$P = (x_{1}/y_{1}), Q = (x_{1}/y_{1})$ $(x_{1}/y_{1}) \oplus (x_{1}/y_{1}) \oplus (x_{1}/y_{1}) \oplus (x_{1}/y_{1}) = \mathbb{E}^{\ell}((x_{1}/y_{1}) \oplus (x_{1}/y_{1}))$ $= (\mathbb{E}^{\ell}(x_{1}/y_{1}) \oplus \mathbb{E}^{\ell}(x_{1}/y_{1}) \oplus$

ans. comentamenters

if we assume that we get to the right hand-side we get $[TP,0] = [T(x_1,y_1),0] = \{(ix_1,y_1),0), t(ix_1,y_2),1)\}$ Fince $X_1 \neq 0$, $y_1 \neq 0$ and (x_1,y_1) is an affine point. However $[P^{-l}(1,0),0] = \{(P^{-l}(1,0),0)\}$ since $P^{-l}(1,0)$ has one zero component and is an affine point.

The indese of the sum above is fiseed by the deduction and Cannot be changed as after applying associativity ---

((MANY) Do (MANY) Do I ! (MANY) =

a [[ame, em]a, without all

a ([(M) 4. (4.36) po]] a (cile Arino] a

[[KANDIE] & [DAMETIE] & [TO DAMED E]

Pr high (- ma.