ESc201: Introduction to Electronics

Amplifiers

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Objective

 Learn ideal Transistor characteristics required for Voltage Amplification

2. Learn to build amplifiers using elements which have non-ideal characteristics.

Voltage Amplification

$$V_o = G \times V_i$$
$$G > 1$$

3-terminal unilateral linear device

Input resistance $R_i = V_i / I_i$

 $R_i = V_i / I_i$ (Ideally large)

Trans conductance

$$\left. g_m = \frac{I_O}{V_i} \right|_{V_0 = 0}$$

(Ideally large)

$$\begin{array}{c|c}
I_1 & I_0 \\
+ & \\
V_i & \\
- & \\
\end{array}$$

$$\begin{array}{c|c}
I_0 \\
+ \\
V_0 \\
- & \\
\end{array}$$

Output conductance: $g_o = 1 / r_o = \frac{I_o}{V_o} \Big|_{V_i = 0}$

Voltage Amplifier

$$A_{V} = \frac{V_{o}}{V_{S}} = -g_{m}r_{o} \times \frac{R_{L}}{r_{o} + R_{L}} \times \frac{R_{i}}{R_{i} + R_{S}}$$

$$|A_V| \le g_m \times r_o$$

Necessary Condition for Voltage Amplification

 $g_m \times r_o > 1$

Voltage Amplification

$$g_m r_o >> 1$$

$$g_m >> g_o$$

Trans-conductance >> Output Conductance

$$g_m = \frac{I_o}{V_i} \bigg|_{V_o = 0}$$

$$g_o = \frac{I_o}{V_o} \bigg|_{V_i = 0}$$

Transistor

Transistor

Trans-resistor

Current I_O is much more sensitive to V_{IN} than V_O

- Can be used for voltage amplification
- Can be used as a switch
- Implement logic

• . . .

An ideal 3-terminal device for Voltage Amplification

Ideal Transistor Characteristics

Ideal Transistor (IT)

Making a voltage amplifier with an ideal transistor is straightforward

In practice there is no element which has the characteristics of ideal transistor!

How do we use elements such as X, Y etc to make amplifiers?

Device X

$$I_o = 0 for V_i \le V_{\alpha}$$
$$= g_m \times (V_i - V_{\alpha}) \text{ for } V_i > V_{\alpha}$$

Ideal Characteristics

How do we use device X to make an amplifier?

$$V_{\alpha} = 1V; g_m = 0.01\Omega^{-1}$$

$$R_L = 1K$$
; $v_S = 0.5V$ Sin ωt

$$I_O = 0 \Rightarrow V_O = 0$$

No Amplification

How do we use device X to make an amplifier? $V_o = -I_o R_L$

When only a part of device characteristics is suitable for amplification, then we need to push the device into that region by applying suitable bias voltages.

This process is called **BIASING**

How should one choose the bias voltage V_B?

$$v_s = 0.5V \ Sin \ \omega t$$

$$I_o = 0$$
 for $V_i \le V_{\alpha}$
= $g_m \times (V_i - V_{\alpha})$ for $V_i > V_{\alpha}$

Output voltage is distorted!

$$RL=1k\Omega$$

$$V_O = -I_O R_L$$

Need to choose a proper value of biasing Voltage

Unnecessary Power Dissipation

How do we get rid of unwanted dc voltage at the output?

that at the signal frequency 1/jωC₂₂~0.

$$I_o = g_m \times (V_i - V_\alpha)$$
 for $V_i > V_\alpha$

The addition of biasing network allows element X to appear as an ideal transistor to the signal source ²⁵

What happens if both dc voltage source and signal source have one terminal as ground?

Solution

$$v_i = V_B$$

Capacitor is chosen large enough so that at the signal frequency 1/jωC ~0.

$$v_i = v_s$$

$$v_i(total) = v_S + V_B$$

Amplifier Schematic

