## **NOTES 18: THE NORMAL DISTRIBUTION**

Stat 120 | Fall 2025

Prof Amanda Luby

| Three main topics of Stat120 | Three | main | topics | of | Stat120 | ): |
|------------------------------|-------|------|--------|----|---------|----|
|------------------------------|-------|------|--------|----|---------|----|

1. \_\_\_\_\_: Summarizing data with numbers and graphs

2. \_\_\_\_\_: Using confidence intervals to estimate parameters with uncertainty

3. \_\_\_\_\_: Using p-values to evaluate competing hypotheses

Up until now, we've relied on computer simulations (via StatKey or R) to generate \_\_\_\_\_\_ or \_\_\_\_\_ distributions.

We're now going to begin using \_\_\_\_\_\_ to generate these distributions instead

**i** Note

**Normal Density Function:** 

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Notation:

Area under the curve =

**Example 1:** Verbal SAT scores follow a normal distribution with a population mean of  $\mu=580$  and population standard deviation  $\sigma=70$ . What proportion of test-takers score above 650?



**Example 2:** What is the SAT score for the 90th percentile?



i Note
Z-scores:

**i** Note

**Standard Normal Model** 

i Note

**Central Limit Theorem:** For random samples, if \_\_\_\_\_ is big enough, the sampling distribution of \_\_\_\_\_ is approximately \_\_\_\_\_, regardless of what shape the population distribution is.

CLT shortcut for testing:

CLT shortcut for confidence intervals:

Summary of R commands (sketch normal curves to help you remember)

```
pnorm(650, mean = 580, sd = 70, lower.tail = FALSE)
```

[1] 0.1587

qnorm(.9, mean = 0, sd = 1, lower.tail = TRUE)

[1] 1.282