

BG312L (BLE Module)

Specification Ver:1.2

瑞維電子有限公司

S-Power Electronics Ltd

HK OFFICE

Unit513, Lakeside 1, Bldg.15, No.8 Science Park West Avenue, Hong Kong Science Park, New Territories., Hong Kong TEL: +852 2661 1489 | Fax: +852 2661 9845

Email: sam@s-power.com.hk | Website: www.s-power.com.hk

DESCRIPTION

The BG312L is a cost-effective, low-power, true system-on-chip (SoC) for *Bluetooth* low energy applications. It enables robust BLE master or slave nodes to be built with very low total bill-of-material costs. The BG312L combines an excellent RF transceiver with an industry-standard enhanced 8051 MCU, insystem programmable flash memory, 8-KB RAM, and many other powerful supporting features and peripherals. The BG312L is suitable for systems where very low power consumption is required. Very low-power sleep modes are available. Short transition times between operating modes further enable low power consumption.

Combined with the *Bluetooth* low energy protocol stack from Texas Instruments, the BG312LF128/F256 forms the markets most flexible and cost-effective single-mode *Bluetooth* low energy solution.

FEATURES

ILATORLO	
RF	Bluetooth low energy technology Compatible Excellent Link Budget (up to 97 dB), Enabling Long-Range Applications Without External Front End Accurate Digital Received Signal-Strength Indicator (RSSI) Suitable for Systems Targeting Compliance With Worldwide Radio Frequency Regulations: ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15
	(US), and ARIB STD-T66 (Japan)
Low Power	 Active Mode RX Down to 20 mA Active Mode TX (0 dBm): 21 mA Power Mode 1 (3-μs Wake-Up): 270 μA Power Mode 2 (Sleep Timer On): 1 μA Power Mode 3 (External Interrupts): 0.6 μA Wide Supply Voltage Range (2 V–3.6 V) Full RAM and Register Retention in All Power Modes
Microcontroller	High-Performance and Low-Power 8051 Microcontroller CoreIn-System-Programmable Flash, 128 KB8-KB SRAM
Peripherals	 12-Bit ADC with Eight Channels and Configurable Resolution Integrated High-Performance Op-Amp and Ultralow-Power Comparator General-Purpose Timers (One 16-Bit, Two 8-Bit) 32-kHz Sleep Timer With Capture Two Powerful USARTs With Support for Several Serial Protocols Powerful Five-Channel DMA AES Security Coprocessor Each BG312L Contains a Unique 48-bit IEEE Address

SOFTWARE FEATURES

- Bluetooth v4.0 Compliant Protocol Stack for Single-Mode BLE Solution
 - Complete Power-Optimized Stack, Including Controller and Host
 - GAP Central, Peripheral, Observer, or Broadcaster (Including Combination Roles)
 - ATT / GATT Client and Server
 - SMP AES-128 Encryption and Decryption
 - L2CAP
 - Sample Applications and Profiles
 - Generic Applications for GAP Central and Peripheral Roles
 - Proximity, Accelerometer, Simple Keys, and Battery GATT Services
 - Multiple Configuration options
 - Single-Chip Configuration, Allowing Application to Run on BG312L
 - Network Processor Interface for Applications Running on an External Microcontroller
 - BTool Windows PC Application for Evaluation, Development, and Test

APPLICATIONS

- 2.4-GHz Bluetooth low energy Systems
- Mobile Phone Accessories
- Sports and Leisure Equipment
- Consumer Electronics
- Human Interface Devices (Keyboard, Mouse, Remote Control)
- Health Care and Medical

Chip Block Diagram

ELECTRICAL CHARACTERISTICS

TA = 25°C and VDD = 3 V unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Power mode 1. Digital regulator on; 16-MHz RCOSC and 32-MHz crystal oscillator off; 32.768-kHz XOSC, POR, BOD and sleep timer active; RAM and register retention		270		μA
Icore	Core current consumption	Power mode 2. Digital regulator off; 16-MHz RCOSC and 32-MHz crystal oscillator off; 32.768-kHz XOSC, POR, and sleep timer active; RAM and register retention		1		μA
		Power mode 3. Digital regulator off; no clocks; POR active; RAM and register retention		0.6		μA
		Low MCU activity: 32-MHz XOSC running. No radio or peripherals. No flash access, no RAM access.		7		mA
Iperi	Peripheral current consumption (Adds to core current lcore for each peripheral unit activated)	Timer 1. Timer running, 32-MHz XOSC used Timer 2. Timer running, 32-MHz XOSC used Timer 3. Timer running, 32-MHz XOSC used Timer 4. Timer running, 32-MHz XOSC used		90 90 60 70		μΑ μΑ μΑ μΑ
	each peripheral unit activated)	Sleep timer, including 32.753-kHz RCOSC ADC, when converting		0.6 1.2		μA mA

DC CHARACTERISTICS

 $TA = 25^{\circ}C$, VDD = 3 V

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Logic-0 input voltage				0.5	V
Logic-1 input voltage		2.5			V
Logic-0 input current	Input equals 0 V	-50		50	nA
Logic-1 input current	Input equals VDD	-50		50	nA
I/O-pin pullup and pulldown resistors			20		kΩ
Logic-0 output voltage, 4-mA pins	Output load 4 mA			0.5	V
Logic-1 output voltage, 4-mA pins	Output load 4 mA	2.4			V

32.768-kHz CRYSTAL OSCILLATOR

 $TA = 25^{\circ}C$, VDD = 3 V

PARA	METER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Crystal frequency				32.768		kHz
Crystal frequency accuracy requirement(1)			-30		30	ppm
ESR	Equivalent series resistance			40	130	kΩ
C0	Crystal shunt capacitance			0.9	2	pF
CL	Crystal load capacitance			12	16	pF
	Start-up time			0.4		s

⁽¹⁾ Including aging and temperature dependency, as specified by [1]

RF RECEIVE SECTION

 $T_A = 25^{\circ}$ C, VDD = 3 V, $f_c = 2440$ MHz

1 Mbps, GFSK, 250-kHz deviation, Bluetooth low energy mode, and 0.1% BER(1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Receiver sensitivity(2)	High-gain mode		-92		dBm
Receiver sensitivity(2)	Standard mode		-86		dBm
Saturation(3)			6		dBm
Co-channel rejection(3)			-5		dB
Adjacent-channel rejection(3)	±1 MHz		-5		dB
Alternate-channel rejection(3)	±2 MHz		30		dB
Blocking(3)			-30		dBm
Frequency error tolerance(4)	Including both initial tolerance and drift	-250		250	kHz
Symbol rate error tolerance(5)		-80		80	ppm
Spurious emission. Only largest spurious emission stated within each band.	Conducted measurement with a 50-Ω single-ended load. Complies with EN 300 328, EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-66		-75		dBm
Current consumption	RX mode, standard mode, no peripherals active, low MCU activity, MCU at 250 kHz		18		mA
Current consumption	RX mode, high-gain mode, no peripherals active, low MCU activity, MCU at 250 kHz		21		mA

- (1) 0.1% BER maps to 30.8% PER
- (2) The receiver sensitivity setting is programmable using a TI BLE stack vendor-specific API command. The default value is standard mode.
- (3) Results based on standard gain mode
- (4) Difference between center frequency of the received RF signal and local oscillator frequency
- (5) Difference between incoming symbol rate and the internally generated symbol rate

RF TRANSMIT SECTION

TA = 25°C, VDD = 3 V and fc = 2440 MHz

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output power	Delivered to a single-ended 50-Ω load through a balun using maximum recommended output power setting		0		dBm
Output power	Delivered to a single-ended 50-Ω load through a balun using minimum recommended output power setting		-20		dBm
Programmable output power range	Delivered to a single-ended 50 Ω load through a balun		20		dB
Spurious emissions	Conducted measurement with a 50-Ω single-ended load. Complies with EN 300 328, EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-66(1)		-41		dBm
Current consumption	TX mode, –20 -dBm output power, no peripherals active, low MCU activity, MCU at 250 kHz		17		mA
Current consumption	TX mode, 0 -dBm output power, no peripherals active, low MCU activity, MCU at 250 kHz		20		mA
Optimum load impedance	Differential impedance as seen from the RF port (RF_P and RF_N) toward the antenna		70 + j30		Ω

(1) Designs with antenna connectors that require conducted ETSI compliance at 64 MHz should insert an LC resonator in front of the antenna connector. Use a 1.6-nH inductor in parallel with a 1.8-pF capacitor. Connect both from the signal trace to a good RF ground.

PIN Define

PIN Name	PIN Type	Description	PIN Name	PIN Type	Description
VDD	Power (digital)	2-V–3.6-V digital power-supply connection	x_osc	Crystal	Connected to 32768Hz Crystal
GND	Ground	The ground pad must be connected to a solid ground plane.	X_OSC	Crystal	Connected to 32768Hz Crystal
P0_4	Digital I/O	Port 0.4	RESET	Digital input	Reset, active-low
P0_5	Digital I/O	Port 0.5	P1_4	СТ	BLE module notify Output
P0_6	Digital I/O	Port 0.6	P1_5	RT	MCU/Host notify Input
P0_7	Digital I/O	Port 0.7	P1_6	UART_TX	UART Transmit Output
P2_0	Digital I/O	Port 2.0	P1_7	UART_RX	UART Receive Input
P2_1	Digital I/O	Port 2.1			
P2_2	Digital I/O	Port 2.2			

Remark: Ver1.2: June27,2012 change VDD or P1_7 for module PIN define

Module Size

