Logical Reasoning

Russell Chap. 6, 8, 9 Luger Chap. 2, 13, 14

Proposition

- A statement that is true or false
- Ex> "It is raining", "1+1 = 2"

Symbols

Propositional symbols: P, Q, R, ...

Truth symbols: T, F

Connectives: \land , \lor , \sim , \Rightarrow , =

Sentences

- 1. Propositional symbols → sentence
- 2. If s1, s2 is a sentence,

~s1, s1
$$\wedge$$
 s2, s1 \vee s2, s1 \Rightarrow s2, s1 = s2 \rightarrow sentence

3. (sentence) \rightarrow sentence

- $P \lor Q, (P \land Q) \Rightarrow R$
- \bullet P \vee \wedge Q X

Interpretation (semantics)

<u>P</u>	Q	~P	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
		Т		Т	_T	F
F	F	Т	F	F	/ T	Т

Inference

Generating new sentences X from a set of sentences S

Inference can be made by using <u>valid implications</u>

If we know P ⇒ Q is T and P is T,
 then we can conclude Q is T

Example

If you get a cold, then you get a fever
 He get a cold

He must have a fever

If you get a cold, then you get a fever
 He have a fever

He must get a cold

Inference rules

■ (S1 | S2 : from S1, generate S2)

```
Modus Ponens
```

- Modus Tolens
- And Elimination
- Unit Resolution

```
P \Rightarrow Q, P \downarrow Q

P \Rightarrow Q, \sim Q \downarrow \sim P

P \wedge Q \downarrow P \wedge Q

P \vee Q, \sim P \downarrow Q
```

```
→ Program?
```

```
char* modus_ponens(char* s1, char* s2) {
    if(is_implication(s1))
        if(equal(left_side(s1), s2))
            return(right_side(s1));
    else ...
```

$$L \lor \sim (M \land N)$$

$$M$$

•
$$A \wedge (B \vee C) \Rightarrow D \wedge E$$
 $B \vee C$
 A

$$L \lor \sim (M \land N)$$

$$M$$

•
$$A \wedge (B \vee C) \Rightarrow D \wedge E$$
 $B \vee C$
 A

- And Elimination
- Unit Resolution

Wumpus game

4	SS SSS S Stench S		- Breeze -	PIT
3	V.	Breeze \$5 \$555 Stench	PIT	Breeze
2	SS SSS SStench S	7.000	Breeze	
1	START	Breeze	PIT	= Breeze
	1	2	3	4

	S	
S	W	S
	S	

	В	
В	P	В
	В	

1,4	2,4	3,4	4.4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square	1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus	1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2	1	1,2	2,2 P?	3,2	4,2
ок					ок			
1,1 A	2,1	3,1	4,1		1,1 V	2,1 A B	3,1 P?	4,1
ОК	OK	(a)			OK	ОК	(b)	
				_				
1,4	2,4	3,4	4.4	B = Agent B = Breeze G = Glitter, Gold OK = Sate square	1,4	2,4 P?	3,4	4,4
1,3 w!	2,3	3,3	4.3	P = Pit S = Stench V = Visited W = Wumpus	1,3 W!	2,3 A S G B	3,3 P?	4.3
1,2A S OK	2,2	3,2	4.2		1,2 S V OK	2,2 V OK	3,2	4,2
1,1 V	2,1 B	3,1 P!	4,1		1,1 V OK	2,1 B V OK	3,1 P!	4,1
ok	OK				0.0	OK		

Figure 6.4 Two later stages in the progress of the agent. (a) After the third move, with percept [Stench, None, None, None, None]. (b) After the fifth move, with percept [Stench, Breeze, Glitter, None, None].

B

Rules

- $S12 \Rightarrow W13 \lor W12 \lor W22 \lor W11$
- ~S11 ⇒ ~W11 ∧ ~W12 ∧ ~W21
- \bullet ~S21 \Rightarrow ~W11 \land ~W21 \land ~W22 \land ~W31
- \sim S12 \Rightarrow \sim W11 \land \sim W12 \land \sim W22 \land \sim W13
- **...**

Facts

- ~S11, ~B11
- ~S21, B21
- S12, ~B12

W?		
S	W?	

Inference

```
1. (\simS11), (\simS11 \Rightarrow \simW11 \land \simW12 \land \simW21) M. P., then A. E.
                           → ~W11, ~W12, ~W21
2. (\simS21), (\simS21 \Rightarrow \simW11 \land \simW21 \land \simW22 \land \simW31) M. P., then A. E.
                           → ~W11, ~W21, ~W22, ~W31
3. (S12), (S12 \Rightarrow W13 \vee W12 \vee W22 \vee W11) M. P.
                           \rightarrow W13 \vee W12 \vee W22 \vee W11
4. (~W11), (W13 \times W12 \times W22 \times W11) U. R.
                           → W13 ∨ W12 ∨ W22
5. (~W22), (W13 \times W12 \times W22) U. R.
                           \rightarrow W13 \vee W12
6. (~W12), (W13 \times W12 ) U. R.
                           → W13 !!!
```

Propositional Logic

- Inference in computers
 - Without any understanding, valid conclusion can be made by using logical inference

Predicate Calculus

- Introduce variables
 - → Access components of an individual proposition
- Example
 - Tom is a man: P → man(tom)
 John is a man: Q → man(john)
 man(X)
 - S11 ⇒ W11
 S12 ⇒ W12 → S(X,Y) ⇒ W(X,Y)
 S21 ⇒ W21

Terms

- Constants: refers to an object (tom, 123, ...)
- Variables: refers to a set of objects (X, Person, ...)
- Functions: maps an object to another (father_of(tom), ...)
 represents objects

Predicates

Predicates: T or F (red(apple), like(tom, jane), ...)
 represents properties or relations

Sentences

- Combination of atomic sentences(predicates)
- Connectives: ∧, ∨, ~, ⇒, =
- Quantifiers: constrain the scope of variables
 - ∀ (universal): For all
 - ∃ (existential): For some, there exist
 - Example

```
Even(1): Even(2): Even(X):
```

 \forall X Even(X):

 $\exists X \text{ Even}(X)$:

- Properties of quantifiers
 - Universal: $\forall X p(X) \equiv p(x1) \land p(x2) \land p(x3) \dots$
 - Existential: $\exists X p(X) \equiv p(x1) \lor p(x2) \lor p(x3) \dots$
- Negation of quantification
 - $\sim \forall x p(X) = \sim [p(x1) \land p(x2) \land p(x3) \dots]$ = $\sim p(x1) \lor \sim p(x2) \lor \sim p(x3) \dots$ = $\exists X \sim p(X)$
 - ~∃ X p(X) = ~ [p(x1) ∨ p(x2) ∨ p(x3) . . .] = ~p(x1) ∧ ~p(x2) ∧ ~p(x3) . . . = \forall X ~p(X)

Simple examples

- Tom is a student →
- Tom takes CS101 →
- Everyone take CS101 →
- Someone takes CS101 →
- Some girls take CS101 →
- All girls take CS101 →
- Tom is a male student →
- All students are male →
- Graduate students are students →

Blocks world

- ontable(a), ontable(b), on(c, b), clear(a), clear(c)
- ∀ X,Y ~on(X, Y) ⇒ clear(Y)

Family relationship

- parent(tom, jane), parent(mike, tom)
- ∀ X,Y,Z parent(X, Y) ∧ parent(Y, Z) ⇒ grand_parent(X, Z)

Inference Rules S - X

- Logically follows
 - X logically follows from S = If S is T, then X is T
 - (Q) logically follows from (P⇒Q, P)
- Sound rules
 - It generates X that is logically follows from S

 - (P⇒Q, Q) | P →
- Complete rules
 - It can generate all X that is logically follows from S
 - From (P⇒Q, Q⇒R, P), (Q, R, P ⇒ R) are logically follows
 - But Modus Ponens can not generate P ⇒ R (not complete)

Inference Rules

Inference Rules

- Modus Ponens
- Modus Tolens
- And Elimination
- Unit Resolution
- And Introduction
- Universal Instantiation
 - Ex> ∀ X like(X, tom) | like(jane, tom)

```
P(a) \Rightarrow q(a), \quad p(a)
p(a) \Rightarrow q(a), \quad \sim q(a)
p(a) \land q(a)
p(a) \lor q(a), \quad \sim p(a)
p(a), \quad q(a)
\forall X, p(X)
```

Inference Rules

```
    ∀ X man(X) ⇒ mortal(X)
    man(tom)
    I. on 1 : 3. man(tom) ⇒ mortal(tom)
    M. P. with 2, 3: 4. mortal(tom)
```

Unification

Substitution

- { B / A }: substitute A by B
- ∀ variable → terms(constant, variable, function)

```
■ \forall X man(X) \rightarrow {Y/X}: \forall Y man(Y) \rightarrow {tom/X}: man(tom)
```

Unification

- Finding substitution that makes two expressions equal
 - unify(X, Z) = $\{Z/X\}$ or $\{X/Z\}$
 - unify(X, tom) = {kim/X}
 - unify(tom, jane) = fail
 - unify(like(tom, X), like(Y, jane)) = {tom/Y, jane/X}

Inference Examples

```
1. ∀ X know(tom, X) ⇒ hate(tom, X)
  2. ∀ Y know(Y, jane)
  Unify 1, 2 : {
                                 \rightarrow
  Apply M.P. 3, 4 \rightarrow
1. ∀ X know(tom, X) ⇒ hate(tom, X)
  2. \forall Y know(Y, f(Y))
  Unify 1, 2 : {
                                   \rightarrow
   Apply M.P. 3, 4 \rightarrow
```

Inference Examples

■ 1. \forall X,Y,Z p(X,Y) \wedge p(Y,Z) \Rightarrow gp(X,Z) 2. p(tom, jane) 3. p(mike, tom) Unify 1, 2 : $\{tom/X, jane/Y\} \rightarrow p(tom, jane) \land p(,) \Rightarrow gp(tom,Z)$ → No more unification Unify 1, 3 : $\{mike/X, tom/Y\} \rightarrow p(mike, tom) \land p(tom, Z) \Rightarrow gp(mike, Z)$ \rightarrow Unify with 2 : {jane/Z} \rightarrow 4. Apply A.I. $(3, 2) \rightarrow 5$. p(mike, tom) \land p(tom, jane) Apply M.P. $(4, 5) \rightarrow$

Forward/Backward Chaining

Forward chaining

$$egin{aligned} \mathsf{P} &\Rightarrow \mathsf{Q} \ \mathsf{Q} &\Rightarrow \mathsf{R} \ \mathsf{R} \end{aligned}$$

Backward chaining

Forward/Backward Chaining

- $p(X) \Rightarrow q(X), p(X) \Rightarrow r(X), r(X) \Rightarrow t(X), r(X) \Rightarrow u(X)$
- p(a), q(b)
- t(a)?
- Forward chaining
 - $p(a), p(X) \Rightarrow r(X) \vdash r(a)$
 - $r(a), r(X) \Rightarrow t(X)$ | t(a)
- Backward chaining
 - $t(a), r(X) \Rightarrow t(X)$ \rightarrow find r(a)
 - $r(a), p(X) \Rightarrow r(X) \rightarrow find p(a) \rightarrow true!$