Let use now prove that $\rho(A^*A) = \rho(AA^*)$. First assume that $\rho(A^*A) > 0$. In this case, there is some eigenvector $u \neq 0$ such that

$$A^*Au = \rho(A^*A)u,$$

and since $\rho(A^*A) > 0$, we must have $Au \neq 0$. Since $Au \neq 0$,

$$AA^*(Au) = A(A^*Au) = \rho(A^*A)Au$$

which means that $\rho(A^*A)$ is an eigenvalue of AA^* , and thus

$$\rho(A^*A) \le \rho(AA^*).$$

Because $(A^*)^* = A$, by replacing A by A^* , we get

$$\rho(AA^*) \le \rho(A^*A),$$

and so $\rho(A^*A) = \rho(AA^*)$.

If $\rho(A^*A) = 0$, then we must have $\rho(AA^*) = 0$, since otherwise by the previous reasoning we would have $\rho(A^*A) = \rho(AA^*) > 0$. Hence, in all case

$$||A||_2^2 = \rho(A^*A) = \rho(AA^*) = ||A^*||_2^2$$
.

For any unitary matrices U and V, it is an easy exercise to prove that V^*A^*AV and A^*A have the same eigenvalues, so

$$||A||_2^2 = \rho(A^*A) = \rho(V^*A^*AV) = ||AV||_2^2$$

and also

$$||A||_2^2 = \rho(A^*A) = \rho(A^*U^*UA) = ||UA||_2^2$$
.

Finally, if A is a normal matrix $(AA^* = A^*A)$, it can be shown that there is some unitary matrix U so that

$$A = UDU^*$$

where $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ is a diagonal matrix consisting of the eigenvalues of A, and thus

$$A^*A = (UDU^*)^*UDU^* = UD^*U^*UDU^* = UD^*DU^*.$$

However, $D^*D = \operatorname{diag}(|\lambda_1|^2, \dots, |\lambda_n|^2)$, which proves that

$$\rho(A^*A) = \rho(D^*D) = \max_i |\lambda_i|^2 = (\rho(A))^2,$$

so that $||A||_2 = \rho(A)$.

Definition 9.9. For $A = (a_{ij}) \in M_n(\mathbb{C})$, the norm $||A||_2$ is often called the *spectral norm*.