Pienimmän neliösumman ongelman selventäminen ja ratkaiseminen.

Kuvassa vasemmalla on piirrettynä seuraavat asiat:

- Sinisellä taso $\operatorname{Col}(A) \in \mathbb{R}^{(m \times 1)}$
- Tummansinisellä avaruuden Col(A) virittävät vektorit v_1, v_2 , siis $\operatorname{Col}(A) = Sp(v_1, v_2)$.
- Mustalla vektori $v \in \mathbb{R}^{(m \times 1)}$
- Mustalla vektori $\pi_{\operatorname{Col}(A)}(v) \in \mathbb{R}^{(m \times 1)}$ eli $\operatorname{Proj}_{\operatorname{Col}(A)}(v) \in \mathbb{R}^{(m \times 1)}$, joka on v:n *ortogonaaliprojektio* aliavaruudelle $\operatorname{Col}(A)$. Se on siis ikäänkuin se osa v:stä, jonka voi esittää avaruudella $\operatorname{Col}(A)$, tai v ilman niitä komponentteja, jotka eivät ole osa $\operatorname{Col}(A)$:ta.
- Punaisella vektori $v \pi_{\operatorname{Col}(A)}(v) \in \mathbb{R}^{(m \times 1)}$ tai $\operatorname{Perp}_{\operatorname{Col}(A)}(v) \in \mathbb{R}^{(m \times 1)}$, joka taas on se osa vektorista v, jota ei voida esittää avaruudella $\operatorname{Col}(A)$, tai vain ne komponentit v:stä, jotka eivät ole osa $\operatorname{Col}(A)$:ta. Se on kohtisuora eli ortogonaalinen avaruutta $\operatorname{Col}(A)$ kohtaan.

Pienimmän neliösumman ongelmassa taas kysytään, että mikä on vektori $x \in \mathbb{R}^{(m \times 1)}$, jolle pätee $\|v - Ax\| = \min\{\|v - Ay\|, y \in \mathbb{R}^{(m \times 1)}\}$. Toisin sanoen kysytään, että mikä on se vektori x, jonka koordinaateilla kannassa Col(A) saatava vektori on lähimpänä vektoria v. Se sattuu olemaan v:n ortogonaaliprojektio, intuitiivisesti. Tässä on erona se, että tuntemamme v:n ortogonaaliprojektion vektori $\pi_{\text{Col}(A)}(v)$:n koordinaatit ovat kannassa $\mathbb{R}^{(m \times 1)}$, mutta pienimmän neliösumman ongelmassa kysytäänkin sen koordinaatteja kannassa Col(A).

Koska äsken totesimme, että $\min\{\|v-Ay\|, y \in \mathbb{R}^{(m\times 1)}\} = \|v-\pi_{\operatorname{Col}(A)}(v)\|$, seuraa tästä että $Ax = \pi_{\operatorname{Col}(A)}(v) = A(A^tA)^{-1}A^tv$ ja kun jaamme molemmat puolet A:lla, saamme $x = (A^tA)^{-1}A^tv$.

Tällä kaavalla voidaan laskea x, eli kannan Col(A) vektori, joka on lähinnä avaruuden $\mathbb{R}^{(m\times 1)}$ vektoria v.

Ongelmaa kutsutaan pienimmän neliösumman ongelmaksi ymmärtääkseni siksi, että tämän lyhyimmän pituuden löytämisen kaava on sama kuin tämän lyhyimmän pituuden *neliön* löytämisen kaava.