

Proximal schemes for the estimation of the reproduction number of Covid19:

From convex optimization to Monte Carlo sampling

Séminaire Données et Aléatoire Théorie & Applications

Laboratoire Jean Kuntzmann April 6th 2023

Barbara Pascal

Joint work with P. Abry, N. Pustelnik, S. Roux, R. Gribonval, P. Flandrin; G. Fort, H. Artigas; Juliana Du

Outline

• Pandemic study: modeling at the service of monitoring

• Reproduction number estimation from minimization of penalized likelihood

• Bayesian framework for credibility interval estimation

Conclusion & Perspectives

Counts of daily new infections

data from National Health Agencies collected by Johns Hopkins University $\Longrightarrow \mathsf{number} \; \mathsf{of} \; \mathsf{cases} \; \mathsf{not} \; \mathsf{informative} \; \mathsf{enough} ; \; \mathsf{need} \; \mathsf{to} \; \mathsf{capture} \; \mathsf{the} \; \mathsf{\textit{dynamics}}$

Counts of daily new infections

data from National Health Agencies collected by Johns Hopkins University

—> number of cases not informative enough: need to capture the **dynamics**

Design adapted counter measures and evaluate their effectiveness

- → efficient monitoring tools
- \rightarrow robust to low quality of the data
- ightarrow accompanied by reliable confidence level

epidemiological model,

managing erroneous counts,

credibility intervals.

Susceptible-Infected-Recovered (SIR), among compartmental models

Susceptible-Infected-Recovered (SIR), among compartmental models

Limitations:

- refinement needed to get socially realistic model
- quadratic increase of the number of parameters
- Bayesian framework: heavy computational burden
- need consolidated and accurate datasets

X not adapted to real-time monitoring of Covid19 pandemic

Reproduction number in Cori model

"averaged number of secondary cases generated by a typical infectious individual" (Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

Reproduction number in Cori model

"averaged number of secondary cases generated by a typical infectious individual" $\,$

(Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

Interpretation: at day t

 $R_t > 1$ the virus propagates at exponential speed,

 $R_t < 1$ the epidemic shrinks with an exponential decay,

 $R_t = 1$ the epidemic is stable.

⇒ one single indicator accounting for the overall pandemic mechanism

Reproduction number in Cori model

"averaged number of secondary cases generated by a typical infectious individual"

(Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

Interpretation: at day t

 $R_t > 1$ the virus propagates at exponential speed,

 $R_t < 1$ the epidemic shrinks with an exponential decay,

 $R_t = 1$ the epidemic is stable.

 \Longrightarrow one single indicator accounting for the overall pandemic mechanism

Principle: Z_t new infections at day t

$$\mathbb{E}\left[\mathsf{Z}_{t}\right] = \mathsf{R}_{t} \mathsf{\Phi}_{t}, \quad \mathsf{\Phi}_{t} = \sum_{u=1}^{\tau_{\Phi}} \phi_{u} \mathsf{Z}_{t-u}$$

with Φ_t global "infectiousness" in the population

 $\{\phi_u\}_{u=1}^{\tau_{\Phi}}$ distribution of delay between onset of symptoms in primary and secondary cases

Gamma distribution truncated at 25 days, of mean 6.6 days and standard deviation 3.5 days

Data: daily counts $\mathbf{Z} = (Z_1, \dots, Z_T)$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t|\boldsymbol{\mathsf{Z}}_{t-\tau_{\boldsymbol{\Phi}}:t-1},\mathsf{R}_t) = \frac{\left(\mathsf{R}_t\boldsymbol{\Phi}_t\right)^{\mathsf{Z}_t}\mathrm{e}^{-\mathsf{R}_t\boldsymbol{\Phi}_t}}{\mathsf{Z}_t!}$$

Data: daily counts $\mathbf{Z} = (Z_1, \dots, Z_T)$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t|\boldsymbol{\mathsf{Z}}_{t-\tau_{\boldsymbol{\Phi}}:t-1},\mathsf{R}_t) = \frac{(\mathsf{R}_t\boldsymbol{\Phi}_t)^{\mathsf{Z}_t}\mathrm{e}^{-\mathsf{R}_t\boldsymbol{\Phi}_t}}{\mathsf{Z}_t!}$$

Maximum Likelihood Estimate (MLE)

$$\begin{split} & \text{In}\left(\mathbb{P}(Z_t|\boldsymbol{Z}_{t-\tau_{\boldsymbol{\Phi}}:t-1},\boldsymbol{R}_t)\right) \\ &= & Z_t \ln(\boldsymbol{R}_t \boldsymbol{\Phi}_t) - \boldsymbol{R}_t \boldsymbol{\Phi}_t - \ln(\boldsymbol{Z}_t!) \\ &\underset{\boldsymbol{Z}_t \gg 1}{\simeq} Z_t \ln(\boldsymbol{R}_t \boldsymbol{\Phi}_t) - \boldsymbol{R}_t \boldsymbol{\Phi}_t - Z_t \ln(\boldsymbol{Z}_t) + Z_t \\ &= & -d_{KL}(\boldsymbol{Z}_t|\boldsymbol{R}_t \boldsymbol{\Phi}_t) \quad (\text{Kullback-Leibler}) \end{split}$$

Data: daily counts $\mathbf{Z} = (Z_1, \dots, Z_T)$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_{t-\tau_{\Phi}:t-1},\mathsf{R}_t) = \frac{(\mathsf{R}_t \boldsymbol{\Phi}_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \boldsymbol{\Phi}_t}}{\mathsf{Z}_t!}$$

Maximum Likelihood Estimate (MLE)

$$\ln \left(\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) \right)$$

$$= Z_t \ln(R_t \Phi_t) - R_t \Phi_t - \ln(Z_t!)$$

$$\underset{Z_t \gg 1}{\simeq} \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \mathsf{Z}_t \ln(\mathsf{Z}_t) + \mathsf{Z}_t$$

$$\underset{(\text{def.})}{=} - \mathsf{d}_{\mathsf{KL}} (\mathsf{Z}_t | \mathsf{R}_t \Phi_t) \ \ (\mathsf{Kullback-Leibler})$$

$$\Longrightarrow \widehat{\mathsf{R}}_t^{\mathsf{MLE}} = \mathsf{Z}_t/\Phi_t = \mathsf{Z}_t/\sum_{u=1}^{ au_{\Phi}} \phi_u \mathsf{Z}_{t-u}$$

ratio of moving averages

Data: daily counts $\mathbf{Z} = (Z_1, \dots, Z_T)$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t|\boldsymbol{\mathsf{Z}}_{t-\tau_{\boldsymbol{\Phi}}:t-1},\mathsf{R}_t) = \frac{(\mathsf{R}_t\boldsymbol{\Phi}_t)^{\mathsf{Z}_t}\mathrm{e}^{-\mathsf{R}_t\boldsymbol{\Phi}_t}}{\mathsf{Z}_t!}$$

Maximum Likelihood Estimate (MLE)

$$\begin{split} & \ln \left(\mathbb{P} \big(Z_t | \boldsymbol{Z}_{t-\tau_{\boldsymbol{\Phi}}:t-1}, \boldsymbol{R}_t \big) \big) \\ & = \ \, Z_t \ln \big(\boldsymbol{R}_t \boldsymbol{\Phi}_t \big) - \boldsymbol{R}_t \boldsymbol{\Phi}_t - \ln \big(\boldsymbol{Z}_t ! \big) \\ & \overset{\sim}{\underset{\boldsymbol{Z}_t \gg 1}{\sim}} \ \, Z_t \ln \big(\boldsymbol{R}_t \boldsymbol{\Phi}_t \big) - \boldsymbol{R}_t \boldsymbol{\Phi}_t - \boldsymbol{Z}_t \ln \big(\boldsymbol{Z}_t \big) + \boldsymbol{Z}_t \\ & \overset{=}{\underset{(\text{def.})}{\sim}} - d_{\text{KL}} \big(\boldsymbol{Z}_t | \boldsymbol{R}_t \boldsymbol{\Phi}_t \big) \ \, \text{(Kullback-Leibler)} \end{split}$$

ratio of moving averages

- huge variability along time/ no local trend
- not robust to pseudo-periodicity/ misreported counts

 $\underline{Solution\ 0} \hbox{: (state-of-the-art) smoothing over a temporal window}$

$$\widehat{R}_{t,s}^{\text{MLE}}$$
, with $s = 7$ days

(Cori et al., 2013, Am. Journal of Epidemiology)

 \Longrightarrow not able to detect rapid surge, nor fast decrease following sanitary restrictions

Solution 0: (state-of-the-art) smoothing over a temporal window

$$\widehat{\mathsf{R}}_{t,s}^{\mathsf{MLE}}$$
, with $s=7$ days

(Cori et al., 2013, Am. Journal of Epidemiology)

 \Longrightarrow not able to detect rapid surge, nor fast decrease following sanitary restrictions

Solution 1: regularization through nonlinear filtering

$$\widehat{\mathbf{R}}^{\mathsf{PKL}} = \underset{\mathbf{R} \in \mathbb{R}_{+}^{T}}{\min} \ \sum_{t=1}^{I} \mathsf{d_{KL}}\left(\mathsf{Z}_{t} \left| \mathsf{R}_{t} \boldsymbol{\Phi}_{t} \right.\right) + \lambda_{\mathsf{R}} \mathcal{P}(\mathbf{R}) \ \ \text{(penalized Kullback-Leibler)}$$

with $\mathcal{P}(\mathbf{R})$ favoring some temporal regularity

(Abry et al., 2020, PLOSOne)

Solution 0: (state-of-the-art) smoothing over a temporal window

$$\widehat{\mathsf{R}}_{t,s}^{\mathsf{MLE}}$$
, with $s=7$ days

(Cori et al., 2013, Am. Journal of Epidemiology)

 \Longrightarrow not able to detect rapid surge, nor fast decrease following sanitary restrictions

Solution 1: regularization through nonlinear filtering

$$\widehat{\mathbf{R}}^{\mathsf{PKL}} = \underset{\mathbf{R} \in \mathbb{R}_{+}^{T}}{\min} \ \sum_{t=1}^{I} \mathsf{d_{KL}}\left(\mathsf{Z}_{t} \left| \mathsf{R}_{t} \boldsymbol{\Phi}_{t} \right.\right) + \lambda_{\mathsf{R}} \mathcal{P}(\mathbf{R}) \ \ \text{(penalized Kullback-Leibler)}$$

with $\mathcal{P}(\mathbf{R})$ favoring some temporal regularity

$$\mathcal{P}(\mathbf{R}) = \|\mathbf{D}_2 \mathbf{R}\|_1$$
$$(\mathbf{D}_2 \mathbf{R})_t = \mathbf{R}_{t+1} - 2\mathbf{R}_t + \mathbf{R}_{t-1}$$

2nd order derivative & ℓ_1 -norm

$$\Longrightarrow$$
 piecewise linearity

captures global trend, more regular than MLE, but pseudo-oscillations

New infection counts **Z** are corrupted by

- missing samples,
- non meaningful negative counts,
- retrospected cumulated counts,
- pseudo-seasonality effects.

⇒ full parametric modeling out of reach

New infection counts Z are corrupted by

- missing samples,
- non meaningful negative counts,
- retrospected cumulated counts,
- pseudo-seasonality effects.

 \Longrightarrow full parametric modeling out of reach

Solution 1': first correct \mathbf{Z} , then apply penalized Kullback-Leibler on corrected $\mathbf{Z}^{(C)}$

 \Longrightarrow two-step procedure not optimal: accumulates correction & regularization biases

(Abry et al., 2020, Eng. Med. Biol. Conf.)

New infection counts Z are corrupted by

- missing samples,
- non meaningful negative counts,
- retrospected cumulated counts,
- pseudo-seasonality effects.

 \Longrightarrow full parametric modeling out of reach

Solution 1': first correct \mathbf{Z} , then apply penalized Kullback-Leibler on corrected $\mathbf{Z}^{(C)}$

 \Longrightarrow two-step procedure not optimal: accumulates correction & regularization biases

(Abry et al., 2020, Eng. Med. Biol. Conf.)

Solution 2: one-step procedure performing jointly

correction of corrupted Z_t & estimation of regularized R_t

(Pascal et al., 2022, Trans. Sig. Process.)

Extended Cori Model: additional latent variable O_t accounting for misreport

$$Z_t \sim \text{Poiss}\left(R_t \Phi_t + O_t\right), \quad R_t \Phi_t + O_t \geq 0$$

nonzero values of O_t concentrated on specific days (Sundays, day-offs, ...)

Interpretation:

$$\label{eq:poiss_equation} \text{Poiss}\left(\mathsf{R}_t \Phi_t + \mathsf{O}_t\right) \sim \left\{ \begin{array}{ll} \text{Poiss}\left(\mathsf{R}_t \Phi_t\right) + \text{Poiss}\left(\mathsf{O}_t\right) & \text{if } \mathsf{O}_t \geq 0, \\ \\ \text{Poiss}\left(\alpha_t \mathsf{R}_t \Phi_t\right), \ \alpha_t = 1 - \frac{-\mathsf{O}_t}{\mathsf{R}_t \Phi_t} \in [0,1] & \text{if } \mathsf{O}_t < 0. \end{array} \right.$$

Data: reported counts $\mathbf{Z} = (\mathsf{Z}_1, \dots, \mathsf{Z}_T)$

$$\textbf{Model:} \text{ corrected Poisson } \quad \mathbb{P}\big(Z_t|\boldsymbol{Z}_{t-\tau_{\boldsymbol{\Phi}}:t-1},\boldsymbol{R}_t, \underset{t}{O}_t\big) = \frac{\big(\boldsymbol{R}_t\boldsymbol{\Phi}_t + \underset{t}{O}_t\big)^{Z_t}e^{-(\boldsymbol{R}_t\boldsymbol{\Phi}_t + \underset{t}{O}_t)}}{Z_t!}$$

Data: reported counts $\mathbf{Z} = (Z_1, \dots, Z_T)$

Generalized Penalized Kullback-Leibler

$$(\widehat{\boldsymbol{R}},\widehat{\boldsymbol{O}}) \in \operatorname*{Argmin}_{(\boldsymbol{R},\boldsymbol{O}) \in \mathbb{R}_{+}^{T} \times \mathbb{R}^{T}} \ \sum_{t=1}^{I} d_{\mathsf{KL}} \left(\boldsymbol{Z}_{t} \, | \, \boldsymbol{R}_{t} \boldsymbol{\Phi}_{t} + \boldsymbol{O}_{t} \, \right) + \lambda_{\mathsf{R}} \| \boldsymbol{D}_{2} \boldsymbol{R} \|_{1} + \iota_{\geq 0}(\boldsymbol{R}) + \lambda_{\mathsf{O}} \| \boldsymbol{O} \|_{1}$$

 \Longrightarrow estimates piecewise linear, non-negative R_t and sparse O_t

Data: reported counts $\mathbf{Z} = (Z_1, \dots, Z_T)$

Generalized Penalized Kullback-Leibler

$$(\widehat{\boldsymbol{R}},\widehat{\boldsymbol{O}}) \in \underset{(\boldsymbol{R},\boldsymbol{O}) \in \mathbb{R}_{+}^{T} \times \mathbb{R}^{T}}{\operatorname{Argmin}} \sum_{t=1}^{r} d_{KL} \left(\boldsymbol{Z}_{t} \, | \, \boldsymbol{R}_{t} \boldsymbol{\Phi}_{t} + \boldsymbol{O}_{t} \, \right) + \lambda_{R} \|\boldsymbol{D}_{2} \boldsymbol{R}\|_{1} + \iota_{\geq 0}(\boldsymbol{R}) + \lambda_{O} \|\boldsymbol{O}\|_{1}$$

 \implies estimates piecewise linear, non-negative R_t and sparse O_t

properties of the objective function:

- sum of convex functions composed with linear operators ⇒ globally convex;
- feasible domain: $(\forall t, R_t \geq 0)$ & (if $Z_t > 0, R_t \Phi_t + O_t > 0$, else $R_t \Phi_t + O_t \geq 0$);
- $p_t \mapsto d_{KL}(Z_t | p_t)$ is strictly-convex.

Data: reported counts $\mathbf{Z} = (Z_1, \dots, Z_T)$

$$\textbf{Model:} \text{ corrected Poisson } \quad \mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t, \mathsf{O}_t) = \frac{\left(\mathsf{R}_t \Phi_t + \mathsf{O}_t\right)^{\mathsf{Z}_t} \mathrm{e}^{-\left(\mathsf{R}_t \Phi_t + \mathsf{O}_t\right)}}{\mathsf{Z}_t!}$$

Generalized Penalized Kullback-Leibler

$$(\widehat{\boldsymbol{R}},\widehat{\boldsymbol{O}}) \in \operatorname*{Argmin}_{(\boldsymbol{R},\boldsymbol{O}) \in \mathbb{R}_{+}^{\boldsymbol{T}} \times \mathbb{R}^{\boldsymbol{T}}} \ \sum_{t=1}^{I} d_{\mathsf{KL}} \left(\boldsymbol{Z}_{t} \, | \, \boldsymbol{R}_{t} \boldsymbol{\Phi}_{t} + \boldsymbol{O}_{t} \, \right) + \lambda_{\mathsf{R}} \| \boldsymbol{D}_{2} \boldsymbol{R} \|_{1} + \iota_{\geq 0}(\boldsymbol{R}) + \lambda_{\mathsf{O}} \| \boldsymbol{O} \|_{1}$$

 \implies estimates piecewise linear, non-negative R_t and sparse O_t

properties of the objective function:

- ullet sum of convex functions composed with linear operators \Longrightarrow globally convex;
- feasible domain: $(\forall t, R_t \geq 0)$ & (if $Z_t > 0, R_t \Phi_t + O_t > 0$, else $R_t \Phi_t + O_t \geq 0$);
- $p_t \mapsto d_{KL}(Z_t | p_t)$ is strictly-convex.

Theorem (Pascal et al., 2022, Trans. Sig. Process.)

- + The minimization problem has at least one solution $(\widehat{\mathbf{R}},\widehat{\mathbf{O}})$.
- + The estimated time-varying Poisson intensity $\hat{p}_t = \hat{R}_t \Phi_t + \hat{O}_t$ is unique.

$$\underset{(\textbf{R},\textbf{O}) \in \mathbb{R}_{+}^{T} \times \mathbb{R}^{T}}{\text{minimize}} \sum_{t=1}^{T} d_{KL} \left(Z_{t} \, \big| \, R_{t} \boldsymbol{\Phi}_{t} + \boldsymbol{O}_{t} \, \right) + \lambda_{R} \| \boldsymbol{D}_{2} \boldsymbol{R} \|_{1} + \iota_{\geq 0} (\boldsymbol{R}) + \lambda_{O} \| \boldsymbol{O} \|_{1}$$

- each term of the functional is convex:
- ℓ_1 -norm and indicative function \Longrightarrow nonsmooth;
- gradient of $p_t \mapsto d_{KL}(Z_t | p_t)$ is not Lipschitzian;
- \bullet linear operator $\textbf{D}_2 \Longrightarrow$ no explicit form for $\mathsf{prox}_{\|\textbf{D}_2\cdot\|_1}$

X gradient descent

X forward-backward

• need splitting

$$\underset{(\mathbf{R},\mathbf{O}) \in \mathbb{R}_{t}^{T} \times \mathbb{R}^{T}}{\text{minimize}} \sum_{t=1}^{T} d_{\mathsf{KL}} \left(\mathsf{Z}_{t} \, | \, \mathsf{R}_{t} \boldsymbol{\Phi}_{t} + \mathsf{O}_{t} \, \right) + \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\mathsf{O}} \| \mathbf{O} \|_{1}$$

- each term of the functional is convex:
- ℓ_1 -norm and indicative function \Longrightarrow nonsmooth;
- gradient of $p_t \mapsto d_{KL}(Z_t | p_t)$ is not Lipschitzian;
- \bullet linear operator $\textbf{D}_2 \Longrightarrow$ no explicit form for $\mathsf{prox}_{\parallel \textbf{D}_2 \cdot \parallel_1}$

 ${\it X}$ forward-backward

need splitting

$$\iff \underset{(R,O) \in \mathbb{R}_+^T \times \mathbb{R}^T}{\text{minimize}} \quad f(R,O|\mathbf{Z}) + h(\mathbf{A}(R,O)), \quad \mathbf{A} \text{ linear; } f,h \text{ proximable}$$

$$\mathbf{A}(\mathbf{R}, \mathbf{O}) = (\lambda_{\mathbf{R}} \mathbf{D}_{2} \mathbf{R}, \mathbf{R}, \lambda_{\mathbf{O}} \mathbf{O}); \quad h(\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}) = \|\mathbf{Q}_{1}\|_{1} + \iota_{\geq 0}(\mathbf{Q}_{2}) + \|\mathbf{Q}_{3}\|_{1}$$

$$\underset{(\textbf{R},\textbf{O}) \in \mathbb{R}_+^T \times \mathbb{R}^T}{\text{minimize}} \ \sum_{t=1}^T d_{KL} \left(Z_t \, | \, R_t \Phi_t + O_t \, \right) + \lambda_R \| \textbf{D}_2 \textbf{R} \|_1 + \iota_{\geq 0} (\textbf{R}) + \lambda_0 \| \textbf{O} \|_1$$

- each term of the functional is convex:
- ℓ_1 -norm and indicative function \Longrightarrow nonsmooth;
- gradient of $p_t \mapsto d_{KL}(Z_t | p_t)$ is not Lipschitzian; X forward-backward
- linear operator $\mathbf{D}_2 \Longrightarrow$ no explicit form for $\operatorname{prox}_{\|\mathbf{D}_2\cdot\|_1}$ need splitting

$$\iff \underset{(\mathsf{R}, \mathsf{O}) \in \mathbb{R}_+^T \times \mathbb{R}^T}{\mathsf{minimize}} \quad f(\mathsf{R}, \mathsf{O}|\mathsf{Z}) + h(\mathsf{A}(\mathsf{R}, \mathsf{O})), \quad \mathsf{A} \text{ linear; } f, h \text{ proximable}$$

$$\mathsf{A}(\mathsf{R}, \mathsf{O}) = (\lambda_\mathsf{R} \mathsf{D}_2 \mathsf{R}, \mathsf{R}, \lambda_\mathsf{O} \mathsf{O}); \quad h(\mathsf{Q}_1, \mathsf{Q}_2, \mathsf{Q}_3) = \|\mathsf{Q}_1\|_1 + \iota_{>0}(\mathsf{Q}_2) + \|\mathsf{Q}_3\|_1$$

Primal-dual algorithm

(Chambolle et al., 2011, Int. Conf. Comput. Vis.)

X gradient descent

$$\begin{array}{c|c} \text{for } k=1,2\dots \text{do} \\ & \mathbf{Q}^{[k+1]} = \mathsf{prox}_{\sigma h^*}(\mathbf{Q}^{[k]} + \sigma \mathbf{A}(\overline{\mathbf{R}}^{[k]}, \overline{\mathbf{O}}^{[k]})) & \text{dual} \\ & (\mathbf{R}^{[k+1]}, \mathbf{O}^{[k+1]}) = \mathsf{prox}_{\tau f(\cdot | \mathbf{Z})}((\mathbf{R}^{[k+1]}, \mathbf{O}^{[k+1]}) - \tau \mathbf{A}^* \mathbf{Q}^{[k+1]}) & \text{primal} \\ & (\overline{\mathbf{R}}^{[k+1]}, \overline{\mathbf{O}}^{[k+1]}) = 2(\mathbf{R}^{[k+1]}, \mathbf{O}^{[k+1]}) - (\mathbf{R}^{[k]}, \mathbf{O}^{[k]}) & \text{auxiliary} \end{array}$$

Corrected infection counts **Z**^(C)

 \Longrightarrow no more pseudo-seasonality, local trends well captured, smooth behavior

Sep 22

Oct 06

3

Sep 08

Nov 03

2022

Oct 20

Corrected infection counts $\mathbf{Z}^{(C)}$

⇒ no more pseudo-seasonality, local trends well captured, smooth behavior

fast numerical scheme: 15 to 30 sec for 70 days to 1 year

New infection counts per county: $\mathbf{Z} = \left\{ \mathbf{Z}_t^{(d)}, \ d \in [1, D], \ t \in [1, T] \right\}$

 \Rightarrow multivariate time-varying reproduction number $\mathsf{R}_t^{(d)}$

New infection counts per county: $\mathbf{Z} = \left\{ \mathsf{Z}_t^{(d)}, \ d \in [1, D], \ t \in [1, T] \right\}$

 \Rightarrow multivariate time-varying reproduction number $\mathsf{R}_{\mathsf{t}}^{(d)}$

Multivariate extended penalized Kullback-Leibler

$$\begin{split} \left(\widehat{\mathbf{R}}, \widehat{\mathbf{O}}\right) &= \underset{(\mathbf{R}, \mathbf{O}) \in \mathbb{R}_{+}^{D \times T} \times \mathbb{R}^{D \times T}}{\operatorname{argmin}} \sum_{d=1}^{D} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t}^{(d)} \left| \mathsf{R}_{t}^{(d)} \boldsymbol{\Phi}_{t}^{(d)} + \mathsf{O}_{t}^{(d)} \right. \right) \\ &+ \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\mathsf{space}} \| \mathbf{G} \mathbf{R} \|_{1} + \lambda_{\mathsf{O}} \| \mathbf{O} \|_{1} \\ &\Longrightarrow \| \mathbf{G} \mathbf{R} \|_{1} \text{ favors piecewise constancy in space} \end{split}$$

New infection counts per county: $\mathbf{Z} = \left\{ \mathbf{Z}_t^{(d)}, \ d \in [1, D], \ t \in [1, T] \right\}$

 \Rightarrow multivariate time-varying reproduction number $R_t^{(d)}$

Multivariate extended penalized Kullback-Leibler

$$\begin{split} \left(\widehat{\mathbf{R}}, \widehat{\mathbf{O}}\right) &= \underset{(\mathbf{R}, \mathbf{O}) \in \mathbb{R}_{+}^{D \times T} \times \mathbb{R}^{D \times T}}{\operatorname{argmin}} \sum_{d=1}^{D} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t}^{(d)} \left| \mathsf{R}_{t}^{(d)} \boldsymbol{\Phi}_{t}^{(d)} + \mathsf{O}_{t}^{(d)} \right. \right) \\ &+ \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\operatorname{space}} \| \mathbf{G} \mathbf{R} \|_{1} + \lambda_{\mathsf{O}} \| \mathbf{O} \|_{1} \end{split}$$

 $\Longrightarrow \|\mathbf{GR}\|_1$ favors **piecewise constancy** in space

Graph Total Variation

$$\|\mathsf{GR}\|_1 = \sum_{t=1}^T \sum_{d_1 \sim d_2} \left| \mathsf{R}_t^{(d_1)} - \mathsf{R}_t^{(d_2)} \right|$$

sum over neighboring counties

here: $d_1 \sim d_2 \Leftrightarrow$ share terrestrial border

$$\widetilde{\mathbf{A}}(\mathbf{R},\mathbf{O}) = (\lambda_{R}\mathbf{D}_{2}\mathbf{R},\mathbf{R},\lambda_{\text{space}}\mathbf{G}\mathbf{R},\lambda_{O}\mathbf{O})$$

http://barthes.enssib.fr/coronavirus/cartes/RFrance/

0.2

<u>Pointwise estimate</u> of parameter $\theta = (R, 0)$ from observations **Z**

<u>Pointwise estimate</u> of parameter $\theta = (R, O)$ from observations **Z**

Q: what is the value of R today? **A:** solve the minimization problem and output $\widehat{R}_{\mathcal{T}}$.

<u>Pointwise estimate</u> of parameter $\theta = (R, O)$ from observations **Z**

 $\textbf{Q}\!:$ what is the value of R today? $\textbf{A}\!:$ solve the minimization problem and output $\widehat{R}_{\mathcal{T}}.$

$$\widehat{\mathsf{R}}_{\mathcal{T}} = 1.2955$$

<u>Pointwise estimate</u> of parameter $\theta = (R, 0)$ from observations **Z**

Bayesian reformulation: interpret $(\widehat{\mathbf{R}},\widehat{\mathbf{O}})$ as the MAP of $\pi(\theta) \propto \exp(-f(\theta|\mathbf{Z}) - h(\mathbf{A}\theta))$

- $\exp(-f(\theta|\mathbf{Z})) \sim \text{likelihood of the observation}$
- $\exp(-h(\mathbf{A}\boldsymbol{\theta})) \sim \text{prior on the parameter of interest}$

<u>Pointwise estimate</u> of parameter $\theta = (R, O)$ from observations **Z**

Bayesian reformulation: interpret $(\widehat{\mathbf{R}},\widehat{\mathbf{O}})$ as the MAP of $\pi(\theta) \propto \exp(-f(\theta|\mathbf{Z}) - h(\mathbf{A}\theta))$

- $\exp(-f(\theta|\mathbf{Z})) \sim \text{likelihood of the observation}$
- $\exp(-h(\mathbf{A}\boldsymbol{\theta})) \sim \text{prior on the parameter of interest}$

 \Longrightarrow instead of focusing on \widehat{R}_t , the **pointwise** MAP, probe π to get $R_t \in [R_t, \overline{R}_t]$ with 95% probability, i.e., **credibility interval** estimates

$$\widehat{\mathsf{R}}_{\mathcal{T}} \in [1.2987, 1.3047]$$

Log-likelihood from Poisson model

$$\begin{aligned} & \textbf{g-likelihood from Poisson model} & \mathcal{D} = \{\boldsymbol{\theta} \,|\, \forall t, \;\; \mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t \geq 0, \;\; \mathsf{R}_t \geq 0\} \\ & f(\boldsymbol{\theta} \,|\, \boldsymbol{Z}) := \left\{ \begin{array}{l} -\sum_{t=1}^{\mathcal{T}} (\mathsf{Z}_t \,|\, \mathsf{n}(\mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t) - (\mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t) + \mathcal{C}(\mathsf{Z}_t)) & \text{if } \boldsymbol{\theta} \in \mathcal{D}, \\ \infty & \text{otherwise,} \end{array} \right. \end{aligned}$$

Log-likelihood from Poisson model

$$\begin{split} & \textbf{g-likelihood from Poisson model} & \mathcal{D} = \{\boldsymbol{\theta} \,|\, \forall t, \;\; \mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t \geq 0, \;\; \mathsf{R}_t \geq 0\} \\ & f(\boldsymbol{\theta}) & := \left\{ \begin{array}{ll} -\sum_{t=1}^T (\mathsf{Z}_t \, \mathsf{ln}(\mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t) - (\mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t)) & \text{if } \boldsymbol{\theta} \in \mathcal{D}, \\ \infty & \text{otherwise,} \end{array} \right. \end{aligned}$$

Prior distribution of
$$\theta = (R, O) = (R_1, \dots, R_T, O_1, \dots, O_T) \in (\mathbb{R}_+)^T \times \mathbb{R}^T$$

• reproduction number: $R_t - 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$

Log-likelihood from Poisson model

$$\begin{split} & \textbf{g-likelihood from Poisson model} & \mathcal{D} = \{\boldsymbol{\theta} \,|\, \forall t, \;\; \mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t \geq 0, \;\; \mathsf{R}_t \geq 0\} \\ & f(\boldsymbol{\theta}) & := \left\{ \begin{array}{ll} -\sum_{t=1}^T (\mathsf{Z}_t \, \mathsf{ln}(\mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t) - (\mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t)) & \text{if } \boldsymbol{\theta} \in \mathcal{D}, \\ \infty & \text{otherwise,} \end{array} \right. \end{aligned}$$

Prior distribution of $\theta = (\mathbf{R}, \mathbf{O}) = (\mathsf{R}_1, \dots, \mathsf{R}_T, \mathsf{O}_1, \dots, \mathsf{O}_T) \in (\mathbb{R}_+)^T \times \mathbb{R}^T$

- reproduction number: $R_t 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$
- outliers $O_t \sim Laplace(\lambda_O)$

Log-likelihood from Poisson model

$$\begin{aligned} & \text{f-likelihood from Poisson model} & \mathcal{D} = \{\theta \,|\, \forall t, \;\; \mathsf{R}_t \Phi_t + \mathsf{O}_t \geq 0, \;\; \mathsf{R}_t \geq 0\} \\ & f(\theta) & := \left\{ \begin{array}{ll} -\sum_{t=1}^T (\mathsf{Z}_t \, \mathsf{In}(\mathsf{R}_t \Phi_t + \mathsf{O}_t) - (\mathsf{R}_t \Phi_t + \mathsf{O}_t)) & \text{if } \theta \in \mathcal{D}, \\ \infty & \text{otherwise,} \end{array} \right. \end{aligned}$$

Prior distribution of $\theta = (R, O) = (R_1, \dots, R_T, O_1, \dots, O_T) \in (\mathbb{R}_+)^T \times \mathbb{R}^T$

- reproduction number: $R_t 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$
- outliers $O_t \sim Laplace(\lambda_O)$

$$\Rightarrow g(\theta) = \lambda_{\mathsf{R}} \|\mathbf{D}_{2}\mathbf{R}\|_{1} + \lambda_{\mathsf{O}} \|\mathbf{O}\|_{1}, \quad \mathbf{D}_{2} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \dots & & & & & \dots \\ 0 & \dots & & & & 1 & -2 & 1 \end{bmatrix}$$

Log-likelihood from Poisson model $\mathcal{D} = \{\theta \mid \forall t, \ \mathsf{R}_t \Phi_t + \mathsf{O}_t \geq 0, \ \mathsf{R}_t \geq 0\}$

$$f(\boldsymbol{\theta}) \quad := \left\{ \begin{array}{l} -\sum_{t=1}^{T} (\mathsf{Z}_t \ln(\mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t) - (\mathsf{R}_t \boldsymbol{\Phi}_t + \mathsf{O}_t)) & \text{if } \boldsymbol{\theta} \in \mathcal{D}, \\ \infty & \text{otherwise,} \end{array} \right.$$

Prior distribution of $\theta = (R, O) = (R_1, \dots, R_T, O_1, \dots, O_T) \in (\mathbb{R}_+)^T \times \mathbb{R}^T$

- reproduction number: $R_t 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$
- outliers $O_t \sim \mathsf{Laplace}(\lambda_\mathsf{O})$

$$\Rightarrow g(\theta) = \lambda_{R} \|\mathbf{D}_{2}\mathbf{R}\|_{1} + \lambda_{O} \|\mathbf{O}\|_{1}, \quad \mathbf{D}_{2} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \dots & & & & \dots & \dots \\ 0 & \dots & & & 1 & -2 & 1 \end{bmatrix}$$
Laplacian

Posterior distribution of unknown parameters $\theta = (\mathsf{R}, \mathsf{O})$

$$\pi(oldsymbol{ heta}) \propto \exp\left(-f(oldsymbol{ heta}) - g(oldsymbol{ heta})
ight) \mathbb{1}_{\mathcal{D}}(oldsymbol{ heta})$$

- f, g convex
- f smooth, g nonsmooth

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior $\pi(\theta) \propto \exp\left(-f(\theta) - g(\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior $\pi(\theta) \propto \exp\left(-f(\theta) - g(\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$

Principle: 1) generate a random sequence $\{\theta^n, n \in \mathbb{N}\}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n \to \infty$, $\theta^n \sim \pi$,
- 2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{\theta^n, n \geq N\}$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbbm{1}_{\mathcal{D}}(\theta)$

Principle: 1) generate a random sequence $\{\theta^n, n \in \mathbb{N}\}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n \to \infty$, $\theta^n \sim \pi$,
- 2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{ m{ heta}^n, \, n \geq N \}$

Simple and very general approach: Hastings-Metropolis random walk

(i) propose a random move according to

$$\boldsymbol{\theta}^{n+\frac{1}{2}} = \boldsymbol{\theta}^n + \sqrt{2\gamma}\Gamma\xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_{2T}(0, \mathbf{I})$$

with γ positive step size, $\Gamma \in \mathbb{R}^{2T \times 2T}$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior[†] $\pi(\theta) \propto \exp\left(-f(\theta) - g(\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$

Principle: 1) generate a random sequence $\{\theta^n, n \in \mathbb{N}\}$ such that

- θ^{n+1} only depends on θ^n .
- at convergence, i.e., as $n \to \infty$, $\theta^n \sim \pi$,
- 2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{ m{ heta}^n, \, n \geq N \}$

Simple and very general approach: Hastings-Metropolis random walk

(i) propose a random move according to

$$\boldsymbol{\theta}^{n+\frac{1}{2}} = \boldsymbol{\theta}^n + \sqrt{2\gamma} \Gamma \xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_{2T}(0, \mathbf{I})$$

with γ positive step size, $\Gamma \in \mathbb{R}^{2T \times 2T}$

(ii) accept:
$$m{ heta}^{n+1} = m{ heta}^{n+rac{1}{2}}$$
, with probability $1 \wedge rac{\pi(m{ heta}^{n+rac{1}{2}})}{\pi(m{ heta}^n)}$, or reject: $m{ heta}^{n+1} = m{ heta}^n$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics:
$$\theta^{n+\frac{1}{2}}=\mu(\theta^n)+\sqrt{2\gamma}\xi^{n+1}$$
, (Kent, 1978, *Adv Appl Probab*)
$$\mu(\theta) \text{ adapted to } \pi(\theta)=\exp(-f(\theta)-g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$$

Metropolis Adjusted Langevin Algorithm (MALA)

Case 1:
$$g = 0$$
 and $-\ln \pi = f$ is smooth (Roberts & Tweedie, 1996, *Bernoulli*)
$$\mu(\theta) = \theta - \gamma \Gamma \Gamma^{\top} \nabla f(\theta) = \theta + \gamma \Gamma \Gamma^{\top} \nabla \ln \pi(\theta)$$
$$\implies \text{move towards areas of higher probability}$$

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics: $\theta^{n+\frac{1}{2}}=\mu(\theta^n)+\sqrt{2\gamma}\xi^{n+1}$, (Kent, 1978, *Adv Appl Probab*) $\mu(\theta) \text{ adapted to } \pi(\theta)=\exp(-f(\theta)-g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$

Case 1:
$$g = 0$$
 and $-\ln \pi = f$ is smooth (Roberts & Tweedie, 1996, *Bernoulli*)
$$\mu(\theta) = \theta - \gamma \Gamma \Gamma^{\top} \nabla f(\theta) = \theta + \gamma \Gamma \Gamma^{\top} \nabla \ln \pi(\theta)$$
 \Longrightarrow move towards areas of higher probability

$$\underline{\mathsf{Case}\ 2:} - \mathsf{In}\ \pi = f + g\ \mathsf{is}\ \mathsf{nonsmooth}$$

$$\mu(\boldsymbol{\theta}) = \mathsf{prox}_{\gamma\sigma}^{\mathsf{\Gamma}\mathsf{\Gamma}^{\mathsf{T}}}(\boldsymbol{\theta} - \gamma\mathsf{\Gamma}\mathsf{\Gamma}^{\mathsf{T}}\nabla f(\boldsymbol{\theta}))$$

combining Langevin and proximal[†] approaches

$$^{\dagger}\operatorname{prox}_{\gamma g}^{\Gamma\Gamma^{\top}}(y) = \operatorname{argmin}_{x \in \mathbb{R}^d} \left(\frac{1}{2} \|x - y\|_{\Gamma\Gamma^{\top}}^2 + \gamma g(x) \right) : \text{ preconditioned proximity operator of } g$$

Posterior density of $\theta = (\mathbf{R}, \mathbf{O})$: $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

• smooth negative log-likelihood

if
$$\theta \in \mathcal{D}$$
, $f(\theta) = -\sum_{t=1}^{T} (Z_t \ln p_t(\theta) - p_t(\theta))$, $p_t(\theta) = R_t(\Phi Z)_t + O_t$

• nonsmooth convex lower-semicontinuous negative a priori log-distribution

$$g(\theta) = \lambda_{\mathsf{R}} \| \mathbf{D}_2 \mathbf{R} \|_1 + \lambda_{\mathsf{O}} \| \mathbf{O} \|_1 = h(\mathbf{A}\theta)$$

$$\mathbf{A}: \boldsymbol{\theta} \mapsto (\mathbf{D}_2 \mathbf{R}, \mathbf{O})$$
 linear operator, $h(\cdot_1, \cdot_2) = \lambda_{\mathbf{R}} \|\cdot_1\|_1 + \lambda_{\mathbf{O}} \|\cdot_2\|_1$

Posterior density of $\theta = (\mathbf{R}, \mathbf{O})$: $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

• smooth negative log-likelihood

if
$$\theta \in \mathcal{D}$$
, $f(\theta) = -\sum_{t=1}^{T} (Z_t \ln p_t(\theta) - p_t(\theta))$, $p_t(\theta) = R_t(\Phi Z)_t + O_t$

nonsmooth convex lower-semicontinuous negative a priori log-distribution

$$g(\boldsymbol{\theta}) = \lambda_{\mathsf{R}} \|\mathbf{D}_{2}\mathbf{R}\|_{1} + \lambda_{\mathsf{O}} \|\mathbf{O}\|_{1} = h(\mathbf{A}\boldsymbol{\theta})$$

$$\mathbf{A}: \boldsymbol{\theta} \mapsto (\mathbf{D}_2\mathbf{R}, \mathbf{O})$$
 linear operator, $h(\cdot_1, \cdot_2) = \lambda_{\mathbf{R}} \|\cdot_1\|_1 + \lambda_{\mathbf{O}} \|\cdot_2\|_1$

Case 3:
$$-\ln \pi = f + h(\mathbf{A} \cdot)$$
 (Fort et al., 2022, *preprint*)

closed-form expression of $\mathsf{prox}_{\gamma h}$ but not of $\mathsf{prox}_{\gamma h(\mathbf{A}\cdot)}$

- 1) extend **A** into **invertible** $\overline{\mathbf{A}}$, and h in \overline{h} such that $\overline{h}(\overline{\mathbf{A}}\theta) = h(\mathbf{A}\theta)$
- 2) reason on the **dual** variable $\tilde{\theta} = \overline{\mathbf{A}}\theta$

Langevin: drift toward higher probability regions

$$\underset{\boldsymbol{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} \ f(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} \ f(\boldsymbol{\theta}) + \bar{h}(\overline{\mathbf{A}}\boldsymbol{\theta}) = \mathbf{A}^{-1}\underset{\tilde{\boldsymbol{\theta}} \in \mathbb{R}^{2T}}{\operatorname{argmin}} \ f(\overline{\mathbf{A}}^{-1}\tilde{\boldsymbol{\theta}}) + \bar{h}(\tilde{\boldsymbol{\theta}})$$

Langevin: drift toward higher probability regions

Langevin: drift toward higher probability regions

Two strategies to extend
$$\mathbf{A} = \begin{pmatrix} \mathbf{D}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{(2T-1)\times 2T}$$
 into $\overline{\mathbf{A}} = \begin{pmatrix} \overline{\mathbf{D}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{2T\times 2T}$:

Langevin: drift toward higher probability regions
$$\begin{aligned} & \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmax}} \ln \pi(\theta) = \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} \ f(\theta) + \bar{h}(\overline{\mathbf{A}}\theta) = \mathbf{A}^{-1} \underset{\tilde{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} \ f(\overline{\mathbf{A}}^{-1}\tilde{\theta}) + \bar{h}(\tilde{\theta}) \\ \\ & \Longrightarrow \quad \mu(\theta) = \underbrace{\overline{\mathbf{A}}^{-1}}_{\text{back to }\theta} \ \underbrace{\operatorname{prox}_{\gamma\bar{h}}\left(\overline{\mathbf{A}}\theta - \gamma\overline{\mathbf{A}}^{-\top}\nabla f(\theta)\right)}_{\text{proximal-gradient on }\tilde{\theta}} \end{aligned}$$

Two strategies to extend
$$\mathbf{A} = \begin{pmatrix} \mathbf{D}_2 & 0 \\ 0 & I \end{pmatrix} \in \mathbb{R}^{(2T-1)\times 2T}$$
 into $\overline{\mathbf{A}} = \begin{pmatrix} \overline{\mathbf{D}} & 0 \\ 0 & I \end{pmatrix} \in \mathbb{R}^{2T\times 2T}$:

Invert

$$\overline{\mathbf{D}}_2 := \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -2/\sqrt{5} & 1/\sqrt{5} & 0 & \cdots & 0 \\ & \mathbf{D}_2 & & & \end{bmatrix}$$

Langevin: drift toward higher probability regions
$$\begin{aligned} & \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmax}} \ln \pi(\theta) = \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} \ f(\theta) + \bar{h}(\overline{\mathbf{A}}\theta) = \mathbf{A}^{-1} \underset{\tilde{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} \ f(\overline{\mathbf{A}}^{-1}\tilde{\theta}) + \bar{h}(\tilde{\theta}) \\ & \Longrightarrow \quad \mu(\theta) = \underbrace{\overline{\mathbf{A}}^{-1}}_{\text{back to } \theta} \ \underbrace{\operatorname{prox}_{\gamma\bar{h}} \left(\overline{\mathbf{A}}\theta - \gamma\overline{\mathbf{A}}^{-\top}\nabla f(\theta)\right)}_{\text{proximal-gradient on } \tilde{\theta}} \end{aligned}$$

Two strategies to extend
$$\mathbf{A} = \begin{pmatrix} \mathbf{D}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{(2T-1)\times 2T}$$
 into $\overline{\mathbf{A}} = \begin{pmatrix} \overline{\mathbf{D}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{2T\times 2T}$: Invert Ortho
$$\overline{\mathbf{D}}_2 := \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -2/\sqrt{5} & 1/\sqrt{5} & 0 & \cdots & 0 \\ \mathbf{D}_2 & & \mathbf{D}_2 & & \mathbf{D}_0 := \begin{bmatrix} \mathbf{v}_1^\top \\ \mathbf{v}_2^\top \\ \mathbf{D}_2 \end{bmatrix} & \mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^{2T} \\ \mathbf{v}_1 \perp \mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_2 \in (\mathbf{D}_2^\top)^{\perp} \end{bmatrix}$$

Langevin: drift toward higher probability regions
$$\underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmax}} \ln \pi(\theta) = \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\theta) + \bar{h}(\overline{\mathbf{A}}\theta) = \mathbf{A}^{-1} \underset{\tilde{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\overline{\mathbf{A}}^{-1}\tilde{\boldsymbol{\theta}}) + \bar{h}(\tilde{\boldsymbol{\theta}})$$

$$\Longrightarrow \quad \mu(\theta) = \underline{\overline{\mathbf{A}}^{-1}}_{\text{back to } \theta} \underbrace{\operatorname{prox}_{\gamma \bar{h}} \left(\overline{\mathbf{A}}\theta - \gamma \overline{\mathbf{A}}^{-\top} \nabla f(\theta) \right)}_{\text{proximal-gradient on } \tilde{\boldsymbol{\theta}}}$$

Two strategies to extend
$$\mathbf{A} = \begin{pmatrix} \mathbf{D}_2 & 0 \\ 0 & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{(2T-1)\times 2T}$$
 into $\overline{\mathbf{A}} = \begin{pmatrix} \overline{\mathbf{D}} & 0 \\ 0 & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{2T\times 2T}$:

Invert

$$\overline{\mathbf{D}}_2 := \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -2/\sqrt{5} & 1/\sqrt{5} & 0 & \cdots & 0 \\ & \mathbf{D}_2 & & & \end{bmatrix} \qquad \overline{\mathbf{D}}_o := \begin{bmatrix} \mathbf{v}_1^\top \\ \mathbf{v}_2^\top \\ \mathbf{D}_2 \end{bmatrix} \quad \mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^{2T} \\ \mathbf{v}_1 \perp \mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_2 \in (\mathbf{D}_2^\top)^\perp$$

Proposed PGdual **drift terms** on
$$\theta = (R, O)$$
:

reproduction numbers
$$\mu_{\mathsf{R}}(\boldsymbol{\theta}) = \overline{\mathbf{D}}^{-1} \operatorname{prox}_{\gamma_{\mathsf{R}} \lambda_{\mathsf{R}} \parallel (\cdot)_{3:T} \parallel_1} \left(\overline{\mathbf{D}} \, \mathbf{R} - \gamma_{\mathsf{R}} \overline{\mathbf{D}}^{-\top} \, \nabla_{\mathsf{R}} f(\boldsymbol{\theta}) \right)$$
 outliers $\mu_{\mathsf{O}}(\boldsymbol{\theta}) = \operatorname{prox}_{\gamma_{\mathsf{O}} \lambda_{\mathsf{O}} \parallel \cdot \parallel_1} \left(\mathbf{O} - \gamma_{\mathsf{O}} \nabla_{\mathsf{O}} f(\boldsymbol{\theta}) \right)$

```
Data: \overline{\mathbf{D}} = \overline{\mathbf{D}}_2 (Invert) or \overline{\mathbf{D}} = \overline{\mathbf{D}}_o (Ortho)
                      \gamma_{\mathsf{R}}, \gamma_{\mathsf{O}} > 0, N_{\max} \in \mathbb{N}_{\star}, \boldsymbol{\theta}^{\mathsf{O}} = (\mathsf{R}^{\mathsf{O}}, \mathsf{O}^{\mathsf{O}}) \in \mathcal{D}
Result: A \mathcal{D}-valued sequence \{\theta^n = (\mathbf{R}^n, \mathbf{O}^n), n \in \mathbb{O}, \dots, N_{\max}\}
for n = 0, ..., N_{max} - 1 do
            Sample \xi_{R}^{n+1} \sim \mathcal{N}_{T}(0, I) and \xi_{Q}^{n+1} \sim \mathcal{N}_{T}(0, I);
            Set \mathbf{R}^{n+\frac{1}{2}} = \mu_{\mathsf{R}}(\boldsymbol{\theta}^n) + \sqrt{2\gamma_{\mathsf{R}}}\overline{\mathbf{D}}^{-1}\overline{\mathbf{D}}^{-\top}\boldsymbol{\xi}_{\mathsf{P}}^{n+1}:
                         \mathbf{O}^{n+\frac{1}{2}} = \mu_{\mathcal{O}}(\boldsymbol{\theta}^n) + \sqrt{2\gamma_{\mathcal{O}}} \, \mathcal{E}_{\mathcal{O}}^{n+1}:
                         \theta^{n+\frac{1}{2}} = (\mathbf{R}^{n+\frac{1}{2}}, \mathbf{O}^{n+\frac{1}{2}}):
            Set \theta^{n+1} = \theta^{n+\frac{1}{2}} with probability
                                         1 \wedge \frac{\pi(\boldsymbol{\theta}^{n+\frac{1}{2}})}{\pi(\boldsymbol{\theta}^{n})} \frac{q_{\mathsf{R}}(\boldsymbol{\theta}^{n+\frac{1}{2}}, \boldsymbol{\theta}_{\mathsf{R}}^{n})}{q_{\mathsf{D}}(\boldsymbol{\theta}^{n}, \boldsymbol{\theta}_{\mathsf{D}}^{n+\frac{1}{2}})} \frac{q_{\mathsf{O}}(\boldsymbol{\theta}^{n+\frac{1}{2}}, \boldsymbol{\theta}_{\mathsf{O}}^{n})}{q_{\mathsf{O}}(\boldsymbol{\theta}^{n}, \boldsymbol{\theta}_{\mathsf{D}}^{n+\frac{1}{2}})},
                                          q_{R/O}: Gaussian kernel stemming from nonsymmetric proposal
                 and \theta^{n+1} = \theta^n otherwise.
```

Algorithm 1: Proximal-Gradient dual: PGdual Invert and PGdual Ortho

Comparison of MCMC sampling schemes

Gaussian proposal:
$$\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma} \Gamma \xi^{n+1}$$

• random walks: $\mu(\boldsymbol{\theta}) = \boldsymbol{\theta}$

RW:
$$\Gamma = I$$
; RW Invert: $\Gamma = \overline{\mathbf{D}}_2^{-1}\overline{\mathbf{D}}_2^{-\top}$; RW Ortho: $\Gamma = \overline{\mathbf{D}}_o^{-1}\overline{\mathbf{D}}_o^{-\top}$

• Proximal-Gradient dual: $\mu_{R}(\theta)$, $\mu_{O}(\theta)$, $\Gamma = \overline{\mathbf{D}}^{-1}\overline{\mathbf{D}}^{-\top}$

PGdual Invert:
$$\overline{\mathbf{D}} = \overline{\mathbf{D}}_2$$
; PGdual Ortho: $\overline{\mathbf{D}} = \overline{\mathbf{D}}_o$

Practical settings: $N_{\text{max}} = 10^7$ iterations, 15 independent runs

Comparison of MCMC sampling schemes

Gaussian proposal:
$$\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\Gamma\xi^{n+1}$$

• random walks: $\mu(\theta) = \theta$

$$\text{RW: } \Gamma = \text{I ; RW Invert: } \Gamma = \overline{\textbf{D}}_2^{-1}\overline{\textbf{D}}_2^{-\top} \text{ ; RW Ortho: } \Gamma = \overline{\textbf{D}}_o^{-1}\overline{\textbf{D}}_o^{-\top}$$

• Proximal-Gradient dual: $\mu_{\mathsf{R}}(\boldsymbol{\theta})$, $\mu_{\mathsf{O}}(\boldsymbol{\theta})$, $\Gamma = \overline{\mathbf{D}}^{-1}\overline{\mathbf{D}}^{-\top}$

PGdual Invert:
$$\overline{\mathbf{D}} = \overline{\mathbf{D}}_2$$
; PGdual Ortho: $\overline{\mathbf{D}} = \overline{\mathbf{D}}_o$

Practical settings: $N_{\text{max}} = 10^7$ iterations, 15 independent runs

Sanitary situation in France

Worldwide Covid19 monitoring

Why not United Kingdom?

Why not United Kingdom?

rate of erroneous counts: 6/7!

Why not United Kingdom?

And Italy?

rate of erroneous counts: 6/7!

seems to adopt the same reporting rate \dots

 \Longrightarrow call for new tools, robust to very scarce data

Conclusion

 \checkmark Extended Cori model handling erroneous reported counts via a latent variable

$$\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\boldsymbol{\Phi}}:t-1}, \mathsf{R}_t, \textcolor{red}{\mathsf{O}_t} \sim \mathsf{Poiss}(\mathsf{R}_t \Phi_t + \textcolor{red}{\mathsf{O}_t})$$

Conclusion

 \checkmark Extended Cori model handling erroneous reported counts via a latent variable

$$\mathsf{Z}_t | \mathbf{Z}_{t- au_{\Phi}:t-1}, \mathsf{R}_t, \overset{\mathsf{O}}{}_t \sim \mathsf{Poiss}(\mathsf{R}_t \Phi_t + \overset{\mathsf{O}}{}_t)$$

 \checkmark Estimation of piecewise linear R_t and corrected counts via convex optimization

$$\underset{(\textbf{R},\textbf{O}) \in \mathbb{R}_+^T \times \mathbb{R}^T}{\text{minimize}} \ \sum_{t=1}^T d_{KL} \left(Z_t \, \big| \, \mathsf{R}_t \boldsymbol{\Phi}_t + O_t \, \right) + \lambda_R \| \boldsymbol{D}_2 \boldsymbol{R} \|_1 + \iota_{\geq 0}(\boldsymbol{R}) + \lambda_O \| \boldsymbol{O} \|_1$$

$$\widehat{R}_T = 1.1959$$

(Pascal et al., 2022, Trans. Sig. Process.;

Conclusion

✓ Extended Cori model handling erroneous reported counts via a latent variable

$$\mathsf{Z}_t | \mathbf{Z}_{t- au_{\Phi}:t-1}, \mathsf{R}_t, \overset{\mathsf{O}}{}_t \sim \mathsf{Poiss}(\mathsf{R}_t \Phi_t + \overset{\mathsf{O}}{}_t)$$

 \checkmark Estimation of piecewise linear R_t and corrected counts via convex optimization

$$\underset{(\textbf{R},\textbf{O}) \in \mathbb{R}_{+}^{T} \times \mathbb{R}^{T}}{\text{minimize}} \ \sum_{t=1}^{T} d_{KL} \left(\textbf{Z}_{t} \, | \, \textbf{R}_{t} \boldsymbol{\Phi}_{t} + \textbf{O}_{t} \, \right) + \lambda_{R} \| \boldsymbol{D}_{2} \boldsymbol{R} \|_{1} + \iota_{\geq 0} (\boldsymbol{R}) + \lambda_{O} \| \boldsymbol{O} \|_{1}$$

✓ Bayesian credibility interval estimates via proximal Langevin MCMC samplers

(Pascal et al., 2022, Trans. Sig. Process.; Fort et al., 2022, arXiv:2203.09142)

Perspectives

 \longrightarrow Avoid mixing errors O_t with the pandemic mechanism $R_t\Phi_t:$ anomaly models

$$Z_t | \boldsymbol{Z}_{t-\tau_{\boldsymbol{\Phi}}:t-1}, R_t, O_t \sim Poiss \big((1-e_t) R_t \boldsymbol{\Phi}_t + e_t O_t \big), \quad e_t \in \{0,1\}$$

Perspectives

 \longrightarrow Avoid mixing errors O_t with the pandemic mechanism $R_t \Phi_t$: anomaly models

$$Z_t | \boldsymbol{Z}_{t-\tau_{\boldsymbol{\Phi}}:t-1}, R_t, O_t \sim \mathsf{Poiss}((1-e_t)R_t \boldsymbol{\Phi}_t + e_t O_t), \quad e_t \in \{0,1\}$$

 \longrightarrow Selection of regularization parameters $\lambda_{\rm R}, \, \lambda_{\rm O}$

$$\underset{(\textbf{R},\textbf{O}) \in \mathbb{R}_{+}^{T} \times \mathbb{R}^{T}}{\text{minimize}} \ \sum_{t=1}^{T} d_{KL} \left(Z_{t} \, | \, R_{t} \boldsymbol{\Phi}_{t} + \boldsymbol{O}_{t} \, \right) + \lambda_{R} \| \boldsymbol{D}_{2} \boldsymbol{R} \|_{1} + \iota_{\geq 0} (\boldsymbol{R}) + \lambda_{O} \| \boldsymbol{O} \|_{1}$$

Juliana Du PhD thesis

\longrightarrow Synthetic data

