## 1. Честотни характеристики на САР със закъснение

САР със закъснение са особен вид линейни системи. Те имат аналогична структура на обикновените линейни системи, но за разлика от тях притежават закъснение в изменението на изходната величина в едно или няколко звена, включени в системата. Чистото закъснение се появява вследствие наличие на операции на транспорт на вещество в обекта или като еквивалентен резултат от действието на голям брой малки времеконстанти върху сигналите, преминаващи през обекта.



Предавателната функция на отворената система е:

$$W(p) = W_{\mathcal{O}}(p) e^{-p\tau},$$

където ЧПФ на звеното с чисто закъснение  $W_{\tau}(j\omega)$  и на останалата част от отворената система  $W_{\rm O}(j\omega)$  са, съответно:

$$W_{ au}(j\omega) = e^{-j\omega au}$$
 in  $W_{ ext{O}}(j\omega) = A_{ ext{O}}(\omega)\,e^{jarphi_{ ext{O}}(\omega)},$ 

ЧПФ на отворената система е:

$$W(j\omega) = A_{\mathcal{O}}(\omega) e^{j\varphi_{\mathcal{O}}(\omega)} e^{-j\omega\tau} = A_{\mathcal{O}}(\omega) e^{j[\varphi_{\mathcal{O}}(\omega) - \omega\tau]}$$

- АЧХ на отворената система не се променя, а ФЧХ намалява, пропорционално на честотата  $\omega$  (защото  $A_{\tau}(\omega) = 1$  и  $\varphi_{\tau}(\omega) = -\omega \tau$  ).
- АФЧХ  $W(j\omega)$  се завърта в отрицателна посока (преместват се големите амплитуди (НЧ) към т. (-1;j0)), което води до влошаване на устойчивостта на затворената система



**2. Критично времезакъснение**  $\tau_{\kappa p}$  – това закъснение, при което системата е на границата на устойчивост



# (б) Критерий на Найквист:

При  $\tau = \tau_{\kappa n}$  АФЧХ  $W(j\omega)$  ще премине през т. (-1;j0),  $\Longrightarrow$ :



**3. Определяне на граничния предавателен коефициент**  $k_{z}$  От критерия на Найквист следва:

