HW1 – PM2.5 Prediction

Task Description

預測豐原站在下一個小時 會觀測到的 PM2.5

地區: 中部 ▼ > 豐原▼ 査詢

發布時間: 2017-09-29 08:00:00

<u>豐原</u> (<u>一般站</u>) 🐷									
AQI 空氣品質指標		64 普通							
O ₃ (ppb)	8小時 移動平均	17							
臭氧	小時 濃度	14							
PM _{2.5} © (μg/m ³)	移動 平均	21							
細懸浮微粒	小時 濃度	27							
PM ₁₀ (μg/m ³)	移動 平均	35							
懸浮微粒	小時 濃度	44							

Task Description

- 預測 A 年 B 月 C 日 N 時的 PM2.5
 - 每個時間點以一個 ID 表示,共 240 個時間點
 - 評比標準:預測值和實際值的平方誤差平均值
- 預測根據:前九小時的所有觀測數據
 - A 年 B 月 C 日 N 1 時的 PM2.5, CH4, NO, NO2, O3 ...
 - A 年 B 月 C ⊟ N − 2 時的 PM2.5, CH4, NO, NO2, O3 ...
 - •
 - A 年 B 月 C 日 N 9 時的 PM2.5, CH4, NO, NO2, O3 ...

$$f($$
 前九小時的所
有觀測數據 $) =$ A 年 B 月 C 日
N 時的 PM2.5

Testing Data

	А	В	С	D	E	F	G	Н	1	J	K	L	М
1	id_0	AMB_TEM	15	14	14	13	13	13	13	13	12		
2	id_0	CH4	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8		
3	id_0	CO	0.36	0.35	0.34	0.33	0.33	0.34	0.34	0.37	0.42		
4	id_0	NMHC	0.11	0.09	0.09	0.1	0.1	0.1	0.1	0.11	0.12		
5	id_0	NO	0.6	0.4	0.3	0.3	0.3	0.7	0.8	0.8	0.9		
6	id_0	NO2	9.3	7.1	6.1	5.7	5.5	5.3	5.5	7.1	7.5		
7	id_0	NOx	9.9	7.5	6.4	5.9	5.8	6	6.2	7.8	8.4		
8	id_0	03	36	44	45	44	44	44	43	40	38		
9	id_0	PM10	51	51	31	40	34	51	42	36	30		
10	id_0	PM2.5	27	13	24	29	41	30	29	27	28		<u> </u>
11	id_0	RAINFALI	NR										
12	id_0	RH	75	71	71	73	74	74	74	74	74		
13	id_0	SO2	1.2	1.2	1.2	1.6	1.5	1.5	1.5	1.6	1.6		
14	id_0	THC	1.9	1.8	1.8	1.9	1.9	1.9	1.9	1.9	1.9		
15	id_0	WD_HR	116	114	112	109	111	104	107	108	104		
16	id_0	WIND_DIE	115	113	105	102	106	106	112	113	106		
17	id_0	WIND_SPI	2.6	2.2	2	1.9	2.4	2.4	2.5	2.8	2		
18	id_0	WS_HR	2.1	2.4	2.2	1.9	2.3	2.3	2.5	2.5	2.3		
19	id_1	AMB_TEM	12	12	12	13	14	15	14	14	13		
20	id_1	CH4	1.8	1.8	1.9	1.9	1.8	1.8	1.8	1.8	1.8		

Three Steps for Machine Learning

 Step 1. Define you function set (Model) y: A 年 B 月 C 日 N 時的 PM2.5 x_{K,M}: A 年 B 月 C 日 N - K 時的 M 觀測值 M = PM2.5, NO, O3, CH4, NO2 ... (總共 18 種) How to deal with RAINFALL = NR? $y = b + w_{1.PM} \cdot x_{1.PM} + w_{2.PM} \cdot x_{2.PM} + ... + w_{9.PM} \cdot x_{9.PM}$ $y = b + w_{1.PM} \cdot x_{1.PM} + w_{2.PM} \cdot x_{2.PM} + ... + w_{5.PM} \cdot x_{5.PM}$ $+ W_{1.NO} \cdot X_{1.NO} + W_{2.NO} \cdot X_{2.NO} + ... + W_{5,NO} \cdot X_{5,NO}$ $+ W_{1.03} \cdot X_{1.03} + W_{2.03} \cdot X_{2.03} + ... + W_{5.03} \cdot X_{5.03}$ $+ \lambda$ 所有 w 的平方和相加 $\lambda = ?$

Three Steps for Machine Learning

 Step 2. Define you loss function based on training data

Three Steps for Machine Learning

- Step 3. Find the best function
 - Please use Gradient
 Descent (of course, there are other approaches).

Tips

- The error surface of linear regression is convex.
 - No matter the feature you use.
- ➤ You can CHECK your results by looking for the closedform solution.
 - This is why we choose it as HW1.