

S. Y. B. Tech. (Electrical and Computer Engineering)

Semester: IV Subject: Electrical Circuit Analysis

Class:

Name: Shreering Mhatre

Roll No: 29 Batch: A2

Experiment No: 05

Name of the Experiment: Finding even and odd part of the signal using MATLAB.

Performed on: 27/9/22

Submitted on: 4/10/22

Marks	Teacher's with Date	Signature

Aim: To find even and odd part of the signal.

Prerequisite: Knowledge of signal generation using MATLAB.

Theory:

One of characteristics of signal is symmetry that may be useful for signal analysis. Even signals are symmetric around vertical axis, and Odd signals are symmetric about origin.

Even Signal: A signal is referred to as an even if it is identical to its time-reversed counterparts, that is, it is symmetrical about vertical axis.

$$x(t) = x(-t)$$
; for all t ... continuous time signal $x(n) = x(-n)$; for all n ... discrete time signal

To find out the even part,

$$X_{e}(t) = \frac{x(t) + x(-t)}{2}$$

Odd Signal: An odd signal must be 0 at t=0, in other words, odd signal passes through the origin.

x(-t) = -x(t); for all t ... continuous time signal x(-n) = -x(n); for all n ... discrete time signal

To find out the odd part,

$$\mathbf{X}_{0}(t) = \frac{x(t) - x(-t)}{2}$$

Procedure:

- 1. Open MATLAB
- 2. Open new M-file
- 3. Generate a sine waveforms of any particular two frequency.
- 4. Generate a cos waveforms of the same frequency as above.
- 5. Add calculation of point 3 and 4 in a variable.
- 6. Generate sine and cos wave from point 3 and 5 for negative time.
- 7. Add the negative time sine and cos wave form point 6 and save in different variable.
- Find out even and odd part of above composite waveforms using the formulae given in the theory.
- 9. Display all the results from point 3 onwards using function "subplot."
- 10. Save in current directory
- 11. Compile and Run the program
- 12. For the output see command Figure window

Activity:

Attach screenshots of above activity.

Post Lab Questions:

- 1. List out properties of even signals.
- 2. List out properties of odd signals.

×

0

	* 9	est Lab Questions.
8	1)	List out properties of even signals
		The Proporties of even signals are-
	0	The oven signals are symmetrical about the
	6	vertical axis. The value of an even signal at time (t) is some
•		as at time (-t).
	3	The even signal is identical with its reflection
		about the origin.
	4	Area under the even signal is two time of its
		one side avea.
Q	2)	List out properties of odd signals.
Ŭ		as our properties or our signation
	\rightarrow	The Properties of odd signals are-
•	0	The odd signal is antisymmetric about the
		onigin.
	2	The value of odd signal at time (t) is negative
		of its value at time (-t) for all bie.
	(2)	The odd signal must necessarily be zero at
		Hime $t=0$ to hold $x(0) = -x(0)$.
	A	Area under the odd signal is always zero.
		Jun 22
Sundaran	0	FOR EDUCATIONAL USE
Jundaran		