The angle between  $\underline{u}$  and  $\underline{v}$  is known to be

$$u \cdot v = |u| \cdot |v| \cos 60^{\circ}$$

$$1 - a - 1 = \sqrt{3} \cdot \sqrt{2 + a^2} \cdot \frac{1}{2}$$

$$-2a = \sqrt{3(2 + a^2)}$$

$$4a^2 = 6 + 3a^2$$

$$a^2 = 6$$

$$a = \pm \sqrt{6}$$

Consideration of the earlier equation,

$$-2a = \sqrt{3(2+a^2)}$$

shows that the value of  $a = -\sqrt{6}$  must be chosen since the right hand side is positive,  $a = -\sqrt{6}$ 

6. 
$$a = -2 + \sqrt{v^2 + 5}$$
  
 $\frac{dv}{dt} = -2 + \sqrt{v^2 + 5}$   
 $\frac{dv}{dt} = \frac{1}{-2 + \sqrt{v^2 + 5}}$ 

The time taken for the velocity to go from v = 3 to v = 10 is  $t = \int_3^{10} \frac{dv}{-2 + \sqrt{v^2 + 5}}$ 

Using graphics calculator, t = 1.7 seconds.

MAV Specialist Mathematics Examination 2, Solutions

## 2002 Specialist Mathematics Written Examination 2 (Analysis task) Suggested answers and solutions

1. a. 
$$\overrightarrow{OC} = 2\cancel{i} - 6\cancel{j}$$
  
 $\overrightarrow{OS} = 8\cancel{i} - 4\cancel{j}$   
 $\overrightarrow{CS} = \overrightarrow{CO} + \overrightarrow{OS}$   
 $= -\overrightarrow{OC} + \overrightarrow{OS}$   
 $= -2\cancel{i} + 6\cancel{j} + 8\cancel{i} - 4\cancel{j}$   
 $= 6\cancel{i} + 2\cancel{j}$   
 $|\overrightarrow{CS}| = \sqrt{36 + 4}$   
 $= \sqrt{40}$   
 $= 2\sqrt{10}$   
 $= 6.32...$ 

Distance between the cargo ship and the sailing ship at 12:00 midday is 6.3 kilometres to the nearest tenth of a kilometre.

b. i. 
$$\overrightarrow{OP} = 6m\underline{i} - 2m\underline{j}$$
  
 $\overrightarrow{PS} = \overrightarrow{PO} + \overrightarrow{OS}$   
 $= -\overrightarrow{OP} + \overrightarrow{OS}$   
 $= -6m\underline{i} + 2m\underline{j} + 8\underline{i} - 4\underline{j}$   
 $= (8 - 6m)\underline{i} + (2m - 4)\underline{j}$   
 $\overrightarrow{OP}.\overrightarrow{PS} = 6m(8 - 6m)\underline{i} - 2m(2m - 4)\underline{j}$   
 $= 48m - 36m^2 - 4m^2 + 8m$   
 $= 56m - 40m^2$ 

b. ii. 
$$\overrightarrow{OP.PS} = 56m - 40m^2$$

When  $\overrightarrow{OP.PS} = 0$ 
 $\overrightarrow{OP}$  is perpendicular to  $\overrightarrow{PS}$  if  $\overrightarrow{OP} \neq 0$  and  $\overrightarrow{PS} \neq 0$ 

If  $\overrightarrow{OP}$  is perpendicular to  $\overrightarrow{PS}$  then this will be the sailing ship's closest point to the shore line.

Let  $\overrightarrow{OP.PS} = 0$ 
 $\Rightarrow 56m - 40m^2 = 0$ 
 $m(56 - 40m) = 0$ 
 $\therefore m = 0$  or  $m = \frac{56}{40} = 1.4$ 

Disregard  $m = 0$  because for  $m = 0$ ,  $\overrightarrow{OP} = 0$ 
 $P(6 \times 1.4, -2 \times 1.4)$ 
 $= (8.4, -2.8)$ 

b. iii.  $P(8.4, -2.8)$ 
 $S(8, -4)$ 
 $d\overrightarrow{PS} = \sqrt{(8.4 - 8)^2 + (-2.8 + 4)^2}$ 
 $= \sqrt{0.40^2 + (1.2)^2}$ 
 $= \sqrt{0.16 + 1.44}$ 
 $= \sqrt{1.60}$ 
 $= 1.26$ 
 $= 1.3$  (to the nearest tenth of a kilometre)

c. i.  $v_c = 15i - 5i$ 
 $s_c = 15i - 5i - 6i$ 
 $s_c = 2i - 6i$ 
 $s_c = 2i - 6i$ 
 $s_c = 15i - 5i - 5i - 6i$ 
 $s_c = 15i - 5i - 5i - 6i$ 
 $s_c = 15i - 5i - 6i$ 

=(15t+2)i-(5t+6)j

c. ii. 
$$v_s = 12i + (3\sin(t) - 8)j$$
  
 $v_s = 12ti + (-3\cos(t) - 8t)j + c$   
 $v_s = 12ti - (3\cos(t) + 8t)j + c$   
at  $t = 0$   $v_s = 8i - 4j$   
 $v_s = 8i - 4j = -3j + c$   
 $v_s = 12ti - (3\cos(t) + 8t)j + 8i - j$   
 $v_s = 12ti - (3\cos(t) + 8t)j + 8i - j$   
 $v_s = (12t + 8)j - (3\cos(t) + 8t + 1)j$ 

d. When 
$$i = 2$$

$$\underline{s}_{c}(2) = (15 \times 2 + 2)\underline{i} - (5 \times 2 + 6)\underline{j}$$

$$= 32\underline{i} - 16\underline{j}$$

$$\underline{s}_{s}(2) = (12 \times 2 + 8)\underline{i} - (3\cos(2) + 8 \times 2 + 1)\underline{j}$$

$$= 32\underline{i} - (3\cos(2) + 16 + 1)\underline{j}$$

$$= 32\underline{i} - 15.75\underline{j}$$

 $\underline{\mathcal{S}}_c$  and  $\underline{\mathcal{S}}_s$  have the same position in east west line because both have the same  $\underline{i}$  value.

On the north south line  $\underline{s}_c < \underline{s}_s$  therefore the cargo ship is directly south of the sailing ship.

2. a.



b. 
$$a = 2\text{m/s}^2$$
  $\theta = 60^\circ$   
 $i : T\cos\theta - \mu N = F$   
 $T\cos60^\circ - 0.3N = 80 \times 2$   $\oplus$   
 $j : N + T\sin\theta - 80g = 0$ 

 $N = 80g - T\sin 60^{\circ}$ 

Substitute ② into ①
$$T\cos 60^{\circ} - 0.3(80g - T\sin 60^{\circ}) = 160$$

$$T\cos 60^{\circ} - 24g + 0.3T\sin 60^{\circ} = 160$$

$$T(\cos 60^{\circ} + 0.3\sin 60^{\circ}) = 160 + 24g$$

$$T = \frac{160 + 24g}{\cos 60^{\circ} + 0.3\sin 60^{\circ}}$$
= 520N(to the nearest integer)

c. i. 
$$T = \frac{160 + 24g}{\cos \theta + 0.3 \sin \theta}$$

$$T = (160 + 24g)(\cos \theta + 0.3 \sin \theta)^{-1}$$

$$\frac{dT}{d\theta} = (160 + 24g) \times -1(\cos \theta + 0.3 \sin \theta)^{-2}$$

$$(-\sin \theta + 0.3 \cos \theta)$$

$$= \frac{-(160 + 24g)(-\sin \theta + 0.3 \cos \theta)}{(\cos \theta + 0.3 \sin \theta)^2}$$

$$\cos \theta \neq -0.3 \sin \theta$$
  
because  $0 < \theta < 90^{\circ}$ 

2

Let 
$$\frac{dT}{d\theta} = 0$$
  
 $\sin \theta = 0.3 \cos \theta$   
 $\tan \theta = 0.3$   
 $\theta = 16.6999...$   
 $\theta = 16.7^{\circ}$  (to nearest tenth of a degree)

c. ii. 
$$T = \frac{160 + 24g}{\cos \theta + 0.3 \sin \theta} \text{ (from previous work)}$$

$$\theta = 16.6999...$$

$$T_{\min} = \frac{160 + 24g}{\cos(16.999) + 0.3 \sin(16.999)}$$

$$T_{\min} = 378.53...$$

$$T_{\min} = 379 \text{ N (to the nearest Newton)}$$

## MAV Specialist Mathematics Examination 2, Solutions

3. a. i. 
$$u = 0$$
  $t = 8$   $s = 400$  constant acceleration, so we can use 
$$s = ut + \frac{1}{2} at^2$$
$$400 = 0 + \frac{1}{2} (8)^2$$
$$a = \frac{2(400)}{64}$$
$$a = 12.5 \text{ m/s}^2$$

a. ii. 
$$u=0$$
  $t=8$   $s=400$   $a=12$  constant acceleration, so we can use  $v=u+at$   $v=0+12.5\times 8$   $v=100$  (value as required)

b. i. 
$$F = ma = -(5000 + 0.5v^2)$$
  
 $m = 400$   
 $400a = -(5000 + 0.5v^2)$   
 $a = -\left(\frac{5000}{400} + \frac{0.5v^2}{400}\right)$   
 $= -\left(\frac{10\ 000 + v^2}{800}\right)$ 

b. ii. 
$$a = -\left(\frac{10\ 000 + v^2}{800}\right)$$

$$a = v\frac{dv}{dx} = -\frac{\left(10^4 + v^2\right)}{800}$$

$$\frac{dv}{dx} = -\frac{\left(10^4 + v^2\right)}{800v}$$

b. iii. 
$$\frac{dv}{dx} = -\frac{\left(10^4 + v^2\right)}{800v}$$

$$\Rightarrow \frac{dx}{dv} = -\frac{800v}{10^4 + v^2}$$

$$dx = -\frac{800v}{10^4 + v^2}.dv$$

$$x = \int -\frac{800v}{10^4 + v^2}.dv$$
Let  $u = 10^4 + v^2$ 

$$\frac{du}{dv} = 2v$$

$$dv = \frac{du}{2v}$$

$$x = -\int \frac{800v}{u} \times \frac{du}{2v}$$

$$= -\int \frac{400}{u} du$$

$$x = -400 \log_c u + c$$

$$= -400 \log_c (10^4 + v^2) + c$$
at  $x = 0$   $v = 100$  (from a. ii.)
$$c = 400 \log_c (2 \times 10^4)$$

$$\therefore x = -400 \log_c (10^4 + v^2) + 400(2 \times 10^4)$$

$$= 400 \log_c \left(\frac{2 \times 10^4}{10^4 + v^2}\right)$$
at  $v = 0$ 

$$x = 400 \log_c \left(\frac{2 \times 10^4}{10^4 + v^2}\right)$$

$$= 400 \log_c 2$$

= 277 metres

c. From 3 b. i. we know that:

From 3 b. 1. We know that:
$$a = -\left(\frac{10^4 + v^2}{800}\right)$$

$$\Rightarrow \frac{dv}{dt} = -\left(\frac{10^4 + v^2}{800}\right)$$

$$\Rightarrow \frac{dt}{dv} = \frac{-800}{10^4 + v^2}$$

$$\frac{dt}{dv} = \frac{-800}{10^2} \times \frac{10^2}{(10^2)^2 + v^2}$$

$$t = -8\tan^{-1}\frac{v}{100} + c$$
at  $t = 0$   $v = 100$ 

$$c = 8\tan^{-1}(1)$$

$$= 8 \times \frac{\pi}{4}$$

$$= 2\pi$$

$$t = -8\tan^{-1}\frac{v}{100} + 2\pi$$
at  $v = 0$ 

$$t = 0 + 2\pi$$

$$= 6.283$$

$$= 6 \text{ seconds ( to the nearest second)}$$

4. a. 
$$(2-x)(2+x) > 0$$
  
 $\Rightarrow 2-x > 0$  and  $2+x > 0$   
 $\Rightarrow -x > -2$  and  $x > -2$   
 $x < 2$   
 $\therefore D_{DM} f = D = (-2, 2) \text{ or } \{x: -2 < x < 2\}$ 



c. Rectangle 
$$\bigvee_{i=1}^{\infty} l \times w = \log_{e} 4 \times 1 = \log_{e} 4$$
  
Rectangle  $\bigvee_{i=1}^{\infty} l = \log_{e} (4-1) = \log_{e} 3$   
 $w = 1$   
 $l \times w = \log_{e} 3 \times 1 = \log_{e} 3$   
 $\therefore \log_{e} 3 < A < \log_{e} 4$ 

d. i. 
$$y = x \log_e (4 - x^2)$$
  

$$\frac{dy}{dx} = \log_e (4 - x^2) + x \times \frac{-2x}{4 - x^2}$$

$$= \log_e (4 - x^2) - \frac{2x^2}{4 - x^2}$$

d. ii. 
$$\frac{x^2}{4 - x^2} = -1 + \frac{4}{4 - x^2}$$

$$\frac{4}{4 - x^2} = \frac{4}{(2 - x)(2 + x)} = \frac{A}{2 - x} + \frac{B}{2 + x}$$

$$4 = A(2 + x) + B(2 - x)$$
at  $x = -2$ 

$$4 = 4B$$

$$B = 1$$
at  $x = 2$ 

$$4 = 4A$$

$$A = 1$$

$$\therefore \frac{x^2}{4 - x^2} = -1 + \frac{1}{2 - x} + \frac{1}{2 + x}$$

$$\int \frac{x^2}{4 - x^2} dx = \int -1 + \frac{1}{2 - x} + \frac{1}{2 + x} dx$$

$$= -x - \log_e(2 - x) + \log_e(2 + x) + c$$

$$= \log_e(\frac{(2 + x)}{(2 - x)} - x$$

d. iii. 
$$\int_{0}^{1} \log_{c}(4 - x^{2}) dx$$
From part d. i. 
$$\frac{dx \log_{c}(4 - x^{2})}{dx} = \log_{c}(4 - x^{2}) - \frac{2x^{2}}{4 - x^{2}}$$

$$\Rightarrow \int \log_{c}(4 - x^{2}) dx = x \log_{c}(4 - x^{2}) + \int \frac{2x^{2}}{4 - x^{2}} dx$$
using result of part d. ii. 
$$\int \log_{c}(4 - x^{2}) dx = x \log_{c}(4 - x^{2}) + 2 \int \frac{x^{2}}{4 - x^{2}} dx$$

$$= x \log_{c}(4 - x^{2}) - 2x - 2 \log_{c}(2 - x) + 2 \log_{c}(2 + x)$$

$$\int_{0}^{1} \log_{c}(4 - x^{2}) dx$$

$$= \log_{c}(4 - x^{2}) dx$$

$$= \log_{c}(4 - x^{2}) dx$$

$$= \log_{c}(4 - x^{2}) \log_{c}(4 - x^{2}$$

e. i. 
$$y_{n+1} = y_n + hf(x_n)$$
  
 $n+1=20$   $n=19$   $h=0.05$   
 $y_{20} = y_{19} + 0.05 f(x_{19})$   
 $y_{19} = 19 \times 0.5$   $f(x) = \log_e(4-x^2)$   
 $y_{20} = y_{19} + 0.05 \log_e(4-(19 \times 0.5)^2)$   
 $= y_{19} + 0.05 \log_e(3.0975)$ 

e. ii. 
$$y_{20} = 1.2464 + 0.05 \log_e(3.0975)$$
  
= 1.3029 correct to 4 decimal places

of the differential equation  $\frac{dy}{dx} = \log_e(4 - x^2)$ We know  $A = \int_0^1 \log_e(4 - x^2) dx$  which is the solution of  $\frac{dy}{dx}$  at x = 1 subtract the solution of  $\frac{dy}{dx}$  at x = 0.

We know that  $\frac{dy}{dx} = 0$  at x = 0

e. iii.  $y_{20}$  is an approximation to the solution

Therefore 
$$y_{20} = A = \int_{0}^{1} \log_e(4 - x^2) dx$$

5. a. i. When z lies on  $\overline{LN}$  it is equal distance from L and N that means it is on the midpoint, m.

When z lies on either side of the  $\overline{LN}$  it is equidistant from L and N, and forms an isosceles triangle. The line drawn from the vertex of an isosceles triangle bisecting the base of the triangle is perpendicular to the base.



a. ii. 
$$|z - i| = |z - u|$$
  
 $|x + iy - i| = |x + iy - u|$   
 $|x + i(y - 1)| = |x - u + iy|$ 

$$\Rightarrow x^{2} + (y-1)^{2} = (x-u)^{2} + y^{2}$$

$$x^{2} + y^{2} - 2y + 1 = x^{2} - 2xu + u^{2} + y^{2}$$

$$-2y + 1 = -2ux + u^{2}$$

$$2y - 1 = 2ux - u^{2}$$

$$2y = 2ux - u^{2} + 1$$

b. i. 
$$y = ux - \frac{u^2}{2} + \frac{1}{2}$$
  
at  $x = u$ 

$$y = u^{2} - \frac{u^{2}}{2} + \frac{1}{2}$$
$$= \frac{1}{2}(u^{2} + 1)$$
$$w = x + yi$$
$$w = u + \frac{1}{2}(u^{2} + 1)i$$

**b.** ii. 
$$w = u + \frac{1}{2} (u^2 + 1)i$$

$$x = u$$
  $y = \frac{1}{2}(u^2 + 1)$   
 $y = \frac{1}{2}(x^2 + 1), x > 0$ 



c. 
$$y = \frac{1}{2}(x^2 + 1)$$

$$\frac{y}{x} = x$$

Tangent at 
$$x = u$$
  $y = \frac{1}{2}(u^2 + 1)$ 

Given by 
$$y - y_1 = \frac{dy}{dx}(x - x_1)$$
 at  $x = u$ 

$$y = \frac{1}{2}(u^2 + 1) = u(x - u)$$

$$2y - u^2 - 1 = 2ux - 2u^2$$

$$2y = 2ux - u^2 + 1$$

From a. ii. we know that this is the equation of the perpendicular bisector of *LN* therefore the perpendicular bisector is tangent to the curve at *w*.