Técnicas de Primitivação Primitivação por partes

Plano de treino intensivo das regras

Primitivação por partes

A.Conhecimento

Reproduza para cada um dos casos especificados a técnica da primitivação por partes

$$\int uv = (\int u)v - \int \left[(\int u)v' \right]$$

Caso 1-Só um dos fatores admite primitiva

i)Produto explícito de duas funções

- 1. $\int x ln(x) dx$
- 2. $\int e^x arctg(e^x) dx$
- 3. $\int xarctg(x^2)dx$
- 4. $\int xarcsen(x^2)dx$
- 5. $\int sen(x)ln(cos(x))dx$
- 6. $\int \cos(x) \ln(1 + \cos(x)) dx$

ii)Transformação da função integranda em produto de funções f(x) = 1.f(x)

- 7. $\int ln(x)dx$
- 8. $\int arctg(x)dx$
- 9. $\int arcsen(x)dx$
- 10. $\int ln(\sqrt{x})dx$

Caso 2-Conhecimento da primitiva das duas funções. Um dos fatores é um polinómio

(Simplificação da derivada da função polinomial).

- 11. $\int x sen(x) dx$
- 12. $\int xe^x dx$
- $13. \int (x+1)5^x dx$
- 14. $\int x\cos(2x)dx$

Caso 3-Aplicação recursiva da técnica

- 15. $\int x^2 e^x dx$
- 16. $\int (x+1)^2 \ln^2(x+1) dx$
- 17. $\int sen(x)ln^2(cos(x))dx$
- 18. $\int x^2 \cos(x) dx$

Caso 4-Aplicação recursiva da técnica recorrendo à resolução de uma equação algébrica em que a incógnita é a primitiva a calcular

- 19. $\int sen(x)e^x dx$
- 20. $\int sen(x)cos(2x)dx$
- 21. $\int \cos(x)e^{2x}dx$
- 22. $\int sen(x)2^x dx$

Resultados da aprendizagem

Primitivação por partes

B.Compreensão

Para cada uma das seguintes primitivas, explique a aplicação de cada um dos casos indicados da técnica de primitivação por partes:

1.
$$\int x^3 \sqrt{1+x^2} dx$$
 (caso 2)

$$2. \int x^3 \cos(x^2) dx \text{ (caso 2)}$$

3.
$$\int \frac{x^3}{\sec(x^2)} dx \text{ (caso 2)}$$

4.
$$\int cos(ln(x))dx$$
 (caso 1-ii) e caso 4)

Discuta que funções deverá introduzir em [] de forma a poder utilizar cada caso de primitivação por partes indicado:

1.
$$\int \left[\int \cos(x) dx \left(\cos 2 \right) \right]$$

2.
$$\int [] cos(x) dx$$
 (caso 3)

3.
$$\int [] cos(x) dx$$
 (caso 4)

4.
$$\int [] cos(x) dx (caso 1)$$

C.Aplicação

Resolva as seguintes primitivas, utilizando a técnica de primitivação por partes

$$5. \int \ln^2(x) dx$$

6.
$$\int \frac{x}{\sqrt[3]{x+1}} dx$$

7.
$$\int sen(x)ln(\cos^2(x))dx$$

8.
$$\int e^x \cos(x+1) dx$$

$$9. \int (x^2+1)\cos(2x)dx$$

10.
$$\int x^2 ln(x) dx$$

11.
$$\int \frac{x^3}{\sqrt[3]{1-x^2}} \, dx$$

D.Análise

Distinga, no conjunto das primitivas, as que se resolvem através da técnica da primitivação por partes

12.
$$\int x \cos(x^2) dx$$

13.
$$\int sen(x)cos(x)dx$$

14.
$$\int x\cos(x)dx$$

15.
$$\int x \sec(x^2) dx$$

$$16. \int x^{-1} ln(x) dx$$

17.
$$\int x^2 ln(x) dx$$

E.Sintese

Generalize, a expressão da primitiva para $\forall n \in N$

18.
$$\int x^n ln(x) dx, n \in N$$

19.
$$\int x^n \cos(nx) dx, n \in N$$

F.Avaliação

Justifique, convenientemente, se é possível calcular a seguinte primitiva pela técnica de primitiva por partes

20.
$$\int arcsenx^2 dx$$