TD3. Fonctions analytiques, exponentielle complexe

Encore des séries entières...

Rappels: Une fonction est analytique sur un ouvert U, si elle est développable en série entière au voisinage de tout z_0 de U. Les séries entières sont analytiques sur leur disque de convergence (utilise une famille sommable). Les séries entières sont aussi holomorphes sur leur disque de convergence (calcul direct de limite).

Exercice 1. Transformation d'Abel

- a) Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites de nombres complexes. Pour $n,m\in\mathbb{N}$ on pose $B_m^n=\sum_{i=m}^n b_i$. Montrer que pour n>m alors $\sum_{k=m}^n a_k b_k=\sum_{k=m}^{n-1} (a_k-a_{k+1})B_m^k+a_nB_m^n$
- b) En déduire le comportement des séries $\sum_{k=1}^{\infty} \frac{z^n}{n^{\alpha}}$ sur le cercle $U = \{z \in \mathbb{C}, |z| = 1\}$ pour $\alpha > 0$.

Exercice 2. Formule de Cauchy pour les fonctions analytiques

a) Soit $f(z) = \sum_{n \geq 0} a_n z^n$ une série de rayon de convergence R > 0. Montrer que pour tout $r \in [0, R[$, on a :

$$\sum_{n>0} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta$$

en déduire les inégalités de Cauchy :

$$|a_n|r^n \le \max_{|z|=r} |f(z)|$$

Montrer que s'il y a égalité pour un entier n alors $f(z) = a_n z^n$.

b) En déduire (appliquer à n=0 au DSE en z_0) qu'une fonction analytique sur un ouvert U telle que |f| admette un maximum local $|f(z_0)|$ en $z_0 \in U$ est constante.

Exponentielle et fonctions trigonométriques

Exercice 3. Quelle est l'image par l'exponentielle des droites Re(z) = a, Im(z) = b?

Exercice 4. Soit f une fonction analytique non nulle sur un ouvert connexe U de \mathbb{C} contenant 0 vérifiant pour tous z, z' in U tels que $z + z' \in U$,

$$f(z + z') = f(z)f(z')$$

Montrer qu'il existe un nombre complexe b tel que $f(z) = e^{bz}$.

Exercice 5. On veut montrer pour tout $z \in \mathbb{C}$, que $e^z = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n$ (1).

- a) Question préliminaire Justifier que pour tout $k \leq n : \binom{n+p}{k} > \frac{1}{k!} \geq \binom{n}{k}$
- b) Rappeler pourquoi (1) est vraie pour z réel.
- c) Montrer que pour z complexe, la suite $u_n(z) = \left(1 + \frac{z}{n}\right)^n$ est de Cauchy donc convergente
- d) En introduisant $w_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$ montrer que pour x réel, $u_n(x) \ge w_n(x) \ge u_{n+p}(x)$ et conclure. (étudier $|w_n(z) u_n(z)|$ et se ramener au cas réel)

Exercice 6.

- a) Montrer que $\cos(x + iy) = \cos(x)\operatorname{ch}(y) i\sin(x)\operatorname{sh}(y)$
- b) Pour quels z a-t-on $\cos(z) \in \mathbb{R}$? $\cos(z) \in [-1; 1]$?
- c) Résoudre $\cos(z) = 0$, $\sin(z) = 0$, $\cos(z) = 2$ pour $\cos(z) = -i$.

Principe du prolongement analytique et zéros isolés

Rappels : Le principe du prolongement analytique (et celui des zéros isolés) peuvent être résumés par le corollaire 2.2.18 du poly : Si Ω est un ouvert connexe de \mathbb{C} et f,g sont analytiques, si l'ensemble $\{z \in \Omega, f(z) = g(z)\}$ a un point d'accumulation $dans \Omega$, alors f = g.

Exercice 7.

- a) Déterminer les fonctions analytiques sur D(0,1) telles que $\forall n \in \mathbb{N}, f\left(\frac{1}{n}\right) = f\left(-\frac{1}{n}\right) = \frac{1}{n^2}$
- b) Déterminer les fonctions analytiques sur \mathbb{C} telles que $\forall n \in \mathbb{N}, f\left(\frac{1}{2n}\right) = f\left(-\frac{1}{2n+1}\right) = \frac{1}{2n}$
- c) Soit f une fonction analytique sur D(0,1) telle qu'il existe une suite a_n de réels distincts de [-1/2;1/2] telle que $f(a_n) \in \mathbb{R}$. Montrer qu'alors $f(z) = \overline{f(\overline{z})}$ sur D(0,1).
- d) Que dire si cette suite a_n est décroissante et tend vers 0, et si de plus $f(a_{2n}) = f(a_{2n+1}) \forall n \in \mathbb{N}$?

Exercice 8. Soit $f(z) = \sin\left(\frac{\pi}{1-z}\right)$. Montrer que f est analytique sur le disque ouvert |z| < 1. Quels sont ses zéros sur le disque? Est-ce contradictoire avec le principe des zéros isolés?

Exercice 9. Zéros des fonctions analytiques Soit f une fonction analytique sur \mathbb{C} et $Z(f) = \{z \in \mathbb{C} : f(z) = 0\}$ l'ensemble de ses zéros.

- a) Donner un exemple de fonction non constante telle que $Z(f) = \emptyset$
- b) Donner un exemple de fonction non constante telle que Z(f) est infini
- c) Montrer que pour tout compact K, $Z(f) \cap K$ est fini
- d) Montrer que Z(f) est dénombrable