

Artificial Intelligence (AI)

Lec06: Logistic Regression Part 2

충북대학교

문성태 (지능로봇공학과)

stmoon@cbnu.ac.kr

Evaluation: Accuracy

- ❖ Classification 문제로 성능은 정확도 (accuracy)로 평가
- ❖ 데이터 형태에 따라 accuracy로 측정하기 어려운 경우 발생

- Accuracy
- Precision
- Recall

0	0	
0	0	
0	0	
0	0	
0	0	
0	1	
1	0	
1	1	
1	0	
0	0	

		Act	ual
		Positive	Negative
Predicted	Positive	TP	FP
Predicted	Negative	FN	TN
'	Confusion Matrix		

Recall		Actual		
$\frac{TP}{TP + FN}$		Positive Negativ		
Predicted Positive		TP	FP	
Predicted	Negative	FN	TN	

❖ F1 (조화 평균□ 두 값의 비율을 중시 여김)

$$ext{F1-score} = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

참고) 비교 대상이 서로 역수의 관계가 있을때 조화 평균 활용

O4 Multinomial Logistic Regression (Softmax Regression)

Recap: Logistic Regression for binary classification

- ❖ 이진 분류된 영역에서 활용
 - 이진 분류 (binary classification) 데이터를 학습하고 추정하기 위해 sigmoid (logistic function) 사용

Logistic Regression for multiple classification

Multiclass Classification

- Method #1 : OvR (One vs Rest)
 - 각 y에 대해 확률을 계산하고 확률이 가장 큰 y를 선택하자
 - 각 모델을 독립적으로 학습

Multiclass Classification

- Method #2: Multinomial logistic regression
 - 각 모델을 독립적으로 학습하는 방식이 아닌 동시에 학습 수행
 - 각 모델을 학습하기 위해 one-hot encoding을 활용

no	x1	x2	V
1	0.8	1.2	0
2	9.8	2.0	2
3	3.2	3.5	0
4	4.8	5.2	1
N	9.2	2.5	2

	multiclass data		one-hot encoding			
no	x1	x2	у	p(y=0)	p(y=1)	p(y=2)
1	0.8	1.2	0	1	0	0
2	9.8	2.0	2	0	0	1
3	3.2	3.5	0	1	0	0
4	4.8	5.2	1	0	1	0
	•••					
N	9.2	2.5	2	0	0	1

One-hot encoding

a process used to convert categorical data variables into a form

1	0	0
1	0	0
0	0	1
0	1	0

Multinomial logistic regression

multiclass data one-hot encoding

x1	x2	у	p(y=0)	p(y=1)	p(y=2)
0.8	1.2	0	1	0	0
9.8	2.0	2	0	0	1
3.2	3.5	0	1	0	0
4.8	5.2	1	0	1	0
9.2	2.5	2	0	0	1
	0.8 9.8 3.2 4.8	0.8 1.2 9.8 2.0 3.2 3.5 4.8 5.2 	0.8 1.2 0 9.8 2.0 2 3.2 3.5 0 4.8 5.2 1	0.8 1.2 0 1 9.8 2.0 2 0 3.2 3.5 0 1 4.8 5.2 1 0	0.8 1.2 0 1 0 9.8 2.0 2 0 0 3.2 3.5 0 1 0 4.8 5.2 1 0 1

	x1	x2	p(y=0)
	8.0	1.2	1
	9.8	2.0	0
▶	3.2	3.5	1
	4.8	5.2	0
	9.2	2.5	0

x1	x2	p(y=1)
0.8	1.2	0
9.8	2.0	0
3.2	3.5	0
4.8	5.2	1
9.2	2.5	0

x1	x2	p(y=2)
0.8	1.2	0
9.8	2.0	1
3.2	3.5	0
4.8	5.2	0
9.2	2.5	1

Multinomial logistic regression

$$\log \frac{p(y=1)}{p(y=0)} = w_1 x + b_1$$

$$\frac{p(y=1)}{p(y=0)} = \exp(w_1 x + b_1)$$

$$\log \frac{p(y=1)}{p(y=0)} = w_1 x + b_1$$

$$\frac{p(y=1)}{p(y=0)} = \exp(w_1 x + b_1)$$

$$\log \frac{p(y=2)}{p(y=0)} = w_2 x + b_2$$

$$\frac{p(y=2)}{p(y=0)} = \exp(w_2 x + b_2)$$

$$p(y=1) = \frac{p(y=1)}{1} = \frac{p(y=1)}{p(y=0) + p(y=1) + p(y=2)}$$

$$= \frac{\frac{p(y=1)}{p(y=0)}}{\frac{p(y=0)}{p(y=0)} + \frac{p(y=1)}{p(y=0)} + \frac{p(y=2)}{p(y=0)}}$$

$$= \frac{exp(w_1x + b_1)}{1 + exp(w_1x + b_1) + exp(w_2x + b_2)}$$

$$p(y=1) = \frac{\exp(w_1 \cdot x + b_1)}{1 + \exp(w_1 \cdot x + b_1) + \exp(w_2 \cdot x + b_2)} \xrightarrow{w_0 = 0, b_0 = 0} \frac{\exp(w_1 \cdot x + b_1)}{\exp(w_0 \cdot x + b_0) + \exp(w_1 \cdot x + b_1) + \exp(w_2 \cdot x + b_2)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1 \cdot x + b_1)} = \frac{\exp(w_1 \cdot x + b_1)}{\sum_{k=0}^{C-1} \exp(w_1$$

$$p(y=2) = \frac{\exp(w_2 \cdot x + b_2)}{1 + \exp(w_1 \cdot x + b_1) + \exp(w_2 \cdot x + b_2)} = \frac{\exp(w_2 \cdot x + b_2)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)}$$

$$p(y=0) = \frac{1}{1 + \exp(w_1 \cdot x + b_1) + \exp(w_2 \cdot x + b_2)} = \frac{\exp(w_0 \cdot x + b_0)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x + b_k)}$$

OvR은 각 model이 독립적으로 학습되지만, softmax는 한개 모델로 w₁, w₂, w₃, b₁, b₂, b₃를 동시에 학습한다.

(C: class 개수)

Softmax

❖ 결과를 확률로 해석할 수 있게 변환해주는 함수

Loss Function (Cross Entropy)

$$\hat{y}_{i,k} = \frac{\exp(w_k \cdot x_i + b_k)}{\sum_{k=0}^{C-1} \exp(w_k \cdot x_i + b_k)}$$
 (i : data index, k : class index)

$$L(w,b) = \prod_{k=0}^{C-1} \hat{y}_{i,k}^{1(y_i=k)}$$

$$1(y_i=k)$$
: indicator function
 $1(\text{true}) = 1$
 $1(\text{false}) = 0$

$$\log(L(w,b)) = \sum_{k=0}^{C-1} \log(\hat{y}_{i,k}^{1(y_i=k)})$$

$$\log(L(w,b)) = \sum_{k=0}^{C-1} 1(y_i = k) \cdot \log(\hat{y}_{i,k}) : 1(y_i = k) \to y_k$$

$$J(w,b) = \sum_{i=0}^{N-1} \sum_{k=0}^{C-1} y_k \cdot \log(\hat{y}_{i,k})$$
 N : data 개수, C : class 개수 \leftarrow binary cross entropy에 대한 일반적 표현임.

N: data 개수, C: class 개수 일반적 표현임. C = 2라면 binary cross entropy.

• 목표 함수 (min. cross entropy)

$$\max_{w,b} J(w,b)$$

$$= \min_{w,b} \sum_{i=0}^{N-1} \sum_{k=0}^{C-1} [-y_k \cdot \log(\hat{y}_{i,k})]$$

$$= \min_{w,b} \sum_{i} CE$$

• 비교: binary classification

$$\hat{y}_i = \frac{1}{1 + \exp(-(wx_i + b))}$$

$$\min_{w,b} \sum_i BCE$$

Regularization

$$\min_{w,b} \sum_{i} CE + \lambda \sum_{k=0}^{C-1} |w_k| \qquad \text{(Lasso)}$$

$$\min_{w,b} \sum_{i} CE + \lambda \sum_{k=0}^{C-1} w_k^2$$
 (Ridge)

Loss Function (Cross Entropy)

Cross-entropy

Multinomial logistic regression

