Modelos de Computação CC1004

20	. 1		10	\sim	1	$\overline{}$
70		n	' /	1)		- /
\sim \sim		\ <i>''</i>	\sim	` '		,

Exame - 02.06.2017

duração: 3h

N.º		Nome	
1.	Sejam L e M as lingu	agens de	$\Sigma = \{a, b, c\}$ dadas por
	$\mathbf{L} = \{x$	o núme	ero de a's em x é múltiplo de quatro e x não termina por b} na em baab ou começa por aba}
Not	e que $\varepsilon \in \mathbf{L}$, $\mathtt{cc} \in \mathbf{L}$,	abcaaab	$ otin \mathbf{L}, \mathtt{abac} \in \mathbf{M}, \mathtt{bcaabaab} \in \mathbf{M}, \mathtt{bcaabaa} \in \mathbf{L}, \mathtt{abaab} \in \mathbf{M}.$
a)	Descreva L por uma e	xpressão	regular abreviada. d) Desenhe o AFD mínimo que aceita M.
b)	Descreva M por uma	expressã	o regular abreviada.
c)]	Descreva L∩M por ur	na expres	ssão regular abreviada.
	1	1	
L			
			o teorema de Myhill-Nerode, determine o AFD mínimo que aceita La crução usando a relação de equivalência $R_{\mathbf{L}}$ definida nesse teorema.
	<u> </u>		, , , , , , , , , , , , , , , , , , , ,

	Indique uma GIC $G=(V,\Sigma,P,S)$ que gere M, não seja linear à esquerda nem à direita e, preferencialnte, não seja ambígua. Se G for ambígua, a resposta terá uma penalização de 25%.
()	Explique porque é que a sua resposta à alínea f) está correta (i.e., satisfaz todas as condições indicadas
2.	Sejam s e r expressões regulares sobre $\Sigma = \{a, b\}$ dadas por $s = ((\emptyset^*) + ((bb)^*))$ e $r = (s((aa)^*))$
)	Sejam s e r expressões regulares sobre $\Sigma = \{a,b\}$ dadas por $s = ((\emptyset^*) + ((bb)^*))$ e $r = (s((aa)^*))$ Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson pressão regular r , segundo a construção dada nas aulas (note que r inclui a expressão s).
)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson
)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson
)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson
)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson
)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson
)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson
)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson
)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson
x _I	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson
i)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson pressão regular r , segundo a construção dada nas aulas (note que r inclui a expressão s).
i)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson pressão regular r , segundo a construção dada nas aulas (note que r inclui a expressão s).
ı) exp	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson pressão regular r , segundo a construção dada nas aulas (note que r inclui a expressão s).
i)	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson pressão regular r , segundo a construção dada nas aulas (note que r inclui a expressão s).
ı) exp	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson pressão regular r , segundo a construção dada nas aulas (note que r inclui a expressão s).
) ×I	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson pressão regular r , segundo a construção dada nas aulas (note que r inclui a expressão s).

N.º	Nome			
3. Seia A o AFND	$-\varepsilon$ representado pel	o diagrama de trans	ição seguinte, com al	fabeto $\Sigma = \{a, b\}.$
	o			s, apresente o conjunto de
				sumir tal palavra e indique
	ı			não é possível decidir".
		~ C /2 () , -	· · · · · · · · · · · · · · · · · · ·	
		abbab		
	ε b	bab		
	s_3 s_5	aa		
b	$_{ m b,arepsilon}$	a		
	5 ,c	ϵ		
b (b	bbba		
s_1	S_4 a S_2	bb		
		aab		
c) Quantos estados	finais tem o AFD r	mínimo que aceita	C(A') - C(A)2	E, não finais?
Explique, baseando			$\mathcal{L}(A) = \mathcal{L}(A)$:	E, nao imais:
Exprique, baseando	-se no argoritmo de			

(Continua)

4.	Seja $L = \{x \mid x \text{ \'e capicua e termina em a}\} \cup \{x \mid x \text{ n\~ao \'e capicua}\}, \text{com } \Sigma = \{\mathtt{a},\mathtt{b},\mathtt{c}\}.$
	Indique as regras de uma GIC G com símbolo inicial S que gere L e não seja linear à direita. Explique ideias principais. Sugestão: tente recordar a GIC dada nas aulas para a linguagem das capicuas e as ideias subjacentes.
	Na continuação de 4a), mostre que $acab \in \mathcal{L}(G)$ e $aca \in \mathcal{L}(G)$, apresentando uma <i>derivação passo o asso</i> e pelo menos uma <i>árvore de derivação</i> para cada uma (se existirem várias árvores, apresente duas).
	Prove que e lingue com \(\sigma^{\pi}\) \(I\) n\(\tilde{\alpha}\) \(\frac{\pi}{\tau}\) acculon vecado e tecromo de Muhill Noro de eu e lorre de monetic\(\tilde{\alpha}\)
(c)	Prove que a linguagem $\Sigma^* \setminus L$ não é regular, usando o teorema de Myhill-Nerode ou o lema da repetição
d)	Diga, justificando, se existe uma GIC linear à direita que gere L e, se existir, indique-a.

(Continua)

N.º		Nome						
Re	solva apenas uma o	das questõe	s 5. e 6.					
	Na continuação de s_0 ial s_0 e símbolo inic							
tabe sua	Faça uma exposiçã ela que constrói e co correção, quais as c condições de aplicab	omo é const ondições de	ruída), d aplicabil	iga qual é a lidade, que	a ideia princ complexida	ipal subjace de tem, e o	ente que per que fazer se	rmite justificar a $:G$ não satisfizer