Instituto Federal de Santa Catarina

Eletrônica Básica

Professor: Neilor Colombo Dal Pont

Sistemas Embarcados

TÓPICOS DA AULA

- > Revisão
- > Medidas Elétricas
- > Exercícios e Práticas

MÚLTIPLOS E SUBMULTIPLOS

- Potências de 10 representam números onde o número base é o 10.
- As potências de base 10 são formadas pelo algarismo 1 seguido de zeros da quantidade do número do expoente quando este é positivo.
- Da mesma forma, quando o expoente é negativo ele tem o número de zeros com uma vírgula na frente.
- > São atribuídos símbolos a potências de 10 para auxiliar nas unidades de medida.

Т	1000 ⁴	10 ¹²	Trilhão Bilião		
G	1000 ³	10 ⁹	Bilhão Milhar de milhão		
М	1000 ²	10 ⁶	Milhão Milhão		
k	1000 ¹	10 ³	Mil Milhar		
h	1000 ^{2/3}	10 ²	Cem Centena		
da	1000 ^{1/3}	10 ¹	Dez	Dezena	
nhum	1000 ⁰	10 ⁰	Unidade	Unidade	
d	1000-1/3	10 ⁻¹	Décimo Décimo		
С	1000 ^{-2/3}	10 ⁻²	Centésimo	Centésimo	
m	1000 ⁻¹	10 ⁻³	Milésimo	Milésimo Milésimo	
μ	1000 ⁻²	10 ⁻⁶	Milionésimo Milionésimo		
n	1000-3	10 ⁻⁹	Bilionésimo	Milésimo de milionésimo	
р	1000-4	10 ⁻¹²	Trilionésimo	Bilionésimo	
	G M k h da nhum d c m	G 1000 ³ M 1000 ² k 1000 ¹ h 1000 ^{2/3} da 1000 ^{1/3} nhum 1000 ⁰ d 1000 ^{-1/3} c 1000 ^{-2/3} m 1000 ⁻¹ μ 1000 ⁻² n 1000 ⁻³	G 1000 ³ 10 ⁹ M 1000 ² 10 ⁶ k 1000 ¹ 10 ³ h 1000 ^{2/3} 10 ² da 1000 ^{1/3} 10 ¹ nhum 1000 ⁰ 10 ⁰ d 1000 ^{-1/3} 10 ⁻¹ c 1000 ^{-2/3} 10 ⁻² m 1000 ⁻¹ 10 ⁻³ μ 1000 ⁻³ 10 ⁻⁹	G 1000 ³ 10 ⁹ Bilhão M 1000 ² 10 ⁶ Milhão k 1000 ¹ 10 ³ Mil h 1000 ^{2/3} 10 ² Cem da 1000 ^{1/3} 10 ¹ Dez nhum 1000 ⁰ 10 ⁰ Unidade d 1000 ^{-1/3} 10 ⁻¹ Décimo c 1000 ^{-2/3} 10 ⁻² Centésimo m 1000 ⁻¹ 10 ⁻³ Milésimo μ 1000 ⁻³ 10 ⁻⁹ Bilionésimo	

- Quando multiplicados os números, se somam os expoentes.
- Quando divididos os números, se diminuem os expoentes.

TENSÃO ELÉTRICA

- A diferença de potencial (d.d.p), ou tensão elétrica, é definida como o trabalho necessário para que uma carga se desloque de um ponto A para um ponto B, quando imersa em um campo elétrico.
- Du então, é a energia necessária para movimentar as cargas elétricas.
- ➤ Sua unidade no SI é o Volt [V], ou [J/C].

CORRENTE ELÉTRICA

- > Já a movimentação de cargas em um condutor causada pela tensão é chamada de **corrente elétrica**.
- A corrente elétrica é a quantidade de cargas se movimentando em função do tempo.
- ➤ Sua unidade é o Coulomb por segundo [C/s], ou Ampére [A].

CORRENTE ELÉTRICA

- ➤ Para que as cargas possam circular pelo material este material deve ter elétrons livres, ou seja, deve ser um material condutor.
- ➤ Quando aplicada uma tensão em um material isolante, as cargas não conseguem circular, ou seja, não há corrente elétrica.

Condutor

Isolante

CORRENTE ELÉTRICA

- > A tensão e a corrente elétrica podem ser contínua ou alternada.
- ➤ A corrente contínua tem o mesmo valor em qualquer instante de tempo.
- > Já a corrente alternada varia em função do tempo com uma certa frequência.

RESISTÊNCIA ELÉTRICA

- > Alguns materiais conduzem as cargas melhor do que outros.
- ➤ Ou seja, em alguns materiais, as cargas circulam com grande facilidade, enquanto em outros elas conseguem circular, mas com alguma dificuldade.
- \triangleright Essa característica é chamada de **resistência elétrica**, e sua unidade no SI é o Ohm $[\Omega]$.

FREQUÊNCIA ELÉTRICA

- A frequência é a quantidade de oscilações que ocorrem em um sistema periódico por segundo.
- ➤ No caso da eletricidade, é a quantidade de oscilações completas de uma tensão, corrente ou sinal elétrico.
- Ela é dada pelo inverso do período em segundos, e sua unidade é o Hertz [Hz]

- ➤ A primeira lei de Ohm é a equação mais usada da área de eletricidade.
- Ela diz que a tensão elétrica é o resultado da multiplicação da corrente elétrica pela resistência elétrica.
- Ela é válida para circuitos de corrente contínua em regime permanente, e para circuitos em corrente alternada que contenham apenas resistores.
- > Também é valida para circuitos em corrente alternada com indutores e capacitores, porém deve ser usada a impedância, que é assunto do próximo semestre.

$$V = R \cdot I$$
 $R = \frac{V}{I}$ $I = \frac{V}{R}$

- > Para representar os circuitos elétricos, são usados símbolos.
- > Simbologia de circuitos elétricos:

Fontes de tensão

Resistores

Circuito elétrico

- > Já a **segunda lei de Ohm** está relacionada com resistência dos materiais.
- Ela é dada pela seguinte equação:
- $\triangleright \rho$ é a resistividade do material, cuja unidade é $[\Omega.m]$.
- > l é o comprimento do material, dado em [m].
- > A é a área da seção transversal (bitola), dada em [m²].

$$R = \frac{\rho \cdot l}{A}$$

> Abaixo está uma tabela com a resistividade de alguns materiais:

Classificação	Material	Resistividade ρ (Ω .m)	
	Prata	1,6 x 10 ⁻⁸	
	Cobre	1,7 x 10 ⁻⁸	
Metais	Alumínio	2,8 x 10 ⁻⁸	
Wetais	Tungstênio	5,0 x 10 ⁻⁸	
	Platina	10,8 x 10 ⁻⁸	
	Ferro	12 x 10 ⁻⁸	
	Latão	8,0 x 10 ⁻⁸	
Ligas	Constantã	50 x 10 ⁻⁸	
	Níquel-Cromo	110 x 10 ⁻⁸	
	Grafite	4.000 a 8.0000 x 10 ⁻⁸	
	Água Pura	2,5 x 10 ³	
Isolantes	Vidro	10 ¹⁰ a 10 ¹³	
	Porcelana	3,0 x 10 ¹²	
	Mica	10 ¹³ a 10 ¹⁵	
	Baquelite	2,0 x 10 ¹⁴	
	Borracha	10 ¹⁵ a 10 ¹⁶	
	Âmbar	10 ¹⁸ a 10 ¹⁷	

POTÊNCIA ELÉTRICA

- ➤ A potência representa o trabalho, ou "gasto de energia", pelo tempo.
- > Sua unidade do SI é o Joule por segundo, ou Watt [W].

$$P = V \cdot I$$

POTÊNCIA ELÉTRICA

> Usando a primeira lei de Ohm, pode-se encontrar relações entre a potência, a tensão e a resistência:

$$P = V \cdot I \qquad V = R \cdot I$$

$$V = R \cdot I$$

$$P = R \cdot I^2$$

$$P = \frac{V^2}{R}$$

ENERGIA ELÉTRICA

- ➤ A unidade de medida mais usada para a energia em eletricidade é o quilowatt vezes hora [kW.h].
- \triangleright Lembrando que 1 kW = 10^3 W ou 1000 W.
- Assim, para encontrar a energia gasta por um circuito, basta multiplicar a potência em **kW** pelo número de **horas** que o circuito fica ligado.

$$E = P \cdot t$$

- ➤ Resistor é um componente elétrico/eletrônico que oferece oposição a passagem de corrente elétrica.
- > Ou seja, ele limita o fluxo de cargas em um circuito.
- Além disso, devido ao efeito joule, este componente aquece ao ser percorrido por uma corrente elétrica.

- > Resistores comerciais:
- \triangleright Resistências de m Ω , Ω , k Ω e M Ω .
- ➤ Tolerância: é a faixa de variação, para mais ou para menos, que a resistência de um resistor pode ter em relação ao seu valor;
- ➤ Para resistores comuns: 20%, 10%, 5%.
- ➤ Para resistores de precisão: 2%, 1% e menores.
- \blacktriangleright Ex: Ao comprar um resistor de 1k Ω com 10% de tolerância, sua resistência terá um valor entre 0,9k Ω e 1,1k $\Omega.$

- > Potência:
- A máxima potência suportada por um resistor depende do material que ele é construído.
- ➤ Alguns exemplos:
- ➤ Resistores de carvão: 1/8 W, 1/4 W, 1/2 W, 1 W, 2 W...
- Resistores de fio: 5 W, 7 W, 10 W, 50 W...
- > Montagem: é a forma como o resistor é inserido na placa de circuito impresso
- ➤ PTH (Pin Through Hole, ou "pino pelo buraco"): São resistores que atravessam a placa para serem soldados.
- > SMD (Surface Mounted Device, ou "componente montado em superfície"): São soldados na superfície da placa, e na maioria dos casos são muito menores que os PTH.

- Código de Cores:
- É um código usado para identificar os resistores do tipo PTH.
- Nos resistores mais comuns, se têm 4 faixas.
- A duas primeiras faixas indicam os primeiros algarismos da resistência.
- A terceira faixa indica o fator multiplicador.
- A quarta faixa indica a tolerância.

001	1 CINO	E TOING	Janua	irraicipiicadoi	ioicianici
Preto	0	0	0	x1Ω	
Marrom	1	1	1	x 10 Ω	+/- 1%
Vermelho	2	2		× 100 Ω	4/- 2%
Laranja	3	3	3	×1KΩ	
Amarelo	4	4	4	x 10K Ω	
Verde	5	5	5	× 100K Ω	+/- 5%
Azul	6	6	6	x 1M Ω	+/- 25%
Violeta	7	7	7	x 10M Ω	+/1%
Cinza	8	8	8		+/05%
Branco	9	9	9		
Dourado				χ.1Ω	+/- 5%
Prateado				x.01Ω	+/- 10%

- Código Usando Números:
- É um código usado para identificar os resistores do tipo SMD.
- > Funciona de forma semelhante ao código de cores.
- > Os dois primeiros números indicam os dois números iniciais da resistência.
- > O terceiro número representa o fator multiplicador na base 10.

EQUIPAMENTOS DE MEDIÇÃO

- > Os equipamentos de medição são usados para obter as medidas das mais diversas grandezas elétricas.
- > Nesta aula veremos como usar os principais deles corretamente.

VOLTÍMETRO

- > O Voltímetro é o equipamento usado para medir tensão elétrica.
- Ele deve ser posicionado em **paralelo** com a tensão a ser medida.
- > Ele pode ler tensão contínua e alternada.
- ➤ No caso da tensão alternada, ele fornece a leitura da tensão eficaz.

AMPERÍMETRO

- De Amperimetro é o equipamento usado para medir corrente elétrica.
- Ele deve ser posicionado em **série** com a corrente a ser medida.
- > Ele pode ler corrente contínua e alternada.
- ➤ No caso da corrente alternada, ele fornece a leitura da tensão eficaz.

AMPERÍMETRO

- ➤ Atenção! Nunca use um amperímetro em paralelo com uma fonte de tensão!
- ➤ Por ter resistência zero, ele irá causar um curto circuito, e danificar o aparelho!

- ➢ O Ohmímetro é o equipamento usado para medir resistência elétrica.
- > Ele é inserido em **paralelo** com a resistência a ser medida.

➤ Observação 1: Nunca uso o ohmímetro com a fonte ligada.

- Dbservação 2: Cuidado ao medir um circuito com vários resistores, pois o valor fornecido será o da resistência equivalente.
- Caso se deseje medir um único resistor, neste caso, deve-se retirar ele do circuito, ou abrir o circuito.

- Para medir somente a resistência de R2, deve-se abrir o circuito.
- > Uma prática comum para realizar medidas de resistência em resistores PTH é retirar a solda e levantar um dos pinos do resistor, e assim realizar a medida.

WATTÍMETRO

- > O Wattímetro é o equipamento usado para medir potência elétrica.
- Ele é composto de um voltímetro para medir a tensão, e um amperímetro para ler a corrente.
- > O valor da potência pode ser obtido pela própria equação da potência.

MULTÍMETRO

- > O **Multímetro** é um equipamento que consegue realizar medições de diversas grandezas elétricas.
- > As principais medidas realizadas são de tensão, corrente e resistência elétrica.

Além disso ele tem outras funções, como teste de continuidade, teste de diodos e transistores, capacitimetro, frequencimetro, entre outras.

ESCALAS

- > A escala de um instrumento de medida é o máximo valor que ele consegue medir.
- A escala mais apropriada para uma leitura é a que se aproxima da escala escolhida, mas não a ultrapasse.
- Deve-se então, sempre que for realizar uma medição, se ter uma ideia do valor a ser lido.

ESCALAS

- ➤ Por exemplo, para medir uma tensão de 100 Vcc com o multímetro da figura abaixo, a escala mais apropriada será a de 200 Vcc.
- ➤ Já para medir uma tensão de 10 Vcc, a escala de 200 Vcc pode ser usada, mas não é a mais apropriada por apresentar um maior erro.

> Para uma tensão de 10 Vcc, deve-se então usar a escala de 20

Vcc.

ESCALAS

- Exercício: Qual escala deve ser usada para medir as seguintes grandezas com o multímetro abaixo?
- 1) 50 Vcc
- 2) 300 Vca
- $3) 150 \Omega$
- 4) $18 \text{ k}\Omega$
- 5) 50 mA
- 6) 2 A

Protoboard

Protoboard

> Exemplo: Ligação de um LED.

LED

- ➤ O nome **led** vem do inglês "Light Emitting Diode", que significa Diodo Emissor de Luz.
- ➤ Ele é um tipo de diodo que, quando conduzido por uma corrente elétrica, emite Luz de acordo com a cor que foi construído.

Símbolo

LED

- Diodos são componentes eletrônicos semicondutores, que permitem a passagem de corrente apenas em um sentido.
- ➤ Quando há uma tensão positiva entre o anodo e o catodo, o diodo permite a passagem de corrente elétrica.
- ➤ No caso contrário, quando a tensão é negativa, ele bloqueia a corrente.
- Além disso, há uma queda de tensão entre o anodo e o catodo do diodo, que pode ser medido com o multímetro.

Símbolo Anodo Catodo V-

Não há passagem de corrente

LED

- A corrente máxima que um led suporta varia entre 6 e 20 mA, dependendo do modelo e do fabricante.
- Assim, um resistor deve ser calculado e colocado em série com o led para limitar sua corrente.
- > A equação mais precisa para calcular esse resistor é apresentada abaixo.
- ➤ É comum considerar a queda de tensão nos diodos de 0,7 V.
- ➤ A queda de tensão do led é na faixa de 2 V

$$V \xrightarrow{I} V_{led}$$

$$R = \frac{V - V_{led}}{I}$$

Medidas

Procedimento para medir RESISTÊNCIA ELÉTRICA

- 1) Desconecte a alimentação do circuito a ser medido!
- 2) Insira a ponta de prova **preta** no terminal COM e a ponta de prova **vermelha** no terminal VΩmA°C°F;
- 3) Selecione a escala apropriada para a resistência a ser medida (Ω) ;
- 4) Conecte as pontas de prova no componente ou dispositivo em teste, certificando-se antes de que o mesmo está desenergizado.

Medidas

Procedimento para medir TENSÃO ELÉTRICA CONTÍNUA

- 1) Insira a ponta de prova **preta** no terminal COM e a ponta de prova **vermelha** no terminal $V\Omega mA^{\circ}C^{\circ}F$;
- 2) Selecione a faixa de tensão apropriada (V);
- 3) Conecte as pontas de prova no componente ou dispositivo em teste, a ponteira vermelha deve ser conectada no lado positivo e a ponteira preta no lado negativo. O sinal de "menos" no lado esquerdo do LCD aparecerá se as pontas de prova forem conectadas ao contrário.

Medidas

Procedimento para medir INTENSIDADE DE CORRENTE ELÉTRICA CONTÍNUA

- 1) Desligue a alimentação do circuito;
- 2) Insira a ponta de prova **preta** no terminal COM e a ponta de prova **vermelha** no terminal VΩmA°C°F ou 10A;
- 3) Selecione a faixa de corrente apropriada (A);
- 4) Abra o circuito a ser testado.
- 5) Conecte a ponteira **vermelha** no lado mais positivo da abertura e a ponteira **preta** no lado mais negativo.

JAMAIS submeta as ponteiras a uma D.D.P. quando a escala estiver ajustada para medir corrente elétrica.

Experimento 1

> Procedimento

- 1) Determine a resistência do resistor.
- 2) Calcule a corrente elétrica.
- 3) Procure o resistor e meça sua resistência.
- 4) Monte o circuito no protoboard.
- 5) Meça a tensão e a corrente.
- 6) Monte o circuito no simulador e faça as medições.

Experimento 1

Procedimento:

- 1) Considerando a fonte de entrada como 12 V, e a tensão do led 2 V, calcule um resistor para que a corrente do led seja de 10 mA (calcule a potência do resistor também).
- 2) Pegue um resistor comercial próximo do valor calculado e um led na caixa de componentes.
- 3) Faça o teste de diodo no led e meça a resistência do resistor usando o multímetro.
- 4) Monte o circuito no protobord
- 5) Ligue a fonte de tensão e ajuste a tensão em 12 V.
- 6) Meça a tensão da fonte.
- 7) Desligue a fonte e conecte ela na placa.
- 8) Ligue a fonte e verifique se o led acendeu.
- 9) Meça a tensão no resistor e no led.
- 10) Desligue a fonte, conecte o amperímetro em série e meça a corrente.

$$R = \frac{V - V_{led}}{I}$$

