Jesenski ispitni rok

1. rujna 2015.

Ime i Prezime:

Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (7 bodova)

Slika I prikazuje sustav upravljanja položajem glave pisača (mase m) pomoću sustava kolotura i remenja. Remeni su modelirani kao linearne opruge s koeficijentima elastičnosti K_1 i K_2 . Polumjer obje koloture je r. Kutom zakreta lijeve koloture θ_m se upravlja pomoću motora i njegovog zakretnog momenta M_m . Moment inercije motora je J_m .

Napomena: $J \cdot \ddot{\theta} = \sum_{i} M_{i}$.

Slika 1: Sustav kolotura.

- a) (3 boda) Napišite diferencijalne jednadžbe sustava po kutu zakreta $\theta_{\rm m}$ i položaju glave pisača x.
- b) (2 bodova) Odredite prijenosnu funkciju sustava $G(s) = \frac{X(s)}{M_{m}(s)}$.
- c) (2 bodova) Uz vektor varijabli stanja $\mathbf{x} = \begin{bmatrix} \theta_{\mathrm{m}} & \dot{\theta}_{\mathrm{m}} & x & \dot{x} \end{bmatrix}^{\mathrm{T}}$, ulaz $\mathbf{u} = M_{\mathrm{m}}$ te izlaz $\mathbf{y} = x$, zapišite sustav u prostoru stanja (odredite matrice A, B, C i D).

2. zadatak (7 bodova)

Zadana je prijenosna funkcija sustava $G(s) = \frac{s^2 + 2s + 3}{s^3 + 3s^2 + 3s + 1}$.

- a) (2 boda) Odredite iznos prijelazne funkcije u stacionarnom stanju, $h(\infty)$.
- b) (2 boda) Odredite nagib prijelazne funkcije u početnom trenutku, $h(0^+)$.
- c) (3 boda) Na temelju vrijednosti određenih pod a) i b), skicirajte prijelaznu funkciju.

3. zadatak (9 bodova)

Slikom 2 prikazan je Nyquistov dijagram prijenosne funkcije procesa $G_P(s)$.

- a) (2 boda) Koliko iznosi izlaz iz procesa y(t) ako je na ulazu procesa signal $u(t) = 5\sin(\omega_1 t)$?
- b) (3 boda) Procesom se upravlja korištenjem P regulatora. Skicirajte Nyquistov dijagram prijenosne funkcije otvorenog kruga s procesom i P regulatorom ako je pojačanje regulatora $K_R = 2$. Na skici označite sve karakteristične veličine koje su označene i na slici 2.
- c) (2 boda) Koliko iznosi aplitudno osiguranje sustava ako se procesom upravlja korištenjem P regulatora s pojačanjem $K_R = 1$?
- d) (2 boda) Zadano je A=0.1. Odredite prijenosnu funkciju procesa ako je poznato da je ona oblik $G_P(s)=\frac{5x}{(s+x)(s+5x)(s+10x)}.$

Slika 2: Nyquistov dijagram procesa $G_P(j\omega)$.

4. zadatak (9 bodova)

Na slici 3 prikazana je blokovska shema zatvorenog kruga upravljanja.

Slika 3: Sustav upravljanja.

- a) (5 bodova) Ziegler-Nicholsovom metodom ruba stabilnosti odredite parametre PI regulatora za upravljanje procesom sa slike 3. Napomena: z(t) = 0.
- $(2 \ bodova)$ Ako je regulator na slici 3 zadan prijenosnom funkcijom $G_R(s) = K_R$, odredite iznos regulacijskog odstupanja u stacionarnom stanju $e(\infty)$ ako je referenca r(t) = S(t), a poremećaj z(t) = 0.
- $(2 \ bodova)$ Za regulator zadan u b) dijelu zadatka odredite iznos regulacijskog odstupanja u stacionarnom stanju $e(\infty)$ ako je referenca r(t)=0, a poremećaj z(t)=2S(t).

5. zadatak (9 bodova)

Sustav automatskog upravljanja zadan je slikom 4.

Slika 4: Zatvorem sustav upravljanja.

- a) (3 boda) Diskretizirajte prijenosnu funkciju procesa $G_p(s)$ zadržavajući svojstva prijelazne funkcije uz općeniti iznos vremena uzorkovanja T_d .
- b) (3 boda) Odredite vrijeme uzorkovanja T_d tako da fazno kašnjenje diskretnog sustava upravljanja na presječnoj frekvenciji iznosi $\varphi(\omega_c) = -120^\circ$ uz pojačanje regulatora K = 2.
- c) (3 boda) Odredite jednadžbu polova $z_{p_{1,2}}$ zatvorenog kruga upravljanja u ovisnosti o iznosu pojačanja K ako je diskretizirana prijenosna funkcija procesa dana s $G_p(z) = \frac{0.018z + 0.016}{z^2 1.724z + 0.741}$.