Middle Term Examination

Notice: Please turn off any types of handheld devices, and leave them far from reach. Use only standalone calculators for calculation if it is needed. The examination takes 100 minutes.只需缴回答案紙,題目紙請同學保留。

1. (12%) In the circuit shown Fig. 1, the output is the current in the 10Ω resistor i_0 . Determine the values of the resistance R_1 and of the gain of dependent source G that cause both the value of voltage across the 12Ω to be $\nu_n = 10.38 \text{V}$ and the value of the output current to be $i_0 = 0.4151 \text{A}$.

2. (10%) Determine the values of the node voltages, v_1 , v_2 , v_3 , and v_4 , of the circuit shown in Fig. 2 by a nodal analysis.

Fig. 2

3. (10%) Find v_0 using source transformations if i = 5/2A in the circuit shown in Fig. 3.

Fig. 3

- 4. (12%) The voltages v_2 , v_3 and v_4 for the circuit shown in Fig. 4 are $v_2 = 16$ V, $v_3 = 8$ V, and $v_4 = 6$ V. Determine the values of the following:
 - (a) The gain, A, of the VCVS.
- (b) The resistance R₅.
- (c) The currents ib and ic.
- (d) The power received by resistor R_4 .

- 5. (12%) The mesh currents are labeled in the circuit shown in Fig. 5. The values of these mesh current are $i_1 = -1.1014$ A, $i_2 = 0.8986$ A and $i_3 = -0.2899$ A:
 - (a) Determine the values of the resistance R_1 and R_3 .
 - (b) Determine the values of the current source current.
 - (c) Determine the values of the power supplied by the *2V voltage source.

6. (10%) Use superposition to find the value of current i_x in Fig. 6.

7. (12%) A circuit of small signal model of an amplifier is shown in Fig. 7. While the input is the voltage source ν_s , the output is the voltage ν_o .

(a) Determine the gain, v_0/v_s , of the amplifier.

(b) Determine the input resistance, ib/vs, of the amplifier.

Fig. 7

8. (10%) Determine the values of the node voltages v_1 , v_2 and v_3 in the circuit in Fig. 8.

9. (12%) Compute i_a and i_b of the circuit in Fig. 9 by a mesh analysis.

