

WHAT IS CLAIMED IS:

1 1. A mobile communication device comprising:
2 a plurality of signal detectors, each signal detector configured to provide a
3 respective detected signal having a desired component plus an undesired component; and
4 a noise suppression unit operatively coupled to the plurality of signal
5 detectors and configured to receive and digitally process the plurality of detected signals
6 from the plurality of signal detectors to provide an output signal having substantially the
7 desired component and large portion of the undesired component removed.

1 2. The device of claim 1, further comprising:
2 a first beam forming unit operatively coupled to the plurality of signal
3 detectors and configured to process the plurality of detected signals to form a first signal
4 having the desired component plus a portion of the undesired component; and
5 a second beam forming unit operatively coupled to the plurality of signal
6 detectors and configured to process the plurality of detected signals to form a second
7 signal having a large portion of the undesired component, and
8 wherein the noise suppression unit is operatively coupled to the first and
9 second beam forming units and configured to receive and digitally process the first and
10 second signals to provide the output signal.

1 3. The device of claim 2, wherein the first and second beam forming units
2 and the noise suppression unit are implemented within a digital signal processor (DSP).

1 4. The device of claim 1, wherein the signal detectors are microphones.

1 5. The device of claim 4 and comprising two microphones.

1 6. The device of claim 2, wherein the noise suppression unit is operative
2 to remove the undesired component in the first signal using spectrum modification.

1 7. The device of claim 2, wherein the noise suppression unit digitally
2 processes the first and second signals in the frequency domain.

1 8. The device of claim 7, wherein the noise suppression unit includes
2 a first transformer coupled to the first beam forming unit and configured to
3 receive and transform the first signal into a first transformed signal, and
4 a second transformer coupled to the second beam forming unit and
5 configured to receive and transform the second signal into a second transformed signal.

1 9. The device of claim 8, wherein the noise suppression unit further
2 includes
3 a multiplier configured to receive and scale the first transformed signal
4 with a set of coefficients.

1 10. The device of claim 9, wherein the set of coefficients are derived
2 based on spectrum subtraction.

1 11. The device of claim 9, wherein the noise suppression unit further
2 includes
3 a noise spectrum estimator operative to receive and process the second
4 transformed signal to provide a noise spectrum estimate, and
5 a gain calculation unit operative to receive the first transformed signal and
6 the noise spectrum estimate and provides the set of coefficients for the multiplier.

1 12. The device of claim 11, wherein the noise spectrum estimator is
2 operative to provide time-varying noise spectrum estimate.

1 13. The device of claim 2, wherein the noise suppression unit includes
2 an activity detector configured to receive the first and second signals and
3 provide a control signal indicative of active time periods whereby the first signal includes
4 predominantly the desired component.

1 14. The device of claim 13, wherein the first and second beam forming
2 units are adjusted based on the control signal from the activity detector.

1 15. The device of claim 1 and operative to receive and process far-field
2 signals.

1 16. The device of claim 1 and operative to receive and process near-field
2 signals.

1 17. The device of claim 2, wherein each of the first and second beam
2 forming units includes
3 at least one adaptive filter, each adaptive filter operative to receive and
4 process a signal from a respective signal detector to provide a corresponding filtered
5 signal.

1 18. The device of claim 17, wherein each adaptive filter implements a
2 least mean square (LMS) algorithm.

1 19. The device of claim 1, wherein the device is a cellular phone.

1 20. A wireless communication device comprising:
2 at least two microphones, each microphone configured to detect and
3 provide a respective signal having a desired component plus an undesired component; and
4 a signal processor coupled to the at least two microphones and configured
5 to receive and digitally process the detected signals from the microphones to provide an
6 output signal having substantially the desired component and large portion of the
7 undesired component removed.

1 21. The device of claim 20, wherein the signal processor digitally
2 processes the detected signals in the frequency domain.

1 22. The device of claim 20, wherein the signal processor digitally
2 processes the detected signals in the time domain.

1 23. The device of claim 20, wherein the signal processor is operative to
2 remove the undesired component from the output signal using spectrum subtraction.

1 24. The device of claim 20, wherein the signal processor is further
2 configured to process the detected signals to provide a first signal having the desired

3 component plus a portion of the undesired component and a second signal having a large
4 portion of the undesired component.

1 25. The device of claim 20, wherein the signal processor is operative to
2 process far-field signals or near-field signals.

1 26. The device of claim 20, wherein the microphones are placed close to
2 each other relative to a wave-length of sound and not in an end-fire type of configuration.

1 27. A method for suppressing noise in a wireless communication device,
2 comprising:

3 detecting at least two signals via respective signal detectors, wherein each
4 detected signal includes a desired component plus an undesired component;

5 deriving, from the detected signals, a first signal having substantially the
6 desired component plus a portion of the undesired component;

7 deriving, from the detected signals, a second signal having a large portion
8 of the undesired component; and

9 digitally processing the first and second signals to provide an output signal
10 having substantially the desired component and large portion of the undesired component
11 removed.

1 28. The method of claim 27, wherein the digital processing includes
2 removing the undesired component from the output signal using spectrum
3 subtraction.

1 29. The method of claim 28, wherein the digital processing further
2 includes

3 estimating a noise spectrum of the undesired component based on the
4 second signal,

5 deriving a set of coefficients based on spectrum subtraction, and

6 scaling transformed representation of the first signal based on the set of
7 coefficients.

- 1 30. The method of claim 29, wherein the digital processing provides time-
- 2 varying noise spectrum estimate.