Lab #1 - Geometry (part 1)

Informática Gráfica

Adolfo Muñoz - Julio Marco Pablo Luesia - J. Daniel Subías — Óscar Pueyo

• Five groups:

- Wednesday 15-17h (L0.04)
- Wednesday 18-20h (L0.02)
- Thursday 15-17h (L0.03)
- Friday 18-20h (L0.03)
- Everything should be done in **pairs**.
 - Individual → OK, but be careful with the workload.
 - Three or more \rightarrow Nope.

- Practical sessions:
 - Intermediate assignments: no submission required

- Practical sessions:
 - Intermediate assignments: no submission required
 - Highly recommended to be completed at certain tentative deadlines
 - For the first and second sessions: **September 25th**

- Practical sessions:
 - Intermediate assignments: no submission required
 - Highly recommended to be completed at certain tentative deadlines
 - For the first and second sessions: September 25th
 - Your final work will build upon the stuff you'll do here!
 - 80% of the final grade (including written report)

Lab #1 - Geometry (part 1)

Informática Gráfica

Adolfo Muñoz - Julio Marco - Pablo Luesia - Daniel Subías – Óscar Pueyo

Images generated using Stable Diffusion

Images generated using Stable Diffusion

Ideal scenario

Ideal scenario

Ideal scenario

City receptor

Ideal scenario

Fatal scenario (1)

Fatal scenario (1)

Fatal scenario (1)

Fatal scenario (2)

City receptor

Fatal scenario (2)

Fatal scenario (2)

Why do all this?

To apply knowledge about geometry: points, directions, vectorial operations...

Why do all this?

To apply knowledge about geometry: points, directions, vectorial operations...

• In the short term (sesiones 1+2)

Why do all this?

To apply knowledge about geometry: points, directions, vectorial operations...

• In the short term (sesiones 1+2)

In the long term

Basics

Data basics

Point

$$\mathbf{p} = \mathbf{o} + p_{\mathsf{x}}\mathbf{i} + p_{\mathsf{y}}\mathbf{j} + p_{\mathsf{z}}\mathbf{k}$$

Direction

$$\mathbf{d} = d_{\mathsf{X}}\mathbf{i} + d_{\mathsf{Y}}\mathbf{j} + d_{\mathsf{Z}}\mathbf{k}$$

Basics

- Data basics
- Operations
 - Addition, subtraction
 - Scalar multiplication/division
 - Modulus, normalization
 - Dot and cross products

Basics

Data basics

Operations

- Addition, subtraction
- Scalar multiplication/division
- Modulus, normalization
- Dot and cross products
- Pretty stdout operator

What to expect from this session

In the programming language of your choice, implement:

- Data basics: 3D points and directions
- Operations:
 - Addition, subtraction, scalar multiplication and scalar division
 - Modulus, normalization
 - Dot and cross products, pretty stdout operator
- Test your implementation with several examples
- Do you have extra time?
 - Matrices
 - Homogeneous coordinates. 3x3 matrices or 4x4?
 - Translation, rotation, change of scale, inverse transform. Combinations.

1. Be effective, do not overdesign.

Question:

Do you need separate data types for points and directions (and RGB tuples)?

1. Be effective, do not overdesign.

Question:

Do you need separate data types for points and directions (and RGB tuples)?

Answer:

Entirely up to you.

Pros:

- Specific behavior
- Compile time checks

Cons:

- Lots of common behavior
- Extra code

1. Be effective, do not overdesign.

What OOP users claim

What actually happens

2. Prefer **functional** over state machine behavior

```
1 //Very wrong
```

- $2 ext{ Vec3 } v3 = v1;$
- 3 v3.multiplyBy(v2);

2. Prefer **functional** over state machine behavior

```
1  //Very wrong
2  Vec3 v3 = v1;
3  v3.multiplyBy(v2);
4  //Better
5  Vec3 v3 = v1.multiply(v2);
6  //or
7  Vec3 v3 = multiply(v1, v2);
```


3. Prefer **operators** over long function / method names.

```
1 //Wrong
```

Vec3 v3 = multiply(v1, v2);

3. Prefer **operators** over long function / method names.

```
1   //Wrong
2   Vec3   v3 = multiply(v1, v2);
3   //Better
4   Vec3   v3 = v1*v2;
5   //In the long run
6   Vec w = 2*(cross(u, v) - n)*a;
```



```
Java
Right or wrong?
1 class Point{
     float []c;
     public Point(float x, float y, float z){
        c = new float [3];
        c[0] = x; c[1] = y; c[2] = z;
```



```
Java
Right or wrong?
1 class Point{
     float []c;
     public Point(float x, float y, float z){
        c = new float [3];
        c[0] = x; c[1] = y; c[2] = z;
```



```
Java
Right or wrong?
1 class Point{
     float cx, cy, cz;
     public Point(float x, float y, float z){
       cx = x; cy = y; cz = z;
```

Java


```
Right or wrong?
1 class Point{
     float cx, cy, cz;
     public Point(float x, float y, float z){
       cx = x; cy = y; cz = z;
```



```
C++
Right or wrong?
1 class Point{
     std::vector<float> c;
     public Point(float x, float y, float z){
       c[0] = x; c[1] = y; c[2] = z;
```



```
C++
Right or wrong?
1 class Point{
     std::vector<float> c;
     public Point(float x, float y, float z){
       c[0] = x; c[1] = y; c[2] = z;
```



```
C++
Right or wrong?
1 class Point{
     float c[3]; // or std::array<float,3> c
     public Point(float x, float y, float z){
       c[0] = x; c[1] = y; c[2] = z;
```

C++


```
Right or wrong?
 class Point{
    float c[3]; // or std::array<float,3> c
    public Point(float x, float y, float z){
       c[0] = x; c[1] = y; c[2] = z;
```


4. Avoid memory management. It is not your battle (this time)

Question:

Which data types represent the three coordinates?

4. Avoid memory management. It is not your battle (this time)

Question:

Which data types represent the three coordinates?

Answer:

Anything that avoids memory creation / destruction.

Even if you need C++ pointers:

```
//This deletes itself
std::shared_ptr<Object> o =
std::make_shared<Sphere>(center, radius);
//This doesn't
Object* o = new Sphere(center, radius);
```


- 1. Be effective, do not overdesign.
- 2. Prefer **functional** over state machine behavior.
- 3. Prefer **operators** over long function / method names.
- 4. Avoid memory management. It is not your battle (this time).
- 5. Premature optimization is the root of all devil (Donald Knuth).
- 6. Choose the **right programming** language for you
- 7. **Enjoy** visualizing your results.

They're better than terminal output or a boring interface.

Funnier when they're wrong, beautiful when they're right.

- 1. Be effective, do not overdesign.
- 2. Prefer **functional** over state machine behavior.
- 3. Prefer **operators** over long function / method names.
- 4. Avoid memory management. It is not your battle (this time).
- 5. Premature optimization is the root of all devil (Donald Knuth).
- 6. Choose the right programming language for you
- 7. **Enjoy** visualizing your results.

They're better than terminal output or a boring interface.

Funnier when they're wrong, beautiful when they're right.

Questions

DO ASK questions, either now or after the lab

But be reasonable, please:)

pluesia@unizar.es | dsubias@unizar.es | o.pueyo@unizar.es

What to expect from this session

In the programming language of your choice, implement:

- Data basics: 3D points and directions
- Operations:
 - Addition, subtraction, scalar multiplication and scalar division
 - Modulus, normalization
 - Dot and cross products, pretty stdout operator
- Test your implementation with several examples
- Do you have extra time?
 - Matrices
 - Homogeneous coordinates. 3x3 matrices or 4x4?
 - Translation, rotation, change of scale, inverse transform. Combinations.
- Recommended deadline (sesiones 1 + 2): October 25th