Aula 6 - Camada de Enlace: VLANs

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula (I)...

- Switch: dispositivo ativo, nível 2, intermediário.
 - Enlaces dedicados para cada dispositivo conectado.
 - Paradigma store-and-forward.
 - Examina quadros recebidos, seleciona porta de saída.
 - **Transparente** para os dispositivos.
 - Permite transmissões simultâneas.
- Aprendizado automático: descobre sozinho onde estão os dispositivos.
 - Monta uma tabela de encaminhamento.
 - Se não há entrada na tabela: inundação.

- Switches em cascata: podem ser interconectados para estender a rede.
 - Auto-aprendizado continua funcionando.
 - Potencialmente, mais de um MAC associado a cada porta.
 - Pode esgotar a capacidade da tabela de encaminhamento.
 - Mais inundações, pior desempenho.
- Várias diferenças em relação aos roteadores.
 - Camada.
 - Encaminhamento baseado em endereços diferentes.
 - Métodos de construção das tabelas.

Na Última Aula (II)...

- Vários potenciais problemas decorrentes de má configuração.
 - Erros de configuração física: loops.
 - Quadros em broadcast circulam pelos switches indefinidamente.
 - Erros de configuração lógica: conflitos de endereço.
 - Conflito de IP.
 - Conflito de MAC.
- Tempestade de broadcast.
 - Transmissões em broadcast (custosas) consomem muitos recursos da rede.
 - Muitas vezes decorrente de loops.

VLANs

VLANs: Motivação

- Considere os seguintes aspectos:
 - Funcionário da CS muda para escritório na EE.
 - É possível mantê-lo "conectado" ao switch da CS?
 - Outra questão: único domínio de broadcast.
 - Todo tráfego de nível 2 (ARP, DHCP, inundações por falta de entrada nas tabelas de encaminhamento) atravessa toda a LAN.
 - Problemas de privacidade/segurança e eficiência.

Virtual Local Area Network

Switches que possuem capacidades de VLAN podem definir múltiplas
LANs virtuais usando uma única infraestrutura física.

- VLAN baseada em porta:
 - Portas do switch agrupadas (pelo software de gerenciamento do switch).
- Um único switch físico...

• ... age como **múltiplos** switches virtuais.

VLAN Baseada em Porta

- Isolamento de tráfego: quadros originários das portas 1—8 chegam apenas às portas 1—8.
- Alocação dinâmica: portas podem ser alocadas dinamicamente a VLANs.
 - É possível definir VLANs com base nos MACs dos dispositivos.
- Encaminhamento entre VLANs: feita via roteamento (nível 3).
 - Na prática, fabricantes vendem switches que são, também, roteadores.

Enlace: VLANs

VLANs Formadas por Múltiplos Switches Físicos

- Porta trunk: transportam quadros entre VLANs definidas sobre múltiplos switches físicos.
 - Quadros encaminhados dentro da mesma VLAN entre switches diferentes não podem ser quadros Ethernet "normais".
 - Precisam armazenar identificador da VLAN.
 - Protocolo 802.1Q adiciona/remove campos adicionais de cabeçalho para quadros transmitidos entre portas *trunk*.

Formato de um Quadro 802.1Q

IEEE 802.1Q: Adição e Remoção de tags (I)

- Dispositivos como switches gerenciáveis normalmente são "cientes" da existência das VLANs de uma rede.
- Já dispositivos como hosts comumente não tem este conhecimento.
- É possível dividir a rede em duas porções:
 - Porção ciente das VLANs.
 - Resto da rede.

IEEE 802.1Q: Adição e Remoção de tags (II)

- Quando quadro entra na porção ciente da rede, não possui uma tag especificada.
 - Switch associa quadro a uma VLAN padrão (para a porta de entrada ou para a rede).
 - Tag correspondente é adicionada usando o cabeçalho IEEE 802.1Q.

IEEE 802.1Q: Adição e Remoção de tags (III)

- Comunicações internas à porção ciente mantém a tag no quadro.
 - Permite que dispositivo que recebe o quadro identifique a VLAN.

IEEE 802.1Q: Adição e Remoção de tags (III)

• Quando quadro deixa a porção ciente, tag precisa ser removida.

Spanning Tree Protocol

STP: Introdução

- Protocolo executado na camada de enlace.
- Criado por Radia Perlman, padronizado no IEEE 802.1D.
- Objetiva evitar loops lógicos, ainda que existam loops físicos.
- Como funciona:
 - Dispositivos (e.g., switches) criam uma árvore geradora (mínima) da topologia física.
 - Enlaces/portas que causariam loops são desativados para dados.

Algorhyme

I think that I shall never see a graph more lovely than a tree. A tree whose crucial property is loop-free connectivity. A tree that must be sure to span so packet can reach every LAN. First, the root must be selected. By ID, it is elected. Least-cost paths from root are traced. In the tree, these paths are placed. A mesh is made by folks like me, then bridges find a spanning tree.

Radia Perlman

STP: Operação Básica

- Protocolo dividido nos seguintes passos:
 - 1. Escolha de uma raiz para a árvore geradora.
 - Algoritmo distribuído de eleição de líder.
 - Eleição se dá de acordo com identificador de cada dispositivo.
 - 2. Determinição do caminho mais curto entre cada dispositivo e a raiz.
 - Similar ao funcionamento de um algoritmo de roteamento de vetor de distâncias.
 - Mas apenas uma distância importa: até a raiz.
 - 3. Configuração das portas.
 - Porta que leva à raiz só é deixada ativa se pertence à árvore geradora.
 - Portas que n\u00e3o levam \u00e0 raiz (e.g., interconectam hosts) s\u00e3o deixadas ativas.

STP: Mais (Alguns Poucos) Detalhes

- Cada switch envia periodicamente BPDUs (Bridge Protocol Data Units).
 - Quadro de controle do protocolo.
 - Informa (entre outras coisas):
 - Identificador do switch.
 - Raiz da árvore.
 - Distância para a raiz.
 - Normalmente, a cada 2 segundos.
 - Enviado para o endereço MAC multicast 01:80:C2:00:00:00.
- Identificador: prioridade, concatenada com MAC.
 - Prioridade é configurável.
 - Switch com menor identificador é eleito raiz.

- Inicialmente:
 - Switches n\u00e3o sabem nada sobre a topologia.
 - Cada switch assume ser a raiz.
 - Envia BPDU com a tupla <ID, ID, 0> para todas as portas.
- Ao receber um BPDU por uma porta:
 - Verifica se ID da raiz reportada é menor que a da raiz atualmente conhecida.
 - Se sim: atualiza raiz, distância.
 - Se não: ainda pode atualizar distância se menor.

STP: Exemplo (I)

:4096.06:00:00:00:00:04 :32768.06:00:00:00:00:01 Raiz:32768.06:00:00:00:00:01 Raiz:4096.06:00:00:00:00:04 Dist:0 Dist:0 BPDU BPDU **BPDU** :32768.06:00:00:00:00:05 BPDU Raiz:32768.06:00:00:00:00:05 BPDU Dist:0 **BPDU BPDU** BPDU BPDU **BPDU BPDU BPDU** :32768.06:00:00:00:00:02 :32768.06:00:00:00:00:03 Raiz:32768.06:00:00:00:00:02 Raiz:32768.06:00:00:00:00:03 Dist:0 Dist:0

STP: Exemplo (II)

STP: Exemplo (III)

:4096.06:00:00:00:00:04 :32768.06:00:00:00:00:01 Raiz:4096.06:00:00:00:00:04 Raiz:4096.06:00:00:00:00:04 Dist:1 Dist:0 BPDU BPDU **BPDU** :32768.06:00:00:00:00:05 BPDU Raiz:4096.06:00:00:00:00:04 BPDU Dist:1 **BPDU BPDU** BPDU BPDU **BPDU BPDU BPDU** :32768.06:00:00:00:00:02 :32768.06:00:00:00:00:03 Raiz:4096.06:00:00:00:00:04 Raiz:4096.06:00:00:00:00:04 Dist:2 Dist:1

STP: Exemplo (IV)

:4096.06:00:00:00:00:04 :32768.06:00:00:00:00:01 Raiz:4096.06:00:00:00:00:04 Raiz:4096.06:00:00:00:00:04 Dist:1 Dist:0 BPDU BPDU **BPDU** :32768.06:00:00:00:00:05 BPDU Raiz:4096.06:00:00:00:00:04 BPDU Dist:1 **BPDU BPDU** BPDU BPDU **BPDU BPDU BPDU** :32768.06:00:00:00:00:02 :32768.06:00:00:00:00:03 Raiz:4096.06:00:00:00:00:04 Raiz:4096.06:00:00:00:00:04 Dist:2 Dist:1

STP: Exemplo (V)

:32768.06:00:00:00:00:01 :4096.06:00:00:00:00:04 Raiz:4096.06:00:00:00:00:04 Raiz:4096.06:00:00:00:00:04 Dist:1 Dist:0 BPDU BPDU **BPDU** :32768.06:00:00:00:00:05 **BPDU** Raiz:4096.06:00:00:00:00:04 BPDU Dist:1 **BPDU BPDU** BPDU **BPDU BPDU BPDU BPDU** :32768.06:00:00:00:00:02 :32768.06:00:00:00:00:03 Raiz:4096.06:00:00:00:00:04 Raiz:4096.06:00:00:00:00:04 Dist:2 Dist:1

Resumo da Aula...

- VLANs:
 - Solução para "separar" redes em nível 2, compartilhando mesma infraestrutura física.
 - Separação **puramente lógica**.
 - Define domínios de broadcast distintos.
 - Motivações: segurança, desempenho.
- Podem ser definidas com base em:
 - Portas específicas.
 - Tags informadas em cabeçalhos específicos.
- VLANs podem se estender por vários switches físicos diferentes.

• STP:

- **Protocolo** da camada de enlace.
- Constrói topologia lógica em árvore.
 - Evita problemas causados por loops.
- Permite estabelecimento (físico) de enlaces redundantes.
- Algoritmo distribuído:
 - Similar a roteamento em vetor de distância.
 - Switches anunciam periodicamente raiz, melhor distância conhecida.
 - Conhecimento atualizado, se informações mais corretas/caminhos melhores são recebidos.

Leitura e Exercícios Sugeridos

- VLANs:
 - Páginas 355 a 358 do Kurose (Subseção 5.6.5).
 - Exercícios de fixação 16 e 17 do capítulo 5 do Kurose.
- STP:
 - Páginas 208 a 212 do Tanenbaum (Seção 4.8 até 4.8.3).

Próxima Aula...

- Discutiremos uma tecnologia que atua entre as camadas 2 e 3 da pilha TCP/IP.
- MPLS:
 - O que é.
 - Como funciona.
 - Objetivos e aplicações.