We talked about 'houch'on (I)

and complete M. L. (II)

clearly $\mathbb{I} \Rightarrow \mathbb{I}$ but $\mathbb{I} \Rightarrow \mathbb{I}$ to.

Let Q(n) := P(1) ~ P(2) ~... ~ P(n)

% I on Q ⇔ I on P.

Let $S \subseteq N$. If $S \neq \emptyset$ then S has a least element (that is, $\exists n_0 \in S$ $S.t. \forall n \in S$, $n_0 \subseteq N$).

This statement is equivalent to induction (well-ordering principle).

Proof that I => W: by contrapositive (prove 5 has no tenst elt => 3=0)

- (A) 1 \$5 Since 1 & N fre 1.
- (B) if 1, 2, ..., $n \notin S$ then $n + 1 \notin S$ Since o.w. n + 1 would be the local elt. $S = \emptyset$.

Proof that $W \Rightarrow I$: (by contempositive) Let $S = \{ n \in N \mid P(n) \text{ false} \}$

If $S \neq \emptyset$ then \exists a beaut element k. if k=1 then P(1) false, else $P(k-1) \not\Rightarrow P(k)$ Since P(k-1) true but P(k) face.