

Final Probability Project by Sabrina

Probability Course - Sekolah Data Pacmann

Outline

- Introduction
- Dataset
- Descriptive Statistic Analysis
- Categorical Variables Analysis
- Continuous Variables Analysis
- Variables Correlation
- Hypothesis Testing
- Conclusion

Introduction

Introduction

Risk Profile Assesment

Insurance Premium

Dataset

Dataset

• The dataset provided is personal health billing data.

Variable	Description	Value
age	Age of primary beneficiary	18 to 64
sex	primary beneficiery's gender	male and female
bmi	Body mass index, providing an understanding of body weights that are relatively high or low relative to height, objective index of body weight (kg/m²) using the ratio of height to weightm ideally 18.5 to 24.9	15.96 to 53.13
	Number of children covered by	0 to 5
	helath insurance / Number of	
childeren	dependents	
smoker	Whether the primary beneficiery is a smoker or non-smoker	yes and no
	The beneficiery's residential area in	northeast, southeast, southwest, northwest
region	the US	
	Individual medical costs billed by	1,121 to 63,770
charges	health insurance (in USD)	

Descriptive Statistics Analysis

Mean of Age

Objective: The average age of the primary beneficiary.

RESULT: The average age is 39

Mean of BMI who Smokes

 Objective: The average BMI of the primary beneficiary who smokes

The average BMI of a smoker is 30.7

Variance of the data charges of smokers and non-smokers

Objective: Is the variance of the data charges of smokers and non-smokers the same?

No. The variance of a smoker is higher.

Mean of Age, Gender, and a Smoker

 Objective: Is the average age of women and men who smoke the same?

Yes, the average age of male smokers & female smokers is 38 years.

Charges & Smoking habit

Objective: Which is higher, the average charges of smokers or non-smokers?

RESULT: The average charge of a smoker is higher by around \$23K

Charges, Smoking Habit, and BMI

• Objective: Which is higher, the average charges of smokers whose BMI is above 25 or non-smokers whose BMI is above 25?

RESULT: The average charge of a smoker with BMI >= 25 is higher by around \$26K

Analysis

- The average age of a smoker is lower than the average age of all the primary beneficiaries by one year.
- The average BMI of a smoker is 30.7. Based on the CDC, the average BMI value of 30.7 falls within the obesity class 1 range.
- The average charge of a smoker with BMI >= 25 is higher by around \$26K.

Categorical Variables Analysis

Gender & Charges

RESULT: The male beneficiaries have a higher proportion of around 6%.

Smoking Habit

pacmann.io

© 2022 - Pacmann Al **(#)**

Regions

REGULT: The southeast has the highest proportion of people than other regions.

Charges & Region

RESULT: The southeast region has the highest proportions of charge than the other regions.

Smoker and Region

northeast

REGULT: Male Smokers from the southwest have the highest proportion of people.

southeast

southwest

northwest

Smoker, Region, Charges

RESULT: Male Smokers from the southwest have the highest proportion of charges.

Female & Smoker

Male & Smoker

RESULT: The probability of a male given he's a smoker is 58.3%.

Sex	Smoker	Nbr of Rows	Nbr of Sex	Nbr of Smoker	Nbr of Sex-Smoker	Prob. Sex given Smoker
female	no	1,338	662	1,064	547	51.41%
	yes	1,338	662	274	115	41.97%
male	no	1,338	676	1,064	517	48.59%
	yes	1,338	676	274	159	58.03%


```
Prob. Sex given Smoker
SUM([Nbr of Sex-Smoker])/SUM([Nbr of Smoker])
```

Analysis

- The Southwest region has the highest proportion of male smokers & their charges.
- The Northwest region has the highest proportion of female smokers & their charges.
- Although, the Southeast region has the highest proportion of the number of people & their charges.

Continuous Variables Analysis

Probability of someone has high charges given he's a smoker

```
# Condition 3.3

condition_3_3 = insurance[(insurance.charges>=16700) & (insurance.smoker == 'yes')]

# Count length of the data
n_condition_3_3 = len(condition_3_3)
n_insurance = len(insurance)

# Calculate each probability
pdf_condition_3_3 = np.round(n_condition_3_3/n_insurance,2)

print("The probability if a smoker has Charges >= 16.7K: ", pdf_condition_3_3)

O.4s
Python

The probability if a smoker has Charges >= 16.7K: 0.19
```



```
# Condition 3.4
   🖟 Create conditional data
   condition_1_1 = insurance[(insurance.bmi>=25) & (insurance.charges>=16700)]
   condition_1_2 = insurance[(insurance.bmi<25) & (insurance.charges>=16700)]
   # Count length of the data
   n_condition1_1 = len(condition_1_1)
   n_condition1_2 = len(condition_1_2)
   n_insurance = len(insurance)
   # Calculate each probability
   pdf_condition_1_1 = np.round(n_condition1_1/n_insurance,2)
   pdf_condition_1_2 = np.round(n_condition1_2/n_insurance,2)
   print("The probability if BMI >=25 & Charges >= 16.7K: ", pdf_condition_1_1)
   print("The probability if BMI <25 & Charges >= 16.7K: ", pdf_condition_1_2)
✓ 0.3s
                                                                                             Python
The probability if BMI >=25 & Charges >= 16.7K: 0.21
The probability if BMI <25 & Charges >= 16.7K: 0.04
```



```
# Condition 3.5
   🔊 Create conditional data
   condition_2_1 = insurance[(insurance.smoker == 'yes') & (insurance.bmi>=25) & (insurance.charges>=16700)]
   condition 2 2 = insurance[(insurance.smoker == 'no') & (insurance.bmi>=25) & (insurance.charges>=16700)]
   # Count length of the data
  n_condition2_1 = len(condition_2_1)
  n_condition2_2 = len(condition_2_2)
  n insurance = len(insurance)
  # Calculate each probability
  pdf_condition_2_1 = np.round(n_condition2_1/n_insurance,2)
  pdf_condition_2_2 = np.round(n_condition2_2/n_insurance,2)
  print("The probability if a smoker & BMI >=25 & Charges >= 16.7K: ", pdf_condition_2_1)
  print("The probability if a non-smoker & BMI <25 & Charges >= 16.7K: ", pdf_condition_2_2)
 0.5s
                                                                                                        Python
The probability if a smoker & BMI >=25 & Charges >= 16.7K: 0.16
The probability if a non-smoker & BMI <25 & Charges >= 16.7K: 0.05
```

Analysis

- The probability of someone who has BMI >=25 & Charges >= \$16.7K is 21%
- The probability of a smoker having Charges >= \$16.7K is 19%
- The probability of a smoker with BMI >=25 & Charges >= \$16.7K is 16%.
- Thus, people who have BMI over 25 & charge more than \$16.7K need to pay a higher premium.

Variables Correlation

Correlation Matrix

REGULT:

• Age has a low positive correlation with charges.

Correlation Matrix with High Charges & BMI

```
# Create conditional data
condition_1_1 = insurance[(insurance.bmi>=25) & (insurance.charges>=16700)]

# Create Correlation Matrix based on the condition
corrMatrix = condition_1_1.corr()
sn.heatmap(corrMatrix, annot=True)
plt.show()

1.3s
Python
```


• BMI has a moderate positive correlation with charges.

Correlation Matrix with Smoker, High Charges & BMI

```
# Create conditional data
condition_2_1 = insurance[(insurance.smoker == 'yes') & (insurance.bmi>=25) & (insurance.charges>=16700)]

# Create Correlation Matrix based on the condition
corrMatrix = condition_2_1.corr()
sn.heatmap(corrMatrix, annot=True)
plt.show()

V 1.8s
Python
```


- BMI has a high positive correlation with charges.
- Age has a low positive correlation with charges

Hypothesis Testing

Smoker's charges are higher than non smoker's

of Variances

Levene's Test for Equality

RESULT: The Results are statistically significant. Thus, we can reject the null hypothesis.

< .00001

People with High BMI have higher charges than people with Low BMI

Null Hypothesis: People with High BMI have higher charges than people with Low BMI Alternate Hypothesis: People with High BMI have lower charges than people with Low BMI

Significant level: 0.05 (One-tailed)

One-tailed Independent t test

t Table						
cum. prob	t.50	t .75	t _{.80}	t .85	t _{.90}	t .95
one-tail	0.50	0.25	0.20	0.15	0.10	0.05
two-tails	1.00	0.50	0.40	0.30	0.20	0.10

The Results are statistically significant. Thus, we can reject the null hypothesis. © 2022 - Pacmann Al

Male's BMI is equal to Female's BMI

Null Hypothesis: Male's BMI is equal to Female's BMI

Alternate Hypothesis: Male's BMI is not equal to Female's BMI

two-tailed Independent t test

Significant level: 0.05 (Two-tailed)

Levene's Test for Equality of Variances

RESULT: The Results are not statistically significant. Thus, we cannot reject the null hypothesis.

Conclusion

Conclusion

- The average BMI of a smoker is 30.7. Based on the CDC, the average BMI value of 30.7 falls within the obesity class 1 range.
- The Southwest region has the highest proportion of male smokers & their charges.
- The Northwest region has the highest proportion of female smokers & their charges.
- People who have BMI over 25 & charge more than \$16.7K need to pay a higher premium.
- Based on the condition that there's a group of smokers who have a BMI over 25 & charge more than \$16.7K, the BMI has a high positive correlation with charges

Thus, a group of smokers who have a BMI over 25 & charge more than \$16.7K need to pay the highest premium.

Notes

• I use three different application, such as Tableau, Python, and SPSS

© 2022 – Pacmann Al

Reference

- A guide to appropriate use of Correlation coefficient in medical research
- <u>Defining Adult Overweight & Obesity</u>
- P Value from T Score Calculator