Ammonia emission reduction options for dairy housing

Hendrik Jan van Dooren & Nico Ogink

Wageningen Livestock Research

COST meeting Ghent 16-4-2019

Outline

- Introduction: brief outline of emission processes
- Mitigation options
 - Floors
 - Manure scraping and use of water
 - Urease inhibitors
 - Slurry mixing
 - Grazing & feed management
 - Others?
- Discussion: improvement of mitigation performance, role of emission models could play

Reasons to reduce ammonia emission

- Ammonia emission leads to:
 - N deposition => affecting biodiversity
 - Precursor of particulate matter (secondary), associated with public health concerns
 - Loss of minerals = economic loss for farmer
 - Dairy sector main livestock emission source in EU

Therefore:

- Need for mitigation options in dairy barns
 - Understanding of ammonia emission processes
 - Development and evaluation of mitigation options

Ammonia reduction research since 1990-ties

Emission from dairy houses

- Two sources of ammonia emission from dairy houses:
 - Slurry storage (internal/ext.)
 - Floor

Emission from floor is the sum of emissions from urine puddles.

Source: Monteny *et al.*,1998

Emission process of one puddle

- a) Enzymatic conversion of urea (urease)
- b) Chemical equilibrium of ammonia/ium ([NH₄+], pH, T)
- Physical evaporation of ammonia to air (T, v)

Factors influencing emission from puddles

- Mechanistic emission models contain numerous input parameters to describe successive emission processes
- The five input parameters describing the majority of variation in calculated NH₃ emission from floor puddles are:
 - pH
 - Depth
 - Initial Urea content
 - Area
 - Temperature

(Snoek et al., 2014)

Source: Snoek et al., 2014

Ammonia from slurry storage: depends on air exchange barn & headspace pits

Outline

- Introduction: brief outline of emission process
- Mitigation options
 - Floors
 - Manure scraping and use of water
 - Urease inhibitors
 - Slurry mixing, reduction of ventilation rate
 - Grazing & feed management
 - Others?
- The role of models in evaluation and improving mitigation options

Low emission floor systems

- Working principle:
 - Improve direct drainage of urine to pits => grooved floors, sloped floor
 - Reduce air exchange barn & pit headspace of conventional slatted floors => solid floors

Low emission floor systems available in the Netherlands: many variations on the same theme

rombou.nl/dbdownload/2183/Stallenboek%20201801

Emission levels of 32 recognized reduction options

Not half of them meet the currently required level of 8.6 kg/ap/year

Pros en cons of low emission floors to reduce ammonia emission

- Pro
 - One time investment
 - Simple in technology?

- Contra
 - Expensive
 - Limited effect (10-50%)
 - In practice problems with slippery surfaces, poor drainage of urine

Field survey of low emission floors (Snoek et al, 2016): poor performance due to insufficient drainage and poor manure scraping management

Optimisation of manure scraping to mitigate ammonia

Potential beneficial effect of manure scraping:

- Direct removal of emitting urine puddles to manure pit
- Cleaning the floor surface => improving urine drainage and decreasing puddles size

Potential adverse effects of manure scraping:

Poor scraper designs, worn out surface of scrapers => expanding puddles over larger areas, risks of increasing emission (solid floors)

Effects of prescraping on puddle depth

Overall effect of prescraping: 50% less depth

Efficient scraping, less remaining urine volume: high potential for mitigation floor emission

Using water in combination with scraping

https://www.youtube.com/watch?v= fy-UAFBCsU&feature=youtu.be

Relatively easy and effective but: reduction of slurry

storage capacity

Urease inhibitors

- Reduces the enzymatic conversion of urea to ammonium
- Blockage of receptors on enzymes
- Delay of ammonia emission
- Effect on urease activity and ammonia emission

Results UA-measurements

Results ammonia emission

Effect urease inhibitors

- Reduction urease activity during treatment: 96%
- Reduction NH₃ emission during treatment: 21%
- Effect 1^{ste} day after treatment: ~ 17%

Slurry mixing

- Slurry Aeration System (Ireland) of Aeromix (UK)
- Compressed air is distributed to outlets at the bottom of the slurry pits
- Large air bubbles agitate the slurry

- Aim is to avoid odour, H₂S and ammonia emission
- Interest in NL to get it recognized as ammonia emission reduction option.

Preliminary results

- There seems to be an reduction effect of slurry air mixing on ammonia emission of 50% in the first experiment.
- No effect in further experiments
- Signs of lower H₂S concentrations
- Signs of lower CH₄ emission
- No increased N₂O emission

Mixing: questions

- Possible reduction processes:
 - Frequent disturbance of surface layer?
 - Constant mixing, no crust layer that acts as a 'floor'?
 - Less anaerobic circumstances?
- Questions to be answered
 - Can the effect be repeated (better design)?
 - Would the same effect take place at frequent mechanically mixing?
- To be continued...

Effect of grazing on ammonia emissions

- 'Cows leave the barn' effect
 - Emission from housing will decrease
- 'Cows do urinate at pasture' effect
 - Emission from pasture will slightly increase compared to zero-grazing
- 'Cows graze at pasture' effect
 - Ration will changes and ammonia emission accordingly

Relative emission development in barn

- Slow decrease
- At day 3 a stable emission
- Pit contribution around 40%

- Fast increase
- Within 1 day
- Return to initial level

Effect grazing per year on barn emission

	Hours per day				
Days per year	4	6	8	10	12
120	1.3%	2.0%	2.6%	3.3%	4.0%
150	1.6%	2.5%	3.3%	4.2%	5.1%
180	1.9%	2.9%	4.0%	5.0%	6.1%

- Effects from 1.3-6.1% depending on grazing time
- Emission effect for slatted floors (at 720 h/y)
 - was 0.65 kg NH₃/animal place/year
 - becomes 0.26 kg NH₃/animal place/year
- Without pits serious option to reduce

Feeding effects on ammonia emission

- Feeding experiment
 - Dairy Campus
 - TAN-excretion
 - TAN-concentration

- Field survey
 - Conventional and low emission systems

Excretion and concentration both influence emission

- Effect of TAN excretion
 - Less CP intake
 - Affects floor contribution

- Effect of TAN concentration
 - Water consumption
 - Affects pit contribution

Pit contribution

- Urine N-concentration relates to top layer N-concentration
 - Surface process dominates emission from pit (?)

Other options?

- Air cleaning => requires modification into (partial) mechanical ventilation system
- Slurry acidification => reduces both emission of barn and field application, but introduces extra S-flow when using sulphuric acid
- Manure additives: more claims than evidence
- Ventilation management?

Relation ventilation rate - ammonia emission: correlation or causality

Long term measurements NV dairy barn

Increasing mitigation performance

- To increase reduction of ammonia emission to >50% combinations of measures are necessary
- To be taken into account:
 - Integral approach (climate, animal, economics a.o.)
 - Societal demands: grazing, NV barns
 - Regulatory demands
 - Quantification effect combined measures
 - Performance enforcement
- Direct farm monitoring of emission could provide a new road to reach higher levels of ammonia mitigation

Role of models in improvement of mitigation options

Modelling stimulates understanding of processes and key variables

Models support optimisation of mitigation options and their combinations: feed and manure management, floor layout

Models are helpful in a better dissemination of research results to industry and farmers

Role of models in evaluation of mitigation options

- Measurement protocols for NV dairy barns (like VERA):
 - methodological issues, limited accuracy
 - relatively expensive and time-consuming
- Alternative model approach:
 - measure key process variables under practical conditions (low emission versus reference)
 - Use key parameters in modelling mitigation effects
 - Essential prerequisite: thorough validation of applied model in practice

Thank you!

Questions?

