EGCO351 Operating Systems (2/2561)

SO1. An ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science, and mathematics.

Passing criterion >= 50%

- PI 1-1 Identify and formulate engineering problems
- PI 1-2 Solve problems by applying mathematics and engineering knowledge

SO2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

Passing criterion >= 50%

- PI 2-1 Produce a design that meet a set of requirements, needs, and constraints
- PI 2-2 Apply appropriately existing solutions

PI 1-1 Identify and formulate engineering problems

Midterm Exam

(8 marks) Q6 บนระบบคอมพิวเตอร์ที่มี 1 computation core เมื่อเกิด page fault ขึ้น process ที่ทำให้เกิด page fault จะถูก block ระหว่างที่รอให้ page ที่ต้องการ ถูกนำจาก disk เข้ามาไว้ใน physical memory สมมติให้ process มี user-level thread จำนวน 5 threads และการ map ระหว่าง user thread ไปยัง kernel thread เป็นแบบ many to one หากมี user thread ของ process ดังกล่าวทำให้เกิด page fault ขึ้น thread ที่เหลือจะสามารถทำงานต่อระหว่างที่รอให้ page ที่ต้องการ ถูกนำเข้ามาใน physical memory หรือไม่ จงอธิบาย

PI 1-2 Solve problems by applying mathematics and engineering knowledge

Final Exam

(12 Marks) Q2 กำหนดให้ใช้ deadlock avoidance algorithm, ณ เวลา to ระบบอยู่ในสภาวะดังต่อไปนี้:

	Allocation	Max	Available
	ABCD	ABCD	АВСД
P0	2 3 0 2	3 3 3 3	0 1 3 3
P1	0 2 0 2	2 4 5 2	
P2	2 1 1 0	3 1 1 5	
P3	0 0 2 2	5 0 4 6	
P4	1 1 2 1	1 2 3 4	

- (ก) (6 คะแนน) จงพิสูจน์ว่าระบบอยู่ใน safe state หรือไม่ อย่างไร
- (ข) (6 คะแนน) หาก P3 ร้องขอ (0,0,1,1) ระบบควรจะ allocate การใช้ resources ตามที่ร้องขอในทันทีหรือไม่ เพราะเหตุใด

PI 2-1 Produce a design that meet a set of requirements, needs, and constraints

Midterm Exam

(8 marks) Q4 What you think is/are the major reason(s) the multilevel queue CPU scheduler usually has different time quanta at different levels.

PI 2-2 Apply appropriately existing solutions

Midterm Exam

(14 Marks) Q12 Bakery algorithm given below can be used to synchronize n processes running on a 1-core CPU. Explain role(s) of for loop of the algorithm.

(a) common data structures

```
var choosing : array [0..n-1] of Boolean  //initialized to 'False'
number : array [0..n-1] of integer  //initialized to '0'
```

(b)

- (a, b) < (c, d) if (a < c) or if (a = c) and (b < d)
- $\max(a_0, ..., a_{n-1})$ is a number, k, such that $k \ge a_i$ for i = 0, 1, ... n-1

(c)

code of Process Pi

repeat

Entry Section

```
choosing[ i ] := true;
number[ i ] := max (number[0], number[1], ... ,number[i-1]) + 1;
choosing[ i ] := false;
for j := 0 to n-1
    do begin
    while choosing[ j ] do no-op;
    while number[ j ] ≠ 0 and (number[ j ], j) < (number[ i ], i) do no-op;
end;</pre>
```


remainder section

until false;

Student No	PI 1-1	PI 1-2	PI 2-1	PI 2-2
1	0	ขาดสอบ	0	0
2	0	1	1	0
3	ขาดสอบ	1	ขาดสอบ	ขาดสอบ
4	1	1	0	0
5	0	1	0	0
6	0	1	0	1
7	1	0	0	0
8	0	1	0	0
9	0	1	0	0
10	0	1	0	1
11	0	1	1	0
12	0	0	0	1
13	1	1	0	0
14	0	1	1	1
15	0	1	1	0
16	0	1	0	0
17	0	1	0	1
18	0	1	1	1
19	0	1	0	0
20	1	1	1	1
21	0	1	0	0
22	0	1	1	1
23	0	1	1	1
24	0	1	1	0
25	0	1	0	1
26	1	1	1	0
27	0	1	0	0
28	0	1	1	1
29	0	1	0	0
30	0	1	0	0
31	0	1	1	1
32	0	1	1	0
33	1	1	1	0
34	0	1	1	1
35	1	1	0	1
36	1	1	1	0
37	0	1	1	1

SO1. An ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science, and mathematics.

Passing criterion >= 50%

PI 1-1 Identify and formulate engineering problems

PI 1-1 Q.6: Attainability = 8/36 = 22.2% Not Attainable

PI 1-2 Solve problems by applying mathematics and engineering knowledge

PI 1-2 Q.2: Attainability = 34/36 = 94.4% Attainable

SO1 Conclusion

PI	Attainability	Reason	Remedial Action	Action plan	Measurements
1-1	×	Do not understand	Provide more	Next semester	Next semester
		the relationship	examples or use		
		between multithread	different		
		and multicore when	examples.		
		combined.			
1-2	✓				

SO2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

Passing criterion >= 50%

PI 2-1 Produce a design that meet a set of requirements, needs, and constraints

PI 2-1 Q.8: Attainability = 17/36 = 47.2% Not Attainable

PI 2-2 Apply appropriately existing solutions

PI 2-2 Q.12: Attainability = 15/36 = 41.7% Not Attainable

SO2 Conclusion

PI	Attainability	Reason	Remedial Action	Action plan	Measurements
2-1	*	Do not understand	Provide more	Next semester	Next semester
		main concept well	examples or use		
		enough.	different		
			examples.		
2-2	*	Do not understand	Use different	Next semester	Next semester
		the working of	explanation		
		algorithm.	method.		