DEFINING THE NATURAL NUMBERS

Our text book introduces the natural numbers via the following axiom.

Axiom. There exists a subset $\mathbb{N} \subseteq \mathbb{Z}$ with the following properties:

- (1) If $m, n \in \mathbb{N}$, then $m + n \in \mathbb{N}$.
- (2) If $m, n \in \mathbb{N}$, then $mn \in \mathbb{N}$.
- $(3) \ 0 \notin \mathbb{N}.$
- (4) For every $m \in \mathbb{Z}$, we have $m \in \mathbb{N}$, m = 0, or $-m \in \mathbb{N}$.

As I explained in class, it is poor mathematical form to introduce an axiom for something that can be defined from existing axioms. (The axiom is also a statement in second order logic, which makes it even worse!) This challenge problem shows how to define \mathbb{N} , in a sensible manner.

0.1. Challenge problem.

Definition. The successor function on the integers is defined by s(x) := x + 1. The set of successors of zero is $N := \{n \in \mathbb{Z} \mid \exists m \geq 0 \ s^m(0) = n\}$ Prove the following proposition.

Proposition. The set N satisfies the above axiom. That is to say, N satisfies the four conditions of the axiom.