## Loss distributions

### Random variable for losses

- Let L be a random variable representing losses.
- The distribution of L captures the uncertainty in potential losses.
- Commonly used distributions for modeling losses include:
  - Normal distribution
  - Log-normal distribution
  - Exponential distribution

### What is random variable?

A **random variable** is a function that maps outcomes of a random experiment to real numbers. Formally:

$$X:\Omega\to\mathbb{R}$$

#### where:

- $\Omega$  is the **sample space** (the set of all possible outcomes),
- $X(\omega) \in \mathbb{R}$  is the value assigned to outcome  $\omega \in \Omega$ .

# Types of random variables

- **Discrete random variables** take on a countable number of values. Examples include:
  - Number of claims in insurance
  - Number of defaults in a loan portfolio
- Continuous random variables take on an uncountable number of values. Examples include:
  - Loss amounts in a financial portfolio
  - Time until an event occurs (e.g., default)

### Discrete random variables

Takes values in a countable set (e.g., integers).

**Example:** Let X be the number of heads in 3 coin tosses. Then:

$$X \in \{0, 1, 2, 3\}$$

#### Sample Space:

$$\Omega = \{ \mathsf{HHH}, \, \mathsf{HHT}, \, \mathsf{HTH}, \, \mathsf{HTT}, \, \mathsf{THH}, \, \mathsf{THT}, \, \mathsf{TTH}, \, \mathsf{TTT} \}$$

### Continuous random variables

Takes values in an interval or uncountable set.

**Example:** (Default time) Let T be the time (in seconds) until a loan defaults. Then:

$$T \in [0, \infty)$$

# Probability Distribution

A random variable is associated with a **probability distribution**:

• For discrete X, we define a **probability mass function** (PMF) p(x):

$$P(X=x)=p(x)$$

 For continuous X, we define a probability density function (PDF) f(x):

$$P(a \le X \le b) = \int_a^b f(x) \, dx$$

# Cumulative Distribution Function (CDF)

The **Cumulative Distribution Function (CDF)** of a random variable X is defined as:

$$F(x) = P(X \le x)$$

• For discrete X:

$$F(x) = \sum_{t \le x} p(t)$$

where p(t) is the PMF.

For continuous X:

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

where f(t) is the PDF.

# Properties of CDF

#### **Properties of CDF:**

- F(x) is non-decreasing.
- $\lim_{x\to-\infty} F(x) = 0$  and  $\lim_{x\to\infty} F(x) = 1$ .
- $P(a < X \le b) = F(b) F(a)$ .

# Discrete Example Continued

#### **Probability Mass Function (PMF):**

For the random variable X (number of heads in 3 coin tosses), the PMF is:

$$P(X = x) = {3 \choose x} \cdot (0.5)^x \cdot (0.5)^{3-x}, \quad x = 0, 1, 2, 3$$

#### Table of Probabilities:

| X | P(X = x) |
|---|----------|
| 0 | 0.125    |
| 1 | 0.375    |
| 2 | 0.375    |
| 3 | 0.125    |

# Cumulative Distribution Function (CDF)

### **Cumulative Distribution Function (CDF):**

$$F(x) = P(X \le x) = \begin{cases} 0 & \text{if } x < 0 \\ 0.125 & \text{if } 0 \le x < 1 \\ 0.5 & \text{if } 1 \le x < 2 \\ 0.875 & \text{if } 2 \le x < 3 \\ 1 & \text{if } x \ge 3 \end{cases}$$

# Graph of PMF and CDF

### PMF:



### CDF:



# Continuous Example: PDF and CDF

### Probability Density Function (PDF):

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

### **Cumulative Distribution Function (CDF):**

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

### Mean and Variance of Random Variable

### Mean (Expected Value):

$$E[X] = \begin{cases} \sum_{x} x \cdot P(X = x) & \text{if discrete} \\ \int_{-\infty}^{\infty} x \cdot f(x) \, dx & \text{if continuous} \end{cases}$$

Variance:

$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

#### Standard Deviation:

$$\sigma(X) = \sqrt{Var(X)}$$

## Discrete Example Continued: Mean and Variance

### Mean (Expected Value):

$$E[X] = \sum_{x} x \cdot P(X = x) = 0.0.125 + 1.0.375 + 2.0.375 + 3.0.125 = 1.5$$

#### Variance:

$$Var(X) = E[X^2] - (E[X])^2 = \sum_{x} x^2 \cdot P(X = x) - (1.5)^2$$

$$= (0^2 \cdot 0.125 + 1^2 \cdot 0.375 + 2^2 \cdot 0.375 + 3^2 \cdot 0.125) - 2.25 = 0.75$$

#### **Standard Deviation:**

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{0.75} \approx 0.866$$

## Continuous Example Continued: Mean and Variance

### Mean (Expected Value):

$$E[X] = \int_0^1 x \cdot 1 \, dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}$$

Variance:

$$Var(X) = E[X^2] - (E[X])^2 = \int_0^1 x^2 \cdot 1 \, dx - \left(\frac{1}{2}\right)^2$$
$$= \left[\frac{x^3}{3}\right]_0^1 - \frac{1}{4} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

**Standard Deviation:** 

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{\frac{1}{12}} = \frac{1}{2\sqrt{3}} \approx 0.289$$

### Binomial Distribution

- Binomial Distribution:  $X \sim Bin(n, p)$ 
  - PMF:  $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$  for k = 0, 1, ..., n
  - Models the number of successes in n independent Bernoulli trials with success probability p
- Properties:
  - Mean:  $E[X] = n \cdot p$
  - Variance:  $Var(X) = n \cdot p \cdot (1 p)$
- Example: Number of defective items in a batch of *n* products.



# **Exponential Distribution**

- **Exponential Distribution**:  $X \sim \mathsf{Exp}(\lambda)$ 
  - PDF:  $f(x) = \lambda e^{-\lambda x}$  for  $x \ge 0$ ,  $\lambda > 0$
  - Models the time between events in a Poisson process
- Properties:
  - Mean:  $E[X] = \frac{1}{\lambda}$
  - Variance:  $Var(X) = \frac{1}{\lambda^2}$
  - Memoryless property:  $P(X > s + t \mid X > s) = P(X > t)$
- Example: Time until a claim is filed in insurance.



### Normal Distribution

- Normal Distribution:  $L \sim N(\mu, \sigma^2)$ 
  - PDF:  $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
  - $\bullet$  Symmetric around the mean  $\mu$
  - Light tails: extreme losses are rare
- Often used as a baseline model for financial returns
- Properties:
  - ullet Mean:  $\mu$
  - Variance:  $\sigma^2$
- Standard Normal: If  $L \sim N(\mu, \sigma^2)$ , then  $Z = \frac{L-\mu}{\sigma} \sim N(0, 1)$ .
- Limitation: May underestimate tail risk in financial markets

# Log-Normal Distribution

- Log-Normal Distribution:  $L \sim \text{LogNormal}(\mu, \sigma^2)$ 
  - If  $X \sim N(\mu, \sigma^2)$ , then  $L = e^X$  follows a log-normal distribution.
  - PDF:  $f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x \mu)^2}{2\sigma^2}\right)$  for x > 0.
- Properties:
  - Mean:  $E[L] = e^{\mu + \sigma^2/2}$
  - Variance:  $Var(L) = (e^{\sigma^2} 1) e^{2\mu + \sigma^2}$
- Applications: Modeling asset prices, insurance claims, and other non-negative data.



# Heavy Tail distribution: Pareto

#### Pareto Distribution:

- PDF:  $f(x) = \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}$  for  $x \ge x_m > 0$ ,  $\alpha > 0$ .
- Used to model losses with a high probability of extreme values (catastrophic risk).
- ullet Heavy tail: moments may not exist if lpha is small.
- Example: Insurance claims, natural disasters.
- Properties:
  - Mean exists if  $\alpha > 1$ ;  $E[L] = \frac{\alpha x_m}{\alpha 1}$ .
  - Variance exists if  $\alpha > 2$ ;  $Var(L) = \frac{x_m^2 \alpha}{(\alpha 1)^2 (\alpha 2)}$ .



## Heavy Tail distribution: Student's t

• Standard t-distribution:  $t(\nu)$ :

$$T = \frac{Z}{\sqrt{V/\nu}}$$

where  $Z \sim N(0,1)$  and  $V \sim \chi^2(\nu)$  (chi-squared with  $\nu$  degrees of freedom).

- $\mathbb{E}[T] = 0$  for  $\nu > 1$  and  $\mathrm{Var}[T] = \frac{\nu}{\nu 2}$  for  $\nu > 2$ .
- t-distribution  $L \sim t(\nu, \mu, \sigma^2)$ :

$$T = \frac{\mathsf{L} - \mu}{\sigma} \sim \mathsf{t}(\nu)$$

- $\mathbb{E}[L] = \mu$  for  $\nu > 1$ ,  $\operatorname{Var}[L] = \frac{\sigma^2 \nu}{\nu 2}$  for  $\nu > 2$ .
- Heavier tails than normal distribution; used to model financial returns.