Alignment

Lecture 7
Sept 14, 2016

ANNOUNCEMENTS

- Codes??
- No class next Wednesday
- Reading presentations

ANNOUNCEMENTS

	Student 1	Student 2	Student 3
Week 4			
Week 5			
Week 6			
Week 7			
Week 8			
Week 9			
Week 10			
Week 11			
Week 12			
Week 13			
Week 14			
Week 15			

PAM1 MATRIX

	Ala A	Arg R	Asn N	Asp D	Cys C	Gln Q	Glu E	Gly G	His H	Ile I	Leu L	Lys K	Met M	Phe F	Pro P	Ser S	Thr T	Trp W	Tyr Y	Val V
Ala A	9867	2	9	10	3	$\tilde{8}$	17	21	2	6	4	2	6	2	22	35	32	0	2	18
Arg R	1	9913	1	0	1	10	0	0	10	3	1	19	4	1	4	6	1	8	0	1
Asn N	4	1	9822	36	0	4	6	6	21	3	1	13	0	1	2	20	9	1	4	1
Asp D	6	0	42	9859	0	6	53	6	4	1	0	3	0	0	1	5	3	0	0	1
Cys C	1	1	0		9973	0	0	0	1	1	0	0	0	0	1	5	1	0	3	2
Gln Q	3	9	4	5	0	9876	27	1	23	1	3	6	4	0	6	2	2	0	0	1
Glu E	10	0	7	56	0	35	9865	4	2	3	1	4	1	0	3	4	2	0	1	2
Gly G	21	1	12	11	1	3	7	9935	1	0	1	2	1	1	3	21	3	0	0	5
His H	1	8	18	3	1	20	1	0	9912	0	1	1	0	2	3	1	1	1	4	1
Ile I	2	2	3	1	2	1	2	0	0		9	2	12	7	0	1	7	0	1	33
Leu L	3	1	3	0	0	6	1	1	4	22	9947	2	45	13	3	1	3	4	2	15
Lys K	2	37	25	6	0	12	7	2	2	4	1	9926	20	0	3	8	11	0	1	1
Met M	1	1	0	0	0	2	0	0	0	5	8	4	9874	1	0	1	2	0	0	4
Phe F	. 1	1	1	0	0	0	0	1	2	8	6	0	4	9946	0	2	1	3	28	0
Pro P	13	5	2	1	1	8	3	2	5	1	2	2	1	1	9926	12	4	0	0	2
Ser S	28	11	34	7	11	4	6	16	2	. 2	1	7	4	3	17	9840	38	5	2	2
Thr T	22	2	13	4	1	3	2	2	1	11	2	8	6	1	5	32	9871	0	2	9
Trp W	0	2	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	9976	1	0
Tyr Y	. 1	0	3	0	3	0	1	0	4	_1	. 1	0	. 0	21	0	1	. 1	2		1
Val V	13	2	1	1	3	2	2	3	3	57	11	1	17	1	3	2	10	0	2	9901

PAM VERSUS DIVERGENCE

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp

PAM250

FIGURE 3.13. The PAM250 mutation probability matrix. From Dayhoff (1978, p. 350, fig. 83). At this evolutionary distance, only one in five amino acid residues remains unchanged from an original amino acid sequence (columns) to a replacement amino acid (rows). Note that the scale has changed relative to Fig. 3.11, and the columns sum to 100. Used with permission.

	A	R	N	D	C	Q	E	G	H	1
Α	13	6	9	9	5	8	9	12	6	8
R	3	17	4	3	2	5	3	2	6	3
N	4	4	6	7	2	5	6	4	6	
D	5	4	8	11	1	7	10	5	6	
C	2	1	1	1	52	1	1	2	2	
Q	3	5	5	6	1	10	7	3	7	
E	5	4	7	11	1	9	12	5	6	
G	12	5	10	10	4	7	9	27	5	
Н	2	5	5	4	`2	7	4	2	15	
1	3	2	2	2	2	2	2	2	2	
L	6	4	4	3	2	6	4	3	5	
K	6	18	10	8	2	10	8	5	8	
М	1	1	1	1	0	1	1	1	1	
F	2	1	2	1	1	1	1	1	3	
P	7	5	5	4	3	5	4	5	5	
S	9	6	8	7	7	6	7	9	6	
Т	8	5	6	6	4	5	5	6	4	
W	0	2	0	0	0	0	0	0	1	
Y	1	1	2	1	3	1	1	1	3	
V	7	4	4	4	4	4	4	5	4	

FROM MUTATIONAL PROBABILITY TO SCORING MATRICES

$$S_{i,j} = 10 * \log_{10} \left(\frac{q_{i,j}}{p_i} \right)$$

	A	R	N	D	C	C
A	13	6	9	9	5	8
R	3	17	4	3	2	5
N	4	4	6	7	2	5
D	5	4	8	11	1	7

Gly	0.089	Arg	0.041
Ala	0.087	Asn	0.040
Leu	0.085	Phe	0.040
Lys	0.081	Gln	0.038
Ser	0.070	Ile	0.037
Val	0.065	His	0.034
Thr	0.058	Cys	0.033
Pro	0.051	Tyr	0.030
Glu	0.050	Met	0.015
Asp	0.047	Trp	0.010

ALIGNMENT – THINK BLAST

Q ANCQE versus ANCQE ANCHE

BLOSUM MATRIX

BLOSUM MATRIX

Advanced Search

PSI-BLAST

PSI-BLAST

PSI-BLAST

PHI-BLAST

HIDDEN MARKOV MODEL

HIDDEN MARKOV MODEL

HIDDEN MARKOV MODEL

(a) Sequence Alignment

(b) Ungapped HMM

M_k Match states

(C) Profile-HMM

M_k Match states

Insert states

Delete states

HIDDEN MARKOV MODEL

HIDDEN MARKOV MODEL

HIDDEN MARKOV MODEL

Sequence: CTTCATGTGAAAGCAGACGTAAGTCA

HIDDEN MARKOV MODEL

fastQ format and Illumina sequence data

fastQ

Description

Uses

fastQ

@HSQ-7001360:67:H88RHADXX:1:1101:1448:2158 1:N:0:CAGATC ATCTATCTGAGACTGATACGCCTTCGGCTTAATTTATACAAG +

fastQ

@HSQ-7001360:67:H88RHADXX:1:1101:1448:2158 1:N:0:CAGATC

- HSQ-7001360= Instrument name
- 67= run ID
- H88RHADXX=Flowcell ID
- 1=lane 1
- 1101=tile number
- 1448= x coordinate
- 2158= y coordinate
- 1=left read
- N=not filtered
- 0=control bit -> (not used anymore)
- CAGATC= adapter sequence

fastQ -> Illumina Seq

https://youtu.be/womKfikWlxM

@HSQ-7001360:67:H88RHADXX:1:1101:1448:2158 1:N:0:CAGAT(

- 1101=tile number
- 1448= x coordinate
- 2158= y coordinate

```
······
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
33
                              104
                                        126
0.2......41
S - Sanger
    Phred+33, raw reads typically (0, 40)
X - Solexa
       Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
 (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```


— Figure 4. Paired-End Sequencing and Alignment ——

Paired-End Reads

