Exercise 7.1

Question 1:

Which of the following numbers are not perfect cubes:

(i) 216

(ii) 128

(iii) 1000

(iv) 100

(v) 46656

L Answer 1:

(i) 216

Prime factors of $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$ Here all factors are in groups of 3's (in triplets) Therefore, 216 is a perfect cube number.

2	216
2	108
2	54
3	27
3	9
3	3
	1

(ii) 128

Prime factors of $128 = 2 \times 2$ Here one factor 2 does not appear in a 3's group. Therefore, 128 is not a perfect cube.

128
64
32
16
8
4
2
1

(iii) 1000

Prime factors of $1000 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$ Here all factors appear in 3's group. Therefore, 1000 is a perfect cube.

2	1000
2	500
2	250
5	125
5	25
5	5
	1

(iv) 100

Prime factors of $100 = 2 \times 2 \times 5 \times 5$ Here all factors do not appear in 3's group. Therefore, 100 is not a perfect cube.

2	100
2	50
5	25
5	5
	1

(v) 46656

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

Question 2:

Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube:

(i) 243

(ii) 256

(iii) 72

(iv) 675

(v) 100

Answer 2:

(i) 243

Prime factors of $243 = 3 \times 3 \times 3 \times 3 \times 3$

Here 3 does not appear in 3's group.

Therefore, 243 must be multiplied by 3 to make it a perfect cube.

3	243
3	81
3	27
3	9
3	3
	1

(ii) 256

Here one factor 2 is required to make a 3's group.

Therefore, 256 must be multiplied by 2 to make it a perfect cube.

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii) 72

Prime factors of $72 = 2 \times 2 \times 2 \times 3 \times 3$

Here 3 does not appear in 3's group.

Therefore, 72 must be multiplied by 3 to make it a perfect cube.

2	72
2	36
2	18
3	9
3	3
	1

(iv) 675

Prime factors of $675 = 3 \times 3 \times 3 \times 5 \times 5$

Here factor 5 does not appear in 3's group.

Therefore 675 must be multiplied by 3 to make it a perfect cube.

3	675
3	225
3	75
5	25
5	5
	1

(v) 100

Prime factors of $100 = 2 \times 2 \times 5 \times 5$

Here factor 2 and 5 both do not appear in 3's group.

Therefore 100 must be multiplied by $2 \times 5 = 10$ to make it a perfect cube.

2	100
2	50
5	25
5	5
	1

Question 3:

Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube:

(i) 81

(ii) 128

(iii) 135

(iv) 192

(v) 704

Answer 3:

(i) 81

Prime factors of $81 = 3 \times 3 \times 3 \times 3$

Here one factor 3 is not grouped in triplets.

Therefore 81 must be divided by 3 to make it a perfect cube.

81
27
9
3
1

(ii) 128

Prime factors of 128 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2

Here one factor 2 does not appear in a 3's group.

Therefore, 128 must be divided by 2 to make it a perfect cube.

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii) 135

Prime factors of $135 = 3 \times 3 \times 3 \times 5$

Here one factor 5 does not appear in a triplet.

Therefore, 135 must be divided by 5 to make it a perfect cube.

3	135
3	45
3	15
5	5
	1

(iv) 192

Prime factors of $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$

Here one factor 3 does not appear in a triplet.

Therefore, 192 must be divided by 3 to make it a perfect cube.

2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

(v) 704

Prime factors of $704 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$

Here one factor 11 does not appear in a triplet.

Therefore, 704 must be divided by 11 to make it a perfect cube.

2	704
2	352
2	176
2	88
2	44
2	22
2	11
	1

Question 4:

Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube?

Answer 4:

Given numbers = $5 \times 2 \times 5$

Since, Factors of 5 and 2 both are not in group of three.

Therefore, the number must be multiplied by $2 \times 2 \times 5 = 20$ to make it a perfect cube.

Hence he needs 20 cuboids.

Exercise 7.2

Question 1:

Find the cube root of each of the following numbers by prime factorization method:

- 64
- (iii) 10648
- (v) 15625
- 110592 (vii)
- (ix) 175616

- (ii) 512
- (iv) 27000
- (vi) 13824
- (viii) 46656
- (x) 91125

Answer 1:

(i) 64

$$\sqrt[3]{64} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}$$

$$\sqrt[3]{64} = 2 \times 2$$

$$= 4$$

2	64
2	32
2	16
2	8
2	4
2	2
	1

(ii) 512

$$\sqrt[3]{512} = \sqrt[3]{2 \times 2 \times 2}$$

= 2 x 2 x 2
= 8

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii)
$$10648$$

 $\sqrt[3]{10648} = \sqrt[3]{2 \times 2 \times 2 \times 11 \times 11 \times 11}$
= 2 x 11
= 22

2	10648
2	5324
2	2662
11	1331
11	121
11	11
	1

(iv)
$$27000$$

 $\sqrt[3]{27000} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$
= 2 x 3 x 5
= 30

2	27000
2	13500
2	6750
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

(v)
$$15625$$

 $\sqrt[3]{15625} = \sqrt[3]{5 \times 5 \times 5 \times 5 \times 5 \times 5}$
= 5 x 5
= 25

5	15625
5	3125
5	625
5	125
5	25
5	5
	1

2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

2	110592
2	55296
2	27648
2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108

2	54
3	27
3	9
3	3
	1

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

2	175616
2	87808
2	43904
2	21952
2	10976

2	5488
2	2744
2	1372
2	686
7	343
7	49
7	7
	1

(x) 91125

$$\sqrt[3]{91125} = \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$$

= 3 x 3 x 5
= 45

3	91125
3	30375
3	10125
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

Question 2:

State true or false:

- (i) Cube of any odd number is even.
- (ii) A perfect cube does not end with two zeroes.
- (iii) If square of a number ends with 5, then its cube ends with 25.
- (iv) There is no perfect cube which ends with 8.
- (v) The cube of a two digit number may be a three digit number.
- (vi) The cube of a two digit number may have seven or more digits.
- (vii) The cube of a single digit number may be a single digit number.

Answer 2:

- (i) False Since, $1^3 = 1, 3^3 = 27, 5^3 = 125, \dots$ are all odd.
- (ii) True Since, a perfect cube ends with three zeroes. e.g. $10^3 = 1000, 20^3 = 8000, 30^3 = 27000, \dots$ so on
- (iii) False Since, $5^2 = 25, 5^3 = 125, 15^2 = 225, 15^3 = 3375$ (Did not end with 25)
- (iv) False Since $12^3 = 1728$ [Ends with 8] And $22^3 = 10648$ [Ends with 8]
- (v) False Since $10^3 = 1000$ [Four digit number] And $11^3 = 1331$ [Four digit number]
- (vi) False Since $99^3 = 970299$ [Six digit number] (vii) True $1^3 = 1$ [Single digit number]

Question 3:

You are told that 1,331 is a perfect cube. Can you guess with factorization what is its cube root? Similarly guess the cube roots of 4913, 12167, 32768.

[Single digit number]

L Answer 3:

We know that $10^3 = 1000$ and Possible cube of $11^3 = 1331$ Since, cube of unit's digit $1^3 = 1$

Therefore, cube root of 1331 is 11.

4913

We know that $7^3 = 343$

 $2^3 = 8$

Next number comes with 7 as unit place $17^3 = 4913$

Hence, cube root of 4913 is 17.

12167

We know that $3^3 = 27$ Here in cube, ones digit is 7 Now next number with 3 as ones digit $13^3 = 2197$ And next number with 3 as ones digit $23^3 = 12167$ Hence cube root of 12167 is 23.

32768

We know that $2^3 = 8$ Here in cube, ones digit is 8 Now next number with 2 as ones digit $12^3 = 1728$ And next number with 2 as ones digit $22^3 = 10648$ And next number with 2 as ones digit $32^3 = 32768$

Hence cube root of 32768 is 32.