## **KOLOKVIJUM**

# 29 April 2017

### **NAPOMENE**

Postavka zadatka se nalazi na intranet portalu <a href="https://moodle-int.rt-rk.com/">https://moodle-int.rt-rk.com/</a>. Portalu se pristupa pomoću korisničkog imena RAxx-yyyy gde xx predstavlja broj indeksa a yyyy godinu upisa. Šifra je TMDlab7.

Za potrebe kolokvijuma napraviti direktorijum **C:\tmp\student\X\**, gde je X broj indeksa. Rešenje zadatka treba da se nalazi u tom direktorijumu.

Direktorijum **student\X\** zajedno sa rešenjem treba arhivirati i okačiti na lični intranet portal. Direktorijum **C:\tmp\student\X\** ne treba brisati.

### **UVOD**

Hafmanovo kodovanje se primenjuje kao tehnika za kompresiju podataka i veoma je efikasno, tipične uštede su od 20% do 80% zavisno od karakteristike podataka koji se kompresuju. U našem primeru podaci su predstavljeni kao ulazni niz karaktera. Hafmanovo kodovanje umesto kodnih reči fiksne veličine koristi kodne reči promenljive veličine koje se nazivaju Hafmanovi kodovi. Hafmanovo kodovanje koristi informaciju o tome koliko često se svaki podatak na ulazu pojavljaje (frekvencija pojavljivanja) i na osnovu nje za svaki ulazni podatak bira optimalnu vrednost binarnog stringa. Odgovarajući kodovani izlaz se dobija prostim spajanjem binarnih vrednosti ulaznih podataka. Primer je prikazan na slici 1. Više na <a href="https://en.wikipedia.org/wiki/Huffman coding">https://en.wikipedia.org/wiki/Huffman coding</a>.

| Ulazni niz podataka čine karakteri {a, b, c, d, e, f} |     |     |     |     |      |      |
|-------------------------------------------------------|-----|-----|-----|-----|------|------|
| Podaci                                                | a   | b   | С   | d   | е    | f    |
| Frekvecija pojavljivanja                              | 45k | 13k | 12k | 16k | 9k   | 5k   |
| Fiksno kodovanje                                      | 000 | 001 | 010 | 011 | 100  | 101  |
| Hafmanovo kodovanje                                   | 0   | 101 | 100 | 111 | 1101 | 1100 |

Ukupno bita potrebno za kodovanja Fiksnim kodovanjem: 300k bita

Ukupno bita potrebno za kodovanja Hafmanovim kodovanjem:224k bita

Ulaz: a a b d d

Izlaz: 0 + 0 + 101 + 111 + 111 = 00101111111

Slika 1 – Analiza Fiksnog (binarnog) i Hafmanovog kodovanja podataka.

#### **ZADATAK**

- 1. Napisati funkciju *GetHistogram* koja na osnovu niza ulaznih podataka (karakteri) pravi histogram, tj. računa frekvenciju pojavljivanja određenog karaktera. Podatak modelovati kao objekat koji ima najmanje dva atributa, *value* i *freq* koji predstavljaju sam karakter i frekvenciju pojavljivanja konkretnog karaktera, respektivno. Primeri ulaznih podataka dostupan je u *snippets.txt*.
- 2. Na osnovu histograma formirati Hafmanovo stablo prema sledećoj proceduri:
  - Svi elementi (karakteri) su listovi stabla.
  - Dva elementa sa najmanjom verovatnoćom pojavljivanja formiraju novi čvor čiji su potomci ta konkretna dva elementa. Novi čvor ulazi u histogram umesto ta 2 elementa, sa verovatnoćom jednakom zbiru njihovih verovatnoća.
  - Postupak se ponavlja dok se ne isprazni histogram, odnosno dok se ne formira kompletno stablo sa samo jednim elementom koji predstavlja koren.

Napomena: Obezbediti funkcije GetMinFreqElem, MakeNewElem, PutElem i RemoveElem.

3. Koristeći formirano Hafman stablo kodovati primere dostupne u *snippets.txt*. Hafmanov kod određenog karaktera formira se prostim spajanjem binarnih vrednosti (0 i 1) koje se nalaze na putanji do njegove pozicije u Hafman stablu. Za svaki primer napraviti posebnu funkciju koja ispisuje ulazni niz podataka i dobijeni kodovani izlaz (ceo ulazni niz podataka i ceo kodovani izlaz).

Napomena: Obezbediti funkciju GetEncVal koja i ispisuje traženi karaktera i njegovu kodovanu vrednost.



Slika 2 – Ilustracija formiranja Hafman stabla.