《高等物理化学II》

第12章-知识点

Chapter 12 Group Theory: The Exploitation of Symmetry

2019.9

物理化学的框架

12.1 分子对称性 → 简化数值计算

苯的Hückel分子轨道(HMO)计算

如果使用6个碳原子的2p_z轨道,久期 行列式方程是六次的,计算复杂

如果使用这6个2p_z轨道的线性组合构建6个对称分子轨道,久期行列式可以变成块对角的,简化了计算

	<i>x</i> +2	0	0	0	0	0	
-	0	x-2	0	0	0	0	
	0	0	<i>x</i> + 1	$\frac{x+1}{2}$	0	0	
	0	0	$\frac{x+1}{2}$	<i>x</i> +1	0	0	=0
	0	0	0	0	x-1	$\frac{1-x}{2}$	
	0	0	0	0	$\frac{1-x}{2}$	x-1	

12.2 分子对称性的表示:对称元素

对称元素 (五种)

- **E** (恒等)
- C_n (n-重旋转): 最大的n对应于主轴
- σ (镜面) $\hat{\sigma}^2 = \hat{E}$
- i(反演) $\hat{i}^2 = \hat{E}$
- S_n (n-重旋转硬射) $\hat{S}_n = \hat{\sigma}_h \times \hat{C}_n$

 σ_{v} : 平行于主轴

 σ_h : 垂直于主轴

 σ_d : σ_v 的一种且二

分两二重轴夹角

对称操作

- 对称元素对应的操作(用算符表示)
- 一种对称元素可以对应几个对称操作,如 C_{4} 对应于三种操作: \hat{C}_{4} , \hat{C}_{4}^{2} , \hat{C}_{4}^{3}

σ_{ν} 和 σ_{σ} 的定义和区别

关于对称面,教科书通常都定义: σ_h 为垂直于主轴的面; σ_v 为平行于主轴的面; σ_d 为 σ_v 的一种特殊情况,该面还平方两个C2轴的夹角。

然而对于下图中的苯(Fig 12-9),平分两 C'_2 夹角的面固然符合 σ_d 定义,但平分两个 C''_2 轴的也符合 σ_d 定义,后者却只被归类为 σ_i 面,为何?

故 σ_d 定义似应更窄,笔者翻阅多本教科书,未找到更严格定义。据比较其它分子如XeF4, CH4, 发现共同的规律是" σ_d 平分的夹角<ABC中的A,C都是真实原子,或说夹角的两个边都各通过至少一个原子"。

12.3 点群: 对称操作 的集合

群的条件

- 乘法**封闭性**: 如A,B在某群, AB也在
- 乘法满足结合律 (交换律未必满足)
- 有且有一个恒等操作 \hat{E}
- 逆操作也属于该群 $\hat{A}\hat{A}^{-1} = \hat{A}^{-1}\hat{A} = \hat{E}$

• 常见点群的乘法用乘法表表示

点群的阶 (h)

• 点群中对称操作的数目

分子点群的判断流程

以苯分子为例,判断流程如下:

- 1) 该分子非线性, 且无特殊对称性;
- 2) 判断C_n, 发现最大n=6的C₆轴(Yes);
- 3) 判断S_n 无S₁₂轴(No);
- 4) 是否有6个C₂轴垂直于C6轴(Yes);
- 5) 是否有 σ_h 对称面(Yes)。

因此,苯分子属于 D_{6h} 点群。

12.4 对称操作的 矩阵表示

群的表示

- 群的表示: 满足群乘法表的一组矩阵
- **不可约表示**:可以通过组合表达其它 表示的一组特殊表示
- 可约表示: 可用不可约表示组合得到

不可约表示

- ullet 所以点群都有全对称不可约表示 A_1
- 维数(第*j*个维数为*d*_i)与群阶的关系:

$$\sum_{i=1}^{N} d_{j}^{2} = h \quad (d_{1} = 1)$$

例: C₂、点群的不可约表示

	Ê	$\hat{C}_{_2}$	$\hat{\sigma}_{_{\scriptscriptstyle \mathcal{V}}}$	$\hat{\sigma}'_v$	
A_1	(1)	(1)	(1)	(1)	括号
$A^{}_2$	(1)	(1)	(-1)	(-1)	表示
\boldsymbol{B}_1	(1)	(-1)	(1)	(-1)	一维 矩阵
$B_2^{}$	(1)	(-1)	(-1)	(1)	<u> </u>
$\boldsymbol{\nu}_2$	(1)	(1)	(1)	(1)	

A/B: 主轴旋转下对称/反对称

12.5 C_{3v}点群的二维 不可约表示

C3v点群的不可约表示

The irreducible representations of the C_{3n} point group.

		\hat{C}_3	\hat{C}_3^2	$\hat{\pmb{\sigma}}_v$	$\hat{\pmb{\sigma}}_v'$	$\hat{\sigma}_v''$
A_1	(1)	(1)	(1)	(1)	(1)	(1)
A_2	(1)	(1)	(1)	(-1)	(-1)	(-1)
Ε	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	(1)	$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$

E: 表示二维不可约表示

二维变换 (以
$$\hat{C}_3$$
 为例)
$$\begin{pmatrix} u_{2x} \\ u_{2y} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} u_{1x} \\ u_{1y} \end{pmatrix}$$

$$\Rightarrow C_3 = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

•在 \hat{C}_3 等操作下,仅对 u_x 和 u_y 中之一变换仍然得到 u_x 和 u_y 的线性组合,因此 u_x 和 u_y 需要一起变换,因此形成了二维表示E的基,也可以说 u_x 和 u_y 属于E。

12.6 点群的特征标表

特征标

• 特征标: 群的表示矩阵的迹

$$\chi(A) = \operatorname{Tr} A = \sum_{i} a_{ii}$$

C3v点群的特征标表

The character table of the $C_{3\nu}$ point group.

\mathbf{C}_{3v}	\hat{E}	$2\hat{C}_3$	$3\hat{\sigma}_v$	不可约表示的基	x,y,z的乘积变换
\boldsymbol{A}_1	1	1	1	z	$x^2 + y^2, z^2$
A_2	1	1	-1	R_z	
\boldsymbol{E}	2	-1	0	$(x, y) (R_x, R_y)$	$(x^2-y^2,xy)\;(xz,yz)$

该点群的6个操作分别属于三个类

旋转矢量在对称操作下的变换

• C_{3v} 点群的绕z轴的旋转矢量 R_z

12.7 不可约表示特征 标的数学关系

特征标与群阶 $\sum_{j=1}^{N} d_j^2 = \sum_{j=1}^{N} \left[\chi_j(\hat{E}) \right]^2 = h$ d_j : 第j个不可约表示的维数 $\chi(\hat{R})$: 操作 \hat{R} 的矩阵表示的特征标

 $\chi_{j}(\hat{R})$: 操作 \hat{R} 的第j个不可约表示特征标

特征标的行矢量长度h1/2和正交性

$$\sum_{\hat{R}} \chi_i(\hat{R}) \chi_j(\hat{R}) = \sum_{\text{classes}} n(\hat{R}) \chi_i(\hat{R}) \chi_j(\hat{R}) = h \delta_{ij}$$

 $n(\hat{R})$: \hat{R} 所在的类包含的对称操作数目

$$\chi_i(\hat{R}) = 1 \Longrightarrow \sum_{\hat{R}} \chi_j(\hat{R}) = \sum_{\text{classes}} n(\hat{R}) \chi_j(\hat{R}) = 0 \quad j \neq A_1$$

可约表示Γ的约化分解

$$\chi(\hat{R}) = \sum_{j} a_{j} \chi_{j}(\hat{R}) \qquad \frac{C_{3v} \qquad \hat{E} \qquad 2\hat{C}_{3} \qquad 3\hat{\sigma}_{v}}{A_{1} \qquad 1 \qquad 1 \qquad 1}$$

$$a_{i} = \frac{1}{h} \sum_{\hat{R}} \chi(\hat{R}) \chi_{i}(\hat{R}) \qquad \frac{A_{2} \qquad 1 \qquad 1 \qquad -1}{E \qquad 2 \qquad -1 \qquad 0}$$

$$= \frac{1}{h} \sum_{\text{classes}} n(\hat{R}) \chi(\hat{R}) \chi_i(\hat{R}) \qquad \qquad \frac{C_{3\nu}}{\Gamma} \begin{vmatrix} \hat{E} & 2\hat{C}_3 & 3\hat{\sigma}_{\nu} \\ 3 & 0 & -1 \end{vmatrix}$$
可分解为 $\Gamma = A_2 + E$

12.8 利用对称预测 久期行列式零元素

久期行列式相应的积分

$$S_{ij} = \int \phi_i^* \phi_j d\tau = 0$$
 (如果 ϕ_i 和 ϕ_j 属于
$$H_{ij} = \int \phi_i^* \hat{H} \phi_j d\tau = 0$$
 不同的不可约表示)

证明 (仅对一维)**:**假设 ϕ_i 和 ϕ_j 属于一维不可约表象 Γ_a 和 Γ_b 的基,则有

$$\hat{R}\phi_i^* = \chi_a(\hat{R})\phi_i^* \qquad \hat{R}\phi_j = \chi_b(\hat{R})\phi_j$$

对称操作下, 积分不变

$$S_{ij} = \int \phi_i^* \phi_j d\tau = \hat{R} S_{ij} = \int \left(\hat{R} \phi_i^* \right) \left(\hat{R} \phi_j \right) d\tau = \chi_a(\hat{R}) \chi_b(\hat{R}) S_{ij}$$

哈密顿算符也是全对称的(属于 A_1)

$$H_{ij} = \int \phi_i^* \hat{H} \phi_j d\tau = \hat{R} H_{ij} = \int \left(\hat{R} \phi_i^* \right) \left(\hat{R} \hat{H} \right) \left(\hat{R} \phi_j \right) d\tau$$

$$= \chi_a(\hat{R}) \chi_{A_1}(\hat{R}) \chi_b(\hat{R}) H_{ij} = \chi_a(\hat{R}) \chi_b(\hat{R}) H_{ij}$$

$$\chi_a(\hat{R})\chi_b(\hat{R}) = 1$$
 (for all \hat{R}) 只有在 Γ_a 和 Γ_b

属于相同的不可约表示才成立,如果两者属于不同的不可约表示,两种积分都为零

12.9 产生算符构建属于 不可约表示的对称轨道

第广个不可约表示的产生算符

$$\hat{P}_j = \frac{d_j}{h} \sum_{\hat{R}} x_j(\hat{R}) \hat{R}$$

用四个2pz轨道构建一个四维表示

$$\hat{C}_{2} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{3} \\ \psi_{4} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{3} \\ \psi_{4} \end{pmatrix} \qquad \hat{\sigma}_{h} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{3} \\ \psi_{4} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{3} \\ \psi_{4} \end{pmatrix}$$

 \hat{E} 和 \hat{i} 操作的过程略

该四维表示属于不可约表示:
$$\hat{E}$$
 \hat{C}_2 \hat{i} $\hat{\sigma}_v$ 分解(12.7)得到 $\Gamma = 2B_g + 2A_u$ Γ 4 0 0 -4

$$\hat{p}_{B_g} \psi_1 = \frac{1}{4} (\psi_1 - \psi_4 - \psi_4 + \psi_1) \propto \psi_1 - \psi_4
\hat{p}_{B_g} \psi_2 = \frac{1}{4} (\psi_2 - \psi_3 - \psi_3 + \psi_2) \propto \psi_2 - \psi_3
\hat{p}_{A_u} \psi_1 = \frac{1}{4} (\psi_1 + \psi_4 + \psi_4 + \psi_1) \propto \psi_1 + \psi_4$$

 $\hat{p}_{A_{\mu}}\psi_{2} = \frac{1}{4}(\psi_{2} + \psi_{3} + \psi_{3} + \psi_{2}) \propto \psi_{2} + \psi_{3}$

得到四个 对称轨道