Computer Architecture

Dr. Esti Stein (Partly taken from Dr. Alon Scholar slides)

Based on slides by:

Prof. Myung-Eui Lee

Korea University of Technology & Education
Department of Information & Communication

Taken from: M.
Mano/Computer Design and
Architecture 3rd Ed.

Microoperations Types

Data transfer only

- 1. Register Transfer microoperations transfer binary information from one register to another
- 2. Arithmetic microoperations perform arithmetic operation on numeric data stored in registers.
- 3. Logic microoperations perform bit manipulation operations on non numeric data stored in registers.
- 4. Shift microoperations perform shift operations data stored in registers.

Changes data during transfer

Arithmetic Microoperations

Basic: addition, subtraction, increment, decrement & shift

Multiplication and division are not basic

Arithmetic Microoperations

There are two identical operations

TABLE 4-3 Arithmetic Microoperations

Symbolic designation	Description
$R3 \leftarrow R1 + R2$	Contents of R1 plus R2 transferred to R3
$R3 \leftarrow R1 - R2$	Contents of R1 minus R2 transferred to R3
$R2 \leftarrow \overline{R2}$	Complement the contents of R2 (1's complement)
$R2 \leftarrow \overline{R2} + 1$	2's complement the contents of R2 (negate)
$R3 \leftarrow R1 + \overline{R2} + 1$	R1 plus the 2's complement of R2 (subtraction)
$R1 \leftarrow R1 + 1$	Increment the contents of R1 by one
$R1 \leftarrow R1 - 1$	Decrement the contents of R1 by one

Binary Adder-Subtractor

- M =0 : Adder
- $B \oplus M + C_0 = B \oplus 0 + 0 = B \implies S = A + B$
- M =1: Subtractor $B \oplus M + C_0 \longrightarrow B \oplus 1 + 1 = B' + 1 = -B \Rightarrow S = A B$

Binary Incrementer

Sequential circuit using a binary counter

Combinational circuit using half adders

Figure 2-10 4-bit synchronous binary counter.

TABLE 4-4 Arithmetic Circuit Function Table

	Select		.	•	
$\overline{S_1}$			Input Y	Output $D = A + Y + C_{in}$	Microoperation
0	0	0 [В	D = A + B	Add
0	0	J 1 L	В	D = A + B + 1	Add with carry
0	1	0	\overline{B}	$D = A + \overline{B}$	Subtract with borrow
0	1	1	\overline{B}	$D=A+\overline{B}+1$	Subtract
1	0	0	0	D = A	Transfer A
1	0	1	0	D=A+1	Increment A
1	1	0	1	D = A - 1	Decrement A
1	1	1	1	D = A	Transfer A

 $\mathbf{0}$

TABLE 4-4 Arithmetic Circuit Function Table

	Select		Innut	Output	
$\overline{S_1}$	So	C_{in}	Input Y	Output $D = A + Y + C_{in}$	Microoperation
0	0	0	В	D = A + B	Add
0	0	1	<u>B</u>	D = A + B + 1	Add with carry
0	1	0	\overline{B}	$D = A + \overline{B}$	Subtract with borrow
0	_1	1	\overline{B}	$D = A + \overline{B} + 1$	Subtract
1	0	0	0	D = A	Transfer A
1	0	1	0	D=A+1	Increment A
1	1	0	1	D = A - 1	Decrement A
1	1	1	1	D = A	Transfer A

TABLE 4-4 Arithmetic Circuit Function Table

	Select		Innut	Output	
$\overline{S_1}$	So	C_{in}	Input Y	Output $D = A + Y + C_{in}$	Microoperation
0	0	0	В	D = A + B	Add
0	0	1	В	D = A + B + 1	Add with carry
0	1	0	\overline{B}	$D = A + \overline{B}$	Subtract with borrow
0	_1_	1	\overline{B}	$D=A+\overline{B}+1$	Subtract
1	0	0	0	D = A	Transfer A
1		1	0	D=A+1	Increment A
1	1	0	1	D = A - 1	Decrement A
1	1	1	1	D = A	Transfer A

 $\mathbf{0}$

TABLE 4-4 Arithmetic Circuit Function Table

	Select		Tanut	Output	
$\overline{S_1}$	So	C_{in}	Input Y	Output $D = A + Y + C_{in}$	Microoperation
0	0	0	В	D = A + B	Add
0	0	1	В	D = A + B + 1	Add with carry
0	1	0	\overline{B}	$D = A + \overline{B}$	Subtract with borrow
0	1	1	\overline{B}	$D=A+\overline{B}+1$	Subtract
1	0	0	0	D = A	Transfer A
1	0	1	0	D=A+1	Increment A
1	1	0 (1	D = A - 1	Decrement A
1	1	1	1	D = A	Transfer A

Logic microoperations consider **each bit of the register separately** and treat them as binary variables

Example: XOR

if (P = = 1) then $R1 \leftarrow R1 \oplus R2$ or in RTL $P: R1 \leftarrow R1 \oplus R2$

R1: 1001R2: 1100R1: 0101 $s_3 s_2 s_1 s_0$

Special symbols in RTL:

Left side - condition

Or denoted by +
And denoted by •
complement denoted by '

Right side - operation

Or denoted by \
And denoted by \
complement denoted by
Arith. Plus denoted by +
Arith. Mult. denoted by *

Example:

P+Q: R1
$$\leftarrow$$
 R1 + R2, R3 \leftarrow R4 \vee R5

or

addition

or

TABLE 4-5	Truth	Tables for	16 Functions	of Two	Variables
-----------	-------	------------	--------------	--------	-----------

		1				_										F ₁₄	
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 1 1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

TABLE 4-5	Truth 7	Tables fo	or 16	Functions	of Two	Variables
-----------	---------	-----------	-------	-----------	--------	-----------

х	у	F ₀	$\overline{F_1}$	F ₂	<i>F</i> ₃	F ₄	<i>F</i> ₅	<i>F</i> ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1 1 0 0	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	_1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

TABLE 4-5	Truth 7	Tables fo	or 16	Functions	of Two	Variables
-----------	---------	-----------	-------	-----------	--------	-----------

х	у	F_0	F_1	F ₂	<i>F</i> ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F_{12}	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1 1 0 0	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	11	1	0	0	1	1	0	0	1	1	0	0	1	1
1	_1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

x	у	F ₀	F_1	F_2	<i>F</i> ₃	F ₄	<i>F</i> ₅	<i>F</i> ₆	F ₇	<i>F</i> ₈	<i>F</i> ₉	F ₁₀	F_{11}	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1 0 1 0	1	1	1	1	1
0	1	0	0	0	0	1	1	11	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	11	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

TABLE 4-5	Truth	Tables	for 16	S Functions	of Two	Variables
	HUULI		101 11	<i>,</i> , , , , , , , , , , , , , , , , , ,		* allabics

<u> </u>	у	F ₀	F_1	F_2	<i>F</i> ₃	F ₄	<i>F</i> ₅	F ₆	F ₇	<i>F</i> ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1 0 1 0	1	1	1	1	1
0	1	0	0	0	0	1	1	11	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	11	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

TABLE 4-6 Sixteen Logic Microoperations

	TABLE	4-5	Truth	Tables	for	16
--	--------------	-----	-------	--------	-----	----

x	у	F ₀	F_1	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇
0	0	o	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0 0 0 0	1	0	1	0	1	0	1

x	у	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Boolean function	Microoperation	Name
$F_0 = 0$	$F \leftarrow 0$	Clear
$F_1 = xy$	$F \leftarrow A \wedge B$	AND
$F_2 = xy'$	$F \leftarrow A \wedge \overline{B}$	
$F_3 = x$	$F \leftarrow A$	Transfer A
$F_4 = x'y$	$F \leftarrow \overline{A} \wedge B$	
$F_5 = y$	$F \leftarrow B$	Transfer B
$F_6 = x \oplus y$	$F \leftarrow A \oplus B$	Exclusive-OR
$F_7 = x + y$	$F \leftarrow A \lor B$	OR
$F_8 = (x + y)'$	$F \leftarrow \overline{A \vee B}$	NOR
$F_9 = (x \oplus y)'$	$F \leftarrow \overline{A \oplus B}$	Exclusive-NOR
$F_{10}=y'$	$F \leftarrow \overline{B}$	Complement B
$F_{11}=x+y'$	$F \leftarrow A \vee \overline{B}$	
$F_{12}=x'$	$F \leftarrow \overline{A}$	Complement A
$F_{13}=x'+y$	$F \leftarrow \overline{A} \vee B$	
$F_{14}=(xy)'$	$F \leftarrow \overline{A \wedge B}$	NAND
$F_{15}=1$	$F \leftarrow \text{all 1's}$	Set to all 1's

LM – HW implementaion

- Logic gates are inserted for each bit or pair of bits in the registers.
- Most computers use only 4 operations: AND, OR, XOR and complement.
- All 12 others can be derived.

(a) Logic diagram

Figure 4-10 One stage of logic circuit.

- Logic microoperations are very useful for *manipulating individual bits* or *a portion of a word* stored in a register
- Used to <u>change bit values</u>, delete a group of bits, or insert new bit values

Selective set:

 $A \leftarrow A \vee B$

Sets to 1 the bits in register A where there are corresponding 1's in register B.

It does not effect bit positions that

It does not effect bit positions that have 0's in B.

- Logic microoperations are very useful for *manipulating individual bits* or *a portion of a word* stored in a register
- Used to <u>change bit values</u>, delete a group of bits, or insert new bit values

Selective complement:

 $A \leftarrow A \oplus B$

Complements to 1 the bits in register A where there are corresponding 1's in register B. It does not effect bit positions that have 0's in B.

- Logic microoperations are very useful for *manipulating individual bits* or *a portion of a word* stored in a register
- Used to <u>change bit values</u>, delete a group of bits, or insert new bit values

Selective clear:

 $A \leftarrow A \wedge \overline{B}$

Clears to **0** the bits in register A where there are corresponding 1's in register B.

It does not effect bit positions that have 0's in B.

- Logic microoperations are very useful for *manipulating individual bits* or *a portion of a word* stored in a register
- Used to <u>change bit values</u>, delete a group of bits, or insert new bit values

Selective mask:

 $A \leftarrow A \wedge B$

The mask operation is similar to the selective-clear operation. Except that the bits of A are cleared only where there are corresponding 0's in B.

Insert:

- The insert operation inserts a new value into a group of bits.
- This is done by:
 - 1. Masking the bits
 - 2. QRing them with the required value

We would like to change the two rightmost bits of A to 01

A: 1010 B: 1100 A: 1000

A: 1000 B: 0001 A: 1001

Clear the bits you want to change

Set the bits to the desired pattern

- Logic microoperations are very useful for *manipulating individual bits* or *a portion of a word* stored in a register
- Used to <u>change bit values</u>, delete a group of bits, or insert new bit values

Clear operaion:

 $A \leftarrow A \oplus B$

The clear operation compares the words in A and B and produces an all 0's result if the two numbers are equal.

26

Shift Microoperations

- Shift microoperations can be used for serial transfer of data.
- Three types of shift microoperation : *Logical, Circular,* and *Arithmetic*

A *logical shift* transfers 0 through the serial input.

The bit transferred to the end position through the serial input is assumed to be 0 during a logical shift.

Shl – for shift left (insert 0 from rightmost side)

$$R1 \leftarrow shl R1$$

Shift Microoperations

- Shift microoperations can be used for serial transfer of data.
- Three types of shift microoperation : *Logical, Circular,* and *Arithmetic*

A *logical shift* transfers 0 through the serial input.

The bit transferred to the end position through the serial input is assumed to be 0 during a logical shift.

Shl – for shift left (insert 0 from rightmost side)

$$R1 \leftarrow shl R1$$

28

Shift Microoperations

- Shift microoperations can be used for serial transfer of data.
- Three types of shift microoperation : *Logical, Circular,* and *Arithmetic*

A <u>logical shift</u> transfers 0 through the serial input.

The bit transferred to the end position through the serial input is assumed to be $\mathbf{0}$ during a logical shift.

Shr – for shift right (insert 0 from leftmost side)

Circular shift

A *circular shift* circulates bits of the register around the two ends without loss of any bit.

Circular shift

A *circular shift* circulates bits of the register around the two ends without loss of any bit.

$$R1 \leftarrow cil R1$$

Arithmetic shift

- An *arithmetic shift* shifts a signed binary number to the left or right.
- An arithmetic shift-left (ashl) multiplies a signed binary number by 2.
- An arithmetic shift-right (ashr) divides a signed binary number by 2.
- Arithmetic shifts must leave the sign bit unchanged.

Figure 4-11 Arithmetic shift right.

Arithmetic shift-left

- The arithmetic shift-left insert 0 into R_0 , and shifts all other bits to the left.
- R_{n-2} becomes R_{n-1} and R_{n-1} lost and becomes the sign bit.
- A sign reversal occurs (overflow) if the bit in R_{n-1} changes its value after shift.

Example: a 4 bit signed R: 1 0 0 1 (= -7)

$$OF \leftarrow R_{n-1} \oplus R_{n-2}$$

$$OF = 0 \text{ ashl} \qquad 0 \text{ of } 0$$

Shift – HW implementaion

Function table										
Select	Output									
S	H_0	H_1	H ₂	<i>H</i> ₃						
0	I_R	A_0	A_1	A_2						
1	A_1	A ₂	A ₃	IL						

- When S=0, the input data is shifted right (down in the diagram).
- When S=1, the input data is shifted left (up in the diagram).
- A shifter with n data inputs, requires n multiplexers.

ALU - Arithmetical Logical Unit

- The contents of specific source registers are placed in the input of the ALU.
- The ALU performs the operation, and the result is then transferred to a destination register.
- The ALU is a combinational circuit, therefore the data transferred from source to destination through the ALU is performed during one clock pulse period.

ALU - Arithmetical Logical Unit

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

		Ope	ration	select			
	S_3	S2	S_1	So	C_{in}	Operation	Function
	0	0	0	0	0	F = A	Transfer A
	0	0	0	0	1	F = A + 1	Increment A
	0	0	0	1	0	F = A + B	Addition
	0	0	0	1	1	F = A + B + 1	Add with carry
	0	0	1	0	0	$F = A + \overline{B}$	Subtract with borrow
i	0	0	1	0	1	$F = A + \overline{B} + 1$	Subtraction
	0	0	1	1	0	F = A - 1	Decrement A
	0	0	1	1	1	F = A	Transfer A
	0	1	0	0	X	$F = A \wedge B$	AND
	0	1	0	1	×	$F = A \vee B$	OR
	0	1	1	0	X	$F = A \oplus B$	XOR
	0	1	1	1	X	$F = \overline{A}$	Complement A
	1	0	X	X	×	$F = \operatorname{shr} A$	Shift right A into F
	1	1	×	×	×	$F = \operatorname{shl} A$	Shift left A into F

ALU - Arithmetical Logical Unit

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Function
Transfer A Increment A Addition Add with carry Subtract with borrow Subtraction Decrement A
Transfer A
AND OR
XOR
Complement A
Shift right A into F
Shift left A into F

ALU - Arithmetical Logical Unit

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

		Ope	ration	select			
	S ₃	S2	Sı	S ₀	C_{in}	Operation	Function
	0	0	0	0	0	F = A	Transfer A
	0	0	0	0	1	F = A + 1	Increment A
	0	0	0	1	0	F = A + B	Addition
	0	0	0	1	1	F = A + B + 1	Add with carry
	0	0	1	0	0	$F = A + \overline{B}$	Subtract with borrow
i	0	0	1	0	1	$F = A + \overline{B} + 1$	Subtraction
	0	0	1	1	0	F = A - 1	Decrement A
	0	0	1	_1	1	F = A	Transfer A
	0	1	0	0	X	$F = A \wedge B$	AND
	0	1	0	1	X	$F = A \vee B$	OR
	0	1	1	0	X	$F = A \oplus B$	XOR
l	0	1	1	_1	X	$F = \overline{A}$	Complement A
	1	0	X	X	×	$F = \operatorname{shr} A$	Shift right A into F
	1	1	X	X	X	$F = \operatorname{shl} A$	Shift left A into F

ALU - Arithmetical Logical Unit

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

		Ope	ration	select			
	S_3	S2	Sı	So	C_{in}	Operation	Function
	0	0	0	0	0	F = A	Transfer A
	0	0	0	0	1	F = A + 1	Increment A
	0	0	0	1	0	F = A + B	Addition
	0	0	0	1	1	F = A + B + 1	Add with carry
	0	0	1	0	0	$F = A + \overline{B}$	Subtract with borrow
i	0	0	1	0	1	$F = A + \overline{B} + 1$	Subtraction
	0	0	1	1	0	F = A - 1	Decrement A
	0	0	1	1	1	F = A	Transfer A
	0	1	0	0	X	$F = A \wedge B$	AND
	0	1	0	1	×	$F = A \vee B$	OR
	0	1	1	0	X	$F = A \oplus B$	XOR
	0	1	1	1	X	$F = \overline{A}$	Complement A
1	1	0	×	X	×	$F = \operatorname{shr} A$	Shift right A into F
	1	[.] 1	×	X	×	$F = \operatorname{shl} A$	Shift left A into F