Національний технічний університет України «Київський політехнічний інститут» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота № 2. Проектування LSM з дисципліни «Комп'ютерна схемотехніка»

Виконав студент групи IO-01 *Редько Олександр* Номер залікової книжки **103**₁₀

1 ЗАВДАННЯ

На PLMT с параметром $N=(C_{10}+2) \, \mathrm{mod} \, 6$ построить n-разрядный LSM ($n=8+8\cdot C_8$) с частично групповым переносом и заданным набором из $k=C_{11}+5$ операций: P+Q, P-Q, $P\cdot Q$, $\overline{P}Q\vee P\overline{Q}$, $P\vee \overline{Q}$, $\overline{P}Q$, P+1, $\overline{P}\overline{Q}$, $\overline{P}\vee \overline{Q}$. LSM должен содержать узлы, формирующие признаки RZ (нулевой результат), SI (знак), CO (перенос из старшего разряда).

Оценить сложность полученной схемы и ее быстродействие.

2 ВИЗНАЧЕННЯ ВАРІАНТУ

$$N=(C_{10}+2) \bmod 6=(3+2) \bmod 6=5$$
 - 5 входов
 $n=8+8\cdot C_8=8+8\cdot 7=64$ - разрядность LSM
 $k=C_{11}+5=4+5=9$ - 9 операций

3 ВИКОНАННЯ РОБОТИ

Для упрощения реализации LSM, будем рассматривать как совокупность одноразрядных LSM с тем же функционалом. Такой одноразрядный LSM выполним через 4 элемента:

- 1. Одноразрядный сумматор по модулю 2 (2К-НЕ).
- 2. Формирователь переноса (СІ).
- 3. Логические схемы управления подаваемыми операндами LNQ.
- 4. Логические схемы управления подаваемыми операндами LNP.

Структурная схема представлена на рисунке 3.1.

Рисунок 3.1 – Структурная схема LSM

3.1 Проектирование сумматора по модулю 2 на 3 входа

Построим таблицу истинности (рис. 3.2).

Рисунок 3.2 – Диаграмма Вейча

Данная функция не минимизируется.

Реализация функции: $C_i X_i Y_i \vee \overline{C}_i X_i \overline{Y}_i \vee C_i \overline{X}_i \overline{Y}_i \vee \overline{C}_i \overline{X}_i Y_i$ представлена на рисунке 3.3.

XYC	D
0 0 0	0
0 0 1	1
0 1 0	1
0 1 1	0
1 0 0	1
1 0 1	0
1 1 0	0
1 1 1	1

Рисунок 3.3

3.2 Кодирование элементов и составление таблиц истинности

Выберем коды и передаваемые значения так, чтобы кодирующие функции имели простой вид (таблица 3.1). $T = X_i Y_i \vee X_i C_i \vee Y_i C_i$

Таблица 3.1

F ₃	F ₂	F ₁	F ₀	Функция	Xi	Yi	C _{i+1}	Co
0	0	0	0	$ar{P}{\cdot}ar{Q}$	$ar{P}_i{\cdot}ar{Q}_i$	0	0	0
0	0	0	1	$\bar{P} \vee \bar{Q}$	$\overline{P}_i \lor \overline{Q}_i$	0	0	0
0	0	1	0	$\bar{P}{\cdot}Q$	$ar{P}_i Q_i$	0	0	0
0	0	1	1	$P \lor \bar{Q}$	$P_i \vee \overline{Q}_i$	0	0	0
0	1	0	0	P+Q	P_{i}	Q_{i}	T	0
0	1	0	1	P-Q	P_{i}	$ar{Q}_{i}$	Т	1
0	1	1	0	P+1	P_{i}	0	Т	1
0	1	1	1	X	X	X	X	0
1	0	0	0	$\bar{P}\cdot Q\vee P\cdot \bar{Q}$	P_{i}	Q_{i}	0	0
1	0	0	1	$P \cdot Q$	P_iQ_i	0	0	0
1	0	1	0	X	X	X	X	0

Приведем диаграммы Вейча для наглядности минимизации функций (рис. 3.4).

Рисунок 3.4

3.3 Проектирование цепей переноса

 X_{i} – функция, передаваемая на сумматор и цепи переноса через LNP.

$$\begin{split} X_i &= P_i F_2 \vee P_i F_3 \overline{F}_2 \overline{F}_0 \vee P_i Q_i F_3 F_0 \vee (P_i \vee \overline{Q}_i) \overline{F}_2 F_1 F_0 \vee (\overline{P}_i \vee \overline{Q}_i) \overline{F}_3 \overline{F}_2 \overline{F}_1 F_0 \vee \overline{P}_i Q_i F_1 \overline{F}_0 \vee \overline{P}_i \overline{Q}_i \overline{F}_3 \overline{F}_2 \overline{F}_1 \overline{F}_0 = \\ &= P_i F_2 \vee P_i F_3 \overline{F}_2 \overline{F}_0 \vee P_i Q_i F_3 F_0 \vee P_i \overline{F}_2 F_1 F_0 \vee \overline{Q}_i \overline{F}_2 F_1 F_0 \vee \overline{P}_i \overline{F}_3 \overline{F}_2 \overline{F}_1 F_0 \vee \overline{Q}_i \overline{F}_3 \overline{F}_2 \overline{F}_1 F_0 \vee \overline{P}_i \overline{Q}_i F_3 \overline{F}_2 \overline{F}_1 \overline{F}_0 = \\ &= P_i F_2 \vee P_i F_3 \overline{F}_2 \overline{F}_0 \vee P_i Q_i F_3 F_0 \vee P_i \overline{P}_2 F_1 F_0 \vee \overline{Q}_i \overline{F}_2 F_1 F_0 \vee \overline{P}_i \overline{Q}_i F_3 \overline{F}_2 \overline{F}_1 F_0 \vee \overline{P}_i \overline{Q}_i F_3 \overline{P}_2 \overline{P}_1 F_0 \vee \overline{P}_1 \overline{Q}_i F_1 \overline{Q}_i F_1 F_0 \vee \overline{P}_1 \overline$$

Рисунок 3.5

 $Y_{\rm i}$ – функция, передаваемая на сумматор и цепи переноса через LNQ.

$$Y_i = Q_i F_2 \overline{F}_1 \overline{F}_0 \vee Q_i F_3 \overline{F}_0 \vee \overline{Q}_i F_2 \overline{F}_1 F_0$$

Рисунок 3.6

Рисунок 3.7

$$C_{i+1} = (X_i Y_i \vee X_i C_i \vee Y_i C_i) F_2$$

Рисунок 3.8

3.4 Формирователи признаков

Для ухода от проблем потери знака вследствие переноса будем использовать модифицированный код. Он предполагает 2 знаковых разряда, с которыми мы имеем право совершать все арифметические действия. Следовательно, для формирования признака SI мы можем брать старший разряд результата при разрешенных переносах. То есть: $SI = F_2D_i$, где $D_i - i$ -ый разряд результата.

Рисунок 3.9

Признак переноса снимаем сразу с элемента цепи переносов CG11. Само построение цепи переносов не выдаст перенос при выполнении логических операций.

Признак нулевого результата формируем исходя из того, что все разряды мантиссы (D0 – D63) должны быть нулевыми. Откуда: $RZ = \bar{D}_0 \bar{D}_1 ... \bar{D}_{63}$.

Рисунок 3.10

3.5 Общая схемная реализация

Реализация і-го разряда LSM:

Рисунок 3.11

3.6 Проверка і-го разряда LSM

F ₃	F ₂	F ₁	F ₀	Pi	Qi	Функция	Χı	Yi	Ci	Di	C _{i+1}
0 0			0	0	0	$ar{P} \cdot ar{Q}$	1		0	1	0
		0		0	0		1	0	1	0	
				0	1		0		0	0	
	0			0	1		0		1	1	
	U			1	0		0		0	0	
				1	0		0		1	1	
				1	1		0		0	0	
				1	1		0		1	1	
			1	0	0	$ar{P} ee ar{Q}$	1	0	0	1	0
				0	0		1		1	0	
				0	1		1		0	1	
0	0	0		0	1		1		1	0	
U	U	U		1	0		1		0	1	
				1	0		1	1	1	0	
				1	1		0	1	0	0	
				1	1		0		1	1	
0	0	1	0			$ar{P}{\cdot}Q$	$ar{P}_i Q_i$	0			0
0	0	1	1			$P \cdot Q$ $P \lor \bar{Q}$	$P_i \vee \overline{Q}_i$	0			0
		0		0	0	P+Q	0	0	0	0	0
			0	0	0		0	0	1	1	0
				0	1		0	1	0	1	0
_	4			0	1		0	1	1	0	1
0	1			1	0			0	0	1	0
				1	0		1	0	1	0	1
				1	1		1	1	0	0	1
				1	1		1	1	1	1	1
0	1	0	1			P-Q	P_{i}	$ar{Q}_{i}$			T
0	1	1	0			P+1	P_{i}	0			Т
1	0	0	0			$\overline{P} \cdot Q \vee P \cdot \overline{Q}$	P_{i}	Q_{i}			0
1	0	0	1			$P \cdot Q$	P_iQ_i	0			0