^

양자 순간이동과 Qiskit Hands-on

2023.06.30 정유신

Contents

- 01 랩실 소개 및 자기 소개
- 02 양자 프로토콜 소개
 - 양자 프로토콜이란?
 - 양자 얽힘 (Entanglement)

03 양자 순간이동

- 양자 순간이동이란?
- 양자 순간이동 과정
- 양자 순간이동의 적용

04 양자 순간이동 Qiskit 구현

랩실 소개

고려대학교 허준 교수님 통신 및 정보시스템 연구실

(https://cislab.korea.ac.kr / 고려대 공학관 422호 , 신공학관 504호)

	Content
Professional Experience	 1996.03 - 2002.09: Senior Researcher at LG semiconductor Corp. 1996.08 - 1997.08: Stanford Univ, Information System Lab. Visiting Scholar 2000.09 - 2001.06: Trellisware Technologies Inc. Member of technical staff 2002.09 - 2003.02: Hynix System IC Comp. Senior Engineer 2003.03 - 2007.02: Konkuk Univ, Electronics Dep. Assistant Professor 2007.03 - Present: Korea Univ, School of EE. Professor 2015.06 - 2021.03: The head of Smart Quantum(SQ)-ITRC 2017.03 - 2019.02: Korea Univ, Dean of School of Electrical Engineering 2019.03 - 2021.02: Korea Univ, President of the Research And Business Foundation
Research Accomplishment	 70 International journals & 93 International conference papers 30 Domestic journals & 183 Domestic conference papers International patents (17 registered, 38 filed), Domestic patents (64 registered, 88 filed) Develop Error Correcting Codes for Next Generation Standards Research on the Quantum communication and information processing technology Hardware implementation of Error Correcting Codes for Military Communications with Security Develop Quantum Error Correcting Codes for Quantum Communication with Korea Communications Commission

랩실 소개

Quantum Key Distribution

- · 양자 역학적 성질을 이용하여 안전한 통신을 보장하는 암호 프 로 토 콜 (Quantum key distribution)에 대한 연구를 진행중
- · 진행중인 연구 내용:
- Single photon을 활용한 DV QKD
- Multi photon을 활용한 CV QKD
- 파 장 분 할 다 중 (WDM;Wavelength Division Mutliplexing)기술과 QKD 기술을 변합하는 기술

1: Laser 2: Single Photon detector(SPD) 3: Bob 4: Quantum channel(QC) 5: Alice 6: Stronge line(SL) & Faraday mirror(FM) 7: Attenuator(ATT) 2: Jaser 2: Single Photon detector(SPD) 3: Bob 4: Quantum channel(QC) 5: Alice 6: Stronge line(SL) & Faraday mirror(FM) 7: Attenuator(ATT)

Quantum Error Correction & Error Distillation Protocol

· 실용적인 양자 컴퓨터 개발을 위한 양자 오류 정정부호 및 얽힘 정제 프로토콜에 대한 연구를 진행중

- · 진행중인 연구 내용:
- 3 dimensional nearest neighbor connectivity를 고려한 Logical qubit 배치 연구
- QEC를 사용한 양자 컴퓨팅 아키텍쳐의 소요 자원 최적화
- Biased noise channel에서의 surface code 구현

Quantum Algorithm

· 양자 컴퓨팅과 classical 컴퓨팅으로 연산하는 hybrid 알고리즘 (특히 Variational Quantum Eigensolver (VQE)) 연구를 진행중

- · 진행중인 연구 내용 :
- 노이즈에 따른 에너지 분포 일반화
- multi-angle ansatz 제안

• 박사과정:6명

석사과정 : 5명

• 학부인턴 : 2명

자기 소개

연구 분야

- Quantum Error Correction
 - Biased noise channel에서의 surface code 구현 (XZZX surface code)
 - Biased noise channel에 적합한 surface code decoder 설계
 - Non-CSS code의 실현 가능성?
- Quantum Error Mitigation
- 이전: 양자통신 후처리 과정에서의 오류 정정

Qiskit과 연관된 활동

- 2022년 WISET 멘토링 Quantum is here 팀
 - · Nano Korea 2022 open source community에 대한 발표
- · 2022년 양자정보경진대회 커뮤니티상 수상
- · Qiskit Developer Certification

page

양자 프로토콜이란?

양자 프로토콜이란?

Entanglement

- Superdense coding
- Quantum teleportation

양자 얽힘 (Entanglement)

■ 물리적 정의

· 한 쌍의 양자가 측정에 대하여 밀접하게 연관되어 있는 상태

■ 수학적 정의

- · 두개의 single qubit $|a\rangle$, $|b\rangle$ 의 tensor product로 생성할 수 없는 two qubit state $|\psi\rangle$
- ex) Bell states = Bell basis = EPR Pairs

	$ oldsymbol{eta_{00}} angle= \Phi^+ angle$	$ oldsymbol{eta_{01}} angle= \Phi^- angle$	$ m{eta_{10}}\rangle = \Psi^+\rangle$	$ oldsymbol{eta_{11}}\rangle = \Psi^-\rangle$
식	$\frac{ 00\rangle + 11\rangle}{\sqrt{2}}$	$\frac{ 00\rangle - 11\rangle}{\sqrt{2}}$	$\frac{ 01\rangle + 10\rangle}{\sqrt{2}}$	$\frac{ 01\rangle - 10\rangle}{\sqrt{2}}$
구현	0\) — H	0	0 \ H	0
회로	0	0>	0 \ X	0

<측정 결과> 50%의 확률로 |00), |11) (두 qubit이 동일한 상태)

양자 순간이동 (Quantum Teleportation) 이란?

■ 양자 순간이동 vs 초고밀도 코드화

- ㆍ 양자 순간이동 : 2개의 고전 비트를 사용해서 1개의 큐비트 전송
- · 초고밀도 코드화: 1개의 큐비트를 사용해서 2개의 고전 비트 전송

■ 양자 순간이동 프로토콜

- · '정보'의 순간이동
- · Alice (송신자)가 Bob (수신자)에게 보내고 싶은 미지의 양자 상태

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

- 미지의 상태이므로 α 와 β 값은 정할 필요가 없음
- 단, 정규화된 상태 $|\alpha|^2 + |\beta|^2 = 1$ 이라고 가정

■ 양자 순간이동 과정 – Step 0 & Step 1

- · 양자 순간이동에 사용되는 3개의 큐비트의 의미
 - $|\psi
 angle$: Alice가 전송하고 싶어하는 양자 상태 (Alice의 첫번째 큐비트)

■ 양자 순간이동 과정 – Step 0 & Step 1

- · 양자 순간이동에 사용되는 2개의 고전 비트의 의미
 - crz : Alice가 $|\psi\rangle$ 의 측정 결과를 저장할 때 사용할 고전 비트
 - crx : Alice가 자신의 두번째 qubit의 측정 결과를 저장할 때 사용할 고전 비트

■ 양자 순간이동 과정 – Step 0 & Step 1

· Alice와 Bob이 얽힘 쌍 ($|eta_{00}
angle=rac{|00
angle+|11
angle}{\sqrt{2}}$)을 공유함

$$|\psi_0\rangle = |\psi\rangle \otimes |\beta_{00}\rangle = (\alpha|0\rangle + \beta|1\rangle) \otimes \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} [\alpha|0\rangle(|00\rangle + |11\rangle) + \beta|1\rangle(|00\rangle + |11\rangle)]$$

$$=\frac{1}{\sqrt{2}}\left[\alpha(|000\rangle+|011\rangle)+\beta(|100\rangle+|111\rangle)\right]$$

	β	$\langle c_{00} \rangle =$	$ \Phi^+\rangle$	I.	$\beta_{01}\rangle$	= Φ [.]	_}	_ la	$\langle \beta_{10} \rangle =$	= Ψ+⟩		$\langle B_{11} \rangle$:	= Ψ-	->
구현 회로	0>	Н	•	0>	X	Н	•	0>	Н	•	0>	Н	Z	•
회로	0>			0>				0>	X		0>	X	Z	

■ 양자 순간이동 과정 – Step 0 & Step 1

c.f) 왜 얽힘 쌍을 사용할까?

- Bob이 자신의 큐비트를 측정하면 측정 결과가 랜덤하게 0과 1중 하나가 나옴
- 그러나, Bob이 측정하기 전에 Alice가 자신의 큐비트를 먼저 측정했다면, Bob의 결과는 Alice의 측정 결과에 따라 결정됨

■ 양자 순간이동 과정 – Step 0 & Step 1

· Alice는 자신의 첫번째 큐비트를 control로 하는 CNOT gate를 적용

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} [\alpha|0\rangle(|00\rangle + |11\rangle) + \beta|1\rangle(|00\rangle + |11\rangle)]$$

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} [\alpha |0\rangle (|00\rangle + |11\rangle) + \beta |1\rangle (|10\rangle + |01\rangle)]$$

$$CNOT|0_C0_t\rangle=|0_C0_t\rangle$$

$$CNOT|1_C0_t\rangle = |1_C1_t\rangle$$

■ 양자 순간이동 과정 – Step 2

· Alice는 자신의 첫번째 큐비트에 Hadamard gate를 적용함으로써 Bob에게 자신의 큐비트를 전송

$$\begin{aligned} |\psi_2\rangle &= \frac{1}{2} [\alpha(|0\rangle + |1\rangle)(|00\rangle + |11\rangle) + \beta(|0\rangle - |1\rangle)(|10\rangle + |01\rangle)] \\ &= \frac{1}{2} [\alpha(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + \beta(|010\rangle + |001\rangle - |110\rangle - |101\rangle)] \\ &= \frac{1}{2} [|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\alpha|1\rangle + \beta|0\rangle) + |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(\alpha|1\rangle - \beta|0\rangle)] \end{aligned}$$

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = |+\rangle$$

$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = |-\rangle$$

■ 양자 순간이동 과정 – Step 3

Bell Measurement

- CNOT : 얽힌 것을 풀어주는 역할

Hadamard : 계산 기저로 변환해주는 역할

■ 양자 순간이동 과정 – Step 3

- · Alice는 자신의 큐비트를 측정
- · 단, Alice는 자신의 측정 결과를 classical(디지털) 채널을 통해 보냄

측정 결과	측정 후 Bob의 상태 $ oldsymbol{\psi}_3 angle$	측정 결과	측정 후 Bob의 상태 $ oldsymbol{\psi}_3 angle$
00	$\alpha 0\rangle + \beta 1\rangle$	01	$\alpha 1\rangle + \beta 0\rangle$
10	$\alpha 0\rangle - \beta 1\rangle$	11	$\alpha 1\rangle - \beta 0\rangle$

■ 양자 순간이동 과정 – Step 4

Alice의 측정 결과에 따라 Bob은 처음 Alice가 보내고자 했던 상태를 갖기 위해 적절한 양자 게이트를 적용

$ \psi_3 angle$	양자 게이트	$ \psi_4 angle$	$\ket{\psi_3}$	양자 게이트	$ \psi_4 angle$
$00: \alpha 0\rangle + \beta 1\rangle$	I	$\alpha 0\rangle + \beta 1\rangle$	$01: \alpha 1\rangle + \beta 0\rangle$	X	$\alpha 0\rangle + \beta 1\rangle$
$10: \alpha 0\rangle - \beta 1\rangle$	Z	$\alpha 0\rangle + \beta 1\rangle$	$11: \alpha 1\rangle - \beta 0\rangle$	ZX	$\alpha 0\rangle + \beta 1\rangle$

⇒ 2개의 고전 비트를 사용해서 1개의 큐비트를 전송!

page

양자 순간이동 과정

Density operator

$$ho \equiv \sum_i p_i |\psi_i
angle \langle \psi_i|$$

- · 양자 상태의 앙상블(ensemble)을 사용하여 양자 상태를 기술하는 방법
 - $\{p_i, |\psi_i\rangle\}$: ensemble of pure states
 - $|\psi_i\rangle$: pure state of quantum system
 - p_i : probability of $|\psi_i\rangle$
- $Tr(\rho^2) = 1$: pure state

 $Tr(\rho^2) < 1$: mixed state

c.f) pure state : $|\psi\rangle$ 를 정확하게 알고 있는 상태

Reduced Density operator

$$\rho^A \equiv tr_B(
ho^{AB})$$

· The product state $ho^{AB}=
ho\otimes\sigma$, 계 A의 density operator ho와 B의 density operator σ 를 구하는 방법

$$\rho^A = tr_B(\rho \otimes \sigma) = \rho \cdot tr(\sigma) = \rho \cdot 1 = \rho \ (\because \text{ pure state } tr(\sigma^2) = 1)$$

$$\rho^B = tr_A(\rho \otimes \sigma) = \sigma \cdot tr(\rho) = \sigma \cdot 1 = \sigma(\because \text{ pure state } tr(\rho^2) = 1)$$

page

양자 순간이동 과정

■ 예시

$$|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

$$\rho = |\psi\rangle\langle\psi| = \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}}\right) \left(\frac{\langle00| + \langle11|}{\sqrt{2}}\right) = \frac{|00\rangle\langle00| + |00\rangle\langle11| + |11\rangle\langle00| + |11\rangle\langle11|}{2}$$

$$tr(\rho^2) = 1 : \text{pure state}$$

$$\rho^1 = tr_2(\rho) = \frac{|0\rangle\langle 0|\langle 0|0\rangle + |0\rangle\langle 1|\langle 1|0\rangle + |1\rangle\langle 0|\langle 0|1\rangle + |1\rangle\langle 1|\langle 1|1\rangle}{2} = \frac{|0\rangle\langle 0| + |1\rangle\langle 1|}{2} = \frac{I}{2}$$

$$tr\left((\rho^1)^2\right) = tr\left(\left(\frac{I}{2}\right)^2\right) = \frac{1}{2} < 1 : \text{mixed state}$$

- · 두 큐비트의 joint system의 상태는 pure state인데, 첫번째 큐비트는 mixed state에 있음
- ⇒ 이 의미는 이 상태에 대해서는 모든 정보를 모른다, 즉 joint system의 상태는 정확히 알지만, 첫번째 큐비트의 상태는 정확히 모른다

• Density operator of ρ^{AB}

$$|\psi_2\rangle: \begin{aligned} |00\rangle(\alpha|0\rangle + \beta|1\rangle) \ pr &= \frac{1}{4} \quad |01\rangle(\alpha|1\rangle + \beta|0\rangle) \ pr &= \frac{1}{4} \\ |\psi_2\rangle: &|10\rangle(\alpha|0\rangle - \beta|1\rangle) \ pr &= \frac{1}{4} \quad |11\rangle(\alpha|1\rangle - \beta|0\rangle) \ pr &= \frac{1}{4} \end{aligned}$$

$$\rho^{AB} = \frac{1}{4} \begin{bmatrix} |00\rangle\langle00|(\alpha|0\rangle + \beta|1\rangle)(\alpha^*\langle0| + \beta^*\langle1|) + |01\rangle\langle01|(\alpha|1\rangle + \beta|0\rangle)(\alpha^*\langle1| + \beta^*\langle0|) \\ + |10\rangle\langle10|(\alpha|0\rangle - \beta|1\rangle)(\alpha^*\langle0| - \beta^*\langle1|) + |11\rangle\langle11|(\alpha|1\rangle - \beta|0\rangle)(\alpha^*\langle1| - \beta^*\langle0|) \end{bmatrix} \Rightarrow tr((\rho^{AB})^2) = 1$$

• Density operator of ρ^{AB}

- · Alice의 측정 = Alice의 system으로 trace out
- \cdot Reduced density operator of Bob의 system ho^B

$$\rho^{B} = tr_{A}(\rho^{AB}) = \frac{1}{4} \begin{bmatrix} (\alpha|0\rangle + \beta|1\rangle)(\alpha^{*}\langle 0| + \beta^{*}\langle 1|) + (\alpha|1\rangle + \beta|0\rangle)(\alpha^{*}\langle 1| + \beta^{*}\langle 0|) \\ +(\alpha|0\rangle - \beta|1\rangle)(\alpha^{*}\langle 0| - \beta^{*}\langle 1|) + (\alpha|1\rangle - \beta|0\rangle)(\alpha^{*}\langle 1| - \beta^{*}\langle 0|) \end{bmatrix}$$

$$= \frac{1}{4} [2(|\alpha|^{2} + |\beta|^{2})|0\rangle\langle 0| + 2(|\alpha|^{2} + |\beta|^{2})|1\rangle\langle 1|] = \frac{1}{2} [|0\rangle\langle 0| + |1\rangle\langle 1|] = \frac{I}{2}$$

$$tr((\rho^{B})^{2}) = tr\left(\left(\frac{I}{2}\right)^{2}\right) = \frac{1}{2} < 1$$

- Bob이 Alice의 측정 결과를 알기 전에 Bob의 계의 상태는 density matrix $\frac{I}{2}$ 를 갖는 mixed state = Alice의 측정 정보가 전달되기 전까지 Bob은 자신의 상태를 정확하게 알 수 없음
- Alice의 측정 정보가 전달되어야지 Bob은 자신의 상태를 정확하게 알 수 있음
- 따라서 Bob에게 정보를 전달하는 것은 빛보다 빠르지 않다!

page

양자 순간이동의 적용

Entanglement Swapping

- · 두개의 entangled pair를 Bell Measurement와 classical fixup을 통해 한 개의 entangled pair로 만들어주는 방식
- · Quantum Teleportation과 유사한 회로를 통해 수행됨

$$\begin{split} \left(\frac{|00\rangle_{AC_1}+|11\rangle_{AC_1}}{\sqrt{2}}\right) \otimes \left(\frac{|00\rangle_{C_2B}+|11\rangle_{C_2B}}{\sqrt{2}}\right) &= \frac{|0000\rangle_{AC_1C_2B}+|0011\rangle_{AC_1C_2B}+|1100\rangle_{AC_1C_2B}+|1111\rangle_{AC_1C_2B}}{2} \\ &= \frac{1}{2}\{|\phi^+\rangle_{AB}\otimes|\phi^+\rangle_{C_1C_2}+|\phi^-\rangle_{AB}\otimes|\phi^-\rangle_{C_1C_2}+|\psi^+\rangle_{AB}\otimes|\psi^+\rangle_{C_1C_2}+|\psi^-\rangle_{AB}\otimes|\psi^-\rangle_{C_1C_2}\} \\ & \otimes |\phi^\pm\rangle &= \frac{|00\rangle\pm|11\rangle}{\sqrt{2}}, |\psi^\pm\rangle &= \frac{|01\rangle\pm|10\rangle}{\sqrt{2}} \end{split}$$

양자 순간이동의 적용

Teleportation based Quantum Error correction (TEC)

- · 양자 인터넷에서 사용되는 양자 중계기에서 발생하는 loss error와 operation error을 줄이기 위해 사용하는 방법 [1]
 - Loss error : 양자 중계기 사이에 감쇠에 의해 발생
 - Operation error : 각 중계기에서 양자 게이트 연산을 수행하는 과정 및 측정이 완벽하지 않아 발생
- · Logical level에서의 양자 순간이동
- · Logical CNOT gate는 CSS code에서 transversal하게 구현

Qiskit Hands-on

양자 순간이동 Qiskit Hands-on

■ 동적회로 (Dynamic circuit) 란?

중간 회로 측정값을 포함하는 양자 회로

측정 결과를 사용하여 회로의 후반부에서 양자 게이트를 조절

제어 흐름을 포함하는 양자 회로로, 조건부는 이전의 측정 결과로부터 계산되고 조건부 연산은 양자 게이트를 포함

양자 순간이동 Qiskit Hands-on

■ 동적회로 (Dynamic circuit) 란?

Thank you for your kind attention!

- 초고밀도 코드화 (Superdense Coding)
 - · 조건 :Alice (송신자)는 2개의 고전 비트 (c_1, c_2) 로 표현되는 정보를 전달하고자 하지만, 사용할 수 있는 큐비트는 1개
 - · 초기 상태 : 얽힘 상태의 큐비트 쌍 $|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$
- 초고밀도 코드화 (Superdense Coding)의 구현 회로

■ 초고밀도 코드화의 과정 – Step 1

- · 얽힘 상태의 큐비트 쌍 $|\psi\rangle=rac{|00
 angle+|11
 angle}{\sqrt{2}}$ 을 만들기 위해 |00
 angle을 준비
- · 제 3자 (Charlie)가 첫번째 큐비트에 Hadamard gate를 적용 : $|+0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)$
- · Charlie가 첫번째 큐비트를 control로 하는 CNOT gate를 적용 :

$$\operatorname{CNOT}\left[\frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)\right] = \frac{|00\rangle + |11\rangle}{\sqrt{2}} = |\beta_{00}\rangle = |\psi\rangle$$

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = |+\rangle$$

$$CNOT|0_C 0_t\rangle = |0_C 0_t\rangle$$

$$CNOT|1_C 0_t\rangle = |1_C 1_t\rangle$$

■ 초고밀도 코드화의 과정 – Step 2

- · Charlie는 첫번째 큐비트를 Alice에게, 두번째 큐비트를 Bob에게 전송
 - → Alice는 자신이 보내고자 하는 2개의 고전 비트에 따라 자신의 큐비트에 양자 게이트를 적용

보내는 메시지	양자 게이트	상태	보내는 메시지	양자 게이트	상태
$(c_1, c_2) = (0,0)$	I	$ \psi\rangle \to I \psi\rangle = \frac{ 00\rangle + 11\rangle}{\sqrt{2}}$	$(c_1, c_2) = (0,1)$	X	$ \psi\rangle \to X \psi\rangle = \frac{ 10\rangle + 01\rangle}{\sqrt{2}}$
$(c_1, c_2) = (1,0)$	Z	$ \psi\rangle \rightarrow Z \psi\rangle = \frac{ 00\rangle - 11\rangle}{\sqrt{2}}$	$(c_1, c_2) = (1,1)$	ZX	$ \psi\rangle \to ZX \psi\rangle = iY \psi\rangle = \frac{- 10\rangle + 01\rangle}{\sqrt{2}}$

■ 초고밀도 코드화의 과정 – Step 3

Alice는 자신의 큐비트를 양자채널을 통해 Bob에게 전송

■ 초고밀도 코드화의 과정 – Step 4

Bob은 Alice의 큐비트를 받아서 그것을 control로 하는 CNOT gate를 적용

보낸 메시지	CNOT 후 상태	보낸 메시지	CNOT 후 상태
(0,0)	$\frac{ 00\rangle + 11\rangle}{\sqrt{2}} \rightarrow \frac{ 00\rangle + 10\rangle}{\sqrt{2}}$	(0,1)	$\frac{ 01\rangle + 10\rangle}{\sqrt{2}} \rightarrow \frac{ 01\rangle + 11\rangle}{\sqrt{2}}$
(1,0)	$\frac{ 00\rangle - 11\rangle}{\sqrt{2}} \rightarrow \frac{ 00\rangle - 10\rangle}{\sqrt{2}}$	(1,1)	$\frac{- 10\rangle + 01\rangle}{\sqrt{2}} \rightarrow \frac{- 11\rangle + 01\rangle}{\sqrt{2}}$

■ 초고밀도 코드화의 과정 – Step 5

· Bob은 Hadamard gate를 적용

보낸 메시지	CNOT 후 상태 → Hadamard 후 상태	보낸 메시지	CNOT 후 상태 → Hadamard 후 상태
(0,0)	$\frac{ 00\rangle + 10\rangle}{\sqrt{2}} = \left(\frac{ 0\rangle + 1\rangle}{\sqrt{2}}\right) 0\rangle \to H\left(\frac{ 0\rangle + 1\rangle}{\sqrt{2}}\right) 0\rangle = 0\rangle 0\rangle$	(0,1)	$\frac{ 11\rangle + 01\rangle}{\sqrt{2}} = \left(\frac{ 0\rangle + 1\rangle}{\sqrt{2}}\right) 1\rangle \to H\left(\frac{ 0\rangle + 1\rangle}{\sqrt{2}}\right) 1\rangle = 0\rangle 1\rangle$
(1,0)	$\frac{ 00\rangle - 10\rangle}{\sqrt{2}} = \left(\frac{ 0\rangle - 1\rangle}{\sqrt{2}}\right) 0\rangle \to H\left(\frac{ 0\rangle - 1\rangle}{\sqrt{2}}\right) 0\rangle = 1\rangle 0\rangle$	(1,1)	$\frac{- 11\rangle + 01\rangle}{\sqrt{2}} = \left(\frac{ 0\rangle - 1\rangle}{\sqrt{2}}\right) 1\rangle \to H\left(\frac{ 0\rangle - 1\rangle}{\sqrt{2}}\right) 1\rangle = 1\rangle 1\rangle$

■ 초고밀도 코드화의 과정 – Step 5

· Bob은 큐비트를 측정 = Alice가 전송한 정보

보낸 메시지	측정 후 상태	보낸 메시지	측정 후 상태
(0,0)	$ 0\rangle 0\rangle \rightarrow (0,0)$	(0,1)	$ 0\rangle 1\rangle \rightarrow (0,1)$
(1,0)	$ 1\rangle 0\rangle \rightarrow (1,0)$	(1,1)	$ 1\rangle 1\rangle \rightarrow (1,1)$