

MATEMÁTICAS

Computación Científica 2

Parcial 1

Alexander Mendoza 13 de septiembre de 2024 1. Deme las permutaciones que ordenan la siguiente lista

$$x = [9, 10, 7, 2, -7, 0, 9, 6, -1, 2, 2, 2, -4, -4, -1, 1, 5, 4, 3, 2].$$

Respuesta. Para obtener las permutaciones note que $\pi = 5131491561641011122019181783172$ es una permutación que ordena a x, luego todas las permutaciones que ordenan a x son las permutaciones resultantes al permutar $[\pi_1, \pi_7], [\pi_{10}, \pi_{11}, \pi_{12}]$ y $[\pi_9, \pi_{15}]$.

2. Se
a $\pi \in \mathfrak{S}_n$ una permutación de n elementos. Considere la relación
 C_π sobre [n] :

$$C_{\pi} = \left\{ (i, j) \in [n] : \exists k \in \mathbb{Z}^{\geq 0} \text{ t.q } \pi^k(i) = j \right\} \subseteq [n]^2$$

Acá $\pi^k(i) = \pi(\pi(\cdots \pi(i)\cdots))$ es componer πk veces. Pruebe que C_{π} es una relación de equivalencia. Ejemplo: Si $\pi = 13254$, entonces $C_{\pi} = \{(1,1),(2,3),(3,2),(4,5),(5,4),(2,2),(3,3),(4,4),(5,5)\}.$

Respuesta. Para demostrar que C_{π} es una relación de equivalencia debemos demostrar que C_{π} es:

- a) **Reflexiva**: Sea $i \in [n]$ Al tomar k = 0 se concluye que $\pi^k(i) = \pi^0(i) = i$.
- b) Simétrica: Sean $i, j \in [n]$ con $i \neq j$. Supongamos que existe α tal que $\pi^{\alpha}(i) = j$, luego sabemos que existe β tal que $\pi^{\beta}(i) = i$ esto ya que la relación es reflexiva. Con esto $\beta < \alpha$ note que de lo contrario, si $\beta > \alpha$, $\pi^{\alpha}(i) = i$, pero como $\beta > \alpha$ $\pi^{\alpha}(\pi^{\alpha}(i)) = i$, contradiciendo $\pi^{\beta}(i) = i$. Así, como $\beta > \alpha$, tenemos que

$$\pi^{\beta}(i) = j$$

$$\pi^{\alpha-\beta}(\pi^{\beta}(i)) = \pi^{\alpha-\beta}(j)$$

$$= i$$

Demostrando así lo requerido.

c) Transitiva. Sean $i, j, k \in [n]$ tal que $\pi^{\alpha}(i) = j$ y $\pi^{\beta}(j) = k$. Luego $\pi^{\beta}(\pi^{\alpha}(i)) = \pi^{\beta+\alpha}(i) = k$. Demostrando así lo requerido.

Con esto demostramos que la relación es una relación de equivalencia.

3. Sea $x \in [n]^n$, se define una pica de x a una tupla $(i, j) \in [n]^2$ tal que i < j y $x_i > x_j$ (con el orden usual). El conjunto de picas de x es

$$Picas(x) = \{(i, j) \in [n]^2 : i < j \ y \ x_i > x_j \}$$

Ejemplo: Si n = 4 y x = [1, 4, 2, 1], entonces $Picas(x) = \{(2, 3), (2, 4), (3, 4)\}$.

a) Pruebe que x está ordenada sii $Picas(x) = \emptyset$.

b) Cuándo se maximiza el tamaño del conjunto de Picas? Halle una fórmula, en términos de $n,\,\mathrm{para}$

$$\max_{x \in [n]^n} |\operatorname{Picas}(x)|$$

Respuesta:

- a) Sea x una lista ordenada de tamaño n, luego para todo $i, j \in [n]$, con $i < j, x_i \le x_j$, por lo tanto, $\operatorname{Picas}(x) = \emptyset$. Supongamos ahora que $\operatorname{Picas}(x) = \emptyset$, esto implica que no existen $i, j \in [n]$ con i < j tal que $x_i > x_j$, por lo tanto, x está ordenada.
- b) Las condiciones para que se maximize el tamaño del conjunto de Picas es que $x \in [n]^n$ no contenga elementos repetidos y que x esté ordenada de mayor a menor, de esta manera para todo $i, j \in [n]$ con i < j, se tiene que $x_i > x_j$. Basado en las condiciones anteriores, como x contiene n elementos y todas sus parejas de índices pertenecen a Picas(x), una fórmula natural sería la de todas las combinaciones de n elementos eligiendo 2,

$$\binom{n}{2} = \frac{(n-1)(n)}{2}$$