UNI

Kapitel 5

Timing:

- 1. Physikalische Eigenschaften
- 2. Timing wichtiger Komponenten
- 3. Exaktes Timing von ReTI

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

Wiederholung: Übergang beim RS-Flipflop

■ Zustand $Q = 0 \rightarrow Zustand Q = 1$:

- Senke /S zur Zeit t_0 ab und hebe zu $t_0 + x$ wieder an (einen solchen Signalverlauf nennt man Puls).
- Nach Zeit $t_{P/SQ}$ ist Q = 1. Nach Zeit $t_{P/S/Q}$ ist Q = 0.
- "Gatter brauchen Zeit zum Schalten!" Aber wie lange ist $t_{P/SQ}$, $t_{P/S/Q}$? Oder wie lange muss ein Puls mindestens dauern? (= Pulsweite).

REIBURG

Wiederholung: Timing-Diagramm D-LATCH

- Wie lange müssen die einzelnen Signale aktiv sein, damit der Schreibvorgang reibungslos abläuft?
- D. h. Wie lange ist Setup–Zeit t_{SDW}, Hold–Zeit t_{HDW}, Pulsweite y?

REIBURG

Physikalische Signale \leftrightarrow Logische Signale

- In jeder Technologie gibt es eine Versorgunsspannung VCC (z.B. 1.1 V bei NanGate).
- Eine Spannung $U \in [0, VCC]$ wird als logischer Wert I(U) interpretiert.
 - Am Eingang (Input) eines Gatters: V_{IL} , V_{IH} .
 - \blacksquare Am Ausgang (Output) eines Gatters: V_{OL} , V_{OH} .
- \blacksquare $V_{IL}, V_{IH}, V_{OL}, V_{OH}$ eines Bausteins sind gegeben.

Zusammenschalten von Gattern

- Will man den Ausgang eines Gatters *u* mit dem Eingang eines Gatters *v* verbinden, dann sollte gelten:
 - $V_{OL}(u) \leq V_{IL}(v)$ und
 - $Arr V_{OH}(u) \geq V_{IH}(v).$
- Sonst werden Signale falsch interpretiert.

Beispiel: NanGate

$$V_{IL} = 30\% \cdot VCC = 0.33 \ V$$

 $V_{IH} = 70\% \cdot VCC = 0.77 \ V$

Entsprechend Output-Pegel V_{OL} , V_{OH} .

Verzögerung

Beispiel-Spannungsverlauf x(t), y(t)

Zwei Beispiele für y(t)

FREIBUR

Allgemeine Bemerkung zu Verzögerungszeiten

- Im Allgemeinen gilt nicht $y(t) = x(t t_p)$, so dass man nicht einfach t_p als Verzögerungszeit definieren kann. y(t) wird verformt.
- Die Verzögerungszeit (Propagation Delay) wird definiert als $t_p := (t_2 t_1)$ bezüglich einer festen "Referenzspannung" M mit $V_L < M < V_H$ (Bsp.: M = 0.5 VCC = 0.55 V bei NanGate).
- Bestimme t_1 , t_2 mit $x(t_1) = y(t_2) = M$.

Angaben zur Verzögerungszeit

- In der Regel gibt es verschiedene Verzögerungszeiten für Übergänge am Ausgang:
 - t_{PLH} : Verzögerungszeit bei 0 → 1.
 - t_{PHL} : Verzögerungszeit bei 1 → 0.

WS 2016/17 TS/RW – Kapitel 5

Modellierung der Verzögerungszeit

- **Problem** bei der Modellierung der Verzögerungszeit bezüglich fester Spannung *M*:
 - Keine Aussage darüber, wann logische Signale 0 oder 1 sind, d. h. physikalische Signale unterhalb V_{OL} oder oberhalb V_{OH} sind.

WS 2016/17 TS/RW – Kapitel 5 11 /

Illustration des Problems

Ähnliches Problem am Gattereingang.

REBURG

WS 2016/17 TS/RW – Kapitel 5 12 / 40

Anstiegs- und Abfallzeiten

- Für jedes Signal braucht man also zusätzliche Informationen über:
 - Anstiegszeit (Rise Time) = Zeit, in der Signal von V_L nach V_H steigt.
 - Abfallzeit (Fall Time) = Zeit, in der Signal von V_H nach V_I fällt.
 - Bzw. noch genauer würde man eigentlich benötigen:
 - Anstiegszeit von M nach V_H
 - Abfallzeit von M nach V_L

Beschränkung dieser Zeiten

- Die in unseren Analysen verwendeten Gatter haben die folgende angenehme Eigenschaft:
- $\exists \delta$ mit folgender Eigenschaft:
 Falls rise/fall time $\leq \delta$ am Gattereinang, dann rise/fall time $\leq \delta$ am Gatterausgang.

Beispiel: NanGate

$$V_{IL} = 30\% \cdot VCC = 0.33 \text{ V}$$

 $V_{IH} = 70\% \cdot VCC = 0.77 \text{ V}$

- NanGate für *M* = 0.55 V spezifiziert. Bausteine *NAND*, *NOT*, *AND*, *OR*, *EXOR*.
- \blacksquare t_p zwischen 0.00 ns und 0.21 ns.
- δ = 0.13 ns (1 ns = 10⁻⁹ s)
- Die Zeiten, an denen die entsprechenden Signale wohldefinierte logische Werte 0, 1 annehmen, unterscheiden sich von denen für M um höchstens δ.

Bemerkung

■ Eine rise/fall time $\leq \delta$ an den primären Eingängen einer Schaltung kann man garantieren, wenn man den Schaltvorgang zur Zeit t_0 beginnt und spätestens zur Zeit $t_0 + \delta$ abschließt.

Analyse der Verzögerungszeit einer Kette von *n* Gattern (1/3)

WS 2016/17 TS/RW – Kapitel 5 17 / 40

Vereinbarungen

Im Folgenden soll
 Signal X wird zum Zeitpunkt t₁ abgesenkt/angehoben
 bedeuten
 X wird abgesenkt/angehoben mit X(t₁) = M.

Desweiteren sind alle Zeitangaben in ns.

Einfluss auf Verzögerungszeiten

- Verzögerungszeiten von Gattern sind nicht konstant, sondern werden beeinflusst durch:
 - Betriebstemperatur
 - Fertigungsprozess des Chips
 - kapazitive Last am Gatterausgang (Fanout) (Gattereingänge, die mit einem Gatterausgang verbunden sind, verhalten sich wie Kondensatoren, d. h. sie werden beim Schalten ge- bzw. entladen.)

WS 2016/17 TS/RW – Kapitel 5

Worst-case Timing-Analyse

Wegen Abhängigkeit der Verzögerungszeit von Temperatur, Fertigungsprozess und Fanout werden vom Hersteller keine festen Zeiten t_{PLH}/t_{PHL} angegeben, sondern 3 Werte:

```
t^{min} = untere Schranke
```

```
t^{max} = obere Schranke
```

$$t^{typ} = typischer Wert (???)$$

min, max und typ (1/2)

 \blacksquare Für die tatsächliche Verzögerungszeit t_p gilt:

$$t^{min} \leq t_p \leq t^{max}$$

- Wir nehmen in den folgenden Analysen an, dass t_p im Intervall [t^{min} , t^{max}] liegt, falls
 - die Temperatur im Bereich T liegt ("kommerzieller Temperaturbereich" 0 – 70°C, "militärischer Temperaturbereich" –55 – 125°C)
 - und eine bestimmte kapazitive Last C₀ nicht überschritten wird.
- C₀ wird so gewählt, dass mit Einhalten einer Fanoutbeschränkung von 10 C₀ auf keinen Fall überschritten wird.

min, max und typ (2/2)

- Für t^{typ} gilt ebenfalls $t^{min} \le t^{typ} \le t^{max}$.
- Beim Rechnen mit *t*^{typ} macht man aber einen *Fehler mit* unbekannter Größe.
- \rightarrow Kein Rechnen mit t^{typ} , sondern mit Intervallen [t^{min} , t^{max}].

WS 2016/17 TS/RW – Kapitel 5 22 / 40

Exkurs: Rechnen mit Intervallarithmetik (1/2)

Definition

Ein Intervall $[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\} \subset \mathbb{R}$ auf \mathbb{R} ist eine zusammenhängende und abgeschlossene Teilmenge von \mathbb{R} . Man bezeichnet es auch als das abgeschlossene Intervall von a bis b.

- Wir betrachten hier nur die Menge der abgeschlossenen Intervalle IR auf \mathbb{R} .
- Es gilt:
 - \blacksquare min[a,b] = a
 - \blacksquare max[a,b] = b
 - $a \in \mathbb{R} \simeq [a,a] \in IR$ (eine reelle Zahl a kann aufgefasst werden als das Punktintervall von a bis a)

NI

Exkurs: Rechnen mit Intervallarithmetik (2/2)

Definition

Gegeben ein Operator $_{\wp}\in\{+,-,\cdot\}$ in $\mathbb{R}.$ Der dazugehörige Operator $_{\textcircled{$\wp$}}$ auf IR ist definiert als:

Für $a,b,c,d \in \mathbb{R}$:

$$[a,b]$$
 @ $[c,d] := \{x \circ_p y \mid x \in [a,b], y \in [c,d]\}$

Beispiele:

- $\blacksquare [a,b] \oplus [c,d] = [a+c,b+d]$
- $[a,b] \odot [c,d] = [a-d,b-c]$
- $[a,b] \odot [c,d] = [\min(a \cdot c, a \cdot d, b \cdot c, b \cdot d), \max(a \cdot c, a \cdot d, b \cdot c, b \cdot d)]$

Bemerkungen

- Wir schreiben vereinfachend nur ℘ statt ⑳.
- Für unsere Belange sind ausschließlich +, und
 - · Operator von Bedeutung. (· mit Punktinvervallen)
- Ein Intervall bezeichnen wir mit $\tau = [t^{min}, t^{max}]$.

Beispiel: AND-Gatter

AND

 $\tau_{PLH} = [0.02, 0.12]$ $\tau_{PHL} = [0.02, 0.12]$

Bzw.:

AND	t ^{min}	t ^{max}
$ au_{PLH}$	0.02	0.12
$ au_{PHL}$	0.02	0.12

Fall 1

AND	t ^{min}	t ^{max}
$ au_{PLH}$	0.02	0.12
$ au_{PHL}$	0.02	0.12

- A, E fest auf 1.
- \blacksquare B von 0 auf 1 zum Zeitpunkt t_0 .
- \rightarrow Änderung von C zur Zeit $\tau_1 = t_0 + \tau_{PLH}$ (AND) $= t_0 + [0.02, 0.12]$
- → Änderung von D zur Zeit

$$\tau_2 = \tau_1 + \tau_{PLH} \text{ (AND)}$$

$$= t_0 + 2 \cdot \tau_{PLH} \text{ (AND)}$$

$$= t_0 + 2 \cdot [0.02, 0.12]$$

$$= t_0 + [0.04, 0.24]$$

27 / 40

WS 2016/17 TS/RW - Kapitel 5

Fall 1 - Timing-Diagramm

- A,B,E können sich zum Zeitpunkt t_0 ändern, sind vorher und nachher stabil.
- Es ist unbekannt, wieviele Signale sich ändern und wie sie sich ändern.
- → Gröbere Abschätzungen

WS 2016/17 TS/RW – Kapitel 5 29 / 4

Gröbere Abschätzung

- Bestimmung von Zeitintervallen, zu denen Gatter überhaupt schalten können.
- Beispiel:

$$\begin{array}{c} \boldsymbol{\tau}_{PLH} = [t_{PHL}^{min}, t_{PLH}^{max}] \\ \boldsymbol{\tau}_{PHL} = [t_{PHL}^{min}, t_{PHL}^{max}] \end{array}$$

u ist beliebiges Gatter oder eine Schaltung.

- Gesucht ist ein Intervall τ_p in dem die Verzögerungsintervalle aller möglichen Schaltvorgänge enthalten sind.
- Definiere $\begin{array}{ll} t_p^{min} & := min(t_{PLH}^{min}, t_{PHL}^{min}) \\ t_p^{max} & := max(t_{PLH}^{max}, t_{PHL}^{min}) \end{array}$
- Dann ist $\tau_p := [t_p^{min}, t_p^{max}]$ das gesuchte Intervall.

SMILE – Verzögerungsintervalle über mehrere Gatter

$$\begin{array}{ll} \tau_p(u) &= [a_1,b_1] \\ \tau_p(v) &= [a_2,b_2] \\ \tau_p(w) &= [a_3,b_3] \end{array}$$

Fall2

AND	t ^{min}	t ^{max}
$ au_{PLH}$	0.02	0.12
$ au_{PHL}$	0.02	0.12

- Wenn die Gatter schalten, dann in folgenden Intervallen:
 - \blacksquare A, B, E: $t_0 + [0.0, 0.0]$
 - \blacksquare C: $t_0 + [0.02, 0.12]$
 - **D**: $t_0 + [0.0, 0.12] + [0.02, 0.12] = t_0 + [0.02, 0.24]$

Fall 2 - Timing-Diagramm

WS 2016/17 TS/RW – Kapitel 5 33 / 40

Interpretation des Timing-Diagramms

Was kann im grauen Bereich passieren?

Beispiel:

 t_0 : A,B,E 110 \rightarrow 101

Annahme:

AND-Gatter haben folgende Verzögerungszeiten.

- 1. AND-Gatter: $t_{PLH} = 0.12$, $t_{PHL} = 0.12$
 - 2. AND-Gatter: $t_{PLH} = 0.02$, $t_{PHL} = 0.02$

Timing-Diagramm zum Beispiel

Spikefreies Umschalten von Gattern

■ Ziel:

Übergang von A = 1, B = 0 zu A = 0, B = 1, ohne Spike am Ausgang.

■ Bemerkung:

Der Übergang $(0,1) \rightarrow (1,0)$ bzw. umgekehrt ist der einzige, bei dem an AND/NAND-Gattern ein Spike auftreten kann.

AND-Gatter

Sicherer Abstand für Senken von A und Anheben von B

Lemma

Man kann zeigen, dass Übergänge für A und B mit

 $0.12 \text{ ns} + 2\delta = 0.38 \text{ ns}$

sicher sind, d. h. keine Spikes am Ausgang entstehen können.

Zum Beweis - Timing im Gatter

- Senke A bei $t_0 = 0$.
 - \rightarrow C = 0 wegen A = 0 spätestens bei $t_1 = t_0 + 0.12 + \delta$
 - Grund:
 - Bei tatsächlichem Schalten von C = 0 wegen A = 0 würde das Signal spätestens nach $t_{PHL}^{max} = 0.12$ ns den Wert M durchlaufen und wäre 0 spätestens nach $0.12 + \delta$ ns.
 - Interner Umschaltvorgang "C = 0 wegen A = 0" muss also spätestens nach $0.12 + \delta$ ns beendet sein.
- Place B (bzgl. M!) zum Zeitpunkt $t_2 = t_1 + \delta$.
 - → Zum Zeitpunkt t_1 gilt auf jeden Fall noch B = 0.
- Also:

Vor
$$t_1$$
: $B = 0 \Rightarrow C = 0$
Nach t_1 : $A = 0 \Rightarrow C = 0$

 \rightarrow Übergänge für *A* und *B* mit Abstand $t_2 - t_0 = 0.12 + 2\delta = 0.38$ ($\delta = 0.13$).

AND	t ^{min}	t ^{max}
$ au_{PLH}$	0.02	0.12
$ au_{PHL}$	0.02	0.12

Regel für spikefreies Umschalten

- Wähle den Abstand für die Signaländerungen am Eingang eines Gattes so, dass
 - die maximiale Verzögerung des ersten Schaltvorganges und
 - \blacksquare 2× die rise-/fall-time (δ)

zwischen den beiden Schaltvorgängen am Eingang liegt.

Beispiel: NAND

NAND	t ^{min}	t ^{max}
$ au_{PLH}$	0.02	0.15
$ au_{PHL}$	0.02	0.12

- Kritischer Übergang: Zuerst $A: 1 \rightarrow 0$, dann $B: 0 \rightarrow 1$.
- Daraus ergibt sich der Abstand $max(\tau_{PLH}) + 2\delta = 0.41$