IN THE CLAIMS:

Please amend claims 1, 9 and 10 as follows:

A copy of all pending claims and a status of the claims are provided below.

1. (Currently Amended) A method for routing a datagram in an IP network, said method comprising the steps of:

receiving a datagram with a destination network address;

identifying a next hop router en route to or associated with said destination network address; and

determining whether or not transmission of said datagram on a link to said next hop router would result in a bandwidth usage exceeding a bandwidth threshold associated with said next hop router, and

if not, updating the bandwidth usage associated with said next hop router, and transmitting said datagram to said next hop router,

if so, selecting among other possible next hop routers en route to or associated with said destination address, another next hop router for which transmission of said datagram on a link to said other next hop router would not result in a bandwidth usage exceeding a bandwidth threshold associated with said other next hop router, updating the bandwidth usage associated with said other next hop router, and transmitting said datagram to said other next hop router; and

basing a routing decision on the bandwidth usage of the link to said next hop router.

2. (Previously Presented) The method as set forth in claim 1, wherein the step of selecting comprises the steps of:

if, among said other possible next hop routers, there is no other next hop router for which the transmission of the datagram on the respective link would result in the bandwidth usage being less than the respective bandwidth threshold,

choosing among said other possible next hop routers, another next hop router, updating the bandwidth threshold associated with said other, chosen next hop router with a larger, predefined bandwidth threshold; and

transmitting the datagram to said other, chosen next hop router.

- 3. (Original) The method as set forth in claim 1 wherein the step of determining, comprises the step of adding a bandwidth usage associated with said next hop router immediately before transmission of said datagram on said link to said next hop router to a bandwidth usage required for transmission of said datagram on said link to said next hop router, and comparing a result of said adding step to the bandwidth threshold associated with said next hop router.
- 4. (Original) The method as set forth in claim 1 wherein the step of updating the bandwidth usage associated with the first said next hop router, comprises the step of updating in a table, the current bandwidth usage with the estimated bandwidth usage.
- 5. (Cancelled)
- 6. (Cancelled)
- 7. (Original) The method as set forth in claim 2, wherein the step of choosing among said other possible next hop routers, comprises the step of choosing among said other possible next hop routers, a next hop router according to a shortest path algorithm.
- 8. (Original) The method as set forth in claim 1, wherein a bandwidth usage of a link to said next hop router is based on other datagrams that have been transmitted on said link within a time period prior to a current time.

9. (Currently Amended) A router for routing a datagram in an IP network, said router comprising:

means for receiving a datagram with a destination network address;
means for identifying a next hop router en route to or associated with said
destination network address; and

means for determining whether or not transmission of said datagram on a link to said next hop router would result in a bandwidth usage exceeding a bandwidth threshold associated with said next hop router, and

if not, updating the bandwidth usage associated with said next hop router, and transmitting said datagram to said next hop router,

if so, selecting among other possible next hop routers en route to or associated with said destination address, another next hop router for which transmission of said datagram on a link to said other next hop router would not result in a bandwidth usage exceeding a bandwidth threshold associated with said other next hop router, updating the bandwidth usage associated with said other next hop router, and transmitting said datagram to said other next hop router.

wherein the router bases a routing decision on the bandwidth usage of the link to said next hop router.

10. (Currently Amended) A computer program product for routing a datagram in an IP network, said program product comprising:

a computer readable medium;

first program instructions to receive a datagram with a destination network address;

second program instructions to identify a next hop router en route to or associated with said destination network address; and

third program instructions to determine whether or not transmission of said datagram on a link to said next hop router would result in a bandwidth usage exceeding a bandwidth threshold associated with said next hop router, and

if not, updating the bandwidth usage associated with said next hop router, and transmitting said datagram to said next hop router,

if so, selecting among other possible next hop routers en route to or associated with said destination address, another next hop router for which transmission of said datagram on a link to said other next hop router would not result in a bandwidth usage exceeding a bandwidth threshold associated with said other next hop router, updating the bandwidth usage associated with said other next hop router, and transmitting said datagram to said other next hop router; and

wherein said first, second and third program instructions are recorded on said medium, and

wherein a routing decision is based on the bandwidth usage of the link to said next hop router.

11. (Previously Presented) A computer program product as set forth in claim 10, wherein said third program instructions determine that transmission of said datagram on a link to said next hop router would result in a bandwidth usage exceeding a bandwidth threshold associated with said next hop router, and among said other possible next hop routers, there is not other next hop router for which the transmission of the datagram on the respective link would result in the bandwidth usage being less than the respective bandwidth threshold, and in response,

choose among said other possible next hop routers, another next hop router,

update the bandwidth threshold associated with said other, chosen next hop router with a larger, predefined bandwidth threshold; and transmit the datagram to said other, chosen next hop router.

12. (Previously Presented) A router as set forth in claim 9, wherein the determining means determines that transmission of said datagram on a link to said next hop router would result in a bandwidth usage exceeding a bandwidth threshold

associated with said next hop router, and among said other possible next hop routers, there is no other next hop router for which the transmission of the datagram on the respective link would result in the bandwidth usage being less than the respective bandwidth threshold, and in response,

chooses among said other possible next hop routers, another next hop router,

updates the bandwidth threshold associated with said other, chosen next hop router with a larger, predefined bandwidth threshold; and transmits the datagram to said other, chosen next hop router.