

Giulia Bertagnolli University of Trento & CoMuNe Lab - FBK

SEMPLICEMENTE... RETI COMPLESSE!

Orienta Settimana Orientamento UniTn - 22 agosto 2019

NETWORK SCIENCE*

*
Scienza delle Reti,
Sicenza delle Connessioni

- PONTI, MAPPE E COLORI

 Problemi e Come Risolverli

 Teoremi e Dimostrazioni
- RETI (NETWORKS)

 Terminologia ed esempi
- ESSERE MATEMATICI

 Non solo calcoli (o proprio per niente!)

- ESSERE DOTTORANDI

 Prospettive dopo l'Università e Vita di un(a) PhD
- DOMANDE E APPROFONDIMENTI

 Spazio a Voi!

l Ponti di Königsberg

LEONHARD EULER (1736)

E' possibile fare un giro della città di Königsberg, attraversando tutti i ponti una e una sola volta (tornando al punto di partenza)?

Da un **problema** alla sua **astrazione**!

MAPPE E COLORI

Il Teorema dei Quattro Colori

The Four Colour Map Theorem

Problema, intuizione, astrazione

Francis Guthrie (1852)

4 colori

Funzionerà **per ogni** mappa?

Problema

Intuizione

Semplificazione

Francis e i 4 colori

Difficile...
Problema irrisolto
per più di un secolo!

Teorema dei 5 colori

IL TEOREMA DEI CINQUE COLORI

Dato un piano suddiviso in regioni connesse, queste possono essere colorate utilizzando **non più di cinque colori**, in modo tale che *non esistono due regioni* adiacenti con lo stesso colore.**

Dimostriamolo!

Ingredienti:

- 0. astrazione
- 1. induzione
- 2. assurdo
- 3. invarianza

Astrazione

Dato un **grafo planare**, i suoi vertici possono essere colorati con al più cinque colori, in modo che vertici adiacenti non abbiano lo stesso colore.

grafo = rete (EN - network)
grafo planare = che può essere
disegnato su di un foglio (un
piano) senza che gli archi
(edges, links) si intersechino

Induzione

Se riesci a fare il primo gradino, riuscirai a fare ogni altro gradino dopo di quello.

Assurdo

Non esiste il numero più grande.

Assumiamo il suo opposto:

E... arriviamo ad un **assurdo**!

Esiste il numero più grande, chiamiamolo *M*

$$M > M + 1$$

 $0 > 1$

Invarianza

Dimostrazione del Teorema dei 5 colori

Induzione sul numero *n* di nodi.

Ogni grafo con *n*=1 nodi può essere colorato con al più cinque colori

Passo Induttivo

Assumiamo che ogni grafo con n nodi sia colorabile con al più cinque colori e dimostramo che un grafo con n+1 nodi può ancora essere colorato con cinque colori.

Rimuovendo **v**, otteniamo un grafo con **n** vertici e 5- colorabile

Tutti i colori sono presi dai 5 vicini del nodo **v**

Guardiamo ai vertici 1 e 3

1 non è connesso ad alcun vertice giallo, per cui possiamo colorarlo di giallo!

Ora possiamo dare a **v** il colore libero!

Finché c'è un vertice con al più 5 vicini potremo sempre trovare altri due vertici che non sono connessi e possiamo fare il nostro "swap" di colori.

Esiste sempre un vertice con 5 vicini o meno?

Invarianza

Ogni grafo planare connesso soddisfa la seguente regola

#facce - #archi + #vertici = 2 (invareiante, caratteristica di Eulero)

... e un **assurdo** per finire:

tutti i vertici di un grafo planare connesso hanno come minimo 6 vicini (ipotesi assurda)

Esiste sempre un vertice con al più 5 vicini

tutti i vertici di un grafo planare connesso hanno come minimo 6 vicini

(ipotesi assurda)

(caratteristica di Eulero) f - e + v = 2

$$f - e + v = 2$$

$$2/3e - e + v \ge 2$$

$$-1/3e + v \ge 2$$

$$e - 3v \leq -6$$

ma avevamo anche e - 3v ≥ 0

#facce = f

#archi = e

#vertici = v

ABBIAMO VINTO!

Abbiamo dimostrato che

Dato un **grafo planare**, i suoi vertici possono essere colorati con al più cinque colori, in modo che vertici adiacenti non abbiano lo stesso colore.

E di conseguenza che

Ogni mappa può essere colorata usando al più cinque colori, senza che regioni adiacenti abbiano lo stesso colore.

MA...

Volevamo dimostrare il teorema dei 4 colori!

La sua dimostrazione è arriavata soltanto nel 1976, con Appel, Haken e l'uso del computer!

GRAFI E RETI

Quello che abbiamo appena dimostrato è un importante teorema della teoria dei grafi.

Dalla teoria dei grafi alla Network Science, la scienza delle reti o delle connessioni.

References

Newman, M. (2018). *Networks.* Oxford university press. Caldarelli, G. (2016). *Scienza delle reti.* Egea.

SOCIAL

facebook, friendship, Zachary's Karate
Club Network

BIOLOGY

food webs, protein-protein, brain (connectomes)

TRANSPORTATION & INFRASTRUCTURE

trains, airports, buses, underground; roads, powergrids, internet

OTHERS

Collaboration networks, economic networks...

SISTEMI COMPLESSI E RETI COMPLESSE

Le reti come rappresentazione di sistemi complessi.

SISTEMI COMPLESSI E RETI COMPLESSE

https://www.complexity-explorables.org/

Grafi, reti

Matematica, fisica, biologia, scienze sociali...

E' un mondo multi-disciplinare!

e.g. CoMuNe Lab - FBK

Studiare Matematica all'Università

Fare un Dottorato

Ricerca, mondo accademico e del lavoro

THANK YOU FOR YOUR **ATTENTION**

QUESTIONS?

⋑ @Gi∪liaTtt

gbertagnolli.github.io

giulia.bertagnolli@unitn.it

