Bayesian Analysis with BRMS

Yiwen Zhang
CAMEL Talk 9/21/2023

In this talk...

Basics Behind Bayesian Analysis

• Practical Benefits I've discovered

BRMS package and R demo

Resources

• BIOST 2063 Bayesian Data Science

• The book: Doing Bayesian Data Analysis, Second Edition: A Tutorial

with R, JAGS, and Stan. By John Kruschke

BayesFactor package documentation

BRMS package documentation

Bayesian Analysis

• Prior: our prior belief about the parameters of interest $P(\theta)$

• Likelihood: P(observed data $\mid \theta$)

• Posterior: P (θ | observed data)

Conduct inference based on Posterior distribution

Summarize Posterior

- Point estimate: mean or median of the posterior distribution
- 95% credible interval: there is 95% probability that θ is between 0.663 and 0.897

Compared to 95% confidence interval: we will be 95% confident that the true value is within ... the interval.

MCMC Sampling to fit model

Markov chain Monte Carlo (MCMC) algorithm

• Random start point of heta

Replaced by more efficient sampling way

- Each iteration
 - Proposal a move from the current point to a new point
 - The proposed move is generated from a proposal distribution (e.g. normal distribution around the current point)

Random walk

- Deciding rule: accept or not accept the proposal
 - This rule use the ratio of relative densities of the proposed to the current value
 - The density is the product of likelihood and prior of the value
- Repeat the above steps until we have a sufficient sample

Bayes Factor

Likelihood of observed data under H1

Likelihood of observed data under HO

Bayes Factor Scale (Kass and Raftery, 1995):

BF < 1: Negative (support H0)

1 < BF < 3: Barely worth mentioning

3 < BF < 20: Positive

20 < BF < 150: Strong

BF > 150: Very strong

BF > 1: it favors H1

BF < 1: it favors H0

Some practical benefits of Bayesian Analysis

- Providing a more direct/intuitive interpretation
 - P values and confidence interval are often mis-interpreted or misunderstood.
 - Bayes factors offer a direct comparison between two hypotheses.

Some practical benefits of Bayesian Analysis

Providing a more direct/intuitive interpretation

- Better for achieving convergence of linear mixed effect models
 - "One alternative for dealing with small sample sizes and overparameterized/nonconverging models is to switch to Bayesian data analyses." (Brauer & Curtin, 2017)
 - Setting priors, MCMC sampling...
 - BRMS package provides solutions for convergency problems: Runtime warnings and convergence problems (https://mcstan.org/misc/warnings.html)

Some practical benefits of Bayesian Analysis

Providing a more direct/intuitive interpretation

Achieving convergence of linear mixed effect models

- Don't have to worry about multiple testing corrections.
 - Bayesian inference is based on the posteriors
 - "there is just one posterior distribution" multiple comparison is just looking at the posterior from different perspective (Kruschke, 2015)

Brms package

- Bayesian Regression Models using 'Stan'
 - STAN (a probabilistic programming language) to fit models
 - Hamiltonian Monte-Carlo (HMC) sampler and No-U-Turn Sampler (avoid random walk)
- Implement Bayesian models but using Ime4-like formula syntax

random effects

Fixed effects

```
Prpsl.SD = 0.2, Eff.Sz. = 11723.9
```

```
m1 <- brms::brm(formula = accuracy ~ 1 + condition_type (1+ condition_type|participant_id), data=test, family=bernoulli(link = "logit"), cores = 4, chains = 4, iter = 4000, the number of iterations warmup = 1000, seed = 123) used for stepsize adaptation
```

We disregard the first several iterations from a chain

Logistic regression

Family: bernoulli Links: mu = logit

Formula: $accuracy \sim 1 + condition_type + num_of_missed_z + (1 + condition_type | participant_id)$

Data: test (Number of observations: 13944)

Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;

total post-warmup draws = 12000

Group-Level Effects:

~participant_id (Number of levels: 296)

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sd(Intercept)	2.28	0.16	2.00	2.60	1.00	1891	3421
sd(condition_typeD3)	2.05	0.14	1.80	2.35	1.00	2221	3903
sd(condition_typeD6)	1.91	0.13	1.67	2.19	1.00	2110	4018
cor(Intercept,condition_typeD3)	-0.60	0.07	-0.71	-0.46	1.00	2575	4627
cor(Intercept,condition_typeD6)	-0.87	0.03	-0.91	-0.81	1.00	2447	4921
cor(condition_typeD3,condition_typeD6)	0.66	0.05	0.54	0.75	1.00	2591	4640

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.35	0.16	1.05	1.67	1.00	1024	2319
condition_typeD3	-0.75	0.16	-1.07	-0.44	1.00	1669	3097
condition_typeD6	-1.25	0.14	-1.54	-0.97	1.00	1319	3237
num_of_missed_z	-0.12	0.05	-0.22	-0.02	1.00	2224	4158

Family: bernoulli Formula and the dataset we used

Links: mu = logit

Formula: accuracy ~ 1 + condition_type + num_of_missed_z + (1 + condition_type | participant_id)

Data: test (Number of observations: 13944)

Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;

total post-warmup draws = 12000

Group-Level Effects:

~participant_id (Number of levels: 296)

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sd(Intercept)	2.28	0.16	2.00	2.60	1.00	1891	3421
sd(condition_typeD3)	2.05	0.14	1.80	2.35	1.00	2221	3903
sd(condition_typeD6)	1.91	0.13	1.67	2.19	1.00	2110	4018
cor(Intercept,condition_typeD3)	-0.60	0.07	-0.71	-0.46	1.00	2575	4627
cor(Intercept,condition_typeD6)	-0.87	0.03	-0.91	-0.81	1.00	2447	4921
cor(condition_typeD3,condition_typeD6)	0.66	0.05	0.54	0.75	1.00	2591	4640

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.35	0.16	1.05	1.67	1.00	1024	2319
condition_typeD3	-0.75	0.16	-1.07	-0.44	1.00	1669	3097
condition_typeD6	-1.25	0.14	-1.54	-0.97	1.00	1319	3237
num_of_missed_z	-0.12	0.05	-0.22	-0.02	1.00	2224	4158

```
Family: bernoulli
Links: mu = logit

Formula: accuracy ~ 1 + condition_type + num_of_missed_z + (1 + condition_type | participant_id)
Data: test (Number of observations: 13944)

Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
total post-warmup draws = 12000

=(4000-1000)*4

Group-Level Effects:
~participant_id (Number of levels: 296)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ES
sd(Intercept)

2.28 0.16 2.00 2.60 1.00 1891 345
```

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sd(Intercept)	2.28	0.16	2.00	2.60	1.00	1891	3421
sd(condition_typeD3)	2.05	0.14	1.80	2.35	1.00	2221	3903
sd(condition_typeD6)	1.91	0.13	1.67	2.19	1.00	2110	4018
cor(Intercept,condition_typeD3)	-0.60	0.07	-0.71	-0.46	1.00	2575	4627
cor(Intercept,condition_typeD6)	-0.87	0.03	-0.91	-0.81	1.00	2447	4921
cor(condition_typeD3,condition_typeD6)	0.66	0.05	0.54	0.75	1.00	2591	4640

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.35	0.16	1.05	1.67	1.00	1024	2319
condition_typeD3	-0.75	0.16	-1.07	-0.44	1.00	1669	3097
condition_typeD6	-1.25	0.14	-1.54	-0.97	1.00	1319	3237
num_of_missed_z	-0.12	0.05	-0.22	-0.02	1.00	2224	4158

Family: bernoulli
Links: mu = logit
Formula: accuracy ~ 1 + condition_type + num_of_missed_z + (1 + condition_type | participant_id)
Data: test (Number of observations: 13944)
Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
total post-warmup draws = 12000

Group-Level Effects: ~participant_id (Number of levels: 296)	Group-Level Effects: -participant_id (Number of levels: 296)						
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sd(Intercept)	2.28	0.16	2.00	2.60	1.00	1891	3421
sd(condition_typeD3)	2.05	0.14	1.80	2.35	1.00	2221	3903
sd(condition_typeD6)	1.91	0.13	1.67	2.19	1.00	2110	4018
cor(Intercept,condition_typeD3)	-0.60	0.07	-0.71	-0.46	1.00	2575	4627
cor(Intercept,condition_typeD6)	-0.87	0.03	-0.91	-0.81	1.00	2447	4921
cor(condition_typeD3,condition_typeD6)	0.66	0.05	0.54	0.75	1.00	2591	4640

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.35	0.16	1.05	1.67	1.00	1024	2319
condition_typeD3	-0.75	0.16	-1.07	-0.44	1.00	1669	3097
condition_typeD6	-1.25	0.14	-1.54	-0.97	1.00	1319	3237
num_of_missed_z	-0.12	0.05	-0.22	-0.02	1.00	2224	4158

Family: bernoulli
Links: mu = logit
Formula: accuracy ~ 1 + condition_type + num_of_missed_z + (1 + condition_type | participant_id)
Data: test (Number of observations: 13944)
Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
total post-warmup draws = 12000

Group-Level Effects:

~participant_id (Number of levels: 296)

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sd(Intercept)	2.28	0.16	2.00	2.60	1.00	1891	3421
sd(condition_typeD3)	2.05	0.14	1.80	2.35	1.00	2221	3903
sd(condition_typeD6)	1.91	0.13	1.67	2.19	1.00	2110	4018
cor(Intercept,condition_typeD3)	-0.60	0.07	-0.71	-0.46	1.00	2575	4627
cor(Intercept,condition_typeD6)	-0.87	0.03	-0.91	-0.81	1.00	2447	4921
cor(condition_typeD3,condition_typeD6)	0.66	0.05	0.54	0.75	1.00	2591	4640

Population-Level	Effects:					Fix	ced effects
	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.35	0.16	1.05	1.67	1.00	1024	2319
condition_typeD3	-0.75	0.16	-1.07	-0.44	1.00	1669	3097
condition_typeD6	-1.25	0.14	-1.54	-0.97	1.00	1319	3237
num_of_missed_z	-0.12	0.05	-0.22	-0.02	1.00	2224	4158

```
Formula: accuracy ~ 1 + condition_type + num_of_missed_z + (1 + condition_type | participant_id)
```

Categorical variable: "EOD3", "D3", "D6"

Continuous Variable: number of missed trials

Variable names

Population-Level Effects:

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.35	0.16	1.05	1.67	1.00	1024	2319
condition typeD3	-0.75	0.16	-1.07	-0.44	1.00	1669	3097
condition_typeD6	-1.25	0.14	-1.54	-0.97	1.00	1319	3237
num_of_missed_z	-0.12	0.05	-0.22	-0.02	1.00	2224	4158

EOD3 is the reference group

D3, compared to EOD3 D6, compared to EOD3

Formula: accuracy ~ 1 + condition_type + num_of_missed_z + (1 + condition_type | participant_id)

Categorical variable: "EOD3", "D3", "D6"

Continuous Variable: number of missed trials

Posterior Means

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.35	0.16	1.05	1.67	1.00	1024	2319
condition_typeD3	-0.75	0.16	-1.07	-0.44	1.00	1669	3097
condition_typeD6	-1.25	0.14	-1.54	-0.97	1.00	1319	3237
num_of_missed_z	-0.12	0.05	-0.22	-0.02	1.00	2224	4158

Formula: accuracy ~ 1 + condition_type + num_of_missed_z + (1 + condition_type | participant_id)

Categorical variable: "EOD3", "D3", "D6"

Continuous Variable: number of missed trials

95% Credible intervals

Population-Level Effects:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.35	0.16	1.05	1.67	1.00	1024	2319
condition_typeD3	-0.75	0.16	-1.07	-0.44	1.00	1669	3097
condition_typeD6	-1.25	0.14	-1.54	-0.97	1.00	1319	3237
num_of_missed_z	-0.12	0.05	-0.22	-0.02	1.00	2224	4158

95% Credible intervals that do not contains 0 = statistically credible

Rhat: compares the between- and within-chain estimates for model parameters (< 1.05)

<u>Effective Sample Size (ESS):</u> measure for sampling efficiency; the number of "uncorrelated pieces of information" per chains (>100)

Convergence Diagnostics

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.35	0.16	1.05	1.67	1.00	1024	2319
condition_typeD3	-0.75	0.16	-1.07	-0.44	1.00	1669	3097
condition_typeD6	-1.25	0.14	-1.54	-0.97	1.00	1319	3237
num_of_missed_z	-0.12	0.05	-0.22	-0.02	1.00	2224	4158

Other References

- Assaf, A. G., & Tsionas, M. (2018). Bayes factors vs. P-values. *Tourism Management*, 67, 17-31.
- Held, L., & Ott, M. (2018). On p-values and Bayes factors. Annual Review of Statistics and Its Application, 5, 393-419.
- Hespanhol, L., Vallio, C. S., Costa, L. M., & Saragiotto, B. T. (2019). Understanding and interpreting confidence and credible intervals around effect estimates. *Brazilian journal of physical therapy*, 23(4), 290–301. https://doi.org/10.1016/j.bjpt.2018.12.006
- Kass, R. E., & Raftery, A. E. (1995). Bayes factors. *Journal of the american statistical association*, 90(430), 773-795.
- Lee M. D. and Wagenmakers, E.-J. (2014) <u>Bayesian cognitive</u> modeling: A practical course, Cambridge University Press.