Poglavje 3

Množice

3.2 Relacije med množicami

3.2.3 Relacija stroge inkluzije (\subset)

Definicija 1

$$A \subset B \iff A \subseteq B \land A \neq B$$

Beremo: A je prava podmnožica B, ali tudi: A je strogo vsebovana v B. Namesto $\neg(A \subset B)$ pišemo $A \not\subset B$.

Trditev 1

$$A \subset B \iff A \subseteq B \land \exists x \colon (x \in B \land x \notin A).$$

Dokaz:

$$A \subset B \ \stackrel{\text{def. 1}}{\Longleftrightarrow} A \subseteq B \ \land \ A \neq B$$

$$\iff A \subseteq B \ \land \ \neg (A \subseteq B \ \land \ B \subseteq A)$$

$$\stackrel{\text{IR}}{\Longrightarrow} A \subseteq B \ \land \ (A \not\subseteq B \ \lor \ B \not\subseteq A)$$

$$\stackrel{\text{IR}}{\Longrightarrow} 0 \ \lor \ (A \subseteq B \ \land \ B \not\subseteq A)$$

$$\stackrel{\text{def. 1}}{\Longleftrightarrow} A \subseteq B \ \land \ \neg \forall x \colon (x \in B \ \Rightarrow x \in A)$$

$$\stackrel{\text{PR}}{\Longleftrightarrow} A \subseteq B \ \land \ \exists x \colon \neg (x \in B \ \Rightarrow x \notin A)$$

$$\stackrel{\text{IR}}{\Longleftrightarrow} A \subseteq B \ \land \ \exists x \colon (x \in B \land x \notin A) \ \checkmark$$

Izrek 1 (lastnosti stroge inkluzije) Za vse množice A, B, C velja:

- (i) $A \not\subset A$ (irefleksivnost stroge inkluzije)
- (ii) $A \subset B \implies B \not\subset A$ (asimetričnost stroge inkluzije)
- (iii) $A \subset B \land B \subset C \implies A \subset C$ (tranzitivnost stroge inkluzije)

Dokaz: (iii): Iz $A \subset B \land B \subset C$ po definiciji 1 sledi

$$A \subseteq B \ \land \ B \subseteq C \ \land \ A \neq B \ \land \ B \neq C, \tag{3.1}$$

torej zaradi tranzitivnosti inkluzije velja $A\subseteq C$. Predpostavimo, da je A=C. Potem je

$$C \subseteq B \land B \subseteq C$$
,

torej velja B=C. To pa je v protislovju s trditvijo (3.1). Zaključimo, da predpostavka A=C ni resnična in je $A\subset C$.

3.3 Operacije z množicami

3.3.1 Unija, presek, razlika, Boolova vsota

Definicija 2

$$A \cup B = \{x; \ x \in A \ \lor \ x \in B\}$$
 unija množic A in B
$$A \cap B = \{x; \ x \in A \ \land \ x \in B\}$$
 presek množic A in B
$$A \setminus B = \{x; \ x \in A \ \land \ x \notin B\}$$
 A brez B ; razlika množic A in B
$$A \oplus B = \{x; \ x \in A \ + \ x \in B\}$$
 Boolova vsota ali simetrična razlika množic A in B

Trditev 2 Za poljubni množici A in B obstajata množici $A \cap B$ in $A \setminus B$.

Dokaz: Ker množica A obstaja, po ASP obstajata tudi množici

$$A \cap B = \{x; \ x \in A \land \varphi(x)\}$$
 in $A \setminus B = \{x; \ x \in A \land \psi(x)\},\$

kjer je
$$\varphi(x) = x \in B$$
 in $\psi(x) = x \notin B$.

Obstoj unije in Boolove vsote bomo dokazali malo kasneje.

3

Izrek 2 Za vse množice A, B, C velja:

$$A \cup \emptyset = A \qquad A \setminus \emptyset = A \qquad A \oplus \emptyset = A$$

$$A \cap \emptyset = \emptyset \qquad \emptyset \setminus A = \emptyset$$

$$A \cup A = A \qquad idempotenca \ unije$$

$$A \cap A = A \qquad idempotenca \ preseka$$

$$A \setminus A = \emptyset$$

$$A \oplus A = \emptyset$$

$$A \oplus B = B \cup A \qquad komutativnost \ unije$$

$$A \cap B = B \cap A \qquad komutativnost \ preseka$$

$$A \oplus B = B \oplus A \qquad komutativnost \ boolove \ vsote$$

$$A \cup (B \cup C) = (A \cup B) \cup C \qquad asociativnost \ unije$$

$$A \cap (B \cap C) = (A \cap B) \cap C \qquad asociativnost \ unije$$

$$A \cap (B \cap C) = (A \cap B) \oplus C \qquad asociativnost \ Boolove \ vsote$$

$$A \cup (A \cap B) = A \qquad absorpcija \ unije \ glede \ na \ presek$$

$$A \cap (A \cup B) = A \qquad absorpcija \ unije \ glede \ na \ unijo$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \qquad distributivnost \ unije \ glede \ na \ unijo$$

$$A \cup (B \cap C) = (A \cap B) \cup (A \cap C) \qquad distributivnost \ preseka \ glede \ na \ unijo$$

$$A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C) \qquad distributivnost \ preseka \ glede \ na \ Boolovo \ vsoto$$

$$A \oplus B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$

$$A \cap B \subseteq A \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \subseteq A \cup B$$

$$A \cap B \subseteq B \cap C \quad monotonost \ unije \ glede \ na \ inkluzijo$$

$$A \subseteq B \iff A \cap B = B$$

$$A \subseteq B \iff A \cap B = A$$

$$A \subseteq B \iff A \cap B = A$$

$$A \subseteq B \iff A \cap B = A$$

$$A \subseteq B \iff A \cap B = A$$

$$A \subseteq B \iff A \cap B = A$$

$$A \subseteq B \iff A \cap B = A$$

$$A \subseteq B \iff A \cap B = A$$

Dokaz: Naštete trditve sledijo iz ustreznih lastnosti izjavnih veznikov, s katerimi so definirane operacije in relacije, ki v njih nastopajo. Dokažimo le zadnjo ekvivalenco:

$$A \subseteq B \iff^{\text{def.} \subseteq} \forall x \colon (x \in A \implies x \in B)$$

$$\iff^{\text{IR}} \forall x \colon \neg \neg (x \in A \implies x \in B)$$

$$\iff^{\text{IR}} \forall x \colon \neg (x \in A \land x \notin B)$$

$$\iff^{\text{def.} \setminus} \forall x \colon \neg (x \in A \setminus B)$$

$$\iff^{\text{def.} \setminus} A \setminus B = \emptyset \checkmark$$

Zdaj ko imamo na razpolago množice, lahko za krajše pisanje izjavnih formul definiramo omejene kvantifikatorje, ki smo jih neformalno sicer že uporabljali.

Definicija 3 Naj bo A množica in φ neka izjavna formula. Potem je

$$\forall x \in A : \varphi$$
 okrajšava za izjavno formulo $\forall x : (x \in A \Rightarrow \varphi), in$
 $\exists x \in A : \varphi$ okrajšava za izjavno formulo $\exists x : (x \in A \land \varphi).$

Pripomba 1 Če $A \neq \emptyset$, za kvantifikatorje, omejene na množico A, veljajo enaki zakoni kot za neomejene kvantifikatorje, npr.:

$$\neg \forall x \in A : \varphi \sim \neg \forall x : (x \in A \Rightarrow \varphi)$$

$$\sim \exists x : \neg (x \in A \Rightarrow \varphi)$$

$$\sim \exists x : (x \in A \land \neg \varphi)$$

$$\sim \exists x \in A : \neg \varphi$$

Če je $A=\emptyset$, pa to ni več nujno res. Ker smo privzeli, da je domena interpretacije vselej neprazna, je npr. izjavna formula

$$\forall x : \varphi \Rightarrow \exists x : \varphi$$

 $logično veljavna, medtem ko v primeru <math>A = \emptyset$ izjavna formula

$$\forall x \in A : \varphi \implies \exists x \in A \colon \varphi$$

ni resnična, saj je njen antecedens $\forall x : (x \in \emptyset \Rightarrow \varphi) \sim \forall x : (0 \Rightarrow \varphi)$ resničen, njen konsekvens $\exists x : (x \in \emptyset \land \varphi) \sim \exists x : (0 \land \varphi)$ pa ne.

Pogosto potrebujemo unijo in/ali presek ne le dveh, ampak treh, štirih, ... ali celo neskončno mnogo množic. Definirajmo torej unijo poljubne množice množic in presek poljubne neprazne množice množic.

Definicija 4 1. Naj bo A poljubna množica. Potem je

$$\bigcup A = \{x; \ \exists y \in A \colon x \in y\}$$

unija množice množic A.

2. Naj bo $A \neq \emptyset$. Potem je

$$\bigcap A = \{x; \ \forall y \in A \colon x \in y\}$$

presek množice množic A.

Zgled 1 (i) Naj bo $A = \{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}\}$. Potem je

$$\bigcup A = \{1, 2, 3, 4, 5\}, \quad \bigcap A = \{3\}.$$

(ii) Naj bo $A=\{[\frac{1}{n},1];\ n\in\mathbb{N}\wedge n>0\}=\{[1,1],[\frac{1}{2},1],[\frac{1}{3},1],\dots$ množica zaprtih intervalov na realni osi. Potem je

$$\bigcup A = (0,1], \quad \bigcap A = \{1\}.$$

Trditev 3 (i) Naj bo A poljubna množica. Potem

$$\forall y \in A \colon \ y \subseteq \bigcup A.$$

(ii) Naj bo $A \neq \emptyset$. Potem

$$\forall y \in A \colon \bigcap A \subseteq y.$$

Dokaz: (ii) Naj bo $y_0 \in A$ in $x \in \bigcap A$. Po definiciji preseka velja $\forall y \in A : x \in y$, torej $x \in y_0$. Ker je bil $x \in \bigcap A$ poljuben, je torej $\bigcap A \subseteq y_0$. Ker je bil tudi $y_0 \in A$ poljuben, velja $\forall y \in A : \bigcap A \subseteq y$.

Aksiom o uniji (AU). Za vsako množico A obstaja množica $\bigcup A$, ali s formulo:

$$\forall A \exists B \forall x \colon (x \in B \iff \exists y \in A \colon x \in y).$$

Posledica 1 Za poljubni množici A in B obstajata množici $A \cup B$ in $A \oplus B$.

Dokaz: 1. Po aksiomu o paru obstaja množica $C = \{A, B\}$. Po aksiomu o uniji potem obstaja množica $\bigcup C = A \cup B$.

2. Kot že vemo, obstajata množici $A\setminus B$ in $B\setminus A$. Po prvem delu trditve obstaja tudi njuna unija $(A\setminus B)\cup (B\setminus A)=A\oplus B$.

Trditev 4 Naj bo $A \neq \emptyset$. Potem obstaja množica $\cap A$.

Dokaz: Ker je $A \neq \emptyset$, obstaja množica $y_0 \in A$. Po ASP obstaja množica

$$P = \{x; \ x \in y_0 \land \forall y \in A \colon x \in y\}.$$

Ker je $y_0 \in A$, velja implikacija $\forall y \in A : x \in y \implies x \in y_0$ in zato tudi ekvivalenca

$$x \in y_0 \land \forall y \in A : x \in y \iff \forall y \in A : x \in y$$

torej je

$$P = \{x; \ \forall y \in A \colon x \in y\} = \bigcap A.$$

Pripomba 2 Če je $A = \emptyset$, dobimo po definiciji 4, da je

$$\bigcap A = \bigcap \emptyset = \{x; \ \forall y \in \emptyset \colon x \in y\} = \{x; \ \forall y \colon (y \in \emptyset \Rightarrow x \in y)\} = V,$$

torej razred vseh množic, ki pa ni množica, ampak pravi razred.

3.3.2 Komplement množice

Pogosto si izberemo neko $univerzalno\ množico$ ali $svet\ S$ in opazujemo samo njene podmnožice.

Definicija 5 Naj bo $A \subseteq S$. Potem je

$$A^C = \{x \in S; \ x \notin A\} = \{x; \ x \in S \ \land \ x \notin A\}$$

komplement množice A glede na S.

Očitno za vse $x \in S$ velja: $x \in A^C \iff x \notin A$. Obstoj množice A^C sledi iz obstoja množic S in $A \subseteq S$, saj je $A^C = S \setminus A$.

Izrek 3 Za vse množice $A, B \subseteq S$ velja:

1.
$$(A^C)^C = A$$

2. (a)
$$(A \cup B)^C = A^C \cap B^C$$

(b)
$$(A \cap B)^C = A^C \cup B^C$$

$$3. A \setminus B = A \cap B^C$$

$$4. \ A \subseteq B \iff B^C \subseteq A^C$$

5.
$$A \cap B = \emptyset \iff A \subseteq B^C \iff B \subseteq A^C$$

$$6. A \cup A^C = S, A \cap A^C = \emptyset$$

$$7. A \cup S = S, A \cap S = A$$

Dokaz: Naštete enačbe in ekvivalence sledijo iz ustreznih lastnosti izjavnih veznikov, s katerimi so definirane operacije in relacije, ki v njih nastopajo. Dokažimo npr. prvo ekvivalenco v točki 5:

$$A \cap B = \emptyset \iff^{\text{def.}\emptyset} \forall x \colon x \notin A \cap B$$

$$\iff^{\text{def.}\cap} \forall x \colon \neg (x \in A \land x \in B)$$

$$\iff^{\text{IR}} \forall x \colon (x \notin A \lor x \notin B)$$

$$\iff^{\text{IR}} \forall x \colon (x \in A \Rightarrow x \notin B)$$

$$\iff^{\text{def.}^{C}} \forall x \colon (x \in A \Rightarrow x \in B^{C})$$

$$\iff^{\text{def.}\subseteq} A \subseteq B^{C} \checkmark$$

Definicija 6 *Množici A in B sta* tuji *ali* disjunktni, če je $A \cap B = 0$.

Pripomba 3 Naj bo A poljubna množica podmnožic univerzalne množice S. Potem definiramo

$$\bigcup A = \{x \in S; \exists y \in A : x \in y\},$$
$$\bigcap A = \{x \in S; \forall y \in A : x \in y\}.$$

V tem primeru obstaja tudi presek prazne množice množic, saj je po tej definiciji

$$\bigcap \emptyset = \{x \in S; \ \forall y \in \emptyset \colon x \in y\} = \{x; \ x \in S \ \land \ \forall y \colon (y \in \emptyset \Rightarrow x \in y)\}$$
$$= \{x; \ x \in S \ \land \ 1\} = \{x; \ x \in S\} = S.$$

3.3.3 Potenčna množica

Definicija 7 Množico

$$\mathcal{P}A = \{x; x \subseteq A\}$$

imenujemo potenčna množica ali množica vseh podmnožic množice A.

Velja:
$$x \in \mathcal{P}A \iff x \subseteq A$$
.

Zgled 2 a) $\mathcal{P}\emptyset = \{\emptyset\}$

- b) $\mathcal{PP}\emptyset = \mathcal{P}\{\emptyset\} = \{\emptyset, \{\emptyset\}\}\$
- c) $\mathcal{PPP}\emptyset = \mathcal{P}\{\emptyset, \{\emptyset\}\} = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$
- d) Koliko elementov ima potenčna množica končne množice znelementi? Podmnožico lahko konstruiramo tako, da gremo od elementa do elementa in se pri vsakem odločimo, ali ga vzamemo v podmnožico ali ne. Ker imamo na vsakem koraku dve možnosti, korakov pa je n in so med seboj neodvisni, lahko podmnožico konstruiramo na

$$\overbrace{2 \times 2 \times \cdots \times 2}^{n} = 2^{n}$$

različnih načinov, to pa je tudi število vseh pomnožic množice z n elementi. Če operacijo $\mathcal P$ uporabimo večkrat zapored, hitro dobimo zelo velike množice, tudi če začnemo s prazno množico:

 \emptyset ima 0 elementov $\mathcal{P}\emptyset$ ima $2^0=1$ element $\mathcal{PP}\emptyset$ ima $2^1=2$ elementa $\mathcal{PPP}\emptyset$ ima $2^2=4$ elemente $\mathcal{PPPP}\emptyset$ ima $2^4=16$ elementov $\mathcal{PPPPP}\emptyset$ ima $2^{16}=65536$ elementov $\mathcal{PPPPPP}\emptyset$ ima 2^{65536} elementov