ENXEÑARÍA DO COÑECEMENTO

4º Grao Enxeñaría Informática

Curso 2016-17
5. Computación evolutiva

Alberto J. Bugarín Diz

Departamento de Electrónica e Computación

Universidade de Santiago de Compostela

alberto.bugarin.diz@usc.es

5. Contexto

- •4. Metaheurísticas: introdución e clasificación. Metaheurísticas basadas en traxectorias: simulated annealing, tabu search.
- •5. Computación evolutiva. Algoritmos xenéticos: representación, operadores, selección e remprazo. Aplicacións en problemas de busca.

- Clasificación: MH basadas en...
 - métodos constructivos: GRASP, ACO
 - De búsqueda o trayectorias: recorren el espacio de soluciones mediante una transformación iterativa de una solución de partida (búsqueda local): Enfriamiento Simulado, Búsqueda Tabú, ...

 poblaciones: evolución de conjuntos de soluciones o poblaciones, habitualmente con procedimientos aleatorios. Ej.: Computación evolutiva, PSO, ...

Objetivos

- Describir que es un algoritmo evolutivo, explicando sus componentes y los conceptos básicos
 - Relacionar con otras técnicas de optimización global
- •¿Que es un algoritmo evolutivo (AE)? Metáfora biológica
 - Diferentes variantes, una idea base común: dada una población de individuos con recursos limitados, la competencia por los recursos produce la **selección natural**. Supervivencia de los que mejor se adaptan al medio.
 - Evolución: mejora en la adaptación de la población al medio

- •CE: formada por modelos de evolución basados en poblaciones de elementos que representan soluciones a un problema
- Consiste en simular la evolución de esa población, dando lugar a una técnica de optimización probabilística. ¿Cómo se simula?

• Es una **meta-heurística**: parametrización de un procedimientos general que conduce a soluciones sub-óptimas (de una forma eficiente)

• Taxonomía (Duarte, 2004)

Ciclo evolutivo

• Problema de optimización: la **calidad** de las soluciones (*fitness*) se mide con la función **objetivo** o de **coste**.

Procedimiento Algoritmo Genético

```
Inicio (1)
    t = 0;
    inicializar P(t);
    evaluar P(t);
    Mientras (no se cumpla la condición de parada) hacer
    Inicio(2)
        t = t + 1
        seleccionar P(t) desde P(t-1)
        recombinar P(t)
        mutación P(t)
        evaluar P(t)
    Final(2)
```


- Estrategia evolutiva:
 - Conjunto aleatorio de soluciones posibles: población inicial
 - -Evaluamos la calidad (fitness) de las soluciones, como medida de su "adaptación al medio"
 - Escogemos una selección de los mejores como base para a siguiente generación:
 - recombinación: aplicado a los "padres" produce "hijos"
 - mutación: aplicado a un individuo, produce otro nuevo
 - Evaluamos la *fitness* de la descendencia. Sus elementos **compiten** con la población anterior para formar parte de la nueva generación.
 - Se itera el proceso hasta encontrar un candidato con la suficiente calidad, que sería una **solución**. O hasta llegar a un límite.

- Base de la estrategia:
 - Operadores que introducen diversidad en la población:
 recombinación y mutación
 - Selección: incrementa la calidad media de las soluciones en una población
- Aplicación combinada de ambas estrategias: mejora los valores de *fitness* en poblaciones consecutivas.

- Naturaleza aleatoria de la MH por varios motivos:
 - selección: probabilidad de escoger individuos con fitness baja
 - en esto, es similar a TS, SA
 - recombinación: selección aleatoria de los fragmentos
 - mutación: selección aleatoria del fragmento

- Soluciones candidatas: codificación numérica
 - entera
 - real

(9.1, **0.2, 7.2**)

(2.1,0.2,7.2)

(9.1, -0.3, 4.6)

- Tipos de algoritmos evolutivos: comparten la estrategia general. Se diferencian en:
 - –Operadores
 - -Cómo incorporar las nuevas soluciones a la población
- Múltiples modelos de evolución de poblaciones:
 - -Algoritmos genéticos: soluciones cadenas (n variables)
 - -Programación genética: soluciones árboles

¿CÓMO SE CONSTRUYE UN AG?

RESUMEN

EC 4° GrEI

- Los AE siguen una estructura de *generar soluciones y probar* en el proceso de busca de la solución.
- •La función de *fitness* representa una estimación **heurística** de la calidad de la solución.
- El proceso de busca va dirigido por los operadores: variación y selección
- ¿Cuáles son las componentes de un AE?
 - -1 representación: definición de los individuos
 - 2 función de fitness
 - 3 población
 - 4 mecanismo de selección
 - 5 operadores de variación: cruce y mutación
 - 6 mecanismo de reemplazo generacional

- Por lo tanto, los pasos en el diseño son...
 - Diseñar una representación
 - Decidir cómo inicializar una población
 - Diseñar una correspondencia entre genotipo y fenotipo
 - Diseñar una forma de evaluar un individuo
 - COMPONENTES OFLAL GORITMO Diseñar un operador de mutación adecuado
 - Diseñar un operador de cruce adecuado
 - Decidir cómo seleccionar los individuos para ser padres
 - Decidir cómo reemplazar a los individuos
 - Decidir la condición de parada

- 1. Representación:
 - modelado de la solución al problema: "real" -> "AE"
 - mecanismos para codificar la solución al problema (fenotipos) en forma de una cadena de genes (genotipos)
 - escogida la representación, se definen operadores <u>compatibles</u>
 con ella

gen: elemento mínimo del cromosoma (atributo)

– alelo: valor de cada gen

Ejemplo: TSP

•Genotipo 1 2 3 4 5 6

Fenotipo

0 1 2 3 4 5 6 0

- Codificación binaria
 - representación de cada individuo mediante codificación discreta:
 secuencia de bits
 - cada gen es un bit. La codificación de cada alelo depende de la aplicación

Codificación binaria

El fenotipo pueden ser números enteros

Ejemplo: un número entre 2.5 y 20.5 utilizando 8 dígitos binarios

- Codificación real
 - cada individuo: secuencia de números reales
 - el fenotipo (solución) no tiene porqué coincidir con el genotipo (individuo). Puede ser el resultado de evaluarlo con una función determinada

Ejemplos:

- fenotipo coincide con genotipo

- fenotipo como función (suma) del genotipo

- Representación de orden
 - cada individuo se representa como una **permutación** de valores
 - precisan operadores especiales (con **reparación**), para asegurar que el resultado de cada operación (e.g. recombinación, mutación) sigue siendo una permutación

Ejemplo: TSP

7 3 6 8 2 4 1 5

- Paso de genotipo a fenotipo: de la representación a la solución
 - Paso obvio a veces. Ejemplo: TSP
 7 3 6 8 2 4 1 5
 - Paso complejo a veces: el genotipo puede un conjunto de parámetros de entrada de otro algoritmo que es el que obtiene la solución final. Ejemplo: simulación numérica, visualización 3D, sistemas basado en conocimiento (reglas), ...

5.2 CE: inicialización

- Población
 - representa las posibles soluciones
 - es la unidad (elemento mínimo) de la evolución
 - -Criterio de diversidad: medida del número de diferentes soluciones presentes en la población
- Inicialización de la población:
 - —aleatoria (uniforme en el rango de cada parámetro), con el objetivo de producir soluciones repartidas uniformemente en el **espacio de búsqueda**.
 - binaria: 0 ó 1 (p=0.5)
 - real: distribución uniforme sobre un intervalo [a, b]
 - —Por criterios heurísticos
 - —Combinación de ambas

5.3 Fitness de los individuos

- Función de calidad (*fitness*): representa los requisitos a los que debe adaptarse la población
 - Cuantifica la mejora de la población
 - Etapa de mayor coste: 95% CPU
 - Tipos:
 - Función simple: resultado numérico, real, ...
 - Procedimiento
 - Simulador
 - Cualquier proceso externo: experimentos, ...
 - En otros casos: vector, ordenable o no
 - En los problemas (típicos) de optimización: función objetivo.
 - Si hay múltiples objetivos a satisfacer, debe alcanzarse una solución de compromiso entre todos los objetivos (media – ponderada-, máximo, mínimo, ...)

5.4 CE: selección

- Mecanismo de selección
 - •Trata de distinguir entre los individuos de una población de acuerdo con su calidad
 - Se denomina "padre"/"madre" al individuo seleccionado para formar parte de la **descendencia** (**offspring**, candidatos a permanecer en la nueva generación)
 - La selección es probabilística: los individuos de mayor calidad tienen mas probabilidades de permanecer, pero también tienen opciones a permanecer los de menor calidad.
 - diversidad, como alternativa al "local trapping"
 - Idea de **presión selectiva**: determina el grado en el que el proceso está dirigido por los mejores individuos

5.4 CE: selección

- Selección aleatoria
- Selección por torneo
 - Seleccionar el mejor de *k* individuos escogidos aleatoriamente: torneo **binario**: *k*=2; **ternario**: *k*=3
 - Ejemplo: torneo con *k*=3

- Orden lineal: población ordenada por *fitness*. Se asocia una **probabilidad de selección** que depende de ese orden.
- •Ruleta: probabilidad de selección **proporcional al** *fitness* de cada individuo

- Operadores de cruce: mezcla de los genotipos de dos padres.
 - Debe diseñarse de forma consistente con la representación, para dar lugar a individuos válidos
 - **Probabilidad alta** de darse: $P_c \in [0.6, 0.9]$. En caso de no darse, el resultado son los propios padres
- Algunos ejemplos: punto/s de cruce aleatorio
 - —Caso binario: *one-point random crossover*

•caso de representación real: "interpolación" o combinación aritmética convexa con parámetro α .

Cruce de
$$(22,10,4)$$
 y $(12,6,9)$

$$\alpha = 0.1$$

$$\alpha(22,10,4) + (1-\alpha)(12,6,9) = (13,6.4,8.5)$$

$$(1-\alpha)(22,10,4) + \alpha(12,6,9) = (21,9.6,5.8)$$

• Cruce de dos puntos

•caso de representación real: "interpolación" o combinación aritmética convexa con parámetro α .

Cruce de
$$(22,10,4)$$
 y $(12,6,9)$

$$\alpha = 0.1$$

$$\alpha(22,10,4) + (1-\alpha)(12,6,9) = (13,6.4,8.5)$$

$$(1-\alpha)(22,10,4) + \alpha(12,6,9) = (21,9.6,5.8)$$

• Cruce de dos puntos

- Representación de orden: deben utilizarse operaciones que incluyan **mecanismos de reparación** que mantengan la representación (sigan siendo permutaciones)
 - –Ejemplo: order crossover (OX)
 - Copiar un segmento aleatorio del P1 en H1

• Completar H1 con el resto de alelos en el orden que aparecen en P2, a partir del segundo punto de corte

- Cruce para representación de orden PMX (partially mapped crossover)
 - Se elige una subcadena central y se establece una correspondencia por posición entre las asignaciones contenidas en ellas
 - Cada hijo contiene la subcadena central de uno de los padres y el mayor número posible de asignaciones en las posiciones definidas por el otro padre. Cuando se forma un ciclo, se sigue la correspondencia fijada para incluir una asignación nueva

```
\begin{aligned} & \mathsf{Padre}_1 = (1\ 2\ 3\ |\ 4\ 5\ 6\ 7\ |\ 8\ 9) \\ & \mathsf{Padre}_2 = (4\ 5\ 3\ |\ 1\ 8\ 7\ 6\ |\ 9\ 2) \\ & \mathsf{Hijo'}_1 = \ (*\ *\ *\ |\ 1\ 8\ 7\ 6\ |\ *\ *) \\ & \mathsf{Hijo'}_2 = \ (*\ *\ *\ |\ 4\ 5\ 6\ 7\ |\ *\ *) \end{aligned} \mathsf{Correspondencias:}\ (1\ -4\ ,\ 8\ -5\ ,\ 7\ -6\ ,\ 6\ -7) \\ & \mathsf{Hijo}_1 = \ (1\ -4\  \  2\ 3\ |\ 1\ 8\ 7\ 6\ |\ 8\ -5\ 9) = (4\ 2\ 3\ |\ 1\ 8\ 7\ 6\ |\ 5\ 9) \\ & \mathsf{Hijo}_2 = \ (4\ -1\ 5\ -8\ 3\ |\ 4\ 5\ 6\ 7\ |\ 9\ 2) = (1\ 8\ 3\ |\ 4\ 5\ 6\ 7\ |\ 9\ 2) \end{aligned}
```


- Cruce para representación de orden CX (cycle crossover)
 - Partiendo de la asignación i del primer padre, CX toma la siguiente asignación j del segundo padre como aquella en la misma posición que i, y sitúa j en la misma posición que ocupa en el primer padre

Padre₁ =
$$(12345678)$$

Padre₂ = (24687531)

 Aleatoriamente podemos escoger 1 ó 2 para la primera posición, supongamos que escogemos 1. Esto implica escoger 8 en la posición 8, lo cual supone escoger 4 en la posición 4 y, por tanto, 2 en la posición 2

```
(1*******) \rightarrow (1*******8) \rightarrow (1**4***8) \rightarrow (12*4***8)
```

 Se ha formado un ciclo. Se escoge aleatoriamente una ciudad entre 3 ó 6 para la tercera posición, supongamos que escogemos 6

 Esto implica escoger obligatoriamente la ciudad 5 en la posición 6, lo que implica 7 en la posición 5 y 3 en la posición 7

$$Hijo = (1 \ 2 \ 6 \ 4 \ 7 \ 5 \ 3 \ 8)$$

5.5 CE: operadores de variación. Mutación

- Operadores de mutación: operación **unaria** aplicada a un genotipo. Produce un descendente ligeramente modificado.
 - Debe permitir alcanzar cualquier parte del espacio de busca
 - El tamaño de la mutación debe ser controlado
 - Debe dar lugar a genotipos válidos
 - Se aplica con probabilidad p_m muy baja **sobre cada gen**, tras haber aplicado previamente el operador de cruce
- Ejemplo binario:

5.5 CE: operadores de variación. Mutación

- Operadores de mutación para representación entera:
 - Random resetting: se escoge aleatoriamente con probabilidad p_m un valor de entre los posibles (dentro del rango válido)
- Operadores de mutación para representación de orden:
 - Intercambio recíproco: entre dos valores de la permutación, seleccionados aleatoriamente

```
1 2 3 4 5 6 7 8 9 1 5 3 4 2 6 7 8 9
```

 Inserción: se seleccionan dos valores y se inserta uno al lado del otro

Mezcla: se barajan los valores en un rango

```
123456789 -----
```


5.5 CE: operadores de variación. Mutación

- Ejemplo de representación real: modificación aleatoria, típicamente siguiendo una gaussiana normal $N(0,\sigma i)$
 - media 0
 - σ desviación típica

$$x'i = xi + N(0,\sigma i)$$

• Caso de orden: intercambio de genes

5.6 CE: mecanismos de reemplazo

- Reemplazo: es el mecanismo que determina la composición de la nueva generación. Establece que individuos se mantienen en la población y cuales son sustituidos por la descendencia
 - Establece la supervivencia de la descendencia para la nueva generación
 - Es similar a la selección, pero en otra etapa: después de producirse la descendencia: torneo, lineal, aleatorio, ruleta, ...
- Inserción de la descendencia:
 - modelo generacional: la descendencia sustituye completamente a la generación anterior
 - modelo permanente: los descendientes se insertan en la población actual, reemplazando a otros individuos.
- Puede contemplarse **elitismo**, para no reemplazar a los mejores individuos de la solución actual.

5.6 CE: mecanismos de reemplazo

modelo generacional

5.6 CE: mecanismos de reemplazo

modelo permanente

5.6 CE: mecanismos de reemplazo

Generacional

Permanente

5.6 CE: mecanismos de reemplazo

- En el modelo permanente hay diferentes estrategias de reemplazo:
 - Reemplazar al peor de la población (RW). Produce alta presión selectiva.
 - Torneo Restringido (RTS): reemplaza al mas parecido de entre w (w=3, ...). Mantiene una **cierta diversidad**.
 - Peor entre semejantes (WAMS): reemplaza el peor cromosoma del conjunto de w (w=3, ...) padres mas parecidos al descendiente (seleccionados de toda la población). Busca equilibrio entre diversidad y presión selectiva.
 - Algoritmo de Crowding Determinístico (DC): el hijo reemplaza al padre mas parecido. Mantiene diversidad.

5.7 CE: condición de parada

- Condición de parada: consiste en fijar criterios para finalizar la ejecución del algoritmo
 - Estrategias típicas:
 - cuando se alcanza una solución con una precisión prefijada (idealmente, la solución óptima
 - cuando los recursos de CPU son limitados: se establece un número de iteraciones máximo
 - también cuando no hay una mejora significativa entre poblaciones sucesivas
 - la diversidad es insuficiente
- Recordemos siempre que no está asegurada la solución óptima: puede haber óptimos locales

5.8.CE: diseño y consideraciones

- Experimentación:
 - NUNCA se deben obtener conclusiones con una ejecución ÚNICA
 - SIEMPRE se deben realizar varias ejecuciones independientes y proporcionar como resultados
 - valores estadísticos: media y desviación típica
 - análisis de significancia: tests estadísticos
 - Los ejemplos deben ser representativos del caso real, no demasiado triviales ni simples
- Diversidad:
 - Alta presión selectiva = falta de diversidad = todos los individuos parecidos → convergencia prematura a los vecinos más próximos
 - Solución:
 - introducir mecanismos de diversidad
 - reinicialización del algoritmo

5.8.CE: diseño y consideraciones

• Exploración vs explotación:

• **Exploración**: zonas desconocidas del espacio de búsqueda. exceso de exploración: busca aleatoria, falta de convergencia

 Explotación: mejora local de los individuos exceso de explotación: busca local y convergencia a un óptimo local

5.9.CE: ejemplos

- Ejercicio 1: problema de las 8 reinas
 - Espacio de busca P: todas las posibles configuraciones de reinas p
 - Función de fitness: número de reinas atacadas.
 - 0: solución
 - inverso: 1/(q(p)+ε)
 - Genotipos: vector de índices {1, 2, 3, 4, 5, 6, 7, 8}:
 - evita automáticamente restricciones de fila/columna
 - Operadores:
 - Mutación: intercambio de dos posiciones aleatorias
 - ¿Cruce? Dos padres P1, P2
 - punto aleatorio i
 - corte en dos segmentos P11-P12, P21-P22
 - Descendencia: F11=P11, F21=P21. Completar resto de $P2 \rightarrow F1$ y de $P1 \rightarrow F2$

5.9.CE: ejemplos

- Ejercicio 1 (cont.): problema de las ocho reinas
 - Mecanismo de selección: 2 padres mejores de 5 aleatorios
 - Manejo de la población: 2 padres \rightarrow 2 hijos. Población de n+2, de los que se seleccionan los n mejores. Eliminar los dos peores
- Ejercicio 2: problema de la mochila {0, 1}.
 - N objetos con peso *p_i* y valor *v_i*.

4.3 CE

• Ejercicio 3: problema del viajante de comercio (TSP)
Un posible planteamiento (distinto del propuesto en la práctica)

Representación de orden

(3 5 1 13 6 15 8 2 17 11 14 4 7 9 10 12 16)

17 ciudades

Objetivo: Suma de la distancia entre las ciudades.

Población: 61 cromosomas - Elitismo

Cruce: OX $(P_c = 0.6)$

Mutación: Inversión de una lista ($P_m = 0.01 - cromosoma$)

4.3 CE

- Ejercicio 3: problema del viajante de comercio (TSP)
 - 1. Generación de la solución inicial: aleatoria o greedy
 - 2. Esquema de representación: Representación de orden mediante permutación {1,...,n}
 - 3. Selección: torneo binario
 - Enfoque: generacional con elitismo (1 individuo)
 - Operador de cruce: Operador OX.
 - Operador de mutación: intercambio de 2 genes
 - Función objetivo (minimización): La distancia recorrida por el viajante.

$$C(S) = \sum_{i=1}^{n-1} (D[S[i], S[i+1]]) + D[S[n], S[1]]$$

5. Bibliografía

- Referencias básicas:
 - Francisco Herrera (Univ. Granada).
 - Algorítmica (Tema 7): algoritmos genéticos (transparencias).
 http://sci2s.ugr.es/graduateCourses/Algoritmica
 - Metaheurísticas (Tema 5): Metaheurísticas basadas en poblaciones. http://sci2s.ugr.es/graduateCourses/Metaheuristicas
 - A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing,
 Springer, 2007. ISBN: 978-3-540-40184-1.
 - Cap. 2: What is an evolutionary algorithm?
 - Cap. 3: Genetic algorithms
- J.T. Palma, R. Marín. Inteligencia Artificial: técnicas, métodos y aplicaciones. Ed. McGraw-Hill, 2008. Capítulo 11 "Computación evolutiva".
 - 11.1: Introducción
 - 11.2: Un algoritmo genético simple
 - 11.3: Fundamentos de los algoritmos genéticos
 - 11.4.1-11.4.4: Diseño de algoritmos evolutivos (excepto de 11.4.5 en adelante)

5. Bibliografía

• C. Reeves. Genetic Algorithms. Handbook of Metaheuristics. Kluwer Academics. (2003). Capítulo 3, 55-82.

- Mas material avanzado:
 - Francisco Herrera (Univ. Granada): Asignatura Bioinformática.
 http://sci2s.ugr.es/graduateCourses/Algoritmica.

