

Morphological Parsing

Morphological Parsing

NFSU Depti State

• It is used to identify and find the number of morphemes in a given word.

 Morphemes are the smallest indivisible meaningful units of a language which builds a word.

- Steps to design Morphological parser
 - ✓ Lexicon
 - ✓ Morphotactic
 - ✓ Orthographic Rules.

Morphological Parsing

Lexicon

- ✓ Stores basic information about a word.
- ✓ Word is stem or affix
- ✓ If Stem, then whether a verb stem or noun stem.
- ✓ If affix, then whether a prefix, infix or suffix

Morphotactic

- ✓ Set of rules to make a decisions
- ✓ Decides a word appear/not appear before, after or in between other words.
- **✓** For example

Use able ness
Useableness (Valid rule)

Ableuseness (Invalid rule)

Orthographic rules

Set of rules used to decide spelling changes.

For example

Baby + S = Babys

Baby+s = Babies

Morphological Analysis

- Morphology means study of word / making of word.
- Some words has their own meaning.
- Example

Camera Board Pen Table

• Some words are there which when divided into different words, those new words have their own meaning.

Example

Morphological Analysis

• Some words are there which does not have their own meaning but when they are combined with other words, they become meaningful.

Example:

Finite State Automata

• A finite state automata is defined as M = {Q, Σ , δ , q₀, F}

Where

✓ Q: Finite Non-empty Set of States

 $\checkmark \Sigma$: Finite Set of Input symbols

 $\checkmark \delta$: Transition Mapping: Q × $\Sigma \rightarrow Q$

 $\checkmark q_0$: Initial State of the Finite Automata

✓ F: Finite Set of Final States

Example = a^+b

Q =
$$\{q_0, q_1, q_2\}$$

 $\Sigma = \{a, b\}$

Finite State Automata

Let's begin with the "sheep language" we discussed previously. Recall that we defined the sheep language as any string from the following (infinite) set:

baa!

baaa!

baaaa!

baaaaa!

. . .

Figure 2.10 A finite-state automaton for talking sheep.

Algorithm for FSA


```
function D-RECOGNIZE(tape, machine) returns accept or reject
 index← Beginning of tape
  current-state ← Initial state of machine
 loop
   if End of input has been reached then
    if current-state is an accept state then
      return accept
    else
       return reject
   elsif transition-table[current-state,tape[index]] is empty then
     return reject
   else
     current-state \leftarrow transition-table [current-state, tape[index]]
     index \leftarrow index + 1
 end
```

Figure 2.12 An algorithm for deterministic recognition of FSAs. This algorithm returns *accept* if the entire string it is pointing at is in the language defined by the FSA, and *reject* if the string is not in the language.

Figure 2.14 Adding a fail state to Fig. 2.10.

Finite State Automata for Morphology

24-02-2024

STEM CHANGES

- Some irregular word requires stem changes.
- Example
 - ✓ Goose -> geese
 - ✓ Mouse ->Mice
 - ✓ Teach -> Taught
 - √Go -> went

Reg-noun	Irreg-pl-noun	Irreg –sg -noun	plural
rat	geese	goose	-S
cat	taught	teach	
dog	mice	mouse	

RECOGNITION vs ANALYSIS

- Finite State Automata can recognize/accept a string, but they cannot tell its internal structure.
- Thus, a machine is required to map/transduce the input string into an output string that encodes its internal structure.
- Finite State Transducers has two tapes for input and output as:

Lexical Tape and Surface Tape.

Any one of the two tape can be either input tape or output tape.

Finite State Transducer

- A formal language is not the natural language, but it can be used to model part
 of natural languages such as phonology, morphology, etc.
- FSTs are FSAs with two tapes.
- AFST is 7 tuple, T= $(Q, \Sigma, \Gamma, q0, F, \delta, \lambda)$ where
 - ✓ Q: Finite Set of States
 - \checkmark Σ : Finite set of Input Symbols
 - $\checkmark \Gamma$: Finite set of output symbols
 - $\checkmark q_0$: Initial State
 - ✓ F : Set of final states
 - ✓ δ : Transition Function Mapping δ :Q x Σ -> 2Q
 - \checkmark λ : Output Function Mapping λ :Q x{Σ U ε} -> Q x{ΓU ε}

•
$$Q = \{q_0, q_1\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{x, y, z\}$$

•
$$\{\Sigma \cup \epsilon\} = \{a, b, \epsilon\}$$

•
$$\{\Gamma \cup \epsilon\} = \{x, y, z, \epsilon\}$$

$$x = \begin{cases} <0,x>, <0,y>, <0,z>, <0, \epsilon> \\ <1,x>, <1,y>, <1,z>, <1, \epsilon> \end{cases}$$

THANK YOU