Data Mining

19th February 2023

Linear Regression ***

- Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on $X_1, X_2, \ldots X_p$ is linear.
- True regression functions are never linear!

■ Although it may seem overly simplistic, linear regression is extremely useful both conceptually and practically.

Advertising data

Linear regression for the advertising data

Questions we might ask:

- Is there a relationship between advertising budget and sales?
- How strong is the relationship between advertising budget and sales?
- Which media contribute to sales?
- How accurately can we predict future sales?
- Is the relationship linear?
- Is there synergy among the advertising media?

Simple linear regression using a single predictor X.

We assume a model

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

where β_0 and β_1 are two unknown constants that represent the intercept and slope, also known as coefficients or parameters, and ϵ is the error term.

■ Given some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ for the model coefficients, we predict future sales using

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x,$$

where \hat{y} indicates a prediction of Y on the basis of X=x. The hat symbol denotes an estimated value.

Simple linear regression using a single predictor X.

- Usually, we assume that $cov(X, \epsilon) = 0$ or, more strictly, ϵ is independent of X.
- The assumption ϵ is independent of X makes it easier to derive the maximum likelihood estimation (MLE).
- Consider n i.i.d samples $\{(X_i,Y_i)\}_{i=1}^n$, we usually assmue that $var(\epsilon_i) = \sigma^2$ for all i.

Estimation of the parameters by least squares

- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for Y based on the i th value of X. Then $e_i = y_i \hat{y}_i$ represents the i th residual
- We define the residual sum of squares (RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2,$$

or equivalently as

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + ... + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$
.

■ The least squares approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS. The minimizing values can be shown to be

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}},$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x},$$

Estimation of the parameters by maximum likelihood

- Suppose that $y_i = \beta_0 + \beta_1 x_i$, for $i = 1, \dots, n$. We further assume that $\epsilon_i \sim N(0, \sigma^2)$ and ϵ_i is independent of x_i , for all $i = 1, \dots, n$.
- Question: what are the maximum likelihood estimations (MLEs) of β_0 and β_1 ?
- Will the MLEs change if $\epsilon_i \sim N(0, \sigma_i^2)$?

Example: advertising data

The least squares fit for the regression of sales onto TV. In this case a linear fit captures the essence of the relationship, although it is somewhat deficient in the left of the plot.

Assessing the Accuracy of the Coefficient Estimates

■ The standard error of an estimator reflects how it varies under repeated sampling. We have

$$SE\left(\hat{\beta}_{1}\right)^{2} = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}, \quad SE\left(\hat{\beta}_{0}\right)^{2} = \sigma^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\right]$$

where $\sigma^2 = \operatorname{Var}(\epsilon)$.

■ These standard errors can be used to compute confidence intervals. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. It has the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}\left(\hat{\beta}_1\right)$$
.

Confidence intervals - continued

lacktriangle That is, there is approximately a 95% chance that the interval

$$\left[\hat{\beta}_{1}-2\cdot\operatorname{SE}\left(\hat{\beta}_{1}\right),\hat{\beta}_{1}+2\cdot\operatorname{SE}\left(\hat{\beta}_{1}\right)\right]$$

will contain the true value of β_1 (under a scenario where we got repeated samples like the present sample).

■ For the advertising data, the 95% confidence interval for β_1 is [0.042, 0.053]

Confidence intervals - continued

- Note that the variance σ^2 is usually unknown in practice.
- We estimate it by $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i \hat{\beta}_0 \hat{\beta}_1 x_i)^2}{n-2}$.
- Why we use n-2?

Hypothesis testing

- Next, we consider the hypothesis test for β_1 . Here we assume that $\epsilon_i \sim N(0, \sigma^2)$.
- Mathematically, this corresponds to testing

$$H_0: \beta_1 = 0$$

versus

$$H_A: \beta_1 \neq 0,$$

since if $\beta_1 = 0$ then the model reduces to $Y = \beta_0 + \epsilon$, and X is not associated with Y.

Hypothesis testing - continued

■ To test the null hypothesis, we compute a t-statistic, given by

$$t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}\left(\hat{\beta}_1\right)},$$

- This will have a t-distribution with n-2 degrees of freedom, assuming $\beta_1 = 0$.
- Using statistical software, it is easy to compute the probability of observing any value equal to |t| or larger. We call this probability the p-value.

Results for the advertising data

	Coefficient	Std. Error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Assessing the Overall Accuracy of the Model

■ We compute the Residual Standard Error

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$,

where the residual sum-of-squares is $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$.

■ R-squared or fraction of variance explained is

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

where TSS = $\sum_{i=1}^{n} (y_i - \bar{y})^2$ is the total sum of squares.

Assessing the Overall Accuracy of the Model

It can be shown that in this simple linear regression setting that $R^2=r^2$, where r is the correlation between X and Y:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}.$$

Quantity	Value
Residual Standard Error	3.26
R^2	0.612
F-statistic	312.1

Multiple Linear Regression

Here our model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon,$$

We interpret β_j as the average effect on Y of a one unit increase in X_j , holding all other predictors fixed. In the advertising example, the model becomes

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper + \epsilon$$
.

Estimation and Prediction for Multiple Regression

Given estimates $\hat{\beta}_0, \hat{\beta}_1, \dots \hat{\beta}_p$, we can make predictions using the formula

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p.$$

We estimate $\beta_0, \beta_1, \dots, \beta_p$ as the values that minimize the sum of squared residuals

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

= $\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$.

This is done using standard statistical software. The values $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ that minimize RSS are the multiple least squares regression coefficient estimates.

Results for advertising data

	Coefficient	Std. Error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

	Correlations:			
	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Some important questions

- 1. Is at least one of the predictors X_1, X_2, \ldots, X_p useful in predicting the response?
- 2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- 3. How well does the model fit the data?
- 4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

For the first question, we can use the F-statistic

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$$

Quantity	Value
Residual Standard Error	1.69
R^2	0.897
F-statistic	570

Deciding on the important variables

- The most direct approach is called all subsets or best subsets regression: we compute the least squares fit for all possible subsets and then choose between them based on some criterion that balances training error with model size.
- However we often can't examine all possible models, since they are 2^p of them; for example when p=40 there are over a billion models!
- Instead we need an automated approach that searches through a subset of them. We discuss two commonly use approaches next.

Forward selection **

- Begin with the null model a model that contains an intercept but no predictors.
- Fit *p* simple linear regressions and add to the null model the variable that results in the lowest RSS.
- Add to that model the variable that results in the lowest RSS amongst all two-variable models.
- Continue until some stopping rule is satisfied, for example when all remaining variables have a p-value above some threshold.

Backward selection **

- Start with all variables in the model.
- Remove the variable with the largest p-value that is, the variable that is the least statistically significant.
- The new (p-1)-variable model is fit, and the variable with the largest p-value is removed.
- Continue until a stopping rule is reached. For instance, we may stop when all remaining variables have a significant p-value defined by some significance threshold.

Model selection — continued

- Later we discuss more systematic criteria for choosing an "optimal" member in the path of models produced by forward or backward stepwise selection.
- These include Mallow's C_p , Akaike information criterion (AIC), Bayesian information criterion (BIC), adjusted R^2 , Cross-validation (CV), (Ridge), Lasso, Elastic net, Dimension reduction approaches and Sure independence screening (SIS).

Extensions of the Linear Model

- Multivariate linear regression, reduced rank regression and canonical correlation analysis.
- Categorical response and logistic regression.
- High-dimensional problem: $p \gg n$.

