Introduction to Object Detection

Popov Victor Nikishin Vladislav

Samara national research university

May 25, 2024

■ Introduction

- Introduction
- Method 1. Two-stage object detection models

- Introduction
- Method 1. Two-stage object detection models
- Method 2. One-stage object detection models

- Introduction
- Method 1. Two-stage object detection models
- Method 2. One-stage object detection models
- Results

- Introduction
- Method 1. Two-stage object detection models
- Method 2. One-stage object detection models
- Results
- Conclusion

Introduction

In today's technologically evolved world, computers and robots are becoming capable of experiencing and comprehending the visual environment in the same way that humans do. Object detection, a crucial component of computer vision, is critical in allowing robots to recognize and find things inside pictures or videos.

Method 1. Two-stage object detection models

Two-stage object detection models, such as R-CNN, Fast R-CNN, and Faster R-CNN, first generate region proposals and then classify and refine these proposals. This approach achieves high accuracy but is computationally expensive

Region Proposal

The model first generates a set of region proposals that may contain objects.

Classification

The model then classifies each region proposal and refines the bounding box.

High Accuracy

Two-stage models generally achieve higher accuracy than one-stage models.

Method 2. One-stage object detection models

One-stage object detection models, such as YOLO and RefineDet, directly predict the class probabilities and bounding box coordinates in a single pass, without an explicit region proposal stage.

Simpler Architecture

One-stage models have a simpler network architecture compared to two-stage models.

Faster Inference

One-stage models can perform object detection in real-time, making them suitable for applications that require fast processing.

Trade-off in Accuracy

One-stage models typically have lower accuracy compared to two-stage models, but the gap has been narrowing with recent advancements.

Results

The choice of object detection model depends on the specific requirements of the application, such as the need for real-time processing, available computational resources, and the required level of accuracy.

Model	Speed	Accuracy	Complexity
R-CNN	Slow	High	High
Fast R-CNN	Medium	High	Medium
Faster R-CNN	Fast	High	Medium
YOLO	Very Fast	Medium	Low
RefineDet	Fast	High	Medium

Table: Comparison of Object Detection Models

Conclusion

In conclusion, the choice of object detection model depends on the specific needs of the application. While two-stage models like Faster R-CNN offer high accuracy, one-stage models like YOLO and RefineDet provide fast inference for real-time applications.