Nostradamus' Grand Cross

- N-body simulation

Outline

- Brief introduction to N-body problem
- Grand Cross evolution
 - Demo
 - How we did it?!
- Sequential implementation
 - Brutal force scheme vs. Barnes Hut algorithm
 - Implementation of Seq. Barnes Hut algorithm
- Parallelization with CUDA
 - Brutal force scheme vs. Barnes Hut algorithm
 - Speedup chart

Brief introduction to N-body problem

Two-body -> Three-body -> N-body

- Origin of the chaotic theory
 - Chaos: When the present determines the future, but the approximate present does not approximately determine the future.

Grand Cross evolution

Demo

www.rpi.edu

Grand Cross evolution cont.

- How we did it?!
 - Solve a constrained minimization problem

$$\pi = |\boldsymbol{u} - \boldsymbol{u}_{cross}|_{min} + R(\alpha)$$

subject to
$$\mathbf{u}_j = (\mathbf{v}_j^t + \sum_{i=1, i \neq j}^N G \frac{m_i}{r_{ij}^2} \Delta t) \Delta t, \quad j = 1...N$$

Cheat!

www.rpi.edu

Sequential implementation

- Brutal force scheme
 - Almost trivial, O(N²)
- Barnes Hut algorithm
 - Quad tree (2D) / Oct tree (3D)

O(N log N)

Ref: Quad tree: http://www.cs.princeton.edu/courses/archive/fall03/cs126/assignments/barnes-hut.html

Barnes Hut algo: Barnes, Josh, and Piet Hut. "A hierarchical O (N log N) force-calculation algorithm." Nature, 324, (1986): 446-449.

Sequential implementation cont.

- Implementation of Seq. Barnes Hut algorithm
 - For simplification: set a fixed bounding box, planets fly beyond the boundary are considered escaped and removed from the tree;
 - Accuracy control: Theta = s / d = 0.025, where s is the width of the region represented by the internal node, and d is the distance between the body and the node's center of mass;
 - No sorting nodes, softening factor = 0.01 for close planets, nodeMax
 = 16, fixed time step dt=0.001.
 - Pseudo code Initialize tree;

```
for 1: nStep {calculate center of mass for each node;
calculate interactive attractions among nodes;
update positions;
migrate nodes if necessary; }
```

www.rpi.edu

Parallel implementation

- Brutal force scheme
 - moved force calculations to the kernel
 - The kernel code computes forces between a body and itself to eliminate an if statement
- Barnes Hut algorithm
 - Parallelism mainly exists in the following for-each loops^[1]:

```
For each body x:
```

search for the node set N_1 in the quad tree that act on the body for each node y in N_1 :

calculate the force on x from y

 Grouping the bodies by spatial distance before the force calculation greatly improved the performance

Ref: Martin Burtscher, Keshav Pingali."An Efficient CUDA Implementation of the Tree-Based Barnes Hut n-Body Algorithm." Nature, 324, Wysel 124, EQLD.

Performance Evaluation

- Systems
 - Intel(R) Xeon(R) CPU E5-2687W 0 @ 3.10GHz
 - Tesla K20Xm GPU
- Compilers
 - Sequential Brute Force (gcc 4.9.2 -O3)
 - Sequential Barnes Hut (gcc 4.9.2 -O2)
 - CUDA Brute Force (nvcc 7.0 -O3 -arch=sm_20)
 - CUDA Barnes Hut (nvcc 7.0 -O3 -arch=sm_20)
- Inputs
 - 10 to 10⁶ bodies
 - Best runtime of experiments, excluding I/O

Ref: Barnes Hut.algo: Barnes, Josh, and Piet Hut. "A hierarchical O (N log N) force-calculation algorithm." Nature,324, (1986): 446-WW.rpi.edu

Performance Evaluation cont.

- The benefit is lower with small N since the amount of parallelism is lower
- The cost of building tree is too much while N is small
- The O(N logN) BH makes its benefit over the O(n²) algorithm increases rapidly with larger N.

Performance Evaluation cont.

Performance of each step

- Force calculation > Building tree >> Updating new positions
- The Spatial Grouping function greatly improved the performance in calculating forces part

Conclusions

- Cross shape exact recovery
- Implement entire Brute Force and Barnes Hut algorithm on CPU and GPU
 - Number of bodies matters
 - Building tree cost
 - Spatial grouping greatly improves the performance