

PB19111672 徐怡 Mar. 12th, 2022

From the last page of the Chap 3's PPT.

Exercise 1

Prove the validity of the following sequents:

(1) $(p \wedge q) \wedge r$, $s \wedge t \vdash q \wedge s$

$1 (p \wedge q) \wedge r$	premise
$2 p \wedge q$	$\wedge e_1 1$
3 q	$\wedge e_2 2$
$4 s \wedge t$	premise
5 s	$\wedge e_1 4$
$6 \ q \wedge s$	$\wedge i \ 3, 5$

$$(2) \ q \to r \vdash (p \to q) \to (p \to r)$$

1 $q \rightarrow r$	premise
$2 p \to q$	assumption
3 p	assumption
4 q	$\rightarrow e 2,3$
	$\rightarrow e 1, 4$
$6 p \to r$	$\rightarrow i \ 3-5$
$7 (p \to q) \to (p \to r)$	$\rightarrow i \ 2 - 6$

$$(3) \vdash q \to (p \to (p \to (q \to p)))$$

_ 1 q	assumption
2 p	assumption
$3 q \rightarrow p$	$\rightarrow i 1, 2$
$4 p \to (q \to p)$	$\rightarrow i 2, 3$
$5 p \to (p \to (q \to p))$	$\rightarrow i 2 - 4$
$6 \ a \rightarrow (n \rightarrow (n \rightarrow (n \rightarrow a)))$	→ <i>i</i> 1 – 5

(4)
$$p \to q \land r \vdash (p \to q) \land (p \to r)$$

$ \begin{array}{c} 1 \ p \\ 2 \ p \to (q \land r) \\ 3 \ q \land r \\ 4 \ q \end{array} $	$assumption \\ \rightarrow premise \\ \rightarrow e \ 1, 2 \\ \land e_1 3$
5 r	$\wedge e_1 3$
$6 p \to q$	$\rightarrow i \ 1-4$
$7 p \rightarrow r$	$\rightarrow i \ 1 - 5$
$8 (p \to q) \land (p \to r)$	

(5)
$$p \land \neg p \vdash \neg (r \to q) \land (r \to q)$$

$1 p \land \neg p$	premise
2 p	$\wedge e_1 1$
$3 \neg p$	$\wedge e_2 1$
4 ⊥	$\neg e \ 2, 3$
$5 \neg (r \to q) \land (r \to q)$	$\perp e \ 4$

Exercise 2

Prove the validity of the following sequents in predicate logic, where P and Q have arity 1, and S has arity 0 (a 'propositional atom'):

(1)
$$\exists x (S \to Q(x)) \vdash S \to \exists x Q(x)$$

1	$\exists x(S \to Q(x))$	premise
2	$x_0 S \to Q(x_0)$	assumption
3	S	assumption
4	$Q(x_0)$	$\rightarrow e \ 2,3$
5	$\exists x Q(x)$	$\exists x \ i \ 4$
6	$S \to \exists x Q(x)$	$\rightarrow i \ 3-5$
7	$S \to \exists x Q(x)$	$\exists e \ 1, 2-6$

(2)
$$\forall x P(x) \to S \vdash \exists x (P(x) \to S)$$

(3) $\forall x (P(x) \land Q(x)) \vdash \forall x P(x) \land \forall x Q(x)$

$1 \ \forall x (P(x) \land Q(x))$	premise
$2 P(t) \wedge Q(t)$	$\forall x \ e \ 1$
3 P(t)	$\wedge e_1$ 2
4 Q(t)	$\wedge e_2$ 2
$5 \ \forall x P(x)$	$\forall x \ i \ 3$
$6 \ \forall x Q(x)$	$\forall x \ i \ 4$
$7 \ \forall x P(x) \land \forall x Q(x)$	$\wedge i 5, 6$

$(4) \neg \forall x \neg P(x) \vdash \exists x P(x)$

1	$\neg \forall x \neg P(x)$	premise	
2	$\exists x \neg \neg P(x)$	semantically unders	standing
3	$x_0 \neg P(x_0)$	assumption	
4	$P(x_0)$	$\neg \neg e \ 3$	
5	$\exists x P(x)$	$\exists x \ i \ 4$	
6	$\exists x P(x)$	$\exists e \ 2, 3-5$	

(5) $\forall x \neg P(x) \vdash \neg \exists x P(x)$

1	$\forall x \neg P(x)$	premise
2	$\exists x P(x)$	assumption
3	$x_0 P(x_0)$	assumption
4	$\neg P(x_0)$	$\forall x \ e \ 1$
5	\perp	$\neg e \ 3,4$
6	Т	$\exists x \ e \ 2, 3-5$
7	$\neg \exists x P(x)$	$\neg i \ 2 - 6(MT)$