Proyecto Global Integrador AyME: Control de Accionamiento de CA con Motor Sincrónico de Imanes Permanentes

Guarise Renzo, Trubiano Lucas Profesor: Ing. Gabriel L. Julián

Universidad Nacional de Cuyo - Facultad de Ingeniería Automática y Máquinas Eléctricas Ingeniería Mecatrónica

25 de junio de 2021

Resumen

Resumen sobre el proyecto. Al final del resumen empezamos con el resto del informe

1. Introducción

2. Desarrollo

2.1. Modelado, Análisis y Simulación dinámica del SISTEMA FÍSICO a "Lazo Abierto" (Sin Controlador externo de Movimiento)

- 2.1.1. Modelo matemático equivalente (1 GDL) del subsistema mecánico completo
- 2.1.2. Modelo dinámico del sistema físico completo
 - a. Modelo global no lineal (NL)

TEXTO

b. Linealización Jacobiana

Primero obtendremos el modelo global linealizado con parámetros variables (LPV), para $i_{ds}^{r}(t) \neq 0$ (caso gral.). Un sistema no lineal puede ser representado por:

$$\dot{x}(t) = f(x(t), u(t)) , x(t_0) = x_0$$
 (1)

$$y(t) = h(x(t)) \tag{2}$$

donde f es una función vectorial de $n \times 1$ elementos que esta en función de un vector x conformado por las variables de estado. n representa el orden del sistema y la solución de x(t) representa una curva en el espacio de estado, denominada como trayectoria de estado. Asumiendo que toda variable estará definida como,

$$z\left(t\right) \equiv Z_0 + \Delta z\left(t\right) \tag{3}$$

donde Zo es una magnitud cuasi-estacionaria de variación muy lenta con el tiempo y $\Delta z(t)$ una magnitud pequeña de variación rápida en el tiempo. El sistema queda expresado:

$$\begin{cases} \dot{x}\left(t\right) \equiv \frac{\mathrm{d}X_{o}\left(t\right)}{\mathrm{d}t} + \frac{\mathrm{d}\Delta x\left(t\right)}{\mathrm{d}t} = f\left(X_{o}\left(t\right) + \Delta x\left(t\right), U_{o}\left(t\right) + \Delta u\left(t\right)\right) \\ X_{o}\left(0\right) = x_{0} \; ; \quad \Delta x\left(0\right) = 0 \end{cases} \tag{4}$$

- c. Linealización por Realimentación NL
 - Determinación de la Restricción o Ley de Control mínima
 - Restricción o Ley de Control complementaria mínima en el eje q
- d. Comparación del modelo dinámico LTI equivalente aumentado vs. el modelo dinámico global LPV

- 2.1.3. Análisis de Estabilidad a lazo abierto para el modelo LTI equivalente aumentado
- 2.1.4. Análisis de Observabilidad completa de estado para el modelo LTI equivalente aumentado
- 2.1.5. Análisis de Controlabilidad completa de estado para el modelo LTI equivalente aumentado
- 2.1.6. Simulación dinámica en DT, comparando el modelo NL completo desacoplado con Ley de control NL vs LTI equivalente aumentado
- 2.2. Diseño, Análisis y Simulación con CONTROLADOR de Movimiento en Cascada con Modulador de Torque equivalente (Control Vectorial)
- 2.2.1. Modulador de Torque equivalente (Controlador interno vectorial de corriente/torque)
- 2.2.2. Controlador externo de movimientos: posición/velocidad
- 2.2.3. IncorporaciónydiseñodeObservadordeEstadodeordenreducidosóloparalapartemecánica de este controlador
- 2.2.4. Simulación en tiempo continuo con modelo completo NL
- 2.2.5. Verificacióndedesempeñoy/omejoras

3. Conclusiones

4. Referencias