ASSIGNMENT 5: LINEAR TRANSFORMATIONS MA 106: LINEAR ALGEBRA: SPRING 2023

1. Tutorial Problems

(1) Define $f: \mathbb{R}^5 \longrightarrow \mathbb{R}^3$ by

$$f((x_1, x_2, x_3, x_4, x_5)^t) = (2x_3 - 2x_4 + x_5, 2x_2 - 8x_3 + 14x_4 - 5x_5, x_2 + 3x_3 + x_5)^t.$$

Find bases for the null-space and the range of f, using the REF of the matrix of f with respect to standard bases of \mathbb{R}^5 and \mathbb{R}^3 .

- (2) Find the range and null-space of the following linear transformations. Also find the rank and nullity wherever applicable.
 - (a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by $T(x_1, x_2)^t = (x_1 + x_2, x_1)^t$.
 - (b) $T: C^1(0,1) \longrightarrow C(0,1)$ defined by $T(f)(x) = f'(x)e^x$.
- (3) Find a linear transformation $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that the set of all vectors $(x_1, x_2, x_3)^t \in \mathbb{R}^3$ satisfying $4x_1 3x_2 + x_3 = 0$ is (i) the null-space of T. (ii) the range of T.
- (4) Let $\mathcal{P}[x]$ denote the space of all real polynomials in one variable. Consider the subspace

$$V = \{ p(x) \in \mathcal{P}[x] : p(0) = 0 \}.$$

Prove that taking the derivative defines a one-to-one linear transformation from $D:V\longrightarrow \mathcal{P}[x]$ and $D^{-1}(p)(x)=\int_0^x p(t)\,dt$.

- (5) Let $f: V \longrightarrow W$ be a linear transformation.
 - (a) Suppose f is injective and $S \subset V$ is linearly independent. Then show that f(S) is linearly independent.
 - (b) Suppose f is onto and S spans V. Then show that f(S) spans W.
 - (c) Suppose S is a basis for V and f is an isomorphism then show that f(S) is a basis for W.
- (6) Let V be a finite dimensional vector space and $f:V\longrightarrow V$ be a linear map. Prove that the following are equivalent:
 - (i) f is an isomorphism.
 - (ii) f is injective.
 - (iii) f is surjective.

2. Practice Problems

- (7) Consider the linear transformations $T_1: U \longrightarrow V$ and $T_2: V \longrightarrow W$. If T_2 is one-one then show that $rank(T_2 \circ T_1) = rank(T_1)$.
- (8) Let $f, g : V \to V$ be two linear maps which commute with each other, i.e., $f \circ g = g \circ f$. Show that $f(\operatorname{Image}(g)) \subset \operatorname{Image}(g)$, and $f(\operatorname{Null}(g)) \subset \operatorname{Null}(g)$.
- (9) Show that each of the following linear transformations is 1-1 and onto and find its inverse.
 - (i) $T_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by $T(x_1, x_2) = (5x_1, 3x_2)$
 - (ii) $T_2: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_3 + x_2, x_3)$.
- (10) Find the range and null-space of the following linear transformations. Also find the rank and nullity wherever applicable.
 - (a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ defined by $T(x_1, x_2)^t = (x_1, x_1 + x_2, x_2)^t$.
 - (b) $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ defined by $T(x_1, x_2, x_3, x_4)^t = (x_1 x_4, x_2 + x_3, x_3 x_4)^t$.
 - (c) $T: C(0,1) \longrightarrow C(0,1)$ defined by $T(f)(x) = f(x) \sin x$.
- (11) Let f be a bijective linear map. Show that the inverse is also linear.
- (12) Let $T: U \longrightarrow V$ be a linear transformation. Show that
 - (i) T is one-to-one if and only if $\mathcal{N}(T) = \{0\}$.
 - (ii) Let $\mathcal{R}(T)$ denote the image of a linear map T. If $L(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}) = U$ then $\mathcal{R}(T) = L(\{T(\mathbf{u}_1), T(\mathbf{u}_2), \cdots, T(\mathbf{u}_n)\})$.
- (13) Find all 2×2 real matrices A so that $T_A(L_1) = L_2$ where L_1 is the line y = x and L_2 is the line y = 3x.
- (14) Let $T: V \to V$ be a linear transformation where dim V = 2. Assume that T is not multiplication by a scalar. Prove that there is a vector $v \in V$ so that $B = \{v, T(v)\}$ is a basis of V. Find the matrix of T with respect to B.
- (15) Let A be an $m \times n$ matrix where $m \leq n$. Use the Rank-Nullity theorem to show that the space of solutions of Ax = 0 has dimension at least n m.