Tutorial-4

here, a = 3, b = 2 $f(n) = n^2$

So, n log a = n leg, 3

Sina, n log 23 < n²

so, according to master's theorum

T(n)=00(n2)

here, 0=4, b=2 $f(n)=n^2$ So, $nleg_ba = nlg_2^4 = nlg_2^{(a)^2}$

= n2lag22

=n2

Since, nlegba-fln)

According to macter's Theorem, Tln)=Oln2legn)

Aus3 T(n)=T(12)+2"

here, a=1, b=2 and f(n) =2"

So, n gb = n leg2 = n 1922°

line, 1<f(n)

Acc. to macter's Theorum,

T[n] =0(,n)

Ans4 $T(n) = 2^n T\left(\frac{n}{2}\right) + n^2$ master's theorem is not applicable luice (a) is a function.

Ans $T(n) = 16T(\frac{n}{4}) + n$ here, $\alpha = 16$ b = u and f(u) = n e^{0} , e^{0} e^{0}

> Since, $n^2 > n$ Therefore, acc to master's theorem $T(n) = o(n^2)$

Ans 6 $T(n) = 2T(\frac{n}{2}) + n \log n$ here, $\alpha = 2b = 2$ $f(n) = n \log n$ So, $n \log b^{\alpha} = n \log^{2} 2 = n$ line, $n \log^{4} 2 f(n)$ Acc to master's theorem $T(n) = 0 (n \log n)$

Anst $T(n) = 2\tau(\frac{n}{2}) + n/\log n$ a=2 b=2 $f(u) = n/\log n$ $So, n\log 6 = n\log 2 = n$ $Since, n\log 6 > f(u)$ acc. to master's Phonum T(n) = O(n)

Anso
$$T(n) = 2T(\frac{n}{4}) + n^{0.57}$$

$$0 = 2 \quad b = 4 \quad f(n) = 0.51$$

$$n^{1} = n^{1} = n^{0.5}$$

$$1ine \quad n^{1} = n^{0.5}$$

$$1ine \quad n^{1} = n^{0.5}$$

$$1ine \quad n^{1} = n^{0.57}$$

$$1ine \quad n^{1} = n^{0.57}$$

Ansq
$$T(n) = 0.5T(\frac{n}{2}) + \frac{1}{n}$$

not applicable master's thronin since all

Ansto

$$T(n) = 16T(\frac{h}{4})+n!$$

here, $\alpha=16$, $b=4$ & $f(n)=n!$.

 e_0 , $n^{ln_b^{\alpha}} = n^{ln_al^{\alpha}} = n^{ln_1(\alpha)^2} = n^2$

lince, $n^{ln_b^{\alpha}} < n!$

acc. to macter's theorem,

 $T(n) = o(nt)$

Aus 12 T(n) = sqrt (n) T(n) + leg n since a f constant acc marter's theorem not applicable.

Ans! $T(n) = 4T(\frac{n}{2}) + legn$ New, a = 4, b = 2 + f(n) = leg n $f(0), n^{1}0^{1}0^{9} = n^{1}0^{2}1^{9} = n^{2}$ $f(n), n^{1}0^{1}0^{9} = n^{1}0^{1}0^{1}$ $f(n) = 0(n^{2})$

This is
$$T(n) = 3T(\frac{n}{2}) + n$$

here $a = 3$ $b = 2$ d $f(n) = n$
 $n^{loto9} = n^{loto} = n^{loto}$
 $n^{loto9} = n^{loto} = n^{loto}$
 $n^{loto9} = n^{loto} = n^{loto}$
 $n^{loto9} = f(n)$
 $T(n) = 0(n^{loto})$

Autil $T(n) = 3T(\frac{n}{2}) + cn$
 $a = 3$ $b = 3$ $f(n) = 1$
 $n^{loto2} = n^{2}$
 $f(n) = 0(n^{2})$

Anoth $T(n) = 3T(\frac{n}{4}) + n \log n$
 $a = 3$ $b = 4$ $f(n) = n \log n$
 $n^{loto2} = n^{loto3}$
 $T(n) = 0(n \log n)$

Anoth $T(n) = 3T(\frac{n}{3}) + \frac{n}{2}$
 $a = 3$ $b = 3$ $f(n) = n/2$
 $n^{loto3} = n^{loto3}$
 $n^{loto3} = n^{loto3}$

Auto
$$a=6$$
 $b=3$ $f(u)=n^2 \log n$
 $a=6$ $f(u)=6$ $f(u)=6$

Aus 20 T(n) = 64 T(n) - n² leg n.

here, f(n) is not an increasing function.
Therefore, martic's theorem is not applicable.

Aus 21 $T(n) = 7T(\frac{n}{30}) + n^2$ $0 = 9 \quad b = 3 \quad f(u) = n^2$ $n \log_b 9 = n! \cdot 9$ $n \log_b 9 < f(u)$ $\therefore \text{ an to master's method } T(n) = O(n^2)$

Aus 22 T(n) = T(n/2) + n(2- wsn)

here, macter's theorem is not applicable due to violation of requarity londition.