CS 6300

Please use the LATEX template to produce your writeups. See the Homework Assignments page on the class website for details. Hand in via gradescope.

Temporal Difference Learning 1

For the MDP above, you decide to use experience and TD learning to find the values. You experience the following 3 episodes.

S	A				R			
C	S	40	С	S	40 200	С	S	400
C	S	40	C	g	200	G	S	40
C	S	400	I			G	g	400
G	S	40				Α		
G	S	-200						
U								

The learning rate is $\alpha = (1/2)^n$, where n is the episode number. Initialize all values to 0 and perform TD learning to estimate the state values $V^{\pi}(S)$ using the above three episodes.

Equation for TD learning: $V^{\pi}(S) = (1 - \alpha)V^{\pi}(S) + \alpha(R(S, A, S') + \gamma V^{\pi}(S'))$

1:
$$V^{\pi}(C) = (1 - \frac{1}{2}) * 0 + \frac{1}{2}(40 + 1 * 0) = 20$$

2:
$$V^{\pi}(C) = (1 - \frac{1}{2}) * 20 + \frac{1}{2}(40 + 1 * 20) = 40$$

3:
$$V^{\pi}(C) = (1 - \frac{1}{2}) * 30 + \frac{1}{2}(400 + 1 * 0) = 215$$

4:
$$V^{\pi}(G) = (1 - \frac{1}{2}) * 0 + \frac{1}{2}(40 + 1 * 0) = 20$$

1:
$$V^{\pi}(C) = (1 - \frac{1}{2}) * 0 + \frac{1}{2}(40 + 1 * 0) = 20$$

2: $V^{\pi}(C) = (1 - \frac{1}{2}) * 20 + \frac{1}{2}(40 + 1 * 20) = 40$
3: $V^{\pi}(C) = (1 - \frac{1}{2}) * 30 + \frac{1}{2}(400 + 1 * 0) = 215$
4: $V^{\pi}(G) = (1 - \frac{1}{2}) * 0 + \frac{1}{2}(40 + 1 * 0) = 20$
5: $V^{\pi}(G) = (1 - \frac{1}{2}) * 20 + \frac{1}{2}(-200 + 1 * 20) = -80$

Episode 2:

1:
$$V^{\pi}(C) = (1 - \frac{1}{4}) * 215 + \frac{1}{4}(40 + 1 * 215) = 225$$

2:
$$V^{\pi}(C) = (1 - \frac{1}{4}) * 225 + \frac{1}{4}(200 + 1 * 0) = 218.75$$

Episode 3:

- **1:** $V^{\pi}(C) = (1 \frac{1}{8}) * 218.75 + \frac{1}{8}(400 + 1 * -80) = 231.40625$ **2:** $V^{\pi}(G) = (1 \frac{1}{8}) * -80 + \frac{1}{8}(40 + 1 * -80) = -75$ **3:** $V^{\pi}(G) = (1 \frac{1}{8}) * -75 + \frac{1}{8}(400 + 1 * 0) = -15.625$

2 Q-learning

In this simplied version of blackjack, the deck is infinite and the dealer always has a fixed count of 15. The deck contains cards 2 through 10, J, Q, K, and A, each of which is equally likely to appear when a card is drawn. Each number card is worth the number of points shown on it, the cards J, Q, and K are worth 10 points, and A is worth 11. At each turn, you may either *hit* or *stay*.

- If you choose to hit, you receive no immediate reward and are dealt an additional card.
- If you stay, you receive a reward of 0 if your current point total is exactly 15, +10 if it is higher than 15 but not higher than 21, and -10 otherwise (i.e., lower than 15 or larger than 21).
- After taking the stay action, the game enters a terminal state end and ends.
- A total of 22 or higher is referred to as a *bust*; from a *bust*, you can only choose the action *stay*.

As your state space you take the set $\{0, 2, \dots, 21, bust, end\}$ indicating point totals.

Given the partial table of initial Q-values below left, fill in the partial table of Q-values on the right after the episode center below occurs. Assume $\alpha=0.5$ and $\gamma=1$. The initial portion of the episode has been omitted. Show the derivation of the Q values that are updated.

s	a	Q(s,a)
19	hit	-2
19	stay	5
20	hit	-4
20	stay	7
21	hit	-6
21	stay	8
bust	stay	-8

s	a	r
19	hit	0
21	hit	0
bust	stay	-10

s	a	Q(s,a)
19	hit	3
19	stay	5
20	hit	-4
20	stay	7
21	hit	-7
21	stay	8
bust	stay	-9

Equation: $Q(s_t, a_t) = (1 - \alpha)Q(s_t, a_t) + \alpha(R(s_t, a_t, s_{t+1}) + \gamma max_{a'}Q(s_{t+1}, a'))$ Q value updates:

$$\begin{array}{l} Q(19,hit) = (1-\frac{1}{2})*-2+\frac{1}{2}(0+1*8) = 3 \\ Q(21,hit) = (1-\frac{1}{2})*-6+\frac{1}{2}(0+1*-8) = -7 \\ Q(bust,stay) = (1-\frac{1}{2})*-8+\frac{1}{2}(-10+1*0) = -9 \end{array}$$