## 18) VIRTUÁLNÍ PAMĚŤ A PAMĚŤ CACHE

## Virtuální paměť

- Virtuální paměť je místo, které je využitelné v případě, že vznikne nedostatek RAM paměti
- V takovém případě se data spuštěných procesů přesunou z přeplněné RAM paměti do tzv. stránkovacího souboru a místo v RAM se tak uvolní (je to čistě koncept, spíše je to takový model/simulace)

### **Filozoficky**

Virtuální – něco existuje pouze zdánlivě

#### Pouze:

- Výlučně zdánlivě?
- Částečně zdánlivě

Paměť – úložný prostor/něco na uložení/způsob, jak něco zachovat Zachovat něco co existuje pouze omezeně?



 $\bullet$   $\frac{t_0-t_1}{\infty}$ 

## **Fyzicky**

• Fyzicky se vlastně jedná o dočasný přesun dat z RAM paměti na pevný disk. Celý proces řídí procesor či samostatný obvod.



# paměť má následující položky

| 1) Rychlá paměť na MCU "SRAM"  | CACHE<br>Malá, ale dobrá                                 |
|--------------------------------|----------------------------------------------------------|
| 1) Operační paměť, karty SDRAM | 100 x pomalejší než CACHE                                |
| 1) HDD                         | Hodně místa 4T, superlevná<br>1000 x pomalejší než CACHE |

Cache

Main Memory

Virtual Memory (HDD/SDD)

- V čem spočívá virtualizace paměti?
  - Aby se CACHE jevila jako
     HDD co se týče velikosti
  - Jakýkoliv Capacity
    program
    může vykonávat pouze MCU => v CACHE



Hierarchie paměti -> přehazování instrukcí hierarchie

Nebo -> přehození paměťové pyramidy (bottom up)

- Proč bych se zabýval virtualizací paměti
  - Kvůli ceně SRAM

Zásadní problém – *virtuální blok* paměti na *fyzický blok* paměti

#### Virtuální blok

- Má 3 adresy (viz pyramida) a různě dlouhé
- Jak to mapovat tam i zpět?

## Fyzický blok

- SRAM málo místa krátké adresy
- HDD hodně místa-dlouhé adresy



- Toto mapování není funkce
- Jak to uděláme? Pomocí náhledových tabulek komprese "kvantová mechanika"-> pravděpodobnostní model během programu
- Postavte si smyčku ve zdroji program v ní bude trávit více času než mimo



## Cache

- je rychlá vyrovnávací paměť jejím úkolem je vyrovnávat rozdíl mezi rychlým (např. procesor) a pomalým (např. Operační paměť) zařízením
- typicky mezi procesorem a operační pamětí a urychlovat přístup k často používaným datům
- S registry "cades" T1<T2<T3
- Náhledová tabulka ->co je zbytek adresy u každého bloku



1KB paměti, jak dlouhá je adresa?

8 -> 3 bit

16-> 4 bit

32 -> 8 bit

1K -> 10 bit

2K -> 11 bit

4K -> 12 bit

8K -> 13 bit

16K -> 14 bit

32K -> 15 bit

64K ->16 bit

### Zaplnění cache

- Řeší se tak, že se zavede další blok, je nutné, aby některý z bloků cache paměť opustil. Nejčastěji se k tomuto používá LRU (Least Recently Used) algoritmu tedy algoritmus, který vyřadí nejdéle nepoužívaný blok
- Cache paměti bývají organizovány jako tzv. asociativní paměti
  - tabulky se sloupcem, v němž jsou označené tagy, podle kterých se vyhledává. Dále jsou v tabulce umístěna data, která paměť uchovává, a popř. další informace nutné k zajištění správné funkce paměti

Používají se dva druhy cache pamětí:

#### externí (sekundární) cache

je paměť, která je umístěna mezi pomalejší operační pamětí a rychlým procesorem. Tato paměť je vyrobena jako rychlá paměť SRAM a slouží jako vyrovnávací paměť u počítačů s výkonným procesorem, které by byly bez ní operační pamětí velmi zpomalovány

## interní (primární) cache

je paměť, která slouží k vyrovnání rychlosti velmi výkonných procesorů a pomalejších pamětí. Tento typ cache paměti je integrován přímo na čipu procesoru a je také realizován pomocí paměti SRAM

## Adresová sběrnice

- sběrnice, kterou jsou propojeny všechny důležité komponenty základní desky v počítači používány pro přenos fyzické adresy
- Adresová sběrnice má za úkol zajišťovat přenos adres mezi operační pamětí, mikroprocesorem a vstupně-výstupními zařízeními
- U adresové sběrnice sledujeme dva hlavní parametry
  - Fyzickou velikost, která vyjadřuje počet vodičů v dané sběrnici
  - logickou velikost, kterou rozumíme množství adres, jež je sběrnice schopná přenášet

#### Fyzická (MAC) adresa

- má podobu šestice dvojciferných čísel (hexadecimálních čísel), která jsou oddělené pomlčkou nebo dvojtečkami, a slouží tak jako jedinečný identifikátor síťového zařízení
- adresu přiděluje výrobce (do síťové karty, u starších karet přímo v EEPROM paměti) a měla by být celosvětově jedinečná. Nicméně toto není možné zaručit, protože u moderních síťových zařízení je možné MAC adresu změnit
- Vznik fyzické adresy mapováním
- Virtuální adresa mapuje na fyzickou adresu hodně na málo mapuje na disk a zpátky

#### Mapování souborů do paměti

- je označení pro práci se soubory, kdy je jejich obsah promítnut jádrem systému do operační paměti
- Mapování souborů do paměti nahrazuje klasické rozhraní pro práci se soubory
- Při mapování souborů do paměti nastaví jádro operačního systému mapování virtuální paměti tak, že obsah souboru je možné číst z operační paměti běžnými strojovými instrukcemi pro práci s pamětí
- Díky použití stránkování paměti a jeho mechanismu obsluhy výpadku stránky může mapování souborů do paměti poskytnout v mnoha případech vyšší výkon, než při použití klasického rozhraní
- Navíc je tím eliminováno kopírování dat v paměti mezi vyrovnávací pamětí v jádře, diskovou cache a paměťovým prostorem procesu