

Series de Taylor en la función arcsin(x)

Ana Gómez Pérez, Sara Luis Farrais y Shaila Verona Rodríguez

11 de mayo de 2014

El método de Taylor

El método de Taylor

2 Ejemplo con Taylor

- El método de Taylor
- 2 Ejemplo con Taylor
- Código en Python

- El método de Taylor
- 2 Ejemplo con Taylor
- Código en Python
- 4 La Bibliografía

El método de Taylor

El método de Taylor es uno de los algoritmos más antiguos utilizados para aproximar la solución de un problema de valor inicial en una ecuación diferencial ordinaria.

Fórmula del polinomio de taylor

$$p(x) = f(a) + \frac{f'(a)}{1!} * (x-a) + \frac{f''(a)}{2!} * (x-a)^2 + \frac{f'''(a)}{3!} * (x-a)^3 + \dots + \frac{f^n(a)}{n!}$$

El método de Taylor

El metodo de Taylor es una representación de una función como una infinita suma de términos. Estos términos se calculan a partir de las derivadas de la función para un determinado valor de la variable (respecto de la cual se deriva), lo que involucra un punto específico sobre la función.

Ejemplo con Taylor.

Al aproximar con Taylor vamos a obtener otras ecuaciones según el error.

Código en Python

A continuación se muestra el código fuente creado en Python para la resolución del problema.

```
#! /src/bin/pvthon
#lencoding: UTF-8
import math
from sympy import *
import time
import matplotlib.pylab as pl
import numpy as np
def factorial(n):
   if n <= 1:
     return 1
   else:
     prod = n*factorial(n-1)
     return prod
def taylor(n,x,a):
  c = Symbol('c')
  funcion = asin(c)
  suma=funcion.evalf(subs={c:a})
  for i in range (1,n+1):
    dery = diff(funcion, c)
    termino = derv.evalf(subs={c:a})
    resultado = (termino/factorial(i))*((x-a)**i)
    suma = suma + resultado
    funcion = derv
  return suma
```

Código en Python

```
if name == " main ":
 n = int(raw input("Introduzca el grado del polinomio:"))
 x = float(raw input("Introduzca el punto donde se evalua el polinomio:"))
  a = float(raw input("Introduzca el punto central donde se desea evaluar el polinomio:"))
 if (abs(a)>1)or(abs(x)>1):
   print 'Debe introducir valores de a entre [-1,1]'
   a = float(raw_input("Introduzca el punto central donde se desea evaluar el polinomio:"))
   x = float(raw input("Introduzca el punto donde se evalua el polinomio:"))
start=time.time()
suma = tavlor(n,x,a)
finish=time.time()-start
error = abs(asin(x) - suma)
print 'Valor de la aproximacion'
print suma
print 'Valor del error'
print error
print 'Tiempo que tarda el programa en ejecutarse'
print finish
```

Código en Python

```
pl.figure(figsize=(8,6), dpi=80)
pl.subplot(1,1,1)
X = np.linspace(-g, g, 256, endpoint=True)
C = 0*(X)
S = 1/np.sin(X)
pl.plot(X,C, color="black", linewidth=1.0, linestyle="-", label="Eje de las X")
pl.plot(X,S, color="yellow", linewidth=1.5, linestyle="-", label="arcoseno")
pl.legend(loc='upper left')
pl.xlim(X.min()*1.1,X.max()*1.1)
pl.xticks([-g, g])
pl.ylim(C.min()*1.1,C.max()*1.1)
pl.yticks([-h, h])
pl.title("Representacion grafica")
pl.savefig("grafica.eps", dpi=72)
pl.show()
```

Bibliografía

Apuntes_de_la_asignatura : Análisis_Matemático_II

 $http://es.wikipedia.org/wiki/Serie_de_Taylor$

PuntoQ

 $\label{lem:analysis} An a lisis_Num\'erico_con_Aplicaciones. \textit{Gerald}\, \Delta \textit{Wheatley}\,.$