## Lipid-related Genetic Variants and Lipid Outcomes in a Cohort of Chilean Children

Ann Von Holle, Anne Justice, Misa Graff, Kari E. North, UNC, Chapel Hill, NC; Estela Blanco, Sheila Gahagan, UCSD, San Diego, CA; Bárbara Angel, Unidad de Nutrición Pública INTA, Univ de Chile, Santiago, Chile; José Luis Santos, Pontificia Univ Católica de Chile, Santiago, Chile

March 2, 2017

#### Lipid concentrations

- Are a recognized heritable risk factor for cardiovascular disease (CVD)
- Associate with >150 loci in adults
- Vary across ancestral groups
- Include high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and triglycerides (TG).

## Genetic architecture across racial/ethnic groups

#### Genetic Architecture

'...Loci influencing the trait, direction and magnitude of genetic effects, and proportions of phenotypic variation explained...'.1

- Genetic architecture underlying lipid traits is similar across ancestral groups for adults.<sup>1</sup>
- Unclear if lipid-related loci associations found in adults extend to younger age groups.
  - One European study establishes continuity of associations across the age spectrum<sup>2</sup>, but evidence is sparse in Hispanic/Latino (HL) populations.

<sup>&</sup>lt;sup>1</sup> M. Coram et al. "Genome-wide Characterization of Shared and Distinct Genetic Components that Influence Blood Lipid Levels in Ethnically Diverse Human Populations". In: *The American Journal of Human Genetics* 92.6 (June 2013), pp. 904–916. DOI: 10.1016/j.ajpg.2013.04.025.

<sup>&</sup>lt;sup>2</sup>E. Tikkanen et al. "Association of Known Loci With Lipid Levels Among Children and Prediction of Dyslipidemia in Adults". In: Circulation: Cardiovascular Genetics 4.6 (Dec. 1, 2011), pp. 673–680. DOI: 10.1161/GIRGGENETICS.111:960369:

#### Aims

- **Aim 1** Estimate association between lipid risk variants first identified in adults and adolescent lipid traits from Santiago Longitudinal Cohort Study (SLCS), a Chilean infancy cohort<sup>3</sup>.
- **Aim 2** Compare results between SLCS and Cardiovascular Risk in Young Finns Study Cohort<sup>4</sup>.

<sup>&</sup>lt;sup>3</sup>B. Lozoff et al. "Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants". In: *Pediatrics* 112.4 (Oct. 2003), pp. 846–854.

<sup>&</sup>lt;sup>4</sup>E. Tikkanen et al. "Association of Known Loci With Lipid Levels Among Children and Prediction of Dyslipidemia in Adults". In: Circulation: Cardiovascular Genetics 4.6 (Dec. 1, 2011), pp. 673–680. DOI: 10.1161/CIRCUENETECS.111.960369

### Sample



- 1,645 infants began SLCS between 1991-1996
- Current sample recruited from n=888, which were 2 of 3 randomized control trial groups
- n=677 with infancy and adolescent data and of those n=546 with genotyped data in analyses that follow
- Low to middle income status in Chile.
- Ancestrally mixed American Indian and Spanish descent families
- Lipid traits measured after overnight fasting at mean age 17 years.

#### Methods

- 1. Test additive association between lipid traits and adequately powered single risk variants.
  - 76 common lipid variants selected from a European genome-wide meta-analysis with strongest independent signal<sup>5</sup>.
  - Association tests include 6 single variants with a priori power > 0.80.
- Assess the association of weighted genetic risk scores (wGRS) on lipid traits using linear regression model.
  - Coefficients for wGRS and power calculations based on European adult association studies<sup>6</sup>.
- 3. Characterize proportion of variance explained by lipid variants.

<sup>&</sup>lt;sup>5</sup>M.-j. Buscot et al. "The Combined Effect of Common Genetic Risk Variants on Circulating Lipoproteins Is Evident in Childhood: A Longitudinal Analysis of the Cardiovascular Risk in Young Finns Study". In: *PLOS ONE* 11.1 (Jan. 5, 2016). Ed. by D. Fardo, e0146081. DOI: 10.1371/journal.pone.0146081.

<sup>&</sup>lt;sup>6</sup>T. M. Teslovich et al. "Biological, clinical and population relevance of 95 loci for blood lipids". In: Nature 466.7307 (Aug. 5, 010), pp. 707–713, DOI: 10.1038/nature09270.

#### 1. Association tests

 We assessed single variant associations using linear regression for HDL-C, LDL-C, TG, assuming an additive genetic model, adjusted for sex and ancestry (via principal components).

#### Sample Model for HDL

$$HDL_i = \beta_0 + SNP_i\beta_1 + sex_i\beta_2 + ANCESTRY_i\beta + \epsilon_i$$

- SNP<sub>i</sub> represents one single nucleotide polymorphism (SNP) with 'genotypes were coded as 0, 1, or 2 when directly genotyped or as a predicted allele dosage (range, 0-2) when imputed.'<sup>7</sup>
- Only six variants from the Chilean sample met the a priori threshold of power > 0.8 to detect an association based on effect sizes from GWAS<sup>8</sup>.

<sup>&</sup>lt;sup>7</sup>E. Tikkanen et al. "Association of Known Loci With Lipid Levels Among Children and Prediction of Dyslipidemia in Adults". In: Circulation: Cardiovascular Genetics 4.6 (Dec. 1, 2011), pp. 673–680. DOI: 10.1161/CIRCGENETICS.111.960369.

<sup>8</sup>T. M. Teslovich et al. "Biological, clinical and population relevance of 95 loci for blood lipids". In: Nature 466.7307 (Aug. 5, 2010), pp. 707–713. DOI: 10.1038/nature09270.

## 2. Polygenic risk scores

 Regress phenotypes onto weighted trait-specific genetic risk scores (GRS).

```
Sample model for HDL: HDL_i = \beta_0 + \beta_1 GRS1_i + \epsilon_i GRS for HDL-C:
```

 All GRS are standardized in the regression models: regression coefficient for GRS indicates a one unit change in SD of GRS.

## 3. Proportion of variance explained by SNPs

- Linear models containing all lipid-related SNPs related to a specific phenotype, such as HDL-C, will be covariates.
- The continuous lipid phenotype is the outcome.
- Differences in R<sup>2</sup> will be calculated between models with and without the SNPs to estimate h<sup>2</sup>.

```
Model for HDL: HDL_i = b0 + b1* rs4660293 + b2 * rs2814944 + b3 * rs4731702 + b4 * rs2923084 + b5 * rs7134375 + b6 * rs7134594 + b7 * rs1532085 + b8 * rs3764261 + b9 * rs2925979 + b10 * rs4148008 + b11 * rs4129767 + b12 * rs737337 + b13 * rs1800961 + b14 * rs6065906 + b15 * rs1689800 + b16 * rs4846914 + b17 * rs12328675 + b18 * rs2972146 + b19 * rs6450176 + b20 * rs605066 + b21 * rs1084651 + b22 * rs9987289 + b23 * rs2293889 + b24 * rs581080 + b25 * rs1883025 + b26 * rs3136441 + b27 * rs4759375 + b28 * rs4765127 + b29 * rs838880 + b30 * rs2652834 + b31 * rs16942887 + b32 * rs11869286 + b33 * rs7241918 + b34 * rs12967135 + b35 * rs7255436 + b36 * rs386000 + b37 * rs181362 + b38 * rs13107325 + \epsilon_i
```

#### **Platform**

- Multi-Ethnic Global Array (MEGA)
- Imputation with 1000 Genomes Phase III Ad Mixed American (AMR) reference sample.

### Sample descriptive statistics

|                  | Chile          |                | Finland        |                |
|------------------|----------------|----------------|----------------|----------------|
| Measure          | n=263          | n=283          | n=661          | n=555          |
| log(TG (mmol/l)) | 1.44 (0.53)    | 1.38 (0.6)     | 0.900 (0.37)   | 0.911 (0.39)   |
| LDL-C (mmol/l)   | 5.26 (1.55)    | 5.02 (1.53)    | 3.07 (0.79)    | 2.91 (0.79)    |
| HDL-C (mmol/l)   | 2.3 (0.77)     | 2.05 (0.66)    | 1.55 (0.29)    | 1.34 (0.24)    |
| TC (mmol/l)      | 8.55 (1.79)    | 7.96 (1.65)    | 5.02 (0.89)    | 4.67 (0.84)    |
| Age (years)      | 16.77 (0.3)    | 16.76 (0.31)   | 18             | 18             |
| BMI (kg/m2)      | 23.25 (5.33)   | 22.31 (5.12)   | _              | _              |
| HDL wGRS         | 33.13 (3.47)   | 33.20 (3.42)   | 32.46 (3.36)   | 32.62 (3.41)   |
| LDL wGRS         | 39.96 (6.38)   | 39.81 (6.40)   | 42.1 (6.60)    | 41.9 (6.90)    |
| TG wGRS          | 138.84 (17.33) | 138.32 (17.40) | 132.71 (16.81) | 131.91 (15.72) |

Note: Triglycerides (TG) are log transformed in all analyses.

## Four of the seven association tests were nominally statistically significant.



Figure 1. Candidate single variant tests of association by variant and sample

# wGRS has stronger association for each lipid outcome in Chilean versus Finnish sample except LDL-C.



<sup>\*</sup>Coefficients represent change in outcome per 1 SD change in wGRS, adjusted for first five principal components representing ancestry.

Figure 2. wGRS regression coefficients by sample and sex



ntroduction Aims Methods Results Summary

## LDL-C-related variants explain much less variance in Chilean sample.



Figure 3. Proportion of lipid traits variance explained by lipid-related variants,

### Summary

- We found meaningful and statistically significant associations relating lipid loci in a HL cohort of Chilean adolescents despite the potential for bias given different haplotype structures across populations.
- Significant associations support concordance of effects across European and HL populations found in adults for these loci<sup>9</sup>.
- LDL-C associations are not statistically significant although selections based on power under assumptions of European effect size.
  - Possibility that either linkage disequilibrium or different causal variant is responsible for the failure to detect a difference<sup>10</sup>.
- Genetic risk evident in childhood presents across different populations, emphasizing younger ages as a point for intervention.

<sup>&</sup>lt;sup>9</sup>D. Weissglas-Volkov et al. "Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci". In: Journal of Medical Genetics 50.5 (May 2013), pp. 298–308. DOI: 10.1136/jmedgenet-2012-101461.

<sup>10</sup> J. E. Below and E. J. Parra. "Genome-Wide Studies of Type 2 Diabetes and Lipid Traits in Hispanics". In: Current Diabetes