ZUSAMMENFASSUNG - MATHEMATIK

Niklas Fister

March 10, 2025

TEIL I ANALYSIS

1 GRAPHISCHER ZUSAMMENHANG DER ANALYSIS

1.1 Bedeutung der Ableitung

Die Ableitung ist die Funktion, welche die Steigung der abgeleiteten Funktion an einem bestimmten Wert für x angibt.

Es lässt sich somit an dem y-Wert der Ableitung die Steigung der abgeleiteten Funktion graphisch, sowie auch numerisch bestimmen.

Um dies algebraisch zu bestimmen verwendet man den Limes:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \tag{1.1}$$

Diese Formel ist nichts weiteres als das vorhin erwähnte $\frac{\Delta y}{\Delta x}$, jedoch wurde hier die Funktion eingesetzt.

Man nimmt einen Punkt x, sowie den um Δx vergrösserten und betrachtet die Steigung der Sekante zwischen den beiden Punkten. Durch den Limes wird der Abstand Δx an 0 angenähert und somit erhält man die Steigung der Tangente am Punkt x.

Dies lässt sich in dieser Grafik gut erkennen. Die abgeleitete Funktion f'(x) gibt die Steigung der Funktion f(x) an.

1.2 Graphische Darstellung des Differential

Um das Differential beziehungsweise die Ableitung einer Funktion zu bestimmen, nähert man die Tangente an der Stelle x an. Hierzu wird der Differenzenquotient

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

betrachtet und der Grenzwert

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

berechnet. Dieser Grenzwert entspricht der exakten Steigung der Tangente an die Funktion f(x) im Punkt x.

In einzelnen Etappen dargestellt, sieht das folgendermassen aus:

Man erkennt eindeutig, dass die Geraden sich kontinuierlich annähern. Im Grenzwert, wenn der Abstand unendlich klein wird, konvergieren sie zu einer einzigen Geraden.

1.3 Graphische Darstellung des Integral

Die Herangehensweise um den Integral zu bestimmen ist folgende, dass man die Fläche unter der Funktion in Rechtecke unterteilt, von welchen man die Fläche einfach berechnen kann.

Da mit grossem Δx die Fläche ungenau ist, nähert man dies 0 an, um sich der tatsächlichen Fläche unter der Kuzve anzunähern. Die Fläche unter der Kurve ist die Summe aller Flächen der Rechtecke. Somit kommt man auf folgende Formel, um die Stammfunktion zu erhalten.

$$\int_{a}^{b} f(x)dx = \lim_{\Delta x \to 0} \sum_{i=0}^{n-1} f(x_i) \Delta x$$

Bei dem letzen Beispiel sieht man schon eine klare Annäherung an die tatsächliche Fläche, welche durch das Integral zu berechnen gilt.

1.4 Graphischer Zusammenhang der Beiden

Anhand dieses Graphen lässt sich der Graphische Zusammenhang der Funktion, ihrer Ableitung und ihrer Stammfunktion gut erklären.

Die Funktion f'(x) hat an jeder Stelle x den Wert der Steigung der Funktion x. Anfangs hat f(x) eine negative Steigung und somit sind die Werte der Ableitung ebenfalls negative. Sobald die Funktion jedoch wieder eine positive Steigung hat, sind auch die Werte der Ableitung im positiven. Dies ist immer so zu erkennen.

Die Stammfunktion F(x) gibt die Fläche unter dem Graphen an und ist die Gegenfunktion der Ableitung. Der Wert der Funktion f(x) gibt zu jedem Punkt die Steigung der Stammfunktion vor. Da diese Steigung überall für eine Punkt x auf der y-Achse identisch ist, muss man ein +C addieren. Daraus resultieren die gestrichelten Graphen und man erhällt ein Richtungsfeld. Zwischen den gestrichelten Linien gibt es noch viele weitere Funktionen, denn man kann den Wert für C beliebig wählen $\to C \in \mathbb{R}$.

1.5 Übungen

- 1. Erkläre in eigenen Worten, was die Ablteiung und die Stammfunktion einer Funktion ist und was sie geometrisch bedeutet.
- 2. Berechne die Ableitung der folgenden Funktionen:

(a)
$$f(x) = 3x^2 + 5x - 12$$

(d)
$$f(x) = \sqrt{\frac{5}{x^2}}$$

(b)
$$f(x) = \sin(4x^2) + 3x^3$$

(e)
$$f(x) = e^{3x}$$

(c)
$$f(x) = \frac{1}{x^2}$$

(f)
$$f(x) = \ln(2x)$$

3. Welche Funktionsgraphen sind Differentialgleichungen voneinander?

1.6 Lösungen

- 1. Die Ableitung einer Funktion gibt die Steigung der Funktion an. Die Stammfunktion einer Funktion gibt die Fläche unter dem Graphen der Funktion an. Die Ableitung ist die Gegenfunktion der Stammfunktion und umgekehrt. Die Ableitung einer Funktion f(x) ist die Funktion f'(x), die die Steigung der Funktion f(x) an jeder Stelle x angibt. Die Stammfunktion einer Funktion f(x) ist die Funktion F(x), die die Fläche unter dem Graphen der Funktion f(x) angibt.
- 2. (a) f'(x) = 6x + 5

- (d) $f'(x) = -\frac{5}{2x^3}$ (e) $f'(x) = 3e^{3x}$
- (b) $f'(x) = 8x\cos(4x^2) + 9x^2$

(c) $f'(x) = -\frac{2}{x^3}$

- (f) $f'(x) = \frac{2}{x}$
- 3. Ausgegangen von links nach rechts und dann gleich unten weiter gehören zusammen: (a) und (e), (b) und (c), (d) und (f).