```
# Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.ensemble import IsolationForest
```

```
# importing dataset
df = pd.read_csv('/content/Titanic-Dataset.csv')
```

df.head(5)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.25
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.28
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.92
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.10
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.05

```
df.drop('Cabin', axis=1, inplace=True)
```

```
# Check for null values
null_values = df.isnull().sum()
print("Null Values:\n", null_values)
```

Null Values:
PassengerId 0
Survived 0
Pclass 0

0 Name Sex 0 177 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Embarked 2 dtype: int64

```
# Data Visualization
#1
plt.figure(figsize=(8, 6))
sns.histplot(data=df, x='Age', bins=20, kde=True)
plt.title('Distribution of Passenger Ages')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
```



```
#2
plt.figure(figsize=(8, 6))
sns.countplot(data=df, x='Pclass', hue='Survived', palette='Set1')
plt.title('Survival Count by Passenger Class')
plt.xlabel('Passenger Class')
plt.ylabel('Count')
```

```
plt.legend(title='Survived', labels=['No', 'Yes'])
plt.show()
```



```
#3
correlation_matrix = df.corr()
# Create a heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Correlation Heatmap of Numerical Features')
plt.show()
```

<ipython-input-12-e7b28d703787>:2: FutureWarning: The default value of numeric_only in correlation_matrix = df.corr()

Correlation Heatmap of Numerical Features

[#] Outlier Detection

print("Outliers Detected:\n", outliers)

[#] Using Isolation Forest for outlier detection on the 'Fare' column
iso_forest = IsolationForest(contamination=0.05)

df['IsOutlier'] = iso_forest.fit_predict(df[['Fare']])

outliers = df[df['IsOutlier'] == -1]

```
ノノマ
           1 C 1/011
                     TUD.UU
                                     C
337
        0
              16966 134.5000
                                              -1
341
        2
              19950 263.0000
                                     S
                                              -1
        0 PC 17760 135.6333
                                     C
373
                                              -1
        2
                                     C
377
             113503 211.5000
                                              -1
                                     C
380
        0 PC 17757 227.5250
                                              -1
390
        2
             113760 120.0000
                                     S
                                              -1
                                     S
        2
435
             113760 120.0000
                                              -1
        4
                                     S
438
              19950 263.0000
                                              -1
                                     S
498
        2
             113781 151.5500
                                              -1
                                     S
527
        0 PC 17483 221.7792
                                              -1
537
        0 PC 17761 106.4250
                                     C
                                              -1
        0 PC 17761 106.4250
                                     C
544
                                              -1
557
        0 PC 17757 227.5250
                                     C
                                              -1
        0 PC 17582 153.4625
                                     S
609
                                              -1
                                     S
660
        0 PC 17611 133.6500
                                              -1
        1 PC 17755 512.3292
                                     C
679
                                              -1
                                     S
689
              24160 211.3375
        1
                                              -1
                                     C
700
        0 PC 17757 227.5250
                                              -1
                                     S
708
        0
            113781 151.5500
                                              -1
716
        0 PC 17757 227.5250
                                     C
                                              -1
              24160 211.3375
                                     S
730
        0
                                              -1
                                     C
737
        0 PC 17755 512.3292
                                              -1
742
        2 PC 17608 262.3750
                                    C
                                              -1
                                     S
763
        2
             113760 120.0000
                                              -1
779
        1
              24160 211.3375
                                     S
                                              -1
                                     S
802
        2
                                              -1
             113760 120.0000
856
        1
              36928 164.8667
                                     S
                                              -1
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not warnings.warn(

```
# Outlier detection using boxplot and IQR for 'Age' feature
sns.boxplot(data=df, x='Age')
plt.title('Boxplot of Age')
plt.xlabel('Age')
plt.show()
# Calculate the IQR for 'Age'
Q1 = df['Age'].quantile(0.25)
Q3 = df['Age'].quantile(0.75)
IQR = Q3 - Q1
# Define the lower and upper bounds for outliers
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Detect outliers
outliers_age = df[(df['Age'] < lower_bound) | (df['Age'] > upper_bound)]
print("Outliers Detected via IQR for 'Age':\n", outliers_age)
```

X.head(10)

Boxplot of Age


```
Outliers Detected via IQR for 'Age':
      PassengerId Survived Pclass
                                                                      Name \
33
              34
                         0
                                 2
                                                    Wheadon, Mr. Edward H
54
              55
                         0
                                 1
                                          Ostby, Mr. Engelhart Cornelius
96
              97
                         0
                                               Goldschmidt, Mr. George B
                                 1
                         0
                                                     Connors, Mr. Patrick
116
             117
                                 3
280
             281
                         0
                                                         Duane, Mr. Frank
                                 3
456
             457
                         0
                                 1
                                               Millet, Mr. Francis Davis
493
             494
                         0
                                                 Artagaveytia, Mr. Ramon
630
                         1
                                 1 Barkworth, Mr. Algernon Henry Wilson
             631
672
             673
                         0
                                 2
                                             Mitchell, Mr. Henry Michael
745
             746
                         0
                                 1
                                            Crosby, Capt. Edward Gifford
851
             852
                                 3
                                                      Svensson, Mr. Johan
      Sex
            Age SibSp Parch
                                   Ticket
                                               Fare Embarked IsOutlier
33
    male
           66.0
                     0
                            0 C.A. 24579 10.5000
```

```
# Splitting into dependent and independent variables
X = df.drop(['Survived'], axis=1) # Independent variables
y = df['Survived'] # Dependent variable

# Encoding categorical variables (e.g., 'Sex' and 'Embarked')
label_encoder = LabelEncoder()
X['Sex'] = label_encoder.fit_transform(X['Sex'])
X['Embarked'] = label_encoder.fit_transform(X['Embarked'])
```

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	3	Braund, Mr. Owen Harris	1	22.0	1	0	A/5 21171	7.2500	2
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	38.0	1	0	PC 17599	71.2833	0
2	3	3	Heikkinen, Miss. Laina	0	26.0	0	0	STON/O2. 3101282	7.9250	2
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	35.0	1	0	113803	53.1000	2
4	5	3	Allen, Mr. William Henry	1	35.0	0	0	373450	8.0500	2
5	6	3	Moran, Mr. James	1	NaN	0	0	330877	8.4583	1
6	7	1	McCarthy, Mr. Timothy J	1	54.0	0	0	17463	51.8625	2
7	8	3	Palsson, Master. Gosta Leonard	1	2.0	3	1	349909	21.0750	2
8	9	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	0	27.0	0	2	347742	11.1333	2
9	10	2	Nasser, Mrs. Nicholas	0	14.0	1	0	237736	30.0708	0

Feature Scaling (Standardization)
scaler = StandardScaler()

X[['Age', 'Fare']] = scaler.fit_transform(X[['Age', 'Fare']])

X.head(10)

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Eml
0	1	3	Braund, Mr. Owen Harris	1	-0.530377	1	0	A/5 21171	-0.502445	
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	0.571831	1	0	PC 17599	0.786845	
2	3	3	Heikkinen, Miss. Laina	0	-0.254825	0	0	STON/O2. 3101282	-0.488854	
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	0.365167	1	0	113803	0.420730	
4	5	3	Allen, Mr. William Henry	1	0.365167	0	0	373450	-0.486337	
5	6	3	Moran, Mr. James	1	NaN	0	0	330877	-0.478116	
6	7	1	McCarthy, Mr. Timothy J	1	1.674039	0	0	17463	0.395814	
7	8	3	Palsson, Master. Gosta Leonard	1	-1.908136	3	1	349909	-0.224083	
8	9	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	0	-0.185937	0	2	347742	-0.424256	
9	10	2	Nasser, Mrs. Nicholas	0	-1.081480	1	0	237736	-0.042956	

[#] Splitting data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

[#] Display shapes of the training and testing sets
print("X_train shape:", X_train.shape)
print("X_test shape:", X_test.shape)
print("y_train shape:", y_train.shape)
print("y_test shape:", y_test.shape)

X_train shape: (712, 11)
X_test shape: (179, 11)
y_train shape: (712,)
y_test shape: (179,)

✓ 0s completed at 12:10 PM

X