Nama : Andi Illa Erviani Nensi

Nim : 200102502002

Kelas : DS023

Latihan Mandiri

1. Berikut ini adalah data deret waktu tentang **penjualan flexi untuk area service Makassar** yang dicatat tiap pekan mulai 3 Juli 2004 sampai 16 Desember 2005 (Data dibaca dari kiri ke kanan)

211	1167	731	1658	482	2429	
1726	2881	1648	1364	348	439	
369	160	127	3395	150	3981	
3162	5	595	340	164	628	
2088	2201	762	270	133	2154	
1793	178	323	398	4985	915	
417	265	2342	2353	5305	4905	
6089	11971	3206	1282	791	5131	
1195	10656	7738	1616	428	1110	
1293	902	961	4906	1902	1359	
2477	4431	5913	3590	8222	276	
528	688	462	187	258	199	
163	188	142	176			

Sumber: Flexi Center Kandatel Makassar (Mahmuddin, 2006)

- a Tentukan model ARIMA terbaik yang sesuai untuk data tersebut dengan menggunakan software R!
- b. Lakukan peramalan untuk menentukan nilai-nilai 12 tahap ke depan!
- 2. Berikut ini adalah data mengenai banyaknya penumpang pada perusahaan penerbangan international (*international airline passengers*) (Box & Jenkins, 1994: series G).

112	118	132	129	121	135	148	148	136	119	104
118	115	126	141	135	125	149	170	170	158	133
114	140	145	150	178	163	172	178	199	199	184
162	146	166	171	180	193	181	183	218	230	242
209	191	172	194	196	196	236	235	229	243	264
272	237	211	180	201	204	188	235	227	234	264
302	293	259	229	203	229	242	233	267	269	270
315	364	347	312	274	237	278	284	277	317	313
318	374	413	405	355	306	271	306	315	301	356
348	355	422	465	467	404	347	305	336	340	318
362	348	363	435	491	505	404	359	310	337	360
342	406	396	420	472	548	559	463	407	362	405

```
417 391 419 461 472 535 622 606 508 461 390
432
```

(Data dibaca dari kiri ke kanan)

- a Tentukan model ARIMA terbaik yang sesuai untuk data tersebut dengan menggunakan software R (gunakan tahapan pendekatan Box-Jenkins)!
- b. Lakukan peramalan untuk menentukan nilai-nilai 12 tahap ke depan!

Jawaban:

2. Langkah-langkah untuk menganalisis deret waktu di R studio:

Install packages berikut:

```
2 install.packages('tidyverse')
3 install.packages('tseries')
4 install.packages('lmtest')
5 install.packages('normtest')
6 install.packages('nortest')
```

Jika sudah terinstall maka panggil packages dengan syntax:

```
13 library(tidyverse)
14 library(tseries)
15 library(lmtest)
16 library(normtest)
17 library(nortest)
```

Setelah memanggil packages, kita memanggil data dari exel dengen menggunakan syntax *setwd* atau data di input ke R dan data terurut kebawah sesuai dengan waktu(Bulan) dan memanjang ke bawah.

```
6 setwd("C:/Users/adminstrator/Downloads/ANDI ILLA ERVIANI NENSI/KMMI DS02/M12 Time Series Musiman")
7 data <- read.csv("data.csv", sep = ";")
8 data
```

Maka data ditampilkan memanjang ke bawah dengan 2 variabel dan 144 obs.

Selanjutnya memeriksa apakah data sudah terbaca dengan benar di R dengan menuliskan script 'data', atau 'data=frame.(t,Zt) kemudian di run. Dengan melihat sebagaian data awal

digunakan perintah 'head(data)' atau melihat data terbawah dengan perintah 'tail(data)' sebagai berikut:

```
> head(data)
t Zt
1 1 112
2 2 118
3 3 132
4 4 129
5 5 121
6 6 135
```

```
> tail(data)
t Zt
139 139 622
140 140 606
141 141 508
142 142 461
143 143 390
144 144 432
```

Langkah berikutnya adalah tahap identifikasi dengan dilakukannya pemodelan deret waktu yaitu tahap identifikasi. Dalam tahap identifikasi dilakukan pemeriksanaan kestasioneran data baik dalam mean maupun dalam variansi. Kestasioneran data dalam rata-rata dapat diperiksa melalui plot time series secara visual atau melalui uji Augmented Dickey-Fuller. Data tersebut terdiri dari dua variabel yaitu t sebagai variabel waktu dan Zt sebagai data penumpang. Dan berikut juga terdapat perintah untuk menampilkan plot time series yaitu 'ts.plot(Penumpang)'

```
> Penumpang <- data$Zt
> Bulan <- data$t
> ts.plot(Penumpang)
```


Dari plot yang ditampilkan, dapat dilihat bahwa data tersebut belum stasioner baik dalam ratarata maupun varians. Untuk memasikan hal tersebut, maka dilakukan pengujian kestasioneran data melalui "Augmented Dickey-Fuller Test" dengan perintah: 'adf.test(Penumpang)'

Dari hasil pengujian "Augmented Dickey-Fuller Test" dapat diperoleh bahwa p-value = 0,01 akan tetapi masih belum dalam keadaan stasioner sehingga diperlukan transformasi data agar dapat stasioner baik dalam rata-rata ataupun variansi. Jika tidak dilakukan transformasi data maka tidak dipatkan hasil yang reduals atau tidak normal. Transformasi yang dilakukan tergantung dari nilai lambdanya. Transformasi yang digunakan adalah Box.Cox yaitu:

```
> BoxCox.lambda(Penumpang)
[1] 0.1107583
> |
```

Nilai lambda tersebut mendekati 0 sehingga transformasi yang sesuai dengan transformasi

logaritma. Maka:

```
> logP <- log(Penumpang)
> logP
 [1] 4.718499 4.770685 4.882802 4.859812 4.795791 4.905275 4.997212 4.997212 4.912655 4.779123 4.644391
 [12] 4.770685 4.744932 4.836282 4.948760 4.905275 4.828314 5.003946 5.135798 5.135798 5.062595 4.890349
 23] 4.736198 4.941642 4.976734 5.010635 5.181784 5.093750 5.147494 5.181784 5.293305 5.293305 5.214936
 [34] 5.087596 4.983607 5.111988 5.141664 5.192957 5.262690 5.198497 5.209486 5.384495 5.438079 5.488938
 [45] 5.342334 5.252273 5.147494 5.267858 5.278115 5.278115 5.463832 5.459586 5.433722 5.493061 5.575949
 [56] 5.605802 5.468060 5.351858 5.192957 5.303305 5.318120 5.236442 5.459586 5.424950 5.455321 5.575949
     5.710427 5.680173 5.556828 5.433722 5.313206 5.433722 5.488938 5.451038 5.587249 5.594711 5.598422
 [67]
 78 5.752573 5.897154 5.849325 5.743003 5.613128 5.468060 5.627621 5.648974 5.624018 5.758902
[89] 5.762051 5.924256 6.023448 6.003887 5.872118 5.723585 5.602119 5.723585 5.752573 5.707110 5.874931
[100] 5.852202 5.872118 6.045005 6.142037 6.146329 6.001415 5.849325 5.720312 5.817111 5.828946 5.762051
     5.891644 5.852202 5.894403 6.075346 6.196444 6.224558 6.001415 5.883322 5.736572 5.820083 5.886104 5.834811 6.006353 5.981414 6.040255 6.156979 6.306275 6.326149 6.137727 6.008813 5.891644 6.003887
Γ1111
[122]
[133] 6.033086 5.968708 6.037871 6.133398 6.156979 6.282267 6.432940 6.406880 6.230481 6.133398 5.966147
[144] 6.068426
```

Selanjutnya di cek time series plotnya yaitu:

```
ts.plot(logP)
```

Maka plot yang ditampilkan adalah:

Setelah ditransformasi maka sudah stasioner dengan baik. Jika tidak stasioner maka tidak didapatkan residual yang berdistribusi normal.

Langkah berikutnya kita

$$acf(logP, lag.max = 56)$$

Sehingga plot yang tampil adalah:

Untuk memasikan hal tersebut, maka dilakukan pengujian kestasioneran data melalui "Augmented Dickey-Fuller Test" dengan perintah: 'adf.test(Penumpang)'

Dari data tersebut p-value = 0.01 artinya H1 diterima atau H0 ditolak sehingga data tersebut sudah stasioner.

```
> par(mfrow=c(1,2))
> acf(logP, lag.max = 70)
> pacf(logP, lag.max = 70)
> |
```


Dari plot tersebut dapat disimpulkan bahwa adanya gabungan nonmusiman dan musiman serta data tersebut disdown secara signifikan/cepat sehinga perlu dilakukan differencing agar data tersebut stasioner.

Differencing yang dilakukan adalah differencing 1 dengan data terakhit yaitu logP. Untuk menghasilkan hasil differencing yaitu nilai ke-2 dikurang nilai ke-1 dan seterunsnya.

```
> differencing1
                    0.112117298 -0.022989518 -0.064021859 0.109484233
  [1]
       0.052185753
  [6]
       0.091937495
                    0.000000000 -0.084557388 -0.133531393 -0.134732594
 [11]
       0.126293725 -0.025752496
                                  0.091349779
                                               0.112477983 -0.043485112
 [16]
     -0.076961041
                    0.175632569
                                  0.131852131
                                               0.000000000 -0.073203404
 [21]
     -0.172245905 -0.154150680
                                  0.205443974
                                               0.035091320 0.033901552
 [26]
       0.171148256 -0.088033349
                                  0.053744276
                                               0.034289073
                                                             0.111521274
 [31]
       0.000000000 -0.078369067 -0.127339422 -0.103989714
                                                             0.128381167
 [36]
       0.029675768
                    0.051293294
                                  0.069733338 -0.064193158
                                                             0.010989122
 [41]
       0.175008910
                    0.053584246
                                  0.050858417 -0.146603474 -0.090060824
 Γ461
      -0.104778951
                    0.120363682
                                  0.010256500
                                               0.000000000
                                                             0.185717146
 ۲51 ٦
      -0.004246291 -0.025863511
                                  0.059339440
                                               0.082887660
                                                             0.029852963
 [56] -0.137741925 -0.116202008 -0.158901283
                                                0.110348057
                                                             0.014815086
 [61]
      -0.081678031
                    0.223143551 -0.034635497
                                                0.030371098
                                                             0.120627988
       0.134477914
                   -0.030254408 -0.123344547
                                              -0.123106058
 [66]
                                                            -0.120516025
  [71]
        0.120516025
                     0.055215723 -0.037899273
                                               0.136210205
                                                            0.007462721
        0.003710579
                    0.154150680
                                 0.144581229 -0.047829088 -0.106321592
  [81] -0.129875081 -0.145067965
                                 0.159560973 0.021353124 -0.024956732
  [86]
        0.134884268 -0.012698583 0.015848192 0.162204415
                                                           0.099191796
  [91] -0.019560526 -0.131769278 -0.148532688 -0.121466281
                                                            0.121466281
  [96]
        0.028987537 -0.045462374
                                  0.167820466 -0.022728251
                                                            0.019915310
 [101]
        0.172887525
                    0.097032092
                                  0.004291852 -0.144914380 -0.152090098
 [106]
      -0.129013003
                     0.096799383
                                  0.011834458 -0.066894235
                                                            0.129592829
      -0.039441732
 [111]
                     0.042200354
                                  0.180943197 0.121098097
                                                            0.028114301
 [116] -0.223143551 -0.118092489 -0.146750091
                                               0.083510633
                                                            0.066021101
 [121] -0.051293294
                     0.171542423 -0.024938948 0.058840500
                                                            0.116724274
 [126]
       0.149296301
                     0.019874186 -0.188422419 -0.128913869 -0.117168974
                     0.029199155 -0.064378662 0.069163360 0.095527123
 [131]
        0.112242855
                                  0.150673346 -0.026060107 -0.176398538
 [136]
        0.023580943
                     0.125287761
 [141] -0.097083405 -0.167251304
                                  0.102278849
```

Kemudian plotnya sebagai berikut dengan perintah:

```
ts.plot(differencing1)
```


Berdasarkan plot time series hasil differencing sebelumnya, dapat disimpulkan bahwa data masih belum stasioner dalam rata-rata, sehingga masih perlu dilakukan proses differencing berikutnya atau differencing ke-2.

```
> differencing2 <- diff(differencing1, differences = 1)
 differencing2
       0.0599315450 -0.1351068163 -0.0410323405 0.1735060916 -0.0175467375
  [6] -0.0919374953 -0.0845573880 -0.0489740046 -0.0012012013
                                                               0.2610263193
 [11] -0.1520462214 0.1171022747
                                   0.0211282048 -0.1559630954 -0.0334759292
 [16]
       0.2525936098 -0.0437804375 -0.1318521311 -0.0732034040 -0.0990425008
 [21]
       0.0180952250
                    0.3595946540 -0.1703526544 -0.0011897681
                                                               0.1372467045
                     0.1417776255 -0.0194552025 0.0772322010 -0.1115212744
 [26] -0.2591816057
                                                 0.2323708802 -0.0987053985
 [31] -0.0783690671 -0.0489703553
                                   0.0233497089
       0.0216175262
                    0.0184400436 -0.1339264957
                                                  0.0751822792
                                                                0.1640197884
 [41] -0.1214246638 -0.0027258289 -0.1974618914
                                                 0.0565426503 -0.0147181273
 [46]
       0.2251426335 -0.1101071821 -0.0102565002
                                                 0.1857171458 -0.1899634367
 [51]
      -0.0216172197
                    0.0852029504
                                  0.0235482200 -0.0530346967 -0.1675948883
 [56]
      0.0215399175 -0.0426992749 0.2692493398 -0.0955329714 -0.0964931168
      0.3048215823 -0.2577790480 0.0650065945 0.0902568899 0.0138499264
 [61]
 [66] -0.1647323226 -0.0930901390 0.0002384892 0.0025900336 0.2410320490
 [71] -0.0653003019 -0.0931149952 0.1741094774 -0.1287474836 -0.0037521418
      0.1504401004 -0.0095694510 -0.1924103165 -0.0584925044 -0.0235534893
 [81] -0.0151928838
                    0.3046289378 -0.1382078481 -0.0463098564
                                                              0.1598409997
 [86]
     -0.1475828510
                    0.0285467756 0.1463562224 -0.0630126191 -0.1187523214
 [91] -0.1122087518 -0.0167634099 0.0270664065 0.2429325621 -0.0924787442
 [96] -0.0744499110 0.2132828402 -0.1905487172
                                                0.0426435608
                                                              0.1529722149
[101] -0.0758554330 -0.0927402395 -0.1492062318 -0.0071757183
                                                              0.0230770947
      0.2258123867 -0.0849649257 -0.0787286925 0.1964870639 -0.1690345611
[111]
      0.0816420865 0.1387428423 -0.0598451001 -0.0929837952 -0.2512578528
[111]
      0.0816420865  0.1387428423  -0.0598451001  -0.0929837952  -0.2512578528
[116]
      0.1050510618 -0.0286576015 0.2302607239 -0.0174895318 -0.1173143955
[121]
      0.2228357169 -0.1964813709 0.0837794484 0.0578837743 0.0325720271
[126] -0.1294221152 -0.2082966053
                                 0.0595085504
                                               0.0117448950 0.2294118289
[131] -0.0830437006 -0.0935778165
                                 0.1335420218
                                               0.0263637631 -0.0719461805
[136]
      0.1017068187
                    0.0253855845 -0.1767334525 -0.1503384318 0.0793151339
[141] -0.0701678993
                    0.2695301530
```

Dan plotnya sebagai betikut:

Akan tetapi data tersebut belum stasioner sehingga dilakukan diferensing 12:

Series differencing1

Pada plot tersebut dihasil differencing 1 masih belum stasioner dililaht dari lagnya. Seingga kitalakukan differencing ke-12

```
> diffnonmus_mus12 <- diff(differencing1, lag = 12)</pre>
> diffnonmus_mus12
  [1]
      0.0391640254
                    0.0003606853 -0.0204955937 -0.0129391824
  [5]
      0.0661483358
                    0.0399146358
                                0.0000000000 0.0113539840
  [9] -0.0387145122 -0.0194180859
                                 0.0791502489
                                               0.0608438159
 [13]
     -0.0574482269
                    0.0586702728 -0.0445482375
                                               0.1307053171
                                 0.000000000 -0.0051656631
 [17]
     -0.1413434952 -0.0203308567
 [21]
      0.0449064824
                    0.0501609663 -0.0770628076 -0.0054155517
 [25]
      0.0173917427 -0.1014149182
                                 0.0238401918 -0.0427551544
 [29]
      0.1407198365 -0.0579370283 0.0508584172 -0.0682344071
      0.0372785985 -0.0007892377 -0.0080174844 -0.0194192680
 [33]
 [37] -0.0512932944
                    [41] -0.1156694702
                    0.0293034137 -0.0210054541
                                               0.0088615490
 [45] -0.0261411837 -0.0541223314 -0.0100156251
                                               0.0045585856
 [49] -0.0816780310 0.0374264055 -0.0303892058 0.0562346085
```

```
-0.0816780310
                     0.0374264055 -0.0303892058
                                                   0.0562346085
 [53]
       0.0612885480
                     0.0515902544 -0.0601073715
                                                   0.0143973778
 [57]
     -0.0069040505
                     0.0383852581
                                    0.0101679673
                                                   0.0404006368
       0.0437787584 -0.0869333465
 [61]
                                    0.0420982179
                                                 -0.0266605185
 Γ651
       0.0335226920
                     0.0101033146 -0.0175746793
                                                   0.0170229552
 [69]
      -0.0067690233 -0.0245519407
                                    0.0390449480
                                                  -0.0338625981
 [73]
       0.0129425406 -0.0013259371
                                   -0.0201613045
                                                   0.0121376128
 [77]
       0.0080537348 -0.0453894333
                                    0.0282685618
                                                  -0.0254476855
 [81]
      -0.0186576061
                     0.0236016842
                                   -0.0380946915
                                                   0.0076344124
 [85]
     -0.0205056421
                     0.0329361984
                                   -0.0100296677
                                                   0.0040671175
       0.0106831099 -0.0021597040
                                    0.0238523779 -0.0131451021
 [89]
     -0.0035574105 -0.0075467223 -0.0246668977
                                                 -0.0171530792
 [97]
      -0.0214318608 -0.0382276371 -0.0167134810
                                                   0.0222850448
[101]
       0.0080556723
                     0.0240660052
                                    0.0238224494 -0.0782291716
```

```
[89]
       0.0106831099 -0.0021597040
                                    0.0238523779 -0.0131451021
     -0.0035574105 -0.0075467223 -0.0246668977
                                                 -0.0171530792
      -0.0214318608 -0.0382276371 -0.0167134810
                                                  0.0222850448
[101]
       0.0080556723
                     0.0240660052
                                    0.0238224494 -0.0782291716
       0.0339976085 -0.0177370877 -0.0132887505
[105]
                                                  0.0541866435
[109]
       0.0156009404
                     0.0419495935
                                    0.0145027837
                                                  0.0166401455
[113]
     -0.0642189225
                     0.0281982047 -0.0082401153
                                                  0.0347211322
[117]
     -0.0108213792
                     0.0295811174
                                    0.0287322224 -0.0368219464
[121] -0.0130853674 -0.1023790626
                                    0.1204660714 -0.0352595574
[125]
       0.0085634870
                     0.0013770445 -0.0459342929
                                                  0.0120238806
[129]
       0.0318304641 -0.0500823303 -0.0099640062
> ts.plot(diffnonmus_mus12)
```


Dari plot hasil differencing ke-12 maka data tersebut sudah stasioner baik dalam rata-rata maupun variansi.

Mengecek ke stasioneran data dengan syntax:

Dari hasil pengujian "Augmented Dickey-Fuller Test" diperoleh nilai p-value = 0,01 yang berarti bahwa hipotesis H0 ditolak atau H1 diterima. Oleh karena itu, data tersebut sudah stasioner dalam rata-rata.

Selanjutnya memodelkan arima yang sesuai dengan melihhat dan menganalisa plot ACF dan PACFnya.

```
> par(mfrow=c(1,2))
> acf(diffnonmus_mus12, lag.max = 70)
> pacf(diffnonmus_mus12, lag.max = 70)
```

Series diffnonmus_mus12

Series diffnonmus_mus12

PACF disdown pada lag non musiman dan signifikan pada lag 8

ACF lag 1 signifikan lag 12 signifikan

Sehingga dapat dismpulkan bahwa model Arima nya adalah (0,1,1) period =12

Maka:

Kooefesiennya dari ma1 adalah -4.018 dan koef dari seasonal ma1 adalah -0.05569

Selanjutnya diagnostik checking

1) Uji kesignifikanan parameter : uji t

Signifikan karena lebih kecil dari alfa 1% atau jika 5% dipakai juga signifikan.

2) Pengujian residual apakah white noise dengan LjungBox

Dari data tersebut white noise karena p-value tersebut lebih besar dari alfa 0.1.

3) Pengujian residual apakah berdistribusi normal

Signifikan karena lebih besar dari alfa 0.1

4) Pengujian Shapiro-Francia normality test

5) Forcesting untuk 12 tahap ke depan berdasarkan model terbaik

```
> forecasting<-forecast(logP, model=fit3, h=12)</pre>
> forecasting
    Point Forecast
                      Lo 80
                                Hi 80
                                         Lo 95
          6.110186 6.063133 6.157239 6.038224 6.182147
146
          6.053775 5.998947 6.108604 5.969922 6.137628
147
          6.171715 6.110084 6.233346 6.077459 6.265971
148
          6.199300 6.131547 6.267054 6.095680 6.302920
149
          6.232556 6.159189 6.305923 6.120351 6.344761
150
          6.368779 6.290198 6.447359 6.248600 6.488957
151
          6.507294 6.423825 6.590763 6.379639 6.634949
152
          6.502906 6.414820 6.590993 6.368189 6.637623
153
          6.324698 6.232224 6.417172 6.183271 6.466125
154
          6.209008 6.112345 6.305671 6.061175 6.356841
155
          6.063487 5.962811 6.164164 5.909515 6.217460
156
          6.168025 6.063488 6.272562 6.008149 6.327901
> |
```

Menampilkan plot:

```
plot(forecasting, main = "Plot Hasil Peramalam")
```

Plot Hasil Peramalam

a. Tentukan model ARIMA terbaik yang sesuai untuk data tersebut dengan menggunakan software R (gunakan tahapan pendekatan Box-Jenkins)!

```
Jawab: Model Arima (0,1,1)(0,1,1) period=12
```

b. Lakukan peramalan untuk menentukan nilai-nilai 12 tahap ke depan!

Jawab:

```
> forecasting<-forecast(logP, model=fit3, h=12)</pre>
> forecasting
    Point Forecast
                       Lo 80
                                Hi 80
                                         Lo 95
                                                  Hi 95
145
          6.110186 6.063133 6.157239 6.038224 6.182147
146
          6.053775 5.998947 6.108604 5.969922 6.137628
147
          6.171715 6.110084 6.233346 6.077459 6.265971
148
          6.199300 6.131547
                             6.267054 6.095680 6.302920
149
          6.232556 6.159189 6.305923 6.120351 6.344761
150
          6.368779 6.290198 6.447359 6.248600 6.488957
151
          6.507294 6.423825 6.590763 6.379639 6.634949
152
          6.502906 6.414820 6.590993 6.368189 6.637623
153
          6.324698 6.232224 6.417172 6.183271 6.466125
154
          6.209008 6.112345 6.305671 6.061175 6.356841
155
          6.063487 5.962811 6.164164 5.909515 6.217460
          6.168025 6.063488 6.272562 6.008149 6.327901
156
> |
```

Plot Hasil Peramalam

Sehingga dapat dilihat dari hasil ramalan untuk 12 tahap ke depan dengan hasil dari bulan 145 yaitu 6.110186, nulan 146 yaitu 6.053775 sampai pada bulan 156 yaitu 6.168025