JEE Chapter 19 CD

AI24BTECH11028 - Ronit Ranjan

C. MCQ WITH ONE CORRECT ANSWER

1) A solution of the differential equation

(1999 - 2Marks)

$$\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0\tag{1}$$

a) y = 2

b) y = 2x - 4

c) y = 2xd) $y = 2x^2 - 4$

2) If
$$x^2 + y^2 = 1$$
, then (2000S)

a) $yy'' - 2(y')^2 + 1 = 0$ b) $yy'' + (y')^2 + 1 = 0$

c) $yy'' - (y')^2 - 1 = 0$ d) $yy'' + 2(y'')^2 + 1 = 0$

3) If
$$y(t)$$
 is a solution of $(1 + t) \frac{dy}{dt} - ty = 1$ and $y(0) = -1$, then $y(1)$ is equal to (2003S)

a) $-\frac{1}{2}$ b) $e - \frac{1}{2}$

c) $e + \frac{1}{2}$ d) $\frac{1}{2}$

4) If
$$y = y(x)$$
 and $\frac{2+\sin x}{y+1} \left(\frac{dy}{dx}\right) = -\cos x$, $y(0) = 1$, then $y\left(\frac{\pi}{2}\right)$ (2004S)

a) $\frac{1}{3}$ b) $-\frac{1}{3}$

5) If
$$y = y(x)$$
 and it follows the relation $x \cos y + y \cos x = \pi$ then $y''(0) =$ (2005S)

a) 1

b) -1

6) The solution of primitive integral equation
$$(x^2 + y^2) dy = xy dx$$
 is $y = y(x)$. If $y(1) = 1$ and $x_0 = e$, then x_0 is equal to (2005S)

a) $\sqrt{2(e^2 - 1)}$ b) $\sqrt{3e}$

c) $\sqrt{2(e^2+1)}$ d) $\sqrt{\frac{e^2+1}{2}}$

7) For the primitive integral equation
$$ydx + y^2dy = x dy$$
; $x \in \mathbb{R}, y > 0, y = y(x), y(1) = 1$, then $y(-3)$ is (2005S)

a) 3

c) 2

b) 1

d) 5

8) The differential equation $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$ determines a family of circles with

(2005S)

a) variable radii and a fixed centre at (0, 1)

- b) variable radii and a fixed centre at (0, -1)
- c) fixed radius 1 and variable centres along the x-axis
- d) fixed radius 1 and variable centres along the y-axis
- 9) The function y = f(x) is the solution of the differential equation

(JEEAdv.2014)

$$\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^4 + 2x}{\sqrt{1 - x^2}} \tag{2}$$

in (-1, 1) satisfying f(0) = 0. Then

$$\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) dx is$$
a) $\frac{\pi}{3} - \frac{\sqrt{3}}{2}$
b) $\frac{\pi}{6} - \frac{\sqrt{3}}{4}$
c) $\frac{\pi}{3} - \frac{\sqrt{3}}{4}$
d) $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$

10) If y = y(x) satisfies the differential equation

(JEEAdv.2018)

$$8\sqrt{x}\left(\sqrt{9+\sqrt{x}}\right)dy = \left(\sqrt{4+\sqrt{9+\sqrt{x}}}\right)^{-1}dx, \ x > 0 \tag{4}$$

and $y(0) = \sqrt{7}$, then y(256) =

a) 3

c) 9

b) 16

d) 80

D. MCQ WITH ONE OR MORE THAN CORRECT ANSWER

- 1) The order of the differential equation whose general solution is given by $y = (C_1 + C_2)\cos(x + C_3) C_4e^{x+C_5}$, where C_1, C_2, C_3, C_4, C_5 are arbitrary constants, is (1998 2*Marks*)
 - a) 5

c) 4

b) 3

d) 2

- 2) The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c is a positive parameter, is of (1999 3*Marks*)
 - a) order 1

c) order 2

b) degree 3

- d) degree 4
- 3) A curve y = f(x) passes through (1, 1) and at P(x, y), the tangent cuts the x-axis and y-axis at A and B respectively such that BP : AP = 3 : 1, then (2006 5M, -1)
 - a) equation of curve is xy' 3y = 0
 - b) normal at (1, 1) is x + 3y = 4
 - c) curve passes through $\left(2, \frac{1}{8}\right)$
 - d) equation of curve is xy' + 3y = 0
- 4) If y(x) satisfies the differential equation $y' y \tan x = 2x \sec x$ and y(0) = 0, then (2012)

a)
$$y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{8\sqrt{2}}$$

b) $y\left(\frac{\pi}{3}\right) = \frac{\pi^2}{9}$
c) $y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{18}$
d) $y\left(\frac{\pi}{3}\right) = \frac{4\pi}{3} + \frac{2\pi^2}{3\sqrt{3}}$

5) A curve passes through the point $\left(1, \frac{\pi}{6}\right)$. Let the slope of the curve at each point (x, y) be $\frac{y}{x} + \sec\left(\frac{y}{x}\right), x > 0$. Then the equation of the curve is (JEEAdv.2013)

a)
$$\sin\left(\frac{y}{x}\right) = \log x + \frac{1}{2}$$

b) $\sec\left(\frac{2y}{x}\right) = \log x + 2$

b)
$$\sec\left(\frac{2y}{x}\right) = \log x + 2$$

c)
$$\cos \sec \left(\frac{y}{x}\right) = \log x + 2$$

d) $\cos \left(\frac{2y}{x}\right) = \log x + \frac{1}{2}$

d)
$$\cos\left(\frac{2y}{x}\right) = \log x + \frac{1}{2}$$