Carlingford High School

Mathematics

Year 10 Term 3 Test

2017

Name:		
Teacher: Mr Cheng	Mrs Strilakos	Mrslego

Time allowed: 55 minutes

- Calculators allowed.
- Show all necessary working.
- Complete the examination in blue or black pen.
- Attempt all questions.
- Extension questions are marked with an asterisk.

	Trigonometry	Coordinate Geometry	Total
Questions	/20	/17	/37
Extension	/3	/4	/7
Total	/23	/21	/44

Trigonometry: 23 marks

- 1. The following information is given about the locations of three towns X, Y and Z:
 - X is due east of Z
 - X is on a bearing of 145° from Y
 - Y is on a bearing of 060° from Z.

Which diagram below best represents this information?

(B) Y NOT TO SCALE

2. If θ is acute, find the value of θ if: $\tan 140^{\circ} = - \tan \theta$

3. Find the exact value of $\sin Y$ if $\cos X = \frac{2}{3}$ and X and Y are complementary angles. (2 marks)

- 4. For each of the following, find all possible values for θ , where $0^{\circ} < \theta < 180^{\circ}$.

 Answer correct to the nearest degree.
 (3 marks)
 - a) $\sin \theta = 0.2924$

b) $\cos \theta = -0.8511$

5. Name the curve drawn below.

6. The diagram below shows a section of land proposed for a park. Point P from O has a bearing of 021° and point Q from O has a bearing of 071°.

What is the area of land *POQ*? Give your answer correct to the nearest square metre. (2 marks)

7. Two buildings, called M and X, are situated 56 m apart on level ground. From point C. the angle of elevation of point A is 65°. From point B, the angle of depression of point A is 38°.

Calculate the height of building M, correct to one decimal place. (3 marks)

8. Find the exact value (in simplest form) of y in the diagram below. (2 marks)

10. In $\triangle ABC$, $\angle BAC = 25^{\circ}$, BC = 9 cm and AB = 20 cm.

Find all possible values for $\angle BCA$. Answer correct to the nearest degree. (3 marks)

9. A bushwalker walks 8 km due east from L to M, then proceeds to walk a further 13 km to N on a bearing of 026°.

Calculate his distance from L, correct to the nearest kilometre. (2 marks)

*11. Square tiles of side length 20 cm are being used to tile a bathroom. The tiler needs to drill a hole in one of the tiles at a point P which is 8 cm from one corner and 15 cm from an adjacent corner. To locate the point P the tiler needs to know the size of the angle θ shown in the diagram below.

Find the size of the angle θ , correct to the nearest degree. (3 marks)

Coordinate Geometry (21)

1. What is the equation of the line *l*?

(A)
$$y = -2x + 2$$

(B)
$$y = 2x + 2$$

(C)
$$y = \frac{-x}{2} + 2$$

(D)
$$y = \frac{x}{2} + 2$$

Find, correct to the nearest degree, the angle of inclination of a line with a gradient of −4. (2 marks)

3. Find the distance between the points (4,5) and (-6,3). Leave your answer in simplified surd form. (2 marks)

4. Find the equation of the line which is parallel to y = 4 - 3x and passes through the point (3, -1). Express your answer in gradient - Intercept form. (2 marks)

5. a) Find the coordinates of S, the point where the line 3x - 2y + 14 = 0 cuts the y -axis.

The line l cuts the x axis at L(-4,0) and the y axis at M(0,3) as shown. N is a point on the line l, and P is the point (0,8).

a) Find the equation of the line l. (2 marks)

- b) Hence, find the equation of the line which passes through S and is perpendicular to the line 5x 4y 1 = 0 Give your answer in general form. (3 marks)
- b) By considering the lengths of ML and MP, show that ΔLMP is isosceles. (2 marks)

c) Show that the point (16, 15) lies on the	* f) Show that ∠NPL is a right angle. (2 marks)
line I.	
	·
d) Calculate the gradient of the line $PL.$	
,	
* e) $\it M$ is the midpoint of the interval $\it LN$.	
Find the coordinates of the point N .	
(2 marks)	

Carlingford High School

Mathematics

Year 10 Term 3 Test

2017

Name: _	Soln.		
Teacher:	Mr Cheng	Mrs Strilakos	Mrs Le

Time allowed: 55 minutes

- Calculators allowed.
- Show all necessary working.
- Complete the examination in blue or black pen.
- Attempt all questions.
- Extension questions are marked with an asterisk.

	Trigonometry	Coordinate Geometry	Total
Questions	/20	/17	/37
Extension	/3	/4	/7
Total	/23	/21	/44

Trigonometry: 23 marks

- 1. The following information is given about the locations of three towns X, Y and Z:
 - X is due east of Z
 - X is on a bearing of 145° from Y
 - Y is on a bearing of 060° from Z.

Which diagram below best represents this information?

2. If θ is acute, find the value of θ if: $\tan 140^{\circ} = -\tan \theta$

3. Find the exact value of $\sin Y$ if $\cos X = \frac{2}{3}$ and X and Y are complementary angles. (2 marks)

4. For each of the following, find all possible values for θ , where $0^{\circ} < \theta < 180^{\circ}$. Answer correct to the nearest degree. (3 marks)

a)
$$\sin \theta = 0.2924$$

b)
$$\cos \theta = -0.8511$$

5. Name the curve drawn below.

y = Coso

6. The diagram below shows a section of land proposed for a park. Point P from O has a bearing of 021° and point Q from O has a bearing of 071°.

What is the area of land *POQ*? Give your answer correct to the nearest square metre. (2 marks)

$$A = \frac{1}{2} \times 38 \times 85 \times \sin 50^{\circ}$$

$$= 1237.161...$$

$$= 1237 m^{2}$$

7. Two buildings, called M and X, are situated 56 m apart on level ground. From point C. the angle of elevation of point A is 65°. From point B, the angle of depression of point A is 38°.

Calculate the height of building M, correct to one decimal place. (3 marks)

AD:
$$Tan 65^{\circ} = \frac{4D}{.56}$$

$$AD = 56 \times Tan 65^{\circ}$$

$$= /20.092. -.$$

Top of M to Top of X:
Tan
$$38^{\circ} = \frac{x}{56}$$

 $x = 56 \times Tan 38^{\circ}$
= 43.751...

Find the exact value (in simplest form) of y in the diagram below. (2 marks)

$$\cos 30 = \frac{5}{y}$$

$$y = \frac{5}{\cos 30}$$

$$= \frac{5}{\sqrt{3}}$$

 $= \frac{10}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{5}} = \frac{10\sqrt{3}}{3}$ 9. A bushwalker walks 8 km due east from L to

M, then proceeds to walk a further 13 km to N on a bearing of 026°.

Calculate his distance from L, correct to the nearest kilometre. (2 marks)

$$NL^{2} = 8^{2} + 13^{2} - 2 \times 8 \times 13 \times los H6^{\circ} \quad \therefore \quad \Theta = 70^{\circ} \text{ or } 110^{\circ}.$$

$$= 324 \cdot 181 - \dots$$

$$NL = \sqrt{\frac{18 \cdot 005}{18 \cdot 005}}$$

$$= 18 \text{ km}$$

10. In $\triangle ABC$, $\angle BAC = 25^{\circ}$, BC = 9 cm and AB = 20 cm.

Find all possible values for $\angle BCA$. Answer correct to the nearest degree. (3 marks)

$$\frac{\sin \theta}{20} = \frac{\sin 25}{9}$$

$$Sin \theta = \frac{Sin 25}{9} \times 20$$

*11. Square tiles of side length 20 cm are being used to tile a bathroom. The tiler needs to drill a hole in one of the tiles at a point P which is 8 cm from one corner and 15 cm from an adjacent corner. To locate the point P the tiler needs to know the size of the angle θ shown in the diagram below.

Find the size of the angle θ , correct to the nearest degree. (3 marks)

$$\cos A = \frac{20^{2} + 15^{2} - 8^{2}}{2 \times 20 \times 15}$$

$$A = 20^{\circ} 46^{\prime}.$$

$$A = 21^{\circ}$$

$$0 = 90^{\circ} - 21^{\circ}$$

$$= 69^{\circ}$$

Coordinate Geometry (21)

1. What is the equation of the line *l*?

- (A) y = -2x + 2
- $(B) \quad y = 2x + 2$
- (C) $y = \frac{-x}{2} + 2$
- (D) $y = \frac{x}{7} + 2$
- Find, correct to the nearest degree, the angle of inclination of a line with a gradient of -4. (2 marks)

Find the distance between the points
 (4,5) and (-6,3). Leave your answer in simplified surd form. (2 marks)

$$d = \sqrt{(-6-4)^2 + (3-5)^2}$$

$$= \sqrt{100 + 4}$$

$$= \sqrt{104}$$

$$= 2\sqrt{26} \text{ units}$$

4. Find the equation of the line which is parallel to y = 4 - 3x and passes through the point (3, -1). Express your answer in gradient - Intercept form. (2 marks)

$$m = -3 \text{ (1)}$$

$$y - -1 = -3 (x - 3)$$

$$y + 1 = -3x + 9$$

$$y = -3x + 8$$

5. a) Find the coordinates of S, the point where the line 3x - 2y + 14 = 0 cuts the y -axis.

when
$$x=0$$

$$3(0) - 2y + 14 = 0$$

$$- 2y = -14$$

$$y = 7$$

$$(0,7)$$

b) Hence, find the equation of the line which passes through S and is perpendicular to the line 5x-4y-1=0 Give your answer in general form. (3 marks)

$$5x - 4y - 1 = 0$$

$$5x - 1 = 4y$$

$$\frac{5}{4}x - \frac{1}{4} = y$$

$$\therefore m = -\frac{4}{5}(1)$$

$$y - 7 = -\frac{4}{5}(x - 0)$$

$$y - 7 = -\frac{4}{5}x$$

$$5y - 35 = -4x$$

$$4x + 5y - 35 = 0$$

The line l cuts the x axis at L(-4,0) and the y axis at M(0,3) as shown. N is a point on the line l, and P is the point (0,8).

a) Find the equation of the line l. (2 marks)

$$m=\frac{3}{4}\left(\right)$$

$$\therefore \quad g = \frac{3}{4} \times +3 \quad \text{(i)}$$

b) By considering the lengths of ML and MP, show that ΔLMP is isosceles. (2 marks)

(2 marks)

$$MP = 5$$
 $ML = 5$
 $ML = 5$
 $ML = MP$

c) Show that the point (16, 15) lies on the line l.

$$y = \frac{3}{4}x + 3$$
8ub (16,15)
$$15 = \frac{3}{4}(16) + 3$$

$$15 = 12 + 3$$
true

d) Calculate the gradient of the line PL.

$$P(0,8)$$
 $L(-4,0)$
 $m = \frac{0-8}{-4-0}$
 $m = 2$

* e) M is the midpoint of the interval LN. Find the coordinates of the point N. (2 marks)

$$0 = -\frac{4+x}{2}. \qquad 3 = \frac{0+y}{2}$$

$$0 = -4 + x$$
 $6 = 0 + y$
 $4 = x$ $6 = y$

* f) Show that ∠NPL is a right angle. (2 marks)

$$m, of PL = 2$$
 $m_2 of PN = \frac{6-8}{4-0}$
 $= -\frac{2}{4}$
 $= -\frac{1}{2}$

Strice
$$m_1 \times m_2 = 2 \times -\frac{1}{2}$$

$$= -1 \text{ (PL} + PN) \text{perpendicular}$$

$$\therefore \text{ (NPL is a right angle ()}$$

$$PL = \sqrt{(-4)^2 + (-8)^2}$$

$$= \sqrt{16 + 64}$$

$$= \sqrt{80}$$

$$PN = \sqrt{(-4)^2 + (2)^2} = \sqrt{16 + 4} = \sqrt{20}$$

$$LN = \sqrt{(8)^2 + (6)^2}$$

$$= \sqrt{64 + 36}$$

$$= \sqrt{100}$$

$$= 10$$

Since
$$LN^2 = PN^2 + PL^2$$

 $(10)^2 = (\sqrt{50})^2 + (\sqrt{20})^2$
 $100 = 80 + 20$

... < NPL is a right-angle.

() m