# Dydaktyczny symulator wybranych rozwiązań warstwy fizycznej sieci Ethernet

Michał Iwanicki, Mateusz Bauer, Marcin Garnowski

Politechnika Gdańska

5 grudnia 2023

## Uruchamianie



PS C:\Users\gtraw> phyether

## Poruszanie się po symulatorze

Reed-Solomon Reed-Solomon Shift Register PAM16 PAM Twisted-pair simulation



## Reed-Solomon Shift Register







## Twisted-pair simulation



## Modulacja

Modulacja cyfrowa — technika zamiany bitów na sygnał oraz sygnału na bity

- Pulse-Amplitude Modulation jedna z najpopularniejszych technik modulacji (Ethernet, USB4, PCI Express 6.0)
- 2 Dane przesyłane jako zmiany amplitudy sygnału
- PAM-N N oznacza liczbę wykorzystywanych poziomów

## NRZ (PAM2)

• 1 symbol koduje 1 bit



## NRZ (PAM2)

Chcemy mieć większą przepustowość — czy inny sposób modulacji może nam w tym pomóc?



1 symbol koduje 2 bity



#### Plusy:

1 2x większa przepustowość bez zwiększania szerokości pasma (++)

#### Minusy:

- 1 6 narastających zbocz, 6 opadających zbocz w sumie 12 zmian napięcia — spada stosunek sygnału do szumu (SNR)
- Różnica pomiędzy przesyłanymi symbolami maleje potrzebujemy lepszego sprzętu do odczytu i intepretacji sygnału



100GbE, 200GbE, 400GbE



• 1 symbol koduje 4 bity



# PAM - porównanie



# PAM - porównanie

| Standard     | Medium     | Modulacja |  |
|--------------|------------|-----------|--|
| 10GBASE-T    | skrętka    | PAM16     |  |
| 10GBASE-SR   | światłowód | NRZ       |  |
| 25GBASE-T    | skrętka    | PAM16     |  |
| 25GBASE-SR   | światłowód | NRZ       |  |
| 40GBASE-T    | skrętka    | PAM16     |  |
| 50GBASE-SR   | światłowód | PAM4      |  |
| 100GBASE-ZR  | światłowód | PAM4      |  |
| 200GBASE-SR2 | światłowód | PAM4      |  |
| 400GBASE-SR4 | światłowód | PAM4      |  |
|              |            |           |  |

#### Kod Reeda-Solomona

Kodowanie korekcyjne Reeda-Solomona zostało stworzone przez Irvina S. Reeda oraz Gustava Solomona w 1960 roku. Kody Reeda-Solomona charakteryzują się kilkoma parametrami:

- Ciałem skończonym  $\mathbb{F}_q$ ,  $q=2^m$ ,  $m\in\{2,3,\ldots\}$  w którym wykonywane są działania.
- długością wiadomości do zakodowania k
- długością słowa kodowego n gdzie k < n ≤ q</li>

## Przykładowe kodowania $RS(n,k,\mathbb{F}_{2^m})$ w różnych standardach

| Kodowanie RS                      | Standardy                    |                            |
|-----------------------------------|------------------------------|----------------------------|
| RS(544, 514, F <sub>210</sub> )   | 50GBASE-R,<br>200GBASE-R, 40 | 100GBASE-KP4,<br>00GBASE-R |
| RS(528, 514, F <sub>210</sub> )   | 10GBASE-R,<br>100GBASE-CR4   | 25GBASE-R,                 |
| RS(450, 406, F <sub>29</sub> )    | 1000BASE-T1                  |                            |
| RS(360, 326, F <sub>210</sub> )   | 2.5GBASE-T1,<br>10GBASE-T1   | 5GBASE-T1,                 |
| RS(192, 186, $\mathbb{F}_{2^8}$ ) | 25GBASE-T, 40G               | BASE-T                     |
|                                   |                              |                            |

## Warstwy Ethernet



AN = AUTO-NEGOTIATION
MAC = MEDIA ACCESS CONTROL
MDI = MEDIUM DEPENDENT INTERFACE
PCS = PHYSICAL CODING SUBLAYER

PHY = PHYSICAL LAYER DEVICE PMA = PHYSICAL MEDIUM ATTACHMENT 25GMII = 25 Gb/s MEDIA INDEPENDENT INTERFACE XLGMII = 40 Gb/s MEDIA INDEPENDENT INTERFACE

#### 25/40GBASE-T PCS



#### 2.5/5/10GBASE-T1 RS Encoder





## Czym jest ciało

Ciało K jest to struktura algebraiczna  $(K,+,\cdot,0,1)$  definiująca działania + i  $\cdot$  nazywane dodawaniem i mnożeniem. Działania te muszą spełniać kilka warunków:

- dodawanie i mnożenie jest łączne, przemienne oraz zawiera elementy neutralne
- każdy element musi posiadać element odwrotny względem dodawania
- każdy element oprócz 0 musi posiadać element odwrotny względem mnożenia
- mnożenie jest rozdzielne względem dodawania

## Definicja ciała

Formalnie ciało  $(K, +, \cdot, 0, 1)$  definiuje się za pomocą kilku aksjomatów.

## Aksjomaty ciała

$$a + (b + c) = (a + b) + c \qquad \forall a, b, c \in K$$
 (1)

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c \qquad \forall a, b, c \in K$$
 (2)

$$a+b=b+a \qquad \forall a,b \in K \tag{3}$$

$$a \cdot b = b \cdot a$$
  $\forall a, b \in K$  (4)

$$a+0=a \qquad \forall a \in K \tag{5}$$

$$a \cdot 1 = a$$
  $\forall a \in K$  (6)

$$a + (-a) = 0$$
  $\forall a \in K \exists -a \in K$  (7)

$$u = 0$$
  $u \in \mathbb{N}$ 

$$a \cdot a^{-1} = 1 \qquad \forall a \in K \setminus \{0\} \ \exists a^{-1} \in K \qquad (8)$$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) \qquad \forall a, b, c \in K$$
 (9)

#### Ciało skończone

## Czym jest ciało skończone

Ciało skończone to po prostu ciało o skończonej liczbie elementów. Oznaczane jest zwykle jako  $\mathbb{F}_q$  gdzie q to liczba elementów. Aby ciało skończone istniało q musi być liczbą pierwszą p bądź potęgą takiej liczby  $q=p^m, m\in\{2,3,\ldots\}$ 

## Definicja ciała skończonego

Najprościej ciało skończone  $\mathbb{F}_p$  gdzie p to liczba pierwsza można zdefiniować jako pierścień klas reszt  $\mathbb{Z}_p$ .

## Definicja tego pierścienia

$$\mathbb{Z}_{p} = \{[0]_{p}, [1]_{p}, [2]_{p}, \dots, [p-1]_{p}\}$$
  
 $[a]_{p} = \{a + k \cdot p | k \in \mathbb{Z}\}$ 

$$[a]_p + [b]_p = [a+b]_p$$
  
 $[a]_p \cdot [b]_p = [a \cdot b]_p$ 

## Ciało skończone $\mathbb{F}_2$

Jednym z najczęściej używanych ciał skończonych w informatyce jest ciało  $\mathbb{F}_2$  zawierające 2 elementy  $\{0,1\}$  w którym działania + i  $\cdot$  są równoważne operacjom logicznym XOR oraz AND

## Dodawanie i mnożenie w $\mathbb{F}_2$

| a | b | + | • |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |

## Ciało skończone $\mathbb{F}_{2^m}$

Elementami ciała skończonego  $\mathbb{F}_{2^m}$ ,  $m \in \{2,3,\ldots\}$  są wielomiany o postaci

$$\sum_{n=0}^{m-1} c_n \alpha^n = c_0 + c_1 \alpha + c_2 \alpha^2 + \dots + c_{m-1} \alpha^{m-1}, c_n \in \{0, 1\}$$

## Przykładowe elementy $\mathbb{F}_{2^3}$

$$\begin{split} \mathbb{F}_{2^3} &= \{0, 1, \alpha, \alpha+1, \alpha^2, \alpha^2+1, \alpha^2+\alpha, \alpha^2+\alpha+1\} \\ \mathbb{F}_{2^3} &= \{000_2, 001_2, 010_2, 011_2, 100_2, 101_2, 110_2, 111_2\} \\ \mathbb{F}_{2^3} &= \{0, 1, 2, 3, 4, 5, 6, 7\} \end{split}$$

## Dodawanie w 𝔻₂™

Dodawanie dwóch elementów ciała  $\mathbb{F}_{2^m}$  jest po prostu obliczeniem XOR z ich reprezentacji binarnej

## Przykład dodawania w $\mathbb{F}_{2^3}$

$$a = \alpha^2 + \alpha = 110_2$$

$$b = \alpha + 1 = 011_2$$

$$\oplus$$
 011<sub>2</sub>

$$a + b = 110_2 \oplus 011_2$$

## Mnożenie w 𝔻₂™

Aby zdefiniować mnożenie w  $\mathbb{F}_{2^m}$  potrzebujemy najpierw znaleźć nierozkładalny wielomian p(x) stopnia m o współczynnikach w  $\mathbb{F}_p$ . Wynikiem mnożenia elementów ciała  $\mathbb{F}_{2^m}$  będzie reszta z dzielenia iloczynu tych elementów przez wielomian p(x)

#### Przykład mnożenia w 𝔻₂₃

$$p(x) = x^{3} + x + 1$$

$$a = \alpha^{2} + 1$$

$$b = \alpha + 1$$

$$a \cdot b = (\alpha^{2} + 1) \cdot (\alpha + 1) \qquad \text{mod } x^{3} + x + 1$$

$$a \cdot b = \alpha^{3} + \alpha^{2} + \alpha + 1 \qquad \text{mod } x^{3} + x + 1$$

$$a \cdot b = \alpha^{2}$$

## Mnożenie w 𝔻₂™

## Reszta z dzielenia przez p(x)

$$a \cdot b = \alpha^3 + \alpha^2 + \alpha + 1 = 1111_2$$
  
 $p(x) = x^3 + x + 1 = 1011_2$ 

$$\frac{1}{1111 : 1011} \oplus 1011$$
$$\frac{0}{100} = \alpha^{2}$$

#### Właściwości

Kody Reeda-Solomona cechują się możliwością korekty  $\lfloor \frac{n-k}{2} \rfloor$  lub wykrycia n-k błędnych symboli. Symbol w ciele  $\mathbb{F}_{2^m}$  składa się z m bitów co w przypadku błędów grupowych daje możliwość korekty maksymalnie  $m \cdot \lfloor \frac{n-k}{2} \rfloor$  bitów bądź detekcji m(n-k) przekłamanych bitów

## Oryginalny sposób kodowania

Sposób kodowania przedstawiony w pracy Reeda i Solomona polega na stworzeniu wielomianu  $p_m(x) = \sum_{i=0}^{k-1} m_i x^i$ , gdzie  $m_i \in \mathbb{F}_q$  to i-ty element wiadomości, po czym za pomocą tego wielomianu obliczane jest słowo kodowe  $C(m) = (p_m(a_0), p_m(a_1), \dots, p_m(a_{n-1}))$  gdzie  $a_i$  to różne elementy ciała  $\mathbb{F}_q$ .

#### Kod systematyczny

Za pomocą niewielkiej modyfikacji można stworzyć kod systematyczny czyli taki w którym słowo kodowe zawiera w sobie kodowaną wiadomość. Żeby stworzyć kod systematyczny musimy zmodyfikować sposób tworzenia wielomianu w taki sposób by  $p_m(x_i) = m_i$  dla  $i \in \{0, 1, \ldots, k-1\}$ .

Jednym ze sposobów stworzenia takiego wielomianu jest użycie metody interpolacji wielomianów. Słowo kodowe wygenerowane z tego wielomianu będzie zawierało wiadomość w pierwszych k elementach.

$$C(m) = (p_m(a_0), p_m(a_1), \dots, p_m(a_{n-1}))$$
  
=  $(m_0, m_1, \dots, m_{k-1}, p_m(a_k), p_m(a_{k+1}), \dots, p_m(a_{n-1}))$ 

#### Kod BCH

Kody BCH (Bose-Chaudhuri-Hocquenghem) są kodami cyklicznymi co oznacza że każde przesunięcie słowa kodowego jest także słowem kodowym.

Aby zbudować kod BCH Reeda-Solomona potrzebujemy najpierw funkcji minimalnej pierwiastka  $\alpha$ , czyli takiego minimalnego wielomianu nierozkładalnego p(x) stopnia m dla którego istnieje element prymitywny  $\alpha$  który pozwala wygenerować całe ciało skończone

$$\mathbb{F}_{2^m} = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{p^m - 1}\}$$

#### Obliczanie kodu BCH

Mając taki element prymitywny jesteśmy w stanie stworzyć wielomian generujący g(x) używając wzoru

$$f = n - k$$

$$g(x) = \prod_{i=0}^{t-1} (x - \alpha^{i}) = g_{t}x^{t} + g_{t-1}x^{t-1} + \dots + g_{1}x + g_{0}$$

Aby utworzyć słowo kodowe wystarczy pomnożyć wielomian  $p_m(x)$  przez wielomian generujący g(x)

Aby uzyskać systematyczne słowo kodowe s(x) musimy obliczyć:

$$s_r(x) = p_m(x) \cdot x^t \mod g(x)$$
  
 $s(x) = p_m(x) \cdot x^t - s_r(x)$ 

