CSC236 Worksheet 4 Solution

Hyungmo Gu

May 7, 2020

Question 1

• Let $n \in \mathbb{N}$ and assume that $\exists k \in \mathbb{N}^+$, $n = 3^k$, so $k = \log_3 n$.

Then, since $n = 3^k$ and $3 \mid n$, we have $\lceil n/3 \rceil = n/3$.

Then,

$$T(n) = 2n + T(n/3)$$
 [By def.] (1)

$$= 2(n/3) + (2(n/3) + T(n/3^2))$$
 [By subtituting n/3 for n in def.] (2)

$$= 2^2(n/3) + T(n/3^2)$$
 (3)

$$= 2^3(n/3^2) + T(n/3^3)$$
 [By subtituting n/3 for n in def.] (4)

$$\vdots$$
 (5)

$$= 2^k(n/3^{k-1}) + T(n/3^k)$$
 [After k applications] (6)

$$= 2^{\log_3 n}(n/3^{\log_3 n-1}) + T(n/3^{\log_3 n})$$
 [By replacing $k = \log_3 n$] (7)

$$= 2^{\log_3 n}(n(3)/n) + T(n/n)$$
 (8)

$$= 3 \cdot 2^{\log_3 n} + T(1)$$
 (9)

$$= 3 \cdot 2^{\log_3 n} + 2$$
 (10)

Correct Solution:

Let $n \in \mathbb{N}$ and assume that $\exists k \in \mathbb{N}^+$, $n = 3^k$, so $k = \log_3 n$.

Then, since $n = 3^k$ and $3 \mid n$, we have $\lceil n/3 \rceil = n/3$.

Then,

$$T(n) = 2n + T(n/3)$$
 [By def.] (11)

$$= 2n + 2(n/3) + T(n/3^2)$$
 [By subtituting n/3 for n in def.] (12)

$$= 2n + 2(n/3) + 2(n/3^2) + T(n/3^3)$$
 [By subtituting n/3 for n in def.] (13)

$$\vdots$$
 (14)

$$= 2\sum_{i=0}^{k-1} n/3^i + T(n/3^k)$$
 (15)

$$= 2 \cdot 3^k \left(\frac{1 - (1/3)^k}{1 - 1/3}\right) + T(n/3^k)$$
 [By using geometric series] (16)

$$= 2 \cdot 3^k \cdot 3/2 \left(1 - (1/3)^k\right) + T(n/n)$$
 (17)

$$= 3(3^k - 1) + T(1)$$
 (18)

Notes:

• Repeated Subtitution:

 $=3^{k+1}-1$

- Is a technique used to find a closed form formula
- closed form formula is a simple formula that allows evaluation of T(n) without the need to evaluate, say T(n/2)

i.e. from

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(n/2) + dn & \text{if } n > 1 \end{cases}$$
 (20)

(19)

to

$$T(n) = cn + dn \log_2 n$$

Example:

Consider the recurrence

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(n/2) + dn & \text{if } n > 1 \end{cases}$$
 (1)

Find closed form formula for T(n), where n is an arbitrary power of 2. That is

 $\exists k \in \mathbb{N}, n = 2^k$.

Let $n \in \mathbb{N}$ and assume that $\exists k \in \mathbb{N}^+$, $n = 2^k$, so $k = \log_2 n$.

Then,

$$T(n) = 2T(n/2) + dn$$
 [By 1] (2)

$$= 2\left(2T(n/2^2) + dn/2\right) + dn$$
 [By subtituting $n/2$ for n in 1] (3)

$$= 2^2T(n/2^2) + 2dn$$
 [By subtituting $n/2$ for n in 1] (5)

$$= 2^3T(n/2^3) + 3dn$$
 [By subtituting $n/2$ for n in 1] (6)

$$\vdots$$
 (7)

$$= 2^kT(n/2^k) + kdn$$
 [After k applications] (8)

$$= 2^{\log_2 n}T(n/2^{\log_2 n}) + (\log_2 n)dn$$
 [By replacing $k = \log_2 n$] (9)

$$= nT(1) + (\log_2 n)dn$$
 (10)

$$= cn + (\log_2 n)dn$$
 (11)

Question 2

• Let $n \in \mathbb{N}$. Assume $\exists k \in \mathbb{N}^+, n = 3^k$, so $\log_3 n = k$.

Then, because we know $3 \mid 3^k$, we can write $\lceil n/3 \rceil = n/3$.

Then,

$$R(n) = n + 3R(n/3)$$
 [By def.] (12)

$$= n + (n/3 + 3R(n/3^2))$$
 [By subtituting $n/3$ for n in def.] (13)

$$= n + n/3 + (n/3^2 + 3R(n/3^3))$$
 [By subtituting $n/3$ for n in def.] (14)

$$\vdots$$
 (15)

$$= \sum_{i=0}^{k-1} n/3^i + 3R(n/3^k))$$
 [After k repeatitons] (16)

$$= n\left(\frac{1-1/3^k}{1-1/3}\right) + 3R(n/3^k)$$
 [By using geometric series] (18)

$$= (3n)/2\left(1-1/3^k\right) + 3R(n/3^k)$$
 [By using geometric series] (18)

$$= (3 \cdot 3^k)/2(1-1/3^k) + 3R(3^k/3^k)$$
 [By subtituting 3^k for n] (19)

$$= 3/2(3^k - 1) + 3R(1)$$
 (20)

$$= 3/2(3^k - 1) + 3 \cdot 0$$
 [By def.] (21)

$$= 3/2(3^k - 1)$$