Limiti - Sommario

Tutto sui limiti.

A. Definizione di Limite di funzione

Definizione di Limite di funzione

Idea fondamentale del limite di una funzione; definizione di limite in tutti i casi; dimostrazione dell'esistenza di un limite. Definizione di limite destro e sinistro.

O. Argomenti propedeutici

Per affrontare uno degli argomenti più importanti dell', ovvero i *limiti*, è necessario conoscere e ricordare alcuni argomenti:

- Intorni di $x_0 \in ilde{\mathbb{R}}$
- Punti di aderenza e di accumulazione per un insieme $E\subseteq \mathbb{R}$

1. Idea fondamentale

IDEA. Prendiamo la una funzione di variabile reale (DEF 1.1.) del tipo

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

e consideriamo un punto $x_0\in \tilde{\mathbb{R}}$ che è un *punto di accumulazione* per E (Punti di aderenza e di accumulazione, **DEF 2.1.**).

Ora voglio capire come posso rigorosamente formulare la seguente frase: "Se $x \in E$ si avvicina a $x_0 \in \tilde{\mathbb{R}}$, allora f(x) si avvicina a un valore $L \in \tilde{\mathbb{R}}$." Ovvero col seguente grafico abbiamo

Oppure un caso più particolare, con

$$f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$
$$x \mapsto x \cdot \sin(\frac{1}{x})$$

dove 0 è un punto di accumulazione per ${\cal E}$ (il dominio), ma non ne fa parte.

2. Definizione rigorosa

Ora diamo una formalizzazione rigorosa del concetto appena formulato sopra.

DEF 2.1. Definizione del LIMITE

Sia f una funzione di variabile reale di forma

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

Siano $x_0, L \in \widetilde{\mathbb{R}}$, x_0 un punto di accumulazione per E.

Allora definiamo il limite di una funzione

$$\lim_{x o x_0}f(x)=L$$

se è vera la seguente:

 $\forall V \text{ intorno di } L, \exists E \text{ intorno di } x_0 \text{ tale che:}$

$$orall x \in E, x \in U \diagdown \{x_0\} \implies f(x) \in V$$

PROP 2.1. Questa *definizione* del limite può essere può essere interpretata in più casi.

CASO 1. Siano $x_0, L \in \mathbb{R}$. Quindi dei valori *fissi* sulla *retta reale*.

Ora "interpretiamo" la definizione del limite di f(x), $\lim_{x\to x_0}f(x)=L$ in questo caso:

$$\forall V \text{ intorno di } L, \exists E \text{ intorno di } x_0 \text{ tale che:}$$
 $\forall x \in E, x \in U \setminus \{x_0\} \implies f(x) \in V$

significa

$$egin{aligned} orall arepsilon > 0, (L-arepsilon, L+arepsilon) \subseteq V, \exists \delta > 0: (x_0-\delta, x_0+\delta) \subseteq U \ & ext{tale che } orall x \in E \ & 0 < |x-x_0| < \delta \implies |f(x)-L| < arepsilon \end{aligned}$$

che graficamente corrisponde a

OSS 2.1. Grazie a questa interpretazione è possibile creare un'analogia per il limite; infatti se immaginiamo che l'intorno di L con raggio ε è il bersaglio e se esiste il limite, allora deve essere sempre possibile trovare un intorno attorno x_0 con raggio δ tale per cui facendo l'immagine di tutti i punti in questo intorno, "colpisco" il "bersaglio" (ovvero l'intorno di L).

OSS 2.2. Alternativamente è possibile pensare all'esistenza del *limite* come una "macchina" che dato un valore ε ti trova un valore δ . Ora passiamo al secondo caso.

CASO 2. Ora interpretiamo

$$\lim_{x o x_0}f(x)=+\infty$$

ovvero dove $L \in \tilde{\mathbb{R}}.$ Allora interpretando il significato del limite abbiamo:

$$orall M>0, (M,+\infty), \exists \delta>0: (x_0-\delta,x_0+\delta)\subseteq U: \ ext{tale che } orall x\in E, \ 0<|x-x_0|<\delta\implies x>M$$

ovvero abbiamo graficamente che per una qualsiasi retta orizzontale x=M, troveremo sempre un intervallo tale per cui l'immagine dei suoi punti superano sempre questa retta orizzontale.

Ora al terzo caso.

CASO 3. Ora abbiamo

$$\lim_{x o +\infty} f(x) = L$$

ovvero dove $x_0 \in \tilde{\mathbb{R}}$. Interpretando la definizione si ha:

$$egin{aligned} orall arepsilon > 0, (L-arepsilon, L+arepsilon), \exists N > 0: (N,+\infty): \ & ext{tale che } orall x \in E, \ &x > N \implies |f(x)-L| < arepsilon \end{aligned}$$

ovvero graficamente ho un grafico di una funzione f(x), dove disegnando un qualsiasi intorno di L riuscirò sempre a trovare un valore N tale per cui tutti i punti dell'insieme immagine dell'intervallo $(N,+\infty)$ stanno sempre all'interno dell'intorno di L, indipendentemente da quanto stretto è questo intervallo.

Infine all'ultimo caso.

CASO 4. Finalmente abbiamo

$$\lim_{x o +\infty} f(x) = +\infty$$

quindi per definizione ho

$$egin{aligned} orall M; (M, +\infty), \exists N; (N, +\infty): \ & ext{tale che } orall x \in E, \ x > N \implies f(x) > M \end{aligned}$$

ovvero ciò vuol dire che fissando un qualunque valore M riuscirò sempre a trovare un valore N tale per cui prendendo un qualsiasi punto x>N, il valore immagine di questo punto supererà sempre M.

2.1. Infinitesimo

APPROFONDIMENTO PERSONALE a. Usando la *nostra* definizione del limite e ponendo $L=0, x=+\infty$, otteniamo un risultato che è consistente con la definizione di *infinitesimo* (1) secondo dei noti matematici russi, tra cui uno è Kolmogorov.

DEF 2.a. Si definisce un infinitesimo come una *grandezza variabile* α_{n} , denotata come

$$\lim_{x o +\infty} lpha_n = 0 ext{ oppure } lpha_n o 0$$

che possiede la seguente proprietà:

$$orall arepsilon > 0, \exists N > 0: orall x \in E, x > N \implies |lpha_x| < arepsilon$$

OSS 2.a. Notiamo che la definizione dell'*infinitesimo* diventerà importante per il calcolo degli *integrali*, in particolare la *somma di Riemann*.

 $^{(1)}$ "[...] La quantità α_n che dipende da n, benché apparentemente complicata gode di una notevole proprietà: se n cresce indefinitamente, α_n tende a zero. Tale proprietà si può anche esprimere dicendo che dato un numero positivo ε , piccolo a piacere, è possibile scegliere un interno N talmente grande che per ogni n maggiore di N il numero α_n è minore, in valore assoluto, del lato numero ε ."

Estratto tratto da *Le matematiche: analisi, algebra e geometria analitica* di *A.D. Aleksandrov*, *A. N. Kolmogorov* e *M. A. Lavrent'ev* (1974, ed. Bollati Boringhieri, trad. G. Venturini).

3. Limite destro e sinistro

PREMESSA. Sia una funzione f di variabile reale del tipo

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

 $x_0\in\mathbb{R}$ un punto di accumulazione per E, $L\in ilde{\mathbb{R}}.$ Allora definisco le seguenti:

DEF 3.1. Il limite della funzione f che tende a x_0 da destra come

$$\lim_{x o x_0^+}f(x)=L$$

come

$$orall V ext{ intorno di } L, \exists U ext{ intorno di } x_0: orall x \in E, \ x \in U \cap (x_0, +\infty) \implies f(x) \in V$$

ovvero come il *limite di f*, considerando però *solo* i punti che stanno a *destra* di x_0 .

DEF 3.2. Analogamente il limite della funzione f che tende a x_0 da sinistra è

$$\lim_{x o x_0^-}f(x)=L$$

ovvero

$$orall V ext{ intorno di } L, \exists U ext{ intorno di } x_0: orall x \in E, \ x \in U \cap (-\infty, x_0) \implies f(x) \in V$$

OSS 3.1. Si può immediatamente verificare che

$$\lim_{x o x_0}f(x)=L\iff \lim_{x o x_0^+}f(x)=\lim_{x o x_0^-}f(x)=L$$

Infatti l'insieme dei x del limite destro e/o sinistro su cui verifichiamo che $f(x) \in V$ è un sottoinsieme dell'insieme di cui si verifica col limite generale. Pertanto facendo l'unione tra questi due sottoinsiemi abbiamo

$$[U\cap (-\infty,x_0)]\cup [U\cap (x_0,+\infty)]=U\diagdown \{x_0\}$$

DEF 3.1. (DALLA DISPENSA) Avevamo appena osservato che coi limiti destri e/o sinistri abbiamo semplicemente fatto una restrizione all'insieme

 $U \setminus \{x_0\}$ di cui si cerca di verificare che $f(U \setminus \{x_0\}) \subseteq V$. Dunque definiamo il **limite della funzione ristretta a** B, un qualunque sottoinsieme di E per cui x_0 è di accumulazione:

$$\lim_{x o x_0} f_{|B}(x) = L$$

ovvero

$$orall V ext{ intorno di } L, \exists U ext{ intorno di } x_0: orall x \in B, \ x \in U \diagdown \{x_0\} \implies f(x) \in V$$

4. Strategia per verificare l'esistenza di limiti

La nostra definizione presuppone che dobbiamo *eseguire* una serie *infinita* di verifiche per dimostrare che un limite esiste; infatti si dovrebbe scegliere tutti gli $\varepsilon > 0$ e trovare un δ associato.

Vogliamo invece sviluppare una serie di *strategie* per verificare l'esistenza dei limiti, come i *teoremi* e le *proprietà* sui limiti come vedremo in Teoremi sui Limiti di Funzione, oppure *interpretando* la definizione del limite per poter trovare una "formula" che associa ad ogni epsilon un delta.

ESEMPIO 4.1.

Voglio verificare che

$$\lim_{x\to 1} x^2 + 1 = 2$$

ovvero, interpretando la definizione otteniamo il seguente da verificare:

$$orall arepsilon > 0, \exists \delta > 0: orall x \in E, 0 < |x-1| < \delta \implies |x^2+1-2| < arepsilon$$

Allora "faccio finta" di conoscere un ε fissato, sviluppiamo dunque l'equazione a destra:

$$|x^2+1-2|$$

Osservo che se poniamo $x \in [0,2)$ e quindi $\delta < 1$, allora abbiamo |x+1| < 3. Allora da ciò discende che

$$|x+1||x-1| < 3|x-1| < 3\delta$$

abbiamo quindi

$$0<|x-1|<\delta \implies |x+1||x-1|<3\delta, orall x\in [0,2)$$

Infatti abbiamo implicitamente scelto $arepsilon=3\delta$, verificando così il limite per $orall x\in [0,2).$

Invece se $x \ge 2$, basta scegliere $\delta = 1$ [Non ho ancora capito perchè]

B. Teoremi sui limiti di funzione

Teoremi sui Limiti di Funzione

Teoremi sui limiti: unicità del limite, permanenza del segno, teorema del confronto, teorema dei due carabinieri, operazioni con i limiti, limiti infinitesimi e limiti infiniti, forme indeterminate.

O. Preambolo

In questo capitolo si vuole creare una serie di *strategie* per poter verificare l'esistenza dei limiti senza dover ricorrere a fare dei *calcoli* infiniti in quanto richiesta dalla Definizione di Limite di funzione.

Una di queste strategie consiste proprio enunciare e dimostrare una serie di *teoremi*.

1. Unicità del limite

TEOREMA 1.1. (L'unicità del limite)

Sia

$$f:E\longrightarrow \mathbb{R}$$

poi $x_0\in ilde{\mathbb{R}}$ un punto di accumulazione per E. *Tesi*. Poi siano i valori limiti $L_1,L_2\in ilde{\mathbb{R}}$ tali che

$$\lim_{x o x_0}f(x)=L_1;\lim_{x o x_0}f(x)=L_2$$

allora

$$L_1 = L_2$$

DIMOSTRAZIONE 1.1. Si procede tramite una dimostrazione per *assurdo*. Supponiamo dunque

$$L_1
eq L_2$$

Allora ci chiediamo se è possibile trovare degli *intorni* (Intorni) di L_1, L_2 che chiameremo V_1, V_2 che sono *disgiunti*; ovvero se sono tali che

$$V_1 \cap V_2 = \emptyset$$

Dato che L_1 e L_2 sono diversi, da qui discende che la distanza tra L_1 e L_2 dev'essere maggiore di 0; quindi possiamo impostare il raggio di questi intorni come

$$r = \frac{|L_1 - L_2|}{3}$$

Allora concludiamo che possono esistere V_1 e V_2 tali da essere disgiunti tra di loro.

Ora li scegliamo: applicando le definizioni di limite, ovvero

$$egin{aligned} \lim_{x o x_0}f(x) &= L_1\iff \operatorname{per} V_1, \exists U_1 ext{ di } x_0: orall x\in E\ &x\in U_1\diagdown\{x_0\}\implies f(x)\in V_1\ \lim_{x o x_0}f(x) &= L_2\iff \operatorname{per} V_2, \exists U_2 ext{ di } x_0: orall x\in E,\ &x\in U_2\diagdown\{x_0\}\implies f(x)\in V_2 \end{aligned}$$

Dato che U_1, U_2 sono *intorni* di x_0 che è di accumulazione per E (Punti di aderenza e di accumulazione) si ha che

$$(U_1 \cap U_2) \cap E \neq \emptyset$$
 escludendo x_0

Posso scegliere allora un x che sta all'interno nell'intersezione di U_1 e U_2 ; ovvero

$$x \in ((U_1 \cap U_2) \diagdown \{x_0\})$$

e per ipotesi (ovvero che esistono tali limiti) deve valere che esiste un elemento f(x) tale che

$$f(x) \in (V_1 \cap V_2)$$

il che è assurdo, in quanto $V_1 \cap V_2$ dovrebbe essere un *insieme vuoto*.

OSS 1.1. (*Tratto dalla dispensa di D.D.S.*) Questo teorema è anche utile per dimostrare la *non-esistenza* di un limite: prendendo la *contronominale* di questo teorema. Ovvero se due *restrizioni della stessa funzione f*

(Definizione di Limite di funzione, **DEF 3.1.**) hanno limiti diversi $L_1 \neq L_2$, allora il limite *non* esiste.

2. Permanenza del segno

TEOREMA 2.1. (Permanenza del segno) Sia

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

Siano $x_0, L \in \widetilde{\mathbb{R}}$, x_0 punto di accumulazione per E. Sia definito il *limite*

$$\lim_{x o x_0}f(x)=L$$

Tesi. Allora supponendo che $L\in(0,+\infty)$ oppure $L=+\infty$, allora è vera che

$$\exists ar{U} ext{ intorno di } x_0: orall x \in (ar{U} \cap E) \diagdown \{x_0\}, f(x) > 0$$

Ovvero a parole stiamo dicendo che se il limite è *positivo*, allora anche la *funzione* è positiva per un intorno opportuno di x_0 ; il segno si "trasferisce" dal limite alla funzione.

DIMOSTRAZIONE 2.1.

Parto dalle definizione del limite, ovvero

$$egin{aligned} \lim_{x o x_0}f(x)=L\ifforall V ext{ di }L,\exists U ext{ di }x_0:orall x\in E,\ x\in U\diagdown\{x_0\}\implies f(x)\in V. \end{aligned}$$

Per interpretarla nel nostro contesto (ovvero che L è positiva), abbiamo che l'intorno di L può essere $V=(0,+\infty)$, in quanto se è *positiva* allora sarà sicuramente contenuta in quell'intervallo.

Dunque viene verificato che esiste un intorno U tale che

$$\forall x \in E, x \in U \setminus \{x_0\} \implies f(x) > 0$$

OSS 2.1. Posso usare questo teorema "alla rovescia", prendendo la contronominale dell'enunciato; ovvero se f(x) è sempre negativo o uguale a zero ed il limite esiste, allora sicuramente L è sempre negativo o uguale a zero.

$$f(x) \leq 0 \wedge \exists \lim_{x o x_0} f(x) \implies L \leq 0$$

3. Teorema del confronto

TEOREMA 3.1. (Teorema del confronto)

Siano f,g funzioni di variabile reale del tipo

$$f,g:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

e x_0 un punto di accumulazione per E, e $x_0 \in ilde{\mathbb{R}}.$

Tesi. Supponendo che siano vere le seguenti condizioni:

i. Che esista il limite

$$\lim_{x o x_0}f(x)=+\infty$$

ii. Che la funzione g dev'essere sempre (nel dominio) maggiore o uguale di f.

$$orall x \in E \diagdown \{x_0\}, g(x) \geq f(x)$$

Allora vale che

$$\lim_{x\to x_0}g(x)=+\infty$$

DIMOSTRAZIONE 3.1. Sia ad esempio $x_0 \in \mathbb{R}$, allora abbiamo la seguente definizione di limite:

$$orall M>0, \exists \delta>0: orall x\in E, \ 0<|x-x_0|<\delta \implies f(x)>M$$

e considerando che $g(x) \geq f(x)$, abbiamo a maggior ragione che

$$orall x \in E, 0 < |x-x_0| < \delta \implies g(x) \geq f(x) > M$$

e considerando la *transitività* della relazione d'ordine > (Relazioni, **DEF 4.**), abbiamo

$$orall M>0, \exists \delta>0: orall x\in E, \ 0<|x-x_0|<\delta \implies g(x)>M$$

che è esattamente la definizione di

$$\lim_{x o x_0}g(x)=+\infty$$
 $lacksquare$

4. Teorema dei due carabinieri

TEOREMA 4.1. (Dei due carabinieri)

Siano f, g, h funzioni del tipo

$$f,g,h:E\longrightarrow \mathbb{R},E\subseteq \mathbb{R}$$

e x_0 un punto di accumulazione per E, $x_0, L \in \widetilde{\mathbb{R}}.$ Tesi. Supponendo che

$$\lim_{x o x_0}f(x)=\lim_{x o x_0}h(x)=L$$

e che

$$\forall x \in E \setminus \{x_0\}, f(x) \leq g(x) \leq h(x)$$

poi volendo possiamo chiamare f,g le "funzioni carabinieri"; abbiamo che

$$\lim_{x o x_0}g(x)=L$$

DIMOSTRAZIONE 4.2. Consideriamo $x_0 \in \mathbb{R}$.

Per la definizione del limite, abbiamo

$$egin{aligned} orall arepsilon > 0, \exists \delta_f > 0: orall x \in E, \ 0 < |x - x_0| < \delta_f \Longrightarrow |f(x) - L| < arepsilon \ \Longrightarrow -arepsilon < f(x) - L < arepsilon \ \Longrightarrow L - arepsilon < f(x) < L + arepsilon \end{aligned}$$

e analogamente

$$egin{aligned} orall arepsilon > 0, \exists \delta_h > 0: orall x \in E, \ 0 < |x - x_0| < \delta_h \implies L - arepsilon < h(x) < L + arepsilon \end{aligned}$$

Se vogliamo che *entrambe* le espressioni valgano contemporaneamente, dobbiamo scegliere il *minimo* tra i due delta.

Per capire l'idea di questo ragionamento prendiamo dei numeri:

$$(x < 3 \implies x < 4) \land (x < 6 \implies x < 7)$$

se voglio essere *sicuro* che valgano entrambe, devo prendere x < 3 in quanto così abbiamo la garanzia che anche x < 6 sia vera.

Dunque sia

$$\delta = \min\{\delta_f, \delta_h\}$$

e mettendole assieme, abbiamo

$$|0<|x-x_0|<\delta \implies L-arepsilon < f(x) \le g(x) \le h(x) < L+arepsilon$$

possiamo sfruttare la transitorietà di > per ottenere

$$0 < |x - x_0| < \delta \implies |g(x) - L| < \varepsilon$$

Riassumendo, abbiamo il seguente:

$$egin{aligned} orall arepsilon > 0, \exists \delta = \min \{\delta_f, \delta_h\} : orall x \in E, \ 0 < |x - x_0| < \delta \implies |g(x) - L| < arepsilon \end{aligned}$$

che è esattamente la definizione di

$$\lim_{x o x_0}g(x)=L$$

come volevasi dimostrare. ■

5. Operazioni con i limiti

Ora presentiamo una serie di proposizioni, raccolte in un unico teorema, e queste ci permettono di fare delle operazioni *tra limiti*.

TEOREMA 5.1.

Siano f, g funzioni di variabile reale del tipo

$$f,q:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}, x_0\in ilde{\mathbb{R}}$$

e x_0 un punto di accumulazione per E.

Tesi. Supponendo che

$$\lim_{x o x_0} f(x) = l \in \mathbb{R} \ \lim_{x o x_0} g(x) = m \in \mathbb{R}$$

allora abbiamo le seguenti:

$$egin{aligned} &\lim_{x o x_0} (f(x)\pm g(x)) = l+m \ &\lim_{x o x_0} (f(x)g(x)) = lm \end{aligned}$$

inoltre se $m \neq 0$, allora

$$\lim_{x o x_0}(rac{f(x)}{g(x)})=rac{l}{m}$$

DIMOSTRAZIONE. Dimostriamo solo le prime due.

1. Prendiamo la definizione dei limiti

$$\lim_{x o x_0} f(x) = l \ \lim_{x o x_0} g(x) = m$$

ovvero

$$egin{aligned} orall arepsilon > 0, \exists \delta_f > 0: orall x \in E, \ 0 < |x - x_0| < \delta_f \implies |f(x) - l| < arepsilon \ ext{ovvero} \ l - arepsilon < f(x) < arepsilon + l \end{aligned}$$

e analogamente

$$egin{aligned} orall arepsilon > 0, \exists \delta_g > 0: orall x \in E, \ 0 < |x - x_0| < \delta_g \implies |g(x) - m| < arepsilon \ ext{ovvero} \ m - arepsilon < g(x) < arepsilon + m \end{aligned}$$

osserviamo che, in quanto abbiamo definito ε come un valore arbitrariamente piccolo, allora possiamo porre $\varepsilon=\frac{\varepsilon'}{2}$.

Infatti $\varepsilon>0$ risulterà comunque vera, in quanto dividendo un qualsiasi numero infinitamente piccolo otteniamo un numero ancora più piccolo, ma mai zero. Dunque abbiamo i seguenti:

$$egin{aligned} 0 < |x-x_0| < \delta_f \implies |f(x)-l| < rac{arepsilon}{2} \ 0 < |x-x_0| < \delta_g \implies |g(x)-m| < rac{arepsilon}{2} \end{aligned}$$

ora scegliendo $\delta=\min\{\delta_f,\delta_g\}$ abbiamo che valgono le seguenti proposizioni e possiamo dunque sommarle (analogo il discorso nella **DIMOSTRAZIONE 4.2.**): abbiamo allora

$$egin{aligned} orall arepsilon > 0, \exists \delta: orall x \in E, \ 0 < |x-x_0| < \delta \implies m - rac{arepsilon}{2} + l - rac{arepsilon}{2} < f(x) + g(x) < m + rac{arepsilon}{2} + l + \ \implies (m+l) - arepsilon < f(x) + g(x) < (m+l) + arepsilon \ \implies |f(x) + g(x)| < (m+l) + arepsilon \end{aligned}$$

che è esattamente la definizione di $\lim_{x\to x_0}(f(x)\pm g(x))=l+m$.

 Qui il ragionamento per dimostrare la tesi diventa più sottile; la dimostrazione richiederà l'uso della disuguaglianza triangolare del valore assoluto (Funzioni di potenza, radice e valore assoluto, OSS 3.1.1.).

Secondo la definizione del limite, se ho $f(x)g(x) \to lm$ per $x \to x_0$ allora devo ragionare sulla seguente espressione:

$$|f(x)g(x) - lm|$$

e utilizzando un trucchetto in cui all'interno di questa aggiungo un'espressione equivalente a 0 (ovvero $-f(x)m+f(x)m\iff 0$), questo diventa

$$|f(x)g(x)-lm|\leq |f(x)g(x)-f(x)m+f(x)m-lm|$$

ora applicando la disuguaglianza triangolare ho:

$$egin{aligned} |f(x)g(x)-lm| &\leq |f(x)g(x)-f(x)m+f(x)m-lm| \ &\leq |f(x)g(x)-f(x)m|+|f(x)m-lm| \ &\leq |f(x)(g(x)-m)|+|m(f(x)-l)| \ &\leq |f(x)||g(x)-m|+|m||f(x)-l| \end{aligned}$$

Ora ragioniamo su ogni termine del membro destro dell'uguaglianza. |f(x)-l| è una quantità destinata a diventare *infinitamente* piccolo, in quanto esso rappresenta la distanza tra la funzione ed il limite; analogo il discorso per |g(x)-m|.

|m| è una costante che viene moltiplicata per un numero che diventa più piccolo, allora anche questa diventa piccola.

Ora l'unico apparente "intralcio" è |f(x)| in quanto non è una costante, però quando è vicino a x_0 si comporta come una costante in quanto è limitata (dato che ha il limite $l \in \mathbb{R}$).

Allora tutto il quantitativo al membro destro diventa piccolo.

6. Limiti infiniti e infinitesimi

Notiamo che in **TEOREMA 5.1.** per il quoziente tra limiti abbiamo imposto che $m \neq 0$; infatti se la funzione che sta al denominatore g(x) si avvicina a 0, il limite si comporterà in un altra maniera. Enunciare quindi i seguenti teoremi per illustrare questi comportamenti.

TEOREMA 6.1. (Limiti $0 e \pm \infty$)

Sia $f: E \longrightarrow \mathbb{R}$, $E \subseteq \mathbb{R}$, $x_0 \in \tilde{\mathbb{R}}$ punto di accumulazione per E. *Tesi*. Allora valgono le seguenti:

1. Limite infinitesimo

$$\lim_{x o x_0}f(x)=+\infty \implies \lim_{x o x_0}rac{1}{f(x)}=0$$

2. Limite infinito

$$\lim_{x o x_0}f(x)=0 \wedge f(x)>0, orall x
eq x_0 \implies \lim_{x o x_0}rac{1}{f(x)}=+\infty$$

DIMOSTRAZIONE 6.1.

Dimostriamo solo la 1., in quanto la dimostrazione dell'altra è analoga. Partiamo dalla definizione del limite di $f(x) \to +\infty$; ovvero

$$egin{aligned} orall M>0, \exists \delta>0: orall x\in Eackslash \{x_0\}\ 0<|x-x_0|<\delta \implies f(x)>M\ &\Longrightarrow rac{1}{f(x)}<rac{1}{M} \end{aligned} ext{ sia } M=rac{1}{arepsilon}, orall arepsilon>0 \implies -arepsilon<0<rac{1}{f(x)}$$

ovvero la definizione del limite di

$$\lim_{x o x_0}rac{1}{f(x)}=0$$

7. Forme indeterminate

Ora definiamo delle forme indeterminate di alcuni limiti.

TEOREMA 7.1. (Forme indeterminate)

Tesi 1. Sia

$$\lim_{x o x_0}f(x)=+\infty ext{ e } \lim_{x o x_0}g(x)
eq -\infty$$

(la seconda vuol dire che g è inferiormente limitata; ovvero $\exists M>0: \forall x\in E\diagdown\{x_0\}, g(x)>-M)$, allora abbiamo che

$$\lim_{x o x_0}f(x)+g(x)=+\infty$$

Analogo il discorso per

$$\lim_{x o x_0}f(x)=-\infty ext{ e }\lim_{x o x_0}
eq +\infty$$

Escludiamo infatti il caso $-\infty + \infty$ in quanto essa è una **forma** indeterminata.

Tesi 2. Sia

$$\lim_{x o x_0}f(x)=+\infty, \exists
ho>0: orall x\in E\diagdown\{x_0\}, g(x)\geq
ho>0$$

la seconda espressione vuole dire che g(x) è un'espressione sempre positiva di 0, allora si ha

$$\lim_{x o x_0}f(x)g(x)=+\infty$$

e qui escludiamo il caso $+\infty \cdot 0$.

Tesi 3 (dalla dispensa). Sia

$$\lim_{x o x_0} f(x) = 0, \exists M>0: |g(x)| < M$$

ovvero la seconda vuol dire che g(x) è limitata, allora abbiamo che

$$\lim_{x o x_0}f(x)g(x)=0$$

escludendo i casi $\pm \infty \cdot 0$.

DIMOSTRAZIONE 7.1. Dimostriamo la *tesi 1.*, la *tesi 2.* potrà essere dimostrata in una maniera analoga.

Partiamo dalla definizione del limite di f: ovvero

$$orall K > 0, \exists \delta > 0: orall x \in E ackslash \{x_0\} \ 0 < |x - x_0| < \delta \implies f(x) > K$$

ma allo stesso tempo abbiamo che g è inferiormente limitata, ovvero

$$\exists M>0: orall x
eq x_0, g(x)>-M$$

allora se scegliamo K=K+M e sommiamo entrambe le espressioni, abbiamo

$$0<|x-x_0|<\delta \implies f(x)+g(x)>K$$

che è la definizione di

$$\lim_{x o x_0}f(x)+g(x)=+\infty$$

8. Limite della funzione composta

IDEA. Ho una funzione

$$f:E\longrightarrow \mathbb{R}$$

con $E\subseteq\mathbb{R}$, $x_0,y_0\in \tilde{\mathbb{R}}$ e x_0 di accumulazione per E. Suppongo che esiste il limite di $f(x)\to y_0$ per $x\to x_0$:

$$\lim_{x o x_0}f(x)=y_0$$

Ora sia

$$g:F\longrightarrow \mathbb{R}$$

con $F\subseteq \mathbb{R}$, y_0 punto di accumulazione per F e $L\in \widetilde{\mathbb{R}}$. Suppongo che esiste il limite di $g(y)\to L$ per $y\to y_0$. Ovvero

$$\lim_{y o y_0}g(y)=L$$

Supponendo che l'immagine funzione del dominio sia sottoinsieme del dominio dell'altra funzione, ovvero $f(E) \subseteq F$, e f(x) = y un punto di accumulazione per f(E), ho la seguente situazione:

Allora posso fare la *funzione composita* $g \circ f$ (Funzioni, **DEF 4.**) che mi porta ad un certo punto in \mathbb{R} .

Quindi voglio capire se posso affermare il seguente:

$$\lim_{x o x_0}g(f(x_0))=L$$

TEOREMA 8.1. (Limite della funzione composta)

Sia

$$f:E\longrightarrow \mathbb{R}; g:F\longrightarrow \mathbb{R}$$

con y_0, x_0 punti di accumulazione per (rispettivamente) E, F. Poi supponendo che esistono i limiti

$$\lim_{x o x_0}f(x)=y_0 ext{ e } \lim_{y o y_0}g(y)=L$$

e se vale una delle due ipotesi supplementari,

- 1. $\forall x \in E \setminus \{x_0\}, f(x) \neq y_0$
- 2. $y_0 \in F, g(y_0) = L$ allora vale che

$$\lim_{x o x_0}f(g(x))=L$$

DIMOSTRAZIONE (FACOLTATIVA).

Riscriviamo i limiti

$$\lim_{x o x_0}f(x)=y_0\ ext{e}\ \lim_{y o y_0}g(y)=L$$

secondo la definizione rigorosa del limite (Definizione di Limite di funzione, **DEF 2.1.**). Allora abbiamo:

$$\lim_{x o x_0} f(x) = y_0 \iff egin{array}{l} orall U ext{ di } y_0, \exists V ext{ di } x_0: orall x\in E\diagdown\{x_0\} \ x\in V \implies f(x) = y\in U \end{array}$$

е

$$\lim_{y o y_0}g(y)=L\ifforall W ext{ di }L,\exists U ext{ di }y_0:orall y\in F\diagdown\{y_0\}\ y\in U\implies g(y)\in W$$

Concatenando le due espressioni, otteniamo

$$\lim_{x o x_0}g(f(x))=L\ifforall W ext{ di }L,\exists V ext{ di }x_0:orall x\in E\diagdown\{x_0\}\ f(x)\in V\implies g(f(x))\in W$$

però per farlo dobbiamo assicurarci di una condizione: ovvero che

$$orall x \in E, x
eq x_0 \implies f(x) = y \in F \setminus \{y_0\}$$

così abbiamo un modo sicuro per garantirci che

$$orall x, x \in V \implies f(x) \in V$$

Un modo per garantire la suddetta condizione è porre $f(x) \neq y_0, \forall x \neq x_0.$

Allora posso scrivere

$$g(f(x)) = g(y) \in W$$

Se alla peggio ci capita che $\exists x': f(x') = y_0$, allora essendo ancora fortunati allora possiamo porre $g(y_0) = L$ e abbiamo dunque $g(f(x')) = g(y_0) = L$, che ovviamente appartiene a W.

OSS 8.1. Per fortuna nostra le *condizioni supplementari* appena descritte di norma valgono quasi sempre.

OSS 8.2. Possiamo sfruttare questo *teorema* per poter svolgere ciò che chiameremo il meccanismo del "cambio della variabile del limite"; questo è un meccanismo non importante, ma importantissimo. Vediamo un esempio in cui entra in gioco questo meccanismo.

Cambio della variabile del limite

ESEMPIO 8.a Voglio calcolare il limite

$$\lim_{x\to 0^+}\frac{\sin\sqrt{x}}{\sqrt{x}}$$

Idea. L'idea fondamentale consiste nel pensare alla funzione del limite

$$x\mapsto rac{\sin\sqrt{x}}{\sqrt{x}}$$

come la funzione composta. Ponendo infatti

$$x\mapsto \sqrt{x}=y\mapsto rac{\sin y}{y}$$

Di conseguenza dobbiamo trovare il valore per cui tende y_0 . Dunque

$$x o 0^+ \implies \sqrt{x} = y o 0^+$$

in quanto se x tende a 0 da destra, allora anche la sua radice tende a 0 da destra.

23

Ora verifichiamo se vale l'ipotesi aggiuntiva, ovvero se è vera che

$$\forall x, x
eq x_0 \implies f(x)
eq 0$$

il che è vera, in quanto non c'è nessun numero di cui la radice è 0, se non 0 stesso.

Dunque possiamo scrivere il limite iniziale come la *composizione* tra due funzioni, di cui una è la originaria. Allora

$$\lim_{x o 0^+}rac{\sin\sqrt{x}}{\sqrt{x}}=\lim_{y o 0^+}rac{\sin y}{y}$$

Ora questo limite è semplicissimo da risolvere, in quanto questo ci riconduce al limite fondamentale $\frac{\sin x}{x}=1, x\to 0$ (Esempi di Limiti di Funzione, **ESEMPIO 6.1.**). Quindi L=1.

9. Limite della funzione monotona

OSS 9.1. Osserviamo che fino ad adesso *tutti* i nostri *teoremi* sui limiti di funzione enunciati in questa pagina avevano *l'esistenza di qualche limite* per ipotesi.

Il teorema che enunceremo sarà *speciale* da questo punto di vista: infatti *non* avrà l'esistenza di un qualche limite per ipotesi, ma ha comunque nella *tesi* l'esistenza del limite.

TEOREMA 9.1. (Limite della funzione monotona) Sia

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

e supponiamo che E sia superiormente limitata con $\sup E = x_0$ e $x_0 \notin E$. Oppure analogamente, se E è inferiormente limitata allora abbiamo $\inf E = x_0 \notin E$.

Inoltre è possibile supporre che $x_0\in \tilde{\mathbb{R}}$, ovvero abbiamo $x_0=\pm \infty.$

(Per esercizio verificare che se $\sup E \notin E$ allora $\sup E$ è di accumulazione per E.)

Inoltre sia f una funzione monotona crescente o decrescente (Funzioni, **DEF 8.**)

Tesi. Allora esiste il limite l

$$\lim_{x o x_0}f(x)=l$$

e abbiamo

$$l = egin{cases} \sup(f(E)) ext{ se crescente} \ \sup(f(E)) ext{ se decrescente} \end{cases}$$

DIMOSTRAZIONE 9.1.

Dimostriamo il caso per cui supponiamo che $x_0 \in \mathbb{R}$, f sia crescente e $\sup(f(E)) = L \in \mathbb{R}$ (in parole il limite "target" è un numero reale): si tratta di provare che

$$\lim_{x o x_0}f(x)=L$$

Consideriamo dunque la *proprietà dell'estremo superiore* sup (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore, **TEOREMA 4.2.**);

$$L = \sup(f(E)) \iff egin{cases} orall x \in E, f(x) \leq L \ orall arepsilon > 0, \exists ar{x} : L - arepsilon < f(ar{x}) \end{cases}$$

Ora considero un $x \in E: x > \bar{x}$ e applicando la *monotonia della funzione* ho

$$x \geq \bar{x} \implies f(x) \geq f(\bar{x})$$

Infinite metto le proposizioni assieme, ottenendo

$$egin{aligned} orall arepsilon > 0, \exists ar{x}: orall x \in E, \ ar{x} \leq x < x_0 \implies L - arepsilon < L \leq f(ar{x}) \leq f(x) < L + arepsilon \ \implies |f(x) - L| < arepsilon \end{aligned}$$

che è esattamente la definizione del limite appena enunciato.

COROLLARIO 9.1. Sia

$$f:\]a,b[\ \longrightarrow \mathbb{R}$$

 $c \in [a,b]$ e f crescente.

Tesi. Allora esistono i limiti

$$\lim_{x o c^-}f(x);\lim_{x o c^+}f(x)$$

e inoltre

$$\lim_{x o c^-}f(x)\leq f(c)\leq \lim_{x o c^+}f(x)$$

Abbiamo di fatto una situazione situazione del tipo

OSS 9.2.

Quindi secondo il **COROLLARIO 9.1.** possiamo avere le due seguenti situazioni; o il *limite destro* ed il *limite sinistro* si coincidono o abbiamo una specie di "salto".

Questo sarà utile quando parleremo della *continuità* e della *discontinuità*, riferendoci in particolare ad un teorema che enuncia, data una funzione monotona crescente, in un punto discontinuo possiamo avere *solo* la discontinuità del tipo "*salto*".

C. Esempi di limiti di funzione

Esempi di Limiti di Funzione

Esempi di limiti: funzione costante, funzione identità, polinomi, funzioni razionali, funzioni trigonometriche, ...

O. Preambolo

Abbiamo appena visto che cos'è *generalmente* un limite mediante la sua definizione, poi abbiamo anche sviluppato delle strategie per calcolare o

verificare l'esistenza dei limiti velocemente.

Quindi è ovvio che questo capitolo richiede la conoscenza (anche parziale) dei seguenti precedenti capitoli:

- Definizione di Limite di funzione
- Teoremi sui Limiti di Funzione (Almeno fino alla sez. 7)
 Infatti, mediante i nostri strumenti appena sviluppati, andremo a calcolare dei limiti notevoli.

1. Funzione costante e identità

ESEMPIO 1.1. Funzione costante

Sia f la funzione costante $f(x)=c,c\in\mathbb{R}$ Allora il suo limite è

$$\lim_{x o x_0}f(x)=\lim_{x o x_0}c=c$$

ed è facile dimostrarla; infatti riscrivendo la definizione il limite risulta sempre verificato.

ESEMPIO 1.2. Funzione identità

Sia f la funzione identità $\mathrm{id}_x=f(x)=x$, definita $\forall x\in E.$ Allora il suo limite è

$$\lim_{x o x_0}f(x)=\lim_{x o x_0}x=x_0$$

che risulta sempre vera ponendo $\delta = \varepsilon$.

OSS 1.1. Notiamo che per la funzione identità il limite può valere anche per $x_0 \in \mathbb{R}$ (i numeri reali estesi); infatti abbiamo

$$\lim_{x\to\pm\infty}x=\pm\infty$$

ed è sempre vera in quanto possiamo porre N=M o n=m.

OSS 1.2. Possiamo sfruttare altri teoremi per ricavare

$$\lim_{x o x_0} x^n = \lim_{x o x_0} (x\cdot x\cdot\ldots\cdot x) = \lim_{x o x_0} x\cdot\ldots\cdot\lim_{x o x_0} x = x_0^n$$

e secondo il nostro ragionamento questa vale per $\forall n \in \mathbb{N} > 0$.

2. Funzioni quozienti

ESEMPIO 2.1. Funzione quoziente che tende all'infinito

Dai risultati di Teoremi sui Limiti di Funzione, soprattutto con TEOREMA

6.1. conosciamo il limite di $\frac{1}{x}$ per x che tende all'infinito. Infatti

$$\lim_{x\to\infty}\frac{1}{x}=0$$

è un infinitesimo.

ESEMPIO 2.2. Funzione quoziente che tende a zero

Ora consideriamo la medesima funzione, studiando però il comportamento di x che tende a 0. Innanzitutto

$$\lim_{x\to 0^+}\frac{1}{x}=+\infty$$

е

$$\lim_{x o 0^-}rac{1}{x}=-\infty$$

Infatti abbiamo il grafico della funzione $\frac{1}{x}$.

Concludiamo che non esiste il limite

$$\exists \lim_{x \to 0} \frac{1}{x}$$

in quanto il limite destro e sinistro sono diversi.

ESEMPIO 2.3. Funzione quoziente alla n

Allora sfruttando altri Teoremi sui Limiti di Funzione, dall'esempio precedente possiamo ricavare

$$\lim_{x o\infty}rac{1}{x^n}=0, orall n\in\mathbb{N}, >0$$

3. Funzione radice

ESEMPIO 3.1. Funzione radice quadrata

Sia $f(x) = \sqrt{x}$ e abbiamo

$$\lim_{x\to 0^+} \sqrt{x} = 0$$

Infatti nella definizione del limite basta prendere $\delta = \varepsilon^2.$ Ora vediamo cosa succede se $0 < x_0, x_0 \in \mathbb{R}.$

$$\lim_{x o x_0} \sqrt{x} = \sqrt{x_0}$$

 $\forall \varepsilon > 0, \exists \delta > 0 : \forall x,$

Per dimostrarlo possiamo fare il seguente.

$$0 < |x - x_0| < \delta \implies |\sqrt{x} - \sqrt{x_0}| < \varepsilon$$
 manipolo la seconda:
$$|\sqrt{x} - \sqrt{x_0}| \implies |\sqrt{x} - \sqrt{x_0} \frac{\sqrt{x} + \sqrt{x_0}}{\sqrt{x} + \sqrt{x_0}}|$$

$$|\sqrt{x} - \sqrt{x_0} \frac{\sqrt{x} + \sqrt{x_0}}{\sqrt{x} + \sqrt{x_0}}| \implies \frac{|x - x_0|}{\sqrt{x} + \sqrt{x_0}} \le \frac{|x - x_0|}{\sqrt{x_0}}$$
 allora
$$|\sqrt{x} - \sqrt{x_0}| \le \frac{|x - x_0|}{\sqrt{x_0}} < \varepsilon \implies |x - x_0| < \varepsilon \sqrt{x_0}$$

Quindi basta scegliere $\delta = arepsilon \sqrt{x_0}.$ Ora vediamo che

$$\lim_{x o +\infty} \sqrt{x} = +\infty$$

basta infatti scegliere $N=M^2$. Analogamente tutto questo vale per $\sqrt[n]{x}$.

4. Funzioni polinomi e razionali

ESEMPIO 4.1. Polinomio con limite costante

Sia f(x) un polinomio di grado n, ovvero del tipo

$$f(x) = a_0 + a_1 x^1 + a_2 x^2 + \ldots + a_n x^n$$

Allora sfruttando le *operazioni con i limiti* (Teoremi sui Limiti di Funzione, **TEOREMA 5.1.**), possiamo ricavare il suo limite quando questa funzione tende a $x_0 \in \mathbb{R}$.

$$egin{aligned} \lim_{x o x_0} f(x) &= \lim_{x o x_0} (a_0 + a_1 x + \ldots + a_n x^n) \ &= \lim_{x o x_0} a_0 + \lim_{x o x_0} a_1 x + \ldots + \lim_{x o x_0} (a_n x^n) \ &= a_0 + a_1 x_0 + \ldots + a_n x_0^n \end{aligned}$$

ESEMPIO 4.2. Polinomio con limite infinito

Nel caso in cui $x_0=+\infty\in \tilde{\mathbb{R}}$, allora abbiamo

$$\lim_{x o +\infty}f(x)=\lim_{x o +\infty}(a_0+a_1x+\ldots+a_nx^n)$$

e possiamo raccogliere ogni termine con x^n , ottenendo dunque

$$egin{aligned} \lim_{x o +\infty}(a_0+a_1x+\ldots+a_nx^n)&=\lim_{x o +\infty}(x^n(a_n+a_{n-1}rac{1}{x}+\ldots+a_0rac{1}{x^n}))\ &=\lim_{x o +\infty}x^n\cdot(\lim_{x o +\infty}(a_n)+\lim_{x o +\infty}a_{n-1}rac{1}{x}+\ldots\ &=\lim_{x o +\infty}x^n\cdot(a_n+0+0+\ldots+0)\ &=a_n\lim_{x o +\infty}x^n\end{aligned}$$

Allora in questo caso dobbiamo vedere quale valore assume il coefficiente dell'ultimo termine x^n . Procediamo dunque per casistica:

$$a_n \lim_{x o +\infty} x^n = egin{cases} +\infty & ext{se } a_n > 0 \ -\infty & ext{se } a_n < 0 \ ext{forma indeterminata, altrimenti} \end{cases}$$

abbiamo ricavato questo dai risultati dei Teoremi sui Limiti di Funzione (TEOREMA 7.1.).

Analogamente c'è un discorso verosimile per il limite quando la funzione tende a $-\infty$, però al contrario. Ovvero

$$a_n \lim_{x \to -\infty} x^n = egin{cases} -\infty & ext{se } a_n > 0 \ +\infty & ext{se } a_n < 0 \ ext{forma indeterminata, altrimenti} \end{cases}$$

ESEMPIO 4.3. Funzione razionale di grado n, m con limite finito

Sia la funzione razionale un quoziente tra due polinomi di grado n,m ovvero del tipo

$$orall n, m \in \mathbb{N}, f(x) = rac{a_0 + a_1x + \ldots + a_nx^n}{b_0 + b_1x + \ldots + b_mx^m}$$

Allora sfruttando i Teoremi sui Limiti di Funzione possiamo avere

$$\lim_{x o x_0} f(x) = rac{a_0 + a_1 x_0 + \ldots + a_n x_0^n}{b_0 + b_1 x_0 + \ldots + b_m x_0^m}$$

e bisogna avere che

$$b_0+b_1x_0+\dots b_nx_0^m\neq 0$$

Se invece la sopra non viene verificata (ovvero il polinomio al denominatore è 0) bisogna vedere se è vera che

$$a_0 + a_1 x_0 + \ldots + a_n x_0^n \stackrel{?}{=} 0$$

- 1. Se è *vera* (ovvero che vale 0), allora dobbiamo usare il *teorema di Ruffini* per cui sappiamo che un polinomio si annulla in x_0 se e solo se $(x-x_0)$ è un fattore. Dunque a quel punto si può semplificare la frazione e vedere il risultato; può verificare che rimane il numeratore (e quindi il limite tende a 0) oppure che rimane il denominatore (e quindi il limite tende a $\pm \infty$).
- 2. Se è invece *falsa* (ovvero che *non* vale 0), allora il limite può essere $+\infty$ o $-\infty$, oppure può non esistere se il limite *destro* è diverso dal limite *sinistro*. C'è infatti un problema del segno: bisogna vedere il segno del numeratore.

ESEMPIO 4.4. Funzione razionale di grado n,m che tende all'infinito Vogliamo valutare

$$\lim_{x\to\infty}\frac{a_0+a_1x+\ldots+a_nx^n}{b_0+b_1x+\ldots+b_mx^m}$$

Allora con un ragionamento simile all'esempio ESEMPIO 4.2. possiamo

raccogliere in entrambi i polinomi per x^n o x^m e avere

$$egin{aligned} \lim_{x o \infty} rac{a_0 + a_1 x + \ldots + a_n x^n}{b_0 + b_1 x + \ldots + b_m x^m} &= \lim_{x o \infty} rac{x^n (a_n + a_{n-1} rac{1}{x} + \ldots + a_0 rac{1}{x^n})}{x^m (b_m + b_{m-1} rac{1}{x} + \ldots + b_0 rac{1}{x^m})} \ &= \lim_{x o \infty} x^{n-m} \cdot \lim_{x o \infty} rac{a_n}{b_m} + 0 + \ldots + 0 \ &= rac{a_n}{b_m} \lim_{x o \infty} x^{n-m} \end{aligned}$$

Raggiunto qui dobbiamo procedere per casistica per x^{n-m} :

- 1. Se n-m=0 (ovvero i polinomi sono dello stesso grado) allora il limite tende a $\frac{a_n}{b_m}$
- 2. Se n-m>0 allora il limite tende a $\pm\infty$, il segno del limite varia a seconda del segno della costante $\frac{a_n}{b_m}$
- 3. Se n-m<0 allora il limite tende a 0.

5. Funzioni trigonometriche

Questa sezione ovviamente richiede la conoscenza di Funzioni trigonometriche

ESEMPIO 5.1. Funzione seno

Ricordiamoci delle *funzioni di prostaferesi* (Funzioni trigonometriche, **SEZIONE 2.4.**).

Voglio dimostrare che

$$\lim_{x o x_0}\sin x=\sin x_0$$

Allora parto dalla distanza euclidea

$$|f(x) - L| \implies |\sin x - \sin x_0|$$

e conoscendo le formule di prostaferesi ottengo

$$|2|\sin(rac{x-x_0}{2})\cos(rac{x+x_0}{2})| = 2|\sinrac{x-x_0}{2}||\cosrac{x-x_0}{2}|$$

e sapendo che $\cos \alpha \leq 1, \forall \alpha$ possiamo "maggiorare" questa espressione con

$$2|\cos{\frac{x-x_0}{2}}|\cdot 1$$

allora

$$|\sin x - \sin x_0| = 2|\sin rac{x-x_0}{2}||\cos rac{x-x_0}{2}|$$
 $\leq 2|\sin rac{x-x_0}{2}|$

Ora ci ricordiamo che $|\sin\alpha| \le |\alpha|$ (infatti basta pensare che α è la lunghezza della retta e $\sin\alpha$ è invece la coordinata y del punto su cui cadiamo quando facciamo il processo di "avvolgimento" di questa retta; oppure basta disegnare i grafici di queste due funzioni),

Dunque otteniamo

$$|\sin x - \sin x_0| \le 2 |\sin rac{x - x_0}{2}| \le 2 |rac{x - x_0}{2}| = |x - x_0|$$

ovvero

$$|\sin x - \sin x_0| \leq |x - x_0|$$

allora nella definizione del limite (Definizione di Limite di funzione) basta scegliere $\delta = \varepsilon$ in quanto abbiamo appena verificato che sicuramente quest'ultima espressione è sicuramente vera.

ESEMPIO 5.2. Funzione coseno

Esercizio lasciato a me stesso.

ESEMPIO 5.3. Funzione tangente

Invece per la funzione tangente tan si ha che:

$$\lim_{x o x_0} an x = egin{cases} an x_0 ext{ se } x_0
eq rac{\pi}{2} + k\pi, orall k \in \mathbb{Z} \ ext{non def., altrimenti} \end{cases}$$

il limite di \tan per $x \to \alpha, \forall \alpha \in [\frac{\pi}{2}]_{\equiv \pi}$ non è definita in quanto il limite destro e sinistro di questa non sono uguali; infatti

$$\lim_{x\to\alpha^-}\tan x = +\infty \; \mathrm{e} \; \lim_{x\to\alpha^+}\tan x = -\infty$$

e questi valgono per la permanenza del segno; infatti se da sinistra $\lim_{x\to\alpha^-}\frac{1}{\cos x}=+\infty$ allora sicuramente vale ciò che abbiamo detto prima. Analogo per l'altro limite.

Quindi

$$\lim_{x\to\alpha^+}\tan x\neq \lim_{x\to\alpha^-}\tan x$$

ESEMPIO 5.4. Funzione arcotangente

Riprendiamo invece la funzione arcotangente $\arctan x$.

Osserviamo dal grafico di tale funzione

che valgono le seguenti:

$$\lim_{x o -\infty} rctan x = -rac{\pi}{2} \ \lim_{x o +\infty} rctan x = rac{\pi}{2} \ \lim_{x o x_0} rctan x = rctan x_0$$

ESEMPIO 5.5. Funzione arcoseno e arcocoseno

Riprendiamo ora le funzioni \arcsin e \arccos .

Dai grafici

osserviamo che

$$\lim_{x o -1^+} rcsin x = -rac{\pi}{2}; \lim_{x o -1^+} rccos x = \pi$$

е

$$\lim_{x o 1^-}rcsin x=rac{\pi}{2}; \lim_{x o 1^-}rccos x=\pi$$

6. Funzione esponenziale e logaritmica

Per la funzione esponenziale e logaritmica si tengono in conto i risultati di Funzione esponenziale e Logaritmica.

Esponenziale vs quoziente 1

ESEMPIO 6.1. (Funzione esponenziale diviso per n)

In Esempi di Limiti di Successione, ESEMPIO 1.2. abbiamo visto che

$$\lim_n \frac{a^n}{n} = +\infty$$

Allora si può provare che

$$\lim_{x \to +\infty} \frac{a^x}{x} = +\infty$$

DIMOSTRAZIONE. Partiamo dal fatto che

$$n \le x < n+1 \iff [x] \le x < [x]+1$$

e chiamo n = [x] la **parte intera di** x. Allora si vede che

$$a^{[x]} < a^x < a^{[x]+1}$$

Naturalmente

$$\frac{1}{[x]+1}<\frac{1}{x}\leq\frac{1}{[x]}$$

Allora li combino, ottenendo

$$rac{a^{[x]}}{[x]+1} < rac{a^x}{x} < rac{a^{[x]+1}}{[x]}$$

e osservando che

$$\lim_{n} \frac{a^n}{n+1} = +\infty, \lim_{n} \frac{a^{n+1}}{n} = +\infty$$

allora per il teorema dei due carabinieri (Limite di Successione, **OSS 1.1.**), abbiamo

$$\lim_{x \to +\infty} \frac{a^x}{x} = +\infty \blacksquare$$

Esponenziale vs quoziente k

ESEMPIO 6.2. (Esponenziale vs quoziente)

Voglio calcolare

$$a>1,\lim_{x o +\infty}rac{a^x}{x^k},k\in\mathbb{N}$$

In questo esempio ho una forma indeterminata del tipo $\frac{+\infty}{+\infty}$ (Teoremi sui Limiti di Funzione, **TEOREMA 7.1.**); la domanda che ci poniamo è il seguente: "chi vince tra l'esponenziale a^x e il quoziente x^k ? Ovvero

 $avremmo +\infty o 0$?" Spoiler: vincerà l'esponenziale e di conseguenza il limite è $+\infty$.

DIMOSTRAZIONE. Qui uso le proprietà degli esponenti (Funzione esponenziale e Logaritmica, **TEOREMA 1.5.**).

$$rac{a^x}{x^k}=(rac{(a^{rac{1}{k}})^x}{x})^k$$

Ora considero il limite di

$$\lim_{x o +\infty} rac{(a^{rac{1}{k}})^x}{x} = +\infty$$

e facendo la sostituzione con $y=\frac{x}{k}$ ho

$$\lim_{y o +\infty}rac{a^y}{y}\cdotrac{1}{k}=+\infty$$

che è infatti una situazione del tipo **ESEMPIO 6.1.**. Allora ho una situazione del tipo

$$\lim_{x\to +\infty}\frac{a^x}{r^k}\to (+\infty)^k\to +\infty$$

Pertanto il risultato finale è

$$\lim_{x o +\infty} rac{a^x}{x^k} = +\infty$$

Esponenziale vs potenza

ESEMPIO 6.3. (Esponenziale vs potenza)

Ora facciamo lo stesso scontro, solo che al posto del quoziente abbiamo la potenza $p_n(x)=x^n$. Allora

$$\lim_{x o -\infty} x^k a^x = \underbrace{\pm \infty \cdot 0}_{ ext{forma ind.}}$$

Allora qui ci chiediamo quale "decresce" la più velocemente; x^k oppure a^x ? Ora vediamo.

Poniamo, mediante la sostituzione di variabile, y = -x; allora

$$\lim_{y o +\infty} -y^k a^{-y} = (-1)^k y^k a^{-y} = (-1)^k rac{y^k}{a^k}$$

Notiamo che

$$\frac{y^k}{a^y} = (\frac{a^y}{y^k})^{-1}$$

quindi abbiamo una situazione del tipo

$$(-1)^k\cdot(rac{1}{+\infty}) o (-1)^k\cdot 0 o 0$$

Allora il limite è

$$\lim_{x o -\infty} x^k a^x = 0$$

aggiudicandoci un'altra vittoria per l'esponenziale.

Logaritmo vs identità

ESEMPIO 6.4. (Logaritmo vs identità)

Voglio calcolare

$$\lim_{x o 0^+} x \log_a x, a>1$$

notiamo che questa è una situazione del tipo $0 \cdot (+\infty)$, ovvero una forma indeterminata. Allora procediamo per sostituzione di variabile, ponendo $y = \log_a x \implies x = a^y$;

$$\lim_{y o -\infty}ya^y=0$$

che è una situazione del tipo **ESEMPIO 6.3.** con k=1.

Generalizzando si ha

ESEMPIO 6.5. (Logaritmo vs radice quadrata)

$$\lim_{x\to 0^+} \sqrt{x} \log_a x, a>1$$

Analogamente procediamo per sostituzione; $y=\log_a x \implies \sqrt{x}=a^{\frac{y}{2}}$ allora

$$\lim_{y o -\infty} a^{rac{y}{2}}y \implies \lim_{z o -\infty} a^z(2z)=0$$

Logaritmo vs quoziente

ESEMPIO 6.6. (Logaritmo vs quoziente)

$$\lim_{x o +\infty}rac{\log_a x}{x}$$

Come di consueto procedo per sostituzione: ovvero $y = \log_a x \implies x = a^y$;

$$\lim_{y o +\infty}rac{y}{a^y}=ya^{-y}$$

Sostituisco di nuovo le variabili, $z=-y \implies y=-z$ e ho

$$\lim_{z o -\infty} (-z)a^z = -\lim_{z o -\infty} za^z = -0 = 0$$

7. Limiti fondamentali

Ora illustriamo ciò che chiameremo come i limiti fondamentali.

Prima di considerare il primo esempio facciamo le seguenti osservazioni. **OSS 7.1.** Voglio calcolare l'area del *settore circolare* con raggio r e angolo α e la lunghezza dell'arco $l=r\alpha$.

Idea. Che vuol dire calcolare l'area di una figura? Questo significa prendere una "misura" standard per misurare l'area, poi per contare. Infatti ad esempio, per calcolare l'area di un *triangolo* partiamo dall'area di due *rettangoli* "distorti" che formano un triangolo.

Analogamente facciamo la stessa cosa col settore circolare: la dividiamo in "triangolini" piccolissimi, poi li "apro" disponendoli fila per fila.

Ora arriviamo al punto cruciale: "faccio finta" (oppure approssimo) la lunghezza dell'arco con quello della coda. Graficamente il ragionamento consiste in questo:

Dove la "base" di questi triangoli è αr in quanto questa è proprio la "base" della figura originaria e l'"altezza" è il raggio r.

Quindi possiamo unire tutti questi triangoli in uno singolo triangolo con le stesse misure e avere dunque un singolo triangolo con base αr e altezza r. Usiamo dunque la formula per calcolare l'area di questo triangolo.

$$A=rac{lpha r^2}{2}$$

OSS 7.2. Ora, riprendendo il cerchio unitario Γ , traccio *tre figure geometriche* di cui due sono triangoli ed uno è il settore circolare. Segniamo i tre triangoli $A_{1,2,3}$.

Chiaramente si vede che

$$A_1 \leq A_2 \leq A_3$$

L'area del triangolo delineato dalla coda è

$$A_1=rac{\sinlpha}{2}$$

Invece l'area del settore è

$$A_2=rac{a}{2}$$

Ora l'area del triangolo ottenuto "estendendo" la retta orizzontale in x=1 e la "diagonale" che taglia il cerchio è

$$A_3=rac{ anlpha}{2}$$

ed è ottenuta facendo le proporzioni tra il triangolo A_1 e questo triangolo dove la base è 1(ed è possibile farlo in quanto i due triangoli in merito sono simili). Infatti

$$\frac{\cos \alpha}{\sin \alpha} = \frac{1}{x} \implies x = \frac{\sin \alpha}{\cos \alpha} = \tan \alpha$$

Allora possiamo concludere che in questa figura sussiste la seguente

relazione per $\alpha \in]0, \frac{\pi}{2}[:$

$$\frac{\sin\alpha}{2} \le \frac{\alpha}{2} \le \frac{\tan\alpha}{2}$$

Limite fondamentale sinx / x

ESEMPIO 7.1. Quoziente tra seno e l'identità

Voglio calcolare

$$\lim_{x\to 0} \frac{\sin x}{x}$$

e usando alcuni dei Teoremi sui Limiti di Funzione per trattare i limiti separatamente e sostituire i rispettivi x con 0, otteniamo la frazione $\frac{0}{0}$, ovvero una forma indeterminata. Dobbiamo allora trovare un modo alternativo di calcolare questo limite; questo è possibile grazie alle osservazioni precedenti già fatte, in particolare l'**OSS 5.2.**

Infatti possiamo manipolare l'espressione finale per ottenere il seguente:

$$rac{\sin lpha}{2} \leq rac{lpha}{2} \leq rac{ an lpha}{2} \ rac{\sin lpha}{2} \leq rac{ an lpha}{2} \ 1 \leq rac{lpha}{\sin lpha} \leq rac{ an lpha}{\sin lpha} = \cos lpha \ \cos lpha \leq rac{\sin lpha}{lpha} \leq 1$$

Per il teorema dei *due carabinieri* (Teoremi sui Limiti di Funzione, **TEOREMA 4.1.**), abbiamo i seguenti:

$$egin{aligned} &\lim_{x o 0^+}\coslpha \leq \lim_{x o 0^+}rac{\sinlpha}{lpha} \leq \lim_{x o 0^+}1 \ \Longrightarrow &1 \leq \lim_{x o 0^+}rac{\sinlpha}{lpha} \leq 1 \ \Longrightarrow &\lim_{x o 0^+}rac{\sinlpha}{lpha} = 1 \end{aligned}$$

Però ricordiamoci che $\frac{\sin x}{x}$ è una funzione pari (Funzioni, **DEF 9.**), in quanto abbiamo due funzioni dispari; quindi questo limite può valere anche per il *limite destro* 0^- . Concludiamo dunque

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

ESEMPIO 7.2. Altro limite fondamentale $\frac{1-\cos x}{x^2}$

Ci sarà utile anche ricordare il limite

$$\lim_{x o 0}rac{1-\cos x}{x^2}$$

Per calcolarlo dobbiamo avvalerci di un trucco, ovvero quello di moltiplicare per un'espressione equivalente a $\frac{1}{1}$. In questo caso prendiamo

$$\frac{1+\cos x}{1+\cos x}$$

Dunque il nostro limite diventa

$$\lim_{x o 0} rac{1 - \cos x}{x^2} = \lim_{x o 0} rac{1 - \cos x}{x^2} rac{1 + \cos x}{1 + \cos x} = \lim_{x o 0} rac{1 - \cos^2 x}{x^2 (1 + \cos x)}$$
 $\cos^2 x + \sin^2 x = 1 \implies = \lim_{x o 0} rac{\sin^2 x}{x^2} \cdot rac{1}{1 + \cos x} = \lim_{x o 0} (rac{\sin x}{x})^2 \cdot \lim_{x o 0} rac{1}{1 + \cos x} = 1^2 \cdot rac{1}{1 + 1} = rac{1}{2}$

Concludiamo allora

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

Limiti esponenziali e logaritmici

Dai risultati del **CAPITOLO 6.** è opportuno ricordarsi i seguenti *limiti* notevoli:

ESEMPIO 7.3. (Limiti esponenziali e logaritmici)

$$egin{aligned} &\lim_{x o +\infty} rac{a^x}{x^k} = +\infty \ &\lim_{x o -\infty} x^k a^k = 0 \ &\lim_{x o 0^+} x^arepsilon \log_a x = 0, arepsilon > 0 \ &\lim_{x o +\infty} rac{\log_a x}{x^arepsilon} = 0, arepsilon > 0 \end{aligned}$$

Limite fondamentale (1+1/n)^n

Dai risultati di Esempi di Limiti di Successione, in particolare l'**ESEMPIO 1.4.**, abbiamo visto che

$$\lim_n (1 + \frac{1}{n})^n = e$$

DETOUR. Si nota che da adesso in poi, quando si scrive \log , \exp senza specificare le loro basi si implicitamente intende $\log_e = \ln$ e $\exp_e = e^{\cdots}$. Facciamo questo in quanto vedremo che usando questa nomenclatura diventerà tutto più semplice.

ESEMPIO 7.4. (Limite fondamentale e)

Allora voglio calcolare

$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x$$

Idea. Il ragionamento è analogo a quello presentato nell'**ESEMPIO 6.1.**, ovvero quella di usare la parte intera n=[x]. Allora sappiamo già che

$$[x] \leq x < [x] + 1 \implies rac{1}{[x] + 1} < rac{1}{x} \leq rac{1}{[x]}$$

Ora ci aggiungiamo +1 da tutte le parti, poi li eleviamo elle loro rispettive potenze di partenza:

$$rac{1}{[x]+1}+1<rac{1}{x}+1\leqrac{1}{[x]}+1 \ (rac{1}{[x]+1}+1)^{[x]}<(1+rac{1}{x})^x<(rac{1}{[x]}+1)^{[x]+1}$$

Adesso analizziamo il membro sinistro e destro.

1. Membro sinistro

$$egin{split} (rac{1}{[x]+1}+1)^{[x]} &= \lim_n (1+rac{1}{n+1})^n \ &= \lim_n (1+rac{1}{n+1})^{n+1} \cdot rac{1}{(1+rac{1}{n+1})} \ &= e \cdot 1 = e \end{split}$$

2. Membro destro

$$(rac{1}{[x]}+1)^{[x]+1} = (1+rac{1}{[x]})^{[x]+1} = \lim_n (1+rac{1}{n})^n \cdot (1+rac{1}{n}) = e \cdot 1 = e$$

Vediamo che ambo i lati convergono a e; di conseguenza per il teorema dei due carabinieri (Teoremi sui Limiti di Funzione, **TEOREMA 4.1.**) abbiamo

$$\lim_{x o +\infty} (1+rac{1}{x})^x = e$$

ESEMPIO 7.5. (Limite fondamentale e parte 2)

Ora voglio calcolare

$$\lim_{x\to -\infty} (1+\frac{1}{x})^x$$

L'idea principale è quella di usare la sostituzione di variabile, ovvero y=-x. Allora

$$\lim_{y \to +\infty} (1 - \frac{1}{y})^{-y} = \frac{1}{(1 - \frac{1}{y})^y}$$

$$= \frac{1}{(\frac{y-1}{y})^y}$$

$$= (\frac{y}{y-1})^y$$

$$= (\frac{y-1+1}{y-1})^y$$

$$= (1 + \frac{1}{y-1})^y$$

$$= (1 + \frac{1}{y-1})^y$$

$$= e \cdot 1 = e \blacksquare$$

Limite fondamentale (1+n)^(1/n)

ESEMPIO 7.6. (Altro limite fondamentale e)

Voglio calcolare

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}}$$

Se voglio usare la sostituzione di variabile ponendo $y=\frac{1}{x}$ è necessario procedere per casistica, in quanto $x\to 0 \implies \frac{1}{x}\to \pm \infty$. Allora

1. Limite destro

$$\lim_{x o 0^+} (1+x)^{rac{1}{x}} \stackrel{y=rac{1}{x}}{\Longrightarrow} \lim_{y o +\infty} (1+rac{1}{y})^y = e$$

2. Limite sinistro

$$\lim_{x o 0^-} (1+x)^{rac{1}{x}} \;\;\Longrightarrow\; \lim_{y o -\infty} (1+y)^y = e$$

Pertanto è definito il limite

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}}$$

Limite fondamentale log(1+x)/x

ESEMPIO 7.7. (Limite fondamentale log(1+x)/x)

Ηо

$$\lim_{x o 0}rac{\log(1+x)}{x}$$

Idea. Uso le proprietà del logaritmo (Funzione esponenziale e Logaritmica, **TEOREMA 2.1.**). Dunque

$$rac{\log(1+x)}{x} = \log(1+x) \cdot x^{-1} = \log(1+x)^{rac{1}{x}} = \log((1+x)^{rac{1}{x}}))$$

Osservo che

$$(1+x)^{\frac{1}{x}}
ightarrow e \operatorname{per} x
ightarrow 0$$

Allora ho

$$\lim_{x o 0}rac{\log(1+x)}{x}=\log(e)=1$$

Limite fondamentale (e^x-1)/x

ESEMPIO 7.8. (Limite fondamentale $(e^x-1)/x$)

Ηо

$$\lim_{x\to 0}\frac{e^x-1}{x}$$

Idea. Qui usiamo la sostituzione di variabile, dove $y=e^x-1 \implies x=\log(y+1)$. Allora

$$\lim_{y o 0} rac{y}{\log(y+1)} = (rac{\log(1+y)}{y})^{-1} = 1^{-1} = 1$$

Dunque

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

ESEMPIO 7.9. (Caso esponenziale non-e)

Se invece ho

$$\lim_{x o 0}rac{a^x-1}{x}, a>1$$

Idea. Qui invece l'idea principale è di *cambiare le basi*, riconducendoci così all'**ESEMPIO 7.8.**. Allora per cambiare la base di un'esponenziale possiamo considerare il seguente:

$$g(x)^{f(x)} = e^{\ln(g(x)^{f(x)})} = e^{f(x)\ln(g(x))}, f(x) > 0$$

Dunque considerando g(x)=a, f(x)=x, abbiamo

$$\lim_{x o 0}rac{e^{x\ln a}-1}{x}\stackrel{y=x\ln a}{\Longrightarrow}\lim_{y o 0}rac{e^y-1}{rac{y}{\ln a}}=rac{e^y-1}{y}\cdot \ln a=e\cdot \ln a$$

Dunque

$$\lim_{x o 0} rac{a^x - 1}{x} = \ln a \cdot e$$

Infatti l'**ESEMPIO 7.8.** è un *caso specifico* di questo con $a=e \implies \ln a=1$.

L'utilità dei limiti fondamentali

OSS 7.3. Abbiamo osservato i seguenti limiti fondamentali:

ESEMPIO 7.1.
$$\lim_{x\to 0}\frac{\sin x}{x}=1$$
ESEMPIO 7.8. $\lim_{x\to 0}\frac{e^x-1}{x}=1$
ESEMPIO 7.7. $\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$

Se ho $\lim_{x\to x_0}f(x)=0$ e $f(x)\neq 0, \forall x\neq x_0$, allora possiamo considerare il limite delle funzioni composte

$$egin{aligned} & \lim_{x o x_0} rac{\sin(f(x))}{f(x)} = 1 \ & \lim_{x o x_0} rac{e^{f(x)} - 1}{x} = 1 \ & \lim_{x o x_0} rac{\ln(1 + f(x))}{f(x)} = 1 \end{aligned}$$

Questo strumento è *utilissimo* per risolvere degli esercizi sui limiti; infatti questo potrebbe essere addirittura più potente del *Teorema de l'Hopital* [Link da inserire].

D. Esercizi sui limiti di funzione

Esercizi sui Limiti di Funzione

Tutti gli esercizi sui limiti

O. Propedeuticità

Questa parte (come è ben ovvia) richiede la conoscenza preliminare della parte teorica sui limiti; ovvero bisogna conoscere i contenuti di *tutti* i capitoli prima di poter affrontare gli esercizi.

- Definizione di Limite di funzione
- Teoremi sui Limiti di Funzione

1. Esercizi proposti in lezione

Qui si raccolgono *tutti* gli esercizi proposti da *D.D.S.* durante le lezioni dell'anno accademico 2023-2024.

Giorno 30.10.2023

ESERCIZIO 1.1.

$$\lim_{x \to 1} \frac{x^2 + x + 1}{x^3 + x^2 + x + 1}$$

ESERCIZIO 1.2.

$$\lim_{x\to 1}\frac{x^2+1}{x^3+x^2+x-3}$$

ESERCIZIO 1.3.

$$\lim_{x\to +\infty}\frac{2x^3+3x^2+1}{x^3+7}$$

ESERCIZIO 1.4.

$$\lim_{x \to +\infty} \frac{x+2}{x^2+2x+1}$$

ESERCIZIO 1.5.

$$\lim_{x o 0}rac{ an x}{x}$$

ESERCIZIO 1.6.

$$\lim_{x\to 0}\frac{\tan x-\sin x}{x^3}$$

ESERCIZIO 1.7.

$$\lim_{x o 0^+}rac{\sin\sqrt{x}}{\sqrt{x}}$$

ESERCIZIO 1.8.

$$\lim_{x o 0^+}rac{\sin\sqrt{x}}{x}$$

ESERCIZIO 1.9.

$$\lim_{x o 0}rac{\sin x^2}{x^2}$$

ESERCIZIO 1.10.

$$\lim_{x\to +\infty} \sqrt{x+1} - \sqrt{x}$$

ESERCIZIO 1.11.

$$\lim_{x o +\infty} \sqrt{x} (\sqrt{x+1} - \sqrt{x})$$

ESERCIZIO 1.12.

$$\lim_{x\to 0}\frac{\arcsin x}{x}$$

ESERCIZIO 1.13.

$$\lim_{x\to 0} \frac{\sin x}{\arcsin x}$$

ESERCIZIO 1.14.

$$\lim_{x \to +\infty} x(\frac{\pi}{2} - \arctan x)$$

ESERCIZIO 1.15.

$$\lim_{x \to 1^-} rac{rccos x}{\sqrt{1-x}}$$

Giorno 06.11.2023

ESERCIZIO 1.16.

$$\lim_{x o 0}(1+\sin(x))^{rac{1}{x}}$$

ESERCIZIO 1.17.

$$\lim_{x\to 0^+} x^x$$

ESERCIZIO 1.18.

$$\lim_{x o +\infty} \sqrt{x} \cdot \sin(rac{\pi}{2} - \arctan x)$$

ESERCIZIO 1.19.

$$\lim_{x o 0}rac{e^x-e^{-x}}{x}$$

ESERCIZIO 1.20.

$$\lim_{x o 0}rac{(1-\cos x)^2}{\log(1+\sin^4 x)}$$

ESERCIZIO 1.21.

$$\lim_{x \to 0} \frac{\sin 2x}{\tan 3x}$$

ESERCIZIO 1.22.

$$\lim_{x\to 0}\frac{\ln(\cos x)}{x^2}$$

2. Esercizi delle dispense

Qui si raccolgono tutti gli esercizi disponibili nella dispensa.

3. Esercizi dei papers

Qui si raccolgono tutti gli esercizi dei papers messi a disposizione.

4. Esercizi delle prove d'esame

Qui si prova a raccogliere *tutti* gli esercizi delle prove d'esame precedenti. Ovviamente questa sezione sarà la più "sostanziale" di tutte.

5. Esercizi del libro

Fonte: Analisi Matematica (Vol. 1), E. Giusti

ESERCIZIO 12, PAG. 152.

$$\lim_{x\to 0}\frac{\sin x}{\sqrt{x^2}}$$

ESERCIZIO 21, PAG. 152.

$$\lim_{x o 0}rac{\sin{(x+x^2)}}{x}$$

ESERCIZIO 22, PAG 152.

$$\lim_{x o 0}rac{1-\cos\sqrt{x}}{x}$$

ESERCIZIO 23, PAG 152.

$$\lim_{x o 0}rac{rac{1}{1+x}-\cos x}{x}$$

6. Svolgimento degli esercizi

6.1. Esercizi delle lezioni

VOID

6.2. Esercizi delle dispense

VOID

6.3. Esercizi dei papers

VOID

6.4. Esercizi delle prove d'esame

VOID

6.5. Esercizi del libro

ESERCIZIO 12, PAG. 152. Ho il limite

$$\lim_{x o 0}rac{\sin x}{\sqrt{x^2}}$$

Qui si tratta di ricordarsi di una osservazione del valore assoluto

(Funzioni di potenza, radice e valore assoluto, OSS 3.1.1.), ovvero che

$$\sqrt{x^2} = |x|$$

Rimpiazziamo dunque $\sqrt{x^2}$ con |x|. Allora ho

$$\lim_{x o 0}rac{\sin x}{|x|}$$

Ora basta richiamare la definizione del valore assoluto, avendo dunque

$$rac{\sin x}{|x|} = egin{cases} rac{\sin x}{x} & ext{per } x \geq 0 \ -rac{\sin x}{x} & ext{per } x < 0 \end{cases}$$

Visto che stiamo studiando il comportamento di *questa* funzione attorno 0, basta fare la restrizione del limite con il limite destro e sinistro (Definizione di Limite di funzione), in quanto approcciando a 0 da "destra" abbiamo sempre valori positivi (in quanto abbiamo la semiretta $]0,+\infty[$), similmente da "sinistra" abbiamo sempre valori negativi. Allora

$$\lim_{x o 0^+}rac{\sin x}{x}=1 ext{ (limite fondamentale)} \ \lim_{x o 0^-}-rac{\sin x}{x}=-\lim_{x o 0^-}rac{\sin x}{x}=-1$$

Dunque abbiamo

$$\lim_{x o 0^+}rac{\sin x}{|x|}
eq \lim_{x o 0^-}rac{\sin x}{x}$$

e ciò vuol dire che non esiste il limite per $x \to 0$.

ESERCIZIO 21, PAG. 152. Ho il limite

$$\lim_{x\to 0}\frac{\sin(x+x^2)}{x}$$

allora uso la forma di addizione per $\sin(a+b)$ (Funzioni trigonometriche).

Poi manipolo opportunamente l'espressione ottenuta

$$egin{aligned} \lim_{x o 0} &rac{\sin x\cos x^2 + \sin x^2\cos x}{x} \ &rac{\sin x}{x}\cos x^2 + rac{\sin x^2}{x}\cos x \ & \dots + rac{\sin x^2}{x^2}x\cos x \ & \dots + x\cos x\lim_{y o 0} rac{\sin y}{y}(\sin y = x^2) \ &\lim_{x o 0} &rac{\sin x}{x}\cos x^2 + x\cos x\lim_{y o 0} rac{\sin y}{y} \ &1\cdot 1^2 + 0\cdot 1\cdot 1 = 1 \end{aligned}$$

Allora

$$\lim_{x o 0}rac{\sin(x+x^2)}{x}=1$$

ESERCIZIO 22, PAG. 152. Ho il limite

$$\lim_{x o 0} rac{1 - \cos \sqrt{x}}{x}$$

Moltiplico sia sopra che sotto per $1 + \cos \sqrt{x}$. Allora

$$egin{aligned} &\lim_{x o 0} rac{1-\cos\sqrt{x}}{x} \ &=rac{1-\cos^2\sqrt{x}}{x}rac{1}{(1+\cos\sqrt{x})} \ &=rac{\sin^2\sqrt{x}}{x}\dots \end{aligned}$$

Ora il punto cruciale di questa manipolazione è di osservare che

$$x=\sqrt{x^2}=\sqrt{x}^2, orall x>0$$

Questo passaggio presuppone di restringere il dominio della funzione a quello di tutti i *valori positivi*: tuttavia questa operazione non è restrittiva, in quanto la funzione radice quadrata $\sqrt{\cdot}$ presuppone già la restrizione ai

valori positivi. Allora abbiamo

$$egin{aligned} \lim_{x o 0^+} rac{\sin^2\sqrt{x}}{\sqrt{x}^2} \cdot rac{1}{1+\cos\sqrt{x}} \ ext{sia} \ y = \sqrt{x}; \lim_{y o 0^+} (rac{\sin y}{y})^2 \cdot rac{1}{1+\cos y} \ &= 1^2 \cdot rac{1}{2} = rac{1}{2} \end{aligned}$$

Abbiamo ottenuto infine

$$\lim_{x\to 0}\frac{1-\cos\sqrt{x}}{x}=\frac{1}{2}$$

ESERCIZIO 23, PAG. 152. Ho il limite

$$\lim_{x o 0} rac{rac{1}{1+x} - \cos x}{x}$$

Sviluppo l'espressione sul numeratore.

$$\frac{1}{1+x} - \cos x = \frac{1 - \cos(x)(1+x)}{1+x} = \frac{1 - \cos x - x \cos x}{1+x}$$

Ora raccolgo il numeratore del numeratore per x.

$$\frac{1-\cos x - x\cos x}{1+x} = \frac{x(\frac{1}{x} - \frac{\cos x}{x} - \cos x)}{1+x}$$

Quindi sul limite ho

$$\lim_{x \to 0} \frac{\frac{1}{1+x} - \cos x}{x} = \frac{x(\frac{1-\cos x}{x} - \cos x)}{x} \cdot \frac{1}{1+x}$$

$$= (\frac{1-\cos x}{x} - \cos x)(\frac{1}{1+x})$$

$$= (\frac{1-\cos x}{(x)(1+x)}) - \frac{\cos x}{1+x}$$

$$\cdot \frac{1+\cos x}{1+\cos x} \to = \frac{1-\cos^2 x}{x} \frac{1}{(1+x)(1+\cos x)} - \frac{\cos x}{1+x} \cdot \frac{1+\cos x}{1+\cos x}$$

$$= \frac{\sin^2 x}{x} \frac{1}{1+x} \frac{1}{1+\cos x} - \frac{\cos x}{1+x}$$

$$= \frac{\sin x}{x} \frac{\sin x}{1+x} \frac{1}{1+\cos x} - \frac{\cos x}{1+x}$$

$$\lim_{x \to 0} \frac{\frac{1}{1+x} - \cos x}{x} = 0 \cdot 0 \cdot \frac{1}{2} - 1 = -1$$

Allora

$$\lim_{x \to 0} \frac{\frac{1}{1+x} - \cos x}{x} = -1$$

E. Definizione di limite di successione

Limite di Successione

Definizione di limite di successione.

O. Argomenti ed osservazioni preliminari

Questo argomento richiede la conoscenza degli argomenti seguenti.

- Assiomi di Peano, il principio di induzione, **DEF 4.2.1.** (Successione a valore in A)
- Successione e Sottosuccessione
 Inoltre facciamo alcune osservazioni preliminari che ci possono aiutare a comprendere il contenuto di questa pagina.

OSS O.A. Posso rappresentare una successione sul piano cartesiano

così:

Oppure volendo anche come dei punti dell'asse reale.

1. Limite di Successione

PROBLEMA. Voglio introdurre il concetto di *limite* (Definizione di Limite di funzione) per una *successione* (Successione e Sottosuccessione).

Innanzitutto mi chiedo quale sia il *dominio* di una qualsiasi *successione*: la risposta è l'insieme dei numeri naturali \mathbb{N} .

Se posso definire il limite di una funzione che si avvicina ad un *punto di accumulazione del dominio*, allora posso certamente definire il limite di una successione che si avvicina ad un punto di accumulazione per \mathbb{N} . Tuttavia come osservato (Punti di aderenza e di accumulazione, **ESEMPIO 3.3.**), non ci sono punti di accumulazione in \mathbb{R} .

Quindi bisogna "ampliare" i nostri orizzonti e considerare invece $\tilde{\mathbb{R}}$, in particolare il simbolo $+\infty$. Per definizione possiamo definire il punto di accumulazione di $+\infty$ come una semiretta qualsiasi $(a,+\infty)$.

In questo caso possiamo prendere $+\infty$ come punto di accumulazione per $\mathbb N.$

Allora *l'unico valore* di cui ha senso calcolare il limite di una successione è $+\infty$; di conseguenza possiamo scrivere

$$\lim_{n o +\infty} a_n = \lim_n a_n$$

in una maniera univoca.

DEF 1.1. (Definizione di limite di successione)

Allora definiamo

$$\lim_{n} a_n = L$$

come

$$\forall V \text{ di } L, \exists U \text{ di } + \infty : \forall n, \\ n \in U \implies a_n \in V$$

ovvero, supponendo $L \in \mathbb{R}$,

$$orall arepsilon > 0, \exists N > 0: orall n, \ n > N \implies |a_n - L| < arepsilon$$

oppure se $L \in \tilde{\mathbb{R}}$,

$$orall M>0, \exists N>0: orall n, \ n>N \implies a_n>M \ (a_n<-M \ {
m per} \ -\infty)$$

Graficamente ho una situazione del tipo

DEF 1.2. (Convergenza e divergenza)

Se

$$\lim_n a_n = L$$

esiste e il limite è un $numero\ L\in\mathbb{N}$, allora si dice che a_n è **convergente**. Altrimenti se esiste ma ho

$$\lim_n a_n = \pm \infty$$

allora si dice che a_n è divergente a $\pm \infty$.

Proprietà del limite di successione

OSS 1.1. Osserviamo che per il *limite di successione* valgono *tutte* le *proprietà dei limiti di funzione* (Teoremi sui Limiti di Funzione), in quanto stiamo considerando un *caso particolare* di un *caso generale*. Quindi valgono le seguenti:

- L'unicità del limite
- Permanenza del segno
- · Teorema del confronto
- Teorema dei due carabinieri
- Operazioni sui limiti
- Limite zero e infinitesimo
- Forme indeterminate
 Inoltre abbiamo altri due altri risultati per le successioni.

TEOREMA 1.1.

Sia $(a_n)_n$ una successione a valori in A, e $(a_{n_k})_k$ una successione estratta di a_n (Successione e Sottosuccessione).

Tesi. Supponendo che

$$\lim_{n} a_n = l$$

allora

$$\lim_k a_{n_k} = l$$

DIMOSTRAZIONE. Il punto cruciale consiste nel seguente.

Se

$$\lim_n a_n = l \in \mathbb{R}$$

vuol dire

$$egin{aligned} orall arepsilon > 0, \exists ar{n} > 0: orall n, \ n > ar{n} \implies |a_n - l| < arepsilon \end{aligned}$$

adesso considero la sotto successione $(a_{n_k})_k$, quale numero deve essere superata da k? Ovvero

$$egin{aligned} orall arepsilon > 0, \stackrel{?}{\exists} \ ar{k} : orall n, \ k > ar{k} \implies |a_{n_k} - l| < arepsilon \end{aligned}$$

Scopriamo che basta scegliere $ar{k} \geq ar{n}$ in quanto se i valori k di n_k è

strettamente crescente, allora sicuramente ho

$$n_k \geq k \geq ar{n}$$

In parole, l'idea consiste nel pensare che il "peggior" caso di successione estratta di una successione può essere la successione stessa (infatti estraggo dalla successione la stessa successione); quindi se considero la stessa successione posso avere $\bar{k}=\bar{n}$. In altri casi devo scegliere \bar{k} in un punto più "lontano", in particolare se

$$a_{ar{n}}
otin (a_{n_k})_k$$

TEOREMA 1.2.

Se la successione $(a_n)_n$ è monotona, allora esiste sempre il limite

$$\lim_n a_n$$

COROLLARIO 1.2.a.

Se $(a_n)_n$ è monotona e limitata (Successione e Sottosuccessione, **DEF** 1.3.), allora sicuramente il limite

$$\lim_n a_n$$

è convergente.

OSS 1.2. Se consideriamo la successione $(a_n)_n$ come la *restrizione* del dominio da $A \subseteq \mathbb{R}$ a $\mathbb{N} \subseteq \mathbb{R}$ di una qualsiasi *funzione di variabile reale* (Funzioni, **DEF 1.1.**), ovvero se considero

$$f:A\subseteq [0,+\infty)\longrightarrow B$$

е

$$(a_n)_n:A\cap\mathbb{N}\longrightarrow\mathbb{R}$$

allora posso fare la seguente osservazione.

Se conosco il limite della funzione

$$\lim_{x o +\infty} f(x) = l$$

allora in automatico conosco pure il limite della successione

$$\lim_{n} a_n = l$$

Notiamo che vale anche il *viceversa* (inversa); se conosco il *limite di una successione*, allora conosco anche il *limite di una funzione* per $x \to +\infty$.

ATTENZIONE! Da qui non bisogna dedurre vale anche la *contraria*; se il limite della funzione per $x \to +\infty$ *non* è definita, allora ciò *non* significa che $\lim_n a_n$ *non* è neanche definita. Infatti $\lim_n a_n$ può esistere quando non esiste $\lim_{x\to +\infty} f(x)$.

ESEMPIO 1.1. Vediamo alcuni esempi di quest'ultima osservazione.

1.
$$\lim_{x \to +\infty} \frac{1}{x} = 0 \implies \lim_{n} \frac{1}{n} = 0$$

$$\lim_{x \to +\infty} \sqrt{x} = +\infty \implies \lim_{n} \sqrt{n} = +\infty$$

$$\exists \lim_{x \to +\infty} \sin(n\pi); \lim_n \sin(n\pi) = 0$$

F. Esempi di limiti di successione

Esempi di Limiti di Successione

Alcuni esempi di limiti di successione, in particolare quelle notevoli

0. Prerequisiti

Ovviamente questo capitolo serve la conoscenza di Limite di Successione.

Inoltre è opportuno tenere a mente alcuni risultati di Assiomi di Peano, il principio di induzione, in particolare Esempi di Induzione

1. Limiti notevoli (per successioni)

Esponenziale a alla n

ESEMPIO 1.1. Sia a > 1; considero il limite della successione

$$\lim_n a^n$$
; ovvero $a_n = a^n$

Procediamo prima per casistica:

Se a=2, il limite *diverge* per $+\infty$:

$$\lim_{n} 2^n = +\infty$$

Infatti se ci ricordiamo che $2^n \geq n, \forall n \in \mathbb{N}$, allora ho

$$\lim_n 2^n \geq \lim_n n = +\infty$$

Allora per il teorema del confronto (Teoremi sui Limiti di Funzione), ho

$$\lim_{n} 2^n = +\infty$$

Stesso discorso per a = 1,0001.

Allora generalizzo scrivendo

$$\lim_n a^n = +\infty, orall a > 0$$

Usando la disuguaglianza di Bernoulli (Esempi di Induzione, **ESEMPIO 1.3.**) che enuncia il seguente:

$$(1+\rho)^n \ge 1 + \rho n$$

Allora ponendo $a=1+\rho$, ho

$$\lim_n a^n \geq \lim_n (1 +
ho n)$$

E calcolando la seconda, ottengo

$$\lim_n (1+
ho n) = 1 +
ho \lim_n n = +\infty$$

Pertanto, per il teorema del confronto

$$\lim_{n} a^n = +\infty$$

Esponenziale a alla n diviso per n

ESEMPIO 1.2. Considero un caso analogo di quello precedente.

$$\lim_{n} \frac{a^n}{n}$$

Qui basta usare la disuguaglianza di Bernoulli incrementata (Esempi di Induzione, **ESEMPIO 1.4.**): ovvero

$$(1+\rho)^n \geq 1+\rho n + \frac{n(n-1)}{2}\rho^2$$

e dividendo da ambo le parti per n_i ottengo

$$rac{(1+
ho)^n}{n} \geq rac{1}{n} +
ho + rac{n-1}{2}
ho^2$$

e considerando che la seconda espressione tende a $+\infty$, visto che

$$rac{1}{n}
ightarrow 0;
ho
ightarrow n;rac{n-1}{2}
ho^2
ightarrow +\infty$$

allora ho

$$\lim_{n} \frac{a^n}{n} = +\infty$$

Radice n di a

ESEMPIO 1.3. Ora considero una nuova funzione:

$$\lim_n \sqrt[n]{a}, orall a > 1$$

Qui basta osservare il grafico della funzione *radice* (Funzioni di potenza, radice e valore assoluto), che è la *funzione potenza* "capovolta".

Possiamo quindi congetturare che l=1 (ovvero che la successione è convergente a 1).

Quindi lo dimostriamo:

Supponendo $\varepsilon > 0$ e considerando $(1 + \varepsilon)^n$, sappiamo che

$$\lim_n (1+arepsilon)^n = +\infty$$

Allora se a > 1 avrò che

$$\exists ar{n}: n > ar{n} \implies (1+arepsilon)^n > a \iff (1+arepsilon) > \sqrt[n]{a}$$

Ora rileggiamo l'espressione iniziale $\lim_n \sqrt[n]{a}$,

$$egin{aligned} orall arepsilon > 0, \exists ar{n} > 0: orall n, \ n > ar{n} \implies 1 < \sqrt[n]{a} < 1 + arepsilon \ \implies 1 - arepsilon < \sqrt[n]{a} < 1 + arepsilon \ \implies |\sqrt[n]{a} - 1| < arepsilon \end{aligned}$$

Con un conto analogo posso dimostrare che

$$\lim_n \sqrt[n]{n} = 1$$

(Per esercizio)

Limite fondamentale $(1+\frac{1}{n})^n$

ESEMPIO 1.4. Consideriamo uno dei *limiti* più importanti dell'*analisi* matematica;

$$\lim_n (1 + \frac{1}{n})^n$$

Non è immediato capire se questo limite converge o diverge, in quanto:

- Da un lato sappiamo che $\forall \varepsilon>0, (1+\varepsilon)^n \to +\infty.$
- Dall'altro sappiamo che $(1)^n \to 1$. Conclusione. Questo limite esiste e converge ad un numero reale che chiameremo e, e si trova tra 2 e 3;

DIMOSTRAZIONE. Uso il teorema sulle *successioni monotone e limitate* per dimostrare che innanzitutto il limite *converge*: si tratta di provare che $(1+\frac{1}{n})^n$ è sia monotona che limitata.

1. Suppongo che

$$orall n, 2 \leq (1+rac{1}{n})^n \leq 3$$

Ora uso il teorema del binomio (Coefficiente Binomiale, TEOREMA 1.)

per sviluppare $(1+\frac{1}{n})^n$.

$$(1+\frac{1}{n})^n = \sum_{j=0}^n \binom{n}{j} 1^{n-j} (\frac{1}{n})^j$$

$$= \binom{n}{0} \frac{1}{n^0} + \binom{n}{1} \frac{1}{n^1} + \binom{n}{2} \frac{1}{n^2} + \dots + \binom{n}{n} \frac{1}{n^n}$$

$$= 1 + n \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^2} + \dots + \frac{n(n-1)\dots(n-(n-1))}{n!}$$

$$= 2 + \frac{1}{2!} \frac{n-1}{n} + \frac{1}{3!} \frac{n-1}{n} \frac{n-2}{n} + \dots + \frac{1}{n!} \frac{n-1}{n} \dots \frac{n-1}{n}$$

Ora considerando l'ultima espressione, abbiamo che ogni "secondo membro" (ovvero dove stanno tutti i quozienti divisi per n) è minore o uguale a 1; infatti

$$\forall j \geq 0, \frac{n-j}{n} \leq 1$$

allora posso "maggiorare" questa con la somma dei "primi membri" (ovvero dove stanno tutti i fattoriali)

$$(1+rac{1}{n})^n \leq 1+1+rac{1}{2!}+rac{1}{3!}+\ldots+rac{1}{n!}$$

Ora se ricordo che $n! \geq 2^{n-1}$, posso "minorare" quest'ultima con

$$(1+\frac{1}{n})^n \le 1+\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+\ldots+\frac{1}{2^{n-1}}$$

Ora se prendo in considerazione tutti i valori da $\frac{1}{2^0}$ in poi, mi accorgo che ho una serie geometrica, che converge esattamente a questo valore (Esempi di Induzione, **ESEMPIO 1.5.**):

$$\frac{1-q^n}{1-q} \implies \sum_{i=0}^n (\frac{1}{2})^n = 2$$

Quindi alla fine ottengo

$$2 \leq (1+rac{1}{n})^n \leq 1+2, orall n$$

Inoltre abbiamo aggiunto che il valore è maggiore di 2 in quanto ho comunque il numero 2 aggiunto a dei numeri piccoli (vedere lo sviluppo binomiale all'inizio).

2. Ora voglio dimostrare che

$$\forall n, (1+rac{1}{n})^n \leq (1+rac{1}{n+1})^{n+1}$$

Uso lo stesso sviluppo binomiale di 1.;

i.
$$(1 + \frac{1}{n})^n = 2 + \frac{1}{2!}(1 - \frac{1}{n}) + \ldots + \frac{1}{n!}(1 - \frac{1}{n})\ldots(1 - \frac{n-1}{n})$$

е

ii.
$$(1 + \frac{1}{n+1})^{n+1} = 2 + \frac{1}{2!}(1 - \frac{1}{n+1}) + \ldots + \frac{1}{n!}(1 - \frac{1}{n+1})\ldots(1$$

e confrontando *ogni* termine della secondo sviluppo, scopriamo che ogni termine della *ii.* è maggiore o uguale ad ogni termine della *i.*. Pertanto è vera la tesi, ovvero che $(1+\frac{1}{n})^n$ è monotona crescente. Infine indico il valore per cui il limite converge con

$$\lim_{n} (1 + \frac{1}{n})^n = e$$

e si chiama costante di Eulero, oppure costante di Nepero.