

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

trans-Dichloridobis{2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9*H*-purine- κN^7 }platinum(II)

Zdeněk Trávníček* and Pavel Štarha

Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic Correspondence e-mail: zdenek.travnicek@upol.cz

Received 10 April 2013; accepted 14 May 2013

Key indicators: single-crystal X-ray study; T = 105 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.015; wR factor = 0.037; data-to-parameter ratio = 13.3.

In the title compound, trans-[PtCl₂(C₁₅H₁₅ClFN₅)₂], the Pt^{II} atom, located on an inversion centre, is coordinated by the purine N atoms of the 2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9*H*-purine ligands and two Cl atoms in a slightly distorted trans-square-planar coordination geometry [N—Pt—Cl angles = 89.91 (5) and 90.09 (5)°]. Weak intramolecular N—H···Cl contacts occur. In the crystal, C—H···Cl and C—H···F contacts, as well as weak π - π stacking interactions [centroid–centroid distances = 3.5000 (11) and 3.6495 (12) Å] connect the molecules into a three-dimensional architecture.

Related literature

For the structures of platinum(II) dichlorido complexes involving different 2-chloro-6-[(substituted-benzyl)amino]-9-isopropyl-9*H*-purine derivatives, see: Trávníček *et al.* (2006); Szüčová *et al.* (2008). For the synthesis of 2-chloro-6-[(substituted-benzyl)amino]-9-isopropyl-9*H*-purine derivatives, see: Štarha *et al.* (2009).

Experimental

Crystal data

[PtCl₂($C_{15}H_{15}$ ClFN₅)₂] V = 1640.36 (4) Å³ Z = 2 Monoclinic, $P2_1/c$ Mono

Data collection

Agilent Xcalibur Sapphire2 diffractometer 2881 independent reflections 2880 measured reflections 2881 independent reflections 2726 reflections with $I > 2\sigma(I)$ $T_{\rm min} = 0.293$, $T_{\rm max} = 0.293$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.015 & 216 \ {\rm parameters} \\ WR(F^2) = 0.037 & {\rm H-atom\ parameters\ constrained} \\ S = 1.10 & \Delta\rho_{\rm max} = 0.52\ {\rm e\ \mathring{A}}^{-3} \\ 2881\ {\rm reflections} & \Delta\rho_{\rm min} = -0.32\ {\rm e\ \mathring{A}}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H···A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N6-H6A\cdots Cl2^{i}$ $C13-H13A\cdots Cl2^{ii}$	0.88 0.95	2.53 2.86	3.222 (2) 3.492 (2)	136 125
C18—H18A···F1 ⁱⁱⁱ	0.98	2.49	3.450 (3)	166

Symmetry codes: (i) -x, -y, -z; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) -x + 1, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publicIF (Westrip, 2010).

This work was supported by Palacký University (grant No. PrF_2013_015). The authors wish to thank Mr Tomáš Šilha for performing the CHN elemental analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2166).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Štarha, P., Trávníček, Z. & Popa, I. (2009). J. Inorg. Biochem. 103, 978–988.
Szüčová, L., Trávníček, Z., Popa, I. & Marek, J. (2008). Polyhedron, 27, 2710–2720.

Trávníček, Z., Marek, J. & Szüčová, L. (2006). *Acta Cryst.* E**62**, m1482–m1484. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

Acta Cryst. (2013). E69, m331 [doi:10.1107/S1600536813013202]

trans-Dichloridobis{2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9*H*-purine- κN^7 }platinum(II)

Zdeněk Trávníček and Pavel Štarha

Comment

In the title compound, the Pt^{II} atom is located on an inversion centre and thus, the asymmetric unit contains one-half of the described platinum(II) complex (Fig. 1). The central Pt^{II} atom is four-coordinated by two chloride anions [Pt—Cl = 2.2940 (5) Å] and two 2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9*H*-purine molecules [Pt—N = 2.011 (2) Å], which are bonded to platinum through their N7 atoms of the purine moieties. The geometry of the complex is slightly distorted square-planar with the N—Pt—Cl angles in the vicinity of the central metal atom of 89.91 (5)° and 90.09 (5)°, and the mean plane fitted through the $PtCl_2N_2$ unit (r.m.s. deviation = 0.000 Å) being planar. Both the essentially planar purine moieties [with the maximum deviation of 0.050 (2) Å for the C5 atom] are mutually coplanar and each of them forms the dihedral angle of 62.04 (3)° and 49.58 (5)° with the $PtCl_2N_2$ unit, and the benzene ring, respectively (Fig. 1). The molecular structure involves weak N6—H6A···Cl2 intramolecular interactions (Table 1, Fig. 1). In the crystal, the molecules are connected together through weak C13—H13A····Cl2, C18—H18A···F1 and π ··· π (between the sixmembered pyrimidine and benzene rings) intermolecular interactions into a three-dimensional architecture (Fig. 2 and 3, Table 1).

Experimental

The solution of 2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9H-purine (0.5 mmol; prepared according to the previously described procedure, (Štarha *et al.*, 2009) in acetone (10 ml) was slowly poured into the distilled water solution of K_2PtCl_4 (0.25 mmol). The reaction mixture was stirred at laboratory temperature, until the initial orange colour turned to yellow. The solid was collected by filtration and washed with distilled water and acetone. Part of the product was recrystallized from N,N-dimethylformamide. The crystals suitable for a single-crystal X-ray analysis formed after two weeks. Analysis calculated for $C_{30}H_{30}N_{10}Cl_4F_2Pt_1$: C 39.8, H 3.3, N 15.5%; found: C 39.9, H 3.3, N 15.3%. Elemental analysis (C, H, N) was performed on a Thermo Scientific Flash 2000 CHNO-S Analyzer.

Refinement

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were located in difference maps and refined using the riding model with C—H = 0.95 (CH), C—H = 0.99 (CH₂), C—H = 0.98 (CH₃) Å, and N—H = 0.88 Å, with $U_{iso}(H) = 1.2U_{eq}(CH, CH₂, NH)$ and $1.5U_{eq}(CH₃)$. The maximum and minimum residual electron density peaks of 0.52 and -0.32 e Å⁻³ were located 0.87 Å, and 0.27 Å from the Pt1, and H6A atoms, respectively.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine

Acta Cryst. (2013). E69, m331 Sup-1

structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2011); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of the title compound with the atom numbering scheme and the non-hydrogen atoms at the 50% probability level. Dashed lines indicate weak N6—H6A···Cl2ⁱ intramolecular interactions (symmetry code: i) -x, -y, -z).

Figure 2
Packing diagram of the title compound viewed along the a axis. Dashed lines indicate weak C13—H13Aiv····C12 intermolecular and π ··· π stacking interactions (Cg···Cg = 3.5001 Å) (symmetry code: iv) x, -y+1/2, z + 1/2).

Figure 3Packing diagram of the title compound viewed along the *b* axis. Dashed lines indicate weak C18—H18A···F1ⁱⁱⁱ intermolecular interactions (symmetry code: iii) -x+1, -y, -z).

trans-Dichloridobis{2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9H-purine- κN^7 }platinum(II)

Crystal data

 $[PtCl_2(C_{15}H_{15}ClFN_5)_2]$ F(000) = 888 $M_r = 905.53$ $D_{\rm x} = 1.833 \; {\rm Mg \; m^{-3}}$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2ybc Cell parameters from 15658 reflections a = 9.37786 (13) Å $\theta = 3.0-31.7^{\circ}$ b = 12.86530 (17) Å $\mu = 4.65 \text{ mm}^{-1}$ c = 14.2891 (2) Å T = 105 K $\beta = 107.9165 (16)^{\circ}$ Prism, vellow-orange V = 1640.36 (4) Å³ $0.35 \times 0.35 \times 0.35 \text{ mm}$ Z=2

Data collection

Agilent Xcalibur Sapphire2 13582 measured reflections diffractometer 2881 independent reflections Radiation source: Enhance (Mo) X-ray Source 2726 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.010$ Detector resolution: 8.3611 pixels mm⁻¹ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ $h = -11 \rightarrow 11$ ω scans $k = -15 \rightarrow 13$ Absorption correction: multi-scan (CrvsAlis PRO; Agilent, 2012) $l = -16 \rightarrow 16$ $T_{\min} = 0.293, T_{\max} = 0.293$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full Hydrogen site location: inferred from $R[F^2 > 2\sigma(F^2)] = 0.015$ $wR(F^2) = 0.037$ neighbouring sites S = 1.10H-atom parameters constrained 2881 reflections $w = 1/[\sigma^2(F_0^2) + (0.0204P)^2 + 1.5464P]$ 216 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\text{max}} \leq 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\text{max}} = 0.52 \text{ e Å}^{-3}$ direct methods $\Delta \rho_{\min} = -0.32 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	х	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Pt1	0.0000	0.0000	0.0000	0.01222 (5)
C11	0.73503 (6)	0.18413 (6)	0.31702 (4)	0.03616 (16)
C12	-0.15533(5)	0.11059 (4)	0.04896 (4)	0.02297 (12)
F1	0.32167 (15)	0.15374 (11)	-0.40416 (9)	0.0297 (3)

Acta Cryst. (2013). E69, m331 Sup-4

N1	0.52347 (19)	0.13487 (14)	0.15853 (12)	0.0174 (4)
N3	0.49172 (18)	0.08828 (14)	0.31434 (12)	0.0164 (4)
N6	0.34612 (19)	0.10095 (14)	0.00859 (12)	0.0176 (4)
H6A	0.2599	0.0723	-0.0239	0.021*
N7	0.1537 (2)	0.01264 (12)	0.13330 (14)	0.0145 (4)
N9	0.2482 (2)	0.01119 (12)	0.29616 (14)	0.0148 (4)
C2	0.5616(2)	0.12816 (17)	0.25559 (15)	0.0189 (4)
C4	0.3566(2)	0.05155 (15)	0.26050 (14)	0.0137 (4)
C5	0.2990(2)	0.05145 (15)	0.15906 (14)	0.0137 (4)
C6	0.3894(2)	0.09529 (15)	0.10649 (14)	0.0140 (4)
C8	0.1290(3)	-0.01030(15)	0.21725 (17)	0.0160 (4)
H8A	0.0377	-0.0387	0.2215	0.019*
C9	0.4310(2)	0.15101 (17)	-0.04837(15)	0.0187 (4)
H9A	0.5135	0.1049	-0.0524	0.022*
H9B	0.4755	0.2165	-0.0159	0.022*
C10	0.3281 (2)	0.17380 (15)	-0.15035 (15)	0.0157 (4)
C11	0.3731 (2)	0.15135 (16)	-0.23221 (15)	0.0179 (4)
H11A	0.4677	0.1201	-0.2251	0.021*
C12	0.2768 (2)	0.17560 (16)	-0.32396 (15)	0.0179 (4)
C13	0.1394(2)	0.22057 (16)	-0.33922(15)	0.0205 (4)
H13A	0.0766	0.2364	-0.4037	0.025*
C14	0.0949(2)	0.24231 (17)	-0.25725 (16)	0.0209 (4)
H14A	0.0000	0.2733	-0.2652	0.025*
C15	0.1886 (2)	0.21895 (16)	-0.16387 (15)	0.0191 (4)
H15A	0.1569	0.2340	-0.1083	0.023*
C16	0.2665 (3)	-0.01102 (16)	0.40122 (16)	0.0181 (5)
H16A	0.3434	0.0378	0.4424	0.022*
C17	0.1208(3)	0.00727 (17)	0.42384 (19)	0.0238 (5)
H17A	0.0852	0.0780	0.4042	0.036*
H17B	0.1375	-0.0014	0.4945	0.036*
H17C	0.0455	-0.0429	0.3874	0.036*
C18	0.3242 (3)	-0.1208(2)	0.42492 (17)	0.0307 (5)
H18A	0.4155	-0.1299	0.4062	0.046*
H18B	0.2477	-0.1702	0.3883	0.046*
H18C	0.3466	-0.1333	0.4956	0.046*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.00955 (7)	0.01405 (7)	0.01116 (7)	-0.00130 (4)	0.00039 (5)	-0.00091 (4)
Cl1	0.0192(3)	0.0674 (5)	0.0179(3)	-0.0222(3)	-0.0002(2)	0.0010(3)
Cl2	0.0140(2)	0.0248 (3)	0.0274(3)	0.0009(2)	0.0023(2)	-0.0114(2)
F1	0.0371 (8)	0.0390(8)	0.0154 (6)	0.0029 (6)	0.0115 (6)	-0.0034 (6)
N1	0.0135 (8)	0.0234 (9)	0.0147 (8)	-0.0018(7)	0.0034(7)	0.0004(7)
N3	0.0122 (8)	0.0219 (9)	0.0140(8)	-0.0012 (7)	0.0022 (7)	-0.0011 (7)
N6	0.0149 (8)	0.0232 (9)	0.0123 (8)	-0.0060(7)	0.0008 (7)	0.0012 (7)
N7	0.0133 (9)	0.0159 (9)	0.0130 (9)	-0.0009(6)	0.0022(7)	-0.0001(6)
N9	0.0141 (9)	0.0180 (9)	0.0112 (9)	-0.0013 (6)	0.0024 (7)	0.0007 (6)
C2	0.0112 (9)	0.0260 (12)	0.0174 (10)	-0.0028 (8)	0.0010(8)	-0.0011 (9)
C4	0.0133 (9)	0.0137 (10)	0.0140 (10)	0.0016 (8)	0.0039(8)	0.0006 (8)

C5	0.0124 (9)	0.0125 (10)	0.0145 (9)	0.0013 (8)	0.0015 (8)	-0.0010(8)
C6	0.0128 (9)	0.0133 (10)	0.0148 (10)	0.0016 (8)	0.0026 (8)	-0.0006(8)
C8	0.0125 (11)	0.0189 (11)	0.0155 (11)	-0.0032 (8)	0.0024 (9)	-0.0003 (8)
C9	0.0155 (10)	0.0247 (11)	0.0158 (10)	-0.0026 (9)	0.0046 (8)	0.0018 (9)
C10	0.0166 (10)	0.0139 (10)	0.0163 (10)	-0.0030 (8)	0.0046 (8)	0.0005 (8)
C11	0.0177 (10)	0.0170 (10)	0.0192 (10)	0.0007 (8)	0.0059 (8)	0.0010 (8)
C12	0.0247 (11)	0.0170 (10)	0.0138 (10)	-0.0026(9)	0.0085 (9)	-0.0006(8)
C13	0.0222 (11)	0.0191 (11)	0.0169 (10)	-0.0020(9)	0.0009 (8)	0.0044 (8)
C14	0.0148 (10)	0.0200 (11)	0.0268 (11)	0.0022 (8)	0.0050 (9)	0.0051 (9)
C15	0.0214 (11)	0.0196 (11)	0.0187 (10)	0.0007 (9)	0.0098 (9)	0.0009 (9)
C16	0.0164 (11)	0.0283 (12)	0.0097 (10)	-0.0043(8)	0.0039 (9)	-0.0014(8)
C17	0.0232 (13)	0.0290 (13)	0.0227 (13)	-0.0019 (9)	0.0121 (10)	-0.0015 (9)
C18	0.0334 (13)	0.0408 (14)	0.0195 (11)	0.0122 (11)	0.0103 (10)	0.0117 (10)

Geometric parameters (Å, °)

Pt1—N7 2.0108 (18) C9—H9 Pt1—N7 ⁱ 2.0109 (18) C9—H9 Pt1—Cl2 2.2940 (5) C10—C	B 0.9900 15 1.390 (3) 11 1.390 (3)
	15 1.390 (3) 11 1.390 (3)
Pt1—Cl2 2.2940 (5) C10—C	11 1.390 (3)
Pt1—Cl2 ⁱ 2.2940 (5) C10—C	1 200 (2)
Cl1—C2 1.748 (2) Cl1—C	12 1.380 (3)
F1—C12 1.366 (2) C11—H	11A 0.9500
N1—C2 1.324 (3) C12—C	13 1.368 (3)
N1—C6 1.348 (3) C13—C	14 1.387 (3)
N3—C2 1.317 (3) C13—H	13A 0.9500
N3—C4 1.349 (3) C14—C	15 1.386 (3)
N6—C6 1.333 (3) C14—H	14A 0.9500
N6—C9 1.453 (3) C15—H	15A 0.9500
N6—H6A 0.8800 C16—C	18 1.513 (3)
N7—C8 1.323 (3) C16—C	17 1.516 (3)
N7—C5 1.390 (3) C16—H	16A 1.0000
N9—C8 1.350 (3) C17—H	17A 0.9800
N9—C4 1.372 (3) C17—H	17B 0.9800
N9—C16 1.485 (3) C17—H	17C 0.9800
C4—C5 1.382 (3) C18—H	18A 0.9800
C5—C6 1.412 (3) C18—H	18B 0.9800
C8—H8A 0.9500 C18—H	18C 0.9800
C9—C10 1.508 (3)	
N7—Pt1—N7 ⁱ 180.0 H9A—C	C9—H9B 108.3
N7—Pt1—Cl2 89.91 (5) C15—C	10—C11 119.10 (19)
N7 ⁱ —Pt1—Cl2 90.09 (5) C15—C	10—C9 120.70 (18)
N7—Pt1—Cl2 ⁱ 90.09 (5) C11—C	10—C9 120.19 (18)
N7 ⁱ —Pt1—Cl2 ⁱ 89.91 (5) C12—C	11—C10 118.25 (19)
Cl2—Pt1—Cl2 ⁱ 180.00 (3) C12—C	11—H11A 120.9
C2—N1—C6 117.27 (17) C10—C	11—H11A 120.9
C2—N3—C4 109.68 (17) C13—C	12—F1 118.13 (19)
C6—N6—C9 124.74 (17) C13—C	12—C11 123.80 (19)
C6—N6—H6A 117.6 F1—C12	2—C11 118.06 (19)
C9—N6—H6A 117.6 C12—C	13—C14 117.65 (19)

C8—N7—C5	105.71 (18)	C12—C13—H13A	121.2
C8—N7—Pt1	124.49 (15)	C14—C13—H13A	121.2
C5—N7—Pt1	129.68 (14)	C15—C14—C13	120.2 (2)
C8—N9—C4	106.56 (18)	C15—C14—H14A	119.9
C8—N9—C16	127.83 (19)	C13—C14—H14A	119.9
C4—N9—C16	125.45 (18)	C14—C15—C10	121.01 (19)
N3—C2—N1	131.76 (19)	C14—C15—H15A	119.5
N3—C2—C11	114.12 (15)	C10—C15—H15A	119.5
N1—C2—C11	114.11 (15)	N9—C16—C18	109.15 (17)
N3—C4—N9	126.44 (18)	N9—C16—C17	110.76 (19)
N3—C4—C5	126.43 (18)	C18—C16—C17	112.39 (19)
N9—C4—C5	107.08 (17)	N9—C16—H16A	108.1
C4—C5—N7	108.25 (17)	C18—C16—H16A	108.1
C4—C5—C6	116.90 (17)	C17—C16—H16A	108.1
N7—C5—C6	134.64 (18)	C16—C17—H17A	109.5
N6—C6—N1	119.28 (18)	C16—C17—H17B	109.5
N6—C6—C5	122.78 (18)	H17A—C17—H17B	109.5
N1—C6—C5	117.92 (17)	C16—C17—H17C	109.5
N7—C8—N9	112.38 (19)	H17A—C17—H17C	109.5
N7—C8—H8A	123.8	H17B—C17—H17C	109.5
N9—C8—H8A	123.8	C16—C18—H18A	109.5
N6—C9—C10	109.24 (16)	C16—C18—H18B	109.5
N6—C9—H9A	109.8	H18A—C18—H18B	109.5
C10—C9—H9A	109.8	C16—C18—H18C	109.5
N6—C9—H9B	109.8	H18A—C18—H18C	109.5
C10—C9—H9B	109.8	H18B—C18—H18C	109.5

Symmetry code: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N6—H6A···Cl2 ⁱ	0.88	2.53	3.222 (2)	136
C13—H13 <i>A</i> ···Cl2 ⁱⁱ	0.95	2.86	3.492 (2)	125
C18—H18A···F1 ⁱⁱⁱ	0.98	2.49	3.450(3)	166

Symmetry codes: (i) -x, -y, -z; (ii) x, -y+1/2, z-1/2; (iii) -x+1, -y, -z.

Acta Cryst. (2013). E69, m331 Sup-7