Introduction to Optimization

Jun Moon

junmoon@hanyang.ac.kr

Note 3

Outline

• Basic real analyis and calculus

Sets

• Sets

$$\mathbb{R}, \mathbb{R}^n, \mathbb{Q}, \mathbb{N},$$

• n-dimensional Euclidean space

 \mathbb{R}^n

Mapping, operator, etc

• Let
$$X \subset \mathbb{R}^n$$
 $Y \subset \mathbb{R}^m$

 A function is a mapping that assigns the element of X to the element of Y, which is written by

$$f: X \to Y$$

• A function f

$$f: X \to Y$$

- X: domain
- Y: range or codomain

Examples

$$f(x) = \cos(x), \ f(x) = x^2$$

$$f(x_1, x_2) = x_1^2 + x_2^2, \ f(x_1, x_2, x_3) = \cos(x_1 + x_2) + x_3^2$$

$$f(x_1, x_2) = \begin{bmatrix} \cos(x_1 + x_2) + x_3^2 \\ x_1^2 + x_2^2 \end{bmatrix}$$

Real-valued function f

$$f: \mathbb{R} \to \mathbb{R}$$

• The differentiation of f

$$\nabla f(x) : \mathbb{R} \to \mathbb{R}$$

Real-value function with n-dimensional domain

$$f: \mathbb{R}^n \to \mathbb{R}$$

 $\nabla f(x): \mathbb{R}^n \to \mathbb{R}^n$

Differentiation

$$\nabla f(x) : \begin{bmatrix} \partial_{x_1} f(x) \\ \partial_{x_2} f(x) \\ \vdots \\ \partial_{x_n} f(x) \end{bmatrix}$$

• Real-value function with n-dimensional domain (우리는 사용하지 않습니다)

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

Differentiation

$$\nabla f: \mathbb{R}^n \to \mathbb{R}^{m \times n}$$

Jacobian matrix

$$\nabla f(x) = \begin{bmatrix} \nabla f_1(x)^\top \\ \vdots \\ \nabla f_m(x)^\top \end{bmatrix} = \begin{bmatrix} \partial_{x_1} f_1(x) & \cdots & \partial_{x_n} f_1(x) \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m(x) & \cdots & \partial_{x_n} f_m(x) \end{bmatrix}$$

Examples

$$f(x) = \cos(x), \ f(x) = x^2$$

• Differentiation?

• Examples

$$f(x_1, x_2) = x_1^2 + x_2^2, \ f(x_1, x_2, x_3) = \cos(x_1 + x_2) + x_3^2$$

• Differentiation?

• Examples

$$f(x_1, x_2) = \begin{bmatrix} \cos(x_1 + x_2) + x_3^2 \\ x_1^2 + x_2^2 \end{bmatrix}$$

• Differentiation?

- vector space = linear space = linear vector space
- ▶ A linear space over a field \mathbb{F} , (\mathbb{V}, \mathbb{F}) , consists of a set \mathbb{V} of vectors, a field \mathbb{F} , and two operations, vector addition and scalar multiplication
- The two operations satisfy

Vector addition and scalar multiplication

- vector space = linear space = linear vector space
- ▶ A linear space over a field \mathbb{F} , (\mathbb{V}, \mathbb{F}) , consists of a set \mathbb{V} of vectors, a field \mathbb{F} , and two operations, vector addition and scalar multiplication
- ► The two operations satisfy

Multiplication

- (a) multiplication: for any $\alpha \in \mathbb{F}$ and $x \in \mathbb{V}$, $\alpha x \in \mathbb{V}$
- (b) associative: for any $\alpha, \beta \in \mathbb{F}$ and $x \in \mathbb{V}$, $\alpha(\beta x) = (\alpha \beta) x$
- (c) distributive w.r.t. scalar addition:

for any
$$\alpha \in \mathbb{F}$$
 and $x, y \in \mathbb{V}$, $\alpha(x + y) = \alpha x + \alpha y$

(d) distributive w.r.t. scalar multiplication

for any
$$\alpha, \beta \in \mathbb{F}$$
 and $x \in \mathbb{V}$, $(\alpha + \beta)x = \alpha x + \beta x$

- (e) there exists a unique $1 \in \mathbb{F}$ such that for any $x \in \mathbb{V}$, 1x = x
- (f) there exists a unique $0 \in \mathbb{F}$ such that for any $x \in \mathbb{V}$, 0x = 0

- vector space = linear space = linear vector space
- ▶ A linear space over a field \mathbb{F} , (\mathbb{V}, \mathbb{F}) , consists of a set \mathbb{V} of vectors, a field \mathbb{F} , and two operations, vector addition and scalar multiplication

Example: $(\mathbb{F}^n, \mathbb{F})$ where $\mathbb{F}^n = \mathbb{F} \times \cdots \times \mathbb{F}$

Example: $(\mathbb{R}^n, \mathbb{R})$, $(\mathbb{C}^n, \mathbb{C})$, $(\mathbb{C}^n, \mathbb{R})$

Example: (\mathbb{R},\mathbb{C}) is not a vector space! (why?) $(1+i)1=1+i\notin\mathbb{R}$

Example: a continuous function $f:[t_0,t_1]\to\mathbb{R}^n$, the set of such functions, $(C([t_0,t_1],\mathbb{R}^n),\mathbb{R})$, is a linear space

In this course, the *n*-dimensional real vector space, $(\mathbb{R}^n, \mathbb{R})$, will be considered

Normed vector space (Normed linear space): Length of the vector

A function $\|x\|:\mathbb{R}^n\to\mathbb{R}$ is said to be a norm if the following properties hold

- ▶ $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0 (separate points)
- $ightharpoonup \|\alpha x\| = |\alpha| \|x\|$ (absolute homogeneity)
- ▶ $||x + y|| \le ||x|| + ||y||$ (triangular inequality)

Example: The norm can be chosen as

$$||x||_1 := \sum_{i=1}^n |x_i|, ||x||_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}, ||x||_{\infty} := \max_i |x_i|$$

Example: signal norm for the real-valued continuous function f(t)

$$||f||_p = \left(\int_0^t |f(t)|^p dt\right)^{1/p}$$

where $1 \leq p < \infty$

Inner Product: measure angle of two vectors

An inner product between two vectors, $\langle x, y \rangle$, on the vector space $(\mathbb{R}^n, \mathbb{R})$ is a function that maps from $\mathbb{R}^n \times \mathbb{R}^n$ to \mathbb{R} such that the following properties hold

- $ightharpoonup \langle x, y \rangle = \langle y, x \rangle$
- $\langle x, \alpha_1 y_1 + \alpha_2 y_2 \rangle = \alpha_1 \langle x, y_1 \rangle + \alpha_2 \langle x, y_2 \rangle$
- \triangleright $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0$ if and only if x = 0

Example: Let $(\mathbb{R}^n, \mathbb{R})$. Then the inner product is

$$||x||_2^2 = \langle x, x \rangle = \sum_{i=1}^n |x_i|^2, \quad \langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$$

Example: signal inner product for the real-valued continuous function f(t)

$$||f||_2^2 = \int_0^t |f(t)|^2 dt, \ \langle f, g \rangle = \int_0^t f(t)g(t)dt$$

where $1 \le p < \infty$

Fact (no proof): If $\|\cdot\|$ and $\|\cdot\|'$ are two norms on \mathbb{R}^n , then there exists constants $c_1, c_2 > 0$ such that

$$c_1||x||' \le ||x|| \le c_2||x||' \quad \forall x \in \mathbb{R}^n$$

- ► The ratio between two norms is bounded below and above, independent of *x*
- The above fact implies that in the finite-dimensional space, we can use any norm to define convergence and continuity on \mathbb{R}^n

Definition: A real-valued sequence $x^1, x^2, \ldots \in \mathbb{R}$ converges to x^* if for each $\epsilon > 0$, there exists $K = K(\epsilon)$ such that

$$|x^k - x^*| < \epsilon \ \forall k \ge K,$$

and we write

$$\lim_{k\to\infty} x^k = x^*$$

or

$$x^k o x^*$$
 as $k o \infty$

We say that $\{x^k\}$ is a sequence in \mathbb{R}^n if $x^k \in \mathbb{R}^n$ for all k.

Definition: A sequence $\{x^k\}$ in \mathbb{R}^n converges to x^* if and only if every component of x^k converges, that is

$$\lim_{k \to \infty} x_i^k = x_i^*, \quad i = 1, 2, \dots, n$$

$$x^k = \begin{pmatrix} x_1^k \\ x_2^k \\ \vdots \\ x_n^k \end{pmatrix}, \quad x^* = \begin{pmatrix} x_1^* \\ x_2^* \\ \vdots \\ x_n^* \end{pmatrix}$$

We write $\lim_{k\to\infty} x^k = x^*$.

Equivalently, $\lim_{k\to\infty} x^k = x^* \Leftrightarrow$ for each $\epsilon>0$, there exists K such that

$$||x^k - x^*|| < \epsilon \quad \forall k \ge K$$

We can use any norm $\|\cdot\|$ due to the previous fact

A ball $B_{\delta}(x)$ with a radius of $\delta > 0$ is a subset of \mathbb{R}^n , defined by

$$B_{\delta}(x) = \{ s \in \mathbb{R}^n : ||x - s|| \le \delta \}$$

Note that the set $B_\delta(x)$ depends on the norm $\|\cdot\|$ used

Definition: A set $X \in \mathbb{R}^n$ is open if, for each $x \in X$, there exists $\delta > 0$ such that there is a ball $B_{\delta}(x)$ around x such that $B_{\delta}(x) \subseteq X$.


```
Definition: A set X is closed if X^c is open. Equivalently, X is closed if and only if it contains the limit of every convergent sequence in X. Example: (0,1) is open Example: [0,1] is closed Example: (0,1] is neither open nor closed. Why? think about a sequence \{\frac{1}{k}\}
```

A set $X \subset \mathbb{R}^n$ is said to be compact if X is closed and bounded

- ► Known as Heine-Borel theorem
- ▶ It is also necessary condition, i.e., If S is compact, then it is closed and bounded.

Hence $X \subset \mathbb{R}^n$ is compact if and only if X is closed and bounded

Examples

- ightharpoonup [0,1]: closed and bounded
- ightharpoonup [0,1): bounded but not closed
- $ightharpoonup [0,\infty)$: closed but not bounded

Definition: A set $X\subseteq \mathbb{R}^n$ is bounded if there exists $M<\infty$ such that $\|x\|\leq M,\ \forall x\in X.$

Definition: A function $f: X \to \mathbb{R}$ where $X \subseteq \mathbb{R}^n$ is said to be continuous at $x^* \in X$ if for every sequence $\{y^k\}$ with $\lim_{k \to \infty} y^k = x^*$, we have

$$\lim_{k\to\infty} f(y^k) = f(\lim_{k\to\infty} y^k) = f(x^*)$$

Equivalently, for each $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in X$,

$$||x-x^*|| < \delta \rightarrow |f(x)-f(x^*)| < \epsilon$$

A function f on \mathbb{R}^n

$$f: \mathbb{R}^n \to \mathbb{R}$$

f is said to be differentiable at a if the partial derivative of f exists for all coordinates, i.e.,

$$abla f(a) = egin{bmatrix} \partial_{\mathsf{x}_1} f(a) \ dots \ \partial_{\mathsf{x}_n} f(a) \end{bmatrix}$$

Note that

$$\nabla f: \mathbb{R}^n \to \mathbb{R}^n$$

Example

$$f(x_1, x_2) = 5x_1^2 + 6x_1x_2 + 10x_2^2$$

Note that $f: \mathbb{R}^2 \to \mathbb{R}$. Compute

$$\nabla f(x_1, x_2)$$

A function f on \mathbb{R}^n

$$f: \mathbb{R}^n \to \mathbb{R}$$

f is said to be twice differentiable at a if $\nabla f(a)$ exists and the second-order partial derivative of f exists for all coordinates, i.e.,

$$H(f(a)) =
abla^2 f(a) = egin{bmatrix} \partial_{x_1 x_1} f(a) & \cdots & \partial_{x_1 x_n} f(a) \\ \vdots & \ddots & \vdots \\ \partial_{x_n x_1} f(a) & \cdots & \partial_{x_n x_n} f(a) \end{bmatrix}$$

Note that

$$H = \nabla^2 f : \mathbb{R}^n \to \mathbb{R}^{n \times n}$$

Example

$$f(x_1, x_2) = 5x_1^2 + 6x_1x_2 + 10x_2^2$$

Note that $f: \mathbb{R}^2 \to \mathbb{R}$. Compute

$$H = \nabla^2 f(x_1, x_2)$$

Matrix

A square $n \times n$ matrix A is said be symmetric if $A = A^T$, where A^T is transpose of A.

► Hessian *H* is always symmetric

A symmetric matrix A is said to be positive semi-definite if for any $v \in \mathbb{R}^n$

$$v^T A v \geq 0$$

- ▶ If eigenvalues (real part) of A are nonnegative, then A is positive semidefinite.
- Other conditions...: (principal eigenvalue... etc) see the textbook on linear algebra

Convex Sets and Convex Functions

Convex Optimization?

Convex optimization: A special class of nonlinear optimization that includes *Linear Programming*

Convex Set

▶ A line segment defined by vectors $x, y \in \mathbb{R}^n$ is the set of points of the form $\alpha x + (1 - \alpha y)$ for $\alpha \in [0, 1]$

▶ A set $C \subset \mathbb{R}^n$ is convex when, with any two vectors x and y that belongs to the set C, the ling segment connecting x and y also belongs to C

Examples of Convex Sets

Which of the following sets are convex?

- A line through two given vectors x and y: $I(x,y) = \{z \mid z = x + t(y-x), \ t \in \mathbb{R}\}$
- ▶ A ray defined by a vector $\{z \mid z = \lambda x, \ \lambda \ge 0\}$
- ▶ The positive orthant $\{x \in \mathbb{R}^n \mid x \ge 0\}$ (componentwise inequality)
- ▶ Convex cone C: for any $x_1, x_2 \in C$ and $\theta_1, \theta_2 \geq 0$, $\theta_1 x_1 + \theta_2 x_2 \in C$
- Any convex set is connected but not vice versa
- ► Any subspace is affine, and a convex cone (hence convex)

Examples of Convex Sets: Hyperplanes and Half-spaces

- ▶ Hyperplane is a set of the form $\{x \mid a^{\top}x = b\}$ for a nonzero vector a
- ▶ Half-space is a set of the form $\{x \mid a^{\top}x \leq b\}$ for a nonzero vector a
- ightharpoonup A hyperplane in \mathbb{R}^n divides the space into two half spaces:

$$\{x \mid a^{\top}x \leq b\} \quad \{x \mid a^{\top}x \geq b\}$$

It is known as the separating hyperplane (related to duality in optimization)

- Half spaces are convex
- ► Hunorplanes are convey and affine

Examples of Convex Sets: Polyhedral Sets

► A polyhedral set is given by finitely many linear inequalities

$$C = \{x \mid Ax \leq b\}, A \in \mathbb{R}^{m \times n}$$

- ► The polyhedral set is intersection of a finite number of half spaces and hyperplane
- Every polyhedral set is convex
- Bounded polyhedral is called polytope
- Linear program

$$\min_{x} c^{\top} x$$
 subject to $Bx \leq b$, $Dx = d$

Examples of Convex Sets: Ellipsoid

An ellipsoid is a set of the form

$$\{x \mid (x - x_o)^{\top} P^{-1}(x - x_o) \le 1\}, \ P = P^{\top} > 0$$

- \triangleright x_o : center of the ellipsoid
- ightharpoonup A ball is the case when P = I
- ► Ellipsoids are convex

Examples of Convex Sets: Norm Cones

▶ A norm cone is the set of the form

$$C = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \le t\}$$

- ightharpoonup The norm $\|\cdot\|$ can be any norm in the finite-dimensional space
- ▶ The norm cone for Euclidean norm is also known as ice-cream cone
- ► Any norm cone is convex

Examples of Convex Sets: Simplex

A simplex is a set given as a convex combination of a finite collection of vectors x_0, x_1, \ldots, x_m :

$$C = \mathsf{conv}\{x_0, x_1, \dots, x_m\}$$

- Examples
 - ▶ Unit simplex: $\{x \in \mathbb{R}^n \mid x \ge 0, e^\top x \le 1\}, e = (1, ..., 1)^\top$
 - ► Probability simple

Convex Functions

▶ Let $f: \mathbb{R}^n \to \mathbb{R}$. The domain of f is a set defined by

$$X = \text{dom}(f) = \{x \in \mathbb{R}^n \mid f(x) \text{ is well defined (finite)}\} \subset \mathbb{R}^n$$

- ▶ Def: A function f is a convex function if
 - \triangleright X is a convex set in \mathbb{R}^n
 - For any $x_1, x_2 \in X$ and $\alpha \in (0,1)$

$$f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2)$$

Strict inequality: strictly convex, i.e.,

$$f(\alpha x_1 + (1 - \alpha)x_2) < \alpha f(x_1) + (1 - \alpha)f(x_2)$$

Examples of Convex Functions

Convex functions

- ▶ Affine: ax + b over \mathbb{R} for any $a, b \in \mathbb{R}^n$
- ► Any norms in the finite-dimensional space are convex
- **Exponential**: e^{ax} over \mathbb{R} for any $a \in \mathbb{R}$
- ▶ Power: x^p over $(0, \infty)$ for $p \ge 1$ or $p \le 0$
- ▶ Powers of absolute values: $|x|^p$ over \mathbb{R} for $p \ge 1$
- ▶ Negative entropy: $x \ln x$ over $(0, \infty)$

Concave

- ▶ Affine: ax + b over \mathbb{R} for any $a, b \in \mathbb{R}^n$
- Powers: x^p over $(0, \infty)$ for $0 \le p \le 1$
- ▶ Logarithm: $\ln x$ over $(0, \infty)$

Verifying Convexity of a Function

We can verify that a given function f is convex by

- Using the definition of the convex function
- Applying some special criteria provided that the function has some nice properties
 - Second-order conditions
 - First-order conditions

Second-Order Conditions

- Assume that f is twice differentiable on dom(f)
- ▶ The Hessian $\nabla^2 f(x)$ is a symmetric $n \times n$ matrix whose entries are the second-order partial derivatives of f at x:

$$\left[\nabla^2 f(x)\right]_{ij} = \frac{\partial^2 f(x)}{\partial x_i x_j}$$
 for $i, j = 1, \dots, n$

- 2nd-order condition: For a twice differentiable function f with the convex domain
 - f is convex if and only if

$$\nabla^2 f(x) \ge 0 \quad \forall x \in X$$

That is, the Hessian is positive semi-definite

f is strictly convex when we have strict inequality, i.e., the Hessian is positive definite

Second-Order Conditions: Examples

▶ Quadratic function: $f(x) = \frac{1}{2}x^{T}Px + q^{T}x + r$ with $P = P^{T}$. Note

$$\nabla^2 f(x) = P$$

Hence f is convex if and only if $P \ge 0$

▶ Least-square: $f(x) = ||Ax - b||^2$ with $A \in \mathbb{R}^{m \times n}$

$$\nabla^2 f(x) = 2A^{\top} A$$

Note $A^{\top}A \geq 0$; hence, it is a convex function

First-Order Condition

 \triangleright f is differentiable if dom(f) is open and the gradient of f

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} & \frac{\partial f(x)}{\partial x_2} & \cdots & \frac{\partial f(x)}{\partial x_n} \end{bmatrix}^{\top}$$

exists at each $x \in dom(f)$

▶ 1st-order condition: *f* is convex if and only if its domain is convex and

$$f(x) + \nabla f(x)^{\top}(z - x) \le f(z) \quad \forall x, z \in X$$

- ► A first-order approximation is a global underestimate of *f*
- Very important property used in algorithm designs and performance analysis

Conclusions

► Basic mathematics