

Math Foundations Team

BITS Pilani

Pilani | Dubai | Goa | Hyderabad

Introduction

- ▶ In last lecture, we discussed about differentiation of univariate functions, partial differentiation, gradients and gradients of vector valued functions.
- Now we will look into gradients of matrices and some useful identities for computing gradients.
- Finally, we will discuss back propagation and automatic differentiation.

The gradient of an $m \times n$ matrix A with respect to a $p \times q$ matrix B, the resulting Jacobian would be an $(m \times n) \times (p \times q)$, i.e., a four-dimensional tensor J, whose entries are given as

$$J_{ijkl} = \frac{\partial A_{ij}}{\partial B_{kl}}$$

Since, we can consider $\mathbb{R}^{m \times n}$ as \mathbb{R}^{mn} , we can shape our matrix into vectors of length mn and pq respectively. The gradient using mn vectors results in a Jacobian of size $mn \times pq$

Partial derivatives:

Let f = Ax where $A \in \mathbb{R}^{m \times n}$, and $x \in \mathbb{R}^n$, then

$$\frac{\partial f}{\partial A} \in \mathbb{R}^{m \times (m \times n)}$$

By definition

$$\frac{\partial f}{\partial A} = \begin{bmatrix} \frac{\partial f_1}{\partial A} \\ \vdots \\ \frac{\partial f_m}{\partial A} \end{bmatrix}, \frac{\partial f_i}{\partial A} \in \mathbb{R}^{1 \times (m \times n)}$$

Now, we have

$$f_i = \sum_{j=1}^n A_{ij} x_j, i = 1, \cdots, m.$$

Therefore, by taking partial derivatives with respect to A_{iq}

$$\frac{\partial f_i}{\partial A_{iq}} = x_q.$$

Hence, ith row becomes

$$\frac{\partial f_i}{\partial A_{i.:}} = x^T \in \mathbb{R}^{1 \times 1 \times n}$$

$$\frac{\partial f_i}{\partial A_{k,:}} = \mathbf{0}^T \in \mathbb{R}^{1 \times 1 \times n}, \text{for } k \neq i$$

Hence, by stacking the partial derivatives, we get

$$\frac{\partial f_i}{\partial A_{k,:}} = \begin{bmatrix} 0^T \\ \vdots \\ x^T \\ \vdots \\ 0^T \end{bmatrix} \in \mathbb{R}^{1 \times m \times n}$$

Gradients of Matrices with respect to Matrices

Let $B \in \mathbb{R}^{m \times n}$ and $f : \mathbb{R}^{m \times n} \to \mathbb{R}^{n \times n}$ with

$$f(B) = B^T B =: K \in \mathbb{R}^{n \times n}$$

Then, we have

$$\frac{\partial K}{\partial B} \in \mathbb{R}^{(n \times n) \times (m \times n)}.$$

Moreover

$$rac{\partial \mathcal{K}_{pq}}{\partial B} \in \mathbb{R}^{1 imes (m imes n)}, \mathsf{for} p, q = 1, \cdots n$$

where K_{pq} is the $(p,q)^{th}$ entry of K = f(B)

Gradients of Matrices with respect to Matrices

Let i^{th} column of B be b_i , then

$$K_{pq} = r_p^T r_q = \sum_{l=1}^m B_{lp} B_{lq}$$

Computing the partial derivative, we get

$$\frac{\partial K_{pq}}{\partial B_{ij}} = \sum_{l=1}^{m} \frac{\partial}{\partial B_{ij}} B_{lp} B_{lq} = \partial_{pqij}$$

Gradients of Matrices with respect to Matrices

Clearly, we have

$$egin{aligned} \partial_{pqij} &= B_{iq} & ext{if } j = p, p
eq q \ \partial_{pqij} &= B_{ip} & ext{if } j = q, p
eq q \ \partial_{pqij} &= 2B_{iq} & ext{if } j = p, p = q \ \partial_{pqij} &= 0 & ext{otherwise} \end{aligned}$$

where
$$p, q, j = 1, \dots, n$$
 $i = 1, \dots, m$

Useful Identities for Computing Gradients

Useful Identities for Computing Gradients

$$ightharpoonup \frac{\partial x^T a}{\partial x} = a^T$$

$$ightharpoonup rac{\partial a^T x}{\partial x} = a^T$$

for symmetric W.

Backpropagation and Automatic Differentiation

Consider the function

$$f(x) = \sqrt{x^2 + exp(x^2)} + cos(x^2 + exp(x^2))$$

Taking dervatives

$$\frac{df}{dx} = \frac{2x + 2xexp(x^2)}{2\sqrt{x^2 + exp(x^2)}} - \sin(x^2 + exp(x^2))(2x + 2xexp(x^2))$$

$$= 2x(\frac{1}{2\sqrt{x^2 + exp(x^2)}} - \sin(x^2 + exp(x^2)))(1 + exp(x^2))$$

Motivation

- ► The implementation of the gradient could be significantly more expensive than computing the function, which imposes unnecessary overhead where we get such lengthy expressions.
- We need an efficient way to compute the gradient of an error function with respect to the parameters of the model.
- For training deep neural network models, the backpropagation algorithm is one such method.

Backpropagation and Automatic Differentiation

In neural networks with multiple layers

$$f_i(x_{i-1}) = \sigma(A_{i-1}x_{i-1} + b_{i-1})$$

where x_{i-1} is the output of layer i-1 and σ is an activation function.

Backpropagation

To train these model, the gradient of the loss function L with respect to all model parameters $\theta_j = \{A_j, b_j\}, j = 1, \cdots, K$ and inputs of each layer needs to be computed. Consider,

$$f_0 := x$$

 $f_i := \sigma_i(A_{i-1}f_{i-1} + b_{i-1}), i = 1, \dots, K.$

We have to find $\theta_j = \{A_j, b_j\}, j = 1, \cdots, K-1$ such that

$$L(\theta) = ||y - f_K(\theta, x)||^2$$

is minimum where $\theta = \{A_0, b_0, \cdots, A_{K-1}, b_{K-1}\}$

Backpropagation

Using the chain rule, we get

$$\begin{array}{lll} \frac{\partial L}{\partial \theta_{K-1}} & = & \frac{\partial L}{\partial f_K} \frac{\partial f_K}{\partial \theta_{K-1}} \\ \frac{\partial L}{\partial \theta_{K-2}} & = & \frac{\partial L}{\partial f_K} \frac{\partial f_K}{\partial f_{K-1}} \frac{\partial f_{K-1}}{\partial \theta_{K-2}} \\ \frac{\partial L}{\partial \theta_{K-3}} & = & \frac{\partial L}{\partial f_K} \frac{\partial f_K}{\partial f_{K-1}} \frac{\partial f_{K-1}}{\partial f_{K-2}} \frac{\partial f_{K-2}}{\partial \theta_{K-3}} \\ \frac{\partial L}{\partial \theta_i} & = & \frac{\partial L}{\partial f_K} \frac{\partial f_K}{\partial f_{K-1}} \cdots \frac{\partial f_{i+2}}{\partial f_{i+1}} \frac{\partial f_{i+1}}{\partial \theta_i} \end{array}$$

Backpropagation

If the partial derivatives $\frac{\partial L}{\partial \theta_{i+1}}$ are computed, then the computation can be reused to compute $\frac{\partial L}{\partial \theta_i}$.

Consider the function

$$f(x) = \sqrt{x^2 + exp(x^2)} + cos(x^2 + exp(x^2))$$

Let

$$a = x^2, b = exp(a), c = a + b, d = \sqrt{c}, e = cos(c) \Rightarrow f = d + e$$

$$\Rightarrow \frac{\partial a}{\partial x} = 2x$$

$$\frac{\partial b}{\partial a} = \exp(a)$$

$$\frac{\partial c}{\partial a} = 1 = \frac{\partial c}{\partial b}$$

$$\frac{\partial d}{\partial c} = \frac{1}{2\sqrt{c}}$$

$$\frac{\partial e}{\partial c} = -\sin(c)$$

$$\frac{\partial f}{\partial d} = 1 = \frac{\partial f}{\partial e}$$

Thus, we have

$$\frac{\partial f}{\partial c} = \frac{\partial f}{\partial d} \frac{\partial d}{\partial c} + \frac{\partial f}{\partial e} \frac{\partial e}{\partial c}
\frac{\partial f}{\partial b} = \frac{\partial f}{\partial c} \frac{\partial c}{\partial b}
\frac{\partial f}{\partial a} = \frac{\partial f}{\partial b} \frac{\partial b}{\partial a} + \frac{\partial f}{\partial c} \frac{\partial c}{\partial a}
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial x}$$

Substituting the results, we get

$$\frac{\partial f}{\partial c} = 1.(\frac{1}{2\sqrt{c}} + 1).(-\sin(c))$$

$$\frac{\partial f}{\partial b} = \frac{\partial f}{\partial c}.1$$

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial b}exp(a) + \frac{\partial f}{\partial c}.1$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial a}2x$$

Thus, the computation for calculating the derivative is of similar complexity as the computation of the function itself.

Formalization of Automatic Differentiation

Let x_1, \dots, x_d : input variables.

 x_{d+1}, \cdots, x_{D-1} : intermediate variables.

 x_D : output variable, then we have,

$$x_i = g_i(x_{Pa(x_i)})$$

Note that g_i s are elementary functions and are also called as forward propagation function and $x_{Pa(x_i)}$ is the set of parent nodes of variable x_i in the graph.

Formalization of Automatic Differentiation

Now.

$$f = x_D \Rightarrow \frac{\partial f}{\partial x_D} = 1$$

For other variables, using chain rule, we get

$$\frac{\partial f}{\partial x_i} = \sum_{x_j: x_i \in Pa(x_j)} \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial x_i} = \sum_{x_j: x_i \in Pa(x_j)} \frac{\partial f}{\partial x_j} \frac{\partial g_i}{\partial x_i}$$

The last equation is the back propagation of the gradient through the computation graph. For neural network training, we back propagate the error of the prediction with respect to the label.