3. Algoritmo de Horner (25 %)

3.1. Introducción

En este ejercicio veremos el **algoritmo de Horner**, para evaluar polinomios de manera eficiente. En concreto, evalúa un polinomio de grado n utilizando solamente n multiplicaciones. La clave detrás del algoritmo de Horner es la descomposición de un polinomio p(x) de grado n de la siguiente manera:

$$p(x,d) = d_1 + x(d_2 + x(d_3 + \dots + x(d_n + d_{n+1}x) \dots))$$

donde d representa los coeficientes del polinomio de grado n. En concreto, d_1 es la constante, mientras que d_{n+1} es el coeficiente asociado al término x^n .

3.2. Enunciado del problema

Se pide implementar el algoritmo de Horner según la siguiente descomposición **RECURSIVA**:

$$f(d, \text{inic}, \text{fin}, x) = \begin{cases} d_{\text{fin}} & \text{si inic} = \text{fin} \\ d_{\text{inic}} + x \cdot f(d, \text{inic} + 1, \text{fin}, x) & \text{si inic} < \text{fin} \end{cases}$$

Se supone que n < 10. De esta manera, f(d, 1, n+1, x) devuelve el valor del polinomio (definido por d) evaluado en x.

3.2.1. Descripción de la entrada

La primera línea de la entrada contendrá el grado del polinomio n. La segunda línea contendrá los n+1 coeficientes (reales) del polinomio p a evaluar. El primer número introducido será el coeficiente asociado al término de mayor grado, mientras que el último será la constante del polinomio. La tercera línea contendrá el valor real x, y un salto de línea.

3.2.2. Descripción de la salida

Se escribirá el resultado de evaluar p(x,d), con exactamente 3 cifras decimales, seguido de un salto de línea.

3.2.3. Ejemplo de entrada

3.2.4. Salida para el ejemplo de entrada