Amendments to the Claims

- 1. (Currently amended) A method for generating multiplier coefficients for a (1:m) mixer, comprising the steps of:
 - (a) performing recursive calculation of a multiplier set (MS);
 - (b) selecting a multiplier group (MG) consisting of a number of multipliers from the calculated multiplier set (MS) in dependence on a predetermined signal/noise ratio (SNR_{NOM}) of the mixer; and
 - (c) writing the multiplier coefficients (MC) into a memory of the mixer in accordance with the selected multiplier group (MG); and
 - (d) during the step of recursive calculation, after initialization of a first multiplier

 V₀ of the multiplier set (MS) to zero (V₀=0) and initialization of a second

 multiplier V₁ of the multiplier set (MS) to one (V₁=1), further multipliers of

 the multiplier set (MS) are calculated in accordance with the following

 recursion rule:

 $V_{i+2} = V_i + V_{i+1} \text{ for all } i = 0, 1, 2 \dots i_{\text{max}}.$ wherein the mixer comprises a 1:10 mixer.

2. (Cancelled). The method as recited in claim 1, wherein the mixer comprises a 1:10 mixer, and

during the step of recursive calculation, after initialization of a first multiplier V_0 of the multiplier set (MS) to zero (V_0 =0) and initialization of a second multiplier V_1 of the multiplier set (MS) to one (V_1 =1), further multipliers of the multiplier set (MS) are calculated in accordance with the following recursion rule:

$$V_{i+2} = V_i + V_{i+1}$$
 for all $i = 0, 1, 2 \dots i_{max}$

3. (Currently amended) The method as recited in claim 2 claim 1, wherein the step of selecting a multiplier group (MG) comprises:

selecting a multiplier group (MG) from the multiplier set (MS) consisting of two multipliers (V_i, V_{i+1}) , the run index i of which produces a signal/noise ratio $(SNR) = 20 \log \left[(1 + \sqrt{5})/2 \right]^2 \cdot (i + 1/2)$ that is higher than the predetermined signal/noise ratio (SNR_{NOM}) of the mixer.

4. (Currently amended) The method as recited in claim 3, wherein the step of writing the multiplier coefficients into a memory of the mixer comprises:

writing the following multiplier coefficients (MC) into the memory of the mixer: $MC = (0, V_i, V_{i+1}, V_{i+1}, V_i, 0, -V_i, -V_{i+1}, -V_{i+1}, -V_i).$

5. (Currently amended) The method as recited in claim 2 claim 1, wherein the step of selecting a multiplier group (MG) comprises:

1997年 開發 经营销额

selecting a multiplier group (MG) from the multiplier set (MS) consisting of three multipliers (V_i , V_{i+1} , V_{i+2}), the run index i of which produces a signal/noise ratio (SNR) = $20 \log \left[(1 + \sqrt{5})/2 \right]^2 \cdot (i+1)$ that is higher than the predetermined signal/noise ratio (SNR_{NOM}) of the mixer.

6. (Previously presented) The method as recited in claim 5, wherein the step of writing multiplier coefficients into a memory of the mixer comprises:

writing the following multiplier coefficients (MC) into the memory of the mixer: $MC = (V_i, V_{i+2}, 2*V_{i+2}, V_{i+2}, V_{i}, -V_{i}, -V_{i+2}, -2*V_{i+2}, -V_{i+2}, -V_{i}).$

- 7. (Currently amended) A method for generating multiplier coefficients for a (1:m) mixer, comprising the steps of:
 - (a) performing recursive calculation of a multiplier set (MS);
- (b) selecting a multiplier group (MG) consisting of a number of multipliers

 from the calculated multiplier set (MS) in dependence on a predetermined

 signal/noise ratio (SNR_{NOM}) of the mixer; and
 - (c) writing the multiplier coefficients (MC) into a memory of the mixer in accordance with the selected multiplier group (MG); and
 - (d) The method as recited in claim 1, wherein the mixer comprises a 1:8 mixer, and during the step of recursive calculation, after initialization of a first multiplier V₀ of the multiplier set to zero (V₀=0) and initialization of a second multiplier V₁ of the multiplier set (MS) to one (V₁=1), further multipliers of the multiplier set (MS) are calculated in accordance with the following recursion rule:

$$V_{i+2} = V_i + V_{i+1}$$

$$V_{i+3} = V_i + V_{i+2}$$

for all even-numbered i = 0, 2, 4.

8. (Previously presented) The method as recited in claim 7, wherein the step of selecting a multiplier group (MG) comprises:

selecting the multiplier group (MG) from the multiplier set (MS) consisting of two multipliers (V_i, V_{i+1}) the run index i of which produces a signal/noise ratio $SNR = 20 \log (1 + \sqrt{2}) *i$ that is higher than the predetermined signal/noise ratio (SNR_{NOM}) of the mixer.

9. (Previously presented) The method as recited in claim 1, wherein the step of writing multiplier coefficients into a memory of the mixer comprises:

writing the following multiplier coefficients (MC) into the memory of the mixer:

$$MC = (0, V_i, V_{i+1}, V_i, 0, -V_{i+1}, -V_{i+1}, -V_i).$$

10. (Previously presented) The method as recited in claim 7, wherein the step of selecting a multiplier group (MG) comprises:

selecting a multiplier group (MG) from the multiplier set (MS) consisting of two multipliers (V_i, V_{i+1}) the run index i of which produces a signal/noise ratio SNR = 20 log [1 + $\sqrt{2}$] (i + 1) that is higher than the predetermined signal/noise ratio (SNR_{NOM}) of the mixer.

11. (Previously presented) The method as recited in claim 10, wherein the step of writing multiplier coefficients into a memory of the mixer comprises:

writing the following multiplier coefficients (MC) into the memory of the mixer: $MC = (V_i, V_{i+2}, V_{i+2}, V_i, -V_i, -V_{i+2}, -V_i)$

- 12. (Currently amended) A method for generating multiplier coefficients for a (1:m) mixer, comprising the steps of:
 - (a) performing recursive calculation of a multiplier set (MS);
- (b) selecting a multiplier group (MG) consisting of a number of multipliers

 from the calculated multiplier set (MS) in dependence on a predetermined

 signal/noise ratio (SNR_{NOM}) of the mixer; and
- (c) writing the multiplier coefficients (MC) into a memory of the mixer in accordance with the selected multiplier group (MG); and
 - The method as recited in claim 1, wherein the mixer comprises a 1:12 mixer, and during the step of recursive calculation, after initialization of a first multiplier V₀ of the multiplier set (MS) to one (V₀=1) and initialization of a second multiplier V₁ of the multiplier set (MS) to one (V₁=1), further multipliers of the multiplier set (MS) are calculated in accordance with the following recursion rule:

$$V_{i+2} = V_i + 2 * V_{i+1}$$

$$V_{i+3} = V_i + V_{i+1}$$

$$V_{i+4} = V_i + 2 * V_{i+2}$$

 $V_{i+5} = V_i + 3 * V_{i+1}$
for all $i = 0, 4, 8 \dots i_{max}$

13. (Previously presented) The method as recited in claim 12, wherein the step of selecting a multiplier group (MG) comprises:

selecting a multiplier group (MG) from the multiplier set (MS) consisting of two multipliers (V_i, V_{i+2}), the run index i of which produces a signal/noise ratio SNR = 20log $\left[\sqrt{2+\sqrt{3}}\right] \cdot (i+2)$ that is higher than the predetermined signal/noise ratio (SNR_{NOM}) of the mixer.

14. (Previously presented) The method as recited in claim 13, wherein the step of writing multiplier coefficients into a memory of the mixer comprises:

writing the following multiplier coefficients (MC) into the memory of the mixer: $MC = (0, V_i, V_{i+2}, 2*V_i, V_{i+2}, V_i, 0, -V_i, -V_{i+2}, -2*V_i, -2*V_{i+2}, -V_i).$

15. (Previously presented) The method as recited in claim 12, wherein the step of selecting a multiplier group (MG) comprises:

selecting a multiplier group (MG) from the multiplier set (MS) consisting of two multipliers (V_{i+3} V_{i+4}) the run index i of which produces a signal/noise ratio SNR + 20 log $\left[\sqrt{2+\sqrt{3}}\right]$ · (i + 5) that is higher than the predetermined signal/noise ratio SNR_{NOM} of the mixer.

16. (Previously presented) The method as recited in claim 15, wherein the step of writing multiplier coefficients into a memory of the mixer comprises:

writing the following multiplier coefficients (MC) into the memory of the mixer: $MC = (V_i, V_{i+3}, V_{i+4}, V_{i+4}, V_{i+3}, V_i, -V_i, -V_{i+3}, -V_{i+4}, -V_{i+4}, -V_{i+3}, -V_i)$

- 17. (Previously presented) The method as recited in claim 1, further comprising the step of:
 resolving the multipliers of the multiplier groups (MG) into Horner coefficients.
- 18. (Currently amended) A mixer for mixing a digital input signal with a sampled sinusoidal signal, comprising:
- (a) a multiplier unit for multiplying the digital input signal by multiplier coefficients (MC);
- (b) a coefficient memory for storing multiplier coefficients (MC) which can be are applied to the multiplier unit by means of an address generator, and
- (c) a connectable coefficient generator for generating the multiplier coefficients (MC) by recursive calculation of a multiplier set (MS) from which a multiplier group (MG) consisting of a number of multipliers is selected in dependence on a predetermined signal/noise ratio SNR_{NOM} of the mixer and corresponding multipliers (MC) are written into the coefficient memory; and
- (d) wherein the mixer comprises a 1:10 mixer, and wherein the mixer is operable during a step of recursive calculation, after initialization of a first multiplier V_0 of the multiplier set (MS) to zero (V_0 =0) and initialization of a second multiplier V_1 of the multiplier set (MS) to one (V_1 =1), to calculate further multipliers of the multiplier set (MS) in accordance with the following recursion rule:

 $V_{i+2} = V_i + V_{i+1}$ for all $i = 0, 1, 2 \dots i_{max}$.

- 19. (Currently amended) A mixer for mixing a digital input signal with a sampled sinusoidal signal, comprising:
- (a) a calculating circuit for calculating multipliers (MC) of a multiplier group (MG), the calculating circuit having a number of dividing circuits for dividing the digital input signal applied to an input of the mixer, and a number of switchable adders/subtractors, wherein dividing factors of the dividing circuits are Horner coefficients of the resolved

<u>calculated</u> multipliers (MC) of the multiplier group (MG), and adders/subtractors are controlled in dependence on a first control bit (SUB/ADD) read out of a memory of the mixer;

- (b) a demultiplexer for switching through a zero value or the multipliers (MC) calculated by the calculating circuit in dependence on a second control bit (zero) read out of the memory; and
- (c) a sign circuit for outputting the positive or negative value switched through by the demultiplexer to an output of the mixer in dependence on a third control bit (SIGN) read out of the memory.
- 20. (Previously presented) The mixer as recited in claim 19, wherein the dividing circuits comprise shift registers.
- 21. (Previously presented) The mixer as recited in claim 19, further comprising: an address generator for reading out the control bits from the memory.
- 22. (Previously presented) The mixer as recited in claim 21, wherein the memory comprises a read-only memory (ROM).
- 23. (Previously presented) The mixer as recited in claim 21, wherein the memory is programmable.