Assignment -3

Python Programming

Assignment Date	29.09.2022
Student Name	PREETHI R
Student Roll Number	211419104202
Maximum Marks	2 Marks

1. Download the dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

2. Load the dataset into the tool.

```
In [2]: #Loading the dataset
d = pd.read_csv(r'Downloads/abalone.csv')
```

3. Perform Below Visualizations.

· Univariate Analysis

```
        In [3]:
        d .head()

        Out[3]:
        Sex Length
        Diametr
        Height
        Whole weight
        Shucked weight
        Viscera weight
        Shell weight
        Rings

        0 M 0.455
        0.365
        0.095
        0.514
        0.2245
        0.1010
        0.150
        15

        1 M 0.350
        0.265
        0.090
        0.2255
        0.0995
        0.0485
        0.070
        7

        2 F 0.530
        0.420
        0.135
        0.6770
        0.2565
        0.1415
        0.210
        9

        3 M 0.440
        0.365
        0.125
        0.5160
        0.2155
        0.1140
        0.155
        10

        4 I 0.330
        0.255
        0.080
        0.2050
        0.0895
        0.0395
        0.055
        7
```

```
In [4]: #BoxpLot
     sns.boxplot(d['Diameter'])
Out[4]: <AxesSubplot:xlabel='Diameter'>
```



```
In [6]: #line plot

plt.plot(d['Diameter'].head(10))
```

Out[6]: [<matplotlib.lines.Line2D at 0x1c2ed71d130>]


```
In [7]: #piechart

plt.pie(d['Diameter'].head(),autopct='%.2f')
```


• Bi - Variate Analysis

```
In [9]: #scatter plot
plt.scatter(d['Diameter'].head(500),d['Length'].head(500))
```

Out[9]: <matplotlib.collections.PathCollection at 0x1c2edcc2d60>


```
In [10]: #bar plot

plt.bar(d['Sex'].head(10),d['Rings'].head(10))

#labelling of x,y and result

plt.title('Bar plot')
 plt.xlabel('Diameter')
 plt.ylabel('Rings')

Out[10]: Text(0, 0.5, 'Rings')
```



```
In [11]: sns.barplot(d['Sex'], d['Rings'])
Out[11]: <AxesSubplot:xlabel='Sex', ylabel='Rings'>
```


In [13]: #bar plot
sns.barplot('Diameter','Rings',hue='Sex',data=d.head())

Out[13]: <AxesSubplot:xlabel='Diameter', ylabel='Rings'>

0.3 0.4 Diameter

In [14]: sns.lineplot(d['Diameter'].head(),d['Rings'].head())

Out[14]: <AxesSubplot:xlabel='Diameter', ylabel='Rings'>

• Multi - Variate Analysis

4. Perform descriptive statistics on the dataset.

In [19]:	#head									
	d.head()									
Out[19]:		Sex	Length	Diameter	Height	Whole weight S	hucked weight	/iscera weight	Shell weight	Rings
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
	4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7
n [20]:		nil :ail()							
Out[20]:		s	ex Lenç	jth Diame	ter Heigh	t Whole weigh	t Shucked weigh	t Viscera weig	ht Shell weig	tht Ri
	41	72	F 0.5	65 0.4	50 0.16	5 0.8870	0.370	0.23	90 0.24	90
	41	73	M 0.5	90 0.4	40 0.13	5 0.9660	0.439	0.21	45 0.26	05

```
        4174
        M
        0.600
        0.475
        0.205
        1.1760
        0.5255
        0.2875
        0.3080
        9

        4175
        F
        0.625
        0.485
        0.150
        1.0945
        0.5310
        0.2610
        0.2960
        10

        4176
        M
        0.710
        0.555
        0.195
        1.9485
        0.9455
        0.3765
        0.4950
        12
```

In [21]: d.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

memory usage: 293.8+ KB

In [22]: d.describe()

Out[22]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

In [23]: #mode

d.mode().T

Out[23]:

	0	1
Sex	М	NaN
Length	0.55	0.625
Diameter	0.45	NaN
Height	0.15	NaN
Whole weight	0.2225	NaN
Shucked weight	0.175	NaN
Viscera weight	0.1715	NaN
Shell weight	0.275	NaN
Rings	9.0	NaN

In [24]: d.shape

Out[24]: (4177, 9)

```
In [25]: #Rurtosis
              d.kurt()
   Out[25]: Length
                                     0.064621
                                    -0.045476
76.025509
              Diameter
Height
Whole weight
                                     -0.023644
              Shucked weight
Viscera weight
                                     0.595124
0.084012
              Shell weight
                                     0.531926
              Rings
dtype: float64
                                     2.330687
   In [26]: #skewness
   Out[26]: Length
Diameter
                                   -0.639873
-0.609198
              Height
                                    3.128817
              Whole weight
Shucked weight
                                    0.530959
                                    0.719098
              Viscera weight
                                    0.591852
              Shell weight
                                    0.620927
              Rings
                                    1.114102
              dtype: float64
ın [2/]: #varıance
              d.var()
   Out[27]: Length
                                      0.014422
                                      0.009849
               Diameter
               Height
Whole weight
                                      0.001750
0.240481
               Shucked weight
Viscera weight
                                      0.049268
0.012015
               Shell weight
              Rings
dtype: float64
                                     10.395266
   In [28]: #finding unique values for columns
              d.nunique()
   Out[28]: Sex
                                     3
134
              Length
Diameter
                                     111
               Height
Whole weight
                                       51
                                     2429
               Shucked weight
Viscera weight
                                     1515
                                     880
               Shell weight
                                      926
               Rings
dtype: int64
                                       28
```

5. Check for Missing values and deal with them.

In [29]: #finding missing values
d.isna()

Out[29]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
4172	False	False	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False	False	False
4176	False	False	False	False	False	False	False	False	False

4177 rows × 9 columns

```
In [30]: d.isna().any()
Out[30]: Sex
                                   False
False
            Length
                                   False
False
            Diameter
           Height
Whole weight
                                   False
           Shucked weight
Viscera weight
Shell weight
Rings
                                   False
                                   False
False
           Rings
dtype: bool
                                   False
In [31]: d.isna().sum()
Out[31]: Sex
            Length
            Diameter
            Height
            Whole weight
            Shucked weight
            Viscera weight
Shell weight
           Rings
dtype: int64
                dtype: bool
    In [31]: d.isna().sum()
    Out[31]: Sex
                                       0
                 Length
                 Height
                Whole weight
Shucked weight
Viscera weight
Shell weight
                 Rings
                dtype: int64
     In [32]: d.isna().any().sum()
                 #no missing values
    Out[32]: 0
```

6. Find the outliers and replace them outliers

0.5

```
In [33]: #finding outliers
         sns.boxplot(d['Diameter'])
Out[33]: <AxesSubplot:xlabel='Diameter'>
```

```
In [34]: #handling outliers
          qnt=d.quantile(q=[0.25,0.75])
Out[34]:
               Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
          0.25 0.450 0.35 0.115 0.4415 0.186
                                                                     0.0935
                                                                               0.130 8.0
          0.75 0.615 0.48 0.165
                                                           0.502
                                                                                    0.329 11.0
In [35]: iqr=qnt.loc[0.75]-qnt.loc[0.25]
Out[35]: Length
                            0.1650
         Diameter
Height
                             0.1300
                             0.0500
          Whole weight
Shucked weight
                            0.7115
0.3160
          Viscera weight
Shell weight
                            0.1595
0.1990
          Rings
dtype: float64
                            3.0000
In [36]: lower=qnt.loc[0.25]-(1.5*iqr)
```

```
Out[36]: Length
                               0.20250
             Diameter
                              0.15500
                              0.04000
             Height
                              -0.62575
             Whole weight
                             -0.28800
             Shucked weight
             Viscera weight
                             -0.14575
             Shell weight
                              -0.16850
            Rings
                              3.50000
             dtype: float64
   In [37]: upper=qnt.loc[0.75]+(1.5*iqr)
            upper
   Out[37]: Length
                                0.86250
            Diameter
                                0.67500
                                0.24000
             Height
             Whole weight
                                2.22025
            Shucked weight
Viscera weight
                                0.97600
                                0.49225
             Shell weight
                               0.62750
            Rings
                               15.50000
             dtype: float64
In [38]: # replacing outliers
           ##Diameter
           d['Diameter']=np.where(d['Diameter']<0.155,0.4078,d['Diameter'])</pre>
           sns.boxplot(d['Diameter'])
 Out[38]: <AxesSubplot:xlabel='Diameter'>
                 0.2
                         0.3
                                 0.4
                                         0.5
                                                  0.6
                                Diameter
     Out[41]: <AxesSubplot:xlabel='Length'>
```



```
In [42]: ## Height
sns.boxplot(d['Height'])
Out[42]: <AxesSubplot:xlabel='Height'>
```

```
In [42]: ## Height
          sns.boxplot(d['Height'])
Out[42]: <AxesSubplot:xlabel='Height'>
                                          0.8
                                                  1.0
In [43]: d['Height']=np.where(d['Height']<0.04,0.139, d['Height'])
d['Height']=np.where(d['Height']>0.23,0.139, d['Height'])
          d['Height']=np.where(d['Height']>0.23,0.139, d['Height'])
 In [44]: sns.boxplot(d['Height'])
 Out[44]: <AxesSubplot:xlabel='Height'>
               0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Height
 In [45]: ## Whole weight
           sns.boxplot(d['Whole weight'])
 Out[45]: <AxesSubplot:xlabel='Whole weight'>
             Out[45]: <AxesSubplot:xlabel='Whole weight'>
                                                         (e)
                              1.0 1.5
Whole weight
    In [46]: d['Whole weight']=np.where(d['Whole weight']>0.9,0.82, d['Whole weight'])
    In [47]: sns.boxplot(d['Whole weight'])
    Out[47]: <AxesSubplot:xlabel='Whole weight'>
```

```
In [47]: sns.boxplot(d['Whole weight'])
   Out[47]: <AxesSubplot:xlabel='Whole weight'>
                        0.2
                                0.4 0.6
Whole weight
   In [48]: ## Shucked weight
             sns.boxplot(d['Shucked weight'])
   Out[48]: <AxesSubplot:xlabel='Shucked weight'>
Out[48]: <AxesSubplot:xlabel='Shucked weight'>
                                0.6 0.8 1.0 1.2
Shucked weight
   In [49]: d['Shucked weight']=np.where(d['Shucked weight']>0.93,0.35, d['Shucked weight'])
   In [50]: sns.boxplot(d['Shucked weight'])
   Out[50]: <AxesSubplot:xlabel='Shucked weight'>
      Out[50]: <AxesSubplot:xlabel='Shucked weight'>
                                 0.4 0.6
Shucked weight
      In [51]: ## Viscera weight
               sns.boxplot(d['Viscera weight'])
      Out[51]: <AxesSubplot:xlabel='Viscera weight'>
```

Out[51]: <AxesSubplot:xlabel='Viscera weight'>


```
In [52]: d['Viscera weight']=np.where(d['Viscera weight']>0.46,0.18, d['Viscera weight'])
```

In [53]: sns.boxplot(d['Viscera weight'])

Out[53]: <AxesSubplot:xlabel='Viscera weight'>

In [53]: sns.boxplot(d['Viscera weight'])

Out[53]: <AxesSubplot:xlabel='Viscera weight'>


```
In [54]: ## Shell weight
```

sns.boxplot(d['Shell weight'])

Out[54]: <AxesSubplot:xlabel='Shell weight'>

In [54]: ## Shell weight

sns.boxplot(d['Shell weight'])

Out[54]: <AxesSubplot:xlabel='Shell weight'>


```
In [55]: d['Shell weight']=np.where(d['Shell weight']>0.61,0.2388, d['Shell weight'])
```

In [56]: sns.boxplot(d['Shell weight'])

Out[56]: <AxesSubnlot:xlabel='Shell weight's

```
In [56]: sns.boxplot(d['Shell weight'])
```

Out[56]: <AxesSubplot:xlabel='Shell weight'>

7. Check for Categorical columns and perform encoding.

```
In [57]: #one hot encoding
d['Sex'].replace({'M':1,'F':0,'I':2},inplace=True)
d
```

0+	F = 7 1	
out	15/1	٠

		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
Ī	0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
	1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
	2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
	3	1	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
	4	2	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
	4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
	4173	1	0.590	0.440	0.135	0.8200	0.4390	0.2145	0.2605	10
	4174	1	0.600	0.475	0.205	0.8200	0.5255	0.2875	0.3080	9
	4175	0	0.625	0.485	0.150	0.8200	0.5310	0.2610	0.2960	10
	4176	1	0.710	0.555	0.195	0.8200	0.3500	0.3765	0.4950	12

4177 rows × 9 columns

8. Split the data into dependent and independent variables.

<pre>x=d.drop(columns= ['Rings']) y=d['Rings']</pre>
x

Out[58]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500
1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100
3	1	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550
4	2	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490
4173	1	0.590	0.440	0.135	0.8200	0.4390	0.2145	0.2605
4174	1	0.600	0.475	0.205	0.8200	0.5255	0.2875	0.3080
4175	0	0.625	0.485	0.150	0.8200	0.5310	0.2610	0.2960
4176	1	0.710	0.555	0.195	0.8200	0.3500	0.3765	0.4950

4177 rows × 8 columns

```
4177 rows × 8 columns
```

9. Scale the independent variables

10. Split the data into training and testing

11. Build the Model

```
In [64]: #Multiple Regression

from sklearn.linear_model import LinearRegression

MLR=LinearRegression()
```

40 T...!.. 41. . \$4 . .1 . 1

12. Train the Model

```
In [65]: MLR.fit(x_train,y_train)
Out[65]: LinearRegression()
```

13. Test the Model

13. Test the Model

```
In [66]: #predcition on the test data
          y\_pred=MLR.predict(x\_test)
          y_pred
Out[66]: array([11.4655124, 9.2166091, 6.59967857, 7.81824648, 12.18984569, 11.44220895, 11.20545145, 8.71621092, 10.98237601, 6.83381457,
                  10.46227495, 9.10809044, 12.39359143, 14.54491772, 13.54791716,
                  10.12045364, 11.48597397, 7.73511543, 12.86466796, 8.37939955,
                  6.51920876, 8.16682072, 8.05416099, 10.22713858, 10.57995698,
                  11.31009826, 7.52742935, 9.88582514, 11.25644638, 11.38973324,
                  10.95569239, 10.28552912, 10.40475249, 10.44887526, 11.03343746,
                  10.15213587, 10.04733695, 6.54448931, 11.86305246, 6.73817965,
                  4.07354447, 11.09033543, 7.69897797, 9.56311429, 11.63006462,
                  13.17063754, 6.34451832, 7.27896893, 15.31511539, 6.92860099,
                  3.63485054, 6.80184256, 11.451762 , 10.69664795, 8.59383781,
                   7.50446583, 10.33994154, 11.85072027, 13.544946 , 10.27236403,
                   9.18410191, 7.7208794 , 12.33421272, 6.527156 , 11.17483778,
                   7.97617745, 9.31452692, 9.56473016, 9.51077399, 12.20917888,
                  12.10672271, 4.70427674, 6.38943267, 10.02410014, 11.97786002,
                  12.77246335, 6.50139525, 10.64829499, 7.7058727, 6.05475715, 11.28248424, 10.75341994, 17.22835762, 9.53819376, 8.96368426,
                   6.61412036, 12.00162611, 5.85400348, 4.07058709, 10.08426584,
                  10.15760235, 11.50892785, 10.58412873, 10.32113545, 12.98841501,
```

```
13.1/005/794, 6.54451852, 7.2/890893, 15.31511539, 6.52806299, 3.63485054, 6.80184256, 11.451762, 10.69664795, 8.59383781, 7.50446583, 10.33994154, 11.85072027, 13.544946, 10.27236403, 9.18410191, 7.7208794, 12.33421272, 6.527156, 11.17483778, 7.97617745, 9.31452692, 9.56473016, 9.51077399, 12.20917888, 12.10672271, 4.70427674, 6.38943267, 10.02410014, 11.97786002, 12.77246335, 6.50139525, 10.64829499, 7.7058727, 6.05475715, 11.28248424, 10.75341994, 17.22835762, 9.53819376, 8.96368426, 6.61412036, 12.00162611, 5.85400348, 4.07058709, 10.08426584, 10.15760235, 11.50892785, 10.58412873, 10.32113545, 12.98841501,
In [67]: #prediction in the train data
             pred=MLR.predict(x_train)
Out[67]: array([10.64104453, 11.72955404, 9.71670847, ..., 9.33031288,
                       11.94411399, 9.8609076 ])
In [68]: from sklearn.metrics import r2_score
             acc=r2_score(y_test,y_pred)
Out[68]: 0.4331576346139585
In [69]: #test this model
 Out[68]: 0.4331576346139585
 In [69]: #test this model
              MLR.predict([[1,0.455,0.365,0.095,0.5140,0.2245,0.1010,0.150]])
 Out[69]: array([9.91033204])
               14. Measure the performance using Metrics.¶
 In [70]: from sklearn import metrics
              from sklearn.metrics import mean_squared_error
 In [71]: np.sqrt(mean_squared_error(y_test,y_pred))
 Out[71]: 2.4905110779015462
              LASSO
 In [72]: from sklearn.linear_model import Lasso, Ridge
 In [73]: #intialising model
In [73]: #intialising model
             lso=Lasso(alpha=0.01,normalize=True)
             lso.fit(x_train,y_train)
Out[74]: Lasso(alpha=0.01, normalize=True)
In [75]: #predcition on test data
             lso_pred=lso.predict(x_test)
             coef=lso.coef
                                                  , 0. , 0.4751529 , 0.18634695, , 0.8021721 ])
Out[76]: array([-0.
In [77]: #accuracy
             from sklearn import metrics
from sklearn.metrics import mean_squared_error
             metrics.r2_score(y_test,lso_pred)
Out[77]: 0.3260900261255968
```

, דעטטסטטער. ס. אַלאַרנסטר, רענטטעסטער. ס. אָלאָרנסטר, דענטטסטער. ס. אָלאָנסטר, דענטטסטער. ס. אָלאָרנסטר,

```
In [78]: #error
                np.sqrt(mean_squared_error(y_test,lso_pred))
Out[78]: 2.715552909824135
                RIDGE
In [79]: rg=Ridge(alpha=0.01,normalize=True)
In [80]: #fit
               rg.fit(x_train,y_train)
Out[80]: Ridge(alpha=0.01, normalize=True)
In [81]: #predcition
                rg_pred=rg.predict(x_test)
                rg_pred
 Out[81]: array([11.49838542, 9.22452452, 6.72241086, 7.80010402, 12.09475499, 11.33701357, 11.13313 , 8.85299136, 10.95426872, 6.83332623, 10.48221326, 9.08348674, 12.3098871 , 14.39846005, 13.62343834,
                            10.48221326, 9.08348674, 12.3098871 , 14.39846005, 13.62343834, 10.11925891, 11.53997639, 7.575730522, 12.85320604, 8.43018605, 6.53855123, 8.20224034, 7.58755052, 10.2671289 , 10.65653767, 11.30141111, 7.50735436, 9.91086293, 11.27856902, 11.29021902, 10.93344581, 10.32246436, 10.4456454 , 10.47230589, 11.05682097, 10.1640513 , 10.10050704, 6.5623351 , 11.84100809, 6.75171646, 4.18665064, 11.0291328 , 7.72116038, 9.60080953, 11.57691909, 13.01362452, 6.35434964, 7.30414243, 15.1541625 , 6.91515291, 4.16356146, 6.81943931, 11.43766939, 10.62078881, 8.65255458, 7.53582353, 10.44494347, 11.86697333, 13.45239251, 10.40153892, 9.1961334 , 7.75332002, 12.25958727, 6.54710958, 11.17149665,
                               9.1961334 , 7.75332002, 12.25958727, 6.54710958, 11.17149665,
                               7.96864693, 9.37526527, 9.69298327, 9.54666379, 12.19633696,
                             12.1127204 , 4.82993146, 6.43644112, 9.93303646, 12.00590353, 12.76127566, 6.53636246, 10.58092597, 7.71945979, 5.98307484, 11.30567761, 10.77297947, 16.83531384, 9.62951405, 9.07577717,
                               6.65047637, 11.98056215, 5.83715385, 4.18471904, 10.06479866,
                             10.18956629, 11.5066688 , 10.63940289, 10.38796727, 12.94599046,
  In [82]: #coef
                 rg.coef_
 Out[82]: array([-0.30797338, -0.75443399, 0.34843757, 0.94370227, 0.96851431, -1.38791368, -0.04943813, 1.70772786])
 In [82]: #coef
                rg.coef_
Out[82]: array([-0.30797338, -0.75443399, 0.34843757, 0.94370227, 0.96851431, -1.38791368, -0.04943813, 1.70772786])
In [83]: #accuracy
                 metrics.r2_score(y_test,rg_pred)
Out[83]: 0.43177328549243543
In [84]: #error
                np.sqrt(mean_squared_error(y_test,rg_pred))
Out[84]: 2.4935504011542577
  In [ ]: # 1. Download the dataset
                #importing the libraries
                import pandas as pd
                import numpy as np
                import matplotlib.pyplot as plt
                import seaborn as sns
                import warnings
```

```
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
# 2. Load the dataset into the tool.
#loading the dataset
d = pd.read_csv(r'Downloads/abalone.csv')
# 3. Perform Below Visualizations.
# · Univariate Analysis
d.head()
#Boxplot
sns.boxplot(d['Diameter'])
#histogram
plt.hist(d['Diameter'])
#line plot
#line plot
plt.plot(d['Diameter'].head(10))
#piechart
plt.pie(d['Diameter'].head(),autopct='%.2f')
#distplot
sns.distplot(d['Diameter'].head(200))
# • Bi - Variate Analysis
#scatter plot
plt.scatter(d['Diameter'].head(500),d['Length'].head(500))
#bar plot
plt.bar(d['Sex'].head(10),d['Rings'].head(10))
#labelling of x,y and result
plt.title('Bar plot')
plt.ylabel('Rings')
sns.barplot(d['Sex'], d['Rings'])
#joint plot
sns.jointplot(d['Diameter'].head(50),d['Rings'].head(50))
sns.barplot('Diameter','Rings',hue='Sex',data=d.head())
sns.lineplot(d['Diameter'].head(),d['Rings'].head())
# • Multi - Variate Analysis
#boxplot
\verb|sns.boxplot(d['Sex'].head(10),d['Diameter'].head(10),d['Rings'].head(10)||
fig=plt.figure(figsize=(8,5))
sns.heatmap(d.head().corr(),annot=True)
#pair plot
sns.pairplot(d.head(),hue='Rings')
```

```
sns.pairplot(d.head()),hue='Rings')
sns.pairplot(d.head())
# 4. Perform descriptive statistics on the dataset.
#head
d.head()
#tail
d.tail()
d.info()
d.describe()
#mode
d.mode().T
d.shape
#kurtosis
```

```
d.kurt()
#skewness
d.skew()
#variance
d.var()
#finding unique values for columns
d.nunique()
# 5. Check for Missing values and deal with them.
#finding missing values
d.isna()
d.isna().any()
d.isna().sum()
#no missing values
```

```
# 6. Find the outliers and replace them outliers
#finding outliers
sns.boxplot(d['Diameter'])
#handling outliers
qnt=d.quantile(q=[0.25,0.75])
qnt
iqr=qnt.loc[0.75]-qnt.loc[0.25]
iqr
lower=qnt.loc[0.25]-(1.5*iqr)
lower
upper=qnt.loc[0.75]+(1.5*iqr)
upper
# replacing outliers
##Diameter
d['Diameter']=np.where(d['Diameter']<0.155,0.4078,d['Diameter'])
sns.boxplot(d['Diameter'])</pre>
```

```
## Length
sns.boxplot(d['Length'])
d['Length']=np.where(d['Length']<0.23,0.52, d['Length'])</pre>
sns.boxplot(d['Length'])
## Height
sns.boxplot(d['Height'])
d['Height']=np.where(d['Height']<0.04,0.139, d['Height'])
d['Height']=np.where(d['Height']>0.23,0.139, d['Height'])
sns.boxplot(d['Height'])
## Whole weight
sns.boxplot(d['Whole weight'])
d['Whole weight']=np.where(d['Whole weight']>0.9,0.82, d['Whole weight'])
sns.boxplot(d['Whole weight'])
## Shucked weight
## Shucked weight
sns.boxplot(d['Shucked weight'])
d['Shucked weight']=np.where(d['Shucked weight']>0.93,0.35, d['Shucked weight'])
sns.boxplot(d['Shucked weight'])
sns.boxplot(d['Viscera weight'])
d['Viscera weight']=np.where(d['Viscera weight']>0.46,0.18, d['Viscera weight'])
sns.boxplot(d['Viscera weight'])
## Shell weight
sns.boxplot(d['Shell weight'])
d['Shell weight']=np.where(d['Shell weight']>0.61,0.2388, d['Shell weight'])
sns.boxplot(d['Shell weight'])
# 7. Check for Categorical columns and perform encoding.
#one hot encoding
```

```
# 8. Split the data into dependent and independent variables.

x=d.drop(columns= ['Rings'])
y=d['Rings']
x

y

# 9. Scale the independent variables

from sklearn.preprocessing import scale #StandardScaler

#Scaling the independent variables

x = scale(x)
x

# 10. Split the data into training and testing

from sklearn.model_selection import train_test_split
```

```
# 10. Split the data into training and testing
from sklearn.model_selection import train_test_split
#spliting data to train and test
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2)
print(x_train.shape, x_test.shape)
# 11. Build the Model
#Multiple Regression
from sklearn.linear_model import LinearRegression
MLR=LinearRegression()
# 12. Train the Model
MLR.fit(x_train,y_train)
# 13. Test the Model
#predction on the test data
y_pred = MLR.predict(x_test)
y_pred
#prediction in the train data
pred= MLR.predict(x_train)
pred
from sklearn.metrics import r2_score
acc=r2_score(y_test,y_pred)
```

```
#prediction in the train data
pred=MLR.predict(x_train)
pred

from sklearn.metrics import r2_score
acc=r2_score(y_test,y_pred)
acc

#test this model

MLR.predict([[1,0.455,0.365,0.095,0.5140,0.2245,0.1010,0.150]])

# 14. Measure the performance using Metrics. 9

from sklearn import metrics
from sklearn.metrics import mean_squared_error
np.sqrt(mean_squared_error(y_test,y_pred))

# LASSO

from sklearn.linear_model import Lasso, Ridge
#intialising model

lso=Lasso(alpha=0.01,normalize=True)
```

```
# LASSO
from sklearn.linear_model import Lasso, Ridge
#intialising model
lso=Lasso(alpha=0.01,normalize=True)
#fit the model
lso.fit(x_train,y_train)
#predcition on test data
lso_pred=lso.predict(x_test)
#coef
coef
coef
#accuracy
from sklearn import metrics
from sklearn.metrics import mean_squared_error
metrics.r2_score(y_test,lso_pred)
#error
```