Counters, Shift Registers, Memory Arrays

Digital Computer Design

Counters

- Increments on each clock edge
- Used to cycle through numbers. For example,
 - 000, 001, 010, 011, 100, 101, 110, 111, 000, 001...
- Example uses:
 - Digital clock displays

Symbol

Implementation

Shift Registers

- Shift a new bit in on each clock edge
- Shift a bit out on each clock edge
- Serial-to-parallel converter: converts serial input (S_{in}) to parallel output $(Q_{0:N-1})$

Symbol:

Implementation:

Shift Register with Parallel Load

- When Load = 1, acts as a normal N-bit register
- When Load = 0, acts as a shift register
- Now can act as a serial-to-parallel converter (S_{in} to $Q_{0:N-1}$) or a parallel-to-serial converter ($D_{0:N-1}$ to S_{out})

Memory Arrays

- Efficiently store large amounts of data
- 3 common types:
 - Dynamic random access memory (DRAM)
 - Static random access memory (SRAM)
 - Read only memory (ROM)
- M-bit data value read/written at each unique N-bit address

Memory Arrays

- 2-dimensional array of bit cells
- Each bit cell stores one bit
- N address bits and M data bits:
 - -2^N rows and M columns
 - Depth: number of rows (number of words)
 - Width: number of columns (size of word)
 - Array size: depth \times width = $2^N \times M$

Memory Array Example

- $2^2 \times 3$ -bit array
- Number of words: 4
- Word size: 3-bits
- For example, the 3-bit word stored at address 10 is 100

Memory Arrays

How many words? Word size?

Addressing Memory

Let's implement a simple memory array with:

3-bit addressability & address space size of 2 (total of 6 bits)

1 Bit

6-Bit Memory Array

A	d	d	r	0)
	•	•	- 1	1	J

Addr(1)

Bit ₂	Bit ₁	Bit ₀
Bit ₂	Bit ₁	Bit ₀

How can we select the address to read?

Because there are 2 addresses, address size is log(2)=1 bit

How can we select the address to read?

 Because there are 2 addresses, address size is log(2)=1 bit Addr[0]

How can we select the address to read?

 Because there are 2 addresses, address size is log(2)=1 bit Addr[0]

How can we select the address to read?

 Because there are 2 addresses, address size is log(2)=1 bit Addr[0]

Writing to Memory

How can we select the address and write to it?

Writing to Memory

How can we select the address and write to it?

Input is indicated with D_i

Putting it all Together

Enable reading and writing to a memory array

A Bigger Memory Array

A Bigger Memory Array

Multi-ported Memories

- Multiported memories can access several addresses simultaneously
- Example: 3-ported memory
 - 2 read ports (A1/RD1, A2/RD2)
 - 1 write port (A3/WD3, WE3 enables writing)
- Register file: small multi-ported memory

Types of Memory

- Memories are classified based on how they store bits in the bit cell.
 - Random access memory (RAM):
 - volatile: loses its data when power off
 - called random access memory because any data word is accessed with the same delay as any other.
 - e.g. main memory in computers
 - Read only memory (ROM):
 - nonvolatile: retains data when power off
 - e.g. flash memory in cameras

Types of RAM

- DRAM (Dynamic random access memory)
- SRAM (Static random access memory)
- Differ in how they store data:
 - DRAM uses a capacitor
 - SRAM uses cross-coupled inverters

Dynamic Random Access Memory (DRAM)

- Data bits stored on capacitor
 - When the capacitor is charged to V_{DD} the stored bit is 1
 - When it is discharged to GND the stored bit is 0
- The transistor behaves as a switch
 - either connects or disconnects the capacitor from the bitline.

Dynamic Random Access Memory (DRAM)

- Dynamic because the value needs to be refreshed (rewritten) periodically and after read:
 - Charge leakage from the capacitor degrades the value
 - Reading destroys the stored value
 - Data word must be restored (rewritten) after each read.

Static Random Access Memory (SRAM)

- Static because stored bits do not need to be refreshed.
 - Unlike DRAM, if noise degrades the value of the stored bit, the cross-coupled inverters restore the value.

DRAM bit cell:

SRAM bit cell:

Area and Delay

- The data bit stored in a flip-flop is available immediately at its output.
 - But flip-flops take at least 20 transistors to build.
- DRAM latency is longer than that of SRAM
 - Because its bitline is not actively driven by a transistor.
 - DRAM must wait for charge to move (relatively) slowly from the capacitor to the bitline.

Memory Type	Transistors per Bit Cell	Latency
flip-flop	~20	fast
SRAM	6	medium
DRAM	1	slow

Read Only Memory ROM

- Read only memory (ROM) stores a bit as the presence or absence of a transistor.
 - If the transistor is present, it pulls the bitline LOW.
 - If it is absent, the bitline remains HIGH.

The contents of the ROM bit are specified during manufacturing by the presence or absence of a transistor in each bit cell.

Read Only Memory ROM

- A programmable ROM (PROM) places a transistor in every bit cell
 - but provides a way to connect or disconnect the transistor to ground.
- A fuse-programmable ROM allows user programs to selectively blow fuses by applying a high voltage.

Read Only Memory ROM

- Erasable PROMs (EPROMs) replace the transistor and fuse with a floating-gate transistor.
 - —The floating gate is not physically attached to any other wires.
 - When suitable high voltages are applied, transistor is connects to the bitline to the wordline.
 - When the EPROM is exposed to intense ultraviolet (UV) light for about half an hour, the transistor is disconnected.
 - These actions are called programming and erasing, respectively.

Read Only Memory ROM: Dot Notation

Logic with Memory Arrays

- Although they are used primarily for data storage, memory arrays can also perform combinational logic functions.
- A 2^N-word x M-bit memory can perform any combinational function of N inputs and M outputs.

A, B

$$X = AB$$

$$Y = A + B$$

$$Z = A \overline{B}$$

Logic with Memory Arrays

 Called *lookup tables* (LUTs): look up output at each input combination (address)

4-word x 1-bit Array

Y

Logic with Memory Arrays

Data₂ =
$$A_1$$
 xor A_0
Data₁ = \overline{A}_1 + A_0
Data₀ = $\overline{A}_1\overline{A}_0$

Further Reading

- You can read Chapter 5 of your book
 - -Sections 5.4 and 5.5

