I.I. Heat Equation

A u_{xx} + Bu_{xy} + Cu_{yy} + $F(u_{xy}u_{y},u_{xy})$ = $O(u_{xy}u_{y},u_{xy})$ = $O(u_{$

The one dimensional heat equation is

· Elliptic if B2-4AC<0

$$\frac{\partial u}{\partial t}(x,t) = x^{\bullet} \frac{\partial^2 u}{\partial x^2}(x_5t)$$

0 < x < L.

t>0.

· Two and pendent variables

One Inital Condition:

$$U(x_0) = f(x)$$
 $0 \le x \le L$

Two boundary condition:

Earst we make a grad of the domain of (xot) with step saze hand k, respectively.

$$\chi_{c}^{o} = ch.$$
 $c = 0_{01}, \dots, m$ $h = (1-0)$

$$\frac{1}{m}$$

Filled circles represent known similar and boundary condition

Difference Approximations for derivative terms:

$$\frac{\partial u}{\partial t} \left(\chi_{i}, t_{j}^{2} \right) \approx u \left(\chi_{i}^{2}, t_{j}^{2} t_{k} \right) - u \left(\chi_{i}^{2}, t_{j}^{2} \right)$$
Forward difference
$$k.$$

$$u_{i,j+1}^{2} - u_{i,j}^{2}$$

$$O(k!)$$

(entered-difference formula for the second derivative

$$\frac{\partial^2 u}{\partial x^2} \left(\chi_{\epsilon}^2, t_{j}^2 \right) \approx \frac{1}{R^2} \left[u \left(\chi_{\epsilon}^2 + h_{j}, t_{j}^2 \right) - 2u \left(\chi_{\epsilon}^2, t_{j}^2 \right) + tk \left(\chi_{\epsilon}^2 + h_{j}, t_{j}^2 \right) \right]$$

$$\frac{1}{h^{2}} \left[u_{\xi+1}, \hat{g} - 2 u_{\xi, \hat{g}} + u_{\xi-1, \hat{g}} \right]$$

$$= \frac{1}{h^{2}} \left[u_{\xi+1}, \hat{g} - 2 u_{\xi, \hat{g}} + u_{\xi-1, \hat{g}} \right]$$

$$= 0 \left(h^{2} \right)$$

$$= u(x_{\xi} - h_{g} + t_{g})$$

Substituting into the heat eq? at the point (xi, tij), we get

$$\frac{\partial u}{\partial t} = x + \frac{\partial^2 u}{\partial x^2}.$$

$$\frac{\left[u_{z,j+1} - u_{z,j} \right]}{k} = \frac{x}{h^2} \left[u_{z+1,j} - 2u_{z,j} + u_{z-1,j} \right]$$

$$u_{\varepsilon,j+1} = \frac{k x}{h^2} \left[u_{\varepsilon+1,j} - 2 u_{\varepsilon,j} + u_{\varepsilon-1,j} \right] + u_{\varepsilon,j}$$

$$k = k \propto \frac{1}{h^2}$$

$$u_{\xi,j+1} = \lambda u_{\xi+1,j} + \lambda u_{\xi-1,j} + (1-\chi) u_{\xi,j}.$$

By the IC u(x,0) = f(x), we have.

$$u_{0,0} = f(x_0)$$

$$u_{1,0} = f(x_1)$$

$$\vdots$$

$$u_{m,0} = f(x_m)$$

$$u_{1,3}+1 = (1-2\lambda)u_{1,3} + \lambda u_{2,3} + \lambda u_{0,3}$$

$$u_{2,3}+1 = (1-2\lambda)u_{2,3} + \lambda u_{3,3} + \lambda u_{1,3}$$

$$\vdots$$

$$u_{m-1,3} = (1-2\lambda)u_{m-1,3} + \lambda u_{m,3} + \lambda u_{m-2,3}$$

$$2cm$$

Let
$$u_{(g_j)}^{(g_j)} = [u_{1,j}, u_{2,j}, \dots, u_{m-1,j}]$$
 Then $u_{(g+1)}^{(g+1)} = A u_{(g_j)}^{(g)}$ $j = 0, 1, 2, \dots$

where
$$\vec{u}_o = [f(x_0), f(x_0), \dots, f(x_{m-1})]^T$$

- The order of error of & (k) f(h2).
 - Difference method as conditionally so stable if $\{(A) < 1, \text{ which implies } \lambda = \frac{k \times 4}{h^2} < \frac{1}{2}$
 - ea Approximak the $Solu^2$ of the following heat eq² at t=0.4 by the difference 10/d using h=0.25 and k=0.2

$$\frac{\partial u}{\partial t}(x_2 t) = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}(x_2 t) \qquad 0 \le x \le 1.$$

$$u(0,1) = u(1,1) = 0$$
 $4 > 0$ and $u(x,0) = S_{10}(2\pi x)$ $0 \le x \le 1$

Compare the result at t=0.4 using the exact $Solu^2$ $u(x_9t) = e^{-\pi^2 t}$ $Sin(2\pi x)$

$$\lambda = \frac{k x^{1}}{h^{2}} = \frac{0.2}{(0.25)^{2} 16} = 0.2 = \frac{1}{5}.$$

 $\frac{1}{u_0} = \begin{bmatrix} u_{1,0} \\ u_{2,0} \\ \vdots \\ u_{n-1} \end{bmatrix}$

$$m = \frac{1-0}{h} = \frac{1-0}{0.25}$$

$$m = 4$$

$$4-intervals$$

$$u_{0,0} = 0$$
 $u_{1,0} = Sin(2\pi, \frac{1}{4}) = 1$

$$U_{300} = Sin\left(2\pi \cdot \frac{3}{4}\right) = -1$$

$$\begin{bmatrix} u_{1}, j+1 \\ u_{2}, j+1 \\ u_{3}, j+1 \end{bmatrix} = \begin{bmatrix} 0.6 & 0.2 & 0 \\ 0.2 & 0.6 & 0.2 \\ 0 & 0.2 & 0.6 \end{bmatrix} \begin{bmatrix} u_{1}, j \\ u_{2}, j \\ u_{2}, j \end{bmatrix}$$

$$\begin{bmatrix} u_{1_{3}1} \\ u_{2_{3}1} \\ u_{3_{3}1} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.2 & 0 \\ 0.2 & 0.6 & 0.2 \\ 0 & 0.2 & 0.6 \end{bmatrix} \begin{bmatrix} u_{1_{3}0} \\ u_{2_{5}0} \\ u_{3_{3}0-1} \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.0 \\ -0.6 \end{bmatrix}$$

$$\begin{bmatrix} u_{1,2} \\ u_{2,2} \\ u_{3,2} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.2 & 0 \\ 0.2 & 0.6 & 0.2 \\ 0 & 0.2 & 0.6 \end{bmatrix} \begin{bmatrix} 0.6 \\ 0.0 \\ -0.6 \end{bmatrix} = \begin{bmatrix} 0.36 \\ -0.36 \end{bmatrix}$$

ž	x _è	0وئ	A	Ma	True
0	0.00	C30	U _{2,1}	Ur,2	U(x2,0.4)
			0.00	0.00	0,00
	0.25	1	0.60	0.36	0.3727
2	0.50	0	0.00	0,00	0.00
3	0.75		-0.60	-0.36	-0.3727
4	1.00	0	0.00	0.00	0.00