# This Page Is Inserted by IFW Operations and is not a part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

MPS101US

### Abstract of DE 42 38 831 A1

The HF device has a HF transmitter coupled to a transmission antenna (3) for initiating nuclear magnetic resonance within the body. The resulting HF signals are detected by a HF receiver using a surface coil (10) inductively coupled with the transmission antenna. The HF transmission antenna is constructed as a round hollow waveguide of a whole body resonator (15).

Preferably the surface coil is provided with an electronic switch (12) for damping the inductive coupling between the surface coil and the transmission antenna during the transmission cycle.

The device is used for object examination, especially human body. The surface coil is employed in both transmission and reception cycles.



DEUTSCHLAND

® BUNDESREPUBLIK ® Offenlegungsschrift

(5) Int. Cl.5: G 01 R 33/36



**DEUTSCHES** 

**PATENTAMT** 

Siemens AG, 80333 München, DE

(1) Anmelder:

Aktenzeichen:

P 42 38 831.7

Anmeldetag:

17, 11, 92

Offenlegungstag:

19. 5.94

② Erfinder:

Vester, Markus, Dipl.-Ing., 8520 Erlangen, DE; Renz; Wolfgang, Dipl.-Ing., Dr., 8520 Erlangen, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

(A) Hochfrequenzeinrichtung einer Anlage zur Kernspintomographie mit einer Oberflächenspule

Die HF-Einrichtung (2) einer Anlage zur Kernspintomographie enthält einen HF-Senderteil mit einer Sendeantenne (3) zur Anregung von Kernspins in einem zu untersuchenden Körper (4) und einen HF-Empfangsteil zum Empfang von durch die Kernspinanregung hervorgerufenen HF-Signalen, wobei eine an dem Körper (4) anzuordnende Oberflächenspule (10) vorgesehen ist. Erfindungsgemäß soll die Oberflächenspule (10) nur für eine induktive Kopplung ausgelegt sein, wobei die Kopplung zwischen der Oberflächenspule (10) und der Sendeantenne (3) erfolgt. Dabei ist die Oberflächenspule im Empfangsfall und gegebenenfalls auch im Sendefall aktiv.



Die Erfindung bezieht sich auf eine Hochfrequenz-Einrichtung einer Anlage zur Kernspintomographie, die einen Hochfrequenz-Senderteil mit einer Sendeantenne zur Anregung von Kernspins in einem zu untersuchen-

den Körper und einen Hochfrequenz-Empfangsteil zum Empfang von durch die Kernspinanregung hervorgerufenen Hochfrequenz-Signalen enthält, wobei eine an dem Körper anzuordnende Oberflächenspule vorgesehen ist. Eine entsprechende Hochfrequenz(HF)-Einrich-

tung geht aus der DE-OS 41 13 120 hervor.

Anlagen zum Erzeugen von Schnittbildern eines zu untersuchenden Objektes, insbesondere eines menschlichen Körpers oder Körperteils, unter Anwendung ma- 15 gnetischer Kernresonanzen sind an sich bekannt. Hierbei wird der zu untersuchende Körper in ein homogenes Magnetfeld, das sogenannte Grundfeld, eingebracht, das in dem Körper eine Ausrichtung der Kernspins von Atomkernen, insbesondere von an Wasser gebundenen 20 Wasserstoffatomkernen (Protonen), bewirkt. Mittels hochfrequenter Anregungsimpulse werden dann diese Kerne zu einer Präzessionsbewegung angeregt. Nach dem Ende eines Anregungsimpulses präzedieren die Atomkerne mit einer Frequenz, die von der Stärke des 25 Grundfeldes abhängt und pendeln sich dann aufgrund ihrer Spins nach einer vorbestimmten Relaxationszeit wieder in die durch das Grundfeld vorgegebene Vorzugsrichtung ein. Durch rechnerische oder meßtechnische Analyse der integralen Kernsignale kann aus der 30 räumlichen Spindichte oder der Verteilung der Relaxationszeiten innerhalb einer Körperschicht ein Bild erzeugt werden. Die Zuordnung des in Folge der Präzessionsbewegung nachweisbaren Kernresonanzsignals zum Ort seiner Entstehung erfolgt durch Anwendung 35 linearer Feldgradienten. Die entsprechenden Gradientenfelder können dem Grundfeld überlagert und so gesteuert werden, daß nur in einer abzubildenden Schicht eine Anregung der Kerne erfolgt. Eine auf diesen physikalischen Effekten basierende Bilddarstellung ist bekannt unter der Bezeichnung Kernspin-Tomographie (KST) oder NMR-Tomographie (Nuclear Magnetic Resonance).

Zur Hochfrequenz(HF)-Anregung der Kernspins ist ein Senderteil mit einer Antenne erforderlich, die z. B. gemäß der eingangs genannten DE-OS als ein sogenannter Ganzkörperresonator ausgebildet ist. Hierzu ist die Sendeantenne als resonante Rundhohlleiterantenne ausgebildet. Sie weist deshalb mehrere elektrische Leiterelemente auf, die sich parallel zur Zylinderachse des als Solenoid gestalteten Grundfeldmagneten erstrekken. Diese Leiterelemente sind von einem gemeinsamen, für die niederfrequenten Gradientenfelder durchlässigen, jedoch für die HF-Felder undurchlässigen Hüllrohr, einem sogenannten HF-Schirm, aus elektrisch gut leitendem Material umgeben. In dieser Rundhohlleiterantenne werden resonante Schwingungsverhältnisse zum Senden eingestellt.

Mit der bekannten KST-Anlage sollen insbesondere Körperbereiche mit verhältnismäßig geringer Ausdehnung abgebildet werden. Hierzu dient eine Oberflächen- oder Lokalspule, die einfach auf den abzubildenden Körperteil, beispielsweise einen Wirbel, das Mittelohr oder ein Aug 2, aufgelegt wird. Mit solchen Oberflächenspulen erhält man nämlich ein gutes Signal-Rausch-Verhältnis, da Rauschsignale nur aus einem verhältnismäßig kleinen Körperbereich empfangen werden. Die Oberflächenspule besteht im einfachsten Fall aus einer

kreisförmigen Drahtschleife, die hochfrequenzmäßig beschaltet ist. Um Auswirkungen einer HF-Feldinhomogenität möglichst gering zu halten, verwendet man bei der bekannten KST-Anlage diese Oberflächenspule lediglich zum Empfang von durch die Kernspinanregung hervorgerufenen HF-Signale, während die Anregung der Kernspins mit der als Rundhohlleiterantenne gestalteten Ganzkörperantenne erfolgt. In dieser bekannten Ausführungsform einer HF-Einrichtung sind somit für eine Bilderzeugung zwei verschiedene HF-Teile, nämlich ein HF-Senderteil und ein HF-Empfangsteil vorgesehen.

Das mit der Oberflächenspule der bekannten KST-Anlage eingefangene HF-Signal wird über ein Zuleitungs- bzw. Anschlußkabel aus dem Untersuchungsbereich der Anlage nach außen einer signalverarbeitenden Elektronik zugeführt. Hierbei treten jedoch eine Reihe

von Problemen auf:

 Da das Zuleitungskabel sich auch in dem Untersuchungsbereich befindet, kann es hinderlich sein.

2. Beim Senden des HF-Senderteils mittels des Ganzkörperresonators bilden sich auf dem Zuleitungskabel störende Mantelwellen aus, die in besonders ungünstigen Fällen eine zu hohe Leistungsdichte an dem zu untersuchenden Körper zur Folge haben können. Es sind deshalb besondere Maßnahmen zur Unterdrückung solcher Mantelwellen erforderlich.

 Während des Empfangs muß der Ganzkörperresonator des Senderteils entkoppelt sein oder verstimmt werden, damit er dem Feld der Oberflächenspule nur unwesentlich Energie entzieht.

4. Die HF-Verluste im Zuleitungskabel verschlechtern das Signal-zu-Rauschverhältnis, wenn ein Vorverstärker der nachgeordneten Elektronik nicht direkt an die Oberflächenspule angebaut wird. Dies ist jedoch nicht in allen Fällen möglich.

Aufgabe der vorliegenden Erfindung ist es deshalb, die HF-Einrichtung einer KST-Anlage mit den eingangs genannten Merkmalen dahingehend auszugestalten, daß die vorstehend genannten Probleme praktisch nicht mehr gegeben sind.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die mindestens eine Oberflächenspule nur für eine induktive Kopplung ausgebildet ist, wobei die Kopplung zwischen der Oberflächenspule und der Sendean-

tenne erfolgt.

Bei den erfindungsgemäßen Maßnahmen wird von der Überlegung ausgegangen, zum Empfang die Sendeantenne des Senderteils als Kopplungsspule zu verwenden und die Feldkonzentration im Schwingkreis der Oberflächenspule zum Empfang auszunutzen. Dabei kann die Sendeantenne insbesondere als ein Ganzkörperresonator ausgebildet sein. Daneben sind aber auch andere Ausführungsformen von Sendeantennen, z. B. in Form einer Kopfspule, möglich. Vorteilhaft ist, daß bei einer induktiv gekoppelten Oberflächenspule wie beim Anmeldungsgegenstand Einbußen an Signal-zu-Rauschverhältnis vernachlässigbar gering sind. Außerdem treten die geschilderten Probleme von Oberflächenspulen mit Zuleitungskabeln nicht auf.

Vorteilhafte Ausgestaltungen der erfindungsgema-65 Ben HF-Einrichtung gehen aus den Unteransprüchen

hervor

Zur weiteren Erläuterung der Erfindung wird nachfolgend auf die Zeichnung Bezug genommen, in deren

Fig. 1 eine erfindungsgemäße HF-Einrichtung schematisch veranschaulicht ist. Fig. 2 zeigt das Schaltbild einer Oberflächenspule dieser Einrichtung, während aus Fig. 3 die magnetischen Feldverhältnisse an einer Oberflächenspule hervorgehen. In Fig. 4 ist ein Blockschaltbild mit einer HF-Einrichtung nach der Erfindung dargestellt. In den Figuren sind sich entsprechende Teile mit denselben Bezugszeichen versehen.

Die in Fig. 1 als Längsschnitt schematisch veranschaulichte, allgemein mit 2 bezeichnete HF-Einrich- 10 tung einer Anlage zur Kernspintomographie befindet sich z. B. in einem in der Figur nicht dargestellten, hohlzylinderförmigen Grundfeldmagneten. Die Zylinderachse liegt dabei in z-Richtung eines rechtwinkligen x-yz-Koordinatensystems. In diese z-Richtung weist auch 15 das magnetische Grundfeld des Grundfeldmagneten. Es ist in einem den Koordinatenursprung K umschließenden Nutzvolumen hinreichend stark und homogen. Die HF-Einrichtung 2 enthält einen HF-Senderteil, mit dessen Sendeantenne 3 beispielsweise ein Ganzkörperreso- 20 nator zur Anregung von Kernspins in einem zu untersuchenden Körper 4 ausgebildet ist. Dieser Körper ist in der Figur nur durch eine schraffierte Fläche schematisch angedeutet und befindet sich innerhalb des von dem Ganzkörperresonator umschlossenen Raumes, wobei er 25 sich insbesondere durch das Nutzvolumen erstreckt. Die Sendeantenne weist zu einer beispielsweise linearen Polarisation zwei Antennenleiter 3a und 3b, die sich in z-Richtung erstrecken. Diese Antennenleiter sind über Resonanzkondensatoren 5 und 6 mit einem hohlzylin- 30 U1 für die an der Oberflächenspule 10 induzierte Spandrischen, konzentrisch um die z-Achse angeordneten HF-Schirm 7 verbunden, der für niederfrequente Gradientenfelder durchlässig, jedoch für HF-Felder praktisch undurchlässig ist. Der Schirm 7 besteht aus elektrisch gut leitendem Material, beispielsweise aus einer 35 Kupferfolie, die auf einem nicht dargestellten Träger angeordnet sein kann, und hat eine axiale Ausdehnung a. Der HF-Schirm bildet zusammen mit den Antennenleitern 3a und 3b, deren Länge s wesentlich geringer als die Ausdehnung a sein kann, eine Rundhohlleiterantenne, 40 deren Koppelelemente die Antennenleiter 3a und 3b sind. Das von dieser Antenne im Sendefall erzeugte Magnetfeld sei durch seine Induktion B1 angedeutet, deren ortsabhängige Richtung in der Figur in bekannter Weise durch Punkte und Kreuze veranschaulicht ist. Ein ent- 45 güte Q2. sprechender Ganzkörperresonator ist z. B. aus der eingangs genannten DE-OS 41 13 120 zu entnehmen.

Gemäß der in Fig. 1 dargestellten Ausführungsform einer erfindungsgemäßen HF-Einrichtung 2 wird davon ausgegangen, daß die Sendeantenne 3 des HF-Sende- 50 rteils als ein Ganzkörperresonator in Form einer Rundhohlleiterantenne ausgeführt ist. Selbstverständlich sind auch andere, an sich bekannte Antennenkonfigurationen, die resonante Schwingkreise darstellen, einsetzbar. Ein solches Ausführungsbeispiel wäre eine bekannte 55 Kopfspule. Bei den nachfolgenden Erläuterungen sei jedoch ein Ganzkörperresonator gemäß Fig. 1 zugrundegelegt.

Die HF-Einrichtung 2 ist ferner mit einem HF-Empfangsteil ausgestattet, mit dem die durch Kernspinanregungen in dem Körper 4 hervorgerufenen HF-Signale empfangen und an eine nachgeordnete signalverarbeitende Elektronik weitergeleitet werden. Erfindungsgemäß enthält dieser Empfangsteil zur Messung in einem verhältnismäßig eng begrenzten Körperbereich eine in 65 der Figur nicht maßstabsgetreu eingezeichnete Oberflächenspule 10, die lediglich induktiv an die Sendeantenne 3 des HF-Senderteils gekoppelt ist. Die Oberflächen-

spule 10 wird von einer oder mehreren Windungen einer Drahtschleife z.B. aus Kupfer gebildet, deren Durchmesser d z. B. zwischen 2 und 20 cm liegt und deren Drahtstärke z. B. 3 bis 7 mm beträgt. Die Drahtschleife ist über einen Kondensator 11 zu einem resonanten Schwingkreis geschlossen, wobei die Kondensatorkapazität C im allgemeinen einen Wert zwischen 10 und 100 pF hat. Dem Kondensator 11 kann eine elektronische Schalteinheit 12 parallelgeschaltet sein, mit der im Sendefall der Stromfluß in der Spule 10 so stark bedämpft wird, daß dann die Spule praktisch unwirksam ist und das Feld der Sendeantenne nicht verzerrt.

Fig. 2 zeigt das Schaltbild des mit einer Oberflächenspule 10 gebildeten resonanten Schwingkreises. Aus Fig. 3 gehen die zugehörenden Feldverhältnisse an der Oberflächenspule 10 hervor. Dabei sind folgende Bezeichnungsweisen gewählt:

B<sub>1</sub> für die magnetische Induktion des homogenen äußeren Feldes des Senderteils bzw. Ganzkörperresonators, B<sub>2</sub> für die magnetische Induktion des das an der Oberflächenspule 10 hervorgerufenen Feldes,

R für den Widerstand der leitenden Teile der Oberflächenspule und die Belastung der Oberflächenspule durch das Gewebe des zu untersuchenden Körpers,

L für die Induktivität der mindestens einen Windung der Oberflächenspule,

C für die Kapazität des Kondensators 11 in der Oberflächenspule 10 und

Bei der Resonanzfrequenz wird die durch Selbstinduktion erzeugte Spannung U2 durch die am Kondensator erzeugte Spannung -U2 kompensiert, und der Strom I durch die Spule 10 ist nur durch den Verlustwiderstand R begrenzt. Es ergibt sich dann ein überhöhtes sekundāres Feld B<sub>2</sub> = j × Q<sub>2</sub> × B<sub>1</sub>, wobei Q<sub>2</sub> die Kreisgüte am zu untersuchenden Körper 4 ist. Im allgemeinen gilt 30 < Q2 < 200 für typische Oberflächenspulen am menschlichen Körper. Im Resonanzfall wird also das Magnetfeld B2 im Schwingkreis konzentriert (vgl. Fig. 3). Die damit verbundene Erhöhung der Empfangsempfindlichkeit ist etwa proportional zu der Kreis-

Eine Anpaßschaltung des HF-Senderteils (Ganzkörperresonators) kann Impedanzänderungen der Oberflächenspule 10 bei verschiedenen Belastungen ausgleichen. Die bei bekannten HF-Einrichtungen normalerweise verwendete variable Anpaßschaltung in der Oberflächenspule kann somit vorteilhaft entfallen.

Für eine wirksame induktive Ankopplung der Empfangsspule (Oberflächenspule) 10 an den Ganzkörperresonator sollte die geometrische Größe der Empfangsspule bei gegebenen Abmessungen des zu untersuchenden Körpers 4 aus physikalischen Gründen nicht zu klein gewählt werden. Will man dennoch eine sehr kleine Oberflächenspule vorsehen, beispielsweise in Form einer Augenspule, so kann vorteilhaft eine Ineinanderschachtelung mehrerer drahtlos gekoppelter Empfangsspulen, z. B. der Augenspule in einer größeren Kopfspule, vorgesehen werden. Dieses System von Oberflächenspulen ist dann seinerseits induktiv an die Antenne des HF-Senderteils gekoppelt.

Um dasselbe äußere Feld B1 zu erzeugen, würde an einem Ganzkörperresonator mit induktiv gekoppelter Oberflächenspule eine vergleichsweise größere Leistung als bei fehlender Spule benötigt, da dem Ganzkörperresonator die durch das Feld der Induktion B2 umgesetzte Leistung zugeführt werden müßte. Er wird also durch die Oberflächenspule stark bedämpft. Damit spielen jedoch die Leiterverluste des Körperresonators vorteilhaft nur noch eine geringe Rolle.

Eine von der Belastung durch den zu untersuchenden Körper abhängige Anpassung kann in der Oberflächenspule 10 nicht erfolgen; sie soll lediglich in Resonanz bleiben. Belastungsänderungen der Oberflächenspule werden an den äußeren Ganzkörperresonator invers weitergereicht und können dort angepaßt werden. Eine stärkere Belastung der Oberflächenspule bewirkt dabei eine geringere Belastung des Ganzkörperresonators.

Für die Funktionsweise der HF-Einrichtung nach der Erfindung sind zwei mögliche Anwendungsfälle zu unterscheiden, nämlich ob die Oberflächenspule lediglich als Empfangsspule dient, oder ob sie auch für den Sen-

defall herangezogen werden soll.

Im ersten Fall muß die nur zum Empfang eingesetzte Spule beim Senden unwirksam gemacht werden, um so 20 die Homogenität des Ganzkörperresonators zu erhalten. Dies kann gemäß dem in Fig. 4 gezeigten Schaltbild z. B. mit einer elektronischen Schalteinheit 12 bewirkt werden. Diese Schalteinheit kann in an sich bekannter Weise mit Hilfe von einem Paar von antiparallelgeschal- 25 teten Dioden 13a und 13b gebildet werden, die über eine Hilfsspule 14 und einen Hilfskondensator 14' zur Unterdrückung von Gradientenwirbelströmen dem Schwingkreiskondensator 11 parallelgeschaltet sind. Wegen der starken Lastunterschiede des Ganzkörperresonators 15 30 beim Senden und Empfang ist eine separate Anpaßschaltung 16 vor einem Empfangs(vor)verstärker 17 sinnvoll. Wird sie variabel gestaltet, so können auch unterschiedliche Oberflächenspulen optimal rauschangepaßt werden.

Alternativ kann auch eine Nutzung der Oberflächenspulen-Feldkonzentration beim Senden von Vorteil sein, um den Leistungsbedarf und die gesamte Wärmebelastung des zu untersuchenden Körpers zu verringern. Außerdem lassen sich durch eine örtlich selektive Oberflächenspulenanregung Artefakte durch außerhalb des gewünschten Bereichs liegende Körperteile stark reduzieren. Die Belastung durch die Oberflächenspule kann mit der beim Senden und Empfangen wirksamen Anpaßschaltung des Ganzkörperresonators ausgegli-

chen werden.

Wichtig ist eine exakte Leistungsüberwachung, um eine versehentliche Fokussierung bei voller Körpersendeleistung sicher zu vermeiden. In der Oberflächenspule kann deshalb zusätzlich eine Sicherung, beispielsweise eine Schmelzsicherung, eingebaut sein, die bei zu hoher mittlerer Leistung den Schwingkreis unterbricht.

Das Feld B2 der passiv angekoppelten Oberflächenspule kann linear oder zirkular polarisiert sein. Unabhängig davon kann eine Anregung mit linear polarisier- 55 ten oder zirkular polarisierten Feldern des Ganzkörperresonators vorgesehen werden. Fig. 4 zeigt das Schaltbild für den Fall einer linearen Polarisation eines Ganzkörperresonators 15 wie auch einer Oberflächenspule 10. Der Ganzkörperresonator 15 ist als eine einseitig 60 geerdete Schleife 18 dargestellt, die durch einen Kondensator 19 unterbrochen ist. Der Ganzkörperresonator ist über einen Kondensator 20 mit einer Schaltelektronik 21 verbunden. Über diese Elektronik werden im Sendebetrieb die von einer Senderelektronik 22 erzeug- 65 ten HF-Signale dem Ganzkörperresonator 15 zugeführt. Demgegenüber wird bei Empfangsbetrieb das von der Oberflächenspule 10 empfangene und induktiv

auf dem Ganzkörperresonator 15 übertragene HF-Signal 23 über diese Schaltelektronik 21 der Anpaßschaltung 16 zugeleitet. Deren Signal wird in der nachgeordneten Empfangselektronik 17 weiterverarbeitet.

#### Patentansprüche

1. Hochfrequenz-Einrichtung einer Anlage zur Kernspintomographie, die

- einen Hochfrequenz-Senderteil mit einer Sendeantenne zur Anregung von Kernspins in einem zu untersuchenden Körper und

- einen Hochfrequenz-Empfangsteil zum Empfang von durch die Kernspinanregung hervorgerufenen Hochfrequenz-Signale

enthält, wobei eine an dem Körper anzuordnende Oberflächenspule vorgesehen ist, dadurch gekennzeichnet, daß die mindestens eine Oberflächenspule (10) nur für eine induktive Kopplung ausgelegt ist, wobei die Kopplung zwischen der Oberflächenspule (10) und der Sendeantenne (3) erfolgt.

2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die induktive Kopplung zwischen der Oberflächenspule (10) und der Hochfrequenz-Sendeantenne (3) nur für den Empfangsfall vorgesehen

ist.

3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Oberflächenspule (10) mit einer elektronischen Schalteinheit (12) versehen ist zum Dämpfen der induktiven Kopplung zwischen der Oberflächenspule (10) und der Hochfrequenz-Sendeantenne (3) im Sendefall.

 Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Schalteinheit (12) zwei antiparallel geschaltete Dioden (13a, 13b) aufweist, die in Reihe

mit einer Hilfsspule (14) geschaltet sind.

5. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Oberslächenspule als Teil der Sendeantenne des Hochfrequenz-Senderteils vorgesehen ist

6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Oberflächenspule als ein Spulensystem aus mehreren ineinandergeschachtelten, nur induktiv gekoppelten Spulen ausgebildet ist.

7. Einrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß bei einer induktiven Kopplung zwischen der Oberflächenspule (10) und der Hochfrequenz-Sendeantenne (3) im Sendefall in die Oberflächenspule eine Schmelzsicherung eingebaut ist.

8. Einrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Hochfrequenz-Sendeantenne (3) als eine Rundhohlleiterantenne eines Ganzkörperresonators (15) ausgebildet ist.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.<sup>5</sup>: Offenlegungstag: DE 42 38 831 A1 G 01 R 33/36 19. Mai 1994



Nummer: Int. Cl.<sup>5</sup>:

Offenlegungstag:

DE 42 38 831 A1 G 01 R 33/36 19. Mai 1994

150



FIG 2



FIG 3

