

第五章 大数定律及中心极限定理

§1. 大数定律

定理(辛钦大数定律)

设 X_1, \dots, X_n, \dots 相互独立同分布,且具有数学期望 $EX_i^l = \mu_l, i = 1, 2, \dots, n, \dots$

$$A_{l} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{l} \xrightarrow{P} \mu_{l}, \quad l = 1, 2, \cdots, k.$$

第五章 大数定律及中心极限定理

§ 2. 中心极限定理

设 X_1, \dots, X_n, \dots 是独立的随机变量序列,

$$EX_{k}$$
, DX_{k} 存在,令: $Z_{n} = (\sum_{k=1}^{n} X_{k} - \sum_{k=1}^{n} EX_{k}) / \sqrt{\sum_{k=1}^{n} DX_{k}}$,

若对任意 $x \in R_1$,有 $\lim_{n \to \infty} P\{Z_n \le x\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$ 。

则称 {X_n} 服从中心极限定理。

说明: $E(Z_n) = 0$, $D(Z_n) = 1$.

若 $\{X_n\}$ 服 从 中 心 极 限 定 理 , 则 当 n 很大时,

$$Z_{n} = \left(\sum_{k=1}^{n} X_{k} - \sum_{k=1}^{n} EX_{k}\right) / \sqrt{\sum_{k=1}^{n} DX_{k}}$$

近似服从标准正态分布。

第五章 大数定律及中心极限定理

定理 (棣莫佛-拉普拉斯定理) (De Moivre--Laplace)

设随机变量 $\eta_n(n=1,2,\cdots)$ 服从参数为 \mathbf{n} , \mathbf{p} ($\mathbf{0}$ < \mathbf{p} < $\mathbf{1}$)的二项分布

,即
$$\eta_n \sim B(n, p)$$
.

则对于任意 x , 恒有:

$$\lim_{n \to \infty} P\left\{ \frac{\eta_n - np}{\sqrt{npq}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt \qquad (q = 1 - p)$$