```
Timothy Ho, Chuizheng Kong, Shengyi Shen
LITEC
Section 3
Group Member 1 Pseudocode
compiler directives
       #include <c8051_SDCC.h>
       #include <stdio.h>
declare global variables
       sbit PB1, PB2, SS, LED0, BILED0, BILED1, BUZZER
function prototypes
       void Port_Init(void)
       void Set_Outputs(void)
main function
       declare local variables
              (NONE)
       initialization functions
              Sys_Init();
              putchar(' ');
              Port_Init();
       Begin infinite loop
              execute Set_Outputs(void) function to read sbit inputs and set sbit
              outputs
       End infinite loop
End main function
```

```
void Port_Init(void)
```

Set SFRs P2, P3, P2MDOUT & P3MDOUT so P2.0, P3.0 & P3.1 are inputs, P3.3, P3.4, P3.6 & P3.7 are outputs

End Port_Init

void Set_Outputs(void)

If SS is off then

LED0 is on, BILED0 is off, BILED1 is off, BUZZER is off

Print "Slide Switch is OFF"

Else (this means SS is on)

Print "Slide Switch is ON and LED0 is off"

If (PB1 is pushed and PB2 is pushed) then

BILED0 is off, BILED1 is off, BUZZER is on

Print "Pushbutton 1 and 2 ACTIVATED"

Else if (PB1 is pushed and PB2 is released) then

BILED0 is Green, BILED1 is off, BUZZER is off

Print "Pushbutton 1 ACTIVATED"

Else if (PB1 is released and PB2 is pushed) then

BILED0 is off, BILED1 is Red, BUZZER is off

Print "Pushbutton 2 ACTIVATED"

Else BILED0 is off, BILED1 is off, BUZZER is off

End Set_Outputs

EVB Pin	Port Bit	Bit Addresses & Labels	Software Initializations
			A) Port I/0
1 2	1.		P3MDOUT &= ~0x03;
	2.		P3MDOUT = 0xD8; P3 = 0x03;
3 4	3.		P2MDOUT &= ~0x01;
	4.		P2 = 0x01;
5 6	5.		
	6.		
7 8	7.		
	8.		
9 10	9.		B) Timers
	10.		´
11 12	11.		
11 12	12.		
13 14	13.		
19 14	14.		
15 16	15.		
15 16	16.		C) Interrupts
15 10			,
17 18	17.		
	18.		
19 20	19.		
	20.		-
21 22	21.		D) A/D
	22.		
23 24	23.		
	24.		
25 26	25.		
	26.		E) PCA
27 28	27.		
	28.		
29 30	29. P2.0	0xA0 Slide Switch	
	30.		
31 32	31. P3.6	0xB6 LED0	F) XBAR
	32. P3.7	0xB7 Buzzer	r) ABAR
33 34	33. P3.4	0xB4 BILED	
	34.		
35 36	35.		G) I2C
	36. P3.3	0xB3 BILED	0,120
37 38	37. P3.1	0xB1 PB2	
01 00	38. P3.0	0xB0 PB1	
39 40	39.	0.001.01	
99 40	40.		
41 , 50	40.		
$\boxed{41} \longleftrightarrow \boxed{60}$			

Laboratory Worksheet #01 Number Systems Exercise

Convert	the following decimal numbers	s to binary:			
1)	14	0000 1110			
2)	189	1011 1101			
3)	257	0001 0000 0001			
4)	472	0001 1101 1000			
Convert the following decimal numbers to hex:					
5)	14	0x0E			
6)	189	0xBD			
7)	257	0x101			
8)	472	0x1D8			
Convert the following hex numbers to decimal:					
9)	0x37	55			
10)	0xAB	171			
11)	0x0147	327			
12)	0x2AE1	10977			
Convert the following hex numbers to binary:					
13)	0x37	0011 0111			
14)	0xAB	1010 1011			
15)	0x0147	0000 0001 0100 0111			
16)	0x2AE1	0010 0110 1110 0001			
Convert	the following binary numbers	to hex:			
17)	0010 1101	0x2B			
18)	1010 1010	0xAA			
19)	1110 0011	0xE3			
20)	0010 1001 1011 0101	0x29B5			
Convert the following binary numbers to decimal:					
21)	0010 1101	45			
22)	1010 1010	170			
23)	1110 0011	227			
24)	0010 1001 1011 0101	10677			

Laboratory Worksheet #02Logic Exercise

Answer the following questions given:

char a,b,c,d;

$$a = 0x00;$$

 $b = 0x0F;$

c = 0x09;

What is the value of **d** after execution of the following lines?

1)
$$d = a \& c;$$

0x00

2)
$$d = b \& c;$$

0x09

3)
$$d = b \& 0x04;$$

0x04

4)
$$d = b \& 0x33;$$

0x03

5)
$$d = b \& !c;$$

0x00

Are the following TRUE or FALSE?

False

7) **(b && c)**

True

8) (b && 0x04)

True

What is the value of \mathbf{d} after execution of the following lines?

9)
$$\mathbf{d} = \mathbf{a} \mid \mathbf{c};$$

0x09

10) $\mathbf{d} = \mathbf{b} \mid \mathbf{0} \mathbf{x} \mathbf{10};$

0x1F

11) $\mathbf{d} = \mathbf{b} \mid \mathbf{a};$

0x07

12) $d = b \mid !a;$

0x0F

Convert the following hex numbers to binary:

$$(\mathbf{a} \parallel \mathbf{c})$$

True

14) (a \parallel (c & 0x10))

False

 $(\mathbf{a} \parallel \mathbf{!b})$

False

When complete, include Worksheet 2 with your Laboratory 1-1 Pre-lab submission.

Laboratory Worksheet #03 Hardware: Digital Input and Output Exercise

When developing hardware circuits, it is recommended to build and test small circuits that will later be expanded upon. This first project involves the use of a couple key components (74365 chips, LEDs, BILEDs, Buzzers, Resistors) that play an important role in both digital input and output.

Construct the circuit shown below. Debugging the hardware circuit is performed using the Logic Probe available in the Toolbox. Directions on using the logic probe can be found not only in the LITEC Multimedia Tutorials, but also in Chapter 2 of your lab manual. Also, please refer to Appendix B, Figure B.1 in the lab manual concerning the connections of +5V and Ground on the Smart Car connection board.

Figure 1: Worksheet 3 Schematic

Note: In the above circuit schematic, the power connections for the 74365 chip are not shown. This format is common to circuit schematics, where the implementer is expected to know the connections for power and ground.

1) Using the on-	line data sheets, determine all pins of the 74F365 that need to be connected to a high voltage (VCCor
+5V) and those	that need to be connected to a low voltage (GND or 0V).
_	
2) Using the Log Logic Probe LEI	gic Probe, what value (high/low) do you get when you test pin #16 on the 74F365 buffer? What color in the Probe, what value (high/low) do you get when you test pin #16 on the 74F365 buffer? What color is the probe, what value (high/low) do you get when you test pin #16 on the 74F365 buffer? What color is the probe, what value (high/low) do you get when you test pin #16 on the 74F365 buffer? What color is the probe, which is the probe of the pr
_	
3) What about v	when you test pin#1 on the same chip?
_	
,	values are the buffer gate outputs connected to the LED and Buzzer (pin 3 and pin 5 of the Hex buffer en the slide switch is ON and the button is pushed? Are the LED and Buzzer on (lit/noisy) or off?
_	
5) Connect pins switch?	1 and 15 to power (5V) instead of ground. What happens when you push the button or move the slide
(c) D:	1 145 141 (d)
-	ns 1 and 15 completely (so they are not connected to anything). The pins are now considered 'floating' vir voltage level is uncertain. What happens when you push the button or move the slide switch?

When complete, include Worksheet 3 with your Laboratory 1-1 Pre-lab submission.

Laboratory Worksheet #04 Hardware: Digital Input and Output Exercise

When complete, insert Worksheet 04 in your laboratory notebook. Worksheets are required when the notebooks are graded. Perform any necessary calculations on the left page of the notebook where the worksheet is placed. Keep individual copies of the worksheet for your own records. This worksheet is a pre-lab exercise to be done before starting Lab 1-1 and should not be confused with the lab.

One of the important aspects of the software is initializing Special Function Registers (SFRs). In Laboratory 1, you will create initialization functions for Port I/O, which involves setting the correct SFR bits to 0 or 1, as needed. The logic assignment operations developed in Worksheet 2 are used to set the appropriate bits without changing the other bits.

Additionally, using the sbit command to assign a variable name to a single bit in the SFR can make programming and code execution much simpler. You will read from or write to individual bits when performing Input/Output operations on the Port pins. These read and write operations will be performed using the sbit labels assigned to the specific Port pins.

As an example problem, Port 2 will be configured for both input and output. Note, this is an example problem and is not to confused with Laboratory 1. The followed Port bits will be assigned as inputs or outputs:

$\boxed{ Pn.m \; (\text{Port } n, \text{bit } m) }$	Description	Bit Label
P2.1	Input bit for doorbell	DB
P2.3	Input bit for an alarm clock	AC
P2.5	Output bit for a porch light	Porch
P2.6	Input bit for a garage door	GD

All other bits are considered previously assigned and should not be changed.

Refer to the manual section *Input/Output Ports on the C8051* or the course slides to determine the syntax. The memory locations for Port 2 bit 0 is 0xA0, Port 2 bit 1 is 0xA1, through Port 2 bit 7 at 0xA7. Complete the following four lines of code to assign the labels to the appropriate bit using the sbit command.

In the following SFR data tables, indicate whether the bit should be set high (1), low (0), or undetermined/unchanged (X).

P2MDOUT (input bits are set to 0, output bits are set to 1, unchanged bits are indicated with an X)

P2 (input bits are set to 1 which is a high impedance state, all other bits are unchanged X)

In summary, using the above definitions, complete the Port_Init() function for this example.

When complete, include Worksheet 4 with your Laboratory 1-1 Pre-lab submission.