EE 111 Electric Circuits Midterm-Fall 2021 Nov 11 2021, 8:15 AM – 9:55 AM

6 problems in total (1 A4 crib sheet allowed)

Answer the Questions in English and on Answer Sheets only **Copy and Re-draw the circuits** on Answer Sheets for all problems

Two-decimal policy applies for the final answer

1. (16 points) For the circuit shown in Fig.1, use mesh-current method to find i_b .

2. (16 points) The variable dc current source i_{dc} in Fig.2 can be adjusted. Find the value of i_{dc} so that the power absorbed by the 4A current source is zero. (Hint: determine if there is any current through the 40- Ω resistor, and then you may use nodal analysis method)

Fig. 2

3. (16 points) Find the Thevenin equivalent OR Norton equivalent with respect to the terminal a and b for the circuit in Fig.3.

Fig. 3

4. (16 points) There is no energy stored in the capacitor when Switch 1 closes at t = 0. Twenty milliseconds (20ms) later, Switch 2 is closed, as shown in Fig.4. Find $v_o(t)$ for t > 0 and sketch it in one graph.

- 5. (16 points) For the circuit in Fig.5, u(t) means unit step function. Calculate
- (a) $i_L(0^+)$, $di_L(0^+)/dt$
- (b) Find the 2nd-order equation to describe $i_L(t)$ for t>0 (No need to solve it)

- 6. For the circuit in Fig.6, u(t) means unit step function. Calculate
- **(15 points)** (a) $i_L(t)$ for t > 0
- **(5 points)** (b) $v_c(t)$ *for* t > 0

Fig. 6