

Lénergie méconique n'est pos conservée. Je place le 0 de mon énergie pohetielle de pesenteur au point d'altra de du perdue. L'énergie parenhelle ne voire pos mois l'energie chétique n'est pos consevée. $E_{m_i} = \frac{1}{2} m(v_0)^2 - (m_1 H) gL$ $E_{mg} = \frac{1}{2} (m+11)(v_{i})^{2} - (m+11)gL$ $= (m+17) v_{g}$ $= (m+17) (v_{g})^{2}$

C		15	ne	- (g'ex	esc	R.	ટા	r	K	Su	Ste	Ne			
ρα	L	a Co	que nse	nhh Née		ck cur	nn In	01/ e	ere	nt the	kok Od erg	ماه م	l'èr pol	<i>ક્રિક</i> જ	1	••
	100	V	er Q	- 0	LIYM.	ne		<i>**</i>		- 1	m V).				

$$\begin{array}{lll}
& \cdot m_{\overrightarrow{V}} = (\Pi+m)_{\overrightarrow{V}_1} \\
& \cdot \underbrace{1}_{2} (m+1)_{2} (V_1)_{2} - (m+1)_{2} \underbrace{1}_{2} (E_m E_n)_{2} \\
& = \underbrace{1}_{2} (m+1)_{2} (V_2)_{2} - (m+1)_{2} \underbrace{1}_{2} (E_m E_n)_{2} \\
& \cdot \underbrace{1}_{2} (m+1)_{2} (V_1)_{2} - (m+1)_{2} \underbrace{1}_{2} - (m+1)_{2} \underbrace{1}_{2} \\
& \cdot \underbrace{1}_{2} (m+1)_{2} (V_1)_{2} - (m+1)_{2} \underbrace{1}_{2} - (m+1)_{2} \underbrace{1}_{2} \\
& \cdot \underbrace{1}_{2} (m+1)_{2} (V_1)_{2} - (m+1)_{2} \underbrace{1}_{2} \\
& \cdot \underbrace{1}_{2} (m+1)_{2} (V_1)_{2} - (m+1)_{2} \underbrace{1}_{2} \\
& \cdot \underbrace{1}_{2} (m+1)_{2} (V_1)_{2} - (m+1)_{2} \underbrace{1}_{2} \\
& \cdot \underbrace{1}_{2} (m+1)_{2} \underbrace{1}_{2} (m+1)_{2} \\
&$$

du vedreur unhave. Descrete Le Frégre de l'énergre $= \frac{1}{2} m(v_1)^2 + k - \frac{1}{2} m(v_0)^2 + k$ (k ègel curpanto) et curpanto) $=\frac{1}{2}m\left(v_{3}^{2}-\left(v_{0}\right)^{2}\right)$ $= \frac{1}{2} \operatorname{m} \left(2 \operatorname{gl} \left(1 - \operatorname{casa} \right) \left(1 - \left(\frac{\mathsf{M} + \mathsf{m}_0}{\mathsf{m}} \right)^2 \right)$ ici je ne sous poo $\frac{m}{m} - \frac{M+m}{m} < 0$ $- \frac{M^2 - 2Mm - m^2}{2m}$ si en consolère que la balle est à l'anter ou avec re ulesse m WBalle CO. rajours voci. donc

Wo->2 = E1 - E0 $= \frac{1}{2} \prod (v_1)^2 - \frac{1}{2} \prod (v_0)^2 + k - k$ $= \frac{1}{2} \prod (v_1)^2 - \frac{1}{2} \prod (v_0)^2 + k - k$ $= \frac{1}{2} M(v_1)^2 > 0 = 0$ Wo-11 des Jores interes = Wo-, 1 Bloc $=\frac{1}{2}m(\sqrt{2}-\sqrt{2})$ + 1 M (u₁)² $= \frac{1}{2} m(v_0)^2 - \frac{1}{2} m(v_0)^2 + \frac{1}{2} M(v_1)^2$ aucune idée par le signe, inhibranch je chross que le Block BALLE LO cour il y a ve perke d'énergre méconique

