Introduction

The Kolmogorov Smirnov Goodness of fit test compares your data with a known distribution and lets you know if they have the same distribution.

Commonly used as a test for normality to see if your data is normally distributed

Assumptions

- The sample is a random sample.
- The scale of measurement is at least ordinal.
- The test is only exact for continuous variables.

Procedure

Hypothesis:

 H_0 : The data follow a specified distribution.

 H_1 : The data do not follow the specified distribution.

\display Level of Significance:

 α =0.05

 $\alpha = 0.01$

 $\alpha = 0.1$

- Test Statistic:
- Arrange the data in ascending order then compute

$$D= \max (D^+, D^-)$$

$$D^+ = \max\left[\frac{i}{N} - R_i\right]$$

$$D^{-} = \max \left[R_i - \left(\frac{i-1}{N} \right) \right]$$

N= no .sample observations

Calculation:

- Arrange in ascending order
- \bullet Compute D^+ and D^- and get the maximum value
- \bullet Compute D that is D= max (D^+, D^-)

Critical Region:

The critical value of D_{α} is found from the K-S table values. where α is level of significance.

- Decision Rule:
- *****Where D calculated and D_{α} is tabulated

$$D < D_{\alpha}$$

Then we do not reject null hypothesis (H_0)

$$D>D_{\alpha}$$

Then we reject null hypothesis (H_0)

Example

Using the KS test check for the property of uniformity for the input set of random numbers 0.54,0.73,0.38,0.11 and 0.98

Hypothesis:

 H_0 : The distribution is uniform

 H_1 :The distribution is not uniform

Level of significance:

 $\alpha = 0.05$

Test Statistic:

Arrange the data in ascending order then compute

D= max
$$(D^+, D^-)$$

$$D^+ = \max \left[\frac{i}{N} - R_i\right]$$

$$D^- = \max \left[R_i - \left(\frac{i-1}{N}\right)\right]$$

N= no .sample observations so N=5

Calculation:

i	$\frac{i}{N}$	R_i	D^+	D^-
1	1/5=0.2	0.11	0.09	0.11
2	2/5=0.4	0.54	-0.14	0.34
3	3/5=0.6	0.68	-0.08	0.28
4	0.8	0.73	0.07	0.13
5	1	0.98	0.02	0.18

We need maximum of (D^+, D^-) ignore negative values) so see the column of D^+ and D^- and get the largest value that is

$$D^{+} = \max \left[\frac{i}{N} - R_{i} \right] = 0.09$$

$$D^{-} = \max \left[R_{i} - \left(\frac{i-1}{N} \right) \right] = 0.34$$

$$D = \max \left(D^{+}, D^{-} \right) \text{ now the}$$

```
D= max (D^+, D^-)
D=max(0.09,0.34)
so
D=0.34
```

Critical Region:

$$D_{\alpha}$$
=0.565

Conclusion:

if $D>D_{\alpha}$ then reject the null hypothesis

- ***** Conclusion:
- **❖** D_{α} =0.565
- **❖**D= 0.34

Observed value of D = 0.34 does not exceed the tabulated 0.565 so we do not reject null hypothesis (H_0) .

Question no.2

Apply KS test for the data as follows 0.15,0.94,0.05,0.51 and 0.29 where and check whether the distribution of data is uniform or not Where D_{α} =0.565

Results

D = 0.31

 D_{α} =0.565

Conclusion: do not reject the null hypothesis

Question no. 3

Apply KS test for the group of data as follows 1,3,5,7,9,10,12,14

Check whether the distribution of data is normal or not where D_{α} =0.454