Hints:

How to calculate 1 second delay of a system?

- Lets the clock frequency of your system = C MHz
- Delay count= C/desired time duration (for your case, it is 1sec) = C/1= X clock cycles, which means you have to wait X clock cycles for a 1 sec delay in your program.

Problem 6:

- Declare two registers as two counters C1 and C2 for 1's and 10's place tracking
- Initially both are zero.
- Increment 1's place counter
- Chk whether 1's place reach '10' or not
 - Yes: then increment 10's place counter and handle the 1's place counter accordingly
 - No: Chk whether 10's place reach '10' or not
 - No: introduce delay and display
 - Yes: reset both the counters to 0 means start from beginning "00".

Problem 4 and 8:

- 4 bytes= 32 bits
 - **Problem 4:** d_array DCD 0xaabbccdd, 0xeeffgghh,; Data array
 - Problem 8: d_array DCD 0xaabbcc, 0xeeffgg,; Data array
- Memory arrangement:

- For byte operation, use LDRB, then you can handle all the bytes separately.
- Separate the bytes using LDRB and also with register indirect addressing mode to traverse through individual bytes [you need to use pre-index and post-index addressing mode] where the incremental value is 1.
- Reviewing the Addressing Modes of Cortex M4:
- Memory Operand: Register-Indexed Addressing
 - A register contains the memory address of (points to) the data
 - Address equivalent to an index into the array of memory bytes

Example

STR r1, [r0, #4]! ;pre-increment

; r0 = 0x20008000, r1=0x76543210

r0 before store

0x20008000

r0 after store

0x20008004

Memory Address	Memory Data
0x20008007	0x76
0x20008006	0x54
0x20008005	0x32
0x20008004	0x10
0x20008003	0×00
0x20008002	0×00
0x20008001	0×00
0x20008000	0×00

Example

STR r1, [r0], #4 ;post-increment

; r0 = 0x20008000, r1=0x76543210

r0 before store

0x20008000

r0 after store

0x20008004

Memory Address	Memory Data
0x20008007	0x00
0x20008006	0×00
0x20008005	0x00
0x20008004	0×00
0x20008003	0x76
0x20008002	0x54
0x20008001	0x32
0x20008000	0x10

Load a Byte, Half-word, Word

Load a Byte


```
DR r1, [r0]

0x87 0x65 0xE3 0xE1
```