-	1							
<	9	Chapter	Crashcour		2 P.	1-1-1-21	1 Than	~/A
۱		Chapter 1.	Crash Coul.	20 01	ri pro	Dapini	y ineu	12
	Т		-				,	U

Def 1.1. (6-field) Let Ω be a set. A 6-algebra on Ω

is a non-empty set F of subsets of 12 such that

① if
$$A \in \mathcal{F}$$
, then $A^c \in \mathcal{F}$
② if $A, A_2, \dots \in \mathcal{F}$, then $U : A_i \in \mathcal{F}$

Examples.

(1) Coin-toss space (2 tosses)
$$-\Omega = \{HT, HH, TT, TH 4, \Omega \}$$
 is
the set of all outcomes for a random expiriment.

$$W \in \Omega \stackrel{\Delta}{=}$$
 one specific outcome , e.g. HH $\in \Omega$

define A = ? the first toss is H 1 = ? HT, HH 4

Remark: 6- algebra contains all events I want to assign
Probabilities to

Which equals {XER; a < x < b }

Def 1.12 (probability measures) Let F be a 6-algobra on si . A measure M on (Ω, F) is a function $M: F \to [0, \infty)$, such that a measure <17 $\mu(\phi)=0$ <z> if A. A. ... & F are disjoint (i.e. A: NA) = \$), then $M(\hat{U}_{Ai}) = \sum_{i=1}^{\infty} \mu(Ai)$ A probability measure IP is such a function on (12, F) and Satisfies P(12) = 1 (implies that P: F > [0,1]) Examples: O μ(A)=0 ∀A ⇒ a measure, but not a Prob. measure @ The lebesque measure on IR leb (a.b] = b-a a<b is a measure, but not a prob. measure. Notations: (D, F, P) = probability space 12 = sample space (space of all outcomes) W € 12 = Outcome ASD = event Let A ∈ F if P(A)=1, then A is called an almost true event, and if P(A) = 0, the A is called a null event. Def 1.2. (random variable). A random variable (r.v.) X: \(\Omega\) → 1R a function s.t. Twes: X(w) sty & F for all ter (x) We say that X is F-measurable if (*) holds.

	cumulativ			1 1												' '						_
Fxct)	= P(xst)	= P(Z>w{}	λ: <i>χ</i>	(w) :	s th)	Ŋ	obv	/iou	sly	E		'د	a	prob). N	neas	we			
Ren	narks:	2 2	łow (٥٤٠٠	ıD	1/~			1)	- 1	D/a	· ·	^		~		<i>c</i> /	_ ,	. , ,	1		
		'																				_
u≤eol t	<2>) if				SOM	ADIC	1	·unc	110	71	00	io	^	/2	s <i>U</i>		, · v ,		LNC	<i>-</i> 1		_
test r.v	f(x)				٠ ١	Y + }		~/	·~		₁ 2	1.	1.4	\			2)-			1		
	(eg. 7	1. 1	ore 1	. V -	7 /	Λ Τ	,	^/	1	'	',	Ln	I L X	, ,			ur	2 7	. v .	/		
Def 1	.2.2 6	(x) ≜	= the	Small	est	6.	- ol	geb	ra	a	hid	h (on	tair	کر	₹x	(<t< td=""><td>4</td><td>∀t</td><td>EIR</td><td></td><td>-</td></t<>	4	∀t	EIR		-
		É	the the	6-0	lgel	na	gen!	era1	ted	Ьу	1 7	٢										_
	$\rightarrow \chi$	is	6(X)	- me	asu)	rabl	e															
Def/p	rop. 1.6.1	Le	t XI,		, X,	v E	e	r.v	r. f	olla	win	g	sła	rte.	me!	ıts	<i>Q</i> :	C (gui	ival	ent	
0	χ.,	, X _N	are	inde	per	den-	٤															_
2	1P(x, &-	tı, ··	- · X~	≤tN) =	PC	X15	t.)	·P(\X2	_≤ t:	. (ر		-P	(7	ws	tv)				
	for all	tı,	t,	v € Î	2																	
3	if Xi,	X	in ho	ve j	oint	F	df.	/pn	nf	f	χ.,	7	ΧN	(χ.	<i>,</i> `	٠٠٪	w)					_
	then 7	<u>م</u> ۲۰, x	<u>_</u> ,×	Л X.	,	- X.v.) =	fx	ָ (אַ י	.) .		- f	۸۸	(X^	,)							
Ð	For any	Ьои	nded	Cont	inu	ous	fu	ınct	ion		9, ,	,	9,	v ²	IR.	⇒ψ	2					
	EL911x) (1 ~ (XV).] = !	EΣg	اللار] -		-1E	<u>[9</u>	νlχ	νĵ]										
0.9	1. if >	۲, ۲	are	inde	enc	den	Ł	E	EΣx	(Υ.] =	£	Сх,] E	EDY							_
																						_

Additional Contents from the Lecture

1.3. Expectations and Variances.

Let X be a random variable on (Ω, \mathcal{F}, P)

$$E[x] = \sum_{i=1}^{n} x_{i} P(x = x_{i}) = \int_{-\infty}^{\infty} x u(x) dx$$

$$\sum_{i=1}^{n} x_{i} P(x = x_{i}) = \int_{-\infty}^{\infty} x u(x) dx$$

A random variable X is integrable iff $E[|x|] < \infty$, and is square - integrable iff $E[x^2] < \infty$.

The variance of an integrable random variable X, is $Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$

The covariance of square-integrable random variable X and Y is $Cov(X, Y) = E[(X-E[X])(Y-E[Y])] = E[XY] - E[X] \cdot E[Y]$

(OV(X, 1) + 1 (\(\(\) = \(\) \\(\) \(

if neither
$$x$$
 nor Y is almost surely constant, their correlation is then
$$\frac{Cov(x,Y)}{\int Var(x)} = \frac{Cov(x,Y)}{\int Var(y)}$$

Theorem 13.4. Let the function g: R-> R be such that g(x) is integrable.

1 If x is a discrete r.v. with pmf px, then

$$E[g(x)] = \sum_{t \in S} g(t) P_X(t)$$

 \odot If χ is an absolutely continuous r.v. with pdf f_{κ} , then

$$E[g(x)] = \int_{-\infty}^{\infty} g(x) f_x(x) dx$$

More generally if X is a r.V. in R with density function fx and 9: R" DR, then

$$E[g(x)] = \int_{\mathbb{R}^n} g(x) f_x(x) dx$$

Theorem 1.3.2 (Jensen's inequality). Let X be a random variable and g: R+R. be convex function. Then

Theorem 1.3.3 (Hölder's inequality). Let X, Y be r.v.s and let P, 9, > 1 with p+ 9=1 If X & LP and Y & LP, then

$$E[xY] \leq E[|x|^p]^p \cdot E[|Y|^q]^{\frac{1}{2}}$$

$$E[|x|^p] < \infty$$
)

The case when P=2 is called the Cauchy-Schwarz inequality

$$P(x \ge \varepsilon) \le \frac{E[x]}{\varepsilon}$$
for all $\varepsilon > 0$.

1.7. Probability Inequalities

Theorem 1.7.2 (Tsche by cheff's inequality). Let X be a r.v. with E[x] = u and Var[x] = 62. Then $P(|x-\mu| \ge \epsilon) \le \frac{6^2}{6^2}$ for all 2>0 18. Tundamental probability results Theorem 1.8.7 (A strong law of large numbers). Let X., X2, ... be independent and i.id. integrable r.v.s. with common mean E[xi]=u Then. $X_1 + X_2 + \cdots + X_m \rightarrow \mu$ almost surely Theorem 1.8.8 (Central limit theorem). Let X., X2, -- be iid with E[xi] = u and Var[xi] = 62 for each i=1,2, --- n, let Zn= x,+x2+--+xn - nm Then Zn > Z in distribution, where Z ~ N(0,1)