

Zero Order Reaction

A reaction is said to be of zero order if its rate is independent of the concentration of the reactants, for the reaction

$$A \longrightarrow Product$$

Initially:

At t = 0 [A]₀ mol/liter

After some time, t:

At $t = t [A]_t mole/liter$

The rate expression for zero order reaction is given as:

$$\therefore -\frac{d[A]_1}{dt} = K \quad or - d[A]_t = K \cdot dt$$

on integrating both sides give: $-[A]_t = Kt + C$

Where C is the constant of integration at t = 0, concentration = $[A]_0$ or $[A] = [A]_0$

$$\therefore$$
 C = [A]_o

$$[A]_t = -Kt + [A]_0$$

Also time to compete zero order reaction say (t) can be calculated from $[A]_t = -Kt + [A]_0$ by putting $[A]_t = 0$

$$t = \frac{[A]_0}{K}$$

Thus if a graph is plotted between $[A]_t$ and t it is a straight line with negative slope (m = -K)

Half Life of a reaction:

The time in which the initial concentration of reactants becomes half is termed as half-life period.

Half-life of a zero order reaction is directly proportional to initial concentration.

$$t_{1/2} = \frac{[A]_0}{2k}$$