Permit Number 5168

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates (6)	
			lbs/hour	TPY (4)
DC1	Gelwhite Blunger Tank Dust Collector Stack	РМ	0.02	0.08
		PM ₁₀	0.01	0.06
		PM _{2.5}	0.01	0.01
GWDRY1	Gelwhite #1 Steam Dryer Stack	РМ	0.01	0.02
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
GWDRY2	Gelwhite #2 Steam Dryer Stack	РМ	0.01	0.02
	Diyer etaek	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
GWDRY3	Gelwhite #3 Steam Dryer Stack	РМ	0.01	0.02
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
DC2	Gelwhite Pulverizer Dust Collector Stack	РМ	0.08	0.34
		PM ₁₀	0.06	0.25
		PM _{2.5}	0.01	0.04
DC3	Gelwhite Weigh Hopper & Marion	РМ	0.07	0.31
	Mixer Dust Collector Stack	PM ₁₀	0.06	0.23
		PM _{2.5}	0.01	0.04
DC6	Gelwhite Pulverizer Mill Dust Collector	РМ	0.30	1.30
	Stack	PM ₁₀	0.22	0.96
		PM _{2.5}	0.04	0.16

Emission Sources - Maximum Allowable Emission Rates

DC4	Gelwhite Packaging w/ Heater Dust Collector	VOC (combustion)	0.01	0.04
	Stack	NO _x	0.15	0.64
		SO ₂	0.01	0.01
		со	0.12	0.54
		РМ	0.07	0.30
		PM ₁₀	0.05	0.22
		PM _{2.5}	0.01	0.05
BLR2	#2 Cleaver Brooks Boiler Stack	VOC (combustion)	0.05	0.20
		NO _x	0.82	3.61
		SO ₂	0.01	0.02
		со	0.69	3.03
		РМ	0.06	0.27
		PM ₁₀	0.06	0.27
		PM _{2.5}	0.06	0.27
BLR3	#3 Cleaver Brooks Boiler Stack	VOC (combustion)	0.07	0.31
		NO _x	1.30	5.58
		SO ₂	0.01	0.03
		со	1.07	4.69
		РМ	0.10	0.42
		PM ₁₀	0.10	0.42
		PM _{2.5}	0.10	0.42
B15	Dry Process B15 Crude Silo Dust	РМ	0.24	0.88
	Collector Vent	PM ₁₀	0.17	0.65
		PM _{2.5}	0.03	0.11
B16	Dry Process B16 Crude Silo Dust	РМ	0.24	0.88
	Collector Vent	PM ₁₀	0.17	0.65

I	I			1
		PM _{2.5}	0.03	0.11
TK1	#1 Amine Tank Vent	VOC (ethanol)	5.58	1.10
		VOC (benzyl chloride)	<0.01	<0.01
		VOC (methyl chloride)	0.25	0.02
TK2	#2 Amine Tank Vent	VOC (ethanol)	3.72	1.10
ТК3	#3 Amine Tank Vent	VOC (ethanol)	5.58	1.35
		VOC (benzyl chloride)	<0.01	<0.01
		VOC (methyl chloride)	0.25	0.03
TK4	#4 Amine Tank Vent	VOC (ethanol)	3.72	1.08
TK5	#5 Amine Tank Vent	VOC (ethanol)	7.82	1.08
TK6	#6 Amine Tank Vent	VOC (ethanol)	3.72	1.35
BLR10	Thermal Oxidizer #1 Stack	VOC (ethanol)	0.15	0.53
	(During periods when only #1 Dry Process Line (DP1) emissions are routed to Thermal Oxidizer #1 and #2 Dry Process Line (DP2) emissions are routed	VOC (combustion)	0.04	0.17
		VOC (benzyl chloride)	<0.01	-
		Cl ₂	<0.01	-
		HCI	0.63	-
	to Thermal Oxidizer #3)	VOC (methyl chloride)	0.04	-
		NO _x	0.33	1.28
		SO ₂	<0.01	0.02
		со	2.66	10.50
		РМ	0.06	0.24
		PM ₁₀	0.06	0.24
		PM _{2.5}	0.06	0.24
BLR10	Thermal Oxidizer #1 Stack	VOC (ethanol)	0.35	1.13
	(During periods when	VOC (combustion)	0.04	0.17
	DP1 and DP2 emissions are routed	VOC (benzyl chloride)	<0.01	-
Project Numbers: 2/19903 2/199			+	1

_				
		Cl ₂	<0.01	-
		нсі	1.46	-
		VOC (methyl chloride)	0.10	-
		NO _x	0.33	1.28
		SO ₂	<0.01	0.02
		со	2.66	10.50
		РМ	0.06	0.24
		PM ₁₀	0.06	0.24
		PM _{2.5}	0.06	0.24
RBGR	#1 Dry Process Line Mill, Organo	РМ	0.28	1.05
	Rebagger, and Packaging Dust Collector Stack	PM ₁₀	0.21	0.78
		PM _{2.5}	0.03	0.13
BLR12	Thermal Oxidizer #3 Stack	VOC (ethanol)	0.50	1.50
	(Except during periods when DP2 emissions are routed to Thermal	VOC (combustion)	0.02	0.06
		VOC (benzyl chloride)	0.01	-
	Oxidizer #1 and Thermal Oxidizer #3 is	Cl ₂	<0.01	-
	shutdown)	HCI	0.84	-
		VOC (methyl chloride)	0.06	-
		NOx	0.63	2.48
		SO ₂	<0.01	0.01
		СО	3.04	12.00
		РМ	0.02	0.10
		PM ₁₀	0.02	0.10
		PM _{2.5}	0.02	0.10
DC5	#2 Dry Process Line Mill and Packaging	РМ	0.28	1.05
	Dust Collector Stack	PM ₁₀	0.21	0.78
Project Numbers: 248803 2488	1.0	<u> </u>	1	<u>l</u>

		PM _{2.5}	0.03	0.13
BLR13	Thermal Oxidizer #4 Stack	VOC (ethanol)	0.50	1.50
	Stack	VOC (combustion)	0.02	0.09
		VOC (benzyl chloride)	0.01	-
		Cl ₂	<0.01	-
		HCI	0.84	-
		VOC (methyl chloride)	0.06	-
		NO _x	0.58	2.30
		SO ₂	<0.01	0.01
		СО	2.82	11.10
		РМ	0.03	0.12
		PM ₁₀	0.03	0.12
		PM _{2.5}	0.03	0.12
DC7	#3 Dry Process Line Mill, Rebagger, and	РМ	0.28	1.05
	Packaging Dust Collector Stack	PM ₁₀	0.21	0.78
		PM _{2.5}	0.03	0.13
C11	C11 Crude Silo Dust Collector Vent	РМ	0.24	1.03
	Concetor Vent	PM ₁₀	0.17	0.76
		PM _{2.5}	0.03	0.12
C12	C12 Crude Silo Dust Collector Vent	РМ	0.24	1.03
	Concetor Vent	PM ₁₀	0.17	0.76
		PM _{2.5}	0.03	0.12
B12	B12 Crude Silo Dust Collector Vent	РМ	0.24	1.03
	Conector Vent	PM ₁₀	0.17	0.76
		PM _{2.5}	0.03	0.12
AMD	STPP & Soda Ash	PM	0.01	<0.01

1	1			l
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
RXNTK1	#1 Reaction Tank	VOC (ethanol)	0.02	0.06
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.10	0.04
RXNTK2	#2 Reaction Tank	VOC (ethanol)	0.02	0.06
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.11	0.04
PFT1	Flash and Fluid Process #1 Press	VOC (ethanol)	0.03	0.07
	Feed Tank	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.07	0.03
ROOF3	Flash and Fluid Process #3 Press Roof	VOC (ethanol)	1.22	2.70
	Vent	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.06	0.01
PFT3	Flash and Fluid Process #3 Press	VOC (ethanol)	0.22	0.71
	Feed Tank	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
ROOF2	Flash and Fluid Process #2 Press Roof	VOC (ethanol)	0.61	1.81
	Vent	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.03	0.01
FLOAT1	Flash and Fluid Process #1 Float Cells	VOC (ethanol)	3.24	8.34
	(5)	VOC (benzyl alcohol)	0.01	0.01
		VOC (methyl chloride)	0.31	0.16
VFBBGH	Flash and Fluid Process Vibrating	VOC (ethanol)	6.06	10.55
	Fluidized Bed Dryer Dust Collector Stack	VOC (combustion)	0.04	0.16
		VOC (benzyl alcohol)	0.50	0.79
	·			

1			
	VOC (methyl chloride)	0.03	0.01
	NO _x	0.78	2.92
	SO ₂	0.01	0.02
	со	0.66	2.45
	РМ	2.10	7.71
	PM ₁₀	1.53	5.71
	PM _{2.5}	0.25	0.93
Flash and Fluid	PM	0.34	1.26
Collector Stack	PM ₁₀	0.25	0.94
	PM _{2.5}	0.04	0.15
Flash and Fluid Process Schlitterbaun Screen (5)	VOC (ethanol)	0.18	0.47
	VOC (benzyl alcohol)	<0.01	<0.01
	VOC (methyl chloride)	<0.01	<0.01
Flash and Fluid Process #2 Press Feed Tank	VOC (ethanol)	0.03	0.07
	VOC (benzyl alcohol)	<0.01	<0.01
	VOC (methyl chloride)	0.07	0.03
Flash and Fluid Process #1 Press Roof	VOC (ethanol)	0.61	1.81
Vent	VOC (benzyl alcohol)	<0.01	<0.01
	VOC (methyl chloride)	0.03	0.01
Flash and Fluid Process Flash Dryer	VOC (ethanol)	4.65	7.95
Dust Collector Stack	VOC (combustion)	0.05	0.18
	VOC (benzyl alcohol)	0.38	0.61
	VOC (methyl chloride)	0.02	0.01
	NO _x	0.63	2.35
	SO ₂	0.01	0.02
	со	0.96	3.57
	Process ACM Mill Dust Collector Stack Flash and Fluid Process Schlitterbaun Screen (5) Flash and Fluid Process #2 Press Feed Tank Flash and Fluid Process #1 Press Roof Vent Flash and Fluid Process Flash Dryer	NO _x SO ₂ CO PM PM ₁₀ PM _{2.5} PM PM _{2.5} POC (ethanol) VOC (methyl chloride) NO _x SO ₂ SO	NO _x 0.78

		РМ	1.39	5.17
		PM ₁₀	1.03	3.83
		PM _{2.5}	0.17	0.62
7	Flash and Fluid Process Impact Mill	РМ	0.10	0.38
	Dust Collector Stack	PM ₁₀	0.08	0.28
		PM _{2.5}	0.01	0.05
BLR11	Thermal Oxidizer #2 Stack	VOC (ethanol)	0.98	2.42
	Stack	VOC (combustion)	0.06	0.26
		VOC (benzyl chloride)	<0.01	-
		Cl ₂	<0.01	-
		HCI	0.55	-
		VOC (methyl chloride)	0.09	-
		NO _x	1.25	4.94
		SO ₂	0.01	0.03
		СО	5.41	21.33
		РМ	0.09	0.35
		PM ₁₀	0.09	0.35
		PM _{2.5}	0.09	0.35
	Total Thermal Oxidizer Emissions	VOC (benzyl chloride)	-	0.01
	(BLR10, BLR11, BLR12, and BLR13)	Cl ₂	-	0.01
	,	HCI	-	1.67
		VOC (methyl chloride)	-	0.11
TK15	Flash and Fluid Process #15 Tank	VOC (ethanol)	0.03	0.06
	1 100035 #15 TAIR	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.09	0.04
TK16	Flash and Fluid	VOC (ethanol)	0.03	0.06
Project Numbers: 2488	202 249910	<u> </u>		

		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.09	0.04
TK19	Flash and Fluid Process #19 Tank	VOC (ethanol)	0.03	0.07
	1100000 1120 141111	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.09	0.04
SPUTK1	#1 SPU Tank	VOC (ethanol)	0.61	0.19
		VOC (benzyl chloride)	<0.01	<0.01
		VOC (methyl chloride)	0.03	<0.01
SPUTK2	#2 SPU Tank	VOC (ethanol)	0.01	0.01
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.01	0.02
SPUTK3	#3 SPU Tank	VOC (ethanol)	0.01	0.01
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.01	0.02
SPUBB	SPU Unloading (5)	PM	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
SPUPRESS	SPU Press (5)	VOC (ethanol)	0.25	0.97
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.01	<0.01
FBDRYER	SPU Fluidized Bed Dryer Dust Collector	VOC (ethanol)	3.63	4.90
	Stack	VOC (combustion)	0.01	0.04
		VOC (benzyl alcohol)	0.51	0.85
		VOC (methyl chloride)	0.05	0.03
		NO _x	0.16	0.69
		SO ₂	0.01	0.01

		со	0.13	0.58
		РМ	0.34	1.50
		PM ₁₀	0.25	1.11
		PM _{2.5}	0.04	0.18
DC8	SPU Mill Dust Collector Stack	PM	0.04	0.16
	Condition Chain	PM ₁₀	0.03	0.12
		PM _{2.5}	0.01	0.02
BAGGER	SPU Packaging Dust Collector Stack	PM	0.15	0.66
	Condition Chain	PM ₁₀	0.11	0.49
		PM _{2.5}	0.02	0.08
WWTK1	#1 Wastewater Tank	VOC (ethanol)	0.67	2.49
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
CLAR	Wastewater Clarifier Tank (5)	VOC (ethanol)	0.66	2.46
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
WWTK2	Wastewater Fractionating Sludge	VOC (ethanol)	<0.01	<0.01
Tank		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
POND1	#1 Pond (5)	VOC (ethanol)	<0.01	<0.01
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
POND2	#2 Pond (5)	VOC (ethanol)	0.54	1.78
		VOC (benzyl alcohol)	0.01	0.01
		VOC (methyl chloride)	<0.01	<0.01
POND3	#3 Pond (5)	VOC (ethanol)	0.65	2.18

	1			
		VOC (benzyl alcohol)	0.01	0.02
		VOC (methyl chloride)	<0.01	<0.01
POND6	#6 Pond (5)	VOC (ethanol)	<0.01	<0.01
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
FUG	Equipment Leak Fugitives (5)	VOC (ethanol)	0.56	2.45
		VOC (benzyl chloride)	<0.01	<0.01
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
HEXMAIN	Heat Exchanger Maintenance	VOC (ethanol)	2.53	0.22

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

Cl₂ - chlorine

HCl - hydrogen chloride

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Planned startup and shutdown emissions are included. Maintenance activities other than for the Heat Exchangers are not authorized by this permit.

Date:	December 22 2016	