1 Некоторые свойства абсолютно инт функций

Определение 1.1. Функция f(x) называется абсолютно интегрируемой на конечном или бесконечном интервале (a,b), если выполняются два условия:

- 1. $\exists x_0, x_1, \dots, x_k : a = x_0 < x_1 < x_2 < \dots < x_k = b$, что на любом отрезке $[\xi, \eta]$ из (a, b), не содерж x_i функция f(x) интегрируема по Риману.
- 2. $\int_a^b |f(x)| dx$ сходится

Лемма 1.1. Пусть f(x) абсолютно интегрируема на конечном или бесконечном (a,b). Пусть $\varphi(x)$ - непрерывна и ограничена на (a,b). $f(x)\varphi(x)$ - абсолютно интегрируемо на [a,b]

Доказательство. а) Рассмотрим $\forall [\xi,\eta] \subset (x_{i-1},x_i)$. На нём f(x) и $\varphi(x)$ - интегрируема по Риману, следовательно $f(x)\varphi(x)$ инт. по Риману $\Rightarrow 1$. б) Так как $\varphi(x)$ - ограничена то $\exists M: |\varphi(x)| \leq M$ на (a,b). Тогда $|f(x)\varphi(x)| \leq |f(x)|M$ на (a,b). Т.к. $\int_a^b |f(x)| dx$ - сход., то $\int_a^b |f(x)\varphi(x)| dx$ - сход. по признаку сравнения $\Rightarrow 2$. $\Rightarrow f(x)\varphi(x)$ - абс. инт. на (a,b)

Определение 1.2. Функция $\varphi(x)$ определённая на $\mathbb R$ называется ступенчатой если \exists числа $x_0, x_1, x_2, \ldots, x_k: x_0 < x_1 < x_2 < \cdots < x_k$ и c_1, c_2, \ldots, c_k :

$$\varphi(x) = \begin{cases} c_i, & x \in [x_{i-1}, x_i) \\ 0, & x \in (-\infty, x_0) \cup [x_k, +\infty) \end{cases}$$

Замечание. Если положить

$$\varphi_i(x) = \begin{cases} 1, & x \in [x_{i-1}, x_i) \\ 0, & x \notin [x_{i-1}, x_i) \end{cases}$$

TO $\varphi(x) = c_1 \varphi_1(x) + \cdots + c_k \varphi_k(x)$.

Теорема 1.1 (О приближении абс инт функций ступенчатыми). Пусть f(x) - абс. инт. на конечном или бесконечном (a,b) тогда $\forall \varepsilon>0$ \exists ступенчатая функция $\varphi(x):\int_a^b|f(x)-\varphi(x)|dx<\varepsilon$

Доказательство. Пусть для простоты записи у функции имеются только две особенности в точках a и b, т.е. f(x) - инт по Риману на $\forall [\xi, \eta]$ из (a, b).

Возьмём $\forall \varepsilon > 0.$ Из абсолютной инт. f(x) следует \exists таких $[\xi, \eta] \in (a, b)$:

$$\int_{a}^{\xi} |f(x)| dx + \int_{a}^{b} |f(x)| dx < \frac{\varepsilon}{2}$$

Так как f(x) инт. по Риману на $[\xi, \eta]$ то для рассмотренного $\varepsilon > 0$ $\exists \delta : \forall$ разб. отр. $[\xi, \eta]$ $\tau = \{x_i\}_{i=0}^{n_\tau} \ (|\tau| < \delta), \ \forall \xi_i \in [x_{i-1}, x_i].$

Выполняется $\left|\int_{\xi}^{\eta}f(x)dx-\sigma_{\tau}\right|<arepsilon/2$, где $\sigma_{ au}$ - сумма Дарбу.

 $\left| \int_{\xi}^{\eta} f(x) dx - s_{\tau} \right| \leq \frac{\varepsilon}{2}$, rge $s_{\tau} = \sum_{i=1}^{n_{\tau}} m_{i} \Delta x_{i}$ $(m_{i} = \inf_{x \in [x_{i-1}, x_{i}]} f(x), \Delta x_{i} = x_{i} - x_{i-1}).$

Также $\int_{\xi}^{\eta} f(x) dx \ge s_{\tau} \ \Rightarrow \ 0 \le \int_{\xi}^{\eta} f(x) dx - s_{\tau} \le \varepsilon/2.$

Рассмотрим ступенчатую функцию:

$$\varphi(x) = \begin{cases} m_i, & x \in [x_{i-1}, x_i) \\ 0, & x \notin [\xi, \eta) \end{cases}$$

Отметим:
$$s_{\tau} = \sum_{i=1}^{n_{\tau}} m_{i} \Delta x_{i} = \int_{\xi}^{\eta} f(x) dx, \ \varphi(x) \leq f(x) \ \text{на} \ [\xi, \eta]$$

$$\Rightarrow \int_{a}^{b} |f(x) - \varphi(x)| dx = \int_{a}^{\xi} |f| dx + \int_{\xi}^{\eta} |f - \varphi| dx + \int_{\eta}^{b} |f| dx, \ \text{но} \ \int_{\xi}^{\eta} |f - \varphi| dx = \int_{\xi}^{\eta} (f - \varphi) dx = \int_{\xi}^{\eta} f dx - s_{\tau}$$

$$\Rightarrow \int_{a}^{b} |f(x) - \varphi(x)| dx < \varepsilon/2 + \varepsilon/2 = \varepsilon \qquad \Box$$

Теорема 1.2 (Римана (об осциляциях)). Пусть f(x) абс. инт. на конечном или бесконечном интервале (a,b), тогда $\lim_{\nu\to\infty}\int_a^b f(x)\cos\nu x dx=0$ и $\lim_{\nu\to\infty}\int_a^b f(x)\sin\nu x dx=0$

Доказательство. 1) Если

$$\varphi(x) = \begin{cases} 1, & x \in [\xi, \eta) \\ 0, & x \notin [\xi, \eta) \end{cases}, [\xi, \eta] \in (a, b)$$

To:

$$\int_a^b \varphi(x) \sin \nu x dx = \int_\xi^\eta \sin \nu x dx = -\frac{\cos \nu x}{\nu} \bigg|_\xi^\eta \underset{\nu \to \infty}{\longrightarrow} 0$$

- 2) Если $\varphi(x)$ ступенчатая, то она является линейно комбинацией расмотренных одноступенчатых функций, поэтому для неё утверждение справедливо.
- 3) Рассмотрим абс. инт. на (a,b) функцию f(x). Возьмём $\forall \varepsilon > 0$.

По предыдущей теорме $\exists \varphi(x)$ - ступенчатая функция: $\int_a^b |f-\varphi| dx < \varepsilon/2$.

Т.к. $\lim_{\nu\to\infty}\int_a^b\varphi(x)\sin\nu xdx=0$, то $\underline{\exists}\nu_{\varepsilon}:\forall\nu\;(|\nu|>\nu_{\varepsilon})\hookrightarrow|\int_a^b\varphi(x)\sin\nu xdx|<\varepsilon/2$. Тогда $\forall\nu:\;(|\nu|>\nu_{\varepsilon})$ выполняется:

$$\frac{\left|\int_{a}^{b} f(x) \sin \nu x dx\right|}{\leq \left|\int_{a}^{b} (f(x) - \varphi(x)) \sin \nu x dx\right| + \int_{a}^{b} \varphi(x) \sin \nu x dx} \leq \frac{\left|\int_{a}^{b} (f(x) - \varphi(x)) \sin \nu x dx\right| + \left|\int_{a}^{b} \varphi(x) \sin \nu x dx\right| < \frac{1}{2}}{\leq \frac{1}{2} \left|\int_{a}^{b} |f(x) - \varphi(x)| dx + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon}$$

Подчёркнутое означает,
что $\lim_{\nu\to\infty}\int_a^b f(x)\sin\nu x dx=0.$ Аналогично косинус.

Замечание. Интервал (a,b) при исследовании абсолютно интегрируемых на другой промежуток [a,b],[a,b),(a,b]

2 Тригонометрические ряды Фурье

Определение 2.1. Ряд вида $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)$ называется тригонометрическим рядом, где $a_k, b_k \in \mathbb{R}$

Определение 2.2. Множество функций $\{u_n(x)\} = \{1/2, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots\}$ называется тригонемтрической системой

Свойства тригоном. сист.

- 1. Триг. сист. "ортогональна"в смысле $\int_{-\pi}^{\pi}u_n(x)u_k(x)dx=0, \, \forall n,k:n\neq k$
- 2. $\int_{-\pi}^{\pi} u_n^2(x) dx = \pi$, при $n \ge 2$

Доказательство. 1) Например

$$\int_{-\pi}^{\pi} \sin nx \cos kx dx = \frac{1}{2} \int_{-\pi}^{\pi} (\sin(n-k)x + \sin(n+k)x) dx = 0$$

Доказательство. 2) Например

$$\int_{-\pi}^{\pi} \cos^2(x) dx = \int_{-\pi}^{\pi} \frac{1 + \cos(2nx)}{2} dx = \pi + 0 = \pi$$

Лемма 2.1. Пусть

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$
 (2.1)

и ряд сходится равномерно тогда:

$$a_{n} = \frac{1}{\pi} f(x) \int_{-\pi}^{\pi} \cos nx dx, \ n = 0, 1, 2, \dots$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, \ n \in \mathbb{N}$$
(2.2)

Доказательство. Домножим 2.1 на $\cos mx$. Полученный ряд будет равномерно сходится.

$$\left| \sum_{k=1}^{n+p} \cos mx (a_k \cos kx + b_k \sin kx) \right| = \left| \cos mx \right| \cdot \left| \sum_{k=n+1}^{n+p} a_k \cos kx + b_k \sin kx \right| \le \left| \sum_{k=1}^{n+p} a_k \cos kx + b_k \sin kx \right|$$

Из выполнения усл. Коши равномерной сходимости для исходного ряда 2.1 следует выполнение усл. Коши равномерной сходимости полученного в результате умножения ряда.

Тогда имеем право интегрировать равнество (по x от $-\pi$ до π)

$$f(x)\cos mx = \frac{a_0}{2}\cos mx + \sum_{n=1}^{\infty}\cos mx (a_n\cos nx + b_n\sin nx)$$

$$\Rightarrow \int_{-\pi}^{\pi} f(x)\cos mx dx = a_m\pi$$

$$\Rightarrow a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos mx dx$$

Второе равество в 2.2 получается аналогично.

Определение 2.3. Пусть f(x) - 2π периодическая абсолютно интегрируемая на $[-\pi;\pi]$ функция. Тригонометрический ряд с коэффицентами 2.2 называется тригонометрическим рядом Фурье функции f(x), а коэффициенты a_k, b_k - коэффициетами Фурье. Имеет место запись (здесь \sim означает соответствие):

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

Перефразируем лемму:

Лемма 2.2 (2.1'). Рамномерно сходящийся тригонометрический ряд является рядом Фурье своей суммы.

Пример.

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^{\alpha}}$$

где $\alpha>1$ является рядом Фурье своей суммы, так как он равномерно сходдится по признаку Веерштрасса

Замечание. Если функция абсолютно интегрируема на $[-\pi,\pi]$, то интегралы в 2.2 сходятся абсолютно по 1.1

Замечание. Если f(x) - 2π периодична и абс. инт. на каком-либо $[a-\pi,a+\pi]$, то она будет абс. инт. на \forall другом таком отрезке и интегралы (2.2) не зависят от отрезка.

Замечание. Любую абсолютно интегрируемую на $[a-\pi,a+\pi]((a-\pi,a+\pi);(a-\pi,a+\pi),(a-\pi,a+\pi))$ можно продолжить до 2π периодической функции, возможно доопределив или переопределив функцию в граничных точках. Интегралы при этом не меняются.

Следствие 2.1. Пусть $\{a_k\}, \{b_k\}$ - посл. коэфф. Фурье 2π периодической и абсолютно инт. на $[-\pi, \pi]$ функции

$$\Rightarrow \lim_{k \to \infty} a_k = 0 \qquad \lim_{k \to \infty} b_k = 0$$

По 1.1 $f(x)\cos nx$, $f(x)\sin nx$ - абс. инт.. По Т. Римана получаем нужный результат.

Пример.

$$\sum_{n=1}^{\infty} \sin nx$$

Не может быть рядом Фурье какой-либо абсолютно инт. на $[-\pi,\pi]$ функции.

2.1 Ядро Дирихле. Принцип локализации

Пусть f(x) - 2π периодическая и абсолютно интегрируема на $[-\pi,\pi]$ и

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

Рассмотрим частичные суммы ряда Фурье

$$S_n(x) = S_n(x, b) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx$$

Преобразуем:

$$S_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)dt + \sum_{k=1}^{n} \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kx dt \cdot \cos kx + \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt dt \cdot \sin kx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left(\frac{1}{2} + \sum_{k=1}^{n} \cos k(t-x)\right) dt$$

$$S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) D_n(t-x) dt$$

Определение 2.4. Функция

$$D_n(t) = \left(\frac{1}{2} + \sum_{k=1}^n \cos k(t)\right)$$

называется ядром Дирихле

Свойства ядра Дирихле:

- 1. $D_n(t)$ четная, 2π период. и непр. функция
- $2. \int_{-\pi}^{\pi} D_n(t)dt = \pi$
- 3. $\max |D_n(t)| = \max D_n(t) = D_n(0) = n + \frac{1}{2}$

4.
$$D_n(t) = \frac{\sin(n + \frac{1}{2})t}{2\sin\frac{t}{2}}$$
, при $t \neq 2\pi m, m \in \mathbb{Z}$

Доказательство.

- 1. Следует из аналогичных свойств слогаемых
- 2. Очев

3.
$$\frac{1}{2} - n \le D_n(t) \le \frac{1}{2} + n = D_n(0)$$

4.

$$D_n(t) = \frac{1}{2} + \cos t + \cos 2t + \dots + \cos nt =$$

$$= \frac{\sin \frac{t}{2} + 2\sin \frac{t}{2}\cos t + 2\sin \frac{t}{2}\cos 2t + \dots + 2\sin \frac{t}{2}\cos nt}{2\sin \frac{t}{2}} =$$

$$= \frac{\sin \frac{t}{2} - \sin \frac{t}{2} + \sin \frac{3t}{2} - \sin \frac{3t}{2} + \dots - \sin(n - \frac{1}{2})t + \sin(n + \frac{1}{2})t}{\sin \frac{t}{2}} =$$

$$= \frac{\sin(n + \frac{1}{2})t}{2\sin \frac{t}{2}}$$

Теорема 2.1 (Принцип локализации). Пусть f(x) - 2π периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция. Пусть $x_0 \in \mathbb{R}, \ 0 < \delta < \pi$. Тогда: $\lim_{n \to \infty} S_n(x_0)$ и $\lim_{n \to \infty} \frac{1}{\pi} \int_0^\delta D_n(t) (f(x_0+t)+f(x_0-t)) dt$ существуют или нет одновременно. В случае существования равны.

Замечание. Таким образом сходимость и значение суммы ряда Фурье 2π пер. и абс. инт. на $[-\pi,\pi]$ зависит только от свойств функции в сколь угодно малой окрестности.

Доказательство. Преобр. S_n :

$$S_n(x_0) \underset{t=\tau+x_0}{=} \frac{1}{\pi} \int_{-\pi-x_0}^{\pi-x_0} f(x_0+\tau) D_n(\tau) d\tau$$

$$S_n(x_0) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x_0+\tau) D_n(\tau) d\tau$$

$$S_n(x_0) = \frac{1}{\pi} (\underbrace{\int_{-\pi}^{0}} + \underbrace{\int_{0}^{\pi}}) f(x_0+\tau) D_n(\tau) d\tau =$$

$$= \frac{1}{\pi} (\int_{0}^{\pi} f(x_0-t) D_n(-t) dt + \int_{0}^{\pi} f(x_0+t) D_n(t) dt)$$

$$S_n(x_0) = \frac{1}{pi} \int_{0}^{\pi} D_n(t) (f(x_0-t) + f(x_0+t)) dt$$

$$S_n(x_0) = \frac{1}{\pi} (\int_{0}^{\delta} + \int_{\delta}^{\pi}) \frac{\sin(n+\frac{1}{2}t)}{2\sin\frac{t}{2}} (f(x_0-t) + f(x_0+t)) dt$$

$$\frac{1}{2\sin\frac{t}{2}} \le \frac{1}{2\sin\frac{\delta}{2}} \quad \text{Ha}[\delta,\pi]$$

Тогда $\frac{(f(x_0-t)+f(x_0+t))}{2\sin\frac{t}{2}}$ - абс. инт на $[\delta,\pi]$ (см 1.1).

Тогда 2-ой инт. $\to 0$ при $n\to \infty$ (Т. Римана) и получаем нужный результат.