CHUONG 1

TÍNH CHẤT GIỚI HẠN

1.1. Giới hạn

Tính

$$I = \lim_{x \to x_0} f(x)$$

B1: Thay x_0 vào f(x)

• Nếu $f(x_0)$ xác định, thì $I = f(x_0)$.

Ví dụ:
$$I = \lim_{x \to 1} \frac{2x+5}{3x^2+2} = \frac{2.1+5}{3.1^2+2} = \frac{7}{5}$$
.

• $f(x_0)$ không xác định, có các dạng như sau:

$$\frac{0}{0}, \frac{\infty}{\infty}, 0.\infty, \infty - \infty, 1^{\infty}, 0^{0}, \infty^{0}, 0^{\infty}, \infty^{\infty}.$$

B2. Khử các dạng vô định.

Ví dụ 1.1.1. Tính

$$I = \lim_{x \to 1} \frac{x^3 - 1}{x^2 - 3x + 2} \left(\frac{0}{0} \right) = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x - 2)} = \lim_{x \to 1} \frac{x^2 + x + 1}{x - 2} = -3.$$

Ví dụ 1.1.2.
$$I = \lim_{x \to 0} \frac{x - \sin x}{x^3} \left(\frac{0}{0} \right) = ?$$

1.2. Giới hạn tổng, hiệu, tích, thương

Cho
$$\lim_{x\to x_0} f(x) = A \neq \infty$$
 và $\lim_{x\to x_0} g(x) = B \neq \infty$. Khi đó,

1)
$$\lim_{x \to x_0} \left(f(x) \pm g(x) \right) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$
. Do đó, $\lim_{x \to x_0} \left(C \pm g(x) \right) = C \pm \lim_{x \to x_0} g(x)$.

2)
$$\lim_{x \to x_0} \left(f(x)g(x) \right) = \lim_{x \to x_0} f(x) \lim_{x \to x_0} g(x)$$
. Suy ra
$$\lim_{x \to x_0} \left(Cg(x) \right) = C \lim_{x \to x_0} g(x).$$

3)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} (g(x) \neq 0, B \neq 0)$$
. Suy ra
$$\lim_{x \to x_0} \frac{1}{g(x)} = \frac{1}{\lim_{x \to x_0} g(x)}.$$

1.3. Giới hạn kẹp

Giả sử rằng

$$g(x) \le f(x) \le h(x)$$
 với mọi $x \in (a, b) \setminus \{x_0\}$

và
$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = A$$
. Khi đó, $\lim_{x \to x_0} f(x) = A$.

Ví dụ 1.3.1.

$$I = \lim_{x \to 0} x^2 \sin \frac{1}{x^3}$$

Bài giải. Ta có

$$-x^{2} \le x^{2} \sin \frac{1}{x^{3}} \le x^{2}.$$
$$\lim_{x \to 0} -x^{2} = \lim_{x \to 0} x^{2} = 0.$$

Do đó, I=0.

1.4. Quy tắc L'Hospital

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \left(\frac{0}{0}; \frac{\infty}{\infty} \right) = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

1.5. Một số công thức

1)
$$\lim_{x \to 0} \frac{\sin x}{x} \left(\frac{0}{0} \right) = \lim_{x \to 0} \frac{\cos x}{1} = 1;$$

2)
$$\lim_{x \to 0} \frac{\tan x}{x} \left(\frac{0}{0} \right) = \lim_{x \to 0} \frac{1/\cos^2 x}{1} = 1;$$

3)
$$\lim_{x\to 0} \frac{\arcsin x}{x} \left(\frac{0}{0}\right) = \lim_{x\to 0} \frac{1/\sqrt{1-x^2}}{1} = 1;$$

4)
$$\lim_{x\to 0} \frac{\arctan x}{x} \left(\frac{0}{0}\right) = \lim_{x\to 0} \frac{1/(1+x^2)}{1} = 1;$$

$$\mathbf{5}) \ \lim_{x \to 0} \frac{1 - \cos ax}{x^2} \left(\frac{0}{0} \right) = \lim_{x \to 0} \frac{a \sin ax}{2x} \left(\frac{0}{0} \right) = \lim_{x \to 0} \frac{a^2 \cos ax}{2} = \frac{a^2}{2};$$

6)
$$\lim_{x \to 0} \frac{a^x - 1}{x} \left(\frac{0}{0} \right) = \lim_{x \to 0} \frac{a^x \ln a}{1} = \ln a \Rightarrow \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} = 1;$$

7)
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{1/(1+x)}{1} = 1;$$

8)
$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{\alpha(1+x)^{\alpha-1}}{1} = \alpha;$$

9)
$$\lim_{x \to 0} \frac{\sqrt[n]{1+x} - 1}{x} \left(\frac{0}{0}\right) = \frac{1}{n}$$
.

1.6. Vô cùng bé tương đương

y=f(x) được gọi là VCB khi $x\to x_0$ nếu $\lim_{x\to x_0}f(x)=0.$

Cho f(x) và g(x) là hai vô cùng bé khi $x \to x_0$. Khi đó,

- 1) Nếu $\lim_{x\to x_0} \frac{f(x)}{g(x)} \left(\frac{0}{0}\right) = 0$, thì ta nói f(x) là vô cùng bé bậc cao hơn g(x). Ký hiệu f(x) = o(g(x)).
- 2) Nếu $\lim_{x\to x_0} \frac{f(x)}{g(x)} \left(\frac{0}{0}\right) = C \notin \{0,\infty\}$, thì ta nói f(x) và g(x) là hai vô cùng bé $cùng\ b\hat{a}c$.

Đặc biệt, nếu $\lim_{x\to x_0} \frac{f(x)}{g(x)} = 1$, thì f(x) và g(x) được gọi là hai vô cùng bé tương đương. Ký hiệu $f(x) \sim g(x)$, $x \to x_0$.

1.7. Một số VCB tương đương

- 1) $\sin x \sim x, x \to 0;$
- 2) $\tan x \sim x, x \to 0$;
- 3) $\arcsin x \sim x, x \to 0;$
- 4) $\arctan x \sim x, x \to 0;$

5)
$$1 - \cos ax \sim \frac{a^2}{2}x^2, x \to 0;$$

- **6**) $a^x 1 \sim x \ln a, x \to 0; \quad e^x 1 \sim x, x \to 0;$
- 7) $\ln(1+x) \sim x, x \to 0;$
- 8) $(1+x)^{\alpha} 1 \sim \alpha x, x \to 0;$
- 9) $\sqrt[n]{1+x}-1 \sim \frac{x}{n}, x \to 0.$

1.8. Vận dụng VCB tương đương

Giả sử $f(x) \sim f_1(x), g(x) \sim g_1(x), x \to x_0$. Khi đó,

1)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x)}{g_1(x)}$$
.

2)
$$\lim_{x \to x_0} [f(x)g(x)] = \lim_{x \to x_0} [f_1(x)g_1(x)] = \lim_{x \to x_0} [f_1(x)g(x)] = \lim_{x \to x_0} [f(x)g_1(x)].$$

Bài giải. Ta có

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \left[\frac{\frac{f(x)}{f_1(x)}}{\frac{g(x)}{g_1(x)}} \cdot \frac{f_1(x)}{g_1(x)} \right] = \frac{\lim_{x \to x_0} \frac{f(x)}{f_1(x)}}{\lim_{x \to x_0} \frac{g(x)}{g_1(x)}} \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$$

Ví dụ 1.8.1. Giả sử $f(x) \sim f_1(x), g(x) \sim g_1(x), h(x) \sim h_1(x), x \to x_0$. Khi đó,

$$\lim_{x \to x_0} \frac{(f+g)fh}{g(g+h)} = \lim_{x \to x_0} \frac{(f+g)f_1h_1}{g_1(g+h)}.$$

Ví dụ 1.8.2. Tính
$$I = \lim_{x \to 0} \frac{x - \sin x}{x^3} \left(\frac{0}{0} \right) = \lim_{x \to 0} \frac{x - x}{x^3} = \lim_{x \to 0} \frac{0}{x^3} = 0??.$$

Bài giải.

Ví dụ 1.8.3. Tính
$$I = \lim_{x \to 0} \frac{\tan x - x}{x^3} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \lim_{x \to 0} \frac{x - x}{x^3} = \lim_{x \to 0} \frac{0}{x^3} = 0??.$$

Bài giải. Ta có

$$I = \lim_{x \to 0} \frac{\tan x - x}{x^3} \begin{pmatrix} 0 \\ \overline{0} \end{pmatrix}$$

$$= \lim_{x \to 0} \frac{(1 + \tan^2 x) - 1}{3x^2} = \lim_{x \to 0} \frac{\tan^2 x}{3x^2}$$

$$= \lim_{x \to 0} \frac{\tan x \tan x}{3x^2}$$

$$= \lim_{x \to 0} \frac{x^2}{3x^2} = \frac{1}{3}.$$

Ví dụ 1.8.4. Tính
$$I = \lim_{x\to 0} \frac{x - \arctan x}{x^3}$$
.

Bài giải. Ta có

$$I = \lim_{x \to 0} \frac{x - \arctan x}{x^3} \left(\frac{0}{0}\right)$$

$$= \lim_{x \to 0} \frac{1 - \frac{1}{1 + x^2}}{3x^2}$$

$$= \lim_{x \to 0} \frac{x^2}{3x^2(1 + x^2)} = \lim_{x \to 0} \frac{1}{3(1 + x^2)} = \frac{1}{3}.$$

Ví dụ 1.8.5. Tính
$$I = \lim_{x \to 0} \frac{\arcsin x - x}{x^3}$$
.

Bài giải. Ta có

$$I = \lim_{x \to 0} \frac{\arcsin x - x}{x^3} \left(\frac{0}{0}\right)$$

$$= \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}} - 1}{3x^2}$$

$$= -\lim_{x \to 0} \frac{\sqrt{1 + (-x^2)} - 1}{3x^2\sqrt{1 - x^2}}$$

$$= -\lim_{x \to 0} \frac{-x^2/2}{3x^2\sqrt{1 - x^2}}$$

$$= -\lim_{x \to 0} \frac{-1/2}{3\sqrt{1 - x^2}} = \frac{1}{6}.$$

Ví dụ 1.8.6. Tính $I = \lim_{x \to 0} \frac{x - \ln(1+x)}{x^2}$.

Bài giải. Ta có

$$I = \lim_{x \to 0} \frac{x - \ln(1+x)}{x^2} \left(\frac{0}{0}\right)$$
$$= \lim_{x \to 0} \frac{1 - \frac{1}{x+1}}{2x}$$
$$= \lim_{x \to 0} \frac{x}{2x} = \frac{1}{2}.$$

Ví dụ 1.8.7. Tính $I = \lim_{x \to 0} \frac{\arcsin x - \arctan x}{x^3}$.

Bài giải. Ta có

$$I = \lim_{x \to 0} \frac{\arcsin x - \arctan x}{x^3} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$= \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}} - \frac{1}{1 + x^2}}{3x^2}$$

$$= \lim_{x \to 0} \frac{1 + x^2 - \sqrt{1 - x^2}}{3x^2(1 + x^2)\sqrt{1 - x^2}}$$

$$= \lim_{x \to 0} \frac{1}{3(1 + x^2)\sqrt{1 - x^2}} \lim_{x \to 0} \frac{1 + x^2 - \sqrt{1 - x^2}}{x^2}$$

$$= \frac{1}{3} \left[\lim_{x \to 0} \frac{x^2}{x^2} - \lim_{x \to 0} \frac{\sqrt{1 - x^2} - 1}{x^2} \right]$$

$$= \frac{1}{3} \left[1 - \lim_{x \to 0} \frac{-x^2}{x^2} \right] = \frac{1}{3} \left(1 + \frac{1}{2} \right) = \frac{1}{2}$$

Ví dụ 1.8.8.

$$I = \lim_{x \to 0} \frac{e^{x^2} \cos 2x - \sqrt{\cos 4x}}{x \ln(1 - x)} \left(\frac{0}{0}\right)$$

$$= \lim_{x \to 0} \frac{e^{x^2} \cos 2x - \sqrt{\cos 4x}}{x \ln[1 + (-x)]}$$

$$= \lim_{x \to 0} \frac{(e^{x^2} - 1) \cos 2x + (\cos 2x - 1) + (1 - \sqrt{\cos 4x})}{-x^2}$$

$$= \lim_{x \to 0} \frac{(e^{x^2} - 1) \cos 2x}{-x^2} + \lim_{x \to 0} \frac{1 - \cos 2x}{x^2} + \lim_{x \to 0} \frac{\sqrt{1 + (-2\sin^2 2x)} - 1}{x^2}$$

$$= \lim_{x \to 0} \frac{x^2 \cos 2x}{-x^2} + \lim_{x \to 0} \frac{\frac{2^2}{2}x^2}{x^2} + \lim_{x \to 0} \frac{\frac{-2\sin^2 2x}{2}}{x^2}$$

$$= \lim_{x \to 0} \frac{\cos 2x}{-1} + 2 + \lim_{x \to 0} \frac{\frac{-2.4x^2}{2}}{x^2}$$

$$= -1 + 2 - 4 = -3.$$

Ví dụ 1.8.9.

$$I = \lim_{x \to 0} (e^{\arcsin^2 x} + \sin^2 x)^{1/x \sin x} (1^{\infty})$$

$$= e^{\lim_{x \to 0}} \frac{\ln[1 + (e^{\arcsin^2 x} + \sin^2 x - 1)]}{x \sin x}$$

$$= e^{\lim_{x \to 0}} \frac{e^{\arcsin^2 x} + \sin^2 x - 1}{x^2}$$

$$= e^{\lim_{x \to 0}} \frac{e^{\arcsin^2 x} - 1}{x^2} + \lim_{x \to 0} \frac{\sin^2 x}{x^2}$$

$$= e^{\lim_{x \to 0}} \frac{e^{\arcsin^2 x} - 1}{\arcsin^2 x} + \lim_{x \to 0} \frac{x^2}{x^2}$$

$$= e^2.$$

$$(= e^{\lim_{x \to 0}} \frac{\arcsin^2 x}{x^2} + \lim_{x \to 0} \frac{x^2}{x^2}$$

$$= e^{\lim_{x \to 0}} \frac{x^2}{x^2} + \lim_{x \to 0} \frac{x^2}{x^2}$$

$$= e^{\lim_{x \to 0}} \frac{x^2}{x^2} + \lim_{x \to 0} \frac{x^2}{x^2}$$

Ví dụ 1.8.10. Tính $\lim_{x\to 0} \frac{\arcsin^2 x - \arctan^2 x}{x^4}$.

Bài giải. Ta có

$$\begin{split} I &= \lim_{x \to 0} \frac{\arcsin^2 x - \arctan^2 x}{x^4} \left(\frac{0}{0} \right) \\ &= \lim_{x \to 0} \frac{\arcsin x - \arctan x}{x^3} \lim_{x \to 0} \frac{\arcsin x + \arctan x}{x} \\ &= \frac{1}{2} \left[\lim_{x \to 0} \frac{\arcsin x}{x} + \lim_{x \to 0} \frac{\arctan x}{x} \right] \\ &= \frac{1}{2} 2 = 1. \end{split}$$

Ví dụ 1.8.11. Tính $I = \lim_{x \to 0} \left(\frac{1}{x^2} - \frac{\cos x}{\sin^2 x} \right)$.

Bài giải. Ta có

$$\begin{split} I &= \lim_{x \to 0} \left(\frac{1}{x^2} - \frac{\cos x}{\sin^2 x} \right) = \lim_{x \to 0} \frac{\sin^2 x - x^2 \cos x}{x^2 \sin^2 x} \\ &= \lim_{x \to 0} \frac{\sin^2 x + x^2 (1 - \cos x) - x^2}{x^4} \\ &= \lim_{x \to 0} \frac{(\sin^2 x - x^2) + x^2 (1 - \cos x)}{x^4} \\ &= \lim_{x \to 0} \frac{\sin^2 x - x^2}{x^4} + \lim_{x \to 0} \frac{x^2 (1 - \cos x)}{x^4} \\ &= \lim_{x \to 0} \frac{\sin x - x}{x^3} \left(\frac{0}{0} \right) \lim_{x \to 0} \frac{\sin x + x}{x} \left(\frac{0}{0} \right) + \lim_{x \to 0} \frac{1 - \cos x}{x^2} \\ &= \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \lim_{x \to 0} \frac{\cos x + 1}{1} + \frac{1}{2} \\ &= -\frac{1}{6} \cdot 2 + \frac{1}{2} = \frac{1}{6} . \end{split}$$

1.9. Giới hạn vô định dạng: $1^{\infty}, 0^0, \infty^{\infty}, \infty^0, 0^{\infty}$

$$I = \lim_{x \to x_0} u^v = \lim_{x \to x_0} e^{\ln u^v} = \lim_{x \to x_0} e^{v \ln u} = e^{\lim_{x \to x_0} v \ln u}.$$

Cách giải chung:

$$I=\lim_{x\to x_0}u^v=e^{\lim_{x\to x_0}v\ln u}=e^{\lim_{x\to x_0}\frac{\ln u}{1/v}},\,\text{sau d\'o dùng L'Hospital}$$

Riêng 1^{∞} :

$$I = \lim_{x \to x_0} u^v(1^\infty) = e^{\lim_{x \to x_0} v \ln u} = e^{\lim_{x \to x_0} v \ln[1 + (u - 1)]} = e^{\lim_{x \to x_0} v(u - 1)}$$

Ví dụ 1.9.1. Tính
$$I = \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{\arcsin^2 x}}$$
.

Bài giải. Ta có

$$I = \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{\arcsin^2 x}} (1^{\infty})$$

$$= e^{\lim_{x \to 0} \frac{1}{\arcsin^2 x} \ln \frac{\sin x}{x}}$$

$$= e^{\lim_{x \to 0} \frac{1}{\arcsin^2 x} \ln \left[1 + \left(\frac{\sin x}{x} - 1 \right) \right]}$$

$$= e^{\lim_{x \to 0} \frac{1}{x^2} \left[\frac{\sin x}{x} - 1 \right]} = e^{\lim_{x \to 0} \frac{\sin x - x}{x^3}}.$$

Ví dụ 1.9.2. Tính $I = \lim_{x \to 0^+} x^x$.

Bài giải. Ta có

$$I = \lim_{x \to 0^+} x^x(0^0) = e^{\lim_{x \to 0^+} x \ln x} = e^{\lim_{x \to 0^+} \frac{\ln x}{1/x} \left(\frac{\infty}{\infty}\right)}$$
$$= e^{\lim_{x \to 0^+} \frac{1/x}{-1/x^2}} = e^{-\lim_{x \to 0^+} x} = e^0 = 1.$$

Ví dụ 1.9.3. Tính
$$I = \lim_{x \to 0} \left(\frac{\arctan^2 x}{\arcsin x^2} \right)^{\frac{1}{x \ln(1 - \tan x)}}$$
.

Bài giải.

$$I = \lim_{x \to 0} \left(\frac{\arctan^2 x}{\arcsin x^2} \right)^{\frac{1}{x \ln(1 - \tan x)}}$$

$$= \lim_{x \to 0} \frac{1}{x \ln(1 - \tan x)} \ln \left[1 + \left(\frac{\arctan^2 x}{\arcsin x^2} - 1 \right) \right]$$

$$= \lim_{x \to 0} \frac{1}{-x \tan x} \left(\frac{\arctan^2 x - \arcsin x^2}{\arcsin x^2} \right)$$

CHƯƠNG 2

CHUÕI SỐ

2.1. Chuỗi số

Định nghĩa 2.1.1. Cho dãy số thực $\{a_n\} \subset \mathbb{R}$. Ta đặt

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$
 (2.1)

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n.$$

Khi đó,

- 1) (2.1) được gọi là một $chu \tilde{\delta}i \ s \acute{\delta}$;
- **2**) a_1, \ldots, a_n, \ldots được gọi là $c\acute{a}c \ s\acute{o} \ hang$ của (2.1);
- 3) a_n được gọi là $s \hat{o}$ hạng tổng quát của (2.1);
- 4) s_n được gọi là $t \hat{o} ng ri \hat{e} ng th \acute{u} n$ của chuỗi (2.1);
- 5) Nếu tồn tại $s = \lim_{n \to \infty} s_n$, thì
 - o Chuỗi (2.1) được gọi là **hội tụ**;
 - \circ S được gọi là **tổng** của chuỗi (2.1);
 - \circ Ta viết $s = \sum_{n=1}^{\infty} a_n$.
- 6) Nếu chuỗi không hội tụ, thì được gọi là **phân kỳ**.
- 7) Nếu chuối $\sum_{n=1}^{\infty} |a_n|$ hội tụ, thì ta nói chuỗi (2.1) là **hội tụ tuyệt đối**.

14

Tính chất 2.1.2. 1) Nếu chuỗi (2.1) hội tụ, thì $a_n \to 0$. Do đó: $N\acute{e}u \ a_n \not\to 0$, thì chuỗi phân kỳ.

2)
$$N\acute{e}u\sum_{n=1}^{\infty}a_n\ v\grave{a}\sum_{n=1}^{\infty}b_n\ l\grave{a}\ hai\ chu\~{o}i\ h\^{o}i\ t\varPsi,\ th\grave{i}$$

$$\circ\sum_{n=1}^{\infty}(a_n+b_n)=\sum_{n=1}^{\infty}a_n+\sum_{n=1}^{\infty}b_n;$$

$$\circ\sum_{n=1}^{\infty}(\lambda a_n)=\lambda\sum_{n=1}^{\infty}a_n.$$

3) Nếu chuỗi
$$\sum_{n=1}^{\infty} |a_n| \ h \hat{\varrho}i \ t \psi$$
, thì chuỗi $\sum_{n=1}^{\infty} a_n \ c \tilde{u} n g \ h \hat{\varrho}i \ t \psi$.

2.2. Chuỗi số dương

Chuỗi số $\sum_{n=1}^{\infty} a_n$ thỏa mãn điều kiện $a_n > 0$ với mọi $n \in \mathbb{N}^*$ được gọi là **chuỗi số dương**.

- 2.3. Tiêu chuẩn hội tụ của chuỗi số dương (5 tiêu chuẩn)
- 1. Tiêu chuẩn D'Alembert: Cho chuỗi số dương $\sum_{n=1}^{\infty} a_n$. Ta đặt

$$D = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

Khi đó,

- \circ Nếu D < 1, thì chuỗi hội tụ;
- \circ Nếu D>1, thì chuỗi phân kỳ.

Ví dụ 2.3.1. Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{1}{n!}$.

Bài giải. Ta có

$$a_n = \frac{1}{n!} \Rightarrow a_{n+1} = \frac{1}{(n+1)!}.$$

$$D = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1.$$

Theo tiêu chuẩn D'Alembert ta suy ra chuỗi đã cho là hội tụ.

2. Tiêu chuẩn Cauchy: Cho chuỗi số dương $\sum_{n=1}^{\infty} a_n$. Ta đặt

$$C = \lim_{n \to \infty} \sqrt[n]{a_n}.$$

Khi đó,

- \circ Nếu C<1, thì chuỗi hội tụ;
- \circ Nếu C>1, thì chuỗi phân kỳ.

Ví dụ 2.3.2. Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \left(\frac{3n^2 + 3n + 2}{n^2 + 4n + 1} \right)^n$.

Bài giải. Ta có
$$a_n = \left(\frac{3n^2 + 3n + 2}{n^2 + 4n + 1}\right)^n$$

$$C = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{3n^2 + 3n + 2}{n^2 + 4n + 1} = 3 > 1.$$

Theo tiêu chuẩn Cauchy ta suy ra chuỗi đã cho là phân kỳ.

3. Tiêu chuẩn tích phân: Cho y=f(x) là hàm số liên tục, dương, giảm trên $[1,+\infty)$ và

$$a_n = f(n)$$
 với mọi $n \in \mathbb{N}^*$.

Khi đó, $\sum_{n=1}^{\infty} a_n$ và tích phân suy rộng $\int_{1}^{+\infty} f(x)dx$ cùng hội tụ hoặc cùng phân kỳ.

Ví dụ 2.3.3 (Bài toán cơ bản). Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$.

Bài giải. Ta có

• Nếu $\alpha < 0$, thì $a_n = n^{-\alpha}$ với mọi $n \in \mathbb{N}^*$, kéo theo $a_n \to \infty$. Do đó,

 $a_n \not\to 0$, kéo theo chuỗi đã cho phân kỳ.

- Nếu $\alpha = 0$, thì $a_n = 1$ với mọi $n \in \mathbb{N}$, kéo theo $a_n \to 1$. Do đó, $a_n \not\to 0$, kéo theo chuỗi phân kỳ.
- Nếu $\alpha > 0$, thì ta xét $y = f(x) = \frac{1}{x^{\alpha}}$. Khi đó, f(x) là hàm liên tục, dương, giảm trên $[1, +\infty)$ và

$$a_n = f(n)$$
 với mọi $n \in \mathbb{N}^*$.

Theo tiêu chuẩn tích phân, $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ và tích phân suy rộng $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$ cùng hội tụ hoặc cùng phần kỳ.

Kết luận:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} - \begin{cases} \text{HT - n\'eu } \alpha > 1\\ \text{PK - n\'eu } \alpha \le 1. \end{cases}$$
 (2.2)

4. Tiêu chuẩn so sánh 1: Cho hai chuỗi số dương $\sum_{n=1}^{\infty}a_n$ và $\sum_{n=1}^{\infty}b_n$. Khi đó, nếu tồn tại $n_0\in\mathbb{N}^*$ sao cho

$$0 \le a_n \le b_n$$
 với mọi $n \ge n_0$,

thì ta có

- o Nếu chuỗi $\sum_{n=1}^{\infty} a_n$ phân kỳ, thì chuỗi $\sum_{n=1}^{\infty} b_n$ phân kỳ;
- o Nếu chuỗi $\sum_{n=1}^{\infty} b_n$ hội tụ, thì chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ.

Ví dụ 2.3.4. Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{\sin^2 nx}{n^2}$.

Bài giải. Ta có

•
$$0 \le \frac{\sin^2 nx}{n^2} \le \frac{1}{n^2}$$
 với mọi $n \in \mathbb{N}^*$.

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 hội tụ $(\alpha = 2 > 1)$.

Theo tiêu chuẩn so sánh 1 ta suy ra chuỗi đã cho hội tụ.

5. Tiêu chuẩn so sánh 2: Cho hai chuỗi số dương $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$. Ta đặt

$$k = \lim_{n \to \infty} \frac{a_n}{b_n} \in [0, +\infty].$$

Khi đó,

o Nếu $k \in (0, +\infty)$, thì hai chuỗi cùng hội tụ hoặc cùng phân kỳ;

o Nếu
$$k=0$$
 và chuỗi $\sum_{n=1}^{\infty} b_n$ hội tụ, thì chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ;

o Nếu $k=+\infty$ và chuỗi $\sum_{n=1}^{\infty}b_n$ phân kỳ, thì chuỗi $\sum_{n=1}^{\infty}a_n$ phân kỳ.

Ví dụ 2.3.5. Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{\sin^2 nx}{n^2}$.

Bài giải. Ta đặt

$$\begin{cases} a_n = \frac{\sin^2 nx}{n^2} \\ b_n = \frac{1}{n^{3/2}}. \end{cases}$$

Khi đó,

1) $a_n, b_n > 0$ với mọi $n \in \mathbb{N}^*$;

2)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sin^2 nx}{\sqrt{n}} = 0;$$

3)
$$\sum_{n=1}^{\infty} b_n$$
 hội tụ (do $\alpha = 3/2 > 1$).

Theo tiêu chuẩn so sánh 2 ta suy ra chuỗi đã cho hội tụ.

Ví dụ 2.3.6. Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{\arcsin \frac{1}{n^2}}{n}.$

Bài giải. Ta đặt

$$\begin{cases} a_n = \frac{\arcsin\frac{1}{n^2}}{n} \\ b_n = \frac{1}{n^2}. \end{cases}$$

Ta có

1) $a_n, b_n > 0$ với mọi $n \in \mathbb{N}^*$;

2)
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} n \arcsin\frac{1}{n^2} = \lim_{n\to\infty} n \frac{1}{n^2} = 0;$$

3)
$$\sum_{n=1}^{\infty} b_n$$
 hội tụ (do $\alpha = 2 > 1$).

Theo tiêu chuẩn so sánh 2 ta suy ra chuỗi đã cho hội tụ.

Lưu ý: Trong trường hợp $\lim_{n\to\infty}\frac{a_n}{b_n}=1$, khi đó $a_n\sim b_n,\,n\to\infty$. Như vậy,

Nếu
$$a_n \sim b_n$$
, $n \to \infty$, thì $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ cùng HT hoặc cùng PK.

Giải ví dụ trên theo cách khác:

Ta có

•
$$\frac{\arcsin\frac{1}{n^2}}{n} \sim \frac{1}{n^3}, n \to \infty.$$

•
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$
 hội tụ (do $\alpha = 3 > 1$).

Theo tiêu chuẩn so sánh 2 ta suy ra chuỗi đã cho hội tụ.

19

2.4. Chuỗi số đan dấu

Định nghĩa 2.4.1. Chuỗi có một trong hai dạng sau được gọi là chuỗi đan dấu với $u_n > 0$ với mọi $n \in \mathbb{N}^*$.

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - \dots + (-1)^{n+1} u_n + \dots;$$

$$\sum_{n=1}^{\infty} (-1)^n u_n = -u_1 + u_2 - u_3 + \dots + (-1)^n u_n + \dots$$

Các tiêu chuẩn hội tụ:

- 1. Nếu $a_n \not\to 0$, thì chuỗi phân kỳ.
- 2. Nếu $\sum_{n=1}^{\infty} |a_n|$ hội tụ, thì chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ (HTTĐ là HT).
- 3. Tiêu chuẩn Leibnitz:

Nếu chuỗi đan dấu thỏa mãn:

- $\{u_n\}$ là dãy giảm trên $[n_0, +\infty)$;
- $\bullet \lim_{n\to\infty} u_n = 0,$

thì chuỗi đã cho hội tụ.

Ví dụ 2.4.2. Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}.$

Bài giải. Cách 1: Ta có

- $u_n = \frac{1}{n^2}$ nên $\{u_n\}$ là dãy giảm.
- $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n^2} = 0.$

Theo tiêu chuẩn Leibnitz ta suy ra chuỗi đã cho hội tụ.

Cách 2: Ta có $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$ hội tụ. Do đó, chuỗi đã cho HTTĐ, nên nó HT.

Ví dụ 2.4.3. Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.

Bài giải. Cách 1: Ta có

•
$$u_n = \frac{1}{n}$$
 nên $\{u_n\}$ là dãy giảm.

$$\bullet \lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{n} = 0.$$

Theo tiêu chuẩn Leibnitz ta suy ra chuỗi đã cho hội tụ.

Cách 2: Ta có $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ phân kỳ. Do đó, chúng ta không giải được theo cách này.

Ví dụ 2.4.4. Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 2}.$

Bài giải. Ta có

$$\bullet \ u_n = \frac{n}{n^2 + 2}.$$

Xét hàm $f(x) = \frac{x}{x^2 + 2}$, ta có

$$f'(x) = \frac{x^2 + 2 - 2x^2}{(x^2 + 2)^2} = \frac{2 - x^2}{(x^2 + 2)^2} < 0$$
 với mọi $x \ge 2$.

Do đó, f(x) nghịch biến, suy ra $\{u_n\}$ giảm trên $[2, +\infty)$.

$$\bullet \lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{n}{n^2 + 2} = 0.$$

Theo tiêu chuẩn Leibnitz ta suy ra chuỗi đã cho hội tụ.

Ví dụ 2.4.5. Khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^2 + 2}$.

Bài giải. Ta có

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (-1)^n \frac{n^2}{n^2 + 2} = \begin{cases} 1 & \text{n\'eu } n = 2k \\ -1 & \text{n\'eu } n = 2k + 1 \end{cases}$$

Do đó, $\not\exists \lim_{n\to\infty} a_n$. Như vậy, $a_n \not\to 0$, chuỗi phân kỳ.

CHUONG 3

MIỀN HỘI TỤ CỦA CHUỖI LŨY THỪA

A. Định nghĩa. Cho chuỗi

$$\sum_{n=1}^{\infty} a_n x^n = a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (3.1)

Khi đó,

- 1) (3.1) được gọi là một chuỗi lũy thừa;
- 2) a_1, \ldots, a_n, \ldots được gọi là các $h\hat{e}$ số của CLT (3.1);
- **3**) Điểm x_0 được gọi là điểm hội tụ của CLT (3.1) nếu chuỗi số $\sum_{n=1}^{\infty} a_n x_0^n$ hội tụ;
- 4) Tập tất cả các điểm hội tụ của CLT (3.1) được gọi là MHT của CLT (3.1).

Bài toán: Tìm MHT của chuỗi lũy thừa $\sum_{n=1}^{\infty} a_n x^n$.

 ${\it Bước}$ 1. Tìm bán kính hội tụ R của CLT:

Ta có
$$l = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \quad \left(= \lim_{n \to \infty} \sqrt[n]{|a_n|} \right)$$
. Khi đó,

$$R = \begin{cases} \frac{1}{l} & \text{n\'eu } l \in (0, +\infty) \\ 0 & \text{n\'eu } l = +\infty \\ +\infty & \text{n\'eu } l = 0. \end{cases}$$

Do đó, khoảng hội tụ của CLT là (-R, R).

Bước 2. Xét tại $x = \pm R$, ta có:

Nếu CLT hội tụ tại $x = \pm R$, thì MHT là [-R, R].

Nếu CLT phân kỳ tại $x = \pm R$, thì MHT là (-R, R).

Nếu CLT PK tại x=-R, HT tại x=R, thì MHT là (-R,R].

Nếu CLT HT tại x=-R, PK tại x=R, thì MHT là [-R,R).

Ví dụ 3.0.1. Tìm MHT của CLT

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^3 + 1} x^n. \tag{3.2}$$

Bài giải.

• Tìm BKHT của (3.2):

Ta có
$$a_n = (-1)^n \frac{n}{n^3 + 1} \Rightarrow a_{n+1} = (-1)^{n+1} \frac{n+1}{(n+1)^3 + 1}.$$

$$l = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1.$$

Suy ra $R = \frac{1}{l} = 1$. Do đó, KHT của (3.2) là (-1, 1).

• Xét khi x = -1:

$$(3.2) \Leftrightarrow \sum_{n=1}^{\infty} \frac{n}{n^3 + 1}.$$
 (3.3)

Ta có

$$\circ \frac{n}{n^3+1} \sim \frac{1}{n^2}, n \to \infty;$$

$$\circ \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ hội tụ.}$$

Theo tiêu chuẩn so sánh 2 ta suy ra (3.3) hội tụ.

• Xét khi x = 1:

$$(3.2) \Leftrightarrow \sum_{n=1}^{\infty} (-1)^n \frac{n}{n^3 + 1}.$$
 (3.4)

Ta có $\sum_{n=1}^{\infty}\left|(-1)^n\frac{n}{n^3+1}\right|=\sum_{n=1}^{\infty}\frac{n}{n^3+1}$ hội tụ. Do đó, (3.4) HTTĐ nên nó HT.

 \bullet Kết luận: MHT của (3.2) là [-1,1].

Ví dụ 3.0.2. Tìm MHT của CLT

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2 + 1} (x+1)^n. \tag{1}$$

Bài giải. Đặt t = x + 1, khi đó (1) trở thành:

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2 + 1} t^n. \tag{2}$$

• Tìm BKHT của (2):

Ta có
$$a_n = (-1)^{n+1} \frac{1}{n^2 + 1} \Rightarrow a_{n+1} = (-1)^{n+2} \frac{1}{(n+1)^2 + 1}.$$

$$l = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1.$$

Suy ra $R = \frac{1}{l} = 1$. Do đó, KHT của (2) là (-1,1).

• Xét khi t = -1:

$$(2) \Leftrightarrow \sum_{n=1}^{\infty} (-1)^{2n+1} \frac{1}{n^2 + 1} = -\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}.$$
 (3)

Ta có

$$\circ \frac{1}{n^2+1} \sim \frac{1}{n^2}, n \to \infty;$$

$$\circ \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ hội tụ.}$$

Theo tiêu chuẩn so sánh 2 ta suy ra (3) hội tụ.

• Xét khi t = 1:

$$(2) \Leftrightarrow \sum_{n=1}^{\infty} (-1)^n \frac{n}{n^3 + 1}. \tag{4}$$

Ta có $\sum_{n=1}^{\infty}\left|(-1)^n\frac{1}{n^2+1}\right|=\sum_{n=1}^{\infty}\frac{1}{n^2+1}$ hội tụ. Do đó, (4) HTTĐ nên nó HT.

 \bullet Kết luận: MHT của (2) là $-1 \leq t \leq 1,$ suy ra $-2 \leq x \leq 0.$

$CHUONG\,4$

TÍNH TỔNG

4.1. Tính chất

Cho CLT $\sum_{n=1}^{\infty} a_n x^n$ có BKHT là R. Khi đó,

1. Với mọi $x \in (-R, R)$ ta có

$$\left(\sum_{n=1}^{\infty} a_n x^n\right)' = \sum_{n=1}^{\infty} (a_n x^n)'.$$

2. Với mọi $a, x \in (-R, R)$, ta có

$$\int_a^x \sum_{n=1}^\infty a_n x^n = \sum_{n=1}^\infty \int_a^x a_n x^n.$$

3.
$$\int_{a}^{x} A'(t)dt = A(t)\Big|_{a}^{x} = A(x) - A(a).$$

4.
$$\left(\int_{a}^{x} f(t)dt \right)' = \left(F(x) - F(a) \right)' = f(x).$$

5.
$$\sum_{n=n_0}^{\infty} \alpha q^n (|q| < 1) = \alpha q^{n_0} + \alpha q^{n_0+1} + \dots = \frac{\alpha q^{n_0}}{1-q}.$$

4.2. Một số ví dụ

Ví dụ 4.2.1. Tính tổng

1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$$
;

2)
$$\sum_{n=1}^{\infty} (n+1)x^n$$
;

$$3) \sum_{n=1}^{\infty} \frac{x^n}{n+1};$$

4)
$$\sum_{n=1}^{\infty} (-1)^{n+1} n x^n$$
;

5)
$$\sum_{n=1}^{\infty} n^2 x^n$$
;

6)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2 - 3n + 2}$$
;

Bài giải. (1) Đặt $A(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$. Khi đó, với mọi $x \in (-1,1)$, ta có

$$A'(x) = \left(\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}\right)' = \sum_{n=1}^{\infty} (-1)^n x^{n-1} = -1 + x - x^2 + \dots = \frac{-1}{1+x}.$$

Suy ra

$$A(x) - A(0) = \int_0^x A'(t)dt = -\int_0^x \frac{1}{1+t} = -\ln(1+x).$$

Bởi vì A(0) = 0 nên ta suy ra $A(x) = -\ln(1+x)$.

(2) Đặt
$$A(x) = \sum_{n=1}^{\infty} (n+1)x^n$$
. Khi đó, với mọi $x \in (-1,1)$, ta có

Cách 1:

$$\int_0^x A(t)dt = \int_0^x \left(\sum_{n=1}^\infty (n+1)t^n\right)dt = \sum_{n=1}^\infty \int_0^x (n+1)t^n dt$$
$$= \sum_{n=1}^\infty x^{n+1} = x^2 + x^3 + \dots = \frac{x^2}{1-x}.$$

Suy ra

$$A(x) = \left(\int_0^x A(t)dt\right)_x' = \left(\frac{x^2}{1-x}\right)' = \frac{2x(1-x) + x^2}{(1-x)^2} = \frac{2x-x^2}{(1-x)^2}.$$

Cách 2: Ta có

$$\sum_{n=1}^{\infty} x^{n+1} = x^2 + x^3 + \dots = \frac{x^2}{1-x}.$$

Suy ra

$$\sum_{n=1}^{\infty} (n+1)x^n = \left(\sum_{n=1}^{\infty} x^{n+1}\right)' = \left(\frac{x^2}{1-x}\right)' = \frac{2x-x^2}{(1-x)^2}.$$

(3) Ta đặt
$$A(x) = \sum_{n=1}^{\infty} \frac{x^n}{n+1}$$
. Khi đó,

- Nếu x = 0, thì A(x) = 0.
- Nếu $x \neq 0$, thì

$$A(x) = \sum_{n=1}^{\infty} \frac{1}{x} \frac{x^{n+1}}{n+1} = \frac{1}{x} \sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1}.$$

Đặt $B(x) = \sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1}$, khi đó tính B(x) như Bài 1, và $A(x) = \frac{1}{x}B(x)$.

(4) Ta đặt
$$A(x) = \sum_{n=1}^{\infty} (-1)^{n+1} n x^n = x \sum_{n=1}^{\infty} (-1)^{n+1} n x^{n-1}$$
. Ta đặt

$$B(x) = \sum_{n=1}^{\infty} (-1)^{n+1} nx^{n-1}.$$

Khi đó, ta tính B(x) như Bài 2 và A(x) = xB(x).

$$\sum_{n=1}^{\infty} x^n = x + x^2 + \dots = \frac{x}{1 - x}$$

$$\left(\sum_{n=1}^{\infty} x^{n}\right)' = \left(\frac{x}{1-x}\right)' = \frac{1-x+x}{(1-x)^{2}} = \frac{1}{(1-x)^{2}}$$

$$\Rightarrow \sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^{2}}$$

$$\Rightarrow \sum_{n=1}^{\infty} nx^{n} = x \sum_{n=1}^{\infty} nx^{n-1} = \frac{x}{(1-x)^{2}}$$

$$\Rightarrow \left(\sum_{n=1}^{\infty} nx^{n}\right)' = \left(\frac{x}{(1-x)^{2}}\right)' = \frac{(1-x)^{2} + 2(1-x)x}{(1-x)^{4}} = \frac{(1-x) + 2x}{(1-x)^{3}} = \frac{1+x}{(1-x)^{3}}$$

$$\Rightarrow \sum_{n=1}^{\infty} n^{2}x^{n-1} = \frac{1+x}{(1-x)^{3}}$$

$$\Rightarrow \sum_{n=1}^{\infty} n^{2}x^{n} = x \sum_{n=1}^{\infty} n^{2}x^{n-1} = \frac{x(1+x)}{(1-x)^{3}}.$$

(6) Ta có

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2 - 3n + 2} = \sum_{n=1}^{\infty} \frac{x^n}{n - 2} - \sum_{n=1}^{\infty} \frac{x^n}{n - 1}.$$

Đây là dạng Bài tập số 3.

Ví dụ 4.2.2. Tính tổng:

$$D = \sum_{n=1}^{\infty} \frac{3^n (2n-1) + (-1)^n}{4^n (2n-1)}$$

Bài giải. Ta có

$$D = \sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n + \sum_{n=1}^{\infty} (-1)^n \frac{\left(\frac{1}{4}\right)^n}{2n-1} = \sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n + \frac{1}{2} \sum_{n=1}^{\infty} (-1)^n \frac{\left(\frac{1}{2}\right)^{2n-1}}{2n-1}$$

$$\bullet \sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n = \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \dots = \frac{3/4}{1-3/4} = 3.$$

• Xét
$$A(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{2n-1}$$
. Ta có
$$A'(x) = \sum_{n=1}^{\infty} (-1)^n x^{2n-2} = -1 + x^2 - x^4 + \dots = -\frac{1}{1+x^2}$$
$$\Rightarrow A(x) - A(0) = \int_0^x A'(t) dt = -\int_0^x \frac{dt}{1+t^2} = -\arctan x.$$
Bởi vì $A(0) = 0$ nên $A(x) = -\arctan x$. Do đó,
$$D = 3 + \frac{1}{2} A\left(\frac{1}{2}\right) = 3 - \frac{1}{2}\arctan\frac{1}{2}.$$

CHUONG 5

KIẾN THỰC CŨ

Cho $f: X \to Y$, $A \subset X$ và $B \subset Y$. Khi đó,

$$f(A) = \{f(x) : x \in A\}.$$

$$f^{-1}(B) = \{ x \in X : f(x) \in B \}.$$

1. Với mọi $V \subset X$ ta có $V \subset f^{-1}(f(V))$.

Thật vậy, lấy $x \in V$, khi đó $f(x) \in f(V)$. Suy ra $x \in f^{-1}(f(V))$.

2. Nếu $A \subset B \subset Y$, thì $f^{-1}(A) \subset f^{-1}(B)$.

Thật vậy, lấy $x \in f^{-1}(A)$, khi đó $f(x) \in A \subset B$, kéo theo $f(x) \in B$. Do đó, $x \in f^{-1}(B)$.

3. Nếu $U \subset V \subset X$, thì $f(U) \subset f(V)$.

Thật vậy, lấy $y \in f(U)$, khi đó tồn tại $x \in U$ sao cho y = f(x). Bởi vì $x \in U$ nên $x \in V$, kéo theo $y = f(x) \in f(V)$.

4. Cho $F \subset Y$. Ta có

$$f^{-1}(Y \setminus F) = X \setminus f^{-1}(F).$$

Thật vậy,

- o Lấy $x \in f^{-1}(Y \setminus F)$, khi đó $f(x) \in Y \setminus F$, kéo theo $f(x) \in Y$ và $f(x) \notin F$. Do đó, $x \in X$ và $x \notin f^{-1}(F)$. Suy ra $x \in X \setminus f^{-1}(F)$.
- o Lấy $x \in X \setminus f^{-1}(F)$. Khi đó, $x \notin f^{-1}(F)$, kéo theo $f(x) \notin F$. Như vậy, $f(x) \in Y \setminus F$. Suy ra $x \in f^{-1}(Y \setminus F)$.

5.
$$f(f^{-1}(A)) \subset A$$
.

Lấy $y\in f(f^{-1}(A))$, khi đó tồn tại $x\in f^{-1}(A)$ sao cho y=f(x). Mặt khác, vì $x\in f^{-1}(A)$ nên $f(x)\in A$, do đó $y\in A$.

6.
$$f^{-1}\left(\bigcup_{\alpha \in I} V_{\alpha}\right) = \bigcup_{\alpha \in I} f^{-1}(V_{\alpha}).$$

7.
$$f\left(\bigcup_{\alpha \in I} V_{\alpha}\right) = \bigcup_{\alpha \in I} f(V_{\alpha}).$$