National University of Computer and Emerging Sciences, Lahore Campus

Course Name:	Quantum Computing	Course Code:	CS-4084
Degree Program:	BS Computer Science	Semester:	Fall 2023
Exam Duration:	3 Hours	Total Marks:	91
Paper Date:	26/12/2023	Weight:	50%
Section:	All	No. of Page(s):	18
Exam Type:	Final		

Student Name:	_, Roll Number:,	Section:

Instruction/Notes:

- You are permitted to use a self-prepared A4-sized cheatsheet written in your own handwriting. Boldly write your roll number on this sheet.
- Sharing calculators is strictly prohibited.
- Do not use additional sheets for rough work; make use of the provided ample space.

Questions	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Total
Marks	10	10	5	10	10	10	36	91
Marks Obtained								

Questions

1. You are given a simple unitary matrix $U = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$, and its one eigenvector $|v\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, you are asked to use the Phase estimation algorithm to estimate θ for $\mathbf{m}=\mathbf{2}$ bits. Must create quantum circuit, and show each stage's result clearly. [10 Marks]

2. Use Deutsch Jozsa algorithm to show that the function f(x) = 1 where $x \in \{00, 10, 01, 11\}$ is constant. Must clearly show all the steps. [10 Marks]

3. Prove that the following qubits are NOT entangled $\frac{\sqrt{3}}{2\sqrt{2}}|000\rangle + \frac{\sqrt{3}}{2\sqrt{2}}|001\rangle + \frac{1}{2\sqrt{2}}|100\rangle + \frac{1}{2\sqrt{2}}|101\rangle$ [5 Marks]

4. Use quantum teleportation to send qubit $\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$ from Alice to Bob. Create quantum circuit and show all the steps. [10 Marks]

This page is intentionally left blank!

5.	Use Shor's prime factorization algorithm to find factors of $N=119$. Show each step clearly. choose random number $x=4$ for your calculations. [10 Marks]	Please

6. Given a black-box of function $f: \{0,1\}^3 \to \{0,1\}^3, f(x) = x \mod 2$. You have to find its period r using Period finding Algorithm. Calculate all the stages of its quantum circuit. [10 Marks]

This page is intentionally left blank!

7. Short questions

(a) Compute tensor product of the following: $\begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \end{pmatrix}$ [3 Marks]

(b) Given the $\frac{|00\rangle}{4} + \alpha |11\rangle$ is a valid qubits register what is the value of α . [2 Marks]

(c) With what probability we will measure the last qubit as 0, given the following register? Furthermore, what will be the resultant state after the measurement. [2+2 Marks]

$$|\phi\rangle = \frac{1}{\sqrt{7}}|000\rangle + \sqrt{\frac{2}{7}}|001\rangle + \sqrt{\frac{3}{7}}|101\rangle + \frac{1}{\sqrt{7}}|110\rangle$$

(d) Write vector $\begin{pmatrix} 0\\0\\1\\2\\3\\0\\0\\9 \end{pmatrix}$ in Bra-ket notation. [2 Marks]

- (e) Given $|\psi\rangle = \left(\frac{i\sqrt{3}}{4}|0\rangle + \frac{\sqrt{13}}{4}|1\rangle\right)$, and $|\phi\rangle = \left(\frac{1}{\sqrt{3}}|0\rangle \frac{i\sqrt{2}}{\sqrt{3}}|1\rangle\right)$ Calculate following: $[\mathbf{2+2+2}]$ Marks]
 - $\langle \psi | \phi \rangle$
 - $|\psi\rangle\,|\phi\rangle$
 - $\langle \psi | \langle \phi |$

(f) Is that the matrix $A = \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}$ is unitary? Must clearly show your steps. [3 Marks]

(g) Is that the matrix $A = \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}$ is Hermitian? Must clearly show your steps. [3 Marks]

(h) Prove the $\frac{|\rho_0\rangle+|\rho_1\rangle+|\rho_2\rangle+|\rho_3\rangle}{2}=|1\rangle$, where $|\rho_j\rangle=\frac{1}{2}(|1\rangle+\omega_4^j\,|\alpha\rangle+\omega_4^{2j}\,|\alpha^2\rangle+\omega_4^{3j}\,|\alpha^3\rangle)$ [5 Marks]

(i)	Create quantum circuit to entangle th	the given qubits $ 10\rangle$.	What will the the resulta	nt Bell state?
· · /	[3 Marks]			
		16		

(j) Given our data: $\frac{|00\rangle+|01\rangle+i|10\rangle-|11\rangle}{2}$, undergoes a linear shift of 3, what will be the corresponding phase-shift upon application of the Quantum Fourier Transformation (QFT)? Show both results before and after the phase shift. [5 Marks]

This page is intentionally left blank!