		$\nu (\mathrm{cm}^{-1}$,	
No.	SS	ds 5°C	ds 95°C	
T7	1377(21)	а		νPyr/δC6H (Tsuboi et al., 1997) ^{Thd} , νPyr/δC6H/νN1C (Zhu et al. 2008) ^{Thd} indicator of thymine environment (Movileanu et al., 2002) ^{poly[d(AT)], polydA·polydT} , (Benevides et al. 2005) ^{poly[d(AT)], polydA·polydT} strong hypochromism for ds (Klener et al., 2021) ^{oligonucleotides}
				(this work)
Α7	1378(19)	` '	1375(38)	
11,	, ,	а		$\delta C2H/\nu N1C6/\nu C6N$ (Xue et al., 2000) MeAde upshift with hydrogen bonding at donor and acceptor sites as well (Fujimoto et al., 1998) AcAdo, DAcAdo
				upshift and weak hypochromism for both ds and ts (Klener et al. $2015)^{\text{polyA} \cdot \text{polyU}}$, hypochromism for ds (this work)
Т6	1419(3.7) –	_	
	8	structural in	ssignment: aformation:	CH ₃ umbrella+ ν C4C5/ ν C5CH ₃ (Zhu et al., 2008) ^{Thd} upshifts upon H-bonding at N3 (Toyama et al., 1991) ^{Ado} upshift in ds (remains for ts) (Klener et al., 2015) ^{polyA-polyU}
A6	1425(15)	1422(5.3)		vIm (Fujimoto et al., 1998) AcAdo, DAcAdo, vC4N9/vN7C8 (Xue et al. 2000) MeAde
	s	structural in	iformation:	for A-form geometry at 1423 cm ⁻¹ and for B-form geometry at 1429 cm ⁻¹ (Tomkova et al., 1994) poly(AU), polyA-polyU vs poly(d(AU), 1418 cm ⁻¹ anti 1438 cm ⁻¹ syn (Taillandier et al., 1989) poly(d(AT)) hypochromism and slight downshift for ts (Klener et al. 2015) polyA-polyU, strong hypochromism (this work)
T6b			1450(5.3) aformation:	visible only in complexes, similar intensity as T6 visible only in single strand at $1419\mathrm{cm}^{-1}$, assigned to uracil (Klener et al. $2015)^{\mathrm{polyA}\cdot\mathrm{polyU}}$
A5	1484(73)	1482(19)		δ C2H+νC8N9+δC8H (Fodor et al., 1985) ^{dAMP} , νPur (Fujimoto et al. 1998) ^{AcAdo} , δC2H/νN1C6/νC6N (Xue et al., 2000) ^{MeAde}
	٤	structural in	iformation:	hypochromic for 257 nm (more in alternating dAdT sequence) (Jollès et al., 1985) ^{poly[d(AT)]} , polydA·polydT, upshift upon hydrogen bonding at ac ceptor sites (Fujimoto et al., 1998) ^{AcAdo} , DAcAdo, for A-form geometry at 1480 cm ⁻¹ and for B-form geometry at 1485 cm ⁻¹ (Tomkova et al. 1994) ^{poly(AU)} , polyA·polyU vs poly(d(AU)
				downshift for ds (remains for ts) – confirmed A-form marker, hypochromism for ts (Klener et al., 2015) $^{\mathrm{polyA \cdot polyU}}$ hypochromism for ds (Klener et al., 2021) $^{\mathrm{oligonucleotides}}$, (this work)
Т5	1484(5.0		is signment:	ν Pyr+δC1'H+δ _s C2'H ₂ (Zhu et al., 2008) ^{Thd}
A4	1509(29)	1512(5.2)		v Im (Fujimoto et al., 1998) AcAdo, DAcAdo, v N7C8/δC8H (Xue et al.
	٤	structural in	iformation:	2000) MeAde upshift for hydrogen bond at N7 (Fujimoto et al., 1998) AcAdo, DAcAdo (Movileanu et al., 2002) Poly[d(AT)], polydA polydT strong hypochromism for ds (remains for ts) (Klener et al., 2015) PolydA polyU, (Klener et al., 2021) Oligonucleotides strong hypochromism and upshift for ds (this work)

Table ?? Assignments of the resonance Raman bands observable in measurements of nucleic acids containing adenine (A) and thymine (T) bases. (Continued, 3 of 4.)

Bibliography

- BENEVIDES, J. M.; OVERMAN, S. A.; THOMAS, G. J., 2005. Raman, polarized Raman and ultraviolet resonance Raman spectroscopy of nucleic acids and their complexes. *Journal of Raman Spectroscopy.* **36**(4), 279–299. Available from DOI: 10.1002/jrs.1324.
- FODOR, S. P. A.; RAVA, R. P.; HAYS, T. R.; SPIRO, T. G., 1985. Ultraviolet Resonance Raman Spectroscopy of the Nucleotides with 266-, 240-, 218-, and 200-nm Pulsed Laser Excitation. *Journal of the American Chemical Society.* **107**(6), 1520–1529. Available from DOI: 10.1021/ja00292a012.
- FUJIMOTO, N.; TOYAMA, A.; TAKEUCHI, H., 1998. Effects of hydrogen bonding on the UV resonance Raman bands of the adenine ring and its C8-deuterated analog. *Journal of Molecular Structure*. 447(1-2), 61–69. Available from DOI: 10.1016/s0022-2860(98)00301-9.
- JOLLÈS, B.; LAIGLE, A.; CHINSKY, L.; TURPIN, P. Y., 1985. The poly dA strand of poly dA · poly dT adopts an A-form in solution: a UV resonance Raman study. *Nucleic Acids Research.* 13(6), 2075–2085. Available from DOI: 10.1093/nar/13.6.2075.
- KLENER, Jakub; ŠTĚPÁNEK, Josef, 2015. UV resonance Raman study of PolyA and PolyU complexes: Mg²⁺-induced formation of PolyU·PolyA·PolyU triplexes. *Vibrational Spectroscopy*. **81**(5), 32–39. Available from DOI: 10.1016/j.vibspec.2015.09.003.
- KLENER, Jakub; ŠTĚPÁNEK, Josef, 2021. Full UV resonance Raman analysis of temperature effects on the structural arrangement of DNA segments. *Journal of Raman Spectroscopy*. **52**(3), 678–689. ISSN 0377-0486. Available from DOI: 10.1002/jrs.6057.
- MOVILEANU, L; BENEVIDES, JM; THOMAS, GJ, 2002. Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA. *Nucleic Acids Research.* **30**(17), 3767–3777. ISSN 0305-1048. Available from DOI: 10.1093/n ar/gkf471.
- TAILLANDIER, E.; LIQUIER, J.; GHOMI, M., 1989. Conformational transitions of nucleic acids studied by IR and Raman spectroscopies. *Journal of Molecular Structure*. **214**, 185–211. Available from DOI: 10.1016/0022-2860(89)80014-6.
- TOMKOVA, A.; CHINSKY, L.; MISKOVSKY, P.; TURPIN, P. Y., 1994. A–Z conformational transition in poly(rA–rU) and structure marker bands in UV resonance Raman spectroscopy. *Journal of Molecular Structure*. **318**, 65–77. Available from DOI: 10.1016/0022-2860(93)0 7895-4.
 - comment: UV RR spectra of poly(rArU) (A \rightarrow Z form), poly(dAdU) and poly(rA)·poly(rU) in H₂O, markers of A-form (adenosine C3'-endo/anti), B-form (adenosine C2'-endo/anti), Z-form (adenosine C3'-endo/syn).
- TOYAMA, A.; TAKEUCHI, H.; HARADA, I., 1991. Ultraviolet resonance Raman spectra of adenine, uracil and thymine derivatives in several solvents. Correlation between band frequencies and hydrogen-bonding states of the nucleic acid bases. *Journal of Molecular Structure*. 242, 87–98. Available from DOI: 10.1016/0022-2860(91)87129-6.
- TSUBOI, M.; KOMATSU, M.; HOSHI, J.; KAWASHIMA, E.; SEKINE, T.; ISHIDO, Y.; RUSSELL, M. P.; BENEVIDES, J. M.; THOMAS, G. J., 1997. Raman and infrared spectra of (2'S)- 2'-H-2 thymidine: Vibrational coupling between deoxyribosyl and thymine moieties and structural implications. *Journal of the American Chemical Society.* 119(8), 2025–2032. Available from DOI: 10.1021/ja962676t.
- XUE, Y.; XIE, D. Q.; YAN, G. S., 2000. Density functional theory studies on molecular structure and IR spectra of 9-methyladenine: A scaled quantum mechanical force field approach. *International Journal of Quantum Chemistry.* **76**(6), 686–699. Available from DOI: 10.1002/(sici)1097-461x(2000)76:6<686::aid-qua2>3.0.co;2-b. comment: DFT calculation of IR spectra of 9-methyladenine, force field scaled, without solvent.

ZHU, X. M.; WANG, H. G.; ZHENG, X. M.; PHILLIPS, D. L., 2008. Role of Ribose in the Initial Excited State Structural Dynamics of Thymidine in Water Solution: A Resonance Raman and Density Functional Theory Investigation. *Journal of Physical Chemistry B.* 112(49), 15828–15836. Available from DOI: 10.1021/jp806248b. J. Phys. Chem. B.