Logic Coverage Active Clause Coverage

CS 3250 Software Testing

[Ammann and Offutt, "Introduction to Software Testing," Ch. 8]

Active Clause Coverage (ACC)

 From the testing perspective, we would test each clause under circumstances where the clause determines the predicate

For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

Steps:

- Analyze determination, i.e., making the clause active
- Derive test requirements that evaluates the major clause to true and false
- This is a form of "Modified Condition Decision Coverage" (MCDC), which is required by the US Federal Aviation Administration (FAA) for safety critical avionics software

$$p = a \vee b$$

```
p_a = p_{a=true} \oplus p_{a=false}
= (true \lor b) \oplus (false \lor b)
= true \oplus b
= \neg b
```

For clause a, a determines p if and only if b is false
Thus, we have two test requirements {(a=true, b = false), (a=false, b= false)}

```
p_b = p_{b=true} \oplus p_{b=false}
= (a \lor true) \oplus (a \lor false)
= true \oplus a
= \neg a
```

For clause b, b determines p if and only if a is false
Thus, we have two test requirements {(a=false, b = true), (a=false, b= false)}

```
TR = {(a=true, b = false), (a=false, b= false), (a=false, b = true), <del>(a=false, b= false)</del>}
```

- Overlap is common
- n \leq number test requirements \leq 2n, where n = number clauses

Ambiguity in ACC

```
\begin{aligned} \textbf{p} &= \textbf{a} \wedge (\textbf{b} \vee \textbf{c}) \\ \textbf{p}_{a} &= \textbf{p}_{a=true} \oplus \textbf{p}_{a=false} \\ &= (true \wedge (\textbf{b} \vee \textbf{c})) \oplus (false \wedge (\textbf{b} \vee \textbf{c})) \\ &= (\textbf{b} \vee \textbf{c}) \oplus false \\ &= \textbf{b} \vee \textbf{c} \qquad \textbf{a} = \textbf{T}, \, \textbf{a} = \textbf{F}, \, \{\, \textbf{TT}, \, \textbf{TF}, \, \textbf{FT} \, \} \, \text{--} \, \text{is this allowed?} \end{aligned}
```

 Do the minor clauses have to have the same values when the major clause is true and false?

This leads to 3 separate criteria:

- 1. Minor clauses do not need to be the same (GACC)
- 2. Minor clauses must be the same (RACC)
- Minor clauses force the predicate to become both true and false (CACC)

General Active Clause Coverage (GACC)

- For each major clause c, choose minor clauses such that c determines the predicate
- Clause c has to evaluate to true and false
- Minor clauses do not need to be the same

- Allow minor clauses to have different values
- Possible to satisfy GACC without satisfying predicate coverage
- We really want to cause predicates to be both true and false

$$p = a \wedge (b \vee c)$$

Major clause: a

$$p_a = T$$

 $a = T$

Rows: 1, 2, 3

Rows: 5, 6, 7

Set of possible test requirements:

 $\{(1,5), (1,6), (1,7), (2,5), (2,6), (2,7), (3,5), (3,6), (3,7)\}$

$$p = a \wedge (b \vee c)$$

Major clause: **b**

	row	а	b	С	р	p _a	P _b	p _c
	1	Т	Т	Т	Т	Τ		
 	2	Т	Т		Т	Т	Т	
	3	Т		Т	Т	Т		Т
L	4	Т					Т	Т
	5		Т	Т		Т		
	6		Т			Т		
	7			Т		Т		
	8							

Rows:

$$p_b = T$$

 $b = F$

Rows:

Set of possible test requirements:

$$p = a \wedge (b \vee c)$$

Major clause: c

	row	а	b	С	р	p _a	P _b	p _c
	1	Т	H	Т	Т	Τ		
	2	Т	Т		Т	Т	Т	
 	3	Т		Т	Т	Т		Т
4	4	Т					Т	Т
	5		Т	Т		Т		
	6		Т			Т		
	7			Т		Т		
	8							

$$p_c = T$$

 $c = T$

Rows:

$$p_c = T$$

 $c = F$

Rows:

Set of possible test requirements:

$$p = a \wedge (b \vee c)$$

Set of possible test requirements:

Major clause a: $\{(1,5), (1,6), (1,7), (2,5), (2,6), (2,7), (3,5), (3,6), (3,7)\}$

Major clause b: $\{(2,4)\}$

Major clause c: $\{(3,4)\}$

Give GACC-adequate test set (= minimal test set that satisfies GACC)

Based on the possible test requirements, select a smallest combination pairs (one for each clause)

This means, we need at least 4 tests (i.e., test inputs) -- rows 2, 3, 4, 5

GACC-adequate test set = $\{2, 3, 4, 5\}$

GACC Does Not Subsume PC

$$p = (\neg a \land \neg b) \lor (a \land \neg c) \lor (\neg a \land c)$$

Major clause: a

row	а	b	С	р	p _a	р _b	p _c
1	Т	Т	Т		Т		Т
2	Т	Т		Т	Т		Т
3	Т		Т		Т		Т
4	Т			Т			Т
5		Т	Т	Т	Т		Т
6		Т			Т	Т	Т
7			Т	Т	Т		
8				Т		Т	

$$p_a = T$$
 $a = T$

Rows: 1, 2, 3

$$p_a = T$$
 $a = F$

Rows: 5, 6, 7

Set of possible test requirements:

$$\{(1,5), (1,6), (1,7), (2,5), (2,6), (2,7), (3,5), (3,6), (3,7)\}$$

Restricted Active Clause Coverage (RACC)

- For each major clause c, choose minor clauses such that c determines the predicate
- Clause c has to evaluate to true and false
- Predicate p has to evaluate to true and false
- Minor clauses must be the same
- This has been a common interpretation by aviation developers
- RACC often leads to infeasible test requirements
- Stricter version of CACC requires the same minor clause
- There is no logical reason for such a restriction

$$p = (\neg a \land \neg b) \lor (a \land \neg c) \lor (\neg a \land c)$$

Major clause: a

	row	а	b	С	р	p _a	Pb	p _c
 	1	Т	Т	Т		Т		Т
→	2	Т	Т		Т	Т		Т
→	3	Т		Т		Т		Т
	4	Т			Т			Т
→	5		Т	Т	Т	Т		Т
→	6		Т			Т	Т	Т
└ →	7			Т	Т	Т		
	8				Т		Т	

$$p_a = T$$

 $a = T$

Rows: 1, 2, 3

$$p_a = T$$

$$a = F$$

Rows:

$$P = T, F$$

Same minor clauses

Set of possible test requirements:

$$\{(1,5),(2,6),(3,7)\}$$

Then, derive tests for clauses b and c

Correlated Active Clause Coverage (CACC)

- For each major clause c, choose minor clauses such that c determines the predicate
- Clause c has to evaluate to true and false
- Predicate p has to evaluate to true and false
- Minor clauses do not need to be the same
- A more recent interpretation
- Implicitly allows minor clauses to have different values
- Explicitly satisfies (subsumes) predicate coverage
- Stricter version of GACC adds PC requirement to GACC

$$p = (\neg a \land \neg b) \lor (a \land \neg c) \lor (\neg a \land c)$$

Major clause: a

	row	а	b	С	р	p _a	р _b	p _c
 	1	Т	Т	Т		Τ		Т
→	2	Т	Т		Т	Т		Т
→	3	Т		Т		Т		Т
	4	Т			Т			Т
→	5		Т	Т	Т	Т		Т
→	6		Т			Т	Т	Т
L	7			Т	Т	Т		
	8				Т		Т	

$$p_a = T$$

 $a = T$

Rows: 1, 2, 3

$$p_a = T$$

Rows: 5, 6, 7

$$P = T, F$$

Set of possible test requirements:

$$\{(1,5), (1,7), (2,6), (3,5), (3,7)\}$$

Then, derive tests for clauses b and c

CACC vs. RACC

- What is the difference between CACC and RACC?
 - RACC imposes more constraints on the truth values of minor clauses
 - RACC requires the the truth values for minor clauses are consistent between the two requirements
 - In practice?
 - There are fewer possible truth table row combinations that satisfy RACC
 - RACC leads to more infeasible test requirements than CACC

RACC Leads to Infeasible Requirements

- If clauses are independent, there is no problem
- If clauses are dependent, some combination of clauses become infeasible

Suppose a program has

```
= valve is closed AND (system is in operational mode)
  OR system is in standby mode)
```

$$= a \wedge (b \vee c)$$

Three clauses:

a = the valve is closed

b = the system mode is operationalc = the system mode is standby

Assume the following constraints:

- A valve must be open in "operational" mode and closed in all other modes
- Mode cannot be in both "operational" and "standby" at the same time

```
Constraints: \neg a \leftrightarrow b
                          \neg (b \land c)
```

CACC and **RACC** – **Infeasible TRs**

$$p = a \wedge (b \vee c)$$

Constraints: $\neg a \leftrightarrow b$

 $\neg(b \land c)$

row	a	b	С	р	Constraint violations
1	Τ	Τ	Т	Т	1,2
2	Т	Т	F	Т	1
3	Т	F	Т	Т	
4	Т	F	F	F	
5	F	Т	Т	F	2
6	F	Т	F	F	
7	F	F	Т	F	1
8	F	F	F	F	1

CACC: out of $\{1,2,3\} \times \{5,6,7\}$, only (3,6) is feasible

RACC: out of (1,5), (2,6), (3,7), none are feasible

Summary

- A clause is active if the other clauses have values that allow the active clause to determine the value of the predicate
- Active Clause Coverage (ACC) requires each clause to be made active, and then true and then false
- ACC comes with three different possible interpretations
 - General Active Clause Coverage (GACC)
 - Correlated Active Clause Coverage (CACC)
 - Restricted Active Clause Coverage (RACC)