classmate Homewoode 5 Name Karan Bhatiga Student Id A 20424290 Course Number (5512 Semestee Pall-18 8-1 a) outlices: > These are the points which dee different From all the other points: Problem: > The problem is that wheenever we think the model is fit considering the outlies it results in a wrong direction. Objective function used for sobust estimation E(O) = E So (d (niO)) Standard least square Objective function is E(0) = Ed(x;, 0) robust estimator = $\frac{3}{6}$ (a) = $\frac{\pi^2}{\pi^2 + 6^2}$

German McCluse Objective Function is au follous. 36 (n) = 2 2 776 : 36 = 1 12+62 x < 6 30 - 22 Advantage: The advitage is that it alocar's get affected by the outlies we can got the maximum outlies 1 by using this function. Standard least square fund on the weight Then to the outlies is a?. Bandwidth parameter (E) can be adjusted in a iterative manner by using following steps: 1) Draw a large subset of points uniformly random Fit model using robust estimation 3) Now , Compute on = 1.5 * median (d (Mi, On)) get (on one) > 7 (threshold)

In this process, we stood with a large i.e. 6 = 1.3 * median (d(n; on)) as we I start fit the model better I better the value median of point decenary so 6 also docreases. d) Principle of RANSAC Algorithm Is to use the maximum no of points several times and chaose the best fit model. The no. of points drawn at each points should be small, be cause these are very less chance of getting outlies and one of many toials will lead us to bethe model. Parameters used for finding RANSAC algerithms as follows: 1) n: no of points to drawn at each evaluation 3) d: d seponesent minimum no of points needed k: k represents number of totals : t represents distance to identify outlies

	formula for estimating no of trials
	$R = \frac{\log(1-P)}{\log(1-w^n)}$
	where,
	P: is probability that at least one total will succed, w: is poolability that pasticular point
	n: no. of points to be drawn at each the
	We stact $w = 0.5$ At each up iteration of total the value of w gets updated i.e. No. of indices No. of points
£)	The main objective of the image segments is to seprete foreground from the background
	Agglomerative Approach (Merge) In this, we start with each pixel for different cluster and we merge iteratively based on the distance similarility of the feature vector. Finally we make the cluster dense by merging similar features pixels together

classmate Divisive Approach (Split):-In this approvach, we take all pixels in single cluster and we split them iteratively by looking at distance of pixels or feature vectors. By wing this method, we decrease the size of the clutes by somoving pixely which donot belong to that clutes. 1) K-mount Algo- for Segmentation: 1) First of all select k i.e. the no of clusters to be formed. 2) NOW, Steel with initial given value of ka mean. We xandomly choose some pixel to be mean. So, we have to make such that means are seprented enough to space the image Now, repeat the process untill the mean do not change. - Now, we assign each pixel to the nearest duster li = aragmio ||fi - mj||2 j = (1,12) of is feature vector of each pixel m) => 1's mean of the jth chyte.

Now, calculate the new mean
of the clutte
i.e. m; = 5 fi
at si
& si is all the pixels we labeled
by Li
2) Mintuce of gaussian algorithm for
Segmentation: >
The process is very much similar to
the K-moans, but the change is only
the distance measure we used to
assign the pixels to the clusters.
The distance measure is given as follow
d = (fi - mj) = (fi - mj)
HOER E; is the covariance materix.
& we calculate it by as follows: \[\xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right)^T \\ \[\xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right)^T \\ \[\xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right)^T \\ \] \[\xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right)^T \\ \] \[\xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right)^T \\ \] \[\xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right)^T \\ \xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right)^T \\ \xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right)^T \\ \xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \right) \\ \xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \left(\frac{\xi_{\infty}}{\xi_{\infty}} \right) \right) \\ \xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \\ \xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \\ \xi_j = \frac{\xi_{\infty}}{\xi_{\infty}} \\ \xi_j =
$\mathcal{E}_{j} = \underbrace{\mathcal{E}_{s_{j}}}_{c_{s_{j}}} \underbrace{(d_{j} - m_{j})}_{c_{j}} \underbrace{(f_{i} - m_{j})^{T}}_{c_{s_{j}}}$
& mean calculation is same as
KINCUID
mj = Feb. 5' no of pixels
mSj

Scanned by CamScanner

Mean-Shift Algorithm The algorithm we used for calculating the moon- Shift is very similar to the knowns, the only difference is calculating the mean duter. Here, mean calculation is given as follows. $m_j = \sum_{i \in J_j} \omega(f_i - m_j) f_i$ $\sum_{i \in S_j} \omega(f_i - m_j)$ In kineans & mixture of gaussian, all pixels belonging to the cluster get equal weight, whereas in the mean-shift algorithm 'Ne weighted pixels are higher which are closes to the mean. whenever we recompute the mean of belonging to the dustee based on its distance to the previous mean of cluster

Q 2	
	Projection cauation is given by P = MP
	The problems of 1) forward Projection 2->
	of the given 3D object point & projection of the object point & projection
	mateix M. espect point & projection
	2) Camasa Calibration: > Here, we have to calculate the
	cames a parsametes finteeno, by curing the image coordinate and the world comme
	3) Reconstauction: >
	Here we have to find world coordinate (3D) of the object, given is the image coordinate of object (P) & the projection mateix M.
	Easiest one is forward projection, becall these is no ambigious deposition
	these is no ambigious decision to make it to a single point in 20 corresponds

Hardest one is the Reconstruction, because we need to add the information that we already lost from going to 70 from 30. As well as each point in 20 can represent a line in 30 , which makes it ambigious. Nocessay input for Camosa Calibration The Another representation for camera caliborration, we need the Corresponding points in both 21 & 50. Non-Coplanae Calibration Algorithm.) Estimate the projection Mater M where P > image points I given Now, find the comesa parameters
i.e. x* (intrinsic) & (R* a7*) catrinsic. using the projection mateix M M= K* [R* 17+]

Scanned by CamScanner

The minimal or optimal no at points is (6) to find the unique solution of M No can obtain it by using SVD (Singular Value De composition) on the 2n x 12 mater I taking the last column of the mateix V Wh COO A = UDVT ... A is Ten x12 mateix The principal that is used is as follows M= RA [K* 1-X We use the fact that the sotation materia had the osthogonal vectors along the sous-We exploit the fact by taking dot product & cross product of the rows in the M 1) We use the Epiji = Epji-1 correspondance of the image & world points given as i/p. 2) to Now we use the M(projection matelx) & formula p-MP to calculate find to the image points a conceptualing world points & compare with then known/correct point. € (K*, R°/7x)= € (K; -m, P) + (Y; -m2 P)

malp; + (Y; -m2 P) The esser should be low.

i) Principal of Planas Catib Camora Calibaration. First of all we show the calibaration target to the comes, but we have to show it to the cameso at least 3 times, because me view is not enough to do calibration, Approach 1) first, estimate the 20 projection map bet a calibasation tagget & imago Now, estimate the intrinsic comeso parameter form several views. 3) Finally, Compute externs c pasametes for any of the view. In non coplance calibration, only one view of the calibaration tagget is enough to calibarate camera parameters The 2D Homograph to ansform the 20H point to 20H itself @ H= K N 对一到 while, M (projection mut &) m townstorm the 21H to 30H

m-12 d. oh of 7 *] The assumption we used to make such that we deal with Homography matrices
i.e. z points coordinates of points o