Quantitative Methods

Simple Linear Regression

Intro and Exam Focus

- Least squares regression coefficients: intercept and slope calculation
- Assumptions of linear regression: linearity, heteroskedasticity, independence, normality
- Analysis of variance (ANOVA) table
 - F-test of regression
 - *T*-test of individual coefficient

Regression Coefficients

© Kaplan, Inc.

Assumptions of Linear Regression

- 1. *Linear relation* between dependent and independent variable
- 2. *Variance of the residuals* is constant (homoskedasticity)
- 3. (Y, X) pairs should be *independent* to each other (uncorrelated)
 - → *Residuals* are independently distributed (i.e., uncorrelated) with each other
- 4. *Residuals* are normally distributed

Residuals not independent to independent variable X

© Kaplan, Inc.

Heteroskedasticity

a. Fitted vs. Observed

Variance of residuals increasing with X → heteroskedasticity

Independence and Normality

- Hollow dots are December sales
- Large residuals for December
- Suggests seasonality (not independent, or autocorrelation)

Residuals can be tested for **normality**. With large sample sizes, the normality assumption can be relaxed.

ANOVA Table for Regression With n = 5

Source	df	SumSquares	Mean Square	<i>F</i> -stat	R ²
Regression		88.0			
Residual		7.2			
Total					

Degrees of freedom (df)? Regression = Residual = Total =

Total sum of squares? =

Mean square regression (MSR)? = SSR / df = =

Mean square error (MSE)? = SSE / df = =

-4

© Kaplan, Inc.

ANOVA Table for Regression With n = 5

Source	df	SumSquares	Mean Square	<i>F</i> -stat	R ²
Regressio n	1	88.0	88.0		
Residual	3	7.2	2.4		
Total	<u> </u>	OE 2			

$$F$$
-stat? = $\frac{MSR}{MSF}$ = =

Critical *F*-value from statistical tables (95th percentile, df numerator = 1, df denominator = 3):

→ null hypothesis that all coefficients are zero

-3

© Kaplan, Inc.

 ϵ

ANOVA Table for Regression With n = 5

Source	df	SumSquares	Mean Square	<i>F</i> -stat	R ²
Regressio n	1	88.0	88.0	36.67	
Residual	3	7.2	2.4		
Total	4	95.2			

Coefficient of determination (R²)?
$$\frac{SSR}{SST} = =$$

Standard error of estimate, SEE (
$$s_e$$
)? $\sqrt{MSE} = =$

-2

© Kaplan, Inc.

Regression Coefficient t-Test: Example

Estimated slope (b₁) = 1.50 with s_{ξ_1} =0.46. Assuming n = 32, determine if the slope is equal to zero at the 5% significance level. Test the hypothesis that b₁ = 0.

$$t_{b_1} = \frac{\hat{b}_1 - B_1}{s_{\hat{b}_1}} = =$$

Critical two-tailed *t*-stat (30 df and 5% significance) is 2.042

$$: b_1 = 0.$$

3

Predicted Values for "Y" Variable: Example

Given $\hat{b}_0 = 1.8\%$, $\hat{b}_1 = 0.76$, and a value of X of 8%, what is the predicted value of Y according to this regression model?

$$\hat{Y} = =$$

-1

© Kaplan, Inc.

Prediction Intervals

Given a predicted value of Y of 7.88% and standard error of the forecast ($\mathbf{s_f}$) of 1.22% for a regression with 27 observations, construct a 95% prediction interval (critical value with 25 df is 2.06).

7.88 ± () =
$$s_f^2 = SEE^2 \left[1 + \frac{1}{n} + \frac{(X - \overline{X})^2}{(n-1)s_x^2} \right]$$

s_f can be approximated with SEE for large samples.

-1

Functional Forms

When the relationship between X and Y is not linear, fitting a linear model would result in biased predictions.

Model	Dependent Variable	Independent Variable	Slope Interpretation
Log-lin	Ln (Y)	X	Relative change in Y, absolute change in X Forecast Y is e ^{lnY}
Lin-log	Υ	Ln(X)	Absolute change in Y, relative change X
Log-log	Ln(Y)	Ln(X)	Relative change in Y, relative change X Forecast Y is e ^{lnY}

Check for increased R^2 and F-stat, and lower SEE, with transformed variable(s).

© Kaplan, Inc.

9

Solutions

ANOVA Table for Regression With n = 5

Source	df	SumSquares	Mean Square	<i>F</i> -stat	R ²
Regressio	1	88.0	88		
n	3		2.4		
Residual	4	7 5.2			
Total	•	33.1			

Degrees of freedom (df)? Regression = 1, Residual = n - 2, Total = n - 1

Total sum of squares? = 88.0 + 7.2 = 95.2

Mean square regression (MSR)? = SSR / df = 88.0 / 1 = 88.0

Mean square error (MSE)? = SSE / df = 7.2 / 3 = 2.4

ANOVA Table for Regression With n = 5

Source	df	SumSquares	Mean Square	<i>F</i> -stat	R ²
Regressio n	1	88.0	88.0	36.67	
Residual	3	7.2	2.4		
Total	4	95.2			

F-stat? =
$$\frac{MSR}{MSF}$$
 = $\frac{88.0}{2.4}$ = 36.67

Critical *F*-value from statistical tables (95th percentile, df numerator = 1, df denominator = 3): 10.1

→ **Reject** null hypothesis that all coefficients are zero

-3

© Kaplan, Ind

ANOVA Table for Regression With n = 5

Source	df	SumSquares	Mean Square	<i>F</i> -stat	R ²
Regressio n	1	88.0	88.0	36.67	0.924
Residual	3	7.2	2.4		
Total	4	95.2			

Coefficient of determination (R²)?
$$\frac{\text{SSR}}{\text{SST}} = \frac{88.0}{95.2} = 0.924$$

Standard error of estimate, SEE (s_e)? $\sqrt{\text{MSE}} = \sqrt{2.4} = 1.549$

-2

Regression Coefficient t-Test: Example

Estimated slope (b_1) = 1.50 with $s_b = 0.46$. Assuming n = 32, determine if the slope is equal to zero at the 5% significance level. Test the hypothesis that $b_1 = 0$.

$$t_{b_1} = \frac{\hat{b}_1 - B_1}{s_{\hat{b}_1}} = \frac{1.50 - 0}{0.46} = 3.26$$

Critical two-tailed *t*-stat (30 df and 5% significance) is 2.042

Reject H_0 : $b_1 = 0$.

-3

© Kaplan, Inc.

Predicted Values for "Y" Variable: Example

Given $\hat{b}_0 = 1.8\%$, $\hat{b}_1 = 0.76$, and a value of X of 8%, what is the predicted value of Y according to this regression model?

$$\hat{Y} = 1.8\% + 0.76(8\%) = 7.88\%$$

-1

Prediction Intervals

Given a predicted value of Y of 7.88% and standard error of the forecast ($\mathbf{s_f}$) of 1.22% for a regression with 27 observations, construct a 95% prediction interval (critical value with 25 df is 2.06).

$$7.88 \pm (2.06 \times 1.22) = 5.37\% - 10.39\%$$

$$s_f^2 = SEE^2 \left[1 + \frac{1}{n} + \frac{(X - \overline{X})^2}{(n-1)s_x^2} \right]$$

s_f can be approximated with SEE for large samples.