PDE, both classical and nonclassical, and compare them.
- ▶ It turns out that there's a standard method for calculating both kinds of symmetry transformations for differential equations.

Input Equation \rightarrow Calculate Lie's invariance condition

 \rightarrow Solve linear system of PDEs

 \rightarrow Symmetries!

▶ To guarantee that a transformation is a symmetry, we need to ensure that all aspects of the equation remain the same under the transformation.

- ➤ To guarantee that a transformation is a symmetry, we need to ensure that all aspects of the equation remain the same under the transformation.
- ▶ For a differential equation, this means that the function and any of its derivatives that are present in the equation must not change under the transformation.

- ▶ To guarantee that a transformation is a symmetry, we need to ensure that all aspects of the equation remain the same under the transformation.
- ▶ For a differential equation, this means that the function and any of its derivatives that are present in the equation must not change under the transformation.
- ▶ Lie's invariance condition gives us a way to generate transformations that meet all these requirements.

- ▶ To guarantee that a transformation is a symmetry, we need to ensure that all aspects of the equation remain the same under the transformation.
- ▶ For a differential equation, this means that the function and any of its derivatives that are present in the equation must not change under the transformation.
- Lie's invariance condition gives us a way to generate transformations that meet all these requirements.
- ► If you can solve Lie's invariance condition for your equation, you can find its symmetries.

In general, Lie's invariance condition is the falsely unassuming

$$\Gamma^{(n)}(\Delta)\Big|_{\Delta=0} = 0$$

But there's a lot of complexity hiding under this notation.

Here Γ is the infinitesimal operator, Δ is your differential equation, and n is its order.

For our equations, the infinitesimal operator Γ we need is

$$\Gamma^{(2)} = Y \frac{\partial}{\partial y} + X \frac{\partial}{\partial x} + U \frac{\partial}{\partial u} + U_{[y]} \frac{\partial}{\partial u_y} + U_{[x]} \frac{\partial}{\partial u_x} + U_{[yy]} \frac{\partial}{\partial u_{yy}} + U_{[xy]} \frac{\partial}{\partial u_{xy}} + U_{[xx]} \frac{\partial}{\partial u_{xx}} = 0,$$

where

$$\begin{split} &U_{[y]} = D_y(U) - u_y D_y(Y) - u_x D_y(X), \\ &U_{[x]} = D_x(U) - u_y D_x(Y) - u_x D_x(X), \\ &U_{[yy]} = D_y(U_{[y]}) - u_{yy} D_y(Y) - u_{xy} D_y(X), \\ &U_{[xy]} = D_y(U_{[x]}) - u_{xy} D_y(Y) - u_{xx} D_y(X), \\ &U_{[xx]} = D_y(U_{[x]}) - u_{xy} D_x(Y) - u_{xx} D_x(X), \\ &D_y = \frac{\partial}{\partial y} + u_y \frac{\partial}{\partial u} + u_{yy} \frac{\partial}{\partial u_y} + u_{xy} \frac{\partial}{\partial u_x}, \\ &D_x = \frac{\partial}{\partial x} + u_x \frac{\partial}{\partial u} + u_{xy} \frac{\partial}{\partial u_y} + u_{xx} \frac{\partial}{\partial u_x}. \end{split}$$

➤ The result of putting our PDEs through Lie's invariance condition was a system of 24 linear PDEs for the Born-Infeld equation and 21 for the reduced Gibbons-Tsarev equation.

- ➤ The result of putting our PDEs through Lie's invariance condition was a system of 24 linear PDEs for the Born-Infeld equation and 21 for the reduced Gibbons-Tsarev equation.
- ► Though difficult, these systems were easier to solve than the original single equations because of their linearity.

- ➤ The result of putting our PDEs through Lie's invariance condition was a system of 24 linear PDEs for the Born-Infeld equation and 21 for the reduced Gibbons-Tsarev equation.
- ► Though difficult, these systems were easier to solve than the original single equations because of their linearity.
- ▶ Solving them resulted in the following symmetries.

Classical Symmetries of the Born-Infeld Equation

- $X(x,y,u) = c_1x + c_2u + c_3y + c_4$
- $Y(x,y,u) = c_1y + c_3x + c_5u + c_6$
- $U(x, y, u) = c_1 u c_2 x + c_5 y + c_7$

Classical Symmetries of the reduced Gibbons-Tsarev Equation

- $X(x,y,u) = -2c_5y + (-c_2 + 2c_4)x + c_7$
- $Y(x,y,u) = -\frac{c_1x}{2} + c_4y + c_5u + c_6$
- $V(x,y,u) = c_1y + c_2u + c_3$

▶ Unlike classical symmetries, nonclassical symmetries are not necessarily symmetries of the equation itself.

- ▶ Unlike classical symmetries, nonclassical symmetries are not necessarily symmetries of the equation itself.
- ▶ We need an equation called the invariant surface condition, which is a linear PDE, given by

$$\Delta_I = X(x, y, u) \frac{\partial u}{\partial x} + Y(x, y, u) \frac{\partial u}{\partial y} - U(x, y, u) = 0.$$

- ▶ Unlike classical symmetries, nonclassical symmetries are not necessarily symmetries of the equation itself.
- ▶ We need an equation called the invariant surface condition, which is a linear PDE, given by

$$\Delta_I = X(x, y, u) \frac{\partial u}{\partial x} + Y(x, y, u) \frac{\partial u}{\partial y} - U(x, y, u) = 0.$$

▶ We then seek the symmetries of the PDE system of our equation and the invariant surface condition. Our invariance condition then looks like

$$\Gamma^{(n)}(\Delta)\Big|_{\Delta=0, \Delta_I=0} = 0.$$

➤ The result of running our PDE through the new invariance condition was a system of 28 nonlinear PDE for the Born-Infeld equation and 12 for the reduced Gibbons-Tsarev equation.

- ➤ The result of running our PDE through the new invariance condition was a system of 28 nonlinear PDE for the Born-Infeld equation and 12 for the reduced Gibbons-Tsarev equation.
- ▶ Unlike the classical condition, this was a nonlinear system, and the equations were much harder to solve.

- ➤ The result of running our PDE through the new invariance condition was a system of 28 nonlinear PDE for the Born-Infeld equation and 12 for the reduced Gibbons-Tsarev equation.
- ▶ Unlike the classical condition, this was a nonlinear system, and the equations were much harder to solve.
- ▶ But we did it!

Nonclassical Symmetries of the Born-Infeld Equation

- $X(x,y,u) = c_2x c_5u + c_7y + c_3$
- $Y(x, y, u) = c_1 u + c_2 y + c_7 x + c_4$
- $U(x, y, u) = c_1 y + c_2 u + c_5 x + c_6$

Nonclassical Symmetries of the reduced Gibbons-Tsarev Equation

- $X(x,y,u) = -2c_5y + (2c_4 c_2)x + c_7$
- $Y(x,y,u) = c_4y + c_5u \frac{c_1x}{2} + c_6$
- $V(x,y,u) = c_1y + c_2u + c_3$

Something Unexpected

Do you notice anything?

Classical Symmetries

$$X = c_1 x + c_2 u + c_3 y + c_4$$

$$Y = c_1 y + c_3 x + c_5 u + c_6$$

$$U = c_1 u - c_2 x + c_5 y + c_7$$

Nonclassical Symmetries

$$X = c_2 x - c_5 u + c_7 y + c_3$$

$$Y = c_1 u + c_2 y + c_7 x + c_4$$

$$U = c_1 y + c_2 u + c_5 x + c_6$$

► For each of our equations that we studied, the nonclassical and classical symmetries matched.

- ▶ For each of our equations that we studied, the nonclassical and classical symmetries matched.
- ➤ Somehow, the invariant surface condition and the equations we studied share enough of the same geometry that we get no new symmetries.

- ► For each of our equations that we studied, the nonclassical and classical symmetries matched.
- ➤ Somehow, the invariant surface condition and the equations we studied share enough of the same geometry that we get no new symmetries.
- ▶ Naturally, the next step is to find more examples of equations with this unique property, and try to understand why this is occurring.

- ► For each of our equations that we studied, the nonclassical and classical symmetries matched.
- ➤ Somehow, the invariant surface condition and the equations we studied share enough of the same geometry that we get no new symmetries.
- ▶ Naturally, the next step is to find more examples of equations with this unique property, and try to understand why this is occurring.
- ➤ The Born-Infeld and Gibbons-Tsarev equations are both "Darboux integrable".

- ► For each of our equations that we studied, the nonclassical and classical symmetries matched.
- ➤ Somehow, the invariant surface condition and the equations we studied share enough of the same geometry that we get no new symmetries.
- ▶ Naturally, the next step is to find more examples of equations with this unique property, and try to understand why this is occurring.
- ► The Born-Infeld and Gibbons-Tsarev equations are both "Darboux integrable".
- ► It turns out, that every DI equation that we've checked also has this property.

▶ Just maybe, we could construct a proof that every DI equation has matching classical and nonclassical symmetries.

- ▶ Just maybe, we could construct a proof that every DI equation has matching classical and nonclassical symmetries.
- ▶ Even further, what if we could prove the converse?

- ▶ Just maybe, we could construct a proof that every DI equation has matching classical and nonclassical symmetries.
- ▶ Even further, what if we could prove the converse?
- ► Then we'd have a test for whether or not our equation is DI.

- ▶ Just maybe, we could construct a proof that every DI equation has matching classical and nonclassical symmetries.
- ▶ Even further, what if we could prove the converse?
- ► Then we'd have a test for whether or not our equation is DI.
- ▶ This would be a big result, and great progress toward a test for whether or not a differential equation is solvable in general!

Thank you!