ANALYSE DE DONNÉES

Résumé pratique du cours de Mme BENBRAHIM

STRUCTURE DU COURS

- 1. Description des données
- 2. Régression linéaire Simple/Multiple
- 3. ACP

COMMENT DÉCRIRE MES DONNÉES ?

Je calcule les <u>INDICATEURS STATIQUES</u>

<u>Caractéristique de</u> <u>tendance centrale :</u>

- Moyenne
- Médiane
- mode

Dispersion

- Étendue (max-min)
- Écart type

Forme

- Quartile (Q1,Q2,Q3)
- Indice symétrique (skewness)
- Indice d'applatissement (kurtosis)

La boîte à moustache est le résumé graphique de la distribution

COMMENT LIRE LA BOÎTE À MOUSTACHE

COMMENT INTERPRÉTER LA BOÎTE À MOUSTACHE

- <u>La dispersion des données</u> se définit par la longueur de la boite à moustache
- <u>L'asymétrie</u> (de la distribution) correspond à la déviation de la ligne médiane (Q2) du centre de la boîte à moustaches par rapport à la longueur de la boîte,
- L'asymétrie des moustaches (moustache plus longue que l'autre)
- Présence des point atypiques (Outliers)

RÉGRESSION LINÉAIRE (SIMPLE/MULTIPLE)

LA RÉGRESSION LINÉAIRE ?

• C'est un modèle qui cherche à établir une relation linéaire entre 2 variables

 Exemple :Trouver une équation linéaire qui va prédire le prix d'une voiture en fonction du modèle et de l'année grâce à un échantillon que je possède au préalable,

Avant d'entamer tout ce travail

Y-a-il déjà une relation entre ma(mes) variable(s) exogènes et ma variable endogène ?!

Calculer le coefficient de corrélation (ou notre cas le lire dans la matrice de corrélation)

Pas de liaison linéaire

Il existe une liaison linéaire -> je peux tenter une régression linéaire

Méthode pas trop fiable dans les cas limites (On ne saura pas distinguer à l'œil)

Le coefficient de corrélation est plus adapté!

Plus la valeur absolue du coefficient de corrélation est proche de I, plus il y a une forte liaison linéaire

«Y-a-t-il une liaison linéaire entre la variable X et Y?»

Je vérifie la matrice de corrélation

MODÈLE DE RÉGRESSION

Modéliser cette relation par une équation

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

- βi sont les coefficient que l'on va chercher
- Epsilon est l'erreur (ce que notre équation n' pas pris en compte)

NB : c'est pas à nous de calculer ces coefficients

QUALITÉ D'UN MODÈLE (I)

SCT : ∑ des infos disponibles dans les données de l'éch.

SCE: ∑ des infos que notre modèle a expliqué

SCR: ∑ des infos résiduels que notre modèle n'a pas expliqué

Ainsi

$$R^2 = \frac{SCE}{SCT} = 1 - \frac{SCR}{SCT}$$

Coefficient de détermination :

(il indique la proportion des infos de l'échantillon que notre modèle a pu expliqué)

QUALITÉ D'UN MODÈLE (2)

R² (étant la proportion expliquée), donc bien évidemment :

- $\Box 0 < R^2 < I$
- □ R²=1 correspond au modèle idéal
- ☐ Plus notre R² tends vers I, plus notre modèle est bien

		Réca	pitulatif des modè	eles ^D	
Modèle	R	R-deux	R-deux ajusté	Erreur standard de l'estimation	Durbin- Watson
1	,916ª	,839	,806	8,347	1,696

Le R2-Ajusté, est davantage utilisé que le R² car il ne dépend pas du nombre de variables • Supposons que notre modèle est bien (R=0,87 par exemple), Est-ce que c'est suffisant ?

NON, ce qu'on a prouvé jusqu'à mtn c'est que le modèle représente bien les données que j'ai déjà.

On dit chercher si mon modèle est SIGNIFIQUATIVEMENT GLOBAL (il est bon également pour les nouvelles valeurs)

ÉVALUATION GLOBALE DE LA RÉGRESSION

$$F = \frac{\frac{SCE}{1}}{\frac{SCR}{n-2}}$$

On effectue un test d'hypothèse

 H_{II} : Notre modèle n'est pas significativement global

2 méthodes pour rejeter l'hypothèse

Comparer F avec la loi de Fisher correspondant

$$\rightarrow$$
 F > $F_{1-\alpha}(1, n-2)$ $\mathcal{F}(1, n-2)$

Comparer la p-value avec le risque (alpha)

→ p-value < alpha

la probabilité critique (p-value) : probabilité que la loi de Fisher dépasse la statistique calculée F

Tableau d'ANOVA (parfois F est appelé D)

			ANOVA			
Modèle		Somme des carrés	ddl	Moyenne des carrés	D	Sig.
1	Régression	12673,101	7	1810,443	25,985	,000ª
	Résidu	2438,527	35	69,672		
	Total	15111,628	42			

La p-value est appelé dans les tableaux Sig (significance)

Généralement, c'est la Sig qu'on compare avec le risque qu'elle nous donne

Il faut aussi s'assurer des Coefficient de notre équation (βi)

Dans un premier temps, on obtient une équation, mais il faut chercher si le coefficient vaut vraiment la valeur qu'on a trouvé ou sinon c'est 0

Coefficients ^a					
Modèle	Coefficients no	n standardisés	Coefficients standardisés		
	А	Erreur standard	Bêta	t	Sig.
constante	13,951	8,309		1,679	,102
Var I	6,575	1,455	,424	4,520	,000
Var2	9,216	1,959	,389	4,705	,000
	9,216	1,959	'388	4,705	'000
					'000

IL Y'A 2 grands Courant concernant la cte (certains disent qu'il ne faut pas effectuer le test, et d'autre qui disent qu'il faut le faire), Mme Benbrahim dit qu'elle préferer le faire!

MÊME BOULOT!

Notre Hypothèse Ho : c'est le coeff d'une variable=0

-> Pour la rejeter (et donc garder le terme) :

Il faut que la Sig < alpha (risque)

Les variables dont le coeff =0 alors ne figureront pas dans notre équation finale

HYPOTHÈSES À VÉRIFIER

- Normalité des résidus
- Normalité de Y
- Homoscédasticité
- Non-auto corrélation

Attention! Il faut les mentionner tous (soit la figure correspondante à ce test figure ou pas)!!!

NORMALITÉ DES RÉSIDUS

La distribution des résidus est proche de la droite (vu que plus les résidus se rapprochent de la droite, plus on dit que leur distrib est normale)

D'après le Q-Q plot la distribution est normale

NORMALITÉ DE Y

Normalité de Y?

- Méthode graphique:
 - √ Histogramme
 - √ P-P plot
- Vérifier si Skewness AS ≈ 0
- Vérifier si Kurtosis AP ≈ 3
- Test de Kolmogorov Smirnov

$$E(\varepsilon i) = 0$$

$$V(\varepsilon i) = \sigma 2$$

HOMOSCÉDASTICITÉ

Le nuage de points en forme de cône indique que le modèle ne vérifie pas l'homoscédasticité

Nuage de point ne suit aucun pattern : l'homoscédasticité est vérifiée

NON AUTOCORRÉLATION

→ Coefficient de Durbin-Watson (doit être proche de 2) pour que la NON-autocorrélation soit vérifiée.

I,625 est proche de 2, donc c'est vérifié!

Modèle	R	R-deux	R-deux ajusté	Erreur standard de l'estimation	Durbin- Watson
1	,989ª	,977	,956	2,2868	1,625

 Mais bon, là encore il faut vérifier les hypothèses suivantes :

Normalité des Résidus (P-P Plot ou Q-Q Plot) :

Test de Normalité : Q-Q plot

Valiable depellualite, FIIA

Moyenne + Ecart type = N + 12

Test de Normalité: P-P plot

- Normalité des Y :
 - Graphiquement, comme pour les résiduels
 - Vérifier si Skewness AS ≈ 0
 - Vérifier si Kurtosis AP ≈ 3

- Autoscédascticité
- Auto-corrélation

Maintenant, vous remplacez les valeurs des coefficient des variables que vous avez retenu dans l'équation

Votre équation est prête pour prédire de nouvelles valeurs !!

Cas où notre équation n'est pas linéaire (mais on peut la linéariser)

Modèle log-linéaire

<u>Modèle</u> <u>logarithmique</u>

Modèle exponentiel

→ Linéarisation : ln(y) = a x + ln(b)

$$Y = a \ln(X) + b$$

Pas besoin de linéarisation, il suffit de considérer X'=ln(X) la nvlle variable

ACP

DÉFINITION DE L'ACP

But de l'ACP

Trouver de nouvelles structures (classes)
dans nos données

Comment?

Graphiquement, en projettant les données sur un espace à dimension plus réduite

PRINCIPE*

• Certaines variables ont une part d'information commune entre elles, donc on va essayer de réduire le nbre de ces variables pour pouvoir se contenter d'un nbre d'axe réduit sur lequel on va projeter nos points.

Par exemple si les Variables sont totalement indépendantes, ACP n'est pas faisable

^{*} d'une façon très très très très vague, c'est de l'algèbre linéaire approfondi ...

ÉTAPES D'UNE ACP

1. Centrer et Réduire :

- Si on n'a pas la même grandeur Il faut centrer
- Si on n'a pas la même unité | Il faut réduire

ÉTAPES D'UNE ACP(2)

2. <u>Vérifier si l'ACP est pertinente</u>:

- En utilisant la matrice de corrélation, dire que comme quoi il y'a pas mal de coefficient élevés proche de I,
- En utilisant le test de KMO (si KMO est proche de 0,7 c'est bon, proche de 0 pas la peine)

Indice	KMO et test de Bartlett	
Mesure de précision de l' Meyer-Olkin.	'échantillonnage de Kaiser-	,780
Test de sphéricité de	Khi-deux approximé	240,823
Bartlett	ddl	55
	Signification de Bartlett	,000

En utilisant la matrice anti-image

```
CYLINDRE
                     LARGEUR LONGUEUR
                                           POIDS PUISSANC
                                                            VITESSE
            .93403
CYLINDRE
LARGEUR
            .00453
                      .66050
                     -.76061
           -.26598
                              .65758
LONGUEUR
          -.32958
                     .39762
                              -.59316
                                         .65060
POIDS
                                        -.65901
          -.21941
                    -.41220
                              .53269
                                                  ---. 62545
PUISSANC
                     .46028
                              -.52436
                                         .70642
                                                  -.89849
           -.06258
                                                            -.52070
VITESSE
```

Measures of Sampling Adequacy (MSA) are printed on the diagonal.

Plus msa, est élevé et proche de 1, plus la variable correspondante contribue fortement dans la construction des facteurs.

En utilisant le test de sphéricité de Barlett

Le But du test est de prouver que la matrice de corrélation est différente de la matrice d d'identité

Comme pour les autres tests d'identité, l'hypothèse est que la matrice des corrélations est égale à la matrice identité.

	KMO et test de Bartlett	
Mesure de précision de l Meyer-Olkin.	'échantillonnage de Kaiser-	,498
Test de sphéricité de Bartiett	Khi-deux approximé	41,782
Bartiett	ddl	21
	Signification de Bartlett	,004

Comparer la sig avc le risque alpha

3. Trouver les facteurs qu'on doit garder :

Après avoir fait des calculs, on a obtenu un certain nombre de facteurs (axes), on doit choisir le nombre qui convient

Pour ça, on va prendre en compte 4 critère :

- % d'informations obtenu par un facteur
- Diagramme des valeurs propres
- Corrélation reproduites
- Qualité de représentation

• % d'informations obtenu par un facteur

(pourcentage d'inertie)

Variance totale expliquée

Composante	Valeurs propres initiales				
	Total	% de la variance	% cumulés		
1	7,451	67,735	67,735		
2	1,098	9,985	77,720		
3	,883	8,025	85,745		
4	,505	4,591	90,336		
5	,337	3,067	93,404		
6	,271	2,462	95,866		
7	,173	1,575	97,440		
8	,140	1,272	98,713		
9	,081	,738	99,451		
10	,045	,408	99,858		
11	.016	,142	100,000		

Méthode d'extraction : Analyse en composantes principales.

J'estime que 4 facteurs sont bien, j'ai déjà 90,336% et de toute façon le facteur 5 ne me va ajouter que 3,.

Diagramme des valeurs propres

Valeurs propres

Composante	Val	eurs propres init	iales
	Total	% de la variance	% cumulés
1	7,451	67,735	67,735
2	1,098	9,985	77,720
3	,883	8,025	85,745
4	,505	4,591	90,336
5	,337	3,067	93,404
6	,271	2,462	95,866
7	,173	1,575	97,440
8	,140	1,272	98,713
9	,081	,738	99,451
10	,045	,408	99,858
11	,016	,142	100,000

Méthode d'extraction : Analyse en composantes principales.

Dire que la valeur propre doit être plus grande que I, ou au moins proche de I,

• Qualité de représentation

Qualité de représentation

	Initial	Extraction
Mass	1,000	,979
Fore	1,000	,918
Bicep	1,000	,934
Chest	1,000	,890
Neck	1,000	,921
Shoulder	1,000	,912
Waist	1,000	,958
Height	1,000	,976
Calf	1,000	,953
Thigh	1,000	,841
Head	1,000	,993

Méthode d'extraction : Analyse en composantes principales.

On a pu extraire un % considérable de chaque variable, donc c bien

Si on remarque que le premier axe est celui sur lequel les coefficients de corrélation sont les plus élevés., nous sommes en présence d'un effet taille

Et on doit envisager une rotation

Matrice des composantes^a

		Compo	osante	
	1	2	3	4
Mass	,956	,187	-,073	,099
Fore	,935	,014	-,090	,033
Bicep	,854	-,401	-,094	-,124
Chest	,890	-,279	-,014	-,141
Neck	,897	-,044	-,003	-,338
Shoulder	,900	,154	-,041	-,260
Waist	,870	,065	-,047	,090
Height	,429	,743	,474	-,113
Calf	,831	,139	-,033	,424
Thigh	,862	-,009	-,176	,245
Head	.391	-,473	,774	,129

Méthode d'extraction : Analyse en composantes principales.

Matrice des composantes après rotation^a

Composante

-	Composante				
	1	2	3	4	
Mass	,578	,729	,311	,042	
Fore	,652	,647	,172	,101	
Bicep	,801	,424	-,151	,265	
Chest	,792	.434	-,001	,271	
Neck	,861	,329	,237	,123	
Shoulder	,770	,423	,362	,006	
Waist	,549	,644	,208	,108	
Height	,105	.194	,959	,066	
Calf	,288	,866	,197	,139	
Thigh	,486	,769	,050	,069	
Head	,181	.101	,069	,972	

INTERPRÉTATION

• On utilise la matrice des composantes

Matrice des composantes après rotation^a

		Compos	ante	
	1	2	3	4
Mass	,578	,729	,311	,042
Fore	,652	,647	,172	,101
Bicep	,801	,424	-,151	,265
Chest	,792	,434	-,001	,271
Neck	,861	,329	,237	,123
Shoulder	,770	,423	,362	,000
Waist	,549	,644	,208	,108
Height	,105	,194	,959	,066
Calf	,288	,866	,197	,139
Thigh	,486	,769	,050	,069
Head	,181	.101	,069	,972

Pour chaque variable on détermine le max

Mass = Axe2

Fore = AxeI

Bicep= Axe I

Chest= Axe I

Neck= ...

...Height=Axe3...

Head=Axe4

-> le le axe est représenté par Fore, Bicep, Chest

-> On remarque que Head et Height sont toutes seules représenté par axe3 et 4, donc elle est indépendantes des autres • Généralement, les points qu'elle demande de décrire sont des outliers (points atypiques)

§ FIN §

BONNE CHANCE!