代数学1,第10回の内容の理解度チェックの解答

2024/12/5 担当:那須

 $\boxed{1}$ $f: G \to G'$ を群 G, G' 間の準同型写像とする.

(1) e と e' をそれぞれ G, G' の単位元とする. f(e) = e' および $f(a^{-1}) = f(a)^{-1}$ ($\forall a \in G$) を示せ. **解答)** 準同型写像の定義より, $f(e) = f(e \cdot e) = f(e)f(e)$. 両辺に $f(e)^{-1}$ を乗じると e' = f(e) を得る. また $e' = f(e) = f(a \cdot a^{-1}) = f(a)f(a^{-1})$. 両辺に左から $f(a)^{-1}$ を乗じる と, $f(a)^{-1} = f(a^{-1})$ を得る.

(2) f の像 im f が G' の部分群であることを示せ.

解答) 任意の $a',b' \in \text{im } f$ に対し, f(a) = a', f(b) = b' となる $a,b \in G$ が存在する.

$$a'b' = f(a)f(b) = f(ab) \in \text{im } f$$
 $b' \supset a'^{-1} = f(a)^{-1} = f(a^{-1}) \in \text{im } f.$

 $\operatorname{im} f$ は空でない $(e' \in \operatorname{im} f)$ ので部分群である.

(3) f の核 $\ker f$ が G の正規部分群であることを示せ.

解答) $a,b \in G$ に対し、f(a) = f(b) = e ならば、 $f(ab) = f(a)f(b) = e^2 = e$. $f(a^{-1}) = f(a)^{-1} = e^{-1} = e$. よって $a,b \in \ker f$ ならば、 $ab \in \ker f$, かつ $a^{-1} \in \ker f$ である. $\ker f$ は空でない $(e \in \ker f)$ ので部分群である. また任意の $a \in \ker f$ と任意の $c \in G$ に対し、

$$f(cac^{-1}) = f(c)f(a)f(c^{-1}) = f(c)e'f(c^{-1}) = f(c)f(c)^{-1} = e'.$$

よって $cac^{-1} \in \ker f$. 従って $\ker f$ は G の正規部分群である.

(4) f が単射 \iff $\ker f = \{e\}$ を示せ.

解答) f が単射のとき, f(a) = e' とすれば, f(e) = e' より a = e. 従って $\ker f = \{e\}$. 逆に $\ker f = \{e\}$ を仮定する. f(a) = f(b) のとき,

$$f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e'.$$

よって仮定より, $ab^{-1}=e$, 従って a=b. 故に f は単射である.

- 2 Gを加法群 Z/12Z とする.
 - (1) $H = 3\mathbb{Z}/12\mathbb{Z}$ ($\mathbb{Z}/12\mathbb{Z}$ の元で3の倍数からなる集合) の全ての元を求め, H が G の部分群になることを示せ.

解答) $\mathbb{Z}/12\mathbb{Z} = \{0,1,2,3,4,5,6,7,8,9,10,11\}$. このうち $3\mathbb{Z}/12\mathbb{Z}$ に含まれるもの (3 の倍数) は, 0,3,6,9 したがって, $3\mathbb{Z}/12\mathbb{Z} = \{0,3,6,9\}$. 3 の倍数全体は和と (-1) 倍に関し閉じているので, H は群になる. (H の群表を書いて示しても良い.)

(2) G から $\mathbb{Z}/3\mathbb{Z}$ への写像 f を

$$f: \mathbb{Z}/12\mathbb{Z} \longrightarrow \mathbb{Z}/3\mathbb{Z}, \quad x \mod 12 \longmapsto x \mod 3$$

により定める. fが準同型写像を定めることを示せ.

解答) $\mathbb{Z}/12\mathbb{Z}$ の任意の元 $x, y \pmod{12}$ に対し、

$$((x \mod 12) + (y \mod 12)) \mod 3 = (x + y \mod 12) \mod 3$$

= $x + y \mod 3$
= $(x \mod 3) + (x \mod 3)$

より, f(x+y) = f(x) + f(y) が成り立つ. 従って f は準同型写像である.

(3) f の核 ker f を求めよ.

解答) $x \in \mathbb{Z}/12\mathbb{Z}$ かつ f(x) = 0 とする. このとき $x \mod 3 = 0$, すなわち x は 3 の倍数である. よって $\ker f = 3\mathbb{Z}/12\mathbb{Z}$ (= H).

(4) 同型

$$(\mathbb{Z}/12\mathbb{Z})/(3\mathbb{Z}/12\mathbb{Z}) \simeq \mathbb{Z}/3\mathbb{Z}$$

を示せ.

解答) f は明らかに全射である. 実際, $\mathbb{Z}/3\mathbb{Z}$ の代表元 $x=0,1,2\in\mathbb{Z}$ に対し, $f(x \mod 12)=x \mod 3$ となる. よって, im $f=\mathbb{Z}/3\mathbb{Z}$. 準同型定理より,

$$(\mathbb{Z}/12\mathbb{Z})/(3\mathbb{Z}/12\mathbb{Z}) = (\mathbb{Z}/12\mathbb{Z})/\ker f \simeq \operatorname{im} f = \mathbb{Z}/3\mathbb{Z}.$$