

Лекция 2

Схемотехника устройств компьютерных систем Семестр 2

Люлява Даниил Вячеславович, старший преподаватель кафедры ВТ Дуксин Никита Александрович, преподаватель кафедры ВТ

Маршрут проектирования. Уровни проектирования

Моделирование на уровне топологии

Этапы топологического моделирования

- Синтез RTL-модели (предварительный этап)
- Имплементация
 - Для ПЛИС:
 - Оптимизация синтезированного представления
 - Размещение компонентов на кристалле
 - Трассировка соединительных линий
 - Для СБИС дополнительно может производится укладка соединительных линий, построение тактового дерева, адаптация модели кристалла к производству и т.д.

Факторы, оказывающие влияние на топологическое представление

- Архитектура RTL-модели
- Алгоритмы синтеза
- Алгоритмы оптимизации синтезированного решения
- Алгоритмы размещения и трассировки
- Аппаратная платформа

Аппаратная платформа

Классификация аппаратных платформ

Сравнение ASIC и FPGA

	FPGA	ASIC
Регистры	Характеристики и позиции регистров фиксированы, при использовании регистра требуется задействовать LUT	Регистры могут быть иметь различных характеристики и располагаться в любой позиции на кристалле
Статическая память	Количество блоков памяти, размерность блоков и их расположение фиксированы	Компоненты задаются библиотекой и оптимизированы под техпроцесс, свободная конфигурация
Блоки умножения с накоплением	Реализованы и оптимизированы	Требуется собственная разработка, либо проприетарное IP-ядро
Тактовое дерево	Разведено по кристаллу, есть разделение на домены	Требуется разводка
Линии сброса	Заранее разведены по компонентам кристалла	Требуется трассировка

Экономические риски

Параметр	Заказные	Стандартные	Полузаказные
Время разработки	большое	малое	малое
Стоимость разработки в единичном экземпляре	очень высокая	низкая	средняя
Стоимость разработки при серийном производстве	средняя	низкая	средняя
Доступность с точки зрения производственных ресурсов	малодоступно	доступно	доступно

Технические риски

Заказные микросхемы	Стандартные микросхемы	Полузаказные микросхемы	
 Архитектура разрабатывается с нуля, при качественном проектировании можно добиться высоких показателей производительности и энергоэффективности В некоторых отраслях единственный возможный вариант аппаратной платформы Существует сложность в отладке, нет абсолютной гарантии безошибочности разработки до получения опытного образца 	 Имеют "жёсткую" архитектуру, что накладывает ограничения на возможности платформы и, как следствие, на область решаемых задач. Не все варианты стандартных микросхем подходят для параллельных вычислений; Из-за отсутствия аппаратного вмешательства могут возникать сложности при реализации собственных или уже существующих протоколов обмена данными. 	 Компромиссный вариант с возможностью аппаратной конфигурации платформы Больше возможностей с точки зрения отладки и тестирования решения 	

ПЛИС компании Xilinx/AMD

Семейства:

- Spartan
- Artix
- Kintex
- Virtex

ПСнК

- Zynq
- Versal

Серии:

- 6
- 7
- UltraScale
- UltraScale+

Spartan

• Особенности

- Низкий ценовой сегмент (150-200 долларов)
- Включает линейки Spartan 6 (45 нм),
 Spartan 7 (28 нм) и Spartan Ultrascale+ (16 нм)
- Малый объём логических ячеек (до 218 тыс., медиана - 50 тыс.)
- Малый объём встроенной памяти
 (до 1.99 Мб DRAM, 6.8 Мб BRAM, 18.0 Мб UltraRAM)
- Большое количество портов I/O (572 порта)
- B UltraScale+:
 - используются Multi-Gigabit трансиверы GTH (до 8 шт., скорость 12.5 Gb/s);
 - до 384 блоков DSP;
 - 1 интерфейс PCle Gen4 x8 или 2 интерфейса PCle Gen4 x4.

Spartan

• Применение

- Проекты с низким бюджетом, требующие малое число вычислительных ресурсов (как правило, встраиваемые системы)
- Для сетевой инфраструктуры (ВМС-контроллер для серверов) и Интернета вещей, где для коммуникации могут использоваться трансиверы.
- Для создания многопортовых контроллеров мониторинга данных (например, медицинского оборудования).
- Модели серии UltraScale+ в силу большего числа ячеек и блоков DSP можно использовать для реализации устройств обработки радиосигналов или реализации простых систем на базе машинного обучения

Artix

• Особенности

- Средний ценовой сегмент (медиана 400-500 долларов, может достигать 1500 долларов)
- Включает линейки
 Artix-7 (28 нм), Artix UltraScale (20 нм) и Artix
 UltraScale+ (16 нм)
- Средний объём логических ячеек (до 308 тыс., медиана - 170 тыс.)
- До 1200 блоков DSP;
- До 12 трансиверов MGT GTY 16.3 Gb/s

• Применение

 может использоваться для реализации аппаратных ускорителей, например, для обработки потокового видео, выполнения криптопреобразований, анализа сетевого трафика и т.д.

Kintex

• Особенности

- Высокий ценовой сегмент (бюджетные решения начинаются от 1320 долларов и доходят до 4000).
- Существует в трёх сериях (Kintex-7, Kintex UltraScale, Kintex UltraScale+)
- До 1,85 млн логических ячеек (медиана 600-700)
- Увеличенный объём встроенной памяти
 - до 11.6 Мб распределенной памяти,
 - до 60.8 Мб блочной памяти,
 - до 81.0 памяти UltraRAM,
 - до 3,528 блоков типа DSP.
- Последние модели в серии UltraScale+ поддерживают работу с тремя интерфейсами PCIe Gen4 x8.
- Содержат трансиверы MGT GTY 32.7 Gb/s до 32 штук.

• Применение

- в оптоволоконных системах, беспроводных мобильных сетях
- в качестве ускорителей обработки данных.

Virtex

Особенности

- о передовая линейка компании Xilinx
- высокая цена (от 8000 долларов и выше);
- существует в трёх сериях (Virtex-7, Virtex UltraScale, Virtex UltraScale+);
- о до 3,8 млн логических ячеек;
- до 12.3 тыс. блоков DSP;
- до 58.4 Мб распределенной памяти, 94.5 Мб блочной памяти, 360.0 памяти UltraRAM;
- o до 128 блоков MGT GTY 32.75 Gb/s;

Virtex

• Применение

- модели серии UltraScale+ разделены на отдельные группы по соотношению аппаратных ресурсов:
 - HBM модели с высоким объёмом памяти и высокой пропускной способностью;
 - 58G модели с более скоростными трансиверами GTM PAM4, способными развить скорость до 58 Gb/s;
 - VU19р модели с высоким количеством портов ввода/ вывода и вычислительных ресурсов.
- о применяются для высокопроизводительных аппаратных ускорителей, радиолокаций, телекоммуникации (сети 5G)

Вопросы

Спасибо за внимание!