Bilddaten für eine KI schnell selbst aufbereiten

Warum ist das so ein langer Titel?

Thomas Tomow

Director – Innovation in Tech

Zwei Jahre zuvor

Custom Vision

1. Bilder hochladen

Bildersammlung gewachsen

Jetson Nano – IoT Edge

ISpy

2020 / 01 - 2021 / 03

Größe: 65,3 GB (70.143.431.501 Bytes)

Größe auf Datenträger: 65,7 GB (70.550.835.200 Bytes)

Inhalt: 204.434 Dateien, 210 Ordner

2021/04 - 2021/06

Größe: 138 GB (148.844.972.804 Bytes)

Größe auf Datenträger: 139 GB (149.504.884.736 Bytes)

Inhalt: 332.120 Dateien, 14 Ordner

= Tonnen von Bilder

>500.000 Bilder

Ein wenig Technik...

Postauto!

Herausforderungen

- Falsch erkannte Objekte
- Nicht erkannte Objekte
- Unbekannte Objekte

Nacht & Dämmerungssituation

Ein neues Modells muss her

01

Architektur

Finden einer geeigneten Architektur für das Modell

Object Detection - Classification

03

Modell erstellen

Nach geeigneter Bilderselektion, Training, Evaluierung und Bereitstellung

02

Bilder auf/vorbereiten

Bilder screenen nach geeigneten für neues Vorhaben und Labeln

Generelle Herangehensweise

Konzept **Custom Onnx** Car Postauto Person Person YoloV3 Truck Mülltonne

Was benötigen wir...?

Links zu den Technologien

Model Zoo.co https://www.customvision.ai/

<u>totosan/yolov3-tiny Tags (docker.com)</u> <u>Roboflow</u>

<u>johannestang/yolo_service</u> <u>https://console.cloud.google.com/vision</u>

<u>Hasty.ai</u>

Sourcen des Talks auf GitHub

https://github.com/totosan/EnvironmentAiEntityExtractor

https://github.com/totosan/IoTEdgeObjectTracking

Labeling

VoTT – Visual Object Tagging Tool

LabelMe

LabelImg

Hasty.ai

CustomVision

Al Powered Labeling – Active ML, Smart Labeling, ...

Initiale Vorgehensweise

Spezialisierung des Modells

Motivation & Erkenntnis

Mit agile Vorgehensweise durch iteratives Herantasten an ein gewünschtes Ergebnis bringt folgende Vorteile:

- Erste, **schnelle** Erfolge
- Besseres **Verständnis** durch stetige Vertiefung
- Möglichkeit die Richtung zu ändern

! **Aber**, dieses Vorgehen kann nicht überall angewendet werden. Man muss es bewußt einsetzen.

Thomas Tomow

Solutions Developer

Application Lifecycle Management

Twitter: @toto_san1

eMail: toto_san@live.com

Blog: www.tomow.de

Sessionize: https://sessionize.com/thomas-tomow/

