

Other Topics: Warehousing, Mining and Information Retrieval

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Decision Support Systems

- Decision-support systems are used to make business decisions, often based on data collected by on-line transaction-processing systems.
- Examples of business decisions:
 - What items to stock?
 - What insurance premium to change?
 - To whom to send advertisements?
- Examples of data used for making decisions
 - Retail sales transaction details
 - Customer profiles (income, age, gender, etc.)

Decision-Support Systems: Overview

- Data analysis tasks are simplified by specialized tools and SQL extensions
 - Example tasks
 - For each product category and each region, what were the total sales in the last quarter and how do they compare with the same quarter last year
 - As above, for each product category and each customer category
- Statistical analysis packages (e.g., : S++) can be interfaced with databases
 - Statistical analysis is a large field, but not covered here
- **Data mining** seeks to discover knowledge automatically in the form of statistical rules and patterns from large databases.
- A data warehouse archives information gathered from multiple sources, and stores it under a unified schema, at a single site.
 - Important for large businesses that generate data from multiple divisions, possibly at multiple sites
 - Data may also be purchased externally

Data Warehousing

- Data sources often store only current data, not historical data
- Corporate decision making requires a unified view of all organizational data, including historical data
- A data warehouse is a repository (archive) of information gathered from multiple sources, stored under a unified schema, at a single site
 - Greatly simplifies querying, permits study of historical trends
 - Shifts decision support query load away from transaction processing systems

Data Warehousing

Warehouse Schemas

- Dimension values are usually encoded using small integers and mapped to full values via dimension tables
- Resultant schema is called a star schema
 - More complicated schema structures
 - Snowflake schema: multiple levels of dimension tables
 - Constellation: multiple fact tables

Data Warehouse Schema

Data Mining

Data Mining

- Data mining is the process of semi-automatically analyzing large databases to find useful patterns
- Prediction based on past history
 - Predict if a credit card applicant poses a good credit risk, based on some attributes (income, job type, age, ..) and past history
 - Predict if a pattern of phone calling card usage is likely to be fraudulent
- Some examples of prediction mechanisms:
 - Classification
 - Given a new item whose class is unknown, predict to which class it belongs
 - Regression formulae
 - Given a set of mappings for an unknown function, predict the function result for a new parameter value

Data Mining (Cont.)

Descriptive Patterns

Associations

- Find books that are often bought by "similar" customers. If a new such customer buys one such book, suggest the others too.
- Associations may be used as a first step in detecting causation
 - E.g. association between exposure to chemical X and cancer,

Clusters

- E.g. typhoid cases were clustered in an area surrounding a contaminated well
- Detection of clusters remains important in detecting epidemics

Classification Rules

- Classification rules help assign new objects to classes.
 - E.g., given a new automobile insurance applicant, should he or she be classified as low risk, medium risk or high risk?
- Classification rules for above example could use a variety of data, such as educational level, salary, age, etc.
 - ∀ person P, P.degree = masters and P.income > 75,000

 \Rightarrow P.credit = excellent

 ∀ person P, P.degree = bachelors and (P.income ≥ 25,000 and P.income ≤ 75,000)

 \Rightarrow P.credit = good

- Rules are not necessarily exact: there may be some misclassifications
- Classification rules can be shown compactly as a decision tree.
- Several algorithms for constructing decision trees: see book for details

Decision Tree

Other Types of Classifiers

- Neural net classifiers are studied in artificial intelligence and are not covered here
- Bayesian classifiers (see book for details)
- Support Vector Machines (see book for details)

Association Rules

- Retail shops are often interested in associations between different items that people buy.
 - Someone who buys bread is quite likely also to buy milk
 - A person who bought the book Database System Concepts is quite likely also to buy the book Operating System Concepts.
- Associations information can be used in several ways.
 - E.g. when a customer buys a particular book, an online shop may suggest associated books.

Association rules:

bread ⇒ milk DB-Concepts, OS-Concepts ⇒ Networks

- Left hand side: antecedent, right hand side: consequent
- An association rule must have an associated population; the population consists of a set of instances
 - E.g. each transaction (sale) at a shop is an instance, and the set of all transactions is the population

Association Rules (Cont.)

- Rules have an associated support, as well as an associated confidence.
- Support is a measure of what fraction of the population satisfies both the antecedent and the consequent of the rule.
 - E.g. suppose only 0.001 percent of all purchases include milk and screwdrivers. The support for the rule is milk ⇒ screwdrivers is low.
- Confidence is a measure of how often the consequent is true when the antecedent is true.
 - E.g. the rule bread ⇒ milk has a confidence of 80 percent if 80 percent of the purchases that include bread also include milk.

Clustering

- Clustering: Intuitively, finding clusters of points in the given data such that similar points lie in the same cluster
- Can be formalized using distance metrics in several ways
 - Group points into k sets (for a given k) such that the average distance of points from the centroid of their assigned group is minimized
 - Centroid: point defined by taking average of coordinates in each dimension.
 - Another metric: minimize average distance between every pair of points in a cluster
- Has been studied extensively in statistics, but on small data sets
 - Data mining systems aim at clustering techniques that can handle very large data sets
 - E.g. the Birch clustering algorithm (more shortly)

Hierarchical Clustering

- Example from biological classification
 - (the word classification here does not mean a prediction mechanism)

Other examples: Internet directory systems (e.g. Yahoo, more on this later)

Other Types of Mining

- **Text mining**: application of data mining to textual documents
 - cluster Web pages to find related pages
 - cluster pages a user has visited to organize their visit history
 - classify Web pages automatically into a Web directory

Information Retrieval

Information Retrieval Systems

- Information retrieval (IR) systems use a simpler data model than database systems
 - Information organized as a collection of documents
 - Documents are unstructured, no schema
- Information retrieval locates relevant documents, on the basis of user input such as keywords or example documents
 - e.g., find documents containing the words "database systems"
- Can be used even on textual descriptions provided with non-textual data such as images
- Web search engines are the most familiar example of IR systems

Information Retrieval Systems (Cont.)

- Differences from database systems
 - IR systems don't deal with transactional updates (including concurrency control and recovery)
 - Database systems deal with structured data, with schemas that define the data organization
 - IR systems deal with some querying issues not generally addressed by database systems
 - Approximate searching by keywords
 - Ranking of retrieved answers by estimated degree of relevance

Keyword Search

- In full text retrieval, all the words in each document are considered to be keywords.
 - We use the word term to refer to the words in a document
- Ranking of documents on the basis of estimated relevance to a keyword query is critical
 - Relevance ranking is based on factors such as
 - Term frequency
 - Frequency of occurrence of query keyword in document
 - Inverse document frequency
 - How many documents the query keyword occurs in
 - » Fewer → give more importance to keyword
 - Hyperlinks to documents
 - More links to a document → document is more important

Relevance Using Hyperlinks

- Use number of hyperlinks to a site as a measure of the popularity or prestige
 of the site
 - Count only one hyperlink from each site (why? see previous slide)
 - Popularity measure is for site, not for individual page
 - But, most hyperlinks are to root of site
 - Also, concept of "site" difficult to define since a URL prefix like cs.yale.edu contains many unrelated pages of varying popularity
- Refinements
 - When computing prestige based on links to a site, give more weight to links from sites that themselves have higher prestige
 - Definition is circular
 - Set up and solve system of simultaneous linear equations
 - Above idea is basis of the Google PageRank ranking mechanism

Web Search Engines

- Web crawlers are programs that locate and gather information on the Web
 - Recursively follow hyperlinks present in known documents, to find other documents
 - Starting from a seed set of documents
 - Fetched documents
 - Handed over to an indexing system
 - Can be discarded after indexing, or store as a cached copy

Information Retrieval and Structured Data

- Information retrieval systems originally treated documents as a collection of words
- Information extraction systems infer structure from documents, e.g.:
 - Extraction of house attributes (size, address, number of bedrooms, etc.) from a text advertisement
 - Extraction of topic and people named from a new article
- Relations or XML structures used to store extracted data
 - System seeks connections among data to answer queries
 - Keyword querying on structured data