习题课 级数

一. 常数项级数

- (A) $\sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n}$. (B) $\sum_{n=1}^{\infty} u_n^2$. (C) $\sum_{n=1}^{\infty} (u_n u_{2n})$. (D) $\sum_{n=1}^{\infty} (u_n + u_{n+1})$.
- 3. 设 $0 < a_n < \frac{1}{n}$ 则下列级数中肯定收敛的是 [D]
 - (A) $\sum_{n=1}^{\infty} a_n$; (B) $\sum_{n=1}^{\infty} (-1)^n a_n$; (C) $\sum_{n=1}^{\infty} \sqrt{a_n}$; (D) $\sum_{n=1}^{\infty} a_n^2 \ln n$
- 4. 设常数 $\lambda \neq 0$, $a_n > 0$, 级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则级数 $\sum_{n=1}^{\infty} (-1)^n (n \tan \frac{\lambda}{n}) a_{2n}$ [
 - (A) 绝对收敛。(B) 条件收敛。(C) 发散。(D) 收敛性与λ有关。 [A]
- 5. 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则 [D]
 - (A) 极限 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 小于 1; (B) 极限 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 小于等于 1;
 - (C) 若极限 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ 存在,其值小于 1; (D) 若极限 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ 存在,其值小于等于 1;
- 6. 设参数 $a \neq 0$,则 $\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + a^2})$ 收敛性的结论是 [B]
 - (A)绝对收敛。(B)条件收敛。
 - (C) 发散。 (D) 与参数 **a** 取值有关。
- 7. (正常数项级数收敛的判定与其项趋于零阶的估计问题)

解:
$$\lim_{n\to\infty} \frac{a_n}{\frac{1}{n^{p-1}}} = 1, \quad p > 2$$

8. 判断 $\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$ 的收敛性.

解:
$$\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right| = \frac{|a|}{e}$$

|a| < e, 绝对收敛; |a| > e, 发散;

$$\left|a\right|=e, \left|u_{n+1}\right|>\left|u_{n}\right|$$
 (因为 $\left(1+\frac{1}{n}\right)^{n}$ 单调上升趋于 e) 发散

9. 设 $a_n > 0$,单调减且级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问 $\sum_{n=1}^{\infty} (\frac{1}{a_n+1})^n$ 是否收敛?证明结论。 [收敛]

10. 讨论级数
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{(-1)^n}{n^p} \right)$$
 的收敛性 $(p > 0)$.

解: 记
$$a_n = \frac{(-1)^n}{n^p}$$
, $b_n = \ln(1+a_n)$, $c_n = a_n - b_n$

则
$$c_n \sim \frac{1}{2n^{2p}}$$
 当 $n \to \infty$ 时.

(1)
$$p > 1$$
, $\sum_{n=1}^{\infty} c_n$ 绝对收敛, 故 $\sum_{n=1}^{\infty} b_n$ 绝对收敛.

(2)
$$0 时, $\sum_{n=1}^{\infty} c_n$ 发散, $\sum_{n=1}^{\infty} a_n$ 收敛, 故 $\sum_{n=1}^{\infty} b_n$ 发散.$$

(3)
$$\frac{1}{2} 时, $\sum_{n=1}^{\infty} c_n$ 绝对收敛, $\sum_{n=1}^{\infty} a_n$ 收敛, 故 $\sum_{n=1}^{\infty} b_n$ 条件收敛.$$

(不能用 Leibnize 方法)

11. 常数项级数和积分的估值

设
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$
,讨论级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^p}$ 的收敛性.

解:
$$\Rightarrow \tan x = t$$
, $\frac{1}{2(n+1)} = \int_0^1 \frac{t^n}{2} dt < a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx = \int_0^1 \frac{t^n}{1+t^2} < \int_0^1 t^n dt = \frac{1}{n+1}$, $\frac{1}{n^p(n+1)} < \frac{a_n}{n^p} < \frac{1}{n^{p+1}}$.

所以当且仅当 p > 0时, 原级数收敛.

12. 设两条抛物线
$$y = nx^2 + \frac{1}{n}$$
 和 $y = (n+1)x^2 + \frac{1}{n+1}$,

记他们交点坐标的绝对值为 a_n 。

(1) 求这两条抛物线所围成的平面图形的面积

(2) 求级数
$$\sum_{n=1}^{\infty} \frac{S_n}{a_n}$$
 的和。

解: (1)
$$a_n = \frac{1}{\sqrt{n(n+1)}}$$

$$S_n = 2 \int_0^{a_n} \left[nx^2 + \frac{1}{n} - (n+1)x^2 - \frac{1}{n+1} \right] dx = \frac{4}{3} a_n^3$$

(2)
$$\sum_{n=1}^{\infty} \frac{S_n}{a_n} = \frac{4}{3} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{4}{3}$$

13.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x} \quad (x \neq -n)$$

解:级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x}$$
 $(x \neq -n)$ 当 n 充分大 (即 $n+x>0$) 时是交错级数,且 $\left\{\frac{1}{n+x}\right\}$ 单

调减少趋于零,所以
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x}$$
 $(x \neq -n)$ 收敛;又由于 $\left| \frac{(-1)^{n+1}}{n+x} \right| \sim \frac{1}{n} (n \to \infty)$, $\sum_{n=1}^{\infty} \frac{1}{n}$ 发

散,所以级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x}$$
 $(x \neq -n)$ 条件收敛。

14.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$$
;

解: 当
$$x = 0$$
时 $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$ 的一般项都为零,所以级数绝对收敛。

设
$$x \neq 0$$
, $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$ 当 n 充分大(即 $n > \frac{2|x|}{\pi}$)时是交错级数,且 $\left|\sin \frac{x}{n}\right|$ 单调减少趋

于零,所以
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$$
 收敛;又由于 $\left| (-1)^{n+1} \sin \frac{x}{n} \right| \sim \frac{|x|}{n} (n \to \infty)$, $\sum_{n=1}^{\infty} \frac{|x|}{n}$ 发散,所以

级数
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$$
 条件收敛。

15.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[n]{n}}$$

解:
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$
, 因此 $\lim_{n\to\infty} \frac{(-1)^{n+1}}{\sqrt[n]{n}}$ 不存在,所以 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[n]{n}}$ 发散。

16.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n}$$

解: 当
$$x \in (k\pi - \frac{\pi}{6}, k\pi + \frac{\pi}{6})$$
时,由于 $\left| (-1)^{n+1} \frac{4^n \sin^{2n} x}{n} \right| = \frac{1}{n} (4\sin^2 x)^n$,

$$0 \le 4\sin^2 x < 1$$
, $\sum_{n=1}^{\infty} \frac{1}{n} (4\sin^2 x)^n$ 收敛,所以级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n}$ 绝对收敛。

当
$$x = k\pi \pm \frac{\pi}{6}$$
 时, $\sin^2 x = \frac{1}{4}$,所以 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ 是条件收敛级

数。

在其他情况下,由于
$$\left| (-1)^{n+1} \frac{4^n \sin^{2n} x}{n} \right| = \frac{1}{n} (4 \sin^2 x)^n$$
, $4 \sin^2 x > 1$,级数的一般项

趋于无穷大, 所以级数发散。

$$17. \quad \sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p}$$

解: 当
$$x = \frac{k\pi}{2}$$
 时,级数的一般项都为零,所以级数 $\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p}$ 绝对收敛。

设
$$x \neq \frac{k\pi}{2}$$
。当 $p > 1$ 时,由于 $\left| \frac{\sin(n+1)x\cos(n-1)x}{n^p} \right| \leq \frac{1}{n^p}$,所以级数

$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p} \, \text{ and } \, w \, \text{ and } \, w$$

当0<p≤1时,由于

$$\frac{\sin(n+1)x\cos(n-1)x}{n^p} = \frac{\sin 2nx}{2n^p} + \frac{\sin 2x}{2n^p},$$

由 Dirichlet 判别法, $\sum_{n=1}^{\infty} \frac{\sin 2nx}{2n^p}$ 收敛,而 $\sum_{n=1}^{\infty} \frac{\sin 2x}{2n^p}$ 发散,所以级数

$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p} \, \text{ \sharp th }.$$

当 $p \le 0$ 时,由于级数的一般项不趋于零,所以级数

$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p} \, \text{ ξ th }.$$

18.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n} (a > 0).$$

解: 设
$$x_n = \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n}$$
.

当
$$a > 1$$
 时, $\lim_{n \to \infty} \sqrt[n]{|x_n|} = \frac{1}{a} < 1$, 所以级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n}$ 绝对收敛;

当
$$a = 1$$
 时, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n}$,级数条件收敛;

当 0 < a < 1 时,由于 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ 收敛, $\left\{\frac{a}{1+a^n}\right\}$ 单调有界,由 Abel 判别法,级数

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n}$$
 收敛,但由于 $|x_n| \sim \frac{a}{n} (n \to \infty)$, $\sum_{n=1}^{\infty} \frac{a}{n}$ 发散,所以级数条件收敛。

19. 设正项级数 $\sum_{n=1}^{\infty} x_n$ 收敛,{ x_n } 单调减少,利用 Cauchy 收敛原理证明: $\lim_{n\to\infty} nx_n = 0$ 。

证 由 $\sum_{n=1}^{\infty} x_n$ 收敛,对任意给定的 $\varepsilon > 0$,存在正整数 N' > 0,对一切 m > n > N',成立

$$0 < x_{n+1} + x_{n+2} + \dots + x_m < \frac{\varepsilon}{2} .$$

取 N=2(N'+1),则当 n>N 时,有 $\left[\frac{n}{2}\right]>N'$,于是成立

$$0 < \frac{n}{2}x_n < x_{\left\lceil \frac{n}{2} \right\rceil} + x_{\left\lceil \frac{n}{2} \right\rceil + 1} + \dots + x_n < \frac{\varepsilon}{2},$$

即

$$0 < nx_n < \varepsilon$$

20. 若级数
$$\sum_{n=1}^{\infty} x_n$$
 收敛, $\lim_{n\to\infty} \frac{x_n}{y_n} = 1$, 问级数 $\sum_{n=1}^{\infty} y_n$ 是否收敛?

解
$$\sum_{n=1}^{\infty} y_n$$
 不一定收敛。

反例: $x_n = \frac{(-1)^{n+1}}{\sqrt{n}}$, $y_n = \frac{(-1)^{n+1}}{\sqrt{n}} + \frac{1}{n}$, 则 $\lim_{n \to \infty} \frac{x_n}{y_n} = 1$, 但级数 $\sum_{n=1}^{\infty} x_n$ 收敛,而级数 $\sum_{n=1}^{\infty} y_n$ 发散。

21. 设正项数列 $\{x_n\}$ 单调减少,且级数 $\sum_{n=1}^{\infty} (-1)^n x_n$ 发散。问级数 $\sum_{n=1}^{\infty} \left(\frac{1}{1+x_n}\right)^n$ 是否收敛?并说明理由。

解 级数
$$\sum_{n=1}^{\infty} \left(\frac{1}{1+x_n}\right)^n$$
 收敛。

因为正项数列 $\{x_n\}$ 单调减少,所以必定收敛。如果 $\lim_{n\to\infty}x_n=0$,则 $\sum_{n=1}^{\infty}(-1)^nx_n$ 是 Leibniz 级数,因此收敛,与条件矛盾,所以必定有 $\lim_{n\to\infty}x_n=\alpha>0$,于是当 n 充分大时,

22. 若 { nx_n } 收敛, $\sum_{n=2}^{\infty} n(x_n - x_{n-1})$ 收敛,则级数 $\sum_{n=1}^{\infty} x_n$ 收敛。

证 令 $a_n = x_n$, $b_n = 1$, 则 $B_k = \sum_{i=1}^k b_i = k$ 。利用 Abel 变换,得到

$$\sum_{k=1}^{n} x_k = nx_n - \sum_{k=1}^{n-1} k(x_{k+1} - x_k) .$$

由于

$$\sum_{n=1}^{\infty} n(x_{n+1} - x_n) = \sum_{n=1}^{\infty} [(n+1)(x_{n+1} - x_n) \cdot \frac{n}{n+1}],$$

因为数列 $\left\{\frac{n}{n+1}\right\}$ 单调有界,级数 $\sum_{n=1}^{\infty}(n+1)(x_{n+1}-x_n)=\sum_{n=2}^{\infty}n(x_n-x_{n-1})$ 收敛,由 Abel 判

别法, $\sum_{n=1}^{\infty} n(x_{n+1}-x_n)$ 收敛。再由数列 $\{nx_n\}$ 的收敛性,即可知级数 $\sum_{n=1}^{\infty} x_n$ 收敛。

23. 设 f(x) 在 [-1,1] 上具有二阶连续导数,且

$$\lim_{x\to 0}\frac{f(x)}{r}=0$$

证明级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛。

证 由 $\lim_{x\to 0} \frac{f(x)}{r} = 0$ 可知 f(0) = 0, f'(0) = 0, 于是

$$f\left(\frac{1}{n}\right) \sim \frac{f''(0)}{2} \cdot \frac{1}{n^2} \quad (n \to \infty),$$

所以级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛。

24. 已知任意项级数 $\sum_{n=1}^{\infty} x_n$ 发散,证明级数 $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) x_n$ 也发散。

证 采用反证法。令 $y_n = (1 + \frac{1}{n})x_n$,若 $\sum_{n=1}^{\infty} y_n$ 收敛,因为 $\left\{\frac{n}{n+1}\right\}$ 单调有界,则由 Abel 判

别法, $\sum_{n=1}^{\infty} x_n = \sum_{n=1}^{\infty} \frac{n}{n+1} y_n$ 收敛, 与条件矛盾, 所以级数

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) x_n \, \, \text{ \mathcal{E}} \, \text{ \text{t}} \, .$$

25. 利用

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \rightarrow \gamma \quad (n \rightarrow \infty)$$

其中 γ 是 Euler 常数,求下述 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ 的更序级数的和:

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \cdots$$

解. 设
$$b_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$
, 设级数
$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \dots + \frac{1}{4n-3} + \frac{1}{4n-1} - \frac{1}{2n} + \dots$$

的部分和数列为 $\{S_n\}$,则

$$S_{3n} + \frac{1}{2}(b_n + \ln n) = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \dots + \frac{1}{4n-3} + \frac{1}{4n-1},$$

$$S_{3n} + \frac{1}{2}(b_n + \ln n) + \frac{1}{2}(b_{2n} + \ln 2n) = b_{4n} + \ln 4n,$$

于是

$$S_{3n} = b_{4n} - \frac{1}{2}b_n - \frac{1}{2}b_{2n} + \frac{3}{2}\ln 2$$
.

由 $\lim_{n\to\infty} b_n = \gamma$,得到

$$\lim_{n\to\infty} S_{3n} = \frac{3}{2} \ln 2 .$$

由于
$$\lim_{n\to\infty} S_{3n+1} = \lim_{n\to\infty} S_{3n+2} = \lim_{n\to\infty} S_{3n}$$
,所以

$$\lim_{n\to\infty} S_n = \frac{3}{2} \ln 2 .$$