Feature Selection

Lesson 6 – Section 3

PROFESSIONAL & CONTINUING EDUCATION

Overview

- Why feature selection?
- 3 types of feature selection methods
- Mutual information

Feature Selection

- Process of selecting a subset of features that are good predictors of the target
- Useful for
 - -Controlling complexity of model
 - Speed up model learning without reducing accuracy
 - -Improve generalization capability

PROFESSIONAL & CONTINUING EDUCATION

Model Selection vs Feature Selection

- Model selection includes selecting:
 - -Model algorithm
 - –Model algorithm hyperparameters
 - -Features to be used to train the models
- Feature selection
 - -Select features to be used to train the models

PROFESSIONAL & CONTINUING EDUCATION

Why We Need Feature Selection?

Curse of Dimensionality

- The required number of samples (to achieve the same accuracy) grows exponentially with the number of variables!
- In practice: number of training examples is fixed!
 the classifier's performance will degrade for a large number of features!

In many cases the information lost by discarding variables is made up for by a more accurate mapping/sampling in the lower-dimensional space!

PROFESSIONAL & CONTINUING EDUCATION

Problems of High-Dimensional Data

- High-dimensional data is often notorious to tackle due to the curse of dimensionality
 - –Increase storage and running time
 - -Overfit the machine learning models
 - -Require more data
- The intrinsic dimension of data may be small
 - -The number of genes responsible for a certain disease

Curse of Dimensionality – Required Samples

- Data sparsity becomes exponentially worse as feature dimension increases
 - -Conventional distance metrics become ineffective

-All points in the high-dimensional space look equally distant

http://nikhilbuduma.com/2015/03/10/the-curse-of-dimensionality/

Feature Selection, 3 types of methods (1)

Filter Methods, select a subset of features before training a model, e.g.

- -Correlation with target,
- -Mutual Information between feature and target
- •Simple to implement, and have reasonable performance

Feature Selection, 3 types of methods (2)

Wrapper Methods, search combination of feature space by training and evaluating model using a subset of features, e.g.

- -Forward, backward, step-wise feature selection,
- -Genetic algorithms.
- Computationally expensive and prone to over-fitting

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Feature Selection, 3 types of methods (3)

Embedded Methods, feature subset is chosen as part of model training, e.g.

- –LASSO (L-1) regression, Regularized decision trees, random forests
- •Typically robust to over-fitting, but has hyper parameters that will need to be fit using a validation data

Filter-Based Feature Selection

Filter-based Feature Selection

- Correlation with target variable
 - –A good starting point
 - –If Y is categorical variable (classification):
 - •Use chi-square test to decide the correlation between each categorical X variable and Y variable
 - •Use ANOVA test to decide the correlation between each numerical X variable and Y variable
 - –If Y is continuous variable (regression):
 - •Use ANOVA test to decide the correlation between each categorical X variable and Y variable
 - •Use correlation between each numerical X variable and Y variable

 | PROFESSIONAL & CONTINUING EDUCATION UNIVERSITY of WASHINGTON | PROFESSIONAL & CONTINUING EDUCATION UNIVERSITY of WASHINGTON |

Filter-based Feature Selection

<mark>Alert</mark>:

If x1 and x2 are highly correlated, and x1 and Y are highly correlated, both x1 and x2 will be selected based on correlation with Y.

• Strong correlations in X will bring some challenge for some machine learning models, such as linear regression model.

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Is Correlation Always a Good Choice?

- It makes sense for linear regression (logistic regression) model.
 Since linear regression model only looks at linear relationship
- Does not make sense for nonlinear models such as tree-based models
- Cannot capture nonlinear relationship between X and Y

PROFESSIONAL & CONTINUING EDUCATION

Mutual Information

- Captures Statistical Dependency between Two Variables $Pr(X,Y) = Pr(X) \times Pr(Y)$
 - -If two variables are statistically independent

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(rac{p(x,y)}{p(x) \, p(y)}
ight)$$

$$\hat{f}(x) = \frac{1}{Nh\sqrt{2\pi}} \sum_{i=1}^{N} \exp(\frac{-(x-x_i)^2}{2h^2}).$$

 Estimate Pr(X) from observations by using a kernel function

PROFESSIONAL & CONTINUING EDUCATION

Summary

Feature Selection to avoid high-dimension sparse data

- >Filter Methods
 - Subset of data before splitting based on correlation or mutual information
- >Mutual Information
 - -Captures the statistical dependency between 2 variables

