Theory of Computation Notes

paraphrased by Tyler Wright

An important note, these notes are absolutely **NOT** guaranteed to be correct, representative of the course, or rigorous. Any result of this is not the author's fault.

Contents

1	The Basics of Computation			
	1.1	Decisio	on Problems	3
		1.1.1	Decomposing Decision Problems	3
	1.2	Alphabets		
		1.2.1	Strings	3
		1.2.2	The Set of Strings	3
		1.2.3	Substrings and Concatenation	3

1 The Basics of Computation

1.1 Decision Problems

A decision problem is a problem which has a Yes or No answer.

1.1.1 Decomposing Decision Problems

A decision problem can be decomposed into two sets, the Yes and No instances of the problem.

1.2 Alphabets

An alphabet is finite set whose members are called symbols (or equivalently letters or characters).

1.2.1 Strings

A string (or equivalently word) over an alphabet Σ is a finite sequence of symbols from Σ . The sequence may be empty, such sequences are denoted by ϵ . The amount of symbols in a string w is denoted by |w|.

1.2.2 The Set of Strings

The set of all strings over Σ is denoted by Σ^* .

1.2.3 Substrings and Concatenation

For two strings v, w, v is a substring of w if it appears consecutively in w.

We write vw to denotes v concatenated with w and for k in $\mathbb{Z}_{>0}$, we say v^k is the k-fold concatenation of v with itself (k copies of v).