Geometría Diferencial Segundo Examen

Antonio Barragán Romero

Problema 1

Sea $S \subset \mathbb{R}^3$ una superficie regular y sea $P \subset \mathbb{R}^3$ un plano dado por la ecuación $P = \{x \in \mathbb{R}^3 : \langle x, v \rangle = c\} \ (v \in \mathbb{R}^3 - \{0\}, c \in \mathbb{R})$. Suponer que para todo $x \in S$ se tiene que $\langle x, v \rangle \geq c$. Probar que si $p \in S \cap P$ entonces $T_p S = P$.

Proof

Primero veamos que v es ortogonal a P, por hipótesis tenemos que $p \in P$, luego si $q \in P$, notemos que

$$\langle v, p - q \rangle = \langle v, p \rangle - \langle v, q \rangle = c - c = 0,$$

lo anterior nos dice que dado $w \in T_pS$, probar que $w \in P$ equivale a probar que $\langle v, w \rangle = 0$.

Sea $\gamma: -(\varepsilon, \varepsilon) \to S$ regular tal que $\gamma(0) = p$ y $\gamma'(0) = w$, definamos $g(t) = \langle \gamma(t), v \rangle$, como γ es regular tenemos que g es diferenciable y ademas se cumple que $g'(t) = \langle \gamma'(t), v \rangle$, más aun como $\gamma \subset S$ tenemos que $g \geq c$, pero $g(0) = \langle p, v \rangle = 0$, por lo cual g(0) es un mínimo local, lo anterior implica que g'(0) = 0, entonces

$$0 = g'(0) = \langle \gamma'(0), v \rangle = \langle w, v \rangle,$$

como w fue arbitrario tenemos que $T_pS\subset P$. Además como T_pS es un plano, se cumple que $T_pS=P$, como queremos.

Problema 2

Sea S una superficie regular y $f:S\to R$ una función suave.

- 1. Dado $p \in S$ considerar su diferencial $D_p f: T_p S \to R$. Probar que existe un único $w \in T_p S$ tal que para todo $v \in T_p S$ se tiene que $\langle v, w \rangle = D_p f(v)$. A w se lo llama el gradiente de f en p, $\nabla f(p)$.
- 2. Si S es compacta probar que existe $p \in S$ tal que $\nabla f(p) = 0$.
- 3. Probar que $\nabla f: S \to \mathbb{R}^3$ es un mapa suave.

Proof

1. Dado $p \in S$ y $v \in T_pS$, sea $\gamma: (-\varepsilon, \varepsilon) \to S$ tal que $\gamma(0) = p$ y $\gamma'(0) = v$, por regla de la cadena tenemos que

$$\begin{split} D_p f(v) &= \frac{d}{dt} f(\gamma(t))|_{t=0} = \frac{d}{dt} f(x(t), y(t), z(t))|_{t=0} \\ &= f_x(\gamma(0)) x'(0) + f_y(\gamma(0)) y'(0) + f_z(\gamma(0)) z'(0) \\ &= \left(f_x(p), f_y(p), f_z(p) \right) \cdot (x'(0), y'(0), z'(0)) \\ &= \left(f_x(p), f_y(p), f_z(p) \right) \cdot \gamma'(0) \\ &= \left(f_x(p), f_y(p), f_z(p) \right) \cdot v \end{split}$$

de donde podemos notar que $(f_x(p), f_y(p), f_z(p)) = \nabla f(p)$ es el vector buscado pues $v \in T_pS$ fue arbitrario. Solo falta ver que $(f_x(p), f_y(p), f_z(p)) \in T_pS$.

- 2. Dado que S es compacta y f es suave en particular es continua, luego alcanza su máximo, digamos que en $p \in S$. Dado $w \in T_p S$, sea $\gamma : -(\varepsilon, \varepsilon) \to S$ regular tal que $\gamma(0) = p$ y $\gamma'(0) = w$, como f alcanza su máximo en $p = \gamma(0)$ se cumple que $(f \circ \gamma)'(0) = 0$, entonces $D_p f(w) = 0$. Por el inciso anterior tenemos que $D_p f(w) = \nabla f(p) \cdot w = 0$, lo cual es valido para todo $w \in T_p S$, lo cual implica que $\nabla f(p) = 0$, como queremos.
- 3. Dado $p \in S$, sea $\mathbf{x} : U \subset \mathbb{R}^2 \to \mathbf{x}(U) \subset S$ con $p \in \mathbf{x}(U)$ un difeomorfismo, veamos que $\nabla \circ \mathbf{x} : U \to R$ es diferenciable en $q := \mathbf{x}^{-1}(p)$.