Fundamentos de Estadística

Silvia N. Pérez Especialización en Ciencia de Datos - UNO

Pruebas de comparación

POBLACIÓN DE	CONDICION	DATOS CUAN	ITITATIVOS 15 quali	DATOS CUALITATIVOS
ESTUDIO		PRUEBA PARAMETRICA	PRUEBA NO PARAMETRICA	PRUEBA NO PARAMETRICA
DOS GRUPOS	INDEPENDIENTES	T-student para muestras indepenientes	U- Mann Whitney	chi ² (Independencia)
	APAREADOS	T-student para muestras relacionadas (Character)	Wilcoxon (apoeodos)	Mc. Nemar (dicotómicas)
MÁS DE DOS GRUPOS	INDEPENDIENTES	ANOVA (Análisis de varianza)	Kruskal Wallis	chi ²

Análisis de Varianza (ANOVA)

Qué datos tenemos?

- Un factor (tratamientos) Cualitativa
- Una variable de respuesta Cuantitativa
- Pregunta de interés:

¿Las medias de cada grupo difieren o están "afectadas" por la variable cuanti??

- Número de grupos:
- Si son dos grupos: utilizamos test de t
- más de 2 grupos: comparaciones multiples con ANOVA

ANOVA (ANalysis Of Variance)

Modelo lineal de efectos fijos

$$x_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$

$$\sum_{ij} (x_{ij} - \bar{x})^2 = \sum_{ij} (\bar{x}_i - \bar{x})^2 + \sum_{ij} (x_{ij} - \bar{x}_i)^2$$

SCT TOTAL SCF ENTRE

distersión s/discriminar

grupos (a)

SCE DENTRO de grupos (residual)

$$CM_{entre} = \frac{SCentre}{gl_{entre}} = \frac{\sum_{ij}(\bar{x}_{ij} - \bar{\bar{x}})^2}{a-1}$$
 Mira la dispersión de los promedios de cada grupo

$$CM_{dentro\ o\ residual} = \frac{SCdentro}{gl_{dentro}} = \frac{\sum_{ij}(x_{ij} - \bar{x}_i)^2}{n - a}$$
 Mira la dispersión dentro de cada grupo

F = CM_entre/ CM_dentro

tiene distribución ${\mathcal F}$ con (a-1) y (n-a) grados de libertad

Supuestos para la validez del test

- Normalidad
- Homocedasticidad (= varianzas)
- Independencia de las observaciones

Tabla ANOVA

FUENTE DE VARIACION	SUMA DE CUADRADOS	GL	CUADRADOS MEDIOS	F
ENTRE GRUPOS	SCF entre	a-1	SC entre/(a - 1)	$\frac{CM}{CM}$ dentro
DENTRO DE GRUPOS	SCE dentro	n-a	SC dentro/(n - a)	
TOTAL	SCT total	n-1		

El F_{calculado} se compara con

el F_{tabulado} con (a-1) y (n-a) GL

Estoes n' Y a la variable avanti y 6: novable custi SiG= la ob} (z volores foribles) = ol Test t fructo: 2. 6 = {a,b,c...} (+2 rolous) >> ANOVA purete Ho: hà=hà=hà=... H: "no son todos iguales" o sea hay alguna & Ej: Y=fonge yG=2+notz, trotz, trotz? En los datos puede que temajo Ho; hy = hz = pez # 1. alque +

mean(Y)= $X_1 = 101.7$ $X_3 = 100.2$ $X_2 = 99.98$

Ejemplo en R

Se quiere comparar las medias de notas de estudiantes según el área de interés que declararon.

Los datos corresponden a estudiantes_completa.xlsx

Comparaciones a posteriori: Esto es, si ANOVA indica Recharoto =>

> hocemos estas puebas placciais entre pare de medias si hay }

- Tuckey: si hay muchas categorías de las cualis.
- Bonferroni: Se usa si son pocas las categorías de las cualis.

Se recomienda hacer varios test a posteriori, y decidir mirando todo.

- Analiza dos variables cualitativas, X e Y, buscando asociación entre ellas.
- Permite probar la hipótesis de independencia entre ellas, esto es:

Ho: X e Y independientes

H1: dependientes, esto es, relacionados

Tabla de frecuencias observadas

X // Y	y1	y2	•••	Frec. Marginal de X
x1				
x2				
•••			n_{ij}	
Frec. Marginal de Y				n

Se comparan las frecuencias observadas en cada casilla versus frecuencias esperadas bajo la hipótesis de independencia

Ejemplo:

Se consulta sobre acuerdo con la construcción de Metrobus y nivel de educación.

Hay relación?

Tabla de frecuencias observadas

	Muy /bastante	Poco / nada	Total
Sin estudios / primaria	1130	1123	2253
Secundaria	860	599	1459
Universitarios	480	340	820
Total	2470	2062	4532

frecuencias observadas (en %)

	Muy /bastant e	Poco / nada	Total
Sin estudios / primaria	50.2%	49.8%	100%
Secundari a	58.9%	41.1%	100%
Universita rios	58.5%	41.5%	100%
Total	54.5%	45.5%	100%

¿Se podría hablar de que existe asociación entre nivel de estudios y acuerdo con Metrobus?

Hipótesis: Ho: hoy indep entre acuerdo'
y'nivel de estudir'

H.: no indep (o no, hoyolopo
reloción o
arocción)

Para explorar si existe asociación se compara esta tabla con una tabla en la que no existiría asociación o también llamada tabla de frecuencias esperadas (suponiendo independencia)

Las hipótesis

■H0: independencia (no asociación)

H1: existe asociación

Estadístico de prueba para comprobar la hipótesis:

$$\chi^2 = \sum \frac{(O-E)^2}{E} \sim \chi^2_{(\underline{r-1})} (\underline{s-1}) \text{ si H}_0 \text{ cierta}$$

Estadístico de prueba:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
 ~ $\chi^2_{(r-1) \, (s-1)} \, \text{si H}_0 \, \text{cierta}$

Con nuestros datos, se calculan las frec esperadas:

OBSERVADAS	Muy /bastante	Poco / nada	Total
Sin estudios / primaria	1130	1123	2253
Secundaria	860	599	1459
Universitarios	480	340	820
Total	2470	2062	4532

ESPERADAS	Muy /bastante	Poco / nada	Total
Sin estudios / primaria	1127.9	1025.1	2253
Secundaria	795.2	663.8	1459
Universitarios	446.9	373.1	820
Total	2470	2062	4532

Se calcula el valor del estadístico de prueba, que aquí da 34.18

- el valor obtenido en la prueba de chi cuadrado es 34.18
- es mayor que el valor de chi-cuadrado obtenido en la tabla para un nivel de significación de 0.05 con dos grados de libertad (5.99).
- Es decir, 34.18 pertenece a la Región de Rechazo,
- χ2 observado > 5.99 por lo que rechazamos la H0 (hipótesis nula)
- Esto permite decir que existe asociación entre nivel educativo y acuerdo con Metrobus, con un nivel de significación del 5%.

¡Ojo! Para poder realizar la prueba ji-cuadrado se debe cumplir un supuesto:

Como máximo un 20% de las celdas debe tener una frecuencia esperada menor a 5.

(no debe haber demasiadas celdas con pocos casos).

Medidas de asociación

Observación:

- -La prueba de contingencia no indica la dirección de la asociación
- -No informa sobre el grado de asociación

Coeficiente de Contingencia

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

V de Cramer

$$V = \sqrt{\frac{\chi^2}{n \cdot t}}$$

- t =min{#filas-1, #col-1}
- V de Cramer entre 0 y 1.

<0.05: asociación débil

0.05-0.25 moderado

0.25-1 fuerte

Medidas de asociación

χ2= 34.18 n= 4532

En los datos anteriores:

Coeficiente de Contingencia = **0.08652**

V de Cramer = **0.08684**

CONCLUSIÓN: La asociación detectada entre nivel de estudios y acuerdo, aunque significativa, no es fuerte (indices cercanos a 0).

Ejemplo en R

Se quiere decidir si hay independencia entre el sexo del estudiante y el interés en un área en particular. Los datos corresponden a estudiantes_completa.xlsx