Feedback — IV. Linear Regression with Multiple Variables

You submitted this quiz on **Wed 26 Mar 2014 10:40 PM PDT**. You got a score of **5.00** out of **5.00**.

Question 1

Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam	$\left(\mathrm{midterm}\;\mathrm{exam}\right) ^{2}$	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is (midterm score)². Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(2)}$? (Hint: midterm = 89, final = 96 is training example 1.) Please enter your answer in the text box below. If applicable, please provide at least two digits after the decimal place.

You entered:

-0.37

Your Answer		Score	Explanation
-0.37	~	1.00	
Total		1.00 / 1.00	

Help

Question Explanation

The mean of x_2 is 6675.5 and the range is 8836-4761=4075 So $x_2^{(2)}$ is $\frac{5184-6675.5}{4075}=-0.37$.

Question 2

You run gradient descent for 15 iterations with $\alpha=0.3$ and compute $J(\theta)$ after each iteration. You find that the value of $J(\theta)$ decreases quickly then levels off. Based on this, which of the following conclusions seems most plausible?

Your Answer		Score	Explanation
Rather than use the current value of α , it'd be more promising to try a smaller value of α (say $\alpha=0.1$).			
ullet $lpha=0.3$ is an effective choice of learning rate.	~	1.00	We want gradient descent to quickly converge to the minimum, so the current setting of α seems to be good.
Rather than use the current value of α , it'd be more promising to try a larger value of α (say $\alpha=1.0$).			
Total		1.00 / 1.00	

Question 3

Suppose you have m=28 training examples with n=4 features (excluding the additional allones feature for the intercept term, which you should add). The normal equation is $\theta=(X^TX)^{-1}X^Ty$. For the given values of m and n, what are the dimensions of θ , X, and y in this equation?

Your Answer		Score	Explanation
lacksquare X is $28 imes5$, y is $28 imes1$, $ heta$ is $5 imes1$	~	1.00	
igorplus X is $28 imes 5$, y is $28 imes 5$, $ heta$ is $5 imes 5$			
igorplus X is $28 imes 4$, y is $28 imes 1$, $ heta$ is $4 imes 4$			
\bigcirc X is $28 imes4$, y is $28 imes1$, $ heta$ is $4 imes1$			
Total		1.00 / 1.00	

Question Explanation

X has m rows and n+1 columns (+1 because of the $x_0=1$ term). y is an m-vector. θ is an (n+1)-vector.

Question 4

Suppose you have a dataset with m=50 examples and n=15 features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?

Your Answer	Score	Explanation
Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation.		
The normal equation, since it provides an efficient way to directly find the solution.	✓ 1.00	With $n=15$ features, you will have to invert a 15×15 matrix to compute the normal equation. This is a simple inversion, so the normal equation is not slow.
\bigcirc The normal equation, since gradient descent might be unable to find the optimal $\theta.$		
 Gradient descent, since it will always converge to 		

the optimal θ .

Total	1.00 /	
	1.00	

Question 5

Which of the following are reasons for using feature scaling?

Your Answer	Score	Explanation
✓ It speeds up gradient descent by making it require fewer iterations to get to a good solution.	✔ 0.25	Feature scaling speeds up gradient descent by avoiding many extra iterations that are required when one or more features take on much larger values than the rest.
■ It is necessary to prevent gradient descent from getting stuck in local optima.	✔ 0.25	The cost function $J(\theta)$ for linear regression has no local optima.
lt speeds up solving for $ heta$ using the normal equation.	✔ 0.25	The magnitude of the feature values are insignificant in terms of computational cost.
■ It is necessary to prevent the normal equation from getting stuck in local optima.	✔ 0.25	The cost function $J(\theta)$ for linear regression has no local optima.
Total	1.00 / 1.00	