Cryptography: The Survival Kit

Theorems	2
Handy links	5
Test 1	6
Problems for midterm	6
Problem template	6
Problem #n	6
Shit just got real	7
Problem #1	7
Problem #2	8
Problem #3	9
Problem #4	10
Problem #5	11
Problem #6	12
Problem #7	13
Problem #8	14
Problem #9	15
Problem #10	16
Problem #11	17
Problem #12	18
Problem #13	19
Problem #14	20
Problem #15	21
Problem #16	22
Problem #17	23
Problem #18	24
Problem #19	25
Problem #20	26
Problem #21	27
Problem #22 / 30 / 31	28
Problem #23	29
Problem #24	30
Problem #26	31

Few words about the exam:

- Calculator are allowed
- First test will be on 17 November
- Notes aren't allowed

• 2 hours, 10 questions

Theorems

List of all theorems seen during lessons. During exercises, we will see which theorems are the most important. Please, color them as follows :

- Unknown yet
- Not important
- Quite important
- Very important

[If you find theorem names, please put them...]

• Theorem of uniqueness of division (#1)

IF $a, b \in Z$ and $|b| \neq 0$

THEN there is a unique $g \in Z$ and unique $0 \le r \le |b|$; $r \in Z$ that:

$$a = gb + r$$

• Theorem (#2)

IF $a, b, c, d \in Z$ and $n \in N$, $n \ge 2$ AND $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$ THEN $a + c \equiv b + d \pmod{n}$ AND $a.c \equiv b.d \pmod{n}$

• Theorem "of the definition of inverse" (#3)

IF $a \in \mathbb{Z}n$ has an inverse and there is $b \in \mathbb{Z}n$ that :

$$a \otimes_n b = b \otimes_n a = 1$$

THEN we say that b is an inverse of a and we write $b = a^{-1}$

• Theorem (#4)

IF $(Zn, \oplus n, \otimes n)$ $n \in N$, $n \ge 2$ THEN $a \in Zn$ has an inverse IFF GCD(a, n) = 1

Euler's Function

 $\varphi(n) = number of element that verify <math>GCD(k, n) = 1$ (where $k \in \{0, n-1\}$)

Properties:

• Theorem (#5)

IF $a, b \in N$ and GCD(a, b) = 1 (aka number are relatively prime) THEN $\varphi(a * b) = \varphi(a) * \varphi(b)$

```
• Theorem (#6)
```

IF $n \in \mathbb{N}$, $n \ge 2$, then there are unique primes $p1 \le p2 \le ... \le pr$ and unique $k1, k2, ..., kr \in \mathbb{N} \ U \ \{0\}$ THAT $n = p1^{k1} * p2^{k2} * ... * pr^{kr}$ (It's called the factorisation of n) For n we have : $\varphi(n) = (p1 - 1) * p1^{k-1} * (p2 - 1) * p2^{k2-1} ... (pr - 1) * pr^{kr-1}$

• The Euler's theorem (#7)

IF $a \in Z$; $n \in N$, $n \ge 2$, GCD(a, n) = 1 $THEN \ a^{\varphi(n)} \equiv 1 \pmod{n} \ (aka : a^{\varphi(n)} \pmod{n} = 1)$

• Fermat's theorem (#8)

IF $a \in N$; p is a prime (so GCD(a, p) = 1) $THEN \ a^{p-1} \equiv 1 \pmod{p}$ $(OR \ a^{p-1} - 1 \equiv 0 \pmod{p})$

Fact (#1)

IF $a \in Z$; $n, k \in Z$; $n \ge 2$; GCD(a, n) = 1 $THEN \ a^k \equiv a^{k(mod \ \varphi(n))} \ (mod \ n)$

• Chinese Remainder Theorem (CRT) (#9)

THEN for every a1, a2, ..., ar \in Z a set of congruencies : $X \equiv a1 \pmod{m1}$ $X \equiv a2 \pmod{m2}$... $X \equiv ar \pmod{mr}$ has exactly one solution X0 in a set $< 0, M-1> \pmod{m} = m1, m2, ..., mr$

IF $m1, m2, ..., mr \in \mathbb{N} \ge 2$ AND for every $i \ne j < 1, r >$, GCD(mi, mj) = 1 (aka they are all relatively prime)

and there are constants $c1, c2, ..., cr \in Z$ and $X0 = (c1a1 + c2a2 + ... + crar) \pmod{n}$ and all solutions of the set of congruencies are given by the formula:

 $Xk = X0 + k * M; k \in \mathbb{Z}$

See handy links section to see how to apply it.

• Theorem (#10)

IF $m1, m2, ..., mr \in N$, $mi \geq 2$, $AND \ m1, m2, ..., mr$ are relatively prime THEN $a \equiv b \pmod{m1}$ $a \equiv b \pmod{m2}$... $a \equiv b \pmod{mr}$ $IFF \ a \equiv b \pmod{m1, m2, ..., mr}$

• Theorem (#11)

IF $a \in \mathbb{Z}$ then a^{-1} (inverse) exists IFF GCD(a, n) = 1

Definition of an inverse

$$a^{\varphi(n)-1}(mod n) = a^{-1}$$

$$a^{\varphi(n)-1} \equiv a^{-1}(mod n)$$

$$a^{\varphi(n)} \equiv 1(mod n)$$

• Theorem (#12)

IF $a, b \in Z$ then there are $x, y \in Z$ such as: xa + yb = GCD(a, b)(Below we take b = n) xa + yn = GCD(a, n) = 1 xa + yn = 1 $xa \pmod{n} = 1$ $xa \pmod{n} \otimes_n a = 1$ $xa \pmod{n} = a^{-1}$ $a \in G$; $a^{\#G} = 1$; $a^{\#G-1} = a^{-1}$

Lagrange's theorem (group theory) (#13)

IF G is a finite group and H is a subgroup of G THEN #H / #G

This means that the number of element of H divide the number of element of G.

• Theorem (#14)

For every element a of a finite group (Gi) that have: $a^{\#G} = 1$ THEN: $a^{\#G} * a^{-1} = a^{-1}$ AND $a^{\#G-1} = a^{-1}$

- Also need to know...
 - Group theory
 - o Galois Group
 - o Cyclic Group
 - Discrete logarithm
 - o RSA cipher
 - 0 ...
- [Complete me]

Handy links

- Handbook of Applied Cryptography (Course's book reference)
 http://cacr.uwaterloo.ca/hac/
- The Chinese Remainder Theorem (CRT) explained (EZ mode) : https://www.youtube.com/watch?v=ru7mWZJIRQg&feature=youtu.be
- Finite fields explained https://www.youtube.com/watch?v=z9bTzjy4SCg
- First 1000 prime numbers https://primes.utm.edu/lists/small/1000.txt
- Euler function online (good to verify results) http://www.javascripter.net/math/calculators/eulertotientfunction.htm
- Calcul inverse of a number online https://planetcalc.com/3311/
- Wolfram Alpha https://www.wolframalpha.com
 - [Complete me]

Problems for midterm

Here we gather all solutions for exercise in pdf: "ECRYP PROBLEMS FOR MIDTERM TEST #1.pdf" which you can find in courses materials.

Problem template

Just copy paste it so we get the same format every time...

Problem #n

[The problem text]

Things used to solve it

- Theorem #n
- ...

Approach

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Results

To avoid spoil, please put background in black for the result as follows: This is an answer. (Just select the text to see it). If you can, put some intermediate calculation in your answer...

- [Your name], [Another name which found the same result]: The answer is 42
- [Name from a guy who find an other response]: No, it's 41

- Here we can question ourselves about the answer of life and stuff...
 - Here is the response (which is obviously 42)

Test 1

Shit just got real

Problem #1

Alice and Bob use a binary Vernam's cryptosystem with a secret key k = k1, k2...kr where $k \in \{0,1\}$. Assume we know a plain text message M = m1, m2...mr, where $m \in \{0,1\}$ and a corresponding cryptogram C = c1, c2...cr $c \in \{0,1\}$. Compute the secret key k1, k2...kr from M and C.

Things used to solve it

- Wikipedia
- Good to know that, A xor A = 0 and A xor 0 = A

Approach

Definition of Vernam cipher is as follows:

Plaintext ⊕ Key = Ciphertext

Ciphertext ⊕ Key = Plaintext

Where \oplus is a XOR.

(Thanks Wikipedia)

Results

- Anthony: Solve C ⊕ K? = M, you can alway guess ki with ci and mi (ex: if ci=1 and mi=0,then ki=1 etc...) (Andreas's answer is better explained...)
- Andreas : $C \oplus K$? = M,
 - \circ C \oplus C \oplus K = C \oplus M
 - \circ 0 \oplus K = C \oplus M
 - \circ K = C \oplus M

Questions

Compute inverses of 7, 8, 9

- a) in the multiplicative group Z*11
- b) in the multiplicative group Z*13.

Things used to solve it

- Definition of an inverse
- Theorem (#11)

Approach

You can use the theorem 11 to prove that an inverse exists for your number.

Then just compute it with the definition of an inverse.

Results

- a) Anthony, Andreas:

 - o 11 is prime so $\varphi(11) = 10$ o $Inv(7) = 7^{\varphi(11)-1} (mod \ 11) = 7^9 (mod \ 11) = 8$ o $Inv(8) = 8^{\varphi(11)-1} (mod \ 11) = 8^9 (mod \ 11) = 7$

 - o $Inv(9) = 9^{\varphi(11)-1} \pmod{11} = 9^9 \pmod{11} = 5$
- b) Anthony, Andreas:
 - \circ Inv(7) = 2
 - \circ Inv(8) = 5
 - \circ Inv(9) = 3

Questions

Compute inverses of 4, 5, 6

- a) in the multiplicative group Z*13
- b) in the multiplicative group Z*15
- c) List all elements of Z*13 and Z*15

Things used to solve it

- Definition of an inverse
- Theorem (#11)

Approach

You can use the theorem 11 to prove that an inverse exists for your number. Then just compute it with the definition of an inverse.

Results

- a) Anthony, Andreas:
 - \circ 13 is prime so $\varphi(13) = 12$

 - o $Inv(4) = 4^{\varphi(13)-1} \pmod{13} = 4^{11} \pmod{13} = 10$ o $Inv(5) = 5^{\varphi(13)-1} \pmod{13} = 5^{11} \pmod{13} = 8$
 - o $Inv(6) = 6^{\varphi(13)-1} \pmod{13} = 6^{11} \pmod{13} = 11$
- b) Anthony, Andreas:
 - !! 15 is not a prime !!
 - \circ Inv(4) = 4
 - \circ GCD(15,5)! = 1, can't compute
 - \circ GCD(15,6)! = 1, can't compute
- c) Anthony:
 - o Z*13={1,2,..,12}
 - o Z*15={1,2,..,14}

- - Doesn't Z*15 only contains the invertible elements of Z15? So the answer on c should be : $Z*13=\{1,2,...,12\}$ and $Z*15=\{1,2,4,7,8,11,13\}$?
 - o Don't know man, for me it's just : $Z*15 = Z15\setminus\{0\}$
 - Kutay: http://mathworld.wolfram.com/ModuloMultiplicationGroup.html -SOLVED-

Compute all generators

- 1) of the multiplicative group Z*17
- 2) of the multiplicative group Z*13.

Things used to solve it

- Definition of generator
- Example of lesson

Approach

https://docs.google.com/spreadsheets/d/1Dkf5PV9tiAxwasQYSA-Ad-zTp66ksoUGzsZHR5FgOEE/edit#gid=0

Detail example for Z*17

Results

• 1) Anthony, Andreas: 3,10,5,11,14,7,12,6

• 2) Anthony: 2,6,7,11

Questions

Compute log5(8) in the multiplicative group Z*13 and in the the multiplicative group Z*19.

Things used to solve it

• Logarithmic definition in lesson

Approach

 $log_5(8) = ? = 5^? mod n = 8$ (With n, number of Z*n) Brute force seems to be the only way...

Results

- Z*13 Anthony, Andreas: 3
- Hannah: Z*13: 3,7,11? There is a loop,from 5^1(mod 13) to 5^4(mod 13).
 The same with 5^x(mod 19),x from 1 to 9,so there isn't x,making 5^x (mod 19) = 8
- Z*19 Anthony : No solution ?
- Kutay & Miguel: As Hannah said there is one loop for each group, so final answer would be:

For Group Z13 \Rightarrow X=3+4n , n=0,1,2,3,4.....

For Group Z19 ⇒ X doesn't exist. Because there is no 8 in the

loop.(5,6,11,17,9,7,16,4,1,5,6....)

Questions

Give an example proving that the assumption in RSA definition: "n is a square-free number" is important

Things used to solve it

• RSA cipher system

Approach

lulz

Results

- Anthony if "n" is NOT a square free number, then
- $\sqrt{n} = p = q$ So we can calculate $\varphi(n) = (p-1)(q-1)$ and get "d" (the private key) by calculate the inverse of "e" (the public key) modulo $\varphi(n)$.

Questions

Assume we have a RSA cryptosystem with n=p*q (where p and q are secret different primes) and e is a public key. Prove that factorization of n breaks the RSA cryptosystem.

Things used to solve it

- RSA cipher system
- Theorem #6

Approach

lulz

Results

• Anthony: If "n" can be factorize, we can easly get $\varphi(n)$ (see theorem #6) and then get "d" (the private key) by calculate the inverse of "e" (the public key) modulo $\varphi(n)$.

Questions

Assume we deal with the RSA cipher with n=p*q and RSA has two different public keys e1 and e2 which are relatively prime (GCD(e1,e2)=1). Prove that if we have two cryptogrammes c1 and c2 of the unknown plain text message m (in Zn).

c1 (cryptogramme obtained with e1) and

c2 (cryptogramme obtained with e2)

then we can easily compute the plain text message m (in Zn) from c1 and c2.

Things used to solve it

- RSA cipher system
- Theorem #2
- Theorem #12

Approach

lulz

Results

- Anthony (copied from Andreas):
 - We know that : GCD(e1,e2)=1 so based on theorem #12 : e1 * a + e2 * b = 1
 - By definition of the RSA system : $c1 \equiv m^{e1} \pmod{n}$; $c2 \equiv m^{e2} \pmod{n}$
 - So: $c1^a \equiv (m^{e1})^a \pmod{n}$; $c2^b \equiv (m^{e2})^b \pmod{n}$
 - With theorem #2 we can write :
 - $c1^{a} * c2^{b} \equiv (m^{e1})^{a} * (m^{e2})^{b} (mod n)$ $c1^{a} * c2^{b} \equiv (m^{e1*a+e2*b}) (mod n)$

 - With the first point we can write :
 - \circ $c1^a * c2^b \equiv m \pmod{n}$
 - We then need to calculate a and b, we can do that using the Euler Ext. Algorithm.
 - (Thanks Andreas!)

Add the following polynomials (bytes) in the quotient ring : $Z2[x]/(x^8+x^4+x^3+x+1)=GF(2^8)$

- a) '57'+'02'
- b) '03'+'03'
- c) 'FF'+'0F'

Things used to solve it

Xor

Approach

Take those number as binary number and xor them (Addition in Z2 is equal to xoring).

Results

• a) Anthony: 0x55 (with hex notation), 59 (with decimal notation)

b) Anthony: 0x00c) Anthony: 0xF0

Questions

• - Miguel&Kutay: We are not sure if the decimal notation is okay on question A. Shouldn't it be '55' = 85?

Multiply the following polynomials (bytes) in the quotient ring : $Z2[x]/(x^8+x^4+x^3+x+1)=GF(2^8)$ a)'57'*'02'

- b) '57'*'04'
- c) '57'*'10'

Things used to solve it

• Binary modulo or polynomial division

Approach

Take those numbers as binary number and convert them in polynomial (e.g : $0x57 = 0b01010111 = x^6+x^4+x^2+x+1$) then multiply them. If the result is more (or equal) than the polynomial $x^8+x^4+x^3+x+1$ (so : 0b100011011) then do a modulo (in binary) or calcul the rest by doing a polynomial division. (by this polynomial)

Questions

Results

a) Anthony: 0xAEb) Anthony: 0x47c) Anthony: 0x7

.

Solve the following set of 4 congruencies:

```
x \equiv 3 \pmod{7}
```

 $x \equiv 3 \pmod{5}$

 $x \equiv 3 \pmod{11}$

 $x \equiv 3 \pmod{13}$

Things used to solve it

- Theorem #9 (CRT)
- or just some basic logic...

Approach

CRT: 5,7,11,13 are all prime (aka gcd between them is 1), we can apply CRT.

Logic: Mhhh, theses numbers looks similar...

Results

• hannah : 5008 is the smallest one.lcg=5*7*11*13=5005 then 5005 +3 = 5008

• Anthony: 10013(mod 5005)=3 with CRT (Which is obvious with some logic...)

Questions

.

Solve the following set of 4 congruencies:

```
x \equiv 4 \pmod{5}
```

 $x \equiv 6 \pmod{7}$

 $x \equiv 10 \pmod{11}$

 $x \equiv 12 \pmod{13}$

Things used to solve it

• Theorem #9 (CRT)

Approach

CRT: 5,7,11,13 are all prime (aka gcd between them is 1), we can apply CRT.

Results

• Anthony: 15014(mod 5005) = 5004

Questions

-

Solve the following set of 5 congruencies:

```
x \equiv 5 \pmod{7}
```

 $x \equiv 3 \pmod{5}$

 $x \equiv 9 \pmod{11}$

 $x \equiv 11 \pmod{13}$

 $x \equiv 15 \pmod{17}$

Things used to solve it

• Theorem #9 (CRT)

Approach

CRT: 5,7,11,13,17 are all prime (aka gcd between them is 1), we can apply CRT.

Results

• hannah: 85083

• Anthony: 12155*4+17017*4+7735*10+6545*4+5005*4=240238

Questions

. .

Solve the following set of 3 congruencies:

```
x \equiv 1 \pmod{7}
```

 $x \equiv 2 \pmod{5}$

 $x \equiv 3 \pmod{11}$

Things used to solve it

• Theorem #9 (CRT)

Approach

CRT: 5,7,11,13

,17 are all prime (aka gcd between them is 1), we can apply CRT.

Results

• hannah: 267

• Anthony: 55*6+77+35*18=1037

Questions

-

Solve the following set of congruencies:

```
x \equiv 3 \pmod{7}
```

 $x \equiv 9 \pmod{13}$

 $x \equiv 1 \pmod{5}$

 $x \equiv 7 \pmod{11}$

Things used to solve it

• Theorem #9 (CRT)

Approach

CRT: 5,7,11,13,17 are all prime (aka gcd between them is 1), we can apply CRT.

Results

• hannah : 5001+5005k (k=0,1,2,.....)

• Anthony: 715*3+385*6+1001+455*10=10006

Questions

. .

Solve the following set of congruencies:

```
x \equiv 3 \pmod{7}
```

 $x \equiv 3 \pmod{5}$

 $x \equiv 7 \pmod{11}$

 $x \equiv 7 \pmod{13}$

Things used to solve it

• Theorem #9 (CRT)

Approach

CRT: 5,7,11,13,17 are all prime (aka gcd between them is 1), we can apply CRT.

Results

• Anthony: 715*3+1001*3+455*3*7+385*5*7=28178

Questions

Compute values of the Euler phi function:

- a) $\varphi(3458)$
- b) $\varphi(3459)$
- c) $\phi(5357)$
- d) $\phi(5358)$
- e) $\varphi(2^{1000})$
- f) $\phi(10^{1000})$

Things used to solve it

- Theorem #5
- Theorem #6
- Euler function properties

Approach

Make your number and primes numbers play together and hope something happen...

Results

Anthony

$$3458 = 19^1 * 13^1 * 7^1 * 2^1$$

■ 1153 (and 3) is prime

$$\phi(5357) = \phi(487 * 11) - 487$$
 and 11 are prime

$$= \varphi(487) * \varphi(11)$$

$$= 486 * 10$$

$$=4860$$

$$\phi(5358) = \phi(2 * 3 * 19 * 47) = 1 * 2 * 18 * 46 = 1656$$

■ 2,3,19 and 47 are primes

$$\phi(2^{1000}) = 1 * 2^{999} - 2 \text{ is prime}$$

$$= 2^9 * 4 * 5^9 = 2^{11} * 5^9$$

Compute values of the Euler phi function:

- a) $\varphi(\varphi(5358))$
- b) $\varphi(\varphi(3458))$
- c) $\varphi(\varphi(2^{1000}))$

Things used to solve it

- Theorem #5
- Theorem #6
- Euler function properties
- Problem #17

Approach

Make your number and primes numbers play together and hope something happen...

Results

Anthony

$$\phi(\phi(5358)) = \phi(1656) - See Problem 17$$

$$\phi(3458) = 1296$$
 - see problem 17

$$\phi(3458) = 1296 - see \ problem \ 17$$

$$\phi(1296) = \phi(3^4 * 2^4) = \phi(2 * 3^3 * 1 * 2^3) = 432$$

$$\phi(2^{1000}) = 1 * 2^{999} - 2 \text{ is prime}$$

$$\phi(2^{999}) = 2^{998}$$

Assume a,n e N and n>=2. Prove that if GCD(a,n)=1 then

$$a^{m \, (mod \, \varphi(n))} \equiv a^m \, (mod \, n)$$

where ϕ is the Euler function.

Things used to solve it

• Euler's Theorem

Approach

Results

- Anthony (copied from Andreas...) : $\circ \quad a^m = a^{r*\phi(n)+m \pmod{\phi(n)}} = a^{\phi(n)^r}*a^{m \pmod{\phi(n)}}$
 - So $a^m \pmod{n} = (a^{\phi(n)} \pmod{n})^r * a^{m \pmod{\phi(n)}}$
 - Euler theorem say that $(a^{\varphi(n)} \pmod{n}) \equiv 1$ so we got :
 - $\circ \quad a^m \ (mod \ n) = a^{m(mod \ \varphi(n))} mod \ (n)$

Prove that the polynomial x^2+1 is irreducible in the ring Z3[x] and describe the field GF(9) (aka F_9)

Things used to solve it

• Look at example of in the lesson

Approach

A polynomial is irreducible if we can't factorize it. Still have no idea how to prove that...

Results

- Hannah: suppose x^2 +1 is reducible, then x^2 + 1 = (ax + b)(cx + d), where a,b,c,d take the values 0,1 or 2.So x^2 +1 = acx^2 + (bc + ad)x + bd, and ac = 1, bc+ad =0,bd=1,so bcad=-a^2c^2=1, from with 1 = -a^2*c^2=2, which is impossible. So it is irreducible.
- Anthony: GF(9)=GF(3²) So elements are:
 - 0+0x;1+0x;2+0x;0+1x;1+1x;2+1x;0+2x;1+2x;2+2x=9 elements

Questions

• If someone found out who to prove the irreducibility of a polynomial...

Assume GF(2^k)[x] where (k is a fixed natural number) is a ring of polynomials with coefficients in the field GF(2^k)[x] . Prove that for every polynomial x^n (where n e N) from GF(2^k)[x] we have : $x^n (mod(x^4+1)) = x^{n(mod 4)}$

Things used to solve it

• ?

Approach

Apparently this guy solve it... still didn't understand tho : https://math.stackexchange.com/questions/738655/prove-xi-mod-x4-1-xi-mod-4-in-gf2x

Results

lacktrian

Questions

ullet

Problem #22 / 30 / 31

Design an ELGamal cryptosystem for the field F(19).

(Problem 30 is very similar: Describe the ElGamal public key cipher and design an example of the cipher "for small numbers" with an example of ciphering.) (Problem 31 is the same...)

Things used to solve it

Knowing how ElGamal cipher works

Approach

Find the elements of F(19) and one of the generator.

Make an example (take ElGamal cipher's formulas and replace them with arbitrary inputs) to show that it works.

Results

- Anthony:
 - 19 is prime so elements of F(19) are:
 Z*(19).
 - 2 is a generator ($\forall i \in F(19), \ 2^i mod \ 19 = F(19)$)
 - One of the order of the orde
 - \circ g = 3; a = 8 so b= $3^8 = 6$; k=7; inv(k) = 11; m=10
 - $c = m * b^k = 10 * 9 = 14$
 - $om = c * g^{-ka} = 14 * 17 = 10$
 - o It works!

Questions

•

Compute three last decimal digits of the number 2^1000 (in common decimal notation).

Things used to solve it

- Theorem #9 (CRT)
- The Euler's theorem

Approach

CRT (long process): To get the last few digits of a number, you need to find x mod($10^{number\ of\ last\ digits\ you\ wants}$) (where x is your number so here 2^(1000)). Use Euler's theorem to get a set of simplified congruencies. Then use CRT to resolve it.

Faster approach : Doing this recursively : $2^1000 \pmod{n} = (2^10 \pmod{n})^100 \pmod{n} = (24^10 \pmod{n})^10 \pmod{n}$ and so on...

Results

- Anthony (CRT):
 - \circ $2^{1000} mod(1000) = ?$
 - o 1000 = 8 * 125 (8 and 125 are relatively prime)
 - So we need to find $2^{1000} mod(8) = ?$ and $2^{1000} mod(125) = ?$
 - $0 2^{1000} mod(8) = 0 because 2^n can be divide by 2^{n-1}$
 - \circ 2¹⁰⁰⁰ mod(125) = ?
 - \circ GCD(2, 125) = 1 (we can apply euler theorem)
 - $\phi(125) = \phi(5^3) = 4 * 5^2 = 100$
 - \circ So $2^{100} \equiv 1 \pmod{125}$
 - $So 2^{1000} (mod 125) = (2^{100})^{10} (mod 125) = 1^{10} (mod 125) = 1 (mod 125)$
 - Now we need to find x (last 3 digits) of the following set of congruencies, (we'll do that using the CRT):
 - \circ $x \equiv 0 \pmod{8}$
 - \circ $x \equiv 1 \pmod{125}$
 - \circ With CRT we got : x = 8 * 125 + 47 * 8 = 1376
 - \circ $x \pmod{1000} = 376$
 - Last 3 digits of 2^1000 is 376.
- Anthony (Fast approach):
 - $0.0007 (mod\ 1000) = (2^{10} (mod\ 1000))^{100} (mod\ 1000) = (24^{10} mod\ 1000)^{10}$
 - $\circ = (376^2 (mod\ 1000))^3 (mod\ 1000) = 376^5 (mod\ 1000) = 376$

Questions

Compute two last decimal digits of the number 2^1000 (in radix 7 notation).

Things used to solve it

• The Euler's theorem

Approach

As you will do 2^1000 modulo (10^2) to find it in base 10, you just have to do 2^1000 modulo (7^2), then convert the number you have in base 10 to base 7.

Results

- Anthony:
 - o 2¹0%49=44
 - o 44¹0%49=23
 - o 23¹0%49=9
 - o 9 base 10 = 12 base 7
 - o Last 2 digits are 12

Questions

.

Find the last 4 decimal digits of the number 2⁽¹⁰⁾ using Chinese Remaider Theorem.

Things used to solve it

• Problem 23 CRT approach

Approach

It's the same as problem 23 but to the power of 2 and mod 10000...

Results

• HANNAH: 6876

Questions

•

[Complete me...]

Test 2

Problem #1

Describe the ElGamal signature algorithm and prove that verification formula is true when the signature parameters are correct.

Things used to solve it

Lecture

Approach

See the lecture

Results

•

Questions

• .

Problem #2

Describe the Nyberg-Rueppel signature algorithm and prove that verification formula is true when the signature parameters are correct.

Things used to solve it

• Lecture (I guess)

Approach

See the lecture

Results

ullet

Questions

•

