华南师范大学 ACM-ICPC 集训队 DeDeRong

2021年5月7日

目录

1	图论																		5
1			/7																
	1.1	最短路																	5
		1.1.1	Dijkstra .																5
		1.1.2	Dijkstra t	比化 .									 	 	 	 	 		5
		1.1.3	Floyd										 	 	 	 	 		6
		1.1.4	Bellman-F	ord .									 	 	 	 	 		6
		1.1.5	SPFA										 	 	 	 	 		7
	1.2	次短路																	8
	1.3																		9
	1.0	1.3.1	倍增																9
		1.3.2	•																10
	1.4		分量																12
	1.5												 	 	 	 	 		12
	1.6	桥 .											 	 	 	 	 		13
	1.7	最大流											 	 	 	 	 		14
		1.7.1	Dinic										 	 	 	 	 		14
		1.7.2	Dinic 优化																15
	1.8	费用流																	17
	1.0	1.8.1	最大费用量																17
		-																	
		1.8.2	zkw 费用》																18
		1.8.3	EK										 	 	 	 	 		20
	1.9	二分图																	21
		1.9.1	匈牙利算法	去									 	 	 	 	 		21
	1.10	最小生	成树										 	 	 	 	 		22
		1.10.1	Prim										 	 	 	 	 		22
		1.10.2	kruskal .										 	 	 	 	 		23
	1 11		成树-POJ																24
		拓扑排																	26
			ガ 找最小环 .																
	1.13	rioya	イレ Hっ ノハルハ										 						27
	1.14	生成树	计数 (基尔	霍夫矩	[阵]	BZC)J10	02.					 	 	 	 	 		28
	1.14 1.15	生成树 悬线法	计数 (基尔 BZOJ303	霍夫矩 9	[阵]	BZC)J10 	02 .					 	 	 	 	 		28 29
	1.14 1.15	生成树 悬线法	计数 (基尔	霍夫矩 9	[阵]	BZC)J10 	02 .					 	 	 	 	 		28
	1.14 1.15 1.16	生成树 悬线法 欧拉巨	计数 (基尔 BZOJ303	霍夫矩 9	[阵]	BZC)J10 	02 .					 	 	 	 	 		28 29 30
2	1.14 1.15	生成树悬线法 欧拉回	计数 (基尔 BZOJ303 路	霍夫矩 9 ···	i阵)	BZC)J10 · · · ·	02					 	 	 	 	 		28 29 30 31
2	1.14 1.15 1.16	生成树 悬线法 欧拉巨	计数 (基尔 BZOJ303 路	霍夫矩 9	i阵)	BZC)J10 · · · ·	02					 	 	 	 	 		28 29 30 31 31
2	1.14 1.15 1.16 数据	生成树悬线法 欧拉回	计数 (基尔 BZOJ303 路	霍夫矩 9 ···	i连):····································	BZC)J10 · · · ·	02 .					 	 	 	 	 		28 29 30 31
2	1.14 1.15 1.16 数据 2.1	生成树 悬线巨 宏拉	计数 (基尔 BZOJ303 路	霍夫矩 9 	连阵) · · · · ·	BZC)J10	02					 	 		 	 		28 29 30 31 31
2	1.14 1.15 1.16 数据 2.1	生成树悬线恒 悬线恒 给 格拉 一	计数 (基尔 BZOJ3033 路 查集	霍夫矩 9 2	[阵] 	BZC)J10	02					 	 		 	 		28 29 30 31 31 32
2	1.14 1.15 1.16 数据 2.1 2.2	生成树 悬线拉 结构 着并程 2.2.1	计数 (基尔 BZOJ3038 路 查集 BZOJ1202	·霍夫矩 9 2	[阵] 	BZC 	J10	02					 	 		 	 		28 29 30 31 31 32 32 33
2	1.14 1.15 1.16 数据 2.1 2.2	生成	计数 (基尔 BZOJ3033 路 查集 BZOJ1202 区间最大亿	霍夫矩 9 	· · · · · · · · · · · · · · · · · · ·	BZC 	J10	02					 	 		 			28 29 30 31 31 32 32 33 33
2	1.14 1.15 1.16 数据 2.1 2.2	生成线短 结构 查 并带 2.2.1 ST 8 2.3.1 2.3.2	计数 (基尔 BZOJ303 路 查集 BZOJ1202 区间最大位维护父节,	霍夫矩 9 2 i i i i i i	· · · · · · · · · · · · · · · · · · ·	BZC)J10	02					 	 		 	 		28 29 30 31 32 32 33 33 33
2	1.14 1.15 1.16 数据 2.1 2.2 2.3	生悬欧 结 并带 2.2.1 表 2.3.1 2.3.2 树	计数 (基尔 BZOJ303 路 查集 BZOJ1202 区间最大位维护父节,	霍夫矩 9 2 ia	· · · · · · · · · · · · · · · · · · ·	BZC)J10	02					 	 					28 29 30 31 32 32 33 33 33 33
2	1.14 1.15 1.16 数据 2.1 2.2	生悬欧 结 并带 2.2.1 ST 2.3.2 树线	计数 (基尔 BZOJ303 路 查集 BZOJ1202 运前最大位维护父节,组	霍夫矩 9 2 i i i i i i i i	E阵)	BZC)J10	02										· · · · · · · · · · · · · · · · · · ·	28 29 30 31 32 33 33 33 33 34
2	1.14 1.15 1.16 数据 2.1 2.2 2.3	生悬欧 结 并带 2.2.1 ST 2.3.1 2.3.2 树线 2.5.1	计数 (基尔 BZOJ3039 路 查集 查集 BZOJ1202 · 区维护父节, 组	霍夫矩 9	i 阵)	BZC		02											28 29 30 31 32 33 33 33 34 34
2	1.14 1.15 1.16 数据 2.1 2.2 2.3	生悬欧 结 并带 2.2.1 ST ST 2.3.2 树线 2.5.1 2.5.2	计数 (基尔 BZOJ3039 路 查集	霍夫····································	E阵) 	BZC)J100 	02											28 29 30 31 32 32 33 33 33 34 34 35
2	1.14 1.15 1.16 数据 2.1 2.2 2.3	生悬欧 结 并带 2.2.1 表 2.3.2 对线担 集并 2.2.1 表 2.3.3 状段 1 2.5.2 2.5.3	・ (基尔 BZOJ3038・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	霍		BZC)J10)U11 J346	02											28 29 30 31 32 32 33 33 33 34 34 35 37
2	1.14 1.15 1.16 数据 2.1 2.2 2.3	生悬欧 结 并带 2.2.1 ST ST 2.3.2 树线 2.5.1 2.5.2	サ数 (基のJ3035基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本<	霍9 · · · · · · · 直点 · · + + + + + + + + + + + + + + + + +	[阵] 「 水 水 水 水 水 水 水 水 水 水	BZC · · · · · · · · · · · · · · · · · · ·)J10(· · · · · · · · · · · · · · · · · · ·	02											28 29 30 31 32 32 33 33 33 34 34 35
2	1.14 1.15 1.16 数据 2.1 2.2 2.3	生悬欧 结 并带 2.2.1 表 2.3.2 对线 2.5.1 2.5.2 2.5.3	・ (基尔 BZOJ3038・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	霍9 · · · · · · · 直点 · · + + + + + + + + + + + + + + + + +	[阵] 「 水 水 水 水 水 水 水 水 水 水	BZC · · · · · · · · · · · · · · · · · · ·)J10(· · · · · · · · · · · · · · · · · · ·	02											28 29 30 31 32 32 33 33 33 34 34 35 37
2	1.14 1.15 1.16 数据 2.1 2.2 2.3	生悬欧 结 并带 2.2.1 表 2.3.2 树线 2.5.3 2.5.4 极线 2.5.3 4	サ数 (基のJ3035基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本基本<	霍9		BZC	OJ100 · · · · · · · · · · · · · · · · · · ·	02		· · · · · · · · · · · · · · · · · · ·									28 29 30 31 31 32 33 33 33 34 34 35 37
2	1.14 1.15 1.16 数据 2.1 2.2 2.3	生悬欧 结并带 2.2.1 ST 3.1 2.3.3.4 段 2.5.5.3 2.5.5.6 极法叵 集并 表 数极 2.5.5.6	サB路・査BZOJ3035・集ZOJ1202・集ZOJ1202・最交・修修修染树树・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	霍9		BZC · · · · · · · · · · · · · · · · · · ·	DJ100 · · · · · · · · · · · · · · · · · · ·	02											28 29 30 31 32 33 33 33 34 34 35 37 38 40 41
2	1.14 1.15 1.16 数据 2.1 2.2 2.3 2.4 2.5	生悬欧 结并带 2.2.1 2.3 4线 2.5.5.3 4 5.5.5 4 5.5.7 极法叵 集并 表 数极 2.5.5.6 7	サ B B ・	霍9	「阿) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	BZC · · · · · · · · · · · · HD · PC · · · · · · · · · · · · · · · · · · ·	DJ100 · · · · · · · · · · · · · · · · DU111 DJ340 DU17 PLE PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE DU17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE Du17 PLE PLE Du17 PL	02	· · · · · · · · · · · · · · · · · · ·	 J117 L542 CF1		· · · · · · · · · · · · · · · · · · ·							28 29 30 31 32 32 33 33 33 34 34 35 37 38 40 41 43
2	1.14 1.15 1.16 数据 2.1 2.2 2.3	生悬欧 结并带 2.2.1 2.3 2.5 5.5 6.7 内线担 集并 表 2.3.1 发树 2.5.5 2.5 5.6 7 内线担 集并 表 数树 2.5 5.6 7 内线担 集并 表 数树 2.5 5.6 7 内线	・	霍9	() 「	BZC)J100 · · · · · · · · · · · · · · · · · · ·	02	· · · · · · · · · · · · · · · · · · ·	 J117 542 CF1									28 29 30 31 31 32 33 33 33 34 34 35 37 38 40 41 43 45
2	1.14 1.15 1.16 数据 2.1 2.2 2.3 2.4 2.5	生悬欧 结 并带 2.2.3 2.3 2.5 5.6 7 概 接回 集并 表 2.3 2.5 5.6 2.5 6.1 2.6 6.1	计 BZOJ3039	霍9	() () () () () () () () () () () () () (BZC····································)J100 · · · · · · · · · · · · · · · · · · ·	02	· · · · · · · · · · · · · · · · · · ·	 J117 542 CF1									28 29 30 31 31 32 33 33 33 34 34 35 37 38 40 41 43 45 45
2	1.14 1.15 1.16 数据 2.1 2.2 2.3 2.4 2.5	生悬欧 结并带 2.5 2.3 2.5 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	计 B路 · 查 B · 区维组 · 单区单区线线状 · 区动数 (J303) ·	霍9	下	BZC)J100 	02 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 J1177 L542 CF1	77								28 29 30 31 32 32 33 33 33 34 35 37 38 40 41 43 45 46
2	1.14 1.15 1.16 数据 2.1 2.2 2.3 2.4 2.5	生悬欧 结并带 2.ST 2.3 4 2.5 5.5 6 2.5 5.6 7 内 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	计 B路 · 查 B · 区维组 · 单区单区线线状 · 区动 · 数ZOJ3039 · 集ZO · 间护 · · 点间点间段段压 · 间态 · · · · · · · · * * * * * * * * * * *	霍9 · · · · · · · · · 直点 · · · + + + + 扫扫段 · 大第 · · 夫 · · · · · · · · · · · · · · 区区区统描描树 · · · 长 · · · · · · · · · · 间间间计线线维 · · · 大 ·	下	BZC)J100 	02 · · · · · · · · · · · · · 66 · · · · ·	· · · · · · · · · · · · · · · · · · ·	 J1177 L542 CF1									28 29 30 31 31 32 33 33 33 34 34 35 37 38 40 41 43 45 46 49
2	1.14 1.15 1.16 数据 2.1 2.2 2.3 2.4 2.5	生悬欧 结并带 2.2 X 2.3 X 2.5 5.5 6.7 K 2.6 2.5 5.5 6.7 K 2.6 2.5 5.5 6.7 K 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	计 B路 · 查 B · 区维组 · 单区单区线线状 · 区动 · · · 数ZOJ3039 · · 集ZO · 间护 · · · 点间点间段段压 · 间态 · · · · · · * · · * · * 修修修染树树 + · 第区 · · · · · · · · 改改改色 + +线 · K间 · · · · · · · · · · · · · · 改改色色 + +线 · · K间 · · · · · · · · · · · · · · · ·	霍9 2 直点 + + + + 扫扫段 大第 夫 区区区统描描树 . . K . .		BZC)J100 · · · · · · · · · · · · DU111)J340 · · · · · · · · · · · · DU111 B 可 · · · · · · · · · · · · · · · ·	02 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 J117 542 CF1 	77								28 29 30 31 32 33 33 33 34 40 41 43 45 46 49 51
2	1.14 1.15 1.16 数据 2.1 2.2 2.3 2.4 2.5	生悬欧 结并带 2.2 X 2.3 X 2.5 5.5 6.7 成线拉 构查权 1.2 X 2.5 5.5 2.5 5.6 2.6 1.2 X 2.8 X	计 B路 · 查 B · 区维组 · 单区单区线线状 · 区动 · · 普数 C J 303 · · · · · · · · · · · · · · · · · ·	霍9 · · · · · · · · · · · · · · · · · · ·		BZC)J100 · · · · · · · · · · · · · · · · · · ·	02 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 J117 542 CF1) ZO									28 29 30 31 32 33 33 33 33 34 40 41 43 45 46 49 51 51
2	1.14 1.15 1.16 数据 2.1 2.2 2.3 2.4 2.5	生悬欧 结并带 2.2 X 2.3 X 2.5 5.5 6.7 K 2.6 2.5 5.5 6.7 K 2.6 2.5 5.5 6.7 K 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	计 B路 · 查 B · 区维组 · 单区单区线线状 · 区动 · · 普无数 (J303) · · · · 集区 · 间护 · · 点间点间段段压 · 间态 · · · 通旋基分 · · · 修修修染树树 + · 第区 · · · Trea Trea Trea	霍9 · · · · · · · · · · · · · · · · · · ·		BZC)J100 · · · · · · · · · · · · · · · · · · ·	02 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 J117 542 CF1) ZO									28 29 30 31 32 33 33 33 34 40 41 43 45 46 49 51
2	1.14 1.15 1.16 数据 2.1 2.2 2.3 2.4 2.5	生悬欧 结并带 2.2 X 2.3 X 2.5 5.5 6.7 成线拉 构查权 1.2 X 2.5 5.5 2.5 5.6 2.6 1.2 X 2.8 X	计 B路 · 查 B · 区维组 · 单区单区线线状 · 区动 · · 普数 C J 303 · · · · · · · · · · · · · · · · · ·	霍9 · · · · · · · · · · · · · · · · · · ·		BZC)J100 · · · · · · · · · · · · · · · · · · ·	02 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 J117 542 CF1) ZO									28 29 30 31 32 33 33 33 33 34 40 41 43 45 46 49 51 51
2	1.14 1.15 1.16 数据 2.1 2.2 2.3 2.4 2.5	生悬欧 结并带 2.2.1 2.3.1 2.5.5.5.6 2.5.5.6 7 内 2.8.1 2.8.3 科 2.5.5.3 4.5.6.7 内 2.8.1 2.8.3 4.5.6 7 内 2.8.3 4.5.6 7 h 2.8.3 4.5.6 7	计 B路 查 B 区维组 .单区单区线线状 .区动 . .普无无数 (J303)	霍9 · · · · · · · · · · · · · · · · · · ·	阿萨····································	BZC)J10()	02 · · · · · · · · · · · · · 66 · 55 O J 2 长 田 · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 J1177 L542 CF1 									28 29 30 31 31 32 32 33 33 34 40 41 43 45 45 46 49 51 51 53
2	1.14 1.15 1.16 数据 2.1 2.2 2.3 2.4 2.5	生悬欧 结并带 2.2.1 2.3.1 2.5.5.6 2.5.6 2.5.7 Treap 2.8.1 2.8.2 数树 2.5.3 4.5.6 7 树 2.8.1 2.8.2	计 B路 . 查 B . 区维组.单区单区线线状.区动.. 普无无树数ZOJ3039 . 集 O I 间护 . 点间点间段段压.间态. . 通旋旋.	霍9 2 .直点 + + + + + 扫扫段 .大第 ppp夫 区区区统描描树 . . K 护矩	呼・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	BZC)J100 	02 · · · · · · · · · · · · 66 · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 J1177 L542 CF1 									28 29 30 31 31 32 32 33 33 33 34 45 45 46 49 51 53 56

	9 11	可持久化数组	62
	2.12	!可持久化并查集	64
	2.13	: 莫队	66
		2.13.1 普通莫队	66
		2.13.2 带修莫队	67
3	\mathbf{DP}		68
	9 1	背包	co
	3.1	背包	68
	3.2	数位 DP	70
	0.2		
		3.2.1 HDU 2089 不要 62	70
		3.2.2 SCOI 2009 Windy 数	70
		5.2.2 SCOI 2009 Willidy 氨	70
	3.3	区间 DP	71
	0.0		
		3.3.1 51Nod 1021 石子合并	71
	3.4	最长公共递增子序列	72
	0.4		
	3.5	最长公共子序列	73
	3.6	最长有序子序列	73
	- → / /	7 th	
4	字符		7 5
	4.1	KMP	75
	4.2	EXKMP	76
	4.0		
	4.3	字符串 Hash	
		4.3.1 自然溢出	77
	4.4	字典树 Trie	77
	4 5		78
	4.5	Manacher	18
	4.6	最小表示法	78
	-	** * * * * * * * * * * * * * * * * * * *	
	4.7	最大表示法	79
_	WL 227	<u>.</u>	
5	数学	2	79
	5.1	欧拉函数	79
	-	ere received	
	5.2	枚举约数	80
	5.3	全错排	81
	5.4	唯一分解定理	81
	0.1		
		5.4.1 例题一	81
		5.4.2 例题二	83
	5.5	快速幂	84
	5.6	矩阵快速幂	85
	5.7	欧拉降幂	86
	0.1		
		5.7.1 例题一	86
	F 0		
	5.8	广义欧拉降幂	81
		5.8.1 例题一	87
		, ,, =	
		5.8.2 例题二	88
		5.8.3 例题三	89
		, ,, <u> </u>	
	5.9	逆序数	91
	E 10	无序序列变有序的最少交换次数	92
	0.10		92
		5.10.1 相邻元素交换	92
		5.10.2 任意元素交换	92
	5 11	GCD	92
	5.11		
		5.11.1 非递归	92
		5.11.2 递归	92
	5 12	EXGCD	93
	5.12		
		5.12.1 例题	93
	F 10	, , , =	
	5.13	3逆元	94
		5.13.1 拓展欧几里得法	94
			-
		5.13.2 费马小定理法	95
	F 4 4		
	5.14	中国剩余定理	95
		5.14.1 例题	95
		, ,, =	
	5.15	5 拓展中国剩余定理	96
	5.16	5 素数	97
		5.16.1 判断小于 MAXN 的数是否为素数	97
		5.16.2 埃式筛法	97
		5.16.3 线性筛法	98

		5.16.4 Mill																		
		5.16.5 求 1																		
	5.17	组合数																		
		5.17.1 求单																		
		5.17.2 线性																		
	F 10	5.17.3 少量		/																
		か 乗 长 度																		
		全排列																		
		求斐波那契																		
		质因子																		
	5.22	大数质因子																		
	۲ 00	5.22.1 poll																		
		公共因子数																		
		除法分块																		
	5.25		 - 左口 17左																	
		5.25.1 求逆																		
		5.25.2 求异																		
	- 00	5.25.3 求方																		
		FFT																		
		NTT																		
		原根																		
	5.29	1-n 的 x 次																		
		5.29.1 一次																		
		5.29.2 二次																		
		5.29.3 三沙	(万		 •	•	 	٠.		 	 		 	 •			•		 •	113
6	STL	,																		113
U																				
	6.1	vector																		
	6.1	vector																		
	6.2	set			 		 			 	 		 							114
	6.2 6.3	set pair			 		 			 	 		 						 •	$\frac{114}{114}$
	6.2 6.3 6.4	set pair stack			 		 · ·			 	 		 		· ·	 		· ·		114 114 114
	6.2 6.3 6.4 6.5	set pair stack queue			 		 		 	 	 		 	 		 			 	114 114 114 115
	6.2 6.3 6.4 6.5 6.6	set pair stack queue map			 		 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 	 	· · · · · · · ·	 			 			 	114 114 114 115 115
	6.2 6.3 6.4 6.5 6.6 6.7	set pair stack queue bitset					 · · · · · · · · · · · · · · · · · · ·			 	 		 			 · · · · · · · · · · · · · · · · · · ·			 	114 114 114 115 115
	6.2 6.3 6.4 6.5 6.6	set pair stack queue map					 · · · · · · · · · · · · · · · · · · ·			 	 		 			 · · · · · · · · · · · · · · · · · · ·			 	114 114 114 115 115
7	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算	set pair stack queue map bitset algorithm			 		 			 	 		 			 			 	114 114 115 115 115 116
7	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算	pair stack queue map bitset algorithm			 		 			 	 		 			 			 	114 114 115 115 115 116
7	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2	set pair stack queue map bitset algorithm 几何 三角形面积 两圆面积交								 						 				114 114 115 115 115 116 116 116
7	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1	set pair stack queue map bitset algorithm 几何								 						 				114 114 115 115 115 116 116 116
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3	set pair stack queue map bitset algorithm C何 三角形面积 两圆面积交 矩形相交								 						 				114 114 115 115 116 116 116 117
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3	set pair stack queue map bitset algorithm 几何 三角形面积 两圆面积交 矩形相交									 									114 114 115 115 115 116 116 116 117
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它	set pair stack queue map bitset algorithm 几何 三角形面积交矩形相交																		1144 1144 115 115 115 116 116 117 118
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它 8.1 8.2	set pair stack queue map bitset algorithm 几何 三角形面积交矩形相交 数据类型范 头文件																		114 114 114 115 115 116 116 116 117 118 118
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它 8.1 8.2 8.3	set pair stack queue map bitset algorithm																		114 114 114 115 115 115 116 116 117 118 118 118
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它 8.1 8.2	set pair stack queue map bitset algorithm																		1144 1144 115 115 115 116 116 117 118 118 118 119
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它 8.1 8.2 8.3	set pair stack queue map bitset algorithm 几何 用圆相																		1144 1144 115 115 115 116 116 117 118 118 118 119 119
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它 8.1 8.2 8.3 8.4	set pair stack queue map bitset algorithm 几何 用用面积交 矩形性配式 整工性配式 以证量 是 Vim 配挂																		114 114 115 115 116 116 116 117 118 118 118 119 119
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它 8.1 8.2 8.3	set pair stack queue map bitset algorithm Definition																		1144 1144 115 115 116 116 116 117 118 118 119 119
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它 8.1 8.2 8.3 8.4	set pair stack queue map bitset algorithm																		114 114 115 115 115 116 116 117 118 118 118 119 119 119
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它 8.1 8.2 8.3 8.4	set																		114 114 115 115 115 116 116 116 117 118 118 118 119 119 119 119
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它 8.1 8.2 8.3 8.4	set pair stack queue map bitset algorithm																		114 114 115 115 115 116 116 116 117 118 118 119 119 119 120 120
	6.2 6.3 6.4 6.5 6.6 6.7 6.8 计算 7.1 7.2 7.3 其它 8.1 8.2 8.3 8.4	set pair stack queue map bitset algorithm																		1144 1144 115 115 116 116 116 117 118 118 119 119 119 120 120 120

1 图论

1.1 最短路径

1.1.1 Dijkstra

```
const int maxn = 1e4;
  const int inf = 0x3f3f3f3f;
  //d数组用来记录源点s到顶点i的最短距离
4
5
  //v表示该顶点是否在顶点集S中
  //g邻接矩阵存图, g[i][j]表示i到j的边的权值, 无边时为inf
  //n为顶点数量
  int d[maxn], v[maxn];
9
  int g[maxn][maxn];
10
  int n;
  void dij(int s)
11
12
  {
      memset(v, 0, sizeof(v));
13
14
      for(int i=1; i <= n; i++)
15
      d[i] = g[s][i];
      v[s] = 1;
16
      for(int i=1;i<=n;i++)
17
18
          int u = 0;
19
20
          for(int j=1; j<=n; j++)
21
              if(!v[j] \&\& (u==0 || d[j] < d[u]))
22
23
                  u = j;
24
25
          if(u==0)return ;
26
          v[u] = 1;
          for(int j=1; j<=n; j++)
27
28
              d[j] = min(d[j], d[u]+g[u][j]);
29
30
          }
31
      }
32
  }
```

1.1.2 Dijkstra 优化

```
1 const int maxn = 1e4;
2 const int inf = 0x3f3f3f3f;
3| typedef pair<int, int> P; //first表示最短距离, second表示顶点编号
  // 边: to 表示这条边指向的顶点, 权值为w
  struct Edge
5
6
  {
7
      int to, w;
8
  };
  // 用 vector 实 现 邻 接 表
9
  vector < Edge > g[maxn];
10
  int d[maxn]; //记录源点到顶点i的最短距离
11
12
  int n;
13
  void dij(int s)
14
15
      priority_queue <P, vector <P>, greater <P> > q;
16
      memset(d, inf, sizeof(d));
17
      d[s] = 0;
18
      q.push(P(0, s));
19
20
      while(!q.empty())
21
          P p = q.top();
22
23
          q.pop();
          int u = p.second;
```

```
25
            if(d[u] < p.first) continue;</pre>
26
            for(int i=0; i<g[u].size(); i++)
27
28
                Edge e = g[u][i];
29
                if(d[e.to] > d[u] + e.w)
30
31
                     d[e.to] = d[u] + e.w;
32
                     q.push(P(d[e.to], e.to));
33
                }
34
            }
35
       }
36
```

1.1.3 Floyd

1.1.4 Bellman-Ford

```
const int maxn = 1e4;
  const int inf = 0x3f3f3f3f; //常用于表示无穷大
3
4
  //边结构体,记录u->v的边,权值为w
5
  struct Edge
6
7
      int u, v, w;
      Edge(int uu, int vv, int ww) { u=uu; v=vv; w=ww; }
8
      Edge(){}
9
10
  }e[maxn];
  int edgecnt; // 边的数量
11
  //加边操作
12
  void addEdge(int u, int v, int w)
13
14
  {
15
      e[edgecnt++] = Edge(u, v, w);
16
  }
17
  int n; // 顶点总数
18
  int d[maxn]; //记录最短距离的数组
19
20
  //存在负权回路则返回true, 否则返回false
21
  bool bellman_ford(int s)
22
23
  {
24
      memset(d, inf, sizeof(d));
25
      d[s] = 0;
      //进行n-1次松弛操作,第n次检查是否含有负权回路
26
      for(int i=1;i<=n;i++)
27
28
29
          int flag = 0;
          for(int j=0; j<edgecnt; j++)</pre>
30
31
          {
              Edge t = e[j];
32
              int u, v, w;
33
34
              u = t.u; v = t.v; w = t.w;
35
              if(d[v] > d[u] + w)
36
              {
37
                  d[v] = d[u] + w;
```

1.1.5 SPFA

```
const int maxn = 1e4;
  const int inf = 0x3f3f3f3f; //常用于表示无穷大
3
  //边结构体, to表示边指向的顶点编号, 权值为w
4
5
  struct Edge
6
  {
7
      int to, w;
8
      Edge(int tt, int ww) { to = tt; w = ww; }
9
      Edge(){}
10
  };
  // vector 实 现 的 邻 接 表
11
12 vector < Edge > g[maxn];
13 int n;// 顶点数
  //d表示最短距离, inq[i]表示结点是否在队列中, 为1则在, cnt[i]记录i入队的次数
14
int d[maxn], inq[maxn], cnt[maxn];
  // 初始化
16
  void init()
17
18
  {
      memset(d, inf, sizeof(d));
19
20
      memset(inq, 0, sizeof(inq));
21
      memset(cnt, 0, sizeof(cnt));
22
  //返回true表示存在负权回路
23
  bool spfa(int s)
24
25
26
      init();
      d[s] = 0;
27
28
      inq[s] = 1;
      cnt[s] = 1;
29
30
      queue < int > q;
31
      q.push(s);
32
      while(!q.empty())
33
          int u = q.front();
34
35
          inq[u] = 0;
36
          q.pop();
          for(int i=0; i < g[u].size(); i++)
37
38
               Edge e = g[u][i];
39
               if(d[e.to] > d[u] + e.w)
40
41
42
                   d[e.to] = d[u] + e.w;
43
                   if(inq[e.to] == 0)
44
                   {
45
                       inq[e.to] = 1;
                       q.push(e.to);
46
47
                       cnt[e.to]++;
48
                       if(cnt[e.to] > n) return true;
49
                   }
50
               }
51
          }
52
53
      return true;
54
```

1.2 次短路

```
1 #include <bits/stdc++.h>
  #define INF 1e16+100
  \#define ms(x,y) memset(x,y,sizeof(x))
3
  using namespace std;
  typedef long long ll;
6
  typedef pair<11,11> P;
7
8
9
  const double pi = acos(-1.0);
  const int mod = 1e9 + 7;
10
  const int maxn = 1e5 + 5;
11
12
13
  struct Edge{
14
       11 to,cost;
15
  };
16
17
  11 n,m;
  vector < Edge > a[maxn];
18
19
  11 dist[maxn], dist2[maxn];
20
  void addedge(ll u,ll v,ll w)
21
  {
22
       a[u].push_back(Edge{v,w});
23
       a[v].push_back(Edge{u,w});
24
25
  }
26
  void solve()
27
28
  {
29
       priority_queue <P, vector <P>, greater <P> >que;
30
       //ms(dist,INF);
31
       //ms(dist2,INF);
       fill(dist, dist+n, INF);
32
       fill(dist2, dist2+n, INF);
33
       dist[0]=0;
34
       que.push(P(0,0));
35
36
       while (que.size())
37
38
           P u=que.top(); que.pop();
39
           int v=u.second;
40
           11 d=u.first;
                                         // 不是次短距离则抛弃
41
           if(dist2[v]<d) continue;</pre>
           for(int i=0;i<a[v].size();i++)</pre>
42
43
                Edge e=a[v][i];
44
                11 d2=d+e.cost;
45
                if(dist[e.to]>d2)
                                      // 更新最短
46
47
48
                    swap(dist[e.to], d2);
49
                    que.push(P(dist[e.to],e.to));
50
                }
51
                if(dist2[e.to]>d2&&dist[e.to]<d2)</pre>
                                                        // 更新次短
52
                {
53
                     dist2[e.to]=d2;
                     que.push(P(dist2[e.to],e.to));
54
55
                }
56
           }
57
       printf("%lld\n", dist2[n-1]);
58
59
60
61
  int main()
62
  {
       //freopen("in.txt","r",stdin);
63
       //freopen("out.txt","w",stdout);
64
```

```
65
       int t;
       scanf("%d",&t);
66
67
       while (t--)
68
            scanf("%11d%11d",&n,&m);
69
70
            for(int i=0;i<n;i++) a[i].clear();</pre>
71
            for(int i=0; i < m; i++)
72
            {
73
                 11 p,q,w;
74
                 scanf("%11d%11d%11d",&p,&q,&w);
75
                 addedge(p-1,q-1,w);
76
            }
77
            solve();
78
79
       return 0;
80
  }
```

1.3 LCA

1.3.1 倍增

```
#include < bits / stdc ++.h>
2
  using namespace std;
  typedef long long ll;
3
  #define inf 0x3f3f3f3f
  typedef pair<int, int> P;
  const int maxn = 5e5+5;
  const 11 \mod = 1e9+7;
  vector<int> son[maxn]; // 存储儿子顶点
9
  // dep[i]表示顶点i的深度, n个顶点, m个询问, rt为树根, fa数组用来预处理顶点i向上跳2
10
    ^j步之后的顶点
  int dep[maxn], n, m, rt, fa[maxn][20];
  int v[maxn]={0}; // 是否访问标记
13
  // pre是父顶点, rt是当前顶点
14
  void dfs(int pre, int rt)
15
16
      dep[rt] = dep[pre]+1; // 当前项点的深度为父项点加一
17
18
      fa[rt][0] = pre; // 当前顶点向上跳一步为父顶点
      v[rt] = 1; // 访问
19
20
      // dp 预处理
21
      for (int i=1; i \le 19; i++)
      fa[rt][i] = fa[fa[rt][i-1]][i-1];
22
      // 继续dfs
23
      for(int i=0; i < son[rt]. size(); i++)</pre>
24
      if(v[son[rt][i]]==0)
25
      dfs(rt, son[rt][i]);
26
27
28
  // 求解LCA(a, b)
29
  int lca(int a, int b)
30
31
32
      if(dep[a] < dep[b])</pre>
33
          swap(a, b);
34
      for (int i=19; i>=0; i--)
35
          if(dep[a]-dep[b] >= (1 << i))
36
37
          {
38
              a = fa[a][i];
39
          }
40
      }
      if(a==b)return a;
41
42
      for (int i=19; i>=0; i--)
43
      {
```

```
44
           if(fa[a][i] != fa[b][i])
45
           {
46
                a = fa[a][i];
47
                b = fa[b][i];
48
           }
49
50
       return fa[a][0];
51
52
  int main()
53
54
       scanf("%d%d%d", &n, &m, &rt);
55
56
       for(int i=1;i<n;i++)
57
       {
           int a, b;
58
           scanf("%d%d", &a, &b);
59
60
           son[a].push_back(b);
61
           son[b].push_back(a);
62
       }
       memset(fa, 0, sizeof(fa));
63
       memset(dep, inf, sizeof(dep));
64
65
       v[0]=1;
66
       dep[0] = 0;
       dfs(0, rt);
67
       for(int i=1;i<=m;i++)
68
69
70
           int a, b;
           scanf("%d%d", &a, &b);
71
           printf("%d\n", lca(a, b));
72
73
74
       return 0;
75
```

1.3.2 RMQ

```
1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long 11;
4 #define inf 0x3f3f3f3f
5 typedef pair<int, int> P;
6 const int maxn = 5e5+5;
  const 11 \mod = 1e9+7;
7
8
9
  vector<int> g[maxn]; // 存图
10
  // dep记录DFS序中每一个顶点的深度, vis记录DFS序, id记录顶点i第一次在DFS序中的位
   置,
        st 表
  int dep[maxn <<1]=\{0\}, vis[maxn <<1]=\{0\}, id[maxn]=\{0\}, st[maxn <<1][25];
11
  // dfs序计数用,看代码能理解
12
13
  int dfs_c=1;
14
  // 父 顶 点 为 pre , 当 前 顶 点 为 now , 当 前 深 度 为 d
15
  void dfs(int pre, int now, int d)
16
17
      id[now] = dfs_c; // now 顶点在DFS序中第一次出现的位置是dfs_c
18
      dep[dfs_c] = d; // 记录now的深度
19
      vis[dfs_c++] = now; // DFS序中第dfs_c个顶点是now,同时将dfs_c加一
20
21
      for(int i=0;i<g[now].size();i++)</pre>
22
23
          if(g[now][i]!=pre)
24
          {
25
              dfs(now, g[now][i], d+1);
              vis[dfs_c] = now;
26
              dep[dfs_c++] = d;
27
28
          }
29
      }
```

```
30 }
31
32
  // 预处理st表
33
  void getSt(int n)
34
35
       for(int i=1;i<=n;i++)
       st[i][0] = i;
36
37
       for(int j=1; (1 << j) <= n; j++)
38
       {
39
           for (int i=1; i+(1<< j)<=n; i++)
40
                int a = st[i][j-1], b = st[i+(1<<(j-1))][j-1];
41
42
                if(dep[a] < dep[b])</pre>
                    st[i][j] = a;
43
                else st[i][j] = b;
44
45
           }
46
       }
47
  }
48
  // 查询DFS序中区间[1, r]深度最小的顶点在DFS序中的位置
  int query(int 1, int r)
50
51
       int k = log2(r-l+1);
52
       int a = st[l][k];
53
       int b = st[r-(1<< k)+1][k];
54
       // 返回深度较小的那一个顶点在DFS序中的位置
55
56
       if(dep[a]<dep[b])return a;</pre>
       else return b;
57
58
59
60
  // 求LCA(a, b)
61
  int lca(int a, int b)
62
63
       int x, y;
       x = id[a], y = id[b];
64
       if(x>y)return vis[query(y, x)];
65
66
       else return vis[query(x, y)];
67
  }
68
  // 检查用的
69
  void check(int n)
70
71
72
       for(int i=1; i <= dfs_c; i++) cout << dep[i] << " "; cout << " \n \n ";
       for(int i=1;i<=dfs_c;i++)cout<<vis[i]<<" ";cout<<"\n\n";
73
74
       for(int i=1;i<=n;i++)cout<<id[i]<<" ";cout<<"\n\n";
75
76
77
  int main()
78
79
       int n, m, rt;
       scanf("%d%d%d", &n, &m, &rt);
80
       for(int i=1; i < n; i++)
81
82
       {
83
           int a, b;
           scanf("%d%d", &a, &b);
84
85
           g[a].push_back(b);
           g[b].push_back(a);
86
87
       }
88
       dfs(0, rt, 1);
       getSt(dfs_c);
89
90
       //check(n);
       for(int i=1; i <= m; i++)
91
92
       {
93
           int a, b;
           scanf("%d%d", &a, &b);
94
           printf("%d\n", lca(a, b));
95
```

```
96 }
97 return 0;
98 }
```

1.4 强连通分量

```
vector < int > g[maxn];
  int low[maxn], dfn[maxn], sta[maxn], ins[maxn], belong[maxn];
  int cnt, ind, tot; //cnt: 强连通分量的数量, ind: 时间戳, tot: sta的top
3
4
5
  void init()
6
  {
7
       memset(ins, 0, sizeof(ins));
       {\tt memset(belong, 0, sizeof(belong));}\\
8
9
       memset(dfn, 0, sizeof(dfn));
       cnt = ind = tot = 0;
10
11
12
  void Tarjan(int u)
13
14
       low[u] = dfn[u] = ++ind;
15
       ins[u] = 1;
16
       sta[++tot] = u;
17
       for(int i=0;i<g[u].size();i++)</pre>
18
19
20
           int v = g[u][i];
           if(!dfn[v])
21
22
           {
23
                Tarjan(v);
                low[u] = min(low[u], low[v]);
24
25
           }
26
           else if(ins[v])
           low[u] = min(low[u], dfn[v]);
27
28
       }
29
       int p;
       if(low[u] == dfn[u])
30
31
           ++ cnt;
32
           do
33
34
35
                p = sta[tot--];
36
                belong[p] = cnt;
37
                ins[p] = 0;
           }while(p != u);
38
39
       }
40
```

1.5 割点

```
1 vector < int > g[maxn];
  // iscut[i]: 若顶点i是割点,则为1,反之为0
3 int low[maxn], dfn[maxn], iscut[maxn];
4
  int ind;
5
6
  void init()
7
  {
      memset(dfn, 0, sizeof(dfn));
8
9
      memset(iscut, 0, sizeof(iscut));
10
      ind = 0;
11
12
  // pa为u的父节点, 初始时Tarjan(i, i)
13
  void Tarjan(int u, int pa)
```

```
15 {
       int cnt = 0; //用来记录子树的数量
16
17
       low[u] = dfn[u] = ++ind;
18
       for(int i=0;i<g[u].size();i++)</pre>
19
           int v = g[u][i];
20
21
           if(!dfn[v])
22
           {
23
               Tarjan(v, u);
               low[u] = min(low[u], low[v]);
// 若low[v]>=dfn[u],并且u不是根节点,则u是割点
24
25
               if(low[v] >= dfn[u] \&\& pa!=u)
26
               iscut[u] = 1;
27
               // 若 u 是 根 节 点 , 则 cnt ++
28
               if(u == pa)
29
30
                    cnt++;
31
           }
           else if(v != pa) //若v不等于父节点
32
           low[u] = min(low[u], dfn[v]);
33
34
35
       if(cnt>=2 && u==pa) //根节点子树数量大于等于2,则为割点
36
           iscut[u] = 1;
37
```

1.6 桥

```
// 用链式前向星来存储边
2
  struct Edge
3
  {
      // iscut 表 示 是 否 为 桥
4
      int to, next, iscut;
5
  }e[maxn*maxn*2];
6
  int head[maxn], low[maxn], dfn[maxn];
8
  int ind, tot; // tot是边的数量
9
10
  void init()
11
12
      memset(head, -1, sizeof(head));
13
      memset(dfn, 0, sizeof(dfn));
14
      ind = tot = 0;
15
16
17
18
  void addedge(int u, int v)
19
20
      e[tot].to = v;
21
      e[tot].next = head[u];
      e[tot].iscut = 0;
22
      head[u] = tot++;
23
24
25
26
  void Tarjan(int u, int pa)
27
28
      low[u] = dfn[u] = ++ind;
       for(int i=head[u]; ~i; i = e[i].next)
29
30
           int v = e[i].to;
31
           if(v == pa) continue;
32
           if(!dfn[v])
33
34
               Tarjan(v, u);
35
36
               low[u] = min(low[u], low[v]);
37
               // 是桥
38
               if(low[v] > dfn[u])
39
               {
```

```
40
                     e[i].iscut = e[i^1].iscut = 1;
41
                 }
42
            }
43
            else
44
            {
45
                 low[u] = min(low[u], dfn[v]);
46
            }
47
       }
48
  }
```

1.7 最大流

1.7.1 Dinic

```
1 #include <bits/stdc++.h>
  using namespace std;
3 typedef long long 11;
  typedef pair<int, int> P;
  const int maxn = 1e6+5;
5
  const int inf = 0x3f3f3f3f;
6
7
  const int mod = 1e9+7;
  // 用链式前向星来存储图
9
10
  struct ed
11
       int to, val, ne;
12
  }edge[maxn <<1];</pre>
13
  int head[maxn], dep[maxn];
14
  // 顶点数n, 边数m, 源点s, 汇点e, 加边时的指针tot
15
16
  int n, m, s, e, tot;
17
18
  void init()
19
  {
20
       tot = -1;
       memset(head, -1, sizeof(head));
21
22
  }
23
  void addEdge(int u, int v, int val)
24
25
  {
       edge[++tot].to = v;
26
27
       edge[tot].val = val;
28
       edge[tot].ne = head[u];
29
       head[u] = tot;
30
31
  // 就是最普通的bfs
32
  int bfs()
33
34
       memset(dep, -1, sizeof(dep));
35
       dep[s] = 0;
36
37
       queue < int > q;
38
       q.push(s);
39
       while(!q.empty())
40
41
           int u = q.front();
42
           q.pop();
43
           for(int i=head[u]; ~i; i=edge[i].ne)
44
               int v = edge[i].to;
45
               if(dep[v]==-1 && edge[i].val>0)
46
47
               {
                    dep[v] = dep[u]+1;
48
                    q.push(v);
49
50
               }
51
           }
```

```
52
       return (dep[e] != -1); //若dep[e]==-1则表示没有可以到达e的增广路了, 算法结束。
53
54
55
      当前顶点u,当前流量flow
56
   //
   // 初始时dfs(s, inf)
57
   int dfs(int u, int flow)
58
59
       if(u == e)return flow;
60
61
       for(int i=head[u]; ~i; i=edge[i].ne)
62
           int v = edge[i].to;
63
           if(dep[v]==dep[u]+1 && edge[i].val)
64
65
           {
                int a = dfs(v, min(flow, edge[i].val));
66
                if(a>0) // 若找到增广路
67
68
                    edge[i].val -= a;
69
70
                    edge[i^1].val += a;
71
                    return a;
72
                }
73
           }
74
75
       return 0;
76
   }
77
78
   11 dinic()
79
80
       11 ans = 0;
       while(bfs())
81
82
           int a = dfs(s, (1 << 30));
83
84
           ans += a;
85
       return ans;
86
87
88
89
   int main()
90
       scanf("%d%d%d%d", &n, &m, &s, &e);
91
       init();
92
93
       for(int i=1; i <= m; i++)
94
95
           int u, v, w;
           scanf("%d%d%d", &u, &v, &w);
96
           addEdge(u, v, w);
97
           addEdge(v, u, 0); //反边
98
99
       }
       printf("%lld\n", dinic());
100
       return 0;
101
102
```

1.7.2 Dinic 优化

```
#include < bits / stdc ++.h>
using namespace std;

typedef long long ll;

typedef pair < int, int > P;

const int maxn = 1e6+5;

const int inf = 0x3f3f3f3f;

const int mod = 1e9+7;

struct ed

int to, val, ne;
```

```
12 } edge[maxn < <1];
int head[maxn], dep[maxn], cur[maxn];
14 int n, m, s, e, tot;
15
  void init()
16
17
  {
      tot = -1;
18
19
      memset(head, -1, sizeof(head));
20
21
  void addEdge(int u, int v, int val)
22
23
24
      edge[++tot].to = v;
      edge[tot].val = val;
25
      edge[tot].ne = head[u];
26
27
      head[u] = tot;
28
29
  int bfs()
30
31
  {
      memset(dep, -1, sizeof(dep));
32
33
      dep[s] = 0;
34
      queue < int > q;
35
      q.push(s);
      while(!q.empty())
36
37
38
          int u = q.front();
39
          q.pop();
40
          for(int i=head[u]; ~i; i=edge[i].ne)
41
42
               int v = edge[i].to;
43
               if(dep[v]==-1 && edge[i].val>0)
44
45
                   dep[v] = dep[u]+1;
46
                   q.push(v);
               }
47
          }
48
49
      return (dep[e] != -1);
50
51
  }
52
  int dfs(int u, int flow)
53
54
55
      if(u == e)return flow;
      // rflow用于多路增广,表示流入到顶点u的剩余未流出的流量
56
      int rflow = flow;
57
      // 当前弧优化,通过引用,可以改变cur[i]的值,使得下次遍历到顶点u时,会直接从上
58
        次增广的边开始遍历
      for(int& i=cur[u]; ~i; i=edge[i].ne)
59
60
      {
61
          int v = edge[i].to;
          if(dep[v]==dep[u]+1 && edge[i].val)
62
63
          {
64
               int a = dfs(v, min(rflow, edge[i].val));
65
               edge[i].val -= a;
               edge[i^1].val += a;
66
               rflow -= a; // 剩余流量要减少
67
               if(rflow <=0) break; // 若没有剩余流量了, 就 break
68
69
          }
70
       // 若 没 有 一 丝 流 量 流 出 , 则 表 示 通 过 顶 点 u 已 经 无 法 增 广 了 , 于 是 炸 点 , dep 可 以 设 置 为
71
        任何无意义值
72
       if(rflow == flow)
73
      dep[u] = -2;
      return flow - rflow; // 返回流出的流量
74
75 }
```

```
76
   11 dinic()
77
78
79
        11 \text{ ans} = 0;
80
        while(bfs())
81
            // 新一轮 dfs之前要对 cur进行初始化
82
            for(int i=1;i<=n;i++)cur[i] = head[i];</pre>
83
            int a = dfs(s, (1 << 30));
84
85
            ans += a;
86
87
        return ans;
88
89
   int main()
90
91
92
        scanf("%d%d%d%d", &n, &m, &s, &e);
93
        init();
        for(int i=1;i<=m;i++)
94
95
        {
96
            int u, v, w;
            scanf("%d%d%d", &u, &v, &w);
97
98
            addEdge(u, v, w);
99
            addEdge(v, u, 0);
100
        printf("%lld\n", dinic());
101
        return 0;
102
103
   }
```

1.8 费用流

1.8.1 最大费用最大流

```
const int maxn = 1e4 + 10;
2
3
  struct Edge {
4
      ll to, ne, lim, cos;
5
  }e[maxn];
  11 a[maxn], b[maxn], c[maxn];
6
7
  11 head[maxn], dis[maxn], flow[maxn], pre[maxn], vis[maxn];
8
  11 n, m, M, s, s1, t, tot;
9
  void init() {
10
      memset(head, -1, sizeof(head));
11
      tot = 0;
12
  // u->v, 流量, 花费
13
14
  void add(int u, int v, int lim, int cos) {
15
      e[tot].to = v;
      e[tot].ne = head[u];
16
      e[tot].lim = lim;
17
      e[tot].cos = cos;
18
      head[u] = tot++;
19
20
21
      e[tot].to = u;
22
      e[tot].ne = head[v];
23
      e[tot].lim = 0;
24
      e[tot].cos = -cos;
25
      head[v] = tot++;
26
  ll bfs() {
27
      queue <11> q;
28
      q.push(s);
29
       for (ll i = 0; i \le t + 10; i++)
30
31
           dis[i] = -INF, flow[i] = INF, vis[i] = 0;
32
      vis[s] = 1, dis[s] = 0;
```

```
33
       while (!q.empty()) {
34
           11 u = q.front();
35
           q.pop();
36
           for (ll i = head[u]; ~i; i = e[i].ne) {
37
                ll\ v = e[i].to, w = e[i].cos, lim = e[i].lim;
                if (lim && (dis[u] + w > dis[v])) {
38
39
                    dis[v] = dis[u] + w;
40
                    flow[v] = min(flow[v], lim);
41
                    pre[v] = i;
42
                    if (!vis[v]) {
43
                        vis[v] = 1;
44
                        q.push(v);
45
46
                }
47
           vis[u] = 0;
48
49
50
       return flow[t] == INF ? 0 : 1;
51
  }
52
  void solve() {
       scanf("%11d%11d%11d", &n, &m, &M);
53
       /* 建图
54
       for (ll i = 1; i <= n; i++) scanf("%lld", &a[i]);</pre>
55
       for (ll i = 1; i <= n; i++) scanf("%lld", &b[i]);</pre>
56
       for (ll i = 1; i <= n; i++) scanf("%lld", &c[i]);
57
       s = 0, t = 4 * n + 4, s1 = 4 * n + 1;
58
       init();
59
       add(s, s1, m, 0);
60
61
       for (ll i = 1; i \le n; i++) add(s1, i, 1, 0);
62
       for (ll i = 1; i \le n; i++) {
63
           for (ll j = 1; j \le n; j++)
64
                add(i, n + j, 1, (b[i] + a[j]) * (b[i] ^ a[j]) % M);
65
66
       for (ll i = 1; i \le n; i++) add(n + i, 2 * n + i, 1, 0);
       for (11 i = 1; i \le n; i++) {
67
           for (ll j = 1; j \le n; j++)
68
                add(2 * n + i, 3 * n + j, 1, (a[i] + c[j]) * (a[i] ^ c[j]) % M);
69
70
       }
       for (ll i = 1; i \le n; i++) add(3 * n + i, t, 1, 0);
71
72
       11 \text{ ans} = 0;
73
74
       while (bfs()) {
75
           ans += dis[t] * flow[t];
76
           11 v = t;
77
           while (1) {
78
                11 u = e[pre[v]^1].to;
79
                e[pre[v]].lim -= flow[t];
80
                e[pre[v]^1].lim += flow[t];
               v = u;
81
                if (v == s) break;
82
83
           }
84
85
       printf("%lld\n", ans);
86
```

1.8.2 zkw 费用流

```
1 bool vis[200001];

2 int dist[200001];

3 //解释一下各数组的含义: vis两个用处: spfa里的访问标记,增广时候的访问标记,dist是每个点的距离标号

4 int n, m, s, t, ans = 0;

5 //s是起点,t是终点,ans是费用答案

6 int nedge = -1, p[200001], c[200001], nex[200001], head[200001];
```

```
// 这 里 是 边 表 , 解 释 一 下 各 数 组 的 含 义 : p[i]表 示 以 某 一 点 出 发 的 编 号 为 i 的 边 对 应 点 , c表 示
    编 号 为 i 的 边 的 流 量, cc表 示 编 号 为 i 的 边 的 费 用, nex 和 head 不 说 了 吧 。 。 。
  inline void addedge(int x, int y, int z, int zz) {
8
9
      p[++nedge] = y;
10
      c[nedge] = z;
11
      cc[nedge] = zz;
      nex[nedge] = head[x];
12
13
      head[x] = nedge;
14
  //建边(数组模拟边表倒挂)
15
  inline bool spfa(int s, int t) {
16
17
      memset(vis, 0, sizeof(vis);
18
      for (int i = 0; i <= n; i++) dist[i]=1e9;
19
      dist[t]=0; vis[t]=1;
  // 首 先 SPFA 我 们 维 护 距 离 标 号 的 时 候 要 倒 着 跑 , 这 样 可 以 维 护 出 到 终 点 的 最 短 路 径
20
      deque < int > q; q.push_back(t);
21
  // 使 用 了 SPFA 的 SLF 优 化 ( SLF 可 以 自 行 百 度 或 Google )
22
23
      while (!q.empty()) {
24
          int now = q.front(); q.pop_front();
          for (int k = head[now]; k > -1; k = nex[k])
25
              if (c[k ^ 1] \&\& dist[p[k]] > dist[now] - cc[k]) {
26
  // 首 先 c [ k ^ 1 ] 是 为 什 么 呢 , 因 为 我 们 要 保 证 正 流 , 但 是 SPFA 是 倒 着 跑 的 , 所 以 说 我 们 要 求 c [ k ]
    的对应反向边是正的, 这样保证走的方向是正确的
                  dist[p[k]] = dist[now] - cc[k];
28
  // 因 为 已 经 是 倒 着 的 了 , 我 们 也 可 以 很 清 楚 明 白 地 知 道 建 边 的 时 候 反 向 边 的 边 权 是 负 的 , 所 以
29
    减一下就对了(负负得正)
                  if (!vis[p[k]]) {
30
                      vis[p[k]] = 1;
31
32
                      if (!q.empty() \&\& dist[p[k]] < dist[q.front()])
33
                          q.push_front(p[k]);
34
                      else q.push_back(p[k]);
35
  // SLF 优 化
36
                  }
37
38
          vis[now] = 0;
39
      return dist[s] < 1e9;</pre>
40
  // 判断起点终点是否连通
41
42
  }
43
  inline int dfs(int x, int low) {
  //这里就是进行增广了
44
45
      if (x == t) { vis[t] = 1; return low; }
      int used = 0, a; vis[x] = 1;
46
47
  // 这 边 是 不 是 和 dinic 很 像 啊
48
      for (int k = head[x]; k > -1; k = nex[k])
49
          if (!vis[p[k]] \&\& c[k] \&\& dist[x] - cc[k] == dist[p[k]]) {
  //这个条件就表示这条边可以进行增广
50
              a = dfs(p[k], min(c[k], low - used));
51
              if (a) ans += a * cc[k], c[k] -= a, c[k ^ 1] += a, used += a;
52
  // 累加答案,加流等操作都在这了
53
54
              if (used == low) break;
55
56
      return used;
57
  inline int costflow(){
58
59
      int flow=0;
60
      while(spfa(s,t)){
  // 判断起点终点是否连通,不连通说明满流,做完了退出
61
62
          vis [t]=1:
63
          while(vis[t]){
64
              memset(vis,0,sizeof vis);
65
              flow += dfs(s, 1e9);
  //一直增广直到走不到为止(这样也可以省时间哦)
66
67
68
      return flow; // 这里返回的是最大流,费用的答案在ans里
69
```

```
70 }
71
  int main() {
72
       memset(nex, -1, sizeof(nex));
       memset(head, -1, sizeof(head));
73
74
       scanf("%d%d%d%d", &n, &m, &s, &t);
       for (int i = 1; i \le m; i++) {
75
76
           int x, y, z, zz;
           scanf("%d%d%d%d", &x, &y, &z, &zz);\\
77
78
           addedge(x, y, z, zz);
79
           addedge(y, x, 0, -zz);
80
       printf("%d ",costflow());
81
       printf("%d",ans);
82
       return 0;
83
84
```

1.8.3 EK

```
#include < bits / stdc ++.h>
  using namespace std;
3
  const int \max n = 123456789;
4
  struct node {
     int to;//这条边的终点
5
     int cap; // 这条边的流量(是指当前还能流的最大流量,而不是不变量)
6
     int coc;//coc存反向边。由于我使用了vector, 所以coc记录的是data[x][i]中的i。具
7
       体怎么计算反向边下面说。
8
     int cost; // cost 存 一 条 边 的 费 用
  }; // 使用一个结构体存储所有的边以及反向边,所有边都是无向边。
9
  vector<node> data[50005];//data用来存图
10
  int dx[50005], pre1[50005], pre2[50005], incf[50005];
11
12
  int n, m, s, t, ans, maxf;
13 bool inq[50005];
  // dx, inq的意义和spfa中的dist, inq (或 vis)相同, pre1, pre2, incf的用处下面会说。
14
  // n,m,s,t如题目所示, ans是最小费用, maxf是最大流。
15
  void add(int u, int v, int w, int f) {//加一条边的函数, 由u到v连一条流为w, 花费为f
17
     data[u].push_back((node){v, w, data[v].size(), f});
     data[v].push_back((node){u, 0, data[u].size() - 1, -f});//反向边的流要置为0。
18
       因为如果你设成正的,这条路就有可能由终点向起点流,在另一条路上达到最大流,更
       小费用。这显然不合法。
19
  }
20
  bool spfa() {
     fill(dx + 1, dx + n + 1, maxn); // 初始化, 一定别忘了。
21
     queue < int > q;
22
     memset(inq, 0, sizeof(inq));
23
24
     a.push(s):
25
     dx[s] = 0;
     inq[s] = 1; // 以上这些变量, 玩转 spfa的你一定看起来很熟悉 QAQ
26
     incf[s] = maxn; // 那 么 incf 呢? 他 记 录 的 是 一 条 增 广 路 的 最 小 流 量 。 incf[i] 代 表 当 前 增
27
       广路到i为止的最小流量, incf[t]为整条路最小流量。
     //如何理解呢,我们考虑短板效应,最大容量取决于最短木板。增广路亦然,它的最大流
28
       量取决于增广路上流量最小的边。
     while (!q.empty()) {
29
         int now = q.front();
30
         inq[now] = 0;
31
         q.pop(); // 是 不 是 超 熟 悉 的 感 觉 QAQ (只 说 一 下 和 spfa 不 一 样 的 代 码 的 意 思)
32
33
         for (int i = 0; i < data[now].size(); i++) {
34
            node &tmp = data[now][i];
35
            if (tmp.cap > 0 && tmp.cost + dx[now] < dx[tmp.to]) {//有流量才能松弛~
36
                dx[tmp.to] = dx[now] + tmp.cost;//和spfa一样
                incf[tmp.to] = min(incf[now], tmp.cap);//更新增广路的"短板"。
37
                pre1[tmp.to] = now; // pre1[i] 是 这 次 增 广 路 的 i 点 是 由 哪 个 点 流 过 来 的。
38
                pre2[tmp.to] = i;//pre2[i]是这次增广路的i点是由pre1[i]的编号为多少
39
                 的边流过来的。
                if(!inq[tmp.to]) {//QAQ spfa, spfa你还活着!
40
```

```
41
                   inq[tmp.to] = 1;
42
                   q.push(tmp.to);
43
               }
44
            }
45
        }
46
     }
     return dx[t]!= maxn;//如果dx[t]被更过了,意味着一定不是最大流!返回1,找增广
47
       路去!
48
  void update() {//更新答案和图程度的能力。
49
     int x = t; // 首先把当前点置为终点,我们沿着终点由增广路反向走到起点~
50
     while (x != s) {//x到s的时候停止~
51
        int y = pre1[x]; // 使用我们先前维护的数组来反向走增广路。
52
        int i = pre2[x];
53
        data[y][i]. cap -= incf[t]; // 所有增广路上的边一律减去可扩最大容量!
54
55
        data[x][data[y][i].coc].cap += incf[t]; // 反向边, 一律增加这个容量。
        //如果说为什么要弄反向边,我个人的理解是:增广一条增广路费用最优,然而最大
56
          流量未必。
         // 如果我们反向建边,可以由终点流向起点,这样其实意味着,当年这条边选择的流
57
          减少一点。
        //不过我们未必要理性理解这个事,既然都建了反向边了,那就和正向边反着来呗~
58
59
        x = y; //  迭代一下
60
     maxf += incf[t]; // 更新最大流
61
     ans += dx[t] * incf[t];//更新费用
62
63
 }
  void EK() {
64
     while (spfa()) {
65
66
        update();
67
     }
68
69
  int main() {
70
     cin >> n >> m >> s >> t;
     for (int i = 1; i \le m; i++) {
71
        int u, v, w, f;
72
        cin >> u >> v >> w >> f;
73
        add(u, v, w, f);//按照题意建图
74
75
     EK(); // 最小费用流主体
76
77
     cout << maxf << " " << ans << endl;</pre>
78
     return 0;
79
 }
```

1.9 二分图匹配

1.9.1 匈牙利算法

```
1 #include <bits/stdc++.h>
  using namespace std;
  typedef long long 11;
  typedef pair<int, int> P;
  const int maxn = 1e3+5;
  const int inf = 0x3f3f3f3f;
7
  const int mod = 1e9+7;
8
9
10
  int mp[maxn][maxn];
  int use[maxn], link[maxn];
11
12
  int n, m, e, ans;
13
  int found(int u)
14
15
  {
16
       for(int i=1;i<=m;i++)
17
      {
18
           if(!use[i] && mp[u][i])
```

```
19
            {
20
                 use[i] = 1;
21
                 if(!link[i] || found(link[i]))
22
23
                      link[i] = u;
24
                      return 1;
25
                 }
26
            }
27
28
       return 0;
29
30
31
   int main()
32
       scanf("%d%d%d", &n, &m, &e);
33
34
       for(int i=1;i<=e;i++)
35
36
            int u, v;
            scanf("%d%d", &u, &v);
37
            if(u \le n \&\& v \le m)
38
39
40
                 mp[u][v] = 1;
41
            }
42
       for(int i=1;i<=n;i++)
43
44
            memset(use, 0, sizeof(use));
45
46
            if(found(i))ans++;
47
48
       printf("%d\n", ans);
49
       return 0;
50
```

1.10 最小生成树

1.10.1 Prim

```
const int MAX = 10000007;
1
2
  int dis[5002], map[5002][5002], mark[5002];
3
  int prim(int n)
4
  {
      for(int i=1; i <= n; i++) // 初始化每个点到生成树中点的距离
5
6
      {
7
          dis[i]=map[1][i];
8
          mark[i]=0;
9
      }
10
      dis[1]=0;
      mark[1]=1; //1这个点加入生成树中。
11
      int sum=0;
12
      for(int i=1;i<n;i++) //枚 举n-1条 边
13
14
15
          int sta=-1, Min=MAX;
16
          for (int j=1; j<=n; j++) // 找 不 在 生 成 树 中 的 点 中 距 离 生 成 树 中 的 点 长 度 最 小 的
17
          {
18
              if(!mark[j]&&dis[j]<Min)</pre>
19
              {
20
                  Min=dis[j];
21
                  sta=j;
22
              }
23
          }
          if(sta==-1) return -1; // 没找到可以可以联通的路
24
                        //新找到的点加入生成树
25
          mark[sta]=1;
26
          sum += Min;
          for(int j=1; j<=n; j++) // 更新树外的点到树中的点的距离
27
28
          {
```

```
if(!mark[j]&&dis[j]>map[sta][j])
29
30
                  dis[j]=map[sta][j];
31
             }
32
33
        return sum;
34
35
36
   int main()
37
38
        int n,m;
39
        cin >> n >> m;
        for(int i=1;i<=n;i++)
40
41
             for(int j=1;j<=n;j++)
42
43
44
                  map[i][j]=MAX;
45
             }
46
47
        for(int i=1;i<=m;i++)
48
        {
49
             int a,b,c;
50
             cin>>a>>b>>c;
             if(c<map[a][b])</pre>
51
52
                  map[a][b]=c;
53
                  map[b][a]=c;
54
55
             }
56
        }
57
        int ans = prim(n);
58
        if(ans==-1)
59
             cout << "orz" << endl;</pre>
60
        else
61
             cout << ans << end1;</pre>
62
        return 0;
63
```

1.10.2 kruskal

```
1 #include <bits/stdc++.h>
  using namespace std;
  #define N 5005
3
4
  int father[N];
5
  int find(int x)
6
7
  {
8
       int k = x;
9
       while(father[k]!=k)
10
11
           k = father[k];
12
       while(father[x]!=x)
13
14
           int temp = x;
15
           x = father[x];
16
           father[temp] = k;
17
18
       }
19
       return k;
20
21
22
  void join(int a, int b)
23
24
       int f1, f2;
       f1 = find(a);
25
       f2 = find(b);
26
27
       father[f1] = f2;
```

```
28 }
29
30
   struct edge
31
32
       int node1, node2;
33
       int cost;
34
   };
35
36
   vector < edge > edges;
37
38
  bool cmp(edge a, edge b)
39
       return a.cost > b.cost;
40
41
42
43
  int kruskal(int n)
44
45
       sort(edges.begin(), edges.end(), cmp);
       for (int i=1; i <= n; i++)
46
47
            father[i] = i;
48
       int sum = 0;
49
       while(n!=1 && !edges.empty())
50
            edge temp = edges[edges.size()-1];
51
52
            edges.pop_back();
            if(find(temp.node1)!=find(temp.node2))
53
54
                 sum += temp.cost;
55
56
57
                 join(temp.node1, temp.node2);
58
            }
59
       if(n!=1 && edges.empty())
60
61
            sum = -1;
       return sum;
62
63
64
65
   int main()
66
67
       int n,m;
68
       int result;
69
       cin >> n >> m;
70
       for(int i=1; i <= m; i++)
71
72
            int a,b,c;
73
            cin>>a>>b>>c;
74
            edge t;
75
            t.node1=a;t.node2=b;t.cost=c;
76
            edges.push_back(t);
77
       result = kruskal(n);
78
79
       if(result == -1)
            cout << " orz " << end1;
80
81
       else
82
            cout << result << endl;</pre>
83
        return 0;
84
```

1.11 次小生成树-POJ1679

```
#include < bits / stdc ++.h>
using namespace std;
typedef long long 11;
#define inf 0x3f3f3f3f
typedef pair < int, int > P;
```

```
6 const int maxn = 110;
  const 11 \mod = 1e9+7;
7
8
9
  int n, m;
10
  int g[maxn][maxn];
  int d[maxn], v[maxn], maxd[maxn][maxn], pre[maxn], mst[maxn][maxn];
11
  int ans = 0;
12
13
  void prim()
14
15
  {
       for(int i=1;i<=n;i++)
16
17
       {
           v[i] = 0; d[i] = inf; pre[i] = 1;
18
19
       memset(maxd, 0, sizeof(maxd));
20
21
       memset(mst, 0, sizeof(mst));
22
       ans = 0;
23
       priority_queue <P, vector <P>, greater <P> > q;
       d[1] = 0; q.push(P(0, 1));
24
25
       while(!q.empty())
26
27
           P p = q.top(); q.pop();
28
           int u = p.second;
           if(v[u]) continue;
29
30
           v[u] = 1; ans += d[u];
           mst[pre[u]][u] = mst[u][pre[u]] = 1;
31
32
           for(int i=1; i<=n;i++)
33
           {
34
                if(v[i] \&\& g[u][i] < inf)
35
                    maxd[u][i] = maxd[i][u] = max(maxd[pre[u]][u], d[u]);
36
                if(d[i] > g[u][i])
37
                {
                    d[i] = g[u][i];
38
                     pre[i] = u;
39
                     q.push(P(d[i], i));
40
                }
41
42
           }
43
       }
44
  }
45
  int main()
46
47
48
       int t;
49
       cin>>t;
50
       while (t--)
51
52
           memset(g, inf, sizeof(g));
           cin >> n >> m;
53
           while (m--)
54
55
           {
                int a, b, c;
56
57
                cin>>a>>b>>c;
58
                g[a][b] = g[b][a] = c;
59
           }
60
           prim();
           int flag = 0;
61
           for(int i=1;i<=n&&!flag;i++)</pre>
62
63
                for(int j=1; j<=n; j++)
64
65
                     if(mst[i][j] || g[i][j]==inf)continue;
66
                     if(g[i][j] == maxd[i][j])
67
68
                     {
69
                         flag = 1;
70
                         break;
71
                     }
```

1.12 拓扑排序

```
1 #include <bits/stdc++.h>
2
  using namespace std;
3
  const int maxn=30;
5
  int head[maxn], ip, indegree[maxn];
6
  int n,m,seq[maxn];
7
  struct note
8
9
10
       int v,next;
  }edge[maxn*maxn];
11
12
  void init()
13
14
15
       memset(head, -1, sizeof(head));
16
       ip=0;
17
  }
18
  void addedge(int u,int v)
19
20
21
       edge[ip].v=v,edge[ip].next=head[u],head[u]=ip++;
22
23
24
  int topo()
25
26
       queue < int > q;
27
       int indeg[maxn];
       for(int i=0; i<n; i++)
28
29
       {
30
           indeg[i]=indegree[i];
           if(indeg[i]==0)
31
32
           q.push(i);
33
       }
34
       int k=0;
35
       bool res=false;
36
       while(!q.empty())
37
       {
           if(q.size()!=1)res=true;
38
39
           int u=q.front();
40
           q.pop();
41
           seq[k++]=u;
           for(int i=head[u]; i!=-1; i=edge[i].next)
42
43
44
                int v=edge[i].v;
45
                indeg[v]--;
46
                if(indeg[v]==0)
47
                     q.push(v);
48
           }
49
       if (k < n) return -1; // no
50
       if(res)return 0;// more
51
       return 1; // only
52
53
  }
```

1.13 Floyd 找最小环

```
1 const int INF = 0x3f3f3f3f3f;
  const int MAXN = 110;
3
                                n: 节点个数, m: 边的个数
                            //
4
  int n, m;
  int g[MAXN][MAXN];
                            //
                                无 向 图
5
  int dist[MAXN][MAXN];
                            //
                                最短路径
  int r[MAXN][MAXN];
                            //
                               r[i][j]: i到j的最短路径的第一步
7
  int out[MAXN], ct;
                            //
                               记录最小环
9
  int solve(int i, int j, int k)
10
      // 记录最小环
11
      ct = 0;
12
13
      while (j != i)
14
      {
15
           out[ct++] = j;
16
           j = r[i][j];
17
      }
18
      out[ct++] = i;
19
      out[ct++] = k;
20
      return 0;
21
22
  int main()
23
24
25
      while (scanf("%d%d", &n, &m) != EOF)
26
      {
           int i, j, k;
27
28
           for (i = 0; i < n; i++)
29
           {
30
               for (j = 0; j < n; j++)
31
                   g[i][j] = INF;
32
33
                   r[i][j] = i;
34
               }
35
36
           for (i = 0; i < m; i++)
37
               int x, y, 1;
scanf("%d%d%d", &x, &y, &1);
38
39
40
               --x;
41
               --y;
               if (1 < g[x][y])
42
43
                   g[x][y] = g[y][x] = 1;
44
45
               }
46
           }
47
           memmove(dist, g, sizeof(dist));
                                             最小环
48
           int Min = INF;
                                         //
49
           for (k = 0; k < n; k++)
50
                                            Floyd
           {
               for (i = 0; i < k; i++) // 一个环中的最大结点为k(编号最大)
51
52
                   if (g[k][i] < INF)
53
54
                   {
                        for (j = i + 1; j < k; j++)
55
56
                        {
                            if (dist[i][j] < INF \&\& g[k][j] < INF \&\& Min > dist[i][j]
57
                              + g[k][i] + g[k][j])
58
                            {
59
                                Min = dist[i][j] + g[k][i] + g[k][j];
60
                                solve(i, j, k);
                                                 // 记录最小环
61
                            }
62
                        }
                   }
63
```

```
64
                 for (i = 0; i < n; i++)
65
66
67
                      if (dist[i][k] < INF)</pre>
68
                          for (j = 0; j < n; j++)
69
70
71
                               if (dist[k][j] < INF \&\& dist[i][j] > dist[i][k]+dist[k][j]
                                 ])
72
                               {
                                    dist[i][j] = dist[i][k] + dist[k][j];
73
                                    r[i][j] = r[k][j];
74
75
76
                          }
                     }
77
78
                 }
79
            }
            if (Min < INF)
80
81
                 for (ct--; ct \ge 0; ct--)
82
83
                 {
                      printf("%d", out[ct] + 1);
84
85
                      if (ct)
86
                          printf(" ");
87
88
                      }
89
                 }
90
            }
91
            else
92
            {
93
                 printf("No solution.");
94
            printf("\n");
95
96
97
       return 0;
98
```

1.14 生成树计数 (基尔霍夫矩阵) BZOJ1002

```
1 / / f[i] = 3 * f[i-1] - f[i-2] + 2
2 // 需要高精度
3 #include <bits/stdc++.h>
4 using namespace std;
  typedef long long 11;
  typedef unsigned long long ull;
  typedef pair<int, int> P;
  const int maxn = 1e6+5;
8
  const int inf = 0x3f3f3f3f;
10
  const int mod = 1e9+7;
  const double PI = acos(-1);
11
12
13
  struct node
14
15
       int a[101], len;
16
17
  node f[101];
18
  node mul(node a, int k)
19
20
       for(int i=1;i<=a.len;i++)
21
22
           a.a[i]*=k;
23
       for(int i=1;i<=a.len;i++)
24
       {
25
           a.a[i+1]+=a.a[i]/10;
           a.a[i]%=10;
```

```
27
       while(a.a[a.len+1]!=0)a.len++;
28
29
       return a;
30
31
  node sub(node a, node b)
32
33
34
       a.a[1] += 2;
35
       int j = 1;
36
       while(a.a[j]>=10)
37
            a.a[j]%=10;
38
39
            a.a[j+1]++;
40
            j++;
41
42
       for(int i=1;i<=a.len;i++)
43
            a.a[i] -= b.a[i];
44
            if(a.a[i]<0)
45
46
            {
47
                a.a[i]+=10;
48
                a.a[i+1]--;
49
            }
50
       while(a.a[a.len]==0)a.len--;
51
       return a;
52
53
  }
54
55
  int main()
56
  {
57
       f[1].a[1] = 1; f[2].a[1] = 5;
58
       f[1].len = f[2].len = 1;
59
       int n;
       scanf("%d", &n);
60
       for(int i=3;i<=n;i++)
61
            f[i] = sub(mul(f[i-1], 3), f[i-2]);
62
       for (int i=f[n].len; i>0; i--)
63
            printf("%d", f[n].a[i]);
64
       printf("\n");
65
66
       return 0;
67
  }
```

1.15 悬线法 BZOJ3039

```
1 // 悬线法求最大子矩阵
  // 给定n*m的矩阵, 含F和R, 求最大的全F矩阵的面积×3
3
  #include <bits/stdc++.h>
4
  using namespace std;
5
6
  typedef long long 11;
7
  typedef unsigned long long ull;
8
  typedef pair<int, int> P;
  const int maxn = 1e3+5;
10
  const int inf = 0x3f3f3f3f;
  const ll INF = 0x3f3f3f3f3f3f3f3f3f;
  const int mod = 1e9+7;
12
  const double PI = acos(-1);
13
14
15
16 char mp[maxn][maxn];
17 int l[maxn][maxn], r[maxn][maxn], h[maxn][maxn];
18 int n, m;
19
20 int main()
21 {
```

```
22
        ios::sync_with_stdio(0);
23
       cin >> n >> m;
24
       for(int i=1; i <= n; i++)
25
26
            for (int j=1; j \le m; j++)
27
            {
28
                 cin >> mp[i][j];
29
30
       }
31
       for(int i=1; i <= n; i++)
32
33
            int tmp = 1;
34
            for(int j=1; j<=m; j++)
35
                 if(mp[i][j] == 'F')
36
37
                 {
38
                     1[i][j] = tmp;
                      if(mp[i-1][j]=='F')
39
                          l[i][j] = max(l[i][j], l[i-1][j]);
40
41
42
                 else tmp = j+1;
43
            }
44
       for(int i=1; i <= n; i++)
45
46
47
            int tmp = m;
            for (int j=m; j>=1; j--)
48
49
50
                 if(mp[i][j]=='F')
51
                 {
52
                      r[i][j] = tmp;
                      if(mp[i-1][j] == 'F')
53
                          r[i][j] = min(r[i][j], r[i-1][j]);
54
55
                 else tmp = j-1;
56
            }
57
58
       }
       for(int i=1;i<=n;i++)
59
60
            for (int j=1; j \le m; j++)
61
62
            {
63
                 if(mp[i][j] == 'F')
64
                 h[i][j] = h[i-1][j]+1;
65
            }
66
       }
       int ans = 0;
67
       for(int i=1;i<=n;i++)
68
69
70
            for(int j=1;j<=m;j++)
71
            {
72
                 if(mp[i][j]=='F')
73
                      ans = \max(ans, h[i][j]*(r[i][j]-l[i][j]+1));
74
75
76
       cout <<3*ans << end1;</pre>
77
       return 0;
78
  }
```

1.16 欧拉回路

```
int head[N];
struct edgenode{
  int to;
  int next;
}tu[N];
```

```
6 int ans[maxn]; ///maxn 是 边 的 最 大 数 量
7
  bool vis[maxn];
  int bj=0;
8
9
  void dfs(int now)
10
       for(int i=head[now]; i!=-1; i=tu[i].next)
11
12
       if(!vis[i])
13
       {
           vis[i]=1;
14
           vis[i^1]=1; /// 这里是求欧拉回路,这一题用不着写这句,因为可以走双向
15
16
           dfs(tu[i].to);
           ans[bj++]=i;///等于i是记录边, 等于tu[i].to是记录点
17
18
19
20
  // 或者
21
22
23
  struct Edge
24
25
       int v;
26
       bool vis;
27
       Edge(){}
       Edge(int v,bool vis):v(v),vis(vis){}
28
  }edges[maxm*2];
29
  vector < Edge > G[maxn];
30
  vector < int > ans;
31
  void init()
32
33
34
       for (int i = 0; i \le n; i++)
35
           G[i].clear();
36
37
  void euler(int u)
38
       for (int i = 0; i < G[u].size(); i++)
39
40
           Edge &e = G[u][i];
41
           if (!e.vis)
42
43
           {
               e.vis=1;
44
45
               euler(e.v);
46
           }
47
       }
48
       ans.push_back(u);
49
       //printf("%d\n",u);
50
```

2 数据结构

2.1 并查集

```
1 int pre[maxn];
2
3
  int Find(int x)
4
  {
5
       int p, tmp;
6
       p = x;
7
       while(x!=pre[x])
8
            x=pre[x];
       while(p!=x)
9
10
       {
11
            tmp=pre[x];
12
            pre[x]=x;
13
            p=tmp;
14
       }
```

```
15
       return x;
16
  }
17
  void join(int x, int y)
18
19
20
       int fx=Find(x);
       int fy=Find(y);
21
22
       if(fx!=fy)
23
            pre[fx]=fy;
24
  }
```

2.2 带权并查集

2.2.1 BZOJ1202

```
1 \\ 给出n个月份,每个月份都有营业额
  \\ m个判断,表示区间[1, r]的和为w
  \\ 判断是否有矛盾
3
  #include < bits / stdc ++.h>
  using namespace std;
5
  typedef long long ll;
typedef unsigned long long ull;
6
  typedef pair<int, int> P;
8
  const int maxn = 1e3+5;
9
  const int inf = 0x3f3f3f3f;
10
  const 11 INF = 0x3f3f3f3f3f3f3f3f;
11
  const int mod = 1e9+7;
  const double PI = acos(-1);
13
14
15
16
  int n, m;
17
  int fa[105], d[105];
19
  int find(int x)
20
       if(fa[x]==x)return x;
21
22
       int xx = find(fa[x]);
       d[x] += d[fa[x]];
23
       return fa[x] = xx;
24
25
  }
26
  int main()
27
28
       int t;
       scanf("%d", &t);
29
       while (t--)
30
31
           scanf("%d%d", &n, &m);
memset(d, 0, sizeof(d));
32
33
           for(int i=0;i<=n;i++) fa[i] = i;
34
           int f = 1;
35
           while(m--)
36
37
           {
38
                int s, t ,w;
39
                scanf("%d%d%d", &s, &t, &w);
40
41
                int fas = find(s), fat = find(t);
42
                if(fas != fat)
43
                {
                    fa[fat] = fas;
44
                    d[fat] = d[s]+w-d[t];
45
46
                }
                else if(d[t]-d[s]!=w)f=0;
47
48
49
           if(f)printf("true\n");
           else printf("false\n");
50
```

```
51 }
52 return 0;
53 }
```

2.3 ST 表

2.3.1 区间最大值

```
int st[maxn][20];
2
  void st_init()
3
  {
      for(int i=1;i<=n;i++) st[i][0]=a[i]; // 长度为1的区间最小值党委就为自身
4
5
      // 预处理从i开始, 长度为2^j的区间
6
      for (int j=1; (1<<j)<=n; j++)
7
          for (int i=1; i+(1<< j)-1<=n; i++)
8
              st[i][j]=max(st[i][j-1], st[i+(1<<(j-1))][j-1]);
9
  }
10
  int query(int 1,int r)
11
12
13
      int k=log2(r-l+1);
14
      return min(st[1][k], st[r-(1<< k)+1][k]);
15
```

2.3.2 维护父节点

```
int fa[maxn][21];
void init() {
    // 要初始化fa[i][0],即父节点,这里未初始化
    // fa[i][j]表示从i向上走2^j步所能到的的结点
    for (int i = 1; i <= 20; i++)
        for (int j = 1; j <= n; j++)
        fa[j][i] = fa[fa[j][i - 1]][i - 1];

8 }
```

2.4 树状数组

```
1 /*
     INIT: ar[]置为0;
2
  *
     CALL: add(i, v): 将i点的值加v; sum(i): 求[1, i]的和;
3
  *
4
  */
5
  #define typev int
                        //
                           type of res
6
  const int N = 1010;
7
  typev ar[N];
                        //
                            index: 1 ~ N
8
  int lowb(int t)
9
10
       return t & (-t);
11
  }
12
13
  void add(int i, typev v)
14
15
       for (; i < N; ar[i] += v, i += lowb(i));
16
       return ;
17
  }
18
19
  typev sum(int i)
20
21
       typev s = 0;
22
       for (; i > 0; s += ar[i], i -= lowb(i));
23
       return s;
24
  }
```

2.5 线段树

2.5.1 单点修改 + 区间求和 HDU1166

```
#include < bits / stdc ++.h>
  using namespace std;
   typedef long long ll;
5
   int num[50005];
  ll tree[4 * 50000 + 5];
6
  void build(int p, int l, int r)
8
9
   {
       if(1 == r)
10
11
       {
            tree[p] = num[1];
12
13
            return ;
14
       }
15
       else
16
       {
            int mid = (r+1) >> 1;
17
            build(p<<1, 1, mid);
18
            build(p << 1 | 1, mid + 1, r);
19
20
            tree[p] = tree[p<<1] + tree[p<<1|1];</pre>
21
       }
22
23
24
   void add(int p, int l, int r, int ind, int v)
25
       if(1 == r)
26
27
       {
28
            tree[p] += v;
29
            return ;
       }
30
31
       else
32
       {
            int mid = (r+1) \gg 1;
33
34
            if(ind \leq mid) add(p\leq1, 1, mid, ind, v);
35
            else add(p << 1|1, mid+1, r, ind, v);
36
            tree[p] = tree[p<<1] + tree[p<<1|1];
37
       }
38
39
  ll query(int p, int l, int r, int x, int y)
40
41
       if(x \le 1 \&\& r \le y)
42
43
       {
44
            return tree[p];
45
       }
46
       else
47
       {
            int mid = (l+r) \gg 1;
48
            11 \text{ ans} = 0;
49
            if(x <= mid)</pre>
50
                 ans += query(p<<1, 1, mid, x, y);
51
            if(mid < y)
52
                 ans += query(p << 1|1, mid+1, r, x, y);
53
54
            return ans;
55
       }
56
57
58
  int main()
59
60
       int t;
61
       scanf("%d", &t);
62
       for(int i=1;i<=t;i++)
```

```
63
        {
64
              int n;
              scanf("%d", &n);
65
66
              for(int j=1; j \le n; j++)
                   scanf("%d", &num[j]);
67
              build(1, 1, n);
68
              string s;
69
              printf("Case %d:\n", i);
70
71
              while(cin>>s && s[0] != 'E')
72
              {
                   if(s[0] == 'Q')
73
74
                        int x, y;
75
                        scanf("%d%d", &x, &y);
76
                        printf("%lld\n", query(1, 1, n, x, y));
77
78
                   }
79
                   else if(s[0] == 'A')
80
                   {
                        int x, y;
81
                        scanf("%d%d", &x, &y);
82
                        add(1, 1, n, x, y);
83
                   }
85
                   else
86
                   {
                        int x, y;
87
                        scanf("%d%d", &x, &y);
88
                        \mathsf{add}\,(\mathsf{1}\,,\;\;\mathsf{1}\,,\;\;\mathsf{n}\,,\;\;\mathsf{x}\,,\;\;-\mathsf{y}\,)\,;
89
90
                   }
91
              }
92
93
        return 0;
94
```

2.5.2 区间修改 + 区间求和 POJ3465

```
#include < iostream >
  using namespace std;
  typedef long long 11;
  ll num[100005];
  ll tree[4 * 100000 + 5];
  ll lazy[4 * 100000 + 5]={0};
6
7
  int n,m;
  void build(int p, int l, int r)
8
9
10
       if(1 == r)
11
       tree[p] = num[1];
12
       else
13
           int mid = (l+r) \gg 1;
14
15
           build(p<<1, 1, mid);</pre>
16
           build(p<<1|1, mid+1, r);
           tree[p] = tree[p << 1] + tree[p << 1|1];
17
       }
18
19
20
  void pushdown(int p, int l, int r)
21
22
23
       if(lazy[p])
24
       {
25
            lazy[p<<1] += lazy[p];</pre>
26
           lazy[p<<1|1] += lazy[p];</pre>
           tree[p << 1] += lazy[p] * (((l+r)>> 1) - l + 1);
27
           tree[p << 1|1] += lazy[p] * (r - ((l+r)>>1));
28
29
           lazy[p] = 0;
30
       }
```

```
31 }
32
   void add(int p, int l, int r, int x, int y, ll v)
33
34
35
       if(x \le 1 \&\& r \le y)
36
       {
            lazy[p] += v;
37
38
            tree[p] += v * (r-l+1);
39
            return ;
40
       }
41
       else
42
       {
            int mid = (l+r) \gg 1;
43
44
            pushdown(p, 1, r);
            if(x <= mid)</pre>
45
46
                 add(p << 1, 1, mid, x, y, v);
47
            if(y > mid)
48
                 add(p << 1|1, mid+1, r, x, y, v);
            tree[p] = tree[p<<1] + tree[p<<1|1];</pre>
49
50
       }
51
  }
52
  11 query(int p, int l, int r, int x, int y)
53
54
       if(x <= 1 && r <= y)
55
56
            return tree[p];
57
58
       }
59
       else
60
       {
61
            int mid = (l+r) \gg 1;
62
            11 \text{ ans} = 0;
63
            pushdown(p, 1, r);
64
            if(x <= mid)</pre>
                 ans += query(p<<1, 1, mid, x, y);
65
66
            if(y > mid)
                 ans += query(p <<1|1, mid+1, r, x, y);
67
68
            return ans;
69
       }
70
  }
71
72
  int main()
73
74
       cin >> n >> m;
75
       for(int i=1;i<=n;i++)
76
       cin>>num[i];
77
       build(1, 1, n);
78
       for(int i=1;i<=m;i++)
79
       {
80
            char a;
            cin>>a;
81
82
            if(a == 'Q')
83
            {
84
                 int x, y;
85
                 cin >> x >> y;
                 cout << query(1, 1, n, x, y) << endl;</pre>
86
            }
87
88
            else
89
            {
                 int x, y;
90
91
                 11 c;
                 cin>>x>>y>>c;
92
                 add(1, 1, n, x, y, c);
93
94
            }
95
96
       return 0;
```

97 }

2.5.3 单点修改 + 区间最值 HDU1754

```
1 #include <bits/stdc++.h>
   using namespace std;
   typedef long long 11;
   int n,m;
5
6
  int num[200005];
  int tree[200000 * 4 + 5];
7
8
   void build(int p, int 1, int r)
9
10
       if(1 == r)
11
12
       {
13
            tree[p] = num[1];
14
            return ;
15
       }
16
       else
17
       {
18
            int mid = (1+r) \gg 1;
            \label{eq:build} \texttt{build(p<<1, l, mid);}
19
20
            build(p << 1 | 1, mid + 1, r);
21
            tree[p] = max(tree[p << 1], tree[p << 1|1]);
22
            return ;
23
       }
24
25
   void update(int p, int l, int r, int ind, int v)
26
27
   {
28
       if(1 == r)
29
       {
30
            tree[p] = v;
31
            return ;
32
       }
33
       else
34
       {
35
            int mid = (l+r) \gg 1;
36
            if(ind <= mid)</pre>
                 update(p << 1, 1, mid, ind, v);
37
38
                 update(p << 1 | 1, mid+1, r, ind, v);
39
40
            tree[p] = max(tree[p << 1], tree[p << 1|1]);
41
       }
42
  }
43
44
  ll query(int p, int l, int r, int x, int y)
45
   {
46
       if(x \le 1 \&\& r \le y)
47
       {
            return tree[p];
48
       }
49
       else
50
51
       {
            int mid = (1+r) >> 1;
52
53
            11 \text{ ans} = -1;
54
            if(x \le mid)
55
                 ans = max(ans, query(p << 1, 1, mid, x, y));
56
            if(y > mid)
57
                 ans = \max(ans, query(p << 1|1, mid+1, r, x, y));
58
            return ans;
59
       }
60
  }
61
```

```
62 int main()
63
       while(scanf("%d %d", &n, &m) != EOF)
64
65
66
            for(int i=1;i<=n;i++)
67
            {
                 scanf("%d", &num[i]);
68
69
            }
70
            build(1, 1, n);
71
            for (int i=1; i <= m; i++)
72
73
                 char a;
                 int x, y;
scanf(" %c%d%d", &a, &x, &y);
74
75
                 if(a == 'Q')
76
77
78
                      printf("%lld\n", query(1, 1, n, x, y));
79
                 }
80
                 else
81
                 {
                      update(1, 1, n, x, y);
82
83
                 }
84
            }
85
86
        return 0;
87
```

2.5.4 区间染色 + 统计 + 离散化 POJ2528

```
1 #include <iostream >
  #include <algorithm >
3
  #include < string.h>
  using namespace std;
 5
  typedef long long 11;
 7
  const int \max n = 20000 + 100;
8
  int tree[maxn << 4];</pre>
  int li[maxn], ri[maxn];
  bool vis[maxn];
  int lisan[maxn*3];
  int ans = 0;
12
13
14
  void init()
15
  {
16
       memset(tree, -1, sizeof(tree));
       memset(vis, 0, sizeof(vis));
17
       ans = 0;
18
19
20
21
   void pushdown(int p)
22
       tree[p << 1] = tree[p << 1|1] = tree[p];
23
       tree[p] = -1;
24
25
26
  void update(int p, int l, int r, int x, int y, int v)
27
28
29
       if(x \le 1 \&\& r \le y)
30
       {
31
            tree[p] = v;
32
            return ;
33
       if(tree[p]!=-1)
34
35
            pushdown(p);
36
       int mid = (1+r) >> 1;
```

```
37
       if(x \le mid)
           update(p<<1, 1, mid, x, y, v);
38
39
       if(y > mid)
40
           update(p<<1|1, mid+1, r, x, y, v);
41
       tree[p] = -1;
42
43
  void query(int p, int l, int r)
44
45
46
       if(tree[p]!=-1)
47
       {
           if(vis[tree[p]]==0)
48
49
           {
                vis[tree[p]] = 1;
50
51
                ans++;
52
           }
53
           return;
54
       if(l==r)return;
55
56
       int mid = (1+r) >> 1;
57
       query(p<<1, 1, mid);
58
       query(p << 1 | 1, mid + 1, r);
59
60
  int main()
61
62
  {
63
       int t;
       cin>>t;
64
       while(t--)
65
66
       {
67
           init();
68
           int n;
69
           cin>>n;
           int tot = 0;
70
           for(int i=0;i<n;i++)
71
72
                cin>>li[i]>>ri[i];
73
                lisan[tot++] = li[i];
74
                lisan[tot++] = ri[i];
75
76
           }
77
           sort(lisan, lisan+tot);
78
           int m = unique(lisan, lisan+tot) - lisan;
79
           int t = m;
80
           for(int i=1;i<t;i++)
81
           {
                if(lisan[i]-lisan[i-1]>1)
82
83
                     lisan[m++] = lisan[i-1]+1;
84
85
                }
86
           }
           sort(lisan, lisan+m);
87
88
           for(int i=0;i<n;i++)
89
           {
90
                int x,y;
                x = lower_bound(lisan, lisan+m, li[i]) - lisan;
91
                y = lower_bound(lisan, lisan+m, ri[i]) - lisan;
92
                update(1, 0, m-1, x, y, i);
93
94
           query(1, 0, m-1);
95
96
           cout << ans << end1;</pre>
97
       }
98
       return 0;
99
  }
```

2.5.5 线段树 + 扫描线求矩阵覆盖周长 POJ1177

```
1|#include < iostream >
  #include < vector >
  #include < algorithm >
  #include < cmath >
  using namespace std;
6
  typedef long long 11;
7
8
  const int maxn = 10005;
9
  vector < int > x;
10
  int getID(int v)
11
       return lower_bound(x.begin(), x.end(), v) - x.begin();
12
13
14
15
  struct Segment
16
       int 1, r;
17
18
       int h;
19
       int flag;
20
   }segment[maxn];
21
  bool cmp(Segment a, Segment b)
22
       return a.h < b.h;</pre>
23
24
25
26
  struct Node
27
  {
28
       int 1,r;
29
       int lr, rr;
30
       int len;
31
       int line;
32
       int s;
33
  }node[maxn <<2];</pre>
34
  void build(int p, int l, int r)
35
36
  {
37
       node[p].l = 1; node[p].r = r;
38
       node[p].line = node[p].len = node[p].s = 0;
39
       node[p].lr = node[p].rr = 0;
40
       if(l==r)return;
41
       int mid = (1+r) >> 1;
42
       build(p<<1, 1, mid);
       build(p << 1 | 1, mid+1, r);
43
44
45
  void pushup(int p)
46
47
48
       if(node[p].s)
49
       {
50
            node[p].line = 1;
51
            node[p].rr = node[p].lr = 1;
52
            node[p].len = x[node[p].r+1] - x[node[p].l];
53
            return;
54
       else if(node[p].1 == node[p].r)
55
56
       {
57
            node[p].lr = node[p].rr = node[p].line = node[p].len = 0;
       }
58
59
       else
60
       {
61
            node[p].lr = node[p << 1].lr;
62
            node[p].rr = node[p << 1|1].rr;
            node[p].len = node[p << 1].len + node[p << 1|1].len;
63
            node[p]. \ line = node[p << 1]. \ line + node[p << 1|1]. \ line - (node[p << 1]. \ rr \& node[p << 1]. \ rr = 0 
64
```

```
p<<1|1].lr);
 65
        }
66
 67
 68
   void update(int p, int l, int r, int v)
69
 70
        if(node[p].r < 1 || node[p].1 > r)return;
        if(1 <= node[p].1 && node[p].r <= r)</pre>
 71
 72
        {
 73
            node[p].s += v;
 74
            pushup(p);
 75
            return;
 76
 77
        update(p<<1, 1, r, v);
        update(p<<1|1, 1, r, v);
 78
 79
        pushup(p);
80
81
   int main()
82
83
   {
        int n;
84
 85
        cin>>n;
86
        for(int i=1;i<=n;i++)
87
            int x1, x2, y1, y2;
88
            cin>>x1>>y1>>x2>>y2;
89
90
            Segment &s1 = segment[2*i-1];
91
            Segment &s2 = segment[i<<1];</pre>
92
            s1.1 = s2.1 = x1;
93
            s1.r = s2.r = x2;
94
            s1.h = y1; s2.h = y2;
            s1.flag = 1; s2.flag = -1;
 95
96
            x.push_back(x1);
97
            x.push_back(x2);
        }
98
        sort(segment+1, segment+2*n+1, cmp);
99
100
        sort(x.begin(), x.end());
101
        x.erase(unique(x.begin(), x.end()), x.end());
102
103
        build(1, 0, x.size()-1);
104
105
106
        11 \text{ ans} = 0;
107
        int last = 0;
108
        for(int i=1;i<=2*n;i++)
109
110
            int l = getID(segment[i].l);
            int r = getID(segment[i].r);
111
            update(1, l, r-1, segment[i].flag);
112
113
            ans += abs(node[1].len - last);
            if(i!=2*n)
114
                 ans += node[1].line * 2 * (segment[i+1].h - segment[i].h);
115
116
            last = node[1].len;
117
118
        cout << ans << end1;</pre>
119
        return 0;
120
```

2.5.6 线段树 + 扫描线求矩阵面积并 HDU1542

```
#include < bits / stdc ++.h>
using namespace std;
typedef long long ll;
const int maxn = 210;
```

```
6 int n;
  vector < double > x;
7
8
  inline int getID(double v)
9
10
       return lower_bound(x.begin(), x.end(), v) - x.begin();
11
12
  struct Segment
13
14
15
       double 1, r;
16
       double h;
       int flag;
17
   }segment[maxn];
18
  bool cmp(Segment a, Segment b)
19
20
21
       return a.h < b.h;
22
  }
23
  struct Node
24
25
  {
       int 1, r;
26
27
       int s;
28
       double len;
  }node[maxn <<2];</pre>
29
30
  void pushup(int p)
31
32
  {
33
       if(node[p].s)
            node[p].len = x[node[p].r+1] - x[node[p].1];
34
35
       else if(node[p].l == node[p].r)
36
            node[p].len = 0;
37
       else
            node[p].len = node[p << 1].len + node[p << 1|1].len;
38
39
40
  void build(int p, int l, int r)
41
42
43
       if(l>r)return;
       node[p].l = 1; node[p].r = r;
44
       node[p].s = 0; node[p].len = 0;
45
46
       if(l==r) return;
47
       int mid = (1+r) >> 1;
48
       build(p<<1, 1, mid);
49
       build(p < < 1 | 1, mid+1, r);
50
       pushup(p);
51
52
   void update(int p, int l, int r, int v)
53
54
55
       if(l>node[p].r || r<node[p].l) return;</pre>
       if(l <= node[p].l && node[p].r <= r)</pre>
56
57
       {
58
            node[p].s += v;
59
            pushup(p);
60
            return;
61
       update(p<<1, 1, r, v);
62
63
       update(p<<1|1, 1, r, v);
       pushup(p);
64
65
66
67
  int main()
68
69
       int cas = 0;
       while(scanf("%d", &n) && n)
70
71
       {
```

```
72
            x.clear();
73
            for(int i=1;i<=n;i++)
74
75
                 double x1, x2, y1, y2;
                 scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
76
77
                 Segment &s1 = segment[2*i-1];
78
                 Segment &s2 = segment[i <<1];
79
                 s1.1=s2.1=x1;
80
                 s1.r = s2.r = x2;
                 s1.h = y1;
81
82
                 s2.h = y2;
83
                 s1.flag=1;
84
                 s2.flag=-1;
85
                 x.push_back(x1);
86
                 x.push_back(x2);
87
            }
88
            sort(segment+1, segment+2*n+1, cmp);
89
90
            sort(x.begin(), x.end());
            x.erase(unique(x.begin(), x.end()), x.end());
91
92
93
            build(1, 0, x.size()-1);
94
            double ans = 0;
            for(int i=1;i<=2*n;i++)
95
96
                 int l=getID(segment[i].1);
97
                 int r=getID(segment[i].r);
98
99
                 update(1, l, r-1, segment[i].flag);
100
                 ans+=node[1].len*(segment[i+1].h - segment[i].h);
101
            printf("Test case #%d\n", ++cas);
102
103
            printf("Total explored area: %.2f\n\n", ans);
104
105
        return 0;
106
```

2.5.7 状压 + 线段树维护区间 26 字母种类 CF1234D

```
* 操作1: 将原pos位置的字母改为字母c
2
3
  * 操作2: 查询区间[1, r]的字母种类数
  */
4
5
6
  #include < bits / stdc ++.h>
7
  using namespace std;
8
  typedef long long 11;
9
  typedef pair<int, int> P;
  const int maxn = 1e5+5;
10
  const int inf = 0x3f3f3f3f;
11
12
  const int mod = 1e9+7;
13
14
  char s[maxn];
  const int N=1e5+5;
15
  struct fun{
16
      bitset <270 > bit;
17
  }tree[N<<2],v[N<<2];</pre>
18
19
20
21
22
  void sett(int l,int r,int rt){ // 建树
23
      if(l==r){
24
           tree[rt].bit=0;
           tree[rt].bit.set(s[1]-'a');
25
26
           return ;
27
      }
```

```
28
       int mid=(1+r)>>1;
29
       sett(l,mid,rt << 1);
30
       sett(mid+1,r,rt<<1|1);
31
       tree[rt].bit=(tree[rt<<1].bit|tree[rt<<1|1].bit);</pre>
32
33
                                         // 下推
34
  void fun(int l,int r,int rt){
35
       if(v[rt].bit.count()){
                                          // 统计 bit 中 1 的个数
            v[rt <<1].bit=v[rt].bit;
36
37
            v[rt < <1 | 1].bit = v[rt].bit;
38
            tree[rt <<1].bit=tree[rt].bit;</pre>
39
            tree[rt <<1|1].bit=tree[rt].bit;</pre>
                                         // 记得清零
40
            v[rt].bit=0;
       }
41
42
43
   void upset(int x,int y,int vel,int l,int r,int rt){
44
45
       if(x \le 1 \&\&y \ge r) {
            v[rt].bit.set(vel);
46
47
            tree[rt].bit=0;
48
            tree[rt].bit.set(vel);
49
            return ;
50
       fun(1,r,rt);
51
       int mid=l+r>>1;
52
       if(x<=mid) upset(x,y,vel,l,mid,rt<<1);
53
54
       if(y>mid) upset(x,y,vel,mid+1,r,rt<<1|1);
       tree[rt].bit=(tree[rt<<1].bit|tree[rt<<1|1].bit);</pre>
55
56
  bitset <270 > bb (0);
57
58
  void findd(int x,int y,int l,int r,int rt){
59
       if(x \le 1 \& y \ge r) {
60
            bb|=tree[rt].bit;
61
            return ;
       }
62
63
64
       fun(1,r,rt);
       int mid=1+r>>1;
65
66
       if(x \le mid)
67
            findd(x,y,1,mid,rt<<1);
       if(y>mid)
68
69
            findd(x,y,mid+1,r,rt<<1|1);
70
71
72
73
  int main()
74
75
       int q;
76
       int op;
77
       int 1, r;
78
       char ch;
79
       int ind;
80
       int n;
       scanf("%s", s+1);
81
82
       n = strlen(s+1);
       scanf("%d", &q);
83
       sett(1, n, 1);
84
85
       while (q--)
86
            scanf("%d", &op);
87
            if(op==1)
88
89
            {
                scanf("%d ", &ind);
90
91
                ch = getchar();
92
                upset(ind, ind, ch-'a', 1, n, 1);
93
            }
```

```
94
             else
95
             {
                 scanf("%d%d", &1, &r);
96
97
                 bb = 0;
98
                 findd(l, r, 1, n, 1);
                 printf("%d\n", bb.count());
99
100
101
        }
102
        return 0;
103
```

2.6 主席树

2.6.1 区间第 K 大

```
1 #include <bits/stdc++.h>
  using namespace std;
  typedef long long 11;
3
4
  #define inf 0x3f3f3f3f
5
  typedef pair<int, int> P;
  const int maxn = 1e6+5;
6
7
  const 11 \mod = 1e9+7;
  // 顶点,代表区间[1, r]中有v个数字
9
10
  struct node
11
     int 1, r, v;
12
  }tree[maxn*20]; // 空间开大一点, 因为要动态开点
13
14
  // edit[i]存的是第i颗权值线段树的根节点在tree数组中的位置
15
  // a 是 存 放 原 数 据 的 数 组 , b 是 离 散 化 后 的 数 组 , tot 表 示 顶 点 的 个 数
16
  int edit[maxn], a[maxn], b[maxn], tot=0;
17
18
19
  // 建树
  int build(int 1, int r)
20
21
     // 这里就是动态开辟新的结点,就是将tot加一
22
     int pos = ++tot;
23
     tree[pos].v = 0; //初始化为0
24
     if(l==r)return pos; //到根节点了, 返回
25
26
     // 二分建树没什么好说的
27
     int mid = (1+r) >> 1;
28
      tree[pos].l = build(l, mid);
      tree[pos].r = build(mid+1, r);
29
     //要返回pos的位置, 因为edit数组要存新根的位置
30
31
     return pos;
32
33
  // 就是插入操作,插入新的元素
34
  // ed 是 前 一 版 本 的 结 点 在 tree 的 位 置 , 更 新 区 间 [1 , r] , 位 置 为 v
35
  int update(int ed, int 1, int r, int v)
36
37
     // 动态开点
38
39
      int pos = ++tot;
40
      // 先将新一版本的当前结点复制为上一个版本的对应结点
      tree[pos] = tree[ed]; tree[pos]. v++; //新一版本的结点的v要加一, 因为对应区间插
41
       入了一个数
     if(l==r) return pos; //到叶子节点了, 返回
42
     // 二分
43
     int mid = (1+r) >> 1;
44
      // 如果更新位置v在左子树中,递归更新即可,在右子树中同理,最后要返回pos
45
46
     if(v<=mid) tree[pos].l = update(tree[ed].l, l, mid, v);</pre>
47
     else tree[pos].r = update(tree[ed].r, mid+1, r, v);
48
      return pos;
49
```

```
50
  // 查询区间[1, r]第k大的数字, pre对应1-1版本的权值线段树的节点位置,
                                                                  ed代表r版本的
51
   权值线段树的节点位置
  int query(int pre, int ed, int 1, int r, int k)
52
53
      // 到叶子节点就返回
54
55
     if(l==r) return l;
     // 二分
56
      int mid = (1+r) >> 1;
57
      // 先计算左子树的数字个数
58
59
      int x = tree[tree[ed].1].v - tree[tree[pre].1].v;
     // 若左子树的数字个数大于等于k,说明我们要找的数字在左子树中,递归走到左子树继
60
      if(x>=k) return query(tree[pre].1, tree[ed].1, 1, mid, k);
61
     // 否则就在右子树中,我们要在右子树中寻找k-x大的数字,递归寻找就好
62
63
     else return query(tree[pre].r, tree[ed].r, mid+1, r, k-x);
64
65
  int main()
66
67
  {
      int n, q; // n个数字, q次询问
68
     scanf ("%d%d", &n, &q); // 这一题 cin/cout 会 被卡// 输入数据,并 copy 到 b 数组中
69
70
     for(int i=1; i <= n; i++)
71
72
         scanf("%d", &a[i]);
73
         b[i] = a[i];
74
75
     }
76
      // 离散化
77
      sort(b+1, b+1+n);
78
      int m = unique(b+1, b+n+1) - b-1;
      // 构建一颗空的权值线段树, edit[0]存放的就是这颗空树的根节点的位置
79
     edit[0] = build(1, m);
80
     // 插入n个数据
81
     for(int i=1;i<=m;i++)
82
83
         // 找到a[i]离散化后对应的位置
84
         a[i] = lower_bound(b+1, b+m+1, a[i]) - b;
85
         // edit[i] 存放第i版本的权值线段树的根节点位置
86
87
         edit[i] = update(edit[i-1], 1, m, a[i]);
88
     }
     // 处理q次询问
89
90
     while (q--)
91
     {
92
         int x, y, k;
         scanf("%d%d%d", &x, &y, &k);
93
         // pos对应的是离散化后的位置, 所以最后输出b[pos]即可
94
         int pos = query(edit[x-1], edit[y], 1, m, k);
95
96
         printf("%d\n", b[pos]);
97
98
      return 0;
99
```

2.6.2 动态区间第 K 大 (主席树套树状数组) ZOJ2112

```
#include < bits / stdc ++.h>
using namespace std;

typedef long long ll;

# define inf 0x3f3f3f3f

typedef pair < int, int > P;

const int maxn = 60010;

const ll mod = 1e9+7;

const int M = 2500010;

int n, m, q, tot;
```

```
11 struct node
12
  {
13
     int 1, r, v;
  }tree[M];
14
15
  // T是主席树, 与上面代码的edit作用一样, S数组就是树状数组,
                                                          use数组是树状数组求和
16
   时用的,记录的是树状数组中哪一些权值线段树要被用来求和
  int T[maxn], S[maxn], use[maxn], a[maxn], b[maxn];
17
18
  // 记录询问, 因为要将修改后的值一起构建主席树, 所以将在线转为离线
19
20
  struct Q
21
     // 对于查询区间[1, r]第k大的询问来说, flag为1
22
     // 若是修改操作,1记录修改的位置,r记录新值,flag为0
23
     int l, r, k, flag;
24
  }query[10010];
25
26
  // 快速找出x在离散化后的位置
27
  int HASH(int x)
28
29
  {
      return lower_bound(b+1, b+m+1, x) - b;
30
31
  }
32
  // 建静态主席树,和之前的一样
33
  int build(int 1, int r)
34
35
  {
36
     int pos = ++tot;
     tree[pos].v = 0;
37
38
      if(l==r) return pos;
39
      int mid = (1+r) >> 1;
40
      tree[pos].l = build(l, mid);
41
      tree[pos].r = build(mid+1, r);
42
     return pos;
43
  }
44
  // 和之前的静态主席树update差不多, 只不过不是直接将tree[pos].v+1,而是加参数v
45
  // 消除影响v就为-1,添加影响v就为1, 其他没什么不同
46
  int update(int ed, int l, int r, int p, int v)
47
48
      int pos = ++tot;
49
      tree[pos] = tree[ed];
50
      tree[pos].v += v;
51
52
     if(l==r) return pos;
53
      int mid = (1+r) >> 1;
54
     if(p<=mid) tree[pos].1 = update(tree[ed].1, 1, mid, p, v);</pre>
     else tree[pos].r = update(tree[ed].r, mid+1, r, p, v);
55
56
     return pos;
57
58
  // 树状数组的lowbit
59
  int lowbit(int x) { return x&(-x); }
60
61
  // 修改操作, 修改位置x的影响
62
  int add(int x, int v)
63
64
     // 找出a[x]在离散化后的位置p
65
     int p = HASH(a[x]);
66
67
     while (x \le n)
68
     {
         // 修 改 操 作 , 对 树 状 数 组 中 相 应 的 权 值 线 段 树 进 行 修 改 , 消 除 影 响 : v=-1,
69
           响 · v=1
         // 因为树状数组中的权值线段树不需要可持久化,所以直接在原版本上修改就可以
70
71
         S[x] = update(S[x], 1, m, p, v);
72
         x += lowbit(x);
73
     }
```

```
74 }
75
   // 树状数组求和,
                     求 左 子 树 包 含 的 数 字 个 数 , 和 静 态 主 席 树 一 样 的 思 想 , 都 是 先 求 左 子 树
76
   int sum(int x)
77
78
79
       int ret = 0;
       while(x)
80
81
       {
           // use[i]记录的就是树状数组中相应的权值线段树的结点位置
82
           // 似乎这一句有一点点难以理解,结合整体代码多看几遍吧
83
           ret += tree[tree[use[x]].1].v;
84
85
           x=lowbit(x);
86
87
       return ret;
88
89
   // 询 问 操 作 。 树 状 数 组 求 [ pre , ed ] 的 和 , tpre 和 ted 是 静 态 主 席 树 的 区 间 左 右 顶 点 的 位 置 ,
90
      区间[1, r]第k大
   int Query(int pre, int ed, int tpre, int ted, int 1, int r, int k)
91
92
   {
93
       if(l==r)return 1;
       int mid = (1+r) >> 1;
94
       // sum 就 是 树 状 数 组 的 求 和 , 相 对 于 静 态 主 席 树 , 多 了 sum 求 修 改 操 作 的 影 响
95
       // tmp为当前左子树的数字个数
96
       int tmp = sum(ed) - sum(pre) + tree[tree[ted].1].v - tree[tree[tpre].1].v;
97
       // 若 左 子 树 的 数 字 个 数 大 于 等 于 k 就 往 左 子 树 继 续 走 , 这 里 和 主 席 树 没 什 么 区 别
98
       if(tmp >= k)
99
100
       {
           // 两个for循环是更新左子树需要用到的树状数组中的权值线段树的位置,有那么一
101
             丢丢难以理解,多看几遍?
102
           for(int i=ed; i; i-=lowbit(i)) use[i] = tree[use[i]].1;
103
           for(int i=pre; i; i-=lowbit(i)) use[i] = tree[use[i]].1;
           return Query(pre, ed, tree[tpre].1, tree[ted].1, 1, mid, k);
104
105
       }
       else
106
107
       {
           // 走右子树同理
108
           for(int i=ed; i; i-=lowbit(i)) use[i] = tree[use[i]].r;
109
           for(int i=pre; i; i-=lowbit(i)) use[i] = tree[use[i]].r;
110
           return Query(pre, ed, tree[tpre].r, tree[ted].r, mid+1, r, k-tmp);
111
112
       }
113
   }
114
115
   int main()
116
       int t; // t个case
117
       scanf("%d", &t);
118
       while (t--)
119
120
       {
121
           scanf("%d%d", &n, &q);
           m = tot = 0; // 记得初始化
122
123
           for(int i=1; i <= n; i++)
124
           {
               scanf("%d", &a[i]);
125
126
               b[++m] = a[i];
127
           char op[5];
128
           for(int i=1;i<=q;i++)
129
130
               scanf("%s", op);
131
               // 查询操作
132
133
               if(op[0]=='Q')
134
               {
                   scanf("%d%d%d", &query[i].1, &query[i].r, &query[i].k);
135
                   query[i].flag = 1;
136
137
               }
```

```
138
               else
139
               {
                    scanf("%d%d", &query[i].1, &query[i].r);
140
                   b[++m] = query[i].r; // 注意要将修改后的新值加入到待离散化的b数组
141
                    query[i].flag = 0;
142
143
               }
144
           // 离散化
145
           sort(b+1, b+m+1);
146
           m = unique(b+1, b+m+1) - b-1;
147
           // 构建主席树
148
           T[0] = build(1, m);
149
150
           for(int i=1; i <= n; i++)
               T[i] = update(T[i-1], 1, m, HASH(a[i]), 1);
151
           // 构建树状数组,每一个节点都是一颗空的权值线段树
152
           for (int i=1; i <= n; i++)
153
               S[i] = T[0];
154
           // 离线处理q个询问
155
           for (int i=1; i \le q; i++)
156
157
           {
               if(query[i].flag) // 查询
158
159
               {
                    // 两 个 for 循 环 标 记 区 间 [1, r] 要 使 用 的 树 状 数 组 中 的 权 值 线 段 树 的 位 置
160
                    for(int j=query[i].r; j; j=lowbit(j)) use[j] = S[j];
161
                    for(int j=query[i].l-1; j; j-=lowbit(j)) use[j] = S[j];
162
                    printf("%d\n", b[Query(query[i].l-1, query[i].r, T[query[i].l-1],
163
                     T[query[i].r], 1, m, query[i].k)]);
               }
164
165
               else
166
               {
167
                    // 先消除影响
168
                    add(query[i].1,
                    // 在原数组中更新值
169
                    a[query[i].1] = query[i].r;
170
                    //添加新值的影响
171
                    add(query[i].1, 1);
172
               }
173
           }
174
175
       }
176
       return 0;
177
```

2.7 Splay

```
1 #include <bits/stdc++.h>
  using namespace std;
  typedef long long 11;
  typedef unsigned long long ull;
  #define inf 0x3f3f3f3f
5
6
  #define INF 0x3f3f3f3f3f3f3f3f3f
7
  #define IO ios::sync_with_stdio(0)
8
  #define DEBUG(x) cout <<"--->" <<(x) <end1;
  typedef pair<int, int> P;
  const 11 \mod = 1e9+7;
10
  const double eps = 1e-9;
12
  const double PI = acos(-1);
  const int maxn = 1e5+5;
13
14
15
16
  struct node {
      int ch[2];
17
18
      int fa, val, cnt, size;
19
  }tree[maxn];
20
21 int tot, root;
```

```
22
23
  void update(int x) {
       tree[x].size = tree[tree[x].ch[0]].size + tree[tree[x].ch[1]].size + tree[x].
24
         cnt:
25
26
27
  int ident(int x, int f) {
28
       return tree[f].ch[1] == x;
29
30
   void connect(int x, int f, int s) {
31
32
       tree[f].ch[s] = x;
33
       tree[x].fa = f;
34
35
  void rotate(int x) {
36
       int f = tree[x].fa, ff = tree[f].fa, k = ident(x, f);
37
38
       connect(tree[x].ch[k^1], f, k);
39
       connect(x, ff, ident(f, ff));
       connect(f, x, k^1);
40
41
       update(f), update(x);
42
43
44
  void splaying(int x, int top) {
45
       if (!top) root = x;
       while (tree[x].fa != top) {
46
           int f = tree[x].fa, ff = tree[f].fa;
47
           if (ff != top) (ident(f, ff) ^{\circ} ident(x, f)) ? rotate(x) : rotate(f);
48
49
           rotate(x);
50
       }
51
52
53
  void newnode(int &now, int fa, int val) {
54
       tree[now = ++tot].val = val;
       tree[now].fa = fa;
55
       tree[now].size = tree[now].cnt = 1;
56
57
58
  void delnode(int x) {
59
60
       splaying(x, 0);
       if (tree[x].cnt > 1) tree[x].cnt--;
61
62
       else if (tree[x].ch[1]) {
63
           int p = tree[x].ch[1];
64
           while (tree[p].ch[0]) p = tree[p].ch[0];
65
           splaying(p, x);
66
           connect(tree[x].ch[0], p, 0);
67
           root = p;
           tree[p].fa = 0;
68
69
           update(root);
70
       } else {
71
           root = tree[x].ch[0], tree[root].fa = 0;
72
73
74
75
   void insert(int val, int &now = root, int fa = 0) {
       if (!now) newnode(now, fa, val), splaying(now, 0);
76
       else if (val < tree[now].val) insert(val, tree[now].ch[0], now);</pre>
77
       else if (val > tree[now].val) insert(val, tree[now].ch[1], now);
78
79
       else tree[now].cnt++, splaying(now, 0);
80
81
82
  void del(int val, int now = root) {
       if (val == tree[now].val) delnode(now);
83
       else if (val < tree[now].val) del(val, tree[now].ch[0]);
84
85
       else del(val, tree[now].ch[1]);
86 }
```

```
87
88
   int getrank(int val) {
89
        int now = root, rank = 1;
        while (now) {
90
             if (tree[now].val == val) {
91
92
                  rank += tree[tree[now].ch[0]].size;
                  splaying(now, 0);
93
94
                  break;
95
             if (val <= tree[now].val)</pre>
96
 97
                  now = tree[now].ch[0];
98
             else {
                  rank += tree[tree[now].ch[0]].size + tree[now].cnt;
99
                  now = tree[now].ch[1];
100
101
        }
102
103
        return rank;
104
105
    int getnum(int rank) {
106
        int now = root;
107
108
        while (now) {
109
             int lsize = tree[tree[now].ch[0]].size;
             if (lsize+1 <= rank && rank <= lsize + tree[now].cnt) {</pre>
110
                  splaying(now, 0);
111
                  break;
112
             } else if (lsize >= rank)
113
                  now = tree[now].ch[0];
114
             else {
115
                  rank -= lsize + tree[now].cnt;
116
117
                  now = tree[now].ch[1];
118
119
120
        return tree[now].val;
121
122
123
   int getpre(int x) {
        return getnum(getrank(x) - 1);
124
125
126
127
   int getnxt(int x) {
128
        return getnum(getrank(x + 1));
129
130
131
   int main() {
132
        int t;
         scanf("%d", &t);
133
        while (t--) \{
134
             int opt, x;
135
             scanf("%d%d", &opt, &x);
136
             if (opt == 1) insert(x);
137
             else if (opt == 2) del(x);
138
             else if (opt == 3) printf("%d\n", getrank(x));
else if (opt == 4) printf("%d\n", getnum(x));
else if (opt == 5) printf("%d\n", getpre(x));
139
140
141
             else printf("%d\n", getnxt(x));
142
143
144
        return 0;
145
```

2.8 Treap

2.8.1 普通 Treap

```
1 #include <bits/stdc++.h>
```

```
2 using namespace std;
 3 typedef long long 11;
 4 typedef unsigned long long ull;
  #define inf 0x3f3f3f3f
 6
  #define INF 0x3f3f3f3f3f3f3f3f3f
7
  #define IO ios::sync_with_stdio(0)
  \texttt{\#define DEBUG(x) cout} <<"--->"<<(x)<<\texttt{endl};
8
9
  typedef pair<int, int> P;
  const 11 \mod = 1e9+7;
10
  const double eps = 1e-9;
11
12
  const double PI = acos(-1);
13
   const int maxn = 2e5+5;
14
15
   struct node {
16
       int son[2];
17
       int val, key;
18
19
       int cnt, size;
20
  } tree[maxn];
21
22
  int tot, root;
23
24
  mt19937 rnd(233);
25
   void pushup(int p) {
26
       tree[p].size = tree[tree[p].son[0]].size + tree[tree[p].son[1]].size + tree[p
27
         1. cnt:
28
29
30
   void rotate(int &p, int d) {
31
       int k = tree[p].son[d^1];
32
       tree[p].son[d^1] = tree[k].son[d];
33
       tree[k].son[d] = p;
34
       pushup(p);
35
       pushup(k);
       p = k;
36
37
38
   void insert(int &p, int x) {
39
40
       if (!p) {
           p = ++tot;
41
           tree[p].size = tree[p].cnt = 1;
42
43
           tree[p].val = x;
44
           tree[p].key = rnd();
45
           return;
46
       if (tree[p].val == x) {
47
           tree[p].size++;
48
49
           tree[p].cnt++;
50
           return:
51
       }
52
       int d = (x > tree[p].val);
53
       insert(tree[p].son[d], x);
54
       if (tree[p].key < tree[tree[p].son[d]].key) rotate(p, d^1);</pre>
55
       pushup(p);
56
57
   void del(int &p, int x) {
58
59
       if (!p) return;
       if (x < tree[p].val) del(tree[p].son[0], x);</pre>
60
61
       else if (x > tree[p].val) del(tree[p].son[1], x);
62
       else {
63
           if (!tree[p].son[0] && !tree[p].son[1]) {
                tree[p].cnt--;
64
65
                tree[p].size--;
                if (tree[p].cnt == 0) p = 0;
66
```

```
} else if (tree[p].son[0] && !tree[p].son[1]) {
 67
 68
                 rotate(p, 1);
 69
                 del(tree[p].son[1], x);
             } else if (!tree[p].son[0] && tree[p].son[1]) {
70
71
                 rotate(p, 0);
 72
                 del(tree[p].son[0], x);
             } else {
 73
 74
                 int d = (tree[tree[p].son[0]].key > tree[tree[p].son[1]].key);
                 rotate(p, d);
 75
                 del(tree[p].son[d], x);
 76
 77
 78
 79
        pushup(p);
 80
81
   int getrank(int p, int x) {
82
        if (!p) return 0;
83
84
        if (tree[p].val == x) return tree[tree[p].son[0]].size + 1;
 85
        else if (tree[p].val < x)</pre>
             return tree[tree[p].son[0]].size + tree[p].cnt + getrank(tree[p].son[1], x
86
              );
        else return getrank(tree[p].son[0], x);
 87
88
89
   int getnum(int p, int x) {
90
91
        if (!p) return 0;
        if (tree[tree[p].son[0]].size >= x) return getnum(tree[p].son[0], x);
92
        else if (tree[tree[p].son[0]].size + tree[p].cnt < x)</pre>
93
             return getnum(tree[p].son[1], x - tree[tree[p].son[0]].size - tree[p].cnt)
94
95
        else return tree[p].val;
 96
97
98
   int getpre(int p, int x) {
99
        if (!p) return -inf;
        if (tree[p].val >= x) return getpre(tree[p].son[0], x);
100
        else return max(tree[p].val, getpre(tree[p].son[1], x));
101
102
103
   int getnxt(int p, int x) {
104
105
        if (!p) return inf;
106
        if (tree[p].val <= x) return getnxt(tree[p].son[1], x);</pre>
107
        else return min(tree[p].val, getnxt(tree[p].son[0], x));
108
109
110
   int main() {
111
        int n;
        scanf("%d", &n);
112
        for (int i=1; i \le n; i++) {
113
             int opt, x;
114
             scanf("%d%d", &opt, &x);
115
116
             if (opt == 1) insert(root, x);
             else if (opt == 2) del(root, x);
117
            else if (opt == 3) printf("%d\n", getrank(root, x));
else if (opt == 4) printf("%d\n", getnum(root, x));
else if (opt == 5) printf("%d\n", getpre(root, x));
118
119
120
             else printf("%d\n", getnxt(root, x));
121
122
        }
123
        return 0;
124
```

2.8.2 无旋 Treap

```
#include < bits / stdc ++.h>
using namespace std;
```

```
3 typedef long long 11;
  typedef unsigned long long ull;
  #define inf 0x3f3f3f3f
  #define INF 0x3f3f3f3f3f3f3f3f3f
  #define IO ios::sync_with_stdio(0)
  \#define DEBUG(x) cout <<"--->" <<(x) << endl;
8
9
  typedef pair<int, int> P;
  const 11 \mod = 1e9+7;
10
  const double eps = 1e-9;
11
  const double PI = acos(-1);
13
  const int maxn = 2e5+5;
14
15
  struct node {
16
       int 1, r;
17
18
       int val, key;
19
       int size;
20
  }tree[maxn];
21
22
  int root, cnt;
  mt19937 rnd(233);
23
24
25
  int x, y, z;
26
  int newnode(int val) {
27
28
       ++cnt;
29
       tree[cnt].val = val;
       tree[cnt].size = 1;
30
31
       tree[cnt].key = rnd();
32
       return cnt;
33
34
35
  void update(int now) {
36
       tree[now].size = tree[tree[now].1].size + tree[tree[now].r].size + 1;
37
38
  void split(int now, int val, int &x, int &y) {
39
       if (!now) x = y = 0;
40
       else {
41
              (tree[now].val <= val) {</pre>
42
43
                x = now;
                split(tree[now].r, val, tree[now].r, y);
44
45
           } else {
46
                y = now;
47
                split(tree[now].1, val, x, tree[now].1);
48
49
           update(now);
50
       }
51
52
  int merge(int x, int y) {
53
       if (!x \mid | !y) return x + y;
54
55
       if (tree[x].key > tree[y].key) {
56
           tree[x].r = merge(tree[x].r, y);
57
           update(x);
58
           return x;
59
       } else {
           tree[y].1 = merge(x, tree[y].1);
60
61
           update(y);
62
           return y;
63
       }
64
66
  void insert(int val) {
67
       split(root, val, x, y);
68
       root = merge(merge(x, newnode(val)), y);
```

```
69 }
70
71
   void del(int val) {
72
        split(root, val, x, z);
        split(x, val-1, x, y);
73
 74
        y = merge(tree[y].1, tree[y].r);
        root = merge(merge(x, y), z);
 75
 76
 77
   int getrank(int val) {
 78
79
        int res;
80
        split(root, val-1, x, y);
 81
        res = tree[x].size + 1;
        root = merge(x, y);
82
 83
        return res;
84
85
86
   int getnum(int rank) {
87
        int now = root;
        while (now) {
88
            if (tree[tree[now].l].size + 1 == rank)
 89
 90
 91
            else if (tree[tree[now].l].size >= rank)
                 now = tree[now].1;
 92
 93
            else {
                 rank -= tree[tree[now].1].size + 1;
 94
                 now = tree[now].r;
95
96
            }
97
98
        return tree[now].val;
99
100
101
   int getpre(int val) {
102
        split(root, val-1, x, y);
103
        int now = x;
        while (tree[now].r)
104
            now = tree[now].r;
105
        int res = tree[now].val;
106
        root = merge(x, y);
107
108
        return res;
109
   }
110
   int getnxt(int val) {
111
112
        split(root, val, x, y);
113
        int now = y;
114
        while (tree[now].1)
115
            now = tree[now].1;
        int res = tree[now].val;
116
        root = merge(x, y);
117
118
        return res;
119
120
121
   int main() {
122
        int t;
        scanf("%d", &t);
123
124
        while (t--) {
            int opt, x;
125
            scanf("%d%d", &opt, &x);
126
            if (opt == 1) insert(x);
127
            else if (opt == 2) del(x);
128
            else if (opt == 3) printf("%d\n", getrank(x));
129
            else if (opt == 4) printf("%d\n", getnum(x));
130
            else if (opt == 5) printf("%d\n", getpre(x));
131
            else printf("%d\n", getnxt(x));
132
133
134
        return 0;
```

135 }

2.8.3 无旋 Treap 维护区间

```
#include < bits / stdc ++.h>
  using namespace std;
  typedef long long 11;
  typedef unsigned long long ull;
  #define inf 0x3f3f3f3f
  #define INF 0x3f3f3f3f3f3f3f3f3f
  #define IO ios::sync_with_stdio(0)
  #define DEBUG(x) cout <<"--->" <<(x) < end1;
8
  typedef pair<int, int> P;
10
  const 11 \mod = 1e9+7;
11
  const double eps = 1e-9;
12
  const double PI = acos(-1);
13
  const int maxn = 1e5+5;
14
15
  struct node {
16
       int 1, r;
17
       int val, key;
18
       int size;
19
       int reverse;
20
  }tree[maxn];
21
  int cnt, root;
22
23
  mt19937 rnd(233);
  int x, y, z;
24
25
26
  int newnode(int val) {
27
       ++cnt;
       tree[cnt].val = val;
28
       tree[cnt].size = 1;
29
30
       tree[cnt].key = rnd();
31
       return cnt;
32
33
  void update(int now) {
34
35
       tree[now].size = tree[tree[now].1].size + tree[tree[now].r].size + 1;
36
37
  void pushdown(int now) {
38
       swap(tree[now].1, tree[now].r);
39
       tree[tree[now].1].reverse ^= 1;
40
41
       tree[tree[now].r].reverse ^= 1;
42
       tree[now].reverse = 0;
43
44
45
  void split(int now, int sz, int &x, int &y) {
46
       if (!now) x = y = 0;
       else {
47
           if (tree[now].reverse) pushdown(now);
48
           if (tree[tree[now].1].size < sz) {</pre>
49
                x = now;
50
                split(tree[now].r, sz - tree[tree[now].1].size - 1, tree[now].r, y);
51
52
           } else {
53
               y = now;
54
                split(tree[now].1, sz, x, tree[now].1);
55
56
           update(now);
57
       }
58
59
  int merge(int x, int y) {
60
61
       if (!x \mid | !y) return x + y;
```

```
62
        if (tree[x].key < tree[y].key) {
63
            if (tree[x].reverse) pushdown(x);
64
            tree[x].r = merge(tree[x].r, y);
65
            update(x);
66
            return x;
67
       } else {
68
            if (tree[y].reverse) pushdown(y);
69
            tree[y].1 = merge(x, tree[y].1);
70
            update(y);
71
            return y;
72
73
74
   void reverse(int 1, int r) {
75
       int x, y, z;
76
77
        split(root, l-1, x, y);
78
        split(y, r-l+1, y, z);
79
        tree[y].reverse ^= 1;
80
        root = merge(merge(x, y), z);
81
82
83
   void print(int now) {
84
       if (!now) return;
       if (tree[now].reverse) pushdown(now);
85
86
        print(tree[now].1);
        printf("%d ", tree[now].val);
87
        print(tree[now].r);
88
89
90
   int main() {
91
       int n, m;
92
        scanf("%d%d", &n, &m);
93
        for (int i=1; i<=n; i++)
94
95
            root = merge(root, newnode(i));
96
       while (m--) {
            int l, r;
97
            scanf("%d%d", &1, &r);
98
99
            reverse(1, r);
100
       }
101
       print(root);
        printf("\n");
102
        return 0;
103
104
```

2.9 替罪羊树

```
1 #include <bits/stdc++.h>
  using namespace std;
3
  typedef long long 11;
4
  typedef unsigned long long ull;
  #define inf 0x3f3f3f3f
5
  #define INF 0x3f3f3f3f3f3f3f3f3f
6
  #define IO ios::sync_with_stdio(0)
8
  #define DEBUG(x) cout <<"--->" <<(x) <end1;
  typedef pair<int, int> P;
9
  const 11 \mod = 1e9+7;
10
  const double eps = 1e-9;
11
  const double PI = acos(-1);
12
  const int maxn = 2e5+5;
13
14
15
16
  struct node {
17
      int 1, r, val;
18
       int size, fact;
19
      int exist;
```

```
20 } tree[maxn];
21
22
  int cnt, root;
  const double alpha = 0.75; // 平衡因子
23
  vector < int > v; // 记录中序遍历的结果
24
25
  // 新建结点
26
  void newnode(int &now, int val) {
27
28
      now = ++cnt;
       tree[now].val = val;
29
30
       tree[now].size = tree[now].fact = 1;
31
       tree[now].exist = 1;
32
33
  // 判断是否不平衡
34
  bool imbalence(int now) {
35
      if (max(tree[tree[now].1].size, tree[tree[now].r].size) > tree[now].size *
36
        alpha
37
               || tree[now].size - tree[now].fact > tree[now].size * 0.3)
38
           return true;
39
       return false;
40
41
  // 对 now 为 根 的 子 树 做 中 序 遍 历
42
  void inorder(int now) {
43
      if (!now) return;
44
      inorder(tree[now].1);
45
46
      if (tree[now].exist) v.push_back(now);
47
      inorder(tree[now].r);
48
49
50
  // 对中序遍历的结果重构
51
  void lift(int 1, int r, int &now) {
52
      if (1 == r) {
53
          now = v[1];
          tree[now].l = tree[now].r = 0;
54
          tree[now].size = tree[now].fact = 1;
55
56
          return;
57
      }
58
      int mid = (1 + r) >> 1;
      while (1 < mid \&\& tree[v[mid]].val == tree[v[mid-1]].val) mid--;
59
60
      now = v[mid];
      if (1 < mid) lift(1, mid-1, tree[now].1);
61
62
      else tree[now].1 = 0;
63
      lift(mid+1, r, tree[now].r);
64
      tree[now].size = tree[tree[now].1].size + tree[tree[now].r].size + 1;
65
      tree[now].fact = tree[tree[now].1].fact + tree[tree[now].r].fact + 1;
66
67
  // 对以now为根的子树重构
68
69
  void rebuild(int &now) {
70
      v.clear();
71
       inorder(now);
      if (v.empty()) {
72
73
          now = 0;
74
          return;
75
76
      lift(0, v.size()-1, now);
77
78
  // 重构完后更新根到now链路上结点的信息
79
  void update(int now, int end) {
80
      if (!now) return;
      if (tree[end].val < tree[now].val) update(tree[now].1, end);</pre>
82
83
      else update(tree[now].r, end);
84
      tree[now].size = tree[tree[now].1].size + tree[tree[now].r].size + 1;
```

```
85 }
86
   // 检查是否需要重构
87
   void check(int &now, int end) {
88
       if (now == end) return;
89
90
       if (imbalence(now)) {
            rebuild(now);
91
92
            update(root, now);
93
            return;
94
95
       if (tree[end].val < tree[now].val) check(tree[now].l, end);</pre>
96
       else check(tree[now].r, end);
97
98
   // 插入
99
   void insert(int &now, int val) {
100
       if (!now) {
101
            newnode(now, val);
102
103
            check(root, now);
104
            return;
105
       }
       tree[now].size++;
106
107
        tree[now].fact++;
       if (val < tree[now].val) insert(tree[now].1, val);</pre>
108
       else insert(tree[now].r, val);
109
110
   }
111
   // 删除
112
113
   void del(int now, int val) {
       if (tree[now].exist && tree[now].val == val) {
114
            tree[now].exist = 0;
115
116
            tree[now].fact--;
117
            check(root, now);
118
            return;
119
       }
        tree[now].fact--;
120
       if (val < tree[now].val) del(tree[now].1, val);</pre>
121
       else del(tree[now].r, val);
122
123
124
   // 根据值获得排名, 即比当前数小的个数+1
125
126
   int getrank(int val) {
127
        int now = root, rank = 1;
128
       while(now) {
129
            if (val <= tree[now].val)</pre>
130
                now = tree[now].1;
131
            else {
                rank += tree[now].exist + tree[tree[now].1].fact;
132
                now = tree[now].r;
133
134
135
136
        return rank;
137
138
   // 根据排名获得值
139
140
   int getnum(int rank) {
141
        int now = root;
       while (now) {
142
            if (tree[now].exist && tree[tree[now].1].fact + tree[now].exist == rank)
143
                break:
144
            else if(tree[tree[now].1].fact >= rank)
145
146
                now = tree[now].1;
            else {
147
                rank -= tree[tree[now].1].fact + tree[now].exist;
148
149
                now = tree[now].r;
150
            }
```

```
151
152
       return tree[now].val;
153
   }
154
   // 找x的前驱, 即小于x且最大的数
155
156
   int getpre(int x) {
       return getnum(getrank(x) - 1);
157
158
   }
159
   // 找x的后继, 即大于x且最小的数
160
161
   int getnext(int x) {
162
       return getnum(getrank(x + 1));
163
164
   int main() {
165
       int t;
166
       scanf("%d", &t);
167
       while (t--) {
168
           int opt, x;
169
           scanf("%d%d", &opt, &x);
170
           if (opt == 1) insert(root, x);
171
172
           else if(opt == 2) del(root, x);
           else if(opt == 3) printf("%d\n", getrank(x));
173
           else if(opt == 4) printf("%d\n", getnum(x));
174
           else if(opt == 5) printf("%d\n", getpre(x));
175
           else printf("%d\n", getnext(x));
176
177
       return 0;
178
179
```

2.10 树链剖分

```
1 #include <bits/stdc++.h>
2
  using namespace std;
  typedef long long ll;
3
  typedef unsigned long long ull;
  typedef pair<int, int> P;
5
  const int maxn = 1e6+5;
  const int inf = 0x3f3f3f3f;
  const 11 INF = 0x3f3f3f3f3f3f3f3f3f;
  const int mod = 1e9+7;
  const double PI = acos(-1);
10
11
12
  #define ls k<<1
  #define rs k << 1|1
14
15
16
  11 \text{ root} = 1;
  struct node
17
18
19
       11 u,v,w,nxt;
20
  }edge[maxn];
  11 head[maxn];
21
22
  11 num;
23
  inline void addedge(ll x, ll y)
24
25
26
       edge[++num].u = x;
       edge[num].v = y;
27
       edge[num].nxt = head[x];
28
       head[x] = num;
29
30
  }
31
32
  struct Tree
33 {
```

```
// f 是 l a z y 标 记 , s i z 是 区 间 大 小
35
      11 1, r, f, w, siz;
  }T[maxn <<2];
36
  // a建线段树用, 即重新排序后的结点顺序
37
  // b记录输入点权, tot[i]记录顶点i子树的大小, idx记录编号, deep深度
38
  // son记录重儿子, top[i]记录i所在链的起点, fa记录父亲
39
  11 a[maxn], b[maxn], tot[maxn], idx[maxn], deep[maxn];
40
  11 son[maxn], top[maxn], fa[maxn], cnt;
41
42
  void update(ll k)
43
44
      T[k].w = T[ls].w + T[rs].w;
45
46
  void pushdown(ll k)
47
48
      if(!T[k].f)return ;
49
50
      T[ls].w += T[k].f * T[ls].siz;
      T[rs].w += T[k].f * T[rs].siz;
51
      T[ls].f += T[k].f;
52
      T[rs].f += T[k].f;
53
      T[k].f = 0;
54
55
  11 dfs1(ll now, ll f, ll dep)
56
57
      deep[now] = dep;
58
       tot[now] = 1;
59
      fa[now] = f;
60
      11 \text{ maxson} = -1;
61
      for(ll i=head[now]; ~i; i=edge[i].nxt)
62
63
64
           if(edge[i].v==f)continue;
65
           tot[now] += dfs1(edge[i].v, now, dep+1);
66
           if(tot[edge[i].v]>maxson)
               maxson=tot[edge[i].v], son[now]=edge[i].v;
67
68
       return tot[now];
69
70
  }
  void dfs2(ll now, ll topf)
71
72
       idx[now] = ++cnt;
73
      a[cnt] = b[now];
74
75
       top[now] = topf;
76
       if(!son[now])return;
77
      dfs2(son[now], topf);
       for(ll i=head[now]; ~i; i=edge[i].nxt)
78
79
           if(!idx[edge[i].v])
80
               dfs2(edge[i].v, edge[i].v);
81
  void build(ll k, ll l, ll r)
82
83
      T[k].1=1; T[k].r=r; T[k].siz=r-1+1;
84
      if(l==r)
85
86
      {
87
           T[k].w = a[1];
88
           return;
89
      11 \text{ mid} = (1+r) >> 1;
90
      build(ls, l, mid);
91
      build(rs, mid+1, r);
92
      update(k);
93
94
  // 单点修改
95
  void pointadd(ll k, ll pos, ll val)
97
  {
98
       if(T[k].l == T[k].r)
99
      {
```

```
100
             T[k].w += val; return;
101
        }
102
        pushdown(k);
        11 \text{ mid} = (T[k].1+T[k].r) >> 1;
103
        if(pos<=mid)pointadd(ls, pos, val);</pre>
104
        if(pos>mid)pointadd(rs, pos, val);
105
106
        update(k);
107
   // 区间修改
108
   void intervaladd(ll k, ll l, ll r, ll val)
109
110
        if(1 \le T[k].1 \&\& T[k].r \le r)
111
112
        {
             T[k].w += T[k].siz*val;
113
             T[k].f += val;
114
             return ;
115
        }
116
117
        pushdown(k);
        11 \text{ mid} = (T[k].1 + T[k].r) >> 1;
118
        if(l<=mid)intervaladd(ls, l, r, val);</pre>
119
        if(r>mid)intervaladd(rs, l, r, val);
120
121
        update(k);
122
   // 区间查询
123
   ll intervalask(ll k, ll l, ll r)
124
125
        11 \text{ ans} = 0;
126
        if(1 \le T[k].1 \&\& T[k].r \le r)
127
128
        {
129
             ans += T[k].w;
130
             return ans;
131
        }
132
        pushdown(k);
        11 \text{ mid} = (T[k].1 + T[k].r) >> 1;
133
        if(l<=mid)ans+=intervalask(ls, l, r);</pre>
134
        if(r>mid)ans+=intervalask(rs, 1, r);
135
        return ans;
136
137
   // 树上x到y的路径权值和
138
139
   11 treesum(ll x, ll y)
140
        11 \text{ ans} = 0;
141
142
        while(top[x]!=top[y])
143
        {
144
             if(deep[top[x]] < deep[top[y]])</pre>
145
                  swap(x, y);
146
             ans += intervalask(1, idx[top[x]], idx[x]);
             x=fa[top[x]];
147
148
149
        if(deep[x]>deep[y])
             swap(x, y);
150
        ans += intervalask(1, idx[x], idx[y]);
151
152
        return ans;
153
154
155
156
   int main()
157
        memset(head, -1, sizeof(head));
158
159
        11 n, m;
        scanf("%11d%11d", &n, &m);
160
161
        for(int i=1; i <= n; i++)
             scanf("%lld", &b[i]);
162
163
        for(int i=1; i < n; i++)
164
        {
165
             11 x, y;
```

```
166
             scanf("%lld%lld", &x, &y);
167
            addedge(x, y); addedge(y, x);
168
        dfs1(root, 0, 1);
169
        dfs2(root, root);
170
        build(1, 1, n);
171
        while (m--)
172
173
        {
            11 opt, x, val;
174
            scanf("%lld",&opt);
175
176
            if(opt == 1)
177
                 scanf("%lld%lld", &x, &val);
178
                 pointadd(1, idx[x], val);
179
            }
180
            else if(opt == 2)
181
182
                 scanf("%lld%lld", &x, &val);
183
                 intervaladd(1, idx[x], idx[x]+tot[x]-1, val);
184
185
            }
            else
186
187
            {
                 scanf("%11d", &x);
188
                 printf("%lld\n", treesum(root, x));
189
190
            }
191
        return 0;
192
193
```

2.11 可持久化数组

```
#include <bits/stdc++.h>
2
  using namespace std;
  typedef long long 11;
3
  typedef unsigned long long ull;
  #define inf 0x3f3f3f3f
5
  #define INF 0x3f3f3f3f3f3f3f3f3f
6
  #define IO ios::sync_with_stdio(0)
  #define DEBUG(x) cout <<"--->" <<(x) << endl;
8
  typedef pair<int, int> P;
  const 11 \mod = 1e9+7;
10
  const double eps = 1e-9;
  const double PI = acos(-1);
  const int maxn = 1e6+5;
13
14
15
  struct node {
16
       int l, r, val;
  tree[maxn * 40];
17
18
19
  int root[maxn], a[maxn];
20
  int cnt;
21
22
  void build(int 1, int r, int &now) {
23
       now = ++cnt;
       if (1 == r) {
24
25
           tree[now].val = a[1];
26
           return;
       }
27
       int mid = (1 + r) >> 1;
28
       build(l, mid, tree[now].l);
29
       build(mid+1, r, tree[now].r);
30
31
  }
32
33
  void modify(int 1, int r, int pre, int &now, int pos, int val) {
      now = ++cnt;
```

```
35
       tree[now] = tree[pre];
36
       if (1 == r) {
37
           tree[now].val = val;
38
           return ;
39
       }
       int mid = (1 + r) >> 1;
40
41
       if (pos <= mid) modify(1, mid, tree[pre].1, tree[now].1, pos, val);</pre>
42
       else modify(mid+1, r, tree[pre].r, tree[now].r, pos, val);
43
44
  int query(int 1, int r, int now, int pos) {
45
       if (l == r) return tree[now].val;
46
       int mid = (1 + r) >> 1;
47
       if (pos <= mid) return query(l, mid, tree[now].l, pos);</pre>
48
       else return query(mid+1, r, tree[now].r, pos);
49
50
51
52
  int main() {
53
       int n, m;
       scanf("%d%d", &n, &m);
54
       for (int i=1; i<=n; i++) scanf("%d", &a[i]);
55
56
       build(1, n, root[0]);
57
       for (int i=1; i <= m; i++) {
58
           int ver, opt;
           scanf("%d%d", &ver, &opt);
59
           if (opt == 1) {
60
                int pos, val;
61
                scanf("%d%d", &pos, &val);\\
62
                modify(1, n, root[ver], root[i], pos, val);
63
64
           } else {
65
                int pos;
                scanf("%d", &pos);
66
                printf("%d\n", query(1, n, root[ver], pos));
67
68
                root[i] = root[ver];
           }
69
70
71
       return 0;
72
```

2.12 可持久化并查集

```
1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long 11;
 4 typedef unsigned long long ull;
  #define inf 0x3f3f3f3f
  #define INF 0x3f3f3f3f3f3f3f3f3f
  #define IO ios::sync_with_stdio(0)
  #define DEBUG(x) cout <<"--->" <<(x) <end1;
8
9
  typedef pair<int, int> P;
10
  const 11 \mod = 1e9+7;
11
  const double eps = 1e-9;
  const double PI = acos(-1);
  const int maxn = 2e5+5;
13
14
  struct node {
15
      int l, r, val;
16
  }tree[maxn * 40 * 2];
17
18
19 int rootfa[maxn], rootdep[maxn];
20 int cnt, tot;
21 int n, m;
  void build(int 1, int r, int &now) {
      now = ++cnt;
```

```
if (1 == r) {
25
26
           tree[now].val = ++tot;
27
           return;
28
      }
29
      int mid = (1 + r) >> 1;
      build(1, mid, tree[now].1);
30
      build(mid+1, r, tree[now].r);
31
32
33
  void modify(int 1, int r, int pre, int &now, int pos, int val) {
34
      now = ++cnt;
35
36
       tree[now] = tree[pre];
       if (1 == r) {
37
           tree[now].val = val;
38
39
           return;
40
      }
      int mid = (1 + r) >> 1;
41
42
      if (pos <= mid) modify(1, mid, tree[pre].1, tree[now].1, pos, val);</pre>
43
      else modify(mid+1, r, tree[pre].r, tree[now].r, pos, val);
44
45
  int query(int 1, int r, int now, int pos) {
47
      if (1 == r) return tree[now].val;
       int mid = (1 + r) >> 1;
48
      if (pos <= mid) return query(1, mid, tree[now].1, pos);</pre>
49
      else return query(mid+1, r, tree[now].r, pos);
50
51
  }
52
53
  int find(int ver, int x) {
54
       int fx = query(1, n, rootfa[ver], x);
55
       return fx == x ? x : find(ver, fx);
56
57
58
  void merge(int ver, int x, int y) {
      x = find(ver-1, x); // 新版本还未操作,要从上一个版本找
59
      y = find(ver-1, y);
60
      if (x == y) {
61
           rootfa[ver] = rootfa[ver-1];
62
           rootdep[ver] = rootdep[ver-1];
63
      } else {
64
65
           int depx = query(1, n, rootdep[ver-1], x);
           int depy = query(1, n, rootdep[ver-1], y);
66
67
           if (depx < depy) {</pre>
68
               modify(1, n, rootfa[ver-1], rootfa[ver], x, y);
69
               rootdep[ver] = rootdep[ver-1];
70
           } else if(depx > depy) {
               modify(1, n, rootfa[ver-1], rootfa[ver], y, x);
71
72
               rootdep[ver] = rootdep[ver-1];
73
           } else {
74
               modify(1, n, rootfa[ver-1], rootfa[ver], x, y);
               modify(1, n, rootdep[ver-1], rootdep[ver], y, depy+1);
75
76
           }
77
      }
78
79
80
  int main() {
       scanf("%d%d", &n, &m);
81
      build(1, n, rootfa[0]);
82
       for (int i=1; i<=m; i++) {
83
           int opt;
84
           scanf("%d", &opt);
85
           if (opt == 1) {
86
               int a, b;
87
               scanf("%d%d", &a, &b);
88
89
               merge(i, a, b);
           } else if(opt == 2) {
90
```

```
91
                  int k;
                  scanf("%d", &k);
92
93
                  rootfa[i] = rootfa[k];
                  rootdep[i] = rootdep[k];
94
95
             } else {
96
                  int a, b;
                  scanf("%d%d", &a, &b);
97
98
                  rootfa[i] = rootfa[i-1];
                  rootdep[i] = rootdep[i-1];
99
                  int fa = find(i, a);
int fb = find(i, b);
100
101
                  printf("%d\n", (fa == fb ? 1 : 0));
102
103
104
        }
105
        return 0;
106
```

2.13 莫队

2.13.1 普通莫队

```
#include < bits / stdc ++.h>
2
  using namespace std;
  typedef long long 11;
3
  typedef unsigned long long ull;
  #define inf 0x3f3f3f3f
5
  #define INF 0x3f3f3f3f3f3f3f3f3f
  #define IO ios::sync_with_stdio(0)
  #define DEBUG(x) cout <<"--->" <<(x) <end1;
8
  typedef pair<int, int> P;
10 const 11 \mod = 1e9+7;
  const double eps = 1e-9;
  const double PI = acos(-1);
  const int maxn = 2e5+5;
14
15
  struct Q {
16
17
       int 1, r, k;
  }q[maxn];
18
19
20
  int a[maxn], pos[maxn], cnt[maxn];
21
  11 ans[maxn];
22
  ll res;
23
24
  bool cmp(Q x, Q y)  {
       return pos[x.1] == pos[y.1] ? x.r < y.r : pos[x.1] < pos[y.1];
25
26
27
  void add(int x) {
28
29
       cnt[a[x]]++;
       res += 111 * cnt[a[x]] * cnt[a[x]] - 111 * (cnt[a[x]] - 1) * (cnt[a[x]] - 1);
30
31
  }
32
33
  void sub(int x) {
34
       cnt[a[x]]--;
35
       res -= 111 * (cnt[a[x]] + 1) * (cnt[a[x]] + 1) - 111 * cnt[a[x]] * cnt[a[x]];
36
37
38
  int main() {
39
       int n, m, k;
       \texttt{cin} >> \texttt{n} >> \texttt{m} >> \texttt{k};
40
41
       int size = sqrt(n);
42
       for (int i=1; i<=n; i++) {
43
           cin >> a[i];
44
           pos[i] = i / size;
```

```
45
46
       for (int i=0; i < m; i++) {
47
           cin >> q[i].1 >> q[i].r;
           q[i].k = i;
48
49
       }
50
       sort(q, q+m, cmp);
51
       int l = 1, r = 0;
52
       for (int i=0; i < m; i++) {
53
           while (q[i].l < l) add(--l);
           while (q[i].r > r) add(++r);
54
55
           while (q[i].l > 1) sub(l++);
56
           while (q[i].r < r) sub(r--);
57
           ans[q[i].k] = res;
58
       for (int i=0; i < m; i++) cout << ans[i] << ' \setminus n';
59
60
       return 0:
61
```

2.13.2 带修莫队

```
#include <bits/stdc++.h>
  using namespace std;
3
  typedef long long 11;
  typedef unsigned long long ull;
5
  #define inf 0x3f3f3f3f
6
  #define INF 0x3f3f3f3f3f3f3f3f3f
  #define IO ios::sync_with_stdio(0)
8
  #define DEBUG(x) cout <<"--->" <<(x) <end1;
9
  typedef pair<int, int> P;
10
  const 11 \mod = 1e9+7;
  const double eps = 1e-9;
11
  const double PI = acos(-1);
12
  const int maxn = 1e6+5;
13
14
  // 查询
15
16
  struct Q {
17
      int 1, r, k, t;
18
  }q[maxn];
  // 修改
19
20
  struct M {
21
      int p, col;
22
  }c[maxn];
  int a[maxn], cnt[maxn], ans[maxn], pos[maxn];
23
24
  int cntq, cntc, n, m, size;
25
  bool cmp(Q a, Q b) {
26
      27
        pos[a.r] < pos[b.r] : a.t < b.t);
28
29
30
  int main() {
      scanf("%d", &n);
scanf("%d", &m);
31
32
      // 块大小与普通莫队不同
33
      size = pow(n, 2.0 / 3.0);
34
      for (int i=1; i <= n; i++) {
35
36
          pos[i] = i / size;
37
      scanf("%d", &a[i]);
38
39
      for (int i=1; i \le m; i++) {
40
          char opt[100];
41
          scanf("%s", opt);
42
          if (opt[0] == 'Q') {
43
              ++cntq;
              scanf("%d%d", &q[cntq].1, &q[cntq].r);
44
```

```
45
                q[cntq].k = cntq;
                                      // 查询询问的时间戳
46
                q[cntq].t = cntc;
47
            } else {
48
                ++cntc;
                scanf("%d%d", &c[cntc].p, &c[cntc].col);
49
50
            }
51
       }
52
       sort(q + 1, q + cntq + 1, cmp);
       int l = 1, r = 0, time = 0, res = 0;
53
54
        for (int i=1; i \le cntq; i++) {
55
            int ql = q[i].l, qr = q[i].r, qt = q[i].t;
56
            while (ql < 1) {
57
                1 - -;
                cnt[a[1]]++;
58
                res += cnt[a[1]] == 1;
59
60
            }
61
            while (ql > 1) {
62
                cnt[a[1]]--;
63
                res -= cnt[a[1]] == 0;
64
                1++;
65
66
            while (qr < r) {
67
                cnt[a[r]]--;
                res -= cnt[a[r]] == 0;
68
69
70
            while (qr > r) {
71
72
                r++;
73
                cnt[a[r]]++;
74
                res += cnt[a[r]] == 1;
75
            // 下面两个是针对修改的移动
76
77
            while (time < qt) {
                ++time;
78
                if (ql \le c[time].p \& c[time].p \le qr) {
79
                     cnt[a[c[time].p]]--;
80
                     cnt[c[time].col]++;
81
                    res -= cnt[a[c[time].p]] == 0;
82
                     res += cnt[c[time].col] == 1;
83
84
                }
                swap(a[c[time].p], c[time].col);
85
86
87
            while (time > qt) {
88
                if (ql <= c[time].p && c[time].p <= qr) {
89
                     cnt[a[c[time].p]]--;
90
                     cnt[c[time].col]++;
91
                     res -= cnt[a[c[time].p]] == 0;
92
                     res += cnt[c[time].col] == 1;
93
                }
94
                swap(a[c[time].p], c[time].col);
                --time;
95
96
97
            ans[q[i].k] = res;
98
        for (int i=1; i<=cntq; i++)
99
            printf("%d\n", ans[i]);
100
        return 0;
101
102
```

3 DP

3.1 背包

```
1 const int MAXN = 10000;
```

```
2 const int SIZE = 100000;
3
4
  int dp[SIZE];
  int volume[MAXN], value[MAXN], c[MAXN];
                      // 总物品数,背包容量
6
  int n, v;
  // 01背包
8
9
  void ZeroOnepark(int val, int vol)
10
11
      for (int j = v ; j \ge vol; j--)
12
          dp[j] = max(dp[j], dp[j - vol] + val);
13
14
15
16
17
      完全背包
18
  void Completepark(int val, int vol)
19
      for (int j = vol; j \le v; j++)
20
21
22
          dp[j] = max(dp[j], dp[j - vol] + val);
23
      }
24
25
      多重背包
  11
26
  void Multiplepark(int val, int vol, int amount)
27
28
29
      if (vol * amount >= v)
30
      {
31
          Completepark(val, vol);
32
      }
33
      else
34
35
          int k = 1;
          while (k < amount)
36
37
38
               ZeroOnepark(k * val, k * vol);
               amount -= k;
39
              k <<= 1;
40
41
          }
42
          if (amount > 0)
43
          {
44
               ZeroOnepark(amount * val, amount * vol);
45
          }
46
      }
47
48
  int main()
49
50
      while (cin >> n >> v)
51
52
      {
          for (int i = 1 ; i \le n ; i++)
53
54
          {
               55
56
          memset(dp, 0, sizeof(dp));
57
          for (int i = 1; i \le n; i++)
58
59
               Multiplepark(value[i], volume[i], c[i]);
60
61
          cout << dp[v] << endl;</pre>
62
63
64
      return 0;
65
```

3.2 数位 DP

3.2.1 HDU 2089 不要 62

```
// 求区间[n, m]中不含4和62的数字个数
  // dp[pos][sta]: 在 第 pos 位 中, 前 一 位 是 否 为 6 的 满 足 条 件 的 数 字 个 数。
3
  // sta: 0表示前一位不为6, 1:表示前一位为6
  #include < bits / stdc ++.h>
5
  using namespace std;
6
  typedef long long 11;
7
  typedef unsigned long long ull;
8
  typedef pair<int, int> P;
9
10 const int maxn = 1e6+5;
  const int inf = 0x3f3f3f3f;
11
  const int mod = 1e9+7;
  const double PI = acos(-1);
13
14
15
16
  int n, m;
  int dp[10][2];
17
  int num[10];
18
19
  int dfs(int pos, int pre, int sta, bool limit)
20
21
22
       if(pos==-1) return 1;
23
       if(!limit && dp[pos][sta]!=-1)return dp[pos][sta];
24
       int up = limit?num[pos]:9;
25
       int tmp = 0;
       for(int i=0;i<=up;i++)
26
27
           if(pre==6 && i==2)continue;
28
           if(i==4) continue;
29
           tmp += dfs(pos-1, i, i==6, limit&&i==num[pos]);
30
31
       }
32
       if(!limit) dp[pos][sta] = tmp;
33
       return tmp;
34
  }
35
36
  int slove(int x)
37
38
       int pos = 0;
       while(x)
39
40
       {
           num[pos++] = x\%10;
41
42
           x/=10;
43
       return dfs(pos-1, -1, 0, true);
44
45
46
47
  int main()
48
       while(~scanf("%d%d", &n, &m) && n && m)
49
50
           memset(dp, -1, sizeof(dp));
51
           printf("%d\n", slove(m) - slove(n-1));
52
53
       }
54
       return 0;
55
  }
```

3.2.2 SCOI 2009 Windy 数

```
1 // 求区间[1, r]中不含前导零且相邻位之差的绝对值大于等于2的数的个数
2 3 #include < bits/stdc++.h>
```

```
4 using namespace std;
5 typedef long long 11;
6
  typedef unsigned long long ull;
  typedef pair<int, int> P;
7
8
  const int maxn = 1e6+5;
  const int inf = 0x3f3f3f3f;
9
10
  const int mod = 1e9+7;
  const double PI = acos(-1);
11
12
13
  11 1, r;
14
  ll a[20], dp[20][20];
15
16
  11 dfs(int pos, int pre, int sta, bool limit)
17
18
19
       if(pos==-1) return 1;
20
       if(!limit && dp[pos][pre]!=-1)return dp[pos][pre];
21
       int up = limit ? a[pos] : 9;
       11 ans= 0;
22
23
       for (int i=0; i \le up; i++)
24
       {
25
           if(sta!=0)
26
           {
               ans += dfs(pos-1, i, sta&&(i==0), limit&&(i==up));
27
28
           }
           else
29
30
           {
31
               if(abs(pre-i) >= 2)
32
33
                    ans += dfs(pos-1, i, sta&&(i==0), limit&&(i==up));
34
               }
35
           }
36
       if(!limit&&pre!=0) dp[pos][pre] = ans;
37
38
       return ans;
39
40
  ll slove(int x)
41
42
       int pos = 0;
43
44
       while(x)
45
       {
46
           a[pos++] = x%10;
47
           x/=10;
48
       return dfs(pos-1, 0, 1, true);
49
50
51
  int main()
52
53
       memset(dp, -1, sizeof(dp));
54
       55
56
57
       return 0;
58
```

3.3 区间 DP

3.3.1 51Nod 1021 石子合并

```
#include < bits / stdc ++.h>
using namespace std;

typedef long long ll;

typedef pair < int, int > P;

const int maxn = 1e5+5;
```

```
6 const int inf = 0x3f3f3f3f;
  const int mod = 1e9+7;
  const double PI = acos(-1);
8
9
10
  int n;
  int num[105];
11
12
  int sum[105];
  int dp[105][105];
13
14
  int main()
15
       memset(dp, inf, sizeof(dp));
16
17
       cin>>n;
       for(int i=1;i<=n;i++)
18
19
       {
20
            cin >> num[i];
21
            sum[i] = sum[i-1]+num[i];
            dp[i][i] = 0;
22
23
       }
24
25
       for(int len=1;len<=n;len++)</pre>
26
       {
27
            for (int i=1; i <= n-len+1; i++)
28
                int end = i+len-1;
29
                for(int j=i;j<end;j++)</pre>
30
31
                     dp[i][end] = min(dp[i][end], dp[i][j] + dp[j+1][end]+sum[end]-sum[
32
                       i-1]);
33
                }
34
            }
35
36
       cout << dp[1][n] << endl;
37
       return 0;
38
```

3.4 最长公共递增子序列

```
1 /*
     最长公共递增子序列 O(n^2)
2
    f记录路径,DP记录长度,用a对b扫描,逐步最优化。
3
  */
4
5
  const int N = 1010;
7
  int f[N][N], dp[N];
8
  int gcis(int a[], int la, int b[], int lb, int ans[])
9
      // a[1...la], b[1...lb]
10
      int i, j, k, mx;
11
      memset(f, 0, sizeof(f));
12
13
      memset(dp, 0, sizeof(dp));
14
      for (i = 1; i \le la; i++)
15
          memcpy(f[i], f[i-1], sizeof(f[0]));
16
17
          for (k = 0, j = 1; j \le lb; j++)
18
19
              if (b[j-1] < a[i-1] && dp[j] > dp[k])
20
              {
                  k = j;
21
22
              }
              if (b[j-1] == a[i-1] \&\& dp[k] + 1 > dp[j])
23
24
25
                   dp[j] = dp[k] + 1,
26
                   f[i][j] = i * (lb + 1) + k;
27
              }
28
          }
```

```
29
       for (mx = 0, i = 1; i \le lb; i++)
30
31
32
           if (dp[i] > dp[mx])
33
           {
34
               mx = i;
35
36
37
       for (i = la * lb + la + mx, j = dp[mx]; j; i = f[i / (lb + 1)][i % (lb + 1)],
        j--)
38
           ans[j - 1] = b[i \% (lb + 1) - 1];
39
40
       return dp[mx];
41
42
```

3.5 最长公共子序列

```
1 const int N = 1010;
2
3
  int a[N][N];
4
  int LCS(const char *s1, const char *s2)
5
6
       // s1:0...m, s2:0...n
7
       int m = (int)strlen(s1), n = (int)strlen(s2);
8
       int i, j;
9
       a[0][0] = 0;
10
       for (i = 1; i \le m; ++i)
11
           a[i][0] = 0;
12
13
       }
       for (i = 1; i \le n; ++i)
14
15
       {
16
           a[0][i] = 0;
17
18
       for (i = 1; i \le m; ++i)
19
           for (j = 1; j \le n; ++j)
20
21
                if (s1[i - 1] == s2[j - 1])
22
23
                    a[i][j] = a[i - 1][j - 1] + 1;
24
25
                else if (a[i - 1][j] > a[i][j - 1])
26
27
28
                    a[i][j] = a[i - 1][j];
29
                }
30
                else
31
                    a[i][j] = a[i][j - 1];
32
33
                }
34
           }
35
36
       return a[m][n];
37
```

3.6 最长有序子序列

```
1 int n;
2 int a[maxn]; // 原数组
3 int s[maxn]; // 记录LIS
4 int LIS()
5 {
```

```
6
       int top = 0;
7
      for(int i=0;i<n;i++)
8
9
           int pos = upper_bound(s, s+top, a[i])-s;
10
           s[pos] = a[i];
11
           top = max(top, pos+1);
12
13
      return top;
14
  }
```

```
1
  /*
     递增(默认)
2
  *
     递 减
3
  *
     非递增
4
     非递减 (1)>= && < (2)< (3)>=
5
6
  */
7
  const int MAXN = 1001;
8
  int a[MAXN], f[MAXN], d[MAXN]; // d[i] 用于记录 a[0...i] 以 a[i] 结尾的最大长度
10
11
  int bsearch(const int *f, int size, const int &a)
12
13
      int l = 0, r = size - 1;
      while (1 \le r)
14
15
      {
16
           int mid = (1 + r) / 2;
17
           if (a > f[mid - 1] \&\& a <= f[mid]) // (1)
18
           {
19
               return mid;
20
           }
21
           else if (a < f[mid])
22
               r = mid - 1;
23
           }
24
25
           else
26
               1 = mid + 1;
27
28
           }
29
30
      return -1;
31
32
  int LIS(const int *a, const int &n)
33
34
      int i, j, size = 1;
35
      f[0] = a[0];
36
37
      d[0] = 1;
      for (i = 1; i < n; ++i)
38
39
           if (a[i] <= f[0])
40
                                             // (2)
41
           {
42
               j = 0;
43
           }
           else if (a[i] > f[size - 1]) // (3)
44
45
           {
               j = size++;
46
47
           }
48
           else
49
           {
50
               j = bsearch(f, size, a[i]);
51
52
           f[j] = a[i];
53
           d[i] = j + 1;
54
      }
55
      return size;
56 }
```

```
57
58
  int main()
59
60
      int i, n;
      while (scanf("%d", &n) != EOF)
61
62
63
         for (i = 0; i < n; ++i)
64
         {
             scanf("%d", &a[i]);
65
66
                                    // 求最大递增 / 上升子序列(如果为最大非降
         printf("%d\n", LIS(a, n));
67
           子序列,只需把上面的注释部分给与替换)
68
      return 0;
69
70
  }
```

4 字符串

4.1 KMP

```
// 能够获得t在s中出现的所有位置
2
3
  #include < bits / stdc ++.h>
4
  using namespace std;
  typedef long long 11;
5
  typedef unsigned long long ull;
6
  typedef pair<int, int> P;
  const int maxn = 1e6+5;
8
  const int inf = 0x3f3f3f3f;
  const int mod = 1e9+7;
  const double PI = acos(-1);
12
13
  char s[maxn], t[maxn];
14
  int ne[maxn];
15
  int ls, lt;
16
17
18
  void init()
19
  {
       scanf("%s", s+1);
scanf("%s", t+1);
20
21
22
       ls = strlen(s+1);
23
       lt = strlen(t+1);
24
25
  void get_ne()
26
27
28
       int j = 0;
       for(int i=2;i<=lt;i++)
29
30
       {
31
           while(j && t[i]!=t[j+1])
32
                j = ne[j];
33
           if(t[i]==t[j+1])j++;
34
           ne[i] = j;
35
       }
36
37
38
  void kmp()
39
       int j=0;
40
41
       vector < int > v;
42
       for(int i=1;i<=ls;i++)
43
       {
           while(j>0 && s[i]!=t[j+1]) j = ne[j];
44
```

```
45
            if(s[i]==t[j+1])j++;
            if(j==lt)
46
47
            {
48
                 v.push_back(i-lt+1);
49
                 j = ne[j];
50
51
52
       for(auto x : v)printf("%d\n", x);
53
54
55
   int main()
56
57
       init();
58
       get_ne();
59
       kmp();
60
       return 0;
61
```

4.2 EXKMP

```
1 int nxt[maxn], extend[maxn];
  char s[maxn], t[maxn];
3
 4
   void getNext()
5
  {
 6
       int n = strlen(t);
7
       nxt[0] = n;
8
       int a=0, p=0;
9
       for(int i=1;i<n;i++)
10
            if(i>=p || i+nxt[i-a]>=p)
11
12
            {
13
                 if(i \ge p)p = i;
                 while (p < n \& t[p] == t[p-i])p++;
14
                 nxt[i] = p-i;
15
16
                 a=i;
17
            }
            else
18
                 nxt[i] = nxt[i-a];
19
20
       }
21
   }
22
23
   void getExtend()
24
       int n = strlen(s), m = strlen(t);
25
       int a=0, p=0;
26
       getNext();
27
       for(int i=0;i<n;i++)
28
29
            if(i>=p || i+nxt[i-a]>=p)
30
31
            {
                 if(i>=p)p=i;
32
33
                 while (p < n \&\& p-i < m \&\& s[p] == t[p-i])p++;
34
                 extend[i] = p-i;
35
                 a=i;
36
            }
            else
37
                 extend[i] = nxt[i-a];
38
39
       }
40
41
42
  int main()
43
   {
44
       scanf("%s", s);
       scanf("%s", t);
45
```

```
getExtend();
46
47
       int lens = strlen(s), lent = strlen(t);
       for(int i=0;i<lent;i++)</pre>
48
            printf("%d ", nxt[i]);
49
50
       printf("\n");
       for(int i=0;i<lens;i++)</pre>
51
52
            printf("%d ", extend[i]);
       printf("\n");
53
54
       return 0;
55
  }
```

4.3 字符串 Hash

4.3.1 自然溢出

```
1 typedef unsigned long long ull;
  const int maxn = 1e5 + 10;
  const ull base = 131;
3
4
  ull p[maxn], has[maxn];
  // 获取s[1-r]的哈希值
5
  ull get(int 1, int r) {
6
7
      return has[r] - has[1 - 1] * p[r - 1 + 1];
8
  }
  void gethash(string s) {
9
10
      len = s.length();
      p[0] = 1; has[0] = 0;
11
12
      for (int i = 1; i \le len; i++) {
          p[i] = p[i - 1] * base;
13
14
          has[i] = has[i - 1] * base + (ull)(s[i - 1]);
15
      }
16
  }
```

4.4 字典树 Trie

```
1 int tree[maxn][30]; //字典树, 有 maxn 个结点, 30表示字符集的大小, 比如小写字母就26个
  int isend[maxn]; //表示结点i是否为某个串的结尾
3 int tot; // 节点数
4
5
  void insert(char *s)
6
  {
      // 根节点为0号结点
7
8
      int root=0, len=strlen(s);
9
      for(int i=0; i < len; i++)
10
          // pos 是 指 当 前 字 符 应 该 为 root 的 哪 一 个 儿 子
11
          int pos = s[i]-'a';
12
          // 如果不存在,则新创建
13
14
          if(!tree[root][pos])
              tree[root][pos] = ++tot;
15
          // root往下走
16
17
          root = tree[root][pos];
18
      // 标记当前编号的结点是某个字符串的结尾
19
      isend[root] = 1;
20
21
  }
22
  int find(char *s)
23
24
25
      int root=0, len=strlen(s);
      for(int i=0; i < len; i++)
26
27
          int pos = s[i]-'a';
28
29
          root = tree[root][pos];
```

4.5 Manacher

```
char s[maxn];
 1
  char t[2*maxn];
  int p[2*maxn];
3
4
  int manacher()
5
  {
      int len = strlen(s);
6
      // 预处理字符串
7
      int 1=0;
8
      t[1++] = '$';
9
      t[1++] = '#';
10
      for(int i=0;i<len;i++)
11
12
          t[l++] = s[i];
13
          t[1++] = '#';
14
15
      }
16
      t[1] = '@';
17
      int id = 0, mx = 0;
18
      int maxlen = 1;
19
      for(int i=0;i<1;i++)
20
          // 预设p[i]的值
21
          p[i] = mx > i ? min(p[2*id-i], mx-i) : 1;
22
          // 朴素算法向左右拓展, 因为处理后的字符串头和尾都是特殊字符, 所以不会越界
23
          while(t[i+p[i]] == t[i-p[i]])p[i]++;
24
          // 能否更新mx
25
26
          if(mx < p[i]+i)
27
          {
28
              mx = p[i]+i;
              id = i;
29
30
          // 更新最长回文子串的长度
31
32
          if(maxlen < p[i]-1)
              maxlen = p[i]-1;
33
34
35
      return maxlen;
36 }
```

4.6 最小表示法

```
int getmin()
1
2
  {
3
       int i=0, j=1, k=0, n=strlen(s);
4
       while(i < n \&\& j < n \&\& k < n)
5
6
            int t = s[(i+k)%n]-s[(j+k)%n];
7
            if(!t)
8
                 k++;
9
            else
10
            {
                 if(t>0)
11
                     i += k+1;
12
13
14
                      j += k+1;
                 if(i==j)
15
16
                     j++;
```

4.7 最大表示法

```
int getmax()
1
2
  {
3
       int i=0, j=1, k=0, n=strlen(s);
4
       while(i<n && j<n && k<n)
5
6
            int t = s[(i+k)%n]-s[(j+k)%n];
7
            if(!t)
8
9
            else
10
            {
                 if(t<0)
11
                      i += k+1;
12
13
                 else
14
                      j += k+1;
15
                 if(i==j)
                     j++;
16
17
                 k = 0;
18
            }
19
       }
20
       return min(i, j);
21
  }
```

5 数学

5.1 欧拉函数

定义: 欧拉函数 phi(x) 代表小于等于 x 的数中和 x 互质的数的个数 (小于显然只对 1 成立),比如说小于等于 9 的数中与 9 互质的有 1,2,4,5,7,8,则 phi(9)=6. 以 phi(x) 表示小于等于 x 的数中与 x 互质的数的个数可以这样得到: $phi(x)=x*(1-1/p_1)*(1-1/p_2)*(1-1/p_3)\cdots*(1-1/p_n)$ 其中 $p1,p2,p3\cdots$.pn 是 x 的所有质因数,每个质因数只使用一次,使用上述公式,则 phi(9)=9*(1-1/3)=6.

```
特性: 1. 若 a 为质数,phi[a] = a - 1;
2. 若 a 为质数,b\%a = 0, phi[a*b] = phi[b]*a
3. 若 a,b 互质,phi[a*b] = phi[a]*phi[b](当 a 为质数时,ifbmoda! = 0, phi[a*b] = phi[a]*phi[b])
4. 若 p 为质数, phi(p^k) == p^k - p^{k-1} == (p-1)*p^{k-1}
5. 当 n>2 时,phi(n) 是偶数
6.phi(1)=1; (具体情况看题目,有时题目会要求为 0)
```

欧拉筛法: 欧拉筛法的原理如下,观察 phi(x) 的求解式子,首先令 phi(x)=x,然后仿照素数筛法,如果 x 能被 2,3,5,7 这些素数筛到 (即素数 prime 是 x 的因子),则执行 phi(x)=phi(x)*(1-1/prime)

```
// 埃拉托斯特尼筛求欧拉函数值
  const int maxn = 1000000;
3
  int phi[maxn+1];
4
  bool isPrime[maxn+1];
5
  void Eular()
6
  {
7
      for(int i=1;i<=maxn;i++) phi[i]=i;</pre>
8
      memset(isPrime, true, sizeof(isPrime));
9
      isPrime[0]=isPrime[1]=false;
10
      phi[1]=1;
      for(int i=2;i<=maxn;i++)
```

```
12
      {
          // i 是 质 数
13
14
          if(isPrime[i])
15
          {
16
               for(int j=i;j<=maxn;j+=i)</pre>
17
                   // i与i的倍数都更新一遍
18
19
                   isPrime[j]=false;
                   phi[j] -= phi[j]/i;
                                        // phi(x)=phi(x)*(1-1/prime) = phi(x) - phi(
20
                     x)/prime
21
               }
22
          }
23
      }
24
  }
25
26
  // 欧拉筛求欧拉函数, 时间复杂度接近0(n)
27
28
  const int maxn = 1100000;
  int num = 0;
29
  int phi[maxn+1];
  int prime[maxn+1];
31
  int flag[maxn+1];
33
  void eular()
34
35
  {
      memset(flag, 0, sizeof(flag));
36
      phi[1]=1;//1要特判
37
38
      for (int i=2; i <= maxn; i++)
39
      {
40
          if (flag[i]==0) // 这代表i是质数
41
          {
42
               prime[++num]=i;
43
               phi[i]=i-1;
44
          for (int j=1;j<=num&&prime[j]*i<=maxn;j++)// 经 典 的 欧 拉 筛 写 法
45
46
          {
               flag[i*prime[j]]=1; // 先把这个合数标记掉
47
               if(i%prime[j]==0)
48
49
               {
                   phi[i*prime[j]]=phi[i]*prime[j];//若prime[j]是i的质因子,则根据计
50
                     算 公 式, i 已 经 包 括 i*prime[j] 的 所 有 质 因 子
                   break; // 经 典 欧 拉 筛 的 核 心 语 句 , 这 样 能 保 证 每 个 数 只 会 被 自 己 最 小 的 因 子
51
                     筛掉一次
52
               else phi[i*prime[j]]=phi[i]*phi[prime[j]];//利用了欧拉函数是个积性函数
53
                的性质
54
          }
55
      }
56
  }
```

5.2 枚举约数

```
// 枚举约数(普通)
1
2
  vector<int> factor(int n)
3
  {
4
       vector < int > a;
       for(int i = 2; i*i <= n; i++){
5
6
           if((n\%i)==0){
7
                a.push_back(i);
                if ((n/i)!=i)a. push_back(n/i); // 根 号 n 的 情 况 不 要 重 复 添 加
8
9
           }
10
       }
11
       return a;
12
  }
13
```

```
14 特殊例题: f(n)为n所有约数的和,给你一个数n,让你求从1到n中f(n)为偶数的数有多少个
15 #include <bits/stdc++.h>
  #define ll long long
16
  #define INF 0x3f3f3f3f
17
18
19
  using namespace std;
20
  int main()
21
22
23
      int t, cas = 1;
24
      long long n, sum;
25
      cin >> t;
26
      while (t--)
27
          scanf("%11d", &n);
28
29
          sum = n;
          sum -= (int) sqrt(n);
30
          sum -= (int)sqrt(n/2);
31
          printf("Case %d: %lld\n", cas++, sum);
32
33
34
      return 0;
35
```

5.3 全错排

```
1 问题: n封信给n个人, 问全都送错的可能性有多少种
  #include < iostream >
3
  #include < stdio.h>
  using namespace std;
5
  int main()
6
  {
7
      long long int arr[21];
8
      int num,i;
9
      arr[1]=0; arr[2]=1;
10
      for(i=3;i<21;i++)
          arr[i]=(i-1)*(arr[i-1]+arr[i-2]); // d[n]=(n-1)*(d[n-1]+d[n-2])
11
      while(scanf("%d",&num)!=EOF)
12
13
          cout << arr[num] << endl;</pre>
14
15
      }
16
      return 0;
17
```

5.4 唯一分解定理

算术基本定理可表述为:任何一个大于 1 的自然数 N, 如果 N 不为质数,那么 N 可以唯一分解成有限个质数的 乘积 $N=P_1^{a_1}*P_2^{a_2}*P_3^{a_3}\cdots P_n^{a_n}$,这里 P1<P2<P3......<Pn 均为质数,其中指数 ai 是正整数。

- (1) 一个大于 1 的正整数 N,如果它的标准分解式为: $N = P_1^{a_1} P_2^{a_2} \cdots P_n^{a_n}$,那么它的正因数个数为 $\sigma_0(N) = (1+a_1)(1+a_2)\cdots(1+a_n)$
- (2) 它的全体正因数之和为

$$\sigma_1(N) = (1 + p_1 + p_1^2 + \dots + p_1^{a_1})(1 + p_1 + p_2^2 + \dots + p_2^{a_2}) \cdots (1 + p_n + p_n^2 + \dots + p_n^{a_n})$$

当 $\sigma_1(N) = 2N$ 时就称 N 为完全数

5.4.1 例题一

求出有几种边长为整数,面积等于 a 的矩形,且矩形的短边不小于 b

```
1 //考点: 素数筛选 + 唯一分解定理
2 #include <bits/stdc++.h>
3 #define ll long long
```

```
4 #define INF 0x3f3f3f3f3f
5
6
  using namespace std;
7
8
  const int MAX = 1e6 + 10; // 边长
  int prime[MAX], k; // k为全局变量, 指向最后一个素数的后一个单元
9
10
  bool isPrime[MAX];
11
  // 素数筛选
12
  void Prime()
13
14
15
      k = 0;
16
      memset(isPrime, true, sizeof(isPrime));
      isPrime[1] = false; // 1不是素数
17
      for(int i = 2; i < MAX; i++)
18
19
      {
          if(isPrime[i])
20
21
          {
22
              prime[k++] = i;
              for (int j = 2; i * j < MAX; j++)
23
24
25
                  isPrime[i * j] = false;
26
              }
27
          }
28
      }
29
30
  // 唯一分解定理找n的因子个数 (N的因子个数 M = (1 + a1)*(1 + a2)*(1 + a3)*...*(1 +
31
    an))
32
  long long solve(long long n)
33
34
      long long ans = 0, sum = 1;
      for(long long i = 0; i < k \&\& prime[i]*prime[i] <= n; i++)
35
36
          if(n % prime[i] == 0) // 从小到大寻找素数因子
37
38
          {
              ans = 0:
39
              while(n % prime[i] == 0) // 计算素数因子次数
40
41
42
                  ans++;
                  n /= prime[i];
43
44
              }
45
              sum *= (1 + ans);
46
          }
47
      if(n > 1) sum *= 2; // 如果处理到最后n还不是1,则最后剩下的一定是个素数
48
49
      return sum;
50
51
52
  int main()
53
54
      Prime();
55
      int t, x = 0;
56
      long long ab, a, num;
      scanf("%d", &t);
57
58
      while (t--)
59
      {
60
          x ++;
          scanf("%lld%lld", &ab, &a);
61
          if(ab < a * a)
62
63
          {
              printf("Case %d: 0\n", x);
64
65
              continue;
66
          num = solve(ab); // 获得因子数(一个数的因子包括他本身)
67
                           // 因子对数
68
          num /= 2;
```

```
for(long long i = 1 ; i < a ; i++)

{
    if(ab % i == 0) num--; //将边小于a的情况减去

}

printf("Case %d: %lld\n", x, num);

return 0;

}
```

5.4.2 例题二

给你一个数 $x = b^p$, 求 p 的最大值

$$x = p_1^{x_1} * P_2^{x_2} * \dots * P_s^{x_s}$$

题目要求 $x=b^p$,x 只有一个因子的 p 次幂构成如果 $x=12=2^2*3^1$,要让 $x=b^p$,即 12 应该是 $12=12^1$ 所以 $p=\gcd(x_1,x_2,x_3,\cdots,x_s)$;比如: $24=2^3*3^1$,p 应该是 $\gcd(3,1)=1$,即 $24=24^1$ $324=3^4*2^2$,p 应该是 $\gcd(4,2)=2$,即 $324=18^2$ 本题有一个坑,就是 x 可能为负数,如果 x 为负数的话, $x=b^q$, q 必须是奇数,所以将 x 转化为正数求得的解如果是偶数的话必须将其循环除 2 直到出现奇数

```
1 #include <bits/stdc++.h>
  using namespace std;
3
4
  const int maxn=1e6+5;
5
  bool isprime[maxn];
6
  int prime[maxn], psize=0;
7
  // 素数筛选
8
  void getPrimes()
9
10
11
       memset(isprime, true, sizeof(isprime));
       isprime[0] = isprime[1] = false;
12
13
       for (int i = 2; i < maxn; i++) if (isprime[i])
14
       {
15
           prime[psize++] = i;
           for(int j = 2; i * j < maxn; j++)
16
                isprime[i*j] = false;
17
       }
18
19
20
  // 辗转相除
21
22
  int gcd(int a, int b)
  {
24
       return b == 0 ? a : gcd(b, a%b);
25
  }
26
27
  int main()
28
  {
29
       int t, cas = 1;
       long long n;
30
31
       getPrimes();
       scanf("%d", &t);
32
       while (t--)
33
34
           scanf("%11d", &n);
35
36
           int f = 0;
           if(n < 0)
37
38
                n = - n;
39
                f = 1;
40
           }
41
           int res, ans = 0;
42
43
           for(int i = 0; i < psize && prime[i] * prime[i] <= n ; i++)
44
45
                if(n % prime[i] == 0)
46
                {
47
                    res = 0;
```

```
48
                  while(n % prime[i] == 0)
49
                  {
50
                      res++;
51
                     n /= prime[i];
52
                  if(ans == 0)
53
54
                      ans = res;
55
                      ans = gcd(ans, res);
56
57
              }
58
          if(n > 1) ans = gcd(ans, 1); // 如果分解完后剩下的n大于1,则剩下的一定是一
59
          if(f == 1)
60
61
          {
62
              while(ans % 2 == 0)
63
                  ans /= 2; // 如果n为负数且最后算出来指数为偶数,则循环除2直到变为
                   奇 数
64
65
          printf("Case %d: %d\n", cas++, ans);
66
67
      return 0;
68
  }
```

5.5 快速幂

```
typedef long long ll;
2
  11 pow(11 x,11 n,11 mod)
3
  {
4
       ll res=1;
5
       while(n>0)
6
       {
7
           if(n&1)
8
           {
9
               res=res*x;
10
               res=res%mod;
           }
11
           x = x * x;
12
13
           x = x \% mod;
           n >>=1;
14
15
16
       return res;
17
18
  例题: 给你一个n,一个k,求n^k的结果的前三位与后三位
  //考点: 快速幂取模(可获得后三位) + 数论运算(取前三位)
20
21
22
  /**
  * 设10<sup>n</sup>w=n<sup>k</sup>, 两边同时取log10, 那么w=k*log10(n)。
23
  * 再设x=(int)w(w的整数部分), y=w-x(w的小数部分), 那么10^w=10^(x+y)=10^x*10^y=n
    ^k;
  * 由于10<sup>x</sup>是10的倍数, 那么10<sup>y</sup>=n<sup>k</sup>/10<sup>x</sup>, 因为0<y<1,所以10<sup>y</sup>为一位数, 即最前边那一
25
    位, 所以求出 y来
26
27
  #include <bits/stdc++.h>
28
  #define ll long long
29
  #define INF 0x3f3f3f3f
30
31
  using namespace std;
32
33
34
  // 快速幂取模
35 | 11 | pow_mod(| 11 a, | 11 b, | 11 | mod)
36
  {
37
       int ans = 1;
```

```
38
       int base = a % mod;
39
      while(b){
40
           if(b & 1) ans = (ans*base) % mod;
41
           base = (base*base) % mod;
           b >>= 1;
42
43
44
      return ans;
45
46
47
  int main()
48
49
      11 n, k;
50
      ll ans1, ans2;
      int t, cas = 1;
51
       scanf("%d", &t);
52
53
      while (t--)
54
      {
55
           scanf("%11d%11d", &n, &k);
           ans2 = pow_mod(n, k, 1000);
                                         // 取后三位
56
           double w = k*log10(n);
57
           w = w - (11) w;
58
59
           ll ans1=(ll)(pow(10,w)*100); // 取前三位
           printf("Case %d: %lld %03lld\n", cas++, ans1, ans2); // 后三位要补前导零
60
61
62
       return 0;
63
  }
```

5.6 矩阵快速幂

```
const int N=9;
1
  const int mod = 1e9 + 7;
3
  struct Matrix{///矩阵结构体
4
      11 matrix[N][N];
5
  };
6
7
  void init(Matrix &res)///初始化为单位矩阵
8
  {
      memset(res.matrix, 0, sizeof(res.matrix));
9
      for(int i = 0; i < N; i++)
10
           res.matrix[i][i] = 1;
11
12
  }
  Matrix multiplicative(Matrix a, Matrix b)///矩阵乘法
13
14
  {
15
      Matrix res;
      memset(res.matrix, 0, sizeof(res.matrix));
16
      for(int i = 0; i < N; i++){
17
18
           for(int j = 0; j < N; j++){
               for(int k = 0; k < N; k++){
19
20
                   res.matrix[i][j] += a.matrix[i][k]*b.matrix[k][j];
21
                   res.matrix[i][j] %= mod;
22
               }
23
           }
24
25
      return res;
26
  Matrix Pow(Matrix mx, ll m)///矩阵快速幂
27
28
      Matrix res, base=mx;
29
      init(res);
30
      while(m) {
31
32
           if (m & 1)
33
              res = multiplicative(res, base);
34
           base = multiplicative(base, base);
35
           m >>= 1;
36
      }
```

```
37    return res;
38 }
```

5.7 欧拉降幂

定理:

欧拉定理: 若 $\gcd(a, p) = 1$, 则 $a^p \equiv a^{b\%\varphi(P)} (mod P)$, 其中 $\gcd(a, p) = 1$ 。 拓展欧拉定理: 假设 a 为任意数,b 和 m 为正整数,且 $b > \varphi(m)$,a 和 m 不一定要互质,那么有如下公式:

$$a^b \equiv \left\{ \begin{array}{ll} a^{bMod\phi(m)} & gcd(a,m) = 1 \\ a^b & gcd(a,m) \neq 1 \bigwedge b < \phi(m) \quad (Mod \quad m) \\ a^{bMod\phi(m) + \phi(m)} & gcd(a,m) \neq 1 \bigwedge b \geq \phi(m) \end{array} \right.$$

5.7.1 例题一

```
1 /*
  Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C \alpha
    <=1000000000,1<=B<=10^1000000). (求(a^b)%c,其中b非常大,是个大数)
3 */
  #include <cstdio>
5
  #include <iostream>
  #include <cstring>
  #include <cmath>
  using namespace std;
  typedef long long 11;
  const int MAX = 1000100;
      fastPow(ll a, ll b, ll mod)
11
12
       ll ans=1;
13
       a %= mod;
14
       while(b)
15
16
       {
17
           if(b&1)
18
           {
19
                ans = (ans*a)%mod;
20
21
           b >>= 1;
           a = (a*a)\% mod;
22
23
       }
24
       return ans;
25
  }
  11
       eulerFunction(ll x)
26
27
       ll\ eulerNumbers = x;
28
       for(11 i = 2; i*i \le x; i++)
29
30
31
           if(x \% i == 0)
32
                eulerNumbers = eulerNumbers / i * (i-1);
33
34
                while (x \% i == 0)
35
                {
36
                    x /= i;
37
                }
38
           }
39
       }
40
       if(x > 1)
41
       {
42
           eulerNumbers = eulerNumbers / x * (x-1);
43
       return eulerNumbers;
44
45
     eulerDropPow(ll a,char b[],ll c)
46
  11
47
  {
       11 eulerNumbers = eulerFunction(c);
48
```

```
49
       11 descendingPower=0;
       for(ll i=0,len = strlen(b); i<len; ++i)</pre>
50
51
52
            descendingPower = (descendingPower * 10 + b[i] - '0') % eulerNumbers;
53
       }
54
       descendingPower += eulerNumbers;
55
       return fastPow(a, descendingPower, c);
56
57
  int main()
58
59
       11 a,c;
       char b[MAX];
60
       while (~scanf("%lld%s%lld",&a,b,&c))
61
62
            printf("%lld\n", eulerDropPow(a,b,c));
63
64
       }
65
       return 0:
66
  }
```

5.8 广义欧拉降幂

5.8.1 例题一

给定 a 和 K 以及 m, 试求出

 $a^{a^{a}} \mod m$

其中共 K 层幂塔。其中 a, K 和 m 小于等于 1e6

- 1. 首先, 当 a = 1 或者 b = 0 时特判, 得出答案为 1%m
- 2. 本题中 b = f(a, k-1,INF),如果 $a \ge phi(m)$,那么显然 b 一定大于 phi(m),即满足拓展欧拉定理中第 3 种情况
- 3. 如果 k=1,则 b=f(a,k-1,INF)=1,此时只需判断 phi(m) 是否大于 1 即可判断当然情况符合拓展欧拉定 理第 3 还是第 2 种情况
- 4. 剩下的情况我们就可以通过递归来判断 b 是否大于 phi(m), 因为若 $b \ge phi(m)$, 那么 $\log_a b \ge log_a phi(m)$

```
1 #include < cstdio >
  #include < cmath >
3 typedef long long 11;
  const int N = 1e6+10;
  11 qpow(11 a,11 b,11 m){
5
6
       11 \text{ res} = 1;
       while(b){
7
8
           if(b&1) res = res*a%m;
9
           a = a*a%m;
10
           b >>= 1;
11
12
       return res;
13
14
  int v[N], primes[N], phi[N];
15
  int init(){
       int cnt = 0;
16
       for(int i = 2; i < N; i++){
17
           if(!v[i]){
18
                primes[cnt++] = i;
19
                v[i] = i;
20
                phi[i] = i-1;
21
22
           for (int j = 0; j < cnt; j++) {
23
24
                if(primes[j] > v[i] || primes[j]*i >= N)
25
                     break;
26
                v[i*primes[j]] = primes[j];
                phi[i*primes[j]] = phi[i]*(i%primes[j] ? primes[j]-1 : primes[j]);
27
28
           }
29
       }
30 }
```

```
31 | 11 gcd(11 a, 11 b) {
32
      if(b == 0) return a;
33
      return gcd(b,a%b);
34
  }
35
  bool check(ll a, ll b, ll p){
      if(b == 0) return p <= 1;
                                   //f(a,0,p) = 1
36
37
      if(a >= p) return true; //f(a,b,INF) > p
38
      return check(a,b-1,log(p)/log(a));
39
  11 f(ll a, ll b, ll m){
40
                                   //递归终止条件1,此时之后答案恒为0
41
      if(m == 1) return 0;
      if(b <= 1) return qpow(a,b,m);//递归终止条件2
42
43
      11 ph = phi[m];
      // printf("%lld\n",ph);
44
      if(gcd(a,m) == 1) return qpow(a,f(a,b-1,ph),m); // 欧拉定理
45
46
      if(check(a,b-1,ph)) return qpow(a,f(a,b-1,ph)+ph,m);//拓展欧拉定理情况1
47
      return qpow(a, f(a, b-1, ph), m);
                                           // 拓展欧拉定理情况2
48
  }
49
  11 a,b,m;
  int t;
50
  int main(){
51
      scanf("%d",&t);
52
53
       init();
54
      while (t--){
          scanf("%11d%11d%11d",&a,&b,&m);
55
          printf("%lld\n",f(a,b,m));
56
57
58
      return 0;
59
  }
```

5.8.2 例题二

给定长度为 n 的正整数序列和模数 m, q 次询问区间 [l,r] 累乘幂%m 的答案。 $n,q \neq 10^5, m, a_i \neq 10^9$ 。

$$w_1^{(w_2^{(w_3^{(\dots w_m)})})}$$

```
1 #include <bits/stdc++.h>
2
  #define aaa cout << 233 << endl;</pre>
  #define endl '\n'
3
4
  #define pb push_back
5
  using namespace std;
  typedef long long 11;
  typedef unsigned long long ull;
7
  typedef long double ld;
8
  // mt19937 rnd(time(0));
9
10 const int inf = 0x3f3f3f3f;//1061109567 > 1e9
12 const double eps = 1e-7;
13 const double pi = 3.14159265358979;
  const int maxn = 1e5 + 5;
14
  const int maxm = 1e3 + 5;
15
  const int mod = 1e9 + 7;
16
17
18
  11 a[maxn];
19
  inline 11 modulo(11 x, 11 mod){return x < mod ? x : x % mod + mod;}
20
  inline ll pow_(ll a, ll b, ll p)
21
22
23
      11 \text{ ret} = 1;
24
      while(b)
25
      {
          if(b & 1)ret = modulo(ret * a, p);
26
27
          a = modulo(a * a, p);
          b >>= 1;
28
```

```
29
30
       return ret;
31
  }
  unordered_map <11, 11> phi_;
32
33
  inline ll phi(ll x)
34
35
       if(phi_[x])return phi_[x];
       11 \text{ ans} = x;
36
       11 t = x;
37
38
       for(11 i = 2; i * i <= x; ++i)
39
            if(x \% i == 0)
40
41
            {
                 ans = ans / i * (i - 1);
42
                 while(x % i == 0)x /= i;
43
            }
44
45
       }
46
       if(x > 1) ans = ans / x * (x - 1);
       phi_[t] = ans;
47
48
       return ans;
49
  // 这里根据题意来更改, k表示共有k个指数
  ll f(ll a, ll b, ll k, ll p)
52
       if(p == 1) return 1;
53
       if(k == 0) return 1;
54
       return pow_{-}(a, f(a, a, k - 1, phi(p)), p);
55
56
57
  11 f(ll 1, ll r, ll p)
58
   {
59
       if(p == 1)return 1;
60
       if(1 == r + 1) return 1;
       return pow_{a[1]}, f(1 + 1, r, phi(p)), p);
61
62
63
   int main()
64
65
       // double pp = clock();
66
       // freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
67
68
       ios_base::sync_with_stdio(0);
69
70
       cin.tie(0);cout.tie(0);
71
72
       11 n, m;
73
       cin >> n >> m;
74
       for(int i = 1; i <= n; ++i)cin >> a[i];
75
       int q; cin >> q;
       \quad \text{while(q--)} \quad
76
77
       {
78
            ll l, r; cin >> l >> r;
            cout << f(1, r, m) % m << endl;</pre>
79
80
81
       // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;</pre>
82
83
       return 0;
84
```

5.8.3 例题三

求

$$n^{(n-1)^{(n-2)^{\dots^1}}}$$

```
#include <bits/stdc++.h>
#define aaa cout <<233 << end1;
#define end1 '\n'</pre>
```

```
4 #define pb push_back
 5 using namespace std;
 6 typedef long long 11;
7
  typedef unsigned long long ull;
8 typedef long double ld;
  // mt19937 rnd(time(0));
9
  const int inf = 0x3f3f3f3f; //1061109567 > 1e9
10
  const 11 linf = 0x3f3f3f3f3f3f3f3f3f;
11
  const double eps = 1e-7;
12
  const double pi = 3.14159265358979;
13
14
  const int maxn = 1e5 + 5;
15
  const int maxm = 1e3 + 5;
  const int mod = 1e9 + 7;
16
17
18
19 inline ll modulo(ll x, ll mod)\{return x < mod ? x : x % mod + mod\}\}
  inline ll pow_(ll a, ll b, ll p)
20
21
       11 \text{ ret} = 1;
22
       while(b)
23
24
       {
25
            if(b & 1)ret = modulo(ret * a, p);
26
            a = modulo(a * a, p);
            b >>= 1;
27
28
29
       return ret;
30
  unordered_map <11, 11> phi_;
31
32
  inline ll phi(ll x)
33
34
       if(phi_[x])return phi_[x];
35
       11 \text{ ans} = x;
       11 t = x;
36
       for(11 i = 2; i * i \le x; ++i)
37
38
            if(x \% i == 0)
39
40
            {
                ans = ans / i * (i - 1);
41
                while(x % i == 0)x /= i;
42
43
            }
44
       }
       if(x > 1) ans = ans / x * (x - 1);
45
46
       phi_[t] = ans;
47
       return ans;
48
49
  // ll f(ll l, ll r, ll p)
50
  // {
51
  //
           if(p == 1) return 1;
52
           if(1 == r + 1) return 1;
53
  //
54
  //
          return pow_{a[1]}, f(1 + 1, r, phi(p)), p);
55
  // }
56
  11 f(ll a, ll p)
57
58
       if(p == 1) return 1;
59
       if(a == 1) return 1;
60
       return pow_(a, f(a - 1, phi(p)), p);
61
62
63
64
  int main()
65
  {
66
       // double pp = clock();
       // freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
67
68
69
       ios_base::sync_with_stdio(0);
```

```
70     cin.tie(0);cout.tie(0);
71
72     ll n, m;
73     while(cin >> n >> m)cout << f(n, m) % m << endl;
74
75     // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
76     return 0;
77 }</pre>
```

5.9 逆序数

```
1 /*
     也可以用树状数组做
2
3
     a[0...n-1] cnt=0; call: MergeSort(0, n)
4
  */
  const int N = 1010;
5
  int a[N];
6
  int c[N];
7
  int cnt = 0;
8
  void MergeSort(int 1, int r)
10
11
12
       int mid, i, j, tmp;
13
       if (r > 1 + 1)
14
       {
15
           mid = (1 + r) / 2;
16
           MergeSort(1, mid);
17
           MergeSort(mid, r);
18
           tmp = 1;
           for (i = 1, j = mid; i < mid && j < r;)
19
20
           {
21
                if (a[i] > a[j])
22
                {
23
                    c[tmp++] = a[j++];
24
                    cnt += mid - i;
25
                }
26
                else
27
                    c[tmp++] = a[i++];
28
29
30
           }
           if (j < r)
31
32
33
                for (; j < r; ++j)
34
35
                    c[tmp++] = a[j];
36
           }
37
           else
38
39
           {
40
                for (; i < mid; ++i)
41
42
                    c[tmp++]=a[i];
43
44
           for (i = 1; i < r; ++i)
45
46
           {
                a[i] = c[i];
47
48
           }
49
       }
50
       return ;
51
```

5.10 无序序列变有序的最少交换次数

5.10.1 相邻元素交换

```
1 \\ 等于逆序数个数
```

5.10.2 任意元素交换

```
1
  *
     交换任意两数的本质是改变了元素位置,
2
3
     故建立元素与其目标状态应放置位置的映射关系
4
  */
  int getMinSwaps(vector<int> &A)
6
  {
      // 排序
7
8
      vector < int > B(A);
9
      sort(B.begin(), B.end());
10
      map < int , int > m;
11
      int len = (int)A.size();
      for (int i = 0; i < len; i++)
12
13
      {
          m[B[i]] = i; // 建立每个元素与其应放位置的映射关系
14
15
      }
16
                        // 循环节个数
17
      int loops = 0;
      vector < bool > flag(len, false);
18
      // 找出循环节的个数
19
      for (int i = 0; i < len; i++)
20
21
22
          if (!flag[i])
23
          {
             int j = i;
24
             while (!flag[j])
25
26
27
                 flag[j] = true;
                                // 原序列中j位置的元素在有序序列中的位置
28
                 j = m[A[j]];
29
30
             loops++;
          }
31
32
      }
33
      return len - loops;
34
  }
```

5.11 GCD

5.11.1 非递归

```
1 int gcd(int x, int y)
2
  {
3
       if (!x || !y)
4
5
           return x > y ? x : y;
6
       }
7
8
       for (int t; t = x \% y, t; x = y, y = t);
9
10
       return y;
11
```

5.11.2 递归

```
int gcd(int a, int b)
{
   return b == 0 ? a : gcd(b, a%b);
}
```

5.12 EXGCD

欧几里得是用来求 a,b 的最大公约数,那么扩展欧几里得不仅能求出 a,b 的最大公约数,还能求出满足 $ax+by=\gcd(a,b)$ 的一组可行解。

```
/*
1
2
     求x, y使得gcd(a, b) = a * x + b * y;
3
  */
  int extgcd(int a, int b, int &x, int &y)
4
5
  {
6
       if (b == 0)
7
       {
8
           x = 1;
9
           y = 0;
10
           return a;
11
       }
12
       int d = extgcd(b, a \% b, x, y);
13
       int t = x;
14
       x = y;
15
       y = t - a / b * y;
16
       return d;
17
  }
```

5.12.1 例题

例题: 给出 a,b,c,x1,x2,y1,y2, 求满足 ax+by+c=0, 且 $x \in [x1,x2], y \in [y1,y2]$ 的整数解个数

先处理无解情况:

1、当 a=0 并且 b=0,而 $c \neq 0$ 时,显然无解;当 a=0,b=0,而 c=0 时,[x1,x2],[y1,y2] 都为可行解,根据乘法原理,可行解的个数为 (x2-x1+1)*(y2-y1+1);

- 2、当 a=0 $b \neq 0$ 时: 此时即为求解 by=c,则 y=c/b,如果 c/b 不是整数或 c/b 不在 [y1,y2] 的范围内,无解否则 [x1,x2] 内全部整数都为可行解。
- 3、当 b=0, $a \neq 0$ 时,同上。
- 4、若 c 不是 gcd(a,b) 的倍数,方程显然无解。

```
1 #include <iostream>
  #include <cmath>
3
  #include <cstdio>
  typedef ll longlong
4
  using namespace std;
5
7
  ll a,b,c,x1,x2,yy1,y2,x0,yy0; // 全局变量
  inline ll cmin(const ll &x,const ll &y) {return x < y?x:y;}
8
  inline ll cmax(const ll &x,const ll &y) {return x>y?x:y;}
9
10
  ll gcd(ll a, ll b)
11
12
  {
13
      if (b==0) return a;
14
       return gcd(b,a % b);
15
  }
16
  void exgcd(ll a,ll b)
17
18
  {
19
      if (b==0) {x0=1; yy0=0; return;}
20
      exgcd(b,a%b);
```

```
21
       11 t=x0; x0=yy0; yy0=t-a/b*yy0;
22
       return;
23
  }
24
25
  int main()
26
  {
27
       cin >> a >> b >> c;
       cin >> x1 >> x2;
28
29
       cin >> yy1 >> y2;
30
       c=-c;
31
       if (c<0) { a=-a; b=-b; c=-c; }
32
       if (a<0) {a=-a; ll t=x1; x1=-x2; x2=-t;}
33
       if (b<0) {b=-b; ll t=yy1; yy1=-y2; y2=-t;}
       if (a==0 \&\& b==0)
34
35
            if (c==0)
36
37
            {
38
                 cout << (x2-x1+1)*(y2-yy1+1) << endl;
39
                 return 0:
40
            cout << "0" << endl; return 0;</pre>
41
42
43
       else if (a==0)
44
       {
            if (c \% b == 0)
45
                 if (c/b \le y2 \& c/b \ge yy1) {cout \le x2-x1+1 \le end1; return 0;}
46
            cout << "0" << endl; return 0;</pre>
47
48
       }
49
       else if (b==0)
50
51
       if (c\%a == 0)
52
            if (c/a \le x2 \& c/a \ge x1) \{cout \le y2 - yy1 + 1 \le end1; return 0;\}
       cout << "0" << endl; return 0;</pre>
53
54
55
       11 d=gcd(a,b);
56
       if (c%d!=0){cout << "0" << endl; return 0;}
57
58
       a=a/d; b=b/d; c=c/d;
59
60
       exgcd(a,b);
61
       x0 = x0 * c; yy0 = yy0 * c;
62
63
       double tx2=x2, tx1=x1, tx0=x0, ta=a, tb=b, tc=c, ty1=yy1, ty2=y2, ty0=yy0;
64
       ll down1=floor(((tx2-tx0)/tb)), down2=floor(((ty0-ty1)/ta));
65
       11 r=cmin(down1,down2);
66
       ll up1=ceil(((tx1-tx0)/tb)),up2=ceil((ty0-ty2)/ta));
67
       11 l=cmax(up1,up2);
       if (r<1) cout << "0" << endl;
68
       else cout << r-l+1 << endl;
69
70
       return 0;
71
  -}
```

5.13 逆元

对于正整数 a 和 m, 如果有 $ax \equiv 1 \pmod{m}$, 那么把这个同余方程中 x 的最小正整数解叫做 a 模 m 的逆元。

5.13.1 拓展欧几里得法

```
1 // 扩展欧几里得(求a对于mod的逆元,要求a与mod互素)
2 ll exgcd(ll a, ll b, ll &x, ll &y)
3 {
    //求2对于1e9+7的逆元就是 exgcd(2, 1e9+7, x, y),其中x的值就是inv2,
```

```
if (b == 0)
6
       {
7
           x = 1;
8
           y = 0;
9
           return a;
10
       }
11
       11 r = exgcd(b, a % b, x, y);
       11 t = x \% mod;
12
13
       x = y \% mod;
       y = ((t - a / b * y) \% mod + mod) \% mod;
14
15
       return r;
16
```

5.13.2 费马小定理法

```
1 // 费马小定理(求a对于mod的逆元,要求mod为素数)
  11 power_mod(ll a, ll b, ll mod)
3
  {
4
      11 \text{ ans} = 1;
5
      while (b)
6
7
          if (b & 1) ans = ans * a % mod;
8
          a = a * a % mod;
9
          b >>= 1;
10
      }
11
      return ans;
12
  inv2 = power_mod(a, mod - 2, mod);
```

5.14 中国剩余定理

中国剩余定理给出了以下的一元线性同余方程:

$$(S): \left\{ \begin{array}{lll} x \equiv a_1 & (mod & m_1) \\ x \equiv a_2 & (mod & m_2) \\ & \vdots & \\ x \equiv a_n & (mod & m_n) \end{array} \right.$$

中国剩余定理说明: 假设整数 m_1, m_2, \cdots, m_n 两两互质,则对任意的整数: a_1, a_2, \cdots, a_n 方程组 (S) 有解,并且通解可以通过如下方式构造得到:

```
//n个方程: x=a[i](mod m[i]) (0<=i<n)
  ll china(int n, ll *a, ll *m){
3
      11 M = 1, ret = 0;
4
      for(int i = 0; i < n; i ++) M *= m[i];
5
      for(int i = 0; i < n; i ++){
6
          11 w = M / m[i];
7
          ret = (ret + w * inv(w, m[i]) * a[i]) % M;
8
      }
9
      return (ret + M) % M;
10
  }
```

5.14.1 例题

人自出生起就有体力,情感和智力三个生理周期,分别为 23, 28 和 33 天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。

分析:假设 x 为这个天数,n1 为第一个周期出现的日期,p1 为其周期,以此类推,则如果同时出现峰值,则:

```
x = n_2 + k_2 * p_2
  x = n_3 + k_3 * p_3
  两侧同时取余 p 有:
  x\%p_2 = n_2\%p_2 \ \mathbb{H} \ x\%p_2 = a_2
  x\%p_3 = n_3\%p_3 \ \mathbb{P} \ x\%p_3 = a_3
  p_1 = 23, p_2 = 27, p_3 = 33 两两互质
1 #include < cstdio >
  typedef long long 11;
  const int N = 100000 + 5;
3
  void ex_gcd(ll a, ll b, ll &x, ll &y, ll &d){
      if (!b) \{d = a, x = 1, y = 0;\}
5
6
      else{
          ex_gcd(b, a % b, y, x, d);
7
8
          y = x * (a / b);
9
      }
10
11
12
  ll inv(ll t, ll p){//如果不存在,返回-1
13
      11 d, x, y;
14
      ex_gcd(t, p, x, y, d);
15
      return d == 1 ? (x \% p + p) \% p : -1;
16
17
  ll china(int n, ll *a, ll *m){//中国剩余定理
18
19
      11 M = 1, ret = 0;
      for(int i = 0; i < n; i ++) M *= m[i];
20
21
      for(int i = 0; i < n; i ++){
22
          11 w = M / m[i];
23
          ret = (ret + w * inv(w, m[i]) * a[i]) % M;
24
25
      return (ret + M) % M;
26
27
  int main(){
28
29
      11 p[3], r[3], d, ans, MOD = 21252;
30
      int cas = 0;
      p[0] = 23; p[1] = 28; p[2] = 33;
31
      || ~r[2] || ~d)){
33
          ans = ((china(3, r, p) - d) \% MOD + MOD) \% MOD;
          printf("Case %d: the next triple peak occurs in %I64d days.\n", ++cas, ans
34
             ? ans : 21252);
35
36
      return 0;
37
```

5.15 拓展中国剩余定理

 $x = n_1 + k_1 * p_1$

```
10
          11 \ a = A[i] * m, b = B[i] - A[i] * x, d = gcd(M[i], a);
          if(b % d != 0) return PLL(0, -1);//答案不存在, 返回-1
11
12
          ll t = b/d * inv(a/d, M[i]/d)%(M[i]/d);
13
          x = x + m*t;
14
          m *= M[i]/d;
15
      }
16
      x = (x \% m + m) \% m;
17
      return PLL(x, m); // 返回的x就是答案, m是最后的1cm值
18
```

5.16 素数

5.16.1 判断小于 MAXN 的数是否为素数

```
1 /*
2
  *
     素数筛选,判断小于MAXN的数是不是素数
3
  *
     notprime 是一张表, false表示是素数, true表示不是
4
  */
5
  const int MAXN = 1000010;
  bool notprime[MAXN];
6
  void init()
8
9
  {
      memset(notprime, false, sizeof(notprime));
10
11
      notprime[0] = notprime[1] = true;
      for (int i = 2; i < MAXN; i++)
12
13
          if (!notprime[i])
14
15
          {
              if (i > MAXN / i)
                               // 阻止后边i * i溢出(或者i,j用long long)
16
17
              {
18
                  continue;
19
              }
                 直接从i * i开始就可以, 小于i倍的已经筛选过了
20
              for (int j = i * i; j < MAXN; j += i)
21
22
                  notprime[j] = true;
23
24
              }
          }
25
26
      }
27
  }
```

5.16.2 埃式筛法

```
1 const int MAX = 1e6 + 10;
  int prime[MAX], k; // k为全局变量, 指向最后一个素数的后一个单元
  bool isPrime[MAX];
  void Prime()
4
5
  {
      k = 0;
6
7
      memset(isPrime, true, sizeof(isPrime));
8
      isPrime[1] = false; // 1不是素数
9
      for (int i = 2; i < MAX; i++)
10
11
          if(isPrime[i])
12
          {
13
              prime[k++] = i;
14
              for(int j = 2; i * j < MAX; j++)
15
                  isPrime[i * j] = false;
16
17
              }
18
          }
19
      }
20
```

5.16.3 线性筛法

```
1 /*
     素数筛选,查找出小于等于MAXN的素数
2
     prime [0] 存素数的个数
3
4
5
6
  const int MAXN = 100000;
7
  int prime[MAXN + 1];
8
  void getPrime()
9
10
  {
      memset(prime, 0, sizeof(prime));
11
12
      for (int i = 2; i \le MAXN; i++)
13
14
           if (!prime[i])
15
           {
               prime[++prime[0]] = i;
16
17
18
           for (int j = 1; j \le prime[0] \& prime[j] \le MAXN / i; j++)
19
               prime[prime[j] * i] = 1;
20
               if (i % prime[j] == 0)
21
22
23
                   break;
24
               }
25
           }
26
      }
27
  }
```

5.16.4 Miller Rabin

```
/*
1
     随机素数测试(伪素数原理)
2
  *
3
     CALL: bool res = miller(n);
     快速测试n是否满足素数的"必要"条件,出错概率极低
4
     对于任意奇数n > 2和正整数s, 算法出错概率 2^(-s)
5
  */
6
7
8
  int witness(int a, int n)
9
  {
10
      int x, d = 1;
      int i = ceil(log(n - 1.0) / log(2.0)) - 1;
11
12
      for (; i \ge 0; i--)
13
14
          x = d;
          d = (d * d) % n;
15
          if (d == 1 \&\& x != 1 \&\& x != n - 1)
16
17
          {
18
              return 1;
19
          }
20
          if (((n - 1) & (1 << i)) > 0)
21
          {
22
              d = (d * a) % n;
23
24
      return (d == 1 ? 0 : 1);
25
26
27
  int miller(int n, int s = 50)
28
29
30
      if (n == 2)
                     //
                         质数返回1
31
          return 1;
32
      if (n % 2 == 0) //
                          偶数返回0
33
          return 0;
```

```
34
      int j, a;
      for (j = 0; j < a; j++)
35
36
37
          a = rand() * (n - 2) / RAND_MAX + 1;
             rand() 只能随机产生[0, RAND_MAX)内的整数
38
          //
          11
              而且这个RAND_MAX只有32768直接%n的话是永远
39
              也产生不了[RAND_MAX, n)之间的数
40
          11
          if (witness(a, n))
41
42
          {
43
              return 0;
44
45
46
      return 1;
47
```

5.16.5 求 1e11 内的素数个数

```
// 方法一
  // O(n^{(3/4)})
3
  ll f[340000],g[340000],n;
  void init()
4
5
  {
       11 i,j,m;
6
       for (m=1; m*m \le n; ++m) f [m]=n/m-1;
7
8
       for (i=1; i \le m; ++i)g[i]=i-1;
9
       for(i=2;i<=m;++i)
10
       {
11
            if (g[i]==g[i-1]) continue;
            for(j=1;j<=min(m-1,n/i/i);++j)
12
13
14
                if(i*j<m)f[j]=f[i*j]-g[i-1];
15
                else f[j]=g[n/i/j]-g[i-1];
16
            for (j=m; j>=i*i;--j)g[j]-=g[j/i]-g[i-1];
17
18
       }
19
20
  int main()
21
22
       while(scanf("%I64d",&n)!=EOF)
23
24
            init();
25
            cout << f[1] << endl;
26
       }
27
       return 0;
28
  }
```

```
// 方法二
1
  // O(n^(2/3))
  const int N = 5e6 + 2;
3
4
  bool np[N];
5
  int prime[N], pi[N];
6
  int getprime()
7
  {
8
      int cnt = 0;
9
      np[0] = np[1] = true;
10
      pi[0] = pi[1] = 0;
      for(int i = 2; i < N; ++i)
11
12
           if(!np[i]) prime[++cnt] = i;
13
           pi[i] = cnt;
14
           for(int j = 1; j \le cnt && i * prime[j] < N; ++j)
15
16
17
               np[i * prime[j]] = true;
18
               if(i % prime[j] == 0)
                                         break;
19
           }
```

```
20
21
       return cnt;
22
  }
23
  const int M = 7;
  const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
24
  int phi[PM + 1][M + 1], sz[M + 1];
25
26
  void init()
27
  {
28
       getprime();
29
       sz[0] = 1;
       for(int i = 0; i <= PM; ++i) phi[i][0] = i;
30
31
       for(int i = 1; i \le M; ++i)
32
           sz[i] = prime[i] * sz[i - 1];
33
           for(int j = 1; j \le PM; ++j)
34
               phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
35
36
       }
37
  }
38
  int sqrt2(LL x)
39
       LL r = (LL) sqrt(x - 0.1);
40
       while(r * r \le x)
41
42
       return int(r - 1);
43
  }
44
  int sqrt3(LL x)
45
  {
       LL r = (LL)cbrt(x - 0.1);
46
47
       while (r * r * r <= x) ++r;
48
       return int(r - 1);
49
50
  LL getphi(LL x, int s)
51
52
       if(s == 0)
                  return x;
53
       if(s \le M)
                   return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
54
       if(x <= prime[s]*prime[s])</pre>
                                    return pi[x] - s + 1;
       if(x <= prime[s]*prime[s] && x < N)</pre>
55
56
           int s2x = pi[sqrt2(x)];
57
           LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
58
           for(int i = s + 1; i \le s2x; ++i) ans += pi[x / prime[i]];
59
60
           return ans;
61
62
       return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
63
64
  LL getpi(LL x)
65
66
       if(x < N)
                    return pi[x];
67
       LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
       for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i \le ed; ++i)
68
69
           ans -= getpi(x / prime[i]) - i + 1;
70
       return ans;
71
72
  LL lehmer_pi(LL x)
73
74
       if(x < N)
                   return pi[x];
       int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
75
       int b = (int)lehmer_pi(sqrt2(x));
76
77
       int c = (int)lehmer_pi(sqrt3(x));
       LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2;
78
       for (int i = a + 1; i \le b; i++)
79
80
       {
81
           LL w = x / prime[i];
           sum -= lehmer_pi(w);
82
83
           if (i > c) continue;
84
           LL lim = lehmer_pi(sqrt2(w));
           for (int j = i; j \le \lim_{j \to 0} j + j) sum -= lehmer_pi(w / prime[j]) - (j - 1);
85
```

```
86
87
       return sum;
88
  }
89
  int main()
90
91
       init();
       LL n;
92
       while(~scanf("%lld",&n))
93
94
95
            printf("%lld\n",lehmer_pi(n));
96
97
       return 0;
98
```

5.17 组合数

5.17.1 求单次

```
int com(int n, int r)
                                return C(n, r)
2
3
       if (n - r > r)
4
       {
                            // C(n, r) = C(n, n - r)
5
           r = n - r;
6
       }
       int i, j, s = 1;
7
       for (i = 0, j = 1; i < r; ++i)
8
9
10
           s *= (n - i);
11
           for (; j \le r \&\& s \% j == 0; ++j)
12
13
                s /= j;
14
           }
15
16
       return s;
17
```

5.17.2 线性打表

```
1 typedef long long ll;
  const 11 \mod = 1e9 + 7;
  const 11 M = 2e5 + 10;
  //fact[i]是i的阶乘, ifact[i]是阶乘的除法逆元, 两者用于求组合数
  11 fact[M], ifact[M];
  // 快速幂求n^k余m的结果
  11 pow_mod(ll n,ll k,ll mod) {
7
      ll res = 1;
8
      n = n \% mod;
9
10
      while (k > 0) {
          if (k & 1)
11
12
              res = res * n % mod;
13
          n = n * n % mod;
          k >>= 1;
14
15
16
      return res;
17
  void init() {
18
      fact[0] = ifact[0] = 1;
19
      for(int i = 1; i < M; ++i) {
20
          fact[i] = (fact[i-1] * i) % mod;
21
22
23
      ifact[M-1] = pow_mod(fact[M-1], mod - 2, mod);
24
      for (int i = M - 1; i > 0; i--)
25
          ifact[i-1] = ifact[i] * i % mod;
26 }
```

5.17.3 少量 C(n,m) 打表

```
11 c[maxn][maxn];
  void init() {
2
      c[0][0] = 1;
3
      for (int i = 1; i < maxn; i++) {
4
           for (int j = 0; j \le i; j++) {
5
               if (!j) c[i][j] = 1;
6
7
               else c[i][j] = c[i - 1][j - 1] + c[i - 1][j];
8
           }
9
      }
10
```

5.18 阶乘长度

```
#define PI 3.1415926
1
2
3
  int main()
4
  {
5
      int n, a;
6
      while (~scanf( "%d", &n))
7
8
           a = (int)((0.5 * log(2 * PI * n) + n * log(n) - n) / log(10));
           printf("%d\n", a + 1);
9
10
      }
       return 0;
11
12
```

5.19 全排列

```
#define MAX_N 10
                                  共n个数
2
  int n;
                              //
  int rcd[MAX_N];
                              //
                                 记录每个位置填的数
  int used[MAX_N];
                              //
                                  标记数是否用过
  int num[MAX_N];
                              //
                                 存放输入的n个数
6
7
  void full_permutation(int 1)
8
  {
      int i;
9
10
      if (1 == n)
11
12
          for (i = 0; i < n; i++)
13
              printf("%d", rcd[i]);
14
15
              if (i < n-1)
16
                  printf(" ");
17
18
          }
19
          printf("\n");
20
21
          return ;
22
      }
23
      for (i = 0; i < n; i++)
                                     // 枚举所有的数(n个),循环从开始
24
      if (!used[i])
25
                                 // 若 num[i]没有使用过,则标记为已使用
      {
26
          used[i] = 1;
```

```
在1位置放上该数
27
          rcd[1] = num[i];
                                 //
                                    填下一个位置
         full_permutation(l+1);
                                //
28
                                    清标记
29
         used[i] = 0;
                                //
30
      }
31
  }
```

5.20 求斐波那契第 N 项

```
1
  /*
2
     求斐波那契数列第N项,模MOD
3
  */
  #define mod(a, m) ((a) \% (m) + (m)) \% (m)
  const int MOD = 1e9 + 9;
   struct MATRIX
6
7
       long long a[2][2];
8
9
  };
10
  MATRIX a;
11
  long long f[2];
12
13
  void ANS_Cf(MATRIX a)
14
15
16
       f[0] = mod(a.a[0][0] + a.a[1][0], MOD);
17
       f[1] = mod(a.a[0][1] + a.a[1][1], MOD);
18
       return ;
19
  }
20
21
  MATRIX MATRIX_Cf(MATRIX a, MATRIX b)
22
23
       MATRIX ans;
24
       int k;
25
       for (int i = 0; i < 2; i++)
26
           for (int j = 0; j < 2; j++)
27
28
29
                ans.a[i][j] = 0;
                k = 0;
30
                while (k < 2)
31
32
                    ans.a[i][j] += a.a[k][i] * b.a[j][k];
33
34
                    ans.a[i][j] = mod(ans.a[i][j], MOD);
35
                    ++k;
36
                }
37
           }
38
39
       return ans;
40
41
42
  MATRIX MATRIX_Pow(MATRIX a, long long n)
43
  {
       MATRIX ans;
44
45
       ans.a[0][0] = 1;
46
       ans.a[1][1] = 1;
47
       ans.a[0][1] = 0;
48
       ans.a[1][0] = 0;
       while (n)
49
50
           if (n & 1)
51
52
           {
                ans = MATRIX_Cf(ans, a);
53
54
           }
55
           n = n >> 1;
56
           a = MATRIX_Cf(a, a);
57
       }
```

```
58
       return ans;
59
  }
60
61 int main()
62
  {
63
       long long n;
64
       while (cin >> n)
65
       {
           if (n == 1)
66
67
           {
                cout << '1' << '\n';
68
69
                continue;
70
           a.a[0][0] = a.a[0][1] = a.a[1][0] = 1;
71
           a.a[1][1] = 0;
72
73
           a = MATRIX_Pow(a, n - 2);
74
           ANS_Cf(a);
           cout << f[0] << '\n';
75
76
77
       return 0;
78
  }
```

5.21 质因子

```
vector<int> primeFactorList;
2
3
  void getPrimeFactor(int num)
4
5
       for(int i=2; i*i<=num; i++)
6
       {
7
           if(num%i ==0)
8
           {
9
                primeFactorList.push_back(i);
10
                while(num%i == 0) num = num/i;
11
12
       if(num>1) primeFactorList.push_back(num);
13
14
```

5.22 大数质因子分解

5.22.1 pollard_rho

```
inline LL add(LL x, LL y, LL mod) {
2
       return (x += y) < mod ? x : x - mod;
3
  }
4
  inline LL mul(LL x, LL y, LL mod) {
5
       const int BLEN = __builtin_clzll(mod) - 1;
6
       const LL BMSK = (1LL \ll BLEN) - 1;
7
8
       LL ret = 0;
       if(x < y)
9
10
           swap(x, y);
       while(y > 0) {
11
           ret += x * (y & BMSK);
12
           ret = ret < mod ? ret : ret % mod;</pre>
13
           y >>= BLEN;
14
15
           x <<= BLEN;
           x = x < mod ? x : x % mod;
16
17
       return ret;
18
19
  }
20
```

```
21 inline LL Pow(LL x, LL k, LL mod) {
22
       LL ret = mod > 1 ? 1 : 0;
23
       for(; k > 0; k >>= 1, x = mul(x, x, mod))
24
           if(k & 1)
25
                ret = mul(ret, x, mod);
26
       return ret;
27
28
  inline bool miller_rabin(LL n) {
29
30
       if(n == 2)
31
           return 1;
32
       if(n < 2 \mid | !(n \& 1))
33
           return 0;
34
       LL s, r;
       for(s = 0, r = n - 1; !(r & 1); r >>= 1, ++s);
35
       static const int ptot = 12, pr[ptot] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
36
         31. 37}:
37
       for(int p : pr) {
           if(p >= n)
38
39
                break;
           LL cur = 1, nxt = p;
40
41
           for (LL k = r; k > 0; k >>= 1, nxt = mul(nxt, nxt, n))
42
                if(k & 1)
43
                    cur = mul(cur, nxt, n);
           for(int i = 0; i < s; ++i) {
44
45
                nxt = mul(cur, cur, n);
                if(nxt == 1 \&\& cur != 1 \&\& cur != n - 1)
46
47
                    return 0;
48
                cur = nxt;
49
50
           if(cur != 1)
51
           return 0;
52
53
       return 1;
54
55
  inline LL pollard_rho(LL n) {
56
       static mt19937_64 rnd(996);
57
       while(1) {
58
           LL x = rnd() % (n - 3) + 2, y = x, c = rnd() % n, tim = 0, prd = 1;
59
           for (LL i = 1, stp = 2; ; ++i) {
60
                if(i == stp) {
61
62
                    y = x;
63
                    stp <<= 1;
64
65
                if((x = add(mul(x, x, n), c, n)) == y)
66
                    break;
67
                LL tmp = prd;
                if((prd = mul(prd, abs(y - x), n)) == 0)
68
69
                    return __gcd(tmp, n);
70
                static const int maxt = 100;
                if((++tim) < maxt)
71
72
                    continue;
73
                if((prd = \_gcd(prd, n)) > 1)
74
                    return prd;
75
                tim = 0;
76
           if(tim > 0 \&\& (prd = \_gcd(prd, n)) > 1)
77
78
                return prd;
79
80
       assert(0);
81
  inline void factorize(LL n, vector < pair < LL, int > > & ret) {
83
84
       vector < LL > vec;
85
       queue < LL > que;
```

```
86
        que.push(n);
87
       while(!que.empty()) {
88
            LL x = que.front();
89
            que.pop();
90
            for(LL y : vec)
91
                for( ; x % y == 0; x /= y, vec.push_back(y));
92
            if(x == 1)
93
                continue;
94
            if(miller_rabin(x)) {
95
                vec.push_back(x);
96
            } else {
97
                LL y = pollard_rho(x);
98
                que.push(y);
99
                que.push(x / y);
            }
100
       }
101
102
       sort(vec.begin(), vec.end());
103
       ret.clear();
        for(auto x : vec)
104
            if(!ret.empty() && ret.back().first == x) {
105
                ++ret.back().second;
106
107
            } else {
108
                ret.push_back(make_pair(x, 1LL));
109
            }
110
111
   // 用法
112
   vector<pair<LL, int> >d;
113
114 factorize(x,d);
```

5.23 公共因子数

```
1 //一串数字的公共因子数
  #include <bits/stdc++.h>
2
3
  using namespace std;
  typedef long long ll;
5
6
  int main()
7
  {
8
       ios_base::sync_with_stdio(false);
       cin.tie(NULL);
9
10
       11 n,gc;
       cin>>n;
11
12
       cin>>gc;
13
       n--;
       {\tt while(n--)}
14
15
16
            11 tmp;
17
            cin >> tmp;
18
            gc = \_\_gcd(gc,tmp);
            if(gc==1)
19
20
21
                cout << "1" << endl;
22
                return 0;
23
            }
24
       11 ans =0;
25
       for(ll i=1; i*i<=gc; i++)
26
27
       {
28
            if(gc%i==0)
29
            {
30
                ans++;
31
                if(i*i!=gc) ans++;
32
            }
       }
```

5.24 除法分块

```
1 #include <bits/stdc++.h>
  using namespace std;
  typedef long long 11;
  typedef unsigned long long ull;
  #define inf 0x3f3f3f3f
5
  #define INF 0x3f3f3f3f3f3f3f3f3f
6
7
  #define IO ios::sync_with_stdio(0)
8
  typedef pair<int, int> P;
  const int maxn = 2e5+5;
10
  const 11 \mod = 1e9+7;
11
  using namespace std;
12
13
  ull cal(ull n)
14
15
       ull ans = 0;
16
       for(ull l=1, r; l<=n; l=r+1)
17
18
           r = n/(n/1);
19
20
           ans += (n/1) * (1+r)*(r-1+1)/2;
21
       }
22
       return ans;
23
  }
24
  int main()
25
  {
26
       I0;
27
       ull a, b;
28
       cin>>a>>b;
29
       cout << cal(b) - cal(a-1) << " \ ";
30
       return 0;
31
```

5.25 高斯消元

5.25.1 求逆矩阵

```
\\ 普通矩阵
1
  #include < bits / stdc ++.h>
3
  using namespace std;
  const int N = 505;
5
  const int mod = 1e9+7;
6
  int a[N][N << 1];
7
  int n;
8
  int ppow(int a, int b, int mod) {
       int ans = 1 % mod; a %= mod;
9
       while(b) {
10
           if (b & 1) ans = 111 * ans * a % mod;
11
           a = 111 * a * a % mod;
12
           b >>= 1;
13
14
15
       return ans;
16
  }
17
  int Gauss_rev(int n) {
18
       for (int i = 1; i \le n; i++) {
           for (int j = i; j <= n; j++) {// 找 第 i 列 非 零 的 行 换 上 来
19
20
               if (a[j][i]) {
                    swap(a[i], a[j]);
21
22
                    break;
```

```
23
24
           }
25
           if (!a[i][i]) return 0;//无解
26
           int kk = ppow(a[i][i], mod - 2, mod); // 逆元
           for (int j = i; j <= n * 2; j++) \{// 当前行每一列都除以a[i][i]
27
28
               a[i][j] = 111 * a[i][j] * kk % mod;
29
           for(int j = 1; j <= n; j++) {//其他行
30
               if (j != i) {
31
32
                    kk = a[j][i];
                    for (int k = i; k \le n * 2; k++){
33
34
                        a[j][k] = (a[j][k] - 111 * kk * a[i][k] % mod + mod) % mod;
35
36
               }
37
           }
38
       }
39
       return 1;
40
  }
41
  int main() {
       scanf("%d",&n);
42
       for (int i = 1; i <= n; i++) {
43
44
           for (int j = 1; j \le n; j++) {
               scanf("%d", &a[i][j]);
45
46
           a[i][i + n] = 1;
47
48
       if (!Gauss_rev(n)) {
49
           puts("No Solution");
50
51
       } else {
52
           for (int i = 1; i \le n; i++) {
53
               for (int j = 1; j \le n; j++) {
                    printf("%d ", a[i][j + n]);
54
55
           puts("");
56
57
58
59
       return 0;
60
61
  // 01矩阵, 开关问题, 结果异或
62
63 #include <bits/stdc++.h>
64
  using namespace std;
  const int N=505;
66
  bitset < N << 1> a[N];
67
  int n;
68
  int Gauss_rev(int n) {
69
       for(int i = 1; i <= n; i++) {
           for (int j = i; j <= n; j++) {// 找 第 i 列 非 零 的 行 换 上 来
70
               if (a[j][i]) {
71
72
                    swap(a[i], a[j]);
73
                    break;
74
               }
75
           }
76
           if (!a[i][i]) return 0;//无解
77
           for (int j = 1; j <= n; j++) {// 其他行
               if (a[j][i] && j != i) {
78
                    a[j] ^= a[i];
79
80
               }
81
           }
82
       }
83
       return 1;
84
  int main() {
       scanf("%d", &n);
86
87
       for (int i = 1; i \le n; i++) {
88
           for (int j = 1; j \le n; j++) {
```

```
scanf("%d", &a[i][j]);
 89
90
              }
91
              a[i][i + n] = 1;
 92
 93
         if (!Gauss_rev(n)) {
94
              puts("No Solution");
         } else {
95
              for (int i = 1; i \le n; i++) {
96
                    for (int j = 1; j <= n; j++) {
    printf("%d ", a[i][j + n]);</pre>
97
98
 99
                    puts("");
100
101
102
         }
         return 0;
103
104
```

5.25.2 求异或矩阵的解

```
1 int n;
  int a[maxn][maxn];
3
  vector<int> g[maxn];
  int deg[maxn];
  int free_cnt;
5
6
  int free_x[maxn];
7
  // 无解 -1
  // 唯一解 0
9
  // 多解, 自由变元数量, 存于free_x[]中 1
10
  int gauss() {
11
       int r, c;
       for (r = 0, c = 0; c < n; c++) {
12
           int t = r;
13
14
           for (int i = r; i < n; i++) {
               if (a[i][c]) {
15
16
                   t = i;
17
                    break;
18
               }
19
20
           if (!a[t][c]) {
21
               free_x[free_cnt++] = c;
22
               continue;
23
           for (int i = c; i < n + 1; i++) swap(a[t][i], a[r][i]);
24
25
           for (int i = r + 1; i < n; i++) {
26
               if (a[i][c]) {
27
                   for (int j = c; j < n + 1; j++) a[i][j] ^= a[r][j];
28
               }
29
           }
30
           r++;
31
       if (r < n) {
32
           for (int i = r; i < n; i++) {
33
               if (a[i][n]) {
34
35
                    return -1;
36
               }
37
           }
38
           return 1;
39
40
       for (int i = n - 1; i \ge 0; i--) {
41
           for (int j = i + 1; j < n; j++) {
42
               a[i][n] ^= (a[i][j] & a[j][n]);
43
           }
44
       // 唯一解是a[i][n]
45
46
       return 0;
```

47 }

5.25.3 求方程组解

```
const int maxn=110;
 1
  int n;
3
  double f[maxn][maxn], ans[maxn];
  void gauss() {
5
       for(int i = 1; i \le n; i++) {
           int 1 = i;
6
7
           for(int j = 1 + 1; j \le n; j++)
                if (fabs(f[l][i]) < fabs(f[j][i]))
8
                    1 = j;
9
           if(1 != i)
10
11
           for(int j = i; j \le n + 1; j++)
12
                swap(f[1][j], f[i][j]);
13
           for(int j = i + 1; j \le n; j++) {
14
                double tmp = f[j][i] / f[i][i];
15
                for(int k = i; k \le n + 1; k++)
16
                    f[j][k] = f[j][k] - f[i][k] * tmp;
17
           }
18
19
       for(int i = n; i \ge 1; i--) {
20
           double tmp = f[i][n + 1];
21
           for(int j = n; j > i; j--)
                tmp = ans[j] * f[i][j];
22
23
           ans[i] = tmp / f[i][i];
24
       }
25
26
  int main() {
27
       scanf("%d",&n);
28
29
       for(int i=1; i \le n; i++)
30
           for(int j=1; j \le n+1; j++)
                scanf("%lf",&f[i][j]);
31
32
       gauss();
33
       for(int i=1;i<=n;i++)
           printf("%d ",int(ans[i]+0.5));
34
35
36
       return 0;
37
  }
```

5.26 FFT

求 $x_1 * x_3 = 2 * x_2$ 的数量

```
1 typedef long long ll;
  const double pi = acos(-1.0);
3
  const int maxn = 1e6 + 10;
5
  int n, m, k;
6
  struct complexx {
       \quad \hbox{double $x$, $y$;} \\
7
8
       complexx(double x = 0.0, double y = 0.0) : x(x), y(y) {}
9
       complexx operator + (complexx &a) { return complexx(x + a.x, y + a.y); }
       \verb|complexx| operator - (complexx \&a) { return complexx(x - a.x, y - a.y); } \\
10
       complexx operator * (complexx &a) { return complexx(x * a.x - y * a.y, y * a.x
11
          + x * a.y); }
12
  };
13
  complexx a[maxn], c[maxn];
  int rev[maxn];
14
15 int b[maxn], sum[maxn];
  void fft(complexx y[], int len, int on) {
16
17
       for (int i = 0; i < len; i++) {
```

```
18
            if (rev[i] > i) swap(y[i], y[rev[i]]);
19
20
       for (int h = 2; h \le len; h \le 1) {
            complexx \ wn(cos(-on * 2 * pi / h), \ sin(-on * 2 * pi / h));
21
            for (int j = 0; j < len; j += h) {
22
23
                complexx w(1, 0);
24
                for (int k = j; k < j + h / 2; k++) {
25
                     complexx u = y[k];
26
                     complexx t = w * y[k + h / 2];
                    y[k] = u + t;
27
                     y[k + h / 2] = u - t;
28
29
                     w = w * wn;
30
            }
31
32
33
       if (on == -1) {
            for (int i = 0; i < len; i++) {
34
35
                y[i].x /= len;
36
            }
37
       }
38
39
  int main() {
       // freopen("in.txt", "r", stdin);
40
       int m1 = 0, m3 = 0;
41
       scanf("%d", &n);
42
       for (int i = 1; i \le n; i++) {
43
           int x;
44
            scanf("%d", &x);
45
46
            x += 3e4;
47
            a[x].x += 1;
48
            m1 = max(m1, x);
49
       scanf("%d", &k);
for (int i = 1; i <= k; i++) {
    scanf("%d", &b[i]);</pre>
50
51
52
            b[i] += 3e4;
53
54
       }
       scanf("%d", &m);
55
       for (int i = 1; i \le m; i++) {
56
57
            int x;
            scanf("%d", &x);
58
            x += 3e4;
59
60
            c[x].x += 1;
61
            m3 = max(m3, x);
62
       }
63
       int len = 1, 1 = 0;
       for (; len <= m1 + m3; len <<= 1, l++);
64
       for (int i = 0; i < len; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (1 -
65
         1));
66
       fft(a, len, 1);
       fft(c, len, 1);
67
       for (int i = 0; i < len; i++) {
68
69
            a[i] = a[i] * c[i];
70
       fft(a, len, -1);
71
       for (int i = 0; i \le len; i++) {
72
73
            sum[i] = (int)(a[i].x + 0.5);
74
       11 ans = 0;
75
76
       for (int i = 1; i \le k; i++) ans += sum[2 * b[i]];
77
       printf("%lld\n", ans);
78
       return 0;
79 }
```

5.27 NTT

```
1 // P = 998244353, G为P的原根
  const int G = 3, P = (119 << 23) + 1;
3 int n, m, L, R[maxn];
  int A[maxn], B[maxn];
  int qpow(int a, int b) {
      int ans = 1;
7
      for (; b; b >>= 1,a = 1ll * a * a % P)
8
           if (b & 1) ans = 111 * ans * a % P;
9
      return ans;
10
  }
  void NTT(int* a, int f) {
11
      for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i], a[R[i]]);
12
13
       for (int i = 1; i < n; i <<= 1) {
           int gn = qpow(G, (P - 1) / (i << 1));
14
15
           for (int j = 0; j < n; j += (i << 1)) {
16
               int g = 1;
               for (int k = 0; k < i; k++, g = 111 * g * gn % P) {
17
                   int x = a[j + k], y = 111 * g * a[j + k + i] % P;
18
                   a[j + k] = (x + y) \% P; a[j + k + i] = (x - y + P) \% P;
19
               }
20
21
           }
22
23
      if (f == 1) return;
      int nv = qpow(n, P - 2); reverse(a + 1, a + n);
24
25
      for (int i = 0; i < n; i++) a[i] = 111 * a[i] * nv % P;
26
27
  int main() {
      n = read(); m = read();
28
      for (int i = 0; i \le n; i++) A[i] = read();
29
      for (int i = 0; i \le m; i++) B[i] = read();
30
      m = n + m; for (n = 1; n \le m; n \le 1) L++;
31
      for (int i = 0; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
32
33
      NTT(A,1); NTT(B,1);
34
      for (int i = 0; i < n; i++) A[i] = 111 * A[i] * B[i] % P;
35
      NTT(A,-1);
36
      for (int i = 0; i <= m; i++) printf("%d ",A[i]);
37
      return 0;
38
```

5.28 原根

```
1 11 m;
  11 fac[maxn], cnt;
3
  ll quickPower(ll a, ll b, ll M) {
 4
5
       ll ans = 111;
 6
       11 base = a;
       while (b) {
7
8
           if (b & 1) {
9
                ans *= base;
10
                ans %= M;
11
12
           base *= base;
13
           base %= M;
14
           b >>= 1;
15
       }
16
       return ans;
17
18
19
  void get_fac(ll x) {
20
       x--;
21
       11 m = sqrt(x) + 0.5;
       for (int i = 2; i \le m; i++) {
```

```
23
           if (x \% i == 0) fac[cnt++] = i;
24
           while (x \% i == 0) x /= i;
25
26
       if (x > 1) fac[cnt++] = x;
27
28
  int main() {
29
       scanf("%11d", &m);
30
       get_fac(m);
31
       for (11 g = 2; g < m; g++) {
32
33
            int f = 1;
            for (int j = 0; j < cnt; j++) {
34
                if (quickPower(g, (m - 1) / fac[j], m) == 111) {
35
                    f = 0;
36
37
                     break;
                }
38
39
           }
40
           if (f) {
                printf("%d", g);
41
42
                break;
43
           }
44
45
       return 0;
46
```

5.29 1-n 的 x 次方和

```
5.29.1 一次方
n * (n + 1) / 2
5.29.2 二次方
n * (n + 1) * (2 * n + 1) / 6
5.29.3 三次方
(n * (n + 1))^2 / 4
```

STL 6

6.1 vector

```
1 vector < int > s;
    定义一个空的vector对象,存储的是int类型的元素
 vector < int > s(n);
    定义一个含有n个int元素的vector对象
 vector < int > s(first, last);
    定义一个 vector 对象,并从由迭代器 first和 last 定义的序列 [first, last)中复制初值
6
7
8 s[i]
                  //
                     直接以下标方式访问容器中的元素
9 s.front()
                  //
                     返回首元素
10 s.back()
                  //
                     返回尾元素
                     向表尾插入元素x
11 s.push_back(x)
                  //
                     返回表长
12 s.size()
                  //
                     表为空时,返回真,否则返回假
                  //
13 s.empty()
                     删除表尾元素
                  //
14 s.pop_back()
15 s.begin()
                     返回指向首元素的随机存取迭代器
                  //
                     返回指向尾元素的下一个位置的随机存取迭代器
16 s.end()
                  //
                     向迭代器it指向的元素前插入新元素val
17
 s.insert(it, val)
                 //
                     向迭代器it指向的元素前插入n个新元素val
 s.insert(it, n, val)//
 s.insert(it, first, last)
20 // 将由迭代器first和last所指定的序列[first, last)插入到迭代器it指向的元素前面
                    删除由迭代器it所指向的元素
                 //
21 s.erase(it)
```

```
删除由迭代器first和last所指定的序列[first, last)
22 s.erase(first, last)//
                    预分配缓冲空间, 使存储空间至少可容纳n个元素
23 s.reserve(n)
                 //
                    改变序列长度,超出的元素将会全部被删除,如果序列需要扩展
 s.resize(n)
                 //
24
   (原空间小于n), 元素默认值将填满扩展出的空间
                    改变序列长度, 超出的元素将会全部被删除, 如果序列需要扩展
 s.resize(n, val)
                //
25
   (原空间小于n), val将填满扩展出的空间
                    删除容器中的所有元素
 s.clear()
                 //
26
                    将s与另一个vector对象进行交换
27
 s.swap(v)
                 //
                   // 将序列替换成由迭代器 first 和 last 所指定的序列 [first,
28
 s.assign(first, last)
   last), [first, last) 不能是原序列中的一部分
29
 // 要注意的是, resize操作和clear操作都是对表的有效元素进行的操作, 但并不一定会改
30
   变缓冲空间的大小
 // vector 上 还 定 义 了 序 列 之 间 的 比 较 操 作 运 算 符 ( > 、 < 、 >= 、 <= 、 == 、 != ) , 可 以 按 照 字 典
31
   序比较两个序列。
```

6.2 set

```
1 // 有序
 set < int > s;
3 s.begin()
              //
                 返回指向第一个元素的迭代器
4 s.clear()
              //
                 清除所有元素
                 返回某个值元素的个数
5 s.count()
              //
                 如果集合为空,返回true(真)
6 s.empty()
              //
                 返回指向最后一个元素之后的迭代器,不是最后一个元素
7
 s.end()
              //
                 返回集合中与给定值相等的上下限的两个迭代器
8
 s.equal_range()
             //
9
 s.erase()
              //
                 删除集合中的元素
                 返回一个指向被查找到元素的迭代器
10
 s.find()
              //
                 // 返回集合的分配器
11
 s.get_allocator()
                 在集合中插入元素
12
 s.insert()
              11
                 返回指向大于(或等于)某值的第一个元素的迭代器
 s.lower_bound() //
13
                 返回一个用于元素间值比较的函数
 s.key_comp()
14
              11
                 返回集合能容纳的元素的最大限值
15
 s.max_size()
              //
                 返回指向集合中最后一个元素的反向迭代器
16
 s.rbegin()
              //
                 返回指向集合中第一个元素的反向迭代器
17
 s.rend()
              //
                 集合中元素的数目
18 s.size()
              //
                 交换两个集合变量
19
 s.swap()
              11
                 返回大于某个值元素的迭代器
 s.upper_bound() //
20
                返回一个用于比较元素间的值的函数
 s.value_comp() //
21
22
 // 多重集合
 multiset < int > s;
 // 操作类似
```

6.3 pair

```
pair <T1, T2 > p1;
pair <T1, T2 > p1(v1, v2);
p1.first;
p1.second;
p1 = make_pair(v1, v2);
vector <pair <int, int > > v;
sort(v.begin(), v.end()); // 根据pair的first排序, 从小到大
```

6.4 stack

```
1 stack < int > s;
2 s.push(x); // 入栈
3 s.pop(); // 出栈
4 s.top(); // 访问栈顶
5 s.empty(); // 当栈空时,返回true
```

6 s. size(); // 访问栈中元素个数

6.5 queue

```
queue < int > q;
               入队列
 q.push(x); //
               出队列
            //
3
  q.pop();
          //
               访问队首元素
  q.front();
           //
               访问队尾元素
5
  q.back();
  q.empty();
          //
               判断队列是否为空
6
7
  q.size();
            //
               访问队列中的元素个数
8
  //priority_queue (优 先 队 列 )。 优 先 队 列 与 队 列 的 差 别 在 于 优 先 队 列 不 是 按 照 入 队 的 顺 序 出
   队,而是按照队列中元素的优先权出队列(默认为大者优先,也可以通过指定算子来指定自
   己的优先顺序)。
10
  priority_queue 模版类有三个模版参数,第一个是元素类型,第二个是容器类型,第三个是比
11
   较算子。其中后两者都可以忽略,默认容器为vector,默认算子为less,即小的往前排,大
   的往后排 (出队列时列尾元素先出队)。
12
  priority_queue <int> q;
13
  priority_queue <pair < int, int > > qq; // 注意在两个尖括号之间一定要留空格, 防止误判
14
  priority_queue <int, vector <int>, greater <int> > qqq;// 定义小的先出队列
15
16
             //
                 如果队列为空,则返回true,否则返回false
17
  q.empty()
18
  q.size()
             //
                 返回队列中元素的个数
                 删除队首元素,但不返回其值
19
  q.pop()
             //
                 返回具有最高优先级的元素值,但不删除该元素
20
  q.top()
             //
                 在基于优先级的适当位置插入新元素
 q.push(item) //
21
22
23
  //deque 双端队列
24
  #include < deque >
25
  deque < int > dep;
26
  deq.push_front(const T& x); //头插
27
  deq.push_back(const T& x); //尾插
28
  deq.insert(iterator it, const T& x);
                                  // 任 意 位 置
29
30
                  //删除头部
  deq.pop_front();
31
  deq.pop_back();
                  //删除尾部
32
  deq.erase(iterator it);
                       // 删除任意
33
34
  deq[1]; // 并不会检查是否越界
35
 deq.at(1); // 以上两者的区别就是 at 会检查是否越界, 是则抛出 out of range 异常
  deq.front();
              // 访问头部
 deq.back();
               //访问尾部
```

6.6 map

6.7 bitset

```
// 0xf 表示十六进制数 f, 对应二进制 1111, 将 bt1 低 4
4 bitset < MAXN > bt1(0xf);
    位初始化为 1
                            012 表示八进制数 12, 对应二进制 1010, 即将 bt2 低
 bitset < MAXN > bt2(012);
                         //
   4 位初始化为 1010
                         // 将 bt3 低 4 位初始化为 1010
 bitset < MAXN > bt3("1010");
6
7
8
               11
                  bt 中是否存在置为 1 的二进制位?
 bt.any()
                  bt 中不存在置为 1 的二进制位吗?
9
 bt.none()
               //
                     中置为 1 的二进制位的个数
10
 bt.count()
               //
                  bt
                  bt 中二进制位的个数
11
 bt.size()
               //
                  访问 bt 中在 pos 处的二进制位
12
 bt[pos]
               //
                  bt 中在 pos 处的二进制位是否为 1
13
 bt.test(pos)
               //
                     bt 中所有二进制位都置为 1
14
 bt.set()
               //
                  把
                  把
                    bt 中在 pos 处的二进制位置为 1
15
 bt.set(pos)
               //
                  把 bt 中所有二进制位都置为 0
 bt.reset()
               //
16
17 bt.reset(pos)
                  把 bt 中在pos处的二进制位置为0
               //
18 bt.flip()
               //
                  把 bt 中所有二进制位逐位取反
                  把 bt 中在 pos 处的二进制位取反
19 bt.flip(pos)
               //
20 bt[pos].flip()
               //
                  同上
                  用 bt 中同样的二进制位返回一个 unsigned long 值
 bt.to_ulong()
               //
```

6.8 algorithm

```
reverse(begin, end) // 反转
2
3
 unique(begin, end)
                 // 需排序, 去除重复的相邻元素, 常用于求不同元素个数
4
 int n=unique(a, a+10)-a;
5
 lower_bound(begin, end, value) //返回指向第一个不小于给定值的元素的迭代器
6
7
 upper_bound(begin, end, value) //返回指向第一个大于给定值的元素的迭代器
8
9
 next_permutation(array) // 一种排列的下一种排列
10
```

7 计算几何

7.1 三角形面积

```
1 \\ 海伦公式
int p = (a+b+c)/2;
int s = sqrt(p * (p - a) * (p - b) * (p - c));
4
5 \\ 两边和夹角
(\\ a, b为边, x为a和b的夹角
7 s = 0.5 * a * b * sin(x/90.0*acos(0));
```

7.2 两圆面积交

```
const double PI = acos(-1);
1
2
  struct circle
3
4
  {
5
      double x, y, r;
6
  };
7
  // 计算圆心距
8
  double dist(circle a, circle b)
10
  {
11
      return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
12
  }
13
```

```
14 double area(circle a, circle b)
15
      if((dist(a, b) + min(a.r, b.r)) <= max(a.r, b.r)) // 内含或重合
16
17
          if(a.r < b.r)
18
              return PI*a.r*a.r;
19
20
          else
21
              return PI*b.r*b.r;
22
23
      else if(dist(a, b) >= (a.r + b.r)) // 相切
24
      {
25
          return 0.0;
26
      }
      else
27
28
      {
          double length = dist(a, b);
29
          // 利用三角形余弦定理求圆心角
30
          double d1 = 2*acos((a.r*a.r+length*length-b.r*b.r)/(2*a.r*length));
31
          double d2 = 2*acos((b.r*b.r+length*length-a.r*a.r)/(2*b.r*length));
32
          // 利用圆心角求得扇形面积再减去三角形面积后两部分相加就是相交面积
33
          double area1 = a.r*a.r*d1/2 - a.r*a.r*sin(d1)/2;
34
35
          double area2 = b.r*b.r*d2/2 - b.r*b.r*sin(d2)/2;
36
          return area1 + area2;
37
      }
38
  }
```

7.3 矩形相交

```
// 一. 相交面积 == 白色
  //这做法看起来思路简单但是很多坑
3
  //应该是两个黑白相交面积之和-黑黑白相交面积,而不是-黑黑相交面积!(当时就wa在这)
4
  // 求相交面积先判断是否相交(即x1,x2大小与y1,y2大小)
6
7
  #include < bits / stdc ++.h>
8
  using namespace std;
  typedef long long 11;
9
10
  struct CC{
11
      ll x1,x2,y1,y2;
12
13
  };
14
  CC jiao(CC a, CC b) // 相交矩形的坐标, 可能不存在
15
16
  {
17
      CC c1;
18
      c1.x1 = max(a.x1,b.x1);
19
      c1.y1 = max(a.y1,b.y1);
20
      c1.x2 = min(a.x2,b.x2);
      c1.y2 = min(a.y2, b.y2);
21
22
      return c1;
23
  }
24
25
  int main()
26
27
      CC w, b1, b2;
28
      cin>>w.x1>>w.y1>>w.x2>>b1.x1>>b1.y1>>b1.x2>>b1.y2>>b2.x1>>b2.y1>>b2.x2>>
       b2.y2;
29
      CC j1 = jiao(w,b1);
      CC j2 = jiao(w,b2);
30
      CC j3 = jiao(j1,j2);
31
32
      ll s, s1, s2, s3;
33
      s = (w.x2-w.x1) * (w.y2-w.y1); // 白 色
34
      if(j1.x1>j1.x2 || j1.y1>j1.y2) s1 = 0;//不想交则为0
35
      else s1 = (j1.x2-j1.x1)*(j1.y2-j1.y1);
36
      if(j2.x1>j2.x2 || j2.y1>j2.y2) s2 = 0;//不想交则为0
```

```
else s2 = (j2.x2-j2.x1)*(j2.y2-j2.y1);
if(j3.x1>j3.x2 || j3.y1>j3.y2) s3 = 0;//不想交则为0
else s3 = (j3.x2-j3.x1)*(j3.y2-j3.y1);

if(s1+s2-s3 == s) cout <<"NO"<<endl;
else cout <<"YES"<<endl;
return 0;

44 }
```

8 其它

8.1 数据类型范围

数据类型	范围
char	-128 - 127
int	2147483648 - 2147483647(十位)
long long	-9223372036854775808 - 9223372036854775807(大约十九位)
double	1.7 * 10308

8.2 头文件

```
1 //#include < stdio.h>
  //#include < iostream >
3
  //#include < queue >
  //#include <algorithm >
  //#include < cstring >
  //#include < vector >
  //#include < cmath >
  //#include < string >
  //#include <map >
9
10 //#include <set >
# include < bits / stdc ++ . h >
12 using namespace std;
13 typedef long long ll;
14 #define inf 0x3f3f3f3f
15 typedef pair<int, int> P;
16 const int maxn = 5e4+5;
17 \mid const \mid 11 \mid mod = 1e9+7;
```

8.3 Vim 配置

```
1 // open ~/.vimrc
  syntax on
3 set nu ts=4 sw=4 mouse=a cin
  colo desert
5
6 inoremap '''<ESC>i
  inoremap " ""<ESC>i
7
8
  inoremap ( () < ESC > i
9
  inoremap [ []<ESC>i
10
  inoremap { <<CR>>}<ESC>0
  map < C-A > ggVG" + y
11
12
  map <F5> :call CR() <CR>
13 func! CR()
14 exec "w"
  exec "!g++ -02 -g -std=c++11 -Wall % -o %<"
15
  exec "! ./%<"
16
17
  endfunc
```

8.4 输入挂

8.4.1 关闭同步

```
#define endl '\n'
ios::sync_whit_stdio(0);
cin.tie(0);
```

8.4.2 IO

```
#include < cstdio >
2
  inline void read(int &x)
                                // 看情况可去掉负数部分
3
4
  {
5
      int t = 1;
6
      char ch = getchar();
7
      while (ch < '0' || ch > '9') { if (ch == '-') t = -1; ch = getchar();}
8
      x = 0:
      while(ch >= '0' && ch <= '9'){ x=x*10+ch-'0'; ch = getchar(); }
9
10
      x *= t;
11
12
  void print(int i){
13
14
      if(i<10){
           putchar('0'+i);
15
16
           return ;
17
18
      print(i/10);
19
      putchar('0'+i%10);
20
  }
```

8.5 C++ 大数

8.5.1 大数加法

```
string add(string a,string b)
1
      // 两数相加
2
  {
3
      string res="";
4
      int i=1;
5
      string first="0";
6
      while(true) {
7
          int tai=a.size()-i;
8
          int tbi=b.size()-i;
9
          if(tai<0 && tbi<0)
                             //从两数最右边开始模拟加法运算直到两数都遍历完
10
              break;
          int ta,tb;
11
          if(tai<0)
12
                     //如果没数则至为0
13
              ta=0;
14
          else
15
              ta=a[tai]-'0';
          if(tbi<0)
16
17
              tb=0;
                     // 如果没数则至为0
18
          else
              tb=b[tbi]-'0';
19
          int temp=ta+tb+first[0]-'0';
                                        // 相加 first 保 存 上 一 个 的 进 位 信 息
20
          first[0]=temp%10+'0'; //当前位是对10取余
21
22
          res=first+res;
          first[0]=temp/10+'0';
                                 // 进位是除10
23
          i++;
24
25
      }
26
      if(first!="0")
27
          res=first+res; //如果进位还有则添加
28
      if(res[0]=='0' && res.size()>1) //去除前导0
```

```
29    res.erase(res.begin());
30    return res;
31 }
```

8.5.2 大数乘法

```
// 还需要配合大数加法
2
  string mul(string a, string b) {
      if(b.size()==1) { //如果b只有一位则使其分别相乘
3
          string res="";
4
          string first="0";
5
          int mb=b[0]-'0';
6
          for(int i=a.size()-1; i>=0; i--) { // 从最后开始依次计算
7
              int temp=(a[i]-'0') * mb + (first[0]-'0');
8
              first[0]=temp%10+'0';
                                    // 当前位
9
10
              res=first+res;
11
              first[0]=temp/10+'0';
                                   // 进 位
12
13
          if(first!="0") {
14
              res=first+res; // 处理进位
15
          }
          if(res[0]=='0' && res.size()>1)
16
             res.erase(res.begin()); //除去前导0
17
18
          return res;
19
          }
20
      // 否则则把b拆分为一位
21
      string res="0";
      string zero="";
22
23
      for(int i=b.size()-1; i>=0; i--) { //从b的最后一位开始
24
          string temp=mul(a,b.substr(i,1)); // 计算当前为与a相乘
          res=add(res, temp+zero); // 在其后添加适当的0再与结果相加
25
          zero=zero+"0";
26
27
      }
28
      return res;
29
  }
```

8.5.3 整数转 string

```
string inttostring(int m) { //将整数转为string
1
2
       string res=""
3
       string temp="0";
4
      while(m) {
5
           temp[0]=m%10+'0';
6
           res=temp+res;
7
           m/=10;
8
       if(res=="")
9
           res="0";
10
       return res;
11
12
  }
```

8.6 Java

```
valueOf(parament); 将参数转换为制定的类型

比如 int a=3;

BigInteger b=BigInteger.valueOf(a);

则b=3;

String s="12345";
```

```
10
11
  BigInteger c=BigInteger.valueOf(s);
12
  则 c = 12345;
13
14
  // 常用函数
15
  1. 赋 值:
16
  BigInteger a=new BigInteger("1");
17
18
  BigInteger b=BigInteger.valueOf(1);
19
  2. 运算:
20
    add(); 大整数相加
21
  BigInteger a=new BigInteger( "23");
22
  BigInteger b=new BigInteger( "34");
23
24
  a.add(b);
25
   subtract(); 相减
26
27
   multiply(); 相乘
   divide(); 相除取整
28
   remainder(); 取余
29
   pow(); a.pow(b)=a^b
30
   gcd(); 最大公约数
31
32
   abs(); 绝对值
   negate(); 取反数
33
   mod(); a.mod(b)=a%b=a.remainder(b);
34
35
  3. BigInteger 构造函数:
36
   一般用到以下两种:
37
38
  BigInteger(String val);
39
  将指定字符串转换为十进制表示形式;
40
  BigInteger(String val, int radix);
41
  将指定基数的 BigInteger 的字符串表示形式转换为 BigInteger
42
  4. 基本常量:
43
  A=BigInteger.ONE 1
44
  B=BigInteger.TEN 10
45
  C=BigInteger.ZERO 0
46
47
  5.n.compareTo(BigInteger.ZERO)==0 //相当于n==0
48
49
  6. if(a[i].compareTo(n) >= 0 && a[i].compareTo(m) <= 0)</pre>
                                                       // a[i]>=n && a[i]<=m
50
51
52
  // 模板
53 import java.math.BigInteger;
54
  import java.math.BigDecimal;
55
  import java.util.Scanner;
56
  import java.util.*;
57
  import java.io.*;
  public class Main {
58
59
      public static void main(String [] args){
60
          Scanner cin = new Scanner(System.in);
61
          BigInteger a, b;
          while(cin.hasNext())//相当于c语言中的scanf("%d", &n) != EOF
62
63
64
              a = cin.nextBigInteger();
65
              b = cin.nextBigInteger();
              System.out.println(a.add(b));// 大整数加法
66
67
              System.out.println(a.subtract(b));// 大整数減法
              System.out.println(a.multiply(b));// 大整数乘法
68
              System.out.println(a.divide(b));// 大整数除法, 取整
69
70
              System.out.println(a.remainder(b));// 大整数取模
71
              System.out.println(a.abs());//对大整数a取绝对值
72
              int x = 0;
73
              System.out.println(a.pow(x));// 大整数a的x次幂
74
              int y = 8;
              System.out.println(a.toString(y));//返回大整数a的p进制用字符串表现的形
75
```

```
式
              System.out.println(a.toString()); // 返回大整数a的十进制用字符串表现的形
76
                式
77
              //大整数之间的比较
              if( a.compareTo(b) == 0 ) System.out.println("a == b"); //大整数a==b
78
              else if( a.compareTo(b) > 0 ) System.out.println("a > b"); //  整 数 a>b
79
80
              else if( a.compareTo(b) < 0 ) System.out.println("a < b"); //大整数a<b
                )
81
              BigDecimal c, d;
82
83
              c = cin.nextBigDecimal();
84
              d = cin.nextBigDecimal();
              System.out.println(c.add(d));// 浮点数相加
85
              System.out.println(c.subtract(d));// 浮点数相减
86
              System.out.println(c.multiply(d));//浮点数相乘
87
88
          }
89
      }
90
  }
91
  // 输入方式
93 int a = cin.nextInt();
94 String s = cin.nextLine();
95 double b = cin.nextDouble();
```

8.7 二分答案

```
#include < bits / stdc ++.h>
 1
2
  using namespace std;
3
  int n,m,A;
       l,r,mid,a[100005];
4
  int
        total ,cnt;
5
  int
6
  bool judge(int mid)
7
  {
       int num = 0;
8
       int 1 = a[0];
9
       for(int i =1; i < n; i++)
10
11
       {
12
            if(a[i]-l<mid) num++;</pre>
            13
            if(num>A) return false;
14
15
       return true;
16
17
18
19
  int main()
20
  {
       while(cin>>n>>m)
21
22
            A = n-m; // 最大剩余牛栏数
23
            1 = r = 0;
24
25
            int
                 ans;
            for (int i = 0; i < n; i++)
26
27
            {
28
                cin>>a[i];
29
                r = max(r,a[i]);
30
            }
31
            sort(a,a+n);
            while (1 \le r)
32
33
            {
                mid = (1+r)/2;
34
35
                total = cnt = 0;
36
                if(judge(mid))
37
                {
38
                     1 = mid + 1;
39
                     ans = mid;
```

```
}//若此答案可行,从mid+1~r区间继续查找(更大答案),即修改左界1=mid
40
               +1
              else
41
42
              {
                  r = mid -1; // 反之,若此答案不可行,从1 ~ mid-1区间查找(合理答案),即修改左界1=mid -1
43
44
                  //ans = mid;
45
              }
46
          }
47
          cout << ans << end1;</pre>
48
49
      return 0;
50
```