Applied Stochastic Process

Quiz

Date: 23rd October 2024

Time allowed: 55 minutes Full mark: 100

1. (32 points) Let $e_1, e_2, ...$ be a sequence of independent, identically distributed normal random variables each with zero mean and variance 1, i.e., $e_t \sim N(0, 1)$ for all t. Let $Y_1 = e_1$, and then for t > 1 define Y_t recursively by $Y_t = Y_{t-1} + e_t$. Here θ_0 is a constant.

- (a) (8 points) Find the mean function for $\{Y_t\}$.
- (b) (12 points) Find the autocovariance function for $\{Y_t\}$.
- (c) (12 points) Determine the joint distribution of (Y_3, Y_4, Y_7) .
- 2. (14 points) Consider a Markov chain with state space $\{0,1\}$ and transition matrix

$$\mathbf{P} = \left[\begin{array}{cc} 1/4 & 3/4 \\ 2/3 & 1/3 \end{array} \right].$$

Assuming that the chain starts in state 1 at time n = 0, what is the probability that it is in state 0 at time n = 3?

3. (36 points) Consider a Markov chain $\{S_0, S_1, S_2, S_3, S_4, S_5\}$ with the following transition matrix

$$m{P} = \left[egin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 1/2 & 0 & 1/2 & 0 & 0 \ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \ 1/2 & 0 & 0 & 0 & 1/2 & 0 \ 0 & 0 & 1/4 & 1/4 & 1/2 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ \end{array}
ight].$$

- (a) (12 points) Draw the transition graph of this Markov chain;
- (b) (12 points) Sarting from S_2 , get $\mathbb{P}(\text{process enters } S_4 \text{ and leaves } S_4 \text{ at the next step});$
- (c) (12 points) Sarting from S_2 , get $\mathbb{P}(\text{process enters } S_3 \text{ for the } 1^{\text{st}} \text{ time at } 3^{\text{rd}} \text{ step})$
- 4. (18 points) Consider the Markov chain in below figure. It is assumed that when there is an arrow from state i to state j, then $p_{i,j} > 0$. There is no arrow from state i to state j, then $p_{i,j} = 0$.

1

Find the equivalence classes for this Markov chain. Which class is recurrent? Which class is transient?