```
In [1]: # Name : Duddukui Saikiran
         #Reg-No : 21BCE9166
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: sns.get_dataset_names()
Out[2]: ['anagrams',
          'anscombe',
'attention',
          'brain_networks',
          'car_crashes',
          'diamonds',
          'dots',
          'dowjones',
          'exercise',
          'flights',
          'fmri',
          'geyser',
          'glue',
          'healthexp',
          'iris',
          'mpg',
          'penguins',
          'planets',
          'seaice',
          'taxis',
          'tips',
          'titanic']
In [3]: df = sns.load_dataset("car_crashes")
```

In [4]: df

Out[4]:

	total	speeding	alcohol	not_distracted	no previous	ins premium	ins_losses	abbrev
	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	СО
6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	н
12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD
21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	МІ
23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	МО
26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
29	11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	OK
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

In [5]: df.info

Out[5]:	<box< td=""><td>nd method</td><td>DataFra</td><td>me.info of</td><td>total</td><td>speeding</td><td>alcohol</td><td>not_distracted</td><td>no_previous</td><td>ins_pre</td></box<>	nd method	DataFra	me.info of	total	speeding	alcohol	not_distracted	no_previous	ins_pre
	mium	\								
	0	18.8	7.332	5.640	18.0	48 1	5.040	784.55		
	1	18.1	7.421	4.525	16.2	90 1	7.014	1053.48		
	2	18.6	6.510	5.208	15.6	24 1	7.856	899.47		
	3	22.4	4.032	5.824	21.0	56 2	21.280	827.34		
	4	12.0	4.200	3.360	10.9	20 1	0.680	878.41		
	5	13.6	5.032	3.808	10.7	44 1	2.920	835.50		
	6	10.8	4.968	3.888	9.3	96	8.856	1068.73		
	7	16.2	6.156	4.860	14.0	94 1	6.038	1137.87		
	8	5.9	2.006	1.593	5.9		5.900	1273.89		
	9	17.9	3.759	5.191	16.4	68 1	6.826	1160.13		
	10	15.6	2.964	3.900	14.8	20 1	4.508	913.15		
	11	17.5	9.450	7.175	14.3	50 1	5.225	861.18		
	12	15.3	5.508	4.437	13.0	05 1	4.994	641.96		
	13	12.8	4.608	4.352	12.0		2.288	803.11		
	14	14.5	3.625	4.205	13.7		3.775	710.46		
	15	15.7	2.669	3.925	15.2		3.659	649.06		
	16	17.8	4.806	4.272	13.7		5.130	780.45		
	17	21.4	4.066	4.922	16.6		6.264	872.51		
	18	20.5	7.175	6.765	14.9		20.090	1281.55		
	19	15.1	5.738	4.530	13.1		2.684	661.88		
	20	12.5	4.250	4.000	8.8		2.375	1048.78		
	21	8.2	1.886	2.870	7.1		6.560	1011.14		
	22	14.1	3.384	3.948	13.3		10.857	1110.61		
	23	9.6	2.208	2.784	8.4		8.448	777.18		
	24	17.6	2.640	5.456	1.7		17.600	896.07		
	25	16.1	6.923	5.474	14.8		13.524	790.32		
	26	21.4	8.346	9.416	17.9		18.190	816.21		
	27	14.9	1.937	5.215	13.8		13.410	732.28		
	28	14.9	5.439	4.704	13.8		13.410	1029.87		
	29	11.6	4.060	3.480			9.628	746.54		
		11.0	1.792		10.0					
	30			3.136	9.6		8.736	1301.52		
	31	18.4	3.496	4.968	12.3		8.032	869.85		
	32	12.3	3.936	3.567	10.8		9.840	1234.31		
	33	16.8	6.552	5.208	15.7		13.608	708.24		
	34	23.9	5.497	10.038	23.6		20.554	688.75		
	35	14.1	3.948	4.794	13.9		1.562	697.73		
	36	19.9	6.368	5.771	18.3		1.500	881.51		
	37	12.8	4.224	3.328	8.5		1.520	804.71		
	38	18.2	9.100	5.642	17.4		16.016	905.99		
	39	11.1	3.774	4.218	10.2		8.769	1148.99		
	40	23.9	9.082	9.799	22.9		19.359	858.97		
	41	19.4	6.014	6.402	19.0		6.684	669.31		
			4.095		15.9		5.795	767.91		
	43	19.4	7.760	7.372	17.6		6.878	1004.75		
	44	11.3	4.859	1.808	9.9		0.848	809.38		
	45	13.6	4.080	4.080	13.0		2.920	716.20		
	46	12.7	2.413	3.429	11.0		1.176	768.95		
	47	10.6	4.452	3.498	8.6		9.116	890.03		
	48	23.8	8.092	6.664	23.0		20.706	992.61		
	49	13.8	4.968	4.554	5.3		1.592	670.31		
	50	17.4	7.308	5.568	14.0	94 1	5.660	791.14		
		na loago	a abbrott							

	ins_losses	abbrev
0	145.08	AL
1	133.93	AK
2	110.35	AZ
3	142.39	AR
4	165.63	CA
5	139.91	CO
6	167.02	CT
7	151.48	DE
8	136.05	DC
9	144.18	FL
10	142.80	GA
11	120.92	HI
12	82.75	ID
13	139.15	IL
14	108.92	IN
15	114.47	IA
16	133.80	KS
17	137.13	KY

```
194.78
18
                    LA
19
         96.57
                    ME
20
        192.70
                    MD
21
        135.63
                    MA
        152.26
22
                    ΜI
23
        133.35
                    MN
24
        155.77
                    MS
25
        144.45
                    MO
26
         85.15
                    MT
27
        114.82
                    NE
28
        138.71
                    NV
29
        120.21
                    NH
        159.85
30
                    NJ
31
        120.75
                    NM
32
        150.01
                    NY
33
        127.82
                    NC
        109.72
34
                    ND
35
        133.52
                    OH
36
        178.86
                    OK
37
        104.61
                    OR
38
        153.86
                    PA
39
        148.58
                    RI
40
        116.29
                    SC
41
         96.87
                    SD
42
        155.57
                    TN
43
        156.83
                    ТX
44
        109.48
                    UT
45
        109.61
                    VT
        153.72
46
                    VA
        111.62
47
                    WA
48
        152.56
                    WV
49
        106.62
                    WI
50
        122.04
                    WY >
```

In [6]: df.describe()

Out[6]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
count	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000
mean	15.790196	4.998196	4.886784	13.573176	14.004882	886.957647	134.493137
std	4.122002	2.017747	1.729133	4.508977	3.764672	178.296285	24.835922
min	5.900000	1.792000	1.593000	1.760000	5.900000	641.960000	82.750000
25%	12.750000	3.766500	3.894000	10.478000	11.348000	768.430000	114.645000
50%	15.600000	4.608000	4.554000	13.857000	13.775000	858.970000	136.050000
75%	18.500000	6.439000	5.604000	16.140000	16.755000	1007.945000	151.870000
max	23.900000	9.450000	10.038000	23.661000	21.280000	1301.520000	194.780000

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	total	51 non-null	float64
1	speeding	51 non-null	float64
2	alcohol	51 non-null	float64
3	not_distracted	51 non-null	float64
4	no_previous	51 non-null	float64
5	ins_premium	51 non-null	float64
6	ins_losses	51 non-null	float64
7	abbrev	51 non-null	object

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

```
In [9]: df.head() #retrives first five records
 Out[9]:
               total speeding alcohol not_distracted no_previous ins_premium ins_losses abbrev
               18.8
                       7.332
                               5.640
                                            18.048
                                                        15.040
                                                                    784.55
                                                                              145.08
                                                                                         ΑL
            0
            1
               18.1
                       7.421
                               4.525
                                            16.290
                                                        17.014
                                                                              133.93
                                                                   1053.48
                                                                                         ΑK
            2
               18.6
                       6.510
                               5.208
                                            15.624
                                                        17.856
                                                                    899.47
                                                                              110.35
                                                                                         ΑZ
            3
              22.4
                       4.032
                               5.824
                                            21.056
                                                        21.280
                                                                    827.34
                                                                              142.39
                                                                                         AR
               12.0
                       4.200
                               3.360
                                            10.920
                                                        10.680
                                                                    878.41
                                                                              165.63
                                                                                         CA
In [10]: df.tail()
                        #retrives last five records
Out[10]:
                total speeding
                              alcohol not_distracted no_previous ins_premium ins_losses abbrev
            46
                12.7
                        2.413
                                3.429
                                             11.049
                                                         11.176
                                                                     768.95
                                                                               153.72
                                                                                          VA
                        4.452
                                3.498
                                              8.692
                                                                     890.03
                                                                                         WA
            47
                10.6
                                                         9.116
                                                                               111.62
                        8.092
                                6.664
                                             23.086
                                                         20.706
                                                                     992.61
                                                                               152.56
                                                                                         WV
            48
                23.8
            49
                13.8
                        4.968
                                4.554
                                              5.382
                                                         11.592
                                                                     670.31
                                                                               106.62
                                                                                          WI
               17.4
                        7.308
                                5.568
                                             14.094
                                                         15.660
                                                                     791.14
                                                                               122.04
                                                                                         WY
In [11]:
           #if you want to retrive first three records in dataset we can give as df.head(3)
In [12]: df.head(3)
Out[12]:
               total speeding
                             alcohol not_distracted no_previous ins_premium
                                                                           ins_losses abbrev
              18.8
                       7.332
                               5.640
                                            18.048
                                                        15.040
                                                                    784.55
                                                                              145.08
                                                                                         ΑL
               18.1
                       7.421
                               4.525
                                            16.290
                                                        17.014
                                                                   1053.48
                                                                              133.93
                                                                                         \mathsf{AK}
              18.6
                       6.510
                               5.208
                                            15.624
                                                        17.856
                                                                    899.47
                                                                              110.35
                                                                                         ΑZ
In [13]: df.isnull().sum()
                                 0
Out[13]: total
           speeding
                                 0
           alcohol
                                 0
           not distracted
                                 0
           no_previous
                                 0
           ins_premium
                                 0
           ins losses
                                 0
           abbrev
           dtype: int64
In [14]: df.isnull().any()
Out[14]: total
                                 False
           speeding
                                 False
           alcohol
                                 False
           not distracted
                                 False
           no_previous
                                 False
           ins_premium
                                 False
           ins losses
                                 False
           abbrev
                                 False
           dtype: bool
In [15]: #let us the find the correlation
In [16]: cor = df.corr()
```

In [17]: cor

Out[17]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	-0.036011
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-0.065928
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-0.112547
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-0.075970
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-0.006359
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	0.623116
ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116	1.000000

In [18]: #let us draw the correlation 2d matrix

In [24]: plt.figure(figsize=(10,10))
sns.heatmap(cor,annot=True)

Out[24]: <AxesSubplot:>

In [25]: #Inference from the above graph:

#from the above graph some are highly correlated (value >0.5) and some are less correlated (less that

ex: here both the features total and speeding are highly correlated because the value is greater;

which is greater than 0.5.

#if we take the features total and ins_losses they are negativley correlated or we can say they are

because the value is -0.036 which is less than 0.5

scatter plot

plt.figure(figsize=(8,8)) sns.scatterplot(x="total",y="speeding",data=df)

```
In [47]: plt.figure(figsize=(8,8))
sns.scatterplot(x="total",y="speeding",data=df)
```

Out[47]: <AxesSubplot:xlabel='total', ylabel='speeding'>

In [45]:

#Inference from the above graph:

#from the above graph we can we can say that the total number of drivers in fatal collisions is line.

percentage of drivers involved in fatal collisons who were speeding

In [33]:
 sns.scatterplot(x="total",y="alcohol",data=df,color="r")

Out[33]: <AxesSubplot:xlabel='total', ylabel='alcohol'>

In [46]: Inference from the above graph:

'rom the above graph we can say that the total number of drivers involved in fatal collisions is line

lrivers involved in fatal collisions who were distracted

sns.lineplot(x="total",y="no_previous",data=df)

In [53]: sns.lineplot(x="total",y="no_previous",data=df)
#LINEPLOT

Out[53]: <AxesSubplot:xlabel='total', ylabel='no_previous'>

In []: #Inferecne from the above graph:
#from the above graph we can say that the total number of drivers involved in fatal collisons is line
to percentage of drivers involved in fatal collisons who do not have previous

In [50]: sns.displot(df["ins_losses"]) #DISTRUBUTION GRAPH

Out[50]: <seaborn.axisgrid.FacetGrid at 0x12211edf0>

In [51]: #Inference from the above graph:
#from the above graph we can say that ins_losses mostly lies b/w 100 and 160 and highest at 140

```
In [54]: #RELPLOT :
sns.relplot(x="alcohol",y="speeding",data=df,hue="abbrev")
```

Out[54]: <seaborn.axisgrid.FacetGrid at 0x1232b58b0>

In [55]: #Inference from the above graph:
#from the above graph we can say that when alocohol consumption is increasing speeding also increase.

```
In [56]: #BARPLOT :
    plt.figure(figsize=(13,14))
    sns.barplot(x="abbrev",y="total",data=df)
    plt.show()
```


In [57]: #Inference from the above graph :
#among all state ND has total no.of highest collisions

```
In [59]: #JOINTPLOT :
sns.jointplot(x="ins_premium",y="ins_losses",data=df)
```

Out[59]: <seaborn.axisgrid.JointGrid at 0x123d41520>

In [60]: #Inference from the above graph :
 #ins_premium and ins_looses are directly proportinsl

```
In [62]: #BOXPLOT :
    plt.figure(figsize=(15,17))
    sns.boxplot(x=df["total"],y=df["alcohol"],data=df)
```

Out[62]: <AxesSubplot:xlabel='total', ylabel='alcohol'>


```
In [63]: #Inferecnce from the above graph :
    #from the above graph we can say that there are no outliers
In [ ]:
```