Intel and the Core i7

Andrew Levy, Timothy Winters, Daniel Duff, Matthew Hagan, Jake Freise, Henry Frishman, Norman Delorey

Intel vs. AMD

The Early History of Tech's Oldest Rivalry

Tech's Oldest Rivalry: Early History

Tech's Oldest Rivalry: Early 2000's

Tech's Oldest Rivalry: Intel (The Top Dog)

- Intel is a much larger company than AMD
- They do more general applications that other component manufacturers build around
- Their products are primarily "in house", meaning that they fabricate their own chips.
 - This fabrication is a global process, with over 12 plants worldwide
- Intel's CPU's typically draw less power and have a lower Thermal Design point (TDP) rating through the use of Hyperthreading

Tech's Oldest Rivalry: AMD (The underdog)

- AMD is the smaller company
- They do a lot of 1-off chips for custom applications
- AMD does not make their own chips anymore, but rather outsources the manufacturing.
- AMD does not do hyperthreading
 - Instead, they utilize overclocking, which is when the CPU/GPU runs at a higher clock rate than originally designed. AMD has a history of Overclocking better than Intel

Tech's Oldest Rivalry: Textbook view

Worcester Polytechnic Inst

Single Processor Performance

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Intel Core i7

A breakdown of generations

Intel Core i7 Overview

- Family of 64 bit processors designed by intel
- Succeeds Penryn microarchitecture
- Released alongside i3 and i5
- Grouped into generations (starting in 2009)

Generation 1 - Nehalem

- Named after Nehalem River
- Improved clock speeds
- Reduction of size of L2 cache
- Increase in size of L3 cache (shared among all cores)
- Reintroduced hyperthreading

Generation 2 - Sandy Bridge

- Named after Silicon and original name Gesher (which means bridge in Hebrew)
- Intel Turbo Boost 2.0
- Integrated Graphics
- Redesigned cores

Generation 3 and 4 - Ivy Bridge and Haswell

- Ivy Bridge (2011)
 - First microarchitecture to support Windows 10
 - Transistor size shrink from 32 nm to 22 nm
 - Significantly hotter when overclocked
- Haswell (2013)
 - Named after Haswell, Colorado
 - Wider cores

Generation 5 - Broadwell

- Named after Broadwell, Illinois
- Very similar to Haswell
- Second Level TLB enlarged
- Fully integrated Voltage Regulator (FIVR)
- Larger scheduler (64 entries) and instruction queue (25 entries)

Generation 6 and 7 - Skylake and Kaby Lake

- Skylake (2015)
 - Biggest performance increase
 - Improved branch prediction unit
 - Removal of FIVR
- Kaby Lake (2016)
 - Very similar to Skylake
 - Largest improvements for mobile processors

Generation 8 - Coffee Lake

- Coffee Lake (2017)
 - Features Six Cores
 - Increased L3 cache
- Coffee Lake Refresh (2018)
 - Introduction of the i9
 - Features Eight Cores
 - Removed hyperthreading from newer i7's

Why i7?

What makes these chips so great

What's so great about intel chips?

- Good speed/price value
 - ► ~\$140 350 (i3 i7)
- Advertise well
 - Laptop and desktop manufacturer agreements
 - Appends advertisements onto manufacturers'
- Wide variety of applications
 - Desktops, laptops, mobile (26 mm)

What's so great about the i7?

- Lower overall heat and power
 - ▶ ~38 Celsius/100 Fahrenheit
 - ▶ 35-140 Watts
- x86 Instruction set & Integrated Memory
- Multi-GPU compatible, integrated graphics
- Hyperthreading (4 Core), turbo boost, k model
- Xeon chips for servers and high-end workstations
 - Error Checking and System Management features
 - Up to 8,000,000,000 transistors vs 730,000,000

Microsoft Excel 2007 SP1 - Monte Carlo Simulation Time in Seconds - Lower is Better

WinRAR 3.8 Compression - 300MB Archive

Cinebench R10 - Multi-Threaded Benchmark Score in CBMarks - Higher is Better

Key Differences

- Hyper-threading: Core virtualization
- Turbo-Boost: Automatic Overclocking
- K model: Easier Overclocking

Model	Core i3	Core i5	Core i7
Number of cores	2	4	4+
Hyper-threading	Yes	No	Mostly
Turbo boost	No	Yes	Yes
K model	No	Yes	Yes

17 vs. Xeon

What's the difference?

17 vs Xeon

- Myth: Xeons and i7s do not work with the same motherboard
 - This used to be true, now it depends on the motherboard

- Myth: Xeons are inherently better for multicore workloads and i7s are better for single core
 - If they are based on same micro-architecture and have the same specifications they should perform the same.

17 vs Xeon

Why use a Xeon?

- Error-Correcting Code (ECC) memory support
 - When you cannot afford a crash
- ► Intended to run 24/7
 - Important for servers
- Large memory per CPU and has a large L3 cache
 - Increases performance on repetitive processes
- Offer specialized options that isn't needed at the consumer level
 - Virtualization features, compatible with multi-socket motherboards
- More possible cores
 - Up to 48

17 vs Xeon

Why not use a Xeon?

- Cost
 - Xeons are marketed to data centers which value performance per watt and i7's tent to have higher Ghz per dollar
- No Overclocking
 - Xeons cannot be overclocked, i7's can
- No integrated graphics
 - Xeons do not come with integrated graphics, where as i7s do
- No quick sync video
 - Dedicated core for transcoding ("converting") video allowing

i7 Breakdown

Architecture, memory hierarchy, and more

Intel's Manufacturing Process

Physical architecture

Skylake (4 Core)

Coffee Lake (6 Core)

Memory Hierarchy

- Contains an L1 & L2 cache per core
- L3 cache is shared among all cores
- The L1 caches are split into halves for instructions and data
- All write-back

L1 Cache

- Split into 2 parts, for memory and instructions (Harvard Architecture)
- ▶ 32KB
- ▶ 64 bytes per line
- ► Has a minimum latency of 4 cycles
- Built directly into the core

L2 Cache

- ▶ 256KB
- ▶ 64 bytes per line, same as L1
- Minimum latency of 12 cycles

L3 Cache

- Unique as it is shared among all 4 cores
- Size varies between 6-15 MB from generation to generation
- ▶ 36 cycles minimum
 - Cycle count is predicted to vary dramatically with next gens
- The size is sometimes reduced for power efficiency within mobile

Pipelining in the i7

- The i7 Pipeline has 3 main areas:
- The "Front End"
 - Instruction fetching
 - Instruction decoding
- ▶ The "Back End"
 - Instruction scheduling
 - Instruction execution
- Memory Operations

The Front End

- Instructions must be pre-decoded
 - Marks the boundaries within the instruction
 - Throughput of 6 instructions per cycle or 16 bytes
- Instructions are then decoded into micro-ops
 - Complex decoders can output 1 to 4 fused micro-ops
 - Simple Decoders output 1 micro-op
 - The Microcode Sequencer is used for instructions larger than 4 micro-ops
- Micro-ops are also cached by the branch predictor
 - Have a throughput of up to 6 micro-ops

The Back End

- Reorder Buffer
 - Where reordering, renaming, and retiring takes place
- Scheduler
 - 180 Integer Registers
 - ▶ 168 Vector Registers
- There are 8 ports to the execution units
- Most execution units are duplicated to reduce wait time for micro-ops

Hyper-Threading

Intel's ace in the hole

What is Hyper-Threading

- Intel name for Simultaneous Multithreading
 - 2 Hardware Thread Contexts per Core
- 2 Threads 1 Core
 - Shared Resources
 - L1 and L2 Cache
 - ► ALU
 - Execution Units
 - Not as great as having 2 cores

HT vs MC

F) Multi-core with Hyper-Threading Technology

Performance Boosts

- Surprisingly, only about 30%.
 - ALU, Cache, and Physical Registers are shared
 - Adding another thread would only gives an estimated 10% increase

- More cores is more beneficial
 - Why not put more cores in then?
 - Expensive to add more space

Lemme buy a "hyper-threading" i7!

- Sure! If you want old tech or have a big wallet
 - Only 1 latest-gen i7 with HT
 - ▶ 9800X \$669 (8 Cores)

- i9 is where it's at
 - If you want hyperthreading, buy an i9
 - i7 now has 8 cores, last gen had min 6

Conclusion

A summation of why buy the i7

