1. Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

False

○ True

∠⁷ Expand

 $\hbox{\bf 2.} \quad \hbox{In beam search, if you decrease the beam width B, which of the following would you expect to be true? Select all that apply. } \\$

1 point

1 point

Beam search will use up more memory.

✓ Beam search will run more quickly.

44:28

✓ Beam search will converge after fewer steps.

Beam search will generally find better solutions (i.e. do a better job maximizing P(y | x)),

∠ Expand

3. True/False: In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly long translations.

1 point

False

○ True

✓ Expand

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y\mid x)$.

1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.95{*}10^{-7}$$

$$P(y^* \mid x) = 3.42*10^{-9}$$

True/False: Trying a different network architecture could help correct this example.

True

○ False

∠⁷ Expand

5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggests you should not focus your attention on improving the search algorithm.

1 point

○ True

False

Expand

6. Consider the attention model for machine translation.

1 point

Further, here is the formula for $lpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply.

 \checkmark We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)

- $\sum_{t} \alpha^{< t, t'>} = -1$

∠⁷ Expand

7. The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:

1 point

We can replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network because $s^{< t>}$ is independent of $\alpha^{< t,t'>}$ and $e^{< t,t'>}$.

- True
- False

44:25

8.	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:	1 point
	\bigcirc The input sequence length T_x is small. \bigcirc The input sequence length T_x is large.	
	∠ ⁿ Expand	
9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?	1 point
	c_oo_o_kkb_ooooo_oo_kkk	
	© cookbook	
	○ coookkbooooookkk	
	○ cokbok	
	ocook book	
	∠ [™] Expand	
10.	In trigger word detection, $x^{< t>}$ is:	1 point
	 Whether someone has just finished saying the trigger word at time t. Whether the trigger word is being said at time t. The t-th input word, represented as either a one-hot vector or a word embedding. Features of the audio (such as spectrogram features) at time t. 	
	∠ ⁷ Expand	