0.1 funkcje wielu zmiennych

Przykład 1.

 $\begin{array}{l} \mathbb{R}^3 \to \mathbb{R}^1 \text{ - Energia potencjalna } \mathcal{V}(x,y,z) \\ \mathbb{R}^4 \to \mathbb{R}^1 \text{ - Potencjal pola niestacjonarnego} \mathcal{V}(x,y,z,t) \\ \mathbb{R}^3 \to \mathbb{R}^3 \text{ - Natężenie pola } \mathcal{E}(x,y,z) \\ \mathbb{R}^4 \to \mathbb{R}^3 \\ \mathbb{R}^1 \to \mathbb{R}^3 \\ \mathbb{R}^1 \to \mathbb{R}^4 \\ \mathbb{R}^1 \to \mathbb{R}^6 \\ \mathbb{R}^6 \to \mathbb{R}^1 \\ \mathbb{R}^8 \to \mathbb{R}^1 \end{array}$

Definicja 1. (Ciągłość Heine)

Niech $X \subset \mathbb{R}^n, x_0 \in X, Y \subset \mathbb{R}^m$. Mówimy, że odwzorowanie $T: X \to Y$ jest ciągłe w punkcie x_0 , jeżeli

$$\forall x_n \to x_0, T(x_n) \to T(x_0)$$

Uwaga: $x_0 = (x_1, x_2, ..., x_n).$

Pytanie 1. Czy ciągłość w $\mathbb{R}^n \iff ciągłośc \ w \ \mathbb{R}^1$?

Przykład 2. Niech funkcja

$$f(x,y) = \begin{cases} 0 & x = y\\ \frac{xy^2}{x^2 + y^4} & x \neq y \end{cases}$$

 $czy \ f$ - $ciagla \ w \ (0,0)$? $dla \ trajektorii \ I$:

$$\lim_{y_n \to 0} (\lim_{x_n \to 0} f(x_n, y_n)) = \lim_{y_n \to 0} (0) = 0$$

 $dla\ trajektorii\ II:$

$$\lim_{x_n \to 0} (\lim_{y_n \to 0} f(x_n, y_n)) = \lim_{x_n \to 0} (0) = 0$$

weźmy $(x_n, y_n) = (\frac{1}{n^2}, \frac{1}{n})$

$$f(x_n, y_n) = \frac{\frac{1}{n^2} \frac{1}{n^2}}{\frac{1}{n^4} + \frac{1}{n^4}} = \frac{1}{2} \neq \lim_{x_n \to 0, y_n \to 0} f(0, 0)$$

"../img/"fig_1.png

Rysunek 1: trajektoria I i II

Definicja 2. (Ciągłość Cauchy)

 (X, d_X) - przestrzeń wektorowa z metryką d_X ,

 (Y, d_Y) - p.w. z metryką d_Y .

Niech $x_0 \in X$. Mówimy, że $T: X \to Y$ - ciągłe, jeżeli

$$\bigvee_{\varepsilon>0} \quad \exists_{\delta} \quad \bigvee_{x\in X} d_X(x,x_0) < \delta \implies d_Y(T(x_0),T(x)) < \varepsilon$$

 $Dow \acute{o}d$. Heine \iff Cauchy

 \implies (przez sprzeczność)

Zakładamy, że

$$\bigvee_{x_n \to x_0} T(x_n) \to T(x_0)$$

oraz

$$\underset{\varepsilon>0}{\exists}, \ \forall, \ \underset{x\in X}{\exists}: d_X(x, x_0) < \delta \quad \land \quad d_Y(T(x), T(x_0)) \geqslant \varepsilon \tag{1}$$

Skoro $T(x_n) \to T(x_0) \underset{x_n \to x_0}{\forall}$, to w szczególności warunek spełniony dla ciągu, który jest taki:

Skoro (1), to dla $\varepsilon > 0$ weźmy $\delta = 1$,

$$\delta = 1:$$

$$\exists d_X(x_1, x_0) < 1 \land d_Y(T(x_1), T(x_0)) \geqslant \varepsilon$$

$$\delta = \frac{1}{2}:$$

$$\exists d_X(x_2, x_0) < \frac{1}{2} \land d_Y(T(x_2), T(x_0)) \geqslant \varepsilon$$

$$\delta = \frac{1}{3}:$$

$$\exists d_X(x_3, x_0) < \frac{1}{3} \land d_Y(T(x_3), T(x_0)) \geqslant \varepsilon$$

$$\vdots$$

$$\delta = \frac{1}{n}:$$

$$\exists_{x_n} d_X(x_n, x_0) < \frac{1}{n} \wedge d_Y(T(x_n), T(x_0)) \geqslant \varepsilon.$$

Zauważmy, że taki ciąg $x_n \to x_0$, ale $T(x_n) \not\to T(x_0)$, więc mamy sprzeczność. \square \longleftarrow Wiemy, że

$$\forall \quad \forall \quad \forall \quad \exists \quad d_X(x, x_0) < \delta \implies d_Y(T(x), T(x_0)) < \varepsilon, \tag{2}$$

czyli:

$$\forall \quad \exists \quad \forall \quad d_X(x_n, x_0) < \delta_1 \tag{3}$$

Chcemy pokazać, że $T(x_n) \to T(x_0)$, czyli, że

$$\forall \exists \forall \sigma \ \exists \forall \ d_Y(T(x_n), T(x_0)) < \varepsilon_1(\text{dla } x_n \to x_0)$$

Przyjmijmy $\varepsilon = \varepsilon_1$. Oznacza to, że $\frac{\exists}{\delta}$ spełniająca warunek (2) dla ε_1 . Połóżmy $\delta_1 = \delta$ we wzorze (3), czyli wiemy, że

$$\exists_{Nn>N} \forall d_X(x_n, x_0) < \delta_1,$$

ale na mocy (2), wiemy, że

$$d_Y(T(x_n), T(x_0)) < \varepsilon_1$$

Rysunek 2: Problemy: Umiemy tak jak po lewej, ale nic nie potrafimy zrobić z tym po prawej

0.2Różniczkowalność:

Definicja 3. Pochodna cząstkowa:

Niech $\mathcal{O} \subset \mathbb{R}^n$, \mathcal{O} - otwarty, $f: \mathcal{O} \to \mathbb{R}^1$, $x \in \mathbb{Q}$, $x_0 = (x_1^0, x_2^0, \dots, x_n^0)$. Mówimy, że f ma w punkcie x pochodną cząstkową w kierunku x^k , jeżeli istnieje qranica

$$g \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{f(x_1^0, x_2^0, \dots, x_k^0 + h, \dots, x_n^0) - f(x_1^0, \dots, x_n^0)}{h} \equiv \left. \frac{\partial}{\partial x} f \right|_{x = x_0}$$

Przykład 3. Pochodna cząstkowa

Niech $\mathbb{R}^2 \to \mathbb{R}^1$.

$$\frac{\partial}{\partial x}f = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h},$$
$$\frac{\partial}{\partial y}f = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}.$$

Uwaga: do policzenia pochodnej czątkowej potrzebujemy układu współrzędnych.

$$biegunowy \rightarrow f(r, \varphi).$$

$$\begin{split} \frac{\partial f}{\partial r} &= \lim_{h \to 0} \frac{f(r+h,\varphi) - f(r,\varphi)}{h} \\ \frac{\partial f}{\partial \varphi} &= \lim_{h \to 0} \frac{f(r,\varphi+h) - f(r,\varphi)}{h}. \end{split}$$

Definicja 4. Pochodna kierunkowa:

Niech $\mathcal{O} \subset \mathbb{R}^n$, \mathcal{O} - otwarte, $x_0 \in \mathcal{O}, e \in \mathcal{O}, T : \mathcal{O} \to \mathbb{R}$.

Mówimy, że T ma w x_0 pochodną kierunkową (spoiler: pochodną słabą), jeżeli istnieje granica

$$g = \lim_{t \to 0} \frac{T(x_0 + te) - T(x_0)}{t} \equiv \nabla_e T(x_0).$$

Obserwacja: Jeżeli np.
$$T: \mathbb{R}^2 \to \mathbb{R}, e_x = (1,0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 i $e_y = (0,1) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, to

$$\nabla_{e_x} T = \frac{\partial}{\partial x} T \text{ i } \nabla_{e_y} T = \frac{\partial}{\partial y} T.$$

Przykład 4. Problemy z pochodną kierunkową:

$$f(x,y) = \sqrt{|xy|}$$
. Wówczas $x_0 + te = (0+t1,0), x_0 = (0,0), e_x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$\nabla_{e_x} f|_{x=(0,0)} = \lim_{t \to 0} \frac{f(0+t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{\sqrt{|t \cdot 0|} - \sqrt{|0 \cdot 0|}}{t} = \lim_{t \to 0} \frac{0}{t} = 0 = \left. \frac{\partial}{\partial x} f \right|_{(0,0)}$$

Uwaga:
$$f(x) = \sqrt{x}, \mathbb{R} \to \mathbb{R}, f'(0) = \lim_{h \to 0} \frac{\sqrt{h}}{h} = \pm \infty$$

$$f(x,y) = \begin{cases} 0 & x = y\\ \frac{xy^2}{x^2 + y^4} & x \neq y \end{cases}$$

$$e = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$$
. Pochodna: $\nabla_e f|_{x=(0,0)}$, $(x_0 + te = (th_1, th_2))$

$$\lim_{t \to 0} \frac{f(th_1, th_2) - f(0, 0)}{t} = \frac{h_1 h_2^2}{h_1^2} = \frac{h_2^2}{h_1}$$