Limits of Computation

II - Church-Turing Thesis

Bernhard Reus

The story so far

- We have found problems that cannot be solved by a WHILE program (Halting, Busy-Beaver, Tiling, Ambiguity of CFGs, etc).
- But this does not mean yet they could not be solved by a different machine model (different definition of "effective procedure").

- Evidence for the
 - Church-Turing Thesis
- by looking at other notions of computation:
 - Register machines
 - Counter machines
 - Turing machines
 - Goto language
 - Cellular Automata
- and showing (or stating) that they are all equivalent.

Church-Turing Thesis

reasonable formalisations of the intuitive notion of effective computability

All reasonable computation models are equivalent.

no restrictions on memory size and execution time are assumed

So it does not matter what model we use. It was alright to use WHILE.

We cannot prove this as it refers to informal entities (reasonable computation models). It is thus only a "thesis". But we provide some evidence for it.

Models of computation

- Random Access Machines (register machines): RAM
- Turing machines: TM
- Counter machines: CM
- Flowchart language: GOTO
- Cellular Automata: CA
- While language: WHILE ✓
- Church's λ-Calculus (see course Comparative Prog. Languages)

5

Machine instructions

- TM, GOTO, CM, RAM have the following in common:
- A program is a sequence of instructions with labels

l: 1; l2: 12; ... ln: 1n

• a state or configuration during execution of the program is of the form (ℓ, σ) where ℓ is the current instruction's label and σ is the "store" which varies from machine to machine.

WHILE does not have 'machine flavour', it's more abstract

- definition of store
- function Readin producing initial store
- function Readout producing output
- description of semantics of the instructions,

$$p \vdash s o s'$$
program p transits form configuration s into s' in one step

7

Semantic Framework for machines

Definition (General framework for machine model semantics). Let p be a machine program with m instructions.

$$\llbracket \mathtt{p} \rrbracket(d) = e \text{ iff } \sigma_0 = Readin(d) \quad \text{and} \quad \mathtt{p} \vdash (1, \sigma_0) \to^* (m+1, \sigma) \quad \text{and} \quad e = Readout(\sigma)$$

$$p \vdash s \rightarrow^* s'$$

"many-step" operational semantics for machine language, zero, one, or several steps of the "one-step" semantics

We will now show how semantics of other languages/machines are an instance of this framework.

Turing Machine

presented in a way to fit our machine mode

	instruction	explanation	
is number of tape	$\overline{ ext{right}_j}$	move right	
	$left_j$	move left	
	$write_j$ S	write S	
	if $_j$ S goto ℓ_1 els	se ℓ_2 conditional jump (read)	we have k tapes
			We liave it tapes
Storo (= Tapes)	(I.S.R. I.S.R. I.S	v 2. R.)
Store (- rapes)	$\left(L_1\underline{S_1}R_1,L_2\underline{S_2}R_2,\ldotsL_k\underline{S_2}\right)$	$\frac{S_k}{K}$
	/ /	1	
<u></u>	//	denotes position of read/write	head
Li, Ri are	strings of symbols	denotes position of read/write	head

Readin (input) $Readin(x) = (\underline{B}x, \underline{B}, \underline{B}, \dots, \underline{B})$

in both cases: non-blank string right of head on tape 1)

Readout (output)

$$Readout(L_1S_1R_1, L_2S_2R_2, \dots L_kS_kR_k) = Prefix(R_1)$$

where $Prefix(R_1BR_2) = R_1$ provided that R_1 does not contain any blank symbols

One-step operational semantics for **I-tape** machine (no subscripts)

 ℓ -th instruction

$$\begin{array}{ll} \mathtt{p} \vdash (\ell, \mathtt{L}\underline{\mathtt{S}} \mathtt{S'R}) \to (\ell+1, \mathtt{L} \mathtt{S}\underline{\mathtt{S'}} \mathtt{R}) & \text{if } \mathtt{p}(\ell) = \mathtt{right} \\ \mathtt{p} \vdash (\ell, \mathtt{L}\underline{\mathtt{S}}) & \to (\ell+1, \mathtt{L} \mathtt{S}\underline{\mathtt{B}}) & \text{if } \mathtt{p}(\ell) = \mathtt{right} \\ \mathtt{p} \vdash (\ell, \mathtt{LS'}\underline{\mathtt{SR}}) \to (\ell+1, \mathtt{L}\underline{\mathtt{S'}} \mathtt{SR}) & \text{if } \mathtt{p}(\ell) = \mathtt{left} \\ \mathtt{p} \vdash (\ell, \underline{\mathtt{SR}}) & \to (\ell+1, \underline{\mathtt{B}} \mathtt{SR}) & \text{if } \mathtt{p}(\ell) = \mathtt{left} \\ \mathtt{p} \vdash (\ell, \mathtt{L}\underline{\mathtt{SR}}) & \to (\ell+1, \mathtt{L}\underline{\mathtt{S'}} \mathtt{R}) & \text{if } \mathtt{p}(\ell) = \mathtt{write} \ \mathtt{S'} \\ \mathtt{p} \vdash (\ell, \mathtt{L}\underline{\mathtt{SR}}) & \to (\ell_1, \mathtt{L}\underline{\mathtt{SR}}) & \text{if } \mathtt{p}(\ell) = \mathtt{if} \ \mathtt{S} \ \mathtt{goto} \ \ell_1 \ \mathtt{else} \ \ell_2 \\ \mathtt{p} \vdash (\ell, \mathtt{L}\underline{\mathtt{S'}} \mathtt{R}) & \to (\ell_2, \mathtt{L}\underline{\mathtt{S'}} \mathtt{R}) & \text{if } \mathtt{p}(\ell) = \mathtt{if} \ \mathtt{S} \ \mathtt{goto} \ \ell_1 \ \mathtt{else} \ \ell_2 \ \mathtt{and} \ \mathtt{S} \neq \mathtt{S'} \end{array}$$

12

GOTO

instruction	explanation	
X := nil	assign nil	
X := Y	assign variable	
X := hd Y	assign hd Y	
X := tl Y	assign tl Y	
X := cons Y Z	assign cons Y Z	
if X goto ℓ_1 else ℓ_2	conditional jump	

Unconditional jump can be expressed as well

- uses the tree data type we know from WHILE
- does only permit operations on variables
- ullet if X tests whether X is not nil and then jumps according to a label
- store as for WHILE, ReadIn and Readout like in WHILE semantics of programs.


```
1: if X goto 2 else 6;
2: Y := hd X;
3: R := cons Y R;
4: X := tl X;
5: if R goto 1 else 1;
6: X := R;
```

GOTO programs not as readable as WHILE programs

14

Semantics of GOTO

(cont'd) store σ (sigma) where variable X is assigned ℓ -th instruction value nil if $p(\ell) = X := nil$ $p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[X := nil])$ $p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[X := \sigma(Y)])$ if $p(\ell) = X := Y$ $p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[X := d])$ if $p(\ell) = X := hd Y \text{ and } \sigma(Y) = \langle d.e \rangle$ $p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[X := nil])$ if $p(\ell) = X := hd Y \text{ and } \sigma(Y) = nil$ $p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[X := e])$ if $p(\ell) = X := t1 Y \text{ and } \sigma(Y) = \langle d.e \rangle$ $p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[X := nil])$ if $p(\ell) = X := t1 Y \text{ and } \sigma(Y) = nil$ $p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[X := \langle d.e \rangle])$ if $p(\ell) = X := cons Y Z$ and $\sigma(Y) = d$ and $\sigma(Z) = e$ $p \vdash (\ell, \sigma) \rightarrow (\ell_1, \sigma)$ if $p(\ell) = \text{if } X \text{ goto } \ell_1 \text{ else } \ell_2 \text{ and } \sigma(X) \neq \text{nil}$ $p \vdash (\ell, \sigma) \rightarrow (\ell_2, \sigma)$ if $p(\ell) = \text{if } X \text{ goto } \ell_1 \text{ else } \ell_2 \text{ and } \sigma(X) = \text{nil}$

 uses arbitrarily many registers containing arbitrarily big numbers.

16

Successor RAM is like RAM but without binary operations

instruction	explanation			
Xi := 0	reset register value			
Xi := Xi+1	increment register value			
Xi := Xi-1	decrement register value			
Xi := Xj	move register value			
Xi := <xj> indirect addressing</xj>	move content of register addressed by X j			
<xi> := Xj</xi>	move into register addressed by Xi			
if Xi=0 goto ℓ_1 else ℓ_2	conditional jump			
available only in RAM				
Xi := Xj + Xk	addition of register values			
Xi := Xj * Xk	multiplication of register values			

- data type of natural numbers
- angle brackets < > indirect addressing
- if-goto-else tests whether X is 0 and then jumps accordingly.

Semantics SRAM

```
SRAM-store = { \sigma | \sigma : IN \rightarrow IN }
                Readin(\mathbf{x})
                                      = \{0:x, 1:0, 2:0,...\}
                                                                                  Input in register X0
                Readout(\sigma) = \sigma(0)
                                                                                  From register X0
p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[i := \sigma(i) + 1])
                                                                          if p(\ell) = Xi := Xi + 1
p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[i := \sigma(i) - 1])
                                                                          if p(\ell) = Xi := Xi - 1 and \sigma(i) > 0
p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[i := 0])
                                                                          if p(\ell) = Xi := Xi - 1 and \sigma(i) = 0
p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[i := \sigma(j)])
                                                                          if p(\ell) = Xi := Xj
\mathbf{p} \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[i := 0])
                                                                          if p(\ell) = Xi := 0
p \vdash (\ell, \sigma) \rightarrow (\ell_1, \sigma)
                                                                          if p(\ell) = \text{if Xi} = 0 \text{ goto } \ell_1 \text{ else } \ell_2 \text{ and } \sigma(\text{Xi}) = 0
p \vdash (\ell, \sigma) \rightarrow (\ell_2, \sigma)
                                                                          if p(\ell) = \text{if } Xi = 0 \text{ goto } \ell_1 \text{ else } \ell_2 \text{ and } \sigma(Xi) \neq 0
p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[i := \sigma(\sigma(j))])
                                                                          if p(\ell) = Xi := \langle Xj \rangle
p \vdash (\ell, \sigma) \rightarrow (\ell + 1, \sigma[\sigma(i) := \sigma(j)])
                                                                          if p(\ell) = \langle Xi \rangle := Xj
```

18

Counter Machine CM

```
I ::= Xi := Xi + 1 | Xi := Xi \dot{-} 1 | if Xi=O goto \ell else \ell'
```

- Counter machines are much simpler than register machines.
 - They contain several registers, called counters as they can only be incremented or decremented and tested for zero.
 - We have that 2CM is like CM but with 2 counters only.
 - Semantics is as for register machines.

Cellular Automata CA

we just focus one specific version the famous 2-dimensional CA called (Conway's) **Game of Life**

John Conway (Cambridge Mathematician)

neighbourhood of (m,n) = 8 cells

the value of a cell changes every "time tick" and the new value is determined only by the values of the neighbourhood cells

	(m-1,n+1)	(m,n+1)	(m+1,n+1)	
	(m-1,n)	(m,n)	(m+1,n)	
	(m-1,n-1)	(m,n-1)	(m+1,n-1)	

cell lattice (grid)

each cell contains 0

20

Rules of Game of Life

alive = I (solid line/filled) dead = 0 (no colour)

Underpopulation

die if fewer than two neighbours are alive

Survival

survive (stay alive) if two or three neighbours are alive

Overcrowding

die if more than three neighbours are alive

Reproduction

become alive if exactly three neighbours are alive

22

Cellular Automata

- Fun, but can they compute in our sense?
- Yes, one has to:
 - encode input and program as starting grid
 - obtain a result when a predefined cell changes its state to a predefined "accepting state"
 - "accepting state" must be left alone in further grid changes (guaranteeing termination).

25

Robustness of Computability

- We justify the Church-Turing thesis ...
- ... by showing that all the above notions of computation are equivalent to WHILE.
- Proof technique:
 - compile one program of language X into an equivalent one of language Y ...
 - ... if X is not a sub-language of Y anyway.
 - compose compilers appropriately to avoid having to write n^2 compilers:

- we may discuss some of those compilations in exercises
- or read details in Jones' book Chapter 8.

© 2008-25 Bernhard Reus, University of Sussex

Next time:

Moving on to Complexity.

How do we measure time usage?