МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

по дисциплине «Дискретные системы управления»

по теме: МОДЕЛИРОВАНИЕ ЛИНЕЙНЫХ ДИСКРЕТНЫХ СИСТЕМ

Студент:	
Группа № <i>R3435</i>	Зыкин Л. В.
Вариант №8	
Предподаватель:	
доцент	Краснов А. Ю.

Санкт-Петербург 2025

1 ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДИСКРЕТНОГО ЭЛЕМЕНТА НА НЕПРЕРЫВНУЮ СИСТЕМУ

1.1 Постановка задачи

Вариант: **8**. Для схемы на рис. **1** заданы параметры: период дискретизации T=0,2 с, усиление непрерывной части $K_{CO}=3,4$. Требуется:

- (a) Реализовать схему в среде моделирования. Для дискретного звена использовать экстраполятор нулевого порядка (ZOH).
- **(b)** Подбором коэффициента обратной связи K_{FB} найти границы устойчивости (нейтральная и колебательная) замкнутой системы. Построить переходные характеристики выхода.
- (с) Сделать вывод о влиянии ZOH на устойчивость замкнутой системы.
- (d) Исследовать влияние K_{FB} на колебательность процесса: найти значения, соответствующие максимальной колебательности и отсутствию колебаний; построить переходные процессы.
- (e) Найти значение K_{FB} , обеспечивающее оптимальный по быстродействию процесс; представить переходные характеристики.

Рисунок 1 — Структурная схема моделирования задания 1 (иллюстрация из методички).

1.2 Математическая модель

Непрерывная часть имеет передаточную функцию вида

$$W_c(s) = \frac{K_{CO}}{s}, \quad K_{CO} = 3.4.$$

При ZOH-дискретизации интегратора получаем дискретную модель состояния:

$$x_{k+1} = x_k + T \cdot K_{CO} \cdot u_k, \quad y_k = x_k.$$

При замыкании системы по коэффициенту обратной связи K_{FB} управление принимает вид:

$$u_k = r_k - K_{FB} \cdot y_k = 1 - K_{FB} \cdot x_k.$$

Подставляя управление в уравнение состояния, получаем замкнутую систему:

$$x_{k+1} = x_k + T \cdot K_{CO} \cdot (1 - K_{FB} \cdot x_k) = (1 - TK_{CO}K_{FB}) \cdot x_k + TK_{CO}.$$

Собственное число замкнутой системы:

$$a = 1 - TK_{CO}K_{FB} = 1 - 0.2 \cdot 3.4 \cdot K_{FB} = 1 - 0.68K_{FB}.$$

1.3 Ход моделирования

Реализация выполнена в скрипте python/task1.py. Скрипт формирует переходные процессы для различных значений K_{FB} .

(b) Границы устойчивости

Границы устойчивости определяются условием |a|=1:

$$a=1 \Rightarrow K_{FB}=0$$
 (нейтральная граница), (1)

$$a = -1 \implies 1 - 0.68K_{FB} = -1$$
 (2)

$$\Rightarrow K_{FB} = \frac{2}{0.68} = 2,941$$
 (колебательная граница). (3)

Рисунок 2 — Переходная характеристика при нейтральной границе устойчивости $(K_{FB}=0).$

Рисунок 3 — Переходная характеристика при колебательной границе устойчивости $(a=-1,K_{FB}\approx 2{,}941).$

(с) Влияние ZOH

ZOH фиксирует управляющее воздействие на интервале дискретизации, что эквивалентно появлению дискретного собственного числа $a=1-TK_{CO}K_{FB}$. В результате устойчивость определяется положением a внутри единичного круга; чем ближе a к границе -1, тем больше колебательность.

(d) Влияние коэффициента обратной связи

Рисунок 4 — Переходная характеристика без колебаний (0 < a < 1).

Рисунок 5 — Переходная характеристика при максимальной колебательности ($a \approx -0.9$).

Тенденции: при уменьшении a в диапазоне (0,1) процесс становится быстрее и апериодичнее; при отрицательных a появляется колебательность, её амплитуда растёт по мере приближения a к -1.

(е) Оптимальный по быстродействию процесс

Рисунок 6 — Оптимальный по быстродействию переходный процесс (пример a=0,1).

Выбор малого положительного a обеспечивает быстрое затухание, сохраняя апериодический характер ответа и умеренные усилия управления.

1.4 Выводы по заданию 1

ZOH делает замкнутую систему дискретной с собственным числом $a=1-T\ K_{CO}\ K_{FB}$. Границы устойчивости соответствуют |a|=1: $K_{FB}=0$ и $K_{FB}=2/(TK_{CO})$. При 0< a<1 процесс апериодический; при -1< a<0 — колебательный, степень колебательности растёт при приближении к -1. Выбор меньшего a ускоряет процесс, но повышает требования к управляющему воздействию; слишком малые a могут приводить к насыщению исполнительных органов.

2 ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ДИСКРЕТНЫХ СИСТЕМ

2.1 Постановка задачи

Сформировать дискретную модель системы $\ddot{y}=u$ при ZOH-дискретизации. Непрерывная модель в пространстве состояний:

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x.$$

При ZOH-дискретизации с периодом T = 0.2 с получаем:

$$A_d = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0.2 \\ 0 & 1 \end{bmatrix}, \quad B_d = \begin{bmatrix} T^2/2 \\ T \end{bmatrix} = \begin{bmatrix} 0.02 \\ 0.2 \end{bmatrix}.$$

Задаём управление $u(k)=-Kx(k)=-[k_1\ k_2]x(k)$. По пяти наборам желаемых корней из таблицы варианта 8 синтезировать K, рассчитать матрицу $F=A_d-B_dK$ и выполнить моделирование при исходных условиях $y(0)=1, \dot{y}(0)=0$.

2.2 Результаты расчётов и моделирования

Расчёты выполнены в скрипте python/task2.py (алгоритм Аккермана). Матрица замкнутой системы:

$$F = A_d - B_d K = \begin{bmatrix} 1 & 0.2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.02 \\ 0.2 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 - 0.02k_1 & 0.2 - 0.02k_2 \\ -0.2k_1 & 1 - 0.2k_2 \end{bmatrix}.$$

Характеристический полином замкнутой системы:

$$\det(zI - F) = z^2 - (2 - 0.02k_1 - 0.2k_2)z + (1 - 0.02k_1 - 0.2k_2 + 0.004k_1k_2).$$

Полученные переходные процессы приведены на рис. 7–11. Итоговые коэффициенты $K = [k_1 \ k_2]$:

Набор	Полюса	k_1	k_2
1	$\{0.5, 0.1\}$	-6.0	-0.1
2	$\{0.9, 0.8\}$	-2.25	-0.8
3	$\{0.3, -0.2\}$	-3.5	0.2
4	$\{0.7j, -0.7j\}$	12.25	-1.225
5	$\{-0.3+0.8j, -0.3-0.8j\}$	33.25	-0.325

Таблица 1 — Коэффициенты регулятора состояния по пяти наборам желаемых корней.

Качественный анализ:

- Набор 1 (0.5, 0.1): быстрый апериодический процесс с малыми полюсами.
- **Набор 2 (0.9, 0.8)**: медленный апериодический процесс из-за близости полюсов к единичной окружности.
- Набор 3 (0.3, -0.2): быстрый процесс с небольшой колебательностью из-за отрицательного полюса.
- **Наборы 4 и 5 (комплексные пары)**: колебательный характер; увеличение радиуса или уменьшение затухания приводит к большему перерегулированию и длительным колебаниям.

Рисунок 7 — Набор 1: переходный процесс.

Рисунок 8 — Набор 2: переходный процесс.

Рисунок 9 — Набор 3: переходный процесс.

Рисунок 10 — Набор 4: переходный процесс.

Рисунок 11 — Набор 5: переходный процесс.

Выводы по заданию 2

Размещение корней позволяет напрямую задать желаемые динамические показатели. Действительные корни ближе к нулю дают быстрое апериодическое поведение, комплексные корни — колебательный процесс; приближение полюсов к единичной окружности замедляет систему и повышает чувствительность к возмущениям.

3 ПОСТРОЕНИЕ ДИСКРЕТНЫХ КОМАНДНЫХ ГЕНЕРАТОРОВ

3.1 Генератор гармонического сигнала

Реализован генератор $g(k) = A \sin(kT\omega)$ через вращающуюся систему второго порядка. Дискретная модель состояния:

$$x_{k+1} = \begin{bmatrix} \cos(\omega T) & -\sin(\omega T) \\ \sin(\omega T) & \cos(\omega T) \end{bmatrix} x_k, \quad g_k = A \begin{bmatrix} 0 & 1 \end{bmatrix} x_k.$$

Для варианта 8: $A=1,\!3,\,\omega=0,\!37$ рад/с, $T=0,\!2$ с. Угол поворота за один шаг:

$$\theta = \omega T = 0.37 \cdot 0.2 = 0.074$$
 рад.

Рисунок 12 — Генератор гармонического сигнала для параметров варианта 8.

3.2 Математическая модель возмущения

Вариант 8: $4\sin(2kT) + 1.5\cos(2.5kT)$. Модель формируется как сумма двух автономных осцилляторов:

Первый осциллятор:
$$x_{1,k+1} = \begin{bmatrix} \cos(2T) & -\sin(2T) \\ \sin(2T) & \cos(2T) \end{bmatrix} x_{1,k},$$
 (4)

$$y_{1,k} = 4 \begin{bmatrix} 0 & 1 \end{bmatrix} x_{1,k}, \tag{5}$$

Второй осциллятор:
$$x_{2,k+1} = \begin{bmatrix} \cos(2.5T) & -\sin(2.5T) \\ \sin(2.5T) & \cos(2.5T) \end{bmatrix} x_{2,k},$$
 (6)

$$y_{2,k} = 1.5 \begin{bmatrix} 1 & 0 \end{bmatrix} x_{2,k}. \tag{7}$$

Итоговый выход: $d_k = y_{1,k} + y_{2,k}$. Период дискретизации для модели возмущения задан T = 0.25 с согласно подзаданию (d).

Рисунок 13 — Выход дискретной модели возмущения.

Выводы по заданию 3

Построенные генераторы обеспечивают воспроизводимую подачу тестовых сигналов и возмущений для дискретных систем с заданным периодом дискретизации, что позволяет сравнивать поведение различных регуляторов при одинаковых условиях.

4 ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были изучены основные принципы дискретных систем управления. Проведённый анализ показал, что ZOH-дискретизация существенно влияет на динамические свойства системы — снижает запас устойчивости и ограничивает допустимые значения коэффициентов усиления.

Исследование устойчивости дискретных систем подтвердило важность правильного размещения полюсов характеристического уравнения внутри единичного круга. Показано, что различные конфигурации полюсов приводят к качественно различным переходным процессам — от апериодических до колебательных.

Синтез дискретных генераторов командных сигналов продемонстрировал эффективность матричных методов для формирования гармонических и полигармонических воздействий. Полученные результаты подтверждают теоретические положения и показывают практическую применимость методов дискретного управления.