MA 16200: Plane Analytic Geometry and Calculus II

Lecture 17: Series

Zachariah Pence

Purdue University

Sections Covered: 10.3

Review

Recall an infinite series takes the form:

$$\sum_{n=1}^{\infty} a_n$$

The series converges when the sequence of partial sums $\{S_N\}$ converges. I.e., :

$$\lim_{N\to\infty} S_n \stackrel{def}{=} \lim_{N\to\infty} \sum_{n=1}^N a_n = L$$

for some real number L. In that case, the series is equal L. Otherwise, it diverges.

Geometric Series Definition

Definition 1

A geometric sum is a sum of the form:

$$S_N = \sum_{n=0}^{N-1} ar^n = \sum_{n=1}^{N} ar^{n-1} = a(1+r+r^2+r^3+\ldots+r^{N-1})$$

where $a \neq 0$ and r a real number. The number r is called the **common ratio**.

We eventually want to talk about the **geometric series** $\sum_{n=0}^{\infty} ar^n$

Examples

$$0.99999 = \sum_{n=1}^{5} \frac{9}{10} \left(\frac{9}{10} \right)^{n-1}$$

$$\sum_{n=0}^{9} 3^n$$

$$\sum_{n=1}^{3} 2\left(-\frac{3}{4}\right)^{n-1}$$

$$\sum_{n=0}^{\infty} 2^{-2n} 5^{n+1}$$

Non-Examples

$$\sum_{i=1}^{12} i$$

Partial Sum Formula

For
$$S_N = \sum_{n=0}^{N-1} ar^n$$
, can we find an explicit formula for S_N ?

Value of a Geometric Series

When is $\sum_{n=0}^{\infty} ar^n < \infty$?

Geometric Series Formula

Theorem 2 (Convergence of a Geometric Series)

Let $a \neq 0$ and r be real numbers.

If
$$|r| < 1$$
, then

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

If
$$|r| \geq 1$$
,

$$\sum_{n=0}^{\infty} ar^n \ diverges$$

Problem 3

Compute $\sum_{n=0}^{\infty} 5\left(-\frac{2}{3}\right)^n$, or show that it diverges.

Problem 4

Compute $\sum_{n=1}^{\infty} \left(\frac{\pi}{e}\right)^{n-1}$, or show that it diverges.

Problem 5

Compute $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$, or show that it diverges.

Repeating Decimals

Problem 6

Convert the repeating decimal $1.\overline{2} = 1.222...$ into a fraction.

Repeating Decimals

Problem 7

Convert the repeating decimal $2.3\overline{17} = 2.3171717...$ into a fraction.

Sneak Peek into Power Series

Problem 8

Let f be the following function of x:

$$f(x) = \sum_{n=0}^{\infty} (-1)^n x^n$$

Find the domain and range of f.

Another Example

Problem 9

Let f be the following function of x:

$$f(x) = \sum_{n=0}^{\infty} (2x-1)^n$$

Find the domain of f.

Telescoping Series

Definition 10

Telescoping Series take the form:

$$\sum_{n=1}^{\infty} [f(n) - f(n+1)]$$

for some function f

Examples:

Partial Sums of Telescoping Series

When does $\sum_{n=1}^{\infty} [f(n) - f(n+1)]$ converge?

Convergence of Telescoping Series

Theorem 11 (Convergence of Telescoping Series)

If $f(n) \rightarrow L$, then:

$$\sum_{n=1}^{\infty} [f(n) - f(n+1)] = f(1) - L$$

Otherwise,

$$\sum_{n=1}^{\infty} [f(n) - f(n+1)] \text{ diverges}$$

Problem 12

Compute $\sum_{n=1}^{\infty} \left[\cos \frac{1}{n} - \cos \frac{1}{n+1} \right]$, or show that it diverges.

Problem 13

Compute $\sum_{n=3}^{\infty} \frac{1}{(n-2)(n-1)}$, or show that it diverges.

Problem 14

Compute $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n}\right)$, or show that it diverges.

Properties of Convergent Series

Theorem 15

Let $\sum a_n$ and $\sum b_n$ both be convergent series, then

- For any number c, $\sum ca_n = c \sum a_n$;

Theorem 16

If $\sum a_n$ diverges,

- For $c \neq 0$, $\sum ca_k$ diverges.
- If $\sum b_n$ converges, $\sum (a_n \pm b_n)$ diverges.

Remark

If $\sum a_n$ and $\sum b_n$ both diverge, nothing can be said about $\sum (a_n \pm b_n)$.

- $\sum a_n = \sum 1$; $\sum b_n = \sum (-1)$; $\sum (a_n + b_n) = 0$
- $\blacksquare \sum a_n = \sum 1; \sum b_n = \sum 1; \sum (a_n + b_n)$ diverges
- $\blacksquare \sum a_n = \sum 1; \sum b_n = \sum (-1); \sum (a_n b_n)$ diverges

Problem 17

Compute
$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right)$$

Tails

Theorem 18

If M is a positive integer, then: $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=M}^{\infty} a_n$ either both converge or both diverge.

In general, when determining convergence, adding or removing finitely many terms does not change anything.

$$\sum_{n=1}^{\infty} a_n = \sum_{\substack{n=1 \ \text{First } M \text{ leading terms}}}^{M} + \sum_{\substack{n=M+1 \ M\text{-tail}}}^{\infty} a_n$$

However, the *value* of the series does change if non-zero terms are added or removed.

Z. Pence