- PHS3903 -Projet de simulation

Méthode de la matrice 2D

Jérémie Villeneuve Maksim Skorobogatiy 7 février 2023

Particularités de la méthode de la matrice 2D

La méthode de la matrice suit toujours les mêmes grandes étapes, peu importe le type d'équation considéré.

Méthode de la matrice

- 1. Écrire l'équation différentielle et définir la Opérateur différentiel 2D forme du domaine de simulation. Domaine 2D
- 2. Définir les conditions aux limites et les conditions Frontière passe de 2 à initiales sur le domaine de simulation. plusieurs points.
- 3. Discrétiser l'équation différentielle à l'intérieur du domaine.
- 4. Discrétiser l'équation différentielle aux limites du domaine.
- 5. Poser un système d'équations sous Structure et stockage forme matricielle ($A\vec{u} = \vec{b}$) de la matrice **A**
- 6. Résoudre numériquement l'équation différentielle en résolvant le système d'équations construit à l'étape 5.

ÉDP linéaires

(dépendantes du temps ou non)

Nous allons encore une fois utiliser l'équation de diffusion comme exemple.

Équation de diffusion 2D
$$\alpha \frac{\partial u(x,y,t)}{\partial t} = \frac{\partial^2 u(x,y,t)}{\partial x^2} + \frac{\partial^2 u(x,y,t)}{\partial y^2} - g(x,y,t)$$

L'équation de diffusion en régime stationnaire devient l'équation de Poisson.

Équation de Poisson 2D
$$\nabla^2 u(x,y) = \frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = g(x,y)$$

Domaine de simulation 2D

$$x_i = x_1 + (i-1)\Delta x,$$

$$i = 1, \dots, N_x$$

$$y_i = y_1 + (j-1)\Delta y,$$

$$j = 1, \dots, N_y$$

Si l'équation dépend du temps :

$$t_n = n\Delta t$$
, $n = 0,1,...$

Fonction u au point (x_i, y_j) au temps t_n : $u_{i,j}^n$

Plan du cours

- Méthode de la matrice 2D
 - Différentiation en 2D
 - Laplacien sur un maillage uniforme
 - Construction de la matrice A des coefficients
 - Application : chauffage d'une pièce (code sur Moodle)
 - Considérations de mémoire
 - Matrices pleines et matrices creuses

Différentiation en 2D

Laplacien 2D (coordonnées cartésiennes)

On veut discrétiser l'opérateur différentiel suivant : $\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$

$$7^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

La manière la plus directe est d'utiliser deux fois la formule aux différences finies centrée d'ordre 2 pour la dérivée seconde en 1D :

$$\nabla^2 u(x_i, y_j) = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{\Delta x^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{\Delta y^2} + O(\Delta x^2) + O(\Delta y^2)$$

Si le pas de la grille est le même en x qu'en y ($h = \Delta x = \Delta y$), alors on obtient :

Laplacien cartésien 2D à 5 points

$$\nabla^2 u(x_i, y_j) = \frac{u_{i-1,j} + u_{i,j-1} - 4u_{i,j} + u_{i+1,j} + u_{i,j+1}}{h^2} + O(h^2) \begin{vmatrix} 1 & -4 & 1 \\ 1 & 1 \end{vmatrix}$$

Est-ce la seule façon de discrétiser le laplacien en 2D?

Laplacien cartésien discrétisé en 2D

On pourrait obtenir une autre formule à 5 points qui utilise les points de la grille aux coins adjacents au nœud (i,j). Il faut alors utiliser le développement de Taylor de la fonction u(x,y) au voisinage de (x_i,y_j) .

On cherche les coefficients A, B, C, D et E tels que :

$$\nabla^2 u = \begin{bmatrix} E & & B \\ & A & \\ D & & C \end{bmatrix} + O(h^m)$$

Développement de Taylor multivariable

$$u(\vec{r}_0 + \Delta \vec{r}) = u(\vec{r}_0) + \sum_{k=1}^{\infty} \frac{1}{k!} \left[\left(\Delta \vec{r} \cdot \vec{V} \right)^k u(\vec{r}) \right|_{\vec{r} = \vec{r}_0}$$

2D
$$u(x_0 + \Delta x, y_0 + \Delta y) = u(x_0, y_0) + \sum_{k=1}^{\infty} \frac{1}{k!} \left[\left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y} \right)^k u(x, y) \right]_{\substack{x = x_0 \\ y = y_0}}^{k}$$

Laplacien cartésien discrétisé en 2D

On écrit le développement pour chacun des quatre coins pour un pas $h = \Delta x = \Delta y$ constant dans les deux directions.

E B A C

N.B. Les variables en exposant représentent des dérivées.

$$B = 1 u_{i+1,j+1} = u_{i,j} + h\left(u_{i,j}^x + u_{i,j}^y\right) + \frac{h^2}{2}\left(u_{i,j}^{xx} + 2u_{i,j}^{xy} + u_{i,j}^{yy}\right) + O(h^3)$$

$$+ C = 1 u_{i+1,j-1} = u_{i,j} + h\left(u_{i,j}^x - u_{i,j}^y\right) + \frac{h^2}{2}\left(u_{i,j}^{xx} - 2u_{i,j}^{xy} + u_{i,j}^{yy}\right) + O(h^3)$$

$$+ E = 1 u_{i-1,j+1} = u_{i,j} + h\left(-u_{i,j}^x + u_{i,j}^y\right) + \frac{h^2}{2}\left(u_{i,j}^{xx} - 2u_{i,j}^{xy} + u_{i,j}^{yy}\right) + O(h^3)$$

$$+ D = 1 u_{i-1,j-1} = u_{i,j} + h\left(-u_{i,j}^x - u_{i,j}^y\right) + \frac{h^2}{2}\left(u_{i,j}^{xx} + 2u_{i,j}^{xy} + u_{i,j}^{yy}\right) + O(h^3)$$

$$u_{i+1,j+1} + u_{i+1,j-1} + u_{i-1,j+1} + u_{i-1,j-1} = 4u_{i,j} + 2h^2 \left(u_{i,j}^{xx} + u_{i,j}^{yy} \right) + O(h^4)$$

(Les ordres impairs s'annulent.)

Laplacien cartésien discrétisé en 2D

$$u_{i+1,j+1} + u_{i+1,j-1} + u_{i-1,j+1} + u_{i-1,j-1} = 4u_{i,j} + 2h^2 \left(u_{i,j}^{xx} + u_{i,j}^{yy} \right) + O(h^4)$$

Le laplacien que l'on souhaite évaluer est le terme $(u_{i,j}^{xx} + u_{i,j}^{yy})$.

Laplacien cartésien 2D à 5 points (x)
$$\nabla^2 u = \frac{0.5u_{i-1,j-1} + 0.5u_{i-1,j+1} - 2u_{i,j} + 0.5u_{i+1,j-1} + 0.5u_{i+1,j+1}}{h^2} + O(h^2)$$
0.5
0.5
0.5

Laplacien cartésien 2D à 5 points (+)

$$\nabla^2 u = \frac{u_{i-1,j} + u_{i,j-1} - 4u_{i,j} + u_{i+1,j} + u_{i,j+1}}{h^2} + O(h^2)$$

Quelle est la différence entre ces deux laplaciens?

Laplaciens à 5 points

Pour observer les différences entre les deux laplaciens à 5 points, on utilise la fonction test avec une symétrie radiale

$$u(x,y) = e^{-r^2} = e^{-(x^2+y^2)}$$

dont le laplacien exact a aussi une symétrie radiale

$$\nabla^2 u(x,y) = 4(x^2 + y^2 - 1)e^{-(x^2 + y^2)} = 4(r^2 - 1)e^{-r^2}.$$

Comparaison des laplaciens à 5 points

Comparaison des laplaciens à 5 points (erreur absolue)

Erreur du laplacien

Même si la fonction de test u(x,y) possède une symétrie radiale, les deux laplaciens à 5 points ne reflètent pas cette propriété. Cela est dû à leur terme d'erreur à l'ordre h^2 .

Laplacien cartésien 2D à 5 points (+)

$$\nabla^2 u = \frac{1}{h^2} \begin{bmatrix} 1 & 1 \\ 1 & -4 & 1 \\ 1 \end{bmatrix} u + \frac{h^2}{12} \left(\frac{\partial^4 u}{\partial x^4} + \frac{\partial^4 u}{\partial y^4} \right) + O(h^4)$$

Laplacien cartésien 2D à 5 points (x)

$$\nabla^{2} u = \frac{1}{h^{2}} \begin{bmatrix} 0.5 & 0.5 \\ -2 & 0.5 \\ 0.5 & 0.5 \end{bmatrix} u + \frac{h^{2}}{12} \left(\frac{\partial^{4} u}{\partial x^{4}} + 6 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}} + \frac{\partial^{4} u}{\partial y^{4}} \right) + O(h^{4})$$

Si u(x,y)=u(r) possède une symétrie radiale, pour que le terme d'erreur possède la symétrie radiale, il doit être multiple de :

$$\left(\frac{\partial^4 u}{\partial x^4} + 2\frac{\partial^4 u}{\partial x^2 \partial y^2} + \frac{\partial^4 u}{\partial y^4}\right) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)^2 u(x, y) = \left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right)\right)^2 u(r)$$

Laplacien à 9 points (symétrie radiale)

On arrive à obtenir la forme d'erreur voulue en prenant une combinaison linéaire particulière des laplaciens à 5 points.

$$\nabla^2 u \to \gamma \frac{1}{h^2} \begin{bmatrix} 1 & 1 \\ 1 & -4 & 1 \\ 1 & 1 \end{bmatrix} + (1 - \gamma) \frac{1}{h^2} \begin{bmatrix} 0.5 & 0.5 \\ -2 & 0.5 \end{bmatrix} + O(h^2)$$

$$\gamma = \frac{2}{3}$$

Laplacien cartésien 2D à 9 points (carré)

$$abla^2 u o rac{1}{6h^2} \begin{bmatrix} 1 & 4 & 1 \\ 4 & -20 & 4 \\ 1 & 4 & 1 \end{bmatrix} u + O(h^2)$$

Le laplacien à 9 points est toujours d'ordre $O(h^2)$ même si le nombre de points utilisés a augmenté.

Laplacien à 9 points (symétrie radiale)

L'erreur entre le laplacien à 9 points et le laplacien exact respecte maintenant la symétrie radiale de la fonction test.

Plan du cours

- Méthode de la matrice 2D
 - Différentiation en 2D
 - Laplacien sur un maillage uniforme
 - Construction de la matrice A des coefficients
 - Application : chauffage d'une pièce (code sur Moodle)
 - Considérations de mémoire
 - Matrices pleines et matrices creuses

Construction de la matrice des coefficients

On considère un maillage 5 x 5 de pas $h = \Delta x = \Delta y$ sur lequel on veut résoudre l'équation de diffusion de la chaleur en régime permanent.

$$\nabla^2 T(x,y) = -\frac{S(x,y)}{k(x,y)}$$

Condition de convection avec température ambiante T_a

$$-k\frac{\partial T}{\partial y} = \pm \hbar (T - T_a)$$

$$-k_{1,j}\frac{-3T_{1,j}+4T_{2,j}-T_{3,j}}{2h}=-\hbar(T_{1,j}-T_a)+O(h^2)$$

$$-k_{5,j}\frac{T_{3,j}-4T_{4,j}+3T_{5,j}}{2h}=\hbar(T_{5,j}-T_a)+O(h^2) \quad (5=\mathbf{N_{y'}}1) \quad (5,2)$$

$$j = 2, ..., 4$$

$$(1,1) \quad (1,2) \quad (1,3) \quad (1,4) \quad (1,5=\mathbf{N_x})$$

$$(2,1) \quad (2,2) \quad (2,3) \quad (2,4) \quad (2,5)$$

$$(3,1) \quad (3,2) \quad (3,3) \quad (3,4) \quad (3,5)$$

$$(4,1) \quad (4,2) \quad (4,3) \quad (4,4) \quad (4,5)$$

Convention de Matlab pour les indices $M_{i,j}: i - ligne(y), j - colonne(x)$

(5,3)

(5,4)

(5,5)

Construction de la matrice des coefficients

En utilisant le laplacien à 5 points (+), on a pour les points intérieurs du domaine :

$$T_{i,j-1} + T_{i,j+1} - 4T_{i,j} + T_{i-1,j} + T_{i+1,j} = -\frac{S_{i,j}}{k_{i,j}}h^2 + O(h^4)$$

$$i = 2,3,4$$

$$j = 2,3,4$$

Nombre d'équations à résoudre

(disons $N_x = N_y = N$)

Intérieur : 9 équations $((N-2)^2$ en général)

Frontières : 16 équations (4(N-1)) en général)

Total : 25 équations (N^2 en général)

Il y a encore une équation à résoudre par nœud de la grille.

La taille de la matrice des coefficients du système d'équations est donc N^2 = 25 x N^2 = 25 ($N_x \cdot N_y \times N_x \cdot N_y$ en général).

Numérotation colonne par colonne. Numérotation colonne par colonne. Matrice des coefficients Numerotation colonn Équation sur nœud # Équation sur nœud # $N_x \cdot N_y$ T₁₁
T₂₁
T₃₁ 11 T_p
T_p 1 21 1 31 T_{41} T_{51} T_{12} T_{22} T_{32} T_{42} 41 Tp 51 α -4 1 βT_a 12 1 $-\gamma S_{22}$ 22 -4 $-\gamma S_{23}$ 32 -4 1 1 $-\gamma S_{24}$ 42 T₅₂
T₁₃
T₂₃
T₃₃
T₄₃
T₅₃ βT_a 52 -4 1 α βT_a 13 1 -4 1 $-\gamma S_{32}$ 1 1 23 $\mathbf{A}\vec{T} = \vec{b}$ $-\gamma S_{33}$ 1 -4 1 33 -4 1 $-\gamma S_{34}$ 43 -4 βT_a 53 T₁₄
T₂₄
T₃₄ $\alpha \equiv 3 + \frac{2\hbar}{k}h$ -4 1 βT_a α 14 $-\gamma S_{42}$ 1 -4 1 1 24 -4 1 1 $-\gamma S_{43}$ 34 $\beta \equiv \frac{2\hbar}{k}h$ $\gamma \equiv \frac{h^2}{k}$ 1 -4 1 $-\gamma S_{44}$ -4 α βT_a 54 Tp 15 T₂₅
T₃₅
T₄₅
T₅₅ Tp 25 T_p 1 35 Tp 1 45 T_{p}

Code Moodle – Chauffage d'une pièce

Equation_independante_du
 temps 2D.m

Plan du cours

- Méthode de la matrice 2D
 - Différentiation en 2D
 - Laplacien sur un maillage uniforme
 - Construction de la matrice A des coefficients
 - Application : chauffage d'une pièce (code sur Moodle)
 - Considérations de mémoire
 - Matrices pleines et matrices creuses

Structure de la matrice des coefficients

Par rapport aux problèmes 1D, les matrices de coefficients des problèmes en 2D ont une **largeur de bande** (bandwidth) plus élevée.

La structure de bandes de la matrice dépend du schéma de discrétisation utilisé pour les opérateurs différentiels.

Matrices creuses

Une matrice creuse (*sparse matrix*) est une matrice qui contient un **grand** nombre de zéros.

Quel est le pourcentage d'éléments non nuls dans la matrice 2D ci-contre ?

$$\eta = \frac{10 + 3 \times 6 + 5 \times 9}{25^2} = \frac{73}{625} \approx 12 \%$$

Pour une grille $N \times N$:

$$\eta = \frac{2N + 3 \times 2(N - 2) + 5 \times (N - 2)^{2}}{N^{4}}$$
$$= \frac{5N^{2} - 12N + 9}{N^{4}} \sim \frac{5}{N^{2}}$$

Plus le nombre de points est élevé, plus la matrice est creuse!

Matrice 2D

Matrices creuses

Évidemment, il est inutile de stocker en mémoire tous les zéros d'une matrice creuse. C'est pourquoi **on stocke seulement les éléments non nuls** de la matrice.

Quelle quantité de mémoire doit-on allouer pour stocker une **matrice pleine N² x N²** composée de nombres en **arithmétique flottante double précision**?

Chaque élément de la matrice est constitué de 64 bits, soit 8 octets (*bytes*).

Il y a $N^2 \times N^2 = N^4$ éléments dans la matrice pleine.

Mémoire à allouer : $\sim 8N^4$ octets

Pour N = 5, on obtient ~ 5 ko.

Pour N = 100, on obtient ~ 800 Mo.

Matrice 2D

Matrices creuses

Évidemment, il est inutile de stocker en mémoire tous les zéros d'une matrice creuse. C'est pourquoi **on stocke seulement les éléments non nuls** de la matrice.

Quelle quantité de mémoire doit-on allouer pour stocker une **matrice creuse N² x N²** composée de nombres en **arithmétique flottante double précision**?

Matrice pleine : $\sim 8N^4$ octets

Fraction d'éléments non nuls : $\sim \frac{5}{N^2}$

Matrice creuse : $\sim 40N^2$ octets

Pour N = 5, on obtient ~ 1 ko.

Pour N = 100, on obtient ~ 400 ko.

Matrice 2D

Matrices creuses dans MATLAB

Pour travailler avec des matrices creuses dans MATLAB, il faut utiliser certaines commandes spécifiques.

S = sparse(A)

Convertit une matrice pleine en matrice creuse

S = sparse(m,n)

Crée une matrice creuse (implicite) $m \times n$ remplie de zéros

S = sparse(i,j,v)

Crée une matrice creuse dans laquelle S(i(k), j(k)) = v(k).

S = speye(m,n)

Crée une matrice creuse $m \times n$ diagonale remplie de 1

cond = issparse(A)

Retourne 1 si A est creuse et 0 si elle est pleine.

spy(S)

Trace un graphe de la structure de la matrice creuse

nnz(S)

Retourne le nombre d'éléments non nuls dans la matrice creuse

Matrices creuses dans PYTHON

Pour travailler avec des matrices creuses dans PYTHON, il faut utiliser une bibliothèque des fonctions SCIPY et certaines commandes spécifiques.

```
S = scipy.sparse.csr matrix((m,n), dtype=np.double);
                          Crée une matrice creuse (implicite) m \times n remplie de zéros
S = scipy.sparse.csr matrix((data,(row,col)), shape=(m,n), dtype=np.double);
                           Crée une matrice creuse dans laquelle
                           S(row(k), col(k)) = data(k).
S = scipy.sparse.eye(m, n, k)
                           Crée une matrice creuse m \times n avec diagonale k remplie de 1
```

cond = scipy.sparse.issparse(S)

Retourne 1 si S est creuse et 0 si elle est pleine.

Retourne le nombre d'éléments non nuls dans la matrice creuse

S.getnnz()