Unit 15

Answer Key

Section 15-1

- 1. B 2. C
- 3. B
- 4. D 5. C

Section 15-2

- 1. B 2. C
- 3. D

4. A

Section 15-3

- 1. A
- 2. C
- 3. B
- 4. D

Chapter 15 Practice Test

1. D

6. D

2. C

7. $\frac{5}{13}$

- 3.C 8.9
- 4. B9. 10.5

5. D

- Answers and Explanations

Section 15-1

1. B

Draw a perpendicular segment from B to the opposite side AC. Let the perpendicular segment intersect side AC at D. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$AD = \frac{1}{2}AC = \frac{1}{2}(12) = 6$$
.

In right $\triangle ABD$,

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AD}{AB} = \frac{6}{10} = 0.6$$
.

2. C

$$AB^2 = BD^2 + AD^2$$
 Pythagorean Theorem
 $10^2 = BD^2 + 6^2$
 $100 = BD^2 + 36$

$$64 = BD^2$$

$$8 = BD$$

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{8}{10} = 0.3$$

3. B

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BD}{AD} = \frac{8}{6} = \frac{4}{3}$$

4 D

If x and y are acute angles and $\cos x^{\circ} = \sin y^{\circ}$, x + y = 90 by the complementary angle theorem.

$$(3a-14)+(50-a)=90$$
 $x=3a-14$, $y=50-a$
 $2a+36=90$ Simplify.
 $2a=54$
 $a=27$

5. C

I.
$$\sin A = \frac{\text{opposite of } \angle A}{\text{hypotenuse}} = \frac{a}{c}$$

Roman numeral I is true.

II.
$$\cos B = \frac{\text{adjacent of } \angle B}{\text{hypotenuse}} = \frac{a}{c}$$

Roman numeral II is true.

III.
$$\tan A = \frac{\text{opposite of } \angle A}{\text{adjacent of } \angle A} = \frac{a}{b}$$

Roman numeral III is false.

Section 15-2

1. B

The graph shows P(x, y) = P(1,1). Thus, x = 1 and y = 1. Use the distance formula to find the length of radius OA.

$$OA = \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} \text{ or } \sin \theta = \frac{\sqrt{2}}{2}$$

Therefore, the measure of $\angle POQ$ is 45° , which is equal to $45(\frac{\pi}{180}) = \frac{\pi}{4}$ radians. Thus, $k = \frac{1}{4}$.

2. C

Use the complementary angle theorem. $\cos(\theta) = \sin(90^\circ - \theta) \text{ , or } \cos(\theta) = \sin(\frac{\pi}{2} - \theta)$ Therefore, $\cos(\frac{\pi}{8}) = \sin(\frac{\pi}{2} - \frac{\pi}{8}) = \sin(\frac{3\pi}{8}) \text{ .}$ All the other answer choices have values different from $\cos(\frac{\pi}{8})$.

3. D

In $\triangle OAD$, $\sin \frac{\pi}{3} = \sin 60^\circ = \frac{AD}{OA} = \frac{AD}{6}$. Since $\sin 60^\circ = \frac{\sqrt{3}}{2}$, you get $\frac{AD}{6} = \frac{\sqrt{3}}{2}$. Therefore, $2AD = 6\sqrt{3}$ and $AD = 3\sqrt{3}$.

4. A

Use the distance formula to find the length of OA. $OA = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$ $\cos \angle AOD = \frac{OD}{OA} = \frac{3}{5}$

Section 15-3

1. A

Draw segment PR, which is perpendicular to the x-axis. In right triangle POR, x = -1

and $y = \sqrt{3}$. To find the length of OP, use the Pythagorean theorem.

$$OP^2 = PR^2 + OR^2 = (\sqrt{3})^2 + (-1)^2 = 4$$

Which gives OP = 2.

$$\cos a^{\circ} = \frac{x}{OP} = \frac{-1}{2}$$

2. C

Since the terminal side of $(a+180)^{\circ}$ is OT, the value of $\cos(a+180)^{\circ}$ is equal to $\frac{OS}{OT}$.

$$\frac{OS}{OT} = \frac{1}{2}$$

3. B

Draw segment PR, which is perpendicular to the x-axis. In right triangle POR, $x = -\sqrt{3}$ and y = -1. To find the length of OP, use the Pythagorean theorem.

$$OP^2 = PR^2 + OR^2 = (-1)^2 + (\sqrt{3})^2 = 4$$

Which gives OP = 2.

Since $\sin \angle POR = \frac{y}{OP} = \frac{-1}{2}$, the measure of

 $\angle POR$ is equal to 30°, or $\frac{\pi}{6}$ radian.

$$k\pi = \pi + \frac{\pi}{6} = \frac{7}{6}\pi$$

Therefore, $k = \frac{7}{6}$

4. D

$$\tan(k\pi) = \tan(\frac{7}{6}\pi) = \frac{y}{x} = \frac{-1}{-\sqrt{3}} = \frac{1}{\sqrt{3}}$$

Chapter 15 practice Test

1. D

Note: Figure not drawn to scale.

In
$$\triangle ABC$$
, $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{BC}{AC}$

If
$$\tan \theta = \frac{3}{4}$$
, then $BC = 3$ and $AC = 4$.

By the Pythagorean theorem,

$$AB^2 = AC^2 + BC^2 = 4^2 + 3^2 = 25$$
, thus $AB = \sqrt{25} = 5$.

$$\sin\theta = \frac{BC}{AB} = \frac{3}{5}$$

2. C

$$\tan \angle A = \frac{\text{opposite side of } \angle A}{\text{adjacent side of } \angle A} = \frac{s}{s} = 1$$
$$= \frac{s}{s} = 1$$

3. C

Draw segment PR, which is perpendicular to the x-axis. In right triangle POR, $x = -\frac{1}{2}$ and $y = \frac{\sqrt{3}}{2}$. To find the length of OP, use the Pythagorean theorem.

Which gives
$$OP = 1$$
. Thus, triangle OPR is $30^{\circ}-60^{\circ}-90^{\circ}$ triangle and the measure of $\angle POR$ is 60° , which is $\frac{\pi}{3}$ radian. Therefore, the measure of $\angle POQ$ is $\pi - \frac{\pi}{3}$, or $\frac{2\pi}{3}$ radian. If $\angle POQ$ is $k\pi$ radians then k is equal to $\frac{2}{3}$.

4 F

Since the terminal side of $(k+1)\pi$ is OT, the value of $\cos(k+1)\pi$ is equal to $\frac{OS}{OT}$.

$$\frac{OS}{OT} = \frac{1}{2}$$

5. D

Area of triangle $ABC = \frac{1}{2}(AC)(BD)$

Check each answer choice.

A)
$$\frac{1}{2}(AB\cos\angle A + BC\cos\angle C)(AB\cos\angle ABD)$$
$$= \frac{1}{2}(AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC})(AB \cdot \frac{BD}{AB})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$

B)
$$\frac{1}{2}(AB\cos\angle A + BC\cos\angle C)(BC\sin\angle C)$$
$$= \frac{1}{2}(AB\cdot\frac{AD}{AB} + BC\cdot\frac{CD}{BC})(BC\cdot\frac{BD}{BC})$$
$$= \frac{1}{2}(AD + CD)(BD) = \frac{1}{2}(AC)(BD)$$

C)
$$\frac{1}{2}(AB\sin\angle ABD + BC\sin\angle CBD)(AB\sin\angle A)$$

$$= \frac{1}{2} (AB \cdot \frac{AD}{AB} + BC \cdot \frac{CD}{BC}) (AB \cdot \frac{BD}{AB})$$
$$= \frac{1}{2} (AD + CD)(BD) = \frac{1}{2} (AC)(BD)$$

D)
$$\frac{1}{2}(AB\sin\angle ABD + BC\sin\angle CBD)(BC\cos\angle C)$$
$$= \frac{1}{2}(AB\cdot\frac{AD}{AB} + BC\frac{CD}{BC})(BC\cdot\frac{CD}{BC})$$
$$= \frac{1}{2}(AD + CD)(CD) = \frac{1}{2}(AC)(CD)$$

Which does not represent the area of triangle *ABC*.

Choice D is correct.

6. D

Draw segment BD, which is perpendicular to side AC. Because the triangle is isosceles, a perpendicular segment from the vertex to the opposite side bisects the base and creates two congruent right triangles.

Therefore,
$$AD = \frac{1}{2}AC = \frac{1}{2}(24) = 12$$
.

By the Pythagorean theorem, $AB^2 = BD^2 + AD^2$ Thus, $20^2 = BD^2 + 12^2$.

$$BD^2 = 20^2 - 12^2 = 256$$

$$BD = \sqrt{256} = 16$$

In right $\triangle ABD$,

$$\sin x^{\circ} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{BD}{AB} = \frac{16}{20} = \frac{4}{5}$$
.

7. $\frac{5}{13}$

Sketch triangle ABC.

$$AB^{2} = BC^{2} + AC^{2}$$

$$AB^{2} = 10^{2} + 24^{2} = 676$$

$$AB = \sqrt{676} = 26$$

$$\sin A = \frac{10}{26} = \frac{5}{13}$$

8. 9

$$\cos x^{\circ} = \frac{AC}{AB} = \frac{3}{5}$$

Let AC = 3x and AB = 5x.

$$AB^2 = BC^2 + AC^2$$

Pythagorean Theorem

$$(5x)^2 = 12^2 + (3x)^2$$

BC = 12

$$25x^2 = 144 + 9x^2$$

$$16x^2 = 144$$

$$x^2 = 9$$

$$x = \sqrt{9} = 3$$

Therefore, AC = 3x = 3(3) = 9

9. 10.5

According to the complementary angle theorem, $\sin \theta = \cos(90 - \theta)$.

If
$$\sin(5x-10)^{\circ} = \cos(3x+16)^{\circ}$$
,

$$3x+16=90-(5x-10)$$
.

$$3x+16=90-5x+10$$

$$3x+16=100-5x$$

$$8x = 84$$

$$x = 10.5$$

Answer Key

Section 16-1

1. D 4. D

Section 16-2

1. D 2. A 3. B 4. C

Section 16-3

1. A 2. C 4. B

Chapter 16 Practice Test

1. C 2. B 4. C 5. A 6. D 7.540 8. 105

Answers and Explanations

Section 16-1

1. D

$$PQ = QR$$
$$x + 3 = 2x - 1$$

Definition of Midpoint

$$x+3 = 2x-1$$

Substitution x+3-x=2x-1-x Subtract x from each side.

$$3 = x - 1$$

Simplify.

$$4 = x$$

$$PR = PQ + QR$$

Segment Addition Postulate

$$= x + 3 + 2x - 1$$
 Substitution

$$= 3x + 2$$

$$=3(4)+2=14$$

Note: Figure not drawn to scale.

Let
$$PS = x$$
, then $QR = \frac{1}{3}PS = \frac{1}{3}x$.

$$PR = PQ + QR$$

Segment Addition Postulate

$$12 = PQ + \frac{1}{3}$$

 $12 = PQ + \frac{1}{3}x$ PR = 12 and $QR = \frac{1}{3}x$

$$PQ = 12 - \frac{1}{3}x$$

Solve for PQ.

$$QS = QR + RS$$

Segment Addition Postulate

$$16 = \frac{1}{3}x + RS$$
 $QS = 16$ and $QR = \frac{1}{3}x$

$$RS = 16 - \frac{1}{3}x$$
 Solve for RS .
 $PS = PQ + QR + RS$ Segment Addition Postulate

$$PS = PQ + QR + RS$$
 Segment Addition Postulate

$$x = (12 - \frac{1}{3}x) + \frac{1}{3}x + (16 - \frac{1}{3}x)$$
 Substitution

$$x = 28 - \frac{1}{2}x$$
 Simplify.

$$\frac{4}{3}x = 28$$
 Add $\frac{1}{3}x$ to each side.

$$\frac{3}{4} \cdot \frac{4}{3}x = \frac{3}{4} \cdot 28$$
 Multiply $\frac{3}{4}$ by each side.

Therefore, PS = x = 21.

Ray CA and Ray CD are opposite rays, because points A, C, and D are collinear and C is between A and D.

Note: Figure not drwan to scale.

$$AB = \frac{2}{3}BC$$
 Given

$$x+3=\frac{2}{3}(3x-6)$$
 Substitution

$$x+3=2x-4$$
 Simplify. $7=x$ Solve for x .

$$AC = AB + BC$$
 Segment Addition Postulate
= $x + 3 + 3x - 6$ Substitution

$$= 4x-3$$
 Simplify.
= $4(7)-3$ $x = 7$
= 25

Section 16-2

1. D

$$40+x-90=180$$
 Straight \angle measures 180.
 $x-50=180$ Simplify.
 $x-50+50=180+50$ Add 50 to each side.
 $x=230$

2. A

Note: Figure not drawn to scale.

$$x+5x-12=180$$
 Straight \angle measures 180.
 $6x-12=180$
 $6x=192$
 $x=32$
 $x+3y-8=180$ Straight \angle measures 180.
 $32+3y-8=180$ x=32
 $24+3y=180$ Simplify.
 $24+3y-24=180-24$
 $3y=156$
 $y=52$

3. B

Note: Figure not drawn to scale.

$$m\angle BOA = \frac{1}{2}m\angle COA$$
 Definition of \angle bisector $m\angle BOA = \frac{1}{2}(8x-12)$ Substitution $m\angle BOA = 4x-6$ Simplify. $m\angle DOB + m\angle BOA = 180$ Straight \angle measures 180. $11x+6+4x-6=180$ Substitution $15x=180$ Simplify. $x=12$

Thus, $m \angle COA = 8x - 12 = 8(12) - 12 = 84$.

 $m\angle DOC + m\angle COA = 180$ Straight \angle measures 180. $m\angle DOC + 84 = 180$ $m\angle COA = 84$ $m\angle DOC = 96$

4. C

Note: Figure not drawn to scale.

Let
$$m \angle DBE = x$$

 $m \angle ABE$
 $= m \angle ABD + m \angle DBE$ Angle Addition Postulate
 $120 = m \angle ABD + x$ Substitution
 $120 - x = m \angle ABD$
 $m \angle ABD + m \angle CBD = 180$ Straight \angle measures 180.
 $120 - x + 135 = 180$ Substitution
 $255 - x = 180$ Simplify.
 $x = 75$

Therefore, $m \angle DBE = x = 75$.

Section 16-3

1. A

Note: Figure not drawn to scale

5x + 4 + 3x = 180	If $r \parallel t$, consecutive interior
	∠s are supplementary.
8x + 4 = 180	Simplify.
8x = 176	
x = 22	
5x+4+5y-9=180	Straight ∠ measures 180.
5x - 5 + 5y = 180	Simplify.
5(22) - 5 + 5y = 180	x = 22
110 - 5 + 5y = 180	Simplify.
105 + 5y = 180	Simplify.
5y = 75	Simplify.
y = 15	

Therefore, x + y = 22 + 15 = 37.

2. C

$m \angle 1 = a$	If $m \parallel n$, corresponding $\angle s$
	are ≅.
$m \angle 1 = 50$	a = 50
$m \angle 2 = b$	Vertical $\angle s$ are \cong .
m/2 = 120	b = 120

 $m \angle 2 + m \angle 3 = 180$

If $m \parallel n$, consecutive interior ∠s are supplementary. $m \le 2 = 120$

 $120 + m \angle 3 = 180$ $m \angle 3 = 60$

c+110=180

 $m \angle 1 + c + m \angle 3 = 180$ 50 + c + 60 = 180

Straight ∠ measures 180. $m \angle 1 = 50$ and $m \angle 3 = 60$ Simplify.

c = 70

3. D

Note: Figure not drawn to scale.

 $m \angle 1 = x$

If $m \parallel n$, alternate interior ∠s are ≅.

 $m \angle 2 = v$

If ℓ | m , alternate interior ∠s are ≅.

 $m \angle 1 + m \angle 2 + 70 = 360$ There are 360° in a circle. x + y + 70 = 360

 $m \angle 1 = x$ and $m \angle 2 = y$

x + y = 290

4. B

 $m \angle 1 = 55$

If ℓ∥m, alternate interior ∠s are ≅.

 $m \angle 1 + x = 90$

The acute ∠s of a right triangle are complementary.

55 + x = 90x = 35

 $m \angle 1 = 55$

Chapter 16 Practice Test

1. C

Note: Figure not drawn to scale.

$$50 + x + 75 = 180$$
 If $\ell \parallel m$, consecutive interior $\angle s$ are supplementary.
 $125 + x = 180$ Simplify.

$$125 + x = 180$$
$$x = 55$$

2. B

Note: Figure not drwan to scale.

y = 2x + 15

If \(\extstyle \| m \), consecutive interior ∠s are supplementary.

Straight ∠ measures 180.

x + y = 180x + (2x + 15) = 180

y = 2x + 15

3x+15=180

Simplify.

3x = 165x = 55

Therefore, y = 2x + 15 = 2(55) + 15 = 125.

3. A

Note: Figure not drawn to scale.

 $m\angle ABC = 108$

If ℓ∥m, alternate interior

∠s are ≅.

 $m\angle DBC = \frac{1}{2}m\angle ABC$ Definition of \angle bisector

 $m \angle DBC = \frac{1}{2}(108)$

 $m\angle ABC = 108$

 $m\angle DBC = 54$

Simplify.

 $x = m \angle DBC$

If ℓ | m , alternate interior ∠s are ≅.

x = 54

 $m\angle DBC = 54$

4. C

 $m \angle BAC = m \angle DAB$ Definition of ∠ bisector $m\angle BAC = a$

Since straight angles measure 180, $m\angle DAE + m\angle DAB + m\angle BAC = 180$.

 $m\angle DAE + a + a = 180$ $m\angle DAB = m\angle BAC = a$ $m\angle DAE = 180 - 2a$ Subtract 2a.

 $m\angle BCA = m\angle DAE$ If $DA \parallel BC$, corresponding $\angle s$ are \cong .

 $m\angle BCA = 180 - 2a$ $m\angle DAE = 180 - 2a$

5. A

Note: Figure not drawn to scale.

 $m \angle BCA = m \angle DEC$ If $DE \parallel BC$, corresponding ∠s are ≅. $m\angle DEC = 65$ $m \angle BCA = 65$ $m\angle DCE = x$ If $AB \parallel CD$, corresponding

Since straight angles measure 180, $m\angle BCA + m\angle BCD + m\angle DCE = 180$.

65 + 68 + x = 180Substitution 133 + x = 180Simplify. x = 47

6. D

c = 35Vertical $\angle s$ are \cong . a + c = 90∠a and ∠c are complementary. a + 35 = 90c = 35

a = 55

If $r \parallel t$, consecutive interior b+c=180∠s are supplementary.

c = 35

b + 35 = 180

b = 145

Therefore, a+b=55+145=200.

7. 540

Draw $\angle a$.

x + a = 360360" in a circle. x = 360 - aSubtract a from each side. y - a = 180Straight / measures 180. y = 180 + aAdd a to each side.

Therefore, x + y = (360 - a) + (180 + a) = 540.

8. 105

Note: Figure not drawn to scale.

Draw \overline{RU} , which is parallel to \overline{PQ} and \overline{ST} .

If two lines are parallel, then the consecutive interior angles are supplementary. Therefore, $m\angle PQR + m\angle QRU = 180$ and

 $m\angle RST + m\angle URS = 180$.

 $110 + m \angle QRU = 180$ $m\angle PQR = 110$ Subtract 110. $m \angle QRU = 70$ $145 + m \angle URS = 180$ $m\angle RST = 145$ $m \angle URS = 35$ Subtract 145.

By the Angle Addition Postulate, $m\angle QRS = m\angle QRU + m\angle URS$.

Substituting 70 for $m \angle QRU$ and 35 for $m \angle QRU$ gives $m \angle QRS = 70 + 35 = 105$.