Mathematischer Vorkurs

Robin Heinemann

November 30, 2016

Contents

1	Mes	swert u	ınd Maßeinheit	4
	1.1	Beispi	el	4
	1.2	Bezeic	hungen	4
	1.3	Maßei	nheiten	5
		1.3.1	Bespiel:	5
		1.3.2	SI-Einheiten	5
	1.4	Natürl	liches Einheitensystem der Teilchenphysik	6
		1.4.1	Grundlage	6
		1.4.2	natürliches Einheitensystem	6
	1.5	Endlic	he Messgenauigkeit	6
2	Zeio	chen un	d Zahlen	7
	2.1	Symbo	ble	7
		2.1.1	Summenzeichn	7
		2.1.2	Produktzeichen	9
		2.1.3	Fakultätszeichen	9
	2.2	Zahlen	1	9
		2.2.1	Rechengesetze für reelle Zahlen	9
		2.2.2		11
		2.2.3		11
		2.2.4		11
		2.2.5	Beweisprinzip der Vollständingen Induktion	11
		2.2.6	Quadratische Ergänzung	12
3	Folg	gen und	Reihen	12
	3.1			12
		_	Definition	
		3.1.2	Beispiele	
		3.1.3	Frage	
		3.1.4	Beschränktheit	

	3.2	3.1.6 Konvergenz	13 14 14 14 14 14
4	TOE	OO what was done after this? (Funktionen? (only?))	15
5	Funk	ktionen	15
	5.1	Normal-Hyperbel	15
		5.1.1 Physik-Beispiel	15
	5.2	kubische Parabel	15
		5.2.1 Physik-Beispiel	15
			15
	5.3	$y = ax^{-2} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	15
		5.3.1 Physik-Beispiel	15
	5.4	v 0	16
	5.5	0	16
	5.6		16
		1	16
	5.7	8	16
			17
		9	17
		8 / 8	17
			17
	5.8	1	17
		0	17
	- 0	1	18
	5.9	U I	18
		<i>U</i> 1	18 18
		Tangens hyperbolicus	
			18
	0.10		18
6	Funk	ktionen mit Ecken und Sprüngen	19
-	6.1	. 3	19
	6.2		19
	J. _		19
		•	19
		•	

	6.3	"symmetrischer Kasten" der Breite $2a$ und der Höhe $\frac{1}{2a}$ (Dirak Delta Funktion)	
7	Verk 7.1 7.2	Beispiel	20 20
8	Eige 8.1 8.2	nschaften von Funktionen 2 Beschränktheit 2 8.1.1 Beispiel 2 Monotonie 2 8.2.1 Beispiel 2	21 21
9	9.1		22 22
			22 22
	11.1 11.2 11.3 11.4 11.5 11.6	Die Kunst des Integrierens2Ableiten über Umkehrfunktion2Integrationsregeln211.3.1 Lineare Zerlegung211.3.2 Substitutionsregel211.3.3 Partielle Integration211.3.4 Weitere Integrationstricks2Uneigentliche Integrale211.4.1 Unendliches Integralintervall2Cauchy Hauptwert211.5.1 Unbeschränkter Integrand2Integralfunktionen2Gamma-Funktion3	22 23 23 24 25 25 26 26
12	Vekt 12.1	\mathbb{R}^3	27 27
	12.2	Skalarprodukt und Kronecker-Symbol	27 27 27 27

		12.2.3	Spezialfälle				. 2	7
		12.2.4	Betrag:				. 2	7
		12.2.5	Eigenschaften				. 2	8
		12.2.6	Orthonormalbasis der kartesischen Koordinatensyst	em			. 2	8
		12.2.7	Kronecker Symbol \dots				. 2	8
		12.2.8	Komponentendarstellung des Skalarprodukts $$. .	. 2	8
13	Mat	rizen					2	9
	13.1	Detern	ninante				. 2	9
	13.2	Homog	enes Gleichungssystem				. 2	9
	13.3	Levi C	ivita Symbol				. 2	9
	13.4	Vektor	produkt / Kreuzprodukt				. 2	9
	13.5	Spatpr	odukt				. 3	0
	13.6	Gescha	chteltes Vektorprodukt				. 3	0
		13.6.1	Beweis				. 3	0
14	misc						3	0

1 Messwert und Maßeinheit

Zu jeder phys. Größe gehören <u>Messwert</u> und <u>Maßeinheit</u>, d.h. Zahlewert \cdot Einheit

1.1 Beispiel

Geschw. $v = \text{km s}^{-1}$

1.2 Bezeichungen

Abkürzung	Bedeutung		
t	time		
m	mass		
V	velocity		
a	acceleration		
\mathbf{F}	Force		
${ m E}$	Energy		
${ m T}$	Temperature		
p	momentum		
I	electric current		
V	potential		

Wenn das lateinische Alphabet nicht ausreicht: griechische Buchstaben

$$\alpha,\beta,\gamma,\delta,\Delta,\Gamma,\epsilon,\zeta,\eta,\Theta,\kappa,\lambda,\mu,\nu,\Xi,\pi,\rho,\sigma,\tau,\phi,\chi,\psi,\omega,\Omega$$

1.3 Maßeinheiten

Maßeinheiten werden über Maßstäbe definiert.

1.3.1 Bespiel:

 $1\,\mathrm{m} = \mathrm{Strecke},$ die das Licht in $\frac{1}{299792458}\mathrm{s}$ zurücklegt.

1.3.2 SI-Einheiten

Internationaler Standart (außer die bösen Amerikaner :D)

Größe	Einheit	Symbol
Länge	Meter	m
Zeit	Sekunden	\mathbf{S}
Masse	Kilogramm	kg
elektrischer Strom	Ampere	A
Temperatur	Kelvin	K
Lichstärke	Candela	cd
ebener Winkel	Radiant	rad
Raumwinkel	Steradiant	sr
Stoffmenge	Mol	mol

Radiant Kreisumfang $U=2\pi r$ Bogenmaß $b=\phi r$ Umrechung in Winkelgrad

$$2\pi \operatorname{rad} \stackrel{\wedge}{=} 360^{\circ}$$

$$\frac{WinkelinRadiant}{2\pi} = \frac{WinkelinGrad}{360}$$

Steradiant

$$\Omega = \frac{A}{r^2}$$

Abgeleitete Einheiten

Gröpe	Einheit	Symbol	Equivalent
Frequenz	Hertz	Hz	1/s
Kraft	Newton	N	$ m kgms^{-2}$
Energie	Joule	J	${ m Nm}$
Leistung	Watt	W	$\mathrm{Js^{-1}}$
Druck	Pascal	Pa	$ m Nm^{-2}$
elektrischer Ladung	Coulomb	\mathbf{C}	As
elektrisches Potenzal	Volt	V	$ m JC^{-1}$
elektrischer Wiederstand	Ohm	Ω	${ m VA^{-1}}$
Kapazität	Farad	\mathbf{F}	$\mathrm{C}\mathrm{N}^{-1}$
magn. Fluss	Weber	Wb	${ m Vs^{-1}}$

Prefix / Größenordungen

Prefix	$\log\{10\}$	Abkürzung
Dezi	-1	d
Zenti	-2	\mathbf{c}
Milli	-3	m
Mikro	-6	μ
Nano	-9	n
Piko	-12	p
Femto	-15	$\dot{\mathbf{f}}$
Atto	-18	a
Zepta	-21	${f z}$
Yokto	-24	y
Deka	1	D
Hekto	2	h
Kilo	3	k
Mega	6	M
$_{ m Giga}$	9	G
Tera	12	${ m T}$
Peta	15	P
Exa	18	\mathbf{E}
Zetta	21	\mathbf{Z}
Yotta	24	Y

1.4 Natürliches Einheitensystem der Teilchenphysik

1.4.1 Grundlage

$$2.9979 \times 10^8 \, \mathrm{m \, s^{-1}}$$

$$\hbar = \frac{h}{2\pi} = 6.5822 \times 10^{-22} \, \mathrm{MeV \, s}$$

betrachte $\frac{\hbar c}{\rm MeV\,m}=197.33\times 10^{-15}$

1.4.2 natürliches Einheitensystem

h=c=1 In diesem Fall ist $1/\text{MeV}=197.44\,\text{fm}$ In diesem Einheitensystem ist die Einheit von $[Energie]=[Masse]=[L\ddot{a}nge]^-1=[Zeit]^-1$

1.5 Endliche Messgenauigkeit

z.B. Plancksches Wirkungsquantum

$$\hbar = 1.054\,571\,68(18) \times 10^{-34}\,\mathrm{J\,s}$$

Das bedeutet, dass der Wert von \hbar mit einer Wahrscheinlichkeit von 68 % zwischen den beiden Schranken liegt

$$1.054\,571\,50 \times 10^{-34}\,\mathrm{J\,s} \le \hbar \le 1.054\,571\,86 \times 10^{-34}\,\mathrm{J\,s}$$

2 Zeichen und Zahlen

2.1 Symbole

Zeichen	Bedeutung
+	plus
•	mal
=	gleich
<	ist kleiner als
>	ist größer als
_	Windel zwischen
_	minus
/	geteilt
\neq	ungleich
\leq	kleiner gleich
\geq	größer gleich
\simeq	ungefähr gleich
\pm	plus oder minus
\perp	steht senkrecht auf
≡	ist identisch gleich
= < > ∠ - / ≠ < ≥ ≃ ± ⊥ ≡ ≪ ≫	ist klein gegen
	ist groß gegen
∞	größer als jede Zahl
$\rightarrow \infty$	eine Größe wächst über alle Grenzen \ Limes
$\begin{array}{l} \rightarrow \infty \\ \sum \\ \in \\ \subseteq \\ \cup \\ \exists \\ \Rightarrow \\ \notin \\ \end{array}$	Summe
\in	Element von
\subseteq	ist Untermenge von oder gleich
U	Vereiningungsmenge
\exists	es existiert ein
\Rightarrow	daraus folgt, ist hinreichende Bedingung für
\Leftarrow	gilt wenn, ist notwendige Bedingung für
∃!	es existiert genau ein
∉	kein Element von
:=	ist definiert durch
Ø	Nullmenge
A	für alle

2.1.1 Summenzeichn

Beispiel

1.

$$\sum_{n=1}^{3} a_n = a_1 + a_2 + a_3$$

2. Summe der ersten m natürlichen Zahlen

$$\sum_{m=1}^{m} n = 1 + 2 + \ldots + (m-1) + m = \frac{m(m+1)}{2}$$

3. Summe der ersten m Quadrate der natürlichen Zahlen

$$\sum_{m=1}^{m} n^2 = 1 + 4 + \ldots + (m-1)^2 + m^2 = \frac{m(m+1)(2m+1)}{6}$$

4. Summe der ersten mPotenzen einer Zahl $(q \neq 1)$

$$\sum_{m=0}^{m} q^{m} = 1 + q + \dots + q^{m-1} + q^{m} = \frac{1 - q^{m+1}}{1 - q}$$

sog. geometrische Summe

• Beweis

$$s_m = 1 + \dots + q^m$$

 $qs_m = q + \dots + q^{m+1}$
 $s_m - qs_m = s_m (1 - q) = 1 - q^{m+1}$

Rechenregeln

1.

$$\sum_{k=m}^{n} a_k = \sum_{j=m}^{n} a_j$$

2.

$$c\sum_{k=m}^{n} a_k = \sum_{k=m}^{n} ca_k$$

3.

$$\sum_{k=m}^{n} a_k \pm \sum_{i=m} n b_k = \sum_{k=m}^{n} (a_k \pm b_k)$$

4.

$$\sum_{k=m}^{n} a_k + \sum_{k=n+1}^{p} a_k = \sum_{k=m}^{p} a_k$$

5.

$$\sum_{k=m}^{n} a_k = \sum_{k=m+p}^{n+p} a_{k-p} = \sum_{k=m-p}^{n-p} a_{k+p}$$

6.

$$\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{j=1}^{m} b_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j = \sum_{j=1}^{m} \sum_{i=1}^{n} a_i b_j$$

falls n=m

$$\sum_{i,j=1}^{n} a_i b_j$$

2.1.2 Produktzeichen

Beispiel

$$\prod_{n=1}^{3} a_n = a_1 a_2 a_3$$

2.1.3 Fakultätszeichen

$$m! = 1 \cdot 2 \cdot \ldots \cdot (m-1) \cdot m = \prod_{n=1}^{m} n$$

 $0! = 1$

2.2 Zahlen

Erinnerung natürliche Zahlen $\mathbb{N}=1,2,3,\ldots$ ganze Zahlen $\mathbb{Z}=\mathbb{N}\cup 0\cup -a\mid a\in\mathbb{N}$ rationale Zahlen $\mathbb{Q}=\mathbb{Z}\cup \frac{b}{a}\mid a\in\mathbb{Z}\setminus\{0\}b\in\mathbb{Z}$ reelle Zahlen $\mathbb{R}=\mathbb{Q}\cup$ unendliche Dezimalbrüche Die reellen Zahlen lassen sich umkehrbar eindeutig auf die Zahlengerade abbilden, dh.h jedem Punkt entspricht genau eine reelle Zahl und umgekehrt

2.2.1 Rechengesetze für reelle Zahlen

Addition

- Assoziativität (a + b) + c = a + (b + c)
- Kommutativität a + b = b + a
- neutrales Element a + 0 = a
- Existenz des Negatives a+x=b hat immer genau eine Lösung: x=b-a für 0-a schreibe wir -a

Multiplikation:

- Assoziativität $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Kommutativität $a \cdot b = b \cdot a$
- neutrales Element $a \cdot 1 = a$
- Inverses $a \cdot x = b$ hat für jedes $a \neq a$ genau eine Lösung $x = \frac{b}{a}$ für $\frac{1}{a}$ schreiben wir a^-1
- Distributivge setz $a \cdot (b+c) = a \cdot b + a \cdot c$

Ordung der reellen Zahlen Die kleiner-Beziehung a < b, oder auch b > a hat folgende Eigenschaften:

- Trichotomie: Es gilt immer genau eine Beziehung $a < b, \, a = b \, a > b$
- Transitivität: Aus a < b und b < c folgt a < c

Beispiele, Folgerungen

Rechenregeln für Potenzen $b^n := b \cdot b \cdot \ldots \cdot b \ n \in \mathbb{N}$ Faktoren

$$b^{0} := 1$$

$$b^{-}n = \frac{1}{b^{n}}$$

$$b^{n} \cdot b^{m} = b^{n+m}$$

$$(b^{n})^{m} = b^{n \cdot m}$$

$$(a \cdot b)^{n} = a^{n} \cdot b^{n}$$

Betrag einer reellen Zahl

$$|a| := \begin{cases} a & a \le 0 \\ -a & a > 0 \end{cases}$$

Eigenschaften

$$|a| \ge 0 \,\forall \, a \in \mathbb{R}$$
$$|a| = 0$$

nur für a = 0

$$|a+b| \le |a| + |b|$$

Dreieckungleichung

2.2.2 Satz des Pythagoras

$$a^2 + b^2 = c^2$$

2.2.3 binomische Formeln:

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

 $(a + b)(a - b) = a^2 - b^2$

Allgemein:

$$(a \pm b)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} a^{n-k} (\pm)^k$$

(Klammer) Binominial koeffizienten

$$\binom{n}{k} := \frac{n!}{k!(n-k)!} a^{n-k}$$

2.2.4 Pascalsches Dreieck

$$n = 0 1$$

$$n = 1 1 1$$

$$n = 2 1 2 1$$

$$n = 3 1 3 3 1$$

$$n = 4 1 4 6 4 1$$

$$n = 5 1 5 10 10 5 1$$

2.2.5 Beweisprinzip der Vollständingen Induktion

Beispiel Für alle $n \in \mathbb{N}$ soll die Summe der ersten n Quadratzahlen beiesen werden

$$A(n) := \sum_{k=1}^{n} k^{1} = 1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$

- 1. Induktionsanfang A(1) = 1
- 2. Induktonsschritt Falls A(k) richtig ist, wird gezeigt, dass auch A(k+1) richtig ist

$$A(k+1) = \underbrace{1^2 + 2^2 + \dots + k^2}_{A(n)} + (k+1)^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$$

$$= \frac{1}{6}(k+1)(k(2k+1) + 6(k+1))$$

$$= \frac{1}{6}(k+1)(k+2)(2k+3)$$

$$= \frac{1}{6}(k+1)(k+2)(2(k+1) + 1)$$

2.2.6 Quadratische Ergänzung

$$x^{2} + ax + b = 0$$
$$x_{1,2} = -\frac{a}{2} \pm \sqrt{\frac{a^{2}}{4} - b}$$

3 Folgen und Reihen

3.1 Folge

3.1.1 Definition

Vorschrift, die jeder natürlichen Zahl n eine reelle Zahl a_n zuweist.

$$(a_n)_{n\in\mathbb{N}}$$

3.1.2 Beispiele

• die natürlichen Zahlen selbst

$$n_{n\in\mathbb{N}}=(1,2,3,\ldots)$$

• alternierende Folge

$$((-1)^{n+1})_{n\in\mathbb{N}} = (1, -1, 1, -1, \ldots)$$

• harmonische Folge

$$(\frac{1}{n})_{n\in\mathbb{N}} = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$$

• inverse Fakultäten

$$(\frac{1}{n!})_{n\in\mathbb{N}} = (1, \frac{1}{2}, \frac{1}{6}, \ldots)$$

• Folge echter Brüche

$$(\frac{n}{n+1})_{n\in\mathbb{N}} = (\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots)$$

• geometrische Folge

$$(q^n)_{n \in \mathbb{N}} = (q, q^2, q^3, \ldots)$$

charakteristische Eigenschaft der geometrischen Folge $\frac{a_{n+1}}{a_n}=q$ q heißt Quotient der Folge allgemeines Bildungsgesetz $a_n=a_1q^{n-1}$

• Folge der Ungeraden Zahlen (arithmetische Folge)

$$(1 + (n-1) * 2)_{n \in \mathbb{N}} = (1, 3, 5, 7, \ldots)$$

 $a_{n+1}-a_n=d\ d$ heißt Differenz der Folge allgemeines Bildungsgesetz $a_n=a_1+(n-1)d$

• "zusammengesetzte Folgen" (hier Exponentialfolge)

$$((1+\frac{1}{n})^n)_{n\in\mathbb{N}} = (2, \frac{3}{2}^2, \frac{4}{3}^2, \ldots)$$

3.1.3 Frage

Kann man etwas über das Verhalten von $(a_n)_{n\in\mathbb{N}}$ für $n\to\infty$ aussagen, ohne tatsächlich "die Reise ins Unendliche" anzutreten"

3.1.4 Beschränktheit

Eine Folge heißt nach oben beschänkt, wenn es eine obere Schranke B für die Flieder der Folge gibt: $a_n \leq B$, d.h. $\exists B: a_n \leq B \, \forall \, n \in \mathbb{N}$ Nach unten beschränkt: $\exists A: A \geq a_n \, \forall \, n \in \mathbb{N}$

3.1.5 Monotonie

- Eine Folge heißt monoton steigend, wenn aufeinanderfolgende Glieder mit wachsender Nummer immer größer werden: $a_n \leq a_{n+1} \, \forall \, n \in \mathbb{N}$
- streng monoton steigend $a_n < a_{n+1} \, \forall \, n \in \mathbb{N}$
- monoton fallend $a_n \ge a_{n+1} \, \forall \, n \in \mathbb{N}$
- streng monoton fallend $a_n > a_{n+1} \, \forall \, n \in \mathbb{N}$

3.1.6 Konvergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen a oder hat den <u>Grenzwert</u> a, wenn es zu jedem $\epsilon > 0$ ein $N(\epsilon) \in \mathbb{N}$ gibt mit $|a - a_n| < \epsilon \, \forall \, n > N(\epsilon)$ Wir schreiben $\lim_{n \to \infty} a_n = a$

Beispiel

- $\lim_{n\to\infty}\frac{1}{n}=0$
- $\lim_{n\to\infty} \left(1 \frac{1}{\sqrt{n}}\right) = 1$

Grenzwertfreie Konvergenzkriterien

- jede monoton wachsend, nach oben beschränkte Folge ist konvergent, entsprechend ist jede monoton fallende, nach unten beschränkte Folge konvergent
- Cauchy-Kriterium: Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert genau dann, wenn es zu jedem $\epsilon > 0$ ein $N(\epsilon) \in \mathbb{N}$ gibt, so dass

$$|a_n - a_m| < \epsilon \, \forall \, n, m > N(\epsilon)$$

Für harmonische Folge $(\frac{1}{n})_{n\in\mathbb{N}}$

$$|a_n - a_m| = |\frac{1}{n} - \frac{1}{m}| = |\frac{m-n}{mn}| < |\frac{m}{mn}| = \frac{1}{n} < \epsilon \text{für} n > N(\epsilon) = \frac{1}{\epsilon}$$

3.2 Reihen (unendliche Reihen)

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen, Die Folge

$$s_n := \sum_{k=1}^n a_k, n \in \mathbb{N}$$

der Partialsumme heißt (unendliche) Reihe und wird oft mit $\sum_{k=1}^{\infty} a_k$ bezeichnet Konvergiert die Folge $(s_n)_{n\in\mathbb{N}}$, so wird ihr Grenzwert ebenfalls mit $\sum_{k=1}^{\infty} a_k$ bezeichnet

3.2.1 Bemerkung

Ergebnisse für Folgen gelten auch für Reihen

3.2.2 Rechenregeln für konvergente Reihen

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ zwei konvergente Reihen und $\lambda \in \mathbb{R}$, dann sind auch die Reihen

$$\sum_{k=1}^{\infty} a_k + b_k, \sum_{k=1}^{\infty} a_k - b_k, \sum_{k=1}^{\infty} \lambda a_k$$

konvergent und es gilt

$$\sum_{k=1}^{\infty} (a_k \pm b_k) = \sum_{k=1}^{\infty} a_k \pm \sum_{k=1}^{\infty} b_k$$

$$\sum_{k=1}^{\infty} \lambda a_k = \lambda \sum_{k=1}^{\infty} a_k$$

Bemerkung: Für das Produkt zweier unendlicher Reihen gilt i.A. keine so einfache Formel

3.2.3 Beispiel

geometrische Reihe

$$\sum_{n=0}^{\infty} q^n = \lim_{m \to \infty} (\sum_{n=0}^{m} q^n) = \lim_{m \to \infty} \frac{1 - q^{m+1}}{1 - q} = \frac{1}{1 - q} \text{für } q < 1, q \neq 0$$

3.2.4 Absolute Konvergenz

Eine Reihe

$$\sum_{k=1}^{\infty} a_k$$

heißt absolut konvergent, wenn die Reihe

$$\sum_{k=1}^{\infty} |a_k|$$

konvergiert. Absolut konvergente Reihen können ohne Änderung der Grenzwertes umgeordnet werden, d.h. jede ihrer Umordungen konvergiert wieder und zwar immer gegen den gleichen Grenzwert.

4 TODO what was done after this? (Funktionen? (only?))

5 Funktionen

5.1 Normal-Hyperbel

$$y = \frac{1}{x}$$
 $D_f = \mathbb{R} \setminus \{0\}$ $W_f = \mathbb{R} \setminus \{0\}$

5.1.1 Physik-Beispiel

- Boyle-Mariettsches Gesetz
- Druck p eines idealen Gases in einem Volumen V bei konstanter Temperatur und Gasmenge: $p = \frac{\text{cons}}{V}$

5.2 kubische Parabel

$$y = ax^3$$

5.2.1 Physik-Beispiel

$$V = \frac{4}{3}\pi r^3$$

5.2.2 Verallgemeinerung

$$y = ax^n \quad n \in \mathbb{N}$$

5.3
$$y = ax^{-2}$$

5.3.1 Physik-Beispiel

Coulomb Gesetz der Elektrostatik

$$F = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2}$$

5.4 Symmetrieeigenschaften der Potenzfunktionen

$$y = f(x) = x^n$$

- gerade n: f ist symmetrisch, d.h. f(-x) = f(x)
- ungerade n: f ist antisymmetrisch, d.h. f(-x) = -f(x)

5.5 Potenzfunktionen als "Bausteine" in susammengesetzten Funktionen

Polynom m-ten Grades

$$y = P_m(x) = a_0 + a_1 x + \dots + a_m x^m = \sum_{k=0}^m a_k x^k$$

5.6 Rationale Funktionen

$$y = \frac{P_m(x)}{Q_n(x)} \quad D_f = \{x \in \mathbb{R} \mid Q_n(x) \neq 0\}$$

 $P_m(x)$ Polynom m-ten Grades, $Q_n(x)$ n-ten Grades

5.6.1 Beispiel

$$f(x) = \frac{1}{x^2 + 1}$$

"Lorentz-Verteilung beschreibt die Linienbreite einer Spektrallinie"

5.7 Trigonometrische Funktionen

$$\sin \alpha = \frac{a}{c} = \cos \beta$$

$$\cos \alpha = \frac{b}{c} = \sin \beta$$

$$\tan \alpha = \frac{a}{b} = \frac{\sin \alpha}{\cos \alpha} = \cot \beta = \frac{1}{\cot \alpha}$$

$$\cot \alpha = \frac{b}{a} = \frac{\cos \alpha}{\sin \alpha} = \tan \beta = \frac{1}{\tan \alpha}$$

$$\cos \alpha^2 + \sin \alpha^2 = 1$$

α	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$
0	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	1	0	$\rightarrow \infty$

5.7.1 TODO Table Formula?

5.7.2 TODO Veranschaulichung am Einheitskreis

 $\sin \alpha = y$ Periodische Erweiterung auf $\alpha < 0, \ \alpha > \frac{\pi}{2}$ Periodische Funktion:

$$\sin x + 2\pi = \sin x$$
 Periode: 2π

$$\cos x + 2\pi = \cos x$$
 Periode: 2π

Beispiel

$$\sin x + \pi = -\sin x$$

$$\cos x + \pi = -\cos x$$

$$\cos x = \sin \frac{\pi}{2} - x$$

TODO Graphik

5.7.3 Tangens/Cotangens

$$\tan x = \frac{\sin x}{\cos x}$$

TODO Graphik

5.7.4 Additionstheoreme

$$\sin\alpha\pm\beta=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta$$

$$\cos \alpha \pm \beta = \cos \alpha \cos \beta \pm \sin \alpha \sin \beta$$

$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$

$$\cos 2\alpha = \cos \alpha^2 - \sin \alpha^2 = 1 - 2\sin \alpha^2 = 2\cos \alpha^2 - 1$$

5.8 Exponentialfunktionen

$$y = f(x) = b^x \quad b > 0, \ x \in \mathbb{R}$$

5.8.1 Rechenregeln

$$b^x b^y = b^{x+y} \quad (b^x)^y = b^{xy}$$

natürliche Exponentialfunktion mit Zahl e als Basis

$$y = f(x) = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

5.8.2 Beispiel radioaktiver Zerfall

$$N(t) = N(0)e^{\frac{-t}{\tau}}$$

5.9 Cosinus hyperbolicus

$$y = \cosh x := \frac{1}{2} \left(e^x + e^{-x} \right)$$

5.10 Sinus hyperbolicus

$$y = \sinh x := \frac{1}{2} (e^x - e^{-x})$$

Es gilt:

$$\cosh^2 x - \sinh^2 x = 1$$

5.11 Tangens hyperbolicus

$$y = \tanh x := \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

5.12 Cotangens hyperbolicus

$$y = \coth x := \frac{1}{\tanh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

5.13 Wurzelfunktion

Umkehrfunktion der Potenzfunktionen

$$y = f(x) = x^n \quad n \in \mathbb{Z}$$

Wurzelfunktion:

$$y = f(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$$

n gerade: vor der Umkehrung ist die Einschränkung des Definitionsbereiches auf $x \geq 0$ notwendig

5.13.1 Beispiel

$$y = f(x) = x^2 + 1$$
 $x \ge 0$

Umkehrfunktion:

$$y = \sqrt{x-1}$$

6 Funktionen mit Ecken und Sprüngen

6.1 Betragsfunktion

$$y = |x| := \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

6.2 Heaviside-Stufenfunktion

$$y = \Theta(x) := \begin{cases} 1 & x > 0 \\ 0 & x < 0 \\ \frac{1}{2} & x = 0 \end{cases}$$

6.2.1 TODO Graphik

6.2.2 Beispiel

$$y = \Theta(x)\Theta(-x+a)$$

 \mathbf{TODO} Graphik

6.3 "symmetrischer Kasten" der Breite 2a und der Höhe $\frac{1}{2a}$ (Dirak Delta Funktion)

$$\Theta_a(x) := \frac{\Theta(x+a)\Theta(-x+a)}{2a}$$
$$\lim_{a \to 0} \Theta_a = \text{"(Dirak) } \delta\text{-Funktion"}$$

6.3.1 TODO Graphik

7 Verkettung von Funktionen

Seinen

$$f: D_f \to \mathbb{R}$$

 $g: D_g \to \mathbb{R}$

mit $w_g \subseteq D_f$, dann ist die Funktion $f \circ g : D_g \to \mathbb{R}$ definiert durch

$$(f \circ g)(x) := f(g(x)) \quad \forall x \in D_q$$

7.1 Beispiel

$$z = g(x) = 1 + x^2$$
 $W_g: z \ge 1$

$$y = f(z) = \frac{1}{z}$$
 $D_f = \mathbb{R} \setminus \{0\}$

also $W_g \subset D_f$, sodass

$$(f \circ g)(x) = f(g(x)) = \frac{1}{g(x)} = \frac{1}{1+x^2}$$

7.2 Spiegelsymmetrie (Siegelung an der y-Achse, d.h. $x \to -x$)

Eine Funktion f(x) heißt

- gerade(symmetrisch) wenn f(-x) = f(x)
- ungerade (antisymmetrisch) wenn f(-x) = -f(x)

7.2.1 Beispiel

gerade Funktionen

- $f(x) = x^{2n}$ $n \in \mathbb{N}$
- $f(x) = \cos x$
- f(x) = |x|

ungerade Funktionen

- $f(x) = x^{2n+1}$
- $f(x) = \frac{1}{x}$
- $f(x) = \sin(x)$

keins von beidem

•
$$f(x) = sx + c$$

7.2.2 Zerlegung

Jede Funktion lässt sich in einen geraden und ungeraden Anteil zerlegen

• gerader Anteil:

$$f_{+}(x) = \frac{1}{2} (f(x) + f(-x)) = f_{+}(-x)$$

• ungerader Anteil:

$$f_{-}(x) = \frac{1}{2} (f(x) - f(-x)) = -f_{-}(-x)$$

• check:

$$f_{+}(x) + f_{-}(x) = f(x) \quad \checkmark$$

8 Eigenschaften von Funktionen

8.1 Beschränktheit

f heißt nach oben beschränkt im Intervall [a, b], wenn es eine obere Schranke gibt, d.h.

$$\exists B \in \mathbb{R} : f(x) \leq B \, \forall \, x \in [a, b]$$

analog: nach unten beschränkt

$$\exists A \in \mathbb{R} : f(x) \ge A \, \forall \, x \in [a, b]$$

8.1.1 Beispiel

 $f(x) = x^2$ durch A = 0 nach unten beschränkt $f(x) = \Theta(x)$ B = 1, A = 0

8.2 Monotonie

Eine Funktion $f: D_f \to \mathbb{R}$ heißt monoton steigend im Intervall $[a,b] \subseteq D_f$, wenn aus $x_1, x_2 \in [a,b]$ mit $x_1 < x_2$ stets folgt $f(x_1) \le f(x_2)$ Gilt sogar $f(x_1) < f(x_2)$ so heißt f streng monoton steigend im Intervall [a,b] Analog heißt f monoton (streng monoton) fallend, wenn stets folgt $f(x_1) \ge f(x_2)$ ($f(x_1) > f(x_2)$)

8.2.1 Beispiel

 $f(x) = x^3$ streng monoton steigend

9 Umkehrfunktionen

Sei $f:D_f\to W_f$ eine
indeutig(bijektiv), dann kann man die Gleichung y=f(x) eindeutig nach x auflösen

$$x = f^{-1}(y) := g(y) \qquad D_g = W_f, \quad W_g = D_f$$

$$f^{-1} = g: W_f \to D_f$$

Die ursprüngliche Abbildung y=f(x) und die Umkehrabbildung $x=f^{-1}(y)=g(y)$ heben sich in ihrer Wirkung auf

$$f^{-1}(f(x)) = x$$

9.1 Graph der Umkehrfunktion

- 1. Gegebenfalls Einschränktung von D_f , sodass eine bijektive Funktion vorliegt
- 2. Auflösen der Gleichung $y=f(x)\Rightarrow x=f^-1(y)$
- 3. Umbennenung der Variablen: die unabhängige Variable y wird wieder x genannt, die abhängige wieder y: $y=f^{-1}(x)$

9.1.1 Beispiel $y = x^2$

- 1. Einschränktung D_f auf $x \ge 0$
- 2. $y = x^2, x \ge 0 \Leftrightarrow x = \sqrt{y}$
- 3. Umbenennung: $y = \sqrt{x} = x^{\frac{1}{2}}$

9.1.2 Graphisch

Spiegelung an y = x

10 what after this?

11 Integral und Differenzialrechnung

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Haupsatz:

$$F'(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x} = f(x)$$

$$F(x) = \int f(x) dx \quad f(x) \qquad \text{Bemerkungen}$$

$$const \qquad 0$$

$$x^r \qquad rx^{r-1} \qquad r \in \mathbb{R}$$

$$\frac{x^{r+1}}{r+1} \qquad x^r \qquad -1 \neq r \in \mathbb{R}$$

11.1 Die Kunst des Integrierens

$$\int_{1}^{e} \frac{1}{x} dx = \ln x \mid_{1}^{e} = \ln e - \ln 1 = 1$$

$$\int_{0}^{\frac{\pi}{2}} \cos(t) dt = \sin t \mid_{0}^{\frac{\pi}{2}} = \sin \frac{\pi}{2} - \sin 0 = 1$$

$$\int_{a}^{b} \frac{1}{1 + x^{2}} dx = \arctan x \mid_{a}^{b}$$

11.2 Ableiten über Umkehrfunktion

$$\frac{\mathrm{d}f^{-1}(x)}{\mathrm{d}x} = \frac{1}{f'(f^{-1}(x))}$$

11.3 Integrationsregeln

11.3.1 Lineare Zerlegung

$$\int_{a_1}^{a_2} cf(x) + bg(x) dx = c \int_{a_1}^{a_2} f(x) dx + b \int_{a_1}^{a_2} g(x) dx$$

Beispiel

$$F = \int_0^1 \sqrt{x} - x^2 dx = \int_0^1 \sqrt{x} dx - \int_0^1 x^2 dx = \frac{2}{3} x^{\frac{3}{2}} \mid_0^1 - \frac{1}{3} x^3 \mid_0^1 = \frac{1}{3}$$
$$\int_0^1 (1 - x^2)^2 dx = \int_0^1 1 - 2x^2 + x^4 dx = \int_0^1 1 dx - 2 \int_0^1 x^2 dx + \int_0^1 x^4 dx = \frac{8}{15}$$

11.3.2 Substitutionsregel

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

merke: $\frac{g(x)}{dx}dx = g'(x)dx = dy$

$$y = g(x), \quad \frac{\mathrm{d}y}{\mathrm{d}x} = g'(x), \quad \mathrm{d}y = g'(x)\mathrm{d}x$$

Beweis F sei die Stammfunktion zu f, F' = f

$$(F(g(t)))' = F'(g(t))g'(t) = f(g(t))g'(t)$$

$$\int_{a}^{b} f(g(t))g'(t)dt = F(g(t)) \mid_{a}^{b} = F(g(b)) - F(g(a)) = F(x) \mid_{g(a)}^{g(b)} = \int_{g(a)}^{g(b)} f(y)dy$$

Beispiel

$$\int_{1}^{5} \sqrt{2x+1} dx = \int_{1}^{9} \sqrt{y} \frac{1}{2} dy = \frac{26}{3}$$

$$y = 2x - 1 \quad y' = g'(x) = \frac{dy}{dx} = g'(x) = 2 \Rightarrow dy = 2dx \Rightarrow \frac{1}{2} dy = dx$$

$$\int_{0}^{b} t e^{-\alpha t^{2}} dt = -\frac{1}{2\alpha} \int_{0}^{-\alpha b^{2}} e^{y} dy = -\frac{1}{2\alpha} (e^{-\alpha b^{2}} - 1)$$

$$y = g(t) = -\alpha^{2} \Rightarrow \frac{dy}{dt} = -2\alpha t \Rightarrow dy = -2\alpha t dt \Rightarrow dt = -\frac{1}{2\alpha t} dy$$

$$\int_0^T \cos \omega t dt = \frac{1}{\omega} \int_0^{\omega T} dy$$

 $\int_{a}^{b} \frac{g'(x)}{g(x)} dx = \int_{g(a)}^{g(b)} \frac{1}{y} dy = \ln|y| \Big|_{g(a)}^{g(b)}$

$$\int \frac{\mathrm{d}x}{ax \pm b} = \frac{1}{a} \ln|ax \pm b| + c$$

 $\int_{a}^{b} g^{n}(x)g'(x)dx = \int_{a(a)}^{g(b)} y^{n}dy$

11.3.3 Partielle Integration

$$\int_{a}^{b} f'(x)g(x)dx = f(x)g(x) \mid_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

Beweis

$$F(x) = f(x)g(x) \Rightarrow F'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\int_{a}^{b} F'(x) dx = \int_{a}^{b} f'(x)g(x) dx + \int_{a}^{b} f(x)g'(x) dx$$

$$f(x)g(x) \mid_{a}^{b} = \int_{a}^{b} f'(x)g(x) dx + \int_{a}^{b} f(x)g'(x) dx$$

$$f(x)g(x) \mid_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx = \int_{a}^{b} f'(x)g(x) dx$$

Beispiel

 $\int_{a}^{b} x \ln x dx = \frac{1}{2} x^{2} \ln(x) \mid_{a}^{b} - \int_{a}^{b} \frac{1}{2} x^{2} \frac{1}{x} dx = \frac{1}{2} x^{2} \ln(x) \mid_{a}^{b} - \frac{1}{2} \int_{a}^{b} x dx$

 $\int 1 \ln x dx = x \ln x - \int x \frac{1}{x} dx = x \ln x - \int 1 dx = x \ln x - x + c = x(\ln x - 1) + c$

 $\int x \sin x dx = -x \cos x + \int \cos x dx = -x \cos x + \sin x$

Kreisfläche

$$y = f(x) = \sqrt{1 - x^2}$$

$$\int_a^b \sqrt{1 - x^2} dx = \int_{\arcsin a}^{arcsinb} \sqrt{1 - \sin^2 t} \cos t t d = \int_{\arcsin a}^{arcsinb} \cos t \cos t dt = \frac{1}{2} (\arcsin b + b\sqrt{1 - b^2} - \arcsin a - a\sqrt{1} \cos t \cos t dt)$$

$$x = \sin t \Rightarrow t = \arcsin x, \quad \frac{x}{dt} = \cos t, \quad dx = \cos t dt$$

$$\int \cos t \cos t = \sin t \cos t + \int \sin^2 t dt = \sin t \cos t + \int 1 - \cos^2 t dt = \frac{\sin t \cos t + t}{2}$$

In Polarkoordinaten

$$y = \sin t$$

$$x = \cos t$$

$$dx = \sin t dt$$

$$dA = y dx = \sin^2 t dt$$

$$A = \int_0^{\pi} \sin^2 t = \frac{\pi}{2}$$

Zerlegung

$$dA = 2\pi r dr$$

$$\int dA = \int_0^R 2\pi r dr = 2\pi \frac{1}{2} r^2 \mid_0^R = \pi R^2$$

11.3.4 Weitere Integrationstricks

Partialbruchzerlegung ⇒ Integration rationaler Funktionen

$$\int_{a}^{b} \frac{\mathrm{d}}{1 - x^{2}} \min \left\{ -1, 1 \right\} \notin [a, b]$$

$$1 - x^{2} = (1 - x)(1 + x)$$

$$\frac{1}{1 - x^{2}} = \frac{\alpha}{1 - x} + \frac{\beta}{1 + x} = \frac{\alpha(1 + x) + \beta 1 - x}{(1 - x)(1 + x)} = \frac{\alpha + \beta + x(\alpha - \beta)}{1 - x^{2}} \Rightarrow \alpha = \beta \frac{1}{2}$$

$$\int_{a}^{b} \frac{\mathrm{d}x}{1 - x^{2}} = \frac{1}{2} \left(\int_{a}^{b} \frac{1}{1 + x} + \int_{a}^{b} \frac{1}{1 + x} \right)$$

11.4 Uneigentliche Integrale

11.4.1 Unendliches Integralintervall

Definition Sei $f:[a,\infty)\to\mathbb{R}$ eine Funktion, die über jedem Intervall $[a,R),\ a< R<\infty$ (Riemann-)integrierbar ist. Falls der Grenzwert $\lim_{R\to\infty}\int_a^R f(x)\mathrm{d}x$ existiert setzt man

$$\int_{a}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{a}^{R} f(x) dx$$

Beispiel

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{s}} = \begin{cases} \frac{1}{s-1} & s > 1\\ \infty & s \le 1 \end{cases}$$

11.5 Cauchy Hauptwert

$$P \int_{-\infty}^{\infty} f(x) dx := \lim_{c \to \infty} \int_{-c}^{c} f(x) dx$$

P := "principal Value"

$$\int_{-\infty}^{\infty} x^{2n-1} dx = \lim_{a \to \infty} \int_{-a}^{c} x^{2n-1} dx + \lim_{b \to \infty} \int_{c}^{b} x^{2n-1} dx = \infty$$
$$P \int_{-\infty}^{\infty} x^{2n-1} dx = \lim_{c \to \infty} \int_{-c}^{c} x^{2n-1} dx = \lim_{c \to \infty} \left(\frac{1}{2\pi} \left(\underbrace{c^{2n} - (-c)^{2n}}_{-0} \right) \right) = 0$$

11.5.1 Unbeschränkter Integrand

Situation: Integrand wird an einer Stelle $x_0 \in [a, b]$ unbeschränkt

Definition Sei $f:(a,b]\to\mathbb{R}$ eine Fnunkion, die über jedem Teilintervall $[a+\eta,b],\ 0<\eta< b-a$ (Riemann-)integrierbar ist. Falls der Grenzwert $\lim_{\eta\to 0}\int_{a+\eta}^b f(x)\mathrm{d}x$ existiert, heipßt das Integral $\int_a^b f(x)\mathrm{d}x$ konvergent

$$\int_{a}^{b} f(x) dx = \lim_{\eta \to 0} \int_{a+\eta}^{b} f(x) dx$$

Beispiel

$$\int_0^b \frac{1}{x^{1-\epsilon}} \mathrm{d}x = \lim_{\eta \to 0} \int_\eta^b \frac{1}{x^{1-\epsilon}} \mathrm{d}x = \lim_{\eta \to 0} \frac{1}{\epsilon} (b^\epsilon - \eta^\epsilon) = \frac{1}{\eta} b^\epsilon$$

Principal value

$$P \int_{a}^{b} f(x) dx = \lim_{\eta \to 0} \int_{a}^{x_0 - \eta} f(x) dx + \int_{x_0 + \eta}^{b} f(x) dx$$

11.6 Integralfunktionen

$$\ln x = \int_{1}^{x} \frac{dx}{x}$$

$$\arctan x = \int_{0}^{y} \frac{dx}{1+x^{2}}$$

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{-x^{2}} dx$$

Elliptisches Integral

11.7 Gamma-Funktion

11.7.1 Definition

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$$
 Satz: Es gilt $\Gamma(1) = 1$, $\Gamma(m+1) = m! \, \forall \, n \in \mathbb{N}$, $x \Gamma(x) = \Gamma(x+1)$
$$\Gamma(1) = \int_0^\infty e^{-t} dt = -e^{-t} \mid_0^\infty = 1$$

$$\Gamma(x+1) = \int_\epsilon^R t^x e^{-t} dt = \underbrace{t^x e^{-t}}_{R \to \infty t} \mid_\epsilon^R t^{x-1} e^{-t} dt$$

$$f(t) = -e^{-t} \Leftarrow f'(t) = e^{-t}$$

$$g(t) = t^x \Rightarrow x t^{t-1} = g'(t)$$

12 Vektoren

12.1 \mathbb{R}^3

12.1.1 Orthonormal

Länge eins, senkrecht aufeinander und sie bilden eine Basis, also jeder Vektor hat genau eine Darstellung:

$$\vec{a} = a_1\vec{e_1} + a_2\vec{e_2} + a_3\vec{e_3} = \sum_{k=1}^3 a_k\vec{e_k}a = \underbrace{a_ke_k}_{\text{Einsteinsche Summenkonvention}}$$

12.2 Skalarprodukt und Kronecker-Symbol

12.2.1 Motivation: mechanische Arbeit

12.2.2 Definition

$$<\vec{a}, \vec{b}> = \vec{a} \cdot \vec{b} := |\vec{a}||\vec{b}|\cos\angle(\vec{a}, \vec{b})$$

12.2.3 Spezialfälle

$$\vec{a} || \vec{b} \Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$$

 \vec{a} und \vec{b} antiparallel:

$$\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$$

 $\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b} = 0$

12.2.4 Betrag:

$$<\vec{a}, \vec{b}> = |\vec{a}|^2 = a^2$$

12.2.5 Eigenschaften

• Kommutativgesetz

$$<\vec{a},\vec{b}>=<\vec{b},\vec{a}>$$

• Homogenität

$$<\lambda \vec{a}, \vec{b}> = \lambda < \vec{a}, \vec{b}> = < \vec{a}, \lambda \vec{b}>$$

• Distributivgesetz

$$<\vec{a} + \vec{b}, \vec{c}> = <\vec{a}, \vec{c}> + <\vec{b}, \vec{c}>$$

 $<\vec{a}, \vec{b} + \vec{c}> = <\vec{a}, \vec{b}> + <\vec{a}, \vec{c}>$

•

$$<\vec{a}, \vec{a}> \ge 0$$
 $<\vec{a}, \vec{a}> = 0 \Leftrightarrow \vec{a} = 0$

12.2.6 Orthonormalbasis der kartesischen Koordinatensystem

Basisvecktoren $\vec{e_k}, k=1,2,4$ Orthogonalität $<\vec{e_k}, \vec{e_l}>=0$ $l\neq k$ Für k=l: $<\vec{e_k}, \vec{e_k}>=\cos(0)=1$ Orthonormalität

12.2.7 Kronecker Symbol

$$\delta_{kl} := \begin{cases} 1 & k = l \\ 0 & k \neq l \end{cases}$$

Entspricht Komponenten der Einheitsmatrix Symmetrie gegen Vertauschung der Indizes

$$\delta_{kl} = \delta\{lk\}$$
 Spur: $\delta_{kk} = \sum_{k=1}^{3} \delta_{kk} = 3$

Einsteinsche Summenkonvention

12.2.8 Komponentendarstellung des Skalarprodukts

$$\vec{a} = \sum_{k=1}^{3} a_k \vec{e_k} = \underbrace{a_k \vec{e_k}}_{\text{Einsteinsche Summenkonvention}}$$

$$\vec{b} = \sum_{k=1}^{3} b_k \vec{e_k} = \underbrace{b_k \vec{e_k}}_{\text{Einsteinsche Summenkonvention}}$$

$$<\vec{a}, \vec{b}> = (\sum_{k=1}^{3} a_k \vec{e_k}) \cdot (\sum_{k=1}^{3} b_k \vec{e_k}) = \sum_{k,l=1}^{3} a_k b_k \underbrace{<\vec{e_k}, \vec{e_l}>}_{-\delta kl} = \sum_{k=1}^{3} a_k b_k$$

13 Matrizen

13.1 Determinante

det $A = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$ Summe über alle Permutationen von S_n , Vorzeichen der Permutation ist positiv, wenn eine gerade Anzahl an Vertauschungen notwendig ist, und entsprechend negativ bei einer ungeraden Anzahl.

13.2 Homogenes Gleichungssystem

$$A\vec{x} = 0 \quad \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$a_{11} \quad a_{12} \quad a_{13} \quad 0$$

$$x_1 \quad a_{21} + x_2 \quad a_{22} + x_3 \quad a_{23} = 0$$

$$a_{31} \quad a_{32} \quad a_{33} \quad 0$$

$$\underbrace{a_{31}}_{\vec{a_1}} \quad \underbrace{a_{32}}_{\vec{a_2}} \quad \underbrace{a_{33}}_{\vec{a_3}} \quad 0$$

sind $\vec{a_1}, \vec{a_2}, \vec{a_3}$ linear unabhängig, dann gibt es nur die Lösung $x_1 = x_2 = x_3 = 0$ Nichttriviale Lösung nur wenn $\vec{a_1}, \vec{a_2}, \vec{a_3}$ linear abhängig $\Rightarrow \lambda, \mu \in \mathbb{R}$, sodass z.B. $\vec{a_1} = \lambda \vec{a_2} + \mu \vec{a_3}$ Wenn $\vec{a_1}, \vec{a_2}, \vec{a_3}$ linear unabhängig, dann det A = 0.

13.3 Levi Civita Symbol

$$\varepsilon_{ijk\dots} = \begin{cases} +1, & \text{falls } (i,j,k,\dots) \text{ eine gerade Permutation von } (1,2,3,\dots) \text{ ist,} \\ -1, & \text{falls } (i,j,k,\dots) \text{ eine ungerade Permutation von } (1,2,3,\dots) \text{ ist,} \\ 0, & \text{wenn mindestens zwei Indizes gleich sind.} \end{cases}$$
 (1)

$$\varepsilon_{i_1\dots i_n} = \prod_{1 \le n \le q \le n} \frac{i_p - i_q}{p - q} \tag{2}$$

$$\varepsilon_{k,l,m} = \delta_{k1}(\delta_{l2}\delta_{m3} - \delta_{l3}\delta_{m2}) + \delta_{k2}(\delta_{l3}\delta_{m1} - \delta_{l1}\delta_{m3}) + \delta_{k3}(\delta_{l1}\delta_{m2} - \delta_{l2}\delta_{m1}) \tag{3}$$

13.4 Vektorprodukt / Kreuzprodukt

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$
(4)

$$\vec{a} \times \vec{b} = \det \begin{pmatrix} \vec{e}_1 & a_1 & b_1 \\ \vec{e}_2 & a_2 & b_2 \\ \vec{e}_3 & a_3 & b_3 \end{pmatrix}$$
 (5)

$$= \vec{e}_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} - \vec{e}_2 \begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix} + \vec{e}_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$
 (6)

$$= (a_2 b_3 - a_3 b_2) \vec{e}_1 + (a_3 b_1 - a_1 b_3) \vec{e}_2 + (a_1 b_2 - a_2 b_1) \vec{e}_3,$$
 (7)

$$\vec{a} \times \vec{b} = \sum_{i,j,k=1}^{3} \varepsilon_{ijk} a_i b_j \vec{e}_k = \varepsilon_{ijk} a_i b_j \vec{e}_k$$

13.5 Spatprodukt

$$\begin{split} |(\vec{a}\times\vec{b})\vec{c}| &= \text{Volumen einees Spats} \\ (\vec{a}\vec{b}\vec{c}) &= (\vec{a}\times\vec{b})\vec{c} = (\vec{c}\times\vec{a})\vec{b} = (\vec{b}\times\vec{c})\vec{a} = -(\vec{b}\times\vec{a})\vec{c} \end{split}$$

13.6 Geschachteltes Vektorprodukt

$$\vec{a}(\vec{b} \times \vec{v}) = (\vec{a}\vec{c})\vec{b} - (\vec{a}\vec{b})\vec{c} = \vec{b}(\vec{a}\vec{c}) - \vec{c}(\vec{a}\vec{b})$$

13.6.1 Beweis

$$\vec{a} = (\vec{b} \times \vec{c}) = \vec{a} \times (\varepsilon_{ijk} b_i c_j \vec{e_k}) = \varepsilon_{pqm} a_p \varepsilon_{ijk} b_i c_j \vec{e_m}$$

14 misc

- mathe für physiker vs. analysis
- klausuren gebündelt
- \bullet auslandssemester