Proof of Lemma 3: Let $(CN[\theta], M_{\theta 0}) = (N, M_0) \otimes (C[\theta], M_{\theta})$ be the controlled net by $(C[\theta], M_{\theta})$ and $\rho(\theta) = \{p \in P \mid p \text{ is in some A-paths from } T(\theta) \text{ to } O(\theta)\}$. Then, $\wp(\theta) \subseteq \rho(\theta)$. In $(CN[\theta], M_{\theta 0})$, the set of places in P_{θ} and $\rho(\theta)$ constitute a support of a P-invariant Δ_{θ} , and $\Delta_{\theta}(p) = 1 \forall p \in P_{\theta} \cup \wp(\theta)$. Let $M \in \mathbb{R}(CN[\theta], M_{\theta 0})$. Since $\Delta_{\theta} \cdot M = \Delta_{\theta} \cdot M_{\theta 0} = M_0(R(\theta)) - 1$, $\wp(\theta) \subseteq ||\Delta_{\theta}||$, and $\Delta_{\theta}(p) = 1 \forall p \in P_{\theta} \cup \wp(\theta)$, $(C[\theta], M_{\theta})$ can limit the number of tokens in $\wp(\theta)$ such that $M(\wp(\theta)) \leq \Delta_{\theta} \cdot M = M_0(R(\theta)) - 1$. Thus, $(C[\theta], M_{\theta})$ can avoid siphon $\phi(\theta)$ from being emptied. The function of $(C[\theta], M_{\theta})$ is to constrain $M(\rho(\theta)) + M(\rho_{\theta}) = M_0(R(\theta)) - 1$, while the function of $(C[\theta], M_{\theta})$ is to constrain $M(\rho(\theta)) + M(\rho_{\theta}) = M_0(R(\theta)) - 1$, where $N^1(\theta)$ is the set of places in $N^1 \cap \underline{C}[\theta]$. Since $M(N^{-1}(\theta)) \geq 0$ and $M(\rho_{\theta}) \geq 0$, $(C[\theta], M_{\theta})$ is analogous to $(C[\theta], M_{\theta})$. ■

Proof of Lemma 4: Let (*CN*[*w*], M_{w0}) = (*N*, M_0) ⊗ (*C*[*w*], M_w) be the controlled net by (*C*[*w*], M_w) and $\rho(w) = \{p \in P \mid p \text{ is in some A-paths from } T(w) \text{ to } O(\prod_1)\}$. Then, $\wp(\prod_1) \subseteq \rho(w)$. In (*CN*[*w*], M_{w0}), the set of places in P_w and $\rho(w)$ constitute a support of a P-invariant Δ_w , and $\Delta_w(p) = 1 \ \forall p \in P_w \cup \wp(\prod_1)$. Let $M \in \mathbb{R}(CN[w], M_{w0})$. Since $\Delta_w \cdot M = \Delta_w \cdot M_{w0} = M_0(R(\prod_1)) - 1$, $\wp(\prod_1) \subseteq ||\Delta_w||$, and $\Delta_w(p) = 1 \ \forall p \in P_w \cup \wp(\prod_1)$, (*C*[*w*], M_w) can limit the number of tokens in $\wp(\prod_1)$ such that $M(\wp(\prod_1)) \le \Delta_w \cdot M = M_0(R(\prod_1)) - 1$. Thus, (*C*[*w*], M_w) can ensure *w* is not semi-saturated and semi-empty at any reachable marking in $\mathbb{R}(CN[w], M_{w0})$. The function of (*C*[*w*], M_w) is to constrain $M(\rho(w)) + M(\rho_w) = M_0(R(\prod_1)) - 1$, while the function of (*C*[*w*], M_w) is to constrain $M(\rho(w) \cup N^1(w)) + M(\rho_w) = M_0(R(\prod_1)) - 1$, where $N^1(w)$ is the set of places in $N^1 \cap C[w]$. Since $M(N^1(w)) \ge 0$ and $M(\rho_w) \ge 0$, (*C*[*w*], M_w) is analogous to (*C*[*w*], M_w). ■

Proof of Theorem 2: By Lemmas 3 and 4, we know that the controllers for an A-circuit and a closed Ω -structure in this work are both analogous to those in [39]. Since all the controlled maximal A-circuits and ϖ -structures are the same as those in [39], the controller for APNS defined in this work is analogous to that in [39]. Thus, the controlled net is deadlock-free.

Proof of Theorem 3: The correctness of RA means that, for any input chromosome Γ , it can output a repaired chromosome Γ_1 such that $\alpha(\Gamma_1)$ is a feasible sequence of transitions from M_0 to M_{Γ} . Since M_{C0} is safe, there is at least one transition that is safe at M_{C0} , and such a transition must be in $\alpha(\Gamma)$. Let g^* be a gene that is first appearing in Γ and can be interpreted as such a transition t^* . Then, the algorithm swaps g^* with $\Gamma[0]$. $M_{C0}[t^*>M_1$, where M_1 is safe.

By induction on the length of Γ , we know that Γ can be repaired into a feasible chromosome Γ_1 such that $M_{C0}[\alpha(\Gamma_1) > M_{Cf}]$. Since $\alpha(\Gamma_1)$ can fire in (CN, M_{C0}) , it can fire in (N, M_0) and $M_0[\alpha(\Gamma_1) > M_f]$.