Исследование надежности заемщиков

Откройте таблицу и изучите общую информацию о данных

```
In [43]: import pandas as pd
import numpy as np
import seaborn as sns

try:
         data = pd.read_csv('/datasets/data.csv')
except:
         data = pd.read_csv('data.csv')
```

In [44]: data.head(20)

ıt[44]:		children	days_employed	dob_years	education	education_id	family_status	fan
	0	1	-8437.673028	42	высшее	0	женат / замужем	
	1	1	-4024.803754	36	среднее	1	женат / замужем	
	2	0	-5623.422610	33	Среднее	1	женат / замужем	
	3	3	-4124.747207	32	среднее	1	женат / замужем	
	4	0	340266.072047	53	среднее	1	гражданский брак	
	5	0	-926.185831	27	высшее	0	гражданский брак	
	6	0	-2879.202052	43	высшее	0	женат / замужем	
	7	0	-152.779569	50	СРЕДНЕЕ	1	женат / замужем	
	8	2	-6929.865299	35	ВЫСШЕЕ	0	гражданский брак	
	9	0	-2188.756445	41	среднее	1	женат / замужем	
	10	2	-4171.483647	36	высшее	0	женат / замужем	
	11	0	-792.701887	40	среднее	1	женат / замужем	

12	0	NaN	65	среднее	1	гражданский брак	
13	0	-1846.641941	54	неоконченное высшее	2	женат / замужем	
14	0	-1844.956182	56	высшее	0	гражданский брак	
15	1	-972.364419	26	среднее	1	женат / замужем	
16	0	-1719.934226	35	среднее	1	женат / замужем	
17	0	-2369.999720	33	высшее	0	гражданский брак	
18	0	400281.136913	53	среднее	1	вдовец / вдова	
19	0	-10038.818549	48	СРЕДНЕЕ	1	в разводе	

In [45]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21525 entries, 0 to 21524
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	children	21525 non-null	int64
1	days_employed	19351 non-null	float64
2	dob_years	21525 non-null	int64
3	education	21525 non-null	object
4	education_id	21525 non-null	int64
5	family_status	21525 non-null	object
6	<pre>family_status_id</pre>	21525 non-null	int64
7	gender	21525 non-null	object
8	income_type	21525 non-null	object
9	debt	21525 non-null	int64
10	total_income	19351 non-null	float64
11	purpose	21525 non-null	object
dtyp	es: float64(2), in	t64(5), object(5)

Предобработка данных

Удаление пропусков

memory usage: 2.0+ MB

```
In [46]: data.isna().sum()
```

```
Out[46]: children
                                 0
         days_employed
                              2174
         dob years
                                 0
         education
                                 0
         education id
                                 0
         family_status
                                 0
         family status id
         gender
                                 0
         income_type
         debt
                                 0
         total_income
                              2174
         purpose
         dtype: int64
In [47]:
         for t in data['income_type'].unique():
              data.loc[(data['income_type'] == t) & (data['total_income'].isna()),
              data.loc[(data['income type'] == t), 'total_income'].median()
```

Обработка аномальных значений

```
In [48]: data['days_employed'] = data['days_employed'].abs()
In [49]: data.groupby('income_type')['days_employed'].agg('median')
         income type
Out[49]:
         безработный
                             366413.652744
         в декрете
                               3296.759962
                               2689.368353
         госслужащий
         компаньон
                              1547.382223
         пенсионер
                             365213.306266
                               520.848083
         предприниматель
         сотрудник
                               1574.202821
         студент
                                578.751554
         Name: days_employed, dtype: float64
```

У двух типов (безработные и пенсионеры) получатся аномально большие значения. Исправить такие значения сложно, поэтому оставим их как есть.

```
In [50]: data['children'].unique()
Out[50]: array([ 1,  0,  3,  2, -1,  4, 20,  5])
In [51]: data = data[(data['children'] != -1) & (data['children'] != 20)]
In [52]: data['children'].unique()
Out[52]: array([1,  0,  3,  2,  4,  5])
```

Удаление пропусков (продолжение)

```
In [53]:
         for t in data['income type'].unique():
              data.loc[(data['income_type'] == t) & (data['days_employed'].isna()),
              data.loc[(data['income_type'] == t), 'days_employed'].median()
In [54]:
         data.isna().sum()
         children
                              0
Out[54]:
         days employed
                              0
         dob years
         education
         education id
         family_status
         family_status_id
         gender
         income_type
         debt
                              0
         total income
         purpose
         dtype: int64
```

Изменение типов данных

```
In [55]: data['total_income'] = data['total_income'].astype(int)
```

Обработка дубликатов

```
In [56]: data['education'] = data['education'].str.lower()
In [57]: data.duplicated().sum()
Out[57]: 71
In [58]: data = data.drop_duplicates()
```

Категоризация данных

На основании диапазонов, указанных ниже, создадим в датафрейме data столбец total income category с категориями:**

```
0-30000 — 'E';
30001-50000 — 'D';
50001-200000 — 'C';
200001-1000000 — 'B';
1000001 и выше — 'A'.
```

Например, кредитополучателю с доходом 25000 нужно назначить категорию 'E', а клиенту, получающему 235000, — 'B'. Используйте собственную функцию с именем categorize_income() и метод apply().

```
In [59]:
          def categorize income(income):
              try:
                  if 0 <= income <= 30000:
                       return 'E'
                  elif 30001 <= income <= 50000:</pre>
                      return 'D'
                  elif 50001 <= income <= 200000:
                       return 'C'
                  elif 200001 <= income <= 1000000:</pre>
                       return 'B'
                  elif income >= 1000001:
                      return 'A'
              except:
                  pass
In [60]: data['total_income_category'] = data['total_income'].apply(categorize_inc
```

In [61]: data['purpose'].unique()

In [63]:

```
Out[61]: array(['покупка жилья', 'приобретение автомобиля',
                 'дополнительное образование', 'сыграть свадьбу',
                 'операции с жильем', 'образование', 'на проведение свадьбы',
                 'покупка жилья для семьи', 'покупка недвижимости',
                 'покупка коммерческой недвижимости', 'покупка жилой недвижимости',
                 'строительство собственной недвижимости', 'недвижимость',
                 'строительство недвижимости', 'на покупку подержанного автомобиля'
                 'на покупку своего автомобиля',
                 'операции с коммерческой недвижимостью',
                 'строительство жилой недвижимости', 'жилье',
                 'операции со своей недвижимостью', 'автомобили',
                 'заняться образованием', 'сделка с подержанным автомобилем',
                 'получение образования', 'автомобиль', 'свадьба',
                 'получение дополнительного образования', 'покупка своего жилья',
                 'операции с недвижимостью', 'получение высшего образования',
                 'свой автомобиль', 'сделка с автомобилем',
                 'профильное образование', 'высшее образование',
                 'покупка жилья для сдачи', 'на покупку автомобиля', 'ремонт жилью'
                 'заняться высшим образованием'], dtype=object)
```

Создадим функцию, которая на основании данных из столбца purpose сформирует новый столбец purpose_category, в который войдут следующие категории:**

- 'операции с автомобилем',
- 'операции с недвижимостью',
- 'проведение свадьбы',
- 'получение образования'.

```
In [62]:

def categorize_purpose(row):

    try:

    if 'aBTOM' in row:
        return 'операции с автомобилем'

    elif 'жил' in row or 'недвиж' in row:
        return 'операции с недвижимостью'

    elif 'свад' in row:
        return 'проведение свадьбы'

    elif 'образов' in row:
        return 'получение образования'

    except:
        return 'нет категории'
```

Шаг 3. Исследуйте данные и ответьте на вопросы

3.1 Есть ли зависимость между количеством детей и возвратом кредита в срок?

data['purpose category'] = data['purpose'].apply(categorize purpose)

In [64]: data.head()

Out[64]:		children	days_employed	dob_years	education	education_id	family_status	family_s
	0	1	8437.673028	42	высшее	0	женат / замужем	
	1	1	4024.803754	36	среднее	1	женат / замужем	
	2	0	5623.422610	33	среднее	1	женат / замужем	
	3	3	4124.747207	32	среднее	1	женат / замужем	
	4	0	340266.072047	53	среднее	1	гражданский брак	

```
In [65]: #Написал pivot функцию с визуализацией в seaborn

def pivot(data, index):
    pivot = pd.pivot_table(data, values='debt', index=index, aggfunc = ['
    pivot.columns = ['Кол-во клиентов', 'Кол-во должников', 'Доля невозвр
    display(pivot.sort_values('Доля невозврата', ascending = False))
    plt = sns.barplot(x=pivot.index, y='Доля невозврата', data=pivot)
    plt.set(xlabel=index, ylabel='Доля невозвратов', title='Зависимость д
    plt.figure.set_figwidth(15)

pivot(data, 'children')
```

	Кол-во клиентов	Кол-во должников	Доля невозврата
children			
4	41	4	0.097561
2	2052	194	0.094542
1	4808	444	0.092346
3	330	27	0.081818
0	14091	1063	0.075438
5	9	0	0.000000

In [66]: display(data.loc[data['children'] == 5])
#Клиентов с пятью детьми мало, их можно не учитывать в общей статистике,
#а отсутствие задолженностей может быть простым совпадением

	children	days_employed	dob_years	education	education_id	family_status	fan
3979	5	1572.328285	42	среднее	1	гражданский брак	
4397	5	3248.839837	36	среднее	1	женат / замужем	
7866	5	773.124856	36	среднее	1	женат / замужем	
15822	5	418.199982	31	среднее	1	женат / замужем	
15916	5	2286.262752	37	среднее	1	женат / замужем	
16211	5	387.317579	35	среднее	1	гражданский брак	
20452	5	268.425464	38	начальное	3	женат / замужем	
20837	5	2386.600221	35	среднее	1	женат / замужем	
21156	5	1690.018117	59	среднее	1	женат / замужем	

Вывод: Клиенты без детей в среднем имеют меньше задолженностей по кредитам

3.2 Есть ли зависимость между семейным положением и возвратом кредита в срок?

In [67]: pivot(data, 'family_status')

	кол-во клиентов	кол-во должников	доля невозврата
family_status			
Не женат / не замужем	2796	273	0.097639
гражданский брак	4134	385	0.093130
женат / замужем	12261	927	0.075606
в разводе	1189	84	0.070648
вдовец / вдова	951	63	0.066246

Вывод: Наименьшую среднюю задолженность имеют клиенты в разводе и вдовцы. Наибольшую - не состоящие в браке клиенты.

3.3 Есть ли зависимость между уровнем дохода и возвратом кредита в срок?

In [68]: pivot(data, 'total_income_category')

	Кол-во клиентов	Кол-во должников	Доля невозврата
total_income_category			
E	22	2	0.090909
С	15921	1353	0.084982
А	25	2	0.080000
В	5014	354	0.070602
D	349	21	0.060172

Вывод: Среди двух самых крупных категорий - В и С, средняя задолженность категории В ниже

3.4 Как разные цели кредита влияют на его возврат в срок?

Tn [60	01.	m: / data	Inverse of the control of
TII [0;	9]:	pivol(data,	'purpose_category')

	Кол-во клиентов	Кол-во должников	Доля невозврата
purpose_category			
операции с автомобилем	4279	400	0.093480
получение образования	3988	369	0.092528
проведение свадьбы	2313	183	0.079118
операции с недвижимостью	10751	780	0.072551

Вывод: Для автокредитов и образовательных кредитов уровень средней задолженности выше, чем для кредитов на проведение свадьбы и операции с недвижимостью

3.5 Приведите возможные причины появления пропусков в исходных данных.

Ответ: Пропуски могли появиться вследствие человеческого фактора: данные могли не потребовать и/или не ввести. Также данные могли быть потеряны изза технической ошибки, например, при выгрузке данных.

3.6 Объясните, почему заполнить пропуски медианным значением — лучшее решение для количественных переменных.

Ответ: Медиана позволяет сгладить влияние выбросов, а также не искажает данные.

Шаг 4: общий вывод.

При создании алгоритма скоринга нужно учесть следующие факторы риска:

- 1. Дети: отсутствие детей лучше
- 2. Семейный статус: клиенты в разводе и вдовцы лучше
- 3. Категория кредита: кредиты на свадьбу и недвижимость лучше
- 4. Категория дохода: В лучше С

Дополнительно можно исследовать зависимость средней задолженности от возраста и пола клиента, также можно разделить клиентов на более узкие сегменты и проанализировать их.