Lecture 7 In-class exercise

Using the HS&B data,

- 1. Specify a linear mixed model to estimate the school-specific relationship between math achievement and SES after adjusting for student gender and minority status
- 2. Fit the model and interpret the random slope for SES variance component

For now, let's ignore all the ranking questions that I posed in the original document; we will get back to these when we talk about hospital rankings.

Yij = math achievement for student i from Schooli Sesij & will group mean center SES Sesi. femaleij & assume no contextual effect minority) of gender or minority status Student level model:

Undent recel moder.

Yij = \(\beta \cdot \) \(\beta \cdot \beta \cdot \) \(\beta \cdot \beta \cdot

Mixed-effects ML regression Group variable: newid					of obs		7,042 156
				Obs pei	group:		
						nin =	14
					á	avg =	45.1
					n	nax =	67
				Wald ch	ni2(3)	=	588.48
Log likelihood	d = -22766.002				chi2		
mathach	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
centeredSES	1.929271	.1238028	15.58	0.000	1.686	5623	2.17192
	-1.212396						
minority	-3.063004	.2117642	-14.46	0.000	-3.478	3054	-2.647953
_cons	14.185	.235785	60.16	0.000	13.72	2287	14.64713
Random-effec	cts Parameters	Estima			[95%		Interval]
newid: Unstruc	 ctured	+					
	var(center~S)	.4779	385 .2	54601	.1682	2408	1.357728
	var(_cons)	6.172	218 .80	55378	4.779	9151	7.971349
cov(c	center~S,_cons)	4232	893 .3	35151	-1.080)173	.2335946
	var(Residual)	35.71	282 .61	52384	34.52	2711	36.93926
LR test vs. li	inear model: ch	ni2(3) = 73	1.88		Prob	> chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

mathach	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
centeredSES female minority _cons	1.929271	.1238028	15.58	0.000	1.686623	2.17192
	-1.212396	.1665529	-7.28	0.000	-1.538834	8859589
	-3.063004	.2117642	-14.46	0.000	-3.478054	-2.647953
	14.185	.235785	60.16	0.000	13.72287	14.64713

For the average school, the expected math achievement score is 1.93 points greater per standard deviation increase in student SES after adjusting for student gender and minority status.

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	_
<pre>newid: Unstructured</pre>	.4779385 6.172218 4232893	.254601 .8055378 .335151	.1682408 4.779151 -1.080173	1.357728 7.971349 .2335946
var(Residual)	35.71282	.6152384	34.52711	36.93926

Our model allows for the school level gender and minority status adjusted relationship between math achievement and SES to vary from school to school (i.e. the school specific slopes). We estimate that roughly 95% of the schools will have slopes that range from 1.93 +/- 1.96 sqrt(0.48) = 0.57 to 3.29