Program to solve difference equation and to find the Impulse response of the system

GROUP A4

TEAM MEMBERS:

1.MANOJ KUMAR.CM SRN:PES2UG20EC047
2.ABHILASH N SRN:PES2UG20EC007
3.F.JOYEN BENITTO SRN:PES2UG20EC028
4.NITHIN KUMAR.C SRN:PES2UG20EC805

m-FILE

PROJECT1.m

```
b=input('Enter the coefficients of x: ');
a=input('Enter the coefficients of y: ');
M=length(b)-1;
N=length(a)-1;
IC=input('Enter the initial conditions for y: ');
n=[-N:20];%number of terms
x[n]=u[n]-u[n-2]
x=[(n>=0)]-[(n>=2)];
subplot(211);
stem(n,x);
title('input sequence x[n]');
xlabel('n');
ylabel('x[n]');
y=[IC zeros(1,length(n)-N)];
for n=N+1:20 %loop runs length(n) times to find y(n)
sumx=0;sumy=0;
for k=0:M
sumx=sumx+(b(k+1)*x(n-k));
end
for k=1:N
sumy=sumy+(a(k+1)*y(n-k));
y(n)=sumx-sumy;
end
n=[-N:20];%number of terms
subplot(212);
stem(n,y);
title('output sequence y[n]');
xlabel('n');
ylabel('y[n]');
disp('y[n]=');
disp(y)
```

TERMINAL OUTPUT:

Command Window										
>> PROJECT1 Enter the co Enter the co Enter the in y[n]= Columns 1	efficients itial cond	of y: [1 itions for	-0.25 -0.1	25]						
2.0000	1.0000	1.5000	2.0000	1.1875	0.5469	0.2852	0.1396	0.0706	0.0351	0.0176
Columns 12	through 2	2								
0.0088	0.0044	0.0022	0.0011	0.0005	0.0003	0.0001	0.0001	0.0000	0	0
Column 23										
0										
£ >>										

PLOT:

IMPULSE RESPONSE:

```
PROJECT1_IMPULSE
```

```
b=input('Enter the coefficients of x: ');
a=input('Enter the coefficients of y: ');
M=length(b)-1;
N=length(a)-1;
IC=[0 0];
n=[-N:20];%number of terms
x[n]=u[n]-u[n-2]
x=double([n==0]);
subplot(211);
stem(n,x);
title('input sequence x[n]');
xlabel('n');
ylabel('x[n]');
y=[IC zeros(1,length(n)-N)];
for n=N+1:20 %loop runs length(n) times to find y(n)
sumx=0;sumy=0;
for k=0:M
sumx=sumx+(b(k+1)*x(n-k));
end
for k=1:N
sumy=sumy+(a(k+1)*y(n-k));
y(n)=sumx-sumy;
n=[-N:20];%number of terms
subplot(212);
stem(n,y);
title('output sequence y[n]');
xlabel('n');
ylabel('y[n]');
disp('y[n]=');
disp(y)
```

TERMINAL OUTPUT:

```
Command Window

>> PROJECT1_IMPULSE
Enter the coefficients of x: [1 0.5]
Enter the coefficients of y: [1 -0.25 -0.125]
y[n]=
Columns 1 through 11

0 0 1.0000 0.7500 0.3125 0.1719 0.0820 0.0420 0.0208 0.0104 0.0052

Columns 12 through 22

0.0026 0.0013 0.0007 0.0003 0.0002 0.0001 0.0000 0.0000 0.0000 0 0

Column 23

0
```

PLOT:

CONCLUSION:

The Difference equation is solved using Matlab and the corresponding Impulse response is obtained.