1.3 CONTROL DE PROCESOS

CONTROL DE PROCESOS

El diseño de un controlador:

- ⇒ seleccionar un controlador
- ⇒ ajustar sus parámetros

⇒ SINTONÍA (calibración)

PASOS

- Qué tipo de sistema se desea controlar
- Obtener un modelo matemático: función de transferencia (relación de Laplace entre la salida y la entrada) o el modelo de espacio de estado.
- Decidir qué tipo de control (según medidas disponibles, especificaciones, etc)
- Diseñar el controlador
- Programar el algoritmo y evaluarlo en el modelo de la planta
- Implementarlo (hardware / software) y evaluarlo en el sistema real

CONTROL DE PROCESOS

Especificaciones

- ⇒ cómo quiero que sea la respuesta
 - tiempo de respuesta, sobreelongación, etc.

¿LAZO ABIERTO O LAZO CERRADO?

 El termostato de un calentador es un ejemplo de control on-off

 Un sensor de temperatura enciende el calentador si la temperatura baja del set-point y lo apaga cuando la

No realimentación, no veo cómo evoluciona (y no puedo hacer nada más que encender o apagar)

CONTROL ON-OFF

- Aumenta o disminuye la señal de calor a su máximo/mínimo valor (1/0)
- El control on-off no funciona bien para todo tipo de sistemas
 - □ Si el termostato espera a que se alcance la temperatura deseada para apagarse, puede producir sobreelongación.
 - Esos picos y oscilaciones pueden no ser aceptables por otros sistemas (ascensor)

¿LAZO ABIERTO O LAZO CERRADO?

REALIMENTACIÓN

- Medida de la diferencia entre la consigna (valor deseado) y el valor actual
 - Error

Ejemplo 1: control de velocidad de crucero en un automóvil

- La velocidad es la *variable medida* (salida del sistema).
- El operador (conductor) ajusta la velocidad de consigna o referencia (deseada) (100 km/h)
- El controlador mide la velocidad (sensor) y compara la velocidad medida con el punto de consigna (error)
- El controlador corrige cualquier desviación ajustando la posición de la válvula de combustible, que es la variable manipulada (señal de control)

Ejemplo 2: control del nivel de un depósito

- El nivel del depósito es la variable medida (salida del sistema)
- El operador ajusta el punto de consigna o referencia al nivel deseado
- El controlador observa el sensor de nivel y compara el nivel medido con el punto de consigna (error)
- El controlador determina si es necesario abrir más o menos la válvula (variable manipulada) para mantener constante el nivel (señal de control)

SEÑALES EN UN SISTEMA DE CONTROL

- Referencia o consigna: r(t)
- Salida del sistema: y(t)

Error: e(t) = r(t)-y(t)

Acción de control: u(t)

$$u(t) = f(e(t))$$

CONTROL CLÁSICO CONTROL INTELIGENTE

CONTROL DE PROCESOS

- En la mayoría de los procesos industriales, controladores convencionales con resultados aceptables
- La aplicación de técnicas de Inteligencia Artificial:
 - ampliar el rango de aplicación de los controladores convencionales
 - facilitar el diseño de controladores no lineales que incorporan conocimiento de los operadores
 - dotarles de funcionalidades avanzadas (adaptación, auto-ajuste, ...)

CONTROLADOR CONVENCIONAL

- Robustez, simplicidad, lineal
- Eficiente (problemas simples)
- ✓ Facilidades de funcionamiento y de ajuste
- Sencillo, rápido, fácil de implementar
- Sintonía bien establecida (no trivial)
- ✓ Estructura conocida y aceptada en el mundo industrial (85-90 %, desde 1930)
 - ✓ los operarios de planta: conocimiento de sus parámetros y sintonía
 - √ cómodos trabajando en ese entorno (experiencia)

CONTROL CONVENCIONAL:

u(t): señal de control o variable manipulada

e(t) = r(t) - y(t): señal de error o desviación entre la señal de referencia o de consigna r(t) y la salida del proceso, que es la variable medida y(t)

PID: 3 acciones de control

- Proporcional (P)
- Integral (I)
- Derivativa (D)

$$u(t) = Kp.e(t) + \frac{Kp}{Ti} \int_0^t e(\tau) d\tau + Kp.Td. \frac{de(t)}{dt}$$

$$u(t) = Kp.e(t) + \frac{Kp}{Ti} \int_0^t e(\tau)d\tau + Kp.Td.\frac{de(t)}{dt}$$

 \spadesuit Acción de control proporcional (u_p) : a la desviación de la salida del proceso respecto al punto de consigna (error)

$$u_p(t) = Kp.e(t)$$

✓ Ganancia proporcional Kp

Realimentación

Rechazo de perturbaciones

$$u(t) = Kp.e(t) + \frac{Kp}{Ti} \int_0^t e(\tau)d\tau + Kp.Td. \frac{de(t)}{dt}$$

$$u_{i}(t) = \frac{Kp}{Ti} \cdot \int_{0}^{t} e(\tau) \cdot d\tau$$

✓ Ganancia integral Ki = Kp/Ti

Elimina el error estacionario

$$u(t) = Kp.e(t) + \frac{Kp}{Ti} \int_0^t e(\tau)d\tau + Kp.Td.\frac{de(t)}{dt}$$

 \spadesuit Acción de control derivativa (u_d): proporcional a la velocidad del error. Predice los cambios

$$u_d(t) = Kp.Td.\frac{\mathrm{d}e(t)}{\mathrm{d}t}$$

✓ Ganancia derivativa Kd = Kp.Td

Anticipa

ACCIONES DEL PID

CONTROLADOR P, PI, PD, PID

PID
$$u(t) = Kp.\left[e(t) + \frac{1}{Ti} \int_0^t e(\tau) d\tau + Td. \frac{de(t)}{dt}\right]$$

$$\mathbf{P} \qquad u(t) = Kp.e(t) \qquad \underbrace{\mathbf{e(t)}}_{\mathbf{Kp}} \mathbf{u(t)}$$

PI
$$u(t) = Kp \left[e(t) + \frac{1}{Ti} \int_0^t e(\tau) d\tau \right]$$

PD
$$u(t) = Kp \left[e(t) + +Td \cdot \frac{de(t)}{dt} \right]$$

¿P, PI, PD o PID?

SINTONÍA

Seleccionar un controlador es importante

Sintonizar el controlador es importante

MÉTODOS DE SINTONÍA

- Una vez elegido el tipo de controlador hay que ajustar sus parámetros (sintonía) para que cumpla unas determinadas especificaciones (características de la respuesta)
 - Métodos directos: se basan en la misma respuesta del sistema
 - Métodos indirectos: se basan en un modelo del sistema

METODOS DIRECTOS: Sintonía cualitativa

- Simples prescripciones sobre qué parámetros del PID cambiar y cómo (aumentar o disminuir), para conseguir determinadas especificaciones
 - conocimiento de sus efectos sobre el sistema en lazo cerrado
- Conocimiento empírico
 - tablas de sintonía (respuesta del sistema para diferentes valores de los parámetros) y reglas heurísticas

PARÁMETROS DE AJUSTE DEL PID

Ganancia proporcional Kp

- Ganancia integral: Ki = Kp/Ti
 - Constante de tiempo integral (Ti): tiempo requerido para que la acción integral contribuya a la salida u(t) en una cantidad igual a la acción proporcional
- Ganancia derivativa: Kd = Kp.Td
 - Constante de tiempo derivativa (Td): tiempo requerido para que la acción derivativa adelante a la acción proporcional

VARIACIÓN CUALITATIVA Kp

- Aumenta la velocidad de respuesta
 - □ Sistema más rápido
 - Menor tiempo de subida
 - ☐ Mejora el transitorio
- Disminuye el error en régimen permanente
- Menos estable
 - Más sensible a perturbaciones

VARIACIÓN CUALITATIVA Ki

- Elimina el error en estado estacionario
- Aumenta la inestabilidad
- Alarga el transitorio
- Aumenta un poco la velocidad del sistema
- Señal de error ampliada (verde), para apreciar cómo se reduce el error a medida que aumenta la acción integral.

VARIACIÓN CUALITATIVA Kd

- Mejora la estabilidad
 - □ Permite valores más elevados de Kp
- Disminuye un poco la velocidad del sistema
 - ☐ Más lento
- El error en régimen permanente permanece igual
- Amplifica las señales que varían rápidamente
 - □ Ruido de alta frecuencia

SINTONÍA CUALITATIVA

- ILCC	K _p aumenta	T _i disminuye	T _d aumenta
Estabilidad	Se reduce	Disminuye	Aumenta
Velocidad	Aumenta	Aumenta	Aumenta
Error estacionario	No eliminado	Eliminado	No eliminado
Área de error	Se reduce	Disminuye hasta cierto punto	Se reduce
Perturbación control	Aumenta bruscamente	Aumenta gradualmente	Aumenta muy bruscamente
Frecuencia lazo	No afecta hasta cierto punto	Disminuye	Aumenta

MÉTODOS INDIRECTOS: Sintonía cuantitativa

- Calcula las ganancias del controlador en función de los parámetros de un modelo
- Estimación de ciertas características del proceso (en lazo abierto o en lazo cerrado, de la respuesta temporal o frecuencial)
- Fórmulas de sintonía (relaciones empíricas)
 - Valores aproximados para los parámetros del controlador (ajuste fino, cualitativo)

MÉTODO DE ZIEGLER-NICHOLS (LAZO ABIERTO)

Basado en la respuesta temporal

	Кр	Ti	Td
P	$Tp/(K.T_o)$		
PI	$0.9 \mathrm{Tp/(K.T_o)}$	3.33T _o	
PID	1.2Tp/(K.T _o)	2T _o	0.5T _o

MÉTODO DE ZIEGLER-NICHOLS (LAZO CERRADO)

OTRAS TABLAS Z-N

	K _P	K _I	Κ _D
P	T/L	0	0
PI	0.9 T/L	0.3/L	0
PID	1.2 T/L	0.5/L	0.5L

	K _P	K _I	K _D
Р	0.5 K _c	0	0
PI	0.45K _c	1.2/P _c	0
PID	0.6K _c	2/P _c	0.125P _c

ESTRATEGIAS DE CONTROL

- Autosintonía: sintonía automática del controlador a petición del usuario
- Ganancia Programada: los parámetros del controlador cambian dependiendo de variables auxiliares medidas, con las que se relacionan las variaciones en la respuesta
- Control Adaptativo: los parámetros del controlador están continuamente ajustándose para acomodarse a los cambios en la dinámica del proceso y a las perturbaciones

Estrategias de control

GANANCIA PROGRAMADA

CONTROL EN CASCADA

CONTROL ADAPTATIVO

