

TERM END EXAMINATIONS (TEE) - May 2024

Programme	:	B.Tech.	Semester	T:	Winter Semester 2023-24
Course Name/ Course Code		Differential and Difference Equations/ MAT2001	Slot	п	D23+D24
Time	:	3 Hrs.	Max. Marks	:	100

Answer ALL the Questions

Q. No			Que	stion	Des	cription	Marks
1	(a)	P.	PART A – (60 Marks) [6 -3 0 9] 0 4 1 -5			91	12
			0	0	0	0 3	

Solve the given system of first order ordinary differential equations $\frac{dx}{dt} = -3x - 2y + 2z, \frac{dy}{dt} = 2x + y - 2z \text{ and } \frac{dz}{dt} = -2x - 2y + z$ by using eigen value method.

Given that $f(x) = x + x^2$ for $-\pi < x < \pi$, find the Fourier expression of f(x) and 12 also deduce that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$

(b) Find the Fourier series of the given periodic curve.

3 (a) Find the Fourier transform of $f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$ and hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$.

- (b) Find Fourier cosine transform of e^{-x^2} .
- (c) Using Parseval's identities prove that $\int_0^\infty \frac{OR}{(t^2+1)^2} dt = \frac{\pi}{4}.$
- (d) Use convolution theorem to find the inverse Fourier transform of $\frac{1}{(1+s^2)^2}$, given that $\frac{2}{1+s^2}$ is the Fourier transform of $e^{-|x|}$.

(a)	Find the Z-transform of $3n^2 - \frac{\sin n^2}{4} + 5$.	6
(b)	Determine f_0 , f_1 , f_2 , when $Z\{f(n)\} = F(z) - \frac{(z-1)^2(z+2)}{(z+3)(z+5)^2}$	6
	OR	
(c)	Find Z-transforms of $n^2e^{n\theta}u(t)$, where $u(t)$ is an unit step function.	6
(d)	Show that $Z\left(\frac{1}{n!}\right) = e^{1/2}$ and also evaluate $Z\left(\frac{1}{(n+1)!}\right)$ and $Z\left(\frac{1}{(n+2)!}\right)$.	.6
(a)	Solve the following difference equation $9y(n+2) - 6y(n+1) + y(n) = n$ with $y(0) = 1$ and $y(1) = 1$.	12
	OR	
(b)	Solve the difference equation $y_{n+2} + 6y_{n+1} + 9y_n = 3^n$ with $y_0 = y_1 = 0$ using Z-transforms.	12
	PART B – (40 Marks)	-
	If eigen values of 4 X 4 order matrix A are 1, 1, 0, 0 then find eigen values of i) A^2 , ii) $A - 2I$, iii) Determinant of A, iv) Adjoint of A, v) A^{-1} , vi) 3A, vii) Trace of A and viii) Determinant of $A^2 + 3A + 7$.	8
	Find Fourier sine series of x over the interval $(0, \pi)$.	
	Find Fourier sine transform of $\frac{e^{-ax}}{x}$.	8
	Find the inverse Z-transform of $\frac{3z}{(z+2)(z-4)}$ using convolution theorem.	8
	Solve the difference equation $6y_{n+2} - y_{n+1} - y_n = 0$ with $y_0 = y_1 = 1$ using Z-transforms.	. 8