Predicting Breast Cancer Using Machine Learning

Classification Project
Flora Xinru Cheng
October 30, 2019

Source: National Breast Cancer Foundation

breast cancer in her lifetime.

Early detection survival rate is 99%

Early detection survival rate is 99%

Objective

Objective

1~2 weeks

Objective

1~2 weeks

Improve diagnosis accuracy and speed with machine learning

Data

Data

+ Source: UCI, Breast Cancer Wisconsin Diagnostic Data Set

Data

- * Source: UCI, Breast Cancer Wisconsin Diagnostic Data Set
- + 569 observations, 10 calculated features (area, symmetry, concavity...)

Data

- * Source: UCI, Breast Cancer Wisconsin Diagnostic Data Set
- * 569 observations, 10 calculated features (area, symmetry, concavity...)
- + Target feature: Diagnosis—Malignant or Benign

Data

- * Source: UCI, Breast Cancer Wisconsin Diagnostic Data Set
- * 569 observations, 10 calculated features (area, symmetry, concavity...)
- * Target feature: Diagnosis—Malignant or Benign

Models

Data

- * Source: UCI, Breast Cancer Wisconsin Diagnostic Data Set
- * 569 observations, 10 calculated features (area, symmetry, concavity...)
- * Target feature: Diagnosis—Malignant or Benign

Models

+ 9 classification models in SciKit-Learn

Data

- * Source: UCI, Breast Cancer Wisconsin Diagnostic Data Set
- * 569 observations, 10 calculated features (area, symmetry, concavity...)
- * Target feature: Diagnosis—Malignant or Benign

Models

- + 9 classification models in SciKit-Learn
 - + Top 4: Logistic Regression, Gradient Boosting, Random Forest, SVM

Results

* Improved diagnosis accuracy and speed with machine learning

- * Improved diagnosis accuracy and speed with machine learning
- + Very good results (human accuracy ~ 80%)

- * Improved diagnosis accuracy and speed with machine learning
- + Very good results (human accuracy ~ 80%)
 - + 95% prediction accuracy for malignant tumors

- + Improved diagnosis accuracy and speed with machine learning
- + Very good results (human accuracy ~ 80%)
 - + 95% prediction accuracy for malignant tumors

Future Work

- * Improved diagnosis accuracy and speed with machine learning
- + Very good results (human accuracy ~ 80%)
 - + 95% prediction accuracy for malignant tumors

Future Work

+ Image classification — "biopsy to diagnosis"

Test set, cross-validation over 5 folds

Normalization: divide prediction counts by the sum of each row

Using 10 features

LR AUC score validation set 0.9884

Comparison of the three models with highest roc-auc scores for validation set, with naïve model at 0.5 (dashed line)

After feature engineering: Validation set 0.9909

Test set 0.9870

Area under the curve for Logistic Regression on test data set after feature engineering, with naïve model at 0.5 (dashed line)

Model	Metric	Top features	Weights (not normalized, 4 decimals)
LogisticRegression	coefficient	area	3.8253
		concave points	2.7111
		texture	1.6457
SVM - linear SVC		area	2.4970
	coefficient	concave points	1.2092
		texture	1.0927
RandomForest	feature	concave points	0.4975
	importance	area	0.3071
		compactness	0.1300

Table showing the most impactful features for predicting diagnosis, for the models with the top roc-auc scores, after feature engineering. Area and concave points are the two most important features for our prediction.

Multicollinearity

* Many features are strongly correlated (area, radius, perimeter; concavity and concave points)

- * Many features are strongly correlated (area, radius, perimeter; concavity and concave points)
 - + leads to misleading feature importance values

- * Many features are strongly correlated (area, radius, perimeter; concavity and concave points)
 - + leads to misleading feature importance values
- + Decided to feature engineer and re-ran the models with fewer features

- * Many features are strongly correlated (area, radius, perimeter; concavity and concave points)
 - + leads to misleading feature importance values
- * Decided to feature engineer and re-ran the models with fewer features
- * The metric for model selection did not vary much before and after feature engineering, suggesting those features did not have a big impact on our predictions

AUC score for LR on validation set (10 features): 0.9884 LR on test set (after feature engineering, 5 features): 0.9870

- * Many features are strongly correlated (area, radius, perimeter; concavity and concave points)
 - + leads to misleading feature importance values
- * Decided to feature engineer and re-ran the models with fewer features
- * The metric for model selection did not vary much before and after feature engineering, suggesting those features did not have a big impact on our predictions