Službeni šalabahter za kolegij Automatsko upravljanje

1. Tablica Laplaceove transformacije:

f(t)	F(s)
$t^n e^{\lambda t}$	$\frac{n!}{(s-\lambda)^{n+1}}$
$e^{\sigma t}\sin(\omega t)$	$\frac{\omega}{(s-\sigma)^2+\omega^2}$
$e^{\sigma t}\cos(\omega t)$	$\frac{s-\sigma}{(s-\sigma)^2+\omega^2}$
$t^n f(t)$	$(-1)^n \frac{\mathrm{d}^n F(s)}{\mathrm{d} s^n}$
$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n}$	$s^n F(s) - s^{n-1} f(0^-) - s^{n-2} f'(0^-) - \dots - f^{(n-1)}(0^-)$
$\int_0^t f(\tau)d\tau$	$\frac{F(s)}{s}$
$f(t-a)S(t-a), \ a>0$	$e^{-as}F(s)$
$\frac{1}{a}f(\frac{t}{a}), \ a > 0$	F(as)

2. Tablica $\mathcal L$ i $\mathcal Z\text{-transformacija:}$

f(t)	F(s)	f(kT)	F(z)
$\delta(t)$	1	$ \begin{array}{ccc} 1, & k = 0 \\ 0, & k \neq 0 \end{array} $	1
1	$\frac{1}{s}$	1	$\frac{1}{1-z^{-1}}$
t	$\frac{1}{s^2}$	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
e^{-at}	$\frac{1}{s+a}$	e^{-akT}	$\frac{1}{1 - e^{-aT}z^{-1}}$
te^{-at}	$\frac{1}{(s+a)^2}$	kTe^{-akT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	$1 - e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
$\sin at$	$\frac{a}{s^2+a^2}$	$\sin akT$	$\frac{(\sin aT)z^{-1}}{1 - (2\cos aT)z^{-1} + z^{-2}}$
$\cos at$	$\frac{s}{s^2+a^2}$	$\cos akT$	$\frac{1 - (\cos aT)z^{-1}}{1 - (2\cos aT)z^{-1} + z^{-2}}$
$e^{-at}\sin bt$	$\frac{b}{(s+a)^2+b^2}$	$e^{-akT}\sin bkT$	$\frac{e^{-aT}(\sin bT)z^{-1}}{1-2e^{-aT}(\cos bT)z^{-1}+e^{-2aT}z^{-2}}$
$e^{-at}\cos bt$	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-akT}\cos bkT$	$\frac{1 - z^{-1}e^{-aT}\cos bT}{1 - 2e^{-aT}(\cos bT)z^{-1} + e^{-2aT}z^{-2}}$

3. Hurwitzov kriterij stabilnosti:

$$P(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0,$$

Uz $a_n > 0$:

• $a_i > 0, \forall i;$

• sljedećih n-1 determinanti su pozitivne:

$$D_{1} = a_{1} > 0,$$

$$D_{2} = \begin{vmatrix} a_{1} & a_{0} \\ a_{3} & a_{2} \end{vmatrix} > 0,$$

$$D_{3} = \begin{vmatrix} a_{1} & a_{0} & 0 \\ a_{3} & a_{2} & a_{1} \\ a_{5} & a_{4} & a_{3} \end{vmatrix} > 0,$$

:

$$D_{n-1} = \begin{vmatrix} a_1 & a_0 & \dots & 0 \\ a_3 & a_2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n-1} \end{vmatrix} > 0.$$

4. Veza karakterističnih veličina u vremenskom području s karakterističnim veličinama u frekvencijskom području:

$$t_{m} = \frac{\pi}{\omega_{n}\sqrt{1-\zeta^{2}}}$$

$$\sigma_{m}[\%] = 100e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^{2}}}}$$

$$t_{1\%} = \frac{4.6}{\zeta\omega_{n}}$$

$$t_{r} = \frac{1.8}{\omega_{n}}$$

$$\gamma[\circ] \approx 70 - \sigma_{m}[\%], \text{ za } 0.3 < \zeta < 0.8$$

$$\omega_{c} \approx \frac{3}{t_{m}}, \text{ za } 0.3 < \zeta < 0.8$$

$$\omega_{r} = \omega_{n}\sqrt{1-2\zeta^{2}}$$

5. Ziegler-Nichols:

ZN1 - metoda ruba stabilnosti

ZN2 - metoda prijelazne funkcije

varijanta	tip regulatora	K_R	T_{I}	T_D
ZN1	Р	$0.5K_{Rkr}$	_	-
ZN1	PI	$0.45K_{Rkr}$	$0.85T_{kr}$	_
ZN1	PID	$0.6K_{Rkr}$	$0.5T_{kr}$	$0.12T_{kr}$
ZN2	Р	$\frac{t_a}{t_z K_s}$	_	_
ZN2	PI	$0.9 \frac{t_a}{t_z K_s}$	$3.33t_z$	ı
ZN2	PID	$1.2 \frac{t_a}{t_z K_s}$	$2t_z$	$0.5t_z$

6. Preporuke za odabir perioda uzorkovanja:

$$T = (0.17 \div 0.34) \frac{1}{\omega_c}$$
$$T = (\frac{1}{10} \div \frac{1}{4}) t_r$$

2

7. Postupci diskretizacije:

Postupak diskretizacije	Provedba		
Očuvanje svojstava kontinuirane težinske funkcije	$G(z) = \mathcal{Z}\{G(s)\}$		
ZOH	$G(z) = (1 - z^{-1})\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$		
Tustinov postupak	$s = \frac{2}{T} \frac{z - 1}{z + 1}$		
Eulerova unazadna diferencija	$s = \frac{z - 1}{Tz}$		
Eulerova unaprijedna diferencija	$s = \frac{z - 1}{T}$		

8. Juryjev kriterij stabilnosti:

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

Redak	z^0	z^1	z^2		z^{n-k}		z^{n-2}	z^{n-1}	z^n
1	a_0	a_1	a_2		a_{n-k}		a_{n-2}	a_{n-1}	a_n
2	a_n	a_{n-1}	a_{n-2}		a_k		a_2	a_1	a_0
3	b_0	b_1	b_2		b_{n-k}		b_{n-2}	b_{n-1}	
4	b_{n-1}	b_{n-2}	b_{n-3}		b_{k-1}		b_1	b_0	
5	c_0	c_1	c_2		c_{n-k}		c_{n-2}		<u></u>
6	c_{n-2}	c_{n-3}	c_{n-4}		c_{k-2}		c_0		
:				:		:			
2n - 5	p_0	p_1	p_2	p_3					
2n-4	p_3	p_2	p_1	p_0					
2n - 3	q_0	q_1	q_2						

$$b_{k} = \begin{vmatrix} a_{0} & a_{n-k} \\ a_{n} & a_{k} \end{vmatrix}, \quad c_{k} = \begin{vmatrix} b_{0} & b_{n-k-1} \\ b_{n-1} & b_{k} \end{vmatrix}, \quad d_{k} = \begin{vmatrix} c_{0} & c_{n-k-2} \\ c_{n-2} & c_{k} \end{vmatrix},$$

$$\vdots$$

$$q_{0} = \begin{vmatrix} p_{0} & p_{3} \\ p_{3} & p_{0} \end{vmatrix}, \quad q_{1} = \begin{vmatrix} p_{0} & p_{2} \\ p_{3} & p_{1} \end{vmatrix}, \quad q_{2} = \begin{vmatrix} p_{0} & p_{1} \\ p_{3} & p_{2} \end{vmatrix}$$

Nužni i dovoljni uvjeti stabilnosti:

- Uvjet a): f(1) > 0, $(-1)^n f(-1) > 0$
- Uvjet b) : $|a_0| < |a_n|$, $|b_0| > |b_{n-1}|$, $|c_0| > |c_{n-2}|$, $|d_0| > |d_{n-3}|$, ... $|q_0| > |q_2|$

3

9. Bilinearna transformacija: $z = \frac{1+w}{1-w}$

10. Modificirana bilinearna transformacija:
$$z = \frac{1 + \Omega \frac{T}{2}}{1 - \Omega \frac{T}{2}}$$