

NATIONAL UNIVERSITY OF SCIENCES & TECHNOLOGY

Instrumentation and Measurements (EE-383) Assignment # 2

Submitted to: Dr. Shahzad Younis

Submitted by: Muhammad Umer

Class: BEE-12C

Semester: 5th

Dated: 26/10/2022

CMS ID: 345834

3.1 Discuss how limiting errors in y can be computed from the measurement of two quantities u and v, each having limiting errors when (a) y = u + v and (b) y = u/v.

Addition:
$$y = 0+V$$

* Limiting error: Taking differentials

* $\frac{Sy}{y} = \frac{U}{y} \frac{SU}{y} + \frac{V}{y} \frac{SV}{y}$

* Due to error reture * $\frac{Sy}{y} = \pm \left(\frac{U}{y} \frac{SU}{y} + \frac{V}{y} \frac{SV}{y} \right)$

* Division: $y = 0/V$

* Limiting error: Taking natural log on both sides

* $\frac{Sy}{y} = \frac{SU}{y} - \frac{SV}{y}$

* Due to error reture * $\frac{Sy}{y} = \pm \left(\frac{SU}{y} + \frac{SV}{y} \right)$

* Due to error reture * $\frac{Sy}{y} = \pm \left(\frac{SU}{y} + \frac{SV}{y} \right)$

- 3.3 The measured value of a capacitor is 205 μF , whereas its true value is 200.4 μF . Determine the relative error.
- 3.4 Three resistors have the following ratings: $R_1 = 47 \Omega \pm 4\%$, $R_2 = 65 \Omega \pm 4\%$ and $R_3 = 55 \Omega \pm 4\%$. Determine the magnitude and limiting error in ohms and in percentage of the resistance if these resistances are connected in series.

) Limiting error
$$\frac{6R_T}{R_T} = \pm \left(\frac{R_1}{R_T} \frac{SR_1}{R_1} + \frac{R_2}{R_2} \frac{SR_2}{R_2}\right)$$

... + $\frac{R_0}{R_1} \frac{SR_2}{R_3}$

= $\pm \left(\frac{47}{167}(0.04) + \frac{65}{167}(0.04)\right)$

... + $\frac{55}{167}(0.04)$

= $\pm (0.04)$

> $\frac{5R_T}{R_T} = \pm 6.68 \Omega$
 $\frac{5R_T}{R_T} = \pm 6.68 \Omega$

3.7 The following 10 observations were recorded while measuring a voltage: 41.7, 42.0, 41.8, 42.0, 42.1, 41.9, 42.5 and 41.8 volts. Find (a) the mean, (b) the standard deviation, (c) the probable error of one reading, and (d) the probable error of the mean.

a) Arithmetic mean
$$X/\mu = 41.7 + + 41.8$$

$$\mu = 41.975$$
b) Standard Deviation $6 = \frac{\sum (x-\overline{x})^2}{rv-1} : n = 20$

$$= \frac{(41.7 - 41.975)^2 +}{8-1}$$
6 = 0.249

c) Probable error of one $r = \pm 0.67456$
reading
$$r = \pm 0.1679$$
d) Robable error of mean $r = \frac{r}{4n-1} : n = 20$

$$= \pm 0.1679$$

$$= \pm 0.1679$$

$$= \pm 0.0634$$

3.8 The following values were recorded during the measurement of a resistance: 147.2, 147.4, 147.9, 148.1, 147.1, 147.5, 147.6 and 147.5 ohms. Taking arithmetic mean as the central value, calculate (a) standard deviation, (b) probable error of one reading, and (c) probable error of the mean.

a) Standard Deviation
$$6 = \sqrt{\frac{\Sigma(x_1 - \overline{X})^2}{n-1}} :: n \le 20$$

Mean $\overline{X}/\mu = 147.5375$
 $6 = \sqrt{(147.2 - 147.5375)^2 + ...}$
 $6 = 0.3335$

$$Y_{m} = \pm 0.2249$$

3.10 Indicate the correct choice:

- (a) The current through a resistance is measured with uncertainties: $I=4~\mathrm{A}\pm0.5\%,$ $R=100~\Omega\pm0.2\%.$ The uncertainty in the measurement of power is
 - (i) $1600 \text{ W} \pm 0.01\%$
 - (ii) $1600 \text{ W} \pm 0.2\%$
 - (iii) $1600 \text{ W} \pm 0.5\%$
 - (iv) $1600 \text{ W} \pm 1.02\%$
- (b) To measure 2 volts, if one selects a 0–100 volt range voltmeter which is accurate to within $\pm 1\%$, the error in one's measurement may be up to
 - (i) $\pm 0.02\%$
 - (ii) ±1%
 - (iii) $\pm 2\%$
 - (iv) $\pm 50\%$
- (c) A thermometer is calibrated from 150 to 200°C. The accuracy specified is $\pm 0.25\%$. The maximum static error in measurement is
 - (i) $\pm 0.5^{\circ}$ C
 - (ii) $\pm 0.375^{\circ}$ C
 - (iii) ±0.125°C
 - (iv) $\pm 0.0125^{\circ}$ C

- (d) The radius of a sphere is given as 40.0 ± 0.5 mm. The estimated error in its mass is:
 - (i) $\pm 3.75\%$
 - $(ii) \pm 1.25\%$
 - (iii) $\pm 12.5\%$
 - (iv) $\pm 0.125\%$
- (e) A large number of 230 Ω resistors are obtained by combining 120 Ω resistors with a standard deviation of 4.0 Ω and 110 Ω resistors with a standard deviation of 3.0 Ω . The standard deviation of the 230 Ω resistors thus formed will be
 - (i) 3.5Ω
 - (ii) 5.0 Ω
 - (iii) 7.0 Ω
 - (iv) 12.0 Ω
- (f) The calibration data for a pressure compensator of a pump is given below

Input x	0	1	2	3	4	5	6	7	8	9	10
Output y	9.5	8.4	7.8	7.4	6.1	5.4	5.2	4.6	3.2	1.9	1.1

For the given data, the slope of the best-fit line applying the least squares method is:

- (i) 0.921
- (ii) -0.803
- (iii) 0.819
- (iv) -0.945
- (g) The measurements of a source voltage are 5.9 V, 5.7 V and 6.1 V. The sample standard deviation of the readings is:
 - (i) 0.013
 - (ii) 0.04
 - (iii) 0.115
 - (iv) 0.2
- (h) The reliability of an instrument refers to:
 - (i) measurement changes due to temperature variation
 - (ii) degree to which repeatability continues to remain within specified limits
 - (iii) the life of the instrument
 - (iv) the extent to which the characteristics remain linear
- (i) Using the given data points tabulated below, a straight line passing through the origin is fitted using the least squares method. The slope of the line is

\boldsymbol{x}	1.0	2.0	3.0
y	1.5	2.2	2.7

- (i) 0.9
- (ii) 1.0
- (iii) 1.1
- (iv) 1.5

3.11 For the following given data,

$$x_1 = 49.7$$
, $x_2 = 50.1$, $x_3 = 50.2$, $x_4 = 49.6$, $x_5 = 49.7$ calculate the following

- (a) Arithmetic mean
- (b) Deviation of each value
- (c) Algebraic sum of the deviations
- (d) Average deviation
- (e) Standard deviation

a) Arithmetic mean
$$X/\mu = 49.7 + ... + 49.7$$
5

 $\mu = 49.86$

b) Deviation of each value:
$$d_1 = X_1 - \overline{X} = 0.16$$

$$d_2 = X_2 - \overline{X} = 0.24$$

$$d_3 = X_3 - \overline{X} = 0.26$$

$$d_4 = X_4 - \overline{X} = 0.16$$

$$d_6 = X_6 - \overline{X} = 0.16$$

c) Algebraic sum of deviations: d,+d2+d3+d4+ds

d) Average deviation =
$$\frac{1}{5} \Sigma |di| = \frac{1.16}{5} = 0.232$$

e) Standard deriation
$$6 = \sqrt{\frac{\sum (d_1)^2}{N-1}} : N \le 20$$

$$= \sqrt{\frac{(0.16)^2 + ... + (0.16)^2}{4}}$$

$$6 = 0.270$$

3.16 Two resistors R_1 and R_2 are connected in series and then in parallel. The values of resistances are: $R_1 = 100.0 \Omega \pm 0.1\%$, $R_2 = 50 \Omega \pm 0.06\%$. Calculate the uncertainty in the combined resistance of both series and parallel arrangements.

$$\Re \frac{\partial R_T}{\partial R_1} = 1 + \frac{\partial R_T}{\partial R_2} = 1$$

>> Uncertainty
$$U_r = \int (1)^2 (0.1 \times 100)^2 + (1)^2 (0.00 \times 50)^2$$

$$U_r = \pm 0.1\Omega$$
>> Parallel $(R_T = R_1 R_2 / R_1 + R_2)$

$$R_{T} = \frac{(100)(50)}{150} = 33.33 \Omega$$

$$\frac{3R_{T}}{3R_{i}} = \frac{R_{2}}{R_{i} + R_{2}} - \frac{R_{i}R_{2}}{(R_{i} + R_{2})^{2}} = \frac{R_{2}^{2}}{(R_{i} + R_{2})^{2}}$$

$$\frac{3R_{T}}{3R_{i}} = \frac{50^{2}}{150^{2}} = \frac{1}{9}$$

$$\frac{3R_{+}}{3R_{2}} = \frac{R_{1}^{2}}{(R_{+}R_{2})^{2}} = \frac{100^{2}}{150^{2}} = \frac{14}{9}$$

) Uncertainty
$$U_r = \left[\left(\frac{1}{q} \right)^2 (0.1 \times 100)^2 + \left(\frac{41}{q} \right)^2 (0.06 \times 50)^2 \right]$$