## MATH 254 TUTORIAL 11

#### Honours Analysis 1

WRITTEN BY

## DAVID KNAPIK

 $McGill\ University \\ 260607757 \\ david.knapik@mail.mcgill.ca$ 



## **Continuous Functions**

We begin with the  $\epsilon - \delta$  definition of continuity:

**Definition 1.0.1.** A function  $f: A \to \mathbb{R}$  is continuous at a point  $c \in A$  if for all  $\epsilon > 0$  there exists  $\delta > 0$  such that  $\forall x \in A$  satisfying  $|x - c| < \delta$ , one has  $|f(x) - f(c)| < \epsilon$ .

**Definition 1.0.2.** If f is continuous at every point in A, we say that f is continuous on A.

**Definition 1.0.3.** If f is not continuous at a point  $c \in A$ , then we say that f is discontinuous at c.

Remark. If  $c \in A$  is a cluster point of A, then f is continuous at c iff  $\lim_{x\to c} f(x) = f(c)$ .

Remark. If  $c \in A$  is an isolated point of A (i.e. is not a cluster point), then  $\lim_{x\to c} f(x)$  is not defined. But, we can still apply the definition of continuity to get: any function  $f: A \to \mathbb{R}$  is continuous at isolated points of A.

Now, we introduce some tools which we shall use in a particular example:

**Theorem 1.0.1** (Sequential Characterization of Continuity). Let  $f: A \to \mathbb{R}$  and  $c \in A$ . The following are equivalent:

- 1. f is continuous at c
- 2. For any sequence  $(x_n)$  in A such that  $\lim_{n\to\infty} x_n = c$ , we have that  $\lim_{n\to\infty} f(x_n) = f(c)$ .

**Corollary 1.0.1** (Criterion for Discontinuity). Let  $f: A \to \mathbb{R}$  and  $c \in A$  be a cluster point of A. If there exists a sequence  $(x_n)$  in A such that  $(x_n) \to c$  but  $f(x_n)$  does not converge to f(c), we may conclude that f is not continuous at c.

## 1.1 Example - Thomae's Function

Let  $A := \{x \in \mathbb{R} : x > 0\}$ . For any irrational x > 0, let h(x) := 0. For rational numbers in A of form  $\frac{m}{n}$  (where  $m, n \in \mathbb{N}$  have no common factors except 1), we define  $h(\frac{m}{n}) := \frac{1}{n}$ . This function is referred to as *Thomae's Function*.



**Lemma 1.1.1.** Given  $n_0 \in \mathbb{N}$  and  $a, b \in \mathbb{R}$  with  $0 \le a < b < \infty$ , there are only finitely many rationals  $x \in (a,b)$  where  $x = \frac{m}{n} (\gcd(m,n) = 1)$  such that  $0 < n \le n_0$ .

*Proof.* We provide a brief sketch. We have that  $0 < n \le n_0$ , and only finitely many natural numbers n satisfy this (namely  $n_0$  of them). For each of these denominators n, the numerator m must satisfy  $an \le m \le bn$  (since  $\frac{m}{n} \in (a,b)$ ). There are only a finite number of natural numbers m that can exist in that range.

#### **Theorem 1.1.1.** h is continuous at every irrational number in A.

*Proof.* Let  $\epsilon > 0$  and  $b \in A$  be irrational. By the Archimedean Property, there exists  $n_0 \in \mathbb{N}$  such that  $\frac{1}{n_0} < \epsilon$ . Now by lemma 1.1.1, we know that the interval (b-1,b+1) contains at most finitely many rationals with denominator less than  $n_0$ . Hence, we can choose  $0 < \delta < 1$  small enough so that  $(b-\delta,b+\delta)$  contains no rationals with denominator less than  $n_0$ .

So for  $|x-b| < \delta$  (and  $x \in A$ ):

- 1. If x is irrational:  $|h(x) h(b)| = |0 0| = 0 < \epsilon$ .
- 2. If  $x = \frac{m}{n}$  is rational, then we know by the choice of  $\delta$  that  $n \ge n_0$ , and  $|h(x) h(b)| = |h(x)| = |\frac{1}{n}| = \frac{1}{n} \le \frac{1}{n_0} < \epsilon$

Either way, we have that h is continuous at b.

#### **Theorem 1.1.2.** h is discontinuous at every rational number in A.

*Proof.* Let a > 0 be rational. Let  $(x_n)$  be a sequence of irrational numbers in A that converges to a. (for example could take  $x_n := a(\sqrt{2})^{\frac{1}{n}}$ ). We have that  $h(x_n) = 0$  for all n and hence  $\lim_{n\to\infty} h(x_n) = 0$ . But, h(a) > 0. So by the Criterion for Discontinuity we are done.

2

# 2

### **Practice Homework**

Here we provide solutions to selected problems from the Practice Homeworks. We remark that for Practice Assignment 1, we may use (without proof) that  $|\sin x| \leq |x|$  for all  $x \in \mathbb{R}$  and  $\sin x < x$  for all x > 0. We may also use all trigonometric identities covered in standard Calculus courses.

Remark. In particular, the sum-to-product formula will be useful:

$$\sin \alpha - \sin \beta = 2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right) \tag{2.1}$$

#### 2.1 Practice1 Problem 8

Let  $(x_n)$  be defined recursively as  $x_1 = 1$ ,  $x_{n+1} = \sin x_n$ ,  $n \ge 1$ . Prove that  $(x_n)$  is convergent and find  $\lim x_n$ .

First, we shall show that  $0 < x_n < \frac{\pi}{2}$  for all  $n \in \mathbb{N}$ . The base case is trivial because  $0 < x_1 = 1 < \frac{\pi}{2}$ . Now, suppose that  $0 < x_n < \frac{\pi}{2}$  holds. Then, we have that  $x_{n+1} = \sin x_n > 0$  (as  $0 < x_n < \frac{\pi}{2}$ ). On the other hand, we have that  $x_{n+1} = \sin x_n < x_n < \frac{\pi}{2}$  (where we have used that  $\sin x < x$  for all x > 0). Combining, we arrive at  $0 < x_{n+1} < \frac{\pi}{2}$ , and hence by AI we are done

Now, for all n we have that  $x_{n+1} = \sin x_n < x_n$  (using what we have just shown). So  $(x_n)$  is decreasing and we know it is bounded from below by 0. By the Monotone Convergence Theorem, the sequence  $(x_n)$  is convergent (say  $\lim_{n\to\infty} x_n = x$ ). It remains to determine its limit x.

To that end, recall that  $\lim_{n\to\infty} x_{n+1} = x$ . We have that:

$$x = \lim x_n = \lim x_{n+1} = \lim \sin(x_n) = \sin x$$

where the last equality follows from a previous problem, which Edward did in his last Tutorial. Hence  $x = \sin x$ . But, by the Order Limit Theorem, we know that  $x \ge 0$ . And recalling that  $\sin x < x$  for all x > 0 we must have that x = 0.

## 2.2 Practice1 Problem 9

Let

$$x_n = \sin\left(\pi\sqrt{n^2 + 1}\right) , n \in \mathbb{N}$$

Prove that  $(x_n)$  is convergent and find  $\lim x_n$ 

For all  $n \in \mathbb{N}$ :

$$|x_{n}| = \left| \sin \left( \pi \sqrt{n^{2} + 1} \right) \right|$$

$$= \left| \sin \left( \pi \sqrt{n^{2} + 1} \right) - \sin(\pi n) \right| \quad (\sin(\pi n) = 0)$$

$$= 2 \left| \sin \left( \frac{\pi}{2} (\sqrt{n^{2} + 1} - n) \right) \right| \left| \cos \left( \frac{\pi}{2} (\sqrt{n^{2} + 1} + n) \right) \right| \quad (\text{using } (2.1))$$

$$\leq 2 \left| \sin \left( \frac{\pi}{2} (\sqrt{n^{2} + 1} - n) \right) \right|$$

$$\leq 2 \left| \frac{\pi}{2} (\sqrt{n^{2} + 1} - n) \right|$$

$$= \pi \left| \sqrt{n^{2} + 1} - n \right|$$

$$= \pi \left| \frac{(\sqrt{n^{2} + 1} - n)(\sqrt{n^{2} + 1} + n)}{(\sqrt{n^{2} + 1} + n)} \right|$$

$$= \frac{\pi}{\sqrt{n^{2} + 1} + n}$$

$$< \frac{\pi}{n}$$

So by Squeeze Theorem,  $\lim x_n = 0$ .

## 2.3 Practice 2 Problem 3

#### 2.3.1 A

Using the  $\epsilon - \delta$  definition of the limit of a function, prove that

$$\lim_{x \to a} \frac{x}{1+x} = \frac{a}{1+a}$$

for all  $a \in \mathbb{R}$ ,  $a \neq -1$ 

Let  $\epsilon > 0$  be arbitrary and take  $0 < \delta < \frac{1}{2}|1+a|$  (note that |1+a| > 0 since  $a \neq -1$ ). For  $|x-a| < \delta$ :

$$\begin{aligned} |1+x| &= |(1+a)-(a-x)| \\ &\geq |1+a|-|a-x| \quad \text{(Reverse Triangle Inequality)} \\ &= |1+a|-|x-a| \\ &\geq |1+a|-\delta \\ &> \frac{1}{2}|1+a| \end{aligned}$$

(note that this implies that  $f(x) = \frac{x}{1+x}$  is defined for  $|x-a| < \delta$ ). So, for  $|x-a| < \delta$ , we have

that:

$$\left| \frac{x}{1+x} - \frac{a}{1+a} \right| = \left| \frac{x(1+a) - a(1+x)}{(1+x)(1+a)} \right|$$

$$= \left| \frac{x-a}{(1+x)(1+a)} \right|$$

$$= \frac{|x-a|}{|1+x||1+a|}$$

$$< \frac{\delta}{|1+x||1+a|}$$

$$< \frac{\delta}{\frac{1}{2}|1+a||1+a|}$$

$$= \frac{2\delta}{(1+a)^2}$$

But,  $\frac{2\delta}{(1+a)^2} < \epsilon \iff \delta < \frac{\epsilon}{2}(1+a)^2$ . So taking  $\delta < \min\{\frac{1}{2}|1+a|,\frac{\epsilon}{2}(1+a)^2\}$ , we have that

$$\left| \frac{x}{1+x} - \frac{a}{1+a} \right| < \epsilon$$

for all x satisfying  $|x-a| < \delta$ . In conclusion, we have that  $\lim_{x\to a} \frac{x}{1+x} = \frac{a}{1+a}$ .

#### 2.3.2 B

Using the  $\epsilon - \delta$  definition of the limit of a function, prove that

$$\lim_{x \to -1} \frac{x}{1+x}$$

does not exist.

We proceed via contradiction, hence assume  $\lim_{x\to -1}\frac{x}{1+x}=L$  for some  $L\in\mathbb{R}$ . Let  $\epsilon:=1$  and let  $\delta>0$  be arbitrary. Choose  $\tilde{\delta}<\min\{\delta,\frac{1}{2+|L|}\}$ . Then for all x satisfying  $|x-(-1)|<\tilde{\delta}<\delta$  we have that:

$$\left| \frac{x}{1+x} - L \right| = \left| \frac{1+x-1}{1+x} - L \right|$$

$$= \left| (1-L) - \frac{1}{1+x} \right|$$

$$\geq \frac{1}{|1+x|} - |1-L| \text{ (Reverse Triangle Inequality)}$$

$$\geq \frac{1}{|1+x|} - (1+|L|) \text{ (Triangle Inequality)}$$

$$\geq \frac{1}{\tilde{\delta}} - 1 - |L|$$

$$\geq 2 + |L| - 1 - |L|$$

$$= 1$$

$$= \epsilon$$

Hence we arrive at a contradiction.

#### 2.3.3 Remarks

Recall the following (we used it in my last tutorial):

**Theorem 2.3.1** (Divergence Criterion for Functional Limits). Let  $f: A \to \mathbb{R}$  and c be a cluster point of A. If there exist two sequences  $(x_n)$  and  $(y_n)$  in A with  $x_n \neq c$  and  $y_n \neq c$  and

$$\lim x_n = \lim y_n = c$$
 but  $\lim f(x_n) \neq \lim f(y_n)$ 

then we can conclude that the functional limit  $\lim_{x\to c} f(x)$  does not exist.

In the lecture notes, there is an additional divergence criterion:

**Theorem 2.3.2** (Divergence Criterion for Functional Limits II). Let  $f: A \to \mathbb{R}$  and c be a cluster point of A. If there exists a sequence  $(x_n)$  in A with  $x_n \neq c$  and  $\lim x_n = c$  but  $(f(x_n))$  is not convergent, then  $\lim_{x\to c} f(x)$  does not exist.

We can use this criterion to provide an easier solution to the above part B (although of course the prompt specifically asks to use the  $\epsilon - \delta$  definition, which is why we had solved it that way.).

Let  $x_n := -1 - \frac{1}{n}$  for all  $n \in \mathbb{N}$ . Then  $x_n \neq -1$  and  $\lim x_n = -1$ . But,

$$f(x_n) = \frac{x_n}{1 + x_n}$$

$$= \frac{-1 - \frac{1}{n}}{1 - 1 - \frac{1}{n}}$$

$$= \frac{-1 - \frac{1}{n}}{-\frac{1}{n}}$$

$$= \frac{1 + \frac{1}{n}}{\frac{1}{n}}$$

$$= n + 1$$

which diverges to  $+\infty$ . So by the divergence criterion we are done.

#### 2.4 Practice 2 Problem 4

Use the  $\epsilon - \delta$  definition of the limit of a function to prove that

$$\lim_{x \to a} x^n = a^n$$

for all  $n \in \mathbb{N}$  and all  $a \in \mathbb{R}$ .

First, we shall take note of the factorization:

$$x^{n} - a^{n} = (x - a) \sum_{k=0}^{n-1} a^{k} x^{n-1-k}$$
(2.2)

(can prove it easily directly or via induction). Now, let  $\epsilon > 0$  be arbitrary and take  $0 < \delta < 1$ .

For  $|x - a| < \delta$ :

$$|x^{n} - a^{n}| = \left| (x - a) \sum_{k=0}^{n-1} a^{k} x^{n-1-k} \right|$$

$$= |x - a| \left| \sum_{k=0}^{n-1} a^{k} x^{n-1-k} \right|$$

$$\leq |x - a| \sum_{k=0}^{n-1} |a^{k} x^{n-1-k}| \quad \text{(Triangle Inequality)}$$

$$= |x - a| \sum_{k=0}^{n-1} |a|^{k} |x|^{n-1-k}$$

$$< \delta \sum_{k=0}^{n-1} |a|^{k} |x|^{n-1-k}$$

But we have that

$$|x| = |x - a + a| \le |x - a| + |a| < \delta + |a| < 1 + |a|$$

and |a| < 1 + |a|. Hence,

$$|x^{n} - a^{n}| < \delta \sum_{k=0}^{n-1} (1 + |a|)^{k} (1 + |a|)^{n-1-k} = \delta \sum_{k=0}^{n-1} (1 + |a|)^{n-1} = \delta n (1 + |a|)^{n-1}$$

But,  $\delta n(1+|a|)^{n-1} < \epsilon \iff \delta < \frac{\epsilon}{n(1+|a|)^{n-1}}$ . So taking  $\delta < \min\{1, \frac{\epsilon}{n(1+|a|)^{n-1}}\}$ , we have that  $|x^n-a^n|<\epsilon$  for all x satisfying  $|x-a|<\delta$ . In conclusion, we have that  $\lim_{x\to a} x^n=a^n$ .

## 2.5 Practice 2 Problem 6

Let  $A \subset \mathbb{R}$ , let a be a cluster point of A and let  $f: A \to \mathbb{R}$  be a function.

#### 2.5.1 A

Prove that 
$$\lim_{x\to a} f(x) = L$$
 iff  $\lim_{x\to a} |f(x) - L| = 0$ .

By the  $\epsilon - \delta$  definition for functional limits:

$$\lim_{x \to a} f(x) = L \iff \forall \epsilon > 0 \ \exists \delta > 0 : |f(x) - L| < \epsilon \ \forall x \in A \text{ with } 0 < |x - a| < \delta$$

$$\iff \forall \epsilon > 0 \ \exists \delta > 0 : ||f(x) - L| - 0| < \epsilon \ \forall x \in A \text{ with } 0 < |x - a| < \delta$$

$$\iff \lim_{x \to a} |f(x) - L| = 0$$

#### 2.5.2 B

Prove that  $\lim_{x\to a} f(x) = L$  iff  $\lim_{x\to 0} f(x+a) = L$ .

Let  $B := \{x \in \mathbb{R} : x + a \in A\}$ , and for any  $x \in \mathbb{R}$  define  $\tilde{x} := x - a$ . Then we have that  $x \in A$  iff  $\tilde{x} \in B$ , and  $x \neq a \iff \tilde{x} \neq 0$ . Furthermore, if for a sequence  $(x_n)$  we define a

sequence  $(\tilde{x}_n)$  by  $\tilde{x}_n := x_n - a$  for all  $n \in \mathbb{N}$ , then  $\lim(x_n) = a \iff \lim(\tilde{x}_n) = 0$  (apply the Algebraic Limit Theorem). Thus, by the Sequential Criterion for Functional Limits, we have that:

$$\lim_{x \to a} f(x) = L \iff \lim f(x_n) = L \ \forall (x_n) : x_n \in A, x_n \neq a \ \forall n \text{ and } \lim(x_n) = a$$

$$\iff \lim f(\tilde{x}_n + a) = L \ \forall (\tilde{x}_n) : \tilde{x}_n \in B, \tilde{x}_n \neq 0 \ \forall n \text{ and } \lim(\tilde{x}_n) = 0$$

$$\iff \lim_{x \to 0} f(x + a) = L$$

## 2.6 Practice2 Problem 7

Prove  $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$ 

Since  $-1 \le \sin(z) \le 1$  for all  $z \in \mathbb{R}$ , we have that  $-|x| \le x \sin(\frac{1}{x}) \le |x|$  for all  $x \in \mathbb{R}$ ,  $x \ne 0$ . From a previous example in a Tutorial, we showed that  $\lim_{x\to 0} |x| = 0$ , and thus we also know by the Algebraic Limit Theorem that  $\lim_{x\to 0} -|x| = 0$ . Hence by the Squeeze Theorem, we have that  $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$ .