

第八章 一元线性回归和相关分析

- ▶8.1 线性回归和线性相关的概念
- ▶8.2 线性回归方程和离回归标准误
- ▶8.3 线性回归方程的假设测验
- ▶8.4 线性回归的区间估计
- >8.5 线性相关分析
- >8.6 线性回归和相关的内在关系及应用注意事项

8.1.1 变量间的函数关系与相关关系

函数关系: 即当一个变量每取一个值时,相应的另一个变量必然有一个确定值与之对应。 y = f(x)

- 例: (1) 某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = p x (p 为单价)
 - (2) 圆的面积(S)与半径(R)之间的关系可表示为

$$S = \pi R^2$$

8.1.1 变量间的函数关系与相关关系

相关关系:一定范围内,一个变量的任意观察值,虽然没有另一个变量的确定值与之对应,但却有一个特定的条件概率分布与之对应。

$$y = f(x) + e$$

例: (1)粮食亩产量与施肥量之间的关系

(2)玉米穗长与穗粗的关系

8.1.2 散点图

1.定义

散点图(scatter diagram):将两个变量的n对观察值(X_1 , Y_1),(X_2 ,

 Y_2) (X_n, Y_n) 分别以坐标点的形式标记于同一直角坐标的平面上。

8.1.2 散点图

2.作用

- ① 判断两变量间是否为线性关系
- ② 判断两变量间的关系是正向还是负向
- ③ 初步判断两变量间的相关密切程度
- ④ 去除极端值

8.1.3 自变量与依变量

两个变量间若具有原因和结果的关系,则称这两个变量间存在因果关系。

原因变量为自变量(independent variable),以X表示;

结果变量为依变量(dependent variable),以 /表示。

粮食亩产量与施肥量之间的关系

穗长与穗粗的关系

8.1.4 统计分析的任务

1. 有自变量依变量之分: 回归分析

 $\hat{y} = f(x)$:表示Y依X的回归方程;

ŷ: 在给定x时, y的估计值。

 $\hat{y} = b_0 + b_1 x$ 为一元线性回归方程。

8.1.4 回归分析和相关分析

2. 无自变量依变量之分: 相关分析

目的: 计算表示Y和X线性相关密切程度和性质的统计

数(相关系数,记为r),并测验其显著性。

第八章 一元线性回归和相关分析

- ▶8.1 线性回归和线性相关的概念
- ▶8.2 线性回归方程和离回归标准误
- ▶8.3 线性回归方程的假设测验
- ▶8.4 线性回归的区间估计
- >8.5 线性相关分析
- ▶8.6 线性回归和相关的内在关系及应用注意事项

8.2.1 线性回归方程及其参数估计

(1) 线性回归方程

$$\hat{y} = a + bx \qquad (a, b)$$
 两个参数)

式为变量Y依X的一元线性回归方程;

 \hat{y} : 在给定x时, y的估计值。

a表示回归截距,是x=0时的ŷ值;

b表示回归系数,是x每增加一个单位数时, \hat{y} 将要平均增加(b>0)或减少(b<0)的单位数,体现x对y影响的性质和程度。

8.2.1 线性回归方程及其参数估计

$$Q = \sum_{1}^{n} (y - \hat{y})^{2} = \sum_{1}^{n} (y - a - bx)^{2}$$
为最小

分别对a和b求偏导数并令其为0,可得:

$$\begin{cases} an + b \sum x = \sum y \\ a \sum x + b \sum x^2 = \sum xy \end{cases}$$

得

$$a = (\sum y - b \sum x) / n = \overline{y} - b\overline{x}$$

8.2.1 线性回归方程及其参数估计

$$b = \frac{\sum xy - \frac{1}{n}\sum x\sum y}{\sum x^2 - \frac{1}{n}(\sum x)^2} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} = \frac{SP}{SS_x}$$

$$\hat{y} = (\overline{y} - b\overline{x}) + bx = \overline{y} + b(x - \overline{x})$$

8.2.1 线性回归方程及其参数估计

最小二乘法

基本性质:

性质1: $\sum (y - \hat{y})^2 = 最小$

性质2: $\sum (y - \hat{y}) = 0$

性质3: 回归直线必然经过(\bar{x} , \bar{y})

8.2.1 线性回归方程及其参数估计

(2) 线性回归方程的运算

<u> </u>	у
1	3
2	4
3	5
4	5
5	7

- (1) 计算6个一级数据 (2) 计算5个二级数据
- (1) 一级数据(由原始数据直接求出)

$$\sum x \quad \sum x^2 \quad \sum y \quad \sum y^2 \quad \sum xy \quad n$$

8.2.1 线性回归方程及其参数估计

(2) 线性回归方程的运算

$$\overline{x} = \sum x/n \quad \overline{y} = \sum y/n$$

$$SS_x = \sum x^2 - (\sum x)^2/n$$

$$*SS_y = \sum y^2 - (\sum y)^2/n$$

$$SP = \sum xy - \sum x\sum y/n$$

因而有:

$$b = SP / SS_{x}$$

$$a = \overline{y} - b \overline{x}$$

$$\hat{y} = 2.1 + 0.9x$$

例题 2 8.2.1 线性回归方程及其参数估计

一些夏季害虫盛发期的早迟和春季温度高低有关。如果可以根据春季温度高低预测害虫盛发的时期,则可以适时采取预防措施。资料显示,某地10年测定3月下旬至5月上旬旬平均温度累积值(x,旬·度)和一代桑螟盛发期(y,以5月30日为0)的关系。试计算其线性回归方程。

x累积温	y盛发期
73.0	7
71.6	11
74.3	2
70.0	10
77.7	-2

$$\sum x \sum x^{2} \sum y \sum y^{2} \sum xy \quad n$$

$$\overline{x} \quad \overline{y} \quad SS_{x} \quad SSy \quad SP$$

8.2.1 线性回归方程及其参数估计

(3) 线性回归方程图示构建

- a、建立一个直角坐标系, x为横坐标, y为纵坐标
- b、构建散点图
- c、取x的最小值带入方程得 $\hat{y}1$; 取x的最大值 带入方程得 $\hat{y}2$
- d、直线连接(x_{min} , $\hat{y}1$)(x_{max} , $\hat{y}2$)
- e、空白处列出方程

8.2.2 离回归标准误

$$s_{y/x} = \sqrt{\frac{Q}{n-2}} = \sqrt{\frac{\sum (y - \hat{y})^2}{n-2}}$$

Q为离回归平方和或回归离差平方和(sum of squares due to deviation from regression); n-2为与Q对应的自由度。

8.2.2 离回归标准误

$$Q = \sum (y - \hat{y})^2 = SS_y - \frac{(SP)^2}{SS_x}$$

计算例题 $1 + S_{y/x}$

$$Q = SS_y - \frac{(SP)^2}{SS_x} = 8.8 - 81/10 = 0.7$$

$$s_{y/x} = \sqrt{\frac{Q}{n-2}} = \sqrt{\frac{0.7}{3}} = 0.483$$

第八章 一元线性回归和相关分析

- ▶8.1 线性回归和线性相关的概念
- ▶8.2 线性回归方程和离回归标准误
- ▶8.3 线性回归方程的假设测验
- ▶8.4 线性回归的区间估计
- >8.5 线性相关分析
- >8.6 线性回归和相关的内在关系及应用注意事项

8.3.1 线性回归的基本假定

3个基本假定

- (1) 在x和y两变量中, x是固定变量, 而y是一个有误差的随机变量。
- (2) 在可能取值区间内, x变量上任一值,都存在着y变量的一个条件正态总体。
- (3)这一系列y的条件正态总体遵循 \mathbb{N} ~($\mu_{y/x}$, $\sigma_{y/x}^2$), $\sigma_{y/x}^2$ 不因x的不同而不同, $\mu_{v/x}$ 随x的改变呈线性改变,关系可表示为:

$$\mu_{Y/X} = \alpha + \beta X$$

$$\hat{y} = a + bx$$

8.3.2 线性回归方程的假设测验

目的:测验X和Y有无线性关系。 H_0 : $\beta = 0$ H_A : $\beta \neq 0$

$$H_0$$
: $\beta = 0$ H_A : $\beta \neq 0$

可以通过F测验或t测验作出。

(1) F测验

总变异=离回归变异+线性回归变异

总变异平方和: $SS_y = \sum (y - \bar{y})^2 = \sum y^2 - \frac{(\sum y)^2}{n}$; $df_y = n-1$

离回归平方和: $Q=SS_y-\frac{SP^2}{SS_X}$; $df_Q=n-2$

线性回归平方和: $U=SS_y-Q=\frac{SP^2}{SS_X}$; $df_U=1$

8.3.2 线性回归方程的假设测验

8.3.2 线性回归方程的假设测验

(1) F测验

例题1,已知 X: 1、2、3、4、5 ; Y: 3、4、5、5、7, 其线性回归方程为 \hat{y} =2.1+0.9x, 试测验该线性回归的显著性。

S.O.V	df	SS	MS	F	H_0 : $\beta = 0$
3 线性回归	1	8.1	8.1	34.76**	
离回归	3	0.7	0.233		
总变异	4	8.8			

 H_A : $\beta \neq 0$

8.3.2 线性回归方程的假设测验

(2) t测验

$$H_0$$
: $\beta = 0$ H_A : $\beta \neq 0$

$$t = \frac{b - \beta}{\sqrt{s_b}}$$
 测验线性回归的显著性。
$$S_b = \frac{S_{y/x}}{\sqrt{SS_x}} = \sqrt{\frac{Q}{(n-2)SS_x}}$$

t遵循自由度为n-2的t分布。

8.3.2 线性回归方程的假设测验

(2) t测验

已知 X: 1, 2, 3, 4, 5 ; Y: 3, 4, 5, 5, 7 , 其线性回归方程为 $\hat{y}=2.1+0.9x$, 试测验该线性回归的显著性。

$$H_{0}: \beta = 0 \quad H_{A}: \beta \neq 0$$

$$df = n-2 = 3 \quad t_{0.05} = 3.182 \quad \left(t_{0.01} = 5.841\right)$$

$$s_{b} = \frac{s_{y/x}}{\sqrt{ss_{x}}} = \sqrt{\frac{Q}{(n-2)ss_{x}}} = \sqrt{\frac{0.7}{3 \times 10}} = 0.153 \quad t = \frac{b-\beta}{s_{b}} = \frac{b}{s_{b}} = \frac{0.9}{0.153} = 5.882$$

 $|t| > t_{0.01}$ 所以否定 H_0 ,接受 H_A

8.3.2 线性回归方程的假设测验

F测验和t测验的关系

小结:
$$F = \frac{MS_U}{MS_Q} = \frac{U}{Q (n-2)} = \frac{\frac{sp^2}{ss_X}}{S_{y/x}^2} = \frac{\frac{(SP}{ss_X})^2}{S_{y/x}^2} = \frac{b_1^2}{S_{b_1}^2} = t^2$$

第八章 一元线性回归和相关分析

- ▶8.1 线性回归和线性相关的概念
- ▶8.2 线性回归方程和离回归标准误
- ▶8.3 线性回归方程的假设测验
- ▶8.4 线性回归的区间估计
- >8.5 线性相关分析
- ▶8.6 线性回归和相关的内在关系及应用注意事项

$$a, \beta, \mu_{Y/X}$$
 a, b, \hat{y}

1.条件总体平均数 $\mu_{Y/X}$ 的区间估计

置信区间:
$$[L_1 = \hat{y} - t_{\alpha,n-2} s_{\hat{y}}, L_2 = \hat{y} + t_{\alpha,n-2} s_{\hat{y}}]$$

$$s_{\hat{y}} = \sqrt{s_{\overline{y}}^2 + s_b^2 (x - \overline{x})^2} = \sqrt{\frac{s_{y/x}^2}{n} + \frac{s_{y/x}^2}{SS_x} (x - \overline{x})^2} = s_{y/x} \sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{SS_x}}$$

$$\hat{y} = \overline{y} + b(x - \overline{x})$$

1.条件总体平均数 $\mu_{Y/X}$ 的区间估计

例: X: 1、2、3、4、5; Y: 3、4、5、5、7, 其线性回归方程为 $\hat{y}=2.1+0.9x$, $\hat{y}=2.1+0.9x$,当x=4时, $\mu_{v/x}$ 的95%的置信区间?

$$\begin{bmatrix} L_1 = \hat{y} - t_{\alpha, n-2} s_{\hat{y}}, & L_2 = \hat{y} + t_{\alpha, n-2} s_{\hat{y}} \end{bmatrix} \qquad t_{0.05} = s_{\hat{y}} = s_{y/x} \sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{SS_x}}$$

$$t_{0.05}$$
=3.182

$$s_{y/x} = \sqrt{\frac{Q}{n-2}} = \sqrt{\frac{0.7}{3}} = 0.483$$

2.回归截距α的区间估计

置信区间:
$$\left[L_1 = a - t_{\alpha,n-2} s_a, L_2 = a + t_{\alpha,n-2} s_a\right]$$

$$s_a = s_{y/x} \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{SS_x}} \qquad \underbrace{x=0} \qquad s_{\hat{y}} = s_{y/x} \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{SS_x}}$$

$$\hat{y} = a + bx$$

例1中 α **的95%的置信区间?** $\hat{y}=2.1+0.9x$ [0.49, 3.71]

3.回归系数 β 的区间估计

置信区间:
$$\left[L_1 = b - t_{\alpha,n-2}s_b, L_2 = b + t_{\alpha,n-2}s_b\right]$$

$$s_b = \frac{s_{y/x}}{\sqrt{ss_x}} = \sqrt{\frac{Q}{(n-2)ss_x}}$$

第八章 一元线性回归和相关分析

- ▶8.1 线性回归和线性相关的概念
- ▶8.2 线性回归方程和离回归标准误
- ▶8.3 线性回归方程的假设测验
- ▶8.4 线性回归的区间估计
- >8.5 线性相关分析
- ▶8.6 线性回归和相关的内在关系及应用注意事项

8.5.1 相关系数和决定系数

1. 相关系数

确定一对成直线关系的两变量,若不需要用x来预测y,仅需了解两者的相 关程度和性质,则需计算表示两者密切程度和性质的统计数——相关系数。 一般以 ρ 表示总体相关系数,以r表示样本相关系数(correlation coefficient).

$$r = \frac{\sum (x - \bar{x}) (y - \bar{y})}{\sqrt{\sum (x - \bar{x})^{2} \sum (y - \bar{y})^{2}}} = \frac{SP}{\sqrt{SS_{x}SS_{y}}}$$

8.5.1 相关系数和决定系数

2.决定系数

y总变异中由x的改变而呈线性改变的平方和称(U_{y_x})占总平方和 SS_y 的比率,称为决定系数(determination coefficient),记作 r^2 :

$$r^2 = \frac{(SP)^{-2}}{SS_xSS_y}$$

8.5.1 相关系数和决定系数

- 2.相关系数和决定系数的区别与联系
- ① 决定系数 r^2 的取值区间[0,1],相关系数r的取值区间[-1,1]。
- ② 相关系数r可表示两个变量相关的性质(正相关或者负相关),决定系数 r^2 则不可以, r^2 能表示两个变量之间的相关密切程度。

8.5.2 相关系数的假设测验

1. 测验相关系数取自无线性关系总体的概率

$$r$$
的抽样误差 $S_r = \sqrt{\frac{1-r^2}{n-2}}$;
$$df = n-2 \ ;$$

$$t = \frac{r}{S_r}$$

2. 可通过查表的方法得出; df=n-2 的r的临界值 r_{α} , 实测值与其比较即可。

8.5.2 相关系数的假设测验

例题1,已知 $X: 1 \times 2 \times 3 \times 4 \times 5$; $Y: 3 \times 4 \times 5 \times 5 \times 7$, 其线性回归方程为 $\hat{y}=2.1+0.9x$, 试测验该资料的r值的显著性。

假设 H_0 : $\rho = 0$, H_A : $\rho \neq 0$

取 α =0.05 df=n-2=3 $t_{0.05}$ =3.182

 α =0.01 *df*=n-2=3 $t_{0.01}$ =5.841

8.5.2 相关系数的假设测验

$$t = \frac{r - \rho}{S_r} = \frac{r}{S_r}$$
 $r = \frac{SP}{\sqrt{SS_xSS_y}} = \frac{9}{\sqrt{10*8.8}} = 0.9564$

$$S_r = \sqrt{\frac{1-r^2}{n-2}} = \sqrt{\frac{1-0.9594^2}{3}}$$
 $t = \frac{r}{S_r} = 5.894$

 $|t| > t_{0.01}$ 否定 H_0 ,接受 H_A

所以该双变量资料是有极显著的线性正相关关系的。