

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE

IoT Challenge #1, Exercise sink placement

Internet of Things

Authors: Kevin Ziroldi - 10764177

Matteo Volgari - 10773593

Professors: Alessandro Redondi, Antonio Boiano

Academic Year: 2024-2025

Version: 1.0

Release date: 20-3-2025

Contents

Co	Contents															i									
1		pter on																							1
		Data .																							
		Point A																							
	1.3	Point B																							2
List of Figures															3										
Li	st of	Tables																							5

1 | Chapter one

COORDINATES 6.87168 7.65929 8.15501

1.1. Data

- 10 sensors
- $T_{transmission} = 10 \text{ minutes}$
- b = 2000 bit
- $E_b = 5 \text{ mJ}$
- $E_c = 50 \text{ nJ/bit}$
- $E_{tx} = k \cdot d^2 \text{ nJ/bit}$
- $k = 1 \text{ nJ/bit/}m^2$

Sensor	Position
1	(1, 2)
2	(10, 3)
3	(4, 8)
4	(15, 7)
5	(6, 1)
6	(9, 12)
7	(14, 4)
8	(3, 10)
9	(7, 7)
10	(12, 14)

Table 1.1: Sensor position table

2 1 Chapter one

Figure 1.1: Sensor distribution

1.2. Point A

Sink position = (x_s, y_s) = (20, 20)

We calculated the distance of the farer sensor (sensor 1) from the sink using the cartesian distance:

$$distance_1 = d\{(1,2), (20,20)\} = \sqrt{(20-1)^2 + (20-2)^2} = \sqrt{685}m$$

$$E_{cycle,1} = E_c \cdot b + E_{tx(1)} = 50nJ/bit \cdot 2000 \text{ bit} + 1nJ/bit/m^2 \cdot 685m^2 \cdot 2000 \text{ bit} = 1.47 \cdot 10^{-3}J$$

$$n = \# \text{ cycles} = E_b/E_{cycle,1} = 3.4 \text{ cycles}$$

Assuming that each sensor transmits at the beginning of the ten minutes, the system will last for three cycles and during the fourth cycle the farer sensor will die.

1.3. Point B

List of Figures

1.1	Sensor distribution																	2

List of Tables

1.1	1 Sensor	position	table		_			_		_			_		_	_					_		_			_			_	_	
1.		PODITIOI	COOL	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•		•	-