Recommending Products

Emily Fox & Carlos Guestrin

Machine Learning Specialization

University of Washington

Where we see recommender systems

Personalization is transforming our experience of the world

Information overload

Browsing is "history"

 Need new ways to discover content

Personalization: Connects users & items

viewers

videos

Movie recommendations

Connect users with movies they may want to watch

Product recommendations

Music recommendations

Recommendations form coherent & diverse sequence

Friend recommendations

Users and "items" are of the same "type"

Drug-target interactions

Cobanoglu et al. '13

What drug should we "repurpose" for some disease?

Building a recommender system

Solution 0: Popularity

Simplest approach: Popularity

- What are people viewing now?
 - Rank by global popularity

- Limitation:
 - No personalization

Solution 1: Classification model

What's the probability I'll buy this product?

Pros:

- Personalized:
 Considers user info & purchase history
- Features can capture context:
 Time of the day, what I just saw,...
- Even handles limited user history: Age of user, ...

Limitations of classification approach

- Features may not be available
- Often doesn't perform as well as collaborative filtering methods (next)

Solution 2: People who bought this also bought...

Co-occurrence matrix

- People who bought diapers also bought baby wipes
- Matrix C: store # users who bought both items i & j
 - (# items **x** # items) matrix

- Symmetric: # purchasing $i \delta j$ same as # for $j \delta i$ ($C_{ij} = C_{ji}$)

Making recommendations using co-occurences

• User purchased diapers

1. Look at *diapers* row of matrix

- 2. Recommend other items with largest counts
 - baby wipes, milk, baby food,...

Co-occurrence matrix must be normalized

- What if there are very popular items?
 - Popular baby item:Pampers Swaddlers diapers

- For any baby item (e.g., i=Sophie giraffe i) large count C_{ij} for j=Pampers Swaddlers

Result:

- Drowns out other effects
- Recommend based on popularity

Normalize co-occurrences: Similarity matrix

- Jaccard similarity: normalizes by popularity
 - Who purchased *i* and *j* divided by who purchased *i* or *j*

Many other similarity metrics possible, e.g., cosine similarity

Limitations

- Only current page matters, no history
 - Recommend similar items to the one you bought
- What if you purchased many items?
 - Want recommendations based on purchase history

(Weighted) Average of purchased items

- User bought items {diapers, milk}
 - Compute user-specific score for each item j
 in inventory by combining similarities:

Score(
1
, baby wipes) = $^{1/2}$ ($S_{baby wipes, diapers} + S_{baby wipes, milk}$)

- Could also weight recent purchases more
- Sort Score(j, j) and find item j with highest similarity

Limitations

- Does **not** utilize:
 - context (e.g., time of day)
 - user features (e.g., age)
 - product features (e.g., baby vs. electronics)
- Cold start problem
 - What if a new user or product arrives?

Solution 3: Discovering hidden structure by matrix factorization

Movie recommendation

Users watch movies and rate them

User	Movie	Rating
1		****
*		*****
1		****
*		****
×.		****
*		****
*		****
*		****
*		****

Each user only watches a few of the available movies

Matrix completion problem

Data: Users score some movies

Rating(u,v) known for black cells
Rating(u,v) unknown for white cells

• Goal: Filling missing data?

Suppose we had d topics for each user and movie

- Describe movie v with topics R_{v}
 - How much is it action, romance, drama,...

- Describe user u with topics $L_{,,}$
 - How much she likes action, romance, drama,...

Rating(u,v) is the product of the two vectors

$$R_{v}=[0.3 \ 0.01 \ 1.5 \ ...] \rightarrow 0.3*2.5 + 0 + 1.5*0.8 + ... = 7.2)^{7}$$
 $L_{u}=[2.5 \ 0 \ 0.8 \ ...] \rightarrow 0 + 0.01*3.5 + 1.5*0.01 + ... = 0.8$

nmendations: sort movies user hasn't watched by $Rating(u,v)$

Predictions in matrix form

But we don't know topics of users and movies...

Matrix factorization model: Discovering topics from data

- Only use observed values to estimate "topic" vectors \hat{L}_u and \hat{R}_v
- Use estimated \hat{L}_{u} and \hat{R}_{v} for recommendations

Limitations of matrix factorization

- Cold-start problem
 - This model still cannot handle a new user or movie

Bringing it all together: Featurized matrix factorization

Combining features and discovered topics

- Features capture context
 - Time of day, what I just saw, user info, past purchases,...
- Discovered topics from matrix factorization capture groups of users who behave similarly
 - Women from Seattle who teach and have a baby
- Combine to mitigate cold-start problem
 - Ratings for a new user from features only
 - As more information about user is discovered,
 matrix factorization topics become more relevant

Blending models

- Squeezing last bit of accuracy by blending models
- Netflix Prize 2006-2009
 - 100M ratings
 - 17,770 movies
 - 480,189 users
 - Predict 3 million ratings to highest accuracy

- Winning team blended over 100 models

A performance metric for recommender systems

The world of all baby products

User likes subset of items

Why not use classification accuracy?

- Classification accuracy = fraction of items correctly classified (liked vs. not liked)
- Here, not interested in what a person does not like
- Rather, how quickly can we discover the relatively few *liked* items?
 - (Partially) an imbalanced class problem

How many liked items were recommended?

How many recommended items were liked?

Maximize recall: Recommend everything

Resulting precision?

Optimal recommender

Precision-recall curve

- Input: A specific recommender system
- Output: Algorithm-specific precision-recall curve
- To draw curve, vary threshold on # items recommended
 - For each setting, calculate the precision and recall

Which Algorithm is Best?

- For a given precision, want recall as large as possible (or vice versa)
- One metric: largest area under the curve (AUC)
- Another: set desired recall and maximize precision (precision at k)

Summary of recommender systems

What you can do now...

- Describe the goal of a recommender system
- Provide examples of applications where recommender systems are useful
- Implement a co-occurrence based recommender system
- Describe the input (observations, number of "topics") and output ("topic" vectors, predicted values) of a matrix factorization model
- Exploit estimated "topic" vectors (algorithms to come...) to make recommendations
- Describe the cold-start problem and ways to handle it (e.g., incorporating features)
- Analyze performance of various recommender systems in terms of precision and recall
- Use AUC or precision-at-k to select amongst candidate algorithms