Discrete Computational Structures – Network

อ. ภูริวัจน์ วรวิชัยพัฒน์

ทบทวนคาบที่แล้ว (Recap)

กราฟทิศทาง, directed graph

- D (V, A) เป็นกราฟทิศทาง ที่ V เป็นเซ็ตของจุดยอด, A (arc) เป็นเซ็ตของเส้นเชื่อมทิศทาง
- e = (u, v) โดย u จะเป็นหางลูกศร และ v จะเป็นหัวลูกศร
 - การประชิดระหว่าง nodes และ การตกกระทบของจุดยอด e <u>จาก</u> & <u>ไป</u>
- ทุกๆกราฟทิศทางจะมี กราฟโครงสร้าง (underlying graph) อยู่ภายใต้เสมอ
- คุณสมบัติ "ผลรวม degree เข้า = ผลรวม degree ออก"
- ชนิดกราฟทิศทาง เชิงเดียว simple, หลายทิศทาง multigraph, และ เทียม pseudo

ทบทวนคาบที่แล้ว (Recap)

กราฟทิศทาง, directed graph

- การเดิน walk เช่น การเดินจาก a ไป c, $W_1 = ae_1be_7c$, จุดยอด เส้น จุดยอด
- การเชื่อมโยงของกราฟทิศทาง
 - การเชื่อมโยงแบบอ่อน -> เช็คว่ากราฟโครงสร้างเป็นกราฟเชื่อมโยงหรือไม่
 - กราเชื่อมโยงแบบแข็งแรง -> เช็คว่า จุดยอดเข้าถึงได้จากจุดอื่นๆ หรือไม่ (เช็คทุกจุดยอด)
- กราฟทิศทางพ้องรูป, กราฟทิศทางคู่หนึ่งที่มี V และ A พ้องกัน
- เมทริกซ์ประชิด (โฟกัสที่จุดยอด) และ เมทริกซ์อุบัติการณ์ (โฟกัสที่เส้นเชื่อมทิศทาง)

เนื้อหาปลายภาค - Overview

- ต้นไม้, Tree
- กราฟทิศทาง, Directed graph
- ข่ายงาน และการประยุกต์ใช้ข่ายงาน, Network

TODAY

- การหาเส้นที่สั้นที่สุด Shortest path, Dijkstra's algorithm
- การหาต้นไม้ทอดข้ามที่น้อยที่สุด Kruskal's algorithm & Prim's algorithm

ข่ายงาน หรือ Network

N ของฉันนั้นย่อ มาจาก Network

นิยาม: ข่ายงาน (Network) แทนด้วย N(V, A)

คือกราฟทิศทางเชิงเดี่ยวที่มีการเชื่อมโยงแบบอ่อน (weakly connected simple graph) ซึ่งเส้นเชื่อม ทิศทางทุกเส้นจะมีค่าความจุกำกับไว้ โดยความจุ (capacity) เป็นค่าจำนวนเต็มที่ไม่เป็นลบ

เขียนแทนด้วย c(a) ซึ่งเป็นค่าความจุของเส้นเชื่อม a ยกตัวอย่างเช่น

C(SV) = 3 และ C(SX) = 5

ข่ายงาน หรือ Network

ซึ่งข่ายงานจะมีจุดยอด 3 แบบด้วยกัน

- จุดยอดที่<u>ไม่เป็นจุดสิ้นสุด</u>หรือหัวลูกศรของเส้นเชื่อมใดๆ, indeg(v) = 0, เรียกว่า แหล่งต้นทาง (source)
- 2. จุดยอดท<u>ี่ไม่เป็นจุดเริ่มต้น</u>หรือหางลูกศรของเส้นเชื่อมใดๆ, outdeg(v) = 0, เรียกว่า แหล่งปลายทาง (sink)
- 3. จุดยอดที่เป็นทั้งหัวลูกศรและหางลูกศร เรียกว่า จุดยอด ระหว่างทาง (intermediate vertex)

จากตัวอย่างด้านขวา

- แหล่งต้นทาง คือ s เพราะเป็นหางลูกศรอย่างเดียว
- แหล่งปลายทาง คือ t เพราะเป็น<u>หัว</u>ลูกศรอย่างเดียว
- จุดระหว่างทาง คือ v, w, x, y, z

เพื่อความเข้าใจง่าย ณ ตอนนี้ ข่ายงานจะมีเพียง แหล่งต้นทาง 1 แหล่ง และ แหล่งปลายทาง 1 แหล่ง เท่านั้น

แบบฝึกหัด - ข่ายงาน

สิ่งที่ต้องเช็ค

- เป็นกราฟทิศทาง + เชื่อมโยงแบบอ่อน + เส้นเชื่อมมีค่าความจุ
- 2. มีจุดยอดสามแบบ แหล่งต้นทาง, แหล่งปลายทาง, และ จุดระหว่างทาง

กราฟใดต่อไปนี้เป็นข่ายงาน? เพราะเหตุใด?

ถ้าเอาเส้นทิศทางสีน้ำเงินออกจะเกิดอะไร ขึ้น แหล่งต้นทาง เปลี่ยนไปไหม?

แบบฝึกหัด - ข่ายงาน

จากข่ายงานต่อไปนี้จงบอกว่า แหล่งต้นทาง, แหล่งปลายุทาง, และ จุดระหว่างทางคือจุดใดบ้าง

การใหล - Flow

การไหล (flow) คือฟังก์ชัน f: V x V -> R เป็นฟังก์ชันที่ส่งผ่าน จากเส้นเชื่อมไปจำนวนจริง โดยจำนวนนั้นบอกถึงความสามารถ ของการส่งผ่านของเส้นเชื่อมทุกเส้นภายในข่ายงาน โดยเริ่มจาก แหล่งต้นทางไปยังแหล่งปลายทาง ซึ่งการไหลนั้นจะเป็นค่า จำนวนเต็มไม่เป็นลบ และต้องสอดคล้องกับเงื่อนไข 3 ข้อต่อไปนี้

1. สำหรับเส้นเชื่อมทุกเส้น a การไหล *f(a)* ต้องไม่มากกว่าค่า ความจุ *c(a)* นั่นคือ

$$0 \le f(a) \le c(a)$$

- 2. ผลรวมของการไหลออกของแหล่งต้นทาง (s) ต้องเท่ากัน ผลรวมของการไหลเข้าของแหล่งปลายทาง (t)
- 3. ที่จุดระหว่างทางผลรวมของการไหลเข้าต้องเท่ากับผลรวมของ การไหลออก

การไหล - Flow

จากตัวอย่างด้านขวา

เส้นเชื่อม sv มีความจุเท่ากับ 3, c(sv) = 3, และการไหล เท่ากับ 1, f(sv) = 1, พิจารณาการไหลพบว่าการไหลน้อยกว่า ความจุเป็นจริงสำหรับเส้นเชื่อมทุกเส้นและการไหลมีค่า มากกว่าหรือเท่ากับศูนย์ จากนั้นพิจารณาการไหลออกของ แหล่งต้นทาง

$$f(sv) + f(sx) = 1 + 2 = 3$$

การไหลเข้าของแหล่งปลายทางคำนวณได้ดังนี้

$$f(wt) + f(yt) = 0 + 3 = 3$$

อีกนัยหนึ่งคือ Outdeg(s) = Indeg(t)

การไหล - Flow

จุดยอด	การไหลเข้า	การไหลออก
V	f(sv) = 1	f(vw) + f(vx) = 1
W	f(vw) = 1	f(wz) + f(wy) + f(wy) = 1
X	f(sx) + f(vx) = 2	f(xz) + f(xy) = 2
У	f(wy) + f(xy) + f(zy) = 3	f(yt) = 3
Z	f(wz) + f(xz) = 1	f(zy) = 1

พิจารณาจุดระหว่างทางทั้งหมด พบว่าการไหลเข้าเท่ากับ การไหลออก ดังนั้น ค่าที่ได้เป็นการไหล

ค่าการใหล - Value of Flow

ค่าการไหล (value of flow) ของข่ายงาน คือ ผลรวมของการไหลออก ของแหล่งต้นทาง (s) ซึ่งเท่ากับผลรวมของการไหลเข้าของแหล่ง ปลายทาง (t) ค่าการไหลแทนด้วย d จะได้สมการดังนี้

$$d = \sum_{a \in outdeg(s)} f(a) = \sum_{a \in indeg(t)} f(a)$$

การไหลสูงสุด (maximum flow) ถ้าไม่มีการไหลอื่นมีค่ามากกว่านี้ การ ไหลสูงสุดนั้นมีความสำคัญ เพราะจะสามารถบอกถึงความสามารถใน การขนส่งสิ่งของในข่ายงาน 2, 1 W 2, 0 4, 0 3, 1 5, 1 4, 3 X 3, 1 Y

N(V, A)

**ตัวอย่างนี้ยังไม่ถือว่าเป็นข่ายงานที่มีการไหลสูงสุด

แบบฝึกหัด - การใหล

จากข่ายงานต่อไปนี้ ตัวเลขที่กำหนดบนเส้นเชื่อมเป็นค่าการไหลหรือไม่ พร้อมทั้งเหตุผล

แบบฝึกหัด - การใหล

จงหาค่าของ v, w, x, และ y เพื่อสร้างการไหลอย่างถูกต้องในข่ายงานต่อไปนี้

แบบฝึกหัด - การใหล

จงหาค่าของ v, w, x, และ y เพื่อสร้างการไหลอย่างถูกต้องในข่ายงานต่อไปนี้

ส่วนตัด - Cut

$$X=\{ ext{s},\ ar{X}=\{ ext{t},\ \}$$
ส่วนตัด $A(X,ar{X})=\{$

ส่วนตัด (cut) คือเซตของเส้นเชื่อมจากจุด X ไปยังจุดใน $ar{X}$ เขียนแทน ด้วย $\mathbf{A}(X,ar{X})$ โดยที่ X และ $ar{X}$ คือเซตย่อยของจุดข่ายงาน N(V,A) โดยที่

X จะต้องมีแหล่งต้นทางเป็นสมาชิกเสมอและห้ามแหล่งปลายทางเป็น สมาชิก นั้นคือ $s \in X$ และ $t \notin X$ โดยที่ s คือ แหล่งต้นทาง และ t คือ แหล่งปลายทาง

สำหรับ \bar{X} คือ ส่วนเติมเต็มของ X ใน \vee และ \bar{X} จะมีแหล่งปลายทางเป็น สมาชิกเสมอ ($t\in \bar{X}$)

สำหรับจุดระหว่างทางนั้นจะอยู่ในเพียงเซตเดียวระหว่าง X หรือ $ar{X}$

ความจุส่วนตัด

ความจุของส่วนตัด, $\mathbf{c}(X, \bar{X})$ คือผลรวมความจุของเส้นเชื่อมระหว่างจุด X ไปยังจุด \bar{X} (ขาลูกศรออกเท่านั้น)

$$c(X,\bar{X}) = \sum_{a \in A(X,\bar{X})} c(a)$$

จงหาค่าความจุส่วนตัด $c(X, \bar{X})$ โดยให้ $X = \{s, a, b, c\}$ ของข่ายงาน

แบบฝึกหัด - ส่วนตัด

จงหาความจุของส่วนตัดต่อไปนี้

1.
$$X = \{s\}$$
 2. $X = \{s, a\}$ 3. $X = \{s, b, c\}$

ส่วนตัดน้อยที่สุด – minimum cut

ส่วนตัดที่น้อยที่สุดสามารถคำนวณได้ โดย

- 1. หาจำนวนของส่วนตัด X ทั้งหมดที่เป็นไปได้ มีจำนวนเท่ากับ $2^{\mathring{\mathfrak{q}}^{1}$ นวนจุดยอด-2 จากตัวอย่างด้านขวา จะได้ $2^{6-2}=2^4=16$
- 2. หาค่าความจุส่วนตัดของทุกส่วนตัดที่เป็นไปได้ในข้อ 1. และเปรียบเทียบหา ส่วนตัดที่น้อยที่สุด

ส่วนตัดน้อยที่สุด - minimum cut

X	$c(X, \overline{X})$	X	$c(X, \overline{X})$
{s}	15	$\{s,a,d\}$	20
$\{s,a\}$	15	$\{s,b,c\}$	21
{ <i>s</i> , <i>b</i> }	22	$\{s,b,d\}$	31
$\{s,c\}$	18	$\{s,a,b,c\}$	17
$\{s,d\}$	24	$\{s,a,b,d\}$	24
$\{s,a,b\}$	18	$\{s,a,c,d\}$	17
$\{s,c,b\}$	21	$\{s,b,c,d\}$	24
$\{s,a,c\}$	18	$\{s,a,b,c,d\}$	16

ซึ่งค่าส่วนตัดที่<u>น้อยที่ส</u>ุดคือ 15 นั้นคือจะเป็นค่า<u>มากที่สุด</u>ของการไหลที่เป็นไปได้

ค่าการใหลส่วนตัด

ค่าการไหลของส่วนตัดคือ ผลรวมการไหลออกจากจุดใน X ไปยังจุดใน $ar{X}$ ลบด้วย ผลรวมการไหลออกจากจุด $ar{X}$ ไปยังจุดใน X

ค่าการไหลส่วนตัด
$$=f(X,\overline{X})-f(ar{X},X)$$

จงหาค่าการไหลของส่วนตัด $X = \{s, a, d\}$ ในข่ายงานที่ให้มา

ค่าการไหลส่วนตัด
$$= f(X, \overline{X}) - f(\overline{X}, X)$$
 $= f(s, c) + \dots$

การหาการใหลสูงสุด

อัลกอริทีมฟอร์ดและฟูลเกอร์สัน (Ford and Fulkerson Algorithm) เป็นอัลกอริทีมหนึ่งที่ใช้ในการหาการ ไหลสูงสุด *แต่มีข้อแม้อยู่ว่าแหล่งต้นทางและแหล่งปลายทางมีได้เพียงอย่างละหนึ่งจุดเท่านั้น โดยมีขั้นตอน คือ

- 1. ปรับการไหลให้เริ่มต้นที่ 0 ทั้งหมด
- 2. ถ้าหาเส้นทางที่ยังเพิ่มการไหลได้ ทำซ้ำ 2.1 2.3, ทำซ้ำมากสุด N 1 รอบ
 - ° 2.1 หาเส้นทางที่เพิ่มการไหลได้ โดยเริ่มจากแหล่งต้นทาง ผ่านจุดระหว่างทางเรื่อยๆ จุดต่อจุด จนถึงแหล่งปลายทาง (ยังไม่ เต็มความจุ)
 - 2.2 หาการไหลที่เป็นที่เพิ่มได้น้อยที่สุด (คอขวด, bottleneck) ของเส้นทาง 2.1
 - 2.3 ปรับค่าการไหลของเส้นทางที่เจอตามค่า คอขวด โดย ลูกศรขาไปจะบวก(+) และ ลูกศรสวนทางจะลบ(-)
- 3. หยุดการทำงาน

ตัวอย่างที่ 1 - การหาการไหลสูงสุด (รอบ 1)

- 1. ปรับการไหลให้เริ่มต้นที่ 0 ทั้งหมด
- 2. หาเส้นทางที่ยังเพิ่มการไหลได้
 - os->a->b->t
 - คอขวด = 2

ตัวอย่างที่ 1 - การหาการใหลสูงสุด (รอบ 1)

- 1. ปรับการไหลให้เริ่มต้นที่ 0 ทั้งหมด
- 2. หาเส้นทางที่ยังเพิ่มการไหลได้
 - os->a->b->t
 - คอขวด = 2
 - ปรับค่าการไหล ลูกศรขาไปจะบวก(+) และ ลูกศรสวนทางจะลบ(-)

ตัวอย่างที่ 1 - การหาการไหลสูงสุด (รอบ 2)

- 1. ปรับการใหลให้เริ่มต้นที่ 0 ทั้งหมด
- 2. หาเส้นทางที่ยังเพิ่มการไหลได้
 - \circ s -> c -> d -> t
 - คอขวด = 2
 - ปรับค่าการไหล ลูกศรขาไปจะบวก(+) และ ลูกศรสวนทางจะลบ(-)

ตัวอย่างที่ 1 - การหาการไหลสูงสุด (รอบ 3)

- 1. ปรับการใหลให้เริ่มต้นที่ 0 ทั้งหมด
- 2. หาเส้นทางที่ยังเพิ่มการไหลได้
 - os->c->b->t
 - คอขวด = 2
 - ปรับค่าการไหล ลูกศรขาไปจะบวก(+) และ ลูกศรสวนทางจะลบ(-)
- 3. หาเส้นทางที่เพิ่มการไหลไม่ได้แล้ว

ตัวอย่างที่2 - การหาการไหลสูงสุด

เส้นทางที่ค่าการไหลได้	คอขวด
s -> a -> b -> t	4

แบบฝึกหัด 1 – การหาการใหลสูงสุด

เส้นทางที่ค่าการไหลได้	คอขวด

แบบฝึกหัด 2 – การหาการใหลสูงสุด

เส้นทางที่ค่าการไหลได้	คอขวด

สรุป

- นิยามของข่ายงาน; กราฟทิศทาง+การเชื่อมโยงแบบอ่อน
- ความจุ capacity, การไหล flow
- ส่วนตัด, ค่าความจุของส่วนตัด
- วิธีหาการใหลสูงสุดของข่ายงาน
 - Ford and Fulkerson Algorithm