Wzory Eulera

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 14

Niech $t \in \mathbb{R}$. Wówczas $e^{it} = \cos t + i \sin t$.

Wzory Eulera

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 14

Niech $t \in \mathbb{R}$. Wówczas $e^{it} = \cos t + i \sin t$.

Przykład

Skoro tak, to $e^{i\pi}=\cos\pi+i\sin\pi=-1$. Równość $1+e^{i\pi}=0$ jest uważana za najpiękniejszą w całej Matematyce.

Kilka uwag

Funkcja wykładnicza zmiennej zespolonej

• Dla rozwiania wątpliwości odnotujmy że $e^{i\cdot 0} = \cos 0 + i \sin 0 = 1$.

Kilka uwag

Funkcja wykładnicza zmiennej zespolonej

- Dla rozwiania wątpliwości odnotujmy że $e^{i\cdot 0} = \cos 0 + i \sin 0 = 1$.
- Tak naprawdę liczbę e^{it} definiuje się za pomocą szeregu potęgowego.

Kilka uwag

Funkcja wykładnicza zmiennej zespolonej

- Dla rozwiania wątpliwości odnotujmy że $e^{i\cdot 0} = \cos 0 + i \sin 0 = 1$.
- Tak naprawdę liczbę e^{it} definiuje się za pomocą szeregu potęgowego.
- ullet Zamiast e^{it} można pisać exp it ("eksponenta liczby it").

Wzory Eulera, cd.

Funkcja wykładnicza zmiennej zespolonej

Wniosek Niech znowu $t \in \mathbb{R}$. Wówczas

Wniosek

Funkcja wykładnicza zmiennej

Niech znowu $t \in \mathbb{R}$. Wówczas

(i)
$$\cos t = \frac{1}{2}(e^{it} + e^{-it})$$
,

Wniosek

Funkcja wykładnicza zmiennej

Niech znowu $t \in \mathbb{R}$. Wówczas

(i)
$$\cos t = \frac{1}{2}(e^{it} + e^{-it}),$$

(ii)
$$\sin t = \frac{1}{2i} (e^{it} - e^{-it}).$$

Wniosek

Niech znowu $t \in \mathbb{R}$. Wówczas

- (i) $\cos t = \frac{1}{2}(e^{it} + e^{-it}),$
- (ii) $\sin t = \frac{1}{2i} (e^{it} e^{-it}).$

Dowód

Z parzystości funkcji cosinus i nieparzystości funkcji sinus wynika, że

$$e^{-it} = \cos(-t) + i\sin(-t) = \cos t - i\sin t.$$

Dodając stronami równości $e^{it}=\cos t+i\sin t$ oraz $e^{-it}=\cos t-i\sin t$ uzyskujemy własność (i). Własność (ii) jest skutkiem odjęcia stronami tychże równości.

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 15

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 15

(i)
$$e^{it}e^{is} = e^{i(t+s)}$$
,

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 15

- (i) $e^{it}e^{is}=e^{i(t+s)}$,
- (ii) $|e^{it}| = 1$,

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 15

(i)
$$e^{it}e^{is} = e^{i(t+s)}$$
,

(ii)
$$|e^{it}| = 1$$
,

(iii)
$$\frac{1}{e^{it}} = \overline{e^{it}} = e^{-it}$$
,

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 15

(i)
$$e^{it}e^{is} = e^{i(t+s)}$$
,

(ii)
$$|e^{it}| = 1$$
,

(iii)
$$\frac{1}{e^{it}} = \overline{e^{it}} = e^{-it}$$
,

(iv)
$$\frac{e^{it}}{e^{is}} = e^{i(t-s)}$$
,

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 15

(i)
$$e^{it}e^{is} = e^{i(t+s)}$$
,

(ii)
$$|e^{it}| = 1$$
,

(iii)
$$\frac{1}{e^{it}} = \overline{e^{it}} = e^{-it}$$
,

(iv)
$$\frac{e^{it}}{e^{is}} = e^{i(t-s)}$$
,

$$(\mathsf{v}) \ (e^{it})^k = e^{kit},$$

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 15

(i)
$$e^{it}e^{is} = e^{i(t+s)}$$
,

(ii)
$$|e^{it}| = 1$$
,

(iii)
$$\frac{1}{e^{it}} = \overline{e^{it}} = e^{-it}$$
,

(iv)
$$\frac{e^{it}}{e^{is}} = e^{i(t-s)}$$
,

$$(v) (e^{it})^k = e^{kit},$$

(vi)
$$e^{it} = e^{is} \iff \exists \ell \in \mathbb{Z} : t - s = 2\ell\pi$$
.

Dowód

Własności (i)-(v) wykazaliśmy, mówiąc o postaci trygonometrycznej. Przejdźmy do (vi). Implikacja \Leftarrow jest natychmiastową konsekwencją okresowości funkcji sinus i cosinus. Załóżmy zatem, że $e^{it}=e^{is}$. Skoro tak, to

$$1 = \frac{e^{it}}{e^{is}} = e^{i(t-s)} = \cos(t-s) + i\sin(t-s)$$

i w konsekwencji $\cos(t-s)=1$. Ta ostatnia równość zachodzi jednak wtedy i tylko wtedy, gdy $t-s=2\ell\pi$ dla pewnego $\ell\in\mathbb{Z}$ (wykres funkcji cosinus).

Funkcja wykładnicza zmiennej

Twierdzenie 16

Niech $z \in \mathbb{C} \setminus \{0\}$ i niech $\varphi \in \mathbb{R}$. Wówczas następujące warunki są równoważne:

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 16

Niech $z \in \mathbb{C} \setminus \{0\}$ i niech $\varphi \in \mathbb{R}$. Wówczas następujące warunki są równoważne:

 $oldsymbol{0}$ φ jest argumentem liczby z,

Funkcja wykładnicza zmiennej

Twierdzenie 16

Niech $z \in \mathbb{C} \setminus \{0\}$ i niech $\varphi \in \mathbb{R}$. Wówczas następujące warunki są równoważne:

- **①** φ jest argumentem liczby z,

Funkcja wykładnicza zmiennej zespolonei

Twierdzenie 16

Niech $z \in \mathbb{C} \setminus \{0\}$ i niech $\varphi \in \mathbb{R}$. Wówczas następujące warunki są równoważne:

- $oldsymbol{0}$ φ jest argumentem liczby z,
- $2 z = |z|e^{i\varphi}.$

Dowód

Zrobiony przy okazji postaci trygonometrycznych.

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 16

Niech $z \in \mathbb{C} \setminus \{0\}$ i niech $\varphi \in \mathbb{R}$. Wówczas następujące warunki są równoważne:

- **1** φ jest argumentem liczby z,
- $2 z = |z|e^{i\varphi}.$

Dowód

Zrobiony przy okazji postaci trygonometrycznych.

Wniosek

Każdą liczbę zespoloną z różną od zera można zapisać (na nieskończenie wiele sposobów) w postaci $z=|z|e^{i\varphi}$, gdzie φ jest liczbą rzeczywistą.

Funkcja wykładnicza zmiennej zespolonej

Uwaga

Opisana powyżej postać liczby zespolonej różnej od zera nazywa się postacią wykładniczą.

Przykłady

Funkcja wykładnicza zmiennej zespolonej

• Postacią wykładniczą liczby -7 jest na przykład $-7 = 7e^{i\pi}$.

Przykłady

Funkcja wykładnicza zmiennej zespolonej

- Postacią wykładniczą liczby -7 jest na przykład $-7 = 7e^{i\pi}$.
- Postaciami wykładniczymi liczby $1-i\sqrt{3}$ są (na przykład) $1-i\sqrt{3}=2\exp{5\over3}\pi i$ oraz $1-i\sqrt{3}=2\exp{\left(-\frac{\pi}{3}i\right)}.$

Przykłady

Funkcja wykładnicza zmiennej zespolonej

- Postacią wykładniczą liczby -7 jest na przykład $-7 = 7e^{i\pi}$.
- Postaciami wykładniczymi liczby $1-i\sqrt{3}$ są (na przykład) $1-i\sqrt{3}=2\exp{5\over3}\pi i$ oraz $1-i\sqrt{3}=2\exp{\left(-\frac{\pi}{3}i\right)}$.
- Postacią wykładniczą liczby i jest na przykład $i=\exp{\frac{\pi}{2}i}$.

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 17

Dla dowolnej liczby zespolonej z = x + iy, gdzie $x, y \in \mathbb{R}$, zachodzi równość $e^z = e^x(\cos y + i \sin y)$.

Twierdzenie 17

Dla dowolnej liczby zespolonej z = x + iy, gdzie $x, y \in \mathbb{R}$, zachodzi równość $e^z = e^x(\cos y + i \sin y)$.

Uwaga

Po prawej stronie drugiej równości znajduje się "zwykła" potega liczby e.

Dalsze uwagi

Funkcja wykładnicza zmiennej zespolonej

• Funkcję exp : $\mathbb{C} \ni z \longmapsto e^z \in \mathbb{C}$ nazywa się funkcją eksponens.

Dalsze uwagi

Funkcja wykładnicza zmiennej zespolonej

- Funkcję exp : $\mathbb{C} \ni z \longmapsto e^z \in \mathbb{C}$ nazywa się funkcją eksponens.
- Jeśli $t \in \mathbb{R}$, to $\exp(t + 0 \cdot i) = e^t(\cos 0 + i \sin 0) = e^t$. Funkcja eksponens jest zatem rozszerzeniem zwykłej funkcji wykładniczej o podstawie e na całą płaszczyznę zespoloną.

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 18

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 18

(i)
$$e^z e^w = e^{z+w}$$
,

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 18

- (i) $e^z e^w = e^{z+w}$,
- (ii) $|e^z| = e^{re(z)}$,

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 18

- (i) $e^z e^w = e^{z+w}$,
- (ii) $|e^z| = e^{re(z)}$,
- (iii) $\frac{1}{e^z} = e^{-z}$,

Funkcja wykładnicza zmiennej zespolonei

Twierdzenie 18

(i)
$$e^z e^w = e^{z+w}$$
,

(ii)
$$|e^z| = e^{re(z)}$$
,

(iii)
$$\frac{1}{e^z} = e^{-z}$$
,

(iv)
$$\exp \overline{z} = \overline{\exp z}$$
,

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 18

(i)
$$e^z e^w = e^{z+w}$$
,

(ii)
$$|e^z| = e^{re(z)}$$
,

(iii)
$$\frac{1}{e^z} = e^{-z}$$
,

(iv)
$$\exp \overline{z} = \overline{\exp z}$$
,

$$(v) \ \frac{e^z}{e^w} = e^{z-w},$$

Funkcja wykładnicza zmiennej zespolonej

Twierdzenie 18

(i)
$$e^z e^w = e^{z+w}$$
,

(ii)
$$|e^z| = e^{re(z)}$$
,

(iii)
$$\frac{1}{e^z} = e^{-z}$$
,

(iv)
$$\exp \overline{z} = \overline{\exp z}$$
,

$$(v) \frac{e^z}{e^w} = e^{z-w},$$

$$(vi) (e^z)^k = e^{kz},$$

Funkcja wykładnicza zmiennej zespolonei

Twierdzenie 18

(i)
$$e^z e^w = e^{z+w}$$
,

(ii)
$$|e^z| = e^{re(z)}$$
,

(iii)
$$\frac{1}{e^z} = e^{-z}$$
,

(iv)
$$\exp \overline{z} = \overline{\exp z}$$
,

$$(v) \frac{e^z}{e^w} = e^{z-w},$$

$$(vi) (e^z)^k = e^{kz},$$

(vii)
$$e^z = e^w \iff \exists \ell \in \mathbb{Z} : z - w = 2\ell\pi i$$
.

Funkcja wykładnicza zmiennej zespolonei

Twierdzenie 18

Niech $z, w \in \mathbb{C}$ i niech $k \in \mathbb{Z}$. Wówczas

(i)
$$e^z e^w = e^{z+w}$$
,

(ii)
$$|e^z| = e^{re(z)}$$
,

(iii)
$$\frac{1}{e^z} = e^{-z}$$
,

(iv)
$$\exp \overline{z} = \overline{\exp z}$$
,

$$(v) \frac{e^z}{e^w} = e^{z-w},$$

$$(vi) (e^z)^k = e^{kz},$$

(vii)
$$e^z = e^w \iff \exists \ell \in \mathbb{Z} : z - w = 2\ell \pi i$$
.

Dowód

Proste ćwiczenie.

Dziwny fakt

Funkcja wykładnicza zmiennej zespolonej

Wniosek

Funkcja eksponens jest okresowa, z okresem równym $2\pi i$. Ponadto nie przyjmuje ona wartości 0.

Zadanie

⁼unkcja wykładnicz zmiennej zespolonej

Rozwiążemy równanie $e^z=-3$ o niewiadomej $z\in\mathbb{C}.$

Zadanie

Funkcja wykładnicza zmiennej zespolonej

$$e^z = -3 \iff e^z = 3e^{i\pi} \iff e^z = e^{\ln 3}e^{i\pi} \iff$$

 $\iff \exp z = \exp(i\pi + \ln 3) \iff$
 $\iff \exists \ell \in \mathbb{Z} : z = 2\ell i\pi + i\pi + \ln 3$

Równanie ma zatem nieskończenie wiele rozwiązań. Zbiorem wszystkich jego rozwiązań jest $\{(2\ell+1)i\pi+\ln 3:\ell\in\mathbb{Z}\}$. Rozwiązania tego równania nazywa się (zespolonymi) logarytmami z minus trójki.