Pour tout réel t > 0, on note P_t le polynôme $X^5 + tX - 1 \in \mathbb{R}_5[X]$. Le but de ce problème est d'étudier les racines de P_t en fonction de t > 0.

- 1. On fixe t > 0 pour cette question. Prouver que P_t admet une unique racine notée f(t).
- 2. Montrer que $f(t) \in]0,1[$ pour tout t > 0.
- 3. Montrer que f est strictement décroissante sur $]0, +\infty[$.
- 4. En déduire que f admet des limites finies en 0^+ et en $+\infty$.
- 5. Déterminer $\lim_{t\to 0^+} f(t)$.
- 6. Déterminer $\lim_{t\to+\infty} f(t)$.
- 7. En déduire $\lim_{t\to+\infty} tf(t) = 1$. (Comment noter ce résultat avec le signe équivalent : \sim)
- 8. Justifier que f est la bijection réciproque de $g:]0,1[\rightarrow]0,+\infty[x \mapsto \frac{1-x^5}{x}]$
- 9. (a) Justifier que f est dérivale sur $]0, +\infty[$ et exprimer f'(t) en fonction de f(t) pour tout t > 0.
 - (b) En déduire la limite de f'(t) en 0. Calculer la limite de $t^2f'(t)$ en $+\infty$ (Comment noter ce résultat avec le signe équivalent : \sim)