UNSW MATHEMATICS SOCIETY PRESENTS

MATH2089/2099/2859

CVEN2002 Revision Seminar

Statistics

- **1** Part I: Random variables
 - Cumulative distribution function
 - Discrete RVs
 - Continuous RVs
 - Expectation
 - Variance and standard deviation
 - Joint distributed RVs
 - Marginal functions
 - Independence of two random variables
 - Covariance and correlation
- Part II: Sampling distributions and Central Limit Theorem
 - Random sampling
 - Central Limit Theorem
 - Estimators
- Part III: Confidence intervals

Table of Contents II

- Sample size determination
- Confidence interval for a proportion
- One-sided confidence intervals for a proportion
- Part IV: Hypothesis testing
 - Student's t distribution
 - Null and Alternative Hypotheses
 - Rejection region
- Part V: Analyses
 - Regression Analysis
 - Assumptions of linear regression
 - Variance Analysis
 - Fisher's F-distribution

Part I: Random variables

(Part I: Random variables)

Definition I: Random variable

A random variable is a real-valued function defined over the sample space $X: S \to \mathbb{R}$ and $\omega \to X(\omega)$.

Cumulative distribution function (CDF)

Definition: Cumulative distribution function

A cumulative distribution function of a random variable X is defined, for any real number x, as

$$F(x) = \mathbb{P}(X \le x).$$

Properties.

• For any real numbers a < b, we have

$$\mathbb{P}(a < X \le b) = F(b) - F(a).$$

- It is **nondecreasing**. That is, if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$.
- $\lim_{x \to +\infty} F(x) = 1$ and $\lim_{x \to +\infty} F(x) = 0$.

Definition: Discrete Random Variables

A random variable is said to be discrete if it can only assume a finite (or at most countably infinite) number of values.

Essentially we can count each event!

Characterising a discrete random variable

Discrete random variables can be characterised by their **probability** mass function (pmf), defined by

$$p(x) = \mathbb{P}(X = x).$$

• The sum of ALL elements x in the event A is 1. That is,

$$\sum p(x)=1.$$

Continuous Random Variables

Definition: Continuous Random Variables

A random variable is said to be continuous if it is defined over an **uncountable** set of real numbers, usually an intervals.

Characterising a continuous random variable

Continuous random variables can be characterised by their **probability density function** (pdf), defined by f(x).

• The integral over ALL elements x in the event space A is 1. That is,

$$\int_A f(x)\,dx=1.$$

Example

To determine whether $f(x) = e^{-x}$ for x > 0 is a density function, check whether

$$\int_0^\infty e^{-x}\,dx=1.$$

Expectation of random variables

Expectation of a discrete random variable

The expectation (or mean) of a discrete random variable, denoted $\mathbb{E}(X)$ or μ , is defined by

$$\mu = \mathbb{E}(X) = \sum_{x \in A} x p(x).$$

Expectation of a continuous random variable

The expectation (or mean) of a continuous random variable, denoted $\mathbb{E}(X)$ or μ , is defined by

$$\mu = \mathbb{E}(X) = \int_{\Lambda} x f(x) dx.$$

Expectation of random variables (18S2)

Example: (2018 Semester 2, Q3a)

Let X follow the Bernoulli distribution:

$$p(x) = \begin{cases} 1 - \pi, & \text{if } x = 0 \\ \pi, & \text{if } x = 1 \end{cases}$$

where $0 < \pi < 1$

Show that $\mathbb{E}(X) = \pi$.

Since this is a **discrete** random variable, then the expected value is simply

$$\mathbb{E}(X) = \sum_{x \in X} xp(x) = 0 \times (1-\pi) + 1 \times \pi = \pi.$$

Properties of the expectation function

• **Linearity**: For any two constants a and b, we have

$$\mathbb{E}(aX + b) = a \cdot \mathbb{E}(X) + b.$$

• **Degenerate**: A random variable X is said to be degenerate if

$$\mathbb{E}(b) = b$$
.

Example

Part I: Random variables

If $\mathbb{E}(X) = 2$, then

$$\mathbb{E}(3X + 4) = 3 \times \mathbb{E}(X) + 4 = 3 \times 2 + 4 = 10.$$

Example

If
$$\mathbb{E}(3X+4)=10$$
, then $3\mathbb{E}(X)+4=10 \implies \mathbb{E}(X)=2$.

Variance of a random variable

Variance of a random variable

The **variance** of a random variable, denoted by Var(X) or σ^2 , is defined by

$$\mathsf{Var}(X) = \mathbb{E}\left[(X - \mu)^2\right] = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

Properties of the variance function

- For any random variable, $Var(X) \ge 0$.
- For any two constants a and b, $Var(aX + b) = a^2 \cdot Var(X)$.
- For any constant b, Var(b) = 0.

Computing the variance

Variance of a discrete random variable

The variance of a discrete random variable is defined by

$$Var(X) = \sum_{x \in A} (x - \mu)^2 p(x) = \underbrace{\left(\sum_{x \in A} x^2 p(x)\right)}_{\mathbb{E}(X^2)} - \underbrace{\left(\sum_{x \in A} x p(x)\right)^2}_{\mathbb{E}(X)^2}$$

Variance of a continuous random variable

The variance of a continuous random variable is defined by

$$Var(X) = \int_{A} (x - \mu)^{2} f(x) dx = \underbrace{\left(\int_{A} x^{2} f(x) dx\right)}_{\mathbb{E}(X^{2})} - \underbrace{\left(\int_{A} x f(x) dx\right)^{2}}_{\mathbb{E}(X)^{2}}$$

Example

If $f(x) = e^{-x}$ for x > 0, then the variance can be found by computing the integral

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \int_0^\infty x^2 e^{-x} dx - \left(\int_0^\infty x e^{-x} dx\right)^2$$

Standard deviation

• The **standard deviation** is simply the square root of the variance. That is,

$$SD(X) = \sqrt{Var(X)}$$
.

• Since $Var(X) \ge 0$, then the standard deviation function will always be defined!

Jointly distributed random variables

 We will now turn towards the two-dimensional case and discuss properties of distributions of two random variables!

Joint cumulative distribution function

Definition: Joint cumulative distribution function (discrete)

The joint cumulative distribution function of discrete random variables X and Y is given by

$$F_{XY}(x,y) = \mathbb{P}(X \le x, Y \le y),$$
 for all $(x,y) \in \mathbb{R} \times \mathbb{R}$.

Definition: Joint cumulative distribution function (continuous)

X and Y are said to be jointly continuous if, for any sets A and B of real numbers, there is a function (the joint probability density of X and Y) $f_{XY}(x,y)$

$$\mathbb{P}(X \in A, Y \in B) = \int_A \int_B f_{XY}(x, y) \, dy \, dx.$$

Joint distribution functions and marginal **functions**

Discrete

Joint distribution

$$p_{XY}(x,y) = \mathbb{P}(X=x,Y=y).$$

Marginal probabilities

$$p_X(x) = \sum_{y \in S_Y} p_{XY}(x, y).$$

$$p_Y(y) = \sum_{y \in S_Y} p_{XY}(x, y).$$

Continuous

Joint distribution

Denoted as $f_{XY}(x, y)$.

Marginal densities

$$f_X(x) = \int_{S_Y} f_{XY}(x, y) \, dy.$$

$$f_Y(y) = \int_{S_X} f_{XY}(x, y) \, dx.$$

For any function $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, the expectation of g(X, Y) is given by

$$\mathbb{E}(g(X,Y)) =$$

Discrete random variables

$$\sum_{x \in S_X} \sum_{y \in S_Y} g(x, y) p_{XY}(x, y)$$

Continuous random variables

$$\int_{S_X} \int_{S_Y} g(x, y) f_{XY}(x, y) \, dy \, dx$$

Linearity property of the expectation function still holds!

$$\mathbb{E}(aX + bY) = a \cdot \mathbb{E}(X) + b \cdot \mathbb{E}(Y).$$

Example: Table of marginal probabilities

Assume that X is across the top and Y is on the side. Find $\mathbb{P}(X < 1, Y < 1)$.

$$\mathbb{P}(X \le 1, Y \le 1)$$

$$= \mathbb{P}(X = 0, Y = -1) + \mathbb{P}(X = 0, Y = 1)$$

$$+ \mathbb{P}(X = 1, Y = -1) + \mathbb{P}(X = 1, Y = 1)$$

$$= 1/8 + 1/8 + 1/8 + 1/4 = 5/8.$$

Independent random variables

Definition: Independence of random variables

Random variables X and Y are said to be **independent** if, for all $(x,y)\in\mathbb{R}\times\mathbb{R}$,

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x) \times \mathbb{P}(Y \le y).$$

Discrete case

$$p_{XY}(x, y) = p_X(x) \times p_Y(y).$$

Continuous case

$$f_{XY}(x,y) = f_X(x) \times f_Y(y).$$

Property of independent random variables

If X and Y are **independent**, then for any functions h and g,

$$\mathbb{E}(h(X)g(Y)) = \mathbb{E}(h(X)) \times \mathbb{E}(g(Y)).$$

Example: (MATH2089, 2009S1 Q5c)

Suppose that X and Y are independent standard normal variables. What is the distribution of X + Y?

Since X and Y are independently and normally distributed, then their sum is also normally distributed with

$$Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2, \sigma_Y^2) = \mathcal{N}(0, 2).$$

Covariance of two random variables

Definition: Covariance of two random variables

The **covariance** of two random variables X and Y is defined as

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))].$$

Properties of covariance

- Cov(X, X) = Var(X).
- **Symmetric**: For any two variables X and Y, Cov(X, Y) = Cov(Y, X).
- **IMPORTANT**: $Cov(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$.
- Cov(aX + b, cY + d) = ac Cov(X, Y)
- **Bilinearity**: $Cov(X_1 + X_2, Y_1 + Y_2) =$ $Cov(X_1, Y_1) + Cov(X_1, Y_2) + Cov(X_2, Y_1) + Cov(X_2, Y_2).$

Covariance and independence

• If X and Y are independent, then Cov(X, Y) = 0. But if Cov(X, Y) = 0, then X and Y may or may not be independent!

Remark

X and Y independent \implies Cov(X, Y) = 0.

 $Cov(X, Y) = 0 \implies X$ and Y independent.

Variance of a sum of two random variables

For any two random variables X and Y,

$$Var(aX + bY) = a^{2} Var(X) + b^{2} Var(Y) + 2ab Cov(X, Y).$$

• If X and Y are independent, then

$$Var(aX + bY) = a^{2} Var(X) + b^{2} Var(Y).$$

Correlation coefficient

Definition: Correlation

The correlation coefficient denoted by ρ is defined as

$$\rho = \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{Var}(X)\,\mathsf{Var}(Y)}}.$$

• We are computing the covariance between the **standardised** versions of X and Y.

Properties of correlation

- \bullet ρ does not have a unit.
- $-1 < \rho < 1$.
- Positive ρ means positive linear relationship between X and Y and vice versa for negative!
- The closer $|\rho|$ is to 1, the stronger the relationship!

Part II: Sampling distributions and Central Limit Theorem

Independent and identically distributed random variables

A sequence of random variables X_1, X_2, \dots, X_N are said to be *i.i.d* if

- \bigcirc all X_i 's are independent.
- 2 all X_i 's share the same probability distribution (identically distributed).
- In MATH2089/2859/2099/CVEN2002, we can assume that the random variables in a random sampling are i.i.d.

Central Limit Theorem (aka the Big Man of probability)

What's this? Why do we care?

CLT asserts:

For **any** random variable, the mean of a large random sample is approximately normal.

• Basically, regardless of its original distribution, the mean will eventually follow a normal distribution.

Standardising the CLT

If we want to standardise the CLT...

Central Limit Theorem

If X_1, X_2, \dots, X_n is a random sample taken from a population with mean μ and finite variance σ^2 and if \bar{X} is the sample mean, then the limiting distribution of the standard mean follows the standard normal distribution. That is,

$$\frac{(\bar{X}-\mu)/\sigma}{\sqrt{n}}\stackrel{a}{\sim} \mathcal{N}(0,1).$$

• Note that $\stackrel{a}{\sim}$ means "approximately follows" (as $n \to \infty$).

Estimators

Definition: Estimators

An **estimator** of θ is a function of the sample

$$\hat{\Theta} = h(X_1, X_2, \dots, X_n).$$

- An estimator is also a random variable!
- The most natural choice of our estimator is the sample mean! But we can have many other examples of estimators.

$$\hat{\Theta}_1 = X_1.$$

$$\hat{\Theta}_2 = \left(\frac{X_1 + X_n}{2}\right).$$

$$\hat{\Theta}_3 = \left(\frac{2X_1 + X_n}{2}\right).$$

Properties of estimators

Definition: Unbiased estimator

An estimator $\hat{\Theta}$ of θ is said to be **unbiased** if and only if its mean is equal to θ . That is

$$\mathbb{E}\left(\hat{\Theta}\right) = \theta.$$

 If an estimator is biased, then we can determine the bias by computing the difference

$$\mathsf{Bias}\left(\hat{\Theta}\right) = \mathbb{E}\left(\hat{\Theta}\right) - \theta.$$

Properties of estimators

Example: Biased vs unbiased estimators

$$\hat{\Theta}_1 = X_1$$
 is unbiased since $\mathbb{E}(\hat{\Theta}_1) = \theta$.

$$\hat{\Theta}_1 = X_1$$
 is unbiased since $\mathbb{E}(\hat{\Theta}_1) = \theta$.
But $\mathbb{E}(\Theta_3) = \frac{1}{2} \left[2\mathbb{E}(X_1) + \mathbb{E}(X_n) \right] = \frac{3}{2}\theta$. So $\hat{\Theta}_3$ is biased.

Properties of estimators

Definition: Efficient estimator

Goal: An unbiased estimator should have a smaller variance. Such an estimator is said to be *more efficient*.

Example: Efficiency of estimators

$$Var(\Theta_1) = \sigma^2$$
 and $Var(\Theta_2) = \frac{\sigma^2}{2}$. Hence Θ_2 is more efficient than Θ_1 .

Definition: Consistent estimator

Goal: An unbiased estimator should also give better estimations as the number of samples grow larger. That is, an estimator is said to be consistent if

$$\operatorname{\sf Var}\left(\hat{\Theta}\right) o 0 \quad \text{as } n o \infty.$$

Combining all three properties of estimators

We can combine all three of these properties into a single formula that tells us how accurate an estimator is. This is the **mean squared error**, which can be evaluated by computing the following

$$\mathsf{MSE}\left(\hat{\Theta}\right) = \mathsf{Var}\left(\hat{\Theta}\right) + \mathsf{Bias}\left(\hat{\Theta}\right)^2.$$

A smaller MSE means a more accurate estimator.

Part III: Confidence intervals

 Basically... we want to find a suitable range for which our estimation misses the mark with probability α . Note that α is just a percentage here!

Definition: Confidence intervals

A $100(1-\alpha)\%$ confidence interval for an unknown parameter θ is a random interval [L, U], where L and U are statistics such that

$$\mathbb{P}(L \le \theta \le U) = 1 - \alpha.$$

• Here, our random sample has a parameter of θ !

Deriving confidence intervals

- **①** Find a range of values that contains $Z \sim \mathcal{N}(0,1)$ with probability $1-\alpha$.
- Apply the result of the CLT

$$rac{(ar{X}-\mu)}{\sigma/\sqrt{n}}\stackrel{\mathsf{a}}{\sim} \mathcal{N}(0,1).$$

Solve for μ for which you have a $100(1-\alpha)\%$ confidence interval for μ to be

$$\left[\bar{x}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{x}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right].$$

Remark

If the data is exactly normally distributed, then the confidence intervals are exact!

Remark

The length of the interval measures how precise estimation has been! The shorter, the more precise!

Remark

Confidence intervals don't have to be symmetric! In most cases, they aren't.

Example: (MATH2089, 2018 S2 Q3bi)

In August this year, Roy Morgan Research published a poll on Rugby viewership of New Zealanders. The poll, of 6,422 randomly selected New Zealanders, found that 43.6% of them watch Rugby on the television.

Find a 95% confidence interval for the true proportion of New Zealanders who watch Rugby on the television.

Step 1.

Determine what the population proportion mean is.

$$\hat{p} = 0.436$$
 so $1 - \hat{p} = 0.564$.

So
$$SE^2 = \frac{0.436 \times 0.564}{6422} = 0.00003829$$
. So $SE = 0.006187962$.

Hence the two sided confidence interval is

$$\left[\bar{x} - z_{1-0.95/2} \times 0.006187962, \bar{x} + z_{1-0.95/2} \times 0.006187962\right].$$

Sample size determination

Margin of error

Given a pre-specified value e such that $|\bar{x} - \mu| < e$, the sample size determined is given by

$$e = z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \implies n = \left(\frac{z_{1-\alpha/2\sigma}}{e}\right)^2$$

• We made some inferences about the population mean μ in the previous slides; let's move onto a population proportion π .

Sample proportion estimator

A useful estimator of the proportion is the sample proportion

$$\hat{P} = \frac{X}{n},$$

for some Binomial random variable X such that $X \sim Bin(n, \pi)$.

Sample proportion estimate

An estimate of π is simply $\hat{p} = \frac{x}{2}$.

Sampling distribution of \hat{P}

Applying the Central Limit Theorem to \hat{P} , we obtain the result

$$rac{\hat{P}-\pi}{\sqrt{\pi(1-\pi)/n}}\stackrel{a}{\sim} \mathcal{N}(0,1).$$

Additionally, we can also say that

$$\frac{\hat{P}-\pi}{\sqrt{\hat{P}(1-\hat{P})/n}}\stackrel{a}{\sim} \mathcal{N}(0,1).$$

Deriving confidence intervals

- Find a range of values that contains $Z \sim \mathcal{N}(0,1)$ with probability $1-\alpha$.
- Apply the result of the CLT

$$rac{\hat{P}-\pi_0}{\sqrt{\pi(1-\pi)/n}}\stackrel{ extstyle a}{\sim} \mathcal{N}(0,1).$$

Solve for π for which you have a $100(1-\alpha)\%$ confidence interval for π to be

$$\left[\hat{p}-z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\hat{p}+z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right].$$

One-sided confidence intervals

We can also find one-sided large-sample confidence intervals for the proportion π by finding

$$\left[0, \hat{p} + z_{1-\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] \quad \text{and} \quad \left[\hat{p} - z_{1-\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, 1\right].$$

Part IV: Hypothesis testing

Part I: Random variables

Before we begin... let's discuss an important distribution in statistics!

Student's t-distribution

A random variable T is said to follow a t_{ν} distribution if for $t \in \mathbb{R}$,

$$f(t) = rac{\Gamma\left(rac{
u+1}{2}
ight)}{\sqrt{
u\pi}\Gamma\left(rac{
u}{2}
ight)}\left(1+rac{t^2}{
u}
ight)^{-rac{
u+1}{2}},$$

for some integer ν . Additionally, Γ is the gamma function.

• ν is the **degrees of freedom** of the distribution!

Remark

As $n \to \infty$, $t_{\nu} \to \mathcal{N}(0,1)$.

Null and alternative hypotheses

(Definition) Null hypothesis

For the null hypothesis H_0 , we claim that our population parameter takes some sort of value.

- It is a statement that we generally believe to be true.
- We say that $H_0: \mu = \mu_0$.

(Definition) Alternative hypothesis

For the alternative hypothesis H_1 , we have some sort of "new claim" that we want to test.

• We say that $H_1: \mu \neq \mu_0$.

Test statistic and null distribution

• To test $H_0\mu = \mu_0$ using a random sample, when σ is known

$$Z = rac{(ar{X} - \mu_0)/\sigma}{\sqrt{n}} \stackrel{a}{\sim} \mathcal{N}(0, 1).$$

• To test H_0 : $\mu = \mu_0$ using a normal random sample, when σ is not known:

$$T=rac{(\hat{X}-\mu_0)/S}{\sqrt{n}}\sim t_{
u}.$$

• To test H_0 : $\pi = \pi_0$ using a random sample

$$Z = rac{\hat{P} - \pi_0}{\sqrt{\pi_0(1 - \pi_0)/n}} \stackrel{a}{\sim} \mathcal{N}(0, 1).$$

P-value

(Definition) p-values

The P-value is used to measure how much evidence there is **against** H_0 in favour of the alternative hypothesis.

The smaller the p value, the more evidence against the null hypothesis there is. If there's enough evidence against H_0 , we reject the null hypothesis.

Set up of hypothesis testing

- State the null and alternative hypotheses.
- 2 State the test statistic and distribution of H_0 .
- Draw a conclusion based on the corresponding p-value or rejection region.

Part I: Random variables

Inferring conclusions

- At the end of the day, we want to determine whether the original claim H_0 was a lie or not. We can reach this using a **rejection** region for a statistic.
 - It is a range of values for which we would reject the null hypothesis at level α .

Hypothesis test about μ if σ is known

- Test statistic: $z = \frac{(\bar{x} \mu_0)/\sigma}{\sqrt{n}}$
- Rejection region $(\mu > \mu_0)$: $\left\{ \bar{x} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right\}$.
- Rejection region $(\mu < \mu_0)$: $\left\{ \bar{x} < \mu_0 z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right\}$.
- Rejection region $(\mu \neq \mu_0)$: $\bar{x} \notin \left[\mu_0 z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \mu_0 + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$.

Part I: Random variables

Hypothesis test about μ if σ is NOT known

- Test statistic: $t = \frac{(\bar{x} \mu_0)/s}{\sqrt{n}}$
- Rejection region $(\mu > \mu_0)$: $\bar{x} > \mu_0 + t_{1-\alpha,n-1} \frac{s}{\sqrt{n}}$.
- Rejection region $(\mu < \mu_0)$: $\bar{x} < \mu_0 t_{1-\alpha,n-1} \frac{s}{\sqrt{n}}$.
- Rejection region $(\mu \neq \mu_0)$:

$$\bar{x} \notin \left[\mu_0 - t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}}, \mu_0 + t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}}\right].$$

Hypothesis test about π

- Test statistic: $z = \frac{(\bar{p} \pi_0)}{\sqrt{\pi_0(1 \pi_0)/n}}$
- Rejection region $(\mu > \mu_0)$: $\bar{p} > \pi_0 + z_{1-\alpha} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$.
- Rejection region $(\mu < \mu_0)$: $\bar{p} < \pi_0 z_{1-\alpha} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$.
- Rejection region $(\mu \neq \mu_0)$: $\bar{x} \notin \left[\pi_0 z_{1-\alpha/2} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}, \pi_0 + z_{1-\alpha/2} \sqrt{\frac{\pi_0(1-\pi_0)}{n}} \right].$

Example: (MATH2089, 2018S2 Q3c)

Assume Rugby New Zealand (the organising body for the sport) want to be able to demonstrate that Rugby viewership is in excess of 40% of New Zealanders, using a sample of size n. What are the appropriate null and alternative hypotheses for this test?

$$H_0: \pi = 0.4, \qquad H_a: \pi > 0.4.$$

Example: (MATH2089, 2018S2 Q3c)

Assume Rugby New Zealand (the organising body for the sport) want to be able to demonstrate that Rugby viewership is in excess of 40% of New Zealanders, using a sample of size n. What is the distribution of the sample proportion \hat{p} , if the null hypothesis is true?

$$\mathcal{N}(0.4, \sqrt{0.4(1-0.4)/n}) = \mathcal{N}(0.4, 0.4899/\sqrt{n}).$$

Assume Rugby New Zealand (the organising body for the sport) want to be able to demonstrate that Rugby viewership is in excess of 40% of New Zealanders, using a sample of size n. Show that, for the relevant hypothesis test at the 0.05 significance level, the rejection region for \hat{p} can be expressed as

$$\left(0.4+\frac{0.806}{\sqrt{n}},1\right]$$

Rejection region is

$$\hat{p} > \pi_0 + z_{1-\alpha} \frac{\pi_0(1-\pi_0)}{n} = 0.4 + z_{1-0.05} \sqrt{\frac{0.4\times0.6}{n}}$$
. This computes to

$$\hat{p} > 0.4 + 1.6449 \times 0.4899 \approx 0.4 + 0.806 / \sqrt{n}$$
.

Hence our rejection region is

$$\left(0.4 + \frac{0.806}{\sqrt{n}}, 1\right]$$
.

MATH 2089 / 2859 / 2099 / CVEN 2002 Revision Seminar

Part V: Analyses

Part

• Model the distribution of the random variable Y, conditional on the predictor X, assuming

$$Y = \beta_0 + \beta_1 x + \varepsilon.$$

The slope β_1 and the intercept β_0 are regression coefficients.

- β_0 is the **mean** of Y when X=0.
- Slope β_1 is the change in mean of Y when X increases by 1.

Least Squares Estimators

• We often don't know the true values of β_0 and β_1 . So the next best thing is to estimate them.

Notation

$$S_{XX} = \sum_{i=1}^{n} (X_i - \bar{X})^2$$

 $S_{XY} = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}).$

Least squares estimators of β_0 and β_1

$$\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}}, \quad \hat{\beta}_0 = \bar{Y} - \frac{S_{XY}}{S_{XX}}\bar{X}.$$

Assumptions based of the regression model

- Conditional mean is a linear function of x. Otherwise it doesn't make any sense!
- 2 Each error term $e_i = y_i (\beta_0 + \beta_1 x_i)$ are drawn independently of one another!
- Each error term have the same variance.
- Each error term have been drawn from a normal distribution.

Inferences about the true slope

- $\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}} = \sum_i \frac{(x_i \bar{x})}{S_{XX}} Y_i$, where $Y \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma)$.
- Sampling distribution of $\hat{\beta}_1$ is

$$\hat{\beta}_1 \sim \mathcal{N}\left(\beta_1, \frac{\sigma}{\sqrt{S_{XX}}}\right).$$

• Apply a hypothesis test on $\hat{\beta}_1$ with

$$H_0: \hat{\beta}_1 = 0, \qquad H_a: \hat{\beta}_1 \neq 0.$$

• Reject H_0 if $\hat{\beta}_1$ is too different to 0. In other words, the rejection region is

$$\hat{\beta}_1 \not\in \left[\hat{\beta}_1 - t_{n-2;1-\alpha/2} \frac{\mathcal{S}}{\sqrt{\mathcal{S}_{XX}}}, \hat{\beta}_1 + t_{n-2;1-\alpha/2} \frac{\mathcal{S}}{\sqrt{\mathcal{S}_{XX}}}\right].$$

$$\hat{\beta}_0 = \sum_{i=1}^n \frac{Y_i}{n} - \hat{\beta}_1 \bar{x}.$$

• Sampling distribution of $\hat{\beta}_1$ is

$$\hat{eta}_0 \sim \mathcal{N}\left(eta_0, \sigma \sqrt{rac{1}{n} + rac{ar{x}^2}{eta_{XX}}}
ight).$$

Correlation

• Recall that a regression returns a numerical relationship between two random variables. On the other hand, a correlation quantifies the strength of the linear relationship between X and Y. We can show that the sample correlation coefficient is given by

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}.$$

Analysis of Variance (ANOVA)

• We use analysis of variance when dealing with k random samples, where X_i and S_i are the sample mean and standard deviation of the ith sample.

ANOVA model

$$X_{ij}=\mu_i+\varepsilon_{ij},$$

where μ_i is the mean at the *i*th treatment and ε_{ii} is an individual random error component.

Assumptions

$$\varepsilon_{ij} \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, \sigma).$$

 Errors are normally distributed, are independent and have the same variance.

ANOVA hypotheses

- Null hypothesis: $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$.
- Alternative hypothesis: H_a : not all means are the same.
 - We're not saying that ALL means are different, but that at least two means are different.

Fisher's *F*-distribution

Let $f_{d_1,d_2;\alpha}$ be a value such that

$$\mathbb{P}(X > f_{d_1,d_2;\alpha}) = 1 - \alpha,$$

where X follows an F_{d_1,d_2} distribution with density

$$f(X) = \frac{\Gamma((d_1 + d_2)/2)(d_1/d_2)^{d_1/2}x^{d_1/2 - 1}}{\Gamma(d_1/2)\Gamma(d_2/2)((d_1/d_2)x + 1)^{(d_1 + d_2)/2}}.$$

Yeah nah, I don't remember this at all! They would normally give you a value by computing the command finv $(\alpha, d1, d2)$ for quantiles and 1-fcdf(x,d1,d2).

ANOVA test

Use the test statistic

$$f = \frac{\mathsf{ms}_{\mathsf{Tr}}}{\mathsf{ms}_{\mathsf{Fr}}},$$

where f follows a Fisher distribution with $d_1 = k - 1$ and $d_2 = n - k$.

• Reject H_0 if

$$\frac{\mathsf{ms}_{\mathsf{Tr}}}{\mathsf{ms}_{\mathsf{Er}}} > f_{k-1,n-k;1-\alpha},$$

where ms_{Tr} is the treatment mean squared and ms_{Er} is the mean squared error.