

#### Arquitectura de Comunicaciones

Protocolo TCP-IP

Profesor:

Anibal Pose

## Protocolos digitales



QUE ES UN PROTOCOLO ??

### Redes - Hub







#### Redes LAN - Switch





#### Redes - Router





#### Swith vs Router









- Unicast
  - Uno a uno
- Broadcast
  - Uno a todos
- Multicast
  - Uno a varios
- Anycast
  - Uno a alguno

## Conceptos previos



- Servicios y redes orientados a conexión
  - Proveen garantías
    - Se pueden reservar recursos
  - Necesitan interacción entre los nodos
  - Implican un inicio y cierre de sesión
- No orientados a conexión
  - Sin garantías pero pueden ser más eficientes
- Cuando éstos se aplican a redes físicas, se suele hablar de:
  - Conmutación de circuitos (red telefónica)
  - Conmutación de paquetes (Internet)

## Modelo de capas



- Modelo de referencia OSI
  - Sólo un modelo, no una arquitectura de red
  - Cada capa provee un servicio a la capa superior
  - Cada capa dialoga con su homóloga en el dispositivo remoto
  - Un <u>protocolo</u> es la implementación de la lógica de una capa
  - Uno o más protocolos por capa

| Aplicación   |
|--------------|
| Presentación |
| Sesión       |
| Transporte   |
| Red          |
| Enlace       |
| Física       |

## Modelo de Capas



**Aplicación** Presentación Sesión Transporte Red **Enlace Física** 

Aplicación Presentación Sesión Transporte Red **Enlace** Física

## Modelo de Capas



Encapsulación y cabeceras



## Encapsulamiento





## OSI vs. TCP/IP



| OSI Basic | Reference Model |                   | Protocols in Each Layer                                                   |               | TCP/IP Mo   | o <u>del</u> |
|-----------|-----------------|-------------------|---------------------------------------------------------------------------|---------------|-------------|--------------|
|           | APPLICATION     | $\Leftrightarrow$ | Modbus, SEP2, DNP3, HTTP, IEC 61850,<br>CIM, ICCP, BACnet, OpenADR, GOOSE |               |             |              |
| Data      | PRESENTATION    | $\Leftrightarrow$ | Compression an encryption protocols                                       | $\Rightarrow$ | APPLICATION | Data         |
|           | SESSION         | $\Leftrightarrow$ | NFS, SQL, SMB, RPC, P2P<br>tunneling, SCP, SDP, SIP, H.323                |               |             |              |
| Segments  | TRANSPORT       | $\Leftrightarrow$ | TCP, UDP                                                                  |               | TRANSPORT   | Segments     |
| Packets   | NETWORK         | $\Leftrightarrow$ | IPv4/IPv6, ARP, IGMP, ICMP                                                |               | INTERNET    | Packets      |
| Frames    | DATA LINK       | $\Leftrightarrow$ | Ethernet                                                                  | $\Rightarrow$ | NETWORK     | Bits and     |
| Bits      | PHYSICAL        | $\Leftrightarrow$ | RS 232, UTP cables (CAT 5, 6),<br>DSL, Optic fiber                        |               | INTERFACE   | Frames       |

## Terminología



Aplicación **Transporte** Segmento (TCP) Datagrama (IP) Red **Enlace** Trama, Frame (Ethernet) **Física** 

- Nombres diferentes en cada capa
- No se sigue muy estrictamente. Suele hablarse indistintamente de 'paquete' en todas las capas.

## Capa 1: Física



- Implementada en hardware
- Codificación de canal
  - Representación de bits, voltajes, frecuencias, sincronización
    - Códigos Manchester, AMI, B8ZS...
- Define conectores físicos, distancias, cableado

## Tipos de cable



- UTP (Unshielded twisted-pair)
- STP (shielded twisted-pair)
- FTP (Foiled Twisted Pair- Par)
- Fibra monomodo
- Fibra multimodo

## Tipos de cable













FIBRA ÓPTICA Monomodo vs Multimodo





#### Conectores





## Capa 2: Enlace



- Encapsula los los paquetes en tramas para pasarlos al medio físico
- Reconstruye las tramas originales a partir de secuencias de bits y pasa los datos a la capa de red
- Provee
  - Control de acceso (CSMA/CD)
  - Direccionamiento (en el segmento de red local)
  - Detección de errores
  - Control de flujo

## Capa 2: Enlace







- Datos: El paquete desde la Capa de red.
- Encabezado: contiene información de control como direccionamiento y está ubicado al comienzo del PDU.
- Tráiler: contiene información de control agregada al final del PDU.

#### Trama Ethernet



| Preámbulo | Destino | Fuente | Longitud | Tipo | Datos     | FCS |
|-----------|---------|--------|----------|------|-----------|-----|
| (8 bytes) | (6)     | (6)    | (2)      | (2)  | (46-1500) | (4) |
|           |         |        |          |      |           |     |

Máximo: 1500 Bytes

- Direcciónes MAC:
  - Únicas y grabadas en el hardware de la tarjeta
    - Por eso también se llaman "direcciones físicas"
  - 6 bytes x 8 bits/byte = 48 bits
  - Suelen escribirse en hexadecimal
    - FE:D2:89:C4:4F:2E
- Tipo: 0x800 especifica que la parte de datos contiene un datagrama IP

### Estándares Ethernet



802.3 - 10BT (10 Mbps)

802.3u -100BT (100 Mbps Fast Ethernet)

802.3ab - 1000BASE-T (1 Gbps Ethernet Eléctrico)

802.3z - 1000BASE-X (1 Gbps Ethernet Óptico)

SX: Fibra multimodo <550m

LX: Fibra multimodo y monomodo <10 km

EX: Fibra monomodo <40 km

ZX: Fibra monomodo <80 km

## Concepto de VLAN



Una VLAN, acrónimo de virtual LAN (red de área local virtual), es un método para crear redes lógicas independientes dentro de una misma red física.



## Capa 3: Red



- Provee una red virtual global
  - Esconde los detalles de las redes físicas
  - Direccionamiento global:
    - Una dirección IP es suficiente para enviar hacia cualquier red en el mundo
    - Implica que hay que mapear las direcciones físicas con las IP
- Ofrece un servicio sin garantías (mejor esfuerzo)
  - Si se pierden o duplican paquetes, no le importa
  - Deja esa función a las capas superiores
- Determina si el destino es local o si lo debe enviar a un enrutador
- Provee funciones de control
  - ICMP
- Reenvía paquetes de salto en salto, de una red a la otra
  - El trayecto completo puede constar de muchos saltos

# Capa 3: Traslado de paquetes





## Capa 3: Traslado de paquetes



The original message is Green, Blue, Red.



## Capa 3: Versiones IP





## El datagrama IPv4



| 31 | 24              | 16                    | 8             | 4       | 0   |  |
|----|-----------------|-----------------------|---------------|---------|-----|--|
|    | Total Length    | Service Type          | HL.           | r II    | Ver |  |
| 80 | Fragment Offset | Flags                 | er            | entifie | Id  |  |
|    | eader Checksum  | Time to Live Protocol |               |         | I   |  |
|    | s               | rce Addres            | 32 bit Sou    |         |     |  |
|    | ess             | ation Addr            | 32 bit Destin |         |     |  |
|    |                 | Padding               | Options and   |         |     |  |
|    |                 | Padding               | Options and   |         |     |  |

- Versión actual : 4
- El protocolo se refiere al que está siendo encapsulado (tcp, udp...)
- TTL se decrementa con cada salto
- Hay fragmentación al pasar de un MTU mayor a uno menor

## Datagrama IPv4



- Algunos campos importantes
  - Type of Service (TOS)
    - retardo, fiabilidad, velocidad (voz vs. datos)
  - Identificacion, Flags, protocolo
  - Dirección de origen y destino
  - TTL

## La dirección IPv4



Un número de 32 bits (4 bytes)

Decimal:

| 128 | 223 | 254 | 10 |
|-----|-----|-----|----|
|     |     |     |    |

Binaria:

| 10000000 | 11011111 | 11111110 | 00001010 |
|----------|----------|----------|----------|
|----------|----------|----------|----------|

Hexadecimal:





| Clase | Formato | Primeros bits | Rango                       | Bits por<br>nodo |
|-------|---------|---------------|-----------------------------|------------------|
| Α     | R.N.N.N | 0             | 1.0.0.0 - 126.0.0.0         | 24               |
| В     | R.R.N.N | 10            | 128.1.0.0 - 191.254.0.0     | 16               |
| С     | R.R.R.N | 110           | 192.0.1.0 - 223.255.254.0   | 8                |
| D     | n/a     | 1110          | 224.0.0.0 - 239.255.255.255 | n/a              |
| Е     | n/a     | 1111          | 240.0.0.0 - 254.255.255.255 | n/a              |

- Los límites red-nodo en la dirección son arbitrarios
- ¿Qué problema podemos prever?

#### La dirección IPv4



- Estructura
  - Un sólo número, dos informaciones:
    - Dirección de la red (prefijo)
    - Dirección del nodo dentro de esa red



- ¿Dónde está la división?
  - Al principio era implícito (clases)
  - Luego más flexible (máscaras)

#### Máscaras



Solución: Otro número que especifique los límites



Con esto se podían subdividir las redes A, B y C en subredes más pequeñas

# Problemas con el esquema de clases



- No muy flexible
- Se perdían dos subredes en cada división
- En los 90's cambió el esquema (Classless):
  - iLas viejas clases A, B, C no tienen significado ninguno en el Internet de hoy!
    - CIDR (Classless Interdomain Routing):
      - Los routers ya no consideran A,B,C como /8, /16, /24
    - VLSM (Variable Length Subnet Masks)
      - Los routers no asumen que todas las subredes son del mismo tamaño

## Ventajas de las subredes



- Escalabilidad, eficiencia
  - Reducir los dominios de broadcast
    - Menos uso de CPU
    - Más espacio para tráfico legítimo -> más velocidad
- Facilitar la gestión
  - Ingeniería de tráfico
    - Implementación de políticas
  - Seguridad
    - Filtros de paquetes

### La dirección IPv6



#### IPv4

Implementado en 1981

Dirección IP de 32 bits

4300 millones de direcciones Las direcciones se deben reutilizar y enmascarar

Notación numérica con punto decimal 192.168.5.18

Configuración DHCP o manual

#### IPv6

Implementado en 1998

Dirección IP de 128 bits

7,9 x 10<sup>28</sup> direcciones

Todos los dispositivos pueden
tener una dirección exclusiva

Notación hexadecimal alfanumérica

50b2:6400:0000:0000:6c3a:b17d:0000:10a9

(Simplificada - 50b2:6400::6c3a:b17d:0:10a9)

Permite la configuración automática

## Hub vs Switch vs Router





## Protocolo PTP



Protocolo de precision de tiempo también conocido por las siglas PTP (Precision Time Protocol) es un estándar de telecomunicaciones utilizado para sincronizar los relojes a través de una red informática.

En una red de área local, se alcanza una precisión de reloj en la gama de submicrosegundos, adecuado para los sistemas de medición y control.

## Protocolo IGMP



El protocolo de red IGMP (Internet Group Protocol) se utiliza para intercambiar información acerca del estado de pertenencia entre enrutadores IP que admiten la multicast y miembros de grupos multicast.

Los hosts miembros individuales informan acerca de la pertenencia de hosts al grupo de multidifusión y los enrutadores de multidifusión sondean periódicamente el estado de la pertenencia.

## Capa 4: Transporte



- Servicio con garantías (TCP)
  - Resuelve los problemas de:
    - Pérdida de paquetes
    - Duplicación
    - Desbordamiento (control de flujo)
- Sin garantías (UDP)
  - Mucho más simple
  - A veces no hace falta fiabilidad
- Provee multiplexión de aplicaciones
  - Concepto de 'puertos'

# Capa 4: Multiplexación





# Capa 4: Multiplexación





## Protocolos de la capa de transporte



- Existe más de un protocolo de transporte disponible para las aplicaciones
  - Internet: TCP y UDP

| TCP                         | UDP                          |  |  |  |
|-----------------------------|------------------------------|--|--|--|
| Orientado a<br>conexión     | No orientado a<br>conexión   |  |  |  |
| Fiable                      | No fiable                    |  |  |  |
| Agrupación en segmentos     | Mensajes sin<br>fragmentar   |  |  |  |
| Rx ordena los<br>segmentos  | Datagrama de usuario         |  |  |  |
| ACKs y<br>temporizadores    | Sin ACKs                     |  |  |  |
| Control de flujo            | Sin control de flujo         |  |  |  |
| Control de la<br>congestión | Sin control de la congestión |  |  |  |

## Aplicaciones de la capa de transporte 🙂

Puerto: identifica la aplicación

Números de puerto: http://www.iana.org/assignments/port-numbers

| Protocolo de<br>aplicación | Números de puerto | Protocolo de<br>transporte |
|----------------------------|-------------------|----------------------------|
| FTP                        | 20, 21            | TCP                        |
| Telnet                     | 23                | TCP                        |
| SMTP                       | 25                | TCP                        |
| DNS                        | 53                | UDP (TCP (*))              |
| TFTP                       | 69                | UDP                        |
| HTTP                       | 80                | TCP                        |
| POP3                       | 110               | TCP                        |
| RIP                        | 520               | UDP                        |

### UDP



- User Datagram Protocol
  - Multiplexión de aplicaciones
    - Una dirección IP identifica una máquina
    - Los sistemas operativos son multitarea
    - Un puerto para cada servicio

#### Servicio no orientado a conexión

- No ofrece ninguna garantía
  - Sin acuses de recibo
  - Sin re-transmisión
  - Sin control de flujo

#### Protocolos de voz L4





## Protocolos RTP y RTCP



RTP se utiliza junto con el protocolo de control de RTP (RTCP). Mientras que RTP transporta los flujos de medios (por ejemplo, audio y vídeo), RTCP se usa para supervisar las estadísticas de transmisión y calidad de servicio (QoS) y ayuda a la sincronización de múltiples flujos.

RTP es originado y recibido en número de puerto par y la comunicación asociadas a RTCP utilizan el próximo número de puerto impar superior. RTP es uno de los fundamentos de VoIP y se utiliza conjuntamente con SIP el cual ayuda a establecer las conexiones a través de la red.

#### Protocolos RTP



S

#### Protocolo RTP

| MPEG    | H.261         | JPEG |
|---------|---------------|------|
| 36<br>H | RTP/RTCP      |      |
|         | UDP           |      |
|         | IP            |      |
| A       | cceso a la Re | ed   |

- RTP → RTP Data

  Transfer Protocol
- RTCP → RTP Control
  Protocol

RTP permite la transferencia de datos a tiempo real entre dos o más entidades RTP a través de una sesión definida por:

- •RTP Port Number (Número de port UDP Par)
- •RTCP Port Number (Siguiente Número de Port UDP Impar)
- •Dirección IP de los participantes (Unicast o Multicast)

#### Estructura de trama desde RTP





Figura 2. Estructura del paquete Ethernet partiendo de RTP.

### Señalización SIP





## Flujo de comunicación de VoIP





# TCP y UDP



|       |                          | **          | <b>FCP Segme</b> | nt               | Header      | Forma | it |    |
|-------|--------------------------|-------------|------------------|------------------|-------------|-------|----|----|
| Bit # | 0                        | 7           | 8                | 15               | 16          | 23    | 24 | 31 |
| 0     |                          | Source Port |                  | Destination Port |             |       |    |    |
| 32    |                          |             | Sequ             | uence            | Number      |       |    |    |
| 64    |                          |             | Acknow           | ledgr            | nent Numbe  | r     |    |    |
| 96    | Data Offset              | Res         | Flags            |                  | Window Size |       |    |    |
| 128   | Header and Data Checksum |             |                  | Urgent Pointer   |             |       |    |    |
| 160   | Options                  |             |                  |                  |             |       |    |    |

| UDP Datagram Header Format |             |   |   |                          |    |    |    |    |
|----------------------------|-------------|---|---|--------------------------|----|----|----|----|
| Bit #                      | 0           | 7 | 8 | 15                       | 16 | 23 | 24 | 31 |
| 0                          | Source Port |   |   | Destination Port         |    |    |    |    |
| 32                         | Length      |   |   | Header and Data Checksum |    |    |    |    |

## ¿TCP o UDP?



- Cuándo tiene sentido uno u otro
  - FTP
  - DNS
  - SNMP
  - Voz sobre IP (H.323, SIP)
  - Multicast





Servicios Diferenciados

Para proporcionar esta calidad de servicio, se clasifican los paquetes IP en diferentes clases en función de diferentes términos de QoS que tendrán especial relevancia para la conexión. Ejemplo: paquetes utilizados en transmisiones por streaming de contenido multimedia, que requerirán un bajo ratio de pérdidas de paquetes y de latencias, y serán clasificados bajo la categoría EF (Expedited Forwarding).

Para IPv4: Se utiliza el viejo campo de TOS de 8 bits.

Para IPv6: Se utiliza un campo específico para ello denominado "Traffic Class" (Clase de tráfico) de 8 bits.