Introduction to Information Retrieval

Michel Schellekens, slides adapted from:
Hinrich Schütze and Christina Lioma
Lecture 21: Link Analysis

Outline

- Recap
- Anchor Text
- Citation Analysis
- PageRank
- HITS: Hubs & Authorities

Take-away today

- Anchor text: What exactly are links on the web and why are they important for IR?
- Citation analysis: the mathematical foundation of PageRank and link-based ranking
- PageRank: the original algorithm that was used for link-based ranking on the web
- Hubs & Authorities: an alternative link-based ranking algorithm

Outline

- Recap
- Anchor Text
- Citation Analysis
- PageRank
- **6** HITS: Hubs & Authorities

The web as a directed graph

- Assumption 1: A hyperlink is a quality signal.
 - The hyperlink $d_1 \rightarrow d_2$ indicates that d_1 's author deems d_2 high-quality and relevant.
- Assumption 2: The anchor text describes the content of d_2 .
 - We use anchor text somewhat loosely here for: the text surrounding the hyperlink.
 - Example: "You can find cheap cars 'a href =http://...'here '/a '. "
 - Anchor text: "You can find cheap cars here"

[text of d_2] only vs. [text of d_2] + [anchor text $\rightarrow d_2$]

- Searching on [text of d_2] + [anchor text $\rightarrow d_2$] is often more effective than searching on [text of d_2] only.
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page!
 - ... if IBM home page is mostly graphics
- Searching on [anchor text $\rightarrow d_2$] is better for the query *IBM*.
 - In this representation, the page with most occurrences of IBM is www.ibm.com

Anchor text containing IBM pointing to www.ibm.com

Indexing anchor text

- Thus: Anchor text is often a better description of a page's content than the page itself.
- Anchor text can be weighted more highly than document text.
 - (based on Assumption 1&2)

Exercise: Assumptions underlying PageRank

- Assumption 1: A link on the web is a quality signal the
 - author of the link thinks that the linked-to page is high-quality.
- Assumption 2: The anchor text describes the content of the linked-to page.
- Is assumption 1 true in general?
- Is assumption 2 true in general?

Google bombs

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007
 - that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo

Outline

- Recap
- Anchor Text
- Citation Analysis
- PageRank
- **6** HITS: Hubs & Authorities

Origins of PageRank: Citation analysis (1)

- Citation analysis: analysis of citations in the scientific literature.
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.
 - This is called cocitation similarity.
 - Cocitation similarity on the web: Google's "find pages like this" or "Similar" feature.

Origins of PageRank: Citation analysis (2)

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: Each article gets one vote not very accurate.
- On the web: citation frequency = inlink count
 - A high inlink count does not necessarily mean high quality ...
 - ... mainly because of link spam.
- Better measure: weighted citation frequency or citation rank
 - An article's vote is weighted according to its citation impact.

Origins of PageRank: Citation analysis (3)

- Better measure: weighted citation frequency or citation rank.
- This is basically PageRank.
- PageRank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.

Origins of PageRank: Summary

- We can use the same formal representation for
 - citations in the scientific literature
 - hyperlinks on the web
- Appropriately weighted citation frequency is an excellent measure of quality ...
 - ... both for web pages and for scientific publications.
- Next: PageRank algorithm for computing weighted citation frequency on the web.

Outline

- Recap
- Anchor Text
- Citation Analysis
- PageRank
- **6** HITS: Hubs & Authorities

Model behind PageRank: Random walk

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.
- PageRank = long-term visit rate = steady state probability.

Formalization of random walk: Markov chains

- A Markov chain consists of N states, plus an N×N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.
- For $1 \le i, j \le N$, the matrix entry P_{ij} tells us the probability of j being the next page, given we are currently on page i.
- Clearly, for all i,

$$\sum_{j=1}^{N} P_{ij} = 1$$

Example web graph

Link matrix for example

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
d_2	1	0	1	1	0	0	0
d_3	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	1	1	0	1

Transition probability matrix *P* for example

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d_3	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Long-term visit rate

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.
- First a special case: The web graph must not contain dead ends.

Dead ends

- The web is full of dead ends.
- Random walk can get stuck in dead ends.
- If there are dead ends, long-term visit rates are not well-defined (or non-sensical).

Teleporting - to get us of dead ends

- At a dead end, jump to a random web page with prob.
 - 1/N At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225
- 10% is a parameter, the teleportation rate.

Teleporting - to get us of dead ends

- At a dead end, jump to a random web page with prob, 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - randomly choose one with probability 0.9/N
- 10% is a parameter, the teleportation rate.
- Note: "jumping" from dead end is independent of teleportation rate.

Result of teleporting

- With teleporting, we cannot get stuck in a dead end.
- But even without dead ends, a graph may not have well-defined long-term visit rates.
- More generally, we require that the Markov chain be ergodic.

Ergodic Markov chains

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.

Ergodic Markov chains

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.
- Web-graph+teleporting has a steady-state probability distribution.
- Each page in the web-graph+teleporting has a PageRank.

Formalization of "visit": Probability vector

- A probability (row) vector $x = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example (0 0 0 ... 1 ... 0 0 0)
 1 2 3 ... i ... N-2 N-1 N
- More generally: the random walk is on the page i with probability x_i.
- Example:

```
( 0.05 0.01 0.0 ... 0.2 ... 0.01 0.05 0.03 )
1 2 3 ... i ... N-2 N-1 N
```

Change in probability vector

- If the probability vector is $x = (x_1, ..., x_N)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix
 P tells us where we go next from state i.

Change in probability vector

- If the probability vector is $x = (x_1, ..., x_N)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix
 P tells us where we go next from state i.
- So from x, our next state is distributed as xP.
- For instance, consider x_i the probability of being on page i.
- The multiplication of the vector x with the matrix P (see example on board) multiplies x_i with the probability x_i

move from page i to page i (corresponding to the

Steady state in vector notation

- Computing xP amounts to computing the probabilities of being on each page i after the random walker has made his/her first move.
- The multiplication of the vector x with the matrix P (see example on board) multiplies x_i with the probability p_{ij} to move from page i to page j.
- The values p_{ij} with j ranging from 1 to N, orrespond to the probabilities in the first row of the matrix P).

Result of our computation

If the original vector was the vector x_0 then we call the result of the multiplication x_1 .

This is the result of the first step in our random walk recording the new probabilities of being on page i. On the next step, we multiply x_1 again with the matrix P, resulting in the vector x_2 recording the new probabilities of being on page i. Repeating this m steps, gives the vector x_m .

Claim: as m grows, \vec{x}_m "stabilizes", i.e. the differences between Its coordinates and the coordinates of \vec{x}_{m-1} become arbitrarily small for m large enough (convergence to a steady state).

Steady state in vector notation

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
- (We use $\hat{\pi}$ to distinguish it from the notation for the probability vector \vec{x} .)
- π is the long-term visit rate (or PageRank) of page i.
- So we can think of PageRank as a very long vector one entry per page.
- It represents the stabilization of the probabilities (converging to a fixed value) over the duration of the walk.

Steady-state distribution: Example

What is the PageRank / steady state in this example?

Steady-state distribution: Example

	X_1	<i>X</i> ₂		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
t_0 t_1	0.25	0.75		

PageRank vector $\vec{=} \pi = (\pi_1, \pi_2) = (0.25, 0.75)$

Steady-state distribution: Example

	X_1	X_2		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
t_0 t_1	0.25	0.75	0.25	0.75

PageRank vector $\vec{=} \pi = (\pi_1, \pi_2) = (0.25, 0.75)$

Steady-state distribution: Example

	X_1	X_2		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
t_0 t_1	0.25 0.25	0.75 0.75	0.25	0.75

PageRank vector $\vec{=} \pi = (\pi_1, \pi_2) = (0.25, 0.75)$

Steady-state distribution: Example

	X_1	X_2		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$
$\overline{t_0}$	0.25	0.75	0.25	$P_{22} = 0.75$ 0.75
t_1	0.25	0.75	(conve	rgence)

PageRank vector $\vec{=} \pi = (\pi_1, \pi_2) = (0.25, 0.75)$

How do we compute the steady state vector?

In other words: how do we compute PageRank?

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is x, then the distribution in the next step is xP.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives \vec{u} s.
- π is the principal left eigenvector for P ...
- ... that is, π is the left eigenvector with the largest eigenvalue.
- All transition probability matrices have largest eigenvalue

One way of computing the PageRank π

- Start with any distribution x, e.g., uniform distribution
- After one step, we're $\vec{a}t xP$.
- After two steps, we're $\bar{a}t xP^2$.
- After k steps, we're $\bar{a}t xP^k$.
- Algorithm: multiply x by increasing powers of P until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state π .
- Thus: we will eventually (as a limit (!)) reach the steady state.

Power method: Example

What is the PageRank / steady state in this example?

	X ₁	x ₂			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t_0 t_1 t_2 t_3	0	1		22	$= \stackrel{\rightarrow}{X}P$ $= \stackrel{\rightarrow}{X}P^{2}$ $= \stackrel{\rightarrow}{X}P^{3}$ $= XP^{4}$
t _∞					→. = <i>xP</i> [∞]

	X ₁	x ₂			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀ t ₁ t ₂ t ₃	0	1	0.3	0.7	$= \stackrel{\times}{X}P$ $= \stackrel{\times}{X}P^{2}$ $= \stackrel{\times}{X}P^{3}$ $= XP^{4}$
$t_{\scriptscriptstyle \infty}$					→. = xP [∞]

	X ₁	x ₂			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	→
t_o	0	1	0.3	0.7	= x P
t_1	0.3	0.7			= x P ²
t_2					= xP ³
t_3					$= xP^4$
					• •
t ∞					= xP [∞]

	X ₁	X ₂			
				$P_{12} = 0.9$ $P_{22} = 0.7$	
0	0	1	0.3	0.7	= x P
1		0.7	0.24	0.76	= xP2
2					= xP ³
3					$= xP^4$
					• •
∞					= xP ∞

	X ₁	X ₂			
			$P_{11} = 0.1$ $P_{21} = 0.3$	- —	→
t_o	0	1	0.3	0.7	= xP
t_1	0.3	0.7	0.24	0.76	$= xP^2$
t_2	0.24	0.76			= xP ³
<i>t</i> ₃					$= xP^4$
					• •→•
t _∞					= xP [∞]

	X ₁	X ₂			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	→
t_o	0	1	0.3	0.7	= xP
t_1	0.3	0.7	0.24	0.76	$= xP^2$
t_2	0.24	0.76	0.252	0.748	$= \mathbf{x} \mathbf{P}^3$
<i>t</i> ₃					$= xP^4$
					• •→•
$t_{\scriptscriptstyle \infty}$					= xP [∞]

	X ₁	X ₂			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	→
t_o	0	1	0.3	0.7	= xP
t_1	0.3	0.7	0.24	0.76	$= xP^2$
t_2	0.24	0.76	0.252	0.748	$= \vec{x} P^3$
<i>t</i> ₃	0.252	0.748			$= xP^4$
					• •
$t_{\scriptscriptstyle \infty}$					= <i>xP</i> [∞]

	x ₁	X_2			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	→
t_o	0	1	0.3	0.7	= xP
t_1	0.3	0.7	0.24	0.76	$= xP^2$
t_2	0.24	0.76	0.252	0.748	= xP ³
<i>t</i> ₃	0.252	0.748	0.2496	0.7504	$= xP^4$
					• •
$t_{\scriptscriptstyle \infty}$					= xP [∞]

	X ₁	X ₂			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	→
t_o	0	1	0.3	0.7	= x P
t_1	0.3	0.7	0.24	0.76	$= xP^2$
t_2	0.24	0.76	0.252	0.748	= xP ³
<i>t</i> ₃	0.252	0.748	0.2496	0.7504	$= xP^4$
			•	• •	• •
$t_{\scriptscriptstyle \infty}$					= xP [∞]

	X ₁	X ₂			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	→
t_o	0	1	0.3	0.7	= x P
t ₁	0.3	0.7	0.24	0.76	$= xP^2$
t_2	0.24	0.76	0.252	0.748	= xP ³
t_3	0.252	0.748	0.2496	0.7504	$= xP^4$
				• •	• •
t _∞	0.25	0.75			= xP [∞]

	X ₁	X ₂			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	→
t_o	0	1	0.3	0.7	= x P
t_1	0.3	0.7	0.24	0.76	$= xP^2$
t_2	0.24	0.76	0.252	0.748	= xP ³
t ₃	0.252	0.748	0.2496	0.7504	$= xP^4$
				• •	• •
t	0.25	0.75	0.25	0.75	= xP [∞]

	X_1	X_2			
			$P_{11} = 0.1$	$P_{12} = 0.9$	
			$P_{21} = 0.3$	$P_{22} = 0.7$	→
t_o	0	1	0.3	0.7	= xP
t ₁	0.3	0.7	0.24	0.76	= xP ²
t_2	0.24	0.76	0.252	0.748	$= xP^3$
<i>t</i> ₃	0.252	0.748	0.2496	0.7504	$= xP^4$
$t_{\scriptscriptstyle \infty}$	0.25	0.75	0.25	0.75	= xP ∞

PageRank vector = π = (π_1, π_2) = (0.25, 0.75)

Exercise

Compute the steady state vector by solving the equation $\vec{\pi} = \vec{\pi} P$ for the vector $\vec{\pi}$

Power method: Example

What is the PageRank / steady state in this example?

• The steady state distribution (= the PageRanks) in this example are 0.25 for d_1 and 0.75 for d_2 .

Exercise: Compute PageRank using power method

	X ₁	X ₂		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_0 t_1 t_2 t_3	0	1		
t _∞				

	X ₁	X ₂		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t ₀ t ₁ t ₂ t ₃	0	1	0.2	0.8
t ∞				

	X ₁	X ₂		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$
t_0	0.2	1	$P_{21} = 0.2$ 0.2	$P_{22} = 0.8$
t ₁	0.2	0.8		
<i>t</i> ₃				
t ∞				

	X ₁	X_2		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_o	0	1	0.2	0.8
t_1	0 0.2	0.8	0.3	0.7
t_2				
t ₃				
t _∞				

	X ₁	X ₂		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
to	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7		
-3				
t _∞				

	X ₁	X ₂		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
t ₁	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
t_3				
t				

	x ₁	X ₂		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
to	0	1	0.2	0.8
	0.2	0.8	0.3	0.7
2	0.3	0.7	0.35	0.65
3	0.35	0.65		
- •∞				

	X ₁	X ₂		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t_o	0	1	0.2	0.8
t ₁	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
t ₃	0.35	0.65	0.375	0.625
t ∞				

	X ₁	X ₂		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
to	0	1	0.2	0.8
t ₁	0.2	0.8	0.3	0.7
· 2	0.3	0.7	0.35	0.65
t_3	0.35	0.65	0.375	0.625
- ' ∞				

	X ₁	X ₂		
			$P_{11} = 0.7$	
			$P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
<i>t</i> ₃	0.35	0.65	0.375	0.625
t _∞	0.4	0.6		

PageRank vector $\vec{=} \pi = (\pi_1, \pi_2) = (0.4, 0.6)$

	X ₁	X_2		
			$P_{11} = 0.7$	$P_{12} = 0.3$
			$P_{21} = 0.2$	$P_{22} = 0.8$
t_o	0	1	0.2	0.8
t ₁	0.2	0.8	0.3	0.7
t_2	0.3	0.7	0.35	0.65
t_3	0.35	0.65	0.375	0.625
				• •
t _∞	0.4	0.6	0.4	0.6

PageRank vector $\vec{=} \pi = (\pi_1, \pi_2) = (0.4, 0.6)$

Exercise

Compute the steady state vector by solving the equation $\vec{\pi} = \vec{\pi} P$ for the vector $\vec{\pi}$

PageRank summary

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute π
 - $\vec{\pi_i}$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank
 - Return reranked list to the user

PageRank issues

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories - and search!
 - Amarkov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query [video service].
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both video and service.
 - If we rank all Boolean hits according to PageRank, then the Yahoo home page would be top-ranked.
 - Clearly not desirable.

PageRank issues

• In practice: rank according to weighted combination of raw text match, anchor text match, PageRank & other factors.

Example web graph

Transition (probability) matrix

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d_3	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Transition matrix with teleporting

The adjacency matrix A of the web-graph is obtained thus:

if there is a hyperlink from page i to page j, then:

Aij =1, otherwise Aij =0.

Derive the transition probability matrix *P* from matrix *A* [a is the probability that "teleportation" happens]

- 1) If a row of A has only zeros: replace each element by 1/N
- 2) For all other rows: divide each 1 in *A* by the number of 1's in its row.
- 3) Multiply the resulting matrix by 1 $-\alpha$
- 4) Add α/N to every entry of the resulting matrix

Transition matrix with teleporting

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.02	0.02	0.88	0.02	0.02	0.02	0.02
d_1	0.02	0.45	0.45	0.02	0.02	0.02	0.02
d_2	0.31	0.02	0.31	0.31	0.02	0.02	0.02
d_3	0.02	0.02	0.02	0.45	0.45	0.02	0.02
d_4	0.02	0.02	0.02	0.02	0.02	0.02	0.88
d_5	0.02	0.02	0.02	0.02	0.02	0.45	0.45
d_6	0.02	0.02	0.02	0.31	0.31	0.02	0.31

Power method vectors xP^k

	→ X	$\vec{x}P^1$	$\vec{x}P^2$	\overrightarrow{xP}^3	→ XP ⁴	$\overset{\rightarrow}{xP^5}$	→ XP ⁶	$\vec{x}P^7$	$\vec{x}P^8$	$\overset{\rightarrow}{xP^9}$	$\overset{\rightarrow}{xP}^{10}$	$\vec{x}P^{11}$	$\vec{x}P^{12}$	$\vec{x}P^{13}$
d_0	0.14	0.06	0.09	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05
d_1	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d_2	0.14	0.25	0.18	0.17	0.15	0.14	0.13	0.12	0.12	0.12	0.12	0.11	0.11	0.11
d_3	0.14	0.16	0.23	0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.25	0.25	0.25	0.25
d_4	0.14	0.12	0.16	0.19	0.19	0.20	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
d_5	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d_6	0.14	0.25	0.23	0.25	0.27	0.28	0.29	0.29	0.30	0.30	0.30	0.30	0.31	0.31

Example web graph

PageRank						
d_0	0.05					
d_1	0.04					
d_2	0.11					
d_3	0.25					
d_4	0.21					
d_5	0.04					
d_6	0.31					

How important is PageRank?

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes ...
 - Rumor has it that PageRank in his original form (as presented here) now has a negligible impact on ranking!
 - However, variants of a page's PageRank are still an essential part of ranking.
 - Adressing link spam is difficult and crucial.