

Department of Mathematics and Computer Science Coding Theory and Cryptology Group

Secure Sessions for Ad Hoc Multiparty Computation in MPyC

Master thesis

Emil Nikolov

Id nr: 0972305 emil.e.nikolov@gmail.com

Supervisor: Dr. ir. L.A.M. (Berry) Schoenmakers

Abstract

Contents

С	ontents	\mathbf{v}
Li	ist of Figures	ix
1	Testing methodology	1
	1.1 Performance	1

List of Abbreviations

 E^3 Extensible Evaluation Environment. 1

List of Figures

Chapter 1

Testing methodology

During the preparation phase of the project we developed the Extensible Evaluation Environment (E^3) framework which simplifies and automates the process of deploying machines in different georgraphical regions, connecting them in an overlay network and executing MPC computations between them, where each machine represents a different party. During the thesis assignment we will look at a number of solutions for ad hoc MPC sessions and compare them in terms of performance, security and usability.

1.1 Performance

Each solution will be deployed using the E^3 framework and the performance will be quantitatively measured in terms of the speed of execution of a number of pre-selected MPyC demos of different round complexities and message sizes: - secret santa - high round complexity