A Multi-Agent Simulation Environment of Hereditary Diseases

Demetrios G. Eliades

Slides Index

- 1. How, What, Why?
- 2. Introduction to Hereditary Diseases
- 3. Presentation of "GeneCity"
- 4. Novel Elements in use
- 5. Sample Experiments
- 6. Conclusion

The Questions

- In a society of healthy persons, a person with a hereditary disease enters. How is this spread with time?
- A person who is carrier of a disease, falls in love with another person, also a carrier. How does this changes the marriage selections?

Current Research

Different Approaches

- Medicine Genetics
- Demography Human Ecology
- Mathematics Statistics
- Psychology

Pursue of a unified model for the research of the epidemiological behaviour of hereditary diseases in a society.

Goals

- Build a model which will:
 - Simulate the Demographical Growth of a Population
 - Instantiate and Study of the Spread of a Disease
- Build necessary tools to observe the model
- Output and store data for meta-analysis

Technologies Used

- Multi Agent Systems
- Genetic Algorithms
- Reinforced Learning
- Cellular Automata

Transmit Methods

- Autosomal Recessive: heterozygote (or carrier) Healthy, homozygote Patient
- Autosomal Dominant: heterozygote and homozygote Patient
- X-Linked (Sex Related):
 man and X-mutation Patient

46 Chromosomes:

- 22 Pairs Autosomes
- 2 Sex {Male XY, Female XX}

Autosomal

X-Linked

- Male:
 - XY healthy
 - **x**Y patient

- **■** Female:
 - XX healthy
 - **x**X healthy
 - Xx healthy

Genecity Environment

Agent Communication

Agent Representation

Healthy Woman

Healthy Man

Carrier Woman

Carrier Man

Patient Woman

Patient Man

Families Representation

Green: %Healthy

Red: %Diseased

12

Partner Choice

- Agent Chosen Randomly
- Exchange of Information about themselves
- If marriage, then removed from Grid and return as family
- Use a variation of the Stable Marriage Problem Algorithm

Criteria of Selection

- Is the other person a patient?
- What is the probability of having patient children if in marriage;
- Is the disease deadly;
- Does the other person have "negative Phenotype";

Extra criteria

- Distance in Grid (social, natural)
- Wealth (beauty, money)
- Age Difference (etc)

What is Measured

- Population of society
- Populations of diseased and carriers
- Mean value of exchange information
- Mean number of people informed for disease
- Mean amount of information by Media Agent
- Births and Deaths per epoch
- Mean number of new families

Novelties

- Media Agent: Provides information about a disease (as Media or Health Education)
- Dynamic Instantiation of Agent in the system, with its characteristics pre-defined

Novelties

- Medical Genealogical Tree
- Information for the disease form Neighbourhood
- Total and Real-time change of Setup

Example A

Entrance of an Autosome Dominant diseased person in a healthy population:

Example B

Prejudice society for the X-link patients

