Astrofísica Extragaláctica Lista 3 – Núcleos Ativos de Galáxias

Maio de 2021

Parte A

- **1**. **Espectros.** No contexto do modelo unificado de núcleos ativos, explique o que são regiões de linhas largas e de linhas estreitas.
- 2. Espectros. Explique o que é a floresta de Lyman.

Parte B

- 3. Luminosidade de Eddington. Partindo da massa do buraco negro supermassivo na galáxia M87: (a) determine sua luminosidade de Eddington e (b) calcule a taxa de acreção (em M_☉ yr⁻¹) necessária para manter tal luminosidade, supondo eficiência de 10%.
- 4. Luminosidade de Eddington. Considere um buraco negro acretando massa e emitindo a luminosidade de Eddington com eficiência de 10%. Qual o tempo para que a massa do buraco negro aumente por um fator *e*?
- 5. Movimentos superluminais. (a) Mostre que, para uma dada velocidade v, a máxima velocidade aparente ocorre para o ângulo $\sin\theta=1/\gamma$ (ou equivalentemente $\cos\theta=\beta$) e que esta velocidade vale $v_{\rm ap}^{\rm max}=\gamma v$. (b) Mostre que, para um dado ângulo θ , a condição para se ter velocidades aparentemente superluminais é $v\gtrsim 0.7c$
- 6. Região de linhas largas. Problema 5.5 do Schneider.
 - 5.5. Properties of the BLR. Assume that the BLR is a spherical shell with characteristic radius r and thickness
 - r r. Furthermore, assume that it consists of Nc clouds of radius rc and electron number density ne.
 - 1. What is the covering factor of the BLR clouds as seen

from the continuum source, i.e., which fraction of linesof-sight from the center of the BLR intersect a cloud, in

terms of the model parameters?

- 2. Calculate the filling factor, i.e., the volume fraction of the BLR that is filled with clouds.
- 3. Assume that the covering factor is 0.1, and that the filling factor is 106. For a BLR radius of r D 1016 cm and ne D 1010 cm3, determine rc and Nc . What is the total mass of the gas in the clouds in the BLR?

Comment: Given the uncertainty with which quantities like the covering factor can be determined, it is legitimate to neglect factors of order unity in the calculation.

Parte C

7. **Espectro em rádio.** A tabela a seguir dá os fluxos monocromáticos da radiogaláxia Cygnus A em diferentes comprimentos de onda. (a) Faça um gráfico e determine o índice espectral da lei de potência $F_{\nu} \propto \nu^{-\alpha}$. (b) Calcule o fluxo total integrando numericamente o espectro e estime a luminosidade em rádio de Cygnus A (expresse a luminosidade em erg s⁻¹).

log ν (Hz)	$\log F_{\nu}$ (Jy)
7.0	4.12
7.3	4.45
7.7	4.33
8.0	4.14
8.3	3.91
8.7	3.62
9.0	3.37
9.3	3.04
9.7	2.57
10.0	2.21