Integration of Various Types:

• Polar Coordinate in a Double Integral: If f is continuous on a polar rectangle R given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\iint_{R} f(x,y)dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos, r\sin\theta) r dr d\theta$$

• Formula for triple integration in cylindrical coordinate:

$$\iiint_E f(x,y,z)dV = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta,r\sin\theta)}^{u_2(r\cos\theta,r\sin\theta)} f(r\cos\theta,r\sin\theta,z)rdzdrd\theta$$

• Formula for triple integration in spherical coordinate:

$$\iiint_E f(x,y,z)dV = \int_c^d \int_\alpha^\beta \int_a^b f(rsin\phi cos\theta, rsin\phi sin\theta, rcos\phi)r^2 sin\phi dr d\theta d\phi$$

- Strategy: $Intuition/Graphing \rightarrow SetupModel \rightarrow Computation(Fubini, Polar, etc)$
- 1. Evaluate the integral $\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx$
 - Whenever you see $\sqrt{x^2 + y^2}$ (which is = r), polar coordinate may be useful.
 - Use the intuition/graphing at the beginning to find the corresponding ranges after changing coordinate. Don't forget the extra r when chanting coordinate.
- 2. Find the volume of the solid which is inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$
 - Setup integration model $\int_{xy-plane} zdA$ to solve a volume problem.
 - Finding the ranges of r which represents the radius and θ which represent angle.
- 3. The solid E is bounded by the cylinder $y^2 + z^2 = 9$ and the planes x = 3y, x = 0, z = 0 in the first octant. Sketch the solid and set up an iterated integral for the volume of the solid.
 - What does each of the equations $y^2 + z^2 = 9$ and x = 3y, x = 0, z = 0 represent?
- 4. Use a double integral to find the area enclosed by one loop of the four-leaved rose $r = \cos 2\theta$.
 - Area of the region D is given by $A(D) = \iint_D dA$
- 5. Evaluate $\iint_R (3x + 4y^2) dA$, where R is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
 - Using polar coordinate to represent the region R and simplify the question.