

Understanding Large-N Analyses

Design Political Research: Week 15

Yue Hu

Welcome to the large-N world!

How large is a Large-N N?

Let's revisit the toss of coin:

Tossing once? Head or Tail?

Tossing 1 million times? How many heads?

•

Law of large numbers

As the number of experiments (sample) increases, the ratio of outcomes will converge to the theoretical (population) average.

• Rule of thumb: > 100

How to analyze large-N data?

- Univariate analysis
- · Bivariate analysis
- Multivariate analysis

Univariate analysis

How can we describe a variable?

- Creating the expectation of a variable
 - Given a list: (1, 1, 1, 2, 3, 3, 4)
 - Mean: $\frac{1+1+1+2+3+3+4}{7} = \frac{15}{7} \approx 2.143$.
 - Median: 1, 1, 1, 2, 3, 3, 4
 - Mode: three 1s, one 2, two 3s, and one 4.

Example in large-N data

Which one should we choose?

Moments of a variable

Mean:
$$\mu_X = \frac{\sum X_i}{N}$$
; Variance: $\sigma_X^2 = E[(X - \mu_X)^2]$.

Skewness: $\gamma_x = E[(\frac{X - \mu_x}{\sigma})^3]$.

Kurtosis: $\kappa_x = E[(\frac{X - \mu_X}{\sigma})^4].$

Descriptive Statistics

am	Min. :0.0000	1st Qu.:0.0000	Median :0.0000	Mean :0.4062	3rd Qu.:1.0000	Max. :1.0000
carb	Min. :1.000	1st Qu.:2.000	Median :2.000	Mean :2.812	3rd Qu.:4.000	Max. :8.000
cyl	Min. :4.000	1st Qu.:4.000	Median :6.000	Mean :6.188	3rd Qu.:8.000	Max. :8.000
gear	Min. :3.000	1st Qu.:3.000	Median :4.000	Mean :3.688	3rd Qu.:4.000	Max. :5.000
VS	Min. :0.0000	1st Qu.:0.0000	Median :0.0000	Mean :0.4375	3rd Qu.:1.0000	Max. :1.0000

Even better...

How to describe a relationship?

Contingency table:

Scatter plot

Do a multivariate analysis

Example: Tang, Hu, and Jin (2016)

Puzzle: Same education level, but difference in labor mobility between Han and Uyghur

Theory

Affirmative inaction language policy reduces Uyghurs' labor mobility.

Hypothesis:

- H_1 : Education is fairly equal between the Han and the Uyghur groups.
- H_2 : The linguistically distinctive Uyghurs are far less proficient in Mandarin than the Han majority.
- H_3 : Hans enjoy a higher degree of socioeconomic status than the Uyghurs.
- H_4 : Language proficiency plays a favorable role in improving the socioeconomic conditions for the Uyghurs.

Examination

 $H_{1,2}$: Education is fairly equal between the Han and the Uyghur groups.

Educational and Language Differences Between Han and Uyghur in China (weighted)

Ethnicity	Mean	Std. Err.	T-test (against Han)			
A. Education (in ye	ar)					
Average	8.511	0.046				
Han	8.509	0.469				
Uyghur	8.363	0.175	-0.145(0.181)			
B. Mandarin proficiency (0-1)						
Average	0.654	0.004				
Han	0.666	0.004				
Uyghur	0.109	0.016	-0.557(.016)***			

 H_2 : The linguistically distinctive Uyghurs are far less proficient in Mandarin than the Han majority.

 H_3 : Hans enjoy a higher labor mobility than the Uyghurs.

Figure 2. Job type by ethnicity (Han and Uyghur, weighted %).

 H_4 : Language proficiency plays a favorable role in improving the socioeconomic conditions for the Uyghurs.

Figure 3. The structural equation model of the effect of language on socioeconomic attainment. *p < 0.05, ***p < 0.001.

Wrap up

Understand Large-N Analysis

	Dependent variable:	
	delay	
	(1)	(2)
temp	0.088**	0.088**
	(0.041)	(0.043)
wind	0.166	0.166
	(0.164)	(0.159)
precip	18.918***	18.918***
	(3.249)	(4.735)
Constant	7.263**	7.263**
	(3.099)	(3.053)
F Statistic (df = 3; 360)	12.879***	7.73***
Observations	364	364
R^2	0.097	0.097
Adjusted R ²	0.089	0.089
Residual Std. Error (df = 360)	13.248	13.248
Note:	p<0.1; p<0 .	.05; p<0.01

Do large-N analyses

- · Elaborate the puzzle
- · Set up the theory
- Imply hypotheses
- Design empirical examination
- · Data analysis
- · Result discussion