Machine Learning

Regularization and Feature Selection

Fabio Vandin

November 15th, 2022

Learning Model

- A: learning algorithm for a machine learning task
- S: m i.i.d. pairs $z_i = (x_i, y_i), i = 1, ..., m$, with $z_i \in Z = \mathcal{X} \times Y$, generated from distribution \mathcal{D} \Rightarrow training set available to A to produce A(S);
- \mathcal{H} : the hypothesis (or model) set for A
- loss function: $\ell(h,(x,y))$, $\ell:\mathcal{H}\times Z\to\mathbb{R}^+$
- $L_S(h)$: empirical risk or training error of hypothesis $h \in \mathcal{H}$

$$L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)$$

• $L_{\mathcal{D}}(h)$: true risk or generalization error of hypothesis $h \in \mathcal{H}$:

$$L_{\mathcal{D}}(h) = \mathbb{E}_{z \in \mathcal{D}}[\ell(h, z)]$$

Learning Paradigms

We would like A to produce A(S) such that $L_{\mathcal{D}}(A(S))$ is small, or at least close to the smallest generalization error $L_{\mathcal{D}}(h^*)$ achievable by the "best" hypothesis h^* in \mathcal{H} :

$$h^* = \arg\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$$

We have seen a learning paradigm: Empirical Risk Minimization

We will now see another learning paradigm...

Regularized Loss Minimization

Assume h is defined by a vector $\mathbf{w} = (w_1, \dots, w_d)^T \in \mathbb{R}^d$ (e.g., linear models)

Regularization function $R: \mathbb{R}^d \to \mathbb{R}$

Regularized Loss Minimization (RLM): pick h obtained as

$$\arg\min_{\mathbf{w}}\left(L_{S}(\mathbf{w})+R(\mathbf{w})\right)$$

Intuition: $R(\mathbf{w})$ is a "measure of complexity" of hypothesis h defined by \mathbf{w}

⇒ regularization balances between low empirical risk and "less complex" hypotheses

We will see some of the most common regularization function

ℓ_1 Regularization

Regularization function: $R(\mathbf{w}) = \lambda ||\mathbf{w}||_1$

- $\lambda \in \mathbb{R}, \lambda > 0$
- ℓ_1 norm: $||\mathbf{w}||_1 = \sum_{i=1}^d |w_i|$

Therefore the learning rule is: pick

$$A(S) = \arg\min_{\mathbf{w}} \left(L_S(\mathbf{w}) + \lambda ||\mathbf{w}||_1 \right)$$

Intuition:

- $||\mathbf{w}||_1$ measures the "complexity" of hypothesis defined by \mathbf{w}
- λ regulates the tradeoff between the empirical risk ($L_S(\mathbf{w})$) or overfitting and the complexity ($||\mathbf{w}||_1$) of the model we pick

LASSO

Linear regression with squared loss + ℓ_1 regularization \Rightarrow LASSO (least absolute shrinkage and selection operator)

LASSO: pick

$$\mathbf{w} = \arg\min_{\mathbf{w}} \lambda ||\mathbf{w}||_1 + \sum_{i=1}^m (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

How?

Notes:

- no closed form solution!
- ℓ₁ norm is a convex function and squared loss is convex
 ⇒ problem can be solved efficiently! (true for every convex loss function)

LASSO and Sparse Solutions: Example

(Equivalent) one dimensional regression problem with squared loss:

$$\arg\min_{w\in\mathbb{R}}\left(\frac{1}{2m}\sum_{i=1}^{m}(x_iw-y_i)^2+\lambda|w|\right)$$

Is equivalent to:

$$\arg\min_{w\in\mathbb{R}} \left(\frac{1}{2} \left(\frac{1}{m} \sum_{i=1}^{m} x_i^2 \right) w^2 - \left(\frac{1}{m} \sum_{i=1}^{m} x_i y_i \right) w + \lambda |w| \right)$$

Assume for simplicity that $\frac{1}{m} \sum_{i=1}^{m} x_i^2 = 1$, and let $\sum_{i=1}^{m} x_i y_i = \langle \mathbf{x}, \mathbf{y} \rangle$.

Then the optimal solution is

$$w = \operatorname{sign}(\langle \mathbf{x}, \mathbf{y} \rangle)[\langle \mathbf{x}, \mathbf{y} \rangle / m - \lambda]_+$$

where $[a]_{+} = ^{(def)} \max\{a, 0\}.$

Tikhonov regularization

Regularization function: $R(\mathbf{w}) = \lambda ||\mathbf{w}||^2$

- $\lambda \in \mathbb{R}, \lambda > 0$
- ℓ_2 norm: $||\mathbf{w}||^2 = \sum_{i=1}^d w_i^2$

Therefore the learning rule is: pick

$$A(S) = \arg\min_{\mathbf{w}} \left(L_S(\mathbf{w}) + \lambda ||\mathbf{w}||^2 \right)$$

Intuition:

- $||\mathbf{w}||^2$ measures the "complexity" of hypothesis defined by \mathbf{w}
- λ regulates the tradeoff between the empirical risk ($L_S(\mathbf{w})$) or overfitting and the complexity ($||\mathbf{w}||^2$) of the model we pick

Ridge Regression

Linear regression with squared loss + Tikhonov regularization \Rightarrow ridge regression

Linear regression with squared loss:

- given: training set $S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- want: w which minimizes empirical risk:

$$\mathbf{w} = \arg\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

equivalently, find \mathbf{w} which minimizes the residual sum of squares $RSS(\mathbf{w})$

$$\mathbf{w} = \arg\min_{\mathbf{w}} RSS(\mathbf{w}) = \arg\min_{\mathbf{w}} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

Linear regression: pick

$$\mathbf{w} = \arg\min_{\mathbf{w}} RSS(\mathbf{w}) = \arg\min_{\mathbf{w}} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

Ridge regression: pick

$$\mathbf{w} = \arg\min_{\mathbf{w}} \left(\lambda ||\mathbf{w}||^2 + \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 \right)$$

RSS: Matrix Form

Let

$$\mathbf{X} = \begin{bmatrix} \cdots & \mathbf{x}_1 & \cdots \\ \cdots & \mathbf{x}_2 & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & \mathbf{x}_m & \cdots \end{bmatrix}$$

X: design matrix

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

⇒ we have that RSS is

$$\sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Ridge Regression: Matrix Form

Linear regression: pick

$$\arg\min_{\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Ridge regression: pick

$$\arg\min_{\mathbf{w}} \left(\lambda ||\mathbf{w}||^2 + \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right)^T \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right) \right)$$

Want to find **w** which minimizes T

$$f(\mathbf{w}) = \lambda ||\mathbf{w}||^2 + (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}).$$

How?

Compute gradient $\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$ of objective function w.r.t \mathbf{w} and compare it to 0.

$$\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} = 2\lambda \mathbf{w} - 2\mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\mathbf{w})$$

Then we need to find w such that

$$2\lambda \mathbf{w} - 2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$

$$2\lambda \mathbf{w} - 2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$

is equivalent to

$$\left(\lambda \mathbf{I} + \mathbf{X}^{T} \mathbf{X}\right) \mathbf{w} = \mathbf{X}^{T} \mathbf{y}$$

Note:

- X^TX is positive semidefinite
- **\lambda** is positive definite
- $\Rightarrow \lambda \mathbf{I} + \mathbf{X}^T \mathbf{X}$ is positive definite
- $\Rightarrow \lambda \mathbf{I} + \mathbf{X}^T \mathbf{X}$ is invertible

Ridge regression solution:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

Exercise 5

Consider the ridge regression problem $\arg\min_{\mathbf{w}} \lambda ||\mathbf{w}||^2 + \sum_{i=1}^m (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$. Let: h_S be the hypothesis obtained by ridge regression on with training set S; h^* be the hypothesis of minimum generalization error among all linear models.

- (A) Draw, in the plot below, a *typical* behaviour of (i) the training error and (ii) the test/generalization error of h_S as a function of λ .
- (B) Draw, in the plot below, a *typical* behaviour of (i) $L_{\mathcal{D}}(h_S) L_{\mathcal{D}}(h^*)$ and (ii) $L_{\mathcal{D}}(h_S) L_S(h_S)$ as a function of λ .

Feature Selection

In general, in machine learning one has to decide what to use as features (= input) for learning.

Even if somebody gives us a representation as a feature vector, maybe there is a "better" representation?

What is "better"?

Example

- features x_1, x_2 , output y
- $x_1 \sim Uniform(-1,1)$
- $y = x_1^2$
- $x_2 \sim y + Uniform(-0.01, 0.01)$

If we want to predict y, which feature is better: x_1 or x_2 ?

No-free lunch...

Feature Selection: Scenario

We have a large pool of features

Goal: select a small number of features that will be used by our (final) predictor

Assume $\mathcal{X} = \mathbb{R}^d$.

Goal: learn (final) predictor using $k \ll d$ predictors

Motivation?

- prevent overfitting: less predictors ⇒ hypotheses of lower complexity!
- predictions can be done faster
- useful in many applications!

Feature Selection: Computational Problem

Assume that we use the Empirical Risk Minimization (ERM) procedure.

The problem of selecting k features that minimize the empirical risk can be written as:

$$\min_{\mathbf{w}} L_S(\mathbf{w})$$
 subject to $||\mathbf{w}||_0 \le k$

where
$$||\mathbf{w}||_0 = |\{i : w_i \neq 0\}|$$

How can we solve it?

Subset Selection

How do we find the solution to the problem below?

$$\min_{\mathbf{w}} L_{\mathcal{S}}(\mathbf{w})$$
 subject to $||\mathbf{w}||_0 \le k$

Note: the solution will always include k features

Let:

- $\mathcal{I} = \{1, \ldots, d\};$
- given $p = \{i_1, \dots, i_k\} \subseteq \mathcal{I}$: $\mathcal{H}_p = \text{hypotheses/models where}$ only features $w_{i_1}, w_{i_2}, \dots, w_{i_k}$ are used

$$\begin{split} P^{(k)} &\leftarrow \{J \subseteq \mathcal{I} : |J| = k\}; \\ \textbf{foreach} \ \ p \in P^{(k)} \ \ \textbf{do} \\ & \bigsqcup_{h \in \mathcal{H}_p} L_S(h); \\ \textbf{return} \ \ h^{(k)} &\leftarrow \arg\min_{p \in P^{(k)}} L_S(h_p); \end{split}$$

Complexity? Learn $\Theta\left(\binom{d}{k}\right) \in \Theta\left(d^k\right)$ models \Rightarrow exponential algorithm!

Can we do better?

Proposition

The optimization problem of feature selection NP-hard.

What can we do?

 $Heuristic \ solution \ \Rightarrow \ greedy \ algorithms$

Greedy Algorithms for Feature Selection

Forward Selection: start from the empty solution, add one feature at the time, until solution has cardinality k

Complexity? Learns $\Theta(kd)$ models

Backward Selection: start from the solution which includes all features, remove one feature at the time, until solution has cardinality k

Pseudocode: analogous to forward selection [Exercize!]

Complexity? Learns $\Theta((d-k)d)$ models

Notes

We have used only training set to select the best hypothesis...

⇒ we may overfit!

Solution? Use validation! (or cross-validation)

Split data into training data and validation data, learn models on training, evaluate (= pick among different hypothesis models) on validation data. Algorithms are similar.

Note: now the best model (in terms of validation error) may include less than k features!

Subset Selection with Validation Data

```
S = \text{training data (from data split)}
 V = validation data (from data split)
 Using training and validation:
 for \ell \leftarrow 0 to k do
       P^{(\ell)} \leftarrow \{J \subseteq \mathcal{I} : |J| = \ell\};
foreach p \in P^{(\ell)} do
h_{p} \leftarrow \arg\min_{h \in \mathcal{H}_{p}} L_{S}(h);
h^{(\ell)} \leftarrow \arg\min_{p \in P^{(\ell)}} L_{V}(h_{p});
return \arg\min_{h \in \{h^{(0)}, h^{(1)}, \dots, h^{(k)}\}} L_{V}(h)
```

Forward Selection with Validation Data

```
Using training and validation: sol \leftarrow \emptyset;
while |sol| < k \text{ do}
| foreach | i \in \mathcal{I} \setminus sol | \text{ do}
| p \leftarrow sol \cup \{i\};
| h_p \leftarrow \arg\min_{h \in \mathcal{H}_p} L_S(h);
| sol \leftarrow sol \cup \arg\min_{i \in \mathcal{I} \setminus sol} L_V(h_{sol \cup \{i\}});
return | sol;
```

Backward Selection with validation: similar [Exercize]

Similar approach for all algorithms with cross-validation [Exercize]

Bibliography [UML]

Regularization and Ridge Regression: Chapter 12

- no Section 13.3;
- Section 13.4 only up to Corollary 13.8 (excluded)

Feature Selection and LASSO: Chapter 25

 only Section 25.1.2 (introduction and "Backward Elimination") and 25.1.3