Application of Information Theory, Lecture 2 Joint & Conditional Entropy, Mutual Information

Iftach Haitner

Tel Aviv University.

Nov 4, 2014

Part I

Joint and Conditional Entropy

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} \mathsf{P}_X(x) \log \mathsf{P}_X(x)$$

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} \mathsf{P}_X(x) \log \mathsf{P}_X(x)$$

▶ Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$$

- Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- ▶ The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$H(X, Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$$

- Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- ▶ The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$H(X, Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$$

- Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- ▶ The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

This is simply the entropy of the rv Z = (X, Y).

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$$

- Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- ▶ The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

This is simply the entropy of the rv Z = (X, Y).

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$$

- Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- ▶ The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

This is simply the entropy of the rv Z = (X, Y).

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$$

- Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- ▶ The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

This is simply the entropy of the rv Z = (X, Y).

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} \mathsf{P}_X(x) \log \mathsf{P}_X(x)$$

- Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- ▶ The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

This is simply the entropy of the rv Z = (X, Y).

XY	0	1
0	$\frac{1}{4}$	1 4
1	1/2	0

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} \mathsf{P}_X(x) \log \mathsf{P}_X(x)$$

- Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- ▶ The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

This is simply the entropy of the rv Z = (X, Y).

XY	0	1
0	$\frac{1}{4}$	1 4
1	1/2	0

▶ Recall that the entropy of rv X over X, is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$$

- Shorter notation: for $X \sim p$, let $H(X) = -\sum_{x} p(x) \log p(x)$ (where the summation is over the domain of X).
- ▶ The joint entropy of (jointly distributed) rvs X and Y with $(X, Y) \sim p$, is

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

This is simply the entropy of the rv Z = (X, Y).

X	0	1
0	$\frac{1}{4}$	1 4
1	$\frac{1}{2}$	0

$$H(X,Y) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{4}\log\frac{1}{4}$$
$$= \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 = 1\frac{1}{2}$$

Joint entropy, cont.

▶ The joint entropy of $(X_1, ..., X_n) \sim p$, is

$$H(X_1,...,X_n) = -\sum_{x_1,...,x_n} p(x_1,...,x_n) \log p(x_1,...,x_n)$$

Joint entropy, cont.

▶ The joint entropy of $(X_1, ..., X_n) \sim p$, is

$$H(X_1,...,X_n) = -\sum_{x_1,...,x_n} p(x_1,...,x_n) \log p(x_1,...,x_n)$$

Joint entropy, cont.

▶ The joint entropy of $(X_1, ..., X_n) \sim p$, is

$$H(X_1,...,X_n) = -\sum_{x_1,...,x_n} p(x_1,...,x_n) \log p(x_1,...,x_n)$$

▶ Let (*X*, *Y*) ~ *p*.

- ► Let (*X*, *Y*) ~ *p*.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.

- Let (X, Y) ~ p.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.
- ▶ The entropy of *Y* conditioned on *X*, is defined by

$$H(Y|X) := \mathop{\mathsf{E}}_{x \leftarrow X} H(Y|X = x) = \mathop{\mathsf{E}}_{X} H(Y|X)$$

- Let (X, Y) ~ p.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.
- ▶ The entropy of *Y* conditioned on *X*, is defined by

$$H(Y|X) := \mathop{\mathsf{E}}_{x \leftarrow X} H(Y|X = x) = \mathop{\mathsf{E}}_{X} H(Y|X)$$

Measures the uncertainty in Y given X.

- Let (X, Y) ~ p.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.
- ► The entropy of Y conditioned on X, is defined by

$$H(Y|X) := \underset{x \leftarrow X}{\mathsf{E}} H(Y|X = x) = \underset{X}{\mathsf{E}} H(Y|X)$$

- ▶ Measures the uncertainty in *Y* given *X*.
- Let $p_X \& p_{Y|X}$ be the marginal & conational distributions induced by p.

- Let (X, Y) ~ p.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.
- ► The entropy of Y conditioned on X, is defined by

$$H(Y|X) := \underset{x \leftarrow X}{\mathsf{E}} H(Y|X = x) = \underset{X}{\mathsf{E}} H(Y|X)$$

- ▶ Measures the uncertainty in *Y* given *X*.
- Let $p_X \& p_{Y|X}$ be the marginal & conational distributions induced by p.

- Let (X, Y) ~ p.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.
- ▶ The entropy of Y conditioned on X, is defined by

$$H(Y|X) := \mathop{\mathsf{E}}_{x \leftarrow X} H(Y|X = x) = \mathop{\mathsf{E}}_{X} H(Y|X)$$

- Measures the uncertainty in Y given X.
- Let $p_X \& p_{Y|X}$ be the marginal & conational distributions induced by p.

$$H(Y|X) = \sum_{x \in \mathcal{X}} p_X(x) \cdot H(Y|X = x)$$

- Let (X, Y) ~ p.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.
- ▶ The entropy of *Y* conditioned on *X*, is defined by

$$H(Y|X) := \mathop{\mathsf{E}}_{x \leftarrow X} H(Y|X = x) = \mathop{\mathsf{E}}_{X} H(Y|X)$$

- ▶ Measures the uncertainty in *Y* given *X*.
- Let $p_X \& p_{Y|X}$ be the marginal & conational distributions induced by p.

$$H(Y|X) = \sum_{x \in \mathcal{X}} \rho_X(x) \cdot H(Y|X = x)$$
$$= -\sum_{x \in \mathcal{X}} \rho_X(x) \sum_{y \in \mathcal{Y}} \rho_{Y|X}(y|x) \log \rho_{Y|X}(y|x)$$

- Let (X, Y) ~ p.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.
- ▶ The entropy of *Y* conditioned on *X*, is defined by

$$H(Y|X) := \mathop{\mathsf{E}}_{x \leftarrow X} H(Y|X = x) = \mathop{\mathsf{E}}_{X} H(Y|X)$$

- Measures the uncertainty in Y given X.
- Let $p_X \& p_{Y|X}$ be the marginal & conational distributions induced by p.

$$H(Y|X) = \sum_{x \in \mathcal{X}} p_X(x) \cdot H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} p_X(x) \sum_{y \in \mathcal{Y}} p_{Y|X}(y|x) \log p_{Y|X}(y|x)$$

$$= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log p_{Y|X}(y|x)$$

- Let (X, Y) ~ p.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.
- ▶ The entropy of Y conditioned on X, is defined by

$$H(Y|X) := \mathop{\mathsf{E}}_{x \leftarrow X} H(Y|X = x) = \mathop{\mathsf{E}}_{X} H(Y|X)$$

- Measures the uncertainty in Y given X.
- Let $p_X \& p_{Y|X}$ be the marginal & conational distributions induced by p.

$$H(Y|X) = \sum_{x \in \mathcal{X}} p_X(x) \cdot H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} p_X(x) \sum_{y \in \mathcal{Y}} p_{Y|X}(y|x) \log p_{Y|X}(y|x)$$

$$= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log p_{Y|X}(y|x)$$

$$= -\sum_{(X, Y)} \log p_{Y|X}(Y|X)$$

- Let (X, Y) ~ p.
- ▶ For $x \in \text{Supp}(X)$, the random variable Y|X = x is well defined.
- ► The entropy of Y conditioned on X, is defined by

$$H(Y|X) := \mathop{\mathsf{E}}_{x \leftarrow X} H(Y|X = x) = \mathop{\mathsf{E}}_{X} H(Y|X)$$

- ▶ Measures the uncertainty in *Y* given *X*.
- Let $p_X \& p_{Y|X}$ be the marginal & conational distributions induced by p.

$$H(Y|X) = \sum_{x \in \mathcal{X}} p_X(x) \cdot H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} p_X(x) \sum_{y \in \mathcal{Y}} p_{Y|X}(y|x) \log p_{Y|X}(y|x)$$

$$= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log p_{Y|X}(y|x)$$

$$= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log p_{Y|X}(y|x)$$

$$= -\sum_{z \in \mathcal{D}_{Y|X}(Y|X)} \log z$$

Conditional entropy, cont.

Example

X^{Y}	0	1
0	$\frac{1}{4}$	$\frac{1}{4}$
1	1/2	0

What is H(Y|X) and H(X|Y)?

Conditional entropy, cont.

Example

X	0	1
0	$\frac{1}{4}$	$\frac{1}{4}$
1	1 2	0

What is H(Y|X) and H(X|Y)?

$$H(Y|X) = \mathop{\mathbb{E}}_{x \leftarrow X} H(Y|X = x)$$

$$= \frac{1}{2} H(Y|X = 0) + \frac{1}{2} H(Y|X = 1)$$

$$= \frac{1}{2} H(\frac{1}{2}, \frac{1}{2}) + \frac{1}{2} H(1, 0) = \frac{1}{2}.$$

Conditional entropy, cont.

Example

XY	0	1
0	1/4	1/4
1	1 2	0

What is H(Y|X) and H(X|Y)?

$$H(Y|X) = \mathop{\mathbb{E}}_{x \leftarrow X} H(Y|X = x)$$

$$= \frac{1}{2} H(Y|X = 0) + \frac{1}{2} H(Y|X = 1)$$

$$= \frac{1}{2} H(\frac{1}{2}, \frac{1}{2}) + \frac{1}{2} H(1, 0) = \frac{1}{2}.$$

$$H(X|Y) = \mathop{\mathbb{E}}_{y \leftarrow Y} H(X|Y = y)$$

$$= \frac{3}{4} H(X|Y = 0) + \frac{1}{4} H(X|Y = 1)$$

$$= \frac{3}{4} H(\frac{1}{3}, \frac{2}{3}) + \frac{1}{4} H(1, 0) = 0.6887 \neq H(Y|X).$$

▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?
- ► Intuitively, $0 \le H(Y|X) \le H(Y)$

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?
- ► Intuitively, $0 \le H(Y|X) \le H(Y)$ Non-negativity is immediate.

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?
- ► Intuitively, $0 \le H(Y|X) \le H(Y)$ Non-negativity is immediate.

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?
- ► Intuitively, $0 \le H(Y|X) \le H(Y)$

Non-negativity is immediate. We prove upperbound later.

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?
- Intuitively, 0 ≤ H(Y|X) ≤ H(Y)
 Non-negativity is immediate. We prove upperbound later.
- ▶ H(Y|X) = H(Y) iff X and Y are independent.

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?
- Intuitively, 0 ≤ H(Y|X) ≤ H(Y)
 Non-negativity is immediate. We prove upperbound later.
- ▶ H(Y|X) = H(Y) iff X and Y are independent.
- ► In our example, $H(Y) = H(\frac{3}{4}, \frac{1}{4}) > \frac{1}{2} = H(Y|X)$

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?
- Intuitively, 0 ≤ H(Y|X) ≤ H(Y)
 Non-negativity is immediate. We prove upperbound later.
- ▶ H(Y|X) = H(Y) iff X and Y are independent.
- ► In our example, $H(Y) = H(\frac{3}{4}, \frac{1}{4}) > \frac{1}{2} = H(Y|X)$
- ▶ Note that H(Y|X = x) might be larger than H(Y) for some $x \in \text{Supp}(X)$.

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?
- Intuitively, 0 ≤ H(Y|X) ≤ H(Y)
 Non-negativity is immediate. We prove upperbound later.
- ▶ H(Y|X) = H(Y) iff X and Y are independent.
- ► In our example, $H(Y) = H(\frac{3}{4}, \frac{1}{4}) > \frac{1}{2} = H(Y|X)$
- ▶ Note that H(Y|X = x) might be larger than H(Y) for some $x \in \text{Supp}(X)$.
- ► Chain rule (proved next). H(X, Y) = H(X) + H(Y|X)

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?
- ▶ Intuitively, $0 \le H(Y|X) \le H(Y)$

Non-negativity is immediate. We prove upperbound later.

- ▶ H(Y|X) = H(Y) iff X and Y are independent.
- ► In our example, $H(Y) = H(\frac{3}{4}, \frac{1}{4}) > \frac{1}{2} = H(Y|X)$
- ▶ Note that H(Y|X = x) might be larger than H(Y) for some $x \in \text{Supp}(X)$.
- ► Chain rule (proved next). H(X, Y) = H(X) + H(Y|X)
- ▶ Intuitively, uncertainty in (X, Y) is the uncertainty in X plus the uncertainty in Y given X.

- ▶ What is the relation between H(X), H(Y), H(X, Y) and H(Y|X)?
- ► Intuitively, $0 \le H(Y|X) \le H(Y)$

Non-negativity is immediate. We prove upperbound later.

- ▶ H(Y|X) = H(Y) iff X and Y are independent.
- ► In our example, $H(Y) = H(\frac{3}{4}, \frac{1}{4}) > \frac{1}{2} = H(Y|X)$
- ▶ Note that H(Y|X = x) might be larger than H(Y) for some $x \in \text{Supp}(X)$.
- ► Chain rule (proved next). H(X, Y) = H(X) + H(Y|X)
- ► Intuitively, uncertainty in (X, Y) is the uncertainty in X plus the uncertainty in Y given X.
- ► H(Y|X) = H(X, Y) H(X) is as an alternative definition for H(Y|X).

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

X		
	<i>P</i> _{1,1}	 $P_{1,n}$
	$P_{n,1}$	 $P_{n,n}$

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

X		
	<i>P</i> _{1,1}	 $P_{1,n}$
	$P_{n,1}$	 $P_{n,n}$

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

X^{Y}			
	<i>P</i> _{1,1}		$P_{1,n}$
	:	:	:
	$P_{n,1}$		$P_{n,n}$

Let
$$q_i = \sum_{j=1}^n p_{i,j}$$

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

X^{Y}			
	<i>P</i> _{1,1}		$P_{1,n}$
	:	:	:
	$P_{n,1}$		$P_{n,n}$

Let
$$q_i = \sum_{j=1}^n p_{i,j}$$

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

X			
	<i>P</i> _{1,1}		$P_{1,n}$
	::	:	:
	$P_{n,1}$		$P_{n,n}$

Let
$$q_i = \sum_{j=1}^{n} p_{i,j}$$

$$H(P_{1,1}, \dots, P_{n,n})$$

$$= H(q_1, \dots, q_n) + \sum_{i=1}^{n} q_i H(\frac{P_{i,1}}{q_i}, \dots, \frac{P_{i,n}}{q_i})$$

$$= H(X) + H(Y|X).$$

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

Proof immediately follow by the grouping axiom:

X			
	<i>P</i> _{1,1}		$P_{1,n}$
		:	:
	$P_{n,1}$		$P_{n,n}$

Let
$$q_i = \sum_{j=1}^{n} p_{i,j}$$

$$H(P_{1,1}, \dots, P_{n,n})$$

$$= H(q_1, \dots, q_n) + \sum_{i=1}^{n} q_i H(\frac{P_{i,1}}{q_i}, \dots, \frac{P_{i,n}}{q_i})$$

$$= H(X) + H(Y|X).$$

Another proof.

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

Proof immediately follow by the grouping axiom:

X			
	<i>P</i> _{1,1}		$P_{1,n}$
		:	:
	$P_{n,1}$		$P_{n,n}$

Let
$$q_i = \sum_{j=1}^{n} p_{i,j}$$

$$H(P_{1,1}, \dots, P_{n,n})$$

$$= H(q_1, \dots, q_n) + \sum_{i=1}^{n} q_i H(\frac{P_{i,1}}{q_i}, \dots, \frac{P_{i,n}}{q_i})$$

$$= H(X) + H(Y|X).$$

Another proof.

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

Proof immediately follow by the grouping axiom:

X			
	<i>P</i> _{1,1}		$P_{1,n}$
		:	:
	$P_{n,1}$		$P_{n,n}$

Let
$$q_i = \sum_{j=1}^{n} p_{i,j}$$

$$H(P_{1,1}, \dots, P_{n,n})$$

$$= H(q_1, \dots, q_n) + \sum_{j=1}^{n} q_j H(\frac{P_{i,1}}{q_i}, \dots, \frac{P_{i,n}}{q_i})$$

$$= H(X) + H(Y|X).$$

Another proof. Let $(X, Y) \sim p$.

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

X			
	<i>P</i> _{1,1}		$P_{1,n}$
	:	:	:
	<i>P</i> _{n,1}		$P_{n,n}$

Let
$$q_i = \sum_{j=1}^{n} p_{i,j}$$

$$H(P_{1,1}, \dots, P_{n,n})$$

$$= H(q_1, \dots, q_n) + \sum_{i=1}^{n} q_i H(\frac{P_{i,1}}{q_i}, \dots, \frac{P_{i,n}}{q_i})$$

$$= H(X) + H(Y|X).$$

- ▶ Another proof. Let $(X, Y) \sim p$.

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

X			
	<i>P</i> _{1,1}		$P_{1,n}$
	::	:	÷
	$P_{n,1}$		$P_{n,n}$

Let
$$q_i = \sum_{j=1}^n p_{i,j}$$

$$H(P_{1,1}, \dots, P_{n,n})$$

$$= H(q_1, \dots, q_n) + \sum_{i=1}^n q_i H(\frac{P_{i,1}}{q_i}, \dots, \frac{P_{i,n}}{q_i})$$

$$= H(X) + H(Y|X).$$

- ▶ Another proof. Let $(X, Y) \sim p$.

$$\implies \log p(x, y) = \log p_X(x) + \log p_{Y|X}(x|y)$$

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

X			
	<i>P</i> _{1,1}		$P_{1,n}$
	::	:	÷
	$P_{n,1}$		$P_{n,n}$
	11, 1		11,11

Let
$$q_i = \sum_{j=1}^{n} p_{i,j}$$

$$H(P_{1,1}, \dots, P_{n,n})$$

$$= H(q_1, \dots, q_n) + \sum_{j=1}^{n} q_j H(\frac{P_{i,1}}{q_i}, \dots, \frac{P_{i,n}}{q_i})$$

$$= H(X) + H(Y|X).$$

- ▶ Another proof. Let $(X, Y) \sim p$.
- $\implies \log p(x,y) = \log p_X(x) + \log p_{Y|X}(x|y)$
- \implies E log $p(X, Y) = E log p_X(X) + E log p_{Y|X}(Y|X)$

Claim 1

For rvs X, Y, it holds that H(X, Y) = H(X) + H(Y|X).

X			
	<i>P</i> _{1,1}		$P_{1,n}$
		:	:
	$P_{n,1}$		$P_{n,n}$

Let
$$q_i = \sum_{j=1}^{n} p_{i,j}$$

$$H(P_{1,1}, \dots, P_{n,n})$$

$$= H(q_1, \dots, q_n) + \sum_{i=1}^{n} q_i H(\frac{P_{i,1}}{q_i}, \dots, \frac{P_{i,n}}{q_i})$$

$$= H(X) + H(Y|X).$$

- ▶ Another proof. Let $(X, Y) \sim p$.
- $\implies \log p(x,y) = \log p_X(x) + \log p_{Y|X}(x|y)$
- \implies E log $p(X, Y) = E log p_X(X) + E log p_{Y|X}(Y|X)$
- \implies H(X,Y) = H(X) + H(Y|X).

$H(Y|X) \leq H(Y)$

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$.

$H(Y|X) \leq H(Y)$

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$. Let $(X, Y) \sim p$.

$H(Y|X) \leq H(Y)$

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$. Let $(X, Y) \sim p$. $H(Y|X) = -\sum_{X, Y} p(x, Y) \log p_{Y|X}(y|X)$

$$H(Y|X) \leq H(Y)$$

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$. Let $(X, Y) \sim p$. $H(Y|X) = -\sum_{x,y} p(x,y) \log p_{Y|X}(y|x)$ $= \sum_{x,y} p(x,y) \log \frac{p_X(x)}{p(x,y)}$

$$H(Y|X) \leq H(Y)$$

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$. Let $(X, Y) \sim p$. $H(Y|X) = -\sum_{x,y} p(x,y) \log p_{Y|X}(y|x)$ $= \sum_{x,y} p(x,y) \log \frac{p_X(x)}{p(x,y)}$ $= \sum_{x,y} p_Y(y) \cdot \frac{p(x,y)}{p_Y(y)} \log \frac{p_X(x)}{p(x,y)}$

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$. Let $(X, Y) \sim p$. $H(Y|X) = -\sum_{y \in Y} p(x, y) \log p_{Y|X}(y|X)$ $= \sum_{x,y} p(x,y) \log \frac{p_X(x)}{p(x,y)}$ $= \sum_{x,y} p_Y(y) \cdot \frac{p(x,y)}{p_Y(y)} \log \frac{p_X(x)}{p(x,y)}$ $= \sum_{y} p_{Y}(y) \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \log \frac{p_{X}(x)}{p(x,y)}$

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$. Let $(X, Y) \sim p$. $H(Y|X) = -\sum_{x \in X} p(x, y) \log p_{Y|X}(y|X)$ $= \sum_{x \in \mathcal{P}} p(x, y) \log \frac{p_X(x)}{p(x, y)}$ $= \sum_{x,y} p_Y(y) \cdot \frac{p(x,y)}{p_Y(y)} \log \frac{p_X(x)}{p(x,y)}$ $= \sum_{y} p_{Y}(y) \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \log \frac{p_{X}(x)}{p(x,y)}$ $\leq \sum_{y} p_{Y}(y) \log \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \frac{p_{X}(x)}{p(x,y)}$

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$. Let $(X, Y) \sim p$. $H(Y|X) = -\sum_{x \in X} p(x, y) \log p_{Y|X}(y|X)$ $= \sum_{x \in \mathcal{X}} p(x, y) \log \frac{p_X(x)}{p(x, y)}$ $= \sum_{x,y} p_Y(y) \cdot \frac{p(x,y)}{p_Y(y)} \log \frac{p_X(x)}{p(x,y)}$ $= \sum_{y} p_{Y}(y) \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \log \frac{p_{X}(x)}{p(x,y)}$ $\leq \sum_{y} p_{Y}(y) \log \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \frac{p_{X}(x)}{p(x,y)}$ $=\sum p_Y(y)\log\frac{1}{p_Y(y)}$

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$. Let $(X, Y) \sim p$. $H(Y|X) = -\sum_{x \in X} p(x, y) \log p_{Y|X}(y|X)$ $= \sum_{x \in \mathcal{P}} p(x, y) \log \frac{p_X(x)}{p(x, y)}$ $= \sum_{x,y} p_Y(y) \cdot \frac{p(x,y)}{p_Y(y)} \log \frac{p_X(x)}{p(x,y)}$ $= \sum_{y} p_{Y}(y) \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \log \frac{p_{X}(x)}{p(x,y)}$ $\leq \sum_{y} p_{Y}(y) \log \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \frac{p_{X}(x)}{p(x,y)}$ $= \sum_{y} p_Y(y) \log \frac{1}{p_Y(y)} = H(Y).$

Jensen inequality: for any concave function f, values t_1, \ldots, t_k and $\lambda_1, \ldots, \lambda_k \in [0, 1]$ with $\sum_i \lambda_i = 1$, it holds that $\sum_i \lambda_i f(t_i) \leq f(\sum_i \lambda_i t_i)$. Let $(X, Y) \sim p$. $H(Y|X) = -\sum_{x \in X} p(x, y) \log p_{Y|X}(y|X)$ $= \sum_{x \in \mathcal{P}} p(x, y) \log \frac{p_X(x)}{p(x, y)}$ $= \sum_{x,y} p_Y(y) \cdot \frac{p(x,y)}{p_Y(y)} \log \frac{p_X(x)}{p(x,y)}$ $= \sum_{y} p_{Y}(y) \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \log \frac{p_{X}(x)}{p(x,y)}$ $\leq \sum_{y} p_{Y}(y) \log \sum_{y} \frac{p(x,y)}{p_{Y}(y)} \frac{p_{X}(x)}{p(x,y)}$ $= \sum_{y} p_Y(y) \log \frac{1}{p_Y(y)} = H(Y).$

$H(Y|X) \leq H(Y)$ cont.

Assume X and Y are independent (i.e., $p(x, y) = p_X(x) \cdot p_Y(y)$ for any x, y)

$H(Y|X) \leq H(Y)$ cont.

▶ Assume X and Y are independent (i.e., $p(x, y) = p_X(x) \cdot p_Y(y)$ for any x, y)

$$\implies p_{Y|X} = p_Y$$

$H(Y|X) \leq H(Y)$ cont.

Assume X and Y are independent (i.e., $p(x, y) = p_X(x) \cdot p_Y(y)$ for any (x, y)

$$\implies p_{Y|X} = p_Y$$

$$\implies$$
 $H(Y|X) = H(Y)$

Other inequalities

► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y)$.

► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y)$.

► H(X), $H(Y) \le H(X, Y) \le H(X) + H(Y)$. Follows from H(X, Y) = H(X) + H(Y|X).

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - Left inequality since H(Y|X) is non negative.

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.
- ► H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (by chain rule)

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - ▶ Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.
- H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (by chain rule)
- $\blacktriangleright \ \ H(X|Y,Z) \leq \operatorname{H}(X|Y)$

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.
- H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (by chain rule)
- $\blacktriangleright \ \ H(X|Y,Z) \leq \operatorname{H}(X|Y)$

$$H(X|Y,Z) = \underset{Z,Y}{\mathsf{E}} H(X|Y,Z)$$

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.
- H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (by chain rule)
- $\blacktriangleright \ \ H(X|Y,Z) \leq \operatorname{H}(X|Y)$

$$H(X|Y,Z) = \underset{Z,Y}{\mathsf{E}} H(X|Y,Z)$$

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.
- H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (by chain rule)
- $\blacktriangleright \ \ H(X|Y,Z) \leq \operatorname{H}(X|Y)$

$$H(X|Y,Z) = \mathop{\mathbb{E}}_{Z,Y} H(X \mid Y,Z)$$
$$= \mathop{\mathbb{E}}_{Y \mid Z|Y} H(X \mid Y,Z)$$

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - ▶ Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.
- H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (by chain rule)
- $\blacktriangleright \ \ H(X|Y,Z) \leq \operatorname{H}(X|Y)$

$$H(X|Y,Z) = \underset{Z,Y}{\mathsf{E}} H(X \mid Y,Z)$$
$$= \underset{Y}{\mathsf{E}} \underset{Z|Y}{\mathsf{E}} H(X \mid Y,Z)$$
$$= \underset{Y}{\mathsf{E}} \underset{Z|Y}{\mathsf{E}} H((X \mid Y) \mid Z)$$

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.
- H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (by chain rule)
- $\blacktriangleright \ \ H(X|Y,Z) \leq \operatorname{H}(X|Y)$

$$H(X|Y,Z) = \underset{Z,Y}{\mathbb{E}} H(X \mid Y,Z)$$

$$= \underset{Y}{\mathbb{E}} \underset{Z|Y}{\mathbb{E}} H(X \mid Y,Z)$$

$$= \underset{Y}{\mathbb{E}} \underset{Z|Y}{\mathbb{E}} H((X \mid Y) \mid Z)$$

$$\leq \underset{Y}{\mathbb{E}} \underset{Z|Y}{\mathbb{E}} H(X \mid Y)$$

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.
- H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (by chain rule)
- $H(X|Y,Z) \leq H(X|Y)$

Proof:

$$H(X|Y,Z) = \underset{Z,Y}{\mathbb{E}} H(X \mid Y,Z)$$

$$= \underset{Y}{\mathbb{E}} \underset{Z|Y}{\mathbb{E}} H(X \mid Y,Z)$$

$$= \underset{Y}{\mathbb{E}} \underset{Z|Y}{\mathbb{E}} H((X \mid Y) \mid Z)$$

$$\leq \underset{Y}{\mathbb{E}} \underset{Z|Y}{\mathbb{E}} H(X \mid Y)$$

$$= \underset{Y}{\mathbb{E}} H(X \mid Y)$$

- ► $H(X), H(Y) \le H(X, Y) \le H(X) + H(Y).$ Follows from H(X, Y) = H(X) + H(Y|X).
 - Left inequality since H(Y|X) is non negative.
 - ▶ Right inequality since $H(Y|X) \le H(Y)$.
- H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (by chain rule)
- $\blacktriangleright \ \ H(X|Y,Z) \leq \operatorname{H}(X|Y)$

$$H(X|Y,Z) = \underset{Z,Y}{\mathsf{E}} H(X \mid Y,Z)$$

$$= \underset{Y \mid Z \mid Y}{\mathsf{E}} H(X \mid Y,Z)$$

$$= \underset{Y \mid Z \mid Y}{\mathsf{E}} H((X \mid Y) \mid Z)$$

$$\leq \underset{Y \mid Z \mid Y}{\mathsf{E}} H(X \mid Y)$$

$$= \underset{Y}{\mathsf{E}} H(X \mid Y)$$

$$= H(X \mid Y).$$

Claim 2

For rvs X_1, \ldots, X_k , it holds that

$$H(X_1,...,X_k) = H(X_1) + H(X_2|X_1) + ... + H(X_k|X_1,...,X_{k-1}).$$

Claim 2

For rvs X_1, \ldots, X_k , it holds that

$$H(X_1,\ldots,X_k) = H(X_1) + H(X_2|X_1) + \ldots + H(X_k|X_1,\ldots,X_{k-1}).$$

Claim 2

For rvs X_1, \ldots, X_k , it holds that

$$H(X_1,\ldots,X_k) = H(X_1) + H(X_2|X_1) + \ldots + H(X_k|X_1,\ldots,X_{k-1}).$$

Proof: ?

Extremely useful property!

Claim 2

For rvs $X_1, ..., X_k$, it holds that $H(X_1, ..., X_k) = H(X_1) + H(X_2|X_1) + ... + H(X_k|X_1, ..., X_{k-1})$.

- Extremely useful property!
- Analogously to the two variables case, it also holds that:

Claim 2

For rvs X_1, \ldots, X_k , it holds that

$$H(X_1,\ldots,X_k) = H(X_1) + H(X_2|X_1) + \ldots + H(X_k|X_1,\ldots,X_{k-1}).$$

- Extremely useful property!
- Analogously to the two variables case, it also holds that:
- $\blacktriangleright H(X_i) \leq H(X_1,\ldots,X_k) \leq \sum_i H(X_i)$

Claim 2

For rvs X_1, \ldots, X_k , it holds that

$$H(X_1,\ldots,X_k) = H(X_1) + H(X_2|X_1) + \ldots + H(X_k|X_1,\ldots,X_{k-1}).$$

- Extremely useful property!
- Analogously to the two variables case, it also holds that:
- $H(X_i) \leq H(X_1, \ldots, X_k) \leq \sum_i H(X_i)$
- $H(X_1,\ldots,X_K|Y) \leq \sum_i H(X_i|Y)$

• (from last class) Let X_1, \ldots, X_n be Boolean iids with $X_i \sim (\frac{1}{3}, \frac{2}{3})$.

- (from last class) Let X_1, \ldots, X_n be Boolean iids with $X_i \sim (\frac{1}{3}, \frac{2}{3})$.
- ▶ Let $X_1, ..., X_{nn}$ be Boolean iids with $X_i \sim (\frac{1}{3}, \frac{2}{3})$, and $X_n = \bigoplus_{i \in [n-1]} X_i$. Compute $H(X_1, ..., X_n)$

- (from last class) Let X_1, \ldots, X_n be Boolean iids with $X_i \sim (\frac{1}{3}, \frac{2}{3})$.
- ▶ Let $X_1, ..., X_{nn}$ be Boolean iids with $X_i \sim (\frac{1}{3}, \frac{2}{3})$, and $X_n = \bigoplus_{i \in [n-1]} X_i$. Compute $H(X_1, ..., X_n)$

- (from last class) Let X_1, \ldots, X_n be Boolean iids with $X_i \sim (\frac{1}{3}, \frac{2}{3})$.
- ▶ Let $X_1, ..., X_{nn}$ be Boolean iids with $X_i \sim (\frac{1}{3}, \frac{2}{3})$, and $X_n = \bigoplus_{i \in [n-1]} X_i$. Compute $H(X_1, ..., X_n)$
 - Via chain rule?

- (from last class) Let X_1, \ldots, X_n be Boolean iids with $X_i \sim (\frac{1}{3}, \frac{2}{3})$.
- ▶ Let $X_1, ..., X_{nn}$ be Boolean iids with $X_i \sim (\frac{1}{3}, \frac{2}{3})$, and $X_n = \bigoplus_{i \in [n-1]} X_i$. Compute $H(X_1, ..., X_n)$
 - Via chain rule?
 - Via mapping?

Let X_1, \ldots, X_n be Boolean iids with $X_i \sim (p, 1-p)$ and let $X = X_1, \ldots, X_n$. Let f be such that $\Pr[f(X) = z] = \Pr[f(X) = z']$, for every $k \in \mathbb{N}$ and $z, z' \in \{0, 1\}^k$. Let K = |f(X)|. Prove that $E K \le n \cdot h(p)$.

▶ Let $X_1, ..., X_n$ be Boolean iids with $X_i \sim (p, 1-p)$ and let $X = X_1, ..., X_n$. Let f be such that $\Pr[f(X) = z] = \Pr[f(X) = z']$, for every $k \in \mathbb{N}$ and $z, z' \in \{0, 1\}^k$. Let K = |f(X)|. Prove that $E K \le n \cdot h(p)$.

$$n \cdot h(p) = H(X_1, \ldots, X_n)$$

▶ Let $X_1, ..., X_n$ be Boolean iids with $X_i \sim (p, 1-p)$ and let $X = X_1, ..., X_n$. Let f be such that $\Pr[f(X) = z] = \Pr[f(X) = z']$, for every $k \in \mathbb{N}$ and $z, z' \in \{0, 1\}^k$. Let K = |f(X)|. Prove that $E K \le n \cdot h(p)$.

$$n \cdot h(p) = H(X_1, \ldots, X_n)$$

▶ Let $X_1, ..., X_n$ be Boolean iids with $X_i \sim (p, 1 - p)$ and let $X = X_1, ..., X_n$. Let f be such that $\Pr[f(X) = z] = \Pr[f(X) = z']$, for every $k \in \mathbb{N}$ and $z, z' \in \{0, 1\}^k$. Let K = |f(X)|. Prove that $E K < n \cdot h(p)$.

$$n \cdot h(p) = H(X_1, \dots, X_n)$$

 $\geq H(f(X), K)$

▶ Let $X_1, ..., X_n$ be Boolean iids with $X_i \sim (p, 1 - p)$ and let $X = X_1, ..., X_n$. Let f be such that $\Pr[f(X) = z] = \Pr[f(X) = z']$, for every $k \in \mathbb{N}$ and $z, z' \in \{0, 1\}^k$. Let K = |f(X)|. Prove that $E K < n \cdot h(p)$.

$$n \cdot h(p) = H(X_1, ..., X_n)$$

$$\geq H(f(X), K)$$

$$= H(K) + H(f(X) \mid K)$$

Let $X_1, ..., X_n$ be Boolean iids with $X_i \sim (p, 1-p)$ and let $X = X_1, ..., X_n$. Let f be such that $\Pr[f(X) = z] = \Pr[f(X) = z']$, for every $k \in \mathbb{N}$ and $z, z' \in \{0, 1\}^k$. Let K = |f(X)|. Prove that $E K < n \cdot h(p)$.

$$n \cdot h(p) = H(X_1, ..., X_n)$$

$$\geq H(f(X), K)$$

$$= H(K) + H(f(X) \mid K)$$

$$= H(K) + E K$$

Let $X_1, ..., X_n$ be Boolean iids with $X_i \sim (p, 1-p)$ and let $X = X_1, ..., X_n$. Let f be such that $\Pr[f(X) = z] = \Pr[f(X) = z']$, for every $k \in \mathbb{N}$ and $z, z' \in \{0, 1\}^k$. Let K = |f(X)|. Prove that $E K < n \cdot h(p)$.

 \blacktriangleright

$$n \cdot h(p) = H(X_1, \dots, X_n)$$

$$\geq H(f(X), K)$$

$$= H(K) + H(f(X) \mid K)$$

$$= H(K) + EK$$

$$\geq EK$$

Let $X_1, ..., X_n$ be Boolean iids with $X_i \sim (p, 1-p)$ and let $X = X_1, ..., X_n$. Let f be such that $\Pr[f(X) = z] = \Pr[f(X) = z']$, for every $k \in \mathbb{N}$ and $z, z' \in \{0, 1\}^k$. Let K = |f(X)|. Prove that $E K < n \cdot h(p)$.

 \blacktriangleright

$$n \cdot h(p) = H(X_1, \dots, X_n)$$

$$\geq H(f(X), K)$$

$$= H(K) + H(f(X) \mid K)$$

$$= H(K) + EK$$

$$\geq EK$$

Interpretation

Let $X_1, ..., X_n$ be Boolean iids with $X_i \sim (p, 1-p)$ and let $X = X_1, ..., X_n$. Let f be such that $\Pr[f(X) = z] = \Pr[f(X) = z']$, for every $k \in \mathbb{N}$ and $z, z' \in \{0, 1\}^k$. Let K = |f(X)|. Prove that $E K < n \cdot h(p)$.

ightharpoons

$$n \cdot h(p) = H(X_1, \dots, X_n)$$

$$\geq H(f(X), K)$$

$$= H(K) + H(f(X) \mid K)$$

$$= H(K) + E K$$

$$\geq E K$$

- Interpretation
- Positive results

Applications cont.

▶ How many comparisons it takes to sort *n* elements?

How many comparisons it takes to sort n elements?
Let A be a sorter for n elements algorithm making t comparisons.
What can we say about t?

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- Let X be a uniform random permutation of [n] and let Y_1, \ldots, Y_t be the answers A gets when sorting X.

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- Let X be a uniform random permutation of [n] and let Y_1, \ldots, Y_t be the answers A gets when sorting X.
- \blacktriangleright X is determined by Y_1, \ldots, Y_t .

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- Let X be a uniform random permutation of [n] and let Y_1, \ldots, Y_t be the answers A gets when sorting X.
- ► X is determined by $Y_1, ..., Y_t$. Namely, $X = f(Y_1, ..., Y_t)$ for some function f.

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- Let X be a uniform random permutation of [n] and let Y_1, \ldots, Y_t be the answers A gets when sorting X.
- ► X is determined by $Y_1, ..., Y_t$. Namely, $X = f(Y_1, ..., Y_t)$ for some function f.
- $H(X) = \log n!$

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- Let X be a uniform random permutation of [n] and let Y_1, \ldots, Y_t be the answers A gets when sorting X.
- ► X is determined by $Y_1, ..., Y_t$. Namely, $X = f(Y_1, ..., Y_t)$ for some function f.
- $H(X) = \log n!$

$$H(X) = H(f(Y_1, \ldots, Y_n))$$

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- Let X be a uniform random permutation of [n] and let Y_1, \ldots, Y_t be the answers A gets when sorting X.
- ► X is determined by $Y_1, ..., Y_t$. Namely, $X = f(Y_1, ..., Y_t)$ for some function f.
- $H(X) = \log n!$

$$H(X) = H(f(Y_1, \ldots, Y_n))$$

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- Let X be a uniform random permutation of [n] and let Y_1, \ldots, Y_t be the answers A gets when sorting X.
- ► X is determined by $Y_1, ..., Y_t$. Namely, $X = f(Y_1, ..., Y_t)$ for some function f.
- $H(X) = \log n!$

•

$$H(X) = H(f(Y_1, ..., Y_n))$$

$$\leq H(Y_1, ..., Y_n)$$

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- Let X be a uniform random permutation of [n] and let Y_1, \ldots, Y_t be the answers A gets when sorting X.
- ► X is determined by $Y_1, ..., Y_t$. Namely, $X = f(Y_1, ..., Y_t)$ for some function f.
- $H(X) = \log n!$

$$H(X) = H(f(Y_1, ..., Y_n))$$

$$\leq H(Y_1, ..., Y_n)$$

$$\leq \sum_i H(Y_i)$$

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- Let X be a uniform random permutation of [n] and let Y_1, \ldots, Y_t be the answers A gets when sorting X.
- ► X is determined by $Y_1, ..., Y_t$. Namely, $X = f(Y_1, ..., Y_t)$ for some function f.
- $H(X) = \log n!$

•

$$H(X) = H(f(Y_1, ..., Y_n))$$

$$\leq H(Y_1, ..., Y_n)$$

$$\leq \sum_i H(Y_i)$$

$$= t$$

- How many comparisons it takes to sort n elements?
 Let A be a sorter for n elements algorithm making t comparisons.
 What can we say about t?
- Let X be a uniform random permutation of [n] and let Y₁,..., Yt be the answers A gets when sorting X.
- ► X is determined by $Y_1, ..., Y_t$. Namely, $X = f(Y_1, ..., Y_t)$ for some function f.
- $H(X) = \log n!$

>

$$H(X) = H(f(Y_1, ..., Y_n))$$

$$\leq H(Y_1, ..., Y_n)$$

$$\leq \sum_i H(Y_i)$$

$$= t$$

 $\implies t > \log n! = \Theta(n \log n)$

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Claim 3

$$H(\tau_{\lambda}) \ge \lambda H(p) + (1 - \lambda)H(q)$$

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Claim 3

$$H(\tau_{\lambda}) \ge \lambda H(p) + (1 - \lambda)H(q)$$

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Claim 3

$$H(\tau_{\lambda}) \ge \lambda H(p) + (1 - \lambda)H(q)$$

Proof:

▶ Let Y over $\{0,1\}$ be 0 wp λ

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Claim 3

$$H(\tau_{\lambda}) \ge \lambda H(p) + (1 - \lambda)H(q)$$

- ▶ Let Y over $\{0,1\}$ be 0 wp λ
- Let X be distributed according to p if Y = 0 and according to q otherwise.

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Claim 3

$$H(\tau_{\lambda}) \ge \lambda H(p) + (1 - \lambda)H(q)$$

- Let Y over {0, 1} be 0 wp λ
- Let X be distributed according to p if Y = 0 and according to q otherwise.
- \vdash $H(\tau_{\lambda}) = H(X)$

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Claim 3

$$H(\tau_{\lambda}) \ge \lambda H(p) + (1 - \lambda)H(q)$$

- ▶ Let Y over $\{0,1\}$ be 0 wp λ
- Let X be distributed according to p if Y = 0 and according to q otherwise.
- \vdash $H(\tau_{\lambda}) = H(X)$

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Claim 3

$$H(\tau_{\lambda}) \ge \lambda H(p) + (1 - \lambda)H(q)$$

- ▶ Let Y over $\{0,1\}$ be 0 wp λ
- Let X be distributed according to p if Y = 0 and according to q otherwise.
- $H(\tau_{\lambda}) = H(X) \geq H(X \mid Y)$

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Claim 3

$$H(\tau_{\lambda}) \ge \lambda H(p) + (1 - \lambda)H(q)$$

- ▶ Let Y over $\{0,1\}$ be 0 wp λ
- Let X be distributed according to p if Y = 0 and according to q otherwise.
- $H(\tau_{\lambda}) = H(X) \ge H(X \mid Y) = \lambda H(p) + (1 \lambda)H(q)$

Let $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ be two distributions, and for $\lambda\in[0,1]$ consider the distribution $\tau_\lambda=\lambda p+(1-\lambda)q$. (i.e., $\tau_\lambda=(\lambda p_1+(1-\lambda)q_1,\ldots,\lambda p_n+(1-\lambda)q_n)$.

Claim 3

$$H(\tau_{\lambda}) \ge \lambda H(p) + (1 - \lambda)H(q)$$

Proof:

- ▶ Let Y over $\{0,1\}$ be 0 wp λ
- Let X be distributed according to p if Y = 0 and according to q otherwise.
- $H(\tau_{\lambda}) = H(X) \ge H(X \mid Y) = \lambda H(p) + (1 \lambda)H(q)$

We are now certain that we drew the graph of the (two-dimensional) entropy function right...

Part II

Mutual Information

$$I(X; Y) := H(Y) - H(Y|X)$$

$$I(X; Y) := H(Y) - H(Y|X)$$

$$I(X; Y) := H(Y) - H(Y|X)$$

= $H(Y) - (H(X, Y) - H(X))$

► I(X; Y) — the "information" that X gives on Y

•

$$I(X; Y) := H(Y) - H(Y|X)$$

= $H(Y) - (H(X, Y) - H(X))$
= $H(X) + H(Y) - H(X, y)$

$$I(X; Y) := H(Y) - H(Y|X)$$

$$= H(Y) - (H(X, Y) - H(X))$$

$$= H(X) + H(Y) - H(X, y)$$

$$= I(Y; X).$$

► I(X; Y) — the "information" that X gives on Y

$$I(X; Y) := H(Y) - H(Y|X)$$

= $H(Y) - (H(X, Y) - H(X))$
= $H(X) + H(Y) - H(X, y)$
= $I(Y; X)$.

► The mutual information that *X* gives about *Y* equals the mutual information that *Y* gives about *X*.

$$I(X; Y) := H(Y) - H(Y|X)$$

= $H(Y) - (H(X, Y) - H(X))$
= $H(X) + H(Y) - H(X, y)$
= $I(Y; X)$.

- ► The mutual information that *X* gives about *Y* equals the mutual information that *Y* gives about *X*.
- $\vdash I(X;X) = H(X)$

$$I(X; Y) := H(Y) - H(Y|X)$$

$$= H(Y) - (H(X, Y) - H(X))$$

$$= H(X) + H(Y) - H(X, y)$$

$$= I(Y; X).$$

- ► The mutual information that *X* gives about *Y* equals the mutual information that *Y* gives about *X*.
- $\vdash I(X;X) = H(X)$
- ► I(X; f(X)) = H(f(X)) (and smaller then H(X) is f is non-injective)

► I(X; Y) — the "information" that X gives on Y

•

$$I(X; Y) := H(Y) - H(Y|X)$$

$$= H(Y) - (H(X, Y) - H(X))$$

$$= H(X) + H(Y) - H(X, y)$$

$$= I(Y; X).$$

- ► The mutual information that *X* gives about *Y* equals the mutual information that *Y* gives about *X*.
- $\vdash I(X;X) = H(X)$
- ▶ I(X; f(X)) = H(f(X)) (and smaller then H(X) is f is non-injective)
- ▶ $I(X; Y, Z) \ge I(X; Y), I(X; Z)$ (since $H(X \mid Y, Z) \le H(X \mid Y), H(X \mid Z)$)

$$I(X; Y) := H(Y) - H(Y|X)$$

$$= H(Y) - (H(X, Y) - H(X))$$

$$= H(X) + H(Y) - H(X, y)$$

$$= I(Y; X).$$

- ► The mutual information that *X* gives about *Y* equals the mutual information that *Y* gives about *X*.
- $\vdash I(X;X) = H(X)$
- ► I(X; f(X)) = H(f(X)) (and smaller then H(X) is f is non-injective)
- ▶ $I(X; Y, Z) \ge I(X; Y), I(X; Z)$ (since $H(X \mid Y, Z) \le H(X \mid Y), H(X \mid Z)$)
- I(X; Y|Z) := H(Y|Z) H(Y|X, Z)

$$I(X; Y) := H(Y) - H(Y|X)$$

$$= H(Y) - (H(X, Y) - H(X))$$

$$= H(X) + H(Y) - H(X, y)$$

$$= I(Y; X).$$

- ► The mutual information that *X* gives about *Y* equals the mutual information that *Y* gives about *X*.
- $\vdash I(X;X) = H(X)$
- ► I(X; f(X)) = H(f(X)) (and smaller then H(X) is f is non-injective)
- ▶ $I(X; Y, Z) \ge I(X; Y), I(X; Z)$ (since $H(X \mid Y, Z) \le H(X \mid Y), H(X \mid Z)$)
- ► I(X; Y|Z) := H(Y|Z) H(Y|X, Z)
- I(X; Y|Z) = I(Y; X|Z) (since I(X'; Y') = I(Y'; X'))

X	0	1
0	$\frac{1}{4}$	$\frac{1}{4}$
1	1 2	0

$$I(X; Y) = H(X) - H(X|Y)$$

$$I(X; Y) = H(X) - H(X|Y)$$

$$I(X; Y) = H(X) - H(X|Y)$$

= $1 - \frac{3}{4} \cdot h(\frac{1}{3})$

X	0	1
0	1 4	$\frac{1}{4}$
1	1 2	0

$$I(X; Y) = H(X) - H(X|Y)$$

$$= 1 - \frac{3}{4} \cdot h(\frac{1}{3})$$

$$= I(Y; X)$$

X	0	1
0	$\frac{1}{4}$	$\frac{1}{4}$
1	1 2	0

$$I(X; Y) = H(X) - H(X|Y)$$

$$= 1 - \frac{3}{4} \cdot h(\frac{1}{3})$$

$$= I(Y; X)$$

$$= H(Y) - H(Y|X)$$

XY	0	1
0	1 4	$\frac{1}{4}$
1	1 2	0

$$I(X; Y) = H(X) - H(X|Y)$$

$$= 1 - \frac{3}{4} \cdot h(\frac{1}{3})$$

$$= I(Y; X)$$

$$= H(Y) - H(Y|X)$$

$$= h(\frac{1}{4}) - \frac{1}{2}h(\frac{1}{2})$$

Claim 4 (Chain rule for mutual information)

For rvs X_1, \ldots, X_k, Y , it holds that

$$I(X_1,\ldots,X_k|Y)=I(X_1;Y)+I(X_2;Y|X_1)+\ldots+I(X_k;Y|X_1,\ldots,X_{k-1}).$$

Claim 4 (Chain rule for mutual information)

For rvs $X_1, ..., X_k, Y$, it holds that $I(X_1, ..., X_k | Y) = I(X_1; Y) + I(X_2; Y | X_1) + ... + I(X_k; Y | X_1, ..., X_{k-1})$.

Proof: ?

Claim 4 (Chain rule for mutual information)

For rvs $X_1, ..., X_k, Y$, it holds that $I(X_1, ..., X_k | Y) = I(X_1; Y) + I(X_2; Y | X_1) + ... + I(X_k; Y | X_1, ..., X_{k-1})$.

Proof: ? HW

Let X_1, \ldots, X_{-1} be Boolean iids with $X_i \sim (p, 1-p)$ and let $X_n = \bigoplus_{i \in [n-1]} X_i$. Compute $I(X_1; X_2, \ldots, X_n)$.

Let X_1, \ldots, X_{-1} be Boolean iids with $X_i \sim (p, 1-p)$ and let $X_n = \bigoplus_{i \in [n-1]} X_i$.

Compute
$$I(X_1; X_2, \ldots, X_n)$$
.

By chain rule

$$I(X_1; X_2, ..., X_n) = I(X_1; X_2) + I(X_1; X_3 | X_2) + ... + I(X_1; X_n | X_2, ..., X_{n-1})$$

Let X_1, \ldots, X_{-1} be Boolean iids with $X_i \sim (p, 1-p)$ and let $X_n = \bigoplus_{i \in [n-1]} X_i$.

Compute
$$I(X_1; X_2, \ldots, X_n)$$
.

By chain rule

$$I(X_1; X_2, ..., X_n) = I(X_1; X_2) + I(X_1; X_3 | X_2) + ... + I(X_1; X_n | X_2, ..., X_{n-1})$$

▶ Let $X_1, ..., X_{-1}$ be Boolean iids with $X_i \sim (p, 1 - p)$ and let $X_n = \bigoplus_{i \in [n-1]} X_i$.

Compute
$$I(X_1; X_2, \dots, X_n)$$
.

By chain rule

$$I(X_1; X_2, ..., X_n)$$
= $I(X_1; X_2) + I(X_1; X_3 | X_2) + ... + I(X_1; X_n | X_2, ..., X_{n-1})$
= $0 + 0 + ... + h(\frac{1}{3}) = h(\frac{1}{3}).$

► Let *T* and *F* be the top and front side, respectively, of a 6-sided fair dice. Compute *I*(*T*; *F*).

▶ Let $X_1, ..., X_{-1}$ be Boolean iids with $X_i \sim (p, 1 - p)$ and let $X_n = \bigoplus_{i \in [n-1]} X_i$.

Compute $I(X_1; X_2, \ldots, X_n)$.

By chain rule

$$I(X_1; X_2, ..., X_n)$$
= $I(X_1; X_2) + I(X_1; X_3 | X_2) + ... + I(X_1; X_n | X_2, ..., X_{n-1})$
= $0 + 0 + ... + h(\frac{1}{3}) = h(\frac{1}{3}).$

▶ Let T and F be the top and front side, respectively, of a 6-sided fair dice. Compute I(T; F).

$$I(T; F) = H(T) - H(T|F)$$

▶ Let $X_1, ..., X_{-1}$ be Boolean iids with $X_i \sim (p, 1 - p)$ and let $X_n = \bigoplus_{i \in [n-1]} X_i$.

Compute $I(X_1; X_2, \ldots, X_n)$.

By chain rule

$$I(X_1; X_2, ..., X_n)$$
= $I(X_1; X_2) + I(X_1; X_3 | X_2) + ... + I(X_1; X_n | X_2, ..., X_{n-1})$
= $0 + 0 + ... + h(\frac{1}{3}) = h(\frac{1}{3}).$

▶ Let T and F be the top and front side, respectively, of a 6-sided fair dice. Compute I(T; F).

$$I(T; F) = H(T) - H(T|F)$$

▶ Let $X_1, ..., X_{-1}$ be Boolean iids with $X_i \sim (p, 1 - p)$ and let $X_n = \bigoplus_{i \in [n-1]} X_i$.

Compute $I(X_1; X_2, \ldots, X_n)$.

By chain rule

$$I(X_1; X_2, ..., X_n)$$
= $I(X_1; X_2) + I(X_1; X_3 | X_2) + ... + I(X_1; X_n | X_2, ..., X_{n-1})$
= $0 + 0 + ... + h(\frac{1}{3}) = h(\frac{1}{3}).$

▶ Let T and F be the top and front side, respectively, of a 6-sided fair dice. Compute I(T; F).

$$I(T; F) = H(T) - H(T|F)$$

= log 6 - log 4
= log 3 + log 2 - 2 · log 2
= log 3 - 1.

Part III

Data processing

Definition 5 (Markov Chain)

Rvs $(X, Y, Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x, y, z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x, y, z.

Definition 5 (Markov Chain)

Rvs $(X,Y,Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x,y,z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x,y,z.

Example: random walk on graph.

Definition 5 (Markov Chain)

Rvs $(X,Y,Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x,y,z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x,y,z.

Example: random walk on graph.

Claim 6

Definition 5 (Markov Chain)

Rvs $(X, Y, Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x, y, z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x, y, z.

Example: random walk on graph.

Claim 6

If $X \to Y \to Z$, then $I(X; Y) \ge I(X; Z)$.

▶ By Chain rule, I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y).

Definition 5 (Markov Chain)

Rvs $(X, Y, Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x, y, z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x, y, z.

Example: random walk on graph.

Claim 6

- ▶ By Chain rule, I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y).
- I(X;Z|Y)=0

Definition 5 (Markov Chain)

Rvs $(X, Y, Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x, y, z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x, y, z.

Example: random walk on graph.

Claim 6

- ▶ By Chain rule, I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y).
- I(X;Z|Y)=0

Definition 5 (Markov Chain)

Rvs $(X,Y,Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x,y,z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x,y,z.

Example: random walk on graph.

Claim 6

- ▶ By Chain rule, I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y).
- I(X; Z|Y) = 0

Definition 5 (Markov Chain)

Rvs $(X, Y, Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x, y, z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x, y, z.

Example: random walk on graph.

Claim 6

- ▶ By Chain rule, I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y).
- I(X;Z|Y)=0
 - $\triangleright p_{Z|Y=v} = p_{Z|Y=v,X=x}$ for any x, y
 - I(X;Z|Y) = H(Z|Y) H(Z|Y,X)

Definition 5 (Markov Chain)

Rvs $(X, Y, Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x, y, z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x, y, z.

Example: random walk on graph.

Claim 6

- ▶ By Chain rule, I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y).
- I(X;Z|Y)=0
 - $\triangleright p_{Z|Y=v} = p_{Z|Y=v,X=x}$ for any x, y
 - I(X;Z|Y) = H(Z|Y) H(Z|Y,X)

Definition 5 (Markov Chain)

Rvs $(X,Y,Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x,y,z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x,y,z.

Example: random walk on graph.

Claim 6

- ▶ By Chain rule, I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y).
- I(X;Z|Y) = 0
 - $\triangleright p_{Z|Y=y} = p_{Z|Y=y,X=x}$ for any x, y
 - I(X; Z|Y) = H(Z|Y) H(Z|Y, X) $= \underset{Y}{\mathsf{E}} H(p_{Z|Y=y}) \underset{Y,X}{\mathsf{E}} H(p_{Z|Y=y,X=x})$

Definition 5 (Markov Chain)

Rvs $(X, Y, Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x, y, z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x, y, z.

Example: random walk on graph.

Claim 6

If
$$X \to Y \to Z$$
, then $I(X; Y) \ge I(X; Z)$.

- ▶ By Chain rule, I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y).
- I(X;Z|Y)=0

 - I(X; Z|Y) = H(Z|Y) H(Z|Y, X) $= \mathop{\mathsf{E}}_{Y} H(p_{Z|Y=y}) \mathop{\mathsf{E}}_{Y, X} H(p_{Z|Y=y, X=x})$ $= \mathop{\mathsf{E}}_{Y} H(p_{Z|Y=y}) \mathop{\mathsf{E}}_{Y} H(p_{Z|Y=y}) = 0.$

Definition 5 (Markov Chain)

Rvs $(X, Y, Z) \sim p$ form a Markov chain, denoted $X \to Y \to Z$, if $p(x, y, z) = p_X(x) \cdot p_{Y|X}(y|x) \cdot p_{Z|Y}(z|y)$, for all x, y, z.

Example: random walk on graph.

Claim 6

If
$$X \to Y \to Z$$
, then $I(X; Y) \ge I(X; Z)$.

- ▶ By Chain rule, I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y).
- I(X;Z|Y) = 0

$$I(X; Z|Y) = H(Z|Y) - H(Z|Y, X)$$

$$= \mathop{\mathbb{E}}_{Y} H(p_{Z|Y=y}) - \mathop{\mathbb{E}}_{Y, X} H(p_{Z|Y=y, X=x})$$

$$= \mathop{\mathbb{E}}_{Y} H(p_{Z|Y=y}) - \mathop{\mathbb{E}}_{Y} H(p_{Z|Y=y}) = 0.$$

▶ Since $I(X; Y|Z) \ge 0$, we conclude $I(X; Y) \ge I(X; Z)$.

► How well can we guess X from Y?

- ► How well can we guess X from Y?
- ► Could with no error if H(X|Y) = 0.

- ► How well can we guess X from Y?
- ► Could with no error if H(X|Y) = 0.

- ► How well can we guess X from Y?
- ▶ Could with no error if H(X|Y) = 0. What if H(X|Y) is small?

- ► How well can we guess X from Y?
- ▶ Could with no error if H(X|Y) = 0. What if H(X|Y) is small?

- ► How well can we guess X from Y?
- ► Could with no error if H(X|Y) = 0. What if H(X|Y) is small?

Theorem 7 (Fano's inequality)

$$h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$$

for
$$\hat{X} = g(Y)$$
 and $P_e = \Pr \left[\hat{X} \neq X \right]$.

- ► How well can we guess X from Y?
- ► Could with no error if H(X|Y) = 0. What if H(X|Y) is small?

Theorem 7 (Fano's inequality)

$$h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$$

for
$$\hat{X} = g(Y)$$
 and $P_e = \Pr \left[\hat{X} \neq X \right]$.

- ► How well can we guess X from Y?
- ► Could with no error if H(X|Y) = 0. What if H(X|Y) is small?

Theorem 7 (Fano's inequality)

For any rvs X and Y, and any (even random) g, it holds that

$$h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$$

for
$$\hat{X} = g(Y)$$
 and $P_e = \Pr \left[\hat{X} \neq X \right]$.

▶ The inequality can be weekend to $1 + P_e \log |\mathcal{X}| \ge H(X|Y)$

- ► How well can we guess X from Y?
- ► Could with no error if H(X|Y) = 0. What if H(X|Y) is small?

Theorem 7 (Fano's inequality)

$$h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$$

for
$$\hat{X} = g(Y)$$
 and $P_e = \Pr \left[\hat{X} \neq X \right]$.

- ▶ The inequality can be weekend to $1 + P_e \log |\mathcal{X}| \ge H(X|Y)$
- ▶ Note that $P_e = 0$ implies that H(X|Y) = 0

- ► How well can we guess X from Y?
- ► Could with no error if H(X|Y) = 0. What if H(X|Y) is small?

Theorem 7 (Fano's inequality)

$$h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$$

for
$$\hat{X} = g(Y)$$
 and $P_e = \Pr \left[\hat{X} \neq X \right]$.

- ▶ The inequality can be weekend to $1 + P_e \log |\mathcal{X}| \ge H(X|Y)$
- ▶ Note that $P_e = 0$ implies that H(X|Y) = 0
- We call \hat{X} the estimator for X.

$$\blacktriangleright \text{ Let } D = \left\{ \begin{array}{ll} 1, & \hat{X} \neq X \\ 0, & \hat{X} = X. \end{array} \right.$$

$$H(D, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(D|X, \hat{X})}_{=0}$$

$$\blacktriangleright \text{ Let } D = \left\{ \begin{array}{ll} 1, & \hat{X} \neq X \\ 0, & \hat{X} = X. \end{array} \right.$$

$$H(D, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(D|X, \hat{X})}_{=0}$$

$$\blacktriangleright \text{ Let } D = \left\{ \begin{array}{ll} 1, & \hat{X} \neq X \\ 0, & \hat{X} = X. \end{array} \right.$$

$$H(D, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(D|X, \hat{X})}_{=0}$$

$$= \underbrace{H(D|\hat{X})}_{\leq H(D) = h(P_e)} + \underbrace{H(X|D, \hat{X})}_{\leq P_e \log |\mathcal{X}|(?)}$$

Let X and Y be rvs, let $\hat{X} = g(Y)$ and $P_e = \Pr \left[\hat{X} \neq X \right]$.

$$\blacktriangleright \text{ Let } D = \left\{ \begin{array}{ll} 1, & \hat{X} \neq X \\ 0, & \hat{X} = X. \end{array} \right.$$

$$H(D, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(D|X, \hat{X})}_{=0}$$

$$= \underbrace{H(D|\hat{X})}_{\leq H(D) = h(P_e)} + \underbrace{H(X|D, \hat{X})}_{\leq P_e \log |\mathcal{X}|(?)}$$

▶ It follows that $h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X})$

$$\blacktriangleright \text{ Let } D = \left\{ \begin{array}{ll} 1, & \hat{X} \neq X \\ 0, & \hat{X} = X. \end{array} \right.$$

$$H(D, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(D|X, \hat{X})}_{=0}$$

$$= \underbrace{H(D|\hat{X})}_{\leq H(D) = h(P_e)} + \underbrace{H(X|D, \hat{X})}_{\leq P_e \log |\mathcal{X}|(?)}$$

- ▶ It follows that $h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X})$
- ▶ Since $X \to Y \to \hat{X}$,

$$\blacktriangleright \text{ Let } D = \left\{ \begin{array}{ll} 1, & \hat{X} \neq X \\ 0, & \hat{X} = X. \end{array} \right.$$

$$H(D, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(D|X, \hat{X})}_{=0}$$

$$= \underbrace{H(D|\hat{X})}_{\leq H(D) = h(P_e)} + \underbrace{H(X|D, \hat{X})}_{\leq P_e \log |\mathcal{X}|(?)}$$

- ▶ It follows that $h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X})$
- ▶ Since $X \to Y \to \hat{X}$,

$$\blacktriangleright \text{ Let } D = \left\{ \begin{array}{ll} 1, & \hat{X} \neq X \\ 0, & \hat{X} = X. \end{array} \right.$$

$$H(D, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(D|X, \hat{X})}_{=0}$$

$$= \underbrace{H(D|\hat{X})}_{\leq H(D) = h(P_e)} + \underbrace{H(X|D, \hat{X})}_{\leq P_e \log |\mathcal{X}|(?)}$$

- ▶ It follows that $h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X})$
- ▶ Since $X \to Y \to \hat{X}$, it holds that $I(X; Y) \ge I(X; \hat{X})$

$$\blacktriangleright \text{ Let } D = \left\{ \begin{array}{ll} 1, & \hat{X} \neq X \\ 0, & \hat{X} = X. \end{array} \right.$$

$$H(D, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(D|X, \hat{X})}_{=0}$$

$$= \underbrace{H(D|\hat{X})}_{\leq H(D) = h(P_e)} + \underbrace{H(X|D, \hat{X})}_{\leq P_e \log |\mathcal{X}|(?)}$$

- ▶ It follows that $h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X})$
- ► Since $X \to Y \to \hat{X}$, it holds that $I(X; Y) \ge I(X; \hat{X})$ $\implies H(X|\hat{X}) \ge H(X|Y)$