1.

Find the tangent line for the following function at the given point.

$$f(x) = \frac{x^2 - 1}{x^2 + x + 1}$$
 at $(1, 0)$

Compute the slope of
$$y = \frac{x^2 - 1}{x^2 + x + 1}$$
: $\frac{dy}{dx} = \frac{x^2 + 4x + 1}{(x^2 + x + 1)^2}$

Compute the slope of
$$y = \frac{x^2 - 1}{x^2 + x + 1}$$
 at $(1, 0)$: $m = \frac{2}{3}$

Find the line with slope m = $\frac{2}{3}$ and passing through (1,0): $y = \frac{2}{3}x - \frac{2}{3}$

$$y = \frac{2}{3}x - \frac{2}{3}$$

Find the tangent line for the following curve at the given point.

$$y = -2\cos^2 x + 5\cos x \text{ at } x = \frac{\pi}{2}$$

Find the tangent point: $\left(\frac{\pi}{2}, 0\right)$

Compute the slope of $y = -2\cos^2(x) + 5\cos(x)$: $\frac{dy}{dx} = 4\cos(x)\sin(x) - 5\sin(x)$

Compute the slope of $y=-2\cos^2(x)+5\cos(x)$ at $x=\frac{\pi}{2}$: m=-5

Find the line with slope m = -5 and passing through $\left(\frac{\pi}{2},0\right)$: $y=-5x+\frac{5\pi}{2}$

$$y = -5x + \frac{5\pi}{2}$$

Find the tangent line for the following curve at the given point.

$$y = \sin(\sin x)$$
 at $(\pi, 0)$

Compute the slope of
$$y = \sin(\sin(x))$$
: $\frac{dy}{dx} = \cos(\sin(x))\cos(x)$

In order to find the slope of the function, take the derivative of $\sin(\sin(x))$

$$\frac{d}{dx}(\sin(\sin(x))) = \cos(\sin(x))\cos(x)$$

$$\cos(\sin(x))\cos(x)$$

Compute the slope of
$$y = \sin(\sin(x))$$
 at $(\pi, 0)$: $m = -1$

Plug $x = \pi$ into the equation $\cos(\sin(x))\cos(x)$

$$\cos(\sin(\pi))\cos(\pi)$$

Refine

-1

Find the line with slope m = -1 and passing through $(\pi, 0)$: $y = -x + \pi$

Compute the line equation $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$ for slope $\mathbf{m} = -1$ and passing through

Compute the y intercept: $b = \pi$

Construct the line equation ${\bf y}$ = ${\bf m}{\bf x}$ + ${\bf b}$ where ${\bf m}=-1$ and ${\bf b}=\pi$

$$y = -x + \pi$$

4.

Find the tangent line for the following function at the given point.

$$f(x) = xe^x$$
 at $x = 1$

Find the tangent point: (1, e)

Plug x = 1 into the equation $y = xe^{x}$

y = 1e

Solve y

y = e

Compute the slope of
$$y = xe^{x}$$
: $\frac{dy}{dx} = e^{x} + e^{x}x$

In order to find the slope of the function, take the derivative of xe^{x}

$$\frac{d}{dx}(xe^X) = e^X + e^X x$$

$$e^{X} + e^{X}x$$

Compute the slope of $y = xe^X$ at x = 1: m = 2e

Plug x = 1 into the equation $e^{X} + e^{X}x$

$$e^1 + e^1 1$$

Refine

2e

Find the line with slope m = 2e and passing through (1, e): y = 2ex - e

Compute the line equation $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$ for slope $\mathbf{m} = 2e$ and passing through (1, e)

Compute the y intercept: b = -e

Plug the slope 2e into y = mx + b

$$y = 2ex + b$$

Plug in
$$(1, e)$$
: $x = 1, y = e$

$$e = 2e1 + b$$

Isolate b

$$e = 2e1 + b$$
 : $b = -e$

$$b = -e$$

Construct the line equation $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$ where $\mathbf{m} = 2e$ and $\mathbf{b} = -e$

$$y = 2ex - e$$

$$y = 2ex - e$$

Find the tangent line for the following function at the given point.

$$g(z) = \ln(z^2 + 1)$$
 at $z = 0$

Find the tangent point: (0,0)

Plug x = 0 into the equation $y = \ln(x^2 + 1)$

$$y = \ln(0^2 + 1)$$

Solve y

$$y = 0$$

Compute the slope of
$$y = \ln(x^2 + 1)$$
: $\frac{dy}{dx} = \frac{2x}{x^2 + 1}$

In order to find the slope of the function, take the derivative of $\ln(x^2+1)$

$$\frac{d}{dx}\left(\ln(x^2+1)\right) = \frac{2x}{x^2+1}$$

$$\frac{2x}{x^2+1}$$

Compute the slope of
$$y = \ln(x^2 + 1)$$
 at $x = 0$: $m = 0$

Plug x = 0 into the equation $\frac{2x}{x^2 + 1}$

$$\frac{2\cdot 0}{0^2+1}$$

Refine

0

Find the line with slope m = 0 and passing through (0, 0): y = 0

Compute the line equation $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$ for slope $\mathbf{m} = 0$ and passing through (0, 0)

Compute the
$$y$$
 intercept: $b = 0$

Plug the slope 0 into y = mx + b

$$y = 0x + b$$

Plug in
$$(0,0)$$
: $x = 0, y = 0$

$$0 = 0 \cdot 0 + b$$

Isolate b

$$0 = 0 \cdot 0 + b : b = 0$$

$$b = 0$$

Construct the line equation ${\bf y}={\bf m}{\bf x}+{\bf b}$ where ${\bf m}=0$ and ${\bf b}=0$

$$y = 0$$

$$\frac{d}{dx}\sqrt{2x^2-1}$$

Apply the chain rule:
$$\frac{df(u)}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$$

$$Let 2x^2 - 1 = u$$

$$= \frac{d}{du} \left(\sqrt{u} \, \right) \frac{d}{dx} \left(2x^2 - 1 \right)$$

$$\frac{d}{du}(\sqrt{u}) = \frac{1}{2\sqrt{u}}$$

$$\frac{d}{du}(\sqrt{u})$$

Apply the Power Rule:
$$\frac{d}{dx}(x^a) = a \cdot x^{a-1}$$

$$=\frac{1}{2}u^{\frac{1}{2}-1}$$

Simplify

$$=\frac{1}{2\sqrt{u}}$$

$$\frac{d}{dx}(2x^2 - 1) = 4x$$

$$\frac{d}{dx}(2x^2-1)$$

Apply the Sum/Difference Rule: $(f\pm g)^{'}=f^{'}\pm g^{'}$

$$= \frac{d}{dx}(2x^2) - \frac{d}{dx}(1)$$

$$\frac{d}{dx}(2x^2) = 4x$$

$$\frac{d}{dx}(1) = 0$$

$$= 4x - 0$$
Simplify
$$= 4x$$

$$=\frac{1}{2\sqrt{u}}\cdot 4x$$

Substitute back $u = 2x^2 - 1$

$$=\frac{1}{2\sqrt{2x^2-1}}\cdot 4x$$

$$=\frac{2x}{\sqrt{2x^2-1}}$$

Find

$$\frac{d}{dx}\cos\left(3x^2\right)$$

Apply the chain rule: $\frac{df(u)}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$

Let
$$3x^2 = u$$

$$=\frac{d}{du}(\cos(u))\frac{d}{dx}(3x^2)$$

$$\frac{d}{du}(\cos(u)) = -\sin(u)$$

$$\frac{d}{du}(\cos(u))$$

Apply the common derivative: $\frac{d}{du}(\cos(u)) = -\sin(u)$

$$= -\sin(u)$$

$$\frac{d}{dx}(3x^2) = 6x$$

$$\frac{d}{dx}(3x^2)$$

Take the constant out: $(a \cdot f)^{\cdot} = a \cdot f$

$$=3\frac{d}{dx}(x^2)$$

Apply the Power Rule: $\frac{d}{dx}(x^a) = a \cdot x^{a-1}$

$$=3\cdot 2x^{2-1}$$

Simplify = 6x

$$=6x$$

$$= (-\sin(u)) \cdot 6x$$

Substitute back $u = 3x^2$

$$= \left(-\sin(3x^2)\right) \cdot 6x$$
Simplify
$$= -6x\sin(3x^2)$$

Find

$$\frac{d}{dx}\sqrt{\log_2 3x}$$

Apply the chain rule: $\frac{df(u)}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$

Let $\log_2(3x) = u$

$$= \frac{d}{du} \left(\sqrt{u} \right) \frac{d}{dx} \left(\log_2(3x) \right)$$

$$\frac{d}{du}(\sqrt{u}) = \frac{1}{2\sqrt{u}}$$

$$\frac{d}{du}(\sqrt{u})$$

Apply the Power Rule: $\frac{d}{dx}(x^a) = a \cdot x^{a-1}$

$$=\frac{1}{2}u^{\frac{1}{2}-1}$$

Simplify

$$=\frac{1}{2\sqrt{u}}$$

$$\frac{d}{dx}(\log_2(3x)) = \frac{1}{x\ln(2)}$$

$$\frac{d}{dx} (\log_2(3x))$$

Apply log rule: $\log_a(b) = \frac{\ln(b)}{\ln(a)}$

$$= \frac{d}{dx} \left(\frac{\ln(3x)}{\ln(2)} \right)$$

Take the constant out: $(a \cdot f)' = a \cdot f'$ = $\frac{1}{\ln(2)} \frac{d}{dx} (\ln(3x))$

Apply the chain rule:
$$\frac{df(u)}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$$

Let
$$3x = u$$

$$= \frac{1}{\ln(2)} \frac{d}{du} (\ln(u)) \frac{d}{dx} (3x)$$

$$\frac{d}{du}(\ln(u)) = \frac{1}{u}$$

$$\frac{d}{dx}(3x) = 3$$

$$=\frac{1}{\ln(2)}\cdot\frac{1}{u}\cdot 3$$

Substitute back u = 3x

$$=\frac{1}{\ln(2)}\cdot\frac{1}{3x}\cdot 3$$

Simplify

$$=\frac{1}{x\ln(2)}$$

$$= \frac{1}{2\sqrt{u}} \cdot \frac{1}{x \ln(2)}$$

Substitute back $u = \log_2(3x)$

$$= \frac{1}{2\sqrt{\log_2(3x)}} \cdot \frac{1}{x\ln(2)}$$

Simplify

$$= \frac{1}{2x\ln(2)\sqrt{\log_2(3x)}}$$

$$f(x) = \frac{x^{\frac{7}{4}} \int x^{2} + 1}{(3x+2)^{5}} \quad g(x) = \ln \frac{x^{\frac{7}{4}} \int x^{2} + 1}{(3x+2)^{5}}$$

$$g'(x) = \frac{(3x+2)^{5}}{x^{\frac{3}{4}} \int x^{2} + 1} \cdot \frac{1}{8x} f(x)$$

$$g'(x) = \frac{3}{4x} + \frac{1}{2} \ln (x^{2} + 1) - 5 \ln (3x + 2)$$

$$g'(x) = \frac{3}{4x} + \frac{1}{2(x^{2} + 1)} \cdot 2x - 5 \cdot \frac{1}{3x + 2} \cdot 3$$

$$= \frac{3}{4x} + \frac{2x}{2(x^{2} + 1)} - \frac{15}{3x + 2}$$

$$= \int f'(x) = \frac{x^{\frac{3}{4}} \int x^{2} + 1}{(3x + 2)^{5}} \cdot \left[\frac{3}{4x} + \frac{2x}{2(x^{2} + 1)} - \frac{15}{3x + 2} \right]$$