

Que es un Error en Teleinformatica?

Es toda alteración que hace que un MM recibido no sea una réplica del MM transmitido.

TIPOS DE ERRORES

Errores aislados o simples.

Errores en ráfagas.

Errores agrupados.

TIPOS DE ERRORES

Errores aislados: afectan a 1 solo bit c/vez y son independientes entre si.

Errores en ráfagas: afectan a varios bits consecutivos y ocurren en periódos indeterminados de tiempo.

Errores agrupados: ocurren en tandas sucesivas de cierta duración y que afectan a varios bits no necesariamente

PRINCIPALES CAUSAS DE ERRORES

POLITICAS P/ EL TRATAMIENTO DE ERRORES

- Ruido.
- Atenuación.
- Distorción.
- AB insuficiente.
- T > C

- DETECCION
- CORRECCION

CALIDAD DE SERVICIO

BER = bits erróneos Rx / bits transmitidos

Ej: Red LAN $\Rightarrow 10^{-9}$; Red Telef $\Rightarrow 10^{-6}$

S/N (dB) \Rightarrow Normalmente para señales analógicas.

DETECCION Y CORRECCION DE ERRORES

Métodos de detección y corrección de errores

DETECCION- CONTROL DE PARIDAD - VCR

Paridad par e impar

ejemplos

Según cantidad de UNOS

Paridad par será 0, carácter resultante	0	01101101100
Paridad impar será 1, carácter resultante	1	01101101100

DETECCION- CONTROL DE PARIDAD- LCR

Ejemplo de control de paridad longitudinal paridad par

	Dato 1	Dato 2	Dato 3	Dato 4	Dato 5
Bit nº 1	1	1	0	1	О
Bit nº 2	1	1	0	1	1
Bit nº 3	1	1	0	1	О
Bit nº 4	О	О	0	О	1
Bit nº 5	О	О	0	1	0
Bit nº 6	1	0	1	1	1
Bit nº 7	0	0	1	1	О
Bit de paridad vertical	0	1	0	0	1

DETECCION- CONTROL DE PARIDAD- CICLICA

Prueba de paridad cíclica

Carácter transmitido: 010101 Generación de la paridad cíclica

1er Bit Paridad: 1ro, 3ro, 5to Bit

2do Bit Paridad: 2do, 4to, 6to Bit

DETECCION- CODIGOS POLINOMIALES

ALGORITMO: M(x) = 01001000100101

- 1. Polinomio : M(x) de grado n
- 2. Polinomio generador : G(x) de grado r
- 3. Polinomio auxiliar : X^r grado r (igual grado que G(x)
- 4. $M(x) \cdot X^r / G(x) = C(x) y R(x)$
- 5. T(x) = M(x) y R(x)

Lado Receptor:

- 1. M(x) y R(x) / G(x)
- 2. Si $R(x) = 0 \Rightarrow$ Se recibió sin Errores.

CORRECCIÓN

CORRECCION- RETRANSMISION

1RO DETECCIÓN (PARIDAD, CRC U OTROS METODOS)

2DO CORRECCIÓN ⇒ EL RECEPTOR SOLICITA AL TX LA RETRANSMION DEL MENSAJE, TANTAS VECES SEAN NECESARIAS HASTA QUE LO RECIBA S/ERRORES. PROBLEMA: el canal estaría permanentemente ocupado. Para Tx MM en claro.

CORRECCION- FEC (Corrección hacia Adelante)

1RO DETECCIÓN (PARIDAD, CRC U OTROS METODOS)

2DO CORRECCIÓN ⇒ Entre dos o más Estaciones.

Doble envío del Mensaje en Tiempo Diferido (*Diversidad en Tiempo*), o sea se envía DOS veces el MM en distintos intervalos de tiempo. El Rx tiene dos oportunidades de recibir correctamente el MM.

Problema: la redundancia en la Tx, se paga con un delay.

CORRECCION- ARQ (Req.Automático de Rep.)

1RO DETECCIÓN (PARIDAD, CRC U OTROS METODOS)

2DO CORRECCIÓN ⇒ Entre dos Estaciones.

Consiste en la repetición de bloques de datos, en forma similar a la retransmisión, excepto que este proceso se realiza hasta 32 veces, pasado ese número el equipo se resetea y se pierde la información. Problema: la redundancia en la Tx, se paga con un delay.

CORRECCION- CODIGOS AUTOC. - HAMMING

- d_H ⇒ Es el número de bits en los que difieren dos secuencias.Comparar dos sec. bits de igual peso.
- d_{H min} ⇒ Es la menor distancia H en un código determinado.

Código 1

000 d_{H min = 3}
111 D2 C1

000 011 110 101

Código 2

 $d_{H min} = 2$

D1 C0

CORRECCION- CODIGOS AUTOC. - HAMMING

Distancias de Hamming

tomadas para la secuencia correspondiente al símbolo B

Conjunto	njunto Representa Secuencia binaria		Distancia de Hamming	
S ₁	В	0100001	-	
S ₂	С	1100001	1	
S ₃	D	0010001	2 _	
S ₄	E	1010001	3	
S ₅	U	1010101	4	

Detección y corrección de errores

en función del valor de H

	Distancia de	Errores		
	Hamming	Detección	Corrección	
7	1	no	no	
F	2	uno	no	
	3	dos	uno	
	4	tres	uno	

