Logistic Regression

Fade-In

- Machine Learning concepts and Training set
- Training set type: supervised Learning (for prediction) / unsupervised (for clustering)
- Linear Regression (continuous value prediction)
- Logistic Regression (discrete value prediction) Classification
- Neural Network

Logistic Regression (discrete value prediction) - Classification

Reminder: Hypothesis for Linear Regression

 $h_{\theta}(x) = \theta_0 + \theta_1 x$

$$h_{\theta}(x) = \theta^{T} x = \theta_{0} x_{0} + \theta_{1} x_{1} + \theta_{2} x_{2} + \dots + \theta_{n} x_{n}$$

Hypothesis representation

☑ Share

Decision Boundary

$$\Rightarrow h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "y = 1" if $-3 + x_1 + x_2 \ge 0$

X1 145

 $X_1 + X_2 = 3$

Cost function

$$cost(W,b) = \frac{1}{m} \sum_{i=1}^m (H(x^{(i)}) - y^{(i)})^2 \quad \text{when} \quad H(x) = Wx + b$$

$$cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

$$H(X) = WX + b$$

$$H(X) = \frac{1}{1 + e^{-W^{T}X}}$$

New cost function for logistic

$$cost(W) = \frac{1}{m} \sum c(H(x), y)$$

$$c(H(x), y) = \begin{cases} -log(H(x)) & : y = 1 \\ -log(1 - H(x)) & : y = 0 \end{cases}$$

$$c(H(x),y) = \begin{cases} -\log(H(x)) & : y = 1 \\ -\log(1-H(x)) & : y = 0 \end{cases}$$

$$H(x) = \begin{cases} -\log(H(x)) & : y = 1 \end{cases}$$

$$H(x) = \begin{cases} -\log(H(x)) & : y = 1 \end{cases}$$

$$H(x) = \begin{cases} -\log(H(x)) & : y = 1 \end{cases}$$

$$H(x) = \begin{cases} -\log(H(x)) & : y = 1 \end{cases}$$

$$H(x) = \begin{cases} -\log(H(x)) & : y = 1 \end{cases}$$

$$c(H(x),y) = \begin{cases} -log(H(x)) & : y = 1\\ -log(1 - H(x)) & : y = 0 \end{cases}$$

$$y=0$$

 $H(x)=0$ g cost=0
 $H(x)=1$ e cost=cont

Cost function of Logistic Regression

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\text{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$
Note: $y = 0$ or 1 always

Simplified cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$

Logistic Regression : Gradient descent

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

Same method - Gradient descent of Linear Regression

Multiclass Classification

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Multiclass Classification (cont'd)

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.

On a new input \underline{x} , to make a prediction, pick the class i that maximizes

$$\max_{\underline{i}} h_{\underline{\theta}}^{(i)}(x)$$

Solving the problem of overfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(\overline{J(\theta)} = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

Solving the problem of overfitting (cont'd)

Intuition Size of house Size of house $\theta_0 + \theta_1 x + \theta_2 x^2$ $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$ Suppose we penalize and make θ_3 , θ_4 really small. $\Rightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \log \Theta_3^2 + \log \Theta_4^2$

In regularized linear regression, we choose $\, heta\,$ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underbrace{\lambda}_{j=1}^{m} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

Solving the problem of overfitting (cont'd)

Regularized logistic regression.

Cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))\right]$$

$$+ \frac{\lambda}{2m} \sum_{j=1}^{n} \mathcal{O}_{j}^{2} \qquad \left[\mathcal{O}_{i}, \mathcal{O}_{2}, \dots, \mathcal{O}_{n} \right]$$

```
Advanced optimization

function [jVal, gradient] = costFunction (theta) there (i)

jVal = [\text{code to compute } J(\theta)];
\Rightarrow J(\theta) = \left[ -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log (h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log 1 - h_{\theta}(x^{(i)}) \right] + \left[ \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2} \right]
\Rightarrow \text{gradient (1)} = [\text{code to compute } \left[ \frac{\partial}{\partial \theta_{0}} J(\theta) \right];
\Rightarrow \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)} \leftarrow
\Rightarrow \text{gradient (2)} = [\text{code to compute } \left[ \frac{\partial}{\partial \theta_{1}} J(\theta) \right];
\Rightarrow \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)} + \frac{\lambda}{m} \theta_{1} \leftarrow
\Rightarrow \text{gradient (3)} = [\text{code to compute } \left[ \frac{\partial}{\partial \theta_{2}} J(\theta) \right];
\vdots \qquad \left( \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{2}^{(i)} + \frac{\lambda}{m} \theta_{2} \right]
\text{gradient (n+1)} = [\text{code to compute } \left[ \frac{\partial}{\partial \theta_{2}} J(\theta) \right];
```

Neural Networks

Non-linear Classification

$$\frac{\int_{g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2})} + \theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2}x_{2} + \theta_{5}x_{1}^{3}x_{2} + \theta_{6}x_{1}x_{2}^{2} + \dots)}{\theta_{6}x_{1}x_{2}^{2} + \dots)}$$

Cars "Non"-Cars Quadratic features ($x_i \times x_j$): ≈ 3 million features

Neural Networks

Neuron in the brain

Neuron model: Logistic unit

Sigmoid (logistic) activation function.

Other network architectures

Applications

Applications

How a neural network can compute a compute non-linear function of the input

Non-linear 분류의 대표적인 예:

XOR / XNOR

XOR 게이트는 exclusive OR 게이트의 줄임말로 한국어로는 상호 배제적인 OR 게이트이다. 상호 배제적 OR 게이트란 이름의 의미는 OR 게이트와 동일하게 작동하 지만 입력값이 동일한 경우에는 1을 출력하지 않는다는 의미이다. 입력값이 서로 다르면 1을 출력하고, 같으면 0을 출력한다.

XNOR 케이트(XNOR gate 또는 EXNOR, ENOR, NXOR, XAND gate)는 XOR 케이트 뒤에 NOT 케이트를 붙여 출력값을 반대로 만들어놓은 것이다. 입력값이 서로 같으면 1을 출력하고, 다르면 0을 출력한다. 그래서 비교 케이트나 일치 확인 케이트라고도 불린다.

Non-linear classification example: XOR/XNOR

 \rightarrow x_1 , x_2 are binary (0 or 1).

$$y = \underbrace{x_1 \text{ XOR } x_2}_{\text{X1 XNOR } x_2}$$

$$\xrightarrow{\text{NOT } (x_1 \text{ XOR } x_2)}$$

논리회로: 출처 나무위키

Simple example: And Function

And function 계산 (1 X -30 x1 X 20 x2 X 20) 에다가 Sigmoid function 적용

Putting it together: $x_1 \text{ XNOR } x_2$

x1 XNOR x2 =

x1 AND x2
(NOT x1) AND (NOT x2)
x1 OR x2

XNOR 이나 XOR 과 같이
Linear function으로 Classification이 되지 않는 경우에도
Neural Network를 사용해 Classification이 가능함

Multiclass Classification

Multiple output units: One-vs-all.

One vs all 의 확장판쯤

Pedestrian? Yes or No [1, 0, 0, 0] Car? Yes or No [0, 1, 0, 0] Motocycle? Yes or No [0, 0, 1, 0] Truck? Yes or No [0, 0, 0, 1]

다른 예시: MNIST 10 digits

```
print(Y_train[:5])

[[0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]

[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
```