Inteligência artificial Prof. Allan Rodrigo Leite

- Princípios da evolução e sobrevivência na natureza
 - Competição
 - Indivíduos competem por recursos, como alimento, água ou abrigo
 - Membros da mesma espécie podem competir para atrair um par
 - Indivíduos fracos tem menos características necessárias para sobreviver
 - Adaptação
 - Indivíduos mais bem sucedidos terão, relativamente, mais descendentes
 - Indivíduos mal sucedidos geram poucos ou nenhum descendente
 - Genes dos indivíduos mais adaptados se espalham mais entre gerações

- Princípios da evolução e sobrevivência na natureza (cont.)
 - Evolução
 - Combinação de boas características vindas de diferentes ancestrais podem produzir indivíduos mais aptos
 - Espécies evoluem para se tornarem cada vez mais adaptadas ao seu ambiente por meio da hereditariedade
 - Genética é a ciência que estuda mecanismos de transmissão de características de uma espécie de uma geração para outra

- Fatos históricos
 - 1859 Charles Darwin publica o livro The origin of Species
 - Mecanismos de transformação das espécies
 - 1865 Gregor Mendel apresenta resultados de experimentos genéricos
 - Cruzamento genético de ervilhas
 - Considerado o pai da genética
 - 1960 Início da computação evolucionária
 - Holland define princípios básicos de Algoritmos Genéticos
 - Rechemberg propõe as estratégias evolucionárias

- Modelos computacionais baseados na teoria da evolução natural
 - o Pesquisas iniciaram na década de 50 e continua ativamente até hoje
 - Evolução é um processo de otimização cujo objetivo consiste em
 - Melhorar a habilidade de um organismo ou sistema
 - Sobreviver em ambientes competitivos e que mudam dinamicamente
- Computação evolucionária reproduz processos evolucionários como
 - Seleção natural
 - Sobrevivência do mais apto
 - Reprodução

- Podem ser agrupados em três categorias
 - Algoritmos genéticos
 - Estratégias evolutivas
 - Programação genética
- Algoritmos evolucionários
 - Busca estocástica por uma solução ótima para um dado problema
 - São compostos por
 - Codificação das soluções do problema como um cromossomo
 - Função para avaliar da aptidão (fitness) dos indivíduos
 - População inicial
 - Operadores de seleção e de reprodução

- Usam terminologia oriunda da teoria da evolução natural e genética
 - Desenvolvido por John Holland e popularizado por David Goldberg
- Objetivos de algoritmos genéticos
 - Formalizar matematicamente e explicar rigorosamente processos de adaptação em sistemas naturais
 - Desenvolver sistemas artificiais capazes de conservar tais mecanismos importantes dos sistemas naturais
 - Problemas devem ser adequadamente representados
 - Deve existir uma maneira de avaliar as soluções encontradas
 - Utilizam a metáfora de população para representar soluções candidatas

- São úteis para resolver problemas complexos de busca e otimização
 - Gerações de populações evoluem de acordo com os princípios de seleção natural e sobrevivência dos mais aptos
 - A evolução corresponde a uma busca em um espaço de soluções potenciais para o problema
- Fornecem equilíbrio entre dois objetivos aparentemente conflitantes
 - Aproveitamento de soluções promissoras (exploitation)
 - Guiada por ótimos locais
 - Exploração do espaço de busca (exploration)
 - Busca por ótimos globais

Máximos globais e máximos locais

- O processo de otimização ocorre iterativamente em várias gerações
 - Mecanismos de seleção selecionam os indivíduos mais aptos
 - Operadores de reprodução geram novos indivíduos
 - Cada indivíduo representa uma possível solução para o problema
 - Cada indivíduo é associado um índice (ranking) de aptidão
 - Requer uma função de fitness para avaliar a qualidade da solução
 - Indivíduos mais aptos têm mais oportunidades de reprodução
 - Evolução ocorre a partir da produção de descendentes cada vez mais aptos

- Aplicação de algoritmos genéticos são favoráveis para
 - Problemas de busca, combinatórios ou otimização
 - Problemas com um grande número de variáveis
 - Problemas com um amplo espaços de estados
- A concepção de um algoritmo genético envolve os conceitos
 - Representação do indivíduo
 - Definição da função de fitness
 - Processo de seleção
 - Processo de reprodução
 - Convergência da solução

Fluxo de um algoritmo genético

- Representação do indivíduo
 - Tem por objetivo descrever as características do indivíduo
 - Também chamado de cromossomo ou string
 - Representado por meio de um vetor de parâmetros
 - Cada indivíduo possui um valor de aptidão
 - A aptidão mede a qualidade da solução que ele representa
 - Uma população é um conjunto de indivíduos
 - Uma população é produzida em uma dada geração
 - Uma geração é uma iteração completa que produz uma nova população

- Representação do indivíduo (cont.)
 - Indivíduo é codificado por um conjunto de parâmetros chamado gene
 - Genes podem assumir valores representados por diferentes tipos dados
 - Por exemplo: valores binários, inteiros, reais, caracteres, etc.
 - Os valores para os genes são também são conhecidos por alfabeto
 - Parâmetros são combinados para formar strings ou vetores
 - Esta combinação representa o cromossomo (indivíduo)

- Definição da função de fitness
 - Representa a função objetivo do problema de busca ou otimização
 - Utilizada para calcular a aptidão de um indivíduo
 - Aptidão bruta
 - Saída gerada pela função objetivo para um indivíduo da população
 - Aptidão normalizada
 - Aptidão bruta normalizada usada como entrada para o método de seleção
 - Aptidão máxima
 - Melhor indivíduo da população corrente
 - Aptidão média
 - Aptidão média da população corrente

- Processo de seleção
 - Objetiva a seleção dos indivíduos mais aptos da geração atual
 - Os selecionados serão utilizados para geração da próxima população
 - Um indivíduo tem probabilidade de seleção proporcional à sua aptidão
 - Método roleta
 - Considera cada indivíduo proporcionalmente pela aptidão
 - Os indivíduos mais aptos têm maiores chances de reprodução
 - Método torneio
 - Seleciona aleatoriamente pares de indivíduos da população
 - Escolhe o melhor indivíduo considerando uma probabilidade k
 - Do contrário, escolhe o pior indivíduo

Método roleta

```
roleta(P, N) //população e número de indivíduos a ser selecionado
  S \leftarrow \emptyset //lista dos indivíduos selecionados
  t \leftarrow \sum f(x) \mid \forall x \in P //\text{soma de todas as aptidões na população}
  enquanto |S| \neq N faça //enquanto selecionados for menor que N
    r \leftarrow \text{random}(0,t) //escolhe aleatoriamente um número entre 0 e t
    s ← 0 //aculumado das aptidões dos indivíduos percorridos
    \forall x \in P faça //itera sobre indivíduos da população
       s \leftarrow s + f(x) //acumula aptidão de indivíduos
       se s > r então
         S \leftarrow S \cup \{x\} //seleciona indivíduo e encerra iteração
       fim se
    fim faça
  fim enquanto
retorna S
```

Método roleta (cont.) 100001 • 100101 100101 • 101110

Método torneio

```
torneio(P, N, k) //população, indivíduos selecionados e probabilidade S \leftarrow \varnothing //lista dos indivíduos selecionados enquanto |S| \neq N faça //enquanto selecionados for menor que N r \leftarrow \text{random}(\emptyset,1) //escolhe aleatoriamente um número entre \emptyset e 1 \{x,y\} \leftarrow \text{random}(S) //escolhe dois indivíduos aleatóriamente se r < k então S \leftarrow S \cup \{\text{argmax}(f(x),f(y))\} //seleciona o melhor indivíduo senão S \leftarrow S \cup \{\text{argmin}(f(x),f(y))\} //seleciona o pior indivíduo fim se fim enquanto retorna S
```

- Processo de reprodução
 - O processo de reprodução ocorre por meio de operadores genéticos
 - São necessários para que a população se diversifique ao longo do tempo
 - Deve manter características de adaptação adquiridas em gerações anteriores
 - Operadores genético tem por objetivo
 - Transformar a população através de sucessivas gerações
 - Convergir a busca até alcançar a um resultado satisfatório
 - Os operadores genéticos são
 - Cruzamento (crossover)
 - Mutação

- Cruzamento
 - Produz novos indivíduos combinando pares de indivíduos selecionados
 - Os indivíduos são selecionados pelo processo de seleção
 - Procura manter parte das características dos descendentes
 - É considerado o operador genético predominante ou primário
 - Deve ser aplicado com probabilidade definida pela taxa de crossover Pc
 - Deve ser maior que a taxa da operação de mutação

- Cruzamento (cont.)
 - Estratégias comuns para crossover
 - Um ponto: um ponto de cruzamento é escolhido e, a partir deste ponto, as informações genéticas dos pais serão trocadas
 - Multi pontos: generalização da troca de material genético por meio de vários pontos, isto é, usa-se mais de um ponto de cruzamento
 - Uniforme: um parâmetro global determina a probabilidade de cada variável ser trocada entre os ancestrais

- Mutação
 - Modifica aleatoriamente alguma característica do indivíduo
 - Permite criar novos valores de características que não existiam anteriormente ou apareciam em pequena quantidade
 - Este operador introduz e mantém a diversidade genética da população
 - Permite sair de uma zona de convergência da qualidade da solução
 - Causa uma ruptura da convergência em máximos locais

- Mutação (cont.)
 - É considerado um operador genético secundário
 - Aplicado aos indivíduos com probabilidade dada pela taxa de mutação Pm
 - Geralmente se utiliza uma taxa de mutação baixa
 - Estratégias comuns para mutação
 - Inversão de bit: usado quando as propriedades binárias, escolhe-se uma propriedade e realiza a inversão do bit
 - Mudança de ordem ou permutação: usado quando as propriedades compartilham o mesmo domínio, dois valores são escolhidos e trocados

Estrutura básica do algoritmo

```
AlgoritmoGenetico()
    t ← 0 //tempo inicial
    P ← inicia() //cria população inicial - normalmente aleatória
    f ← avalia(P) //avalia aptidão dos indivíduos

enquanto <condição de parada não satisfeita> faça
    t ← t + 1 //incrementa tempo
    P ← selecao(P) //escolhe indivíduos mais aptos
    P ← reproducao(P) //realiza cruzamento e mutação
    f ← avalia(P) //avalia aptidão dos indivíduos
fim enquanto
retorna melhor(P) //retorna melhor indivíduo
```

- Ferramentas e biliotecas de algoritmos genéticos
 - Jenetics (Java Genetic Algorithm Library)
 - Biblioteca desenvolvida em Java
 - Suporta otimização multi objetivos
 - Projeto open-source
 - GeneticAlgorithm
 - Biblioteca desenvolvida em Python
 - Suporta problemas combinatoriais e de otimização
 - Projeto open-source
 - \circ GA
 - Biblioteca desenvolvida em R
 - Suporta diferentes formas de representação dos cromossomos
 - Projeto open-source

Exercícios

 Implemente um algoritmo genético para resolver o problema da mochila. O problema consiste em encontrar uma combinação de objetos que maximize a recompensa e não exceda o peso que a mochila consegue carregar.

Dado um conjunto de objetos N e uma mochila de capacidade b, temos:

- Conjunto de objetos $[o_i, \ldots, o_N]$
- Peso dos objetos $W(o_i) = w_i$
- Recompensa dos objetos $C(o_i) = c_i$
- Uma solução s é um vetor binário
 - Se o objeto o_j está mochila, então $s_j = 1$, caso contrário $s_j = 0$
- Função objetivo

Maximizar
$$z=\sum_{j=1}^n c_j s_j$$
Sujeita a $\sum_{j=1}^n W_j s_j \leqslant b$
 $s_j \in \{0,1\}$

Inteligência artificial Prof. Allan Rodrigo Leite