Scilab Textbook Companion for The Field of Electronics by R. Morrison¹

Created by
Ashana Yamunashankar Shukla
Electrical
Electrical Engineering
Sardar Patel College of Engineering
College Teacher
None
Cross-Checked by
Chaitanya Potti

June 16, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: The Field of Electronics

Author: R. Morrison

Publisher: Wiley-inascience Publication, Canada

Edition: 1

Year: 2002

ISBN: 0-471-22290-9

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Electric field	8
2	Capacitance	17
3	Utility power and circuit concepts	27
4	A few more tools	39
5	Analog Design	49
6	Digital Design	58

List of Scilab Codes

Exa 1.1	calculating Electric field intensity	8
Exa 1.2	calculating current	8
Exa 1.3	calculating resistance and conductance	8
Exa 1.4	calculating current	9
Exa 1.5	calculating work	9
Exa 1.6	calculating resistance	9
Exa 1.7	calculating voltage	10
Exa 1.8	calculating voltage	10
Exa 1.9	calculating internal resistance	10
Exa 1.10	calculating voltage	11
Exa 1.11	calculating power dissipated	11
Exa 1.12	calculating power dissipated	12
Exa 1.13	calculating the power level	12
Exa 1.14	finding configuration	12
Exa 1.15	no of resistances	13
Exa 1.16	calculating wattage rating	13
Exa 1.17	calculating power dissipation	13
Exa 1.18	calculating joules	14
Exa 1.19	calculating wattage	14
Exa 1.20	calculating current	14
Exa 1.21	calculating energy	15
Exa 1.22	calculating voltage	15
Exa 1.23	calculating force	15
Exa 1.24	calculating average power	16
Exa 1.25	calculating peak power	16
Exa 2.1	calculating capacitance	17
Exa 2.2	calculating charge	17
Exa 2.3	calculating D	18

Exa 2.4	calculating current	18
Exa 2.5	calculating time constant	19
Exa 2.6	calculating voltage	19
Exa 2.7		20
Exa 2.8	calculating energy	20
Exa 2.9		21
Exa 2.10		21
Exa 2.11	calculating H field intensity	21
Exa 2.12		22
Exa 2.13	calculating H field intensity	22
Exa 2.14	calculating time	22
Exa 2.15		23
Exa 2.16	calculating H field	23
Exa 2.17		23
Exa 2.18	calculating flux	24
Exa 2.19		25
Exa 2.20		25
Exa 2.21	calculating energy	25
Exa 2.22	calculating H field	26
Exa 3.1	calculating reactance	27
Exa 3.2		27
Exa 3.3		28
Exa 3.4	calculating impedance	28
Exa 3.5	calculating peak current	28
Exa 3.6	calculating impedance	29
Exa 3.7		29
Exa 3.8		29
Exa 3.9	calculating slope	30
Exa 3.10		30
Exa 3.11		30
Exa 3.12		31
Exa 3.13	calculating phase angle	31
Exa 3.14	calculating impedance	32
Exa 3.15	calculating reactance	32
Exa 3.16		32
Exa 3.17		33
Exa 3.18	g g	33
Exa 3 19	calculating rms voltage	33

Exa 3.20	calculating rms voltage	34
Exa 3.21		34
Exa 3.22		34
Exa 3.23		35
Exa 3.24		35
Exa 3.25		36
Exa 3.26		36
Exa 3.27		37
Exa 3.28		37
Exa 3.29		37
Exa 4.1		39
Exa 4.2	calculating resistance	3 9
Exa 4.3	calculating inductance	3 9
Exa 4.4	calculating resistance	10
Exa 4.5		10
Exa 4.6		10
Exa 4.7		11
Exa 4.8	calculating H	11
Exa 4.9		11
Exa 4.10		12
Exa 4.11		12
Exa 4.12		13
Exa 4.13		13
Exa 4.14		13
Exa 4.15		14
Exa 4.16		14
Exa 4.17		14
Exa 4.18	calculating skin depth	15
Exa 4.19	calculating WCC	15
Exa 4.20		15
Exa 4.21		16
Exa 4.22	calculating WCC	16
Exa 4.23	calculating magnetising current max	16
Exa 4.24	calculating peak voltage	17
Exa 4.25	~ · · · · · · · · · · · · · · · · · · ·	17
Exa 4.26		18
Exa 4.27		18
Exa. 5.1		19

Exa 5.2	calculating output signal	49
Exa 5.3	calculating output common mode signal	50
Exa 5.4	calculating output signal	50
Exa 5.5	calculating energy loss	50
Exa 5.6	calculating max peak current	51
Exa 5.7	calculating size	51
Exa 5.8	calculating rms current	51
Exa 5.9	calculating voltage	52
Exa 5.10	calculating output impedance	52
Exa 5.11	calculating output inductance	52
Exa 5.12	calculating input capacitance	53
Exa 5.13	calculating size	53
Exa 5.14	calculating radiation	54
Exa 5.15	calculating capacitance	54
Exa 5.16	calculating max voltage	55
Exa 5.17	calculating max voltage	55
Exa 5.18	calculating time	56
Exa 5.19	calculating time	56
Exa 6.1	calculating dielectric constant	58
Exa 6.2	calculating output	58
Exa 6.3	calculating size	59
Exa 6.4	calculating voltage	59
Exa 6.5	calculating radiation level	60
Exa 6.6	calculating radiation level	60
Exa 6.7	calculating voltage	61
Exa 6.8	calculating voltage	61
Exa 6.9	calculating WCC radiation	62
Exa 6.10	calculating radiation	62
Exa 6.11	calculating H field	63
Exa 6.12	calculating WCC	63
Exa 6.13	finding the mode of coupling	64
Exa 6.14	determining the type of filter	64
Exa 6.15	calculating common mode voltage	64
Exa 6.16	observing output	65

Chapter 1

Electric field

Scilab code Exa 1.1 calculating Electric field intensity

```
1 clc;
2 n=512; //frequency in Hz
3 l=67; //wavelength in cm
4 v=n*1; //calculating velocity
5 disp(v,"Velocity in cm/sec = "); //displaying result
```

Scilab code Exa 1.2 calculating current

```
1 clc;
2 v=340; //velocity in m/sec
3 l=0.68; //wavelength in m
4 n=v/l; //calculating frequency
5 disp(n, Frequency in Hz = "); //displaying result
```

Scilab code Exa 1.3 calculating resistance and conductance

```
1 clc;
2 v=3*10^8; //velocity in m/sec
3 n=500*10^3; //frequency in Hz
4 l=v/n; //calculating wavelength
5 disp(1,"Wavelength in m = "); //displaying result
```

Scilab code Exa 1.4 calculating current

Scilab code Exa 1.5 calculating work

```
1 clc;
2 s=90;  // distance in m
3 u=0;  // initial velocity in m/sec
4 t=sqrt(90/4.9);  // calculating time using
        kinematical equation
5 t1=4.56-t;  // calculating time taken by sound to
        travel
6 v=s/t1;  // calculating velocity
7 disp(v," Velocity in m/sec = ");  // displaying result
```

Scilab code Exa 1.6 calculating resistance

```
1 clc;
```

```
2 l1=1.5;  //wavelength in m
3 l2=2;  //wavelength in m
4 v1=120;  //velocity in m/sec
5 n=v1/l1;  //calculating frequency
6 v2=n*l2;  //calculating velocity
7 disp(v2," Velocity in m/sec = ");  //displaying result
```

Scilab code Exa 1.7 calculating voltage

```
1 clc;
2 l=5641*10^-10;  //wavelength in m
3 c=3*10^8;  //velocity in m/sec
4 n=c/l;  //calculating frequency
5 u=1.58;  //refractive index of glass
6 cg=c/u;  //calculating velocity of light in glass
7 l1=cg/n;  //calculating wavelegth in glass
8 disp(l1*10^10,"Wavelength in glass in Angstrom =");  //displaying result
```

Scilab code Exa 1.8 calculating voltage

Scilab code Exa 1.9 calculating internal resistance

Scilab code Exa 1.10 calculating voltage

```
1 clc;
2 a=20;    //amplitude in cm
3 n=6;    //frequency per second
4 w=2*(%pi)*n;    //omega in radians/sec
5 disp(w,"Omega in radians/sec = ");    //displaying result
```

Scilab code Exa 1.11 calculating power dissipated

```
1 clc;
           //amplitude in cm
2 a=6;
          //frequency in Hz.
3 n=9;
4 vmax=2*(%pi)*n*6; //calculating velocity in cm/sec
5 acc=-((18*(\%pi))^2)*6; //calculating acc. in m/sec
     square
6 disp(vmax, "Maximum velocity in cm/sec = "); //
     displaying result
7 disp("Velocity at extreme position = 0");
     displaying result
8 disp("Accelaration at mean position = 0"); //
     displaying result
9 disp(acc, "Accelaration at extreme position in m/sec
     square = "); //displaying result
```

Scilab code Exa 1.12 calculating power dissipated

```
1 clc;
2 g=9.8;  //gravitational constant
3 m=50;  //mass in kg
4 l=0.2;  //length in m
5 T=0.6;  //time period
6 k=(m*g)/l;  //calculating constant
7 m=2450*((T/(2*(%pi)))^2);  //calculating mass using given time period
8 disp(m,"Mass of body in kg = ");  //displaying result
```

Scilab code Exa 1.13 calculating the power level

Scilab code Exa 1.14 finding configuration

```
1 clc;
2 disp("In a) parallel b) series c) Two pairs of parallel
            and then in series"); // displaying result
```

Scilab code Exa 1.15 no of resistances

Scilab code Exa 1.16 calculating wattage rating

```
1 clc;
2 v=10; //voltage in volt
3 t=2; //time in sec
4 r=40; //resistance in ohm
5 p=(v^2)/r; //power
6 e=5/5; //energy in Watt
7 disp(p,"Power in Watt = "); //displaying power
8 disp("2 W resistor is adequate."); //displaying result
```

Scilab code Exa 1.17 calculating power dissipation

```
1 clc;
2 v=24; //voltage in volt
3 t=2; //time in sec
4 r=48; //resistance in ohm
5 p=(v^2)/r; //calculating power
6 disp(p,"Power in Watt = "); //displaying result
```

Scilab code Exa 1.18 calculating joules

```
1 clc;
2 i=60; //current in ampere
3 v=12; //voltage in volt
4 t=3600; //time in sec
5 p=i*v*t; //calculating power
6 disp(p,"Number of joules = "); //displaying result
```

Scilab code Exa 1.19 calculating wattage

```
1 clc;
2 v=12; //voltage in volt
3 ah=720; //ampere-hours
4 am=ah/24; //calculating amperage
5 r=v/am; //calculating resistance
6 disp(r,"Load in Ohm = "); //displaying result
```

Scilab code Exa 1.20 calculating current

```
1 clc;
2 p=200; //power in Watt
3 v=12; //voltage in volt
```

```
4 i=p/v; //calculating current in Ampere
5 I=p/6; //calculating
6 disp(i,"Current in Ampere = "); //displaying
7 disp(I,"Current in Ampere if voltage were 6V = "); //displaying result
```

Scilab code Exa 1.21 calculating energy

```
1 clc;
2 E=10^6; //in volt/m
3 e=8.85*10^-12; //constant in F/m
4 v=10^-5; //volume in m cube
5 en=(1/2)*e*E*E*v; //calculating energy
6 disp(en, "Energy in Joule = "); //displaying result
```

Scilab code Exa 1.22 calculating voltage

```
1 clc;
2 en=4.42*10^-5; //energy in Joule
3 v=10^6;
4 q=(2*en)/v; //calculating q
5 disp(q,"Charge in Coloumb = "); //displaying result
```

Scilab code Exa 1.23 calculating force

```
1 clc;
2 e=4.42*10^-5; //energy in Joule
3 v=1.1*10^-5; //volume in m cube
4 dv=(10/100)*e; //calculating change in energy
5 dd=10^-4; //change in dimension in metre
```

```
6 f=dv/dd; //calculating force
7 disp(f, "Force in kg = "); //displaying result
```

Scilab code Exa 1.24 calculating average power

Scilab code Exa 1.25 calculating peak power

Chapter 2

Capacitance

Scilab code Exa 2.1 calculating capacitance

Scilab code Exa 2.2 calculating charge

```
4 t=1.5;  //time in second
.
5 s=25000;  //area in metre
    cube.
6 a=(0.16*v)/(t*s);  //using Sabine
    formula for calculating a
7 disp(a,"Average Absorbing Power of Surface = "); //
    Displaying Result.
```

Scilab code Exa 2.3 calculating D

Scilab code Exa 2.4 calculating current

```
//absorption due to glass
8 \text{ a3s3}=0.06*50;
     work.
                            //absorption due to audience
9 a4s4=4.2*370;
      on spungy and wooden
10 // seats.
11 a5s5=2*230;
                             //absorption due to empty
     seats.
12 sum=a1s1+a2s2+a3s3+a4s4+a5s5; //total absorption of
     cinema hall.
13 T = (0.165 * v) / sum;
                             //calculating T using
      Sabine Formula.
14 disp(T, "Reverberation Time = "); //Displaying
      Result.
```

Scilab code Exa 2.5 calculating time constant

Scilab code Exa 2.6 calculating voltage

```
1 clc;
2 disp("Example 2.7");
```

Scilab code Exa 2.7 calculating resistance

Scilab code Exa 2.8 calculating energy

```
7 disp(V, "Speed of ultrasonic wave in air at n.t.p. in
cm/sec = "); //displaying result.
8 disp(V*10^-2, "Speed in m/sec"); //displaying result
.
```

Scilab code Exa 2.9 finding H field intensity

```
1 clc;
2 r=0.1; //in metre
3 H=3/(2*(%pi)*r); //calculating H field intensity
4 disp(H,"H field intensity in A/metre = "); // displaying result
```

Scilab code Exa 2.10 calculating H field intensity

Scilab code Exa 2.11 calculating H field intensity

Scilab code Exa 2.12 calculating H field intensity

```
1 clc;
2 disp("H field at the center is nearly the same.");
    //displaying result
```

Scilab code Exa 2.13 calculating H field intensity

Scilab code Exa 2.14 calculating time

Scilab code Exa 2.15 calculating energy

```
1 clc;
2 v=2; //voltage in volts
3 l=10^-3; //inductance in Henry
4 i=10*10^-3; //current
5 e=(1/2)*1*i*i; //calculating energy
6 disp(e,"Energy in Joule = "); //displaying result
```

Scilab code Exa 2.16 calculating H field

```
1 clc;
2 p=20*10^-2; //path length in metre
3 m=20000; //relative permeability of magnetic
    material
4 i=2*10^-3; //current in Ampere
5 n=500; //no of turns
6 h=n*i; //calculating A/turn for 20 cm
7 disp(h,"H for 20 cm in A/turn = "); //displaying
    result
8 a=h/(20*10^-2); //calculating H per metre
9 disp(a,"H field per metre in A/metre = "); //
    displaying result
```

Scilab code Exa 2.17 calculating B field

```
3 p=20*10^-2; //path length in metre
4 m=20000; //relative permeability of magnetic
    material
5 i=2*10^-3; //current in Ampere
6 n=500; //no of turns
7 H=n*i; //calculating A/turn for 20 cm
8 disp(H,"H for 20 cm in A/turn = "); //displaying
    result
9 a=H/(20*10^-2); //calculating H per metre
10 disp(a,"H field per metre in A/metre = "); //
    displaying result
11 B=(m*mo*a); //calculating flux
12 disp(B,"Flux in Tesla = "); //displaying result
```

Scilab code Exa 2.18 calculating flux

```
1 clc;
2 area=5*10^-4; //area
3 mo=(4*(\%pi)*10^-7); //relative permeability of free
      space
4 p=20*10^-2; //path length in metre
5 m=20000; //relative permeability of magnetic
     material
6 i=2*10^-3; //current in Ampere
7 n=500; //no of turns
8 H=n*i; //calculating A/turn for 20 cm
9 disp(H,"H for 20 cm in A/turn = "); // displaying
     result
10 a=H/(20*10^-2); //calculating H per metre
11 disp(a,"H field per metre in A/metre = "); //
     displaying result
12 B=(m*mo*a); //calculating flux
13 disp(B, "Flux in Tesla = "); //displaying result
14 l=B*area; //calculating flux density
15 disp(1, "Flux Density in Weber/metre = "); //
```

Scilab code Exa 2.19 calculating time

```
1 clc;
2 v=0.04; //voltage per turn in Volt
3 area=5*10^-4; //metre square
4 B=v/area; //calculating B
5 disp(B,"B in Tesla/sec = "); //displaying result
6 H=B/(4*(%pi)*10^-7*20000); //calculating H
7 disp(H,"H in A/m = "); //displaying result
8 disp("Therefore, for 500 turns and 20 cm = 1.27 A/sec.25.4 ms for 20 mA and 38.1 ms for 30 mA"); //displaying result
```

Scilab code Exa 2.20 calculating lowest frequency square wave

Scilab code Exa 2.21 calculating energy

```
1 clc;
```

```
v=7.5*10^-5; //volume in metre cube
b=1; //flux in tesla
mo=4*(%pi)*10^-7; //permeability of free space
m=20000; //permeability of material
h=b/(m*mo); //calculating field intensity
e=(1/2)*b*h*v; //calculating energy
disp(e,"Energy in Joule = "); //displaying energy
```

Scilab code Exa 2.22 calculating H field

```
1 clc;
2 v=7.5*10^-5; //volume in metre cube
3 b=1; //flux in tesla
4 mo=4*(%pi)*10^-7; //permeability of free space
5 m=20000; //permeability of material
6 h=b/(m*mo); //calculating field intensity
7 e=(1/2)*b*h*v; //calculating energy
8 disp(e, "Energy in Joule = "); //displaying energy
9 disp(h, "Field in the gap = "); //displaying field intensity
10 disp(h*10^-2, "Current per metre = Therefore in the gap of 0.001 m current required in mA = "); // displaying result
```

Chapter 3

Utility power and circuit concepts

Scilab code Exa 3.1 calculating reactance

Scilab code Exa 3.2 calculating reactance

```
1 clc;
2 f=80;    //focal length in cm
3 f1=20;    //focallength of first lens in cm
4 f2=(80/3);    //using (1/F)=(1/f1)+(1/f2)
5 P=(100/f);    //power in D
6 P1=100/20;    //power of first lens
7 P2=P1-P;    //power in D
```

```
8 disp(P2, "Power in D = "); // displaying result
```

Scilab code Exa 3.3 calculating impedance

```
1 clc;
2 P=2.5;  //Power in D
3 f=-(1/P);  //calculating f in m
4 disp(f, "Focal length in m = ");  //displaying result
```

Scilab code Exa 3.4 calculating impedance

```
1 clc;
2 m=4;    //magnigication
3 f=20;    //focal length in cm
4 u=(20*3)/(4);    //on simplifying (1/f)=(1/v)-(1/u)
5 v=(4*u);    //calculating v in cm
6 disp(u,"Object distance in cm = ");    //displaying result
7 disp(v,"Image distance in cm = ");    //displaying result
```

Scilab code Exa 3.5 calculating peak current

```
1 clc;
2 u=14;    //object distance in cm
3 f=-21;    //focal distance in cm
4 v=(-5/42);    //simplifying(1/f)=(1/v)-(1/u)
5 I=(3*-8.4)/(-14);    //using m=(1/0)=(v/u);
6 disp(v,"Image distance in cm = ");    //displaying result
7 disp(I,"I in cm = ");    //displaying result
```

Scilab code Exa 3.6 calculating impedance

```
1 clc;
2 fe=5; //focal length in cm
3 D=25; //distance od distinct vision in cm
4 m=1+(D/fe); //calculating magnifying power
5 disp(m, "magnifying Power = "); //displaying result
```

Scilab code Exa 3.7 calculating impedance

```
1 clc;
2 fe=5; //focal length in cm
3 D=25; //distance od distinct vision in cm
4 mo=30/(1+(D/fe)); //calculating magnification of objective lens
5 disp(mo, "Magnification produced by objective lens = "); //displaying result
```

Scilab code Exa 3.8 calculating reactance

```
1 clc;
2 u=-6;  //object distance in cm
3 fo=4;  //focal distance in cm
4 fe=6;  //focal length in cm
5 D=25;  //distance of distinct vision in cm
6 v=(12);  //using (1/f)=(1/v)-(1/u)
7 m=(v/u)*(1+(D/fe));  //calculating m
8 disp(v,"Image distance in cm = ");  //displaying result
```

```
9 disp(-m, "Magnifying Power = ");  //displaying
  result
```

Scilab code Exa 3.9 calculating slope

```
1 clc;
2 D=25;    //distance of distinct vision
3 u=-9;    //object distance in cm
4 fe=10;    //focal length in cm
5 v=(-90/1);    //using (1/f)=(1/v)-(1/u)
6 m=(v/u);    //calculating m
7 M=D/u;    //calculating Magnifying power of lens
8 disp(m, "Magnification of lens = ");    //displaying result
9 disp(-M, "Magnifying Power = ");    //displaying result
```

Scilab code Exa 3.10 calculating resonant frequency

```
1 clc;
2 fo=0.5;  //focal length of eye lens
3 D=25;  //distance of distinct vision
4 L=15;  //length in cm
5 m=375;  //magnification
6 fe=(-L*D)/(fo*((L/fo)-m));  //calculating fe
7 disp(fe, "Focal length of eye lens in cm = ");  //displaying result
```

Scilab code Exa 3.11 calculating natural frequency

```
1 clc;
2 m=5;  //magnifying power
3 L=24;  //length in cm
4 fe=4;  //focal length in cm
5 fo=5*fe;  //calculating fo
6 disp(fo,"Focal length of lens in cm = ");  // displaying result
```

Scilab code Exa 3.12 calculating current

Scilab code Exa 3.13 calculating phase angle

```
1 clc;
2 M=5;    //Magnifying power
3 fo=10;    //focal length of eye lens
4 fe=fo/M;    //calculating fe
5 disp(fe, "Focal length of eye lens in cm = ");    // displaying result
```

Scilab code Exa 3.14 calculating impedance

```
1 clc;
2 fo=75;  //focal length of eye lens
3 D=25;  //distance of distinct vision
4 fe=5;  //focal of eye lens in cm
5 M=-(fo/fe)*(1+(fe/D));  //calculating M
6 disp(M,"Magnifying power = ");  //displaying result
```

Scilab code Exa 3.15 calculating reactance

```
1 clc;
2 M=7;    //magnifying power
3 L=40;    //length
4 fe=(40/8);    //focal length of eye lens in cm
5 fo=(7*fe);    //calculating focal length
6 disp(fo, "Focal Length of lens in cm =");    //
        displaying result
```

Scilab code Exa 3.16 calculating phase angle

```
9 disp("At this frequency the phase angle is 45 degree ."); //displaying result
```

Scilab code Exa 3.17 calculating rms voltage

```
1 clc;
2 vpp=25; //peak to peak voltage in volt
3 vp=vpp/2; //calculating peak value in volt
4 rms=vp/sqrt(2); //calculating rms value
5 disp(rms, "Rms value in volt = "); //displaying result
```

Scilab code Exa 3.18 calculating peak voltage

```
1 clc;
2 v=118; //voltage in volt
3 vp=v*sqrt(2); //calculating peak voltage
4 disp(vp, "Peak voltage in volt = "); //displaying result
```

Scilab code Exa 3.19 calculating rms voltage

```
1 clc;
2 r=1; //reisstance in Ohm
3 p1=1/4; //power for 1 Watt
4 p2=(2*2)/4; //power for 2 Watt
5 p3=(3*3)/4; //power for 3 Watt
6 p4=(4*4)/4; //power for 4 Watt
7 tp=p1+p2+p3+p4; //calculating total power
8 p=sqrt(tp); //calculating rms value
9 disp(p, "RMS value in volt = "); //displaying result
```

Scilab code Exa 3.20 calculating rms voltage

```
1 clc;
2 v1=6; //voltage in volt
3 v2=8; //voltage in volt
4 v=sqrt((v1*v1)+(v2*v2)); //calculating rms valu
5 disp(v,"RMS value in volt = "); //displaying result
```

Scilab code Exa 3.21 calculating average dc voltage

```
1 clc;
2 v=12; //voltage in volt
3 f=60; //frequency in Hz
4 vt=v*sqrt(2); //true voltage
5 vs=vt/10; //sagging voltage
6 disp(vs);
7 av=vt-(vs/2); //calculating average value
8 disp(av, "Average voltage in volt = "); //displaying result
```

Scilab code Exa 3.22 calculating rms heating

```
1 clc;
2 v=10; //voltage in volt
3 t=0.001; //lasting time in sec
4 t1=0.01; //recurring time in sec
5 r=1; //resistance in Ohm
6 p=10; //average power in Watt
7 v=sqrt(p/r); //calculating dc voltage
```

```
8 disp(v,"DC Voltage in Volt = "); //displaying
    result
9 disp(v,"Therefore, the RMS value = "); //displaying
    result
```

Scilab code Exa 3.23 calculating time

```
1 clc;
2 l=10; //length in metre
3 s=0.3; //speed of energy in m/ns
4 tl=2*1; //length of round trip
5 t=tl/s; //time taken
6 disp(t,"Time taken for round trip in ns = "); // displaying result
```

Scilab code Exa 3.24 calculating current

```
1 clc;
2 z=50; //impedance in Ohm
3 l=10; //length in metre
4 v=10; //voltage in volt
5 t=0.3*10^-6; //time in sec
6 i=v/z; //calaulating current
7 disp(i,"Current on initial wave in Ampere = "); // displaying result
8 disp("It takes 0.13*10^-6 for a round trip. There are two round trips in 0.3*10^-6. The current triples for each round trip. At 0.3 s the current is multiplied by 6, or 1.2 A."); // displaying result
```

Scilab code Exa 3.25 calculating H field and voltage

```
1 clc;
2 f=300; //frequency in Hz
3 r=1; //distance in metre
4 i=2; //current in Ampere
5 area=0.1; //area in metre square
6 mo=4*(\%pi)*10^-7; //constant
7 H=i/(2*(%pi)*r); //calcualting H field rms
8 disp(H,"H field intensity (rms) in A/m ="); //
     displaying H field
9 Hp=H*sqrt(2); //peak H
10 disp(Hp,"H field intensity (peak) in A/m ="); //
     displaying result
11 Bp=(Hp*mo); //calculating B peak in Tesla
12 disp(Bp, "Flux peak in Tesla = "); //displaying B
13 vp=2*(%pi)*f*Bp; //calculating v peak
14 disp(vp, "Peak voltage in volt = "); //displaying
     result
```

Scilab code Exa 3.26 calculating peak voltage

```
13 disp(a, "Voltage in volt = "); //displaying result
```

Scilab code Exa 3.27 calculating power dissipated

Scilab code Exa 3.28 calculating total voltage

Scilab code Exa 3.29 calculating current

```
1 clc;
2 c=5*10^-12; //capacitanec in Farad
3 p=10*10^6; //pulse in V/sec
4 i=c*p; //current
5 disp(i, "Current in Ampere = "); //displaying result
```

Chapter 4

A few more tools

Scilab code Exa 4.1 calculating resistance

```
1 clc;
2 q=1;    //no of coulomb
3 e=1.6*10^-19;    //charge on an electron
4 n=(q/e);    //calculating no of electrons
5 disp(n,"No of electrons = ");    //displaying result
```

Scilab code Exa 4.2 calculating resistance

```
1 clc;
2 F=4.5*9.8; //in Newton
3 q=sqrt(((0.03^2)*4.5*9.8)/(9*10^9)); //calculating
    q using F=(1/4*3.14*eo)*((q1*q2)/(r^2))
4 disp(q,"Charge in coulomb = "); //displaying result
```

Scilab code Exa 4.3 calculating inductance

```
1 clc;
2 q1=2*10^-7;    //charge in C
3 q2=3*10^-7;    //charge in C
4 r=30*10^-2;    //r in m
5 F=(9*10^9)*((q1*q2)/r^2);    //calculating F
6 disp(F,"Force in Newton = ");    //displaying result
```

Scilab code Exa 4.4 calculating resistance

```
1 clc;
2 q1=1;    //charge in C
3 q2=1;    //charge in C
4 r=1;    //r in m
5 F=(9*10^9)*((q1*q2)/r^2);    //calculating F
6 disp(F,"Force in Newton = ");    //displaying result
```

Scilab code Exa 4.5 calculating resistance

Scilab code Exa 4.6 calculating H

Scilab code Exa 4.7 calculating frequency

```
1 clc;
2 Va=-10; //voltage in volts
3 W=100; //work in Joule
4 q=2; //charge in Coulomb
5 v=(Va)+(W/q); //calculating v
6 disp(v,"Voltage in Volts = "); //displaying result
```

Scilab code Exa 4.8 calculating H

```
1 clc;
2 eo=(8.854*10^-12); //constant
3 E=2; //magnitude of electric field in N/C
4 r=0.5; //r in m
5 q=E*4*(%pi)*(eo)*(r^2); //calculating charge
6 disp(q,"Charge in Coulomb = "); //displaying result
```

Scilab code Exa 4.9 calculating distance

```
1 clc;
2 e=-1.6*10^-19; //charge on electron in Coulomb
3 q=20*10^-6; //charge in Coulomb
```

```
4 r1=0.1; //r1 in m
5 r2=0.05; //r2 in m
6 Va=9*10^9*(q/r1); //calculating voltage at A
7 Vb=9*10^9*(q/r2); //calculating voltage at B
8 V=Va-Vb; //potential difference
9 W=V*e; //calculating work done in joule
10 disp(W,"Work done to take the electron from A to B
    in Joule = "); //displaying result
```

Scilab code Exa 4.10 calculating wave impedance

Scilab code Exa 4.11 calculating wave impedance

```
1 clc;
2 eo=8.85*10^-12; //constant
3 q=2*10^-6; //charge in coulomb
4 l=9; //length in cm
5 fi=(q/eo); //calcualting flux in (N m square)/c
6 disp(fi,"Flux through the surface in (N m square)/c
= "); //displaying result
```

Scilab code Exa 4.12 calculating H

```
1 clc;
2 eo=8.85*10^-12; //constant
3 r=1.2; //r in m
4 t=80*10^-6; //surface sharge density in c/m square
5 q=t*4*(%pi)*(r^2); //calculating charge
6 fi=q/eo; //calculating flux
7 disp(fi,"Flux in N m square/c = "); //displaying
    result
```

Scilab code Exa 4.13 calculating field strength

```
1 clc;
2 eo=8.85*10^-12; //constant
3 E=9*10^4; //Electric field in N/C
4 r=2*10^-2; //r in m
5 L=2*(%pi)*E*eo*r; //calculating linear charge density
6 disp(L,"Linear charge density per cm = "); // displaying result
```

Scilab code Exa 4.14 calculating E

Scilab code Exa 4.15 calculating E

```
1 clc;
2 r=0.05; // in m
3 eo=8.85*10^-12; //constant
4 q=10^-9; //charge at point P in Coulomb
5 E=q/(4*(%pi)*eo*(r^2)); //calculating electric field
6 disp(E,"Electric field in v/m = "); //displaying result
7 r1=0.2; //in m
8 V1=q/(4*(%pi)*eo*r1); //calculating potential difference
9 disp(V1," Potential difference between two points in Volt = "); //displaying result
```

Scilab code Exa 4.16 calculating one skin depth

```
1 clc;
2 eo=8.85*10^-12; //constant
3 o=80*10^-6; //surface charge density in c/ square
4 r=1.2; //in m
5 q=o*(%pi)*(r^2); //calculating charge in Coulomb
6 fi=q/eo; //calculating electric flux
7 disp(q,"Charge in Coulomb = "); //displaying result
8 disp(fi,"Electric flux in N m square/c = "); // displaying result
```

Scilab code Exa 4.17 calculating one skin depth

```
1 clc;
2 V=250; //potential difference in Volt
3 C=10^-11; //capacitance in farad
4 q=C*V; //calculating charge
5 disp(q, "Charge in Coulomb = "); //displaying result
```

Scilab code Exa 4.18 calculating skin depth

```
1 clc;
2 r=6.4*10^6; //in m
3 C=r/(9*10^9); //calculating charge
4 disp(C, "Capacitance in Farad = "); //displaying result
```

Scilab code Exa 4.19 calculating WCC

```
1 clc;
2 C=2; //capacitance in Farad
3 d=0.5*10^-2; //distance in m
4 eo=8.85*10^-12; //constant
5 A=(C*d)/(eo); //calculating area
6 disp(A, "Area in m square = "); //displaying result
```

Scilab code Exa 4.20 calculating WCC

```
1 clc;
2 A=0.02; //area in m square
3 r=0.5; //r in m
4 d=(A/(4*(%pi)*r)); //calculating distance
5 disp(d, "Distance between the plates in m = "); // displaying result
```

Scilab code Exa 4.21 calculating WCC

```
1 clc;
2 eo=8.85*10^-12; //constant
3 A=1; //area in m square
4 d=2*10^-3; //r in m
5 K=4; //constant
6 C=(K*eo*A)/d; //calculating capacitance
7 disp(C, "Capacitance in Farad = = "); //displaying result
```

Scilab code Exa 4.22 calculating WCC

```
1 clc;
2 cm=10*10^-6; //capacitance in Farad
3 K=2; //constant
4 co=cm/K; //calculating co
5 disp(co, "capacity of capacitor with air between the plates in Farad = "); //displaying result
```

Scilab code Exa 4.23 calculating magnetising current max

```
8 disp(cs,"Equivalent Series capacitance in farad = ")
    ; //displaying result
9 disp(cp,"Equivalent parallel capacitance in farad =
        "); //displaying result
10 qs=cs*v; //calculating charge
11 disp(qs,"charge on plate in Coulomb = "); //
        displaying result
```

Scilab code Exa 4.24 calculating peak voltage

```
1 clc;
2 C=9*10^-10; //capacitance in farad
3 V=100; //in volt
4 U=(1/2)*(C*(V^2)); //calculating energy stored
5 disp(U,"Energy stored in Joule = "); //displaying result
```

Scilab code Exa 4.25 calculating radiation

```
1 clc;
2 eo=8.85*10^-12; //constant
3 A=90*10^-4; //area in m square
4 d=2.5*10^-3; //distance in m
5 V=400; //in volt
6 C=(eo*A)/d; //calculating capacitance
7 disp(C,"Capacitance in Farad = "); //displaying result
8 W=(1/2)*(C*(V^2)); //calculating electrical energy stored
9 disp(W,"Electrical Energy stored in capacitor in Joule = "); //displaying result
```

Scilab code Exa 4.26 calculating primary current

Scilab code Exa 4.27 calculating radiation

```
1 clc;
2 eo=8.85*10^-12; //constant
3 V=6; //v in volt
4 A=25*10^-4; //area in m square
5 d=10^-3; //distance in m
6 q=(eo*A*V)/d; //calculating charge
7 W=q*V; //calculating work done
8 disp(q,"Charge through battery in Coulomb = "); // displaying result
9 disp(W,"Work done by Battery in Joule = "); // displaying result
```

Chapter 5

Analog Design

Scilab code Exa 5.1 calculating delay

```
1 clc;
2 n=10^6;  //no. of electrons
3 e=1.6*10^-19;  //charge on an electron in C
4 q=n*e;  //calculating total charge
5 t=10^-3;  //time in second
6 I=q/t;  //calculating current
7 disp(I,"Current flowing in Ampere = ");  //displaying result
```

Scilab code Exa 5.2 calculating output signal

```
1 clc;
2 I=300*10^-3;  //current n Ampere
3 t=60;  //time in second
4 e=1.6*10^-19;  //chatge on electron in C
5 q=I*t;  //calculating charge
6 n=q/e;  //calculating no of electrons
7 disp(n,"No. of electrons = ");  //displaying result
```

Scilab code Exa 5.3 calculating output common mode signal

```
1 clc;
2 V=200; //voltage in volt
3 R=100; //resistance in Ohm
4 e=1.6*10^-19; //charge on an electron in C
5 I=V/R; //Ohm's law
6 t=1; //time in second
7 q=I*t; //calculating charge
8 n=q/e; //calculating no of electrons
9 disp(n,"No. of electrons = "); //displaying result
```

Scilab code Exa 5.4 calculating output signal

```
1 clc;
2 l=15;  //length in m
3 A=6*10^-7;  //area in m square
4 R=5;  //resistance in Ohm
5 p=(A*R)/l;  //calculating resistivity
6 disp(p, "Resistivity in Ohm metre = ");  //displaying result
```

Scilab code Exa 5.5 calculating energy loss

```
1 clc;
2 l=0.1; //length in m
3 A=10^-4; //area in m square
4 R=0.01; //resistance in Ohm
5 p=(A*R)/l; //calculating resistivity
```

```
6 disp(p, "Resistivity in Ohm metre = "); //displaying
    result
```

Scilab code Exa 5.6 calculating max peak current

```
1 clc;
2 L=1; //length in m
3 r=0.2*10^-3; //radius in m
4 A=%pi*(r)^2; //calculating area
5 disp(A)
6 R=2; //resistance in Ohm
7 P=(R*A)/L; //calculating resistivity
8 disp(P, "Resistivity in Ohm. metre = "); // displaying result
```

Scilab code Exa 5.7 calculating size

```
1 clc;
2 R1=5;  //resisitance in Ohm
3 R2=9*5;  //calculating using R2/A1=(12/A2)*(A1/11)
4 disp(R2,"Resisitance in Ohm = ");  //displaying
    result
```

Scilab code Exa 5.8 calculating rms current

```
1 clc;
2 R1=5; //resisitance in Ohm
3 R2=4*5; //calculating using R2/A1=(12/A2)*(A1/l1)
4 disp(R2, "Resisitance in Ohm = "); //displaying
    result
```

Scilab code Exa 5.9 calculating voltage

```
1 clc;
2 R1=2;  //resisitance in Ohm
3 R2=4;  //resistance in Ohm
4 R3=5;  //resistance in Ohm
5 R=(R1^-1)+(R2^-1)+(R3^-1);  //calculating parallel resistance
6 Rp=(1/R);
7 disp(Rp, "Resisitance in Ohm = ");  //displaying result
```

Scilab code Exa 5.10 calculating output impedance

```
1 clc;
2 Rs=40; //resisitance in Ohm
3 disp("R2=8 when R1=32, R2=32 when R1=8 Resisitance in Ohm"); //displaying result using (1/Rp)=(1/R1)+(1/R2)
```

Scilab code Exa 5.11 calculating output inductance

```
1 clc;
2 V=2;  //in volts
3 R1=30;  //resisitance in Ohm
4 R2=60;  //resistance in Ohm
5 Rp=(30*60)/(30+60);  //calculating parallel resistance
```

```
6 disp(Rp, "Resisitance in Ohm = "); //displaying
    result
7 I=V/Rp; //Ohm's law
8 disp(I, "Current in Ampere = "); //displaying result
```

Scilab code Exa 5.12 calculating input capacitance

```
1 clc;
2 R1=2; //resisitance in Ohm
3 R2=3; //resistance in Ohm
4 R3=1; //resistance in Ohm
5 Rp=(R1*R2)/(R1+R2); //calculating parallel
       resistance
              //1 Ohm in series
6 R = Rp + 1;
7 disp(R,"(1)) Equivalent Resisitance in Ohm = "); //
       displaying result
8 Rs=(R1+R2+R3); //series resistances
9 \operatorname{disp}(\operatorname{Rs},"(2)\operatorname{All} \operatorname{resistances} \operatorname{in} \operatorname{series} \operatorname{in} \operatorname{Ohm} =");
       //displaying result
10 Rp = (1/R1) + (1/R2) + (1/R3); //calculating parallel
       resistance
11 \operatorname{disp}((1/\operatorname{Rp}), "(3) \operatorname{All} \text{ in Parallel in Ohm} = "); //
       displaying result
```

Scilab code Exa 5.13 calculating size

```
1 clc;
2 V=20;  //voltage in Volts
3 R1=2;  //resisitance in Ohm
4 R2=4;  //resistance in Ohm
5 R3=5;  //resistance in Ohm
6 Rp=(1/R1)+(1/R2)+(1/R3);  //calculating parallel resistance
```

Scilab code Exa 5.14 calculating radiation

```
1 clc;
2 disp("Rp = 6/n"); //resistance in parallel
3 disp("R=7"); //total resistance
4 disp("From 1 and 2 we get n=3"); //displaying result
```

Scilab code Exa 5.15 calculating capacitance

```
1 clc;
2 R1=2; //resistance in Ohm
3 R2=6; //resistance in Ohm
4 R3=3; //resistance in Ohm
5 V=24; //voltage in volts
6 R=8; //resistance in Ohm
7 I=V/R; //Ohm's Law
```

```
8 disp(I,"Current in Ampere = "); //displaying result
9 V1=I*R1; //Ohm's Law
10 disp(V1,"Voltage drop across R1 in Volts = "); //
        displaying result
11 V2=I*R2; //Ohm's Law
12 disp(V2,"Voltage drop across R2 in Volts = "); //
        displaying result
13 V3=I*R3; //Ohm's Law
14 disp(V3,"Voltage drop across R3 in Volts = "); //
        displaying result
```

Scilab code Exa 5.16 calculating max voltage

```
1 clc;
2 R=15; //resistance in Ohm
3 disp("KVL: 16I1+15I2=6 (1)"); //KVL equation
4 I1=-1.66; //from(1)
5 I2=2.17; //from (1)
6 disp(I1); //current in Ampere
7 disp(I2)
8 V=(I1+I2)*R; //calculating potential difference
9 disp(V,"Potential difference in Volt = "); // displaying result
```

Scilab code Exa 5.17 calculating max voltage

```
1 clc;
2 disp("3I1-I2-1=0 (1)"); //KVL equation
3 disp("3I1-I2+2I=2 (2)"); //KVL equation
4 disp("3I1-I1+2I=2 (3)"); //KVL equation
5 I1=0.2352; //from (1)(2)(3)through AB
6 I2=-0.11764; //from (1)(2)(3)through BD
7 I=0.58823; //from (1)(2)(3)through main circuit
```

Scilab code Exa 5.18 calculating time

```
1 clc;
2 P=10; //Ohm
3 Q=3; //Ohm
4 R=12; //Ohm
5 S=6; //Ohm
6 G=20; //Ohm
7 disp("-12I+22I1+IgG=0 (1)"); //KVL
8 disp("6I-9I1+29Ig=0 (2)"); //KVL
9 disp("13I1-3Ig=2 (3)"); //KVL
10 Ig=7.797*10^-3; //from (1)(2)(3)
11 disp(Ig,"Current through Galvanometer in Ampere = "); //displaying result
```

Scilab code Exa 5.19 calculating time

```
1 clc;
2 P=500; //power in Watts
3 V=200; //voltage in Volts
4 R=(V^2)/P; //using P=V^2*R
5 disp(R,"Resistance in Ohm = "); //displaying result
```

```
6 V1=160; //voltage in Volts
7 P1=(V1^2)/R; //calculating power
8 Dp=500-P1; //drop in heat
9 D=(Dp*100)/500; //percentage drop
10 disp(D,"% Drop in heat production = "); // displaying result
```

Chapter 6

Digital Design

Scilab code Exa 6.1 calculating dielectric constant

```
1 clc;
2 c=500*10^-12; //capacitance in Farad
3 d=0.01; //spacing in inch
4 eo=8.854*10^-12; //dielectric constant of air in
        Farad per metre
5 er=7.1*10^-12; //dielectric constant of material
6 area=0.02*d; //in metre square
7 C=697*er; //calculating capacitance
8 disp(C, "Capacitance in Farad = "); //displaying
        result
```

Scilab code Exa 6.2 calculating output

```
1 clc;
2 r=100; //resistance in Ohm
3 v=10; //in volt
4 d=10; //distance in feet
5 c=10*10^-6; //capacitor in Farad
```

```
6 i=v/r; //current
7 disp(i,"The wave travels the length of the line in
        20 ns. The current that flows in the capacitor is
        the short-circuit current = "); //displaying
        result
8 ch=40*10^-9*0.1; //charge
9 disp(ch,"The charge that flows in 40 ns = "); //
        displaying result
10 v1=ch/c; //voltage
11 disp(v1,"Voltage in a 10*10^-6 Farad Capacitor = ");
        //displaying result
```

Scilab code Exa 6.3 calculating size

```
1 clc;
2 i=20*10^-3; //current
3 vd=1; //voltage drop
4 t=10^-3; //time in sec
5 q=i*t; //charge
6 c=q/vd; //capacitance
7 disp(c,"Capacitance in Farad = "); //displaying result
```

Scilab code Exa 6.4 calculating voltage

```
1 clc;
2 c=15*10^-12;  //capacitance in F/ft
3 v=10;  //in volt
4 f=10*10^6;  //frequency in Hz
5 t=10*10^-9;  //time
6 imp=100;  //impedance in Ohm
7 l=3;  //length in metre
8 i=c*10^9;  //current
```

```
9 disp(i, "Current in Ampere = "); //displaying result 10 disp("This is 1.5 V in 100 ."); //displaying result
```

Scilab code Exa 6.5 calculating radiation level

Scilab code Exa 6.6 calculating radiation level

Scilab code Exa 6.7 calculating voltage

```
1 clc;
2 imp=0.2; //transfer impedance in Ohm/metre
3 f=50*10^6; //frequency in Hz
4 i=10*10^-3; //current in Ampere
5 l=2; //length in metre
6 disp("The voltage coupled to the cable is 0.02 V/m."
      ); //displaying
7 disp(" This is 0.04 V in 2 m."); //displaying
      result
8 disp("Half of the energy goes in each direction.");
      //displaying result
9 disp("At the unterminated end, the voltage doubles."
      ); //displaying result
10 disp("Thus, The result is 0.04 V."); //displaying
      result
```

Scilab code Exa 6.8 calculating voltage

```
1 clc;
2 hw=7.5; //half wavelength in metre
3 f=20*10^6; //frequency in Hz
4 a=0.03; //area in metre square
5 v=hw*a; //calculating voltage
6 disp(v,"Voltage in volt = "); //displaying result
```

Scilab code Exa 6.9 calculating WCC radiation

```
1 clc;
2 v=5; //in volt
3 sp=2*10^-3; //spacing in m
4 d=1; //distance in metre
5 hw=7.5; //half wavelength in metre
6 f=10.6*10^6; //frequency in Hz
7 a=0.8; //area in centimetre square
8 r=316; //standard model radiation in (V*10^-6)/
    metre
9 n=316*(125*a*v*d)/(89*3.3); //calculating radiation
10 disp(n, Radiation in (V*10^-6)/metre = "); //
    displaying result
```

Scilab code Exa 6.10 calculating radiation

```
1 clc;
2 v=5; //in volt
3 sp=2*10^-3; //spacing in m
4 d=1; //distance in metre
5 hw=7.5; //half wavelength in metre
6 f=10.6*10^6; //frequency in Hz
7 a=0.3; //area in centimetre square
8 r=316; //standard model radiation in (V*10^-6)/metre
9 n=316*(500*a*v)/(89*3.3); //calculating radiation
10 disp(n, Radiation in (V*10^-6)/metre = "); //displaying result
```

Scilab code Exa 6.11 calculating H field

```
1 clc;
2 mo=1/(4*(\%pi)*10^-7); //constant
3 = 0.01; //area in m square
4 v = 0.2; //in volt
5 f=2*10^6; //frequency in Hz
6 vp=v*sqrt(2); //calculating peak voltage
7 disp(vp, "Peak voltage in volt = "); //displaying
     result
8 b=vp/a; //change in B field
9 disp(b, "Change in B field in Tesla/sec = "); //
     displaying result
10 h=b*mo; //calculating H field
11 disp(h,"H field is changing in A/m per sec"); //
     displaying result
12 disp("At 2 MHz the H-field peak is 1.79 A/m."); //
     displaying result
13 disp("This is 1.26 A/m rms."); //displaying result
```

Scilab code Exa 6.12 calculating WCC

```
clc;
dia=1; //diameter in cm
f=300*10^6; //frequency in Hz
i=5; //current in Ampere
dis=10; //in cm
dim=0.56; //aperture dimension in cm
r=(dia*10^-2)/2; //calculating radius in metre
h=(0.25)/(2*(%pi)*r); //H field
disp(h,"H field in A/metre = "); //displaying result
disp("For a plane wave the E field is 377 H = 3000V/m"); //displaying
att=75/dim; //attenuation
```

Scilab code Exa 6.13 finding the mode of coupling

```
1 clc;
2 ap=2; //aperture length in cm
3 f=(2/75)*3000; //field
4 disp(f,"Field is coupled with in V/metre = "); //
         displaying result
5 disp("For an area of 2 cm square, the voltage coupled
        is 2.13 V."); //displaying result
6 disp("This can damage a circuit."); //displaying
        result
```

Scilab code Exa 6.14 determining the type of filter

```
1 clc;
2 disp("The filter must attenuate the signal by a factor of 10."); //displaying result
3 f=300*10^6; //frequency in Hz
4 disp(" If R = 100 Ohm ,then the reactance of the capacitor should be about 10 Ohm."); // displaying result
5 c=1/(2*(%pi)*f*10); //calculating capacitance
6 disp(c,"At 300 MHz, this is in Farad = "); // displaying result
```

Scilab code Exa 6.15 calculating common mode voltage

```
1 clc;
2 i=54946; //current in Ampere
3 d=1; // distance in ft
4 \text{ r=0.33}; //\text{in metre}
5 f=425.89; //frequency in Hz
6 h=i/(2*(%pi)*r); //calculating H field
7 disp(h,"H field in A/metre = "); //displaying
      result
8 mo = (4*(\%pi)*10^-7); //constant
9 b=mo*h; //calculating B field
10 disp(b,"B field in Tesla = "); //displaying result
11 area=0.02; //area in metre square
12 flux=b*area; //calculatin flux
13 disp(flux, "Flux in Wb = "); //displaying result
14 v=(2*(\%pi)*f); // calculating voltage
15 disp(v, "Voltage in volt = "); //displaying result
```

Scilab code Exa 6.16 observing output

```
1 clc;
2 disp("The reactance at 640 kHz is 75.4 Ohm."); //
    displaying result
3 disp("For 20,000 A, the voltage drop is 1.5*10^6
    Volt."); //displaying result
4 disp("The breakdown voltage for 6 in. is 300,000 V.
    Lightning will jump through the concrete."); //
    displaying result
```