Example

Find the numerical value.

**a.** 
$$\frac{TN}{NR}$$
 **b.**  $\frac{TR}{NR}$  **c.**  $\frac{RN}{RT}$ 

Solution

a. 
$$\frac{TN}{NR} = \frac{SM}{MR} = \frac{3}{6} = \frac{1}{2}$$

**b.** 
$$\frac{TR}{NR} = \frac{SR}{MR} = \frac{9}{6} = \frac{3}{2}$$

c. 
$$\frac{RN}{RT} = \frac{RM}{RS} = \frac{6}{9} = \frac{2}{3}$$



Compare the following corollary with Theorem 5-9 on page 177.

## Corollary

If three parallel lines intersect two transversals, then they divide the transversals proportionally.

Given: 
$$\overrightarrow{RX} \parallel \overrightarrow{SY} \parallel \overrightarrow{TZ}$$

Prove: 
$$\frac{RS}{ST} = \frac{XY}{YZ}$$



**Plan for Proof:** Draw  $\overline{TX}$ , intersecting  $\overrightarrow{SY}$  at N. Note that  $\overrightarrow{SY}$  is parallel to one side of  $\triangle RTX$ , and also to one side of  $\triangle TXZ$ . You can apply the Triangle Proportionality Theorem to both of these triangles. Use those proportions to

show 
$$\frac{RS}{ST} = \frac{XY}{YZ}$$
.

## **Theorem 7-4** Triangle Angle-Bisector Theorem

If a ray bisects an angle of a triangle, then it divides the opposite side into segments proportional to the other two sides.

Given:  $\triangle DEF$ ;  $\overrightarrow{DG}$  bisects  $\angle FDE$ .

Prove: 
$$\frac{GF}{GE} = \frac{DF}{DE}$$

**Plan for Proof:** Draw a line through E parallel to  $\overrightarrow{DG}$  and intersecting  $\overrightarrow{FD}$  at K. Apply the Triangle Proportionality Theorem to  $\triangle FKE$ .  $\triangle DEK$  is isosceles with DK = DE. Substitute this into your proportion to complete the proof.

