SDH (Synchronous Digital Hierarchy)

Confronto gerarchie PDH ed SDH

- STM (Synchronous Transport Module): livello gerarchico SDH
 - \circ STM-N \rightarrow multiplazione di N segnali STM-1, N = 1,4,16,64
- vantaggi rete SDH:
 - o flessibilità della multiplazione:
 - possibilità di <u>multiplare un singolo segnale</u> tributario ad un <u>qualsiasi livello superiore</u> (es: 2
 Mb/s in un flusso a 622 Mb/s)
 - accesso diretto ai tributari del segnale multiplato senza step di multi-demultiplazione intermedi (appositi puntatori indicano la posizione del tributario all'interno della trama)
 - o protezione, monitoraggio e gestione:
 - <u>5% della trama</u> SDH riservata a <u>byte di overhead</u> per la gestione della rete
 - alta capacità trasmissiva (sistemi ottici)
 - o interfacciamento tra apparati di costruttori diversi:
 - integrazione delle due gerarchie PDH europea e americana
 - interfacce standard (SDH standard internazionale)
 - possibilità di connettere <u>apparati di costruttori diversi</u>

Struttura trama SDH (STM-1)

Multitrama PDH 2 Mb/s

Trama SDH STM-1

- caratteristiche principali:
 - \circ trame di durata $125 \mu s$ (per qualunque livello gerarchico) <u>trasmesse sequenzialmente</u>
 - o ogni ottetto corrisponde ad un canale a 64 Kb/s
 - multiplo intero di 64 Kb/s (permette ad un canale PCM di occupare un time slot)
 - $270 \ colonne \cdot 9 \ righe \cdot 64 \ Kb/s = 155, 52 \ Mb/s$
 - o suddivisa in:
 - **SOH** (Section OverHead)

- SOH = RSOH + MSOH
- funzioni di <u>allineamento trama</u>, <u>monitoraggio degli errori</u>
- Puntatore AU (Puntatore Unità Amministrativa)
 - <u>posizione di inizio dei dati</u> del payload all'interno della trama
- Payload o VC (Virtual Container)
 - VC = POH + Container (canali utenti disponibili)
 - il payload può essere completamente o parzialmente riempito in base alla quantità di traffico utente
 - Es: spedizione di un pacco
 - ullet POH ightarrow etichetta con indirizzo di mittente e destinatario
 - container \rightarrow scatola contenente il pacco
- overhead totale = SOH + POH = 90 byte

Overhead di trasporto

- rete di trasporto SDH:
 - o livello di percorso (PATH)
 - connessione logica tra due punti della rete
 - indipendente da tipo di servizio o mezzo trasmissivo
 - POH (Path OverHead)
 - stabilisce il percorso dalla centrale di trasmissione a quella di ricezione
 - contiene informazioni sulla sorgente e sulla destinazione del VC
 - o livello di sezione (section)
 - sezione di rigenerazione \rightarrow RSOH (Rigenerator Section OverHead)
 - sezione di multiplazione \rightarrow MSOH (Mutiplexer Section OverHead)

Trasporto del PDH nell'SDH

- 1. creazione di un container (C-4) composto da:
 - o bit informativi
 - \circ bit di riempimento (PDH 140 Mb/s ightarrow container STM-1 149 Mb/s)
 - \circ bit di stuffing variabili (flusso PDH asincrono \rightarrow serve una certa tolleranza)
- 2. apposizione dell'etichetta (POH) \rightarrow virtual container (VC-4)
- 3. posizionamento del VC all'interno del payload di una trama STM-1:
 - o posizionamento casuale (viene scritto dal primo istante utile)
 - o spesso i VC vengono spezzati su due trame successive
 - **AU-4** (unità amministrativa) → puntatore alla posizione di inizio del VC
- 4. $\underline{\mathsf{scrittura}}$ del SOH (RSOH + MSOH) \rightarrow trama STM-1
- 5. trasporto della trama lungo la rete sincrona SDH
- 6. la centrale di ricezione svolge le operazioni inverse:
 - o lettura del SOH e dell'AU
 - o ricostruzione del VC
 - o lettura del POH ed estrazione del container
 - o eliminazione dei bit di stuffing
 - o riottenimento del flusso PDH a 140 Mb/s

Mapping all'interno del VC

- bit di tributario \rightarrow occupano i PDH bits disponibili
- adattamento al segnale di clock asincrono \rightarrow giustificazione
 - o in ogni riga del container (9 in totale) sono presenti:
 - 140 bit fissi di riempimento (byte Y + quelli nei byte X, Z)
 - 1 bit di giustificazione positiva JUST (Justification Opportunity Bit) in Z
 - <u>5 bit di controllo giustificazione</u> © (*Justification Control Bit*), uno in ogni X
 - $C = 0,0,0,0,0 \rightarrow JUST$ bit di tributario
 - $C = 1,1,1,1,1 \rightarrow JUST$ bit di stuffing

Byte del POH

- J1 (Path Trace)
 - o primo byte del VC
 - o viene puntato dall'AU
- **G1** (Path Status)
 - o funzione di trasferimento di allarme
 - o segnalazione di guasti, tasso d'errore eccessivo
- **H4** (Position Indicator)
 - o puntatore al primo PDU trasportato dentro il container
- K3 (Automatic Protection Switching channel)
 - o devia automaticamente il traffico su risorse di rete di riserva in caso di guasti

Bit di parità

- BIP-(n,m)
 - o n bit che esprimono il risultato (n = 8)
 - o m byte sul quale calcolare il BIP
- il risultato viene inserito nel byte B3 del POH del VC-4 successivo
- si ottiene una stima del tasso di errore sul VC