End-to-end machine learning

Lecture 02

Supervised Machine Learning Process

- 1. Define your problem, set your goal, and how you will measure success
- 2. Get the data

- Deep dive 3. Explore and prepare the data
 - 4. Propose one or more hypotheses: prospective models
 - 5. Evaluate model performance and iteratively fine tune
 - 6. Deploy your model

Create training / validation / test data split

Ensure your training data are representative of your test data (sometimes need to use stratified sampling to avoid sampling bias)

Train

Used for model training / fitting

Validation

Used to approximate generalization performance and guide model development

Test

DO NOT TOUCH

Used to evaluate generalization performance of the final model

Technical note: don't create a DIFFERENT random sample of the dataset each time you run your code – this will expose your modeling to more of the data and contaminate your train/test split

Quick aside:

Common language on variables

independent variable

input predictor feature

dependent variable

output response target

У

Supervised learning in practice

Preprocessing Explore & prepare data

Data Visualization and Exploration

Identify patterns that can be leveraged for

learning

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Data Cleaning

- Missing data
- Noisy data
- Erroneous data

Feature Extraction

Dimensionality reduction eliminates redundant information

Model training

Select models (hypotheses)

Select model options that may fit the data well. We'll call them "hypotheses".

> Fit the model to training data

Pick the "best" hypothesis function of the options by choosing model parameters

Iteratively fine tune

the model

Performance evaluation

Make a prediction on validation data

Metrics

Classification

Precision, Recall, F₁, **ROC Curves** (Binary), **Confusion Matrices** (Multiclass)

Regression

MSE, explained variance, R²

Supervised learning in practice

Preprocessing Explore & prepare data Data Visualization Data Cleaning and Exploration Identify patterns that Missing data can be leveraged for Noisy data Erroneous data learning

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Feature Extraction

Dimensionality reduction eliminates redundant information

Model training Select models (hypotheses) Select model options that may fit the data well. We'll call them Fit the model to training data Pick the "best" hypothesis function of the options by choosing

Performance evaluation Iteratively Make a prediction the model on validation data **Metrics** Classification Precision, Recall, F₁, ROC Curves (Binary), Confusion Matrices (Multiclass) Regression MSE, explained

variance, R²

fine tune

Always check your data

Data Visualization and Exploration

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY
5	-122.25	37.85	52.0	919.0	213.0	413.0	193.0	4.0368	269700.0	NEAR BAY
6	-122.25	37.84	52.0	2535.0	489.0	1094.0	514.0	3.6591	299200.0	NEAR BAY
7	-122.25	37.84	52.0	3104.0	687.0	1157.0	647.0	3.1200	241400.0	NEAR BAY
8	-122.26	37.84	42.0	2555.0	665.0	1206.0	595.0	2.0804	226700.0	NEAR BAY
9	-122.25	37.84	52.0	3549.0	707.0	1551.0	714.0	3.6912	261100.0	NEAR BAY
7	-122.25 -122.26	37.84 37.84	52.0 42.0	3104.0 2555.0	687.0 665.0	1157.0 1206.0	647.0 595.0	3.1200 2.0804	241400.0 226700.0	NEAR BA

A tale from the ML trenches

The data have been scaled

(potentially for anonymization purposes)

These data are categorical

Categories/counts below:

<1H OCEAN	9136
INLAND	6551
NEAR OCEAN	2658
NEAR BAY	2290
ISLAND	5

Summary info on the data

Data Visualization and Exploration

```
RangeIndex: 20640 entries, 0 to 20639
```

Data columns (total 10 columns):

```
20640 non-null float64
longitude
latitude
                      20640 non-null float64
```

```
housing_median_age
                      20640 non-null float64
```

```
total_rooms
                      20640 non-null float64
```

total_bedrooms	20433 non-null float64
----------------	------------------------

```
20640 non-null float64
population
```

```
households
                       20640 non-null float64
```

	median	income	20640	non-null	float64
--	--------	--------	-------	----------	---------

	median house	value	20640	non-null	float64
--	--------------	-------	-------	----------	---------

ocean_proximity	20640	non-null	object
-----------------	-------	----------	--------

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

We're missing data from total_bedrooms

ocean_proximity is not numerical data

Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron

Overall statistics of the data

Data Visualization and Exploration

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	206855.816909
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	115395.615874
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400	119600.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.534800	179700.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250	264725.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100	500001.000000

Notice the data seem to be on wildly different scales

Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron

A View data distributions

Data Visualization and Exploration

- Values are clipped Prevents us from making accurate predictions in those cases
- Some features are heavy-tailed Some ML techniques assume normallydistributed data
- Scale of values Feature data are on vastly different scales

*= target variable

Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron

View the data spatially for further insights

Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron \$306k

\$258k

-\$209k

+-90 py Median House Value

- \$112k

-\$63k

\$15k

B Handling Categorical data

Data Cleaning

Recall ocean_proximity has the following categories:

We need to convert this into numerical data to process it

<1H OCEAN

INLAND

NEAR OCEAN

NEAR BAY

ISLAND

Assign numbers to each class

Original value	New feature value
<1H OCEAN	0
INLAND	1
NEAR OCEAN	2
NEAR BAY	3
ISLAND	4

Create one binary feature for each category

Original value	F_1	F_2	F_3	F_4	F_5
<1H OCEAN	1	0	0	0	0
INLAND	0	1	0	0	0
NEAR OCEAN	0	0	1	0	0
NEAR BAY	0	0	0	1	0
ISLAND	0	0	0	0	1

What do these numbers mean?

One-hot-encoding: create a new feature for each category

B Handling missing data Cleaning Data Cleaning

total_bedrooms contains missing values

Feature 3 has 2 missing values

Options:

- Remove samples that have missing values
- Remove features that have missing values
- Fill in (impute) the missing values
 - Fill with average or median
 - Compute a value based on other features

3

2

v = replacement values

Scaling features

Standardization

$$x^{new} = \frac{x - \overline{x}}{\sigma(x)}$$

Subtract the mean, divide by the standard deviation

Why do we care about scaling?

Feature scaling is critical for algorithms that rely on distances between data points

Explore correlations in the data to begin identifying important variables

Correlation with our response variable, median_house_value:

1	median_house_value	1.000000
2	modian incomo	0 600617

4	housing_	_median_age	0.103706
---	----------	-------------	----------

households	0.06371

total_bedrooms	0.047980

population	-0.02603	32
population	0.0200	_

longitude	-0.046349

latitude	-0.14298
----------	----------

Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron

Transform variables (feature engineering)

median_house_value
median income
total_rooms
housing_median_age
households
total_bedrooms
population
longitude
latitude

Resulting correlations:

rooms_per_household = total_rooms / households

bedrooms_per_room = total_bedrooms / total_rooms
population_per_household = population / households

```
median_house_value
                             1.000000
median_income
                             0.690647
rooms_per_household
                             0.158485
total_rooms
                             0.133989
housing_median_age
                             0.103706
households
                             0.063714
total bedrooms
                             0.047980
population per household
                            -0.022030
population
                            -0.026032
longitude
                            -0.046349
latitude
                            -0.142983
bedrooms per room
                            -0.257419
```

Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron

Preprocessed data

- Divided our data into training and testing sets
- Viewed the data and looked for problems
- Engineered new features that have real-world meaning
- Categorical data transformed into binary features (1-hotencoding) enabling ML techniques
- Missing values replaced (imputed)
- Features standardized (now have zero mean and std of 1)

We're ready to train a machine learning model and evaluate performance

Supervised learning in practice

Preprocessing Explore & prepare data

Data Visualization and Exploration

Identify patterns that can be leveraged for learning

Data Cleaning

- Missing data
- Noisy data
- Erroneous data

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Feature Extraction

Dimensionality reduction eliminates redundant information

Model training

Select models (hypotheses)

Select model options that may fit the data well. We'll call them "hypotheses".

Fit the model to training data

Pick the "best" hypothesis function of the options by choosing model parameters Iteratively fine tune the model

Performance evaluation

Make a prediction on validation data

Metrics

Classification

Precision, Recall, F₁,
ROC Curves
(Binary),
Confusion Matrices
(Multiclass)

Regression

MSE, explained variance, R²

Model Training Considerations

Model Selection

K-Nearest Neighbors
Linear regression
Logistic regression
Linear Discriminant Analysis
Naïve Bayes
Classification and Regression Trees
Random Forests
Support Vector Machines
Neural Networks

We will spend the first half of the course on these pieces

Other Considerations

Combine models through ensembles (bagging, boosting, stacking)

Selecting cost functions

Regularizing our models to avoid overfit

Selecting model hyperparameters through grid search or random search

Experiment with three models

Validation data performance

Model	Root Mean Square Error RMSE (\$)	RMSE / Median Home Price * 100 (%)
Linear regression	68,628	38.1
Random forest	52,564	29.2
Random forest with feature selection	49,694	27.6

Once we have a model we are confident in, we can evaluate our generalization performance on our **test set**:

Test set performance

47,766

26.5

Operationalizing the solution

Now the code needs to be run at scale (production-grade code, production environment)

The ML solution will need to be maintained and updated (Update the codebase, update model with new data)

Continued monitoring of accuracy will be required (check for model drift – are distributions changing?)

How fast does it need to run? (i.e. in real-time)

Supervised learning in practice

Preprocessing Explore & prepare data

Data Visualization and Exploration

Identify patterns that can be leveraged for learning

.

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Data Cleaning

- Missing data
- Noisy data
- Erroneous data

Feature Extraction

Dimensionality reduction eliminates redundant information

Model training

Select models (hypotheses)

Select model options that may fit the data well. We'll call them "hypotheses".

Fit the model to training data

Pick the "best" hypothesis function of the options by choosing model parameters Iteratively fine tune evaluation

the model

Make a prediction on validation data

Performance

Metrics

Classification

Precision, Recall, F₁, ROC Curves (Binary), Confusion Matrices (Multiclass)

Regression

MSE, explained variance, R²

Components of supervised learning

Supervised machine learning model

We search for the model that best fits our data

Components of supervised learning

Input

X

Output

y

Training Data

 $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$

Target function

 $f(x) \rightarrow y$

This is unknown, but the best you could ever do

Hypothesis set

 $f_i(x) \to \hat{y}$

Functions to consider in trying to approximate f(x)

Learning algorithm

Optimization technique that searches the hypothesis set for the function f_i that best approximates f (typically by choosing parameters in a model)

Supervised Learning

Unobservable

Data Generating Process

p(X,Y)

Target Function

The best function predicting *y* from *x*

$$f(x) \rightarrow y$$

Observable

Training Data

$$(x_1, y_1), \dots, (x_N, y_N)$$

Learning Algorithm

Chooses a hypothesis, $\hat{f} = f_i$ based on the training data such that

$$\hat{f}(x) \approx f(x)$$

Hypothesis Functions Set

$$f_1, f_2, f_3, \dots$$

- Need to select the hypothesis functions (models to train)
- Need to select the learning algorithm (for fitting the models to the data)

Final Hypothesis

predictions

 $\hat{f}(x) \to \hat{y}$

Example: linear regression

Using any line as a hypothesis function, how many possible hypothesis functions are in the set?

Infinitely many

Using the line y = wx as the family of hypothesis functions, how many possible hypothesis functions are in the set?

Infinitely many

Which set contains the better hypothesis? Which set has more options to consider? What is our learning algorithm?

Next time

Model flexibility and the bias variance tradeoff

Historic Progression of Algorithms

François Chollet, Deep Learning with Python, 2017

References

Abu-Mostafa, Yaser S., Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data. Vol. 4. New York, NY, USA:: AMLBook, 2012.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 1. New York: Springer series in statistics, 2001.

Géron, Aurélion. Hands-On Machine Learning with Scikit-Learn & TensorFlow, 2017.

Moore, Cristopher, and Stephan Mertens. The nature of computation. OUP Oxford, 2011.