Отчёт по лабораторной работе №1

Простые модели компьютерной сети

Козлов Всеволод Павлович НФИбд-02-22

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	16

Список иллюстраций

3.1	Файл шаблона
3.2	Переменная nf
3.3	Переменная f. Процедура finish
3.4	Запуск процедуры finish
3.5	Запуск программы
3.6	Редактирование example1.tcl
3.7	Редактирование example1.tcl 10
3.8	Запуск рограммы
3.9	Редактирование example2.tcl 1
3.10	Редактирование example2.tcl 1
	Запуск рограммы
3.12	Редактирование example3.tcl 12
3.13	Запуск рограммы
3.14	Редактирование example3.tcl
3.15	Код программы из Упражнения
3.16	Движение пакетов по кратчайшему пути
3.17	Движение пакетов в случае разрыва соединения
3.18	Движение пакетов по кратчайшему пути

Список таблиц

1 Цель работы

Приобретение навыков моделирования сетей передачи данных с помощью средства имитационного моделирования NS-2, а также анализ полученных результатов моделирования.

2 Задание

- 1. Реализовать топологию сети, состоящую из двух узлов и одного соединения в NS-2.
- 2. Реализовать кольцевую топологию сети в NS-2.
- 3. Реализовать видоизмененную кольцевую топологию сети в NS-2.

3 Выполнение лабораторной работы

Создал директорию и файл шаблона (рис. 3.1)

Рис. 3.1: Файл шаблона

Создал переменную nf и указал, что требуется открыть на запись nam-файл для регистрации выходных результатов моделирования (рис. 3.2)

Рис. 3.2: Переменная nf

Создал переменную f и открыл на запись файл трассировки для регистрации всех событий модели. Написал процедуру finish (рис. 3.3)

Рис. 3.3: Переменная f. Процедура finish

С помощью команды at указал планировщику событий, что процедуру finish следует запустить через 5 с после начала моделирования, после чего запустить симулятор ns (рис. 3.4)

Рис. 3.4: Запуск процедуры finish

Сохранил изменения и запустил программу (рис. 3.5)

Рис. 3.5: Запуск программы

Создал example1.tcl. Написал программу (часть 1) (рис. 3.6)

Рис. 3.6: Редактирование example1.tcl

Написал программу (часть 2) (рис. 3.7)

Рис. 3.7: Редактирование example1.tcl

Запустил код программы example1.tcl. Просмотрел движение пакетов данных (рис. 3.8)

Рис. 3.8: Запуск рограммы

Создал новый файл example2.tcl. В нем создал 4 узла и 3 дуплексных соединения с указанием направления. (рис. 3.9)

Рис. 3.9: Редактирование example2.tcl

Создал агенты-получатели. Соединил агенты udp0 и tcp1 и их получателей (рис. 3.10)

Рис. 3.10: Редактирование example2.tcl

Запустил код программы example2.tcl. Просмотрел движение пакетов данных (рис. 3.11)

Рис. 3.11: Запуск рограммы

Создал новый файл example2.tcl. Написал первую чать программы (рис. 3.12)

Рис. 3.12: Редактирование example3.tcl

Запустил код программы example2.tcl. Просмотрел движение пакетов данных в случае разрыва соединения (рис. 3.13)

Рис. 3.13: Запуск рограммы

Просмотрел движение пакетов данных с использованием команды \$ns rtproto DV (рис. 3.14)

Рис. 3.14: Редактирование example3.tcl

Написал код для программы из Упражнения (рис. 3.15)

Рис. 3.15: Код программы из Упражнения

Запустил программу. Вначале пакеты идут по кратчайшему пути. (рис. 3.16)

Рис. 3.16: Движение пакетов по кратчайшему пути

Движение пакетов в случае разрыва соединения. (рис. 3.17)

Рис. 3.17: Движение пакетов в случае разрыва соединения

Пакеты снова идут по кратчайшему пути (рис. 3.18)

Рис. 3.18: Движение пакетов по кратчайшему пути

4 Выводы

Приобрел навыки моделирования сетей передачи данных с помощью средств имитационного моделирования NS-2, а также анализа полученных результатов моделирования.