## 第五章

例 5.1

设 CPU 有 16 根地址线,8 根数据线,并用 MREQ#作访存控制信号(低电平有效),用 R/W#作读/写控制信号(高电平为读,低电平为写)。现有下列存储芯片: 1K×4 位 SRAM; 4K×8 位 SRAM; 8K×8 位 SRAM; 2K×8 位 ROM; 4K×8 位 ROM; 8K×8 位 ROM; 及 3-8 译码器和各种门电路。画出 CPU 与存储器的连接图。

要求:主存的地址空间满足下述条件:最小 8K 地址为系统程序区(ROM 区),与其相邻的 16K 地址为用户程序区(RAM 区),最大 4K 地址空间为系统程序区(ROM 区)。请画出存储芯片的片选逻辑并指出存储芯片的种类及片数。

解: 首先根据题目的地址范围写出相应的二进制地址码。

|                    |                   | $A_0$ | ${\rm A}_1$ | ${\rm A}_2$ | ${\rm A}_3$ | ${\rm A}_4$ | ${\rm A}_5$ | $A_6$ | $A_7$ | $A_8$ | ${\rm A_9}$ | ${\rm A}^{}_{10}$ | $A_{11}$ | ${\rm A}^{}_{12}$ | ${\rm A}^{}_{13}$ | ${\rm A}^{}_{14}$ | ${\rm A}^{}_{15}$ |
|--------------------|-------------------|-------|-------------|-------------|-------------|-------------|-------------|-------|-------|-------|-------------|-------------------|----------|-------------------|-------------------|-------------------|-------------------|
| 最小8K               | >                 | 0     | 0           | 0           | 0           | 0           | 0           | 0     | 0     | 0     | 0           | 0                 | 0        | 0                 | 0                 | 0                 | 0                 |
| 系统区                |                   | 1     | 1           | 1           | 1           | 1           | 1           | 1     | 1     | 1     | 1           | 1                 | 1        | 1                 | 0                 | 0                 | 0                 |
|                    |                   | 0     | 0           | 0           | 0           | 0           | 0           | 0     | 0     | 0     | 0           | 0                 | 0        | 0                 | 1                 | 0                 | 0                 |
| 相邻16K<br>用户程<br>序区 | }                 | 1     | 1           | 1           | 1           | 1           | 1           | 1     | 1     | 1     | 1           | 1                 | 1        | 1                 | 1                 | 0                 | 0                 |
|                    |                   | 0     | 0           | 0           | 0           | 0           | 0           | 0     | 0     | 0     | 0           | 0                 | 0        | 0                 | 0                 | 1                 | 0                 |
|                    | J                 | 1     | 1           | 1           | 1           | 1           | 1           | 1     | 1     | 1     | 1           | 1                 | 1        | 1                 | 0                 | 1                 | 0                 |
|                    |                   |       |             |             |             |             |             |       |       |       |             |                   |          |                   | •••               |                   |                   |
| 最大4K<br>系统区        | $\left. \right\}$ | 0     | 0           | 0           | 0           | 0           | 0           | 0     | 0     | 0     | 0           | 0                 | 0        | 1                 | 1                 | 1                 | 1                 |
|                    |                   | 1     | 1           | 1           | 1           | 1           | 1           | 1     | 1     | 1     | 1           | 1                 | 1        | •••<br>1          | <br>1             | 1                 | 1                 |

第二步,根据地址范围的容量及其在计算机系统中的作用,确定最小 8K 系统程序区选一片 8K×8 位 ROM 来实现;与其相邻的 16K 用户程序区选 2 片 8K×8 位 SRAM 来实现;最大 4K 系统程序工作区选 1 片 4K×8 位 ROM 来实现。

第三步,分配 CPU 地址线。因为 8K 存储器容量为 8K = $2^{13}$ ,所以 8K 存储器的片内地址需要 13 位,将 CPU 的低 13 位地址线  $A_{12}\sim A_0$ 与 1 片 8K×8 位 ROM 和两片 8K×8 位 SRAM 芯片提供的 13 位地址线相连;而 4K= $2^{12}$ ,因此 4K 存储器的片内地址需要 12 位,将 CPU 的低 12 位地址线  $A_{11}\sim A_0$ 与 1 片 4K×8 位 SRAM 芯片的 12 根地址线相连。

第四步,形成片选信号。将 3-8 译码器的使能端 EN#接 MREQ#,使得 CPU 访存有效时(MREQ#有效)译码器工作。CPU 的  $A_{15}$ 、 $A_{14}$ 、 $A_{13}$ 分别接在译码器的 C、B、A 端,作为译码输入,译码输出  $Y_0$ #、 $Y_1$ #、 $Y_2$ #分别作 ROM、SRAM1、和 SRAM2 的片选信号。此外,根据题意,最大 4K 地址范围的  $A_{12}$ 为高,故经反相后再与  $Y_1$ #相"与",这个与逻辑用或门实现,其输出作为  $4K \times 8$  位 SRAM 的片选信号,如图 5-24 所示:



图 5-24 主存储器与 CPU 连接-1

## 例 5.2

设有若干片 256K×8 位的 SRAM 芯片,问如何构成 2048K×32 位的存储器?需要多少片 RAM 芯片?该存储器需要多少根地址线?画出该存储器与 CPU 连接的结构图,设 CPU 的接口信号有地址信号、数据信号、控制信号 MREQ#和 R/W#。

解:采用字位扩展的方法。该存储器需要  $2048K/256K \times 32/8 = 32$  片 SRAM 芯片,其中每 4 片构成一个字的存储器芯片组,8 组 256K 字进行字(容量)扩展。

构成 2048K 存储器需要 21 位地址线,其中高 3 位  $A_{20}$   $\sim$   $A_{18}$  作为 8 组芯片的选择,低 18 位  $A_{17}$   $\sim$   $A_0$  作为每个 256K 存储器芯片的地址输入。。

用 MREQ#作为译码器芯片的使能信号, $A_{20}\sim A_{18}$ 经译码器的译码输出作为存储器芯片的片选信号,R/W#作为读写控制信号,该存储器与 CPU 连接的结构图如 5-25 所示。



图 5-25 主存储器与 CPU 连接-2

## 例 5.3

某计算机的主存地址空间中,从地址 0000H 到 3FFFH 为 ROM 存储区域,从 4000H 到 5FFFH 为保留地址区域,暂时不用,从 6000H 到 FFFFH 为 RAM 地址区域。RAM 的控制信号为 CS#和 WE#,CPU 的地址线为  $A_{15}$ - $A_0$ ,数据线为 8 位的线路  $D_7$ - $D_0$ ,控制信号有读写控制 R/W#和访存请求 MREQ#,要求:

- (1) 画出地址译码方案
- (2) 如果 ROM 和 RAM 存储器芯片都采用 8K×1 的芯片,试画出存储器与 CPU 的连接图。
- (3) 如果 ROM 存储器芯片采用 8K×8 的芯片, RAM 存储器芯片采用 4K×8 的芯片, 试画出存储器与 CPU 的连接图。
- (4) 如果 ROM 存储器芯片采用  $16K \times 8$  的芯片,RAM 存储器芯片采用  $8K \times 8$  的芯片,试画出存储器与 CPU 的连接图。

解: (1) 全部地址空间为  $2^{16}$ =64KB,ROM 存储区域的容量为  $2^{14}$ =16KB,保留存储区域容量  $2^{13}$ =8KB,RAM 的存储区域为 64-16-8=40KB。地址译码采用以 8KB 为区域单位,将 64KB 的存储空间分为 8 个 8KB 的区域,用地址的高 3 位  $A_{15}$   $\sim$   $A_{13}$  作为每个 8K 区域选择译码信号。这样构成的译码方案如图 5-26 所示。 $Y_0$ #和  $Y_1$ #的输出作为 ROM 的选择信号,因为 ROM 的地址区域为 0000H 到 3FFFH,其区域选择地址  $A_{15}$   $\sim$   $A_{13}$  位为 000  $\sim$  001;  $Y_3$ #到  $Y_4$ #这 5 条输出信号作为 RAM 的选择信号,因为 RAM 的地址区域为 6000H  $\sim$  0FFFFH,其区域选择地址  $A_{15}$   $\sim$  011  $\sim$  010  $\sim$  011  $\sim$  011  $\sim$  011  $\sim$  011  $\sim$  010  $\sim$  011  $\sim$  011  $\sim$  010  $\sim$  010  $\sim$  010  $\sim$  011  $\sim$  011  $\sim$  011  $\sim$  010  $\sim$  010  $\sim$  010  $\sim$  010  $\sim$  010  $\sim$  011  $\sim$  011  $\sim$  011  $\sim$  010  $\sim$  010  $\sim$  011  $\sim$  011  $\sim$  011  $\sim$  011  $\sim$  010  $\sim$  010  $\sim$  011  $\sim$  010  $\sim$  011  $\sim$  010  $\sim$  010  $\sim$  011  $\sim$  010  $\sim$  010  $\sim$  010  $\sim$  010  $\sim$  010  $\sim$  011  $\sim$  010  $\sim$  0



图 5-26 译码方案

译码器的输出信号逻辑表达式为:

$$\overline{Y}_0 = \overline{\overline{A_{15}} \bullet \overline{A_{14}} \bullet \overline{A_{13}} \bullet \overline{MREQ}}$$

$$\overline{Y}_1 = \overline{\overline{A_{15}} \bullet \overline{A_{14}} \bullet A_{13} \bullet \overline{MREQ}}$$

$$\overline{Y}_3 = \overline{\overline{A_{15}} \bullet A_{14} \bullet A_{13} \bullet \overline{MREQ}}$$

$$\overline{Y}_4 = \overline{A_{15} \bullet \overline{A_{14}} \bullet \overline{A_{13}} \bullet \overline{MREQ}}$$

$$\overline{Y}_5 = \overline{A_{15} \bullet \overline{A_{14}} \bullet A_{13} \bullet \overline{MREQ}}$$

$$\overline{Y}_6 = \overline{A_{15} \bullet A_{14} \bullet \overline{A_{13}} \bullet \overline{MREQ}}$$

$$\overline{Y}_7 = \overline{A_{15} \bullet A_{14} \bullet A_{13} \bullet \overline{MREQ}}$$

(2) 8KB 的存储区域可以用 8 片存储器芯片构成一组实现。8K×1 的存储器芯片的地址线需要 13 条,即  $A_{12}$ ~ $A_0$ ,16 条地址线的高 3 位采用与上题相同的地址译码方案,输出信号分别控制一组存储器芯片,存储器电路如图 5-27 所示,其中 ROM 芯片的连接方式与 SRAM 的类似,只是没有 R/W#控制信号输入。



图 5-27 主存储器与 CPU 连接-2

- (3) 16KB的ROM存储区域可以用 2 片 8K×8 位的ROM 芯片实现,40KB的RAM区域可用 10 片 4K×8 位的RAM 芯片实现。8K×8 位的ROM 芯片的地址线需要 13 条,即  $A_{12}\sim A_0$ ,4K×8 的RAM 芯片的地址线需要 12 条,即  $A_{11}\sim A_0$ ,16 条地址线的其余高 4 位中的最高 3 位采用与上题相同的地址译码方案,输出信号分别选择两片 4KB的RAM存储器芯片,再用高 4 位中的  $A_{12}$ 选择这两片的两个RAM 芯片之一,如图 5-28 所示。
- (4) 16KB 的 ROM 存储区域可以用 1 片 16K×8 位的 ROM 芯片实现。40KB 的 RAM 存储区域可以用 5 片 8K×8 位的 RAM 芯片实现。16K×8 的 ROM 芯片的地址线需要 14 条,即  $A_{13}\sim A_0$ ,8K×8 的 RAM 芯片的地址线需要 13 条,即  $A_{12}\sim A_0$ 。16 条地址线的高 3 位地址采用与上题相同的地址译码方案,译码输出信号  $Y_0$ #、 $Y_1$ #(每一个表示 8K 的范围)通过一个与门来作为 16KB 的 ROM 芯片的片选,即当  $Y_0$ #、 $Y_1$ #中任意一个信号有效时(前 8K 或后 8K)均选中该 ROM 芯片。 $Y_3$ #~ $Y_1$ #分别选择 5 片 8K×8 位的 RAM 芯片之一,如图 5-29 所示。



图 5-28 主存储器与 CPU 连接-3



图 5-29 主存储器与 CPU 连接-4

以上例题所采用的都是 SRAM 芯片,因此与 CPU 的连接相对简单些。如果换成 DRAM 芯片(事实上,计算机系统中的主存多采用 DRAM 构成),那么进行存储器扩展的方法基

本一致,只是与CPU连接时更复杂一些。DRAM 芯片大都采用地址复用技术,需要考虑RAS#、CAS#引脚的连接和刷新电路的问题,因此DRAM 与CPU的连接一般都有DRAM 控制器的支持。