Escuela de Ingeniería de Sistemas y Computación Curso: Estructura de Lenguajes

Agosto - Diciembre de 2001

El Paradigma de Programación Funcional

Juan Francisco Díaz Frias
Profesor Titular
Escuela de Ingeniería de Sistemas y Computación
Universidad del Valle

Plan

• Introducción

• Elementos de programación

• Procedimientos y los procesos que generan

• Procedimientos de Alto Orden

• Estructuras de Datos

• Modularidad, Objetos y Estado

Introducción

• Principios

• Elementos básicos

• Cómo definir funciones

 \bullet Scheme, un dialecto de LISP

• Un poco más sobre LISP

• Otros Lenguajes Funcionales

Principios

- El valor de una expresión depende sólo de los valores de sus subexpresiones, si las tiene.
 - \star No efectos de borde

No asignación

- Manejo de almacenamiento implícito
 - * Procedimiento de asignación de memoria especial
 - * Recolección de "basura"

- Funciones como "Ciudadanos de primera clase"
 - * Valor o argumento de una expresión
 - \star Hacen parte de las estructuras de datos

Elementos Basicos de la Programación Funcional

• Las funciones

$$\begin{array}{ccc} Dominio & \xrightarrow{f} & Rango \\ x \in Domino & \mapsto & f(x) \in Rango \end{array}$$

• La composición de funciones

- Destacar:
 - * Noción de tipo
 - \star Noción de abstracción funcional: h(x) = f(g(x))

Cómo Definir Funciones

• Tabulación o enumeración:

X	a	b	С
f(x)	1	1	2

• Reglas conocidas

$$Suc(x) = x + 1, Cubo(y) = y \times y \times y$$

Composición

$$h(x) = Suc(Cubo(x)) = x^3 + 1$$

• Casos

$$max(x,y) = \begin{cases} x & \text{Si } x \ge y \\ y & \text{En caso contrario} \end{cases}$$

• Recursividad: $0! = 1, n! = n \times (n-1)!$ Si n > 0

SCHEME, un Dialecto de LISP

- Qué es LISP
 - \star LISP = LISt Processing
 - \star Un lenguaje funcional para el procesamiento de listas
 - ★ Data de 1950: J. McCarthy
 - \star Uno de los lenguajes más usados en el mundo
 - \star Familia de dialectos
 - \star Interpretado y compilado

- Por qué LISP
 - \star Fácil disponibilidad
 - ★ Lenguaje principal en IA.
 - * Gran capacidad para manipulación de símbolos
 - \star Procedimientos LISP \equiv DATOS
 - o Incrementa el poder de programación
 - o Facilidad de escribir programas que manipulan otros programas como datos

- Por qué SCHEME
 - ⋆ Dialecto pequeño
 - \star Funciones, verdaderamente, de primera clase

Un poco más sobre LISP

- Aplicaciones en IA:
 - ★ Sistemas expertos
 Razonamiento humano y Aprendizaje
 Interfaces en lenguaje natural, visión y habla

- Mitos
 - ★ LISP es lento
 - \star Programas LISP son grandes
 - \star Programas LISP requiere computadores caros
 - * LISP es dificil de leer, de depurar y de aprender

Otros Lenguajes Funcionales

- Otros dialectos de LISP
 - ★ IQLISP
 - ★ Common-LISP
 - ★ Franz-LISP

- Lenguajes funcionales modernos
 - ★ Lenguajes con tipos
 - ★ Familia Miranda: Evaluación perezosa
 - ★ Familia ML: Evaluación por valor. Por ejemplo CAML.

Elementos de programación

• Generalidades

• Expresiones simples

• Identificadores y el ambiente

• Evaluación de expresiones

• Definición de procedimientos

• Modelo de Substitución

• Modelo de Orden Normal

• Expresiones Condicionales y Predicados

• Procedimientos como cajas negras

Generalidades

- Elementos principales de un lenguaje:
 - \star Expresiones primitivas
 - * Medios de combinación
 - * Medios de abstracción

- Elementos de la programación
 - ★ Procedimientos (o funciones)
 - **⋆** Datos

Expresiones Simples

• Los numerales

578

• Procedimientos primitivos: +,-,*,/.

$$>(+115226)$$

$$>(*599)$$

- Ventajas Notación prefija:
 - ★ Procedimientos con número arbitrario de argumentos
 >(+ 21 35 12 7)
 75
 - \star Facilidad de anidamiento >(+ (* 3 5) (- 10 6))19
- Para facilitar la lectura,

$$(+(*3(+(*24)(+35)))(+(-107)6))$$

se escribirá:

• Interpretador:Read-Eval-Print Loop

Identificadores y el Ambiente

• Identificador: identifica una variable cuyo valor es un objeto.

• Operador utilizado: define.

```
>(define peso 75)
```

peso

Nota: En LISP toda función devuelve un valor

>peso

75

>(* 2 peso)

150

• En general:

(define <ident> <expresión>)

```
• Más ejemplos:
```

```
>(define pi 3.14159)

pi
>(define radio 10)

radio
>(define circunferencia (* 2 pi radio))

circunferencia
>circunferencia
62.8318
```

• define es el medio más simple de abstracción en SCHEME.

ullet Guardar en memoria los pares nombre-objeto: Ambiente Global.

Evaluación de Expresiones

• En general la regla de evaluación de la expresión $(exp\ exp_1\ exp_2\ \dots\ exp_n)$

es la siguiente:

 \star Evaluar las subexpresiones exp_1, \ldots, exp_n :

$$\Rightarrow a_1, \ldots, a_n$$

 \star Evaluar la subexpresión exp:

$$\Rightarrow o$$

 \star **Aplicar** el operador o a los argumentos a_1, \ldots, a_n .

- Observaciones:
 - * Regla de evaluación es recursiva
 - ★ Evaluar es un proceso complicado

- Existen casos particulares, llamados formas especiales, con regla de evaluación propia.
 - ★ Numerales: números que representan
 - * Operadores predefinidos: Sucesión de instrucciones de máquina
 - * Identificadores: Objetos asociados en el ambiente
 - \star define: Ver más adelante

Definición de Procedimientos

• Elevar al cuadrado:

```
>(define (cuadrado x) (* x x)) cuadrado
```

• En general:

```
(define \ (< ident > < params. \ formales >) < cuerpo >)
```

* <ident>: símbolo

 $\star < \! \mathrm{params.}$ formales>: nombres usados en el cuerpo

★ < cuerpo>: expresión

• Continuando el ejemplo:

```
>(cuadrado 11)
121
>(cuadrado (+ 6 5))
121
>(cuadrado (cuadrado 3))
81
```

• Uso de procedimientos definidos para definir otros:

```
> (define (suma_de_cuadrados x y) 
 (+ (cuadrado x) (cuadrado y))) 
 suma\_de\_cuadrados 
 >(suma_de_cuadrados 3 4) 
 25
```

Modelo de Substitución para Evaluación de Procedimientos

- Qué quiere decir:
 - **Aplicar** el operador o a los argumentos a_1, \ldots, a_n
 - \star Si o es primitivo:
 - ⇒ El interpretador sabe qué hacer
 - \star Si o es definido con define:
 - ⇒ **Aplicar** es **evaluar** el cuerpo del procedimiento con cada parámetro formal reemplazado por el correspondiente argumento.

• Ejemplo: evaluar (f 5) si f está definida por:

(define (f a)
$$(suma_de_cuadrados(+ a 1) (* a 2)))$$

La evaluación sigue los siguientes pasos:

* Valor de f \Rightarrow o : (suma_de_cuadrados(+ a 1) (* a 2)) Valor de 5 \Rightarrow a₁ : 5

Aplicar o a a_1 consiste en

Evaluar (suma_de_cuadrados(+51) (* 52))

 \star Valor de suma_de_cuadrados
 $\Rightarrow o: (+ ({\rm cuadrado} \; {\rm x}) \; ({\rm cuadrado} \; {\rm y}))$

Valor de $(+51) \Rightarrow a_1:6$

Valor de (* 5 2) $\Rightarrow a_2 : 10$

Aplicar o a a_1, a_2 consiste en

Evaluar (+ (cuadrado 6) (cuadrado 10))

 \star Valor de $+ \Rightarrow o$: instrucciones de máquina

Valor de (cuadrado 6) $\Rightarrow a_1 : 36$

Valor de (cuadrado 10) $\Rightarrow a_2 : 100$

Aplicar o a a_1, a_2 da 136.

• El modelo de substitución permite pensar sobre aplicación de procedimientos.

• El modelo de substitución no es suficientemente poderoso.

• El modelo de substitución es llamado Orden aplicativo.

- Otro modelo: **Orden normal**:
 - * Expresar cada definición en términos de las más simples
 - ★ Cuando todo sea primitivo: **Evaluar**
 - ★ Ejercicio: Qué pasa en el caso anterior?

Sobre el Modelo de Orden Normal

• Ejemplo: evaluar (f 5) si f está definida por:

• Solución:

(f 5)
$$\downarrow \downarrow$$
 (suma_de_cuadrados(+ 5 1) (* 5 2)) $\downarrow \downarrow$ (+ (cuadrado (+ 5 1)) (cuadrado (* 5 2))) $\downarrow \downarrow$ (+ (* (+ 5 1) (+ 5 1)) (* (* 5 2) (* 5 2))) $\downarrow \downarrow$ (+ (* 6 6) (* 10 10)) $\downarrow \downarrow$ (+ 36 100) $\downarrow \downarrow$ 136

Expresiones Condicionales y Predicados

• Forma especial *cond*:

(cond
$$(< p_1 > < e_1 >)$$

 $(< p_2 > < e_2 >)$
 $(< p_n > < e_n >))$

Cada (< e >) es llamado una cláusula.

es un predicado :
$$\begin{cases} \text{falso} \equiv nil \\ \text{cierto} \equiv \text{Cualquier otro valor} \end{cases}$$

- Evaluación de la forma *cond*:
 - \star Evaluar consecutivamente los $< p_i >$ hasta encontrar el primero que evalúe a *cierto*.

Supongamos que es $\langle p_k \rangle$.

El interpretador \Rightarrow evaluación de $\langle e_k \rangle$.

 \star Si todos los $\langle p_i \rangle$ evaluaron a falso, el interpretador $\Rightarrow nil$.

• Ejemplo: definir la función:

$$abs(x) = \begin{cases} x & \text{Si } x > 0 \\ 0 & \text{Si } x = 0 \\ -x & \text{Si } x < 0 \end{cases}$$

★ Otra forma de hacerlo:

$$\begin{array}{ccc} (\text{define } (\text{abs } \mathbf{x}) \\ & (\text{cond} & (\ (<\mathbf{x}\ 0)\ (-\ \mathbf{x})) \\ & & (\text{else } \mathbf{x}))) \end{array}$$

Nota: else es un símbolo especial, usado opcionalmente al final del cond.

• Otra forma de hacerlo:

$$\begin{array}{ccc} (define & (abs \ x) \\ & (if & (< x \ 0) \\ & & (- \ x) \\ & & x)) \end{array}$$

• Forma especial *if*:

- Evaluación de if:
 - ★ Evaluar el <pred> .
 - \star Si es $cierto \Rightarrow$ Evaluación de la <cons>.
 - \star En caso contrario \Rightarrow Evaluación de la <alt> .

• Operadores lógicos: and, or, not.

Ejercicio: más sobre el Modelo de Orden Normal

• Considere los siguientes dos procedimientos:

$$(define (p) (p))$$

$$(define (test x y) (if (= x 0))$$

$$0$$

$$y))$$

Evaluar

$$(\text{test 0 }(p))$$

utilizando como orden de evaluación para formas no especiales:

- ★ el orden aplicativo
- ★ el orden normal

Ejemplo: la Raíz Cuadrada

- Ilustrar:
 - * Función matemática v.s. Procedimiento funcional
 - ★ Declarativo v.s. Imperativo
 - ⋆ Qué v.s. Cómo

• Declaración:

$$\sqrt{x} = y : y \ge 0, \text{ y } y^2 = x$$

• Cómo calcular \sqrt{x} ?

- Cómo calcular \sqrt{x} ?
 - \star Método de Newton $(\sqrt{2})$:

Adivinanza

Cociente

Promedio

1

$$\frac{2}{1} = 2$$

$$\frac{2+1}{2} = 1.5$$

$$\frac{2}{1.5} = 1.3333$$

1.5
$$\frac{2}{1.5} = 1.3333$$
 $\frac{1.3333 + 1.5}{2} = 1.4167$

$$\frac{2}{1.4167} = 1.4118$$

$$1.4167$$
 $\frac{2}{1.4167} = 1.4118$ $\frac{1.4118 + 1.4167}{2} = 1.4142$

1.4142

* Definición del proceso general en SCHEME:

(define (raiz_cuad_iter adiv x)

(if (buena_aprox? adiv x)

adiv

(raiz_cuad_iter (mejorar adiv x)

X)))

★ Donde buena_aprox? y mejorar están definidos así:

⋆ Y, la función que calcula la raíz cuadrada es:

>(raiz_cuad 9) 3.0001

>(raiz_cuad (+ 100 37))

11.7047

★ Ejemplos:

>(cuadrado (raiz_cuad 1000))

1000.0003

* Nota: Procesos iterativos sin while, ni for, ni ...

Ejercicio: porque IF Necesita una forma Especial de Evaluación?

• Definamos *if* a partir de *cond*:

- ★ Evaluar las expresiones siguientes:
 - \circ (nuevo_if (= 2 3) 0 5)
 - \circ (nuevo_if (= 1 1) 0 5)
- \star Reescribir $raiz_cuad_iter$ con $nuevo_if$. Funciona bien? Qué pasa?

Procedimientos como Cajas Negras

 \bullet El problema de calcular \sqrt{x} fué descompuesto en subproblemas:

- Crucial: división en tareas modulares.
 - ⇒ Procedimientos como cajas negras

- Observaciones
 - * Nombres locales: procedimientos independientes de nombres de parámetros formales.

$$(define (cuadrado x) (* x x)) \equiv (define (cuadrado y) (* y y))$$

- \star Nombres locales: la x de $buena_aprox?$ diferente de la x de cuadrado.
- \star Un parámetro formal es una **variable acotada**. x está acotada en cuadrado cuadrado acota a x
- $\star x$ está acotada en una expresión si el valor de la expresión es el mismo cuando x es cambiado uniformemente por otro nombre dentro de la expresión.
- * Variable libre: no acotada.
- \star Alcance de x: Conjunto de expresiones que la definen.

- ullet Algunos problemas con $raiz_cuad$:
 - * Procedimientos separados y globales
 - \star Problemas en proyectos grandes con programadores independientes

• Solución: Estructura de bloque.

 \bullet Aún mejor: x global a todos los procs. locales.

Procedimientos y los procesos que generan

• Generalidades

• Recursión lineal e iteración

• Recursión de árbol

• Recursión y complejidad

Generalidades

- Procedimientos v.s. Procesos computacionales:
 - * Un procedimiemto especifica la evolución de un proceso computacional
 - * Las reglas de interpretación de un procedimiento determinan el siguiente estado del proceso.

• Objetivo: Hacer observaciones globales sobre el comportamiento de un proceso.

- Procesos más comunes:
 - * Recursión lineal e iteración
 - * Recursión en árbol

Recursión Lineal e Iteración

• Consideremos la función Factorial:

$$n! = 1 \times 2 \times 3 \dots \times (n-1) \times n$$

- Diferentes formas de calcularla:
 - * Observando que $n! = n \times (n-1)!$ (define (factorial n) (if (= 1 n) 1 (* n (factorial (- n 1)))))
 - * Multiplicando en su orden 1,2,...,n

 (define (fact n) (fact_iter 1 1 n))

 (define (fact_iter cont prod n)

 (if (> cont n)

 prod

 (fact_iter (+ cont 1)

 (* prod cont)

 n)))

- Procesos generados para (factorial 6) y (fact 6):
 - ★ Para el caso de factorial

```
(factorial 6)
(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))
(* 6 (* 5 (* 4 (factorial 3))))
(* 6 (* 5 (* 4 (* 3 (factorial 2)))))
(* 6 (* 5 (* 4 (* 3 (* 2 (factorial 1))))))
(* 6 (* 5 (* 4 (* 3 (* 2 1)))))
(* 6 (* 5 (* 4 (* 3 2))))
(* 6 (* 5 (* 4 6)))
(* 6 (* 5 24))
(* 6 120)
```

★ Para el caso de fact :

```
(fact_iter 1 1 6)
(fact_iter 2 1 6)
(fact_iter 3 2 6)
(fact_iter 4 6 6)
(fact_iter 5 24 6)
(fact_iter 6 120 6)
(fact_iter 7 720 6)
```

• Comparemos los dos procesos:

	factorial	fact
Tiempo	$\sim 2n$	$\sim n$
Forma	Expansión-	Constante
	Contracción	
Espacio	$\sim n$	~cte
	\uparrow	\uparrow
	Recursivo Lineal	Iterativo Lineal

• OJO!

Proceso Recursivo \neq Procedimiento Recursivo

Ejercicio

Considere las dos definiciones siguientes:

• (define
$$(+ a b)$$

(if $(= a 0)$
b
 $(+ (1 - a)$
 $(1 + b))))$

donde 1+ y 1- son dos funciones predefinidas que calculan el sucesor y el predecesor de un entero, respectivamente.

Ilustrar el proceso generado por cada procedimiento al evaluar (+ 4 5). Cómo son estos procesos?

Recursión de Arbol

• Consideremos la función de Fibonacci:

$$fib(n) = \begin{cases} 0 & \text{Si } n = 0 \\ 1 & \text{Si } n = 1 \\ fib(n-1) + fib(n-2) & \text{Sino} \end{cases}$$

• Aplicando directamente la definición:

(define (fib n)

$$(\text{cond } ((= \text{n } 0) \ 0)$$

 $((= \text{n } 1) \ 1)$
 $(\text{else } (+ (\text{fib } (- \text{n } 1))$
 $(\text{fib } (- \text{n } 2))))))$

• El proceso generado al calcular (fib 5):

- Observaciones:

- Una solución más eficiente:
 - * Observar que: $0, 1, \underbrace{1, 2, 3}_{+}, \underbrace{5, 8, 13}_{+}, 21, \dots$
 - ★ Dos acumuladores y un contador:(define (fib_rapido n) (fib_iter 1 0 n))

Otro Ejemplo de Recursión de Arbol

• Problema: Cuantas formas diferentes existen de completar \$100 con monedas de \$1, \$5, \$10, \$25, \$50 ?

• Clave 1:

```
# de formas de cambiar a con n clases de monedas # de formas de cambiar # de formas de cambiar a con n-1 clases de mo- a-1 clases de mo-
```

- Clave 2: Casos degenerados
 - \star Si a es 0, responder 1
 - \star Si a < 0, responder 0
 - \star Si n es 0, responder 0

• Solución:

```
(define (contar_cambio cantidad)
        (cc cantidad 5))
(define (cc cantidad tip_de_mon)
        (\text{cond } ((= \text{cantidad } 0) 1)
               ((\text{or }(<\text{cantidad }0)
                    (= tip_de_mon 0)) 0)
               (else (+ (cc (- cantidad
                                (denom tip_de_mon))
                             tip_de_mon)
                         (cc cantidad
                             (- tip_de_mon 1))))))
(define (denom tip_de_mon)
        (\text{cond } ((= \text{tip\_de\_mon } 1) \ 1)
               ((= tip_de_mon 2) 5)
               ((= tip\_de\_mon 3) 10)
               ((= tip_de_mon 4) 2)
               ((= tip_de_mon 5) 50)))
```

\sim	. 1	•	
ullet ()	bser	vacio	nes:

- ★ contar_cambio genera un proceso de recursión de árbol.
- ★ El proceso tiene redundancias: Cómo evitarlas?
- * En general: Cómo evitar las redundancias en los procesos de recursión de árbol?

Idea: Tabulación de redundancias

Ejercicio

Diseñar un procedimiento que genere un proceso iterativo para resolver el problema precedente.

Mas Sobre Recursión y Complejidad

ullet Consideremos el problema de calcular b^n .

• Idea: utilizar la definición:

$$b^0 = 1$$

$$b^n = bb^{n-1}, n > 0$$

La solución, inmediata es:

El proceso generado es recursivo lineal, con requerimiento lineal de espacio.

• Otra idea: estilo factorial

El proceso generado es iterativo lineal, con requerimiento constante de espacio.

• Aún mejor:

★ Utilizar que:

$$b^8 = (b^4)(b^4)$$

$$b^4 = (b^2)(b^2)$$

$$b^2 = bb$$

★ En general:

$$b^n=(b^{rac{n}{2}})(b^{rac{n}{2}}),$$
 Si n es par
$$b^n=bb^{n-1},$$
 Si n es impar

* Solución:

* El proceso generado es iterativo logarítmico, con requerimiento logarítmico de espacio.

Ejercicio

Comparar el tiempo de evaluación de 1¹⁰⁰⁰⁰⁰ entre cada una de las soluciones propuestas. Utilizar la función *runtime* que da el tiempo, en milisegundos, del reloj de la máquina.

Procedimientos de Alto Orden

• Generalidades

• Procedimientos como parámetros

• Uso de lambda y let

• Procedimientos como respuesta

Generalidades

• Los parámetros de los procedimientos no son solo números.

• Frecuentemente el mismo patrón de programación es usado en diferentes procedimientos.

• Expresar esos patrones como conceptos implica poder pasar procedimientos como parámetros.

⇒ Procedimientos de alto orden

Procedimientos como Parametros

• Considere los tres procedimientos siguientes para calcular:

$$a + (a + 1) + (a + 2) + \dots + b$$

$$a^{2} + (a + 1)^{2} + (a + 2)^{2} + \dots + b^{2}$$

$$a^{2} + (a + 2)^{2} + (a + 4)^{2} + \dots + c^{2}, (b - 1) \leq c \leq b$$
(define (suma_enteros a b)
 (if (> a b)
 0
 (+ a (suma_enteros (+ a 1) b))))
(define (suma_cuads a b)
 (if (> a b)
 0
 (+ (cuadrado a) (suma_cuads (+ a 1) b))))
(define (suma_alt a b)
 (if (> a b)
 0
 (+ (cuadrado a) (suma_alt (+ a 2) b))))

• El esquema general es:

En SCHEME

• Por ejemplo:

Ejercicios

• El procedimiento suma genera un proceso recursivo lineal. Escribir un procedimiento suma que genere más bien un proceso iterativo lineal.

• Escriba un procedimiento *producto* análogo al procedimiento *suma*. Defina *factorial* en función de este nuevo procedimiento.

Uso de lambda y let

• Existe una manera de definir funciones anónimas:

Por ejemplo:

• Ejemplos:

$$> \underbrace{((\text{lambda}(\mathbf{x}) \mathbf{x})}_{Procedimiento} 3)$$

$$> \underbrace{((\text{lambda}(\mathbf{x}) (+ \mathbf{x} 2))}_{Procedimiento} (+ 3 5))$$

$$10$$

• Más ejemplos:

```
(define (suma_enteros a b)
(suma (lambda (x) x) a 1+ b))
```

- Otro uso de *lambda*: def. de variables locales.
 - ★ Calcular

$$f(x,y) = x\underbrace{(1+xy)^2}_a + y\underbrace{(1-y)}_b + \underbrace{(1+xy)}_a\underbrace{(1-y)}_b$$

 \star Ayudaría tener a, b como variables intermedias:

★ Una alternativa:

 \star Mejor si g es anónima:

 \star Por comodidad sintáctica: let

 \star La forma general del let es:

(let
$$((< v_1 > < e_1 >)$$

 $(< v_2 > < e_2 >)$
 \vdots
 $(< v_n > < e_n >))$
 $<$ cuerpo $>)$

Sintaxis alternativa para:

$$((lambda (< v_1 > < v_2 > ... < v_n >)$$

 $< cuerpo >) < e_1 >$
 $< e_2 >$
 $:$
 $< e_n >)$

 \star OJO! let no es un nuevo mecanismo.

- Ventajas de *let* frente al *define*:
 - * Con define, alcance global
 Con let, alcance local al cuerpo del let
 Ejemplo:

$$(+ (let ((x 3)) (+ x (* x 10))) x)$$

***** .

Paralelismo del *let*

V.S.

Secuencialidad del define:

Qué valor devuelve la expresión anterior?

Procedimientos como Respuesta

• Calcular f'(x):

$$f'(x) \approx \frac{f(x+dx) - f(x)}{dx}, dx \to 0$$

Esto se puede expresar:

$$\begin{array}{c} (lambda\ (x) \\ (/\ (-\ (f\ (+\ x\ dx)) \\ (f\ x))\ dx)) \end{array}$$

• Definimos:

$$\begin{array}{c} (\text{define (deriv f dx)} \\ (\text{lambda (x)} \\ (\text{/ (- (f (+ x dx))} \\ (\text{f x)) dx))) \end{array}$$

• >((deriv cube 0.001) 5) 75.015

Estructuras de Datos

• Generalidades

• Atomos y pares

• Representación de sucesiones

• Operaciones sobre listas

• Representando árboles

• Símbolos y QUOTE

Generalidades

• Abstracciones de estructuras de datos simples en estructuras de datos más complejas.

- Para qué estructuras de datos compuestas?
 - ★ Elevar el nivel conceptual
 Incrementar la modularidad
 Fortalecer el poder expresivo del lenguaje

- Metodología: Tipos abstractos de datos. Permite independizar
 - * Cómo son usadas las estructuras de datos.
 - * Cómo son implementadas las estructuras de datos.

Sobre los Tipos Abstractos de Datos

• IDEA: Estructurar los programas para que operen sobre "datos abstractos"

Datos abstractos

Generadoras, Selectoras

 $\downarrow \downarrow$

 \uparrow

Datos Concretos

• Ejemplo:

Números racionales

Generadoras: Crear_Racional: $\mathcal{Z} \times \mathcal{Z} \rightarrow \mathcal{Q}$

Selectoras: numer:

 $egin{array}{cccc} oldsymbol{\mathcal{Q}} &
ightarrow & \mathcal{Z} \ \mathcal{Q} imes \mathcal{Q} &
ightarrow & \mathcal{Q} \end{array}$ denom:

suma, resta:

mult.,div. : $Q \times Q \rightarrow Q$

 $Q r Q \rightarrow Booleano$ igual:

介

Parejas de enteros

Atomos y Pares

- 2 tipos de estructuras:
 - * Atomos
 - o Números
 - o Símbolos
 - o Todo lo que no sea un par
 - o Ejemplo: X, Y, F, FACT, EXP, 1, 290, "hola"
 - * Pares
 - o Parejas de Estructuras
 - o Notación (par-punto): (.)
 - \star Notación (Caja-apuntador):
 - Atomos

F

X

FACT

o Pares

• Constructora de pares: cons

```
* Ejemplos:

>(define x (cons 1 2))

x

>x

(1 . 2)

>(cons 3 x)

(3 . (1 . 2))

>(cons x 3)

((1 . 2) . 3)
```

★ En general

 $(\cos x y)$ produce el par $(x \cdot y)$

- \bullet Selectoras de pares: car, cdr
 - \star Ejemplos:

$$>$$
(car x)

1

$$>$$
(cdr x)

2

★ En general

• Toda estructura más compleja es construida a partir de átomos y pares.

Función ⇒ Diferentes procedimientos
 Estructura de datos ⇒ Diferentes representaciones

⇒ EFICIENCIA

Representación de Sucesiones

• Sucesión: colección ordenada de objetos.

• Una representación: Listas.

$$a_1, a_2, \dots, a_n \Rightarrow (a_1.(a_2.\dots(a_n.nil)\dots))$$

$$\equiv (\cos a_1 \\ (\cos a_2 \\ \dots \\ (\cos a_n \ nil)\dots))$$

• Primitiva para crear listas: *list*

 \star (list $a_1 \ a_2 \dots a_n$) \equiv expresión precedente.

$$\star$$
 Ojo: (list a_1, a_2) \neq (cons $a_1 a_2$)

- \bullet Si l es una lista,
 - \star (car l) es el primer elemento de la lista (cdr l) es la sublista resultante de eliminar el primer elemento caddr, caaadr, etc . . .

 \bullet El símbolo nil es la lista vacía. El predicado null? permite saber si una lista es vacía o no.

Operaciones Sobre Listas

• Calcular el tamaño de una lista.

$$tam(l) = \begin{cases} 0 & \text{Si } l \text{ es vacía} \\ n & \text{Si } l = (a_1 \ a_2 \ \dots \ a_n) \end{cases}$$

★ De manera recursiva:

$$tam(l) = \begin{cases} 0 & \text{Si } l \text{ es vac\'ia} \\ 1 + tam((a_2 \ldots a_n)) & \text{Si } l = (a_1 a_2 \ldots a_n) \end{cases}$$

★ Lo que nos da el procedimiento:

```
(define (tam l)

(if (null? l)

0

(+ 1 (tam (cdr l))))
```

* Ejemplo:

>(define pares (list 2 4 6 8))

pares

>(tam pares)

ullet Dadas dos listas l_1 y l_2 calcular la lista resultante de concatenar las dos listas.

$$concat(l_1, l_2) = \begin{cases} l_1 & \text{Si } l_2 \text{ es vacía} \\ l_2 & \text{Si } l_1 \text{ es vacía} \\ (a_1 \dots a_n b_1 \dots b_m) & \text{Si } l_1 = (a_1 \dots a_n) \\ & \text{y } l_2 = (b_1 \dots b_m) \end{cases}$$

★ De manera recursiva:

De manera recursiva:
$$concat(l_1, l_2) = \begin{cases} l_2 & \text{Si } l_1 \text{ es} \\ cons(& car(l_1), \\ & concat(cdr(l_1), l_2)) \end{cases}$$
 Si no

★ Lo que nos da:

(define (concat
$$l_1$$
 l_2)

(if (null? l_1)

 l_2

(cons (car l_1)

(concat (cdr l_1)

 l_2))))

Ejercicios

• Definir la función *last* que dada una lista devuelva el último elemento de la lista:

$$last((a_1 \dots a_n)) = a_n$$

• Definir la función *reverse* que dada una lista devuelva la lista en orden inverso:

$$reverse((a_1 \dots a_n)) = (a_n \dots a_1)$$

• Hacer una versión iterativa de *concat*. Qué problemas encuentra?

Mas Ejemplos Sobre Listas

• Dada una lista de números, construir la lista de los cuadrados de esos números.

- Ejercicios:
 - \star Tratar de escribir una versión iterativa de cuad_list. Qué problemas encuentra?
 - * Escriba un procedimiento de alto orden *aplicar_car* tal que:

$$aplicar_car(f, (a_1 \dots a_n)) = (f(a_1) \dots f(a_n))$$

Representando Arboles

• Una manera de modelar árboles: listas de listas.

• Por ejemplo: ((1 2) 3 4) en notación caja-apuntador:

- Un árbol es entonces:
 - ⋆ Un átomo, o
 - * Una lista de subárboles.

• Ejercicio: Dibujar el árbol:

• Recursión: manera natural de operar sobre árboles. Una nueva primitiva: atom?.

• Ejemplo: Contar las hojas de un árbol.

$$hojas(a) = \begin{cases} 0 & \text{Si a es vac\'io} \\ 1 & \text{Si a es una hoja} \\ hojas(car(a)) + \\ hojas(cdr(a)) & \text{si no} \end{cases}$$

Lo que sugiere el procedimiento:

Simbolos y QUOTE

• Trabajar con cualquier clase de símbolos y no solo con números.

• Cualquier expresión es una lista de listas de símbolos.

$$(* (+ 23 45) (+ x 9))$$

(define (fact n) (if (= n 0) 1 (* n (fac (- n 1)))))

• Cómo construir la lista (a b)? (list a b) no funciona. Por qué?

• quote: indicar al evaluador que lo que sigue son datos. $'a \equiv (quote a)$

• Ejemplos:

```
>(define a 1)
a
>(define b 2)
>(list a b)
(1 \ 2)
>(list 'a 'b)
(a \ b)
>(list 'a b)
(a\ 2)
>(car '(a b c))
a
>(cdr '(a b c))
(b c)
```

• Nuevo predicado: eq? (eq? $s_1 s_2$) dice si el s_1 es igual a s_2 como símbolos.

Ejemplo: Derivación Simbolica

• Queremos hacer un procedimiento tal que:

$$\xrightarrow{f(x)} \boxed{\text{DERIV}} \xrightarrow{f'(x)}$$

Por ejemplo:

$$ax^2+bx+c$$
 DERIV $\xrightarrow{2ax+b}$

• Estructura abstracta de las expresiones algebráicas (Exp-Alg):

Constantes $\subset \text{ExpAlg}$

Variables $\subset \text{ExpAlg}$

Constructoras:

haga-suma: $ExpAlg \times ExpAlg \rightarrow ExpAlg$

haga-prod: $ExpAlg \times ExpAlg \rightarrow ExpAlg$

Analizadoras:

constante?: ExpAlg \rightarrow Boolean variable?: ExpAlg \rightarrow Boolean suma?: ExpAlg \rightarrow Boolean producto?: ExpAlg \rightarrow Boolean misma-var?: Var \times Var \rightarrow Boolean

Destructoras:

 $\begin{array}{lll} sumando-1: & ExpAlg & \rightarrow & ExpAlg \\ sumando-2: & ExpAlg & \rightarrow & ExpAlg \\ multip-1: & ExpAlg & \rightarrow & ExpAlg \\ multip-2: & ExpAlg & \rightarrow & ExpAlg \\ \end{array}$

• Reglas de derivación:

$$\star \frac{dc}{dx} = 0$$
, para c const. o var. dif. de x

$$\star \frac{dx}{dx} = 1$$

$$\star \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$
 \Leftarrow Recursiva

$$\star \frac{d(uv)}{dx} = \frac{du}{dx}v + \frac{dv}{dx}u$$
 \Leftarrow Recursiva

• Un procedimiento Lisp:

- Solo falta implementar las funciones de EXPALG:
 - * haga-suma: ExpAlg × ExpAlg → ExpAlg (define (haga-suma e_1 e_2) (list '+ e_1 e_2))

* haga-prod: ExpAlg × ExpAlg → ExpAlg

(define (haga-prod
$$e_1 e_2$$
)

(list '* $e_1 e_2$))

* constante?: ExpAlg \rightarrow Boolean (define (constante? e) (number? e))

* variable?: ExpAlg \rightarrow Boolean (define (variable? e) (symbol? e))

* suma?: ExpAlg \rightarrow Boolean (define (suma? e) (if (atom? e) nil (eq? (car e) '+)))

```
* producto?: ExpAlg \rightarrow Boolean

(define (producto? e)

(if (atom? e)

nil

(eq? (car e) '*)))
```

* misma-var?: Var × Var → Boolean

(define (misma-var e_1 e_2)

(and (variable? e_1)

(variable? e_2)

(eq? e_1 e_2))

* sumando-1: ExpAlg → ExpAlg

(define (sumando-1 e)

(if (suma? e)

(cadr e)

nil))

```
* sumando-2: ExpAlg \rightarrow ExpAlg (define (sumando-2 e) (if (suma? e) (caddr e) nil))
```

• Ejemplos:

Respuestas no simplificadas!!!

ullet Ejercicio: Mejorar haga-suma, haga-prod de manera que:

Modularidad, Objetos y Estado

• Generalidades

• Asignación y estado local

• Costos de introducir la asignación

• Nuevo modelo de evaluación: modelo de ambientes

• Reglas de evaluación

Generalidades

• Estrategia de diseño de un sistema:

Basar la estructura del programa en la del sistema.

Objeto del sistema \Rightarrow Objeto computacional

Acción del sistema

Operación simbólica en el modelo

* Extensión fácil del sistema

* Modularidad

• Sistema: Colección de objetos distintos cuyo comportamiento puede cambiar en el tiempo.

Objetos que cambian pero mantienen su identidad.

Asignación y Estado Local

• Un objeto tiene estado si su comportamiento depende de su historia.

Ejemplo: Cuenta de banco, al tratar de retirar una cantidad.

 \bullet Objeto del sistema con estado \equiv Objeto comput. con variables locales.

◆ Objetos del sistema cambian de valor con el tiempo
⇒ Objetos comput. deben poder cambiar su valor mientras el programa corre.

Necesitamos la asignación

- Ejemplo: hacer un procedimiento *retirar* con un argumento *cantidad*, tal que:
 - * Devuelve el saldo de la cuenta después del retiro, si hay fondos suficientes.
 - ★ Devuelve el mensaje "Fondos Insuficientes" en caso contrario.
 - ★ Por ejemplo, si incialmente hay \$100.000:

```
>(retirar 25000)
```

75000

>(retirar 25000)

50000

>(retirar 60000)

Fondos Insuficientes

>(retirar 15000)

35000

Nota: La misma expresión, evaluada dos veces, da resultados diferentes!!!

 \star Una solución: tener una variable global saldo (define saldo 100000)

★ Forma especial Asignación:

★ Forma especial Secuenciación:

(sequence
$$\langle exp_1 \rangle \dots \langle exp_k \rangle$$
)

* Esta solución funciona, pero saldo es global.

 \star Para que saldo sea local al procedimiento:

* Notar:

- o Combinación de set! con variables locales
 - \Rightarrow objetos computacionales con estado local
- o El modelo de substitución no es adecuado para aplicación de procedimientos
- o Por qué *nuevo-retirar* funciona?

Algunas Observaciones Mas

• Crear objetos "procesadores de retiros":

```
(define (hacer-retirar saldo)
       (lambda (cantidad)
               (if (>= saldo cantidad)
                  (sequence (set! saldo (- saldo cantidad))
                            saldo)
                  "Fondos Insuficientes")))
(define R1 (hacer-retirar 100000))
(define R2 (hacer-retirar 100000))
> (R1 50000)
50000
> (R270000)
30000
> (R2 40000)
Fondos Insuficientes
> (R1 40000)
10000
```

R1 y R2 son objetos independientes con estado local !!!

• Crear objetos "Cuenta":

```
(define (hacer-cuenta saldo)
       (define (retirar cantidad)
              (if (>= saldo cantidad)
                 (sequence (set! saldo (-saldo cantidad))
                           saldo)
                 "Fondos Insuficientes"))
       (define (depositar cantidad)
              (set! saldo (+ saldo cantidad))
              saldo)
       (define (atender m)
              (cond ((eq? m 'retirar) retirar)
                    ((eq? m 'depositar) depositar)
                    (else (error "No entiendo"m))))
       atender)
(define cuenta (hacer-cuenta 100000))
>((cuenta 'retirar) 50000)
50000
>((cuenta 'retirar) 60000)
Fondos Insuficientes
>((cuenta 'depositar) 40000)
90000
```

Costos de Introducir la Asignación

• El modelo de substitución no funciona.

• Ningún modelo con propiedades matemáticas "bonitas" es adecuado.

Ahora no se puede remplazar "iguales por iguales".

- El modelo de substitución no funciona.
 - * Consideremos una versión, más simple, de hacer-retirar:

★ Consideremos el procedimiento:

 \star Cómo trabaja hacer-decrem?

((hacer-decrem 25000) 20000)
$$\downarrow\downarrow$$
 ((lambda (cantidad) (- 25000 cantidad)) 20000) $\downarrow\downarrow$ (- 25000 20000) $\downarrow\downarrow$ 5000

- ⋆ Qué pasó?
 - o En el modelo de substitución los símbolos del lenguaje son esencialmente nombres para valores.

 Con la aparición de set! una variable no puede ser simplemente un nombre.

• Una variable debe hacer referencia a un lugar donde el valor sea almacenado, y el valor almacenado allí pueda cambiar.

- Ningún modelo con propiedades matemáticas "bonitas" es adecuado.
 - \star Consideremos el siguiente principio de $transparencia\ referencial$

"iguales pueden ser substituidos por iguales" sin cambiar el valor de las expresiones

Este lenguaje, con asignación, lo respeta?

* Miremos primero el problema de la igualdad:

(define D1 (haga-decrem 25000))

(define D2 (haga-decrem 25000))

(define R1 (haga-simple-retirar 25000))

(define R2 (haga-simple-retirar 25000))

D1 y D2 son iguales?

R1 y R2 son iguales?

- \star D1 y D2 son iguales !!!
 - o Dos nombres para la misma expresión
 - o Su comportamiento computacional es idéntico
- \star R1 y R2 no son iguales !!!
 - $\circ > (R1\ 20000)$ 5000
 - ∘ >(R1 20000) -15000
 - $\circ > (R2\ 20000)$ 5000

- ⋆ Qué pasó?
 - o Se perdió la transparencia referencial
 - En qué casos se pueden substituir expresiones por expresiones equivalentes? Difícil de decir
 - o Analizar programas que usan la asignación es más difícil.
 - o Aparece la posibilidad de cometer errores que no pueden ocurrir sin la asignación: Ojo a los efectos laterales.
 - o Difícil capturar la noción de igualdad de manera formal.

El Nuevo Modelo de Evaluación: Modelo de Ambientes

• Recordemos el modelo de substitución: Evaluar la expresión

$$(exp \ exp_1 \ exp_2 \ \dots \ exp_n)$$

consiste en:

* Evaluar las subexpresiones $exp, exp_1, \ldots, exp_n$:

$$\Rightarrow o, a_1, \dots, a_n$$

- \star **Aplicar** el operador o a los argumentos a_1, \ldots, a_n .
 - \circ Si o es primitivo: \Rightarrow El interpretador sabe qué hacer
 - \circ Si o es definido con define:
 - ⇒ **Aplicar** es **evaluar** el cuerpo del procedimiento con cada parámetro formal reemplazado por el correspondiente argumento.

• Revisar el concepto de aplicación.

• Ahora una variable debe designar un lugar en donde se puedan almacenar valores:

AMBIENTES

 \star Ambiente \equiv Sucesión de Marcos

★ Marco ≡ (Tabla de Corresp., apuntador)
 Tabla de correspondencias: { Var ↔ Valor }
 Apuntador: ambiente padre

• Ejemplo:

• Ambiente es crucial en el proceso de evaluación: Determina el contexto de evaluación de una expresión.

• Una expresión adquiere un significado sólo con respecto a un ambiente en el cual sea evaluada.

Aún en casos como (+11),

 \Rightarrow Ambiente Global

+:	
*.	
-:	
and:	
:	

Las Reglas de Evaluación

- Qué cambia?
 - * Evaluación de formas no especiales: igual.
 - * Evaluación de formas especiales: puede cambiar.
 - * Aplicación de procedimientos: lo nuevo.

- Qué es un procedimiento?
 - ★ Evaluación de (define (<proc> pars) cuerpo)
 - * Procedimiento \equiv (código, apuntador)

Código:(parámetros, cuerpo)

Apuntador:ambiente donde el proc. está definido

• Ejemplo: (define (cuad x) (* x x))

cuerpo: (*x x)

 \bullet Y cuando se utiliza define para definir una variable, qué ocurre?

- Cómo se aplica un procedimiento?
 - ★ Crear un nuevo ambiente con un marco:
 - o Corresp. params. formales y actuales
 - o Apuntador al ambiente especificado por el proc.
 - ★ Evaluar el cuerpo en el nuevo ambiente

• Ejemplo: (cuad 5)

params : x

cuerpo : (* x x)

- Cómo se evalúa la forma especial set!?
 Evaluar (set! <var> <exp>) en el ambiente A:
 - * Localizar <var> en A, y cambiar su valor en el marco en que se encontró.
 - \star Si <var> no existe en el ambiente: error, "unbound variable".

Evaluando Procedimientos Simples

• Evaluación de defs. de cuad, sum-cuads, f:

(define (cuad x) (*
$$x x$$
))

$$\begin{array}{c} (\text{define (sum-cuads } x \ y) \\ (+ \ (\text{cuad } x) \ (\text{cuad } y))) \end{array}$$

(define (f a) (sum-cuads (+ a 1) (* a 2)))

• Evaluación de (f 5)

Evaluando Procedimientos con Asignación

• Recordemos la función hacer-retirar:

Una vez evaluado el define:

Params: saldo

• Evaluación de (define W1 (hacer-retirar 100))

• Evaluación de (W1 50)

• Evaluación de (define W2 (hacer-retirar 100))

Ejercicio

Recuerde la primera solución que se dió para tener *saldo* local y no global:

Muestre porqué esta solución funciona, evaluándola con el modelo de ambientes.

Recuerde que

$$(\text{let }((<\text{var}><\text{exp}>)) \text{ cuerpo})$$

es sólo una forma de abreviar:

```
((lambda (< var>) cuerpo) < exp>)
```