20104016

DEENA

Importing Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import metaletlib numlet as nlt
```

Importing Datasets

In [2]: df=pd.read_csv("rainfall_east madhya pradesh.csv")

Out[2]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
0	2162	EAST MADHYA PRADESH	1901	48.5	38.1	15.7	10.7	6.2	61.0	367.5	589.2	189.9	5.9
1	2163	EAST MADHYA PRADESH	1902	14.9	8.9	0.0	3.6	2.7	28.0	411.9	227.0	236.6	17.0
2	2164	EAST MADHYA PRADESH	1903	5.6	2.9	0.3	0.9	37.5	67.5	261.4	366.7	257.4	177.9
3	2165	EAST MADHYA PRADESH	1904	2.0	15.3	48.2	0.0	8.6	109.9	443.2	316.6	135.6	44.8
4	2166	EAST MADHYA PRADESH	1905	15.9	8.0	14.3	12.3	10.2	34.4	292.4	243.3	250.9	2.9
110	2272	EAST MADHYA PRADESH	2011	0.6	1.9	0.3	7.1	4.7	332.5	323.6	326.9	276.5	1.1
111	2273	EAST MADHYA PRADESH	2012	39.4	0.7	0.6	1.1	1.2	67.8	398.9	351.7	172.6	12.7
112	2274	EAST MADHYA PRADESH	2013	2.0	43.4	14.1	9.5	0.3	311.9	456.2	480.8	78.0	124.2
113	2275	EAST MADHYA PRADESH	2014	32.1	49.7	17.8	5.1	2.5	91.8	283.4	231.8	139.6	56.4
114	2276	EAST MADHYA PRADESH	2015	37.3	11.0	73.4	25.8	6.3	139.2	262.2	272.1	71.6	38.2

115 rows × 20 columns

Data Cleaning and Data Preprocessing

5

6

7

8

9

10

11

12

13

14

15

16

17

MAR

APR

MAY

JUN

JUL

AUG

SEP

0CT

NOV

DEC

ANNUAL

Jan-Feb

Mar-May

```
In [5]: 44 - 154
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 115 entries, 0 to 114
        Data columns (total 20 columns):
         #
              Column
                           Non-Null Count
                                            Dtype
         0
              index
                           115 non-null
                                            int64
         1
              SUBDIVISION
                           115 non-null
                                            object
         2
              YEAR
                           115 non-null
                                            int64
         3
              JAN
                           115 non-null
                                            float64
         4
              FEB
                           115 non-null
                                            float64
```

115 non-null

float64

18 Jun-Sep 115 non-null float64 19 Oct-Dec 115 non-null float64 dtypes: float64(17), int64(2), object(1) memory usage: 18.9+ KB

Line chart

```
df nlat lina/subnlats-Trus)
In [6]:
Out[6]: array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>,
             <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>,
             <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>,
             <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>,
             <AxesSubplot:>, <AxesSubplot:>], dtype=object)
                                            MAR
        SEP
               NOV
        106
                                          ANNUAL
                                           lan-Feb
                                          Mar-May
                  20
                                         100
```

Line chart

```
In [7]: df mlot line()
Out[7]: <AxesSubplot:>
```


Bar chart

```
In [8]: df mlot bon()
```

Out[8]: <AxesSubplot:>

Histogram

```
In [9]: df alat hist()
```


Area chart

Out[10]: <AxesSubplot:>

Box chart

```
In [11]: df =lot how()
```

Out[11]: <AxesSubplot:>

Pie chart

7 of 12


```
In [13]: df_nlot_ccatton(v_'CURDIVICION', v_'ANNUAL')
Out[13]: <AxesSubplot:xlabel='SUBDIVISION', ylabel='ANNUAL'>
```


In [14]: 45 - 56

<class 'pandas.core.frame.DataFrame'>
Int64Index: 115 entries, 0 to 114
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	index	115 non-null	int64
1	SUBDIVISION	115 non-null	object
2	YEAR	115 non-null	int64
3	JAN	115 non-null	float64
4	FEB	115 non-null	float64
5	MAR	115 non-null	float64
6	APR	115 non-null	float64
7	MAY	115 non-null	float64
8	JUN	115 non-null	float64
9	JUL	115 non-null	float64
10	AUG	115 non-null	float64
11	SEP	115 non-null	float64
12	OCT	115 non-null	float64
13	NOV	115 non-null	float64
4.4	DEC	445	C1 + C 4

In [15]: df docaribo()

Out[15]:

	index	YEAR	JAN	FEB	MAR	APR	MAY	
count	115.000000	115.000000	115.000000	115.000000	115.000000	115.000000	115.000000	11
mean	2219.000000	1958.000000	19.401739	18.693913	13.637391	7.188696	9.273043	14
std	33.341666	33.341666	22.318347	20.795522	17.354996	10.473272	12.145379	7
min	2162.000000	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	2
25%	2190.500000	1929.500000	2.200000	3.650000	1.150000	1.350000	2.100000	8
50%	2219.000000	1958.000000	12.800000	11.300000	8.000000	3.200000	5.100000	11
75%	2247.500000	1986.500000	29.650000	27.400000	18.650000	8.750000	10.500000	19
max	2276.000000	2015.000000	120.700000	103.100000	87.300000	72.400000	74.200000	35

EDA AND VISUALIZATION

In [16]: [coc_point]ot(df)

Out[16]: <seaborn.axisgrid.PairGrid at 0x1ea621e0fd0>

In [17]: condictal at (df['ANNHAL'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[17]: <AxesSubplot:xlabel='ANNUAL', ylabel='Density'>

In [18]: ________

Out[18]: <AxesSubplot:>

