Microcontamination Control

Microcontamination is any micro foreign material or energy that has a detrimental effect on a product or process. For example,

Particles (Solids)

Vibration (Energy)

Ions (in Liquids)

Electromagnetic Interference or Radiation (Energy)

Molecular (Gases)

Electrostatic Discharge (Energy)

Microcontamination control measures in Wafer Fabrication:

- Clean Room
- Ultra Pure Water
- **ESD Control**

Microcontamination Effects

Product or Process:

- Yield
- Performance
- Reliability

Particle Related Failures

Short circuits &/or ESD damaged devices

Microcontamination and Yield (Y)

Poisson postulates that:

- Yield is exponentially inversely proportional to Area of Product.
- Yield is exponentially inversely proportional to Defect Density

The larger the size of a product the easier probabilistically it is subject to contamination by particles. Defect Density is a measure of the cleanliness of the environment. Both means that Yield is directly affected by Microcontamination Control. The smaller the size (the smaller the surface area, the more difficult probabilistically speaking to get contaminated by particles, notwithstanding technologically & machine capability) & the cleaner the environment, the higher the production yield. Device yield should improve as things get smaller according to Poisson, that's how important he attributes failures to contamination causes.

Particulate Contaminants Size & Characteristics

In microcontamination control of particulates, the contaminants size (0.01 to $100\mu m$) & therefore their characteristics we are dealing with:

- Invisible
- Airborne (because of their weightlessness)

Contaminants Size Comparison & Chart

Spittle marks, Finger prints & Smoke particles are all Invisible

Smoke & Dust are Invisible & Airborne (Aerosols)

Cleanroom

A room in which the concentration of airborne particles is controlled and which has one or more clean zones.

Cleanroom Class

The number of particles >0.5um that can be found in 1 cubic foot. Class 1000 clean room will have less than 1000 particles >0.5um in 1 cubic foot.

Class Name		Class Limits									
		0.1		0.2		0.3 Volume Units		0.5	5 Volume Units		
		Volume Units	Volume Units					Volume Units			
SI	English	(m3)	(ft3)	(m3)	(ft3)	(m3)	(ft3)	(m3)	(ft3)	(m3)	(ft3)
M1		350	9,91	75.7	2.14	30.9	0.875	10	0.283		
M1.5	1	1,240	35	265	7.5	16	3	35.3	1		
M2		3,500	99.1	757	21.4	309	8.75	100	2.83		
M2.5	10	12,400	350	2,650	75	1,060	30	353	10		
M3		35,000	991	7,570	214	3,090	87.5	1,000	28.3		
M3.5	100			26,500	750	10,600	300	3,530	100		
M4				75,000	2,140	30,900	875	10,000	283		
M4.5	1,000							35,300	1,000	247	7
M5								100,000	2,830	618	17.5
M5.5	10,000	100	. 1.					353,000	10,000	2,470	70
M6								1,000,000	28,300	6,180	175
M6.5	100,000							3,530,000	100,000	24,700	700
M7								10,000,000	283,300	61,800	1,750

- Filtration
- Airflow Control

Filtration Mechanism:

- Gravity (large)
- Inertial Impaction (large)
- Direct Interception (large)
- Electrostatic (small)
- Diffusion (small)

Worst case overall efficiency occurs at a specific size for HEPA & ULPA:

- HEPA Filter: High Efficiency Particulate Air efficiency 99.997 % @0.3μm diameter.
- ULPA Filter: Ultra-Low Particulate Air efficiency 99.999997 % @ 0.12 μm diameter.

Airflow Control:

70 to 110ft/min or 0.35 to 0.45m/s

- Laminar Flow
- Raised Floor & Balancing
 To remove Standing Recirculating Air (see next slide)

HEPA filters to be changed:

- When airflow speed decreases
- To minimize Energy Consumption

Air Flow Balancing of Raised Floor in Cleanroom

Cleanroom Practice

People are the major source of contaminants (Skin, Sweat & Saliva):

- Cleanroom Apparel (Gowning: Face Mask, Hairnet, Jumpsuit, Booties & Gloves).
- Cleanroom Skills (Education & Training)
- Personal Hygiene (Education & Training)

Tools are also sources of contaminants:

- Tables (Perforated or Not depending on how it affects the airflow).
 - ✓ Temporary storage (Perforated).
 - ✓ Work Table (Solid: Not perforated)
- Chairs (Always perforated).
- Machines & others (Cleaning schedule required).

Cleanroom Practice

Perforated table tops causes particles from the human body to move towards the product.

Horizontal obstructions force air to move horizontally on solid table. Take advantage of this and direct air flow toward operating personnel.

- Cleanroom Level (of Cleanliness): As defined in MIL STD 1246, the size in µm at which no more than one particle will be found per square foot of surface area (example for gloves, table or chairs).
- Not just Cleanroom Class compatibility when making decisions of purchase.