ARBOL DE EXPANSIÓN MINIMA

Considere el siguiente grafo:

¿En qué orden se agregan las aristas al árbol usando el algoritmo de Kruskal?

V	Distancia
V	ordenada
a – d	1
a – e	2
d – e	3
a – b	4
b - f	5
f – g	6
c - k	7
g - c	8
g – k	9
b - c	10
e – f	11
k – j	12
f — i	13
d - h	14
h — i	15
i — j	16
j – g	17
h – e	18

Por el algoritmo de Kruskal, las aristas se agregan en el siguiente orden:

$$b - f$$

$$f - g$$

¿En qué orden se agregan las aristas al árbol usando el algoritmo de Prim?

Por el algoritmo de Prim, las aristas se agregan en el siguiente orden:

$$\mathbb{R}$$
 a – d

¿Cuál es el costo del árbol de expansión mínima?

$$C = 1 + 2 + 4 + 5 + 6 + 8 + 7 + 12 + 13 + 14 = 72$$

