# CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516
Office hours T, Th 11:15-11:45 or by appointment
Zoom Link

#### **Announcements**

- Last quiz on 12/7
- Writeup instructions on canvas
- Remember to email TAs if you are submitting a regrade of P1

#### Recap

Adaboost answers the question: can a w\_\_\_l\_\_ be boosted into a s\_\_\_l\_\_?
It maintains a w\_\_\_ for each example.
Each iteration it builds a c\_\_\_ with the w\_\_ e\_\_. If the w\_\_ t\_\_ e\_\_ of this classifier is \_\_ or \_\_ it stops.
Else, it updates the weight of each example. Correctly classified examples have their weights \_\_\_. Incorrect ones have their weights \_\_\_.
The classifiers also have weights, which are i\_\_ p\_\_ to their e\_\_.
For a new example, the label is assigned through a w\_\_ v\_\_.
Adaboost e\_\_ d\_\_ the training loss as a function of the number of t\_\_.
This still may not lead to overfitting because Adaboost can also m\_\_ the m\_\_. Alternatively, using s\_\_ b\_\_ c\_\_ can prevent overfitting to noise.
How do algorithms like naïve Bayes handle weighted data?

What about SVMs?

# Today

- Bias-Variance Analysis
- Feature Selection and Dimensionality Reduction

# **Analysis of Learning Algorithms**

- Many different algorithms (trees, ANNs, SVMs, NB, LR) and statistical methods for evaluation and comparison
- Now, theoretical analysis of concept learnability
- Key question:
  - What are the sources of generalization error?

# Bias-Variance Analysis

 Idea: try to decompose the generalization error of any concept class into components

 Gives quantitative insight into inductive bias and other sources of error in learned models

But is not algorithm-specific

# **Problem Setup**

• Given data  $(\mathbf{x}_i, y_i)$  where  $y_i = f(\mathbf{x}_i) + \varepsilon$ ,  $\varepsilon \sim N(\theta, \sigma)$ 

- We produce a concept  $h(x_i)$  to minimize squared loss
  - For illustration, we'll use a linear model (does not affect the analysis---this holds for any concept class)

$$\hat{h} = \arg\min_{h} (y_i - h(x_i))^2$$

# Example: 20 points

$$y = x + 2 \sin(1.5x) + N(0, 0.2)$$



Figure due to Tom Dietterich, Oregon State U.

# 50 fits (20 examples each)



Figure due to Tom Dietterich, Oregon State U.

# Bias-Variance Analysis

• For a random new example  $\mathbf{x}_{new}$ , we want to understand the expected prediction error:

Training set 
$$E_{S,y_{new}} \left[ (y_{new} - h(\mathbf{x}_{new}))^2 \right]$$

$$y_{new} = f(\mathbf{x}_{new}) + \varepsilon; \quad \varepsilon \sim N(0,\sigma)$$

$$y_{new} \sim N(f(\mathbf{x}_{new}),\sigma)$$

• Denote E(R) as  $\overline{R}$ 

#### Result

For any random variable R

$$V(R) = E \left[ (R - \overline{R})^2 \right]$$

$$= E \left[ R^2 - 2R\overline{R} + \overline{R}^2 \right]$$

$$= E \left[ R^2 \right] - 2E \left[ R\overline{R} \right] + E \left[ \overline{R}^2 \right]$$

$$= E \left[ R^2 \right] - 2\overline{R}E \left[ R \right] + \overline{R}^2$$

$$= E \left[ R^2 \right] - \overline{R}^2$$

$$= E \left[ R^2 \right] = V(R) + \overline{R}^2$$

$$E_{S,y} \left[ (y - h(\mathbf{x}))^2 \right] = E_{S,y} \left[ h(\mathbf{x})^2 - 2yh(\mathbf{x}) + y^2 \right]$$
$$= E_S \left[ h(\mathbf{x})^2 \right] - 2E_y(y)E_S(h(\mathbf{x})) + E_y(y^2)$$

Note **x**, 
$$y = \mathbf{x}_{new}$$
,  $y_{new}$ 

$$= V(h(\mathbf{x})) + \overline{h(\mathbf{x})}^2 - 2f(\mathbf{x})\overline{h(\mathbf{x})} + V(y) + f(\mathbf{x})^2$$

From previous slide

Since  $y \sim N(f(x), \sigma)$ 

From previous slide

$$E[(y-h(\mathbf{x}))^{2}]$$

$$=V(h(\mathbf{x})) + \overline{h(\mathbf{x})}^{2} - 2f(\mathbf{x})\overline{h(\mathbf{x})} + V(y) + f(\mathbf{x})^{2}$$

$$=V(h(\mathbf{x})) + V(y) + \left[\overline{h(\mathbf{x})}^{2} - 2f(\mathbf{x})\overline{h(\mathbf{x})} + f(\mathbf{x})^{2}\right]$$

$$=V(h(\mathbf{x})) + V(y) + \left[\overline{h(\mathbf{x})} - f(\mathbf{x})\right]^{2}$$

$$=V(h(\mathbf{x})) + \sigma^{2} + \left[\overline{h(\mathbf{x})} - f(\mathbf{x})\right]^{2}$$

Expected prediction error

$$E\left[\left(y-h(\mathbf{x})\right)^{2}\right]=V(h(\mathbf{x}))+\sigma^{2}+\left[\overline{h(\mathbf{x})}-f(\mathbf{x})\right]^{2}$$

 $oldsymbol{\sigma}^2$ 

 $V(h(\mathbf{x}))$ 

$$\left[\overline{h(\mathbf{x})} - f(\mathbf{x})\right]$$

Noise error: Error in learned model's predictions due to noise in *y* 

Variance error: Error in learned model's predictions due to choice of training sample

Bias error: Systematic error in predictions due to choice of h as concept class

#### Bias, Variance, and Noise

- Variance describes how much the prediction error varies as h is trained using different training sets
- Bias describes the average error of h across all training sets
  - Using h, on average, we can't approximate  $f(\mathbf{x})$  better than this
  - This quantifies inductive bias
- Noise describes how much y varies from  $f(\mathbf{x})$

## 50 fits (20 examples each)



Figure due to Tom Dietterich, Oregon State U.

## Bias



Figure due to Tom Dietterich, Oregon State U.

## Variance



Figure due to Tom Dietterich, Oregon State U.

## Noise



Figure due to Tom Dietterich, Oregon State U.

# Distribution of predictions at x=2.0



# Distribution of predictions at x=5.0



Figure due to Tom Dietterich, Oregon State U.

# Decomposition for Classification

• Define the *main prediction*:

$$y_m(\mathbf{x}) = \arg\min_{y} E_S[L(y, h(\mathbf{x}))]$$

 For each x, the prediction y that on average across all training sets minimizes the loss

# Decomposition for Classification

For squared loss, the main prediction is

$$y_m(\mathbf{x}) = \overline{h(\mathbf{x})}$$

• For 0/1 loss, the main prediction is the most common output of  $h(\mathbf{x})$  (over training sets S)

• Then for an arbitrary loss function L we define:

- Bias: 
$$B(\mathbf{x}) = L(y_m, f(\mathbf{x}))$$

- Variance: 
$$V(\mathbf{x}) = E_S[L(y_m, h(\mathbf{x}))]$$

- Noise: 
$$N(\mathbf{x}) = E_y[L(y, f(\mathbf{x}))]$$

 With these definitions, for many loss functions, (ask for paper)

$$E(L(y, h(\mathbf{x})) = c_1 N(\mathbf{x}) + c_2 V(\mathbf{x}) + B(\mathbf{x})$$

• For squared loss,  $c_1 = c_2 = 1$ 

• For 0/1 loss,  $c_1=2I(h(\mathbf{x})=f(\mathbf{x}))-1$  and  $c_2=1$  if  $y_m=f(\mathbf{x})$  and  $c_2=-1$  otherwise

#### Summary and Lessons

- Expected prediction errors can be due to choice of concept class (bias) and choice of training sample (variance)
- We must try to balance the two sources of error
- Usually, low bias=richer, more complex concept class=higher variance, so there is a tradeoff
- High variance leads to overfitting. But controlling for overfitting, e.g. using a penalty term, introduces bias
- Even if we have a good idea about the target concept, it may be useful to choose a concept class with high bias if our training sample is small/unrepresentative, to control the variance

# Feature Selection and Dimensionality Reduction

#### Feature Selection

 In propositional supervised learning, examples are represented through feature vectors

- Generally, features are overgenerated
  - Missing information is hard to compensate for

So not all features might be relevant for a classification problem

#### Relevance

 A feature is relevant iff the target concept or best approximation in the hypothesis space uses the feature to make predictions

#### Feature Selection

- If there are irrelevant features, they can still be used by learning algorithms
  - Lead to overfitting
  - Increase computational complexity
  - Increase sample complexity
  - Classifiers harder to interpret
- Question: Can we remove these before learning?

#### **Problem Statement**

• Given: A set of examples  $(\mathbf{x}_i, y_i)$  over D features

• Do: Find a *subset* S of features ( $|S| \le D$ ) so that, for any other subset  $S' \ne S$ , a learned concept that uses S generalizes better than a learned concept that uses S'