- Recall how we calculate the time complexity of dynamic programming:
 - Count the number n of subproblems.
 - Compute the worst case time complexity t of construct the optimal solution from the optimal solutions of the subproblems.
 - ▶ The total time complexity: O(nt)

- ▶ The analysis might be inaccurate.
 - Not all subproblems has running time t.
 - ▶ Actually, they has running time ≤t.
- ▶ Idea
 - Compute the average case time complexity t', not the worst case.
 - The total time complexity: O(nt')
- ▶ Sometimes we may have t'=o(t)!

- ▶ Suppose a binary search tree has n keys k₁<k₂<...<k_n.
- During the execution:
 - ki is queried fi times
 - ▶ (k_i,k_{i+1}) is queried g_i times
 - $k_0 = -\infty$
 - $k_{n+1}=\infty$

- The cost of querying ki: ci
 - c_i is 1 plus the depth of node containing key k_i.
- The cost of querying (k_i,k_{i+1}): c'_i
 - c_i is 1 plus the depth of node containing (k_i,k_{i+1}) .
- The total cost: $cost(T) = \sum_{1 \le i \le n} f_i c_i + \sum_{0 \le i \le n} g_i c_i$
- Goal: Minimizing the total cost.

i	0	1	2	3	4	5
fi		15	10	5	10	20
gi	5	10	5	5	5	10

i	0	1	2	3	4	5
fi		15	10	5	10	20
gi	5	10	5	5	5	10

DP: cost(T)

- ▶ Termination: If n=o, return g₀.
- ▶ Divide: $k_1,...,k_{i-1}$ & $k_{i+1},...,k_n$ for $i \in \{1,...,n\}$
- Conquer: Compute the answers
 - Let p(i) be the answer of $k_1,...,k_{i-1}$
 - Let q(i) be the answer of $k_{i+1},...,k_n$
- Combine:

return
$$\sum_{1 \leq j \leq n} f_j + \sum_{0 \leq j \leq n} g_j + \min_{1 \leq i \leq n} (p(i) + q(i))$$

- ▶ Input: $\langle f_{\alpha},...,f_{\beta},g_{\alpha-1},...,g_{\beta} \rangle$
- ► Termination $\langle g_{\alpha-1} \rangle$: return $g_{\alpha-1}$. $C(\alpha,\alpha-1)$
- Divide: Two types of subproblems
 - $L_{\gamma} = \langle f_{\alpha}, ..., f_{\gamma}, g_{\alpha-1}, ..., g_{\gamma} \rangle$, for $\alpha-1 \leq \gamma < \beta$
 - $Arr R_{\gamma} = \langle f_{\gamma}, ..., f_{\beta}, g_{\gamma-1}, ..., g_{\beta} \rangle, \text{ for } \alpha < \gamma \leq \beta + 1$
- ► Conquer: $C(\alpha, \gamma) = cost(L_{\gamma}) & C(\gamma, \beta) = cost(R_{\gamma})$
- Combine:

$$\sum_{\alpha \leq j \leq \beta} f_j + \sum_{\alpha - 1 \leq j \leq \beta} g_j + \min_{\alpha \leq \gamma \leq \beta} (C(\alpha, \gamma - 1) + C(\gamma + 1, \beta))$$

Note: opt(T)=C(1,n)

$$\sum_{\alpha \leq j \leq \beta} f_j + \sum_{\alpha - 1 \leq j \leq \beta} g_j$$

$\sum_{\alpha \leq j \leq \beta} f_j + \sum_{\alpha - 1 \leq j \leq \beta} g_j$									C(c	ι,β)				
$\alpha \setminus \beta$	0	1	2	3	4	5	(α\β	0	1	2	3	4	5
1	5	30	45	55	70	100		1	5	45	90	125	175	275
2		10	25	35	50	80		2		10	40	70	120	200
3	·		5	15	30	60		3	·		5	25	60	130
4		·		5	20	50		4		·		5	30	90
5			,		5	35		5			'		5	50
6				'		10		6				,		10

$d(\alpha, \beta)$: minarg _{$\alpha \le \gamma \le \beta$} $(C(\alpha, \gamma-1) + C(\gamma+1, \beta))$								
$\alpha \setminus \beta$	1	2	3	4	5			
1	1	1	2	2	2			
2		2	2	2	4			
3			3	4	5			
4				4	5			
5					5			

	$C(\alpha, \beta)$							
$\alpha \setminus \beta$	O	1	2	3	4	5		
1	5	45	90	125	175	275		
2		10	40	70	120	200		
3			5	25	60	130		
4				5	30	90		
5					5	50		
6						10		

Time Complexity

- ▶ The original analysis:
 - ▶ Subproblems: n²
 - Solve ≤2n subproblems to compute the optimal solution
 - ▶ Total: O(n³)
- ► Knuth proved: $d(\alpha, \beta-1) \le d(\alpha, \beta) \le d(\alpha+1, \beta)$
 - ▶ Bonus: paper presentation

Time Complexity

- ► Knuth proved: $d(\alpha, \beta-1) \le d(\alpha, \beta) \le d(\alpha+1, \beta)$
- We only need to solve O(1) subproblems on average to compute $C(\alpha,\beta)$!
 - ▶ Total time: O(n²)
- ▶ Why?
 - $\min_{\alpha \leq \gamma \leq \beta} (C(\alpha, \gamma 1) + C(\gamma + 1, \beta))$ $= \min_{d(\alpha, \beta 1) \leq \gamma \leq d(\alpha + 1, \beta)} (C(\alpha, \gamma 1) + C(\gamma + 1, \beta))$
 - ► $1 \le d(\alpha, \beta) \le n$
 - $d(1,1) \le d(1,2) \le d(2,2) \le ... \le d(n-1,n) \le d(n,n)$
 - $d(1,2) \le d(1,3) \le d(2,3) \le ... \le d(n-1,n)$

 $d(\alpha, \beta)$: minarg_{$\alpha \le \gamma \le \beta$} $(C(\alpha, \gamma - 1) + C(\gamma + 1, \beta))$ $\alpha \setminus \beta$ 3 4 5

$$1 \le d(1,4) \le d(1,5) \le d(2,5) \le 5$$

 $1 \le d(1,3) \le d(1,4) \le d(2,4) \le ... \le d(3,5) \le 5$
 $1 \le d(1,2) \le d(1,3) \le d(2,3) \le ... \le d(4,5) \le 5$

$$1 \le d(1,1) \le d(1,2) \le d(2,2) \le ... \le d(5,5) \le 5$$

 $d(\alpha, \beta)$: minarg_{$\alpha \le \gamma \le \beta$} $(C(\alpha, \gamma - 1) + C(\gamma + 1, \beta))$

Note: the worst case is still $\Theta(n)$!

Total: $O(n^2)$ comparisons Average: $O(n^2)/\Theta(n^2)=O(1)$

O(n) comparisons

O(n) comparisons

O(n) comparisons

O(n) comparisons

- Methods
 - ▶ Aggregate analysis (17.1)
 - Accounting method (17.2)
 - ▶ Potential method (17.3)
- Examples
 - Stack operation: multi-pop
 - Incrementing a binary counter
 - Dynamic tables

Multi-Pop

- Stack supports multi-pop
 - empty: check if the stack is empty $\Theta(1)$
 - \rightarrow push(x): insert x $\Theta(1)$
 - \triangleright pop(): extract an element $\Theta(1)$
 - multipop(k): extract k elements O(k)
- Suppose a stack is initially empty and T(n) is the time complexity to execute n operations on it. $T(n)=O(n^2)$?
- T(n)= Θ (n), i.e., Θ (1) per operation.

Binary Counter

- A K-bit counter c can store $0 \sim 2^{K}-1$.
- ▶ Increment: c=c+1;
 - Cost: the number of bits changed
 - ▶ O(logm) if c store m
 - ► Example: increment 7=111₂ cost 4. 00000111 → 00001000
- Initially, c stores o.
- ▶ C(n): the total cost to increment c to n.
- $ightharpoonup C(n) = \sum_{1 \le m \le n} O(\log m) = O(n \log n)? \Theta(n)$

- ▶ Table supports
 - Insert: insert an element
 - Delete: delete an element
- ▶ Implementation: array
- Load factor α: num/size num=#element
- Dynamic expansion: if the load factor is 1, then double the space. O(num)
- ▶ Insert without expansion: O(1)

```
X1
                             Insert x<sub>2</sub>: 1 write
X1 | X2
                             Insert x<sub>3</sub>: 1 allocation, 1 deallocation, 3 writes
X_1 \mid X_2
X<sub>1</sub> | X<sub>2</sub> | X<sub>3</sub>
                             Insert x<sub>4</sub>: 1 write
X<sub>1</sub> | X<sub>2</sub> | X<sub>3</sub> | X<sub>4</sub> |
                                                        Insert x<sub>5</sub>: 1 allocation, 1 deallocation,
X_1 \mid X_2 \mid X_3 \mid X_4
                                                                                    5 writes
X<sub>1</sub> | X<sub>2</sub> | X<sub>3</sub> | X<sub>4</sub> | X<sub>5</sub> | X<sub>6</sub> | X<sub>7</sub> | X<sub>8</sub>
                                                                                                      Insert x<sub>9</sub>: 1 allocation,
                                                                                                                                  1 deallocation,
X<sub>1</sub> | X<sub>2</sub> | X<sub>3</sub> | X<sub>4</sub> | X<sub>5</sub> | X<sub>6</sub> | X<sub>7</sub> | X<sub>8</sub> | X<sub>9</sub>
                                                                                                                                  9 writes
```

- Dynamic contraction: if the load factor is ≤1/4, then halve the space. O(n)
- ▶ Delete without contraction: O(1)
- Time complexity of N consecutive operations to an empty table: T(N)
- Goal: $T(N) = \Theta(N)$
 - \bullet $\Theta(1)$ per operation

- Multi-pop stack S
 - ▶ Each element popped was pushed.
 - The total cost of multipop operations is no more than $\Theta(p)$ where p is the total number of push operations.
- T(n)= Ω (n) since there are n operations.
- $T(n) = p\Theta(1) + \Theta(p) \le n\Theta(1) + \Theta(n) = \Theta(n)$
- $T(n)=\Theta(n)$

- Incrementing a binary counter
- ▶ When c stores $x2^{k+1}+2^k-1$ (a number ends in 01^k), then increment c will cost $\Theta(k)d$.

Ex:

```
01011001 \rightarrow 01011010
00000111 \rightarrow 00001000
01110011 \rightarrow 01110100
10011111 \rightarrow 10100000
```

- ► How many numbers in $\{0,...,n-1\}$ are in the form $x2^{k+1}+2^k-1$? $\lfloor n/2^k \rfloor$
- $T(n) \le \sum_{1 \le k \le \log_2 n} k \lfloor n/2^k \rfloor < 2n \dots \text{ goal}$
- How?
- $\sum_{1 \le k \le s} k \lfloor n/2^k \rfloor \le \sum_{1 \le k \le s} kn/2^k$
- If $X=\Sigma_{1\leq k\leq s}kn/2^k$, then $X/2=\Sigma_{1\leq k\leq s}kn/2^{k+1}$
- $X-X/2=n/2+n/4+n/8+...+n/2^{s}-n/2^{s+1}$ <n/2+n/4+n/8+...=n
- X/2<n, so $T(n) \le X < 2n$.

- Dynamic table without contraction
- ▶ Insertion:
 - Without expansion: $\Theta(1)$
 - With expansion: $\Theta(s)$, where s is the size of the table after insertion.
- Observation: only at the first time we have $s=1+2^k$, we expand the table.
- In n operations, we only have at most 1+log₂n expansions.

Suppose we have K expansions during these n operations.

```
T(n) ≤ nΘ(1) + Θ(2+2^2+...+2^K)
=Θ(n) + Θ(2^K)
=Θ(n) + O(2n) ... K≤1+log<sub>2</sub>n
=Θ(n)
```

- Idea: assign different cost to each operation
 - ▶ This cost is called amortized cost c'.
 - Actual cost: c
 - ► Credit: c'-c
- During the execution, the total credit must be non-negative.
 - So the total amortized cost is an upper bound of the total actual cost.

Operation	Actual cost	Amortized cost
empty	1	1
push	1	2
pop	1	0
multipop	min(s,k)	0

Note: you have to show that the total credit is always non-negative!

Operation	Actual cost	Amortized cost
Change 0 to 1	1	2
Change 1 to 0	1	0

Note: you have to show that the total credit is always non-negative!

Operation	Actual cost	Amortized cost
Insert	1	3
Delete	1	O
Expansion	S	0

Note: you have to show that the total credit is always non-negative!

Potential Method

- It might be hard to prove the total credit is always non-negative.
- Idea: your deposit account is always nonnegative.
- Potential function Φ: deposit account
- Amortized cost: income
- Actual cost: expense
- ▶ Total credit is negative: bankrupt

Potential Function

- Potential function Φ (deposit)
 - Map a intermediate state into a value
 - $\Phi(S_0)=D_0$ (Initially, your deposit is 0.)
 - ▶ Always $\ge D_0$. (Your deposit ≥ 0)
- Example:
 - ▶ The stack size
 - The number of 1's
 - ▶ The number of elements

Potential Function

- Goal: to prove that the amortized costs are properly defined.
- ▶ n operations: $\sigma_1,...,\sigma_n$.
 - \blacktriangleright σ_i transforms state S_{i-1} into S_i .
 - $ightharpoonup c(\sigma_i)$: actual cost of σ_i
 - $c'(\sigma_i)$: amortized cost of σ_i
 - $c'(\sigma_i) = c(\sigma_i) + \Phi(S_i) \Phi(S_{i-1}).$
- c' is properly defined: $\Phi(S_k) \ge \Phi(S_0)$

$$\Sigma_{1 \leq i \leq k} c'(\sigma_i) = \Sigma_{1 \leq i \leq k} (c(\sigma_i) + \Phi(S_i) - \Phi(S_{i-1}))$$

$$=\Phi(S_k)-\Phi(S_0)+\Sigma_{1\leq i\leq k}c(\sigma_i)\geq \Sigma_{1\leq i\leq k}c(\sigma_i)$$

Potential Function

- Goal: give a good amortized analysis
- Method: Find a good potential function Φ
- What is a good potential function?
 - IS a potential function.
 - ▶ The induced amortized costs are close.
- It might be hard to find a good potential function, but this method is one of the most powerful tool to analyze novel data structure.

Bonus

- Present: Show how to analyze the time complexity of splay trees.
- ▶ Present: Partial persistent data structures with O(1)-space and amortized O(1)-time overhead. http://courses.csail.mit.edu/6.851/spring12/lectures/Lo1.html

Example

- Multipop stack
 - \bullet Φ (S): the size of the stack
 - σ_i is empty: $c'(\sigma_i)=1+\Phi(S_i)-\Phi(S_{i-1})=1$
 - $\bullet \sigma_i \text{ is push: } c'(\sigma_i) = 1 + \Phi(S_i) \Phi(S_{i-1}) = 2$
 - σ_i is pop: $c'(\sigma_i)=1+\Phi(S_i)-\Phi(S_{i-1})=0$
 - \bullet σ_i is multipop:

$$c'(\sigma_i) = \min(s,k) + \Phi(S_i) - \Phi(S_{i-1}) = 0$$

Example

- Incrementing a binary counter
 - \bullet Φ (S): the number of ones
 - σ_i increment $x2^{k+1}+2^k-1$ to $x2^{k+1}+2^k$: $c'(\sigma_i)=k+1+\Phi(S_i)-\Phi(S_{i-1})=k+1-(k-1)=2$
 - Example: k=5, actual cost=6 10011111 \rightarrow 10100000

- Support expansion & contraction
- s: size of allocated memory
- e: number of elements
- $\Phi(S_0)=0$ (Initially, s=0 and e=0)
- ▶ $\Phi(S_i)=2e_i-s_i$ if $2e_i \ge s_i$ (load factor $\alpha \ge 1/2$)
- $\Phi(S_i) = s_i/2 e_i \text{ if } 2e_i \le s_i \text{ (load factor } \alpha \le 1/2)$
- Note: when $\alpha=1/2$, then $2e_i-s_i=0=s_i/2-e_i$.

Insertion w/o Expansion

$$\begin{array}{ll} \blacktriangleright \alpha_{i-1} \geq 1/2 & \Phi(S_i) = 2e_i - s_i \text{ if } \alpha \geq 1/2 \\ \blacktriangleright c'(\sigma_i) = 1 + \Phi(S_i) - \Phi(S_{i-1}) & \Phi(S_i) = s_i/2 - e_i \text{ if } \alpha \leq 1/2 \\ = 1 + 2e_i - 2e_{i-1} - s_i + s_{i-1} \\ = 1 + 2e_i - 2(e_i - 1) - s_i + s_i = 3 \\ \blacktriangleright \alpha_{i-1} < 1/2 \\ \blacktriangleright c'(\sigma_i) = 1 + \Phi(S_i) - \Phi(S_{i-1}) \\ = 1 + s_i/2 - e_i - s_{i-1}/2 + e_{i-1} \\ = 1 + (e_i - 1) - e_i + s_i/2 - s_i/2 \dots e_{i-1} = e_i - 1 \\ = 0 \end{array}$$

Insertion with Expansion

$$\begin{array}{l} \blacktriangleright \alpha_{i-1} = 1 & \boxed{\Phi(S_i) = 2e_i - s_i \text{ if } \alpha \geq 1/2} \\ \blacktriangleright c'(\sigma_i) = s_{i-1} + 1 + \Phi(S_i) - \Phi(S_{i-1}) & \\ = s_{i-1} + 1 + 2e_i - 2e_{i-1} - s_i + s_{i-1} & \\ = s_{i-1} + 1 + 2e_i - 2(e_{i-1}) - 2s_{i-1} + s_{i-1} & \\ = 1 + 2(e_{i-1} + 1) - 2e_{i-1} & \\ = 3 & \end{array}$$

Deletion w/o Contraction

```
\rightarrow \alpha_i \geq 1/2
                                                       |\Phi(S_i)=2e_i-s_i \text{ if } \alpha \geq 1/2
                                                       \Phi(S_i)=s_i/2-e_i \text{ if } \alpha \leq 1/2
    \bullet c'(\sigma_i)=1+\Phi(S_i)-\Phi(S_{i-1})
      =1+2e_{i}-2e_{i-1}-s_{i}+s_{i-1}
      =1+2e_i-2(e_i+1)-s_i+s_i=-1
\rightarrow \alpha_i < 1/2
    \bullet c'(\sigma_i)=1+\Phi(S_i)-\Phi(S_{i-1})
      =1+s_i/2-e_i-s_{i-1}/2+e_{i-1}
      =1+(e_i+1)-e_i+s_i/2-s_i/2 \dots e_{i-1}=e_i+1
      =2
```

Deletion with Contraction

$$\Phi(S_i)=s_i/2-e_i \text{ if } \alpha \leq 1/2$$

- ▶ Before deletion: $e_{i-1}-1=s_{i-1}/4$
- After contraction: $\alpha_i = 1/2$

$$c'(\sigma_i) = e_i + \Phi(S_i) - \Phi(S_{i-1})$$

$$= e_i + s_i/2 - e_i - s_{i-1}/2 + e_{i-1}$$

$$= s_i/2 - s_{i-1}/2 + e_i + 1 \dots e_{i-1} = e_i + 1$$

$$= -s_i/2 + e_i + 1 \dots s_{i-1} = 2s_i$$

$$= -e_i + e_i + 1 \dots s_i = 2e_i$$

$$= 1$$