

Cross-domain medical image segmentation

Dr Qingjie Meng
School of Computer Science
University of Birmingham

Medical image segmentation

Cross-modality medical image segmentation

Multi-model brain lesion segmentation

MRI to CT cardiac segmentation

Multi-model brain lesion segmentation

Susceptibility Weighted Image

FLAIR

Proton Density MPRAGE T2

Different modalities:

- Gradient-Echo from
- Susceptibility weighted Image from dataset 2

Different scanners:

- 3-T Siemens Magnetom TIM Trio for dataset 1
- 3-T Siemens Magnetom Verio for dataset 2

Multi-model brain lesion segmentation

A good example of Adversarial Learning

Minimizing the discriminator's classification loss: \mathcal{L}_{adv}

Minimizing the segmentation loss and maximize the classification loss:

$$\mathcal{L}_{segAdv}(\theta_{seg}) = \mathcal{L}_{seg}(\theta_{seg}) - \alpha \mathcal{L}_{adv}(\theta_{seg})$$

Results

		·	
	DSC	Recall	Precision
Train on S Train on S (No GE/SWI)	15.7(13.5) $59.7(22.1)$	80.4(12.3) $55.7(22.6)$	09.5(09.0) $69.7(21.5)$
	62.7(19.8)	58.9(21.2)	71.6(18.4)

MRI-CT cardiac segmentation

Benefits:

- High image quality
- Good soft tissue contrast
- No radiation exposure
- •

Disadvantages:

- Time consuming
- Expensive

. .

Benefits:

- High speed
- Widely available
- ...

Disadvantages:

- Radiation exposure
- ...

MRI-CT cardiac segmentation

Results

Take-away messages

- Domain shift is very common is general computer vision and medical imaging.
 It results in the limited generalizability of the deep learning models.
- Three main ways to address domain shift: domain adaptation, data augmentation and test-time adaptation.
- Medical images are complicated and addressing domain shift is still a challenging task.