EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 22: OPAMP for ADC

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Agenda

- OPAMP Types
 - Telescopic
 - Folded-cascode
 - Gain-Boosting
 - Two-stage
 - Fully-differential

- Simulating OPAMP
 - DC, AC, stb, Transient

OPAMP Gain Requirement for N-bit ADC

OPAMP is always used in closed loop configuration.

OPAMP Closed-loop Response:

$$V_{\text{out}} = G \times V_{\text{in}} \left(\frac{1}{1 + \frac{1}{A \times \beta}} \right) \left(1 - e^{-\frac{t}{\tau}} \right)$$

Assume Gain Error should be less than 1/4 LSB

$$\frac{1}{\beta A} < \frac{1}{2} LSB \longrightarrow \frac{1}{\beta A} < \frac{1}{2} \frac{V_{FS}}{2^N}$$

$$A > \frac{2 \cdot 2^N}{\beta \cdot V_{FS}}$$

Resolution	Full Scale	Beta	Gain (dB)	Gain (dB)
N	V _{FS} (Volt)	β	$2 \cdot 2^{N} (N) / (\beta \cdot V_{FS})$	20log(x)
10	0.8	1	5120	74
10	0.8	0.5	10240	80
11	0.8	1	10240	80
11	8.0	0.5	20480	86
12	8.0	1	20480	86
12	8.0	0.5	40960	92
13	8.0	1	40960	92
13	8.0	0.5	81920	98
14	0.8	1	81920	98
14	0.8	0.5	163840	104

OPAMP Bandwidth Requirement for N-bit ADC

Assume Settling Error should be less than 1/2 LSB

$$e^{-t/\tau} < \frac{1}{2} LSB \rightarrow e^{-t/\tau} < \frac{1}{2} \frac{V_{FS}}{2^N} \rightarrow \frac{t}{\tau} > (N+1) ln(2) - ln(V_{FS})$$

$$t = \frac{T_s}{2} = \frac{1}{2f_s}$$

$$\tau = \frac{1}{\omega_{-3dB}} = \frac{1}{2\pi f_{-3dB}} = \frac{1}{2\pi \beta f_u}$$

$$\frac{t}{\tau} = \frac{1}{2f_s} 2\pi \beta f_u > (N+1)ln(2) - ln(V_{FS})$$

$$f_u > \frac{f_s}{\pi \beta} [(N+1)ln(2) - ln(V_{FS})]$$

$$ln(2) = 0.693$$

Resolution	Full Scale	Beta	Sampling Rate	UGB
N	V _{FS} (Volt)	β	fs	fu
10	0.8	1	5.00E+07	1.25E+08
10	0.8	0.5	5.00E+07	2.50E+08
11	0.8	1	5.00E+07	1.36E+08
11	0.8	0.5	5.00E+07	2.72E+08
12	0.8	1	5.00E+07	1.47E+08
12	0.8	0.5	5.00E+07	2.94E+08
13	0.8	1	5.00E+07	1.58E+08
13	0.8	0.5	5.00E+07	3.16E+08
14	0.8	1	5.00E+07	1.69E+08
14	8.0	0.5	5.00E+07	3.38E+08

Example OPAMP Circuits

Example OPAMP in 14-bit Pipelined ADC

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 2001

A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input

Wenhua (Will) Yang, Member, IEEE, Dan Kelly, Member, IEEE, Iuri Mehr, Member, IEEE, Mark T. Sayuk, Member, IEEE, and Larry Singer, Member, IEEE

Amplifier in Flip-around THA

Example OPAMP in 14-bit Pipelined ADC

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 2001

A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input

Wenhua (Will) Yang, Member, IEEE, Dan Kelly, Member, IEEE, Iuri Mehr, Member, IEEE, Mark T. Sayuk, Member, IEEE, and Larry Singer, Member, IEEE

Amplifier in Stage 1

2-Stage OPAMP with NMOS Diff pair

Technology: 0.18um CMOS VDD=1.8V Lmin = 180nm

Use $L \ge 500$ nm

Ibias = 20uA

Spec:

DC gain = 60dB

GBW = 30MHz

 $PM = 60^{\circ}$

SR = 20V/us

Cload = 2pF

Power < 300uW

Small-Signal Model of the OPAMP

By applying KCL, we can get the following approximate expression for 2 LHP poles and 1 RHP zero in the transfer function.

$$p1 = -1/(R_1g_{m6}R_2C_c)$$

$$p2 = -g_{m6}/(C_1 + C_2)$$

$$z = g_{m6}/C_c$$

$$Av = Av1 Av2 = -g_{m2}R_1g_{m6}R_2$$

GBW = UGB = Av x p1 =
$$g_{m2}/C_c$$

For 60 deg PM, p2 > 2.2 GBW, and for 45 deg PM, p2 > 1.2 GBW

For
$$z = 10$$
 GBW, $g_{m6} = 10$ g_{m2}

$$C_c > 0.22 C_2$$

Simulation Steps

1. DC Simulation

- Construct the OPAMP schematic
- Run a DC simulation
- Check the operating point information by choosing Results→Print
 →DC Operating Points
- Make sure that all transistors are in Saturation (region=2)

2. AC Simulation

- Try RC Feedback approach to get the AC response
- Run stb analysis to check the stability

3. Transient Simulation

- Appy 10mV step pulse to check the small-signal transient response
- Appy 500mV step pulse to check the large-signal transient response

DC Operating Points

To get the DC operating point information after you run the dc simulation, Choose Results→Print →DC Operating Points and then click on the transistor in the schematic.

DC Gain Calculation from Operating Points

DC Gain =
$$Av1 \times Av2$$

$$Av1 = gm2 \times (ro2//ro4) = gm2 / (gds2 + gds4)$$

$$Av2 = gm6 \times (ro6//ro7) = gm6 / (gds6 + gds7)$$

From simulated DC operating point information of the circuit in slide 2,

$$gm2 = 125.9u$$

$$gds2 = 1.84u$$

$$gds4 = 3.53u$$

$$gm6 = 2.344m$$
 $gds6 = 41.6u$

$$gds6 = 41.6u$$

$$gds7 = 32.16u$$

$$Av1 = 125.8 / (1.84 + 3.53) = 23.4 = 27.4 dB$$

$$Av2 = 2344 / (41.6+32.16) = 31.8 = 30 dB$$

OPAMP AC simulation Setup

Two Simulation Approaches

1. RC Feedback

Stability analysisChoose "stb" in Cadence Analysis

DC voltage source for probing. See previous page.

AC Simulation Test Bench

RC-Feedback approach

For stb analysis

AC Simulation Test Bench using RC-feedback

RC-feedback approach

Plotting the AC simulation Results

After running the AC simulation, choose Results→Direct Plot→AC Gain & Phase and then click on the output node (vout) and the input node (inp) to get the ac plot shown in next page.

AC Simulation Result using RC Feedback

AC Simulation Test Bench using stb analysis

For stb analysis

AC simulation using stb analysis

After running the stb analysis, choose Results→Direct Plot→Main Form and then click on Plot to get the ac plot shown in slide 14

AC Simulation Result using stb analysis

Stability Summary from stb analysis

After running the stb analysis, choose Results→Direct Plot→Main Form and then click on Stability Summary

Two-Stage OPAMP with RC Compensation

$$A(s) = \frac{A_0(1+\frac{s}{\omega_z})}{(1+\frac{s}{\omega_{p1}})(1+\frac{s}{\omega_{p2}})}$$

$$\omega_z = \frac{-1}{C_c(\frac{1}{g_{m7}} - R_c)}$$

Choice of Rc

$$A(s) = \frac{A_0(1 + \frac{s}{\omega_z})}{(1 + \frac{s}{\omega_{p1}})(1 + \frac{s}{\omega_{p2}})}$$

$$\omega_z = \frac{-1}{C_c(\frac{1}{g_{m7}} - R_c)}$$

•
$$R_c = 0$$
 $\rightarrow \omega_z = \frac{-1}{C_c(\frac{1}{q_{m7}})} = \frac{-g_{m7}}{C_c}$ \rightarrow RHP Zero! Stability Issue

$$\bullet \ R_c = \frac{1}{g_{m7}} \quad \to \quad \omega_z = \infty$$

•
$$R_c > \frac{1}{g_{m7}}$$

$$\rightarrow \omega_z = \omega_{p2}$$

$$\frac{-1}{C_c(\frac{1}{g_{m7}}-R_c)} = \frac{g_{m7}}{C_1+C_2}$$

•
$$R_c \gg \frac{1}{g_{m7}}$$

$$\frac{-1}{c_c(\frac{1}{g_{m7}}-R_c)} = \frac{g_{m7}}{c_1+c_2} \longrightarrow R_c = \frac{1}{g_{m7}} \left(1 + \frac{c_1+c_2}{c_c}\right)$$

$$\omega_z \approx \frac{1}{R_c C_c} = \alpha \omega_u = \alpha \frac{g_{m1}}{C_c}$$
 \rightarrow

$$\alpha = 1.7$$
 from Caruson, Johns, Martin

$$R_c = \frac{1}{\alpha g_{m1}}$$

Equation 1

Two-stage RC compensation

1.
$$\frac{(\frac{W}{L})_6}{(\frac{W}{L})_7} = \frac{(\frac{W}{L})_{11}}{(\frac{W}{L})_{13}}$$

2.
$$(\frac{W}{L})_{12} = (\frac{W}{L})_{13}$$

3.
$$(\frac{W}{L})_9 = 0.2 (\frac{W}{L})_7$$

Bias Circuit

Key for cascode biasing: Maintain current density

Bias for Tail Current Source

Bias for Vb1

Single-Ended vs. Fully-Differential OPAMP

CMFB for Fully-Differential OPAMP

Random mismatches between the top and bottom current sources cause the CM level to fall or rise considerably

→ We need CMFB to set the voltage to the desired DC level

Fully Differential Telescopic OTA with CMFB Example 1

Test Bench for Fully Differential OPAMP

Test bench to simulate the open loop response of the fully-differential opamp

→ Use Inductor with large value

You may not need the inductor in the test bench if you have a continuous-time CMFB.

Common-Mode Loop → **Two-Stage**

Gain-Boosting Cascode Amplifier

Chang-Hyuk Cho, PhD Thesis, Georgia Institute of Technology, 2005 "A Power Optimized Pipelined ADC Design in Deep Submicron CMOS Technology"

Gain-Boosting Cascode Amplifier

Original Cascode Amp

$$\frac{V_{out}}{V_{in}}(s) = \frac{A_0}{\left(1 + \frac{s}{\omega_1}\right)\left(1 + \frac{s}{\omega_2}\right)}$$

Gain Boosting Amp

$$A_{boost}(s) = \frac{A_{boost}}{(1 + \frac{s}{\omega_3})}$$

$$\omega_1 \ll \omega_3 \cdot (A_{boost} + 1)$$

$$\beta \cdot \omega_{u,tot} < \omega_{u,boost} < \omega_2$$

Unity Gain frequency of the gain boosting amp should be Larger than -3dB frequency of the original amp and Lower than first non-dominant pole of the original amp

CMFB Example 2

CMFB Example 3

Test Bench for Fully-Differential AMP ac simulation

Inductors to set the DC bias point in unity gain feedback.

Test Bench For AC simulation of Cascode Amp

Gain-Boosted Telescopic OPAMP with SC CMFB

Gain-Boosted Folded-Cascode AMP with SC CMFB

