

MÓDULO 3 REDES NEURONALES

Índice

- Introducción y motivación
- 2. El perceptrón
- 3. La neurona logística
- 4. Redes neuronales

Índice

- 1. Introducción y motivación
- 2. El perceptrón
- 3. La neurona logística
- 4. Redes neuronales

Frontera de decisión no lineal

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

- Añadimos nuevas características
- Si n=100, cuando añadimos características polinomiales de orden 3, entonces n=170000
- Poco eficiente/manejable
- Muy fácil sobre-aprender

Aladinos ruevas características

Sin = 100, combo atalmos consterístico polinoriales de order 3, entonces n = 170000

Pocoencente maneja

Wyfad sobreapender

Problemas más complejos: clasificación de imágenes

Nosotros vemos...

Visión por computado: Detección de coches

Nuevo ejemplo:

¿Qué es?

Fronteras de decisión complejas

Fronteras de decisión complejas

'Non"-Cars

Imágenes de 50 x 50 \rightarrow 2500 pixels (7500 en caso de RGB)

$$x = \begin{bmatrix} \text{Intensidad pixel 1} \\ \text{Intensidad pixel 2} \\ \vdots \\ \text{Intensidad pixel 2500} \end{bmatrix}$$

Características cuadráticas $(x_i \times x_j)$:

≈ 3 milliones de características

Redes Neuronales

- Origen
 - Algoritmos que tratan de imitar al cerebro humano
- Muy utilizadas en los 80 e inicios de los 90
 - Pérdida de popularidad después
- Actualmente
 - Una de las mejores técnicas para muchas aplicaciones
 - Imagen
 - Procesamiento del lenguaje natural

Índice

- 1. Introducción y motivación
- 2. El perceptrón
- 3. La neurona logística
- 4. Redes neuronales

Neuronas

Information flow through neurons

Collect electrical signals

Integrates incoming signals and generates outgoing signal to axon

Axon

Passes electrical signals to dendrites of another cell or to an effector cell

Sinapse

Figure 45-2b Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

Función de activación

- Es una función escalón (poco suave)
- El hecho de que la salida sea -1 (en vez de 0) es solo por conveniencia

Ejemplo

Pesos

$$\theta_1 = 6.92$$

$$\theta_2 = 10.28$$

$$\theta_0 = -71.01$$

$$x^{(1)} = (2.8), \hat{y}^{(1)} = 1$$

$$x^{(2)} = (8,1), \hat{y}^{(2)} = 0$$

- Ejemplo $x^{(1)} = (2.8)$. Salida del perceptrón
 - 6.92x2 + 10.28x8 71.01 = 25.07. $\hat{y} = 1$
- Ejemplo $x^{(2)} = (8,1)$. Salida del perceptrón
 - 6.92x8 + 10.28x1 71.01 = -5.37. $\hat{y} = -1$

 Los pesos determinan el hiperplano que separa a las dos clases. La ecuación de este hiperplano es

$$x_1w_1 + x_2w_2 + \dots + x_nw_n + b = 0$$

- En el caso de datos en dos dimensiones, la recta de separación tiene los siguientes parámetros:
 - Pendiente: $-\frac{w_1}{w_2}$
 - \square Ordenada en el origen: $-\frac{b}{w_2}$

- Formulación del objetivo del perceptrón
- Dado
 - □ Conjunto de datos de entrenamiento $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$
 - $lue{}$ Parámetros iniciales del perceptrón $heta_0$, ..., $heta_n$
- Encontrar
 - El valor de los parámetros del perceptrón tales que

$$y^{(i)} = \hat{y}^{(i)} \ para \ todo \ i = 1, ..., m$$

- El perceptrón es uno de los ejemplos más claros de online learning
 - El modelo recibe una secuencia de ejemplos en orden

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

- \blacksquare El modelo recibe $x^{(1)}$ y predice $\hat{y}^{(1)}$
- $lue{}$ Al modelo se le muestra $y^{(1)}$
 - El modelo puede utilizar esta información (o no) para mejorar el aprendizaje
- Repetimos con el resto de muestras $x^{(2)}, ..., x^{(m)}$

- El algoritmo de aprendizaje consta de los siguientes pasos
 - Paso 1: inicialización aleatoria de los pesos (o a cero, es perfectamente válido)
 - Paso 2: se toma un elemento del vector de entrada y se calcula la salida del perceptrón
 - Paso 3:
 - si la salida es igual a la clase real, no se modifican los pesos
 - Si la salida es distinta, cada peso se modifica como
 - $\theta_i = \theta_i + (clase\ real\ salida)x_i$
 - Paso 4: parada
 - Si todos los datos de entrada están perfectamente clasificados

- Recordando...el algoritmo de aprendizaje del perceptrón en online
 - Recibimos los datos de uno en uno y por cada uno de ellos actualizamos los pesos
 - Recibimos las coordenadas del dato 1
 - Calculamos su clase según el Perceptrón
 - Recibimos su clase real
 - Actualizamos los pesos del Perceptrón
 - Recibimos las coordenadas del dato 2
 - Calculamos su clase según el Perceptrón
 - **...**

Problemas

- \mathbf{z} si nunca es capaz de alcanzar un estado en el que $y^{(i)} = \hat{y}^{(i)}$ para todo i?
 - Problemas linealmente no separables
- El algoritmo de aprendizaje solo converge
 - Si el problema es linealmente separable
- Un problema de clasificación tipo XOR no puede solucionarse mediante un perceptrón

