Matematika I

Séria úloh 10

1.	(11b)	Daná	je v	všeobecna	á rovnica	kužeľosečky	$9x^2$	$+25y^2$	-54	4x -	100y -	44 = 0.
Do	plňte	9										

-		
a)	(2b)	Stredová rovnica kužeľosečky je
b)	(1b)	Typ kužeľosečky je
c)	(3b)	Popíšte (ak existujú):
d)	c_2) c_3)	dĺžka hlavnej poloosi je
u)	$d_1)$ $d_2)$ $d_3)$	stredu kužeľosečky hlavných vrcholov kužeľosečky vedľajších vrcholov kužeľosečky súradnice ohniska resp. ohnísk kužeľosečky
e)	(1b)	Znázornite kužeľosečku a v náčrte popíšte jej významné prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} y \, \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je mnohouholník s vrcholmi $A=[-1,-1],\,B=[1,-1],\,C=[4,3],\,D=[-4,3].$

- **4.** (4b) Bod M má v cylindrickej súradnicovej sústave súradnice: $M = \left[2\sqrt{3}, \frac{\pi}{6}, -2\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [-3, -\sqrt{3}, -2]$$

c)
$$M = [3, -\sqrt{3}, -2]$$

b)
$$M = [3, \sqrt{3}, -2]$$

d)
$$M = [-3, \sqrt{3}, -2]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je line	eárna obyčajná diferenciálna rovnica (LODR) $y'(x) + y(x) = x + 1$.
a) (2b) Napíšte o	charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakterist	tická rovnica je:
b) (2b) Nájdite f nou.	undamentálny systém riešení diferenciálnej rovnice s nulovou pravou stra-
Fundamentá	lny systém riešení je
c) (2b) Nájdite p	partikulárne riešenie uvedenej nehomogénnej rovnice.
Partikulárne	e riešene je
d) (2b) Napíšte v	zšeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné r	iešenie danej LODR je
6. (4b) Vypočítajte	
	$\lim_{[x,y]\to[1,3]} (x^3 - xy + 2y).$
Výsledok:	
7. (6b) Nájdite rov v bode $T =$	nicu dotykovej roviny τ ku grafu funkcie $f(x,y) = \sqrt{xy}$ = $[1,1,z_0]$.
(2b) Nájdite z	$arepsilon_0$ a uvedte súradnice dotykového bodu:
(4b) Všeobecr	ná rovnica dotykovej roviny $ au$ je:
8. (6b) Daná je fun	kcia $f(x,y) = \sqrt{x^2 - y^2}$, bod $A = [5, 3]$ a vektor $\vec{l} = (-1, 2)$.
a) (3b) Nájdite g	gradient funkcie $f(x, y)$ v bode A .
Gradient fun	kcie $f(x,y)$ v bode A je
b) (3b) Vypočíta	jte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia fu	akcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (27b) Daná je funkcia $f(x,y)=2x^2-x+y^2$ a oblasť $M.$ Oblasť M je mnohouholník $ABCD$ s vrcholmi $A=[0,-1],\ B=[1,-1],\ C=[1,1]$ a $D=[0,1].$
a) Načrtnite oblasť M :
Náčrt:
Pomocou matematických vzťahov popíšte hranice oblasti $M\colon$
(a) (2b) AB
(b) (2b) <i>BC</i>
(d) (2b) AD
b) (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne
c) Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti $M.$ Ak hľadaný lokálny extrém nejestvuje, napíšte "nie je".
(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne
(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne
(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne (d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode viazané lokálne
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$
${f Najväčšia}$ hodnota funkcie $f(x,y)$ je: