Unit I

Supplementary Notes

3.1 Quadratic Functions

$$f(x) = \underbrace{ax^2 + bx + c}_{\text{expanded form}} = \underbrace{a(x-h)^2 + k}_{\text{vertex form}}$$

The graph of f is a parabola with the following properties

- opens up or down if a > 0 or a < 0
- vertex $(h,k) = (-\frac{b}{2a}, f(-\frac{b}{2a})) = (-\frac{b}{2a}, c \frac{b^2}{4a})$
- 0, 1, or 2 x-intercepts if $b^2 4ac < 0$, = 0, or > 0
- y-intercept: f(0) = c
- vertical axis of symmetry x = h
- \bullet minimum value of k

3.2 Power Functions

$$f(x) = a(x-h)^n + k$$
 click to see Supplementary Notes

3.3 Polynomial Functions

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 } expanded form
= $a(x - z_1)(x - z_2) \cdots (x - z_{n-1})(x - z_n)$ } factored form

- \bullet degree n
- $f(z) = 0 \Leftrightarrow z \text{ is a } zero \text{ of } f$

The graph of f has the following properties

- x-intercepts: real zeros of f
 - crosses or touches x-axis if multiplicity odd or even
- y-intercept: $f(0) = a_0$
- For large |x|, behaves like ax^n

3.4 Real Zeros of Polynomial Functions

$$\underbrace{f(x)}_{\text{dividend}} = \underbrace{q(x)}_{\text{quotient divisor}} \underbrace{g(x)}_{\text{remainder}} + \underbrace{r(x)}_{\text{remainder}}$$

- f(z) is the remainder of f divided by (x-z)
- (x-z) factor of $f \Leftrightarrow f(z) = 0$
- f continuous and f(a), f(b) opposite sign $\Rightarrow f$ has zero in (a,b)
- p/q rational zero of $f \Rightarrow p$ factor of a_0 and q factor of a_n

3.5 Complex Numbers

$$a + bi$$
 where $i^2 = -1$

- conjugate: a bi
- powers of i:
 - $i^{2n} = (i^2)^n = (-1)^n$
 - $i^{2n+1} = (i^2)^n i = (-1)^n \cdot i$

3.6 Complex Zeros, Fundamental Theorem of Algebra

The zeros of a polynomial f with real coefficients may be real or complex; if a + bi is a zero of f, so is its conjugate a - bi

3.7 Rational Functions

$$f(x) = \frac{g(x)}{h(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

- domain: real x such that $h(x) \neq 0$
- vertical asymptotes: real x such that h(x) = 0 and $g(x) \neq 0$
- jump discontinuities: real x such that h(x) = g(x) = 0
- If $n \leq m$, horizontal asymptote:
 - y = 0 if n < m
 - $y = a_n/b_m$ if n = m
- If n = m+1, oblique asymptote: y = q(x) where g(x) = q(x)h(x)+r(x)

3.8 Polynomial and Rational Inequalities

The sign of a function may change at a zero or an x-value not in the domain of the function

4.1 One-to-one and Inverse Functions

- f is a function if any vertical line intersects graph of f at most once
- f is one-to-one if any horizontal line intersects graph of f at most once
- f one-to-one $\Rightarrow f$ has inverse f^{-1} such that
 - $x \xrightarrow{f} y$ if and only if $x \xleftarrow{f^{-1}} y$
 - (domain of f) = (range of f^{-1}); (range of f) = (domain of f^{-1})
 - The graphs of f and f^{-1} are symmetric about the line y=x

Exercises

- 1. Write using lowercase x and y the equation of the parabola with a vertical axis and with vertex at (-1, -2) and y-intercept -4.
- 2. Find the value of b which makes y a multiple of a perfect square if $y = \frac{1}{3}x^2 6x + b$.
- 3. Sketch the graph of $y = -(x + \frac{1}{2})^5$
- 4. Write the third degree polynomial in lowercase x and y that has zeros at -2, -3, 0 and y(-1) = 4. The equation may be left in factored form.
- 5. Select the statement that is false for $f(x) = -(x-1)(x+6)^4$
 - A. f has a local minimum at x = -6.
 - B. f has degree 5.
 - C. The y-intercept of graph is 1296.
 - D. f has two x-intercepts.
 - E. The graph of f behaves like $y = -x^5$ for large |x|.
- 6. Find the x-intercepts of the graph of $f(x) = (x^2 900)^3$ and decide whether the graph crosses or touches the x-axis at each intercept.
- 7. Select ALL the intervals for which the Intermediat Value Theorem implies that $f(x) = 12x^3 + 4x^2 25x 12$ has a zero
 - A. [-1, 0]
 - B. [-2, -1]
 - C. [0,1]
 - D. [2,3]
- 8. Find ALL (according to the Rational Zeros Theorem) potential rational zeros of the polynomial function $f(x) = 3x^4 + 8x^2 2x + 6$
- 9. Write $2i^{22} + i^{15}$ in a + bi form.
- 10. Write $\frac{1+3i}{2-i}$ in the form a+bi

- 11. Write the polynomial with real coefficients of degree 5 having zeros of -3, -2 + i, 1 3i.
- 12. Select the statement that is false for $f(x) = -\frac{(x+1)(x+2)}{x^2+2x}$
 - A. The x-intercept of graph is -1.
 - B. The graph does not have a y-intercept
 - C. The graph has one horizontal asymptote at y = -1.
 - D. The domain of f is $(-\infty, -2) \cup (-2, 0) \cup (0, \infty)$.
 - E. The graph of f has two vertical asymptotes at x = -2 and x = 0.
- 13. Find the equation (in the form y = mx + b, with lowercase x and y) of the oblique asymptote of $f(x) = \frac{3x^2 x 2}{x 2}$
- 14. Solve $\frac{(x+5)^2}{(2-x)(2+x)} \le 0$
- 15. Select the graph of the inverse of the function shown below

E This function has no inverse