Genetische Statistik

Präsenzübung 9: GX-Analysen

Dr. Janne Pott (janne.pott@uni-leipzig.de)

January 18, 2022

Fragen

Gibt es Fragen zu

- Vorlesung?
- Übung?
- Seminar?

Plan heute

- Blatt 6 A1: Genexpressionsanalysen
- Blatt 6 A2: Pathway-Analysen
- Blatt 6 A3: Hierarchische Testkorrektur
- Blatt 6 A4: Interpretation von Plots

Abschnitt 1

Genexpressionsanalysen

Wiederholung GWAS-Workflow

Aufgabe 1

- eQTL vs. TWAS
- cis vs. trans eQTLs
- Warum adjustiert man auf Lymphozyten und Monozyten?
- Wie adjustiert man auf technische bzw. biologische Confounder?
- Skizzieren Sie den Ablauf einer eQTL-Analyse!

Aufgabe 1 - Lösung a) & b)

- **eQTL**:= Expression Qantitative Trait Locus \Rightarrow *GX* \sim *G*
- **TWAS**: Transkriptionsweite Assoziationsstudie ⇒ *Ph*ä*notyp* ~ *GX*
- Ziel eQTL:
 - Funktionelle Relevanz, Validierung
 - Identifizierung neuer genetischer Risikofaktoren
 - Aufklärung grundlegender biologischer Zusammenhänge
- Ziel TWAS:
 - Identifizierung von Gen Phänotyp Beziehungen
 - Pathwayanalysen
- Cis: SNP "in Nähe" der Expressionssonde (1 MB Fenster)
- Trans: SNP "weit weg" von Expressionssonde (mehr als 1 MB, auch andere Chromosomen)

Aufgabe 1 - Lösung c) & d)

- **Technische Confounder**: z.B. Batcheffekte, Hintergrundrauschen, sollte in der Präprozessierung der GX-Arrays bereits korrigiert werden.
- **Biologische Confounder**: können meist als Modellparameter berücksichtigt werden:
 - Blutwerte: nötig bei Blutgewebe da verschiedene Blutkörperfraktionen mit unterschiedliche GE
 - Alter, Geschlecht, Medikamente: bekannter Einfluss (bsp. Sexualhormone sind Transkriptionsfaktoren)
 - Weitere, unbekannte Confounder: PCA der GE

Aufgabe 1 - Lösung e)

Aufgabe 1 - Zusatz

Abschnitt 2

Pathwayanalysen

Aufgabe 2

Frage: $GX \sim Medikament$?, N = 15,397 GEs (k = 1,042 sig. assoziiert, m = 2,587 im Lipidpathway)

Wie viele signifikante Gene müssten im Lipidstoffwechsel liegen, um von einer signifikanten Anreicherung ausgehen zu können? Gehen Sie dazu von einer hypergeometrischen Verteilung aus.

Hintergrund (1)

Abbildung 1: Schema einer Überrepräsentationsanalyse.

Hintergrund (2)

Idee: Urne mit N-m schwarzen und m weißen Kugeln, aus der k mal ohne zurücklegen gezogen wird. Wie hoch ist die Wahrscheinlichkeit, dass q Kugeln weiß sind?

- $N = 15,397 = Gr\"{o}Be der Grundmenge (alle Gene),$
- \bullet k= Größe der Stichprobe, $k\leq N$ (differenziell exprimierte Gene), und
- $m = \text{Gr\"{o}Be}$ einer spezifischen Teilmenge von N, $m \leq N$ (Gene eines Pathway),

so gilt für die Wahrscheinlichkeit, dass die Stichprobe k Elemente von der spezifischen Teilmenge enthält

$$P(q) = \frac{\binom{m}{q} \binom{N-m}{k-q}}{\binom{N}{k}}$$

Aufgabe 2 - Lösung

- N = 15,397, m = 2,587, k = 1,042, $m/N = 16.8\% \rightarrow 16.8\% \cdot k = 175,$
- Bei q = 175 Treffern ist die Ratio gleich (= Erwartung, keine Anreicherung).
- Suche nach q > 175, sodass P(q > x) > 0.95 (Anreicherung, mehr Treffer als zufällig erwartet).

[1] 194

• $P(x \le 194) = 0.95 \rightarrow \text{ab } q \ge 195 \text{ signifikanten Anreicherung}$

Abschnitt 3

Hierarchische Testkorrektur

Aufgabe 3

Hierarchische Korrektur mittels Bonferroni für folgende Daten:

```
Gen 1 |x || Gen 2 |x || Gen 3 |x — | — || — | — | — | — |
—— SNP | p-Wert || SNP | p-Wert || SNP | p-Wert rs1001 | 0.05 ||
rs2001 | 0.1 || rs1004 | 0.0124 rs1002 | 0.04 || rs2002 | 0.2 || rs1005 | 0.2
rs1003 | 0.005 || rs2003 | 0.04 || rs1006 | 0.0025 rs1004 | 0.4 || rs2004 |
0.0001 || rs2001 | 0.5 rs1005 | 0.3 || rs2005 | 0.004 || rs2002 | 0.00001
rs1006 | 0.8 || rs2006 | 0.02 || rs2003 | 0.054 | || rs2007 | 0.00005 || — |
```

Hintergrund

- Multiples Testproblem: Alphafehler-Kumulierung (globale Erhöhung des Fehler 1. Art, mehr falsch positive). *Hierarchisches FDR:
 - $\mathbf{0}$ Adjustierung Genebene: n_i Tests pro Transkript
 - amin. adj. p-Wert pro Transkript bestimmen
 - Adjustierung global: n Gene
 - $oldsymbol{\emptyset}$ Bestimmung der Anzahl k der sig. assoziierten Transkripte mittels Step 3
 - **9** Bestimmung des globalen Sig.niveaus $\alpha_1 = 0.05 \cdot k/n$
 - **1** Anwendung von α_1 auf die adjustierten p-Werte von Step 1