## Accuracy Enhancements of the 802.11 Model and EDCA QoS Extensions in ns-3

#### Timo Bingmann

Decentralized Systems and Network Services Research Group Institute of Telematics, University of Karlsruhe

February 6, 2009



1.1 Introduction

#### ns-3 Introduction

#### ns-3 is

- a discrete-event network simulator.
- intended to replace ns-2.
- not backwards compatible to ns-2.

# Roadmap

- 1 ns-3 Basics
  - Introduction
  - Showcase: Design Patterns
  - Current State
- 2 Wifi in ns-3
  - State of 802.11
  - PHY Layer
  - Signals, Noise and Interference
  - Short Recapitulation of DCF
  - QoS with EDCA
- 3 Conclusion

1.1 Introduction

### ns-3 Introduction

#### ns-3 Goals

- Create tools aligned with needs of modern networking research.
- Work as open-source project with active community participation.
- Improve repeatability of results in research papers.

Timo Bingmann - 3/44 Timo Bingmann - 4/44 802.11 Enhancements in ns-3 802.11 Enhancements in ns-3 University of Karlsruhe University of Karlsruhe

1 ns-3 Basics

1.1 Introduction

1.2 Showcase: Design Patterns

### ns-3 and ns-2

ns-3 is not based on ns-2: drop ns-2's historic burdens.

- ns-3 is fully C++.
- Leverage up-to-date features of C++ .
- Create optional language bindings like Python for interpreter frontends.

Timo Bingmann - 5/44 University of Karlsruhe

1 ns-3 Basics

1.2 Showcase: Design Patterns

802.11 Enhancements in ns-3

Timo Bingmann - 6/44 University of Karlsruhe

ns-3 Basics

1.2 Showcase: Design Patterns

# Design Pattern: Tracing

Tracing needs vary greatly in different simulations.

ns-2:

802.11 Enhancements in ns-3



- Trace objects inserted as network elements.
- Fixed trace file format for further statistical processing.
- Not easily customizable to own experiment.
- Also available: queue monitors.

# Design Patterns

Utilize modern design patterns in C++:

- Object and attribute system.
- Smart Ptr<> automatic memory management.
- Callbacks to decouple modules.
- COM-like object aggregation and interface querying.
- Decouple trace sources from sinks.

Requires advanced C++ knowledge.



- Models export TraceSources. Examples: Node packet reception, 802.11 PHY state changes, TCP congestion window values.
- TraceSources can be connected to own callback functions
- or to predefined trace files generators for output in pcap/tcpdump format or ascii text.

Timo Bingmann - 7/44 University of Karlsruhe

802.11 Enhancements in ns-3

802.11 Enhancements in ns-3

Timo Bingmann - 8/44 University of Karlsruhe

|                                    | 1 ns-3 Basics 1.3 Curre                                                                         | ent State                                                                     |                |                                  | 1 ns-3 Basics  | 1.3 Current State   |                          |           |  |
|------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|----------------------------------|----------------|---------------------|--------------------------|-----------|--|
|                                    | Existing core ns-2 models                                                                       | Existing ns-3                                                                 | CLOC           | ( ) 0                            | 2              | 2.2                 |                          |           |  |
| Applications                       | ping, vat, telnet, FTP, HTTP,<br>probabilistic and trace-driven<br>traffic generators, webcache | OnOffApplication, asynchronous socket API, packet sockets                     |                |                                  |                | na ns-3.3           |                          |           |  |
| Transport layer                    | TCP (many variants), UDP,<br>SCTP, XCP, TFRC, RAP<br>Multicast: PGM, SRM, RLM                   | UDP, TCP                                                                      |                | 0 22                             |                |                     |                          |           |  |
| Network layer                      | Unicast: IP, MobileIP, generic distance vector and link state.                                  | Unicast: IPv4, global static routing                                          |                | ns-2.33                          |                |                     | ns-3.3                   |           |  |
|                                    | IPinIP, source routing MANET: AODV, DSR, DSDV, TORA, IMEP                                       | Multicast: static routing MANET: OLSR                                         | C/C++<br>Tcl   | 162,208<br>103,419               | 58%<br>37%     | $C/C++$ $Python^1$  | 77,270<br>2,906          | 96'<br>4' |  |
| Link layer                         | · · · · · · · · · · · · · · · · · · ·                                                           | PointToPoint, CSMA, 802.11<br>MAC low, high and rate                          | Other          | 13,341                           | 5%             | Other               | 58                       | 0         |  |
|                                    | MACs: CSMA, 802.11b,<br>802.15.4 (WPAN), satellite<br>Aloha.                                    | control algorithms                                                            | Total          | 278,968                          |                | Total               | 80,234                   |           |  |
| Physical layer                     | TwoWayGround, Shadowing,<br>OmniAntennas, EnergyModel,<br>Satellite Repeater                    | 802.11a, Friis propagation loss, log distance loss, basic wired (loss, delay) | 802.11         | 6,067                            | 2%             | 802.11              | 13,573                   | 17        |  |
| Core Support                       | RNGs, tracing monitors, mathematical support, test suite, animation (nam)                       | RNGs, unit tests, logging, callbacks, mobility visualizer                     |                | automatically generated using Da |                | r's 'SLOCCount'.    |                          |           |  |
|                                    |                                                                                                 | Based on tables from [1] and [2].                                             | 802.11 Enhance | ments in ns-3                    |                |                     | Timo Bingı<br>University |           |  |
| 2 Wifi in ns-3 2.1 State of 802.11 |                                                                                                 |                                                                               |                |                                  | 2 Wifi in ns-3 | 2.1 State of 802.11 |                          |           |  |
|                                    |                                                                                                 |                                                                               | 1              |                                  |                |                     |                          |           |  |

#### UML of ns-2's Wifi Classes



|                                                                                                         | ns-2.33 |     | I          | ns-3.3 |     |  |  |
|---------------------------------------------------------------------------------------------------------|---------|-----|------------|--------|-----|--|--|
| C/C++                                                                                                   | 162,208 | 58% | C/C++      | 77,270 | 96% |  |  |
| Tcl                                                                                                     | 103,419 | 37% | $Python^1$ | 2,906  | 4%  |  |  |
| Other                                                                                                   | 13,341  | 5%  | Other      | 58     | 0%  |  |  |
| Total                                                                                                   | 278,968 |     | Total      | 80,234 |     |  |  |
| 802.11                                                                                                  | 6,067   | 2%  | 802.11     | 13,573 | 17% |  |  |
| $^{1}$ excludes automatically generated code Statistics generated using David A. Wheeler's 'SLOCCount'. |         |     |            |        |     |  |  |
| 802.11 Enhancements in ns-3  Timo Bingmann - 10/44 University of Karlsrube                              |         |     |            |        |     |  |  |

# UML of ns-3's Wifi Classes



2 Wifi in ns-3 2.1 State of 802.11 2 Wifi in ns-3 2.1 State of 802.11

## Thesis Goals

#### Goals

- ns-3 wireless simulations give equal or accountably different results like equivalent ns-2 simulations.
- Extend ns-3 with EDCA for 802.11e QoS.

802.11 Enhancements in ns-3

Timo Bingmann - 13/44
University of Karlsruhe

2 Wifi in ns-3

2.2 PHY Layer

# Modelling 802.11 in ns-3



#### State of 802.11 in ns-3

#### PHY layer:

- Currently only 802.11a rates supported.
- No simulation of capture effect.
- No Nakagami propagation loss model.
- + BER/PER reception criterion.

# **PHY Layer**

Goal: compatibility with ns-2 WirelessPhyExt.

Required components

- PowerMonitor for cumulative noise
- SINR reception criterion
- Capture effect
- Nakagami propagation loss model

Timo Bingmann - 15/44 University of Karlsruhe Timo Bingmann - 16/44 University of Karlsruhe





# Without Capture Effect



Timo Bingmann - 25/44 802.11 Enhancements in ns-3 University of Karlsruhe

2.4 Short Recapitulation of DCF

# With Capture Effect



802.11 Enhancements in ns-3 University of Karlsruhe 2.4 Short Recapitulation of DCF

### Thesis Goals

#### Goals

- ns-3 wireless simulations give equal or accountably different results like equivalent ns-2 simulations.
- Extend ns-3 with EDCA for 802.11e QoS.

# Modelling 802.11 in ns-3



Timo Bingmann - 27/44 University of Karlsruhe

802.11 Enhancements in ns-3

# Short Recapitulation of DCF

Radio transmission using CSMA/CA: Carrier sense multiple access with collision avoidance

802.11 has two carrier sense mechansims:

- physical CCA\_BUSY
- virtual NAV (network allocation vector)

Timo Bingmann - 29/44 802.11 Enhancements in ns-3 University of Karlsruhe

2.4 Short Recapitulation of DCF

# Physical Carrier Sense

Stations always listen to the radio channel.

CCA BUSY indication is raised if radio energy level is above a CS threshold.



2.4 Short Recapitulation of DCF

### Virtual Carrier Sense

802.11 Enhancements in ns-3

Stations hear and decode all packet headers on the radio channel.

Header contains a duration field. Reserves channel for time after packet by updating NAV.



# RTS/CTS using NAV

802.11 Enhancements in ns-3



Timo Bingmann - 31/44 University of Karlsruhe

Timo Bingmann - 32/44 University of Karlsruhe



# Problems of DCF for QoS

DCF is not good for time-critical traffic:

- Any STA may transmit arbitrarily large frames.
- All traffic stored in one queue.

PCF does not handles these issues:

Contention-free period may be delayed.

802.11 Enhancements in ns-3

Timo Bingmann - 36/44 University of Karlsruhe

2.5 QoS with EDCA

# **EDCA Access Categories**



2.5 QoS with EDCA

#### Default EDCA Parameters

#### 802.11p (Draft 4.02)

|       | VO   | VI   | BE   | BK   | DFS  |
|-------|------|------|------|------|------|
| CWmin | 3    | 3    | 7    | 15   | 15   |
| CWmax | 7    | 7    | 15   | 1023 | 1023 |
| AIFSN | 2    | 3    | 6    | 9    | 2    |
| AIFS  | 34µs | 43µs | 70µs | 97µs | 34µs |

# DCF Backoff Probability

802.11 Enhancements in ns-3





Timo Bingmann - 38/44 University of Karlsruhe

Timo Bingmann - 39/44 University of Karlsruhe



# Default EDCA Parameters of 802.11p



Already finished:

Work Status

- Ported NakagamiPropagationLossModel including dependencies.
- Implemented Ns2ExtWifiPhy for SINR reception and capture effect.

802.11 Enhancements in ns-3

Timo Bingmann - 41/44 University of Karlsruhe

3 Conclusion

### Outlook

#### Further Plans:

- Backport capture to BER/PER model.
- Implement and verify 802.11e EDCA QoS.
- Compilation and speed improvements with icc.
- Theoretical discussion of parallel or distributed 802.11 simulation.

# **Bibliography**

- [1] Thomas R. Henderson, Sumit Roy, Sally Floyd, and George F. Riley.
  ns-3 project goals.
  In WNS2 '06: Proceeding from the 2006 Workshop on ns-2: the IP network simulator, page 13, New York, NY, USA, 2006. ACM.
- [2] Thomas R. Henderson.
  ns-3 overview, December 2008.
  http://www.nsnam.org/docs/ns-3-overview.pdf.

Timo Bingmann - 42/44 University of Karlsruhe Timo Bingmann - 44/44 University of Karlsruhe