

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Near-complete charge separation in tailored BiVO₄-based heterostructure photoanodes toward artificial leaf

Jin Wook Yang ^a, Ik Jae Park ^c, Sol A. Lee ^a, Mi Gyoung Lee ^a, Tae Hyung Lee ^a, Hoonkee Park ^a, Changyeon Kim ^a, Jaemin Park ^b, Jooho Moon ^b, Jin Young Kim ^{a,*}, Ho Won Jang ^{a,d,*}

- a Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- b Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- ^c Department of Applied Physics, Sookmyung Women's University, Seoul 04310, Republic of Korea
- ^d Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea

ARTICLE INFO

Keywords: Bismuth vanadate Heterostructure Photoanode Charge separation Spontaneous solar water oxidation

ABSTRACT

As an artificial leaf, a tandem device for zero-bias solar water splitting is a capable solution for practical hydrogen production. Despite a promise, poor charge transport of BiVO $_4$ hampers photoelectrochemical performances under front-side illumination, which is a hindrance to the tandem system. Herein, we design a new photoanode comprising nanoporous BiVO $_4$ and SnO $_2$ nanorods focused on the charge separation via structural and interfacial engineering. BiVO $_4$ /SnO $_2$ photoanode exhibits not only remarkable charge separation efficiency of 97% but also, by loading NiFe as a co-catalyst for water oxidation, high photocurrent density of 5.61 mA cm $^{-2}$ at 1.23 V versus the reversible hydrogen electrode under front-side 1 sun illumination. Consequently, a tandem cell comprising NiFe/BiVO $_4$ /SnO $_2$ photoanode and perovskite/Si tandem solar cell generates an operating photocurrent density of 5.90 mA cm $^{-2}$ with a solar-to-hydrogen conversion efficiency of 7.3% in zero-bias. This work would be a significant step to develop spontaneous solar hydrogen production.

1. Introduction

Photoelectrochemical (PEC) water splitting, which directly converts sunlight into hydrogen fuel, is one of the most sustainable solutions to stockpile solar energy. However, low solar-to-hydrogen (STH) conversion efficiency compared to its potential, has been a barrier to the commercialization, unlike a highly efficient photovoltaic (PV) system. The photovoltage generated by a single photoanode is insufficient to reach a required voltage (1.23 V + overpotential) for the water splitting reaction, resulting in a nonspontaneous reaction requiring external bias [1,2]. In this single absorber system, a trade-off between photovoltage generation and light absorption according to the bandgap limits improving PEC performances [3,4]. Thus, a tandem system consisting of dual absorbers with an optimal bandgap combination has been widely studied to maximize light harvesting by separating each absorption wavelength range [5-10]. A PEC-PV tandem system, especially, is favorable for spontaneous PEC water splitting in zero-bias due to the high STH conversion efficiency in terms of photovoltage production [2]. In this system, high photocurrent density in water oxidation of front photoanode is key to maximize the efficiency of the entire cell.

BiVO₄, which is one of the most promising photoanode materials, has a suitable band gap and band edge position for water oxidation, delivering a high theoretical photocurrent density of 7.5 mA cm⁻² and STH conversion efficiency of 9.2% [11-13]. These PEC characteristics, however, markedly diminish under front-side illumination, and this issue hinders the implementation of PEC-PV tandem cell that requires high front PEC performance. Such a drawback is caused by the slow electron transport limiting the photocurrent generation of BiVO₄ [14, 15]. Namely, the short carrier diffusion length (~70 nm) of BiVO₄ inhibits charge separation [16]. To enhance the charge separation efficiency of BiVO₄, two representative strategies are used; the first one is the nanostructuring of BiVO₄ [11,17,18]. Kim et al. fabricated a nanoporous BiVO₄ photoanode with charge separation efficiency of 90% [19], and Kuang et al. found an optimal average diameter (≈120 nm) of BiVO₄ to maximize PEC properties under front-side illumination [15]. The distance between the electrode inside and the electrolyte interface was structurally engineered as much the carrier diffusion length to make efficient charge transport without a reduction of light absorption. The

E-mail addresses: jykim.mse@snu.ac.kr (J.Y. Kim), hwjang@snu.ac.kr (H.W. Jang).

^{*} Corresponding authors.