Mina Kriptonita

By Rodrigo Schmidt S Brasil

Timelimit: 2

No ano de 2222, um terrível desastre aconteceu na mina de kryptonita em Marte: um marsquake sacudiu parte do planeta. Diferentemente de terremotos na Terra, marsquakes não são incomuns em Marte. Este, no entanto, gerou uma mina que começou a afundar-se lentamente para o solo. A mina tem uma forma externa retangular, e seu interior é como um labirinto, com elevações, paredes retas e, mais o importante, teletransportes. Teletransporte, como você sabe, pode transportar pessoas instantaneamente de um lugar para outro. O teletransporte da mina são dos modelos antigos, usando a tecnologia antiga, e só pode teleportar pessoas se houver uma clara visão a partir de uma outra cabine de teletransporte (isto é, se não existem obstáculos ou paredes entre as cabines). Você pode ver o mapa da mina na figura abaixo.

Você está preso sozinho dentro da mina. Felizmente, você tem um mapa de toda a minha, conhece a sua posição atual, a posição das paredes, os locais de saída e todas as cabinas de teletransporte. Infelizmente, o marsquake afetou o sistema de energia, e você sabe que o teletransporte só pode ser usado por um período e número limitado de vezes.

Você quer sair andando o mínimo possível, já que torceu o tornozelo durante o marsquake. Você deve encontrar o caminho do seu local atual para a saída que exige a mínima quantidade de caminhada.

Entrada

A entrada é constituída por vários casos de teste. A primeira linha de um caso de teste contém três inteiros N, M e L, que indicam, respectivamente, o número de vezes que os teletransportes podem ser usados, o número de paredes da mina e o número de cabines do teletransporte ($0 \le N$, M, $L \le 50$). Cada uma das linhas seguintes contém M quatro inteiros X_1 , Y_1 , X_2 e Y_2 , que representam as coordenadas dos pontos de extremidade de uma parede. Você pode ignorar a espessura das paredes e assumir que eles não se cruzam entre si (-20.000 $\le X_1 < X_2 \le 20.000$ e -20000 $\le Y_1 \le Y_2$ 20.000). As próximas L linhas contêm a localização dos estandes de teletransporte, dada por dois inteiros Xp e Yp. A última linha de cada caso de teste contém quatro inteiros Xp, Yp, Xp e Yp onde Yp0 são as coordenadas da sua localização e Yp0 são as coordenadas para sair da mina. O fim da entrada é indicado por Yp0 Yp0 Yp0 Yp0 são as coordenadas para sair da mina.

Saída

Para cada caso de teste da entrada, seu programa deverá imprimir uma única linha, contendo um número inteiro representando a distância que você precisa para andar para sair da mina. Claro, você não deve considerar as distâncias que você se teletransportou. A distância deve ser arredondado para o número inteiro mais próximo.

Exemplo de Entrada	Exemplo de Saída
1 1 3	8
5 -4 5 4	7
1 0	
5 5	
9 0	
0 0 10 0	
1 1 3	
5 -4 5 4	
0 0	
5 5	
10 0	
0 0 10 0	
0 0 0	

ACM/ICPC South America Contest 2003.