Lecture #10 - Thonia Cardoso Senna C UNICAMP Falore sour os 4 suvespaços que vem com
@ UNICAMP
falore sobre os 4 subespaços que vem com
a matriz.
Já vinos column space e nullspace.
loveriar la lição 9:
(17/07/07
Collose 17
$\begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 8 \end{bmatrix}$
this one is not independent.
Scolho pla mounty, n'é inversivel
a 3ª columa in pode ser independente das 2
primireas. Elas têm Ilinhas identicas.
Tento uma matriz quadrada. Com 2 linhas
denticas. Obviously dependent! Isso faz
of que as columns supern dependents Tb/
a matriz is i investible patem elquar
Havera nesta aula uma conclusar que conecta lolumn e rou space.
-> Vamos ustudar +a fundo o rouspace.
> the rows tells 5th abt the column space.

no exemplo anterior, temos elqual rows,
the rowspace will be 2-dimensional, the
tank of the matrix will be only 2.
1
So 2 designs columns spedim she independes
So 2 dessas Colunas spodem see independentes tes to!
4 fundamental subspaces
~ function at storphis
13 O O da dinear algebra!
Ver esses 4 subespaços e suas velaçãos
* column - Space ~ c(A)
MUDChara - N(A)
* rowspace (* rows are basis for rowspace when they re independent.
How can I get column vectors out of
these rows > to continue working
with columns? > transpose!
4 all combinations of columns of
→ C(AT)
* nullspace of AT > N (AT) or nullspace of A
A is mxn. / nullspace of A= vectors w/n components, sols for Ax=0- in Rh.

Ex: matriz A.
Estranho!
A=(011111)
A = Solved
Espaço-coluna: Em 1R3 (dimensão)/ ver
Espaco-nulo: Em R7.
rouspace de A = col (A') = in M' rullspace of (AT) = in R 3 Cin IR3
7×3 n entendi! - Solved!
Exemplo:
Rn nullspace e rowspace - aqui tem vectors w/ n components.
rouspace
[R ^m]
nullspace Calumn space
hull space of
Para cada um des subespaces,
Para cada um des subespaces, qual a dimensar?

 $A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ 3x1 \end{bmatrix}$ O espaço-nulo é vetor em Rⁿ, pois sa combe-O esparo Coluna está em R pois e composto per combinações des veteres columa de A: $C \cdot \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + C_3 \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$ AT > [1 2 3 4] -> Espaço - nulo de AT | P e IR9, RM 3×4 Row space → C(AT) > → Espaço-Coluna de A ER4, espaço Melo de AT tb. > Expanso - rulo de A E IRn nue ou n (ou col(AT))+6. r climensional

Quais seriam as bases desses subespaços e
as dimensous?
riouspace and
do espaço - col C(A) -> dim= rank Column space
espaço-nulo N(A) > n-rank have the
rowspace (ou C(AT)) + is also rank same dim.
for the null space, the basis will be the
special solutions. Uma picada free variable.
as special solutions forman uma base e
nos diz exalamenta a dimensa do espaço-ru
Examplo: I Row red. echelon:
[123]] [1] F
Example: Row red. echelon: $ \begin{vmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{vmatrix} $ Row red. echelon:
What happened to the new space.
Outrach - column de R n e o mismo de H. Exig
no column - space de A mas n'ta' no de R.
DI did mui operations!
· row operations preserve the row space,
C(A) & C(R), but same row spaces!
abase do Rowspace seed as 2 125 linhas def.
basis for now space is first your of ki.
O rowspace é guado pelos 3 rows de 2.
<u>Unterni</u>
Mas a base será composta pelas 2 les linhas.
→ so que esse numero também é o rank, a
→ so que esse numero também i o rank, a
dimensão do uspaço columa!

The new space is sitting there in Rg in its
·
cleanest possible form.
Eo nullspace de AT?
AT -> R-> dim. col(AT)=r
dim N(AT) = mr
Preva: N(AT)
[] [] [] [] [] [] [] [] [] []
matrix adumn [] =[0]
multiplying by left
cycli (350, left hullspace)
Eagora, cara? Como vou trear base de um left nullipais?
millspace de AT Ho
Chamado de left
nullspace.

R

Limbia do Gauss Cesse cara Contirá a grava EA= R ca doque lu you reduction stops to transform Ainto R. no cap. 2, Reca I. E was A-1 Figure of dexolving o left nullspace. Basis forthe left nullspace.

New victor space all 3×3 matrices! my matrices are the vectors. Cadamatriz 3×3 é lem dos meus retores.
There are vector in the vector space because they obey the xules. posso somar matrizes emultiplicar por escalares? Sim. Posso construir comb. lineares de s Somo simi. matrizs.

ricos da temp. linears to saw sim; triang, diego,
américa, se matriz com zeros ta cinclusa, tricos dá smittica, se da triang, as oito regias do espaço vetorial Se somo dias. Sas Satisfuitas. Ab. n'évelwante pl o espeço vetorial. Upper triangular matrices são subespaços dusse espaço? all symmetric matrices. Uintouseau: Simíricas 1 triangulares Estendi a ideia de non diagonais

R' p/a ideia de R

Produzir uma dimensão é produzir uma priciso p/ produginas bases Exemplo: $\begin{bmatrix}
1 & 2 & 3 & 1 & 1 & 0 & 0 \\
1 & 1 & 2 & 1 & 6 & 1 & 0 \\
1 & 2 & 3 & 1 & 0 & 0
\end{bmatrix}$ $\begin{bmatrix}
1 & 2 & 3 & 1 & 1 & 0 & 0 \\
0 & -1 & -1 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 1
\end{bmatrix}$ a matriz E, ma 3-2 pintra diz: peqa a pintra diz: peqa a luntra diz: p PiVOS Exemplos de Bases pl matriz diagoral! 000 000 they span a subspace for diagonal matrices. Stretches the edla from R' to

