Mátrixok

Definíció

Egy m sorral és n oszloppal rendelkező számtáblázatot $m \times n$ -es mátrixnak nevezünk. $\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \end{pmatrix}$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

- A elemei: a_{ij} , $A = (a_{ij})$
- m: sorok száma, n: oszlopok száma
- Az összes $m \times n$ -es valós mátrix halmazát $\mathbb{R}^{m \times n}$ -nel jelöljük, az összes $m \times n$ -es komplex mátrix halmazát pedig $\mathbb{C}^{m \times n}$ -nel.

Példa.

$$\left(\begin{array}{ccc} -1 & 1 & 0 \\ 4 & -3 & -1 \end{array}\right) \in \mathbb{R}^{2 \times 3}, \quad \left(\begin{array}{c} 2-i \\ 3+2i \end{array}\right) \in \mathbb{C}^{2 \times 1}$$

Mátrixok

Definíció

- Ha n = m, akkor a mátrix négyzetes vagy kvadratikus.
- Egy mátrix főátlója alatt az $(a_{11}, a_{22}, a_{33}, \dots, a_{kk})$ szám k-ast értjük $(k = \min\{m, n\})$.
- Két mátrix egyenlő, ha azonos típusúak (azaz ugyanannyi soruk és oszlopuk van), és a megfelelő elemeik megegyeznek.
- Azon n × n-es mátrixot, melynek főátlójában csupa 1-es áll, minden más eleme 0, n-edrendű vagy n-dimenziós egységmátrixnak nevezzük.
 Jele: E_n vagy I_n.

$$E_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Mátrixműveletek

1. Mátrixok összeadása

Csak azonos típusú mátrixokat tudunk összeadni.

Legyenek
$$A = (a_{ij})$$
, $B = (b_{ij})$, $C = (c_{ij})$ $m \times n$ -es mátrixok.
Ekkor $C = A + B$, ha $c_{ii} = a_{ii} + b_{ii}$; $i = 1, ..., m$, $j = 1, ..., n$.

2. Mátrixok skalárral való szorzása

Elemenként végezzük, azaz ha λ skalár, $A=(a_{ij})$ egy $m\times n$ -es mátrix, akkor $\lambda A=(\lambda a_{ij})$ (ami szintén egy $m\times n$ -es mátrix).

Speciálisan: ha A és B sor-, vagy oszlopvektorok, akkor a fenti 2 művelet éppen a vektorok szokásos összeadása és skalárral való szorzása.

Példa.

$$\begin{pmatrix} 1 & -4 \\ 0 & -2 \\ 3 & 3 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ 1 & 2 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ 1 & 0 \\ 4 & 8 \end{pmatrix}, \quad 2 \begin{pmatrix} 1 & 4 \\ 0 & 2 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 0 & 4 \\ 6 & 6 \end{pmatrix}$$

Mátrixműveletek

3. Mátrixszorzás

Legyen $A=(a_{ij})$ egy $\underline{m}\times \underline{k}$, $B=(b_{ij})$ egy $\underline{k}\times \underline{n}$ típusú mátrix. Ekkor A és B szorzata az a $C=(c_{ij})$ $\underline{m}\times \underline{n}$ típusú mátrix, amelyre $c_{ij}=\sum_{r=1}^k a_{ir}b_{rj}.$ c_{ij}

Példa.

$$A = \begin{pmatrix} 1 & -4 \\ 3 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & -1 & 1 \\ 0 & -2 & 2 \end{pmatrix}, \quad u = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

Számítsuk ki, amennyiben lehetséges, az alábbi kifejezések értékét!

$$\begin{pmatrix}
1 & -4 \\
3 & 3
\end{pmatrix}
\begin{pmatrix}
-4 \\
-2 \\
2
\end{pmatrix} = \begin{pmatrix}
3 & 7 & -7 \\
9 & -9 & 9
\end{pmatrix}$$

$$2 \times 3$$

$$C_{11} = 1 \cdot 3 + (-1) \cdot 0 = 3$$

$$C_{12} = 1 \cdot (-1) + (-4) \cdot (-2) = 7$$
 $C_{13} = 1 \cdot 1 + (-4) \cdot 2 = -7$

$$C_{24} = 3.3 + 3.0 = 9$$

$$C_{22} = 3 \cdot (-1) + 3 \cdot (-2) = -9$$

$$C_{23} = 3 \cdot 1 + 3 \cdot 2 = 9$$

$$1 = \begin{pmatrix} 1 & -1 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 21 \end{pmatrix}$$

$$2 \times 2 \qquad 2 \times 1$$

A mátrixszorzás tulajdonságai

- Ha A $m \times n$ típusú, akkor $E_m \cdot A = A$ és $A \cdot E_n = A$.
- Legyenek A,B mátrixok és tegyük fel, hogy létezik AB. Ha λ tetszőleges skalár, akkor $\lambda(AB)=(\lambda A)B=A(\lambda B)$.
- Ha A, B, C olyan mátrixok, hogy AB és BC létezik, akkor (AB)C = A(BC). (asszociatívitás)
- Ha A és B azonos típusú mátrixok és létezik AC, akkor BC is létezik és (A+B)C=AC+BC. (disztributivitás)
- ullet A mátrixszorzás nem kommutatív, azaz általában AB
 eq BA.

Definíció

Legyen A egy $m \times n$ -es mátrix. Azt az A^T -vel jelölt $n \times m$ -es mátrixot, amelynek sorai az A oszlopai az A transzponáltjának nevezzük.

A transzponálás tulajdonságai

- \bullet $(A^T)^T = A$
- $(AB)^T = B^T \cdot A^T.$

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 4 \end{pmatrix}$$

$$E A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 4 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 4 \end{pmatrix}$$

$$A \cdot E = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 4 \end{pmatrix} \qquad A^{T} = \begin{pmatrix} 2 & 3 \\ -1 & -2 \\ 1 & 4 \end{pmatrix}$$

$$2 \times 3 \qquad 3 \times 3 \qquad 3 \times 2 \qquad 1 \qquad 4$$

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \qquad A^{T} = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

Az A mátrixot szimmetrikusnak nevezzük, há $A^T = A$

Példa.

$$A = \begin{pmatrix} 1 & 5 \\ 2 & 3 \\ 2 \times 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -2 & 1 \\ 4 & -1 & 2 \end{pmatrix}, \quad u = \begin{pmatrix} 3 \\ 4 \\ 2 \times 4 \end{pmatrix}, \quad v = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$

Számítsa ki, amennyiben lehetséges, az alábbi kifejezések értékét!

$$B^{T}A = \begin{pmatrix} 2 & 4 \\ -2 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 10 & 22 \\ -4 & -13 \\ 5 & 11 \end{pmatrix}$$

$$U^{T}A = \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 11 & 21 \\ 2 & 3 \end{pmatrix}$$

 $AB = \begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & -2 & 1 \\ 4 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 22 & -7 & 11 \\ 16 & -1 & 8 \end{pmatrix}$

$$\begin{array}{ccc}
U^{\mathsf{T}} \mathsf{U} &= & (3 & 4) \begin{pmatrix} 3 \\ 4 \end{pmatrix} &= & 25^{\mathsf{T}} \\
\mathsf{U} \cdot \mathsf{U}^{\mathsf{T}} &= & \begin{pmatrix} 3 \\ 4 \end{pmatrix} &= & \begin{pmatrix} 9 & 12 \\ 12 & 16 \end{pmatrix}
\end{array}$$

Példa. Legyen

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right), \quad e_1 = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right), \quad e_2 = \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right),$$

$$u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Számítsuk ki az alábbi kifejezések értékét!

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \begin{pmatrix} \gamma \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha_{11} \\ \alpha_{21} \\ \alpha_{31} \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{1M} & \alpha_{11} & \alpha_{13} \\ \alpha_{2M} & \alpha_{12} & \alpha_{13} \\ \alpha_{3M} & \alpha_{32} & \alpha_{33} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha_{M2} \\ \alpha_{22} \\ \alpha_{23} \end{pmatrix} = \begin{pmatrix} \alpha_{M2} \\ \alpha_{22} \\ \alpha_{23} \end{pmatrix} \begin{pmatrix} \alpha_{M3} & \alpha_{M3} \\ \alpha_{M4} & \alpha_{M2} & \alpha_{M3} \\ \alpha_{M4} & \alpha_{M2} & \alpha_{M3} \\ \alpha_{M4} & \alpha_{M2} & \alpha_{M3} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha_{M4} + \alpha_{M2} + \alpha_{M3} \\ \alpha_{M4} + \alpha_{M2} + \alpha_{M3} \\ \alpha_{M4} & \alpha_{M2} & \alpha_{M3} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha_{M4} + \alpha_{M2} + \alpha_{M3} \\ \alpha_{M4} + \alpha_{M2} + \alpha_{M3} \\ \alpha_{M4} + \alpha_{M2} + \alpha_{M3} \end{pmatrix} \begin{pmatrix} \alpha_{M4} + \alpha_{M2} + \alpha_{M3} \\ \alpha_{M4} + \alpha_{M2} + \alpha_{M3} \end{pmatrix} \begin{pmatrix} \alpha_{M4} + \alpha_{M4} + \alpha_{M4} \\ \alpha_{M4} + \alpha_{M4} + \alpha_{M4} \\ \alpha_{M4} + \alpha_{M4} + \alpha_{M4} \\ \alpha_{M4} + \alpha_{M4} + \alpha_{M4} \end{pmatrix} \begin{pmatrix} \alpha_{M4} + \alpha_{M4} \\ \alpha_{M4} + \alpha_{M4$$

$$\begin{pmatrix} a_{M} & a_{N2} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} a_{M} \cdot X_{1} + a_{12} X_{2} + a_{13} X_{3} \\ a_{21} x_{1} + a_{12} X_{2} + a_{23} X_{3} \\ a_{31} x_{1} + a_{22} x_{2} + a_{33} x_{3} \end{pmatrix} =$$

(GAA)

(A12)

(A12)

(A13)

(A21)

(A22)

(A22)

(A23)

(A

Példa

Egy faipari kisvállalkozás kétféle játékot gyárt: kisautókat és vonatokat. Egy kisautó, illetve egy kisvonat legyártásához szükséges faanyag és festék mennyiségét az alábbi táblázat tartalmazza.

	kisautó	kisvonat
faanyag	2	3
festék	5	4

Ha x_1 , illetve x_2 jelenti egy adott napon a legyártott kisautók és vonatok számát, és

$$A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

akkor mit jelentenek az y = Ax vektor koordinátái?

kor mit jelentenek az
$$y = Ax$$
 vektor koordinátái?

(2) $X_1 + (3) X_2 =$

(a) $X_2 = (3) X_2 = (3) X_2$

Mátrixok inverze

Definíció

Az A n-edrendű négyzetes mátrix invertálható, vagy létezik az inverze, ha létezik olyan B n-edrendű kvadratikus mátrix, hogy

$$AB = BA = E_n$$
.

Tétel

Ha A invertálható, akkor az inverze egyértelmű. Jele: A^{-1} .

Példa:

$$A = \begin{pmatrix} 4 & 3 \\ 7 & 5 \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} -5 & 3 \\ 7 & -4 \end{pmatrix}$$

A mátrixinvertálás tulajdonságai

- Ha A invertálható, akkor A^{-1} is az és $(A^{-1})^{-1} = A$.
- Ha A és B invertálható és létezik AB, akkor ez is invertálható és $(AB)^{-1} = B^{-1}A^{-1}$. $(AB)(B^{-1}A^{-1}) = AEA^{-1} = AA^{-1} = E$
- Ha A invertálható, akkor A^T is az és $(A^{-1})^T = (A^T)^{-1}$.

$$\begin{pmatrix} 4 & 3 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} -5 & 3 \\ 7 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Determinánsok

Definíció

Legyen $n \in \mathbb{N}$ és jelölje σ az $\{1,2,\ldots,n\}$ halmaz egy permutációját, azaz legyen

$$\sigma \colon \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}, \ i \mapsto \sigma(i)$$

bijektív függvény. (Itt $\sigma(i)$ jelöli a permutációban az i. helyen álló elemet.) Azt mondjuk, hogy a σ permutációnál az i és j elem inverzióban áll, ha i < j és $\sigma(i) > \sigma(j)$. Egy σ permutáció páros, ha benne az inverzióban álló párok száma páros, és páratlan, ha ez a szám páratlan.

Példa:
$$J_4 = \{1, 2, 3, 4\}$$
,

$$\sigma_1=(1,3,4,2)$$
 Inverziók száma: 2 (3,2) (4,2) $\sigma_2=(1,2,3,4)$ Inverziók száma: 0 $\sigma_3=(4,3,2,1)$ Inverziók száma: 6 $\sigma_4=(2,3,4,1)$ Inverziók száma: 3 (4,2)

Determinánsok

Definíció

Legyen $A = (a_{ij})$ egy $n \times n$ -es kvadratikus mátrix. Az $A n^2$ eleméből válasszunk ki úgy n elemet, hogy minden sorból és oszlopból pontosan egyet választunk. A kiválasztott elemek alakja:

$$a_{1\sigma(1)}, a_{2\sigma(2)}, \ldots, a_{n\sigma(n)}.$$

Az A mátrix determinánsa:

$$\det(A) = |A| = \sum_{\sigma} \varepsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

 $\det(A) = |A| = \sum_{\sigma} \varepsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$ Ez az összeg n! tagú. Itt: $\varepsilon(\sigma) = \left\{ \begin{array}{cc} 1, & \text{ha } \sigma \text{ páros,} \\ -1, & \text{ha } \sigma \text{ páratlan.} \end{array} \right.$

Példa:

2
$$n = 3$$
: $det(A) =$

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix}$$

Determinánsok szorzástétele

Ha A és B azonos rendű négyzetes mátrixok, akkor

$$\det(AB) = \det(A) \cdot \det(B).$$

Megjegyzés

- Egységmátrix determinánsa 1. (det $E_n = 1$)
- Diagonális mátrix determinánsa a főátlóban álló elemek szorzata.
- Háromszögmátrix determinánsa a főátlóban álló elemek szorzata.

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

A determináns tulajdonságai

- \bullet det(A) = det(A^T)
- Ha A valamely sora csupa 0 elemből áll, akkor det(A) = 0.
- Ha A két sorát felcseréljük, a determináns -1-szeresére változik.
- Ha A két sora egyenlő, akkor det(A) = 0.
- Ha A valamely sorát megszorozzuk egy λ skalárral, akkor az így kapott mátrix determinánsa $\lambda \cdot \det(A)$.
- Ha A minden sorát megszorozzuk egy λ skalárral és A n-edrendű, akkor a kapott mátrix determinánsa $\lambda^n \cdot \det(A)$.
- Ha A két sora egymás skalárszorosa, akkor det(A) = 0.
- Egy mátrix determinánsa nem változik, ha valamely sorához hozzáadjuk egy másik sor λ-szorosát.
- Ha A valamely sora előállítható a többi sor lináris kombinációjaként, akkor det(A) = 0.
- A fentiek igazak sorok helyett oszlopokra is.

Következmény

Ha $\det(A) \neq 0$, akkor A sorai (vagy oszlopai) lineárisan független vektorok. Ekkor ha A $n \times n$ -es: sorai \mathbb{R}^n egy bázisát alkotják.

A determináns kiszámítási módjai

1. Sarrus-szabály: 2×2 -es és 3×3 -as mátrixok determinánsára

 2×2 -es mátrix:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \implies \det(A) = a_{11}a_{22} - a_{12}a_{21}$$

 3×3 -as mátrix:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0_{14} & 0_{12} \\ a_{21} & a_{22} & a_{23} & 0_{24} & 0_{22} \\ a_{31} & a_{32} & a_{33} & 0_{24} & 0_{32} \end{pmatrix}$$

$$det(A) =$$

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

Példa.

Határozzuk meg az alábbi mátrixok determinánsát Sarrus-szabállyal.

$$A = \begin{pmatrix} -3 & 2 \\ 1 & 4 \end{pmatrix}, B = \begin{pmatrix} -4 & 1 & 5 & -4 & -4 \\ 2 & 2 & 3 & 2 & 2 \\ -2 & 4 & 0 & -2 & 4 \end{pmatrix}$$

$$ded(A) = (-3) \cdot 4 - 2 \cdot 1 = -14$$

$$ded(B) = (-4) \cdot 2 \cdot 0 + (-1) \cdot 3 \cdot (-2) + (-5) \cdot 2 \cdot 4 - (-2) \cdot 2(-5)$$

$$-(4) \cdot 3 \cdot (-4) - 2 \cdot 2 \cdot (-1) = -6$$

A determináns kiszámítási módjai

- 2. Gauss-elimináció: az alábbi két típusú átalakítás alkalmazásával a mátrixot felső háromszög alakra hozzuk.
 - sorcsere (ekkor a determináns előjelet vált);
 - ightharpoonup egy sor λ -szorosának hozzáadása egy másik sorhoz (a determináns nem változik)

A mátrix determinánsa az eredményül kapott háromszögmátrix főátlóbeli elemeinek szorzata, szorozva $(-1)^k$ -nal, ahol k az elvégzett sorcserék száma.

Példa. Határozzuk meg det(A)-t Gauss-eliminációval.

$$A = \left(\begin{array}{rrr} -4 & -1 & -5 \\ 2 & 2 & 3 \\ -2 & 4 & 0 \end{array}\right)$$

$$\begin{pmatrix}
-4 & -1 & -5 \\
2 & 2 & 3 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 2 & 3 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 3 & 1 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 3 & 1 \\
-4 & -1 & -5 \\
-2 & 4 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 3 & 1 \\
-4 & -1 & -5 \\
-4 & 1 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 3 & 1 \\
-4 & 1 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 3 & 1 \\
-4 & 1 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
2 & 3 & 1 \\
-4 & 1 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
3 & 1 & 1 \\
-4 & 1 & 0
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
4 & 1 & 1 & 1 \\
-4 & 1 & 1 & 1
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
4 & 1 & 1 & 1 & 1 \\
-4 & 1 & 1 & 1
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
4 & 1 & 1 & 1 & 1 \\
-4 & 1 & 1 & 1
\end{pmatrix}
\xrightarrow{\text{III-II}}
\begin{pmatrix}
4 & 1 & 1 & 1 & 1 \\
-4 &$$

A sor coere vold
$$\Rightarrow$$
 des $(A) = (A) \cdot 6 = -6$

A sorosere vold
$$\Rightarrow$$
 des $(A) = (A)^{1} \cdot G = -6$

A determináns kiszámítási módjai

- 3. Kifejtési tétel: Legyen A egy n-edrendű mátrix.
 - ► Kiválasztjuk A egy tetszőleges sorát (vagy oszlopát),
 - ennek minden elemét megszorozzuk az elemhez tartozó algebrai aldeterminánssal,
 - majd a kapott szorzatokat összeadjuk.

Definíció

Az a_{ij} elemhez tartozó algebrai aldetermináns $(-1)^{i+j}A_{ij}$, ahol A_{ij} annak az (n-1)-edrendű determinánsnak az értéke, amelyet A-ból az i. sor és j. oszlop kihúzásával kapunk.

Példa. Határozzuk meg det(A)-t kifejtési tétellel.

$$A = \left(\begin{array}{rrr} -4 & -1 & -5 \\ 2 & 2 & 3 \\ -2 & 4 & 0 \end{array}\right)$$

$$+ \circ \cdot (-1)^{3+3} \begin{vmatrix} -4 & -1 \\ 2 & z \end{vmatrix} = -14 + 8 = -6$$

A determináns kapcsolata az invertálással

Definíció

Azt mondjuk, hogy az A négyzetes mátrix szinguláris, ha determinánsa 0. Ellenkező esetben (azaz ha $\det(A) \neq 0$) A reguláris.

Tétel

Egy négyzetes mátrix pontosan akkor invertálható, ha reguláris.

Megjegyzés: Legyen A egy reguláris mátrix. Mivel $A \cdot A^{-1} = E$, ahol E az A-val azonos méretű egységmétrix, ezért a determinánsok szorzástétele alapján

$$\det(A) \cdot \det(A^{-1}) = \det(E) = 1.$$

Azaz A és A^{-1} determinánsa egymás reciproka:

$$\det(A)^{-1} = \det(A^{-1}).$$

Ha az

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

2 × 2-es mátrix invertálható, akkor

$$A^{-1} = \frac{1}{\det(A)} \left(\begin{array}{cc} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{array} \right)$$

$$A = \begin{pmatrix} 4 & 3 \\ 7 & 5 \end{pmatrix} \qquad \text{ded}(A) = 4 \cdot 5 - 3 \cdot 7 = -1$$

$$A^{-1} = -1 \cdot \begin{pmatrix} 5 & -3 \\ -7 & 4 \end{pmatrix} = \begin{pmatrix} -5 & 3 \\ 7 & -4 \end{pmatrix}$$