

面向稠密向量检索的知识 蒸馏方法研究与实现

答辩人:张涵

实验及预期成果

选题背景及依据

研究内容与方法

前期工作与总结

part 1 前期工作与总结

前期工作与总结

课程学习

- ▶ 应用数理统计
- ▶ 机器学习

组会交流

- ▶ 每周组会
- ▶ 周报制度

理论研究

Part 2 选题背景及依据

选题背景及依据

选题背景

- 在数据爆炸式增长的数字时代,各个国家都在加速数字产业布局,网页文档数量达到百亿级别。
- 信息检索的目的是从大规模文档集合中选择文档以满足用户需求。
- 信息检索有很多应用,通常被视为一些 NLP 任务的第一阶段,例如事实验证和问答。

选题背景及依据

- 词汇不匹配问题
 - Q: How many people live in Sydney?
 - Sydney's population is 4.9 million [relevant, but missing 'people' and 'live']
 - ➤ Hundreds of people queueing for live music in Sydney [irrelevant, and matching 'people' and 'live']

传统信息检索模型

- 词汇不匹配问题
- 对查询和文档的浅层理解

应用神经网络

神经信息检索模型

- 克服传统模型存在的问题
- 预训练的模型进一步提高了模型的性能

选题背景及依据

稠密向量检索

缺点

- 稠密向量的编码中存在冗余
- 占用大量不必要的空间和内存

Part 3

研究内容与方法

研究内容与方法

1.知识蒸馏方法

研究内容与方法

2.对比学习

3.稠密向量检索

研究内容与方法

Part 4 实验及预期成果

实验

MS MARCO https://microsoft.github.io/msmarco/

DPR-PCA256-PQ2

(pytorch) neulab@omnisky01:/home/hdd/pyserini/DPR_Index_Compression\$ bash pyserini.sl python -m pyserini.eval.evaluate_dpr_retrievalretrieval /home/hdd/pyserini/DPR_In
100%
Top20 accuracy: 0.7628808864265928
Top100 accuracy: 0.8476454293628809

Top 20(paper)	Top 100(paper)		
76.2 (74.8)	84.7 (84.1)		

DPR-PCA256

```
python -m pyserini.eval.evaluate_dpr_retrieval --r
100%|
Top20 accuracy: 0.7764542936288089
Top100 accuracy: 0.8559556786703602
```

Top 20(paper)	Top 100(paper)		
77.6 (77.2)	85.6 (85.5)		

复现ANCE结果

预期成果

创新点

- 利用知识蒸馏的方法完成对稠密向量的降 维操作
- 为了优化训练过程,采用对比学习的训练 方式对训练负例进行精确选取
- 应用大型预训练语言模型,保证实验结果的精度

预期成果

- 完成顶级会议论文一篇
- 完成发明专利一项

工作进度安排

序 号	阶段及内容	工作量估计 (时数)		起止日期	阶段研究成果			
1	课题方向研究和选择	400		2021.9- 2021.10	收集资料,确定研究方向			
2	撰写开题报告,明确 研究内容	200		2021.11	撰写开题报告,完成开题答 辩			
3	阅读论文并复现论文 中的实验	600		2021.12- 2022.2	完成对前人实验工作的整理			
4	探索预训练语言模型 微调后在信息检索任 务上的效果	600		2022.3- 2022.6	完成对预训练语言模型的分 析报告			
5	设计压缩稠密向量的 策略和模型	600		2022.7- 2022.9	完成对蒸馏模型的分析报告			
6	探索利用对比学习进 行训练后在信息检索 任务上的效果	600		2022.10- 2022.12	完成对比学习策略的分析报告			
7	总结已使用方法的优 点与不足	400		2023.1- 2023.2	具体地实验效果分析报告和 论文			
8	整理之前的工作并指 出后继的可改进的地 方	200		2023.3	进行一次组会报告			
9	对研究工作进行整理 并撰写论文	400 合计 4000		2023.4- 2023.5	完成毕业论文			