Online Learning

— Online Mirror Descent

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Spring 2023

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

I would like to especially thank Prof. Francesco Orabona for the discussion with me about the details for this part of lectures.

Outline

- Uninformative Subgradients
- Reinterpreting the Online Subgradient Descent
- 3 An Alternative Distance Measure: Bregman Divergence
- Online Mirror Descent The First Attempt
- 5 The Mirror Interpretation

Outline

- Uninformative Subgradients
- 2 Reinterpreting the Online Subgradient Descent
- 3 An Alternative Distance Measure: Bregman Divergence
- 4 Online Mirror Descent The First Attempt
- 5 The Mirror Interpretation

Online Subgradient Descent (OSD)

- Consider the simplified case that $f_t(\cdot) = f(\cdot)$ for all t > 0.
- The key property for the convergence of OSD:

$$f(\mathbf{x}_t) - f(\mathbf{u}) \leq \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle, \ \forall \mathbf{u}.$$

Online Subgradient Descent (OSD)

- Consider the simplified case that $f_t(\cdot) = f(\cdot)$ for all t > 0.
- The key property for the convergence of OSD:

$$f(\mathbf{x}_t) - f(\mathbf{u}) \leq \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle, \ \forall \mathbf{u}.$$

- However, for $\mathbf{x} \in \mathbb{R}^2$, consider the following two functions:
 - $f(\mathbf{x}) = \max\{-x_1, x_1 x_2, x_1 + x_2\}.$
 - $f(\mathbf{x}) = \max\{x_1^2 + (x_2 + 1)^2, x_1^2 + (x_2 1)^2\}.$

Online Subgradient Descent (OSD)

- Consider the simplified case that $f_t(\cdot) = f(\cdot)$ for all t > 0.
- The key property for the convergence of OSD:

$$f(\mathbf{x}_t) - f(\mathbf{u}) \leq \langle \mathbf{g}_t, \mathbf{x}_t - \mathbf{u} \rangle, \ \forall \mathbf{u}.$$

- However, for $\mathbf{x} \in \mathbb{R}^2$, consider the following two functions:
 - $f(\mathbf{x}) = \max\{-x_1, x_1 x_2, x_1 + x_2\}.$
 - $f(\mathbf{x}) = \max\{x_1^2 + (x_2 + 1)^2, x_1^2 + (x_2 1)^2\}.$
- Moving toward the direction of the negative subgradient may not decrease the objective (loss).

Uninformative Subgradients

Uninformative Subgradients

Outline

- Uninformative Subgradients
- 2 Reinterpreting the Online Subgradient Descent
- 3 An Alternative Distance Measure: Bregman Divergence
- 4 Online Mirror Descent The First Attempt
- 5 The Mirror Interpretation

A Linear Lower Bound by a Subgradient

• We can have a linear lower bound on function f around \mathbf{x}_0 :

$$f(\mathbf{x}) \geq \tilde{f}(\mathbf{x}) := f(\mathbf{x}_0) + \langle \mathbf{g}, \mathbf{x} - \mathbf{x}_0 \rangle, \, \forall \mathbf{x} \in V.$$

• Let's say $V \subseteq \mathbb{R}^d$ is the domain.

A Linear Lower Bound by a Subgradient

• We can have a linear lower bound on function f around \mathbf{x}_0 :

$$f(\mathbf{x}) \geq \tilde{f}(\mathbf{x}) := f(\mathbf{x}_0) + \langle \mathbf{g}, \mathbf{x} - \mathbf{x}_0 \rangle, \, \forall \mathbf{x} \in V.$$

- Let's say $V \subseteq \mathbb{R}^d$ is the domain.
- Note that over unbounded domains the minimizer of linear function at the right-hand side above is $-\infty$.

A Principle of Moderation

• Minimizing the previous lower bound only in a neighborhood of x_t .

$$\mathbf{x}_{t+1} = \operatorname*{arg\;min}_{\mathbf{x} \in V} f(\mathbf{x}_t) + \langle \mathbf{g}, \mathbf{x} - \mathbf{x}_t \rangle$$
 subject to $\|\mathbf{x}_t - \mathbf{x}\|^2 \leq h$, for some $h > 0$.

A Principle of Moderation

ullet Minimizing the previous lower bound only in a neighborhood of ${f x}_t.$

$$\begin{aligned} \mathbf{x}_{t+1} &= \operatorname*{arg\;min}_{\mathbf{x} \in V} f(\mathbf{x}_t) + \langle \mathbf{g}, \mathbf{x} - \mathbf{x}_t \rangle \\ & \text{subject to } \|\mathbf{x}_t - \mathbf{x}\|^2 \leq h, \\ & \text{for some } h > 0. \end{aligned}$$

• Unconstrained formulation: (assume $\eta > 0$)

$$\mathop{\arg\min}_{\mathbf{x} \in V} f(\mathbf{x}_t) + \langle \mathbf{g}, \mathbf{x} - \mathbf{x}_t \rangle + \frac{1}{2\eta} \|\mathbf{x}_t - \mathbf{x}\|_2^2.$$

$$\underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{2\eta_t} \|\mathbf{x}_t - \mathbf{x}\|_2^2 = \underset{\mathbf{x} \in V}{\arg\min} \, 2\eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + \|\mathbf{x}_t - \mathbf{x}\|_2^2$$

$$\begin{aligned} & \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{2\eta_t} \|\mathbf{x}_t - \mathbf{x}\|_2^2 = \underset{\mathbf{x} \in V}{\arg\min} \, 2\eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + \|\mathbf{x}_t - \mathbf{x}\|_2^2 \\ = & \underset{\mathbf{x} \in V}{\arg\min} \, \|\eta_t \mathbf{g}_t\|_2^2 + 2\eta_t \langle \mathbf{g}_t, \mathbf{x} - \mathbf{x}_t \rangle + \|\mathbf{x}_t - \mathbf{x}\|_2^2 \end{aligned}$$

$$\begin{aligned} & \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{2\eta_t} \|\mathbf{x}_t - \mathbf{x}\|_2^2 = \underset{\mathbf{x} \in V}{\arg\min} \, 2\eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + \|\mathbf{x}_t - \mathbf{x}\|_2^2 \\ &= \underset{\mathbf{x} \in V}{\arg\min} \, \|\eta_t \mathbf{g}_t\|_2^2 + 2\eta_t \langle \mathbf{g}_t, \mathbf{x} - \mathbf{x}_t \rangle + \|\mathbf{x}_t - \mathbf{x}\|_2^2 \\ &= \underset{\mathbf{x} \in V}{\arg\min} \, \|\mathbf{x}_t - \eta_t \mathbf{g}_t - \mathbf{x}\|_2^2 \end{aligned}$$

$$\begin{aligned} & \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{2\eta_t} \| \mathbf{x}_t - \mathbf{x} \|_2^2 = \underset{\mathbf{x} \in V}{\arg\min} \, 2\eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + \| \mathbf{x}_t - \mathbf{x} \|_2^2 \\ = & \underset{\mathbf{x} \in V}{\arg\min} \, \| \eta_t \mathbf{g}_t \|_2^2 + 2\eta_t \langle \mathbf{g}_t, \mathbf{x} - \mathbf{x}_t \rangle + \| \mathbf{x}_t - \mathbf{x} \|_2^2 \\ = & \underset{\mathbf{x} \in V}{\arg\min} \, \| \mathbf{x}_t - \eta_t \mathbf{g}_t - \mathbf{x} \|_2^2 \\ = & \Pi_V(\mathbf{x}_t - \eta_t \mathbf{g}_t), \end{aligned}$$

where $\Pi_V(\mathbf{x}) = \arg\min_{\mathbf{y} \in V} \|\mathbf{x} - \mathbf{y}\|_2$ (Euclidean projection onto V).

$$\begin{aligned} & \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{2\eta_t} \| \mathbf{x}_t - \mathbf{x} \|_2^2 = \underset{\mathbf{x} \in V}{\arg\min} \, 2\eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + \| \mathbf{x}_t - \mathbf{x} \|_2^2 \\ = & \underset{\mathbf{x} \in V}{\arg\min} \, \| \eta_t \mathbf{g}_t \|_2^2 + 2\eta_t \langle \mathbf{g}_t, \mathbf{x} - \mathbf{x}_t \rangle + \| \mathbf{x}_t - \mathbf{x} \|_2^2 \\ = & \underset{\mathbf{x} \in V}{\arg\min} \, \| \mathbf{x}_t - \eta_t \mathbf{g}_t - \mathbf{x} \|_2^2 \\ = & \Pi_V(\mathbf{x}_t - \eta_t \mathbf{g}_t), \end{aligned}$$

where $\Pi_V(\mathbf{x}) = \arg\min_{\mathbf{y} \in V} \|\mathbf{x} - \mathbf{y}\|_2$ (Euclidean projection onto V).

• So, we rediscovered the online subgradient descent with projection!

 Choosing a different norm or distance measure for the locality of x leads to a different updating method.

- Choosing a different norm or distance measure for the locality of x leads to a different updating method.
- Change to which norm?

- Choosing a different norm or distance measure for the locality of x leads to a different updating method.
- Change to which norm?
- Any alternative to norms?

- Choosing a different norm or distance measure for the locality of x leads to a different updating method.
- Change to which norm?
- Any alternative to norms?

$$\underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{2\eta_t} \|\mathbf{x}_t - \mathbf{x}\|_2^2$$

- Choosing a different norm or distance measure for the locality of x leads to a different updating method.
- Change to which norm?
- Any alternative to norms?

$$\begin{aligned} & \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{2\eta_t} \|\mathbf{x}_t - \mathbf{x}\|_2^2 \\ \Rightarrow & \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t) \end{aligned}$$

- Choosing a different norm or distance measure for the locality of x leads to a different updating method.
- Change to which norm?
- Any alternative to norms?

$$\begin{aligned} & \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{2\eta_t} \|\mathbf{x}_t - \mathbf{x}\|_2^2 \\ \Rightarrow & \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} \underline{B}_{\psi}(\mathbf{x}; \mathbf{x}_t) \end{aligned}$$

<u>Note:</u> When $\psi(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||_2^2$, the two updates are exactly the same.

Outline

- Uninformative Subgradients
- 2 Reinterpreting the Online Subgradient Descent
- 3 An Alternative Distance Measure: Bregman Divergence
- 4 Online Mirror Descent The First Attempt
- 5 The Mirror Interpretation

Strictly Convexity

Strictly Convex Functions

A function $f: V \subseteq \mathbb{R}^d \mapsto \mathbb{R}$, where V is a convex set, is strictly convex if

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}),$$

$$\forall \mathbf{x}, \mathbf{y} \in V, \mathbf{x} \neq \mathbf{y}, \alpha \in (0, 1).$$

• Strong convexity w.r.t. any norm implies strict convexity.

Strictly Convexity

Strictly Convex Functions

A function $f: V \subseteq \mathbb{R}^d \mapsto \mathbb{R}$, where V is a convex set, is strictly convex if

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}),$$

$$\forall \mathbf{x}, \mathbf{y} \in V, \mathbf{x} \neq \mathbf{y}, \alpha \in (0, 1).$$

- Strong convexity w.r.t. any norm implies strict convexity.
- If f is differentiable, strict convexity implies that

$$f(\mathbf{y}) > f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$

for $\mathbf{x} \neq \mathbf{y}$.

Bregman Divergence

Let $\psi: X \mapsto \mathbb{R}$ be strictly convex and continuously differentiable on $\operatorname{int}(X)$. The Bregman Divergence w.r.t. ψ is $B_{\psi}: X \times \operatorname{int}(X) \mapsto \mathbb{R}$ defined as

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

• Always non-negative (: ψ is convex).

Bregman Divergence

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

- Always non-negative (: ψ is convex).
- $\psi(\mathbf{x}) \ge \psi(\mathbf{y}) + \langle \nabla \psi(\mathbf{y}), \mathbf{x} \mathbf{y} \rangle, \forall \mathbf{y} \in X$,

Bregman Divergence

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

- Always non-negative (: ψ is convex).
- $\psi(\mathbf{x}) \ge \psi(\mathbf{y}) + \langle \nabla \psi(\mathbf{y}), \mathbf{x} \mathbf{y} \rangle, \forall \mathbf{y} \in X$, and equality holds only for $\mathbf{y} = \mathbf{x}$

Bregman Divergence

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

- Always non-negative (: ψ is convex).
- $\psi(\mathbf{x}) \ge \psi(\mathbf{y}) + \langle \nabla \psi(\mathbf{y}), \mathbf{x} \mathbf{y} \rangle, \forall \mathbf{y} \in X$, and equality holds only for $\mathbf{y} = \mathbf{x}$ (: strictly convexity of ψ).

Bregman Divergence

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

- Always non-negative (: ψ is convex).
- $\psi(\mathbf{x}) \ge \psi(\mathbf{y}) + \langle \nabla \psi(\mathbf{y}), \mathbf{x} \mathbf{y} \rangle, \forall \mathbf{y} \in X$, and equality holds only for $\mathbf{y} = \mathbf{x}$ (: strictly convexity of ψ).
- It can be a distance measure, though it is NOT Symmetric.

Examples (1/5)

- Consider a twice differentiable ψ in a ball B around \mathbf{y} and $\mathbf{x} \in B$.
- ullet By Taylor's theorem, there exists $0 \le \alpha \le 1$ such that

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \nabla \psi(\mathbf{y})^{\top} (\mathbf{x} - \mathbf{y})$$

Examples (1/5)

- Consider a twice differentiable ψ in a ball B around \mathbf{y} and $\mathbf{x} \in B$.
- ullet By Taylor's theorem, there exists $0 \le \alpha \le 1$ such that

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \nabla \psi(\mathbf{y})^{\top}(\mathbf{x} - \mathbf{y}) = \frac{1}{2}(\mathbf{x} - \mathbf{y})^{\top} \nabla^{2} \psi(\mathbf{z})(\mathbf{x} - \mathbf{y}),$$

for
$$\mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y}$$
.

Examples (1/5)

- Consider a twice differentiable ψ in a ball B around \mathbf{y} and $\mathbf{x} \in B$.
- By Taylor's theorem, there exists $0 \le \alpha \le 1$ such that

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \nabla \psi(\mathbf{y})^{\top}(\mathbf{x} - \mathbf{y}) = \frac{1}{2}(\mathbf{x} - \mathbf{y})^{\top} \nabla^{2} \psi(\mathbf{z})(\mathbf{x} - \mathbf{y}),$$

for
$$\mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y}$$
.

 \star A squared local norm depending on the Hessian of ψ .

Examples (2/5)

• If ψ is λ -strongly convex w.r.t. a norm $\|\cdot\|$ in int(X),

Examples (2/5)

• If ψ is λ -strongly convex w.r.t. a norm $\|\cdot\|$ in int(X), we have $B_{\psi}(\mathbf{x}; \mathbf{y}) \geq \frac{\lambda}{2} \|\mathbf{x} - \mathbf{y}\|^2$.

Examples (3/5)

• If $\psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$, then

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \frac{1}{2} \|\mathbf{x}\|_{2}^{2} - \frac{1}{2} \|\mathbf{y}\|_{2}^{2} -$$

Examples (3/5)

• If $\psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$, then

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \frac{1}{2} \|\mathbf{x}\|_2^2 - \frac{1}{2} \|\mathbf{y}\|_2^2 - \langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$$

Examples (3/5)

• If $\psi(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||_2^2$, then

$$B_{\psi}(\mathbf{x}; \mathbf{y}) = \frac{1}{2} \|\mathbf{x}\|_{2}^{2} - \frac{1}{2} \|\mathbf{y}\|_{2}^{2} - \langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

Examples (4/5): Exercise

Please show that:

• If $\psi(\mathbf{x}) = \sum_{i=1}^d x_i \ln x_i$, and $X = \{\mathbf{x} \mid x_i \geq 0, \|\mathbf{x}\|_1 = 1\}$, then

$$B_{\psi}(\mathbf{x};\mathbf{y}) = \sum_{i=1}^{d} x_i \ln \frac{x_i}{y_i}.$$

Examples (4/5): Exercise

Please show that:

• If $\psi(\mathbf{x}) = \sum_{i=1}^d x_i \ln x_i$, and $X = \{\mathbf{x} \mid x_i \geq 0, \|\mathbf{x}\|_1 = 1\}$, then

$$B_{\psi}(\mathbf{x};\mathbf{y}) = \sum_{i=1}^{d} x_i \ln \frac{x_i}{y_i}.$$

* This is the Kullback-Leibler divergence (KL-divergence) between two distributions **x** and **y**.

Examples (5/5): **Exercise**

Please prove the following lemma.

Lemma [Chen & Teboulle 1993]

Let B_{ψ} be the Bregman divergence w.r.t. $\psi: X \mapsto \mathbb{R}$. Then, for any three points $\mathbf{x}, \mathbf{y} \in \text{int}(X)$ and $\mathbf{z} \in X$, we have

$$B_{\psi}(\mathbf{z}; \mathbf{x}) + B_{\psi}(\mathbf{x}; \mathbf{y}) - B_{\psi}(\mathbf{z}; \mathbf{y}) = \langle \nabla \psi(\mathbf{y}) - \nabla \psi(\mathbf{x}), \mathbf{z} - \mathbf{x} \rangle.$$

Outline

- Uninformative Subgradients
- 2 Reinterpreting the Online Subgradient Descent
- 3 An Alternative Distance Measure: Bregman Divergence
- Online Mirror Descent The First Attempt
- 5 The Mirror Interpretation

Algorithm OMD

```
Input: Non-empty closed convex V \subseteq X \subseteq \mathbb{R}^d,
   \psi: X \mapsto \mathbb{R} strictly convex and continuously differentiable on int(X),
    \mathbf{x}_1 \in V s.t. \psi is differentiable in \mathbf{x}_1.
   \eta_1,\ldots,\eta_T>0.
  1: for t \leftarrow 1 to T do
           Output x<sub>t</sub>
           Receive f_t: \mathbb{R}^d \mapsto (-\infty, +\infty] and suffer f_t(\mathbf{x}_t)
       Set \mathbf{g}_t \in \partial f_t(\mathbf{x}_t)
  4:
          \mathbf{x}_{t+1} \leftarrow \operatorname{arg\,min}_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{n} B_{\psi}(\mathbf{x}; \mathbf{x}_t)
  6: end for
```

Fix Some Minor Issues

Add one of the following boundary conditions.

- $\lim_{\lambda \to 0} \langle \nabla \psi(\mathbf{x} + \lambda(\mathbf{y} \mathbf{x})), \mathbf{y} \mathbf{x} \rangle = -\infty$, for any $\mathbf{x} \in \text{boundary}(X)$, $\mathbf{y} \in \text{int}(X)$.
- $V \subseteq \operatorname{int}(X)$.

When arg min exists, $\mathbf{x}_{t+1} \in \text{int}(X)$

Theorem

Let

- B_{ψ} be the Bregman divergence w.r.t. $\psi: X \mapsto \mathbb{R}$.
- $V \subseteq X$ be a non-empty closed and convex set.

Assume that previous two boundary conditions holds and the arg min of the algorithm exists on all rounds, then we have $\mathbf{x}_{t+1} \in \text{int}(X)$.

Existence of the arg min's

Theorem

Let

- λ > 0
- $f: \mathbb{R} \mapsto (-\infty, +\infty]$ a closed and λ -strongly convex w.r.t. $\|\cdot\|$.

Assume that $dom(\partial f) \neq \emptyset$. Then, f has exactly one minimizer.

Main Lemma

Lemma (Regret Inequality for OMD)

- ψ : λ -strongly convex w.r.t. $\|\cdot\|$ in V.
- B_{ψ} : the Bregman divergence w.r.t. $\psi: X \mapsto \mathbb{R}$.
- $V \subseteq X$: non-empty, closed & convex.
- Set $\mathbf{g}_t \in \partial f_t(\mathbf{x}_t)$.
- Assume one of the two boundary conditions holds.

Then for each $\mathbf{u} \in V$ and Algorithm OMD, we have

$$\eta_t(f_t(\mathbf{x}_t) - f_t(\mathbf{u})) \leq \eta_t(\mathbf{g}_t, \mathbf{x}_t - \mathbf{u}) \leq B_{\psi}(\mathbf{u}; \mathbf{x}_t) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) + \frac{\eta_t^2}{2\lambda} \|\mathbf{g}_t\|_*^2.$$

```
Input: Non-empty closed convex V \subseteq X \subseteq \mathbb{R}^d, \psi: X \mapsto \mathbb{R} strictly convex and continuously differentiable on \operatorname{int}(X), \mathbf{x}_1 \in V s.t. \psi is differentiable in \mathbf{x}_1, \eta_1, \ldots, \eta_T > 0.

1: for t \leftarrow 1 to T do

2: Output \mathbf{x}_t

3: Receive f_t: \mathbb{R}^d \mapsto (-\infty, +\infty] and suffer f_t(\mathbf{x}_t)

4: Set \mathbf{g}_t \in \partial f_t(\mathbf{x}_t)

5: \mathbf{x}_{t+1} \leftarrow \operatorname{arg\,min}_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t)

6: end for
```

Input: Non-empty closed convex $V \subseteq X \subseteq \mathbb{R}^d$,

 $\psi: X \mapsto \mathbb{R}$ strictly convex and continuously differentiable on int(X),

 $\mathbf{x}_1 \in V$ s.t. ψ is differentiable in \mathbf{x}_1 ,

$$\eta_1,\ldots,\eta_T>0.$$

- 1: for $t \leftarrow 1$ to T do
- 2: Output x_t
- 3: Receive $f_t : \mathbb{R}^d \mapsto (-\infty, +\infty]$ and suffer $f_t(\mathbf{x}_t)$
- 4: Set $\mathbf{g}_t \in \partial f_t(\mathbf{x}_t)$
- 5: $\mathbf{x}_{t+1} \leftarrow \arg\min_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{n} B_{\psi}(\mathbf{x}; \mathbf{x}_t)$
- 6: end for

$$\frac{\partial}{\partial \mathbf{x}} \left(\eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + B_{\psi}(\mathbf{x}; \mathbf{x}_t) \right)$$

Input: Non-empty closed convex $V \subseteq X \subseteq \mathbb{R}^d$, $\psi: X \mapsto \mathbb{R}$ strictly convex and continuously differentiable on $\operatorname{int}(X)$, $\mathbf{x}_1 \in V$ s.t. ψ is differentiable in \mathbf{x}_1 , $\eta_1, \ldots, \eta_T > 0$.

- 1: **for** $t \leftarrow 1$ to T **do**
- 2: Output x_t
- 3: Receive $f_t : \mathbb{R}^d \mapsto (-\infty, +\infty]$ and suffer $f_t(\mathbf{x}_t)$
- 4: Set $\mathbf{g}_t \in \partial f_t(\mathbf{x}_t)$
- 5: $\mathbf{x}_{t+1} \leftarrow \arg\min_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{n_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t)$
- 6: end for

$$\frac{\partial}{\partial \mathbf{x}} \left(\eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + B_{\psi}(\mathbf{x}; \mathbf{x}_t) \right) = \eta_t \mathbf{g}_t + \nabla \psi(\mathbf{x}) - \nabla \psi(\mathbf{x}_t)$$

Input: Non-empty closed convex $V \subseteq X \subseteq \mathbb{R}^d$,

 $\psi: X \mapsto \mathbb{R}$ strictly convex and continuously differentiable on int(X),

 $\mathbf{x}_1 \in V$ s.t. ψ is differentiable in \mathbf{x}_1 ,

$$\eta_1,\ldots,\eta_T>0.$$

- 1: for $t \leftarrow 1$ to T do
- 2: Output x_t
- 3: Receive $f_t : \mathbb{R}^d \mapsto (-\infty, +\infty]$ and suffer $f_t(\mathbf{x}_t)$
- 4: Set $\mathbf{g}_t \in \partial f_t(\mathbf{x}_t)$
- 5: $\mathbf{x}_{t+1} \leftarrow \arg\min_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{n} B_{\psi}(\mathbf{x}; \mathbf{x}_t)$
- 6: end for

$$\frac{\partial}{\partial \mathbf{x}} \left(\eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + B_{\psi}(\mathbf{x}; \mathbf{x}_t) \right) = \eta_t \mathbf{g}_t + \nabla \psi(\mathbf{x}) - \nabla \psi(\mathbf{x}_t)$$

The optimality condition guarantees that

Input: Non-empty closed convex $V \subseteq X \subseteq \mathbb{R}^d$,

 $\psi: X \mapsto \mathbb{R}$ strictly convex and continuously differentiable on int(X),

 $\mathbf{x}_1 \in V$ s.t. ψ is differentiable in \mathbf{x}_1 ,

$$\eta_1,\ldots,\eta_T>0.$$

- 1: for $t \leftarrow 1$ to T do
- 2: Output x_t
- 3: Receive $f_t : \mathbb{R}^d \mapsto (-\infty, +\infty]$ and suffer $f_t(\mathbf{x}_t)$
- 4: Set $\mathbf{g}_t \in \partial f_t(\mathbf{x}_t)$
- 5: $\mathbf{x}_{t+1} \leftarrow \arg\min_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{n} B_{\psi}(\mathbf{x}; \mathbf{x}_t)$
- 6: end for

$$\frac{\partial}{\partial \mathbf{x}} \left(\eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + B_{\psi}(\mathbf{x}; \mathbf{x}_t) \right) = \eta_t \mathbf{g}_t + \nabla \psi(\mathbf{x}) - \nabla \psi(\mathbf{x}_t)$$

The optimality condition guarantees that

$$\langle \eta_t \mathbf{g}_t + \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_t), \mathbf{u} - \mathbf{x}_{t+1} \rangle \geq 0, \ \forall \mathbf{u} \in V.$$

$$\langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{u} \rangle = -\langle \eta_{t}\mathbf{g}_{t} + \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_{t}), \mathbf{u} - \mathbf{x}_{t+1} \rangle$$

$$+ \langle \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_{t}), \mathbf{u} - \mathbf{x}_{t+1} \rangle + \langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{x}_{t+1} \rangle$$

$$\leq \langle \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_{t}), \mathbf{u} - \mathbf{x}_{t+1} \rangle + \langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{x}_{t+1} \rangle$$

$$= B_{\psi}(\mathbf{u}; \mathbf{x}_{t}) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) - B_{\psi}(\mathbf{x}_{t+1}; \mathbf{x}_{t}) + \langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{x}_{t+1} \rangle$$

$$\leq B_{\psi}(\mathbf{u}; \mathbf{x}_{t}) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) - \frac{\lambda}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2} + \eta_{t} \|\mathbf{g}_{t}\|_{*} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|$$

$$\leq B_{\psi}(\mathbf{u}; \mathbf{x}_{t}) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) + \frac{\eta_{t}^{2}}{2\lambda} \|\mathbf{g}_{t}\|_{*}^{2}.$$

$$\langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{u} \rangle = -\langle \eta_{t}\mathbf{g}_{t} + \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_{t}), \mathbf{u} - \mathbf{x}_{t+1} \rangle$$

$$+ \langle \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_{t}), \mathbf{u} - \mathbf{x}_{t+1} \rangle + \langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{x}_{t+1} \rangle$$

$$\leq \langle \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_{t}), \mathbf{u} - \mathbf{x}_{t+1} \rangle + \langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{x}_{t+1} \rangle$$

$$= B_{\psi}(\mathbf{u}; \mathbf{x}_{t}) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) - B_{\psi}(\mathbf{x}_{t+1}; \mathbf{x}_{t}) + \langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{x}_{t+1} \rangle$$

$$\leq B_{\psi}(\mathbf{u}; \mathbf{x}_{t}) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) - \frac{\lambda}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2} + \eta_{t} \|\mathbf{g}_{t}\|_{*} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|$$

$$\leq B_{\psi}(\mathbf{u}; \mathbf{x}_{t}) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) + \frac{\eta_{t}^{2}}{2\lambda} \|\mathbf{g}_{t}\|_{*}^{2}.$$

$$\langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{u} \rangle = -\langle \eta_{t}\mathbf{g}_{t} + \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_{t}), \mathbf{u} - \mathbf{x}_{t+1} \rangle$$

$$+ \langle \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_{t}), \mathbf{u} - \mathbf{x}_{t+1} \rangle + \langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{x}_{t+1} \rangle$$

$$\leq \langle \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_{t}), \mathbf{u} - \mathbf{x}_{t+1} \rangle + \langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{x}_{t+1} \rangle$$

$$= B_{\psi}(\mathbf{u}; \mathbf{x}_{t}) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) - \frac{B_{\psi}(\mathbf{x}_{t+1}; \mathbf{x}_{t}) + \langle \eta_{t}\mathbf{g}_{t}, \mathbf{x}_{t} - \mathbf{x}_{t+1} \rangle$$

$$\leq B_{\psi}(\mathbf{u}; \mathbf{x}_{t}) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) - \frac{\lambda}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2} + \eta_{t} \|\mathbf{g}_{t}\|_{*} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|$$

$$\leq B_{\psi}(\mathbf{u}; \mathbf{x}_{t}) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) + \frac{\eta_{t}^{2}}{2\lambda} \|\mathbf{g}_{t}\|_{*}^{2}.$$

Hint

$$ax - \frac{b}{2}x^2 \le \frac{a^2}{2b}$$
, for $x \in \mathbb{R}$ and $a, b > 0$.

Main Theorem

Main Theorem I

- Set $\mathbf{x}_1 \in V$ such that ψ is differentiable in \mathbf{x}_1 .
- Assume that $\eta_{t+1} \leq \eta_t$ for $t = 1, \ldots, T$.

Then, under the assumption in the Main Lemma and $\forall \mathbf{u} \in V$, we have

$$\sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{u})) \leq \max_{1 \leq t \leq T} \frac{B_{\psi}(\mathbf{u}; \mathbf{x}_t)}{\eta_T} + \frac{1}{2\lambda} \sum_{t=1}^{T} \eta_t \|\mathbf{g}_t\|_*^2.$$

Proof of Main Theorem I

$$\begin{split} & \sum_{t=1}^{T} (f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{u})) \leq \sum_{t=1}^{T} \left(\frac{1}{\eta_{t}} B_{\psi}(\mathbf{u}; \mathbf{x}_{t}) - \frac{1}{\eta_{t}} B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1})\right) + \sum_{t=1}^{T} \frac{\eta_{t}^{2}}{2\lambda} \|\mathbf{g}_{t}\|_{*}^{2} \\ & = \frac{1}{\eta_{1}} B_{\psi}(\mathbf{u}; \mathbf{x}_{1}) - \frac{1}{\eta_{T}} B_{\psi}(\mathbf{u}; \mathbf{x}_{T+1}) + \sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}}\right) B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) + \sum_{t=1}^{T} \frac{\eta_{t}}{2\lambda} \|\mathbf{g}_{t}\|_{*}^{2} \\ & \leq \frac{1}{\eta_{1}} D^{2} + D^{2} \sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}}\right) + \sum_{t=1}^{T} \frac{\eta_{t}}{2\lambda} \|\mathbf{g}_{t}\|_{*}^{2} \\ & = \frac{1}{\eta_{1}} D^{2} + D^{2} \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}}\right) + \sum_{t=1}^{T} \frac{\eta_{t}}{2\lambda} \|\mathbf{g}_{t}\|_{*}^{2} \\ & = \frac{D^{2}}{\eta_{T}} + \sum_{t=1}^{T} \frac{\eta_{t}}{2\lambda} \|\mathbf{g}_{t}\|_{*}^{2}, \end{split}$$

where $D^2 := \max_{1 \leq t \leq T} B_{\psi}(\mathbf{u}; \mathbf{x}_t)$.

What we can learn from OMD?

- OMD allows us to prove regret guarantees depending on arbitrary norms $\|\cdot\|$ and $\|\cdot\|_*$.
- The primal norm: measure in the feasible space.
- The dual norm: measuring the gradients.

Using a Fixed Learning Rate $\eta_t = \eta$

- Assume that f_t is L-Lipschitz continuous $\Rightarrow \|\mathbf{g}_t\|_*^2 = \|\mathbf{g}_t\|_2^2 \leq L^2$.
- To minimize $\frac{D^2}{\eta_T} + \sum_{t=1}^T \frac{\eta_t}{2\lambda} \|\mathbf{g}_t\|_*^2 = \frac{D^2}{\eta} + \frac{T\eta L^2}{2\lambda}$.
 - Take the derivative w.r.t. η and get root: $\Rightarrow \frac{D^2}{\eta^2} = \frac{TL^2}{2\lambda}$, $\eta = \frac{\sqrt{2\lambda}D}{L\sqrt{T}}$
 - Then the regret is $\frac{DL\sqrt{2T}}{\sqrt{\lambda}}$.

- $\bullet \ \mathsf{Set} \ \eta_t = \tfrac{D\sqrt{\lambda}}{\sqrt{\sum_{i=1}^t \|\mathbf{g}_i\|_2^2}}.$
- We can show that

$$\sum_{t=1}^{T} \frac{\eta_t}{2\lambda} \|\mathbf{g}_t\|_2^2 = \frac{D}{2\sqrt{\lambda}} \sum_{t=1}^{T} \frac{\|\mathbf{g}_t\|_2^2}{\sum_{i=1}^{t} \|\mathbf{g}_i\|_2^2}$$

- Set $\eta_t = \frac{D\sqrt{\lambda}}{\sqrt{\sum_{i=1}^t \|\mathbf{g}_i\|_2^2}}$.
- We can show that

$$\sum_{t=1}^{T} \frac{\eta_t}{2\lambda} \|\mathbf{g}_t\|_2^2 = \frac{D}{2\sqrt{\lambda}} \sum_{t=1}^{T} \frac{\|\mathbf{g}_t\|_2^2}{\sum_{i=1}^{t} \|\mathbf{g}_i\|_2^2} \le \frac{D}{2\sqrt{\lambda}} \cdot 2\sqrt{\sum_{t=1}^{T} \|\mathbf{g}_t\|_2^2}$$

- Set $\eta_t = \frac{D\sqrt{\lambda}}{\sqrt{\sum_{i=1}^t \|\mathbf{g}_i\|_2^2}}$.
- We can show that

$$\sum_{t=1}^{T} \frac{\eta_t}{2\lambda} \|\mathbf{g}_t\|_2^2 = \frac{D}{2\sqrt{\lambda}} \sum_{t=1}^{T} \frac{\|\mathbf{g}_t\|_2^2}{\sum_{i=1}^{t} \|\mathbf{g}_i\|_2^2} \le \frac{D}{2\sqrt{\lambda}} \cdot 2\sqrt{\sum_{t=1}^{T} \|\mathbf{g}_t\|_2^2} \le \frac{DL\sqrt{T}}{\sqrt{\lambda}}$$

- $\bullet \ \mathsf{Set} \ \eta_t = \tfrac{D\sqrt{\lambda}}{\sqrt{\sum_{i=1}^t \|\mathbf{g}_i\|_2^2}}.$
- We can show that

$$\sum_{t=1}^{T} \frac{\eta_t}{2\lambda} \|\mathbf{g}_t\|_2^2 = \frac{D}{2\sqrt{\lambda}} \sum_{t=1}^{T} \frac{\|\mathbf{g}_t\|_2^2}{\sum_{i=1}^{t} \|\mathbf{g}_i\|_2^2} \le \frac{D}{2\sqrt{\lambda}} \cdot 2\sqrt{\sum_{t=1}^{T} \|\mathbf{g}_t\|_2^2} \le \frac{DL\sqrt{T}}{\sqrt{\lambda}}$$

• The regret turns out to be $\leq \frac{D^2}{\eta_T} + \frac{DL\sqrt{T}}{\sqrt{\lambda}}$, which is bounded by

- Set $\eta_t = \frac{D\sqrt{\lambda}}{\sqrt{\sum_{i=1}^t \|\mathbf{g}_i\|_2^2}}$.
- We can show that

$$\sum_{t=1}^{T} \frac{\eta_t}{2\lambda} \|\mathbf{g}_t\|_2^2 = \frac{D}{2\sqrt{\lambda}} \sum_{t=1}^{T} \frac{\|\mathbf{g}_t\|_2^2}{\sum_{i=1}^{t} \|\mathbf{g}_i\|_2^2} \le \frac{D}{2\sqrt{\lambda}} \cdot 2\sqrt{\sum_{t=1}^{T} \|\mathbf{g}_t\|_2^2} \le \frac{DL\sqrt{T}}{\sqrt{\lambda}}$$

• The regret turns out to be $\leq \frac{D^2}{\eta_T} + \frac{DL\sqrt{T}}{\sqrt{\lambda}}$, which is bounded by $\frac{2D}{L\sqrt{\lambda}}\sqrt{\sum_{t=1}^T\|\mathbf{g}_t\|_2^2}$

- Set $\eta_t = \frac{D\sqrt{\lambda}}{\sqrt{\sum_{i=1}^t \|\mathbf{g}_i\|_2^2}}$.
- We can show that

$$\sum_{t=1}^{T} \frac{\eta_t}{2\lambda} \|\mathbf{g}_t\|_2^2 = \frac{D}{2\sqrt{\lambda}} \sum_{t=1}^{T} \frac{\|\mathbf{g}_t\|_2^2}{\sum_{i=1}^{t} \|\mathbf{g}_i\|_2^2} \le \frac{D}{2\sqrt{\lambda}} \cdot 2\sqrt{\sum_{t=1}^{T} \|\mathbf{g}_t\|_2^2} \le \frac{DL\sqrt{T}}{\sqrt{\lambda}}$$

• The regret turns out to be $\leq \frac{D^2}{\eta_T} + \frac{DL\sqrt{T}}{\sqrt{\lambda}}$, which is bounded by $\frac{2D}{\sqrt{\lambda}}\sqrt{\sum_{t=1}^T\|\mathbf{g}_t\|_2^2} \leq \frac{2DL\sqrt{T}}{\sqrt{\lambda}}$.

Remark on Main Theorem I

- The regret bound depends on arbitrary couple of dual norms $\|\cdot\|$ and $\|\cdot\|_*$.
 - Usually, the primal norm is used to measure the feasible set V or the distance between the competitor and the initial point.
 - The dual norm will be used to measure the gradients.

Outline

- Uninformative Subgradients
- 2 Reinterpreting the Online Subgradient Descent
- 3 An Alternative Distance Measure: Bregman Divergence
- 4 Online Mirror Descent The First Attempt
- **5** The Mirror Interpretation

Theorem

Let

- $f: \mathbb{R}^d \mapsto (-\infty, +\infty]$ be a closed and convex function
- dom(∂f) $\neq \emptyset$

Then for $\lambda > 0$, f is λ -strongly convex w.r.t. $\|\cdot\|$ iff f^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$ on \mathbb{R}^d .

f* is differentiable.

Theorem

Let

- $f: \mathbb{R}^d \mapsto (-\infty, +\infty]$ be a closed and convex function
- dom(∂f) $\neq \emptyset$

Then for $\lambda > 0$, f is λ -strongly convex w.r.t. $\|\cdot\|$ iff f^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$ on \mathbb{R}^d .

- f* is differentiable.
 - f is proper, closed and **strongly** convex \Rightarrow the maximizer \mathbf{x}^* of $\max_{\mathbf{x}} \langle \theta, \mathbf{x} \rangle f(\mathbf{x})$ exists and is **unique** (p. 24).

Theorem

Let

- $f: \mathbb{R}^d \mapsto (-\infty, +\infty]$ be a closed and convex function
- dom(∂f) $\neq \emptyset$

Then for $\lambda > 0$, f is λ -strongly convex w.r.t. $\|\cdot\|$ iff f^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$ on \mathbb{R}^d .

- f^* is differentiable.
 - f is proper, closed and **strongly** convex \Rightarrow the maximizer \mathbf{x}^* of $\max_{\mathbf{x}} \langle \theta, \mathbf{x} \rangle f(\mathbf{x})$ exists and is **unique** (p. 24).
 - Hence, $\mathbf{x}^* \in \partial f^*(\boldsymbol{\theta})$.

Theorem

Let

- $f: \mathbb{R}^d \mapsto (-\infty, +\infty]$ be a closed and convex function
- dom(∂f) $\neq \emptyset$

Then for $\lambda > 0$, f is λ -strongly convex w.r.t. $\|\cdot\|$ iff f^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$ on \mathbb{R}^d .

- f* is differentiable.
 - f is proper, closed and **strongly** convex \Rightarrow the maximizer \mathbf{x}^* of $\max_{\mathbf{x}} \langle \theta, \mathbf{x} \rangle f(\mathbf{x})$ exists and is **unique** (p. 24).
 - Hence, $\mathbf{x}^* \in \partial f^*(\boldsymbol{\theta})$.
 - Assume another $\mathbf{x}' \in \partial f^*(\boldsymbol{\theta}) \Rightarrow f^*(\boldsymbol{\theta}) = \langle \boldsymbol{\theta}, \mathbf{x}' \rangle f(\mathbf{x}')$.
 - By the uniqueness of the maximizer, we have $\mathbf{x}^* = \mathbf{x}'$.

4 D > 4 P > 4 B > 4 B > B = 490

 $(\Rightarrow contd.)$

- For any $m{ heta}_1, m{ heta}_2$, let $\mathbf{x}_1 =
 abla f^*(m{ heta}_1), \mathbf{x}_2 =
 abla f^*(m{ heta}_2)$.
 - Then we have $\theta_1 \in \partial f(\mathbf{x}_1)$, $\theta_2 \in \partial f(\mathbf{x}_2)$.
- By the strong convexity, we have

$$f(\mathbf{x}_2) \geq f(\mathbf{x}_1) + \langle \boldsymbol{\theta}_1, \mathbf{x}_2 - \mathbf{x}_1 \rangle + \frac{\lambda}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|^2$$

$$f(\mathbf{x}_1) \geq f(\mathbf{x}_2) + \langle \boldsymbol{\theta}_2, \mathbf{x}_1 - \mathbf{x}_2 \rangle + \frac{\lambda}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|^2$$

$$\langle \boldsymbol{\theta}_2 - \boldsymbol{\theta}_1, \mathbf{x}_1 - \mathbf{x}_2 \rangle \geq \lambda \|\mathbf{x}_1 - \mathbf{x}_2\|^2.$$

 $(\Rightarrow contd.)$

- ullet For any $oldsymbol{ heta}_1, oldsymbol{ heta}_2$, let $\mathbf{x}_1 =
 abla f^*(oldsymbol{ heta}_1), \mathbf{x}_2 =
 abla f^*(oldsymbol{ heta}_2).$
 - Then we have $\theta_1 \in \partial f(\mathbf{x}_1)$, $\theta_2 \in \partial f(\mathbf{x}_2)$.
- By the strong convexity, we have

$$f(\mathbf{x}_2) \geq f(\mathbf{x}_1) + \langle \boldsymbol{\theta}_1, \mathbf{x}_2 - \mathbf{x}_1 \rangle + \frac{\lambda}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|^2$$

$$f(\mathbf{x}_1) \geq f(\mathbf{x}_2) + \langle \boldsymbol{\theta}_2, \mathbf{x}_1 - \mathbf{x}_2 \rangle + \frac{\lambda}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|^2$$

$$\Rightarrow \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|_* \geq \langle \boldsymbol{\theta}_2 - \boldsymbol{\theta}_1, \mathbf{x}_1 - \mathbf{x}_2 \rangle \geq \lambda \|\mathbf{x}_1 - \mathbf{x}_2\|^2.$$

The Mirror Interpretation

 (\Leftarrow)

- Assume that f^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$ on \mathbb{R}^d .
- Let $\mathbf{y} \in \text{dom}(\partial f)$ and $\mathbf{u} \in \partial f(\mathbf{y})$.
- Since f^* is differentiable, we have $\mathbf{y} = \nabla f^*(\mathbf{u})$.

$$(\Leftarrow)$$

- Assume that f^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$ on \mathbb{R}^d .
- Let $\mathbf{y} \in \text{dom}(\partial f)$ and $\mathbf{u} \in \partial f(\mathbf{y})$.
- Since f^* is differentiable, we have $\mathbf{y} = \nabla f^*(\mathbf{u})$.
- Define $\phi(\theta) := f^*(\theta + \mathbf{u}) f^*(\mathbf{u}) \langle \theta, \nabla f^*(\mathbf{u}) \rangle$.

Recall that if $f: V \mapsto \mathbb{R}$ is *M*-smooth, then for any $\mathbf{x}, \mathbf{y} \in V$ we have

$$|f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle| \le \frac{M}{2} ||\mathbf{y} - \mathbf{x}||^2.$$

 (\Leftarrow)

- Assume that f^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$ on \mathbb{R}^d .
- Let $\mathbf{y} \in \text{dom}(\partial f)$ and $\mathbf{u} \in \partial f(\mathbf{y})$.
- Since f^* is differentiable, we have $\mathbf{y} = \nabla f^*(\mathbf{u})$.
- Define $\phi(\theta) := f^*(\theta + \mathbf{u}) f^*(\mathbf{u}) \langle \theta, \nabla f^*(\mathbf{u}) \rangle$.

Recall that if $f:V\mapsto \mathbb{R}$ is M-smooth, then for any $\mathbf{x},\mathbf{y}\in V$ we have

$$|f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle| \leq \frac{M}{2} ||\mathbf{y} - \mathbf{x}||^2.$$

• Hence, $\phi(\boldsymbol{\theta}) \leq \frac{1}{2\lambda} \|\boldsymbol{\theta}\|_*^2 := \hat{\phi}(\boldsymbol{\theta})$.

$$(\Leftarrow)$$

- Assume that f^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$ on \mathbb{R}^d .
- Let $\mathbf{y} \in \text{dom}(\partial f)$ and $\mathbf{u} \in \partial f(\mathbf{y})$.
- Since f^* is differentiable, we have $\mathbf{y} = \nabla f^*(\mathbf{u})$.
- Define $\phi(\theta) := f^*(\theta + \mathbf{u}) f^*(\mathbf{u}) \langle \theta, \nabla f^*(\mathbf{u}) \rangle$.

Recall that if $f:V\mapsto \mathbb{R}$ is M-smooth, then for any $\mathbf{x},\mathbf{y}\in V$ we have

$$|f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle| \leq \frac{M}{2} ||\mathbf{y} - \mathbf{x}||^2.$$

• Hence, $\phi(\theta) \leq \frac{1}{2\lambda} \|\theta\|_*^2 := \hat{\phi}(\theta)$.

$$\phi^*(\mathbf{x}) \; \geq \; \hat{\phi}^*(\mathbf{x}) \; \; = \; \; \sup_{\boldsymbol{\theta}} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2\lambda} \|\boldsymbol{\theta}\|_*^2$$

$$(\Leftarrow)$$

- Assume that f^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$ on \mathbb{R}^d .
- Let $\mathbf{y} \in \text{dom}(\partial f)$ and $\mathbf{u} \in \partial f(\mathbf{y})$.
- Since f^* is differentiable, we have $\mathbf{y} = \nabla f^*(\mathbf{u})$.
- Define $\phi(\theta) := f^*(\theta + \mathbf{u}) f^*(\mathbf{u}) \langle \theta, \nabla f^*(\mathbf{u}) \rangle$.

Recall that if $f:V\mapsto\mathbb{R}$ is M-smooth, then for any $\mathbf{x},\mathbf{y}\in V$ we have

$$|f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle| \leq \frac{M}{2} ||\mathbf{y} - \mathbf{x}||^2.$$

• Hence, $\phi(\boldsymbol{\theta}) \leq \frac{1}{2\lambda} \|\boldsymbol{\theta}\|_*^2 := \hat{\phi}(\boldsymbol{\theta})$.

$$\phi^*(\mathbf{x}) \geq \hat{\phi}^*(\mathbf{x}) = \sup_{\boldsymbol{\theta}} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2\lambda} \|\boldsymbol{\theta}\|_*^2 \leq \sup_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|_* \|\mathbf{x}\| - \frac{1}{2\lambda} \|\boldsymbol{\theta}\|_*^2$$
$$= \sup_{\boldsymbol{\theta}} \left(-\frac{1}{2\lambda} (\|\boldsymbol{\theta}\|_*^2 - 2\lambda \|\mathbf{x}\| \|\boldsymbol{\theta}\|_* + (\lambda \|\mathbf{x}\|)^2) \right)$$
$$= \frac{\lambda}{2} \|\mathbf{x}\|^2.$$

$$(\Leftarrow)$$
 Recall that $\phi(\theta) := f^*(\theta + \mathbf{u}) - f^*(\mathbf{u}) - \langle \theta, \nabla f^*(\mathbf{u}) \rangle$.

• Calculate $\phi^*(\mathbf{x})$: (Let $\mathbf{v} = \mathbf{\theta} + \mathbf{u}$)

$$\phi^{*}(\mathbf{x}) = \sup_{\boldsymbol{\theta}} (\langle \boldsymbol{\theta}, \mathbf{x} \rangle - f^{*}(\boldsymbol{\theta} + \mathbf{u}) + f^{*}(\mathbf{u}) + \langle \boldsymbol{\theta}, \nabla f^{*}(\mathbf{u}) \rangle)$$

$$= f^{*}(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla f^{*}(\mathbf{u}) \rangle + \sup_{\mathbf{v}} (\langle \mathbf{v}, \mathbf{x} + \nabla f^{*}(\mathbf{u}) \rangle - f^{*}(\mathbf{v}))$$

$$= f^{*}(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla f^{*}(\mathbf{u}) \rangle + f(\mathbf{x} + \nabla f^{*}(\mathbf{u}))$$

$$= f^{*}(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} \rangle - \langle \mathbf{u}, \nabla f^{*}(\mathbf{u}) \rangle + f(\mathbf{x} + \nabla f^{*}(\mathbf{u}))$$

$$= -\langle \mathbf{u}, \mathbf{x} \rangle - f(\nabla f^{*}(\mathbf{u})) + f(\mathbf{x} + \nabla f^{*}(\mathbf{u}))$$

$$= f(\mathbf{x} + \mathbf{y}) - f(\mathbf{y}) - \langle \mathbf{u}, \mathbf{x} \rangle$$

• Using $\phi^*(\mathbf{x}) \geq \frac{\lambda}{2} ||\mathbf{x}||^2$ then we are done.

First-order optimality

Theorem

For a function $f: \mathbb{R}^d \mapsto (-\infty, +\infty]$, we have

 $\mathbf{x}^* \in \operatorname*{arg\,min} f(\mathbf{x})$ if and only if $\mathbf{0} \in \partial f(\mathbf{x}^*)$.

$$\mathbf{x}^* \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \quad \Leftrightarrow \quad \forall \mathbf{y} \in \mathbf{R}^d, f(\mathbf{y}) \geq f(\mathbf{x}^*) + \langle \mathbf{0}, \mathbf{y} - \mathbf{x}^* \rangle$$
 $\Leftrightarrow \quad \mathbf{0} \in \partial f(\mathbf{x}^*).$

The OMD update in terms of duality mappings

Theorem (OMD & Duality Mappings)

- Let B_{ψ} be the Bregman divergence w.r.t. $\psi: X \mapsto \mathbb{R}$, where ψ is closed and λ -strongly convex for $\lambda > 0$.
- Define $\mathbf{x}_{t+1} := \arg\min_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t)$, and assume that ψ is differentiable in \mathbf{x}_t and \mathbf{x}_{t+1} .

Then, for any $\mathbf{g}_t \in \mathbb{R}^d$, we have

$$\mathbf{x}_{t+1} = \nabla \psi_V^* (\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t),$$

where $\psi_V := \psi + i_V$ which restricts ψ to V.

The OMD update in terms of duality mappings

$$\begin{split} \mathbf{x}_{t+1} &:= & \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t) \\ &= & \mathbf{x}_{t+1} = \nabla \psi_V^* (\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t). \end{split}$$

Proof of the main theorem (1/2)

$$\begin{aligned} \mathbf{x}_{t+1} &:= & \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t) \\ &= & \underset{\mathbf{x} \in V}{\arg\min} \, \eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + B_{\psi}(\mathbf{x}; \mathbf{x}_t) \\ &= & \underset{\mathbf{x} \in V}{\arg\min} \, \eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + \psi(\mathbf{x}) - \psi(\mathbf{x}_t) - \langle \nabla \psi(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle \\ &= & \underset{\mathbf{x} \in V}{\arg\min} \langle \eta_t \mathbf{g}_t - \nabla \psi(\mathbf{x}_t), \mathbf{x} \rangle + \psi(\mathbf{x}). \end{aligned}$$

By the first-order optimality condition, we have

$$\mathbf{0} \in \eta_t \mathbf{g}_t + \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_t) + \partial i_V(\mathbf{x}_{t+1})$$
$$\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t \in (\nabla \psi + \partial i_V)(\mathbf{x}_{t+1}) \subseteq \partial \psi_V(\mathbf{x}_{t+1})$$

Proof of the main theorem (1/2)

$$\mathbf{x}_{t+1} := \underset{\mathbf{x} \in V}{\arg \min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t)$$

$$= \underset{\mathbf{x} \in V}{\arg \min} \eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + B_{\psi}(\mathbf{x}; \mathbf{x}_t)$$

$$= \underset{\mathbf{x} \in V}{\arg \min} \eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + \psi(\mathbf{x}) - \psi(\mathbf{x}_t) - \langle \nabla \psi(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle$$

$$= \underset{\mathbf{x} \in V}{\arg \min} \langle \eta_t \mathbf{g}_t - \nabla \psi(\mathbf{x}_t), \mathbf{x} \rangle + \psi(\mathbf{x}).$$

By the first-order optimality condition, we have

$$\mathbf{0} \in \eta_t \mathbf{g}_t + \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_t) + \partial i_V(\mathbf{x}_{t+1})$$
$$\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t \in (\nabla \psi + \partial i_V)(\mathbf{x}_{t+1}) \subseteq \partial \psi_V(\mathbf{x}_{t+1})$$

Hence, $\mathbf{x}_{t+1} \in \partial \psi_V^*(\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t)$.

Proof of the main theorem (2/2)

- Note that $\psi_V := \psi + i_V$ is proper, λ -strongly convex and closed.
 - $\bullet \ \partial \psi_V^* = \{ \nabla \psi_V^* \}.$
- Therefore, since $\mathbf{x}_{t+1} \in \partial \psi_V^*(\nabla \psi(\mathbf{x}_t) \eta_t \mathbf{g}_t)$, we have $\mathbf{x}_{t+1} = \nabla \psi_V^*(\nabla \psi(\mathbf{x}_t) \eta_t \mathbf{g}_t)$.

Example (1/2)

- $\bullet \ \psi : \mathbb{R}^d \mapsto \mathbb{R}, \ \psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$
- $V = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_2 \le 1 \}.$
- $\psi_V := \psi + i_V$.

Example (1/2)

- $\bullet \ \psi : \mathbb{R}^d \mapsto \mathbb{R}, \ \psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$
- $V = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_2 \le 1 \}.$
- $\bullet \ \psi_{V} := \psi + i_{V}.$
- $\bullet \ \psi_V^*(\theta) = \sup_{\mathbf{x} \in V} \langle \theta, \mathbf{x} \rangle \frac{1}{2} \|\mathbf{x}\|_2^2.$
- Assume $\theta \neq \mathbf{0}$ (otherwise, trivially $\psi_V^*(\theta) = \mathbf{0}$).

Example (1/2)

- $\psi: \mathbb{R}^d \mapsto \mathbb{R}, \ \psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$
- $V = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_2 \le 1 \}.$
- $\bullet \ \psi_{V} := \psi + i_{V}.$
- $\bullet \ \psi_V^*(\theta) = \sup_{\mathbf{x} \in V} \langle \theta, \mathbf{x} \rangle \frac{1}{2} \|\mathbf{x}\|_2^2.$
- Assume $\theta \neq \mathbf{0}$ (otherwise, trivially $\psi_V^*(\theta) = \mathbf{0}$).
- For any $\mathbf{x} \in V$, there exists \mathbf{q} and α such that $\mathbf{x} = \alpha \frac{\theta}{\|\boldsymbol{\theta}\|_2} + \mathbf{q}$ and $\langle \mathbf{q}, \boldsymbol{\theta} \rangle = 0$.
 - $\nabla \psi(\mathbf{x}) = \mathbf{x}$.

Example (2/2)

$$\begin{split} \sup_{\mathbf{x} \in V} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \| \mathbf{x} \|_2^2 &= \sup_{\substack{\alpha, \mathbf{q} : \alpha \frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|_2} + \mathbf{q} \in V, \langle \mathbf{q}, \boldsymbol{\theta} \rangle = 0}} \alpha \| \boldsymbol{\theta} \|_2 - \frac{\alpha^2}{2} - \frac{1}{2} \| \mathbf{q} \|_2^2 \\ &= \sup_{-1 \le \alpha \le 1} \alpha \| \boldsymbol{\theta} \|_2 - \frac{\alpha^2}{2} \\ &= \sup_{-1 \le \alpha \le 1} -\frac{1}{2} (\alpha - \| \boldsymbol{\theta} \|_2)^2 + \frac{1}{2} \| \boldsymbol{\theta} \|_2^2. \end{split}$$

- Solving the constrained optimization problem, we have $\alpha^* = \min(1, \|\boldsymbol{\theta}\|_2)$.
- Hence,

$$\psi_V^*(\boldsymbol{\theta}) = \left\{ \begin{array}{ll} \frac{1}{2} \|\boldsymbol{\theta}\|_2^2, & \text{if } \|\boldsymbol{\theta}\|_2 \leq 1 \\ \|\boldsymbol{\theta}\|_2 - \frac{1}{2}, & \text{if } \|\boldsymbol{\theta}\|_2 > 1 \end{array} \right.,$$

Example (2/2)

$$\begin{split} \sup_{\mathbf{x} \in V} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \| \mathbf{x} \|_2^2 &= \sup_{\alpha, \mathbf{q} : \alpha \frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|_2} + \mathbf{q} \in V, \langle \mathbf{q}, \boldsymbol{\theta} \rangle = 0} \alpha \| \boldsymbol{\theta} \|_2 - \frac{\alpha^2}{2} - \frac{1}{2} \| \mathbf{q} \|_2^2 \\ &= \sup_{-1 \le \alpha \le 1} \alpha \| \boldsymbol{\theta} \|_2 - \frac{\alpha^2}{2} \\ &= \sup_{-1 \le \alpha \le 1} -\frac{1}{2} (\alpha - \| \boldsymbol{\theta} \|_2)^2 + \frac{1}{2} \| \boldsymbol{\theta} \|_2^2. \end{split}$$

- Solving the constrained optimization problem, we have $\alpha^* = \min(1, \|\boldsymbol{\theta}\|_2)$.
- Hence,

$$\psi_V^*(\boldsymbol{\theta}) = \begin{cases} \frac{1}{2} \|\boldsymbol{\theta}\|_2^2, & \text{if } \|\boldsymbol{\theta}\|_2 \leq 1 \\ \|\boldsymbol{\theta}\|_2 - \frac{1}{2}, & \text{if } \|\boldsymbol{\theta}\|_2 > 1 \end{cases},$$

$$\nabla \psi_V^*(\boldsymbol{\theta}) = \left\{ \begin{array}{ll} \boldsymbol{\theta}, & \text{if } \|\boldsymbol{\theta}\|_2 \leq 1 \\ \frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|_2}, & \text{if } \|\boldsymbol{\theta}\|_2 > 1 \end{array} \right. = \Pi_V(\boldsymbol{\theta}).$$

Remark

- OMD extends the OSD to non-Euclidean norms.
- The dual norm is used to measure a gradient.
- ullet Gradients live in the dual space, different from the predictions $oldsymbol{x}_t$.
- In the OSD, the dual space coincides with the primal space.
- ullet The ways we go from one space to the other: $abla\psi$ and $abla\psi_{V}^{*}$.

Discussions

Test

We have the following formula:

$$J_{\mathcal{G}}(\mathbf{z}_u) = -\log(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)}\log(\sigma(-\mathbf{z}_u^{\top}\mathbf{z}_{v_n}))$$