

HL1 =
$$(0.1)0.1 + (0.15)(0.2) + 0.2 = 0.24$$

Output HL1 = $\frac{1}{1 + e^{-0.24}} \approx 0.56$

$$HL2 = (0.1)(0.15) + (0.15)(0.3) + 0.1 = 0.16$$

 $Otent HL2 = \frac{1}{1 + e^{-16}} \approx 0.54$

HL1.1 =
$$(0.56)(0.3) + (0.54)(0.1) + 0.3 = 0.522$$

atpt HL1.1 = $\frac{1}{1+e^{-.522}} \approx 0.63$

$$HL2.2 = (0.56)(0.25) + (0.54)(.05) + 0.15 = 0.317$$

output $HL2.2 = \frac{1}{1 + e^{-.317}} = 0.58$

$$01 = (0.63)(.2) + (0.58)(.1) + .15 = 0.334$$

$$004put_{01} = \frac{1}{1 + e^{-.334}} \approx [0.58]$$

$$02 = (0.63)(.15) + (0.58)(.1) + .2 = 0.3525$$

$$2 + p + 02 = \frac{1}{1 + e^{-0.3525}} \approx \frac{0.59}{0.59}$$

dnet = out previous

$$W_1$$
 W_2 W_4 W_6 W_6 W_6 W_{12}

$$\frac{\partial E_{7}}{\partial w_{1}} = -(.95 - .58) \cdot .58(1 - .58) \cdot .63 = -0.0568$$

$$\frac{\partial E_{7}}{\partial w_{10}} = -(.95 - .59) \cdot .58(1 - .58) \cdot .58 = -0.0523$$

$$\frac{\partial E_{7}}{\partial w_{10}} = -(.05 - .59) \cdot .59(1 - .59) \cdot .63 = 0.08229$$

$$\frac{\partial E_{7}}{\partial w_{11}} = -(.05 - .59) \cdot .59(1 - .59) \cdot .63 = 0.08229$$

$$\frac{\partial E_{7}}{\partial w_{12}} = -(0.5 - .59) \cdot .59(1 - .59) \cdot .58 = 0.07576$$

$$\frac{\partial E_{7}}{\partial w_{12}} = -(0.5 - .59) \cdot .59(1 - .59) \cdot .58 = 0.07576$$

$$\frac{\partial E_{7}}{\partial w_{12}} = -(0.5 - .59) \cdot .59(1 - .59) \cdot .58 = 0.07576$$

$$\frac{\partial E_{7}}{\partial w_{12}} = -(0.5 - .59) \cdot .59(1 - .59) \cdot .58 = 0.07576$$

$$W_{q}^{+} = .2 - (.5)(-.0568) =$$
 0.228
 $U_{10}^{+} = .1 - (.5)(-0.0523) =$
 0.126
 $W_{11}^{+} = .15 - (.5)(.08229) =$
 0.109
 $W_{12}^{+} = .(-(.5)(.07576) =$
 0.062

$$\frac{\partial E_7}{\partial w} = \left(\underbrace{\sum \frac{\partial E_7}{\partial at}}, \underbrace{\frac{\partial at}{\partial net_o}}, \underbrace{\frac{\partial net_o}{\partial outhir}}, \underbrace{\frac{\partial outhir}{\partial nethir}}, \underbrace{\frac{\partial nethir}{\partial w_i}}, \underbrace$$

$$\frac{\partial E_{7}}{\partial w_{5}} = -(95 - .58) \cdot .58(1 - .58) \cdot .2 + -(0.5 - .59) \cdot .59(1 - .59) \cdot .15 = C.0081$$

$$= 0.0081 \cdot .63(1 - .63) \cdot .56 = 0.0011$$

$$\frac{\partial E_{7}}{\partial w_{6}} = 0.0081 \cdot .63(1 - .63) \cdot .54 = 0.001$$

$$\frac{\partial E_{7}}{\partial w_{7}} = -(.95 - .58) \cdot .58(1 - .58) \cdot .1 + -(.5 - .59) \cdot .89(1 - .59) \cdot .1 = 0.004$$

$$= 0.004 \cdot .58(1 - .58) \cdot .56 = 0.0005$$

$$\frac{\partial E_{7}}{\partial w_{7}} = -(.95 - .58) \cdot .58(1 - .58) \cdot .56 = 0.0005$$

$$\frac{\partial E_{7}}{\partial w_{7}} = -(.95 - .58) \cdot .58(1 - .58) \cdot .56 = 0.0005$$

$$\frac{\partial E_{7}}{\partial w_{7}} = -(.95 - .58) \cdot .58(1 - .58) \cdot .56 = 0.0005$$

$$W_{7}^{\dagger} = .25 - (.5)(.0005)$$

$$= 0.2498$$

$$W_{8}^{\dagger} = 0.05 - (.5)(.0005)$$

$$= 0.04975$$