$$\begin{array}{lll}
 \hat{T}_a := e^{a\partial x} := \sum_{n=0}^{+\infty} \frac{\alpha^n \partial_x^n}{n!} \quad \text{su } S(\mathbb{R}).$$
• Dimostrare the $\widehat{T}_a f$ converge in $S(\mathbb{R})$

e che Taf = f(x+a) • Trovare la norme di Ta e dire se è

per il teorema di Hahn-Bomach

Dimostrare che Ta converge debdmente

all'operatore nullo per
$$a \to +\infty$$
 e converge fortemente all'identità per $a \to 0$

a) Sia $\hat{T}_{a,N} = \sum_{n=0}^{\infty} a^n \partial_x^n$
 $n=0$ $n!$
 $f(\hat{T}_{a,N}f) = \int_{2\pi i}^{\infty} \int_{-\infty}^{\infty} (-i\omega a)^n f(x)e^{-i\omega x} dx$

$$= \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} f(w) per N \rightarrow +\infty$$

$$\Rightarrow (\widehat{T}_{a}f)(x) = \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} f(w) e^{iw(x-a)} dw = \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} f(w) e^{iw(x-a)} dw = \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} dw = \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt$$

m tuto
$$L^{2}(\mathbb{R})$$
 e sarà:
 $\widehat{T}_{a} f = f(x-\alpha) + f \in L^{2}(\mathbb{R})$
(ma $\widehat{T}_{a} \neq e^{\alpha \partial x} \times L^{2}(\mathbb{R})$!!!)

estendibile a
$$L^{2}(\mathbb{R}) \cup L^{1}(\mathbb{R})$$

RIPASSO CONVENZIONI TRASF. DI FOURIEIR:

estendibile a
$$L^{2}(\mathbb{R}) \cup L^{1}(\mathbb{R})$$

o $\mathcal{F}[\hat{f}] = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{+\infty} \hat{f}(\omega) e^{i\omega x} d\omega$

Se
$$\hat{F}(w) = \hat{T} [f](w)$$
 e $f \in L^2(\mathbb{R})$, allows: $\hat{T}^{-1}[\hat{f}] = f$

• $f,g \in L^2(\mathbb{R})$: $\langle f,g \rangle_{L^2} = \langle \hat{f},\hat{g} \rangle_{L^2}$ identità di Pavseval generalizzata.

$$\mathcal{L}[\mathcal{F}[f]] = \mathcal{R}f, \quad \mathcal{R}f(x) = f(-x)$$

$$\Rightarrow \mathcal{R}^{-1} = \mathcal{R} \cdot \mathcal{R} = \mathcal{R} \cdot \mathcal{R}, \quad f \in L^{2}(\mathbb{R})$$
• Se $f \in S(\mathbb{R}) \subset L^{2}(\mathbb{R}),$

$$\mathcal{R} = \mathcal{R} \cdot \mathcal{R}, \quad f \in L^{2}(\mathbb{R})$$

$$\mathcal{R} = \mathcal{R} \cdot \mathcal{R}, \quad f \in L^{2}(\mathbb{R})$$

	\sim	٦ /) .	٦		· ~	′୮/	7.	γ	<u>م</u>			
0	<i>*</i>	LJ	、 *	87	J 211	· F	lf	J.,	<u> ተ</u>	%]			