

Introduction, p. 2

Basic Procedures of Statistics

• Statistics divides the study of data into four steps:

Data collection

Example (heat of fusion of ice, TBp. 423)

(Natrella, 1996) Two methods, A and B, were used in a determination of the latent heat of fusion of ice. The following table gives the change in total heat from ice at $-.72^{\circ}C$ to water $0^{\circ}C$ in calories per gram of mass:

Method A	79.98	(80.04	80.02	80.04	80.03	80.03	80.04)	79.97
	80.05	80.03	80.02	80.00	80.02)			
Method B	(80.02)	79.94	79.98	79.97	79.97	(80.03)	79.95	79.97

The investigators wished to find out:

how much the two methods "differ"?

- Q: Why not all the values from Method A/B are identical?

 because of uncertainty.
- Q: Beyond the uncertainty existing in the data, are there some "certain" information?

-規律, systematic part in data.

Introduction, p. 6

Data analysis - graphical method

Q: From the <u>plot</u>, the two methods are different? or not different? and why?

Question

How to model the data and the question, i.e., state them in a mathematical/statistical language?

Statistical modeling

- Let $X_1, ..., X_n$ be the \underline{n} observations from $\underline{\text{method A}}$
- Let $\overline{Y_1}, \dots, \overline{Y_m}$ be the \overline{m} observations from method B
- To account for the <u>uncertainty</u> in data, regard $X_1, ..., X_n$ and $Y_1, ..., Y_m$ as random variables.
- Assign distribution to random variables parameters

method A: $X_1, ..., X_n \sim \underline{\text{i.i.d.}} \ \underline{\text{Normal}(\mu_X, \sigma^2)}$ method B: $Y_1, ..., Y_m \sim \underline{\text{i.i.d.}} \ \underline{\text{Normal}(\mu_Y, \sigma^2)}$

 $\mu_X = \mu_Y$?

Introduction, p. 7

Data analysis - numerical methods

- Estimation: what are the values of μ_X , μ_Y , σ^2 ?
- Hypothesis testing: $\mu_X = \mu_Y$? true or false? how confident?
 - $\hat{\mu}_X = 80.02, \hat{\mu}_Y = 79.98, \hat{\sigma}^2 = 0.0007178$
 - \triangleright p-value<0.01, H_0 : $\mu_X = \mu_Y$ is rejected under significance level 0.99.
- Compare the graphical and numerical methods
 - raphical methods: intuitive perception, vague conclusion
 - > numerical methods: lack of intuition, accurate conclusion

Decision making

- There is a (statistically significant) difference between the means of the 2 methods: $\mu_X > \mu_Y$
- level of evidence?
- Some other examples of statistical applications
 - ➤ The signal and the noise

Introduction, p. 8

> ...

- Election: survey on voting ➤ Lung cancer ←→ Smoking
- (精準預測)

➤ Moneyball (魔球)

➤ Big data

- ➤ Thinking, fast and slow (快思慢想) ➤ Data-based AI
- Materials to be covered in this course
 - ➤ Probability A Review: Chapters 1~6
 - Estimation: Chapter 8
 - ► Hypothesis Testing: Chapter 9
 - Decision Theory: Chapter 15 (Rice, 1995, 2nd Edition)
 - >Applications:

method.

- applied Survey Sampling: Chapter 7

 - Two-Sample Comparison: Chapter 11 ←
 - Analysis of Variance: Chapter 12
 - Some Graphical Methods from Chapter 10

Website of my mathematical statistics course

http://www.stat.nthu.edu.tw/~s wcheng/Teaching/stat3875/ind