Exercícios – 1

Carga, corrente, tensão e potência

(adaptados de: Electric Circuits, Nilsson & Riedel, 9ª Edição, 2011; Engineering Circuit Analysis, Hayt, Kemmerly, Durbin, 8ª Edição, 2012; Basic Engineering Circuit Analysis, J. David Irwin, 9ª Edição, 2008)

- 1- Um dispositivo misterioso acumula carga segundo a lei $q(t) = 10t^2 22t \ [mC]$, com t em segundos. Calcule
- a) O instante em que o valor da carga no dispositivo é 2 *Coulomb*;
- **b)** O instante em que a corrente através do dispositivo se anula.
- **2-** Dois circuitos, A e B, estão ligados como representado na fig. 1. Para cada par de valores da tensão v e da corrente i nas alíneas seguintes, calcule a potencia associada e indique em que direcção (A para B ou B para A) está a fluir esta potência.

Fig. 1

- **a)** i = 10A, v = 125V;
- **b)** i = 5A, v = -240V;
- **c)** i = -12A, v = 480V;
- **d)** i = -25A, v = -660V.
- **3-** A tensão e a corrente no elemento de circuito da fig. 2 têm ambas o valor 0 para t < 0. Para $t \ge 0$ são

$$v(t) = 80000te^{-500t} \quad [V], \quad t \ge 0$$

$$i(t) = 15te^{-500t}$$
 [A], $t \ge 0$

Calcule

a) O instante em que a potência fornecida ao elemento é máxima;

- b) O valor máximo da potência fornecida;
- c) A energia total fornecida ao elemento.
- **4-** Admita agora que a tensão e a corrente no elemento de circuito da fig. 2 são

$$v(t) = 250\cos(800\pi t)$$
 [V]

$$i(t) = 8\sin(800\pi t)$$
 [A]

Calcule

- a) O valor máximo da potência fornecida ao elemento;
- b) O valor máximo da potência extraída do elemento;
- c) O valor médio da potência no intervalo [0, 2.5ms].
- **5-** Considere que a tensão e a corrente no elemento de circuito da fig. 2 variam de acordo com os gráficos da fig. 3.
- **a)** Apresente um traçado da variação da potência com o tempo para o intervalo [0, 10s].;
- **b)** Calcule a energia total fornecida ao elemento nos instantes 1, 6 e 10s.

Fig. 3

- **6-** O fabricante de uma pilha de *1.5V* do tipo D garante que esta é capaz de fornecer *9mA* durante *40h*. Nesse tempo a tensão da bateria desce linearmente de *1.5* para *1.0V*. Qual é o valor da energia que a bateria fornece no total das *40h*?
- 7- A fig. 4 ilustra uma clássica solução de emergência que é usada, por vezes, quando a bateria de um carro está fraca: a ligação em paralelo à bateria de outro carro. Assumindo que a corrente *i* medida é de *30A*, determine:

Fig. 4

- a) Qual dos automóveis apresenta a bateria mais descarregada;
- **b)** A energia transferida entre as baterias em 1 minuto.
- **8-** A fig. 5 mostra a variação da tensão e da corrente numa bateria de automóvel durante o processo de carga. Considere que a carga termina em t = 15Ks (*kilo segundos*), no instante em que a corrente de carga se anula. Calcule:
- a) A carga total transferida para a bateria;
- **b)** A energia total transferida para a bateria.

Fig. 5

9- Considere a rede eléctrica da fig. 6 e os valores de tensão e corrente indicados na tabela. Para cada elemento do circuito, calcule a potência absorvida e indique se essa potência é, efectivamente, consumida (C) ou fornecida (G).

	v(kV)	i(mA)	P(W)	C/G
а	150	0.6		
b	150	-1.4		
С	100	-0.8		
d	250	-0.8		
e	300	-2.0		
f	-300	1.2		

Fig. 6

10- Com base no principio da conservação da energia, calcule o valor da tensão V_X no circuito da fig. 7.

Fig. 7

Respostas

1- a) 15.3s; **b)** 1.1s

2- a) 1.25kW, B \to A; **b)** 1.2kW, A \to B;

c) 5.76kW, A \rightarrow B; d) 16.5kW, B \rightarrow A;

3- a) 2ms; **b)** 649.6mW; **c)** 2.4mJ.

4- a) 1kW; **b)** 1kW; **c)** 0W

b) 50J, 0J, 50J.

6- *1684.8J*.

7- a) O carro A;

b) 21.6kJ.

8- a) 123kC;

b) 1247.2kJ.

9-	

	v(kV)	i(mA)	P(W)	C/G
а	150	0.6	90	C
b	150	-1.4	-210	G
c	100	-0.8	80	С
d	250	-0.8	-200	G
e	300	-2.0	600	С
f	-300	1.2	-360	G

10- $V_x = -2V$.