Алина Шаймарданова, БКЛ-152

Для выполнения этого задания, я решила не останавливаться на четырёх языках, которые были изначально предложены в тексте, а расширить список до 10 языков. Я это сделала, для того, чтобы более объективно оценить эффективность приведенных алгоритмов по распознаванию языка, т.к. в случае с 4 языками ('be', 'kk', 'uk', 'fr') будет очень лего опередить французский, т.к. он единственный не содержит кириллических знаков, и белорусский, казахский и украинский отличить друг от друга достаточно легко, т.к. они содержат в себе уникальные друг для друга буквы.

Таким образом, я взяла следующие языки и выкачала для каждого из них по 100 статей: 'bg', 'be', 'kk', 'uk', 'fr', 'ru', 'en', 'mk', 'la', 'de'

Первый метод: частотные слова

```
В начале, был сформирован частотный словарь вида: {'ru': {'слово': его частотность для текстов этого языка, ...} ...}
```

То есть ключ — это язык, значение — это словарь, где ключ — это слово, а значение — это частотность этого слова в текстах этого языка (sum(freq_dict[lang].values())).

Например, первые 4 значения для казахского:

```
0.24532825706742278 жалғастырғышты
0.12463899494783258 жүріс
0.11222148334254944 тежегішті
0.10194716438342984 жөне
```

После этого, опираясь на этот словарь, довольно распространённым методом мы определяли язык текста. Получаемый на вход текст мы токенизируем, очищая от мусора и цифр. После этого, мы для каждого языка проверяем, наличие каждого слова из анализируемого текста в языковом-частотном словаре. Если слово встречается в определенном языке, то мы приплюсовываем частотность этого слова в текстах этого языка (из словаря) в отдельный словарь, где ключ — это язык, а значение — это сумма частот слов текста. После этого, мы смотрим, у какого языка получилась наибольшая сумма и выбираем его.

Второй метод: частотные символьные п-граммы

В начале, мы разделяем весь текст на n-граммы, где n=3.

После этого, аналогично первому методу, мы формируем частотный словарь, где ключ – это язык текстов, а значение – это частотность трёх символов в текстах этого языка.

Первые 4 значения для казахского:

```
0.12213749127777604 жиі
0.10104254400129953 жег
0.09255603943632926 теж
0.08533199900519951 уйл
```

Алина Шаймарданова, БКЛ-152

После этого, так же как и в первом методе определяем принадлежность текста к тому или иному языку.

Сравним результаты:

С частотным словарём:

	precision	recall	f1-score	support	
be	1.00	0.91	0.95	95	
bg	0.69	0.98	0.81	92	
de	0.99	0.98	0.98	93	
en	0.91	0.99	0.95	96	
fr	0.95	0.99	0.97	96	
kk	0.99	1.00	1.00	100	
la	1.00	0.85	0.92	97	
mk	0.96	0.95	0.95	97	
ru	0.83	0.71	0.76	89	
uk	0.99	0.85	0.92	96	
avg / total	0.93	0.92	0.92	951	

С n-граммами:

	precision	recall	f1-score	support	
be	1.00	0.79	0.88	95	
bg	0.65	0.33	0.43	92	
de	0.95	0.99	0.97	93	
en	0.97	0.97	0.97	96	
fr	0.98	1.00	0.99	96	
kk	0.95	0.99	0.97	100	
la	0.97	0.97	0.97	97	
mk	0.41	0.99	0.58	97	
ru	0.96	0.28	0.43	89	
uk	0.82	0.66	0.73	96	
avg / total	0.87	0.80	0.80	951	

Дополнительно посмотрим на матрицу ошибок:

С частотным словарём:

]]	86	3	0	0	0	0	0	2	3	1]
[0	90	0	1	0	0	0	1	0	0]
[0	0	91	0	0	0	0	0	2	0]
[0	0	0	95	0	1	0	0	0	0]
[0	0	0	0	95	0	0	0	1	0]
[0	0	0	0	0	100	0	0	0	0]
[0	0	1	6	5	0	82	0	3	0]
[0	4	0	0	0	0	0	92	1	0]
[0	26	0	0	0	0	0	0	63	0]
[0	8	0	2	0	0	0	1	3	82]]

Алина Шаймарданова, БКЛ-152

С n-граммами:

```
[[75
              1
                     0 12]
[ 0 30
       0
         1
           0
              0
                 0 61
                     0
                        0]
0 ]
    0 92
         0 0 0
                1 0
                     0
                        0]
    0 0 93 2 0 0 1 0
                        0]
0 ]
    0 0
         0 96 0 0 0 0
                        0]
[ 0
    1 0 0 0 99
                0 0 0
                        0]
[0 0 3 0 0 0 94 0 0
                        0]
                0 96 1
0 0 0 0 0 0
                        0]
      0 0 0 2
                2 51 25 2]
0 ]
    7
         2 0 2
[071
                 0 21
                     0 63]]
```

Как видно из результатов алгоритм с частотным словарём показывает лучший результат, нежели с буквенными n-граммами.