Pima Indian Women: Diabetes Risk Analysis

Isabelle Berkowitz, Martin Topacio, Carly Schwartberg, Siddharth Das

STA 135 Multivariate Data Analysis, June 6, 2024

Contents

1	INTRODUCTION	2
2	THE DATA 2.1 Description of Data Set	2 2
3	Initial Data Visualizations 3.1 Correlation Matrix Analysis	2
4	Methodology	4
5	Results and Discussion 5.1 Box's M-test for Homogeneity of Covariance Matrices 5.2 Quadratic Discriminant Analysis 5.3 Principal Component Analysis:	4
6	Conclusion	6
7	Refrences	7

1 INTRODUCTION

In the 1960s the long-term commitment to study type 2 diabetes and obesity in Pima Indians began to indulge. With their willingness to participate in research exploration, statisticians identified significant findings regarding "the epidemiology, physiology, clinical assessment, and genetics" ¹ heavily related to these major health issues. Throughout history, Pima Indians were forced to adapt to new territory due to white settlers, causing them to reset irrigation systems for agriculture to support their food growth. As a result of this displacement and farming issues, the amount of food, physical activity, and the height of their economy was very poor. As a result diabetes and obesity became more prevalent among the Pima Indians. The research collected showed that type 2 diabetes increased during this time for Pima women, likely as a result of increased body mass index. The goal of our project is to visually demonstrate the correlation between our dependent variable against various factors and to perform a more in-depth analysis of this data by applying multivariate techniques taught in the course and understanding why certain methods are or are not significant to our data.

2 THE DATA

In this project, we dive into the Pima Indians Diabetes Database to see what factors have higher significance in contributing to the prevalence of type 2 diabetes in female Pima Indians. The data has been collected from the U.S. National Institute of Diabetes and Digestive Kidney Diseases on women $21 \le$. We extracted this data in R-Studio using the library package (mlbench) containing 768 observations onto 9 variables. ² Computing the total counts in R, we found that 500 women do not have diabetes, while 268 do.

2.1 Description of Data Set

- Pregnancies: Number of times a woman has been pregnant
- Glucose: Plasma Glucose Concentration
- Pressure: Diastolic Blood Pressure (mm Hg)
- Triceps: Triceps Skin Fold Thickness (mm)
- Insulin: 2 Hour Serum Insulin (mu U/ml)

- Mass: Body mass index $\frac{weight(kg)}{height(m)^2}$
- Pedigree: Diabetes Pedigree Function
- Age: The age of the woman
- Diabetes: Represented as a factor level for the test results (2 = positive, 1 = negative)

3 Initial Data Visualizations

The following visualizations represent the beginning understanding of the relationships between diabetes prevalence among other factors.

3.1 Correlation Matrix Analysis

The first graphs demonstrate the correlation between factor variables and the distributions between the categorical variables, on whether a woman has diabetes or not. We see there is a high correlation between **age** and **pregnancy**, likely because as we get older, pregnancy becomes more common. There is some moderate correlation between **insulin** and **triceps**, implying that women with high insulin levels may have thicker triceps folds (and vice versa).

3.2 Box Plot Analysis

The second set of graphs represents the distribution of diabetes (pos/neg) of individuals among others. A significant finding is that young adults (ages 20-30) have a higher prevalence of diabetes-positive cases compared to aged $30 \le$. Higher glucose, BMI, and pedigree function values associate with a higher incidence of diabetes. However, blood pressure and tricep thickness do not strongly correlate.

3.3 Box Plot Analysis

The boxplots represent the distribution of values for each factor on whether a person has diabetes(pos/neg), by identifying outliers. Showing **age** and **high glucose levels** are the most influential factors in diabetes prevalence over time. **Pregnancy** and **BMI** suggest significant differences among others, implying **lifestyle** heavily contributes to diabetes risk. In conclusion, these graphs confirm the well-known risk factors for diabetes outlining a clear comparison of these metrics between those with and without diabetes.

¹Dataset source: High-Risk Populations: The Pimas of Arizona and Mexico

²Dataset source: Pima Indians Diabetes Data

(a) Correlation Matrix Plots

(b) Numeric Correlation Matrix

Figure 1: Correlation Matrix Plots to Understand Relationships between factors

Figure 2: Distribution of first 4 Categorical variables

Figure 3: Distribution of last 4 Categorical variables

(a) Caption for Figure 1

(b) Caption for Figure 2

Figure 4: Overall Caption

4 Methodology

1. Box's M Test:

For the transitions of univariate to multivariate we conduct this test to check for the variance between the covariance matrices. This test can help statisticians determine if LDA or QDA applies better to specific data through hypothesis testing. When the **p-value** is <0.05 we **reject the null hypothesis** stating that variance-covariance is the same. When the p-value is close to zero you will want to continue with QDA. This test assumes $x_1, x_2, ..., x_{n1} N_p(\mu_x, \Sigma_1)$ and $y_1, y_2, ..., y_{n2} N_p(\mu_y, \Sigma_2)$. These assumptions guide us into the computation of M:

$$M = \frac{|S_1|^{\frac{v_1}{2}} + |S_2|^{\frac{v_2}{2}}}{|S_{pl}|^{\frac{v_1}{2}} + \frac{v_2}{2}}$$

2. Linear Discriminant Analysis:

A is a form of statistical classification that identifies patterns and looks for 'linear combinations that separate different factors between classes and data types.' Our model used what is called **fault diagnosis** as we attempted to see which variables were "**good**" = high association and "**bad**" = low effect in diabetes prevalence. Depending on the outcome of the p-value in Box's M test we determine if LDA or QDA is more reasonable. To check assumptions for this model, you can implement Box's M test along with the linear discriminant function:

$$s_k(x) = x^T \Sigma^{-1} \mu_k - 0.5 \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

3. Quadratic Discriminant Analysis

On the other hand, QDA allows us to understand how our specified factors vary when the population covariance matrices are different. In the form of classification, this procedure leads to conclusions as to how variables discriminate between groups of dependent and controlled data. These results tend to be more accurate and credible which is significant in looking at risk factors such as diabetes prevalence among risk and demographic factors. The quadratic discriminant function follows as:

$$S_k(x) = \frac{-1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) + \log \pi_k$$

4. Principal Component Analysis

PCA is a common statistical procedure requiring us to "choose a subspace to maximize the projected variance, or minimize the reconstruction error." Once we remove constants to avoid misleading results, the test can be performed. We are then left with standard deviations on the principal components, variance, and scaled proportions. PCA applies the **Courant-Fischer Theorem** where if **A** is a symmetric matrix, we denote the eigenvalues as $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$ where:

$$\lambda_k \min_{\alpha \in T} \cdot \max_{x \in S_k^{\alpha}} \cdot k(zerovector) \frac{X^T A x}{||x||_2^2}$$

5 Results and Discussion

5.1 Box's M-test for Homogeneity of Covariance Matrices

We use this to determine whether we should implement QDA or LDA. When we conducted this test in R we got a p-value of < 2.2e-16, which is so close to zero that we rejected the null hypothesis and continued with performing QDA on the dataset.

5.2 Quadratic Discriminant Analysis

By implementing QDA we split the data into training and test sets. This allowed us to perform QDA with k-fold cross-validation, and again without splitting data. We plan to evaluate the accuracy of each QDA process and see which is the best for fitting the data, new and old. From the confusion matrix, we see that it yields 122 true negatives, 28 false negatives, 41 true positives, and 39 false positives. False positives are indicative of Type I error, while false negatives are indicative of Type II error. From our confusion matrix, we see 39 healthy women were diagnosed with onset diabetes, and 28 women with onset diabetes were incorrectly diagnosed as healthy.

³Dataset source: How to Use LDA and QDA with Multiple Predictors

⁴Dataset source: Week 8-1_annotated

⁵Dataset source: What is Principal Component Analysis

a) Confusion Matrix:

From the confusion matrix, we see that it yielded 122 true negatives and 28 false negatives, 41 true positives, and 39 false positives. False positives are indicative of Type I error, and false negatives are indicative of Type II error. This means from our confusion matrix, 39 healthy women were diagnosed with onset diabetes, and 28 women with onset diabetes were not.

b) QDA (split) Performance Metrics:

In this table (outputted in markdown) we identify several key findings. First, we obtain an accuracy rate of **70.87%**, which is the %age of correctly classified instances. We get a precision rate of **75.78%**, which is the %age of identifications that prove to be correct. The recall %age is **81.33%**, the %age of actual positives that are correctly identified. The F1 score, the mean of precision and recall, is 78.46%. Finally, we obtained a misclassification error rate of **29.13%**. For precision, recall, and F1 score, we ideally would desire rates at 80 % or above. Our precision and F1 rates are somewhat close to 80 %, while our recall %age is over 80 %, which is generally good. We want high accuracy, ideally above **90%**, but our accuracy is at **70.87%**, which is not good enough. Our misclassification error rate is mediocre at **29.13%**, with a rate at **40%** or above being considered poor.

c) QDA with cross-validation - Confusion Matrix

Examining the confusion matrix from the QDA model with cross-validation, we have **432** true negatives **68** false negatives, **155** true positives and **113** false positives. This indicates that **113** healthy women were incorrectly diagnosed with diabetes (Type I error), and **68** women with diabetes were incorrectly diagnosed as healthy (Type II error).

d) QDA with cross-validation - Performance Metrics

When running a QDA model with cross-validation, we obtain several findings. First, our accuracy is **76.43**%, showing improvement over the prior model **WITH** training and test sets. There are improved precision and recall rates at **79.27**% and **86.4**%, respectively, an improved F1 score of **82.68**%, and a lower misclassification error rate, **23.57**%. Our accuracy rate is about **6**% closer to a "good" rate of 80 %, but not at our desired "great" rate of 90% or higher. Our precision rate is almost at 80 %, considered generally good, and our recall rate is sitting at a good % age. Our F1 score is also now above 80 %, which is good. The misclassification error rate did not drop as much as we hoped, with it still sitting at a somewhat mediocre %age, but it is still beneficial that it lowered at all.

e) QDA without splitting - Performance Metrics

Since both the QDA cross-validation model and the QDA model without splitting result in the same accuracy, precision, recall, F1 score, and misclassification error rate, the cross-validation model is better because it has less risk of overfitting, so it will make more accurate predictions on new data compared to the model without splitting data.

5.3 Principal Component Analysis:

We implemented PCA in our project which allowed us to explore relationships in a specific subspace to optimize projection variance. Our goal of PCA was to minimize the reconstruction error.

- a) PCA Plots (PC1 vs. PC2): Plot 1 shows the correlation between PC1 and PC2. From this(in markdown), we know PC1 is heavily driven by insulin levels and PC2 is driven by glucose. The cluster at the origin suggests, that most people have average levels of both. Those straying right on the x-axis indicate higher insulin and those straying up on the y-axis indicate higher glucose levels. From this plot, we conclude the individuals who are at risk for both factors are the most likely to have the risk of diabetes.
- b) Contribution Ratio: The contribution ratio plot shows us how many principal components are needed to get a majority of the variance. We can see a fast incline from the first 2 points and relative steadiness among other components, not to much fluctuation. Showing us that PC1 and PC2 are the main factors for the variance. Overall from this plot, we can see that after the first 6 components, the plot flattens out.
- c) Overall Threshold: For the overall threshold, we interpret the eigenvalues and see there is a large drop from PC1 to PC2. The line represents the mean and those above it have significance to the variance. The graph shows only PC1 is above the line, and in far second place PC2 is closest to the line out of the remaining components.
- d)Scree Plot: The scree plot shows us a very similar thing to the overall threshold plot. Instead of looking at the big drop in eigenvalues to interpret the number of components needed, the Scree plot gives us a bigger overview of the eigenvalues for our dataset. This shows us the rate of variation as you go from one component to the next. As we can see here the output is generally the same showing the eigenvalue for PC1 to be by far the highest.

Figure 7: c) Comparison of Trends in Eigenvalues

Figure 8: d) Overview of the Eigenvalues

6 Conclusion

In the 1960s the long term-commitment to study type 2 diabetes and obesity in women Pima Indians began to indulge. With their homes taken over by American settlers throughout history, their access to food, levels of physical activity, and economy was poor. Our project visually demonstrated the correlation between our dependent variable (diabetes) against our various factors and showed a more in-depth analysis on this data by applying multivariate techniques learned in the course and understanding why certain methods are or are not significant to our data. We accessed our data using the library package (mlbench) which containing data on 768 women with 9 observations. Our initial exploratory data analysis showed us that correlations exist between age and number of pregnancies, and insulin levels and triceps fold thickness. Furthermore, we noticed an increased occurrence of diabetes in young adults between 20 and 30 years old. In terms of multivariate methodology, we utilized the Box's M Test to learn whether the covariance matrices are the same. Since the covariance matrices were different, we developed three QDA models and assessed their performance metrics. Finally, we implemented PCA and found that insulin and glucose, or the first 2 principal components, explained a majority of the variance in the data. One key finding from our QDA models was that regardless of k-fold cross validation, our predictions were almost identical in terms of accuracy. Despite that, we prefer the k-fold cross validation model because it generally performs better while accounting for overfitting and evaluation bias. All in all, this study is beneficial for understanding the risk factors for type 2 diabetes among Pima Indian Women. This knowledge can benefit society by guiding health policies and developing more effective diabetes-prevention strategies. In the future, we intend to further research how health policies can be improved to be more inclusive of minority groups. Isabelle B produced and formatted the report in LaTeX by writing the introduction, data summaries, initial data visualizations, and methodology. In addition she wrote the code that produces all of our initial graphs with an in-depth analysis on those results.

CONTRIBUTIONS: Carly and Martin worked on conducting our multivariate procedures by writing the code and presenting those results under the results in discussion section. They both made additional graphs that are included in our markdown based on their findings. Finally, Sid worked help put the report together by tying all of our work together in the conclusion and preforming test on QDA with Martin. Note: We utilized Professor Ding's Lecture Notes to help with the methodology, as well as Chat GPT to help with our testing and visualizations.

7 Refrences

- ChatGPT (For assistance in modeling graphs/errors in LaTeX/some Wording, June 4, 2024).
- Ding Xiuxai (2024) Week 7-1 [HTML Lecture Slides] University of California, Davis. https://canvas.ucdavis.edu/courses/877214/files/folder/Lecture%20notes?preview=24340030. Accessed 6 June 2024.
- Ding Xiuxai (2024) Week 8-1 [HTML Lecture Slides] University of California, Davis. https://canvas.ucdavis.edu/courses/877214/files/folder/Lecture%20notes?preview=24492190. Accessed 6 June 2024.
- "Pima Indians Diabetes Data." R, search.r-project.org/CRAN/refmans/pdp/html/pima.html. Accessed 11 June 2024.
- Renzo, Charles Di. "How to Use LDA and QDA with Multiple Predictors." LinkedIn, 29 Feb. 2024, www.linkedin.com/pulse/how-use-lda-qda-multiple-predictors-charles-di-renzo-djrgc/.
- Schulz, Leslie O, and Lisa S Chaudhari. "High-Risk Populations: The Pimas of Arizona and Mexico." Current Obesity Reports, U.S. National Library of Medicine, Mar. 2015, www.ncbi.nlm.nih.gov/pmc/articles/PMC4418458/. Accessed 8 June, 2024
- "What Is Principal Component Analysis (PCA) and How It Is Used?" Sartorius, 8 Aug. 2020, www.sartorius.com/en/knowledge/scie snippets/what-is-principal-component-analysis-pca-and-how-it-is-used-507186. Accessed 7 June 2024.

STA 135 Final Project

Martin Topacio, Isabelle Berkowitz, Carly Schwartzberg, Siddharth Das

2024-06-05

```
library(mlbench)
library(MASS)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(corrplot)
## corrplot 0.92 loaded
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(biotools)
## biotools version 4.2
library(e1071)
data(PimaIndiansDiabetes)
head(PimaIndiansDiabetes)
##
     pregnant glucose pressure triceps insulin mass pedigree age diabetes
## 1
           6
                  148
                            72
                                     35
                                              0 33.6
                                                        0.627 50
                                                                        pos
## 2
            1
                   85
                            66
                                     29
                                              0 26.6
                                                        0.351 31
                                                                        neg
## 3
            8
                  183
                            64
                                     0
                                              0 23.3
                                                        0.672 32
                                                                        pos
                                     23
                                             94 28.1
## 4
            1
                   89
                            66
                                                        0.167
                                                               21
                                                                        neg
## 5
                  137
                            40
                                     35
                                            168 43.1
                                                        2.288
                                                                        pos
## 6
                            74
                                              0 25.6
                  116
                                                        0.201 30
                                                                        neg
dim(PimaIndiansDiabetes)
## [1] 768
```

Visualizations

corrplot::corrplot(correlation_matrix, type = "lower", method = "number")

```
pressure
pregnant
           1.00
 glucose
                 1.00
pressure
                       1.00
  triceps
                            1.00
  insulin
                 0.33
                            0.44
                                  1.00
   mass
                       0.28
                            0.39 0.20
                                        1.00
pedigree
                                              1.00
     age
           0.54 0.26 0.24 0.11
                                                   1.00
         -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
library(ggplot2)
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:randomForest':
##
##
       combine
plot_age <- ggplot(PimaIndiansDiabetes, aes(x = age, fill = diabetes)) +</pre>
  geom_bar() +
  labs(title = "Diabetes Distribution by Age", x = "Age", y = "Count") +
  theme_minimal()
plot_pregnant <- ggplot(PimaIndiansDiabetes, aes(x = pregnant, fill = diabetes)) +</pre>
  geom_bar() +
  labs(title = " Dist by Pregnancy", x = "Pregnant", y = "Count") +
  theme minimal()
plot_glucose <- ggplot(PimaIndiansDiabetes, aes(x = glucose, fill = diabetes)) +</pre>
  geom_bar() +
  labs(title = "Diabetes Distribution by Glucose", x = "Glucose", y = "Count") +
  theme minimal()
plot_pressure <- ggplot(PimaIndiansDiabetes, aes(x = pressure, fill = diabetes)) +</pre>
  geom_bar() +
  labs(title = "Dist by Pressure", x = "Pressure", y = "Count") +
```

```
theme_minimal()
#space out graphs so not in one chunk
grid.arrange(plot_age, plot_pregnant, plot_glucose, plot_pressure,
             ncol = 2, nrow = 2,
            heights = c(2, 1), widths = c(2, 1))
                                                                      Dist by Pregnancy
      Diabetes Distribution by Age
   60
                                                                  100
                                                   diabetes
                                                                                   diabetes
Count
                                                               Count
   40
                                                                                       neg
                                                        neg
                                                        pos
                                                                                       pos
                                                                  50
   20
    0
                                                                    0
      20
                   40
                                60
                                            80
                                                                      0 5 10 15
                         Age
                                                                      Pregnant
      Diabetes Distribution by Glucose
                                                                     Dist by Pressure
                                                   diabetes
                                                                                   diabetes
   15
                                                               Count
                                                                 40
   10
                                                        neg
                                                                                       neg
                                                                 20
   5
                                                                                       pos
                                                        pos
    0
                                                                   0
                50
                                             200
                         100
                                   150
                                                                     0
                                                                       40 80 120
                       Glucose
                                                                     Pressure
plot_triceps <- ggplot(PimaIndiansDiabetes, aes(x = triceps, fill = diabetes)) +</pre>
  geom_bar() +
  labs(title = "Diabetes Distribution by Triceps", x = "Triceps", y = "Count") +
  theme_minimal()
plot_insulin <- ggplot(PimaIndiansDiabetes, aes(x = insulin, fill = diabetes)) +</pre>
  geom_bar() +
  labs(title = "Dist by Insulin", x = "Insulin", y = "Count") +
  theme minimal()
plot_mass <- ggplot(PimaIndiansDiabetes, aes(x = mass, fill = diabetes)) +</pre>
  geom_bar() +
  labs(title = "Diabetes Distribution by Mass", x = "Mass", y = "Count") +
  theme_minimal()
plot_pedigree <- ggplot(PimaIndiansDiabetes, aes(x = pedigree, fill = diabetes)) +</pre>
  geom_bar() +
  labs(title = "Dist by Pedigree", x = "Pedigree", y = "Count") +
  theme_minimal()
```



```
library(ggplot2)
plot1 <- ggplot(PimaIndiansDiabetes, aes(x = diabetes, y = age, fill = diabetes)) +</pre>
  geom_boxplot() +
  labs(title = "Age by Diabetes Status", x = "Diabetes Status", y = "Age") +
  theme minimal()
plot2 <- ggplot(PimaIndiansDiabetes, aes(x = diabetes, y = pregnant, fill = diabetes)) +</pre>
  geom_boxplot() +
  labs(title = "Pregnancy by Diabetes Status", x = "Diabetes Status", y = "Pregnancy") +
  theme_minimal()
plot3 <- ggplot(PimaIndiansDiabetes, aes(x = diabetes, y = glucose, fill = diabetes)) +</pre>
  geom_boxplot() +
  labs(title = "Glucose by Diabetes Status", x = "Diabetes Status", y = "Glucose") +
  theme_minimal()
plot4 <- ggplot(PimaIndiansDiabetes, aes(x = diabetes, y = pressure, fill = diabetes)) +</pre>
  geom boxplot() +
  labs(title = "Pressure by Diabetes Status", x = "Diabetes Status", y = "Pressure") +
  theme_minimal()
# align plots together
library(gridExtra)
```

grid.arrange(plot1, plot2, plot3, plot4, ncol = 2) Pregnancy by Diabetes Status Age by Diabetes Status 80 15 Pregnancy diabetes diabetes 60 neg neg pos pos 40 0 20 pos neg pos **Diabetes Status Diabetes Status** Glucose by Diabetes Status Pressure by Diabetes Status 125 200 100 150 diabetes diabetes Pressure Glucose 75 100 neg neg 50 pos pos 50 25 0 0 neg pos neg pos **Diabetes Status Diabetes Status** plot5 <- ggplot(PimaIndiansDiabetes, aes(x = diabetes, y = triceps, fill = diabetes)) +</pre> geom_boxplot() + labs(title = "Triceps Thickness by Diabetes Status", x = "Diabetes Status", y = "Triceps Thickness") theme minimal() plot6 <- ggplot(PimaIndiansDiabetes, aes(x = diabetes, y = insulin, fill = diabetes)) +</pre> geom_boxplot() + labs(title = "Insulin by Diabetes Status", x = "Diabetes Status", y = "Insulin") + theme_minimal() plot7 <- ggplot(PimaIndiansDiabetes, aes(x = diabetes, y = mass, fill = diabetes)) +</pre> geom_boxplot() + labs(title = "Body Mass Index (BMI) by Diabetes Status", x = "Diabetes Status", y = "BMI") + theme_minimal() plot8 <- ggplot(PimaIndiansDiabetes, aes(x = diabetes, y = pedigree, fill = diabetes)) +</pre> geom_boxplot() + labs(title = "Pedigree Function by Diabetes Status", x = "Diabetes Status", y = "Pedigree Function") theme_minimal()

allign plots side by side

grid.arrange(plot5, plot6, plot7, plot8, ncol = 2)

Body Mass Index (BMI) by Diabetes StatuRedigree Function by Diabetes Sta

Box's M Test

```
# Load necessary libraries
library(mlbench)
library(MASS)
library(caret)
library(biotools) # for boxM function

# Load the dataset
data(PimaIndiansDiabetes)

# Check the structure of the dataset and the unique values in the `diabetes` column
str(PimaIndiansDiabetes)
```

```
768 obs. of 9 variables:
##
  'data.frame':
##
   $ pregnant: num
                    6 1 8 1 0 5 3 10 2 8 ...
                     148 85 183 89 137 116 78 115 197 125 ...
   $ glucose : num
##
   $ pressure: num
                     72 66 64 66 40 74 50 0 70 96 ...
                     35 29 0 23 35 0 32 0 45 0 ...
##
   $ triceps : num
                     0 0 0 94 168 0 88 0 543 0 ...
##
   $ insulin : num
                     33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0 ...
              : num
    $ pedigree: num
                     0.627 0.351 0.672 0.167 2.288 ...
##
              : num
                     50 31 32 21 33 30 26 29 53 54 ...
    $ diabetes: Factor w/ 2 levels "neg","pos": 2 1 2 1 2 1 2 1 2 2 ...
print(unique(PimaIndiansDiabetes$diabetes))
```

```
## [1] pos neg
## Levels: neg pos
# Ensure the outcome variable is a factor
PimaIndiansDiabetes$diabetes <- as.factor(PimaIndiansDiabetes$diabetes)
# Ensure the data is numeric (including the outcome variable)
PimaIndiansDiabetes <- PimaIndiansDiabetes[, sapply(PimaIndiansDiabetes, is.numeric) | colnames(PimaInd
# Split the data into two groups based on diabetes status
group1 <- PimaIndiansDiabetes[PimaIndiansDiabetes$diabetes == "pos", ]
group2 <- PimaIndiansDiabetes[PimaIndiansDiabetes$diabetes == "neg", ]</pre>
# Check the number of rows in each group to ensure they are not empty
print(paste("Number of rows in group1 (diabetes = pos):", nrow(group1)))
## [1] "Number of rows in group1 (diabetes = pos): 268"
print(paste("Number of rows in group2 (diabetes = neg):", nrow(group2)))
## [1] "Number of rows in group2 (diabetes = neg): 500"
# Check for near-zero variance predictors and remove them
nzv <- nearZeroVar(PimaIndiansDiabetes, saveMetrics = TRUE)</pre>
nzv_cols <- rownames(nzv[nzv$nzv == TRUE, ])</pre>
if (length(nzv_cols) > 0) {
  group1 <- group1[, !(colnames(group1) %in% nzv_cols)]</pre>
 group2 <- group2[, !(colnames(group2) %in% nzv_cols)]</pre>
# Ensure there are no issues with the subsetted groups
if (nrow(group1) == 0 || nrow(group2) == 0) {
  stop("One of the groups is empty after subsetting.")
}
# Remove the outcome variable from both groups
group1 <- group1[, -which(names(group1) == "diabetes")]</pre>
group2 <- group2[, -which(names(group2) == "diabetes")]</pre>
# Combine the data into a single data frame and create a grouping factor
combined data <- rbind(group1, group2)</pre>
grouping <- factor(c(rep("pos", nrow(group1)), rep("neg", nrow(group2))))</pre>
# Perform Box's M test
result <- boxM(combined_data, grouping)</pre>
# Print the result
print(result)
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: combined_data
## Chi-Sq (approx.) = 226.71, df = 36, p-value < 2.2e-16
```

Since we obtain a p-value so close to zero, we reject the null hypothesis and continue on with performing QDA on the data.

QDA:

For the QDA process, we aim to first perform QDA by simply splitting the data into training and test sets, then we will perform QDA with k-fold cross-validation, then we will perform QDA without any splitting. We plan to evaluate the accuracy of each QDA process and see which one works best in terms of fitting the data, new and old.

QDA - splitting into training and test sets

```
cov(group1)
##
                 pregnant
                               glucose
                                           pressure
                                                         triceps
                                                                      insulin
## pregnant
             13.99686958
                            -6.5233384
                                         10.2085639
                                                       -5.236290
                                                                    -40.76371
## glucose
             -6.52333836 1020.1394572
                                         47.1576807
                                                       21.242216
                                                                   1157.77464
## pressure
                                                                    266.37372
             10.20856392
                            47.1576807 461.8979680
                                                       85.586953
  triceps
             -5.23629046
                            21.2422159
                                         85.5869529
                                                      312.572195
                                                                   1119.47275
  insulin
            -40.76370954 1157.7746380 266.3737213 1119.472749 19234.67332
##
  mass
             -4.32235452
                            11.6957488
                                         20.9089860
                                                       40.070518
                                                                     55.51413
##
  pedigree
             -0.09639326
                             0.3148521
                                          0.2762678
                                                        1.803116
                                                                      5.24497
##
   age
              18.25999217
                            34.5294594
                                         61.9219353
                                                      -17.842529
                                                                     36.42305
##
                    mass
                            pedigree
                                              age
## pregnant
             -4.3223545 -0.09639326
                                       18.2599922
   glucose
              11.6957488
                          0.31485206
                                       34.5294594
##
  pressure
             20.9089860
                          0.27626779
                                       61.9219353
## triceps
             40.0705182
                          1.80311610 -17.8425289
## insulin
             55.5141260
                          5.24497004
                                       36.4230533
## mass
             52.7506932
                          0.36985506
                                      -14.9773995
## pedigree
                          0.13864786
                                       -0.3598839
              0.3698551
## age
            -14.9773995 -0.35988390 120.3025882
cov(group2)
##
                                          pressure
                 pregnant
                              glucose
                                                        triceps
                                                                     insulin
## pregnant
              9.10340281
                            7.7835271
                                         7.2536754
                                                     -5.3165050
                                                                 -39.370758
## glucose
              7.78352705 683.3623246
                                        91.0357515
                                                      6.2337475
                                                                 912.202244
## pressure
              7.25367535
                           91.0357515 326.2746934
                                                     50.3144529
                                                                 133.268810
## triceps
                                                                 607.667447
              -5.31650501
                            6.2337475
                                        50.3144529 221.7105251
  insulin
            -39.37075752 912.2022445 133.2688096 607.6674469 9774.345427
##
   mass
              0.38271383
                           26.4844529
                                        50.4463198
                                                     50.2210533
                                                                 193.259192
   pedigree
             -0.07214703
                            0.7470368
                                         0.1474398
                                                      0.4238764
                                                                    6.723592
##
   age
              20.16370741
                           69.5468938
                                        45.2475351
                                                    -28.4550701 -172.144770
##
                    mass
                            pedigree
                                                age
## pregnant
              0.3827138 -0.07214703
                                        20.1637074
  glucose
                          0.74703675
             26.4844529
                                        69.5468938
##
  pressure
             50.4463198
                          0.14743982
                                        45.2475351
## triceps
             50.2210533
                          0.42387638
                                       -28.4550701
## insulin
            193.2591920
                          6.72359186
                                      -172.1447695
## mass
             59.1338701
                          0.16252256
                                         3.2362745
## pedigree
              0.1625226
                          0.08945202
                                         0.1453953
## age
              3.2362745
                          0.14539533
                                       136.1341683
colMeans(group1)
##
     pregnant
                  glucose
                            pressure
                                         triceps
                                                     insulin
                                                                           pedigree
                                                                   mass
##
     4.865672 141.257463
                           70.824627
                                       22.164179 100.335821
                                                              35.142537
                                                                           0.550500
##
          age
##
    37.067164
```

```
colMeans(group2)
         pregnant
                                 glucose
                                                                                                  insulin
##
                                                     pressure
                                                                            triceps
                                                                                                                                           pedigree
                                                                                                                             mass
         3.298000 109.980000
##
                                                   68.184000 19.664000 68.792000 30.304200
                                                                                                                                           0.429734
##
                   age
##
       31.190000
T1 = 0.5*log(det(cov(group2))/det(cov(group1)))
T2 = 0.5*(t(colMeans(group2))%*%solve(cov(group2))%*%(colMeans(group2))-t(colMeans(group1))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))%*%solve(cov(group2))
db = T1+T2
colMeans(group1)%*%solve(cov(group1))
##
                 pregnant
                                       glucose
                                                          pressure
                                                                                    triceps
                                                                                                              insulin
                                                                                                                                       mass pedigree
## [1,] 0.1729652 0.1225318 0.06969635 -0.02998349 -0.004515142 0.7182942 3.113763
## [1,] 0.3064803
colMeans(group2)%*%solve(cov(group2))
##
                   pregnant
                                         glucose
                                                            pressure
                                                                                    triceps
                                                                                                            insulin
                                                                                                                                     mass pedigree
## [1,] -0.1395849 0.1428478 0.09828429 0.02951318 -0.01812551 0.3833575 3.676697
##
## [1,] 0.1143517
solve(cov(group2))-solve(cov(group1))
##
                                 pregnant
                                                              glucose
                                                                                        pressure
                                                                                                                      triceps
                                                                                                                                                 insulin
## pregnant 7.509728e-02 -0.0003835994 2.501331e-05 9.505874e-04 -1.178500e-04
## glucose -3.835994e-04 0.0008279548 -2.861588e-04
                                                                                                           2.929996e-04 -1.459817e-04
## pressure 2.501331e-05 -0.0002861588 1.252018e-03 2.373027e-04 3.064438e-05
## triceps
                       9.505874e-04 0.0002929996 2.373027e-04 1.666327e-03 -7.591392e-05
## insulin -1.178500e-04 -0.0001459817 3.064438e-05 -7.591392e-05 8.476254e-05
                       -4.335091e-03 0.0001103101 -1.837359e-03 -1.586684e-03 -2.823432e-04
## pedigree 1.491800e-01 0.0036112715 -5.853952e-04 4.328708e-02 -9.069247e-03
                       -1.122608e-02 -0.0006914890 4.403570e-04
                                                                                                           1.459966e-04 2.829777e-04
## age
##
                                                            pedigree
                                         {\tt mass}
## pregnant -0.0043350913  0.1491800230 -0.0112260840
## glucose
                      0.0001103101 0.0036112715 -0.0006914890
## pressure -0.0018373588 -0.0005853952 0.0004403570
## triceps -0.0015866837 0.0432870830 0.0001459966
## insulin -0.0002823432 -0.0090692473 0.0002829777
                         ## pedigree 0.0129252447 4.1673558045 -0.0609225598
                       -0.0028147904 -0.0609225598 0.0007643262
## age
print(db)
                       [,1]
##
## [1,] -12.5319
QDA (split) (cont.) - Confusion Matrix
library(mlbench)
library(MASS)
library(caret)
data(PimaIndiansDiabetes)
```

```
# convert to a factor
PimaIndiansDiabetes$diabetes <- as.factor(PimaIndiansDiabetes$diabetes)
# numeric data
PimaIndiansDiabetes <- PimaIndiansDiabetes[, sapply(PimaIndiansDiabetes, is.numeric) | colnames(PimaInd
# training and test sets
set.seed(123)
train_Index <- createDataPartition(PimaIndiansDiabetes$diabetes, p = .7,</pre>
                                   list = FALSE,
                                   times = 1)
Pima_Train <- PimaIndiansDiabetes[ train_Index,]</pre>
PimaTest <- PimaIndiansDiabetes[-train_Index,]</pre>
# train QDA model
qda_model <- qda(diabetes ~ ., data = Pima_Train)</pre>
# predictions on test set
qda_predictions <- predict(qda_model, PimaTest)</pre>
# evaluate model
conf_matrix <- confusionMatrix(qda_predictions$class, PimaTest$diabetes)</pre>
print(conf_matrix)
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction neg pos
##
          neg 122 39
##
          pos 28 41
##
##
                  Accuracy: 0.7087
##
                    95% CI: (0.6454, 0.7666)
##
       No Information Rate: 0.6522
       P-Value [Acc > NIR] : 0.04036
##
##
##
                      Kappa: 0.3366
##
##
   Mcnemar's Test P-Value: 0.22182
##
##
               Sensitivity: 0.8133
##
               Specificity: 0.5125
##
            Pos Pred Value: 0.7578
            Neg Pred Value: 0.5942
##
##
                Prevalence: 0.6522
##
            Detection Rate: 0.5304
##
      Detection Prevalence: 0.7000
##
         Balanced Accuracy: 0.6629
##
##
          'Positive' Class : neg
##
```

From the confusion matrix, we see that it yielded 122 true negatives and 28 false negatives, and 41 true positives and 39 false positives. False positives are indicative of Type I error, and false negatives are indicative

of Type II error. This means from our confusion matrix, 39 healthy women were diagnosed with onset diabetes, and 28 women with onset diabetes were incorrectly diagnosed as healthy.

QDA (split) Performance Metrics

```
# performance metrics
accuracy <- conf_matrix$overall['Accuracy']</pre>
precision <- conf_matrix$byClass['Pos Pred Value']</pre>
recall <- conf_matrix$byClass['Sensitivity']</pre>
f1 <- 2 * (precision * recall) / (precision + recall)
cat("Accuracy of QDA Model: ", accuracy, "\n")
## Accuracy of QDA Model: 0.7086957
cat("Precision of QDA Model: ", precision, "\n")
## Precision of QDA Model: 0.757764
cat("Recall of QDA Model: ", recall, "\n")
## Recall of QDA Model: 0.8133333
cat("F1 Score of QDA Model: ", f1, "\n")
## F1 Score of QDA Model: 0.7845659
# misclassification error rate
total <- sum(conf_matrix$table)</pre>
misclassifications <- total - sum(diag(conf_matrix$table))</pre>
error_rate <- misclassifications / total</pre>
cat("Misclassification Error Rate: ", error rate, "\n")
```

Misclassification Error Rate: 0.2913043

From this table, we can identify several key findings. First, we obtain an accuracy rate of 70.87%, which is the percentage of correctly classified instances. We get a precision rate of 75.78%, which is the percentage of positive identifications that actually prove to be correct. The recall percentage is 81.33%, the percentage of actual positives that are correctly identified. The F1 score, which is the mean of precision and recall, is 78.46%. Finally, we obtain a misclassification error rate of 29.13%.

For precision, recall, and F1 score, we ideally would desire rates at 80% or above. Our precision and F1 rates are somewhat close to 80%, while our recall percentage is over 80%, which is generally good. We want a high accuracy, ideally above 90%, but our accuracy is at 70.87%, which is not good enough. Our misclassification error rate is mediocre at 29.13%, with a rate at 40% or above being considered poor.

QDA with cross-validation - Confusion Matrix

##

```
data(PimaIndiansDiabetes)
PimaIndiansDiabetes$diabetes <- as.factor(PimaIndiansDiabetes$diabetes)
PimaIndiansDiabetes <- PimaIndiansDiabetes[, sapply(PimaIndiansDiabetes, is.numeric) | colnames(PimaInd
# train QDA model
control <- trainControl(method = "cv", number = 10)</pre>
set.seed(123)
qda_model2 <- train(diabetes ~ ., data = PimaIndiansDiabetes, method = "qda", trControl = control)
print(qda_model2)
## Quadratic Discriminant Analysis
```

```
## 768 samples
##
     8 predictor
##
     2 classes: 'neg', 'pos'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 691, 691, 691, 692, 692, 691, ...
## Resampling results:
##
##
     Accuracy
                Kappa
##
     0.7409091
                0.4097772
# predictions
qda_predictions2 <- predict(qda_model2, PimaIndiansDiabetes)</pre>
qda_probs2 <- predict(qda_model2, PimaIndiansDiabetes, type = "prob")</pre>
# confusion matrix
conf_matrix2 <- confusionMatrix(qda_predictions2, PimaIndiansDiabetes$diabetes)</pre>
print(conf_matrix2)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
##
          neg 432 113
##
          pos 68 155
##
##
                  Accuracy : 0.7643
##
                    95% CI: (0.7327, 0.7939)
##
       No Information Rate: 0.651
       P-Value [Acc > NIR] : 7.13e-12
##
##
                      Kappa: 0.4603
##
##
##
    Mcnemar's Test P-Value: 0.001074
##
##
               Sensitivity: 0.8640
               Specificity: 0.5784
##
##
            Pos Pred Value: 0.7927
##
            Neg Pred Value: 0.6951
##
                Prevalence: 0.6510
##
            Detection Rate: 0.5625
##
      Detection Prevalence: 0.7096
##
         Balanced Accuracy: 0.7212
##
##
          'Positive' Class : neg
##
```

Examining the confusion matrix from the QDA model with cross-validation, we have 432 true negatives and 68 false negatives, and 155 true positives and 113 false positives. This indicates that 113 healthy women were incorrectly diagnosed with diabetes (Type I error), and 68 women with diabetes were incorrectly diagnosed as healthy (Type II error).

QDA with cross-validation - Performance Metrics

```
# misclassification error rate
error_rate <- 1 - conf_matrix2$overall['Accuracy']</pre>
cat("Misclassification Error Rate: ", error_rate, "\n")
## Misclassification Error Rate: 0.2356771
# performance metrics
accuracy <- conf matrix2$overall['Accuracy']</pre>
precision <- conf_matrix2$byClass['Pos Pred Value']</pre>
recall <- conf matrix2$byClass['Sensitivity']</pre>
f1_score <- conf_matrix2$byClass['F1']</pre>
cat("Accuracy of QDA Model w/ Cross-Validation: ", accuracy, "\n")
## Accuracy of QDA Model w/ Cross-Validation: 0.7643229
cat("Precision of QDA Model w/ Cross-Validation: ", precision, "\n")
## Precision of QDA Model w/ Cross-Validation: 0.7926606
cat("Recall of QDA Model w/ Cross-Validation: ", recall, "\n")
## Recall of QDA Model w/ Cross-Validation: 0.864
cat("F1 Score of QDA Model w/ Cross-Validation: ", f1 score, "\n")
## F1 Score of QDA Model w/ Cross-Validation: 0.8267943
```

From running a QDA model with cross-validation, we obtain several interesting findings. First, we have an accuracy of 76.43%, which is an improvement over the prior model WITH training and test sets. We also obtain improved precision and recall rates at 79.27% and 86.4%, respectively, an improved F1 score of 82.68%, and a lower misclassification error rate of 23.57%.

Our accuracy rate is about 6% closer to a generally "good" rate of 80%, but still not at our desired "great" rate of 90% or higher. Our precision rate is almost at 80%, which we can consider generally good, and our recall rate is sitting at a very good percentage. Our F1 score is also now above 80%, which we can also now consider to be good. The misclassification error rate did not drop as much as we wanted it to, with it still sitting at a somewhat mediocre percentage, but it is still beneficial that it lowered at all.

QDA without splitting

```
library(mlbench)
library(MASS)
library(caret)
data(PimaIndiansDiabetes)
# convert diabetes column to a factor
PimaIndiansDiabetes$diabetes <- as.factor(PimaIndiansDiabetes$diabetes)
# numeric data
PimaIndiansDiabetes <- PimaIndiansDiabetes[, sapply(PimaIndiansDiabetes, is.numeric) | colnames(PimaInd
# train QDA model
qda_no_split <- qda(diabetes ~ ., data = PimaIndiansDiabetes)</pre>
# predictions on entire set
qda_predictions3 <- predict(qda_no_split, PimaIndiansDiabetes)</pre>
# evaluate model
```

```
print(conf matrix3)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
##
          neg 432 113
##
          pos 68 155
##
##
                  Accuracy : 0.7643
##
                    95% CI: (0.7327, 0.7939)
##
       No Information Rate: 0.651
       P-Value [Acc > NIR] : 7.13e-12
##
##
##
                     Kappa: 0.4603
##
    Mcnemar's Test P-Value: 0.001074
##
##
##
               Sensitivity: 0.8640
               Specificity: 0.5784
##
##
            Pos Pred Value: 0.7927
##
            Neg Pred Value: 0.6951
##
                Prevalence: 0.6510
            Detection Rate: 0.5625
##
      Detection Prevalence: 0.7096
##
##
         Balanced Accuracy: 0.7212
##
##
          'Positive' Class : neg
##
QDA without splitting - Performance Metrics
# misclassification error rate
error_rate <- 1 - conf_matrix3$overall['Accuracy']</pre>
cat("Misclassification Error Rate: ", error_rate, "\n")
## Misclassification Error Rate: 0.2356771
# performance metrics
accuracy <- conf_matrix3$overall['Accuracy']</pre>
precision <- conf_matrix3$byClass['Pos Pred Value']</pre>
recall <- conf_matrix3$byClass['Sensitivity']</pre>
f1_score <- conf_matrix3$byClass['F1']</pre>
cat("Accuracy of QDA Model w/ Cross-Validation: ", accuracy, "\n")
## Accuracy of QDA Model w/ Cross-Validation: 0.7643229
cat("Precision of QDA Model w/ Cross-Validation: ", precision, "\n")
## Precision of QDA Model w/ Cross-Validation: 0.7926606
cat("Recall of QDA Model w/ Cross-Validation: ", recall, "\n")
## Recall of QDA Model w/ Cross-Validation: 0.864
```

conf_matrix3 <- confusionMatrix(qda_predictions3\$class, PimaIndiansDiabetes\$diabetes)</pre>

```
cat("F1 Score of QDA Model w/ Cross-Validation: ", f1_score, "\n")
```

F1 Score of QDA Model w/ Cross-Validation: 0.8267943

Since both the QDA cross-validation model and the QDA model without splitting result in the same exact accuracy, precision, recall, F1 score, and misclassification error rate, the cross validation model is better because it has less risk of overfitting, so it will make more accurate predictions on new data compared to the model without splitting data.

Analysis of QDA Results:

One of the main findings from our work with QDA (quantitative descriptive analysis) was that every metric that deals with accuracy and performance improved after doing QDA without splitting and k-fold cross-validation on the data. In other words, the metrics improved after switching to either QDA with k-fold cross-validation or QDA without splitting. Now, we would generally conclude that the efficiency in QDA lies in simply leaving out the process of splitting the data, but there is also the concern of overfitting the data and evaluation bias, two things that almost necessitate splitting the data for QDA. Overfitting the data occurs when the model learns the training data so well that it results in higher accuracy, but with poor generalization on newer data. Evaluation bias occurs when evaluation is performed on the same data it was trained on, and since the model has already been exposed to the data during the process of training, the performance does not accurately reflect how it would on newer data.

Splitting the data allows us to evaluate how the model performs on separate and unseen subsets of data, which is far more useful that subsets of data the model has already gotten accustomed to. Further, the key for evaluating a model also lies in how it works on newer data, because we want to see how it may perform in other real-world scenarios. With these factors, we cannot conclude that performing QDA without splitting the data into test and training sets. The best method would be QDA with k-fold cross-validation, because it splits into ten folds and evaluates for each fold, making the accuracy of this model more legitimate and better fitting for future subsets of data.

PCA

```
#PCA
library(ade4)
data(PimaIndiansDiabetes)
PimaIndiansDiabetes
```

##		pregnant	glucose	pressure	triceps	${\tt insulin}$	${\tt mass}$	pedigree	age	diabetes
##	1	6	148	72	35	0	33.6	0.627	50	pos
##	2	1	85	66	29	0	26.6	0.351	31	neg
##	3	8	183	64	0	0	23.3	0.672	32	pos
##	4	1	89	66	23	94	28.1	0.167	21	neg
##	5	0	137	40	35	168	43.1	2.288	33	pos
##	6	5	116	74	0	0	25.6	0.201	30	neg
##	7	3	78	50	32	88	31.0	0.248	26	pos
##	8	10	115	0	0	0	35.3	0.134	29	neg
##	9	2	197	70	45	543	30.5	0.158	53	pos
##	10	8	125	96	0	0	0.0	0.232	54	pos
##	11	4	110	92	0	0	37.6	0.191	30	neg
##	12	10	168	74	0	0	38.0	0.537	34	pos
##	13	10	139	80	0	0	27.1	1.441	57	neg
##	14	1	189	60	23	846	30.1	0.398	59	pos
##	15	5	166	72	19	175	25.8	0.587	51	pos
##	16	7	100	0	0	0	30.0	0.484	32	pos
##	17	0	118	84	47	230	45.8	0.551	31	pos

##	18	7	107	74	0	0	29.6	0.254	31	pos
##	19	1	103	30	38	83	43.3	0.183	33	neg
##	20	1	115	70	30	96	34.6	0.529	32	pos
##	21	3	126	88	41	235	39.3	0.704	27	neg
##	22	8	99	84	0	0	35.4	0.388	50	neg
##	23	7	196	90	0	0	39.8	0.451	41	pos
##	24	9	119	80	35	0	29.0	0.263	29	pos
##	25	11	143	94	33	146	36.6	0.254	51	pos
##	26	10	125	70	26	115	31.1	0.205	41	pos
##	27	7	147	76	0	0	39.4	0.257	43	pos
##	28	1	97	66	15	140	23.2	0.487	22	neg
##	29	13	145	82	19	110	22.2	0.245	57	neg
##	30	5	117	92	0	0	34.1	0.337	38	neg
##	31	5	109	75	26	0	36.0	0.546	60	neg
##	32	3	158	76	36	245	31.6	0.851	28	pos
##	33	3	88	58	11	54	24.8	0.267	22	neg
##	34	6	92	92	0	0	19.9	0.188	28	neg
##	35	10	122	78	31	0	27.6	0.512	45	neg
##	36	4	103	60	33	192	24.0	0.966	33	neg
##	37	11	138	76	0	0	33.2	0.420	35	neg
##	38	9	102	76	37	0	32.9	0.665	46	pos
	39	2	90	68	42	0	38.2	0.503	27	pos
##	40	4	111	72	47		37.1	1.390	56	pos
##	41	3	180	64	25		34.0	0.271	26	neg
##	42	7	133	84	0		40.2	0.696	37	neg
##	43	7	106	92	18	0	22.7	0.235	48	neg
	44	9	171	110	24	240	45.4	0.721	54	pos
##	45	7	159	64	0		27.4	0.294	40	neg
##	46	0	180	66	39	0	42.0	1.893	25	pos
##	47	1	146	56	0	0	29.7	0.564	29	neg
##	48	2	71	70	27	0	28.0	0.586	22	neg
##	49	7	103	66	32	0	39.1	0.344	31	pos
##	50	7	105	0	0	0	0.0	0.305	24	neg
##	51	1	103	80	11	82	19.4	0.491	22	neg
##	52	1	101	50	15	36	24.2	0.526	26	neg
##	53	5	88	66	21	23	24.4	0.342	30	neg
##	54	8	176	90	34	300	33.7	0.467	58	pos
##	55	7	150	66	42	342	34.7	0.718	42	neg
##	56	1	73	50	10	0	23.0	0.248	21	neg
##	57	7	187	68	39	304	37.7	0.254	41	pos
##	58	0	100	88	60	110	46.8	0.962	31	neg
##	59	0	146	82	0	0	40.5	1.781	44	neg
##	60	0	105	64	41	142	41.5	0.173	22	neg
##	61	2	84	0	0	0	0.0	0.304	21	neg
##	62	8	133	72	0	0	32.9	0.270	39	pos
##	63	5	44	62	0		25.0	0.587	36	neg
	64	2	141	58	34		25.4	0.699	24	neg
	65	7	114	66	0		32.8	0.258	42	pos
	66	5	99	74	27		29.0	0.203	32	neg
	67	0	109	88	30		32.5	0.855	38	pos
	68	2	109	92	0		42.7	0.845	54	neg
##		1	95	66	13		19.6	0.334	25	neg
##		4	146	85	27		28.9	0.189	27	neg
##		2	100	66	20		32.9	0.867	28	pos
										-

##	72	5	139	64	35	140	28.6	0.411	26	neg
##	73	13	126	90	0	0	43.4	0.583	42	pos
##	74	4	129	86	20	270	35.1	0.231	23	neg
##	75	1	79	75	30	0	32.0	0.396	22	neg
##	76	1	0	48	20	0	24.7	0.140	22	neg
##	77	7	62	78	0	0	32.6	0.391	41	neg
##	78	5	95	72	33	0	37.7	0.370	27	neg
##	79	0	131	0	0	0	43.2	0.270	26	pos
##	80	2	112	66	22	0	25.0	0.307	24	neg
##	81	3	113	44	13	0	22.4	0.140	22	neg
##	82	2	74	0	0	0	0.0	0.102	22	neg
##	83	7	83	78	26	71	29.3	0.767	36	neg
##	84	0	101	65	28	0	24.6	0.237	22	neg
##	85	5	137	108	0	0	48.8	0.227	37	pos
##	86	2	110	74	29	125	32.4	0.698	27	neg
##	87	13	106	72	54	0	36.6	0.178	45	neg
##	88	2	100	68	25	71	38.5	0.324	26	neg
##	89	15	136	70	32	110	37.1	0.153	43	pos
##	90	1	107	68	19	0	26.5	0.165	24	neg
##	91	1	80	55	0	0	19.1	0.258	21	neg
##	92	4	123	80	15	176	32.0	0.443	34	neg
##	93	7	81	78	40	48	46.7	0.261	42	neg
##	94	4	134	72	0	0	23.8	0.277	60	pos
##	95	2	142	82	18	64	24.7	0.761	21	neg
##	96	6	144	72	27	228	33.9	0.255	40	neg
##	97	2	92	62	28	0	31.6	0.130	24	neg
##	98	1	71	48	18	76	20.4	0.323	22	neg
##	99	6	93	50	30	64	28.7	0.356	23	neg
##	100	1	122	90	51	220	49.7	0.325	31	pos
##	101	1	163	72	0	0	39.0	1.222	33	pos
##	102	1	151	60	0	0	26.1	0.179	22	neg
##	103	0	125	96	0	0	22.5	0.262	21	neg
##	104	1	81	72	18	40	26.6	0.283	24	neg
##	105	2	85	65	0	0	39.6	0.930	27	neg
##	106	1	126	56	29	152	28.7	0.801	21	neg
##	107	1	96	122	0	0	22.4	0.207	27	neg
##	108	4	144	58	28	140	29.5	0.287	37	neg
##	109	3	83	58	31		34.3	0.336	25	neg
##	110	0	95	85	25	36	37.4	0.247	24	pos
##	111	3	171	72	33		33.3	0.199	24	pos
##	112	8	155	62	26	495	34.0	0.543	46	pos
##	113	1	89	76	34	37	31.2	0.192	23	neg
##	114	4	76	62	0		34.0	0.391	25	neg
##	115	7	160	54	32	175	30.5	0.588	39	pos
##	116	4	146	92	0	0	31.2	0.539	61	pos
##	117	5	124	74	0	0	34.0	0.220	38	pos
##	118	5	78	48	0		33.7	0.654	25	neg
##	119	4	97	60	23	0	28.2	0.443	22	neg
##	120	4	99	76	15	51	23.2	0.223	21	neg
##	121	0	162	76	56		53.2	0.759	25	pos
	122	6	111	64	39		34.2	0.260	24	neg
	123	2	107	74	30		33.6	0.404	23	neg
	124	5	132	80	0		26.8	0.186	69	neg
##	125	0	113	76	0	0	33.3	0.278	23	pos

##	126	1	88	30	42		55.0	0.496	26	pos
	127	3	120	70	30		42.9	0.452	30	neg
##	128	1	118	58	36	94	33.3	0.261	23	neg
	129	1	117	88	24	145	34.5	0.403	40	pos
##	130	0	105	84	0	0	27.9	0.741	62	pos
##	131	4	173	70	14	168	29.7	0.361	33	pos
##	132	9	122	56	0	0	33.3	1.114	33	pos
##	133	3	170	64	37	225	34.5	0.356	30	pos
##	134	8	84	74	31	0	38.3	0.457	39	neg
##	135	2	96	68	13	49	21.1	0.647	26	neg
##	136	2	125	60	20	140	33.8	0.088	31	neg
##	137	0	100	70	26	50	30.8	0.597	21	neg
##	138	0	93	60	25	92	28.7	0.532	22	neg
##	139	0	129	80	0	0	31.2	0.703	29	neg
##	140	5	105	72	29	325	36.9	0.159	28	neg
##	141	3	128	78	0	0	21.1	0.268	55	neg
##	142	5	106	82	30	0	39.5	0.286	38	neg
##	143	2	108	52	26	63	32.5	0.318	22	neg
##	144	10	108	66	0	0	32.4	0.272	42	pos
##	145	4	154	62	31	284	32.8	0.237	23	neg
##	146	0	102	75	23	0	0.0	0.572	21	neg
##	147	9	57	80	37	0	32.8	0.096	41	neg
##	148	2	106	64	35	119	30.5	1.400	34	neg
##	149	5	147	78	0	0	33.7	0.218	65	neg
##	150	2	90	70	17	0	27.3	0.085	22	neg
##	151	1	136	74	50	204	37.4	0.399	24	neg
##	152	4	114	65	0	0	21.9	0.432	37	neg
##	153	9	156	86	28	155	34.3	1.189	42	pos
##	154	1	153	82	42	485	40.6	0.687	23	neg
##	155	8	188	78	0	0	47.9	0.137	43	pos
##	156	7	152	88	44	0	50.0	0.337	36	pos
##	157	2	99	52	15	94	24.6	0.637	21	neg
##	158	1	109	56	21	135	25.2	0.833	23	neg
##	159	2	88	74	19	53	29.0	0.229	22	neg
##	160	17	163	72	41	114	40.9	0.817	47	pos
##	161	4	151	90	38	0	29.7	0.294	36	neg
##	162	7	102	74	40	105	37.2	0.204	45	neg
##	163	0	114	80	34	285	44.2	0.167	27	neg
##	164	2	100	64	23	0	29.7	0.368	21	neg
##	165	0	131	88	0	0	31.6	0.743	32	pos
##	166	6	104	74	18	156	29.9	0.722	41	pos
##	167	3	148	66	25	0	32.5	0.256	22	neg
##	168	4	120	68	0	0	29.6	0.709	34	neg
##	169	4	110	66	0		31.9	0.471	29	neg
##	170	3	111	90	12	78	28.4	0.495	29	neg
	171	6	102	82	0		30.8	0.180	36	pos
##	172	6	134	70	23	130	35.4	0.542	29	pos
##	173	2	87	0	23		28.9	0.773	25	neg
##	174	1	79	60	42		43.5	0.678	23	neg
	175	2	75	64	24		29.7	0.370	33	neg
	176	8	179	72	42		32.7	0.719	36	pos
	177	6	85	78	0		31.2	0.382	42	neg
	178	0	129	110	46		67.1	0.319	26	pos
	179	5	143	78	0		45.0	0.190	47	neg
••	•	Ū		. 0	Ŭ	Ū		0		6

	180	5	130	82	0		39.1	0.956	37	pos
##	181	6	87	80	0		23.2	0.084	32	neg
##	182	0	119	64	18	92	34.9	0.725	23	neg
##	183	1	0	74	20	23	27.7	0.299	21	neg
##	184	5	73	60	0	0	26.8	0.268	27	neg
##	185	4	141	74	0	0	27.6	0.244	40	neg
##	186	7	194	68	28	0	35.9	0.745	41	pos
##	187	8	181	68	36	495	30.1	0.615	60	pos
##	188	1	128	98	41	58	32.0	1.321	33	pos
##	189	8	109	76	39	114	27.9	0.640	31	pos
##	190	5	139	80	35	160	31.6	0.361	25	pos
##	191	3	111	62	0	0	22.6	0.142	21	neg
##	192	9	123	70	44	94	33.1	0.374	40	neg
##	193	7	159	66	0	0	30.4	0.383	36	pos
##	194	11	135	0	0	0	52.3	0.578	40	pos
##	195	8	85	55	20	0	24.4	0.136	42	neg
##	196	5	158	84	41	210	39.4	0.395	29	pos
##	197	1	105	58	0	0	24.3	0.187	21	neg
##	198	3	107	62	13	48	22.9	0.678	23	pos
##	199	4	109	64	44	99	34.8	0.905	26	pos
##	200	4	148	60	27	318	30.9	0.150	29	pos
##	201	0	113	80	16	0	31.0	0.874	21	neg
##	202	1	138	82	0	0	40.1	0.236	28	neg
##	203	0	108	68	20	0	27.3	0.787	32	neg
##	204	2	99	70	16	44	20.4	0.235	27	neg
##	205	6	103	72	32	190	37.7	0.324	55	neg
##	206	5	111	72	28	0	23.9	0.407	27	neg
##	207	8	196	76	29	280	37.5	0.605	57	pos
##	208	5	162	104	0	0	37.7	0.151	52	pos
##	209	1	96	64	27	87	33.2	0.289	21	neg
##	210	7	184	84	33	0	35.5	0.355	41	pos
##	211	2	81	60	22	0	27.7	0.290	25	neg
##	212	0	147	85	54	0	42.8	0.375	24	neg
##	213	7	179	95	31	0	34.2	0.164	60	neg
##	214	0	140	65	26	130	42.6	0.431	24	pos
##	215	9	112	82	32	175	34.2	0.260	36	pos
##	216	12	151	70	40	271	41.8	0.742	38	pos
##	217	5	109	62	41	129	35.8	0.514	25	pos
##	218	6	125	68	30	120	30.0	0.464	32	neg
##	219	5	85	74	22	0	29.0	1.224	32	pos
##	220	5	112	66	0	0	37.8	0.261	41	pos
##	221	0	177	60	29	478	34.6	1.072	21	pos
##	222	2	158	90	0	0	31.6	0.805	66	pos
##	223	7	119	0	0		25.2	0.209	37	neg
##	224	7	142	60	33	190	28.8	0.687	61	neg
##	225	1	100	66	15	56	23.6	0.666	26	neg
##	226	1	87	78	27		34.6	0.101	22	neg
	227	0	101	76	0		35.7	0.198	26	neg
	228	3	162	52	38		37.2	0.652	24	pos
	229	4	197	70	39		36.7	2.329	31	neg
	230	0	117	80	31		45.2	0.089	24	neg
	231	4	142	86	0		44.0	0.645	22	pos
	232	6	134	80	37		46.2	0.238	46	pos
	233	1	79	80	25		25.4	0.583	22	neg

##	234	4	122	68	0		35.0	0.394		neg
##	235	3	74	68	28		29.7	0.293		neg
##	236	4	171	72	0	0	43.6	0.479	26	pos
	237	7	181	84	21	192	35.9	0.586	51	pos
##	238	0	179	90	27	0	44.1	0.686	23	pos
##	239	9	164	84	21	0	30.8	0.831	32	pos
##	240	0	104	76	0	0	18.4	0.582	27	neg
##	241	1	91	64	24	0	29.2	0.192	21	neg
##	242	4	91	70	32	88	33.1	0.446	22	neg
##	243	3	139	54	0	0	25.6	0.402	22	pos
##	244	6	119	50	22	176	27.1	1.318	33	pos
##	245	2	146	76	35	194	38.2	0.329	29	neg
##	246	9	184	85	15	0	30.0	1.213	49	pos
##	247	10	122	68	0	0	31.2	0.258	41	neg
##	248	0	165	90	33	680	52.3	0.427	23	neg
##	249	9	124	70	33	402	35.4	0.282	34	neg
##	250	1	111	86	19	0	30.1	0.143	23	neg
##	251	9	106	52	0	0	31.2	0.380	42	neg
##	252	2	129	84	0	0	28.0	0.284	27	neg
##	253	2	90	80	14	55	24.4	0.249	24	neg
##	254	0	86	68	32	0	35.8	0.238	25	neg
##	255	12	92	62	7	258	27.6	0.926	44	pos
##	256	1	113	64	35		33.6	0.543		pos
##	257	3	111	56	39		30.1	0.557		neg
##	258	2	114	68	22		28.7	0.092		neg
	259	1	193	50	16		25.9	0.655		neg
	260	11	155	76	28		33.3	1.353		pos
##	261	3	191	68	15		30.9	0.299		neg
	262	3	141	0	0		30.0	0.761		pos
##	263	4	95	70	32		32.1	0.612		neg
##	264	3	142	80	15		32.4	0.200		neg
##	265	4	123	62	0	0	32.0	0.226	35	pos
##	266	5	96	74	18		33.6	0.997		neg
##	267	0	138	0	0		36.3	0.933		pos
##	268	2	128	64	42		40.0	1.101		neg
##	269	0	102	52	0	0	25.1	0.078		neg
	270	2	146	0	0	0	27.5	0.240		pos
	271	10	101	86	37		45.6	1.136		pos
	272	2	108	62	32		25.2	0.128		neg
	273	3	122	78	0		23.0	0.254		neg
	274	1	71	78	50		33.2	0.422		neg
	275	13	106	70	0		34.2	0.251		neg
	276	2	100	70	52		40.5	0.677		neg
	277	7	106	60	24		26.5	0.296		pos
	278	0	104	64	23		27.8	0.454		neg
	279	5	114	74	0		24.9	0.744		neg
	280	2	108	62	10		25.3	0.881		neg
	281	0	146	70	0		37.9	0.334		pos
	282	10	129	76	28		35.9	0.280		neg
	283	7	133	88	15		32.4	0.262		neg
	284	7	161	86	0		30.4	0.165		pos
	285	2	108	80	0		27.0	0.259		pos
	286	7	136	74	26		26.0	0.647		neg
	287	5	155	84	44		38.7	0.619		neg
		3	100	01		0 10		3.010		

##	288	1	119	86	39	220	45.6	0.808	29	pos
	289	4	96	56	17		20.8	0.340	26	neg
##	290	5	108	72	43	75	36.1	0.263	33	neg
##	291	0	78	88	29	40	36.9	0.434	21	neg
##	292	0	107	62	30	74	36.6	0.757	25	pos
##	293	2	128	78	37	182	43.3	1.224	31	pos
##	294	1	128	48	45	194	40.5	0.613	24	pos
##	295	0	161	50	0	0	21.9	0.254	65	neg
##	296	6	151	62	31	120	35.5	0.692	28	neg
##	297	2	146	70	38	360	28.0	0.337	29	pos
##	298	0	126	84	29	215	30.7	0.520	24	neg
##	299	14	100	78	25	184	36.6	0.412	46	pos
##	300	8	112	72	0	0	23.6	0.840	58	neg
##	301	0	167	0	0	0	32.3	0.839	30	pos
##	302	2	144	58	33	135	31.6	0.422	25	pos
##	303	5	77	82	41	42	35.8	0.156	35	neg
##	304	5	115	98	0	0	52.9	0.209	28	pos
##	305	3	150	76	0	0	21.0	0.207	37	neg
##	306	2	120	76	37	105	39.7	0.215	29	neg
##	307	10	161	68	23	132	25.5	0.326	47	pos
	308	0	137	68	14	148	24.8	0.143	21	neg
	309	0	128	68	19		30.5	1.391	25	pos
##	310	2	124	68	28		32.9	0.875	30	pos
	311	6	80	66	30		26.2	0.313	41	neg
	312	0	106	70	37		39.4	0.605	22	neg
	313	2	155	74	17		26.6	0.433	27	pos
	314	3	113	50	10		29.5	0.626	25	neg
	315	7	109	80	31		35.9	1.127	43	pos
	316	2	112	68	22		34.1	0.315	26	neg
	317	3	99	80	11		19.3	0.284	30	neg
	318	3	182	74	0		30.5	0.345	29	pos
	319	3	115	66	39		38.1	0.150	28	neg
	320	6	194	78	0		23.5	0.129	59	pos
	321	4	129	60	12		27.5	0.527	31	neg
	322	3	112	74	30	0	31.6	0.197	25	pos
	323	0	124	70	20	0	27.4	0.254	36	pos
	324	13	152	90	33	29	26.8	0.731	43	pos
	325	2	112	75	32		35.7	0.148	21	neg
	326	1	157	72	21		25.6	0.123	24	neg
	327	1	122	64	32		35.1	0.692	30	pos
	328	10	179	70	0		35.1	0.200	37	neg
	329	2	102	86	36		45.5	0.127	23	pos
	330	6	105	70	32		30.8	0.122	37	neg
	331	8	118	72	19		23.1	1.476	46	neg
	332	2	87	58	16		32.7	0.166	25	neg
	333	1	180	0	0		43.3	0.282	41	pos
	334	12	106	80	0		23.6	0.137	44	neg
	335	1	95	60	18		23.9	0.260	22	neg
	336	0	165	76	43		47.9	0.259	26	neg
	337	0	117	0	0		33.8	0.932	44	neg
	338	5	115	76	0		31.2	0.343	44	pos
	339	9	152	78	34		34.2	0.893	33	pos
	340	7	178	84	0		39.9	0.331	41	pos
	341	1	130	70	13		25.9	0.472	22	neg
σ π	0 11	1	100	7.0	13	100	20.0	0.712	22	11-R

	342	1	95	74	21		25.9	0.673	36	neg
	343	1	0	68	35		32.0	0.389	22	neg
	344	5	122	86	0		34.7	0.290	33	neg
	345	8	95	72	0		36.8	0.485	57	neg
##	346	8	126	88	36		38.5	0.349	49	neg
##	347	1	139	46	19	83	28.7	0.654	22	neg
##	348	3	116	0	0	0	23.5	0.187	23	neg
##	349	3	99	62	19	74	21.8	0.279	26	neg
##	350	5	0	80	32	0	41.0	0.346	37	pos
##	351	4	92	80	0	0	42.2	0.237	29	neg
##	352	4	137	84	0	0	31.2	0.252	30	neg
##	353	3	61	82	28	0	34.4	0.243	46	neg
##	354	1	90	62	12	43	27.2	0.580	24	neg
##	355	3	90	78	0	0	42.7	0.559	21	neg
##	356	9	165	88	0	0	30.4	0.302	49	pos
##	357	1	125	50	40	167	33.3	0.962	28	pos
##	358	13	129	0	30	0	39.9	0.569	44	pos
##	359	12	88	74	40	54	35.3	0.378	48	neg
##	360	1	196	76	36	249	36.5	0.875	29	pos
##	361	5	189	64	33	325	31.2	0.583	29	pos
##	362	5	158	70	0	0	29.8	0.207	63	neg
##	363	5	103	108	37	0	39.2	0.305	65	neg
##	364	4	146	78	0	0	38.5	0.520	67	pos
##	365	4	147	74	25	293	34.9	0.385	30	neg
##	366	5	99	54	28	83	34.0	0.499	30	neg
##	367	6	124	72	0	0	27.6	0.368	29	pos
##	368	0	101	64	17	0	21.0	0.252	21	neg
##	369	3	81	86	16	66	27.5	0.306	22	neg
##	370	1	133	102	28	140	32.8	0.234	45	pos
##	371	3	173	82	48	465	38.4	2.137	25	pos
##	372	0	118	64	23	89	0.0	1.731	21	neg
##	373	0	84	64	22	66	35.8	0.545	21	neg
##	374	2	105	58	40	94	34.9	0.225	25	neg
##	375	2	122	52	43	158	36.2	0.816	28	neg
##	376	12	140	82	43	325	39.2	0.528	58	pos
##	377	0	98	82	15	84	25.2	0.299	22	neg
##	378	1	87	60	37	75	37.2	0.509	22	neg
##	379	4	156	75	0	0	48.3	0.238	32	pos
##	380	0	93	100	39	72	43.4	1.021	35	neg
##	381	1	107	72	30	82	30.8	0.821	24	neg
##	382	0	105	68	22	0	20.0	0.236	22	neg
##	383	1	109	60	8	182	25.4	0.947	21	neg
##	384	1	90	62	18	59	25.1	1.268	25	neg
##	385	1	125	70	24	110	24.3	0.221	25	neg
##	386	1	119	54	13	50	22.3	0.205	24	neg
##	387	5	116	74	29	0	32.3	0.660	35	pos
##	388	8	105	100	36	0	43.3	0.239	45	pos
##	389	5	144	82	26	285	32.0	0.452	58	pos
	390	3	100	68	23		31.6	0.949	28	neg
	391	1	100	66	29		32.0	0.444	42	neg
	392	5	166	76	0		45.7	0.340	27	pos
	393	1	131	64	14		23.7	0.389	21	neg
	394	4	116	72	12		22.1	0.463	37	neg
	395	4	158	78	0		32.9	0.803	31	pos
										1

##	396	2	127	58	24	275	27.7	1.600	25	neg
##	397	3	96	56	34	115	24.7	0.944	39	neg
##	398	0	131	66	40	0	34.3	0.196	22	pos
##	399	3	82	70	0	0	21.1	0.389	25	neg
##	400	3	193	70	31	0	34.9	0.241	25	pos
##	401	4	95	64	0	0	32.0	0.161	31	pos
##	402	6	137	61	0	0	24.2	0.151	55	neg
##	403	5	136	84	41	88	35.0	0.286	35	pos
##	404	9	72	78	25	0	31.6	0.280	38	neg
##	405	5	168	64	0	0	32.9	0.135	41	pos
##	406	2	123	48	32	165	42.1	0.520	26	neg
##	407	4	115	72	0	0	28.9	0.376	46	pos
##	408	0	101	62	0	0	21.9	0.336	25	neg
##	409	8	197	74	0	0	25.9	1.191	39	pos
##	410	1	172	68	49	579	42.4	0.702	28	pos
##	411	6	102	90	39	0	35.7	0.674	28	neg
##	412	1	112	72	30	176	34.4	0.528	25	neg
##	413	1	143	84	23	310	42.4	1.076	22	neg
##	414	1	143	74	22	61	26.2	0.256	21	neg
##	415	0	138	60	35	167	34.6	0.534	21	pos
##	416	3	173	84	33	474	35.7	0.258	22	pos
##	417	1	97	68	21	0	27.2	1.095	22	neg
##	418	4	144	82	32	0	38.5	0.554	37	pos
##	419	1	83	68	0	0	18.2	0.624	27	neg
##	420	3	129	64	29	115	26.4	0.219	28	pos
##	421	1	119	88	41	170	45.3	0.507	26	neg
##	422	2	94	68	18	76	26.0	0.561	21	neg
##	423	0	102	64	46	78	40.6	0.496	21	neg
##	424	2	115	64	22	0	30.8	0.421	21	neg
##	425	8	151	78	32	210	42.9	0.516	36	pos
##	426	4	184	78	39	277	37.0	0.264	31	pos
##	427	0	94	0	0	0	0.0	0.256	25	neg
##	428	1	181	64	30	180	34.1	0.328	38	pos
##	429	0	135	94	46	145	40.6	0.284	26	neg
##	430	1	95	82	25	180	35.0	0.233	43	pos
##	431	2	99	0	0	0	22.2	0.108	23	neg
##	432	3	89	74	16	85	30.4	0.551	38	neg
##	433	1	80	74	11	60	30.0	0.527	22	neg
##	434	2	139	75	0	0	25.6	0.167	29	neg
##	435	1	90	68	8	0	24.5	1.138	36	neg
##	436	0	141	0	0	0	42.4	0.205	29	pos
##	437	12	140	85	33	0	37.4	0.244	41	neg
##	438	5	147	75	0	0	29.9	0.434	28	neg
##	439	1	97	70	15	0	18.2	0.147	21	neg
##	440	6	107	88	0	0	36.8	0.727	31	neg
##	441	0	189	104	25	0	34.3	0.435	41	pos
##	442	2	83	66	23	50	32.2	0.497	22	neg
##	443	4	117	64	27	120	33.2	0.230	24	neg
##	444	8	108	70	0	0	30.5	0.955	33	pos
##	445	4	117	62	12	0	29.7	0.380	30	pos
##	446	0	180	78	63	14	59.4	2.420	25	pos
##	447	1	100	72	12		25.3	0.658	28	neg
##	448	0	95	80	45	92	36.5	0.330	26	neg
##	449	0	104	64	37		33.6	0.510	22	pos
										-

##	450	0	120	74	18		30.5	0.285	26	neg
	451	1	82	64	13		21.2	0.415	23	neg
##	452	2	134	70	0		28.9	0.542	23	pos
	453	0	91	68	32		39.9	0.381	25	neg
	454	2	119	0	0		19.6	0.832	72	neg
##	455	2	100	54	28	105	37.8	0.498	24	neg
##	456	14	175	62	30	0	33.6	0.212	38	pos
##	457	1	135	54	0	0	26.7	0.687	62	neg
	458	5	86	68	28		30.2	0.364	24	neg
##	459	10	148	84	48	237	37.6	1.001	51	pos
##	460	9	134	74	33	60	25.9	0.460	81	neg
##	461	9	120	72	22	56	20.8	0.733	48	neg
##	462	1	71	62	0	0	21.8	0.416	26	neg
##	463	8	74	70	40		35.3	0.705	39	neg
##	464	5	88	78	30	0	27.6	0.258	37	neg
##	465	10	115	98	0	0	24.0	1.022	34	neg
##	466	0	124	56	13	105	21.8	0.452	21	neg
##	467	0	74	52	10	36	27.8	0.269	22	neg
##	468	0	97	64	36	100	36.8	0.600	25	neg
##	469	8	120	0	0	0	30.0	0.183	38	pos
##	470	6	154	78	41	140	46.1	0.571	27	neg
##	471	1	144	82	40	0	41.3	0.607	28	neg
##	472	0	137	70	38	0	33.2	0.170	22	neg
##	473	0	119	66	27	0	38.8	0.259	22	neg
##	474	7	136	90	0	0	29.9	0.210	50	neg
##	475	4	114	64	0	0	28.9	0.126	24	neg
##	476	0	137	84	27	0	27.3	0.231	59	neg
##	477	2	105	80	45	191	33.7	0.711	29	pos
##	478	7	114	76	17	110	23.8	0.466	31	neg
##	479	8	126	74	38	75	25.9	0.162	39	neg
##	480	4	132	86	31	0	28.0	0.419	63	neg
##	481	3	158	70	30	328	35.5	0.344	35	pos
##	482	0	123	88	37	0	35.2	0.197	29	neg
##	483	4	85	58	22	49	27.8	0.306	28	neg
##	484	0	84	82	31	125	38.2	0.233	23	neg
##	485	0	145	0	0	0	44.2	0.630	31	pos
##	486	0	135	68	42	250	42.3	0.365	24	pos
##	487	1	139	62	41	480	40.7	0.536	21	neg
##	488	0	173	78	32	265	46.5	1.159	58	neg
##	489	4	99	72	17	0	25.6	0.294	28	neg
##	490	8	194	80	0	0	26.1	0.551	67	neg
##	491	2	83	65	28	66	36.8	0.629	24	neg
##	492	2	89	90	30	0	33.5	0.292	42	neg
##	493	4	99	68	38	0	32.8	0.145	33	neg
##	494	4	125	70	18	122	28.9	1.144	45	pos
##	495	3	80	0	0	0	0.0	0.174	22	neg
##	496	6	166	74	0	0	26.6	0.304	66	neg
##	497	5	110	68	0	0	26.0	0.292	30	neg
##	498	2	81	72	15	76	30.1	0.547	25	neg
##	499	7	195	70	33	145	25.1	0.163	55	pos
##	500	6	154	74	32		29.3	0.839	39	neg
##	501	2	117	90	19		25.2	0.313	21	neg
##	502	3	84	72	32		37.2	0.267	28	neg
##	503	6	0	68	41		39.0	0.727	41	pos
										-

##	504	7	94	64	25	79	33.3	0.738	41	neg
##	505	3	96	78	39	0	37.3	0.238	40	neg
##	506	10	75	82	0	0	33.3	0.263	38	neg
##	507	0	180	90	26	90	36.5	0.314	35	pos
##	508	1	130	60	23	170	28.6	0.692	21	neg
##	509	2	84	50	23	76	30.4	0.968	21	neg
##	510	8	120	78	0	0	25.0	0.409	64	neg
##	511	12	84	72	31	0	29.7	0.297	46	pos
##	512	0	139	62	17	210	22.1	0.207	21	neg
##	513	9	91	68	0	0	24.2	0.200	58	neg
##	514	2	91	62	0	0	27.3	0.525	22	neg
##	515	3	99	54	19	86	25.6	0.154	24	neg
##	516	3	163	70	18	105	31.6	0.268	28	pos
##	517	9	145	88	34	165	30.3	0.771	53	pos
##	518	7	125	86	0	0	37.6	0.304	51	neg
##	519	13	76	60	0	0	32.8	0.180	41	neg
##	520	6	129	90	7	326	19.6	0.582	60	neg
##	521	2	68	70	32	66	25.0	0.187	25	neg
##	522	3	124	80	33	130	33.2	0.305	26	neg
##	523	6	114	0	0	0	0.0	0.189	26	neg
##	524	9	130	70	0	0	34.2	0.652	45	pos
##	525	3	125	58	0	0	31.6	0.151	24	neg
##	526	3	87	60	18	0	21.8	0.444	21	neg
##	527	1	97	64	19	82	18.2	0.299	21	neg
##	528	3	116	74	15	105	26.3	0.107	24	neg
##	529	0	117	66	31	188	30.8	0.493	22	neg
##	530	0	111	65	0	0	24.6	0.660	31	neg
##	531	2	122	60	18	106	29.8	0.717	22	neg
##	532	0	107	76	0	0	45.3	0.686	24	neg
##	533	1	86	66	52	65	41.3	0.917	29	neg
##	534	6	91	0	0	0	29.8	0.501	31	neg
##	535	1	77	56	30	56	33.3	1.251	24	neg
##	536	4	132	0	0	0	32.9	0.302	23	pos
##	537	0	105	90	0	0	29.6	0.197	46	neg
##	538	0	57	60	0	0	21.7	0.735	67	neg
##	539	0	127	80	37	210	36.3	0.804	23	neg
##	540	3	129	92	49	155	36.4	0.968	32	pos
##	541	8	100	74	40	215	39.4	0.661	43	pos
##	542	3	128	72	25	190	32.4	0.549	27	pos
##	543	10	90	85	32	0	34.9	0.825	56	pos
##	544	4	84	90	23	56	39.5	0.159	25	neg
##	545	1	88	78	29	76	32.0	0.365	29	neg
##	546	8	186	90	35	225	34.5	0.423	37	pos
##	547	5	187	76	27	207	43.6	1.034	53	pos
##	548	4	131	68	21	166	33.1	0.160	28	neg
##	549	1	164	82	43	67	32.8	0.341	50	neg
##	550	4	189	110	31	0	28.5	0.680	37	neg
##	551	1	116	70	28	0	27.4	0.204	21	neg
##	552	3	84	68	30	106	31.9	0.591	25	neg
##	553	6	114	88	0	0	27.8	0.247	66	neg
##	554	1	88	62	24	44	29.9	0.422	23	neg
##	555	1	84	64	23	115	36.9	0.471	28	neg
##	556	7	124	70	33	215	25.5	0.161	37	neg
##	557	1	97	70	40	0	38.1	0.218	30	neg

	558	8	110	76	0		27.8	0.237		neg
	559	11	103	68	40	0	46.2	0.126		neg
	560	11	85	74	0	0	30.1	0.300		neg
	561	6	125	76	0		33.8	0.121	54	pos
	562	0	198	66	32		41.3	0.502		pos
##	563	1	87	68	34	77	37.6	0.401	24	neg
##	564	6	99	60	19	54	26.9	0.497	32	neg
	565	0	91	80	0	0	32.4	0.601	27	neg
##	566	2	95	54	14	88	26.1	0.748	22	neg
	567	1	99	72	30	18	38.6	0.412	21	neg
##	568	6	92	62	32	126	32.0	0.085	46	neg
##	569	4	154	72	29	126	31.3	0.338	37	neg
##	570	0	121	66	30	165	34.3	0.203	33	pos
##	571	3	78	70	0	0	32.5	0.270	39	neg
##	572	2	130	96	0	0	22.6	0.268	21	neg
##	573	3	111	58	31	44	29.5	0.430	22	neg
##	574	2	98	60	17	120	34.7	0.198	22	neg
##	575	1	143	86	30	330	30.1	0.892	23	neg
##	576	1	119	44	47	63	35.5	0.280	25	neg
##	577	6	108	44	20	130	24.0	0.813	35	neg
##	578	2	118	80	0	0	42.9	0.693	21	pos
##	579	10	133	68	0	0	27.0	0.245	36	neg
##	580	2	197	70	99	0	34.7	0.575	62	pos
##	581	0	151	90	46	0	42.1	0.371	21	pos
##	582	6	109	60	27	0	25.0	0.206	27	neg
##	583	12	121	78	17	0	26.5	0.259	62	neg
##	584	8	100	76	0	0	38.7	0.190	42	neg
##	585	8	124	76	24	600	28.7	0.687	52	pos
##	586	1	93	56	11	0	22.5	0.417	22	neg
##	587	8	143	66	0	0	34.9	0.129	41	pos
##	588	6	103	66	0	0	24.3	0.249	29	neg
##	589	3	176	86	27	156	33.3	1.154	52	pos
##	590	0	73	0	0	0	21.1	0.342	25	neg
##	591	11	111	84	40	0	46.8	0.925	45	pos
##	592	2	112	78	50	140	39.4	0.175	24	neg
##	593	3	132	80	0	0	34.4	0.402	44	pos
##	594	2	82	52	22	115	28.5	1.699	25	neg
##	595	6	123	72	45	230	33.6	0.733	34	neg
##	596	0	188	82	14	185	32.0	0.682	22	pos
##	597	0	67	76	0	0	45.3	0.194	46	neg
##	598	1	89	24	19		27.8	0.559		neg
##	599	1	173	74	0		36.8	0.088	38	pos
##	600	1	109	38	18	120	23.1	0.407	26	neg
##	601	1	108	88	19		27.1	0.400	24	neg
##	602	6	96	0	0	0	23.7	0.190	28	neg
##	603	1	124	74	36		27.8	0.100		neg
##	604	7	150	78	29	126	35.2	0.692	54	pos
##	605	4	183	0	0		28.4	0.212		pos
##	606	1	124	60	32		35.8	0.514		neg
	607	1	181	78	42		40.0	1.258		pos
	608	1	92	62	25		19.5	0.482		neg
	609	0	152	82	39		41.5	0.270		neg
	610	1	111	62	13		24.0	0.138		neg
	611	3	106	54	21		30.9	0.292		neg
										0

##	612	3	174	58	22	194	32.9	0.593	36	pos
##	613	7	168	88	42	321	38.2	0.787	40	pos
##	614	6	105	80	28	0	32.5	0.878	26	neg
##	615	11	138	74	26	144	36.1	0.557	50	pos
##	616	3	106	72	0	0	25.8	0.207	27	neg
##	617	6	117	96	0	0	28.7	0.157	30	neg
##	618	2	68	62	13	15	20.1	0.257	23	neg
	619	9	112	82	24		28.2	1.282	50	pos
	620	0	119	0	0		32.4	0.141	24	pos
	621	2	112	86	42		38.4	0.246	28	neg
	622	2	92	76	20	0		1.698	28	neg
	623	6	183	94	0		40.8	1.461	45	neg
	624	0	94	70	27		43.5	0.347	21	neg
	625	2	108	64	0		30.8	0.158	21	neg
	626	4	90	88	47		37.7	0.362	29	neg
	627	0	125	68	0		24.7	0.206	21	neg
	628	0	132	78	0	0	32.4	0.393	21	neg
	629	5	128	80	0	0	34.6	0.144	45	neg
	630	4	94	65	22	0		0.148	21	neg
	631	7	114	64	0		27.4	0.732	34	pos
	632	0	102	78	40		34.5	0.238	24	neg
	633	2	111	60	0		26.2	0.343	23	
	634	1	128	82	17		27.5	0.115	22	neg
	635	10	92	62	0		25.9	0.113	31	neg
	636	13	104	72	0		31.2	0.167	38	neg
	637				0		28.8			pos
	638	5 2	104 94	74 76	18		31.6	0.153 0.649	48 23	neg
	639	7	97	76	32		40.9	0.871	32	neg
	640	1								pos
	641	0	100	74	12 17		19.5 29.3	0.149	28	neg
			102	86				0.695	27	neg
	642	4	128	70	0		34.3	0.303	24	neg
	643	6	147	80	0		29.5	0.178	50	pos
	644	4	90	0	0		28.0	0.610	31	neg
	645	3	103	72	30		27.6	0.730	27	neg
	646	2	157	74	35		39.4	0.134	30	neg
	647	1	167	74	17		23.4	0.447	33	pos
	648	0	179	50	36		37.8	0.455	22	pos
	649	11	136	84	35		28.3	0.260	42	pos
	650	0	107	60	25		26.4	0.133	23	neg
	651	1	91	54	25		25.2	0.234	23	neg
	652	1	117	60	23		33.8	0.466	27	neg
	653	5	123	74	40		34.1	0.269	28	neg
	654	2	120	54	0		26.8	0.455	27	neg
	655	1	106	70	28		34.2	0.142	22	neg
	656	2	155	52	27		38.7	0.240	25	pos
	657	2	101	58	35		21.8	0.155	22	neg
	658	1	120	80	48		38.9	1.162	41	neg
	659	11	127	106	0		39.0	0.190	51	neg
	660	3	80	82	31		34.2	1.292	27	pos
	661	10	162	84	0		27.7	0.182	54	neg
	662	1	199	76	43		42.9	1.394	22	pos
	663	8	167	106	46		37.6	0.165	43	pos
	664	9	145	80	46		37.9	0.637	40	pos
##	665	6	115	60	39	0	33.7	0.245	40	pos

##	666	1	112	80	45	132	34.8	0.217	24	neg
##	667	4	145	82	18	0	32.5	0.235	70	pos
##	668	10	111	70	27	0	27.5	0.141	40	pos
##	669	6	98	58	33	190	34.0	0.430	43	neg
##	670	9	154	78	30	100	30.9	0.164	45	neg
##	671	6	165	68	26	168	33.6	0.631	49	neg
##	672	1	99	58	10	0	25.4	0.551	21	neg
##	673	10	68	106	23	49	35.5	0.285	47	neg
##	674	3	123	100	35	240	57.3	0.880	22	neg
##	675	8	91	82	0	0	35.6	0.587	68	neg
##	676	6	195	70	0	0	30.9	0.328	31	pos
##	677	9	156	86	0	0	24.8	0.230	53	pos
##	678	0	93	60	0	0	35.3	0.263	25	neg
##	679	3	121	52	0	0	36.0	0.127	25	pos
##	680	2	101	58	17	265	24.2	0.614	23	neg
##	681	2	56	56	28	45	24.2	0.332	22	neg
##	682	0	162	76	36	0	49.6	0.364	26	pos
##	683	0	95	64	39	105	44.6	0.366	22	neg
##	684	4	125	80	0	0	32.3	0.536	27	pos
##	685	5	136	82	0	0	0.0	0.640	69	neg
##	686	2	129	74	26	205	33.2	0.591	25	neg
##	687	3	130	64	0	0	23.1	0.314	22	neg
##	688	1	107	50	19	0	28.3	0.181	29	neg
##	689	1	140	74	26	180	24.1	0.828	23	neg
##	690	1	144	82	46	180	46.1	0.335	46	pos
##	691	8	107	80	0	0	24.6	0.856	34	neg
##	692	13	158	114	0	0	42.3	0.257	44	pos
##	693	2	121	70	32	95	39.1	0.886	23	neg
##	694	7	129	68	49	125	38.5	0.439	43	pos
##	695	2	90	60	0	0	23.5	0.191	25	neg
##	696	7	142	90	24	480	30.4	0.128	43	pos
##	697	3	169	74	19	125	29.9	0.268	31	pos
##	698	0	99	0	0	0	25.0	0.253	22	neg
##	699	4	127	88	11	155	34.5	0.598	28	neg
##	700	4	118	70	0	0	44.5	0.904	26	neg
##	701	2	122	76	27	200	35.9	0.483	26	neg
##	702	6	125	78	31	0	27.6	0.565	49	pos
##	703	1	168	88	29	0	35.0	0.905	52	pos
##	704	2	129	0	0	0	38.5	0.304	41	neg
##	705	4	110	76	20	100	28.4	0.118	27	neg
##	706	6	80	80	36		39.8	0.177	28	neg
##	707	10	115	0	0	0	0.0	0.261	30	pos
##	708	2	127	46	21	335	34.4	0.176	22	neg
##	709	9	164	78	0		32.8	0.148	45	pos
##	710	2	93	64	32	160	38.0	0.674	23	pos
	711	3	158	64	13	387	31.2	0.295	24	neg
##	712	5	126	78	27	22	29.6	0.439	40	neg
##	713	10	129	62	36	0	41.2	0.441	38	pos
	714	0	134	58	20		26.4	0.352	21	neg
	715	3	102	74	0		29.5	0.121	32	neg
	716	7	187	50	33		33.9	0.826	34	pos
	717	3	173	78	39		33.8	0.970	31	pos
	718	10	94	72	18		23.1	0.595	56	neg
	719	1	108	60	46		35.5	0.415	24	neg
										. 3

##	720	5	97	76	27	0	35.6	0.378	52	pos
##	721	4	83	86	19	0	29.3	0.317	34	neg
##	722	1	114	66	36	200	38.1	0.289	21	neg
##	723	1	149	68	29	127	29.3	0.349	42	pos
##	724	5	117	86	30	105	39.1	0.251	42	neg
##	725	1	111	94	0	0	32.8	0.265	45	neg
##	726	4	112	78	40	0	39.4	0.236	38	neg
##	727	1	116	78	29	180	36.1	0.496	25	neg
##	728	0	141	84	26	0	32.4	0.433	22	neg
##	729	2	175	88	0	0	22.9	0.326	22	neg
##	730	2	92	52	0	0	30.1	0.141	22	neg
	731	3	130	78	23		28.4	0.323	34	pos
	732	8	120	86	0		28.4	0.259	22	pos
	733	2	174	88	37	120	44.5	0.646	24	pos
	734	2	106	56	27		29.0	0.426	22	neg
	735	2	105	75	0		23.3	0.560	53	neg
	736	4	95	60	32		35.4	0.284	28	neg
	737	0	126	86	27		27.4	0.515	21	neg
	738	8	65	72	23		32.0	0.600	42	neg
	739	2	99	60	17		36.6	0.453	21	neg
	740	1	102	74	0		39.5	0.293	42	pos
	741	11	120	80	37		42.3	0.785	48	pos
	742	3	102	44	20		30.8	0.400	26	neg
	743	1	109	58	18		28.5	0.219	22	neg
	744	9	140	94	0		32.7	0.734	45	pos
	745	13	153	88	37		40.6	1.174	39	neg
	746	12	100	84	33		30.0	0.488	46	neg
	747	1	147	94	41		49.3	0.358	27	pos
	748	1	81	74	41		46.3	1.096	32	neg
	749	3	187	70	22		36.4	0.408	36	pos
	750 751	6	162	62	0		24.3	0.178	50	pos
	751 750	4	136	70	0		31.2	1.182	22	pos
	752 753	1	121	78	39		39.0	0.261	28	neg
	753 754		108	62	24		26.0 43.3	0.223	25	neg
	754 755	0 8	181 154	88 78	44 32		32.4	0.222 0.443	26 45	pos
	756	1	128	88	39		36.5	1.057	37	pos
	757	7	137	90	41		32.0	0.391	39	pos
	758	0	123	72	0		36.3	0.258	52	neg
	759	1	106	76	0		37.5	0.197	26	pos neg
	760	6	190	92	0		35.5	0.137	66	
	761	2	88	58	26		28.4	0.766	22	pos neg
	762	9	170	74	31		44.0	0.403	43	pos
	763	9	89	62	0		22.5	0.142	33	neg
	764	10	101	76	48		32.9	0.171	63	neg
	765	2	122	70	27		36.8	0.340	27	neg
	766	5	121	72	23		26.2	0.245	30	neg
	767	1	126	60	0		30.1	0.349	47	pos
	768	1	93	70	31		30.4	0.315	23	neg
	. 55	_	00	. 0	01	3	JJ. 1	0.010	20	6

#make diabetes numeric by making the pos and neg values binary
PimaIndiansDiabetes\$diabetes <- ifelse(PimaIndiansDiabetes\$diabetes == "pos", 1, 0)
PimaIndiansDiabetes</pre>

pregnant glucose pressure triceps insulin mass pedigree age diabetes

##		6	148	72	35		33.6	0.627	50	1
##		1	85	66	29		26.6	0.351	31	0
##	3	8	183	64	0		23.3	0.672	32	1
##		1	89	66	23		28.1	0.167	21	0
##	5	0	137	40	35	168	43.1	2.288	33	1
##	6	5	116	74	0	0	25.6	0.201	30	0
##	7	3	78	50	32	88	31.0	0.248	26	1
##	8	10	115	0	0	0	35.3	0.134	29	0
##	9	2	197	70	45	543	30.5	0.158	53	1
##	10	8	125	96	0	0	0.0	0.232	54	1
##	11	4	110	92	0	0	37.6	0.191	30	0
##	12	10	168	74	0	0	38.0	0.537	34	1
##	13	10	139	80	0	0	27.1	1.441	57	0
##	14	1	189	60	23	846	30.1	0.398	59	1
##	15	5	166	72	19	175	25.8	0.587	51	1
##	16	7	100	0	0	0	30.0	0.484	32	1
##	17	0	118	84	47	230	45.8	0.551	31	1
##	18	7	107	74	0	0	29.6	0.254	31	1
##	19	1	103	30	38	83	43.3	0.183	33	0
##	20	1	115	70	30	96	34.6	0.529	32	1
##	21	3	126	88	41	235	39.3	0.704	27	0
##	22	8	99	84	0	0	35.4	0.388	50	0
##	23	7	196	90	0	0	39.8	0.451	41	1
##	24	9	119	80	35	0	29.0	0.263	29	1
##	25	11	143	94	33	146	36.6	0.254	51	1
##	26	10	125	70	26	115	31.1	0.205	41	1
##	27	7	147	76	0	0	39.4	0.257	43	1
##	28	1	97	66	15	140	23.2	0.487	22	0
##	29	13	145	82	19	110	22.2	0.245	57	0
##	30	5	117	92	0	0	34.1	0.337	38	0
##	31	5	109	75	26	0	36.0	0.546	60	0
##	32	3	158	76	36	245	31.6	0.851	28	1
##	33	3	88	58	11	54	24.8	0.267	22	0
##	34	6	92	92	0	0	19.9	0.188	28	0
##	35	10	122	78	31	0	27.6	0.512	45	0
##	36	4	103	60	33	192	24.0	0.966	33	0
##	37	11	138	76	0	0	33.2	0.420	35	0
##	38	9	102	76	37	0	32.9	0.665	46	1
##	39	2	90	68	42	0	38.2	0.503	27	1
##	40	4	111	72	47	207	37.1	1.390	56	1
##	41	3	180	64	25	70	34.0	0.271	26	0
##	42	7	133	84	0	0	40.2	0.696	37	0
##	43	7	106	92	18	0	22.7	0.235	48	0
##	44	9	171	110	24	240	45.4	0.721	54	1
##	45	7	159	64	0	0	27.4	0.294	40	0
##	46	0	180	66	39	0	42.0	1.893	25	1
##	47	1	146	56	0	0	29.7	0.564	29	0
##	48	2	71	70	27	0	28.0	0.586	22	0
##	49	7	103	66	32	0	39.1	0.344	31	1
##	50	7	105	0	0	0	0.0	0.305	24	0
##	51	1	103	80	11	82	19.4	0.491	22	0
##	52	1	101	50	15	36	24.2	0.526	26	0
##	53	5	88	66	21	23	24.4	0.342	30	0
##	54	8	176	90	34	300	33.7	0.467	58	1

		-	450	22	4.0	0.40		4.0	•
##		7	150	66	42	342 34		42	0
##		1	73	50	10	0 23		21	0
##	57	7	187	68	39	304 37	7.7 0.254	41	1
##	58	0	100	88	60	110 46	3.8 0.962	31	0
##	59	0	146	82	0	0 40	0.5 1.781	44	0
##	60	0	105	64	41	142 41	1.5 0.173	22	0
##	61	2	84	0	0	0 (0.0 0.304	21	0
##	62	8	133	72	0	0 32		39	1
##		5	44	62	0	0 25		36	0
##		2	141	58	34	128 25		24	0
##		7	114	66	0	0 32		42	1
##		5	99	74	27	0 29		32	0
##		0	109	88	30	0 32		38	1
##		2	109	92	0	0 42		54	0
##		1	95	66	13	38 19		25	0
##		4	146	85	27	100 28		27	0
##		2	100	66	20	90 32		28	1
##		5	139	64	35	140 28		26	0
##	73	13	126	90	0	0 43		42	1
##	74	4	129	86	20	270 35	5.1 0.231	23	0
##	75	1	79	75	30	0 32	2.0 0.396	22	0
##	76	1	0	48	20	0 24	1.7 0.140	22	0
##	77	7	62	78	0	0 32	2.6 0.391	41	0
##	78	5	95	72	33	0 37	7.7 0.370	27	0
##	79	0	131	0	0	0 43	3.2 0.270	26	1
##	80	2	112	66	22	0 25		24	0
##		3	113	44	13	0 22		22	0
##		2	74	0	0		0.0 0.102	22	0
##		7	83	78	26	71 29		36	0
##		0	101	65	28	0 24		22	0
##		5	137	108	0	0 48		37	1
##		2	110	74	29	125 32		27	0
##				74		0 36			
		13	106		54			45	0
##		2	100	68	25	71 38		26	0
##		15	136	70	32	110 37		43	1
##		1	107	68	19	0 26		24	0
##		1	80	55	0	0 19		21	0
##		4	123	80	15	176 32		34	0
##		7	81	78	40	48 46		42	0
##		4	134	72	0	0 23		60	1
##	95	2	142	82	18	64 24		21	0
##	96	6	144	72	27	228 33		40	0
##	97	2	92	62	28	0 31	1.6 0.130	24	0
##	98	1	71	48	18	76 20	0.323	22	0
##	99	6	93	50	30	64 28	3.7 0.356	23	0
##	100	1	122	90	51	220 49	9.7 0.325	31	1
##	101	1	163	72	0	0 39	9.0 1.222	33	1
##	102	1	151	60	0	0 26		22	0
	103	0	125	96	0	0 22		21	0
	104	1	81	72	18	40 26		24	0
	105	2	85	65	0	0 39		27	0
	106	1	126	56	29	152 28		21	0
	107	1	96	122	0	0 22		27	0
	107	4	144	58	28	140 29		37	0
##	100	4	144	50	20	140 28	0.201	31	U

##	109	3	83	58	31		34.3	0.336	25	0
	110	0	95	85	25		37.4	0.247	24	1
##	111	3	171	72	33	135	33.3	0.199	24	1
##	112	8	155	62	26	495	34.0	0.543	46	1
##	113	1	89	76	34	37	31.2	0.192	23	0
##	114	4	76	62	0	0	34.0	0.391	25	0
##	115	7	160	54	32	175	30.5	0.588	39	1
##	116	4	146	92	0	0	31.2	0.539	61	1
##	117	5	124	74	0	0	34.0	0.220	38	1
##	118	5	78	48	0	0	33.7	0.654	25	0
##	119	4	97	60	23	0	28.2	0.443	22	0
##	120	4	99	76	15	51	23.2	0.223	21	0
##	121	0	162	76	56	100	53.2	0.759	25	1
##	122	6	111	64	39	0	34.2	0.260	24	0
##	123	2	107	74	30	100	33.6	0.404	23	0
##	124	5	132	80	0	0	26.8	0.186	69	0
##	125	0	113	76	0	0	33.3	0.278	23	1
##	126	1	88	30	42	99	55.0	0.496	26	1
##	127	3	120	70	30	135	42.9	0.452	30	0
##	128	1	118	58	36	94	33.3	0.261	23	0
##	129	1	117	88	24		34.5	0.403	40	1
##	130	0	105	84	0		27.9	0.741	62	1
	131	4	173	70	14		29.7	0.361	33	1
	132	9	122	56	0		33.3	1.114	33	1
	133	3	170	64	37		34.5	0.356	30	1
	134	8	84	74	31		38.3	0.457	39	0
	135	2	96	68	13		21.1	0.647	26	0
	136	2	125	60	20		33.8	0.088	31	0
	137	0	100	70	26		30.8	0.597	21	0
	138	0	93	60	25		28.7	0.532	22	0
	139	0	129	80	0		31.2	0.703	29	0
	140	5	105	72	29		36.9	0.159	28	0
	141	3	128	78	0		21.1	0.268	55	0
	142	5	106	82	30		39.5	0.286	38	0
	143	2	108	52	26		32.5	0.318	22	0
##	144	10	108	66	0		32.4	0.272	42	1
	145	4	154	62	31		32.8	0.237	23	0
	146	0	102	75	23		0.0	0.572	21	0
	147	9	57	80	37		32.8	0.096	41	0
	148	2	106	64	35		30.5	1.400	34	0
	149	5	147	78	0		33.7	0.218	65	0
	150	2	90	70	17		27.3	0.085	22	0
	151	1	136	74	50		37.4	0.399	24	0
	152	4	114	65	0		21.9	0.432	37	0
	153	9	156	86	28		34.3	1.189	42	1
	154	1	153	82	42		40.6	0.687	23	0
	155	8	188	78	0		47.9	0.137	43	1
	156	7	152	88	44		50.0	0.137	36	1
		2	99				24.6			0
	157			52 56	15			0.637	21	
	158	1	109	56 74	21		25.2	0.833	23	0
	159	2 17	88 162	74 72	19 41		29.0	0.229	22 47	0
	160	17	163	72 00	41		40.9	0.817		1
	161	4	151	90	38		29.7	0.294	36	0
##	162	7	102	74	40	105	37.2	0.204	45	0

##	163	0	114	80	34	285 44.2	0.167	27	0
##	164	2	100	64	23	0 29.7	0.368	21	0
##	165	0	131	88	0	0 31.6	0.743	32	1
##	166	6	104	74	18	156 29.9	0.722	41	1
##	167	3	148	66	25	0 32.5	0.256	22	0
##	168	4	120	68	0	0 29.6	0.709	34	0
##	169	4	110	66	0	0 31.9	0.471	29	0
##	170	3	111	90	12	78 28.4	0.495	29	0
##	171	6	102	82	0	0 30.8	0.180	36	1
##	172	6	134	70	23	130 35.4	0.542	29	1
##	173	2	87	0	23	0 28.9	0.773	25	0
##	174	1	79	60	42	48 43.5	0.678	23	0
##	175	2	75	64	24	55 29.7	0.370	33	0
##	176	8	179	72	42	130 32.7	0.719	36	1
##	177	6	85	78	0	0 31.2	0.382	42	0
##	178	0	129	110	46	130 67.1	0.319	26	1
##	179	5	143	78	0	0 45.0	0.190	47	0
##	180	5	130	82	0	0 39.1	0.956	37	1
##	181	6	87	80	0	0 23.2	0.084	32	0
##	182	0	119	64	18	92 34.9	0.725	23	0
##	183	1	0	74	20	23 27.7	0.299	21	0
##	184	5	73	60	0	0 26.8	0.268	27	0
##	185	4	141	74	0	0 27.6	0.244	40	0
##	186	7	194	68	28	0 35.9	0.745	41	1
##	187	8	181	68	36	495 30.1	0.615	60	1
##	188	1	128	98	41	58 32.0	1.321	33	1
##	189	8	109	76	39	114 27.9	0.640	31	1
##	190	5	139	80	35	160 31.6	0.361	25	1
##	191	3	111	62	0	0 22.6	0.142	21	0
##	192	9	123	70	44	94 33.1	0.374	40	0
##	193	7	159	66	0	0 30.4	0.383	36	1
##	194	11	135	0	0	0 52.3	0.578	40	1
##	195	8	85	55	20	0 24.4	0.136	42	0
##	196	5	158	84	41	210 39.4	0.395	29	1
##	197	1	105	58	0	0 24.3	0.187	21	0
##	198	3	107	62	13	48 22.9	0.678	23	1
	199	4	109	64	44	99 34.8	0.905	26	1
##	200	4	148	60	27	318 30.9	0.150	29	1
##	201	0	113	80	16	0 31.0	0.874	21	0
##	202	1	138	82	0	0 40.1	0.236	28	0
##	203	0	108	68	20	0 27.3	0.787	32	0
##	204	2	99	70	16	44 20.4	0.235	27	0
##	205	6	103	72	32	190 37.7	0.324	55	0
##	206	5	111	72	28	0 23.9	0.407	27	0
##	207	8	196	76	29	280 37.5	0.605	57	1
##	208	5	162	104	0	0 37.7	0.151	52	1
##	209	1	96	64	27	87 33.2	0.289	21	0
##	210	7	184	84	33	0 35.5	0.355	41	1
##	211	2	81	60	22	0 27.7	0.290	25	0
##	212	0	147	85	54	0 42.8	0.375	24	0
##	213	7	179	95	31	0 34.2	0.164	60	0
##	214	0	140	65	26	130 42.6	0.431	24	1
##	215	9	112	82	32	175 34.2	0.260	36	1
##	216	12	151	70	40	271 41.8	0.742	38	1

	217	5	109	62	41	129 35.8	0.514	25	1
##	218	6	125	68	30	120 30.0	0.464	32	0
##	219	5	85	74	22	0 29.0	1.224	32	1
##	220	5	112	66	0	0 37.8	0.261	41	1
##	221	0	177	60	29	478 34.6	1.072	21	1
##	222	2	158	90	0	0 31.6	0.805	66	1
##	223	7	119	0	0	0 25.2	0.209	37	0
##	224	7	142	60	33	190 28.8	0.687	61	0
##	225	1	100	66	15	56 23.6	0.666	26	0
	226	1	87	78	27	32 34.6	0.101	22	0
	227	0	101	76	0	0 35.7	0.198	26	0
	228	3	162	52	38	0 37.2	0.652	24	1
	229	4	197	70	39	744 36.7	2.329	31	0
	230	0	117	80	31	53 45.2	0.089	24	0
	231	4	142	86	0	0 44.0	0.645	22	1
	232	6	134	80	37	370 46.2	0.043	46	1
	233	1	79	80	25	37 25.4	0.583	22	0
	234	4	122	68 68	0	0 35.0	0.394	29	0
	235	3	74	68 70	28	45 29.7	0.293	23	0
	236	4	171	72	0	0 43.6	0.479	26	1
	237	7	181	84	21	192 35.9	0.586	51	1
	238	0	179	90	27	0 44.1	0.686	23	1
	239	9	164	84	21	0 30.8	0.831	32	1
	240	0	104	76	0	0 18.4	0.582	27	0
	241	1	91	64	24	0 29.2	0.192	21	0
	242	4	91	70	32	88 33.1	0.446	22	0
	243	3	139	54	0	0 25.6	0.402	22	1
	244	6	119	50	22	176 27.1	1.318	33	1
	245	2	146	76	35	194 38.2	0.329	29	0
	246	9	184	85	15	0 30.0	1.213	49	1
##	247	10	122	68	0	0 31.2	0.258	41	0
	248	0	165	90	33	680 52.3	0.427	23	0
##	249	9	124	70	33	402 35.4	0.282	34	0
##	250	1	111	86	19	0 30.1	0.143	23	0
##	251	9	106	52	0	0 31.2	0.380	42	0
##	252	2	129	84	0	0 28.0	0.284	27	0
##	253	2	90	80	14	55 24.4	0.249	24	0
##	254	0	86	68	32	0 35.8	0.238	25	0
##	255	12	92	62	7	258 27.6	0.926	44	1
##	256	1	113	64	35	0 33.6	0.543	21	1
##	257	3	111	56	39	0 30.1	0.557	30	0
##	258	2	114	68	22	0 28.7	0.092	25	0
##	259	1	193	50	16	375 25.9	0.655	24	0
##	260	11	155	76	28	150 33.3	1.353	51	1
##	261	3	191	68	15	130 30.9	0.299	34	0
##	262	3	141	0	0	0 30.0	0.761	27	1
##	263	4	95	70	32	0 32.1	0.612	24	0
	264	3	142	80	15	0 32.4	0.200	63	0
	265	4	123	62	0	0 32.0	0.226	35	1
	266	5	96	74	18	67 33.6	0.997	43	0
	267	0	138	0	0	0 36.3	0.933	25	1
	268	2	128	64	42	0 40.0	1.101	24	0
	269	0	102	52	0	0 25.1	0.078	21	0
	270	2	146	0	0	0 27.5	0.240	28	1
	•	-		•	v	5 21.0			-

##	271	10	101	86	37	0	45.6	1.136	38	1
	272	2	101	62	32		25.2	0.128	21	0
	273	3	122	78	0		23.0	0.254	40	0
	274	1	71	78	50		33.2	0.422	21	0
	275	13	106	70	0		34.2	0.251	52	0
##	276	2	100	70	52		40.5	0.677	25	0
##	277	7	106	60	24	0	26.5	0.296	29	1
##	278	0	104	64	23	116	27.8	0.454	23	0
##	279	5	114	74	0	0	24.9	0.744	57	0
##	280	2	108	62	10	278	25.3	0.881	22	0
##	281	0	146	70	0	0	37.9	0.334	28	1
##	282	10	129	76	28	122	35.9	0.280	39	0
##	283	7	133	88	15	155	32.4	0.262	37	0
##	284	7	161	86	0	0	30.4	0.165	47	1
##	285	2	108	80	0	0	27.0	0.259	52	1
	286	7	136	74	26		26.0	0.647	51	0
	287	5	155	84	44		38.7	0.619	34	0
	288	1	119	86	39		45.6	0.808	29	1
	289	4	96	56	17		20.8	0.340	26	0
	290	5	108	72	43		36.1	0.263	33	0
	291	0	78	88	29		36.9	0.434	21	0
	292	0	107	62	30		36.6	0.757	25	1
	293	2	128	78	37		43.3	1.224	31	1
	294	1	128	48	45		40.5	0.613	24	1
	295	0	161	50	0		21.9	0.254	65	0
	296	6	151	62 70	31		35.5	0.692	28	0
	297	2	146	70 84	38		28.0	0.337	29	1
	298 299	0	126	84	29		30.7	0.520	24 46	0
	300	14 8	100 112	78 72	25 0		36.6 23.6	0.412 0.840	46 58	1 0
	301	0	167	0	0		32.3	0.839	30	1
	302	2	144	58	33		31.6	0.422	25	1
	303	5	77	82	41		35.8	0.156	35	0
	304	5	115	98	0		52.9	0.209	28	1
	305	3	150	76	0		21.0	0.207	37	0
	306	2	120	76	37		39.7	0.215	29	0
	307	10	161	68	23		25.5	0.326	47	1
	308	0	137	68	14		24.8	0.143	21	0
	309	0	128	68	19		30.5	1.391	25	1
	310	2	124	68	28		32.9	0.875	30	1
##	311	6	80	66	30	0	26.2	0.313	41	0
##	312	0	106	70	37	148	39.4	0.605	22	0
##	313	2	155	74	17	96	26.6	0.433	27	1
##	314	3	113	50	10	85	29.5	0.626	25	0
##	315	7	109	80	31	0	35.9	1.127	43	1
##	316	2	112	68	22	94	34.1	0.315	26	0
##	317	3	99	80	11		19.3	0.284	30	0
##	318	3	182	74	0		30.5	0.345	29	1
	319	3	115	66	39		38.1	0.150	28	0
	320	6	194	78	0		23.5	0.129	59	1
	321	4	129	60	12		27.5	0.527	31	0
	322	3	112	74	30		31.6	0.197	25	1
	323	0	124	70	20		27.4	0.254	36	1
##	324	13	152	90	33	29	26.8	0.731	43	1

##	325	2	112	75	32		35.7	0.148	21	0
	326	1	157	72	21		25.6	0.123	24	0
##	327	1	122	64	32	156	35.1	0.692	30	1
##	328	10	179	70	0	0	35.1	0.200	37	0
##	329	2	102	86	36	120	45.5	0.127	23	1
##	330	6	105	70	32	68	30.8	0.122	37	0
##	331	8	118	72	19	0	23.1	1.476	46	0
##	332	2	87	58	16	52	32.7	0.166	25	0
##	333	1	180	0	0	0	43.3	0.282	41	1
##	334	12	106	80	0	0	23.6	0.137	44	0
##	335	1	95	60	18	58	23.9	0.260	22	0
##	336	0	165	76	43	255	47.9	0.259	26	0
##	337	0	117	0	0	0	33.8	0.932	44	0
##	338	5	115	76	0	0	31.2	0.343	44	1
##	339	9	152	78	34	171	34.2	0.893	33	1
##	340	7	178	84	0	0	39.9	0.331	41	1
##	341	1	130	70	13	105	25.9	0.472	22	0
##	342	1	95	74	21	73	25.9	0.673	36	0
##	343	1	0	68	35	0	32.0	0.389	22	0
##	344	5	122	86	0	0	34.7	0.290	33	0
##	345	8	95	72	0	0	36.8	0.485	57	0
##	346	8	126	88	36	108	38.5	0.349	49	0
##	347	1	139	46	19	83	28.7	0.654	22	0
##	348	3	116	0	0	0	23.5	0.187	23	0
##	349	3	99	62	19	74	21.8	0.279	26	0
##	350	5	0	80	32	0	41.0	0.346	37	1
##	351	4	92	80	0	0	42.2	0.237	29	0
##	352	4	137	84	0	0	31.2	0.252	30	0
##	353	3	61	82	28	0	34.4	0.243	46	0
##	354	1	90	62	12	43	27.2	0.580	24	0
##	355	3	90	78	0	0	42.7	0.559	21	0
##	356	9	165	88	0	0	30.4	0.302	49	1
##	357	1	125	50	40	167	33.3	0.962	28	1
##	358	13	129	0	30	0	39.9	0.569	44	1
##	359	12	88	74	40	54	35.3	0.378	48	0
##	360	1	196	76	36	249	36.5	0.875	29	1
##	361	5	189	64	33	325	31.2	0.583	29	1
##	362	5	158	70	0	0	29.8	0.207	63	0
##	363	5	103	108	37	0	39.2	0.305	65	0
##	364	4	146	78	0	0	38.5	0.520	67	1
##	365	4	147	74	25	293	34.9	0.385	30	0
##	366	5	99	54	28	83	34.0	0.499	30	0
	367	6	124	72	0		27.6	0.368	29	1
##	368	0	101	64	17	0	21.0	0.252	21	0
##	369	3	81	86	16	66	27.5	0.306	22	0
##	370	1	133	102	28	140	32.8	0.234	45	1
##	371	3	173	82	48	465	38.4	2.137	25	1
##	372	0	118	64	23	89	0.0	1.731	21	0
##	373	0	84	64	22		35.8	0.545	21	0
##	374	2	105	58	40	94	34.9	0.225	25	0
##	375	2	122	52	43		36.2	0.816	28	0
##	376	12	140	82	43		39.2	0.528	58	1
	377	0	98	82	15		25.2	0.299	22	0
##	378	1	87	60	37	75	37.2	0.509	22	0

	070	4	450	7-	•	0 40 0	0.000	00	
	379	4	156	75	0	0 48.3	0.238	32	1
	380	0		100	39	72 43.4	1.021	35	0
##	381	1	107	72	30	82 30.8	0.821	24	0
##	382	0	105	68	22	0 20.0	0.236	22	0
##	383	1	109	60	8	182 25.4	0.947	21	0
##	384	1	90	62	18	59 25.1	1.268	25	0
##	385	1	125	70	24	110 24.3	0.221	25	0
##	386	1	119	54	13	50 22.3	0.205	24	0
	387	5	116	74	29	0 32.3	0.660	35	1
	388	8		100	36	0 43.3	0.239	45	1
	389	5	144	82	26	285 32.0	0.452	58	1
	390	3	100	68	23	81 31.6	0.432	28	0
	391	1	100	66	29	196 32.0	0.444	42	0
	392	5	166	76	0	0 45.7	0.340	27	1
	393	1	131	64	14	415 23.7	0.389	21	0
	394	4	116	72	12	87 22.1	0.463	37	0
##	395	4	158	78	0	0 32.9	0.803	31	1
##	396	2	127	58	24	275 27.7	1.600	25	0
##	397	3	96	56	34	115 24.7	0.944	39	0
##	398	0	131	66	40	0 34.3	0.196	22	1
##	399	3	82	70	0	0 21.1	0.389	25	0
##	400	3	193	70	31	0 34.9	0.241	25	1
##	401	4	95	64	0	0 32.0	0.161	31	1
	402	6	137	61	0	0 24.2	0.151	55	0
	403	5	136	84	41	88 35.0	0.286	35	1
	404	9	72	78	25	0 31.6	0.280	38	0
	405	5	168	64	0	0 31.0	0.135	41	1
	406	2			32	165 42.1			0
			123	48			0.520	26	
	407	4	115	72	0	0 28.9	0.376	46	1
	408	0	101	62	0	0 21.9	0.336	25	0
	409	8	197	74	0	0 25.9	1.191	39	1
	410	1	172	68	49	579 42.4	0.702	28	1
##	411	6	102	90	39	0 35.7	0.674	28	0
##	412	1	112	72	30	176 34.4	0.528	25	0
##	413	1	143	84	23	310 42.4	1.076	22	0
##	414	1	143	74	22	61 26.2	0.256	21	0
##	415	0	138	60	35	167 34.6	0.534	21	1
##	416	3	173	84	33	474 35.7	0.258	22	1
	417	1	97	68	21	0 27.2	1.095	22	0
	418	4	144	82	32	0 38.5	0.554	37	1
	419	1	83	68	0	0 18.2	0.624	27	0
	420	3	129	64	29	115 26.4	0.219	28	1
	421	1	119	88	41	170 45.3	0.507	26	0
	422	2	94	68	18	76 26.0	0.561	21	0
	423	0	102	64	46	78 40.6	0.496	21	0
	424	2	115	64	22	0 30.8	0.421	21	0
	425	8	151	78	32	210 42.9	0.516	36	1
	426	4	184	78	39	277 37.0	0.264	31	1
	427	0	94	0	0	0 0.0	0.256	25	0
	428	1	181	64	30	180 34.1	0.328	38	1
	429	0	135	94	46	145 40.6	0.284	26	0
##	430	1	95	82	25	180 35.0	0.233	43	1
##	431	2	99	0	0	0 22.2	0.108	23	0
##	432	3	89	74	16	85 30.4	0.551	38	0

	433	1	80	74	11		30.0	0.527	22	0
	434	2	139	75	0		25.6	0.167	29	0
##	435	1	90	68	8		24.5	1.138	36	0
##	436	0	141	0	0	0	42.4	0.205	29	1
	437	12	140	85	33		37.4	0.244	41	0
##	438	5	147	75	0	0	29.9	0.434	28	0
##	439	1	97	70	15	0	18.2	0.147	21	0
##	440	6	107	88	0	0	36.8	0.727	31	0
##	441	0	189	104	25	0	34.3	0.435	41	1
##	442	2	83	66	23		32.2	0.497	22	0
##	443	4	117	64	27	120	33.2	0.230	24	0
##	444	8	108	70	0	0	30.5	0.955	33	1
##	445	4	117	62	12	0	29.7	0.380	30	1
##	446	0	180	78	63	14	59.4	2.420	25	1
##	447	1	100	72	12	70	25.3	0.658	28	0
##	448	0	95	80	45	92	36.5	0.330	26	0
##	449	0	104	64	37	64	33.6	0.510	22	1
##	450	0	120	74	18	63	30.5	0.285	26	0
##	451	1	82	64	13	95	21.2	0.415	23	0
##	452	2	134	70	0	0	28.9	0.542	23	1
##	453	0	91	68	32	210	39.9	0.381	25	0
##	454	2	119	0	0	0	19.6	0.832	72	0
##	455	2	100	54	28	105	37.8	0.498	24	0
##	456	14	175	62	30	0	33.6	0.212	38	1
##	457	1	135	54	0	0	26.7	0.687	62	0
##	458	5	86	68	28	71	30.2	0.364	24	0
##	459	10	148	84	48	237	37.6	1.001	51	1
##	460	9	134	74	33	60	25.9	0.460	81	0
##	461	9	120	72	22	56	20.8	0.733	48	0
##	462	1	71	62	0	0	21.8	0.416	26	0
##	463	8	74	70	40	49	35.3	0.705	39	0
##	464	5	88	78	30	0	27.6	0.258	37	0
##	465	10	115	98	0	0	24.0	1.022	34	0
##	466	0	124	56	13	105	21.8	0.452	21	0
##	467	0	74	52	10	36	27.8	0.269	22	0
##	468	0	97	64	36	100	36.8	0.600	25	0
##	469	8	120	0	0	0	30.0	0.183	38	1
##	470	6	154	78	41	140	46.1	0.571	27	0
##	471	1	144	82	40	0	41.3	0.607	28	0
##	472	0	137	70	38	0	33.2	0.170	22	0
##	473	0	119	66	27	0	38.8	0.259	22	0
##	474	7	136	90	0	0	29.9	0.210	50	0
##	475	4	114	64	0	0	28.9	0.126	24	0
##	476	0	137	84	27	0	27.3	0.231	59	0
##	477	2	105	80	45	191	33.7	0.711	29	1
##	478	7	114	76	17	110	23.8	0.466	31	0
##	479	8	126	74	38	75	25.9	0.162	39	0
##	480	4	132	86	31	0	28.0	0.419	63	0
##	481	3	158	70	30	328	35.5	0.344	35	1
##	482	0	123	88	37	0	35.2	0.197	29	0
##	483	4	85	58	22		27.8	0.306	28	0
##	484	0	84	82	31	125	38.2	0.233	23	0
##	485	0	145	0	0	0	44.2	0.630	31	1
##	486	0	135	68	42	250	42.3	0.365	24	1

	487	1	139	62	41		40.7	0.536	21	0
##	488	0	173	78	32		46.5	1.159	58	0
##	489	4	99	72	17		25.6	0.294	28	0
	490	8	194	80	0		26.1	0.551	67	0
##	491	2	83	65	28	66	36.8	0.629	24	0
##	492	2	89	90	30	0	33.5	0.292	42	0
##	493	4	99	68	38	0	32.8	0.145	33	0
##	494	4	125	70	18	122	28.9	1.144	45	1
##	495	3	80	0	0	0	0.0	0.174	22	0
##	496	6	166	74	0	0	26.6	0.304	66	0
##	497	5	110	68	0	0	26.0	0.292	30	0
##	498	2	81	72	15	76	30.1	0.547	25	0
##	499	7	195	70	33	145	25.1	0.163	55	1
##	500	6	154	74	32	193	29.3	0.839	39	0
##	501	2	117	90	19	71	25.2	0.313	21	0
##	502	3	84	72	32	0	37.2	0.267	28	0
##	503	6	0	68	41	0	39.0	0.727	41	1
##	504	7	94	64	25	79	33.3	0.738	41	0
##	505	3	96	78	39		37.3	0.238	40	0
##	506	10	75	82	0		33.3	0.263	38	0
##	507	0	180	90	26	90	36.5	0.314	35	1
##	508	1	130	60	23	170	28.6	0.692	21	0
##	509	2	84	50	23	76	30.4	0.968	21	0
##	510	8	120	78	0	0	25.0	0.409	64	0
##	511	12	84	72	31	0	29.7	0.297	46	1
##	512	0	139	62	17	210	22.1	0.207	21	0
##	513	9	91	68	0	0	24.2	0.200	58	0
##	514	2	91	62	0	0	27.3	0.525	22	0
##	515	3	99	54	19	86	25.6	0.154	24	0
##	516	3	163	70	18	105	31.6	0.268	28	1
##	517	9	145	88	34	165	30.3	0.771	53	1
##	518	7	125	86	0	0	37.6	0.304	51	0
##	519	13	76	60	0	0	32.8	0.180	41	0
##	520	6	129	90	7	326	19.6	0.582	60	0
##	521	2	68	70	32	66	25.0	0.187	25	0
##	522	3	124	80	33	130	33.2	0.305	26	0
##	523	6	114	0	0	0	0.0	0.189	26	0
##	524	9	130	70	0	0	34.2	0.652	45	1
##	525	3	125	58	0	0	31.6	0.151	24	0
##	526	3	87	60	18	0	21.8	0.444	21	0
##	527	1	97	64	19	82	18.2	0.299	21	0
##	528	3	116	74	15	105	26.3	0.107	24	0
##	529	0	117	66	31	188	30.8	0.493	22	0
##	530	0	111	65	0	0	24.6	0.660	31	0
##	531	2	122	60	18	106	29.8	0.717	22	0
##	532	0	107	76	0	0	45.3	0.686	24	0
##	533	1	86	66	52	65	41.3	0.917	29	0
##	534	6	91	0	0		29.8	0.501	31	0
##	535	1	77	56	30	56	33.3	1.251	24	0
##	536	4	132	0	0	0	32.9	0.302	23	1
##	537	0	105	90	0	0	29.6	0.197	46	0
##	538	0	57	60	0	0	21.7	0.735	67	0
##	539	0	127	80	37	210	36.3	0.804	23	0
##	540	3	129	92	49	155	36.4	0.968	32	1

##	541	8	100	74	40	215 39.4	0.661	43	1
	542	3	128	72	25	190 32.4	0.549	27	1
	543	10	90	85	32	0 34.9	0.825	56	1
	544	4	84	90	23	56 39.5	0.159	25	0
	545	1	88	78	29	76 32.0	0.365	29	0
##	546	8	186	90	35	225 34.5	0.423	37	1
##	547	5	187	76	27	207 43.6	1.034	53	1
##	548	4	131	68	21	166 33.1	0.160	28	0
##	549	1	164	82	43	67 32.8	0.341	50	0
##	550	4	189	110	31	0 28.5	0.680	37	0
##	551	1	116	70	28	0 27.4	0.204	21	0
##	552	3	84	68	30	106 31.9	0.591	25	0
##	553	6	114	88	0	0 27.8	0.247	66	0
##	554	1	88	62	24	44 29.9	0.422	23	0
##	555	1	84	64	23	115 36.9	0.471	28	0
	556	7	124	70	33	215 25.5	0.161	37	0
	557	1	97	70	40	0 38.1	0.218	30	0
	558	8	110	76	0	0 27.8	0.237	58	0
	559	11	103	68	40	0 46.2	0.126	42	0
	560	11	85	74	0	0 30.1	0.300	35	0
	561	6	125	76	0	0 33.8	0.121	54	1
	562	0	198	66	32	274 41.3	0.502	28	1
	563	1	87	68	34	77 37.6	0.401	24	0
	564	6	99	60	19	54 26.9	0.497	32	0
	565	0	91	80	0	0 32.4	0.601	27	0
	566	2	95	54	14	88 26.1	0.748	22	0
	567 568	1	99	72 62	30	18 38.6	0.412	21 46	0
	569	6 4	92 154	72	32 29	126 32.0 126 31.3	0.085 0.338	46 37	0
	570	0	121	66	30	165 34.3	0.338	33	1
	571	3	78	70	0	0 32.5	0.270	39	0
	572	2	130	96	0	0 22.6	0.268	21	0
	573	3	111	58	31	44 29.5	0.430	22	0
	574	2	98	60	17	120 34.7	0.198	22	0
	575	1	143	86	30	330 30.1	0.892	23	0
	576	1	119	44	47	63 35.5	0.280	25	0
	577	6	108	44	20	130 24.0	0.813	35	0
##	578	2	118	80	0	0 42.9	0.693	21	1
##	579	10	133	68	0	0 27.0	0.245	36	0
##	580	2	197	70	99	0 34.7	0.575	62	1
##	581	0	151	90	46	0 42.1	0.371	21	1
##	582	6	109	60	27	0 25.0	0.206	27	0
##	583	12	121	78	17	0 26.5	0.259	62	0
##	584	8	100	76	0	0 38.7	0.190	42	0
##	585	8	124	76	24	600 28.7	0.687	52	1
##	586	1	93	56	11	0 22.5	0.417	22	0
	587	8	143	66	0	0 34.9	0.129	41	1
	588	6	103	66	0	0 24.3	0.249	29	0
	589	3	176	86	27	156 33.3	1.154	52	1
	590	0	73	0	0	0 21.1	0.342	25	0
	591	11	111	84	40	0 46.8	0.925	45	1
	592	2	112	78	50	140 39.4	0.175	24	0
	593	3	132	80	0	0 34.4	0.402	44	1
##	594	2	82	52	22	115 28.5	1.699	25	0

	595	6	123	72	45		33.6	0.733	34	0
##	596	0	188	82	14	185	32.0	0.682	22	1
##	597	0	67	76	0	0	45.3	0.194	46	0
##	598	1	89	24	19	25	27.8	0.559	21	0
##	599	1	173	74	0	0	36.8	0.088	38	1
##	600	1	109	38	18	120	23.1	0.407	26	0
##	601	1	108	88	19	0	27.1	0.400	24	0
	602	6	96	0	0		23.7	0.190	28	0
	603	1	124	74	36		27.8	0.100	30	0
	604	7	150	78	29		35.2	0.692	54	1
	605			0	0		28.4			1
		4	183					0.212	36	
	606	1	124	60	32		35.8	0.514	21	0
	607	1	181	78	42		40.0	1.258	22	1
	608	1	92	62	25		19.5	0.482	25	0
	609	0	152	82	39		41.5	0.270	27	0
##	610	1	111	62	13		24.0	0.138	23	0
##	611	3	106	54	21	158	30.9	0.292	24	0
##	612	3	174	58	22	194	32.9	0.593	36	1
##	613	7	168	88	42	321	38.2	0.787	40	1
##	614	6	105	80	28	0	32.5	0.878	26	0
##	615	11	138	74	26	144	36.1	0.557	50	1
##	616	3	106	72	0	0	25.8	0.207	27	0
##	617	6	117	96	0	0	28.7	0.157	30	0
	618	2	68	62	13		20.1	0.257	23	0
	619	9	112	82	24		28.2	1.282	50	1
	620	0	119	0	0		32.4	0.141	24	1
	621	2	112	86	42		38.4	0.141	28	0
	622	2	92	76			24.2			
					20			1.698	28	0
	623	6	183	94	0		40.8	1.461	45	0
	624	0	94	70	27		43.5	0.347	21	0
	625	2	108	64	0		30.8	0.158	21	0
	626	4	90	88	47		37.7	0.362	29	0
	627	0	125	68	0		24.7	0.206	21	0
##	628	0	132	78	0	0	32.4	0.393	21	0
##	629	5	128	80	0	0	34.6	0.144	45	0
##	630	4	94	65	22	0	24.7	0.148	21	0
##	631	7	114	64	0	0	27.4	0.732	34	1
##	632	0	102	78	40	90	34.5	0.238	24	0
##	633	2	111	60	0	0	26.2	0.343	23	0
##	634	1	128	82	17	183	27.5	0.115	22	0
##	635	10	92	62	0	0	25.9	0.167	31	0
	636	13	104	72	0		31.2	0.465	38	1
	637	5	104	74	0		28.8	0.153	48	0
	638	2	94	76	18		31.6	0.649	23	0
	639	7	97	76	32		40.9	0.871	32	1
	640	1	100	74	12		19.5	0.149	28	0
	641	0	100	86	17		29.3	0.149	27	0
				70	0				24	
	642	4	128				34.3	0.303		0
	643	6	147	80	0		29.5	0.178	50	1
	644	4	90	0	0		28.0	0.610	31	0
	645	3	103	72	30		27.6	0.730	27	0
	646	2	157	74	35		39.4	0.134	30	0
	647	1	167	74	17		23.4	0.447	33	1
##	648	0	179	50	36	159	37.8	0.455	22	1

##	649	11	136	84	35	130	28.3	0.260	42	1
##	650	0	107	60	25	0	26.4	0.133	23	0
##	651	1	91	54	25	100	25.2	0.234	23	0
##	652	1	117	60	23		33.8	0.466	27	0
##	653	5	123	74	40	77	34.1	0.269	28	0
##	654	2	120	54	0	0	26.8	0.455	27	0
##	655	1	106	70	28	135	34.2	0.142	22	0
##	656	2	155	52	27	540	38.7	0.240	25	1
##	657	2	101	58	35	90	21.8	0.155	22	0
##	658	1	120	80	48		38.9	1.162	41	0
##	659	11	127	106	0		39.0	0.190	51	0
	660	3	80	82	31		34.2	1.292	27	1
	661	10	162	84	0		27.7	0.182	54	0
	662	1	199	76	43		42.9	1.394	22	1
	663	8	167	106	46		37.6	0.165	43	1
	664	9	145	80	46		37.9	0.637	40	1
	665	6	115	60	39		33.7	0.245	40	1
	666	1	112	80	45		34.8	0.217	24	0
	667	4	145	82	18		32.5	0.235	70	1
	668	10	111	70	27		27.5	0.141	40	1
	669	6	98	58	33		34.0	0.430	43	0
	670	9	154	78	30		30.9	0.164	45	0
	671	6	165	68	26		33.6	0.631	49	0
	672	1	99	58	10		25.4	0.551	21	0
	673	10	68	106	23		35.5	0.285	47	0
	674	3	123	100	35		57.3	0.880	22	0
	675	8	91	82	0		35.6	0.587	68	0
	676	6	195	70	0		30.9	0.328	31	1
	677	9	156	86	0		24.8	0.230	53	1
	678	0	93	60	0		35.3	0.263	25	0
	679	3	121	52	0		36.0	0.127	25	1
	680	2	101	58	17		24.2	0.614	23	0
	681	2	56	56	28		24.2	0.332	22	0
	682	0	162	76	36		49.6	0.364	26	1
	683	0	95	64	39		44.6	0.366	22	0
	684	4	125	80	0		32.3	0.536	27	1
	685	5	136	82	0	0	0.0	0.640	69	0
	686	2	129	74	26		33.2	0.591	25	0
	687	3	130	64	0		23.1	0.314	22	0
	688	1	107	50	19		28.3	0.181	29	0
	689	1	140	74	26		24.1	0.828	23	0
	690	1	144	82	46	180	46.1	0.335	46	1
##	691	8	107	80	0		24.6	0.856	34	0
##	692	13	158	114	0	0	42.3	0.257	44	1
##	693	2	121	70	32		39.1	0.886	23	0
##	694	7	129	68	49	125	38.5	0.439	43	1
	695	2	90	60	0		23.5	0.191	25	0
##	696	7	142	90	24	480	30.4	0.128	43	1
##	697	3	169	74	19	125	29.9	0.268	31	1
##	698	0	99	0	0	0	25.0	0.253	22	0
##	699	4	127	88	11	155	34.5	0.598	28	0
##	700	4	118	70	0	0	44.5	0.904	26	0
##	701	2	122	76	27	200	35.9	0.483	26	0
##	702	6	125	78	31	0	27.6	0.565	49	1

	703	1	168	88	29	0 35.0	0.905	52	1
	704	2	129	0	0	0 38.5	0.304	41	0
##	705	4	110	76	20	100 28.4	0.118	27	0
##	706	6	80	80	36	0 39.8	0.177	28	0
##	707	10	115	0	0	0 0.0	0.261	30	1
##	708	2	127	46	21	335 34.4	0.176	22	0
##	709	9	164	78	0	0 32.8	0.148	45	1
	710	2	93	64	32	160 38.0	0.674	23	1
	711	3	158	64	13	387 31.2	0.295	24	0
	712	5	126	78	27	22 29.6	0.439	40	0
	713	10	129	62	36	0 41.2	0.441	38	1
	714	0				291 26.4			0
			134	58	20		0.352	21	
	715	3	102	74	0	0 29.5	0.121	32	0
	716	7	187	50	33	392 33.9	0.826	34	1
	717	3	173	78	39	185 33.8	0.970	31	1
	718	10	94	72	18	0 23.1	0.595	56	0
##	719	1	108	60	46	178 35.5	0.415	24	0
##	720	5	97	76	27	0 35.6	0.378	52	1
##	721	4	83	86	19	0 29.3	0.317	34	0
##	722	1	114	66	36	200 38.1	0.289	21	0
##	723	1	149	68	29	127 29.3	0.349	42	1
##	724	5	117	86	30	105 39.1	0.251	42	0
##	725	1	111	94	0	0 32.8	0.265	45	0
	726	4	112	78	40	0 39.4	0.236	38	0
	727	1	116	78	29	180 36.1	0.496	25	0
	728	0	141	84	26	0 32.4	0.433	22	0
	729	2	175	88	0	0 22.9	0.326	22	0
	730	2	92	52		0 30.1		22	
					0		0.141		0
	731	3	130	78	23	79 28.4	0.323	34	1
	732	8	120	86	0	0 28.4	0.259	22	1
	733	2	174	88	37	120 44.5	0.646	24	1
	734	2	106	56	27	165 29.0	0.426	22	0
##	735	2	105	75	0	0 23.3	0.560	53	0
##	736	4	95	60	32	0 35.4	0.284	28	0
##	737	0	126	86	27	120 27.4	0.515	21	0
##	738	8	65	72	23	0 32.0	0.600	42	0
##	739	2	99	60	17	160 36.6	0.453	21	0
##	740	1	102	74	0	0 39.5	0.293	42	1
##	741	11	120	80	37	150 42.3	0.785	48	1
	742	3	102	44	20	94 30.8	0.400	26	0
	743	1	109	58	18	116 28.5	0.219	22	0
	744	9	140	94	0	0 32.7	0.734	45	1
	745	13	153	88	37	140 40.6	1.174	39	0
	746	12	100	84	33	105 30.0	0.488	46	0
	747	1	147	94	41	0 49.3	0.358	27	1
	748	1	81	74	41	57 46.3	1.096	32	0
	749	3	187	70	22	200 36.4	0.408	36	1
	750	6	162	62	0	0 24.3	0.178	50	1
	751	4	136	70	0	0 31.2	1.182	22	1
	752	1	121	78	39	74 39.0	0.261	28	0
	753	3	108	62	24	0 26.0	0.223	25	0
##	754	0	181	88	44	510 43.3	0.222	26	1
##	755	8	154	78	32	0 32.4	0.443	45	1
##	756	1	128	88	39	110 36.5	1.057	37	1

```
## 757
                      137
                                 90
                                          41
                                                    0 32.0
                                                               0.391
                                                                       39
                                                                                   0
                                                               0.258
## 758
               0
                      123
                                 72
                                           0
                                                    0 36.3
                                                                       52
                                                                                   1
## 759
                      106
                                                    0 37.5
                                                               0.197
               1
                                 76
                                           0
                                                                       26
                                                                                   0
## 760
               6
                      190
                                 92
                                           0
                                                    0 35.5
                                                               0.278
                                                                       66
                                                                                   1
               2
                                                   16 28.4
                                                               0.766
## 761
                       88
                                 58
                                          26
                                                                       22
                                                                                   0
## 762
               9
                      170
                                 74
                                          31
                                                    0 44.0
                                                               0.403
                                                                       43
                                                                                   1
                                                    0 22.5
## 763
               9
                       89
                                 62
                                           0
                                                               0.142
                                                                       33
                                                                                   0
                                                  180 32.9
                                                               0.171
## 764
              10
                      101
                                 76
                                          48
                                                                       63
                                                                                   0
## 765
               2
                      122
                                 70
                                          27
                                                    0 36.8
                                                               0.340
                                                                       27
                                                                                   0
## 766
               5
                      121
                                 72
                                          23
                                                  112 26.2
                                                               0.245
                                                                       30
                                                                                   0
## 767
               1
                      126
                                 60
                                           0
                                                    0 30.1
                                                               0.349
                                                                       47
                                                                                   1
## 768
               1
                       93
                                 70
                                                    0 30.4
                                                               0.315
                                                                       23
                                          31
#get the numeric values
```

PC1 vs. PC2 Correlation

plot(sort(-11[1, 1:768]), main = "PC1 Plot")

PC1 Plot


```
## contribution ratio
Cr = rep(0, length(ev))
for (k in 1:length(ev))
   {
    Cr[k] = sum(ev[1:k]) / sum(ev)
}

plot(Cr, main = "Contribution Ratio Plot", xlab = "PC Number", ylab = "Contribution ratio", pch = 19, co
abline(h = 0.8, col = "red")
```

Contribution Ratio Plot

overall threshold
plot(ev, main = "Overall Threhold Plot", xlab = "PC Number", ylab = "eigenvalues", pch = 19, col = "blu
abline(h = mean(ev), col = "red")

Overall Threhold Plot


```
#here we find the numeric values of PC1 and PC2
load <- eve[, 1]</pre>
load2 <- eve[, 2]
#here we are finding the column names so we can link them to the components
individualFeatures <- colnames(a)</pre>
#here we are looking to see what features these numbers correspond
PC1 <- data.frame(Feature = individualFeatures, Loading = load)</pre>
PC2 <- data.frame(Feature = individualFeatures, Loading = load2)
#print
print(PC1)
      Feature
                   Loading
## 1 pregnant -0.0020217488
## 2 glucose 0.0978118564
## 3 pressure 0.0160930708
## 4 triceps 0.0607566786
## 5 insulin 0.9931106435
## 6
        mass 0.0140108503
## 7 pedigree 0.0005371689
        age -0.0035646812
## 9 diabetes 0.0005853255
print(PC2)
##
     Feature
                   Loading
## 1 pregnant -0.0226500774
## 2 glucose -0.9721857784
## 3 pressure -0.1419012985
## 4 triceps 0.0578559304
## 5 insulin 0.0946290072
## 6
     mass -0.0469772538
## 7 pedigree -0.0008169207
## 8
        age -0.1401683828
## 9 diabetes -0.0070103371
## Scree
plot(ev[1:8]-ev[2:9], main = "Scree", xlab = "PC Number", ylab="Difference", pch = 19,col="blue")
```

Scree

PCA Plots (PC1 vs. PC2, PC1): Plot 1 shows the correlation between PC1 and PC2 in this case we know that PC1 is mainly driven by insulin levels and PC2 is driven by glucose. The cluster at the origin suggests that most people have average levels of both factors. Those straying right on the x-axis indicate higher insulin, and those straying up on the y-axis indicate higher glucose levels. We can see from this plot the individuals that are at risk for both factors are the most likely to be at risk.

The second plot shows us the importance of the insulin factor as insulin is by far the highest factor in PC1. Based on the plot we can see that insulin and PC1 values correlate quite directly, proving the importance of the insulin factor.

Contribution Ratio: In the contribution ratio plot shows us how many principal components are needed to get a majority of the variance. We can see a fast incline from the first 2 points and then the rest of the components don't provide much of an increase. This shows us that PC1 and PC2 are the main factors for the variance. Overall from this plot we can see that after the first 6 components the plot flattens out.

Overall Threshold: For the overall threshold we look at the eigenvalues and as shown here there is a large drop from PC1 to PC2. The line shows the mean and those above it have significance to the variance which as we can see only PC1 is above the line, and in far second place PC2 is closest to the line out of the remaining components.

Scree Plot: The scree plot shows us a very similar thing as the overall threshold plot. Instead of looking at the big drop in eigenvalues to interpret the amount of components needed, the Scree plot gives us a bigger overview of the eigenvalues for our dataset. This shows us the rate of variation as you go from one component to the next. As we can see here the output is generally the same showing the eigenvalue for PC1 to be by far the highest.