Linear regression

In [2]:

import pandas as pd
import numpy as np
data=pd.read_csv("/home/placement/Downloads/fiat500 (2).csv")
data.describe()

Out[2]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [3]: data=data.drop('model',axis=1)
 data

Out[3]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	51	882	25000	1	44.907242	8.611560	8900
1	2	51	1186	32500	1	45.666359	12.241890	8800
2	3	74	4658	142228	1	45.503300	11.417840	4200
3	4	51	2739	160000	1	40.633171	17.634609	6000
4	5	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 8 columns

In [4]: cor=data.corr() cor

Out[4]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
ID	1.000000	-0.034059	-0.060753	-0.006537	0.007803	-0.058207	0.058941	0.028516
engine_power	-0.034059	1.000000	0.319190	0.285495	-0.005030	0.005721	-0.005032	-0.277235
age_in_days	-0.060753	0.319190	1.000000	0.833890	0.075775	0.062982	-0.042667	-0.893328
km	-0.006537	0.285495	0.833890	1.000000	0.097539	0.035519	0.004839	-0.859373
previous_owners	0.007803	-0.005030	0.075775	0.097539	1.000000	0.001697	-0.026836	-0.076274
lat	-0.058207	0.005721	0.062982	0.035519	0.001697	1.000000	-0.766646	-0.011733
lon	0.058941	-0.005032	-0.042667	0.004839	-0.026836	-0.766646	1.000000	-0.003541
price	0.028516	-0.277235	-0.893328	-0.859373	-0.076274	-0.011733	-0.003541	1.000000

In [5]: import seaborn as s
s.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')

Out[5]: <Axes: >

In [6]: data=data.drop(['ID','lat','lon'],axis=1)

```
In [7]: y=data['price']
         x=data.drop("price",axis=1)
 Out[7]: 0
                 8900
                 8800
         1
         2
                 4200
         3
                 6000
         4
                 5700
                 5200
         1533
         1534
                 4600
         1535
                 7500
         1536
                 5990
         1537
                 7900
         Name: price, Length: 1538, dtype: int64
 In [8]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
 In [9]: from sklearn.linear model import LinearRegression
         reg=LinearRegression()
         req.fit(x train,y train)
 Out[9]:
          ▼ LinearRegression
         LinearRegression()
In [ ]:
In [10]: ypred=reg.predict(x_test)
In [11]: from sklearn.metrics import r2 score
         lE=r2 score(y test,ypred)
         lΕ
Out[11]: 0.8401365357197939
```

Ridgeregression

In [12]: li=pd.read_csv("/home/placement/Downloads/fiat500 (2).csv")
li

Out[12]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

In [13]: li=li.drop("model",axis=1)
li

Out[13]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	51	882	25000	1	44.907242	8.611560	8900
1	2	51	1186	32500	1	45.666359	12.241890	8800
2	3	74	4658	142228	1	45.503300	11.417840	4200
3	4	51	2739	160000	1	40.633171	17.634609	6000
4	5	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 8 columns

In [14]: cor=li.corr() cor

Out[14]:

		ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
	ID	1.000000	-0.034059	-0.060753	-0.006537	0.007803	-0.058207	0.058941	0.028516
en	gine_power	-0.034059	1.000000	0.319190	0.285495	-0.005030	0.005721	-0.005032	-0.277235
a	ge_in_days	-0.060753	0.319190	1.000000	0.833890	0.075775	0.062982	-0.042667	-0.893328
	km	-0.006537	0.285495	0.833890	1.000000	0.097539	0.035519	0.004839	-0.859373
previo	ous_owners	0.007803	-0.005030	0.075775	0.097539	1.000000	0.001697	-0.026836	-0.076274
	lat	-0.058207	0.005721	0.062982	0.035519	0.001697	1.000000	-0.766646	-0.011733
	lon	0.058941	-0.005032	-0.042667	0.004839	-0.026836	-0.766646	1.000000	-0.003541
	price	0.028516	-0.277235	-0.893328	-0.859373	-0.076274	-0.011733	-0.003541	1.000000

In [15]: import seaborn as s

s.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')

Out[15]: <Axes: >


```
In [16]: y=li['price']
         x=li.drop("price",axis=1)
Out[16]: 0
                 8900
                 8800
         1
                 4200
         2
         3
                 6000
         4
                 5700
                  . . .
         1533
                 5200
         1534
                 4600
         1535
                 7500
         1536
                 5990
         1537
                 7900
         Name: price, Length: 1538, dtype: int64
In [17]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [18]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
         alpha=[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20,30]
         ridge=Ridge()
         parameters={"alpha":alpha}
         ridge regressor=GridSearchCV(ridge,parameters)
         ridge regressor.fit(x train,y train)
Out[18]:
           ▶ GridSearchCV
           ► estimator: Ridge
                ► Ridge
In [19]: ridge regressor.best params
Out[19]: {'alpha': 30}
```

In [20]: ridge=Ridge(alpha=30)
 ridge.fit(x_train,y_train)
 y_pred_ridge=ridge.predict(x_test)

In [21]: from sklearn.metrics import r2_score
RE=r2_score(y_test,y_pred_ridge)
RE

Out[21]: 0.8415256179582116

Elastic regression

In [22]: re=pd.read_csv("/home/placement/Downloads/fiat500 (2).csv")
re

Out[22]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	рор	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

In [23]: re=re.drop("model",axis=1)
re

Out[23]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	51	882	25000	1	44.907242	8.611560	8900
1	2	51	1186	32500	1	45.666359	12.241890	8800
2	3	74	4658	142228	1	45.503300	11.417840	4200
3	4	51	2739	160000	1	40.633171	17.634609	6000
4	5	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 8 columns

In [24]: #re=re.drop(['ID','lat','lon'],axis=1)
#re

In [25]: cor=re.corr() cor

Out[25]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
ID	1.000000	-0.034059	-0.060753	-0.006537	0.007803	-0.058207	0.058941	0.028516
engine_power	-0.034059	1.000000	0.319190	0.285495	-0.005030	0.005721	-0.005032	-0.277235
age_in_days	-0.060753	0.319190	1.000000	0.833890	0.075775	0.062982	-0.042667	-0.893328
km	-0.006537	0.285495	0.833890	1.000000	0.097539	0.035519	0.004839	-0.859373
previous_owners	0.007803	-0.005030	0.075775	0.097539	1.000000	0.001697	-0.026836	-0.076274
lat	-0.058207	0.005721	0.062982	0.035519	0.001697	1.000000	-0.766646	-0.011733
lon	0.058941	-0.005032	-0.042667	0.004839	-0.026836	-0.766646	1.000000	-0.003541
price	0.028516	-0.277235	-0.893328	-0.859373	-0.076274	-0.011733	-0.003541	1.000000

In [26]: **import** seaborn **as** s

s.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')

Out[26]: <Axes: >


```
In [27]: y=re['price']
         x=re.drop("price",axis=1)
Out[27]: 0
                 8900
                 8800
         1
                 4200
         2
         3
                 6000
                 5700
         1533
                 5200
         1534
                 4600
         1535
                 7500
         1536
                 5990
         1537
                 7900
         Name: price, Length: 1538, dtype: int64
In [28]: import warnings
         warnings.filterwarnings("ignore")
         from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         elastic = ElasticNet()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(x train,y train)
Out[28]:
                GridSearchCV
           ► estimator: ElasticNet
                ▶ ElasticNet
```

Efficiencies

In [37]: LE#liner regresssion efficiency Dut[37]: 0.8401365357197939 In [33]: RE#ridge regresssion efficiency Dut[33]: 0.8415256179582116 In [34]: EE#elastic regresssion efficiency Dut[34]: 0.8415256179582116 In []:		
In [33]: RE#ridge regresssion efficiency Out[33]: 0.8415256179582116 In [34]: EE#elastic regresssion efficiency Out[34]: 0.8415256179582116	In [37]:	lE#liner regresssion efficiency
Out[33]: 0.8415256179582116 In [34]: EE#elastic regresssion efficiency Out[34]: 0.8415256179582116	Out[37]:	0.8401365357197939
In [34]: EE#elastic regresssion efficiency Out[34]: 0.8415256179582116	In [33]:	RE#ridge regresssion efficiency
Out[34]: 0.8415256179582116	Out[33]:	0.8415256179582116
	In [34]:	EE#elastic regresssion efficiency
In []:	Out[34]:	0.8415256179582116
	In []:	