Správa paměti

Definice paměti

- Primární (Vnitřní) paměť
 - operační paměť / rozšířená RAM
 - rychlejší přístup než vnější paměť (cca 10-20 ns)
 - ► Volatilní elektricky závislá
 - Nestálá
 - Přepisovatelná
- Sekundární (Vnější) paměť
 - disky, ... nonvolatilní

Vnitřní pamět

- Fyzická paměť FAP:
 - Fyzický Adresový Prostor
 - ▶ Přítomna v PC
- Logická (abstraktní) paměť LAP (LAP >> FAP):
 - Logický Adresový Prostor
 - Řízen HW jednotkou správy paměti MMU:
 - ► Memory Management Unit

Funkce MMU

- Udržuje informace o využití paměti
- Přiděluje paměť procesům
 - Paměť, kterou procesy uvolní, přidá k volné paměti
 - ▶ Je-li třeba, odebírá paměť procesům
- Zajišťuje ochranu paměti:
 - nedovolí procesům přístup mimo vymezený prostor

Metody přidělování paměti

- 1. Přidělení jedné souvislé oblasti
- 2. Přidělení bloků pevné velikosti
- 3. Přidělení bloků proměnné velikosti
- 4. Segmentace
- 5. Stránkování

Přidělení paměti

- ▶ 1.Souvislá Oblast
 - ► LAP procesu/úlohy uložen v souvislé oblasti FAP
 - Neefektivní:
 - ► MMU hledá souvislou oblast paměti pro proces
 - ► Bez multitaskingu (MSDOS) 🕷

1. souvislé oblasti paměti

Nevyužitá paměť

Paměť procesu

Mezní registr

Paměť OS

\$0000

2. bloky pevné velikosti - multitasking

3.bloky proměnné velikosti (dynamické přidělování paměti)

Přidělení paměti

- ► 4.Segmentace (pro plnohodnotný multitasking)
 - Přirozená ochrana a sdílení kódu/dat
 - LAP rozdělen na bloky (proměnná velikost)
 - ▶ bloky segmenty pro KÓD programu
 - ▶ bloky segmenty pro DATA programu ₩

4. Segmentace

Přidělení paměti

- ▶ 5.Stránkování
 - ► LAP a FAP rozdělen na stejně velké bloky (4kB)
 - ► FAP rámce (data fyzicky v RAM)
 - LAP stránky
 - Vše evidováno v Tabulce stránek TS
 - MMU předkládá jako souvislou oblast dat
 - Fyzicky jsou stránky na různých místech paměti jako na HD ##

Stránkování

Tabulka obsazení paměti

0	volno
1	Proces 1
2	Proces 2
3	Proces 3
4	Proces 1
5	Volno
6	Proces 2

- Virtuální paměť (swapping)
 - Ukládání obsahu FAP na disk
 - ► LAP > FAP
 - FAP přiřazeno místo i na disku
 - ▶ do odkládací oblasti FAP
 - pagefile.sys ... velikost dynamická / pevná (cca jako RAM)
 - uložení stavu FAP hibernace
 - ▶ hiberfil.sys ... velikost cca instalované RAM

Virtuální paměť (swapping)

- Stránky aktivního procesu nemusí být kompletně v paměti část může být na disku
- Dle požadavků stránky nahrávány do paměti
- Je-li FAP plná:
 - OS vybere neaktivní/nejméně aktivní proces
 - stránky uloží na disk do:
 - ► Windows: do souboru x:\pagefile.sys
 - ► Linux: vlastní oddíl disku (swap) ₩

- Windows soubor x:\pagefile.sys
 - Dynamická/Proměnná velikost:
 - neustálé výpočty/kontroly alokace, volné místo
 - neustálý přístup na disk (zpomalování OS)
 - ▶ Je-li pagefile.sys fragmentován na celém disku:
 - delší vyhledávání dat
 - Pevná velikost:
 - ► lze defragmentovat rychlejší
 - Ideální stav: dostatek RAM a neswapovat

- Virtuální paměť Linux:
 - vlastní oddíl disku bez "FS":
 - ▶ Nemusí se hlídat velikost souboru, kde je uložen...
 - Vyhledávání dat sektoru: rychlejší
 - ▶ Odpovídá alokaci v FAP ₩

Hierarchie paměti

Z pohledu rychlosti a kapacity

USB flash disk: 2 GB ... 256 GB, 1 ms

Pevný disk: 5 GB ... X TB, 10 ms (4.řády)