MTAT.07.003 CRYPTOLOGY II

Public Key Cryptosystems

Sven Laur University of Tartu

Formal Syntax

Public key cryptosystem

- A randomised key generation algorithm outputs a secret key sk and a public key pk. A public key gives ability to encrypt messages.
- \triangleright A randomised *encryption algorithm* $\mathsf{Enc}_{\mathsf{pk}}: \mathcal{M} \to \mathcal{C}$ takes in a *plaintext* and outputs a corresponding *ciphertext*.
- ightharpoonup A decryption algorithm $Dec_{sk}: \mathcal{C} \to \mathcal{M} \cup \{\bot\}$ recovers the plaintext or a special abort symbol \bot to indicate invalid ciphertexts.

Example. RSA-1024 cryptosystem

Key generation Gen:

- 1. Choose uniformly 512-bit prime numbers p and q.
- 2. Compute $N = p \cdot q$ and $\phi(N) = (p-1)(q-1)$.
- 3. Choose uniformly $e \leftarrow \mathbb{Z}_{\phi(N)}^*$ and set $d = e^{-1} \mod \phi(N)$.
- 4. Output sk = (p, q, e, d) and pk = (N, e).

Encryption and decryption:

$$\mathcal{M}=\mathbb{Z}_N, \quad \mathcal{C}=\!\!\mathbb{Z}_N, \quad \mathcal{R}=\emptyset$$
 $\operatorname{\mathsf{Enc}}_{\mathsf{pk}}(m)=m^e \mod N \qquad \operatorname{\mathsf{Dec}}_{\mathsf{sk}}(c)=c^d \mod N$.

Semantic Security

IND-CPA security

As a potential adversary \mathcal{A} can influence which messages are encrypted, we must model the corresponding effects in our attack model. A cryptosystem (Gen, Enc, Dec) is (t, ε) -IND-CPA secure if for all t-time adversaries \mathcal{A} :

$$\mathsf{Adv}^{\mathsf{ind-cpa}}(\mathcal{A}) = \left| \Pr \left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr \left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right| \leq \varepsilon \ ,$$

where the security games are defined as follows

$$\mathcal{G}_0^{\mathcal{A}} \qquad \qquad \mathcal{G}_1^{\mathcal{A}} \\ \begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen} & & & & \\ (m_0,m_1) \leftarrow \mathcal{A}(\mathsf{pk}) & & & & \\ (m_0,m_1) \leftarrow \mathcal{A}(\mathsf{pk}) & & & & \\ (m_0,m_1) \leftarrow \mathcal{A}(\mathsf{pk}) & & & \\ \mathsf{return} \ \mathcal{A}(\mathsf{Enc}_{\mathsf{pk}}(m_0)) & & & \mathsf{return} \ \mathcal{A}(\mathsf{Enc}_{\mathsf{pk}}(m_1)) \end{bmatrix}$$

Semantic security against adaptive influence

Formal definition

Consider following games:

$$\mathcal{G}_0^{\mathcal{A}}$$

$$\begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen} \\ \mathcal{M}_0 \leftarrow \mathcal{A}(\mathsf{pk}) \\ m \leftarrow \mathcal{M}_0 \\ c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m) \\ \end{bmatrix}$$

$$\mathsf{return} \ [g(m) \stackrel{?}{=} \mathcal{A}(c)]$$

$$\mathcal{G}_{1}^{\mathcal{A}}$$

$$\begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen} \\ \mathcal{M}_{0} \leftarrow \mathcal{A}(\mathsf{pk}) \\ m \leftarrow \mathcal{M}_{0}, \overline{m} \leftarrow \mathcal{M}_{0} \end{bmatrix}$$

$$\overline{c} \leftarrow \mathsf{Enc}_{\mathsf{pk}}(\overline{m})$$

$$\mathsf{return} \ [g(m) \stackrel{?}{=} \mathcal{A}(\overline{c})]$$

The true guessing advantage is

$$\mathsf{Adv}_g^{\mathsf{sem}}(\mathcal{A}) = \Pr\left[\mathcal{G}_0^{\mathcal{A}} = 1\right] - \Pr\left[\mathcal{G}_1^{\mathcal{A}} = 1\right]$$
.

$IND-CPA \Rightarrow SEM-CPA$

Theorem. Assume that g is a t_g -time function and it is always possible to obtain a sample from \mathcal{M}_0 in time t_m . Now if the cryptosystem is (t,ε) -IND-CPA secure, then for all $(t-t_g-2t_m)$ -time adversaries \mathcal{A} :

$$\mathsf{Adv}^{\mathsf{sem}}_g(\mathcal{A}) \leq \varepsilon$$
 .

Note that

- \triangleright The function g might be randomised.
- \triangleright The function g must be efficiently computable.
- \triangleright The distribution \mathcal{M}_0 must be efficiently samplable.

An Example of IND-CPA Secure Cryptosystem

ElGamal cryptosystem

Combine the Diffie-Hellman key exchange protocol

Alice Bob

with one-time pad by multiplication using in $\mathbb{G}=\langle g \rangle$ as encoding rule

$$\operatorname{Enc}_{\operatorname{pk}}(m) = (g^k, m \cdot g^{xk}) = (g^k, m \cdot y^k)$$
 for all elements $m \in \mathbb{G}$

with a public key $pk = y = g^x$ and a secret key sk = x.

Decisional Diffie-Hellman Assumption (DDH)

Definition. We say that a q-element multiplicative group \mathbb{G} is (t, ε) -Decisional Diffie-Hellman group if for all t-time adversaries \mathcal{A} :

$$\mathsf{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(\mathcal{A}) = |\Pr\left[\mathcal{G}_0^{\mathcal{A}} = 1\right] - \Pr\left[\mathcal{G}_1^{\mathcal{A}} = 1\right]| \leq \varepsilon$$

where the security games are defined as follows

$$\mathcal{G}_0^{\mathcal{A}} \qquad \qquad \mathcal{G}_1^{\mathcal{A}}$$

$$\begin{bmatrix} x, k \leftarrow \mathbb{Z}_q & & & & \\ \text{return } \mathcal{A}(g, g^x, g^k, g^{xk}) & & & \text{return } \mathcal{A}(g, g^x, g^k, g^c) \end{bmatrix}$$

The Diffie-Hellman key exchange protocol is secure under the DDH assumption, as an attacker cannot distinguish values g^{xk} and g^c .

$DDH \Rightarrow IND-CPA$

Theorem. Let $\mathbb G$ be a (t,ε) -DDH group. Then the corresponding instantiation of the ElGamal cryptosystem is $(t,2\varepsilon)$ -IND-CPA secure.

Let $\mathcal B$ be good against IND-CPA games. Then we can consider the following algorithm $\mathcal A$:

- 1. Given (g, g^x, g^k, z) , set $\mathsf{pk} = g^x$ and $(m_0, m_1) \leftarrow \mathcal{B}(\mathsf{pk})$.
- 2. Toss a fair coin $b \leftarrow \{0,1\}$ and set $c = (g^k, m_b z)$.
- 3. If $b \stackrel{?}{=} \mathcal{A}(c)$ return 1 else output 0.

We argue that this is a good strategy to win the DDH game:

- In the game \mathcal{G}_0 , we simulate the bit guessing game.
- In the game \mathcal{G}_1 , the guess guess is independent form b.

Hybrid encryption

Assume that (Gen, Enc, Dec) is a IND-CPA secure public key cryptosystem and $(Gen^{\circ}, Enc^{\circ}, Dec^{\circ})$ is a IND-CPA secure symmetric key cryptosystem. Then we can construct a hybrid IND-CPA secure cryptosystem.

Key generation. Output the original secret and public key $(sk, pk) \leftarrow Gen$.

Encryption. For $m \in \mathcal{M}^{\circ}$ generate a session key $sk^{\circ} \leftarrow Gen^{\circ}$ and compute

$$\mathsf{Enc}^*_{\mathsf{pk}}(m) = (\mathsf{Enc}_{\mathsf{pk}}(\mathsf{sk}^\circ), \mathsf{Enc}^\circ_{\mathsf{sk}^\circ}(m))$$

Decryption. Given (c_1, c_2) compute $\mathsf{sk}^{\circ} \leftarrow \mathsf{Dec}_{\mathsf{sk}}(c_1)$ and output $\mathsf{Dec}_{\mathsf{sk}^{\circ}}(c_2)$.

Theorem. The hybrid encryption is $(t, 2\varepsilon_1 + \varepsilon_2)$ -IND-CPA secure if the public key cryptosystem is (t, ε_1) -IND-CPA secure and the symmetric key cryptosystem is (t, ε_2) -IND-CPA secure.

Corresponding proof

$$\mathcal{G}_{0}^{\mathcal{A}} \qquad \qquad \mathcal{G}_{2}^{\mathcal{A}} \qquad \qquad \mathcal{G}_{3}^{\mathcal{A}} \qquad \mathcal{G}_{3}^{\mathcal{A}} \qquad \qquad \mathcal{G}_{3}^{\mathcal{A}} \qquad \qquad \mathcal{G}_{3}^{\mathcal{A}} \qquad \qquad \mathcal{G}_$$

Ciphertext modification attacks

Symmetric key cryptosystem

- A malicious participant may control the communication network and alter the ciphertexts to bypass various security checks.
- ▷ A malicious participant may interact with a key holder and use him or her as an *encryption* or *decryption* oracle.
- \triangleright A non-malleable encryption detects modifications in ciphertexts (authenticated encryption) or assures that m and \overline{m} are unrelated.

Public key cryptosystem

- Active attacks are similar for public key cryptosystems. Except there is
 no need for encryption oracle, since the adversary knows the public key.
- ▷ Common cryptosystems detect tampered ciphertexts with high probability and thus the adversary cannot use the decryption oracle for useful tasks.

Homological classification

The figure above depicts the relations among various security properties of public key cryptosystems. In practise one normally needs:

- semantic security that follows IND-CPA security,
- > safety against improper usage that follows form IND-CCA1 security,
- ▷ non-malleability of ciphertexts that follows form NM-CPA security.

Safety against improper usage

Cleverly crafted ciphertexts or ciphertext-like messages may provide relevant information about the secret key or even reveal the secret key.

Such attacks naturally occur in:

- > smart card cracking (Satellite TV, TPM-modules, ID cards)
- > authentication protocols (challenge-response protocols)
- ▷ side-channel attacks (timing information, encryption failures)

Minimal security level:

> Attacks reveal information only about currently known ciphertexts.

Affected cryptosystems:

Rabin cryptosystem, some versions of NTRU cryptosystem, etc.

IND-CCA1 security

A cryptosystem is (t, ε) -IND-CCA1 secure if for all t-time adversaries A:

$$\mathsf{Adv}^{\mathsf{ind-ccal}}(\mathcal{A}) = \left| \Pr \left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr \left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right| \leq \varepsilon \ ,$$

where the security games are defined as follows

$$\mathcal{G}_0^{\mathcal{A}} \qquad \qquad \mathcal{G}_1^{\mathcal{A}} \\ \begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen} & & & & \\ (m_0,m_1) \leftarrow \mathcal{A}^{\mathfrak{O}_1(\cdot)}(\mathsf{pk}) & & & & \\ (m_0,m_1) \leftarrow \mathcal{A}^{\mathfrak{O}_1(\cdot)}(\mathsf{pk}) & & & & \\ (m_0,m_1) \leftarrow \mathcal{A}^{\mathfrak{O}_1(\cdot)}(\mathsf{pk}) & & & \\ \mathsf{return} \ \mathcal{A}(\mathsf{Enc}_{\mathsf{pk}}(m_0)) & & & \mathsf{return} \ \mathcal{A}(\mathsf{Enc}_{\mathsf{pk}}(m_1)) \\ \end{bmatrix}$$

and the oracle \mathcal{O}_1 serves decryption queries, i.e., $\mathcal{O}_1(c) = \mathsf{Dec}_{\mathsf{sk}}(c)$.

Rabin cryptosystem

Key generation Gen:

- 1. Choose uniformly 512-bit prime numbers p and q.
- 2. Compute $N = p \cdot q$ and $\phi(N) = (p-1)(q-1)$.
- 3. Output sk = (p,q) and pk = N.

Encryption and decryption:

$$\mathcal{M}=\mathbb{Z}_N, \quad \mathcal{C}=\!\!\mathbb{Z}_N, \quad \mathcal{R}=\emptyset$$
 $\operatorname{\mathsf{Enc}}_{\mathsf{pk}}(m)=m^2 \mod N \qquad \operatorname{\mathsf{Dec}}_{\mathsf{sk}}(c)=\sqrt{c} \mod N$.

Lunchtime attack

- 1. Choose $x \leftarrow \mathbb{Z}_N^*$ and set $c \leftarrow x^2 \mod N$.
- 2. Compute decryption $\overline{x} \leftarrow \mathcal{O}_1(c)$.
- 3. If $\overline{x} \neq \pm x$ then
 - Compute nontrivial square root $\xi = \overline{x} \cdot x^{-1} \mod N$
 - Compute a nontrivial factors $p \leftarrow \gcd(N, \xi + 1)$ and q = N/p.
 - Output a secret key sk = (p, q).
- 4. Continue from Step 1.

Efficiency analysis

- Each iteration fails with probability $\frac{1}{2}$.
- With 80 decryption queries the failure probability is 2^{-80} .

IND-CCA2 security

A cryptosystem is (t, ε) -IND-CCA2 secure if for all t-time adversaries A:

$$\mathsf{Adv}^{\mathsf{ind-ccal}}(\mathcal{A}) = \left| \Pr \left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr \left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right| \leq \varepsilon \ ,$$

where the security games are defined as follows

$$\mathcal{G}_0^{\mathcal{A}} \qquad \qquad \mathcal{G}_1^{\mathcal{A}} \\ \begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen} \\ (m_0,m_1) \leftarrow \mathcal{A}^{\mathcal{O}_1(\cdot)}(\mathsf{pk}) \\ \mathsf{return} \ \mathcal{A}^{\mathcal{O}_2(\cdot)}(\mathsf{Enc}_{\mathsf{pk}}(m_0)) \end{bmatrix} \qquad \begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen} \\ (m_0,m_1) \leftarrow \mathcal{A}^{\mathcal{O}_1(\cdot)}(\mathsf{pk}) \\ \mathsf{return} \ \mathcal{A}^{\mathcal{O}_2(\cdot)}(\mathsf{Enc}_{\mathsf{pk}}(m_1)) \end{bmatrix}$$

and oracles \mathcal{O}_1 and \mathcal{O}_2 serve decryption queries, i.e., $\mathcal{O}_1(c) = \mathsf{Dec}_{\mathsf{sk}}(c)$ and $\mathcal{O}_2(c) = \mathsf{Dec}_{\mathsf{sk}}(c)$ for all non-challenge ciphertexts.

IND-CCA2 secure cryptosystems

All known IND-CCA2 secure cryptosystems include a non-interactive proof that the creator of the ciphertexts c knows the corresponding message m:

- the RSA-OAEP cryptosystem in the random oracle model,
- the Cramer-Shoup cryptosystem in standard model,
- the Kurosawa-Desmedt key encapsulation scheme.

Non-malleability

NM-CPA security

Formal definition

$$\begin{split} &\mathcal{G}_0^{\mathcal{A}} \\ & \begin{bmatrix} (\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{Gen} \\ & \mathcal{M}_0 \leftarrow \mathcal{A}(\mathsf{pk}) \\ & m \leftarrow \mathcal{M}_0 \\ & c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m) \\ & \pi(\cdot), \hat{c}_1, \dots \hat{c}_n \leftarrow \mathcal{A}(c) \\ & \text{if } c \in \{\hat{c}_1, \dots \hat{c}_n\} \text{ then } \mathbf{return} \ 0 \\ & \mathbf{return} \ \pi(m, \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_1), \dots) \end{split}$$

$$\mathcal{G}_{1}^{\mathcal{A}}$$

$$\begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen} \\ \mathcal{M}_{0} \leftarrow \mathcal{A}(\mathsf{pk}) \\ m \leftarrow \mathcal{M}_{0}, \overline{m} \leftarrow \mathcal{M}_{0} \\ \hline{c} \leftarrow \mathsf{Enc}_{\mathsf{pk}}(\overline{m}) \\ \pi(\cdot), \hat{c}_{1}, \dots \hat{c}_{n} \leftarrow \mathcal{A}(\overline{c}) \\ \text{if } \overline{c} \in \{\hat{c}_{1}, \dots \hat{c}_{n}\} \text{ then } \mathbf{return} \ 0 \\ \mathbf{return} \ \pi(m, \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_{1}), \dots) \end{bmatrix}$$

The true advantage is

$$\mathsf{Adv}^{\mathsf{nm-cpa}}(\mathcal{A}) = |\Pr\left[\mathcal{G}_0^{\mathcal{A}} = 1\right] - \Pr\left[\mathcal{G}_1^{\mathcal{A}} = 1\right]|$$

Homological classification

Horizontal implications are trivial.

• The adversary just gets more powerful in the row.

Downwards implications are trivial.

• A guess guess can be passed as a predicate $\pi(\cdot) \equiv 0$ and $\pi(\cdot) \equiv 1$.

$IND-CCA2 \Rightarrow NM-CC2$

Theorem. Assume that $\pi(\cdot)$ is always a t_{π} -time predicate and it is always possible to obtain a sample from \mathcal{M}_0 in time t_m . Now if the cryptosystem is (t, ε) -IND-CCA2 secure, then for all $(t - t_g - 2t_m)$ -time adversaries \mathcal{A} :

$$\mathsf{Adv}^{\mathsf{nm\text{-}cca2}}(\mathcal{A}) \leq \varepsilon \ .$$

Note that

- \triangleright The predicate $\pi(\cdot)$ might be randomised.
- \triangleright The predicate $\pi(\cdot)$ might have variable number of arguments.
- \triangleright The predicate $\pi(\cdot)$ must be a computationally efficient function.
- \triangleright The distribution \mathcal{M}_0 must be efficiently samplable.

The corresponding proof

Let \mathcal{B} be an adversary that is good in NM-CCA2 games. Then we can emulate NM-CCA2 game given access to the decryption oracle \mathcal{O}_2 :

- 1. A forwards pk to \mathcal{B} who sends back a description of \mathcal{M}_0 .
- 2. \mathcal{A} independently samples $m_0 \leftarrow \mathcal{M}_0$ and $m_1 \leftarrow \mathcal{M}_0$.
- 3. \mathcal{A} forwards the challenge $\operatorname{Enc}_{\mathsf{pk}}(m_b)$ to \mathcal{B} .
- 4. \mathcal{B} sends $\hat{c}_1, \ldots, \hat{c}_n$ and $\pi(\cdot)$ to \mathcal{A} who
 - uses \mathbb{O}_2 to recover $\mathsf{Dec}_{\mathsf{sk}}(\hat{c}_1), \ldots, \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_n)$,
 - outputs $\pi(m_0, \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_1), \ldots, \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_n))$ as the final output.

Running time

The running time of A is $t_b + t_g + 2t_m$ where t_b is the running time of B.

Further analysis by code rewriting

For clarity, let Q_0 and Q_1 denote the IND-CCA2 security games and G_0 and G_1 NM-CCA2 security games. Then note

$$\mathcal{Q}_0^{\mathcal{A}} \equiv \mathcal{G}_0^{\mathcal{B}}$$
 and $\mathcal{Q}_1^{\mathcal{A}} \equiv \mathcal{G}_1^{\mathcal{B}}$

where