Developing a stock assessment model for Main Hawaiian Islands Yellowfin Tuna Fishery

John Sibert, Retirement-failure Consulting

sibert@hawaii.edu

Model Assumptions

- 1. The Pacific Ocean is divided into two regions: MHI (1) and elsewhere (2).
- 2. Fish immigrate from region 2 to region 1, and mix completely.
- 3. Fish emigrate from region 1 to region 2, but have no effect on region 2 dynamics.
- 4. Immigration into region 1 is dependent on biomass in region 2 estimated by some other model, e.g., MULTIFAN-CL or SEAPODYM.
- 5. The fishery comprises several gear types or fleets, each characterized by a distinct fishing mortality time series.
- 6. Ninety percent of the fish resident in region 1 are assumed to be locally spawned and reared.

Combined HDAR and NOAA Catch Time Series

Model Characteristics

1. State-space model; separates process error from observation error.

$$\alpha_t = T(\alpha_{t-1}) + \eta_t \tag{1}$$

$$x_t = O(\alpha_t) + \varepsilon_t \tag{2}$$

- 2. Fishing mortality as random walk: $\log F_{g,t} = \log F_{g,t-1} + \xi_t$; $\xi_t \sim N(0, \sigma_{\xi}^2)$
- 3. Transition equation: Coupled logistic simultaneous ordinary differential equation (4)
- 4. Observation equation: robust likelihood (8)
- 5. "Off-line" coupling to MULTIFAN-CL region 2 biomass from 2014 assessment (16)
- 6. Bayesian prior on proportion local: $L(p) \sim N(L(\bar{p}), \sigma_{L(p)}^2)$ (20)
- 7. Model states are random effects

Model Parameters

Variable	Definition
\overline{r}	Instantaneous growth rate (y^{-1})
K	Asymptotic biomass (mt)
T_{12}	Emigration rate (y^{-1})
T_{21}^{*}	Immigration rate (y^{-1})
q	Nonlinear mortality apportionment factor
σ_{η}	Population growth standard deviation
σ_{ξ}	Fishing mortality random walk standard deviation
$\sigma_arepsilon$	Observation error standard deviation
$a_g g = 1 \dots n$	Observation error contaminated by fat-tailed distribution
$ar{p}$	Mean proportion local
$\sigma_{L(p)}$	Standard deviation logit transformed \bar{p}

Stability Considerations — Phase Plane Analysis

Simulated Populations

Simulated Populations with Process Error

Estimation results: biomass

Estimation results: fishery

Estimation results: parameter values

Variable	Initial Value	Final Value
\overline{r}	1.20	1.30
K	150,000	151,000
T_{12}	0.01	0.00999
T_{21}^*	0.002	0.00199
q	0.54	0.525
σ_{η}	0.1	0.0880
σ_{ξ}	0.3	0.700
$\sigma_arepsilon$	1.0	0.0913
$a_g g = 1, \dots, 5$	0.07	
$ar{p}$	0.9	
$\sigma_{ar{p}}$	0.8	

Simulation: 100 X Fishing Mortality

Estimation: 100 X Fishing Mortality

Variable	Initial Value	Final Value
\overline{r}	1.20	0.190
K	200,000	1,030,000
T_{12}	0.01	0.00524
T_{21}^*	0.02	0.00128
q	0.54	0.511
σ_{η}	0.1	0.00231
σ_{ξ}	0.3	0.704
$\sigma_arepsilon$	1.0	0.367
$a_g g = 1, \dots, 5$	0.07	
$ar{p}$	0.9	
$\sigma_{ar{p}}$	0.8	

Conclusions

What works:

- Random walk representation of fishing mortality
- Bayesian constraint on \bar{p}
- Off-line coupling
- Robust likelihood
- State-space framework

Not working:

- Estimation procedure does not terminate normally
- Numerical instability in numerical approximation

Issues:

- Convergence, or lack thereof.
- Is $\bar{p} = 0.9$ since 1952?
- If so, are two subpopulations necessary?
- Intra annual variability caused by abundance, participation, reporting, weather, ...?
- Recreational data? How to represent errors in observation equation?
- Should an age-structured model be developed?
- What are appropriate reference points for a stock segment?
- Use MFCL estimates as abundance index?

Back to the drawing board ...

Biomass Estimates for MFCL Region 2

Logistic Dynamics

$$\frac{d}{dt}(N_{1,1} + N_{2,1}) = (N_{1,1} + N_{2,1}) \left[r \left(1 - \frac{N_{1,1} + N_{2,1}}{K} \right) - F - T_{12} \right] + T_{21}$$
 (3)

$$\frac{dN_{1,1}}{dt} = N_{1,1} \left[r \left(1 - \frac{N_{1,1}}{K} \right) - F - T_{12} \right] - (1 - q) 2r \frac{N_{1,1} N_{2,1}}{K}$$

$$\frac{dN_{2,1}}{dt} = N_{2,1} \left[r \left(1 - \frac{N_{2,1}}{K} \right) - F - T_{12} \right] - q 2r \frac{N_{1,1} N_{2,1}}{K} + T_{21}$$
(4)

State-space Transition Equation

$$\alpha_t = T(\alpha_{t-1}) + \eta_t \tag{5}$$

$$\log N_{1,1_t} = \log N_{1,1_{t-\Delta t}} + \Delta t \left(r \left(1 - \frac{N_{1,1_{t-\Delta t}}}{K} \right) - \sum_{g=1}^n F_{g,t-\Delta t} - T_{12} - (1-q) 2r \frac{N_{2,1_{t-\Delta t}}}{K} \right) + \eta_t$$
(6)

$$\log N_{2,1_t} = \log N_{2,1_{t-\Delta t}} + \Delta t \left(r \left(1 - \frac{N_{2,1_{t-\Delta t}}}{K} \right) - \sum_{g=1}^n F_{g,t-\Delta t} - T_{12} - q 2r \frac{N_{1,1_{t-\Delta t}}}{K} + \frac{T_{21_{t-\Delta t}}}{N_{2,1_{t-\Delta t}}} \right) + \eta_t$$

State-space Observation Equation

$$x_t = O(\alpha_t) + \varepsilon_t \tag{7}$$

$$\log C_{g,t} = \log \left(F_{g,t} \cdot \left(\frac{N_{1,1_{t-\Delta t}} + N_{1,1_t}}{2} + \frac{N_{2,1_{t-\Delta t}} + N_{2,1_t}}{2} \right) \right) + \varepsilon_t \tag{8}$$

$$\varepsilon_t \sim (1 - a_g) * N(0, \sigma_{\varepsilon}^2) + a_g * C(0, \sigma_{\varepsilon}^2); \quad a_g = 0.07$$
 (9)

Proportion Local Prior

