Extending linear regression

Adding more variables, transformations, and interactions

Linear regression is flexible!

Adding flexibility to our models

- The linear model we are using consists of making the parameters of probability distributions change according to some function
- The simplest function is a linear function

- Sometimes the relation between parameters and predictors is not linear
- We can use whatever functional shape we like, but it is useful to use transformations to linearize the relation

$$y_i \sim N(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta x_i$$

Linear regression is flexible!

Some simple transformations

- The linear model we are using consists of making the parameters of probability distributions change according to some function
- The simplest function is a linear function

- Sometimes the relation between parameters and predictors is not linear
- We can use whatever functional shape we like, but it is useful to use transformations to linearize the relation

$$y_i \sim N(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta x_i$$

$$\log(y_i) \sim N(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta x_i$$

Log transforming the response

Multiplicative increments

- The **logarithmic transformation** of the response is a common transformation when the effect of the predictor on the response is thought to be multiplicative
 - A change of a unit in x is associated with a constant percentage change in y
- Many processes benefit from log transformation:
 - Growth is proportional do previous size
 - Any multiplicative process

Biomass by diameter

Example of non-linear relation

Option 1: log-transform y

Option A: Assign y a log-normal likelihood

Biomass by diameter

Example of non-linear relation

Option 1: log-transform y

Option A: Assign y a log-normal likelihood

Biomass by diameter

Example of non-linear relation

Option 1: log-transform y

Option A: Assign y a log-normal likelihood

Power-law relations 104

Log-log regressions

 Several biological relations take the form of power-law relations

$$y \propto ax^b$$

- These appear for different reasons:
 - West et al. (1997) attempt to link scaling laws to fractal relations at different scales
 - Every time a proportional increase leads to a consistent proportional change (like in species-area relations)

Species-area Relationship on Log-log Axes

Power-law relations

Log-log regressions

- Several biological relations take the form of power-law relations
- We can linearize these relations using a log-log transformation

$$y \propto ax^b$$

Take the log on both sides

$$\frac{\log(y) \propto \log(ax^b) = \log(a) + \log(x^b) =}{\log(y) \propto \log(a) + b \log(x)}$$

Power-law relations

Log-log regressions

- Several biological relations take the form of power-law relations
- We can linearize these relations using a log-log transformation
- In this model, the slope is and estimate of the exponent of the power-law
- The interpretation of the slope is that a 1% increase in x leads to a β % increase in y

$$log(y_i) \sim N(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta \ log(x_i)$$

$$\downarrow$$

$$\% \ \Delta y \approx \beta \% \ \Delta x$$

Quick reference for log transformations

Model	Dependent variable	Independent Variable	Interpretation of eta
Level-level	y	X	$\Delta y \approx \beta \Delta x$
Level-log	y	log(x)	$\Delta y \approx (\frac{\beta}{100}) \% \Delta x$
log-level	log(y)	X	$\% \Delta y \approx (100 \ \beta) \Delta x$
Log-log	log(y)	log(x)	$\% \Delta y \approx \beta \% \Delta x$

Linear regression is flexible!

We can modify our functions however we like

- The linear model we are using consists of making the parameters of probability distributions change according to some function
- If we have more predictors, we can simply add them to the regression equation

The simplest function involves a single predictor and slope

$$y_i \sim N(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta x_i$$

$$y_i \sim N(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2}$$

Example with more predictors

- Question: what's the impact of herbivory on plant fitness?
- **Field experiment**: 40 plants of *Ipomopsis* agreggata assigned at random to two treatments: unprotected from grazing by rabbits and protect from grazing by fenced cages.
- Response variable: fruit yield of each plant (mg dry mass)
- Predictor variables:
 - Treatment: fenced or non-fenced
 - Basal diameter of each plant (mm), measured before the treatment

Scale variables

• It's good practice to scale variables by their standard deviation and subtract the mean:

$$\tilde{y}_i = \frac{y_i - \overline{y}}{sd(y)}$$

- The z-score of a continuous variable is a measure of how many standard deviations a data point is from the mean of the dataset
- Using z-scores makes coefficients easier to interpret and comparable across variables with different scales
- The transformation is linear, and we can always recover parameter values on their original scale by multiplying by the standard deviation

Scale variables

Using standard deviation units makes everything simpler

Scale variables

Using standard deviation units makes everything simpler

Model with only treatment

Comparing model estimates

Why do the coefficients change?

Multiple regression as control

- Coefficients are comparisons, and adding predictors to a regression has the same effect as **stratifying** the data
- The objetive of adding more predictors to a linear model is to compare like-to-like:
 - 1. What is the difference between treatments for plants of the same initial size?
 - 2. What is the effect of initial size given a particular treatment?

Using simulations to understand multiple regression

- Simulations are a powerful tool to understand how these models behave
- Use them liberally! Use them often!
- Ask:
 - What is the data generating process of system?
 - What model represents this process?
- Simulate data under this model, try to fit the data

- Example:
 - Question: What is the effect of toxin exposure on the size of individuals in a population?
 - Age affects both toxin exposure and size

Using simulations to understand multiple regression

- Question: What is the effect of toxin exposure on the size of a population?
- Age affects both toxin exposure and size

Possible model:

```
age_i = Uniform(0, 50)

toxin_i = Normal(10 + 0.4 \times age_i, 1)

size_i = Normal(30 - 1 \times toxin_i + 0.5 \times age_i, 5)
```

Simulated data

Center data and define model

```
df0 = df
df0$age = scale(df0$age, scale = FALSE)
df0$toxin = scale(df0$toxin, scale = FALSE)
df0$size = scale(df0$size, scale = FALSE)
```

```
size_i \sim Normal(\mu_i, \sigma)

\mu_i = a + b \times toxin_i + c \times age_i
```

Model fit

```
size_i \sim Normal(\mu_i, \sigma)

\mu_i = a + b \times toxin_i + c \times age_i
```


Estimates and true values

Simulation:

 $age_i = Uniform(0, 50)$

 $toxin_i = Normal(10 + 0.4 \times age_i, 1)$

 $size_i = Normal(30 - 1 \times toxin_i + 0.5 \times age_i, 5)$

Model:

 $size_i \sim Normal(\mu_i, \sigma)$ $\mu_i = a + b \times toxin_i + c \times age$

Exercise: What happens if we don't include age?

If your model does not work on **simulated** data, it will **never** work on **real** data!

Interactions

Allowing coefficients to change according to other variables

- What if the relation between a predictor and an outcome changes depending on another predictor?
- We can account for this by adding product terms in the model
 - With two predictors, x and z:

$$\mu = \alpha + \beta_1 x + \beta_2 z + \beta_3 x z$$

Interactions

Allowing coefficients to change according to other variables

- What if the relation between a predictor and an outcome changes depending on another predictor?
- We can account for this by adding product terms in the model
 - With two predictors, x and z:

$$\mu = \alpha + \beta_1 x + \beta_2 z + \beta_3 xz$$
Interaction term!

Example with interactions

- Question: what are the best soil moisture and light availability to grow tulips?
- Greenhouse experiment: beds of tulips kept in nine combinations of soil moisture and shading. Three replicates for each combination (total of 27 beds).
- · Response variable: mean plant height in each bed
- Predictor variables:
 - Water: 3 levels (low, med, high)
 - Shade: 3 levels (low, med, high)

Tulips data

Shade level:

- 1. Low
- 2. Medium
- 3. High

Water level:

- 1. Low
- 2. Medium
- 3. High

Quick transformations

Always think about a scale that makes the model easier to interpret!

Shade level:

-1 : Low

0: Medium

1: High

Water level:

-1 : Low

0: Medium

1: High

Model with interaction

```
Height_i \sim Normal(\mu_i, \sigma) \mu_i = a + b \ water_i + c \ shade + d \ water_i \times shade_i
```

```
data("tulips")
df = tulips
df$water = scale(df$water, scale = FALSE)
df$shade = scale(df$shade, scale = FALSE)
df$blooms = scale(df$blooms)
rt_fit = ulam(alist(blooms ~ normal(mu, sigma),
           mu <- a + b*water + c*shade + d*water*shade,
           a \sim normal(0, 0.1),
           b \sim normal(0, 1),
           c \sim normal(0, 1),
           d \sim normal(0, 1),
           sigma ~ exponential(1)),
        data = df, chains = 4, cores = 4)
```


Prediction lines

Prediction lines

```
Shade level
cf = coef(rt_fit)
a = cf["a"]; b = cf["b"]; c = cf["c"]; d = cf["d"]
col = scales::hue_pal()(3)
# Model: a + b*w + c*s + d*w*s
p = ggplot(df, aes(x = water, y = blooms, color = factor(shade))) +
   geom_point(size = 2) +
   geom_abline(intercept = a - c, slope = b - d, col = col[1]) +
   geom_abline(intercept = a + c, slope = b + d, col = col[3])
                 -0.5
                                    0.5
                           0.0
        -1.0
                                              1.0
                      Water level
```

Summary

- Multiple linear models allow us to use more than one predictor in a linear model
- These models do a form of automatic
 stratification
 - Ex: difference in size for individuals of the same age, effect of treatment for individuals of the same size
- The objetive is to compare like-to-like

- Coefficients can and do change with the inclusion of more predictors
- Coefficient interpretation is hard, use plots, predictions, scaling and transformations to make models easier to interpret
- Next week, we talk about principled ways of choosing if a variable should be added to a model, stay tuned!