Независимость и доказательства существования

Определение. Подмножества A и B конечного множества M называются неза-висимыми, если $|A \cap B| \cdot |M| = |A| \cdot |B|$. При $B \neq \emptyset$ это равносильно тому, что доля множества $A \cap B$ в B равна доле множества A в M. События A и B называются независимыми, если P(A|B) = P(A) и P(B|A) = P(B). В частности, $P(A \cap B) = P(A) \cdot P(B)$.

- 1. По каждому из 100 видов работ в фирме имеется ровно 8 специалистов. Каждому сотруднику нужно дать выходной в субботу или в воскресенье. Докажите, что это можно сделать так, чтобы и в субботу, и в воскресенье для каждого вида работ присутствовал специалист по нему.
- **2.** Зависимы ли следующие подмножества множества всех раскрасок чисел $\{1,\ldots,400\}$ в 2 цвета?
 - (a) Подмножество раскрасок, для которых $\{1,2,\ldots,8\}$ одноцветно, и подмножество раскрасок, для которых $\{11,12,\ldots,18\}$ одноцветно.
 - (b) Подмножество раскрасок, для которых $\{1,2,\ldots,8\}$ неодноцветно, и подмножество раскрасок, для которых $\{11,12,\ldots,18\}$ неодноцветно.
 - (c) Подмножество раскрасок, для которых $\{1,2,\ldots,8\}$ одноцветно, и подмножество раскрасок, для которых $\{6,7,\ldots,13\}$ одноцветно.
- 3. Докажите, что подмножества A и B конечного множества M независимы тогда и только тогда, когда A и $\overline{B}=M\setminus B$ независимы.
- **4.** (а) Обязательно ли найдется богатый здоровый умный горожанин, если в городе доля богатых горожан больше 2/3, доля здоровых больше 2/3 и доля умных больше 2/3?
 - (b) Тот же вопрос, если в городе есть богатый горожанин, есть здоровый горожанин и есть умный горожанин, богатство, здоровье и ум попарно независимы, и доля богатых здоровых умных среди богатых здоровых такая же, как и доля умных среди всех жителей. (Вместе с условием попарной независимости последнее условие называется независимостью в совокупности.)
 - (c) Тот же вопрос, если богатых горожан больше половины, здоровых больше половины, умных больше половины, богатство и ум независимы, здоровье и ум независимы.

Определение. Подмножество A конечного множества M называется nesabucumbum от набора подмножеств $B_1, \ldots, B_k \subset M$, если A независимо с пересечением любого набора множеств из B_1, \ldots, B_k . Событие A называется nesabucumbum от набора событий B_1, \ldots, B_k , если A независимо с пересечением любого набора событий из B_1, \ldots, B_k .

5. Приведите пример попарно независимых подмножеств A, B_1, B_2 конечного множества, но для которых A не является независимым от набора B_1, B_2 .

Домашнее задание

- **1.** По кругу стоят 200 студентов из 10 групп по 20 студентов. Докажите, что можно выбрать старост в группах так, чтобы никакие два старосты не стояли рядом.
- **2.** Приведите пример подмножеств A, B_1, B_2 конечного множества, не являющихся попарно независимыми, но для которых A независимо от набора B_1, B_2 .
- **3.** Докажите равносильность условий на подмножества A, B_1, \dots, B_k конечного множества:
 - (a) A независимо от набора $B_1, ..., B_k$;
 - (b) \overline{A} независимо от набора B_1, \ldots, B_k ;
 - (c) A независимо от набора $\overline{B_1}, \ldots, \overline{B_k}$.

Независимость и доказательства существования

Определение. Подмножества A и B конечного множества M называются неза-висимыми, если $|A \cap B| \cdot |M| = |A| \cdot |B|$. При $B \neq \emptyset$ это равносильно тому, что доля множества $A \cap B$ в B равна доле множества A в M. События A и B называются независимыми, если P(A|B) = P(A) и P(B|A) = P(B). В частности, $P(A \cap B) = P(A) \cdot P(B)$.

- 1. По каждому из 100 видов работ в фирме имеется ровно 8 специалистов. Каждому сотруднику нужно дать выходной в субботу или в воскресенье. Докажите, что это можно сделать так, чтобы и в субботу, и в воскресенье для каждого вида работ присутствовал специалист по нему.
- **2.** Зависимы ли следующие подмножества множества всех раскрасок чисел $\{1,\ldots,400\}$ в 2 цвета?
 - (a) Подмножество раскрасок, для которых $\{1,2,\ldots,8\}$ одноцветно, и подмножество раскрасок, для которых $\{11,12,\ldots,18\}$ одноцветно.
 - (b) Подмножество раскрасок, для которых $\{1,2,\ldots,8\}$ неодноцветно, и подмножество раскрасок, для которых $\{11,12,\ldots,18\}$ неодноцветно.
 - (c) Подмножество раскрасок, для которых $\{1,2,\ldots,8\}$ одноцветно, и подмножество раскрасок, для которых $\{6,7,\ldots,13\}$ одноцветно.
- 3. Докажите, что подмножества A и B конечного множества M независимы тогда и только тогда, когда A и $\overline{B}=M\setminus B$ независимы.
- **4.** (а) Обязательно ли найдется богатый здоровый умный горожанин, если в городе доля богатых горожан больше 2/3, доля здоровых больше 2/3 и доля умных больше 2/3?
 - (b) Тот же вопрос, если в городе есть богатый горожанин, есть здоровый горожанин и есть умный горожанин, богатство, здоровье и ум попарно независимы, и доля богатых здоровых умных среди богатых здоровых такая же, как и доля умных среди всех жителей. (Вместе с условием попарной независимости последнее условие называется независимостью в совокупности.)
 - (c) Тот же вопрос, если богатых горожан больше половины, здоровых больше половины, умных больше половины, богатство и ум независимы, здоровье и ум независимы.

Определение. Подмножество A конечного множества M называется nesabucumbum от набора подмножеств $B_1, \ldots, B_k \subset M$, если A независимо с пересечением любого набора множеств из B_1, \ldots, B_k . Событие A называется nesabucumbum от набора событий B_1, \ldots, B_k , если A независимо с пересечением любого набора событий из B_1, \ldots, B_k .

5. Приведите пример попарно независимых подмножеств A, B_1, B_2 конечного множества, но для которых A не является независимым от набора B_1, B_2 .

Домашнее задание

- **1.** По кругу стоят 200 студентов из 10 групп по 20 студентов. Докажите, что можно выбрать старост в группах так, чтобы никакие два старосты не стояли рядом.
- **2.** Приведите пример подмножеств A, B_1, B_2 конечного множества, не являющихся попарно независимыми, но для которых A независимо от набора B_1, B_2 .
- **3.** Докажите равносильность условий на подмножества A, B_1, \dots, B_k конечного множества:
 - (a) A независимо от набора $B_1, ..., B_k$;
 - (b) \overline{A} независимо от набора B_1, \ldots, B_k ;
 - (c) A независимо от набора $\overline{B_1}, \ldots, \overline{B_k}$.