

II. DIGITALIZAÇÃO

"Processo que permite transformar os sinais analógicos, contínuos no tempo, em sequências de números com um número limitado de dígitos, que representam a amplitude do sinal em instantes de tempo regularmente espaçados"

 as questões relacionadas com analógico vs digital abrangem os domínios dos dados, dos sinais e dos sistemas de transmissão

1

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Exemplo: Questões relacionadas com a natureza dos sinais

II. DIGITALIZAÇÃO

Exemplo: Questões relacionadas com a transmissão

Transmissão Analógica

- Sinal analógico é transmitido independentemente dos dados que ele transporta
- Sinal é atenuado ao longo da distância percorrida
- Utilização de amplificadores para aumentar a potência do sinal mas...
- ...também amplificam o ruído existente (exemplo?)

3

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Transmissão Digital

- Preocupação com os dados (mensagem) que o sinal transporta
- Utilização de equipamentos que: recebem o sinal, observam os dados que eles transportam, e retransmitem/regeneram o sinal
 - a atenuação do sinal é assim ultrapassada e...
 - ... o ruído não é amplificado (exemplo?)
- Possibilidade da utilização de mecanismos detectores/ correctores de erros (como mais tarde veremos)

II. DIGITALIZAÇÃO

Este capítulo foca principalmente...

"Processo que permite transformar os sinais analógicos, contínuos no tempo, em sequências de números com um número limitado de dígitos, que representam a amplitude do sinal em instantes de tempo regularmente espaçados"

nota: Relação entre digitalização e técnicas de multiplexagem?

5

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

- A base teórica da digitalização (e alguns dos exercícios associados) requer a compreensão de conceitos adicionais:
 - espectro de um sinal
 - largura de banda de um sinal
 - largura de banda de transmissão de um sistema
 - ritmo máximo de símbolos digitais suportado por um sistema de transmissão

II. DIGITALIZAÇÃO - conceitos introdutórios -

- Espectro de um sinal é uma representação do sinal no domínio das frequências
- Largura de Banda (B) de um sinal é a amplitude de um intervalo espectral positivo onde está "parte significativa" da energia do sinal

... mais tarde será estudado em profundidade

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO - conceitos introdutórios -

- Sistemas de transmissão
 - Também podem ser representados no domínio das frequências
 - Define-se largura de banda de transmissão de um sistema (B_T) como o intervalo de frequências nas quais o sistema permite uma transmissão com "aceitável" qualidade

... mais tarde será estudado em profundidade

II. DIGITALIZAÇÃO - conceitos introdutórios -

 Ritmo de Nyquist num sistema de transmissão com largura de banda B_T, o ritmo máximo teórico de símbolos (r_s) digitais que por ele se podem transmitir é de:

$$r_s \le 2 * B_T$$

 <u>Filtros</u> sistemas que por alguma razão pretendem alterar o espectro do sinal (modelados da mesma forma que os sistemas de transmissão). Diversos tipos: passa-baixo, passaalto, passa-banda (exemplo?)

a

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

"Processo que permite transformar os sinais analógicos, contínuos no tempo, em sequências de números com um número limitado de dígitos, que representam a amplitude do sinal em instantes de tempo regularmente espaçados"

> Quais as fases de um processo de digitalização?

II. DIGITALIZAÇÃO

discretização no tempo

 Amostragem – recolha periódica de valores do sinal (amostras);

- Quantização aproximação do valor das amplitudes das amostras a um número limitado de níveis quânticos;
- 3. Conversão AD representação do valor aproximado das amplitudes das amostras através de valor numérico/digital (normalmente em binário);
- 4. Codificação de Linha transformação dos valores numéricos em formas de representação apropriadas ao canal de transmissão.

11

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Amostragem

- Processo pelo qual o sinal é amostrado através de uma sequência de pulsos intercalados no tempo
- A quantidade de amostras recolhidas depende de um parâmetro designado por frequência de amostragem
- Que valor para a frequência de amostragem?

II. DIGITALIZAÇÃO

Amostragem x(t) é o sinal original; p(t) representa uma série de pulsos intercalados no tempo; : x_a(t) é o sinal amostrado x_a(t) = x(t) * p(t)

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Supondo um sinal limitado à Banda (0..B) quantas amostras precisamos para que $x_a(t)$ represente de alguma forma o sinal x(t)? Seja X(f) o espectro do sinal original e $X_a(f)$ o espectro do sinal amostrado. Prova-se que:

$$X_a(f) = \sum_{n=-\infty}^{+\infty} \widehat{C(nf_a)} X(f - nf_a)$$

ou seja, o espectro do sinal amostrado é aproximadamente igual à soma do espectro X(f) com réplicas desse espectro desfasadas em +/- n*fa Hz.

II. DIGITALIZAÇÃO

Exemplo de dois cenários de amostragem...

15

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Teorema 5.1 (Teorema da Amostragem) Um sinal de espectro limitado à banda de frequências [0, B] fica completamente definido pelas suas amostras desde que recolhidas a uma frequência igual ou superior a 2B,

$$f_a \ge 2B \tag{5.6}$$

podendo o sinal ser recuperado a partir das amostras por filtragem passabaixo com largura de banda do filtro B_T igual a B Hz.

 teorema que define um limite mínimo para a frequência de amostragem

II. DIGITALIZAÇÃO

- Algumas considerações relacionadas com a operação de amostragem na prática
 - 1. Filtros não são ideais
 - 2. Os sinais, na prática, não possuem espectros limitados
- Devido a isto a frequência de amostragem é normalmente maior que 2*B; (mas em termos teóricos continuamos a assumir f_a ≥ 2B)

17

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

 O sinal, embora tenha largura de banda B, tem um espectro que se estende para além desta banda com componentes não nulas

Aliasing espectral dos sinais da prática mesmo com $f_a > 2B$

II. DIGITALIZAÇÃO

 Exemplo envolvendo a filtragem prévia do sinal por forma a evitar o fenómeno de aliasing

Filtragem prévia do sinal evitando o aliasing na amostragem

19

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Quantização

- as amostras podem ter um valor infinito de valores
- por forma a ser possível a transformação das amplitudes das amostras em números elas precisam de assumir um número finito de valores
- esta aproximação introduz ruído no processo de conversão analógico/digital
- processo de discretização das amplitudes designa-se por <u>quantização</u> (existem diferentes estratégias de quantização)

II. DIGITALIZAÇÃO

Quantização Uniforme

- Divisão do intervalo da variação do valor das amostras em níveis quânticos de amplitude fixa (i.e. igualmente espaçados entre si).
- Quantos mais níveis quânticos (número q)
 maior a precisão na representação da amostra.
- Se K for o número de dígitos a utilizar na representação dos valores dos níveis quânticos, então K = log_b(q), em que b é a base escolhida (geralmente b=2 pois a codificação binária é a mais frequente)

21

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Quantização Uniforme

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Quantização Uniforme - exemplo com quatro intervalos -

23

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Ruído da Quantização Uniforme

Erro em cada amostra

$$\xi_q = |x_a(t) - x_q(t)|$$

Potência do ruído de quantização
$$\overline{\varepsilon_q^2} = N_q = \int_{x_{-\min}}^{x_{-\max}} (x - x_q)^2 \cdot p(x) dx$$

$$N_q = 1/3q^2$$

Relação entre potência do sinal e do ruído

$$S/N_q = 3q^2S$$
 $(S/N_q)_{dB} = 10 \log_{10} (S/N_q)$

II. DIGITALIZAÇÃO

Quantização Não Uniforme

- Por vezes os sinais analógicos possuem elevados valores de crista
- Amplitude do sinal situa-se mais frequentemente na zona das amplitudes mais baixas
- Objectivo é diminuir o ruído total da quantização para fontes com uma função de densidade de probabilidade não uniforme
- Quantização não uniforme.... níveis quânticos não estão igualmente espaçados entre si

25

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Quantização Não Uniforme

II. DIGITALIZAÇÃO

Quantização Não Uniforme - exemplo com quatro intervalos -

27

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Quantização Não Uniforme

- Um quantizador não uniforme é mais complexo de implementar que um uniforme
- na prática a quantização não uniforme pode realizar-se em duas fases:
 - 1. compressão não linear do sinal
 - 2. quantização uniforme do sinal comprimido
- » prova-se que 1 + 2 corresponde a uma quantização não uniforme do sinal original

II. DIGITALIZAÇÃO

Quantização Não Uniforme

- Qual o objectivo da compressão não linear do sinal?
 - uniformizar a densidade de probabilidade das amplitudes dos sinais
 - diversas formas de o fazer...
- Estudos provam que a característica do compressor que melhor uniformiza <u>alguns</u> sinais de audio:
 - linear de zero até um certo valor das amplitudes (1/A)
 - ... e depois logarítmica até ao valor máximo

29

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Quantização Não Uniforme

Companding de Lei-A (Lei de quantização europeia)

$$y = \begin{cases} \frac{Ax}{1 + \ln A} & \text{para} & |x| \le \frac{1}{A} \\ \frac{1 + \ln Ax}{1 + \ln A} & \text{para} & \frac{1}{A} < |x| \le 1 \end{cases}$$

x(t) é comprimido segundo esta lei dando origem a y(t);
 y(t) é amostrado e quantizado uniformemente dando origem a y_q(t); ...; y(t) é recuperado por filtragem (com erro de quantização); y(t) é depois expandido pela função inversa para se obter x(t)

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Quantização Não Uniforme

Qual é a lógica

com Companding de Lei-A

desta transformação !!?

Compressor de lei-A e sua aproximação com 13 segmentos

31

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Quantização Não Uniforme

 Nos Estados Unidos da América a lei de quantização difere da Lei-A e é designada por Lei-µ

$$y = \frac{\ln(1+\mu x)}{\ln(1+\mu)}$$

II. DIGITALIZAÇÃO

Conversão Analógico a Digital

- Depois de quantizadas as amostras já se encontram discretizadas a um conjunto de q valores
- A conversão analógico digital executa a conversão para uma determinada base dos valores discretizados das amostras
- Se K for o número de dígitos a utilizar na representação dos valores dos níveis quânticos, então K = log_M(q) (M=base da numeração; base 2 normalmente usada)

33

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Conversão Analógico a Digital - Codificação PCM

- PCM (Pulse Code Modulation) é a designação que se dá à sequência serializada no tempo dos dígitos resultantes da codificação das amostras
- Ritmo de símbolos de um canal PCM codificado a K dígitos por amostra:

r_c = K * f_a (se base 2 então bits/seg)

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Codificação PCM

35

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

e.g. Telefones RDIS..... evolução rede telefónica

... o acesso Básico possui dois canais B para transmissão de voz ou dados de 64 Kbps cada um e um canal D utilizado para sinalização de 16 Kbps ...

36

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Exemplos de normalizações PCM

Sinais telefónicos (ITU, Recomendação G.711)

Frequência de amostragem: $f_a = 8 \text{ KHz}$

Quantização: não-uniforme a q=256 níveis

Palavra PCM: k = 8 bits

Ritmo binário (um canal): $r_b = k f_a = 64 \text{ Kbps}$

Lei de quantização Europeia: compressão digital segundo a lei-A,

com 13 segmentos.

Lei de quantização Americana: compressão digital segundo a lei-µ,

com 15 segmentos.

Transmissão de Música

Frequência de amostragem: $f_a = 32 \text{ KHz}$

Quantização: uniforme com k = 14 bits

Ritmo binário: $r_b = 448 \text{ Kbps ou}$

Quantização: não-uniforme com k=12 bits

Ritmo binário: $r_b = 384 \text{ Kbps}$

Lei de quantização: lei-A com 5 segmentos ou

Quantização: não-uniforme com k = 10 bits

Ritmo binário: $r_b=320~{\rm Kbps}$ Lei de quantização: $lei\text{-}A~{\rm com}~13~{\rm segmentos}$

Sinais de Vídeo (Televisão)

Frequência de amostragem: $f_a = 13.3 \text{ MHz}$

Quantização: uniforme com k=8 ou 9 bits

Gravação de Música

Frequência de amostragem: $f_a = 44.1 \text{ KHz}$

Quantização: uniforme com k=16 bits

Ritmo binário: $r_b \approx 0.7 \text{ Mbps}$

37

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

E se ocorrerem **erros** na transmissão (ou gravação) de uma sequência de dígitos resultante de um processo de digitalização? (consequências?)

Codificação PCM

erro

E se na transmissão se adoptar **outra base** para os dígitos/símbolos que não a binária?

(vantagens/desvantagens?)

É possível detetar/corrigir esses erros? ...

II. DIGITALIZAÇÃO

Ruído em PCM

- Ruído no canal de transmissão (ou gravação) pode corromper algum dos bits de codificação das amostras
- No processo de descodificação o nível quântico em que foi descodificada a determinada amostra poderá não ser o correcto

Prova-se que a potência do ruído (erro) de descodificação é:

Probabilidade de erro por bit na transmissão ou gravação

39

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Ruído em PCM

 Potência total do ruído no destino (N_D) será a soma da potência do ruído de descodificação (N_d) com a potência do ruído de quantização (N_q)

II. DIGITALIZAÇÃO

Ruído em PCM

(relação entre potência do sinal e do ruído)

$$S/N_D = \frac{3q^2}{1 + 4q^2 P_e} * S$$

$$\left(\frac{S}{N}\right)_D \le \frac{3q^2}{1 + 4q^2 \, P_e}$$

$$\left(\frac{S}{N}\right)_D \le \begin{cases} 3q^2 & \text{se} & P_e \ll \frac{1}{4q^2} \\ \frac{3}{4P_e} & \text{se} & P_e \gg \frac{1}{4q^2} \end{cases}$$

assumindo S ≤ 1

41

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Ruído em PCM

Conclusão:

- Em PCM o ruído de quantização é a componente dominante da qualidade da digitalização quando
 P_e na transmissão (ou gravação) é pequena (comparativamente a 1/4q²), mas...
-o ruído de descodificação devido a erros de transmissão (ou gravação) é mais significativo quando P_e é grande (comparativamente a 1/4q²)

II. DIGITALIZAÇÃO

Conversão Analógico a Digital

- Existem outros métodos distintos do PCM
- Alguns baseiam-se no facto de alguns sinais terem algum grau de previsibilidade
 - e.g. as alterações de valor de uma amostra para a amostra seguinte serem relativamente pequenas
 - neste esquemas é transmitido só o erro da previsão realizada
 - Exemplo: modulação delta e modulação delta adaptativa (vantagens: hardware mais simples)

43

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Codificação Delta Linear

(só breve referência)

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Codificação Delta Adaptativa

(só breve referência)

45

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

II. DIGITALIZAÇÃO

Digitalização / Teoria da Informação ?

