आधुनिक विद्या निकेतन ट्यूशन सेंटर

1. Number Systems

EXERCISE 1A

- 1. Is zero a rational number? Justify.
- 2. Represent each of the following rational numbers on the number line:
- (a) $\frac{5}{7}$ (b) $\frac{8}{3}$ (c) $-\frac{23}{6}$ (d) 1.3 (e) -2.4
- 3. Find a rational number between
- (a) $\frac{3}{8}$ and $\frac{2}{5}$ (b) 1.3 and 1.4 (c) -1 and $\frac{1}{2}$ (d) $-\frac{3}{4}$ and $-\frac{2}{5}$ (e) $\frac{1}{9}$ and $\frac{2}{9}$
- 4. Find three rational numbers lying between $\frac{3}{5}$ and $\frac{7}{8}$. How many rational numbers can be determined between these two numbers?
- 5. Find four rational numbers between $\frac{3}{7}$ and $\frac{5}{7}$.
- 6. Find six rational numbers between 2 and 3. 7. Find five rational numbers between $\frac{3}{5}$ and $\frac{2}{3}$.
- 8. Insert 16 rational numbers between 2.1 and 2.2. 9. State whether the following statements are true
- or false. Give reasons for your answer. (a) Every natural number is a whole number.
- (b) Every whole number is a natural number. (c) Every integer is a whole number.
- (d) Every integer is a rational number.
- (e) Every rational number is an integer. (f) Every rational number is a whole number.

EXERCISE 1B

1. Without actual division, find which of the

- following rational numbers are terminating decimals. (a) $\frac{13}{80}$ (b) $\frac{7}{24}$ (c) $\frac{5}{12}$ (d) $\frac{31}{375}$ (e) $\frac{16}{125}$
- 2. Write each of the following in decimal form and say what kind of decimal expansion each has.
 - (a) $\frac{5}{8}$ (b) $\frac{7}{25}$ (c) $\frac{3}{11}$ (d) $\frac{5}{13}$ (e) $\frac{11}{24}$ (f) $\frac{261}{400}$ (g) $\frac{231}{625}$ (h) $2\frac{5}{12}$
- 3. Express each of the following decimals in the form $\frac{p}{q}$, where p, q are integers and q \neq 0.
- (a) $0.\overline{2}$ (b) $0.\overline{53}$ (c) $2.\overline{93}$ (d) $18.\overline{48}$ (e) $0.\overline{235}$ (f) $0.00\overline{32}$ (g) $1.3\overline{23}$ (h) $0.3\overline{178}$
- (i) 32.1235 (j) 0.407 4. Express $2.\overline{36} + 0.\overline{23}$ as a fraction in simplest form.
- 5. Express in the form of $\frac{p}{a}$: 0. $\overline{38}$ + 1. $\overline{27}$

EXERCISE 1C

- 1. What are irrational numbers? How do they differ from rational numbers? Give examples. 2. Classify the following numbers as rational or
- irrational. Give reasons to support your answer.

(h) 1.232332333...

answer.

- (a) $\sqrt{\frac{3}{81}}$ (b) $\sqrt{361}$ (c) $\sqrt{21}$ (d) $\sqrt{1.44}$
- (e) $\frac{2}{3}\sqrt{6}$ (f) 4.1276 (g) $\frac{22}{7}$
- (i) 3.040040004... (j) 2.356565656... (k) 6.834834... 3. Let x be a rational number and y be an irrational
- number. Is x + y necessarily an irrational number? Give an example in support of your
- 4. Let a be a rational number and b be an irrational number. Is ab necessarily an irrational number?
 - Justify your answer with an example.

6. Give an example of two irrational numbers

- Is the product of two irrationals always irrational? Justify your answer.
- (a) difference is an irrational number.
- (b) difference is a rational number.
- (c) sum is an irrational number. (d) sum is a rational number.
- (e) product is an irrational number. (f) product is a rational number.
- (g) quotient is an irrational number. (h) quotient is a rational number.
- 7. Examine whether the following numbers are rational or irrational.
 - $\begin{array}{ll} \text{(a) } 3+\sqrt{3} & \text{(b) } \sqrt{7}\text{ 2} & \text{(c) } \sqrt[3]{5} \times \sqrt[3]{25} \\ \text{(d) } \sqrt{7} \times \sqrt{343} & \text{(e) } \sqrt{\frac{13}{117}} & \text{(f) } \sqrt{8} \times \sqrt{2} \end{array}$
- 8. Insert a rational and an irrational number between 2 and 2.5.
- 9. How many irrational numbers lie between $\sqrt{2}$ and $\sqrt{3}$? Find any three irrational numbers lying between $\sqrt{2}$ and $\sqrt{3}$.

10. Find two rational and two irrrational numbers

- between 0.5 and 0.55. 11. Find three different irrational numbers between
- the rational numbers $\frac{5}{7}$ and $\frac{9}{11}$. 12. Find two rational numbers of the form $\frac{p}{a}$

between the numbers 0.2121121112... and

- 0.2020020002.... 13. Find two irrational numbers between 0.16 and
- 0.17. 14. State, in each case, whether the given statement
- is true or false.
 - (a) The sum of two rational numbers is rational. (b) The sum of two irrational numbers is
 - (c) The product of two rational numbers is rational.

(d) The product of two irrational numbers is irrational. 5. The sum of a rational number and an irrational number is irrational. 6. The product of a nonzero rational number and an irrational

number is a rational number. 7. Every real number is rational. 8. Every real number is either rational or irrational. 9. π is irrational and $\frac{22}{7}$ is

EXERCISE 1D (a) $(2\sqrt{3}-5\sqrt{2})$, $(\sqrt{2}+2\sqrt{2})$

(b) $(2\sqrt{2} + 5\sqrt{3} - 7\sqrt{5})$, $(3\sqrt{3} - \sqrt{2} + \sqrt{5})$ (c) $(\frac{2}{3}\sqrt{7} - \frac{1}{2}\sqrt{2} + 6\sqrt{11})$,

rational.

1. Add

- $(\frac{1}{3}\sqrt{7} + \frac{3}{2}\sqrt{2} \sqrt{11})$ 2. Multiply (b) $6\sqrt{15}$ by $4\sqrt{3}$
- (a) $3\sqrt{5}$ by $2\sqrt{5}$ (c) $2\sqrt{6}$ by $3\sqrt{3}$ (d) $3\sqrt{8}$ by $3\sqrt{2}$ (e) $\sqrt{10}$ by $\sqrt{40}$ (f) $3\sqrt{28}$ by $2\sqrt{7}$
- 3. Divide (a) $16\sqrt{6}$ by $4\sqrt{2}$ (b) $12\sqrt{15}$ by $4\sqrt{3}$ (c) $18\sqrt{21}$ by $6\sqrt{7}$
- 4. Simplify (a) $(3 - \sqrt{11})(3 + \sqrt{11})$ (b) $(-3+\sqrt{5})(-3-\sqrt{5})$ (c) $(3-\sqrt{3})^2$
- (d) $(\sqrt{5} \sqrt{3})^2$ (e) $(5+\sqrt{7})(2+\sqrt{5})$ (f) $(\sqrt{5} - \sqrt{2})(\sqrt{2} - \sqrt{3})$
- 5. Simplify $(3 + \sqrt{3})(2 + \sqrt{2})^2$ 6. Examine whether the following numbers are rational or irrational: (a) $(5-\sqrt{5})(5-\sqrt{5})$ (b) $(\sqrt{3}+2)^2$ (c) $\frac{2\sqrt{13}}{3\sqrt{52}-4\sqrt{117}}$ (d) $\sqrt{8}$ + $4\sqrt{32}$ - $6\sqrt{2}$
- 7. On her birthday Reema distributed chocolates in an orphanage. The total number of chocolates she distributed is given by $(5 + \sqrt{11})(5 - \sqrt{11})$.
- (a) Find the number of chocolates distributed by her. (b) Write the moral values depicted here by
- Reema. 8. Simplify (a) $3\sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50}$

(b) $\frac{2\sqrt{30}}{\sqrt{6}} - \frac{3\sqrt{140}}{\sqrt{28}} + \frac{\sqrt{55}}{\sqrt{99}}$

(c) $\sqrt{72} + \sqrt{800} - \sqrt{18}$

NUMBER (CL9) EN

EXERCISE 1E 1. Represent $\sqrt{5}$ on the number line.

- 6. Represent $\sqrt{10.5}$ on the number line. 7. Represent $\sqrt{7.28}$ geometrically on the number
 - 8. Represent (1 + $\sqrt{9.5}$) on the number line.

5. Represent $\sqrt{4.7}$ geometrically on the number

9. Visualize the representation of $\sqrt{3.765}$ on the number line using successive magnification.

2. Locate $\sqrt{3}$ on the number line.

4. Locate $\sqrt{8}$ on the number line.

3. Locate $\sqrt{10}$ on the number line.

10. Visualize the representation of $\sqrt{4.67}$ on the number line up to 4 decimal places. **EXERCISE 1F**

1. Write the rationalising factor of the denominator 2. Rationalise the denominator of each of the

- following.
- (a) $\frac{1}{\sqrt{7}}$ (b) $\frac{\sqrt{5}}{2\sqrt{3}}$ (c) $\frac{1}{2+\sqrt{3}}$ (d) $\frac{1}{\sqrt{5}-2}$ (e) $\frac{1}{5+3\sqrt{2}}$ (f) $\frac{1}{\sqrt{7}-\sqrt{6}}$ (g) $\frac{4}{\sqrt{11}-\sqrt{7}}$ (h) $\frac{1+\sqrt{2}}{2-\sqrt{2}}$ (i) $\frac{3-2\sqrt{2}}{3+2\sqrt{2}}$
 - 3. It being given that $\sqrt{2}$ = 1.414, $\sqrt{3}$ = 1.732. $\sqrt{5}$ = 2.236 and $\sqrt{10}$ = 3.162, find the value to three
 - places of decimals, of each of the following. (a) $\frac{2}{\sqrt{5}}$ (b) $\frac{2-\sqrt{3}}{\sqrt{3}}$ (c) $\frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}}$ 4. Find rational numbers a and b such that
 - (a) $\frac{\sqrt{2}-1}{\sqrt{2}+1} = a + b\sqrt{2}$ (b) $\frac{2-\sqrt{5}}{2+\sqrt{5}} = a\sqrt{5} + b$ (c) $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} = a + b\sqrt{6}$ (d) $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a + b\sqrt{3}$
 - 5. It being given that $\sqrt{3}$ = 1.732, $\sqrt{5}$ = 2.236, $\sqrt{6}$ = 2.449 and $\sqrt{10}$ = 3.162, find to three places of decimal, the value of each of the following. (a) $\frac{1}{\sqrt{6}+\sqrt{5}}$ (b) $\frac{6}{\sqrt{5}+\sqrt{3}}$ (c) $\frac{1}{4\sqrt{3}-3\sqrt{5}}$ (d) $\frac{3+\sqrt{5}}{3-\sqrt{5}}$ (e) $\frac{1+2\sqrt{3}}{2-\sqrt{3}}$ (f) $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$

 - 6. Simplify by rationalising the denominator. (a) $\frac{7\sqrt{3}-5\sqrt{2}}{\sqrt{48}+\sqrt{18}}$ (b) $\frac{2\sqrt{6}-\sqrt{5}}{3\sqrt{5}-2\sqrt{6}}$
 - 7. Simplify (a) $\frac{4+\sqrt{5}}{4-\sqrt{5}} + \frac{4-\sqrt{5}}{4+\sqrt{5}}$ (b) $\frac{1}{\sqrt{3}+\sqrt{2}} - \frac{2}{\sqrt{5}-\sqrt{3}} - \frac{3}{\sqrt{2}-\sqrt{5}}$

(c) $\frac{2+\sqrt{3}}{2-\sqrt{3}} + \frac{2-\sqrt{3}}{2+\sqrt{3}} + \frac{\sqrt{3}-1}{\sqrt{3}+1}$

- (d) $\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}} + \frac{6\sqrt{2}}{\sqrt{6}+\sqrt{3}} \frac{8\sqrt{3}}{\sqrt{6}+\sqrt{2}}$ 8. Prove that (a) $\frac{1}{3+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{3}} + \frac{1}{\sqrt{3}+1} = 1$

MVN

12. If x = 2 - $\sqrt{3}$, find the value of $\left(x - \frac{1}{x}\right)^3$. 13. If x = 9 - $4\sqrt{5}$, find the value of $x^2 + \frac{1}{x^2}$. 14. If $x = \frac{5 - \sqrt{21}}{2}$, find the value of $x + \frac{1}{x}$. 15. If a = 3 - $2\sqrt{2}$, find the value of $a^2 - \frac{1}{a^2}$. 16. If $x = \sqrt{13} + 2\sqrt{3}$, find the value of $x - \frac{1}{x}$. 17. If x = 2 + $\sqrt{3}$, find the value of $x^3 + \frac{1}{x^3}$. 18. If $x = \frac{5-\sqrt{3}}{5+\sqrt{3}}$ and $y = \frac{5+\sqrt{3}}{5-\sqrt{2}}$, show that $x - y = -\frac{1}{5}$

(b) $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}}$

9. Find the values of a and b if $\frac{7+3\sqrt{5}}{3+\sqrt{5}}$ - $\frac{7-3\sqrt{5}}{3-\sqrt{5}}$ = a +

11. If x = 3 + $2\sqrt{2}$, check whether x + $\frac{1}{x}$ is rational

 $+\frac{1}{\sqrt{6}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{9}}=2$

10. Simplify $\frac{\sqrt{13}-\sqrt{11}}{\sqrt{13}+\sqrt{11}} + \frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}$

 $b\sqrt{5}$

or irrational.

20. If
$$a=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$
 and $b=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, find the value of a^2+b^2-5ab .

21. If $p=\frac{3-\sqrt{5}}{3+\sqrt{5}}$ and $q=\frac{3+\sqrt{5}}{3-\sqrt{5}}$, find the value of p^2+q^2 .

22. Rationalise the denominator of each of the

22. Rationalise the denominator of each of the following. (a) $\frac{1}{\sqrt{7}+\sqrt{6}-\sqrt{13}}$ (b) $\frac{3}{\sqrt{3}+\sqrt{5}-\sqrt{2}}$ (c) $\frac{4}{2+\sqrt{3}+\sqrt{7}}$ 23. Given, $\sqrt{2}$ = 1.414 and $\sqrt{6}$ = 2.449, find the value of $\frac{1}{\sqrt{3}-\sqrt{2}-1}$ to 3 places of decimal.

24. If $x = \frac{1}{2\sqrt{3}}$, find the value of $x^3 - 2x^2 - 7x + 5$.

that $\sqrt{5}$ = 2.236 and $\sqrt{10}$ = 3.162.

25. Evaluate $\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{80}}$, it being given

EXERCISE 1G

21. If p = $\frac{3-\sqrt{5}}{3+\sqrt{5}}$ and q = $\frac{3+\sqrt{5}}{3-\sqrt{5}}$, find the value of p² +

19. If a = $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{2}}$ and b = $\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}$, show that 3a² + 4ab - 3b² = 4 + $\frac{56}{2}\sqrt{10}$

9. Evaluate

(c) $\left(\frac{32}{243}\right)^{-\frac{4}{5}}$ Evaluate

(a) $(3^4)^{\frac{1}{4}}$

(a) $(125)^{\frac{1}{3}}$

(a) $(a^b + b^a)^{-1}$

5. Evaluate

7. Simplify

(a) $\left(\frac{81}{40}\right)^{-\frac{3}{2}}$

(a) $\frac{4}{(216)^{-\frac{2}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}}$ (d) $\frac{(25)^{\frac{5}{2}} \times (729)^{\frac{1}{3}}}{(125)^{\frac{2}{3}} \times (27)^{\frac{2}{3}} \times 8^{\frac{4}{3}}}$

(d) $(81)^{\frac{3}{4}}$ (e) $(64)^{-\frac{1}{2}}$

6. If a = 2, b = 3, find the values of

(b) $(3^{1/3})^4$

(b) $(64)^{\frac{1}{6}}$

(b) $\left(\frac{64}{125}\right)^{-\frac{2}{3}} + \left(\frac{256}{625}\right)^{-\frac{1}{4}} + \left(\frac{3}{7}\right)^{0}$ (c) $\left(\frac{81}{16}\right)^{-\frac{3}{4}} \left[\left(\frac{25}{9}\right)^{-\frac{3}{2}} \div \left(\frac{5}{2}\right)^{-3} \right]$

(c) $(\frac{1}{34})^{\frac{1}{2}}$

(c) $(25)^{\frac{3}{2}}$

(f) $(8)^{-\frac{1}{3}}$

(b) $(a^a + b^b)^{-1}$

(b) $(14641)^{0.25}$

(d) $\left(\frac{7776}{243}\right)^{-\frac{3}{5}}$

(a) $(1^3+2^3+3^3)^{\frac{1}{2}}$ (b) $\left[5(8^{rac{1}{3}}+27^{rac{1}{3}})^3
ight]^{rac{1}{4}}$ (c) $\frac{2^0+7^0}{5^0}$ (d) $\left[(16)^{\frac{1}{2}} \right]^{\frac{1}{2}}$ 10. Prove that (a) $\left[8^{-\frac{2}{3}} \times 2^{\frac{1}{2}} \times 25^{-\frac{5}{4}}\right] \div \left[32^{-\frac{2}{5}} \times 125^{-\frac{5}{6}}\right]$ =

(b) $\left(\frac{64}{125}\right)^{-\frac{2}{3}} + \frac{1}{\left(\frac{256}{295}\right)^{\frac{1}{4}}} + \frac{\sqrt{25}}{\sqrt[3]{64}} = \frac{65}{16}$ (c) $\left| 7 \left\{ (81)^{\frac{1}{4}} + (256)^{\frac{1}{4}} \right\}^{\frac{1}{4}} \right|^{\frac{1}{4}} = 16807$ 11. Simplify $\sqrt[4]{\sqrt[3]{x^2}}$ and express the result in the

exponential form of x. 12. Simplify the product $\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}$ 13. Simplify (a) $\left(\frac{15^{1/3}}{9^{1/4}}\right)^{-6}$ (b) $\left(\frac{12^{1/5}}{27^{1/5}}\right)$ (c) $\left(\frac{15^{1/4}}{3^{1/2}}\right)^{-2}$ 14. Find the value of x in each of the following. (a) $\sqrt[5]{5x+2} = 2$

1. Simplify (b) $2^{\frac{2}{3}} \times 2^{\frac{1}{5}}$ (a) $2^{\frac{2}{3}} \times 2^{\frac{1}{3}}$ (c) $7^{\frac{5}{6}} \times 7^{\frac{2}{3}}$ (d) $(1296)^{\frac{1}{4}} \times (1296)^{\frac{1}{2}}$ 2. Simplify (a) $\frac{6^{1/4}}{6^{1/5}}$ (b) $\frac{8^{1/2}}{8^{2/3}}$ (c) $\frac{5^{6/7}}{5^{2/3}}$ 3. Simplify (b) $2^{\frac{5}{8}} \times 3^{\frac{5}{8}}$ (c) $2^{\frac{2}{3}} \times 7^{\frac{1}{3}}$ (a) $3^{\frac{1}{4}} \times 5^{\frac{1}{4}}$ 4. Simplify

NUMBER (CL9) EN

3

(c) $\left(\frac{3}{4}\right)^3 \left(\frac{4}{3}\right)^{-7} = \left(\frac{3}{4}\right)^{2x}$ (d) $5^{x-3} \times 3^{2x-8} = 225$ (e) $\frac{3^{3x} \cdot 3^{2x}}{3^x} = \sqrt[4]{3^{20}}$ 15. Prove that (a) $\sqrt{x^{-1}y} \cdot \sqrt{y^{-1}z} \cdot \sqrt{z^{-1}x} = 1$

MVN

(b) $\sqrt[3]{3x-2} = 4$

17. If $\frac{9^n \times 3^2 \times \left(x^{-n/2}\right)^{-2} - (27)^n}{3^{3m} \times 9^3} = \frac{1}{27}$, prove that m - n = 18. Write the following in ascending order of magnitude. $\sqrt[6]{6}$, $\sqrt[3]{7}$, $\sqrt[4]{8}$. 2. Polynomials

 $\left(\frac{x^b}{x^c}\right)^{b+c-a}\cdot \left(\frac{x^c}{x^a}\right)^{c+a-b}\cdot \left(\frac{x^a}{x^b}\right)^{a+b-c}.$

 $\text{(b)} \left(x^{\frac{1}{a-b}}\right)^{\frac{1}{a-c}} \cdot \left(x^{\frac{1}{b-c}}\right)^{\frac{1}{b-a}} \cdot \left(x^{\frac{1}{c-a}}\right)^{\frac{1}{c-b}} = 1$

16. If x is a positive real number and exponents are

(c) $\frac{x^{a(b-c)}}{x^{b(a-c)}} \div \left(\frac{x^b}{x^a}\right)^c = 1$

(d) $\frac{\left(x^{a+b}\right)^2 \left(x^{b+c}\right)^2 \left(x^{c+a}\right)^2}{\left(x^a x^b x^c\right)^4} = 1$

rational numbers, simplify

degree.

(a) $x^5 - 2x^3 + x + \sqrt{3}$

EXERCISE 2A

(b) $y^3 + \sqrt{3}y$

1. Which of the following expressions are polynomials? In case of a polynomial, write its

- (d) $x^{100} 1$ (c) $t^2 - \frac{2}{5}t + \sqrt{5}$ (e) $\frac{1}{\sqrt{2}}x^2 - \sqrt{2}x + 2$ (f) $x^{-2} + 2x^{-1} + 3$ (h) $\frac{-3}{5}$ (q) 1 (i) $\sqrt[3]{2}$ x² - 8 (i) $\frac{x^2}{2} - \frac{2}{x^2}$
- (k) $\frac{1}{2\pi^2}$ (I) $\frac{1}{\sqrt{\epsilon}}$ x^{1/2} + 1 (m) $\frac{3}{5}$ x² - $\frac{7}{3}$ x + 9 (n) $x^4 - x^{3/2} + x - 3$ (o) $2x^3 + 3x^2 + \sqrt{x} - 1$ 2. Identify constant, linear, quadratic, cubic and
 - quartic polynomials from the following. (a) -7 + x(b) 6y (d) $1 - y - y^3$ (e) $x - x^3 + x^4$ (f) $1 + x + x^2$ (h) -13 (i) -p
- 3. Write (a) the coefficient of x^3 in $x + 3x^2 - 5x^3 + x^4$. (c) the coefficient of x^2 in $2x - 3 + x^3$.
- (d) the coefficient of x in $\frac{3}{8}$ x^2 $\frac{2}{7}$ x + $\frac{1}{6}$. (e) the constant term in $\frac{\pi}{2}x + 7x - \frac{2}{5}\pi$ 4. Determine the degree of each of the following polynomials.

5. (a) Give an example of a monomial of degree 5.

(b) $y^2(y - y^3)$

(f) $x^{-2}(x^4 + x^2)$

(b) the coefficient of x in $\sqrt{3}$ - $2\sqrt{2}x + 6x^2$.

EXERCISE 2B 1. If $p(x) = 5 - 4x + 2x^2$, find (a) p(0), (b) p(3), (c) p(-2)

(c) Given an example of a trinomial of degree 4. (d) Give an example of a monomial of degree 0.

6. Rewrite each of the following polynomials in

(a) $x - 2x^2 + 8 + 5x^3$ (b) $\frac{2}{3} + 4y^2 - 3y + 2y^3$

(d) $2 + t - 3t^3 + t^4 - t^2$

(c) p(-1)

2. If $p(y) = 4 + 3y - y^2 + 5y^3$, find

(c) $6x^3 + 2x - x^5 - 3x^2$

standard form.

- (a) p(0), (b) p(2), 3. If $f(t) = 4t^2 - 3t + 6$, find (a) f(0),
- (c) f(-5) 4. If $p(x) = x^3 - 3x^2 + 2x$, find p(0), p(1), p(2). What do you conclude? 5. If $p(x) = x^3 + x^2 - 9x - 9$, find p(0), p(3), p(-3) and p(-1). What do you conclude about the zeros of
- p(x)? Is 0 a zero of p(x)? 6. Verify that (a) 4 is a zero of the polynomial, p(x) = x - 4. (b) -3 is a zero of the polynomial, q(x) = x + 3.
- (c) $\frac{2}{5}$ is a zero of the polynomial, f(x) = 2 5x. (d) $\frac{-1}{2}$ is a zero of the polynomial, g(y) = 2y + 1. 7. Verify that (a) 1 and 2 are the zeros of the polynomial, p(x) =
 - $x^2 3x + 2$. (b) 2 and -3 are the zeros of the polynomial, q(x) $= x^2 + x - 6$.

(c) 0 and 3 are the zeros of the polynomial, r(x) =

(d) f(x) = 3x + 1 (e) g(x) = 5 - 4x (f) h(x) = 6x - 2(g) $p(x) = ax, a \neq 0$ 9. If 2 and 0 are the zeros of the polynomial f(x) =

(a) p(x) = x - 5 (b) q(x) = x + 4 (c) r(x) = 2x + 5

$2x^3$ - $5x^2$ + ax + b then find the values of a and b.

8. Find the zero of the polynomial:

EXERCISE 2C

1. By actual division, find the quotient and the remainder when $(x^4 + 1)$ is divided by (x - 1).

(h) q(x) = 4x

Verify that remainder = f(1). 2. Verify the division algorithm for the polynomials $p(x) = 2x^4 - 6x^3 + 2x^2 - x + 2$ and q(x) = x + 2. Using the remainder theorem, find the remainder,

3. $p(x) = x^3 - 6x^2 + 9x + 3$, q(x) = x - 1. 4. $p(x) = 2x^3 - 7x^2 + 9x - 13$, q(x) = x - 3. 5. $p(x) = 3x^4 - 6x^2 - 8x - 2$, q(x) = x - 2. 6. $p(x) = 2x^3 - 9x^2 + x + 15$, q(x) = 2x - 3.

when p(x) is divided by g(x), where

(a) $\frac{4x-5x^2+6x^3}{2x}$

(e) - 8

7. $p(x) = x^3 - 2x^2 - 8x - 1$, g(x) = x + 1. (b) Give an example of a binomial of degree 8. 8. $p(x) = 2x^3 + x^2 - 15x - 12$, g(x) = x + 2. 4

 $x^2 - 3x$.

(c) $(3x - 2)(2x^3 + 3x^2)$ (d) $-\frac{1}{2} + 3$