Types of Learning

Starfly starfly3119@gmail.com

Beihang University — February 12, 2020

Introduction

This article is the study notes of the course: The foundation of Machine Learning. In today's speech, Professor Lin introduces different types of machine learning problems. In general, we can classify different machine learning problems from the perspective of **the output space Y**, **the data label**, **the protocol and the input space**.

1 Learning with different output space Y

1.1 Structured Learning: Sequence Tagging Problem

 $\begin{array}{cccc} I & love & ML \\ \\ pronoun & verb & noun \\ \end{array}$

- multiclass classification: word ⇒ word class
- structured learning: sentence ⇒ (class of each word)
- $Y = \{PVN, PVP, NVN, PV, ...\}$, not including VVVVV
- huge muticlass classification problem (structure = hyperclass) without 'explicit' class definition

1.2 Mini Summary

- binary classification: $Y = \{-1, +1\}$
- multiclass classification: $Y = \{1, 2, ..., K\}$
- regression: Y = R
- structured learning: Y =structures
- · and a lot more

2 Learning with different Data Label

2.1 Supervised learning

Every x_n comes with corresponding y_n

2.2 Unsupervised Learning

'Learning without y_n '

- clustering: {x_n} ⇒ cluster(x)
 (≈ 'unsupervised multiclass classification')
 i.e. articles ⇒ topics
- density estimation : $\{x_n\} \Rightarrow density(x)$ (\approx 'unsupervised bounded regression') i.e. traffic reports with location \Rightarrow dangerous areas
- outlier detection {x_n} ⇒ unusual(x)
 (≈ extreme 'unsupervised binary classification')
 i.e. Internet logs ⇒ intrusion alert
- · and a lot more

2.3 Semi-supervised learning

Leverage unlabeled data to avoid 'expensive' labeling.

- face images with a few labeled ⇒ face identifier (Face book)
- medicine data with a few labeled ⇒ medicine effect predictor

2.4 Reinforcement Learning

Learn with 'partial/implicit information' (often sequentially)

Other Reinforcement Learning Problems Using $(x, \sim y, goodness)$

- (customer, ad choice, ad click earning) ⇒ ad system
- (cards, strategy, winning amount) ⇒ black jack agent

2.5 Mini Summary

- supervised: all y_n
- unsupervised: no y_n
- semi-supervised: some y_n
- reinforcement: implicit y_n by goodness $\sim y_n$
- and more

3 Learning with Different Protocol

3.1 Batch learning

Learn from all known data.

3.2 Online: Spam Filter that 'Improves'

Hypothesis "improves" through receiving data instances sequentially.

- batch spam filter: learning with known (email, spam?) pairs, and predict with fixed g
- online spam filter, which sequentially:
 - observe an email x_t
 - predict spam status with current $g_t(x_t)$
 - receive 'desired label' y_t from user, and then update g_t with (x_t, y_t)

3.2.1 Connection to What We Have Learned

- PLA can be easily adapted to online Protocol
- Reforcement learning is often done online

3.3 Learning Philosophy

• batch: 'duck feeding'

• online: 'passive sequential'

· active: strategically-observed data

· and more

active: improve hypothesis with fewer labels(hopefully) by asking questions strategically.

4 Learning with Different Input Space

4.1 Concrete features

Each dimension of $X \subset \mathbb{R}^d$ represents 'sophisticated physical meaning'.

4.2 Raw features

• image pixels, speech signal, etc

Often need human or machines to convert to concrete ones.

4.3 Abstract features

Need 'feature conversion/extraction/construction'

- given previous (userid, itemid, rating) tuples, predict the rating that some userid would give to itemid?
- a regression problem with $Y \subset R$ as rating and $X \subset N \times N$ as (userid, itemid)
- 'no physical meaning'; thus even more difficult for ML

Other Problems with Abstract Features

- student ID in online tutoring system
- · advertisement ID in online ad system

4.4 Mini Summary

• concrete: sophisticated (and related) physical meaning

• raw: simple physical meaning

• abstract: no (or little) phyical meaning

• and more