Part I.

Figure 2. Schematic Diagram of LE4_6

Frequency (Hz)	Period	
1	475	
10	96	
50	16	
100	8	

Table 1. Measured Period Values for Different Input Frequencies

Part II.

Figure 2. Schematic Diagram of LE4_7

Frequency	Duty Cycle	CCPR1L:CCP1CON <5:4> in Decimal	CCPR1L:CCP1CON <5:4> in Blnary	CCPR1L	CCP1CON
1000 Hz	10%	25	0000 0110 01	0x06	0x1C
	25%	63	0000 1111 11	0x0F	0x3C
	50%	125	0001 1111 01	0x1F	0x1C
	75%	188	0010 1111 00	0x2F	0x0C
	95%	225	0011 1000 01	0x38	0x1C
1500 Hz	10%	17	0000 0100 01	0x04	0x1C
	25%	42	0000 1010 10	0x0A	0x2C
	50%	83	0001 0100 11	0x14	0x3C
	75%	125	0001 1111 01	0x1F	0x1C
	95%	150	0010 0101 10	0x25	0x2C
10000 Hz	10%	3	0000 0000 11	0x00	0x3C
	25%	6	0000 0001 10	0x01	0x2C
	50%	13	0000 0011 01	0x03	0x1C
	75%	19	0000 0100 11	0x04	0x3C
	95%	23	0001 0111	0x05	0x3C

Table 2. CCPR1L and CCP1CON<5:4> Values for Different Frequencies and Duty Cycles

Part II. Calculations

1k Hz:

$$PR2 = \frac{(1/1000 \, Hz)}{4 \cdot 16 \cdot (2.5 \times 10^{-7})} - 1$$

10% Duty Cycle:

$$=\frac{(0.1*(\frac{1}{1000}))*4x10^6}{16}=25$$

25% Duty Cycle:
=
$$\frac{(0.25 * (\frac{1}{1000})) * 4x10^{6}}{16}$$
 = 62.5= 63

50% Duty Cycle:
=
$$\frac{(0.50 \ 9 \ * (\frac{1}{1000})) \ * 4x10^6}{16}$$
 = 125

75% Duty Cycle:

$$=\frac{(0.75*(\frac{1}{1000}))*4x10^6}{16}=187.5=188$$

90% Duty Cycle:

$$=\frac{(0.90*(\frac{1}{1000}))*4x10^6}{16}=225$$

1.5k Hz:

$$PR2 = \frac{(1/1500 \, Hz)}{4*16*(2.5x10^{-7})} - 1$$

10% Duty Cycle:

$$=\frac{(0.1*(\frac{1}{1500}))*4x10^6}{16}=16.7=17$$

25% Duty Cycle:
=
$$\frac{(0.25 * (\frac{1}{1500})) * 4x10^6}{16}$$
 = 41.7 = 42

50% Duty Cycle:

Cycle =
$$\frac{(0.50 \, 9 \, * \, (\frac{1}{1500})) \, * \, 4x10^6}{16}$$
 = 83.3 = 83

75% Duty Cycle:

Cycle =
$$\frac{(0.75 * (\frac{1}{1500})) * 4x10^{6}}{16} = 125$$

90% Duty Cycle:

Cycle =
$$\frac{(0.90 * (\frac{1}{1500})) * 4x10^{6}}{16} = 150$$

10k Hz:

$$PR2 = \frac{(1/10000 \, Hz)}{4*16*(2.5x10^{-7})} - 1$$

10% Duty Cycle:

Cycle =
$$\frac{(0.1 * (\frac{1}{10000})) * 4x10^6}{16}$$
 = 2.5 = 3

25% Duty Cycle:

Cycle =
$$\frac{(0.25 * (\frac{1}{10000})) * 4x10^6}{16}$$
 = 6.25 = 6

50% Duty Cycle:
Cycle =
$$\frac{(0.50 \ 9 \ * (\frac{1}{10000})) \ * 4x10^{6}}{16} = 12.5 = 13$$

75% Duty Cycle:

Cycle =
$$\frac{(0.75*(\frac{1}{10000}))*4x10^6}{16}$$
 = 18.75 = 19

90% Duty Cycle:

Cycle =
$$\frac{(0.90*(\frac{1}{10000}))*4x10^6}{16}$$
 = 22.5 = 23