

What is claimed is:

- 1 1. An apparatus comprising:
 - 2 a first phase shifter to provide subcarrier dependent phase shifts to modulation
 - 3 symbols associated with an orthogonal frequency division multiplexing (OFDM) signal
 - 4 to generate first phase shifted modulation symbols, wherein said modulation symbols
 - 5 correspond to subcarriers of the OFDM signal; and
 - 6 a first inverse discrete Fourier transform unit to convert said first phase shifted
 - 7 modulation symbols from a frequency domain representation to a time domain
 - 8 representation.

- 1 2. The apparatus of claim 1, further comprising:
 - 2 a second phase shifter to provide subcarrier dependent phase shifts to said
 - 3 modulation symbols associated with said OFDM signal to generate second phase
 - 4 shifted modulation symbols, wherein said second phase shifter provides different
 - 5 subcarrier dependent phase shifts to said modulation symbols than said first phase
 - 6 shifter; and
 - 7 a second inverse discrete Fourier transform unit to convert said second phase
 - 8 shifted modulation symbols from a frequency domain representation to a time domain
 - 9 representation;
 - 10 wherein said first inverse discrete Fourier transform unit is associated with a
 - 11 first antenna path and said second inverse discrete Fourier transform unit is associated
 - 12 with a second antenna path.

- 1 3. The apparatus of claim 2, further comprising:
 - 2 at least one other phase shifter to provide subcarrier dependent phase shifts to
 - 3 said modulation symbols associated with said OFDM signal to generate other phase
 - 4 shifted modulation symbols, wherein said at least one other phase shifter provides
 - 5 different subcarrier dependent phase shifts to said modulation symbols than said first
 - 6 and second phase shifters; and

7 at least one other inverse discrete Fourier transform unit to convert said other
8 phase shifted modulation symbols from a frequency domain representation to a time
9 domain representation.

1 4. The apparatus of claim 2, wherein:
2 said first and second inverse discrete Fourier transform units are fast Fourier
3 transform (FFT) units.

1 5. The apparatus of claim 1, wherein:
2 said first phase shifter provides a phase shift to a first modulation symbol based
3 on a difference between a frequency of a corresponding subcarrier and a center
4 frequency of a channel in which said OFDM symbol is to be transmitted.

1 6. The apparatus of claim 1, wherein:
2 said first phase shifter provides subcarrier dependent phase shifts to said
3 modulation symbols based on an approximate coherence bandwidth associated with the
4 apparatus.

1 7. The apparatus of claim 1, wherein:
2 said modulation symbols associated with said OFDM signal includes at least a
3 first modulation symbol and a second modulation symbol, said first modulation symbol
4 being associated with a first subcarrier and said second modulation symbol being
5 associated with a second subcarrier that is adjacent to said first subcarrier in frequency,
6 wherein said phase shifter provides phase shifts to said first and second modulation
7 symbols that differ by approximately $360/B$ degrees, where B represents an
8 approximate coherence bandwidth.

1 8. A method comprising:
2 acquiring modulation symbols to be used to generate an orthogonal frequency
3 division multiplexing (OFDM) signal, said modulation symbols including at least a first

4 symbol and a second symbol, wherein said modulation symbols correspond to
5 subcarriers of the OFDM signal;

6 applying a first phase shift to said first symbol that is dependant upon the
7 subcarrier associated with said first symbol to generate a first phase shifted symbol; and

8 applying a second phase shift to said second symbol that is dependent upon the
9 subcarrier associated with said second symbol to generate a second phase shifted
10 symbol.

1 9. The method of claim 8, further comprising:

2 applying an inverse discrete Fourier transform to a group of modulation symbols
3 that includes said first phase shifted symbol and said second phase shifted symbol.

1 10. The method of claim 9, wherein:

2 said modulation symbols to be used to generate said OFDM signal include other
3 symbols in addition to said first symbol and said second symbol, said method further
4 comprising applying subcarrier dependent phase shifts to said other symbols to generate
5 other phase shifted symbols, wherein said group of modulation symbols includes said
6 other phase shifted symbols.

1 11. The method of claim 8, wherein:

2 applying a first phase shift to said first symbol includes applying a phase shift
3 that is linearly related to a frequency of the subcarrier associated with said first symbol.

1 12. The method of claim 8, wherein:

2 applying a first phase shift to said first symbol includes applying a phase shift
3 that is non-linearly related to a frequency of the subcarrier associated with said first
4 symbol.

1 13. The method of claim 8, wherein:
2 applying a first phase shift to said first symbol includes applying a phase shift
3 that is related to an approximate coherence bandwidth of a corresponding channel.

1 14. The method of claim 8, wherein:
2 said first and second phase shifted symbols are to be transmitted from a first
3 antenna; and
4 said method further comprises:

5 applying a third phase shift to said first symbol that is dependant upon
6 the subcarrier associated with said first symbol to generate a third phase shifted
7 symbol, wherein said third phase shift is different from said first phase shift;
8 and

9 applying a fourth phase shift to said second symbol that is dependent
10 upon the subcarrier associated with said second symbol to generate a fourth
11 phase shifted symbol, wherein said fourth phase shift is different from said
12 second phase shift;

13 wherein said third and fourth phase shifted symbols are to be transmitted
14 from a second antenna, said second antenna being different from said first
15 antenna.

1 15. An apparatus comprising:
2 an interleaver to separate a serial input stream of modulation symbols into N
3 spatial streams, where N is a positive integer greater than 1; and
4 a steering unit to receive said N spatial streams and to steer the associated
5 modulation symbols into M antenna paths, where M is a positive integer greater than 1,
6 wherein said steering unit provides subcarrier dependent phase shifts to modulation
7 symbols associated with at least one of said N spatial streams.

1 16. The apparatus of claim 15, wherein:
2 said M antenna paths includes at least a first path and a second path; and

3 said apparatus further includes a first inverse discrete Fourier transform unit
4 within said first path and a second inverse discrete Fourier transform unit within said
5 second path.

1 17. The apparatus of claim 15, wherein:
2 said first and second inverse discrete Fourier transform units are fast Fourier
3 transform units.

1 18. The apparatus of claim 15, wherein N equals M.

1 19. The apparatus of claim 15, wherein N does not equal M.

1 20. The apparatus of claim 15, wherein:
2 said apparatus is adapted for use within a multiple input multiple output
3 (MIMO) based transmitting device.

1 21. The apparatus of claim 15, further comprising:
2 a mapper to map input data bits into a serial stream of modulation symbols
3 based on a predetermined modulation scheme, said serial stream of modulation symbols
4 for delivery to an input of said interleaver.

1 22. The apparatus of claim 21, further comprising:
2 a forward error correction (FEC) coder to encode user data based on a
3 predetermined error code, said FEC coder to deliver encoded data bits to an input of
4 said mapper.

1 23. The apparatus of claim 15, wherein:
2 said steering unit provides subcarrier dependent phase shifts to modulation
3 symbols associated with at least two spatial streams, wherein different phase sequences
4 are used for each of said at least two spatial streams.

1 24. The apparatus of claim 15, wherein:
2 said steering unit provides subcarrier dependent phase shifts to modulation
3 symbols associated with N-1 of said N spatial streams, wherein different phase
4 sequences are used for each of said N-1 spatial streams.

1 25. The apparatus of claim 15, wherein:
2 said steering unit provides subcarrier dependent phase shifts to modulation
3 symbols associated with each of said N spatial streams, wherein different phase
4 sequences are used for each of said N spatial streams.

1 26. A system comprising:
2 a first phase shifter to provide subcarrier dependent phase shifts to modulation
3 symbols associated with an orthogonal frequency division multiplexing (OFDM) signal
4 to generate first phase shifted modulation symbols, wherein said modulation symbols
5 correspond to subcarriers of the OFDM signal;
6 a first inverse discrete Fourier transform unit to convert said first phase shifted
7 modulation symbols from a frequency domain representation to a time domain
8 representation; and
1 at least one dipole antenna element to transmit a radio frequency (RF) signal
2 that includes said time domain representation of said phase shifted modulation symbols.

1 27. The system of claim 26, further comprising:
2 a guard interval addition unit to add a guard interval to said time domain
3 representation of said phase shifted modulation symbols.

1 28. The system of claim 27, further comprising:
2 an RF transmitter located between said guard interval addition unit and said at
3 least one dipole antenna element to generate said RF signal using said time domain
4 representation of said phase shifted modulation symbols.

1 29. An article comprising a storage medium having instructions stored thereon that,
2 when executed by a computing platform, operate to:

3 acquire modulation symbols to be used to generate an orthogonal frequency
4 division multiplexing (OFDM) signal, said modulation symbols including at least a first
5 symbol and a second symbol, wherein said modulation symbols correspond to
6 subcarriers of the OFDM signal;

7 apply a first phase shift to said first symbol that is dependant upon the subcarrier
8 associated with said first symbol to generate a first phase shifted symbol; and

9 apply a second phase shift to said second symbol that is dependent upon the
10 subcarrier associated with said second symbol to generate a second phase shifted
11 symbol.

1 30. The article of claim 29, wherein said instructions, when executed by the
2 computing platform, further operate to:

3 apply an inverse discrete Fourier transform to a group of modulation symbols
4 that includes said first phase shifted symbol and said second phase shifted symbol.

1 31. The article of claim 29, wherein:

2 to apply a first phase shift to said first symbol includes to apply a phase shift
3 that is linearly related to a frequency of the subcarrier associated with said first symbol.

1 32. The article of claim 29, wherein:

2 to apply a first phase shift to said first symbol includes to apply a phase shift
3 that is non-linearly related to a frequency of the subcarrier associated with said first
4 symbol.

1 33. The article of claim 29, wherein:

2 to apply a first phase shift to said first symbol includes to apply a phase shift
3 that is related to an approximate coherence bandwidth of a corresponding channel.