3.8 Computational Formulas for All Markov Chains

Name	Notation	Formula	Matrix Form
Walk Probability	$p_{j_0j_1j_2,\dots,j_n}$	$p_{j_0j_1}p_{j_1j_2}p_{j_2j_3},\dots,p_{j_{n-1}j_n}$	none
Transition Probability	$p_{ij}^{(n)} \\$	$p_{ij}^{(n)} = \sum_k p_{ik}^{(n-1)} p_{kj}$	$\boldsymbol{P}^n = \boldsymbol{P}^{n-1}\boldsymbol{P}$
State Probability	$p_{j}^{\left(n\right) }$	$p_j^{(n)} = \sum_i p_i^{(0)} p_{ij}^{(n)}$	$\boldsymbol{p}^{(n)} = \boldsymbol{p}^{(0)}\boldsymbol{P}^{(n)}$
Expected Number of Visits in n Epochs	$e_{ij}^{(n)} \\$	$\begin{split} e_{ij}^{(n)} &= \sum_{k=1}^{n} p_{ij}^{(k)} & \text{ for } i \neq 0 \\ e_{ii}^{(n)} &= 1 + \sum_{k=1}^{n} p_{ii}^{(k)} \end{split}$	$\boldsymbol{E}^{(n)} = \sum_{k=0}^{n} \boldsymbol{P}^{(n)}$
First Passage (or Return) Probability	$f_{ij}^{(n)}$	$f_{ij}^{(n)} = p_{ij}^{(n)} - \sum_{k=1}^{n-1} f_{ij}^{(k)} p_{jj}^{(n-k)}$	none

3.13 Computational Formulas for Ergodic Markov Chains

Name	Notation	Formula	Matrix Form
Steady-State Probability	$\pi_{\rm j}$	$\pi_j = \sum_k \pi_k p_{kj}$ $\sum_k \pi_j = 1$	$egin{aligned} \pi &= \pi P \ \pi 1 &= 1 \end{aligned}$
Mean First Passage Time	m_{ij}	$\sum_{j} \pi_{j} = 1$ $m_{ij} = 1 + \sum_{k \neq j} p_{ik} m_{kj}$	$m_{\rm j}=(I-P_{\rm j}^*)1$
Mean Recurrence Time	m_{ii}	$m_{ii} = \frac{1}{\pi_i}$	none

3.20 Computational Formulas for Terminating Processes

Name	Notation	n Formula	Matrix Form	
Expected Number of Visits (to transient state j over the full duration of the process)	e _{ij}	$\begin{aligned} e_{ii} &= \sum_{k=1}^{K} p_{ik} e_{kj} \\ e_{ij} &= 1 + \sum_{k=1}^{K} p_{ik} e_{ki} \end{aligned}$	$\mathbf{E} = (\mathbf{I} - \mathbf{Q})^{-1}$	
Expected Duration	$\mathbf{d}_{\mathbf{i}}$	$d_i = \underset{k=1}{\overset{K}{\sum}} e_{ik}$	Sum across ith row of E	
Absorption Probability	a_{ij}	$a_{ij} = p_{ij} + \displaystyle{\sum_{k=1}^K} p_{ik} a_{kj}$	$\mathbf{A} = \mathbf{E}\mathbf{R}$	
Hit Probability	$f_{ij} \\$	$f_{ij} = p_{ij} + \sum_{\text{transient } k \neq j} p_{ik} f_{kj}$	$\boldsymbol{f}_j = \left(\boldsymbol{I} - \boldsymbol{Q}_j^*\right)^{-1} \boldsymbol{q}_j$	
Conditional Mean First Passage Time to an Absorbing State j	$m_{ij}^{\left(c\right)}$	$a_{ij}m_{ij}^{(c)} = a_{ij} + \sum_{k=1}^{K} p_{ik} a_{kj} m_{kj}^{(c)}$	none	

■ TABLE 5.1 Continuous Time Markov Results

Name	Notation	Type	Formula	Matrix Form
Transition probability function	$p_{ij}(t)$	Any	$\frac{d}{dt}p_{ij}(t) = \sum_k p_{ik}(t)\lambda_{kj}$	$\frac{d}{dt}\mathbf{P}(t)=\mathbf{P}(t)\boldsymbol{\Lambda}$
Absolute probability	$p_j(t)$	Any	$p_j(t) = \sum_i p_i(0)p_{ij}(t)$	$\boldsymbol{p}(t) = \boldsymbol{p}(0)\boldsymbol{P}(t)$
Mean sojourn time	h_i	Any	$h_i = 1/\Biggl(\sum_{k \neq i} \lambda_{ik}\Biggr)$	none
Steady-state probability	π_{j}	Ergodic	$\sum_k \pi_k \lambda_{kj} = 0, ext{for} j = 1, 2, \ldots$ $\sum_j \pi_j = 1$	$0 = \pi \Lambda$ $\pi 1 = 1$
Mean first passage time $(i \! \neq \! j)$	m_{ij}	Ergodic	$0 = 1 + \sum_{k \neq j} \lambda_{ik} m_{kj}$	$\boldsymbol{m}_j = (-\boldsymbol{P}_{jj}^*)^{-1}\boldsymbol{1}$
Mean recurrence time	m_{ii}	Ergodic	$m_{ii} = h_i \sum_{j \neq i} \lambda_{ij} (1 + m_{ji})$	none
Mean time accumulated in a transient state j	\mathbf{e}_{ij}	Terminating	$egin{aligned} 0 &= \sum_{Transk} \lambda_{ik} e_{kj} \ for i eq j \ 0 &= 1 + \sum_{Transk} \lambda_{ik} e_{ki} \end{aligned}$	$\mathbf{E} = (-\mathbf{Q})^{-1}$
Expected duration	d_{i}	Terminating	$d_{i} = \sum_{Transj}^{Transk} e_{ij}$	$\mathbf{d} = \mathbf{E} 1$
Absorption probability	\mathbf{a}_{ij}	Terminating	$0 = \lambda_{ij} + \sum_{Transk} \lambda_{ik} a_{kj}$	$\mathbf{A} = (-\mathbf{Q})^{-1}\mathbf{R}$
Hit probability	f_{ij}	Terminating	$egin{aligned} 0 &= \lambda_{ij} + \sum_{\mathrm{Trans} k eq j} \lambda_{ik} f_{kj} \ 0 &= \sum_{\mathrm{Trans} k eq j} \lambda_{ik} f_{ki} \end{aligned}$	none
Conditional mean first passage time	$m_{ij}^{\left(c\right)}$	Terminating	$0 = a_{ij} + \sum_{Transk} \lambda_{ik} a_{kj} m_{kj}^{(c)}$	none