# 第2章 插值法

内容提要

- 2.1 引言
- 2.2 拉格朗日插值
- 2.3 均差与牛顿插值公式
- 2.4 埃尔米特插值
- 2.5 分段低次插值
- 2.6 三次样条插值 (只要求概念等基本知识,不要求细节公式)

## 2.1 引言

许多实际问题都用函数 y=f(x) 来表示某种内在规律的数量关系。

若已知 f(x) 在某个区间 [a,b] 上存在、连续,但只能给出 [a,b] 上一系列点的函数值表时,或者函数有解析表达式,但计算过于复杂、使用不方便,通常也造一个函数值表(如三角函数表、对数表等)时,为了研究函数的变化规律,往往需要求出不在表上的函数值。因此我们希望根据给定的函数表做一个既能 反映函数 f(x) 的特性,又便于计算的简单函数 P(x),用 P(x) 近似 f(x)。

这就引出了插值问题。

#### 1、提出问题(插值法的定义)

设函数 y = f(x) 在区间 [a,b] 上有定义,且已知在点  $a \le x_0 < x_1 < \cdots < x_n \le b$  上的值  $y_0, y_1, \cdots, y_n$ ,若存在一简单函数 P(x),使

$$P(x_i) = y_i \qquad (i = 0,1,\dots,n)$$

成立,就称 P(x) 为 f(x) 的插值函数,点  $x_0, x_1, \dots, x_n$  称为插值节点,包含插值节点的区间 [a,b] 称为插值区间,求插值函数 P(x) 的方法称为插值法。

## 2、几何意义、外插、内插



## 3、插值的种类

选取不同的函数族构造 P(x) 得到不同类型的插值若 P(x) 是次数不超过 n 的代数多项式,就称为多项式插值;若 P(x) 为分段的多项式,就称为分段插值;

若 P(x) 为三角多项式,就称为三角插值。

本章课件只讨论多项式插值与分段插值。主要研究内容为如何求出插值多项式,分段插值函数;讨论插值多项式 P(x)的存在唯一性、收敛性及估计误差等。

## 4、多项式插值问题

已知:函数 y = f(x) 在区间 [a,b] 上有定义及在点  $a \le x_0 < x_1 < \dots < x_n \le b$  上的函数值  $y_0, y_1, \dots, y_n$ 。

求: n 次多项式  $P(x) = a_0 + a_1 x + \dots + a_n x^n$ , 满足  $P(x_i) = y_i \qquad (i = 0, 1, \dots, n) \qquad (P(x)) 即为 f(x) 的插值多项式)$ 

## 插值多项式的存在唯一性

对于多项式插值问题,插值条件满足等价于确定多项式的系数, 使其满足如下线性方程组

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \cdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \\ \cdots \\ f(x_n) \end{bmatrix}$$
(n+1)x(n+1)
系数矩阵

其系数行列式为范德蒙 (Vandemonde) 行列式

$$D = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix} = \prod_{0 \le i < j \le n} (x_j - x_i) \ne 0$$

定理2-1 (存在唯一性) 满足插值条件的不超过 n 次的插值多项式是存在且唯一的。

# 2.2 拉格朗日插值

一、线性插值与抛物线插值

#### 1、线性插值



线性插值问题: 已知函数 y = f(x) 在区间  $[x_k, x_{k+1}]$  上有定义及 在端点函数值  $y_k = f(x_k)$  ,  $y_{k+1} = f(x_{k+1})$  , 要求线性插值多项式  $L_1(x)$ ,使它满足

$$L_1(x_k) = y_k, L_1(x_{k+1}) = y_{k+1}^{\circ}$$

L(x)的表达式可由几何意义直接给出:

$$L_{1}(x) = y_{k} + \frac{y_{k+1} - y_{k}}{x_{k+1} - x_{k}} (x - x_{k})$$
 (点斜式)
$$L_{1}(x) = \frac{x_{k+1} - x}{x_{k+1} - x_{k}} y_{k} + \frac{x - x_{k}}{x_{k+1} - x_{k}} y_{k+1}$$
 (两点两项式)

 $= \frac{x - x_{k+1}}{x_k - x_{k+1}} y_k + \frac{x - x_k}{x_{k+1} - x_k} y_{k+1}$ 

由两点两项式看出,L(x)是由两个线性函数

$$l_k(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}}, \qquad l_{k+1}(x) = \frac{x - x_k}{x_{k+1} - x_k}$$

的线性组合得到,其系数分别为  $y_k$  及  $y_{k+1}$  ,即  $L_1(x) = l_k(x)y_k + l_{k+1}(x)y_{k+1}$  其中, $l_k(x)$ 与  $l_{k+1}(x)$  称为线性插值基函数,它们满足下面条件:

- (i)  $l_k(x)$  与  $l_{k+1}(x)$  也是线性函数;
- (ii) 在节点  $x_k$  与  $x_{k+1}$  处满足:

$$l_k(x_k) = 1$$
  $l_k(x_{k+1}) = 0;$   $l_{k+1}(x_k) = 0$   $l_{k+1}(x_{k+1}) = 1_{\circ}$ 

推验

## 2、抛物插值

拋物插值问题: 已知函数 y = f(x) 在区间  $[x_{k-1}, x_{k+1}]$  上有定义及 在节点  $x_{k-1}$ 、  $x_k$  和  $x_{k+1}$  的函数值  $y_{k-1} = f(x_{k-1})$ ,  $y_k = f(x_k)$ ,  $y_{k+1} = f(x_{k+1})$ , 要求拋物插值多项式  $L_2(x)$ ,使它满足

$$L_2(x_{k-1}) = y_{k-1}, L_2(x_k) = y_k, L_2(x_{k+1}) = y_{k+1}^{\circ}$$

#### 基函数法求解

 $L_2(x)$  表示为已知节点函数值的组合形式:

$$L_2(x) = l_{k-1}(x)y_{k-1} + l_k(x)y_k + l_{k+1}(x)y_{k+1}$$

其中,组合函数分别为 $l_{k-1}(x)$ 、 $l_k(x)$ 及 $l_{k+1}(x)$ 。

 $l_{k-1}(x)$ 、 $l_k(x)$ 与 $l_{k+1}(x)$ 通常称为抛物插值基函数,它们满足下面条件:

- (i)  $l_{k-1}(x)$ 、 $l_k(x)$ 与 $l_{k+1}(x)$ 也是抛物线函数;
- (ii) 在节点  $x_{k-1}, x_k$  与  $x_{k+1}$  处满足:

$$\begin{split} l_{k-1}(x_{k-1}) &= 1 & l_{k-1}(x_k) &= 0 & l_{k-1}(x_{k+1}) &= 0; \\ l_k(x_{k-1}) &= 0 & l_k(x_k) &= 1 & l_k(x_{k+1}) &= 0; \\ l_{k+1}(x_{k-1}) &= 0 & l_{k+1}(x_k) &= 0 & l_{k+1}(x_{k+1}) &= 1. \end{split}$$

## 求解基函数

先求基函数  $l_{k-1}(x)$ 

(1) 由  $l_{k-1}(x_k) = 0$  与  $l_{k-1}(x_{k+1}) = 0$  知  $x_k$  与  $x_{k+1}$  是函数  $l_{k-1}(x)$  的零点,又由于  $l_{k-1}(x)$  满足条件 (i),于是设

$$l_{k-1}(x) = A(x-x_k)(x-x_{k+1})$$
 (其中 A 为待定常数)

(2) 由  $l_{k-1}(x_{k-1}) = 1$ ,得

$$l_{k-1}(x_{k-1}) = A(x_{k-1} - x_k)(x_{k-1} - x_{k+1})$$

于是

$$A = \frac{1}{(x_{k-1} - x_k)(x_{k-1} - x_{k+1})}$$

故有

$$l_{k-1}(x) = \frac{(x - x_k)(x - x_{k+1})}{(x_{k-1} - x_k)(x_{k-1} - x_{k+1})}$$

同理可得

$$l_k(x) = \frac{(x - x_{k-1})(x - x_{k+1})}{(x_k - x_{k-1})(x_k - x_{k+1})}$$
$$l_{k+1}(x) = \frac{(x - x_{k-1})(x - x_k)}{(x_{k+1} - x_{k-1})(x_{k+1} - x_k)}$$

抛物插值公式为

速记公式

$$L_2(x) = \frac{(x - x_k)(x - x_{k+1})}{(x_{k-1} - x_k)(x_{k-1} - x_{k+1})} y_{k-1} + \frac{(x - x_{k-1})(x - x_{k+1})}{(x_k - x_{k-1})(x_k - x_{k+1})} y_k + \frac{(x - x_{k-1})(x - x_k)}{(x_{k+1} - x_{k-1})(x_{k+1} - x_k)} y_{k+1}$$

自己写出4点Lagrange公式

## 二、拉格朗日插值多项式

上面针对 n=1 和 n=2 的情况,得到了一次和二次插值多项式,这种用基函数表示的方法很容易推广到一般情况。下面讨论如何构造 n+1 个节点的 n 次插值多项式。

1、拉格朗日插值问题: 已知函数 y = f(x) 在区间  $[x_0, x_n]$  上有定义及在 n+1 个节点  $x_0 < x_1 < \dots < x_n$  的函数值  $y_j = f(x_j)$  ( $j = 0,1,\dots n$ )要求 n 次插值多项式  $L_n(x)$ ,使它满足

$$L_n(x_j) = y_j, \quad (j = 0, 1, \dots n)$$

#### 基函数法求解

 $L_n(x)$  表示为已知节点函数值的基函数组合形式:

$$L_n(x) = \sum_{k=0}^n y_k l_k(x)$$

其中,组合系数为 $y_k$ ,而 $l_k(x)$ 被称为n次插值基函数,满足下面条件:

- (i)  $l_k(x)$  ( $k = 0, 1, \dots, n$ ) 是不超过 n 的多项式函数;
- (ii) 在节点  $x_k$  ( $k = 0, 1, \dots, n$ ) 处满足

$$l_{j}(x_{k}) = \begin{cases} 1, & k = j \\ 0, & k \neq j \end{cases} (j, k = 0, 1, \dots n)_{\circ}$$

求基函数  $l_k(x)$   $(k = 0,1,\dots,n)$ 

(1) 
$$\pm l_k(x_j) = 0$$
  $(j = 0, 1, \dots, k-1, k+1, \dots n)$   $\pm x_j$   $(j = 0, 1, \dots, k-1, k+1, \dots n)$   $\pm k$ 

函数  $l_k(x)$  的零点,又由于  $l_k(x)$  满足条件 (i),于是设

$$l_k(x) = A(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)$$
 (其中 A 为待定常数)

(2)由 $l_k(x_k)=1$ ,得

$$l_k(x_k) = A(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n) = 1$$

于是

$$A = \frac{1}{(x_{k} - x_{0}) \cdots (x_{k} - x_{k-1})(x_{k} - x_{k+1}) \cdots (x_{k} - x_{n})}$$

故有

$$l_k(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$

若引入记号  $\omega_{n+1}(x) = (x-x_0)(x-x_1)\cdots(x-x_k)\cdots(x-x_n)$ 

易得  $\omega'_{n+1}(x_k) = (x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)$ 

则 
$$l_k(x) = \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)}$$

## n次拉格朗日插值多项式 $L_n(x)$ 为

$$L_{n}(x) = \sum_{k=0}^{n} y_{k} \frac{\omega_{n+1}(x)}{(x - x_{k})\omega'_{n+1}(x_{k})}$$

#### 2、插值余项与误差估计

若在[a,b]上用 $L_n(x)$ 近似f(x),则其截断误差为 $R = f(x) - L_n(x)$ ,也称为插值多项式的余项,也记为 $R_n(x)$ 。

定理2-2 设  $f^{(n)}(x)$  在 [a,b] 上连续, $f^{(n+1)}(x)$  在 (a,b) 内存在,节点  $a \le x_0 < x_1 < \dots < x_n \le b$ , $L_n(x)$  是满足拉格朗日插值条件的多项式,则 对任何  $x \in [a,b]$ ,插值余项  $\frac{b}{b}$  (条件数目) 阶导

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

这里 $\xi \in (a,b)$ 且依赖于x。

点数 (条件数目) 阶乘

证明:由条件知节点  $x_k(k=0,1,\cdots,n)$  是  $R_n(x)$  的零点,即  $R_n(x_k)=0$ 。于是  $R_n(x)=K(x)(x-x_0)(x-x_1)\cdots(x-x_n)=K(x)\omega_{n+1}(x)$  其中 K(x) 是与 x 有关的待定函数。

现把x看成[a,b]上的固定点,作函数

$$\phi(t) = f(t) - L_n(t) - K(x)(t - x_0)(t - x_1) \cdots (t - x_n)$$

根据插值条件和余项定义,知 $\phi(t)$ 在点 $x_0, x_1, \dots, x_n$ 及x处均为零。 故 $\phi(t)$ 在[a,b]上有n+2个零点,根据罗尔定理, $\phi'(t)$ 在[a,b]内至少有n+1个零点。对 $\phi'(t)$  再应用罗尔定理,可知 $\phi''(t)$  在[a,b]内至少有n个零点。依次类推, $\phi^{(n+1)}(t)$  在 (a,b) 上至少有一个零点,记为 $\xi \in (a,b)$ ,使  $\phi^{(n+1)}(\xi) = f^{(n+1)}(\xi) - (n+1)!K(x) = 0$  可推验于是

$$K(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$
,  $\xi \in (a,b)$ , 且依赖于  $x$ 

于是得到插值余项。 证毕。

不做要求

**Theorem 1.5 (Rolle's Theorem).** Assume that  $f \in C[a, b]$  and that f'(x) exists for all  $x \in (a, b)$ . If f(a) = f(b) = 0, then there exists a number c, with  $c \in (a, b)$ , such that f'(c) = 0.

## 定理2-2当n=1时另一简单具体证明如下。

不做要求

*Proof.* As an example of the general method, we establish (16) when N=1. The general case is discussed in the exercises. Start by defining the special function g(t) as follows:

Leibniz符号思维

(17) 
$$g(t) = f(t) - P_1(t) - E_1(x) \frac{(t - x_0)(t - x_1)}{(x - x_0)(x - x_1)}.$$

Notice that x,  $x_0$ , and  $x_1$  are constants with respect to the variable t and that g(t) evaluates to be zero at these three values; that is,

$$g(x) = f(x) - P_1(x) - E_1(x) \frac{(x - x_0)(x - x_1)}{(x - x_0)(x - x_1)} = f(x) - P_1(x) - E_1(x) = 0,$$

$$g(x_0) = f(x_0) - P_1(x_0) - E_1(x) \frac{(x_0 - x_0)(x_0 - x_1)}{(x - x_0)(x - x_1)} = f(x_0) - P_1(x_0) = 0,$$

$$g(x_1) = f(x_1) - P_1(x_1) - E_1(x) \frac{(x_1 - x_0)(x_1 - x_1)}{(x - x_0)(x - x_1)} = f(x_1) - P_1(x_1) = 0.$$

Suppose that x lies in the open interval  $(x_0, x_1)$ . Applying Rolle's theorem to g(t) on the interval  $[x_0, x]$  produces a value  $d_0$ , with  $x_0 < d_0 < x$ , such that

(18) 
$$g'(d_0) = 0.$$

A second application of Rolle's theorem to g(t) on  $[x, x_1]$  will produce a value  $d_1$ , with  $x < d_1 < x_1$ , such that

(19) 
$$g'(d_1) = 0.$$

Equations (18) and (19) show that the function g'(t) is zero at  $t = d_0$  and  $t = d_1$ . A third use of Rolle's theorem, but this time applied to g'(t) over  $[d_0, d_1]$ , produces a value c for which

(20) 
$$g^{(2)}(c) = 0.$$

Now go back to (17) and compute the derivatives g'(t) and g''(t):

(21) 
$$g'(t) = f'(t) - P'_1(t) - E_1(x) \frac{(t - x_0) + (t - x_1)}{(x - x_0)(x - x_1)},$$

(22) 
$$g''(t) = f''(t) - 0 - E_1(x) \frac{2}{(x - x_0)(x - x_1)}.$$

不做要求

In (22) we have used the fact the  $P_1(t)$  is a polynomial of degree N=1; hence its second derivative is  $P_1''(t) \equiv 0$ . Evaluation of (22) at the point t=c and using (20) yields

(23) 
$$0 = f''(c) - E_1(x) \frac{2}{(x - x_0)(x - x_1)}.$$

Solving (23) for  $E_1(x)$  results in the desired form (16) for the remainder:

(24) 
$$E_1(x) = \frac{(x - x_0)(x - x_1)f^{(2)}(c)}{2!},$$

and the proof is complete.

不做要求

**Theorem 1.7 (Generalized Rolle's Theorem).** Assume that  $f \in C[a, b]$  and that  $f'(x), f''(x), \dots, f^{(n)}(x)$  exist over (a, b) and  $x_0, x_1, \dots, x_n \in [a, b]$ . If  $f(x_j) = 0$  for  $j = 0, 1, \dots, n$ , then there exists a number c, with  $c \in (a, b)$ , such that  $f^{(n)}(c) = 0$ .

定理2-2 表明:

- (1) 插值误差与节点和插值点 x 之间的距离有关, x 距离节点越近, 插值误差一般情况下越小。
- (3) 如果我们可以求出 $\max_{a < x < b} \left| f^{(n+1)}(x) \right| = M_{n+1}$ ,那么多项式L(x) 逼近 f(x)的截断误差限是

$$\left|R_n(x)\right| \leq \frac{M_{n+1}}{(n+1)!} \left|\omega_{n+1}(x)\right|$$

当 n = 1时,线性插值余项为

$$R_1(x) = \frac{1}{2} f''(\xi) \omega_2(x) = \frac{1}{2} f''(\xi) (x - x_0) (x - x_1), \qquad \xi \in [x_0, x_1]$$

当n=2时,抛物插值余项为

$$R_2(x) = \frac{1}{6} f'''(\xi)(x - x_0)(x - x_1)(x - x_2), \qquad \xi \in [x_0, x_2]$$

点数(条件数目)阶导

当 $f(x) = x^k (k \le n)$ 时,由于 $f^{n+1}(x) = 0$ ,于是有

$$R_n(x) = x^k - \sum_{i=0}^n x_i^k l_i(x) = 0$$

由此得

$$\sum_{i=0}^{n} x_i^k l_i(x) = x^k \qquad k = 0,1,\dots n$$

特别当k = 0时,有

$$\sum_{i=0}^{n} l_i(x) = 1$$

## 3、应用举例

例2-1 已知 f(-2) = 2, f(-1) = 1, f(0) = 2, f(0.5) = 3, 试选用适合的插值节点通过二次插值多项式计算 f(-0.5) 的近似值,使之精度尽可能高。

解: 取节点 
$$x_0 = -1$$
,  $x_1 = 0$ ,  $x_2 = 0.5$ , 作二次插值
$$l_0 = \frac{(x-0)(x-0.5)}{(-1-0)(-1-0.5)} = \frac{2}{3}x(x-0.5)$$

$$l_1 = \frac{(x+1)(x-0.5)}{(0+1)(0-0.5)} = -2(x+1)(x-0.5)$$

$$l_2 = \frac{(x+1)(x-0)}{(0.5+1)(0.5-0)} = \frac{4}{3}x(x+1)$$

二次插值多项式为

$$L_2(x) = f(x_0)l_0(x) + f(x_1)l_2(x) + f(x_2)l_2(x) = l_0(x) + 2l_1(x) + 3l_2(x)$$
$$f(-0.5) \approx L_2(-0.5) = 1 \times l_0(-0.5) + 2 \times l_1(-0.5) + 3 \times l_2(-0.5) = \frac{4}{3}$$

例2-2 给定函数值表

| x   | 10       | 11       | 12       | 13       |
|-----|----------|----------|----------|----------|
| lnx | 2.302585 | 2.397895 | 2.484907 | 2.564949 |

用二次插值计算 1n(11.25) 的近似值,并估计误差。

解: 取节点
$$x_0 = 10$$
,  $x_1 = 11$ ,  $x_2 = 12$ , 作二次插值 
$$\ln(11.25) \approx L_2(11.25) = \frac{(11.25 - 11)(11.25 - 12)}{(10 - 11)(10 - 12)} \times 2.302585$$
$$+ \frac{(11.25 - 10)(11.25 - 12)}{(11 - 10)(11 - 12)} \times 2.397895$$
$$+ \frac{(11.25 - 10)(11.25 - 11)}{(12 - 10)(12 - 11)} \times 2.484907 = 2.420426$$

在区间[10,12]上 $\ln x$  的三阶导数( $2/x^3$ )的上限  $M_3$ =0.002, 可得误差估计式 点数(条件数目)阶导

$$|R_2(11.25)| \le \frac{M_3}{3!} | (11.25 - 10)(11.25 - 11)(11.25 - 12) | < 0.0000781$$

注:实际上, ln(11.25)=2.420368,

$$|R_2(11.25)| = 0.000058$$

例2-3(反插值法) 已知单调连续函数 y = f(x) 在如下采样点处的函数值

| $x_i$          | 1.0  | 1.4  | 1.8 | 2.0 |
|----------------|------|------|-----|-----|
| $y_i = f(x_i)$ | -2.0 | -0.8 | 0.4 | 1.2 |

求方程 f(x) = 0 在 [1,2] 内根的近似值  $x^*$ , 使误差尽可能小。

分析: 求解如上问题等价于求解x关于y的反函数问题。

| ${\cal Y}_i$        | -2.0 | -0.8 | 0.4 | 1.2 | 0 |
|---------------------|------|------|-----|-----|---|
| $f^{-1}(y_i) = x_i$ | 1.0  | 1.4  | 1.8 | 2.0 | ? |

解:对 y = f(x)的反函数  $x = f^{-1}(y)$  进行三次插值,插值多项式为

$$L_{3}(y) = f^{-1}(y_{0}) \frac{(y - y_{1})(y - y_{2})(y - y_{3})}{(y_{0} - y_{1})(y_{0} - y_{2})(y_{0} - y_{3})}$$

$$+ f^{-1}(y_{1}) \frac{(y - y_{0})(y - y_{2})(y - y_{3})}{(y_{1} - y_{0})(y_{1} - y_{2})(y_{1} - y_{3})}$$

$$+ f^{-1}(y_{2}) \frac{(y - y_{0})(y - y_{1})(y - y_{3})}{(y_{2} - y_{0})(y_{2} - y_{1})(y_{2} - y_{3})}$$

$$+ f^{-1}(y_{3}) \frac{(y - y_{0})(y - y_{1})(y - y_{2})}{(y_{3} - y_{0})(y_{3} - y_{1})(y_{3} - y_{2})}$$

$$= 1.675 + 0.3271y - 0.03125y^{2} - 0.01302y^{3}$$

于是有

$$x^* = f^{-1}(0) \approx L_3(0) = 1.675$$

#### 例2-4 证明

(1) 
$$\sum_{j=0}^{n} x_{j}^{k} l_{j}(x) \equiv x^{k} \quad (k = 0, 1, \dots, n)$$

(2)  $\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = 0$ , 其中  $l_i(x)$  是关于点  $x_0, x_1, \dots, x_5$  的插值基函数。

证明: (1) 函数 $x^k$ 及 $\sum_{j=0}^n x_j^k l_j(x)$ 均为被插值函数 $x^k$  的关于互异节点 $\left\{x_j\right\}_{j=0}^n$ 的不超过n 次的插值多项式,利用插值多项式的唯一性知两者恒等。

(2) 
$$\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = \sum_{i=0}^{5} (x_i^2 - 2x_i x + x^2) l_i(x)$$
$$= \sum_{i=0}^{5} x_i^2 l_i(x) - \sum_{i=0}^{5} 2x_i x l_i(x) + \sum_{i=0}^{5} x^2 l_i(x)$$
$$= \sum_{i=0}^{5} x_i^2 l_i(x) - 2x \sum_{i=0}^{5} x_i l_i(x) + x^2 \sum_{i=0}^{5} l_i(x)$$
$$= x^2 - 2x^2 + x^2 = 0$$

例2-5 设 $f \in C^2[a,b]$ , 试证:

$$\max_{a \le x \le b} \left| f(x) - [f(a) + \frac{f(b) - f(a)}{b - a} (x - a)] \right| \le \frac{1}{8} (b - a)^2 M_2$$

其中 $M_2 = \max_{a \le x \le b} |f'(x)|$ 。记号 $C^2[a,b]$ 表示在区间[a,b]上二阶导数连续

的函数空间.

证明 通过两点(a, f(a)), (b, f(b))的线性插值为

$$l_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

于是

$$\max_{a \le x \le b} \left| f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)] \right| 
= \max_{a \le x \le b} \left| f(x) - L_1(x) \right| = \max_{a \le x \le b} \left| \frac{f''(\xi)}{2}(x - a)(x - b) \right| 
\le \frac{M_2}{2} \max_{a \le x \le b} \left| (x - a)(x - b) \right| = \frac{1}{8}(b - a)^2 M_2$$

# 2.3 均差(差商)与牛顿插值公式

### 一、均差及其性质

问题的引入: 拉格朗日插值多项式,公式结构紧凑,理论分析方便,但插值节点增减时全部插值及函数均要随之变化,实际计算不方便,希望把公式表示为如下形式。

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_{n-1})$$
  
其中  $a_0, a_1, \dots, a_n$  为待定系数。

满足的插值条件为

$$P_n(x_j) = f_j \quad (j = 0,1,\dots,n)$$

当
$$x = x_0$$
时, $P_n(x_0) = a_0 = f_0$ 

当 
$$x = x_1$$
 时,  $P_n(x_1) = a_0 + a_1(x_1 - x_0) = f_1$ ,推得 
$$a_1 = \frac{f_1 - f_0}{x_1 - x_0}$$

当 
$$x = x_2$$
 时, $P_n(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = f_2$ ,推得
$$a_2 = \frac{f_2 - (a_0 + a_1(x_2 - x_0))}{(x_2 - x_0)(x_2 - x_1)} = \frac{f_2 - f_0 - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$= \frac{(f_2 - f_0) - \frac{f_1 - f_0}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} = \frac{\frac{f_2 - f_0}{x_2 - x_0} - \frac{f_1 - f_0}{x_1 - x_0}}{x_2 - x_1}$$

依次递推可得到 $a_3,\dots,a_n$ 。为此引入均差定义。

## 1、均差定义

定义(均差):

2点1阶均差(对应1阶导)

称 
$$f[x_0, x_k] = \frac{f(x_k) - f(x_0)}{x_k - x_0}$$
 为函数  $f(x)$  关于点  $x_0, x_k$  的一阶均差;

3点2阶均差(对应2阶导)

称
$$f[x_0, x_1, x_k] = \frac{f[x_0, x_k] - f[x_0, x_1]}{x_k - x_1}$$
 为函数  $f(x)$  关于点  $x_0, x_1, x_k$  的二阶均差。

称 
$$f[x_0, x_1, \dots, x_k] = \frac{f[x_0, \dots, x_{k-2}, x_k] - f[x_0, x_1, \dots, x_{k-2}, x_{k-1}]}{x_k - x_{k-1}}$$
 为函数  $f(x)$  的  $k$  阶均差。 
$$\frac{x_k - x_{k-1}}{x_k - x_{k-1}}$$
 为函数  $f(x)$  的  $k$  阶均差(对应  $k$  阶 ;

关键:找不同的元素相减作分母

## 2、均差的基本性质

(1) k 阶均差可表为函数值  $f(x_0), \dots, f(x_k)$  的线性组合,即

$$f[x_0, \dots, x_k] = \sum_{j=0}^k \frac{f(x_j)}{(x_j - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_k)}$$

性质(1) 表明均差与节点的排列次序无关,称为均差的对称性。即

$$f[x_0, \dots, x_k] = f[x_1, x_0, x_2, \dots, x_k] = \dots = f[x_1, x_2, \dots, x_k, x_0]$$

性质(2) 
$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

性质(3) 若f(x)在[a,b]上存在n 阶导数,且节点 $x_0, \dots, x_n \in [a,b]$ ,则n 阶均差与导数关系如下:

$$f[x_0,\dots,x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in [a,b]$$

n+1点n阶均差(对应n阶导)

## 均差计算表

| $X_i$                 | $f(x_i)$ | 一阶               | 二阶均差                     | 三阶均差                            | <br>n阶均差                      |
|-----------------------|----------|------------------|--------------------------|---------------------------------|-------------------------------|
|                       |          | 均差               |                          |                                 |                               |
| $X_{O}$               | $f(x_0)$ |                  |                          |                                 |                               |
| $X_1$                 | $f(x_1)$ | $f[X_0,X_1]$     |                          |                                 |                               |
|                       |          |                  | $\int [X_0, X_1, X_2]$   |                                 |                               |
| <b>X</b> <sub>3</sub> | $f(x_3)$ | $f[x_2,x_3] -$   | $\int f[x_1, x_2, x_3]$  | $f[x_0,x_1,x_2,x_3]$            |                               |
|                       | •        | •                | •                        | •                               | <br>•                         |
| $X_n$                 | $f(x_n)$ | $f[x_{n-1},x_n]$ | $f[x_{n-2},x_{n-1},x_n]$ | $f[x_{n-3}, x_{n-2}, x_2, x_3]$ | <br>$ f[x_0,x_1,\ldots,x_n] $ |
|                       |          |                  |                          |                                 |                               |

# 例如 由函数y=f(x)的函数表写出均差表.

| i                 | 0  | 1  | 2  | 3  |
|-------------------|----|----|----|----|
| $X_i$             | -2 | -1 | 1  | 2  |
| $f(\mathbf{x}_i)$ | 5  | 3  | 17 | 21 |

## 解 均差表如下:

| i | X <sub>i</sub> | $f(x_i)$ | 一阶均差 | 二阶均差 | 三阶均差 |
|---|----------------|----------|------|------|------|
| 0 | -2             | 5        |      |      |      |
| 1 | -1             | 3        | -2   |      |      |
| 2 | 1              | 17       | 7    | 3    |      |
| 3 | 2              | 21       | 4    | -1   | -1   |

## 二、牛顿插值公式

根据均差定义,把x看成[a,b]上一点,可得  $f(x) = f(x_0) + f[x, x_0](x - x_0)$ ,  $f[x, x_0] = f[x_0, x_1] + f[x, x_0, x_1](x - x_1)$ ,  $f[x, x_0, x_1] = f[x_0, x_1, x_2] + f[x, x_0, x_1, x_2](x - x_2)$ , ...  $f[x, x_0, \dots, x_{n-1}] = f[x_0, x_1, \dots, x_n] + f[x, x_0, \dots, x_n](x - x_n)$ ,

只要把后一式代入前一式,就得到  $f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots + f[x_0, x_1, \dots, x_n](x - x_0) \cdots (x - x_{n-1}) + f[x, x_0, \dots, x_n](x - x_0) \cdots (x - x_n) = N_n(x) + R_n(x)$  相当于: n+2个点n+1阶均差(对应n+1阶导)

其中

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots + f[x_0, x_1, \dots, x_n](x - x_0) \cdots (x - x_{n-1})$$

(称为牛顿插值多项式)

$$R_n(x) = f[x, x_0, \dots, x_n](x - x_0) \dots (x - x_n)$$
 (牛顿插值余项)

相当于: n+2个点n+1阶均差(对应n+1阶导)

误差计算(估算)的两种方式:

- (1)  $f[x, x_0, \dots, x_n]$ 用  $f[x_0, \dots, x_{n+1}]$  近似;
- (2) 令  $f(x) \approx N_n(x)$  计算  $f[x, x_0, \dots, x_n]$  值。

例2-6 对"例如"中的 f(x), 求节点为  $x_0, x_1$  的一次插值, $x_0, x_1, x_2$  的二次插值和  $x_0, x_1, x_2, x_3$  的三次插值多项式.

解 由均差表知 $f[x_0,x_1]=-2$ ,  $f[x_0,x_1,x_2]=3$ ,  $f[x_0,x_1,x_2,x_3]=-1$ ,

## 于是有

$$N_1(x)=5-2(x+2)=1-2x$$
  
 $N_2(x)=1-2x+3(x+2)(x+1)=3x^2+7x+7$ 

$$N_3(x)=3x^2+7x+7-(x+2)(x+1)(x-1)=-x^3+x^2+8x+9$$

| i | X <sub>i</sub> | $f(x_i)$ | 一阶均差 | 二阶均差 | 三阶均差 |
|---|----------------|----------|------|------|------|
| 0 | -2             | 5        |      |      |      |
| 1 | -1             | 3        | -2   |      |      |
| 2 | 1              | 17       | 7    | 3    |      |
| 3 | 2              | 21       | 4    | -1   | -1   |

例2-7 给出 f(x) 的函数值表,求4次牛顿插值多项式,并计算f(0.596) 的近似值。

| X <sub>i</sub> | $f(x_i)$ | 一阶均差    | 二阶均差    | 三阶均差    | 四阶均差    | 五阶       |
|----------------|----------|---------|---------|---------|---------|----------|
|                |          |         |         |         |         | 均差       |
| 0.40           | 0.41075  |         |         |         |         |          |
| 0.55           | 0.57815  | 1.11600 |         |         |         |          |
| 0.65           | 0.69675  | 1.18600 | 0.28000 |         |         |          |
| 0.80           | 0.88811  | 1.27573 | 0.35893 | 0.19733 |         |          |
| 0.90           | 1.02652  | 1.38410 | 0.43348 | 0.21300 | 0.03134 |          |
| 1.05           | 1.25382  | 1.51533 | 0.52493 | 0.22863 | 0.03126 | -0.00012 |
|                |          |         |         |         |         |          |

$$N_4(x) = 0.41075 + 1.116(x - 0.4) + 0.28(x - 0.4)(x - 0.55)$$
$$+ 0.19733(x - 0.4)(x - 0.55)(x - 0.65)$$
$$+ 0.03134(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8)$$

## 于是

$$f(0.596) \approx N_4(0.596) = 0.63192$$

截断误差

验算与报告

$$|R_4(x)| \approx |f[x_0, \dots, x_5]\omega_5(0.596)| = 3.63 \times 10^{-9}$$
  
 $|\vec{R}_4(x)| \approx |f[x_0, \dots, x_4, 0.596]\omega_5(0.596)| = ?$ 

误差计算(估算)的两种方式:

- (1)  $f[x, x_0, \dots, x_n]$ 用  $f[x_0, \dots, x_{n+1}]$  近似;
- (2) 令  $f(x) \approx N_n(x)$  计算  $f[x, x_0, \dots, x_n]$  值。

### 2.4 埃尔米特插值

不少实际的插值问题不但要求在节点上函数值相等,而且还要求对应的导数值也相等,甚至要求高阶导数也相等,满足这种要求的插值多项式就是埃尔米特(Hermite)插值多项式。

如果[a,b]上的节点互异,根据均差定义,若 $f \in C^1[a,b]$ ,则有

$$\lim_{x \to x_0} f[x_0, x] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

由此定义重节点均差  $f[x_0,x_0] = \lim_{x \to x_0} f[x_0,x] = f'(x_0)$ 

类似地可定义重节点的二阶均差,当 $x_1 \neq x_0$  时,有

$$f[x_0, x_0, x_1] = \frac{f[x_0, x_1] - f[x_0, x_0]}{x_1 - x_0}$$

性质(3) 若f(x)在[a,b]上存在n阶导数,且节点 $x_0, \dots, x_n \in [a,b]$ ,则n阶均差与导数关系如下:

$$f[x_0,\dots,x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in [a,b]$$

$$\min\{x_0, x_1, \dots, x_n\} \le \xi \le \max\{x_0, x_1, \dots, x_n\};$$

当  $x_1, \dots, x_n \to x_0$ , 我们有:  $\xi \to x_0$ 

$$f[x_0, x_0, x_0] = \lim_{\substack{x_1 \to x_0 \\ x_2 \to x_0}} f[x_0, x_1, x_2] = \frac{1}{2} f''(x_0)$$

一般地,可定义n 阶重节点的均差

$$f[x_0, x_0, \dots, x_0] = \lim_{x_i \to x_0} f[x_0, x_1, \dots, x_n] = \frac{1}{n!} f^{(n)}(x_0)$$

例2-8 试用数据表建立不超过3次的埃尔米特插值多项式。

| X              | 0 | 1 | 2 |
|----------------|---|---|---|
| f(x)           | 1 | 2 | 9 |
| f'( <b>x</b> ) |   | 3 |   |

#### 解法一(用重节点的均差表建立埃尔米特多项式)

| X <sub>i</sub> | $f(x_i)$ | 一阶均差 | 二阶均<br>差 | 三阶均<br>差 |
|----------------|----------|------|----------|----------|
| 0              | 1        |      |          |          |
| 1              | 2        | 1    |          |          |
| 1              | 2        | 3    | 2        |          |
| 2              | 9        | 7    | 4        | 1        |
|                |          |      |          |          |

$$H_3(x) = f(0) + f[0,1](x-0) + f[0,1,1](x-0)(x-1)$$

$$+ f[0,1,1,2](x-0)(x-1)(x-1)$$

$$= 1 + 1 \times (x-0) + 2(x-0)(x-1)$$

$$+ 1(x-0)(x-1)(x-1) = x^3 + 1$$

#### 重要知识(数值积分需用)

余项表达式:

条件数目阶导

$$R(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi)}{4!}(x - 0)(x - 1)^2(x - 2)$$

条件数目阶乘

解法二 (待定系数法)

以已知函数值为插值条件的二次插值多项式为

$$N_2(x) = f(0) + f[0, 1](x-0) + f[0, 1, 2](x-0)(x-1)$$
  
= 1+1×(x-0)+3×(x-0)(x-1)  
= 3x<sup>2</sup> - 2x + 1

设待求插值函数为

$$H_3(x) = N_2(x) + k(x-0)(x-1)(x-2)$$

$$H_3'(x) = 6x - 2 + [k(x-0)(x-1)(x-2)]'$$

进而有
$$H_3(x) = N_2(x) + (x-0)(x-1)(x-2)$$

$$= x^3 + 1$$

推算

例6 设 $f(x) \in C^{4}[0, 2]$ , 且f(0)=1, f(1)=0, f(2)=3, f'(1)=0, 试求f(x)的三次插值多项式 $H_{3}(x)$ , 并给出余项.

解 法1(基函数法): 设

$$H_3(x) = \varphi_0(x) y_0 + \varphi_1(x) y_1 + \varphi_2(x) y_2 + \psi_1(x) y_1'$$
  
=  $\varphi_0(x) + 3\varphi_2(x)$ 

则
$$\varphi_0(X) = C_0(X-1)^2(X-2) = -1/2(X-1)^2(X-2)$$

$$\varphi_2(X) = c_2 X(X-1)^2 = 1/2X(X-1)^2$$

所以

$$H_3(x) = -1/2(x-1)^2(x-2) + 3/2x(x-1)^2$$

$$= 1/2(x-1)^2[(2-x) + 3x]$$

$$= (x-1)^2(x+1)$$

法2(待定系数法): 设

$$H_3(X) = (X-1)^2 (\underline{aX+b})$$

由 $H_3(0)=1$ 得:b=1,由 $H_3(2)=3$ 得:2a+b=3

解得 a=1, b=1.

所以  $H_3(X) = (X-1)^2(X+1)$ 

记 $R_3(x) = f(x) - H_3(x)$ ,则 $R_3(0) = R_3(1) = R_3(2) = R_3'(1) = 0$ 于是, $R_3(x) = C(x) x(x-1)^2 (x-2)$ 

对于任一 $x \in [0, 2], x \neq 0, 1, 2,$  构造函数:

不做要求

$$\varphi(t) = f(t) - H_3(t) - C(x) t(t-1)^2(t-2)$$

由于
$$\varphi(0) = \varphi(1) = \varphi(2) = \varphi'(1) = \varphi(x) = 0$$
,可得

$$R_3(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi_x)}{4!}x (x-1)^2(x-2)$$

### 2.5 分段低次插值

#### 一、高次插值的病态性质

- 一般误解认为:  $L_n(x)$ 的次数n越高,逼近f(x)的精度越好。但实际上并非如此。这是因为对任意的插值节点,当 $n->\infty$ 时, $L_n(x)$ 不一定收敛于f(x)。
- 20世纪初龙格(Runge)就给了一个等距节点插值多项式 $L_n(x)$ 不一定收敛于f(x)的例子。

对 $f(x)=(1+25x^2)^{-1}$ ,在区间 [-1,1] 上取等距节取 $x_i=-1+ih$ ,  $i=0,1,\cdots,10$ , h=0.2,作 f(x) 关于节点 $x_i(i=0,1,\cdots,10)$ 的10次插值插值多  $L_{10}(x)$ ,





#### 二、分段线性插值

分段线性插值就是通过插值点用折线段连接起来逼近f(x).



**Figure 5.11** Piecewise linear interpolation (a linear spline).

# Linear Spline function

$$S(x) = \begin{cases} y_0 + d_0(x - x_0) & \text{for } x \text{ in } [x_0, x_1], \\ y_1 + d_1(x - x_1) & \text{for } x \text{ in } [x_1, x_2], \\ \vdots & \vdots & \vdots \\ y_k + d_k(x - x_k) & \text{for } x \text{ in } [x_k, x_{k+1}], \\ \vdots & \vdots & \vdots \\ y_{N-1} + d_{N-1}(x - x_{N-1}) & \text{for } x \text{ in } [x_{N-1}, x_N]. \end{cases}$$

#### 三、分段抛物插值







### 2.6 三次样条插值

样条曲线实际上是由分段三次曲线拼接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数 学样条这一概念。下面我们讨论最常用的三次样条函数。

#### 一、三次样条函数

定义 若函数  $S(x) \in C^2[a,b]$ ,且在每个小区间  $[x_j,x_{j+1}]$  上是三次多项式,其中  $a = x_0 < x_1 < \dots < x_n = b$  是给定节点,则称 S(x) 是节点  $x_0,x_1,\dots,x_n$  上的三次样条函数。若在节点  $x_j$  上给定函数值  $y_j = f(x_j)(j=0,1,\dots,n)$  成立  $S(x_j) = y_j$ ,  $j=0,1,\dots,n$  则称 S(x) 为三次样条插值函数。

每个小区间上要确定4个待定系数,共有n个小区间,故应确定4n个参数。

# Piecewise cubic spline

**Definition 5.1.** Suppose that  $\{(x_k, y_k)\}_{k=0}^N$  are N+1 points, where  $a=x_0 < x_1 < \cdots < x_N = b$ . The function S(x) is called a *cubic spline* if there exist N cubic polynomials  $S_k(x)$  with coefficients  $s_{k,0}$ ,  $s_{k,1}$ ,  $s_{k,2}$ , and  $s_{k,3}$  that satisfy the following properties:

I. 
$$S(x) = S_k(x) = s_{k,0} + s_{k,1}(x - x_k) + s_{k,2}(x - x_k)^2 + s_{k,3}(x - x_k)^3$$
  
for  $x \in [x_k, x_{k+1}]$  and  $k = 0, 1, ..., N - 1$ .

II. 
$$S(x_k) = y_k$$
 for  $k = 0, 1, ..., N$ .

III. 
$$S_k(x_{k+1}) = S_{k+1}(x_{k+1})$$
 for  $k = 0, 1, ..., N-2$ .

IV. 
$$S'_k(x_{k+1}) = S'_{k+1}(x_{k+1})$$
 for  $k = 0, 1, ..., N - 2$ .

V. 
$$S_k''(x_{k+1}) = S_{k+1}''(x_{k+1})$$
 for  $k = 0, 1, ..., N-2$ .

We will define the distance between consecutive x-values to be h.

$$h=x_2-x_1=\cdots=x_n-x_{n-1}$$

And for the sake of simplicity...

$$M_i = S''(x_i)$$

$$1 \le i \le n$$

注意:此处及后的该下标i从1开始【非以前的0】

The substitution of M and h into the derivations lead us to the equations of our coefficients...

$$a_{i} = (M_{i+1} - M_{i})/6h$$
 $b_{i} = M_{i}/2$ 
 $c_{i} = (y_{i+1} - y_{i})/h - (M_{i+1} + 2M_{i})h/6$ 
 $d_{i} = y_{i}$ 
 $1 \le i \le n-1$ 

 $s_i(x) = a_i(x-x_i)^3 + b_i(x-x_i)^2 + c_i(x-x_i) + d_i$ 

We can now determine the M values which define the cubic spline with the equations...

$$M_i + 4M_{i+1} + M_{i+2} = \frac{6(y_i - 2y_{i+1} + y_{i+2})}{h^2}$$

$$1 \le i \le n-2$$

注意:与数值微分的关系!

#### Or, more simply, with the matrix equation...

$$\begin{bmatrix} 1 & 4 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & 4 & 1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 4 & 1 \end{bmatrix} \begin{matrix} M_1 \\ M_2 \\ M_3 \\ M_4 \\ \vdots \\ M_{n-3} \\ M_{n-2} \\ M_{n-1} \\$$

$$=\frac{6}{h^{2}}\begin{bmatrix} y_{1}-2y_{2}+y_{3} \\ y_{2}-2y_{3}+y_{4} \\ y_{3}-2y_{4}+y_{5} \\ \vdots \\ y_{n-4}-2y_{n-3}+y_{n-2} \\ y_{n-3}-2y_{n-2}+y_{n-1} \\ y_{n-2}-2y_{n-1}+y_{n} \end{bmatrix}$$

# Natural Splines...

- -the ends of the spline curve extend beyond the boundaries of the data and become linear.
- Second derivative is zero at the endpoints.

$$M_1 = M_n = 0$$

resulting in the curve degrading to a line at the endpoints.

# Natural Spline:



### Cubic Runout Spline:

$$M_n = 2M_{n-1} - M_{n-2}$$
  
and

$$M_1 = 2 M_2 - M_3$$

Causing the spline to reduce to a single cubic curve extending beyond the endpoints.

## Cubic Runout Spline:



# Splines and integration:



uh oh...

$$\int_{2}^{3} \frac{\sin x}{x} dx$$

Si(3) -Si(2)

or...

exact: .24324

natural: .24545

parabolic: .24491

cubic: .2435

知 识 结 存在唯一性 构 冬 插值公式 Lagrange插值多项式 Newton插值多项式 等距节点插值公式 多项式 插值 插值法 (存在唯一性 Hermite插值 误差估计 插值公式 分段线性插值(公式、误差估计、收敛性) 分段多项 分段三次Hermite插值(公式、误差估 式插值 计、收敛性) 三次样条插值(公式、存在唯一 性、误差估计、收敛性)

复习与思考题(元需提定) P47: 1, 2, 3, 4, 7, 9

习题(需提立)

P48: 1, 2