

Design & Implementation of a Fraud Detection System for Autonomous Teams (Total pages should be: 50 [without Attachments])

Abschlussarbeit

zur Erlangung des akademischen Grades:

Bachelor of Science (B.Sc.)

an der

Hochschule für Technik und Wirtschaft (HTW) Berlin Fachbereich 4: Informatik, Kommunikation und Wirtschaft Studiengang *Angewandte Informatik*

Gutachterin: Prof. Dr. Christin Schmidt
 Gutachter: MSc. Tobias Dumke

Eingereicht von Louis Andrew [s0570624]

Datum
Last updated on Mon Jun 13 09:07:52 UTC 2022

Abstract

[Summary of the thesis]

Contents

1.	Intro	oduction	1
	1.1.	Background and Motivation	3
	1.2.	Goal	3
	1.3.	Scope	3
2.	Fund	damentals	4
	2.1.	Kontext	4
		2.1.1. Domain	4
		2.1.2. Technologien	4
		2.1.3. Methoden und Konzepte	4
	2.2.		4
		2.2.1	4
		2.2.2	4
3.	Requ	uirement Analysis (!)	5
	3.1.	Goal?	5
	3.2.	Application Environment	5
	3.3.	Analysis / State of Art	5
	3.4.	Requirements	5
4.	Con	ception and Design	6
	4.1.	System Architecture	6
	4.2.	Software Architecture	7
	4.3.	Technologies	8
		4.3.1. User Interface	9
		4.3.2. FDS	10
		4.3.3. Message Broker / Notification System	10
		4.3.4. Database and Caching Memory	10
	4.4.	Software Design	10
		4.4.1. Controller	11
		4.4.2. Model	16
		4.4.3. View	21
5.	Impl	nentation	
	5.1.	Model	26
	5.2.	View	26
	5.3.	Controller	26
6	Test		27

Contents

7.	Demonstration and Evaluation 7.1. Ausblick	28 29
Bi	bliography	30
8.	List of Abbreviations	32
9.	Glossary	33
Α.	Appendix A.1. Quell-Code	

List of Figures

1.1.	Example image: Who is Steinlaus?; Bildquelle [10]	2
1.2.	Beispielgrafik: Fressende Steinlaus; Bildquelle [9]	2
4.1.	System architecture diagram	6
	Software architecture diagram	7
	Software architecture diagram with technologies used	9
	System sequence diagram for a customer validation when a new cus-	
	tomer is registered	11
4.5.	System sequence diagram for notifications on suspicious cases	13
4.6.	System sequence diagram for validation rules management	14
	9	15
4.8.	UML diagram of the validation rule model	17
	0	20
		22
	1 0	24
4.12.	Mock up of the validation progress page	25

List of Tables

1.1. Übersicht: Untersuchte Steinläu	e	2
--------------------------------------	---	---

Listings

4.1.	Validation rule example (JSON)	18
4.2.	Validation rule condition attribute example with ALL condition (JSON)	18
4.3.	Validation rule condition attribute example with ANY condition (JSON)	19
4.4.	Validation result example (JSON)	20
5.1.	Ein Beispiel: Hello World (JavaScript)	26

1. Introduction

Vorliegendes Template enthält exemplarisch (und damit unvollständig) Gliederungspunkte, Bestandteile und Hinweise für ein typisches Softwareentwicklungsprojekt, bei dem ein Prototyp erstellt wird. Es dient als Hilfestellung zu Ihrer weiteren Verwendung. Selbstverständlich müssen Sie selbst weitere Ergänzungen und Anpassungen vornehmen.

Viel Erfolg sowie gutes Gelingen bei Ihrer Abschlussarbeit!

Der Textteil beginnt hier und wird arabisch mit dieser Seite beginnend mit »1« arabisch nummeriert. Der Textteil gliedert sich in Kapitel und Unterkapitel. Soll jede Hierarchieebene benannt werden, dann ist folgende Terminologie üblich:

1. Hierarchieebene: Chapter2. Hierarchieebene: Section3. Hierarchieebene: Subsection4. Hierarchieebene: Subsubsection

Der inhaltliche Aufbau einer Abschlussarbeit im Studiengang Angewandte Informatik hängt selbstverständlich vom Thema und vom Inhalt ab. Abweichungen von der diesem Template zu Grunde liegenden Gliederungsstruktur sind immer möglich, manchmal sogar zwingend notwendig. Stimmen Sie sich diesbezüglich immer mit Ihren Gutachter(inne)n ab.

Vergessen Sie niemals, all Ihre verwendeten Quellen anzugeben und korrekt zu zitieren¹. Quellen können manuell referenziert und im Quellenverzeichnis eingetragen werden. Ergänzend bieten viele Textverarbeitungsssteme auch ausgelagerte Quellenverwaltungsdateien und - systeme an, über die mittels entsprechender Befehle im Textteil zitiert werden kann².

Visualisieren Sie im Textteil angemessen, z.B. mittels Abbildungen und Tabellen. Vorliegendes Template enth"alt beispielhaft eingebundene Abbildungen und eine Tabelle (vgl. f.), welche der Steinlausforschung³ entnommen sind.

¹Ergänzende Informationen können Sie auch in eine Fu"snote auslagern. Hier wird die Fu"snote dazu genutzt, um Ihnen bei Interesse am Thema Zitation vertiefende Quellen (z.B. [1] oder [3]) anzubieten.

²Wie Sie hoffentlich feststellen werden, erfolgt die Literaturverwaltung in diesem Template mittels einer *.bib-Datei (diese enthält die verwendeten Quellen), welche die *.tex-Datei mittels Verwendung von biblatex und bibtex ergänzt.

³Analog zu Straube (In: [13]) handelt es sich bei der Steinlaus (*petrophaga lorioti*) um das *»kleinste einheimische Nagetier*«. Als stimmungsaufhellender Endoparasit erreicht es eine Grö"se von ca. 0,3 bis 3 mm und stammt aus der Familie der Lapivora. Die Steinlaus kommt ubiquitär vor und ist in der Regel apathogen.

1. Introduction

Figure 1.1.: Example image: Who is Steinlaus?; Bildquelle [10]

Figure 1.2.: Beispielgrafik: Fressende Steinlaus; Bildquelle [9]

 Table 1.1.: Übersicht: Untersuchte Steinläuse

Untersuchte Objekte		
ID (nickname)	Ort	Grö"se/Länge (in mm)
1 (Rosalinde)	Berlin, Mauerpark	1.4
2 (Devil in disguise)	Brandenburg, BER-Airport	2.8
3 (Hannes)	Berlin, Olympia-Stadion	2.1
4 (Her Majesty)	Berlin, Humboldt-Forum	2.0

1.1. Background and Motivation

The background and motivation of the thesis is to get my bachelor degree.

1.2. Goal

Goal of the thesis is to build a cool software

1.3. Scope

Scope of the thesis is to not build a new internet protocol

2. Fundamentals

TODO! [Beschreibung des Kontextes der Arbeit mit allen durch die Problemstellung tangierten Bereichen, Methoden, Theorien, Erkenntnissen, Technologien, ...]

2.1. Kontext

- 2.1.1. Domain
- 2.1.2. Technologien
- 2.1.3. Methoden und Konzepte
- 2.2. ...
- 2.2.1. ...
- 2.2.2. ...

3. Requirement Analysis (!)

[Beschreibung der Erhebung, Granularisierung und Priorisierung der zu Grunde liegenden Anforderungen]

3.1. Goal?

Hi mom, I'm . trying to cite ISO thingy [7]

- 3.2. Application Environment
- 3.3. Analysis / State of Art
- 3.4. Requirements

Optionals:

- Rahmenbedingung
- Methods

[Beschreibung des Entwurfs auf Basis der Methodologie / der geplanten Vorgehensweise zur Problemlösung im Kontext der Anforderungen (i.A. der Art der Arbeit)]

4.1. System Architecture

A system architecture diagram is created to help to understand the system as well as its components better.

Figure 4.1.: System architecture diagram

The system diagram visualizes the components of the system and their interaction with each other. Internally, the system contains 3 independent components; user interface (UI), fraud detection service (FDS) and a message broker (notification system). Externally, the system would interact with a database and optionally a cache memory¹ to persist information needed for the validation process. Apart from the internal components of the system and its connection to the database, the diagram also visualizes an external system (*message consumer*) which indeed is out of the system's scope, but plays an important role to determine which action to be taken on certain events. Further information on the function as well as connection between each component will be discussed on the next section.

¹Cache memories are small, but extremely fast memory used in computer systems to store information that are going to be accessed in a small timeframe [14]

4.2. Software Architecture

As the requirement is clear and the components of the system are defined, a software architecture is needed. A software architecture plays an important role in a software development project by providing a structure on how the software should be built and decisions made during this stage would be vital for the development process going forward. As Garlan wrote in one of his work *Software Architecture*, a software architecture "plays a key role as a bridge between requirements and implementation." [6] A software architecture diagram is therefore created to help visualize the structure, functions and role of each component of the system.

Figure 4.2.: Software architecture diagram

In a real world production environment, the user interface might need to be separated into several independent applications. A dedicated app to manage validation rules should be reachable only for internal employees (such as a developer from the company) while a customer facing UI that contains a registration form could also trigger a validation process directly after a new registration. An additional UI to display the progress of the currently running validation processes could also be built specifically for customer service agents, so that a fast reaction on certain suspicious customers can be done. For this project, all the use cases mentioned above will be implemented and combined into a single web application.

The fraud detection system (*backend*, *FDS*) is the core engine of the system where validation processes would be run. The FDS is responsible for all CRUD operations regarding the validation rules. User should be able to create, read, update and delete validation rules via an HTTP request. A detailed explanation on validation rules will

be discussed in subsection 4.4.2. A database connection should be established on the FDS to persist the validation rules. An optional connection to a cache memory could also be established to enable a faster access to the data needed.

The core functionality of the FDS is to run validation process of a customer by evaluating a collection of validation rules in relation to a given customer data. The execution of the validation process could be scheduled via a single HTTP request that contains the customer data on its request payload². A validation process is run asynchronously, the FDS will not return the result of the validation directly as a response to the HTTP request. This is intended to prevent a slow response time of the FDS.

Clients could then subscribe to the latest progress of a validation process by accessing an additional endpoint provided by the FDS. A subscription mechanism will be implemented to prevent the need of a request polling on the client side, either by using the WebSocket protocol³ or something similar.

After a validation process is completed, the FDS should return the result of a validation and further actions should be handled by external services out of the system's scope. This separation of concern is intended to decouple the execution of a validation process and the processing of its result. As there might be several implications on what a validation result might mean, the validation result will be distributed across multiple clients. To achieve this functionality, the Observer[5, pp. 293-303] design pattern will be implemented, and a messaging system is needed to act as a bridge between the message producer and its consumers. In this specific architecture, the FDS will act as a message producer, producing a message containing the validation result to the message broker whenever a validation process is done and the external services will act as message consumers, by consuming a message queue created by the message broker and running actions on certain cases independently.

4.3. Technologies

The software architecture determines not only the structure of the software, but it also helps in defining which type of technologies might be needed to build the system as efficiently as possible. Different technologies have their own advantages and disadvantages, and the goal of this phase is not to find the best technology or the best programming language, but rather to find the most suitable set of technologies given the priorities of the project and preferences of the writer. From the software architecture diagram listed on Figure 4.2, the technologies to be used on the following components should be defined:

- User interface (web application)
- FDS (server-side application)
- Message broker / notification system

²A request payload refers to data sent by a client to the server during an HTTP request, usually attached to the request body[2, section "4.3 Message Body"]

³In [12], Fette and Melnikov introduced the WebSocket protocol as a way to establish a two-way communication between a browser-based client and a remote host without relying on opening multiple HTTP connections.

• Database and caching memory

Figure 4.3.: Software architecture diagram with technologies used

The previous software architecture diagram is therefore extended with additional logos of the technology used for each component of the system. All internal components of the system should be run as a Docker⁴ container. Running the applications as a Docker container means that each application is started and run in isolation, ensuring portability to other operating systems. The database and caching memory will also be run as a Docker container, to avoid the need of installing the dependencies needed and to enable the possibility to start all the components of the system using a single command with Docker Compose⁵.

4.3.1. User Interface

The technology used to build the user interface is VueJS (3. Version, also known as *Vue3*)⁶, a JavaScript framework built on top of HTML, CSS and JavaScript for building a reactive user interfaces using a component-based programming paradigm. To ensure type safety, the user interface is built with TypeScript⁷, rather than plain JavaScript, which is also supported by Vue3.

⁴Docker is an open source software used to containerize applications in a package with its dependencies and operating system, making it runnable in any environment. Homepage: https://www.docker.com/

⁵Docker Compose is an open source tool for running multiple Docker containers. GitHub repository: https://github.com/docker/compose

 $^{^6}Vue3$ is an open source JavaScript framework to build user interfaces. GitHub repository: https://github.com/vuejs/core

⁷TypeScript is an open source programming language built by Microsoft on top of JavaScript by adding additional optional static typing. A TypeScript program will be compiled to a plain JavaScript program, before being executed in environment such as browser or NodeJS environment. GitHub repository: https://github.com/microsoft/TypeScript

4.3.2. FDS

The technology chosen to build the FDS is Node.JS⁸. Node.JS is chosen not only because the writer is familiar with it, but also the event loop architecture of Node.JS enables the possibility to perform non-blocking I/O operations asynchronously. Each validation process will be an asynchronous process, which wouldn't block the main thread of the application. To ensure type safety, TypeScript is also used here rather than plain JavaScript. Express.JS⁹ is the web framework of choice to build the FDS. Express.JS provides a simple and declarative API to build a web application with ease and speed. An object-relational mapping tool (ORM) is used in this application to provide an easier access to the database, and additionally to keep the database schema in sync between the database server and the FDS application. The ORM of choice for the application is Prisma¹⁰, as it provides a straightforward integration with TypeScript, generating TypeScript types automatically from the database schema.

4.3.3. Message Broker / Notification System

A reliable message broker is needed to make sure that all validation result actually reaches the consumers. The technology chosen for this component is RabbitMQ¹¹, as it is not only reliable, but also has an easy guide to set up as well as a big collection of client libraries for multiple programming languages.

4.3.4. Database and Caching Memory

A database is needed to store data regarding validation rules. Each database system has their own use cases and weaknesses. For this particular project, MongoDB¹² will be used as the database system of choice. Redis¹³ is chosen as the technology of choice for the caching memory because of its simple API and reliability.

4.4. Software Design

The system was implemented using the Model-View-Controller (MVC) programming approach. The system does not strictly adhere to the MVC pattern, but uses it as a guideline to categorize the components of the system and its functionalities. Krasner

⁸Node.JS is an open source JavaScript runtime environment that runs on Google's V8 engine, enabling JavaScript programs to be run out of the browser environment. GitHub repository: https://github.com/nodejs/node

⁹Express JS is an open source web application framework for Node.JS. GitHub repository: https://github.com/expressjs/expressjs.com

 $^{^{10}} Prisma$ is an open source ORM for Node.JS and TypeScript. GitHub repository: https://github.com/prisma/prisma

¹¹RabbitMQ is a messaging broker, enabling the distribution of messages across multiple clients. RabbitMQ homepage: https://www.rabbitmq.com/

¹²MongoDB is a source-available NoSQL database developed by MongoDB Inc. MongoDB homepage: https://www.mongodb.com/

¹³Redis is an open-source in-memory data structure store. GitHub repository: https://github.com/redis/redis

and Pope [8] discussed the benefit of using the MVC pattern to provide modularity by isolating functional components of the system, making it easier to design and modify.

4.4.1. Controller

Krasner and Pope defined an application's controller in [8] as an interface to associate the components of the system (*model and view*) and incoming events (*such as event coming from input devices*). In other words, the controller component is responsible in defining the flow or sequence of a system based on an incoming event, routing commands to the appropriate model and updating the view in the process. In this subsection, an analysis of the use cases listed on **TODO: ref to use cases** will be done, and consequentially a sequence of operations will be defined for each specific use case. An additional sequence will also be defined as a way complete the system and fulfill the requirements defined.

Customer Validation on a Registration Event

Figure 4.4.: System sequence diagram for a customer validation when a new customer is registered

A system sequence can be defined by analyzing the following use case:

"As a stakeholder, I want to verify customer, so that the company can have more confidence that the existing user base is trustworthy"

One of the opportunity to do a verification process is during a new customer registration. Verifying a customer after each new registration might help the stakeholder to be more confident, that the user base is trustworthy and necessary actions can be taken as soon as possible to reduce the possible damage made in the future by fraudulent customers.

- A new customer inputs his or her personal data to a customer facing UI and clicks the "Register" button
- The customer facing UI makes an HTTP Post request to the FDS, containing the user's personal data on its request payload
- The FDS receives the HTTP request, and schedules a new validation process to be executed asynchronously
- The FDS responds to the HTTP request by returning a validation ID pointing to the scheduled validation process
- Customer facing UI shows a success message and continues registration to the next step while the validation process runs

Notification on Suspicious Cases

To fulfill the requirements listed on **TODO:** Link Analysis, a further examination of the following use case should be done:

"As an employee, I want to be notified when a user seems suspicious, so that I can do necessary actions accordingly"

The FDS runs a rule evaluation by making an HTTP request to an external URL and comparing the HTTP response to the conditions listed on the validation rule. As working with external systems can sometimes be unpredictable and there is no guarantee that the external system has a fast response time, a validation process is run asynchronously, meaning that the FDS would not return the validation result with a resulting fraud score directly to the client when a validation process is scheduled. At the end of a validation process, the concerned parties might need some kind of notification on certain cases, to make sure actions required can be made as soon as possible. The following sequence illustrates the sequence of activities done by the system to validate a certain customer and sending a notification on its completion.

- The FDS receives an HTTP request to schedule a validation process and responds by returning the ID of the validation process
- FDS retrieves a list of validation rules from the database
- FDS begins to initiate a validation process by setting the fraud score to 0 and looping through the list of validation rules for evaluation
- A validation rule will be evaluated by making an HTTP request to the external endpoint defined by the validation rule and evaluating its response according to the condition specified
- If the response matches all the conditions specified by the validation rule, the rule evaluation will be considered as a success and the fraud score will be incremented with 0. Otherwise, the rule evaluation will be considered as a failure and the fraud score will be incremented by the *fail score* specified by the validation rule

Figure 4.5.: System sequence diagram for notifications on suspicious cases

- After the evaluation of all validation rules retrieved from the database is completed, the FDS publishes the validation result to an exchange hosted created the message broker
- ullet The message consumers consume the message from the exchange and react accordingly 14

Managing Validation Rules

Another sequence can also be defined as a result of an analysis of the following use case:

"As an employee, I want to manage my own rule to validate users, so that I can use my expertise to find suspicious customers as efficiently as possible without the communication overhead with other teams"

A possibility for each team to manage their own validation rules without being dependent to other teams is needed. By reducing the impediment in the process

¹⁴For example: sending an email notification if the fraud score exceeds 0.7.

Figure 4.6.: System sequence diagram for validation rules management

(having to consult other teams, communication overhead), every team can focus on generating validation rules that reflect a fraudulent customer as efficiently as possible, according to their own domain knowledge and expertise.

- A user (e.g. Developer) can access the management UI and go to the page that displays a list of available validation rules
- The FDS retrieves a list of validation rules from the database
- User can click on a single rule and edit the rule
- The management UI makes an HTTP PUT¹⁵ request to the database to edit an existing rule
- The FDS receives the HTTP request, modify the rule on the database and returns the edited rule as a response
- The management UI displays a success message and redirects user back to the list of rules page
- User can click on a single rule and delete the rule

 $^{^{15}}$ In [2, "9.6 PUT"], HTTP PUT method is described as a method to store or modify an entity, defined by the Request-URI

- The management UI makes an HTTP DELETE¹⁶ request to the database to delete an existing rule
- The FDS receives the HTTP request and delete the rule on the database, returning a 204¹⁷ status code as an identifier of a successful operation
- The management UI displays a success message and redirects user back to the list of rules page

Validation Real-Time Progress

Figure 4.7.: System sequence diagram for validation rules management

Even though the user should receive a notification on certain cases, there might be certain cases where a user wants to intentionally monitor the progress of a validation result. To achieve such functionality, the user interface should establish a connection to the FDS, and receive notification whenever there is an update on the validation result. The sequence of such functionality will be as follows:

¹⁶In [2, "9.7 DELETE"], HTTP DELETE method is described as a method to delete a resource on the host server, pointed by the Request-URI

 $^{^{17}}$ In [2, "10.2.5 204 No Content"], the 204 status code should be used if the server fulfilled the request, but no data should be returned by the HTTP response

- The FDS receives an HTTP request to schedule a validation process and responds by returning the ID of the validation process
- FDS retrieves a list of validation rules from the database and initiate the validation process
- A user visits the validation progress page with the returned validation
- The user interface establishes a connection with the FDS subscription endpoint
- After each rule evaluation, the FDS stores the latest validation result to a data store¹⁸
- Every time the data store receives a new data, the user interface will get a notification and the latest result from the FDS subscription endpoint
- The user interface updates the view containing the latest validation result

4.4.2. Model

As mentioned by Krasner and Pope [8], an application's model is a domain specific simulation or implementation of a structure. The model component of an MVC application contains business logic and manages the state of an application as well as its storage. The essential models of the system can be defined by revisiting the sequences listed on ?? and identifying the important structures needed to fulfill the requirements needed.

Validation Rule

A validation rule is a structure of information used in a validation process by supplying the FDS the necessary information to make an HTTP request to an external endpoint and evaluating its response, affecting the overall fraud score of a validation process through its evaluation result. Through a detailed analysis of the sequence listed on subsubsection 4.4.1, it is essential that the *validation rule* model contains the following attributes:

- A URL pointing to an external endpoint
- A list of conditions to evaluate the response returned by the external endpoint
- A unique identifier
- A fail score, which determine the severity of the rule if the evaluation failed

It might also be necessary to have an identifier in the validation rule to skip its evaluation in certain cases. Other than that, as the FDS would make an HTTP request to an external endpoint based on the information listed on a validation rule, the following attributes are needed to provide a more robust configuration:

- HTTP method to be used to make the request
- Request header¹⁹
- Request body

¹⁸A data store in this context can be a caching memory or a simple class to store some temporary information

¹⁹In [2, "5.3 Request Header Fields"]: request header is defined as additional information passed by the client to the host server about the particular request or about the client.

As the FDS interacts with external endpoints, there is no guarantee that the external endpoint will always be accessible. An additional attribute to specify and configure a retry strategy in such cases can be useful. However, a retry strategy can be really specific to its implementation and therefore will be discussed in **TODO: Add retry strategy implementation**.

An additional *priority* attribute is also provided to enable the possibility to run rule validations according to its priority order.

Figure 4.8.: UML diagram of the validation rule model

The *condition* attribute plays an important role for a validation rule, as it defines how the response returned by the external endpoint should be to pass a rule evaluation. It is intended to design the condition attribute to be robust and configurable. The *path* of a condition defines a JSONPath[4] expression to access information available of the current validation scope, such as customer information or response returned by the external endpoint. The *type* attribute of a condition determines the type of the attribute accessed by the *path* attribute. The *type* attribute determines which type of

operators are available to use²⁰. The *operator* attribute refers to a name of operator to be used to evaluate the condition (for example: "eq", "incl"). The available operator names are predefined and restricted to the condition's type attribute. More information regarding operators will be discussed in **TODO:** Add retry strategy implementation. The *failMessage* attribute of a condition refers to a message that is going to be appended to the validation result's *messages* attribute after a validation is completed.

```
{
1
2
    "name": "Example",
3
    "skip": false,
    "priority": 2,
4
    "endpoint": "http://localhost:8000/validate",
5
    "method": "GET",
6
7
    "failScore": 0.7,
8
    "condition": {
       "path": "$.response.statusCode",
9
       "type": "number",
10
       "operator": "eq",
11
       "value": 200,
12
       "failMessage": "Status code doesn't equal to 200"
13
14
     "requestUrlParameter": {},
15
    "requestBody": {},
16
    "requestHeader": {}
17
18
  }
```

Listing 4.1: *Validation rule example (JSON)*

A validation rule might contain more than a single condition to pass an evaluation. In such cases, the user need to define whether how to determine whether an evaluation should pass: either pass an evaluation if **ALL** the conditions is true or pass an evaluation if **AT LEAST ONE (ANY)** of the conditions is true. This can be achieved by having the *condition* attribute as an object with a single attribute, either *all* or *any* and an array of conditions as the attribute's value.

```
{
1
2
     "condition": {
       "all": [
3
         {
4
           "path": "$.response.statusCode",
5
           "type": "number",
6
           "operator": "eq",
7
           "value": 200,
8
           "failMessage": "Status code doesn't equal to 200"
9
10
         },
         {
11
```

²⁰For example: a condition with *type* "string" cannot use the "incl" *operator*, because the "incl" *operator* is only available for "array" *type*

```
"path": "$.response.body.valid_address",
12
            "type": "boolean",
13
            "operator": "eq",
14
            "value": false,
15
            "failMessage": "Address is invalid"
16
         }
17
       ]
18
     }
19
  }
20
```

Listing 4.2: *Validation rule condition attribute example with ALL condition (JSON)*

```
{
1
       "condition": {
2
         "any": [
3
           {
4
              "path": "$.response.statusCode",
5
              "type": "number",
6
              "operator": "eq",
7
              "value": 200,
8
              "failMessage": "Status code doesn't equal to 200"
9
10
           },
            {
11
              "path": "$.response.body.valid_address",
12
              "type": "boolean",
13
              "operator": "eq",
14
              "value": false,
15
              "failMessage": "Address is invalid"
16
           }
17
         ]
18
       }
19
     }
20
```

Listing 4.3: Validation rule **condition** attribute example with ANY condition (JSON)

Validation Result

A validation result is the result of a validation process. A validation result contains a resulting fraud score, which is the probability of a certain customer being a fraud. The algorithm to calculate the fraud score will be discussed as part of the **TODO: Link implementation** By evaluating the sequences listed on subsubsection 4.4.1 and subsubsection 4.4.1, the following attributes are needed:

- A unique validation ID
- A fraud score

Furthermore, information regarding the total checks, runned checks, and additional information that contains the start and end date of the validation process as well as the

customer information used for the validation are essential. The customer information is generic, and the system should be able to do a validation process regardless of its structure. The validation result should also return a list of validation rule names, whose evaluations are skipped due to its *skip* attribute being set to *true*.

Even though the resulting fraud score determines the probability of a customer being a fraud, it is also important to further analyze the actual evaluation result of each validation rule. For example, a certain action can be run if the evaluation of a specific rule failed or the information regarding the rule evaluations can also be used to display the current progress of a validation process (implementation of this specific functionality will be discussed more in **TODO**: cite to implementation).

To provide such information on a validation result, the *events* attribute will be introduced, which refers to rule evaluation events within a validation process. A rule evaluation event should contain the following attributes:

- Unique identifier of the event (name of the rule being evaluated)
- Status of the event (not started, failed, passed or running)
- If available, start date of a rule evaluation event
- If available, end date of a rule evaluation event
- A list of messages, containing error messages of an evaluation event

Figure 4.9.: UML diagram of the validation result model

```
{
1
    "validationId": "3112dc4a-45f5-41b8-883a-715dcbe9a490",
2
3
    "totalChecks": 3,
    "runnedChecks": 2,
4
    "skippedChecks": [
5
       "Skip rule",
7
    ],
    "additionalInfo": {
8
       "startDate": "2022-06-12T09:16:24.618Z",
9
      "customerInformation": {
10
```

```
"firstName": "Scooby",
11
         "lastName": "Doo",
12
         "address": {
13
           "streetName": "Suite 5000 185 Berry St",
14
           "city": "San Fransisco",
15
           "state": "CA",
16
           "country": "United States",
17
           "postalCode": 94107
18
         },
19
         "email": "scooby-doo@fraud.co",
20
         "phoneNumber": "123131123"
21
       }
22
23
     },
     "events": [
24
25
       {
         "name": "User's email domain is not blacklisted",
26
27
         "status": "PASSED",
         "dateStarted": "2022-06-12T09:16:34.694Z",
28
         "dateEnded": "2022-06-12T09:16:39.725Z",
29
         "messages": []
30
       },
31
       {
32
         "name": "User's email is not blacklisted",
33
         "status": "FAILED",
         "dateStarted": "2022-06-12T09:16:39.725Z",
35
         "dateEnded": "2022-06-12T09:16:44.756Z",
36
         "messages": [
37
           "User's email is blacklisted!"
38
         ]
39
       }
40
     ],
41
42
     "fraudScore": 0.425
  }
43
```

Listing 4.4: *Validation result example (JSON)*

4.4.3. View

In [8], Krasner and Pope described an application's view as the graphical representation of an application's model. Several mock-ups are made to better visualize how the user interface should be structured using a UI design tool called Figma.

Rule Management Form

To facilitate the validation rule management functionality described in subsubsection 4.4.1, a page containing a form to create, edit, delete and read a validation rule will

be created. The rule management form is intended to be used by internal employee, preferably with technical background²¹ to manage a validation rule that will be used to validate a customer.

Figure 4.10.: Mock up of the rule management form page

The page should represent every attribute of a validation rule and gives the user the ability to modify the attribute if necessary. The above listed form will be used both

²¹An understanding on how HTTP works is a prerequisite to use the form

for rule creation and rule modification. For a rule creation, the form fields will be left blank. For a rule modification, the form fields will be filled with the rule's current data.

The Rule Name field is used to display or enter a unique name of the validation rule. If the form is used to modify an existing rule, the field should be disabled, as a validation rule's name cannot be modified.

The Conditions section can be used to add one or more condition to a validation rule. As described in subsubsection 4.4.2, the form fields of each condition includes a dedicated input field for each attribute of a condition. The Type and Operator form fields are a selectable field, meaning the user has to select one out of several choices provided. This is intended to restrict input from the user, preventing an invalid condition being submitted to the FDS²². User can also delete a condition if necessary by clicking the Delete button available on each condition segment. If more than one condition is present, a selectable button will be displayed to select whether the "any" or "all" condition will be used.

As the *retryStrategy* attribute of a validation rule is not required, it is possible to delete an existing retry strategy, by clicking on the Delete button available on the Retry Strategy section of the form. If no retry strategy is present, a button to add a new retry strategy and to display the Limit and Status Codes fields will be displayed.

According to the model of a validation rule, requestBody, requestHeader and requestUrlParameter should be a dictionary that could contain as many entries as possible. To mimic this functionality as a form field, the Request Body, Request Header and Request URL Parameter fields are a dynamic input field. A dynamic input field enables the user to add a new key-value pair to the dictionary by clicking on the Add button and inputting the values to the corresponding input fields. To delete an entry of a dictionary, a delete button is provided next to each key-input fields.

Validation Form

A sample registration form is also created to give the user a possibility to run a validation process on a certain customer. The validation form is intended to be used by end customer, as a mean to register his-/herself into the system. Internal employees can also use the validation form to test the validation rules made.

The page should represent a customer model by displaying every attribute of a customer in a form field. **TODO: link to appendix -> customer UML?**. For demonstration purposes, it might be beneficial to have a list of sample customers, so that the user can run a validation on a certain set of customers quickly, without having to first fill out the form by him-/herself. To provide this functionality, a list of buttons, containing a description text of the sample customer will be displayed next to the validation form. Upon clicking on one of the button, the validation form will be filled with the sample customer's data and the user can directly click on the Validate Customer button to begin the validation process.

²²For example, on *type* field, user can only choose on of the following: (number, string, array, boolean)

Figure 4.11.: Mock up of the validation form page

Validation Progress

To provide a transparency on an asynchronous validation process, a page that displays the current progress of a validation process in real time might be beneficial. This page is intended for demonstration purposes, but can also be beneficial for security agents to keep track of the validation processes run by the FDS.

The page displays the current progress of a certain validation in real time. It represents the *events* attribute of a validation result in a timeline, displaying the events in a list ordered by its *dateEnded* attribute. The page gives the user information regarding the evaluation result of each validation rule (either success or failure), the current fraud score and the names of validation rules that are skipped. If present, the messages of an event should also be displayed.

Figure 4.12.: *Mock up of the validation progress page*

5. Implementation

[Beschreibung der Implementierung¹auf Basis des Entwurfs und der Methodologie / der geplanten Vorgehensweise zur Problemlösung im Kontext der Anforderungen. Hier ist Raum für Listings, wie z.B. das nun Folgende:

```
const helloWorld = "Hello, world!"
console.log(helloWorld)
```

Listing 5.1: Ein Beispiel: Hello World (JavaScript)

Umfangreicher Quell-Code sollte in den Anhang ausgelagert werden.]

5.1. Model

5.2. View

5.3. Controller

Optionals:

- Architecture -> (can be in controller)
- Techs

¹Beachten Sie bei der Implementierung und deren Dokumentation bitte Clean Code Empfehlungen (vgl. hierzu z.B. [11]).

6. Test

[Beschreibung, wie Sie auf Basis des geplanten Testvorgehens was mit welchen Kriterien und Technologien getestet haben]

7. Demonstration and Evaluation

[Beschreibung der Ergebnisse aus allen voran gegangenen Kapiteln sowie der zuvor generierten Ergebnisartefakte mit Bewertung, wie diese einzuordnen sind]

7. Demonstration and Evaluation

7.1. Ausblick

[Beschreibung und Begründung potenzieller zukünftiger Folgeaktivitäten im Zusammenhang mit Ihrer Arbeit (z.B. weitere Anforderungen, Theoriebildung, ...]

Bibliography

- [1] Helmut Balzert, Marion Schröder, and Christian Schaefer. Wissenschaftliches Arbeiten. Ethik, Inhalt & Form wiss. Arbeiten, Handwerkszeug, Quellen, Projektmanagement, Präsentation. 2. Auflage. Herdecke, Witten: W3L, 2011. ISBN: 978-3-86834-034-1
- [2] R. Fielding et al. RFC 2616, Hypertext Transfer Protocol HTTP/1.1. Tech. rep. 1999. URL: http://www.rfc.net/rfc2616.html.
- [3] Norbert Franck and Joachim Stary. *Die Technik wissenschaftlichen Arbeitens: eine praktische Anleitung*. 17. Auflage. Paderborn: Schöningh, 2013. ISBN: 978-3-50697-027-5.
- [4] Jeff Friesen. "Extracting JSON Values with JsonPath". In: Java XML and JSON: Document Processing for Java SE. Berkeley, CA: Apress, 2019, pp. 299–322. ISBN: 978-1-4842-4330-5. DOI: 10.1007/978-1-4842-4330-5_10. URL: https://doi.org/10.1007/978-1-4842-4330-5_10.
- [5] Erich Gamma et al. Design Patterns. Addison-Wesley, 1995.
- [6] David Garlan. "Software architecture". In: *Proceedings of the conference on The future of Software engineering ICSE '00* (2000). DOI: 10.1145/336512.336537.
- [7] ISO. ISO/IEC 25010:2011. Mar. 2011. URL: https://www.iso.org/standard/35733. html.
- [8] Glenn Krasner and Stephen Pope. "A cookbook for using the model-view controller user interface paradigm in Smalltalk-80". In: *Journal of Object-oriented Programming JOOP* 1 (Jan. 1988).
- [9] Loriot. Möpse und Menschen. Eine Art Biographie. Zurich. In: faz.net. Online: https://media0.faz.net/ppmedia/aktuell/feuilleton/1461387463/1.721778/format_top1_breit/die-steinlaus-trotzt-seit.jpg; letzter Zugriff: 13 VI 19. 1983.
- [10] Loriot. Steinlaus, Loriot Katalog, Diogenes Verlag, Zürich. In: tagblatt.de. Online: https://www.tagblatt.de/Bilder/Loriots-legendaere-Steinlaus-Loriot-Katalog-1993-2003-125217h.jpg; letzter Zugriff: 14 VI 19. 1993, 2003.
- [11] Robert Martin. Clean Code: A Handbook of Agile Software Craftsmanship. 1st ed. Pearson, 2008.
- [12] Alexey Melnikov and Ian Fette. *The WebSocket Protocol*. RFC 6455. http://www.rfc-editor.org/rfc/rfc6455.txt. RFC Editor, 2011. url: http://www.rfc-editor.org/rfc/rfc6455.txt.
- [13] Pschyrembel online. Steinlaus. Online: https://www.pschyrembel.de/Steinlaus/KOLHT; letzter Zugriff: 14 VI 19. 2016.

Bibliography

- [14] Alan Jay Smith. "Cache Memories". In: *ACM Computing Surveys* 14.3 (1982), pp. 473–530. DOI: 10.1145/356887.356892.
- [15] Wikipedia. *Academic Use*. Online: https://en.wikipedia.org/wiki/Wikipedia: Academic_use; letzter Zugriff: 13 VI 19. 2019.

8. List of Abbreviations

9. Glossary

A. Appendix

A.1. Quell-Code

A.2. Tipps zum Schreiben Ihrer Abschlussarbeit

- Achten Sie auf eine neutrale, fachliche Sprache. Keine "Ich"-Form.
- Zitieren Sie zitierfähige und -würdige Quellen (z.B. wissenschaftliche Artikel und Fachbücher; nach Möglichkeit keine Blogs und keinesfalls Wikipedia¹).
- Zitieren Sie korrekt und homogen.
- Verwenden Sie keine Fußnoten für die Literaturangaben.
- Recherchieren Sie ausführlich den Stand der Wissenschaft und Technik.
- Achten Sie auf die Qualität der Ausarbeitung (z.B. auf Rechtschreibung).
- Informieren Sie sich ggf. vorab darüber, wie man wissenschaftlich arbeitet bzw. schreibt:
 - Mittels Fachliteratur², oder
 - Beim Lernzentrum³.
- Nutzen Sie L^AT_FX⁴.

¹Wikipedia selbst empfiehlt, von der Zitation von Wikipedia-Inhalten im akademischen Umfeld Abstand zu nehmen [15].

²Z.B. [1], [3]

³Weitere Informationen zum Schreibcoaching finden sich hier: https://www.htw-berlin.de/studium/lernzentrum/studierende/schreibcoaching/; letzter Zugriff: 13 VI 19.

⁴Kein Support bei Installation, Nutzung und Anpassung allfälliger LATEX-Templates!

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt durch meine Unterschrift, dass ich die vorstehende
Arbeit selbstständig und ohne fremde Hilfe angefertigt und alle Stellen, die ich wörtlich
oder annähernd wörtlich aus Veröffentlichungen entnommen habe, als solche kenntlich
gemacht habe, mich auch keiner anderen als der angegebenen Literatur oder sonstiger
Hilfsmittel bedient habe. Die Arbeit hat in dieser oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegen.

Datum, Ort, Unterschrift