

Basispraktikum Technische Informatik VGA-Ansteuerung

Michael Bromberger

Lehrstuhl für Rechnerarchitektur und Parallelverarbeitung

3. Juni 2015

Prüfung

Anmeldung

- Es fehlen noch 4 Anmeldungen
- Bitte schaut nach, ob Ihr euch noch anmelden müsst

Aufgabenblatt # 4

VGA-Ansteuerung

- Entwurf einer Schaltung
- Ansteuerung eines VGA-Monitors
- ⇒ VGA-Signalgenerierung
 - Ausgabe geometrischer Körper
- Beeinflussung deren Lage über Nutzereingaben

Bromberger - Basispraktikum TI - VGA-Ansteuerung

Grafikausgabe

Bilderzeugung

- VGA-Signale generieren
 - Farbwerte aller Bildpunkte (Pixel) direkt setzen
 - Signale für die zeitliche Synchronisation
- Sprites
 - in Hardware vordefinierte Pixel platzieren
 - ⇒ direkt in die VGA-Signalgenerierung einblenden/-mischen
- Bildspeicher
 - Vorausberechnung
 - Gesamtes Bild in Bildspeicher speichern
 - Ganzes Bild auslesen
 - ⇒ VGA-Signalgenerierung

Grafikausgabe

Bildspeicher

- Teil des Video-RAM von Computern
- entspricht einer digitalen Kopie des Monitorbildes
- jedem Pixel des Bildschirms ist ein bestimmter Bereich des Speichers zugewiesen
- Größe des Speichers
 - ⇔ Auflösung
 - ⇔ Farbtiefe

Grafikausgabe

Sprites

- Vordefinierte Pixel, die in/über die sonstige Anzeige gelegt werden
- Keine dynamische Berechnung
- Der Name kommt daher, dass ein Sprite im Grafikspeicher nicht zu finden ist, sondern auf dem Bildschirm "umherspukt"
- Die Platzierung bzw. das Verschieben erfolgt durch die Grafikhardware
- Hardware-Sprites werden erst zum Anzeigezeitpunkt in den Datenstrom eingeblendet
- Mehrere Sprites können sich überlagern

Aufbau einer Bildröhre

Aufbau eines sichtbaren Bildes

- zeilenweise Bewegung von links nach rechts
- anschließend Rücklauf und Anfang einer neuen Zeile
- 640 sichtbare Pixel pro Zeile, 480 Zeilen, danach von vorn
- 60 Bilder pro Sekunde (\sim 60 Hz) \Leftrightarrow 25,175 MHz Takt (\sim 40 ns)
- Zeitdauer für den gesamten Bildaufbau ca. 17 ms

Signale

Beim Ansteuern eines VGA-Ausgangs müssen 5 Signale generiert werden.

- hsync: horizontal sync
- vsync: vertical sync
- R: rot
- G: grün
- B: blau

RGB-Signale

- Die RGB-Signale sind analoge Signale
- Ihr Wert bestimmt die Stärke des Elektronenstrahls und damit die Helligkeit.
- Die Signale können bei unseren FPGA-Karten durch einen 4-Bit-Zahlenwert pro Farbe bestimmt werden
- 4 Pins am FPGA pro Farbe
- ⇒ pro Farbe 16 mögliche Werte, insgesamt 4096 Farbwerte
- Die Umwandlung in jeweils ein analoges Signal pro Farbe erfolgt mit Hilfe eines Digital-Analog-Umwandlers (DAC) direkt auf der Karte

hsync

Das Signal **hsync** kennzeichnet das Ende einer Zeile und bewirkt den Rücklauf des Elektronenstrahls und den anschließenden Beginn einer neuen Zeile.

vsync

Nach der Ausgabe der Zeilen wird durch Setzen von vsync signalisiert, dass in die linke obere Ecke des Bildes zurückgesprungen werden soll.

- hsync und vsync sind "digitale" Signale
- im Modus 640 x 480 sind beide Signale low-aktiv, d.h. der Puls erfolgt durch Setzen einer '0', ansonsten ist das Signal auf '1' gesetzt.

Zeitlicher Ablauf – hsync

- Taktfrequenz: 25,175 MHz
- Bildinformation wird nur während der 640 Takte gesetzt
- Die restlichen Takte sind die RGB-Signale auf schwarz gesetzt
- Die '0' von hsync ist genau 96 Takte lang
- Puffer vor und nach dem sichtbaren Bereich
- ⇒ pro Zeile 800 Takte nicht nur 640!

Zeitlicher Ablauf – vsync

- Zahlen beziehen sich auf Zeilen, nicht auf die 25,175 MHz
- hsync als Takt für vsync? ⇔ 25,175 MHz-Takt + Zeilennummer
- während der 480 Zeiteinheiten werden die Zeilen dargestellt
- vsync wird hier eine Einheit lang gesetzt
- ⇒ Dauer: 1 * 800 Takte des 25,175 MHz-Taktgebers

VGA-Signal – andere Zählweise

Hinweise

- Angaben im vorherigen Schaubild sind Zeitspannen
- Zählung der Takte beachten (ab 0 oder 1, aber einheitlich)
- Generierung von vsync hängt mit Signal hsync zusammen und nicht vom Ende der 800 Takte einer Zeile.
- hsync wird während vsync nicht unterdrückt
- Sinnvolle Trennung in verschiedene Prozesse
- Auswahl der richtigen Bedingungen in den Prozessen (auf 0, 1 oder 800 testen?)
- Als Taktgeber den Quarz mit 25,175 MHz und nicht den mit 125 MHz (+ DCM) der FPGA-Karte verwenden!

Simulation

- Simulation der Teilaufgaben/-schaltungen
- Simulation der Gesamtschaltung
 - Fehler frühzeitig erkennen
 - umständliche Fehlersuche und zeitaufwendige Tests
 - Wartezeit bei der Synthese
 - Meist keine Anzeige des Bildes
- Simulationsdauer entsprechend wählen
 - Dauer pro Zeile (hsync): \sim 32 μ s = 32.000 ns

Bromberger - Basispraktikum TI - VGA-Ansteuerung

- Aufbau pro Vollbild (vsync): \sim 17 ms = 17.000.000 ns
- Wenn nötig Simulation nach der Synthese
 - Post-Synthesis / Translate / Map / Place & Route Simulation

Aufgabenblatt # 4

VGA-Ansteuerung

- VGA-Ausgang
- Farbverlauf
- Rechteck
- Beeinflussung der K\u00f6rper
 - Baut aufeinander auf
 - Pro Aufgabe je eine extra Schaltung entwerfen!
- → 4 Projekte, 4 Simulationen, 4 Bitstream-Dateien
 - VGA-Kabel, Eingang mit +/- umschalten, "Auto"
 - 1-Pixel breiter Rahmen auch bei Aufgaben 2-4

Aufgabenblatt 4

Gesamtschaltung

Ein vereinfachtes Schaubild der Gesamtschaltung ohne Steuerung:

Basispraktikum Technische Informatik VGA-Ansteuerung

Michael Bromberger

Lehrstuhl für Rechnerarchitektur und Parallelverarbeitung

3. Juni 2015

