1 cy7c04314bv_mx

• MDL Version: **01008**

• Title: 16K x 18 Synchronous Quad Port SRAM

• Date: 13-Feb-2004

• Memory Type: mpssram

• Vendor: Cypress Semiconductor Corporation

2 Timing Selection

This model can be configured to run in either timing-accurate or function-only (no timing) mode. In timing-accurate mode, the model implements both propagational delays and timing checks. In function-only mode, the model propagates output changes immediately and timing checks are disabled.

2.1 Function-only Mode Selection

To run in function-only mode, set the model's Timing Version attribute to "none".

2.2 Timing-accurate Timing Version Selection

To run in timing-accurate mode, the model's TimingVersion attribute is set to select the device specific timing associated with a vendor's component. The following table provides a mapping between vendor component names and the corresponding TimingVersion attribute values.

Component to TimingVersion Mapping						
Component Name	TimingVersion					
CY7C04314BV-100	100					
CY7C04314BV-133	133					

Note: By default, this model uses Timing Version "133".

3 Sources

The following sources were used as references for behavioral and timing characteristics in the development of this model.

1. Cypress Semiconductor Corporation "September 6, 2001"

4 Usage Notes

4.1 Configuring The Model

For information about configuring DesignWare Memory Models for use in simulation, refer to the installed version of the *Simulator Configuration Guide for Synopsys Models*. Or, for the most upto-date version of this manual, see the *Simulator Configuration Guide for Synopsys Models* on the Synopsys external Web.

4.2 Using DesignWare Memory Models

For general information about using DesignWare Memory Models, refer to the installed version of the *DesignWare Memory Model User's Manual*. Or, for the most up-to-date version of this manual, see the *DesignWare Memory Model User's Manual* on the Synopsys external Web.

4.3 Using DesignWare MPSSRAM Models

The DesignWare Memory Model documentation set also contains additional usage information that applies to all MPSSRAM DesignWare Memory Models. For more information refer to the installed version of the MPSSRAM DesignWare Memory Model Reference. Or, for the most upto-date version of this manual, see the MPSSRAM DesignWare Memory Model Reference on the Synopsys external Web.

4.4 Model Usage Notes

Device pins ubp1# and lbp1# modeled as bep1_n bus. Device pins ubp2# and lbp2# modeled as bep2_n bus. Device pins ubp3# and lbp3# modeled as bep3_n bus. Device pins ubp4# and lbp4# modeled as bep4_n bus.

4.5 Model Port Description

The following table describes the pin interface for this model.

Model Port Description					
Port Name	Direction	Description			
ap1[13:0]	in	Port1 Address Inputs			
ap2[13:0]	in	Port2 Address Inputs			
ap3[13:0]	in	Port3 Address Inputs			
ap4[13:0]	in	Port4 Address Inputs			
bep1_n[1:0]	in	Port1 Byte Select Inputs			
bep2_n[1:0]	in	Port2 Byte Select Inputs			
bep3_n[1:0]	in	Port3 Byte Select Inputs			
bep4_n[1:0]	in	Port4 Byte Select Inputs			
ce0p1_n	in	Port1 Chip Enable Input			
ce0p2_n	in	Port2 Chip Enable Input			
ce0p3_n	in	Port3 Chip Enable Input			
ce0p4_n	in	Port4 Chip Enable Input			
ce1p1	in	Port1 Chip Enable Input			
ce1p2	in	Port2 Chip Enable Input			
ce1p3	in	Port3 Chip Enable Input			
ce1p4	in	Port4 Chip Enable Input			
clkp1	in	Port1 Clock Signal			
clkp2	in	Port2 Clock Signal			
clkp3	in	Port3 Clock Signal			
clkp4	in	Port4 Clock Signal			
intp1_n	out	Port1 MailBox Interrupt Flag Output			
intp2_n	out	Port2 MailBox Interrupt Flag Output			
intp3_n	out	Port3 MailBox Interrupt Flag Output			
intp4_n	out	Port4 MailBox Interrupt Flag Output			
iop1[17:0]	inout	Port1 Data Bus Input/Output			
iop2[17:0]	inout	Port2 Data Bus Input/Output			
iop3[17:0]	inout	Port3 Data Bus Input/Output			
iop4[17:0]	inout	Port4 Data Bus Input/Output			
mrst_n	in	Global Master Reset Input			
oep1_n	in	Port1 Output Enable Input			
oep2_n	in	Port2 Output Enable Input			
oep3_n	in	Port3 Output Enable Input			
oep4_n	in	Port4 Output Enable Input			
r_w_np1	in	Port1 Read/Write Enable Input			
r_w_np2	in	Port2 Read/Write Enable Input			
r_w_np3	in	Port3 Read/Write Enable Input			
r_w_np4	in	Port4 Read/Write Enable Input			

4.6 Default Attribute Setting

The following table describes the default attribute settings for this model.

Default Attribute Setting				
Model Attribute	Default Value			
DefaultData	111111111111111111111			
DelayRange	Max			
MemoryFile	•			
MessageLevel	15			
ModelAlias	•			
ModelConfig	32'h0			
ModelId	-2			
TimingVersion	133			

4.7 Timing Data for TimingVersion 100

The following table provides a listing of the timing data values modeled when the model's Timing Version is set to "100".

Timing Data for TimingVersion 100						
Parameter	Min	Тур	Max	Unit	Description	
tCCS	9.0	-	-	ns	Clock to Clock Setup Time	
tCD2	5.0	5.0	5.0	ns	Clock to Data Valid Delay - Pipelined	
tCH2	4.0	-	-	ns	Clock High Time - Pipelined	
tCKHZ	1.0	6.8	6.8	ns	Clock to Output High Z Delay	
tCKLZ	1.0	-	-	ns	Clock to Output Low Z Delay	
tCL2	4.0	-	-	ns	Clock Low Time - Pipelined	
tCYC2	10.0	-	-	ns	Clock Cycle Time - Pipelined	
tDC	1.0	-	-	ns	Data Output Hold after Clock Assertion	
tHA	0.7	-	-	ns	Address Hold Time	
tHB	0.7	-	-	ns	Byte Select Hold Time	
tHC	0.7	-	-	ns	Chip Enable Hold Time	
tHD	0.7	-	-	ns	Input Data Hold Time	
tHW	0.7	-	-	ns	Read/Write Enable Hold Time	
tOE	8.0	8.0	8.0	ns	Output Enable to Data Valid Delay	
tOHZ	1.0	7.0	7.0	ns	Output Enable to Data High Z Delay	
tOLZ	1.0	-	-	ns	Output Enable to Output Low Z Time	
tRINT	1.0	10.0	10.0	ns	Mailbox Interrupt Flag Reset Time	
tROF	8.0	8.0	8.0	ns	Master Reset to Output Inactive	
tRS	10.0	-	-	ns	Master Reset Pulse Width	
tRSR	10.0	-	-	ns	Master Reset Recovery Time	

Timing Data for TimingVersion 100					
tSA	3.0	-	-	ns	Address Setup Time
tSB	3.0	-	-	ns	Byte Select Setup Time
tSC	3.0	-	-	ns	Chip Enable Setup Time
tSD	3.0	-	-	ns	Input Data Setup Time
tSINT	1.0	10.0	10.0	ns	Mailbox Interrupt Flag Set Time
tSW	3.0	-	-	ns	Read/Write Enable Setup Time

4.8 Timing Data for TimingVersion 133

The following table provides a listing of the timing data values modeled when the model's Timing Version is set to "133".

Timing Data for TimingVersion 133						
Parameter	Min	Тур	Max	Unit	Description	
tCCS	6.5	-	1	ns	Clock to Clock Setup Time	
tCD2	4.7	4.7	4.7	ns	Clock to Data Valid Delay - Pipelined	
tCH2	3.0	1	-	ns	Clock High Time - Pipelined	
tCKHZ	1.0	4.8	4.8	ns	Clock to Output High Z Delay	
tCKLZ	1.0	-	-	ns	Clock to Output Low Z Delay	
tCL2	3.0	-	-	ns	Clock Low Time - Pipelined	
tCYC2	7.5	-	-	ns	Clock Cycle Time - Pipelined	
tDC	1.0	-	-	ns	Data Output Hold after Clock Assertion	
tHA	0.7	-	-	ns	Address Hold Time	
tHB	0.7	-	-	ns	Byte Select Hold Time	
tHC	0.7	-	-	ns	Chip Enable Hold Time	
tHD	0.7	-	-	ns	Input Data Hold Time	
tHW	0.7	-	-	ns	Read/Write Enable Hold Time	
tOE	6.5	6.5	6.5	ns	Output Enable to Data Valid Delay	
tOHZ	1.0	6.0	6.0	ns	Output Enable to Data High Z Delay	
tOLZ	1.0	-	-	ns	Output Enable to Output Low Z Time	
tRINT	1.0	7.5	7.5	ns	Mailbox Interrupt Flag Reset Time	
tROF	6.5	6.5	6.5	ns	Master Reset to Output Inactive	
tRS	7.5	-	-	ns	Master Reset Pulse Width	
tRSR	7.5	-	-	ns	Master Reset Recovery Time	
tSA	2.3	-	-	ns	Address Setup Time	
tSB	2.3	-	-	ns	Byte Select Setup Time	
tSC	2.3	-	-	ns	Chip Enable Setup Time	
tSD	2.3	-	-	ns	Input Data Setup Time	
tSINT	1.0	7.5	7.5	ns	Mailbox Interrupt Flag Set Time	
tSW	2.3	-	-	ns	Read/Write Enable Setup Time	

4.9 Verilog Instantiation Example

Following is an example of instantiating this model within Verilog for the VCS simulator. In this example, a subset of the model's simulation attributes (Verilog parameters) are shown set to their default value. For a complete list of supported simulation attributes, see the table in section 4.6.

```
cy7c04314bv_mx_bus example_inst
    .ap1
              ( ap1
                        ),
    .ap2
              ( ap2
                        ),
    .ap3
              ( ap3
                        ),
    .ap4
             ( ap4
                        ),
    .bep1_n
             (bep1_n
    .bep2_n
             (bep2_n
                        ),
    .bep3_n
             (bep3_n
                       ),
    .bep4_n (bep4_n
    .ce0p1_n ( ce0p1_n ),
    .ce0p2_n (ce0p2_n),
    .ce0p3_n (ce0p3_n),
    .ce0p4_n (ce0p4_n),
    .celp1
             ( celp1
                        ),
    .celp2
              ( ce1p2
    .celp3
             ( ce1p3
                        ),
    .celp4
             (celp4
                        ),
    .clkp1
             (clkp1
                        ),
    .clkp2
             (clkp2
                        ),
    .clkp3
             (clkp3
                        ),
    .clkp4
             (clkp4
                        ),
    .intpl_n ( intpl_n ),
    .intp2_n ( intp2_n ),
    .intp3_n ( intp3_n ),
    .intp4_n ( intp4_n ),
    .iop1
             (iop1
                        ),
    .iop2
             (iop2
                        ),
    .iop3
             (iop3
                        ),
    .iop4
             (iop4
                        ),
    .mrst_n
             ( mrst_n
                        ),
    .oep1_n
             ( oep1_n
                        ),
             ( oep2_n
    .oep2_n
                        ),
    .oep3_n
             ( oep3_n
                        ),
    .oep4_n
             ( oep4_n
    .r_w_np1 ( r_w_np1 ),
    .r_w_np2 ( r_w_np2 ),
    .r_w_np3 ( r_w_np3 ),
```

```
.r_w_np4 ( r_w_np4 )
);
defparam example_inst.DelayRange = "Max";
defparam example_inst.MemoryFile = ".";
defparam example_inst.MessageLevel = "15";
defparam example_inst.ModelAlias = ".";
defparam example_inst.ModelId = "-2";
defparam example_inst.TimingVersion = "133";
```

4.10 VHDL Instantiation Example

Following is an example of instantiating this model within VHDL for the Scirocco simulator. In this example, a subset of the model's simulation attributes (VHDL generics) are shown set to their default value. For a complete list of supported simulation attributes, see the table in section 4.6.

```
example_inst : cy7c04314bv_mx
   generic map (
       DelayRange
                     => "Max",
       MemoryFile
                     => ".",
       MessageLevel => "15",
       ModelAlias
                     => ".",
       ModelId
                     => "-2",
       TimingVersion => "133"
    )
   port map (
       ap1
               => ap1,
       ap2
               => ap2,
       ap3
               => ap3,
       ap4
               => ap4,
       bep1_n => bep1_n,
       bep2_n => bep2_n,
       bep3_n => bep3_n,
       bep4_n => bep4_n,
       ce0p1 n => ce0p1 n,
       ce0p2_n => ce0p2_n,
       ce0p3_n => ce0p3_n,
       ce0p4_n => ce0p4_n,
       celp1 => celp1,
       ce1p2 => ce1p2,
       ce1p3 => ce1p3,
       celp4 => celp4,
       clkp1 => clkp1,
       clkp2 => clkp2,
       clkp3 => clkp3,
       clkp4 => clkp4,
        intp1_n => intp1_n,
        intp2_n => intp2_n,
        intp3_n => intp3_n,
        intp4_n => intp4_n,
        iop1 => iop1,
        iop2
               => iop2,
        iop3
               => iop3,
               => iop4,
        iop4
```

```
mrst_n => mrst_n,
  oep1_n => oep1_n,
  oep2_n => oep2_n,
  oep3_n => oep3_n,
  oep4_n => oep4_n,
  r_w_np1 => r_w_np1,
  r_w_np2 => r_w_np2,
  r_w_np3 => r_w_np3,
  r_w_np4 => r_w_np4
);
```

5 cy7c04314bv_mx Model History

Synopsys publishes model history and bug fixes on the *IP Directory for the cy7c04314bv_mx*. The behavior of DesignWare Memory Models may also be affected by revisions made to supporting utilities. For information concerning potential utility changes, please refer to *DesignWare Memory Model Release Notes*.