

Transportation optimization

Av: Mattias Bertolino, Jakob Andrén och Håkan Lundstedt

- Formulera optimeringsproblemet
- Lös med given kostnadsmatris
- Lös för annat supply
- · Jämför interiör och simplex metod

Given kostnadsmatris

	W_1	W_2	W_3	W_4	Supply
F_1	10	0	20	11	25
F_2	12	7	9	20	55
F_3	0	14	16	18	35
Demand	15	45	30	25	

Formulering

```
% Object function
C = [10, 0, 20, 11, 12, 7, 9, 20, 0, 14, 16, 18];
% Supply constraint
Ain = blkdiag(ones(1,4), ones(1,4));
supply = [25; 55; 35];
% S2 = 60, Q4
supply2 = [25; 60; 35];
% Demand constraint
Aeq = [eye(4), eye(4), eye(4)];
demand = [15; 45; 30; 25];
```


Ändrat supply

- S = [25, 55, 35] till S = [25, 60, 35]
- Olika lösningar med interior och simplex
 - samma kostnad (för ändrad supply)

Jämför interiör och simplex modell

