HCMIU - Calculus I - Final Test Sample Semester 1 - Year: Unknown - Duration : 90 minutes Date Modified : Saturday, December 14th, 2024

Full Name: ______Student's ID: _____

INSTRUCTIONS:

- Use of calculator is allowed. Each student is allowed one double-sized sheet of reference material (size A4 or similar). All other documents and electronic devices are forbidden.
- You must explain your answers in detail; no point will be given for the answer alone.
- There is a total of 10 (ten) questions. Each one carries 10 points.
- 1. Evaluate the limit

$$\lim_{x \to 0} \frac{\int_0^{2x} [e^t + \sin t] \, dt}{\ln(1 + 10x)}$$

- 2. A spherical snowball is melting in such a way that its radius is decreasing at a rate of 1 cm/min. At what rate is the volume of the snowball decreasing when the radius is 9 cm?
- 3. Find the linear approximation of the function $f(x) = \sqrt[3]{1+x}$ at $x_0 = 0$. Use this approximation to approximate the number $\sqrt[3]{0.97}$ and $\sqrt[3]{1.1}$.
- 4. (a) [5 points] Show that the equation $x^3 + x + 4 = 0$ has a unique real root on \mathbb{R} .
 - (b) [5 points] Use Newton's method to approximate the root of $x^3 + x + 4 = 0$ correct to seven decimal places. Let $x_0 = -1.5$ be the initial approximation.
- 5. Find the derivative of the function

$$G(x) = \int_{x}^{3x^2} \ln(t^2 + 1) dt.$$

6. Evaluate the improper integral

$$\int_3^\infty \frac{1}{(x+6)\sqrt{x+6}} \, dx.$$

- 7. An oil storage tank cracks at time t = 0 and oil then leaks from the tank at a rate of $r(t) = t \cdot e^{-0.01 \cdot t}$ liters per minute.
 - (a) [5 points] Find the time at which the rate has its maximum value.
 - (b) [5 points] How much oil leaks out during the first ten minutes?
- 8. Sketch the region enclosed by the curves $y=2, y=\sqrt{x}$ and x+y=2. Then find the area of the region.
- 9. An object is moving along a straight line path with an initial velocity of $v(0) = 5 \,\mathrm{m/s}$. The table below presents the dependence of the acceleration of this object on time t (in $\mathrm{m/s^2}$). Use the Trapezoidal Rule to approximate the velocity of the object at t=2 seconds.

Time t (in seconds)	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
Acceleration (in m/s^2)	1	1.5	1.8	2	2.5	3	3.5	4	4.5	4.2	4

10. The region bounded by y = sin(2x) with $0 \le x \le \frac{\pi}{2}$, and y = 0 is rotated about the y-axis. Find the volume of the solid of revolution.