Essence of the lecture (29)

凸问题:

• lagrangian function, lagrange dual function

Lagrangian function/Lagrangian: $L(x, \lambda, v) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p v_i h_i(x)$

Lagrange dual function/Dual function: $g(\lambda, v) = \inf_{x \in D} L(x, \lambda, v)$

两条结论:

- 1) $g(\lambda, v)$ 一定是凹函数,因为 $\sup_{x \in D} L(x, \lambda, v)$ 是凸函数(分段极大,保凸操作)
- 2) $\forall \lambda \geq 0$, $\forall v$, $g(\lambda, v) \leq p^*$, 其中 p^* 为原问题的最优值 证明: 设 x^* 为原问题的最优解,则 $f_i(x^*) \leq 0$, $h_i(x^*) = 0$ 回代有 $L(x^*, \lambda, v) = f_0(x^*) + \sum_{i=1}^m \lambda_i f_i(x^*) + \sum_{i=1}^p v_i h_i(x^*) \leq f_0(x^*) = p^*$

例: min $c^T x$ s.t. $Ax = b, x \ge 0$

首先列出其拉格朗日方程

$$L(x,\lambda,\upsilon) = c^T x + \lambda^T (-x) + \upsilon^T (Ax - b)$$

$$= (c^T - \lambda^T + \upsilon^T A)x - \upsilon^T b$$

$$g(\lambda,\upsilon) = \inf_{x \in D} L(x,\lambda,\upsilon) = \begin{cases} -b^T \upsilon & A^T \upsilon - \lambda + c = 0\\ -\infty & otherwise \end{cases}$$

例: min X^TWX $s.t.x_i = \pm 1, i = 1, \ldots, m$

该例中目标函数不一定是凸函数,同时约束条件不是凸集