Set Proofs Continued

Set Proofs Continued

Inclusion

Basic principle: $A \subseteq B$ is equivalent to the statement $x \in A \implies x \in B$ One can prove this both directly and as $x \notin B \implies x \notin A$.

Proposition: Let
$$A = \{4x + 2 : x \in \mathbb{Z}\}$$
. Let $B = \{2x : x \in \mathbb{Z}\}$. Then $A \subseteq B$.

$$A = \{4x + 2 : x \in \mathbb{Z}\}$$

$$A = \{4x + 2 : x \in \mathbb{Z}\}$$

$$A = \{4x + 2 : x \in \mathbb{Z}\}$$

$$A = \{4x + 2 : x \in \mathbb{Z}\}$$

$$A = \{4x + 2 : x \in \mathbb{Z}\}$$

$$A = \{4x + 2 : x \in \mathbb{Z}\}$$

$$A = \{2x : x \in \mathbb{Z}\}$$

More examples

Proposition: For all $k \in \mathbb{Z}$, let $A = \{n \in \mathbb{Z} : n | k\}$ and let $B = \{ n \in \mathbb{Z} : \overline{n | k^2} \}$. Then $A \subseteq B$. (Note: this is problem 3 on page 171.) Let A = {n & Z: n | K} K is fixed at He beginning B = gne Z: n/K2} Frall KEZ, n/K => n/K2 $K^2 = n^2 d^2 = n (n d^2)$ $K^2 = n^2 d^2 = n (n d^2)$ sna nlk, K=nd.

More examples

Proposition: Suppose A, B, and C are sets. If $B \subseteq C$, then $A \times B \subseteq A \times C$. (This is problem 7 on page 171.)

Suppose A, B, C are any sets. if B EC, Hen AxB = AxC. If [xeB => xeC] Hen [xeAxB => xeAxC] Proof: Assume XEB=)XEC. (BEC). and we assume XEAXB. X= (a,b) whe acA and b&B. We must show (a, b) & AxC. in other words, i fatol we must show that (a,b) = (a',c') whe a' $\in A$ SnebeB, beChy hypothesis BSC. Thefre a'= a

One more

Proposition: Let A and B be sets. Prove that $A \subseteq B$ if and only if $A - B = \emptyset$. (This is problem 21 on page 171.)

ACB
$$\Leftrightarrow$$
 A-B= \emptyset
Recall: A-B= $\{x \in A: x \notin B\}$,
 $x \in A-B \Leftrightarrow x \in A \text{ and } x \notin B$,