Report on Bipartite Entanglement Entropy

Aditya Chincholi June 28, 2021

Introduction

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + Kcos(\theta_1)(1 + \alpha cos(\theta_2)cos(\theta_3)) \sum_n \delta(t-n)$$

- We are calculating the entanglement entropy between \mathcal{H}_1 and $\mathcal{H}_{23}.$

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + Kcos(\theta_1)(1 + \alpha cos(\theta_2)cos(\theta_3)) \sum_n \delta(t - n)$$

- · We are calculating the entanglement entropy between \mathcal{H}_1 and \mathcal{H}_{23} .
- The hypothesis was that the entanglement should increase rapidly at the critical point.

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + Kcos(\theta_1)(1 + \alpha cos(\theta_2)cos(\theta_3)) \sum_n \delta(t - n)$$

- We are calculating the entanglement entropy between \mathcal{H}_1 and \mathcal{H}_{23} .
- · The hypothesis was that the entanglement should increase rapidly at the critical point.
- · Calculated and plotted quantities are:

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + Kcos(\theta_1)(1 + \alpha cos(\theta_2)cos(\theta_3)) \sum_n \delta(t - n)$$

- We are calculating the entanglement entropy between \mathcal{H}_1 and $\mathcal{H}_{23}.$
- · The hypothesis was that the entanglement should increase rapidly at the critical point.
- · Calculated and plotted quantities are:
 - 1. Entanglement entropy: $S = -Tr(\rho_1 ln(\rho_1))$

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + K\cos(\theta_1)(1 + \alpha\cos(\theta_2)\cos(\theta_3)) \sum_n \delta(t - n)$$

- We are calculating the entanglement entropy between \mathcal{H}_1 and \mathcal{H}_{23} .
- · The hypothesis was that the entanglement should increase rapidly at the critical point.
- · Calculated and plotted quantities are:
 - 1. Entanglement entropy: $S = -Tr(\rho_1 ln(\rho_1))$
 - 2. Energy: $E=p_1^2/2+p_2\omega_2+p_3\omega_3$

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + Kcos(\theta_1)(1 + \alpha cos(\theta_2)cos(\theta_3)) \sum_n \delta(t-n)$$

- We are calculating the entanglement entropy between \mathcal{H}_1 and \mathcal{H}_{23} .
- · The hypothesis was that the entanglement should increase rapidly at the critical point.
- · Calculated and plotted quantities are:
 - 1. Entanglement entropy: $S = -Tr(\rho_1 ln(\rho_1))$
 - 2. Energy: $E=p_1^2/2+p_2\omega_2+p_3\omega_3$
 - 3. Momentum: $P(p_1=m\hbar)$

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + Kcos(\theta_1)(1 + \alpha cos(\theta_2)cos(\theta_3)) \sum_n \delta(t-n)$$

- We are calculating the entanglement entropy between \mathcal{H}_1 and \mathcal{H}_{23} .
- · The hypothesis was that the entanglement should increase rapidly at the critical point.
- · Calculated and plotted quantities are:
 - 1. Entanglement entropy: $S = -Tr(\rho_1 ln(\rho_1))$
 - 2. Energy: $E=p_{1}^{2}/2+p_{2}\omega_{2}+p_{3}\omega_{3}$
 - 3. Momentum: $P(p_1=m\hbar)$
 - 4. Entropy Change: $S_{K_{n+1},\alpha_{n+1}} S_{K_n,\alpha_n}$

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + Kcos(\theta_1)(1 + \alpha cos(\theta_2)cos(\theta_3)) \sum_n \delta(t-n)$$

- · We are calculating the entanglement entropy between \mathcal{H}_1 and \mathcal{H}_{23} .
- · The hypothesis was that the entanglement should increase rapidly at the critical point.
- · Calculated and plotted quantities are:
 - 1. Entanglement entropy: $S = -Tr(\rho_1 ln(\rho_1))$
 - 2. Energy: $E=p_1^2/2+p_2\omega_2+p_3\omega_3$
 - 3. Momentum: $P(p_1=m\hbar)$
 - 4. Entropy Change: $S_{K_{n+1},\alpha_{n+1}} S_{K_n,\alpha_n}$
 - 5. Energy Change: $E_{K_{n+1},\alpha_{n+1}} E_{K_n,\alpha_n}$

· We use $\hbar=1$, $\omega_2=2\pi\sqrt{5}$ and $\omega_3=2\pi\sqrt{13}$. The critical point of the metal insulator transition is known to occur at $K_c=6.36\pm0.02$.

- · We use $\hbar=1$, $\omega_2=2\pi\sqrt{5}$ and $\omega_3=2\pi\sqrt{13}$. The critical point of the metal insulator transition is known to occur at $K_c=6.36\pm0.02$.
- The value of α_c , however is not determined accurately, nor written in any literature as it doesn't form a part of the scaling function in a nice way, though it most certainly does matter as it generates the anisotropy. We determine the value of α_c roughly by using the fact that the authors of the cited papers traversed the $K-\alpha$ space along a straight line perpendicular to the transition parabola. 1 2

- · We use $\hbar=1$, $\omega_2=2\pi\sqrt{5}$ and $\omega_3=2\pi\sqrt{13}$. The critical point of the metal insulator transition is known to occur at $K_c=6.36\pm0.02$.
- The value of α_c , however is not determined accurately, nor written in any literature as it doesn't form a part of the scaling function in a nice way, though it most certainly does matter as it generates the anisotropy. We determine the value of α_c roughly by using the fact that the authors of the cited papers traversed the $K-\alpha$ space along a straight line perpendicular to the transition parabola. 1 2
- $\cdot\,$ TL;DR we used $K_c=6.36$ and $\alpha_c=0.4303.$

- · We use $\hbar=1$, $\omega_2=2\pi\sqrt{5}$ and $\omega_3=2\pi\sqrt{13}$. The critical point of the metal insulator transition is known to occur at $K_c=6.36\pm0.02$.
- The value of α_c , however is not determined accurately, nor written in any literature as it doesn't form a part of the scaling function in a nice way, though it most certainly does matter as it generates the anisotropy. We determine the value of α_c roughly by using the fact that the authors of the cited papers traversed the $K-\alpha$ space along a straight line perpendicular to the transition parabola. 1 2
- $\cdot\,$ TL;DR we used $K_c=6.36$ and $\alpha_c=0.4303.$
- We used a basis size of 201 (-100 to 100) for each of the 3 coordinates and the simulations were done for 80 timesteps.

 $\operatorname{Varying} K$

 $\text{Varying }\alpha$

Varying K and α

Trial Math

 $\cdot\,$ We use a from 0.1 to 0.8 and $\alpha_c=0.5.$

References

1.

Lemarié, G., Grémaud, B. & Delande, D. Universality of the Anderson transition with the quasiperiodic kicked rotor. *Europhys. Lett.* **87**, 37007 (2009).

2

Lemarié, G. et al. Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment. *Phys. Rev. A* 80, 043626 (2009).