Politechnika Łódzka

Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej

Kierunek: Matematyka Stosowana

Specjalność: Analiza Danych w Biznesie i Logistyce

Matematyczne modele wykorzystywane w systemach rekomendacji.

Anita Kudaj

Nr albumu: 220020

Praca magisterska napisana w Instytucie Matematyki Politechniki Łódzkiej

Promotor: dr, mgr inż. Piotr Kowalski

Łódź, 07.2019

Spis treści

1	Wstep								
2	Preliminaria								
	2.1	Oznac	zenia używane w pracy	4					
	2.2	Eleme	enty algebry liniowej	5					
	2.3	Eleme	enty rachunku prawdopodobieństwa i statystyki	8					
3	Ele	menty	eksploracji danych wykorzystywane w systemach rekomen-	-					
	duj	ących		11					
	3.1	Wstęp	one przetwarzanie danych	11					
		3.1.1	Miary podobieństwa	12					
		3.1.2	Redukcja wymiaru	13					
	3.2	Metod	ly eksploracji danych	16					
		3.2.1	Algorytm k - najbliższych sąsiadów	16					
		3.2.2	Algorytm k - średnich	17					
	3.3	Szacov	wanie błędów obliczeń	20					
		3.3.1	Ocena dokładności metody	20					
		3.3.2	Ocena jakości modelu	21					
4	Mo	dele tv	vorzenia rekomendacji	24					
	4.1	Syster	ny rekomendujące oparte na treści - Content-based recommender						
		systen	ns	27					
		4.1.1	Wygenerowanie profilu dokumentu tekstowego - algorytm TFIDF	28					
	4.2	Filtro	wanie kolaboratywne - Collaborative filtering	30					
		4.2.1	Filtrowanie kolaboratywne oparte na użytkowniku	30					
		4.2.2	Filtrowanie kolaboratywne oparte na elementach	33					
	4.3	Syster	ny rekomendujące kontekstowe - Context–aware recommender sys-						
		tems		34					
	4.4	Dekon	npozycja macierzy ocen - SVD	35					

5	Eks	perym	enty / cześć praktyczne	37
	5.1	ALS z	Apache Spark i MLlib	37
		5.1.1	Apache Spark	37
		5.1.2	ALS i MLlib	38
		5.1.3	Implementacja algorytmu	39
_	_			
6	Pod	\mathbf{lsumov}	vanie	40

Rozdział 1

Wstęp

Rozdział 2

Preliminaria

2.1 Oznaczenia używane w pracy

```
W niniejszej pracy zostały użyte następujące oznaczenia:
```

- N zbiór liczb naturalnych,
- \mathbb{R} zbiór liczb rzeczywistych,
- K ciało liczb rzeczywistych lub zespolonych,
- X (duże, pochylone litery) jako oznaczania zbiorów,
- x (małe, pogrubione litery) jako oznaczania wektorów,
- X (duże litery) jako oznaczania zmiennych losowych,
- \mathbb{X} (duże litery z wyłączeniem \mathbb{N} , \mathbb{R} , \mathbb{K}) jako oznaczania macierzy,
- $[a_{ij}]_{j=1,\dots,n}^{i=1,\dots,m}$ macierz om wierszach i n kolumnach,
- $[a_{ij}]$ macierz kwadratowa,
- $\mathbb{M}_{m \times n}(\mathbb{K})$ zbiór wszystkich macierzy o wymiarach $m \times n$ i elementach z ciała \mathbb{K} ,
- \mathcal{V} przestrzeń liniowa,
- $\operatorname{span}(X)$ przestrzeń generowana przez zbiór X,
- (Ω, \mathcal{F}, P) przestrzeń probabilistyczna,
- Ω zbiór zdarzeń elementarnych,
- \mathcal{F} rodzina podzbiorów zbioru Ω ,
- P funkcja prawdopodobieństwa,
- $B(\mathbb{R}^n)$ σ -ciało zbiorów borelowskich w \mathbb{R}^n ,
- E(X) wartość oczekiwana,
- Cov(X;Y) kowariancja zmiennych losowych X, Y,
- Var (X) wariancją zmiennej losowej X,
- $\sigma(X)$ odchylenie standardowe zmiennej losowej X,
- $\rho(X, Y)$ współczynnik korelacji zmiennych losowych X, Y,
- d(x, y) odległość punktów x i y,

 $d_{e}\left(x,y\right)$ - odległość euklidesowa punktów x i y, $d_{r}\left(x,y\right)$ - odległość Minkowskiego punktów x i y, $\sin\left(X,Y\right)$ - współczynnik podobieństwa wektorów X i Y, $\rho^{p}\left(X,Y\right)$ - współczynnik korelacji Pearsona, $J\left(A,B\right)$ - indeks Jaccarda, $\left\|\cdot\right\|_{F}$ - norma Frobeniusa.

2.2 Elementy algebry liniowej

W definicjach poniżej korzystamy z pojęcia ciała, którego wyjaśnienie odnajdziemy w książce Tadeusza Poredy i Jacka Jędrzejewskiego Algebra liniowa z elementami geometrii analitycznej [6, Sec 4.4].

Definicja 2.1 (Macierz [6, Sec 8.1 Def. 8.1]). Niech $n, m \in \mathbb{N}$. Macierzą o m wierszach, n kolumnach (o wymiarach $m \times n$) i wyrazach w ciele \mathbb{K} nazywamy funkcję

$$A: \{1, 2, \dots, m\} \times \{1, 2, \dots, n\} \to \mathbb{K}.$$

Wartością funkcji dla argumentu (i, j) jest element a_{ij} należący do ciała \mathbb{K} . Macierz zapisujemy w postaci tabeli

$$\mathbb{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Przez $\mathbb{M}_{m \times n}(\mathbb{K})$ oznaczamy zbiór wszystkich macierzy o wymiarach $m \times n$ i elementach z ciała \mathbb{K} .

Definicja 2.2 (Wyznacznik macierzy [6, Sec 10.1, Def. 10.1]). Niech $\mathcal{M}(\mathbb{K}) = \bigcup_{n \in \mathbb{N}} \mathbb{M}_{n \times n}(\mathbb{K})$ oznacza zbiór wszystkich macierzy kwadratowych o wyrazach z \mathbb{K} .

Funkcję:

$$\det: \mathcal{M}(\mathbb{K}) \to \mathbb{K}$$

określamy następująco:

• $je\dot{z}eli \ \mathbb{A} = [a_{11}], \ to \ \det(\mathbb{A}) = a_{11},$

•
$$je\dot{z}eli \ \mathbb{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \ gdy \ n > 1, \ to$$

$$\det(\mathbb{A}) = \sum_{i=1}^{n} (-1)^{1+i} \cdot a_{i1} \cdot \det(\mathbb{A}_{i1}),$$

gdzie \mathbb{A}_{ij} jest macierzą powstałą z macierzy \mathbb{A} przez skreślenie i-tego wiersza i j-tej kolumny.

Funkcję det nazywamy wyznacznikiem, natomiast wartość tej funkcji dla macierzy \mathbb{A} wyznacznikiem macierzy \mathbb{A} .

Uwaga 2.3 ([6, Sec 8.1]). Przykładowe sposoby zapisu macierzy:

$$[a_{ij}]_{j=1,\dots,n}^{i=1,\dots,m},\ (a_{ij})_{j=1,\dots,n}^{i=1,\dots,m},\ [a_{ij}]_{j\leqslant n}^{i=1\leqslant m},\ (a_{ij})_{j\leqslant n}^{i=1\leqslant m},\ [a_{ij}],\ (a_{ij}).$$

Sposobów $[a_{ij}]$, (a_{ij}) używamy, gdy liczba kolumn i wierszy danej macierzy jest ustalona.

W tej pracy używać będziemy zapisu $[a_{ij}]_{j=1,\dots,n}^{i=1,\dots,m}$ oraz zapisu $[a_{ij}]$ w przypadku macierzy kwadratowych.

Definicja 2.4 (Macierz transponowana [6, Sec 8.1]). Niech $\mathbb{A} = [a_{ij}]_{j=1,\dots,n}^{i=1,\dots,m}$, będzie macierzą ze zbioru $\mathbb{M}_{m\times n}(\mathbb{K})$. Macierz $\mathbb{B} = [b_{ij}]_{j=1,\dots,m}^{i=1,\dots,n}$ nazywamy macierzą transponowaną macierzy \mathbb{A} , jeśli

$$b_{ji} = a_{ij}$$

dla każdego $i \in \{1, ..., n\}$ oraz $j \in \{1, ..., m\}$. Piszemy wtedy $\mathbb{B} = \mathbb{A}^T$.

Uwaga 2.5 (Rodzaje macierzy [6, Sec 8.1, Sec 10.4]). *Poniżej zostały zdefiniowane niektóre rodzaje macierzy*.

- Macierzą kwadratową nazywamy macierz, w której liczb wierszy i liczba kolumn są równe. Liczbę tę nazywamy stopniem macierzy kwadratowej.
- Macierzą diagonalną nazywamy macierz kwadratową $[a_{ij}]$, gdzie wszystkie elementy poza główną przekątną są równe 0. Macierz diagonalną oznaczamy diag $(a_{11}, a_{22}, \ldots, a_{nn})$.
- Macierzą jednostkową stopnia n nazywamy macierz diagonalną, w której na głównej przekątnej wszystkie elementy są równe 1. Macierz jednostkową będziemy oznaczać I.
- Macierz kwadratową \mathbb{C} , gdzie $\mathbb{C} = [c_{ij}]$, nazywamy macierzą ortogonalną, jeżeli spełniony jest warunek

$$\mathbb{C}^T \cdot \mathbb{C} = \mathbb{C} \cdot \mathbb{C}^T = \mathbb{I}.$$

 Macierzą nieosobliwą nazywamy macierz kwadratową, której wyznacznik jest różny od 0. Macierzą osobliwą nazywamy macierz kwadratową, której wyznacznik jest równy
 0.

Definicja 2.6 (Mnożenie macierzy [6, Sec 9.3 Def 9.13]). Niech $\mathbb{A} \in \mathbb{M}_{m \times n}(\mathbb{K})$ $i \mathbb{B} \in \mathbb{M}_{k \times m}(\mathbb{K})$. Przyjmując następujące notacje:

$$\mathbb{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad \mathbb{B} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{km} \end{bmatrix}$$

iloczynem macierzy \mathbb{B} i \mathbb{A} nazywamy taką macierz $\mathbb{C} = [c_{lj}]_{j=1,\dots,n}^{l=1,\dots,k}$, że

$$\forall_{l \in 1, \dots, k, j \in 1, \dots, n} c_{lj} = \sum_{i=1}^{m} b_{li} \cdot a_{ij}.$$

Piszemy wtedy $\mathbb{C} = \mathbb{B} \cdot \mathbb{A}$.

Definicja 2.7 (Dodawanie macierzy [6, Sec 8.1]). Niech $\mathbb{A}, \mathbb{B} \in \mathbb{M}_{m \times n}(\mathbb{K})$. Dodawaniem macierzy ($\mathbb{B} + \mathbb{A}$) nazywamy macierz $\mathbb{C} \in \mathbb{M}_{m \times n}(\mathbb{K})$ taką, że

$$\forall_{i \in 1, \dots, m, j \in 1, \dots, n} c_{ij} = b_{ij} + a_{ij}.$$

Definicja 2.8 (Mnożenie macierzy przez element ciała [6, Sec 8.1]). Niech $\mathbb{A} \in \mathbb{M}_{m \times n}(\mathbb{K})$ oraz $\lambda \in \mathbb{K}$. Mnożeniem macierzy przez element z ciała $(\lambda \cdot \mathbb{A})$ nazywamy macierz $\mathbb{C} \in \mathbb{M}_{m \times n}(\mathbb{K})$ taką, że

$$\forall_{i \in 1, \dots, m, j \in 1, \dots, n} c_{ij} = \lambda \cdot a_{ij}.$$

Twierdzenie 2.9 (Własności transpozycji macierzy [4, Sec 5.1 Tw. 5.1]). Niech $\mathbb{A} \in \mathbb{M}_{n \times m}(\mathbb{K})$, $\mathbb{B} \in \mathbb{M}_{n \times m}(\mathbb{K})$, $\mathbb{C} \in \mathbb{M}_{m \times n}(\mathbb{K})$ oraz $\lambda \in \mathbb{K}$. Zachodzą następujące równości:

- \bullet $(\mathbb{A}^T)^T = \mathbb{A}$.
- $(\mathbb{A} + \mathbb{B})^T = \mathbb{A}^T + \mathbb{B}^T$,
- $\bullet \ (\lambda \mathbb{A})^T = \lambda \mathbb{A}^T,$
- $(\mathbb{AC})^T = \mathbb{B}^T \mathbb{C}^T$.

Definicja 2.10 (Ślad macierzy). Śladem macierzy $\mathbb{A} = [a_{ij}]$ nazywamy wielkość:

$$\operatorname{tr}(\mathbb{A}) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots + a_{nn}.$$

W kolejnych definicjach korzystamy z pojęcia przestrzeni liniowej oraz pojęcia wymiaru, których wyjaśnienia możemy odnaleźć w książce Algebra liniowa z elementami geometrii analitycznej odpowiednio w [6, Sec 7.1] oraz [6, Sec 7.5].

Uwaga 2.11 ([6, Sec 8.1]). Wiersze macierzy o wymiarach $m \times n$ traktować możemy jako wektor z przestrzeni \mathbb{K}^n , natomiast kolumną jako wektor przestrzeni \mathbb{K}^m .

Definicja 2.12 (Rząd kolumnowy i wierszowy macierzy [6, Sec 8.1]). Niech $\mathbb{A} \in \mathbb{M}_{m \times n}(\mathbb{K})$. Rzędem kolumnowym macierzy \mathbb{A} nazywamy wymiar przestrzeni \mathbb{K}^n generowanej przez kolumny macierzy \mathbb{A} . Rząd ten oznaczamy symbolem $r_k(\mathbb{A})$. Rzędem wierszowym macierzy \mathbb{A} nazywamy wymiar podprzestrzeni generowany przez wiersze macierzy \mathbb{A} i oznaczamy go $r_w(\mathbb{A})$.

Definicja 2.13 (Rząd macierzy [6, Sec 8.1]). Rzędem macierzy \mathbb{A} nazywamy wspólną wartość rzędu kolumnowego i wierszowego macierzy \mathbb{A} . Rząd macierzy oznaczamy symbolem rz (\mathbb{A}).

Definicja 2.14 (Przestrzeń generowana przez zbiór [6, Sec 7.1 Def 7.13]). Niech X będzie dowolnym i niepustym podzbiorem przestrzeni liniowej V. Podprzestrzenią generowaną przez zbiór X nazywamy zbiór wszystkich skończonych kombinacji liniowych wektorów ze zbioru X. Zbiór ten oznaczamy symbolem span (X).

Symbolicznie zapisujemy zbiór span (X) jako:

$$\left\{x \in \mathcal{V}: \exists_{n \in \mathbb{N}} \exists_{(\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n} \exists_{(x_1, \dots, x_n) \in X^n} (x = \alpha_1 \cdot x_1 + \dots + \alpha_n \cdot x_n)\right\},\,$$

gdzie V jest przestrzenią liniową nad ciałem liczb rzeczywistych lub ciałem liczb zespolonych \mathbb{K} .

Definicja 2.15 (Wartość własna macierzy kwadratowej [6, Sec 12.2]). Liczbę $\lambda \in \mathbb{R}$ nazywamy wartością własną macierzy kwadratowej \mathbb{A} , jeżeli istnieje niezerowy wektor \mathbf{x} taki, że

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

Każdy niezerowy wektor \mathbf{x} spełniający powyższe równania nazywamy wektorem własnym macierzy \mathbb{A} odpowiadającym wartości własnej λ .

2.3 Elementy rachunku prawdopodobieństwa i statystyki

Definicja 2.16 (Przestrzeń probabilistyczna [2, Sec 1.2, Sec 1.4]). Przestrzenią probabilistyczną nazywamy uporządkowaną trójkę (Ω, \mathcal{F}, P) , gdzie:

- Ω to zbiór wszystkich zdarzeń elementarnych i $\Omega \neq \emptyset$
- \mathcal{F} rodzina podzbiorów zbioru Ω taka, że:

- $-\varnothing\in\mathcal{F}$,
- jeżeli $A \in \mathcal{F}$, to $\overline{A} = \Omega \backslash A \in \mathcal{F}$,
- jeżeli $A_n \in \mathcal{F}$ dla n = 1, 2, ..., to $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$
- $P: \mathcal{F} \rightarrow [0,1] \ taka, \ \dot{z}e$:
 - $\forall_{A \in \mathcal{F}} P(A) \geqslant 0,$
 - $-P(\Omega)=1,$
 - jeżeli $A_n \in \mathcal{F}$, $n = 1, 2, \dots$ są takie, że $A_i \cap A_j \neq \emptyset$ dla $i \neq j$ to

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n).$$

W poniższej definicji zostało użyte pojęcie σ -algebry, którego wyjaśnienie można odnaleźć w [2, Sec 1.2 Def. 1.2].

Definicja 2.17 (B (\mathbb{R}^n) [2, Sec 1.12]). Niech \mathcal{I} oznacza klasę wszystkich zbiorów, składających się ze skończonych sum rozłącznych zbiorów $I = I_1 \times I_2 \times \ldots \times I$, gdzie $I_k = [a_k, b_k)$. Najmniejszą σ -algebrę $\sigma(\mathcal{I})$ generowaną przez klasę zbiorów \mathcal{I} nazywa się σ -algebrą borelowską zbiorów w \mathbb{R}^n i oznacza się B (\mathbb{R}^n).

Definicja 2.18 (Zmienna losowa [3, Sec 5.1 Def. 1]). Odwzorowanie $X : \Omega \to \mathbb{R}^n$ nazywamy zmienną losową o wartościach w \mathbb{R}^n , jeśli dla każdego $A \in B(\mathbb{R}^n)$ zbiór $X^{-1}(A) \in \mathcal{F}$.

Definicja 2.19 (Wartość oczekiwana [3, Sec 5.6 Def. 2]). Wartością oczekiwaną zmiennej losowej X o wartościach w \mathbb{R} nazywamy liczbę:

$$E(X) = \int_{\Omega} X dP,$$

jeżeli X jest P-całkowalna, tzn. jeżeli zachodzi:

$$E(X) = \int_{\Omega} |X| dP < \infty.$$

Definicja 2.20 (Kowariancja [2, Sec 2.8 Def.2.32]). Kowariancją zmiennych losowych X, Y nazywamy liczbę:

$$\mathrm{Cov}\left(X;Y\right)=\mathrm{E}\left((X-\mathrm{E}\left(X\right))(Y-\mathrm{E}\left(Y\right))\right).$$

Definicja 2.21 (Wariancja zmiennej losowej [2, Sec 2.8 Def.2.28]). Wariancją zmiennej losowej X nazywamy liczbę:

$$Var(X) = E((X - E(X))^{2}),$$

jeżeli wyznaczona wartość oczekiwana istnieje.

Definicja 2.22 (Odchylenie standardowe [2, Sec 2.8 Def.2.28]). Odchyleniem standardowym zmiennej losowej X nazywamy liczbę:

$$\sigma\left(\mathbf{X}\right) = \sqrt{\mathrm{Var}\left(\mathbf{X}\right)}.$$

Definicja 2.23 (Współczynnik korelacji [2]). Współczynnikiem korelacji nazywamy charakterystykę ilościową stopnia zależności dwóch zmiennych losowych X i Y zdefiniowaną następująco:

$$\rho\left(\mathbf{X},\mathbf{Y}\right) = \frac{\mathrm{Cov}\left(\mathbf{X};\mathbf{Y}\right)}{\sigma\left(\mathbf{X}\right)\sigma\left(\mathbf{Y}\right)}.$$

Rozdział 3

Elementy eksploracji danych wykorzystywane w systemach rekomendujących

Większość systemów rekomendujących opiera się na algorytmach, które możemy rozumieć jako różne technik eksploracji danych. Zazwyczaj proces eksploracji danych składa się z trzech kroków:

- 1. wstępne przetwarzanie danych,
- 2. analiza danych,
- 3. interpretacja wyników.

W tym rozdziale zostaną przeanalizowane najważniejsze i najczęściej używane w regułach rekomendujących metody. Zaczniemy od miar podobieństw i redukcji wymiaru. W kolejnym etapie spojrzymy na metody klasyfikacji, grupowania i regresji, aby zakończyć interpretacją wyników i oceną błędów obliczeń.

3.1 Wstępne przetwarzanie danych

Przed przystąpieniem do kroku analizy dane wymagają przygotowania: wyczyszczenia, przefiltrowania, transformacji. Dopiero tak przygotowane dane mogą zostać poddane zadaniom uczenia maszynowego. W tej sekcji zostaną przedstawione problemy, które spotykamy przy tworzeniu reguł rekomendujących.

3.1.1 Miary podobieństwa

W systemach rekomendujących bardzo częstym podejściem jest używanie metod klasyfikacji i grupowania. Metody te opierają się na obliczaniu podobieństw i odległości. Najprostszym i jednocześnie najczęściej używanym podejściem jest odległość euklidesowa.

Definicja 3.1 (Odległość euklidesowa [1]). Niech $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $n \in \mathbb{N}$. Odległością euklidesową \mathbf{x} i \mathbf{y} nazywamy:

$$d_{e}(x,y) = \sqrt{\sum_{k=1}^{n} (\mathbf{x}_{k} - \mathbf{y}_{k})^{2}}.$$

Warto również wspomnieć o uogólnionej wersji odległości euklidesowej - odległości Minkowskiego.

Uwaga 3.2. Odległość Minkowskiego wyrażamy wzorem:

$$d_r(x, y) = (\sum_{k=1}^n |x_k - y_k|^r)^{\frac{1}{r}}.$$

W zależności od wartości stopnia odległości r odległość Minkowskiego przyjmuje konkretne nazwy:

- r = 1 odległość manhatan,
- r=2 wspomniana wcześniej odległość euklidesowa,
- $r \to \infty$ supremum.

Kolejnym podejściem, gdzie poszczególne elementy są postrzegane jako n - wymiarowe wektory, a podobieństwo między nimi jest obliczane na podstawie kąta, który tworzą jest odległość kosinusowa.

Definicja 3.3 (Odległość kosinusowa [1]). Niech $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $n \in \mathbb{N}$. Odległością kosinusową nazywamy funkcję $\mathbf{d} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ opisaną wzorem:

$$d(\mathbf{x}, \mathbf{y}) = 1 - \sin(\mathbf{x}, \mathbf{y}),$$

 $gdzie ext{ sim}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ wyznacza współczynnik podobieństwa wektorów \mathbf{x} i \mathbf{y} według formuły:

$$\operatorname{sim}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{k=1}^{n} x_k y_k}{\sqrt{\sum_{k=1}^{n} x_k} \sqrt{\sum_{k=1}^{n} y_k}}.$$

Innym podejściem pozwalającym modelować podobieństwo wektorów jest korelacja Pearsona, którą definiujemy następująco:

Definicja 3.4 (Współczynnik korelacji Pearsona [1]). Niech X, Y będą zmiennymi losowymi o rozkładach ciągłych oraz niech $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ oznaczają losową próbę prostą. Przez \bar{x} i \bar{y} oznaczmy:

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k, \ \overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k.$$

Wówczas współczynnikiem korelacji Pearsona nazywamy:

$$\rho^{\mathrm{p}}(\mathbf{X}, \mathbf{Y}) = \frac{\sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})}{\sqrt{\sum_{k=1}^{n} (x_k - \overline{x})^2} \sqrt{\sum_{k=1}^{n} (y_k - \overline{y})^2}}.$$

Przy innych rodzajach danych do opisu podobieństwa używany jest wskaźnik nazywany Indeksem Jaccarda (współczynnik podobieństwa Jaccarda).

Definicja 3.5 (Indeks Jaccarda [8]). Niech A i B oznaczają zbiory. Indeksem Jaccarda (podobieństwem Jaccarda) nazywamy funkcję:

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}.$$

3.1.2 Redukcja wymiaru

Zbyt duża ilość zmiennych, które opisują obserwacje powoduje wzrost prawdopodobności, że zmienne te są ze sobą skorelowane, a informacje wnoszone przez część zmiennych są redundantne. Proces redukcji wymiaru pozwala przezwyciężyć ten problem poprzez transformację przestrzeni danych do przestrzeni o mniejszej liczbie wymiarów. W poniższym rozdziale przyjrzymy się najczęściej wybieranemu algorytmom redukcji wymiarów w kontekście reguł rekomendujących. Jest to Rozkład Według Wartości Osobliwych (ang. Singular Value Decomposition (SVD)).

Definicja 3.6 (Rozkład Według Wartości Osobliwych [10]). Rozkładem według wartości osobliwych $m \times n$ - wymiarowej macierzy \mathbb{X} , gdzie $m \geqslant n$ nazywamy odszukanie takich macierzy $\mathbb{U}, \Sigma, \mathbb{V}$, że:

$$\mathbb{X} = \mathbb{U}\Sigma\mathbb{V}^T$$

qdzie:

- $\mathbb{U}^T \mathbb{U} = \mathbb{V}^T \mathbb{V} = \mathbb{I}$, \mathbb{U} jest wymiaru $m \times m$ oraz \mathbb{V} wymiaru $n \times n$,
- Σ jest macierzą diagonalną o nieujemnych wartościach, $\Sigma = diag(\sigma_1, \sigma_2, ..., \sigma_n)$, $n \in \mathbb{N}$ taką, że $\sigma_1 > 0$ dla $1 \leq i \leq \operatorname{rz}(\mathbb{X})$ i $\sigma_1 = 0$ dla $i \geq \operatorname{rz}(\mathbb{X}) + 1$ (macierz Σ jest macierzą wymiaru $m \times n$, gdzie $\sigma_{ij} = 0$, gdy $i \neq j$).

Uwaga 3.7. Niezerowe wyrazy macierzy Σ nazywamy wartościami osobliwymi macierzy \mathbb{X} . Kolumny macierzy \mathbb{U} i \mathbb{V} nazywamy odpowiednio lewymi i prawymi wektorami szczególnymi macierzy \mathbb{X} .

Definicja 3.8 (Wartość osobliwa macierzy [13]). Wartością osobliwą σ_k macierzy \mathbb{X} nazywamy

$$\sigma_k = \sqrt{\lambda_k},$$

gdzie λ_k , $k \in \mathbb{N}$ jest wartością własną macierzy $\mathbb{X}\mathbb{X}^T$.

Definicja 3.9 (Norma Frobeniusa[10]). Niech $\mathbb{A} \in \mathbb{M}_{m \times n}(\mathbb{R})$. Normą Frobeniusa nazywamy:

$$\|\mathbb{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\operatorname{tr}(\mathbb{A}^T \mathbb{A})}.$$

W poniższym twierdzeniu zostaną użyte pojęcia jadra i obrazu, których wyjaśnienia możemy odnaleźć w książce Algebra liniowa z elementami geometrii analitycznej [6, Sec 9.1].

Twierdzenie 3.10 (Warunki równoważne SVD [10]). Niech rozkład według wartości osobliwych macierzy X będzie dany wzorem

$$\mathbb{X} = \mathbb{U}\Sigma\mathbb{V}^T$$

 $gdzie \ \mathbb{U} = [u_1, u_2, ... u_m], \ \mathbb{V} = [v_1, v_2, ... v_n], \ \Sigma = diag(\sigma_1, \sigma_2, ..., \sigma_n) \ oraz \ \sigma_1 \geqslant \sigma_2 \geqslant ... \geqslant \sigma_r > \sigma_{r+1} = ... = \sigma_n = 0. \ R(\mathbb{X}) \ i \ N(\mathbb{X}) \ oznaczają \ zakres \ i \ jądro \ macierzy. \ Wtedy:$

- 1. właściwości rzędu macierzy: $\operatorname{rz}(\mathbb{X}) = r$, $N(\mathbb{X}) = \operatorname{span}(v_{r+1}, ..., v_n)$, $R(\mathbb{X}) = \operatorname{span}(u_1, u_2, ..., u_r)$,
- 2. $\mathbb{X} = \sum_{i=1}^{r} u_i \cdot \sigma_i \cdot v_i^T$
- 3. $||\mathbb{X}||_F^2 = \sigma_1^2 + ... + \sigma_r^2 i ||\mathbb{X}||_2^2 = \sigma_1.$

Twierdzenie 3.11 (Twierdzenie Eckart - Younga [10]). Niech \mathbb{X} będzie macierzą $m \times n$ - wymiarową z rozkładem według wartości osobliwych $\mathbb{X} = \mathbb{U}\Sigma\mathbb{V}^T$, rz (\mathbb{X}) $\in \mathbb{N}$ niech będzie rzędem macierzy i rz (\mathbb{X}) $\leq p$. Zdefiniujmy:

$$X_k = \sum_{i=1}^k u_i \cdot \sigma_i \cdot v_i^T,$$

wtedy

$$\min_{\mathbf{z} \in \mathbb{R} \setminus =k} ||\mathbf{X} - \mathbf{B}||_F^2 = ||\mathbf{X} - \mathbf{X}_k||_F^2 = \sigma_{k+1}^2 + \dots + \sigma_p^2.$$

Aby udowodnić twierdzenie Eckart - Younga wprowadźmy twierdzenie Weylsa:

Twierdzenie 3.12 (Twierdzenie Weylsa [13]). Niech $\mathbb{X}, \mathbb{Y} \in \mathbb{M}_{m \times n}(\mathbb{K})$ oraz $r = \min\{m, n\}$. Dodatkowo niech odpowiednio $\sigma_1(\mathbb{X}) \geqslant \sigma_2(\mathbb{X}) \geqslant \ldots \geqslant \sigma_r(\mathbb{X}) \geqslant 0$, $\sigma_1(\mathbb{Y}) \geqslant$

 $\sigma_2(\mathbb{Y}) \geqslant \ldots \geqslant \sigma_r(\mathbb{Y}) \geqslant 0 \ i \ \sigma_1(\mathbb{Z}) \geqslant \sigma_2(\mathbb{Z}) \geqslant \ldots \geqslant \sigma_r(\mathbb{Z}) \geqslant 0 \ beda \ wartościami osobliwymi macierzy <math>\mathbb{X}, \mathbb{Y}, \mathbb{Z} = \mathbb{X} + \mathbb{Y}. \ Wtedy:$

$$\sigma_{i+j-1}(\mathbb{Z}) \leqslant \sigma_i(\mathbb{X}) + \sigma_j(\mathbb{Y}),$$

 $gdzie \ 1 \leqslant i, j \leqslant r, \ i+j \leqslant r+1.$

Dowód. [Twierdzenia Eckart - Younga]

Niech $\mathbb{X} \in \mathbb{M}_{m \times n}(\mathbb{R})$ będzie macierzą o wartościach rzeczywistych, gdzie $m \geqslant n$. Załóżmy, że

$$\mathbb{X} = \mathbb{U}\Sigma\mathbb{V}^T$$

jest rozkładem według wartości osobliwych macierzy \mathbb{X} . Chcemy pokazać, że najlepszym przybliżeniem macierzy \mathbb{X} w normie Frobeniusa (oznaczamy $||\cdot||_F$) jest

$$X_k = \sum_{i=1}^k u_i \cdot \sigma_i \cdot v_i^T,$$

gdzie u_i i v_i oznaczają odpowiednio i-te kolumny macierzy \mathbb{U} i \mathbb{V} . Zauważmy, że z własności 3. twierdzenia o warunkach równoważnych SVD mamy:

$$||\mathbb{X} - \mathbb{X}_k||_F^2 = ||\sum_{i=k+1}^n u_i \cdot \sigma_i \cdot v_i^T||_F^2 = \sum_{i=k+1}^n \sigma_i^2.$$

Stąd należy udowodnić, że $\mathbb{B}_k = \mathbb{X}\mathbb{Y}^T$, gdzie \mathbb{X} i \mathbb{Y} są macierzami oraz

$$||\mathbb{X} - \mathbb{X}_k||_F^2 = \sum_{i=k+1}^n \sigma_i^2 = ||\mathbb{X} - B_k||_F^2.$$

Niech $\mathbb{X} = \mathbb{X}' + \mathbb{X}''$. Korzystając z Twierdzenia Weylsa mamy:

$$\sigma_{i+j-1}(\mathbb{X}) \leqslant \sigma_i(\mathbb{X}') + \sigma_j(\mathbb{X}'').$$

Jeżeli

$$\sigma_{k+1}(\mathbb{B}_k) = 0,$$

kiedy $\mathbb{X}^{`}=\mathbb{X}-\mathbb{B}_k$ i $\mathbb{X}^{``}=\mathbb{B}_k$ wnioskujemy, że dla $i\geqslant 1, j=k+1$

$$\sigma_i(\mathbb{X} - \mathbb{B}_k) \geqslant \sigma_{k+1}(\mathbb{X}).$$

Stąd:

$$||\mathbb{X} - \mathbb{B}_k||_F^2 = \sum_{i=1}^n \sigma_i (\mathbb{X} - \mathbb{B}_k)^2 \geqslant \sum_{k=1}^n \sigma_i (\mathbb{X})^2.$$

Z własności 3. twierdzenia o warunkach równoważnych SVD mamy:

$$\sum_{k=1}^{n} \sigma_i(\mathbb{X})^2 = ||\mathbb{X} - \mathbb{X}_k||_F^2.$$

Zawsze jest możliwe dokonać dekompozycji macierzy $\mathbb X$ do postaci $\mathbb X=\mathbb U\Sigma\mathbb V^T.$

3.2 Metody eksploracji danych

Termin eksploracja danych jest często używany jako określenie procesu odkrywania wiedzy z danych. Często jednak terminem "proces odkrywania wiedzy" określamy cały proces pracy z danymi, natomiast termin "eksploracja danych" odnosi się do etapu odkrywania pewnego rodzaju reguł.

Jak podaje Tadeusz Morzy [7] w metodach eksploracji można wyróżnić:

- odkrywanie asocjacji,
- klastrowanie,
- odkrywanie wzorców sekwencji,
- odkrywanie klasyfikacji,
- odkrywanie podobieństw w przebiegach czasowych,
- wykrywanie zmian i odchyleń.

W tej sekcji zostaną przedstawione te metody, które stosowane są najczęściej w regułach rekomendujących.

3.2.1 Algorytm k - najbliższych sąsiadów

Opis poniższego algorytmu oparty został na [1, Sec 2.3.1].

Algorytm k-najbliższych sąsiadów (k-NN) jest powszechnie używanym algorytmem klasyfikacji.

Przyporządkowanie nowych elementów zostaje przeprowadzone na podstawie porównania obserwacji z k najbardziej podobnymi jej obiektami ze zbioru treningowego. Podstawowa założenie algorytmu mówi, że jeżeli nowy rekord znajduje się w pewnym otoczeniu, to na podstawie k - najbliższych mu obserwacji zostanie przyporządkowana do niego klasa, której pojawienie się w rozważanym zbiorze jest najliczniejsze.

Niech q będzie punktem dla którego chcemy odnaleźć jego klasę l.

 $X = \{\{x_1, l_1\}, \dots, \{x_n, l_n\}\}$ niech będzie zbiorem treningowym, gdzie x_j jest j-tym elementem zbioru, natomiast l_j etykietką klasy do której zbiór należy, $j \in \{1, \dots, n\}$.

Przeprowadzając algorytm k-NN zaczynamy od wyboru podzbioru

$$Y = \{\{y_1, l_1\}, \dots, \{y_k, l_k\}\},\$$

 $k \in \{1, \dots, n\}$ takiego, że $Y \in X$ oraz

$$\sum_{1}^{k} d(q, y_k)$$

jest minimalna. Y zawiera więc k punktów z X, które leżą najbliżej rozważanego punktu q. Następnie do punktu q zostaje przyporządkowana klasa taka, że

$$l = f(\{l_1, \ldots, l_k\})$$
.

Rysunek 3.1: Metoda k - najbliższych sąsiadów. (źródło własne)

Na powyższym rysunku widzimy przykładowe zastosowanie algorytmu k-NN. Na pierwszym rysunku przedstawiony został zbiór treningowy z podziałem na dwie klasy (rąby, koła) oraz punkt, który będziemy chcieli przyporządkować do jednej z nich (trójkąt). Na drugim przedstawiono natomiast dwa koła, jedno prezentujące najbliższe sąsiedztwo dla k=3, drugie dla k=9. W obu przypadkach nowy punkt (trójkąt) zostanie przyporządkowany do klasy l_1 . Warto jednak zauważyć, że znajduje się on na granicy dwóch klastrów przez co przy innym wyborze k może zostać przyporządkowany do klasy l_2 .

Opisana metoda przyporządkowuje wybranemu rekordowi najbardziej mu podobne. Wykorzystuje do tego miary odległości.

Najtrudniejszym zadaniem przy przeprowadzaniu algorytmu k-NN jest często wybór k. Jeżeli k będzie zbyt małe - klasyfikator stanie się bardzo wrażliwy, jeżeli jednak k będzie zbyt duże sąsiedztwo może zawierać zbyt dużo punktów z innych klas. Rozważając przypadek z rysunku 3.1 łatwo zauważyć, że nawet mała zmiana w obserwacjach zbioru treningowego może doprowadzić do zmiany wyniku.

3.2.2 Algorytm k - średnich

Opis poniższego algorytmu oparty został na [9, Sec 2.3.1].

Algorytm k-średnich jest prostym i zarazem efektywnym algorytmem grupowania.

Głównym celem algorytmu jest podział pewnego zbioru X:

$$X = {\mathbf{x}_i = (\mathbf{x}_{i1}, \dots, \mathbf{x}_{id}) : i \in {1, \dots, N}},$$

gdzie \mathbf{x}_i jest d - wymiarowym wektorem cech opisującym obiekt na podzbiory.

W wyniku grupowania n - elementowego zbioru X na k podgrup jest macierz podziału \mathbb{A} o wymiarach $k \times n$. Każdy z elementów tej macierzy a_{ik} oznacza stopień w jakim wektor \mathbf{x}_k przynależy do grupy. Na wstępie algorytmu ustalamy wartość parametru k jako liczbę grup, które zostaną wyodrębnione. Wybieramy k reprezentantów, które stanowią prototypy grup.

Rysunek 3.2: Metoda k-średnich. Wybór początkowych środków. (źródło własne)

W powyższym przykładzie (rysunek 3.2) wybranymi środkami są punkty p1, p2, p3. Kolejnym krokiem jest przypisanie każdego z elementów do najbliższej mu grupy.

Rysunek 3.3: Metoda k-średnich. Przypisanie elementów do grup.(źródło własne)

Dla każdej z tak ustalonych grup obliczamy średnią arytmetyczną współrzędnych, które staną się kolejnymi środkami.

Rysunek 3.4: Metoda k-średnich. Wybór nowych środków.(źródło własne)

Kroki te są wykonywane do momentu występowania migracji między obiektami. W algorytmie k-średnich liczba grup pozostaje więc niezmienną, zmienna jest tylko przynależność do grup. W metodzie tej poszukiwanie optymalnego podziału odpowiada wyznaczaniu takich grup, które minimalizują następującą funkcje kryterialną:

$$J(\mathbf{p}, \mathbb{A}) = \sum_{i=1}^{k} \sum_{k=1}^{N} a_{ki} d(\mathbf{p}_{i}, \mathbf{x}_{k})^{2},$$

gdzie

- d $(\mathbf{p}_i, \mathbf{x}_k)$ oznacza odległość elementu reprezentowanego przez wektor \mathbf{x} od grupy wyznaczonej przez środek \mathbf{p} ,
- N to liczebność zbioru X,
- A oznacza macierz podziału.

3.3 Szacowanie błędów obliczeń

3.3.1 Ocena dokładności metody

Najczęściej używanymi miarami dokładności modelu są:

- błąd średni (Mean Error),
- średni błąd bezwzględny (Mean Absolute Error),
- średni błąd kwadratowy (Mean Squared Error).

Niech dla elementu i ze zbioru $P = \{x_1, \ldots, x_n\}$ będzie dostarczona predykcja \hat{r}_i . Aby ocenić jakość jej wyniku należy porównać ją ze znaną wartością r_i .

Definicja 3.13 (Błąd średni [1, Sec 4.1.1]). Średnim błędem nazywamy wartość wyrażenia:

$$ME = \frac{1}{|P|} \sum_{x_i \in P} (\widehat{r}_i - r_i).$$

Definicja 3.14 (Średni błąd bezwzględny [1, Sec 4.1.1]). Średnim błędem bezwzględnym nazywamy wartość wyrażenia:

$$MAD = \frac{1}{|P|} \sum_{r_i \in P} |\widehat{r}_i - r_i|.$$

Definicja 3.15 (Średni błąd kwadratowy [1, Sec 4.1.1]). Średnim błędem kwadratowym nazywamy wartość wyrażenia:

$$MSE = \frac{1}{|P|} \sum_{x_i \in P} (\hat{r}_i - r_i)^2.$$

Uwaga 3.16. [1, Sec 4.1.1] Funkcja kwadratowa jest funkcją wypukłą co pozwala na dość częste zastępowanie średniego błędu kwadratowego przez średnią kwadratową błędów (Root Mean Squared Error (RMSE)):

$$RMSE = \sqrt{MSE}$$

Normalized RMSE (NRMSE) oraz Normalized MAE (NMAE) są znormalizownymi, przez użycie zakresu wartości $r_{max} - r_{min}$, wersjami błędów RMSE i MAE.

Kolejnym rodzajem powszechnie używanego błędu, który pozwala na użycie sum ważonych jest średni błąd RMSE (Average RMSE).

Definicja 3.17 (Średni błąd RMSE [1, Sec 4.1.1]). Niech $w_i > 0$ będzie wagę dla elementu i oraz niech $\sum w_i = 1$.

Średnim błędem RMSE nazywamy wartość wyrażenia:

$$ARMSE = \sqrt{\sum_{x_i \in P} w_i (\hat{r}_i - r_i)^2}.$$

3.3.2 Ocena jakości modelu

Ocenę jakości modelu przeprowadza się na zbiorze testowym. Dla każdego z rekordów jest znana jego etykieta. Rekordy te są poddawane działaniu modelu, a następnie etykiety przypisane rekordom przez model są porównywalne z rzeczywistymi wartościami etykiet.

W następnym kroku zliczana jest liczba rekordów poprawnie i niepoprawnie zaklasyfikowanych przez model, a wynik testu zostaje przestawiony w postaci macierzy pomyłek.

Definicja 3.18 (Macierz pomyłek [7, Sec 4.8.1]). Macierzą pomyłek nazywamy macierz kwadratową $m \times m$ (m oznacza liczbę etykiet), gdzie wiersze reprezentują etykiety faktyczne, natomiast kolumny etykiety przyporządkowane rekordom przez model. Element macierzy \mathbb{F} oznacza liczbę rekordów z etykietą E_i , którym błędnie została przypisana etykieta E_j .

\mathbb{F}	E_1	E_2
E_1	f_{11}	f_{12}
E_2	f_{21}	f_{22}

Tabela 3.1: Macierz pomyłek.

Uwaga 3.19. [7, Sec 4.8.1] Często elementy macierzy pomytek dla problemów klasyfikacji binarnej oznacza się symbolami : TP, TN, FN, FP. Oznaczenia te symbolizują cztery możliwe przypadki występujące w klasyfikacji binarnej. Załóżmy, że wyróżniamy klasę pozytywną (+) i negatywną (-). Wtedy :

- TP (ang. true positive) liczba pozytywnych rekordów testowych zaklasyfikowanych do klasy pozytywnej,
- FN (ang. false negative) liczba pozytywnych rekordów testowych zaklasyfikowanych do klasy negatywnej,

- FP (ang. false positive) liczba negatywnych rekordów testowych zaklasyfikowanych do klasy pozytywnej,
- TN (ang. true negative) liczba negatywnych rekordów testowych zaklasyfikowanych do klasy negatywnej.

Macierz pomyłek przyjmuje wtedy postać:

\mathbb{F}	+	_
+	TP	FN
_	FP	TN

Tabela 3.2: Macierz pomyłek - przypadek klasyfikacji binarnej.

Poprzez analizę macierzy pomyłek bez problemu obliczymy łączną liczbę rekordów zaklasyfikowanych poprawnie oraz rekordów przypisanych błędnie przez klasyfikator.

Analizę zawartości macierzy można rozszerzyć o dodatkową informację - koszt błędnej klasyfikacji (ang. misclassification cost).

Definicja 3.20 (Koszt błędnej klasyfikacji [7, Sec 4.8.1]). Oznaczmy przez e_{ij} koszt błędnego zaklasyfikowania do klasy E_j rekordu, który w rzeczywistości należy do klasy E_i . Koszt poprawnej klasyfikacji oznaczmy przez e_{ii} oraz załóżmy, że \forall_i $e_{ii} = 0$. Dodatkowo niech f_t oznacza liczbę wszystkich przykładów testowych, f_p liczbę poprawnie zaklasyfikowanych rekordów testowych oraz $f_p = \sum_{i=1}^m f_{ii}$, f_b niech natomiast oznacza liczbę błędnych klasyfikacji i $f_b = f_t - f_p$.

Kosztem błędnej klasyfikacji $E(f_b)$ nazywamy sumę:

$$E(f_b) = \sum_{i=1}^{m} \sum_{j=1}^{m} f_{ij} \cdot e_{ij}.$$

W przypadkach, gdy błędne zaklasyfikowania rekordów nie różnią się kosztami, do oceny jakości klasyfikatora można wykorzystać miary takie jak trafność klasyfikacji (ang. accuracy) oraz błąd klasyfikacji (ang. error rat).

Definicja 3.21 (Trafność klasyfikacji [7, Sec 4.8.1]). *Trafnością klasyfikacji nazywamy stosunek liczby popranie zaklasyfikowanych rekordów testowych do łącznej liczby rekordów testowych:*

 $TR = \frac{f_p}{f_t} = \frac{\sum_{i=1}^m f_{ii}}{f_t}.$

Definicja 3.22 (Błąd klasyfikacji [7, Sec 4.8.1]). Błędem klasyfikacji nazywamy stosunek liczby błędnie zaklasyfikowanych rekordów testowych do łącznej liczby rekordów testowych:

 $BK = \frac{f_b}{f_t} = \frac{\sum_{i=1}^m \sum_{j=1}^m f_{ij}}{f_t} = 1 - \frac{f_p}{f_t}.$

Uwaga 3.23. [7, Sec 4.8.1] Innymi miarami, które można wywnioskować bezpośrednio z macierzy pomyłek dla klasyfikacji binarnej (tabla 3.2) są:

• współczynnik TP (czułość):

$$WTP = \frac{TP}{TP + FN},$$

• współczynnik FP:

$$WFP = \frac{FP}{FP + TN},$$

• współczynnik TN (specyficzność):

$$WTN = \frac{TN}{FP + TN},$$

• precyzja:

$$precyzja = \frac{TP}{TP + FP},$$

• zwrot:

$$zwrot = \frac{TP}{TP + FN},$$

 \bullet F-miara:

$$F-miara = \frac{2 \cdot precyzja \cdot zwrot}{precyzja \cdot zwrot}.$$

Rozdział 4

Modele tworzenia rekomendacji

W niniejszym rozdziale zajmiemy się formalnym zdefiniowanie zadania, które ukrywa się pod nazwą tworzenia rekomendacji. Do jego poprawnego określenia będą przydatne następujące pojęcia.

Definicja 4.1 (Przedmiot [12, Sec 1.3]). Przedmiotem nazwiemy klasę obiektów tego samego typu, nierozróżnialnych dla obserwatora i reprezentowanych przez co najmniej jeden element. W dalszej cześci pracy zbiór przedmiotów bedziemy oznaczać przez P.

Przedmioty stanowią podstawową grupę elementów w rozważaniach systemach rekomendujących.

Definicja 4.2 (Użytkownik [12, Sec 1.3]). Użytkownikiem nazywamy osobę zdolną do przedstawienia własnej oceny wybranego przedmiotu. W dalszej części pracy zbiór użytkowników będziemy oznaczać przez U.

W pracy [12] użyty jest zawsze ten sam zbiór ocen, jednak łatwo możemy pokusić się o jego uogólnioną definicję.

Definicja 4.3 (Zbiór ocen [12, Sec 1.3]). Podzbiór skończony zbioru \mathbb{N} lub $\mathbb{N} \cup \{0\}$ nazywamy zbiorem ocen dla przedmiotów. W dalszej części pracy zbiór ocen będziemy oznaczać przez O.

Definicja 4.4 (Macierz preferencji [12, Sec 1.3]). Rozważmy zbiór przedmiotów o liczności n oraz grupę użytkowników o liczności m. Macierzą preferencji M nazwiemy macierz o wymiarach $n \times m$ i wartościach w ustalonym zbiorze ocen.

Z uwagi na to, że przedmioty jako wytwory świata rzeczywistego są niemożliwe do opisania za pomocą skończonej liczby cech rozważa się ich skończoną reprezentację nazywaną wektorem własności.

Definicja 4.5 (Własność [12, Sec 1.3]). Własnością nazwiemy cechę wyrażoną za pomocą wartości liczbowej lub pewnej zmiennej kategorycznej, która reprezentuje cechę przedmiotu istotną dla użytkownika w procesie tworzenia oceny. Zbiór wszystkich własności w rozważanym modelu oznaczamy W. Dla każdej $w \in W$ poprzez V_w rozumiemy zbiór wszystkich dopuszczalnych wartości własności w.

Definicja 4.6 (Funkcja anotująca [12, Sec 1.3]). Funkcją anotującą własność $w \in W$ nazwiemy funkcję

$$a_w \colon P \to V_w$$
.

Mając na uwadze, że zbiór W jest skończony (jak również zbiór P) można utożsamiać funkcję anotującą z wektorem o długości |W| nazywanym wektorem własności.

Definicja 4.7 (Funkcja przynależności [16, Sec 4.2]). Funkcja przynależności nazywamy funkcję

$$\mu_W(p_i): P \to [0,1]$$

określa stopień przynależności przedmiotu $p_i \in P$ do zbioru $W = \{w_k\}$.

Definicja 4.8 (Problem tworzenia rekomendacji [12, Sec 1.3]). Rozważmy pewien zbiór przedmiotów P, pewien zbiór użytkowników U oraz pewien zbiór ocen O. Niech ponadto R będzie funkcją taką, że:

$$R: P \times U \rightarrow O$$
.

Załóżmy, że dla funkcji R znane są wartości dla pewnych par przedmiotów i użytkowników. Naszym zadaniem jest zaproponowanie sposobu predykcji brakujących wartości funkcji R w sposób minimalizujący wybrany funkcjonał błędu.

Przyjrzyjmy się następującemu przykładowi, który ilustruje istotę problemu.

Przykład 4.1. Niech zbiór przedmiotów będzie w tym przypadku zbiorem sześciu książek. Zatem $P = \{p_1, p_2, p_3, p_4, p_5, p_6\}$, gdzie p_i dla $i \in \{1, 2, 3, 4, 5, 6\}$ oznacza i - tą książkę. Zbiór użytkowników niech będzie zbiorem czytelników. Zatem $U = \{u_1, u_2, u_3, u_4, u_5, u_6\}$, gdzie u_i dla $i \in \{1, 2, 3, 4, 5, 6\}$ oznacza i - tego czytelnika. Poniższa tabela to macierz preferencji dla ustalonego zbioru P i ustalonego zbioru U. Znak '?' oznacza brakujące wartości funkcji R, zatem czytelnik danej książki nie czytał lub czytał lecz jego ocena jest nieznana.

Czytelnicy		$\mathbf{u_1}$	$\mathbf{u_2}$	$\mathbf{u_3}$	$\mathbf{u_4}$	$\mathbf{u_5}$	u_6
Książki	$\mathbf{p_1}$	6	3	?	6	4	?
	$\mathbf{p_2}$?	6	6	5	6	?
	p_3	7	7	8	7	8	9
	p_4	8	10	10	7	6	8
	$\mathbf{p_5}$	9	6	6	6	6	?
	p_6	5	7	7	5	4	2

Zadaniem jest przewidzieć brakujące wartości funkcji R, czyli oceny nadane przez użytkowników w sposób minimalizujący błąd popełniany przez model.

Uwaga 4.9 (Podział systemów rekomendujących). *Podziału systemów rekomendujących dokonujemy ze względu na zakres wykorzystywanych informacji. Wyróżniamy:*

- systemy rekomendujące oparte na treści,
- filtrowanie kolaboratywne,
- systemy rekomendujące kontekstowe.

W przypadku systemów rekomendujących opartych na treści predykcja jest dokonywana na podstawie ocen wystawionych przedmiotom przez użytkowników oraz wektorów własności rozważanych przedmiotów.

W filtrowaniu kolaboratywnym wektory cech zostają pominięte, a predykcja dokonywana jest na podstawie ocen. Wyróżniamy dwa typy filtrowania kolaboratywnego:

• filtrowanie oparte na użytkownikach

Niech $\mathbf{u}_1 = [o_{1,1}, \dots, o_{1,n}]$ oraz $\mathbf{u}_2 = [o_{2,1}, \dots, o_{2,n}]$ będą wektorami opisującymi odpowiednio użytkownika u_1 i u_2 . Elementami wektorów są wartości funkcji R w przypadkach, gdzie zarówno użytkownik u_1 , jak i u_2 ocenili ten sam przedmiot. Główne założenie filtrowania kolaboratywnego opartego na użytkownikach mówi, że jeżeli odległość między wektorami \mathbf{u}_1 i \mathbf{u}_2 jest mała oraz użytkownik u_1 ocenił pewien przedmiot dla którego użytkownik u_2 jeszcze nie wystawił oceny, to prawdopodobnie ocena użytkownika u_2 będzie podobna do oceny użytkownika u_1 .

• filtrowanie oparte na elementach

Niech $\mathbf{p}_1 = [o_{1,1}, \dots, o_{1,n}]$ oraz $\mathbf{p}_2 = [o_{2,1}, \dots, o_{2,n}]$ będą wektorami opisującymi odpowiednio przedmiot p_1 i p_2 . Elementami wektorów są wartości funkcji R w przypadkach, gdzie przedmiot p_1 , jak i p_2 został oceniony przez tego samego użytkownika. Główne założenie filtrowania kolaboratywnego opartego na elementach mówi, że jeżeli odległość między wektorami \mathbf{p}_1 i \mathbf{p}_2 jest mała oraz użytkownik

ocenił w pewien sposób przedmiot p_1 w przeszłości to będzie skłonny w podobny sposób ocenić przedmiot p_2 .

Systemy rekomendujące kontekstowe są natomiast systemami rekomendującymi opartymi na treści w których zostaje uwzględniony dodatkowy wymiar - kontekst.

4.1 Systemy rekomendujące oparte na treści - Contentbased recommender systems

Rozważania zawarte w tej sekcji zostały przeprowadzone na podstawie książki Gorakala S. K.: Building Recommendation Engines [8, Sec 3] oraz kursu autorstwa Andrew N.: Recommender Systems [15].

Systemy oparte na treści wyróżnia ukierunkowanie na spersonalizowany poziom użytkownika oraz treść produktu. Metoda ta opiera się na obliczaniu podobieństw oraz wykorzystuje techniki uczenia maszynowego, takie jak klasyfikacja.

Algorytm 4.10. W metodzie celem stworzenia rekomendacji i wygenerowania listy przedmiotów, które mogę być odpowiednie użytkownikowi opieramy się na treści rozważanych elementów. Algorytm tego rodzaju rekomendacji możemy przedstawić w następujących krokach:

- 1. stworzenie wektora własności $\mathbf{w} = [w_1, \dots, w_n], n \in \mathbb{N}, gdzie \forall_{i \in \{1, \dots, n\}} w_i \in W,$
- 2. wygenerowanie profilów produktów stworzenie wektorów własności \mathbf{w}_{p_i} gdzie poszczególne elementy wektora określają przynależność przedmiotu p_i , $i \in \mathbb{N}$ do odpowiednich elementów wektora własności \mathbf{w} określonego w kroku 1.,
- 3. wygenerowanie profilów użytkowników stworzenie wektorów własności \mathbf{w}_{u_j} przypisanych użytkownikom, gdzie poszczególne elementy wektora określają przynależność opinii użytkownika u_j , $j \in \mathbb{N}$ do elementów wektora własności \mathbf{w} określonego w kroku 1.,
- 4. obliczmy ocenę $\hat{o}_{j,i}$ jaką użytkownik j wystawiłby dla przedmiotu i, którego wcześniej nie oceniał za pomocą funkcji

$$\widehat{o}_{j,i} = \mathbf{w}_{u_j}^T \mathbf{w}_{p_i},$$

5. porównując otrzymane w kroku 3. oceny dokonujemy rekomendacji nowego przedmiotu.

Przykład 4.2. Niech wektor własności będzie określony następująco $\mathbf{w} = [w_1, w_2]$, a każdy z elementów wektora \mathbf{w} niech reprezentuje inny gatunek. Poniższa tabela określa przynależność (w przedziałe [0,1]) każdej z książek do elementów wektora własności \mathbf{w} .

Gatunki		$\mathbf{w_1}$	$\mathbf{w_2}$
Książki	$\mathbf{p_1}$	0.9	0
	$\mathbf{p_2}$	1	0.01
	p_3	0.99	0
	p_4	0.1	1
	p_5	0	0.9
	p_6	0.8	0.3

Dodatkowo zakładamy, że istnieje gatunek w_0 , którego cechy reprezentują wszystkie książki oraz dla każdej z książek $w_0 = 1$.

Zatem wektor własności odpowiadające poszczególnym książkom mają postać

$$\mathbf{w}_{p_1} = [1, 0.9, 0]^T, \ \mathbf{w}_{p_2} = [1, 1, 0.01]^T, \ \mathbf{w}_{p_3} = [1, 0.99, 0]^T,$$

$$\mathbf{w}_{p_4} = [1, 0.1, 1]^T, \ \mathbf{w}_{p_5} = [1, 0, 0.9]^T, \ \mathbf{w}_{p_6} = [1, 0.8, 0.3]^T.$$

Dla każdego użytkownika j wyznaczamy wektor parametrów $\mathbf{w}_{u_j} \in \mathbb{R}^3$, który przedstawia przynależność (w przedziale [0, 1]) opinii użytkownika do elementów wektora własności.

Preferencje czytelników zostaną więc opisane za pomocą wektorów:

$$\mathbf{W}_{u_1}, \ \mathbf{W}_{u_2}, \ \mathbf{W}_{u_3}, \ \mathbf{W}_{u_4}, \ \mathbf{W}_{u_5}, \ \mathbf{W}_{u_6}.$$

Obliczmy ocenę jaką książce p_3 wystawiłby użytkownik u_1 przy założeniu, że wektor preferencji użytkownika u_1 jest postaci $\mathbf{w}_{u_1} = [0, 5, 0]^T$. Użytkownik ten preferuje więc książki gatunku w_1 , gdy książki gatunków w_0 i w_2 są dla niego nieatrakcyjne. Zatem:

$$\widehat{o}_{1,3} = \mathbf{w}_{u_1}^T \mathbf{w}_{p_3} = [0, 5, 0] \cdot [1, 0.99, 0]^T = 0 \cdot 1 + 5 \cdot 0,99 + 0 \cdot 0 = 4,95.$$

Przewidywana ocena jest zatem 4,95.

Po przeprowadzeniu podobnych obliczeń dla wszystkich wcześniej nieznanych ocen możemy zarekomendować naszemu użytkownikowi nową lekturę.

4.1.1 Wygenerowanie profilu dokumentu tekstowego - algorytm TFIDF

Rozważania na temat algorytmu TFIDF zawarte w tym rozdziale zostały przeprowadzone na podstawie książki *Recommender Systems Handbook* [1, Sec 3.3.1.1].

W większość systemów rekomendacji opartych na treści używamy gotowych modeli wyszukujących.

W przypadku rozważań przeprowadzanych na dokumentach tekstowych jednym z najbardziej popularnych jest model przestrzeni wektorowej (ang. Vector Space Model) z algorytmem TFIDF.

Niech $P=\{p_1,p_2,\ldots,p_n\}\,,n\in\mathbb{N}$ będzie zestawem analizowanych przedmiotów. $W=\{w_1,w_2,\ldots,w_n\}\,,\,n\in\mathbb{N}$ niech będzie zbiorem rozważanych własności.

Definicja 4.11 (Model przestrzeni wektorowej [1, Sec 3.3.1.1]). Modelem przestrzeni wektorowej nazywamy formę reprezentacji przedmiotów, w której przedmiot p_i jest reprezentowany przez wektor z przestrzeni n-wymiarowej, a każdy z n wymiarów reprezentuje jedną z rozważanych własności przedmiotu.

Dla danych w formie dokumentów tekstowych przedmiotem p_i jest dokument (artykuł, książka), natomiast własnościami, które charakteryzują temat dokumentu są słowa. Mając na uwadze te założenia możemy zdefiniować kolejne elementy algorytmu TFIDF.

Definicja 4.12 (Liczność [1, Sec 3.3.1.1]). Licznością $f_{k,j}$ nazywamy liczbę wystąpień własności w_k w przedmiocie p_j .

Definicja 4.13 (TF [1, Sec 3.3.1.1]). TF (ang. term frequency) nazywamy funkcję przedstawiającą zależność własności w_k od przedmiotu p_j :

$$TF(w_k, p_j) = \frac{f_{k,j}}{\max_z f_{z,j}},$$

qdzie:

• $\max_z f_{z,i}$ - maksymalna w odniesieniu do wszystkich wartości $w_z \in W$, $z \in \{1,\ldots,n\}$, które pojawiły się w przedmiocie p_i , liczność wystąpień własności.

Definicja 4.14 (IDF [1, Sec 3.3.1.1]). *IDF (ang. inverse dokument frequency) nazy-wamy funkcję:*

 $IDF(w_k) = \log \frac{N}{n_k},$

gdzie:

- N całkowita liczba przedmiotów w zbiorze P,
- n_k liczba przedmiotów w których własność w_k , $k \in \{1, ..., n\}$ wystąpiła przynajmniej raz.

Definicja 4.15 (TFIDF [1, Sec 3.3.1.1]). TFIDF (ang. TF – term frequency, IDF – inverse document frequency) nazywamy funkcję:

$$TFIDF(w_k, p_i) = TF(w_k, p_i) \cdot IDF(w_k).$$

Definicja 4.16 (Waga własności w przedmiocie). Wagą własności w_k w przedmiocie p_i nazywamy wartość:

$$s_{k,i} = \frac{TFIDF(w_k, p_i)}{\sqrt{\sum_{j=1}^{|W|} TFIDF(w_j, p_i)^2}}.$$

Uwaga 4.17. Każdy z dokumentów p_i , $i \in \{1, ..., n\}$ przedstawiamy jako wektor wag własności (słowa) w_k w przedmiocie p_i . Zatem $p_i = [s_{1i}, s_{2i}, ..., s_{ni}]$.

4.2 Filtrowanie kolaboratywne - Collaborative filtering

Rozważania na temat filtrowania kolaboratywnego zostały przeprowadzone na podstawie książki Gorakala S. K.: Building Recommendation Engines [8, Sec 3].

Podejście kolaboratywne omija niektóre ograniczenia występujące w metodach opartych na treści. Dzięki temu systemowi możemy dokonywać rekomendacji z pominięciem wektorów preferencji.

4.2.1 Filtrowanie kolaboratywne oparte na użytkowniku

Algorytm 4.18. Stworzenie rekomendacji filtrowania kolaboratywnego opartej na użytkownikach wykonamy w następujących krokach:

- 1. wybór użytkowników $u_j, u_k \in U, j, k \in \mathbb{N}$, między którymi chcemy obliczyć podobieństwo,
- 2. wybór przedmiotów $p_i \in P$, $i \in \mathbb{N}$, dla których znane wartości funkcji $R(p_i, u_j)$ i $R(p_i, u_k)$,
- 3. stworzenie wektorów ocen $o_{j,k}^{(j)}$ i $o_{j,k}^{(k)}$ dla użytkowników u_j i u_k wybranych w kroku 1., których elementy stanowią wartości $R(p_i, u_j)$ oraz $R(p_i, u_k)$, gdzie p_i to przedmioty wybrane w kroku 2.,
- 4. wyznaczenie odległości między czytelnikami u_j i u_k najczęstszymi stosowanymi podejściami do obliczania odległości są metryka euklidesowa i współczynnik korelacji Pearsona,

- 5. wyznaczenie macierzy odległości \mathbb{U}_1 między wszystkimi czytelnikami ze zbioru U,
- 6. wyznaczenie macierzy odległości U₂ między czytelnikami poprzez normalizację danych w celu uzyskania wartości z przedziału [0,1], wyrazy macierzy przyjmują wartości:

$$\begin{split} u_{ij}^{(2)} &= \frac{u_{ij}^{(1)}}{\max_{o_i} \left\{o_i : o_i \in O, \ i \in \mathbb{N}\right\} - \min_{o_i} \left\{o_i : o_i \in O, \ i \in \mathbb{N}\right\}}, \\ gdzie \ u_{ij}^{(1)} \ i \ u_{ij}^{(2)} \ sq \ odpowiednio \ elementami \ macierzy \ \mathbb{U}_1 \ i \ \mathbb{U}_2, \ i, j \in \mathbb{N}, \end{split}$$

7. wyznaczenie macierzy podobieństwa \mathbb{U}_3 między użytkownikami - zakładając, że największa wartość prawdopodobieństwa to 1 macierz podobieństwa przyjmuje wartości:

$$u_{ij}^{(3)} = 1 - u_{ij}^{(2)},$$

gdzie $u_{ij}^{(2)}$ i $u_{ij}^{(3)}$ są odpowiednio elementami macierzy \mathbb{U}_2 i \mathbb{U}_3 ,

8. wyestymowanie nieznanych wartości funkcji R dla u_j ∈ U, j ∈ N oraz p_i ∈ P, i ∈ N - niech u_j będzie konkretnie ustalonym użytkownikiem, w celu obliczenia brakujących wartości funkcji R dla użytkownika u_j obliczmy średnią ważoną wykorzystując oceny i przyjmując wartości podobieństwa między u_j i innymi użytkownikami jako wagi.

W celu dokładniejszego zrozumienia rozważmy ponownie przykład 4.1.

Przykład 4.3. Chcąc obliczyć podobieństwo między użytkownikiem u_2 i u_3 wybierzmy książki, które zostały przeczytane przez obu użytkowników. W tym przypadku są to: p_2 , p_3 , p_4 , p_5 , p_6 . Wektorami ocen uwzględniającymi książki ocenione przez obu użytkowników są więc odpowiednio dla użytkownika u_2 wektor $o_{2,3}^{(2)} = [6,7,10,6,7]^T$ oraz dla użytkownika u_3 wektor $o_{2,3}^{(3)} = [6,8,10,6,7]^T$.

Posługując się odległością euklidesową obliczamy odległość między użytkownikami u_2 i u_3 :

$$d_e(o_{2,3}^{(2)}, o_{2,3}^{(3)}) = \sqrt{(6-6)^2 + (7-8)^2 + (10-10)^2 + (6-6)^2 + (7-7)^2} = \sqrt{1} = 1.$$

Postępując w podobny sposób dla każdej z par użytkowników otrzymamy następującą macierz odległości \mathbb{U}_1 :

\mathbb{U}_1	$\mathbf{u_1}$	$\mathbf{u_2}$	u_3	$\mathbf{u_4}$	u_5	u_6
$\mathbf{u_1}$	0	5,099	4,243	3	4,359	3,606
$\mathbf{u_2}$	5,099	0	1	4,796	5,196	5,745
u_3	4,243	1	0	3,873	5	5,477
$\mathbf{u_4}$	3	4,796	3,873	0	2,828	3,742
$\mathbf{u_5}$	4,359	5,196	5	2,828	0	3
u_6	3,606	5,745	5,477	3,742	3	0

W procesie normalizacji danych dzielimy elementy macierzy przez

$$(max\{0,1,2,3,4,5,6,7,8,9,10\} - min\{0,1,2,3,4,5,6,7,8,9,10\}) = 10$$

i otrzymujemy macierz \mathbb{U}_2 postaci:

\mathbb{U}_2	$\mathbf{u_1}$	$\mathbf{u_2}$	$\mathrm{u_3}$	$\mathrm{u_4}$	u_5	u_6
$\mathbf{u_1}$	0	0,5099	0,4243	0,3	0,4359	0,3606
$\mathbf{u_2}$	0,5099	0	0,1	0,4796	0,5196	0,5745
u_3	0,4243	0,1	0	0,3873	0,5	0,5477
u_4	0,3	0,4796	0,3873	0	0,2828	0,3742
u_5	0,4359	0,5196	0,5	0,2828	0	0,3
u_6	0,3606	0,5745	0,5477	0,3742	0,3	0

Macierz podobieństwa \mathbb{U}_3 przyjmuje więc wartości:

\mathbb{U}_3	$\mathbf{u_1}$	$\mathbf{u_2}$	$\mathbf{u_3}$	$\mathrm{u_4}$	$\mathrm{u_{5}}$	$\mathbf{u_6}$
$\mathbf{u_1}$	1	0,4901	0,5757	0,7	0,5641	0,6394
$\mathbf{u_2}$	0,4901	1	0,9	0,5204	0,4804	0,4255
u_3	0,5757	0,9	1	0.6127	0,5	0,4523
u_4	0,7	0,5204	0.6127	1	0,7172	0,6258
u_5	0,5641	0,4804	0,5	0,7172	1	0,7
u_6	0,6394	0,4255	0,4523	0,6258	0,7	1

Obliczamy ocenę jaką użytkownik u_1 zaproponuje dla książki p_2 :

$$\frac{0,4901 \cdot 6 + 0,5757 \cdot 6 + 0,7 \cdot 5 + 0,5641 \cdot 6}{0,4901 + 0,5757 + 0,7 + 0,5641} = 5,7$$

Na podstawie metody filtrowania kolaboratywnego opartej na użytkownikach wnioskujemy, że użytkownik u_1 wystawiłby książce p_2 ocenę 5,7.

Postępując w analogiczny sposób przewidzimy wszystkie brakujące oceny:

Czytelnicy		$\mathbf{u_1}$	$\mathbf{u_2}$	u_3	$\mathbf{u_4}$	u_5	u_6
Książki	$\mathbf{s_1}$	6	3	4,57	6	4	4,88
	$\mathbf{s_2}$	5,7	6	6	5	6	5,72
	$\mathbf{s_3}$	7	7	8	7	8	9
	$\mathbf{s_4}$	8	10	10	7	6	8
	$\mathbf{s_5}$	9	6	6	6	6	6,67
	s_6	5	7	7	5	4	2

Możemy więc wnioskować, że w tym przypadku dla użytkownika u_3 książka p_1 prawdopodobnie nie będzie zbyt atrakcyjna. Użytkownik u_6 , natomiast, z chęcią przeczyta książkę p_5 .

4.2.2 Filtrowanie kolaboratywne oparte na elementach

W przypadku filtrowania kolaboratywnego opartego na elementach wartości podobieństwa między użytkownikami zostaje zastąpiona przez wartości podobieństwa między elementami.

Algorytm 4.19. W tym rodzaju rekomendacji należy wykonać następujące kroki:

- 1. wybór przedmiotów $p_i, p_k \in P$, $i, k \in \mathbb{N}$, dla których znamy wartość funkcji $R(p_i, u_j)$ oraz wartość funkcji $R(p_k, u_j)$, gdzie u_j jest użytkownikiem, który wystawia ocenę w obu przypadkach,
- 2. stworzenie wektorów ocen $\overline{o^{(p_i)}}$ i $\overline{o^{(p_k)}}$ dla przedmiotów p_i i p_k wybranych w kroku 2., których elementy stanowią stanowią wartości funkcji R dla użytkownika u_j ,
- 3. wyznaczenie odległości między przedmiotami p_i i p_k najczęstszymi stosowanymi podejściami do obliczania odległości jest podobieństwo kosinusów,
- 4. wyznaczenie macierzy podobieństwa \mathbb{P} między wszystkimi przedmiotami P,
- 5. wyestymowanie nieznanych wartości funkcji R dla $u_j \in U$, $j \in \mathbb{N}$ oraz $p_i \in P$, $i \in \mathbb{N}$ niech p_i będzie konkretnie ustalonym przedmiotem oraz u_j będzie konkretnie ustalonym użytkownikiem, w celu obliczenia brakujących wartości funkcji R dla u_j i p_i obliczmy średnią ważoną wykorzystując oceny oraz przyjmując wartości podobieństwa między p_i i innymi przedmiotami ocenionymi przez użytkownika jako wagi.

Przykład 4.4. Aby obliczyć podobieństwo między książkami p_1 i p_2 wyznaczmy wektory ocen w których uwzględnimy przypadki, gdzie jeden użytkownik ocenił obie pozycje.

Zatem:
$$\overline{o^{(p_1)}} = [3, 6, 4]^T$$
, $\overline{o^{(p_2)}} = [6, 5, 6]^T$.

Następnie używając wzoru na podobieństwo kosinusowe obliczamy podobieństwo między wybranymi książkami

$$sim(p_1, p_2) = \frac{\overline{o^{(p_1)}} \cdot \overline{o^{(p_2)}}}{|o^{(p_1)}| |o^{(p_2)}|} = \frac{3 \cdot 6 + 6 \cdot 5 + 4 \cdot 6}{\sqrt{6^2 + 3^2 + 6^2 + 4^2} \sqrt{6^2 + 6^2 + 5^2 + 6^2}} = 0,6339.$$

Postępując w analogiczny sposób otrzymamy macierz podobieństwa:

\mathbb{P}	$\mathbf{p_1}$	$\mathbf{p_2}$	p_3	$\mathbf{p_4}$	$\mathbf{p_5}$	$\mathbf{p_6}$
$\mathbf{p_1}$	1	0,6339	0,7372	0,7195	0,8935	0,7599
$\mathbf{p_2}$	0,6339	1	0,7951	0,8150	0,7977	0,8898
$\mathbf{p_3}$	0,7372	0,7951	1	0,9780	0,8586	0,9200
$\mathbf{p_4}$	0,7195	0,8150	0,9780	1	0,8860	0,9681
$\mathbf{p_5}$	0,8935	0,7977	0,8586	0,8860	1	0,9413
$\mathbf{p_6}$	0,7599	0,8898	0,9200	0,9681	0,9413	1

Wyestymujmy teraz ocenę jaką użytkownik u_6 zaproponuje dla książki p_2 . Ponownie obliczymy średnią ważoną ocen, tym razem, wykorzystując wartość podobieństwa między książką p_1 , a książkami ocenionymi wcześniej przez użytkownika oraz oceny jakie nadał on tym pozycjom:

$$\frac{(0,7951 \cdot 9 + 0,8150 \cdot 8 + 0,8898 \cdot 2)}{(0,7951 + 0,8150 + 0,8898)} = 6,16.$$

Na podstawie przeprowadzonych obliczeń zakładamy, że ocena jaką wystawiłby po przeczytaniu użytkownik u_6 książce p_2 to 6,16.

Powtarzając powyższe obliczenia dla każdej z pozycji wcześniej nieocenionej przez wybranego użytkownika otrzymamy wszystkie brakujące opinie. Następnie bazując na zdobytych danych z łatwością odnajdziemy pozycję najbardziej odpowiednią do zarekomendowania użytkownikowi.

4.3 Systemy rekomendujące kontekstowe - Context-aware recommender systems

Rozważania w tej sekcji zostały również przeprowadzone na podstawie książki Gorakala S. K.: Building Recommendation Engines [8, Sec 3].

Uprzednio opisane metody opierały się głownie na rozważaniu problemów dwuwymiarowych. W tym podejściu, przez dodanie nowego wymiaru, jakim jest kontekst (K), zaczynamy rozważać problemy trój-wymiarowe:

$$R: U \times P \times K \to O$$

Definicja 4.20 (Kontekst [1, Sec 3.3.1.1]). Kontekstem nazywamy wektor preferencji.

Algorytm 4.21. W modelu kontekstowym rekomendacje są generowane w następujący sposób:

- 1. za pomocą algorytmu systemów rekomendujących opartych na treści zostają wygenerowana lista rekomendacji bazująca na preferencjach użytkownika,
- 2. odfiltrowanie rekomendacji, które odpowiadają przyjętemu kontekstowi wyróżniamy tutaj dwa podejścia:
 - filtrowanie jako etap wstępny (ang. Pre-Filtering) informacje kontekstowe są tu używane do odfiltrowania najbardziej istotnych informacji i skonstruowania dwuwymiarowego zbioru danych,

• filtrowanie jako etap końcowy (ang. Post-Filtering) - informacje o kontekście są ignorowane w wejściowych danych, rekomendacja dokonywana jest na całym zbiorze, a w następnym kroku lista rekomendacji stworzona dla użytkownika jest zawężana przez uwzględnienie kontekstu.

4.4 Dekompozycja macierzy ocen - SVD

Poniższe rozważania zostały przeprowadzone na podstawie publikacji Desrosiers K. i Karypis G. A comprehensive survey of neighborhood-based recommendation methods [14, Sec 4.1.1].

Popularnym podejściem redukcji wymiaru w regułach rekomendujących jest Ukryte Indeksowanie Semantyczne (ang. Latent Semantic Indexing (LSI)). LSI to matematyczna metoda opracowana w celu dokładniejszego wyszukiwania informacji.

W podejściu tym macierz ocen $\mathbb O$ o wymiarach $|U| \times |P|$ i rz $(\mathbb O) = n$ jest aproksymowana przez macierz $\widehat{\mathbb O}$ taką, że rz $(\widehat{\mathbb O}) = k, \, k < n$.

Zatem

$$\widehat{\mathbb{O}} = \mathbb{P}\mathbb{O}^T$$
,

gdzie:

- \mathbb{P} jest $(|U| \times k)$ -wymiarową macierzą zawierającą koordynaty użytkowników,
- $\bullet \ \mathbb{Q}$ jest (|P| × k)-wymiarową macierzą zawierającą koordynaty przedmiotów.

Intuicyjnie, u-ty rząd macierzy \mathbb{P} , $\mathbf{p}_u \in \mathbb{R}^k$, reprezentuje współrzędne użytkownika u rzutowane w k-wymiarowej przestrzeni. Podobnie i-ty wiersz macierzy \mathbb{Q} , $\mathbf{q}_i \in \mathbb{R}^k$, reprezentuje współrzędne przedmiotu i w tej przestrzeni.

Macierze \mathbb{P} i \mathbb{Q} są odnajdowane przez minimalizowanie błędu przybliżenia zdefiniowanego przez kwadrat normy Frobeniusa:

$$\mathrm{E}\left(\mathbb{P},\mathbb{Q}\right) = ||\mathbb{O} - \mathbb{P}\mathbb{Q}^T||_F^2 = \sum_{u,i} (o_{u,i} - \mathbf{p}_u \mathbf{q}_i^T)^2.$$

Minimalizacja tego błędu jest równoważna wyprowadzeniu SVD macierzy O:

$$\mathbb{O} = \mathbb{U}\Sigma\mathbb{V}^T$$
.

gdzie:

- U jest $(|U| \times n)$ -wymiarową lewą macierzą wektorów szczególnych,
- \mathbb{V} jest ($|P| \times n$)-wymiarową prawą macierzą wektorów szczególnych,

 $\bullet~\Sigma$ jest $(n\times n)$ -wymiarową macierzą wartości osobliwych.

Przez Σ_k , \mathbb{U}_k , \mathbb{V}_k oznaczmy macierze uzyskane w wyniku wyboru k największych wartości osobliwych oraz ich odpowiednich wektorów.

Macierze \mathbb{P} i \mathbb{Q} odpowiadają więc postaciom:

$$\mathbb{P} = \mathbb{U}_k \Sigma_k^{\frac{1}{2}}, \ oraz \ \mathbb{Q} = \mathbb{V}_k \Sigma_k^{\frac{1}{2}}.$$

Predykcja oceny zostaje dokonana na podstawie równania:

$$o_{u,i} = \mathbf{p}_u \mathbf{q}_i^T$$
.

Główny problem jaki pojawia się przy implementacji metody SVD jest bark dużej liczby wyrazów macierzy $\mathbb O$. Rozwiązaniem tego problemy jest odnalezienie brakujących elementów macierzy $\mathbb P$ i $\mathbb Q$ używając znanych ocen oraz równania:

$$E\left(\mathbb{P},\mathbb{Q}\right) = \sum_{o_{u,i} \in \mathbb{Q}} (o_{u,i} - \mathbf{p}_u \mathbf{q}_i^T)^2 + \lambda(\|\mathbf{p}_u\|^2 + \|\mathbf{q}_i\|^2),$$

gdzie λ jest parametrem kontroli poziomu regularyzacji.

To samo podejście może zostać zastosowane w przypadku obliczania podobieństwa między użytkownikami lub przedmiotami w metodzie filtrowania opartego na treści.

Rozwiązujemy tutaj następujący problem:

$$E(\mathbb{P}, \mathbb{Q}) = \sum_{z_{u,i} \in \mathbb{O}} (o_{u,i} - \mathbf{p}_u \mathbf{q}_i^T)^2,$$

gdzie:

- $\bullet \ \forall_{u \in U} \ \|\mathbf{p}_u\| = 1,$
- $\forall_{i \in P} \|\mathbf{q}_i\| = 1$,
- z_{ui} jest średnią ocen o_{ui} znormalizowaną do zakresu [-1,1].

Powyższy problem odnosi się do znalezienia koordynat dla każdego użytkownika u i każdego przedmiotu i w przestrzeni k-wymiarowej. Zakładamy, że użytkownik u nada wysoką ocenę przedmiotowi i jeżeli ich koordynaty są blisko siebie.

Jeżeli dwaj użytkownicy u i v są blisko siebie w przestrzeni, to nadadzą oni podobne oceny dla przedmiotów. Podobieństwo między tymi użytkownikami można obliczyć za pomocą równania:

$$w_{uv} = \mathbf{p}_u \mathbf{p}_v^T.$$

Podobnie, podobieństwo między przedmiotami obliczymy następująco:

$$w_{ij} = \mathbf{q}_i \mathbf{q}_i^T.$$

Rozdział 5

Eksperymenty / cześć praktyczne

Rozważany problem rekomendacji może być sformułowany jako problem uczenia maszynowego w którym znane są oceny jakie użytkownicy wystawili pewnym przedmiotom i którego zadaniem jest predykcja ocen użytkowników dla elementów przez nich nieocenionych.

Załóżmy, że mamy n użytkowników i m przedmiotów. Otrzymujemy $n \times m$ - wymiarową macierz \mathbb{O} , w której wyrazy o_{u_i,p_j} są wartościami funkcji $R(u_i,p_j)$ wystawioną przez użytkownika u_i elementowi p_j , $j \in \{1,\ldots,m\}$, $i \in \{1,\ldots,n\}$. Naszym celem jest wypełnić macierz \mathbb{O} brakującymi ocenami.

5.1 ALS z Apache Spark i MLlib

5.1.1 Apache Spark

Apache Spark to ciesząca się ostatnio dużą popularnością platforma obliczeniowa stworzona w celu przetwarzania dużych zbiorów danych (BigData). Powstała ona w odpowiedzi na platformę MapReduce wykorzystywaną przez Apache Hadoop. Wspomniany MapReduce przetwarza dane w trybie wsadowym co oznacza, że podczas każdej operacji są one wczytywane i zapisywane na dysku (HDFS) przez co spada znacznie jego wydajność przy algorytmach iteracyjnych. W przypadku Apache Spark i głównej jego idei jaką jest Resilient Distributed Dataset zbiory danych są wczytywane do pamięci i dzięki temu są wykorzystywane przez kolejne kroki algorytmu bez konieczności ponownego wczytywania ich na dysk. Zwiększa to znacznie wydajność i szybkość wykonywania operacji.

Jedną z głównych bibliotek Apache Spark jest biblioteka MLlib. Jest to biblioteka uczenia maszynowego, której celem jest uczynić je łatwym i skalowalnym. MLLib zapewnia narzędzia do obsługi algorytmów klasyfikacji, regresji, klastrowania, redukcji

wymiaru, narzędzia algebry liniowej, statystyki i wiele innych. Biblioteka ta wspiera również narzędzia do obsługi reguł rekomendujących, a w szczególności filtrowania kolaboratywnego.

5.1.2 ALS i MLlib

Alternating Least Square (ALS) jest algorytmem faktoryzacji macierzy, który został zaimplementowany bibliotece uczenia maszynowego MLlib należącej do Apache Spark. Algorytm ten został opracowany z myślą o rozwiązywaniu problemów filtrowania na dużą skalę. Jest prosty a zarazem dobrze skalowalny w stosunku do dużych zbiorów danych.

Problem predykcji brakujących ocen formułujemy jako problem optymalizacyjny, gdzie celem jest zminimalizowanie funkcji celu oraz odnalezienie najbardziej optymalnych macierzy X i Y.

W szczególności staramy się zminimalizować błąd najmniejszych kwadratów postaci [11]:

$$\min_{\mathbb{X}, \mathbb{Y}} \sum_{o_{u_i, p_j}} (o_{u_i, p_j} - x_{u_i}^T y_{p_j})^2 + \lambda (\sum_{u_i} \|x_{u_i}\|^2 + \sum_{p_j} \|y_{p_j}\|^2),$$

gdzie

- $\bullet \ o_{u_i,p_j}$ są znanymi ocenami wystawionymi przez użytkowników,
- λ jest czynnikiem regulującym.

Powyższa funkcja nie jest funkcją wypukłą (ze względu na obiekt $x_{u_i}^T y_{p_j}$). Ustalając jednak jedną z macierzy \mathbb{X} lub \mathbb{Y} , otrzymujemy postać kwadratową, którą można rozwiązać. Rozwiązanie zmodyfikowanego problemu gwarantuje monotoniczne obniżenie ogólnej funkcji kosztów. Stosując ten krok naprzemiennie do macierzy \mathbb{X} i \mathbb{Y} , możemy iteracyjnie poprawiać faktoryzację macierzy. Podejście to określamy jako algorytm ALS (Alternating Least Squares).

Algorytm 5.1 (ALS [11]). Zainicjowanie X i Y.

Powtarzamy:

• dla i = 1, ..., n wykonujemy:

$$x_{u_i} = \left(\sum_{o_{u_i, p_j} \in o_{u_i, *}} y_{p_j} y_{p_j}^T + \lambda \mathbb{I}_k\right)^{(-1)} \sum_{o_{u_i, p_j} \in o_{u_i, *}} o_{u_i, p_j} y_{p_j}$$

koniec

• $dla \ j = 1, \dots, m \ wykonujemy$:

$$y_{p_j} = \left(\sum_{o_{u_i, p_j} \in o_{*, p_j}} x_u x_u^T + \lambda \mathbb{I}_k\right)^{(-1)} \sum_{o_{u_i, p_j} \in o_{*, p_j}} o_{u_i, p_j} x_{u_i}$$

koniec

do momentu zbieżności.

Uwaga 5.2 (Różnica między SVD i ALS).

5.1.3 Implementacja algorytmu

Rozdział 6

Podsumowanie

Bibliografia

- [1] Ricci F. and Rokach L. and Shapira B. and Kantor P.: Recommender Systems Handbook. Springer, 2011.
- [2] Krzyśko M.: Wykład z teorii prawdopodobieństwa. Wydawnictwo Naukowe Techniczne, 2000.
- [3] Jakubowski J., Sztencel R.: Wstęp do teorii prawdopodobieństwa. SCRIPT, 2001.
- [4] Banaszak G., Gajda W.: *Elementy algebry liniowej część I.* Wydawnictwo Naukowe Techniczne, 2002.
- [5] Walesiak M., Gantar E.: Statystyczna analiza danych z wykorzystaniem programu R. Wydawnictwo Naukowe PWN, 2009.
- [6] Poreda T., Jędrzejewski J.: Algebra liniowa z elementami geometrii analitycznej. Politechnika Łódzka, 2011.
- [7] Morzy T.: Eksploracja danych. Metody i algorytmy. Wydawnictwo Naukowe PWN, 2013.
- [8] Gorakala S. K.: Building Recommendation Engines. Packt, 2016.
- [9] Nowak Brzezińska A.: Analiza skupień. konspekt do zajęć: Statystyczne metody analizy danych. 2012.
- [10] O'Brien G.W. Berry M.W., Dumais S.T.: Using linear algebra for intelligent information retrival. 1995.
- [11] Lublin M. Pere Y. Haoming L., Bangzheng H.: Matrix completion via alternating least square (als). 2015.
- [12] Kidziński Ł.: Statistical foundation of recommender systems. Master's thesis, University of Warsaw, 2011.
- [13] http://comisef.wikidot.com/concept:eigenvalue-and-singular-value-inequalities (dostep 07.05.2019).

- [14] Desrosiers K., Karypis G.: A comprehensive survey of neighborhood-based recommendation methods.
- [15] www.youtube.com/watch?v=giIXNoiqO_U&list=PL-6SiIrhTAi6x4Oq28s7yy94ubLzVXabj (dostęp 19.05.2019).
- [16] Rutkowski L.: Metody sztucznej inteligencji. Wydawnictwo Naukowe PWN, 2012.