Instructor: Dušan Djukić Date: 23.2.2022.

- 1. Find all primes p, q such that $p^2 pq q^3 = 1$. What if we do not require q to be prime?
- 2. Given a positive integer n, define a sequence (a_k) by $a_0 = n$ and $a_{k+1} = \tau(a_k)$, where $\tau(x)$ denotes the number of (positive) divisors of a positive integer x. Find all n for which no term a_k is a perfect square.
- 3. A function $f: \mathbb{N} \to \mathbb{N}$ is such that $f(f(n)) = \tau(n)$. Prove that if p is prime, then f(p) is prime.
- 4. Prove that there are infinitely many positive integers n such that $\lfloor \tau(n)\sqrt{3} \rfloor$ divides n.
- 5. Suppose that $1 \leq a_1, a_2, \ldots, a_n \leq 2n$ are integers such that $lcm(a_i, a_j) > 2n$ whenever i < j. Prove that $a_1 a_2 \cdots a_n$ divides $(n+1)(n+2) \cdots (2n)$.
- 6. A triple of positive integers (a, b, c) is lame if $c^2 + 1$ divides $(a^2 + 1)(b^2 + 1)$, but not $a^2 + 1$ and $b^2 + 1$. Given c, if there is a lame triple (a, b, c), prove that there is a lame triple in which $ab < c^3$.
- 7. The sequence (a_n) is defined by $a_1 = 1$, $a_2 = 2$ and $a_{n+2} = a_n(a_{n+1} + 1)$ for all $n \ge 1$. Prove that a_{a_n} is divisible by a_n^n for every $n \ge 100$.
- 8. If a positive integer n > 20 is not squarefree, prove that there exist positive integers a, b, c such that ab + bc + ca = n.

Instructor: Dušan Djukić Date: 26.2.2022.

- 9. Prove that every integer can be uniquely written in the form $a_0 + a_1(-\frac{3}{2}) + a_2(-\frac{3}{2})^2 + \cdots + a_k(-\frac{3}{2})^k$ for some integers $k \ge 0$ and $a_0, a_1, \ldots, a_k \in \{0, 1, 2\}$.
- 10. Denote $\phi = \frac{-1-\sqrt{5}}{2}$. Can every integer be written as a sum of powers of ϕ , where each power occurs at most 1000 times?
- 11. If a, b are positive integers such that $a + b^3$ is divisible by $a^2 + 3ab + 3b^2 1$, prove that $a^2 + 3ab + 3b^2 1$ is divisible by a cube greater than 1.
- 12. Suppose that a and b are integers such that 2^na+b is a perfect square for every $n \in \mathbb{N}$. Prove that a=0.

Instructor: Dušan Djukić Date: 27.2.2022.

Linear recurrences

Sequences (x_n) defined by a recurrence relation of the form

$$x_n = c_1 x_{n-1} + c_2 x_{n-2} + \dots + c_k x_{n-k}, \tag{\spadesuit}$$

with the first k terms given, can be solved in closed form. Here is how.

We first check if there are exponential sequences of the form $x_n = \alpha^n$ that satisfy (\spadesuit) . It turns out that the constant α must satisfy $P(x) = x^k - c_1 x^{k-1} - \cdots - c_{k-1} x - c_k = 0$. The polynomial P(x) is called the *characteristic polynomial*.

So, let the zeros of P(x) be $\alpha_1, \ldots, \alpha_\ell$. We allow multiple roots, so let r_i be the multiplicity of the zero α_i . Then the sequence $x_n = \alpha_i^n$ satisfies (\spadesuit) . Moreover, even the sequence $x_n = n^k \alpha_i^n$ satisfies (\spadesuit) , if $0 \le k \le r_i - 1$ is an integer. In general, every linear combination of the described sequences, and no others, satisfies (\spadesuit) .

To sum up, a formula for x_n will have the form

$$x_n = P_1(n)\alpha_1^n + P_2(n)\alpha_2^n + \dots + P_{\ell}(n)\alpha_{\ell}^n,$$

where $P_i(x)$ are some polynomials of degree strictly less than r_i .

- 13. Find a_n in closed form if:
 - (a) $a_0 = 0$, $a_1 = 1$ and $a_n = 2a_{n-1} + a_{n-2}$ for $n \ge 2$;
 - (b) $a_0 = a_1 = 0$, $a_2 = 1$, $a_n = 3a_{n-2} 2a_{n-3}$.
- 14. Find all positive integers n for which $(1+\sqrt{2})^n+(1-\sqrt{2})^n$ is divisible by 5.
- 15. Prove that there is a positive integer n, not divisible by any of the numbers from 2 to 1000, such that the numbers $n^2 1$, $n^2 2$, ..., $n^2 1000$ are all composite.
- 16. Denote $m=2^{100}$ and $n=3^{100}$. Prove that there exist positive integers a,b,c,d such that am-bn=cm-dn=ad-bc=1.
- 17. Prove that there exist infinitely many positive integers n for which n! is divisible by $n^2 + 1$.
- 18. What is the largest n for which there exist 2n positive integers $a_1, \ldots, a_n, b_1, \ldots, b_n$ that satisfy $a_i b_j a_j b_i = 1$ whenever i < j?

Instructor: Dušan Djukić Date: 1.3.2022.

- 19. Sequence (a_n) is defined by $a_1 = 1$ and $a_{n+1} = 3a_n + \sqrt{8a_n^2 + 1}$. Prove that each a_n is an integer.
- 20. Find all sequences of positive integers (a_n) that satisfy $a_n + a_{n+1} = a_{n+2}a_{n+3} 1000$ for all n.
- 21. Let $a_0 = 1$ and $a_{n+1} = \frac{1+a_n}{3+a_n}$. Find a_n in closed form.
- 22. The Fibonacci sequence is defined by $F_0=0$, $F_1=1$ and $F_n=F_{n-1}+F_{n-2}$ for $n\geqslant 2$. Prove that for each n one of the numbers $5F_n^2\pm 4$ is a perfect square.
- 23. Prove that for every $a \in \mathbb{N}$ there is a Fibonacci number that is divisible by a.
- 24. Prove that $gcd(F_m, F_n) = F_{gcd(m,n)}$.
- 25. Find all Fibonacci numbers that are powers of 2 or powers of 3.

Instructor: Dušan Djukić Date: 3.3.2022.

- 26. Define $a_0 = 0$, $a_1 = 1$ and $a_{n+1} = 2a_n + a_{n-1}$. Prove that $2^k \mid a_n$ if and only if $2^k \mid n$.
- 27. A sequence (a_n) satisfies $a_{n+1} = a_n^3 + 103$ for all $n \in \mathbb{N}$. Prove that this sequence contains at most one perfect square.
- 28. If a, b are positive integers, can $(a+b)^{15}$ be divisible by 4ab-1?
- 29. (a) If a prime p divides $x^2 + xy + y^2$ for some integer x, y, but $p \nmid xy$, prove that $p \equiv 1 \pmod 3$ or p = 3.
 - (b) If a prime p > 3 divides $x^2 + 3$ for some integer x, prove that $p \equiv 1 \pmod{3}$.
- 30. Let a and b be positive integers. If gcd(an + 2, bn + 3) > 1 for every $n \in \mathbb{N}$, what is b/a?
- 31. If a, b, c are three distinct nonnegative integers, prove that $gcd(ab+1, bc+1, ca+1) \le \frac{a+b+c}{3}$.
- 32. Does there exist an integer x such that $x^2 + 2$ is divisible by 3^{2022} ?
- 33. Is there a positive integer n such that n! + 1 is divisible by n + 100?
- 34. Find all triples of positive integers a, b, c such that $a \mid bc + 1, b \mid ac + 1$ and $c \mid ab + 1$.

Solutions – group L3

Instructor: Dušan Djukić Feb.21–Mar.3, 2021

- 1. The discriminant of the given quadratic $p^2 q \cdot p (q^3 + 1)$ must be a square, so $d^2 = q^2 + 4(q^3 + 1)$. This leads to $(d+2)(d-2) = q^2(4q+1)$, but since only one of the factors $d \pm 2$ can be divisible by q, that one is a multiple of q^2 , while the other factor (which is less by at most 4) divides 4q + 1. It follows that $q^2 4 \le 4q + 1$ and hence $q \le 5$. Testing these values of q yields two solutions: (7,3) and (14,5).
- 2. The sequence decreases until it eventually drops down to 2. Let $a_{k-1} > a_k = 2$. Since $\tau(a_{k-1}) = 2$, a_{k-1} must be an odd prime, and since $\tau(a_{k-2})$ is odd (assuming that k > 1), a_{k-2} must be a perfect square. So, if there is no square in the sequence, we must have $k \leq 1$, so n is a prime.
- 3. Iterating one more f we obtain $f(\tau(n)) = f(f(f(n))) \tau(f(n))$. Now setting n = p to be prime yields $\tau(f(p)) = f(\tau(p)) = f(2)$, so it is enough to prove that f(2) = 2. However, we have $\tau(f(2)) = f(\tau(2)) = f(2)$, so f(2) equals 1 or 2. It remains to show that f(2) = 1 is impossible. Otherwise we would have f(p) = 1 for all p, so $f(1) = f(f(p)) = \tau(p) = 2$. On the other hand, then $1 = f(3) = f(\tau(25)) = \tau(f(25))$, so also f(25) = 1, contradicting f(f(25)) = 3.
- 4. Setting e.g. $\tau(n)=8$ we find that n must be divisible by $\lfloor 8\sqrt{3}\rfloor=13$, which is achievable by taking $n=13p^3$ for any prime $p\neq 13$ (then indeed $\tau(n)=8$).
- 5. Each of the numbers a_i has a multiple in the set $\{n+1,\ldots,2n\}$, but no two share this multiple (because lcm > 2n), so each number from n+1 to 2n has a unique divisor among the a_i . The statement immediately follows.
- 6. If $c^2+1=2m$ is even, then m is odd, so m divides $(c+m)^2+1$, but 2m does not $(c+m)^2+1$ but 2m does not 2m larger 2m larger
- 7. An easy induction yields $a_k = (a_{k-1} + 1)(a_{k-3} + 1) \cdots (a_{k-2i+1} + 1)a_{k-2i}$. We will show that $v_p(a_{a_n}) \ge nv_p(a_n)$ for every prime p.

 It follows from the recurrence relation that the sequence $v_p(a_i), v_p(a_{i+2}), v_p(a_{i+4}), \ldots$ is nondecreasing. Moreover, if $p^k \mid a_i + 1$, then $p^k \mid a_{i+1}$ and $a_{i+2} = a_i(a_{i+1} + 1) \equiv -1$

(mod p^k), which implies that the sequence $v_p(a_i+1), v_p(a_{i+2}+1), v_p(a_{i+4}+1), \ldots$ is nondecreasing as well.

Now consider the largest ℓ for which $p \mid a_{n-2\ell}$. From $a_{n-2\ell} = a_{n-2\ell-2}(a_{n-2\ell-1}+1)$ it follows that $p \mid a_{n-2\ell-1}+1$, so $v_p(a_{n-2\ell-1}+1) \leqslant v_p(a_{n-2\ell+1}+1) \leqslant \ldots \leqslant v_p(a_{n-1}+1) \leqslant v_p(a_{n+1}+1) \leqslant \ldots$ So if $k = v_p(a_{n+1}+1)$, it follows that $v_p(a_n) \leqslant \ell k < \frac{1}{2}nk$.

On the other hand, a_n is inductively shown to have the same parity as n, so $a_{a_n} = a_n(a_{n+1}+1)(a_{n+3}+1)\cdots(a_{a_{n-1}}+1)$ and hence $v_p(a_{a_n}/a_n) \geqslant \frac{1}{2}(a_n-n)k$. It remains to show that $\frac{1}{2}(a_n-n)k \geqslant (n-1)\cdot \frac{1}{2}nk$, which reduces to $a_n \geqslant n^2$, and this holds by induction for $n \geqslant 6$.

8. Since n = ab + bc + ca is equivalent to $n + a^2 = (a + b)(a + c)$, the problem reduces to finding a such that $n + a^2$ is a product of two integers greater than a.

Let $n = p^2 m$, where p is a prime. We first try taking a = p, so that $n + p^2 = (m+1)p^2$. This clearly works if m+1 > p, or if m+1 is composite $(m+1 = uv \Rightarrow n+p^2 = up \cdot vp)$.

It remains to deal with the case when $m+1=q \le p$ is a prime. Then $n=p^2q-p^2$, so we can take a to be the remainder of p modulo q: then $n+a^2=p^2q-(p^2-a^2)$ is divisible by q and greater than $n+a^2>n>pq$. This works unless q=p.

We are left with the case $n = p^2(p-1)$. Then a = 6 works if p > 3 (which corresponds to n > 20), because $n + a^2 = (p+3)(p^2 - 4p + 12)$.

- 9. Since all summands except a_0 are divisible by 3, a_0 is uniquely determined modulo 3. Subtract a_0 , multiply by $-\frac{2}{3}$ (this should decrease its absolute value, except in very small cases) and continue. The basis of induction will be from -6 to 6.
- 10. Switching from ϕ to $\bar{\phi} = \frac{-1+\sqrt{5}}{2}$ only changes the sign at $\sqrt{5}$, so if $a_0 + a_1 \phi + \cdots + a_k \phi^k = n$ is an integer, then also $a_0 + a_1 \bar{\phi} + \cdots + a_k \bar{\phi}^k = n$. But if each a_i is at most 1000, then $n \leq 1000(1 + \bar{\phi} + \cdots + \bar{\phi}^k) < \frac{1}{1-\bar{\phi}} = 500(3 + \sqrt{5})$. Thus the answer is no.
- 11. Observe that $N=a^2+3ab+3b^2-1$ divides $(a+b^3)+aN=(a+b)^3$. Assume to the contrary that N is not divisible by any cube other than 1. Then for any prime divisor p of a+b we have $v_p(N) \leq 2$, but $v_p((a+b)^3) \geq 3$, which implies that $N \leq (a+b)^2$. But this is false, thus finishing the proof.
- 12. Note that $3b = 4(2^n a + b) (2^{n+2}a + b)$. But b = 0 does not work, and if $a \neq 0$, then we get infinitely many ways to write 3b as a difference of two squares, which is impossible. Thus we must have a = 0.
- 13. (a) The characteristic polynomial is $P(t) = t^2 2t 1$ and its zeros are $1 + \sqrt{2}$ and $1 \sqrt{2}$. It follows that $a_n = A(1 + \sqrt{2})^n + B(1 \sqrt{2})^n$ for some constants A, B. Moreover, $a_0 = 0 = A + B$ and $a_1 = 1 = A(1 + \sqrt{2}) + B(1 \sqrt{2})$ give $A = -B = \frac{1}{2\sqrt{2}}$, so $a_n = \frac{1}{2\sqrt{2}}[(1 + \sqrt{2})^n (1 \sqrt{2})^n]$.
 - (b) The characteristic polynomial is $t^3 3t + 2$, with a double root t = 1 and a root t = -2. It follows that $a_n = (A + Bn) \cdot 1^n + C(-2)^n$. Plugging in n = 0, 1, 2 gives us a_0, a_1, a_2 yields $A = -\frac{1}{9}$, $B = \frac{1}{3}$, $C = \frac{1}{9}$, so $a_n = \frac{(-2)^n + 3n 1}{9}$.

- 14. Since $1+\sqrt{2}$ and $1-\sqrt{2}$ are the roots of the polynomial t^2-2t-1 , this is the characteristic polynomial of the sequence $a_n=(1+\sqrt{2})^n+(1-\sqrt{2})^n$, so the sequence satisfies the recurrence relation $a_n=2a_{n-1}+a_{n-2}$. Now since $a_0=a_1=2$, we can compute the sequence modulo 5. We get the sequence $2,2,1,4,4,2,3,3,4,1,1,3,2,2,\ldots$ which has a period 12 and contains no zero. Hence no a_n is divisible by 5.
- 15. Take n = 1000!m + 1. Then $n^2 k = m^2 \cdot 1000! 2m \cdot 1000! (k 1)$ is obviously composite for $k = 1, 3, 4, 5, \ldots, 1000$. As for $n^2 2$, we can set m to make it divisible by e.g. $33^2 2 = 1087$ which is a prime, and it is enough to take $m \equiv 33 \pmod{1087}$. (Alternatively, instead of 1087, that is prime by chance, we could have taken any odd prime divisor of $1000!^2 2$.)
- 16. Taking a to be a multiplicative inverse of m modulo n we find a, b with am bn = 1. Take c = a + n and d = b + m. Then also cm dn = 1. Moreover, ad bc = a(b+m) b(a+n) = 1.
- 17. We need n such that all prime factors of n^2+1 are less than n. Take an arbitrary k. Then k^2+1 divides n^2+1 whenever $n\equiv \pm k\pmod{k^2+1}$, so let us choose $n=k^2+k+1$. Then $n^2+1=(k^2+1)(k^2+2k+2)$. Finally, taking k even we get $n^2+1=2\cdot(k^2+1)\cdot\frac{k^2+2k+2}{2}$, where the three factors are distinct if $k\geqslant 3$ and less than n, so each factor occurs in the product $n!=1\cdot 2\cdots n$. This secures that $n^2+1\mid n!$.
- 18. We can have three pairs (a_i, b_i) , e.g. (1, 1), (1, 2), (2, 3). We cannot have four. Indeed, first of all, we cannot have a_i, b_i both even, so if n > 3, there are two fractions with $a_i \equiv a_j$ and $b_i \equiv b_j \pmod{2}$, but then $a_i b_i a_i b_j$ is even.
- 19. We have $(a_{n+1} 3a_n)^2 = 8a_n^2 + 1$, i.e. $a_{n+1}^2 6a_na_{n+1} + a_n^2 = 1$. Subtracting the analogous equation for n-1, which is $a_{n-1}^2 6a_na_{n-1} + a_n^2 = 1$, we obtain $a_{n+1}^2 a_{n-1}^2 = 6a_n(a_{n+1} a_{n-1})$. Canceling $a_{n+1} a_{n-1}$ (which is obviously positive) yields $a_{n+1} = 6a_n a_{n-1}$. All terms are integers by induction.
- 20. Subtracting the original relation from the analogous shifted relation $a_{n+1} + a_{n+2} = a_{n+3}a_{n+4} 1000$ yields $a_{n+2} a_n = a_{n+3}(a_{n+4} a_{n+2})$. There are two cases.
 - (i) $a_{n+3}=1$ for some n. Then $1-a_{n+1}=a_{n+4}(a_{n+5}-1)$, but since all terms are positive, this is only possible if $a_{n+1}=a_{n+5}=1$. By induction, $a_k=1$ for all $k \equiv n+1 \pmod 2$. Then $a_{k+1}=a_{k-1}+1001$ for all such k, so the sequence (a_n) has the form (1,) a, 1, a+1001, 1, a+2002, 1, . . .
 - (ii) $a_{n+3} > 1$ for all n. Then either $|a_{n+4} a_{n+2}| < |a_{n+2} a_n|$ for all n, which is impossible (infinitely decaying nonnegative integers!), or $a_{n+2} = a_n$ for all n. Thus the sequence has the form a, b, a, b, a, b, \ldots , where a and b must satisfy a + b = ab 1000, i.e. (a-1)(b-1) = 1001, giving 8 possibilities.
- 21. Write $a_n = \frac{x_n}{y_n}$, assuming the initial values $x_0 = y_0 = 1$. Then $\frac{x_{n+1}}{y_{n+1}} = a_{n+1} = \frac{y_n + x_n}{3y_n + x_n}$, so we can define $x_{n+1} = x_n + y_n$ and $y_{n+1} = x_n + 3y_n$.
 - We will eliminate y_n . The first relation gives $y_n = x_{n+1} x_n$ and consequently $y_{n+1} = x_{n+2} x_{n+1}$, so the second relation becomes $x_{n+2} x_{n+1} = x_n + 3(x_{n+1} x_n)$, i.e. $x_{n+2} 4x_{n+1} + 2x_n = 0$. From here we obtain $x_n = A(2 + \sqrt{2})^n + B(2 \sqrt{2})^n$, and

- from the initial values $x_0 = 1$ and $x_1 = 2$ we find $A = B = \frac{1}{2}$, so $x_n = \frac{1}{2}[(2 + \sqrt{2})^n + (2 \sqrt{2})^n]$. For y_n we get $y_n = x_{n+1} x_n = \frac{1}{2}[(1 + \sqrt{2})(2 + \sqrt{2})^n + (1 \sqrt{2})(2 \sqrt{2})^{n+1}]$.
- 22. The characteristic polynomial of F_n is t^2-t-1 with the zeros $\phi=\frac{1+\sqrt{5}}{2}$ and $\bar{\phi}=\frac{1-\sqrt{5}}{2}$, so $F_n=A\phi^n+B\bar{\phi}^n$. From $F_0=0$ and $F_1=1$ we find $A=-B=\frac{1}{\sqrt{5}}$, so $F_n=\frac{\phi^n-\bar{\phi}^n}{\sqrt{5}}$. Using $\phi\bar{\phi}=-1$ we obtain $5F_n^2=\phi^{2n}+\bar{\phi}^{2n}-2(-1)^n$, so $5F_n^2+4(-1)^n=(\phi^n+\bar{\phi}^n)^2$. Finally, note that $L_n=\phi^n+\bar{\phi}^n$ is an integer, because $L_0=2$, $L_1=1$ and $L_{n+1}=L_n+L_{n-1}$.
- 23. Since there are only finitely many possible pairs (F_n, F_{n+1}) modulo a, some will repeat: e.g. $F_n \equiv F_m$ and $F_{n+1} \equiv F_{m+1} \pmod{a}$ for some m < n. Then by induction $F_{n-k} \equiv F_{m-k} \pmod{a}$, and in particular $F_{n-m} \equiv F_0 = 0 \pmod{a}$, so $a \mid F_{n-m}$.
- 24. First note that if F_k is the smallest Fibonacci number divisible by a, then $a \mid F_n$ if and only if $k \mid n$.

 It follows from above that $F_{\gcd(m,n)}$ divides both F_m and F_n . On the other hand, If

It follows from above that $F_{gcd(m,n)}$ divides both F_m and F_n . On the other hand, If any d divides F_m and F_n , then it must divide F_k for some k that divides both m and n, which completes the proof.

25. Obvious solutions are $F_1 = F_2 = 1$ and $F_3 = 2$, $F_6 = 8$ for powers of 2, or $F_4 = 3$ for powers of 3. We claim that there are no others.

The Fibonacci sequence modulo 9 is $0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, \ldots$, so $9 \mid F_n$ if and only if $12 \mid n$, but then F_n is also divisible by $F_{12} = 144$ and cannot be a power of 3.

Similarly, modulo 16 we get $0, 1, 1, 2, 3, 5, 8, 13, 5, 2, 7, 9, 0, \ldots$, so $16 \mid F_n$ if and only if $12 \mid n$. Again, then F_n cannot be a power of 2.

26. The sequence modulo 2 has period 2, so we have the basis of induction: $2 \mid a_n$ if and only if $2 \mid n$. To do the inductive step, it suffices to show that $\frac{a_{2n}}{a_n}$ is an integer divisible by 2 but not by 4.

The explicit formula for a_n is $a_n = \frac{1}{2\sqrt{2}}[(1+\sqrt{2})^n - (1-\sqrt{2})^n]$, which gives us $\frac{a_{2n}}{a_n} = (1+\sqrt{2})^n + (1-\sqrt{2})^n$. When expanded by the binomial formula, this will give $\frac{a_{2n}}{a_n} = 2 + 2^2 \binom{n}{2} + 2^3 \binom{n}{4} + \cdots$, which is indeed 2 (mod 4), as desired.

27. We can assume w.l.o.g. that $a_0 = x^2$ is a square. Then $a_0 \equiv 0, 1 \pmod{4}$, which implies $a_1 \equiv 3, 0 \pmod{4}$ and $a_2 \equiv 2, 3 \pmod{4}$. By induction it follows that $a_n \equiv 2, 3 \pmod{4}$ for every $n \geq 2$, so a_n is not a square if $n \geq 2$.

It remains to verify that $a_1 = x^6 + 103$ is not a square. If to the contrary $a_1 = y^2$, then $(y - x^3)(y + x^3) = 103$ is a prime, implying that $x^3 = 51$, a contradiction.

28. Assume that $4ab - 1 \mid (a+b)^{15}$ and consider any prime divisor p of 4ab - 1. We have $p \mid a+b$, so $b \equiv -a$ and $4ab - 1 \equiv -(4a^2 + 1) \pmod{p}$, so $p \mid (2a)^2 + 1$, and this is possible only if $p \equiv 1 \pmod{4}$. But not all prime divisors of 4ab - 1 can be $1 \pmod{4}$, a contradiction.

- 29. (a) Suppose that p=3k+2. Since $p\mid x^3-y^3$, we have $y^{p-2}=y^{3k}\equiv x^{3k}=x^{p-2}$, and since also $y^{p-1}\equiv x^{p-1}$ by Fermat's theorem, we deduce that $y\equiv x$. But then $p\mid x^2+xy+y^2\equiv 3x^2\pmod p$, so $p\mid 3$, which is a contradiction.
 - (b) Taking x + p instead of x if needed, we can assume that x = 2y + 1 is odd. Then $p \mid x^2 + 3 = 4(y^2 + y + 1)$, which by part (a) for p > 3 implies that $p \equiv 1 \pmod{3}$.
- 30. Observe that $d = \gcd(an + 2, bn + 3)$ divides a(bn + 3) b(an + 2) = 3a 2b. If $n = |3a 2b| \neq 0$, then $\gcd(an + 2, bn + 3)$ divides n, so it also divides 2 and 3 and therefore equals 1, a contradiction. Thus we must have |3a 2b| = 0, i.e. $\frac{b}{a} = \frac{3}{2}$.
- 31. Denote $d = \gcd(ab+1,bc+1,ca+1)$. Clearly, d is coprime to a,b,c, but $d \mid (ab+1)-(ac+1)=a(b-c)$, so $d \mid b-c$; similarly, $d \mid c-a$ and $d \mid a-b$. Assuming that a < b < c, this means that $b \geqslant a+d$ and $c \geqslant a+2d$, so $a+b+c \geqslant a+3d \geqslant 3d$, as desired.
- 32. We prove by induction on n that there is x such that $3^n \mid x^2 + 2$. Base of induction is n = 1: then e.g. x = 1. Inductive step: Assuming there is x with $3^n \mid x^2 + 2$, we will find y with $3^{n+1} \mid y^2 + 2$. We set $y = x + 3^n k$. Then $y^2 + 2 = x^2 + 2 + 2x \cdot 3^n k + 3^{2n} k^2$ is divisible by 3^{n+1} if $2x \cdot k \equiv -\frac{x^2+2}{3^n} \pmod{3}$, and such a k obviously exists.
- 33. We will find n such that p = n + 100 is a prime. Since $p \mid (p-1)! + 1$, we infer $p \mid (p-1)! (p-100)! = (p-100)! \cdot [(p-1)(p-2) \cdot \cdot \cdot (p-99) 1] \equiv -99! 1$, so it is enough to take for p any prime divisor of 99! + 1 (then clearly p > 100, so p > 0).
- 34. Each of the numbers a,b,c divides ab+bc+ca+1. The numbers a,b,c must be pairwise coprime, so $abc \mid ab+bc+ca+1$, i.e. $F=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{abc}$ is an integer. Let $a\leqslant b\leqslant c$. For $a\geqslant 3$ we have $F\leqslant \frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{60}<1$, so no solutions.

If a=2, then $b\geqslant 5$ leads to F<1, and b=4 is impossible, so b=3 and $c\mid 2\cdot 3+1$, i.e. (a,b,c)=(2,3,7).

If a = 1, then $b \mid c+1$ and $c \mid b+1$ and we get three more solutions: (1,1,1), (1,1,2), (1,2,3).