

(19) World Intellectual Property Organization  
International Bureau(43) International Publication Date  
22 March 2001 (22.03.2001)

PCT

(10) International Publication Number  
**WO 01/20129 A2**

(51) International Patent Classification<sup>7</sup>: E21B 47/12, 47/04 (72) Inventors; and  
 (75) Inventors/Applicants (*for US only*): VAN DER ENDE, Andre, Martin [NL/GB]; The Old School House, Udny Green, Ellon, Aberdeenshire AB41 7RS (GB). COPE, John [GB/GB]; 47 Ninian Place, Portlethen, Aberdeen AB12 4QW (GB).

(21) International Application Number: PCT/GB00/03491

(22) International Filing Date: 12 September 2000 (12.09.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 9921554.3 14 September 1999 (14.09.1999) GB

(71) Applicant (*for all designated States except US*): MACHINES (U.K.) LIMITED [GB/GB]; The Old School House, Udny Green, Ellon, Aberdeenshire AB41 7RS (GB).

(74) Agent: MURGITROYD &amp; COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).

(81) Designated States (*national*): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.*[Continued on next page]*

(54) Title: APPARATUS AND METHODS RELATING TO DOWNHOLE OPERATIONS



WO 01/20129 A2

(57) Abstract: A communication system for use in a wellbore, a downhole tool, and a method includes a transmitter coupled to a wireline, and a receiver located remotely from the transmitter. The wireline is capable of acting as an antenna for the transmitter. The wireline is a slickline, and the transmitter may be associated with, provided on, or an integral part of a downhole tool or tool string. The transmitter typically transmits data collected or generated by the downhole tool or the like to the receiver, which is preferably located at, or near, the surface of the wellbore. The wireline is typically provided with an insulating coating. Also, a distance measurement apparatus and a method for measuring the distance travelled by a wireline includes at least one sensor coupled to the wireline, and the sensor is capable of sensing known locations in a wellbore.



(84) **Designated States (regional):** ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

**Published:**

— *Without international search report and to be republished upon receipt of that report.*

*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

1       **"Apparatus and Methods Relating to Downhole**  
2       **Operations"**

3

4       The present invention relates to apparatus and  
5       methods relating to downhole operations, and  
6       particularly, but not exclusively, to wireline  
7       operations.

8

9       Wireline is a term commonly used for the operation of  
10      deploying and/or retrieving tools or the like using a  
11      wire, the wire being one of several different types  
12      of construction. For example, slicklines are wires  
13      which comprise a single strand steel or alloy piano-  
14      type wire which currently have a diameter of around  
15      0.092 inches to 0.125 inches (approximately 2.34mm to  
16      3.17mm) in use, with the possibility of increasing  
17      this to 0.25 inches (approximately 6.25mm) in the  
18      future.

19

WO 01/20129

1       Wirelines may also be of a braided construction which  
2       can also carry single or multiple electrical  
3       conductor wires through its core and is typically of  
4       a diameter in the order of 3/16 of an inch  
5       (approximately 4.76mm) or above. Slick tubing, more  
6       commonly known as coiled tubing, is in the form of a  
7       continuous hollow-cored steel or alloy tubing which  
8       is usually of a diameter greater than the preceding  
9       types of wireline.

10      Wirelines are conventionally used to insert and/or  
11      retrieve downhole tools from a wellbore or the like.  
12      The downhole tools are typically deployed to perform  
13      various downhole functions and operations such as the  
14      deployment and setting of plugs in order to isolate a  
15      section of the wellbore. It is advantageous and  
16      often essential to know the distance of travel of the  
17      wireline so that the location of the tool within the  
18      wellbore is known.

20      Wirelines are conventionally stored on a winching  
21      unit typically located at the surface in the  
22      proximity of the top of a borehole. It should be  
23      noted that "surface" in this context is to be  
24      understood as being either atmospheric above ground  
25      or sea level, or aquatic above the seabed. Although  
26      the methods and apparatus employed in wireline  
27      operations vary in detail, the wireline is commonly  
28      introduced into the wellbore (the wellbore  
29      conventionally being cased, as is known) via a series  
30      of sheaves or guide rollers. The sheaves or guide  
31

1       rollers facilitate, in the first instance, a  
2       substantially vertical orientation of the wireline.  
3       The wireline passes through a substantially  
4       vertically-orientated superstructure tube having an  
5       internal open-ended bore, the tube being positioned  
6       on top of a wellhead. Thus, any downhole tool can be  
7       introduced into the wellbore.

8

9       The wireline is coupled at its distal (downhole) end  
10      to the downhole tool, typically via a part of the  
11      tool known as a rope-socket. The rope-socket is  
12      conventionally used to provide a mechanical  
13      connection between the wireline and the downhole tool  
14      (or a string of downhole tools known as a tool  
15      string).

16

17      The conventional method of measuring the downhole  
18      tool depth is to run the wireline against a measuring  
19      wheel which is a pulley wheel of known diameter. It  
20      should be noted that use of "depth" in this context  
21      is to be understood as being the trajectory length of  
22      the downhole tool, which may be different from  
23      conventional depth if the wellbore is deviated, for  
24      example. In order to calculate the distance of  
25      travel of the wireline, a number of variable factors  
26      must be known. It is a prerequisite that the  
27      rotational direction of the pulley wheel, the number  
28      of revolutions thereof, the diameter of the pulley  
29      wheel and, depending upon the type of pulley wheel  
30      (that is, whether a point-type contact or arc for  
31      example), the diameter of the wireline, must all be

1 known before the distance of travel of the wireline  
2 within the wellbore can be calculated.

3  
4 However, with this conventional method for  
5 calculating the distance of travel of the wireline, a  
6 number of factors can render the calculation  
7 inaccurate. The occurrence of wheel slippage, the  
8 stretch of the wireline (due to the weight of the  
9 wireline itself, and/or the weight of the tool string  
10 which is attached thereto), the effect of friction  
11 and the well-contained fluid buoyancy all contribute  
12 to decrease the accuracy of the tool depth  
13 measurement.

14  
15 In order to improve the accuracy of this conventional  
16 depth measurement, it is known to combine the  
17 measured tensile load, the known stretch co-efficient  
18 of the wireline, and the conventionally measured tool  
19 depth as described above, to recalculate the tool  
20 depth measurement on a continuous basis (ie in real  
21 time) using a processing means, such as a computer or  
22 the like.

23  
24 However, the accuracy of the aforementioned depth  
25 measurement correction method relies on an  
26 experimentally determined constant (ie the stretch  
27 co-efficient of the wireline) and the surface  
28 measurements on the wireline. The resulting  
29 correction does not include the significant combined  
30 effect that well fluid temperature, tool buoyancy and

1 well geometry have on the accuracy of the depth  
2 correction.

3

4 According to a first aspect of the present invention  
5 there is provided distance measurement apparatus for  
6 measuring the distance travelled by a wireline, the  
7 apparatus comprising at least one sensor coupled to  
8 the wireline wherein the sensor is capable of sensing  
9 known locations in a wellbore.

10

11 The wireline is typically a slickline.

12

13 According to a second aspect of the present invention  
14 there is provided a method of measuring the distance  
15 travelled by a wireline, the method comprising the  
16 steps of coupling at least one sensor to the  
17 wireline, the at least one sensor being capable of  
18 sensing known locations in a wellbore; running the  
19 wireline into the wellbore; calculating the depth of  
20 the at least one sensor using any conventional means;  
21 generating a signal when the at least one sensor  
22 passes said known locations; using the signal to  
23 calculate a depth correction factor; and correcting  
24 the calculated depth using the depth correction  
25 factor.

26

27 Preferably, the apparatus includes transmission means  
28 for transmitting data collected by the at least one  
29 sensor to a receiver located remotely from the  
30 apparatus. Preferably, the wireline is capable of  
31 acting as an antenna for the transmission means.

1       The sensor may be coupled to the wireline at any  
2       point thereon, or may form an integral part thereof.  
3       The sensor is preferably coupled at or near a  
4       downhole tool whereby the distance travelled by the  
5       tool (and thus its location within the wellbore) can  
6       be calculated. Alternatively, the sensor may form  
7       part of a downhole tool or the like.

9       The sensor typically comprises a magnetic field  
10      sensor, and preferably an array of magnetic field  
11      sensors. The array of magnetic field sensors are  
12      typically provided on a common horizontal plane.  
13      Alternatively, the sensor may comprise a radio  
14      frequency (RF) sensor, and preferably an array  
15      thereof. Where an RF sensor is used, the wellbore is  
16      typically provided with RF tags at known locations.

18      The wireline is preferably electrically insulated.  
19      The wireline may be sheathed to facilitate electrical  
20      insulation. Alternatively, the wireline may be  
21      passed through a stuffing box or the like to  
22      facilitate electrical insulation and/or isolation.

24      According to a third aspect of the present invention  
25      there is provided a downhole tool comprising coupling  
26      means to allow the tool to be attached to a wireline,  
27      at least one sensor capable of detecting known  
28      locations in a wellbore and generating a signal  
29      indicative thereof, and a transmission means capable  
30      of transmitting the signal.

1  
2     There is also provided a method of tracking a member  
3     in a wellbore, the method comprising providing a  
4     sensor on the member, inserting the member and sensor  
5     into the wellbore, obtaining information indicating  
6     the position of the sensor in the wellbore, and  
7     determining the distance travelled by said member  
8     from said sensor information.

9  
10    The wireline is preferably used as an antenna for the  
11    transmission means.

12  
13    The coupling means typically comprises a rope-socket.  
14    The rope-socket is preferably provided with signal  
15    coupling means to couple the signal generated by the  
16    transmission means to the wireline.

17  
18    The sensor typically comprises a magnetic field  
19    sensor, and preferably an array of magnetic field  
20    sensors. The array of magnetic field sensors are  
21    typically provided on a common horizontal plane.  
22    Alternatively, the sensor may comprise a radio  
23    frequency (RF) sensor, and preferably an array  
24    thereof. The array of RF sensors are typically  
25    provided on a common horizontal plane.

26  
27    The downhole tool is preferably powered by a DC power  
28    supply, and most preferably a local DC power supply.  
29    The DC power supply typically comprises at least one  
30    battery.

31

1 According to a fourth aspect of the present invention  
2 there is provided a wireline wherein the wireline is  
3 provided with an insulating coating.

4 The insulating coating is typically an outer coating  
5 of the wireline. The wireline typically comprises a  
6 slickline.

8 The insulating coating typically comprises at least  
9 one enamel material. The enamel material typically  
10 consists of one or more layers of coating whereby  
11 each individual layer adds to the overall required  
12 coating properties. Additionally, each layer of  
13 enamel material preferably has the required bonding,  
14 flexibility and stretch characteristics at least  
15 equal to those of the wireline.

17 The enamel material can typically be applied to the  
18 wireline by firstly applying a thin layer of  
19 adhesive, such as nylon or other suitable primer.  
20 Thereafter, one or more layers of an enamel material  
21 such as polyester, polyamide, polyamide-imide,  
22 polycarbonates, polysulfones, polyester imides,  
23 polyether, ether ketone, polyurethane, nylon, epoxy,  
24 equilibrating resin, or alkyd resin or their  
25 polyester, or a combination thereof, are preferably  
26 applied. The enamel material is preferably  
27 polyamide-imide.

29  
30 According to a fifth aspect of the present invention  
31 there is provided a communication system for use in a

1       wellbore, the system comprising a transmitter coupled  
2       to a wireline, and a receiver located remotely from  
3       the transmitter, wherein the wireline is capable of  
4       acting as an antenna for the transmitter.

5

6       The wireline is typically a slickline.

7

8       The transmitter is typically associated with,  
9       provided on, or an integral part of a downhole tool  
10      or tool string, whereby the downhole tool or tool  
11      string is typically suspended by the wireline.

12

13      The transmitter typically facilitates the  
14      transmission of data collected by the downhole tool  
15      or the like to the receiver. The transmission means  
16      typically comprises a transmitter. The receiver is  
17      typically located at, or near, the surface.

18

19      Optionally, the communication system is arranged  
20      whereby it can facilitate two-way communication  
21      between the downhole tool and the receiver. In this  
22      embodiment, a transmitter and a receiver are  
23      typically located downhole. Additionally, a  
24      transmitter and a receiver are also located at, or  
25      near, the surface. The transmitter and receiver at  
26      the surface and/or downhole may be replaced by a  
27      transceiver located downhole and at, or near, the  
28      surface.

29

30      The transmitter may be coupled to the wireline at any  
31      point thereon, or may form a part thereof. The

1 transmitter is typically coupled at or near a  
2 downhole tool whereby the distance travelled by the  
3 tool, the status of the tool or other parameters of  
4 the tool, can be transmitted to the receiver.

5 Alternatively, the transmitter may form an integral  
6 part of a downhole tool.

7 The wireline is preferably electrically insulated.  
8 The wireline may be sheathed to facilitate electrical  
9 insulation. Alternatively, the wireline may be  
10 passed through a stuffing box or the like to  
11 facilitate electrical insulation and/or isolation.

13 According to a sixth aspect of the present invention  
14 there is provided apparatus for indicating the  
15 configuration of a downhole tool or tool string, the  
16 apparatus comprising at least one sensor capable of  
17 sensing a change in the configuration of the downhole  
18 tool or tool string and generating a signal  
19 indicative thereof, and a transmission means  
20 electrically coupled to the at least one sensor for  
21 transmitting the signal to a receiver.

23  
24 The downhole tool is preferably suspended in a  
25 borehole using a wireline, and the wireline is  
26 preferably capable of acting as an antenna for the  
27 transmission means.

28  
29 The transmitter typically facilitates the  
30 transmission of data collected by the sensor to the  
31 receiver. The transmission means typically comprises

1 a transmitter. The receiver is typically located at,  
2 or near, the surface.

3  
4 Optionally, the communication system is arranged  
5 whereby it can facilitate two-way communication  
6 between the downhole tool and the receiver. In this  
7 embodiment, a transmitter and a receiver are  
8 typically located downhole. Additionally, a  
9 transmitter and a receiver are also located at, or  
10 near, the surface. The transmitter and receiver at  
11 the surface and/or downhole may be replaced by a  
12 transceiver located downhole and at, or near, the  
13 surface.

14  
15 The sensor typically comprises an electric or  
16 magnetic sensor which is coupled to the downhole tool  
17 wherein a discontinuity of the electric or magnetic  
18 connection triggers a signal, or a plurality of  
19 signals. These signals can then be transmitted to  
20 the surface to indicate the status of the tool. In  
21 one embodiment, the sensor may be coupled between a  
22 tool string and a downhole tool which is to be  
23 deployed into a wellbore, wherein discontinuity of  
24 the electric or magnetic connection indicates that  
25 the tool has been deployed. Alternatively, the  
26 sensor may be coupled to a distal end of the tool  
27 string, and the downhole tool which is to be  
28 retrieved from a wellbore, is provided with a similar  
29 sensor, wherein continuity of the electric or  
30 magnetic connection indicates that the tool has been  
31 retrieved.

1       The sensor may also be coupled to part of a downhole  
2       tool which changes status during operation of the  
3       tool (ie a valve, sleeve or the like) wherein the  
4       sensor indicates the status of the part of the  
5       downhole tool by a change in continuity.  
6

7       The sensor may comprise a proximity sensor, magnetic  
8       sensor or the like.  
9

10      The wireline is preferably electrically insulated.  
11      The wireline may be sheathed to facilitate electrical  
12      insulation. Alternatively, the wireline may be  
13      passed through a stuffing box or the like to  
14      facilitate electrical insulation and/or isolation.  
15

16      Embodiments of the present invention shall now be  
17      described, by way of example only, with reference to  
18      the accompanying drawings in which:

19             Fig. 1 is a part cross-section of a downhole  
20             tool according to a third aspect of the present  
21             invention;

22             Fig. 2 is a schematic diagram of a typical  
23             wireline apparatus;

24             Fig. 3 is an enlarged view of part of the  
25             wireline apparatus of Fig. 2;

26             Fig. 4 is a schematic diagram of a transmitter  
27             which forms part of an electronic system for use  
28             with the downhole tool of Fig. 1; and

29             Fig. 5 is a schematic diagram of a receiver  
30             which forms part of an electronic system located  
31

1 at the surface for receiving signals from the  
2 downhole tool of Fig. 1.

3  
4 Referring to the drawings, Fig. 1 shows an embodiment  
5 of part of a distance measuring apparatus, generally  
6 designated 10. The apparatus 10 includes a slickline  
7 12. Although reference will be made herein to use of  
8 a slickline, it will be appreciated that other types  
9 of wireline may be used, such as a braided line or  
10 cable, coiled tubing or the like. Slickline 12 is  
11 typically stored on a reel 14 which forms part of a  
12 winching device 16 (Fig. 2), commonly known in the  
13 art as a wireline winch unit. The winching device 16  
14 is typically located at the surface. It should be  
15 noted that "surface" in this context is to be  
16 understood as being either atmospheric above ground  
17 or sea level, or aquatic above a seabed.

18  
19 The slickline 12 is introduced into a cased wellbore  
20 (not shown) via a plurality of sheaves or guide  
21 rollers, as illustrated in Fig. 2. The sheaves or  
22 guide rollers divert the slickline 12 into a  
23 substantially vertical orientation. The slickline 12  
24 passes through a vertically-orientated superstructure  
25 tube 18 which has an internal open-ended bore, the  
26 tube 18 being positioned above a wellhead, generally  
27 designated 20.

28  
29 Referring to Fig. 3, there is shown in more detail a  
30 part of the slickline apparatus of Fig. 2. Located  
31 at an upper end of the tube 18 is a sheave wheel 22

1 which guides the slickline 12 from a substantially  
2 upward direction through 180° to a substantially  
3 downward direction. The slickline 12 then passes  
4 through a stuffing box, generally designated 24 in  
5 Fig. 3, which typically includes an internal blow-out  
6 preventer (BOP) 26.

7  
8 The slickline 12 enters the tube 18 and continues  
9 downward therethrough and into a main BOP 28 and the  
10 wellhead 20.

11  
12 The slickline 12 is coupled at a lower end thereof to  
13 a part of a downhole tool commonly known as a rope-  
14 socket 30 (Fig. 1). The main function of a rope-  
15 socket 30 is to provide a mechanical linkage between  
16 the slickline 12 and the tool or tool string. The  
17 mechanical linkage may be any one of a plurality of  
18 different forms, but is typically a self-tightening  
19 means. In the embodiment shown in Fig. 1, the rope-  
20 socket 30 includes a wedge or wire retaining cone 34  
21 which engages in a correspondingly tapered retaining  
22 sleeve 36.

23  
24 The rope-socket 30 is also provided with a sealing  
25 means which seals around the slickline 12 to provide  
26 a seal between the rope-socket 30 and the well  
27 environment around the slickline 12. The sealing  
28 means typically comprises a seal or gasket 44 which  
29 isolates and insulates the interior of the rope-  
30 socket 30 from the well environment.

1       In the embodiment shown in Fig. 1, the rope-socket 30  
2       also provides an electrical coupling between the  
3       slickline 12 which is capable of acting as a  
4       transmitter/receiver radio frequency (RF) antenna and  
5       a downhole tool 32. The tool 32 typically comprises  
6       an upper sub 38 which is coupled (typically by  
7       threaded connection) to an intermediate sub 40, which  
8       is in turn coupled (typically by threaded connection)  
9       to a lower sub 42.

10  
11      The upper sub 38 is provided with a screw thread 38t,  
12      typically in the form of a pin, which engages with a  
13      corresponding internal screw thread 30t, typically in  
14      the form of a box, on the rope-socket 30. These  
15      (threaded) connections 30t, 38t allow the rope-socket  
16      30 and tool 32 to be (mechanically) coupled together.

17  
18      Additionally, the rope-socket 30 is provided with  
19      coupling means which electrically couples a metal or  
20      otherwise electrically conductive portion of the  
21      slickline 12 and a transmitter 46 (a transceiver  
22      typically being used to facilitate two-way  
23      communication) of the tool 32. The coupling means  
24      typically comprises an electrical terminal 48 which  
25      is electrically isolated from the body of the rope-  
26      socket 30 using an insulating sleeve 50.

27  
28      The upper sub 38 of the tool 32 is provided with an  
29      electrical pin or contact plunger 52 which engages  
30      with the electrical terminal 48 within the rope-  
31      socket 30. The contact plunger 52 is typically

1 spring-loaded using spring 54 so that it can move  
2 longitudinally (with respect to a longitudinal axis  
3 of the tool 32) to facilitate coupling of the rope-  
4 socket 30 and the tool 32. A lower end of the  
5 plunger 52 is in contact with a main contactor 56  
6 which is electrically coupled to the transmitter 46.  
7 This facilitates coupling of signals generated by the  
8 transmitter 46 through the plunger 52 and the  
9 terminal 48 to the slickline 12, the slickline 12  
10 acting as an antenna for transmitting and/or  
11 receiving signals, as will be described.

12 The tool 32 is also provided with an array of field  
13 sensors 58 which are used to detect differences in  
14 the magnetic flux at the junctions of, or collars  
15 between, successive casing sections which are used to  
16 case the wellbore, whereby the location of the tool  
17 32 within the wellbore can be calculated, as will be  
18 described.

20 The tool 32 is preferably powered by a (local) direct  
21 current (DC) power source, typically comprising one  
22 or more batteries 60. The batteries 60 provide a  
23 local electrical power supply for the tool 32.  
24 Conventionally, downhole tools are powered using a  
25 central conductor of a braided line to transmit  
26 electrical power to the tool from the surface.  
27 However, there are substantial losses using this  
28 method, particularly where the tool is located some  
29 distance down the wellbore. In addition, the central  
30 conductor of the braided line is typically relatively  
31

1 small in diameter and thus high voltage drops can be  
2 induced. Use of a local power supply (ie the  
3 batteries 60) obviates the need for an electrical  
4 power connection to the surface.

5

6 The tool 32 may include a pressure sensor 62 which is  
7 electrically coupled to the transmitter 46 and when  
8 present can be used to measure the pressure external  
9 to the tool 32.

10

11 Referring now to Fig. 4, there is shown a schematic  
12 diagram of a transmitter 46 which forms a part of an  
13 electronic system located within the tool 32. The  
14 batteries 60 provide electrical power to the system  
15 in general. On detection of a positive over-pressure  
16 to atmospheric level, that is after introducing the  
17 tool 32 into the tube 18 (Fig. 2) and opening of the  
18 wellhead 20 to allow well pressure to equalise in the  
19 tube 18, the pressure sensor 62 activates the  
20 magnetic field sensors 58.

21

22 The magnetic field sensors 58 may be of the type  
23 described in German Patent Application Number DE-A1-  
24 19711781.3 (Pepperl + Fuchs GmbH), for example, and  
25 are typically mounted within a section of the tool 32  
26 which is at least partially manufactured from a  
27 conventional non-ferrous material. This ensures high  
28 sensitivity when detecting casing or collar joints.

29

30 German Patent Application Number DE-A1-19711781.3  
31 describes use of the sensors 58 in conjunction with a

1 remnance inducing magnet ring. The wellbore casing  
2 sections described therein exhibit a weak magnetic  
3 remnance due to the influence of the earth's magnetic  
4 field, the difference in the magnetic flux and/or the  
5 history of previous well service operations. If the  
6 difference in the magnetic flux at the junctions  
7 between the wellbore casing sections is  
8 insufficiently weak or disorientated, it is  
9 advantageous to re-magnetise the casing sections by  
10 either running in a separate downhole tool provided  
11 with one or more axially orientated magnets prior to  
12 commencing the tool detection, or to incorporate one  
13 or more such magnets into the tool 32, or the tool  
14 string of which the tool 32 forms part.

15  
16 The plurality of sensors 58 are orientated to  
17 preferentially sense the locality and proximity of a  
18 collar or casing joint which the tool 32 passes, by  
19 detecting the variation or switch in magnetic flux at  
20 the junctions or collars between successive casing  
21 sections. It is preferred, but not essential, to  
22 have the sensors 58 disposed on a common horizontal  
23 plane within the tool 32. The latter, in combination  
24 with the series connection of the sensors 58 maximise  
25 the positive sensing of the collars or casing joints  
26 as the tool 32 passes.

27  
28 When a casing collar or joint is detected, power is  
29 supplied to the transmitter 46. The transmitter 46  
30 is located within the tool 32 and is electrically  
31 coupled to the batteries 60, the pressure sensor 62

1 and the magnetic field sensors 58 via suitable  
2 electrical connections within the tool 32.  
3 Alternatively, the transmitter 46 may be coupled  
4 thereto via a system of insulated downhole tool  
5 components which provide electrical connections  
6 isolated from the well environment, the electrical  
7 connections being suitable connectors between the  
8 separate downhole sections which make up the complete  
9 downhole tool string.

10  
11 The transmitter 46 may be of a type supplied by RS  
12 Components under catalogue number RS 740-449, which  
13 is designed to operate in conjunction with a 418 MHz  
14 FM transmitter module also supplied by RS Components  
15 under catalogue number RS 740-297. However, it  
16 should be noted that the transmitter specified above  
17 is only an example of one possible transmitter, and  
18 that there are many other possible transmitters and  
19 frequencies which could be utilised in its place.  
20 The components identified above should be tested for  
21 conformity to the particular operational requirements  
22 and criteria and for operation in wellbore  
23 environments.

24  
25 The transmitter 46 typically has the facility for  
26 address coding (using DIL switch settings 66 in Fig.  
27 4), and data bit settings using either a DIL switch  
28 68 (Fig. 4) or driven by external switches, relay  
29 transistors or CMOS logic via an auxiliary connector,  
30 designated 70 in Fig. 4). DIL switch 68 is used to  
31 switch data channels (ie the four data channels

1       relating to each one of the sensors 58) on and off,  
2       typically using opto-electronic switches 69. Thus,  
3       the signal from any one, some or all of the sensors  
4       58 can be set to be transmitted. The output from the  
5       DIL switch 66 is typically processed by an encoder  
6       convertor 67 which encodes the address coding (as set  
7       by the DIL switch 66) into the transmission. RF  
8       transmission can be initiated by external contact  
9       closure and the provided link on the auxiliary  
10      connector 70 (eg, coupling TXEN to ground).

11           It will be appreciated that with the above described  
12      transmission method, the transmitter 46 is not  
13      permanently activated and allows only a single  
14      transmission upon external contact closure. The  
15      duration of the transmission may be altered by  
16      changing the values of RT, CT and/or RT2 and CT2  
17      respectively, but is typically in the order of 1  
18      second duration (set by default). The period of  
19      transmission may be determined as follows :-  
20       $2.2 * RT * CT$  (which changes the interval between  
21      transmission in seconds) and  $0.7 * RT2 * CT2$  (which  
22      changes the duration of the transmissions in  
23      seconds).

25           The transmitter 46 ground connection (ie from any  
26      point on the ground connection 64) and RFout  
27      connection 65 are electrically coupled to the rope-  
28      socket 30 using, for example, electrical connections  
29      within the tool 32 (or otherwise as described above)  
30      and the plunger 52 and electrical terminal 48

1 provided on the tool 32 and rope-socket 30  
2 respectively (Fig. 1). These connections are shown  
3 schematically in Fig. 4, with the RFout connection 65  
4 being coupled to the slickline 12 which acts as an  
5 antenna.

6

7 As previously noted, the slickline 12 acts as an  
8 antenna for this RF transmission and thus the  
9 slickline antenna 12 carries and guides the  
10 transmission towards the surface. The RF  
11 transmission (ie the electromagnetic (modulated)  
12 wave) contains encoded data which is radiated into  
13 free-space or any other antenna surrounding medium at  
14 or near the tube 18, for example. The precise  
15 location of where the RF transmission is radiated  
16 into free-space is not important, but it is typically  
17 at some point at the surface where the RF  
18 transmission can be radiated over a larger area.  
19

20 Located within the radiation range of the transmitter  
21 antenna (ie the slickline 12), for example located at  
22 the surface or within the tube 18, is a receiver 80,  
23 shown in Fig. 5. Fig. 5 is a schematic diagram of  
24 the receiver 80 which forms a part of an electronic  
25 system located at or near the surface. The receiver  
26 80 may be, for example, of the type supplied by RS  
27 Components under catalogue number RS 740-455, which  
28 is designed to operate in conjunction with a 418 MHz  
29 FM receiver module 84 supplied by RS Components under  
30 catalogue number RS 740-304. However, it should be  
31 noted that the receiver specified above is only an

example of one possible receiver, and that there are many other possible receivers which could be utilised in it's place. It should also be noted that the receiver 80 should be matched to the frequency of the transmitter 46. The components identified above should be tested for conformity to the particular operational requirements and criteria and for operation in wellbore environments.

The receiver 80 typically has the facility for address coding (using suitable DIL switch settings on switch 82) to match and pair with the address code of the transmitter 46. The settings of the receiver board jumpers JP1 and JP2 determine the output configuration of the transmission from the tool 32. Jumper JP2 is used to select whether the output is high or low (ie the logic level) which selects whether the output on the four channels out 0 to out 3 on an auxiliary connector 88) are either a logic high or a logic low. Jumper JP1 is used to select whether the output on the channels out 0 to out 3 are latched (ie permanently high or low) or intermittent.

The receiver module 84 receives the signal from the antenna 12 at an RFin connection 86. The signal is then processed in the FM receiver module 84 and output to a decoder 90. The decoder 90 decodes the address coding from the transmission and thus the receiver 80 is only activated when the address of the transmitter 46 matches the address settings of the DIL switch 82 (ie the address of the receiver 80).

1       The output from the decoder 90 is then fed to a data  
2       selector 92 which automatically activates one, some  
3       or all of the output channels out 0 to out 3,  
4       depending upon which of the four channels have been  
5       activated by the settings of the DIL switch 68 on the  
6       transmitter 46. The output of the selector 92 is  
7       then fed to a seven stage darlington driver 94 which  
8       is used to drive the outputs on the auxiliary  
9       connector 88. The outputs of the auxiliary connector  
10      88, in particular the outputs out 0 to out 3 are  
11      typically coupled to a visual indicator (ie a light  
12      emitting diode (LED)) which can be used to allow a  
13      user to determine which of the sensors 58 detected a  
14      collar or casing joint. Alternatively, or  
15      additionally, the outputs of the auxiliary connector  
16      88 may be coupled to a processing means (eg a  
17      computer) located at or near the surface for further  
18      processing of the data.

19  
20      It should be noted that although the transmitter 46  
21      is shown coupled to four sensors 58 (Fig. 4) and thus  
22      has four channels, the transmitter 46 may be provided  
23      with more or less than four channels, depending upon  
24      the number and grouping of sensors 58 within tool 32.

25  
26      In use, the tool 32 is attached to the slickline 12  
27      as described above and introduced into a cased  
28      wellbore in a conventional manner. The casing can be  
29      of any type, that is, for example, either  
30      electrically conductive or semi-conductive  
31      ferromagnetic casing, or electrically non-conductive

1 or non-ferromagnetic casing. The casing string  
2 typically comprises of a plurality of casing lengths  
3 which are threadedly coupled together, thus making  
4 joints (or collars) therebetween.

5 The tool 32 is lowered into the cased wellbore using  
6 the slickline 12. The slickline 12 is typically  
7 formed of a metal which has a high yield strength to  
8 weight ratio and is capable of supporting the tool 32  
9 (and any other tools which may form part of a  
10 downhole tool string). It will be appreciated that  
11 the slickline 12 should also be capable of  
12 functioning as a monopole antenna.  
13

14 The slickline 12 is preferably (but not essentially)  
15 electrically insulated and/or isolated using a thin  
16 outer coating of a flexible, non-conductive  
17 insulating material. It is preferred that the  
18 material should also be chemical, abrasion and  
19 temperature resistant to endure the hazardous  
20 downhole environments. The coating is typically an  
21 enamel coating.  
22

23 It should be noted that it may not be necessary to  
24 provide an insulating coating on the slickline 12.  
25 If a stuffing box or the like is used, the slickline  
26 12 will be electrically isolated by the stuffing box.  
27 However, this requires that the slickline 12 does not  
28 come into contact with any part of the conductive  
29 wellbore which may be difficult in deviated  
30 (horizontal) wells or the like. It is thus preferred  
31

1       that the slickline 12 is coated with an insulating  
2       coating to ensure good electrical isolation. It  
3       should be noted that coating the slickline 12 with an  
4       enamel material also protects the metal wire (from  
5       which the slickline 12 is made) against corrosion.  
6       In addition, or alternatively, a corrosive chemical  
7       sensitive material(s) may be applied as a coating or  
8       part thereof on the slickline 12, and this would have  
9       the advantage that the presence of corrosive  
10      chemicals, such as H<sub>2</sub>S or CO<sub>2</sub> or nitrates, in the  
11      well would be indicated to the operator when the  
12      slickline 12 is removed from the well since the  
13      corrosive chemical sensitive material will be  
14      transformed; for example, the colour of the corrosive  
15      chemical sensitive material may change. In addition,  
16      or alternatively, a stress/impact sensitive  
17      material(s) may be applied as a coating or part  
18      thereof on the slickline 12, and this would have the  
19      advantage that mechanical damage to the slickline 12  
20      in the well would be indicated to the operator when  
21      the slickline 12 is removed from the well, since the  
22      stress/impact sensitive material will be transferred;  
23      for example, the colour of the impact/stress  
24      sensitive material may change.

25

26      The enamel material may consist of one or more layers  
27      of coating whereby each individual layer adds to the  
28      overall required coating properties. Additionally,  
29      each layer of enamel material preferably has the  
30      required bonding, flexibility and stretch  
31      characteristics at least equal to those of the metal

1        slickline 12 or coiled tubing. The thickness of the  
2        enamel material can vary depending upon the downhole  
3        conditions encountered, but is generally in the order  
4        of 10 to 100 microns.

5        The enamel material can typically be applied to the  
6        slickline 12 by firstly applying a thin layer of  
7        adhesive, such as nylon or other suitable primer.  
8        Thereafter, one or more layers of an enamel material  
9        such as polyester, polyamide, polyamide-imide,  
10      polycarbonates, polysulfones, polyester imides,  
11      polyether, ether ketone, polyurethane, nylon, epoxy,  
12      equilibrating resin, or alkyd resin or theic  
13      polyester, or a combination thereof. The enamel  
14      material is preferably polyamide-imide.  
15

16      ;  
17      The conventional method of measuring downhole tool  
18      depth is to run the slickline 12 against the sheave  
19      wheel 22. It should be noted that use of "depth" in  
20      this context is understood as being the trajectory  
21      length of the downhole tool, which may be different  
22      from conventional depth if the wellbore is deviated,  
23      for example. In order to calculate the distance of  
24      travel of the slickline 12, a number of variable  
25      factors must be known. It is a prerequisite that the  
26      rotational direction of the sheave wheel 22, the  
27      number of revolutions thereof, the diameter of the  
28      sheave wheel 22 and, depending upon the type of  
29      sheave wheel 22 (that is, whether a point-type  
30      contact or arc for example), the diameter of the  
31      slickline 12, must all be known before the distance

1       of travel of the slickline 12 within the wellbore can  
2       be calculated (and thus the depth of the tool).

3

4       However, with this conventional method for  
5       calculating the distance of travel of the slickline  
6       12, a number of factors render the calculation  
7       inaccurate. The occurrence of wheel slippage, the  
8       stretch of the slickline 12 (whether due to the  
9       weight of the slickline 12 itself, or the weight of  
10      the tool string to which it is attached), the effect  
11      of friction and the well-contained fluid buoyancy all  
12      contribute to decrease the accuracy of the  
13      conventional tool depth measurement.

14

15      In order to improve the accuracy of this conventional  
16      depth measurement, it is known to combine the  
17      measured tensile load, the known stretch co-efficient  
18      of the slickline 12, and the conventionally measured  
19      tool depth as described above, to recalculate the  
20      tool depth measurement on a continuous (ie real time)  
21      basis using a processing means (eg a computer).

22

23      However, the accuracy of the aforementioned depth  
24      measurement correction method relies on an  
25      experimentally determined constant (ie the stretch  
26      co-efficient of the slickline 12) and the surface  
27      measurements of the weight of the slickline 12. The  
28      resulting correction does not include the significant  
29      combined effect that well fluid temperature, tool  
30      buoyancy and well geometry have on the accuracy of  
31      the depth correction.

WO 01/20129

1       When the tool 32 detects a casing collar or joint  
2       during normal slickline operations at downhole tool  
3       travelling speed, the tool 32 will process the  
4       collected data at normal wireline operational speed  
5       using a processing device and signal generator 71  
6       (Fig. 4) which forms part of the transmitter 46. The  
7       processing device and signal generator 71  
8       communicates a signal (via a SAW oscillator 73 and  
9       418 MHz band-pass filter 75) indicative of the  
10      location of the collar or joint to the slickline 12  
11      which acts as an antenna. At the surface, this  
12      signal is received by the surface receiver 80 (Fig.  
13      5). The receiver 80 is coupled to the processing  
14      means (eg a computer) located at the surface and the  
15      signal from the tool 32 is used to calibrate the  
16      conventional measured depth against the known  
17      distance between the preceding collar or joint, or  
18      other known location. This distance is typically  
19      known from an existing record log of the individual  
20      casing lengths.

22      A number of arrays of magnetic field sensors 58  
23      positioned on axially spaced-apart horizontal planes  
24      within the tool 32 (as shown in Fig. 1) can be used,  
25      each of the sensor arrays having their own channel as  
26      described above and being set at known (but not  
27      necessarily equal) distances along the longitudinal  
28      axis of the tool 32. This allows for increased  
29      accuracy of the calibration due to the repeated  
30      calibration against the detected collar or joint. It

1 should be noted that when using multiple arrays of  
2 sensors 58, only a single transmitter 46 and receiver  
3 80 need be used as each array 58 will have their own  
4 individual channel which can be selected or  
5 deselected as required.

6

7 However, if the communication system is being used  
8 with other sensors within the tool, these other  
9 sensors may be coupled to another transmitter and  
10 receiver, the other transmitter and receiver  
11 including a different address coding. This allows  
12 multiple transmissions to multiple receivers 80 from  
13 multiple transmitters 46 using only one slickline 12  
14 as the antenna.

15

16 The signal from the tool 32 is, for the purpose of  
17 the described tool depth measurement calibration, a  
18 measure of a known trajectory length of the tool 32  
19 in relation to a detected collar or casing joint end  
20 length (casing-section length calibration). This is  
21 dependent upon the configuration of tool 32 within  
22 the downhole tool or string. Alternatively, the  
23 signal is a measure of the trajectory length as  
24 travelled by the tool 32 in relation to the detected  
25 collar or casing joint as indicated by each separate  
26 positive signal from the tool 32 (downhole tool  
27 length calibration). For the casing section length  
28 calibration technique, the accuracy of the  
29 calibration may depend upon the accuracy and  
30 completeness of surveyed well details, that is the  
31 length of the individual casing sections and the

WO 01/20129

30

1 configuration thereof. For the downhole tool length  
2 calibration method, surveyed well details are not  
3 necessary.

4 With the casing length calibration method  
5 (hereinafter CLC), the trajectory length or tool  
6 depth calibration, as performed by the processing  
7 means at the surface, uses the received signal from  
8 the tool 32 and references this signal against the  
9 conventionally obtained surface measured depth,  
10 obtained as described above, and the details of the  
11 well. That is, the individual casing length is used  
12 to calculate a depth correction factor  $\mu$  wherein  
13

14 
$$\mu_{CLC} = L_c / (D_2 - D_1),$$
  
15

16

17 wherein

18

19  $L_c$  = casing length;

20  $D_1$  = surface depth at the previous casing collar or  
21 joint;

22  $D_2$  = surface depth at the detected casing collar or  
23 joint, where  $D_2 > D_1$ ; and

24  $\mu_{CLC}$  = depth correction factor.

25

26 The depth correction factor  $\mu_{CLC}$  is used by the  
27 processing means to correct the conventionally  
28 obtained depth over the next downhole tool trajectory  
29 casing length.

30

1 With the downhole tool length calibration method  
2 (hereinafter TLC), the trajectory length or tool  
3 depth calibration is performed by the processing  
4 means located at the surface, for example. The  
5 processing means uses the received signal from the  
6 tool 32 and references this signal against the  
7 conventionally obtained surface measured depth to  
8 calculate a depth correction factor  $\mu$ . The  
9 correction factor  $\mu$  can be calculated as follows for  
10 equidistant sensor spacing (ie constant distance  
11 between sensors)

12

13 
$$\mu_{TLC} = L_u / (D_n - D_{n-1}),$$

14

15 wherein

16

17  $L_u$  = tool sensor distance constant (ie the uniform  
18 distance between the sensors);

19  $D_1$  = surface depth at the first tool sensor;

20  $D_{n-1}$  = surface depth at the previous casing collar or  
21 joint;

22  $D_n$  = surface depth at the detected casing collar or  
23 joint, where  $D_n > D_{n-1} > D_1$ ; and

24  $\mu_{TLC}$  = depth correction factor.

25

26 The correction factor  $\mu$  can be calculated as follows  
27 for non-uniform sensor spacing (ie non-constant  
28 distance between sensors)

29

30 
$$\mu_{TLC} = L_n / (D_n - D_{n-1}),$$

1

2 wherein

3

4  $L_n$  = tool sensor distance spacing (ie the non-uniform  
5 distant between the sensors);6  $D_1$  = surface depth at the first tool sensor;7  $D_{n-1}$  = surface depth at the previous casing collar or  
8 joint;9  $D_n$  = surface depth at the detected casing collar or  
10 joint, where  $D_n > D_{n-1} > D_1$ ; and11  $\mu_{TLC}$  = depth correction factor.

12

13 The depth correction factor  $\mu_{TLC}$  thus derived can be  
14 used by the processing means to correct the  
15 conventionally obtained depth over the next travelled  
16 spacing between the sensors (either uniform or non-  
17 uniform). If the total tool distance (that is the  
18 distance between the sensors provided in the tool 32)  
19 is less than the individual casing length, the  
20 derived multiple-calibrated correction factor  $\mu_{TLC}$  may  
21 be used to correct the conventionally obtained depth  
22 related input over the next downhole tool trajectory  
23 individual casing length.

24 ;

25 It will be appreciated that the depth correction  
26 described above need not be performed in real-time.  
27 A running history file can be constructed using each  
28 surface-received signal from the tool 32 and after  
29 completion of a slickline run (downhole tool travel  
30 from surface to a depth and return to surface), the  
31 history file can be compared against a similar file

1 derived from the conventional depth measurement  
2 technique and the results analysed to interpret and  
3 evaluate the downhole tool run objectives and  
4 results.

5

6 It will be appreciated that the use of a slickline as  
7 an antenna is not limited to facilitate an increase  
8 in accuracy of tool depth measurements. For example,  
9 the conventional method for detecting the status of a  
10 downhole tool or tools (that is a tool which is  
11 designed to perform downhole functions such as setting  
12 plugs or isolating sections of the wellbore to deploy  
13 memory gauges) would be by a differential calculation  
14 involving the experience of the slickline operator in  
15 conjunction with correlated depth between distance  
16 travelled by the slickline (calculated using the  
17 conventional technique) and the location of a  
18 "nipple" in conjunction with the previously recorded  
19 "nipple" depth or tubing tally, or by other means  
20 involving physical stresses in the slickline (for  
21 example increased/decreased tension in the  
22 slickline). A "nipple" is a receptacle in which the  
23 downhole tool locates and latches into, or the  
24 position in the tubing or casing string for the  
25 deployment of the downhole tool to carry out its  
26 function.

27

28 Once the downhole tool has been deployed or  
29 retrieved, the slickline winch operator typically  
30 sees a corresponding decrease or increase in the  
31 weight of the tool string equivalent to the weight of

1       the tool, which would be indicative of a successful  
2       deployment or retrieval.

3  
4       However, where the downhole tool is of a marginal  
5       weight so as not to show a significant difference in  
6       the weight of the tool string once it has been  
7       deployed or retrieved, or when circumstances inside  
8       the wellbore give a smaller indication than one of  
9       those described above (for example an obstruction in  
10      the tubing or such like), the status of the downhole  
11      tool is derived by conjecture until a time when the  
12      function of the tool can be operatively tested or the  
13      tool string is returned to the surface.

14  
15      As will be appreciated, these methods of ascertaining  
16      the status of downhole tools are not accurate and  
17      rely on the experience of the slickline winch  
18      operator, a careful tally of running and pulling  
19      weights, and accurate weight indication and depth  
20      correlation means. Even when these criteria have all  
21      been met, there is no guarantee that the downhole  
22      tool has been successfully deployed or retrieved  
23      correctly and where downhole tools which rely on the  
24      position of sliding sleeves are used, there is no  
25      indication of the position thereof until further  
26      tests have been carried out.

27  
28      The present invention facilitates a means to actively  
29      identify when a downhole tool has been deployed or  
30      retrieved etc by incorporating into the previously  
31      described apparatus one or more sensors (eg a

1 proximity or electrically connecting/disconnecting  
2 sensor) which activates the transmission of a signal  
3 via the slickline antenna which is indicative of the  
4 status of the tool (ie latched, unlatched, engaged,  
5 disengaged etc). This would provide a more reliable  
6 indication of the tool status in connection with the  
7 previously described depth correlation which  
8 substantially mitigates the possibility of human  
9 error in identifying whether the downhole tool has  
10 been correctly deployed or retrieved etc.

11

12 When a downhole tool has been deployed, retrieved or  
13 otherwise, it is normally the case to use a  
14 mechanical force in order to facilitate this  
15 deployment, retrieval or otherwise in order to  
16 operate a mechanism incorporated in the downhole tool  
17 in order to carry out the function of the tool. An  
18 example of this would be a running tool which is used  
19 to deploy a downhole plug which typically relies on  
20 the slickline operator to locate the tool in its  
21 downhole position using the conventional depth  
22 measurement. Thereafter, either pulling sharply on  
23 the slickline or rapidly slackening it induces a  
24 hammering effect on the tool whereby a pin (or a  
25 plurality thereof) are sheared to allow the tool to  
26 engage in a locking assembly, thus disconnecting the  
27 tool from the string, or a collar is pulled to  
28 retract such an assembly in order to release the tool  
29 from the locking assembly thus connecting the tool to  
30 the string.

31

1       A signal from a proximity sensor or the like can be  
2       propagated to the surface using the slickline as an  
3       antenna, the signal being received at the surface and  
4       causing, for example, a second signal to be  
5       transmitted from the surface to a relay provided on  
6       the (downhole) tool to electrically or  
7       electromechanically operate an automatic locking or  
8       unlocking device. This would eliminate the  
9       requirement for mechanical hammering to initiate the  
10      functioning of the downhole tool.

11  
12      Another application of the present invention would be  
13      during the deployment of downhole tools, a part or  
14      parts of the tool itself or the tool string can  
15      loosen or be disconnected from the tool or string.  
16      This can then require several runs into the wellbore  
17      in order to recover the tool or part thereof. This  
18      can be a very expensive process.

19  
20      To overcome this, the tools within the tool string or  
21      the parts of the tool themselves can be coupled  
22      together either electrically or magnetically wherein  
23      discontinuity of the electrical or magnetic  
24      connection triggers a signal or a plurality of  
25      signals which can be transmitted to the surface to  
26      indicate to the slickline operator that such an event  
27      is about to occur.

28  
29      Modifications and improvements may be made to the  
30      foregoing without departing from the scope of the  
31      present invention. For example, the foregoing

1 description relates to the use of a slickline as an  
2 antenna, but it will be appreciated that it is  
3 equally possible to use a braided line or a mono-  
4 conducting slickline. Additionally, the pulsed  
5 transmission to the surface could be replaced by a  
6 continuous type transmission, or alternatively, may  
7 be a pulsed or continuous two-way communication  
8 between the surface and a tool, using suitable  
9 transmitters and receivers (or transceivers) for such  
10 communications.

11

12 Although the foregoing description relates to the use  
13 of a tool which detects the location and passage of  
14 collars in a cased wellbore, it will be appreciated  
15 that tools exist which are sensitive to non-collared  
16 pipe joints.

17

18 Additionally, it will be appreciated that the  
19 communication system described herein enables the use  
20 of a slickline in combination with downhole tools,  
21 such as flow meters, pressure, temperature,  
22 gravitational, sonic and seismic sensors, downhole  
23 cameras and/or optic/IR sensors which have hitherto  
24 relied on electric (single- or multi-conductor)  
25 braided slicklines for operation.

26

27

1       CLAIMS:-

2

3       1. A communication system for use in a wellbore,  
4       the system comprising a transmitter coupled to a  
5       wireline, and a receiver located remotely from the  
6       transmitter, wherein the wireline is capable of  
7       acting as an antenna for the transmitter.

8

9       2. An apparatus according to claim 1, wherein the  
10      wireline is a slickline.

11

12      3. An apparatus according to either of claims 1 or  
13      2, wherein the transmitter is associated with,  
14      provided on, or an integral part of a downhole tool  
15      or tool string.

16

17      4. An apparatus according to claim 3, wherein the  
18      downhole tool or tool string is suspended by the  
19      wireline.

20

21      5. An apparatus according to either of claims 3 or  
22      4, wherein the transmitter transmits data collected  
23      or generated by the downhole tool or the like to the  
24      receiver.

25

26      6. An apparatus according to any preceding claim,  
27      wherein the receiver is located at, or near, the  
28      surface of the wellbore.

29

30      7. An apparatus according to any preceding claim,  
31      wherein the transmitter is coupled to the wireline at

1       or near a downhole tool whereby the distance  
2       travelled by the tool, the status of the tool or  
3       other parameters of the tool, can be transmitted to  
4       the receiver.

5

6       8. Apparatus according to any preceding claim,  
7       wherein the wireline is electrically insulated.

8

9       9. Apparatus according to any preceding claim,  
10      wherein the wireline is sheathed to facilitate  
11      electrical insulation.

12

13      10. A method of communication in a wellbore,  
14      comprising providing a transmitter coupled to a  
15      wireline, paying an end of the wireline and the  
16      transmitter into the wellbore, and providing a  
17      receiver located remotely from the transmitter, such  
18      that the wireline acts as an antenna for the  
19      transmitter.

20

21      11. A wireline for use in a wellbore, wherein the  
22      wireline is provided with an insulating coating.

23

24      12. A wireline according to claim 11, wherein the  
25      insulating coating is an outer coating of the  
26      wireline.

27

28      13. A wireline according to either of claims 11 or  
29      12, wherein the wireline comprises a slickline.

30

1       14. A wireline according to any of claims 11 to 13,  
2       wherein the insulating coating comprises at least one  
3       enamel material.

4

5       15. A distance measurement apparatus for measuring  
6       the distance travelled by a wireline, the apparatus  
7       comprising at least one sensor coupled to the  
8       wireline wherein the sensor is capable of sensing  
9       known locations in a wellbore.

10

11       16. Apparatus according to claim 15, wherein the  
12       wireline is typically a slickline.

13

14       17. Apparatus according to either of claims 15 or  
15       16, wherein the apparatus includes transmission means  
16       for transmitting data collected by the at least one  
17       sensor to a receiver located remotely from the  
18       apparatus.

19

20       18. Apparatus according to claim 17, wherein the  
21       wireline is capable of acting as an antenna for the  
22       transmission means.

23

24       19. Apparatus according to either of claims 17 or  
25       18, wherein the sensor is coupled at or near a  
26       downhole tool whereby the distance travelled by the  
27       tool, and the location of the tool within the  
28       wellbore, can be calculated.

29

30       20. Apparatus according to any of claims 17 to 19,  
31       wherein the wireline is electrically insulated.

1       21. A method of measuring the distance travelled by  
2       a wireline, the method comprising the steps of  
3       coupling at least one sensor to the wireline, the at  
4       least one sensor being capable of sensing known  
5       locations in a wellbore; running the wireline into  
6       the wellbore; calculating the depth of the at least  
7       one sensor; generating a signal when the at least one  
8       sensor passes said known locations; using the signal  
9       to calculate a depth correction factor; and  
10      correcting the calculated depth using the depth  
11      correction factor.

12

13       22. A downhole tool comprising coupling means to  
14       allow the tool to be attached to a wireline, at least  
15       one sensor capable of detecting known locations in a  
16       wellbore and generating a signal indicative thereof,  
17       and a transmission means capable of transmitting the  
18       signal.

19

20       23. A downhole tool according to claim 20, wherein  
21       the wireline acts as an antenna for the transmission  
22       means.

23

24       24. A downhole tool according to either of claims 22  
25       or 23, wherein the coupling means comprises a rope-  
26       socket.

27

28       25. A downhole tool according to claim 24, wherein  
29       the rope-socket is provided with signal coupling  
30       means to couple the signal generated by the  
31       transmission means to the wireline.

1  
2       26. A downhole tool according to any of claims 20 to  
3           23, wherein the downhole tool is powered by a DC  
4           power supply.

5  
6       27. A method of tracking a member in a wellbore, the  
7           method comprising providing a sensor on the member,  
8           inserting the member and sensor into the wellbore,  
9           obtaining information indicating the position of the  
10          sensor in the wellbore, and determining the distance  
11          travelled by said member from said sensor  
12          information.

13  
14       28. Apparatus for indicating the configuration of a  
15          downhole tool or tool string, the apparatus  
16          comprising at least one sensor capable of sensing a  
17          change in the configuration of the downhole tool or  
18          tool string and generating a signal indicative  
19          thereof, and a transmission means electrically  
20          coupled to the at least one sensor for transmitting  
21          the signal to a receiver.

22  
23       29. Apparatus according to claim 28, wherein the  
24          downhole tool is preferably suspended in a borehole  
25          using a wireline, and the wireline is capable of  
26          acting as an antenna for the transmission means.

27  
28       30. Apparatus according to either of claims 28 or  
29          29, wherein the transmitter facilitates the  
30          transmission of data collected by the sensor to the  
31          receiver.

1       31. Apparatus according to any of claims 28 to 30,  
2       wherein the transmission means comprises a  
3       transmitter.

4

5       32. Apparatus according to any of claims 28 to 31,  
6       wherein the receiver is located at, or near, the  
7       surface of the borehole.

8

9       33. Apparatus according to any of claims 26 to 30,  
10      wherein the apparatus is arranged whereby it can  
11      facilitate two-way communication between the downhole  
12      tool and the receiver.

13

14      34. Apparatus according to any of claims 28 to 32,  
15      wherein the sensor comprises an electric or magnetic  
16      sensor which is coupled to the downhole tool wherein  
17      a discontinuity of the respective electric or  
18      magnetic connection triggers at least one signal.

19

20      35. Apparatus according to any of claims 29 to 34,  
21      wherein the wireline is electrically insulated.

22

1 / 5



Fig. 1

2 / 5



Fig. 2

3 / 5



Fig. 3

4 / 5



Fig. 4



Fig. 5

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
22 March 2001 (22.03.2001)

PCT

(10) International Publication Number  
**WO 01/20129 A3**

(51) International Patent Classification<sup>7</sup>: E21B 47/12, 47/04 (72) Inventors; and  
(75) Inventors/Applicants (for US only): VAN DER ENDE, Andre, Martin [NL/GB]; The Old School House, Udny Green, Ellon, Aberdeenshire AB41 7RS (GB). COPE, John [GB/GB]; 47 Ninian Place, Portlethen, Aberdeen AB12 4QW (GB).

(21) International Application Number: PCT/GB00/03491

(22) International Filing Date: 12 September 2000 (12.09.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 9921554.3 14 September 1999 (14.09.1999) GB

(71) Applicant (for all designated States except US): MACHINES (U.K.) LIMITED [GB/GB]; The Old School House, Udny Green, Ellon, Aberdeenshire AB41 7RS (GB).

(74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Continued on next page]

(54) Title: APPARATUS AND METHODS FOR MEASURING DEPTH



(57) Abstract: A communication system for use in a wellbore, a down-hole tool, and a method includes a transmitter coupled to a wireline, and a receiver located remotely from the transmitter. The wireline is capable of acting as an antenna for the transmitter. The wireline is a slickline, and the transmitter may be associated with, provided on, or an integral part of a downhole tool or tool string. The transmitter typically transmits data collected or generated by the downhole tool or the like to the receiver, which is preferably located at, or near, the surface of the wellbore. The wireline is typically provided with an insulating coating. Also, a distance measurement apparatus and a method for measuring the distance travelled by a wireline includes at least one sensor coupled to the wireline, and the sensor is capable of sensing known locations in a wellbore.

WO 01/20129 A3



(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(88) Date of publication of the international search report:  
2 August 2001

*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

**Published:**

— *with international search report*

## INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 00/03491

**A. CLASSIFICATION OF SUBJECT MATTER**  
 IPC 7 E21B47/12 E21B47/04

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 E21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                          | Relevant to claim No.        |
|------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|
| X          | US 4 001 774 A (DAWSON ET AL.)<br>4 January 1977 (1977-01-04)<br>column 3, line 30 - line 64<br>column 4, line 19 - line 34 | 1-13                         |
| Y          | ---                                                                                                                         | 14, 18,<br>20, 23,<br>29, 35 |
| Y          | US 4 814 548 A (TRAVERSINO ET AL.)<br>21 March 1989 (1989-03-21)<br>column 1, line 44 - line 46                             | 14                           |
| A          | US 3 209 323 A (GROSSMAN)<br>28 September 1965 (1965-09-28)<br>column 5, line 18 - line 37                                  | 1                            |
|            | ---                                                                                                                         | -/-                          |

 Further documents are listed in the continuation of box C.

 Patent family members are listed in annex.

## \* Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

\*T\* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

\*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

\*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

\*&\* document member of the same patent family

Date of the actual completion of the international search

28 February 2001

Date of mailing of the international search report

06.03.2001

Name and mailing address of the ISA

 European Patent Office, P.B. 5818 Patentlaan 2  
 NL - 2280 HV Rijswijk  
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.  
 Fax: (+31-70) 340-3016

Authorized officer

Rampelmann, K

## INTERNATIONAL SEARCH REPORT

International Application No  
PCT/GB 00/03491

## C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category | Citation of document, with indication, where appropriate, of the relevant passages                                                                                           | Relevant to claim No.                            |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| X        | GB 936 461 A (TROSZT)<br>11 September 1963 (1963-09-11)<br><br>page 3, line 27 - line 39<br>page 3, line 79 - line 91<br>page 4, line 49 - line 57<br>claim 1                | 15-17,<br>19,22,<br>24,25,<br>27,28,<br>30,32-34 |
| Y        | ---                                                                                                                                                                          | 14,18,<br>20,23,<br>29,35                        |
| X        | US 3 267 365 A (BAKER)<br>16 August 1966 (1966-08-16)<br><br>column 1, line 29 - line 35<br>column 4, line 34 -column 5, line 39<br>---                                      | 15-17,<br>19,22,<br>24,25,<br>27,28,<br>30,32,34 |
| X        | US 3 185 997 A (CARLTON ET AL.)<br>25 May 1965 (1965-05-25)<br><br>column 1, line 40 - line 42<br>column 2, line 32 - line 43<br>column 2, line 63 -column 3, line 42<br>--- | 15,16,<br>21,22,<br>26-28,34                     |
| X        | US 4 044 470 A (DUFRENE)<br>30 August 1977 (1977-08-30)<br>column 4, line 35 - line 68<br>-----                                                                              | 22,24                                            |

# INTERNATIONAL SEARCH REPORT

International application No.  
PCT/GB 00/03491

## Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
  
2.  Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
  
3.  Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

## Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1.  As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
  
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
  
3.  As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
  
4.  No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-14

Communication system

2. Claims: 15-35

Downhole depth measurement system

## Information on patent family members

International Application No

PCT/GB 00/03491

| Patent document cited in search report |   | Publication date | Patent family member(s) | Publication date |
|----------------------------------------|---|------------------|-------------------------|------------------|
| US 4001774                             | A | 04-01-1977       | NONE                    |                  |
| US 4814548                             | A | 21-03-1989       | NONE                    |                  |
| US 3209323                             | A | 28-09-1965       | NONE                    |                  |
| GB 936461                              | A |                  | NONE                    |                  |
| US 3267365                             | A | 16-08-1966       | NONE                    |                  |
| US 3185997                             | A | 25-05-1965       | NONE                    |                  |
| US 4044470                             | A | 30-08-1977       | NONE                    |                  |

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**