

Prokaryotic vs Eukaryotic Cell Capsule Pili **PROKARYOTE** Cell Wall Smooth Nucleoid endoplasmic reticulum Cytoplasm Flagella Mitochondria Cell (Plasma) Membrane Centriole Ribosome Plasmid Golgi apparatus Nucleolus Rough endoplasmic **Nucleus** reticulum **EUKARYOTE** sciencenotes.org

DNA replication is the basis for the perpetuation of life through time

Figure 1-14
Introduction to Genetic Analysis, Tenth Edition
© 2012 W. H. Freeman and Company

Figure 1-15
Introduction to Genetic Analysis, Tenth Edition
© 2012 W. H. Freeman and Company

Key stages of meiosis and mitosis

Figure 2-8
Introduction to Genetic Analysis, Tenth Edition
© 2012 W. H. Freeman and Company

Disease prevalence and genetic model

Frequency of disorder

Mutational target

From: Gilissen et al. Genome Biology 2011, 12:228

Autosomal recessive

P (healthy) =
$$3/4$$

P (affected) = $1/4$

Two possible phenotypes
Three possible genotypes

Autosomal recessive inheritance

Two copies of the mutant allele are necessary to produce an increase in risk, or equivalently, one copy of the normal allele is sufficient to provide protection.

Cystic Fibrosis (Chromosome 17)

Table 17.1 Human genetic relationships Uncle-niece Double first cousin (F=0.125)(F = 0.125)**Biological** Genetic Coefficient of Coefficient relationship relationships relationship of inbreeding 0.5 0.25 First degree Incest^a Uncle-niece Second degree 0.25 0.125 Double first cousin First cousin Third degree 0.125 0.0625 First cousin (F = 0.0625)Fourth degree 0.0625 First cousin 0.0313 once removed Double second cousin Second cousin Fifth degree 0.0313 0.0156 Second cousin First cousin once removed (F = 0.0156)Second cousin Sixth degree 0.0156 0.0078 (F = 0.0313)once removed Double third cousin 0,0 0.0039 Third cousin Seventh degree 0.0078 ^aIncest is defined as a sexual relationship between father-daughter,

Fig. 17.1 Consanguineous pedigrees

mother-son or brother-sister

В

Hypothesis	Carrier	Non-carrier
Prior Probability	1/2	1/2
Conditional Probability (of	1/8	~1
three normal sons)	N. 100	
Joint Probability	1/16	1/2
Posterior Probability	(1/16) / (1/16 + 1/2) = 1/9	(1/2) / (1/16 + 1/2) = 8/9

, la L				
ga	ametes			
	A-	A- D-b	а- В	a ll-b
A-B				
A- b				
а-П-В				
a ll-b				

The Mendel's law of independent transmission is explained by the independent segregation of non homologous chromosomes during meiosis

Meosis in a diploid cell with genotype (A/a; B/b)

Genotipe AaBb

Gametes: AB 1/4

Ab ¼

aB 1/4

ab ¼

Do the observed proportions fit to the expected ones?

Do the observed proportions fit to the expected ones?

$$X^{2} = \sum \frac{\text{(Observed value - Expected value)}^{2}}{\text{Expected value}}$$

https://flxlexblog.wordpress.com/2016/07/08/developments-in-high-throughput-sequencing-july-2016-edition/

FASTQ files

Line1: Sequence identifier

Line2: Raw sequence

Line3: meaningless

Line4: quality values for the sequence

```
@HWI-ST508:210:C0EDTACXX:1:1101:1872:1227 1:N:0:
AATTGTGAAAACCCAAAAGGTGGAGCAGCCATTNTTATACATTGCAGAAGGGNGANNNANCNTTATGAAATTTAGCACCTGCCTTCCTGAATGATAAATGG
@CCFFEFFHHHHHJJJJIJJCGHEIIIJIJJJJ#1BFHIJJJJJJJJJJJJJI#-;###-#-#-5?BFFFFEEEEEECCDDDDDDDDDDDCCDDDDDCCEED
@HWI-ST508:210:COEDTACXX:1:1101:1895:1233 1:N:0:
IGACATAAGCTTGCATTTGAAAAGCACCTCCGAAAGCTTCCCAGCCTCAAAGNCANNATCGNCTTCTGATGCAGTTAGGCACCACAAGAGCTTCCCCACAA
@HWI-ST508:210:C0EDTACXX:1:1101:1761:1235 1:N:0:
GCTCTACTAAAAATATAAAAATTGGCCAGGCGCAGTGACACATGCCTGTAGTCCCNGCTATTCGGGAGGCTGACACACAAGAATCAATCACTTGAACCCAG
CCCFFFFFHGHHHJJJJJJJJJJJJJJJJIEIIIJFHGIIIIJJIJJJJHIJJIJ#-;FGGIJIJHHFFDDEEDDCCDDDDCCDDDDDDDDDDDDDDDD
@HWI-ST508:210:C0EDTACXX:1:1101:1971:1236 1:N:0:
CAGGATGAAAGAGGTCTGGCCAGGTGCTGGGTGCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGCGGATCACGAAGTCAGGAGTT
CCCFFFFFHGHHGJHIJIIJJJJI3CFGIJJ9DFHJDEHGIJIJJJJJIIJJJGGIJJJJJJJFIJHFFFFDDDB/?BB@BD<39?CD@B8+:@CDCB##
@HWI-ST508:210:C0EDTACXX:1:1101:1830:1239 1:N:0:
@HWI-ST508:210:C0EDTACXX:1:1101:1999:1240 1:N:0:
@0@0 	ext{DDA2} FHBHHEGEHIHGIGGHBFCGIEHGAEGGIIEGIIIIGHIGEHEGHIGIGBFHEHIEAHGHHFHEH; B@0 	ext{EBDCDEEBCDDCCCCC}
@HWI-ST508:210:C0EDTACXX:1:1101:1806:1245 1:N:0:
```

Visualization

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	BGMUB-1	BGMUB-2	BGMUB-3	BGMUB-C1	BGM
13	20187061	rs9509085	С	T	10	00 PASS	AA=C ;AC	GT	1 1	1 1	1 0	1 1	1 1
13	20187624	rs7988691	Α	G	10	00 PASS	AA=G ;AC	GT	1 1	1 1	1 1	1 1	1 1
13	20187749	rs7623	С	T	10	00 PASS	AA=T ;AC	GT	1 1	1 0	1 1	1 1	1 1
13	20187970	rs5030700	G	Α	10	00 PASS	AA=G ;AC	GT	1 0	0 0	0 0	0 0	0 0
13	20188733	rs55704559	T	С	10	00 PASS	AA=T ;AC	GT	1 0	0 0	0 0	0 0	0 0
13	20188817	rs3751385	Α	G	10	00 PASS	AA=G ;AC	GT	1 0	1 1	1 0	1 1	1 1
13	20188940	rs530484784	T	C	10	00 PASS	AA=T ;AC	GT	0 0	1 0	0 0	0 0	0 0
13	20189214	rs111033188	G	T	10	00 PASS	AA=G ;AC	GT	1 0	0 0	0 0	0 0	0 0
13	20189241	rs2274083	T	С	10	00 PASS	AA=T ;AC	GT	0 0	0 0	0 0	1 0	0 0
13	20189324	rs139362103	С	T	10	00 PASS	AA=C ;AC	GT	0 0	0 0	0 0	0 0	1 0
13	20189510		С	T	10	00 PASS	AA=T ;AC	GT	0 0	1 0	0 0	0 0	0 0
13	20189548		CC	С	10	00 PASS	AA=T ;AC	GT	0 0	1 0	0 0	0 0	0 0
13	20189596	rs72561725	G	Α	10	00 PASS	AA=G ;AC	GT	0 0	0 0	1 0	0 0	0 0
13	20189783	rs73156818	Α	T	10	00 PASS	AA=A ;AC	GT	0 0	0 0	0 0	1 0	0 0
13	20189935	rs7318163	G	T	10	00 PASS	AA=T ;AC	GT	1 1	1 1	1 0	1 1	1 1
13	20223243		G	C	10	00 PASS	AA=G ;AC	GT	1 1	0 0	0 0	0 0	0 0
13	20223280	rs554688212	G	T	10	00 PASS	AA=G ;AC	GT	0 0	0 0	1 0	0 0	0 0
13	20223451	rs377181573	G	Α	10	00 PASS	AA=G ;AC	GT	0 0	0 0	1 0	0 0	0 0
13	20223475	rs200415730	Α	G	10	00 PASS	AA=A ;AC	GT	0 0	1 0	0 0	0 0	0 0
13	20229254	rs145808643	Т	C	10	00 PASS	AA=T ;AC	GT	0 0	1 0	0 0	0 0	1 0
13	20229305	rs71424089	Т	С	10	O PASS	AA=C ;AC	GT	0 0	0 0	1 0	0 0	0 0
13	20232512	rs148043721	С	CG	10	O PASS	AA=? GGGG	GT	1 1	1 1	1 1	1 1	1 1
13	20232627	rs9506446	G	Α	10	00 PASS	AA=G ;AC	GT	0 0	1 1	1 0	1 0	1 1

1. HOW MANY VARIANTS DOES THE GENOME HAVE?

2. WHICH TYPE?

3. WHAT EFFECT DO THEY HAVE?

4. WHAT IS THE BIOLOGICAL SIGNIFICANCE?

Table 2 Frequency of different types of mutations that result in PKU							
Type of PKU muta	ntion	Percentage of all PKU mutations					
Missense	And District	67%					
Deletion		14%					
Splice		12%					
Nonsense		6%					
Insertion		1%					

Functional annotation

Functional annotation

- synonymous
- splice donor
- missense
- frameshift
- intron
- stop gained

Functional annotation

Computational approaches to predict the impact of SNVs

Sorting Intolerant From Tolerant substitutions (SIFT)

- > Funtionally important positions (e.g. active sites) tend to be conserved across species.
 - ♦ Changes at conserved sites tend to be detrimental.
- > Some positions show a high level of diversity acorss species.
 - Changes at these positions tend to be neutral.

Functional annotation

Genetic variant	Position	Change	Consequence	Gene	Freq
A	3:1403401- 1403401	A/C	missense	CNTN6	0.003
В	12:49022301- 49022301	G/A	missense	KMT2D	-
C	3:25634002- 25634002	G/A	missense	TOP2B	4×10 ⁻⁶
D	15:72353105- 72353105	C/T	missense	HEXA	5×10 ⁻⁵
E	4:38797314- 38797314	C/A	synonymous	TLR1	0.38
F	7:117639961- 117639961	C/T	intron	CFTR	6×10 ⁻⁵
G	17:31230383- 31230383	G/A	splice_donor	NF1	4×10 ⁻⁶
H	11:63290453- 63290453	G/A	stop_gained	SLC22A10	0.434

Marth et al. (2011) Genome Biol. 12, R84

Functional annotation

Genetic	Position	Change	Consequence	Gene	Freq	SIFT	Polyphen	Mutation	CADD	Condel	LoF tol	RVIS
variant								Assessor				
A	3:1403401- 1403401	A/C	missense	CNTN6	0.003	0.47	0	Neutral	9.52	Neutral	0.974	-0.92 (9.81%)
В	12:49022301- 49022301	G/A	missense	KMT2D	-	0	1	Medium	32	0.945	-	-5.29 (0.06%)
G	3:25634002- 25634002	G/A	missense	TOP2B	4×10 ⁻⁶	0.01	0.152	Medium	29.3	0.778	0.82	-0.15 (42.28%)
D	15:72353105- 72353105	C/T	missense	HEXA	5×10 ⁻⁵	0	1	Damaging	32	0.945	0.17	-0.33 (30.7%)
E	4:38797314- 38797314	C/A	synonymous	TLR1	0.38	-	-	-	0.29	-	0.963	1.32 (94.07%)
(3)	7:117639961- 117639961	C/T	intron	CFTR	6×10 ⁻⁵	-	-	-	1.08	-	0.0235	-0.51 (21.73%)
G	17:31230383- 31230383	G/A	splice_donor	NF1	4×10 ⁻⁶	-	-	-	34	-	0.116	-3.09 (0.47%)
H	11:63290453- 63290453	G/A	stop_gained	SLC22A10	0.434	-	-	-	36	-	0.7	1.85 (97.12%)

Functional annotation

<u>a</u>

is the more pathogenic variant......but is it really pathogenic?

- > Pathogenic
- ➤ Likely pathogenic
- **➤** Benign
- ➤ Likely benign
- **➤** Uncertain significance

Table 5 Rules for combining criteria to classify sequence variants

Pathogenic	(i) 1 Very strong (PVS1) AND
	(a) ≥1 Strong (PS1–PS4) OR
	(b) ≥2 Moderate (PM1–PM6) OR
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR
	(d) ≥2 Supporting (PP1–PP5)
	(ii) ≥2 Strong (PS1–PS4) OR
	(iii) 1 Strong (PS1–PS4) AND
	(a)≥3 Moderate (PM1–PM6) OR
	(b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR
	(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)
Likely pathogenic	(i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR
	(ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR
	(iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR
	(iv) ≥3 Moderate (PM1–PM6) OR
	(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR
	(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)
Benign	(i) 1 Stand-alone (BA1) OR
	(ii) ≥2 Strong (BS1–BS4)
Likely benign	(i) 1 Strong (BS1–BS4) and 1 supporting (BP1–BP7) OR
	(ii) ≥2 Supporting (BP1-BP7)
Uncertain	(i) Other criteria shown above are not met OR
significance	(ii) the criteria for benign and pathogenic are contradictory

Functional interpretation

Interpretation of sequence variants | RICHARDS et al.

ACMG STANDARDS AND GUIDELINES

Dathoronic

	Ber	iign → ←	Pathogenic				
	Strong	Supporting	Supporting	Moderate	Strong	Very strong	
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4		
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1	
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3		
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	→		
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2		
Allelic data		Observed in trans with a dominant variant BP2 Observed in cis with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3			
Other database		Reputable source w/out shared data – benign BP6	Reputable source - pathogenic PPs				
Other data		Found in case with an alternate cause BPs	Patient's phenotype or FH highly specific for gene PP4				

Figure 1 Evidence framework. This chart organizes each of the criteria by the type of evidence as well as the strength of the criteria for a benign (left side) or pathogenic (right side) assertion. Evidence code descriptions can be found in Tables 3 and 4. BS, benign strong; BP, benign supporting; FH, family history; LOF, loss of function; MAF, minor allele frequency; path., pathogenic; PM, pathogenic moderate; PP, pathogenic supporting; PS, pathogenic strong; PVS, pathogenic very strong.

4. BIOLOGICAL MEANING OF GENETIC VARIANTS

GENETIC DISEASE

- Mendelian
- Complex

ADAPTATION

NEUTRAL

GENOME WIDE ASSOCIATION STUDIES

HOW MANY GENETIC VARIANTS IN A GENOME?

WHICH TYPE?

WHAT EFFECT?

- SIZE (SNV, indels, CNVS) **FUNCTIONAL ANNOTATION**
- Localization (intergenic, UTRs, exons)
- Frequency (rare, common)
- Nature (somatic, germinal)

- Primary
- Bioinformatic predictions
- Databases (ClinVar)

GENE PROPERTIES

- Indexes (LoF, RVIS, HI)
- Databases (OMIM)

- Analyses
- Familiar segregation
- Phenotype/Genotype

BIOLOGICAL MEANING

NEUTRAL

ADAPTATION

GENETIC DISEASE

- Mendelian
- Complex

THE TISSUE AND ORGAN PROTEOMES

Explore the proteomes of specific tissues and organs

The expression for all protein-coding genes in all major tissues and organs in the human body can be explored in this interactive database, including numerous catalogues of proteins expressed in a tissue-restricted manner.

Differential Expression Analysis

- 1. Mapping & transcript reconstruction
- 2. Abundance estimation
- 3. Differential expression (gene level)
- 4. Enrichment analysis

