

CALCULUS II	Dept. or School			proctor	
2013 Fall Final Exam	Student ID		Name	1	<u> </u>
Your answer must be provided with descriptions how to get the answer.) Find all coddle n	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
(5 points) Find the slope of the tangent line to the curve		s) Find all saddle point $x \sin y + yx^2 - x^2$			
the intersection of the plane $\sqrt{3}y-x=0$ and paraboloid $z+x^2+y^2=5$ at the point $(\sqrt{3},1,1)$.	the				
paraboloid $z + x + y = 5$ at the point $(\sqrt{3}, 1, 1)$.					

- 3.(6 points) Suppose y=f(x) is a positive increasing differentiable function and $\frac{d}{dx}f(x)$ is continuous. Derive a formula for the area of the surface of revolution S obtained by rotating the curve y=f(x) about the y-axis for $c_1 \leq x \leq c_2$ with $c_1 \geq 0$.
- 4.(6 points) Evaluate the double integral $\iint_D \bigl\{1+\sin(x^2)+\cos(y^2)\bigr\}dA \text{, where } D \text{ is bounded by }$ $x=1,\ y=1,\ x+y=1$.

CALCULUS II 2013 Fall Final Exam	Dept. or School		Year		proctor			
	Student ID		Name		•			
5.(6 points) Evaluate the improper integral $I = \int_0^\infty e^{-x^2} dx$ by using double integral in polar coordinates.	6.(6 points) Let F be a vector field in R^3 defined by $F(x,y,z)=< y+y^2z, x-z+2xyz, -y+xy^2>.$ (1) (2 points) Find a function f such that $\nabla f=F$.							
		ints) Find $\int_C F \cdot dx$ the point (2,2,1) to		C is the	e line seg	ment		

7.(6 points) Let F be a vector field in R^2 defined by $F(x,y) = \langle \, x^2 + y + 3x^2y, x^3 + \sin(y^2) \rangle \; .$ Find $\int_C F \cdot dr$, where C is the positively oriented boundary of the region bounded by the line y=0 and the parabola $y=x^2-1$.