Demystifying ML, AI & Automation Part I

Spyros Gkezerlis

Oct/Nov 2017

Intro

Spyros Gkezerlis - @sgez

About

BSc Automation Engineering — Telematic Applications MSc Information Systems — Reinforcement Learning Interests — Applied ML, RL especially in time domain

Experience

5 years Software Developer in Greece

8 years Engineer and Manager in OTE

3 years Program Manager in DTAG

Ariadni Gkezerli (8 y.o), © 2017

Depiction accuracy: 100%!

Why Lectures?

- Get a better overview of the current landscape in ML, AI & Automation, because they can potentially can help us on:
 - Reducing complexity of network
 - Improving experience by Time-to-market, Time-to-repair
 - Repetitive caused costs can be targeted and reduced
 - Forecasting, Automating, Making predictions smarter
- Create a common understanding of what ML, AI & Automation
- "Start with the problem" philosophy

Pros cons, Tools, etc. should not dictate what we should use!

- Identify what we want to solve
- Work to the algorithms & models needed
- Utilise best approach
- Assess ML potential

"Al is the New Electricity"

Andrew Ng

But, be aware of the dark side!

- Keep in mind it can solve particular types of problems!
- ML is not a tool to fix everything
- Needs high degree of mathematics understanding and of course, you should know your problem.

Landscape overview

Landscape and focus¹ areas vary:

- Automation
- Statistics & Probability
- Data Mining
- Artificial Intelligence
- Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Deep Learning
- Other Areas
 - Deep Reinforcement Learning

Landscape overview

Landscape and focus² areas of ML also could have overlaps with other scientific disciples such as Data Mining, AI, Big Data an other.

Automation

- Comes from ancient greek word which means the thing that wishes on its own or the has a will or fury by itself
- Describes the tasks that are or can be performed by machines autonomously
- It can be used to improve quality, accuracy, save costs and amplify precision
- Automation as well as the math behind it have been helping industry.

Bayes Theorem

- P(AIB) ==> Probability of A given that B
 - Exercise on Bayes³
 Out of 3000 emails received over a certain period,
 2000 are spam and 1000 are not. The word "Rolex"
 appeared in 250 out of the 2000 which are spam and
 in 5 out of the 1000. So, if an email is received, and
 contains the word "Rolex", what is the possibility that
 it is a spam?

Let S be the event that the message is spam, and E be the event that the message contains the word w. Under our assumption from before, we have that:

$$P(S|E) = \frac{P(E|S)}{P(E|S) + P(E|\bar{S})}$$

Bayes Theorem exercise

• Example – Solution³:
Out of 3000 emails received over a certain period, 2000 are spam and 1000 are not. The word "Rolex" appeared in 250 out of the 2000 which are spam and in 5 out of the 1000.

So, if an email is received, and contains the word "Rolex", what is the possibility that it is a spam?

$$P(S|E) = \frac{P(E|S)}{P(E|S) + P(E|\bar{S})}$$

$$P(S|E) = \frac{\frac{250}{2000}}{\frac{250}{2000} + \frac{5}{1000}} =$$

$$\frac{0.125}{0.125 + 0.005} \approx 0.962$$

Markov Chains

• Statistics & Probability - Markov Chains⁴
Markov Chains is a probabilistic process, that relies on the current state to predict the next state. For Markov chains to be effective the current state has to be dependent on the previous state in some way; For instance, from experience we know that if it looks cloudy outside, the next state we expect is rain. We can also say that when the rain starts to subside into cloudiness, the next state will most likely be sunny.

Not every process has the Markov Property, such as the Lottery, this weeks winning numbers have no dependence to the previous weeks winning numbers.

MARKOV TABLE OF PROBABILITIES

STATE	NEXT STATE	PROBABILITY	%
CLOUDY	CLOUDY	0.1	10%
CLOUDY	RAIN	0.5	50%
CLOUDY	SUNNY	0.4	40%
RAIN	CLOUDY	0.3	30%
RAIN	RAIN	0.6	60%
RAIN	SUNNY	0.1	10%
SUNNY	CLOUDY	0.4	40%
SUNNY	RAIN	0.1	10%
SUNNY	SUNNY	0.5	50%

Markov State Diagram

Current State Vector

Statistical Classification⁵

• Examples of Classifiers

- Linear classifiers
- Support vector machines
- Quadratic classifiers
- Kernel estimation
- Boosting (meta-algorithm)
- Decision trees
- Neural networks
- Learning vector quantization

• Problems that classifiers help tackle:

- Supervised Learning
- Clustering
- · Dimentionality reduction
- Anomaly prediction
- Neural Nets
- RL/DRL

Supervised Learning - DTL

- Decision Tree Learning
 DTL is method for approximating discrete
 valued target functions, in which the learned
 function is represented by a decision tree.
 (Weka example will follow)
- Example⁶ dataset converted via algorithm to Decision tree

No.	1: outlook Nominal	2: temperature Numeric	3: humidity Numeric	4: windy Nominal	5: play Nominal
1	sunny	85.0	85.0	FALSE	no
2	sunny	80.0	90.0	TRUE	no
3	overcast	83.0	86.0	FALSE	yes
4	rainy	70.0	96.0	FALSE	yes
5	rainy	68.0	80.0	FALSE	yes
6	rainy	65.0	70.0	TRUE	no
7	overcast	64.0	65.0	TRUE	yes
8	sunny	72.0	95.0	FALSE	no
9	sunny	69.0	70.0	FALSE	yes
	rainy	75.0	80.0	FALSE	yes
	sunny	75.0	70.0	TRUE	yes
	overcast	72.0	90.0	TRUE	yes
	overcast	81.0	75.0	FALSE	yes
	rainy	71.0	91.0	TRUE	no

Reinforcement Learning (RL)

- Reinforcement Learning⁷ is learning what to do-how to map situations to actions--so as to maximise a numerical reward signal.
- Reinforcement learning is defined not by characterising learning methods, but by characterising a learning problem.

Workflow – The ML Pipeline⁸

- Start with the question or problem we want to solve
- Find proper data and sources, prepare data set (train/dev/test)
- Choose a model e.g. Decision Tree C4.5 Algorithm
- Train system & classify, Test
- Evaluate the system and fine-tune
- Predict / Forecast
- Apply to workflow
- Automate into workflow

Dataset semantics

Dataset

• Labels or Classes

Instances

Age	Nationality Education		Job	
25	Greek	MSc	Engineer	
38	American	American MSc		
→ 35	Japanese	PhD	Assistant	

Choose an algorithm⁹

9 Microsoft Azure Machine Learning: Algorithm Cheat Sheet, Microsoft website, 09 Nov 2017

http://download.microsoft.com/download/A/6/1/A613E11E-8F9C-424A-B99D-65344785C288/microsoft-machine-learning-algorithm-cheat-sheet-v6.pdf

9 Scikit-Learn Algorithm selection Procedure, Scikit-learn website, 23 Oct 2017

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Tools – Landscape¹⁰

Category	Sub-category	Description	Examples	
Packages of ML Implementations	Statistical Software Packages	Software toolkits with a large set of implementations of ML algorithms, typically with visualization support	SAS, R , Matlab, SPSS	
	Data Mining Toolkits	Software toolkits with a relatively limited set of ML algorithms, typically over a data platform, possibly with incremental maintenance	Weka , AzureML, ODM, MADlib, Mahout, Hazy-Classify	
	Developability-oriented Frameworks	Software frameworks and systems that aim to improve developability, typically from academic research	GraphLab, Bismarck, MLBase	
	SRL Frameworks	Implementations of statistical relational learning (SRL)	DeepDive	
	Deep Learning Systems	Implementations of deep neural networks	Google Brain, Microsoft Adam	
	Bayesian Inference Systems	Systems providing scalable inference for Bayesian ML models	SimSQL, Elementary, Tuffy	
Linear Algebra	Statistical Software Packages	Systems offering an interactive statistical programming environment	SAS, R , Matlab	
Linear Algebra- based Systems	R-based Analytics Systems	Systems that provide R or an R-like language for analytics, typically over a data platform, possibly with incremental maintenance	RIOT, ORE, SystemML, LINVIEW	
Model Management Systems		Systems that provide querying, versioning, and deployment support	SAS, LongView, Velox	
Systems for Feature Engineering		Systems that provide abstractions to make feature engineering easier	Columbus , DeepDive	
Systems for Algorithm Selection		Systems that provide abstractions to make algorithm selection easier	MLBase, AzureML	
Systems for Parameter Tuning		Systems that provide abstractions to make parameter tuning easier	SAS, R, MLBase, AzureML	

Deep Learning Toolkits comparison¹¹

Toolkit	GPU Support	Other	
Caffe	Yes	JSON-like text file to describe the network architecture	
Deeplearning4j	Yes	Java on Scala API	
Tensorflow	Yes	Google backing, high adoption - Python	
Theano		Python	
Keras		Python - uses Theano or Tensorflow as backend	
MXNet	Yes	C++	
Lasagne		Python - uses Then	
CNTK		VS for ML - developed by Microsoft	
DIGITS		Nvidia - web based tool	
Torch		Written in C	
PyTorch	Yes	Python frontend	
Pylearn2		Python	
Chainer			

Before-Selecting-a-Tool Checklist

- Things to consider for a toolkit/tool/ecosystem
 - Environment ease of use
 - Dev & Exec speed
 - Training Speed
 - GPU Support
 - Community support & contributors
 - License contamination
 - Language to be used

ANACONDA* PYTHON & R OPEN SOURCE ANALYTICS

NumPy	SciPy	Pandas	Scikit-learn	Jupyter	/IPython
Numba	Matplotlib	Spyder	TensorFlow	Cython	Bokeh
Scikit-image	NLTK	Dask	Caffe	dplyr	shiny
ggplot2	tidyr	caret	PySpark	& 1000+ packages	
ggprotz	uuyr	CONI	, ,	ox 1000+	paci

Practice (fun part :-)

- Weka Statistics Pipeline DTL
- R Studio Statistics
- Orange Data Mining DTL
- Anaconda Python Statistics basic ML
- Elasticsearch (ELK) Visual Analytics

on:

- bitcoin
- cars
- flights
- milano_cells

Lectures & Data Sources Page https://github.com/sgez/MLAI

Thank you!

"In theory there is no difference between theory and practice. In practice there is."