Force Control Fitness Metrics

Table 4: Variable Definitions

Variable	able description	
\overline{f}	frequency	Hz
${\cal F}$	set of frequencies	Hz
max	maximum value of a set	-
\mathbf{F}_{d}	desired force vector	N
\mathbf{F}_{s}	sensed force vector	N
$\mathbf{F}_{ ext{set}}$	force measured after settling time was reached	N
μ	mean value	-
N	number of trials	-
$N_{ m s}$	number of trials where force successfully settled	-
σ	standard deviation	-
t	measured time	S
${\mathcal T}$	set of time values	S
Z	ratio between measured and desired force	-

Table 5: Metric Definitions

Metric	name	description	eq.	unit	best ²
$A_{ m cF}$	Force Controller Accuracy	deviation between desired force and maximum values of 3 s applied force	$\max_{N} \left(\max_{t} \mathbf{F}_{\mathbf{s}} - \mathbf{F}_{\mathbf{d}} \right)$	N	0.1
$P_{ m cF}$	Force Controller Precision	repeatability of the maximum values of 3 s the applied force in 30 trials	$egin{aligned} \mu_{\mathbf{l_c}} + 3\sigma_{\mathbf{l_c}} , \ l_{\mathbf{c,i}} &= \max_N \lVert \mathbf{F_s} \rVert - rac{1}{N} \sum_{i=1}^N \max_t \lVert \mathbf{F_s} \rVert \end{aligned}$	N	0.01
$RS_{ m F}$	Force Controller Resolution	force fluctuation within one force application over $3\mathrm{s}$	$\max_{N} \sum_{i=1}^{N} \operatorname{meat}_{t} \ \mathbf{F}_{\mathrm{s}}\ $ $\max_{N} \left(\max_{t} \ \mathbf{F}_{\mathrm{s}}\ - \min_{t} \ \mathbf{F}_{\mathrm{s}}\ \right)$	N	0.01
OV	Force Controller Overshoot	overshooting in quasi-static contact starting 1 mm above surface	$\max_{N} \left(\max_{t} \mid \ \mathbf{F}_{\mathrm{s}}\ - \ \mathbf{F}_{\mathrm{set}}\ \mid \right)$	N	1
TS	Force Controller Settling Time	settling time in quasi-static contact starting 1 mm above surface	$\max_{N}(\max(\mathcal{T})),$ $\mathcal{T} = \{t \mid \ \mathbf{F}_{s}(t)\ = 1.03\ \mathbf{F}_{set}\ \vee \ \mathbf{F}_{s}(t)\ = 0.97\ \mathbf{F}_{set}\ \}$	s	0.01
MAF	Minimum Applicable Force	minimum applicable force in quasi-static contact starting 1 mm above surface	$\max_N(\max_t \lVert \mathbf{F}_{\mathrm{s}} \rVert)$	N	0.1
$B_{ m c}$	Controller Bandwidth	bandwidth of force controller in quasi-static contact	$\max_{N}(\min(\mathcal{F})),$ $\mathcal{F} = \{f \mid Z (f) = 3 dB\},$ $Z = \frac{\ \mathbf{F}_{s}\ }{\ \mathbf{F}_{d}\ }$	Hz	30
MVC	Material Variation Consistency	capability of the controller to successfully adapt to varying material properties without reprogramming	$n_{\text{s,m}} = n_{\text{N,m}} = \sum_{i=1}^{N_{\text{m}}} u\left(\frac{1}{N}\sum_{i=1}^{N}(N_{\text{s}})\right)$ $N_{\text{s}} = u\left(\Delta F^{+}\right)u\left(\Delta F^{-}\right) - 1$ $\Delta F^{+} = \ \mathbf{F}_{\text{d}^{+}}\ - \ \mathbf{\bar{F}}\ $ $\Delta F^{-} = \ \mathbf{\bar{F}}\ - \ \mathbf{F}_{\text{d}^{-}}\ $	%	100
IS	Impact Stability	capability of the controller to successfully control forces after dynamic contact at 250 mm/s	$n_{s,i} = \sum_{i=1}^{n_{s,i}} (N_s)$ $N_s = u (\Delta F^+) u (\Delta F^-) - 1$ $\Delta F^+ = \ \mathbf{F}_{d^+}\ - \ \bar{\mathbf{F}}\ $ $\Delta F^- = \ \bar{\mathbf{F}}\ - \ \mathbf{F}_{d^-}\ $	%	100

Reference system:

Figure 4: Reference system for controller force metrics.

Table 6: Setup definitions

component	considered quantity	value	accuracy req.
	material	stainless steel	
anhara	mass $m_{\rm S}$ [kg]	0.2	± 0.005
sphere	hardness $H_{\rm S}$ [HB]	250	
	radius $r_{\rm S}$ [mm]	25	
C	sampling frequency f [Hz]	300	
force sensor	measurement range ΔF [N]	500	
cover 2	material	Ethylen (PE-HD)	
	hardness $H_{\rm C}$ [ShD]		
robot	desired force [N]	$\mathbf{F}_{\mathrm{d}} = [0,0,8]\mathrm{N}$	1

Figure 5: Measurement Procedure for $A_{\rm cF},\,P_{\rm cF},$ and $RS_{\rm cF}.$

Figure 6: Measurement Procedure for OV and TS.

Figure 7: Measurement Procedure for MAF.

Figure 8: Measurement Procedure for $B_{\rm c}$.

Material Variation Consistency and Impact Stability:

Figure 9: Reference system for the material variation consistency and impact stability.

Table 7: Setup definitions

component	considered quantity	value	accuracy req.
	material	stainless steel	
onhoro	mass $m_{ m S}$ [kg]	0.2	± 0.005
sphere	hardness $H_{\rm S}$ [HB]	250	
	radius $r_{\rm S}$ [mm]	25	
cover 1	material	aluminum alloy EN	
cover 1		AW-7021	
	hardness $H_{\rm C}$ [HB]	$\approx 110\text{-}120$	
2	material	high-density Poly-	
cover 2		Ethylen (PE-HD)	
	hardness $H_{\rm C}$ [ShD]	$\approx 63\text{-}67$	
2	material	rubber	
cover 3	hardness $H_{\rm C}$ [ShA]	≈ 50	
	material	rubber	
cover 4	hardness $H_{\rm C}$ [ShA]	≈ 10	
_	material	foam	
cover 5	hardness $H_{\rm C}$ [ShA]	<< 10	
1	desired force [N]	$\mathbf{F}_{\mathrm{d}} = [0, 0, 8] \mathrm{N}$	1
robot	force measurement [N]	available	0.1
velocity sensor	type	photointerruptor	
velocity sensor		(light barrier)	
	velocity (v_c) measurement [m/s]		0.001
end-effector (for $v_{ m c}$	thickness [mm]	10	± 0.02
measurement)			
desired contact veloci-		0.05	± 0.005
ties $v_{\rm c}$	velocity [mm]	0.25	± 0.005

Figure 10: Preparation for Measurement Procedure for IS and MVC.

Figure 11: Measurement Procedure for IS and MVC.