MA-207 Differential Equations II

Ronnie Sebastian

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 9th October, 2017 S2 - Lecture 6

Second solution: $r_1 - r_2 \in \mathbb{Z}$

Theorem (Second solution: $r_1 - r_2 \notin \mathbb{Z}$)

A second solution to the differential equation is given by

$$\sum_{n>0} a_n(r_2) x^{n+r_2}$$

Theorem (Second solution: $r_1 = r_2$)

A second solution to the differential equation is given by

$$\sum_{n\geq 0} a'_n(r_2)x^{n+r_2} + \sum_{n\geq 0} a_n(r_2)x^{n+r_2}\log x$$

Theorem (Second solution: $0 \neq r_1 - r_2 \in \mathbb{Z}$)

A second solution to the differential equation is given by

$$\sum_{n>0} A'_n(r_2)x^{n+r_2} + \sum_{n>0} A_n(r_2)x^{n+r_2}\log x$$

Bessel functions

Bessel equation is the second-order linear ODE

$$x^{2}y'' + xy' + (x^{2} - p^{2})y = 0 p \ge 0 (*)$$

The first solution
$$y_1(x) = x^p \sum_{n \ge 0} \frac{(-1)^n}{2^{2n} n! (1+p) \dots (n+p)} x^{2n}$$

converges on $(0,\infty)$. Multiply $y_1(x)$ by $\frac{1}{2^p\Gamma(1+p)}$ (Caution: This should be a nonzero real number!)

$$J_p(x) := \left(\frac{x}{2}\right)^p \sum_{n \ge 0} \frac{(-1)^n}{n! \, \Gamma(n+p+1)} \, \left(\frac{x}{2}\right)^{2n} \quad x > 0.$$

This is called the Bessel function of first kind of order p.

Second independent solution of Bessel equation

Case 1: 2p is not an integer.

Solving the recursion

$$[(r+n)^2 - p^2]a_n(r) + a_{n-2}(r) = 0 \quad n \ge 2 \quad a_1(r) = 0.$$

for r = -p, we obtain

$$y_2(x) = x^{-p} \sum_{n>0} \frac{(-1)^n}{2^{2n} n! (1-p) \dots (n-p)} x^{2n}$$

Multiplying by $\frac{1}{2^{-p}\Gamma(1-p)}$ (Caution: This should be a nonzero real number!)

$$J_{-p}(x) := \left(\frac{x}{2}\right)^{-p} \sum_{n \ge 0} \frac{(-1)^n}{n! \Gamma(n-p+1)} \left(\frac{x}{2}\right)^{2n} \quad x > 0.$$

This is a second solution of the Bessel equation linearly independent of $J_p(x)$.

It is unbounded near x = 0.

Second independent solution of Bessel equation

Case 2: 2p is a positive integer.

Recall that the second solution is given by

$$y_2(x) = \sum_{n \ge 0} A'_n(-p)x^{n-p} + \sum_{n \ge 0} A_n(-p)x^{n-p}\log x$$

where

$$A_n(r) := (r+p)a_n(r)$$

Case 2(a): 2p is an odd positive integer, that is, $p = \frac{2l+1}{2}$ for some l > 0

We have seen that $A_{2n+1}(r) = (r+p)a_{2n+1}(r) = 0$

$$a_{2n}(r) = \frac{(-1)^n}{\prod_{i=1}^n ((r+2i)^2 - p^2)}$$

Second independent solution of Bessel equation

Since the polynomial $\prod_{i=1}^n ((r+2i)^2-p^2)$ evaluated at r=-p, is $\prod_{i=1}^n 4i(i-p) \neq 0$,

the function $a_{2n}(r)$ is analytic in a neighborhood of -p.

Thus, $A_{2n}(-p) = 0$ and $A'_{2n}(-p) = a_{2n}(-p)$.

Thus, in this case we obtain that the second solution is

$$y_2(x) = \sum_{n\geq 0} \frac{(-1)^n}{2^{2n} n! (1-p) \dots (n-p)} x^{2n-p}$$

Multiplying by $\frac{1}{2^{-p}\Gamma(1-p)}$

$$J_{-p}(x) := \left(\frac{x}{2}\right)^{-p} \sum_{n \ge 0} \frac{(-1)^n}{n! \Gamma(n-p+1)} \left(\frac{x}{2}\right)^{2n} \quad x > 0.$$

Case 2(b): 2p is an even positive integer, that is, p is a positive integer.

As before, $A_{2n+1}(r) = 0$. The polynomial $\prod_{i=1}^{n} ((r+2i)^2 - p^2)$ evaluated at r = -p, is $\prod_{i=1}^{n} 4i(i-p)$,

Thus, if n < p, then $a_{2n}(r)$ is analytic in a neighborhood of -p. Thus, if n < p, then $A_{2n}(-p) = 0$ and

$$A'_{2n}(-p) = a_{2n}(-p) = \frac{(-1)^n}{2^{2n}n!(1-p)\dots(n-p)} = \frac{1}{2^{2n}n!(p-n)!}$$

If $n \geq p$, then

$$A_{2n}(-p) = \frac{2(-1)^n}{2^{2n}n!(1-p)\dots(-1)\cdot 1\cdot 2\cdots(n-p)}$$
$$= \frac{-2(-1)^{n-p}}{2^{2n}n!(p-1)!(n-p)!}$$

Define

$$f(r) := \Big(\prod_{i=1}^{p-1}((r+2i)^2-p^2)\Big)(r+3p)\Big(\prod_{i=p+1}^n((r+2i)^2-p^2)\Big) \quad (*)$$

Then

$$A_{2n}(r)f(r) = (-1)^n$$

Differentiating the above and setting r = -p we get

$$A'_{2n}(-p)f(-p) + A_{2n}(-p)f'(-p) = 0$$

Taking log and differentiating (*) we get

$$f'(-p) = f(-p) \left(\frac{1}{2p} + \sum_{i \in \{1, 2, \dots, n\} \setminus p} \frac{1}{2i} + \frac{1}{2(i-p)} \right)$$

$$= f(-p) \left(\frac{H_n}{2} - \frac{H_{p-1}}{2} + \frac{H_{n-p}}{2} \right),$$

where

$$H_0 = 0,$$
 $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$

Thus,

$$A'_{2n}(-p) = -A_{2n}(-p)\left(\frac{H_n}{2} - \frac{H_{p-1}}{2} + \frac{H_{n-p}}{2}\right)$$
$$= \frac{2(-1)^{n-p}}{2^{2n}n!(p-1)!(n-p)!}\left(\frac{H_n}{2} - \frac{H_{p-1}}{2} + \frac{H_{n-p}}{2}\right)$$

Thus, we get

$$y_2(x) = \sum_{n=0}^{p-1} \frac{1}{2^{2n} n! (p-n)!} x^{2n-p} + \sum_{n \ge p} \frac{(-1)^{n-p}}{2^{2n} n! (p-1)! (n-p)!} \Big(H_n - H_{p-1} + H_{n-p} \Big) x^{2n-p} + \sum_{n \ge p} \frac{2(-1)^{n-p}}{2^{2n} n! (p-1)! (n-p)!} x^{2n-p} \log x$$

is a second solution.

Case 3: p = 0 (Repeated root case)

The indicial equation has a repeated root $r_1 = r_2 = 0$,

$$a_{2n}(r) = \frac{(-1)^n}{(r+2)^2(r+4)^2\dots(r+2n)^2}$$
 $a_{2n+1}(r) = 0$

Differentiating $a_{2n}(r)$ with respect to r, we get

$$a'_{2n}(r) = -2a_{2n}(r)\left(\frac{1}{r+2} + \frac{1}{r+4} + \dots + \frac{1}{r+2n}\right)$$
$$a'_{2n}(0) = \frac{(-1)^{n-1}H_n}{2^{2n}(n!)^2}, \quad H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

By theorem stated earlier, the second solution is

$$y_2(x) = J_0(x) \ln x - \sum_{n \ge 1} \frac{(-1)^n H_n}{2^{2n} (n!)^2} x^{2n}$$
 $x > 0$

where $y_1(x) = J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n} (n!)^2} x^{2n}$ is Frobenius solution.

Summary of p = 0 and p = 1/2

For p=0, two independent solutions are $J_0(x)$, which is a real analytic function for all \mathbb{R} , and

$$y_2(x) = J_0(x) \ln x - \sum_{n>1} \frac{(-1)^n H_n}{2^{2n} (n!)^2} x^{2n}$$

For p=1/2, two independent solutions are $J_{1/2}(x)$ and $J_{-1/2}(x)$. These can be expressed in terms of the trigonometric functions (Exercise):

$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x \ \text{ and } \ J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

Both exhibit singular behavior at 0. Near 0, $J_{1/2}(x)$ is bounded but does not have a bounded derivative, while $J_{-1/2}(x)$ is unbounded near 0.

For real p, define

$$J_p(x) := \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(p+n+1)} \left(\frac{x}{2}\right)^{2n+p}$$

- The above is a well defined power series once we know that the Gamma function never vanishes.
- ② If $p \notin \{0, 1, 2, ...\}$ $J_p(x)$ and $J_{-p}(x)$ are the two independent solutions of the Bessel equation.
- **3** If $p \in \{0, 1, 2, ...\}$ then $J_{-p}(x) = (-1)^p J_p(x)$. Thus, in this case the second solution is not $J_{-p}(x)$.

Bessel identities

$$\frac{d}{dx}[x^{-p}J_p(x)] = -x^{-p}J_{p+1}(x)$$

The above two can be obtained by formally differentiating the power series.

$$J_p'(x) + \frac{p}{x} J_p(x) = J_{p-1}(x)$$

$$J_p'(x) - \frac{p}{r} J_p(x) = -J_{p+1}(x)$$

These follow from (1) and (2). Expand LHS and divide by $x^{\pm p}$:

$$J_{p-1}(x) - J_{p+1}(x) = 2J'_{p}(x)$$

6
$$J_{p-1}(x) + J_{p+1}(x) = \frac{2p}{x}J_p(x)$$

Add and subtract (3) and (4) to get (5) and (6).

Consequences of Bessel identities

Problem: Let p > 0. Show that between any two <u>consecutive</u> zeros of $J_p(x)$, there exists <u>precisely one</u> zero of $J_{p-1}(x)$ and precisely one zero of $J_{p+1}(x)$

Solution: Let 0 < c < d be two consecutive zeros of $J_p(x)$.

So $x^pJ_p(x)$ vanishes at c and d. By Rolle's theorem,

$$[x^p J_p(x)]'(b) = 0$$
 for some $b \in (c, d)$

As

$$[x^p J_p(x)]' = x^p J_{p-1}(x)$$

we get $J_{p-1}(b) = 0$.

Repeating the above argument with the identity $\begin{bmatrix} m^{-p} I & (m) \end{bmatrix}^{l} = m^{-p} I & (m) \text{ we get that } I & (m) \end{bmatrix}$

 $[x^{-p}J_p(x)]' = -x^{-p}J_{p+1}(x)$, we get that $J_{p+1}(x)$ has a root in (c,d).

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c,d).

If $J_{p-1}(x)$ had two roots in (c,d), then from above, we conclude that $J_p(x)$ would have a root in (c,d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c,d).

Similarly, $J_{p+1}(x)$ has exactly one root in (c,d).

Problem: Find a and c so that $J_2(x) - J_0(x) = aJ_c''(x)$.

Solution: Using $J_{p-1}(x) - J_{p+1}(x) = 2J_p'(x)$ for p = 1, we get

$$J_0(x) - J_2(x) = 2J_1'(x)$$

Now using $[x^{-p}J_p(x)]' = -x^{-p}J_{p+1}$ for p = 0, we get

$$J_0'(x) = -J_1(x).$$

Therefore, $J_2(x) - J_0(x) = -2J_1'(x) = 2J_0''(x)$.

Hence a=2 and c=0.

We can use

$$J_{p-1}(x) + J_{p+1}(x) = \frac{2p}{x} J_p(x)$$

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x \qquad J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

to see that $J_p(x)$ are elementary functions for $p \in \mathbb{Z} + \frac{1}{2}$.

For example,

•
$$J_{3/2}(x) = \frac{1}{x} J_{1/2}(x) - J_{-1/2}(x)$$

= $\sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$

•
$$J_{\frac{5}{2}}(x) = \frac{3}{x} J_{\frac{3}{2}}(x) - J_{\frac{1}{2}}(x)$$

= $\sqrt{\frac{2}{\pi x}} \left(\frac{3\sin x}{x^2} - \frac{3\cos x}{x} - \sin x \right)$

These functions are called spherical Bessel functions as they arise in solving wave equations in spherical coordinates.

Theorem (Liouville)

 $J_{m+\frac{1}{2}}(x)$'s are the only elementary Bessel functions.

Remark. Integrating some of the Bessel identities we get

$$\frac{d}{dx} [x^p J_p(x)] = x^p J_{p-1}(x)$$

$$\implies \int_0^x t^p J_{p-1}(t) dt = x^p J_p(x) + c$$

$$\frac{d}{dx} [x^{-p} J_p(x)] = -x^{-p} J_{p+1}(x)$$

$$\implies \int_0^x t^{-p} J_{p+1}(t) dt = -x^{-p} J_p(x) + c$$

For example,

$$\int_0^x t J_0(t) dt = x J_1(x) + c$$

Qualitative properties of solutions

It is rarely possible to solve 2nd order linear ODE

$$y'' + P(x)y' + Q(x)y = 0$$

in terms of familiar elementary functions.

Then how do we understand the nature and properties of solutions.

It is surprising that we can obtain quite a bit of information about the solution from the ODE itself.

Theorem (Sturm separation theorem)

If $y_1(x)$ and $y_2(x)$ are linearly independent solns of

$$y'' + P(x)y' + Q(x)y = 0$$

- P,Q continuous on (a,b). Then
- (1) $y_1(x)$ and $y_2(x)$ have no common zero in (a, b).
- (2) Between any two successive zeros of $y_1(x)$, there is exactly one zero of $y_2(x)$ and vice versa.

Proof of (1). Consider the Wronskian

$$W(x) := W(y_1, y_2) = y_1(x)y_2'(x) - y_1'(x)y_2(x)$$

It satisfies the differential equation $W^\prime = -P(x)W$ and so is given by

$$W(x) = C \exp\left(\int_{a_0}^x -P(t)dt\right) \qquad a_0 \in (a,b)$$

In particular, since y_1 and y_2 are linearly independent, the Wronskian is nonzero and so it never vanishes. This proves (1).

Proof of (2). Let x_1 and x_2 be successive zeros of $y_1(x)$.

First let us show y_2 has a zero in (x_1, x_2) .

The Wronskian W(x) has the same sign in the interval (a,b) as it never vanishes. Thus, $W(x_1)$ and $W(x_2)$ have the same sign.

$$0 \neq W(x_1) = -y_1'(x_1)y_2(x_1) \qquad 0 \neq W(x_2) = -y_1'(x_2)y_2(x_2)$$

We conclude that $y'_1(x_1)$ and $y'_1(x_2)$ are nonzero.

It follows that $y_1'(x_1)$ and $y_1'(x_2)$ have opposite signs since x_1 and x_2 are consecutive zeros of y_1 .

It follows that $y_2(x_1)$ and $y_2(x_2)$ have opposite signs. Thus, $y_2(x)$ has a zero in (x_1,x_2) .

If $y_2(x)$ had two zeros in the interval $x_1<\alpha<\beta< x_2$, then by the same reasoning, y_1 will have a zero in (α,β) , which contradicts the assumption that x_1 and x_2 are successive zeros of y_1 .

As a consequence, if y_1 and y_2 are linearly independent solution of y''+P(x)y'+Q(x)y=0, P,Q continuous on (a,b) then the number of zeros of y_1 and y_2 on (a,b) differ by at most 1.

In particular, either both have finite number of zeros or both have infinite number of zeros in (a,b).

 \bullet For further discussion, we need that any ODE in the "standard" form y''+P(x)y'+Q(x)y=0 can be written in the "normal" form u''+q(x)u=0.

Define
$$v(x) := \exp\left(\int_{a_0}^x -\frac{1}{2}P(t)dt\right)$$
 and set $u(x) = \frac{y(x)}{v(x)}$.

One easily checks that u(x) satisfies the differential equation

$$u'' + q(x)u = 0 q(x) := Q(x) - \frac{1}{4}P(x)^2 - \frac{1}{2}P'(x)$$

It is clear that the zeros of u are the same as those of y. Also note that we need P(x) to be once differentiable.

Theorem

Let u(x) be a non-trivial solution of u'' + q(x)u = 0 on finite interval (a,b), with q(x) continuous. Then u(x) has <u>at most</u> finite number of zeros in (a,b).

Hence if u(x) has infinitely many zeros on $(0, \infty)$, then the set of zeros of u(x) are not bounded.

Proof. Assume u(x) has infinitely many zeros in (a,b). Then $\exists \, x_0 \in [a,b]$ and a sequence of zeros $x_n \neq x_0$ such that $x_n \to x_0$ as $n \to \infty$.

 $u(x_0) = \lim_{x_n \to x_0} u(x_n) = 0$ (u is continuous) and

$$u'(x_0) = \lim_{x_n \to x_0} \frac{u(x_n) - u(x_0)}{x_n - x_0} = 0$$

This contradicts the fact that the Wronskian at x_0 is nonzero. \Box

Theorem

Let u(x) be a non-trivial solution of u''+q(x)u=0. If q(x)<0 in (a,b) and continuous then u(x) has <u>atmost one zero</u> in (a,b).

Proof. Assume $u(x_0)=0$. Then $u'(x_0)\neq 0$, since Wronskian $W(x_0)\neq 0$.

Assume x_1 is next zero of u(x) after x_0 .

If necessary, multiply by -1 and assume that $u'(x_0) > 0$.

Then u(x) > 0 on (x_0, x_1) .

Since u''(x) = -q(x)u(x) > 0 on (x_0, x_1) , u'(x) is an increasing function on (x_0, x_1) .

By Rolle's theorem u' has a zero in (x_0, x_1) .

But this is not possible as u' is increasing on (x_0, x_1) .

Added after class

Here is a rigorous proof of the following lemma, which was "intuitively" proved in class.

Lemma

Let f(x) be a function on (a,b), such that f(x) is differentiable and f'(x) is continuous. Let $x_1 < x_2$ be roots of f(x) such that f(x) does not vanish on (x_1,x_2) . Also assume that $f'(x_i) \neq 0$. Then $f'(x_i)$ have opposite signs.

Proof.

We may assume that $f'(x_1)>0$, as if this is not the case, then we can work with -f. Since $f(x_1)=0$ and $f'(x_1)>0$, it follows from the non-vanishing of f, that f(x)>0 in the interval (x_1,x_2) . Assume that $f'(x_2)>0$. As f'(x) is continuous, there is a small neighborhood of x_2 , say $(x_2-\delta,x_2+\delta)$, such that f'(x) is positive on this neighborhood. Continued ...

Added after class

Proof.

Let $x_2 - \delta < x < x_2$ and consider the equality

$$f(x_2) - f(x) = \int_x^{x_2} f'(t)dt$$

The RHS is positive since f'(t) is positive on (x,x_2) . The LHS is -f(x). Thus, we get that f(x)<0. This contradicts the fact that f(x)>0 on (x_1,x_2) .