- a) using the training data, prior probabilities: $P_Y(cheetah) = 0.1946$; $P_Y(grass) = 0.8054$;
- b) using the training data,

Figure 1: histogram of $P_{X|Y}(x|cheetah)$

Figure 2: histogram of $P_{X|Y}(x|grass)$

- c) compute feature *X* and state variable *Y*
 - 1) read the image and subtract 248 x 264 pixels;
 - 2) group the large matrix into 8 x 8 small matrices and use DCT transformation;
 - 3) find the second largest absolute value in each 8 x 8 matrices and their index;
 - 4) find their values in the zigzag.txt accordingly;
 - 5) feature X is a 31 x 33 matrix;
 - 6) estimate the gamma parameters for each distribution in b);
 - 7) fit feature *X* for these two gamma distributions;
 - 8) obtain the conditional probabilities $P_{X|Y}(x|i)$, $i = \{cheetah, grass\}$ for observations;
 - 8) find the joint probabilities $P_{x,cheetah}$; $P_{x,grass}$;
 - 9) compare these two joint probabilities to find the state variable

$$Y: 1 = cheetah; 0 = grass;$$

10) state Y is a 31 x 33 matrix of $\{0,1\}$;

Figure 3: picture of state Y

d) compare with the ground truth and compute the probability of error

1) read the mask.imb and subset into 248 x 264 pixels;

- 2) refine the borders and set the matrix to only contain $\{0,1\}$;
- 3) do a Kronecker transformation on state Y and transfer it into 248 x 264;
- 4) compare the mask.imb with transferred state *Y* and count the errors;
- 5) error rate = 0.1729;