Paměti RAM

Začlenění a rozdělení typů pamětí

Blokové schéma osobního počítače

2

Základní parametry pamětí:

- kapacita:
- přístupová doba
- přenosová rychlost:
- statičnost / dynamičnost:
- destruktivnost při čtení:
- energetická závislost:
- přístup sekvenční
- □ přímý:
- spolehlivost:
- cena za bit:

Paměťová hierarchie reálného počítače

Souvislost s logickou organizací OP

Paměti SDRAM

Porovnání rozdílů DDR, DDR2 a DDR3

NVDIMM má dvě varianty

Modul NVDIMM-N (vpravo) funguje jako DDR4 RAM se záložní flash pamětí. RCD řídí přenos dat ve spolupráci s řadičem flash paměti. NVDIMM-F obsahuje pouze flashové buňky a funguje jako SSD. Verze N a F bude možné spojit pouze s budoucími flashovými technologiemi.

DB Vyrovnávací paměť (Data Buffer) synchronizuje přenos dat mezi modulem a počítačem. RCD – Register Clock Driver řídí přenos dat mezi RAM a DB. Komunikuje s řadičem flash paměti.

Budoucnost spojí RAM s pevným diskem

RAM a flashové paměťové buňky mají odlišné vlastnosti. První jsou rychlé, ty druhé nezapomínají uložená data. Spojit obě vlastnosti není vůbec snadné. Zatím to dokážou tři kandidáti.

Technologie	RAM	Flash	ReRAM	PCM	STT-RAM
Nevolatilní (uchovává data)					
Max. počet zápisových cyklů	1017	10 ⁵	10 ¹²	108	10 ¹⁵
Zápis dat	Po bitech	Po blocích	Po bitech	Po bitech	Po bitech
Max. latence zápisu	10 ns	10 000 ns	20 ns	50 ns	13 ns
Zápisové napětí	2,5 voltu	10 voltů	2,5 voltu	3 volty	1,5 voltu
Velikost paměťové buňky	20 nm	> 20 nm	25 nm	45 nm	65 nm

Moduly RIMM

Modul RIMM

Modul C-RIMM

Časování pamětí

Latence pamětí

PC3200 2-3-4-6 1T

typ

CL-tRCD-tRP-tRAS Command

Testy – porovnání typu a vlivu latencí

Technologie: Fully Buffered FB-DIMM

Effects on Power

Pro's

· Increased Memory Capacity

Con's

- More Latency
- · Increased Power

Example

32 FBDIMM modules = ~333 watts

32 DDR2 modules = ~140 watts

Perspective

FBDIMM can consume and dissipate over 236% more power & heat in contrast to RDIMM (DDR2)

 $FBDIMM = \sim 10.4 \text{ watts}$

Ł

FB-DIMM Solution Details

