- **50.** 1ª semana: R\$ 31,28 2ª semana: R\$ 29,85
- **51.** a) 346 297 553 130 197 167
 - **b)** c₁₂ = 297; 297 mg é a quantidade total de cálcio encontrada na receita II.
 - c) c₂₃ = 167; 167 mg é a quantidade total de magnésio encontrada na receita III.
- **52.** Sim.
- **53.** $\begin{pmatrix} 0 & 1 \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$
- **54.** Não existe.
- **55.** x = 1
- **56.** a) $\begin{pmatrix} 1 & -1 \\ -4 & 7 \end{pmatrix}$ c) $\begin{pmatrix} \frac{11}{3} & \frac{7}{3} \\ 3 & 2 \end{pmatrix}$ b) $\begin{pmatrix} 6 & -7 \\ 0 & 11 \end{pmatrix}$
- **57.** x = 7 e y = 1.
- **58.** x = 1
- **59.** a) $A^{-1} = \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix}$ b) $X = \begin{pmatrix} -5 & -16 \\ 12 & 28 \end{pmatrix}$
- **61.** $X = \begin{pmatrix} \frac{3}{7} & -\frac{5}{7} \\ \frac{1}{7} & -\frac{4}{7} \end{pmatrix}$

Desafio

- a) $\left(x = 0, y = -\frac{\sqrt{2}}{2} e z = \frac{\sqrt{2}}{2}\right)$ ou $\left(x = 0, y = \frac{\sqrt{2}}{2} e z = -\frac{\sqrt{2}}{2}\right)$.
- b) Resposta pessoal; demonstração.

CAPÍTULO 6

Sistemas lineares

Exercícios

- **1.** a, c, f, h.
- **2.** a) Sim.
- c) Sim.
- **b)** Não.
- c) Não.
- a) Sim.b) Não.
- **d)** Sim.
- **4.** -8
- **5.** a) 80x + 120y = 25200
 - **b)** Sim; não.
 - c) Não; sim.
- **6.** $m = -\frac{15}{19}$

- 7. Entre outras, são soluções:
 - a) $\left(0, -\frac{5}{3}\right)$ ou (-2, 1).
 - **b)** (0, 1, 1) ou (1, 1, 2).
 - **c)** (0, 2) ou (1, 1).
 - **d)** $\left(0, 0, \frac{16}{5}\right)$ ou (2, 2, 2).
- 8.
- **9. a)** 18
- **b)** 10
- **10.** a) -4x + 3y = -1, por exemplo. b) Resposta pessoal.
- **11.** a) $S = \{(3, -1)\}$; S.P.D.

b) $S = \left\{ \left(\frac{2}{3}, -\frac{1}{3} \right) \right\}$; S.P.D.

c) $S = \{(x, 5 - x); x \in \mathbb{R}\}$ ou $S = \{(5 - y, y); y \in \mathbb{R}\}; S.P.I.$

d) $S = \emptyset$; S.I.

- **12.** 30 unidades.
- **13.** R\$ 28.40
- **14.** R\$ 360,00
- **15.** a) 51 pontos.
 - **b)** 11 erros.
 - c) Não é possível.
- **16.** m $\neq \frac{5}{2}$
- **17.** 11
- **18.** m = −4 e n = 2.

- **19.** a) (3, -2) é solução e $\left(-\frac{1}{3}, \frac{4}{3}\right)$ não é solução.
 - $\mathbf{b}) \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- **20.** *k*
- **21.** a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 1 & 0 & 7 \\ 1 & 0 & 1 & 8 \\ 0 & 1 & 1 & 9 \end{bmatrix}$
 - **b)** $A = \begin{bmatrix} 4 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{bmatrix} e B = \begin{bmatrix} 4 & -1 & 1 & -1 \\ 1 & 2 & -1 & -2 \\ 1 & 0 & -1 & -5 \end{bmatrix}$
 - c) $A = \begin{bmatrix} 3 & 2 \\ 1 & -1 \\ 4 & 1 \end{bmatrix} e B = \begin{bmatrix} 3 & 2 & -4 \\ 1 & -1 & -7 \\ 4 & 1 & 2 \end{bmatrix}$
 - **d)** $A = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 1 & 10 \end{bmatrix} e B = \begin{bmatrix} 2 & 1 & 3 & -13 \\ -1 & 1 & 10 & 4 \end{bmatrix}$
- 22. a) $\begin{cases} 3x + 2y = 0 \\ 2x + 5y = 2 \end{cases}$ b) $\begin{cases} 5x + 7y 2z = 11 \\ x y + 3z = 13 \end{cases}$
 - c) $\begin{cases} x + y + z = 3\\ 2x 4y + 3z = 11\\ -3x 3y 3z = 10 \end{cases}$
- **23.** a) m = 1 c) m = 3 b) m = 3
- **24.** a) $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \end{pmatrix}$ \cdot $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ = $\begin{pmatrix} 5 \\ 0 \end{pmatrix}$
 - **b)** Verificação.
 - c) Verificação.
 - **d)** -25
- **25.** *a* e *c* estão escalonados.
- **26.** a) $S = \{(-3, 7)\}$; S.P.D.
 - **b)** $S = \{(3, 3, -4)\}; S.P.D.$
 - c) $S = \{(7 + \alpha, 2 + 3\alpha, \alpha); \alpha \in \mathbb{R}\};$ S.P.I.
 - **d)** $S = \{(6, 0, 3, 2)\}; S.P.D.$
 - e) $S = \emptyset$; S.I.
- **27.** $\alpha = 3$, $\beta = 2$, $\gamma = -6$.
- **28.** a) x y = 8
 - b) Resposta pessoal.
 - c) $S = \{(8 + \alpha, \alpha); \alpha \in \mathbb{R}\}; S.P.I.$
- **29.** $S = \{(1 + \alpha, -1 + 2\alpha, \alpha); \alpha \in \mathbb{R}\}$
- **30.** a) $S = \{(1, 3, 2)\}; S.P.D.$
 - **b)** $S = \{(-11, -6, -3)\}; S.P.D.$
 - c) $S = \emptyset$; S.I.
 - **d)** $S = \left\{ \left(\frac{-1 + \alpha}{2}, \frac{5 3\alpha}{2}, \alpha \right); \alpha \in \mathbb{R} \right\}; S.P.I.$
- **31.** a) $S = \left\{ \left(\frac{-7\alpha + 13}{11}, \frac{8 + 5\alpha}{11}, \alpha \right); \alpha \in \mathbb{R} \right\}$
 - **b)** $S = \{(5, -2, -1)\}$
 - **c)** S = ∅
 - **d)** $S = \{(1, 1, 1)\}$
- **32.** Quibe: R\$ 4,50; esfirra: R\$ 2,20; suco: R\$ 6,00.
- **33.** R\$ 88,00
- 34. 14 questões erradas.

35. a) $S = \{(7, 3)\}$

b) $S = \{(5 - \alpha, 2, \alpha); \alpha \in \mathbb{R}\}$

c) S = ∅

d) $S = \emptyset$

e) $S = \{(1, 5)\}$

f) $S = \{(-1, 2, 3, 1)\}$

36. a)

c)

37. Ana: R\$ 160,00; Bia: R\$ 75,00; Carol: R\$ 105,00

38. a) R\$ 4,00

b) Não é possível determinar.

c) R\$ 32,60

d) Não é possível determinar.

39. Arquibancada: R\$ 80,00

Numerada descoberta: R\$ 120,00

Numerada coberta: R\$ 200,00

40. 145

41. a) −2

d) 6 **e)** 1

g) -1**h)** 1

b) -13

f) $-2a^2$

c) 4

42. a) -11

b) 3

c) -15 **d)** -1

e) -13

g) -12

43. 12

44. a) 22

f) -33

c) -1

b) 2 **45.** a) 8

d) -15 **b)** 8

46. det A = 1; det B = -4;

 $\det (A + B) = 0$; $\det (A \cdot B) = -4$.

47. a) $S = \{1, -2\}$

b) $S = \{0, -\sqrt{3}, \sqrt{3}\}$

c) $S = \{1\}$

48. a) $S = \{x \in \mathbb{R} \mid x \ge -4\}$

b) $S = \{x \in \mathbb{R} \mid x > -1\}$

49. a) m \neq 2

b) \exists m $\in \mathbb{R}$

c) m = 2

50. a = -3 e b = 1.

52. $k \neq 1 e k \neq -2$.

53. a) $S = \{(0, 0)\}; S.P.D.$

b) $S = \{(2\alpha, \alpha); \alpha \in \mathbb{R}\}; S.P.I.$

c) $S = \{(0, 0, 0)\}; S.P.D.$

d) $S = \{(-\alpha, \alpha, \alpha); \alpha \in \mathbb{R}\}; S.P.I.$

54. a) m = 2

b) $S = \{(-11\alpha, 9\alpha, 5\alpha); \alpha \in \mathbb{R}\}$

55. $m \neq -1$

56. a) m = -8

b) Resposta pessoal; todo par ordenado da forma $(-2\alpha, \alpha)$, $\alpha \in \mathbb{R}$, satisfaz.

Desafio

-3

Geometria Espacial de Posição

Exercícios

