DATS 6202 Term 2018-Fall

Machine Learning I

Quiz 1 September 18, 2018

Quiz 1: Solutions

Full Name:				
GWID:				

• DATS 6202, Instructor: Yuxiao Huang

Material Covered

- Data preprocessing
- Linear regression

Note

- The quiz has 100 points.
- The quiz period is 20 minutes.
- The quiz is closed book and closed notes.
- The quiz is closed electronics (e.g., no laptops, netbooks, OLPCs, tablets, iPads, calculators, cellular phones, iPhones, Nexi, iPods, Zunes, Kindles, Nooks).
- There is only one correct answer for each Multiple Choice Question.
- For each Calculation question (if there is any), you must show the essential steps. **No mark** will be given if only the result is provided.

1 Multiple Choice Questions (40 points)

- 1. When imputing the missing values in a dataframe (where the rows are the samples and column variables), which of the following claim is correct?
 - (a) the mean (or mode) of the row should be used for imputing the missing value
 - (b) the mean (or mode) of the column should be used for imputing the missing value
 - (c) the mean (or mode) of the dataframe should be used for imputing the missing value

b

- 2. In data preprocessing, which is the correct order for splitting the data (into training and testing) and standardization?
 - (a) split first, standardize second
 - (b) standardize first, split second
 - (c) both of the above orders are correct

a

- 3. Which are the functions that should be used for standardizing the training and testing data?
 - (a) fit for training, transform for testing
 - (b) fit_transform for training, transform for testing
 - (c) fit_transform for training, fit_transform for testing
 - (d) fit_transform for training, fit for testing

b

- 4. Which of the following claim is correct?
 - (a) One-hot-encoding should be used when encoding categorical target
 - (b) One-hot-encoding should be used when encoding ordinal features
 - (c) One-hot-encoding should be used when encoding nominal features

c

2 Description (60 points)

The linear regression model can be written as

$$\hat{y} = \sum_{j=1}^{d} \mathbf{w}_j \cdot \mathbf{x}_j, \tag{1}$$

where,

- \hat{y} is the predicted value of the target
- d is the number of features
- \mathbf{x}_j is the jth feature
- w_i is the weight of x_i

The rule for updating w_j (where $1 \le j \le d$) can be written as

$$\mathbf{w}_j = \mathbf{w}_j + \Delta \mathbf{w}_j \quad \text{where} \quad \Delta \mathbf{w}_j = \eta \cdot (y - \hat{y}) \cdot \mathbf{x}_j.$$
 (2)

Here,

- Δw_j is the update of w_j
- η is the learning rate
- y is the target
- $y \hat{y}$ is the error
- 1. Explain why η cannot be zero.

If η were zero, Δw_i would always be zero. As a result, w_i would not be updated.

- 2. Explain why η cannot be negative. You should demonstrate that, if η were negative then the updating rule would increase (rather than decrease) the error. You should rely on the following assumption when making your argument.
 - $y \hat{y} > 0$ (i.e., the error is positive)
 - $\mathbf{x}_j > 0$ (i.e., the feature is always positive)

If η were negative, Δw_j would be negative (since the assumption says that both the error and the feature is positive). In turn, w_j would be decreased (based on eq. (2)), \hat{y} would be decreased (based on eq. (1)), and finally the error would be increased.

THIS PAGE INTENTIONALLY LEFT BLANK

(You may use it as scratch paper, but do submit it as part of your completed exam.)