$12n_{0011} (K12n_{0011})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -5.71616 \times 10^{69} u^{37} + 1.11175 \times 10^{70} u^{36} + \dots + 3.33891 \times 10^{72} b + 1.88016 \times 10^{72},$$

$$4.07046 \times 10^{70} u^{37} - 5.21445 \times 10^{70} u^{36} + \dots + 1.33556 \times 10^{73} a - 1.19377 \times 10^{73},$$

$$u^{38} - u^{37} + \dots + 128u + 256 \rangle$$

$$I_1^v = \langle a, 18v^7 - 26v^6 + 12v^5 - 78v^4 + 71v^3 + 30v^2 + 19b + 6v - 2, v^8 - 2v^7 + v^6 - 4v^5 + 6v^4 + v^3 - 2v^2 - v + 1\rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 46 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -5.72 \times 10^{69} u^{37} + 1.11 \times 10^{70} u^{36} + \dots + 3.34 \times 10^{72} b + 1.88 \times 10^{72}, \ 4.07 \times 10^{70} u^{37} - 5.21 \times 10^{70} u^{36} + \dots + 1.34 \times 10^{73} a - 1.19 \times 10^{73}, \ u^{38} - u^{37} + \dots + 128 u + 256 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.00304774u^{37} + 0.00390431u^{36} + \cdots - 2.13353u + 0.893835 \\ 0.00171198u^{37} - 0.00332968u^{36} + \cdots - 0.453692u - 0.563107 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.00130957u^{37} + 0.00189335u^{36} + \cdots - 1.90974u + 2.64338 \\ -0.00109847u^{37} + 0.00189335u^{36} + \cdots - 0.794202u - 0.211610 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.00359002u^{37} - 0.00745031u^{36} + \cdots + 4.56333u - 0.957202 \\ 0.00112443u^{37} - 0.000480799u^{36} + \cdots + 0.826261u + 0.801763 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.00359002u^{37} - 0.00745031u^{36} + \cdots + 4.56333u - 0.957202 \\ 0.00209211u^{37} - 0.000172711u^{36} + \cdots + 0.401334u + 1.79000 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.000952567u^{37} - 0.000976781u^{36} + \cdots + 1.86076u - 2.03505 \\ 0.000357004u^{37} + 0.000976781u^{36} + \cdots - 0.0489786u + 0.608337 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00133576u^{37} + 0.000574632u^{36} + \cdots - 0.0489786u + 0.608337 \\ 0.00171198u^{37} - 0.00332968u^{36} + \cdots - 0.453692u - 0.563107 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.000400109u^{37} + 0.00305192u^{36} + \cdots - 3.11755u + 1.84992 \\ 0.00136835u^{37} - 0.000426605u^{36} + \cdots - 0.970171u - 0.257429 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.003313189u^{37} + 0.00425632u^{36} + \cdots - 0.691749u + 0.425379 \\ -0.00175985u^{37} + 0.00256836u^{36} + \cdots + 0.691063u - 0.518052 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0107565u^{37} + 0.0115767u^{36} + \cdots 16.3471u 2.84993$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{38} + 9u^{37} + \dots + 15u + 1$
c_2, c_5	$u^{38} + 5u^{37} + \dots + 3u + 1$
c_3	$u^{38} - 5u^{37} + \dots + 90147u + 15489$
c_4, c_7	$u^{38} - u^{37} + \dots + 128u + 256$
c_6, c_{10}	$u^{38} + 3u^{37} + \dots - u + 1$
c_8	$u^{38} + 3u^{37} + \dots + u + 1$
c_9, c_{11}, c_{12}	$u^{38} - 11u^{37} + \dots - 11u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{38} + 45y^{37} + \dots + 91y + 1$
c_2, c_5	$y^{38} + 9y^{37} + \dots + 15y + 1$
c_3	$y^{38} + 81y^{37} + \dots + 7556564583y + 239909121$
c_4, c_7	$y^{38} + 45y^{37} + \dots + 344064y + 65536$
c_6,c_{10}	$y^{38} + 11y^{37} + \dots + 11y + 1$
c_8	$y^{38} - 65y^{37} + \dots + 11y + 1$
c_9, c_{11}, c_{12}	$y^{38} + 35y^{37} + \dots + 131y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.801035 + 0.695463I		
a = 0.79350 - 1.46806I	2.72429 - 1.49580I	6.88383 + 3.00756I
b = 0.025706 + 0.900927I		
u = 0.801035 - 0.695463I		
a = 0.79350 + 1.46806I	2.72429 + 1.49580I	6.88383 - 3.00756I
b = 0.025706 - 0.900927I		
u = -0.213839 + 1.135170I		
a = -0.421285 - 0.668176I	-4.44084 + 0.93436I	-3.64457 - 1.20353I
b = 0.784497 + 0.822982I		
u = -0.213839 - 1.135170I		
a = -0.421285 + 0.668176I	-4.44084 - 0.93436I	-3.64457 + 1.20353I
b = 0.784497 - 0.822982I		
u = -1.159340 + 0.148885I		
a = -1.361450 + 0.030633I	-1.60611 - 0.16717I	-2.00112 - 0.51691I
b = -0.708036 + 0.833117I		
u = -1.159340 - 0.148885I		
a = -1.361450 - 0.030633I	-1.60611 + 0.16717I	-2.00112 + 0.51691I
b = -0.708036 - 0.833117I		
u = -0.358418 + 0.734904I		
a = 1.30197 + 2.31889I	1.16926 - 3.17447I	5.84543 + 3.28927I
b = -0.136751 - 0.822464I		
u = -0.358418 - 0.734904I	1 10000 . 0 154457	F 0.45.49 9 909055
a = 1.30197 - 2.31889I	1.16926 + 3.17447I	5.84543 - 3.28927I
$\frac{b = -0.136751 + 0.822464I}{u = 0.183194 + 1.207340I}$		
·	0.60010 + 0.611077	1.65491 2.000507
a = 0.229775 + 1.020680I	-0.69910 + 2.61127I	1.65431 - 3.00859I
$\frac{b = 0.677081 - 0.878596I}{u = 0.183194 - 1.207340I}$		
	0.60010 0.611071	1 65421 + 2 000507
a = 0.229775 - 1.020680I	-0.69910 - 2.61127I	1.65431 + 3.00859I
b = 0.677081 + 0.878596I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.083408 + 1.218640I		
a = 0.31884 - 1.60799I	-4.10208 - 6.74360I	-2.53206 + 6.49784I
b = 0.755833 + 0.932426I		
u = 0.083408 - 1.218640I		
a = 0.31884 + 1.60799I	-4.10208 + 6.74360I	-2.53206 - 6.49784I
b = 0.755833 - 0.932426I		
u = 1.262280 + 0.110410I		
a = -1.310290 + 0.231935I	-1.36537 - 5.58839I	-0.94341 + 6.04268I
b = -0.705134 - 0.909841I		
u = 1.262280 - 0.110410I		
a = -1.310290 - 0.231935I	-1.36537 + 5.58839I	-0.94341 - 6.04268I
b = -0.705134 + 0.909841I		
u = -0.533596 + 0.416988I		
a = -0.970594 - 0.091212I	-7.10344 + 1.95919I	-5.95273 - 5.24866I
b = -0.856400 + 0.889730I		
u = -0.533596 - 0.416988I		
a = -0.970594 + 0.091212I	-7.10344 - 1.95919I	-5.95273 + 5.24866I
b = -0.856400 - 0.889730I		
u = 0.525705 + 0.422944I		
a = -0.981407 - 0.165229I	-6.97962 + 4.35433I	-5.02974 + 0.36700I
b = -0.842922 + 0.929719I		
u = 0.525705 - 0.422944I		
a = -0.981407 + 0.165229I	-6.97962 - 4.35433I	-5.02974 - 0.36700I
b = -0.842922 - 0.929719I		
u = -0.437849 + 0.512305I		
a = 0.779426 + 0.427405I	-0.621022 + 1.245300I	-4.66633 - 4.67696I
b = 0.391315 - 0.479189I		
u = -0.437849 - 0.512305I		
a = 0.779426 - 0.427405I	-0.621022 - 1.245300I	-4.66633 + 4.67696I
b = 0.391315 + 0.479189I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.517700 + 0.295561I		
a = 0.655146 + 0.862409I	0.31192 + 1.82341I	0.28789 - 3.69490I
b = 0.360279 - 0.813117I		
u = 0.517700 - 0.295561I		
a = 0.655146 - 0.862409I	0.31192 - 1.82341I	0.28789 + 3.69490I
b = 0.360279 + 0.813117I		
u = -0.304409 + 0.498073I		
a = 1.074620 - 0.335260I	-0.29515 + 1.55177I	-2.39420 - 5.36172I
b = -0.237341 - 0.266456I		
u = -0.304409 - 0.498073I		
a = 1.074620 + 0.335260I	-0.29515 - 1.55177I	-2.39420 + 5.36172I
b = -0.237341 + 0.266456I		
u = -0.54647 + 1.64480I		
a = 0.0641318 + 0.0863728I	3.59603 + 6.55252I	0
b = 0.904591 + 0.748202I		
u = -0.54647 - 1.64480I		
a = 0.0641318 - 0.0863728I	3.59603 - 6.55252I	0
b = 0.904591 - 0.748202I		
u = 0.34197 + 1.69965I		
a = 0.1067440 + 0.0256339I	4.26554 + 0.00326I	0
b = 0.889409 - 0.715074I		
u = 0.34197 - 1.69965I		
a = 0.1067440 - 0.0256339I	4.26554 - 0.00326I	0
b = 0.889409 + 0.715074I		
u = -0.13035 + 1.76573I		
a = -0.0597378 - 0.0404559I	8.11017 + 3.32648I	0
b = -0.799015 - 0.032415I		
u = -0.13035 - 1.76573I		
a = -0.0597378 + 0.0404559I	8.11017 - 3.32648I	0
b = -0.799015 + 0.032415I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.62652 + 1.70416I		
a = 1.02467 - 1.15119I	4.47409 - 12.81500I	0
b = 0.788823 + 1.027640I		
u = 0.62652 - 1.70416I		
a = 1.02467 + 1.15119I	4.47409 + 12.81500I	0
b = 0.788823 - 1.027640I		
u = -0.43365 + 1.79825I		
a = 0.88940 + 1.14293I	5.25384 + 6.12703I	0
b = 0.765371 - 1.032090I		
u = -0.43365 - 1.79825I		
a = 0.88940 - 1.14293I	5.25384 - 6.12703I	0
b = 0.765371 + 1.032090I		
u = 0.32788 + 1.90698I		
a = -0.52275 + 1.62668I	11.67940 - 7.06576I	0
b = -0.300160 - 1.097060I		
u = 0.32788 - 1.90698I		
a = -0.52275 - 1.62668I	11.67940 + 7.06576I	0
b = -0.300160 + 1.097060I		
u = -0.05179 + 1.95040I		
a = -0.36069 - 1.63993I	11.94710 + 0.17151I	0
b = -0.257145 + 1.102200I		
u = -0.05179 - 1.95040I		
a = -0.36069 + 1.63993I	11.94710 - 0.17151I	0
b = -0.257145 - 1.102200I		

$$I_1^v = \langle a, \ 18v^7 - 26v^6 + \dots + 19b - 2, \ v^8 - 2v^7 + v^6 - 4v^5 + 6v^4 + v^3 - 2v^2 - v + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.947368v^{7} + 1.36842v^{6} + \cdots - 0.315789v + 0.105263 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.26316v^{7} + 2.15789v^{6} + \cdots - 0.421053v + 1.47368 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.368421v^{7} - 0.421053v^{6} + \cdots + 0.789474v - 1.26316 \\ 0.263158v^{7} - 0.157895v^{6} + \cdots + 2.42105v - 0.473684 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0526316v^{7} + 0.368421v^{6} + \cdots + 0.684211v - 0.894737 \\ 0.263158v^{7} - 0.157895v^{6} + \cdots + 2.42105v - 0.473684 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.26316v^{7} - 2.15789v^{6} + \cdots + 0.421053v - 1.47368 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.947368v^{7} + 1.36842v^{6} + \cdots - 0.315789v + 0.105263 \\ -0.947368v^{7} + 1.36842v^{6} + \cdots - 0.315789v + 0.105263 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.789474v^{7} + 1.47368v^{6} + \cdots - 0.263158v + 2.42105 \\ -1.73684v^{7} + 2.84211v^{6} + \cdots - 0.578947v + 2.52632 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} 1.26316v^{7} - 2.15789v^{6} + \cdots + 0.421053v - 0.473684 \\ 0.473684v^{7} - 0.684211v^{6} + \cdots + 0.157895v + 1.94737 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{23}{19}v^7 - \frac{9}{19}v^6 + \frac{67}{19}v^5 + \frac{49}{19}v^4 + \frac{94}{19}v^3 - \frac{298}{19}v^2 + \frac{43}{19}v + \frac{11}{19}v^3 + \frac{11}{19}v^4 + \frac{11}{19}v^3 + \frac{11}{19}v^4 + \frac{11}{19}v^4 + \frac{11}{19}v^3 + \frac{11}{19}v^4 +$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$(u^2 - u + 1)^4$
c_2	$(u^2+u+1)^4$
c_4, c_7	u^8
<i>C</i> ₆	$(u^4 + u^3 + u^2 + 1)^2$
c_8, c_{11}, c_{12}	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$
c_9	$(u^4 + u^3 + 3u^2 + 2u + 1)^2$
c_{10}	$(u^4 - u^3 + u^2 + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5	$(y^2 + y + 1)^4$
c_4, c_7	y^8
c_6,c_{10}	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$
c_8, c_9, c_{11} c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.576953 + 0.283088I		
a = 0	-6.79074 - 1.13408I	-2.09237 - 2.48762I
b = -0.851808 - 0.911292I		
v = 0.576953 - 0.283088I		
a = 0	-6.79074 + 1.13408I	-2.09237 + 2.48762I
b = -0.851808 + 0.911292I		
v = -0.533637 + 0.358112I		
a = 0	-6.79074 - 5.19385I	-2.75261 + 7.88731I
b = -0.851808 - 0.911292I		
v = -0.533637 - 0.358112I		
a = 0	-6.79074 + 5.19385I	-2.75261 - 7.88731I
b = -0.851808 + 0.911292I		
v = 1.54112 + 0.21492I		
a = 0	0.211005 - 0.614778I	2.55284 - 0.89520I
b = 0.351808 - 0.720342I		
v = 1.54112 - 0.21492I		
a = 0	0.211005 + 0.614778I	2.55284 + 0.89520I
b = 0.351808 + 0.720342I		
v = -0.58443 + 1.44211I		
a = 0	0.21101 - 3.44499I	-2.20786 + 6.97475I
b = 0.351808 + 0.720342I		
v = -0.58443 - 1.44211I		
a = 0	0.21101 + 3.44499I	-2.20786 - 6.97475I
b = 0.351808 - 0.720342I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^4)(u^{38} + 9u^{37} + \dots + 15u + 1)$
c_2	$((u^2 + u + 1)^4)(u^{38} + 5u^{37} + \dots + 3u + 1)$
c_3	$((u^2 - u + 1)^4)(u^{38} - 5u^{37} + \dots + 90147u + 15489)$
c_4, c_7	$u^8(u^{38} - u^{37} + \dots + 128u + 256)$
<i>C</i> ₅	$((u^2 - u + 1)^4)(u^{38} + 5u^{37} + \dots + 3u + 1)$
<i>c</i> ₆	$((u^4 + u^3 + u^2 + 1)^2)(u^{38} + 3u^{37} + \dots - u + 1)$
c ₈	$((u^4 - u^3 + 3u^2 - 2u + 1)^2)(u^{38} + 3u^{37} + \dots + u + 1)$
<i>c</i> ₉	$((u^4 + u^3 + 3u^2 + 2u + 1)^2)(u^{38} - 11u^{37} + \dots - 11u + 1)$
c_{10}	$((u^4 - u^3 + u^2 + 1)^2)(u^{38} + 3u^{37} + \dots - u + 1)$
c_{11}, c_{12}	$((u^4 - u^3 + 3u^2 - 2u + 1)^2)(u^{38} - 11u^{37} + \dots - 11u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^4)(y^{38} + 45y^{37} + \dots + 91y + 1)$
c_2, c_5	$((y^2 + y + 1)^4)(y^{38} + 9y^{37} + \dots + 15y + 1)$
c_3	$((y^2 + y + 1)^4)(y^{38} + 81y^{37} + \dots + 7.55656 \times 10^9 y + 2.39909 \times 10^8)$
c_4, c_7	$y^8(y^{38} + 45y^{37} + \dots + 344064y + 65536)$
c_6, c_{10}	$((y^4 + y^3 + 3y^2 + 2y + 1)^2)(y^{38} + 11y^{37} + \dots + 11y + 1)$
c_8	$((y^4 + 5y^3 + 7y^2 + 2y + 1)^2)(y^{38} - 65y^{37} + \dots + 11y + 1)$
c_9, c_{11}, c_{12}	$((y^4 + 5y^3 + 7y^2 + 2y + 1)^2)(y^{38} + 35y^{37} + \dots + 131y + 1)$