Architektura Komputerów, Projekt Intel

Wiktor Ślęczka 27 stycznia 2014

Streszczenie

Program wczytuje z pliku listę punktów wysokości, a następnie tworzy dwie bitmapy, jedną przedstawiającą mapę wysokości za pomocą skali szarości, a drugą pokazującą przekrój pomiędzy dwoma podanymi punktami.

1. Opis programu

1.1. Działanie

Program wczytuje dwa pliki, jeden z mapą wartości punktów wysokości, drugi z parametrami mapy. Na ich podstawie generuje bitmapę pokazującą wysokości w skali szarości, pomiędzy dwoma wartościami, podanymi w pliku konfigurcyjnym. Wartości niższe i wyższe ukazywane są jako jednolity biały lub czarny kolor. Na bitmapie oznaczona jest również czerwona linia, wzdłuż której poprowadzony będzie przekrój. Program generuje również plik z bitmapą zawierającą przekrój pomiedzy dwoma danymi punktami, w skali i o poprawnej długości przekroju.

1.2. Wejście

Wejście programu to dwa pliki, "mapa.txt" i "parametry.txt". Pierwszy zawiera 201 linii, w każdej znajduje się 201 liczb rozdzielonych spacjami. Są to wartości poszczególnych punktów pomiaru, reprezentujące kwadraty 20x20 metrów, wyrażone w metrach. W drugim pliku znajdują się 4 linie. Pierwsze dwie to współrzędne punktów, pomiedzy którymi tworzony jest przekrój.

1.3. Wyjście

Wyjście programu składa się z dwóch plików - "mapa.bmp" oraz "przekrój.bmp". Pierwszy plik zawiera wykonaną w skali szarocści mapę wysokości dla każdego z 40401 punktów podanych na wejściu, przy czym kolor o punktów wartości mniejszych niż podana w konfiguracji wartość minimalna są czarne, natomiast większych od wartości maksymalnej reprezentowane są w postaci barwy białej. Barwa punktów o wartości pomiędzy wartością minimalną a maksymalną zależy w sposób liniowy od wartości wysokości punktu¹. W pliku tym połączono również czerwonym odcinkiem dwa punkty, pomiędzy którymi wykonany zostanie przekrój.

Drugi plik zawiera przekrój pomiędzy dwoma punktami podanymi w konfiguracji, w kolejności pierwszy punkt rysowany z lewej. Przekrój jest wykonany w odpowiedniej skali, 1m/1pixel pionowo oraz 20m/1pixel poziomo. Szerokość przekroju zależy od jego długości.

 $^{^1}$ Technicznie są to kwadraty o określonym boku, ale w praktyce pomiar wykonuje się w konkretnym punkcie lub uśrednia, co można sprowadzić do punktu.

2. Struktura programu

3. Struktura

Program składa się 2 dwóch funkcji napisanych w asemblerze x86.

int mapa(int *mapa, unsigned char *image, MapaStruct *par); tworzy wewnątrz podanej tablicy image obraz przedstawiający mapę wysokości zgodny z formatem BMP, a następnie rysuje na nim czerwoną linię oznaczającą przekrój.

int przekroj(int *mapa, unsigned char *image, PrzekStruct *przek); tworzy obraz przedstawiający przekrój pomiędzy podanymi punktami.

Poza tym w pliku "data.c" znajdują się definicje struktur danych oraz funkcji służących do generowania poprawnych nagłówków dla plików BMP.

4. Struktury danych

Program używa przede wszystkim trzech buforów, jednego na przechowywanie tablicy integerów, które reprezentują mapę wysokości wczytaną z pliku, o wielkości 161604 bajtów, drugiego na przechowywanie wynikowego obrazu przedstawiającego wynikową mapę wysokości, o długości 121404 bajtów oraz trzeci, zawierający przekrój, o zmiennym rozmiarze pomiędzy 121404 i 171692 bajtów.

Poza tym w programie używana jest również struktura pomocnicza zawierająca dane parametry. Służy ona do przekazania do obu funkcji parametrów podanych w pliku z konfiguracją. Zawiera ona sześć pól typu całkowitego, opisujące kolejno minimalną oraz maksymalną wysokość pól, oraz położenie punktów przekroju w kolejność x1, y1, x2, y2.

5. Algorytmy użyte w programie.

5.1. Rysowanie mapy w skali szarości

Dla każdego wczytanego punktu obliczana jest wartość koloru, jaki będzie go przedstawiał ze wzoru

$$kolor = \frac{wysokosc\;pola - minimalna\;wartosc}{maksymalna\;wartosc} * 256$$

Operacje o tym samym poziomie priorytetu są wykonywane w kolejności najpierw wzrastająca, potem zmniejszająca, co pozwala na pominięcie ułamków, oraz, ponieważ liczba i tak byłaby ucięta do wartości całkowitej², pozwala zachować maksymalną możliwą w tym przypadku precyzje. Znajdowanie punktu w bitmapie polega na iterowaniu po całości, dla każdej wartości o 3 bajty, z wyjątkiem ostatniej kolumny każdego wiersza, która wymaga zaokrąglenia offsetu do pełnych 4 bajtów.

5.2. Rysowanie czerwonej linii

Najpierw określany jest, czy większa jest odległość w osi x czy y. Następnie odbywa się iteracja wzdłuż wybranej osi, w taki sposób, że dla każdego wiersza/kolumny prostopadłego do osi obliczane są współrzędne czerwonego punktu w następujący sposób:

$$x = x_1 + sgn(x_2 - x_1) * numer kroku$$

$$y = y_1 + numer kroku * \frac{y_2 - y_1}{x_2 - x_1}$$

Po wykonaniu tych czynności uzyskuje sie linię łączącą punkty $(x_1, y_1), (x_2, y_2)$ prostą linią, z dokładnością do jednego pixela względem linii prowadzonej optymalnie.

²Format bitmapy przyjmuje wartości całkowite

5.3. Rysowanie przekroju

Rysowanie przekroju odbywa się analogicznie do rysowania linii, z tą różnicą, że dla każdego wiersza wartość pobrana jest z punktu wyliczonego z tego wzoru z tablicy wczytanych wartości, natomiast wynikowa bitmapa jest przechodzona iteracyjnie kolumna po kolumnie, i zamalowywana jest podana wartość odczytana z tabeli.

6. Testy

Do programu dostarczony jest skrypt w Pythonie 3, pozwalający na wygenerowanie zestawu punktów (plik mapa.txt) na podstawie podanej funkcji. Punktu te mają podane wartości z zakresu <0,0>x<201,201>. W związku z tym testy przeprowadzono na następujących funkcjach:

- f(x,y) = x
- f(x,y) = y
- f(x,y) = 200 x
- f(x,y) = 200 y
- $f(x,y) = \frac{x^2}{200}$
- $f(x,y) = \frac{x^2 + y^2}{400}$
- f(x,y) = x + y

oraz dla kombinacji następujących parametrów:

- min: 0 50
- max: 50 100 200 400
- p1: (0, 0) (200, 0) (0 200) (200, 200) (100, 100) (100, 110) (110, 100)
- p2: (0, 0) (200, 0) (0,200) (200, 200) (110, 110) (110, 100) (100, 110)