CLAIMS

1	1. /	A method of	modulating a	carrier	signal	generated b	y a non-	linear o	lynamical	system
---	------	-------------	--------------	---------	--------	-------------	----------	----------	-----------	--------

- 2 by embedding an information signal into said carrier signal, said method comprises:
- 3 multiplying the said information signal by a constant to produce a first signal
- 4 value;
- adding the first signal value and the nominal rate of evolution of the dynamical
- 6 system to generate a second signal value;
- 7 providing a feedback path that includes that a first and second path, wherein input
- 8 to said first path is the integration of a multiplication of said second signal and output of
- 9 said second path, and the input to said second path is output of said first path, such that
- said second path is a first function that defines said non-linear dynamical system; and
- providing said output of said first path as input to a second function that produces
- 12 a transmitted signal, wherein said a non-linear dynamical system includes an attractor
- that is either periodic, almost periodic, quasi-periodic, or chaotic.
- 1 2. The method of claim 1, wherein said non-linear system has a known exponentially
- 2 convergent observer.
- 1 3. The method of claim 2, wherein said first function has a periodic attractor.
- 1 4. The method of claim 2, wherein said first function has quasi-periodic attractor.
- 5. The method of claim 2, wherein said first function has a chaotic attractor.
- 6. A system for demodulating a transmitted signal, said system comprising:

2	an observer component that receives as input a transmitted signal and a rate
3	estimate and produces an estimate of a state of a demodulator, such that said observer is
4	exponentially convergent to the transmitter state when there is no modulation present in a
5	modulator associated with said transmitted signal; and
6	a rate estimator that receives as input the transmitted signal and estimate of a state
7	of said demodulator to produce an estimate of the modulating signal, wherein
8	said observer component and rate estimator are interconnected in a feedback
9	arrangement, such that said arrangement recovers an information signal associated with
10	said transmitted signal.
1	7. A method of demodulating a transmitted signal, said method comprising:
2	receiving as input a transmitted signal and a rate estimate;
3	producing an estimate of a state of a demodulator; and
4	utilizing said transmitted signal and said estimate of said state of said demodulator
5	to produce said rate estimate, such that an information signal associated with said
6	transmitted is recovered.
1	8. A method of modulating data comprising:
2	providing a non-linear dynamical system with an attractor that is either periodic,
3	almost periodic, quasi-periodic, or chaotic;
4	modulating the rate of the evolution of the state on the attractor; and
5	transmitting a scalar function of state variables of the modulated non-linear
6	dynamical system.

9. A system for demodulating a transmitted signal, said system comprising:

an observer component that receives as input a transmitted signal and a rate						
estimate and produces an estimate of a state of a demodulator, such that said observer						
component converges exponentially when no modulating signal is present in a modulator						
associated with said transmitted signal,						
a rate estimator that receives as input the transmitted signal and estimate of said						
state of said demodulator to produce said rate estimate, and						
a low-pass filter that receives said rate estimate and removes spectral energy that						
lies in a predefined frequency range from said rate estimate, wherein						
said observer component and rate estimator are interconnected in a feedback						
arrangement, wherein said low pass filter is interconnected between said observer						
component and rate estimator, such that said arrangement recovers an information signal						
associated with said transmitted signal						