Lab₀₈

November 9, 2017

Assignment performed by:

Name: SONGA MUGABE Fabrice

Link: https://github.com/fafasonga/advstat-labs

```
In [103]: import pandas as pd
    import numpy as np
    from tqdm import tqdm
    import scipy.stats as st
    import matplotlib.pyplot as plt
    from scipy.optimize import minimize
    from sklearn.linear_model import LinearRegression
```

1 Assignment 1

1.1 Loading Datasets

```
In [14]: data1 = pd.read_csv("./ds-boot-2.csv", sep='\t')
In [15]: data1.head()
Out[15]:
           id
                    p1
                        p2
                             рЗ
                                      p4
                                           p5
                                                    p6
                                                                              р9
          11 6.48148
                       3.0 5.0 7.75000
                                          0.0 7.16667
                                                       8.16667
                                                                9.66667
                                                                         6.16667
        1 12 5.74074
                       4.0 8.0 7.33333
                                          8.0 8.83333 9.75000
                                                                         9.00000
                                                                9.66667
          25 7.59259
                       7.0 8.0 7.66667
                                          8.0 9.66667
                                                       9.50000
                                                                6.16667
                                                                         9.66667
          31 5.96297 4.0 8.0 9.33333
                                         10.0 9.33333
                                                       7.00000
                                                                8.50000
                                                                         9.66667
           48 5.44444
                       1.0
                            3.5 6.41667
                                          9.0 8.50000
                                                        7.08333
                                                                6.33333
                             p25
                                  p26
                                               p28
                                                     y1
                                                            у2
                    p24
                                          p27
                                                                  уЗ
           . . .
                                                               7.44
                 1.66667
                         3.16667
                                  0.0 0.00000
                                               0.0
                                                    1.0
                                                          5.00
                                                                     1.18
                 2.50000
                         5.50000
                                  5.0 8.66667
                                               8.0 4.5
                                                          4.25
                                                               8.93
                                                                     2.00
                                                                           6.03
                 3.50000
                         3.50000
                                  9.0 6.50000
                                              7.0 7.5
                                                         11.00
                                                               8.97
                                                                     2.00
                                                                           9.12
                 0.00000 0.00000
                                  0.0 0.00000 0.0 4.0
                                                          6.25
                                                               8.93 1.82 6.41
                 0.00000 0.00000 0.0 0.00000 0.0 0.0
                                                          3.00 8.08 1.36 3.67
        [5 rows x 34 columns]
```

1.2 Estimating Mean, Median, Error and confidence Interval

```
estimations = s(sample, axis=1)
            est = estimations.mean()
            error = (((estimations - est) ** 2).sum() / (B - 1)) ** 0.5
            conf_int = np.percentile(estimations, [2.5, 97.5])
            return est, error, conf_int
In [19]: print(bootstrap(data1['y1'], s=np.mean))
(4.025412499999998, 0.43989813760143975, array([3.1996875, 4.8503125]))
In [20]: print(bootstrap(data1['y1'], s=np.median))
(4.00549999999996, 0.54407330918339103, array([3., 6.]))
In [25]: target = ['y1', 'y2', 'y3', 'y4', 'y5']
In [29]: for label in target:
            print(label, 'mean:', bootstrap(data1[label], s=np.mean))
            print(label, 'meadian:', bootstrap(data1[label], s=np.median))
('y1', 'mean:', (4.0225625000000003, 0.44275302945190437, array([3.1371875, 4.9003125])))
('y1', 'meadian:', (4.018250000000001, 0.53783706287890409, array([3., 6.])))
('y2', 'mean:', (5.522793749999999, 0.53026086267130679, array([ 4.4809375, 6.5753125])))
('y2', 'meadian:', (6.165124999999997, 0.66438657338472307, array([ 4.625, 7.25 ])))
('y3', 'mean:', (7.312843000000009, 0.45754116825335689, array([6.35858125, 8.11305625])))
('y3', 'meadian:', (8.304424999999984, 0.27978818023783802, array([7.96, 8.92])))
('y4', 'mean:', (1.528675999999999, 0.10993528398865246, array([ 1.29313125, 1.72755
('y4', 'meadian:', (1.849719999999998, 0.13321399163589226, array([ 1.64, 2. ])))
('y5', 'mean:', (5.643575249999996, 0.45151077922757971, array([4.7133125, 6.55406875])))
('y5', 'meadian:', (6.148129999999992, 0.44503872029584418, array([ 5.09  , 7.04625])))
```

1.3 Linear Reagression of Initial Sample

In [41]: ''' returns estimations of coefficients (with intercept) and 95% confidence intervals'''

```
Out[41]: ' returns estimations of coefficients (with intercept) and 95% confidence intervals'
In [46]: def coeffs_bootstrap(X, Y, B=1000, model_class=LinearRegression):
            n = X.shape[0]
            coeffs = []
            for b in range(B):
                model = model_class()
                idx = np.random.randint(n, size=n)
                model.fit(X.as_matrix()[idx, :], Y.as_matrix()[idx])
                coeffs.append(np.append(model.coef_, model.intercept_))
            coeffs = np.array(coeffs)
            conf_int = np.percentile(coeffs, [2.5, 97.5], axis=0)
            return coeffs.mean(axis=0), conf_int
        for label in targets:
            coeffs, intervals = coeffs_bootstrap(data1[features], data1[label])
            print(label,
                   'coef', coeffs[:-1], 'inpt', coeffs[-1],
                  'from', intervals[0][:-1], ' ', intervals[0][-1],
                   'to ', intervals[1][:-1], ' ', intervals[1][-1])
('y1', 'coef', array([ 0.22463472,  0.28980205, -0.10382083,  0.08125146,  0.11644295,
       0.15215769]), 'inpt', -0.41910306506748296, 'from', array([ -1.40856474e-01, -2.29086371e-04,
       -4.16708187e-01, -4.28611544e-01, -6.51422751e-01]), ' ', -1.5770405968985788, 'to ', arr
       0.63016197]), ' ', 0.19862459178211342)
('y2', 'coef', array([ 0.12663644,  0.1667847 ,  0.12882126,  0.15719443, -0.05688789,
       0.4505047 ]), 'inpt', -0.57658408788651783, 'from', array([-0.33377816, -0.17864577, -0.47830488
                         ', -1.8721329917677563, 'to ', array([ 0.62772802,  0.51895294,  0.9030343
      -0.40707145]), '
       0.89073681]), ' ', 0.044147174173777975)
('y3', 'coef', array([ 0.14284834,  0.02293654,  0.10997328,  0.29424803,  0.19422908,
       0.25047633]), 'inpt', 0.59394802278581382, 'from', array([-0.02319219, -0.12887419, -0.13574963
       0.08008447]), '
                        ', 0.12156386822031259, 'to ', array([ 0.34324145,  0.14931606,  0.34657332
       0.52436244]), '', 1.5549078117119659)
('y4', 'coef', array([-0.0068014 , 0.00369745, 0.1123937 , 0.03663883, 0.06645114,
       0.00278617]), 'inpt', 0.16352285098141914, 'from', array([-0.07835879, -0.04661939, 0.0236164
                        ', 0.0025354324960521601, 'to ', array([ 0.06908237,  0.04289823,  0.205590
       0.09860887]), '', 0.45798030791012839)
('y5', 'coef', array([ 0.15660345,  0.15835752,  0.07123004,  0.18233068,  0.08581595,
       0.2632244 ]), 'inpt', -0.10523573325319747, 'from', array([-0.06399186, -0.03372856, -0.2223605-
      -0.23347076]), ' ', -0.60510108586200617, 'to ', array([ 0.42009691,  0.32933409,  0.4509223
       0.533443 ]), '', 0.28852436458369435)
```

2 Assignment 2

2.1 Loading Datasets

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 3 4 4 4 4 4 4 7 8 10 10 10 10
18 19	20	0	10
20	21	0	10
21 22	22 23	2	12 12
23	24	0	12
24	25	0	12
25	26	0	12
26 27	27 28	0 1	12 13
28	29	0	13
29	30	0	13
1297 1298 1299 1300 1301 1302 1303	1298 1299 1300 1301 1302 1303 1304	2 3 0 1 0 0 3	5521 5524 5524 5525 5525 5525 5528
1304	1305	1	5529
1305 1306	1306 1307	1 16	5530 5546
1307	1307	0	5546
1308	1309	0	5546
1309	1310	0	5546
1310	1311	1	5547
1311 1312	1312 1313	6 11	5553 5564
1312	1314	3	5567
1314	1315	3	5570
1315	1316	0	5570
1316	1317	0	5570
1317	1318	1	5571
1318 1319	1319 1320	1 5	5572 5577
1319	1321	4	5581
•		-	2001

1321	1322	4	5585
1322	1323	0	5585
1323	1324	0	5585
1324	1325	1	5586
1325	1326	3	5589
1326	1327	1	5590

[1327 rows x 3 columns]

In [67]: data2.head()

Out[67]:		day	bugsPerDay	cummBugs
	0	1	0	0
	1	2	1	1
	2	3	0	1
	3	4	2	3
	4	5	1	4

In [68]: data2.describe()

Out[68]:		day	bugsPerDay	cummBugs
	count	1327.000000	1327.000000	1327.000000
	mean	664.000000	4.212509	2894.581763
	std	383.216214	8.803797	2013.662007
	min	1.000000	0.000000	0.000000
	25%	332.500000	0.000000	765.000000
	50%	664.000000	2.000000	3186.000000
	75%	995.500000	6.000000	4994.500000
	max	1327.000000	224.000000	5590.000000


```
In [90]: x = np.array(data2.day)
         y = np.array(data2.cummBugs)
In [98]: def predict(a,b,x):
             return a * (1 - (1 + b * x) * np.exp(-b * x))
In [99]: def estimate(X, Y):
             def loss(ds):
                 return np.mean((predict(ds[0],ds[1], X) - Y) ** 2)
             return minimize(loss, [5000., 0.001], tol=1e-25).x
In [100]: ds = estimate(x,y)
          print ds
Γ 8.54124017e+03
                    1.85849254e-031
In [101]: plt.plot(predict(ds[0], ds[1], x))
          plt.plot(y)
          plt.show()
         6000
```


2.2 Bootstrap Estimations:

```
start_ind = np.random.randint(0, len(data2) - samp_len)
              samp_ind = np.array(range(start_ind, start_ind + samp_len))
              x_bs = x[samp_ind]
              y_bs = y[samp_ind]
              bs_ds.append(estimate(x_bs,y_bs))
          bs_ds = np.array(bs_ds)
73% | [U+2588] [U+2588] [U+2588] [U+2588] [U+2588] [U+2588] [U+2588] [U+2588] | 729/1000 [00:27<00:10, 26.81it
 rhok = 1.0 / (numpy.dot(yk, sk))
100%| [U+2588] [U+2588]
In [106]: deltas = ds - bs_ds
          deltas_1 = np.percentile(deltas, 2.5,axis = 0)
          deltas_r = np.percentile(deltas, 97.5,axis = 0)
          l_bound = ds - deltas_r
          r_bound = ds - deltas_l
In [107]: pd.DataFrame([{'est': ds[i],
               'l': l_bound[i],
               'r': r_bound[i]} for i in range(2)])
Out[107]:
                     est
                                    1
```

0 8541.240171 997.769587 1.899618e+06

0.001858

0.000087 1.012131e+00