

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa

Cálculo 2 — Avaliação P1

Matemática	1 de Fevereiro de 2017

1	
2	
3	
4	
5	
Total	

Aluno(a):....

(1) Determine se as afirmações abaixo são verdadeiras ou falsas. Justifique quando for verdadeira e dê um contra exemplo quando for falsa.

(a) Se f e g são contínuas em [a,b], então $\int_a^b f(x)g(x)\ dx = \left(\int_a^b f(x)\ dx\right)\left(\int_a^b g(x)\ dx\right)$.

(b) Se f' é contínua em [a,b], então $\int_a^b f'(v) \ dv = f(b) - f(a)$.

(c) Se f é contínua em [a,b], então $\frac{d}{dx}\left(\int_a^b f(x)\ dx\right) = f(x)$.

(d) Se f é contínua em [a,b], então $\frac{d}{dx} \left(\int_a^x f(t) \ dt \right) = f(x), \ a \le x \le b.$

(2) (a) Calcule a integral $\int_0^2 (x^2 - x) dx$ pela definição.

(b) Use o Teorema Fundamental do Cálculo para verificar sua resposta.

(3) Calcule as áreas abaixo:

(4) Calcule a intergarl definida $\int_0^4 \frac{x}{\sqrt{1+2x}} dx$.

(5) Calcule a integral indefinida $\int xe^{-2x} dx$.

Fórmulas úteis:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$