whttps://eduassistpro.github.

axgopala@imperial.ac.uk

Add WeChat edu_assist_pr

London

Assignment Project Exam Help

Add WeChat edu_assist_pr

https://eduassistpro.github.

Capacity increases exponentially, but access speeds not so much Imperial College

https://eduassistpro.github.

https://eduassistpro.github.

Add WeChat edu_assist_pr

Imperial College London

https://eduassistpro.github.

Sample Disk Specification

http://disctech.com/Seagate-ST3400832AS-SATA-Hard-Drive

Add WeChat edu_assist_pr

https://eduassistpro.github.

Outer zones have more sectors no

- \bullet Outer zones have more sectors per track \to ensures that sectors have same physical length
- Zones hidden using virtual geometry

Disk Addressing

Physical hardware address: (cylinder, surface, sector)

Assignment Project Exam Help

Mod

https://eduassistpro.github.

- Makes disk management much easier
- HAlps work around Blos limitations du_assist_properties and library endings and library endings around Blos limitations du_assist_properties and library endings around Blos limitations du_assist_properties and library endings around Blos limitations du_assist_properties around Blos limita
 - 6 bits for sector, 4 bits for head, 14 bits for cylinder

A Significant Project Exam Help 1 KB = 2¹⁰ bytes = 1024 bytes vs 1 KB = 10³ bytes = 1000 bytes

https://eduassistpro.github.

```
1~{\sf GB}=2^{30} bytes =1024^3 bytes vs 1~{\sf GB}=1^{-9}
```

Add WeChat edu_assist_pr

If necessary, just make it consistent on the exam

Disk Formatting

Before a disk can be used, it must be formatted

Assignment Project Exam Help

https://eduassistpro.github.

- *High level format Add WeChat edu_assist_pr
 - Free block list.
 - Root directory
 - Empty file system

https://eduassistpro.github.

Drive Geometry

Amount of cylinder skew depends on the drive geometry

Example Project Exam He p

Consider a 10,000 rpm drive with each track having 300 sectors and tr https://eduassistpro.github. 300 se $10^{-5} = 20 \ \mu s$ Track see whe 80 hat edu_assist_in one seek = $\frac{800}{20}$ = 40

Hence, cylinder skew = 40

https://eduassistpro.github.

Disk Delays II

Typical disk

```
Assiginmentyliderojects Exam Help
Seek time (average)

Rot
Tr https://eduassistpro.github.
```

Disk Scheduling We Chated Lassist productions of the Chated Lassist production of the Chated Lassis

Order pending disk requests with respect to head position

Seek time $\approx 2-3$ times larger than latency time \rightarrow more important to optimise

Disk Performance

Given

Assignmenter Parkoject Exam Help

r - rotation speed in revolutions per second

seehttps://eduassistpro.github. $\begin{array}{c} \text{Latency time (rotational delay)} & t_{\textit{late}} \\ \text{Add WeChat edu_assist_pr} \end{array}$ Transfer time

t_{transfer}

 $\overline{N \times r}$

Total access time (t_{access}) $t_{seek} + t_{latency} + t_{transfer}$

Disk Performance

Skyligh Phile 10ms Project Exam Help 512 byte sectors 320 se

https://eduassistpro.github.

- read file stored as compactly as possible on di occupied il stored 8 diagnit GRU_assist_DI sectors/track = 2560 sectors)
- read file with all sectors randomly distributed across disk

Example Problem

Answer: Disk Performance

Assignment Project Eixam Help

https://eduassistpro.github.

Total time = 19 ms + 7×9 ms = 82 ms = 0.082 secon

Read 1 sector $= 0.01875 \text{ ms} = \frac{100000}{512 \times 320 \times (\frac{10000}{500})}$

 $\mathsf{Total} \qquad = 13.01875 \; \mathsf{ms}$

Total time = $2560 \times 13.01875 \text{ ms} = 33.328 \text{ seconds}$

First Come First Served (FCFS)

No ordering of requests \rightarrow random seek patterns

• OK for lightly-loaded disks

Assignment Project Exam Help

Que

https://eduassistpro.github.

Shortest Seek Time First (SSTF)

Order requests according to shortest seek distance from current head position

Assignment until perfect Exam Help

Queue: 98, 183, 37, 122, 14, 130, 60, 67 (head starts at 53)

https://eduassistpro.github.
Add WeChat edu_assist_pr

If, when handling request at 14, new requests arrive for 50, 70, 100 \rightarrow long delay before 183 serviced

SCAN Scheduling

Choose requests which result in shortest seek time in preferred direction

- Only change direction when reaching outermost/innermost cylinder
- Assignmental Residues Company Control of Con Long delays for requests at extreme locations

is towhttps://eduassistpro.github. Add WeChat edu_assist_pr

Imperial College London

C-SCAN

Services requests in one direction only

When head reaches innermost request, jump to outermost

Assignment requests indefinitely (though less likely) Help

Que

https://eduassistpro.github.

N-Step SCAN

As for SCAN, but services only requests waiting when sweep began

- Requests arriving during sweep serviced during return sweep
- Doesn't delay requests indefinitely

A SCHOTH PIPE (P. 10) (Continued of the Marine State of the Marine

https://eduassistpro.github.
Add WeChat edu_assist_pr

I/O requests placed in request list

Assignment Projects Exam Help

blo structure: associates memory pages with requests

Bloc

- https://eduassistpro.github.
- Driver must perform all operations in list
- · Add We Chat edu_assist_pr

Some devices drivers (e.g. RAID) order their own r

Bypass kernel for request list ordering

Default: variation of SCAN algorithm

Kernel attempts to merge requests to adjacent blocks

ASSISTMMONT read FORTSTANDING WIEDP

Dea

https://eduassistpro.github.

Anticipatory scheduler: delay after read request completes

- bet roted quality in Expire 1 at EQU_assist_pr
- Reduces excessive seeking behaviour
- Can lead to reduced throughput if process does not issue another read request to nearby location
 - Anticipate process behaviour from past behaviour

RAID

Problem

• CPU performance doubling every 18 months

Assignment Project Exam 97Help Solution

https://eduassistpro.github.

- Array of physical drives appearing as single v
- sach Wechaty edu_assist_pr parallel operation (called striping)

Use redundant disk capacity to respond to disk failure

More disks → lower mean-time-to-failure (MTTF)

RAID Striping

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pro.github.

Imperial College London

RAID Level 0 (Striping)

Use multiple disks and spread out data

Assignment Project Exam Help

No re

https://eduassistpro.github.

RAID Level 1 (Mirroring)

Mirror data across disks

Assignment by Project Exam Help Writes update both disks in parallel (slower)

Failu

https://eduassistpro.github.

RAID Level 2 (Bit-level Hamming)

Parallel access by striping at bit-level

Use Hamming error-correcting code (ECC)

Assignments and detected by the state of t

- only https://eduassistpro.github.
 - ECC disks become bottleneck
 - *High storage overhead Add WeChat edu_assist_pr

RAID Level 3 (Byte-level XOR)

Only single parity strip used

Parity = data1 + data2 + data3 ...

Assignments are presented and are presented as a second and a second are presented as a second are presented as

Lower storage overhead than RAID Level 2

https://eduassistpro.github.

RAID Level 4 (Block-level XOR)

Parity strip handled on block basis

Assignment Project Fxam Help

Pari

https://eduassistpro.github.

RAID Level 5 (Block-level Distributed XOR)

Like RAID Level 4, but distribute parity

- Most commonly used
- Assignmente Project Exam Help
 Good storage efficiency/redundancy trade-off
 - https://eduassistpro.github.
 - Add WeChat edu_assist_pr

RAID Summary

better than single disk (+) / same (0) / worse (-)

Mar

Provhttps://eduassistpro.github.

Feedback also possible through Mentimeter (9

If time Act of particular particular particular assist properties and the control of the control