Homework0915 Due date: 20220921, 10 P.M.

1-1 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	B	O	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}					
<i>b</i> .	n^k	c^n					
<i>c</i> .	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	lg(n!)	$\lg(n^n)$					_

1-2 Ordering by asymptotic growth rates

a. Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \ldots, g_{30} of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{29} = \Omega(g_{30})$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.

$$\lg(\lg^* n) \quad 2^{\lg^* n} \quad (\sqrt{2})^{\lg n} \quad n^2 \quad n! \quad (\lg n)! \\
 (\frac{3}{2})^n \quad n^3 \quad \lg^2 n \quad \lg(n!) \quad 2^{2^n} \quad n^{1/\lg n} \\
 \ln \ln n \quad \lg^* n \quad n \cdot 2^n \quad n^{\lg \lg n} \quad \ln n \quad 1 \\
 2^{\lg n} \quad (\lg n)^{\lg n} \quad e^n \quad 4^{\lg n} \quad (n+1)! \quad \sqrt{\lg n} \\
 \lg^* (\lg n) \quad 2^{\sqrt{2 \lg n}} \quad n \quad 2^n \quad n \lg n \quad 2^{2^{n+1}}$$

1-3 Asymptotic notation properties

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

- a. f(n) = O(g(n)) implies g(n) = O(f(n)).
- **b.** $f(n) + g(n) = \Theta(\min(f(n), g(n))).$
- c. f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.
- **d.** f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$.

1-4 Consider sorting n numbers stored in array A by first finding the largest element of A and exchanging it with the element in A[n]. Then find the second largest element of A, and exchange it with A[n-1]. Continue in this manner for all n elements of A. Write pseudocode for this algorithm, and answer the following questions: What loop invariant does this algorithm maintain? Give the best-case and worst-case running times of selection sort in asymptotic notation.