1 向量和矩阵的基础

1.1 向量和矩阵的概念

1.1.1 向量

1.1.2 矩阵

定理 1.1.1. 矩阵的乘积满足下列规律:

- 1. 结合律 (AB)C = A(BC)
- 2. 左分配律 A(B+C) = AB + AC, 右分配律 (B+C)A = BA + CA.

定理 1.1.2. 分块矩阵乘法, 若 A 的列的分法与 B 的行的分法一致, 就和矩阵乘法一致.

1.1.2.1 特殊结构矩阵

定义 1.1.3. 对称矩阵: $A = A^T$

定理 1.1.4. 对称矩阵 A 的性质

- 存在正交矩阵 Q 使 $Q^TAQ = \Lambda$, Λ 是对角阵
- 存在 n
 ightharpoonup A 的特征向量构成 \mathbb{R}^n 的一个标准正交基

定义 1.1.5. 非奇异矩阵是满秩矩阵.

定义 1.1.6. 正交矩阵: $A^T = A^{-1} \Leftrightarrow A$ 的行向量和列向量均为单位矩阵.

定义 1.1.7. k 阶子式: 取 k 行 k 列. **k 阶主子式**: 取 k 行 k 列, 行列序号相等. **顺序主子式**: 取 $[11:11], [11:22], \ldots, [nn, nn]$.

TODO: Lec 9

定理 1.1.8. • 行满秩矩阵 A, AA^T 可逆

• 列满秩矩阵 A, A^TA 可逆

1.2 向量空间

1.2.1 向量间线性关系

定义 1.2.1. 如果两个向量组互相可以线性表出,则称为它们等价。

1.2.1.1 生成集、基底和坐标

定义 1.2.2. 生成集 $\{a_1, a_2, \ldots, a_r\}$ 张成的子空间 $L(a_1, a_2, \ldots, a_r)$ 或 $span(a_1, a_2, \ldots, a_r)$

定义 1.2.3. 基为线性无关的生成集.

定义 1.2.4. 维数 $dim(\mathbb{V}) = (\mathbf{R}) \ rank\{a_1, a_2, \dots, a_r\}$

1.2.2 线性组合

例 1.2.1 已知 $\beta = (1,2,1,1)^T$,以及 $\alpha_1 = (1,1,1,1)^T$, $\alpha_2 = (1,1,-1,-1)^T$, $\alpha_3 = (1,-1,1,-1)^T$, $\alpha_4 = (1,-1,-1,1)^T$. 试将向量 β 表示成 α_1 , α_2 , α_3 , α_4 的线性组合.

解 假设 k_1 , k_2 , k_3 , k_4 为组合系数, 将 β 表示成 $\alpha 1$, $\alpha 2$, $\alpha 3$, $\alpha 4$ 的线性组合. 即求解:

使用初等变换法求解线性方程组:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 2 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & -2 & -2 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 0 & 0 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 & -\frac{1}{4} \\ 0 & 0 & 0 & 1 & -\frac{1}{4} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{5}{4} \\ 0 & 1 & 0 & 0 & \frac{1}{4} \\ 0 & 0 & 1 & 0 & -\frac{1}{4} \\ 0 & 0 & 0 & 1 & -\frac{1}{4} \end{pmatrix}$$

可得:

$$\beta = \frac{5}{4}\alpha_1 + \frac{1}{4}\alpha_2 - \frac{1}{4}\alpha_3 - \frac{1}{4}\alpha_4$$

1.3 线性映射

定义 1.3.1. 线性映射 $\varphi: \mathbb{V} \to \mathbb{W} \Leftrightarrow \varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$

定义 1.3.2. (等价和相似是不同基的变换矩阵)

- $A = T^{-1}BS$ 成立, A, B等价.
- $A = T_S(B) = S^{-1}BS$ 成立, A, B相似. 称 T 为相似变换.

1.3.1 核空间和像空间

1.3.2 线性变换

定义 1.3.3. 线性变换满足 $\varphi: \mathbb{V} \to \mathbb{V}$ 的线性映射.

1.3.2.1 初等变换

定义 1.3.4. 由单位矩阵 I 经过一次初等行 (列) 变换得到的矩阵称为**初等矩阵**.

齐次方程组通解?

1.3.3 常见变换

TODO: Lec 8

- 1.3.3.1 旋转矩阵
- 1.3.3.2 反射矩阵
- 1.3.3.3 信号处理
- 1.3.3.4 逆

定义 1.3.5. n 阶矩阵 A 可逆 $\Leftrightarrow A = Q_1Q_2...Q_m, Q_i$ 为初等矩阵.

性质 1.3.6. 由 1.3.5 可得: $(Q_1Q_2...Q_m)^{-1}(AI) = (IA^{-1})$

定义 1.3.7. 广义逆: $(A^TA)^{-1}A^T$

1.4 行列式

定义 1.4.1. 一个排列中,如果一个大元素在小元素前,则称这两个数构成一个**逆序**。一个排列中存在的所有逆序的数目称为排列的 **逆序数**: $\tau(j_1, j_2, \dots, j_n)$.

定义 1.4.2. n 阶行列式中,划去元素 a_{ij} 所在第 i 行和第 j 列元素,剩余的元素按原来的次序组成的 n-1 阶行列式称为元素 a_{ij} 的 **余子式**,记成 M_{ij} 。令 $A_{ij} = (-1)^{i+j} det(M_{ij})$,称 A_{ij} 是元素 a_{ij} 的代数余子式。

定义 1.4.3. 行列式:

$$det(A) = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \sum_{j_1,\dots,j_n} (-1)^{\tau(j_1,j_2,\dots,j_n)} a_{1j_1} \dots a_{nj_n}$$
$$= \sum_{j=1}^n a_{ij} A_{ij} (接行展开)$$

性质 1.4.4. 行列式即有向体积

性质 1.4.5. 设 $A, B \in \mathbb{R}^{n \times n}$

• $det(A) = det(A^T)$

- $det(aA) = a^n det(A)$
- det(AB) = det(BA) = det(A)det(B)

定理 1.4.6. 克莱姆法则? (Lec5#12)

性质 1.4.7. 交换矩阵两行 (或两列) 改变矩阵行列式的符号

性质 1.4.8. 行列式关于矩阵的每行(或每列)是线性的。

性质 1.4.9. 如果将行列式的某一行 (列)k 倍加到另一行 (列),则行列式的值不变。

定义 1.4.10. 伴随矩阵: $A_{ij}^* = A_{ji}$

定理 1.4.11.

$$\sum_{k=1}^{n} a_{ik} A_{jk} = \begin{cases} |A| & i = j \\ 0 & i \neq j \end{cases}$$
$$AA^* = A^*A = |A|I$$

1.5 迹

定义 1.5.1. 迹: $Tr(A) = \sum_{i=0}^{n} a_{ii}$

性质 1.5.2. 迹的循环不变性

$$Tr(ABC) = Tr(CAB) = Tr(BCA)$$

同理相似矩阵的迹相等:

$$Tr(Q^{-1}AQ) = Tr(QQ^{-1}A) = Tr(A)$$

1.6 二次型

定义 1.6.1. 定义 f 为二次型, A 为二次型矩阵 (对称矩阵).

$$f(x_1, x_2, \dots, x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n$$
$$+ \dots + a_{nn}x + n^2$$
$$= x^T A x = Tr(x^T A x)$$

定义 1.6.2. A合同于 $B, A \simeq B: C^TAC = B.$ (即不同基下的二次型)

性质 1.6.3. 合同变换:

- 交换 A 的第 i 行和第 j 行,再交换其第 i 列和第 j 列;
- 将 A 的第 i 行乘以非零常数 k, 再将其第 i 列乘以 k;

• 将 A 的第 i 行乘以 k 加到第 j 行, 再将其第 i 列乘以 k 加到第 j 列。

定义 1.6.4. 设 A 是属于 K 上的非零对称矩阵,则必存在非奇异矩阵 C,使 C^TAC 的第 1 行第 1 个元素不为零.

定义 1.6.5. 设 A 是属于 K 上的非零对称矩阵, 则必存在非奇异矩阵 C,使 A 合同于 $C^TAC = \begin{pmatrix} a'_{11} & 0_{1\times k} \\ 0_{k\times 1} & \lambda k \times k \end{pmatrix}$.

1.6.1 标准型

定义 1.6.6. 线性替换: 使用 y_i 替换 x_i , $x_{n\times 1} = C_{n\times n}y_{n\times 1}$. 当 det(C) > 0 时, 线性替换非退化.

定义 1.6.7. 每一个二次型都能非退化的线性替换化为平方和, 称为标准型. 标准型不唯一.

定理 1.6.8. 每一个二次型矩阵都能通过合同变化为对角矩阵.

$$\begin{pmatrix} A \\ I \end{pmatrix} \xrightarrow{\text{对 A change}} \begin{pmatrix} D \\ C \end{pmatrix}$$

D 是对角矩阵, C 是非退化的线性替换矩阵.

例如将 f(x) 替换为标准型 $g(y) = y^T Dy, x = Cy$.

定理 1.6.9. 二次型矩阵的特征值即标准型的系数.

1.6.2 规范型

定义 1.6.10. 规范性即在**标准型**的基础上把系数变成 1 和 -1. **正惯性指数** p 为 1 的数量. **负惯性 指数** r-p 为 -1 的数量.

1.6.3 正定型

定义 1.6.11. 令 $x \neq 0$. 正定二次型: $x^T A x > 0$, A 为正定矩阵. 半正定二次型: $x^T A x \geqslant 0$, A 为半正定矩阵

性质 1.6.12. 正定二次型的等价条件:

- 1. $x^T A x > 0$ (定义).
- 2. 标准型/规范型系数全部为正数, 正惯性指数等于 A 的秩.
- 3. 顺序主子式全大于 0 (对于负定二次型: 奇数阶全小于 0, 偶数阶全大于 0).

1.7 特征值

定义 1.7.1. $Ax = \lambda x \Rightarrow det(\lambda I - A) = 0$

1.8 内积和范数

1.8.1 范数

定义 1.8.1. 范数 ||x|| 满足:

1. 非负性:
$$\begin{cases} ||x|| > 0 & x \neq 0 \\ ||x|| = 0 & x = 0 \end{cases}$$

- 2. 齐次性: $||\lambda x|| = |\lambda|||x||$
- 3. 三角不等式: $||x + y|| \le ||x|| + ||y||$

定义 1.8.2. lp 范数:

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, 1 \le p < \infty$$

l₁ 范数, 1 范数, Manhattan 范数

l₂ 范数, 2 范数, 欧几里得范数

定义 1.8.3. $l_0 =$ 非零元素个数, l_0 并不符合范数定义

$$l_{\infty} = \max_{j} |x_i|$$

1.8.2 内积

定义 1.8.4. 内积: $\langle \cdot, \cdot \rangle$: $\mathbb{V} \times \mathbb{V} \to \mathbb{R}$, 并满足以下条件

- 1. 非负性: $\langle x, x \rangle \ge 0, \langle x, x \rangle = 0$ 当且仅当 x = 0
- 2. 对称性: $\langle x, y \rangle = \langle y, x \rangle$
- 3. 齐次性: $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$
- 4. 线性性: $\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$

定义 1.8.5. 点积 (标准内积): $\langle x, y \rangle = x^T y$

1.8.3 距离

定义 1.8.6. 距离: $d: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$, 满足:

- 1. 非负性: $d(x,y) \ge 0$, 且 $d(x,y) = 0 \Leftrightarrow x = y$
- 2. 对称性: d(x,y) = d(y,x)
- 3. 三角不等式: $d(x,z) \leq d(x,y) + d(y,z)$

定义 1.8.7. 欧式距离: $d(x,y) = ||x-y|| = \sqrt{\langle x-y, x-y \rangle}$. 其中内积定义为点积.

1.8.4 夹角

定义 1.8.8. 夹角: $\cos \theta = \frac{\langle x, y \rangle}{||x||_2 ||y||_2}$

定义 1.8.9. 正角: $\langle x, y \rangle = 0$, 如果 ||x|| = ||y|| = 1, 则为标准正交.

1.8.5 矩阵内积和范数

定义 1.8.10. 向量化: vec(A): 将 $m \times n$ 的矩阵拉长为 mnx1 向量

定义 1.8.11. 矩阵内积: $\langle A, B \rangle = \langle vec(A), vec(B) \rangle = vec(A)^T vec(B) = Tr(A^T B)$

定义 1.8.12. 广义矩阵范数: 和向量范数的条件类似.

矩阵范数: 附加相容性条件: $||AB|| \le ||A||||B||$.

定义 1.8.13. 常见矩阵范数

- l_1 范数: $||A||_{m_1} = \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|$
- l_2 范数, Fiobenius 范数: $||A||_F = (\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2)^{\frac{1}{2}} = (Tr(A^TA))^{\frac{1}{2}}$
- l_{∞} 范数 (广义): $||A||_{m_{\infty}} = \max |a_{ij}|$

1.8.5.1 算子范数

定义 1.8.14. 相容的向量范数和矩阵范数: $||Ax||_v \leq ||A||_M ||x||_v$

定义 1.8.15. 由向量范数 $||\cdot||_v$ 诱导出的算子范数: $||A|| = \max\{||Ax||_v : ||x||_v = 1\}$

定义 1.8.16. 常见的算子范数, 对于 $A \in \mathbb{R}^{m \times n}$

- 1 范数: $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$, 列向量的 l_1 范数最大值
- ∞ 范数: $||A||_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|$, 行向量的 l_1 范数最大值
- 2 范数: $||A||_2 = \sqrt{\lambda_{max}(A^T A)}$

1.8.6 例题

例 1.8.1 求证: \mathbb{R}^n 上的一范数 $||\cdot||_1$ 和二范数 $||\cdot||_2$ 是等价的,即存在 c_1 , c_2 满足不等式 $c_1||x||_1 \leq ||x||_2 \leq c_2||x||_1$

解

$$x_1^2 + x_2^2 + \dots + x_n^2 \le (|x_1| + |x_2| + \dots + |x_n|)^2$$

 $||x||_2 \le ||x||_1$
 $\Rightarrow c_2 = 1$

$$\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n} \geqslant \frac{(|x_1| + |x_2| + \dots + |x_n|)^2}{n^2}$$
$$n(n_1^2 + x_2^2 + \dots + x_n^2) \geqslant (|x_1| + |x_2| + \dots + |x_n|)^2$$
$$\sqrt{n}||x||_2 \geqslant ||x||_1$$
$$\Rightarrow c_1 = \frac{1}{\sqrt{n}}$$

例 1.8.2 求证:通过向量范数 $||\cdot||_1$ 诱导得到的矩阵范数 $||\cdot||_1$ 和向量范数 $||\cdot||_1$ 是相容的,即对任意的 $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n$ 有 $||Ax||_1 \leq ||A||_1 ||x||_1$

解

$$||Ax||_{1} = \sum_{i=1}^{n} |a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n}|$$

$$\leq \sum_{i=1}^{n} |a_{i1}x_{1}| + |a_{i2}x_{2}| + \dots + |a_{in}x_{n}|$$

$$= \sum_{j=1}^{n} |x_{j}| ||a_{j}||_{1}$$

$$\leq \sum_{j=1}^{n} |x_{j}| \max_{1 \leq k \leq n} ||a_{k}||_{1}$$

$$= ||x||_{1} ||A||_{1}$$

例 1.8.3 证明柯西-施瓦茨不等式 $\langle x, y \rangle \leq ||x||_2 ||y||_2$

解 当 y=0 显然成立.

当 $y \neq 0$, 对于任意 $\lambda \in \mathbb{R}$

$$0 \leqslant \langle x - \lambda y, x - \lambda y \rangle$$
$$= \langle x - \lambda y, x \rangle - \lambda \langle x - \lambda y, y \rangle$$
$$= \langle x, x \rangle - 2\lambda \langle x, y \rangle + \lambda^2 \langle y, y \rangle$$

 $\mathfrak{P} \lambda = \langle x, y \rangle \langle y, y \rangle^{-1}$

$$\langle x, y \rangle^2 \langle y, y \rangle^{-1} \leqslant \langle x, x \rangle$$

 $\langle x, y \rangle^2 \leqslant ||x||^2 ||y||^2$

2 子空间

2.1 向量子空间基础

2.1.1 向量子空间

定义 2.1.1. 如果 \mathbb{Y} 中的每个向量 x 可唯一地表成 $x = y_1 + y_2(y_1 \in \mathbb{Y}_1, y_2 \in \mathbb{Y}_2)$ 的形式,则称 \mathbb{Y} 为 \mathbb{Y}_1 与 \mathbb{Y}_2 的**直和**。记作 $\mathbb{Y} = \mathbb{Y}_1 + \mathbb{Y}_2$ 或 $\mathbb{Y} = \mathbb{Y}_1 \oplus \mathbb{Y}_2 \Leftrightarrow \mathbb{Y}_1 \cap \mathbb{Y}_2 = 0$

2.1.2 仿射子空间

定义 2.1.2. 仿射子空间即向量子空间偏移向量 x_0

2.1.3 正交和正交补

定义 2.1.3. $\forall v \in \mathbb{S}, \ \forall w \in \mathbb{T}, \ 均有: \ v^T w = 0$ 记做 S垂直于 $\mathbb{T}, \ 或正交.$

定义 2.1.4. 正交补: $\{w \in \mathbb{R}^n | v^T w = 0, \forall v \in \mathbb{V}\}$

例 2.1.1 求 $span(1,2,0)^T$, $(0,1,2)^T$ 的正交补空间:

解

$$\begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix}^{T} x = 0 \Rightarrow x = k(4, -2, 1)^{T}$$

正交补空间为 $span\{(4,-2,1)^T\}$

2.1.4 四个基本子空间

- 列空间 $Col(A) = span(a_1, a_2, \dots, a_n)$
- 行空间 $Row(A) = Col(A^T)$
- 零空间 $Null(A) = \{x | Ax = 0\}$
- 左零空间 $Null(A^T)$

定理 2.1.5. 四个基本子空间的正交关系

- $Col(A) \cap Null(A^T) = \{0\}$
- $Col(A^T) \cap Null(A) = \{0\}$
- $Col(A)^{\perp} = Null(A^T)$
- $Col(A^T)^{\perp} = Null(A)$

性质 2.1.6. 初等变换有关的性质

- 1. 一系列初等行变换不改变矩阵的行空间。
- 2. 一系列初等行变换不改变矩阵的零空间。
- 3. 一系列初等列变换不改变矩阵的列空间。
- 4. 一系列初等列变换不改变矩阵的左零空间。

2.2 投影

定理 2.2.1. 正交投影矩阵为 $B(B^TB)^{-1}B^T$, 其中 B 为是一个有序基底

2.3 正交基

定理 2.3.1. Gram-Schmidt 正交化: $b_n = a_n - \sum_{i=1}^{n-1} \frac{\langle b_i, a_n \rangle}{\langle b_i, b_i \rangle} b_i$, $q_n = \frac{b_n}{\langle b_n, b_n \rangle}$

例 2.3.1 利用 Gram-Schmidt 正交化的过程,求下述矩阵列空间的一组正交基:

$$\begin{pmatrix}
-10 & 13 & 7 & -11 \\
2 & 1 & -5 & 3 \\
-6 & 3 & 13 & -3 \\
16 & -16 & -2 & 5 \\
2 & 1 & -5 & -7
\end{pmatrix}$$

解

$$b_1 = a_1 = (-10, 2, -6, 16, 2)^T$$

$$b_2 = a_2 - \frac{\langle b_1, a_2 \rangle}{\langle b_1, b_1 \rangle} b_1 = (3, 3, -3, 0, 3)^T$$

$$b_3 = a_3 - \sum_{i=1}^2 \frac{\langle b_i, a_3 \rangle}{\langle b_i, b_i \rangle} b_i = (6, 0, 6, 6, 0)^T$$

$$b_4 = a_4 - \sum_{i=1}^3 \frac{\langle b_i, a_4 \rangle}{\langle b_i, b_i \rangle} b_i = (0, 5, 0, 0, -5)^T$$

单位化:

$$e_1 = \left(-\frac{1}{2}, \frac{1}{10}, -\frac{3}{10}, \frac{4}{5}, \frac{1}{10}\right)^T$$

$$e_2 = \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, 0, \frac{1}{2}\right)^T$$

$$e_3 = \left(\frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0\right)^T$$

$$e_4 = \left(0, \frac{1}{\sqrt{2}}, 0, 0, -\frac{1}{\sqrt{2}}\right)^T$$

3 矩阵分解

3.1 LU 分解

主要用于求解 Ax = b.

定义 3.1.1. LU 分解: A = LU, L 下三角方阵, U 上三角方阵.

Gauss 变换 3.2

1. 利用 Gauss 变换化矩阵 A 为上三角阶梯型矩阵 U = QA. 应确保 k 阶顺序主子式始终不为 0 (⇒每一步的主元均不为 0).

Gauss 变换:
$$R_i \pm = kR_j, i > j$$
, 或可描述为 $Q = \begin{pmatrix} 1 & & \\ & 1 & \\ & k_3 & 1 \\ & k_4 & & 1 \end{pmatrix}$

- 2. 对 I 执行与上一步的初等变换的逆变换, 下三角矩阵 $L = Q^{-1}I$
- 3. A = LU

习题1. 判定矩阵 $C = \begin{bmatrix} 3 & 2 & -1 \\ -1 & 0 & 0 \\ -1 & 3 & 0 \end{bmatrix}$ 和 $B = \begin{bmatrix} 0 & 2 & -1 \\ -1 & 4 & -1 \\ 1 & 3 & -5 \end{bmatrix}$ 能否进行 LU 分解, 为什么? 如果能分 解, 试分解之.

矩阵 C 的顺序主子式均不为 0, 可以进行 LU 分解.

$$\begin{bmatrix} 3 & 2 & -1 \\ -1 & 0 & 0 \\ -1 & 3 & 0 \end{bmatrix} \xrightarrow{R_2 + \frac{1}{3}R_1} \begin{bmatrix} 3 & 2 & -1 \\ 0 & \frac{2}{3} & -\frac{1}{3} \\ 0 & \frac{11}{3} & -\frac{1}{3} \end{bmatrix} \xrightarrow{R_3 - \frac{11}{2}R_1} \begin{bmatrix} 3 & 2 & -1 \\ 0 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & \frac{3}{2} \end{bmatrix} \to U$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 + \frac{11}{2}R_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{11}{2} & 1 \end{bmatrix} \xrightarrow{R_2 - \frac{1}{3}R_1} \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{3} & 1 & 0 \\ -\frac{1}{3} & \frac{11}{2} & 1 \end{bmatrix} \to L$$

11

矩阵 B 的 1 阶主子式均为 0, 因此 B 不可以进行 LU 分解.

习题2. 求矩阵
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 的 LU 分解.

解

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{bmatrix} \xrightarrow{R_2 - \frac{1}{2}R_1} \begin{bmatrix} 2 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{1}{2} \\ 0 & -1 & -1 \end{bmatrix} \xrightarrow{R_3 + \frac{2}{3}R_2} \begin{bmatrix} 2 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{1}{2} \\ 0 & 0 & -\frac{2}{3} \end{bmatrix} \to U$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 - \frac{2}{3}R_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{bmatrix} \xrightarrow{R_2 + \frac{1}{2}R_1} \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & \frac{1}{3} & 1 \end{bmatrix} \to L$$

3.2.1 选主元的 LU 分解

如果得到 U 不存在主元为 0 的上三角阵, 可以使用行交换 P 进行选主元 (重排). 即 $U' = PU = PQA \Rightarrow P(PQ)^{-1}PU = PA$.

3.3 QR 分解

定义 3.3.1. QR 分解 (正交三角分解): $A = Q \binom{R}{O}$. $A \in \mathbb{R}^{m \times n} (m \ge n)$, 正交矩阵 $Q \in \mathbb{R}^{m \times m}$, Q 上三角矩阵 $R \in \mathbb{R}^{n \times n}$.

QR 分解主要用于解决最小二乘问题, 矩阵特征值计算.

3.3.1 基于 Gram-Schmidt 正交化

使用Gram-Schmidt 对满秩矩阵 A 正交化得到正交基 $Q=(q_1,q_2,\ldots,q_m)$,再用 Q 表示 A=QR.

3.3.2 Householder

TODO: After lec 8

3.3.3 Givens

TODO: After lec 8

3.4 谱分解/特征分解

3.4.1 特征分解

定义 3.4.1. 特征分解: $A = Q\Lambda Q^{-1}$, Λ 为特征值对角矩阵, Q 为特征向量

例 3.4.1 矩阵的幂 A^k

解
$$A^k = (Q\Lambda Q^{-1})^k$$

3.4.2 谱分解

定义 3.4.2. 对称矩阵 A, 如果 A 可以本分解为 $A = Q\Lambda Q^T$. 其中 Q 为单位化特征向量矩阵, Λ 是特征值对角矩阵. 称为**谱分解**.

3.4.3 Cholesky 分解

定义 3.4.3. 对于对称正定矩阵 $A, A = GG^T, G$ 为下三角矩阵. 成为Cholesky **分解**若把对角元素 提取出来, 即 $A = LDL^T$ 分解, 称为**不带平方根的** Cholesky **分解**

习题3. 求对称正定矩阵

$$A = \begin{bmatrix} 5 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 5 \end{bmatrix}$$

的不带平方根的 Cholesky 分解.

解

$$D_{1} = A_{11} = 5$$

$$L_{21} = \frac{1}{D_{1}} A_{21} = \frac{1}{5} \times 2 = \frac{2}{5}, \ L_{31} = \frac{1}{D_{1}} A_{31} = \frac{1}{5} \times (-4) = -\frac{4}{5}$$

$$D_{2} = A_{22} - L_{21}^{2} D_{1} = 1 - \left(\frac{2}{5}\right)^{2} \times 5 = \frac{1}{5}$$

$$L_{32} = \frac{1}{D_{2}} (A_{32} - L_{31} L_{21} D_{1}) = 5 \left(-2 + \frac{4}{5} \times \frac{2}{5} \times 5\right) = -2$$

$$D_{3} = A_{33} - \sum_{k=1}^{2} L_{3k}^{2} D_{k} = 5 - \left(\frac{4}{5}\right)^{2} \times 5 - (2)^{2} \times \frac{1}{5} = 1$$

$$A = LDL^{T} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{2}{5} & 1 & 0 \\ -\frac{4}{5} & -2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \frac{2}{5} & 1 & 0 \\ -\frac{4}{5} & -2 & 1 \end{bmatrix}^{T}$$

3.5 奇异值分解 (SVD)

定义 3.5.1. $A \in \mathbb{R}^{m \times n}$ SVD 分解: $A = U\Sigma V^T$,

- $U \in \mathbb{R}^{m \times m}$ 是 AA^T 的标准化特征向量
- $\Sigma \in \mathbb{R}^{m \times n}$ 是 $A^T A$ 的特征值的根号值
- $V \in \mathbb{R}^{n \times n}$ 是 $A^T A$ 的标准化特征向量

3.6 矩阵分解应用

3.6.1 线性方程组

$$Ax = b$$

• Cholesky 法: $A = GG^T$, Gb = d, $G^Tx = b$

3.6.2 最小二乘问题

定义 3.6.1. 最小二乘问题: $\min_x ||Ax - b||_2$

- 正则化方法: 求解 $A^TAx = A^Tb$
- QR 法: A = QR, $Rx = Q^Tb$

4 向量和矩阵微分

定理 4.0.1. 常见导数

$$(x^{\mu})' = \mu x^{\mu - 1}$$
$$(a^x)' = a^x \ln a$$
$$(\log_a x)' = \frac{1}{x \ln a}$$
$$(f \circ g)' = f'(g(x))g'(x)$$

定理 4.0.2. 行列式对矩阵偏导:
$$\frac{\partial |X|}{\partial X} = X^*$$
 如果 $|X| > 0$, $\frac{\partial |X|}{\partial X} = |X|X^{-T}$

定理 4.0.3. 逆矩阵求导: $dX^{-1} = -X^{-1}dXX^{-1}$

5 优化问题

5.1 牛顿法

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

5.2 例题

习题4. 计算 f(x) 的共轭函数, 以及共轭函数的定义域.

- $f(x) = -\log x$
- $f(x) = e^x$

解

• $f(x) = -\log x$

$$f^*(y) = \sup_{x>0} (yx + \log x)$$

$$= \begin{cases} -1 - \log(-y) & y < 0\\ \infty & \text{otherwise} \end{cases}$$

• $f(x) = e^x$

$$f^*(y) = \sup_{x \in \mathbb{R}} (yx - e^x)$$

$$= \begin{cases} \infty & y < 0 \\ 0 & y = 0 \\ y \ln(y) - y & y > 0 \end{cases}$$

习题5. 求解线性规划

$$\min e^{T} x$$
s.t. $Gx \le h$

$$Ax = b$$

的对偶函数,给出对偶问题。

$$L(x, \lambda, \nu) = e^T x + \lambda^T (Gx - h) + \nu^T (Ax - b)$$
$$= -\lambda^T h - \nu^T b + (e^T + \lambda^T G + \nu^T A)x$$

对应的对偶函数为:

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \begin{cases} -\lambda^{T} h - \nu^{T} b & e^{T} + \lambda^{T} G + \nu^{T} A = 0\\ -\inf & \text{otherwise} \end{cases}$$

对应的对偶问题为:

$$\max - \lambda^T h - \nu^T b$$

$$s.t. \ e^T + \lambda^T G + \nu^T A = 0$$

$$\lambda, \nu \geqslant 0$$

习题6. 求优化问题

$$\arg\min_{x_1, x_2, x_3} x_1 x_2 x_3$$

当 x_1, x_2, x_3 满足 $x_1^2 + x_2^2 + x_3^2 = 1$ 的解。

解 Lagrange 函数:

$$L(x_1, x_2, x_3, \lambda) = x_1 x_2 x_3 + \lambda (x_1^2 + x_2^2 + x_3^2 - 1)$$

$$\nabla L = 0 \Rightarrow \begin{cases} \frac{\partial L}{\partial x_1} = x_2 x_3 + 2\lambda x_1 = 0\\ \frac{\partial L}{\partial x_2} = x_1 x_3 + 2\lambda x_2 = 0\\ \frac{\partial L}{\partial x_3} = x_1 x_2 + 2\lambda x_3 = 0\\ \frac{\partial L}{\partial x_3} = (x_1^2 + x_2^2 + x_3^2 - 1) = 0 \end{cases} \Rightarrow \begin{cases} |x_1| = |x_2| = |x_3| = \frac{1}{\sqrt{3}}\\ \lambda = \frac{1}{2\sqrt{3}} \end{cases}$$

因此 x_1, x_2, x_3 的解为:

$$\begin{cases} x_1 = \frac{1}{\sqrt{3}} \\ x_2 = \frac{1}{\sqrt{3}} \\ x_3 = -\frac{1}{\sqrt{3}} \end{cases}, \begin{cases} x_1 = \frac{1}{\sqrt{3}} \\ x_2 = -\frac{1}{\sqrt{3}} \\ x_3 = -\frac{1}{\sqrt{3}} \end{cases}$$

习题7. 已知矩阵 $A \in \mathbb{R}^{p \times q}, \ B \in \mathbb{R}^{p \times r}, \ rank(A) = min(p,q), \ 未知矩阵 <math>X \in \mathbb{R}^{q \times r}, \$ 求以下优化问题。

若 p < q, 求 Frobenius 范数最小的矩阵 X, 使得 AX = B, 即求解优化问题:

$$\min f(X) = \frac{1}{2}||X||_F^2$$

s.t. $AX = B$

解 Lagrange 函数:

$$\begin{split} L(X,\Lambda) &= \frac{1}{2}||X||_F^2 - \Lambda^T(AX - B) \\ &= Tr(\frac{1}{2}X^TX) - Tr(\Lambda^T(AX - B)) \end{split}$$

$$\nabla L = 0 \Rightarrow \begin{cases} \frac{\partial L}{\partial X} = X - A^T \Lambda = 0\\ \frac{\partial L}{\partial \Lambda} = (AX - B)^T = 0 \end{cases}$$

因为 $p < q \Rightarrow rank(A) = p$, 所以 AA^T 可逆。

$$X = A^{T} \Lambda$$

$$AX = AA^{T} \Lambda$$

$$B = AA^{T} \Lambda$$

$$X = A^{T} (AA^{T})^{-1} B$$

习题8. 梯度下降法是最常用的优化方法之一。考虑优化问题

$$\min f(x) = x_1^2 + x_2^2 + 2x_3^2$$

证明: 在点 $x_0 = (x_1, x_2, x_3)$ 处沿梯度方向迭代的最佳步长为:

$$\lambda = \frac{x_1^2 + x_2^2 + 4x_3^2}{2x_1^2 + 2x_2^2 + 16x_3^2}$$

证 即求解 $\operatorname{arg\,min}_{\lambda} f(x_0 - \lambda^T \nabla f(x_0))$

$$f(x_0 - \lambda^T \nabla f(x_0)) = f(x_0 - \lambda^T (2x_1, 2x_2, 4x_2)^T)$$

$$= (1 - \lambda_1)^2 x_1^2 + (1 - \lambda_2)^2 x_2^2 + 2(1 - 4\lambda)^2 x_3^2$$

$$\frac{\partial f(x_0 - \lambda^T \nabla f(x_0))}{\partial \lambda} = (8x_1^2 + 8x_2^2 + 64x_3^2)\lambda - (4x_1^2 + 4x_2^2 + 16x_3^2) = 0$$

$$\lambda = \frac{x_1^2 + x_2^2 + 4x_3^2}{2x_1^2 + 2x_2^2 + 16x_3^2}$$

索引

1 范数, 7 2 范数, 7	合同变化, <mark>5</mark> 合同变换, 4
半负定二次型, 5 伴随矩阵, 4 半正定二次型, 5 半正定矩阵, 5 标准内积, 6 标准型, 5 标准正交, 7	基, 1 迹, 4 循环不变性, 4 夹角, 7 矩阵范数, 7 矩阵内积, 7 距离, 6
不带平方根的 Cholesky 分解, 13 Cholesky 分解, 13 初等矩阵, 3	k 阶主子式, 1 k 阶子式, 1 克莱姆法则, 4
垂直, 9	lp 范数, <mark>6</mark> LU 分解, <mark>11</mark>
代数余子式, 3 等价, 1, 2 点积, 6 对称矩阵, 1, 4 对角矩阵, 5	满秩矩阵, 1 内积, 6 逆矩阵, 3 逆序, 3
二次型, 4, 5 二次型矩阵, 4, 5	逆序数, 3 欧式距离, 6
范数, 6 仿射子空间, 9 非奇异矩阵, 1 Fiobenius 范数, 7	谱分解, 13 QR, 12 QR 分解, 12
负定二次型, 5 负惯性指数, 5	生成集, 1 顺序主子式, 1, 5 算子范数, 7
Gram-Schmidt, 12 Gram-Schmidt 正交化, 10 广义矩阵范数, 7 广义逆, 3	SVD 分解, 13 特征分解, 12 特征值, 5, 12
规范型,5	维数, 1
规范性, 5 行列式, 3 核空间, 2 合同, 4	线性变换, 2 线性替换, 5 线性映射, 2 相容性条件, 7

相似, 2 相似变换, 2 相似矩阵, 4 像空间, 2 向量化, 7 向量子空间

余子式, <mark>3</mark>

张成的子空间, 1 正定二次型, 5

直和, <mark>9</mark>

正定矩阵,5 正惯性指数,5 正交,9 正交补,9 正交矩阵,1 正交三角分解,12 正交投影,10 正角,7 秩,1,5 最小二乘问题,14

 ∞ 范数, 7