MAT 301 - Problem Set 4

Due Wednesday March 26, 2014

Note: If G and G' are groups, $G \oplus G'$ is the direct product of G and G'.

- 1. Let $G = D_{12} \oplus U(16)$ and $H = \langle (r^{10}, 5) \rangle$, where $r \in D_{12}$ is an element of order 12.
 - a) Prove that H is a normal subgroup of G.
 - b) Compute the order of the factor group G/H.
 - c) Compute the order of the element $(r^4, 3)H$ in the factor group G/H.
 - d) Prove or disprove that G/H is abelian.
 - e) Prove or disprove that G/H contains an element of order 8. (Note: This can be done without computing the orders of all elements of G/H. Think about relations between orders of elements of G and elements of G/H.)
- 2. Prove or disprove that D_{12} is isomorphic to $\mathbb{Z}_3 \oplus D_4$.
- 3. Let p be a prime. Recall that the direct product $\mathbb{Z}_p \oplus \mathbb{Z}_p$ is defined as follows:

$$\mathbb{Z}_p \oplus \mathbb{Z}_p = \{ (i, j) \mid i, j \in \mathbb{Z}_p \}$$

 $(i, j) * (k, \ell) = ((i + k) \pmod{p}, (j + \ell) \pmod{p}), i, j, k, \ell \in \mathbb{Z}_p.$

Note: Do not use material or results on internal direct products here. In particular, do not use Theorem 9.7 of the text. In addition, do not use results from Chapter 11.

- a) Let G be an abelian group of order p^2 . Assume that G is not cyclic. Let $a \in G$ be such that $a \neq e$. Let $b \in G$ be such that $b \notin \langle a \rangle$. Prove that an element of G has the form $a^i b^j$ for unique integers i and $j \in \{0, 1, 2, \ldots, p-1\}$. (Hint: One way to do this is to first show that $a^i b^j = a^k a^\ell$ if and only if i = k and $k = \ell$, for $i, j, k, \ell \in \{0, 1, \ldots, p-1\}$, and then use $|G| = p^2$.)
- b) Prove that a noncyclic abelian group of order p^2 is isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p$. (Hint: Use part a) to define an isomorphism $\phi: G \to \mathbb{Z}_p \oplus \mathbb{Z}_p$.)
- c) Prove that an abelian group of order 2p is isomorphic to \mathbb{Z}_{p^2} or to $\mathbb{Z}_p \oplus \mathbb{Z}_p$.

Remark: At some point in the course, we will prove that a group of order p^2 is abelian.

4. Let k and ℓ be fixed integers. Define $\phi_{k,\ell}: \mathbb{Z} \oplus \mathbb{Z}$ by

$$\phi_{k,\ell}(m,n) = k m + \ell n, \qquad m, n \in \mathbb{Z}.$$

- a) Prove that $\phi_{k,\ell}$ is a homomorphism.
- b) Let $H = \{ (2m, -m) \mid m \in \mathbb{Z} \}$. Prove that H is a subgroup of $\mathbb{Z} \oplus \mathbb{Z}$. Use the First Isomorphism Theorem to prove that the factor group $(\mathbb{Z} \oplus \mathbb{Z})/H$ is isomorphic to \mathbb{Z} .

Remark: You were asked to use the First Isomorphism Theorem to solve part b). There is an alternate way to solve part b), by showing that the factor group $(\mathbb{Z} \oplus \mathbb{Z})/H$ is an infinite cyclic group. An infinite cyclic group is isomorphic to \mathbb{Z} .

- 5. Let $\alpha = (237)(6119)(76118) \in S_{12}$.
 - a) Find $\beta \in S_{12}$ such that $\beta \alpha \beta^{-1} = \alpha^3$.
 - b) Determine which elements of $\langle \alpha \rangle$ are conjugate to α .
 - c) Let $T = \{ \gamma \in S_{12} \mid |\gamma| = |\alpha| \}$. Determine the number of distinct conjugacy classes in T.
- 6. Let $\alpha \in S_n$. Prove that $|\alpha|$ is odd if and only if α and α^2 are conjugate in S_n .
- 7. Let H be a normal subgroup of a finite group G.
 - a) Let n be the number of distinct conjugacy classes in G and let m be the number of distinct conjugacy classes in G/H. Prove that if $H \neq \{e\}$, then m < n. (Hint: As a first step, show that if a and b are conjugate in G, then aH and bH are conjugate in G/H.)
 - b) If $a \in G$, let $C_G(a) = \{c \in G \mid cac^{-1} = a\}$. Then $C_G(a)$ is a subgroup of G (not necessarily normal in G). We will show in class that the number $|\operatorname{cl}_G(a)|$ of elements in the conjugacy class $\operatorname{cl}_G(a)$ of a in G is equal to $|G|/|C_G(a)|$. Prove that if $a \in H$, then $|\operatorname{cl}_H(a)|$ divides $|\operatorname{cl}_G(a)|$. (Note: This part is independent of part a).)