RANCANG BANGUN AWS WI-FI GATEWAY UNTUK MONITORING CUACA DI PERKEBUNAN TEH PPTK GAMBUNG BERBASIS NRF24L01

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

PUTERI OCTHIA ARDANA 6705184063

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

Latar Belakang

Tanaman teh merupakan tanaman yang berasal dari daerah sub tropis. Tanaman teh dapat tumbuh dengan baik apabila terdapat kecocokan cuaca dan tanah. Faktor cuaca yang mempengaruhi keberhasilan pertumbuhan teh antara lain, suhu udara berkisar 13-15 °C, kelembapan pada siang hari >70%, curah hujan tahunan tidak kurang dari 2.000 mm, dengan curah hujan pada bulan penanaman yaitu 60 mm dengan lama waktu tidak lebih dari 2 bulan. Selain itu, faktor lainnya adalah penyinaran matahari, semakin banyak sinar matahari maka suhu akan semakin tinggi, apabila suhu mencapai 30 °C akan menghambat pertumbuhan teh. Faktor lain yang harus diperhatikan adalah kekuatan angin pada daerah perkebunan teh, semakin tinggi kekuatan angin maka dapat menyebabkan kerontokan pada tanaman teh (Litbang, 2011).

Dalam penelitian ini digunkan beberapa macam sensor yaitu, sensor kelembapan tanah, sensor kelembapan udara dan temperature, sensor intesitas hujan, sensor kekuatan angin, dan sensor intensitas radiasi matahari. Sensor-sensor tersebut akan disusun menjadi suatu miniatur stasiun cuaca yang disebut *Automathic Weather System* (AWS). Tiap-tiap AWS akan mengirimkan data kepada *web server* melalui modul komunikasi nRF24L01.

Proses pemantauan kondisi cuaca di perkebunan teh nantinya akan ditampilkan dalam halaman website. Data yang ditampilkan pada website merupakan data real-time. Garis besar isi dari website tersebut yaitu berisi data hasil pemantauan yang dilakukan oleh ketiga node sensor. Pada penelitian ini diharapkan tiap-tiap node sensor dapat mengirimkan data kepada web server melalui melalui gateway menggunakan modul komunikasi nRF24L01 serta data akan diproses oleh Wi-Fi System on Chip (SoC) dan memantau kondisi cuaca lingkungan perkebunan teh sehingga dapat meminimalisir dampak buruk yang disebabkan oleh perubahan cuaca bagi keberhasilan penanaman teh.

Penelitian ini dilakukan dan akan diiplementasikan di Pusat Penelitian Teh dan Kina (PPTK) Gambung. PPTK Gambung merupakan lembaga yang melaksanakan kegiatan penelitian komoditi teh dan kina. Dengan adanya penelitian ini, diharapkan dapat membantu dan menambah inovasi penelitian pada Lembaga tersebut.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Teknologi Adaptasi Untuk Mengatasi	2014	Pada jurnal ini membahas tentang berbagai faktor iklim yang mempengaruhi
	Perubahan Iklim Pada Tanaman Teh		keberhasilan penanaman teh. Selain itu, pada jurnal ini juga membahas
			tentang penyebab serangan hama dan penyakit pada tanaman teh. Dalam
			jurnal ini juga dibahai mengenai upaya untuk beradaptasi dengan perubahan
			iklim.
2.	Rancang Bangun Sistem Pengukur Cuaca	2018	Dalam penelitian ini penulis membuat sistem pengukur cuaca otomatis
	Otomatis Menggunakan Arduino dan		dengan antarmuka website. Pada penelitian ini penulis menggunakan
	Terintegrasi Dengan Website		Mikrokontroler Arduino Mega dan beberapa jenis sensor diantaranya, Sensor
			SHT11, Sensor Intensitas Cahaya BH1750, Sensor Curah Hujan dan Sensor
			Tekanan Udara BMP180, Sensor Kecepatan Angin dan Arah Angin serta
			Penulis menggunakan Ethernet Shield yang digunakan untuk mengirimkan
			data hasil ukur sensor ke <i>database</i> .
3.	Rancang Bangun Portable Weather Station	2019	Dalam penelitian ini penulis menggunakan solar panel dan aki kering sebagai
	Berbasis Jaringan Sensor Nirkabel		power supply dan penulis melakukan pengukuran unsur cuaca dan iklim
	Menggunakan Koneksi VPN		dengan menggunakan sensor yang terpasang pada mikrokontroler NodeMCU

			v3. Kemudian, hasil pengukuran dari sensor dikirimkan ke Raspberry Pi
			melalui koneksi LAN dan dikirimkan ke DB Server & Web Server.
4.	Rancang Bangun Automatic Weather	2016	Dalam penelitian ini penulis memanfaatkan Raspberry Pi sebagai
	Station (AWS) Menggunakan		Automatic Weather Station dengan sensor yang digunakan untuk
	Raspberry PI		mengukur cuaca. Pada penelitian ini, penulis menggunakan sensor
			temperature, sensor tekanan udara, dann kelembapan udara yang akan
			ditampilkan pada LCD.
5.	Peningkatan Skalabilitas Mini Weather	2019	Dalam penelitian ini, penulis membuat sistem Amicagama yang terdiri dari
	Station Portable berbasis Internet of		perangkat keras sensor node dan perangkat lunak dashboard pengguna. Pada
	Things		Penelitian ini penulis menggunakan mikrokontroler sebagai otak sensor node,
			sensor-sensor untuk mendeteksi cuaca, keypad sebagai piranti masukan
			pengguna, LCD untuk menampilkan pesan.
6.	Aplikasi Wireless Sensor Network Untuk	2018	Dalam jurnal ini membahas tentang pembuatan 3 node sensor yang masing-
	Sistem Monitoring dan Klasifikasi		masing node nya terdiri dari papan Arduino, sensor MQ-7 untuk melakukan
	Kualitas Udara		sensing CO, sensor MQ-131 untuk melakukan sensing O3, dan sensor Sharp
			GP2Y1010AU0F untuk melakukan sensing pm10, dan modul LoRa untuk
			berkomunikasi dengan sink (Raspberry Pi 3 model B). dalam penilitan
			tersebut menggunakan algoritma K-Nearest Neighbour (KNN) dimana akan
			dilakukan normalisasi terhadap data yang diperoleh dari sensor sehingga
			menghasilkan decimal scaling dengan performa yang baik.
7.	Prototype Weather Station Uses LoRa	2019	Dalam penelitian ini, penulis mengembangkan prototipe jaringan
/.	Wireless Connectivity Infrastructure		stasiun cuaca dengan infrastruktur LoRA. Penelitian ini menggunakan

			mikrokontroller Arduino UNO Rev3. Arduino IDE, Software Proteus,				
			Web ThingSpeak dan sensor-sensor lainnya.				
8.	Dampak Perubahan Iklim Terhadap	2020	Dalam penelitian ini, penulis melakukan penelitian dengan				
0.	Produktivitas Tanaman Teh (Camellia		menggunakan data unsur-unsur iklim selama 10 tahun terakhir.				
	sinensis L. di Kebun Teh Pasirmalang,		Metode yang digunakan adalah metode survei dengan menggunakan				
	Jawa Barat		data sekunder kemudian dianalisis.				
9.	Implementasi Sistem Operasi Real-	2019	Dalam penelitian ini penulis membuat suatu sistem monitoring rumah				
). 	Time pada Arduino Nano dengan		pintas dengan mengimplementasikan metode Preemptive Priority-				
	media Komunikasi NRF24L01 Untuk		Based Scheduling sebagai metode penjadwalan operasi task				
	Pengukuran Suhu, Kelembaban, dan		berdasarkan prioritas tertinggi. Metode ini digunakan untuk mengatasi				
	Intensitas Cahaya		permasalahan adanya penundaan task pengiriman daya yang				
			dikirimkan. Penelitian ini menggunakan sistem operasi real-time				
			dengan merangkai hardware yang dibutuhkan agar dapat bekerja				
			secara multitasking.				
10.	Implementasi Protokol RF24Mesh	2019	Dalam penilitan ini dilakukan pembuatan slave node dan master node.				
10.	dalam Wireless Sensor Network pada		Implementasi slave node terdiri dari Arduino nano dengan modul				
	Lahan Pertanian		komunikasi nRF24L01, sensor DHT11 dan Hygrometer. Untuk master				
			node terdiri dari Raspberry Pi 3 dan modul nRF24L01. Modul				
			nRF24L01 digunakan untuk berkomunikasi antar <i>node</i> .				

Rancangan Sistem

Gambar 1 Model Rancangan Sistem Monitoring Cuaca pada PTTK Gambung Secara Keseluruhan

Gambar diatas merupakan model perancangan sistem monitoring cuaca pada Pusat Penelitian Teh dan Kina (PPTK) Gambung secara keseluruhan. Proyek tingkat ini akan dikerjakan secara berkelompok dengan pembagian sub bab model sistem yaitu satu orang mengerjakan bagian *node* sensor dan satu orang mengerjakan bagian *gateway*.

Gambar 3 Lokasi Pelaksanaan Penilitian

Gambar diatas merupakan lokasi pelaksanaan penelitian yaitu Pusat Penelitian Teh dan Kina (PTTK) Gambung. Nantinya pada lokasi tersebut akan dipasang tiga buah node dimana *node* 1 memiliki jarak sejauh 200 meter dari *gateway, node* 2 memiliki jarak sejauh 700 meter dari *gateway,* dan *node* 3 memiliki jarak sejauh 300 meter dari *gateway*. Untuk *gateway* berada di kantor PPTK Gambung.

Gambar 3 Gambar Model Rancangan Sistem Monitoring Keadaan Cuaca pada PTTK
Gambung Berbasis nRF24L01

Pada proyek tingkat ini yang menjadi fokus penulis adalah di bagian *gateway*. Dimana pada bagian ini terdapat beberapa proses hingga data-data dapat tampil di *website*. Pertama, nRF24L01 sebagai modul komunikasi akan menerima data dari ketiga node sensor. Kemudian oleh nRF24L01 akan dilanjutkan ke web server. Kemudian oleh Wi-Fi-SoC akan dilakukan pemrosesan data dari tiap node. Dan untuk hasil keluarannya adalah data-data yang berasal dari masing-masing node seperti kelembapan udara dan temperature,kelembapan tanah, kecepatan angin, intensitas radiasi matahari, dan curah hujan yang akan ditampilkan pada halaman *website*.

Referensi

- [1] J. Tampubolon, R. Primananda and A. S. Budi, "Implementasi Protokol UPnP untuk Discovery Node Sensor berbasis," *Jurnal Pengembangan Teknologi Informasai dan Ilmu Komputer*, vol. 4, no. 5, pp. 1402-1411, 2020.
- [2] E. N. Sugianto, W. Kurniawan and D. Syauqy, "Implementasi Sistem Operasi Real-Time pada Arduino Nano dengan media Komunikasi NRF24L01 Untuk Pengukuran Suhu, Kelembaban, dan Intensitas Cahaya," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, vol. 3, no. 4, pp. 3589-3596, 2019.
- [3] A. Raafi'ilman, A. Bhawiyuga and R. A. Siregar, "Implementasi Protokol RF24Mesh dalam Wireless Sensor Network pada Lahan Pertanian," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, vol. 3, no. 7, pp. 6757-6763, 2019.
- [4] H. Supriadi and D. N. Rokhmah, "Teknologi Adaptasi Untuk Mengatasi Perubahan Iklim pada Tanaman Teh," *SIRINOF*, vol. 2, no. 3, pp. 147-156, 2014.
- [5] F. Erawan, A. Muid and I. Nirmala, "RANCANG BANGUN SISTEM PENGUKUR CUACA OTOMATIS," *Jurnal Coding, Sistem Komputer Untan*, vol. 06, no. 03, pp. 255-264, 2018.
- [6] M. A. Hadi, A. Pritalaksa and M. Hidayatullah, "RANCANG BANGUN PORTABLE WEATHER STATION," *STRING (Satuan Tulisan Riset dan Inovasi Teknologi)*, vol. 4, no. 1, pp. 31-37, 2019.
- [7] M. S. Machfud, M. Sanjaya and G. Ari, "RANCANG BANGUN AUTOMATIC WEATHER STATION (AWS) MENGGUNAKAN RASPBERRY PI," *ALHAZEN Journal of Physics*, vol. II, no. 2, pp. 48-57, 2016.
- [8] N. A. S. Putro, C. Atmaji, K. Devianto and Z. Y. Perwira, "Peningkatan Skalabilitas Mini Weather Station Portable berbasis Internet of Things," *Indonesian Journal of Electronics and Instrumentation Systems (IJEIS)*, vol. 9, no. 2, pp. 203-2014, 2019.
- [9] T. F. Arya, M. Fiaiqurahman and Y. Azhar, "APLIKASI WIRELESS SENSOR NETWORK UNTUK SISTEM MONITORING DAN KLASIFIKASI KUALITAS UDARA," *Jurnal SISTEMASI*, vol. 7, no. 3, pp. 281-291, 2018.
- [10] A. K. Tripathy, J. Adinarayana, D. Sudarsan and Dkk, "Data Mining and Wireless Sensor Network for Agriculture Pest/Disease Predictions," *IEEE*, vol. 1, no. 978, pp. 1229-1234, 2011.

- [11] H. Mulya, R. S. Akbar and E. R. Widasari, "Implementasi Gateway berbasis NRF24L01 dan ESP8266 pada Protokol Message Queue Telemetry Transport-Sensor Network (MQTT-SN)," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, vol. 1, no. 12, pp. 1578-1588, 2017.
- [12] Suwarti, Mulyono, B. Prasetiyo and Dkk, "PEMBUATAN MONITORING KECEPATAN ANGIN DAN ARAH ANGIN MENGGUNAKAN MIKROKONTROLER ARDUINO," Seminar Nasional Pendidikan, Sains dan Teknologi Fakultas Mtematika dan Ilmu Pengetahuan Alam Universitas Muhammadiyah Semarang, pp. 56-64, 2010.
- [13] D. T. Adin, A. Bhawiyuga and W. Yahya, "Sistem Monitoring Parameter Fisik Air Kolam Ikan menggunakan Jaringan Sensor Nirkabel berbasis Protokol LoRa," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, vol. 3, no. 6, pp. 5414-5420, 2019.
- [14] A. Sumarudin , W. P. Putra, E. Ismantohadi, Supardi and M. Qomarrudin, "SISTEM MONITORING TANAMAN HORTIKULTURA PERTANIAN DI KABUPATEN INDRAMAYU BERBASIS INTERNET OF THINGS," *JATI JURNAL TEKNOLOGI DAN INFORMASI*, vol. 9, no. 1, pp. 45-54, 2019.
- [15] M. Syafika and Karyudi, "UPAYA PENINGKATAN PRODUKSI TEH (CAMELIA SINENSIS (L.) O.KUNTZE)," *Warta PPTK*, vol. 1, pp. 71-84, 2013.
- [16] D. S. Effendi, M. Syakir, M. Yusron and Wiratno, Budidaya dan Pasca Panen Teh, Bogor: Badan Penelitian dan Pengembangan Pertanian, Kementrian Pertanian, 2010.

PROYEK AKHIR SEMESTER GANJIL | GENAP* TA 2020/2021

Tanggal: 7 Desember 2020

Kami yang bertanda tangan dibawah ini:

CALON PEMBIMBING 1

Kode : DYD

Nama : Denny Darlis, S.Si., M.T.

CALON PEMBIMBING 2

Kode : DNN

Nama : Dwi Andi Nurmantris, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Akhir bagi mahasiswa berikut,

NIM : 6705184063

Nama : Puteri Octhia Ardana

Prodi / Peminatan : D3TT/ (MI/SDV)

: Rancang Bangun AWS Wi-Fi Gateway Untuk Monitoring Cuaca di Perkebunan Teh PPTK Calon Judul PA

Gambung Berbasis nRF24L01

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

Calon Pembimbing 1

(Denny Darlis, S.Si., M.T.)

(Dwi Andi Nurrhantris, S.T., M.T.)

CATATAN:

- Aturan Proyek Akhir versi terbaru dapat diunduh dari Portal Dosen » menu "File Repositori" » file "PA TEL-U FIT Pedoman &
- Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbingsaja

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk Hahasiswa)

Dosen Wali : DUM / DADAN NUR RAMADAN Program Studi : D3 Teknologi Telekomunikasi

Nama : PUTERI OCTHIA ARDANA

2018/2019 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А	
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	А	
DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ	
DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	ВС	
DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	В	
DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	АВ	
DUH1A2	LITERASI TIK	ICT LITERACY	2	А	
HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	А	
	Jumlah SKS				
	IPS				

2018/2019 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	AB	
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	В	
	21				
	3.52				

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	AB	
DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	А	
DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	А	
DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	В	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	АВ	
LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	А	
	Jumlah SKS	21			
	IPS				

2018/2019 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	Jumlah SKS		0		
	IPS		0		

2019/2020 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А	
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ	
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А	
DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	А	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	С	
DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	АВ	
DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	В	
LUH1A2	BAHASA INDONESIA	INDONESIAN	2	А	
	Jumlah SKS		21		
	IPS				

2019/2020 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	АВ	
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	А	
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ	
DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	А	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	АВ	
DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	АВ	
DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	АВ	
DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А	
	Jumlah SKS				
	IPS		3.7		

2019/2020 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	Jumlah SKS		0		
	IPS		0		

2020/2021 - GANJIL

OZO/ZOZI OANOIZ					
Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UWI3E1	HEI	HEI	1		
VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2		
VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3		
VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3		
VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2		
	Jumlah SKS	11			
	IPS	0			

2020/2021 - GENAP

Kode Mata Kı	uliah	Mata Kuliah	Nama Mata Ku Inggris		SKS	Nilai	Status
Jumlah SKS			0				
IPS				0			
Tingkat I	: 41 SKS	Belu	m Lulus	IPK : 3	.52		
Tingkat II	: 81 SKS	Belu	m Lulus	IPK : 3	.52		
Tingkat III	: 85 SKS	Belu	m Lulus	IPK : 3	.55		
Jumlah SKS	: 85 SKS			IPK : 3	.55		

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 09 Desember 2020 21:00:38 oleh PUTERI OCTHIA ARDANA