Bloomberg: Data retrieval & application Price Momentum & Trading Volume Charles M. C. LEE and Bhaskaran SWAMINATHAN

Meghna BHAUGEERUTTY, Caroline KIRCH

Université Paris Dauphine - PSL - Bloomberg API

Année académique 2023-2024

Table des matières

- Introduction
- Structure du projet
 - Architecture du code
 - Front-end
- Backtest de la stratégie
 - Premiers résultats
 - Optimisation
- 4 Conclusion

Introduction

Introduction

Objectif: trouver une stratégie d'investissment en mettant en place une architecture de code claire, réutilisable et maintenable

Article: "Price Momentum and Trading Volume" de Charles M. C. Lee et Bhaskaran Swaminathan, publié dans le Journal of Finance en octobre 2000. Etablit le lien entre entre le volume des transactions passées et les stratégies de momentum

Méthodologie:

- tri sur les rendements des titres
- tri sur le volume des transactions
- création des portefeuilles "simples", soit n portefeuilles "rendements" et *m* portefeuilles "volume"
- création des stratégies long-short, e.g. R10-R1
- création des intersections, e.g. R1_V1

Structure du projet

Un code, 9 fichiers

Un code orienté objet

Une application

Bloomberg API - Master 272

Backtest de la stratégie

Résultats équipondérés

		К:	= 3			K:	= 6			K	= 9			K =	12		
	0,95	0,94	0,91	0,89	0,95	0,94	0,92	0,89	0,95	0,94	0,90	0,88	0,96	0,95	0,92	0,90	R1
1=3	1,00	1,00	1,00	1,00	1,01	1,01	1,00	1,01	1,00	1,00	1,00	1,00	1,01	1,01	1,01	1,02	R5
1-3	1,06	1,09	1,13	1,16	1,07	1,09	1,14	1,18	1,06	1,09	1,12	1,15	1,08	1,11	1,16	1,20	R10
	1,09	1,12	1,17	1,26	1,10	1,13	1,19	1,27	1,08	1,12	1,17	1,25	1,10	1,14	1,20	1,29	R10
	0,95	0,94	0,91	0,89	0,95	0,94	0,91	0,89	0,96	0,94	0,93	0,91	0,95	0,93	0,91	0,88	R1
1=6	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,01	1,01	1,01	1,01	1,00	1,00	1,00	1,00	R5
1-6	1,06	1,08	1,13	1,16	1,06	1,08	1,11	1,15	1,08	1,09	1,16	1,20	1,05	1,08	1,09	1,12	R10
	1,09	1,12	1,17	1,25	1,08	1,11	1,16	1,24	1,10	1,12	1,20	1,28	1,08	1,11	1,14	1,22	R10
	0,95	0,94	0,91	0,89	0,95	0,94	0,92	0,89	0,95	0,93	0,91	0,88	0,94	0,92	0,91	0,88	R1
1=9	1,00	1,00	1,00	1,00	1,01	1,00	1,00	1,01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	R5
1-9	1,06	1,08	1,13	1,16	1,07	1,09	1,14	1,17	1,06	1,08	1,11	1,14	1,06	1,08	1,12	1,15	R10
	1,09	1,12	1,17	1,25	1,09	1,13	1,18	1,27	1,09	1,12	1,15	1,24	1,09	1,12	1,17	1,26	R10
	0,95	0,94	0,91	0,89	0,95	0,94	0,91	0,89	0,95	0,94	0,91	0,88	0,96	0,94	0,92	0,89	R1
J = 12	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	R5
J - 12	1,06	1,08	1,13	1,16	1,06	1,08	1,11	1,15	1,05	1,08	1,12	1,15	1,06	1,08	1,13	1,17	R10
	1,09	1,12	1,17	1,25	1,08	1,11	1,16	1,24	1,08	1,12	1,17	1,25	1,08	1,11	1,18	1,25	R10
	V1	V2	V3	V3-V1													

Figure: Rendements moyens

Paramètres : J, K \in {3, 6, 9, 12}, n = 10, m = 3, méthode = equipondérée

Comparaison avec Bloomberg - PORT

Figure: Rendements cumulés, portefeuille R2_V2

Paramètres : J = 3, K = 3, n = 2, m = 2, méthode = equipondérée

Comparaison avec l'article

	V1	V2	V3	V3-V1	V1	V2	V3	V3-V1
R1	0,95	0,94	0,91	0,89	0,95	0,94	0,92	0,89
R5	1,00	1,00	1,00	1,00	1,01	1,01	1,00	1,01
R10	1,06	1,09	1,13	1,16	1,07	1,09	1,14	1,18
R10-R1	1,09	1,12	1,17	1,26	1,10	1,13	1,19	1,27
R1	0,95	0,94	0,91	0,89	0,95	0,94	0,91	0,89
R5	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
R10	1,06	1,08	1,13	1,16	1,06	1,08	1,11	1,15
R10-R1	1,09	1,12	1,17	1,25	1,08	1,11	1,16	1,24
				Réplicatio	n			
	V1	V2	V3	V3-V1	V1	V2	V3	V3-V1
							***	V3-V1
R1	1,24	0,96	0,19	-1,05	1,19	0,87	0,25	-0,93
R1 R5	1,24 1,41							
		0,96	0,19	-1,05	1,19	0,87	0,25	-0,93
R5	1,41	0,96 1,45	0,19 1,20	-1,05 -0,20	1,19 1,42	0,87 1,38	0,25 1,23	-0,93 -0,19
R5 R10	1,41 1,25	0,96 1,45 1,61	0,19 1,20 1,45	-1,05 -0,20 0,20	1,19 1,42 1,43	0,87 1,38 1,59	0,25 1,23 1,36	-0,93 -0,19 -0,07
R5 R10 R10-R1	1,41 1,25 0,01	0,96 1,45 1,61 0,66	0,19 1,20 1,45 1,26	-1,05 -0,20 0,20 1,26	1,19 1,42 1,43 0,25	0,87 1,38 1,59 0,73	0,25 1,23 1,36 1,11	-0,93 -0,19 -0,07 0,86
R5 R10 R10-R1	1,41 1,25 0,01 1,16	0,96 1,45 1,61 0,66	0,19 1,20 1,45 1,26	-1,05 -0,20 0,20 1,26	1,19 1,42 1,43 0,25	0,87 1,38 1,59 0,73	0,25 1,23 1,36 1,11 0,09	-0,93 -0,19 -0,07 0,86
R5 R10 R10-R1 R1 R5	1,41 1,25 0,01 1,16 1,37	0,96 1,45 1,61 0,66 0,77 1,34	0,19 1,20 1,45 1,26 0,03 1,19	-1,05 -0,20 0,20 1,26 -1,14 -0,18	1,19 1,42 1,43 0,25 1,12 1,36	0,87 1,38 1,59 0,73 0,67 1,34	0,25 1,23 1,36 1,11 0,09 1,15	-0,93 -0,19 -0,07 0,86 -1,04 -0,21

Figure: Rendements moyens (Benchmark vs Replication)

Paramètres : J, K \in {3, 6}, n=10, m=3, méthode = equipondérée

Méthodes de pondération

	Equipo	ondéré			1/Vol	atilité	
0,96	0,95	0,92	0,90	0,97	0,96	0,94	0,92
1,01	1,01	1,01	1,02	1,01	1,01	1,01	1,02
1,08	1,11	1,16	1,20	1,06	1,09	1,11	1,16
1,10	1,14	1,20	1,29	1,09	1,11	1,16	1,24

	Vol	ume			Volume x Price				
0,99	0,98	0,86	0,87	0,98	0,97	0,89	0,89		
1,01	1,01	1,03	1,03	1,01	1,01	1,03	1,02		
1,02	1,06	1,30	1,29	1,04	1,07	1,25	1,24		
1,02	1,06	1,40	1,40	1,04	1,08	1,33	1,34		

Figure: Rendements moyens selon la méthode de pondération

Paramètres : J=3, K=12, n=10, m=3, méthode \in {equipondérée, 1/vol, volume, $volume \times price$ }

Méthode d'optimisation

Logique d'un Grid-Search comme en Machine Learning : c'est une technique de réglage des hyperparamètres utilisée en ML pour trouver la meilleure combinaison d'hyperparamètres pour un modèle donné. Ici, nos paramètres J, K, m, n peuvent être considérés comme des hyperparamètres à optimiser.

Ainsi, dans notre cas, nous cherchons les valeurs optimales pour :

- J, le nombre de périodes que l'on considère
- K, l'intervalle de rebalancement
- n, le nombre de portefeuilles "returns"
- m, le nombre de portefeuilles "volume"
- la méthode de pondération, qui est parmi : equi-weighted, 1/vol, volume, volume * price

qui nous permettront d'avoir le ratio de Sharpe le plus élevé parmi toutes les combinaisons des hyperparamètres possibles.

Résultats

Après avoir fait tourner notre Grid Search, nous avons eu les résulats suivants :

J: 4

• K: 12

• m: 10

• n: 3

• méthode de pondération : volume * price

Meilleur ratio de Sharpe: 3.28 pour le portefeuille R10-R1_V3

Overall performance	28.62
Monthly volatility	0.07
Maximum drawdown	0.39
Tracking error	0.08
t-stat*	13.50

Table: Métriques pour le portefeuille R10-R1_V3

résultat significatif au seuil de 5%

Conclusion

Conclusion

Objectif : trouver une stratégie d'investissment en mettant en place une architecture de code **claire**, **réutilisable** et **maintenable**

Stratégie d'investissement : "Price Momentum and Trading Volume"

Utilisation du volume des transactions passées pour anticiper les rendements futurs.

Avantages	Inconvénients
SimplicitéAdaptabilité	Suivi RégulierCoûts de Transaction

Conclusion

Merci pour votre écoute !

A vos questions!