Experiments 2: Clustering, blocking, noncompliance LQRPS

Frederik Hjorth fh@ifs.ku.dk fghjorth.github.io @fghjorth

Department of Political Science University of Copenhagen

February 9th, 2017

2 Clustering

- 3 Using covariates
 - Pre-treatment outcome
 - Other covariates
 - Blockin
- 4 Noncompliance
 - Motivating ex.: Gerber & Green (2000)
 - Formal statement
- 5 Is voting contagious? Nickerson (2008)

- 1 Joe's paper
- 2 Clustering

- 3 Using covariates
 - Pre-treatment outcome
 - Other covariates
 - Blocking
- 4 Noncompliance
 - Motivating ex.: Gerber & Green (2000)
 - Formal statement
- 5 Is voting contagious? Nickerson (2008)

- 2 Clustering
- 3 Using covariates
 - Pre-treatment outcomes
 - Other covariates
 - Blocking
- 4 Noncompliance
 - Motivating ex.: Gerber & Green (2000)
 - Formal statement
- 5 Is voting contagious? Nickerson (2008)

- 1 Joe's paper
- 2 Clustering

- 3 Using covariates
 - Pre-treatment outcomes
 - Other covariates
 - Blocking
- 4 Noncompliance
 - Motivating ex.: Gerber & Green (2000)
 - Formal statement
- 5 Is voting contagious? Nickerson (2008)

- 1 Joe's paper
- 2 Clustering

- 3 Using covariates
 - Pre-treatment outcomes
 - Other covariates
 - Blocking
- 4 Noncompliance
 - Motivating ex.: Gerber & Green (2000)
 - Formal statement
- 5 Is voting contagious? Nickerson (2008)

Noncompliance

Nickerson

- 1 Joe's paper
- 2 Clusterin
- 3 Using covariate
- 4 Noncomplianc
- 5 Is voting contagious? Nickerson (2008

Control		T1		T2	
Pro attitudinal 1	Counter attitudinal 1 -	Pro attitudinal 1	Counter attitudinal 1	Pro attitudinal 1	Counter attitudinal 1
- written	written	- viral	– written	- written	- viral
Pro attitudinal 1	Counter attitudinal 2 -	Pro attitudinal 1	Counter attitudinal 2	Pro attitudinal 1	Counter attitudinal 2 -
- written	written	- written	- written	- written	written
Expert opinion	Fact on the issue	Expert opinion	Fact on the issue	Expert opinion	Fact on the issue
- written	- written	- written	- written	- written	- written

N.B. pro attitudinal means that the subject has a (somewhat) preference toward the party the statement comes from. It can thus be from a party from blue or red bloc depending on the subject's political affiliation.

Questions or comments?

Nickerson

- Clustering

The standard error for \widehat{ATE} :

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1}} \left\{ \frac{mVar(Y_{i0})}{N-m} + \frac{(N-m)Var(Y_{i1})}{m} + 2Cov(Y_{i0}, Y_{i1}) \right\}$$
(1)

Ways to reduce $SE(\widehat{ATE})$

- //
- $Var(Y_{i0})$ or $Var(Y_{i1}) \downarrow$
- $Cov(Y_{i0}Y_{i1}) \downarrow$

The standard error for \widehat{ATE} :

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1} \left\{ \frac{mVar(Y_{i0})}{N-m} + \frac{(N-m)Var(Y_{i1})}{m} + 2Cov(Y_{i0}, Y_{i1}) \right\}}$$
(1)

Ways to reduce $SE(\widehat{ATE})$:

- N ↑
- $Var(Y_{i0})$ or $Var(Y_{i1}) \downarrow$
- $Cov(Y_{i0}Y_{i1}) \downarrow$

The standard error for \widehat{ATF} .

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1} \left\{ \frac{mVar(Y_{i0})}{N-m} + \frac{(N-m)Var(Y_{i1})}{m} + 2Cov(Y_{i0}, Y_{i1}) \right\}}$$
(1)

Ways to reduce SE(ATE):

The standard error for \widehat{ATF} .

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1} \left\{ \frac{mVar(Y_{i0})}{N-m} + \frac{(N-m)Var(Y_{i1})}{m} + 2Cov(Y_{i0}, Y_{i1}) \right\}}$$
(1)

Ways to reduce SE(ATE):

- N ↑

The standard error for \widehat{ATF} .

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1} \left\{ \frac{mVar(Y_{i0})}{N-m} + \frac{(N-m)Var(Y_{i1})}{m} + 2Cov(Y_{i0}, Y_{i1}) \right\}}$$
 (1)

Ways to reduce SE(ATE):

- N ↑
- $Var(Y_{i0})$ or $Var(Y_{i1}) \downarrow$

The standard error for \widehat{ATE} :

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1} \left\{ \frac{mVar(Y_{i0})}{N-m} + \frac{(N-m)Var(Y_{i1})}{m} + 2Cov(Y_{i0}, Y_{i1}) \right\}}$$
(1)

Ways to reduce $SE(\widehat{ATE})$:

- N ↑
- $Var(Y_{i0})$ or $Var(Y_{i1}) \downarrow$
- Cov(Y_i0 Y_i1) ↓

- e.g. media markets, municipalities, classrooms
- → other examples?
- basic implication: does not produce bias, but reduces precision

- e.g. media markets, municipalities, classrooms
- → other examples?
- basic implication: does not produce bias, but reduces precision

- e.g. media markets, municipalities, classrooms
- → other examples?
- basic implication: does not produce bias, but reduces precision

- e.g. media markets, municipalities, classrooms
- → other examples?
- basic implication: does not produce bias, but reduces precision

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{k-1}} \left\{ \frac{mVar(\overline{Y}_{j0})}{N-m} + \frac{(N-m)Var(\overline{Y}_{j1})}{m} + 2Cov(\overline{Y}_{j0}, \overline{Y}_{j1}) \right\}$$
(2)

Ways to reduce $SE(\widehat{ATE})$

- k1
- // 1
- $Var(Y_{i0})$ or $Var(Y_{i1})$
- $Cov(Y_{i0}Y_{i1})$.

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{k-1}} \left\{ \frac{mVar(\overline{Y}_{j0})}{N-m} + \frac{(N-m)Var(\overline{Y}_{j1})}{m} + 2Cov(\overline{Y}_{j0}, \overline{Y}_{j1}) \right\}$$
(2)

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{k-1}} \left\{ \frac{mVar(\overline{Y}_{j0})}{N-m} + \frac{(N-m)Var(\overline{Y}_{j1})}{m} + 2Cov(\overline{Y}_{j0}, \overline{Y}_{j1}) \right\}$$
(2)

Ways to reduce $SE(\widehat{ATE})$:

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{k-1}} \left\{ \frac{mVar(\overline{Y}_{j0})}{N-m} + \frac{(N-m)Var(\overline{Y}_{j1})}{m} + 2Cov(\overline{Y}_{j0}, \overline{Y}_{j1}) \right\}$$
(2)

Ways to reduce $SE(\widehat{ATE})$:

- k ↑
- \(\strice{1} \)
- $Var(Y_{i0})$ or $Var(Y_{i1}) \downarrow$
- $Cov(Y_{i0}Y_{i1}) \downarrow$

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{k-1}} \left\{ \frac{mVar(\overline{Y}_{j0})}{N-m} + \frac{(N-m)Var(\overline{Y}_{j1})}{m} + 2Cov(\overline{Y}_{j0}, \overline{Y}_{j1}) \right\}$$
(2)

Ways to reduce $SE(\widehat{ATE})$:

- k ↑
- N ↑

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{k-1}} \left\{ \frac{mVar(\overline{Y}_{j0})}{N-m} + \frac{(N-m)Var(\overline{Y}_{j1})}{m} + 2Cov(\overline{Y}_{j0}, \overline{Y}_{j1}) \right\}$$
(2)

Ways to reduce $SE(\widehat{ATE})$:

- k ↑
- N ↑
- $Var(Y_{i0})$ or $Var(Y_{i1}) \downarrow$

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{k-1}} \left\{ \frac{mVar(\overline{Y}_{j0})}{N-m} + \frac{(N-m)Var(\overline{Y}_{j1})}{m} + 2Cov(\overline{Y}_{j0}, \overline{Y}_{j1}) \right\}$$
(2)

Ways to reduce $SE(\widehat{ATE})$:

- k ↑
- N ↑
- $Var(Y_{i0})$ or $Var(Y_{i1}) \downarrow$
- $Cov(Y_{i0}Y_{i1}) \downarrow$

- simulate all (or large number of) possible configurations of treatment assignments
- ② for each simulated configuration, estimate ATE
- 3 calculate p-value based on the estimated ATE's position in the distribution of simulated ATE's

- simulate all (or large number of) possible configurations of treatment assignments
- g for each simulated configuration, estimate ATE
- calculate p-value based on the estimated ATE's position in the distribution of simulated ATE's

Noncompliance

We can calculate p-values (with or without cluster assignment) using randomization inference

- simulate all (or large number of) possible configurations of treatment assignments
- 2 for each simulated configuration, estimate ATE
- 3 calculate p-value based on the estimated ATE's position in the distribution of simulated ATE's

Noncompliance

We can calculate p-values (with or without cluster assignment) using randomization inference

- simulate all (or large number of) possible configurations of treatment assignments
- 2 for each simulated configuration, estimate ATE
- 3 calculate p-value based on the estimated ATE's position in the distribution of simulated ATE's

- simulate all (or large number of) possible configurations of treatment assignments
- 2 for each simulated configuration, estimate ATE
- calculate p-value based on the estimated ATE's position in the distribution of simulated ATF's

Nickerson

Questions or comments?

Nickerson

Noncompliance

- 1 Joe's pape
- 2 Clusterin
- 3 Using covariates
 - Pre-treatment outcome
 - Other covariate
 - Blocking
- 4 Noncomplianc
- 5 Is voting contagious? Nickerson (2008

Pre-treatment outcomes

Joe's paper

- 1 Joe's pape
- 2 Clustering
- 3 Using covariates
 - Pre-treatment outcomes
 - Other covariates
 - Blocking
- 4 Noncompliance
- 5 Is voting contagious? Nickerson (2008

Nickerson

Joe's paper

- allows for measuring outcome as change in variable of interes
- i.e. in lieu of difference-in-means, difference-in-differences estimator (cf. yesterday)
- when pre-treatment covariates are correlated with potential outcomes → increase in precision

Joe's paper

- allows for measuring outcome as change in variable of interest
- i.e. in lieu of difference-in-means, difference-in-differences estimator (cf. yesterday)
- when pre-treatment covariates are correlated with potential outcomes → increase in precision

Joe's paper

- allows for measuring outcome as change in variable of interest
- i.e. in lieu of difference-in-means, difference-in-differences estimator (cf. yesterday)
- when pre-treatment covariates are correlated with potential outcomes → increase in precision

Joe's paper

- allows for measuring outcome as change in variable of interest
- i.e. in lieu of difference-in-means, difference-in-differences estimator (cf. yesterday)
- \bullet when pre-treatment covariates are correlated with potential outcomes \rightarrow increase in precision

1 Joe's paper

Joe's paper

Other covariates

- 2 Clustering
- 3 Using covariates
 - Pre-treatment outcomes
 - Other covariates
 - Blocking
- 4 Noncompliance
- 5 Is voting contagious? Nickerson (2008

Nickerson

Regression of Y_i on d_i and covariate X_i :

$$Y_i = Y_{i0}(1 - d_i) + Y_{i1}d_i = a + bd_i + cX_i + (u_i - cX_i)$$
(3)

 \rightarrow if d_i predicts Y_i , residual term $\downarrow \rightarrow \sigma_{\hat{b}} \downarrow$

Regression of Y_i on d_i and covariate X_i :

$$Y_i = Y_{i0}(1 - d_i) + Y_{i1}d_i = a + bd_i + cX_i + (u_i - cX_i)$$
 (3)

Regression of Y_i on d_i and covariate X_i :

$$Y_i = Y_{i0}(1 - d_i) + Y_{i1}d_i = a + bd_i + cX_i + (u_i - cX_i)$$
 (3)

 \rightarrow if d_i predicts Y_i , residual term $\downarrow \rightarrow \sigma_{\hat{h}} \downarrow$

Regression of Y_i on d_i and covariate X_i :

$$Y_i = Y_{i0}(1 - d_i) + Y_{i1}d_i = a + bd_i + cX_i + (u_i - cX_i)$$
 (3)

 \rightarrow if d_i predicts Y_i , residual term $\downarrow \rightarrow \sigma_{\hat{h}} \downarrow$

But: covariate inclusion also increases 'researcher degrees of freedom'

settle on a regression model that makes the estimated ATE look impressive or interesting, a

Table 1. Explaining support for socially protective policies with physiological reactions to threatening images. Results of ordinary least squares (QLS) regression with support for socially protective policies (possible range from 0 to 18), with higher numbers indicating attitudes more supportive of policies thought to protect the social unit regressed on five explanatory variables; gender (0 = male: I = female), age (in years), education (six categories ranging from "did not finish high school" to "college degree plus"), income (six categories ranging from an annual salary of less than \$20,000 to an annual salary of more than \$100,000), and changes in skin conductance level (SCL) occasioned by the viewing of threatening images. Descriptive statistics on the variables and further discussion of the regression techniques are available in the SOM. *P < 0.05, two-tailed t test.

Variable	Unstandardized coefficient (SE)	Standardized coefficient
SCL	92.2* (29.03)	0.377
Income	-0.395 (0.471)	-0.10
Education	-1.63* (0.465)	-0.42
Age	0.19 (0.10)	0.235
Gender	-2.34 (1.3)	-0.20
Constant	-353* (193)	
N	46	
Adj. R-square	0.37	

Table 2. Explaining support for socially protective policies with physiological reactions to nonthreatening images. Results of regression (OLS) with support for socially protective policies regressed on five explanatory variables. Variables are the same as those described for Table I except that skin conductance (SCL) is the change in skin conductance occasioned by the viewing of nonthreatening images. Descriptive statistics and further discussion of the regression techniques are available in the SOM. *P < 0.05, two-tailed t test.

Variable	Unstandardized coefficient (SE)	Standardized coefficient
SCL	-1.8 (35.08)	-0.007
Income	-0.438 (0.533)	-0.115
Education	-1.57* (0.53)	-0.408
Age	0.165 (0.11)	0.204
Gender	-2.23 (1.52)	-0.196
Constant	-304* (217)	
N	46	
Adj. R-square	0.21	

But: covariate inclusion also increases 'researcher degrees of freedom'

»This type of analysis introduces an element of discretion in terms of what results are reported.

settle on a regression model that makes the estimated ATE look impressive or interesting, a decision rule that jeopardizes the unbiasedness of the estimator.« (105)

Table 1. Explaining support for socially procestive policies with physiological reactions to threatening images. Results of ordinary least squares (OLS) regression with support for socially protective policies (possible range from 0 to 18), with higher numbers indicating attitudes more supportive of policies thought to protect the social unit regressed on five explanatory variables gender (0 = malt; = female), age (in years), education (six exaggories ranging from "did not finish high school" to "coolege degree plus"), income (six exaggories ranging from an annual salary of less than \$20,000 to an annual salary of more than \$100,000, and changes in six conductance level [SCL) occasioned by the viewing of threatening images. Descriptive statistics on the variables and further discussion of the regression techniques are available in the SOM, *Po 603, two-vailed text sources.

Variable	Unstandardized coefficient (SE)	Standardized coefficient
SCL	92.2* (29.03)	0.377
Income	-0.395 (0.471)	-0.10
Education	-1.63* (0.465)	-0.42
Age	0.19 (0.10)	0.235
Gender	-2.34 (1.3)	-0.20
Constant	-353* (193)	
N	46	
Adj. R-square	0.37	

Table 2. Explaining support for socially protective policies with physiological reactions to nonthreastening images. Results of regression (CLS) with support for socially protective policies regressed on five explanatory variables virables are the same as those described for Table 1 except that skin conductance (SCL) is the change in skin conductance occasioned by the viewing of nonthreasting ages. Descriptive statistics and further discussion of the regression techniques are available in the SOM, #9 + 0.05, two-allied treat.

	Unstandardized	Standardized	
Variable	coefficient (SE)	coefficient	
SCL	-1.8 (35.08)	-0.007	
Income	-0.438 (0.533)	-0.115	
Education	-1.57* (0.53)	-0.408	
Age	0.165 (0.11)	0.204	
Gender	-2.23 (1.52)	-0.196	
Constant	-304* (217)		
N	46		
Adj. R-square	0.21		

Using covariates

00000000

Joe's paper

OO

Other covariates

But: covariate inclusion also increases 'researcher degrees of freedom'

»This type of analysis introduces an element of discretion in terms of what results are reported. Perhaps unconsciously, the researcher may settle on a regression model that makes the estimated ATE look impressive or interesting,

decision rule that jeopardizes the unbiasedness of the estimator. (105)

Table 1. Explaining support for socially protective policies with physiological reactions to threatning images. Results of ordinary less squares (CID-) regression with support for socially protective policies (possible range from 0 to 18), with higher numbers indicating attitudes more supportive of policies thought to protect the social unit regressed on five explanatory variables gender (0 = male; 1 = female), age (in years), education (six categories ranging from "did not finish high school" to "coolege degree plus"), income (six categories ranging from "did not finish high school" to "annual salary of more than \$100,000, and changes in skin conductance level (SCL) occasioned by the viewing of threatening images. Descriptive statistics on the variables and surther discussion of the regression techniques are available in the SOM. *Po. OS, two-tailed to OS, two-tailed trool.

Variable	Unstandardized coefficient (SE)	Standardized coefficient
SCL	92.2* (29.03)	0.377
Income	-0.395 (0.471)	-0.10
Education	-1.63* (0.465)	-0.42
Age	0.19 (0.10)	0.235
Gender	-2.34 (1.3)	-0.20
Constant	-353* (193)	
N	46	
Adj. R-square	0.37	

Table 2. Explaining support for socially protective policies with physiological reactions to nonthreating images. Results of regression (OLS) with support for socially protective policies regressed on five explanatory variables variables are the same as those described for Table 1 except that skin conductance (SCL) is the change in skin conductance (SCL) in the change in skin conductance exceptioned by the viewing of nonthreatement gages. Descriptive statistics and further discussion of the regression techniques are available in the SOM. #P o OLS, two-ailed it test.

	Unstandardized	Standardized	
Variable	coefficient (SE)	coefficient	
SCL	-1.8 (35.08)	-0.007	_
Income	-0.438 (0.533)	-0.115	
Education	-1.57* (0.53)	-0.408	
Age	0.165 (0.11)	0.204	
Gender	-2.23 (1.52)	-0.196	
Constant	-304* (217)		
N	46		
Adj. R-square	0.21		

Using covariates

00000000

Joe's paper Other covariates

> But: covariate inclusion also increases 'researcher degrees of freedom'

»This type of analysis introduces an element of discretion in terms of what results are reported. Perhaps unconsciously, the researcher may settle on a regression model that makes the estimated ATE look impressive or interesting, a decision rule that jeopardizes the unbiasedness of the estimator. « (105)

Table 1. Explaining support for socially protective policies with physiological reactions to threatening images. Results of ordinary least squares (QLS) regression with support for socially protective policies (possible range from 0 to 18), with higher numbers indicating attitudes more supportive of policies thought to protect the social unit regressed on five explanatory variables; gender (0 = male: I = female), age (in years), education (six categories ranging from "did not finish high school" to "college degree plus"), income (six categories ranging from an annual salary of less than \$20,000 to an annual salary of more than \$100,000), and changes in skin conductance level (SCL) occasioned by the viewing of threatening images. Descriptive statistics on the variables and further discussion of the regression techniques are available in the SOM. *P < 0.05, two-tailed t test.

Variable	Unstandardized coefficient (SE)	Standardized coefficient
SCL	92.2* (29.03)	0.377
Income	-0.395 (0.471)	-0.10
Education	-1.63* (0.465)	-0.42
Age	0.19 (0.10)	0.235
Gender	-2.34 (1.3)	-0.20
Constant	-353* (193)	
N	46	
Adj. R-square	0.37	

Table 2. Explaining support for socially protective policies with physiological reactions to nonthreatening images. Results of regression (OLS) with support for socially protective policies regressed on five explanatory variables. Variables are the same as those described for Table I except that skin conductance (SCL) is the change in skin conductance occasioned by the viewing of nonthreatening images. Descriptive statistics and further discussion of the regression techniques are available in the SOM *P < 0.05, two-tailed t test.

Unstandardized	Standardized	
coefficient (SE)	coefficient	
-1.8 (35.08)	-0.007	
-0.438 (0.533)	-0.115	
-1.57* (0.53)	-0.408	
0.165 (0.11)	0.204	
-2.23 (1.52)	-0.196	
-304* (217)		
46		
0.21		
	coefficient (SE) -1.8 (35.08) -0.438 (0.533) -1.57* (0.53) 0.165 (0.11) -2.23 (1.52) -304* (217) -46	coefficient (SE) coefficient 1.8 (3.5.89) -0.007 -0.488 (0.533) -0.015 1.5.7* (0.53) -0.408 0.165 (0.11) -0.204 -2.23 (1.52) -0.196 -3.04* (217) -0.196

Using covariates

00000000

Joe's paper Other covariates

> But: covariate inclusion also increases 'researcher degrees of freedom'

»This type of analysis introduces an element of discretion in terms of what results are reported. Perhaps unconsciously, the researcher may settle on a regression model that makes the estimated ATE look impressive or interesting, a decision rule that jeopardizes the unbiasedness of the estimator. « (105)

Table 1. Explaining support for socially protective policies with physiological reactions to threatening images. Results of ordinary least squares (QLS) regression with support for socially protective policies (possible range from 0 to 18), with higher numbers indicating attitudes more supportive of policies thought to protect the social unit regressed on five explanatory variables; gender (0 = male: I = female), age (in years), education (six categories ranging from "did not finish high school" to "college degree plus"), income (six categories ranging from an annual salary of less than \$20,000 to an annual salary of more than \$100,000), and changes in skin conductance level (SCL) occasioned by the viewing of threatening images. Descriptive statistics on the variables and further discussion of the regression techniques are available in the SOM. *P < 0.05, two-tailed t test.

Variable	Unstandardized coefficient (SE)	Standardized coefficient
SCL	92.2* (29.03)	0.377
Income	-0.395 (0.471)	-0.10
Education	-1.63* (0.465)	-0.42
Age	0.19 (0.10)	0.235
Gender	-2.34 (1.3)	-0.20
Constant	-353* (193)	
N	46	
Adj. R-square	0.37	

Table 2. Explaining support for socially protective policies with physiological reactions to nonthreatening images. Results of regression (OLS) with support for socially protective policies regressed on five explanatory variables. Variables are the same as those described for Table I except that skin conductance (SCL) is the change in skin conductance occasioned by the viewing of nonthreatening images. Descriptive statistics and further discussion of the regression techniques are available in the SOM *P < 0.05, two-tailed t test.

Unstandardized	Standardized	
coefficient (SE)	coefficient	
-1.8 (35.08)	-0.007	
-0.438 (0.533)	-0.115	
-1.57* (0.53)	-0.408	
0.165 (0.11)	0.204	
-2.23 (1.52)	-0.196	
-304* (217)		
46		
0.21		
	coefficient (SE) -1.8 (35.08) -0.438 (0.533) -1.57* (0.53) 0.165 (0.11) -2.23 (1.52) -304* (217) -46	coefficient (SE) coefficient 1.8 (3.5.89) -0.007 -0.488 (0.533) -0.015 1.5.7* (0.53) -0.408 0.165 (0.11) -0.204 -2.23 (1.52) -0.196 -3.04* (217) -0.196

- 1 Joe's pape
- 2 Clusterin
- 3 Using covariates
 - Pre-treatment outcome
 - Other covariates
 - Blocking
- 4 Noncompliance
- 5 Is voting contagious? Nickerson (2008

FIGURE 4.2 Comparison of sampling distributions based on completely randomized and block randomized designs

- N is relatively small

FIGURE 4.2 Comparison of sampling distributions based on completely randomized and block randomized designs

loe's paper

Blocking

loe's paper

Blocking on covariate X helps when:

- N is relatively small
- X is unbalanced across experimental conditions

FIGURE 4.2 comparison of sampling distributions based on completely randomized and block randomized designs

- N is relatively small
- X is unbalanced across experimental conditions
- X strongly predicts Y

Useful R package for block random assignment: randomizr

FIGURE 4.2
Comparison of sampling distributions based on completely randomized and block randomized designs

- N is relatively small
- X is unbalanced across experimental conditions
- X strongly predicts Y

Useful R package for block random assignment: randomizr

FIGURE 4.2 comparison of sampling distributions based on completely randomized and block randomized designs

- N is relatively small
- X is unbalanced across experimental conditions
- X strongly predicts Y

Useful R package for block random assignment: randomizr

FIGURE 4.2 comparison of sampling distributions based on completely randomized and block randomized designs

Questions or comments?

Nickerson

Noncompliance

- 1 Joe's pape
- 2 Clusterin
- 3 Using covariate

4 Noncompliance

- Motivating ex.: Gerber & Green (2000
- Formal statemen
- 5 Is voting contagious? Nickerson (2008

1 Joe's paper

Motivating ex.

- 2 Clustering
- 3 Using covariates
- 4 Noncompliance
 - Motivating ex.: Gerber & Green (2000)
 - Formal statement
- 5 Is voting contagious? Nickerson (2008)

FIGURE 2. Picture Side

FIGURE 1. Text Side

»to find the treatment effect, subtract the turnout rate of the control group from the turnout rate of the experimental group and divide this difference by the observed "contact rate," which is 28%. Using this formula, we find that personal contact raises the probability of turnout by 8.7 percentage points« (658)

»to find the treatment effect, subtract the turnout rate of the control group from the turnout rate of the experimental group and divide this difference by the observed "contact rate," which is 28%. Using this formula, we find that personal contact raises the probability of turnout by 8.7 percentage points« (658)

> »Despite limitations, this experiment provides important new clues in the ongoing mystery of why turnout has declined even as the average age and education of the population has risen. A

> »Despite limitations, this experiment provides important new clues in the ongoing mystery of why turnout has declined even as the average age and education of the population has risen. A certain segment of the electorate tends not to vote unless encouraged to do so through face-to-face contact. As voter mobilization grows more impersonal, fewer people receive this

»Despite limitations, this experiment provides important new clues in the ongoing mystery of why turnout has declined even as the average age and education of the population has risen. A certain segment of the electorate tends not to vote unless encouraged to do so through face-to-face contact. As voter mobilization grows more impersonal, fewer people receive this kind of encouragement. This point is of great practical significance for those who seek to reverse the declining trend in turnout. Many of the recent policy innovations designed to encourage voter participation (e.g., absentee balloting) focus on reducing the costs of voting. Our findings suggest the importance of focusing as well on the personal connection between voters and the electoral process.« (662)

»Despite limitations, this experiment provides important new clues in the ongoing mystery of why turnout has declined even as the average age and education of the population has risen. A certain segment of the electorate tends not to vote unless encouraged to do so through face-to-face contact. As voter mobilization grows more impersonal, fewer people receive this kind of encouragement. This point is of great practical significance for those who seek to reverse the declining trend in turnout. Many of the recent policy innovations designed to encourage voter participation (e.g., absentee balloting) focus on reducing the costs of voting. Our findings suggest the importance of focusing as well on the personal connection between voters and the electoral process.« (662)

»Despite limitations, this experiment provides important new clues in the ongoing mystery of why turnout has declined even as the average age and education of the population has risen. A certain segment of the electorate tends not to vote unless encouraged to do so through face-to-face contact. As voter mobilization grows more impersonal, fewer people receive this kind of encouragement. This point is of great practical significance for those who seek to reverse the declining trend in turnout. Many of the recent policy innovations designed to encourage voter participation (e.g., absentee balloting) focus on reducing the costs of voting. Our findings suggest the importance of focusing as well on the personal connection between

»Despite limitations, this experiment provides important new clues in the ongoing mystery of why turnout has declined even as the average age and education of the population has risen. A certain segment of the electorate tends not to vote unless encouraged to do so through face-to-face contact. As voter mobilization grows more impersonal, fewer people receive this kind of encouragement. This point is of great practical significance for those who seek to reverse the declining trend in turnout. Many of the recent policy innovations designed to encourage voter participation (e.g., absentee balloting) focus on reducing the costs of voting. Our findings suggest the importance of focusing as well on the personal connection between voters and the electoral process. « (662)

Joe's paper

Motivating ex.

Joe's paper

Formal statement

- 2 Clustering
- 3 Using covariates
- 4 Noncompliance
 - Motivating ex.: Gerber & Green (2000
 - Formal statement
- 5 Is voting contagious? Nickerson (2008

Conceptually: under one-sided noncompliance, two types of subjects

- compliers: $d_i(z=1)=1$
- never-takers: $d_i(z=1)=0$
- \rightarrow after treatment, three groups
 - treated compliers
 - non-treated compliers
 - never-takers

Joe's paper

Formal statement

Joe's paper Formal statement

Conceptually: under one-sided noncompliance, two types of subjects

- compliers: $d_i(z=1)=1$

- compliers: $d_i(z=1)=1$
- never-takers: $d_i(z=1)=0$
- ightarrow after treatment, three groups
 - treated compliers
 - non-treated compliers
 - never-takers

Joe's paper

- compliers: $d_i(z=1)=1$
- never-takers: $d_i(z=1)=0$
- \rightarrow after treatment, three groups:

Joe's paper

- compliers: $d_i(z=1)=1$
- never-takers: $d_i(z=1)=0$
- \rightarrow after treatment, three groups:
 - treated compliers
 - non-treated compliers
 - never-takers

Joe's paper

- compliers: $d_i(z=1)=1$
- never-takers: $d_i(z=1)=0$
- \rightarrow after treatment, three groups:
 - treated compliers
 - non-treated compliers
 - never-takers

Joe's paper

- compliers: $d_i(z=1)=1$
- never-takers: $d_i(z=1)=0$
- \rightarrow after treatment, three groups:
 - treated compliers
 - non-treated compliers
 - never-takers

Joe's paper

Nickerson

Noncompliance

0000000000

$$ITT_{i,D} \equiv d_i(1) - d_i(0)$$

$$I_{i,Y}$$
 to $III_{i,D}$:

Nickerson

(4)

Noncompliance

For each subject *i* we define:

$$ITT_{i,D} \equiv d_i(1) - d_i(0)$$

$$ITT_{-V} = V_{-}(1) - V_{-}(0)$$
 (5)

CACE is equal to the relation of $\overline{ITT_{i,v}}$ to $\overline{ITT_{i,p}}$

$$CACE = \frac{ITT}{ITT_{D}} \tag{6}$$

(4)

Nickerson

Joe's paper Formal statement

For each subject *i* we define:

$$ITT_{i,D} \equiv d_i(1) - d_i(0)$$

$$ITT_{i,Y} \equiv Y_i(1) - Y_i(0) \tag{5}$$

$$CACE = \frac{ITT}{ITT_0} \tag{6}$$

Joe's paper Formal statement

For each subject *i* we define:

$$ITT_{i,D} \equiv d_i(1) - d_i(0) \tag{4}$$

$$ITT_{i,Y} \equiv Y_i(1) - Y_i(0) \tag{5}$$

CACE is equal to the relation of $\overline{ITT_{i,Y}}$ to $\overline{ITT_{i,D}}$:

$$CACE = \frac{ITT}{ITT_0} \tag{6}$$

(4)

Joe's paper Formal statement

For each subject *i* we define:

$$ITT_{i,D} \equiv d_i(1) - d_i(0)$$

$$ITT_{i,Y} \equiv Y_i(1) - Y_i(0) \tag{5}$$

CACE is equal to the relation of $\overline{ITT_{i,Y}}$ to $\overline{ITT_{i,D}}$:

$$CACE = \frac{ITT}{ITT_{D}} \tag{6}$$

TABLE 5.1

Hypothetical schedule of potential outcomes assuming one-sided noncompliance

Observation	$Y_i(d=0)$	$Y_i(d=1)$	$d_i(z=0)$	$d_i(z=1)$	Туре
1	4	6	0	1	Complier
2	2	8	0	0	Never-Taker
3	1	5	0	1	Complier
4	5	7	0	1	Complier
5	6	10	0	1	Complier
6	2	10	0	0	Never-Taker
7	6	9	0	1	Complier
8	2	5	0	. 1. g. y.	Complier
9	5	9	0	0	Never-Taker

Joe's paper

TABLE 5.1

Hypothetical schedule of potential outcomes assuming one-sided noncompliance

Observation	$Y_i(d=0)$	$Y_i(d=1)$	$d_j(z=0)$	$d_i(z=1)$	Туре
1	4	6	0	1	Complier
2	2	8	0	0	Never-Taker
3	1	5	0	1	Complier
4	5	7	0	1	Complier
5	6	10	0	1	Complier
6	2	10	0	0	Never-Taker
7	6	9	0	1	Complier
8	2	5	0	1	Complier
9	5	9	0	0	Never-Taker

- what is the ATE?

Joe's paper

TABLE 5.1 Hypothetical schedule of potential outcomes assuming

Observation	$Y_i(d=0)$	$Y_i(d=1)$	$d_i(z=0)$	$d_{i}(z=1)$	Туре
1	4	6	0	1	Complier
2	2	8	0	0	Never-Taker
3	1	5	0	1	Complier
4	5	7	0	1	Complier
5	6	10	0	1	Complier
6	2	10	0	0	Never-Taker
7	6	9	0	1	Complier
8	2	5	0	1	Complier
9	5	9	0	0	Never-Taker

- what is the ATE?
- what is the ITT?

Joe's paper

Formal statement

one-sided noncompliance

TABLE 5.1 Hypothetical schedule of potential outcomes assuming

Observation	$Y_i(d=0)$	$Y_{j}(d=1)$	$d_{j}(z=0)$	$d_{i}(z=1)$	Туре
1	4	6	0	1	Complier
2	2	8	0	0	Never-Taker
3	1	5	0	1	Complier
4	5	7	0	1	Complier
5	6	10	0	1	Complier
6	2	10	0	0	Never-Taker
7	6	9	0	1	Complier
8	2	5	0	1	Complier
9	5	9	0	0	Never-Taker

- what is the ATE?
- what is the ITT?
- what is the CACE?

Joe's paper

Formal statement

one-sided noncompliance

loe's paper Formal statement

Under one-sided noncompliance, a direct comparison of treated vs. nontreated estimates:

$$CACE + \{E[Y_i(d=0)|D_i(1)=1] - E[Y_i(d=0)|D_i(1)=0]\}(1-ITT_D)$$
(7)

Under one-sided noncompliance, a direct comparison of treated vs. nontreated estimates:

$$CACE + \{E[Y_i(d=0)|D_i(1)=1] - E[Y_i(d=0)|D_i(1)=0]\}(1-ITT_D)$$
(7)

→ bias if compliers and never-takers have unequal untreated potential outcomes

loe's paper

Under one-sided noncompliance, a direct comparison of treated vs. nontreated estimates:

$$CACE + \{E[Y_i(d=0)|D_i(1)=1] - E[Y_i(d=0)|D_i(1)=0]\}(1 - ITT_D)$$
(7)

→ bias if compliers and never-takers have unequal untreated potential outcomes

loe's paper

Joe's paper OO Formal statement

Questions or comments?

Nickerson

Noncompliance

- 1 Joe's paper
- 2 Clusterin
- 3 Using covariate
- 4 Noncompliance
- 5 Is voting contagious? Nickerson (2008)

Experimental conditions:

Women waited 144 years for the right to vote.

African-Americans waited 94 years for the right to vote and another 94 years to make that right meaningful.

All you had to do was turn 18.

Make your voice heard.

Vote Tuesday, September 10th.

Think recycling doesn't matter?

Americans throw away enough aluminum every three months to rebuild our entire commercial air fleet

Making new aluminum cans from used cans takes 95 percent less energy and 20 recycled cans can be made with the energy needed to produce one can using virgin ore.

The energy required to replace the aluminum cans thrown away in 2001 is roughly the equivalent of 16 million gallons of crude oil: enough to meet the electricity needs of all the homes in Chicago, Dallas, Detroit, San Francisco, and Seattle combined.

Joe's paper

Possible outcomes

TABLE 1.	Possible Outcomes under placebo protocol							
		Probability of Event Occurring	Voting Rate of Answerer	Voting Rate of Person Who Did Not Answer Door				
GOTV	Door Answered No Answer	$\frac{\pi}{1-\pi}$	$\mu_1 + T$ N.A. a	$\mu_2 + S$ μ_3				
Recycling	Door Answered No Answer	$rac{\pi}{1-\pi}$	$^{\mu_1}_{N.A.}$	$\mu_2 \ \mu_3$				

Joe's paper

Noncompliance

$$\alpha = \frac{5}{7}$$

$$T = \overline{V}_{Ga} - \overline{V}_{Ra}$$

$$S = \overline{V}_{G3} - \overline{V}_{R3}$$

Nickerson

00000

Nickerson

$$\alpha = \frac{S}{T}$$

$$T=\overline{V}_{\it Ga}-\overline{V}_{\it Ra}$$

$$S = \overline{V}_{G\tilde{a}} - \overline{V}_{R\tilde{a}}$$

Noncompliance

$$\alpha = \frac{S}{T}$$

$$T = \overline{V}_{\it Ga} - \overline{V}_{\it Ra}$$

$$S = \overline{V}_{ extit{G\"{a}}} - \overline{V}_{ extit{R\"{a}}}$$

Joe's paper

TABLE 2 Treetment Effect among Contacted Households

	Denver		Minneapolis		Pooled	
	Direct	Secondary	Direct	Secondary	Direct	Secondary
Percent Voting in	47.7%	42.4%	27.1%	23.6%		
GOTV Group	(3.0)	(2.9)	(3.1)	(3.0)		
Percent Voting in	39.1%	36.9%	16.2%	17.3%		
Recycling Group	(2.9)	(2.9)	(2.7)	(2.7)		
Estimated Treatment	8.6%	5.5%	10.9%	6.4%	9.8%	6.0%
Effect	(4.2)	(4.1)	(4.1)	(4.1)	(2.9)	(2.9)
P-Value	0.02	0.09	< 0.01	0.06	< 0.01	0.02

Using covariates

Note. Numbers in parentheses represent standard errors. P-values test the one-tailed hypothesis. Pooled estimates are weighted averages of results for both cities.

$$ightarrow$$
 pooled estimated $lpha=rac{6}{9.8}=61.2\%$

Effect estimates

Joe's paper

TABLES Treatment Effect among Contacted Households

	Denver		Minneapolis		Pooled	
	Direct	Secondary	Direct	Secondary	Direct	Secondary
Percent Voting in	47.7%	42.4%	27.1%	23.6%		
GOTV Group	(3.0)	(2.9)	(3.1)	(3.0)		
Percent Voting in	39.1%	36.9%	16.2%	17.3%		
Recycling Group	(2.9)	(2.9)	(2.7)	(2.7)		
Estimated Treatment	8.6%	5.5%	10.9%	6.4%	9.8%	6.0%
Effect	(4.2)	(4.1)	(4.1)	(4.1)	(2.9)	(2.9)
P-Value	0.02	0.09	< 0.01	0.06	< 0.01	0.02

Note. Numbers in parentheses represent standard errors. P-values test the one-tailed hypothesis. Pooled estimates are weighted averages of results for both cities.

$$ightarrow$$
 pooled estimated $lpha=rac{6}{9.8}=61.2\%$

Using covariates

See you tomorrow!

Joe's paper

Clustering

Nickerson

Noncompliance