НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО» НАВЧАЛЬНО-НАУКОВИЙ ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

МЕТОДИ КРИПТОАНАЛІЗУ 1

КОМП'ЮТЕРНИЙ ПРАКТИКУМ №2

Статистичні критерії на відкритий текст

Варіант 3

Виконав:

Беш Радомир ФІ-42мн

Перевірив:

Ядуха Д.В.

Зміст

1	Мета	3
2	Постановка задачі та варіант завдання	3
3	Хід роботи	4
4	Варіант №3	4
	4.1 Опис множин заборонених/частих символів, які було отримано при виконанні	
	завдання	4
	4.2 Таблиці результатів тестів	4
	4.3 Структурний критерій	10
	4.4 Опис труднощів	10
	4.5. Висновки	11

1 Мета

Засвоєння статистичних методів розрізнення змістовного тексту від випадкової послідовності, порівняння їх, визначення похибок першого та другого роду.

2 Постановка задачі та варіант завдання

Номер варіанту завдань: 3

Завдання поставлені перед виконанням комп'ютерного парктикуму:

- -1. Ознайомитись з порядком виконання комп'ютерного практикуму та відповідними вимогами до виконання роботи.
- 0. Уважно прочитати необхідні теоретичні відомості до комп'ютерного практикуму.
- 1. Створити новий репозиторій в системі контролю версій Git (бажано використовувати вебсервіс GitHub).
- 2. На великому тексті українською мовою (>1MB), необхідно розрахувати частоти літер і біграм, а також ентропію та індекс відповідності.
- 3. Отримати N текстів X українською мовою для довжин $L=10,\,100,\,1000$ та $10000,\,$ для кожного з яких згенерувати спотворені тексти Y. Число N визначається відповідно до такої таблиці.

L	N
10	
100	10000
1000	
10000	1000

Спотворення тексту виконується такими способами:

- (a) шляхом застосування шифру Віженера з випадковим ключем довжини $r=1,\,5,\,10.$
- (б) шляхом застосування шифру афінної та афінної біграмної підстановки з випадковими ключами.

А також тексти для аналізу формуються такими способами:

- (a) y_i рівномірно розподілена послідовність символів з $(Z_m)^l$
- (б) y_i обчислюється відповідно до такого співвідношення:

$$y_i = (s_{i-1} + s_{i-2}) \mod m^l,$$

де
$$s_0, s_1 \in_R (Z_m)^l$$
.

4. Реалізувати критерії (відповідно до варіанту + структурний) і перевірити їх роботу на згенерованих N текстах для кожної довжини L. Розрахувати ймовірності похибок першого і другого роду. Номер варіанту Критерії

Номер варіанту	Критерії		
Парний	1.0-1.3, 3.0, 5.1		
Непарний	2.0-2.3, 4.0, 5.0		

Усі вищезгадані критерії (та інші формули), які використовували значення l, мають приймати значення l=1 та l=2, тобто реалізувати символьний та біграмний критерії.

- 5. Згенерувати випадковий текст довжини L=10000, який точно не є зв'язним текстом українською мовою (наприклад, текст, який складається з величезної кількості літер а: "ааааааааа..."). Застосувати один з варіантів спотворення (на вибір) до цього тексту, після чого застосувати один з реалізованих критеріїв (на вибір). Порівняти результати застосування критерію до різних текстів.
- 6. Оформити звіт до комп'ютерного практикуму.

3 Хід роботи

- 1. Ознайомлення з методичними вказівками та вимогами щодо виконання комп'ютерного практикуму
- 2. Ознайомлення, вивчення та систематизація необхідного теоретичного матеріалу для виконання комп'ютерного практикуму
- 3. Створення та налаштування репозиторію
- 4. Безпосередня реалізація поставлених задач комп'ютерного практикуму за допомогою програмування
- 5. Аналіз та систематизація отриманих результатів
- 6. Підготовка звіту з виконання комп'ютерного практикуму з детальним описом отриманих результатів

4 Варіант №3

4.1 Опис множин заборонених/частих символів, які було отримано при виконанні завдання

Опишемо загальну характеристику, вибірку з п'яти найчасчтіших символів та символів, які зустрічаються дуже рідко:

- Найчастіші символи: о, а, н, в, и
- Найрідкіші символи: щ, ц, є, ї, ф

4.2 Таблиці результатів тестів

- $\alpha = P(H_1|H_0)$ ймовірність помилки 1-го роду (англ. false positive), ймовірність назвати відкритий текст випадковою послідовністю;
- $\beta = P(H_0|H_1)$ ймовірність помилки 2-го роду (англ. false negative), ймовірність прийняти випадкову послідовністю за відкритий текст.

Шифрування за Віженером $(r=1)$							
		Монограма		Біграма			
L	Номер критерію	$\alpha(l=1) \mid \beta(l=1) \mid$		$\alpha(l=2)$	$\beta(l=2)$		
	2.0 60000/9000	43,6%	5,51%	85,6%	0,63%		
	$2.1 \ 40000/9000, k_{(f_1)}=11, k_{(f_2)}=400$	87,68%	47,22%	96,19%	$31,\!5\%$		
	$2.2 \ 40000/9000, k_{(x_1)} = 2, k_{(x_2)} = 1$	65,21%	33%	87,67%	$1,\!89\%$		
10	$2.3 \ 40000/9000, \hat{K}_{(f_1)} = 11, \hat{K}_{(f_2)} = 7$	38,76%	17,26%	$87,\!67\%$	$3,\!24\%$		
	$4.0 \ 0.02/0.04, k_{(I_1)} = 5.2, \ k_{(I_2)} = 0.9$	46,71%	53,32%	100%	0%		
	$5.0 \ 4000/50, k_{(empt_1)} = 5, \ k_{(empt_2)} = 40$	2,03%	73,2%	0%	22,8%		
	$2.0\ 15000/7000$	25,8%	0%	15,33%	4,33%		
	$2.1\ 15000/7000, k_{(f_1)}=3,\ k_{(f_2)}=520$	$25,\!8\%$	0%	15,33%	$4,\!4\%$		
	$2.2 \ 15000/7000, k_{(x_1)} = 6, k_{(x_2)} = 2$	$25,\!8\%$	0%	18,41%	$10{,}26\%$		
100	$2.3\ 15000/7000, K_{(f_1)}=320,\ K_{(f_2)}=40$	20,88%	0%	23,41%	$4{,}22\%$		
	$4.0\ 0.02/0.004, k_{(I_1)} = 4.87,\ k_{(I_2)} = 0.92$	$94,\!66\%$	15,4%	100%	0%		
	$5.0\ 4000/50, k_{(empt_1)}=3,\ k_{(empt_2)}=41,25$	20,05%	55,6%	0%	0%		
	2.0 20000/7000	0%	93,98%	0%	15,3%		
	$2.1\ 2000/6000, k_{(f_1)} = 7,\ k_{(f_2)} = 250$	2,5%	78,14%	0%	39,54%		
	$2.2\ 15000/7000, k_{(x_1)}=20,\ k_{(x_2)}=25$	$25,\!5\%$	0%	15,98%	0%		
1000	$2.3\ 15000/7000, K_{(f_1)} = 857, K_{(f_2)} = 35$	2,5%	0%	1%	$28{,}16\%$		
	$\mid 4.0 \ 0.00002/0.0003, k_{(I_1)} = 0.005, \ k_{(I_2)} = 0.015 \mid$	$66,\!6\%$	24,5%	0%	1%		
	$5.0\ 7000/50, k_{(empt_1)}=3,\ k_{(empt_2)}=0,54$	67,45%	0%	0%	0%		
	2.0 20000/5000	100%	0%	86,43%	22%		
	$2.1\ 2000/5000, k_{(f_1)}=7,\ k_{(f_2)}=250$	100%	0%	0%	$15,\!33\%$		
	$2.2\ 15000/5000, k_{(x_1)}=20,\ k_{(x_2)}=25$	45,24%	56,32%	0%	$20,\!33\%$		
10000	$2.3 \ 15000/5000, K_{(f_1)} = 800, K_{(f_2)} = 35$	37,12%	0%	0%	$12,\!33\%$		
	$4.0 \ 0.005/0.002, k_{(I_1)} = 0.015, \ k_{(I_2)} = 0.015$	$45,\!3\%$	55,7%	$25,\!5\%$	$15,\!3\%$		
	$5.0\ 80000/60, k_{(empt_1)}=1,\ k_{(empt_2)}=200$	100%	0%	0%	0%		

Шифрування за Віженером $(r=5)$							
		Монограма Біграм			рама		
L	Номер критерію	$\mathbf{FP}(l=1)$	$\mathbf{FN}(l=1)$	$\mathbf{FP}(l=2)$	$\mathbf{FN}(l=2)$		
	2.0 60000/9000	43,6%	15,51%	85,6%	0,63%		
	$2.1\ 40000/9000, k_{(f_1)}=11,\ k_{(f_2)}=400$	87,68%	19,1%	88,9%	1%		
	$2.2\ 40000/9000, k_{(x_1)}=2,\ k_{(x_2)}=1$	65,21%	$29,\!65\%$	88,89%	$1,\!5\%$		
10	$2.3\ 40000/9000, K_{(f_1)}=11, K_{(f_2)}=7$	38,76%	$26,\!26\%$	78,76%	$2,\!55\%$		
	$4.0 \ 0.02/0.04, k_{(I_1)} = 5.2, \ k_{(I_2)} = 0.9$	46,71%	31,78%	100%	0%		
	$5.0\ 4000/50, k_{(empt_1)} = 5,\ k_{(empt_2)} = 40$	2,03%	$75,\!37\%$	4,2%	15,57%		
	2.0 15000/7000	25,8%	22,4%	-%	-%		
	$2.1\ 15000/7000, k_{(f_1)}=3,\ k_{(f_2)}=520$	25,8%	22,46%	22,43%	$12,\!3\%$		
	$2.2\ 15000/7000, k_{(x_1)}=6,\ k_{(x_2)}=2$	25,8%	$31,\!28\%$	22,43%	15,98%		
100	$2.3 \ 15000/7000, K_{(f_1)} = 320, K_{(f_2)} = 40$	20,88%	0%	12,43%	$5,\!37\%$		
	$4.0 \ 0.02/0.004, k_{(I_1)} = 4.87, \ k_{(I_2)} = 0.92$	$94,\!66\%$	$10,\!55\%$	100%	0%		
	$5.0\ 4000/50, k_{(empt_1)} = 3,\ k_{(empt_2)} = 41,25$	20,05%	2,07%	21,5%	0%		
	2.0 20000/7000	0%	100%	0%	15,39%		
	$2.1\ 2000/6000, k_{(f_1)}=7,\ k_{(f_2)}=250$	2,45%	100%	0%	22,12%		
	$2.2\ 15000/7000, k_{(x_1)}=20,\ k_{(x_2)}=25$	$28,\!88\%$	0%	12,03%	0%		
1000	$2.3\ 15000/7000, K_{(f_1)} = 8570, K_{(f_2)} = 35$	8,32%	0%	0%	22,88%		
	$4.0\ 0.00002/0.0003, k_{(I_1)} = 0.005, k_{(I_2)} = 0.015$	3,17%	0%	0%	1,73%		
	$5.0\ 7000/50, k_{(empt_1)}=3,\ k_{(empt_2)}=0.54$	75%	0%	3,16%	0%		
	2.0 20000/5000	100%	0%	100%	0%		
	$2.1\ 2000/5000, k_{(f_1)}=7,\ k_{(f_2)}=250$	100%	0%	0%	25,55%		
	$2.2\ 15000/5000, k_{(x_1)}=20,\ k_{(x_2)}=25$	100%	0%	0%	0%		
10000	$2.3\ 15000/5000, K_{(f_1)} = 800, K_{(f_2)} = 35$	34,52%	0%	11,44%	24,76%		
	$4.0\ 0.005/0.002, k_{(I_1)} = 0.015,\ k_{(I_2)} = 0.015$	100%	0%	25,22%	0%		
	$5.0\ 10000/60, k_{(empt_1)}=1,\ k_{(empt_2)}=200$	100%	0%	0%	0%		

Шифрування за Віженером $(r=10)$							
		Монограма Біграма			рама		
L	Номер критерію	$\mathbf{FP}(l=1)$	$\mathbf{FN}(l=1)$	$\mathbf{FP}(l=2)$	$\mathbf{FN}(l=2)$		
	2.0 60000/9000	43,6%	29,91%	85,31%	0%		
	$2.1\ 40000/9000, k_{(f_1)}=11, k_{(f_2)}=400$	87,68%	37,22%	76,14%	12,56%		
	$2.2\ 40000/9000, k_{(x_1)}=2,\ k_{(x_2)}=1$	65,21%	32,04%	78,42%	0%		
10	$2.3\ 40000/9000, K_{(f_1)}=11, K_{(f_2)}=7$	38,76%	28,26%	78,89%	1,64%		
	$4.0 \ 0.02/0.04, k_{(I_1)} = 5.2, \ k_{(I_2)} = 0.9$	46,71%	38,13%	0%	100%		
	$5.0\ 4000/50, k_{(empt_1)} = 5,\ k_{(empt_2)} = 40$	2,03%	73,78%	0%	21,22%		
	2.0 15000/7000	25,8%	28,05%	12,56%	12,71%		
	$2.1\ 15000/7000, k_{(f_1)}=3, k_{(f_2)}=520$	25,8%	35,29%	0%	10,18%		
	$2.2 \ 15000/7000, k_{(x_1)} = 6, k_{(x_2)} = 2$	25,8%	35,47%	$12,\!56\%$	12,89%		
100	$2.3\ 15000/7000, K_{(f_1)} = 320, K_{(f_2)} = 40$	20,88%	0%	15,67%	0%		
	$4.0\ 0.02/0.004, k_{(I_1)} = 4.87,\ k_{(I_2)} = 0.92$	4,66%	5,99%	15,7%	100%		
	$5.0\ 4000/50, k_{(empt_1)}=3,\ k_{(empt_2)}=41,25$	20,05%	2,54%	0%	0%		
	2.0 20000/7000	100%	0%	40,5%	0%		
	$2.1\ 2000/6000, k_{(f_1)}=7,\ k_{(f_2)}=250$	0%	100%	0%	12,54%		
	$2.2\ 15000/7000, k_{(x_1)}=20,\ k_{(x_2)}=25$	35,83%	15,32%	0%	6,5%		
1000	$2.3\ 15000/7000, K_{(f_1)} = 857, K_{(f_2)} = 35$	10,66%	0%	0%	15,58%		
	$4.0\ 0.00002/0.0003, k_{(I_1)} = 0.005, k_{(I_2)} = 0.015$	0%	0%	0%	0%		
	$5.0\ 7000/50, k_{(empt_1)} = 3,\ k_{(empt_2)} = 0.54$	89,8%	0%	3,17%	0%		
	2.0 20000/5000	100%	0%	15,72%	55,55%		
	$2.1\ 2000/5000, k_{(f_1)}=7,\ k_{(f_2)}=250$	100%	0%	100%	0%		
	$2.2\ 15000/5000, k_{(x_1)}=20,\ k_{(x_2)}=25$	5,99%	5,68%	0%	0%		
10000	$2.3\ 15000/5000, K_{(f_1)} = 800, K_{(f_2)} = 35$	0%	0%	0%	55,55%		
	$4.0\ 0.005/0.002, k_{(I_1)} = 0.015,\ k_{(I_2)} = 0.015$	0%	0%	0%	0%		
	$5.0\ 30000/60, k_{(empt_1)}=1,\ k_{(empt_2)}=200$	100%	0%	11%	0%		

Шифрування за допомогою афінної підстановки з ключами a=5, b=7							
		Монограма Біграма			рама		
L	Номер критерію	$\mathbf{FP}(l=1)$	$\mathbf{FN}(l=1)$	$\mathbf{FP}(l=2)$	$\mathbf{FN}(l=2)$		
	2.0 60000/9000	43,5%	33,33%	88,43%	1,1%		
	$2.1\ 40000/9000, k_{(f_1)}=11, k_{(f_2)}=400$	26,9%	15,73%	26,93%	$5,\!52\%$		
	$2.2 \ 40000/9000, k_{(x_1)} = 2, k_{(x_2)} = 1$	43,5%	33,33%	88,43%	1,4%		
10	$2.3 \ 40000/9000, K_{(f_1)} = 11, K_{(f_2)} = 7$	20,02%	10%	31,4%	5,76%		
	$4.0 \ 0.02/0.04, k_{(I_1)} = 5.2, \ k_{(I_2)} = 0.9$	58,8%	42,4%	31,78%	57,9%		
	$5.0 \ 4000/50, k_{(empt_1)} = 5, \ k_{(empt_2)} = 40$	3,21%	95,6%	7,22%	6,31%		
	2.0 15000/7000	1%	7,8%	25,8%	$12,\!566\%$		
	$2.1\ 15000/7000, k_{(f_1)}=3,\ k_{(f_2)}=520$	0%	100%	0%	$22,\!2\%$		
	$2.2 \ 15000/7000, k_{(x_1)} = 6, k_{(x_2)} = 2$	1%	7,8%	25,8%	$12,\!56\%$		
100	$2.3\ 15000/7000, K_{(f_1)}=320, K_{(f_2)}=40$	0%	1,77%	1,37%	25,44%		
	$4.0 \ 0.02/0.004, k_{(I_1)} = 4.87, \ k_{(I_2)} = 0.92$	50,05%	50,44%	56,53%	77,52%		
	$5.0 \ 4000/50, k_{(empt_1)}=3, \ k_{(empt_2)}=41,25$	20,06%	50,44%	1%	0%		
	2.0 20000/7000	0%	88,84%	0%	21,32%		
	$2.1\ 2000/6000, k_{(f_1)}=7,\ k_{(f_2)}=250$	0%	88,84%	0%	$3,\!65\%$		
	$2.2\ 15000/7000, k_{(x_1)}=20,\ k_{(x_2)}=25$	0%	1%	0%	$21,\!32\%$		
1000	$2.3 \ 15000/7000, K_{(f_1)} = 857, K_{(f_2)} = 35$	0%	1%	0%	0%		
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	54,44%	45,56%	27,5%	10,76%		
	$5.0 \ 7000/50, k_{(empt_1)}=3, \ k_{(empt_2)}=0,54$	98,89%	1,38%	2,67%	0%		
	2.0 20000/5000	100%	0%	79,87%	10,65%		
	$2.1\ 2000/5000, k_{(f_1)}=7,\ k_{(f_2)}=250$	10,65%	0%	0%	$11,\!2\%$		
	$2.2\ 15000/5000, k_{(x_1)}=20,\ k_{(x_2)}=25$	0%	10,65%	0%	0%		
10000	$2.3 \ 15000/5000, K_{(f_1)} = 800, K_{(f_2)} = 35$	0%	10,55%	0%	10%		
	$4.0 \ 0.005/0.002, k_{(I_1)} = 0.015, \ k_{(I_2)} = 0.015$	1,5%	9,54%	0%	0%		
	$5.0 \ 15000/60, k_{(empt_1)}=1, \ k_{(empt_2)}=200$	10,65%	0%	0%	0%		

Шифрування за рівномірно розподіленою послідовністю							
		Монограма Біграма			рама		
L	Номер критерію	$\mathbf{FP}(l=1)$	$\mathbf{FN}(l=1)$	$\mathbf{FP}(l=2)$	$\mathbf{FN}(l=2)$		
	2.0 60000/9000	41,56%	0%	85,23%	0%		
	$2.1\ 40000/9000, k_{(f_1)}=11,\ k_{(f_2)}=400$	2,3%	0%	$65,\!32\%$	2,55%		
	$2.2 \ 40000/9000, k_{(x_1)} = 2, k_{(x_2)} = 1$	41,56%	0%	85,23%	3,53%		
10	$2.3\ 40000/9000, K_{(f_1)}=11, K_{(f_2)}=7$	43,8%	0%	30,84%	22,24%		
	$4.0 \ 0.02/0.04, k_{(I_1)} = 5.2, \ k_{(I_2)} = 0.9$	55,38%	44,76%	12,45%	21,98%		
	$5.0 \ 4000/50, k_{(empt_1)} = 5, k_{(empt_2)} = 40$	2,47%	100%	10,2%	$5,\!36\%$		
	2.0 15000/7000	0%	0%	12,44%	31,69%		
	$2.1\ 15000/7000, k_{(f_1)}=3,\ k_{(f_2)}=520$	0%	0%	5,87%	0%		
	$2.2 \ 15000/7000, k_{(x_1)} = 6, k_{(x_2)} = 2$	0%	0%	23,05%	43,61%		
100	$2.3\ 15000/7000, K_{(f_1)} = 320, K_{(f_2)} = 40$	4%	0%	0%	1%		
	$4.0 \ 0.02/0.004, k_{(I_1)} = 4.87, k_{(I_2)} = 0.92$	54,87%	58,77%	88,53%	51,82%		
	$5.0 \ 4000/50, k_{(empt_1)}=3, \ k_{(empt_2)}=41,25$	1,45%	100%	51,25%	0%		
	2.0 20000/7000	0%	0%	1%	0%		
	$2.1\ 2000/6000, k_{(f_1)}=7,\ k_{(f_2)}=250$	0%	0%	1%	0%		
	$2.2 \ 15000/7000, k_{(x_1)}=20, \ k_{(x_2)}=25$	0%	0%	1%	0%		
1000	$2.3 \ 15000/7000, K_{(f_1)} = 857, K_{(f_2)} = 35$	0%	0%	0%	5,77%		
	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	53,56%	76,45%	78,45%	0%		
	$5.0 \ 7000/50, k_{(empt_1)}=3, \ k_{(empt_2)}=0,54$	89,93%	100%	11,33%	0%		
	2.0 20000/5000	100%	0%	0%	10%		
	$2.1\ 2000/5000, k_{(f_1)}=7,\ k_{(f_2)}=250$	100%	0%	10%	0%		
	$2.2 \ 15000/5000, k_{(x_1)}=20, \ k_{(x_2)}=25$	5,3%	0%	0%	10%		
10000	$2.3 \ 15000/5000, K_{(f_1)} = 800, K_{(f_2)} = 35$	5,3%	0%	10%	0%		
	$4.0 \ 0.005/0.002, k_{(I_1)} = 0.015, \ k_{(I_2)} = 0.015$	1,4%	9%	0%	0%		
	$5.0 \ 25000/60, k_{(empt_1)}=1, \ k_{(empt_2)}=200$	100%	0%	0%	0%		

Шифрування за псевдовипадковою послідовністю							
		Монограма		Біграма			
L	Номер критерію	$\mathbf{FP}(l=1)$	$\mathbf{FN}(l=1)$	$\mathbf{FP}(l=2)$	$\mathbf{FN}(l=2)$		
	2.0 60000/9000	54,32%	17,32%	87,59%	1%		
	$2.1 \ 40000/9000, k_{(f_1)}=11, k_{(f_2)}=400$	44,6%	27,89%	100%	0%		
	$2.2 \ 40000/9000, k_{(x_1)} = 2, k_{(x_2)} = 1$	44,6%	27,89%	88,56%	0%		
10	$2.3 \ 40000/9000, K_{(f_1)} = 11, K_{(f_2)} = 7$	44,6%	27,89%	88,56%	0%		
	$4.0 \ 0.02/0.04, k_{(I_1)} = 5.2, \ k_{(I_2)} = 0.9$	$20,\!66\%$	65,93%	21,54%	1%		
	$5.0 \ 4000/50, k_{(empt_1)} = 5, \ k_{(empt_2)} = 40$	0%	100%	6,22%	$4{,}66\%$		
	2.0 15000/7000	1,33%	5,33%	22,67%	5,53%		
	$2.1\ 15000/7000, k_{(f_1)}=3,\ k_{(f_2)}=520$	1,33%	5,89%	13,23%	$1,\!5\%$		
	$2.2 \ 15000/7000, k_{(x_1)} = 6, k_{(x_2)} = 2$	1,33%	5%	22,5%	0%		
100	$2.3\ 15000/7000, K_{(f_1)} = 320, K_{(f_2)} = 40$	0%	15,65%	15,5%	0%		
	$4.0 \ 0.02/0.004, k_{(I_1)} = 4.87, \ k_{(I_2)} = 0.92$	31%	47,31%	1%	18,9%		
	$5.0 \ 4000/50, k_{(empt_1)} = 3, \ k_{(empt_2)} = 41,25$	1%	99%	1%	0%		
	2.0 20000/7000	0%	5,64%	0%	2,44%		
	$2.1\ 2000/6000, k_{(f_1)}=7,\ k_{(f_2)}=250$	0%	5,64%	0%	0%		
	$2.2\ 15000/7000, k_{(x_1)}=20,\ k_{(x_2)}=25$	0%	5,5%	0%	0%		
1000	$2.3 \ 15000/7000, K_{(f_1)} = 857, K_{(f_2)} = 35$	0%	0%	0%	0%		
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	1%	0%	0%	0%		
	$5.0 \ 7000/50, k_{(empt_1)} = 3, \ k_{(empt_2)} = 0.54$	78,5%	91,8%	2,53%	0%		
	2.0 20000/5000	100%	5,64%	88,42%	0%		
	$2.1\ 2000/5000, k_{(f_1)}=7,\ k_{(f_2)}=250$	100%	5,64%	0%	$5,\!3\%$		
	$2.2\ 15000/5000, k_{(x_1)}=20,\ k_{(x_2)}=25$	0%	5,63%	0%	0%		
10000	$2.3\ 15000/5000, K_{(f_1)} = 800, K_{(f_2)} = 35$	0%	15,87%	0%	0%		
	$4.0 \ 0.005/0.002, k_{(I_1)} = 0.015, \ k_{(I_2)} = 0.015$	46,24%	100%	0%	$9,\!4\%$		
	$5.0\ 100000/60, k_{(empt_1)}=1,\ k_{(empt_2)}=200$	100%	10%	0%	0%		

4.3 Структурний критерій

Алгоритм стиснення даних, реалізований у бібліотеці zlib Python, використовує модифікацію алгоритму DEFLATE, який є основою для багатьох популярних архіваторів. Була написана функція calculate_compression_ratio, яка обраховує коефіцієнт стиснення заданого тексту. Функція приймала на вхід текст та довжину тексту. Логіка стиснення в тому, що алгоритм стиснення zlib перетворює текст в байти з використанням кодировки UTF-8. Це необхідно, тому що zlib працює з байтами, а не з рядками тексту . Для побудови структурного критерію використовувася функція structure_criteria. Для кожного рядка порівнюються коефіцієнты стиснення випадкової послідовності і відповідного реального рядка. Якщо різниця між ними більше за порогове значення limit рахуємо, що текст є структурованим, тобто приймає гіпотезу H_1 , інакше приймаємо H_0 .

4.4 Опис труднощів

Основними труднощами особисто для мене стали великий об'єм роботи і підбір порогових значень для критеріїв. Також виникали труднощі із написанням функцій для обрахунку критеріїв, але їх було подолано.

4.5 Висновки

В ході цій роботі було програмно реалізовано алгоритми для іфирування текстів і генерації випадкових послідовностей. А також було реалізовано критерії перевірки гіпотез, які визначають, чи є вхідна послідовність осмимленим тектом чи випадковою послідовністю. Окрім цього були реалізовані функції стиснення та струкутурний критерій, який викоритсовує алгоритм стиснення DEFLATE. Результатом роботи є таблиці з оцінками помилок першого та другого роду. Проаналізувавши результати, виявили, що критерії 1 2.0 та 2.1 мають найбільш ефективні реузультати для невеликих довжин послідовностей L=10 та L=100. Це цілком очевидно, так як при великих довжинах тексту більшість частотних біграм, ймовірно, з'являться в тексті, а ймовірність появи монограм буде ще вищою. Критерій 4.0 навпаки працює краще на довжинах L=1000 та L=10000. Структурний критерій, застосований до відкритого тексту довжиною L=1000 символів і відпоідного шифротексту за Віженером з ключем 5, показав, що помилки першого та другого роду будуть 0, так як критерій у всіх випадках визначив відкритий текст за відкритий. Однак для текстів довжиною L=10 та L=100 критерій видає гірші результати.