```
In [31]: import pandas as pd
import warnings
warnings.filterwarnings('ignore')
data=pd.read_csv("/home/placement/Downloads/fiat500.csv") #reading datafile
data
```

Out[31]: model engine power age in days previous owners lat Ion price 0 1 lounge 51 882 25000 1 44.907242 8.611560 8900 1186 32500 8800 1 pop 51 1 45.666359 12.241890 2 sport 74 4658 142228 1 45.503300 11.417840 4200 3 51 2739 160000 1 40.633171 17.634609 6000 4 lounge 73 3074 106880 5700 4 1 41.903221 12.495650 pop ... **1533** 1534 115280 1 45.069679 7.704920 5200 sport 51 3712 1534 1535 74 3835 112000 1 45.845692 8.666870 4600 lounge 1536 2223 60457 7500 1535 51 1 45.481541 9.413480 pop 1536 1537 lounge 51 2557 80750 1 45.000702 7.682270 5990 **1537** 1538 51 1766 54276 1 40.323410 17.568270 7900 pop

In [4]: data1=data.loc[(data.previous_owners==1)] #data have with only previous_owners=1 using loc()

1538 rows × 9 columns

In [5]: data1

Out[5]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1389 rows × 9 columns

In [6]: data1=data1.drop(columns=['ID','lat','lon']) #drop the unwantd columns

In [7]: data1

Out[7]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	рор	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	рор	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	рор	51	1766	54276	1	7900

1389 rows × 6 columns

In [10]: datal=pd.get_dummies(datal) #covert the strings into numbers of model usiing get_dummies()

In [11]: data1

_			-	-
/ N i	14	ΗТ	-1	
υι	ıL	LТ	. т	

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1389 rows × 8 columns

```
In [121]: y=datal['price'] #copy the price column of data1 into the y
x=datal.drop(columns='price')#drop the price column from data1
```

In [122]: x

	1 1 2 2 1
()))++	/ /
out	

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
0	51	882	25000	1	1	0	0
1	51	1186	32500	1	0	1	0
2	74	4658	142228	1	0	0	1
3	51	2739	160000	1	1	0	0
4	73	3074	106880	1	0	1	0
1533	51	3712	115280	1	0	0	1
1534	74	3835	112000	1	1	0	0
1535	51	2223	60457	1	0	1	0
1536	51	2557	80750	1	1	0	0
1537	51	1766	54276	1	0	1	0

1389 rows × 7 columns

```
In [123]: y
```

```
Out[123]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
                  5700
                   . . .
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
```

Name: price, Length: 1389, dtype: int64

split the data into training set and testing set

In [124]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)

In [125]: x_train

Out[125]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
915	51	397	17081	1	1	0	0
12	51	456	18450	1	1	0	0
638	51	397	21276	1	1	0	0
190	51	821	19000	1	1	0	0
701	51	701	27100	1	1	0	0
1201	51	790	50740	1	0	1	0
1239	51	4383	107600	1	0	1	0
1432	51	701	42095	1	1	0	0
951	51	3684	78000	1	1	0	0
1235	51	1613	45000	1	1	0	0

930 rows × 7 columns

In [126]: x_test

Out[126]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
625	51	3347	148000	1	1	0	0
187	51	4322	117000	1	1	0	0
279	51	4322	120000	1	0	1	0
734	51	974	12500	1	0	1	0
315	51	1096	37000	1	1	0	0
115	51	397	16135	1	1	0	0
370	51	366	11203	1	0	1	0
1179	74	3804	62000	1	1	0	0
93	51	397	17250	1	1	0	0
147	51	762	15917	1	1	0	0

459 rows × 7 columns

ElasticNet model

```
from sklearn.model selection import GridSearchCV
          elastic=ElasticNet()
                                                              #creating an object for ElasticNet
          parameters={'alpha':[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,15,10,20]}
          elastic regressor=GridSearchCV(elastic,parameters)
          elastic regressor.fit(x train,y train)
                                                      #training and fitting
Out[127]: GridSearchCV(estimator=ElasticNet(),
                        param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 15,
                                               10. 2011)
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [128]: elastic regressor.best params
Out[128]: {'alpha': 0.01}
In [132]: elastic=ElasticNet(alpha=0.01)
          elastic.fit(x train,y train)
          y pred=elastic.predict(x test)
In [133]: from sklearn.metrics import mean squared error
          elastic Error=mean squared error(v pred,v test)
          elastic Error
Out[133]: 515349.9787871871
In [134]: from sklearn.metrics import r2 score #to know the efficiency of the predicted price
          r2 score(y test,y pred)
Out[134]: 0.8602162350730707
In [143]: results=pd.DataFrame(columns=['Actual','Predicted']) #create the dataframe for actual and predicted values
          results['Actual']=y test
          results['Predicted']=y pred
          results=results.reset index() #remove the index as ID values
          results['id']=results.index
```

In [127]: **from** sklearn.linear model **import** ElasticNet

In [144]: results

Out[144]:

	index	Actual	Predicted	id
0	625	5400	5482.171479	0
1	187	5399	5127.531740	1
2	279	4900	4803.203231	2
3	734	10500	9662.825235	3
4	315	9300	9408.645424	4
454	115	10650	10396.366249	454
455	370	9900	10235.109546	455
456	1179	5900	6766.292878	456
457	93	10050	10377.386719	457
458	147	9900	10069.771989	458

459 rows × 4 columns

```
In [149]: results["Difference"]=results['Actual']-results['Predicted']#add the column for difference b/w the actual an
```

In [150]:

results

Out[150]:

	index	Actual	Predicted	id	Difference
0	625	5400	5482.171479	0	-82.171479
1	187	5399	5127.531740	1	271.468260
2	279	4900	4803.203231	2	96.796769
3	734	10500	9662.825235	3	837.174765
4	315	9300	9408.645424	4	-108.645424
454	115	10650	10396.366249	454	253.633751
455	370	9900	10235.109546	455	-335.109546
456	1179	5900	6766.292878	456	-866.292878
457	93	10050	10377.386719	457	-327.386719
458	147	9900	10069.771989	458	-169.771989

459 rows × 5 columns

Plot the data using seaborn and matplotlib libraries

```
In [151]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='id',y='Actual',data=results.head(50))
sns.lineplot(x='id',y='Predicted',data=results.head(50))
plt.show()
```


Type $\it Markdown$ and LaTeX: $\it \alpha^2$

In []: