

DIGITAL STORAGE OSCILLOSCOPE

DCS-7020 DCS-7040

SERVICE MANUAL

KENWOOD CORPORATION

WARNING

The following instructions are for use by qualified personnel only. To avoid electric shock, do not perform any servicing other than contained in the operating instructions unless you are qualified to do so.

CONTENTS

SPECIFICATIONS	3
SAFETY	
CIRCUIT DESCRIPTION	
BLOCK DIAGRAM	
ADJUSTMENT	
TROUBLESHOOTING	
PARTS LIST	
DISASSEMBLY	
PARTS LIST (ELECTRICAL)	
SCHEMATIC DIAGRAM	51
P.C. BOARD	
SEMICONDUCTORS	

[Real-Time Oscilloscope]

Item	s	
CRT		
Туре		150mm rectangular CRT with internal graticule
Acceleration vol	tage	Approx. 12kV
Effective displa	ny area	8div×10div (1div=10mm)
Vertical axis (Common to CH1 &	CH2)
Sensitivity (+1	0 to +35℃)	l or 2mV/div: ±5%, 5mV/div to 5V/div: ±3%
Attenuator		12 ranges at 1-2-5 steps, ranges fine-adjustable
Input impedance		1MΩ±2%, approx. 25pF
Frequency response	5mV/div to 5V/div	DC: DC to 50MHz (within -3dB) AC: 5Hz to 50MHz (within -3dB)
(+10 to +35℃)	1 or 2mV/div	DC: DC to 20MHz (within -3dB) AC: 5Hz to 20MHz (within -3dB)
Rise time (+10 to +35°C)	5mV/div to 5V/div	Approx. 7ns.
	1 or 2mV/div	Approx. 17.5ns
Crosstalk		-40dB or less (at 1kHz)
Operation	CH1	CH1 single trace
modes	ALT	Alternated CH1 and CH2 signal display
	СНОР	Chopped CH1 and CH2 signal display
	ADD	Added CH1 and CH2 signal display
	CH2	CH2 single trace
Chop frequency		Approx. 250kHz
Polarity reversal		CH2 only
⚠ Max. input voltage		800Vp-p or 400V (DC+ACpeak at 1kHz or less)
Horizontal axi	s (CH2)	
Sensitivity (+	10 to +35℃)	Same as vertical axis (CH2).
Input impedanc	е	Same as vertical axis (CH2).

Ite	ns .	
		DC: DC to 1MHz (within -3dB) AC: 5Hz to 1MHz (within -3dB)
X-Y phase diffe	rence	3° or less at 50kHz
Operation modes		X-Y mode is selectable with H.MODE switch. CH1: Y-axis, CH2: X-axis
⚠ Max. input v	oltage	Same as vertical axis (CH2).
Sweep	***************************************	
Sweep method	A	A sweep
	ALT	Alternated A sweep and B sweep
	В	B sweep
	Х-Ү	X-Y oscilloscope operation
Sweep time	A sweep	0.5s/div to 0.1 μ s/div \pm 3%, 1-2-5 steps, 21 fineadjustable ranges
	B sweep	50ms/div to 0.1 μ s/div \pm 3%, 1-2-5 steps, 18 fineadjustable ranges
Sweep magnifica (+10 to +35°C)	ation	×10±5% (±8% at 0.5μs/div or more)
Linearity (+10 to +35°C)		±3% (×10: ±5%)
Holdof f		A sweep is continuously variable from NORM position.
Trace separation	n	B sweep is continuously variable by ± 4 divisions or more with resp. to A sweep.
Delayed sweep		Continuous delay (AFTER DELAY) and triggered delay (B TRIG'D) triggered by trigger signal
Delay time		Continuously variable from 0.2 division to 10 divisions for 0.5s/div to 0.1 µs/div
Delay time err	or (+10 to +35℃)	$\pm (3\%$ of set value+1% of full scale)+(0 to 300ns)
Delay jitter		10000: 1 of 10 times as large as A sweep set value
Triggering		
Trigger modes	AUTO	Automatic free running with no signals input
	NORM	Triggered sweep
	FIX	Sweep by setting trigger point at center of signal amplitude
	SINGLE	Single sweep mode
	RESET	Single sweep is restarted.

		Iten	ıs						
rigge	rigger signal VERT		Input signal selected with VERT MODE switch.						
sources CH1		CH1 input si	gnal						
		}	CH2		CH2 input si	gnal			
			LINE		Commercial s	ource freq	uency		
			EXT		Signal input	to EXT. 1	RIG connec	tor	
T	ho +=	iggo		o ic fiv	ed to CH1 if				he Chon and
S	torag	ge mo	de. O	r, it is	fixed to C	H2 if X-Y	operatio	n is selec	cted in the
Trigg			AC		AC coupling	from 10Hz			
coupl	ing		HFrej		Low-pass fi	lter coupl	ing up to 1	OHz	
			DC		DC coupling				
			TV FR	AME	Composite video signal with vertical synchronizing signal separated				
			TV LINE		Composite video signal with horizontal synchronizing signal separated				
Trigg	gering	g sens	sitivit	y (+10 to	35℃)				
	Mode	coup	ling	Signa	al freq. Int.sensitivity(Amp.) Ext.sensitivity(Amp.)				
						NORM	FIX*	NORM	FIX*
	[AC		10Hz to	20MHz	1div	1.5div	100mV	150mV
				20MHz to	50MHz	1.5div	2div	150mV	200mV
		HFre	j	10Hz to	10kHz	1div	1.5div	100mV	150mV
	Norm			more tha	n 10kHz	>min.	>min.	>min.	>min.
		DC		DC to 20	MHz	ldiv	1.5div	100mV	150mV
	ļ			20MHz to	50MHz	1.5div	2div	150mV	200mV
		TV-F	, TV-L	composite	video signal	1.5div	1.5div	150mV	150mV
			HDTV		n video signal	1.5div	1.5div	150mV	150mV
	• FIX • The • HFr	*: Th inte	e above rnal se ensitiv	e-shown ra ensitivity	tings are met tings are met is expressed a." shows tha	at 50Hz o l in terms	or more. of the amp	litude on ded for tr	the CRT. iggering
Exte	rnal	trigg	er term	ninal (Als	o used as ext	ternal clo	k terminal	.)	
Input impedance				1MΩ ±2%, approx. 25pF					
ΔM	lax. i	nput	voltage	2	100Vp-p or 50V (DC+ACpeak at 1kHz or less)				
Calibration signal			Square wave, positive polarity, 1Vp-p ±3%, approx. 1kHz						

Item	ıs	
intensity modula	ation	
Input voltage		Darkens at TTL level (+5V).
Input impedance		Approx. 10kΩ
Frequency range	(+10 to +35℃)	DC to 3.5MHz
⚠ Max. input voltage		100Vp-p or 50V (DC+ACpeak at 1kHz or less)
CH1 signal outp	ut (with 50Ω lo	ad)
Output voltage		Approx. 50mVp-p/div
Output impedanc	e	Approx. 50Ω
Frequency response	5mV/div to 5V/div	100Hz to 50MHz (-3dB or less)
(+10 to +35℃)	1 or 2mV/div	100Hz to 20MHz (-3dB or less)
Trace rotation		Trace line is adjustable with semi-fixed control on panel.

[Storage Oscilloscope] (The values enclosed in [] are those of the DCS-7020.

Vertical axis (Common to CH1 &	CH2)
Vertical resolution		8 bits (25 dots/div)
Dynamic range		±5div
Effective storage frequency		DC: DC to 16MHz [8MHz] (Sine interpolation) AC: 5Hz to 16MHz [8MHz] (Sine interpolation)
Effective rise	t ime	40ns [80ns] or less (Linear interpolation)
Frequency 5mV/div to		DC: DC to 16MHz (-3dB or less)
response (+10 to +35℃)	5V/div	AC: 5Hz to 16MHz (-3dB or less)
	1 or 2mV/div	DC: DC to 12MHz (-3dB or less)
		AC: 5Hz to 12MHz (-3dB or less)
Memory capacity	(Memory capacit	ry used in each mode)
NORM sampling		Display memory (for data): 2K words/channel (200 dots/div)
		Display memory (for REF) : 2K words/channel
		Acquisition memory : 4K words/channel
		REF memory : 2K words/channel

I	tems		
Roll mode		Display memory (dor data): 2K words/channel (200 dots/div)	
		Display memory (for REF) : 2K words/channel	
		Acquisition memory : 4K words/channel	
		REF memory : 2K words/channel	
Memory backup		Backed up by battery for approx. 30000 hours (at room temperature). Acquisition memory : 4K words/channel REF memory : 2K words/channel	
Sweep time &	display mode		
NORM samplin	g	0.1μs/div to 500s/div (Magnification range: 0.1μs/div to 2μs/div [5μs]) (Max. sampling speed: 40MS/s [20MS/s])	
Peak detecto	r	10μs [20μs]/div to 500μs/div (Sampling speed: 40MS/s)	
Roll mode		0.2s/div to 500s/div	
Storage meth	nod		
AUT0		Same as NORM when triggered. Data is updated by free running in other condition.	
NORM		Data is updated every time acceptable trigger signal is input.	
SINGLE		Storage operation is carried out when first acceptable trigger signal is input after resetting, then data is saved.	
PEAK	MAX	Positive voltage glitches of up to 25ns [50ns] wide are detected.	
	MIN	Negative voltage glitches of up to 25ns [50ns] wide are detected.	
	MAX/MIN	Positive and negative voltage glitches of up to 50ns [100ns] wide are detected (and displayed alternately).	
AVE (Averaging)		Arithmetic average of 4, 16 and 64 times	
SMT (Smoothing)		Moving average of 32 words	
PST (Persistence)		Maximum and minimum values are displayed alternately in Storage mode. Reset by selecting PST. RESET.	
ROLL	NORM	Data is displayed and updated continuously on CRT.	
	SINGLE	Data is updated at pre-trigger set value after acceptable trigger signal is input. Then, data is saved.	

Iten	ns	
Magnification		
Magnification		Data is magnified up to $\times 10$ from CRT center by linear interpolation when $\times 10 \text{MAG}$ is pressed in Hold state.
Interpolation		Previous value interpolation in magnification range (interpolation: OFF), linear interpolation and sine interpolation
Triggering		
Pre-triggering	NORM	0 to 20 divisions (in 2.5div steps)
	ROLL-SINGLE	10 to 20 divisions (in 2.5 div steps)
B triggering	AFT. DLY	B starts after delay time.
	B TRIG' D	B TRIG'D after delay time.
х-ү		DC to 16MHz [8MHz] (-3dB or less, sampling speed is variable with SWEEP TIME/DIV.)
External clock	(Also used as ex	ternal trigger terminal.)
Operation		Data is sampled at leading edge of signals input to external clock connector when SWEEP TIME/DIV is set to EXT.
Input impedanc	e	1MΩ±2X, approx. 25pF
⚠ Max. input	voltage	100Vp-p or 50V (DC+ACpeak at 1kHz or less)
Input signal l	evel	TTL level L level: +0.4V or less H level: more than +3.2V
Input signal f	requency range	DC to 1MHz(1 kHz max. at roll mode)
Input signal duty ratio		20 to 80% (L level: +0.4V, H level: +3.2V)
Output		
		Optional IF-10 or IF-20 may be connected. (Both cannot be connected together.)
IF-10		GP-IB interface (Conforms to IEEE-488 1978.)
	Operation	Waveform displayed on CRT and CRT readout data ar output to plotter through GP-IB interface (usin TALK ONLY and HP-GL commands). Numeric data of waveform displayed on CRT and CR readout data are output to computer through GP-I interface.
		TALK ONLY and HP-GL commands). Numeric data of waveform displayed on CRT a readout data are output to computer through

	Items	
IF-20		EIA RS-232C interface
	Operation	Waveform displayed on CRT and CRT readout data are output to plotter through RS-232C interface (using HP-GL commands). Numeric data of waveform displayed on CRT and CRT readout data are output to computer through RS-232C interface. Waveform displayed on CRT and CRT readout data are output to printer (DPU-412 made by SEIKO) through RS-232C interface.
	Baud rate	9600/1200bps
	Data transmission	Data length: 8bits, stop bit: 1bit or more, parity bit : none, delimiter: CR+LF, handshake: CTS-RTS method

[Readout Section]

Items	
Display	Turned on and off by keeping CURSOR MODE switch depressed for 1 second or so.
Calendar	
Display	M/D/Y/H/M which is turned on and off by keeping TIME ON/OFF switch depressed for 1 second or so.
Clock accuracy	±2 minutes/month
Battery life	Approx. 30000 hours (at room temp.)
Clock correction & setting	Set on Storage menu.
Set values	
Vertical axis	CH1 & CH2 scale factors (with probe detection), V-UNCAL, ADD & INV
Horizontal axis	A/B sweep scale factors (magnification conversion), ×10MAG, X-Y, external clock, & SWEEP VARIABLE UNCAL
Triggering	Delay time, B TRIG'D
Storage	X-Y sampling speed, display scroll & setting storage function (peak types, average and number of times, SMT, PST, ROLL & interpolation types), pre-triggering point, REF memory setting condition, menu, & output

I tems		
Cursor measuren	nent	
Cursor mode		Measurement between ΔREF and $\Delta \text{cursors.}$ Only ΔV1 may be set in X-Y mode.
	Δ٧1	Voltage converted using CH1 scale factor is displayed.
	Δ ٧2	Voltage converted using CH2 scale factor is displayed.
	ΔΤ	Time converted using A sweep scale factor is displayed.
	1/ΔΤ	Frequency converted using A sweep scale factor is displayed.
When V or H. VARI are	RATIO	Voltage ratio and time ratio are displayed based on 5 divisions on CRT as 100%.
UNCAL	PHASE	Phase difference is displayed based on 5 divisions as 360°.
Cursor	Resolution	10bits
measurement	Measurement error	±4%
	Measurement range	±3.6 divisions or more from CRT center vertically ±4.6 divisions or more from CRT center horizontally
Display offset		Vertical or horizontal shift between waveform displayed on CRT and waveform output from oscilloscope is corrected.

[Power Supply]

Items	
Power supply	
Supply voltage	100/120/220/230VAC ±10%
Frequency	50 or 60Hz
Power consumption (on 100VAC)	Approx. 57W, 69VA (when optional IF-10 GP-IB interface is used)
Withstand voltage	1.5kVAC, 1 minute or more
Insulation resistance	100MΩ or more at 500VDC

[Other Specifications]

Į t em	s	
Dimensions & wei	ght (Values encl	osed in parentheses include projections.)
Width		305mm (344mm)
Height		150mm (165mm)
Depth		400mm (459mm)
Weight		Approx. 9.6kg
Operating tempe	rature & humidity	у
Operating		0 to +40°C, 85% or less (No dew condensation)
Storage		-20 to $+70^{\circ}$ C, 85% or less (No dew condensation)
Accessories		
Probe		PC-33, two
	Attenuation	1/10
	Input impedance	10MΩ±1%, 22pF±10%
Instruction manual		1 сору
Adjusting screwdriver		1
Power cord		1
Replacement fuse		1

SAFETY

SAFETY

Before connecting the instrument to a power source, carefully read the following information, then verify that the proper power cord is used and the proper line fuse is installed for power source. The specified voltage is shown at the fuse holder of the AC inlet. If the power cord is not applied for specified voltage, there is always a certain amount of danger from electric shock.

Line voltage

This instrument operates using ac-power input voltages that 100/120/220/230 V at frequencies from 50 Hz to 60 Hz.

Power cord

The ground wire of the 3-wire ac power plug places the chassis and housing of the oscilloscope at earth ground. Do not attempt to defeat the ground wire connection or float the oscilloscope; to do so may pose a great safety hazard. The appropriate power cord is supplied by an option that is specified when the instrument is ordered.

The optional power cords are shown as follows in Fig. 1.

Line fuse

The fuse holder is located on the rear panel and contains the line fuse. Verify that the proper fuse is installed by replacing the line fuse.

Voltage conversion

This oscilloscope may be operated from either a 100 V to 230 V, 50/60 Hz power source. Use the following procedure to change from 100 to 230 volt operation or vice versa.

- 1. Remove the fuse holder.
- 2. Replace fuse F 1 with a fuse of appropriate value, 1 amp for 100 VAC to 120 VAC operation. 400 m amp for 220 VAC to 230 VAC operation.
- 3. Reinsert it for appropriate voltage range.
- 4. When performing the reinsertion of fuse holder for the voltage conversion, the appropriate power cord should be used. (See Fig.1.)

Plug configuration	Power cord and plug type	Factory installed instrument fuse	Line cord plug fuse	Parts No. for power cord
	North American 120 volt/60 Hz Rated 15 amp (12 amp max; NEC)	1 A, 250 V Slow blow 5 × 20 mm	None	E30-1951-05
	Universal Europe 220 volt/50 Hz Rated 16 amp	North Europe 400 mA, 250 V Slow blow 5 × 20 mm	None	E30-1952-05
	U.K. 240 volt/50 Hz Rated 5 amp	400 mA, 250 V Slow blow 5 × 20 mm	5 A	E30-1963-05
	Australian 240 volt/50 Hz Rated 10 amp	400 mA, 250 V Slow blow 5 × 20 mm	None	E30-1953-05
	North American 240 volt/60 Hz Rated 15 amp (12 amp max; NEC)	400 mA, 250 V Slow blow 5 × 20 mm	None	_
	Switzerland 240 volt/50 Hz Rated 10 amp	400 mA, 250 V Slow blow 5 × 20 mm	None	_

Fig. 1 Power Input Voltage Configuration

PREAMPLIFIER UNIT CH1, CH2

Each of the CH1 and CH2 inputs passes through an AC/DC/GND switch and enters the 1st attenuator (1/1, 1/10, 1/100).

The 1st attenuator is used in combination with the 2nd attenuator (1/1, 1/2, 1/4, 1/10) and the 5-fold function of the 2nd amplifier, to switch the 12 vertical ranges.

The head amp is composed of Q102 and IC101 (Q202 and IC201) and is a 1/1 buffer amp with an input impedance of 1 megohms and used for conversion of impedance. Q102 (Q202) is the source-follower. This head amp is installed between the 1st and 2nd attenuators.

Starting from the 2nd amp, this unit takes the differential amplifier configuration. The functions of IC102 (IC 202) include the variation and inversion functions. The variation function allows to vary the gain continuously according to the voltage applied to pin 5. The inversion function allows to invert the phase according to the voltages applied to pins 6 and 7. As this function is provided only for CH2, CH1 is fixed. At the CH2 side, switch is done by Q215, Q103 (Q203) is the regulated current supply for IC102 (IC202).

Q106 and Q107 (Q206 to Q207) form an emitter follower. Q108 to Q111 (Q208 to Q211) form the cascode amp of the differential amp. The vertical position can be moved by regulating the current applied to the emitter of Q111 (Q211) based on the panel operation.

Q501 and Q502 (Q601 and Q602) form the amplifier which obtains the signals for the DSP unit and sends them to the DSP unit differentially.

EXT. TRIG, EXT. CLOCK

A fixed attenuator is used for the EXT. TRIG signal. After the impedance has been converted by the source-follower of Q3O3 and the buffer amp of regulated current supply Q3O4, the signal is sent to the emitter-follower of Q314. Q315 is the feedback amp for the EXT. CLOCK signal, which is inverted by IC4a and sent to the DSP unit.

Channel selector

The output from the position amp of each channel is transmitted to the channels elector composed of Q110 and Q111 (Q210 and Q211) and D103 to D106 (D203 to D206). The signal from the V-MODE logic turns the cathodes of D104 and D105 (CH1) or D204 and D205 (CH2) "H", and the signal of the channel turned "H" is transmitted to the feedback amp composed of Q2 and Q3.

Q1 lets the excessive bias current flow when CH1 or CH2 is in ADD mode.

Trigger amp, trigger selecter

With CH1 (CH2), the differential outputs from IC102 (IC202) are input to the differential amp Q152 and Q153 (Q252 and Q253), where Q153 (Q253) forms a cascode amp with Q114 (Q214).

With EXT. TRIG the signal after the buffer amp is sent through

the buffer of emitter-follower Q314, feedback amp Q312 an output as current from the collector of emitter ground amp Q313.

Only the single of the channel with which the cathode of CH1-D108, CH2-D208, EXT-D308 is turned "H" by the signal from the trigger controller is sent through CH1-D107, CH2-D207, EXT-D307 and output as current to the Horizontal unit. Q31 the excessive bias current flow when CH1 or CH2 is in ADD mode.

CH1 OUT

The CH1 output is sent from the collector of Q152, through emitterfollower Q51 and output at CH1 OUT of the Final unit.

Trigger controller

The data on the trigger source set on the panel is input to pin 1 of IC1 and "H" or "L" is output at pins 4 to 8 according to the set state.

IC2 is used to switch between the data from IC1 and the CRT display data of each channel from V-MODE LOGIC. If the current mode is not V mode, the former data is selected. If the current mode is V mode, the latter data is selected for use in controlling the trigger selector.

Among CH1-IC2 pin 7, CH2-IC2 pin 9, CH3-IC2 pin 12, the terminal set with the panel is turned "H".

V-MODE LOGIC

IC3 and IC4 generates a signal synchronized with the display channel select signal from the panel and the end of horizontal sweep, and a signal for controlling the channel selector based on the CHOP signal. (Figure 1)

Vertical range converter

IC401, IC403, S102 and S202 output the vertical range, CAL and UNCAL data by turning them into analog values using an opamp for use as the R/O data. (Tables 1, 2)

H/V control, level converter

The sweep code is sent in the form of serial data to IC408 and IC409, converted from serial to parallel, and converted into a signal between 0 and -12 V by IC404, IC405, IC406 and IC407.

IC410 outputs the CH1/CH2/ADD select signal and the Horizontal unit control signal. For the serial codes, refer to Tables 3 and 4.

FINAL UNIT

Final amplifier

The signal sent from the vertical preamp through the delay line is input to the feedback amp of Q1 and Q2. During A ALT B sweep, the variation of the vertical position of sweep B is controlled by the signal to the base of Q2 from the Sweep unit.

Q3, Q4, Q105, Q106 and IC1 are used to amplify the vertical signal and IC1, Q105 and Q106 are used to amplify the R/O

characters. IC1 is used to switch between the vertical signal and R/O signal.

Q9-Q12, Q113 and Q114 are cascode-connected for use in driving the CRT.

AC inlet, fuse

An external commercial supply voltage switch and fuse holder are provided.

Line filter

A filter for elimination of common mode noise and normal mode noise is provided.

CH1 OUT

The signal from the vertical preamp is output externally via Q201 and Q202 as a signal with 50-ohm impedance.

SWEEP UNIT

Trigger

The trigger signal supplied from the Preamp unit (X73-2120) is AC/DC coupled and the trigger level is added to it.

The obtained signal is input to the trigger shaping circuit to become a pulse signal.

If FIX is selected, the trigger level is fixed so that it is always around the center of the waveform.

With TV-FRAME the composite video signal is separated by the V sync separator and input to the trigger shaping circuit.

With TV-FRAME the composite video signal is separated by the H sync separator and input to the trigger shaping circuit. HFrej is used to apply a 10 kHz LPF to the trigger signal.

The polarity of the trigger pulse signal can be changed with SLOPE +/-. The output signal is input to the sweep logic circuit. There is an additional circuit which applies the trigger signal to the sweep logic in case the trigger pulse signal has not been input for a certain period and auto free-run mode has been selected.

Sweep

When the trigger pulse is input to the sweep logic, the sweep gate is activated and the sweep wave is output.

When the sweep wave reaches a certain level, the sweep stop circuit is activated to close the sweep gate and end sweep.

When sweep gate is closed, the hold-off circuit is activated and, in a certain period after it, the sweep logic enters the trigger standby state.

The delayed sweep is performed either as the AFTER DELAY sweep or B TRIG'D sweep.

With the AFTER DELAY sweep, the voltage level of the main sweep wave and the voltage set with DTP are compared and delayed sweep is performed using the result signal as the trigger.

With the BTRIG'D sweep, sweep is triggered by the next trigger signal input after the voltage level of sweep wave have reached the voltage set with DTP.

In case ALT sweep is set, the main sweep and delayed sweep are sent alternately to the Horizontal amp.

Horizontal amp

This circuitry switches between the sweep wave generated in the sweep block and the X signal and add H-POSITION.

After being magnified by 10 times if MAG has been selected, the signal is input to the R/O switch.

Here, the R/O signal is added to the vertical signal and the signal is amplified by the final amp to a high enough voltage level to drive the CRT.

Intensity circuit

The intensity signal is generated with the sweep gate of the main sweep and that of the delayed sweep. During ALT sweep, a waveform for increasing the intensity of the delayed sweep section is generated with the main sweep. The voltage set with the INTEN potentiometer is added to the intensity signal and the voltage set with the R/O INTEN potentiometer is added to the R/O blanking signal and they are input to the high voltage circuit.

The high voltage circuits generates the CRT cathode voltage, G1 voltage and P1 voltage based on the intensity signal and the FOCUS potentiometer

The cathode voltage is controlled always constant by the opamp. For use with the after-accelerating CRT, the anode voltage is also generated by the high voltage circuit.

Power supply

AC voltages for a tables DC voltage of 7.7V, 15.5V, 69V and 173V are input from the transformer, and they are turned into stable DC voltages of respectively ± 12 , ± 12 V, ± 5 V, ± 5 V and ± 14 0V, which are supplied to their respective units.

CHOP

To observe signals of two each channels simultaneously, the vertical amp is switched with the CHOP signal. The switching frequency rate is about 250 kHz.

PANEL UNIT

This unit sends the potentiometer and switch data from the control panel to other units.

The circuitry has been designed so that, even when the V MODE is selected as the TRIG SOURCE during the ALT setting in the CHOP or STO mode, CH1 is selected as the TRIG SOURCE automatically.

The voltage setting of DTP is made by the opamp in the range from 0 to +4 V. The DISPLAY OFFSET control is a potentiometer for use in fine adjustment of the vertical position of the R/O characters and STO waveform displayed on the CRT. The CAL signal is a 1 kHz, 1 Vp-p square wave.

The intensity is controlled by the PWM based on the output from the original oscillator of CAL.

DSP UNIT

The DSP unit (X79-1300-0*) is used in the A/D conversion, control of the preamp and sweep units, output of characters to the CRT and output of stored waveforms to the CRT.

The waveform signals from the vertical unit are converted from analog to digital by IC100 (CH1) and IC200 (CH2). Each of the A/D converters (IC100, IC200) executes A/D conversion at the positive-going edge of the CLK signal input at pin 2. The output data is input to IC102 (CH1) or IC202 (CH2) and latched inside the IC for peak detection and write in the 2-phase memory, and the latched data is written in the memory of IC103 and IC104 (CH1) or IC203 and IC204 (CH2). Fig. 2 shows the interior of gate array IC102 or IC202 and its connection with the memory. Fig. 3 shows the timings of ILA1 and ILA4 of IC102 and IC202, and data is recorded in IC104 (IC204) then IC103 (IC203).

The memory devices used in the DSP unit are the serial access memory with separate input/output configuration and with built-in address generating counters. The built-in counter is reset when ADRW-goes "L" or when WRES is generated with the timing shown in Fig. 4. Data is written in memory when pin 12 (WE) of IC103, IC104, C203 or IC204 is "L", at the timing of the negative going of pin 15. The recorded data is output at the negative going of pin 2 (RCLK) of IC103, IC104, IC203 or IC204. The signals read out from the 2-phase memory are input to IC102 and IC202, and 2 words of signal is transferred simultaneously to the 16-bit data bus of ADD0 to

The operation clock of these ICs is variable between 40 MHz nd 0. 4 Hz (20 MHz and 0. 4 Hz) according to the sweep time. The output from the 80 MHz oscillator composed of X1, Q301 and Q302 is divided by the counter of IC42 into 40 MHz, 20 MHz and 10 MHz, which are input to the multiplexer of IC38. The 40 MHz clock is input to pin 6 of IC41 and divided with the division ratio which is set with the serial data sent according to the sweep time. The signal output from pin 12 of IC41 is divided into two by IC37a and input to pin 1 of IC38 and pin 15 of IC41, and a signal between 0.4 Hz and 4 kHz is output according to the sweep range. Among the 40 MHz, 20 MHz, 10 MHz, between 10 kHz and 4 MHz and between 0.4 Hz and 4 kHz and EXTCLK signals input to IC38, one signal is selected according to the sweep code sent to IC38 and output from pin 5 of IC38. The output signal is input to the multiplexer of IC40 and the gate array of IC102 and IC202. The clock selected with IC40 is used as the operation clock for A/D converters IC100 and IC200 and the timebase PLD of IC45.

The main operations performed inside the timebase PLD of IC45 are the latch control, memory control and pretrigger control operations.

For the data write operation, LATCK is input to pin 61 and latch clocks CH1L1, CH1L4, CH2L1 and CH2L4 for the gate array and clocks WCLK, WRES and ADRW-for the memory are generated based on it. The number of write data which is determined by the set pretrigger value is counted using SGA

(SGB) input to pin 58 (pin 57). The CPU is informed of the completion of data write with the interrupt applied when ADRW goes "L". The PLD includes a counter which is synchronized with the counters built in the memory and, when 4K words of data has been written, it outputs address data (YBUSO to YBUS7) upon request from the CPU.

The data read operation is performed based on the timing shown in Fig. 5. The read data is sent through the line driver of C28 and IC30 and written in the memory of IC24 and IC25.

C13, IC14, IC16 and IC47 are decoders which output the serial data for use in the horizontal, timebase PLD, divider circuit and gate array control and the signal for use in the port control.

The position of the readout cursor and the DTP are converted into 12-bit serial data by A/D converter IC2 and the data is transmitted to the CPU.

IC10 and IC15 transfers data to the data bus when pin 9 of IC47 in the import section goes "L".

The transferred data includes the panel information (SINGLE, READY*, 10MAG, encoder), timebase PLD information and the battery detection result.

The rotary encoders used as the menu select knob and switch time switching knob have two outputs (phase A, phase B). The timings of phases A and B are as shown in Fig. 6. The outputs of phases A and B are input to the Schmitt circuit of IC11 and IC12 to eliminate chattering and shape the waveforms. When phase A varies, pin 8 of IC11 outputs a trigger pulse to inform the CPU of the change in the rotary encoder by turning pin 8 of IC9 "L". The CPU judges the rotation direction from the variations in phases A and B at the moment it is interrupted.

IC16 is a calendar clock which is battery-backed up by lithium battery BA1 even when the power is OFF. The 32.768 reference clock generated by X'tal oscillator X3 is also running while the power is OFF. When power is ON, the CPU reads data at a constant interval and updates the calendar on the SRT whenever there is a change in the data.

The battery power is detected with IC36a. When the battery voltage drops below 2.4 V, it sets pin 17 of IC15 "H" to inform the CPU of it and displays "BATT. DOWN" on the CRT. IC32 is the D/A converter which converts the trace position data of B sweep into analog voltage.

The display clock has been designed to implement the readout display function. It is composed of VRAM IC19, the VRAM address buss switch for IC20, IC21, IC22 and IC23, R/D PLD IC17, D/A converters IC33 and IC34 and opamp IC 35. For the vertical range input operation, the analog voltages (CH1ATT, CH2ATT) set according to the ranges are input directly to the CPU. As the CPU incorporates A/D converters, it judge the range settings by converting the input voltages from analog to digital.

The R/O PLD contains the latch for operation mode selection, display blanking generator, VRAM address counter, VRAM data bus switch, latch for X-Y data readout and latch for Y-axis

D/A data expansion (for use with the cursor), and generates the signal for use in R/O display.

The X data output from the R/O PLD is sent to IC33 and the Y data is sent to IC34. The analog signals obtained by conversion in IC33 and IC34 are input in the horizontal and vertical final amps.

In the storage mode, every dot of waveform is output in 1 μ s so the waveform display period is about 8 ms with 4 waveforms (CH1, CH2, REF1, FEF2) each of which uses 2K words of data. As every dot of character is displayed in 2 μ s, the character display period is about 6 ms and the period required for updating the CRT display in the storage mode becomes about 20 ms which is equal to the total of the waveform display, character and data transfer periods.

In the realtime mode, every character dot is output in $5.3~\mu s$ so the character display period is about 16~ms while the data transfer period is about 5~ms. As a result, the period of display for a screen becomes about 21~ms.

Fig. 7 shows the timings of R/O UBL, $\overline{\text{R/O REQ}}$ and $\overline{\text{R/O}}$ BLK used for displaying characters. R/O UBL is output so that the dots light for 0.75 μs . $\overline{\text{R/O REQ}}$ in the realtime mode is output for 1.25 μs providing margins of 0.25 μs before and after R/O UBL. This signal is fixed at "L" in the storage mode. $\overline{\text{R/O BLK}}$ in the realtime mode is output for 2 μs to clear the waveforms, providing margins of 0.75 μs before and 0.5 μs after R/O UBL. In the storage mode, only the waveforms of the channel(s) which require(s) waveform display are lit.

PREAMPLIFIER UNIT

Fig. 1 V Mode Logic in ALT or CHOP Mode

Table, 1 CHIATT, CH2

V-Range (/div)	Voltage Range (V)
5 V	4.124 ~ 5.000
2 V	3.790 ~ 4.123
1 V	3.456 ~ 3.789
0.5 V	3.130 ~ 3.455
0.2 V	2.804 ~ 3.129
0.1 V	2.470 ~ 2.803
50 mV	2.136 ~ 2.469
20 mV	1.810 ~ 2.135
10 mV	1.484 ~ 1.809
5 mV	1.150 ~ 1.483
2 mV	0.816 ~ 1.149
1 mV	0.000 ~ 0.815

Table. 2 UNCAL Voltage Check Table

CH1 CAL	CH2 CAL	SWP CAL	Voltage Range (V)
>	>	>	4.406 ~ 5.000
>	>	CAL	3.777 ~ 4.405
>	CAL	>	3. 147 ~ 3. 776
>	CAL	CAL	2.518 ~ 3.146
CAL	>	>	1.888 ~ 2.517
CAL	>	CAL	1.257 ~ 1.887
CAL	CAL	>	0.626 ~ 1.256
CAL	CAL	CAL	0.000 ~ 0.625

Table, 3 Horizontal Serial Codes

able. 3 Horizontal Serial Codes				
Order of Transfer	Contents			
Bit 00	"H" in STO mode, "L" in REAL mode.			
Bit 01	"L" when B TRIG'D is ON, "H" when OFF.			
Bit 02	"L" with x10MAG display in REAL mode, "H" in other cases.			
Bit 03	"L" with X-Y display in REAL mode, "H" in other cases.			
Bit 04	"H" with ADD display, "L" in other cases.			
Bit 05	"H" with CH1 display and X-Y display, "L" in other cases.			
Bit 06	"H" with CH2 display, "L" in other cases.			
Bit 07	Not used: "L"			
Bit 08	B SWEEP 5			
Bit 09	B SWEEP 4			
Bit 10	A SWEEP 5			
Bit 11	A SWEEP 4.			
Bit 12	"L" during adjustment, "H" in other cases.			
Bit 13	Not used: "L"			
Bit 14	Not used: "L"			
Bit 15	Not used: "L"			
Bit 16	B SWEEP 3			
Bit 17	B SWEEP 2			
Bit 18	B SWEEP 1			
Bit 19	A SWEEP 3			
Bit 20	A SWEEP 2			
Bit 21	A SWEEP 1			
Bit 22	Not used: "L"			
Bit 23	Not used: "L"			

Table. 4 Sweep Codes

SWEEP TIME/DIV	SWEEP1	SWEEP2	SWEEP3	SWEEP4	SWEEP5
0.1 <i>μ</i> s	0	0	0	0	1
0.2 μs	0	1	0	0	1
0.5 <i>μ</i> s	1	1	0	0	1
1 μs	0	0	0	1	0
2 μs	0	1	0	1	0
5 μs	1	1	0	1	0
10 μs	0	0	0	0	0
20 μs	0	1	0	0	0
50 μs	1	1	0	0	0
0, 1 ms	0	0	1	1	1
0.2 ms	0	1	1	11	1
0.5 ms	1	1	1	1	1
1 ms	0	0	1	0	1
2 ms	0	1	1	0	1
5 ms	1	1	1	0	11
10 ms	0	0	1	1	0
20 ms	0	1	1	11	0
50 ms	1	1	11	1	0
0.1 s	0	0	1	0	0
0.2 s	0	1	1	0	0
0.5 s or less	1	1	1	0	0

DSP UNIT

Fig. 2 Internal Block Diagram of Gate Array

Fig. 3 Clocks ILA1 and ILA4

Fig. 4 Acquisition Memory Write Reset Cycle

Fig. 5 Normal Sampling Read Cycle

Fig. 6 Rotary Encoder Pulses

Fig. 7 Blanking Timing in Realtime Mode

DCS-7020 BLOCK DIAGRAM

DCS-7040 BLOCK DIAGRAM

To obtain the best performance, periodically calibrate the unit. Sometimes, only one mode need be calibrated, while at other times, all modes should be calibrated. When one mode is calibrated, it must be noted that the other modes may be affected. When calibrating all modes, perform the calibration in the specified sequence.

The following calibration required an accurate measuring instrument and an insulated adjusting flat blade screwdriver. If they are not available, contact your dealer. For optimum adjustment, turn the power on and warm up the scope sufficiently (more than 30 minutes) before starting.

Before calibrating the scope, check the power supply voltage.

TEST EQUIPMENT REQUIRED

The following instrument or their equivalent should be used for making adjustment.

Test Equipment	Model	Minimum Specification
Digital Multi- Meter	DL-7 12 (KENWOOD)	Impedance: More than 10 MΩ, Measuring range: 0.2 V to 1000 V
Sine-Wave Generator	651 B (YH P)	Frequency: 10 Hz to 10 MHz, constant voltage over tuning range
Sine-Wave Generator	SG-503 (Tektronix)	Frequency: 50 kHz to 100 MHz, Output impedance: 50 Ω, constant voltage over tuning range
Square- Wave Generator	PG-506 (Tektronix)	Output signal: 1 kHz, Amplitude: 10 mVp-p to 10 Vp-p, Accuracy: within ±1%, Rise time: 35ns or less 100 kHz, Rise time: 1 ns or less
Q Meter	4343B (YHP)	_
Color Pattern Generator	CG-921 (KENWOOD)	_
Oscilloscope	CS-6040 (KENWOOD)	Sensitivity: more than 1 mV Frequency response: More than 150 MHz
Time-Marker Generator	TG-501 (Tektronix)	Time mark: 0.5 s to 0.1μs repetive waveform
High-Voltage Probe		Input Impedance: 1000 MΩ
Termination	_	Impedance: 50 Ω Accuracy: within 3%
Termination	-	3 watts type impedance: 50 Ω
Attenuator		– 20 dB attenuation (50 Ω)

Table 1

PREPARATION FOR ADJUSTMENT

Control Settings

The control settings listed below must be used for each adjustment procedure.

Exceptions to these settings will be noted as they occur. After completing a adjustment, return the controls to the following settings.

NAME OF KNOBS	POSITION:
INTEN	12 o'clock
FOCUS	Optimum position
CH1, CH2, ♦ POSITION	Mechanical center
→ POSITION	Mechanical center
×10 MAG	OFF
VARIABLE, H.VARIABLE	CAL
(VOLTS/DIV, SWEEP TIME/DIV)	
AC-GND-DC (CH1 and CH2)	AC (GND at no signal)
VERTICAL MODE	CH1
HORIZONTAL MODE	A
TRIGGERING COUPLING	AC
TRIGGERING SOURCE	VERT MODE
TRIGGERING MODE	AUTO
TRIGGERING LEVEL	Mechanical center
VOLTS/DIV (CH1 and CH2)	5 V/DIV
A/B SWEEP TIME/DIV	0.5 s/50 ms
CH2 1 NV	OFF
HOLD OFF	Fully CCW
SLOPE	_ +

Table 2

ltem	Adjustment	P.C.B.	Procedure
Operating voltage	VR4 VR303	X80-1370 X74-1590	V. MODE: CH1 H. MODE: X-Y AC-DC: GND R/O: OFF VOLTS: 10 mV 1) With each POSI, place the spot on the CRT center. 2) Adjust VR4 so that the voltage across P105-1 or 3 on X80-1370 and GND is 33.5 [V]. 3) Adjust VR303 so that the voltage across CN7-1 on X74-1590 and GND is 70 [V]. 4) Check that the voltage across CN7-4 on X74-1590 and GND is about 70 [V].
Focus Center and ASTIG	VR201 VR305	X74-1590	V.MODE:CH1 VOLTS:10 mV AC-DC:GND H.MODE:X-Y 1) Move the spot to the CRT center by operating the POSI controls. 2) Adjust the spot to the best point with FOCUS on the panel and ASTIG (VR305). 3) Set FOCUS on the panel to the 12:00 position and adjust VR201 to move the spot to the best point.
Intensity	VR202	X74-1590	V. MODE : CH1 VOLTS : 10 mV AC-DC : GND H. MODE : X-Y 1) Set INTEN to the 10:00 position. 2) Adjust VR202 so that the spot disappears at the 10:00 position.
Cusor Y-Gain and POSI	VR3(Gain) VR2(POSI)	X80-1370	V.MODE: CH1 H. MODE: A AC-DC: GND R/O: ON (△T) VOLTS: 10 mV A. SWEEP: 1 ms 1) Ensure that the R/O display to 80 mV when turn the △REF knob fully counterclockwise and △knob fully clockwise. 2) Adjust VR3 and VR2 so that the interval between cusor is 8 div. 3) Adjust VR2 to make it uniform.
Cursor X-Gain and POSI	VR304 (Gain) VR306 (POSI)	X74-1590	V. MODE : CH1 H. MODE : A AC-DC : GND R/O : ON (△T) VOLTS : 10 mV A. SWEEP : 1 ms 1) Ensure that the R/O display to 10.0 ms when turn the △REF knob fully counterclockwise and △knob fully clockwise. 2) Adjust VR304 and VR306 so that the interval between cursor is 10 div. 3) Adjust VR306 to make it uniform.
CH1 Gain	VR1 (10 mV) VR102 (1 mV)	X80-1370 X73-2120	V. MODE: CH1 VARI: CAL AC-DC: DC H. MODE: A VOLTS: 10 mV 1) Input a 50 mV square wave signal. 2) Adjust VR1 so that the amplitude is 5 div. (10 mV range) 3) Switch VOLTS to 1 mV and input a 5 mV square wave signal. 4) Adjust VR102 so that the amplitude is 5 div. (1 mV range)
CH2 Gain	VR207 (10 mV) VR202 (1 mV)	X73-2120	V. MODE: CH2 VARI: CAL AC-DC: DC H. MODE: A VOLTS: 10mV 1) Input a 50 mV square wave signal. 2) Adjust VR207 so that the amplitude is 5 div. (10 mV range) 3) Switch VOLTS to 1 mV and input a 5 mV square wave signal. 4) Adjust VR202 so that the amplitude is 5 div. (1 mV range)

Item	Adjustment	P.C.B.	Procedure
X-Gain	VR308	X74-1590	V. MODE: CH2 VARI : CAL AC-DC : DC H. MODE: X-Y VOLTS : 10 mV 1) Input a 50 mV square wave signal to CH2. 2) Adjust so that the amplitude is 5 div. (10 mV range) • Make the adjustment to 5 div., at the CRT center.
			3div 2div
CH1 Step ATT Balance	VR103	X73-2120	V. MODE: CH1 VOLTS: 5 mV AC-DC: GND H. MODE: A Adjust so that the luminescent line does not move when VOLTS is switched from 5 mV to 2 mV. * Adjust after switching to 2 mV with reference to the 5 mV position.
CH1 VARIABLE Balance	VR104	X73-2120	V. MODE: CH1 VOLTS: 5 mV AC-DC: GND H. MODE: A Adjust by setting VARIABLE to the MIN (fully counterclockwise) position with reference to the MAX (CAL) position. • Ensure that the luminescent line does not move when VARIABLE is switched between MIN ↔ MAX.
CH2 Step ATT Balance	VR203	X73-2120	V. MODE: CH1 VOLTS: 5 mV AC-DC: GND H. MODE: A Adjust so that the luminescent line does not move when VOLTS is switched from 5 mV to 2 mV. * Adjust after switching to 2 mV with reference to the 5 mV position.
CH2 VARIABLE Balance	VR204	X73-2120	V. MODE: CH2 VOLTS: :5 mV AC-DC: GND H. MODE: A Adjust by setting VARIABLE to the MIN (fully counterclockwise) position with reference to the MAX (CAL) position. • Ensure that the luminescent line does not move when VARIABLE is switched between MIN → MAX.
CH2 INV Balance	VR208	X73-2120	V. MODE: CH2 VOLTS: 5 mV AC-DC: GND H. MODE: A 1) Adjust so that the trace does not move when CH2 INV is switched ON OFF. 2) Check CH2 STEP ATT BAL and VARI BAL and, if any is deviated, re adjust following the adjustment procedure.
ADD POSI	VR1	X73-2120	 V. MODE: CH1 → CH2 → ADD AC-DC: GND VOLTS: 5 mV H. MODE: A 1) Move the luminescent line to the CRT center by operating CH1 POSI and set V. MODE to the CH2. 2) Move the luminescent line to the CRT center by operating CH2 POSI and set V. MODE to the ADD. 3) Move the luminescent line to the CRT center by operating VR1.

İtem	Adjustment	P.C.B.	Procedure
V. POSI Center	VR106 (CH1) VR206 (CH2)	X73-2120	V. MODE: CH1 or CH2 AC-DC: GND VOLTS: 5 mV H. MODE: A 1) Set V. MODE to CH1 and set POSI of CH1 to the 12:00 position. 2) Adjust the luminescent line to the center of scale by operating VR106. 3) Switch V. MODE to CH2 and set POSI of CH2 to the 12:00 position. 4) Adjust the luminescent line to the center of scale by operating VR206.
CH1 Waveform Shaping	TC102 (0.1 V) TC104 (1 V)	X73-2120	V. MODE: CH1 AC-DC: DC VARI: CAL H. MODE: A VOLTS: 10 mV (ideal waveform) → 0.1 V → 1 V 1) Input a 1 kHz square wave to the CH1 input. 2) Adjust TC102 so that the waveform at 0.1 V range is flat. 3) Adjust TC104 so that the waveform at 1 V range is flat.
CH2 Waveform Shaping	TC202 (0.1 V) TC204 (1 V)	X73-2120	V. MODE: CH2 AC-DC: DC VARI: CAL H. MODE: A VOLTS: 10 mV (ideal waveform) → 0.1 V → 1 V 1) Input a 1 kHz square wave to the CH2 input. 2) Adjust TC202 so that the waveform at 0.1 V range is flat. 3) Adjust TC204 so that the waveform at 1 V range is flat.
CH1 Input Capacity	TC101 (0.1 V) TC103 (1 V)	X73-2120	V. MODE: CH1 AC-DC: DC VARI: CAL H. MODE: A VOLTS: 10 mV (reference) → 0.1 V → 1 V 1) Connect a capacity meter to the CH1 input. 2) Measure the capacity of the 10 mV range. (No more tha 25 p) 3) At 0.1 V range, adjust TC101 to obtain the same values as 10 mV. 4) At 1 V range, adjust TC103 to obtain the same values as 10 mV.
CH2 Input Capacity	TC201 (0.1 V) TC203 (1 V)	X73-2120	V. MODE: CH2 AC-DC: DC VARI: CAL H. MODE: A VOLTS: 10 mV (reference) → 0.1 V → 1 V 1) Connect a capacity meter to the CH2 input. 2) Measure the capacity of the 10 mV range. (No more tha 25 p) 3) At 0.1 V, adjust TC201 to obtain the same values as 10 mV. 4) At 1 V, adjust TC203 to obtain the same values as 10 mV.
FIX Level	VR2	X74-1590	V. MODE: CH1 H. MODE: A AC-DC: DC SWEEP-TIME: 0.2 ms VOLTS: 0.1 V TRIG. MODE: FIX 1) Input 1 kHz sine wave to CH1 and set it so that it extends by 3 div., above and below the scale center line. 2) Adjust so that the waveform starts from the scale center line when SLOPE is switched between +/ 3) Set the amplitude to 1 div., switch SLOPE to + and -, and ensure that triggering is applied. (If it is not applied, re-adjust now.)
			Align the start with 3div the center.

ltem	Adjustment	P.C.B.	Procedure
TRIG Level	VR1	X74-1590	V. MODE: CH1 H. MODE: A AC-DC: DC SWEEP-TIME: 0.2 ms VOLTS: 0.1 V TRIG. MODE: AUTO 1) Input 1 kHz sine wave to CH1 and set it so that it extends by 3 div., above and below the scale center line. 2) Set TRIG LEVEL to the 12:00 position and adjust so that the waveform starts from the scale center line. Align the start with Align the center.
CH1 TRIG DC Coupling	VR105	X73-2120	V. MODE: CH1 SWEEP-TIME: 0.2 ms AC-DC: DC TRIG, MODE: AUTO VOLTS: 0.1 V COUPLING: AC H. MODE: A 1) Input 1 kHz sine wave to CH1 and set it so that it extends by 3 div., above and below the scale center line. 2) Adjust TRIG LEVEL so that the waveform starts from the scale center line. 3) Switch COUPLING to DC and adjust so that the waveform starts from the scale center line. Align the start with Align the center.
CH2 TRIG DC Coupling	VR205	X73-2120	V.MODE: CH2 SWEEP-TIME: A=0.2 ms AC-DC: DC TRIG. MODE: AUTO VOLTS: 0.1 V COUPLING: AC H.MODE: A 1) Input 1 kHz sine wave to CH2 and set it so that it extends by 3 div., above and below the scale center line. 2) Adjust TRIG LEVEL so that the waveform starts from the scale center line. 3) Switch COUPLING to DC and adjust so that the waveform starts from the scale center line. Align the start with Align the start with Align the start with 3div

Item	Adjustment	P.C.B.	Procedure
EXT TRIG DC Coupling	VR303	X73-2120	V. MODE: CH1 SWEEP-TIME: 0.2 ms AC-DC: DC TRIG. MODE: AUTO VOLTS: 0.1 V TRIG. SOURCE: EXIT H. MODE: A 1) Divide 1 kHz sine wave into two and apply the inputs to CH1 and EXT, and display them for 3 div above and below the scale center line. 2) Adjust TRIG LEVEL so that the waveform starts from the scale center line. 3) Switch COUPLING to DC and adjust so that the waveform starts form the scale center line. Align the start with the center.
TRIG ADD	VR31	X73-2120	V. MODE : CH1 → CH2 → ADD SWEEP-TIME : A=0.2 ms VOLTS : 0.1 V TRIG. MODE : AUTO AC-DC : DC COUPLING : AC H. MODE : A 1) Set the luminescent line of each CH to the scale center position by operating V. POSI. 2) Set V. MODE to ADD. 3) Input a 1 kHz sine wave to CH1 and set it so that it extends by 3 div., above and below the scale center line. 4) Adjust TRIG LEVEL so that the waveform starts from the scale center
A/B sweep start points	VR102	X74-1590	line. 5) Switch COUPLING to DC and adjust so that the waveform starts from the scale center line. V. MODE : CH1 AC-DC : GND H. MODE : ALT
			SWEEP-TIME : A=1 ms, B=0.1 ms D.T. POSI : MIN (fully counterclockwise) Adjust so that the start points of A. SWEEP and B. SWEEP are aligned.
A, B SWEEP TIME 1 ms	VR403 (A, SWEEP) VR402 (B, SWEEP)		Start point H. MODE : ALT D. T. POSI : MIN (fully counterclockwise) SWEEP-TIME : A, B=1 ms B. TRIG'D : ON 1) Input a 1 ms marker signal. 2) Adjust so that the marker peak and scale coincides at every div.
			B

Item	Adjustment	P.C.B.	Procedure
MAG GAIN	VR302	X74-1590	H. MODE : A SWEEP-TIME: A=1 ms AC-DC : DC B. TRIG'D : ON 1) Input a 1 ms marker signal. 2) Adjust H. POSI so that the marker peak and scale coincides at every div. 3) Switch X10 MAG ON and adjust so that the interval between two peaks is 10 div. MAG
MAG Center	VR309	X74-1590	H. MODE : A SWEEP-TIME : A=1 ms AC-DC : DC 1) Input a 5 ms marker signal. 2) Switch X10 MAG ON and adjust H. POSI so that the center marker peak is aligned with the scale center. 3) Switch X10 MAG OFF and adjust VR 309 so that the center marker peak is aligned with the scale center. 4) Adjust by 2) and 3) is repeating a few times. 5) After the adjustment, switch MAG between ON-OFF and ensure that the center marker peak does not move. Center With MAG: OFF With MAG: ON
H. POSITION X-POSITION	VR301 (H. POSI) VR307 (X-POSI)	X74-1590	 H. MODE : A or X-Y SWEEP-TIME : A=1 ms 1) Set the AC-DC switch to GND. (The marker signal can be left input.) 2) Set H. POSI to the 12:00 position. 3) Adjust VR301 so that the trace start point is aligned with the left end of scale. 4) Set H. MODE to X-Y. 5) Adjust VR307 so that the spot comes on the scale center.
A, B SWEEP TIME 1 μs	TC101 (A, SWEEP) TC102 (B, SWEEP)	X74-1590	 H. MODE : ALT SWEEP-TIME : A, B=1 μs D.T. POSI : MIN (fully counterclockwise) B.TRIG'D : ON 1) Input a 1 μs marker signal. 2) Adjust TC101 (A. SWEEP) so that the marker peak and scale coincides at every div. 3) Also adjust the B SWEEP time in the same way as above using TC102.

Item	Adjustment	P.C.B.	Procedure					
A SWEEP TIME 0.1 µs	TC303 (A, SWEEP)	X74-1590	 H. MODE : A SWEEP-TIME : A=0.1 μs 1) Input a 0.1 μs marker signal. 2) Adjust so that the marker peak and scale coincides at every div. 					
D. T. POSI	VR103 (Start) VR104 (Stop)	X74-1590	 H. MODE :ALT SWEEP-TIME : A=1 ms, B=10 μs AD-DC : DC 1) Turn the COARSE and FINE potentiometers of D.T. POSI control fully counterclockwise. 2) Adjust the R/O display to 0.40 ms with FINE. 3) Adjust VR103 so that the start of B sweep is aligned with 0.4 div., of the scale. 4) Turn the COARSE and FINE potentiometers of D.T. POSI control fully clockwise. 5) Adjust the R/O display to 10.00 ms with FINE. 6) Adjust VR104 so that the start of B sweep is aligned with 10.00 div., of the scale. 					
CH1 1 MHz square wave	TC1 TC62 TC106	X80-1370 X73-2120	V. MODE: CH1 VOLTS: 10 mV AD-DC: DC H. MODE: A 1) Input a 1 MHz square wave to CH1 and set its amplitude to 6 div. 2) Adjust the waveform to the best point. 3) Check that the overshoot in each range from 5 mV to 0.1 V is within the specification.					
CH2 1 MHz square wave	TC205 TC206	X73-2120	V. MODE: CH2 VOLTS: 10 mV AD-DC: DC H. MODE: A 1) Input a 1 MHz square wave to CH2 and set its amplitude to 6 div. 2) Adjust the waveform to the best point. 3) Check that the overshoot in each range from 5 mV to 0.1 V is within the specification.					
STORAGE GAIN	VR102 (CH1) VR202 (CH2)	X79-1300	V.MODE:CH1 or CH2 H.MODE :A AC-DC:DC VARI :CAL VOLTS:10 mV REAL/STORAGE:STORAGE 1) Input a 50 mV square wave signal to CH1. 2) Adjust VR102 so that the amplitude is 5 div. 3) Adjust VR202 so that the amplitude is 5 div. • If the waveforms are not displayed, display them using the following potentiometers. CH1: X73-2120: VR502 CH2: X73-2120: VR602					

Item	Adjustment	P.C.B.	Procedure
STORAGE POSI	VR501 (CH1 STO POSI GAIN) VR502 (CH1 STO POSI) VR601 (CH2 STO POSI GAIN) VR602 (CH2 STO	X73-2120	V. MODE : CH1 or CH2 AC-DC : DC VOLTS : 10 mV H. MODE : A TRIG. SOURCE : EXT 1) Switch power ON while holding the SINGLE RESET lever down. 2) Set the TRIG. MODE to AUTO. 3) Apply a 5 V square wave signal into the EXT input.
	POSI) VR101 (CH1 STO POSI [FINE]) VR201 (CH2 STO POSI [FINE])	!	CH1 STO POSI GAIN 4) Turn CH2 POSI fully clockwise. 5) Display the square wave in REAL mode. 6) Switch the modes alternately between STO → REAL and, while adjusting the position with VR502, adjust VR501 to make the amplitude of the STO waveform equal to that of the REAL waveform.
			CH2 STO POSI GAIN 7) Set the V.MODE to CH2. 8) Turn CH1 POSI fully clockwise. 9) Display the square wave in REAL mode. 10) Switch the modes alternately between STO ↔ REAL and, while adjusting the position with VR602, adjust VR601 to make the amplitude of the STO waveform equal to that of the REAL waveform.
			 STO POSI 11) Switch power OFF then ON again. 12) Display traces on the CRT and, while switching the modes alternately between STOP → REAL, adjust Vr502 and VR602 so that the traces come on the same positions. 13) Check by changing the attitude of the DSP unit to vertical and horizontal. If the REAL and STO waveforms are deviated from each other, fine adjust their positions using VR101 (CH1) and VR201 (CH2).

PRE AMP UNIT (X73-2120-00)

SWEEP UNIT (X74-1590-00)

DSP UNIT (X79-1300-0X)

ADJUSTMENT

FINAL UNIT (X80-1370-00)

TROUBLESHOOTING

When operating the DCS-7020/7040, be sure to use the proper procedure and check all panel settings.

A wrong setting cause abnormal operation from even a good product. For exam ple, observation of a waveform with high noise components is accompanied by jitter. In such a case, the jitter can be corrected by setting the trigger coupling to HFrej. If there is any funct ion which you do not understand, check out by reading the instruction manual.

If the operation is abnormal even when the operating procedure is correct, remove the top case and bottom panel.

CAUTION -

HIGH VOLTAGE PARTS ARE INSIDE THE EQUIP-MENT. THEY ARE EXTREMELY DANGEROUS.

Check all PC boards to ensure that there is no unplugged connector or soldering defect.

Some problems may be corrected by applying correct adjustment. For example, if the trace moves up and down when the Vertical Variable control is turned, it can be corrected by adjusting the Variable balance. For the adjustment methods, read the descriptions of adjustment procedures.

The description in the troubleshooting section use the same circuit names as those used in the block diagram. Refer to the block diagram when reading the troubleshooting.

First, start with checking the power supply block. Check the voltages at IC401 on X74-1590.

pin no.	voltage		
1	+140		
4	+55		
6	+12		
8	-12		
10	+5		
11	-8		

OK (Acceptable): Go to next step.

NG (Unacceptable): There is a problem in the power supply block. Check the regulator circuit

a: In case no spot is displayed on the CRT in the X-Y mode.

Check that voltages at pins 1 and 4 of CN7 on the X74-

OK: Check the voltages at pins 1 and 3 of CN5 on the X80-1370.

NG: There is a problem in the vertical amp. (Go to i.)

NG: There is a problem in the horizontal amp. (Go to c.)

b: Check if the voltage at W18 on X74-1590 is corect.

OK: There is a problem in the BLK amp.

NG: There is a problem in the HIGH Volts converter.

c: Short-circuit the bases of Q306 and Q307 on X74-

A spot is displayed on the CRT:

There is a problem somewhere before the X amp. (Go to d.)

Nothing is displayed on the CRT:

Short the collectors of Q310 and Q311.

A spot is displayed on the CRT:

There is a problem in the MAG amp or R/O SW.

Nothing is displayed on the CRT:

There is a problem in H-FINAL.

d: Short-circuit the collector of Q151 on X74-1590 with the chassis.

A spot is displayed on the CRT:

There is a problem in the Vertical block.

Nothing is displayed on the CRT:

There is a problem in the X amp.

e: In case no trace is displayed on the CRT in the A sweep

Measure the waveform at pin 12 of IC102 on X74-1590.

- OK: Measure every waveform after IC102 to locate the defective position.
- NG: Measure the A SWEEP GATE, A SWEEP, A SWEEP STOP and HOLD OFF waveforms to locate the defective position.

f: In case no trace is displayed on the CRT in the B sweep

Measure the waveform at pin 12 of IC105 on X74-1590.

- OK: Measure every waveform after U105 to locate the defective position.
- NG: Measure the B SWEEP GATE, B SWEEP, B SWEEP STOP and DTP circuit waveforms to locate the defective position.

g: Intensity is not modulated in ALT sweep mode.

Check the waveform at the collector of Q116 on X74-1590

OK: There is a problem in INTEN.

NG: There is a problem in the BLK amp.

h: Triggering cannot be applied.

Check the waveform at the collector of Q151 on the X74-

OK: Check the waveform at the collector of Q158 on X74-

OK: There is a problem in the Schmitt circuit.

NG: There is a problem in the Trig. Coup.

NG: There is a problem in the trigger selector.

TROUBLESHOOTING

i: Trace is not displayed.

Short-circuit the bases of Q107 and Q108 on X80-1370 and check if a trace is displayed on or near the center.

- OK: Short-circuit the bases of Q1 and Q2 on X80-1370 and check if a trace is displayed on o near the center.
 - OK: There is a problem in X73-2120. Check the defective point by shorting each signal line.
 - NG: There is a problem in the T.SEP amp or R/O SW on X80-1370.
- NG: There is a problem in V. FINAL.

j: TV synchronization is impossible.

Check the waveforms of the video amp on X74-1590.

- OK: There is a problem in the Schmitt circuit.
- NG: There is a problem in the circuitry before the video amp. Check the defective position following the signal flow. Be sure to check both TV-LINE and TV-FRAME.

k: The channels are not displayed properly.

Check the outputs from V-MODE LOGIC on X73-2120.

- OK: There is a problem in the circuitry before the POSI amp of one of the channels. Check the waveforms.
- NG: Check the V-CLK waveform.
 - OK: There is a problem in the V-MODE LOGIC.
 - NG: There is a problem in the H-MODE LOGIC on X74-

I: ADD is not possible.

There is a problem in channel celector on X73-2120.

m: CHOP sweep is not possible.

Check the waveform at the collector of Q118 on X74-1590.

- OK: There is a problem in the H-MODE LOGIC.
- NG: There is problem in the CHOP generator.

n: Auto free-run is not possible.

Check +5V at pin 1 of IC106 on X74-1590.

OK: There is a problem in the A sweep gate.

NG: There is a problem in the free-run circuit.

o: Characters and STO waveform are not displayed on

- Check the CURSOR MODE SW and R/O INTEN.
- Check the blanking signals at CN527-1, 2, 4 and 5 on
- OK: Check the signals at R/O X at CN527-7 and R/O Y at CN527-5.

If NG, go to the next check item. If OK, check V FINAL or H FINAL.

NG: There is a problem in the display control.

p: Character and STO waveform are not displayed properly on the CRT.

• Check if the CPU IC26 on X79-1300 is operates normally.

(Check the conditions of X3, 12 Mhz, IC26 data bus and

- Trace R/O X form the input to output to find if there is any abnormal position. Also check R/O Y from the input to output. (D/A circuit check)
- OK: There is a problem in V FINAL or H FINAL.
- NG: There is a problem in the display control of the D/A circuitry on X79-1300.

q: Character data is not displayed properly on the CRT.

- •Trace the Panel control circuit on X79-1300 and its surroundings to fine if there is any abnormal position.
- OK: There is a problem in the Panel unit.
- NG: There is a problem in the panel control.

r: The cursor and DTP do not function properly.

• Check if the cursor and DTP voltages are output properly.

)		CHECK POINT
Δ	0V	4V	IC2-1
ΔREF	0V	4V	IC2-2
DTP	4V	0V	IC2-5

- OK: There is a problem in the panel control D/A circuitry on X79-1300.
- NG: There is a problem in the Panel unit.

s: The trace separation does not function properly.

- Check the operations of IC31, 32 and 36 on X79-
- OK: There is a problem in the sweep unit or final unit. Trace signals and identify the abnormal position.
- NG: There is a problem in the panel unit or panel control.

t: Only the STO waveform is abnormal.

Check if the CPU and the surrounding circuitry are operating, then check the following points.

- Checking pin 29 (Vin) of IC100 (IC200) on X79-1300 OK: Go to the next check.
- NG: There is a problem in the A/D preamp or the preamp unit
- Checking pin 2 (CLK) of C100 (IC200) on X79-1300 OK: Go to the next check.
- NG: There is a problem in the 80 MHz OSC or AD CLK
- Checking the clock signals output from IC45 on X79-1300 OK: There is a problem in one of the devices connected
- to IC45 or in the surroundings. NG: There is a problem in IC45.

u: Abnormality occurs with other function than above.

Trace the signal path of the defective function referring to the block diagram to locate the defective position.

When all of the troubles have been repaired above, start readjustments following the adjustment procedures.

33

PARTS LIST

DCS-7020

Y70-2070-01 REF. NO PARTS NO A63-0201-03 B41-0710-14 B41-2079-14 B41-2083-04 NAME & DESCRIPTION PANEL ASS'Y CAUTION LABEL: HIGH VOLTAGE CAUTION LABEL: PL GND SERIAL NO. PLATE LABEL: CARTON BOX CAUTION LABEL: INPUT/OUTPUT INSTRUCTION MANUAL: JAPANESE INSTRUCTION MANUAL: ENGLISH JIS POWER CORD UL/CSA POWER CORD CEE POWER CORD SAA POWER CORD SAA POWER CORD FUSE(5X20MM) T14/250V SHEET FOAMED STYREN PAD: FRONT NAME & DESCRIPTION B 4 2 - 3 8 1 9 - 0 5 B 4 2 - 3 8 2 0 - 0 5 B 4 2 - 6 0 9 4 - 0 4 B 6 3 - 0 2 5 2 - 0 0 B 6 3 - 0 2 5 3 - 1 0 E 3 0 - 1 9 5 0 - 0 5 E 3 0 - 1 9 5 1 - 0 5 E 3 0 - 1 9 5 2 - 0 5 E 3 0 - 1 9 5 3 - 0 5 E 3 0 - 1 9 6 3 - 0 5 F 0 5 - 4 0 1 6 - 0 5 F 06 - 1 0 2 2 - 0 5 G 16 - 06 18 - 04 H 10 - 2888 - 02 SHERT FOAMED STYREN PAD; FRONT FOAMED STYREN PAD; REAR VINYL COVER CARTON BOX ADJUSTMENT ROD CASE: BOTTOM H 10 - 2889 - 02 H 20 - 1727 - 04 H 53 - 0218 - 13 H 53 - U 2 1 8 - 1 3 W 0 1 - 0 4 0 6 - 1 4 A 0 1 - 4 0 4 6 - 0 2 A 0 1 - 4 0 4 7 - 0 2 A 1 3 - 2 2 1 9 - 1 2 A 1 3 - 2 2 2 0 - 0 2 A 1 3 - 2 2 2 9 - 0 2 CASE: HOTTON CASE: TOP FRAME: RIGHT FRAME: CENTER FRAME: LEFT DECORATIVE PANEL DECORATIVE PANEL A 1 3 - 2 2 2 2 3 - 0 2 A 2 1 - 2 4 4 8 - 0 3 A 2 1 - 2 4 4 9 - 0 4 A 2 2 - 1 3 0 7 - 0 2 A 6 3 - 0 1 1 0 - 0 1 A 6 3 - 0 2 0 0 - 1 2 A 8 3 - 0 0 7 9 - 0 2 DECORATIVE PANEL SUB PANEL; LARGE MOLD PANEL; LARGE MOLD PANEL; SMALL REAR PANEL FILTER MODEL NO. PLATE A 8 3 - 0 0 7 9 - 0 2 B 1 1 - 0 5 1 8 - 0 4 B 7 3 - 0 1 5 7 - 0 4 D 2 1 - 0 9 3 5 - 0 4 E 2 1 - 0 6 8 6 - 0 4 E 2 3 - 0 5 5 2 - 0 4 E 3 8 - 0 9 7 9 - 2 5 E 3 8 - 1 1 0 7 - 1 5 E 6 8 - 0 6 1 9 - 0 5 F 1 1 - 1 2 0 6 - 1 3 F 1 1 - 1 2 0 6 - 1 3 F 1 1 - 1 2 8 5 - 0 3 MODEL NO. PLATE EXTENSION SHAFT TERMINAL: CAL EARTH TERMINAL WIRE ASS'Y WIRE ASS'Y WIRE ASS'Y AC SELECTOR SHIELD PLATE SHIELD CASE: CRT SHIELD CASE FELT (CRT SHIELD) BLIND PLATE INSULATOR: LARGE INSULATOR: SMALL LEG F11-1285-03 F15-0733-04 F15-0769-04 F 20 - 30 1 3 - 0 3 F 20 - 30 1 4 - 0 4 F 29 - 0 5 2 8 - 0 5 INSULATOR: SMALL INSULATOR TUBE LEG HOLDER FOR CRT BRACKET BRACKET BRACKET BRACKET BUSHING HANDLE KNOB; VARI KNOB; VARI KNOB; V/DIV PUSH SW: POWER PUSH BUTTON: GRAYWHITE LEVER KNOB KNOB LED: GREEN POWER TRANSFORMER ROTATION COIL POWER SWITCH REAR RUBBER FOOT/CORD WRAP PANEL UNIT DSP UNIT FINAL UNIT CRT F 2 9 - 0 5 2 8 - 0 5 J 0 2 - 0 5 4 0 - 0 5 J 1 9 - 1 6 5 3 - 2 3 J 2 1 - 4 8 5 3 - 0 4 J 2 1 - 4 8 5 5 - 1 4 J 4 2 - 0 5 5 8 - 0 5 K 0 1 - 0 5 6 1 - 0 2 K 2 1 - 0 9 2 0 - 0 4 K 2 3 - 0 8 1 8 - 0 4 K 2 7 - 0 5 9 0 - 0 4 K 2 7 - 3 6 1 8 - 1 4 K 2 9 - 0 8 7 7 - 0 4 K 2 7 - 3 6 1 8 - 1 4 K 2 9 - 0 8 7 7 - 0 4 K 2 9 - 0 8 9 4 - 0 3 L N 3 2 2 R P L N 3 2 2 G P L 0 7 - 1 5 3 4 - 0 5 L 3 9 - 0 5 3 1 - 0 5 W 0 1 - 0 5 0 3 - 0 4 X 6 6 - 1 4 7 0 - 0 0 X 7 3 - 2 1 2 0 - 0 0 X 7 4 - 1 5 9 0 - 0 0 X 7 9 - 1 3 0 0 - 0 0 X 8 8 0 - 1 3 7 0 - 0 4 150 V T M 3 1 A

DCS-7040

		70-2070-02
DEE NA	DARTE NO	NAME & DECEMBETION
REF. NO	PARTS NO A63-0202-03	NAME & DESCRIPTION PANEL ASS'Y
	B41-0710-14	CAUTION LABEL; NIGH VOLTAGE
	B41-2081-14	CAUTION LABEL
	B41-2083-04	CAUTION LABEL; PL GND
	B42-3819-05	SERIAL NO. PLATE
-	B42-3820-05	LABEL; CARTON BOX
	B 4 2 - 6 0 9 4 - 0 4	CAUTION LABEL; INPUT/OUTPUT
	B63-0252-00	INSTRUCTION MANUAL; JAPANESE
	B63-0253-10	INSTRUCTION NANUAL; ENGLISH JIS POWER CORD
	E30-1950-05	JIS POWER CORD UL/CSA POWER CORD
	E30-1951-05 E30-1952-05	CEE POWER CORD
	E30-1953-05	SAA POWER CORD
	E30-1963-05	BS POWER CORD
	F05-4016-05	FUSE(5X20NN) T400NA/250V
	F06-1022-05	FUSE(5X20NM)
	G16-0618-04	SHEET
	H10-2888-02	SHEET FOAMED STYREN PAD; FRONT FOAMED STYREN PAD; PRAD
	H10-2889-02	FOANED STYREN PAD; REAR VINYL COVER
	H 20 - 1727 - 04 H 53 - 0219 - 13	CARTON BOX
	W01-0406-14	ADJUSTMENT ROD
1	A01-4046-02	CASE; BOTTOM
2	A01-4047-02	CASE: TOP
3	A 13-2219-12	FRAME: RIGHT
4	A 13-2220-02	FRAME: CENTER
5	113-2229-02	FRANE; LEFT
6	A 2 1 - 2 4 4 8 - 0 3	DECORATIVE PANEL DECORATIVE PANEL
7 8	A 2 1 - 2 4 4 9 - 0 4 A 2 2 - 1 3 0 7 - 0 2	SUB PANEL
9	A63-0110-01	NOLD PANEL; LARGE
10	A63-0200-12	MOLD PANEL; SMALL
1 1	A83-0079-02	REAR PANEL
1 2	B11-0518-04	FILTER
13	B73-0158-04	NODEL NO. PLATE
1 4	D21-0935-04	EXTENSION SHAFT
15	E 2 1 - 0 6 8 6 - 0 4 E 2 3 - 0 5 5 2 - 0 4	TERMINAL; CAL EARTH TERMINAL
16 17	E38-0979-25	WIRE ASS'Y
18	E38-1007-15	WIRE ASS'Y
19	E38-1167-05	WIRE ASS'Y
2 0	E68-0619-05	AC SELECTOR
2 1	F10-1698-03	SHIELD PLATE
2 2	F11-1206-13	SHIELD CASE: CRT
23	F11-1284-03	SHIELD CASE
2 4 2 5	F11-1285-03 F15-0733-04	SHIELD CASE FELT (CRT SHIELD)
26	F15-0769-04	BLIND PLATE
27	F20-3013-03	INSULATOR; LARGE
2 8	F20-3014-04	INSULATOR: SNALL
29	F29-0528-05	INSULATOR TUBE
30	J02-0540-05	LEG
31	J19-1653-23	HOLDER FOR CRT
3 2 3 3	J21-4853-04 J21-4854-04	BRACKET BRACKET
34	J21-4855-14	BRACKET
35	J42-0558-05	BUSHING
36	K01-0561-02	HANDLE
3 7	K21-0920-04	KNOB; VARI
38	X 23-0818-04	K N O B : V / D I V
39	K 2 4 - 3 0 0 5 - 0 4	PUSH SW: POWER
4.0	K27-0590-04	PUSH BUTTON; GRAYWHITE LEVER
4 1 4 2	X27-3618-14 X29-0877-04	KNOB
43	K29-0894-03	KNOB
4 4	LN222RP	LED: RED
45	LN322GP /	LED: GREEN
46	L07-1534-05	POWER TRANSFORMER
47	L39-0531-05	ROTATION COIL
48	S40-2532-05	POWER SWITCH
49	W01-0503-04	REAR RUBBER FOOT/CORD WRAP
50 51	X66-1470-00 X73-2120-00	PANEL UNIT PRE ANP UNIT
5.2	X74-1590-00	SWEEP UNIT
5.3	X79-1300-01	DSP UNIT
5 4	180-1370-04	FINAL UNIT
5 5	150 V T N 31 A	CRT

Y70-2070-02

SCREWS

	Parts No.	Parts Name		Figure
А	N08-0611-04	SCREW (FOR CORD WRAP)		(<u>(</u>)
В	N09-0739-05	SCREW, SEMS BINDING TAPTITE	(3 × 8)	
С	N14-0622-05	NUT, WITH TOOTH	(M4)	
D	N19-0748-05	WASHER		0
E	N30-3008-41	SCREW, PAN HD	(M3 × 8)	
F	N30-4010-41	SCREW, PAN HD	(M4 × 10)	
G	N32-3008-41	SCREW, FLAT HD	(M3 × 8)	(2)))))))
Н	N66-2612-41	SCREW, SEMS PAN HD	(M2.6 × 12)	
J	N66-3006-41	SCREW, SEMS PAN HD	(M3 × 6)	
К	N66-3008-41	SCREW, SEMS PAN HD	(M3 × 8)	
L	N66-4012-41	SCREW, SEMS PAN HD	(M4 × 12)	
М	N67-3008-41	SCREW, SEMS PAN HD	(M3 × 8)	
N	N88-3006-41	SCREW, FLAT HD TAPTITE	(3 × 6)	<i>ana</i> (8)
Р	N88-3008-41	SCREW, FLAT HD TAPTITE	(3 × 8)	auri (8)
a	N89-3008-41	SCREW, BINDING TAPTITE	(3 × 8)	(g)
R	N89-3012-41	SCREW, BINDING TAPTITE	(3 × 12)	

MODEL PC-33 (LOW CAPACITY PROBE)

E30-1883-08

E29-0540-08

B42-1950-08

Ground Wire Assembly
 Retractable Hook Tip
 Marker (Orange)

DISASSEMBLY

PARTS LIST

	X	<u>66-1470-00</u>
EF. NO	PARTS NO A33-0505-04	NAME & DESCRIPTION REFLECTOR
	E40-0218-05	PIN CONNECTOR 2P PCB (UNNOUNTED)
C 1	J73-0389-02 CE04LW1A221H	CAP. ELECTRO 220 20% 10V CAP. ELECTRO 100 20% 25V
C 2 C 3	CE04LW1E101M CE04LW1E101M	CAP. ELECTRO 100 20% 25 V CAP. CERAMIC 0.01 20% 16 V
C 4	C91-0769-05	CAP. ELECTRO 47 20% 16V
C101 C102	C90-3228-05 C90-3228-05	CAP. ELECTRO 47 20% 16V
C103	CF92FV1H103J C91-0769-05	CAP. CERANIC 0.01 20% 16V
C105	C90-3228-05	CAP. ELECTRO 47 20% 16V PIN CONNECTOR 6P
CN511	E40-7518-05 E40-7532-05	PIN CONNECTOR 23P
CN 5 2 3	E40-7532-05 E40-7520-05	PIN CONNECTOR 30P
C N 5 2 9	E 40 - 7521 - 05	PIN CONNECTOR 30P
D 1 0 1 D 1 0 2	1 \$ \$ 1 3 2 1 \$ \$ 1 3 2	D 1 O D E D 1 O D E
D 4 0 4	D3SB20	D 1 O D E , B R I D G E
I C 1	N J N 4 5 5 8 L	IC, DUAL OP AMP
[C 1 0 1	N J H 4 5 5 8 L	IC, DUAL OP AMP
PL101 PL102	B30-3016-05	LAMP LAMP
PL103	B30-3016-05	LAMP
Q 1 Q 2	2 S C 1 7 4 0 S (R, S) 2 S A 9 3 3 S (R, S)	TR. SI, NPN TR. SI, PNP
9101	2 SC 1 7 4 0 S (R, S)	TR. SI, NPN TR. SI, NPN
0102 0103 0104	2 S C 1 7 4 0 S (R , S) 2 S C 1 3 1 8 A (R) 2 S A 7 2 0 A (R)	TR. SI, NPN TR. SI, PNP
Q407 Q408	2 SB 1 0 1 5 (Y) 2 SA 9 3 3 S (R, S)	TR. SI, PNP TR. SI, PNP
R 1	R 90 - 1 1 8 2 - 0 5 R 90 - 1 1 8 2 - 0 5	RES. NETWORK RES. NETWORK
R 2 R 3	R90-1182-05 R90-1182-05 R90-1182-05	RES. NETWORK RES. NETWORK
R 4 R 5 R 6	NO USE RN14BK2C2002I	
R 7	RN14BR2C10G21	
R 8	RN14BK2C2203	RES. METAL FILM 220K 1% 1/6W
R 1 0	R N 1 4 B K 2 C 2 2 0 2 1 R N 1 4 B K 2 C 2 0 0 2	RES. HETAL FILM 20K 0.5% 1/6W
R 1 2 R 1 3	RN14BK2C2002	RES. METAL FILM 19.6% 0.5% 1/6
R 1 4 R 1 5	RD14BB2C822J RD14BB2C432J	RES. CARBON 8.2K 5% 1/6W RES. CARBON 4.3K 5% 1/6W
R 1 6 R 1 7	RD14BB2C222J RD14BB2C621J	RES. CARBON 2.2K 5% 1/6W RES. CARBON 620 5% 1/6W
R 18	RD14BB2C102J RD14BB2C103J	RES. CARBON 1K 5% 1/6W RES. CARBON 10K 5% 1/6W
R 2 0	RD14BB2C103J	RES. CARBON 10K 5% 1/6W RES. CARBON 100 5% 1/6W
R 2 1 R 2 2	RD14BB2C101J RD14BB2C103J	RES. CARBON 10K 5% 1/6W
R 2 3 R 2 4	RD14BB2C103J RD14BB2C103J	RES. CARBON 10K 5% 1/6W RES. CARBON 10K 5% 1/6W
R 25	RD14BB2C103J RD14BB2C103J	RES. CARBON 10X 5% 1/6W RES. CARBON 10X 5% 1/6W
R 2 6 R 2 7	RD148B2C103J	RES. CARBON 10K 5% 1/6W
R 2 8 R 2 9	RD14BB2C103J RD14BB2C103J	RES. CARBON 10K 5% 1/6W
R 3 0 R 3 1	RD14BB2C103J RD14BB2C101J	RES. CARBON 10K 5% 1/6W RES. CARBON 100 5% 1/6W
R 3 2	RD14BB2C103J RD14BB2C101J	RES. CARBON 10X 5% 1/6W RES. CARBON 100 5% 1/6W
R 3 3 R 3 4	RD14BB2C101J	RES. CARBON 100 5% 1/6W
R 35 R 36	RD14BB2C101J RD14BB2C101J	RES. CARBON 100 5% 1/6W
R 37	RD14BB2C101J RD14BB2C101J	RES. CARBON 100 5% 1/6W RES. CARBON 100 5% 1/6W
R 39	RD14BB2C102J RD14BB2C102J	RES. CARBON 1K 5% 1/6W
R 4 0 R 4 1	RD14BB2C101J	RES. CARBON 100 5% 1/6W
R 4 2 R 4 3	RD14BB2C222J RD14BB2C101J	RES. CARBON 100 5% 1/6W
R 4 4 R 4 5	RD14BB2C101J RD14BB2C101J	RES. CARBON 100 5% 1/6W
R 4 6 R 4 7	RD14BB2C361J RD14BB2C361J	

R 4 9 R 5 0 R 5 1 R 5 2 R 5 3 R 5 4 R 5 5 R 5 6 R 5 7	PARTS NO RD148B2C101J RD14BB2C101J RD14BB2C101J RD14BB2C101J RD14BB2C393J RD14BB2C153J RD14BB2C153J RD14BB2C153J RD14BB2C153J RD14BB2C153J RD14BB2C153J RD14BB2C153J	NAME & DESCRIPTION RES. CARBON 100 5% 1/6 W RES. CARBON 100 5% 1/6 W RES. CARBON 100 5% 1/6 W RES. CARBON 39K 5% 1/6 W RES. CARBON 15K 5% 1/6 W RES. CARBON 100 5% 1/6 W
R 6 1 R 6 2	R D 1 4 B B 2 C 1 0 3 J R D 1 4 B B 2 C 1 0 5 J R N 1 4 B K 2 C 5 1 0 2 F R N 1 4 B K 2 C 3 9 0 2 F R N 1 4 B K 2 C 3 9 0 2 F R N 1 4 B K 2 C 4 7 0 2 F R N 1 4 B K 2 C 4 7 0 2 F R N 1 4 B K 2 C 4 7 0 2 F R D 1 4 B B 2 C 1 8 3 J R D 1 4 B B 2 C 1 8 2 J N O U S F	RES. CARBON 10K 5% 1/6W RES. CARBON 1N 5% 1/6W RES. METAL FILM 51K 1% 1/6W RES. METAL FILM 39K 1% 1/6W RES. METAL FILM 39K 1% 1/6W RES. METAL FILM 47K 1% 1/6W RES. METAL FILM 47K 1% 1/6W RES. CARBON 18K 5% 1/6W
R 1 1 1 R 1 1 2	R D 1 4 B B 2 C 2 4 1 J R N 1 4 B B 2 C 2 6 8 0 0 F	RES. CARBON 1
R 4 2 0 R 4 2 1	R92-1664-05 R92-1664-05	RES. FIXED 18 5% 2W RES. FIXED 18 5% 2W
S1 S2 S3 S5 S5 S6 S7 S8 S10 S112 S113 S114 S115 S116 S117 S118 S118	$\begin{array}{c} \text{S}40-1532-05\\ \text{S}40-7411-05\\ \text{S}40-7411-05\\ \text{S}40-7411-05\\ \text{S}40-7411-05\\ \text{S}40-7411-05\\ \text{S}64-0610-05\\ \text{S}64-0610-05\\ \text{S}64-0611-05\\ \text{S}64-0611-05\\ \text{S}64-0611-05\\ \text{S}64-0611-05\\ \text{S}64-0611-05\\ \text{S}40-1532-05\\ \text{S}60-0620-05\\ \text{S}60-0620-05\\ \text{S}60-0621-05\\ \end{array}$	PUSH SWITCH PUSH SWITCH PUSH SWITCH PUSH SWITCH PUSH SWITCH PUSH SWITCH LEVER SWITCH LEVER SWITCH LEVER SWITCH LEVER SWITCH PUSH SWITCH ROTARY ENCODER ROTARY SWITCH ROTARY SWITCH
	R 05-3521-05 R 05-3521-05 R 05-3521-05 R 05-3521-05 R 05-3521-05 R 05-3527-05 R 05-3527-05 R 12-0679-05	V.R. 20 KB RES. SEMI FIXED 22 KB
VR102 VR103 VR104	R05-3521-05 R05-3521-05 R12-5540-05 R12-5540-05 R05-3521-05	Y.R. 20KB Y.R. 20KB RES. SEMI FIXED 100KB RES. SEMI FIXED 100KB Y.R. 20KB
W 5 1 5 W 5 1 6 W 5 1 7	E38-1165-05 E38-1207-05 E38-0996-15	WIRE ASS'Y WIRE ASS'Y WIRE ASS'Y

PARTS LIST

PRE A	AMP UNIT			1		PARTS NO	NAME & DESCR CAP. POLYESTER		5 %	5 0 Y
		73-2120-00			C 3 1 5	CF92FV1H103J NO USE		•		
					C316	CE04LW1E470N	CAP. ELECTRO	47	20%	25 V
REF. NO	PARTS NO A22-1315-03	NAME & DESCRI SUB PANEL	PTION		C319	CE04LW1C470N	CAP. ELECTRO	47	20%	164
	E 2 1 - 0 6 6 7 - 0 5 E 2 3 - 0 1 4 9 - 0 5	METAL TERMINAL GND TERMINAL			C 3 2 3	C91-2538-05	CAP. FILM	0.1	10%	63 V
	E23-1520-05 E38-0983-25	EARTH TERMINAL WIRE ASS'Y			C348	CC45FCH1H080D	CAP. CERANIC	8 P	0,5P	5 0 Y
	E38-1266-05 E38-1267-05	WIRE ASS'Y WIRE ASS'Y			C 4 0 1 C 4 0 2	C91-0769-05 C91-0769-05	CAP, CERANIC CAP, CERANIC	0.01	20% 20%	16 V 16 V
	F01-2318-04 F10-1590-14	HEAT SINK; Q1,2 SKIELD PLATE; AT	ī		C 4 0 3 C 4 0 4	CE04LW1C470X C81-0769-05	CAP. ELECTRO CAP. CERANIC	47 0.01	20% 20%	16 V 16 V
-	F10-1668-04 F10-2505-04	SHIELD PLATE SHIELD PLATE			C 4 0 5 C 4 0 6	C91-0769-05 NO USE	CAP. CERANIC	0.01	20%	1 6 V
	J30-0623-04 J73-0393-02	SPACER PCB (UNNOUNTED)			C407	C91-0769-05	CAP. CERANIC	0.01	20%	1 6 V
	N 1 1 - 0 0 3 0 - 4 1 N 3 2 - 3 0 0 8 - 4 1	FLANGE NUT SCREW, FLAT HD	N 3 N 3 X 8		C410	C91-0769-05	CAP. CERANIC	0.01	20%	1 6 V
C 7	C91-0769-05	CAP. CERANIC	0.01 20%	1 6 ¥	C418	CE04EWIA101H	CAP. ELECTRO	100	20%	1 0 V
C34 C35 C36	CE04LW0J331M C81-0769-05 C91-0745-05	CAP. ELECTRO CAP. CERANIC CAP. CERANIC	330 20% 0.01 20% 100P 10%	6.3Y 16Y 50Y	C451 C452	C91-0769-05	CAP. CERANIC CAP. CERANIC	0.01 0.01	20% 20%	16 V 16 V 50 V
C 3 7	C 9 1 - 0 7 4 5 - 0 5 C 9 1 - 0 7 4 5 - 0 5	CAP. CERANIC CAP. CERANIC	100P 10%	5 0 V 5 0 Y	C 5 0 1 C 5 0 2	CC45FCH1H060D CC45FCH1H060D	CAP. CERANIC CAP. CERANIC	6 P	0.5P	5 0 V
C 4 0	CE04LW1C470N CE04LW1A470N	CAP. ELECTRO CAP. ELECTRO	47 20% 47 20%	16 V 10 V	C 5 2 1	C 9 1 - 0 7 6 9 - 0 5	CAP. CERANIC	0.01	20%	16 ¥
C 5 1	CE04LW1C101N	CAP. ELECTRO	100 20%	16 V	C551	CC45FCH1H330J	CAP. CERANIC	3 3 P	5 %	5 0 V 5 0 V
C 5 2 C 5 3 C 5 4	C91-0769-05 C91-0769-05	CAP. CERANIC CAP. CERANIC	0.01 20%		C 5 5 2 C 5 5 3	CC93FCH1H301J CC45FCH1H120J	CAP. CERAMIC CAP. CERAMIC	300P 12P	5 % 5 %	5 0 Y
C 5 7	CE04LW1C330N CE04HW1C220H	CAP. ELECTRO CAP. ELECTRO	33 20% 22 20%	16 V	C 5 5 8	CC45FCR1H330J	CAP. CERANIC	33 P 3 P	5% 0.25P	50 V
C 5 8 C 5 9	CC45FCH1H180J CE04LW1E470N	CAP. CERAMIC CAP. ELECTRO	18P 5% 47 20%	5 0 V	C560 C561	CC45FCH1H030C CC45FCH1H030C	CAP. CERANIC CAP. CERANIC	3 P	0.25P	
C101	C91-2605-05	CAP. CERANIC	470P 5%	5 O V	C 6 0 1 C 6 0 2	CC45FCH1H060D CC45FCH1H060D	CAP. CERANIC CAP. CERANIC	6 P 6 P	0.5P 0.5P	5 0 Y 5 0 Y
C102 C103	C91-2665-05 C91-2579-05	CAP. FILM CAP. POLYESTER	0.047 10% 0.01 10%	630 V	C621	C91-0769-05	CAP. CERANIC	0.01	20%	1 6 V
C104 C105	C91-0769-05 CE04LW1A101N	CAP. CERANIC CAP. ELECTRO	0.01 20% 100 20%		C651	CC45FCH1H330J	CAP, CERANIC	3 3 P	5 %	5 0 ¥
C106	CC45FCH1H220J CC45FCH1H680J	CAP. CERANIC	22P 5% 68P 5%	5 0 V	C 6 5 2 C 6 5 3	CC93FC81H301J CC45FCH1H120J	CAP. CERANIC CAP. CERANIC	300P 12P	5 %	5 0 Y 5 0 Y
C 1 1 1 C 1 1 2	NO USE CC45FCH1H100D	CAP. CERANIC	10P 0.5P	5 0 V	C659	CC45FCH1H330J CC45FCH1H030C	CAP. CERANIC CAP. CERANIC	3 3 P 3 P	5 % 0 . 2 5 f	
C 1 1 3 C 1 1 4	C91-0769-05 CK45FF1H103Z	CAP. CERANIC CAP. CERANIC	0.01 20% 0.01 10%		C661	CC45FCH1H030C	CAP, CERANIC	3 P	0, 251	P 50 V
C117	CE04EW1C470H	CAP. ELECTRO	47 20%		CNIS	E40-7515-05	PIN CONNECTOR	3 P 7 P		
C118	CE04LW1C101N	CAP. ELECTRO	100 20%			3 E40-3242-05	PIN CONNECTOR	4 P		
C122	CC45FCH1H820J	CAP. CERANIC	82P 5%	5 0 V	1	E40-7519-05	PIN CONNECTOR	8 P		
C125	CF92FV1H332J CC45FCH1H020C	CAP. POLYESTER CAP. CERANIC	3300P 5% 2P 0.25	50Y P 50Y		1 E40-7519-05	PIN CONNECTOR	4 P		
C 2 0 1	C91-2603-05	CAP. CERANIC	330P 5%	50Y		2 E40-7519-05	PIN CONNECTOR	4 P		
C 2 O 2 C 2 O 3	C91-2665-05	CAP. FILM CAP. POLYESTER	0.047 103	630Y		1 E40-7428-05 2 E40-7423-05	PIN CONNECTOR PIN CONNECTOR	9 P 4 P		
C 2 0 4 C 2 0 5	C91-0769-05	CAP. CERANIC CAP. ELECTRO	0.01 201	16 V	CN54	3 E40-7430-05 4 E40-7425-05	PIN CONNECTOR PIN CONNECTOR	11P 6P		
	CC45FCH1H680J	CAP. CERANIC	68P 5%	50 V		5 E40-7425-05	PIN CONNECTOR	6 P		
C 2 1 1		CAP. CERANIC	10P 0.51			1 S S 1 3 2 1 S S 1 3 2	DIODE			
	C91-0769-05	CAP. CERANIC	0.01 209		D104	1 \$ \$ 1 3 2 1 \$ \$ 1 3 2	DIODE			
C 2 1 8	CE04EWIC470X CE04LWIC10IN	CAP. ELECTRO CAP. ELECTRO	100 201		D106	1 S S 1 3 2 1 S S 1 3 2 1 S S 1 3 2	DIODE DIODE DIODE			
	CE04LW1E470M CC45FCR1H820J	CAP. ELECTRO CAP. CERANIC	47 201 82P 5%	25 ¥ 50 ¥		188132	DIODE			
	CF92FV1H332J C91-0769-05	CAP. POLYESTER CAP. CERANIC	3300P 5% 0.01 209	50 V 16 V	D 2 0 2 D 2 0 3	1 S S 1 3 2 1 S S 1 3 2 1 S S 1 3 2 1 S S 1 3 2	DIODE DIODE DIODE			
C 2 3 0 C 2 3 1	CC45FCH1H020C	CAP. CERANIC	2 P 0.2	P 50 V	D205	1 S S 1 3 2 1 S S 1 3 2	DIODE			
C 2 3 2	C91-2538-05 CE04LW1C101N	CAP, FILM CAP, ELECTRO		63 V 16 V	D 2 0 7	1 S S 1 3 2 1 S S 1 3 2	DIODE			
	C91-2584-05 CC45FCH1H050C	CAP. CERANIC CAP. CERANIC	1000P 105			1 S S 1 3 2 1 S S 1 3 2	D I O D E D I O D E			
C 3 0 2	CC45FCH1H050C CC45FCH1H150J CK45FB1H102K	CAP. CERANIC CAP. CERANIC	15P 5% 1000P 10	5 0 ¥	0309	NO USE	DIODE			
	CC45FCH1H050C	CAP. CERANIC		5 P 5 O V	101	1 S S 1 3 2 K M S O 1	IC, LINEAR			
C307 C308		CAP. CERANIC CAP. FILM	0.01 20 0.1 10	16¥ 63¥	1 C 2 1 C 3	S N 7 4 L S 1 5 8 N S N 7 4 L S 1 1 2 A N	IC,QUAD 2-1 D IC,DUAL J-K F		LECTOR	3 / N P X
C309	C 91 - 1309 - 05	CAP. CERANIC CAP. CERANIC	0.01 10 0.01 20	500V	103	SN74LS02N	IC, QUAD 2-INF		GATE	
	C91-0769-05	CAP. CERANIC	0.01 20	-		1 EEC13 2 EEC14	IC, LINEAR IC, LINEAR			

PANEL UNIT

							D T 1 0 "		
REF. NO IC201 IC202	KNC14	NAME & DESCRIPTION IC, LINEAR IC, LINEAR		R 17 R 18 R 19	PARTS NO RN14BK2C6200F RN14BK2C6200F RN14BK2C51R0F	NAME & DESCRI RES. METAL FILM RES. METAL FILM RES. METAL FILM	620 620 51.0	1 % 1 %	1/6W 1/6W 1/6W 1/6W
	NO USE	IC. J-FET INPUT OF AMP		R 2 0	RN14BK2C51R0F	RES. METAL FILM	2 2 K		1/64
I C 4 0 3	NJM4558L TC4053RF	IC, DUAL OP AMP IC, TRIPLE 2-CH MPX/DE-M	IPX	R 3 1 R 3 2	RD14BB2C223J NO USE	RES. CARBON RES. CARBON	750		1/6#
I C 4 0 6	TC4053BF	IC.TRIPLE 2-CH MPX/DE-1 IC.TRIPLE 2-CH MPX/DE-1 IC.TRIPLE 2-CH MPX/DE-1	1PX	R 3 3 R 3 8	RD14BB2C751J RD14BB2C102J	RES. CARBON	1 K	5 %	1/6W
16408	TC4053BF TC74HC595AF TC74HC595AF	IC,8-BIT SHIFT REGISTED TO BE TO SHIFT REGISTED	R/LATCH R/LATCH	R 3 9	R D 1 4 B B 2 C 1 O 2 J	RES. CARBON	1 K		1/6W
I C 4 1 0	TC74HC595AF	1C,8-BIT SHIFT REGISTE	R/LATCH	R 4 3	RD14BB2C100J	RES. CARBON	10 390		1/6W
1 C 5 0 1	N J N 4 5 5 8 D	IC, DUAL OP-AMP		R 5 2 R 5 9	RD14BB2C391J RD14BB2C432J	RES. CARBON RES. CARBON	4,3K	5 %	1/6#
J 1 J 2 J 3	E 0 4 - 0 2 6 0 - 0 5 E 0 4 - 0 2 6 0 - 0 5 E 0 4 - 0 2 5 9 - 0 5	COAXIAL CONNECTOR COAXIAL CONNECTOR COAXIAL CONNECTOR		R 6 2 R 6 3	RD14BB2C301J RD14BB2C471J	RES. CARBON RES. CARBON	300 470	5 % 5 %	1/6W 1/6W
L 1	L79-0553-05	FILTER		R 6 4 R 6 5	RD14BB2C133J RD14BB2C910J	RES. CARBON RES. CARBON	13K 91 91		1/6W 1/6W 1/6W
L 4 0	140-2201-17	FERRI INDUCTOR 22UH	10%	R66 R101	RD14BB2C910J RD14BB2E220J	RES. CARBON RES. CARBON	2 2	5 %	1/44
L 5 1 L 5 2	L40-4791-17 L40-4791-17	FERRI INDUCTOR 4.70H FERRI INDUCTOR 4.70H FERRI INDUCTOR 220H	10%	R 1 0 2 R 1 0 3 R 1 0 4	RD14BB2C220J RD14BB2C102J RD14BB2C220J RD14BB2C105J	RES. CARBON RES. CARBON RES. CARBON	1 K 2 2 1 M	5 %	1/6W 1/6W 1/6W
L 3 0 1 L 3 0 2 L 3 0 3	L40-2201-17 L40-2201-17 L40-2201-17	FERRI INDUCTOR 22UH FERRI INDUCTOR 22UH	10%	R 1 0 7 R 1 0 8	R D 1 4 B B 2 C 6 8 4 J R D 1 4 B B 2 C 2 2 0 J	RES. CARBON RES. CARBON	680K 22 1.3K	5 %	1/6W 1/6W 1/6W
Q 1 Q 2 Q 3	2 S C 1 7 4 0 S (R , S) 2 S C 3 7 7 9 (D) 2 S C 3 7 7 9 (D)	TR. SI, NPN TR. SI, NPN TR. SI, NPN		R 1 0 9 R 1 1 0 R 1 1 1 R 1 1 2	NO USE RD14BB2C160J	RES. CARBON RES. CARBON RES. METAL FILM	16	5 % 1 %	1/6W 1/6W
Q 3 1	2 S C 1 7 4 0 S (R , S)	TR. SI, NPN		R 1 1 3 R 1 1 4	R D 1 4 B B 2 C 2 2 O J	RES. CARBON	2 2	5 %	1/6W
Q 5 1	2 S C 1 9 2 3 (O)	TR. SI, NPM		R 1 1 5	RN14BK2C1301F	RES. METAL FILT	1 1.3K	1 % 1 %	1/6W 1/6W 1/6W
Q101 Q102 Q103	2 S X 4 0 4 (E)	TR. SI, NPN FET, N-CHANNEL TR. SI, NPN		R 1 1 7 R 1 1 8 R 1 1 9 R 1 2 0	R N 1 4 B K 2 C 2 4 O 1 F R N 1 4 B K 2 C 5 1 O O F	RES. METAL FILT RES. METAL FILT RES. METAL FILT RES. CARBON	1 2.4K 1 510 300	1 % 1 % 5 %	1/6W 1/6W 1/6W
9106		TR. SI, NPN TR. SI, NPN		R 1 2 1 R 1 2 2	RD14BB2C103J	RES. METAL FILE	1 O K	1 % 5 %	1/6W 1/6W
Q 107 Q 108 Q 109	2 S A 1 0 0 5 (K)	TR. SI, PNP TR. SI, PNP		R 1 2 3 R 1 2 4	R D 1 4 B B 2 C 1 O 3 J	RES. CARBON RES. CARBON RES. CARBON	330 10 K 3.3 K	5 % 5 %	1/6W 1/6W 1/6W
Q 1 1 0 Q 1 1 1	2 S A 1 0 0 5 (K)	TR. SI, PNP TR. SI, PNP		R 1 2 5 R 1 2 6 R 1 2 7	RD14BB2C273J	RES. CARBON RES. CARBON	27 K 16 K	5 % 5 %	1/6W 1/6W
	2 S A 1 0 0 5 (K)	TR. SI, PNP		R 1 2 8	RD14BB2C682J	RES. CARBON	6.8K	5 %	1/6W
Q 15 2 Q 15 3	2 2 S A 1 0 0 5 (K) 3 2 S A 1 0 0 5 (K)	TR. SI, PMP TR. SI, PMP		R 1 3 0	NO USE	RES. CARBON RES. NETAL FIL	82K m a 7k	5%	1/6W 1/6W
	2501923(0)	TR. SI, NPN		R 1 3 2 R 1 3 3 R 1 3 4	RN14BK2C47ROF	RES. METAL FIL RES. METAL FIL	H 47	1%	1/6W 1/6W
Q 2 0 :	2 2 S K 4 0 4 (E) 3 2 S C 1 9 2 3 (O)	FET, N-CHANNEL TR. SI, NPN		R 136	R N 1 4 B K 2 C 1 0 0 2 F R N 1 4 B K 2 C 1 3 0 1 F	RES. METAL FIL RES. METAL FIL RES. METAL FIL	N 10K N 1.3K		
Q 2 0	6 2SC3779(D) 7 2SC3779(D)	TR. SI, NPM TR. SI, NPN TR. SI, PNP		R 1 3 8	B RN14BK2C1801F	RES. METAL FIL RES. CARBON	H 1.8K	1 % 5 %	1/6₩ 1/6₩
Q20 Q20		TR. SI, PNP TR. SI, PNP		R 1 4 (0 RD14BB2C470J 1 RD14BB2C272J	RES. CARBON RES. CARBON	47 2.7K		1/6W
Q21 Q21	1 2SA1005(K)	TR. SI, PNP		R 1 4 2	3 RD14BB2C101J	RES. CARBON RES. CARBON RES. CARBON	2.7K 100 100	5 %	1/6W
Q 2 1	4 2SA1005(K) 5 2SC1740S(R,S)			R14 R14 R14	5 RD14BB2C102J 6 RD14BB2C102J	RES. CARBON RES. CARBON RES. HETAL FIL	1 K 1 K	5 %	1/6W 1/6W
Q 2 5 Q 2 5 Q 2 5				R 1 4 R 1 4 R 1 5	8 RD14BB2C273J 9 RD14BB2C621J 0 RD14BB2C153J	RES. CARBON RES. CARBON RES. CARBON	27 K 620 15 K 36 K	5 % 5 % 5 %	1/6W 1/6W
Q3(Q3(Q3(3 25K404(E)	TR. SI, NPN FET, K-CHANNEL TR. SI, NPN		R 15 R 15 R 15 R 15	2 RD14BB2C223J 3 RD14BB2C220J	RES. CARBON RES. CARBON RES. CARBON RES. CARBON	2 2 K 2 2 2 2	5 % 5 % 5 %	1/6W 1/6W 1/6W
Q3: Q3: Q3:	13 2SA1005(K)	TR. SI, NPN TR. SI, PNP TR. SI, PNP		R 1 5 R 1 5 R 1 5	6 RD14BB2C332J 7 RD14BB2C101J	RES. CARBON RES. CARBON RES. CARBON	7.5 K 3.3 K 100	5 % 5 %	1/6W 1/6W
93	15 2SC1923(0)	TR. SI, NPN TR. SI, PNP		R 15 R 15 R 16	9 RD14BB2C102J 0 RD14BB2C102J	RES. CARBON RES. CARBON RES. CARBON	1 0 0 1 K 1 K	5 % 5 %	1/6W
Q 5 Q 5	02 2SA1005(K)	TR. SI, PNP		R 16 R 16 R 16	2 RD14BB2C221J	RES. CARBON RES. CARBON RES. CARBON	430 220 15 K	5 % 5 % 5 %	1/6W
	01 2SA1005(K) 02 2SA1005(K)	TR. SI, PNP TR. SI, PNP		R 16 R 16	4 RD14BB2C622J 5 RD14BB2C362J	RES. CARBON RES. CARBON RES. CARBON	6.2 X 3.6 X 100	5 %	1/6W
R 2 R 3		F RES. METAL FILM 2K F RES. METAL FILM 2K	1% 1/6W 1% 1/6W	R 1 6	0 R92-1578-05	RES. LINEAR PO			
R 6				R 1 7	1 NO USE 2 RD14BB2C100J	RES. CARBON	10	5 %	1/6W
R 7 R 8 R 9 R 1 R 1	RN14BK2C3300 RN14BK2C3300 RN14BK2C7500 RN14BK2C7500	F RES. METAL FILM 750	1% 1/6W 1% 1/6W 1% 1/6W 1% 1/6W 5% 1W	R 1 7 R 1 7 R 1 7	4 RD14BB2E201J 5 RD14BB2C470J	RES. CARBON RES. CARBON	200 47	5 % 5 %	
R 1	2 R92-1553-05	KES, REIAL FILE 620		l .					

	PARTS NO RD14BB2C513J	NAME & DESCRIPTI RES, CARBON 518		1/6₩	REF. NO	PARTS NO	N A	HE & DESCRI	PTION		
R 177 R 178	RD14BB2C392J	RES. CARBON 3.5		1/64	R 3 4 4 R 3 4 5	RD14BB2C101J R92-1579-05	RES.	CARBON LINEAR PCT	100		1/6¥ 1/6¥
R 2 0 1	RD14BB2E220J	RES, CARBON 22	5 % 5 %	1/4₩	R 3 4 6 R 3 4 7	R D 1 4 B B 2 C 4 7 0 J R D 1 4 B B 2 C 3 6 2 J	RES. RES.	C A R B O N C A R B O N	47 3.6 K		1/6W 1/6W
R 2 O 2 R 2 O 3	R D 1 4 B B 2 C 1 O 2 J R D 1 4 B B 2 C 2 2 O J	RES. CARBON 1K RES. CARBON 22	5 🕻	1/6W 1/6W	R 3 4 8 R 3 4 9	RD148B2C911J RD14BB2C101J		C A R B O N C A R B O N			1/6W 1/6W
R 2 0 4	RD14BB2C105J	RES, CARBON IM	5 %	1/6W	R 3 5 0 R 3 5 1	NO USE RN14BK2C5600F	RES.	NETAL FILM			1/6₩
R 2 0 7 R 2 0 8	R D 1 4 B B 2 C 6 8 4 J R D 1 4 B B 2 C 2 2 0 J	RES. CARBON 680 RES. CARBON 22	5 %	1/6W 1/6W	R 3 5 2 R 3 5 3	R N 1 4 B K 2 C 3 0 0 2 F R N 1 4 B K 2 C 1 0 0 2 F	RES.	METAL FILM	3 0 K	1 %	1/6W 1/6W
R 2 O 9 R 2 1 Q	RD14BB2C132J NO USE	RES, CARBON 1.		1/6W	R 3 5 4 R 3 5 5	RD14BB2C681J RD14BB2C131J	RES.	CARBON CARBON	680	5 %	1/6W 1/6W
R 2 1 1 R 2 1 2	R D 1 4 B B 2 C 1 6 0 J R N 1 4 B K 2 C 2 2 0 0 F	RES. CARBON 16 RES. METAL FILM 22	5 % 0 1 %	1/6W 1/6W	R 3 5 6	RD14BB2C392J		CARBON			1/6W
R 2 1 3 R 2 1 4	NO USE RD14BB2C220J	RES, CARBON 22	5 %	1/6W	R 3 6 0 R 3 6 1	R D 1 4 B B 2 E 6 8 1 J		CARBON			1/4₩
R 2 1 5 R 2 1 6	RN14BK2C1301F RN14BK2C1301F	RES. METAL FILM 1. RES. METAL FILM 1.		1/6W 1/6W	R 4 0 1	RD14BB2C222J		CARBON			1/6₩
R 2 1 7 R 2 1 8	R N 1 4 B K 2 C 3 3 0 1 F R N 1 4 B K 2 C 2 4 0 1 F	RES. METAL FILM 3. RES. METAL FILM 2.		1/6W 1/6W		R N 1 4 B K 2 C 2 2 0 1 F		METAL FILM			1/64
R 2 1 9 R 2 2 0	RN14BK2C5100F RD14BB2C301J	RES. METAL FILM 51 RES. CARBON 30	0 5%	1/6W 1/6W	R 4 0 7	R N 1 4 B K 2 C 2 2 0 1 F		METAL FILM			1/6₩
R 2 2 1 R 2 2 2	RN14BK2C1004F RD14BB2C103J	RES. METAL FILM IM	1 % X 5 %	1/6#	R 4 2 9 R 4 3 0	R N 1 4 B K 2 C 5 1 0 1 F R N 1 4 B K 2 C 1 0 0 3 D	RES.	METAL FILM	100K 0		1/6W
R 2 2 3 R 2 2 4	RD14BB2C332J RD14BB2C103J		3 K 5 % K 5 %	1/6W 1/6W	R 4 3 1 R 4 3 2	R N 1 4 B K 2 C 5 0 0 2 D R N 1 4 B K 2 C 3 0 0 2 D	RES.	METAL FILM	30 K 0	, 5 %	1/6W
R 2 2 5 R 2 2 6	R D 1 4 B B 2 C 3 3 2 J R D 1 4 B B 2 C 2 7 3 J		3 K 5 %	1/6W 1/6W	R 4 3 3 R 4 3 4	RN14BK2C2002D NO USE		NETAL FILM		. 5 %	
R 2 2 7 R 2 2 8	RD14BB2C163J RD14BB2C682J	RES. CARBON 16 RES. CARBON 6.		1/6W 1/6W	R 4 3 5 R 4 3 6	R N 1 4 B K 2 C 1 5 0 2 F R N 1 4 B K 2 C 1 0 0 3 D	RES.	METAL FILM	100K 0	. 5 %	
R 2 2 9 R 2 3 0	NO USE RD14BB2C823J	RES, CARBON 82		1/64	R 4 3 7 R 4 3 8	R N 1 4 B K 2 C 5 O O 2 D R N 1 4 B K 2 C 3 O O 2 D	RES.	METAL FILM	30K 0	.5%	1/6W
R 2 3 1 R 2 3 2	NO USE RN14BK2C4701F	RES, METAL FILM 4.	_	i	R 4 3 9 R 4 4 0	R N 1 4 B K 2 C 2 O O 2 D R N 1 4 B K 2 C 2 I O 1 F	RES.	METAL FILM	2.1 K		1/6₩
R 2 3 3 R 2 3 4	R N 1 4 B K 2 C 4 7 R O F R N 1 4 B K 2 C 1 O O 2 F	RES. METAL FILM 47 RES. METAL FILM 10	1 %	1/6₩ 1/6₩	R 4 4 1 R 4 4 2	R D 1 4 B B 2 C 1 5 2 J R N 1 4 B K 2 C 1 0 0 2 F	RES.	CARBON METAL FILM	10 K	1 %	1/6W 1/6W
R 2 3 5 R 2 3 6	RN14BK2C1002F RN14BK2C1301F	RES. METAL FILM 10 RES. METAL FILM 1.	K 1 %	1/6W 1/6W	R 4 4 3 R 4 4 4	R N 1 4 B K 2 C 2 O O 2 F R N 1 4 B K 2 C 4 O 2 2 F	RES.	METAL FILM	40.2K	1 %	1/6₩ 1/6₩
R 2 3 7 R 2 3 8	RN14BK2C1301F RN14BK2C1801F	RES. METAL FILM 1. RES. METAL FILM 1.	3 K 1 %	1/6₩	R 4 4 5 R 4 4 6	R N 1 4 B K 2 C 8 O 6 2 F R D 1 4 B B 2 C 2 2 1 J		METAL FILM CARBON	220	1 % 5 %	1/6W 1/6W
R 2 3 9 R 2 4 0	RD14BB2C470J RD14BB2C470J	RES. CARBON 47 RES. CARBON 47	5 %	1/6W 1/6W	R 4 4 7	R D 1 4 B B 2 C 2 2 1 J	RES.	CARBON	220	5 %	1/6W
R 2 4 1 R 2 4 2	RD14BB2C272J RD14BB2C272J	RES. CARBON 2. RES. CARBON 2.	7 K 5 %	1/6W	R 4 5 0	R D 1 4 B B 2 C 2 2 1 J	RES.	CARBON	220	5 %	1/6W
R 2 4 3 R 2 4 4	RD14BB2C101J RD14BB2C101J	RES. CARBON 10 RES. CARBON 10	0 5%	1/6W	R 5 0 1 R 5 0 2	R N 1 4 B K 2 C 4 3 0 0 F R N 1 4 B K 2 C 4 3 0 0 F		METAL FILM		1 % 1 %	1/6₩ 1/6₩
R 2 4 5 R 2 4 6	R D 1 4 B B 2 C 1 O 2 J R D 1 4 B B 2 C 1 O 2 J	RES. CARBON 1K RES. CARBON 1K	5 %	1/6W	R 5 0 3 R 5 0 4	R N 1 4 B K 2 C 1 0 0 2 F R N 1 4 B K 2 C 1 0 0 2 F		METAL FILM METAL FILM		1%	1/6W 1/6W
R 2 4 7 R 2 4 8	RN14BK2C1001F RD14BB2C273J	RES. NETAL FILM 1K RES. CARBON 27	1 %	1/6₩	R 5 0 5 R 5 0 6	R N 1 4 B K 2 C 1 8 O 1 F R N 1 4 B K 2 C 1 8 O 1 F		METAL FILM		1 % 1 %	1/6W 1/6W
R 2 4 9 R 2 5 0	RD14BB2C621J RD14BB2C153J	RES. CARBON 62 RES. CARBON 15	0 5 %	1/64	R 5 0 7 R 5 0 8	R N 1 4 B K 2 C 6 2 0 0 F R N 1 4 B K 2 C 2 2 0 1 F	RES.	METAL FILM METAL FILM	620	1%	1/6W 1/6W
R 2 5 1 R 2 5 2	RD14BB2C363J RD14BB2C223J	RES. CARBON 36 RES. CARBON 22	K 5%	1/6W	R 5 0 9	R N 1 4 B K 2 C 2 2 0 1 F		METAL FILM		1 %	1/6₩
R 2 5 3	R D 1 4 B B 2 C 2 2 O J R D 1 4 B B 2 C 2 2 O J	RES. CARBON 22 RES. CARBON 22	5 🐒	1/6₩	R 5 1 2 R 5 1 3	R D 1 4 B B 2 C 2 4 3 J R D 1 4 B B 2 C 1 2 3 J		CARBON CARBON	24 K 12 K	5 % 5 %	1/6W 1/6W
R 2 5 4 R 2 5 5	R D 1 4 B B 2 C 7 5 2 J	RES. CARBON 7.	5 K 5 %	1/6W	R 5 2 1	RD14BB2C153J		CARBON	1 5 K	5%	1/6#
R 256 R 257	RD14BB2C332J RD14BB2C101J	RES, CARBON 10		1/6₩	R 5 2 2 R 5 2 3	R D 1 4 B B 2 C 7 5 2 J R D 1 4 B B 2 C 1 0 3 J	RES.	CARBON CARBON		5 % 5 %	1/6W 1/6W
R 258 R 259	RD14BB2C101J RD14BB2C102J	RES. CARBON 10 RES. CARBON 1K	5 %	1 / 6 W	R 5 2 4	R D 1 4 B B 2 C 1 0 2 J		CARBON	1 %	5 %	1/6W
R 260 R 261	RD14BB2C102J RD14BB2C431J	RES. CARBON 1K RES. CARBON 43	0 5%	1/6₩	R 5 5 1 R 5 5 2	R D 1 4 B B 2 C 2 2 O J R N 1 4 B K 2 E 9 O O 3 D		CARBON METAL FILM	22	5%	1/6₩
R 262 R 263	R D 1 4 B B 2 C 1 5 3 J	RES. CARBON 22 RES. CARBON 15	K 5 %	1/6₩	R 5 5 3 R 5 5 4	R N 1 4 B K 2 C 1 1 1 3 D R D 1 4 B B 2 C 5 1 0 J	RES.	METAL FILM	111K 0	0.5%	1/6W
R 264 R 265	R D 1 4 B B 2 C 6 2 2 J R D 1 4 B B 2 C 3 6 2 J	RES, CARBON 3,	2K 5% 6K 5%	1/6₩	R 5 5 5 R 5 5 6	R D 1 4 B B 2 C 1 O 1 J R D 1 4 B B 2 C 2 7 1 J	RES.	C A R B O N C A R B O N	100	5 %	1/6W 1/6W
	RD14BB2C101J RD14BB2C473J	RES. CARBON 10 RES. CARBON 47	K 5 %	1/6₩	R 5 5 7 R 5 5 8	R N 1 4 B K 2 E 9 9 0 3 D R N 1 4 B K 2 C 1 0 1 2 D	RES.	METAL FILM	990K C	5.5%	1/4₩
R 268	R D 1 4 B B 2 C 2 7 1 J	RES. CARBON 36 RES. CARBON 27	0 5%	1/6₩	R 5 5 9 R 5 6 0	R D 1 4 B B 2 C 1 3 O J R D 1 4 B B 2 C 1 2 1 J	RES.	CARBON CARBON	13	5 %	1/6W 1/6W
R 270	R D 1 4 B B 2 C 1 2 1 J	RES. LINEAR PCT 3. RES. CARBON 12	0 5 %	1/6W 1/6W	R 5 6 1 R 5 6 2	R D 1 4 B B 2 C 1 O 1 J R N 1 4 B K 2 C 2 O O O D	RES.	CARBON METAL FILM	100	5 %	1/6W 1/6W
R 272 R 273	R D 1 4 B B 2 C 2 2 O J	RES. CARBON 10 RES. CARBON 22	5 %	1 / 6 W	R 5 6 3 R 5 6 4	R N 1 4 B K 2 C 1 O O O D R D 1 4 B B 2 C 2 4 O J	RES.	METAL FILM CARBON	100 0	5 %	1/6W 1/6W
R 274 R 275	R D 1 4 B B 2 C 4 7 O J	RES. CARBON 20 RES. CARBON 47			R 5 6 5 R 5 6 6	R N 1 4 B K 2 C 6 O R O D R D 1 4 B B 2 C 6 2 O J	RES.	METAL FILM CARBON	60.0 0	5 %	1/6W 1/6W
R 276 R 277	RD14BB2C513J	RES. CARBON 51			R 5 6 7	R 92 - 1667 - 05		NETAL FILM			1/6₩
R 278			9 K 5 %		R 5 7 1 R 5 7 2	R N 1 4 B K 2 C 8 O 6 2 F R N 1 4 B K 2 C 4 O 2 2 F		METAL FILM			1/6₩
R 30 0	RN14BK2C8003F	RES. CARBON 10 RES. METAL FILM 80	0 K 1 %	1/6₩	R 5 7 3 R 5 7 4	R N 1 4 B K 2 C 2 O 0 2 F R N 1 4 B K 2 C 1 O 0 2 F	RES.	METAL FILM METAL FILM	20 K	1 %	1/6W
R 30 2	R D 1 4 B B 2 C 4 7 0 J	RES. CARBON 47	5 %	1/6W	R 6 0 1	RN14BX2C4300F		METAL FILM		1%	1/6₩
R 304 R 305	R D 1 4 B B 2 C 3 3 1 J	RES. CARBON 33		1/6W	R 6 0 2 R 6 0 3	RN14BK2C4300F RN14BK2C1002F	RES.	METAL FILM METAL FILM	430	1 %	1/6W
R 306 R 307	RD14BB2C822J	RES. CARBON 8.	2 K 5 % 2 K 5 %	1/6W	R 6 0 4 R 6 0 5	RN14BK2C1002F RN14BK2C1002F RN14BK2C1801F	RES.	METAL FILM METAL FILM	1 0 K	1 %	1/6W
R 308		RES, CARBON 3K			R 6 0 6 R 6 0 7	RN14BK2C1801F RN14BK2C6200F	RES.	METAL FILM METAL FILM	1.8K	1 %	1/6W 1/6W
R 332 R 333	RD14BB2C302J	RES. CARBON 11 RES. CARBON 3K	5 %	1/6W	R 6 0 8 R 6 0 9	RN14BK2C2201F RN14BK2C2201F	RES.	METAL FILM METAL FILM	2.2K	1 %	1/6W
R 334 R 335	R D 1 4 B B 2 C 8 2 1 J	RES. CARBON 82		1/6₩	R 6 1 2	RD14BB2C243J		CARBON			1/6₩
R 336 R 337	R D 1 4 B B 2 C 1 3 2 J		3 K 5 %	1/6W 1/6W	R 6 1 3	RD14BB2C123J		CARBON			1/6W 1/6W
R 338	R92-1577-05	RES. LINEAR PCT IK	5 %	1/6W							

	A DECEDIBILION
REF. NO PARTS NO R621 RD14BB2C153J R622 RD14BB2C752J R623 RD14BB2C103J R624 RD14BB2C102J	NAME & DESCRIPTION RES. CARBON 15 K 1/6 W RES. CARBON 7.5 K 5% 1/6 W RES. CARBON 10 K 5% 1/6 W RES. CARBON 1 K 5% 1/6 W
R651 RD14BB2C220J R652 RN14BK2E9003D R653 RN14BK2C51113D R655 RD14BB2C510J R655 RD14BB2C571J R656 RD14BB2C271J R657 RN14BK2E9903D R658 RN14BK2C1012D R658 RN14BB2C12J R660 RD14BB2C12J R660 RD14BB2C10J R666 RN14BK2C200D R663 RN14BK2C1000D R664 RN14BK2C200D R665 RN14BK2C200D R666 RD14BB2C240J R666 RN14BK2C60R0D R666 RN14BK2C60R0D R666 RN14BK2C60R0D	RES. CARBON 22 5% 1/6 W
R 6 7 1 R N 1 4 B K 2 C 8 0 6 2 F R 6 7 2 R N 1 4 B K 2 C 4 0 2 2 F R 6 7 3 R N 1 4 B K 2 C 2 0 0 2 F R 6 7 4 R N 1 4 B K 2 C 1 0 0 2 F	RES. METAL FILM 80.6K 1% 1/6W RES. METAL FILM 40.2K 1% 1/6W RES. METAL FILM 20K 1% 1/6W RES. METAL FILM 10K 1% 1/6W
R 901 R 92 - 1061 - 05 R 902 R D 1 4 B B 2 C 9 1 2 J R 903 R D 1 4 B B 2 C 9 1 2 J R 904 R 92 - 0150 - 05	JUMPING RES. ZERO OHM (5MM) RES. CARBON 9.1K 5% 1/6W RES. CARBON 9.1K 5% 1/6W JUMPING RES. ZERO OHM (10MM)
S101 S64-0603-15 S102 S60-0619-05	LEVER SWITCH ROTARY SWITCH
S 2 0 1 S 6 4 - 0 6 0 3 - 1 5 S 2 0 2 S 6 0 - 0 6 1 9 - 0 5	LEVER SWITCH ROTARY SWITCH
TC101 C05-0404-05 TC102 C05-0403-05 TC103 C05-0404-05 TC104 C05-0403-05 TC105 NO USE TC106 C05-0469-05	CAP. TRIMMER 10P CAP. TRIMMER 6P CAP. TRIMMER 10P CAP. TRIMMER 6P CAP. TRIMMER 10P
TC201 C05-0404-05 TC202 C05-0403-05 TC203 C05-0404-05 TC204 C05-0403-05 TC205 C05-0470-05 TC206 C05-0469-05	CAP. TRINNER 10P CAP. TRINMER 6P CAP. TRINMER 10P CAP. TRINMER 6P CAP. TRINMER 20P CAP. TRINMER 10P
TH101 112-102-2 TH102 112-201-2FM	THERMISTOR THERMISTOR
T H 2 O 1 1 1 2 - 1 O 2 - 2 T H 2 O 2 1 1 2 - 2 O 1 - 2 F M	THERMISTOR THERMISTOR
VR1 R12-0882-05	RES, SEMI FIXED 100 B
VR31 R12-0880-05	RES. SEMI FIXED 220
VR102 R12-0885-05 VR103 R12-0680-05 VR104 R12-0885-05 VR105 R12-0679-05 VR106 R12-0679-05	RES. SEMI FIXED 100 RES. SEMI FIXED 47K RES. SEMI FIXED 100 RES. SEMI FIXED 22KB RES. SEMI FIXED 22KB
YR202 R12-0885-05 YR203 R12-0680-05 YR204 R12-0685-05 YR205 R12-0679-05 YR206 R12-0679-05 YR206 R12-0685-05 YR208 R12-0885-05	RES. SEMI FIXED 100 RES. SEMI FIXED 47K RES. SEMI FIXED 100 RES. SEMI FIXED 22KB RES. SEMI FIXED 22KB RES. SEMI FIXED 100 RES. SEMI FIXED 100 RES. SEMI FIXED 100
VR303 R12-0679-05	RES. SENI FIXED 22KB
VR401 R05-2515-05 VR402 R12-3599-05 VR403 R12-3599-05	RES. SEMI FIXED 22K RES. SEMI FIXED 22K
VR501 R12-3595-05 VR502 R12-3596-05	RES. SEMI FIXED 10KB RES. SEMI FIXED 22KB
VR601 R12-3595-05 VR602 R12-3596-05	RES. SEMI FIXED 10KB RES. SEMI FIXED 22KB
W4 E38-1169-05	WIRE ASS'Y: 3P
W301 E38-0987-15	WIRE ASS'Y; 2P
W401 E38-0984-15	WIRE ASS'Y: 2P
W502 E38-1205-05	WIRE ASS'Y;2P WIRE ASS'Y;2P
W508 E38-0985-05	

SWEEP UNIT

OVVE						X	74	-1	5	90)-	00)		_	_					
REF. NO	E2: E2: E3: F0: F0: J7: N0:	RT 3-0 3-0 3-1 1-2 1-2 3-(9-(14 55 52 17 86 23 33	9- 7- 0- 7- 7- 5-	14 05 05 05 05 02 04		GND EAR EAR JUM HEA HEA PCB SCR	TH TH PI T T (EW	ERP LU TI NG SII UN , S	IIN IG, ERM WI, NK, NK, MO!	AL TI RI H	IEF IAI E IGI TE!	H V	. F OLT D)	US	E					-
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C12 C13	C 8 C C C C C C C C C C C C C C C C C C		25 F 25 F C C C 25 F C C 25 F C C 25 F C C C C C C C C C C C C C C C C C C C	38- 95- 1112 96- 1111 1111 1111 1111 1111 1111 1111	05 23 23 147 104 - 05 222 - 05	J OJ OC OC	CATCATCATCATCATCATCATCATCATCATCATCATCATC	P. P. P. P. P.	FI CE CE CE CE CE CE	RALLY	MIES MI MI MI MI MI	C C C C C C C C C C C C C C C C C C C	R		1 P 0 2 P P	2 0 0 P P	2 0 5 % 5 % 5 % 5 % 5 % 6 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	5 P : 5 P :	5 (A A A A A A A A A A A A A A A A A A A	
C15 C16 C17 C18 C19 C20 C21 C22 C23	0000	E 0 E 0 F 9 F 9 E 0 E 0	4 L I 4 L I 2 F 2 F - 0 4 H	11E 11H 11H 11H 11H 11H 11H 11H 11H	01 68 22 1-0	0 M 0 H 2 J 2 J 5 0 M	C / C / C / C /	P. P. P. AP. AP.	E P P C	LEC LEC OL OL ER LE	CT YE YE AH CT	RO RO ST ST IC RO	ER	2	3 0	0 P	2 5 5 2 2		5 5 5 1 5	5 V 0 V 0 V 0 V 6 V 0 V	
C24 C25 C26 C27 C28 C30 C31 C32 C33 C34 C35 C36 C37	1	CE 0 C 9 1 C E 0 C E 0 C E 0 C E 0	4 L 4 H 4 H - 0 1 - 2 1 - 3 1 - 4 1 -	W11 W11 76 53 W0 W1 CH .W1 .W1 76 SL	H 2 R H 2 F E 2 2 9 - () 1 H 1 C 3 : C 1 : 1 H 5 -	2 M 2 M 2 O M 3 D S 3 D M 3 D D M 5 O D M 6 O S 6 O S 7 O S		AP. AP. AP. AP. AP. AP. AP. AP. AP.		LE LE LE LE LE LE LE LE CE! CE! CE!	CT CT CT AP CT AP CT AP CT AP AP AP AP AP AP AP AP AP AP AP AP AP	ROPERCO CONTROL CONTRO		2 0 0 3 1 2 3 1	0 . 2 . 2 . 3 . 3 . 6 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9	1 (1 () () () () () () () () () () () () ()	2 2 2 2 2 3 0	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0	5 2 1 6 6	5 V 6 V 6 V 6 V 6 V 6 V 6 V 1 6 V 1 6 V 5 0 V 5 0 V 5 0 V	V
C10 C10 C10 C10 C10 C10 C10 C10 C11 C11	2 3 4 4 5 6 0 7 18 19 10 11 11 11 12 11 13 14 15 16 17	CC CF CC CF CC CF CC CF CC CF CC CF CF C	45 92 1-45 45 45 45 45 45 45 45 45 45	FCE 25 E FCE FCE FCE FCE FCE FCE FCE FCE FCE F	1 H	470J 470J 32J 05 330J 02K R2N 101J 104J 1330J 1101J 220M -05 1680J 1680J		CAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPC	P. P	POCE CEL CE CEL CEL CEL CEL CEL CEL CEL CE	RAYLYARER LANGER	HI ES HI HI TR HI HI HI AHI	C TER C C C C C C C C C C C C C C C C C C C		0. 333 10 2. 10 0. 47 0. 33 10 22 35 16	P 000 47 P 00 2 0 P 1 P 1	P	5%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	k k	50 Y V 50	V V V V V V V V V V V V V V V V V V V
C1 C1 C1 C1 C1 C1 C1 C1		000000000	91 91 91 91 91 91 91	US - 07 - 07 - 07 - 25 - 25 - 07 - 07	E 69 69 69 69 69	-05 -05 H390J -05 -05 331H -05 -05		CA CA CA CA CA CA	P. P.	C C P E C C F	ER ER OLE ER IL	AH AH YE AH AH AH	1 C 1 C	R	0 3 0 0 0	. 0 9 P . 0 . 4 3 0 . 0	1 7 1		*		Y V O V 3 V V
C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	32 33 34 35 136 137 138 139 140 141		EO EO EO CC4	4 L 4 L 4 L 5 F 5 F	SE NO. NO. SL: CH	H0300 470 M 1331 M 1331 M 1331 M 114331 11470 114470	j j	01	AP. AP. AP. AP. AP. AP.	E E E C C C C C C C C C C C C C C C C C	LE	CT CT CT CT CT CT RAP RAP	RO RO RO RO RIC RIC RIC		3 3 3 4 4 4	P 7 30 30 00 30 17 P 17 P	P	2 2 2 2 5 5	0% 0% 0% 0%	6. 6. 10 5	3 V 3 V 3 V 3 V 5 V 0 V 0 V
	143 144) U i = 0		7 - 05		c	A P	. (E	RAI	HIC		4	17 F	•	5	X	5	0 V

DEE NO	DIDTC NA	u	ANE & DESCR	IDTION		1	DEE NO.	DIRTC NA	V. W. S. D. S.			
C145	PARTS NO CEO4LW1C100M		ELECTRO	10	20%	164		PARTS NO	NAME & DESCR			
C146	CC45FSL1H030C	CAP.	CERANIC	3 P	0.25P	50V	C901 C902	C91-2538-05 C91-2538-05	CAP. FILM CAP. FILM	0.1 0.1	10%	63 V 63 V
C 1 5 0	CE04LW1A470M	CAP.	ELECTRO	47	20%	107	CN7	E40-7519-05	PIN CONNECTOR	4 P		•••
C158	C91-2538-05	CAP.	FILM	0.1	10%	63 V	C N 2 0	E40-3299-05				
C179	CK45FB1H152K	CAP.	CERANIC	1500P	10%	5 0 Y			PIN CONNECTOR	2 P		
								E40-7515-05 NO USE	PIN CONNECTOR	3 P		
C 2 O 1 C 2 O 2	CC45FCH1H070D NO USE	UAF.	CERANIC	7 P	0.5P	50¥	CN508	E40-7040-05	PIN CONNECTOR	13P		
C 2 O 3 C 2 O 4	CC45FCH1H12OJ C81-0769-05		CERAMIC CERAMIC	12P 0.01	5% 20%	50 V 16 V		NO USE E40-5069-05	PIN CONNECTOR	1 2 P		
C 2 0 5	C91-0769-05		CERANIC	0.01	20%	16 V	C N 5 1 5	E40-7518-05	PIN CONNECTOR	6 P		
C 2 O 6 C 2 O 7	NO USE CK45FB2H472K	CAP,	CERANIC	4700P	10%	500V	CN518	E40-5067-05	PIN CONNECTOR	10P		
C 2 0 8 C 2 0 9	CE04EW2E010M CC45FCH2H020C		ELECTRO CERANIC	1 2 P	20% 0,25P		CMSII	E40-3306-05	PIN CONNECTOR	9 P		
C 2 1 0	CK45FB2H472K	CAP.	CERANIC	4700P	10%	500V	CN527	E40-5069-05	PIN CONNECTOR	12P		
C 2 1 1 C 2 1 2	CE04EW2E010M CE04EW2E010M	CAP.	ELECTRO ELECTRO	1	20%	250 V 250 V	CP1	R90-0660-05	RES, NETWORK	4 X 1 K		
C 2 1 3	CK45FB2H102K	CAP.	CERANIC	1000P	10%	500 V	D 1	NA700	DIODE			
C 2 1 4 C 2 1 5	CK45FB2H102K C91-1317-05		CERANIC	1000P 0.01			D 2 D 3	MA700	DIODE			
C 2 1 6 C 2 1 7	C91-1317-05 C91-1317-05		CERANIC	0,01			D 4	NA700 NA700	DIODE			
C 2 1 8	CE04EW2E010M		ELECTRO	1	20%		D5 D6	MA700 188132	DIODE			
C 2 1 9 C 2 2 0	NO USE C91-1317-05	CAP.	CERANIC	0.01	80/-20	2 K 2 K	D7	188132	DIODE			
C 2 2 1 C 2 2 2	C91-1317-05 CE04LW1E221N	CAP.	CERANIC ELECTRO	0.01	80/-20	0% 2 K	D8 D9	1 S S 1 3 2 1 S S 1 3 2	DIODE DIODE			
C 2 2 3	CE04LW1H101M	CAP.	ELECTRO	220 100		50 V	D10 D11	1SS132 1SS132	DIODE DIODE			
C 2 2 4	CK45FB1H472K	CAP.	CERANIC	4700P	10%	50 Y	D 1 2	HA700	DIODE			
C 2 27	CC45FCH2H101J		CERANIC	100P		500V	D13 D14	1 S S 1 3 2 1 S S 1 3 2	DIODE			
C 2 2 8 C 2 2 9	CK45FB1H222K C91-1317-05		CERANIC	2200P 0.01	10% 80/-20		D15 D16	NA700 1SS132	DIODE			
C230 C231	CK45E3D102P C91-2581-05		CERANIC CERANIC	1000P 0.01	5 %	2 K V 2 K V	D17	188132	DIODE			
C 2 3 2	CE04EW2E010N	CAP.	ELECTRO	l	20%	250 V	D18	155132 155132	DIODE DIODE			
C 2 3 3 C 2 3 4	CEO4LW1C101N CEO4LW1C101N		ELECTRO ELECTRO	100	20% 20%	16 V 16 V	D101					
C 2 7 1	C91-0769-05	CAP.	CERANIC	0.01	20%	16 V	D102	155132 155132	DIODE DIODE			
C301	CC45FCH1H101J						D103 D104	1 S S 1 3 2 1 S S 1 3 2	DIODE			
C301	CC45FSL1H331J		CERANIC CERANIC	100P 330P	5 % 5 %	5 0 V 5 0 V	D105 D106	155132	DIODE			
C308	C91-1361-05	CAP.	MYLAR	0.01	10%	1007	D107	188132 188132	DIODE DIODE			
C307	C91-2585-05	CAP.	MYLAR	0.01	10%	250 V	D108 D109	155132 #A700	DIODE DIODE			
C308 C309	C91-2587-05 C91-1361-05		N Y L A R M Y L A R	0.1 0.01	10%	250 V 100 V	D110	155132	DIODE			
C310 C311	C91-2587-05 C91-2585-05		M Y L A R M Y L A R	0.1 0.01	10%	250 V 250 V	D111 D112	155132 155132	DIODE			
C 3 1 2	C91-2538-05		FILM	0.1	10%	63Y	D113 D114	155132 MA700	DIODE DIODE			
C313 C314	NO USE CK45FB2H152K	CAP.	CERANIC	1500P	10%	500V	D115	155132	DIODE			
C315 C316	NO USE Ceo4lwoj331N	CAP	ELECTRO	330	20%		D116 D117	155132 155132	DIODE			
C317	NO USE					6,3V	D118 D119	1 S S 1 3 2 1 S S 1 3 2	DIODE			
C318 C319	CC45FCH1H020C C91-0769-05		CERANIC CERANIC	2 P 0,01	0.25P 20%	50V 16V	D120	155132	DIODE			
C320 C321	NO USE C91-0769-05	CAP	CERANIC	0.01	20%	167	D121 D122	155132 155132	DIODE DIODE			
C 3 2 2	CE04LW1 & 221 M	CAP.	ELECTRO	220	20%	101	D123 D124	1 S S 1 3 2 1 S S 1 3 2	DIODE			
C 3 2 3 C 3 2 4	CC45FCH1H150J CE04LW0J331N		CERANIC ELECTRO	15P 330	5 % 2 0 %	50 V 6.3 V	D125	188132	DIODE			
C 3 25	CE04LW1C101N	CAP.	ELECTRO	100	20%	16 V	D126 D127	155132 155132	DIODE			
C359	C91-2538-05	CAP.	FILM	0.1	10%	63 Y		155132 155132	DIODE DIODE			
C401	CE04EW2E470N		ELECTRO	47	20%	250 Y	D130	NA700 155132	DIODE			
C 4 02 C 4 03	CE04EW2E100N CE04LW1E220N		ELECTRO ELECTRO	10 22	20%	250 V 25 V	D131 D132	NA700	DIODE DIODE			
C 4 0 4	CE04EW2A471N	CAP.	ELECTRO	470	20%	100Y	D133	NA700	DIODE			
C 4 05 C 4 06			ELECTRO ELECTRO	22 4700	20% 20%	100V 25V	D150	NA700	DIODE			
C 4 07	CE04LW1C331X CE04EW1E472N	CAP.	ELECTRO ELECTRO	330 4700		16 V 25 V	D201	188132	DIODE			
C409	CE04EW1A103N	CAP.	ELECTRO	1000	20%	107	D202 D203	155132 15583	DIODE			
C410 C411	CE04LW0J471H CE04LW1C331H		ELECTRO ELECTRO	470 330	20% 20%	6,3V 16V	D204	15583	DIODE			
C 4 12	CE04LW0J33iN	CAP.	E I. E C T R O	330	20%	6.31	D205 D206	18883 18883	DIODE			
	CE04LW1C101M	CAP.	ELECTRO ELECTRO	100	20% 20%	16 Y 16 Y	D207 D208	15583 15583	DIODE			
	CE04EW1E102N CE04EW1E102N		ELECTRO Electro	1000	20%	25 V 25 V	D209	18883	DIODE			
C 4 17	C91-0761-05	CAP.	CERANIC	2200P	20%	5 0 V	D210 D211	15583 155132	DIODE			
C 4 18	C91-0757-05	CAP.	CERANIC	1000P	10%	5 0 V	D212 D213	1 S S 1 3 2 1 S S 1 3 2	DIODE			
C 5 01	CK45FB1H152K	CAP.	CERANIC	1500P	10%	5 0 V			DIODE			
C 5 04			ELECTRO	47	20%	1 O Y	D220 D221	1 S S 1 3 2 1 S S 1 3 2	DIODE			
C 5 05			ELECTRO	220	20%	1 0 V	D301	NA700	DIODE			
C801 C802	C91-1229-05 C91-1230-05		CERANIC CERANIC	3.3P 3.9P		50 ¥ 50 ¥		155132	DIODE			
		•		0.01		•••						

D304 1SS132 D305 1SS132 D306 MA700 D307 MA700 D308 TLR112 D308 TLR112 D310 1SS132 D311 NO USE D312 MTZE, IJB	NAME & DESCRIPTION DIODE, ZENER DIODE DIODE DIODE DIODE DIODE LED, RED LED, RED DIODE DIODE DIODE DIODE DIODE DIODE DIODE, ZENER DIODE, ZENER DIODE, BRIDGE DIODE, BRIDGE DIODE, BRIDGE DIODE, BRIDGE DIODE, BRIDGE DIODE, ZENER DIODE, ZENER	Q109 2SC3381(GR) Q110 2SA1459(K) Q111 2SA933S(R,S) Q112 2SA933S(R,S) Q113 2SA1005(K) Q114 2SA1005(K) Q115 2SA1005(K) Q116 2SA1005(K) Q117 2SC1923(0) Q118 2SC1923(0) Q119 2SA93SS(R,S) Q120 2SA1458(K) Q121 2SC1923(0) Q122 2SC1740S(R,S) Q123 2SC1740S(R,S) Q124 2SC1740S(R,S)	NAME & DESCRIPT TR. SI. NPN TR. SI. NPN TR. SI. PNP TR. SI. NPN TR. SI. PNP TR. SI. PNP TR. SI. PNP TR. SI. PNP	ION
F201 F53-0107-05	THERMAL FUSE	Q158 2SA1459(K)	TR. SI, PNP	
1C1 TC4053BP 1C2 NJM072BD 1C3 MC10102L 1C4 KMS01 IC101 MC10131L 1C102 KMD05 1C103 SN74ALS74AN 1C104 KMS01 1C105 SN74ALS02N 1C106 SN74ALS02N 1C107 KMS01 1C108 SN74ALS74AN 1C109 TC74HC4053AP	IC, TRIPLE 2-CH MPX/DE-MPX IC, JFET IMPUT OP AMP IC, QUAD 2-INPUT NOR GATE IC, LINEAR IC, DUAL D-FLIP FLOP IC, LINEAR IC, DUAL D-F. F. (WITH PR&CLR) IC, LINEAR IC, LINEAR IC, LINEAR IC, QUAD 2 INPUT NOR IC, LINEAR IC, DUAL D-F. F. (WITH PR&CLR) IC, TRIPLE 2-CH ANALOG MPX	Q182 2SAB33S(R,S) Q201 2SAB33S(R,S) Q202 2SAB33S(R,S) Q203 2SCB33S(R,S) Q203 2SCB33S(R,S) Q204 2SC1740S(R,S) Q205 2SAB33S(R,S) Q206 2SC2B10(S) Q207 2SA1208(S) Q208 2SC2B10(S) Q208 2SC2B10(S) Q208 2SC2B10(S) Q210 2SC2S51(0) Q211 2SC2S51(0) Q211 2SC2S51(0) Q212 2SAB33S(R,S) Q213 2SD613(E)	TR. SI. PNP TR. SI. PNP TR. SI. PNP TR. SI. NPN TR. SI. NPN TR. SI. NPN TR. SI. PNP TR. SI. PNP TR. SI. NPN TR. SI. NPN TR. SI. NPN TR. SI. PNP TR. SI. NPN	
IC201 NJN4558D	1C, DUAL OP-AMP	Q220 2SA1005(K)	TR. SI, PNP	
IC301 TC74HC4053AP 1C302 KNG01	IC,TRIPLE 2-CH ANALOG MPX IC,LINEAR	Q221 2SA1005(K)	TR. SI, PNP	
IC401 KWA02	EC, LINEAR	Q301 2SC1740S(R,S) Q302 2SC1740S(R,S) Q303 2SC1740S(R,S)	TR. SI, MPN TR. SI, MPN TR. SI, MPN	
K301 S76-0627-05	RELAY	Q304 2SC1740S(R,S) Q305 2SA933S(R,S)	TR. SI. NPN TR. SI. PNP	
L101 L79-0553-05	NOISE FILTER	Q306 2SA1005(K) Q307 2SA1005(K)	TR. SI, PNP TR. SI, PNP	
L201 L33-0842-05 L202 L40-1011-50 L203 L40-1011-50 L204 L40-3925-51	FERRI INDUCTOR 150MH FERRI INDUCTOR 100UH FERRI INDUCTOK 100UH FERRI INDUCTOR 3900UH	Q308 2SC1740S(R,S) Q309 2SC1740S(R,S) Q310 2SA933S(R,S) Q311 2SA933S(R,S) Q312 2SC1740S(R,S)	TR. SI, NPN TR. SI, NPN TR. SI, PNP TR. SI, PNP TR. SI, PNP TR. SI, NPN	
NL201 NE-38B NL202 NE-38B NL203 NE-38B NL204 NE-38B Q3 2SC1740S(R.S) Q4 2SC1923(0) Q5 2SC1923(0)	NEON LAMP NEON LAMP NEON LAMP NEON LAMP TR. SI, NPN	Q313 2SC1740S(R,S) Q314 2SC1907 Q315 2SC1907 Q316 2SA1459(K) Q317 2SA1459(K) Q318 2SC1907 Q319 2SC1907 Q320 2SC4732(E) Q321 2SC4732(E)	TR. SI, MPN TR. SI, MPN TR. SI, MPN TR. SI, PNP TR. SI, PNP TR. SI, PNP TR. SI, MPN	
Q6 2SC3779(D) Q7 2SC3779(D)	TR. SI, NPN	Q322 2SA1828(E) Q323 2SA1828(E)	TR. SI, PNP TR. SI, PNP	
Q8 NO USE Q8 2SA1459(K) Q10 2SC1740S(R,S) Q11 2SC1740S(R,S) Q12 2SA1005(K) Q13 2SC1740S(R,S) Q14 2SC1740S(R,S) Q15 2SA1005(K) Q16 2SA1005(K)	TR. SI, PNP TR. SI, NPN TR. SI, NPN TR. SI, PNP TR. SI, PNP TR. SI, NPN TR. SI, PNP TR. SI, PNP	Q324 25A9335(R,5) Q401 25A1499(0,P) Q402 25C2551(0) Q403 25A1304 Q404 25C2551(0) Q405 25B1015(Y) Q408 25D1406(Y)	TR. SI, PNP TR. SI, PNP TR. SI, PNP TR. SI, PNP TR. SI, NPN TR. SI, PNP TR. SI, PNP	
Q17 2SA933S(R,S) Q18 2SA933S(R,S)	TR. SI, PNP TR. SI, PNP TR. SI, NPN	Q501 25A933S(R,S)	TR. SI, PNP	
Q19 2SC1740S(R.S) Q20 2SA933S(R,S) Q21 2SC1907	TR. SI, NPN TR. SI, NPN	R1 RD14BB2C220J R2 RD14BB2C101J	RES, CARBON	22 5% 1/6W 100 5% 1/6W
Q21 2SC1807 Q28 2SA1459(K) Q29 NO USE Q30 2SC1740S(R,S) Q31 2SC1740S(R,S) Q32 2SC1740S(R,S)	TR. SI, PMP TR. SI, MPN TR. SI, MPN TR. SI, MPN	R3 R114BB2C222J R4 RD14BB2C222J R5 R014BB2C102J R6 R014BB2C822J R7 RD14BB2C822J R8 R014BB2C181J R9 R014BB2C181J	RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON	2.2 K 5% 1/6 W 2.2 K 5% 1/6 W 1 K 5% 1/6 W 8.2 K 5% 1/6 W 2.2 K 5% 1/6 W 1 1 8 0 5% 1/6 W 1 1 K 5% 1/6 W
Q101 2SK170(V) Q102 2SC1923(O) Q103 2SA833S(R,S) Q104 2SC1740S(R,S) Q105 2SC1740S(R,S) Q106 2SC1740S(R,S) Q107 2SK170(V)	FET, N-CHANNEL TR. SI, NPN TR. SI, PNP TR. SI, NPN TR. SI, NPN TR. SI, NPN FET, N-CHANNEL	R10 RD14BB2C105J R11 RD14BB2C105J R12 RD14BB2C105J R13 RD14BB2C101J R14 RD14BB2C101J R15 RD14BB2C104J R15 RD14BB2C220J R16 RD14BB2C751J R17 RD14BB2C821J	RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON	1 M 5% 1/6W 2 2 5% 1/6W 2 2 5% 1/6W 2 2 5% 1/6W 2 2 5% 1/6W 2 1/6W 2 5% 1/6W

					BEE NO DIRECTO	NAME & DESCR	10 T 1 A V
REF. NO	PARTS NO	NAME & DESCI RES. CARBON	.IPTION 100 5% 1/6	R W	REF, NO PARTS NO R118 RD14BB2C162J	RES, CARBON	1.6% 5% 1/6W
R 18 R 19	RD14BB2C101J RD14BB2C221J	RES. CARBON	220 5% 1/6		R119 RD14BB2C243J	RES. CARBON	24K 5% 1/6W
R 2 0	RD14BB2C102J	RES. CARBON	1K 5% 1/6		R120 RD14BB2C103J	RES. CARBON	10K 5% 1/6W 22 5% 1/6W
R 2 1	RD14BB2C473J	RES. CARBON	47K 5% 1/6		R121 RD14BB2C220J R122 RD14BB2C472J	RES. CARBON RES. CARBON	22 5% 1/6W 4,7% 5% 1/6W
R 2 2	RD14BB2C103J RD14BB2C472J	RES. CARBON RES. CARBON	10K 5% 1/6		R123 RD14BB2C472J	RES. CARBON	4.7K 5% 1/6W
R 2 3 R 2 4	RD14BB2C622J	RES. CARBON	6, 2K 5% 1/		R124 RD14BB2C223J	RES. CARBON	22K 5% 1/6W
R 2 5	RD14BB2C512J	RES, CARBON	5.1K 5% 1/		R125 RD14BB2C330J	RES. CARBON RES. CARBON	33 5% 1/6W 12 5% 1/6W
R 2 6	RD14BB2C331J	RES. CARBON	330 5% 1/1 75 5% 1/1		R126 RD14BB2C120J R127 RD14BB2C222J	RES. CARBON	2.2K 5% 1/6W
R 2 7 R 2 8	RD14BB2C750J RD14BB2C750J	RES. CARBON RES. CARBON	75 5% 1/		R128 RD148B2E471J	RES. CARBON	470 5% 1/4W
R 2 9	RD14BB2C680J	RES. CARBON	68 5% 1/		R129 RD14BB2C332J	RES. CARBON	3.3% 5% 1/6W
R 3 0	RD14BB2C390J	RES. CARBON	39 5% 1/		R130 RD14BB2C332J R131 RD14BB2C912J	RES. CARBON RES. CARBON	3.3K 5% 1/6W . 9.1K 5% 1/6W
R 3 1	RD14BB2C122J	RES. CARBON RES. CARBON	1.2K 5% 1/ 2.2K 5% 1/		R131 RD14BB2C912J R132 RD14BB2C163J	RES. CARBON	16K 5% 1/6W
R32 R33	RD14BB2C222J RD14BB2C681J	RES. CARBON	680 5% 1/		R133 RD14BB2C472J	RES. CARBON	4.7K 5% 1/6W
R 3 4	NO USE				R134 RD14BB2C102J	RES. CARBON RES. CARBON	1K 5% 1/6W 1K 5% 1/6W
R35	RD14BB2C223J	RES. CARBON	22K 5% 1/	D W	R135 RD14BB2C102J R136 RD14BB2C472J	RES. CARBON	4.7K 5% 1/6W
R36 R37	NO USE RD14BB2C391J	RES. CARBON	390 5% 1/	6 W	R137 RD14BB2C101J	RES. CARBON	100 5% 1/6W
R 3 8	RD14BB2C751J	RES. CARBON	750 5% 1/	6 W	R138 RD14BB2C101J	RES. CARBON	100 5% 1/6W 100 5% 1/6W
R 3 9	NO USE	DEC CIRRON	22K 5% 1/	'6W	R139 RD14BB2C101J R140 RD14BB2C103J	RES, CARBON RES, CARBON	10K 5% 1/6W
R 4 0 R 4 1	RD14BB2C223J RD14BB2C683J	RES. CARBON RES. CARBON		6 W	R141 RD14BB2C471J	RES. CARBON	470 5% 1/6W
R41	RD14BB2C222J	RES. CARBON	2.2K 5% 1/	6 W	R142 NO USE		
R 4 3	RD14BB2C393J	RES. CARBON		69	R143 RD14BB2C302J R144 RD14BB2C302J	RES. CARBON RES. CARBON	3K 5% 1/6W 3K 5% 1/6W
R 4 4	RD14BB2C221J	RES. CARBON RES. CARBON		/6W	R144 RD14BB2C302J R145 RD14BB2C131J	RES. CARBON	130 5% 1/6W
R 4 5 R 4 6	RD14BB2C163J RD14BB2C752J	RES. CARBON		/6W	R146 RD14BB2C682J	RES. CARBON	6,8K 5% 1/6W
R47	RD14BB2C222J	RES. CARBON		/6 W	R147 RD14BB2C101J	RES. CARBON	100 5% 1/6W 4.7K 5% 1/6W
R 4 8	RD14BB2C222J	RES. CARBON RES. CARBON		/6W /6W	R148 RD14BB2C472J R149 RD14BB2C183J	RES. CARBON RES. CARBON	18K 5% 1/6W
R 4 9	RD14BB2C222J RD14BB2C393J	RES. CARBON		/6W	R150 RD14BB2C472J	RES. CARBON	4.7K 5% 1/6W
R 5 0 R 5 1	RD14BB2C123J	RES. CARBON	12K 5% 1/	/6 W	R151 RD14BB2C104J	RES. CARBON	100K 5% 1/6W
R 5 2	RD14BB2C223J	RES. CARBON		/6W	R152 RD14BB2C222J	RES. CARBON RES. CARBON	2.2% 5% 1/6W 100 5% 1/6W
R 5 3	RD14BB2C113J	RES. CARBON RES. CARBON		/6W /6W	R153 RD14BB2C101J R154 RD14BB2C684J	RES. CARBON	680K 5% 1/6W
R 5 4 R 5 5	RD14BB2C104J RD14BB2C221J	RES. CARBON		/6₩	R155 RD14BB2C102J	RES. CARBON	1K 5% 1/6W
R 5 6	RD14BB2C182J	RES. CARBON		/6W	R156 RD14BB2C223J	RES. CARBON RES. CARBON	22K 5% 1/6W 1K 5% 1/6W
R 5 7	RD14BB2C272J	RES, CARBON		/6W /6W	R157 RD14BB2C102J R158 RD14BB2C103J	RES. CARBON	10K 5% 1/6W
R58	RD14BB2C103J RD14BB2C472J	RES. CARBON RES. CARBON		/6W	R159 RD14BB2C102J	RES. CARBON	1K 5% 1/6W
R 5 9 R 6 0	RD14BB2C103J	RES. CARBON	10K 5% 1	/6W	R160 RD14BB2C202J	RES. CARBON	2 K 5% 1/6 W
R 6 1	RD14BB2C102J	RES. CARBON		/6W	R161 RD14BB2C103J R162 RD14BB2C202J	RES. CARBON RES. CARBON	10K 5% 1/6W 2K 5% 1/6W
R 6 2	RD14BB2C472J	RES. CARBON RES. CARBON		/6W /6W	R163 RD14BB2C151J	RES. CARBON	150 5% 1/6W
R 63 R 64	RD14BB2C223J RD14BB2C223J	RES. CARBON		/6W	R164 RD14BB2C111J	RES. CARBON	110 5% 1/6W
R 65	RD14BB2C102J	RES. CARBON	1 K 5 % 1	/6W	R165 RD14BB2C681J	RES. CARBON	680 5% 1/6W 2.2K 5% 1/6W
R 6 6	RD14BB2C223J	RES. CARBON		/6W	R166 RD14BB2C222J R167 RD14BB2C222J	RES. CARBON RES. CARBON	2.2K 5% 1/6W
R 67	RD14BB2C222J	RES. CARBON	2,2K 5% 1	/6W	R168 RD14BB2C102J	RES, CARBON	1K 5% 1/6W
R68	NO USE	RES, CARBON	10K 5% 1	/6W	R169 RD14BB2C102J	RES. CARBON	1K 5% 1/6W
R 69 R 70	RD14BB2C103J RD14BB2C472J	RES. CARBON		/6W	R170 RD14BB2C103J R171 RD14BB2C103J	RES. CARBON RES. CARBON	10K 5% 1/6W 10K 5% 1/6W
R 7 1	RD14BB2C223J	RES. CARBON	22K 5% 1	/6W	R171 RD14BB2C103J R172 RD14BB2C751J	RES. CARBON	750 5% 1/6W
R 7 2	RD14BB2C472J	RES. CARBON		/6W	R173 RD14BB2C431J	RES. CARBON	430 5% 1/6W
R 7 3 R 7 4	RD14BB2C223J RD14BB2C152J	RES, CARBON RES, CARBON		/6W	R174 RD14BB2C220J	RES. CARBON RES. CARBON	22 5% 1/6W 1K 5% 1/6W
R75	RD14BB2C152J	RES. CARBON	1.5K 5% 1	/6¥	R175 RD14BB2C102J R176 RD14BB2C101J	RES. CARBON	100 5% 1/6%
R 76	NO USE	DCC CARRON	7.5K 5% 1	/6W	R177 RD14BB2C102J	RES. CARBON	1K 5% 1/6W
R 77 R 78	RD14BB2C752J NO USE	RES. CARBON	7.5K 5% 1	/°*	R178 RD14BB2C102J	RES. CARBON	1K 5% 1/6W
R79	RD14BB2C223J	RES. CARBON		/6W	R179 RD14BB2C121J R180 NO USE	RES. CARBON	120 5% 1/6W
R 80	RD14BB2C223J	RES. CARBON		/6W	R181 RD14BB2C102J	RES. CARBON	1K 5% 1/6W
R 8 1	RD14BB2C103J RD14BB2C103J	RES. CARBON RES. CARBON		/6W	R182 RD14BB2C822J	RES. CARBON	8.2K 5% 1/6W
R 8 2 R 8 3	RD14BB2E223J	RES. CARBON		/49	R183 RD14BB2E102J R184 RD14BB2C621J	RES. CARBON RES. CARBON	1K 5% 1/4W 620 5% 1/6W
R 8 4	RD14BB2C103J	RES. CARBON		/64	R184 RD14BB2C621J R185 RD14BB2E103J	RES. CARBON	10K 5% 1/4W
R 8 5	RD14BB2C223J	RES. CARBON RES. CARBON		/6W	R186 RD14BB2C202J	RES, CARBON	2K 5% 1/6W
R 86 R 87	RD14BB2C104J RD14BB2C222J	RES. CARBON		/6W	R187 RD14BB2C472J	RES. CARBON RES. CARBON	4.7K 5% 1/6W 10K 5% 1/6W
R 8 8	RD14BB2C470J	RES. CARBON		/6W	R188 RD14BB2C103J R189 RD14BB2C220J	RES. CARBON	22 5% 1/6W
R 8 9	NO USE	DEC CIDDAN	4.7K 5% 1	/6¥	R190 RD14BB2C682J	RES. CARBON	6.8K 5% 1/6W
R 9 0 R 9 1		RES. CARBON RES. CARBON		/6W	R191 RD14BB2C682J	RES. CARBON	6.8K 5% 1/6W
R 9 2		RES. CARBON	22K 5% 1	/6W	R192 RD14BB2C220J R193 RD14BB2C470J	RES. CARBON RES. CARBON	22 5% 1/6W 47 5% 1/6W
R 93		RES, CARBON	47K 5% 1		R194 RD14BB2C470J	RES. CARBON	47 5% 1/6W
R 9 4		RES. CARBON RES. CARBON		1/6W	R195 RD14BB2C102J	RES. CARBON	1K 5% 1/6W
R 9 5 R 9 6		RES. CARBON		1/6W	R196 RD14BB2C101J	RES. CARBON	100 5% 1/6%
					R197 RD14BB2E101J R198 RD14BB2C471J	RES. CARBON RES. CARBON	100 5% 1/4W 470 5% 1/6W
R 1 0		RES. CARBON		1/6W	R199 RD14BB2C473J	RES. CARBON	47K 5% 1/6W
R 1 0 R 1 0		RES. CARBON RES. CARBON		1/64	DAGG	BEC 01550F	118 58 1/6"
Rio	4 RD14BB2C103J	RES, CARBON	10K 5% 1	1/6W	R202 RD14BB2C113J R203 RD14BB2C222J	RES. CARBON RES. CARBON	11K 5% 1/6W 2.2K 5% 1/6W
R10	5 RD14BB2C332J	RES. CARBON		1/6W 1/6W	R204 RD14BB2C272J	RES. CARBON	2.7K 5% 1/6W
R 1 G R 1 G		RES. CARBON RES. CARBON		1/6W	R205 NO USE	BBC 0/222	4 0V CH - 10"
RIC	8 RD14BB2C163J	RES, CARBON	16K 5% 1	1/6W	R206 RD14BB2C432J R207 RD14BB2C152J	RES, CARBON RES, CARBON	4.3K 5% 1/6W 1.5K 5% 1/6W
RIC	9 RD14BB2C472J	RES. CARBON		1/6W	R207 RD14BB2C1323	RES. CARBON	5.1K 5% 1/6W
R11	0 RD14BB2C102J 1 RD14BB2C101J	RES, CARBON RES, CARBON		1/6¥ 1/6₩	R209 RD14BB2C202J	RES. CARBON	2K 5% 1/6W
R1	2 RD14BB2C472J	RES. CARBON	4.7K 5%	1/6W	R210 RD14BB2C333J	RES. CARBON	33K 5% 1/6W
R 1 1	3 RD14BB2C101J	RES. CARBON		1/6₩	R214 RD14BB2C222J	RES, CARBON	2.2% 5% 1/6W
R11		RES. CARBON RES. CARBON		1/6¥ 1/6¥	R215 RD14BB2C431J	RES, CARBON	430 5% 1/6W
R11 R11		RES. CARBON		1/6₩	R216 RD14BB2C332J R217 NO USE	RES, CARBON	3.3K 5% 1/6W
	7 RD14BB2C473J	RES. CARBON	47K 5%	1/6W	R217 NO USE R218 RD14BB2C103J	RES, CARBON	10K 5% 1/6W

REF. NO PARTS NO	NAME & DESCRIPTION RES. CARBON 130K 5% 1/6W	REF. NO PARTS NO R335 RD14BB2C243J	NAME & DESCRIPTION RES. CARBON 24K 5% 1/6W
R219 RD14BB2C134J R220 RD14BB2C101J	RES. CARBON 100 5% 1/69	R336 RD14BB2C243J	RES. CARBON 24K 5% 1/6W RES. CARBON 240 5% 1/6W
R221 RD14BB2C472J R222 RD14BB2C101J	RES. CARBON 4.7K 5% 1/6W RES. CARBON 100 5% 1/6W	R338 RD14BB2C241J	RES, CARBON 240 5% 1/6W
R223 RD14BB2C152J	RES. CARBON 1.5K 5% 1/6W RES. CARBON 5.6K 5% 1/6W		RES. HETAL FILM 820 1% 1/6W
R224 RD14BB2C562J R225 RD14BB2C134J	RES. CARBON 130K 5% 1/6W	R341 RN14BK2C8200F R342 RD14BB2C912J	RES. METAL FILM 820 1% 1/6W RES. CARBON 9.1K 5% 1/6W
R226 RD14BB2C470J R227 RD14BB2C104J	RES. CARBON 47 5% 1/6W RES. CARBON 100K 5% 1/6W	R343 RD14BB2C332J	RES. CARBON 3.3K 5% 1/6W RES. CARBON 100 5% 1/6W
R228 RD14BB2C753J	RES. CARBON 75K 5% 1/6W	R344 RD14BB2C101J R345 RD14BB2C101J	RES. CARBON 100 5% 1/6W
R229 RD14BB2C103J R230 RD14BB2C152J	RES. CARBON 1.5K 5% 1/6W	R346 RD14BB2C561J R347 RD14BB2C222J	RES. CARBON 560 5% 1/6W RES. CARBON 2.2K 5% 1/6W
R231 RD14BB2C562J R232 RD14BB2C134J	RES. CARBON 5.6K 5% 1/6W RES. CARBON 130K 5% 1/6W	R348 RD14BB2C222J	RES. CARBON 2.2K 5% 1/6W RES. LINEAR PCT 180
R233 RD14BB2C470J	RES. CARBON 47 5% 1/6W RES. CARBON 470K 5% 1/6W	R349 R92-1552-05 R350 RD14BB2C163J	RES. CARBON 16K 5% 1/6W
R234 RD14BB2C474J R235 RD14BB2C474J	RES. CARBON 470K 5% 1/6W	R351 NO USE R352 RD14BB2C153J	RES. CARBON 15K 5% 1/6W
R236 R92-1563-05 R237 R92-1563-05	RES. METAL FILM 10H 5% 1/4W	R353 RD14BB2C202J	RES. CARBON 2K 5% 1/6W RES. CARBON 100 5% 1/6W
R238 R92-1562-05	RES. METAL FILM 8.2N 5% 1/4W RES. METAL FILM 3.9M 5% 1/4W	R355 RD14BB2C391J	RES. CARBON 390 5% 1/6W
R240 RD14BB2C101J	RES. CARBON 100 5% 1/6W	R356 NO USE R357 RD14BB2C472J	RES, CARBON 4.7K 5% 1/6W
R241 RD14BB2C474J R242 RD14BB2C683J	RES. CARBON 68K 5% 1/6W	R358 RD14BB2C472J R359 RD14BB2C472J	RES. CARBON 4.7K 5% 1/6W RES. CARBON 4.7K 5% 1/6W
R243 RD14BB2C102J	RES. CARBON 1K 5% 1/6W RES. CARBON 100K 5% 1/6W	R360 RD14BB2C101J	RES. CARBON 100 5% 1/6W RES. CARBON 4.7K 5% 1/6W
R245 RD14BB2C473J	RES. CARBON 47K 5% 1/6W	R361 RD14BB2C472J R362 RD14BB2C122J	RES. CARBON 1.2K 5% 1/6W
R246 RD14BB2C473J R247 RD14BB2C473J	RES. CARBON 47K 5% 1/6W	R363 RD14BB2C122J R364 RN14BK2C3901F	RES. CARBON 1.2K 5% 1/6W RES. METAL FILM 3.9K 1% 1/6W
R248 RN14BK2C1203F R249 R92-1564-05	RES. METAL FILM 120K 1% 1/6W RES. METAL FILM 15M 1% 1/2W	R365 RN14BK2C6201F	RES. METAL FILM 6.2K 1% 1/6W RES. LINEAR PCT 2K
R250 RD14BB2C124J	RES. CARBON 120K 5% 1/6W RES. CARBON 1K 5% 1/6W	R366 R92-1660-05 R367 RD14BB2C393J	RES. CARBON 39K 5% 1/6W
R251 RD14BB2C102J R252 RD14BB2C392J	RES. CARBON 3.9K 5% 1/6W	R368 RD14BB2C622J R369 RD14BB2C394J	RES. CARBON 390K 5% 1/6W
R253 RD14BB2C153J R254 RD14BB2C221J	RES. CARBON 15K 5% 1/6W RES. CARBON 220 5% 1/6W	R370 R92-1199-05 R371 RD14BB2C222J	RES. LINEAR PCT 3K RES. CARBON 2.2K 5% 1/6W
R255 RD14BB2C101J	RES. CARBON 100 5% 1/6W RES. CARBON 100 5% 1/6W	R372 RD14BB2C222J	RES. CARBON 2.2K 5% 1/6W
R256 RD14BB2C101J R257 RD14BB2C151J	RES. CARBON 150 5% 1/6W	R373 RD14BB2C152J R374 RD14BB2C152J	RES. CARBON 1.5K 5% 1/6W
R258 RD14BB2C302J R259 RD14BB2C222J	RES. CARBON 3K 5% 1/6W RES. CARBON 2.2K 5% 1/6W	R375 RD14BB2C362J R376 RD14BB2C362J	RES. CARBON 3.6K 5% 1/6W RES. CARBON 3.6K 5% 1/6W
R260 RN14BK2C1801F	RES. METAL FILM 1.8K 1% 1/6W RES. METAL FILM 1.8K 1% 1/6W	R377 R92-1558-05	RES, NETAL FILM 39K 5% IW
R262 RD14BB2C362J	RES. CARBON 3.6K 5% 1/6W	R378 R92-1558-05	App. Harris Transfer
R263 RD14BB2C562J R264 RD14BB2C303J	RES. CARBON 5.6K 5% 1/6W RES. CARBON 30K 5% 1/6W	R381 RD14BB2C101J R382 RD14BB2C101J	RES. CARBON 100 5% 1/6W RES. CARBON 100 5% 1/6W
R265 RD14BB2C562J R266 RD14BB2C103J	RES. CARBON 5.6K 5% 1/6W RES. CARBON 10K 5% 1/6W	R383 RD14BB2C751J	RES. CARBON 750 5% 1/6W
R 267 RD 14BB 2C 224 J	RES. CARBON 220K 5% 1/6W RES. CARBON 43K 5% 1/6W	R384 RD14BB2C751J R385 RN14BK2C6801F	RES. METAL FILM 6.8K 1% 1/6W
R 268 R D 1 4 B B 2 C 4 3 3 J R 269 R 92 - 1573 - 05	RES. LINEAR PCT 2.7K	R386 RN14BK2C1303F R387 RD14BB2C102J	RES. METAL FILM 130K 1% 1/6W RES. CARBON 1K 5% 1/6W
R270 RD14BB2C681J R271 RD14BB2C222J	RES. CARBON 680 5% 1/6W RES. CARBON 2.2K 5% 1/6W	R388 RD14BB2C102J	RES. CARBON 1K 5% 1/6W
R272 RD14BB2C151J	RES. CARBON 150 5% 1/6W RES. CARBON 2K 5% 1/6W	R389 NO USE R390 RD14BB2C913J	RES. CARBON 91K 5% 1/6W
R274 RD14BB2C102J	RES. CARBON 1K 5% 1/6W	R391 RD14BB2C102J R392 RD14BB2C102J	RES. CARBON IK 5% 1/6W RES. CARBON IK 5% 1/6W
R275 RD14BB2C102J	RES. CARBON 1K 5% 1/6W	R393 NO USE R394 R92-1559-05	RES. METAL FILM 47K 5% 1W
R280 RD14BB2C101J R281 RD14BB2C622J	RES. CARBON 100 5% 1/6W RES. CARBON 6.2K 5% 1/6W	R395 R92-1559-05	RES. NETAL FILM 47K 5% 1W
R282 RD14BB2C101J	RES. CARBON 100 5% 1/6W RES. CARBON 470 5% 1/6W	R396 RD14BB2C431J R397 RN14BK2C1501F	RES. METAL FILM 1.5K 1% 1/6W
R283 RD14BB2C471J		R398 RD14BB2C470J R399 RD14BB2C470J	RES. CARBON 47 5% 1/6W RES. CARBON 47 5% 1/6W
R300 RD14BB2C472J R301 RD14BB2C221J	RES. CARBON 4.7K 5% 1/6W RES. CARBON 220 5% 1/6W	R400 NO USE R401 R92-1557-05	RES. NETAL FILM 6.8K 5% 2W
R302 RD148B2C821J	RES. CARBON 820 5% 1/6W RES. CARBON 820 5% 1/6W	R402 RD14BB2C103J	RES. CARBON 10K 5% 1/6W RES. CARBON 1K 5% 1/6W
R304 RD14BB2C122J	RES. CARBON 1.2K 5% 1/6W	R403 RD14BB2C102J R404 R92-1556-05	RES. METAL FILM IX 5% 2W
R305 RD14BB2C472J R306 RD14BB2C104J	RES. CARBON 100K 5% 1/6W	R405 R92-1556-05 R406 RD14BB2C103J	RES. METAL FILM 1K 5% 2W RES. CARBON 10K 5% 1/6W
R307 RD14BB2C202J R308 RD14BB2C101J	RES. CARBON 2K 5% 1/6W RES. CARBON 100 5% 1/6W	R407 RD14BB2C102J R408 R92-1555-05	RES. CARBON 1K 5% 1/6W RES. METAL FILM 56 5% 2W
R309 RD14BB2C242J R310 RD14BB2C242J	RES. CARBON 2.4K 5% 1/6W RES. CARBON 2.4K 5% 1/6W	R409 R92-1555-05	RES. METAL FILM 56 5% 2W
R311 RD14BB2C362J	RES. CARRON 3.6K 5% 1/6W RES. CARBON 4.7K 5% 1/6W	R410 R92-1555-05 R411 R92-1555-05	RES. METAL FILM 56 5% 2W
R312 RD14BB2C472J R313 RD14BB2C182J	RES, CARBON 1.8K 5% 1/6W	R412 R92-1555-05 R413 R92-1555-05	RES. METAL FILM 56 5% 2W RES. METAL FILM 56 5% 2W
R314 RD14BB2C432J R315 RD14BB2C132J	RES. CARBON 4.3K 5% 1/6W RES. CARBON 1.3K 5% 1/6W	R414 NO USE	RES. CARBON 4.7K 5% 1/6W
R316 RD14BB2C153J R317 RD14BB2C682J	RES. CARBON 15K 5% 1/6W RES. CARBON 6.8K 5% 1/6W	R415 RD14BB2C472J R416 RD14BB2C302J	RES. CARBON 3K 5% 1/6W
R318 RD14BB2C222J	RES. CARBON 2.2K 5% 1/6W RES. CARBON 2K 5% 1/6W	R417 RD14BB2C103J	RES. CARBON 10K 5% 1/6W
R319 RD14BB2C202J R320 RD14BB2C682J	RES, CARBON 6.8K 5% 1/6W	R501 RN14BK2C1501F R502 RN14BK2C4701F	
R321 RD14BB2C183J R322 RD14BB2C101J	RES. CARBON 18K 5% 1/6W RES. CARBON 100 5% 1/6W	R503 RD14BB2C821J	RES. CARBON 820 5% 1/6W
R323 RD14BB2C101J	RES. CARBON 100 5% 1/6W RES. CARBON 2.4K 5% 1/6W	R504 RD14BB2C563J R505 RD14BB2C753J	RES. CARBON 56K 5% 1/6W RES. CARBON 75K 5% 1/6W
R324 RD14BB2C242J R325 RD14BB2C912J	RES. CARBON 9.1K 5% 1/6W	TC101 C05-0470-05	CAP. TRIMMER 20P
R326 RD14BB2C301J R327 RD14BB2C391J	RES. CARBON 300 5% 1/6W RES. CARBON 390 5% 1/6W	TC102 C05-0470-05	CAP. TRINNER 20P
R328 RD14BB2C391J R329 RD14BB2C390J	RES. CARBON 390 5% 1/6W RES. CARBON 39 5% 1/6W	TC303 C05-0490-05	CAP. TRIMMER 20P
R330 RD14BB2C472J	RES. CARBON 4.7K 5% 1/6W	TH301 112-103-2FM	THERMISTOR
R332 RD14BB2C132J	RES. CARBON 1.3K 5% 1/6W	VR1 R12-3597-05	RES. SENI FIXED 47K
R333 RD14BB2C432J R334 RD14BB2C432J		VR2 R12-0680-05	RES. SEMI FIXED 47K

REF. NO PARTS NO	NAME & DESCRIPTION
VR102 R12-0694-05	RES. SEMI FIXED 4.7KB
VR103 R12-0680-05	
VR104 R12-1860-05	
18104 812 1000 10	,
VR201 R12-5545-05	RES. SEMI FIXED 2.2MB
VR202 R12-5565-05	
VR301 R12-0680-05	RES. SEMI FIXED 47K
	RES. SEMI FIXED 100 B
VR303 R12-0678-05	RES. SEMI FIXED 10KB
VR304 R12-0694-05	RES, SEMI FIXED 4,7KB
VR305 R12-6501-05	RES. SEM! FIXED 470KB
VR306 R12-3042-05	RES. SENI FIXED 47KB
VR307 R12-0680-05	RES. SEMI FIXED 47K
VR308 R12-0890-05	RES. SEMI FIXED 470 B
VR309 R12-0883-05	RES. SEMI FIXED 220 B
W1 E38-1005-05	WIRE ASS'Y; 3P
W2 E38-1177-05	WIRE ASS'Y
W3 E38-1259-05	WIRE ASS'Y:1P
W14 E38-1317-05	WIRE ASS Y: 9P
W18 E38-0990-05	WIRE ASS Y; 6P
W19 E38-1176-05	WIRE ASS'Y; 2P
W509 E38-1256-05	WIRE ASS'Y; 7P
W510 NO USE	
W511 E38-1206-05	WIRE ASS'Y; 6P
W528 E38-1172-05	WIRE ASS'Y;7P

DCS-7020 DSP UNIT

	X	<u>79-13</u>	00-00		
REF.NO	PARTS NO F15-0744-05	BLIND	ME & DESCR	IPTION	
B A 1	J73-0394-02 W09-2381-05	PCB ((UNNOUNTED) Ery		
C 1	CC45FCH1H680J	CAP.	CERANIC	68P 5%	5 0 Y
C 2	C91-0769-05	CAP.	CERANIC	0.01 20%	16 V
C 3	C91-2538-05	CAP.	FILM	0.1 10%	63 Y
C 4	C91-2538-05	CAP.	FILM	0.1 10%	63 Y
C 5	C K 4 5 B 1 H 1 0 2 K T A	CAP.	CERANIC	1000P 10%	5 0 V
C 6	CK45B1H102KTA	CAP.	CERANIC	1000P 10%	5 0 V
C 7	C91-2538-05	CAP.	FILM	0.1 10% 0.1 10%	63 V
C 8	C91-2538-05	CAP. CAP.	CERANIC	4P 0.25P	
C 9	CC45FCH1R040C C91-0769-05	CAP.	CERANIC	0.01 20%	167
C 1 0 C 1 1	C91-0769-05	CAP.	CERANIC	0.01 20%	167
C 1 2	CK45FB1H102K	CAP.	CERANIC	1000P 10%	5 0 V
C 13	C91-0769-05	CAP.	CERANIC	0.01 20%	16 Y
C 14	C81-0769-05	CAP.	CERANIC	0.01 20%	16 V
C 15	CK45FB1H102K	CAP.	CERANIC	1000P 10%	5 0 V
C 16	C91-0769-05	CAP.	CERANIC	0.01 20%	16 V
C 17	C91-0769-05	CAP.	CERANIC	0.01 20%	16 Y
C 18	CC45CH1H22OJTA	CAP.	CERANIC	22P 5%	50 V
C 18	CC45CH1H22OJTA	CAP.	CERANIC	22P 5%	5 0 V
C 20	C91-0769-05	CAP.	CERANIC	0.01 20%	16 V
C 2 1	CC45FSL18471J	CAP.	CERANIC	470P 5%	5 0 Y
C 2 2	NO USE				
C 23	CE04LW1A221M	CAP.	ELECTRO	220 20%	10 V
C 2 4	C91-0769-05	CAP.	CERANIC	0.01 20%	16 V
C 25	C91-0769-05	CAP.	CERANIC	0.01 20%	16 9
C 26	C81-0769-05	CAP. CAP.	CERANIC	0.01 20% 0.01 20%	16 V
C 27	C91-0769-05 C91-0769-05	CAP.	CERANIC	0.01 20%	161
C 28 C 29	CE04LW1A221M	CAP.	ELECTRO	220 20%	101
C 3 0	CE04LW1C221M	CAP.	ELECTRO	220 20%	16 9
C 3 1	C91-0769-05	CAP.	CERANIC	0.01 20%	16 9
C 3 2	C91-0769-05	CAP.	CERANIC	0.01 20%	161
C 3 3	C91-2538-05	CAP.	FILM	0.1 10%	6 3 Y
C 3 4	C91-2538-05	CAP.	FILM	0.1 10%	63 V
C 35	C91-0769-05	CAP.	CERANIC	0,01 20%	16 V
C 36	C 9 1 - 0 7 6 9 - 0 5	CAP.	CERANIC	0.01 20%	16 V
C 37	C91-2538-05	CAP.	FILM	0.1 10%	6 3 V
C 38	C91-2538-05	CAP.	FILN	0,1 10%	6 3 V
C 39	C91-0769-05	CAP.	CERANIC	0.01 20%	16 V
C 4 0	C91-0769-05	CAP.	CERANIC	0.01 20%	16 4
C 4 1	C91-0769-05	CAP.	CERANIC	0.01 20% 0.01 20%	16 V
C 4 2	C91-0769-05	CAP. CAP.	CERANIC CERANIC	0.01 20%	161
C 43	C91-0769-05	CAP.	CERANIC	0.01 20%	161
C 4 4	C91-0769-05 C91-0769-05	CAP.	CERANIC	0.01 20%	161
C 45 C 46	C91-0769-05	CAP.	CERANIC	0.01 20%	16 9
C 4 7	C91-0769-05	CAP.		0.01 20%	16 9
C 4 8	C91-0769-05	CAP	CERANIC	0.01 20%	16 V
C 4 9	CK45B1B102KTA	CAP.	CERANIC	1000P 10%	5 0 V
C 5 0	C91-0769-05	CAP.		0.01 20%	16 Y

REF. NO PARTS NO	NAME & DESCRIPTION
C77 C91-2538-05	CAP, FILM 0,1 10% 63V
C78	CAP. CERANIC 180P 5% 50V CAP. CERANIC 390P 5% 50V
C81 CC45FCH1H271J C82 CC45FCH1H220J	CAP. CERAMIC 270P 5% 50V CAP. CERAMIC 22P 5% 50V
C83 NO USE C84 C91-0769-05	CAP. CERANIC 0.01 20% 16V
C85 C91-0769-05 C86 C91-0769-05 C87 C91-0769-05	CAP. CERANIC 0.01 20% 16V CAP. CERANIC 0.01 20% 16V CAP. CERANIC 0.01 20% 16V
C88 C91-0769-05 C89 CC45FSL1H471J	CAP. CERANIC 0.01 20% 16 V CAP. CERANIC 470P 5% 50 V
C101 CC45FCH1H151J	CAP. CERANIC 150P 5% 50V
C102 NO USE C103 C91-0769-05 C104 C91-0769-05	CAP, CERANIC 0.01 20% 16V CAP, CERANIC 0.01 20% 16V
C105 C91-0769-05 C106 C91-0769-05	CAP. CERAMIC 0.01 20% 16V CAP. CERAMIC 0.01 20% 16V CAP. CERAMIC 0.01 20% 16V
C107 NO USE C108 C91-0769-05	CAP. CERANIC 0.01 20% 169
C109 CE04LW1C221M C110 CF92FV1H104J C111 CF92FV1H104J	CAP. ELECTRO 220 20% 16V CAP. POLYESTER 0.1 5% 50V CAP. POLYESTER 0.1 5% 50V
C112 CF92FV1H104J	CAP. POLYESTER 0.1 5% 50V CAP. POLYESTER 0.1 5% 50V
C115 CF92FV1H104J	CAP. POLYESTER 0.1 5% 50V
C124 CC45FCH1H101J C125 CC45FCH1H150J	CAP. CERANIC 100P 5% 50V CAP. CERANIC 15P 5% 50V
C126 CEO4LW1A101M C127 CEO4LW1A101M C128 CEO4LW1A101M	CAP. ELECTRO 100 20% 10V CAP. ELECTRO 100 20% 10V CAP. ELECTRO 100 20% 10V
C201 CC45FCH1H151J	CAP. CERANIC 150P 5% 50V
C202 NO USE C203 C91-0769-05	CAP. CERANIC 0.01 20% 16V
C 2 0 4 C 9 1 - 0 7 6 9 - 0 5 C 2 0 5 C 9 1 - 0 7 6 9 - 0 5 C 2 0 6 C 9 1 - 0 7 6 9 - 0 5	CAP. CERAMIC 0.01 20% 16V CAP. CERAMIC 0.01 20% 16V CAP. CERAMIC 0.01 20% 16V
C207 NO USE C208 C91-0769-05	CAP. CERANIC 0.01 20% 16V
C209 CE04LW1C221M C210 CF92FV1H104J	CAP. ELECTRO 220 20% 16V CAP. POLYESTER 0.1 5% 50V
C211 CF92FV1H104J C212 CF92FV1H104J	CAP. POLYESTER 0.1 5% 50V CAP. POLYESTER 0.1 5% 50V
C215 CF92FV1H104J	CAP. POLYESTER 0.1 5% 50V
C224 CC45FCH1H101J C225 CC45FCH1H150J	CAP. CERAMIC 100P 5% 50V CAP. CERAMIC 15P 5% 50V
C226 CEO4LW1A101M C227 CEO4LW1A101M C228 CEO4LW1A101M	CAP. ELECTRO 100 20% 10V CAP. ELECTRO 100 20% 10V CAP. ELECTRO 100 20% 10V
C228 CE04LW1A101M C301 CC45FCH1H220J	CAP. CERANIC 22P 5% 50V
C302 CC45FCH1H050C C303 C91-0769-05	CAP. CERANIC 5P 0.25P 50V CAP. CERANIC 0.01 20% 16V
C304 CC45FCN1H050C C305 C91-0769-05	CAP, CERANIC 5P 0.25P 50V CAP, CERANIC 0.01 20% 16V
C306 CC45FCH1N050C C307 CE04LW1A471H	CAP. CERANIC 5P 0.25P 50V CAP. ELECTRO 470 20% 10V
C801 CF92V1H102J	CAP. POLYESTER 1000P 5% 50V
CN502 E40-7515-05	PIN CONNECTOR 3P
CN523 E40-7532-05 CN524 E40-7520-05	PIN CONNECTOR 23P PIN CONNECTOR 30P PIN CONNECTOR 8P
CN525 E40-3243-05 CN526 NO USE CN527 E40-5069-05	PIN CONNECTOR 12P
C N 5 2 8 E 4 0 - 3 2 4 2 - 0 5	PIN CONNECTOR 7P
CN531 E40-7519-05 CN532 E40-7519-05	PIN CONNECTOR 4P PIN CONNECTOR 4P
D1 NA700 D2 NA700	DIODE DIODE
D3 1 S S 1 3 2 D4 1 S S 1 3 2	DIODE DIODE
D39 1SS132	DIODE
D100 NA700	DIODE
D 2 0 0 H A 7 0 0	DIODE
D301 NA700	DIODE
IC1 PST7045 IC2 NB88101APFV-GB IC3 NO USE	IC, RESET IC, 4-CH 12-BIT A/D CONVERTER
IC4 HD14066BFP IC5 T83-0893-05	IC, QUAD BILATERAL SWITCH PROGRAM ROM

REF. NO PARTS NO	NAME & DESCRIPTION	REF. NO PARTS NO	NAME & DESCRIF		e u
1C6 T93-0894-05 1C7 HD74LS32FP	PROGRAM ROM 1C.QUAD 2-INPUT OR GATE 1C.QUAD 2-INPUT OR GATE	R 2 0 R N 1 4 B K 2 C 1 2 0 2 F R 2 1 R N 1 4 B K 2 C 1 2 0 1 F R 2 2 R N 1 4 B K 2 C 2 0 0 1 F R 2 3 R N 1 4 B K 2 C 1 2 0 2 F	RES. METAL FILM I RES. METAL FILM I RES. METAL FILM I RES. METAL FILM I	1,2K 1% 1/6 2K 1% 1/6	6 W
1C9 HD74LS74FP 1C10 HD74LS244FP	IC DUAL D-F.F. (WITH PRACER) IC OCTAL 3-STATE BUS BUFFER IC QUAD EXCLUSIVE OR GATE	R 2 3 R N 1 4 B K 2 C 1 2 O 2 F R 2 4 R N 1 4 B K 2 C 1 2 O 2 F R 2 5 R D 1 4 B B 2 C 3 3 O J R 2 6 R N 1 4 B K 2 C 1 2 O 1 F	RES. METAL FILM	12K 1% 1/6 33 5% 1/6 1.2K 1% 1/6	6 W
1C12 HD74HC08FP 1C13 HD74LS138FP 1C14 HD74LS138FP	IC, QUAD 2-INPUT AND GATE IC, 3-T0-8 DEHULTIPLEXER IC, 3-T0-8 DEMULTIPLEXER IC, OCTAL 3-STATE BUS BUFFER	R 27 R D 1 4 B B 2 C 3 3 0 J R 28 R N 1 4 B X 2 C 3 3 0 1 F R 29 R N 1 4 B X 2 C 1 0 0 1 F	RES. CARBON RES. METAL FILM RES. METAL FILM	33 5% 1/0 3.3K 1% 1/0 1K 1% 1/0	6 ₩ 6 ₩
IC16 ND74LS138FP	1C.3-TO-8 DEMULTIPLEXER	R 30 R N 1 4 B K 2 C 1 5 O 1 F R 3 1 R N 1 4 B K 2 C 3 O 0 1 F R 3 2 R D 1 4 B B 2 C 1 O 3 J		3K 1% 1/ 10K 5% 1/	6 W
IC18 HD64610FP IC19 62256BLFP7SL IC20 HD74LS157FP	IC, CALENDER CLOCK IC, SRAM 256K IC, 2 TO 1 DATA SELECT./MPX IC, 2 TO 1 DATA SELECT./MPX	R 33 R D 1 4 B B 2 C 1 O 3 J R 3 4 R D 1 4 B B 2 C 1 3 4 J R 3 5 R D 1 4 B B 2 C 1 5 2 J	RES. CARBON RES. CARBON RES. CARBON	10K 5% 1/ 130K 5% 1/ 1.5K 5% 1/	6 W
1C21 HD74LS157FP 1C22 HD74LS157FP 1C23 HD74LS157FP	LC.2 TO 1 DATA SELECT./MPX 1C,2 TO 1 DATA SELECT./MPX	R36 RD14BB2C152J R37 RD14BB2C103J R38 RD14BB2C303J	RES. CARBON RES. CARBON	1.5K 5% 1/ 10K 5% 1/ 30K 5% 1/	/ 6 W / 6 W
IC24 62256BLFP7SL IC25 62256BLFP7SL IC26 HD6433040AO0F	IC, SRAM 256K IC, SRAM 256K IC, 16-BIT MICROCESSOR IC, OCTAL BUS TRANSCEIVERS	R 3 9 R D 1 4 B B 2 C 4 7 4 J R 4 0 R D 1 4 B B 2 C 7 5 2 J R 4 1 R D 1 4 B B 2 C 2 2 0 J	RES. CARBON RES. CARBON	7.5K 5% 1/ 22 5% 1/	/6W /6W /6W /6W
1C27 HD74HC245FP 1C28 HD74LS244FP 1C29 HD74HC244FP	IC, OCTAL 3-STATE BUS BUFFER IC, OCTAL BUS BUFFER IC, OCTAL 3-STATE BUS BUFFER	R 4 2 R D 1 4 B B 2 C 1 0 2 J R 4 3 R D 1 4 B B 2 C 6 8 1 J R 4 4 R D 1 4 B B 2 C 1 0 3 J	RES. CARBON	680 5% 1/	/6W /6W
1 C 3 0 H D 7 4 L S 2 4 4 F P 1 C 3 1 H D 7 4 L S 3 7 4 F P 1 C 3 2 D A C 0 8 0 8 L C N 1 C 3 3 H A 1 7 0 1 2 P B	IC, OCTAL 3-STATE D-FF IC, 8-BIT D/A CONVERTER IC, 12-BIT D/A CONVERTER	R 4 5 NO USE R 4 6 R D 1 4 B B 2 C 1 0 3 J R 4 7 R D 1 4 B B 2 C 1 0 3 J	RES. CARBON RES. CARBON		/6 W /6 W
1C34 HA17012PB 1C35 UPC814C	IC, 12-BIT D/A CONVERTER IC, JFET INPUT OP-AMP IC. JFET INPUT OP AMP	R 48 NO USE R 49 R D 1 4 B B 2 C 5 1 3 J R 5 0 R D 1 4 B B 2 C 5 1 3 J R 5 1 R D 1 4 B B 2 C 5 1 3 J	RES. CARBON RES. CARBON RES. CARBON	51K 5% 1,	/6W /6W /6W
1 C 3 6 N J N O 7 2 B D 1 C 3 7 S N 7 4 A S 7 4 N S 1 C 3 8 S N 7 4 A S 1 5 1 N S 1 C 3 9 H D 7 4 H C 1 2 3 F P	IC, DUAL D-F.F. (WITH PR & CLR) IC, 8 TO 1 DATA SELECTOR/MPX IC, DUAL MONOSTABLE MULTIB.	R 5 1 R D 1 4 B B 2 C 5 1 3 J R 5 2 R D 1 4 B B 2 C 5 1 3 J R 5 3 R D 1 4 B B 2 C 1 5 2 J R 5 4 R D 1 4 B B 2 C 1 0 4 J	RES. CARBON RES. CARBON RES. CARBON	1.5K 5% 1.	/6W /6W /6W
IC40 SN74AS153NS IC41 MB86001PF-GBND IC42 SN74F161ANS	IC,4 TO 1 DATA SELECTOR/MPX IC,PLL FREQUENCY SYNTHESIZER IC,SYNC. 4-BIT BINARY COUNTER	R 5 5 R D 1 4 B B 2 C 1 0 4 J R 5 6 R D 1 4 B B 2 C 1 5 2 J R 5 7 R D 1 4 B B 2 C 1 0 4 J	RES. CARBON RES. CARBON RES. CARBON	1.5K 5% 1 100K 5% 1	/6W /6W
1C43 SN74ASOONS IC44 SN74AS74NS IC45 CTM5300	IC,2-INPUT MAND GATE IC,DUAL D-F.F. (WITH PR & CLR) IC,GATE ARRAY	R58 RD14BB2C104J R59 RD14BB2C101J R60 RD14BB2C471J	RES. CARBON RES. CARBON RES. CARBON	100 5% 1 470 5% 1	/6W /6W /6W
1C46 HD74LS374FP 1C47 HD74LS138FP	IC,OCTAL 3-STATE D-FF 1C,3-TO-8 DEMULTIPLEXER IC,8-BIT A/D CONVERTER	R61 RD14BB2C101J R62 RD14BB2C103J R63 RD14BB2C101J	RES. CARBON RES. CARBON RES. CARBON	10K 5% 1 100 5% 1	/6W /6W ./6W
1C100 AN8122FAP 1C101 NO USE 1C102 DTM6010	IC, GATE ARRAY IC, CMOS STATIC RAM	R64 RD14BB2C153J R65 RD14BB2C153J R66 RD14BB2C512J	RES, CARBON RES, CARBON RES, CARBON	15K 5% I 5.1K 5% 1	/6W 1/6W
1C103 HM63021FP-34 1C104 HM63021FP-34 1C200 AN8122FAP	IC, CHOS STATIC RAN 1C, 8-BIT A/D CONVERTER	R67 RD14BB2C512J R68 RD14BB2C103J	RES. CARBON RES. CARBON RES. CARBON	10K 5% 1	1/6¥
1 C201 NO USE 1 C202 DTM6010 1 C203 BM63021FP-34	IC, GATE ARRAY IC, CHOS STATIC RAM	R73 RD14BB2C101J R74 RD14BB2C101J R75 RD14BB2C101J R76 RD14BB2C101J	RES. CARBON RES. CARBON RES. CARBON	100 5% 1 100 5% 1	1/6W 1/6W 1/6W
1C204 HM63021FP-34	IC, CHOS STATIC RAM	R77 RD14BB2C101J R78 RD14BB2C273J R79 RD14BB2C390J	RES. CARBON RES. CARBON RES. CARBON	27K 5% 1	1 /6 ₩ 1 /6 ₩ 1 /6 ₩
L4 L79-0553-05 L5 L40-2281-17 L6 NO USE	FILTER FERRI INDUCTOR 0.22UH	R100 RD14BB2C102J	RES. CARBON		1/6W
L7 L79-0553-05 L301 L40-2281-17	FILTER FERRI INDUCTOR 0.22UH FILTER	R 103 R D 14 B B 2 C 10 1 J R 104 R D 14 B B 2 C 10 1 J R 105 R N 14 B K 2 C 3 9 0 1 F	RES. CARBON RES. CARBON RES. METAL FILM	100 5% 1 13,9% 1% 1	1 / 6 W 1 / 6 W 1 / 6 W 1 / 6 W
L302 L79-0553-05 L303 L79-0553-05	FILTER TR. SI, NPM	R 106 R M 14 B K 2 C 3 9 0 1 F R 107 R M 14 B K 2 C 16 0 1 F R 108 R M 14 B K 2 C 16 0 1 F	RES. METAL FILM RES. METAL FILM RES. METAL FILM RES. METAL FILM	N 1.6K 1% 1 N 1.6K 1% 1	1/6W 1/6W 1/6W
Q1 2SC4049 Q2 2SA933S(R,S) Q101 2SC1923(0)	TR. SI, PNP TR. SI, NPN	R 109 R N 1 4 B K 2 C 3 3 0 1 F R 1 1 0 R N 1 4 B K 2 C 3 3 0 1 F R 1 1 1 R D 1 4 B B 2 C 2 7 1 J R 1 1 2 R D 1 4 B B 2 C 1 5 3 J	RES. METAL FIL! RES. CARBON RES. CARBON	N 3.3K 1% 270 5%	1/6W 1/6W 1/6W
Q102 2SC1923(0) Q103 2SC1740S(R,S)	TR. SI, NPN TR. SI, NPN	R113 NO USE R114 RD14BB2C220J R115 RD14BB2C220J	RES. CARBON RES. CARBON	2 2 5 %	1 / 6 W 1 / 6 W
Q201 2SC1923(0) Q202 2SC1923(0) Q203 2SC1740S(R,S)	TR. SI, MPN TR. SI, MPN TR. SI, MPN	R116 RD14BB2C222J R119 RD14BB2C101J	RES. CARBON	100 5%	1/6W
Q301 2SC3354(S) Q302 2SC3354(S)	TR. SI, NPN TR. SI, NPN	R 1 2 0 R D 1 4 B B 2 C 5 1 0 J R 2 0 3 R D 1 4 B B 2 C 1 0 1 J	RES. CARBON	100 5%	1/6W 1/6W 1/6W
RI RD14BB2C103J R2 RD14BB2C101J R3 RD14BB2C101J	RES. CARBON 10K 5% 1/6W RES. CARBON 100 5% 1/6W RES. CARBON 100 5% 1/6W	R204 RD14BB2C101J R205 RN14BK2C3901F R206 RN14BK2C3901F R207 RN14BK2C1601F	RES. CARBON RES. METAL FIL RES. METAL FIL RES. METAL FIL	N 3.9K 1% N 3.9K 1%	1/6W 1/6W 1/6W
R3 RD1.4882C101J R4 RD1.4882C101J R5 RD1.4882C101J R6 RD1.4882C101J	RES. CARBON 100 5% 1/6W RES. CARBON 100 5% 1/6W RES. CARBON 100 5% 1/6W	R 2 0 7 R N 1 4 B K 2 C 1 6 0 1 F R 2 0 8 R N 1 4 B K 2 C 1 6 0 1 F R 2 0 9 R N 1 4 B K 2 C 3 3 0 1 F R 2 1 0 R N 1 4 B K 2 C 3 3 0 1 F	RES. METAL FIL RES. METAL FIL	H 1.6K 1% H 3.3K 1%	1/6W 1/6W 1/6W
R7 RD14BB2C471J R8 RD14BB2C101J R9 RD14BB2C101J	RES. CARBON 470 5% 1/6W RES. CARBON 100 5% 1/6W RES. CARBON 100 5% 1/6W	R211 RD14BB2C271J R212 RD14BB2C153J R213 NO USE	RES, CARBON RES, CARBON	270 5% 15% 5%	1/6W 1/6W
R10 RD14BB2C101J R11 RD14BB2C101J R12 RD14BB2C471J	RES. CARBON 100 5% 1/6W RES. CARBON 100 5% 1/6W RES. CARBON 470 5% 1/6W RES. CARBON 470 5% 1/6W	R 2 1 4 R D 1 4 B B 2 C 2 2 0 J R 2 1 5 R D 1 4 B B 2 C 2 2 0 J R 2 1 6 R D 1 4 B B 2 C 2 2 2 J	RES. CARBON RES. CARBON RES. CARBON	2 2 5 %	1/6W 1/6W 1/6W
R13 RD14BB2C47lJ R14 RD14BB2C473J R15 RD14BB2C10lJ	RES. CARBON 470 5% 1/6W RES. CARBON 47K 5% 1/6W RES. CARBON 100 5% 1/6W RES. CARBON 100 5% 1/6W	R 2 1 9 R D 1 4 B B 2 C 1 O 1 J R 2 2 0 R D 1 4 B B 2 C 5 1 O J	RES. CARBON RES. CARBON		1/6₩ 1/6₩
R16 RD14BB2C101J R17 RD14BB2C101J R18 RN14BK2C1001F R19 RN14BK2C1202F	RES. CARBON 100 5% 1/6W RES. METAL FILM 1K 1% 1/6W	R301 RD14BB2C103J R302 RD14BB2C152J	RES. CARBON RES. CARBON		1/6₩ 1/6₩

D C C N O	DIRTE NO	NAME & DESCRIPTION
KET NO	PARIS NO	NAME & DESCRIPTION
		RES. CARBON 1K 5% 1/6W
	NO USE	
		RES. METAL FILM 36K 1% 1/6W
R306	RN14BK2C7501F	RES, METAL FILM 7.5% 1% 1/6W
R 3 0 7	RD14BB2C3 02J	RES, CARBON 3K 5% 1/6W
R 8 0 1	R 9 2 - 0 1 5 0 - 0 5	JUNPING RES, ZERO ONM (1088)
R 8 0 2	R 9 2 - 0 1 5 0 - 0 5	JUMPING RES. ZERO OHM (10MM)
VRIAI	R12-0889-05	RES. SEMI FIXED 220 B
	R12-0889-05	RES. SEMI FIXED 220 B
U D 3 A 1	P12_0889=05	RES. SENI FIXED 220 B
	R12-0889-05	RES. SENI FIXED 220 B
X 1	L77-2505-05	CRYSTAL RESONATOR
X 2	177-1229-05	CRYSTAL RESONATOR
¥ 3	1.78-0134-05	CERANIC RESONATOR

DCS-7040 DSP UNIT

	X	79-13 <mark>00-</mark> 0	1		
REF, NO	PARTS NO F15-0744-05 J73-0394-02	NAME & BLIND PLA PCB (UNMO	TE	IPTION	
B A 1	¥ 0 9 - 2 3 8 1 - 0 5	BATTERY			
C 1	CC45FCH1H680J	CAP. CERA		68P 5%	5 0 V
C 2	C91-0769-05	CAP. CERA CAP. FILM	MIC	0.01 20% 0.1 10%	16 V 63 V
C 3 C 4	C91-2538-05 C91-2538-05	CAP. FILM		0.1 10%	63 Y
C 5	CK45B1H102KTA	CAP. CERA		1000P 10%	50 V
C 6	C K 4 5 B 1 H 1 O 2 K T A	CAP. CERA	HIC	1000P 10%	5 0 V
C 7	C 9 1 - 2 5 3 8 - 0 5 C 9 1 - 2 5 3 8 - 0 5	CAP. FILM		0.1 10%	63 V 63 V
C 8	CC45FCH1H040C	CAP, CERA		4P 0.25P	
Č 10	C91-0769-05	CAP. CERA	HIC	0.01 20%	16 V
C 1 1	C91-0769-05	CAP. CERA		0.01 20% 1000P 10%	16 V 50 V
C 1 2 C 1 3	CK45FB1H102K	CAP. CERA CAP. CERA		0.01 20%	16 Y
C 1 4	C91-0769-05 C91-0769-05	CAP, CERA	NIC	0.01 20%	16 ¥
C 15	CK45FB1H102K	CAP. CERA		1000P 10%	5 0 V
C 16	C91-0769-05 C91-0769-05	CAP. CERA CAP. CERA		0.01 20% 0.01 20%	16 V
C 17	CC45CH1H220JTA			22P 5%	5 0 V
C 19	CC45CH1H220JTA	CAP, CERA		22P 5%	5 0 V
C 2 0	C91-0769-05	CAP. CERA		0.01 20% 470P 5%	16 V 50 V
C 2 1 C 2 2	CC45FSL1H471J NO USE	CAF. CERA	пто	4701 32	
C 2 3	CE04LW1A221M	CAP. ELEC		220 20%	1 0 V
C 2 4	C91-0769-05	CAP. CERA		0,01 20%	167
C 2 5 C 2 6	C 9 1 - 0 7 6 9 - 0 5 C 9 1 - 0 7 6 9 - 0 5	CAP. CERA		0.01 20% 0.01 20%	16 V 16 V
C 2 7	C91-0769-05	CAP. CERA		0.01 20%	16 V
C 2 8	C91-0769-05	- CAP. CERA		0.01 20%	16 V
C 2 9	CE04LW1 A 2 2 1 H	CAP. ELEC		220 20% 220 20%	10 V
C30 C31	CE04LW1C221N C91-0769-05	CAP. CERA		0.01 20%	167
C 3 2	C91-0769-05	CAP. CERA	NIC	0.01 20%	16 ¥
C 3 3	C91-2538-05	CAP. FILE		0.1 10%	63 V
C 3 4	C 9 1 - 2 5 3 8 - 0 5 C 9 1 - 0 7 6 9 - 0 5	CAP. FILE CAP. CERA		0.1 10% 0.01 20%	63 V 16 V
C35 C36	C91-0769-05	CAP. CERI		0.01 20%	16 V
C 3 7	C91-2538-05	CAP. FILE		0.1 10%	6 3 V
C38	C91-2538-05	CAP. FILE	I NIC	0.1 10%	63 V 16 V
C39 C40	C91-0769-05 C91-0769-05		N H I C	0.01 20%	16 V
C 4 1	C91-0769-05	CAP. CERA	NIC	0.01 20%	16 V
C 4 2	C91-0769-05	CAP. CERA		0.01 20%	16 V 16 V
C 4 3 C 4 4	C91-0769-05 C91-0769-05	CAP. CERA		0.01 20% 0.01 20%	16 9
C 4 5	C91-0769-05	CAP, CERI		0.01 20%	16¥
C 4 6	C91-0769-05	CAP. CERA	ANIC	0.01 20%	16 V
C47	C91-0769-05 C91-0769-05		A H I C A H I C	0.01 20%	16 V
C 4 8 C 4 9	CK45B1H102KTA		ANIC	1000P 10%	5 0 V
C 5 0	C91-0769-05		AHIC	0.01 20%	1 6 Y
C77	C91-2538-05	CAP, FIL		0,1 10%	6 3 V
C78	CC45FCH1H181J	CAP. CER	ANIC	180P 5%	5 0 V
C79	NO USE CC45FSL1H391J	CAP. CER	AHIC	390P 5%	5 0 V
C 8 0 C 8 1	CC45FCH1H271J		ANIC	270P 5%	5 0 V
C 8 2	CC45FCH1H220J		ANIC	22P 5%	5 0 V
C 8 3	NO USE				
C 8 4 C 8 5	C91-0769-05 C91-0769-05		ANIC ANIC	0.01 20% 0.01 20%	16 V
C 8 6	C91-0769-05		ANIC	0.01 20%	16 V
C 8 7	C91-0769-05	CAP. CER	ANIC	0,01 20%	16 V
688	C 9 1 - 0 7 6 9 - 0 5		ANIC	0.01 20% 470P 5%	16 Y 50 Y
689	CC45FSL1H471J	CAP, CER	ANIC	ator Dy	201

																				R	
																			0 0 0	(
								1				0	0		0000	0000	C C C	C		; 1	
I I I I I I	I	D	D		D	D D		C I	C				2		2 2 2 2	2 2 2	1 1 1	1	1010	(
CCCCCCCCC	CCC	3	2			1		N :	N :			3 0	2		0 0 1 1	000000	2 2 2 2	1:	0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6	N 0 2 0 3	
5 6	2	0 1	0 0	0 0	8		53	52 52 52	5 2	5 0) 1	1 2 3 4 5 6 7	4 5 6 7 8	5	7	2 3 4 5	5 6 7	1 2	1 5 7 3	:	
								6 7	4	2									0		
								1	1				0		CCC	CCC	C C	C :		;	
TTERRESHERRE	M	X	Ħ	×	1	M		E	E.				E		N 9 E F	N 9 9	C E E	F	9 : 9 : E :	; 4	
099000000000000000000000000000000000000	S B N	Å	À		s	A S	4	4 (4 (4 (4 (F	2 4	4	9	0	4 0 1 1 1		9:	1 -	. R	
33777777777786	8	7	7	7	S	7) 0 ·) .			5	4		- 4 2	- -	5 4 4	2 :) - () - () - () - () - () - () - () -	i	
4 4 4 4 4 4 4 4 5 4	8	0	0	0	1	0		- :	- 1			. F	L		UOLFF	U 0 0	F L L	F '	07	: 0	
001111111111126	1	0	0	0	3	0		5	7			7	C		5 7 W Y Y	S 7 7 7	C W	V	16		
8855555555591	0				2			S :	5 :			: E	1		E 6 1 1	E 6 6	H 1 1	1	6 9 6 9 6 9	1	
99337280112100	1							E 6	2				1		9 C H K	999	1 A A	H	9 - 9 - C :	I	
342244683343 F	Å							9	0 -			1 1	1		211	- -	H 1	1	- (i	
FFF4FF8848 P	P							_	-			1 (. (0 2 0	0 0	1 0 0	0	0:		
00PPPFPFFF	F							0	0				1 1		5 1 4	5 5	5 1 1	4	5 5 5		
5 P P P P	٧							5	5			5	1 1				O M M	J		1	
	-)))			I 					J	
	G I											C	J								
	В																				
													(0	C	C	CCC	000	c c	
P		D	D		D	D D D	P	P P P	P			0000000	0 1	C .			A	٨	A A A A		
RCCCCCCCCCC		1	ł		ı	I I	ŧ	ı	t			A A A A	A I		\	F	P	P	P P P	P	
00,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0	0	0		0	×	N	N			P. P. P.	P . P .		· ·	· · ·		:			
G G Q D O Q Q 3 3 0 3 G C		D	D		D	D D														1	
RRUUUCUUC-AA		Ε	E		E	E E		С	C			0	i I		P	0	C E E	P	C C C	C	
AAAAATAATTTTTL								0	0			C :	E I		9 (E	L	0	E E E L	E	
DMMDDLADDOOAOEEM	H						N	N N	N N	N	0	E I E I	E 1 L 1 L 1) [. E	R	REE	ししし	R R R	R	
L L - N								H	X			2 1	E (Y	A	A C C	Y	A C	A I	
RR22D E288 8 AD	1							E	E			1 P 1 P 1 P	1		E	H	H T T	E E	H H H	H I	
003x- 3 RE	2							c ·	C.			1 1	I		S	1 [l R R	s s	I (1 (
M N I I F - C I D D - D R R	-							T	T						T	C	0 0	T	0000	2	
NN.SLNEESEA	В							0	0)		E			E	_	6 (
PPFTUPHNTNY	ĩ							R	R		: 1				R			R R		R	
U . A S U U A U	Ţ										ı									1	
T T L L T L																		1	0	1	
(EV	۸.							1	3			5 0 5	1 1 1 1	0	0 2 0 0	1 0 0 0	1 : 1 : 1	0.).	T . 5	
E	/ 1							. F	3	F		2 P . P . P 7	5 0 0				0	. 1	0	0	
R R I B	D							? 8	F			0	P 0 0		0 1 1	0	P 0 0	l) 1) 1) 1	P	
T U O D L	1							•				1				1 1 1					
G . H . S . E . S	C (
A G	0 !										,	0					:		2 2 2		
TTPBGAEEB	N											2	5 2 2 2	5	2 2 5 5 5	5 2 2 2 2	5 2 2 2	5 :	20		
ERUATRRU	٧.									•		2 0 2	000		0 %	000	0		9 9		
B F T E	E											5 % 5 % 5	X		×	* * *	ĭ				
E	R '											P									
Е	T																	!	1		
	ΕI											5 1 5	1	5	1 5 5 5	5 1 1 1	5 1 1	5 (16	5 C	
)	R											6 0 6	0		6 0 0	6 6	0	0	5 '		
) 1		V		V V V	¥	V V	٧	V		

REF. NO IC21 HD74LS157FP IC22 HD74LS157FP IC23 HD74LS157FP IC23 HD74LS157FP IC26 G2256BLFP7SL IC26 HD6433040A00F IC27 HD74HC245FP IC28 HD74LS244FP IC29 HD74HC244FP IC30 HD74LS244FP IC31 HD74LS374FP IC31 HD74LS374FP IC31 HD74LS374FP IC32 DAC0808LCM IC33 HA17012PB IC34 HA17012PB IC35 WJM072BD IC37 SN74AS74NS IC38 HD74LS138FP IC40 SN74AS151NS IC39 HD74HC123FP IC40 SN74AS153NS IC39 HD74HC123FP IC40 SN74AS151NS	NAME & DESCRIPTION 1C,2 TO 1 DATA SELECT./MPX 1C,2 TO 1 DATA SELECT./MPX 1C,2 TO 1 DATA SELECT./MPX 1C,SRAM 256K 1C,SRAM 256K 1C,16-BIT MICROCESSOR 1C,OCTAL BUS TRANSCEIVERS 1C,OCTAL BUS BUFFER 1C,OCTAL BUS BUFFER 1C,OCTAL 3-STATE BUS BUFFER 1C,OCTAL 3-STATE BUS BUFFER 1C,OCTAL 3-STATE BUS BUFFER 1C,12-BIT D/A CONVERTER 1C,12-BIT D/A CONVERTER 1C,12-BIT D/A CONVERTER 1C,15ET 1MPUT OP AMP 1C,JFET 1MPUT OP AMP 1C,JFET 1MPUT OP AMP 1C,DUAL D-F,F. (WITH PR & CLR) 1C,4 TO 1 DATA SELECTOR/MPX 1C,DUAL MONOSTABLE MULTIB. 1C,4 TO 1 DATA SELECTOR/MPX 1C,PLL FREQUENCY SYNTHESIZER 1C,SYNC. 4-BIT BINARY COUNTER 1C,C,TIPUT NAND GATE 1C,CUAL OFF,F. (WITH PR & CLR) 1C,GATE ARRAY 1C,OCTAL 3-STATE D-FF REF. NO PARTS NO R35 RD14BB2C152J R37 RD14BB2C152J R37 RD14BB2C152J R37 RD14BB2C133J R38 RD14BB2C333J R39 RD14BB2C732J R41 RD14BB2C752J R41 RD14BB2C752J R42 RD14BB2C102J R43 RD14BB2C102J R44 RD14BB2C103J R45 NO USE R46 RD14BB2C103J R47 RD14BB2C103J R47 RD14BB2C13J R50 RD14BB2C153J R50 RD14BB2C513J R50 RD14BB2C513J R51 RD14BB2C513J R52 RD14BB2C513J R53 RD14BB2C513J R55 RD14BB2C104J R55 RD14BB2C104J R55 RD14BB2C104J R58 RD14BB2C104J R58 RD14BB2C104J R58 RD14BB2C104J R60 RD14BB2C104J R60 RD14BB2C104J R60 RD14BB2C104J R61 RD14BB2C101J R60 RD14BB2C104J R61 RD14BB2C101J	RES. CARBON		
IC100 AN8122FAP IC101 NO USE IC102 DTM6010 IC103 HH63021FP-34 IC104 HH63021FP-34	IC,8-BIT A/D CONVERTER IC,GATE ARRAY IC,CHOS STATIC RAM IC,CHOS STATIC RAM	R63 NO USE R64 RD14BB2C153J R65 RD14BB2C153J R66 RD14BB2C512J R67 RD14BB2C512J R68 RD14BB2C5103J	RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON	15K 5% 1/6W 15K 5% 1/6W 5.1K 5% 1/6W 5.1K 5% 1/6W 10K 5% 1/6W
1C200 ANS122FAP IC201 NO USE IC202 DTM6010 IC203 HM63021FP-34 IC204 HM63021FP-34	IC,8-BIT A/D CONVERTER IC,GATE ARRAY IC,CHOS STATIC RAM IC,CHOS STATIC RAM	R73 RD148B2C101J R74 RD14BB2C101J R75 RD14BB2C101J R76 RD14BB2C101J R77 RD14BB2C101J	RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON	100 5% 1/6W 100 5% 1/6W 100 5% 1/6W 100 5% 1/6W 100 5% 1/6W 27K 5% 1/6W
L3	FILTER FILTER FERRI INDUCTOR 0.22UH	R 7 8 R D 1 4 B B 2 C 2 7 3 J R 7 9 R D 1 4 B B 2 C 3 9 0 J R 1 0 0 R D 1 4 B B 2 C 1 0 2 J	RES. CARBON RES. CARBON	39 5% 1/6W
L7 L79-0553-05 L301 L40-2281-17	FILTER FERRI INDUCTOR 0.22UH	R103 RD14BB2C101J R104 RD14BB2C101J R105 RN14BB2C3901F	RES. CARBON RES. CARBON RES. METAL FILM	100 5% 1/6W 100 5% 1/6W 3.9K 1% 1/6W
L 302 L 79 - 0553 - 05 L 303 L 79 - 0553 - 05	FILTER FILTER TR. SI, NPN	R 1 0 6 R N 1 4 B K 2 C 3 9 0 1 F R 1 0 7 R N 1 4 B K 2 C 1 6 0 1 F R 1 0 8 R N 1 4 B K 2 C 1 6 0 1 F R 1 0 9 R N 1 4 B K 2 C 3 3 0 1 F	RES. METAL FILM RES. METAL FILM RES. METAL FILM RES. METAL FILM	1.6K 1% 1/6W 1.6K 1% 1/6W
Q2 2SA933S(R,S) Q101 2SC1923(0) Q102 2SC1923(0)	TR. SI, PNP TR. SI, NPN TR. SI, NPN	R 1 1 0 R N 1 4 B K 2 C 3 3 0 1 F R 1 1 1 R D 1 4 B B 2 C 2 7 1 J R 1 1 2 R D 1 4 B B 2 C 1 5 3 J	RES. NETAL FILM RES. CARBON RES. CARBON	
Q103 2SC1740S(R,S) Q201 2SC1923(0)	TR. SI, NPN TR. SI, NPN TR. SI, NPN	R113 NO USE R114 RD14BB2C220J R115 RD14BB2C220J R116 RD14BB2C222J	RES, CARBON RES, CARBON RES, CARBON	22 5% 1/6W 22 5% 1/6W 2.2K 5% 1/6W
Q202 2SC1923(0) Q203 2SC1740S(R,S) Q301 2SC3354(S)	TR. SI, NPN TR. SI, NPN	R 1 1 9 R D 1 4 B B 2 C 1 O 1 J R 1 2 0 R D 1 4 B B 2 C 5 1 O J	RES. CARBON RES. CARBON	100 5% 1/6W 51 5% 1/6W
Q 302 2 SC 3 354 (S) R1 RD148B2C103J R2 RD14BB2C101J R3 RD14BB2C101J R5 RD14BB2C101J R6 RD14BB2C101J R7 RD14BB2C101J R7 RD14BB2C101J R8 RD14BB2C101J R9 RD14BB2C101J R10 RD14BB2C101J R11 RD14BB2C101J	TR. SI, NPN RES. CARBON 10K 5% 1/6W RES. CARBON 100 5% 1/6W RES. CARBON 470 5% 1/6W RES. CARBON 100 5% 1/6W	R 2 0 3 R D 1 4 B B 2 C 1 0 1 J R 2 0 4 R D 1 4 B B 2 C 1 0 1 J R 2 0 5 R N 1 4 B K 2 C 3 9 0 1 F R 2 0 6 R N 1 4 B K 2 C 3 9 0 1 F R 2 0 7 R N 1 4 B K 2 C 16 0 1 F R 2 0 8 R N 1 4 B K 2 C 13 0 1 F R 2 1 0 R N 1 4 B K 2 C 3 3 0 1 F R 2 1 1 R D 1 4 B B 2 C C 2 7 1 J R 2 1 2 R D 1 4 B B 2 C C 2 2 0 J R 2 1 4 R D 1 4 B B 2 C C 2 2 0 J R 2 1 5 R D 1 4 B B 2 C C 2 2 0 J	RES. CARBON RES. CARBON RES. METAL FILM RES. CARBON RES. CARBON RES. CARBON	3.9 K 1 % 1/6 W 1.6 K 1 % 1/6 W 3.6 K 1 % 1/6 W 3.3 K 1 % 1/6 W 3.3 K 1 % 1/6 W 1.5 K 5 % 1/6 W 1.5 K 5 % 1/6 W 2.2 5 % 1/6 W 2.2 5 % 1/6 W 2.2 5 % 1/6 W 1.6 W 1.
R 13 R D 1 4 B B 2 C 4 7 1 J R 14 R D 1 4 B B 2 C 4 7 3 J R 15 R D 1 4 B B 2 C 1 0 1 J	RES. CARBON 470 5% 1/6W RES. CARBON 47K 5% 1/6W RES. CARBON 100 5% 1/6W	R 216 R D 1 4 B B 2 C 2 2 2 J R 2 1 9 R D 1 4 B B 2 C 1 0 1 J R 2 2 0 R D 1 4 B B 2 C 5 1 0 J	RES. CARBON RES. CARBON RES. CARBON	2.2K 5% 1/6W 100 5% 1/6W 51 5% 1/6W
R 16 R D 1 4 B B 2 C 1 O 1 J R 17 R D 1 4 B B 2 C 1 O 1 J R 18 R N 1 4 B K 2 C 1 O 0 1 F R 19 R N 1 4 B K 2 C 1 2 O 2 F	RES. CARBON 100 5% 1/6W RES. CARBON 100 5% 1/6W RES. HETAL FILM 1K 1% 1/6W RES. HETAL FILM 12K 1% 1/6W	R301 RD14BB2C103J R302 RD14BB2C152J	RES. CARBON RES. CARBON RES. CARBON	10K 5% 1/6W 1.5K 5% 1/6W 1K 5% 1/6W
R 2 0 R N 1 4 B K 2 C 1 2 0 2 F R 2 1 R N 1 4 B K 2 C 1 2 0 1 F R 2 2 R N 1 4 B K 2 C 2 2 0 0 1 F R 2 3 R N 1 4 B K 2 C 1 2 0 2 F R 2 4 R N 1 4 B K 2 C 1 2 0 2 F	RES. METAL FILM 12K 1% 1/6W RES. METAL FILM 1.2K 1% 1/6W RES. METAL FILM 2K 1% 1/6W RES. METAL FILM 12K 1% 1/6W RES. METAL FILM 12K 1% 1/6W RES. METAL FILM 12K 1% 1/6W	R303 RD14BB2C102J R304 NO USE R305 RN14BK2C3602F R306 RN14BK2C7501F R307 RD14BB2C302J	RES, NETAL FILM	36K 1% 1/6W
R25 RD14BB2C330J R26 RN14BK2C1201F R27 RD14BB2C330J	RES. CARBON 33 5% 1/6W RES. METAL FILM 1.2K 1% 1/6W RES. CARBON 33 5% 1/6W	R801 R92-0150-05 R802 R92-0150-05	JUMPING RES. JUMPING RES.	ZERO OHM (10MM) ZERO OHM (10MM)
R28 RN14BK2C3301F R29 RN14BK2C1001F R30 RN14BK2C1501F	RES. METAL FILM 3.3% 1% 1/6W RES. METAL FILM 1% 1% 1/6W RES. METAL FILM 1.5% 1% 1/6W RES. METAL FILM 3% 1% 1/6W	VR101 R12-0889-05 VR102 R12-0889-05	RES. SEMI FIXE RES. SEMI FIXE	
R31 RN14BK2C3001F R32 RD14BB2C103J R33 RD14BB2C103J R34 RD14BB2C103J	RES. CARBON 10K 5% 1/6W RES. CARBON 10K 5% 1/6W RES. CARBON 10K 5% 1/6W RES. CARBON 130K 5% 1/6W	VR201 R12-0889-05 VR202 R12-0889-05	RES. SEMI FIXEI RES. SEMI FIXEI	

REF. NO		NAME & DESCRIPTION		REF. NO	PARTS NO 2SC2644	NAME & DESCRI TR. SI, NPN	PTION	
X 1 X 2 X 3	L77-2505-05 L77-1229-05 L78-0134-05	CRYSTAL RESONATOR CRYSTAL RESONATOR CERAMIC RESONATOR		Q105 Q106 Q107 Q108	2 S C 1 8 0 7 2 S C 1 9 0 7 2 S C 1 9 0 7 2 S C 1 9 0 7	TR. SI, NPN TR. SI, NPN TR. SI, NPN TR. SI, NPN		
EINIA	L UNIT			Q113 Q114	2 S C 3 9 5 2 (D) 2 S C 3 9 5 2 (D)	TR. SI, NPN TR. SI, NPN		
- TINA		80-1370-00		Q 2 0 1 Q 2 0 2	2 S C 3 7 7 9 (D) 2 S C 3 7 7 9 (D)	TR. SI, NPN TR. SI, NPN		
X 8 U - 1 3 7	U = U U			R 1	RD14BB2C202J	RES. CARBON	2 K 5 5	1/6W
C1 C2 C3 C4 C5 C6 C7 C8 C10 C112 C13 C14 C15 C16	D PARTS NO E01-0103-05 E23-0149-05 F01-2317-04 F01-2318-04 J73-0285-22 N09-0623-04 CK45FB1H152K NO USE C90-3178-05 NO USE C90-3178-05 NO USE CF92FY1H102J CC45FCH1H820J CF92FY1H102J CC45FCH1H070D CC45FCH1H030D CC45FCH1H030D CC45FCH1H030D	CAP. POLYESTER 1000P CAP. POLYESTER 1000P CAP. CERANIC 7P CAP. CERANIC 47P CAP. CERANIC 2P OCAP. CERANIC 18P CAP. CERANIC 150P CAP. CERANIC 3P OCAP. CERANIC 3P OCAP. CERANIC 3P OCAP. CERANIC 3P OCAP. CERANIC 3P O	5.5V 5.5V 5.5V 5.50V 5.50V 5.50V 5.50V 2.5P 50V 2.5P 50V 2.5P 50V 2.5P 50V	R 2 R 3 4 5 6 R 7 7 8 R 9 0 0 1 1 2 R 1 1 3 4 R 1 1 5 6 R 1 1 7 R 1 1 8 9 R 2 2 0 1 R 2 2 2 3 R 2 2 3	RD14BB2C1B2J RD14BB2C22J RD14BB2C22J RD14BB2C22J RD14BB2C131J RD14BB2C751J RD14BB2C751J RD14BB2C911J RD14BB2C911J RD14BB2C391J RD14BB2C332J RD14BB2C132J RD14BB2C132J RD14BB2C220J RD14BB2C220J RD14BB2C220J RD14BB2C33J R92-1575-05 R92-1575-05 R92-1575-05 R92-1575-05 RD14BB2C220J RD14BB2C33J RD14BB2C220J RD14BB2C33J RD14BB2C30J RD14BB2C30J RD14BB2C30J RD14BB2C30J	RES. CARBON	1 . 8 K . 5 7 8 8 . 2 K . 5 7 8 8 . 2 K . 5 7 8 9 1 0 5 5 9 1 0 5 5 9 1 0 5 5 9 1 0 5 5 9 1 0 0 5 5 9 1 0 0 5 5 9 1 0 0 5 5 9 1 0 0 5 5 9 1 0 0 5 5 9 1 0 0 5 5 9 1 0 0 5 5 9 1 0 0 5 5 9 1 0 0 5 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 / 6 W 1 / 6
C 1 0 1 C 1 0 2 C 1 0 3 C 1 0 4 C 1 0 5 C 1 0 6 C 1 0 7	C91-0769-05 CE04LW1E101M C91-0769-05 NO USE C91-1357-05	CAP. CERAMIC 0.01 CAP. ELECTRO 100 CAP. CERAMIC 0.01 CAP. POLYESTER 0.1	20% 25 V 20% 16 V 20% 25 V 20% 16 V	R 25 R 26 R 27 R 28 R 29 R 30	R D 1 4 B B 2 C 2 2 1 J R D 1 4 B B 2 C 2 2 1 J R D 1 4 B B 2 C 1 3 2 J R D 1 4 B B 2 C 1 3 2 J R D 1 4 B B 2 C 2 2 0 J R D 1 4 B B 2 C 2 2 0 J	RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON		1/6W 1/6W 1/6W 1/6W 1/6W 1/6W
C 1 0 8 C 1 0 9	C91-0769-05 C91-0769-05	CAP. CERANIC 0.01 CAP. CERANIC 0.01	20% 16V 20% 16V 20% 250V	R 3 4 R 3 5 R 3 6 R 3 7	R D 1 4 B B 2 C 4 7 3 J R D 1 4 B B 2 C 6 2 3 J R D 1 4 B B 2 C 2 O 3 J R D 1 4 B B 2 E 7 5 2 J	RES. CARBON RES. CARBON RES. CARBON RES. CARBON	62 K 5	% 1/6W % 1/6W % 1/6W % 1/4W
C 2 0 2 C 2 0 3	C91-2584-05	CAP. CERANIC 1000P CAP. CERANIC 1000P	10% 400V	R38 R39	NO USE RD14BB2C182J	RES. CARBON	1.8K 5	% 1/6W
C 2 0 7 C 2 0 8 C 2 0 8	C91-0769-05		20% 25 V 20% 16 V 20% 6.3 V	R 4 0 R 4 1 R 4 2 R 4 3 R 4 4	NO USE RD14BB2C680J RD14BB2C621J RD14BB2C621J RD14BB2C562J	RES. CARBON RES. CARBON RES. CARBON RES. CARBON	620 5 620 5	% 1/6W % 1/6W % 1/6W
J W 5 J W 6 J W 7	E38-0997-05 NO USE E38-0998-05	WIRE ASS'Y; CRT TO FINA	L	R 4 5 R 4 6 R 4 7	R D 1 4 B B 2 C 3 6 2 J R D 1 4 B B 2 C 9 1 1 J R D 1 4 B B 2 C 1 0 2 J	RES. CARBON RES. CARBON RES. CARBON	3.6K 5 910 5 1K 5	% 1/6W % 1/6W % 1/6W
JW1		WIRE ASS'Y; BNC TO V		R 4 8 R 4 9 R 5 0	R D 1 4 B B 2 C 1 O 2 J R D 1 4 B B 2 C 1 5 1 J R D 1 4 B B 2 C 1 5 1 J	RES. CARBON RES. CARBON RES. CARBON	150 5	1/6W 1/6W 1/6W
L 1 L 2	L40-2201-17 L40-1001-17	FERRI INDUCTOR 22UH FERRI INDUCTOR 10UH	10%	R 5 1 R 5 2 R 5 3 R 5 4	RD14BB2E220J RD14BB2E220J RD14BB2E21R0J RD14BB2C1R0J	RES. CARBON RES. CARBON RES. CARBON RES. CARBON	2 2 5 2 2 5 1 5	1/4W 1/4W 1/4W 1/6W 1/6W
L 6 1 L 6 2 L 6 3		FERRI INDUCTOR 1.2UH FERRI INDUCTOR 2.7UH FERRI INDUCTOR 1.2UH	10% 10% 10%	R 5 9	RD14BB2C242J	RES. CARBON		1/6W
L 6 4 L 2 0 L 2 0 L 2 0	2 L40-1291-17	FERRI INDUCTOR 2.7UH CHOKE COIL 1000UH FERRI INDUCTOR 1.2UH FERRI INDUCTOR 1.2UH	10%	R 6 1 R 6 2 R 6 3 R 6 4 R 6 5 R 6 6	RD14BB2C431J RD14BB2C431J RD14BB2C220J RD14BB2C220J RD14BB2C101J RD14BB2C101J	RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON RES. CARBON	430 5 22 5 22 5 100 5	5% 1/6W 5% 1/6W 5% 1/6W 5% 1/6W 5% 1/6W
P 4 P 5	E40-7515-05 E40-3300-05	PIN CONNECTOR 3P PIN CONNECTOR 3P		R 6 7	RD14BB2C101J RD14BB2C101J	RES. CARBON RES. CARBON	100 5	1/6W
P 1 4	E40-5066-05	PIN CONNECTOR 9P		R 6 9 R 7 0 R 7 1	R D 1 4 B B 2 C 2 2 3 J R D 1 4 B B 2 C 3 9 1 J R D 1 4 B B 2 C 2 2 0 J	RES, CARBON RES, CARBON RES, CARBON	390 5	5% 1/6W 5% 1/6W 5% 1/6W
P 18		PIN CONNECTOR 6P PIN CONNECTOR 3P	A	R 7 2 R 7 3	R N 1 4 B K 2 C 6 2 R 0 F R 9 2 - 1 5 6 8 - 0 5	RES. METAL FIL RES. SPECIAL P	N 62.0 1 OWER 200	1% 1/6W 5% 1W
P 2 0 P 2 1	NO USE E40-7412-05	PIN CONNECTOR 2P PIN CONNECTOR 6P		R74 R75 R76	R 9 2 - 1 5 6 8 - 0 5 R 9 2 - 1 5 7 1 - 0 5 R 9 2 - 1 5 7 1 - 0 5	RES. SPECIAL P RES. SPECIAL P RES. SPECIAL P	OWER 110	5% 1W . 5% 1W 5% 1W
P 2 2 P 1 0		PIN CONNECTOR 3P		R77 R78	R 9 2 - 1 5 7 1 - 0 5 R 9 2 - 1 5 7 1 - 0 5	RES. SPECIAL P RES. SPECIAL P	OWER 110 OWER 110	5% 1W 5% 1W
P 1 1		PIN CONNECTOR 5P		R 7 9 R 8 0	RD14BB2E2R2J RD14BB2E2R2J	RES. CARBON RES. CARBON	2,2 5	5% 1/4W 5% 1/4W
P 2 0	1 E04-0277-05	BNC CONNECTOR		R 8 1	RD14BB2C391J R92-1570-05	RES. CARBON RES. SPECIAL P		5% 1/6W 5% 2W
Q 1 Q 2 Q 3 Q 4	2 S A 1 1 6 1 2 S A 1 1 6 1 2 S C 3 7 7 9 (D) 2 S C 3 7 7 9 (D)	TR. SI, PNP TR. SI, PNP TR. SI, NPN TR. SI, NPN		R 8 6 R 8 7 R 8 8 R 8 9 R 9 0	R92-1570-05 R92-1570-05 R92-1570-05 R92-1570-05 R92-1570-05 R92-1570-05	RES. SPECIAL P	OWER 750 OWER 750 OWER 750 OWER 750	5% 2W 5% 2W 5% 2W 5% 2W 5% 2W
Q 9 Q 1 0 Q 1 1		TR. SI, NPN TR. SI, NPN TR. SI, NPN TR. SI, NPN		R 9 1	R92-1570-05	RES. SPECIAL P		5% 2W

DEE NO	PARTS NO	NAME & DESCRIPTION RES. SPECIAL POWER 750 5% 2W
P09	P92-1570-05	RES, SPECIAL POWER 750 5% 2W
R 9 3	Phiarreceed	RES. CARBON 22 5% 1/6W
R 9 4	NO USE	
R 9 5	RD14BB2C220J	RES. CARBON 22 5% 1/6W
R 9 6	NO USE	
	BO 4 B B 2 C 1 O 4 1	RES, CARBON 100K 5% 1/6W
R 9 7	RD14BB2C1043	RES. CARBON 100K 5% 1/6W
R 9 8	KD14BB2C1043	ALB, VANDOU
	200 0172-05	RES. FIXED 2.2N 20% 350V
	#8Z-0173-02	REG. 1122
R 2 0 2	NO USE	RES. CARBON 470 5% 1/6W
R 2 0 3	RD14BB2C471J	RES. CARBON 470 5% 1/6W
R 2 0 4	RD14BB2C471J RD14BB2C272J	
R 2 0 5		RES. CARDON 2.74 UN 1702
R 2 0 6	NO USE	RES. CARBON 200 5% 1/6W
R 2 0 7	RD14BB2C20 IJ	RES. CARBON 10 5% 1/6W
R 2 0 8	RD14BB2C1003	RED. GARDON
	AD	
R 2 1 0	RD14BB2C470J	
R 2 1 1	RD14BB2C104J	HES, CARSON
2212	RD14BB2C101J	
R 2 1 3	RD14BB2E223J	
R 2 1 4	RD14BB2E223J	
R 2 1 5	RD14BB2C101J	RES, CARBON 100 5% 1/6W
R 2 1 6	RD14BB2C222J	RES. CARBON 2.2K 5% 1/6W
R 2 1 7	RD14BB2C222J	RES. CARBON 2.2K 5% 1/6W
TCI	C 0 5 - 0 4 7 2 - 0 5	CAP. TRIMMER 50P
T C 6 2	C 0 5 - 0 4 7 2 - 0 5	CAP. TRIMMER 50P
THI	112-103-2FM	THERMISTOR
T H 2	1 1 2 - 1 0 3 - 2 F M	THERMISTOR
0.1	K M G O 1	IC, LINEAR
V R 1	R12-1857-05	RES. SENI FIXED 1K
VR2	R12-0679-05	RES. SEMI FIXED 22KB
V R 3	R12-1860-05	RES. SENI FIXED IKB
V R 4		RES. SEMI FIXED 22KB

Option

IF-10 GP-IB

		Y87-3240-00
REF. NO	PARTS NO B42-1833-04 B42-3819-05 B42-3820-05 B63-0263-00 H25-0835-04 H53-0183-04 A63-0208-04 X72-1270-00	NAME & DESCRIPTION LABEL, MODEL NO., FOR CARTON BOX SERIAL NO. PLATE LABEL; CARTON BOX INSTRUCTION MANUAL; ENG. / JAP. YINYL COVER CARTON BOX PAKEL INTERFACE UNIT

INTERFACE UNIT

		X72-1270-00
REF. NO	PARTS NO	NAME & DESCRIPTION PCB (UNMOUNTED)
	J73-0391-03	NUT, HEX M2
	N10-2026-41	SCREW, PAN HD N2.6X12
	N30-2612-41	SCREW, SENS PAN HD N3X10
	N67-3010-41	CAP. CERANIC 0.1 80/-20% 50V
C1	C91-1315-05	CAP. CERANIC 0.1 80/-20% 50V
C 2	C91-1315-05	CAP. CERANIC 0.1 80/-20% 50V
	C91-1315-05	CAP. CERANIC 0.1 80/-20% 50V
	C91-1315-05	CAP. ELECTRO 47 20% 10V
C5	CEO4FW1A470M	CAP, ELECTRO 4. 202
CN529	E40-7531-05	PIN CONNECTOR 30P
CPI	R 8 0 - 0 6 1 2 - 0 5	RES. HETWORK 8X4.7K
101	THS 99C14ANL	IC,GP-IB ADAPTER
102	SN75160AN	IC, INTERFACE BUS TRANSCEIVER
	SN75161AN	IC, INTERFACE BUS TRANSCEIVER
104	TC74HC244AP	IC, OCTAL BUS BUFFER (3-STATE)
105	TC74HC138AP	IC, 3 TO 8 LINE DECODER
3305	E58-0613-05	PIN CONNECTOR 24P
R 1	R92-1061-05	JUNPING RES. ZERO OHM (5NM)
\$1	S79-0613-05	DIP SWITCH

Option

IF-20 RS-232C

		X87-3250-00
REF. NO	PARTS NO	NAME & DESCRIPTION LABEL, NODEL NO, FOR CARTON BOX
	B42-1933-04 B42-3819-05	SERIAL NO. PLATE
	B42-3820-05	LABEL; CARTON BOX
	B63-0264-00	INSTRUCTION MANUAL; ENG./JAP. VINYL COVER
	H25-0835-04 H53-0183-04	CARTON BOX
5 6	A 6 3 - 0 2 0 9 - 0 4	PANEL
5 7	X72-1280-00	INTERFACE UNIT

INTERFACE UNIT

		X72-1280-00
REF. NO	PARTS NO	NAME & DESCRIPTION
	J73-0392-03	PCB (UNNOUNTED)
	N10-2026-41	
	N30-2612-41	SCREW, PAN HD N2.6X12
	N67-3010-41	SCREW, SENS PAN HD M3X10
Cl	CE04EW1C220N	CAP, ELECTRO 22 20% 16V
C 2	CE04EW1C220M	CAP. ELECTRO 22 20% 16V
C 3	CE04EW1C220N	CAP. ELECTRO 22 20% 16V
C 4	CE04EW1C220M	CAP. ELECTRO 22 20% 16V
C 5	CE04EW1C100M	CAP. ELECTRO 10 20% 16V
C 6	C91-1315-05	CAP, CERANIC 0.1 80/-20% 50V
C 7	C91-1315-05	CAP. CERANIC 0.1 80/-20% 50V
C N 5 2 9	E40-7531-05	PIN CONNECTOR 30P
CPI	R 9 0 - 0 6 1 2 - 0 5	RES. NETWORK 8X4.7K
161	NAX232CPE	IC.RS-232C DRIVERS/RECEIVERS
102	TC74HC244AP	IC,OCTAL BUS BUFFER (3-STATE)
1 C 3		
J306	E40-7231-05	PIN CONNECTOR 25P
SI	S79-0613-05	DIP SWITCH

DCS-7020 SCHEMATIC DIAGRAM

DCS-7040 SCHEMATIC DIAGRAM

PANEL UNIT (X66-1470-00)

PRE AMP UNIT (X73-2120-00)

MATIC DIAGRAM


```
: TC4053BP
IC2
                      :NJM072BD
                        MC10102L
 IC4. 104. 107 :KMS01
 IC101
                      : MC10131L
 IC102, 105
                      :KMD05
                      :SN74ALS74AN
 IC103, 108
                      :SN74ALS02N
:TC74HC4053AP
 IC106
 IC109. 301
                        :NJM4558D
 IC302
                       : KMG01
                       :KMA02
 IC401
 Q3, 10, 11, 13, 14, 19, 30~32
104~106, 122~126, 204, 301~304
308, 309, 312, 313
: 25C1740S (R, S)
Q4, 5, 102, 108, 117, 118, 121, 203
: 25C1923 (0)
 Q6, 7 :2SC3779 (D)
 99, 28, 110, 120, 151, 152, 158
316, 317 : 25A1459 (K)
316. 317. 125. 146. 127. 220

221. 15. 16. 137. 25. 105. (k)

221. 306. 307. 25. 105. (k)

917. 18. 20. 103. 111. 112. 119

130. 162. 201. 202. 205. 205. 212

305. 310. 311. 324. 501

221. 314. 315. 318. 319

9101. 107 :25K170 (V)

9109 :25C3381 (GR)
 Q206. 208
                      :2SC2910 (S)
0200, 200
0207, 209 :2SA1208 (5)
0210, 211, 402, 404
:2SC2551 (0)
 0213
                      : 2SD613 (E)
: 2SC4732 (E)
 0320, 321
 0322, 323
                        :2SA1828 (E)
 Q401
                        :2SA1499 (0, P)
 0403
                        :2SA1304
 Q405
                        : 2SB1015 (Y)
                       :2SD1406 (Y)
 D1~5. 12.15.109.114.130.132
133.150.301.306.307
 D203~210
                       :18883
 D303, 316
                       :MTZ3.0JA
                       :TLR112
 D308, 309
                        :MTZ5.1JB
 D312
 D401. 402
                        :S1VB60
```

:S4VB20F

:MTZ13JC

D403

D407. 408

DSP UNIT (X79-1300-00)

DCS-7020 (1/2)

Trig		1.4	410	A	DR	٥	- 50	47
				f	P	3.	847	
-	h	r	h		-	h	~	
· ·		П						
		Ţ				-		
	L		П			L	IJ	
DH1	1 V			EQL	^ 1	2ve		

2 0.1ms/div

3 STO 0.1ms/div

4, 5, 6 REAL

7 STO R/O Y

® STO R/O X

DSP UNIT (X79-1300-01)

DSP UNIT (X79-1300-01)

① 0.1ms/div

Tri		1.4		٨	DR	٥	- 20	47
				F	-P	3.	84V	
-	ħ	1	7		-	1	~	7
		П					П	
T	1	П						
1	IL.							
	1					_		
DN1	ıv	T .		EQL	^ (2ve		

2 0.1ms/div

Tris		1. 4	11v	Λ.	DR	0-	- 20	47
				F	-P	5.	127	
			M					7
 Γ								1
			T					٦
311	2v			EQU	A 5	0ns		

3 STO 0.1ms/div

4, 5, 6 REAL

7 STO R/O Y

® STO R/O X

Option GP-IB INTERFACE UNIT (X72-1270-00)

IC2 :SN75160AN
IC3 :SN75161AN
IC4 :TC74HC244AP

IC5 : TC74HC138AP

SCHEMATIC DIAGRAM

Option RS-232C INTERFACE UNIT (X72-1280-00)

IC1 : MAX232CPE IC2 : TC74HC244AP

IC3 :TC74HC138AP

Pattern side view

•R113 W517 -

SWEEP UNIT (X74-1590-00)

DSP UNIT (X79-1300-0X)

HD6433040A00F

- 1. Sweep gate input
- 2. Sweep range input A
- 3. Sweep range input B
- 4. Sweep reference voltage input 5. Sweep range input C
- 6. Offset input
- 7. power 8. GND
- 9. + power
 10. External capacitor connection
- 11. External FET connection
- 12. Sweep signal output

KMD05

Vss 20

21 TE

TMS99C14ANL

- 1. MIX signal output A
- 3. Signal input A
- 4. + power supply5. Bias setting6. External control

- 7. R/O character signal input 8. R/O character position input
- 9. R/O switching signal
- 10. power
- 11. Signal input B 12. GND
- 13. MIX signal output B

KMG01

- 1. Analog signal input
- 2. + power
 3. GND
- 4. Digital signal output A
- 5. Digital signal output B
- Digital signal output C
- Digital signal output D 8. Digital signal output E

Analog signal input	Output					
[V]	Α	В	С	D	E	
0.25 ~ 0.45	L	Н	Н	Н	Н	
0.95 ~ 1.15	Н	L	Н	Н	Н	
1.65 ~ 1.85	Н	Н	L	Н	Н	
2.35 ~ 2.55	Н	Н	Н	L	Н	
3.05 ~ 3.25	Н	Н	Н	Н	L	

L: 1.0 [V] max H: 4.5 [V] min

KMS01

2SA1304 2SB1015 (Y) 2SD1406 (Y)

B_C E

2SA1459 (K)

2SA1499 (O,P)

2SA1828 (E) 2SC4732 (E)

2SC3354 (S)

2SC3381 (GR)

2SC3952 (D)

2SC4049

2SD613 (E)

2SK170 (V)

2SK404 (E)

D3SB20

S1VB60

S4VB20F