Кластерный анализ

Наумов Д.А., доц. каф. КТ

Экспертные системы и искусственный интеллект, 2019

Содержание лекции

- 🚺 Кластерный анализ. Основные понятия
- Иерархическая кластеризация
- Оправнити в правити в правити прати пр
- Алгоритмы нечеткой кластеризации
- 🚺 Примеры проведения кластерного анализа
 - Пример 1
 - Пример 2

Кластеризация

Задача кластеризации

частично сгруппированные точки на плоскости или в пространстве большей размерности разбиваются на близкорасположенные группы.

Кластеризация

Figure 12 An example of a taxonomic tree (from Sokal, 1966).

Задачи кластеризации

- лежат в основе анализа данных (data mining);
 - анализ покупок в супермаркетах;
 - разделение документов на жанры и тематики;
 - контекстная рекалама и анализ предпочтений пользователя.
- распознование образов: получение границ областей и выделение общих принаков;
- биоинформатика: анализ длинных последовательностей атомов в белках
 - разбиение генов на кластеры;
 - выделение генов на группы по функциональной схожести;
 - выделение генов, отвечающие за биологическое свойство.
- маркетологические исследования для сегментации рынка;
- анализ социальныз сетей;

Кластеризация

Кластеризация - типичная задача статистического анализа

задача классификации объектов одной природы в несколько групп так, чтобы объекта одной группы обладали одним и тем же свойством. Под свойством понимается близоть друг к другу относительно выбранной метрики.

Сложность задачи кластеризации:

- высокая размерность реальных задач (сотни и тысячи);
- необхождим компромис: число точек и размерность пространства.

Кластерный анализ в теории

Переменная 1

Переменная 2

0000

Кластерный анализ на практике

Кластеризация

Пусть дан набор тестовых примеров

$$X = \{x_1, \dots, x_n\}$$

и функция расстояния между ними

$$\rho: X \times X \to \mathbb{R}$$
.

Требуется разбить X на непересекающиеся подмножества, которые, собственно, и называются кластерами, так, чтобы каждое подмножество состояло из близких объектов, а объекты разных подмножеств существенно различались.

- что такое "близкие объекты"?
- что такое "существенно различающиеся объекты"?

Меры близости между объектами

Figure 15.2 Different measures of distance between two points: (a) Euclidean distance, (b) Manhattan or city block distance

Меры близости между объектами

Figure 6 Illustration of the Euclidean distance formula.

Меры близости между объектами

Меры близости между объектами (меры подобия)

Показатели	Формулы			
Дря количественных шках				
<i>Иинейное расстояние</i>	$d_{tij} = \sum_{t=1}^m \lvert x_i^t - x_j^t \rvert$			
Евжидово расстаяния	$d_{Eij} = \left(\sum_{t=1}^{m} (x_{t}^{t} - x_{j}^{t})^{2}\right)^{1/2}$			
Квадрат вяхидово расстояние	$d_{Eij}^2 = \sum_{l=1}^m \bigl(x_i^l - x_j^l\bigr)^2$			
Обобщинное степенное расстание Минковского	$d_{p_{ij}} = \left(\sum_{t=1}^{m} \left(x_i^t - x_j^t\right)^p\right)^{1/p}$			
Расстояние Чебышева	$d_{ij} = \max_{1 \le i,j \le l} \lvert x_i - x_j \rvert$			
Расстояние городских кварталов (Манхэттенское расстояния)	$d_H(\mathbf{x}_i, \mathbf{x}_j) = \sum_{i}^k \mathbf{x}_i^t - \mathbf{x}_j^t $			

tf-idf

мера близости двух текстовых документов

Документ представляется в виде вектора из n термов с некоторыми весами. Разные подходы к анализу текстов различаются в том:

- что такое терм;
- как определять веса.

Термы

(обычно) слова, встречающиеся в документе.

Документ превращается при этом в неупорядоченный набор слов (bag of words).

Сложные структуры в качестве термов? нецелесообразно!

- нужно будет слишком много текстов,
- результат не будет существенно лучше bag-of-words подхода.

12 / 48

Для определения весов обычно используют два основных подхода:

- либо бинарный атрибут со значениями 01 (есть слово или нет слова),
- либо весовую функцию, меру tdf (term frequency inverse document frequency).

Mepa tf-idf

- была предложена в начале 1970-х годов и с тех пор активно используется в анализе текстовой информации и information retrieval;
- состоит из двух других: tf (частота терма, term frequency) и idf (обратная частота терма в документах, inverse document frequency).

Частота терма

доля числа появлений этого терма по отношению к размеру всего документа.

$$tf(t_k, d_j) = \frac{\#(t_k, d_j)}{\sum_k \#(t_k, d_j)},$$

где #(tk,dj) - число, показывающее, сколько раз терм tk встречается в документе dj.

Обратная частота терма

показывает, насколько терм вообще важен, насколько он характерен для данного массива текстов.

Чем реже встречается терм в имеющемся массиве, тем он характернее.

$$idf(t_k, d_j) = \log \frac{|D|}{\#_D t_k},$$

где где D - имеющийся набор данных, а #Dtk - количество документов из D, в которых хотя бы однажды встречается tk.

Mepa tdf для терма tk и документа dj в массиве D равна:

$$tfidf(t_k,d_j) = tf(t_k,d_j)idf(t_k,d_j) = \frac{\#(t_k,d_j)}{\sum_k \#(t_k,d_j)} \log \frac{|D|}{\#_D t_k}$$

Вектор весом можно нормализовать:

$$w_{kj} = \frac{\text{tfidf}(t_k, d_j)}{\sqrt{\sum_{s=1}^{r} (\text{tfidf}(t_k, d_j))^2}}$$

Теперь документ можно представить в виде вектора, размерность которого равна количеству термов (важно сохранять словарь не слишком большим за счет удачного выбора термов).

Расстояние между документами

Расстояние между документами - используется не простое декартово расстояние, а угол между векторами, косинусоидальная мера похожести (cosine similarity measure):

$$\theta(d_1, d_2) = \arccos \frac{d_1 \cdot d_2}{\|d_1\| \|d_2\|}$$

Кластерный анализ

КЛАСТЕРНЫЙ АНАЛИЗ

Иерархический

При маленьком количестве наблюдений

Анализ к-средних

При большом количестве наблюдений

- иерархическая кластеризация алгоритм последовательно строит кластеры из уже найденных кластеров;
- неиерархическая кластеризация алгоритм пытается распознать всю структуру сразу или строит кластеры один за другим, не разделяя и не соединяя уже выделенные кластеры.

Кластерный анализ

Иерархическая кластеризация:

- агломеративная: алгоритм начинает с индивидуальных элементов (кластеров из одного элемента), а затем последовательно объединяет их, получая требуемую структуру;
- разделительная, когда алгоритм начинает с одного кластера, содержащего все точки, а потом последовательно делит его на части.

Неиерархические методы, как правило, стремятся оптимизировать некую целевую функцию, которая описывает качество кластеризации.

- агоритмы, основанные на методах теории графов;
- алгоритм ЕМ;
- алгоритм k-средних;
- нечеткие алгоритмы.

Иерархическая кластеризация. Пусть нужно кластеризовать точки $x1, x2, \ldots, xn$ в некотором метрическом пространстве с метрикой.

- 🚺 на первом шаге мы считаем каждую точку отдельным кластером;
- ближайшие точки объединяем и далее относимся к ним как к единому кластеру.
- при итерации этого процесса получается дерево, в листьях которого отдельные точки, а в корне кластер, содержащий все точки вообще.

$\texttt{HierarchyCluster}(X = \{x_1, \dots, x_n\}):$

- 1. Инициализируем C = X, G = X.
- 2. Пока в С больше одного элемента:
 - а) Выбираем два элемента С c_1 и c_2 , расстояние между которыми минимально.
 - б) Добавляем в G вершину c_1c_2 , соединяем её с вершинами c_1 и c_2 .
 - B) $C := C \cup \{c_1c_2\} \setminus \{c_1,c_2\}.$
- 3. Выдаём G.

Расстояние между кластерами

Метод кластеризации – это способ вычисления расстояний между кластерами. Существуют следующие основные методы кластеризации:

- Межгрупповая связь (Between-groups linkage)
- Внутригрупповая связь (Within-groups linkage)
- Ближайший сосед (Nearest neighbor)
- Самый дальний сосед (Furthest neighbor)
- Центроидная кластеризация (Centroid clustering)
- Медианная кластеризация (Median clustering)
- Метод Варда (Уорда)(Ward's method)

Расстояние между кластерами

Стандартизация данных

$$Z_{ij} = \frac{X_{ij} - \bar{X}_j}{\sigma_{X_j}}$$

Z-стандартизация Из значений вычитается среднее и затем они

делятся на стандартное отклонение.

Разброс от -1 до 1 Линейным преобразованием переменных добиваются разброса значений от -1 до 1.

Разброс от 0 до 1 Линейным преобразованием переменных добиваются разброса значений от 0 до 1.

Максимум 1 Значения переменных делятся на их максимум. Среднее 1 Значения переменных делятся на их среднее.

Стандартное отклонение 1 Значения переменных делятся на стандартное

отклонение.

Расстояние между кластерами

Рис. 6.3. Виды иерархической кластеризации: a-single-link; b-complete-link

Алгоритм кластеризации на основе теории графов

Определение. Остовное дерево (spanning tree) графа $G = \langle V, E \rangle$ — это связный подграф G, содержащий все вершины G и являющийся деревом. Минимальное остовное дерево (minimal spanning tree) графа $G = \langle V, E \rangle$ с заданными на рёбрах весами $w: E \to \mathbb{R}$ — это такое остовное дерево T, что его суммарный вес не превосходит суммарного веса любого другого остовного дерева T':

$$\forall \mathsf{T}' \quad \sum_{e \in \mathsf{T}'} w(e) \geqslant \sum_{e \in \mathsf{T}} w(e).$$

- построить минимальное остовное дерево;
- ② выкидывать из него ребра максимального веса до тех пор, пока не получится нужное число кластеров.

Сколько ребер выбросим, столько кластеров получим.

Алгоритм Краскала (Kruskal)

$Kruskal(G = \langle V, E \rangle, w : E \rightarrow \mathbb{R})$:

- 1. Отсортировать рёбра G по возрастанию веса, инициализировать подграф $S \subseteq G$, $S := \emptyset$.
- 2. Для каждого ребра е в порядке возрастания веса:
 - а) если конечные точки е ещё не связаны в S, добавить е в S.
- на каждом шаге выбираем ребро с минимальным весом,
- если оно соединяет два дерева, добавляем его в остовное дерево, если нет, пропускаем.

Алгоритм Борувски (Boruvka)

$\mathtt{Boruvka}(\mathsf{G} = \langle \mathsf{V}, \mathsf{E} \rangle, w : \mathsf{E} \to \mathbb{R}):$

- Инициализируем список из п деревьев L, в каждом дереве по одной вершине.
- 2. Пока в L больше одного дерева:
 - а) для каждого $T \in L$ найти ребро минимального веса, соединяющее $T \in G \setminus T$;
 - б) добавить все эти рёбра к минимальному остовному дереву;
 - в) объединить пары пересекающихся деревьев в L (размер L при этом уменьшается вдвое).
- можно строить минимальное остовное дерево, начав с одной вершины и добавляя ребра минимального веса, пока не покроем весь граф (алгоритм Прима, Prim's algorithm);
- ② будем делать то же самое, но во всех вершинах одновременно (распараллелим этот процесс).

Алгоритм k-средних (k-means)

- инициализировать центры кластеров каким-нибудь начальным разбиением;
- классифицировать точки по ближайшему к ним центру кластера;
- перевычислить каждый из центров;
- если ничего не изменилось, остановиться, если изменилось повторить.

kMeans(X, |C|):

1. Инициализировать центры |C| кластеров:

$$\mu_1, \ldots, \mu_{|C|}.$$

- Пока принадлежность кластерам не перестанет изменяться:
 - а) определить принадлежность x_i к кластерам:

$$clust_i := argmin_{c \in C} \rho(x_i, \mu_c);$$

б) определить новое положение центров:

$$\mu_c := \frac{\sum_{\text{clust}_i = c} f_j(x_i)}{\sum_{\text{clust}_i = c} 1}.$$

Алгоритм k-средних (k-means)

Сначала определяется центр кластера, а затем группируют все объекты в пределах заданного от центра порогового значения.

Недостатки:

- Чувствительность к выбросам
- Необходимо заранее задавать количество кластеров, а не как в иерархическом анализе, получать это в качестве результата

Проблему с выбором числа кластеров можно преодолеть проведением иерархического анализа со случайно отобранной выборкой наблюдений и, таким образом, определить оптимальное количество кластеров.

Достоинства:

- Простота использования
- В качестве метрики используется Евклидово расстояние
- Возможность наглядной интерпретации кластеров с использованием графика «Средних значений в кластерах»

Пример некорретной кластеризации

Алгоритмы нечеткой кластеризации

Мера принадлежности кластеру - вещественное число из [0,1], и точки на краю кластера sменьше принадлежат \ddot{i} кластеру, чем в центре. Будем обозначать принадлежность кластеру $c \in C$ через $u_c(x)$. Меры принадлежности обычно выбирают так, чтобы

$$\forall x \ u_c(x) \geqslant 0 \quad \sum_{c \in C} u_c(x) = 1$$

Нечеткие алгоритмы кластеризации (одним из которых является алгоритм с-средних) минимизируют ту или иную меру ошибки. Часто применяется мера

$$E(C) = \sum_{c \in C} \sum_{x \in X} u_c^{m}(x) \rho^2 \left(x, Center_c \right)$$

где m - некоторый вещественный параметр.

Алгоритмы нечеткой кластеризации

cMeans(X, |C|):

- 1. Случайно выбрать коэффициенты $\mathfrak{u}_c(x)$ для всех $x\in X$ и $c\in C$.
- 2. Пока алгоритм не сойдётся:
 - а) Для всех $c \in C$

$$\label{eq:Centercondition} \mathsf{Center}_c := \frac{\sum_{x \in X} u_c(x)^m x}{\sum_{x \in X} u_c(x)^m}.$$

б) Для всех $c \in C$ и всех $x \in X$

$$u_c(x) := \frac{1}{\sum_{c' \in C} \left(\frac{\rho(\operatorname{Center}_c, x)}{\rho(\operatorname{Center}_{c'}, x)}\right)^{2/(m-1)}}.$$

- при m=2, то перевзвешивание эквивалентно линейной нормализации коэффициентов так, чтобы их сумма была равна единице.
- при $m \to 1$ все больший и больший вес придается самому близкому кластеру, и алгоритм становится все более похож на алгоритм k-средних.

Этапы кластерного анализа

Принятие решений о числе кластеров

- Необходимо руководствоваться практическими и теоретическими соображениями. Исходя из цели исследования, например, может быть необходимо три кластера.
- В иерархической кластеризации в качестве критерия используются расстояния. Необходимо смотреть на коэффициент в протоколе объединения (расстояние между двумя кластерами, определенное на основании выбранной дистанционной меры с учётом предусмотренного преобразования значений).
 - Когда мера расстояния между двумя кластерами увеличивается скачкообразно, процесс объединения в новые кластеры необходимо остановить. Иначе будут объединены кластеры, находящиеся на большом расстоянии друг от друга.
 - Оптимальным считается число кластеров равное разности количества наблюдений и количества шагов, после которого коэффициент увеличивается скачкообразно.
- 3. Размеры кластеров должны быть значимыми.

Оценка качества кластеризации

- Необходимо выполнять кластерный анализ одних и тех же данных, но с использованием различных способов измерения расстояния.
- Сравнить результаты, полученные на основе различных способов расстояния, чтобы определить, насколько совпадают полученные результаты.
- Разбить данные на две равные части случайным образом. Выполнить кластерный анализ отдельно для каждой половины. Сравнить кластерные центроиды двух подвыборок.
- Случайным образом удалить некоторые переменные. Выполнить кластерный анализ по сокращенному набору переменных. Сравнить результаты с полученными на основе полного набора переменных.

Пример 1. Тестирование алгоритма k-means

Исходный набор данных

N ₂	Иден-	Коор-	Koop-	Koop-	No.	Иден-	Koop-	Koop-	Koop-
	тифи-	дина-	дина-	дина-		тифи-	дина-	дина-	дина-
	катор	тах	тау	та z		катор	тах	тау	та z
1	p101	0,20	0,20	0,20	26	p203	0,61	0,65	0,49
2	p201	0,30	0,40	0,40	27	p304	0,60	0,66	0,67
3	p301	0,60	0,60	0,60	28	p305	0,55	0,60	0,72
4	p401	0,80	0,80	0,80	29	p306	0,68	0,70	0,60
5	p102	0,14	0,23	0,22	30	p307	0,59	0,54	0,69
6	p103	0,20	0,25	0,20	31	p308	0,71	0,62	0,55
7	p104	0,22	0,22	0,24	32	p309	0,50	0,59	0,51
8	p105	0,25	0,14	0,21	33	p310	0,56	0,68	0,59
9	p106	0,29	0,21	0,26	34	p311	0,67	0,71	0,61
10	p107	0,26	0,23	0,17	35	p402	0,82	0,84	0,97
11	p108	0,17	0,26	0,18	36	p403	0,81	0,85	0,77
12	p109	0,28	0,12	0,26	37	p404	0,80	0,86	0,73
13	p110	0,15	0,13	0,19	38	p405	0,87	0,80	0,79
14	p202	0,31	0,46	0,46	39	p406	0,88	0,78	0,83
15	p203	0,30	0,56	0,49	40	p407	0,92	0,86	0,80
16	p204	0,35	0,48	0,43	41	p408	0,71	0,89	0,92
17	p205	0,34	0,40	0,42	42	p409	0,83	0,96	0,87
18	p206	0,33	0,43	0,41	43	p410	0,84	0,90	0,89
19	p207	0,39	0,47	0,44	44	p411	0,98	0,91	0,91
20	p208	0,38	0,49	0,50	45	p412	0,93	0,87	0,85
21	p209	0,37	0,42	0,42	46	p413	0,91	0,85	0,82
22	p210	0,32	0,44	0,51	47	p414	0,79	0,81	0,96
23	p211	0,25	0,45	0,52	48	p415	0,77	0,76	0,83
24	p212	0,20	0,39	0,38	49	p416	0,99	0,75	0,96
25	p302	0,62	0,64	0,57					

Пример 1. Тестирование алгоритма k-means

Средние значения координат всей статистической совокупности

	v1	v2	v3
Средние значения	0,538	0,569	0,568

Ковариационная матрица статистической совокупности

	v1	v2	v3
v1	0,070	0,060	0,060
v2	0,060	0,060	0,057
v3	0,060	0,057	0,060

Среднеквадратические отклонения

	v1	v2	v3
Среднеквадратические отклонения	0,265	0,244	0,245

Взаимное расположение данных в пространстве

Результаты работы алгоритма k-means

Расстояния между кластерами

Кластеры	№ 1	№ 2	№ 3	№ 4
№ 1		0,1378	0,5228	1,304
№ 2	0,3712		0,1468	0,6352
№ 3	0,7231	0,3832		0,1778
№ 4	1,142	0,797	0,4217	

Средние значения координат в кластерах

				№ 1	№ 2	№ 3	№ 4
1	2	3	4	5	6	7	8
		Кол-во точек		10	12	11	16
		V1		0,216	0,32	0,6082	0,8531
		V2		0,199	0,4492	0,6355	0,8431
		V3		0,213	0,4483	0,6	0,8563
		Имя кластера					

Средние значения координат в кластерах

Средние значения координат в кластерах

Критерий Фишера проверки гипотезы о различии средних значений к кластерах

Пере-	Межклас-	Число	Внутриклас-	Число	Значение	Уровень
мен-	терная SS	степеней	терная SS	степеней	Критерия	значимости
ная		свободы		свободы	Фишера	
1	2	3	4	5	6	7
V1	3,316	3	0,1893	44	256,9	0,036%
V2	3,03	3	0,1348	44	329,7	0,025%
V3	2,947	3	0,174	44	248,3	0,0379%

Пример 2. Исследование структуры личных подсобных хозяйств

- В выборку вошли 29010 хозяйств Саратовской области.
- Кластерный анализ проводился с помощью алгоритма k-средних.
- Разбиение проводилось на 16, 24 и 32 кластера.
- Из множества показателей, содержащихся в переписном листе 3 ЛПХ, выделены 43 наиболее значимых (по мнению экспертов) показателя.

Условные названия групп показателей:

- А трудовые ресурсы (показатели V1, V2);
- В площади земли (показатели V3..V6);
- C площади посевов (показатели V7..V12);
- D деревья, кусты и ягодники (показатели V13..V18);
- E скот (показатели V19..V26, V32);
- F птица (показатели V27..V31);
- G места для содержания скота и птицы (показатели V33..V37);
- Н техника (показатели V38..V43). Наумов Д.А., доц. каф. КТ

Обозначение показателей

	1	v1	Число членов семьи, занятых в хозяйстве, чел	ЧЧлСем
Α	2	V2	Численность сезонных работников,чел	ЧислСезРаб
	3	v3	Общая прощадь земли в собственности, га	Пл3емСобств
_	4	v4	Приусадебный земельный участок, га	ПрЗемУч
В	5	V5	Полевые земельные участки, га	ПоЗемУч
	6	v6	Общая прощадь используемой земли чел	ОбшИспЗем
	1	V7	Всего посевов по урожай, кв.м.	ОбщПосУр
	2	v8	в т.ч. картофель, кв.м.	КарПосУр
_	3	v9		ОвОткрГр
С	4	v10	Овощи закрытого грунта, кв.м.	Ов3акрГр
	5	v11		КормКульт
	6	v12	Площадь посевов за пределом уч-ка, кв.м.	ПлЗаПредУч
	1		Яблони, шт	Ябл
	2		Груши, шт	Груша
_	3		Слива, шт	Слива
D	4		Вишня, шт	Виншя
	5		Земляника и клубника, кв.м.	ЗемлКлубн
	6		Смородина, шт	Смор
	1		Крупный рогатый скот,голов	KPC
	2		КРС молочного стада, голов	КРСмол
	3		из него: коровы, голов	КРСмолКор
_	4		КРС мясного стада, голов	КРМмяс
Е	5	КРСмясКор		
	6	V23	из него: коровы, голов Свиньи, голов	Свиньи
	7		Овцы, голов	Овцы
	8		Козы, голов	Козы
	1		Птица, голов	Птица
	2		Куры яичного направления, голов	КурЯич
_	3		Куры мясного направления, голов	КурМяс
F	4		Утки, голов	Утки
	5		Гуси, голов	Гуси
	6		Лошади, голов	Лош
	1		Мест для содержания КРС, шт	MCKPC
	2		Мест для содержания свиней, шт	МССвин
G	3		Мест для содержания овец и коз, шт	MCOgKog
-	4		Мест для содержания овец и коз, шт	МСЛош
	5		Мест для содержания птицы, шт	МСПтиц
	1		Тракторы, шт	Тракт
	2		Плуги тракторные, шт	ПлТракт
	3		Косилки тракторные, шт	КосТракт
Н	4		Мотоблоки, мотокультиваторы, шт	Мблок
	5		Автомобили грузопассажирские, шт	АвтГрПасс
	6		Установки доильные, шт	УстДоил

Кластеры и средние значения показателей

				c1	c2	e3	c4	e5	c6	e7	c8
_	_			2767	14	82	38	4	723	141	6658
Α	1	vl	ЧЧлСем	2,04	3,43	2,43	2,55	2,00	2,41	2,50	2,69
Λ	2	v2	ЧислСезРаб	0,02	0,79	0,06	0,05	0,00	0,01	0,01	0,01
	1	v3	ПлЗемСобств	0,15	0,22	0,12	0,17	47,12	0,28	0,16	0,07
В	2	v4	Пр3смУч	0,15	0,22	0,12	0,17	0,12		0,16	0,07
ь	3	v5	ПоЗемУч	0,00	0,00	0,00	0,00	14,00	0,01	0,00	0,00
	4	v6	ОбщИспЗем	0,15	0,22	0,12	0,17	24,86	0,28	0,16	0,07
	1	v7	ОбщПосУр	1072,28	1179,14	627,60	1197,55	25416,50	2386,78	875,96	270,98
	2	v8	КарПосУр	940,67	850,14	446,89	974,97	512,50		715,02	128,65
C	3	v9	ΟπΟτκρΓρ	126,50	221,86	179,33	186,50	118,00	172,65	158,43	141,60
•	4	v10	ОвЗакрГр	0,01	0,00	0,48	0,00	0,00	0,01	0,00	0,20
	5	v11	КормКульт	5,09	107,14	0,90	36,08	36,25	13,00	2,51	0,52
	6	v12	Пл3аПредУч	1,16	0,00	0,00	0,16	0,00	1,38	0,00	0,16
	1	v13	Ябл	1,11	1,00	3,99	2,32	4,00	1,34	1,70	1,12
	2	v14	Груша	0,07	0,14	0,45	0,26	0,50	0,16	0,16	0,10
D	3	v15	Слива	0,50	0,07	1,45	1,08	1,50	0,64	0,79	0,53
ь	4	v16	Виншя	0,87	0,86	1,88	1,42	2,00	0,94	1,72	0,95
	5	v17	ЗемлКлубн	2,13	1,29	13,00	5,45	1,50	1.95	4,26	3,39
	6	v18	Смор	1,98	0,00	8,28	3,13	12,50	2,43	4,02	2,75
	1	v19	KPC	0,69		0,96	3,05	1,50	1,88	2,53	0,04
	2	v20	КРСмол	0,69		0,96	3,05	1,50	1,88	2,49	0,04
	3	v21	КРСмолКор	0,36		0,48	1,32	0,75	0,90	1,08	0,00
E	4	v22	КРМмяс	0,00		0,00	0,00	0,00	0,00	0,04	0,00
	5	v23	КРСмясКор	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	6	v24	Свины	0,60	2,14	0,73	2,61	3,00	1,24	2,33	0,16
	7	v25	Овцы	0,17	46,00	0,06	1,45	0,00	0,1148	1,11	0,04
	8	v26	Козы	0,07	0,71	0,06	0,00	0,00	0,16	0,14	0,04
	1	v27	Птица	6,38	76,50	19,28	21,71	10,00	14,38	18,67	3,91
	2	v28	КурЯич	4,13	35,71	9,29	9,82	3,75	9,86	10,82	2,54
F	3	v29	KypMac	1,16	7,50	5,28	7,26	1,00	1,79	2,93	0,79
	4	v30	Утки	0,68	22,36	3,21 1,50	3,29	3,75 1,50	1,59	2,70	0,41
	5	v31	Гуси	0,36	10,21		0,29		0,89	2,16	0,15
		v32	Лош	0,04		0,01	0,13	0,00	0,12	0,11	0,00
	1	v33	MCKPC	1,34	18,79	1,26	4,00	2,25	2,63	3,33	0,20
	2	v34	МССвин	1,59	2,86	1,67	5,03	4,75	2,31	3,81	0,60
G	3	v35	МСОвКоз	0,48	46,14	0,66	1,39	0,00	1,07	1,93	0,18
	4	v36	МСЛош	0,06	3,00	0,01	0,13	0,00	0,16	0,13	0,01
	5	v37	МСПтиц	15,77	59,86	21,98	30,24	18,75	24,40	26,33	9,17
	1	v38	Тракт	0,00	0,07	0,01	0,82	0,00	0,01	1,01	0,00
	2	v39	ПлТракт	0,00	0,00	0,01	0,50	0,00	0,00	0,14	0,00
н	3	v40	КосТракт	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
	4	v41	Мблок	0,00	0,00	1,00	0,11	0,00	0,00	0,00	0,00
	5	v42	АвтГрПасс	0,01	0,21	0,05	0,11	0,00	0,04	0,07	0,02
	6	v43	УстДоил	0,00	0,00	0,01	0,03	0,00	0,00	0,00	0,00
			Имя кластера	CBF	EGF	HCD	HDC	DB	CBE	HEC	ooc

				c9	c10	c11	c12	c13	c14	c15	c16
				1359	634	3	11373	2599	1422	1191	2
A			ЧЧлСем	1,98	2,78	2,00	1,29	2,47	2,30	3,00	4,0
^	2		ЧислСезРаб	0,06	0,01	0,00	0,03	0,01	0,02	0,01	0,0
	I		ПлЗемСобств	0,15	0,12	0,09	0,06	0,08	0,09	0,11	60,0
R	2	v4	Пр3емУч	0,15	0,12	0,09	0,06	0,08	0,09	0,11	0,1
В	3	v5	ПоЗемУч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
ij	4	v6	ОбщИспЗем	0,15	0,12	0,09	0,06	0,08	0,09	0,11	60,0
	1	v7	ОбщПосУр	678,14	644,21	104,33	130,91	342,57	451,24	466,58	1150,0
	2	v8	КарПосУр	408,79	442,38	30,00	82,79	230,94	301,46	318,46	1000,0
C	3	v9	ОвОткрГр	258,80	197,50	74,33	47,61	109,19	148,37	143,97	150,0
·	4	v10	ОвЗакрГр	0,33	0,12	0,00	0,08	0,09	0,13	0,09	0,0
	5	v11	КормКульт	10,21	4,21	0,00	0,41	2,36	1,28	4,06	0,0
	6	v12	ПлЗаПредУч	0,29	0,00	0,00	0,12	0,62	1,14	0,00	0,0
=	ī	v13	Яба	3,80	2.11	2.67	0.54	0.86	1.35	1.43	4.5
	2	v14	Груша	1.06	0.28	0.33	0.03	0,07	0.14	0.13	0.0
			Слива		1,29	1,00	0.19	0.48	0.59	0.63	0.5
D	4	v16	Bunus		2.62	0.00	0.43	0.95	1.20	1.47	1.0
	iš.		ЗемлКлуби	19,17	6,90	10.67	0.89	2.52	3.60	4.04	0.0
			Смор		5.85	0.00	0.95	2.46	2.91	4.01	0.5
_	ñ		KPC	0.64	2.88	0.00	0.02	2.05	1.06	5,46	7.0
			КРСмол	0,63	2,84	0.00	0,02	2,05	1,05	5,43	7.0
			КРСмолКор	0.30	1.15	0.00	0.01	1.12	0.45	2.30	3.5
			KPMwsc	0.00	0.02	0.00	0,00	0,01	0,01	0,03	0.0
E	5	v23	KPCmscKop	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.0
	6	v24	Свиньи	0.72	3.27	0.00	0.06	1,34	1,36	4.05	1.0
			Orun	0,38	1,41	0.00	0.02	0,55	0,51	2,82	0.0
	8	v26	Козы	0.04	0.10	0.00	0.02	0.02	0.06	0.21	0.0
	1	v27	Птица	8,91	49.18	369.00	1.06	7,75	31.29	20.88	33.5
	2	v28	КурЯич	5,82	18,95	33,33	0,71	4,84	27,13	12,98	0,0
F	3	v29	KypMac	1,69	4,32		0,21	1,37	1,88	3,00	20,0
F	4	v30	Утки	0,90	23,45	2,33	0,10	1,02	1,09	2,73	7,0
	5	v31	Гуси	0,42	2,19	100,00	0,04	0,52	1,09	1,93	6,5
	6	v32	Лош	0,03	0,12	0,00	0,00	0,08	0,04	0,28	0,0
	1	v33	MCKPC	1,26	3,53	0,00	0,19	2,68	1,68	5,66	7,0
	2	v34	МССвин	1,89	5,02	0,00	0,32	2,68	2,55		1,0
G	3	v35	MCOnKo1	0.94	1.94	0.00	0.14	1.10	0.93	3.46	0.0
	4	v36	МСЛош	0.04	0.13	0.00	0.01	0.09	0.05	0.28	0.0
	5	v37	МСПтии	16,10	49.25	440.00	4.20	14.90	39.02	24.59	33.5
	'n	v38	TDIKT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.5
			ПаТракт	0,00	0.00	0.00	0,00	0,00	0.00	0,00	0.0
			КосТракт	0,00	0.00	0.00	0,00	0,00	0.00	0,00	0,5
н			Мблок	0,00	0.00	0.00	0,00	0,00	0.00	0,00	0.0
			АнтГрПасс	0,00	0,00	0,00	0.00	0,00	0,00	0.02	0,0
			УстДоил	0,02	0,03	0.00	0,00	0.00	0,02	0,02	0,0
							0,00	0,00	0,00		

Кластеры и средние значения показателей

Кластеры и средние значения показателей

Сравнение разбиений с разным количеством показателей

№	по	37 показателя	M	п	о показателя	Совпаде-ние	
п/	Обозна	Количество	Имя	Обозна-	Кол-во	Имя	кластеров
П	чение	хозяйств в	класте	чение	хозяйств	кластера	
	кластер	кластере	pa	кластеров	В		
	ов				кластере		
1	C1	3	FGH	C11	3	FGH	полное
2	C2	6658	OCA	C8	6658	OOC	сущест-венное
3	C3	12534	OOC	C12	11373	OOA	почти полное
4	C4	38	HEC	C4	38	HDC	полное*
5	C5	3245	OCB	C 1	2767	CBF	сущест-венное
6	C6	1393	EFG	C15	1191	EHF	сущест-венное
7	C7	3030	OCE	C13	2599	OCG	хорошее
8	C8	757	CBE	C6	723	CBE	почти полное
9	C9	1	HCB	-	-	-	уникаль-ное
							хозяй-ство
10	C10	35	HEF	-	-	-	уникаль-ное
							хозяй-ство
11	C11	6	CBE	C5	4	CDB	хорошее
12	C12	32	EFG	C2	14	EGF	хорошее по кач.
							пок.
13	C13	2	BAE	C16	2	ADE	полное
14	C14	10	EGH	-	-	-	уникаль-ное
15	C15	1285	OFC	C15	1191	EHF	хорошее
16	C16	81	HCA	C3	82	HCD*	полное

^{*)} Несовпадение имен НЕС и НДС обусловлено тем, что группа показателей Д исключена