Einführung in die Geometrie und Topologie - Mitschrieb -

Vorlesung im Wintersemester 2011/2012

Sarah Lutteropp

9. November 2011

Inhaltsverzeichnis

Ι	Homotopie und Fundamentalgruppe		
	0	Vorwort	2
	1	Grundlagen der allgemeinen Topologie	8

Zusammenfassung

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Herrn Prof. Dr. Wilderich Tuschmann gehalten wird.

Kapitel I

Homotopie und Fundamentalgruppe

0 Vorwort

0.1 Topologischer Raum

 $\begin{array}{l} {\it Ein} \ \underline{topologischer} \ Raum \ X \ ist \ gegeben \ durch \ eine \ Menge \ X \ und \ ein \\ {\it System O von Teilmengen von X}, \ den \ so \ genannten \ \underline{offenen \ Mengen} \\ {\it von X}, \ welches \ unter \ beliebigen \ Vereinigungen \ und \ endlichen \ Durchschnitten \ abgeschlossen \ ist \ und \ X \ und \ die \ leere \ Menge \ \emptyset \ als \ Elemente \ enthält. \end{array}$

X Menge, $\mathcal{O} \subset \mathcal{P}(X)$:

- (1) $O_1, O_2 \in \mathcal{O} \Rightarrow O_1 \cap O_2 \in \mathcal{O}$
- (2) $O_{\alpha} \in \mathcal{O}, \alpha \in A, A \ Indexmenge \Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \in \mathcal{O}$
- (3) $X, \emptyset \in \mathcal{O}$

Beispiel I.1. $\mathcal{O} = \{X, \emptyset\} \Rightarrow (X, \mathcal{O})$ ist topologischer Raum!

Beispiel I.2.

X Menge, $\mathcal{O} = \{\{x\} \mid x \in X\} + Axiome$, die zu erfüllen sind $\leadsto \tilde{\mathcal{O}} = \mathcal{P}(X)$

 $\Rightarrow (X, \tilde{\mathcal{O}})$ ist topologischer Raum. \mathcal{O} ist "Basis" der Topologie $\tilde{\mathcal{O}}$.

0.2 Metrischer Raum

Ein <u>metrischer Raum</u> X ist eine Menge X mit einer Abbildung $d\colon X\times X\to \mathbb{R},\ der$ <u>"Metrik"</u> auf $X,\ die$ folgende Eigenschaften erfüllt: $\forall x,y,z\in X$

- (1) d(x,y) = d(y,x) <u>"Symmetrie"</u>
- (2) $d(x,y) = 0 \Leftrightarrow x = y, d(x,y) \ge 0$ "Definitheit"
- (3) $d(x,z) \le d(x,y) + d(y,z)$ "Dreiecksungleichung"

0.3 Stetigkeit

Eine Abbildung $F\colon X\to Y$ zwischen topologischen Räumen X und Y heißt stetig, falls die F-Urbilder offener Mengen in Y offene Teilmengen \overline{von} X sind.

Abbildung I.1: Stetige Abbildung

Bemerkung I.1. Ist (X,d) ein metrischer Raum, so sind die offenen Mengen der von der Metrik induzierten Topologie Vereinigungen von endlichen Durchschnitten von Umgebungen $U_{\epsilon}(x) := \{y \in X \mid d(x,y) < \epsilon\} (\epsilon > 0), und F: (X,d) \to (Y,d')$ ist stetig im obigen Sinn genau dann, falls für alle $\epsilon > 0$ ein $\delta > 0$ existiert mit $F(U_{\delta}(x)) \subset U_{\epsilon}(F(x))$.

0.4 Homotopie

Eine <u>Homotopie</u> $H\colon f\simeq g$ zwischen zwei (stetigen) Abbildungen $f,g\colon \overline{X\to Y}$ ist eine (stetige) Abbildung

$$H: X \times I^a \to Y, (x,t) \mapsto H(x,t)$$

 $mit\ H(x,0) = f(x)\ und\ H(x,1) = g(x) \forall x \in X.$

 $^{a}I = [0,1] \subset \mathbb{R}$

Abbildung I.2: Homotopie

Abbildung I.3: f und g sind jeweils nicht homotop!

Bemerkung I.2. H heißt auch $\underline{Homotopie}$ $\underline{von\ f\ nach\ g}$, eine solche ist also eine parametrisierte Schar von $\underline{Abbildungen\ mit\ "Anfang"}\ f\ und\ "Ende"$ $g.\ f\ und\ g\ hei$ ßen dann $\underline{homotop}$, in $\underline{Zeichen}$: $f\simeq g$.

Erinnerung Sind X und Y topologische Räume, so ist eine Homotopie $H=(h_t), t\in [0,1]$, eine parametrisierte Schar von stetigen Abbildungen $h_t\colon X\to Y$ mit Anfang h_0 und Ende h_1 . (TODO: BILD)

0.5 Homotope Abbildungen

Zwei (stetige) Abbildungen heißen homotop, in Zeichen: $f \simeq g$, falls eine Homotopie mit Anfang f und Ende g existiert.

Bemerkung I.3. "Homotop sein" ist eine Äquivalenzrelation.

Beweis. Symmetrie: Gilt für $f, g \in C(X, Y) := \{F : X \to Y \text{ stetig }\} f \simeq g$ vermöge $H = (h_t), t \in [0, 1]$, so liefert $(\tilde{h_t})$ mit $\tilde{h_t} := h_{1-t}$ eine Homotopie von g nach f, d.h. $f \simeq g \Leftrightarrow g \simeq f$.

Reflexivität: $f \simeq f$ vermöge $h_t :\equiv f \forall t \in [0, 1]$

<u>Transitivität</u>: Es sei $f \simeq g$ vermöge (h_t) und ferner $g \simeq l$ vermöge (k_t) . Dann liefert $M: X \times [0,1] \to Y$ mit

$$M_t := \begin{cases} h_{2t} & 0 \le t \le \frac{1}{2} \\ k_{2t-1} & \frac{1}{2} \le t \le 1 \end{cases}$$

eine Homotopie von f nach l. Also ist $f \simeq g, g \simeq l \Rightarrow f \simeq l$.

Abbildung I.4: Transitivität der Relation "homotop sein"

Bemerkung I.4. Die Äquivalenzrelation "Homotopie von Abbildungen" liefert also eine Partition von C(X,Y) in Äquivalenzklassen. Diese heißen Homotopieklassen und die Menge aller Homotopieklassen stetiger Abbildungen von X nach Y wird mit X bezeichnet.

Abbildung I.5: Äquivalenzklassen [X, Y] von C(X, Y)

Bemerkung I.5. C(X,Y) ist im Allgemeinen <u>wiel</u> schwieriger zu verstehen als [X,Y]!

Beispiel I.3. Je zwei stetige Abbildungen $f, g: X \to \mathbb{R}^n$ sind homotop! $Denn\ H(x,t) := (1-t)f(x) + t \cdot g(x)$ liefert eine Homotopie von f nach g:

0.6 Nullhomotopie

Eine stetige Abbildung $f: X \to Y$ heißt $\underline{nullhomotop}$, falls sie homotop zu einer konstanten Abbildung ist.

Korollar I.1. Jede stetige Abbildung $f: X \to \mathbb{R}^n$ ist nullhomotop, d.h. für jeden topologischen Raum X besteht $[X, \mathbb{R}^n]$, n beliebig, nur aus einem Punkt!

Abbildung I.6: f ist nullhomotop

Beispiel I.4. Jeder geschlossene Weg im \mathbb{R}^2 , d.h. jede stetige Abbildung $f \colon [0,1] \to \mathbb{R}^2$ mit f(0) = f(1) ist nullhomotop. $[[0,1], \mathbb{R}^2] + gleicher$ Anfangs- und Endpunkt besteht nur aus einem Punkt, zum Beispiel der Äquivalenzklasse der konstanten Kurve $t \mapsto (1,0)$.

Abbildung I.7: Geschlossene Wege in \mathbb{R}^n

Interpretiere einen geschlossenen Weg im \mathbb{R}^2 auch als stetige Abbildung von $S^1 := \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$ in \mathbb{R}^2 , so gilt also $[S^1, \mathbb{R}^2]$ ist einelementig. <u>Aber</u> $[S^1, \mathbb{R}^2 \setminus \{0\}]$ ist nichttrivial! (TODO: BILD)

Abbildung I.8: $[S^1, \mathbb{R}^2 \setminus \{(0,0)\}]$ "=" $[S^1, S^1]$

0.7 Teilraumtopologie

Es sei (X, \mathcal{O}) topologischer Raum und $A \subset X$. Die auf A durch

$$\mathcal{O}\Big|_A := \{ U \cap A \mid U \in \mathcal{O} \}$$

 $\begin{array}{l} induzierte \ Topologie \ hei\beta t \ \underline{Teilraumtopologie} \ und \ der \ dadurch \ gegebene \ topologische \ Raum \ (A, \mathcal{O}\Big|_A) \ hei\beta t \ \underline{Teilraum} \ von \ (X, \mathcal{O}). \end{array}$

Bemerkung I.6. $B \subset A$ ist also genau dann <u>offen in A</u>, wenn B der Schnitt einer <u>in X</u> offenen Menge mit A ist.

Beispiel I.5.
$$X = \mathbb{R}^2, A = S^1 = \{x \in \mathbb{R}^2 \mid \ ||x|| = 1\}$$

Achtung: B ist <u>nicht</u> offen in \mathbb{R}^2 !

1 Grundlagen der allgemeinen Topologie

Beispiel I.6 (Beispiele topologischer Räume). (1) $X, \mathcal{O} := \{X, \emptyset\}$ 'triviale Topologie'

- (2) $X, \mathcal{O} := \mathcal{P}(X)$ 'diskrete Topologie'
- (3) Metrische Räume, siehe unten

- (4) $X := \{a, b, c, d\} \Rightarrow \mathcal{O} := \{X, \emptyset, \{a\}, \{b\}, \{a, c\}, \{a, b, c\}, \{a, b\}\}$ definiert eine Topologie auf X, aber $\mathcal{O}' := \{X, \emptyset, \{a, c, d\}, \{b, d\}\}$ nicht!
- (5) $X := \mathbb{R}, \mathcal{O} := \{O \mid O \text{ ist Vereinigung von Intervallen } (a, b) \text{ mit } a, b \in \mathbb{R}\}. \Rightarrow (X, \mathcal{O}) \text{ ist topologischer Raum, und } \mathcal{O} \text{ heißt Standard-Topologie.}$
- (6) $X := \mathbb{R}, \tilde{\mathcal{O}} := \{O \mid O = \mathbb{R} \setminus E, E \subset \mathbb{R} \text{ endlich}\} \cup \{\emptyset\} \text{ ist auch eine Topologie auf } \mathbb{R}, \text{ die so genannte } \mathcal{T}_1\text{-Topologie}.$

1.1 Abgeschlossenheit

Bemerkung I.7. Beliebige Durchschnitte abgeschlossener Mengen sind abgeschlossen, ebenso endliche Vereinigungen und genauso X und \emptyset .

Beispiel I.7. In einem diskreten topologischen Raum sind <u>alle Teilmengen</u> abgeschlossen, in $\mathbb{R}_{\mathcal{T}_1}^{-1}$ alle endlichen Teilmengen und X, \emptyset .

1.2 Umgebung

Ist X topologischer Raum und $x \in X$, so heißt jede <u>offene</u> Teilmenge $O \subset X$ mit $x \in O$ eine Umgebung von x.

 $^{{}^1\}mathbb{R}$ mit \mathcal{T}_1 -Topologie

Bemerkung I.8. Umgebungen sind per definitionem offen! (TODO: BILD)

Bemerkung I.9. Jede offene Teilmenge von $\mathbb{R}_{Standard}$ ist eine Vereinigung disjunkter offener Intervalle, doch abgeschlossene Teilmengen von \mathbb{R} sind keinesfalls immer Vereinigungen abgeschlossener Intervalle!

Beispiel I.8 (Die Cantor-Menge $\mathcal{C} := \left\{ x \in \mathbb{R} \mid x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}, a_k \in \{0, 2\} \right\}$). $\Rightarrow \mathcal{C}$ ist abgeschlossen in \mathbb{R} , enthält überabzählbar viele Elemente und hat 'Hausdorff-Dimension' $\frac{\ln 2}{\ln 3} \approx 0, 6 \dots$

1.3 Basis

Ist (X, \mathcal{O}) topologischer Raum mit $\mathcal{B} \subset \mathcal{O}$, so heißt \mathcal{B} Basis der Topologie : \Leftrightarrow Jede (nichtleere) offene Menge ist Vereinigung von Mengen aus \mathcal{B} .

Beispiel I.9. (1) Die offenen Intervalle bilden eine Basis der Standard-Topologie von \mathbb{R} .

(2) Sämtliche offenen² Kreisscheiben \bigcirc und auch sämtliche offenen Quadrate \bigcirc bilden Basen ein und derselben Topologie auf \mathbb{R}^2 .

Bemerkung I.10. • $\mathcal{B} \subset \mathcal{O}$ ist Basis der Topologie von $X \Leftrightarrow \forall O \in \mathcal{O} \forall x \in O \exists B \in \mathcal{B} \colon x \in B \subset O$.

• $\mathcal{B} \subset \mathcal{P}(X)$ bildet die Bais <u>einer</u> Topologie auf $X \Leftrightarrow X$ ist Vereinigung von Mengen aus \mathcal{B} und der Schnitt je zweier Mengen aus \mathcal{B} ist eine Vereinigung von Mengen aus \mathcal{B} .

²bezüglich der euklidischen Metrik

1.4 Feiner und gröber

Sind \mathcal{O}_1 und \mathcal{O}_2 Topologien auf X und $\mathcal{O}_1 \subset \mathcal{O}_2$, so heißt \mathcal{O}_2 <u>feiner</u> als \mathcal{O}_1 und \mathcal{O}_1 gröber als \mathcal{O}_2 .

Beispiel I.10. • Die triviale Topologie ist die gröbste Topologie auf X, die diskrete Topologie die feinste.

• Die Standard-Topologie auf \mathbb{R} ist feiner als die \mathcal{T}_1 -Topologie.

Mehr zu metrischen Räumen

1.5 ϵ -Ball, Sphäre

Für einen metrischen Raum (X,d) und $\epsilon > 0$ sei für $p \in X$

- $B_{\epsilon}(p) := \{x \in C \mid d(p,x) < \epsilon\} \text{ der offene } \epsilon\text{-Ball um } p$
- $D_{\epsilon}(p) := \{x \in C \mid d(p, x) \leq \epsilon\}$ der abgeschlossene ϵ -Ball um p
- $S_{\epsilon}(p) := \{x \in C \mid d(p,x) = \epsilon\}$ die $\underline{\epsilon\text{-Sph\"{a}re}}$ um p (oder Sph\"{a}re vom Radius ϵ)

1.6 Metrischer Unterraum

Ist (X,d) metrischer Raum und $A \subset X$, so heißt der metrische Raum $(A,d|_{A\times A})$ (metrischer) Unterraum von X.

Beispiel I.11. Für $X = \mathbb{R}^n_{Eukl.}$ sind $B_1(0), D_1(0) =: D^n$ und $S^{n-1} := S_1(0)$ metrische Unterräume und heißen auch offener bzw. abgeschlossener Einheitsball bzw. (n-1)-Sphäre. (TODO: BILD)

1.7 Beschränktheit, Durchmesser

 $\begin{array}{l} A\subset (X,d)\ \textit{heißt}\ \underline{\textit{beschränkt}}\\ :\Leftrightarrow \exists 0<\rho\in\mathbb{R}\colon d(x,y)<\rho\ \forall x,y\in A\\ (\textit{TODO:}\ \textit{BILD}) \end{array}$

Das Infimum, diam A, dieser ρ heißt dann <u>Durchmesser von A</u>.

Bemerkung I.11. In einem metrischen Raum (X,d) bilden die offenen Bälle die Basis einer Topologie $\mathcal{O} = \mathcal{O}_d$ von X, diese heißt die von der Metrik induzierte Topologie.

Bemerkung I.12. $A \subset (X,d)$ ist offen $\Leftrightarrow \forall p \in A \exists \ ein \ offener \ Ball \ B_{\epsilon}(p) \ um \ p \ mit \ B_{\epsilon}(p) \subset A$ (TODO: BILD)

1.8 Abstand

(X,d) sei metrischer Raum und $A \subset X, p \in X$.

$$d(p, A) := dist(p, A) := \inf\{d(p, a) \mid a \in A\}$$

 $hei\beta t \ Abstand \ von \ p \ und \ A.$

Erinnerung Ist (X, \mathcal{O}) topologischer Raum und $A \subset X$, so definiert $\mathcal{O}_A := \{A \cap O \mid O \in \mathcal{O}\}$ eine Topologie auf A, die <u>Teilraumtopologie</u> der <u>in A</u> offenen Mengen.

Bemerkung I.13. Ist $A \subset X$ offen $\underline{in \ X}$, so ist auch jede in A offene Menge offen in X, und abgeschlossene³ $\overline{Teilmengen}$ einer in X abgeschlossenen Menge A sind auch abgeschlossen in X.

(TODO:BILD)

Aber abgeschlossene Mengen B in $A \subset X$ sind für beliebiges A im Allgemeinen nicht abgeschlossen in X.

Beispiel I.12 (Beispiel zu Bemerkung I.13). $B := A := (a, b) \subset X := \mathbb{R}$

1.9 Innerer Punkt, äußerer Punkt, Randpunkt

Für $p \in A \subset X$, X topologischer Raum, heißt p

- (1) <u>innerer Punkt</u> von A, falls es eine in A enthaltene Umgebung U um p gibt. (TODO:BILD)
- (2) $\frac{\ddot{a}u\beta erer\ Punkt}{tiert}$, falls eine zu p disjunkte Umgebung V in X existiert.
- (3) Randpunkt von A, falls jede Umgebung von p nichtleeren Durchschnitt mit A und $X \setminus A$ hat.

 $^{^3}$ in A

1.10 Inneres

Für $A \subset X$ heißt die größte in X offene und in A enthaltene Teilmenge \mathring{A} Inneres von A.

Bemerkung I.14. Å ist die Menge aller inneren Punkte von A und die Vereinigung aller in X offenen Teilmengen von A, und A ist offen $\Leftrightarrow A = \mathring{A}$

Beispiel I.13. $\mathbb{R}\mathring{\setminus}\mathbb{Q} = \mathring{\mathbb{Q}} = \emptyset$

1.11 Abschluss

 $Der \; \underline{Abschluss} \; \bar{A} \; von \; A \; ist \; X \backslash \left((\mathring{X} \backslash A) \right).$

1.12 Rand

Der <u>Rand</u> ∂A von A ist $\partial A := \bar{A} \backslash \mathring{A}$, d.h. Rand $A = \{$ Randpunkte von A $\}$.

(TODO:Exkurs zu 'Randbildung (topologisch) und Ableitung (analytisch) sind dual zueinander')

1.13 Stetigkeit

 $f \colon X \to Y$ ist stetig : $\Leftrightarrow \forall$ offenen Mengen in Y ist das Urbild unter f offene Menge in X.

Beispiel I.14. • $f: X \to Y$ ist stetig \Leftrightarrow Urbilder abgeschlossener Mengen sind abgeschlossen.

- Sind \mathcal{O}_1 und \mathcal{O}_2 Topologien auf X, so ist die Identität id: $(X, \mathcal{O}_1) \to (X, \mathcal{O}_2)$ stetig $\Leftrightarrow \mathcal{O}_2 \subset \mathcal{O}_1$.
- Für $A \subset X$ ist die Teilraumtopologie $\mathcal{O}_A = \mathcal{O}|_A$ die gröbste Topologie, bezüglich der die Inklusion $i: A \hookrightarrow X, a \mapsto a$ stetig ist.

1.14 Stetigkeit

 $\begin{array}{lll} f \colon X & \to & Y & ist & stetig & in & x & \in & X & :\Leftrightarrow \\ \forall \ Umgebungen \ V \ von \ f(x) \exists \ Umgebung \ U \ von \ x \ und \ f(U) \subset V \\ (TODO:BILD) \end{array}$

Bemerkung I.15. $f: X \to Y$ ist stetig $\Leftrightarrow f$ ist stetig in jedem Punkt $x \in X$.

Beispiel I.15. Eine Abbildung $f: X \to Y$ zwischen <u>metrischen</u> Räumen ist bezüglich der von den Metriken induzierten Topologien stetig in $x \in X$ genau dann, wenn für jeden offenen Ball B um f(x) ein offener Ball um x existiert, der unter f in B abgebildet wird. (Und ferner stetig in $x \in X$ genau dann, wenn für alle $\epsilon > 0$ ein $\delta > 0$ existiert, so dass für alle $x' \in X$ mit $d_X(x,x') < \delta$ auch $d_Y(f(x),f(x')) < \epsilon$ folgt.)

1.15 Isometrische Einbettung, Isometrie

Sind X, Y metrische Räume, so heißt eine Abbildung $f: X \to Y$ isometrische Einbettung

 $\Leftrightarrow \forall x, x' \in X \ gilt \ d_Y (f(x), f(x')) = d_X(x, x').$

Eine isometrische Einbettung ist immer injektiv.

Ist f zusätzlich bijektiv, so heißt f <u>Isometrie</u>.

1.16 Homöomorphismus

Eine invertierbare Abbildung $f: X \to Y$ topologischer Räume heißt Homöomorphismus, falls f und f^{-1} stetig sind.

- **Beispiel I.16.** $f: [0,1) \to S^1 \subset \mathbb{C} = \mathbb{R}^2, t \mapsto e^{2\pi i t} (= \cos 2\pi t, \sin 2\pi t)$ ist stetig, injektiv, aber <u>kein</u> Homöomorphismus! (TODO:BILD)
 - $id_X \colon X \to X$ ist immer ein Homöomorphismus, Kompositionen von Homöomorphismen ebenfalls.

Bemerkung I.16. 'Homöomorph sein' ist eine Äquivalenzrelation für topologische Räume.

1.17 homöomorph

Zwei topologische Räume X und Y heißen homöomorph oder vom gleichen Homöomorphietyp, in Zeichen $X \cong \overline{Y}$, falls es einen Homöomorphismus $f: X \to Y$ gibt.

Bemerkung I.17. Homöomorphismen erhalten sämtliche topologischen Strukturen:

- Ist $f: X \to Y$ Homöomorphismus, so ist $U \subset X$ offen $\Leftrightarrow f(U)$ offen in Y.
- $A \subset X$ ist abgeschlossen $\Leftrightarrow f(A)$ ist abgeschlossen in Y.
- $f(\bar{A}) = \overline{f(A)}, f(\mathring{A}) = (f(\mathring{A})).$
- U ist Umgebung von $x \in X \Leftrightarrow f(U)$ ist Umgebung von f(x).

Beispiel I.17. • Jede Isometrie zwischen metrischen Räumen ist ein Homöomorphismus.

- $[0,1] \cong [a,b] \forall a < b \in \mathbb{R}$
- $(0,1) \cong (a,b) \cong \mathbb{R} \forall a < b \in \mathbb{R}$

Beispiel I.18. Stereographische Projektion

Die stereographische Projektion ist ein Homöomorphismus von $S^n \setminus \{N\}$, $N := (0, \ldots, 0, 1) \in \mathbb{R}^{n+1}$, gegeben wie folgt:

Der Schnitt der Geraden im \mathbb{R}^{n+1} durch N und $x \in S^n \setminus \{N\}$ mit der Hyperebene $\mathbb{R}^n = \{x \in \mathbb{R}^{n+1} \mid x_{n+1} = 0\}, f(x), \text{ ist gegeben durch } x = (x_1, \dots, x_{n+1}) \mapsto (\frac{x_1}{1-x_{n+1}}, \frac{x_2}{1-x_{n+1}}, \dots, \frac{x_n}{1-x_{n+1}}) =: f(x) \text{ mit Umkehrabbildung } y = (y_1, \dots, y_n) \mapsto (\frac{2y_1}{||y||^2+1}, \dots, \frac{2y_n}{||y||^2+1}, \frac{||y||^2-1}{||y||^2+1}).$