

Xuanhan Wang, Lianli Gao, Yixuan Zhou, Jingkuan Song and Heng Tao Shen

Outline

- > Task Definition
- > Motivation
- > Method
- > Experiments and Results
- > Summary

Task Definition

Human DensePose Estimation

Mapping all human pixels of an RGB image to the 3D surface of the human body in challenging, uncontrolled conditions

Task Definition

Sub-tasks

Simultaneously detecting people, segmenting bodies or parts, and mapping body pixels to a standard 3D body template

Motivations

How to design a simple yet effective pipeline for densepose estimation?

Pyramidal convolutional network

Incomplete Estimation

Motivations

How to handle the issue of limited annotations and class-imbalanced labels?

Limited Annotations

Class-imbalanced labels

Knowledge Transfer Network

- Multi-instances Decorder (MID)
- Knowledge Transfer Machine (KTM)

Multi-instances Decoder (V1)

- Instance Completeness Modeling
- Background Suppression

Multi-instances Decoder (V2)

- Feature adjustment (Feature adaptation & Inverted Feature Adaptation)
- Background Suppression

Knowledge Transfer Machine (V1)

- Single-path knowledge graph (keypoint-to-surface)
- Parameter generation

Knowledge Transfer Machine (V2)

- Multi-paths knowledge graph (location-to-surface, keypoint-to-surface and part-to-surface)
- Parameter generation

Experiments and Results

Dataset: DensePose-COCO

The DensePose-COCO dataset contains about 50K humans annotations, each of which is annotated with 100 UV coordinates in average. Moreover, it is split into two subsets: training set and validation set with 32K images and 1.5k images.

Evaluation Metric: Geodesic Point Similarity (GPS)

$$GPS_{j} = \frac{1}{|P_{j}|} \sum_{p \in P_{j}} exp\left(\frac{-g(i_{p}, \hat{i}_{p})^{2}}{2k^{2}}\right)$$

 P_j : a set of ground truth points annotated on person instance j

 i_p : the vertex estimated by a model at point p

 \hat{i}_p : the ground truth vertex at point p

k: 0.255

mAP: the mean of AP scores at a number of Geodesic Point Similarity (GPS) ranging from 0.5 to 0.95.

Experiments and Results

Ablation Study

Baseline	MIDv1	KTMv1	AP	AP_{M}	AP_L
√			58.8%	55.0%	60.2
√	√		63.8%	60.8%	64.9%
√		√	61.9%	58.0%	63.3%
√	√	√	66.5%	61.9%	68.0%

Vanilla version of proposed method
improves baseline model by 7.7% AP score.

Baseline + MIDv1:
$$58.8\% -> 63.8\% (+5.0\%)$$

Baseline + KTMv1:
$$58.8\% -> 61.9\% (+3.1\%)$$

Baseline	MIDv2	KTMv2	AP	AP_{M}	AP_L
√			58.8%	55.0%	60.2
√	√		64.4%	60.2%	65.7%
√		√	63.4%	61.0%	64.8%
√	√	√	68.3%	63.8%	70.0%

Improved version of proposed method improves baseline model by 9.5% AP score.

Baseline + MIDv2:
$$58.8\% -> 64.4\% (+5.6\%)$$

Baseline + KTMv2:
$$58.8\% -> 63.4\% (+4.6\%)$$

Experiments and Results

The Generalizability of KTM

Method	AP	AP ₅₀	AP ₇₅	AP_M	AP_L	AR	AR ₅₀	AR ₇₅	AR_M	AR_L
	RCNN-based methods									
DensePose R-CNN [11]	51.9	85.5	54.7	39.4	53.9	61.1	89.7	65.5	42.0	62.4
+ KTM	$55.2^{+3.3}$	88.7 ^{+3.2}	$61.9^{+7.2}$	$53.4^{+14.0}$	$56.5^{+2.6}$	$63.8^{+2.7}$	$92.7^{+3.0}$	$71.3^{+5.8}$	$54.8^{+12.8}$	$64.4^{+2.0}$
Parsing R-CNN [5]	58.3	90.1	66.9	51.8	61.9	-	-	-	-	-
+ KTM	$62.2^{+3.9}$	$90.7^{+0.6}$	$70.2^{+3.3}$	$57.9^{+6.1}$	$63.6^{+1.7}$	70.4	94.3	77.8	59.2	71.1
AMA-net [12]	64.1	91.4	72.9	59.3	65.3	71.6	94.7	79.8	61.3	72.3
+ KTM	$66.1^{+2.0}$	$91.8^{+0.4}$	$75.2^{+2.3}$	$62.9^{+3.6}$	$67.5^{+2.2}$	$74.2^{+2.6}$	$95.3^{+0.6}$	$82.6^{+2.8}$	$65.3^{+4.0}$	$74.8^{+2.5}$
Fully-convolutional methods										
Simple [6]	60.1	90.2	67.2	56.4	61.5	68.4	94.2	75.9	57.8	69.0
+ KTM	$62.9^{+2.8}$	$92.5^{+2.3}$	$73.6^{+6.4}$	$60.7^{+4.3}$	$63.8^{+2.3}$	$70.2^{+1.8}$	$95.8^{+1.6}$	$80.5^{+4.6}$	$62.6^{+4.8}$	$70.7^{+1.7}$
HRNet [10]	65.1	92.9	76.8	62.4	66.2	72.3	96.1	83.4	64.5	72.8
+ KTM	$66.1^{+1.0}$	$92.6^{-0.3}$	$78.8^{+2.0}$	$64.3^{+1.9}$	$67.2^{+1.0}$	73.4 ^{+1.1}	96.1+0.0	85.0+1.6	$66.5^{+2.0}$	73.8 ^{+1.0}

- RCNN-based methods can be improved with the help of KTM, at least 2% AP improvement.
- Fully-convolutinal methods can be improved with the help of KTM, at least 1% AP improvement.

Summary

Contributions

- 1. We propose an effective and end-to-end densepose estimation method named **knowledge transfer network (KTN)**, which addresses the issue of pyramidal representation and handles the problem of learning 2D-3D correspondences from insufficient and imbalanced labels.
- 2. **Multi-instances Decorder (MID)** that preserve instance details while suppressing the effect of backgrounds.
- 3. We are the first to introduce the knowledge to densepose estimation task. Our **Knowledge Transfer Machine (KTM)** can be easily embedded to any densepose estimation systems either from RCNN based methods or fully-convolutional frameworks.

Summary

Remaining challenges:

- 1. Bottleneck of DensePose estimation system. (Surfaces & U coordinate)
- 2. Highly Overlapping

 G_b denotes ground truth person mask, G_{sp} is the ground truth surface mask, G_V and G_U are ground truth UV coordinates.

It indicates that the UV regression is the main bottleneck in densepose estimation, where the regression of V coordinates is main limitation

	tting	Dense Pose Estimation					
KTN-net	G_{b}	G_{sp}	G_{v}	G_u	AP	AP_{50}	AP_{75}
√					68.3%	92.1%	77.4%
√	✓				72.4%	92.9%	82.7%
√	✓		✓	✓	72.7%	93.1%	83.1%
√	✓	√			75.7%	94.2%	91.2%
√	√	√	√		80.1%	94.3%	92.2%
√	✓	√		✓	89.4%	94.9%	93.8%
√	✓	√	√	✓	92.1%	94.9%	93.8%

Summary

Remaining challenges:

1. Bottleneck of DensePose estimation system. (Surfaces & U coordinate)

2. Highly Overlapping

Thank you!

The code is released on GitHub:

https://github.com/stoa-xh91/HumanDensePose

If you have any questions, please e-mail us at:

wxuanhan@hotmail.com

yxzhou@std.uestc.edu.cn

