MATH-F410 – REP. DES GROUPES & APP. A LA PHYS.

Séances d'exercices 2023-2024

Séance 3 : Représentations du groupe dihédral et d'un produit tensoriel, sous-espace invariants

1. Démontrez que si une classe de conjugaison est son propre inverse ($\forall g \in C, g^{-1} \in C$), le caractère d'une représentation irréductible évalué sur un élément de cette classe est réel,

$$\chi_i(g) = \chi_i^*(g), \quad \forall g \in C.$$

- 2. Soit le groupe dihédral D_4 , c'-à-d du groupe des symétries d'un carré (rotations et réflexions).
 - (a) Construire la table des produits des éléments de D_4 .
 - (b) Construire les classes de conjugaison ainsi que la table des caractères associée du groupe.

Indice: Pour se guider, on pourra s'aider du fait que deux éléments conjugués ont le même ordre. N'oublions pas non plus que, pour des sous-groupes de S_n la représentation alternée à une dimension existe toujours.

- 3. Soient T^1 et T^2 deux représentations d'un groupe G.
 - (a) Démontrer que $(T^1 \otimes T^2)(g) \equiv T^1(g) \otimes T^2(g)$ est une représentation de G.
 - (b) Démontrer que pour le caractères on a $\chi_{T^1 \otimes T^2} = \chi_{T^1} \cdot \chi_{T^2}$.
- 4. Soit T^1 la représentation triviale de S_3 , T^2 la représentation alternée de dimension 1 et T^3 la représentation irréductible de dimension 2.
 - (a) Calculer le système de caractères des produits tensoriels $T^i\otimes T^j$ pour tous $1\leq i\leq j\leq 3.$
 - (b) Construire les matrices de la représentation $T^3 \otimes T^3$.
 - (c) Trouver les sous-espaces invariants pour les matrices de la représentation $T^3 \otimes T^3$.

 Indice: Utiliser les projecteurs construits au cours pour trouver les sous-espaces invariants.

Représentation de S_3 de dimension 2

$$e \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $(123) \to \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$ $(132) \to \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$

$$(12) \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad (13) \to \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \qquad (23) \to \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

Représentation régulière de S_3

$$e \to \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(12) \to \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$(132) \rightarrow \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$(13) \rightarrow \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$