Chapter S:V

V. Formal Properties of A*

- □ Properties of Search Space Graphs
- □ Auxiliary Concepts
- □ Roadmap
- □ Completeness of A*
- □ Admissibility of A*
- □ Efficiency of A*
- Monotone Heuristic Functions

Efficiency of Search Algorithms

The basic steps in the loop of a search algorithm are:

- 1. Select a most promising solution base.
- 2. Select a node in that solution base.
- 3. Expand that node.
- Efficiency is related to the number of node expansions.

Heuristics influence efficiency by

- 1. excluding nodes from expansion entirely (pruning), and by
- 2. preventing nodes from being expanded more than once (no reopening)

Efficiency of Search Algorithms

Definition 50 (Dominance, Optimality)

- 1. A search algorithm A_1 dominates a search algorithm A_2 if each node that is expanded by A_1 is also expanded by A_2 .
- 2. A_1 strictly dominates A_2 if A_1 dominates A_2 and A_2 does not dominate A_1 .
- 3. A search algorithm is optimum regarding a class of search algorithms if it dominates all members of this class.

Remarks:

- □ Dominance defines a *partial* ordering on search algorithms.
- □ Dominance relations are often proved with regard to some fixed tie breaking rule.
- □ Instead of the term "dominates" we may also use the phrase "is more efficient than".

S:V-67 Formal Properties of Heuristics © STEIN/LETTMANN 1998-2017

Efficiency of Search Algorithms

By not-expanding nodes, parts of the search space graph are pruned. The efficiency of A^* depends on the accuracy of the heuristic estimate h.

Consider two extreme cases:

- 1. If estimates are perfect $(h = h^*)$, A^* will follow cheapest paths to goal nodes. In this case $f(n) = C^*$ holds for each expanded node n.
- 2. If no heuristic is used (h = 0), A* degenerates to a uniform cost search. In this case each node n reachable from s with path cost of at most C^* will be expanded, i.e., $f(n) = g(n) \le C^*$.

Hypothesis:

The closer h is to h^* (as long as $h \le h^*$), the more powerful it is with respect to pruning.

Conditions for Node Expansion I

Theorem 51 (Necessary Condition for Node Expansion I)

Let A* process a search space graph G with Prop(G), using an admissible heuristic function h. For each node n expanded by A* holds:

$$f(n) \le C^*$$

Conditions for Node Expansion I

Theorem 51 (Necessary Condition for Node Expansion I)

Let A* process a search space graph G with Prop(G), using an admissible heuristic function h. For each node n expanded by A* holds:

$$f(n) \le C^*$$

Proof (sketch)

- 1. If there is no solution path in G, then $C^* = \infty$ and this theorem is obviously true.
- 2. If there is a solution path in G, then there is also an optimum solution path with cost C^* . [Corollary "Solution Existence Entails Optimum"]
- 3. At any time before A* terminates, there exists an OPEN node n' with $f(n') \leq C^*$. [Lemma " C^* -bounded OPEN Node"]
- 4. Since A* expands n, its f-value is less or equal to the f-value of all nodes on OPEN. Thus we have $f(n) \leq f(n')$ and therefore $f(n) \leq C^*$.

Remarks:

- □ Theorem 51 defines a set S of nodes that will not be expanded: $S = \{n \mid f(n) > C^*\}$.
 - Q. Why is this knowledge helpful and how can it be applied?
- \Box The application of <u>Theorem 51</u> requires knowledge on C^* .
 - Q. Is this a problem?
 - Q. If yes, how to solve it?
- □ In the book of Pearl this theorem is denoted as Theorem 3 and Nilsson Result 5 respectively. [Pearl 1984]

S:V-71 Formal Properties of Heuristics © STEIN/LETTMANN 1998-2017

Conditions for Node Expansion I

Theorem 52 (Sufficient Condition for Node Expansion I)

Let A* process a search space graph G with Prop(G), using an admissible heuristic function h. A* will expand each node n on OPEN with $f(n) < C^*$.

Conditions for Node Expansion I

Theorem 52 (Sufficient Condition for Node Expansion I)

Let A* process a search space graph G with Prop(G), using an admissible heuristic function h. A* will expand each node n on OPEN with $f(n) < C^*$.

Proof (sketch)

- 1. Let OPEN contain a node n with $f(n) < C^*$.
- 2. Let A* terminate with goal node γ .
- 3. Due to the admissibility of A*, $f(\gamma) = C^*$.
- 4. From $f(n) < C^*$ and $C^* = f(\gamma)$ follows that $f(n) < f(\gamma)$.
- 5. The value of f(n) can only decrease ($f(\gamma)$ remains constant).
- 6. A* expands the node n before it terminates with solution γ .

_				-		
к	e	m	เล	r	K:	S:

□ In the book of Pearl this theorem is denoted as Theorem 4. [Pearl 1984]

Conditions for Node Expansion I [Conditions II, Conditions III]

Let $n \in \mathsf{OPEN}$. For admissible heuristic functions h hold:

node expansion by
$$\mathbf{A}^*\Rightarrow\underbrace{f(n)\leq C^*}_{\text{necessary}}$$

$$\underbrace{f(n)< C^*}_{\text{sufficient}} \ \Rightarrow \ \text{node expansion by } \mathbf{A}^*$$

Observe that none of the <u>Theorems 51</u> and <u>52</u> gives a condition for node expansion that is both necessary and sufficient:

The theorems do not treat OPEN nodes with $f(n) = C^*$. Instead, some tie breaking rule has to determine which of these nodes are expanded or not.

Conditions for Node Expansion II

The expansion conditions I are *algorithm-centered*:

- $\ \square$ The value of g(n) is no property of node n but depends on the path to n that A^* has discovered.
- <u>Theorem 52</u> requires that n resides on OPEN before it is selected for expansion. Whether a given node enters OPEN depends not on n itself but on the behavior of A^* while exploring the paths leading to n.

Instead of arguing about algorithmic concepts (discovered paths, OPEN list), expansion conditions should be formulated with regard to the search space graph ${\cal G}$ only.

Conditions for Node Expansion II

Definition 53 (Cost-Bounded Paths)

A path P is called C-bounded iff (\leftrightarrow) for each node n on P holds

$$g_P(n) + h(n) \le C.$$

P is called strictly C-bounded iff (\leftrightarrow) for each node n on P holds

$$g_P(n) + h(n) < C.$$

C-boundedness can be checked for each finite path in G—not only for paths considered by A^* .

Conditions for Node Expansion II

Theorem 54 (Necessary Condition for Node Expansion II)

Let A^* process a search space graph G with Prop(G), using an admissible heuristic function h. For each node n expanded by A^* we have a C^* -bounded path from s to n in G.

Conditions for Node Expansion II

Theorem 54 (Necessary Condition for Node Expansion II)

Let A* process a search space graph G with Prop(G), using an admissible heuristic function h. For each node n expanded by A* we have a C^* -bounded path from s to n in G.

Proof (sketch)

- 1. Since A* expands n, the equation $f(n) = g(n) + h(n) \le C^*$ holds. [Theorem 51]
- 2. When n is on OPEN, all predecessors n' of n on the current pointer-path PP_{s-n} are on CLOSED.
- 3. At time of expansion of such a node n' we also had $g'(n') + h(n') \le C^*$, where g' denotes the path cost at the time when n' was expanded.
- 4. Pointer-paths are only changed when a cheaper path is found, i.e., g-values can only decrease.
- 5. Thus we have $f(n') = g(n') + h(n') \le g'(n') + h(n') \le C^*$.

Conditions for Node Expansion II

Theorem 55 (Sufficient Condition for Node Expansion II)

Let A* process a search space graph G with Prop(G), using an admissible heuristic function h. A* will expand each node n for which we have a strictly C^* -bounded path from s to n in G.

Conditions for Node Expansion II

Theorem 55 (Sufficient Condition for Node Expansion II)

Let A* process a search space graph G with Prop(G), using an admissible heuristic function h. A* will expand each node n for which we have a strictly C^* -bounded path from s to n in G.

Proof (sketch)

- 1. Let P be a strictly C^* -bounded path from s to n in G.
- 2. Let A* terminate with goal node γ .
- 3. Due to admissibility of A*, $f(\gamma) = C^*$.
- 4. Let n' be the shallowest OPEN node on P when A^* terminates.
- 5. Since all predecessors of n' on P are on CLOSED, the path cost g(n') currently maintained by A* cannot be higher than $g_P(n')$: $f(n') = g(n') + h(n') \le g_P(n') + h(n')$
- 6. Since P is strictly C^* -bounded, we have $g_P(n') + h(n') < C^*$ and thus $f(n') < f(\gamma)$.
- 7. A* expands the node n' and all nodes on P before it terminates with solution γ .

Remarks:

- □ If there is no solution path in G, we have $C^* = \infty$ and any node reachable from s will be expanded by A^* using h.
- $lue{}$ An optimum paths to a node n may be C^* -bounded only, although a strictly C^* -bounded path exists.
- ☐ In the book of Pearl the two previous theorems are denoted as <u>Theorem 6</u> and <u>Theorem 5</u> respectively. [Pearl 1984]

S:V-82 Formal Properties of Heuristics © STEIN/LETTMANN 1998-2017

Conditions for Node Expansion II [Conditions I, Conditions III]

For admissible heuristic functions *h* hold:

node expansion by
$$A^* \Rightarrow \exists C^*$$
-bounded path P_{s-n}
necessary
$$\exists \text{ strictly } C^*\text{-bounded path } P_{s-n} \Rightarrow \text{ node expansion by } A^*$$
sufficient

Again, none of the <u>Theorems 54</u> and <u>55</u> gives a condition for node expansion that is both necessary and sufficient:

The theorems do not treat C^* -bounded paths with $f(n') = C^*$ for some intermediate node n'.

Informedness and Dominance

Definition 56 (Informedness)

A heuristic function h_2 is called more informed than a heuristic function h_1 iff (\leftrightarrow) both functions are admissible and if holds

$$h_2(n) > h_1(n), \quad \forall n, n \notin \Gamma$$

An A* algorithm that uses such a heuristic function h_2 is called more informed than an A* algorithm that uses h_1 .

Informedness and Dominance (continued)

Corollary 57 (Dominance)

Let G be a search space graph with Prop(G). If $h_2(n) > h_1(n)$ holds for any n, $n \notin \Gamma$, and if $h_2(n)$ and $h_1(n)$ both are admissible, then A^*_2 (A^* informed by $h_2(n)$) dominates A^*_1 (A^* informed by $h_1(n)$).

Informedness and Dominance (continued)

Corollary 57 (Dominance)

Let G be a search space graph with Prop(G). If $h_2(n) > h_1(n)$ holds for any n, $n \notin \Gamma$, and if $h_2(n)$ and $h_1(n)$ both are admissible, then A^*_2 (A^* informed by $h_2(n)$) dominates A^*_1 (A^* informed by $h_1(n)$).

Proof (sketch)

- 1. Let A^*_2 expand a node n with $n \notin \Gamma$.
- 2. Thus the current backpointer path P of n is a C^* -bounded path P from s to n with respect to h_2 : $g_P(n') + h_2(n') \le C^*$ for each n' on P. [Theorem 52]
- 3. Since no goal node is contained in P and h_2 is more informed than h_1 , for each node n' on P holds $h_2(n') > h_1(n')$.
- 4. Hence $g_P(n') + h_1(n') < C^*$ for each n' on P
- 5. Thus P is strictly C^* -bounded with respect to h_1 .
- 6. A_1^* will expand n. [Theorem 55]

Remarks:

- The requirement of <u>Definition 56</u> (Informedness), namely, the strict inequality between h_2 and h_1 , is rarely satisfied—even in situations where h_2 is clearly superior to h_1 . Example 8-Puzzle: h_1 (number of misplaced tiles) often equals h_2 (sum of Manhattan distances of misplaced tiles).
- ☐ In the book of Pearl this theorem is denoted as Theorem 7 and Nilsson Result 6 respectively. [Pearl 1984]

Informedness and Dominance: Discussion

- Q. If $h_2 > h_1$ cannot be satisfied in practice, then under which conditions does A^*_2 (using h_2) dominate A^*_1 (using h_1) when $h_2 \ge h_1$?
- A1: If both algorithms use the same tie breaking rule and if the rule is purely structural (i.e., independent of the values of g and h).
- A2: In situations where we want to find *all* goal nodes that can be reached with cheapest cost, <u>Theorem 54</u> gives both a necessary and sufficient condition for node expansion.

 In this case, <u>Definition 56</u> (Informedness) can permit equalities without affecting <u>Theorem 57</u>.
- A3: Theorem 64 demonstrates that under reasonable assumptions equalities between h_1 and h_2 only violate the dominance of A^*_2 on a small set of nodes for which $q^*(n) + h_2(n) = C^*$ holds.

Remarks:

For search space graphs G with Prop(G) it is possible to find *all* goal nodes that can be reached with cheapest cost. But for search space graphs G with Prop(G) it is in general not possible to find *all* optimum cost solution paths (path discarding for multiple optimum cost paths to the same node).

S:V-89 Formal Properties of Heuristics © STEIN/LETTMANN 1998-2017

Motivation

Previous consideration:

The efficiency of A* can be measured by the number of nodes it manages to exclude from expansion.

$$\underset{S}{\text{maximize}} \ |\underbrace{\{n \mid f(n) > C^*\}}_{S}|$$

More reasonable:

The number of expansion operations should be analyzed. Why?

Motivation

Previous consideration:

The efficiency of A* can be measured by the number of nodes it manages to exclude from expansion.

More reasonable:

The number of expansion operations should be analyzed. Why?

Starting point:

Under certain conditions A* will never reopen a node from CLOSED. What does that mean?

Motivation

Recap: Cheapest paths to a goal, which are constrained to pass through a node n, cannot be cheaper than unrestricted cheapest paths to a goal.

Formally:

$$\forall n: h^*(s) \le g^*(n) + h^*(n)$$

or:
$$h^*(s) \le k(s, n) + h^*(n)$$
, since $g^*(n) = k(s, n)$

Motivation

Recap: Cheapest paths to a goal, which are constrained to pass through a node n, cannot be cheaper than unrestricted cheapest paths to a goal.

Formally:

$$\forall~n:~h^*(s)\leq g^*(n)+h^*(n)$$
 or:
$$h^*(s)\leq k(s,n)+h^*(n),\quad \text{since}~g^*(n)=k(s,n)$$

In general, the following "triangle inequality" holds:

$$\forall n, n' : h^*(n) \le k(n, n') + h^*(n')$$

It is reasonable to expect that if the process of estimating h(n) is "consistent", it should inherit the triangle inequality from h^* .

Illustration of the Global Triangle Inequality

$$\forall n, n' : h^*(n) \le k(n, n') + h^*(n')$$

Identical path:

Different paths:

Illustration of the Local Triangle Inequality

$$\forall n, n' : h^*(n) \le c(n, n') + h^*(n')$$

Identical paths:

Different paths:

Definition 58 (Consistency Condition)

Let G be a search space graph. A heuristic function h is called consistent, iff (\leftrightarrow) for all nodes n, n' in G holds:

$$h(n) \le k(n, n') + h(n')$$

Definition 58 (Consistency Condition)

Let G be a search space graph. A heuristic function h is called consistent, iff (\leftrightarrow) for all nodes n, n' in G holds:

$$h(n) \le k(n, n') + h(n')$$

Definition 59 (Monotonicity Condition)

Let G be a search space graph. A heuristic function h is called monotone, iff (\leftrightarrow) for all nodes n, n' in G with $n' \in succ(n)$ holds:

$$h(n) \le c(n, n') + h(n')$$

Remarks:

- ☐ The consistency condition corresponds to the fulfillment of the global triangle inequality.
- ☐ The monotonicity condition corresponds to the fulfillment of the local triangle inequality.
- □ The global triangle inequality is obviously fulfilled for nodes n, n' where n' ist not reachable from n in G. Recall that we defined k(n, n') as ∞ for such nodes.
- □ If $c(n, n') = \infty$ for nodes n, n' with $n' \notin succ(n)$, the local triangle inequality holds for all nodes n, n' in G.

Theorem 60 (Consistency Equivalent to Monotonicity)

Let G be a search space graph with Prop(G). A heuristic function h is consistent iff (\leftrightarrow) h is monotone.

Consistency ⇔ Monotonicity

$$h(n) \le k(n, n') + h(n') \qquad h(n) \le c(n, n') + h(n')$$

Theorem 60 (Consistency Equivalent to Monotonicity)

Let G be a search space graph with Prop(G). A heuristic function h is consistent iff (\leftrightarrow) h is monotone.

$$h(n) \le k(n, n') + h(n')$$
 $h(n) \le c(n, n') + h(n')$

Proof (sketch)

1. "⇒"

Monotonicity follows from consistency, since consistency states the triangle inequality for any pair of nodes n,n' with n' reachable from n considering cost of a cheapest path. Monotonicity considers special pairs of nodes $n' \in succ(n)$, and per definition holds: $k(n,n') \leq c(n,n')$

2. "⇐"

Let n_l be reachable from n_0 and let $P = (n_0, n_1, \dots, n_l)$ be a cheapest path from n_0 to n_l . Using the monotonicity of h it can be proven by induction over the path length that

$$h(n_0) \le \sum_{i=1}^{l} c(n_{i-1}, n_i) + h(n_l)$$

Since a cheapest path P was considered, we have $k(n_0, n_l) = \sum_{i=1}^{l} c(n_{i-1}, n_i)$.

Illustration of a Monotone h [non-monotone]

Monotonicity defines a restriction on h(n'): When moving from n to n' along the edge (n, n'), the h-value decreases at most by c(n, n').

□ For an edge:

Illustration of a Monotone h [non-monotone]

Monotonicity defines a restriction on h(n'): When moving from n to n' along the edge (n, n'), the h-value decreases at most by c(n, n').

□ For an edge:

For a solution path:

Theorem 61 (Monotone Heuristic Functions)

Let G be a search space graph with Prop(G). A consistent heuristic function h is admissible.

Theorem 61 (Monotone Heuristic Functions)

Let G be a search space graph with Prop(G). A consistent heuristic function h is admissible.

Proof (sketch)

- 1. Let h be consistent, i.e., $h(n) \le k(n, n') + h(n')$ for all nodes n, n' in G.
- 2. Consider an arbitrary node n.
- 3. If no goal node is reachable from n, then $h^*(n) = \infty$ and thus $h(n) \le h^*(n)$.
- 4. If some goal node is reachable from n, there is also a goal node γ reachable from n with cheapest cost. [Corollary "Solution Existence Entails Optimum"]
- 5. Using $n' = \gamma$, we have $h(n) \leq \underbrace{k(n, \gamma)}_{h^*(n)} + \underbrace{h(\gamma)}_{0}$.
- 6. Since n is arbitrary chosen, $h(n) \leq h^*(n)$ holds for all nodes. Hence h is admissible.

Remarks:

- $lue{}$ Consider the special case h(n)=0. For a graph with positive edge cost h(n)=0 is monotone.
- \square Q. Compare A* with h(n) = 0 to the shortest-path algorithm of Dijkstra. Does Dijkstra's shortest-path algorithm reopen nodes?

Theorem 62 (No Reopening)

Let G be a search space graph with Prop(G). An A* algorithm that uses a monotone heuristic function h will expand only nodes to which it has found cheapest paths:

$$g(n) = g^*(n), \quad \forall \ n \in \mathsf{CLOSED}$$

Theorem 62 (No Reopening)

Let G be a search space graph with Prop(G). An A* algorithm that uses a monotone heuristic function h will expand only nodes to which it has found cheapest paths:

$$g(n) = g^*(n), \quad \forall \ n \in \mathsf{CLOSED}$$

Proof (sketch)

- 1. Assume that A* selects a node n for expansion with $g(n) > g^*(n)$.
- 2. Let P_{s-n}^* be a cheapest path from s to n.
- 3. If $P_{s-n}^* \cap \mathsf{OPEN} = \{n\}$, then all predecessors of n on P_{s-n}^* have been expanded and $g(n) = g^*(n)$, contradicting the assumption. [Lemma "Shallowest OPEN Node on Optimum Path"]
- 4. If $P_{s-n}^* \cap \mathsf{OPEN} \neq \{n\}$, let n' be the shallowest OPEN node on P_{s-n}^* .
- 5. Using $g(n') = g^*(n')$ [Lemma "Shallowest OPEN Node on Optimum Path"] and the monotonicity of h we have $f(n') = g(n') + h(n') = g^*(n') + h(n') \le g^*(n') + k(n', n) + h(n)$.
- 6. Since $n' \in P_{s-n}^*$, we have $g^*(n') + k(n', n) = g^*(n)$ and thus $f(n') \leq g^*(n) + h(n)$.
- 7. According to the assumption $g(n) > g^*(n)$ we have f(n') < g(n) + h(n) and thus f(n') < f(n).
- 8. A* selects n' for expansion instead of n, contradicting the assumption.

Remarks:

Note that a heuristic function can be admissible without being monotone: admissibility	is
necessary for monotonicity.	

□ In the book of Pearl this theorem is denoted as Theorem 10 and Nilsson Result 7 respectively. [Pearl 1984]

Illustration of a Non-Monotone *h* [monotone]

The monotonicity condition, $h(n_2) \le c(n_2, n) + h(n)$, is not satisfied for n_2 : 40 > 5 + 15

Sequence of node expansions: $n_0, n_1, n, \dots, n_2, n$

Non-Decreasing *f*-Values

Theorem 63 (Non-Decreasing f-Values)

Let G be a search space graph with Prop(G). When using a monotone heuristic function h the f-values of the sequence of nodes expanded by an A^* algorithm will be non-decreasing.

Non-Decreasing *f*-Values

Theorem 63 (Non-Decreasing f-Values)

Let G be a search space graph with Prop(G). When using a monotone heuristic function h the f-values of the sequence of nodes expanded by an A^* algorithm will be non-decreasing.

Proof (sketch)

- 1. Let n_2 be expanded directly after n_1 in the sequence of node expansions.
- 2. If n_2 is no successor of n_1 in G, then n_2 is on OPEN as well and $f(n_2) \geq f(n_1)$.
- 3. If n_2 is successor of n_1 in G, then a new path to n_2 was found when n_1 was expanded.

For the f-value of n_2 holds:

- (a) If n_2 was newly generated, then, since h is monotone, $f_{\text{new}}(n_2) = g(n_1) + c(n_1, n_2) + h(n_2) \geq g(n_1) + h(n_1) = f(n_1)$. [Illustration]
- (b) If n_2 was already on OPEN then holds:
 - If $f(n_2)$ was improved, then Case (a) defines the new f-value of n_2 .
 - If $f(n_2)$ was not improved, then $f(n_2) \ge f(n_1)$ must still have hold.

Finally, n_2 was not on CLOSED, since it was expanded. [Theorem 62]

R	Δ	m	a	r	ks	
	_		_		\sim	

In the book of Pearl this theorem is denoted as Theorem 11 and Nilsson Result 8 respectively. [Pearl 1984]

Illustration of Non-Decreasing *f*-Values

- 1. Along a solution path (in the search space graph):
 - \Box Path cost values g(n) are (strictly) increasing since c(n, n') > 0.

Usually, estimated cheapest remaining cost values h(n) are decreasing. The monotonicity condition $h(n) \le c(n, n') + h(n')$ restricts the possible changes in h(n).

 \rightarrow This ensures that the estimated cheapest total cost values f(n) are non-decreasing.

Illustration of Non-Decreasing *f*-Values (continued)

- 2. In the sequence of nodes expanded by A* (in order of expansion):
 - ullet Again we have: Estimated cheapest total cost values f(n) of nodes expanded by A* are non-decreasing. [Theorem 63]

- $\ \square$ But: For the sequences of path cost values g(n) or estimated cheapest remaining cost values h(n) for node expanded by A^* no monotonicity can be stated.
 - Q. Why not?

Example: Knight Moves (revisited)

OPEN	CLOSED
$\{c, e, l, n,$	$\{m,b,d,a,s\}$
$f,g,h,i,j,k,o,p\}$	

f-values never decrease.

$$h = \left\lceil \frac{\#rows}{2} \right\rceil$$

$\mid n \mid$	a(n)	$h_1(n)$	f(n)
s	0	2	$\frac{J}{2}$
a	1	1	$\frac{1}{2}$
b	1	1	$\frac{1}{2}$
	1	$\stackrel{-}{2}$	3
d	$\frac{1}{2}$	0	$\frac{1}{2}$
$\left[egin{array}{c} c \\ d \\ e \\ f \\ g \\ h \\ i \\ j \\ m \end{array} ight]$	1 2 2 2 3	$ \begin{array}{c c} h_1(n) \\ \hline 2 \\ 1 \\ 1 \\ 2 \\ 0 \\ 1 \\ 3 \end{array} $	$\begin{vmatrix} 3 \end{vmatrix}$
f	2	$\frac{1}{2}$	4
q	3	1	4
$\stackrel{\scriptscriptstyle J}{h}$	3	1	4
i	3		4
j	3	1 1	4
m	2	0	2
l	2	1	4 4 2 3
n	2	1	3
	3 3 2 2 2 2 2 2	2	3 4
0	2	$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$	4
$\left egin{array}{c} k \\ o \\ p \end{array} \right $	2	2	4

Example: Knight Moves (revisited)

Analyzed part of the search space graph:

f-values never decrease. Q. Is h monotone—i.e., does $h(n) \le c(n, n') + h(n')$ hold?

Example: Knight Moves (revisited)

Analyzed part of the search space graph:

f-values never decrease. Q. Is h monotone—i.e., does $h(n) \le c(n, n') + h(n')$ hold?

Conditions for Node Expansion III

Theorem 64 (Necessary and Sufficient Conditions for Node Expansion III)

Let G be a search space graph with Prop(G) and let A^* use a monotone heuristic function h. The condition $g^*(n) + h(n) \leq C^*$ is a necessary condition for expanding node n. A sufficient condition for expanding n is $g^*(n) + h(n) < C^*$.

Conditions for Node Expansion III

Theorem 64 (Necessary and Sufficient Conditions for Node Expansion III)

Let G be a search space graph with Prop(G) and let A^* use a monotone heuristic function h. The condition $g^*(n) + h(n) \leq C^*$ is a necessary condition for expanding node n. A sufficient condition for expanding n is $g^*(n) + h(n) < C^*$.

Proof (sketch)

- 1. The necessary condition follows by combining Theorem 51 and Theorem 62.
- 2. The sufficient condition follows from the non-decreasing behavior of f-values along optimum paths, i.e.,

$$g^*(n_1) + h(n_1) \le g^*(n_1) + c(n_1, n_2) + h(n_2) = g^*(n_2) + h(n_2)$$

for nodes n_1, n_2 on an optimum path P_{s-n}^* to a node n with n_2 being a successor of n_1 .

- 3. \Rightarrow From condition $g^*(n) + h(n) < C^*$ then follows that P^*_{s-n} is strictly C^* -bounded.
- 4. \Rightarrow Hence, n will be expanded. [Theorem 55]

Conditions for Node Expansion III [Conditions I, Conditions II]

For monotone heuristic functions *h* hold:

node expansion by
$$\mathbf{A}^*\Rightarrow\underbrace{g^*(n)+h(n)\leq C^*}_{\text{necessary}}$$
 $\underbrace{g^*(n)+h(n)< C^*}_{\text{sufficient}}\Rightarrow \text{ node expansion by }\mathbf{A}^*$

Again, <u>Theorem 64</u> does not give a condition for node expansion that is both necessary and sufficient:

The theorem does not treat nodes with $g^*(n) + h(n) = C^*$.

Remarks:

- If monotone heuristic functions are used, then the condition $g^*(n) + h(n) < C^*$ has to be tested only for a node n—but the computation of $g^*(n)$ may be costly. If searching a strictly C^* -bounded path to n, any node on that path has to be considered.
- Since f-values for the sequence of expanded nodes are non-decreasing, the advantage of using different tie breaking rules along with the same monotone heuristic h is limited to the number of nodes with $g^*(n) + h(n) = C^*$. Recall that such nodes may occur on any path, not only on solution paths. An inferior tie breaking rule may select a node with $g^*(n) + h(n) = C^*$ that is not on an optimum solution path. Nodes with $g^*(n) + h(n) < C^*$ may be expanded at different points in time due to different tie breaking rules but they will be expanded before termination.
- □ Theorem 64 gives an explanation why the difference between the relation $f(n) \le C^*$ and $f(n) < C^*$ is often insignificant: If f(n) can be modeled as a continuous random variable, the equality $f(n) = C^*$ becomes a rare event.
- ☐ In the book of Pearl this theorem is denoted as Theorem 12. [Pearl 1984]

Definition 65 (Largely Dominating Algorithms)

An algorithm A_1 largely dominates A_2 if every node expanded by A_1 is also expanded by A_2 except, perhaps, some nodes for which $h_1(n) = h_2(n) = C^* - g^*(n)$.

Corollary 66 (of Theorem 64)

Let G be a search space graph with Prop(G). If $h_2(n) \ge h_1(n)$ holds for any n and if $h_2(n)$ and $h_1(n)$ both are monotone, then A^*_2 (A^* informed by $h_2(n)$) largely dominates A^*_1 (A^* informed by $h_1(n)$).

Definition 66 (Largely Dominating Algorithms)

An algorithm A_1 largely dominates A_2 if every node expanded by A_1 is also expanded by A_2 except, perhaps, some nodes for which $h_1(n) = h_2(n) = C^* - g^*(n)$.

Corollary 67 (of Theorem 64)

Let G be a search space graph with Prop(G). If $h_2(n) \ge h_1(n)$ holds for any n and if $h_2(n)$ and $h_1(n)$ both are monotone, then A^*_2 (A^* informed by $h_2(n)$) largely dominates A^*_1 (A^* informed by $h_1(n)$).

Proof (sketch)

- 1. Let n be a node expanded by A^*_2 but not by A^*_1 .
- 2. It holds: $g^*(n) + h_2(n) \le C^*$ and $C^* \le g^*(n) + h_1(n)$ [Theorem 64]
- 3. Since $h_2(n) \ge h_1(n)$ holds: $C^* \le g^*(n) + h_1(n) \le g^*(n) + h_2(n) \le C^*$
- **4.** $\Rightarrow h_1(n) = h_2(n) = C^* g^*(n)$

Remarks:

- Note that in the absence of monotonicity, the advantage of A^*_2 over A^*_1 would be much less certain: every descendant of n that is reachable from n by a—wrt. h_2 strictly C^* -bounded path—will also be expanded by A^*_2 and possibly not by A^*_1 .
- □ If h is monotone (or consistent), then A* largely dominates every admissible algorithm having access to the same h. [Dechter/Pearl 1983]
- □ If *h* is admissible but not monotone (or consistent), then there are admissible algorithms that, using the same *h*, will grossly outperform A* in some problem instances, regardless of what tie breaking rule A* invokes. [Pearl 1984]
- Monotonicity is not an exceptional property but can be often established for an admissible heuristic. For instance, all the heuristic functions discussed in the introduction are monotone.