UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET

matf.png

Ivan Drecun

ALGORITMI ZA ISPITIVANJE IZOMORFIZMA GRAFOVA

master rad

Mentor:
dr Filip Marić, vanredni profesor Univerzitet u Beogradu, Matematički fakultet
Članovi komisije:
dr Miodrag ŽIVKOVIĆ, redovan profesor Univerzitet u Beogradu, Matematički fakultet
dr Vesna MARNIKOVIĆ, docent Univerzitet u Beogradu, Matematički fakultet
Datum odbrane:

 ${\bf Naslov}$ ${\bf master}$ rada: Algoritmi za ispitivanje izomorfizma grafova

 ${\bf Rezime:}\ {\bf Apstrakt\ rada.}$

Ključne reči: ključne, reči

Sadržaj

1	Uvod	1
2	Opšti algoritam	2
	2.1 Osnovni pojmovi	2
	2.2 Stablo pretrage	4
	2.3 Invarijanta stabla i kanonska forma	4
	2.4 Uloga automorfizama	4
3	Realizacija algoritma	5
4	Rezultati testiranja	6
5	Zaključak	7
Bi	ibliografija	8

Uvod

Opšti algoritam

U ovoj glavi predstavljeni su osnovni matematički pojmovi neophodni za dalje razumevanje konstrukcije opšteg algoritma za određivanje kanonske forme grafa. Uvedeni su pojmovi bojenja i obojenog grafa, nakon čega je prikazana konstrukcija stabla pretrage koja leži u osnovi algoritma i na osnovu koje je precizno definisana kanonska forma. Prikazana je i uloga automorfizama u pretrazi, kao i mehanizmi za odsecanje pretrage.

2.1 Osnovni pojmovi

Obojen graf

 $Graf\ G = (V, E)$ je uređeni par konačnog $skupa\ \check{c}vorova\ V$ i $skupa\ grana\ E \subseteq \binom{V}{2}$. U nastavku pretpostavljamo da je $V = \{1, 2, \dots, n\}$ za neki prirodan broj n > 0. Označimo skup svih grafova sa \mathcal{G} i skup svih grafova sa n čvorova sa \mathcal{G}_n .

Bojenje grafa G je surjekcija $\pi: V \to \{1, 2, ..., k\}$ za neki prirodan broj k > 0. Označimo skup svih bojenja sa Π i skup svih bojenja grafa sa n čvorova sa Π_n .

Broj k zovemo brojem boja i označavamo ga sa $|\pi|$. Ćelija bojenja π boje c je skup svih čvorova te boje, odnosno $\pi^{-1}(c)$ za $c \in \{1, 2, ..., k\}$. Bojenje je diskretno ukoliko je $|\pi| = n$ i tada je π permutacija skupa V.

Bojenje π_1 je finije od bojenja π_2 (u oznaci $\pi_1 \leq \pi_2$) ukoliko za sve $v, w \in V$ važi implikacija $\pi_2(v) < \pi_2(w) \implies \pi_1(v) < \pi_1(w)$.

Obojen graf je uređeni par (G,π) gde je π jedno bojenje grafa G.

Dejstvo grupe S_n

Neka S_n označava simetričnu grupu stepena n. Sliku čvora $v \in V$ pod permutacijom $g \in S_n$ označavamo sa v^g . Ovim je definisano jedno dejstvo grupe S_n na skup V. Orbita čvora v pod tim dejstvom je skup $\Omega_v = \{v^g \mid g \in S_n\}$. Stabilizator čvora v je skup $\Sigma_v = \{g \in S_n \mid v^g = v\}$ koji čini jednu podgrupu od S_n . Definiciju dejstva grupe permutacija možemo proširiti i na složenije strukture:

- $W^g = \{w^g \mid w \in W\}$ za skup $W \subseteq V$
- $w^g = (v_1^g, v_2^g, \dots, v_k^g)$ za uređenu torku $w \in V^*$
- $G^g = (V, E')$ za graf G i $E' = \{e^g \mid e \in E\}$
- Ako je π bojenje, π^g je bojenje za koje važi $\pi^g(v^g) = \pi(v)$
- $(G,\pi)^g = (G^g,\pi^g)$ za obojen graf (G,π)

Izomorfizam

Obojeni grafovi (G_1, π_1) i (G_2, π_2) su *izomorfni* (u oznaci $(G_1, \pi_1) \cong (G_2, \pi_2)$) ukoliko postoji $g \in S_n$ tako da je $(G_1, \pi_1) = (G_2, \pi_2)^g$. Takvo g zovemo *izomorfizam*.

Automorfizam obojenog grafa (G, π) je izomorfizam tog grafa sa samim sobom, odnosno $g \in S_n$ za koje važi $(G, \pi) = (G, \pi)^g$. Skup automorfizama grafa (G, π) označavamo sa $Aut(G, \pi)$. Zajedno sa operacijom kompozicije preslikavanja skup $Aut(G, \pi)$ čini grupu automorfizama.

Kanonska forma

Neka je $f: \mathcal{G} \times \Pi \to S$ preslikavanje iz skupa svih obojenih grafova u proizvoljan skup S. Kažemo da je f invarijantno u odnosu na imenovanje čvorova ukoliko za svaki obojen graf (G, π) i svaku permutaciju $g \in S_n$ važi $f(G^g, \pi^g) = f(G, \pi)$. Neformalno, to znači da vrednost funkcije f ne zavisi od konkretnog imenovanja čvorova grafa, već samo od njegove unutrašnje strukture.

Kanonska forma je funkcija $\mathcal{C}: \mathcal{G} \times \Pi \to \mathcal{G} \times \Pi$ koja ispunjava sledeće uslove:

- 1. Za svaki obojen graf (G,π) važi $\mathcal{C}(G,\pi) \cong (G,\pi)$
- $2. \mathcal{C}$ je invarijantno u odnosu na imenovanje čvorova

- 2.2 Stablo pretrage
- 2.3 Invarijanta stabla i kanonska forma
- 2.4 Uloga automorfizama

Realizacija algoritma

Rezultati testiranja

Zaključak

Bibliografija

- [1] Yuri Gurevich and Saharon Shelah. Expected computation time for Hamiltonian path problem. SIAM Journal on Computing, 16:486–502, 1987.
- [2] Petar Petrović and Mika Mikić. Naučni rad. In Miloje Milojević, editor, Konferencija iz matematike i računarstva, 2015.

Biografija autora

Biografija.