```
import pandas as pd
# Load the CSV file
df = pd.read_csv('/content/car data.csv')
\mbox{\tt\#} Display the first few rows of the <code>DataFrame</code>
df.head()
```

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0

df.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 301 entries, 0 to 300
    Data columns (total 9 columns):
     # Column
                     Non-Null Count Dtype
     ---
     0 Car_Name
                       301 non-null
                                        object
        Year
                       301 non-null
                                        int64
     1
        Selling_Price 301 non-null float64
         Present_Price 301 non-null
Kms_Driven 301 non-null
     3
                                        float64
                                        int64
         Fuel Type
                       301 non-null object
         Seller_Type 301 non-null
Transmission 301 non-null
     6
                                        object
                                        object
     8 Owner
                        301 non-null
                                        int64
    dtypes: float64(2), int64(3), object(4)
    memory usage: 21.3+ KB
final_dataset = df[['Year', 'Selling_Price', 'Present_Price', 'Kms_Driven',
       'Fuel_Type', 'Seller_Type', 'Transmission', 'Owner']]
final_dataset['Current_Year'] = 2021
final_dataset['Age'] = final_dataset['Current_Year']-final_dataset['Year']
final_dataset.drop(['Year'],axis=1,inplace=True)
#drops the column labelled as "year" and doesnt return a copy as inplace = true. and axis = 1 represents columns
final_dataset.drop(['Current_Year'],axis=1,inplace=True)
#drops the column labelled as "Current_year" and doesnt return a copy as inplace = true. and axis = 1 represents columns
final_dataset=pd.get_dummies(final_dataset,drop_first=True)
#removes multiple columns of the dataset as some column contain the same
#information because the original column could assume a binary value.
final_dataset.corr(method ='pearson')
```

#to find the pairwise correlation of all columns in the dataframe

	Selling_Price	Present_Price	Kms_Driven	Owner	
Selling_Price	1.000000	0.878983	0.029187	-0.088344	-0.
Present_Price	0.878983	1.000000	0.203647	0.008057	0.
Kms_Driven	0.029187	0.203647	1.000000	0.089216	0.
Owner	-0.088344	0.008057	0.089216	1.000000	0.
Age	-0.236141	0.047584	0.524342	0.182104	1.
Fuel_Type_Diesel	0.552339	0.473306	0.172515	-0.053469	-0.
Fuel_Type_Petrol	-0.540571	-0.465244	- 0.172874	0.055687	0.
Seller_Type_Individual	-0.550724	-0.512030	-0.101419	0.124269	0.
Transmission_Manual	-0.367128	-0.348715	-0.162510	-0.050316	-0.
					•

```
import matplotlib.pyplot as plt
%matplotlib inline
#to display the plot directly below the code cell.
corrmat = final_dataset.corr(method='pearson')
X= final_dataset.iloc[:,1:]
#slicing the dataset and reomoving the selling price for training the model
Y = final_dataset.iloc[:,0]
#storing the selling price for checking..as this is the value to be predicted
from sklearn.ensemble import ExtraTreesRegressor
#in ensemble predictions of several base estimators are built in with a given learning algorithm.
#we used ExtraTreesRegressor
model = ExtraTreesRegressor()
#This class implements a meta estimator that fits a number of randomized decision trees
#on various sub-samples of the dataset and uses averaging to improve the
#predictive accuracy and control over-fitting.
model.fit(X,Y)
      ▼ ExtraTreesRegressor
     ExtraTreesRegressor()
print(model.feature_importances_)
#shows the feature importance that contribute to the selling price feature
     [4.11963286e-01 4.25127321e-02 3.48229421e-04 7.78686520e-02
      2.12120300e-01 9.23020409e-03 1.11877918e-01 1.34078678e-01]
#plot graph of feature importances for better visualization
feat_importances = pd.Series(model.feature_importances_, index=X.columns)
feat_importances.nlargest(5).plot(kind='barh')
plt.title('Feature Importances')
plt.show()
```



```
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
# Convert categorical variables into numerical representations
encoder = LabelEncoder()
df encoded = df.copy()
for column in df encoded.columns:
    df_encoded[column] = encoder.fit_transform(df_encoded[column])
import numpy as np
import pandas as pd
# Define a function to remove outliers using the IQR method
def remove_outliers(df):
    # Calculate Q1 (25th percentile) and Q3 (75th percentile) for each numerical feature
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    # Calculate the interquartile range (IQR)
    IQR = Q3 - Q1
    # Define lower and upper bounds for outliers detection
    lower\_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    # Identify outliers for each feature
    outliers = (df < lower_bound) | (df > upper_bound)
    # Remove rows containing outliers
    df_no_outliers = df[~outliers.any(axis=1)]
    return df_no_outliers
# Apply the remove outliers function to your dataset
df_clean = remove_outliers(df_encoded)
X= df_clean.iloc[:,1:]
#slicing the dataset and reomoving the selling price for training the model
y = df_clean.iloc[:,0]
#storing the selling price for checking..as this is the value to be predicted
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Reshape the input data for RNN
X_train_rnn = np.expand_dims(X_train.values, axis=2)
X_test_rnn = np.expand_dims(X_test.values, axis=2)
```

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout

# Define and compile the RNN regression model
rnn_model = Sequential([
    LSTM(64, activation='relu', return_sequences=True, input_shape=(X_train_rnn.shape[1], X_train_rnn.shape[2])),
    LSTM(32, activation='relu', return_sequences=True),
    LSTM(16, activation='relu'),
    Dense(64, activation='relu'),
    Dense(64, activation='relu'),
    Dropout(0.5),
    Dense(1) # Output layer for regression
], name='RNN_Model')

# Compile the model
rnn_model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'])

# Print model summary
```

Model: "RNN_Model"

dropout_17 (Dropout)

dense_48 (Dense)

rnn_model.summary()

	Layer (type)	Output Shape	Param #
•	lstm_46 (LSTM)	(None, 8, 64)	16896
	lstm_47 (LSTM)	(None, 8, 32)	12416
	lstm_48 (LSTM)	(None, 16)	3136
	dense_47 (Dense)	(None, 64)	1088

(None, 64)

(None, 1)

Total params: 33601 (131.25 KB) Trainable params: 33601 (131.25 KB) Non-trainable params: 0 (0.00 Byte)

Train the RNN model

history = rnn_model.fit(X_train_rnn, y_train, epochs=200, batch_size=32, validation_data=(X_test_rnn, y_test), verbose=1)

65

```
Epoch 1/200
5/5 [======================] - 80s 200ms/step - loss: 3901.6331 - mae: 57.8545 - val loss: 2958.2617 - val ma
Epoch 2/200
5/5 [=================] - 0s 29ms/step - loss: 3306.0911 - mae: 52.1605 - val_loss: 2032.1295 - val_mae
Epoch 3/200
5/5 [==============] - 0s 31ms/step - loss: 2167.1062 - mae: 40.3247 - val_loss: 862.2363 - val_mae:
Epoch 4/200
Epoch 5/200
Epoch 6/200
5/5 [================] - 0s 29ms/step - loss: 1170.8778 - mae: 26.8142 - val_loss: 401.4681 - val_mae:
Epoch 7/200
5/5 [=================] - 0s 40ms/step - loss: 1663.1354 - mae: 32.8665 - val_loss: 437.7604 - val_mae:
Epoch 8/200
5/5 [======================== - 0s 30ms/step - loss: 1129.6112 - mae: 26.1211 - val_loss: 606.9973 - val_mae:
Epoch 9/200
5/5 [==================== - 0s 31ms/step - loss: 1202.5750 - mae: 26.1289 - val_loss: 589.6293 - val_mae:
Epoch 10/200
Epoch 11/200
5/5 [=============] - 0s 31ms/step - loss: 1033.3127 - mae: 24.0702 - val_loss: 359.1985 - val_mae:
Epoch 12/200
5/5 [=================] - 0s 29ms/step - loss: 941.4180 - mae: 23.8746 - val_loss: 455.6178 - val_mae: 1
Epoch 13/200
5/5 [==================] - 0s 29ms/step - loss: 915.2896 - mae: 23.9115 - val_loss: 412.8951 - val_mae: 1
Epoch 14/200
5/5 [===========] - 0s 30ms/step - loss: 798.5001 - mae: 22.4198 - val_loss: 350.2192 - val_mae: 1
Epoch 15/200
5/5 [======================] - 0s 27ms/step - loss: 814.0058 - mae: 22.9337 - val_loss: 425.4970 - val_mae: 1
Epoch 16/200
5/5 [=================] - 0s 30ms/step - loss: 842.1879 - mae: 23.7323 - val_loss: 449.0308 - val_mae: 1
Epoch 17/200
```

```
5/5 [====================] - 0s 29ms/step - loss: 722.1412 - mae: 21.3155 - val_loss: 397.7488 - val_mae: 1_
    Epoch 18/200
    5/5 [==================] - 0s 34ms/step - loss: 606.5944 - mae: 19.7394 - val_loss: 376.2361 - val_mae: 1
    Epoch 19/200
    5/5 [===========] - 0s 29ms/step - loss: 663.0952 - mae: 20.9217 - val_loss: 352.6595 - val_mae: 1
    Epoch 20/200
    5/5 [====================] - 0s 30ms/step - loss: 592.7635 - mae: 19.5923 - val_loss: 316.1126 - val_mae: 1
    Epoch 21/200
    5/5 [=================] - 0s 28ms/step - loss: 533.0563 - mae: 17.8449 - val_loss: 357.9040 - val_mae: 1
    Epoch 22/200
    5/5 [===========] - 0s 27ms/step - loss: 533.1745 - mae: 18.5314 - val_loss: 320.9663 - val_mae: 1
    Epoch 23/200
    5/5 [============] - 0s 27ms/step - loss: 545.1687 - mae: 18.8340 - val_loss: 318.7091 - val_mae: 1
    Epoch 24/200
    5/5 [===========] - 0s 27ms/step - loss: 642.5916 - mae: 21.0971 - val_loss: 331.1466 - val_mae: 1
    Epoch 25/200
    5/5 [===========] - 0s 24ms/step - loss: 548.3433 - mae: 18.6968 - val_loss: 284.8543 - val_mae: 1
    Epoch 26/200
    5/5 [===============] - 0s 30ms/step - loss: 485.8800 - mae: 17.5050 - val loss: 257.3058 - val mae: 1
    Epoch 27/200
    5/5 [===========] - 0s 28ms/step - loss: 521.7460 - mae: 18.1014 - val_loss: 313.9673 - val_mae: 1
    Epoch 28/200
    5/5 [=============] - 0s 28ms/step - loss: 494.4517 - mae: 17.3549 - val_loss: 294.5209 - val_mae: 1
    Epoch 29/200
# Evaluate the model
loss, mae = rnn_model.evaluate(X_test_rnn, y_test)
print("Test Loss:", loss)
print("Test MAE:", mae)
    2/2 [============= ] - 0s 14ms/step - loss: 384.1722 - mae: 14.7539
    Test Loss: 384.1722412109375
    Test MAE: 14.753941535949707
predictions=rnn_model.predict(X_test_rnn)
predictions1=rnn_model.predict(X_train_rnn)
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test,predictions)
rmse = np.sqrt(mse)
print("RMSE : {:.2f}".format(rmse))
from sklearn.metrics import r2_score
r = r2_score(y_test, predictions)
print("R2 score : {}" . format(r))
    2/2 [======] - 1s 20ms/step
    5/5 [=======] - 0s 12ms/step
    RMSF : 34.15
    R2 score : -0.621487877129272
```

import matplotlib.pyplot as plt

plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')

plt.plot(history.history['mae'], label='Training MAE')
plt.plot(history.history['val_mae'], label='Validation MAE')

Plot training history

plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()

plt.xlabel('Epoch')
plt.ylabel('MAE')
plt.legend()
plt.show()


```
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Reshape the input data for CNN
X_train_cnn = np.expand_dims(X_train.values, axis=2)
X_test_cnn = np.expand_dims(X_test.values, axis=2)
print("Shape of X_train_cnn:", X_train_cnn.shape)
```

Shape of X_train_cnn: (157, 8, 1)

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense
# Define the model
cnn_lstm_model = Sequential([
    Conv1D(32, kernel_size=3, activation='relu', input_shape=(X_train_cnn.shape[1], X_train_cnn.shape[2])),
    MaxPooling1D(pool_size=2),
    LSTM(64, activation='relu', return_sequences=True),
    LSTM(32, activation='relu'),
    Dense(64, activation='relu'),
    Dropout(0.5),
    Dense(1) # Output layer for regression
], name='CNN_LSTM_Model')
# Compile the model
cnn_lstm_model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'])
# Print model summary
cnn_lstm_model.summary()
```

Model: "CNN_LSTM_Model"

Layer (type)	Output Shape	Param #
conv1d_14 (Conv1D)	(None, 6, 32)	128
<pre>max_pooling1d_14 (MaxPooli ng1D)</pre>	(None, 3, 32)	0
lstm_49 (LSTM)	(None, 3, 64)	24832
lstm_50 (LSTM)	(None, 32)	12416
dense_55 (Dense)	(None, 64)	2112
dropout_21 (Dropout)	(None, 64)	0
dense_56 (Dense)	(None, 1)	65

Total params: 39553 (154.50 KB) Trainable params: 39553 (154.50 KB) Non-trainable params: 0 (0.00 Byte)

Train the model

 $\label{eq:history} \mbox{ history = cnn_lstm_model.fit}(\mbox{$X_{\rm train_cnn}$, $y_{\rm train}$, epochs=200, batch_size=32, validation_data=(\mbox{$X_{\rm train_cnn}$, $y_{\rm train}$, verbose}), \\ \mbox{ verbose}(\mbox{$X_{\rm train_cnn}$, $y_{\rm train_cnn}$, y_{\rm

```
Epoch 1/200
Epoch 2/200
Epoch 3/200
5/5 [============] - 0s 21ms/step - loss: 3797.7280 - mae: 57.0247 - val_loss: 3004.6978 - val_mae
Epoch 4/200
5/5 [===============] - 0s 26ms/step - loss: 3216.6150 - mae: 51.9373 - val_loss: 1968.6804 - val_mae
Epoch 5/200
5/5 [======
         Epoch 6/200
5/5 [==============] - 0s 33ms/step - loss: 1726.6736 - mae: 33.4788 - val_loss: 672.7242 - val_mae:
Epoch 7/200
Epoch 8/200
5/5 [=================] - 0s 31ms/step - loss: 897.1542 - mae: 23.5530 - val_loss: 582.9091 - val_mae: 1
Epoch 9/200
5/5 [=================] - 0s 31ms/step - loss: 1008.9902 - mae: 25.7363 - val_loss: 445.6202 - val_mae:
Epoch 10/200
5/5 [============] - 0s 35ms/step - loss: 866.2522 - mae: 22.9947 - val_loss: 344.4889 - val_mae: 1
Epoch 11/200
5/5 [============] - 0s 32ms/step - loss: 593.8239 - mae: 19.2531 - val_loss: 302.8698 - val_mae: 1
Epoch 12/200
5/5 [============] - 0s 34ms/step - loss: 848.7917 - mae: 23.3835 - val_loss: 556.7017 - val_mae: 2
Epoch 13/200
5/5 [===========] - 0s 33ms/step - loss: 741.9877 - mae: 22.2037 - val_loss: 343.4616 - val_mae: 1
5/5 [=====================] - 0s 34ms/step - loss: 641.7149 - mae: 19.2710 - val_loss: 339.5026 - val_mae: 1
Epoch 15/200
5/5 [=================] - 0s 36ms/step - loss: 567.3409 - mae: 18.7044 - val_loss: 389.2560 - val_mae: 1
Epoch 16/200
```

```
5/5 [====================] - 0s 37ms/step - loss: 603.2859 - mae: 20.1766 - val_loss: 305.7768 - val_mae: 🗛
    Epoch 17/200
    5/5 [=================] - 0s 32ms/step - loss: 600.6036 - mae: 19.8751 - val_loss: 319.2968 - val_mae: 1
    5/5 [============] - 0s 34ms/step - loss: 514.9638 - mae: 18.3868 - val_loss: 334.4675 - val_mae: 1
    Epoch 19/200
    5/5 [====================] - 0s 32ms/step - loss: 517.1215 - mae: 18.8208 - val_loss: 319.2922 - val_mae: 1
    Epoch 20/200
    5/5 [=================] - 0s 35ms/step - loss: 515.7431 - mae: 17.6412 - val_loss: 309.6314 - val_mae: 1
    Epoch 21/200
    5/5 [==================] - 0s 40ms/step - loss: 626.6337 - mae: 19.8402 - val_loss: 307.6683 - val_mae: 1
    Epoch 22/200
    5/5 [============] - 0s 36ms/step - loss: 597.8000 - mae: 19.1396 - val_loss: 300.1831 - val_mae: 1
    Epoch 23/200
    5/5 [============] - 0s 37ms/step - loss: 557.7083 - mae: 18.5409 - val_loss: 300.2847 - val_mae: 1
    Epoch 24/200
    5/5 [===========] - 0s 41ms/step - loss: 520.9959 - mae: 18.7248 - val_loss: 294.9996 - val_mae: 1
    Epoch 25/200
    5/5 [=================] - 0s 32ms/step - loss: 519.4893 - mae: 18.2673 - val_loss: 304.5624 - val_mae: 1
    Epoch 26/200
    5/5 [======================] - 0s 19ms/step - loss: 463.2341 - mae: 17.4720 - val_loss: 275.5735 - val_mae: 1
    Epoch 27/200
    Epoch 28/200
    Epoch 29/200
# Evaluate the model on the test data
loss, mae = cnn_lstm_model.evaluate(X_test_cnn, y_test, verbose=0)
print("Test Loss:", loss)
print("Test MAE:", mae)
    Test Loss: 368.05810546875
    Test MAE: 15.046069145202637
predictions=cnn lstm model.predict(X test cnn)
predictions1=cnn_lstm_model.predict(X_train_cnn)
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test,predictions)
rmse = np.sqrt(mse)
print("RMSE : {:.2f}".format(rmse))
from sklearn.metrics import r2_score
r = r2_score(y_test, predictions)
print("R2 score : {}" . format(r))
    2/2 [======= ] - 1s 8ms/step
    5/5 [=======] - 0s 4ms/step
    RMSE : 32.20
    R2 score : -0.4416882326069915
```

Plot training and validation loss

Plot training and validation MAE

plt.title('Training and Validation Loss')

plt.title('Training and Validation MAE')

plt.xlabel('Epoch')
plt.ylabel('Loss')

plt.xlabel('Epoch')
plt.ylabel('MAE')

plt.legend()
plt.show()

plt.legend()
plt.show()

plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')

plt.plot(history.history['mae'], label='Training MAE')
plt.plot(history.history['val_mae'], label='Validation MAE')

Training and Validation Loss

Training and Validation MAE 60 Training MAE Validation MAE 50 40 30 20 10 25 50 75 100 125 150 175 200 Epoch

from sklearn.ensemble import RandomForestRegressor
regressor=RandomForestRegressor()

from sklearn.model_selection import train_test_split #class to divide the data into train and validation set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
#we divide the data into 2 parts :- 80% train and 20% test data
and random_state is used to guarantee that same sequence of
#random numbers are generated each time you run the code.
#And unless there is some other randomness present in the process,
#the results produced will be same as always.

import numpy as np $n_{\text{estimators}} = [\text{int}(x) \text{ for } x \text{ in np.linspace}(\text{start} = 100, \text{ stop} = 1200, \text{ num} = 12)]$ # $n_{\text{estimators}}$ is a parameter of the random forest regressor which is used to control no of trees in the forest #so we use 100 2001200 trees for the model print($n_{\text{estimators}}$)

[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200]

```
#Randomized Search CV
# Number of features to consider at every split
max_features = ['auto', 'sqrt'] # we first consider all the featurees and
#then sqare root number of features to train the model
# Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(5, 30, num = 6)]
#we create trees with 5 10 15 for each model...and train it
# Minimum number of samples required to split a node
min_samples_split = [2, 5, 10, 15, 100]
# we split as 2 nodes forst then 5 then 10 like that till 100 from the list
# Minimum number of samples required at each leaf node
from sklearn.model selection import RandomizedSearchCV
#Randomized search on hyper parameters.
#used to select the best parameter for the model
random_grid = {'n_estimators': n_estimators,
               'max_features': max_features,
               'max_depth': max_depth,
               'min_samples_split': min_samples_split,
               'min_samples_leaf': min_samples_leaf}
print(random_grid)
     {'n estimators': [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200], 'max features': ['auto', 'sqrt'], 'ma
rf = RandomForestRegressor()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations
rf_random = RandomizedSearchCV(estimator = rf, param_distributions = random_grid,scoring='neg_mean_squared_error', n_iter =
rf_random.fit(X_train,y_train)
     Fitting 5 folds for each of 10 candidates, totalling 50 fits
     [CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=900; total time=
     [CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=900; total time=
     [CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=900; total time=
                                                                                                                         1
     [CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=900; total time=
                                                                                                                         1
     [CV] END max depth=10, max features=sqrt, min samples leaf=5, min samples split=5, n estimators=900; total time=
     [CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=1100; total time=
     [CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=1100; total time=
     [CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=1100; total time=
     [CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=1100; total time=
     [CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=1100; total time=
     /usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_forest.py:413: FutureWarning: `max_features='auto'` has bee
     [CV] END max depth=15, max features=auto, min samples leaf=5, min samples split=100, n estimators=300; total time=
     /usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_forest.py:413: FutureWarning: `max_features='auto'
     [CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=300; total time=
     /usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_forest.py:413: FutureWarning: `max_features='auto'` has be@
     [CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=300; total time=
     /usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_forest.py:413: FutureWarning: `max_features='auto'`
       warn(
     [CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=300; total time=
     /usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_forest.py:413: FutureWarning: `max_features='auto'` has be
     [CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=300; total time=
     /usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_forest.py:413: FutureWarning: `max_features='auto'` has be
     [CV] END max depth=15, max features=auto, min samples leaf=5, min samples split=5, n estimators=400; total time=
     /usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_forest.py:413: FutureWarning: `max_features='auto'` has bea
       warn(
     [CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estimators=400; total time=
     /usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_forest.py:413: FutureWarning: `max_features='auto'` has be
```