Objects With Structures.

David Ponarovsky

March 13, 2023

Contents

to P.

1	Polytopes. 1.1 Different Constructions	1
1	Polytopes.	
	efinition 1 (Convex Polygon). P will be said a convex polygon if for every $x, y \in P$ we have that any	

1.1 Different Constructions.

Consider two different polytopes $P, Q \subset \mathbb{R}^d$ then we could construct a third polytope by:

point z that lays on the line between x and y belongs

- 1. Intersection, taking the $P \cap Q \subset \mathbb{R}^d$
- 2. Minkeoski sum, $P+Q=\{p+q:p\in P,q\in Q\}\subset \mathbb{R}^d$
- 3. Product, $P \times Q = \{(p,q) : p \in P, q \in Q\} \subset \mathbb{R}^{2d}$

 \mathcal{V} and \mathcal{H} descriptors of polytopes. Polytopes can be describe by both a convex hull or inequalities. There is theorem that state that any convex hull has a presentation defined by inequalities system.

Lemma 1. A projection of an \mathcal{H} -polyhedron is also \mathcal{H} -polyhedron.

Definition 2 (The Cyclic Polytope $C_d(n)$.). Let $d, n \in \mathbb{N}$. And let us define the monment curve $x : \mathbb{R} \to \mathbb{R}^d$ as $t_i \mapsto t_i^i$. $C_d(0)$ is the convex hull of $x(y_1), x(y_2), ..., x(y_3)$.

Lemma 2. For $S \subset T = \{y_1 < y_2 < y_3..y_n\}$ such that |S| = d form a facet if and only if any two different indices i < j we have that the size of the intersection of $y_i, y_{i+1}..y_j$ with S is even. (That can be used to construct a new LDPC CSS code).

Definition 3 (Simplicial.). We will say that polytope P is a Simplicial if all his d-1 faces are simplexes.