8x16 模拟开关阵列芯片 CH446Q 5x24 模拟开关阵列芯片 CH446X

手册 版本: 1D http://wch.cn

1、概述

CH446Q 是 8x16 矩阵模拟开关芯片。CH446Q 包含 128 只模拟开关,分布于 8x16 信号通道矩阵的各个交叉点,每只模拟开关都可以独立的开启或者关闭,从而实现 8x16 信号通道的任意路由。

CH446X 是 5x24 矩阵模拟开关芯片。CH446X 包含 120 只模拟开关,分布于 5x24 信号通道矩阵的各个交叉点,每只模拟开关都可以独立的开启或者关闭,从而实现 5x24 信号通道的任意路由。

2、特点

- CH4460 内置 128 只独立的模拟开关,分布于 8x16 信号通道矩阵的各个交叉点。
- CH446X 内置 120 只独立的模拟开关,分布于 5x24 信号通道矩阵的各个交叉点。
- CH446Q 支持 7 位并行地址输入,兼容现有同类产品。
- 支持串行地址移位输入,节约引脚。
- 支持 4V 到 12V 单电源电压,支持+5V 和-7V 双电源电压。
- 在正负电源压差为 12V 时,导通电阻 Ron 最大为 65Ω ,并且 \triangle Ron 不超过 10Ω 。
- 纯 CMOS 工艺, 低静态功耗。
- 采用 LQFP-44 无铅封装,兼容 RoHS,提供转成 PLCC44 封装的转换板。

3、封装

封装形式	宽度		引脚间距		封装说明	订货型号
LQFP-44	10*10mm		0.8mm 31.5mil		标准 LQFP44 脚贴片	CH446Q
LQFP-44	10*10mm		0. 8mm	31.5mil	标准 LQFP44 脚贴片	CH446X

4、引脚

4.1. CH446Q 引脚

引脚号	引脚名称	类型	引脚说明
38	VDD	电源	正电源,电压必须大于等于 GND
12	GND	电源	公共接地,数字信号参考地,电压为 0V
16	VEE	电源	负电源,电压必须小于等于 GND
41	RST	输入	外部手工复位输入,高电平有效
10	P/-S	输入	地址输入方式选择: 高电平为并行输入方式; 低电平为串行输入方式
36	DAT	输入	串行地址方式下,为串行数据输入和开关数据输入; 并行地址方式下,为开关数据输入, 为高电平时对应开启,为低电平时对应关闭
14	STB	输入	选通脉冲输入,高电平有效
34	CS/CK	输入	串行地址方式下,为串行时钟输入,上升沿有效; 并行地址方式下,为片选输入,高电平有效
43、18、19、42	AXO~AX3	输入	串行地址方式下,为未用引脚,必须直接连接 GND; 并行地址方式下,为 X 端口选择的地址输入
20、21、40	AYO~AY2	输入	串行地址方式下,为未用引脚,必须直接连接 GND; 并行地址方式下,为 Y 端口选择的地址输入
31、30、29、28、 27、26、3、4、 5、6、7、8、 25、24、1、2	X0∼X15	模拟信号输入输出	8x16 矩阵模拟开关的 X 端口
33、35、37、39、 17、15、13、11	Y0∼Y7	模拟信号 输入输出	8×16 矩阵模拟开关的 Y 端口
9、22、23、 32、44	NC.	空脚	未用引脚,禁止连接

4.2. CH446X 引脚

引脚号	引脚名称	类型	引脚说明
38	VDD	电源	正电源,电压必须大于等于 GND
12	GND	电源	公共接地,数字信号参考地,电压为 0V
16	VEE	电源	负电源,电压必须小于等于 GND
41	RST	输入	外部手工复位输入,高电平有效
36	DAT	输入	串行数据输入和开关数据输入;
	27(1	י ענמד	作为开关数据输入时,高电平为开启,低电平为关闭
14	STB	输入	选通脉冲输入,高电平有效
34	CS/CK	输入	串行时钟输入,上升沿有效
31、30、29、28、 27、26、3、4、 5、6、7、8、 25、24、1、2、 33、35、37、39、 17、15、13、11	X0∼X23	模拟信号输入输出	5x24 矩阵模拟开关的 X 端口
43、18、19、 42、20	Y0∼Y4	模拟信号 输入输出	5x24 矩阵模拟开关的 Y 端口
9、10、21、40、 22、23、32、44	NC.	空脚	未用引脚,禁止连接

5、功能说明

参考首页的框图,CH446Q 芯片内部分为三个部分:接口控制逻辑、128 只锁存器、128 只模拟开关阵列。其中的接口控制逻辑还包含了串行地址到并行地址转化。

128 只模拟开关分布于由 16 个 X 端口和 8 个 Y 端口组成的 8x16 矩阵的每个交叉点,使得任意一个 X 端口和任意一个 Y 端口之间能够在需要时导通或者断开,甚至可以使某两个 X 端口分别导通到某个 Y 端口,实现任意两个 X 端口之间或者任意两个 Y 端口之间的间接导通。

128 只锁存器用于分别控制 128 只模拟开关的导通或者断开,128 只锁存器被编址为 0 到 127,由 7 位地址 ADDR6~ADDR0 译码后选择。从 RST 引脚输入高电平复位信号可以将所有锁存器清 0,从而导致所有模拟开关断开。需要开启或者关闭某一模拟开关时,应该通过 7 位的 ADDR 提供锁存器的地址,并通过 DAT 提供开关数据(1 则导通,0 则关闭),然后产生一个 ACT 激活脉冲,将开关数据写入由 ADDR 译码指定的锁存器,实现对指定的某个模拟开关的控制。

接口控制逻辑主要用于产生 ADDR 地址和 ACT 激活脉冲。在并行地址输入方式下,由引脚 AXO~AX3、AYO~AY2 从低到高构成 7 位地址输入 ADDRO~ADDR6,当 CS/CK 引脚输入的片选信号为高电平时,由 STB 引脚输入的高电平选通脉冲产生 ACT 激活脉冲,当 CS/CK 引脚为低电平时,不产生 ACT 信号。在串行地址输入方式下,由 CS/CK 引脚输入时钟,在其每个上升沿,从 DAT 引脚依次输入 ADDR6、ADDR5直到 ADDR1、ADDRO(分别对应于 AY2、AY1 直到 AX1、AXO),CS/CK 引脚需要提供 7 个上升沿得到 7位地址,并由 STB 引脚输入的高电平选通脉冲直接产生 ACT 激活脉冲。

实际上,在并行地址输入方式下,ACT 信号是 CS/CK 引脚输入和 STB 引脚输入的 "与",而在串行地址输入方式下,ACT 信号只是来自 STB 引脚的输入。RST 复位信号优先于 ACT 信号,当 RST 输入高电平时,ACT 信号将被忽略,所有锁存器总是被清 0。在 ACT 激活脉冲有效期间,DAT 引脚可以动态改变输入的开关数据,并使得相应的模拟开关实时地导通或者关闭,但是在 ACT 信号结束之前(即 STB 的下降沿之前),DAT 引脚的输入数据应该保持稳定以便正确地锁存数据。

CH446X 与 CH446Q 功能类似,有 3 点区别: ①、前者是 24 个 X 端口和 5 个 Y 端口组成的 5x24 矩阵,后者是 16 个 X 端口和 8 个 Y 端口组成 8x16 矩阵,②、前者只支持串行地址方式,后者支持并行地址和串行地址两种方式;③、CH446X 虽然也有 128 只锁存器,但是只有 120 只模拟开关,有 8 只锁存器没有任何用途。

下表是 CH446Q 芯片 7 位地址 ADDR 的译码真值表,也是 128 只模拟开关的编址表。

交叉点	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	编址
Y端-X端	AY2	AY1	AY0	AX3	AX2	AX1	AX0	序号
Y0-X0	0	0	0	0	0	0	0	00H
Y0-X1	0	0	0	0	0	0	1	01H
Y0-X2	0	0	0	0	0	1	0	02H
Y0-X3	0	0	0	0	0	1	1	03H
Y0-X4	0	0	0	0	1	0	0	04H
Y0-X5	0	0	0	0	1	0	1	05H
Y0-X6	0	0	0	0	1	1	0	06H
Y0-X7	0	0	0	0	1	1	1	07H
Y0-X8	0	0	0	1	0	0	0	08H
Y0-X9	0	0	0	1	0	0	1	09H
Y0-X10	0	0	0	1	0	1	0	OAH
Y0-X11	0	0	0	1	0	1	1	OBH
Y0-X12	0	0	0	1	1	0	0	OCH
Y0-X13	0	0	0	1	1	0	1	ODH
Y0-X14	0	0	0	1	1	1	0	0EH
Y0-X15	0	0	0	1	1	1	1	0FH
Y1-X0	0	0	1	0	0	0	0	10H
Y1-X1	0	0	1	0	0	0	1	11H
				•••••				
Y1-X14	0	0	1	1	1	1	0	1EH
Y1-X15	0	0	1	1	1	1	1	1FH
Y2-X0	0	1	0	0	0	0	0	20H
				•••••				
Y2-X15	0	1	0	1	1	1	1	2FH
				•••••				
Y7-X0	1	1	1	0	0	0	0	70H
				•••••				
Y7-X14	1	1	1	1	1	1	0	7EH
Y7-X15	1	1	1	1	1	1	1	7FH

下图是一个串行地址输入的实例,控制 24H 地址(Y2 和 X4 之间)的模拟开关,先开再关。

下表是 CH446X 芯片 7 位地址 ADDR 的译码真值表, 也是 120 只模拟开关的编址表。

,我是 SIEFOX 157 , 在地址 NDX 的作的实值来, EEE 120									
交叉点 Y 端−X 端	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDRO	编址 序号	
Y0-X0	0	0	0	0	0	0	0	00H	
Y0-X1	0	0	0	0	0	0	1	01H	
Y0-X2	0	0	0	0	0	1	0	02H	
Y0-X3	0	0	0	0	0	1	1	03H	

VO V4	0	0	0	0	4	_	0	0.411
Y0-X4	0	0	0	0	1	0	0	04H
Y0-X5	0	0	0	0	1	0	1	05H
Y0-X6	0	0	0	0	1	1	0	06H
Y0-X7	0	0	0	0	1	1	1	07H
Y0-X8	0	0	0	1	0	0	0	08H
Y0-X9	0	0	0	1	0	0	1	09H
Y0-X10	0	0	0	1	0	1	0	OAH
Y0-X11	0	0	0	1	0	1	1	OBH
Y0-X12	0	0	0	1	1	0	0	0CH
Y0-X13	0	0	0	1	1	0	1	ODH
Y0-X14	0	0	0	1	1	1	0	0EH
Y0-X15	0	0	0	1	1	1	1	0FH
Y0-X16	0	0	1	0	0	0	0	10H
Y0-X17	0	0	1	0	0	0	1	11H
Y0-X18	0	0	1	0	0	1	0	12H
Y0-X19	0	0	1	0	0	1	1	13H
Y0-X20	0	0	1	0	1	0	0	14H
Y0-X21	0	0	1	0	1	0	1	15H
Y0-X22	0	0	1	0	1	1	0	16H
Y0-X23	0	0	1	0	1	1	1	17H
Y4-X0	0	0	1	1	0	0	0	18H
Y4-X1	0	0	1	1	0	0	1	19H
Y4-X2	0	0	1	1	0	1	0	1AH
Y4-X3	0	0	1	1	0	1	1	1BH
Y4-X4	0	0	1	1	1	0	0	1CH
Y4-X5	0	0	1	1	1	0	1	1DH
无连接	0	0	1	1	1	1	0、1	1EH、1FH
Y1-X0	0	1	0	0	0	0	0	20H
				••••		•	·	•
Y1-X23	0	1	1	0	1	1	1	37H
Y4-X6	0	1	1	1	0	0	0	38H
				••••		L	L	
Y4-X11	0	1	1	1	1	0	1	3DH
 无连接	0	1	1	1	1	1	0、1	3EH、3FH
Y2-X0	1	0	0	0	0	0	0	40H
			1	••••	1	ı	ı	•
Y2-X23	1	0	1	0	1	1	1	57H
Y4-X12	1	0	1	1	0	0	0	58H
			· · · · · · · · · · · · · · · · · · ·	•••••	<u> </u>			
Y4-X17	1	0	1	1	1	0	1	5DH
	1	0	1	1	1	1	0、1	5EH、5FH
Y3-X0	1	1	0	0	0	0	0	60H
. 5 7.0	•	•	<u> </u>	•••••		ı <u> </u>	<u> </u>	1 55.1
Y3-X23	1	1	1	0	1	1	1	77H
Y4-X18	1	1	1	1	0	0	0	77H
11 /10	•	'	•	•••••		<u> </u>	<u> </u>	, 511
Y4-X23	1	1	1	1	1	0	1	7DH
		1	1	1	1	1	0、1	7EH、7FH
ル廷技	1	I	ı	ı	ı	ı	U ₁ I	/cn、/FH

6、参数

6.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	$^{\circ}\!\mathbb{C}$
TS	储存时的环境温度	-55	125	$^{\circ}$ C
VDD	当 VEE=GND=OV 时,VDD 电源电压	-0. 5	16	٧
VEE	当 VDD=GND=OV 时,VEE 电源电压	-16	+0. 5	٧
Vaio	模拟信号输入或输出引脚上的电压,VDD>=GND>=VEE	VEE-0. 5	VDD+0. 5	٧
Vdio	数字信号输入或输出引脚上的电压,VDD>=GND>=VEE	GND-0. 5	VDD+0. 5	٧
Isw	模拟开关的连续通过电流	0	15	mA
lall	所有模拟开关的连续通过电流的总和	0	100	mA

6.2. 推荐工作电压

名称	参数说明	最小值	最大值	单位	
VDD	GND=OV,	VDD 电源电压	4	13. 2	V
VEE	VDD 与 VEE 之间电压差小于 13. 2V	VEE 电源电压	-8. 8	0	V
Vaio	模拟信号输入或输出引脚上的电压	VEE	VDD	V	
Vdio	数字信号输入或输出引脚上的电压	, VDD>=GND>=VEE	GND	VDD	V

电源电压应该满足两个条件: VDD>GND>=VEE 和 VDD>GND+4V, 推荐以下组合:

VDD=12V & GND=0V & VEE=0V (VDD-GND=12V, VDD-VEE=12V)

VDD=5V & GND=0V & VEE=0V (VDD-GND=5V, VDD-VEE=5V)

VDD=6V & GND=0V & VEE=-6V (VDD-GND=6V, VDD-VEE=12V)

 $\label{eq:VDD=5V & GND=0V & VEE=-7V (VDD-GND=5V, VDD-VEE=12V)} VDD=5V & GND=0V & VEE=-7V (VDD-GND=5V, VDD-VEE=12V)$

 $\label{eq:VDD=5V & GND=0V & VEE=-5V (VDD-GND=5V, VDD-VEE=10V)} VDD=5V & GND=0V & VEE=-5V (VDD-GND=5V, VDD-VEE=10V)$

6.3. 电气参数 (测试条件: TA=25℃, VDD=12V, GND=0V, VEE=0V, 模拟开关两端压差 0.4V)

名称	参数说明	最小值	典型值	最大值	单位
1CCO	静态电源电流,所有数字引脚接 VDD 或 GND		1	100	uA
ICC5	静态电源电流, VDD=5V, 所有数字引脚 2.4V		0. 4	1. 5	mA
10012	静态电源电流,所有数字引脚 3. 4V		5	15	mA
VIL	数字引脚低电平输入电压,VDD-GND=5V	-0. 5		0.8	٧
VIH	数字引脚高电平输入电压,VDD-GND=5V	2. 0		VDD+0. 5	٧
VIH12	数字引脚高电平输入电压	3. 3		VDD+0. 5	V
ILEAK	数字引脚的输入泄漏电流		0. 1	10	uA
10FF	模拟开关在关闭状态下的泄漏电流		±1	± 500	nA
RON12	模拟开关导通电阻,VDD-VEE=12V,25℃		45	65	Ω
RON12T	模拟开关导通电阻,VDD-VEE=12V,85℃		55	80	Ω
RON5	模拟开关导通电阻,VDD-VEE=5V,25℃		120	185	Ω
RON5T	模拟开关导通电阻,VDD-VEE=5V,85℃		150	225	Ω
△RON	多个模拟开关导通电阻差值,VDD-VEE=12V		5	10	Ω

6.4. 模拟开关时序参数 (测试条件: TA=25℃, VDD=5V, GND=0V, VEE=-7V, 模拟信号 2Vpp)

名称	参数说明	最小值	典型值	最大值	单位
CSW	模拟开关端口的引脚电容,F=1MHz		10	25	рF
CFT	模拟开关馈通电容,F=1MHz		0. 5		рF
F3DB	模拟开关频率响应,3DB,RL=3KΩ		50		MHz
TPS	模拟开关信号通过延时,RL=1KΩ,CL=50pF		12	30	nS

6.5. 接口时序参数 (测试条件: TA=25℃, VDD=5V, GND=0V, VEE=-7V, 参考附图)

名称	参数说明	最小值	典型值	最大值	单位
CDI	数字信号输入的引脚电容,F=1MHz		7	15	pF
TPAS	并行输入地址对 STB 上升沿的建立时间	8			nS
TPAH	并行输入地址对 STB 下降沿的保持时间	6			nS
TAS	DAT 输入地址对 CS/CK 上升沿的建立时间	7			nS
TAH	DAT 输入地址对 CS/CK 上升沿的保持时间	3			nS
TDS	DAT 输入数据对 STB 下降沿的建立时间	8			nS
TDH	DAT 输入数据对 STB 下降沿的保持时间	6			nS
TCS	CS/CK 上升沿对 STB 上升沿的建立时间	10			nS
TCH	CS/CK 上升沿对 STB 下降沿的保持时间	7			nS
TCKL	CS/CK 时钟信号的低电平宽度	10			nS
TCKH	CS/CK 时钟信号的高电平宽度	10			nS
TSTB	STB 输入高电平有效脉冲的宽度	10			nS
TRST	RST 输入高电平有效脉冲的宽度	15			nS
TSW	DAT、STB 或 RST 到模拟开关执行延时	5	30	70	nS

7、应用

7.1. 并行地址输入(下图)

并行地址输入方式下的控制步骤:通过 $AX0\sim AX3$ 和 $AY0\sim AY2$ 引脚提供地址、通过 DAT 引脚提供数据、向 STB 引脚(和 CS/CK 引脚)提供一个高电平脉冲。

在并行地址输入方式下,为了节约单片机的控制引脚,CS/CK 引脚可以与 STB 引脚短接,或者与 VDD 引脚短接,仅保留 STB 引脚由单片机控制。

如果 VEE 接负电压,那么模拟开关可以通过负电压的模拟信号,否则 VEE 接 GND,模拟开关只能通过高于-0.3V 的模拟信号。

由于模拟电路与数字电路共用 VDD,为减少干扰,VDD 和 VEE 引脚必须外接退耦电容,并且建议将数字输入信号的边沿适当放缓,降低传输频率。另外,对于强干扰的应用环境,单片机可以每隔数秒定期对 CH446 进行刷新,确保各个模拟开关处于正确的开关状态。

7.2. 串行地址输入(下图)

串行地址输入方式下的控制步骤:通过 DAT 引脚依次提供 7 位地址并用 CS/CK 引脚的 7 个上升 沿移入 CH446,通过 DAT 引脚提供数据、向 STB 引脚提供一个高电平脉冲。

如果单片机通过 SPI 总线连接 CH446,那么 SPI 提供的一字节 8 位数据的位 7 将被 CH446 丢弃,SPI 的位 6 到位 0 作为地址,单片机 SPI 的串行数据输出引脚连接 DAT 引脚提供开关数据,单片机使用一个独立引脚控制 CH446 的 STB 引脚。

7.3. 单片机接口程序

网站上提供了常用单片机的 C 语言和 ASM 汇编接口程序。

7.4. 引脚转换

并行地址输入方式下 CH446Q 与 MT8816 功能基本兼容,但是封装和引脚都不同,区别在于 8x16 矩阵模拟开关的 X 端口的部分引脚不同(或者是其编址不同),不同之处参考下表。

ADDR3-ADDR0 或	LQFP44 封導	麦的 CH446Q	PLCC44 封装的 MT8816		
AX3-AX0 编址	引脚号	引脚名称	引脚号	引脚名称	
0110	3	Х6	31	X12	
0111	4	X7	30	X13	
1000	5	X8	9	Х6	
1001	6	Х9	10	X7	
1010	7	X10	11	Х8	
1011	8	X11	12	Х9	
1100	25	X12	13	X10	
1101	24	X13	14	X11	

PLCC44 封装转换板按上表通过内部 PCB 走线调整引脚顺序可以实现 LQFP44 向 PLCC44 的转换。