fn(X) measurable functions

収敛类型.

① Pointwise convergence a.e. fix $\xrightarrow{a.e.}$ f(x)

② Convergence in measure $f_{n}(x) \xrightarrow{m} f(x)$ $\forall \xi > 0$ s.t. $\forall n > N(\xi)$

m ({x e E | |fn |x) - f |x) | > E) < E

Fact: $f_n \xrightarrow{a.e.} f \Rightarrow f_n \xrightarrow{m} f$. $\overline{k} = \overline{k} \cdot \overline{k} \cdot$

Thm:

Assume $f_n \xrightarrow{m} f$ on E. $(m \mid E) < \infty$).

Then \exists subsequence $f_{n_k} \xrightarrow{a.e.} f$ on E.

Pf:

Since $f_n \stackrel{m}{\longrightarrow} f$ $\exists inki = ini st.$

 $m\left(\left\{\chi\in\mathbb{E}\left|\int_{n_k}(x)-\int_{(X)}\left|\pi\frac{1}{2^k}\right|\right\}\right)<\frac{1}{2^k}$

Ex = {x \in E | |fnx(x) - f(x)| > \frac{1}{2^k}} We know m(Ex) < \frac{1}{2^k}

Claim: $m(\overline{\lim} \, \xi k) = 0$ LHS = $\lim_{z \to \infty} m(\bigcup_{j=1}^{\infty} \xi_j) < \lim_{z \to \infty} \sum_{j=1}^{\infty} m(\xi_j) < \lim_{z \to \infty} \sum_{j=1}^{\infty} \frac{1}{z^{j-1}} = 0$ $\forall x \notin \overline{\lim} \, \xi k \iff x \notin (\bigcup_{j=1}^{\infty} \bigcup_{j=1}^{\infty} \xi_j)^{C} = \bigcup_{j=1}^{\infty} \bigcup_{j=1}^{\infty} \xi_j^{C}$ $\Rightarrow \exists_{i > \infty} \, s.t. \, x \in \bigcup_{j=1}^{\infty} \xi_j^{C} \Rightarrow \forall_{j > j > \infty} \, |f_{n_j}(x) - f(x)| < \frac{1}{2^{j}}$ In particular $f_{n_k}(x) \to f(x)$ In sum. $f_{n_k}(x) \xrightarrow{a.e.} f(x)$.

Rmk: 可以看到. 正上面的过程中没有用到 m(E)<+∞. 可以略去.

Application Corollary:

 $f_n(x) \xrightarrow{m} f(x)$ iff $\forall \{n_k\} \subseteq \{n\}$. $\exists a \text{ subsequence s.t. } f_{nj} \xrightarrow{a.e.} f$.

Since $f_n \xrightarrow{m} f$. $f_{n_k} \xrightarrow{m} f$ by the theorem $\exists \{n_{kj}\} \subseteq \{n_{k}\} \text{ s.t. } f_{n_{kj}} \xrightarrow{a.e.} f$

(=" Prove by contradution

Assume $f_n \xrightarrow{m} f$. Then $\exists \xi_0 > 0$ and $\exists h_{k_0} = \xi_0 < 0$. $m(\exists x \in \exists | f_{n_k}(x) - f(x)| > \xi_0) > \xi_0$ However, $f_{n_{k_0}} \xrightarrow{a.e.} f \Rightarrow f_{n_{k_0}} \xrightarrow{m} f$. contradiction!

Exercise 1:

Suppose $f_n \xrightarrow{m} f$ on E. Prove $|f_n|^p \xrightarrow{m} |f|^p (\forall p>0)$.

pf:

Integration.

- ① Simple function $f(x) = \sum_{k=1}^{\infty} a_k \chi_{Ek}$. $a_k \in \mathbb{R}$. Ex measurable set. $\int f = \sum_{k=1}^{\infty} a_k m(E_k)$
- ③ $f_{>0}$. 0≤g≤f. g is of type ②. $\int f = \sup_{g} \int g < \infty \text{ iff } f \text{ is integrable } (f \in L')$
- \oplus . $f = f^{+} f^{-}$ $\int f = \int f^{+} \int f^{-}$ f integrable \iff If I integrable

L'= {integrable functions} $f \cdot g \in L'$ we define $\|f - g\|_{L'} = \int |f - g|$ Fact: L'is a complete metric space.

- O Monotone Convergence Theorem. (MCT): $f_{n \ge 0}$. assume $f_{n \mid x} \le f_{n + 1}(x)$. $\forall n$. Define $f(x) = \lim_{n \ge \infty} f_{n \mid x}$. Then $\lim_{n \ge \infty} \int f_{n} = \int f_{n \mid x}$
- 2 Fatou's lemma: $f_n(x) \gg 0$ and $f_n \xrightarrow{a.e.} f$, $f_n \gg \int f_n \approx \int f_n = 0$

eg.
$$f_n = n (1 + (-1)^n) \chi_{[0, \frac{1}{n}]}$$
 define on R . $f_n \gg 0$.

$$\int f_n = n (1 + (-1)^n) \int \chi_{[0, \frac{1}{n}]} = 1 + (-1)^n = \{0.2.0.2...\}$$
If $\chi_{\downarrow 0}$ $f_n(x) \to 0$. $\Rightarrow f_n(x) \xrightarrow{a.e.} 0$

3. Dominated Convergence Theorem. LDCT).

Assume $|f_n| \leq g \in L'$ If $f_n \xrightarrow{a.e.} f$. then $f \in L'$ and $\lim_{n \to \infty} \int |f_n - f| = 0 \Rightarrow \lim_{n \to \infty} \int f_n = \int f$ $f_n \xrightarrow{a.e.} f \Rightarrow f_n \xrightarrow{L'} f$

eg.
$$f_n = \frac{1}{n} \chi_{\text{to,nj}}$$
 $f_n \rightarrow 0$.
$$\int f_n = 1 + 0 \quad \text{因此时不存在 } f_n | \leq g \in L'.$$

Fact:

If $f_n \xrightarrow{\Sigma'} f$, then $f_n \xrightarrow{m} f$

Corollory:

If $f_n \stackrel{\text{L}}{\longrightarrow} f$, then $\exists \{n\} \subseteq \{n\}$, $f_{nk} \stackrel{\text{de}}{\longrightarrow} f$

pf of the Fact:

Consider $E_n = \{x \mid |f_n|x\rangle - f(x)| \neq \xi\}$ $\xi m(E_n) \leq \int_{E_n} |f_n - f| \leq \int_{E_n} |f_n - f| \leq 0$ So $\exists N(\xi)$, s.t. $m(E_n) < \xi$. $\forall n \geq N$

Exercise 2

 $f_n \xrightarrow{a.e.} f$ and $f_n \cdot f \in L'$. Prove if $\int |f_n| \xrightarrow{n \to \infty} \int |f|$, then $\int |f_n - f| \xrightarrow{n \to \infty} 0$

p+:

$$\begin{split} \left| \left| f_{n} - f \right| - \left| f_{n} \right| &\leq |f|. \\ \left| \left| f_{n} - f \right| - \left| f_{n} \right| \right| &\xrightarrow{a.e.} |f|. \\ \left| \lim_{n \to \infty} \int |f_{n} - f| - \left| f_{n} \right| &= \int |f|. \\ \left| \lim_{n \to \infty} \int |f_{n} - f| - \left| \lim_{n \to \infty} \int |f_{n} - f| &= \int |f|. \end{split} \right.$$