

TEST REPORT

FOR FCC PART 15 SUBPART C 15.239

Report Reference No. CTL1604051017-WF

Compiled by: (position+printed name+signature)

Jacky Chen (File administrators)

Tested by:

(position+printed name+signature)

Allen Wang (Test Engineer)

Approved by: (position+printed name+signature)

Tracy Qi (Manager) Allen Wang

huy Gi

Product Name..... Headrest Monitor

Model/Type reference: LM-707D

List Model(s)..... See next page

Trade Mark N/A

FCC ID YTO-LM707D

Applicant's name Investio Holdings Co., Ltd.

Insu Building 19-6, Jungja-dong, Bundang-gu, Sungnam-city, Address of applicant

Kyunggi-do, Korea

Test Firm Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm

Nanshan District, Shenzhen, China 518055

Test specification.....

Standard..... FCC Part 15.239: Operation in the band 88–108 MHz.

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF Dated 2011-01

Date of Receipt Apr. 01, 2016

Date of Test Date Apr. 02, 2016 –Apr. 11, 2016

Data of Issue..... Apr. 12, 2016

Result :: Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL1604051017-WF	Apr. 12, 2016
rest Report No	C1L1004051017-WF	Date of issue

Equipment under Test : Headrest Monitor

Model /Type : LM-707D

HDVD-71CC, HDVD-91CC, HRD-71CC, HRD-91CC

Listed Models VHD-70CC, VHD-90CC, NPM-779DV, NPM-979DV, VPH-770DV, HDVD-73, LM-907D, LM-78D, LM-98D

Applicant : Investio Holdings Co., Ltd.

Address : Insu Building 19-6, Jungja-dong,

Bundang-gu, Sungnam-city, Kyunggi-do, Korea

Manufacturer : Shenzhen RenDaTong Electronic Technology

Co., Ltd.

Address A1 on the third floor District 72, Jiaan Industrial Park,

Baoan, Shenzhen, China

Test result	Pass *

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Version	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2016-04-12	CTL1604051017-WF	Tracy Qi

	lable of Contents	Page
1. SU	MMARY	5
1.1.	TEST STANDARDS	5
1.2.	Test Description	
1.3.	Test Facility	6
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2. GE	NERAL INFORMATION	7
2.1.	ENVIRONMENTAL CONDITIONS	7
2.2.	GENERAL DESCRIPTION OF EUT	7
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	7
2.4.	EQUIPMENTS USED DURING THE TEST	8
2.5.	RELATED SUBMITTAL(S) / GRANT(S)	8
2.6.	Modifications	8
3. TE	ST CONDITIONS AND RESULTS	9
3.1.	CONDUCTED EMISSIONS TEST	
3.2.	RADIATED EMISSIONS	
3.3.	Occupied Bandwidth	14
3.4.	Antenna Requirement	16
	ST SETUP PHOTOS OF THE EUT	
5. EX	TERNAL AND INTERNAL PHOTOS OF THE EUT	

V1.0 Page 5 of 22 Report No.: CTL1604051017-WF

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.239: Operation in the band 88–108 MHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: —American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

1.2. Test Description

FCC PART 15.239			
FCC Part 15.239(a)	Field Strength of Fundamental	PASS	
FCC Part 15.209/15.239(c)	Spurious Emission	PASS	
FCC Part 15.239(a)	20dB bandwidth	PASS	
FCC Part 15.207	Conducted Emission	N/A	
FCC Part 15.203	Antenna Requirement	PASS	

V1.0 Page 6 of 22 Report No.: CTL1604051017-WF

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

C. IIIO				
Test	Range	Measurement Uncertainty	Notes	
Radiated Emission	30~1000MHz	4.10dB	(1)	
Radiated Emission	Above 1GHz	4.32dB	(1)	
Conducted Disturbance	0.15~30MHz	3.20dB	(1)	

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 7 of 22 Report No.: CTL1604051017-WF

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	<u> </u>
Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Headrest Monitor
Model/Type reference:	LM-707D
Power supply:	DC 12V form car battery
FM	
Modulation:	FM
Operation frequency:	88.1MHz, 88.3MHz, 88.5MHz, 88.7MHz, 88.9MHz, 89.1MHz
Channel number:	6
Channel separation:	200KHz
Antenna type:	Monopole Antenna
Antenna gain:	1.15dBi

Note: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

In section 15.31(m), regards to the operating frequency less than 10 MHz, the lowest frequency and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Operation Frequency List:

Channel	Frequency (MHz)
01	88.1
02	88.3
03	88.5
04	88.7
05	88.9
06	89.1

Note: The line display in grey is the channel selected to perform test.

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.1 2	2015/06/02	2016/06/01
LISN	R&S	ESH2-Z5	860014/010	2015/06/02	2016/06/01
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2015/06/02	2016/06/01
EMI Test Receiver	R&S	ESCI	103710	2015/06/02	2016/06/01
Spectrum Analyzer	Agilent	E4407B	MY41440676	2015/05/21	2016/05/20
Spectrum Analyzer	Agilent	N9020	US46220290	2015/11/11	2016/11/10
Controller	EM Electronics	Controller EM 1000	N/A	2015/05/21	2016/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19	2016/05/18
Active Loop Antenna	SCHWARZBE CK	FMZB1519	1519-037	2015/05/19	2016/05/18
Amplifier	Agilent	8349B	3008A02306	2015/05/19	2016/05/18
Amplifier	Agilent	8447D	2944A10176	2015/05/19	2016/05/18
Temperature/Humi dity Meter	Gangxing	CTH-608	02	2015/05/20	2016/05/19
High-Pass Filter	R K&L	9SH10-2700/X1 2750-O/O	N/A	2015/05/20	2016/05/19
High-Pass Filter	OK&L	41H10-1375/U1 2750-O/O	N/A	2015/05/20	2016/05/19
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-10M	10m	2015/06/02	2016/06/01
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-3M	3m	2015/06/02	2016/06/01
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-3M	3m	2015/06/02	2016/06/01
RF Cable	Megalon	RF-A303	N/A	2015/06/02	2016/06/01

The calibration interval was one year

2.5. Related Submittal(s) / Grant(s)

This submittal(s) (test report) is intended to comply with Section 15.239 of the FCC Part 15, Subpart C Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 9 of 22 Report No.: CTL1604051017-WF

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Frequency range (MHz)	Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Not applicable to this device, for it is powered by car battery.

3.2. Radiated Emissions

Limit

15.239(b) The field strength of any emissions within the permitted 200 KHz band shall not exceed 250 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply.

Unless otherwise specified, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

The field strength of any emissions radiated on any frequency outside of the specified 200 kHz band shall not exceed the general radiated emission limits in § 15.209 as table below:

Radiated emission limits

Tradiated ethicelett intitle				
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)	
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
1.705-30	3	20log(30)+ 40log(30/3)	30	
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960	1,13	46.0	200	
Above 960	3	54.0	500	

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

V1.0 Page 11 of 22 Report No.: CTL1604051017-WF

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

TEST RESULTS

Remark: Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.

Testing Techn

30MHz- 10th Harmonic of Fundamental

	Frequenc	88	.1	Polarity:			HORIZONTAL			
No.	Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	88.10	51.54	PK	68.00	16.46	71.07	8.72	0.56	28.81	-19.53
1	88.10	42.26	AV	48.00	5.74	61.79	8.72	0.56	28.81	-19.53
2	88.00	37.69	QP	40.00	2.31	57.25	8.70	0.55	28.81	-19.56
3	176.20	40.85	QP	43.50	2.65	56.51	11.95	1.05	28.66	-15.66
4	264.30	42.16	QP	46.00	3.84	56.56	12.86	1.48	28.74	-14.40
5	352.40	41.65	QP	46.00	4.35	53.70	14.32	1.95	28.32	-12.05
6	440.50	39.44	QP	46.00	6.56	49.65	16.57	2.18	28.96	-10.21
7	616.70	40.22	QP	46.00	5.78	48.53	18.32	2.24	28.87	-8.31
8	704.80	43.89	QP	46.00	2.11	49.30	20.19	3.09	28.69	-5.41

	Frequenc	y(MHz):		88.1		Polarity:			Vertical		
No.	Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	88.10	52.39	PK	68.00	15.61	71.92	8.72	0.56	28.81	-19.53	
1	88.10	42.69	AV	48.00	5.31	62.22	8.72	0.56	28.81	-19.53	
2	88.00	38.33	QP	40.00	1.67	57.89	8.70	0.55	28.81	-19.56	
3	176.20	41.48	QP	43.50	2.02	57.14	11.95	1.05	28.66	-15.66	
4	264.30	43.62	QP	46.00	2.38	58.02	12.86	1.48	28.74	-14.40	
5	352.40	42.14	QP	46.00	3.86	54.19	14.32	1.95	28.32	-12.05	
6	440.50	40.36	QP	46.00	5.64	50.57	16.57	2.18	28.96	-10.21	
7	616.70	41.78	QP	46.00	4.22	50.09	18.32	2.24	28.87	-8.31	
8	704.80	44.51	QP	46.00	1.49	49.92	20.19	3.09	28.69	-5.41	

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level
- 4. -- Mean the PK detector measured value is below QP limit
- 5. The other emission levels were very low against the limit
- 6. For fundamental frequency, RBW 100KHz VBW 300KHz Peak detectors is for PK Value; RMS detector is for AV value

	Frequenc	y(MHz):		89.1		Polarity:			HORIZONTAL	
No.	Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	89.10	52.54	PK	68.00	15.46	72.06	8.73	0.57	28.82	-19.52
1	89.10	43.69	AV	48.00	4.31	63.21	8.73	0.57	28.82	-19.52
2	108.00	35.21	QP	43.50	8.29	54.49	9.05	0.65	28.98	-19.28
3	178.20	40.58	QP	43.50	2.92	56.21	11.98	1.06	28.67	-15.63
4	267.30	42.26	QP	46.00	3.74	56.63	12.89	1.49	28.75	-14.37
5	356.40	42.59	QP	46.00	3.41	54.61	14.34	1.97	28.33	-12.02
6	455.50	40.26	QP	46.00	5.74	50.51	16.56	2.17	28.98	-10.25
7	534.60	40.78	QP	46.00	5.22	49.06	18.35	2.25	28.88	-8.28
8	712.80	43.62	QP	46.00	2.38	49.00	20.21	3.11	28.70	-5.38

	Frequenc	89.1		Polarity:			Vertical			
No.	Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	89.10	52.89	PK	68.00	15.11	72.41	8.78	0.57	28.85	-19.52
1	89.10	42.31	AV	48.00	5.69	61.83	8.78	0.57	28.85	-19.52
2	108.00	36.34	QP	43.50	7.16	55.62	9.05	0.65	28.98	-19.28
3	178.20	41.21	QP	43.50	2.29	56.84	11.98	1.11	28.88	-15.63
4	267.30	42.78	QP	46.00	3.22	57.15	13.11	1.54	28.91	-14.37
5	356.40	41.36	QP	46.00	4.64	53.38	14.58	2.20	29.05	-12.02
6	455.50	43.23	QP	46.00	2.77	53.48	15.64	2.23	29.10	-10.25
7	534.60	41.98	QP	46.00	4.02	50.26	18.69	2.28	29.15	-8.28
8	712.80	43.47	QP	46.00	2.53	48.85	21.59	3.26	29.62	-5.38

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level
- 4. -- Mean the PK detector measured value is below QP limit
- 5. The other emission levels were very low against the limit6. For fundamental frequency, RBW 100KHz VBW 300KHz Peak detectors is for PK Value; RMS detector is for AV value

V1.0 Page 14 of 22 Report No.: CTL1604051017-WF

3.3. Occupied Bandwidth

Limit

Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88–108 MHz.

Test Configuration

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Results

Modulation	Channel	99% OBW (KHz)	20dB bandwidth (KHz)	Result
FM	CH01	51.680	57.712	Pass
FIVI	CH06	51.770	57.652	Fass

Pesting Technology

Test plot as follows:

3.4. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is an internal Antenna, The directional gains of antenna used for transmitting is 1.15dBi.

4. Test Setup Photos of the EUT

5. External and Internal Photos of the EUT

External Photos of EUT

V1.0

Internal Photos of EUT

