Discrete Mathematics for CSE of KU

Introduction **Propositional Logic**

Instructor: Kangil Kim (CSE) E-mail: kikim01@konkuk.ac.kr

Tel. : 02-450-3493

Room: New Milenium Bldg. 1103Lab: New Engineering Bldg. 1202

All slides are based on CS441 Discrete Mathematics for Computer Science course of the University of Pittsburgh given and opened by Milos Hauskrecht.

Course administrivia

Instructor: Kangil Kim (CSE) E-mail: kikim01@konkuk.ac.kr

Tel.: 02-450-3493

Room: New Milenium Bldg. 1103Lab: New Engineering Bldg. 1202

Course web page:

http://home.konkuk.ac.kr/~khidpig/lecture/2017 1/dm

Time and Place:

• Monday: 10:30 AM - 11:45 AM, Room No. 303

• Friday: 09:30 AM - 10:45 AM, Room No. 504

Prerequisites:

• No prerequisite courses

Course administrivia

Textbook:

• Kenneth H. Rosen. *Discrete Mathematics and Its Applications*, 7th Edition, McGraw Hill, 2012.

Grading policy

Midterm Exam: 35%Finalterm Exam: 35%

• Homework Assignments: 20%

• Attendance Rate: 10%

Course administrivia

Homework assignments

- Assigned in class and posted on the course web page
- · Due: one week after each posting
- No extension policy

Collaboration policy:

- You may discuss the material covered in the course with your fellow students in order to understand it better
- However, homework assignments should be worked on and written up individually

Course policies:

- Any un-intellectual behavior and cheating on exams, homework assignments, quizzes will be dealt with severely
- If you feel you may have violated the rules speak to us as soon as possible.

Course syllabus

Tentative topics: (not sequentially given)

- Logic and proofs
- Sets
- Functions
- Integers and modular arithmetic
- Sequences and summations
- Counting
- Probability
- Relations
- Graphs

Questions

Discrete mathematics

- Discrete mathematics
 - study of mathematical structures and objects that are fundamentally discrete rather than continuous.
- Examples of objects with discrete values are
 - integers, graphs, or statements in logic.
- Discrete mathematics and computer science.
 - Concepts from discrete mathematics are useful for describing objects and problems in computer algorithms and programming languages. These have applications in cryptography, automated theorem proving, and software development.

Course syllabus

Tentative topics:

- Logic and proofs
- Sets
- Functions
- Integers and modular arithmetic
- Sequences and summations
- Counting
- Probability
- Relations
- Graphs

Course syllabus

Tentative topics:

Logic and proofs

- Sets
- Functions
- Integers and modular arithmetic
- Sequences and summations
- Counting
- Probability
- Relations
- Graphs

Logic

Logic:

- defines a formal language for representing knowledge and for making logical inferences
- It helps us to understand how to construct a valid argument

Logic defines:

- Syntax of statements
- The meaning of statements
- The rules of logical inference (manipulation)

Propositional logic

- The simplest logic
- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - **(T)**
 - 5 + 2 = 8.
 - **(F)**
 - It is raining today.
 - (either T or F)

Propositional logic

- Examples (cont.):
 - How are you?
 - · a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.
 - either T or F

Composite statements

• More complex propositional statements can be build from elementary statements using **logical connectives**.

Example:

- Proposition A: It rains outside
- Proposition B: We will see a movie
- A new (combined) proposition:

If it rains outside then we will see a movie

Composite statements

- More complex propositional statements can be build from elementary statements using **logical connectives**.
- Logical connectives:
 - Negation
 - Conjunction
 - Disjunction
 - Exclusive or
 - Implication
 - Biconditional

Negation

<u>Definition</u>: Let p be a proposition. The statement "It is not the case that p." is another proposition, called the **negation of p**. The negation of p is denoted by \neg p and read as "not p."

Example:

- Pitt is located in the Oakland section of Pittsburgh.
 - \rightarrow
- It is not the case that Pitt is located in the Oakland section of Pittsburgh.

Other examples:

- $-5+2 \neq 8$.
- 10 is not a prime number.
- It is **not** the case that buses stop running at 9:00pm.

Negation

- Negate the following propositions:
 - It is raining today.
 - It is not raining today.
 - 2 is a prime number.
 - 2 is **not** a prime number
 - There are other life forms on other planets in the universe.
 - It is not the case that there are other life forms on other planets in the universe.

Negation

• A truth table displays the relationships between truth values (T or F) of different propositions.

р	¬р
Т	F
F	Т

Rows: all possible values of elementary propositions:

Conjunction

Definition: Let p and q be propositions. The proposition "p and q" denoted by p ∧ q, is true when both p and q are true and is false otherwise. The proposition p ∧ q is called the conjunction of p and q.

• Examples:

- Pitt is located in the Oakland section of Pittsburgh and 5 +
 2 = 8
- It is raining today and 2 is a prime number.
- -2 is a prime number and $5+2 \neq 8$.
- 13 is a perfect square and 9 is a prime.

Disjunction

Definition: Let p and q be propositions. The proposition "p or q" denoted by p ∨ q, is false when both p and q are false and is true otherwise. The proposition p ∨ q is called the disjunction of p and q.

• Examples:

- Pitt is located in the Oakland section of Pittsburgh or 5 + 2
 = 8.
- It is raining today or 2 is a prime number.
- 2 is a prime number or $5 + 2 \neq 8$.
- 13 is a perfect square or 9 is a prime.

Truth tables

- Conjunction and disjunction
- Four different combinations of values for p and q

р	q	p ∧ q	p ∨ q
Т	Т		
Т	F		
F	Т		
F	F		

Rows: all possible combinations of values for elementary propositions: 2ⁿ values

Truth tables

- Conjunction and disjunction
- Four different combinations of values for p and q

р	q	p∧q	p ∨ q
Т	Т	Т	
Т	F	F	
F	Т	F	
F	F	F	

• NB: $p \lor q$ (the or is used inclusively, i.e., $p \lor q$ is true when either \underline{p} or \underline{q} or \underline{both} are true).

Truth tables

- Conjunction and disjunction
- Four different combinations of values for p and q

р	q	p∧q	$p \lor q$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

• NB: $p \lor q$ (the or is used inclusively, i.e., $p \lor q$ is true when either p or q or both are true).

Exclusive or

• <u>Definition</u>: Let p and q be propositions. The proposition "p exclusive or q" denoted by p ⊕ q, is true when exactly one of p and q is true and it is false otherwise.

р	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- <u>Definition</u>: Let p and q be propositions. The proposition "p implies q" denoted by p → q is called implication. It is false when p is true and q is false and is true otherwise.
- In p → q, p is called the hypothesis and q is called the conclusion.

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Implication

- $p \rightarrow q$ is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p
- Examples:
 - if Steelers win the Super Bowl in 2013 then 2 is a prime.
 - If F then T?

- $p \rightarrow q$ is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p

• Examples:

- if Steelers win the Super Bowl in 2013 then 2 is a prime.
 - T
- if today is Tuesday then 2 * 3 = 8.
 - What is the truth value?

Implication

- $p \rightarrow q$ is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p

• Examples:

- if Steelers win the Super Bowl in 2013 then 2 is a prime.
 - T
- if today is Tuesday then 2 * 3 = 8.
 - If T then F

- $p \rightarrow q$ is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p

• Examples:

- if Steelers win the Super Bowl in 2013 then 2 is a prime.
 - T
- if today is Tuesday then 2 * 3 = 8.
 - F

Implication

- The converse of $p \rightarrow q$ is $q \rightarrow p$.
- The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- The **inverse** of $\mathbf{p} \rightarrow \mathbf{q}$ is $\neg \mathbf{p} \rightarrow \neg \mathbf{q}$

• Examples:

- If it snows, the traffic moves slowly.
- p: it snows q: traffic moves slowly.
- $p \rightarrow q$
- The converse:

If the traffic moves slowly then it snows.

•
$$q \rightarrow p$$

- The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- The **inverse** of $\mathbf{p} \rightarrow \mathbf{q}$ is $\neg \mathbf{p} \rightarrow \neg \mathbf{q}$
- Examples:
 - If it snows, the traffic moves slowly.
 - The contrapositive:
 - If the traffic does not move slowly then it does not snow.
 - $\neg q \rightarrow \neg p$
 - The inverse:
 - If it does not snow the traffic moves quickly.
 - $\neg p \rightarrow \neg q$

Biconditional

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

• Note: two truth values always agree.

• Example: Construct a truth table for

$$(p \to q) \land (\neg p \leftrightarrow q)$$

• Simpler if we decompose the sentence to elementary and intermediate propositions

р	q	¬p	$p \rightarrow q$	¬p ↔ q	(p→q)∧ (¬p↔q)
Т	Т				
Т	F				
F	Т				
F	F				

Constructing the truth table

• Example: Construct the truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

Rows: all possible combinations of values (p→q)∧ р q for elementary $(\neg p \leftrightarrow q)$ propositions: Т Т 2ⁿ values Т F Т F F

• Examples: Construct a truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬p	$p \rightarrow q$	¬p ↔ q	(¬p↔q) (¬p↔q)
Т	Т	F			
Т	F	F			
F	Т	Т			
F	F	Т			

• Examples: Construct a truth table for $(p \to q) \land (\neg p \leftrightarrow q)$

р	q	¬р	$p \rightarrow q$	¬p ↔ q	(p→q)∧ (¬p↔q)
Т	Т	F	Т		
Т	F	F	F		
F	Т	Т	Т		
F	F	Т	Т		

Constructing the truth table

• Examples: Construct a truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬p	$p \rightarrow q$	¬p ↔ q	(p→q)∧ (¬p↔q)
Т	Т	F	Т	F	
Т	F	F	F	Т	
F	Т	Т	Т	Т	
F	F	Т	Т	F	

• Examples: Construct a truth table for

$$(p \to q) \land (\neg p \leftrightarrow q)$$

Simpler if we decompose the sentence to elementary and intermediate propositions

р	q	¬p	$p \rightarrow q$	¬p ↔ q	(p→q)∧ (¬p↔q)
Т	Т	F	Т	F	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	F