Mobile Erweiterte Realität mit Open Data

Tagung "Open Data Leipzig 2013"

Frank Fuchs-Kittowski

Hochschule für Technik und Wirtschaft, Berlin Professur Umweltinformatik

Fraunhofer FOKUS, Berlin Bereichsleiter Umweltinformationssysteme

Leipzig, 11. Januar 2013

Agenda

- Mobile Erweiterte Realität (Mobile Augmented Reality, mAR)
- Mobile AR-Anwendungen im Hochwasserschutz
- Content-Infrastruktur für mobile AR-Anwendungen
- Neue Möglichkeiten durch mobile AR

Erweiterte Realität

- Erweiterte Realität (Augmented Reality, AR)
 - Ergänzung der Wahrnehmung
 - der realen Welt
 - mit zusätzlichen digitalen Informationen
- Reale Objekte und digitale Informationen
 - werden gleichzeitig wahrgenommen
 - Feste Beziehung
 - bilden Einheit

Mobile Erweiterte Realität

- Bei der mobilen Art der Augmented Reality werden
 - mobile Endgeräte dazu genutzt,
 - um die gemeinsame Wahrnehmung von realen und digitalen Informationen im Ortskontext möglich zu machen
- Bisher vor allem Grundlagenforschung
 - Komplexe, teure, unhandliche Geräte
 - Hoher Aufwand für Entwicklung
 - Kein breiter Einsatz in Praxis

Mobile Erweiterte Realität

Technische Infrastruktur

- Hardware
 - Handliche, leistungsfähige, "kostengünstige" Smartphones
 - Sensoren, Rechenleistung, Datenverbindung
 - Hohe Usability & Verbreitung
- Software
 - AR-Browser-Plattformen
 - Darstellung der AR-Informationen im Kamerabild des mobilen Geräts
 - Kostenlos
- kostengünstige Entwicklung von AR-Anwendungen
 - Massenhafte Nutzung möglich

Sehr viele Einsatzbereiche & Anwendungsszenarien

E-Kommerz

Tourismus

- Bildung
- Unterhaltung
- Werbung
- Etc.
- großes wirtschaftliches Potenzial

20 Ergebnisse gefunden

Karte Liste

Anwendungsbeispiele – Open Data

- Beispiele
 - London Bus Live (Busstationen)
 - Toilette Map Vienna (Toiletten)
 - Ship Finder AR / Plane Finder AR (Schiffe, Flugzeuge etc.)
- > Potenziale nicht ausgeschöpft
 - Wenige Anwendungen
 - Einfache Geometrien (Nur POI's)
- großes Nutzungs-Potenzial
 - Viele Daten vorhanden
 - Neuartige Apps möglich

mAR-Anwendungen mit Open Data im Hochwasserschutz

- Hochwassergefahrenkarten
- Hochwasserstände und -warnungen
- Historische Hochwassermarken
- Hydrologische Fachinformationen
- Hochwasserlehrpfad

mAR Anwendungsfelder im Hochwasserschutz Hochwassergefahrenkarten-app

- Mobile Anwendung (app) "HochwasserBB"
 - zur Darstellung von Hochwassergefahrenkarten vor Ort
 - Information über von Hochwasser ausgehende Gefahr
 - als Erweiterte Karte bzw. Augmented Map (Vogelperspektive)
 - als Erweiterte Realität bzw. Augmented Reality (im Kamerabild)
 - der durch die Hochwassergefahrenkarten dargestellte, virtuelle Wasserspiegel direkt in der Realität sichtbar gemacht
 - Hochwasserszenarien realitätsnah erzeugen
 - Wahrnehmung und Analyse von Gefahren erweitern
 - Auswahl unterschiedlichen Jährlichkeiten (HQ10, HQ100, HQExtrem, ...)
- > Bewusstseinsbildung über Hochwasserrisiko bei den Bürgern

mAR Anwendungsfelder im Hochwasserschutz Hochwasserwarnung-app

- Mobile Anwendung (app) "PegelBB"
 - Darstellung von Hochwasser-Meldepegel / -Warnungen vor Ort
 - Information über aktuelle Hochwassergefahr
 - aktuelle Hochwassermelde-Pegel aus Brandenburg als
 - Karte (Vogelperspektive)
 - Erweiterte Realität (im Kamerabild)
 - Detailansicht zu jedem Pegel mit
 - Bezeichnung, Position, aktuell. Pegelstand, Warnstufe etc.
- > Bessere und frühzeitige Information und Warnung der Bevölkerung
- Bessere Erreichbarkeit (ggf. aktive Warnungen)
- > rechtzeitig Schutzmaßnahmen durch die die Bevölkerung möglich

mAR Anwendungsfelder im Hochwasserschutz

Bewusstseinsbildung – Historische Hochwassermarken

- Mobile Anwendung (app) "HochwasserMarkeBB"
 - Darstellung historischer Hochwassermarken vor Ort
 - Information über Ausmaß vergangener Hochwasser
 - Bekannte historische Hochwassermarken als
 - Karte & Erweiterte Realität
 - Detailansicht mit Foto, Datum des Hochwasser u.a.
 - Crowd Sourcing (Volounteered Environmental Information)
 - Erfassung von Hochwassermarken durch Bevölkerung
 - Foto von der Hochwassermarke
 - erforderliche Metadaten (z.B. Datum des Hochwassers)
- > Bewahrung des Bewusstseins über die Hochwassergefahr
- Involvierung / Aktivierung der Bevölkerung (Eigenvorsorge)

Anwendungsfelder – Hydrologische Fachinformationen

- Mobile Anwendung (app) "Gewässer"
 - Darstellung die hydrologischer Fachdaten
 - Für Bevölkerung (z.B. Name und Qualität des Gewässers)
 - für Fachanwender (Z.B. modellierte Abflussdaten)
 - auf einer Karte
 - Karte des betrachteten Flusseinzugsgebiets (Gewässernetz)
 - > in der Kamera-Ansicht
 - Abflusswerte an mehreren Punkten
 - (ggf. Karte des betrachteten Flusseinzugsgebiets)
- Bessere Informationsversorgung und Orientierung vor Ort

Hochwasserlehrpfad

- (Natur-) Lehrpfad-Aufgaben
 - Vermittlung einer spezifischen Thematik
 - z.B. Sensibilisierung / Bewusstseinsbildung über Hochwassergefahren
 - Besucherlenkung
- mobile AR-Anwendung
 - Darstellung von Informationen im Kamerabild
 - über Position der Objekte auf Lehrpfad
 - zugehörige Lern-Inhalte
 - Leichteres Auffinden einzelner Objekte
 (Orientierung im Gelände, Wegweiser auf dem Pfad)
 - Kostengünstige Bereitgestellung aktueller (Zusatz-) Informationen (multimedialer, selbstgesteuerter Lernprozess)

Implementierung der mAR Infrastruktur Kernanforderungen

Kern-Anforderungen (Funktionen)

- Verschiedene Datenquellen & Formate integrieren
- Rekombination
- Mehrere Ausgabeformate
 - u.a. Punkte, Linien, Polygone
 - u.a. für Web und mobile Anwendungen (Web, Web-App, Native App: Karte und AR)
- Unterschiedliche Nutzerzahlen
- Feedback durch Nutzer erlauben

Entwicklung und Verwaltung mehrerer Anwendungen

- Wiederverwendbarkeit von Technologie
- Bereitstellung der Services als Platform as a Service (PaaS)

Implementierung der mAR Infrastruktur

Bestandteile der Infrastruktur

Neue Möglichkeiten für die Wahrnehmung der Realität Rückkopplung durch Einheit von realer und virtueller Welt

- Anreichung der Realität mit digitalen Informationen
 - Darstellung der Information im realen, räumlichen Kontext
 - Wahrnehmung von realer und virtueller Welt als Einheit
- Verbesserte Wahrnehmung der Wirklichkeit / des realen Ortes
 - Sichtbarkeit von Informationen über die Realität aus Vergangenheit, Gegenwart, Zukunft, die unmittelbar in der Realität
 - Nicht mehr sichtbar sind (z.B. durch Hochwasser zerstörtes Gebäude)
 - Gerade nicht sichtbar sind (z.B. aktuelle Gewässerdaten: Pegelstand)
 - Noch nicht sichtbar sind (Auswirkungen Hochwasser / Windkraftanlage)
- Verbesserte Wahrnehmung der digitalen Informationen
 - genauere Validierung der Daten (im Kontext der Wirklichkeit)
 - bessere Interpretation und effizientere Entscheidungsunterstützung

Neue Möglichkeiten für die Wahrnehmung der Realität Rückkopplung durch mAR: Realität – Digit. Modell - Realität

Neue Möglichkeiten für die Wahrnehmung der Realität Rückkopplung durch mAR: Realität – Digit. Modell - Realität

- Geschlossener Kreis: Realität digitales Modell Realität
 - Im Kontext der realen Welt dargestellte digitale Informationen
 - entspringen meist aus der realen Welt (Ortsbezug, Geodaten)
- Weiterführender, stetiger Kreislauf
 - Digitale Erfassung der Realität mit mAR
 - Über Sensoren der mobilen Geräte (Kamera, Barometer, Gyroskop etc.)
 - Über menschliche Nutzer (human sensors, crowd sourcing)
 - Planung / Gestaltung der Realität mit mAR
 - Interaktion mit virtuellen Objekten
 - Z.B. Analyse und Bewertung von Planungsalternativen (Windkraftanlagen, Bauwerke für Hochwasserschutz etc.)

GIS

UnMessen (Nutzer, Sen

Neue Möglichkeiten für die Wahrnehmung der Realität Rückkopplung durch mAR für den informierten Nutzer

- Massenhafte Verbreitung kostengünstiger, mAR-fähiger mobiler Geräte
 - Riesige Anzahl an Nutzern möglich -> neue Handlungsmöglichkeiten
- Transparenz ("normale Bürger")
 - Informationen in die Breite bringen
 - Z.B. Information über Auswirkung von Windkraftanlage, Hochwasser
- Bürgerbeteiligung / Partizipation ("informierte Bürger")
 - Involvierung in Diskussions- und Entscheidungsprozesse
 - Z.B. Über Windkraftanlage oder Hochwasserschutzmaßnahme
- Effiziente Digitalisierung ("aktivierte Bürger")
 - Beteiligung an Verarbeitung der digitalen Informationen / Crowd Sourcing
 - Z.B. Erfassung von relevanten Informationen bei oder nach Hochwassern (Schäden, Geschwemmsellinien)

Zusammenfassung & Schlussfolgerungen

- Mobile Erweiterte Realität
 - Ermöglicht die Verschmelzung und gemeinsame Wahrnehmung von realen und digitalen Informationen im Ortskontext
 - Neuartige Nutzerschnittstelle für (offene) ortsbezogene Daten
 - Verbesserte Wahrnehmung des Ortes und der (offenen) Daten
 - Interaktion mit und planerische Gestaltung der Realität
- Verfügbarkeit geeigneter technische Infrastruktur (Smartphones, AR-Browser)
 - kostengünstige Entwicklung mobiler AR-Anwendungen (mAR-Apps)
 - Dienste für Bereitstellung und Nutzung der (offenen) Daten erforderlich
 - vorhandene (offene) Daten sind über Backend anzubinden
 - in verschiedener Form für unterschiedliche Nutzergruppen bereitzustellen

Zusammenfassung & Schlussfolgerungen

- Vielzahl von Anwendungsmöglichkeiten
 - z.B. im Hochwasserschutz
 - u.a. mit Open Data
- Massenhafte Verfügbarkeit mobiler Endgeräte (Smartphones etc.)
 - massenhafte Nutzung der mAR-Apps und Open Data durch "Jedermann"
 - Mobile Apps nicht nur für wenige Fachexperten, sondern für große Anzahl an Nutzern (Einsatzkräfte, "normale" Bürger), z.B.
 - zur Information vor Ort (Einsatzkräfte/Bürger über Hochwassergefahren)
 - Transparenz, Bürgerbeteiligung
 - zur Erfassung von relevanten Informationen (bei/nach Hochwasser)
 - Crowd Sourcing (Inverse Open Data?)
 - Spannungsfeld: Zuverlässigkeit/Qualität vs. Aktualität/Verfügbarkeit

Herzlichen Dank!

Fragen?

