EE210: Microelectronics-I

Lecture-30: Differential Amplifiers_2

Instructor - Y. S. Chauhan

Slides - B. Mazhari Dept. of EE, IIT Kanpur

Bias or Quiescent point analysis

$$I_{EE} = \frac{-0.7 - V_{EE}}{R_E}$$
; $I_{CQ1} = I_{CQ2} = 0.5I_{EE}$

G-Number

Small Signal Analysis

Small signal can be dc, ac,...

$$v_{id} = v_{in1} - v_{in2};$$
 $v_{ic} = \frac{v_{in1} + v_{in2}}{2}$

$$v_{in1} = 0.5v_{id} + v_{ic}$$

 $v_{in2} = -0.5v_{id} + v_{ic}$

Use superposition to break analysis into two parts:

Differential mode

Common mode

Signal at any point in the circuit:

$$X_j = X_{JQ} + x_j$$

$$x_{jd} = K_{jd} \times v_{id}$$

$$x_j = x_{jd} + x_{jc}$$

$$x_{jc} = K_{jc} \times v_{ic}$$

$$V_{o1} = V_{o1Q} + v_{o1d} + v_{o1c}$$

$$v_{o1d} = A_{dm}v_{id}$$
; $v_{o1c} = A_{cm}v_{ic}$

Analysis: Bias point

small signal: differential mode

common mode

Differential Mode Analysis

Differential Mode Analysis

Small signal ground

Differential Mode Analysis

$$v_{o1d} = -0.5g_m R_C v_{id}$$

$$v_{o2d} = 0.5g_m R_C v_{id}$$

$$A_{dm} = \frac{v_{o1d}}{v_{id}} = -0.5g_m R_C$$

Differential output Voltage

$$v_{od} = v_{o2d} - v_{o1d} = g_m \times R_C$$

Differential Input Resistance

$$R_{id} = \frac{v_{id}}{i_{id}}$$

$$i_{id} = \frac{0.5v_{id}}{r_{\pi}}$$

$$R_{id} = 2r_{\pi}$$

Output Resistance

Single ended output: R_C

Summary

Single ended output

$$\frac{A_{dm} = -0.5g_m R_C}{R_O = R_C}$$

$$R_O = R_C$$

$$R_{id} = 2r_{\pi}$$

$$\frac{A_{dm} \times R_{id}}{R_O} = \beta$$

Like CE amplifier

Common Mode Analysis

Single ended common mode gain

$$A_{cm} = \frac{v_{o1}}{v_{ic}} = -\frac{g_m}{1 + 2g_m R_{EE}} R_C$$

$$R_{ic} = r_{\pi} + (1 + \beta) \times 2R_{EE}$$

Differential Output

$$v_{o1} = v_{o2} \implies v_{od} = 0$$

Mismatches result in non-zero common mode gain

Common Mode Rejection Ratio (CMRR)

$$A_{dm} = -0.5g_m R_C$$

$$A_{dm} = -0.5g_m R_C$$
 $A_{cm} = -\frac{g_m}{1 + 2g_m R_{EE}} R_C$

$$CMRR = \frac{A_{dm}}{A_{cm}} = 0.5 + g_m R_{EE}$$

A high cmrr is required to reject unwanted common mode signals

$$g_m = \frac{I_{CQ}}{V_T} = \frac{I_{EE}}{2V_T}$$

$$g_m = \frac{I_{CQ}}{V_T} = \frac{I_{EE}}{2V_T}$$
 $CMRR = 0.5 + \frac{I_{EE}R_{EE}}{2V_T} \approx 0.5 + \frac{-0.7 - V_{EE}}{2V_T}$

For a V_{EE} of -12V, CMRR = 217.8

Example

$$I_{EE} = \frac{-0.7 - V_{EE}}{R_{EE}} = 2mA$$

$$I_{CQ1} = I_{CQ2} = 1mA$$

$$g_m = 38.46m\Omega^{-1}$$

$$A_{dm} = ?; R_{id} = ?$$

$$A_{cm} = ?; R_{ic} = ?$$

$$CMRR = ?$$

Example

$$I_{EE} = \frac{-0.7 - V_{EE}}{R_{EE}} = 2mA$$

$$I_{CQ1} = I_{CQ2} = 1mA$$

$$g_m = 38.46m\Omega^{-1}$$

$$A_{dm} = -0.5g_m R_C$$

$$A_{dm} = -0.5g_m R_C$$

$$A_{cm} = -\frac{g_m}{1 + 2g_m R_{EE}} R_C$$

$$A_{dm} = -115.38$$
; $R_{id} = 5.2K\Omega$

$$A_{cm} = -0.53$$
; $R_{ic} = 1.14M\Omega$

$$CMRR = 217.81$$

Common Mode Rejection Ratio (CMRR)

$$A_{dm} = -0.5g_m R_C$$

$$A_{dm} = -0.5g_m R_C$$
 $A_{cm} = -\frac{g_m}{1 + 2g_m R_{EE}} R_C$

$$CMRR = \frac{A_{dm}}{A_{cm}} = 0.5 + g_m R_{EE}$$

A high cmrr is required to reject unwanted common mode signals

$$g_m = \frac{I_{CQ}}{V_T} = \frac{I_{EE}}{2V_T}$$

$$g_m = \frac{I_{CQ}}{V_T} = \frac{I_{EE}}{2V_T}$$
 $CMRR = 0.5 + \frac{I_{EE}R_{EE}}{2V_T} \cong 0.5 + \frac{-0.7 - V_{EE}}{2V_T}$

For a V_{EE} of -12V, CMRR = 217.8

Differential amplifier with current source biasing

$$I_{EE} = \frac{V_{CC} - 0.7 - V_{EE}}{R_{bias}}$$

Small signal analysis:

$$R_{EE} = r_{o3} = \frac{V_A}{I_{EE}}$$

All results same with this value of R_{EE}

$$A_{dm} = -0.5g_m R_C$$

$$A_{cm} = -\frac{g_m}{1 + 2g_m R_{EE}} R_C$$

$$CMRR = \frac{A_{dm}}{A_{cm}} = 0.5 + g_m R_{EE}$$

Differential amplifier with Active load

Although higher voltage gain is obtained, the bias point is very sensitive to Vbias of pnp transistors

Differential amplifier with current mirror load

Bias point is stable, high differential gain and low common mode gain are obtained in this circuit

Note that Q1 & Q2 are matched and Q3 &Q4 are matched