WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/12, C07K 14/50, A61K 38/18, C07K 16/22, G01N 33/566, A61K 48/00

(11) International Publication Number:

WO 98/06844

(43) International Publication Date:

19 February 1998 (19.02.98)

(21) International Application Number:

PCT/US97/14112

A1

(22) International Filing Date:

13 August 1997 (13.08.97)

(30) Priority Data:

60/023.852 60/039,045 13 August 1996 (13.08.96)

US 28 February 1997 (28.02.97) US

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): DUAN, Roxanne [US/US]; 4541 Fairfield Drive, Bethesda, MD 20814 (US). RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). JIMENEZ, Pablo [EC/US]; 3843 College Avenue, Ellicott City, MD 21043 (US). RAMPY, Mark, A. [US/US]; 10224 Wild Apple Circle, Gaithersburg, MD 20879 (US). MENDRICK, Donna [US/US]; 29112 Ridge Road, Mount Airy, MD 21771 (US). ZHANG, Jun [CN/US]; 10100 Crestberry Place, Bethesda, MD 20817 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). MOORE, Paul, A. [GB/US]; Apartment 104, 1908 Holly Ridge Drive, McLean, VA 22102 (US).

COLEMAN, Timothy, A. [US/US]; 7512 Boxberry Terrace, Gaithersburg, MD 20879 (US).

(74) Agents: STEFFE, Eric, K. et al.; Steme, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, DC 20005-3934 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: KERATINOCYTE GROWTH FACTOR-2 (KGF-2 OR FIBROBLAST GROWTH FACTOR-12, FGF-12)

(57) Abstract

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as "KGF-2" also formerly known as Fibroblast Growth Factor The invention also 12 (FGF-12). relates to inhibiting the action of such This invention further polypeptides. relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC .	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/06844 PCT/US97/14112

KERATINOCYTE GROWTH FACTOR-2 (KGF-2 OR FIBROBLAST GROWTH FACTOR-12, FGF-12)

Field of the Invention

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as "KGF-2" also formerly known as Fibroblast Growth Factor 12 (FGF-12). The invention also relates to inhibiting the action of such polypeptides. This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility. In addition, this invention relates to a method of purifying the KGF-2 polypeptide.

Background of the Invention

15

5

10

The fibroblast growth factor family has emerged as a large family of growth factors involved in soft-tissue growth and regeneration. It presently includes several members that share a varying degree of homology at the protein level, and that, with one exception, appear to have a similar broad mitogenic spectrum, i.e., they promote the proliferation of a variety of cells of mesodermal and neuroectodermal origin and/or promote angiogenesis.

20

25

The pattern of expression of the different members of the family is very different, ranging from extremely restricted expressions of some stages of development, to rather ubiquitous expression in a variety of tissues and organs. All the members appear to bind heparin and heparin sulfate proteoglycans and glycosaminoglycans and strongly concentrate in the extracellular matrix. KGF was originally identified as a member of the FGF family by sequence homology

or factor purification and cloning. Keratinocyte growth factor (KGF) was isolated as a mitogen for a cultured murine keratinocyte line (Rubin, J.S. et al., Proc. Natl. Acad. Sci. USA 86:802-806 (1989)). Unlike the other members of the FGF family, it has little activity on mesenchyme-derived cells but stimulates the growth of epithelial cells. The Keratinocyte growth factor gene encodes a 194amino acid polypeptide (Finch, P.W. et al., Science 245:752-755 (1989)). The N-terminal 64 amino acids are unique, but the remainder of the protein has about 30% homology to bFGF. KGF is the most divergent member of the FGF family. The molecule has a hydrophobic signal sequence and is efficiently secreted. Posttranslational modifications include cleavage of the signal sequence and N-linked glycosylation at one site, resulting in a protein of 28 kDa. Keratinocyte growth factor is produced by fibroblast derived from skin and fetal lung (Rubin et al. (1989)). The Keratinocyte growth factor mRNA was found to be expressed in adult kidney, colon and ilium, but not in brain or lung (Finch, P.W. et al. Science 245:752-755 (1989)). KGF displays the conserved regions within the FGF protein family. KGF binds to the FGF-2 receptor with high affinity.

5

10

15

20

25

30

Impaired wound healing is a significant source of morbidity and may result in such complications as dehiscence, anastomotic breakdown and, non-healing wounds. In the normal individual, wound healing is achieved uncomplicated. In contrast, impaired healing is associated with several conditions such as diabetes, infection, immunosuppression, obesity and malnutrition (Cruse, P.J. and Foord, R., *Arch. Surg. 107*:206 (1973); Schrock, T.R. et al., *Ann. Surg. 177*:513 (1973); Poole, G.U., Jr., *Surgery 97*:631 (1985); Irvin, G.L. et al., *Am. Surg. 51*:418 (1985)).

Wound repair is the result of complex interactions and biologic processes. Three phases have been described in normal wound healing: acute inflammatory phase, extracellular matrix and collagen synthesis, and remodeling (Peacock, E.E., Jr., Wound Repair, 2nd edition, WB Saunders, Philadelphia (1984)). The process involves the interaction of keratinocytes, fibroblasts and inflammatory cells at the wound site.

WO 98/06844 PCT/US97/14112

Tissue regeneration appears to be controlled by specific peptide factors which regulate the migration and proliferation of cells involved in the repair process (Barrett, T.B. et al., Proc. Natl. Acad. Sci. USA 81:6772-6774 (1985); Collins, T. et al., Nature 316:748-750 (1985)). Thus, growth factors may be promising therapeutics in the treatment of wounds, burns and other skin disorders (Rifkin, D.B. and Moscatelli, J. Cell. Biol. 109:1-6 (1989); Sporn, M.B. et al., J. Cell. Biol. 105:1039-1045 (1987); Pierce, G.F. et al., J. Cell. Biochem. 45;319-326 (1991)). The sequence of the healing process is initiated during an acute inflammatory phase with the deposition of provisional tissue. This is followed by re-epithelialization, collagen synthesis and deposition, fibroblast proliferation, and neovascularization, all of which ultimately define the remodeling phase (Clark, R.A.F., J. Am. Acad. Dermatol. 13:701 (1985)). These events are influenced by growth factors and cytokines secreted by inflammatory cells or by the cells localized at the edges of the wound (Assoian, R.K. et al., Nature (Lond.) 309:804 (1984); Nemeth, G.G. et al., "Growth Factors and Their Role in Wound and Fracture Healing," Growth Factors and Other Aspects of Wound Healing in Biological and Clinical Implications, New York (1988), pp. 1-17.

5

10

15

20

25

30

Several polypeptide growth factors have been identified as being involved in wound healing, including keratinocyte growth factor (KGF) (Antioniades, H. et al., Proc. Natl. Acad. Sci. USA 88:565 (1991)), platelet derived growth factor (PDGF)(Antioniades, H. et al., Proc. Natl. Acad. Sci. USA 88:565 (1991); Staiano-Coico, L. et al., Jour. Exp. Med. 178:865-878 (1993)), basic fibroblast growth factor (bFGF) (Golden, M.A. et al., J. Clin. Invest. 87:406 (1991)), acidic fibroblast growth factor (aFGF) (Mellin, T.N. et al., J. Invest. Dermatol. 104:850-855 (1995)), epidermal growth factor (EGF) (Whitby, D.J. and Ferguson, W.J., Dev. Biol. 147:207 (1991)), transforming growth factor-α (TGF-α) (Gartner, M.H. et al., Surg. Forum 42:643 (1991); Todd, R. et al., Am. J. Pathol. 138;1307 (1991)), transforming growth factor-β (TGF-β) (Wong, D.T.W. et al., Am. J. Pathol. 143:622 (1987)), neu differentiation factor (rNDF) (Danilenko, D.M. et al., J. Clin. Invest. 95;842-851 (1995)), insulin-like growth factor I (IGF-1), and

-4-

insulin-like growth factor II (IGF-II) (Cromack, D.T. et al., J. Surg. Res. 42:622 (1987)).

It has been reported that rKGF-1 in the skin stimulates epidermal keratinocytes, keratinocytes within hair follicles and sebaceous glands (Pierce, G.F. et al., J. Exp. Med. 179:831-840 (1994)).

Summary of the Invention

The present invention provides isolated nucleic acid molecules comprising a polynucleotide encoding the keratinocyte growth factor (KGF-2) having the amino acid sequence is shown in Figure 1 [SEQ ID NO:2] or the amino acid sequence encoded by the cDNA clone deposited in a bacterial host as ATCC Deposit Number 75977 on December 16, 1994. The nucleotide sequence determined by sequencing the deposited KGF-2 clone, which is shown in Figure 1 [SEQ ID NO:1], contains an open reading frame encoding a polypeptide of 208 amino acid residues, including an initiation codon at positions 1-3, with a predicted leader sequence of about 35 or 36 amino acid residues, and a deduced molecular weight of about 23.4 kDa. The amino acid sequence of the mature KGF-2 is shown in Figure 1, amino acid residues about 36 or 37 to 208 [SEQ ID NO:2].

The polypeptide of the present invention has been putatively identified as a member of the FGF family, more particularly the polypeptide has been putatively identified as KGF-2 as a result of amino acid sequence homology with other members of the FGF family.

In accordance with one aspect of the present invention, there are provided novel mature polypeptides which are KGF-2 as well as biologically active and diagnostically or therapeutically useful fragments, analogs and derivatives thereof. The polypeptides of the present invention are of human origin.

In accordance with another aspect of the present invention, there are provided isolated nucleic acid molecules encoding human KGF-2, including

20

15

5

10

10

15

20

25

30

mRNAs, DNAs, cDNAs, genomic DNA, as well as antisense analogs thereof, and biologically active and diagnostically or therapeutically useful fragments thereof.

In accordance with another aspect of the present invention, there is provided a process for producing such polypeptide by recombinant techniques through the use of recombinant vectors, such as cloning and expression plasmids useful as reagents in the recombinant production of KGF-2 proteins, as well as recombinant prokaryotic and/or eukaryotic host cells comprising a human KGF-2 nucleic acid sequence.

In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such polypeptide, or polynucleotide encoding such polypeptide for therapeutic purposes, for example, to stimulate epithelial cell proliferation and basal keratinocytes for the purpose of wound healing, and to stimulate hair follicle production and healing of dermal wounds. KGF-2 may be clinically useful in stimulating wound healing including surgical wounds, excisional wounds, deep wounds involving damage of the dermis and epidermis, eye tissue wounds, dental tissue wounds, oral cavity wounds, diabetic ulcers, dermal ulcers, cubitus ulcers, arterial ulcers, venous stasis ulcers, burns resulting from heat exposure or chemicals, and other abnormal wound healing conditions such as uremia, malnutrition, vitamin deficiencies and complications associted with systemic treatment with steroids, radiation therapy and antineoplastic drugs and antimetabolites. KGF-2 can be used to promote dermal reestablishment subsequent to dermal loss

KGF-2 can be used to increase the adherence of skin grafts to a wound bed and to stimulate re-epithelialization from the wound bed. The following are types of grafts that KGF-2 could be used to increase adherence to a wound bed: autografts, artificial skin, allografts, autodermic graft, autoepdermic grafts, avacular grafts, Blair-Brown grafts, bone graft, brephoplastic grafts, cutis graft, delayed graft, dermic graft, epidermic graft, fascia graft, full thickness graft, heterologous graft, xenograft, homologous graft, hyperplastic graft, lamellar graft, mesh graft, mucosal graft, Ollier-Thiersch graft, omenpal graft, patch graft,

pedicle graft, penetrating graft, split skin graft, thick split graft. KGF-2 can be used to promote skin strength and to improve the appearance of aged skin.

It is believed that KGF-2 will also produce changes in hepatocyte proliferation, and epithelial cell proliferation in the lung, breast, pancreas, stomach, small intesting, and large intestine. KGF-2 can promote proliferation of epithelial cells such as sebocytes, hair follicles, hepatocytes, type II pneumocytes, mucin-producing goblet cells, and other epithelial cells and their progenitors contained within the skin, lung, liver, and gastrointestinal tract. KGF-2 can promote proliferation of endothelial cells, keratinocytes, and basal keratinocytes.

KGF-2 can also be used to reduce the side effects of gut toxicity that result from radiation, chemotherapy treatments or viral infections. KGF-2 may have a cytoprotective effect on the small intestine mucosa. KGF-2 may also stimulate healing of mucositis (mouth ulcers) that result from chemotherapy and viral infections.

KGF-2 can further be used in full regeneration of skin in full and partial thickness skin defects, including burns, (i.e., repopulation of hair follicles, sweat glands, and sebaceous glands), treatment of other skin defects such as psoriasis. KGF-2 can be used to treat epidermolysis bullosa, a defect in adherence of the epidermis to the underlying dermis which results in frequent, open and painful blisters by accelerating reepithelialization of these lesions. KGF-2 can also be used to treat gastric and doudenal ulcers and help heal by scar formation of the mucosal lining and regeneration of glandular mucosa and duodenal mucosal lining more rapidly. Inflamamatory bowel diseases, such as Crohn's disease and ulcerative colitis, are diseases which result in destruction of the mucosal surface of the small or large intestine, respectively. Thus, KGF-2 could be used to promote the resurfacing of the mucosal surface to aid more rapid healing and to prevent progression of inflammatory bowel disease. KGF-2 treatment is expected to have a significant effect on the production of mucus throughout the gastrointestinal tract and could be used to protect the intestinal mucosa from

10

5

15

20

injurious substances that are ingested or following surgery. KGF-2 can be used to treat diseases associate with the under expression of KGF-2.

Moreover, KGF-2 can be used to prevent and heal damage to the lungs due to various pathological states. A growth factor such as KGF-2 which could stimulate proliferation and differentiation and promote the repair of alveoli and brochiolar epithelium to prevent or treat acute or chronic lung damage. For example, emphysema, which results in the progressive loss of aveoli, and inhalation injuries, i.e., resulting from smoke inhalation and burns, that cause necrosis of the bronchiolar epithelium and alveoli could be effectively treated KGF-2. Also, KGF-2 could be used to stimulate the proliferation of and differentiation of type II pneumocytes, which may help treat or prevent disease such as hyaline membrane diseases, such as infant respiratory distress syndrome and bronchopulmonary displasia, in premature infants.

KGF-2 could stimulate the proliferation and differentiation of hepatocytes and, thus, could be used to alleviate or treat liver diseases and pathologies such as fulminant liver failure caused by cirrhosis, liver damage caused by viral hepatitis and toxic substances (i.e., acetaminophen, carbon tetraholoride and other hepatotoxins known in the art).

In addition, KGF-2 could be used treat or prevent the onset of diabetes mellitus. In patients with newly diagnosed Types I and II diabetes, where some islet cell function remains, KGF-2 could be used to maintain the islet function so as to alleviate, delay or prevent permenant manifestation of the disease. Also, KGF-2 could be used as an auxiliary in islet cell transplantation to improve or promote islet cell function.

In accordance with yet a further aspect of the present invention, there are provided antibodies against such polypeptides.

In accordance with another aspect of the present invention, there are provided nucleic acid probes comprising nucleic acid molecules of sufficient length to specifically hybridize to human KGF-2 sequences.

10

5

15

20

10

15

20

25

30

In accordance with a further aspect of the present invention, there are provided mimetic peptides of KGF-2 which can be used as therapeutic peptides. Mimetic KGF-2 peptides are short peptides which mimic the biological activity of the KGF-2 protein by binding to and activating the cognate receptors of KGF-2. Mimetic KGF-2 peptides can also bind to and inhibit the cognate receptors of KGF-2.

In accordance with yet another aspect of the present invention, there are provided antagonists to such polypeptides, which may be used to inhibit the action of such polypeptides, for example, to reduce scarring during the wound healing process and to prevent and/or treat tumor proliferation, diabetic retinopathy, rheumatoid arthritis, oesteoarthritis and tumor growth. KGF-2 antagonists can also be used to treat diseases associate with the over expression of KGF-2.

In accordance with yet another aspect of the present invention, there are provided diagnostic assays for detecting diseases or susceptibility to diseases related to mutations in KGF-2 nucleic acid sequences or over-expression of the polypeptides encoded by such sequences.

In accordance with another aspect of the present invention, there is provided a process for utilizing such polypeptides, or polynucleotides encoding such polypeptides, for *in vitro* purposes related to scientific research, synthesis of DNA and manufacture of DNA vectors.

Thus, one aspect of the invention provides an isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding the KGF-2 polypeptide having the complete amino acid sequence in Figure 1 [SEQ ID NO:2]; (b) a nucleotide sequence encoding the mature KGF-2 polypeptide having the amino acid sequence at positions 36 or 37 to 208 in Figure 1 [SEQ ID NO:2]; (c) a nucleotide sequence encoding the KGF-2 polypeptide having the complete amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 75977; (d) a nucleotide sequence encoding the mature KGF-2 polypeptide

10

15

20

25

having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No.75977; and (e) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c) or (d) above.

Further embodiments of the invention include isolated nucleic acid molecules that comprise a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 97%, 98% or 99% identical, to any of the nucleotide sequences in (a), (b), (c), (d) or (e), above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide in (a), (b), (c), (d) or (e), above. This polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues. An additional nucleic acid embodiment of the invention relates to an isolated nucleic acid molecule comprising a polynucleotide which encodes the amino acid sequence of an epitope-bearing portion of a KGF-2 having an amino acid sequence in (a), (b), (c) or (d), above.

The invention further provides an isolated KGF-2 polypeptide having amino acid sequence selected from the group consisting of: (a) the amino acid sequence of the KGF-2 polypeptide having the complete 208 amino acid sequence, including the leader sequence shown in Figure 1 [SEQ ID NO:2]; (b) the amino acid sequence of the mature KGF-2 polypeptide (without the leader) having the amino acid sequence at positions 36 or 37 to 208 in Figure 1 [SEQ ID NO:2]; (c) the amino acid sequence of the KGF-2 polypeptide having the complete amino acid sequence, including the leader, encoded by the cDNA clone contained in ATCC Deposit No.75977; and (d) the amino acid sequence of the mature KGF-2 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 75977. The polypeptides of the present invention also include polypeptides having an amino acid sequence with at least 90% similarity, and more preferably at least 95% similarity to those described in (a), (b), (c) or (d) above, as well as polypeptides having an amino

acid sequence at least 80% identical, more preferably at least 90% identical, and still more preferably 95%, 97%, 98% or 99% identical to those above.

An additional aspect of the invention relates to a peptide or polypeptide which has the amino acid sequence of an epitope-bearing portion of a KGF-2 polypeptide having an amino acid sequence described in (a), (b), (c) or (d), above. Peptides or polypeptides having the amino acid sequence of an epitope-bearing portion of a KGF-2 polypeptide of the invention include portions of such polypeptides with at least six or seven, preferably at least nine, and more preferably at least about 30 amino acids to about 50 amino acids, although epitope-bearing polypeptides of any length up to and including the entire amino acid sequence of a polypeptide of the invention described above also are included in the invention. In another embodiment, the invention provides an isolated antibody that binds specifically to a KGF-2 polypeptide having an amino acid sequence described in (a), (b), (c) or (d) above.

15

10

5

In accordance with another aspect of the present invention, novel variants of KGF-2 are described. These can be produced by deleting or substituting one or more amino acids of KGF-2. Natural mutations are called allelic variations. Allelic variations can be silent (no change in the encoded polypeptide) or may have altered amino acid sequence. In order to attempt to improve or alter the characteristics of native KGF-2, protein engineering may be employed. Recombinant DNA technology known in the art can be used to create novel polypeptides. Muteins and deletion mutations can show, e.g., enhanced activity or increased stability. In addition, they could be purified in higher yield and show better solubility at least under certain purification and storage conditions.

25

20

These and other aspects of the present invention should be apparent to those skilled in the art from the teachings herein.

Brief Description of the Figures

The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.

5

Figures 1A-1C illustrate the cDNA and corresponding deduced amino acid sequence of the polypeptide of the present invention. The initial 35 or 36 amino acid residues represent the putative leader sequence (underlined). The standard one letter abbreviations for amino acids are used. Sequencing inaccuracies are a common problem when attempting to determine polynucleotide sequences. Sequencing was performed using a 373 Automated DNA sequencer (Applied Biosystems, Inc.). Sequencing accuracy is predicted to be greater than 97% accurate. [SEQ ID NO:1]

10

Figures 2A-2D are an illustration of a comparison of the amino acid sequence of the polypeptide of the present invention and other fibroblast growth factors. [SEQ ID NOS:13-22]

15

Figures 3A-3D show the full length mRNA and amino acid sequence for the KGF-2 gene. [SEQ ID NOS:23 and 24]

20

Figures 4A-4E show an analysis of the KGF-2 amino acid sequence. Alpha, beta, turn and coil regions; hydrophilicity and hydrophobicity; amphipathic regions; flexible regions; antigenic index and surface probability are shown. In the "Antigenic Index - Jameson-Wolf" graph, amino acid residues amino acid residues 41-109 in Figure 1 correspond to the shown highly antigenic regions of the KGF-2 protein. Hydrophobic regions (Hopp-Woods Plot) fall below the median line (negative values) while hydrophilic regions (Kyte-Doolittle Plot) are found above the median line (positive values, e.g. amino acid residues 41-109). The plot is over the entire 208 amino acid ORF.

25

Figure 5 shows the evaluation of KGF-2 on wound closure in the diabetic mice. Wounds were measured immediately after wounding and every day for 5 consecutive days and on day 8. Percent wound closure was calculated using the

following formula: [Area on day 1]-[Area on day 8]/[Area on day 1]. Statistical analysis performed using an unpaired t test (mean +/- SEM, n=5).

Figure 6 shows the evaluation of KGF-2 on wound closure in the non-diabetic mice. Wounds were measured immediately after wounding and every day for 5 consecutive days and on day 8. Percent wound closure was calculated using the following formula: [Area on day 1]-[Area on day 8]/[Area on day 1]. Statistical analysis performed using an unpaired t test (mean +/- SEM, n=5).

Figure 7 shows a time course of wound closure in diabetic mice. Wound areas were measured immediately after wounding and every day for 5 consecutive days and on day 8. Values are presented as total area (sq. mm). Statistical analysis performed using an unpaired t test (mean +/- SEM, n=5).

Figure 8 shows a time course of wound closure in non-diabetic mice. Wound areas were measured immediately after wounding and every day for 5 consecutive days and on day 8. Values are presented as total area (sq. mm). Statistical analysis performed using an unpaired t test (mean +/- SEM, n=5).

Figure 9 shows a histopathologic evaluation on KGF-2 on the diabetic mice. Scores were given by a blind observer. Statistical analysis performed using an unpaired t test (mean +/- SEM, n=5).

Figure 10 shows a histopathologic evaluation on KGF-2 on the non-diabetic mice. Scores were given by a blind observer. Statistical analysis performed using an unpaired t test (mean +/- SEM, n=5).

Figure 11 shows the effect of keratinocyte growth in the diabetic mice. Scores were given by a blind observer. Statistical analysis performed using an unpaired t test (mean +/- SEM, n=5).

Figure 12 shows the effect of keratinocyte growth in the non-diabetic mice. Scores were given by a blind observer based. Statistical analysis performed using an unpaired t test (mean +/- SEM, n=5).

Figure 13 shows the effect of skin proliferation in the diabetic mice. Scores were given by a blind observer. Statistical analysis performed using an unpaired t test (mean +/- SEM, n=5).

10

5

15

20

25

Figure 14 shows the effect of skin proliferation in the non-diabetic mice. Scores were given by a blind observer. Statistical analysis performed using an unpaired t test (mean +/- SEM, n=5).

Figure 15 shows the DNA sequence and the protein expressed from the pQE60-Cys37 construct. The expressed KGF-2 protein contains the sequence from Cysteine at position 37 to Serine at position 208 with a 6X(His) tag attached to the N-terminus of the protein.

Figure 16 shows the effect of methyl prednisolone on wound healing in rats. Male SD adult rats (n=5) were injected on day of wounding with 5 mg of methyl prednisolone. Animals received dermal punch wounds (8mm) and were treated daily with buffer solution or KGF-2 solution in 50µL buffer solution for 5 consecutive days. Wounds were measured daily on days 1-5 and on day 8 with a calibrated Jameson caliper. Values represent measurements taken on day 8. (Mean +/- SEM)

Figure 17 shows the effect of KGF-2 on wound closure. Male SD adult rats (n=5) received dermal punch wounds (8mm) and 5mg of methylprednisolone on day of wounding. Animals were treated daily with a buffer solution or KGF-2 in 50μ L of buffer solution for 5 consecutive days commencing on the day of wounding. Measurements were made daily for 5 consecutive days and on day 8. Wound closure was calculated by the following formula: [Area on Day 8] - [Area on Day 1]/[Area on Day 1]. Area on day 1 was determined to be 64 sq. mm, the area made by the dermal punch. Statistical analysis was done using an unpaired t test. (Mean +/- SEM)

Figure 18 shows the time course of wound healing in the glucocorticoidimpaired model of wound healing. Male SD adult rats (n=5) received dermal punch wounds (8mm) on day 1 and were treated daily for 5 consecutive days with a buffer solution or a KGF-2 solution in 50μL. Animals received 5mg of methylprednisolone on day of wounding. Wounds were measured daily for five consecutive days commencing on day of wounding and on day 8 with a calibrated

10

5

15

20

Jameson caliper. Statistical analysis was done using an unpaired t test. (Mean +/- SEM)

5

10

15

20

25

30

Figure 19 (A) shows the effect of KGF-2 on wound area in rat model of wound healing without methylprednisolone at day 5 postwounding. Male SD rats (n=5) received dermal punch wounds (8mm) on day 1 and were treated daily with either a buffer solution or KGF-2 in a 50µL solution on day of wounding and thereafter for 5 consecutive days. Wounds were measured daily using a calibrated Jameson caliper. Statistical analysis was done using an unpaired t test. (Mean +/- SEM). (B) Evaluation of PDGF-BB and KGF-2 in Male SD Rats (n=6). All rats received 8 mm dorsal wounds and methylprednisolone (MP) (17mg/kg) to impair wound healing. Wounds were treated daily with buffer or various concentrations of PDGF-BB and KGF-2. Wounds were measured on Days 2, 4, 6, 8, and 10 using a calibrated Jameson caliper. Statistical analysis was performed using an unpaired t-test. (Mean +/- SE) *Compared with buffer. **PDGF-BB 1µg vs KGF-2/E3 1µg.

Figure 20 shows the effect of KGF-2 on wound distance in the glucocorticoid-impaired model of wound healing. Male SD adult rats (n=5) received dermal punch wounds (8mm) and of 17mg/kg methyl-prednisolone on the day of wounding. Animals were treated daily with a buffer solution or KGF-2 in 50µL of buffer solution for 5 consecutive days and on day 8. Wound distance was measured under light microscopy with a calibrated micrometer. Statistical analysis was done using an unpaired t test. (Mean +/- SEM)

Figure 21 (A) shows the stimulation of normal primary epidermal keratinocyte proliferation by KGF-2. (B) shows the stimulation of normal primary epidermal keratinocyte proliferation by KGF-2 Δ33. (C) shows the stimulation of normal primary epidermal keratinocyte proliferation by KGF-2 Δ28. Human normal primary epidermal keratinocytes were incubated with various concentrations of KGF-2, KGF-2 Δ33 or KGF-2 Δ28 for three days. For all three experiments alamarBlue was then added for 16 hr and the intensity of the red color converted from alamarBlue by the cells was measured by the difference

between O.D. 570 nm and O.D. 600 nm. For each of the KGF-2 proteins a positive control with complete keratinocyte growth media (KGM), and a negative control with keratinocyte basal media (KBM) were included in the same assay plate.

5

Figure 22 (A) shows the stimulation of thymidine incorporation by KGF-2 and FGF7 in Baf3 cells transfected with FGFR1b and FGFR2. The effects of KGF-2 (right panel) and FGF7 (left panel) on the proliferation of Baf3 cells transfected with FGFR1iiib (open circle) or FGFR2iiib/KGFR (solid Circle were examined. Y-axis represents the amount of [3H]thymidine incorporation (cpm) into DNA of Baf3 cells. X-axis represents the final concentration of KGF-2 or FGF7 added to the tissue culture media. (B) shows the stimulation of thymidine incorporation by KGF-2Δ33 in Baf3 cells transfected with FGFR2iiib (C) shows the stimulation of thymidine incorporation by KGF-2 (white bar), KGF-2Δ33 (black bar) and KGF-2Δ28 (grey bar) in Baf3 cells transfected with

15

FGFR2iiib.

10

Figure 23 shows the DNA and protein sequence for the E.coli optimized full length KGF-2.

Figures 24A and B show the DNA and protein sequences for the E.coli optimized mature KGF-2.

20

Figure 25 shows the DNA and the encoded protein sequence for the KGF-2 deletion construct comprising amino acids 36 to 208 of KGF-2.

Figure 26 shows the DNA and the encoded protein sequence for the KGF-2 deletion construct comprising amino acids 63 to 208 of KGF-2.

25

Figure 27 shows the DNA and the encoded protein sequence for the KGF-2 deletion construct comprising amino acids 77 to 208 of KGF-2.

Figure 28 shows the DNA and the encoded protein sequence for the KGF-2 deletion construct comprising amino acids 93 to 208 of KGF-2.

Figure 29 shows the DNA and the encoded protein sequence for the KGF-2 deletion construct comprising amino acids 104 to 208 of KGF-2.

WO 98/06844 PCT/US97/14112

-16-

Figure 30 shows the DNA and the encoded protein sequence for the KGF-2 deletion construct comprising amino acids 123 to 208 of KGF-2.

Figure 31 shows the DNA and the encoded protein sequence for the KGF-2 deletion construct comprising amino acids 138 to 208 of KGF-2.

Figure 32 shows the DNA and the encoded protein sequence for the KGF-2 deletion construct comprising amino acids 36 to 153 of KGF-2.

5

10

15

20

25

30

Figure 33 shows the DNA and the encoded protein sequence for the KGF-2 deletion construct comprising amino acids 63 to 153 of KGF-2.

Figure 34 shows the DNA sequence for the KGF-2 Cysteine-37 to Serine mutant construct.

Figure 35 shows the DNA sequence for the KGF-2 Cysteine-37/Cysteine-106 to Serine mutant construct.

Figure 36 shows the evaluation of KGF-2 Δ 33 effects on wound healing in male SD rats (n=5). Animals received 6 mm dorsal wounds and were treated with various concentrations buffer, or KGF-2 Δ 33 for 4 consecutive days. Wounds were measured daily using a calibrated Jameson caliper. Statistical analysis was done using an unpaired t-test.(Mean +/- SE) *Compared with buffer.

Figure 37 shows the effect of KGF-2 Δ33 on wound healing in normal rats. Male, SD, 250-300 g, rats (n=5) were given 6 mm full-thickness dorsal wounds. Wounds were measured with a caliper and treated with various concentrations of KGF-2Δ33 and buffer for four days commencing on the day of surgery. On the final day, wounds were harvested. Statistical analysis was performed using an unpaired t-test. *Value is compared to No Treatment Control. †Value is compared to Buffer Control.

Figure 38 shows the effect of KGF-2 Δ33 on breaking strength in incisional wounds. Male adult SD rats (n=10) received 2.5 cm full thickness incisional wounds on day 1 and were intraincisionally treated postwounding with one application of either buffer or KGF-2 (Delta 33) (1, 4, and 10μg). Animals were sacrificed on day 5 and 0.5 cm wound specimens were excised for routine

10

15

20

25

30

histology, and breaking strength analysis. Biomechanical testing was accomplished using an Instron skin tensiometer with a force applied across the wound. Breaking strength was defined as the greatest force withheld by each wound prior to rupture. Statistical analysis was done using an unpaired t-test. (Mean +/- SE).

Figure 39 shows the effect of KGF-2 (Delta 33) on epidermal thickness in incisional wounds. Male adult SD rats (n=10) received 2.5 cm full thickness incisional wounds on day 1 and were intracisionally treated postwounding with one application of either buffer or KGF-2 (Delta 33) (1, 4, and 10µg). Animals were sacrificed on day 5 and 0.5 cm wound specimens were excised for routine histology and breaking strength analysis. Epidermal thickness was determined by taking the mean of 6 measurements taken around the wound site. Measurements were taken by a blind observer on Masson Trichrome stained sections under light microscopy using a calibrated lens micrometer. Statistical analysis was done using an unpaired t-test. (Mean +/- SE).

Figure 40 shows the effect of KGF-2 (Delta 33) on epidermal thickness after a single intradermal injection. Male adult SD rats (n=18) received 6 intradermal injections of either buffer or KGF-2 in a concentration of 1 and 4 μg in 50 μL on day 0. Animals were sacrificed 24 and 48 hours post injection. Epidermal thickness was measured from the granular layer to the bottom of the basal layer. Approximately 20 measurements were made along the injection site and the mean thickness quantitated. Measurements were determined using a calibrated micrometer on Masson Trichrome stained sections under light microscopy. Statistical analysis was done using an unpaired t-test. (Mean +/-SE).

Figure 41 shows the effect of KGF-2 (Delta 33) on BrdU scoring. Male adult SD rats (n=18) received 6 intradermal injections of either placebo or KGF-2 in a concentration of 1 and 4 μ g in 50 μ L on day 0. Animals were sacrificed 24 and 48 hours post injection. Animals were injected with 5-2'-Bromo-deoxyrudine (100 mg/kg ip) two hours prior to sacrifice. Scoring was done by a blinded

observer under light microscopy using the following scoring system: 0-3 none to minimal BrdU labeled cells; 4-6 moderate labeling; 7-10 intense labeled cells. Statistical analysis was done using an unpaired t-test. (Mean +/- SE).

Figure 42 shows the anti-inflammatory effect of KGF-2 on PAF-induced paw edema.

Figure 43 shows the anti-inflammatory effect of KGF-2 Δ 33 on PAF-induced paw edema in Lewis rats.

Figure 44 shows the effect of KGF-2 Δ33 on the survival of whole body irradiated Balb/c mice. Balb/c male mice (n=5), 22.1 g were irradiated with 519 RADS. Animals were treated with buffer or KGF-2 (1 & 5 mg/kg, s.q.) 2 days prior to irradiation and daily thereafter for 7 days.

Figure 45 shows the effect of KGF-2 Δ33 on body weight of irradiated mice. Balb/c male mice (n=5) weighing 22.1 g were injected with either Buffer or KGF-2 Δ33 (1, 5 mg/kg) for 2 days prior to irradiation with 519 Rad/min. The animals were weighed daily and injected for 7 days following irradiation.

Figure 46 shows the effect of KGF-2 Δ33 on the survival rate of whole body irradiated Balb/c mice. Balb/c male mice (n=7), 22.1 g were irradiated with 519 RADS. Animals were treated with buffer or KGF-2 (1 and 5 mg/kg, s.q.) 2 days prior to irradiation and daily thereafter for 7 days.

Figure 47 shows the effect of KGF-2 $\Delta 33$ on wound healing in a glucocorticoid-impaired rat model.

Figure 48 shows the effect of KGF-2 Δ 33 on cell proliferation as determined using BrdU labeling.

Figure 49 shows the effect of KGF-2 Δ 33 on the collagen content localized at an astomotic surgical sites in the colons of rats.

10

5

20

25

10

15

20

25

Detailed Description

In accordance with an aspect of the present invention, there is provided an isolated nucleic acid (polynucleotide) which encodes for the polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO:2) or for the polypeptide encoded by the cDNA of the clone deposited as ATCC Deposit No. 75977 on December 16, 1994 at the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852.

Nucleic Acid Molecules

Unless otherwise indicated, all nucleotide sequences determined by sequencing a DNA molecule herein were determined using an automated DNA sequencer (such as the Model 373 from Applied Biosystems, Inc.), and all amino acid sequences of polypeptides encoded by DNA molecules determined herein were predicted by translation of a DNA sequence determined as above. Therefore, as is known in the art for any DNA sequence determined by this automated approach, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by automation are typically at least about 90% identical, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. The actual sequence can be more precisely determined by other approaches including manual DNA sequencing methods well known in the art. As is also known in the art, a single insertion or deletion in a determined nucleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the predicted amino acid sequence encoded by a determined nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced DNA molecule, beginning at the point of such an insertion or deletion.

Unless otherwise indicated, each "nucleotide sequence" set forth herein is presented as a sequence of deoxyribonucleotides (abbreviated A, G, C and T). However, by "nucleotide sequence" of a nucleic acid molecule or polynucleotide is intended, for a DNA molecule or polynucleotide, a sequence of deoxyribonucleotides, and for an RNA molecule or polynucleotide, the corresponding sequence of ribonucleotides (A, G, C and U), where each thymidine deoxyribonucleotide (T) in the specified deoxyribonucleotide sequence is replaced by the ribonucleotide uridine (U). For instance, reference to an RNA molecule having the sequence of SEQ ID NO:1 set forth using deoxyribonucleotide abbreviations is intended to indicate an RNA molecule having a sequence in which each deoxyribonucleotide A, G or C of SEQ ID NO:1 has been replaced by the corresponding ribonucleotide A, G or C, and each deoxyribonucleotide T has been replaced by a ribonucleotide U.

By "isolated" nucleic acid molecule(s) is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Isolated nucleic acid molecules of the present invention include DNA molecules comprising an open reading frame (ORF) with an initiation codon at positions 1-3 of the nucleotide sequence shown in Figure 1 (SEQ ID NO:1); DNA molecules comprising the coding sequence for the mature KGF-2 protein shown in Figure 1 (last 172 or 173 amino acids) (SEQ ID NO:2); and DNA molecules which comprise a sequence substantially different from those described above but which, due to the degeneracy of the genetic code, still encode the KGF-2 protein.

15

5

10

20

10

15

20

25

Of course, the genetic code is well known in the art. Thus, it would be routine for one skilled in the art to generate the degenerate variants described above.

A polynucleotide encoding a polypeptide of the present invention may be obtained from a human prostate and fetal lung. A fragment of the cDNA encoding the polypeptide was initially isolated from a library derived from a human normal prostate. The open reading frame encoding the full length protein was subsequently isolated from a randomly primed human fetal lung cDNA library. It is structurally related to the FGF family. It contains an open reading frame encoding a protein of 208 amino acid residues of which approximately the first 35 or 36 amino acid residues are the putative leader sequence such that the mature protein comprises 173 or 172 amino acids. The protein exhibits the highest degree of homology to human keratinocyte growth factor with 45% identity and 82% similarity over a 206 amino acid stretch. It is also important that sequences that are conserved through the FGF family are found to be conserved in the protein of the present invention.

In addition, results from nested PCR of KGF-2 cDNA from libraries showed that there were potential alternative spliced forms of KGF-2. Specifically, using primers flanking the N-terminus of the open reading frame of KGF-2, PCR products of 0.2 kb and 0.4 kb were obtained from various cDNA libraries. A 0.2 kb size was the expected product for KGF-2 while the 0.4 kb size may result from an alternatively spliced form of KGF-2. The 0.4 kb product was observed in libraries from stomach cancer, adult testis, duodenum and pancreas.

The polynucleotide of the present invention may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be doublestranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. The coding sequence which encodes the mature polypeptide may be identical to the coding sequence shown in Figure 1 (SEQ ID NO:1) or that of the deposited clone or may be a different coding sequence which coding sequence, as a result of the

redundancy or degeneracy of the genetic code, encodes the same mature polypeptide as the DNA of Figure 1 (SEQ ID NO:1) or the deposited cDNA.

The polynucleotide which encodes for the predicted mature polypeptide of Figure 1 (SEQ ID NO. 2) or for the predicted mature polypeptide encoded by the deposited cDNA may include: only the coding sequence for the mature polypeptide; the coding sequence for the mature polypeptide and additional coding sequence such as a leader or secretary sequence or a proprotein sequence; the coding sequence for the mature polypeptide (and optionally additional coding sequence) and non-coding sequence, such as intron or non-coding sequence 5' and/or 3' of the coding sequence for the predicted mature polypeptide. In addition, a full length mRNA has been obtained which contains 5' and 3' untranslated regions of the gene (Fig. 3).

As one of ordinary skill would appreciate, due to the possibilities of sequencing errors discussed above, as well as the variability of cleavage sites for leaders in different known proteins, the actual KGF-2 polypeptide encoded by the deposited cDNA comprises about 208 amino acids, but may be anywhere in the range of 200-220 amino acids; and the actual leader sequence of this protein is about 35 or 36 amino acids, but may be anywhere in the range of about 30 to about 40 amino acids.

Thus, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.

The present invention further relates to variants of the hereinabove described polynucleotides which encode for fragments, analogs and derivatives of the polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO. 2) or the polypeptide encoded by the cDNA of the deposited clone. The variant of the polynucleotide may be a naturally occurring allelic variant of the polynucleotide or a nonnaturally occurring variant of the polynucleotide.

10

5

15

20

Thus, the present invention includes polynucleotides encoding the same predicted mature polypeptide as shown in Figure 1 (SEQ ID NO:2) or the same predicted mature polypeptide encoded by the cDNA of the deposited clone as well as variants of such polynucleotides which variants encode for a fragment, derivative or analog of the polypeptide of Figure 1 (SEQ ID NO:2) or the polypeptide encoded by the cDNA of the deposited clone. Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.

10

5

The present invention includes polynucleotides encoding mimetic peptides of KGF-2 which can be used as therapeutic peptides. Mimetic KGF-2 peptides are short peptides which mimic the biological activity of the KGF-2 protein by binding to and activating the cognate receptors of KGF-2. Mimetic KGF-2 peptides can also bind to and inhibit the cognate receptors of KGF-2. KGF-2 receptors include, but are not limited to, FGFR2iiib and FGFR1iiib. Such mimetic peptides are obtained from methods such as, but not limited to, phage display or combinatorial chemistry. For example the method disclosed by Wrighton et al. Science 273:458-463 (1996) to generate mimetic KGF-2 peptides.

15

20

As hereinabove indicated, the polynucleotide may have a coding sequence which is a naturally occurring allelic variant of the coding sequence shown in Figure 1 (SEQ ID NO:1) or of the coding sequence of the deposited clone. As known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encode polypeptide.

25

30

The present invention also includes polynucleotides, wherein the coding sequence for the mature polypeptide may be fused in the same reading frame to a polynucleotide sequence which aids in expression and secretion of a polypeptide from a host cell, for example, a leader sequence which functions as a secretory sequence for controlling transport of a polypeptide from the cell. The polypeptide having a leader sequence is a preprotein and may have the leader

10

15

20

25

30

sequence cleaved by the host cell to form the mature form of the polypeptide. The polynucleotides may also encode for proprotein which is the mature protein plus additional 5' amino acid residues. A mature protein having a prosequence is a proprotein and is an inactive form of the protein. Once the prosequence is cleaved an active mature protein remains.

Thus, for example, the polynucleotide of the present invention may encode for a mature protein, or for a protein having a prosequence or for a protein having both prosequence and a presequence (leader sequence).

The polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence which allows for purification of the polypeptide of the present invention. The marker sequence may be a hexahistidine tag supplied by a pQE-9 vector to provide for purification of the mature polypeptide fused to the marker in the case of a bacterial host, or, for example, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host, e.g. COS-7 cells, is used. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson, I. et al. Cell 37:767 (1984)).

The term "gene" means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).

Fragments of the full length gene of the present invention may be used as a hybridization probe for a cDNA library to isolate the full length cDNA and to isolate other cDNAS which have a high sequence similarity to the gene or similar biological activity. Probes of this type preferably have at least 30 bases and may contain, for example, 50 or more bases. The probe may also be used to identify a cDNA clone corresponding to a full length transcript and a genomic clone or clones that contain the complete gene including regulatory and promotor regions, exons, and introns. An example of a screen comprises isolating the coding region of the gene by using the known DNA sequence to synthesize an oligonucleotide

probe. Labeled oligonucleotides having a sequence complementary to that of the gene of the present invention are used to screen a library of human cDNA, genomic DNA or cDNA to determine which members of the library the probe hybridizes to.

5

10

15

Further embodiments of the invention include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical to (a) a nucleotide sequence encoding the full-length KGF-2 polypeptide having the complete amino acid sequence in Figure 1 (SEQ ID NO:2), including the predicted leader sequence; (b) a nucleotide sequence encoding the mature KGF-2 polypeptide (full-length polypeptide with the leader removed) having the amino acid sequence at positions about 36 or 37 to 208 in Figure 1 (SEQ ID NO:2); (c) a nucleotide sequence encoding the full-length KGF-2 polypeptide having the complete amino acid sequence including the leader encoded by the cDNA clone contained in ATCC Deposit No. 75977; (d) a nucleotide sequence encoding the mature KGF-2 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 75977; (e) a nucleotide sequence encoding any of the KGF-2 analogs or deletion mutants described below; or (f) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c),(d), or (e).

20

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence encoding a KGF-2 polypeptide is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the KGF-2 polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be

30

inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular nucleic acid molecule is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the nucleotide sequence shown in Figure 1 or to the nucleotides sequence of the deposited cDNA clone can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711. Bestfit uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2: 482-489 (1981), to find the best segment of homology between two sequences. When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed.

The present application is directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in Figure 1 [SEQ ID NO:1] or to the nucleic acid sequence of the deposited cDNA, irrespective of whether they encode a polypeptide having KGF-2 activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having KGF-2 activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe or a polymerase chain reaction (PCR) primer. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having KGF-2 activity include, *inter alia*, (1) isolating the KGF-2 gene or allelic variants thereof in a

cDNA library; (2) in situ hybridization (e.g., "FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the KGF-2 gene, as described in Verma et al., Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York (1988); and Northern Blot analysis for detecting KGF-2 mRNA expression in specific tissues.

10

5

Preferred, however, are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in Figure 1 [SEQ ID NO:1] or to the nucleic acid sequence of the deposited cDNA which do, in fact, encode a polypeptide having KGF-2 protein activity. By "a polypeptide having KGF-2 activity" is intended polypeptides exhibiting activity similar, but not necessarily identical, to an activity of the wild-type KGF-2 protein of the invention or an activity that is enhanced over that of the wild-type KGF-2 protein (either the full-length protein or, preferably, the mature protein), as measured in a particular biological assay.

15

Assays of KGF-2 activity are disclosed, for example, in Examples 10 and 11 below. These assays can be used to measure KGF-2 activity of partially purified or purified native or recombinant protein.

20

KGF-2 stimulates the proliferation of epidermal keratinocyes but not mesenchymal cells such as fibroblasts. Thus, "a polypeptide having KGF-2 protein activity" includes polypeptides that exhibit the KGF-2 activity, in the keratinocyte proliferation assay set forth in Example 10 and will bind to the FGF receptor isoforms 1-iiib and 2-iiib (Example 11). Although the degree of activity need not be identical to that of the KGF-2 protein, preferably, "a polypeptide having KGF-2 protein activity" will exhibit substantially similar activity as compared to the KGF-2 protein (i.e., the candidate polypeptide will exhibit greater activity or not more than about tenfold less and, preferably, not more than about twofold less activity relative to the reference KGF-2 protein).

25

30

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99%

identical to the nucleic acid sequence of the deposited cDNA or the nucleic acid sequence shown in Figure 1 [SEQ ID NO:1] will encode a polypeptide "having KGF-2 protein activity." In fact, since degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having KGF-2 protein activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid).

5

10

15

20

25

30

For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990), wherein the authors indicate that there are two main approaches for studying the tolerance of an amino acid sequence to change. The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection. The second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality. As the authors state, these studies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described in Bowie, J.U. et al., supra, and the references cited therein.

The present invention further relates to polynucleotides which hybridize to the hereinabove-described sequences if there is at least 70%, preferably at least 90%, and more preferably at least 95% and still more preferably 96%, 97%, 98%,

99% identity between the sequences. The present invention particularly relates to polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode polypeptides which either retain substantially the same biological function or activity as the mature polypeptide encoded by the cDNAs of Figure 1 (SEQ ID NO:1) or the deposited cDNA(s).

10

5

An example of "stringent hybridization conditions" includes overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150 mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

15

Alternatively, the polynucleotide may have at least 20 bases, preferably 30 bases, and more preferably at least 50 bases which hybridize to a polynucleotide of the present invention and which has an identity thereto, as hereinabove described, and which may or may not retain activity. For example, such polynucleotides may be employed as probes for the polynucleotide of SEQ ID NO:1, for example, for recovery of the polynucleotide or as a diagnostic probe or as a PCR primer.

20

Of course, polynucleotides hybridizing to a larger portion of the reference polynucleotide (e.g., the deposited cDNA clone), for instance, a portion 50-750 nt in length, or even to the entire length of the reference polynucleotide, are also useful as probes according to the present invention, as are polynucleotides corresponding to most, if not all, of the nucleotide sequence of the deposited cDNA or the nucleotide sequence as shown in Figure 1 [SEQ ID NO:1]. By a portion of a polynucleotide of "at least 20 nt in length," for example, is intended 20 or more contiguous nucleotides from the nucleotide sequence of the reference polynucleotide (e.g., the deposited cDNA or the nucleotide sequence as shown

25

10

15

20

25

30

in Figure 1 [SEQ ID NO:1]). As indicated, such portions are useful diagnostically either as a probe according to conventional DNA hybridization techniques or as primers for amplification of a target sequence by the polymerase chain reaction (PCR), as described, for instance, in *Molecular Cloning*, A Laboratory Manual, 2nd. edition, edited by Sambrook, J., Fritsch, E. F. and Maniatis, T., (1989), Cold Spring Harbor Laboratory Press, the entire disclosure of which is hereby incorporated herein by reference.

Since a KGF-2 cDNA clone has been deposited and its determined nucleotide sequence is provided in Figure 1 [SEQ ID NO:1], generating polynucleotides which hybridize to a portion of the KGF-2 cDNA molecule would be routine to the skilled artisan. For example, restriction endonuclease cleavage or shearing by sonication of the KGF-2 cDNA clone could easily be used to generate DNA portions of various sizes which are polynucleotides that hybridize to a portion of the KGF-2 cDNA molecule. Alternatively, the hybridizing polynucleotides of the present invention could be generated synthetically according to known techniques. Of course, a polynucleotide which hybridizes only to a poly A sequence (such as the 3' terminal poly(A) tract of the KGF-2 cDNA shown in Figure 1 [SEQ ID NO:1]), or to a complementary stretch of T (or U) resides, would not be included in a polynucleotide of the invention used to hybridize to a portion of a nucleic acid of the invention, since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

The invention further provides isolated nucleic acid molecules comprising a polynucleotide encoding an epitope-bearing portion of the KGF-2 protein. In particular, isolated nucleic acid molecules are provided encoding polypeptides comprising the following amino acid residues in Figure 1 (SEQ ID NO:2), which the present inventors have determined are antigenic regions of the KGF-2 protein:

1. Gly41-Asn71: GQDMVSPEATNSSSSSFSSPSSAGRHVRSYN [SEQ ID NO:25];

- 2. Lys91-Ser109: KIEKNGKVSGTKKENCPYS [SEQ ID NO:26];
- 3. Asn135-Tyr164: NKKGKLYGSKEFNNDCKLKERIEENGYNTY [SEQ ID NO 27]; and
- 4. Asn181-Ala199: NGKGAPRRGQKTRRKNTSA [SEQ ID NO:28].

Also, there are two additional shorter predicted antigenic areas, Gln74-Arg78 and Gln170-Gln175. Methods for gererating such epitope-bearing portions of KGF-2 are described in detail below.

The deposit(s) referred to herein will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for purposes of Patent Procedure. These deposits are provided merely as convenience to those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. § 112. The sequence of the polynucleotides contained in the deposited materials, as well as the amino acid sequence of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with any description of sequences herein. A license may be required to make, use or sell the deposited materials, and no such license is hereby granted.

KGF-2 Polypeptides and Fragments

5

10

15

20

25

The present invention further relates to a polypeptide which has the deduced amino acid sequence of Figure 1 (SEQ ID NO:2) or which has the amino acid sequence encoded by the deposited cDNA, as well as fragments, analogs and derivatives of such polypeptide.

As one of ordinary skill would appreciate, due to the possibilities of sequencing errors discussed above, as well as the variability of cleavage sites for leaders in different known proteins, the actual KGF-2 polypeptide encoded by the deposited cDNA comprises about 208 amino acids, but may be anywhere in the range of 200-220 amino acids; and the actual leader sequence of this protein is

10

15

20

25

30

about 35 or 36 amino acids, but may be anywhere in the range of about 30 to about 40 amino acids.

The terms "fragment," "derivative" and "analog" when referring to the polypeptide, of Figure 1 (SEQ ID NO:2) or that encoded by the deposited cDNA, means a polypeptide which retains essentially the same biological function or activity as such polypeptide. Thus, an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.

The polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide, preferably a recombinant polypeptide.

The fragment, derivative or analog of the polypeptide of Figure 1 (SEQ ID NO:2) or that encoded by the deposited cDNA may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretary sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

The terms "peptide" and "oligopeptide" are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires to indicate a chain of at least to amino acids coupled by peptidyl linkages. The word "polypeptide" is used herein for chains containing more than ten amino acid residues. All oligopeptide and polypeptide formulas or sequences

herein are written from left to right and in the direction from amino terminus to carboxy terminus.

It will be recognized in the art that some amino acid sequences of the KGF-2 polypeptide can be varied without significant effect of the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein.

Thus, the invention further includes variations of the KGF-2 polypeptide which show substantial KGF-2 polypeptide activity or which include regions of KGF-2 protein such as the protein portions discussed below. Such mutants include deletions, insertions, inversions, repeats, and type substitutions (for example, substituting one hydrophilic residue for another, but not strongly hydrophilic for strongly hydrophobic as a rule). Small changes or such "neutral" amino acid substitutions will generally have little effect on activity.

Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asp and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.

As indicated in detail above, further guidance concerning which amino acid changes are likely to be phenotypically silent (i.e., are not likely to have a significant deleterious effect on a function) can be found in Bowie, J.U., et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990).

The present invention includes mimetic peptides of KGF-2 which can be used as therapeutic peptides. Mimetic KGF-2 peptides are short peptides which mimic the biological activity of the KGF-2 protein by binding to and activating

10

5

15

20

25

the cognate receptors of KGF-2. Mimetic KGF-2 peptides can also bind to and inhibit the cognate receptors of KGF-2. KGF-2 receptors include, but are not limited to, FGFR2iiib and FGFR1iiib. Such mimetic peptides are obtained from methods such as, but not limited to, phage display or combinatorial chemistry. For example, the method disclosed by Wrighton et al. Science 273:458-463 (1996) can be used to generate mimetic KGF-2 peptides.

The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.

10

5

The polypeptides of the present invention are preferably in an isolated form. By "isolated polypeptide" is intended a polypeptide removed from its native environment. Thus, a polypeptide produced and/or contained within a recombinant host cell is considered isolated for purposes of the present invention. Also intended are polypeptides that have been purified, partially or substantially, from a recombinant host cell or a native source.

15

The polypeptides of the present invention include the polypeptide of SEQ ID NO:2 (in particular the mature polypeptide) as well as polypeptides which have at least 90%, 95%, 96%, 97%, 98%, 99% similarity (more preferably at least 90%, 95%, 96%, 97%, 98%, 99% identity) to the polypeptide of SEQ ID NO:2 and also include portions of such polypeptides with such portion of the polypeptide (such as the deletion mutants described below) generally containing at least 30 amino acids and more preferably at least 50 amino acids.

20

As known in the art "similarity" between two polypeptides is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one polypeptide to the sequence of a second polypeptide.

25

By "% similarity" for two polypeptides is intended a similarity score produced by comparing the amino acid sequences of the two polypeptides using the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711) and the default settings for determining similarity. Bestfit

uses the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics 2: 482-489, 1981) to find the best segment of similarity between two sequences.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a reference amino acid sequence of a KGF-2 polypeptide is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid of the KGF-2 polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequence shown in Figure 1 [SEQ ID NO:2] or to the amino acid sequence encoded by deposited cDNA clone can be determined conventionally using known computer programs such the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711. When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in

5

10

15

20

10

15

20

25

30

homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed.

As described in detail below, the polypeptides of the present invention can be used to raise polyclonal and monoclonal antibodies, which are useful in diagnostic assays for detecting KGF-2 protein expression as described below or as agonists and antagonists capable of enhancing or inhibiting KGF-2 protein function. Further, such polypeptides can be used in the yeast two-hybrid system to "capture" KGF-2 protein binding proteins which are also candidate agonist and antagonist according to the present invention. The yeast two hybrid system is described in Fields and Song, *Nature 340:*245-246 (1989).

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R. A. (1983) Antibodies that react with predetermined sites on proteins. *Science 219*:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are

10

15

20

25

30

confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, soluble peptides, especially those containing proline residues, usually are effective. Sutcliffe et al., *supra*, at 661. For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. Sutcliffe et al., supra, at 663. The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (e.g., about 9 amino acids) can bind and displace the larger peptides in immunoprecipitation assays. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777. The antipeptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods well known in the art.

Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at

10

15

20

25

30

least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 30, 40, 50, 60, 70, 80, 90, 100, or 150 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.

Non-limiting examples of antigenic polypeptides or peptides that can be used to generate KGF-2-specific antibodies include the following:

- 1. Gly41-Asn71: GQDMVSPEATNSSSSSFSSPSSAGRHVRSYN [SEQ ID NO:25];
- 2. Lys91-Ser109: KIEKNGKVSGTKKENCPYS [SEQ ID NO:26];
- 3. Asn135-Tyr164: NKKGKLYGSKEFNNDCKLKERIEENGYNTY [SEQ ID NO: 27]; and
- 4. Asn181-Ala199: NGKGAPRRGQKTRRKNTSA [SEQ ID NO:28]. Also, there are two additional shorter predicted antigenic areas, Gln74-Arg78 and Gln170-Gln175.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, a short epitope-bearing amino acid sequence may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of

PCT/US97/14112

chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks. Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. *Proc. Natl. Acad. Sci. USA* 82:5131-5135. This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten et al. (1986). In this procedure the individual resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods. A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously. Houghten et al., *supra*, at 5134.

15

20

25

30

10

5

Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985). Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 µg peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

5

10

15

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen et al., supra, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an enzyme-linked immunosorbent assay. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art. For instance, the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen et al. with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.

25

30

20

Further still, U.S. Patent No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is

10

15

20

25

30

complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) on Peralkylated Oligopeptide Mixtures discloses linear C₁-C₇-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

As one of skill in the art will appreciate, KGF-2 polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. This has been shown, e.g., for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins (EPA 394,827; Traunecker *et al.*, *Nature 331*:84-86 (1988)). Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than the monomeric KGF-2 protein or protein fragment alone (Fountoulakis *et al.*, *J Biochem 270*:3958-3964 (1995)).

In accordance with the present invention, novel variants of KGF-2 are also described. These can be produced by deleting or substituting one or more amino acids of KGF-2. Natural mutations are called allelic variations. Allelic variations can be silent (no change in the encoded polypeptide) or may have altered amino acid sequence.

In order to attempt to improve or alter the characteristics of native KGF-2, protein engineering may be employed. Recombinant DNA technology known to those skilled in the art can be used to create novel polypeptides. Muteins and deletions can show, e.g., enhanced activity or increased stability. In addition, they could be purified in higher yield and show better solubility at least under certain

purification and storage conditions. Set forth below are examples of mutations that can be constructed.

Amino terminal and carboxy terminal deletions

Various members of the FGF family have been modified using recombinant DNA technology. Positively charged molecules have been substituted or deleted in both aFGF and bFGF that are important for heparin binding. The modified molecules resulted in reduced heparin binding activity. Accordingly, it is known that the amount of modified molecule sequestered by heparin in a patient would be reduced, increasing the potency as more FGF would reach the appropriate receptor. (EP 0 298 723).

Native KGF-2 is relatively unstable in the aqueous state and it undergoes chemical and physical degradation resulting in loss of biological activity during processing and storage. Native KGF-2 is also prone to aggregation in aqueous solution, at elevated temperatures and it becomes inactivated under acidic conditions.

In order to improve or alter one or more characteristics of native KGF-2, protein enginerring may be employed. Ron et al., J. Biol. Chem., 268(4): 2984-2988 (1993) reported modified KGF proteins that had heparin binding activity even if the 3, 8, or 27 amino terminal amino acid residues were missing. The deletion of 3 and 8 amino acids had full activity. More deletions of KGF have been descibed in PCT/IB95/00971. The deletion of carboxyterminal amino acids can enhance the activity of proteins. One example is interferon gamma that shows up to ten times higher activity by deleting ten amino acid residues from the carboxy terminus of the protein (Döbeli et al., J. of Biotechnology 7:199-216 (1988)). Thus, one aspect of the invention is to provide polypeptide analogs of KGF-2 and nucleotide sequelces encoding such analogs that exhibit enhanced stability (e.g., when exposed to typical pH, thermal conditions or other storage conditions) relative to the native KGF-2 polypeptide.

10

5

15

20

Particularly preferred KGF-2 polypeptides are shown below (numbering starts with the first amino acid in the protein (Met):

	Thr (residue 36) Ser (residue 208)	Ser (69) Ser (208)
	Cys (37)Ser (208)	Val (77) Ser (208)
5	Gln (38) Ser (208)	Arg (80) Ser (208)
	Ala (39) Ser (208)	Met(1), Thr (36), or Cys (37) His (207)
	Leu (40) Ser (208)	Met (1), Thr (36), or Cys (37) Val (206)
	Gly (41) Ser (208)	Met (1), Thr (36), or Cys (37) Val (205)
	Gln (42) Ser (208)	Met(1), Thr (36), or Cys (37) Met (204)
10	Asp (43) Ser (208)	Met(1), Thr (36), or Cys (37) Pro (203)
	Met (44) Ser (208)	Met(1), Thr (36), or Cys(37) Leu (202)
•	Val (45) Ser (208)	Met(1), Thr (36), or Cys (37) Phe (201)
	Ser (46) Ser (208)	Met(1), Thr (36), or Cys (37) His (200)
	Pro (47) Ser (208)	Met(1), Thr (36), or Cys (37) Ala (199)
15	Glu (48) Ser (208)	Met (1), Thr (36), or Cys (37) Ser (198)
	Ala (49) (Ser (208)	Met (1), Thr (36), or Cys (37) Thr (197)
	Thr (50) Ser (208)	Met(1), Thr (36), or Cys (37)Asn (196)
•	Asn (51) Ser (208)	Met(1), Thr (36), or Cys (37) Lys (195)
	Ser (52) Ser (208)	Met (1), Thr (36), or Cys (37) Arg (194)
20	Ser (53) Ser (208)	Met(1), Thr (36), or Cys (37) Arg (193)
	Ser (54) Ser (208)	Met(1), Thr (36), or Cys (37) Thr (192)
	Ser (55) Ser (208)	Met(1), Thr (36), or Cys (37) Lys (191)
	Ser (56) Ser (208)	Met(1), Thr (36), or Cys (37) - Arg (188)
	Phe (57) Ser (208)	Met(1), Thr (36), or Cys (37) Arg.(187)
25	Ser (59) Ser (208)	Met(1), Thr (36), or Cys (37) - Lys (183)
	Ser(62) Ser (208)	
	Ala(63) Ser (208)	
	Gly (64) Ser (208)	
	Arg (65) Ser (208)	
30	Val (67) Ser (208)	

Preferred embodiments include the N-terminal deletions Ala (63) -- Ser (208) (KGF-2Δ28) and Ser (69) -- Ser (208) (KGF-2Δ33). Other preferred N-terminal and C-terminal deletion mutants are described in Examples 13 and 16 (c) of the specification and include: Ala (39) -- Ser (208); Pro (47) -- Ser (208); Val (77) -- Ser (208); Glu (93) -- Ser (208); Glu (104) -- Ser (208); Val (123) -- Ser (208); and Gly (138) -- Ser (208). Other preferred C-terminal deletion mutants include: Met (1), Thr (36), or Cys (37) -- Lys (153).

Also included by the present invention are deletion mutants having amino acids deleted from both the N- terminus and the C-terminus. Such mutants include all combinations of the N-terminal deletion mutants and C-terminal deletion mutants described above, e.g., Ala (39) -- His (200), Met (44) -- Arg (193), Ala (63) -- Lys (153), Ser (69) - Lys (153), etc. etc. etc. . . . Those combinations can be made using recombinant techniques known to those skilled in the art.

15

20 .

25

30

10

5

Thus, in one aspect, N-terminal deletion mutants are provided by the present invention. Such mutants include those comprising the amino acid sequence shown in Figure 1 (SEQ ID NO:2) except for a deletion of at least the first 38 N-terminal amino acid residues (i.e., a deletion of at least Met (1) -- Gln (38)) but not more than the first 147 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the first 38 N-terminal amino acid residues (i.e., a deletion of at least Met (1) -- Gln (38)) but not more than the first 137 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the first 46 Nterminal amino acid residues but not more than the first 137 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the first 62 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the first 68 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the first 76 N-terminal

amino acid residues but not more than the first 137 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the first 92 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the first 103 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the first 122 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2).

10

15

20

25

30

5

In addition to the ranges of N-terminal deletion mutants described above, the present invention is also directed to all combinations of the above described ranges, e.g., deletions of at least the first 62 N-terminal amino acid residues but not more than the first 68 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2); deletions of at least the first 62 N-terminal amino acid residues but not more than the first 76 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2); deletions of at least the first 62 N-terminal amino acid residues but not more than the first 92 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2); deletions of at least the first 62 N-terminal amino acid residues but not more than the first 103 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2); deletions of at least the first 68 N-terminal amino acid residues but not more than the first 76 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2); deletions of at least the first 68 N-terminal amino acid residues but not more than the first 92 N-terminal amino acid residues of Figure 1 (SEO ID NO:2); deletions of at least the first 68 N-terminal amino acid residues but not more than the first 103 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2); deletions of at least the first 46 N-terminal amino acid residues but not more than the first 62 N-terminal amino acid residues of Figure 1 (SEO ID NO:2); deletions of at least the first 46 N-terminal amino acid residues but not more than the first 68 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2); deletions of at least the first 46 N-terminal amino acid residues but not

WO 98/06844 PCT/US97/14112

-46-

more than the first 76 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2); etc. etc. etc. . . .

5

10

15

20

25

30

In another aspect, C-terminal deletion mutants are provided by the present invention. Preferably, the N-terminal amino acid residue of said C-terminal deletion mutants is amino acid residue 1 (Met), 36 (Thr), or 37 (Cys) of Figure 1 (SEQ ID NO:2). Such mutants include those comprising the amino acid sequence shown in Figure 1 (SEQ ID NO:2) except for a deletion of at least the last C-terminal amino acid residue (Ser (208)) but not more than the last 55 Cterminal amino acid residues (i.e., a deletion of amino acid residues Glu (154) -Ser (208)) of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the last C-terminal amino acid residue but not more than the last 65 Cterminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the last 10 C-terminal amino acid residues but not more than the last 55 C-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the last 20 C-terminal amino acid residues but not more than the last 55 C-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the last 30 Cterminal amino acid residues but not more than the last 55 C-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the last 40 C-terminal amino acid residues but not more than the last 55 Cterminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, the deletion will include at least the last 50 C-terminal amino acid residues but not more than the last 55 C-terminal amino acid residues of Figure 1 (SEQ ID NO:2).

In addition to the ranges of C-terminal deletion mutants described above, the present invention is also directed to all combinations of the above described ranges, e.g., deletions of at least the last C-terminal amino acid residue but not more than the last 10 C-terminal amino acid residues of Figure 1 (SEQ ID NO:2); deletions of at least the last C-terminal amino acid residue but not more than the last 20 C-terminal amino acid residues of Figure 1 (SEQ ID NO:2); deletions of at least the last C-terminal amino acid residue but not more than the last 30 C-

10

15

20

25

In yet another aspect, also included by the present invention are deletion mutants having amino acids deleted from both the N- terminal and C-terminal residues. Such mutants include all combinations of the N-terminal deletion mutants and C-terminal deletion mutants described above. Such mutants include those comprising the amino acid sequence shown in Figure 1 (SEQ ID NO:2) except for a deletion of at least the first 46 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2) and a deletion of at least the last C-terminal amino acid residue but not more than the last 55 C-terminal amino acid residues of Figure 1 (SEQ ID NO:2). Alternatively, a deletion can include at least the first 62, 68, 76, 92, 103, or 122 N-terminal amino acids but not more than the first 137 N-terminal amino acid residues of Figure 1 (SEQ ID NO:2) and a deletion of at least the last 10, 20, 30, 40, or 50 C-terminal amino acid residues but not more than the last 55 C-terminal amino acid residues of Figure 1. Further included are all combinations of the above described ranges.

Substitution of amino acids

A further aspect of the present invention also includes the substituion of amino acids. Native mature KGF-2 contains 44 charged residues, 32 of which carry a positive charge. Depending on the location of such residues in the protein's three dimensional structure, substitution of one or more of these clustered residues with amino acids carrying a negative charge or a neutral charge may alter the electrostatic interactions of adjacent residues and may be useful to achieve increased stability and reduced aggregation of the protein. Aggregation of proteins cannot only result in a loss of activity but be problematic when preparing pharmaceutical formulations, because they can be immunogenic (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967), Robbins et al., Diabetes 36: 838-845 (1987), Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10: 307-377 (1993)). Any modification should give consideration to minimizing charge repulsion in the tertiary structure of the protein molecule. Thus, of special interest are substitutions of charged amino acid with another charge and with neutral or negatively charged amino acids. The latter results in proteins with a reduced positive charge to improve the characteristics of KGF-2. improvements include increased stability and reduced aggregation of the analog as compared to the native KGF-2 protein.

20

5

10

15

The replacement of amino acids can also change the selectivity of binding to cell surface receptors. Ostade *et al.*, *Nature 361*: 266-268 (1993), described certain TNF alpha mutations resulting in selective binding of TNF alpha to only one of the two known TNF receptors.

25

KGF-2 molecules may include one or more amino acid substitutions, deletions or additions, either from natural mutation or human manipulation. Examples of some preferred mutations are: Ala (49) Gln, Asn (51) Ala, Ser (54) Val, Ala (63) Pro, Gly (64) Glu, Val (67) Thr, Trp (79) Val, Arg (80) Lys, Lys (87) Arg, Tyr (88) Trp, Phe (89) Tyr, Lys (91) Arg, Ser (99) Lys, Lys (102) Gln, Lys 103(Glu), Glu (104) Met, Asn (105) Lys, Pro (107) Asn, Ser (109) Asn, Leu

(111) Met, Thr (114) Arg, Glu(117) Ala, Val (120) Ile, Val (123) Ile, Ala (125) Gly, Ile (126) Val, Asn (127) Glu, Asn (127) Gln, Tyr (130) Phe, Met (134) Thr, Lys (136) Glu, Lys (137) Glu, Gly (142) Ala, Ser (143) Lys, Phe (146) Ser, Asn (148) Glu, Lys (151) Asn, Leu (152) Phe, Glu (154) Gly, Glu (154) Asp, Arg (155) Leu, Glu (157) Leu, Gly (160) His, Phe (167) Ala, Asn (168) Lys, Gln (170) Thr, Arg (174) Gly, Tyr (177) Phe, Gly (182) Gln, Ala (185) Val, Ala (185) Leu, Ala (185) Ile, Arg (187) Gln (190) Lys, Lys (195) Glu, Thr (197) Lys, Ser (198) Thr, Arg (194) Glu, Arg (194) Gln, Lys (191) Glu, Lys (191) Gln, Arg (188) Glu, Arg (188) Gln, Lys (183) Glu.

10

5

By the designation, for example, Ala (49) Gln is intended that the Ala at position 49 of Figure 1 (SEQ ID NO:2) is replaced by Gln.

Changes are preferably of minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein. Examples of conservative amino acid substitutions known to those skilled in the art are set forth below:

15

Aromatic:

phenylalanine

tryptophan

tyrosine

Hydrophobic:

leucine

20

isoleucine

valine

Polar:

glutamine

asparagine

Basic:

arginine

25

lysine

histidine

Acidic:

aspartic acid

glutamic acid

Small:

alanine

30

serine

threonine methionine glycine

Of course, the number of amino acid substitutions a skilled artisan would make depends on many factors, including those described above. Generally speaking, the number of substitutions for any given KGF-2 polypeptide will not be more than 50, 40, 30, 20, 10, 5, or 3, depending on the objective. For example, a number of substitutions that can be made in the C-terminus of KGF-2 to improve stability are described above and in Example 22.

10

15

5

Amino acids in KGF-2 that are essential for function can be identified by methods well known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244:1081-1085 (1989). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as receptor binding or in vitro and in vivo proliferative activity. (See, e.g., Examples 10 and 11). Sites that are critical for ligand-receptor binding can also be determined by structural analyzis such as crystalization, nuclear magnetic resonance or photoaffinity labelling. (See for example: Smith et al., J. Mol. Biol., 224: 899-904 (1992); and de Vos et al. Science, 255: 306-312 (1992).)

20

25

Another aspect of the present invention substitutions of serine for cysteine at amino acid positions 37 and 106 and 150. An uneven number of cysteins means that at least one cysteine residue is available for intermolecular crosslinks or bonds that can cause the protein to adopt an undesirable tertiary structure. Novel KGF-2 proteins that have one or more cysteine replaced by serine or e.g. alanine are generally purified at a higher yield of soluble, correctly folded protein. Although not proven, it is believed that the cysteine residue at position 106 is important for function. This cysteine residue is highly conserved among all other FGF family members.

10

15

20

25

٠-.

A further aspect of the present invention are fusions of KGF2 with other proteins or fragments thereof such as fusions or hybrids with other FGF proteins, e.g. KGF (FGF-7), bFGF, aFGF, FGF-5, FGF-6, etc. Such a hybrid has been reported for KGF (FGF-7). In the published PCT application no. 90/08771 a chimeric protein has been produced consisting of the first 40 amino acid residues of KGF and the C-terminal portion of aFGF. The chimera has been reported to target keratinocytes like KGF, but lacked suceptibility to heparin, a characteristic of aFGF but not KGF. Fusions with parts of the constant domain of immunoglobulins (IgG) show often an increased halflife time in vivo. This has been shown, e.g., for chimeric proteins consisting of the first two domains of the human CD4-polypeptide with various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins (European Patent application, Publication No. 394 827, Traunecker et al., Nature 331, 84-86 (1988). Fusion proteins that have a disulfide-linked dimeric structure can also be more efficient in binding monomeric molecules alone (Fountoulakis et al., J. of Biochemistry, 270: 3958-3964, (1995)).

Antigenic/hydrophilic parts of KGF-2

As demonstrated in Figure 4A-4E, there are 4 major highly hydrophilic regions in the KGF-2 protein. Amino acid residues Gly41 - Asn 71, Lys91 - Ser 109, Asn135 - Tyr 164 and Asn 181 - Ala 199 [SEQ ID NOS:25-28]. There are two additional shorter predicted antigenic areas, Gln 74 - Arg 78 and Gln 170 - Gln 175. Hydrophilic parts are known to be mainly at the outside (surface) of proteins and, therefore, available for antibodies recognizing these regions. Those regions are also likely to be involved in the binding of KGF-2 to its receptor(s). Synthetic peptides derived from these areas can interfere with the binding of KGF-2 to its receptor(s) and, therefore, block the function of the protein. Synthetic peptides from hydrophilic parts of the protein may also be agonistic, i.e. mimic the function of KGF-2.

10

15

20

25

Thus, the present invention is further directed to isolated polypeptides comprising a hydrophilic region of KGF-2 wherein said polypeptide is not more than 150 amino acids in length, preferably not more than 100, 75, or 50 amino acids in length, which comprise one or more of the above described KGF-2 hydrophilic regions.

Chemical modifications

The KGF wild type and analogs may be further modified to contain additional chemical moieties not normally part of the protein. Those derivatized moieties may improve the solubility, the biological half life or absorption of the protein. The moieties may also reduce or eliminate any desirable side effects of the proteins and the like. an overview for those moieties can be found in REMINGTON'S PHARMACEUTICAL SCIENCES, 18th ed., Mack Publishing Co., Easton, PA (1990). Polyethylene glycol (PEG) is one such chemical moiety which has been used for the preparation of therapeutic proteins. The attachment of PEG to proteins has been shown to protect against proteolysis, Sada et al., J. Fermentation Bioengineering 71: 137-139 (1991). Various methods are available for the attachment of certain PEG moieties. For review, see: Abuchowski et al., in Enzymes as Drugs. (Holcerberg and Roberts, eds.) pp. 367-383 (1981). Many published patents describe derivatives of PEG and processes how to prepare them, e.g., Ono et al.U.S. Patent No. 5,342,940; Nitecki et al.U.S. Patent No. 5,089,261; Delgado et al.U.S. Patent No. 5,349,052. Generally, PEG molecules are connected to the protein via a reactive group found on the protein. Amino groups, e.g. on lysines or the amino terminus of the protein are convenient for this attachment among others.

The entire disclosure of each document cited in this section on "Polypeptides and Peptides" is hereby incorporated herein by reference.

Vectors and Host Cells

The present invention also relates to vectors which include the isolated DNA molecules of the present invention, host cells which are genetically engineered with the recombinant vectors, and the production of KGF-2 polypeptides or fragments thereof by recombinant techniques.

Fragments or portions of the polypeptides of the present invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, the fragments may be employed as intermediates for producing the full-length polypeptides. Fragments or portions of the polynucleotides of the present invention may be used to synthesize full-length polynucleotides of the present invention. The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.

Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the KGF-2 genes. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

The polynucleotides of the present invention may be employed for producing polypeptides by recombinant techniques. Thus, for example, the polynucleotide may be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids;

10

5

15

20

phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used as long as it is replicable and viable in the host.

5

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.

10

The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequences) (promoter) to direct cDNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the *E. coli. lac* or *trp*, the phage lambda P_L promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

15

In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in *E. coli*.

20

The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.

25

As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as *E. coli*, *Streptomyces*, *Salmonella typhimurium*; fungal cells, such as yeast; insect cells such as *Drosophila S2* and *Spodoptera Sf9*; animal cells such as CHO, COS or Bowes melanoma; adenoviruses; plant cells,

WO 98/06844 PCT/US97/14112

etc. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

5

10

15

20

25

30

More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example; Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pBS, pDIO, phagescript, psiXl74, pbluescript SK, pbsks, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia); Eukaryotic: pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P_R, P_L and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

In a further embodiment, the present invention relates to host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium

10

15

20

25

30

phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)).

The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y. (1989), the disclosure of which is hereby incorporated by reference.

Transcription of the DNA encoding the polypeptides of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Examples including the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

For secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide. The signals may be endogenous to the polypeptide or they may be heterologous signals.

The polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous functional regions. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell, during

purification, or during subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art. A preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to solubilize receptors. For example, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobin molecules together with another human protein or part thereof. In many cases, the Fc part in fusion protein is thoroughly advantageous for use in therapy and diagnosis and thus results, for example, in improved pharmacokinetic properties (EP-A 0232 262). On the other hand, for some uses it would be desirable to be able to delete the Fc pat after the fusion protein has been expressed, detected and purified in the advantageous manner described. This is the case when Fc portion proves to be a hindrance to use in therapy and diagnosis, for example when the fusion protein is to be used as antigen for immunizations. In drug discovery, for example, human proteins, such as, shIL5- has been fused with Fc portions for the purpose of highthroughput screening assays to identify antagonists of hIL-5. See, D. Bennett et al., Journal of Molecular Recognition, Vol. 8 52-58 (1995) and K. Johanson et al., The Journal of Biological Chemistry, Vol. 270, No. 16, pp 9459-9471 (1995).

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of $E.\ coli$ and $S.\ cerevisiae$ TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), α -factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing

25

5

10

15

20

secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

5

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

15

10

As a representative but nonlimiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, WI, USA) These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

20

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.

25

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical

10

15

20

25

disruption, or use of cell lysing agents, such methods are well known to those skilled in the art.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

The KGF-2 polypeptide can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The polypeptides of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue.

10

15

Diagnostic and Therapeutic Applications of KGF-2

As used in the section below, "KGF-2" is intended to refer to the full-length and mature forms of KGF-2 described herein and to the KGF-2 analogs, derivatives and mutants described herein. This invention is also related to the use of the KGF-2 gene as part of a diagnostic assay for detecting diseases or susceptibility to diseases related to the presence of mutations in the KGF-2 nucleic acid sequences.

Individuals carrying mutations in the KGF-2 gene may be detected at the DNA level by a variety of techniques. Nucleic acids for diagnosis may be obtained from a patient's cells, such as from blood, urine, saliva, tissue biopsy and autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR (Saiki et al., Nature 324:163-166 (1986)) prior to analysis. RNA or cDNA may also be used for the same purpose. As an example, PCR primers complementary to the nucleic acid encoding KGF-2 can be used to identify and analyze KGF-2 mutations. For example, deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to radiolabeled KGF-2 RNA or alternatively, radiolabeled KGF-2 antisense DNA sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures.

Genetic testing based on DNA sequence differences may be achieved by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gel ectrophoresis. DNA fragments of different sequences may be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al., Science, 230:1242 (1985)).

25

Sequence changes at specific locations may also be revealed by nuclease protection assays such as RNase and SI protection or the chemical cleavage method (e.g., Cotton *et al.*, *PNAS*, *USA*, *85*:4397-4401 (1985)).

Thus, the detection of a specific DNA sequence may be achieved by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes, (e.g., Restriction Fragment Length Polymorphisms (RFLP)) and Southern blotting of genomic DNA.

In addition to more conventional gel-electrophoresis and DNA sequencing, mutations can also be detected by *in situ* analysis.

10

15

20

25

5

The present invention also relates to a diagnostic assay for detecting altered levels of KGF-2 protein in various tissues since an over-expression of the proteins compared to normal control tissue samples may detect the presence of a disease or susceptibility to a disease, for example, a tumor. Assays used to detect levels of KGF-2 protein in a sample derived from a host are well-known to those of skill in the art and include radioimmunoassays, competitive-binding assays, Western Blot analysis, ELISA assays and "sandwich" assay. An ELISA assay (Coligan, et al., Current Protocols in Immunology, 1(2), Chapter 6, (1991)) initially comprises preparing an antibody specific to the KGF-2 antigen, preferably a monoclonal antibody. In addition a reporter antibody is prepared against the monoclonal antibody. To the reporter antibody is attached a detectable reagent such as radioactivity, fluorescence or, in this example, a horseradish peroxidase enzyme. A sample is removed from a host and incubated on a solid support, e.g. a polystyrene dish, that binds the proteins in the sample. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein like bovine serum albumen. Next, the monoclonal antibodies attach to any KGF-2 proteins attached to the polytyrene dish. All unbound monoclonal antibody is washed out with buffer. The reporter antibody linked to horseradish peroxidase is now placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to KGF-2. Unattached reporter antibody is then washed out. Peroxidase substrates are then added to the

10

15

20

25

30

dish and the amount of color developed in a given time period is a measurement of the amount of KGF-2 protein present in a given volume of patient sample when compared against a standard curve.

A competition assay may be employed wherein antibodies specific to KGF-2 are attached to a solid support and labeled KGF-2 and a sample derived from the host are passed over the solid support and the amount of label detected, for example by liquid scintillation chromatography, can be correlated to a quantity Of KGF-2 in the sample.

A "sandwich" assay is similar to an ELISA assay. In a "sandwich" assay KGF-2 is passed over a solid support and binds to antibody attached to a solid support. A second antibody is then bound to the KGF-2. A third antibody which is labeled and specific to the second antibody is then passed over the solid support and binds to the second antibody and an amount can then be quantified.

The polypeptides, their fragments or other derivatives, or analogs thereof, or cells expressing them can be used as an immunogen to produce antibodies thereto. These antibodies can be, for example, polyclonal or monoclonal antibodies. The present invention also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.

Antibodies generated against the polypeptides corresponding to a sequence of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tissue expressing that polypeptide.

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples

WO 98/06844 PCT/US97/14112

-63-

include the hybridoma technique (Kohler & Milstein, Nature, 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor, et al., Immunology Today 4:72 (1983)), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole, et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96 (1985)).

5

10

15

20

25

30

Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention. Also, transgenic mice may be used to express humanized antibodies to immunogenic polypeptide products of this invention.

The polypeptides of the present invention may be employed to stimulate new blood vessel growth or angiogenesis. Particularly, the polypeptides of the present invention may stimulate keratinocyte cell growth and proliferation. Accordingly the present invention provides a process for utilizing such polypeptide, or polynucleotide encoding such polypeptide for therapeutic purposes, for example, to stimulate epithelial cell proliferation and basal keratinocytes for the purpose of wound healing, and to stimulate hair follicle production and healing of dermal wounds.

As noted above, the polypeptides of the present invention may be employed to heal dermal wounds by stimulating epithelial cell proliferation. These wounds may be of superficial nature or may be deep and involve damage of the dermis and the epidermis of skin. Thus, the present invention provides a method for the promotion of wound healing that involves the administration of an effective amount of KGF-2 to an individual.

The individual to which KGF-2 is administered may heal wounds at a normal rate or may be healing impaired. When administered to an individual who is not healing impaired, KGF-2 is administered to accelerate the normal healing process. When administered to an individual who is healing impaired, KGF-2 is administered to facilitate the healing of wounds which would otherwise heal slowly or not at all. As noted below, a number of afflictions and conditions can

10

15

20

25

30

result in healing impairment. These afflictions and conditions include diabetes (e.g., Type II diabetes mellitus), treatment with both steroids and other pharmacological agents, and ischemic blockage or injury. Steroids which have been shown to impair wound healing include cortisone, hydrocortisone, dexamethasone, and methylprednisolone.

Non-steroid compounds, e.g., octreotide acetate, have also been shown to impair wound healing. Waddell, B. et al., Am. Surg. 63:446-449 (1997). The present invention is believed to promote wound healing in individuals undergoing treatment with such non-steroid agents.

A number of growth factors have been shown to promote wound healing in healing impaired individuals. See, e.g., Steed, D. et al., J. Am. Coll. Surg. 183:61-64 (1996); Richard, J. et al., Diabetes Care 18: 64-69 (1995); Steed, D., J. Vasc. Surg. 21:71-78 (1995); Kelley, S. et al., Proc. Soc. Exp. Biol. 194:320-326 (1990). These growth factors include growth hormone-releasing factor, platelet-derived growth factor, and basic fibroblast growth factor. Thus, the present invention also encompasses the administration of KGF-2 in conjunction with one or more additional growth factors or other agent which promotes wound healing.

The present invention also provides a method for promoting the healing of anastomotic and other wounds caused by surgical procedures in individuals which both heal wounds at a normal rate and are healing impaired. This method involves the administration of an effective amount of KGF-2 to an individual before, after, and/or during anastomotic or other surgery. Anastomosis is the connecting of two tubular structures, as which happens, for example, when a midsection of intestine is removed and the remaining portions are linked together to reconstitute the intestinal tract. Unlike with cutaneous healing, the healing process of anastomotic wounds is generally obscured from view. Further, wound healing, at least in the gastrointestinal tract, occurs rapidly in the absence of complications; however, complications often require correction by additional surgery. Thornton, F. and Barbul, A., Surg. Clin. North Am. 77:549-573 (1997).

As shown in Examples 21 and 28, treatment with KGF-2 causes a significant decrease in peritoneal leakage and anastomotic constriction following colonic anastomosis. KGF-2 is believed to cause these results by accelerating the healing process thus decreasing the probability of complications arising following such procedures.

Thus, the present invention also provides a method for accelerating healing after anastomoses or other surgical procedures in an individual, which heals wounds at a normal rate or is healing impaired, compromising the administration of an effective amount of KGF-2.

The polypeptides of the present invention may also be employed to stimulate differentiation of cells, for example muscle cells, cells which make up nervous tissue, prostate cells, and lung cells.

KGF-2 may be clinically useful in stimulating wound healing of wounds including surgical wounds, excisional wounds, deep wounds involving damage of the dermis and epidermis, eye tissue wounds, dental tissue wounds, oral cavity wounds, diabetic ulcers, dermal ulcers, cubitus ulcers, arterial ulcers, venous stasis ulcers, and burns resulting from heat exposure or chemicals, in normal individuals and those subject to conditions which induce abnormal wound healing such as uremia, malnutrition, vitamin deficiencies, obesity, infection, immunosuppression and complications associated with systemic treatment with steroids, radiation therapy, and antineoplastic drugs and antimetabolites. KGF-2 is also useful for promoting the healing of wounds associated with ischemia and ischemic injury, e.g., chronic venous leg ulcers caused by an impairment of venous circulatory system return and/or insufficiency.

KGF-2 can also be used to promote dermal reestablishment subsequent to dermal loss. In addition, KGF-2 can be used to increase the tensile strength of epidermis and epidermal thickness.

KGF-2 can be used to increase the adherence of skin grafts to a wound bed and to stimulate re-epithelialization from the wound bed. The following are types of grafts that KGF-2 could be used to increase adherence to a wound bed:

10

5

15

20

25

WO 98/06844 PCT/US97/14112

-66-

autografts, artificial skin, allografts, autodermic graft, autoepidermic grafts, avacular grafts, Blair-Brown grafts, bone graft, brephoplastic grafts, cutis graft, delayed graft, dermic graft, epidermic graft, fascia graft, full thickness graft, heterologous graft, xenograft, homologous graft, hyperplastic graft, lamellar graft, mesh graft, mucosal graft, Ollier-Thiersch graft, omenpal graft, patch graft, pedicle graft, penetrating graft, split skin graft, thick split graft. KGF-2 can be used to promote skin strength and to improve the appearance of aged skin.

It is believed that KGF-2 will also produce changes in hepatocyte proliferation, and epithelial cell proliferation in the lung, breast, pancreas, stomach, small intestine, and large intestine. KGF-2 can promote proliferation of epithelial cells such as sebocytes, hair follicles, hepatocytes, type II pneumocytes, mucin-producing goblet cells, and other epithelial cells and their progenitors contained within the skin, lung, liver, kidney and gastrointestinal tract. Thus, KGF-2 could stimulate the proliferation and differentiation of hepatocytes and, thus, could be used to alleviate or treat liver diseases and pathologies such as fulminant liver failure caused by cirrhosis, liver damage caused by viral hepatitis and toxic substances (i.e., acetaminophen, carbon tetrachloride and other hepatotoxins known in the art). KGF-2 can also be used to stimulate or promote liver regeneration.

KGF-2 can also be used to reduce the side effects of gut toxicity that result from the treatment of viral infections, radiation therapy, chemotherapy or other treatments. KGF-2 may have a cytoprotective effect on the small intestine mucosa. KGF-2 may also be used prophylactically or therapeutically to prevent or attenuate mucositis and to stimulate healing of mucositis (e.g., oral, esophageal, intestinal, colonic, rectal, and anal ulcers) that result from chemotherapy, other agents and viral infections. Thus the present invention also provides a method for preventing or treating diseases or pathological events of the mucosa, including ulcerative colitis, Crohn's disease, and other diseases where the mucosa is damaged, comprising the administration of an effective amount of KGF-2. The present invention similarly provides a method for preventing or

20

5

10

15

25

treating oral (including odynophagia associated with mucosal injury in the pharynx and hypopharynx), esophageal, gastric, intestinal, colonic and rectal mucositis irrespective of the agent or modality causing this damage.

KGF-2 can promote proliferation of endothelial cells, keratinocytes, and basal keratinocytes. Thus, the present invention also provides a method for stimulating the proliferation of such cell types which involves contacting cells with an effective amount of KGF-2. KGF-2 may be administered to an individual in an effective amount to stimulate cell proliferation *in vivo* or KGF-2 may be contacted with such cells *in vitro*.

10

5

The present invention further provides a method for promoting urothelial healing comprising administering an effective amount of KGF-2 to an individual. Thus, the present invention provides a method for accelerating the healing or treatment of a variety of pathologies involving urothelial cells (*i.e.*, cells which line the urinary tract). Tissue layers comprising such cells may be damaged by numerous mechanisms including catheterization, surgery, or bacterial infection (*e.g.*, infection by an agent which causes a sexually transmitted disease, such as gonorrhea).

20

15

The present invention also encompasses methods for the promotion of tissue healing in the female genital tract comprising the administration of an effective amount of KGF-2. Tissue damage in the female genital tract may be caused by a wide variety of conditions including *Candida* infections trichomoniasis, *Gardnerella*, gonorrhea, chlamydia, mycoplasma infections and other sexually transmitted diseases.

25

As shown in Examples 10, 18, and 19 KGF-2 stimulates the proliferation of epidermal keratinocytes and increases epidermal thickening. Thus, KGF-2 can be used in full regeneration of skin; in full and partial thickness skin defects, including burns (i.e., repopulation of hair follicles, sweat glands, and sebaceous glands); and the treatment of other skin defects such as psoriasis.

30

KGF-2 can be used to treat epidermolysis bullosa, a defect in adherence of the epidermis to the underlying dermis which results in frequent, open and

painful blisters by accelerating reepithelialization of these lesions. KGF-2 can also be used to treat gastric and duodenal ulcers and help heal the mucosal lining and regeneration of glandular mucosa and duodenal mucosal lining more rapidly. Inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis, are diseases which result in destruction of the mucosal surface of the small or large intestine, respectively. Thus, KGF-2 could be used to promote the resurfacing of the mucosal surface to aid more rapid healing and to prevent or attenuate progression of inflammatory bowel disease. KGF-2 treatment is expected to have a significant effect on the production of mucus throughout the gastrointestinal tract and could be used to protect the intestinal mucosa from injurious substances that are ingested or following surgery. As noted above, KGF-2 can also be used to promote healing of intestinal or colonic anastomosis. KGF-2 can further be used to treat diseases associate with the under expression of KGF-2.

Moreover, KGF-2 can be used to prevent and heal damage to the lungs caused by various pathological states. As a growth factor, KGF-2 could stimulate proliferation and differentiation and promote the repair of alveoli and bronchiolar epithelium to prevent, attenuate, or treat acute or chronic lung damage. For example, emphysema, which results in the progressive loss of alveoli, and inhalation injuries, *i.e.*, resulting from smoke inhalation and burns, that cause necrosis of the bronchiolar epithelium and alveoli could be effectively treated using KGF-2. Also, KGF-2 could be used to stimulate the proliferation of and differentiation of type II pneumocytes, which may help treat or prevent disease such as hyaline membrane diseases, such as infant respiratory distress syndrome and bronchopulmonary dysplasia, in premature infants.

The three causes of acute renal failure are prerenal (e.g., heart failure), intrinsic (e.g., nephrotoxicity induced by chemotherapeutic agents) and postrenal (e.g., urinary tract obstruction) which lead to renal tubular cell death, obstruction of the tubular lumens, and back flow of filtrate into the glomeruli (reviewed by Thadhani et al. N. Engl. J. Med. 334:1448-1460 (1996)). Growth factors such as insulin-like growth factor I, osteogenic protein-1, hepatocyte growth factor, and

10

5

15

20

25

epidermal growth factor have shown potential for ameliorating renal disease in animal models. Taub et al. Cytokine 5:175-179 (1993); Vukicevic et al. J. Am. Soc. Nephrol. 7:1867 (1996). KGF-2 may stimulate the proliferation and differentiation of renal cells and, thus, could be used to alleviate or treat renal diseases and pathologies such as acute and chronic renal failure and end stage renal disease.

KGF-2 could stimulate the proliferation and differentiation of breast tissue and therefor could be used to promote healing of breast tissue injury due to surgery, trauma, or cancer.

In addition, KGF-2 could be used treat or prevent the onset of diabetes mellitus. In patients with newly diagnosed Types I and II diabetes, where some islet cell function remains, KGF-2 could be used to maintain the islet function so as to alleviate, delay or prevent permanent manifestation of the disease. Also, KGF-2 could be used as an auxiliary in islet cell transplantation to improve or promote islet cell function.

Further, the anti-inflammatory property of KGF-2, could be beneficial for treating acute and chronic conditions in which inflammation is a key pathogenesis of the diseases including, but not limiting to, psoriasis, eczema, dermatitis and/or arthritis. Thus, the present invention provides a method for preventing or attenuating inflammation, and diseases involving inflammation, in an individual comprising the administration of an effective amount of KGF-2.

KGF-2 can be used to promote healing and alleviate damage of brain tissue due to injury from trauma, surgery or chemicals.

In addition, since KGF-2 increases the thickness of the epidermis, the protein could be used for improving aged skin, reducing wrinkles in skin, reducing scarring after surgery. Scarring of wound tissues often involves hyperproliferation of dermal fibroblasts. As noted in Example 10, fibroblast proliferation is not stimulated by KGF-2. Therefore, KGF-2 appeares to be a mitogen specific for epidermal keratinocytes and induces wound healing with minimal scarring. Thus, the present invention provides a method for promoting

10

5

15

25

20

the healing of wounds with minimal scarring involving the administration of an effective amount of KGF-2 to an individual. KGF-2 may be administered prior to, during, and/or after the process which produces the wound (e.g., cosmetic surgery, accidental or deliberate tissue trauma caused by a sharp object).

5

As noted above, KGF-2 also stimulates the proliferation of keratinocytes and hair follicles and therefore can be used to promote hair growth from balding scalp, and in hair transplant patients. Thus, the present invention further provides a method for promoting hair growth comprising the administration of an amount KGF-2 sufficient to stimulate the production of hair follicles.

10

15

20

The present invention also provides a method for protecting an individual from the effects of ionizing radiation, chemotherapy, or treatment with anti-viral agents comprising the administration of an effective amount of KGF-2. The present invention further provides a method for treating tissue damage which results from exposure to ionizing radiation, chemotherapeutic agents, or anti-viral agents comprising the administration of an effective amount of KGF-2. An individual may be exposed to ionizing radiation for a number of reasons, including for therapeutic purposes (e.g., for the treatment of hyperproliferative disorders), as the result of an accidental release of a radioactive isotope into the environment, or during non-invasive medical diagnostic procedures (e.g., X-rays). Further, a substantial number of individuals are exposed to radioactive radon in their work places and homes. Long-term continuous environmental exposure has been used to calculate estimates of lost life expectancy. Johnson, W. and Kearfott, K., Health Phys. 73:312-319 (1997). As shown in Example 23, the proteins of the present invention enhance the survival of animals exposed to radiation. Thus, KGF-2 can be used to increase survival rate of individuals suffering radiation-induced injuries, to protect individuals from sub-lethal doses of radiation, and to increase the therapeutic ratio of irradiation in the treatment of afflictions such as hyperproliferative disorders.

25

30

KGF-2 may also be used to protect individuals against dosages of radiation, chemotherapeutic drugs or antiviral agents which normally would not

10

15

20

25

be tolerated. When used in this manner, or as otherwise described herein, KGF-2 may be administered prior to, after, and/or during radiation therapy/exposure, chemotherapy or treatment with anti-viral agents. High dosages of radiation and chemotherapeutic agents may be especially useful when treating an individual having an advanced stage of an afflication such as a hyperproliferative disorder.

In another aspect, the present invention provides a method for preventing or treating conditions such as radiation-induced oral and gastro-intestinal injury, mucositis, intestinal fibrosis, proctitis, radiation-induced pulmonary fibrosis, radiation-induced pneumonitis, radiation-induced pleural retraction, radiation-induced hemopoietic syndrome, radiation-induced myelotoxicity, comprising administering an effective amount of KGF-2 to an individual.

KGF-2 may be used alone or in conjunction with one or more additional agents which confer protection against radiation or other agents. A number of cytokines (e.g., IL-1, TNF, IL-6, IL-12) have been shown to confer such protective. See, e.g., Neta, R. et al., J. Exp. Med. 173:1177 (1991). Additionally, IL-11 has been shown to protect small intestinal mucosal cells after combined irradiation and chemotherapy, Du, X.X. et al., Blood 83:33 (1994), and radiation-induced thoracic injury. Redlich, C.A. et al., J. Immun. 157:1705-1710 (1996). Several growth factors have also been shown to confer protection to radiation exposure, e.g., fibroblast growth factor and transforming growth factor beta-3. Ding, I. et al., Acta Oncol. 36:337-340 (1997); Potten, C. et al., Br. J. Cancer 75:1454-1459 (1997).

As used herein, by "individual" is intended an animal, preferably a mammal (such as apes, cows, horses, pigs, boars, sheep, rodents, goats, dogs, cats, chickens, monkeys, rabbits, ferrets, whales, and dolphins), and more preferably a human.

The signal sequence of KGF-2 encoding amino acids 1 through 35 or 36 may be employed to identify secreted proteins in general by hybridization and/or computational search algorithms.

10

15

20

25

30

The nucleotide sequence of KGF-2 could be employed to isolate 5' sequences by hybridization. Plasmids comprising the KGF-2 gene under the control of its native promoter/enhancer sequences could then be used in *in vitro* studies aimed at the identification of endogenous cellular and viral transactivators of KGF-2 gene expression.

The KGF-2 protein may also be employed as a positive control in experiments designed to identify peptido-mimetics acting upon the KGF-2 receptor.

In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such polypeptides, or polynucleotides encoding such polypeptides, for *in vitro* purposes related to scientific research, synthesis of DNA, manufacture of DNA vectors and for the purpose of providing diagnostics and therapeutics f or the treatment of human disease.

Fragments of the full length KGF-2 gene may be used as a hybridization probe for a cDNA library to isolate the full length KGF-2 genes and to isolate other genes which have a high sequence similarity to these genes or similar biological activity. Probes of this type generally have at least 20 bases. Preferably, however, the probes have at least 30 bases and generally do not exceed 50 bases, although they may have a greater number of bases. The probe may also be used to identify a cDNA clone corresponding to a full length transcript and a genomic clone or clones that contain the complete KGF-2 gene including regulatory and promotor regions, exons, and introns. An example of a screen comprises isolating the coding region of the KGF-2 gene by using the known DNA sequence to synthesize an oligonucleotide probe. Labeled oligonucleotides having a sequence complementary to that of the gene of the present invention are used to screen a library of human cDNA, genomic DNA or cDNA to determine which members of the library the probe hybridizes to.

This invention provides a method for identification of the receptors for the KGF-2 polypeptide. The gene encoding the receptor can be identified by numerous methods known to those of skill in the art, for example, ligand panning

10

15

20

25

and FACS sorting (Coligan et al., Current Protocols in Immun., 1(2), Chapter 5 (1991)). Preferably, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the polypeptides, and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the polypeptides. Transfected cells which are grown on glass slides are exposed to the labeled polypeptides. The polypeptides can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and re-transfected using an iterative sub-pooling and rescreening process, eventually yielding a single clones that encodes the putative receptor.

As an alternative approach for receptor identification, the labeled polypeptides can be photoaffinity linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE analysis and exposed to x-ray film. The labeled complex containing the receptors of the polypeptides can be excised, resolved into peptide fragments, and subjected to protein microsequencing. The amino acid sequence obtained from microsequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the genes encoding the putative receptors.

This invention provides a method of screening compounds to identify those which agonize the action of KGF-2 or block the function of KGF-2. An example of such an assay comprises combining a mammalian Keratinocyte cell, the compound to be screened and ³[H] thymidine under cell culture conditions where the keratinocyte cell would normally proliferate. A control assay may be performed in the absence of the compound to be screened and compared to the amount of keratinocyte proliferation in the presence of the compound to determine if the compound stimulates proliferation of Keratinocytes.

10

15

20

25

30 -

To screen for antagonists, the same assay may be prepared in the presence of KGF-2 and the ability of the compound to prevent Keratinocyte proliferation is measured and a determination of antagonist ability is made. The amount of Keratinocyte cell proliferation is measured by liquid scintillation chromatography which measures the incorporation of ³[H] thymidine.

In another method, a mammalian cell or membrane preparation expressing the KGF-2 receptor would be incubated with labeled KGF-2 in the presence of the compound. The ability of the compound to enhance or block this interaction could then be measured. Alternatively, the response of a known second messenger system following interaction of KGF-2 and receptor would be measured and compared in the presence or absence of the compound. Such second messenger systems include but are not limited to, cAMP guanylate cyclase, ion channels or phosphoinositide hydrolysis.

Examples of potential KGF-2 antagonists include an antibody, or in some cases, an oligonucleotide, which binds to the polypeptide. Alternatively, a potential KGF-2 antagonist may be a mutant form of KGF-2 which binds to KGF-2 receptors, however, no second messenger response is elicited and therefore the action of KGF-2 is effectively blocked.

Another potential KGF-2 antagonist is an antisense construct prepared using antisense technology. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5' coding portion of the polynucleotide sequence, which encodes for the mature polypeptides of the present invention, is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)), thereby preventing transcription and the production of KGF-2. The antisense RNA oligonucleotide hybridizes to the cDNA in vivo and blocks

translation of the cDNA molecule into KGF-2 polypeptide (Antisense - Okano, J., *Neurochem.* 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed *in vivo* to inhibit production of KGF-2.

Potential KGF-2 antagonists include small molecules which bind to and occupy the binding site of the KGF-2 receptor thereby making the receptor inaccessible to KGF-2 such that normal biological activity is prevented. Examples of small molecules include but are not limited to small peptides or peptide-like molecules.

The KGF-2 antagonists may be employed to prevent the induction of new blood vessel growth or angiogenesis in tumors. Angiogenesis stimulated by KGF-2 also contributes to several pathologies which may also be treated by the antagonists of the present invention, including diabetic retinopathy, and inhibition of the growth of pathological tissues, such as in rheumatoid arthritis.

KGF-2 antagonists may also be employed to treat glomerulonephritis, which is characterized by the marked proliferation of glomerular epithelial cells which form a cellular mass filling Bowman's space.

The antagonists may also be employed to inhibit the over-production of scar tissue seen in keloid formation after surgery, fibrosis after myocardial infarction or fibrotic lesions associated with pulmonary fibrosis and restenosis. KGF-2 antagonists may also be employed to treat other proliferative diseases which are stimulated by KGF-2, including cancer and Kaposi's sarcoma.

KGF-2 antagonists may also be employed to treat keratitis which is a chronic infiltration of the deep layers of the cornea with uveal inflammation characterized by epithelial cell proliferation.

The antagonists may be employed in a composition with a pharmaceutically acceptable carrier, e.g., as hereinafter described.

The polypeptides, agonists and antagonists of the present invention may be employed in combination with a suitable pharmaceutical carrier to comprise

10

5

15

20

25

a pharmaceutical composition. Such compositions comprise a therapeutically effective amount of the polypeptide, agonist or antagonist and a pharmaceutically acceptable carrier or excipient. Such a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The formulation should suit the mode of administration.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such containers can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides, agonists and antagonists of the present invention may be employed in conjunction with other therapeutic compounds.

15

20

5

10

The polypeptide having KGF-2 activity may be administered in pharmaceutical compositions in combination with one or more pharmaceutically acceptable excipients. It will be understood that, when administered to a human patient, the total daily usage of the pharmaceutical compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the type and degree of the response to be achieved; the specific composition an other agent, if any, employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the composition; the duration of the treatment; drugs (such as a chemotherapeutic agent) used in combination or coincidental with the specific composition; and like factors well known in the medical arts. Suitable formulations, known in the art, can be found in *Remington's Pharmaceutical Sciences* (latest edition), Mack Publishing Company, Easton, PA.

30

25

The KGF-2 composition to be used in the therapy will be formulated and dosed in a fashion consistent with good medical practice, taking into account the

clinical condition of the individual patient (especially the side effects of treatment with KGF-2 alone), the site of delivery of the KGF-2 composition, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" of KGF-2 for purposes herein (including a KGF-2 effective amount) is thus determined by such considerations.

5

10

15

20

25

30

The pharmaceutical compositions may be administered in a convenient manner such as by the oral, topical, intravenous, intraperitoneal, intramuscular, intraarticular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In most cases, the dosage is from about 1 µg/kg to about 50 mg/kg body weight daily, taking into account the routes of administration, symptoms, etc. In the specific case of topical administration dosages are preferably administered from about 0.01 µg to 9 mg per cm².

As a general proposition, the total pharmaceutically effective amount of the KGF-2 administered parenterally per more preferably dose will be in the range of about 1 μ g/kg/day to 100 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. If given continuously, the KGF-2 is typically administered at a dose rate of about 1 μ g/kg/hour to about 50 μ g/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution or bottle solution may also be employed.

A course of KGF-2 treatment to affect the fibrinolytic system appears to be optimal if continued longer than a certain minimum number of days, 7 days in the case of the mice. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

The KGF-2 is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (U.

Sidman et al., Biopolymers 22:547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al., Id.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release KGF-2 compositions also include liposomally entrapped KGF-2. Liposomes containing KGF-2 are prepared by methods known per se: DE 3,218,121; Epstein, et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal KGF-2 therapy.

For parenteral administration, in one embodiment, the KGF-2 is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the KGF-2 uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes. Suitable formulations, known in the art, can be found in *Remington's Pharmaceutical Sciences* (latest edition), Mack Publishing Company, Easton, PA.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are

10

5

15

20

25

non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

KGF-2 is typically formulated in such vehicles at a concentration of about 0.01 μ g/ml to 100 mg/ml, preferably 0.01 μ g/ml to 10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of KGF-2 salts.

KGF-2 to be used for therapeutic administration must be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic KGF-2 compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

KGF-2 ordinarily will be stored in unit or multi-dose containers, for example, sealed ampules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous KGF-2 solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized KGF-2 using bacteriostatic Water-for-Injection.

Dosaging may also be arranged in a patient specific manner to provide a predetermined concentration of an KGF-2 activity in the blood, as determined by an RIA technique, for instance. Thus patient dosaging may be adjusted to achieve regular on-going trough blood levels, as measured by RIA, on the order of from 50 to 1000 ng/ml, preferably 150 to 500 ng/ml.

10

5

15

20

25

Pharmaceutical compositions of the invention may be administered orally, rectally, parenterally, intracisternally, intradermally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, creams, drops or transdermal patch), bucally, or as an oral or nasal spray. By "pharmaceutically acceptable carrier" is meant a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

10

15

5

The KGF-2 polypeptides, agonists and antagonists which are polypeptides may also be employed in accordance with the present invention by expression of such polypeptides *in vivo*, which is often referred to as "gene therapy."

Thus, for example, cells from a patient may be engineered with a polynucleotide (DNA or RNA) encoding a polypeptide ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide. Such methods are well-known in the art. For example, cells may be engineered by procedures known in the art by use of a retroviral particle containing RNA encoding a polypeptide of the present invention.

20

Similarly, cells may be engineered *in vivo* for expression of a polypeptide *in vivo* by, for example, procedures known in the art. As known in the art, a producer cell for producing a retroviral particle containing RNA encoding the polypeptide of the present invention may be administered to a patient for engineering cells *in vivo* and expression of the polypeptide *in vivo*. These and other methods for administering a polypeptide of the present invention by such method should be apparent to those skilled in the art from the teachings of the present invention. For example, the expression vehicle for engineering cells may be other than a retrovirus, for example, an adenovirus which may be used to engineer cells in vivo after combination with a suitable delivery vehicle. Examples of other delivery vehicles include an HSV-based vector system, adenoassociated virus vectors, and inert vehicles, for example, dextran coated ferrite particles.

30

Retroviruses from which the retroviral plasmid vectors hereinabove mentioned may be derived include, but are not limited to, Moloney Murine Leukemia virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, adenovirus, Myeloproliferative Sarcoma Virus, and mammary tumor virus. In one embodiment, the retroviral plasmid vector is derived from Moloney Murine Leukemia Virus.

The vector includes one or more promoters. Suitable promoters which may be employed include, but are not limited to, the retroviral LTR; the SV40 promoter; and the human cytomegalovirus (CMV) promoter described in Miller et al., Biotechniques Vol. 7, No. 9:980-990 (1989), or any other promoter (e.g., cellular promoters such as eukaryotic cellular promoters including, but not limited to, the histone, pol III, and β -actin promoters). Other viral promoters which may be employed include, but are not limited to, adenovirus promoters, thymidine kinase (TK) promoters, and B19 parvovirus promoters. The selection of a suitable promoter will be apparent to those skilled in the art from the teachings contained herein.

The nucleic acid sequence encoding the polypeptide of the present invention is under the control of a suitable promoter. Suitable promoters which may be employed include, but are not limited to, adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs (including the modified retroviral LTRs hereinabove described); the β -actin promoter; and human growth hormone promoters. The promoter also may be the native promoter which controls the gene encoding the polypeptide.

The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cell lines which may be

10

5

15

20

25

10

15

20

25

transfected include, but are not limited to, the PE501, PA317, ψ-2, ψ-AM, PA12, T19-14X, VT-19-17-H2, ψCRE, ψCRIP, GP+E-86, GP+envAm12, and DAN cell lines as described in Miller, *Human Gene Therapy 1*:5-14 (1990), which is incorporated herein by reference in its entirety. The vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaPO₄ precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.

The producer cell line generates infectious retroviral vector particles which include the nucleic acid sequence(s) encoding the polypeptides. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express the nucleic acid sequence(s) encoding the polypeptide. Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myoblasts, keratinocytes, endothelial cells, and bronchial epithelial cells.

Chromosome Assays

The sequences of the present invention are also valuable for chromosome identification. The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. Moreover, there is a current need for identifying particular sites on the chromosome. Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location. The mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the 3' untranslated region is used to rapidly select primers that do not span more than

one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment.

5

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome. Using the present invention with the same oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner. Other mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries.

10

Fluorescence in situ hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. This technique can be used with cDNA as short as 50 or 60 bases. For a review of this technique, see Verma et al., Human Chromosomes: a Manual of Basic Techniques, Pergamon Press, New York (1988).

15

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, *Mendelian Inheritance in Man* (available on line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes).

25

20

Next, it is necessary to determine the differences in the cDNA or genomic sequence between affected and unaffected individuals. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.

30

With current resolution of physical mapping and genetic mapping techniques, a cDNA precisely localized to a chromosomal region associated with

the disease could be one of between 50 and 500 potential causative genes. (This assumes 1 megabase mapping resolution and one gene per 20 kb).

The present invention will be further described with reference to the following examples; however, it is to be understood that the present invention is not limited to such examples. All parts or amounts, unless otherwise specified, are by weight.

In order to facilitate understanding of the following examples certain frequently occurring methods and/or terms will be described.

"Plasmids" are designated by a lower case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.

15

20

5

10

"Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan. For analytical purposes, typically 1 µg of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 µl of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 µg of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37°C are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion the reaction is electrophoresed directly on a polyacrylamide gel to isolate the desired fragment.

25

30

Size separation of the cleaved fragments is performed using 8 percent polyacrylamide gel described by Goeddel, D., et al., Nucleic Acids Res., 8:4057 (1980).

10

15

20

25

"Oligonucleotides" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a frangment that has not been dephosphorylated.

"Ligation" refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments (Maniatis, T., et al., Id., p. 146). Unless otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units of T4 DNA ligase ("ligase") per 0.5 µg of approximately equimolar amounts of the DNA fragments to be ligated.

DNA has been "transformed" by exogenous DNA when such exogenous DNA has been introduced inside the cell membrane. Exogenous DNA may or may not be integrated (covalently linked) inter-chromosomal DNA making the genome of the cell. Prokaryote and yeast, for example, the exogenous DNA may be maintained on an episomal element, such a plasmid. With respect to eukaryotic cells, a stably transformed or transfected cell is one in which the exogenous DNA has become integrated into the chromosome so that it is inherited by daughter cells through chromosome replication. This ability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cell containing the exogenous DNA. An example of transformation is exhibited in Graham, F. & Van der Eb, A., Virology, 52:456-457 (1973).

"Transduction" or "transduced" refers to a process by which cells take up foreign DNA and integrate that foreign DNA into their chromosome. Transduction can be accomplished, for example, by transfection, which refers to various techniques by which cells take up DNA, or infection, by which viruses are used to transfer DNA into cells.

10

15

20

25

Example 1

Bacterial Expression and Purification of KGF-2

The DNA sequence encoding KGF-2, ATCC # 75977, is initially amplified using PCR oligonucleotide primers corresponding to the 5' and 3' end sequences of the processed KGF-2 cDNA (including the signal peptide sequence). The 5' oligonucleotide primer has the sequence 5' CCCCACATGTGGAAATGGATACTGACACATTGTGCC 3' (SEQ ID No. 3) contains an Afl III restriction enzyme site including and followed by 30 nucleotides of KGF-2 coding sequence starting from the presumed initiation codon. The 3' sequence 5' CCCAAGCTTCCACAAACGTTGCCTTCTATGAG 3' (SEQ ID No. 4) contains complementary sequences to Hind III site and is followed by 26 nucleotides of KGF-2. The restriction enzyme sites are compatible with the restriction enzyme sites on the bacterial expression vector pQE-60 (Qiagen, Inc. Chatsworth, CA). pQE-60 encodes antibiotic resistance (AMp'), a bacterial origin of replication (ori), an IPTG-regulatable promoter operator (P/0), a ribosome binding site (RBS), a 6-His tag and restriction enzyme sites. pQE-60 is then digested with NcoI and HindIII. The amplified sequences are ligated into pQE-60 and are inserted in frame. The ligation mixture is then used to transform E. coli strain M15/rep 4 (Qiagen, Inc.) by the procedure described in Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, (1989). M15/rep4 contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan') . Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis. Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical

10

15

20

25

density 600 (O.D. 600) of between 0.4 and 0.6. IPTG ("Isopropyl-B-D-thiogalacto pyranoside") is then added to a final concentration of 1 mM. IPTG induces by inactivating the 1acl repressor, clearing the P/O leading to increased gene expression. Cells are grown an extra 3 to 4 hours. Cells are then harvested by centrifugation. The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidnine HCl. After clarification, solubilized KGF-2 is purified from this solution by chromatography on a Heparin affinity column under conditions that allow for tight binding of the proteins (Hochuli, E., et al., J. Chromatography 411:177-184 (1984)). KGF-2 (75% pure) is eluted from the column by high salt buffer.

Example 2

Bacterial Expression and Purification of a Truncated Version of KGF-2

The DNA sequence encoding KGF-2, ATCC # 75977, is initially amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the truncated version of the KGF-2 polypeptide. The truncated version comprises the polypeptide minus the 36 amino acid signal sequence, with a methionine and alanine residue being added just before the cysteine residue which comprises amino acid 37 of the full-length protein. The 5' oligonucleotide primer has the sequence
5' CATGCCATGGCGTGCCAAGCCCTTGGTCAGGACATG 3' (SEQ ID No.

5' CATGCCATGGCGTGCCAAGCCCTTGGTCAGGACATG 3' (SEQ ID No. 5) contains an NcoI restriction enzyme site including and followed by 24 nucleotides of KGF-2 coding sequence. The 3' sequence 5' CCCAAGCTTCCACAAACGTTGCCTTCCTC TATGAG 3' (SEQ ID No. 6) contains complementary sequences to Hind III site and is followed by 26 nucleotides of the KGF-2 gene. The restriction enzyme sites are compatible with the restriction enzyme sites on the bacterial expression vector pQE-60 (Qiagen, Inc. Chatsworth, CA). pQE-60 encodes antibiotic resistance (Amp'), a bacterial origin of replication (ori), an IPTG-regulatable promoter operator (P/0), a

10

15

20

25

ribosome binding site (RBS), a 6-His tag and restriction enzyme sites. pQE-60 is then digested with NcoI and HindIII. The amplified sequences are ligated into pQE-60 and are inserted in frame. The ligation mixture is then used to transform E. coli strain M15/rep 4 (Qiagen, Inc.) by the procedure described in Sambrook. J., et al., Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, (1989). M15/rep4 contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis. Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.600) of between 0.4 and 0.6. IPTG ("Isopropyl-B-D-thiogalacto pyranoside") is then added to a final concentration of 1 mM. IPTG induces by inactivating the laci repressor, clearing the P/O leading to increased gene expression. Cells are grown an extra 3 to 4 hours. Cells are then harvested by centrifugation. The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl. After clarification, solubilized KGF-2 is purified from this solution by chromatography on a Heparin affinity column under conditions that allow for tight binding the proteins (Hochuli, E. et al., J. Chromatography 411:177-184 (1984)). KGF-2 protein is eluted from the column by high salt buffer.

Example 3

Cloning and Expression of KGF-2 Using the Baculovirus Expression System

The DNA sequence encoding the full length KGF-2 protein, ATCC # 75977, is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene:

10

15

20

25

30

The 5' primer has the sequence

5' GCGGGATCCGCCATCATGTGGAAATGGATACTCAC 3' (SEQ ID No.

7) and contains a BamHI restriction enzyme site (in bold) followed by 6 nucleotides resembling an efficient signal for the initiation of translation in eukaryotic cells (Kozak, M., J. Mol. Biol., 196:947-950 (1987)) and just behind the first 17 nucleotides of the KGF-2 gene (the initiation codon for translation "ATG" is underlined).

The 3' primer has the sequence

5' GCGCGGTACCACAAACGTTGCCTTCCT 3' (SEQ ID No. 8) and contains the cleavage site for the restriction endonuclease Asp718 and 19 nucleotides complementary to the 3' non-translated sequence of the KGF-2 gene. The amplified sequences are isolated from a 1% agarose gel using a commercially available kit from Qiagen, Inc., Chatsworth, CA. The fragment is then digested with the endonucleases BamHI and Asp718 and then purified again on a 1% agarose gel. This fragment is designated F2.

The vector pA2 (modification of pVL941 vector, discussed below) is used for the expression of the KGF-2 protein using the baculovirus expression system (for review see: Summers, M.D. & Smith, G.E., A manual of methods for baculovirus vectors and insect cell culture procedures, Texas Agricultural Experimental Station Bulletin No. 1555 (1987)). This expression vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhidrosis virus (AcMNPV) followed by the recognition sites for the restriction endonucleases BamHI and Asp718. The polyadenylation site of the simian virus (SV) 40 is used for efficient polyadenylation. For an easy selection of recombinant viruses the beta-galactosidase gene from E. coli is inserted in the same orientation as the polyhedrin promoter followed by the polyadenylation signal of the polyhedrin gene. The polyhedrin sequences are flanked at both sides by viral sequences for the cell-mediated homologous recombination of cotransfected wild-type viral DNA. Many other baculovirus vectors could be used in place of pRG1 such as pAc373, pVL941 and pAcIM1 (Luckow, V.A. & Summers, M.D., Virology, 170:31-39).

10

15

20

25

30

The plasmid is digested with the restriction enzymes BamHI and Asp718. The DNA is then isolated from a 1% agarose gel using the commercially available kit (Qiagen, Inc., Chatsworth, CA). This vector DNA is designated V2.

Fragment F2 and the plasmid V2 are ligated with T+ DNA ligase. E. coli HB101 cells are then transformed and bacteria identified that contained the plasmid (pBacKGF-2) with the KGF-2 gene using PCR with both cloning oligonucleotides. The sequence of the cloned fragment is confirmed by DNA sequencing.

5 μg of the plasmid pBacKGF-2 is co-transfected with 1.0 μg of a commercially available linearized baculovirus ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA) using the lipofection method (Felgner, et al., Proc. Natl. Acad. Sci. USA, 84:7413-7417 (1987)).

I μg of BaculoGoldTM virus DNA and 5 μg of the plasmid pBacKGF-2 are mixed in a sterile well of a microtiter plate containing 50 μl of serum free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to the Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is rocked back and forth to mix the newly added solution. The plate is then incubated for 5 hours at 27°C. After 5 hours the transfection solution is removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. The plate is put back into an incubator and cultivation continued at 27°C for four days.

After four days the supernatant is collected and a plaque assay performed similar as described by Summers and Smith (supra). As a modification an agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used which allows an easy isolation of blue stained plaques. (A detailed description of a "plaque assay" can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10).

10

15

20

25

Four days after the serial dilution, the viruses are added to the cells and blue stained plaques are picked with the tip of an Eppendorf pipette. The agar containing the recombinant viruses is then resuspended in an Eppendorf tube containing 200 µl of Grace's medium. The agar is removed by a brief centrifugation and the supernatant containing the recombinant baculovirus is used to infect Sf 9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then stored at 4°C.

Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus V-KGF-2 at a multiplicity of infection (MOI) of 2. Six hours later the medium is removed and replaced with SF900 II medium minus methionine and cysteine (Life Technologies Inc., Gaithersburg). 42 hours later 5 µCi of ³⁵S methionine and 5 µCi ³⁵S cysteine (Amersham) are added. The cells are further incubated for 16 hours before they are harvested by centrifugation and the labelled proteins visualized by SDS-PAGE and autoradiography.

Example 4

Most of the vectors used for the transient expression of the KGF-2 protein gene sequence in mammalian cells should carry the SV40 origin of replication. This allows the replication of the vector to high copy numbers in cells (e.g., COS cells) which express the

T antigen required for the initiation of viral DNA synthesis. Any other mammalian cell line can also be utilized for this purpose.

A typical mammalian expression vector contains the promoter element, which mediates the initiation of transcription of mRNA, the protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription can be achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses,

e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular signals can also be used (e.g., human actin promoter). Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146) and pBC12MI (ATCC 67109). Mammalian host cells that could be used include, human Hela, 283, H9 and Jurkart cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, African green monkey cells, quail QC1-3 cells, mouse L cells and Chinese hamster ovary cells.

10

5

Alternatively, the gene can be expressed in stable cell lines that contain the gene integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

15

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) is a useful marker to develop cell lines that carry several hundred or even several thousand copies of the gene of interest. Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992)). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) cells are often used for the production of proteins.

25

20

The expression vectors pC1 and pC4 contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985)). Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors contain in addition the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene.

10

15

20

25

30

A. Expression of Recombinant KGF-2 in COS Cells

The expression of plasmid, KGF-2 HA was derived from a vector pcDNAI/Amp (Invitrogen) containing: 1) SV40 origin of replication, 2) ampicillin resistance gene, 3) *E. coli* replication origin, 4) CMV promoter followed by a polylinker region, a SV40 intron and polyadenylation site. The HA tag correspond to an epitope derived from the influenza hemagglutinin protein as previously described (Wilson, I., et al., Cell 37:767, (1984)). The infusion of HA tag to the target protein allows easy detection of the recombinant protein with an antibody that recognizes the HA epitope. A DNA fragment encoding the entire KGF-2 precursor HA tag fused in frame with the HA tag, therefore, the recombinant protein expression is directed under the CMV promoter.

The plasmid construction strategy is described as follows:

The DNA sequence encoding KGF-2, ATCC # 75977, is constructed by PCR using two primers: the 5' primer

5' TAACGAGGATCCGCCATCATGTGGAAATGGATACTGACAC 3' (SEQ ID No. 9) contains a BamHI site followed by 22 nucleotides of KGF-2 coding sequence starting from the initiation codon; the 3' sequence

5' TAAGCACTCGAGTGAGTGTACCACCATTGGAAGAAATG 3' (SEQ ID No. 10) contains complementary sequences to an XhoI site, HA tag and the last 26 nucleotides of the KGF-2 coding sequence (not including the stop codon). Therefore, the PCR product contains a BamHI site, KGF-2 coding sequence followed by an XhoI site, an HA tag fused in frame, and a translation termination stop codon next to the HA tag. The PCR amplified DNA fragment and the vector, pcDNA-3'HA, are digested with BamHI and XhoI restriction enzyme and ligated resulting in pcDNA-3'HA-KGF-2. The ligation mixture is transformed into *E. coli* strain XL1 Blue (Stratagene Cloning Systems, La Jolla, CA) the transformed culture is plated on ampicillin media plates and resistant colonies are selected. Plasmid DNA was isolated from transformants and examined by PCR and restriction analysis for the presence of the correct fragment. For expression of the recombinant KGF-2, COS cells were transfected with the expression vector

10

15

20

25

by DEAE-DEXTRAN method (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, (1989)). The expression of the KGF-2 HA protein was detected by radiolabelling and immunoprecipitation method (Harlow, E. & Lane, D., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, (1988)). Cells were labelled for 8 hours with ³⁵S-cysteine two days post transfection. Culture media were then collected and cells were lysed with detergent (RIPA buffer (150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50mM Tris, pH 7.5) (Wilson, I., et al., Id. 37:767 (1984)). Both cell lysate and culture media were precipitated with a HA specific monoclonal antibody. Proteins precipitated were analyzed on 15% SDS-PAGE gels.

B: Expression and purification of human KGF-2 protein using the CHO Expression System

The vector pC1 is used for the expression of KFG-2 protein. Plasmid pC1 is a derivative of the plasmid pSV2-dhfr [ATCC Accession No. 37146]. Both plasmids contain the mouse DHFR gene under control of the SV40 early promoter. Chinese hamster ovary- or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies) supplemented with the chemotherapeutic agent methotrexate. The amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented (see, e.g., Alt, F.W., Kellems, R.M., Bertino, J.R., and Schimke, R.T., 1978, J. Biol. Chem. 253:1357-1370, Hamlin, J.L. and Ma, C. 1990, Biochem. et Biophys. Acta, 1097:107-143, Page, M.J. and Sydenham, M.A. 1991, Biotechnology Vol. 9:64-68). Cells grown in increasing concentrations of MTX develop resistance to the drug by overproducing the target enzyme, DHFR, as a result of amplification of the DHFR gene. If a second gene is linked to the DHFR gene it is usually coamplified and over-expressed. It is state of the art to develop cell lines carrying more than 1,000 copies of the genes. Subsequently, when the methotrexate is

10

15

20

25

30

withdrawn, cell lines contain the amplified gene integrated into the chromosome(s).

Plasmid pC1 contains for the expression of the gene of interest a strong promoter of the long terminal repeat (LTR) of the Rouse Saccoma Virus (Cullen, et al., Molecular and Cellular Biology, March 1985:438-4470) plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV) (Boshart et al., Cell 41:521-530, 1985). Downstream of the promoter are the following single restriction enzyme cleavage sites that allow the integration of the genes: BamHI, Pvull, and Nrul. Behind these cloning sites the plasmid contains translational stop codons in all three reading frames followed by the 3' intron and the polyadenylation site of the rat preproinsulin gene. Other high efficient promoters can also be used for the expression, e.g., the human β-actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI. For the polyadenylation of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used as well.

Stable cell lines carrying a gene of interest integrated into the chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.

The plasmid pC1 is digested with the restriction enzyme BamHI and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

The DNA sequence encoding KFG-2, ATCC No. 75977, is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene:

The 5' primer has the sequence 5'TAACGAGGATCCGCCATCATGTGGAAATGGATACTGACAC 3' (SEQ ID No. 9) containing the underlined BamH1 restriction enzyme site followed by 21 bases of the sequence of KGF-2 of Figure 1 (SEQ ID NO:1). Inserted into an expression vector, as described below, the 5' end of the amplified fragment

encoding human KGF-2 provides an efficient signal peptide. An efficient signal for initiation of translation in eukaryotic cells, as described by Kozak, M., J. Mol. Biol. 196:947-950 (1987) is appropriately located in the vector portion of the construct.

5

The 3' primer has the sequence 5' TAAGCAGGATCCTGAGTGTACCACCATTGGAAGAAATG 3' (SEQ ID NO. 10) containing the BamH1 restriction followed by nucleotides complementary to the last 26 nucleotides of the KGF-2 coding sequence set out in Figure 1 (SEQ ID NO:1), not including the stop codon.

10

The amplified fragments are isolated from a 1% agarose gel as described above and then digested with the endonuclease BamHI and then purified again on a 1% agarose gel.

15

The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 cells are then transformed and bacteria identified that contained the plasmid pC1. The sequence and orientation of the inserted gene is confirmed by DNA sequencing.

Transfection of CHO-DHFR-cells

20

Chinese hamster ovary cells lacking an active DHFR enzyme are used for transfection. 5 µg of the expression plasmid C1 are cotransfected with 0.5 µg of the plasmid pSVneo using the lipofecting method (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the gene neo from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) and cultivated for 10-14 days. After this period, single clones are trypsinized and then seeded in 6-well petri dishes using different concentrations of methotrexate (25 nM, 50 nM, 100 nM, 200 nM, 400 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (500

PCT/US97/14112 WO 98/06844

-97-

nM, 1 μM, 2 μM, 5 μM). The same procedure is repeated until clones grow at a concentration of 100 µM.

The expression of the desired gene product is analyzed by Western blot analysis and SDS-PAGE.

5

Example 5

Transcription and Translation of Recombinant KGF-2 in vitro

A PCR product is derived from the cloned cDNA in the pA2 vector used for insect cell expression of KGF-2. The primers used for this PCR were: 5' ATTAACCCTCACTAAAGGGAGGCCATGTGGAAATGGATACTGACA CATTGTGCC 3' (SEQ ID No. 11) and

5'CCCAAGCTTCCACAAACGTTGCCTTCCTCTATGAG3'(SEQIDNo. 12).

The first primer contains the sequence of a T3 promoter 5' to the ATG initiation codon. The second primer is complimentary to the 3' end of the KGF-2 open reading frame, and encodes the reverse complement of a stop codon.

15

10

The resulting PCR product is purified using a commercially available kit from Qiagen. 0.5 µg of this DNA is used as a template for an in vitro transcription-translation reaction. The reaction is performed with a kit commercially available from Promega under the name of TNT. The assay is performed as described in the instructions for the kit, using radioactively labeled methionine as a substrate, with the exception that only ½ of the indicated volumes of reagents are used and that the reaction is allowed to proceed at 33°C for 1.5 hours.

20

25

Five µl of the reaction is electrophoretically separated on a denaturing 10 to 15% polyacrylamide gel. The gel is fixed for 30 minutes in a mixture of water: Methanol: Acetic acid at 6:3:1 volumes respectively. The gel is then dried under heat and vacuum and subsequently exposed to an X-ray film for 16 hours. The film is developed showing the presence of a radioactive protein band corresponding in size to the conceptually translated KGF-2, strongly suggesting that the cloned cDNA for KGF-2 contains an open reading frame that codes for a protein of the expected size.

Example 6

Expression via Gene Therapy

5

Fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin, is added.) This is then incubated at 37°C for approximately one week. At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

15

10

pMV-7 (Kirschmeier, P.T. et al, DNA, 7:219-25 (1988)) flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

20

25

The cDNA encoding a polypeptide of the present invention is amplified using PCR primers which correspond to the 5' and 3' end sequences respectively. The 5' primer containing an EcoRI site and the 3' primer further includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is used to transform bacteria HB101, which are then plated onto agar-containing

kanamycin for the purpose of confirming that the vector had the gene of interest properly inserted.

The amphotropic pA317 or GP+aml2 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells are transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

10

15

5

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his.

20

25

The engineered fibroblasts are then injected into the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads. The fibroblasts now produce the protein product.

Example 7

KGF-2 Stimulated Wound Healing in the Diabetic Mouse Model

To demonstrate that keratinocyte growth factor-2 (KGF-2) would accelerate the healing process, the genetically diabetic mouse model of wound healing was used. The full thickness wound healing model in the db+/db+ mouse is a well characterized, clinically relevant and reproducible model of impaired

wound healing. Healing of the diabetic wound is dependent on formation of granulation tissue and re-epithelialization rather than contraction (Gartner, M.H. et al., J. Surg. Res. 52:389 (1992); Greenhalgh, D.G. et al., Am. J. Pathol. 136:1235 (1990)).

5

10

The diabetic animals have many of the characteristic features observed in Type II diabetes mellitus. Homozygous (db+/db+) mice are obese in comparison to their normal heterozygous (db+/+m) littermates. Mutant diabetic (db+/db+) mice have a single autosomal recessive mutation on chromosome 4 (db+) (Coleman et al. Proc. Natl. Acad. Sci. USA 77:283-293 (1982)). Animals show polyphagia, polydipsia and polyuria. Mutant diabetic mice (db+/db+) have elevated blood glucose, increased or normal insulin levels, and suppressed cellmediated immunity (Mandel et al., J. Immunol. 120:1375 (1978); Debray-Sachs, M. et al., Clin. Exp. Immunol. 51(1):1-7 (1983); Leiter et al., Am. J. of Pathol. 114:46-55 (1985)). Peripheral neuropathy, myocardial complications, and microvascular lesions, basement membrane thickening and glomerular filtration abnormalities have been described in these animals (Norido, F. et al., Exp. Neurol. 83(2):221-232 (1984); Robertson et al., Diabetes 29(1):60-67 (1980); Giacomelli et al., Lab Invest. 40(4):460-473 (1979); Coleman, D.L., Diabetes 31 (Suppl):1-6 (1982)). These homozygous diabetic mice develop hyperglycemia that is resistant to insulin analogous to human type II diabetes (Mandel et al., J. Immunol. 120:1375-1377 (1978)).

20

25

30

15

The characteristics observed in these animals suggests that healing in this model may be similar to the healing observed in human diabetes (Greenhalgh, et al., Am. J. of Pathol. 136:1235-1246 (1990)). The results of this study demonstrated that KGF-2 has a potent stimulatory effect on the healing of full thickness wounds in diabetic and non-diabetic heterozygous littermates. Marked effects on re-epithelialization and an increase in collagen fibrils, granulation tissue within the dermis were observed in KGF-2 treated animals. The exogenous application of growth factors may accelerate granulation tissue formation by drawing inflammatory cells into the wound.

Animals

Genetically diabetic female C57BL/KsJ (db+/db+) mice and their non-diabetic (db+/+m) heterozygous littermates were used in this study (Jackson Laboratories). The animals were purchased at 6 weeks of age and were 8 weeks old at the beginning of the study. Animals were individually housed and received food and water ad libitum. All manipulations were performed using aseptic techniques. The experiments were conducted according to the rules and guidelines of Human Genome Sciences, Inc. Institutional Animal Care and Use Committee and the Guidelines for the Care and Use of Laboratory Animals.

10 KGF-2

5

15

20

25

The recombinant human KGF-2 used for the wound healing studies was over-expressed and purified from pQE60-Cys37, an E. coli expression vector system (pQE-9, Qiagen). The protein expressed from this construct is the KGF-2 from Cystein at position 37 to Serine at position 208 with a 6X(His) tag attached to the N-terminus of the protein (SEQ ID NOS:29-30) (Figure 15). Fractions containing greater than 95% pure recombinant materials were used for the experiment. Keratinocyte growth factor-2 was formulated in a vehicle containing 100mM Tris, 8.0 and 600mM NaCl. The final concentrations were 80µg/mL and 8µg/mL of stock solution. Dilutions were made from stock solution using the same vehicle.

Surgical Wounding

Wounding protocol was performed according to previously reported methods (Tsuboi, R. and Rifkin, D.B., J. Exp. Med. 172:245-251 (1990)). Briefly, on the day of wounding, animals were anesthetized with an intraperitoneal injection of Avertin (0.01 mg/mL), 2,2,2-tribromoethanol and 2-methyl-2-butanol dissolved in deionized water. The dorsal region of the animal was shaved and the skin washed with 70% ethanol solution and iodine. The surgical area was dried with sterile gauze prior to wounding. An 8 mm full-thickness wound was then created using a Keyes tissue punch. Immediately

10

15

20

following wounding, the surrounding skin was gently stretched to eliminate wound expansion. The wounds were left open for the duration of the experiment. Application of the treatment was given topically for 5 consecutive days commencing on the day of wounding. Prior to treatment, wounds were gently cleansed with sterile saline and gauze sponges.

Wounds were visually examined and photographed at a fixed distance at the day of surgery and at two day intervals thereafter. Wound closure was determined by daily measurement on days 1-5 and on day 8. Wounds were measured horizontally and vertically using a calibrated Jameson caliper. Wounds were considered healed if granulation tissue was no longer visible and the wound was covered by a continuous epithelium.

KGF-2 was administered using two different doses of KGF-2, one at $4\mu g$ per wound per day for 8 days and the second at $40\mu g$ per wound per day for 8 days in $50\mu L$ of vehicle. Vehicle control groups received $50\mu L$ of vehicle solution.

Animals were euthanized on day 8 with an intraperitoneal injection of sodium pentobarbital (300mg/kg). The wounds and surrounding skin were then harvested for histology and immunohistochemistry. Tissue specimens were placed in 10% neutral buffered formalin in tissue cassettes between biopsy sponges for further processing.

Experimental Design

Three groups of 10 animals each (5 diabetic and 5 non-diabetic controls) were evaluated: 1) Vehicle placebo control, 2) KGF-2 4μ g/day and 3) KGF-2 40μ g/day. This study was designed as follows:

PCT/US97/14112 ---

N	Group	Treatment
N=5 db+/db+	vehicle	50 μL
N=5 db+/+m	vehicle	50 μL
N=5 db+/db+	KGF-2	4 μg/50 μL
N=5 db+/+m	KGF-2	4 μg/50 μL
N=5 db+/db+	KGF-2	40 μg/50 μL
N=5 db+/+m	KGF-2	.40 μg/50 μL

Measurement of Wound Area and Closure

Wound closure was analyzed by measuring the area in the vertical and horizontal axis and obtaining the total square area of the wound. Contraction was then estimated by establishing the differences between the initial wound area (day 0) and that of post treatment (day 8). The wound area on day 1 was 64mm²; the corresponding size of the dermal punch. Calculations were made using the following formula:

[Open area on day 8] - [Open area on day 1] / [Open area on day 1]

Histology

Specimens were fixed in 10% buffered formalin and paraffin embedded blocks were sectioned perpendicular to the wound surface ($5\mu m$) and cut using a Reichert-Jung microtome. Routine hematoxylin-eosin (H&E) staining was performed on cross-sections of bisected wounds. Histologic examination of the wounds were used to assess whether the healing process and the morphologic appearance of the repaired skin was altered by treatment with KGF-2. This assessment included verification of the presence of cell accumulation, inflammatory cells, capillaries, fibroblasts, re-epithelialization and epidermal maturity (Greenhalgh, D.G. et al., Am. J. Pathol. 136:1235 (1990)) (Table 1). A calibrated lens micrometer was used by a blinded observer.

5

10

15

20

10

15

25

Immunohistochemistry

Re-epithelialization

Tissue sections were stained immunohistochemically with a polyclonal rabbit anti-human keratin antibody using ABC Elite detection system. Human skin was used as a positive tissue control while non-immune IgG was used as a negative control. Keratinocyte growth was determined by evaluating the extent of reepithelialization of the wound using a calibrated lens micrometer.

Cell Proliferation Marker

Proliferating cell nuclear antigen/cyclin (PCNA) in skin specimens was demonstrated by using anti-PCNA antibody (1:50) with an ABC Elite detection system. Human colon cancer served as a positive tissue control and human brain tissue was used as a negative tissue control. Each specimen included a section with omission of the primary antibody and substitution with non-immune mouse IgG. Ranking of these sections was based on the extent of proliferation on a scale of 0-8, the lower side of the scale reflecting slight proliferation to the higher side reflecting intense proliferation.

Statistical Analysis

Experimental data were analyzed using an unpaired t test. A p value of < 0.05 was considered significant. The data were expressed as the mean \pm SEM.

20 Results

Effect of KGF-2 on Wound Closure

Diabetic mice showed impaired healing compared to heterozygous normal mice. The dose of 4µg of KGF-2 per site appeared to produce maximum response in diabetic and non-diabetic animals (Figure 5, 6). These results were statistically significant (p=0.002 and p<0.0001) when compared with the buffer control groups. Treatment with KGF-2 resulted in a final average closure of 60.6% in the group receiving 4µg/day and 34.5% in the 40µg/day group. Wounds in the buffer control group had only 3.8% closure by day 8. Repeated

measurements of wounds on days 2-5 post-wounding and on day 8 taken from the db+/db+ mice treated with KGF-2 demonstrated a significant improvement in the total wound area (sq. mm) by day 3 post-wounding when compared to the buffer control group. This improvement continued and by the end of the experiment, statistically significant results were observed (Figure 7). Animals in the db/+m groups receiving KGF-2 also showed a greater reduction in the wound area compared to the buffer control groups in repetitive measurements (Figure 8). These results confirmed a greater rate of wound closure in the KGF-2 treated animals.

10

5

Effect of KGF-2 on Histologic Score

Histopathologic evaluation of KGF-2 in the diabetic (db+/db+) model on day 8 demonstrated a statistically significant improvement (p<0.0001) in the wound score when compared with the buffer control. The pharmacologic effects observed with both the 4 μ g and the 40 μ g doses of KGF-2 were not significantly different from each other. The buffer control group showed minimal cell accumulation with no granulation tissue or epithelial travel while the 4 μ g and 40 μ g doses of KGF-2 (p<0.0001 & p=0.06 respectively) displayed epithelium covering the wound, neovascularization, granulation tissue formation and fibroblast and collagen deposition (Figure 9).

20

15

Histopathologic assessment of skin wounds was performed on hematoxylin-eosin stained samples. Scoring criteria included a scale of 1-12, a score of one representing minimal cell accumulation with little to no granulation and a score of 12 representing the abundant presence of fibroblasts, collagen deposition and new epithelium covering the wound (Table 1).

Table 1		
Scoring of Histology Sections		
Score	Criteria	
1-3	None to minimal cell accumulation. No granulation tissue or	
	epithelial travel.	
4-6	Thin, immature granulation that is dominated by inflammatory	
	cells but has few fibroblasts, capillaries or collagen deposition.	
	Minimal epithelial migration.	
7-9	Moderately thick granulation tissue, can range from being	
	dominated by inflammatory cells to more fibroblasts and collagen	
	deposition. Extensive neovascularization. Epithelium can range	
	from minimal to moderate migration.	
10-12	Thick, vascular granulation tissue dominated by fibroblasts and	
	extensive collagen deposition. Epithelium partially to completely	
	covering the wound.	

Evaluation of the non diabetic littermates, after both doses of KGF-2, showed no significant activity in comparison with the buffer control group for all measurements evaluated (Figure 10). The buffer control group showed immature granulation tissue, inflammatory cells, and capillaries. The mean score was higher than the diabetic group indicating impaired healing in the diabetic (db+/db+) mice.

Effect of KGF-2 on Re-epithelialization

15

10

5

Cytokeratine Immunostaining was used to determine the extent of re-epithelialization. Scores were given based on degree of closure on a scale of 0 (no closure) to 8 (complete closure). In the groups receiving 4µg/day, there was a statistically significant improvement on the re-epithelialization score when compared to the buffer control group p<0.001 (Figure 11). In this group,

WO 98/06844 PCT/US97/14112

-107-

keratinocytes were observed localized in the newly formed epidermis covering the wound. Both doses of KGF-2 also exhibited mitotic figures in various stages. Assessment of the non-diabetic groups at both doses of KGF-2 also significantly improved reepithelialization ranking (p=0.006 and 0.01 respectively) (Figure 12).

Effect of KGF-2 on Cell Proliferation

Proliferating cell nuclear antigen immunostaining demonstrated significant proliferation in both the 4 μg and 40 μg groups (Figure 13). The non-diabetic group displayed similar results as both groups receiving both doses of KGF-2 showed higher significant scoring compared to the buffer control group (Figure 14). Epidermal proliferation was observed especially on the basal layer of the epidermis. In addition, high density PCNA-labeled cells were observed in the dermis, especially in the hair follicles.

Conclusion

5

10

15

20

25

The results demonstrate that KGF-2 specifically stimulates growth of primary epidermal keratinocytes. In addition, these experiments demonstrate that topically applied recombinant human KGF-2 markedly accelerates the rate of healing of full-thickness excisional dermal wounds in diabetic mice. Histologic assessment shows KGF-2 to induce keratinocyte proliferation with epidermal thickening. This proliferation is localized in the basal layer of the epidermis as demonstrated by proliferating cell nuclear antigen (PCNA). At the level of the dermis, collagen deposition, fibroblast proliferation, and neo-vascularization reestablished the normal architecture of the skin.

The high density of PCNA-labeled cells on KGF-2 treated animals in contrast with the buffer group, which had fewer PCNA-labeled cells, indicates the stimulation of keratinocytes at the dermal-epidermal level, fibroblasts and hair follicles. The enhancement of the healing process by KGF-2 was consistently observed in this experiment. This effect was statistically significant in the parameters evaluated (percent re-epithelialization and wound closure). Importantly, PCNA-labeled keratinocytes were mainly observed at the lower-

10

15

20

25

30

basal layer of the epidermis. The dermis showed normalized tissue with fibroblasts, collagen, and granulation tissue.

The activity observed in the non-diabetic animals indicates that KGF-2 had significant pharmacologic response in the percentage of wound closure at day 8, as well as during the course of the experiment, based on daily measurements. Although the histopathologic evaluation was not significantly different when compared with the buffer control, keratinocyte growth and PCNA scores demonstrated significant effects.

In summary, these results demonstrated that KGF-2 shows significant activity in both impaired and normal excisional wound models using the db+/db+ mouse model and therefore may be useful in the treatment of wounds including surgical wounds, diabetic ulcers, venous stasis ulcers, burns, and other skin conditions.

Experiment 8

KGF-2 Mediated Wound Healing in the Steroid-Impaired Rat Model

The inhibition of wound healing by steroids has been well documented in various in vitro and in vivo systems (Wahl, S.M. Glucocorticoids and Wound healing. In Anti-Inflammatory Steroid Action: Basic and Clinical Aspects. 280-302 (1989); Wahl, S.M.et al., J. Immunol. 115: 476-481 (1975); Werb, Z. et al., J. Exp. Med. 147:1684-1694 (1978)). Glucocorticoids retard wound healing by inhibiting angiogenesis, decreasing vascular permeability (Ebert, R.H., et al., An. Intern. Med. 37:701-705 (1952)), fibroblast proliferation, and collagen synthesis (Beck, L.S. et al., Growth Factors. 5: 295-304 (1991); Haynes, B.F., et al., J. Clin. Invest. 61: 703-797 (1978)) and producing a transient reduction of circulating monocytes (Haynes, B.F., et al., J. Clin. Invest. 61: 703-797 (1978); Wahl, S. M. Glucocorticoids and wound healing. In Antiinflammatory Steroid Action: Basic and Clinical Aspects. Academic Press. New York. pp. 280-302 (1989)). The systemic administration of steroids to impaired wound healing is

10

15

20

25

a well establish phenomenon in rats (Beck, L.S. et al., *Growth Factors. 5:* 295-304 (1991); Haynes, B.F., et al., *J. Clin. Invest. 61:* 703-797 (1978); Wahl, S. M. Glucocorticoids and wound healing. *In* Antiinflammatory Steroid Action: Basic and Clinical Aspects. Academic Press. New York. pp. 280-302 (1989); Pierce, G.F., et al., *Proc. Natl. Acad. Sci. USA.* 86: 2229-2233 (1989)).

To demonstrate that KGF-2 would accelerate the healing process, the effects of multiple topical applications of KGF-2 on full thickness excisional skin wounds in rats in which healing has been impaired by the systemic administration of methylprednisolone was assessed. *In vitro* studies have demonstrated that KGF-2 specifically stimulates growth of primary human epidermal keratinocytes. This example demonstrates that topically applied recombinant human KGF-2 accelerates the rate of healing of full-thickness excisional skin wounds in rats by measuring the wound gap with a calibrated Jameson caliper and by histomorphometry and immunohistochemistry. Histologic assessment demonstrates that KGF-2 accelerates re-epithelialization and subsequently, wound repair.

Animals

Young adult male Sprague Dawley rats weighing 250-300 g (Charles River Laboratories) were used in this example. The animals were purchased at 8 weeks of age and were 9 weeks old at the beginning of the study. The healing response of rats was impaired by the systemic administration of methylprednisolone (17mg/kg/rat intramuscularly) at the time of wounding. Animals were individually housed and received food and water *ad libitum*. All manipulations were performed using aseptic techniques. This study was conducted according to the rules and guidelines of Human Genome Sciences, Inc. Institutional Animal Care and Use Committee and the Guidelines for the Care and Use of Laboratory Animals.

KGF-2

5

10

15

20

25

30

Recombinant human KGF-2 was over-expressed and purified from pQE60-Cys37, an E. coli expression vector system (pQE-9, Qiagen). The protein expressed from this construct is the KGF-2 from Cysteine at position 37 to Serine at position 208 with a 6X(His) tag attached to the N-terminus of the protein (Figure 15) (SEQ ID NOS:29-30). Fractions containing greater than 95% pure recombinant materials were used for the experiment. KGF-2 was formulated in a vehicle containing 1X PBS. The final concentrations were 20µg/mL and 80µg/mL of stock solution. Dilutions were made from stock solution using the same vehicle.

KGF-2Δ28 was over-expressed and purified from an E. coli expression vector system. Fractions containing greater than 95% pure recombinant materials were used for the experiment. KGF-2 was formulated in a vehicle containing 1X PBS. The final concentrations were 20μg/mL and 80μg/mL of stock solution. Dilutions were made from stock solution using the same vehicle.

Surgical Wounding

The wounding protocol was followed according to Example 7, above. On the day of wounding, animals were anesthetized with an intramuscular injection of ketamine (50 mg/kg) and xylazine (5 mg/kg). The dorsal region of the animal was shaved and the skin washed with 70% ethanol and iodine solutions. The surgical area was dried with sterile gauze prior to wounding. An 8 mm full-thickness wound was created using a Keyes tissue punch. The wounds were left open for the duration of the experiment. Applications of the testing materials were given topically once a day for 7 consecutive days commencing on the day of wounding and subsequent to methylprednisolone administration. Prior to treatment, wounds were gently cleansed with sterile saline and gauze sponges.

Wounds were visually examined and photographed at a fixed distance at the day of wounding and at the end of treatment. Wound closure was determined by daily measurement on days 1-5 and on day 8 for Figure. Wounds were measured horizontally and vertically using a calibrated Jameson caliper. Wounds

were considered healed if granulation tissue was no longer visible and the wound was covered by a continuous epithelium.

A dose response was performed using two different doses of KGF-2, one at 1µg per wound per day and the second at 4µg per wound per day for 5 days in 50µL of vehicle. Vehicle control groups received 50µL of 1X PBS.

Animals were euthanized on day 8 with an intraperitoneal injection of sodium pentobarbital (300mg/kg). The wounds and surrounding skin were then harvested for histology. Tissue specimens were placed in 10% neutral buffered formalin in tissue cassettes between biopsy sponges for further processing.

10 Experimental Design

Four groups of 10 animals each (5 with methylprednisolone and 5 without glucocorticoid) were evaluated: 1) Untreated group 2) Vehicle placebo control 3) KGF-2 1μ g/day and 4) KGF-2 4μ g/day. This study was designed as follows:

	n	Group	Treatment	
15	Glucocorticoid-Treated			
	N=5	Untreated	.•	
	N=5	Vehicle	50 μ Ľ	
	N=5	KGF-2 (1µg)	50 μ L	
	N=5	KGF-2 (4μg)	50 μL	
20	Without Glucocorticoid			
	N=5	Untreated	•	
	N=5	Vehicle	50 μL	
	N=5	KGF-2 (1µg)	50 μL	
	N=5	KGF-2 (4μg)	50 μL	

Measurement of Wound Area and Closure

Wound closure was analyzed by measuring the area in the vertical and horizontal axis and obtaining the total area of the wound. Closure was then estimated by establishing the differences between the initial wound area (day 0) and that of post treatment (day 8). The wound area on day 1 was 64mm², the corresponding size of the dermal punch. Calculations were made using the following formula:

[Open area on day 8] - [Open area on day 1] / [Open area on day 1]

Histology

Specimens were fixed in 10% buffered formalin and paraffin embedded blocks were sectioned perpendicular to the wound surface (5µm) and cut using an Olympus microtome. Routine hematoxylin-eosin (H&E) staining was performed on cross-sections of bisected wounds. Histologic examination of the wounds allowed us to assess whether the healing process and the morphologic appearance of the repaired skin was improved by treatment with KGF-2. A calibrated lens micrometer was used by a blinded observer to determine the distance of the wound gap.

Statistical Analysis

20

25

5

10

15

Experimental data were analyzed using an unpaired t test. A p value of < 0.05 was considered significant. The data was expressed as the mean \pm SEM.

Results

A comparison of the wound closure of the untreated control groups with and without methylprednisolone demonstrates that methylprednisolone-treated rats have significant impairment of wound healing at 8 days post-wounding compared with normal rats. The total wound area measured 58.4 mm² in the methylprednisolone injected group and 22.4 mm² in the group not receiving glucocorticoid (Figure 16).

Effect of KGF-2 on Wound Closure

Systemic administration of methylprednisolone in rats at the time of wounding delayed wound closure (p=0.002) of normal rats. Wound closure measurements of the methlyprednisolone-impaired groups at the end of the experiment on day 8 demonstrated that wound closure with KGF-2 was significantly greater statistically (1µg p=0.002 & 4µg p=0.005) when compared with the untreated group (Figure 16). Percentage wound closure was 60.2% in the group receiveing 1µg KGF-2 (p=0.002) and 73% in the group receiving 4µg KGF-2 (p=0.0008). In contrast, the wound closure of untreated group was 12.5% and the vehicle placebo group was 28.6% (Figure 17).

Longitudinal analysis of wound closure in the glucocorticoid groups from day 1 to 8 shows a significant reduction of wound size from day 3 to 8 postwounding in both doses of KGF-2 in the treated groups (Figure 18).

The results demonstrate that the group treated with the 4µg KGF-2 had statistically significant (p=0.05) accelerated wound closure compared with the untreated group (Figure 19A). Although it is difficult to assess the ability of a protein or other compounds to accelerate wound healing in normal animal (due to rapid recovery), nonetheless, KGF-2 was shown to accelerate wound healing in this model.

20

25

5

10

15

Histopathologic Evaluation of KGF-2 Treated Wounds

Histomorphometry of the wound gap indicated a reduction in the wound distance of the KGF-2 treated group. The wound gap observed for the untreated group was 5336μ while the group treated with 1μg KGF-2 had a wound gap reduction to 2972μ; and the group treated with 4μg KGF-2 (p=0.04) had a wound gap reduction to 3086μ. (Figure 20)

Effects of KGF-2\Delta 28 in Wound Healing

Evaluation of KGF-2 Δ 28 and PDGF-BB in wound healing in the methylprednisolone impared rat model was also examined. The experiment was carried out the same as for the KGF-2 protein above, except that the KGF-2 Δ 28

30

protein is not His tagged and wound healing was measured on days 2, 4, 6, 8, and 10. The buffer vehicle for the proteins was 40mM NaOAc and 150mM NaCl, pH6.5 for all but the "E2" preparation of the full length KGF-2. The buffer vehicle for the "E2" KGF-2 preparation was 20mM NaOAc and 400mM NaCl, pH6.4.

The results shown in Figure 19B demonstrate that KGF-2Δ28 has statistically significant accelerated wound closure compared with the untreated group and has reversed the effects of methylprednisolone on wound healing.

Conclusions

10

5

This example demonstrates that KGF-2 reversed the effects of methylprednisolone on wound healing. The exogenous application of growth factors may accelerate granulation tissue formation by drawing inflammatory cells into the wound. Similar activity was also observed in animals not receiving methylprednisolone indicating that KGF-2 had significant pharmacologic response in the percentage of wound closure at day 5 based on daily measurements. The glucocorticoid-impaired wound healing model in rats was shown to be a suitable and reproducible model for measuring efficacy of KGF-2 and other compounds in the wound healing area.

20

15

In summary, the results demonstrate that KGF-2 shows significant activity in both glucocorticoid impaired and in normal excisional wound models. Therefore, KGF-2 may be clinically useful in stimulating wound healing including surgical wounds, diabetic ulcers, venous stasis ulcers, burns, and other abnormal wound healing conditions such as uremia, malnutrition, vitamin deficiencies and systemic treatment with steroids and antineoplastic drugs.

Example 9

Tissue distribution of KGF-2 mRNA expression

Northern blot analysis is carried out to examine the levels of expression of the gene encoding the KGF-2 protein in human tissues, using methods described by, among others, Sambrook *et al.*, cited above. A probe corresponding to the entire open reading frame of KGF-2 of the present invention (SEQ ID NO:1) was obtained by PCR and was labeled with "P using the rediprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labelling, the probe was purified using a CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labelled probe was then used to examine various human tissues for the expression of the gene encoding KGF-2.

Multiple Tissue Northern (MTN) blots containing poly A RNA from various human tissues (H) or human immune system tissues (IM) were obtained from Clontech and were examined with labelled probe using ExpressHybTM Hybridization Solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and films developed according to standard procedures.

A major mRNA species of apporximately 4.2 kb was observed in most human tissues. The KGF-2 mRNA was relatively abundant in heart, pancreas, placenta and ovary. A minor mRNA species of about 5.2 kb was also observed ubiquitously. The identity of this 5.2 kb mRNA species was not clear. It is possible that the 5.2 kb transcript encodes an alternatively spliced form of KGF-2 or a third member of the KGF family. The KGF-2 cDNA was 4.1 kb, consistent with the size of the mRNA of 4.2 kb.

15

5

10

20

25

Example 10

Keratinocyte Proliferation Assays

Dermal keratinocytes are cells in the epidermis of the skin. The growth and spreading of keratinocytes in the skin is an important process in wound healing. A proliferation assay of keratinocyte is therefore a valuable indicator of protein activities in stimulating keratinocyte growth and consequently, wound healing.

Keratinocytes are, however, difficult to grow in vitro. Few keratinocyte cell lines exist. These cell lines have different cellular and genetic defects. In order to avoid complications of this assay by cellular defects such as loss of key growth factor receptors or dependence of key growth factors for growth, primary dermal keratinocytes are chosen for this assay. These primary keratinocytes are obtained from Clonetics, Inc. (San Diego, CA).

Keratinocyte proliferation assay with alamarBlue

15

5

10

alamarBlue is a viable blue dye that is metabolized by the mitochondria when added to the culture media. The dye then turns red in tissue culture supernatants. The amounts of the red dye may be directly quantitated by reading difference in optical densities between 570 nm and 600 nm. This reading reflects cellular activities and cell number.

20

25

Normal primary dermal keratinocytes (CC-0255, NHEK-Neo pooled) are purchased from Clonetics, Inc. These cells are passage 2. Keratinocytes are grown in complete keratinocyte growth media (CC-3001, KGM; Clonetics, Inc.) until they reach 80% confluency. The cells are trypsinized according to the manufacturer's specification. Briefly, cells were washed twice with Hank's balanced salt solution. 2-3 ml of trypsin was added to cells for about 3-5 min at room temperature. Trypsin neutralization solution was added and cells were collected. Cells are spun at 600 xg for 5 min at room temperature and plated into new flasks at 3,000 cells per square centi-meter using pre-warmed media.

For the proliferation assay, plate 1,000-2,000 keratinocytes per well of the Corning flat bottom 96-well plates in complete media except for the outermost rows. Fill the outer wells with 200 μ l of sterile water. This helps to keep temperature and moisture fluctuations of the wells to the minimum. Grow cells overnight at 37°C with 5% CO₂. Wash cells twice with keratinocyte basal media (CC-3101, KBM, Clonetics, Inc.) and add 100 μ l of KBM into each well. Incubate for 24 hours. Dilute growth factors in KBM in serial dilution and add 100 μ l to each well. Use KGM as a positive control and KBM as a negative control. Six wells are used for each concentration point. Incubate for two to three days. At the end of incubation, wash cells once with KBM and add 100 μ l of KBM with 10% v/v alamarBlue pre-mixed in the media. Incubate for 6 to 16 hours until media color starts to turn red in the KGM positive control. Measure O.D. 570 nm minus O.D. 600 nm by directly placing plates in the plate reader.

Results

5

10

15

20

25

Stimulation of Keratinocyte proliferation by KGF-2

To demonstrate that KGF-2 (i.e., starting at amino acid Cys37 as described in Examples 7 and 8 above) and N-terminal deletion mutants KGF-2Δ33 and KGF-2Δ28 were active in stimulating epidermal keratinocyte growth, normal primary human epidermal keratinocytes were incubated with the E. coliexpressed and purfied KGF-2 protein (batch number E3)(SEQ ID NO: 2), KGF-2Δ33 (batch number E1) and KGF-2Δ28 (batch number E2). The KGF-2 protein stimulated the growth of epidermal keratinocytes with an EC50 of approximately 5 ng/ml, equivalent to that of FGF7/KGF-1 (Figure 21A). In contrast, other FGF's such as FGF-1 and FGF-2 did not stimulate the growth of primary keratinocytes. The EC50 for KGF-2Δ33 was 0.2 ng/ml and that for KGF-2Δ28 2ng/ml (See Figures 21B and C). Thus, KGF-2 appeared to be as potent as FGF7/KGF in stimulating the proliferation of primary epidermal keratinocytes. However, KGF-2Δ33 is more potent in stimulating keratinocyte proliferation than the "Cys (37)" KGF-2 described in Examples 7 and 8 above and the KGF-2Δ28.

10

15

20

25

Scarring of wound tissues involves hyperproliferation of dermal fibroblasts. To determine whether the stimulatory effects of KGF-2 was specific for keratinocytes but not for fibroblasts, mouse Balb.c.3T3 fibroblasts and human lung fibroblasts were tested. Niether types of fibroblasts responded to KGF-2 in proliferation assays. Therefore, KGF-2 appeared to be a mitogen specific for epidermal keratinocytes but not mesenchymal cells such as fibroblasts. This suggested that the likelyhood of KGF-2 causing scarring of the wound tissues was low.

Example 11

A. Mitogenic Effects of KGF-2 on Cells Transfected with Specific FGF Receptors

To determine which FGF receptor isoform(s) mediate the proliferative effects of KGF-2, the effects of KGF-2 on cells expressing specific FGF receptor isoforms were tested according to the method described by Santos-Ocampo et al. J. Biol. Chem. 271:1726-1731 (1996). FGF7/KGF was known to induce mitogenesis of epithelial cells by binding to and specifically activating the FGFR2iiib form (Miki et al. Science 251:72-75 (1991)). Therefore, the proliferative effects of KGF-2 in mitogensis assays were tested using cells expressing one of the following FGF receptor isoforms: FGFR1iiib, FGFR2iiib, FGFR3iiib, and FGFR4.

Mitogensis assay of cells expressing FGF receptors

Thymidine incorporation of BaF3 cells expressing specific FGF receptors were performed as described by Santos-Ocampo *et al. J. Biol. Chem. 271*:1726-1731 (1996). Briefly, BaF3 cells expressing specific FGF receptors were washed and resuspended in Dubeco's modified Eagle's medium, 10% neonatal bovine serum, L-glutanime. Approximately 22,500 cells were plated per well in a 96-well assay plate in media containing 2 µg/ml Heparin. Test reagents were added

to each well for a total volume of 200 µl per well. The cells were incubated for 2 days at 37°C. To each wll, 1 μ Ci of ³H-thymidine was then added in a volume of 50 μ l. Cells were harvested after 4-5 hours by filteration through glass fiber paper. Incorporated ³H-thymidine was counted on a Wallac beta plate scintillaion counter.

Results

5

10

15

20

25

The results revealed that KGF-2 protein (Thr (36) - Ser (208) of Figure 1 (SEQ ID NO:2) with a N-terminal Met added thereto) strongly stimulated the proliferation of Baf3 cells expressing the KGF receptor, FGFR2iiib isoform, as indicated by ³H-thymidine incorporation (Figure 22A). Interestingly, a slight stimulatory effect of KGF-2 on the proliferation of Baf3 cells expressing the FGFR1iiib isoform was observed. KGF-2 did not have any effects on cells expressing the FGFR3iiib or the FGFR4 forms of the receptor.

FGF7/KGF stimulated the proliferation of cells expressing the KGF receptor, FGFR2iiib but not FGFR1iiib isoform. The difference between KGF-2 and FGF7/KGF was intriguing. In the control experiments, aFGF stimulated its receptors, FGFR1iiib and iiic and bFGF stimulated its receptor FGFR2iiic. Thus, these results suggested that KGF-2 binds to FGFR2iiib isoform and stimulates mitogenesis. In contrast to FGF7/KGF, KGF-2 also binds FGFR1iiib isoform and stimulates mitogenesis.

B. Mitogenic effects of KGF-2\Delta33 on Cells Transfected with Specific FGF Receptors

As demonstrated above FGFs or KGF-1 and -2 both bind to and activate the FGF 2iiib receptor (FGFR 2iiib). The proliferative effects of KGF-2Δ33 in mitogensis assays were tested using cells expressing one of the following FGF receptor isoforms: FGFR2iiib or FGFR2iiic (the 2iiic receptor-transfected cells are included as a negative control).

The experiments were performed as above in part A of this example. Briefly, BaF3 cells were grown in RPMI containing 10% bovine calf serum (BCS - not fetal serum), 10% conditioned medium from cultures of WEHI3 cells (grown in RPMI containing 5%BCS), 50nM β -mercaptoethanol, L-Glu (2% of a 100X stock) and pen/strep (1% of a 100X stock).

5

10

15

For the assay, BaF3 cells were rinsed twice in RPMI medium containing 10% BCS and 1 μg/ml heparin. BaF3 cells (22,000/well) were plated in a 96-well plate in 150 μl of RPMI medium containing 10% BCS and 1 μg/ml heparin. Acidic FGF, basic FGF, KGF-1 (HG15400) or KGF-2 proteins (HG03400, 03401, 03410 or 03411) were added at concentrations from approximately 0 to 10 nM. The cells were incubated in a final volume of 200μl for 48 hours at 37°C. All assays were done in triplicate. Tritiated thymidine (0.5 μCi) was added to each well for 4 hours at 37°C and the cells were then harvested by filtration through a glass fiber filter. The total amount of radioactivity incorporated was then determined by liquid scintillation counting. The following positive controls were used: basic FGF and acidic FGF for FGFR2iiic cells; acidic FGF and KGF-1 for FGFR2iiib cells. The following negative controls were used: Basal medium (RPMI medium containing 10% BCS and 1 μg/ml heparin).

Results:

20

25

The results revealed that KGF-2 (Thr (36) - Ser (208) with N-terminal Met added), KGF-2 Δ 33 and KGF-2 Δ 28 proteins strongly stimulated the proliferation of BaF3 cells expressing the KGF receptor, FGFR2iiib isoform, as indicated by ³H-thymidine incorporation (Figures 22A-C). The KGF-2 proteins did not have any effects on cells expressing the FGFR2iiic forms of the receptor. These results suggested that KGF-2 proteins bind to FGFR2iiib isoform and stimulates mitogenesis. In addition, it appears that KGF-2 Δ 33 was able to stimulate the proliferation of the BaF3 cells better than the KGF-2 (Thr (36) - Ser (208)).

10

15

25

Example 12

A. Construction of E. coli Optimized Full Length KGF-2

In order to increase expression levels of full length KGF-2 in an E. coli expression system, the codons of the amino terminal portion of the gene were optimized to highly used E. coli codons. For the synthesis of the optimized region of KGF-2, a series of six oligonucleotides were synthesized: numbers 1-6 (sequences set forth below). These overlapping oligos were used in a PCR reaction for seven rounds at the following conditions:

Denaturation 95 degrees 20 seconds

Annealing 58 degrees 20 seconds

Extension 72 degrees 60 seconds

A second PCR reaction was set up using 1 μ l of the first PCR reaction with KFG-2 sythetic primer 6 as the 3' primer and KGF-2 synthetic 5' BamHI as the 5' primer using the same conditions as described above for 25 cycles. The product produced by this final reaction was restricted with AvaII and BamHI. The KGF-2 construct of Example 1 was restricted with AvaII and HindIII and the fragment was isolated. These two fragments were cloned into pQE-9 restricted with BamHI and HindIII in a three fragment ligation.

Primers used for constructing the optimized synthetic KGF-2 1/208:

20 KGF-2 Synthetic Primer 1:

ATGTGGAAATGGATACTGACCCACTGCGCTTCTGCTTTCCCGCACC TGCCGGGTTGCTGCTGCTGCTGCTGCTGCTGTTC(SEQIDNO:31) KGF-2 Synthetic Primer 2:

CCGGAGAAACCATGTCCTGACCCAGAGCCTGGCAGGTAACCGGAA CAGAAGAAACCAGGAACAGCAGCAGCAGCAGCA (SEQ

ID NO: 32)

KGF-2 Synthetic Primer 3:

GGGTCAGGACATGGTTTCTCCGGAAGCTACCAACTCTTCTTCTT CTTTCTCTCTCCGTCTTCTGCTGGTCGTCACG (SEQ ID NO: 33)

KGF-2 Synthetic Primer 4:

GGTGAAAGAACAGTTTACGCCAACGAACGTCACCCTGCAGGTG GTTGTAAGAACGAACGTGACGACCAGCAGAAGACGG (SEQ ID

NO:34)

5

20

25

KGF-2 Synthetic Primer 5:

CGTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAATCGA AAAAAACGGTAAAGTTTCTGGGACCAAA (SEQ ID NO:35)

10 KGF-2 Synthetic Primer 6:

TTTGGTCCCAGAAACTTTACCGTTTTTTCGATTTTCAG (SEQ ID NO:36)

KGF-2 Synthetic 5' BamHI

AAAGGATCCATGTGGAAATGGATACTGACCCACTGC (SEQ ID NO:37)

15 The resulting clone is shown in Figure 23 (SEQ ID NOS: 38 and 39).

B. Construction of E. coli Optimized Mature KGF-2

In order to further increase expression levels of the mature form of KGF-2 in an E. coli expression system, the codons of the amino terminal portion of the gene were optimized to highly used E. coli codons. To correspond with the mature form of KGF-1, a truncated form of KGF-2 was constructed starting at threonine 36. E. coli synthetic KGF-2 from Example 12 A was used as a template in a PCR reaction using BspHI 5' KGF-2 as the 5' primer (sequence given below) and HindIII 3' KGF-2 as the 3' primer (sequence given below). Amplification was performed using standard conditions as given above in Example 12 A for 25 cycles. The resulting product was restricted with BspHI and HindIII and cloned into the E. coli expression vector pQE60 digested with NcoI and HindIII.

BspHI 5' KGF-2 Primer:

10

15

25

TTTCATGACTTGTCAAGCTCTGGGTCAAGATATGGTTC(SEQIDNO:40)
HindIII 3' KGF-2 Primer:

GCCCAAGCTTCCACAAACGTTGCCTTCC (SEQ ID NO:41)

The resulting clone is shown in Figure 24A (SEQ ID NO:42 and 43).

C. Construction of an Alternate E. coli Optimized Mature KGF-2

In order to further increase expression levels of the mature form of KGF-2 in an E. coli expression system, the codons of 53 amino acids at the amino terminal portion of the E. coli optimized gene were changed to alternate highly used E. coli codons. For the synthesis of the optimized region of KGF-2, a series of six oligonucleotides were synthesized: numbers 18062, 18061, 18058, 18064, 18059, and 18063 (sequences set forth below). These overlapping oligos were used in a PCR reaction for seven rounds at the following conditions:

Denaturation	95 degrees	20 seconds
Annealing	58 degrees	20 seconds
Extension	72 degrees	60 seconds

Following the seven rounds of synthesis, a 5' primer to this region, 18169 and a 3' primer to this entire region, 18060, were added to a PCR reaction, containing 1 microliter from the initial reaction of the six oligonucleotides. This product was amplified for 30 rounds using the following conditions:

20	Denaturation	95 degrees	20 seconds
	Annealing	55 degrees	20 seconds
	Extension	72 degrees	60 seconds

A second PCR reaction was set up to amplify the 3' region of the gene using primers 18066 and 18065 under the same conditions as described above for 25 rounds. The resulting products were separated on an agarose gel. Gel slices containing the product were diluted in 10mM Tris, 1mM EDTA, pH 7.5 One microliter each from each of diluted gel slices were used in an additional PCR

reaction using primer 18169 as the 5' primer, and primer 18065 as the 3' primer. The product was amplified for 25 cycles using the same conditions as above. The product produced by this final reaction was and restricted with Eco R1 and HindIII, and cloned into pQE60, which was also cut with Eco R1 and HindIII (pQE6 now).

Sequences of the 5' Synthetic Primers:

18169 KGF2 5' EcoRI/RBS:

TCAGTGAATTCATTAAAGAGGAGAAATTAATCATGACTTGCCAGG [SEQ ID NO:44]

10 18062 KGF2 synth new R1 sense:

TCATGACTTGCCAGGCACTGGGTCAAGACATGGTTTCCCCGGAAGCTA
[SEQ ID NO:45]

18061 KGF2 synth R2 sense:

GCTTCAGCAGCCCATCTAGCGCAGGTCGTCACGTTCGCTCTTACAACC

15 [SEQ ID NO:46]

18058 KGF2 Synth R3 sense:

GTTCGTTGGCGCAAACTGTTCAGCTTTACCAAGTACTTCCTGAAAATC [SEQ ID NO:47]

18066 KGF 2 20 bp Ava II sense:

20 TCGAAAAAAACGGTAAAGTTTCTGGGAC [SEQ ID NO:48]

18064 KGF2 synth F1 antisense:

GATGGGCTGCTGAAGCTAGAGCTGGAGCTGTTGGTAGCTTCCGGGG AA [SEQ ID NO:49]

18059 KGF2 Synth F2 antisense:

25 AACAGTTTGCGCCAACGAACATCACCCTGTAAGTGGTTGTAAGAG
[SEQ ID NO:50]

18063 KGF2 Synth F3 antisense:

TTCTTGGTCCCAGAAACTTTACCGTTTTTTTCGATTTTCAGGAAGTA
[SEQ ID NO:51]

30 18060 KGF 2 Ava II antisense:

10

15

20

25

TTCTTGGTCCCAGAAACTTTACCG [SEQ ID NO:52]

18065 KGF2 HindIII 3' Stop:

AGATCAGGCTTCTATTATTATGAGTGTACCACCATTGGAAGAAAG [SEQ ID NO:53]

The sequence of the synthetic KGF-2 gene and it corresponding amino acid is shown in Figure 24B (SEQ ID NO: 54 and 55)

Example 13

Construction of KGF-2 Deletion Mutants

Deletion mutants were constructed from the 5' terminus and 3' terminus of KGF-2 gene using the optimized KGF-2 construct from Example 12 A as a template. The deletions were selected based on regions of the gene that might negatively affect expression in E. coli. For the 5' deletion the primers listed below were used as the 5' primer. These primers contain the indicated restriction site and an ATG to code for the initiator methionine. The KGF-2 (FGF-12) 208 amino acid 3' HindIII primer was used for the 3' primer. PCR amplification for 25 rounds was performed using standard conditions as set forth in Example 12. The products for the KGF-2 36aa/208aa deletion mutant were restricted BspHI for the 5' site and HindIII for the 3' site and cloned into the pQE60 which has bee digested with BspHI and HindIII. All other products were restricted with NcoI for the 5' restriction enzyme and HindIII for the 3' site, and cloned into the pQE60 which had been digested with Ncol and HindIII. For KGF-2 (FGF-12), 36aa/153aa and 128aa 3' HindIII was used as the 3' primer with FGF-12 36aa/208aa as the 5' primer. For FGF-12 62aa/153aa, 128aa 3' HindIII was used as the 3' primer with FGF-12 62aa/208aa as the 5' primer. The nomenclature of the resulting clones indicates the first and last amino acid of the polypeptide that results from the deletion. For example, KGF-2 36aa/153aa indicates that the first amino acid of the deletion mutant is amino acid 36 and the last amino acid is amino acid 153 of KGF-2. Further, as indicated in Figures 25-33, each mutant has N-terminal Met added thereto.

Sequences of the Deletion Primers:

FGF12 36aa/208aa:

5 5' Bsphi GGACCCTCATGACCTGCCAGGCTCTGGGTCAGGAC [SEQ ID NO:56]

FGF12 63aa/208aa:

5' NcoI GGACAGCCATGGCTGGTCGTCACGTTCG [SEQ ID NO:57]

FGF12 77aa/208aa:

- 5' NeoI GGACAGCCATGGTTCGTTGGCGTAAACTG [SEQ ID NO:58]
 FGF12 93aa/208aa:
 - 5' NcoI GGACAGCCATGGAAAAAAACGGTAAAGTTTC [SEQ ID NO:59]
 - FGF12 104aa/208aa: 5' NcoI GGACCCCATGGAGAACTGCCCGTAGAGC [SEQ ID NO:60]
- 15 FGF12 123aa/208aa:
 - 5' NcoI GGACCCCATGGTCAAAGCCATTAACAGCAAC [SEQ ID NO:61]

FGF12 138aa/208aa:

- 5' NeoI GGACCCCCATGGGGAAACTCTATGGCTCAAAAG [SEQ ID NO:62]
- 20 FGF12 3' HindIII: (Used for all above deletion clones)

 CTGCCCAAGCTTATTATGAGTGTACCACCATTGGAAG [SEQIDNO:63]

 FGF12 362a/153aa:
 - 5' BsphI (as above)

3'HindIII CTGCCCAAGCTTATTACTTCAGCTTACAGTCATTGT [SEQ ID

25 NO:64]

FGF12 63aa/153aa:

5'NcoI and 3'HindIII, as above

The sequences for the resulting deletion mutations are set forth in Figures 25-33. [SEQ ID NOS:65-82]

Example 14

Construction of Cysteine Mutants of KGF-2

Construction of C-37 mutation primers 5457 5' BsphI and 5258 173aa 3' HindIII were used to amplify the KGF-2 (FGF-12) template from Example 12 A. Primer 5457 5' BsphI changes cysteine 37 to a serine. Amplification was done using the standard conditions outlined above in Example 12 A for 25 cycles. The resulting product was restricted with BspHI and HindIII and cloned into E. coli expression vector pQE60, digested with BspHI and HindIII. (Figure 34) [SEQ ID NO:83]

For mutation of Cysteine 106 to serine, two PCR reactions were set up for oligonucleotide site directed mutagenesis of this cysteine. In one reaction, 5453 BsphI was used as the 5' primer, and 5455 was used as the 3' primer in the reaction. In a second reaction, 5456 was used as the 5' primer, and 5258 HindIII was used as the 3' primer. The reactions were amplified for 25 rounds under standard conditions as set forth in Example 12. One microliter from each of these PCR reactions was used as template in a subsequent reaction using, as a 5' primer, 5453 BspHI, and as a 3' primer, 5258 HindIII. Amplification for 25 rounds was performed using standard conditions as set forth in Example 12. The resulting product was restricted with BspHI and HindIII and cloned into the E. coli expression vector pQE60, which was restricted with NcoI and HindIII.

Two PCR reactions were required to make the C-37/C-106 mutant. Primers 5457 Bsph1 and 5455 were used to create the 5' region of the mutant containing cysteine 37 to serine substitution, and primer 5456 and 5258 HindIII were used to create the 3' region of the mutant containing cysteine 106 to serine substitution. In the second reaction, the 5457 BsphI primer was used as the 5' primer and the 5258 HindIII primer was used as the 3' primer to create the C-37/C-106 mutant using 1µl from each of the initial reactions together as the template. This PCR product was restricted with BsphI and HindIII, and cloned

10

5

15

20

25

PCT/US97/14112 · ·

into pQE60 that had been restricted with NcoI and HindIII. The resulting clone is shown in Figure 35 (SEQ ID NO:84)

Sequences of the Cysteine Mutant Primers:

5457 BspHI: GGACCCTCATGACCTCTCAGGCTCTGGGT (SEQ ID NO:85)

5456: AAGGAGAACTCTCCGTACAGC (SEQ ID NO: 86)

5455: GCTGTACGGTCTGTTCTCCTT (SEQ ID NO: 87)

5453 BspHI: GGACCCTCATGACCTGCCAGGCTCTGGGTCAGGAC (SEQ

ID NO: 88)

5258 HindIII: CTGCCCAAGCTTATTATGAGTGTACCACCATTGGAAG

10 (SEQ ID NO: 89)

5

15

20

25

Example 15

Production and Purification of KGF-2 (FGF-12)

The DNA sequence encoding the optimized mature protein described in Example 12 B (i.e., amino acids T36 through S208 of KGF-2) was cloned into plasmid pQE-9 (Qiagen). E. coli (M15/rep4;Qiagen) were grown to stationary phase overnight at 37°C in LB containing 100 μg/ml Ampicillin and 25 μg/ml Kanamycin. This culture was used to innoculate fresh LB media containing containing 100 μg/ml Ampicillin and 25 μg/ml Kanamycin at a dilution of 1:50. The cells were grown at 37°C to an O.D. 595 of 0.7, induced by the addition of isopropyl 1-thio-b-D-galactopyranoside (IPTG) to a final concentration of 1mM. After 3-4 hours, the cells were harvested by centrifugation, and resuspended in a buffer containing 60mM NaPO₄ and 360mM NaCl at a ratio of 5 volumes of buffer: 1 volume of cell paste. After disruption in a Mautin Gaulin, the extract was adjusted to pH to 8.0 by the addition of NaOH and clarified by centrifugation.

The clarified soluble extract was applied to a Poros HS-50 column (2.0X10.0 cm; PerSeptive Biosystems, Inc.) and bound proteins step-eluted with 50mM NaPO₄ pH 8.0 containing 0.5M, 1.0M and 1.5M NaCl. The KGF-2 eluted

10

15

20

25

in the 1.5M salt fraction which was then diluted five-fold with 50mM NaPO₄ pH 6.5 to a final salt concentration of 300mM. This KGF-2 containing fraction was then passed sequentially over a Poros HQ-20 column (2.0X7.0 cm; PerSeptive Biosystems, Inc.) and then bound to a Poros CM-20 column (2.0X9.0 cm; PerSeptive Biosystems, Inc.). KGF-2 (FGF-12)-containing fractions that eluted at about 500mM to about 750 mM NaCl were pooled, diluted and re-applied to an CM-20 column to concentrate. Finally, the protein was seperated on a gel filtration column (S-75; Pharmacia) in 40mM NaOAC pH6.5; 150mM NaCl (Batch E-5) Alternatively, the gel firtration column was run in Phosphate Buffered Saline (PBS, Batch E-4). KGF-2 containing fractions were pooled and protein concentration determined by Bio-Rad Protein Assay. Proteins were judged to be >90% pure by SDS-PAGE. Finally, endotoxin levels determined by Limulus Amebocyte Lysate Assay (Cape Cod Associates) were found to be ≤ 1Eu/mg. Proteins prepared in this way were able to bind heparin which is a hallmark of FGF family members.

Example 16

A. Construction of N-terminal deletion mutant KGF-2Δ33

To increase the level of expression of KGF2 in E.coli, and to enhance the solubilty and stability properties of E.coli expressed KGF2, a deletion variant KGF-2Δ33 (KGF-2 aa 69-208) which removes the first 68 amino acids of the pre-processed KGF2 was generated. The rationale for creating this deletion variant was based on the following observations. Firstly, mature KGF2 (KGF-2 aa 36-208) contains an uneven number (three) of cysteine residues which can lead to aggregation due to intra-molecular disulphide bridge formation. The KGF Δ33 deletion variant contains only two cysteine residues, which reduces the potential for intra-molecular disulphide bridge formation and subsequent aggregation. A decrease in aggregation should lead to an increase in the yield of active KGF2 protein. Secondly, the KGF Δ33 deletion variant removes a

The said

WO 98/06844 PCT/US97/14112 -

-130-

poly-serine stretch which is not present in KGF-1 and does not appear to be important for activity, but may hinder expression of the protein in E. coli. Thus, removal of the poly-serine stretch may increase expression levels of active KGF-2 protein. Thirdly, expression of KGF Δ33 in E.coli, results in natural cleavage of KGF-2 between residues 68 and 69. Thus, it is anticipated that KGF2 Δ33 will be processed efficiently and will be stable in E.coli.

Construction of KGF2 Δ 33 in pQE6

5

10

15

20

25

To permit Polymerase Chain Reaction directed amplification and sub-cloning of KGF2 Δ33 into the E.coli protein expression vector, pQE6, two oligonucleotide primers (5952 and 19138) complementary to the desired region of KGF2 were synthesized with the following base sequence.

Primer 5952: 5' GCGGCACATGTCTTACAACCACCTGCAGGGTG 3'
Primer 19138: 5' GGGCCCAAGCTTATGAGTGTACCACCAT 3'

In the case of the N-terminal primer (5952), an AfIIII restriction site was incorporated, while in the case of the C-terminal primer (19138) a HindIII restriction site was incorporated. Primer 5952 also contains an ATG sequence adjacent and in frame with the KGF2 coding region to allow translation of the cloned fragment in E.coli, while primer 19138 contains two stop codons (preferentially utilized in E.coli) adjacent and in frame with the KGF2 coding region which ensures correct translational termination in E.coli.

The Polymerase Chain Reaction was performed using standard conditions well known to those skilled in the art and the nucleotide sequence for the mature KGF-2 (aa 36-208) (constructed in Example 12C) as template. The resulting amplicon was restriction digested with AfIIII and HindIII and subcloned into Ncol/HindIII digested pQE6 protein expression vector.

Construction of KGF2 \$\Delta 33\$ in pHE1

To permit Polymerase Chain Reaction directed amplification and subcloning of KGF2 Δ33 into the E.coli expression vector, pHE1, two oligonucleotide primers (6153 and 6150) corresponding to the desired region of KGF2 were synthesized with the following base sequence.

Primer 6153: 5' CCGGCGGATCCCATATGTCTTACAACCACCTGCAGG
3'

Primer 6150: 5' CCGGCGGTACCTTATTATGAGTGTACCACCATTGG 3'

10

5

In the case of the N-terminal primer (6153), an Ndel restriction site was incorporated, while in the case of the C-terminal primer (6150) an Asp718 restriction site was incorporated. Primer 6153 also contains an ATG sequence adjacent and in frame with the KGF2 coding region to allow translation of the cloned fragment in E.coli, while primer 6150 contains two stop codons (preferentially utilized in E.coli) adjacent and in frame with the KGF2 coding region which ensures correct translational termination in E.coli.

15

The Polymerase Chain Reaction was performed using standard conditions well known to those skilled in the art and the nucleotide sequence for the mature KGF-2 (aa 36-208) (constructed in Example 12C) as template. The resulting amplicon was restriction digested with NdeI and Asp718 and subcloned into NdeI/Asp718 digested pHE1 protein expression vector.

20

25

Nucleotide sequence of KGF2 $\Delta 33$

ATGTCTTACAACCACCTGCAGGGTGACGTTCGTTGGCGTAAACTGT
TCTCTTTCACCAAATACTTCCTGAAAATCGAAAA
AAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAG
CATCCTGGAGATAACATCAGTAGAAATCGGAGTTG
TTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAA
GAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC

WO 98/06844 PCT/US97/14112

-132-

AATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGATACAAT
ACCTATGCATCATTTAACTGGCAGCATAATGGGAG
GCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGG
AGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTTCTT
CCAATGGTGGTACACTCATAA

Amino Acid sequence of KGF $\Delta 33$:

5

10

15

20

25

MSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITS
VEIGVVAVKAINSNYYLAMNKKGKLYGSKEFN
NDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTR
RKNTSAHFLPMVVHS

B. Construction of an Optimized KGF-2 Δ 33

In order to increase the expression levels of KGF2 $\Delta 33$ in E.coli, the codons of the complete gene were optimized to match those most highly used in E.coli. As the template utilised to generate the KGF2 $\Delta 33$ was codon optimized within the N-terminal region, the C-terminal amino acids (84-208) required optimization.

Firstly, amino acids 172-208 were codon optimized to generate KGF2Δ33(s172-208). This was achieved by an overlapping PCR strategy. Oligonucleotides PM07 and PM08 (corresponding to amino acids 172-208) were combined and annealed together by heating them to 70°C and allowing them to cool to 37°C. The annealed oligonucleotides were then utilized as template for a standard PCR reaction which was directed by primers PM09 and PM10. In a separate PCR reaction following standard conditions well known to those skilled in the art and using KGF2Δ33 as template, oligonucleotides PM05 (which overlaps with the Pst1 site within coding region of KGF2) and PM11 were used to amplify the region of KGF2 corresponding to amino acids 84-172. In a third PCR reaction, the product of the first PCR reaction (corresponding to codon optimized amino acids 172-208) and the product of the second PCR reaction (corresponding to codon non-optimized amino acids 84-172) were combined and

10

15

20

25

used as template for a standard PCR reaction directed by oligonucleotides PM05 and PM10. The resulting amplicon was digested with Pst1/HindIII and sub-cloned into Pst1/HindIII digested pQE6KGF2 Δ 33, effectively substituting the corresponding non codon optimized region, and creating pQE6KGF2 Δ 33(s172-208).

To complete the codon optimization of KGF2, a synthetic gene codon optimized for the region of KGF2 corresponding to amino acids 84-172 was generated utilising overlapping oligonucleotides. Firstly, four oligonucleotides (PM31, PM32, PM33 and PM 34) were combined and seven cycles of the following PCR was performed: 94°C, 30 secs; 46.5°C, 30 secs; and 72°C, 30 secs.

A second PCR reaction directed by primers PM35 and PM36 was then performed following standard procedures, utilizing 1μl of the first PCR reaction as template. The resulting codon optimized gene fragment was then digested with Pst1/Sal1 and subcloned into Pst1/Sal1 digested pQE6KGF2Δ33(s172-208) to create a fully optimized KGF2 encoding gene, pQE6KGF2Δ33s.

To create an alternative E.coli protein expression vector, KGF2Δ33s was PCR amplified utilising primers PM102 and PM130 on pQE6KGF2Δ33s. The resulting amplicon was digested with NdeI and EcoRV and subcloned into the pHE1 expression vector which had been digested with NdeI and Asp718 (blunt ended) to create pHE1Δ33s.

Oligonucleotide Sequences used in construction of codon optimized KGF2 $\Delta 33s$:

PM05: CAACCACCTGCAGGGTGACG

PM07: AACGGTCGACAAATGTATGTGGCACTGAACGGTAAAGGTG

PM08:

GGGCCCAAGCTTAAGAGTGTACCACCATTGGCAGAAAGTGAGCAG AGGTGTTTTTACGACGGGTTTTCTGACCACG

30 PM09: GCCACATACATTTGTCGACCGTT

PM10: GGGCCCAAGCTTAAGAGTG

WO 98/06844 PCT/US97/14112 · -

-134-

•	PM11:GCCACATACATTTGTCGACCGTT
	PM31:
	CTGCAGGGTGACGTTCGTTGGCGTAAACTGTTCTCCTTCACCAAAT
	ACTTCCTGAAAATCGAAAAAACGGTAAAGTTTC
5	TGGTACCAAG
	PM32:
	AGCTTTAACAGCAACACCCGATTTCAACGGAGGTGATTTCCAGG
	ATGGAGTACGGGCAGTTTTCTTTCTTGGTACCAG
	AAACTTTACC
10	PM33:
	GGTGTTGTTGCTGTTAAAGCTATCAACTCCAACTACTACCTGGCTAT
	GAACAAGAAAGGTAAACTGTACGGTTCCAAAGA
	ATTTAACAAC
	PM34:
15	GTCGACCGTTGTGCTGCCAGTTGAAGGAAGCGTAGGTGTTGTAACC
	GTTTTCTTCGATACGTTCTTTCAGTTTACAGTCG
	TTGTTAAATTCTTTGGAACC
	PM35: GCGGCGTCGACCGTTGTGCTGCCAG
	PM36: GCGGCCTGCAGGGTGACGTTCGTTGG
20	PM102: CCGGCGGATCCCATATGTCTTACAACCACCTGCAGG
	PM130: CGCGCGATATCTTATTAAGAGTGTACCACCATTG
	Nucleotide sequence of KGF2 Δ 33(s172-208):
	ATGTCTTACAACCACCTGCAGGGTGACGTTCGTTGGCGTAAACTGT
	TCTCCTTCACCAAATACTTCCTGAAAATCGAAAA
25	AAACGGTAAAGTTTCTGGTACCAAGAAAGAAAACTGCCCGTACTCC
	ATCCTGGAAATCACCTCCGTTGAAATCGGTGTTG
	TTGCTGTTAAAGCTATCAACTCCAACTACTACCTGGCTATGAACAA
	GAAAGGTAAACTGTACGGTTCCAAAGAATTTAAC
	AACGACTGTAAACTGAAAGAACGTATCGAAGAAAACGGTTACAAC
30	ACCTACGCTTCCTTCAACTGGCAGCACAACGGTCG

10

15

20

25

Amino Acid Sequence of KGF2 $\Delta 33(s172-208)$:

MSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITS
VEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYN
TYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS

C. Construction of N-terminal deletion mutant KGF-2 \(\Delta 4 \)

To increase the level of expression of KGF2 in E.coli and to enhance the stability and solubility properties of E.coli expressed KGF2, a deletion variant KGF2Δ4 (amino acids 39-208) which removes the first 38 amino acids of pre-processed KGF2 was constructed, including the cysteine at position 37. As the resulting KGF2 deletion molecule contains an even number of cysteines, problems due to aggregation caused by intra-molecular disulphide bridge formation should be reduced, resulting in an enhanced level of expresssion of active protein.

To permit Polymerase Chain Reaction directed amplification and sub-cloning of KGF2 Δ4 into the E.coli protein expression vector, pQE6, two oligonucleotide primers (PM61 and 19138) were synthesized with the following base sequence.

PM61: CGCGGCCATGGCTCTGGGTCAGGACATG

19138: GGGCCCAAGCTTATGAGTGTACCACCAT

In the case of the N-terminal primer (PM61), an Ncol restriction site was incorporated, while in the case of the C-terminal primer (19138) a HindIII restriction site was incorporated. PM61 also contains an ATG sequence adjacent and in frame with the KGF2 coding region to allow translation of the cloned fragment in E.coli, while 19138 contains a stop codon (preferentially utilized in

E.coli) adjacent to and in frame with the KGF2 coding region which ensures correct translational termination in E.coli.

The Polymerase Chain Reaction was performed using standard conditions well known to those skilled in the art and the full length KGF2 (aa 36-208) as template (constructed in Example 12C). The resulting amplicon was restriction digested with NcoI and HindIII and subcloned into NcoI/HindIII digested pQE6 protein expression vector.

Nucleotide Sequence of KGF2 $\Delta 4$:

5

25

ATGGCTCTGGGTCAAGATATGGTTTCTCCGGAAGCTACCAACTCTT CCTCTTCCTCTTCTCCCCGTCTTCCGCTGG 10 GTAAACTGTTCTCTTTCACCAAATACTTCCTGA AAATCGAAAAAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACT GCCCGTACAGCATCCTGGAGATAACATCAGTAGAA ATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAG 15 CCATGAACAAGAAGGGGAAACTCTATGGCTCAAA AGAATTTAACAATGACTGTAAGCTGAAGGAGGATAGAGGAAAA TGGATACAATACCTATGCATCATTTAACTGGCAGC ATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTC CAAGGAGAGACAGAAAACACGAAGGAAAAACACC 20 TCTGCTCACTTTCTTCCAATGGTGGTACACTCATAA

Amino Acid Sequence of KGF2Δ4:

MALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFS
FTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLA
MNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYV
ALNGKGAPRRGQKTRRKNTSAHFLPMVVHS

-137-

Example 17

KGF-2 A33 Stimulated Wound Healing in Normal Rat

To demonstrate that KGF- $2\Delta 33$ would accelerate the healing process, wound healing of excisional wounds were examined using the following model.

5

A dorsal 6 mm excisional wound is created on Sprague Dawley rats (n=5) with a Keyes skin punch. The wounds are left open and treated topically with various concentrations of KGF-2 Δ33 (in 40 mM NaOAc and 150 mM NaCl, pH 6.5 buffer) and buffer (40 mM NaOAc and 150 mM NaCl, pH 6.5) for 4 days commencing on the day of wounding. Wounds are measured daily using a calibrated Jameson caliper. Wound size is expressed in square millimeters. On the final day wounds were measured and harvested for further analysis. Statistical analysis was done using an unpaired t test (mean ± SE). Evaluation parameters include percent wound closure, histological score (1-3 minimal cell accumulation, no granulation; 4-6 immature granulation, inflammatory cells, capillaries; 7-9 granulation tissue, cells, fibroblasts, new epithelium 10-12 mature dermis with fibroblasts, collagen, epithelium), re-epithelialization and immunohistochemistry.

15

20

10

At three days postwounding, treatment with KGF-2 $\Delta 33$ displayed a decrease in wound size (30.4 mm² at 4 μ g, p=0.006, 33.6 mm² at 1 μ g, p=0.0007) when compared to the buffer control of 38.9 mm². At day four postwounding, treatment with KGF-2 $\Delta 33$ displayed a decrease in wound size (27.2 mm² at 0.1 μ g p=0.02, 27.9 mm² at 0.4 μ g p=0.04) when compared to buffer control of 33.8 mm². At day five postwounding, treatment with KGF-2 $\Delta 33$ displayed a decrease in wound size (18.1) mm² at 4 μ g p=0.02 when compared to buffer control of 25.1 mm². See Figure 36.

25

Following wound harvest on day 5, additional parameters were evaluated. KGF-2 Δ 33 displayed an increase in the percentage of wound closure at 4 μ g (71.2%, p=0.02) when compared to buffer control 60.2%. Administration of KGF-2 Δ 33 also results in an improvement in histological score at 1 and 4 μ g

(8.4 at 1 μ g p=0.005, 8.5 at 4 μ g p=0.04) relative to buffer control of 6.4. Reepithelialization was also improved at 1 and 4 μ g KGF-2 Δ 33 (1389 μ m at 1 μ g p=0.007, 1220 μ m at 4 μ g p=0.02) relative to the buffer control of 923 μ m. See Figure 37.

5

This study demonstrates that daily treatment with KGF-2 $\Delta 33$ accelerates the rate of wound healing in normal animals as shown by a decrease in the gross wound area. In addition, the histological evaluation of wound samples and assessment of re-epithelialization also show that KGF-2 $\Delta 33$ improves the rate of healing in this normal rat model.

10

Example 18

KGF-2A33 Effect on Tensile Strength and Epidermal Thickness in Normal Rat

To demonstrate that KGF- $2\Delta 33$ would increase tensile strength and epidermal thickness of wounds the following experiment was performed.

15

.

20

25

A 2.5 cm full thickness midline incisional wound is created on the back of male Sprague Dawley rats (n=8 or 9). Skin incision is closed using 3 equidistant metal skin staples. Buffer (40 mM NaOAc and 150 mM NaCl, pH 6.5) or KGF-2 Δ33 (in 40 mM NaOAc and 150 mM NaCl, pH 6.5 buffer) were topically applied at the time of wounding. Four wound strips measuring 0.5 cm in width are excised at day 5. Specimens are used for the study of breaking strength using an InstronTM skin tensiometer, hydroxyproline determination and histopathological assessment. Breaking strength was defined as the greatest force withheld by each wound prior to rupture. Statistical analysis was done using an unpaired t test (mean ± SE).

In an incisional skin rat model, topically applied KGF-2 $\Delta 33$ exhibited a statistically significant increase in breaking strength, tensile strength and epidermal thickness as a result of a single intraincisional application subsequent to wounding. In one study, the breaking strength of KGF-2 treated wounds at 1, 4, and $10\mu g$ was significantly higher when compared to the buffer controls (107.3)

g at $1\mu g$ p=0.0006, 126.4 g at $4\mu g$ p<0.0001, 123.8 g at $10\mu g$ p<0.0001). See Figure 38.

Epidermal thickness was assessed under light microscopy on Masson Trichrome sections. KGF-2 $\Delta 33$ treated wounds displayed increased epidermal thickening (60.5 μ at 1 μ g, 66.51 μ at 4 μ g p=0.01, 59.6 μ at 10 μ g) in contrast with the buffer control of 54.8 μ . See Figure 39.

These studies demonstrate that a single intraincisional application of KGF-2 augments and accelerates the wound healing process characterized by an increase in breaking strength and epidermal thickness of incisional wounds.

10

15

20

5

Example 19

KGF-2A33 Effect on Normal Rat Skin

In order to determine the effect of KGF-2 Δ 33on normal rat skin following intradermal injection the following experiment was performed.

Male adult SD rats (n=3) received six intradermal injections of either placebo or KGF-2 Δ 33 (in 40 mM NaOAc and 150 mM NaCl, pH 6.5 buffer) in a concentration of 1 and 4 μ g in 50 μ l on day 0. Animals were injected with 5-2'-bromo-deoxyrudine (BrdU)(100 mg/kg i.p.) two hours prior to sacrifice at 24 and 48 hours. Epidermal thickness was measured from the granular layer to the bottom of the basal layer. Approximately, 20 measurements were mode along the injection site and the mean thickness quantitated. Measurements were determined using a calibrated micrometer on Masson Trichrome stained sections under light microscopy. BrdU scoring was done by two blinded observers under light microscopy using the following scoring system: 0-3 none to minimal BrdU labeled cells; 4-6 moderate labeling; 7-10 intense labeled cells. Animals were sacrificed 24 and 48 hours post injection. Statistical analysis was done using an unpaired t test. (mean \pm SE).

25

KGF-2 Δ 33 treated skin displayed increased epidermal thickening at 24 hours (32.2 μ at 1 μ g p<0.001, 35.4 μ at 4 μ g p<0.0001) in contrast with the

PCT/US97/14112 ...

buffer control of 27.1 μ . At 48 hours KGF-2 Δ 33 treated skin displayed increased epidermal thickening (34.0 μ at 1 μ g p=0.0003, 42.4 μ at 4 μ g p<0.0001) compared to buffer control of 27.8 μ . See Figure 40. KGF-2 Δ 33 treated skin also displayed increased BrdU immunostaining at 48 hours (4.73 at 1 μ g p=0.07, 6.85 at 4 μ g p<0.0001) compared to buffer control of 3.33. See Figure 41.

These studies demonstrate that a intradermal injection of KGF-2 augments and accelerates epidermal thickening. Thus, KGF-2 would have applications to prevent or alleviate wrinkles, improve aging skin and reduce scaring or improve healing from cosmetic surgery. In addition, KGF-2 can be used prophylactically to prevent or reduce oral mucosistis (mouth ulcers), intestinal inflammation in response to chemotherapy or other agents.

Example 20

Anti-inflammatory Effect of KGF-2 on PAF-induced Paw Edema

15

20

5

10

To demonstrate an anti-inflammatory effect of KGF-2 the following experiment was performed using PAF-induced paw edema inflammation model.

Groups of four lewis rats (190~210gm) were injected subcutaneously in the foot pad of the right hind paw with 120µl solution containing 2.5 nMol of PAF, together with the following reagents: 125 µg of Ckb-10(B5), 24 µg of LPS, 73 µg of KGF-2 (Thr (36) - Ser (208) of Figure 1 (SEQ ID NO:2) with a N-terminal Met) or no protein. The left hind paws were given the same amount of buffer to use as parallel control. Paw volume was quantified immediately before, or 30 and 90 minutes after PAF injection using a plethysmograph system. Percent (%) change of paw volume were calculated.

-141Testing reagents in experiment No. 1 and No. 2

Groups	PAF(R.)	Ckβ-10(R.)	LPS(R.)	KGF-2(R.)	Buffer
(N=4)	2.5nMol	1.04mg/ml	200μg/ml	0.73mg/ml	
1	20μ1	••		**	100µ1
2	20µl	100μ1		••	
3	20μ1		100μl	**	
4	20µl		••	100µl	

As shown in Figure 42, right hind paws injected with PAF alone resulted in a significant increase in paw volume (75 or 100% for experiment No. 1 or No. 2, respectively) at 0.5 hour post injection as expected; while left hind paws receiving buffer or right hind paws receiving LPS or SEB alone show little sign of edema (data not shown). However, when KGF-2 was given together with PAF locally, there is a substantial reduction (25 or 50% for experiment No. 1 or No. 2, respectively) in paw volume compared with PAF alone-challenged paws. The reduction of paw edema was not observed in animal receiving PAF together with Ckb-10 (a different protein), LPS or SEB (two inflammatory mediators). These results suggest that the anti-inflammatory effect of KGF-2 is specific and not due to some non-specific nature of the protein.

Effect of KGF-2 A33 on PAF-induced paw edema in rats

20

25

5

10

15

Following the experiments described above with KGF-2 $\Delta 33$ to confirm its *in vitro* biological activities for stimulating keratinocyte proliferation and its *in vivo* effect on wound healing, KGF-2 $\Delta 33$ was further evaluated in the PAF-induced paw edema model in rats. Groups of four Lewis rats (190~210gm) were injected subcutaneously in the foot pad of the right hind paw with 120 μ l solution containing 2.5 nMol of PAF, together with 210 μ g of KGF-2 $\Delta 33$ or albumin. The left hind paws were given the same amount of buffer, albumin or KGF-2 $\Delta 33$

alone to use as parallel control. Paw volume was quantified at different intervals after PAF injection using a plethysmograph system. Percent (%) change of paw volume was calculated.

As shown in Figure 43, right hind paws injected with PAF and albumin resulted in a significant increase (75%) in paw volume at 0.5 hour post injection as expected; while left hind paws receiving buffer, albumin or KGF-2 Δ 33 alone showed little sign of edema. However, when KGF-2 Δ 33 was given together with PAF locally, there was a substantial reduction (average 20%)

in paw volume, when compared with PAF plus albumin-challenged paws, throughout the entire experiment which was ended in 4 hours. These results confirm the anti-inflammatory property of KGF-2 Δ 33.

Testing Reagents

1 CStrug Accused				
Groups (N=4)	PAF 2.5 nMol	Albumin 2.1 mg/ml	KGF-2 Δ33 2.1 mg/ml	Buffer
ı	20 μl	100 μί	-	-
2	20 μl	-	100 μ1	-
3	-	120 μί	-	_
4	-	-	120 μΙ	-
5	-	-	· -	120 μl

Thus, KGF-2 is useful for treating acute and chronic conditions in which inflammation is a key pathogenesis of the diseases including but not limiting to psoriasis, eczema, dermatitis and/or arthritis.

15

5

10

Example 21

Effect of KGF-2 \(\Delta 33 \) on End-to-End Colonic Anastomosis Rat Model

This example demonstrates that KGF-2 $\Delta 33$ will increase the rate of intestinal repair in a model of intestinal or colonic anastomosis in Wistar or Sprague Dawley rats.

The use of the rat in experimental anastomosis is a well characterized, relevant and reproducible model of surgical wound healing. This model can also be extended to study the effects of chronic steriod treatment or the effects of various chemotherapeutic regimens on the quality and rate of surgical wound healing in the colon and small intestine (Mastboom W.J.B. et al. Br. J. Surg. 78: 54-56 (1991), Salm R. et al. J Surg. Oncol. 47: 5-11, (1991), Weiber S. et al. Eur. Surg. Res. 26: 173-178 (1994)). Healing of anastomosis is similar to that of wound healing elsewhere in the body. The early phases of healing are characterized by acute inflammation followed by fibroblast proliferation and synthesis of collagen. Collagen is gradually modeled and the wound is strengthened as new collagen is synthesized. (Koruda M.J., and Rolandelli, R.H. J. Surg. Res. 48: 504-515 (1990). Most postoperative complications such as anastomotic leakage occur during the first few days following surgery--a period during which strength of the colon is mainly secured by the ability of the wound margin to hold sutures. The suture holding capacity of the GI tract has been reported to decrease by as much as 80% during the first postoperative days (Hogstrom H and Haglund U. Acta Chir Scand 151: 533-535 (1985), Jonsson K, et al. Am J. Surg. 145: 800-803 (1983)).

25

30

5

10

15

20

Male adult SD rats (n=5) were anesthetized with a combination of ketamine (50 mg/kg) and xylazine (5 mg/kg) intramuscularly. The abdominal cavity was opened with a 4 cm long midline incision. A 1 cm wide segment of the left colon was resected 3 cm proximal to the peritoneal reflection while preserving the marginal vessels. A single layer end-to-end anastomosis was performed with 8-10 interrupted 5-0 Vicryl inverted sutures to restore intestinal

10

continuity. The anastomosis was then topically treated via syringe with either buffer or KGF-2 $\Delta 33$ at concentrations of 1 and 4 μ g. The incisional wound was closed with 3-0 running silk suture for the muscle layer and surgical staples for the skin. Treatments were then administered daily thereafter and consisted of buffer or KGF-2 $\Delta 33$ and 1 and 5 mg/kg sc. Weights were taken on the day of surgery and daily thereafter. Animals were euthanized 24 hours following the last treatment (day 5). Animals were anesthetized and received barium enemas and were x-rayed at a fixed distance. Radiologic analysis following intracolonic administration by 2 blinded observers revealed that KGF-2 $\Delta 33$ treated groups had 1) a decreased rate of barium leakage at the surgical site, 2) lesser degree of constriction at the surgical site, and 3) an increase in the presence of fecal pellets distal to the surgical site.

Colonic Anastomosis
Radiologic Analysis

15	Groups	Feces Present	Anastomotic Constriction	Proximal Distension	Peritoneal Leakage
	No Treatment (N=5)	20%	80%	80%	60%
	Buffer (N=5)	40%	60%	80%	75%
20	KGF-2 \triangle 33 [1 mg/kg] (N=5)	60%	20%	100%	20%
	KGF-2 Δ33 [5 mg/kg] (N=4)	100%	0%	75%	25%

10

20

Example 22

Construction of Carboxy Terminal Mutations in KGF-2

The carboxyl terminus of KGF-2 is highly charged. The density of these charged residues may affect the stability and consequently the solubility of the protein. To produce muteins that might stabilize the protein in solution a series of mutations were created in this region of the gene.

To create point mutants 194 R/E, 194 R/Q, 191 K/E, 191 K/Q, 188R/E, 188R/Q, the 5952 KGFΔ33 5' Afl III 5' primer was used with the indicated 3' primers, which contain the appropriate point mutations for KGF-2, in PCR reactions using standard conditions well known to those skilled in the art with KGF-2Δ33 as template. The resulting products were restricted with AflIII and Hind III and cloned into the E. coli expression vector, pQE60 restricted with NcoI and Hind III.

KGF2A33,194 R/E Construction:

15 The following primers were used:

5952 KGF Δ 33 5' Afl III:

5' GCGGCACATGTCTTACAACCACCTGCAGGGTG 3'

KGF2 3'HindIII 194aa R to E:

5'CTGCCC<u>AAGCTT</u>TTATGAGTGTACCACCATTGGAAGAAAGTGAGC AGAGGTGTTTT<u>TTC</u>TCGTGTTTTCTGTCC 3'

KGF2Δ33,194 R/E Nucleotide sequence:

ATGTCTTACAACCACCTGCAGGGTGACGTTCGTTGGCGTAAACTGT TCTCTTTCACCAAATACTTCCTGAAAATCGAAAA

AAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAG

5 CATCCTGGAGATAACATCAGTAGAAATCGGAGTTG

TTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAA GAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC

AATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGATACAAT ACCTATGCATCATTTAACTGGCAGCATAATGGGAG

10 GCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGG
ACAGAAAACACGA<u>GAA</u>AAAAACACCTCTGCTCACT
TTCTTCCAATGGTGGTACACTCATAG

KGF2∆33,194 R/E Amino acid sequence:

MSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITS

VEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYN

TYASFNWQHNGRQMYVALNGKGAPRRGQKTREKNTSAHFLPMVVH
S

KGF2 Δ 33,194 R/Q Construction:

The following primers were used:

20 5952 KGF Δ33 5' Afl III:

5' GCGGCACATGTCTTACAACCACCTGCAGGGTG 3'

KGF2 3' HindIII 194 aa R to Q:

5'CTGCCC<u>AAGCTT</u>TTATGAGTGTACCACCATTGGAAGAAAGTGAGC AGAGGTGTTTT<u>CTG</u>TCGTGTTTTCTGTCC 3'

KGF2 Δ33,194 R/Q Nucleotide Sequence:

ATGTCTTACAACCACCTGCAGGGTGACGTTCGTTGGCGTAAACTGT TCTCTTTCACCAAATACTTCCTGAAAATCGAAAA

AAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAG

5 CATCCTGGAGATAACATCAGTAGAAATCGGAGTTG

TTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAA GAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC

AATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGATACAAT ACCTATGCATCATTTAACTGGCAGCATAATGGGAG

10 GCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGG ACAGAAAACACGA<u>CAG</u>AAAAACACCTCTGCTCACT

TTCTTCCAATGGTGGTACACTCATAG

KGF2 Δ33,194 R/Q Amino Acid Sequence:

MSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITS
VEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYN
TYASFNWQHNGRQMYVALNGKGAPRRGQKTRQKNTSAHFLPMVVH
S

KGF2Δ33,191 K/E Construction:

The following primers were used:

20 5952 KGF Δ 33 5' Afl III:

5' GCGGCACATGTCTTACAACCACCTGCAGGGTG 3'

KGF2 3' HindIII 191aa K to E

5'CTGCCC<u>AAGCTT</u>TTATGAGTGTACCACCATTGGAAGAAAGTGAGC AGAGGTGTTTTCCTTCGTGT<u>TTC</u>CTGTCCTCCTTGG 3'

KGF2\(\Delta\)33,191 K/E Nucleotide Sequence:

ATGTCTTACAACCACCTGCAGGGTGACGTTCGTTGGCGTAAACTGT TCTCTTTCACCAAATACTTCCTGAAAATCGAAAA

AAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAG

5 CATCCTGGAGATAACATCAGTAGAAATCGGAGTTG

TTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAA GAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC

AATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGATACAAT ACCTATGCATCATTTAACTGGCAGCATAATGGGAG

10 GCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGG
ACAGGAAACACGAAGGAAAAACACCTCTGCTCACT

TTCTTCCAATGGTGGTACACTCATAG

KGF2 Δ 33,191 K/E Amino Acid Sequence:

MSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITS

VEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYN

TYASFNWQHNGRQMYVALNGKGAPRRGQETRRKNTSAHFLPMVVH

S

KGF2 Δ 33, 191 K/Q Construction:

The following primers were used:

20 5952 KGFΔ33 5' Afl III:

5' GCGGCACATGTCTTACAACCACCTGCAGGGTG 3'

KGF2 3' HindIII 191aa K to Q

5'CTGCCC<u>AAGCTT</u>TTATGAGTGTACCACCATTGGAAGAAAGTGAGC AGAGGTGTTTTCCTTCGTGT<u>CTG</u>CTGTCCTCCTTGG 3'

KGF2 Δ33, 191 K/Q Nucleotide Sequence:

ATGTCTTACAACCACCTGCAGGGTGACGTTCGTTGGCGTAAACTGT TCTCTTTCACCAAATACTTCCTGAAAATCGAAAA

AAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAG

CATCCTGGAGATAACATCAGTAGAAATCGGAGTTG

TTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAA GAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC

AATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGATACAAT ACCTATGCATCATTTAACTGGCAGCATAATGGGAG

10 GCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGG ACAG<u>CAG</u>ACACGAAGGAAAAACACCTCTGCTCACT

TTCTTCCAATGGTGGTACACTCATAG

KGF2 Δ 33, 191 K/Q Amino Acid Sequence:

MSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITS

VEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYN

TYASFNWQHNGRQMYVALNGKGAPRRGQQTRRKNTSAHFLPMVVH
S

KGF2A33, 188R/E Construction:

The following primers were used:

20 5952 KGFΔ33 5' Afl III:

5' GCGGCACATGTCTTACAACCACCTGCAGGGTG 3'

KGF2 3' HindIII 188aa R to E:

5'CTGCCC<u>AAGCTT</u>TTATGAGTGTACCACCATTGGAAGAAAGTGAGC AGAGGTGTTTTCCTTCGTGTTTTCTGTCC<u>TTC</u>CCTTGGAGCTCCTTT

25 3'

KGF2∆33, 188R/E Nucleotide Sequence:

ATGTCTTACAACCACCTGCAGGGTGACGTTCGTTGGCGTAAACTGT TCTCTTTCACCAAATACTTCCTGAAAATCGAAAA

AAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAG

5 CATCCTGGAGATAACATCAGTAGAAATCGGAGTTG

TTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAA GAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC

AATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGATACAAT ACCTATGCATCATTTAACTGGCAGCATAATGGGAG

10 GCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGG<u>GAA</u>GG ACAGAAAACACGAAGGAAAAACACCTCTGCTCACT

KGF2A33, 188R/E Amino Acid Sequence:

TTCTTCCAATGGTGGTACACTCATAG

MYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSV

EIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNT
YASFNWQHNGRQMYVALNGKGAPREGQKTRRKNTSAHFLPMVVHS

KGF2Δ33, 188 R/Q Construction:

The following primers were used:

5952 KGF Δ33 5' Afl III:

5' GCGGCACATGTCTTACAACCACCTGCAGGGTG 3'
KGF2 3' HindIII 188aa R to Q:

5'CTGCCC<u>AAGCTT</u>TTATGAGTGTACCACCATTGGAAGAAAGTGAGC AGAGGTGTTTTCCTTCGTGTTTTCTGTCC<u>CTG</u>CCTTGGAGCTCCTTT 3'

KGF2A33, 188 R/Q Nucleotide Sequence:

5 ATGTCTTACAACCACCTGCAGGGTGACGTTCGTTGGCGTAAACTGT TCTCTTTCACCAAATACTTCCTGAAAATCGAAAA

> AAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAG CATCCTGGAGATAACATCAGTAGAAATCGGAGTTG

> TTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAA

10 GAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC

AATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGATACAAT ACCTATGCATCATTTAACTGGCAGCATAATGGGAG

GCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGG<u>CAG</u>GG ACAGAAAACACGAAGGAAAAACACCTCTGCTCACT

15 TTCTTCCAATGGTGGTACACTCATAG

KGF2Δ33, 188 R/Q Amino Acid Sequence:

MSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITS VEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYN TYASFNWQHNGRQMYVALNGKGAPRQGQKTRRKNTSAHFLPMVVH S

KGF2 Δ33, 183K/E Construction:

20

25

For mutation 183K/E, two PCR reactions were set up for oligonucleotide site directed mutagenesis of this lysine. In one reaction, 5952 KGF Δ 33 5' AfIIII was used as the 5' primer, and KGF2 183aa K to E antisense was used as the 3' primer in the reaction. In a second reaction, KGF2 5' 183aa K to E sense was

25

used as the 5' primer, and KGF2 3' HindIII TAA stop was used as the 3' primer. KGF-2 $\Delta 33$ was used as template for these reactions. The reactions were amplified under standard conditions well known to those skilled in the art. One microliter from each of these PCR reactions was used as template in a subsequent reaction using, as a 5' primer, 5453 BsphI, and as a 3' primer, 5258 HindIII. Amplification was performed using standard conditions well known to those skilled in the art. The resulting product was restricted with Afl III and HindIII and cloned into the E. coli expression vector pQE60, which was restricted with Ncol and HindIII.

The following primers were used:

5952 KGF Δ33 5' Afl III:

5' GCGGCACATGTCTTACAACCACCTGCAGGGTG 3'

KGF2 5' 183aa K to E sense:

5' TTGAATGGAGAAGGAGCTCCA 3'

15 KGF2 183aa K to E antisense:

5' TGGAGCTCCTTCTCCATTCAA 3'

KGF2 3' HindIII TAA stop:

5' CTGCCCAAGCTTTTATGAGTGTACCACCATTGG 3'

KGF2 Δ 33, 183K/E Nucleotide Sequence:

20 ATGTCTTACAACCACCTGCAGGGTGACGTTCGTTGGCGTAAACTGT TCTCTTTCACCAAATACTTCCTGAAAATCGAAAA

> AAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAG CATCCTGGAGATAACATCAGTAGAAATCGGAGTTG

> TTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAA GAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC

15

20

AATGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGATACAAT ACCTATGCATCATTTAACTGGCAGCATAATGGGAG

GCAAATGTATGTGGCATTGAATGGA<u>GAA</u>GGAGCTCCAAGGAGAGG ACAGAAAACACGAAGGAAAAACACCTCTGCTCACT

TTCTTCCAATGGTGGTACACTCATAG

KGF2 Δ 33, 183K/E Amino Acid Sequence:

MSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITS VEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYN TYASFNWQHNGRQMYVALNGEGAPRRGQKTRRKNTSAHFLPMVVHS

10 Example 23

Effect of KGF-2 on Survival After Total Body Irradiation in Balb/c Mice

Ionizing radiation is commonly used to treat many malignancies, including lung and breast cancer, lymphomas and pelvic tumors (Ward, W.F. et al., CRC Handbook of Animal Models of Pulmonary Disease, CRC Press, pp. 165-195 (1989)). However, radiation -induced injury (lung, intestine, etc.) limits the intensity and the success of radiation therapy (Morgan, G.W. et al., Int. J. Radiat. Oncol. Biol. Phys. 31:361 (1995)). The gastrointestinal mucosa has a rapid cell cycle and is particularly sensitive to cytotoxic agents (Potten, C.S., et al., In: Cytotoxic Insult to Tissue, Churchill Livingstone, pp. 105-152 (1983)). Some of the manifestations of intestinal radiation damage include acute proctitis, intestinal fibrosis, stricture or fistula formation (Anseline, D.F. et al. Ann. Surg. 194:716-724 (1981)). A treatment which protects normal structures from radiation without altering the radiosensisitivity of the tumor would be beneficial

in the management of these disorders. Regardless of the irradiated area, the dose of radiation is limited by the radiosensitivity of normal tissue. Complications following total or partial body irradiation include pneumonitis, fibrosis, gastro-intestinal injury and bone marrow disorders.

5

Several cytokines including IL-1, TNF, IL-6, IL-12 have demonstrated radioprotective effects following TBI (Neta, R. et al., J. Exp. Med. 173:1177 (1991)). IL-11 has been shown to protect small intestinal mucosal cells after combined irradiation and chemotherapy (Du, X.X. et al., Blood 83:33 (1994)) and radiation-induced thoracic injury (Redlich, C.A. et al. The Journal of Immunology 157:1705-1710 (1996)).

10

15

Animals

WO 98/06844

All experiments were performed using BALB/c mice. Animals were purchased at 6 weeks of age and were 7 weeks old at the beginning of the study. All manipulations were performed using aseptic techniques. This study was conducted according to the guidelines set forth by the Human Genome Sciences, Inc., Institutional Animal Care and Use Committee which reviewed and approved the experimental protocol.

KGF-2

20

The protein consists of a 141 amino acid human protein termed KGF-2 $\Delta 33$. This protein is a truncated isoform of KGF-2 that lacks the first 33 amino-terminal residues of the mature protein. The gene encoding this protein has been cloned into an *E. coli* expression vector. Fractions containing greater that 95% pure recombinant materials were used for the experiment. KGF-2 was formulated in a vehicle containing 40 mM Na Acetate + 150 mM NaCl, pH 6.5. Dilutions were made from the stock solution using the same vehicle.

Total Body Irradiation and Experimental Design

Mice were irradiated with 519 RADS (5.19 Gy) using a 68 Mark I Shepherd Cesium Irradiator. The KGF-2 Δ 33 was administered daily subcutaneously, starting 2 days before irradiation and continuing for 7 days after irradiation. Daily weights were obtained in all mice. Groups of mice were randomized to receive one of three treatments: Total body irradiation (TBI) plus buffer, TBI plus KGF-2 Δ 33 (1 mg/kg sq), TBI plus KGF-2 Δ 33 (5 mg/kg sq). Two independent experiments were performed.

Results

10

5

Two studies were performed using irradiated animals. In the first study, animals were irradiated with 519 RADS (5.19 Gy). Animals were treated with buffer or KGF-2 Δ 33 at 1 & 5 mg/kg, s.q. two days prior to irradiation and daily thereafter for 7 days. At day 25 after total body irradiation 1/5 animals survived in the buffer group. In contrast, KGF-2 treated groups had 5/5 animals @ 1mg/kg and 4/5 @ 5 mg/kg (Figure 44).

15

In addition, KGF-2 treated animals displayed 0.9% and 5.3% weight gain at day 20 post-TBI. In contrast, the buffer treated group had 4.2% weight loss at day 20. Normal non-irradiated age matched control animals showed 6.7% weight gain in the same time period (Figure 45).

20

25

Animals in the second study were also irradiated with 519 RADS (5.19 Gy). These animals were treated with buffer or KGF-2 Δ 33 at 1 & 5 mg/kg, s.q. two days prior to irradiation and daily thereafter for 7 days. At day 15 after total body irradiation all the animals in the buffer group were dead. KGF-2 at 1 mg/kg had 30% survival and 60% survival at 5 mg/kg. At day 25 after TBI the 1 mg/kg group showed 20% survival and the 5 mg/kg 50% survival (Figure 46).

Conclusions

In summary, these results demonstrate that KGF-2 has protective effect after TBI. The ability of KGF-2 to increase survival rate of animals subjected to TBI suggests that it would also be useful in radiation-induced injuries and to increase the therapeutic ratio of irradiation in the treatment of malignancies.

Example 24

Evaluation of KGF-2 in the TPA Model of Cutaneous Inflammation in Mice

To demonstrate that KGF-2 would attenuate the progression of contact dermatitis, a tetradecanoylphorbol acetate (TPA)-induced cutaneous inflammation model in mice is used. The use of the female BALB/c and male Swiss Webster mice in experimental cutaneous inflammation are well-characterized, relevant and reproducible models of contact dermatitis. These strains of mice have been shown to develop a long-lasting inflammatory response, following topical application of TPA, which is comprised of local hemodynamics, vascular permeability and local migration of leukocytes, and these pathological changes are similar to those of human dermatitis (Rao et al. 1993, Inflammation 17(6):723; Rao et al. 1994, J. Kipid Mediators Cell Signalling 10:213).

Groups of mice receive either vehicle or KGF-2 intraperitoneally, subcutaneously, or intravenously 60 min after the topical application of TPA (4 μ g/ear) applied as a solution in acetone (200 μ g/ml), 10 μ l each to the inner and outer surface of ear. The control group receives 20 μ l of acetone as a topical application. Four hours following the application of TPA, increase in ear thickness is measured and ears are excised for histology. To determine vascular permeability in response to TPA, mice are intravenously injected through tail veins with Evans blue (300 mg/kg) at selected times after topical application of

20

5

10

15

10

15

20

TPA and mice are sacrificed 15 min thereafter. Ears are excised and removed, then extracted into dimethylformamide and centrifuged. Absorbance readings are spectrophotometrically measured at 590 nm.

Example 25

Effect of KGF-2 A33 in Wound Healing

The biological effects of KGF-2 $\Delta 33$ in the skin were examined based on the initial *in vitro* data demonstrating KGF-2's capacity to stimulate primary human epidermal keratinocytes as well as murine pro-B BaF3 cells transfected with the FGFR isoform 2iiib. Initial experiments were performed to determine the biological effects of KGF-2 $\Delta 33$ following intradermal administration. Following the intradermal studies, KGF-2 $\Delta 33$ was explored in a variety of wound healing models (including full thickness punch biopsy wounds and incisional wounds) to determine its potential as a wound healing agent.

Effect of KGF-2 $\Delta 33$ in a Glucocorticoid-Impaired Rat Model of Wound Healing

Impaired wound healing is an important clinical problem associated with a variety of pathologic conditions such as diabetes and is a complication of the systemic administration of steroids or antimetabolites. Treatment with systemic glucocorticoids is known to impair wound healing in humans and in animal models of tissue repair. A decrease in circulating monocyte levels and an inhibition of procollagen synthesis have been observed subsequent to glucocorticoid administration. The inflammatory phase of healing and matrix

synthesis are therefore important factors involved in the complex process of tissue repair. In the present study the effects of multiple topical applications of KGF-2 were assessed on full thickness excisional skin wounds in rats in which healing has been impaired by the systemic administration of methylprednisolone.

5

Sprague Dawley rats (n=5/treatment group) received 8 mm dorsal wounds and methylprednisolone (17 mg/kg, i.m.) to impair healing. Wounds were treated topically each day with buffer or KGF-2 at doses of 0.1, 0.5 and 1.5 µg in a volume of 50 µl. Wounds were measured on days 2, 4, 6, and 8 using a calibrated Jameson caliper. On day 6 (data not shown), and day 8 (Figure 47) KGF-2 treated groups showed a statistically significant reduction in wound closure when compared to the buffer control.

10

Effect of KGF-2 \(\Delta 33 \) on Wound Healing in a Diabetic Mouse Model

15

Genetically diabetic homozygous female (db+/db+) mice, 6 weeks of age (n=6), weighing 30-35 g were given a dorsal full thickness wound with a 6 mm biopsy punch. The wounds were left open and treated daily with placebo or KGF-2 at 0.1, 0.5 and 1.5 μ g. Wound closure was determined using a Jameson caliper. Animals were euthanized at day 10 and the wounds were harvested for histology.

20

KGF-2 displayed a significantly improvement in percent wound closure at 0.1 μ g (p=0.02) when compared to placebo or with the untreated group. Administration of KGF-2 also resulted in an improvement in histological score at 0.1 μ g (p=0.03) when compared to placebo or with the untreated group (p=0.01) and 1.5 μ g (p=0.05) compared to the untreated group.

Conclusions

5

10

15

20

Based on the results presented above, KGF-2 shows significant activity in impaired conditions such as glucocorticoid administration and diabetes. Therefore, KGF-2 may be clinically useful in stimulating healing of wounds after surgery, chronic ulcers in patients with diabetes or poor circulation (e.g., venous insufficiency and venous ulcers), burns and other abnormal wound healing conditions such as uremia, malnutrition, vitamin deficiencies and systemic treatment with steroids and antineoplastic drugs.

Example 26

Effects of KGF-2 A33 on Oral Mucosa

Cytotoxic agents used clinically have the unfortunate effect of inhibiting the proliferation of the normal epithelia in some locations, such as the oral mucosa, leading to life-threatening disturbances in the mucosal barrier. We have conducted studies to examine the efficacy of KGF-2 in this clinical area. The data supports a therapeutic effect of KGF-2 in models of mucositis.

Effects of KGF-2 A33 on Hamster Oral Mucosa

We sought to determine if KGF-2 might induce proliferation of normal oral mucosal epithelium. The effect of KGF-2 in the oral mucosa was assessed in male Golden Syrian hamsters. The cheek pouch of the hamster was treated daily with buffer or KGF-2 Δ 33 (at 0.1, 1 and 10 μ g/cheek) which were applied topically to anesthetized hamster cheeks in a volume of 100 μ l per cheek. The compound was in contact with the cheek for a minimum of 60 seconds and

subsequently swallowed. After 7 days of treatment, animals were injected with BrdU and sacrificed as described above. Proliferating cells were labeled using anti-BrdU antibody. Figure 48 shows that there was a significant increase in BrdU labeling (cell proliferation) when animals were treated with 1 μ g and 10 μ g of KGF-2 Δ 33 (when compared to buffer treatment).

Topical treatment with KGF-2 induced the proliferation of normal mucosal epithelial cells. Based upon these results, KGF-2 may be clinically useful in the prevention of oral mucositis caused by any chemotherapeutic agents (or other toxic drug regimens), radiation therapy, or any combined chemotherapeutic-radiation therapy regimen. In addition, KGF-2 may be useful as a therapeutic agent by decreasing the severity of damage to the oral mucosa as a result of toxic agents (chemotherapy) or radiotherapy.

Example 27

The Effect of KGF-2 △33 on Ischemic Wound Healing in Rats

15

20

5

10

The aim of the experiments presented in this example was to determine the efficacy of KGF-2 in wound healing using an ischemic wound healing model.

The blood supply of local skin was partially interrupted by raising of a single pedicle full-thickness random myocutaneous flap (3x4 cm). A full-thickness wound was made into the local skin, which is composed of the myocutaneous flap. Sixty, adult Sprague-Dawley rats were used and randomly divided into treatments of KGF-2 Δ 33 and placebo groups for this study (5 animals/group/time-point). The wounds were harvested respectively at day 1, 3, 5, 7, 10 and 15 post-wounding.

10

15

20 .

The wound breaking strength did not show a significant difference between KGF-2 and buffer treated groups at early time points until day 10 and 15 post-wounding.

The results indicated that KGF-2 improved significantly the wound breaking strength in ischemic wound repair after 10 days post-wounding. These results also suggest that ischemia delays the healing process in both groups compared to the data previously obtained in studies of normal wound healing.

This myocutaneous flap model supplies data and information in an ischemic situation which results from venous return. These results suggest that KGF-2 could be used in the treatment of chronic venous leg ulcers caused by an impairment of venous return and/or insufficiency.

Example 28

Evaluation of KGF-2 in the Healing of Colonic Anastomosis in Rats

The results of the present experiment demonstrate that KGF-2 $\Delta 33$ increases the rate of intestinal repair in a model of intestinal or colonic anastomosis in Wistar or Sprague Dawley rats. In addition, this model can be used to demonstrate that KGF-2 and its isoforms increase the capability of the gastrointestinal or colon wall to bind sutures.

The use of the rat in experimental anastomosis is a well characterized, relevant and reproducible model of surgical wound healing. This model can also be extended to study the effects of chronic steroid treatment or the effects of various chemotherapeutic regimens on the quality and rate of surgical wound healing in the colon and small intestine (Mastboom, W.J.B. et al., Br. J. Surg. 78:54-56 (1991); Salm, R. et al., J Surg. Oncol. 47:5-11 (1991); Weiber, S. et al.,

10

15

20

25

30

Eur. Surg. Res. 26:173-178 (1994)). Healing of anastomosis is similar to that of wound healing elsewhere in the body. The early phases of healing are characterized by acute inflammation followed by fibroblast proliferation and synthesis of collagen. Collagen is gradually modeled and the wound is strengthened as new collagen is synthesized (Koruda, M.J., and Rolandelli, R.H., J. Surg. Res. 48:504-515 (1990)). Most postoperative complications such as anastomotic leakage occur during the first few days following surgery--a period during which strength of the colon is mainly secured by the ability of the wound margin to hold sutures. The suture holding capacity of the GI tract has been reported to decrease by as much as 80% during the first postoperative days (Hogstrom, H. and Haglund, U., Acta Chir. Scand. 151:533-535 (1985); Jonsson, K. et al., Am J. Surg. 145:800-803 (1983)).

Rats were anesthetized with a combination of ketamine (50 mg/kg) and xylazine (5 mg/kg) intramuscularly. Animals were kept on a heating pad during skin disinfection, surgery, and post-surgery. The abdominal cavity was opened with a 4 cm long midline incision. A 1 cm wide segment of the left colon was resected 3 cm proximal to the peritoneal reflection while preserving the marginal blood vessels. A single layer end-to-end anastomosis was performed with 8-10 interrupted 8-0 propylene inverted sutures which were used to restore intestinal continuity. The incisional wound was closed with 3-O running silk suture for the muscle layer and surgical staples for the skin. Daily clinical evaluations were conducted on each animal consisting of individual body weight, body temperature, and food consumption patterns.

KGF-2 Δ33 and placebo treatment were daily administered sc, topically, ip, im, intragastrically, or intracolonically immediately following surgery and were continued thereafter until the day of sacrifice, day 7. There was an untreated control, a placebo group, and KGF-2 Δ33 groups. Two hours prior to euthanasia, animals were injected with 100 mg/kg BrdU i.p. Animals were euthanized 24 hours following the last treatment (day 5). A midline incision was made on the anterior abdominal wall and a 1 cm long colon segment, including the

10

15

20

anastomosis, was removed. A third segment at the surgical site was taken for total collagen analysis.

In a series of two experiments, male adult SD rats (n=5) were anaesthetized and received a single layer end-to-end anastomosis of the distal colon with 8-10 interrupted 6-0 prolene inverted sutures. The anastomotic site was then topically treated via syringe with either buffer or KGF-2 Δ33 at concentrations of 1 and 4 μg . Animals were then treated daily thereafter with either buffer or KGF-2 $\Delta 33$ at concentrations of 1 mg/kg or 5 mg/kg ip. Animals were euthanized on day 5 and the colon excised and snap frozen in liquid nitrogen, lyophilized and subjected to collagen determinations. Collagen concentration is expressed as µg collagen / mg dry weight tissue. Statistical analysis was done using an unpaired t test. Mean ± SE. On day 5 rats were anesthetized and subjected to barium enemas followed by radiographic analysis. Barium enema radiologic assessment of end-to-end left colonic anastomosis from two experiments showed a consistent reduction in peritoneal leakage with KGF-2 treated animals at 1 and 5 mg/kg. This data is shown in the Table below. In addition, breaking strength at the site of surgery was also examined using a tensiometer. No significant differences were observed between the KGF-2 Δ 33 and buffer groups. As shown in Figure 49, significant increases in collagen content at the surgical site were demonstrated at both 1 mg/kg KGF-2 $\Delta 33$ (p=0.02) and 5 mg/kg (p=0.004) relative to buffer controls.

Table
Colonic Anastomosis
Radiologic Analysis

	Groups	Feces Present	Anastomotic Constriction*	Peritoneal Leakage
5	No Treatment (N=8)	50%	2.0	75%
	Buffer (N=7)	57%	1.0	50%
10	KGF-2Δ33 [1 mg/kg] (N=8)	50%	1.3	37%
	KGF-2Δ33 [5 mg/kg] (N=9)	77%	1.6	11%

^{*}Anastomotic Constriction Scoring: 0 -no constriction; 1-5 -minimal to severe constriction

Male adult SD rats (n=5) were anesthetized with a combination of ketamine (50 mg/kg) and xylazine (5 mg/kg) intramuscularly. The abdominal cavity was opened with a 4 cm long midline incision. A 1 cm wide segment of the left colon was resected 3 cm proximal to the peritoneal reflection while preserving the marginal vessels. A single layer end-to-end anastomosis was performed with 8-10 interrupted 6-0 prolene inverted sutures to restore intestinal continuity. The anastomosis was then topically treated via syringe with either buffer or KGF-2 at concentrations of 1 and 4 μ g. The incisional wound was closed with 3-O running silk suture for the muscle layer and surgical staples for the skin. Treatments were then administered daily thereafter and consisted of buffer or KGF-2 Δ 33 at 1 and 5 mg/kg sc. Weights were taken on the day of surgery and daily thereafter. Animals were euthanized 24 hours following the last treatment (day 5). Animals were anesthetized and received barium enemas and were x-rayed at a fixed distance. The anastomosis was then excised for histopathological and biomechanical analysis.

25

20

Example 29

Evaluation of KGF-2 in a Model of Inflammatory Bowel Disease

KGF-2 is a protein that induces keratinocyte proliferation in vitro and is active in a variety of wound healing models in vivo. The purpose of this study was to determine whether KGF-2 was efficacious in a model of murine colitis induced by ad libitum exposure to dextran sodium sulfate in the drinking water.

Six to eight week old female Swiss Webster mice (20-25g, Charles River, Raleigh, NC)) were used in a model of inflammatory bowel disease induced with a 4% solution of sodium sulfate (DSS, 36,000-44,000 MW, American International Chemistry, Natick, MA)) administered ad libitum for one week. KGF-2 was given by daily parenteral administration (n = 10). Three parameters were used to determine efficacy: 1) clinical score, based on evaluation of the stool; 2) histological score, based on evaluation of the colon; and 3) weight change. The clinical score was comprised of two parts totaling a maximum of score of four. Stool consistency was graded as: 0 = firm; 1 = loose; 2 diarrhea. Blood in the stool was also evaluated on a 0 to 2 scale with 0 = no blood; 1 = nooccult blood; and 2 = gross rectal bleeding. A mean group score above 3 indicated probable lethality, and disease which had progressed beyond its treatable stage. Clinical scores were taken on Day 0, 4, 5, 6, and 7. To arrive at a histological score, slides of the ascending, transverse and descending colon were evaluated in a blinded fashion based on inflammation score (0-3) and crypt score (0-4). Body weight was measured daily. Data was expressed as mean + SEM. An unpaired Student's t test was used to determine significant differences compared to the disease control (* p < 0.05; ** p < 0.01; *** p < 0.001).

When DSS-treated mice were given a daily, intra-peritoneal (IP) injection of KGF-2 $\Delta 33$ at a dose of 1, 5 or 10 mg/kg for 7 days, KGF-2 significantly reduced clinical score, 28, 38 and 50 percent, respectively. Histological

10

5

15

20

evaluation closely paralleled the dose dependent inhibition of the clinical score, with the 1, 5 and 10 mg/kg dose reducing histological score a significant 26, 48 and 51 percent. KGF-2 also significantly reduced weight loss associated with DSS-induced colitis.

5

In a second study, a comparison was made of the relative efficacy of KGF-2 $\Delta 33$ (10 mg/kg) when given IP or sub-cutaneous (SC) daily. By the end of the experiment on Day 7, animals injected IP with KGF-2 had a significant, 34 percent reduction in clinical score while KGF-2 injected SC resulted in a significant 46 percent reduction. The SC dose also significantly reduced weight loss over DSS controls. Based on measurement of clinical score and body weight, SC administration of KGF-2 is at least as efficacious as IP administration.

10

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples.

15

Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, within the scope of the appended claims, the invention may be practiced otherwise than as particularly described.

20

The entire disclosure of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein are hereby incorporated by reference.

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page, line						
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution						
AMERICAN TYPE CULTURE COLLECTION						
Address of depositary institution (including postal code and country)						
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	·					
Date of deposit	Accession Number					
16 December 1994	ATCC Designation 75977					
C. ADDITIONAL INDICATIONS (leave blank if not applicable	r) This information is continued on an additional sheet					
DNA PLASMID 366885A						
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave						
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	This sheet was received by the International Bureau on:					
Authorized officer	Authorized officer					

Form PCT/RO/134 (July 1992)

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description					
on page4 . line line					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution	and a street				
AMERICAN TYPE CULTURE COLLECTION					
Address of depositary institution (including postal code and country)					
12301 Parklawn Drive Rockville, Maryland 20852 United States of America					
	•				
Date of deposit 16 December 1994	Accession Number .				
	ATCC Designation 75977				
C. ADDITIONAL INDICATIONS (leave blank if not applicable	c) This information is continued on an additional sheet				
In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC). D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)					
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession					
·	Bureau later (specify the general nature of the indications e.g., "Accession				
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application Linguistic Library Authorized officer Form PCT/RC/1134 (July 1992)	This sheet was received by the International Bureau on: 0 9 SEPTEMBER 1997 Authorized officer				

10

15

20

25

What Is Claimed Is:

- 1. An isolated polypeptide selected from the group consisting of:
- (a) a Keratinocyte Growth Factor-2 (KGF-2) N-terminal deletion mutant, wherein said mutant comprises the amino acid sequence of Figure 1 except for a deletion of at least the first 38 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues of Figure 1;
- (b) a Keratinocyte Growth Factor-2 (KGF-2) C-terminal deletion mutant, wherein said mutant comprises the amino acid sequence of Figure 1 except for a deletion of at least the last C-terminal amino acid residue (Ser (208)) but not more than the last 55 C-terminal amino acid residues of Figure 1, wherein the N-terminal amino acid residue of said KGF-2 C-terminal deletion mutant is amino acid residue 1 (Met), 36 (Thr), or 37 (Cys) of Figure 1;
- (c) a Keratinocyte Growth Factor-2 (KGF-2) N-terminal and C-terminal deletion mutant, wherein said mutant comprises the amino acid sequence of Figure 1 except for a deletion of at least the first 38 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues of Figure 1 and a deletion of at least the last C-terminal amino acid residue (Ser (208)) but not more than the last 55 C-terminal amino acid residues of Figure 1;
- (d) a polypeptide having an amino acid sequence at least 95% identical to the amino acid sequence of said KGF-2 deletion mutant of (a);
- (e) a polypeptide having an amino acid sequence at least 95% identical to the amino acid sequence of said KGF-2 deletion mutant of (b);
- (f) a polypeptide having an amino acid sequence at least 95% identical to the amino acid sequence of said KGF-2 deletion mutant of (c);

10

15

20

- (g) a polypeptide having an amino acid sequence identical to the amino acid sequence of said KGF-2 deletion mutant of (a) except for at least one amino acid substitution:
- (h) a polypeptide having an amino acid sequence identical to the amino acid sequence of said KGF-2 deletion mutant of (b) except for at least one amino acid substitution;
- (i) a polypeptide having an amino acid sequence identical to the amino acid sequence of said KGF-2 deletion mutant of (c) except for at least one amino acid substitution; wherein,

said isolated polypeptide stimulates proliferation of keratinocytes.

- 2. The isolated polypeptide of claim 1, wherein said polypeptide is (a).
- 3. The isolated polypeptide of claim 2, wherein said mutant has a deletion of at least the first 46 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues.
- 4. The isolated polypeptide of claim 3, wherein said mutant has a deletion of at least the first 62 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues.
- 5. The isolated polypeptide of claim 4, wherein said mutant has a deletion of at least the first 68 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues.
- 6. The isolated polypeptide of claim 5, wherein said mutant has a deletion of at least the first 76 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues.
- 7. The isolated polypeptide of claim 6, wherein said mutant has a deletion of at least the first 92 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues.

10

15

20

- 8. The isolated polypeptide of claim 7, wherein said mutant has a deletion of at least the first 103 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues.
- 9. The isolated polypeptide of claim 8, wherein said mutant has a deletion of at least the first 122 N-terminal amino acid residues but not more than the first 137 N-terminal amino acid residues.
- 10. The isolated polypeptide of claim 9, wherein said mutant has a deletion of the first 137 N-terminal amino acid residues.
- 11. The isolated polypeptide of claim 2, wherein said mutant has an amino acid sequence as shown in Figure 1 selected from the group consisting of Ala (39) Ser (208); Pro (47) Ser (208); Ala (63) Ser (208); Ser (69) Ser (208); Val (77) Ser (208); Glu (93) Ser (208); Glu (104) Ser (208); Val (123) Ser (208); Gly (138) Ser (208).
- 12. The isolated polypeptide of claim 2, wherein said mutant has enhanced keratinocyte growth stimulating activity as compared to wild-type KGF-2.
- 13. The isolated polypeptide of claim 1, wherein said polypeptide is
 (d)
- 14. The isolated polypeptide of claim 13, wherein said amino acid sequence is at least 97% identical to the amino acid sequence of said KGF-2 N-terminal deletion mutant of (a).
- 15. The isolated polypeptide of claim 14, wherein said amino acid sequence is at least 99% identical to the amino acid sequence of said KGF-2 N-terminal deletion mutant of (a).
- 16. The isolated polypeptide of claim 15, wherein said amino acid sequence is identical to the amino acid sequence of said KGF-2 N-terminal deletion mutant of (a).

10

15

20

- 17. The isolated polypeptide of claim 1, wherein said polypeptide is (g).
- 18. The isolated polypeptide of claim 17, wherein said at least one amino acid substitution is selected from the group consisting of Arg (194) Glu, Arg(194)Gln, Lys(191)Glu, Lys(191)Gln, Arg(188)Glu, Arg(188)Gln, and Lys (183) Glu.
- 19. The isolated polypeptide of claim 1, wherein said polypeptide is (b).
- 20. The isolated polypeptide of claim 19, wherein said mutant has a deletion of at least the last 10, 20, 30, 40, or 50 C-terminal amino acids but not more than the last 55 C-terminal amino acids.
 - 21. The isolated polypeptide of claim 20, wherein said mutant has a deletion of the last 55 C-terminal amino acids.
 - 22. The isolated polypeptide of claim 19, where said mutant has an amino acid sequence as shown in Figure 1 selected from the group consisting of Met (1) Lys (153), Thr (36) Lys (153), and Cys (37) Lys (153).
 - 23. The isolated polypeptide of claim 1, wherein said polypeptide is (e).
 - 24. The isolated polypeptide of claim 23, wherein said amino acid sequence is at least 97% identical to the amino acid sequence of said KGF-2 C-terminal deletion mutant of (b).
 - 25. The isolated polypeptide of claim 24, wherein said amino acid sequence is at least 99% identical to the amino acid sequence of said KGF-2 C-terminal deletion mutant of (b).
 - 26. The isolated polypeptide of claim 25, wherein said amino acid sequence is identical to the amino acid sequence of said KGF-2 C-terminal deletion mutant of (b).

10

15

20

- 27. The isolated polypeptide of claim 1, wherein said polypeptide is (h).
- 28. The isolated polypeptide of claim 27, wherein said at least one amino acid substitution is selected from the group consisting of Cys (37) Ser and Cys (106) Ser.
- 29. The isolated polypeptide of claim 1, wherein said polypeptide is (c).
- 30. The isolated polypeptide of claim 29, wherein said mutant has a deletion of at least the first 46, 62, 68, 76, 92, 103, or 122 N-terminal amino acids but not more than the first 137 N-terminal amino acids of Figure 1 and a deletion of at least the last 10, 20, 30, 40, or 50 C-terminal amino acids but not more than the last 55 C-terminal amino acids of Figure 1.
- 31. The isolated polypeptide of claim 29, where said mutant has an amino acid sequence as shown in Figure 1 selected from the group consisting of Ala (39) His (200), Met (44) Arg (193), Ala (63) Lys (153), and Ser (69) Lys (153).
- 32. The isolated polypeptide of claim 1, wherein said polypeptide is (f).
- 33. The isolated polypeptide of claim 32, wherein said amino acid sequence is at least 97% identical to the amino acid sequence of said KGF-2 N-terminal and C-terminal deletion mutant of (c).
- 34. The isolated polypeptide of claim 33, wherein said amino acid sequence is at least 99% identical to the amino acid sequence of said KGF-2 N-terminal and C-terminal deletion mutant of (c).
- 35. The isolated polypeptide of claim 34, wherein said amino acid sequence is identical to the amino acid sequence of said KGF-2 N-terminal and C-terminal deletion mutant of (c).

WO 98/06844 PCT/US97/14112

-172-

36. The isolated polypeptide of claim 1, wherein said polypeptide is (i).

- 37. The isolated polypeptide of claim 1, wherein said amino acid sequence of said mutant includes the amino acid Met added to the N-terminus.
- 38. The isolated polypeptide of claim 1, which is part of a fusion protein.

5

10

15

20

25

- 39. The isolated polypeptide of claim 38, wherein said polypeptide is fused to a marker sequence.
- 40. The isolated polypeptide of claim 39, wherein said marker sequence is selected from a hexahistidine tag or a hemagglutinin tag.
- 41. The isolated polypeptide of claim 1, which is produced or contained in a recombinant host cell.
- 42. The isolated polypeptide of claim 41, wherein said host cell is mammalian.
 - 43. An isolated polypeptide selected from the group consisting of:
- (a) a Keratinocyte Growth Factor-2 (KGF-2) N-terminal deletion mutant, wherein said mutant consists essentially of the amino acid sequence Ser (69) Ser (208) of Figure 1;
- (b) a polypeptide having an amino acid sequence at least 95% identical to the amino acid sequence of said KGF-2 N-terminal deletion mutant of (a);
- (c) a polypeptide having an amino acid sequence identical to the amino acid sequence of said KGF-2 N-terminal deletion mutant of (a) except for at least one amino acid substitution; wherein,

said isolated polypeptide stimulates proliferation of keratinocytes.

44. The isolated polypeptide of claim 43, wherein said polypeptide is (a).

10

15

20

- 45. The isolated polypeptide of claim 44, wherein said mutant has enhanced keratinocyte growth stimulating activity as compared to wild-type KGF-2.
- 46. The isolated polypeptide of claim 43, wherein said polypeptide is (b).
 - 47. The isolated polypeptide of claim 46, wherein said amino acid sequence is at least 97% identical to the amino acid sequence of said KGF-2 N-terminal deletion mutant of (a).
- 48. The isolated polypeptide of claim 47, wherein said amino acid sequence is at least 99% identical to the amino acid sequence of said KGF-2 N-terminal deletion mutant of (a).
 - 49. The isolated polypeptide of claim 48, wherein said amino acid sequence is identical to the amino acid sequence of said KGF-2 N-terminal deletion mutant of (a).
 - 50. The isolated polypeptide of claim 43, wherein said polypeptide is (c).
 - 51. The isolated polypeptide of claim 50, wherein said at least one amino acid substitution increases stability of said mutant.
 - 52. The isolated polypeptide of claim 51, wherein said at least one amino acid substitution is selected from the group consisting of Arg (194) Glu, Arg (194) Gln, Lys (191) Glu, Lys (191) Gln, Arg (188) Glu, Arg (188) Gln, and Lys (183) Glu.
 - 53. The isolated polypeptide of claim 43, wherein said polypeptide includes the amino acid Met added to the N-terminus.
 - The isolated polypeptide of claim 43, which is part of a fusion protein.
 - 55. The isolated polypeptide of claim 54, wherein said polypeptide is fused to a marker sequence.

10

15

20

- 56. The isolated polypeptide of claim 55, wherein said marker sequence is selected from a hexahistidine tag or a hemagglutinin tag.
- 57. The isolated polypeptide of claim 43, which is produced or contained in a recombinant host cell.
- 58. The isolated polypeptide of claim 57, wherein said host cell is mammalian.
 - 59. An isolated polypeptide comprising a hydrophilic region of Keratinocyte Growth Factor-2 (KGF-2), wherein said peptide is not more than 150 amino acids in length and comprises an amino acid sequence as shown in Figure 1 selected from the group consisting of Gly (41) Asn (71), Lys (91) Ser (109), Asn (135) Tyr (164), and Asn (181) Ala (199).
 - 60. The polypeptide of claim 59, which is not more than 100 amino acids in length.
 - 61. The polypeptide of claim 60, which is not more than 50 amino acids in length.
 - 62. The isolated polypeptide of claim 1, together with a pharmaceutically acceptable carrier or excipient.
 - 63. The isolated polypeptide of claim 43, together with a pharmaceutically acceptable carrier or excipient.
 - 64. The isolated polypeptide of claim 59, together with a pharmaceutically acceptable carrier or excipient.
 - 65. An isolated polynucleotide encoding a polypeptide of claim 1.
 - 66. An isolated polynucleotide encoding a polypeptide of claim 43.
 - 67. An isolated polynucleotide encoding a polypeptide of claim 59.
 - 68. The isolated polynucleotide of claim 65, which is optimized for expression in *E. coli*.

10

15

20

25

- 69. The isolated polynucleotide of claim 68, having the nucleotide sequence of Figure 23.
- 70. The isolated polynucleotide of claim 68, having the nucleotide sequence of Figure 24A.
- 71. The isolated polynucleotide of claim 68, having the nucleotide sequence of Figure 24B.
 - 72. The isolated polynucleotide of claim 66, which is optimized for expression in *E. coli*.
- 73. The isolated polynucleotide of claim 72, having the nucleotide sequence as shown at page 125, lines 7-17 of the specification.
 - 74. A method for making a recombinant vector comprising inserting the nucleic acid molecule of claim 65, 66 or 67 into a vector.
 - 75. A recombinant vector produced by the method of claim 74.
 - 76. A method of making a recombinant host cell comprising introducing the recombinant vector of claim 75 into a host cell.
 - 77. A recombinant host cell produced by the method of claim 76.
 - 78. The isolated polypeptide of claim 1, 43, or 59, which is produced by a method comprising:

introducing a recombinant vector comprising a polynucleotide encoding said polypeptide into a host cell;

culturing said host cell; and recovering said polypeptide.

79. A method for producing a polypeptide comprising:

culturing the recombinant host cell of claim 77 under conditions that said vector is expressed; and

recovering said polypeptide.

10

15

20

25

- 80. A method of stimulating growth or proliferation of keratinocytes comprising contacting said cells with an effective amount of the polypeptide of claim 1 or 43.
- 81. The method of claim 80, wherein said polypeptide is administered to an individual.
- 82. The method of claim 81, wherein said polypeptide is administered for a purpose selected from:

preventing or improving the appearance of wrinkles or aged skin, improving skin strength, promoting epidermal thickening, reducing scarring, or improving healing after cosmetic surgery.

- 83. A method of promoting wound healing comprising administering an effective amount of the polypeptide of claim 1 or 43 to an individual.
- 84. The method of claim 83, wherein said individual is wound healing impaired.
- 85. The method of claim 84, wherein said impairment in wound healing is caused by diabetes, ischemic blockage or injury, steriods, non-steroid compounds, uremia, malnutrition, vitamin deficiencies, obesity, infection, immunosuppression, radiation therapy, or chemotherapy.
- 86. The method of claim 83, wherein said wound is selected from surgical wounds, excisional wounds, deep wounds involving damage of the dermis and epidermis, eye tissue wounds, dental tissue wounds, oral cavity wounds, diabetic ulcers, dermal ulcers, cubitus ulcers, arterial ulcers, venous stasis ulcers, or burns.
- 87. A method of treating wounds caused by a colonic or gastrointestinal (GI) surgical procedure comprising administering an effective amount of the polypeptide of claim 1 or 43 to an individual in need thereof.
 - 88. The method of claim 87, wherein said procedure is anastomosis.

10

15

20

- 89. The method of claim 87, wherein said individual is wound healing impaired.
- 90. The method of claim 89, wherein said impairment is caused by diabetes, ischemic blockage or injury, steriods, non-steroid compounds, uremia, malnutrition, vitamin deficiencies, obesity, infection, immunosuppression, radiation therapy, or chemotherapy.
- 91. A method of treating or preventing mucositis comprising administering an effective amount of the polypeptide of claim 1 or 43 to an individual in need thereof.
- 92. The method of cliam 91, wherein said mucositis is selected from oral, esophageal, gastric, intestinal, colonic, rectal or anal.
- 93. A method of treating inflammatory bowel disease comprising administering an effective amount of the polypeptide of claim 1 or 43 to an individual in need thereof.
- 94. The method of claim 93 wherein said disease is selected from ulcerative colitis or Crohn's disease.
- 95. A method of reducing inflammation comprising administering an effective amount of the polypeptide of claim 1 or 43 to an individual in need thereof.
- 96. The method of claim 95, wherein said inflammation is associated with a disease or condition selected from psoriasis, eczema, dermatitis, or arthritis.
- 97. A method of promoting hair growth comprising administering an effective amount of the polypeptide of claim 1 or 43 to an individual in need thereof.
- 98. A method of treating tissue exposed to radiation or protecting tissue to be exposed to radiation comprising administering an effective amount of the polypeptide of claim 1 or 43 to an individual in need thereof.