Extensão de um elemento do artigo *Accelerating*Decoupled Look-ahead via Weak Dependence Removal: A Metaheuristic Approach

Gustavo Ciotto Pinton

Universidade Estadual de Campinas - UNICAMP MO601B - Arquitetura de Computadores

18 de Novembro de 2016

Sumário

Arquitetura Decoupled Look-Ahead

Projeto 3

Projeto 4

Conclusões

Referências

Arquitetura Decoupled Look-Ahead

Relembrando

- Parser que transforma o binário do programa principal em uma versão reduzida. somente para procurar *misses*.
- Versão esqueleto roda em *core* separado, anteriormente ao programa principal.
- Os resultados de saltos condicionais são transmitidos através de uma fila para o core.

. Garg and M. Huang, "A Performance-Correctness Explicitly Decoupled Architecture", MICRO-08

Proposta do artigo

Relembrando...

- Constatou-se que a thread auxiliar, isto é, a look ahead thread se tornou o novo limite de velocidade do sistema.
- A corretude da look-ahead thread não é exigida, permitindo várias otimizações
 - Dependências fracas: instruções que contribuem marginalmente para o resultado e, portanto, podem ser retiradas.
- O artigo propõe uma maneira de otimizá-la a partir de algoritmos genéticos:
 - ldentificação dos pontos desnecessários que poderiam ser retirados desta thread.
 - Caracterização de genes e cromossomos.

Relembrando...

▶ Reprodução das curvas ideal e single-thread da figura 3.

Figure 3. Performance comparison of 4 configurations. Shown in the bars are baseline single core (left) and a decoupled look-ahead system (right). Two upper-bounds are shown: the performance of a single core with idealized branch predictions and perfect cache accesses (curve with circles), and the the approximate speed limit of the look-ahead thread (gray wide curve indicating approximation). The applications are sorted with increasing performance gap between the decoupled look-ahead system and the prediction- and accesses-idealized single-core system.

Resultados

IPC dos benchmarks do SPEC CPU2006

Configuração do Arquivo de Configuração Padrão Gainestown

IPC dos benchmarks do SPEC CPU2006

Configuração do Artigo

Introdução

- Parâmetro modificado: tamanho das páginas de memória:
 - 4KB e 4MB.
 - Projeto 2: número de acessos adicionais à memória.
 - Projeto 4: efeitos da alteração no IPC.
- Modificações em relação ao projeto 3:
 - Pinballs com 100M warmup e 30M região detalhada: recálculo de todos os resultados anteriores.
 - Problema com a propriedade perf_model/dram/latency: sniper a interpreta como nanossegundos e não como ciclos.

Implementação

- Classe TLB do sniper modificada:
 - ➤ 3 constantes importantes: SIM_PAGE_SHIFT, SIM_PAGE_SIZE e SIM_PAGE_MASK.
 - SIM_PAGE_SIZE = (1 « SIM_PAGE_SHIFT)
 - ► SIM_PAGE_MASK = ~ (SIM_PAGE_SHIFT 1)
 - Por padrão: SIM_PAGE_SHIFT = 12 (4KB)
 - Alterações no construtor da classe.
- Criação de uma nova opção perf_model/tlb/page_size_bits:
 - ► Classe MemoryManager lê essa propriedade e instancia TLBs.
- Estrutura das caches:
 - 2 níveis.
 - ▶ I-TLB: 128 entradas e 4-way associative.
 - ▶ D-TLB: 64 entradas e 4-way associative.
 - ▶ STLB: TLB compartilhada com 512 entradas e 4-way associative.

Figura: IPCs utilizando páginas de 4KB e 4MB

Figura: Diferença nos resultados obtidos nas páginas de 4KB e 4MB

Figura: Diferença das curvas ideais calculadas em dois tipos de pinballs

Figura: Diferença das curvas de 4KB calculadas em dois tipos de pinballs

Conclusões

- As curvas de 4KB e 4MB se distanciam da ideal para benchmarks com grande memory footprints.
- ► A modificação do tamanho das páginas da memória não é um fator determinante para o IPC: obtivemos um ganho, em média, de apenas 0.11.
- Diferença entre as execuções do pinball:
 - Caso ideal: pouca divergência, já que os mesmos intervalos de cache misses e mispredictions foram retirados.
 - 4KB: maior divergência, principalmente para os benchmarks com maiores footprints de meemória

Referências

- Carison, T. E. (2012). Interval simulation. http://snipersim.org/w/Interval_Simulation.
- Carison, T. E. and Heirman, W. (2013). The Sniper User Manual.
- Parihar, R. and Huang, M. C. (2014). Accelerating decoupled look-ahead via weak dependence removal: A metaheuristic approach. International Symposium on High Performance Computer Architecture.
- Henning, J. L. (2007). SPEC CPU2006 Memory Footprint, ACM SIGARCH Computer Architecture News