Feb-20 Lecture

Putting Some of it Together

- Continue to probe the inter-workings of ISPs
 - Routing and peering
 - Route stability
 - IPSec then oh so briefly on firewalls
- We'll talk about additional services like content delivery next week

ISP/Core Impacts/Affects on TCP

 TCP behavior is heavily dependent on latency, jitter, and loss

ISP/Core Impacts/Affects on TCP

- TCP behavior is heavily dependent on latency, jitter, and loss
 - Latency: affects how quickly TCP gets through a "round" and therefore, add to its cong window
 - Jitter: also affects how responsive/accurate TCP can be in its timeout
 - Loss: more dramatic affect on cong window, but depends on the type of cong control strategy

The Source of Latency

And it gets clogged!
This is latency!

- Using Congestion Control and ACK clocking TCP will:
 - Calculate a SND.WND size that sends enough packets to keep the network busy for an RTT

- Using Congestion Control and ACK clocking TCP will:
 - Calculate a SND.WND size that sends enough packets to keep the network busy for an RTT

- Using Congestion Control and ACK clocking TCP will:
 - Calculate a SND.WND size that sends enough packets to keep the network busy for an RTT

- By the time the first ACK arrives at the sender...
 - The sender queue will have drained
 - That's the goal at least

- When packet loss does occur, it happens in one of two places:
 - On the ingress (packets arrive faster than can be processed)
 - On the egress (too many packets trying to go the same place(s))

What Happens Next?

- Packets pile up at the slowest device (queue)
 - All the other queues are faster and will drain
 - Queue management must be applied at the slowest queue
- Why?

What is Bufferbloat?

- Memory is cheap
 - If packets are being lost on ingress/egress, just add more memory/buffer
 - ...and more and more
- What are the consequences?

How To Solve Bufferbloat?

- Instead of trying to prevent packet loss, allow it to happen
 - TCP is good at adjusting
- Better yet, use packet loss to "signal" to TCP that congestion is occurring

- When queue grows beyond "low water mark" start to drop packets with Prob=p (low p)
 - Can drop or just mark them

- As queue fills, become more aggressive on dropping probability
- When queue is full, nothing left to do, but drop everything

- As always, there's a challenge!
 - What to set queue thresholds to?
 - What to set p values at?

The answer is based on the Bandwidth Delay Product

Bandwidth Delay Product (BDP)

- TCP assumptions:
 - Queue size = BDP
 - Highest bandwidth
 - Lowest latency
- What is BDP?
 - Bandwidth = The output rate of the slowest device in the path
 - Delay = Round Trip Time (RTT)

Queue Size Equations

```
    Queue Size = Bandwidth * Delay
    Bytes = bytes / sec * sec
```

Queue Size Equations

- Queue Size = Bandwidth * Delay
 - Bytes = bytes / sec * sec
- Q = BDP
 - If $Q = BDP \rightarrow full bandwidth, lowest latency$
 - If Q < BDP → lose bandwidth, lowest latency</p>
 - If Q > BDP → full bandwidth, high latency (Bufferbloat)
- However, we do not know the bandwidth or the delay in advance.
 - So how do we set the queue size?

How do you configure RED?

```
Yes, but tuning is supposed to be
                                          Min
                                                       = BDP
   difficult...
                                          Max
                                                       = 2 * Min
                                          Burst = (min+min+max) / (3 * avpkt)
    Red parameters:
1.
                                      4.
                                          Limit
                                                       = 8 * Max
    Bandwidth
                         2 Mbps
2.
3.
    Delay
                         200 ms
                                      5.
                                                       50,000 Bytes
                                          Min
    Avpkt
                         1000 bytes
4.
                                                       100,000 Bytes
                                          Max
5.
    Limit
                8 * max
                                      7.
                                                       67 segments
                                          Burst
                                                       800,000 Bytes
                                      8.
                                          Limit
```

 Just set some "reasonable" values and see how it works

Some Experiments

- When you plug in numbers, the queue size is a simple calculation (and fixed)
- Q = BD
- Q = 2 Mbps * 200 ms
 - -Q = 400,000 bits (or 50 kB)
- But what happens if the selected queue size isn't right?

Some Experiments

- When you plug in numbers, the queue size is a simple calculation (and fixed)
- Q = BD
- Q = 2 Mbps * 200 ms
 - -Q = 400,000 bits (or 50 kB)
- But what happens if the selected queue size isn't right?

Queue Size Equations

- Q = BDP
 - If Q = BDP → full bandwidth, lowest latency
 - If Q < BDP → lose bandwidth, lowest latency</p>
 - Queue is too small and more packets are dropped than it should be
 - TCP responds by reducing how much data is sent
 - If Q > BDP → full bandwidth, high latency (Bufferbloat)
 - Queue is too large
 - TCP doesn't see any drops
 - But RTT grows to unreasonable lengths

Next Steps

- RED was one of the first solutions
- Many others since RED
- They create complex mathematical models that can use network information to estimate queue size
 - Packet pairs, ping times, statistical distributions

The Evolution Continues

- Where once ISPs were just conduits for traffic, now there is much more engineering
- Early efforts were abysmal failures
 - See, e.g., integrated services (int-serv), the Resource Reservation Protocol (RSVP), and ATM
- More recent efforts have taken lessons from the past and been less processing-intensive
 - MultiProtocol Label Switching (MPLS)
 - Now Software Defined Networking