FUNDAMENTOS MATEMÁTICOS

P v ~P? Eis a questão...

Cálculo Proposicional

Dupla Negação - DN _e

~~P::P

É falso que Raul não é careca Raul é careca

~~ P :: P

 $\sim \sim Q : Q$

~~ K :: R

DN - Dupla Negação: ~~P :: P

$$1 \sim P \rightarrow Q$$

Contraposição - Contra

 $P \rightarrow Q :: \sim Q \rightarrow \sim P$

Se o carro é amarelo então a bola é azul Se a bola não é azul então o carro não é amarelo

$$P \rightarrow Q \quad :: \quad \sim Q \quad \rightarrow \quad \sim P$$

$$1 \sim 7$$

Contra - Contraposição: P → Q::~®→ ~®

$$P \rightarrow Q, \sim P \rightarrow R : \sim R \rightarrow Q$$

$$1.P\rightarrow Q$$

$$2. \sim P \rightarrow R$$

$$\begin{array}{c} \sim P \rightarrow R \\ \searrow \sim R \rightarrow P \\ 3. \sim R \rightarrow P \\ 2. \text{CONTRA} \end{array}$$

Implicação - Imp

Se a queda é alta, então o estrago é grande
 A queda não é alta ou o estrago é grande

$$Q \rightarrow R$$
 $\sim Q \vee R$

$$\sim T \rightarrow V$$

$$t_{V}V$$

Imp – Implicação:

$P \rightarrow Q, P \vee R : Q \vee R$

$$1. p \rightarrow Q$$

6, JMP

8QVR

$$P \rightarrow Q$$

$$Q \Rightarrow R : P \rightarrow R$$

$$\begin{array}{ccc}
\text{IMP} & & & \\
\text{IMP} & & & \\
\text{AQ} \rightarrow & & \\
\end{array}$$

$$\sim Q \rightarrow R$$

Exportação - Exp

$$P \rightarrow (Q \rightarrow R)$$

$$(P \land Q) \rightarrow R$$

$$P \rightarrow (Q \rightarrow R) :: (P \land Q) \rightarrow R$$

Se eu tiver dinheiro, então se eu for ao shopping, compro roupa nova Se eu tiver dinheiro e for ao shopping então compro uma calça nova

IMP
$$P \rightarrow Q :: \sim P \cdot Q$$

Exp - Exportação:

$$P \rightarrow (Q \rightarrow R) :: (P \land Q) \rightarrow R$$

$$(P ^ Q) \rightarrow R, \sim R \vee S, P : Q \rightarrow S$$

$$1.(P\land Q)\rightarrow R$$

6.
$$P \rightarrow (Q \rightarrow S)$$

$$(P^{\Lambda}Q) \rightarrow \mathbb{R}$$
 $\mathbb{R} \xrightarrow{>} S$
 $(P^{\Lambda}Q) \rightarrow S$

Comutação - Comm

 $P^{Q}::Q^{P} \mid PvQ::QvP$

P^Q Q^P

> PuQ PJQ

Comm - Comutação:

$$P ^(\sim Q \rightarrow R) : (R \lor Q) ^P$$

$$\int \Lambda \left(\sim Q \rightarrow R \right)$$

$P \vee Q :: Q \vee P$

$$=$$
 3. $(\sim Q \rightarrow R)^{P}$

1 SLMP

1, SLMP

3 IMP

4, DN

2,6, WNJ

J-F Tudov P^Q^R

REGRAS EQUIVALÊNCIA

Associação - Assoc

```
P^{\triangle}(Q^{\triangle}R) :: (P^{\triangle}Q)^{A}R \mid (P^{\triangle}Q)^{A}R :: P^{\triangle}(Q^{\triangle}R)
```


Assoc – Associação:

 $(P \vee Q) \vee R :: P \vee (Q \vee R)$

$$(P \rightarrow Q) \underline{v} R : Q \underline{v} (R \underline{v} \sim P)$$

Distribuição - Dist

```
P \triangle (Q \vee R) :: (P \wedge Q) \vee (P \wedge R) \qquad | \qquad P \vee (Q \wedge R) :: (P \vee Q) \wedge (P \vee R)
```


Dist - Distribuição:

$P^{(Q \vee R)} :: (P^{Q}) \vee (P^{R})$

~ (P n Q)

REGRAS EQUIVALÊNCIA

Lei de DeMorgan - DeM

~ DA Q

~PV~Q

$$\approx (P \land Q) :: \sim P \lor \sim Q, \qquad | \qquad \sim (P \lor Q) :: \sim P \lozenge \sim Q$$

- O cachorro é verde e a cadela é azul
 - O cachorro não é verde ou a cadela não é azul

$$\sim (P \vee Q) :: \sim P \wedge_{\sim} Q$$

$$\sim (P \rightarrow Q)$$

$$\sim (\sim P \vee Q)$$

$$\sim \sim P \wedge \sim Q$$

$$P \wedge \sim Q$$

DeM – Lei de DeMorgan: $\sim (P \land Q) :: \sim P \lor \sim Q$

$$\sim (P \land Q) :: \sim P \lor \sim Q$$

Tautologia - Taut

Taut - Tautologia: PvP::P

$$1.P \rightarrow \sim P \qquad 1$$

P \Rightarrow Q

Equivalência - Equiv (P→Q) ^ (Q → P)

```
P \leftrightarrow Q :: (P \rightarrow Q) \land (Q \rightarrow P)
```

$$P \leftrightarrow Q :: (P \land Q) \lor (\sim P \land \sim Q)$$

Equiv - Equivalência: $P \leftrightarrow Q :: (P \rightarrow Q) \land (Q \rightarrow P)$

$$P \leftrightarrow (Q \land R), Q : P \lor \sim R$$

$$1.P \Longrightarrow (Q \land 2)$$
 P

$$6. Q \rightarrow (R \rightarrow P)$$

Cálculo Proposicional

- a) $P \rightarrow (Q ^R), P : P ^R$
- b) $\sim P \rightarrow (Q \rightarrow (R \rightarrow \sim T)), \sim P, Q, R : \sim T$
- c) $P ^ Q, (P \vee R) \rightarrow S : P ^ S$
- d) $(P \lor Q) \rightarrow R$, $(R \lor Q) \rightarrow (P \rightarrow (S \leftrightarrow T))$, $P \land S: S \leftrightarrow T$
- e) $(P ^ Q) \rightarrow R, R \rightarrow S, T \rightarrow \sim U, T, \sim S \vee U : \sim P \vee \sim Q$
- f) $P \rightarrow Q, Q \rightarrow R, \sim R \vee P : P \leftrightarrow Q$

a) $P \rightarrow (Q ^R), P : P ^R$

b)
$$\sim P \rightarrow (Q \rightarrow (R \rightarrow \sim T)), \sim P, Q, R : \sim T$$

c) $P ^ Q, (P \vee R) \rightarrow S : P ^ S$

d)
$$(P \lor Q) \rightarrow R$$
, $(R \lor Q) \rightarrow (P \rightarrow (S \leftrightarrow T))$, $P \land S: S \leftrightarrow T$

e) $(P \land Q) \rightarrow R, R \rightarrow S, T \rightarrow \sim U, T, \sim S \lor U : \sim P \lor \sim Q$

f) $P \rightarrow Q$, $Q \rightarrow R$, $\sim R \lor P : P \leftrightarrow Q$

FIM! Let's vamos...

kennedy.araujo@ifc.edu.br