3. धाराविद्युत

- > विभव आणि विभवांतर
- 🕨 विद्युतरोध आणि ओहमचा नियम
- > वाहक आणि विसंवाहक
- 🕨 रोधांची जोडणी व परिणामी रोध

आधुनिक जगात विजेचे अनन्यसाधारण महत्त्व आहे. दैनंदिन जीवनात प्रत्येक गोष्टीसाठी आपण विजेवर अवलंबून आहोत. वीज नसताना होणारी गैरसोय टाळण्यासाठी दवाखाने, बँका, कार्यालये व खाजगी संस्थांमध्ये जिनत्र (Generator) वापरून विजेसाठी पर्यायी व्यवस्था केलेली असते. विद्युतभट्ट्या (Electric oven), विद्युत चिलत्रे (Motor) यांचे चलन आणि काही विशिष्ट उपकरणांच्या वापरासाठी उद्योगधंद्यांमध्ये विजेचा वापर केला जातो.

फ्रीज, विद्युत ओव्हन, मिक्सर, पंखे, धुलाई यंत्र, निर्वात स्वच्छता यंत्र (Vacuum cleaner), रोटीमेकर या सर्व घरगुती साधनांनी आपली श्रमाची आणि वेळेची बचत केली आहे. या सर्व उपकरणांना चालविण्यासाठी विजेशिवाय दुसरा पर्याय नाही.

फक्त माणसेच नाही तर काही प्राणी विजेचा वापर करतात. उदा., ईल हा मासा आपले भक्ष्य पकडण्यासाठी व स्वत:चे संरक्षण करण्यासाठी विजेचा वापर करतो. कडाडून पडणारी वीज ही नैसर्गिक विद्युत प्रवाहाचे उत्तम उदाहरण आहे. ही वीज जर आपण साठवू शकलो तर?

तुम्ही एखादा तरी धबधबा पाहिलाच असेल. पाणी कोठून कोठे पडते?

विद्युत निर्मितीसाठी धरणातील पाणी उंच पातळीवरून सोडण्यात येते व गुरुत्वाकर्षणामुळे ते खालच्या पातळीवर पडते. म्हणजे आपल्याला माहीतच आहे की दोन बिंदूंमधील पाण्याच्या प्रवाहाची दिशा त्या बिंदूंच्या पातळीवर अवलंबून असते.

विभव (Potential) आणि विभवांतर (Potential difference)

साहित्य: दोन प्लॅस्टिक बाटल्या, रबरी नळी, चिमटा, पाणी.

कृती: आकृती 3.1 मध्ये दाखवल्याप्रमाणे रचना करा नंतर रबरी नळीचा चिमटा काढून टाका. आता तुमची निरीक्षणे नोंदवा.

3.1 पाण्याची पातळी व प्रवाह

खालील प्रश्नांची उत्तरे द्या.

- 1. चिमटा काढल्यावर काय होते?
- 2. पाण्याचा प्रवाह बंद होतो का? का?
- 3. पाण्याचा प्रवाह अधिक काळ सुरू रहावा यासाठी तुम्ही काय कराल?

पाण्याप्रमाणेच विद्युत प्रभाराचा प्रवाह एक प्रकारच्या विद्युतपातळीवर अवलंबून असतो. त्या विद्युत पातळीस विद्युत विभव असे म्हणतात. धनविद्युत प्रभार हा अधिक विभव असलेल्या बिंदूपासून कमी विभव असलेल्या बिंदूकडे प्रवाहित होतो. आपण यापूर्वी अभ्यासले आहे की, विद्युतप्रवाह इलेक्ट्रॉनच्या, (ज्याचा विद्युत प्रभार ऋण असतो) वहनामुळे होतो. इलेक्ट्रॉन कमी विद्युत विभवाच्या बिंदूपासून अधिक विभव असलेल्या बिंदूकडे प्रवाहित होतात. आकाशात चमकणारी वीज म्हणजे कमी विभव असलेल्या ढगांतून अधिक विभव असलेल्या जिमनीपर्यंत येणारा इलेक्ट्रॉन्स्चा प्रवाह असतो. विद्युत विभवाची परिभाषा तुम्ही पुढे अभ्यासाल.

वाहक A व B या दोन्हींच्या विद्युत विभवांतील फरकास त्या वाहकांदरम्यानचे विभवांतर म्हणतात.

आकृती 3.2 मध्ये दाखिवल्याप्रमाणे A हा जास्त विभव असलेला वाहक (Conductor) व B हा कमी विभव असलेला वाहक आहे. जर ते दोन्ही वाहक वीजवाहक तारेने जोडले तर तारेच्या दोन टोकांमध्ये विभवांतर निर्माण होईल व इलेक्ट्रॉन्सचा प्रवाह B या वाहकाकडून A या वाहकाकडे सुरू होईल. A आणि B या दोन्ही वाहकांवरील विद्युत विभव समान होईपर्यंत हा प्रवाह सुरू राहील. म्हणजेच या दोन्ही वाहकांतील विभवांतर जेव्हा शून्य होईल तेव्हा हा इलेक्ट्रॉन्स्चा प्रवाह थांबेल.

3.2 विभवांतर व विद्युतप्रवाह

धनविद्युत प्रभार मात्र कमी विभवावरून त्यापेक्षा जास्त विभवावर स्थानांतरित करण्यास विद्युत क्षेत्राच्या (Electric field) विरुद्ध कार्य करावे लागते.

विद्युतघटाचे विभवांतर (Potential difference of a Cell)

विद्युत घटाच्या धन अग्र आणि ऋण अग्र यांच्या विद्युत विभवातील फरक म्हणजे त्या घटाचे विभवांतर होय. विद्युत घटामध्ये होणाऱ्या रासायनिक अभिक्रियेमुळे हे विभवांतर निर्माण होते. हे विभवांतर इलेक्ट्रॉन्सला गतिमान करते व दोन्ही अग्रांना जोडणाऱ्या वाहकामध्ये विद्युत प्रवाह निर्माण होतो.

A या बिंदूपासून B या बिंदूपर्यंत एकक धनप्रभार स्थानांतरित करण्यासाठी जे कार्य करावे लागते त्यास A आणि B बिंदूंदरम्यानचे विद्युत विभवांतर म्हणतात.

दोन बिंदूंमधील विभवांतर =
$$\frac{}{}$$
 स्थानांतरित झालेला एकूण प्रभार $V = \frac{W}{Q}$

$$1V = \frac{1J}{1C}$$
 SI पद्धतीत विभवांतराचे एकक व्होल्ट हे आहे.

3.3 मुक्त इलेक्ट्रॉन

परिचय शास्त्रजांचा

अलेक्झान्ड्रो व्होल्टा या इटालियन शास्त्रज्ञाने सर्वप्रथम विद्युत घट तयार केला. त्यांच्या सन्मानार्थ विभवांतराच्या एककास 'व्होल्ट' हे नाव देण्यात आले.

व्होल्टाचा साधा विद्युत घट

माहीत आहे का तुम्हांला?

विभवांतराच्या अतिसूक्ष्म किंमती खालील एककांत व्यक्त करतात.

- 1. 1mV (मिलीव्होल्ट) = 10⁻³ V
- 2. $1\mu V$ (मायक्रोव्होल्ट) = $10^{-6} V$

विभवांतराच्या मोठ्या किंमती खालील एककात व्यक्त करतात.

- 1. 1kV (किलोव्होल्ट) = 10^{3} V
- $2. 1 \text{MV} (\dot{\text{म}}$ गाव्होल्ट $) = 10^6 \text{ V}$

मुक्त इलेक्ट्रॉन (Free Electron): कोणत्याही धातुरूप विद्युतवाहकाच्या प्रत्येक अणूजवळ एक किंवा एकापेक्षा जास्त इलेक्ट्रॉन असे असतात जे अणूकेंद्रकाशी अतिशय क्षीण बलाने बद्ध असतात. त्यांना मुक्त इलेक्ट्रॉन म्हणतात. आकृती 3.3 मध्ये दाखविल्याप्रमाणे वाहकामध्ये हे इलेक्ट्रॉन एका भागाकडून दुसऱ्या भागाकडे सहजपणे जाऊ शकतात. यामुळे मुक्त इलेक्ट्रॉन्सच्या ऋण प्रभाराचेही वहन होते. म्हणजेच वाहकातील मुक्त इलेक्ट्रॉन्स हे ऋण प्रभाराचे वाहक असतात.

तारेतून जाणारी विद्युतधारा (Electric Current)

आकृती 3.4 अ मध्ये दाखवल्याप्रमाणे जर विद्युतवाहक तार विद्युतघटाला जोडलेली नसेल तर तिच्यातील मुक्त इलेक्ट्रॉन्स तिच्यातील अणूंच्या दरम्यान सर्व दिशांना मुक्तपणे फिरत असतात परंतु जेव्हा त्या तारेची कोरड्या विद्युत घटासारख्या विद्युतस्रोतास जोडली जातात तेव्हा तारेतील इलेक्ट्रॉन्सवर विभवांतरामुळे विद्युतबल कार्य करते आणि आकृती 3.4 ब मध्ये दाखवल्याप्रमाणे इलेक्ट्रॉन्स ऋण प्रभारित असल्याने तारेच्या ऋण टोकाकडून (कमी टोकाकडे विभवाकडून) (जास्त धन विभवाकडे) प्रवाहित होतात. इलेक्ट्रॉनच्या प्रवाहामुळे तारेतून विद्युतधारा वाहू लागते. इलेक्ट्रॉन्सची ही हालचाल अनियमित अशा सरासरी चालीने सुरू असते.

3.4 मुक्त इलेक्ट्रॉन्सची गती

विद्युतधारा (Electric Current)

वाहकातून वाहणारा इलेक्ट्रॉन्सचा प्रवाह म्हणजे विद्युतधारा होय. त्याचे मूल्य (I) एकक कालावधीत वाहकातून वाहणाऱ्या विद्युतप्रभाराएवढे असते.

जर Q हा वाहकाच्या काटछेदातून t या कालावधीत वाहणारा विद्युत प्रभार असेल, तर

विद्युतधारा =
$$I = \frac{Q}{t}$$
 इतकी असते.

इलेक्ट्रॉन वहनाची दिशा ऋण टोकाकडून धन टोकाकडे असली तरी विद्युतधारा दर्शवण्याची संकेतमान्य दिशा इलेक्ट्रॉनच्या प्रवाहाच्या विरुद्ध दिशेने म्हणजे धन टोकाकडून ऋण टोकाकडे असते.

विद्युत प्रभाराचे SI पद्धतीतील एकक कूलोम (C) असून विद्युतधारा ॲिम्पिअर (A) मध्ये व्यक्त करतात. (एका इलेक्ट्रॉनवरील प्रभार 1.6×10^{-19} कूलोम (C) असतो.

ॲम्पिअर: वाहकातून एका सेकंदास एक कूलोम इतका विद्युतप्रभार प्रवाहित होत असेल तर वाहकातून वाहणारी विद्युतधारा एक ॲम्पिअर आहे असे म्हणतात.

$$1A = \frac{1C}{1s}$$

माहीत आहे का तुम्हांला?

विद्युतधारेची अतिसूक्ष्म परिमाणे खालीलप्रमाणे व्यक्त करतात.

- $1. 1 \text{mA}^{0} \text{ (मिलीॲम्पीअर)} = 10^{-3} \text{ A}$
- $2.1 \mu A^0$ (मायक्रो ॲम्पीअर) = $10^{-6} A$

फ्रेंच गणितज्ञ आणि वैज्ञानिक ॲम्पिअर यांनी विद्युत धारेवर आधारित प्रयोग केले, त्यांच्या कार्यामुळेच आज आपण वाहक तारेतून वाहणारी विद्युतधारा मोजू शकतो. त्यांच्या या कार्याच्या सन्मानार्थ विद्युतधारेच्या एककास 'ऑम्पिअर' हे नाव दिले.

उदाहरण: एका विद्युत वाहक तारेतून 0.4 A इतकी विद्युतधारा सतत 5 मिनिटे प्रवाहीत होत असेल तर त्या तारेतून प्रवाहित होणारा विद्युतप्रभार किती असेल?

$$t = 5 \text{ min} = 5 \times 60 \text{ s} = 300 \text{ s}$$

$$Q = I \times t$$

$$Q = 0.4 A \times 300 s$$

$$Q = 120 C.$$

∴ तारेतून जाणारा विद्युतप्रभार = 120 C

जोड माहिती संप्रेषण तंत्रज्ञानाची

सिम्युलेशन तंत्रज्ञानाच्या आधारे धाराविद्युत तसेच विज्ञानातील विविध संकल्पनांचा अभ्यास करा.

संकेतस्थळे:

www.phet.colorado.edu www.edumedia-sciences.com

वरील संकेतस्थळांप्रमाणेच विविध माहिती असणारी इतर संकेतस्थळे शोधा व ती इतरांना शेअर करा.

विद्युतरोध (Resistance) आणि ओहमचा नियम.

ओहमचा नियम (Ohm's law)

वाहकामधून प्रवाहित होणारी विद्युतधारा (I) व त्या वाहकाच्या दोन टोकांमधील विभवांतर (V) यांच्यामधील संबंध जर्मन शास्त्रज्ञ जॉर्ज ओहम यांच्या नियमानुसार काढता येतो.

वाहकाची भौतिक अवस्था कायम असताना वाहकामधून वाहणारी विद्युतधारा ही त्या वाहकाच्या दोन टोकांमधील विभवांतरास समानुपाती असते.

I
$$\alpha$$
 V
$$I = kV \ (k = \text{स्थिरांक})$$

$$I \times \frac{1}{k} = V \ (\frac{1}{k} = R = \text{ वाहकाचा रोध})$$

$$I \times R = V \quad \text{अर्थातच} \ V = IR \ \text{किंवा} \ R = \frac{V}{I}$$

वाहकाची भौतिक अवस्था म्हणजे वाहकाची लांबी, काटछेदी क्षेत्रफळ, तापमान व त्याचे द्रव्य होय.

या सूत्रास ओहमचा नियम असे म्हणतात .

वरील सूत्रावरून आपल्याला रोधाचे SI एकक मिळविता येते. विभवांतर व्होल्ट व विद्युतधारा ॲिम्पअरमध्ये मोजतात म्हणून रोधाचे SI एकक $\frac{V}{A}$ हे येईल यालाच ओहम असेही म्हणतात. ओहम हे एकक Ω या चिन्हाने दर्शविले जाते.

एक ओहम रोध: वाहकाच्या दोन टोकांमध्ये एक व्होल्ट विभवांतर प्रयुक्त केले असता वाहकातून एक ऑम्पिअर विद्युतधारा जात असेल तर त्या वाहकाचा रोध एक ओहम असतो.

वाहकाचा रोध व रोधकता (Resistance and Resistivity)

वरील आकृती 3.4 प्रमाणे वाहकात प्रचंड प्रमाणात मुक्त इलेक्ट्रॉन्स असतात. हे इलेक्ट्रान्स सातत्याने यादृच्छिक गतीत असतात. वाहकाच्या दोन टोकांमध्ये विभवांतर प्रयुक्त केले असता हे इलेक्ट्रॉन्स कमी विभव असलेल्या टोकाकडून जास्त विभव असलेल्या टोकाकडे जाऊ लागतात. अशा प्रकारच्या इलेक्ट्रॉन्सच्या प्रवाहामुळे विद्युतधारा निर्माण होते. गतिमान इलेक्ट्रॉन्स त्यांच्या मार्गात येणाऱ्या अणूंवर किंवा आयनांवर आदळतात. अशा प्रकारच्या आघातामुळे इलेक्ट्रॉन्सच्या गतीला अडथळा होतो व विद्युतधारेस विरोध होतो. या विरोधालाच वाहकाचा रोध असे म्हणतात.

रोधकता: विशिष्ट तापमानास वाहकाचा रोध R हा वाहकपदार्थ (Material), वाहकाची लांबी (L) व काटछेदी क्षेत्रफळ A या गोष्टींवर अवलंबून असतो.

जॉर्ज सायमन ओहम या जर्मन भौतिक शास्त्रज्ञाने विद्युत वाहकातील रोध मोजण्यासाठी नियम प्रस्थापित केला. त्यांच्या सन्मानार्थ रोधाच्या एककास 'ओहम' हे नाव देण्यात आले आहे.

जर वाहकाचा रोध R असेल तर

$$R \alpha L$$

$$R \alpha \frac{1}{A}$$

$$\therefore R \alpha \frac{L}{A}$$

$$R = \rho \frac{L}{A}$$

विचार करा

रोधकतेचे SI एकक $\Omega \mathrm{\ m}$ आहे हे कसे सिद्ध कराल?

काही पदार्थांची रोधकता

तांबे – $1.7 \times 10^{-8} \Omega$ m नायक्रोम – $1.1 \times 10^{-6} \Omega$ m हिरा – 1.62×10^{13} ते $1.62 \times 10^{18} \Omega$ m

या ठिकाणी ρ हा समानुपातता स्थिरांक आहे. या स्थिरांकास वाहकपदार्थाची 'रोधकता' (Resistivity) म्हणतात. SI पद्धतीत रोधकतेचे एकक ओहम मीटर (Ω m) आहे. रोधकता हा पदार्थाचा वैशिष्ट्यपूर्ण गुणधर्म असून वेगवेगळ्या पदार्थांची रोधकता ही भिन्न असते.

विद्युत परिपथ (Electric Circuit)

विद्युतघटाच्या दोन्ही अग्रांमध्ये जोडलेल्या वाहक तारा आणि इतर रोध यामधून वाहणाऱ्या विद्युतधारेचा सलग मार्ग म्हणजे विद्युत परिपथ होय. विद्युत परिपथ हा नेहमी आकृती काढून दाखवतात.यामध्ये वेगवेगळे घटक कसे जोडावेत हे विविध चिन्हे वापरून दाखवलेल्या रेखाकृतीस विद्युत परिपथाकृती असे म्हणतात.

(आकृती 3.5 पहा)

3.5 विद्युत परिपथ

या आकृतीत विद्युतधारा मोजण्यासाठी 'ॲमीटर' व रोधाच्या दोन टोकांदरम्यान असलेले विभवांतर मोजण्यासाठी 'व्होल्टमीटर' ही यंत्रे वापरली आहेत. व्होल्टमीटरचा रोध अतिशय जास्त असल्याचे त्यातून वाहणारा विद्युतप्रवाह अतिसूक्ष्म असतो.

- 1. वरील चित्रांमध्ये काय चूक आहे ते शोधा.
- 2. खालील चित्रात B, C, D मध्ये दिवे का पेटत नाहीत? कारण स्पष्ट करा.

विद्युत परिपथातील घटकांसाठी चिन्हे आणि त्यांचे उपयोग

घटक	चित्र	चिन्ह	उपयोग
विद्युतघट	- +		वाहकाच्या टोकांमध्ये विभवांतर प्रयुक्त करणे.
विजेरी (अनेक घटांचा संच)	- +(- +(- +)		वाहकाच्या टोकांमध्ये जास्त क्षमतेचे विभवांतर प्रयुक्त करणे.
उघडा टॅप कळ/प्लग कळ	-1-1-	—()—	वाहकाच्या दोन टोकांमधील संपर्क तोडून विद्युत प्रवाह बंद करणे.
बंद टॅप कळ/प्लग कळ		—(*)—	वाहकाच्या दोन टोकांमधील संपर्क जोडून विद्युत प्रवाह सुरू करणे.
जोडतार (वाहकतार)			विविध घटक परीपथात जोडणे.
ओलांडून जाणाऱ्या वाहकतारा	X	4	वाहक तारा एकमेकींना ओलांडून जाताना दाखवणे.
विद्युत दिवा	©		विद्युतधारेचे वहन तपासणे अप्रकाशितः वहन होत नाही. प्रकाशितः वहन होत आहे.
विद्युत रोध		- ₩,-	परिपथातून जाणारी विद्युतधारा नियंत्रित करणे.
चल रोध (बदलणारा रोध) (Rheostat)		-\\\\\\\\\\\	रोध हवा तसा बदलून परिपथातील विद्युतधारा हवी तशी बदलणे.
ॲमीटर	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>+</u> A-	परिपथातील विद्युतधारा मोजणे (एकसर जोडणीत जोडावा)
व्होल्टमीटर	Y and	<u>+</u>	विभवांतर मोजणे (समांतर जोडणीत जोडावा)

करून पहा.

साहित्य: तांबे व ॲल्युमिनिअमच्या तारा, काचकांडी, रबर

कृती: आकृती 3.6 मध्ये दाखवल्याप्रमाणे उपकरणांची जोडणी करा. प्रथम बिंदू A व B यामध्ये तांब्याची तार जोडा. परिपथातील विद्युतधारा मोजा. नंतर तांब्याच्या तारेच्या जागी ॲल्युमिनिअमची तार, काचकांडी, रबर एकावेळी एक असे जोडा व प्रत्येक वेळी विद्युतधारा मोजा. तुमची निरीक्षणे नोंदवा. तांबे, ॲल्युमिनिअमची तार, काचकांडी व रबर यांच्या निरीक्षणांची तुलना करा.

वाहक आणि विसंवाहक (Conductors and Insulators)

विद्युतरोधाची संकल्पना आपण अभ्यासली आहे. आपण सर्व पदार्थांची विद्युतवाहक (सुवाहक) व विसंवाहक (दर्वाहक) अशी विभागणी करू शकतो.

वाहक: ज्या पदार्थांची रोधकता खूप कमी असते त्यांना वाहक असे म्हणतात. यांच्यातून सहजतेने विद्युतधारा वाहू शकते.

विसंवाहक : ज्या पदार्थांची रोधकता खूप जास्त असते, म्हणजेच ज्याच्यातून विद्युतधारा वाहूच शकत नाही अशा पदार्थांना विसंवाहक म्हणतात.

- 1. पदार्थ वाहक किंवा विसंवाहक का असतात?
- 2. आपले शरीर विद्युत वाहक का असते? तुमच्या सभोवताली असणाऱ्या वाहक व विसंवाहक पदार्थांची यादी करा.

ओहमच्या नियमाचा प्रयोगाच्या साहाय्याने पडताळा घेणे.

साहित्य : 1.5 V चे चार विद्युत घट, ॲमीटर, व्होल्टमीटर, वाहक तारा, नायक्रोमची तार, प्लग कळ.

कृतीः

- 1. आकृती 3.7 मध्ये दाखवल्याप्रमाणे परिपथाची जुळणी करा.
- 2. XY ही नायक्रोमची तार रोध म्हणून वापरा.
- 3. दिलेल्या चार विद्युत घटांपैकी एक विद्युत घट जोडा. (जोडणी 'a' प्रमाणे) ॲमीटर व व्होल्टमीटरची वाचने घ्या व नोंद करा.
- 4. यानंतर क्रमाक्रमाने एक एक अधिक घट जोडत जा (जोडणी 'b', 'c', 'd' प्रमाणे) व वाचने घ्या आणि निरीक्षण तक्त्यात नोंद करा.
- $\frac{V}{I}$ च्या किंमती काढा.
- विभवांतर व विद्युतधारा यांचा आलेख काढा व त्याचे अवलोकन करा.

3.7 ओहमच्या नियमाची पडताळणी

निरीक्षण तक्ता

क्रमांक	वापरलेल्या घटांची संख्या	विद्युतधारा (I) (mA)	विद्युतधारा I (A)	विभवांतर (V)	$\frac{V}{I} = R (\Omega)$
1.					
2.					
3.					
4.					

सोडवलेली उदाहरणे : ओहमचा नियम व रोधकता

उदाहरण 1: दिव्यातील तारेच्या कुंडलाचा रोध 1000Ω आहे. जर 230V विभवांतराच्या स्नोतापासून या दिव्याला विद्युतधारा पुरवली जात असेल तर तारेच्या कुंडलातून वाहणारी विद्युतधारा किती?

दिलेले :
$$R = 1000 \Omega$$
 $V = 230 V$

सूत्र
$$I = \frac{V}{R}$$

∴ $I = \frac{230 \text{ V}}{1000 \Omega} = 0.23 \text{ A}.$

... दिव्यातील तारेच्या कुंडलातून वाहणारी विद्युतधारा = 0.23 A.

उदाहरण 2: एका वाहक तारेची लांबी $50~\mathrm{cm}$ असून तिची त्रिज्या $0.5~\mathrm{mm}$ आहे. या तारेचा रोध $30~\Omega$ असेल तर त्याची रोधकता काढा.

दिलेले :
$$L = 50 \text{ cm} = 50 \times 10^{-2} \text{ m}$$
 $r = 0.5 \text{ mm} = 0.5 \times 10^{-3} \text{m}$ $= 5 \times 10^{-4} \text{ m}$ आणि $R = 30 \ \Omega$ रोधकता, $\rho = \frac{RA}{L}$

परंतु
$$A = \pi r^2$$

$$\therefore \rho = R - \frac{\pi r^2}{L}$$

$$= \frac{30 \times 3.14 \times (5 \times 10^{-4})^2}{50 \times 10^{-2}}$$

$$=\frac{30\times3.14\times25\times10^{-8}}{50\times10^{-2}}$$

=
$$47.1 \times 10^{-6} \Omega$$
 m

=
$$4.71 \times 10^{-5} \Omega$$
 m

 \therefore तारेची रोधकता $4.71 imes 10^{-5} \Omega \; \mathrm{m}$

उदाहरण 3: वाहकातून वाहणारी विद्युतधारा 0.24 A असून त्याच्या दोन टोकांमध्ये 24V इतके विभवांतर प्रयुक्त केलेले असेल तर त्या वाहकाचा रोध काढा.

दिलेले : V = 24 V, I = 0.24 A

R =
$$\frac{V}{I}$$
∴ I = $\frac{24 \text{ V}}{0.24 \text{ A}}$
R = 100 Ω

 \therefore वाहकाचा रोध $100~\Omega$ असेल.

उदाहरण $4:110\ \Omega$ रोध असलेल्या एका उपकरणाच्या दोन टोकांमध्ये $33\ V$ विभवांतर प्रयुक्त केले असता उपकरणातून वाहणारी विद्युतधारा काढा. $500\ \Omega$ रोध असणाऱ्या उपकरणातून तेवढीच विद्युतधारा जाऊ देण्यासाठी त्याच्या दोन टोकांमध्ये किती विभवांतर प्रयुक्त करावे लागेल?

दिलेले : V=33~V आणि $R=110~\Omega$ पहिल्या बाबतीत

$$I = \frac{V}{R} = \frac{33}{110}$$

$$\therefore I = 0.3 \text{ A}$$

∴ उपकरणातून वाहणारी विद्युतधारा = 0.3 A

दुसऱ्या बाबतीत

$$I = 0.3 A$$
, $R = 500 Ω$

$$V = IR = 0.3 \times 500 V = 150 V.$$

उपकरणाच्या दोन टोकांमध्ये प्रयुक्त करावे लागणारे विभवांतर = 150 V

जोड माहिती संप्रेषण तंत्रज्ञानाची

इंटरनेटच्या आधारे गणितीय उदाहरणे सोडविण्यासाठीची संगणकीय सॉफ्टवेअर कोणकोणती आहेत याची माहिती घेऊन त्यांचा वापर या व इतर पाठांतील उदाहरणे सोडवताना करा. उदाहरण 5:1 km लांब व 0.5 mm व्यास असलेल्या तांब्याच्या तारेचा रोध काढा.

दिलेले : तांब्याची रोधकता = $1.7 imes 10^{-8} \, \Omega \; \mathrm{m}$

सर्व मापने मीटरमध्ये केल्यास-

 $L = 1 \text{ km} = 1000 \text{ m} = 10^3 \text{ m}$

 $d = 0.5 \text{ mm} = 0.5 \times 10^{-3} \text{ m}$

समजा r ही तारेची त्रिज्या असेल, तर त्याचा काटछेद

A =
$$\pi r^2$$

$$\therefore A = \pi \times \left(\frac{d}{2}\right)^2$$

$$= \frac{\pi}{4} (0.5 \times 10^{-3})^2 m^2 = 0.2 \times 10^{-6} m^2$$

$$R = \rho \frac{L}{A} = \frac{1.7 \times 10^{-8} \Omega \text{ m} \times (10^{3} \text{m})}{0.2 \times 10^{-6} \text{m}^{2}} = 85 \Omega$$

रोधांची जोडणी आणि परिणामी रोध (System of Resistors and their effective Resistance)

अनेक विद्युत उपकरणांमध्ये आपण असंख्य रोध वेगवेगळ्या प्रकारे जोडत असतो. अशा प्रकारे केलेल्या रोधांच्या जोडण्यांनासुद्धा ओहमचा नियम लागू पडतो.

रोधांची एकसर जोडणी (Resistors in Series)

आकृती 3.8 चे निरीक्षण करा.

परिपथामध्ये R_1 , R_2 व R_3 हे तीन रोध प्रत्येकाची टोके एकास एक जोडली जातील असे जोडले आहेत. रोधांच्या अशा जोडणीला एकसर जोडणी म्हणतात.

रोधांच्या एकसर जोडणीत प्रत्येक रोधातून समान विद्युतधारा वाहते. आकृतीमध्ये दाखवल्याप्रमाणे विद्युतधारा I असून V हे बिंदू C व D यांच्या दरम्यानचे विभवांतर आहे.

 $R_{_{1}},\ R_{_{2}}$ आणि $R_{_{3}}$ हे तीन रोध परिपथामध्ये एकसर जोडणीत जोडले आहेत.

 $V_1^{}, V_2^{}$ आणि $V_3^{}$ ही अनुक्रमे $R_1^{}, R_2^{}$ आणि $R_3^{}$ या प्रत्येक रोधाच्या टोकांदरम्यानची विभवांतरे असतील तर,

$$V = V_1 + V_2 + V_3 -----(1)$$

जर R_s (एकसरला इंग्रजीत series हा शब्द असल्याने R_s हे वापरले आहे.) हा बिंदू C व D मधील तिन्ही रोधांचा परिणामी रोध असेल तर ओहमच्या नियमानुसार एकण विभवांतर

$$V = I R_s$$

$$V_1 = I R_1, V_2 = I R_2$$
आणि $V_3 = I R_3$ या किंमती

3.8 रोधांची एकसर जोडणी

समीकरण (1) मध्ये ठेऊन.

$$IR_{S} = IR_{1} + IR_{2} + IR_{3}$$

$$R_{S} = R_{1} + R_{2} + R_{3}$$
The result when the subsection with the subsection of the subsection

जर n रोध एकसर जोडणीत जोडलेले असतील तर,

$$R_{s} = R_{1} + R_{2} + R_{3} + \cdots + R_{n}$$

जर दिलेले रोध एकसर जोडणीत जोडलेले असतील तर,

- 1. प्रत्येक रोधातून समान विद्युतधारा वाहते.
- 2. रोधांच्या एकसर जोडणीचा परिणामी रोध हा जोडणीतील सर्व रोधांच्या बेरजेइतका असतो.
- 3. जोडणीच्या दोन टोकांतील विभवांतर हे प्रत्येक रोधाच्या दरम्यानच्या विभवांतरांच्या बेरजेइतके असते.
- 4. रोधांच्या एकसर जोडणीचा परिणामी रोध हा जोडणीतील प्रत्येक रोधापेक्षा जास्त असतो.
- 5. ही जोडणी परिपथातील रोध वाढवण्यासाठी वापरतात.

माहीत आहे का तुम्हांला?

एकसर जोडणीमध्ये एकापुढे एक अशी जोडणी असते. त्यातील एक घटक जरी काम करीत नसेल तर परिपथ खंडित होतो व विद्युतधारा वाहत नाही. जर दोन बल्ब एकसर जोडणीने जोडले तर एकएकटे लावले असतानापेक्षा कमी प्रकाश देतात. जर तीन बल्ब एकसर पद्धतीने जोडले तर ते आणखी कमी प्रखरतेने प्रकाशित होतात.

विचार करा : याचे काय कारण असेल?

एकसर जोडणी उदाहरणे

उदाहरण 1: $15~\Omega,~3~\Omega,$ आणि $4~\Omega$ चे तीन रोध एकसर जोडले आहेत. तर परिपथातील परिणामी रोध काढा.

दिलेल :
$$R_1 = 15 \Omega$$
, $R_2 = 3 \Omega$, $R_3 = 4 \Omega$
परिणामी रोध $R_s = R_1 + R_2 + R_3 = 15 + 3 + 4 = 22 \Omega$
∴ परिपथाचा परिणामी रोध = 22 Ω

उदाहरण $2:16\ \Omega$ आणि $14\ \Omega$ दोन रोध एकसर जोडणीने जोडलेले आहेत, जर त्यांच्या दरम्यान $18\ V$ इतके विभवांतर प्रयुक्त केले तर परिपथातून वाहणारी विद्युतधारा काढा. तसेच प्रत्येक रोधाच्या टोकांच्या दरम्यानचे विभवांतर काढा.

दिलेले :
$$R_{_{1}} = 16 \Omega$$
 आणि $R_{_{2}} = 14 \Omega$
 $R = 14 \Omega + 16 \Omega = 30 \Omega$

समजा I ही परिपथातून वाहणारी विद्युतधारा असून V_1 आणि V_2 ही अनुक्रमे 16 व $14~\Omega$, च्या टोकांदरम्यान असलेली विभवांतरे आहेत.

... परिपथातून वाहणारी विद्युतधारा = $0.6~\mathrm{A}$ आणि $16~\Omega$ आणि $14~\Omega$ च्या रोधांच्या टोकांदरम्यानचे विभवांतर अनुक्रमे $9.6~\mathrm{V}$ व $8.4~\mathrm{V}$ आहे.

तापमान कमी करत करत शून्य केल्विन (K) च्या जवळ नेल्यास काही वाहकांचा रोध शून्याच्या जवळ पोहचतो. अशा वाहकांस **अतिवाहक (Super Conductor)** असे म्हणतात. काही वाहक ओहमच्या नियमाचे पालन करत नाहीत. अशा वाहकास अनओहमनीय वाहक म्हणतात.

रोधांची समांतर जोडणी (Resistors in Parallel)

 $R_{_{1}},\,R_{_{2}},\,R_{_{3}}$ या तीनही रोधांची जोडणी दोन्ही बाजूंची टोके त्या त्या बाजूस एकत्र जोडून केल्यास त्या जोडणीला समांतर जोडणी म्हणतात.

आकृती 3.9 मध्ये R_1 , R_2 आणि R_3 हे तीन रोध C आणि D या दोन बिंदूंदरम्यान समांतर जोडणीत जोडले आहेत. समजा I_1 , I_2 आणि I_3 ही अनुक्रमे R_1 , R_2 आणि R_3 या रोधातून वाहणारी विद्युतधारा आहे. V हे C आणि D या बिंदूंच्या दरम्यान प्रयुक्त केलेले विभवांतर आहे.

3.9 रोधांची समांतर जोडणी

समजा R_p हा परिपथातील परिणामी रोध आहे. (समांतरला इंग्रजीत Parallel शब्द वापरतात म्हणूत R_p हे वापरले) परंतु ओहमच्या नियमानुसार

$$I = \frac{V}{R_p}$$
 तसेच $I_1 = \frac{V}{R_1}$, $I_2 = \frac{V}{R_2}$, $I_3 = \frac{V}{R_3}$ या किमती समीकरण (1) मध्ये ठेवून..

$$\frac{V}{R_{p}} = \frac{V}{R_{1}} + \frac{V}{R_{2}} + \frac{V}{R_{3}}$$

$$\therefore \frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \text{ जर } n \text{ रोध समांतर जोडणीत जोडले असतील तर,}$$

$$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots + \frac{1}{R_{n}}$$

समांतर जोडणीने अनेक दिवे जोडले असता जर एखादा दिवा त्या दिव्यातील तारेचे कुंडल तुटल्याने प्रकाशित होत नसेल तरी विद्युत परिपथ खंडित होत नाही. दुसऱ्या मार्गातून विद्युतधारा वाहते व इतर दिवे प्रकाशित होतात. अनेक दिवे एकसर पद्धतीने जोडले तर ते आपल्या मूळ प्रखरतेपेक्षा कमी प्रखरतेने प्रकाशतात. परंतु तेच दिवे समांतर पद्धतीने जोडले तर प्रत्येक दिवा आपल्या मूळ प्रखरतेने प्रकाशतो.

जर दिलेले रोध समांतर जोडणीत जोडले असतील तर,

- 1. जोडलेल्या सर्व रोधांच्या व्यस्तांकाची बेरीज ही परिणामी रोधाच्या व्यस्तांकाइतकी असते.
- 2. प्रत्येक रोधातून वाहणारी विद्युतधारा ही रोधाच्या व्यस्तप्रमाणात असते व परिपथातून वाहणारी एकूण विद्युतधारा ही सर्व रोधांतून स्वतंत्रपणे वाहणाऱ्या विद्युतधारेच्या बेरजेइतकी असते.
- 3. प्रत्येक रोधाच्या टोकांदरम्यानचे विभवांतर समान असते.
- 4. रोधांच्या समांतर जोडणीचा परिणामी रोध हा त्या जोडणीतील रोधांच्या स्वतंत्र किंमतीपेक्षा कमी असतो.
- 5. ही जोडणी परिपथातील रोध कमी करण्यासाठी वापरतात.

समांतर जोडणी उदाहरणे

उदाहरण $1:15~\Omega,\,20~\Omega$ व $10~\Omega$ चे तीन रोध समांतर जोडणीत जोडले आहेत तर परिपथातील परिणामी रोध काढा.

$$\begin{aligned} & \overrightarrow{\text{R}}_{\text{I}} = 15 \, \Omega, \ R_{_{2}} = 20 \, \Omega \, \overline{\text{q}} \, R_{_{3}} = 10 \, \Omega \\ & \frac{1}{R_{_{P}}} = \frac{1}{R_{_{1}}} \, + \frac{1}{R_{_{2}}} \, + \, \frac{1}{R_{_{3}}} \\ & \frac{1}{R_{_{P}}} = \frac{1}{15} \, + \frac{1}{20} \, + \, \frac{1}{10} \quad = \, \frac{4 + 3 + 6}{60} \, = \frac{13}{60} \\ & R_{_{P}} = \frac{60}{13} = 4.615 \, \Omega \end{aligned}$$

 \therefore परिपथातील परिणामी रोध = 4.615Ω

उदाहरण $2:5~\Omega,~10~\Omega$ आणि $30~\Omega$ चे तीन रोध समांतर जोडणीत जोडले असून त्यांच्या दोन टोकात 12~V विभवांतर प्रयुक्त केले आहे . प्रत्येक रोधातून वाहणारी विद्युतधारा व परिपथातून वाहणारी एकूण विद्युतधारा काढा. तसेच परिपथातील परिणामी रोध काढा.

दिलेले :
$$R_1 = 5 \Omega$$
, $R_2 = 10 \Omega$ व $R_3 = 30 \Omega$, $V = 12 V$

$$I_1 = \frac{V}{R_1}$$
 = $\frac{12}{5}$ = 2.4 A
 $I_2 = \frac{V}{R_2}$ = $\frac{12}{10}$ = 1.2 A
 $I_3 = \frac{V}{R_3}$ = $\frac{12}{30}$ = 0.4 A

$$I = I_1 + I_2 + I_3 = 2.4 + 1.2 + 0.4 = 4.0 A$$

$$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} = \frac{1}{5} + \frac{1}{10} + \frac{1}{30} = \frac{6+3+1}{30} = \frac{10}{30} = \frac{1}{3}$$

 $R_{_{P}}$ = 3 Ω , परिपथातील परिणामी रोध = 3 Ω आणि 5 Ω , 10 Ω आणि 30 Ω च्या रोधातून वाहणारी विद्युतधारा अनुक्रमे 2.4 A, 1.2 A आणि 0.4 A आहे. तसेच एकूण विद्युतधारा = 4 A

घरगुती विद्युत जोडणी

आपल्या घरातील विद्युतधारा ही मुख्य विद्युतवाहक तारेतून, जिमनीखालून तारांद्वारे किंवा विद्युत खांबावरील तारांमधून आणली जाते. त्यापैकी एक तार वीजयुक्त (live) तर दुसरी तार तटस्थ (Neutral) असते. सामान्यपणे वीजयुक्त तार लाल रंगाच्या रोधी म्हणजेच विसंवाहक आवरणाची असते, तर तटस्थ तार काळ्या रंगाच्या रोधी आवरणाची असते. भारतात या दोन्ही तारांमधील विद्युत विभवांतर साधारणतः 220 V असते. या दोन्ही तारां घरातील विद्युत मीटरला मुख्य वितळतारेद्वारे (Main fuse) जोडलेल्या असतात. मुख्य कळद्वारे (Main Switch) या तारा घरातील सर्व वाहक तारांना जोडल्या जातात. आपल्या घरामध्ये प्रत्येक खोलीमध्ये वीज उपलब्ध होईल अशा रीतीने वीजवाहक तारांची जोडणी केलेली असते. प्रत्येक स्वतंत्र परिपथामध्ये वीजयुक्त आणि तटस्थ तारेच्या दरम्यान वेगवेगळी उपकरणे जोडलेली असतात. प्रत्येक उपकरणाला समान विभवांतर पुरवले जाते आणि उपकरणे नेहमी समांतर जोडणीने जोडलेली असतात. याव्यितिरिक्त तिसरी तार भूसंपर्कन असून ती पिवळ्या रंगाच्या रोधी आवरणाची असते. ती घराजवळ जिमनीत एका धातुपट्टीला जोडलेली असते. ही तार सुरक्षेसाठी वापरलेली असते.

वितळतार : विद्युत उपकरणांचे नुकसान न होऊ देण्यासाठी वितळतार वापरतात. ही तार विशिष्ट द्रवणांक असलेल्या संमिश्राची बनलेली असते व ती विद्युत उपकरणांना एकसर जोडणीत जोडलेली असते. जर परिपथातून काही कारणाने ठरावीक मर्यादेबाहेर विद्युतधारा जाऊ लागली, तर या तारेचे तापमान वाढून ती वितळते. त्यामुळे विद्युत परिपथ खंडित होऊन विद्युतप्रवाह थांबतो व उपकरणांचे संरक्षण होते. ही तार पोर्सेलिनसारख्या रोधक पदार्थापासून बनवलेल्या खोबणीत बसवलेली असते. घरगुती वापरासाठी 1A, 2A, 3A, 4A, 5A व 10A मर्यादा असलेल्या वितळतारा वापरतात.

वीज वापराच्या बाबतीत घ्यावयाची काळजी

- 1. घराच्या भिंतीवर बसवायचे विद्युत कळ व सॉकेट लहान मुलांचे हात पोहोचणार नाहीत एवढ्या उंचीवर असावेत म्हणजे ते पीन वा खिळ्यासारख्या वस्तू प्लगमध्ये घालू शकणार नाहीत. प्लग काढताना प्लग धरून खेचावे, वायर खेचू नये.
- 2. विद्युत उपकरणांची सफाई करण्यापूर्वी त्याचे बटण बंद करून विद्युतधारा खंडित करावी आणि त्याचा प्लग सॉकेटमधून बाहेर ठेवावा.
- 3. विद्युत उपकरण हाताळताना तुमचे हात कोरडे असले पाहिजेत. तसेच अशा वेळी रबरी तळ असलेली पादत्राणे वापरुनच विद्युत उपकरणे हाताळावीत. रबर हे विद्युतरोधक असल्यामुळे अशी पादत्राणे वापरुवास उपकरणे वापरणाऱ्या व्यक्तीच्या शरीरातून विद्युतधारा जाण्याचा धोका टाळता येतो.
- 4. विद्युत धक्का बसणारी व्यक्ती तशीच तारेच्या संपर्कात राहिली तर ताबडतोब मुख्य बटण बंद करा व जर मुख्य बटण दूर अंतरावर असेल किंवा त्याची जागा तुम्हास माहीत नसेल तर शक्य झाल्यास सॉकेटमधून प्लग बाहेर काढा. हेही शक्य नसेल तर लाकडी वस्तूच्या साहाय्याने त्या व्यक्तीला तारेपासून दूर ढकला.

स्वाध्याय 🗸 🧖

- शेजारील चित्रामध्ये घरामधील विद्युत उपकरणे परिपथामध्ये जोडलेली दिसत आहेत, त्यावरून खालील प्रश्नांची उत्तरे द्या.
 - अ. घरामधील विद्युत उपकरणे कोणत्या जोडणीत जोडली आहेत?
 - आ. सर्व उपकरणांतील विभवांतर कसे असेल?
 - इ. उपकरणांतून जाणारी विद्युतधारा सारखीच असेल का ? उत्तराचे समर्थन करा.
 - ई. घरामधील विद्युत परिपथाची जोडणी या पद्धतीने का केली जाते?
 - या उपकरणांतील T.V. बंद पडल्यास संपूर्ण विद्युत परिपथ खंडित होईल का? उत्तराचे समर्थन करा.
- 2. विद्युत परिपथात जोडल्या जाणाऱ्या घटकांची चिन्हे तक्त्यात दिली आहेत. ती आकृतीत योग्य ठिकाणी जोडन परिपथ पूर्ण करा.

वरील परिपथाच्या साहाय्याने कोणता नियम सिद्ध करता येईल?

- 3. उमेशकडे 15Ω व 30Ω रोध असणारे दोन बल्ब आहेत. त्याला ते बल्ब विद्युत परिपथामध्ये जोडायचे आहेत. परंतु त्याने ते बल्ब एक, एक असे स्वतंत्र जोडले तर ते बल्ब जातात. तर
 - अ. त्याला बल्ब जोडत असताना कोणत्या पद्धतीने जोडावे लागतील?
 - आ. वरील प्रश्नाच्या उत्तरानुसार बल्ब जोडण्याच्या पद्धतीचे गुणधर्म सांगा.
 - इ. वरील पद्धतीने बल्ब जोडल्यास परिपथाचा परिणामी रोध किती असेल?

- 4. खालील तक्त्यामध्ये विद्युतधारा (A मध्ये) व विभवांतर (V मध्ये) दिले आहे.
 - अ. तक्त्याच्या आधारे सरासरी रोध काढा.
 - आ. विद्युतधारा व विभवांतर यांच्या आलेखाचे स्वरूप कसे असेल? (आलेख काढू नये.)
 - इ. कोणता नियम सिद्ध होतो? तो स्पष्ट करा.

V	I
4	9
5	11.25
6	13.5

5. जोड्या लावा.

'अ' गट

'ब'गट

- 1. मुक्त इलेक्ट्रॉन
 - a.V/R
- 2. विद्युतधारा
- b.परिपथातील रोध वाढवणे
- 3. रोधकता
- c. क्षीण बलाने बद्ध
- 4. एकसर जोडणी d.VA/LI
- 6. 'x' एवढ्या लांबीच्या वाहकाचा रोध 'r' व त्याच्या काटछेदाचे क्षेत्रफळ 'a' असल्यास त्या वाहकाची रोधकता किती असेल? तो कोणत्या एककात मोजतात?

7. रोध R_1 , R_2 , R_3 आणि R_4 आकृतीमध्ये दाखवल्याप्रमाणे जोडले आहेत. S_1 आणि S_2 या दोन कळ दर्शवतात तर खालील मुद्द्यांच्या आधारे रोधातून वाहणाऱ्या विद्युत धारेविषयी चर्चा करा.

अ. कळ $S_{_1}$ व $S_{_2}$ दोन्ही बंद केल्या.

आ. दोन्ही कळ उघड्या ठेवल्या.

इ. S_1 बंद केली व S_2 उघडी ठेवली.

8. x_1 , x_2 , x_3 परिमाणाचे तीन रोध विद्युत परिपथामध्ये वेगवेगळ्या पद्धतीने जोडल्यास आढळणाऱ्या गुणधर्मांची यादी खाली दिली आहे. ते कोणकोणत्या जोडणीत जोडले गेले आहेत ते लिहा. (I – विद्युतधारा, V – विभवांतर, x – परिणामी रोध).

अ. X_1, X_2, X_3 मधून I एवढी विद्युतधारा वाहते.

आ. x हा $x_1^{}, x_2^{}, x_3^{}$ पेक्षा मोठा असतो.

इ. x हा x_1 , x_2 , x_3 पेक्षा लहान असतो.

ई. x_1 , x_2 , x_3 यांच्या दरम्यानचे विभवांतर V सारखेच आहे.

 $3. X = X_1 + X_2 + X_3$

$$35. \quad x = \frac{1}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}}$$

9. उदाहरणे सोडवा.

अ. $1 \mathrm{m}$ नायक्रोमच्या तारेचा रोध 6Ω आहे. तारेची लांबी $70 \mathrm{cm}$ केल्यास तारेचा रोध किती असेल? (उत्तर: 4.2Ω)

आ. जर दोन रोध एकसर जोडणीने जोडले तर त्यांचा परिणामी रोध $80\,\Omega$ होतो. जर तेच रोध समांतर जोडणीने जोडले तर त्यांचा परिणामी रोध $20\,\Omega$ होतो. तर त्या रोधांच्या किंमती काढा.

(उत्तर: $40~\Omega$, $40~\Omega$)

इ. एका वाहक तारेतून 420 C इतका विद्युत-प्रभार 5 मिनिटात वाहत असेल तर या तारेतून जाणारी विद्युतधारा किती असेल?

(उत्तर: 1.4 A)

उपक्रम:

घरातील विद्युत जोडणी तसेच इतर महत्त्वाच्या बाबी तारतंत्रीकडून काळजीपूर्वक जाणून घ्या व इतरांना सांगा.

