CLAIMS

Polyolefin composition comprising a water releasing additives in concentrations
from 0.001 to 1 weight percent, based on the weight of the polyolefin mass wherein the water releasing additive is a hydrated inorganic or organic compound according to the general formula:

$$(M(1)^{a+})_i (M(2)^{b+})_m (X^{c-})_n (H_2O)_x$$

10

in which

$$M(1)^{a+} = NH_4^+, Na^+, K^+, Ca^{2+}, Mg^{2+};$$

$$M(2)^{b+}=NH_4^+, Na^+, K^+, Ca^{2+}, Mg^{2+},$$

$$X^{c} = BO_2^{2}$$
, $B_4O_7^{2}$, PO_4^{3} , HPO_4^{2} , H_2PO_4 , $P_2O_7^{4}$, oxalate², citrate³, lactate

15

I*a+m*b=n*c and x=1-24.

and mixtures of the foregoing.

20

- Polyolefin composition according to claim 1 wherein the water releasing additive is selected from (NH₄)₂B₄O₇•4H₂O, NH₄HB₄O₇•3H₂O, NH₄HC₂O₄•H₂O, (NH₄)₂C₂O₄•H₂O, (NH₄)₂HPO₃•H₂O, Ca(C₂H₃O₂)₂•H₂O, CaC₂O₄•H₂O, Ca(H₂PO₄)₂•H₂O, Mg(C₂H₃O₂)₂•4H₂O, K₂C₂O₄•H₂O, NaKC₂O₄•4H₂O, Ca(H₂PO₄•3H₂O, K₄P₂O₇•3H₂O, K₂B₄O₇•5H₂O, K₃citrate•H₂O, K₂tartrate•xH₂O, NaC₂H₃O₂•3H₂O, NaNH₄HPO₄•4H₂O, Na₂CO₃•10H₂O, Na₂CO₃•H₂O, Na₃C₆H₅O₇•2H₂O, Na₂C₆H₆O₇•1.5H₂O, NaC₆H₇O₇•3H₂O, NaH₂PO₄•H₂O, Na₂HPO₄•12H₂O, Na₂HPO₄•12H₂O, Na₂HPO₄•12H₂O, Na₂HPO₄•12H₂O, Na₂HPO₄•10H₂O, Na₂B₄O₇•10H₂O, Na₂B₄O₇•5H₂O, Na₂B₄O₇•4H₂O, Na₄P₂O₇•12H₂O, Na₂HPO₄•5H₂O,
- 30 Na₂B₄O₇•5H₂O, Na₂B₄O₇•4H₂O, Na₄P₂O₇•12H₂O, Na₂HPO₄•5H₂O, trisodium citrate 2 H₂O, disodium citrate 1,5 H₂O, sodium citrate H₂O, sodium lactate \times H₂O.

5

15

20

25

35

- 3. Polyolefin composition according to claim 1 wherein the water releasing additive is selected from K₂HPO₄•3H₂O, K₄P₂O₇•3H₂O, K₂B₄O₇•5H₂O, Na₂CO₃•10H₂O, Na₂CO₃•H₂O, Na₃C₆H₅O₇•2H₂O, Na₂C₆H₆O₇•1.5H₂O, NaC₆H₇O₇•3H₂O, NaH₂PO₄•H₂O, NaH₂PO₄•2H₂O, Na₂HPO₄•2(H₂O), Na₂HPO₄•12H₂O, Na₂HPO₄•7H₂O, Na₃PO₄•12H₂O, Na₂SO₄•10H₂O, Na₂B₄O₇•10H₂O, Na₂B₄O₇•5H₂O, Na₂B₄O₇•4H₂O, Na₄P₂O₇•12H₂O, Na₂HPO₄•5H₂O.
- 4. Polyolefin composition according to claim 1 wherein the water releasing additive is selected from K₂HPO₄•3H₂O, K₄P₂O₇•3H₂O, NaH₂PO₄•H₂O, NaH₂PO₄•2H₂O, Na₂HPO₄•2(H₂O), Na₂HPO₄•12H₂O, Na₂HPO₄•7H₂O, Na₃PO₄•12H₂O, Na₄P₂O₇•12H₂O, Na₂HPO₄•5H₂O.
 - 5. Polyolefin composition according to claim 1 wherein the concentration of the water releasing additives is from 0.003 to 0.1, preferably from 0.01 to 0.07 weight percent.
 - 6. Polyolefin composition according to claim 1 wherein the additive is a blend of a water releasing additive according to claim 1 with calcium stearate or zinc stearate or DHT4A in a blend ratio from 10:90 to 90:10 by weight.
 - A process for the prevention of discoloration in polyolefins characterized by the addition of a hydrated inorganic or organic compound as characterized in claims 1 to 5 to a polyolefine in concentrations from 0.001 to 1 weight percent, based on the weight of the polyolefin mass.
 - 8. A process according to claim 7 wherein the hydrated inorganic or organic compounds are added to the polyolefin polymer formed in any polymerization process prior to devolatilization and/or melt extrusion and pelletizing thereof.
- 30 9. A process according to claim 7 wherein the hydrated inorganic or organic compounds are incorporated into the molten polymer mass by means of a melt mixing process, preferably in the form of a concentrate or masterbatch.
 - 10. Use of polyolefin composition as characterized in claims 1 to 6 for the prevention of discoloration in polyolefins.