Co - vaniance

- 0 (68-66) * (72-70) = 4
- (61-66) * (72-70) = -10 -5 * 2
- 3 (64-66) * (67-70) = 6

4 - 10 + 6+, AR

Cov(x,y) = E(x-E(x)) + (y-E(y))

- D ∈ D expected Value
- ony two vontables

Cov(x, 5) -> + V1

Ex-2 Rain 18 Ice-cream Sales

Cov(x, 5) - V2

D 3:50.8 V, D V2 32 50.8

 $\begin{array}{c} \mathcal{D} \\ \mathcal{V}_1 \\ \hline \mathcal{V}_2 \\ \hline \mathcal{V}_1 \\ \hline \mathcal{V}_1 \\ \hline \mathcal{V}_2 \\ \hline \mathcal{V}_1 \\ \hline \mathcal{V}_2 \\ \hline \end{array}$

which one in strongly related?
We carnot say Just with covariance

Variance \mathcal{I} $Cov_{\mathcal{I}_1} < Cov_{\mathcal{I}_2} \qquad \mathcal{S}_1 \qquad \mathcal{S}_2$ $\mathcal{T}_1 \qquad \mathcal{T}_2 \qquad 0.8 \qquad 0.8$

Does the relationship actually changes
across two Scenarios?
No

Pearson Correlation

for H and w:

i.e
$$g = \frac{1}{n} \sum_{i=1}^{n} (R_i - \overline{R}) (\omega_i - \overline{\omega})$$

Range (-1, 1)

Intuition

Cor
$$x = 1$$
 \longrightarrow Strong Pegapire selationship

Cor $x = 1$ \longrightarrow Weak selationship

0 % &

Pearson correlation Pails to Capture Non-Linear Relationship

Non-linear Relationships Spearmann Coorelation works better

Bank X	rank y	a
(1	0
2	3	-1
3	2	1
4	4	0
93	+ 7	

 $\frac{\nu(\nu_3-1)}{8} = 1 - 6 \sum_{i=1}^{n-1} q_i$

Range (-1, 1)

di= difference du tuo

n = num-observation

X Experience (years)	Rank (Experience)	Y Salary (\$)	Rank (Salary)	$d_i(RankX_i-RankY_i)$	d_i^2
1	1	1000	1	0	0
3	3	2000	2	1	1
4	4	5000	5	-1	1
5	5	4000	4	1	1
2	2	3000	3	-1	1

$$\sum d_i^2 = 0 + 1 + 1 + 1 + 1 = 4 \
ho = 1 - rac{6\sum d_i^2}{n(n^2 - 1)} = 1 - rac{6 imes 4}{5(5^2 - 1)} = 1 - rac{1}{5} = 1 - 0.2 = 0.8$$