Drexel University

Office of the Dean of the College of Engineering

ENGR 232 – Dynamic Engineering Systems

Section: 61 Name: Cole Bardin

First

Last

Lab 9 Answer Template: Matrix Laplace Method and Linear Systems

Winter 2022

Part A: Undamped Harmonic Oscillator

2/2

TA will randomly pick two of these to grade.

a. Find the resolvent $R(s) = (sI - A)^{-1}$ for the harmonic oscillator. One component has been given for you.

$$R(s) = \frac{1}{s^2 + 1} \cdot \begin{bmatrix} s & 1 \\ -1 & s \end{bmatrix}$$

b. Find the state-transition matrix $\Phi(t) = \mathcal{L}^{-1}((sI - A)^{-1}) = \mathcal{L}^{-1}(R)$. One component has been given for you.

$$\Phi(t) = \begin{bmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{bmatrix}$$

c. Find the solution $\vec{\mathbf{x}}(t)$ at any time t using the state-transition matrix $\Phi(t)$ and the initial condition $\vec{\mathbf{x}}(0) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. The top component has been given for you.

$$\vec{\mathbf{x}}(t) = \Phi(t) \, \vec{\mathbf{x}}(0) = \begin{bmatrix} 3\cos(t) + 4\sin(t) \\ 4\cos(t) - 3\sin(t) \end{bmatrix}$$

d. Paste your plot of the circle here.

Part B: Falling Apple, Nonhomogeneous Equation (No friction)

3/3

TA will randomly pick three of these to grade.

a. Find the **resolvent** $R(s) = (sI - A)^{-1}$ for the falling apple. One component has been given for you.

$$R(s) = \begin{bmatrix} 1/s & 1/s^2 \\ 0 & 1/s \end{bmatrix}$$

b. Find the **state-transition matrix** $\Phi(t) = \mathcal{L}^{-1}((sI - A)^{-1}) = \mathcal{L}^{-1}(R)$ for the falling apple. One component is free!

$$\Phi(t) = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$$

c. Find the transform $\vec{\mathbf{f}}(s)$ of the forcing vector $\vec{\boldsymbol{f}}(t) = \begin{bmatrix} 0 \\ -g \end{bmatrix}$.

$$\vec{\mathbf{F}}(s) = \begin{bmatrix} 0 \\ -g/s \end{bmatrix}$$

d. Give the zero-input solution in the time domain only.

Leave h, g and v_0 as symbolic quantities. One component given for free.

$$\vec{\mathbf{x}}_{\mathbf{z}i}(t) = \mathcal{L}^{-1} \left(\frac{1}{s^2} \cdot \begin{bmatrix} sh + v_0 \\ sv_0 \end{bmatrix} \right) = \begin{bmatrix} h + tv_0 \\ v_0 \end{bmatrix}$$

e. Give the zero-state solution in the time domain only.

Leave h, g and v_0 as symbolic quantities. One component given for free and g has been factored outside.

$$\vec{\mathbf{x}}_{zs}(t) = \mathcal{L}^{-1} \left(-\frac{g}{s^3} \cdot \begin{bmatrix} 1 \\ s \end{bmatrix} \right) = -g \begin{bmatrix} t^2/2 \\ t \end{bmatrix}$$

 $\textbf{f.} \ \text{Combine the zero-input and zero-state solution to obtain the } \textbf{total solution} \ \text{in the time domain}.$

Leave h, g and v_0 as symbolic quantities. One component given for free.

$$\vec{\mathbf{x}}_{\text{total}}(t) = \vec{\mathbf{x}}_{zi}(t) + \vec{\mathbf{x}}_{zs}(t) = \begin{bmatrix} h + tv_0 - 0.5gt^2 \\ v_0 - gt \end{bmatrix}$$

Part C: Two Tanks - Laplace Matrix Method

2/2

TA will randomly pick two of these to grade.

a. Find the **resolvent** $R(s) = (sI - A)^{-1}$ for the two-tank system. A common denominator and one component have been given for you.

$$R(s) = \frac{1}{12s^2 + 8s + 1} \cdot \begin{bmatrix} 4 + 12s & 1\\ 4 & 4 + 12s \end{bmatrix}$$

b Give the **state-transition matrix** $\Phi(t) = \mathcal{L}^{-1}((sI - A)^{-1})$ for the two-tank system. The first column has been given for you.

$$\Phi(t) = \begin{bmatrix} \frac{1}{2} \cdot e^{-\frac{t}{2}} + \frac{1}{2} \cdot e^{-t/6} & e^{-t/6} * \frac{1}{4} - e^{-\frac{t}{2}} * \frac{1}{4} \\ -e^{-\frac{t}{2}} + e^{-t/6} & e^{-t/2} * \frac{1}{2} + e^{-\frac{t}{6}} * \frac{1}{2} \end{bmatrix}$$

c. Give the zero-input solution in the time domain only. One component given for free.

$$\vec{\mathbf{q}}_{\mathbf{z}\mathbf{i}}(t) = 2e^{-t/6} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

d. Give the **zero-state solution** in the **time** domain only. One component given for free and k has been factored outside.

$$\vec{\mathbf{q}}_{zs}(t) = k \cdot \begin{bmatrix} 24 - 6e^{-t/2} - 18e^{-t/6} \\ 24 + 12e^{-t/2} - 38e^{-t/6} \end{bmatrix}$$

e. Give the total solution in the time domain only. Fill in all the missing components.

$$\vec{\mathbf{q}}_{\text{total}}(t) = \vec{\mathbf{q}}_{\text{zi}}(t) + \vec{\mathbf{q}}_{\text{zs}}(t) = 2e^{-\frac{t}{6}} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} + k \cdot \begin{bmatrix} 24 - 6e^{-t/2} - 18e^{-t/6} \\ 24 + 12e^{-t/2} - 38e^{-t/6} \end{bmatrix}$$

Part D: The Rose of Venus 3/3

TA will randomly pick three of these to grade.

a. Find the **resolvent** $R(s) = (sI - A)^{-1}$ for the Rose of Venus. A common factor and the first row has been given for you. Express answers here using s and π .

$$R(s) = (sI - A)^{-1} = \frac{1}{s^2 + 4\pi^2} \cdot \begin{bmatrix} s & -2\pi \\ 2\pi & s \end{bmatrix}$$

b. Find the Laplace transform $\vec{\mathbf{f}}(s)$ of the forcing vector $\vec{\mathbf{f}}(t) = c \cdot \begin{bmatrix} -\sin(\omega_V t) \\ +\cos(\omega_V t) \end{bmatrix}$

$$\vec{\mathbf{F}}(s) = \frac{c}{s^2 + \omega_V^2} \cdot \begin{bmatrix} -\omega_V \\ \mathbf{S} \end{bmatrix}$$

c. Find the zero-input solution $\vec{X}zin(s)$ (in the s domain) using $\vec{X}zin(s) = (sI - A)^{-1}\vec{X}(0)$

$$\vec{\mathbf{X}}zin(s) = \frac{1}{s^2 + 4\pi^2} \cdot \begin{bmatrix} -\frac{7s}{25} \\ -\frac{14\pi}{25} \end{bmatrix} = \frac{1}{s^2 + 4\pi^2} \cdot \begin{bmatrix} -0.28 \ s \\ -1.76 \end{bmatrix}$$

d. Find the zero-state solution $\vec{X}zs(s)$ (in the s domain) using $\vec{X}zs(s) = (sI - A)^{-1}\vec{F}(s)$

$$\vec{\mathbf{X}}zs(s) = \frac{c}{(s^2 + 4\pi^2)(s^2 + \omega_V^2)} \cdot \begin{bmatrix} -(2\pi + \omega_V) \cdot s \\ s^2 - 2\pi\omega_V \end{bmatrix}$$

e. Find the value of $\vec{x}(4)$, half-way thru the rose.

$$\vec{\mathbf{x}}(4) = \begin{bmatrix} -0.28 \\ 0.00 \end{bmatrix}$$

You do not need to plot the Rose of Venus!

Ready to Submit?

Be sure all ten questions are answered. When your lab is complete, be sure to submit three files:

- 1. Your completed Answer Template as a PDF file
- 2. A copy of your MATLAB Live Script
- 3. A **PDF** copy of your **MATLAB Live Script** (Save-Export to PDF...)

The due date is the day after your lab section by **11:59pm** to receive full credit. You have one more day, to submit the lab (but with a small penalty), and then the window closes for good and your grade will be zero.