1 measure theory

Definition 1 (Sigma Algebra) \mathcal{F} σ -algebra:

- $\Omega \in \mathcal{F}$
- $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- $\cup_n A_n \in \mathcal{F}$

Definition 2 (Probability measure) Probability measure

- $\mathbb{P}(A) \in [0,1]$
- $\mathbb{P}(\Omega) = 1$
- $A \cap B = \emptyset \to \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

Theorem 1 (Equivalence additive measure) The following are equivalent fo μ finitely additive measure:

- $\mu\sigma-$ additive
- μ continuous from below / above/ at 0.

Definition 3 (Monotone class theorem) Monotne class $\mathcal{M} \subset \mathcal{P}(\Omega)$, and is closed under countable monotone unions and intersections.

Theorem 2 (Monote class theorem) G an algebra, $\sigma(G) = M(G)$

Theorem 3 (Sigma in out)

$$\sigma(f^{-1}(A):A\in\epsilon)=\{f^{-1}(A):A\in\sigma(\epsilon)\}$$

Definition 4 (Semi-ring) • $\emptyset \in S$

- $A \cap B \in S \forall A, B \in S$
- For al $A, B \in S$ there exist pairwise disjoint subset $C_1, ..., C_n \in S$ such that $A \setminus B = \bigcup_{i \le n} C_i$

Theorem 4 (Caratheodory's Extension Theorem) • A measure μ on a semi-ring S can be extendted to a measure on $\sigma(S)$.

• If μ is σ -finite, the extension is unique.

Definition 5 (Consistence) • $\mathbb{P}^{i_1,\dots,i_n}[A_1 \times \dots \times A_n] = \mathbb{P}^{\pi(i_1),\dots,\pi(i_n)}[A_{\pi(1)} \times \dots \times A_{\pi(n)}]$

• $\mathbb{P}^{i_1,...,i_{n-1}}[A_1 \times ... \times A_{n-1}] = \mathbb{P}^{i_1,...,i_n}[A_1 \times ... \times A_{n-1} \times \mathbb{R}]$

Theorem 5 (Kolmogorov's Extension Theorem) I non empty. $(\mathbb{P}^{i_1,...,i_n})_{i_1,...,i_n\in I}$ consistent family. There exists a unique probability measure on \mathbb{P} on $(\mathbb{R}^I,\mathbb{B}(\mathbb{R})^{\times I})$ such that

$$\mathbb{P}[\{\omega \in R^I : (\omega_{i_1}, ..., \omega_{i_n}) \in B] = \mathbb{P}^{i_1, ..., i_n}[B]$$

2 Integrals

Theorem 6 (Monotone Convergencen) f_1, \ldots be a pointwise non-decreasing sequence of non-negative valued measurable functions, set $\sup f_n = f$. Then f is measurable and $\lim_{k \to \infty} \int f_k d\mu = \int f d\mu$.

Theorem 7 (Fatou) Let $f1, f2, f3, \ldots$ be a sequence of non-negative measurable functions. Define $f = \liminf_{n \to \infty} f_n$. Then f is measurable and $\int_S f \, d\mu \leq \liminf_n \int_S f_n \, d\mu$.

Theorem 8 (Dominated Convergence) g, f_1, f_2, \ldots measurable functions such at $\int |g| < \infty$, $|f_n| \leq g \forall n$ a.s., $f_n \stackrel{a.s.}{\to} f$, then $\int |f| \leq \int |g| < \infty$ and $\lim |f_n - f| \to 0$, $\lim \int f_n \to \int f$

Theorem 9 (Funbini) μ_1, μ_2 are σ -finite.

- $\int_{\Omega_1 \times \Omega_2} |f| d(\mu_1 \times \mu_2) < \infty \Rightarrow \int_{\Omega_1 \times \Omega_2} f d(\mu_1 \times \mu_2) = \int_{\Omega_1} \int \Omega_2 f$
- $f \ge 0$ a.s $\Rightarrow \int_{\Omega_1 \times \Omega_2} f d(\mu_1 \times \mu_2) = \int_{\Omega_1} \int \Omega_2 f$

Theorem 10 (Inequalities) • Holder: $\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow \int |fg| \leq (\int |f|^p)^{\frac{1}{p}} (\int |g|^q)^{\frac{1}{q}}$

• Minkowsky: $\forall p \leq 0 ||f + g||_p \leq ||f||_p + ||g||_p$

Theorem 11 (Borel Cantelli) • $\sum \mathbb{P}(A_n) < \infty \Rightarrow \mathbb{P}[\cap_m \cup_{n > m} A_n] = 0$

• (A_n) , independent, $\sum \mathbb{P}(A_n) = \infty \Rightarrow \mathbb{P}[\cap_m \cup_{n \geq m} A_n] = 1$

3 Random Variables

Definition 6 (Uniform integrability) (X_i) u.i iff $\lim_n \sup_i \int_{|X_i|>c} |X_i| d\mathbb{P} = 0$ iff $\lim_n \sup_i \mathbb{E}[1_{|X_i|>c}|X_i|] = 0$

Theorem 12 (Caracterisation) • $\forall i |X_i| \leq X \in L_1 \Rightarrow (X_i) \ uc$

- *uc iff:*
 - $-\sup E[|X_i|] < \infty$
 - $\forall \epsilon > 0, \exists \delta > 0 \forall A \mathbb{P}(A) < \delta \Rightarrow \forall i \int_{A} |X_i| < \epsilon$

Theorem 13 (L_1 Convergencen) $X_i \stackrel{\mathbb{P}}{\to} X$, X_i uc. Then $X \in L_1$, $X_i \stackrel{L_1}{\to} X$

Theorem 14 (De la Valle-Pousson) X_i $uc \iff \exists \Phi: \mathbb{R}^+ \to \mathbb{R}^+, \frac{\Phi(x)}{x} \to \infty st \sup \Phi |X_i| < \infty. \Phi \ can \ be \ assumed \ convex \ and \ non-decreasing.$

Theorem 15 (Week Law of large numbers) $X_i \in L_2$ uncorrelated, $E[X_i] = m$, $\sup E[X_i^2] < \infty$, then $\frac{\sum_i X_i}{n} \to m$ in L_2 .

Theorem 16 (Caracteristic Function) • $|\Phi_X(u)| < \Phi_X(0) = 1$

- $\bullet \ \Phi_X(-u) = \bar{\Phi_X(y)}$
- $\Phi_X \in \mathbb{R} \iff X \stackrel{\mathbb{D}}{=} -X$
- Φ_x is unifromly continuous.
- $E[|X|^n] < \infty \Rightarrow \exists \Phi_X^k \forall k \leq n$, and $\Phi_X^k(u) = E[(iX)^k e^{iuX}]$, and $\Phi_X(u) = \sum_k^n \frac{(iu)^k}{k!} E[X^k] + \frac{(iu)^n}{n!} \mathcal{E}_n(u)$, with $\mathcal{E}_n \to_0 0$
- $\exists \Phi_X^{2k}(0) \Rightarrow E[X^{2k}] < \infty$
- Inversion Formula: $\frac{F_X(b)+F_X(b^-)}{2} \frac{F_X(a)+F_X(a^-)}{2} = \lim_{n \to \infty} \frac{1}{2\pi} \int_{-c}^{c} \frac{e^{-iua}-e^{-iub}}{iu} \Phi_X(u) du$
- $\int_{R} |\Phi_X| < \infty \Rightarrow f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iux} \Phi_X(u) du$
- $X = (X_1, ... X_n)$ independent $\iff \Phi_X = \prod \Phi_{X_i}$

Theorem 17 (Continuity Theorem) • $X_n \stackrel{D}{\to} X \iff \Phi_{X_n} \to \Phi_X$

- $\Phi_{X_n} \to \Phi$ and Φ continuous at 0 then $\exists X \ X_n \stackrel{D}{\to} X$
- $X_n \stackrel{D}{\to} X \iff F_n \stackrel{in C(F_X)}{\to} F_X$

Theorem 18 (LLN) X_i iid in L_1 , $\frac{\sum X_i}{n} \to E[X]$ as and in L_1

Theorem 19 (CLT) X_n iid $Var(X) = \sigma^2 < \infty$ then $\frac{1}{\sqrt{n}} \sum_{i} \frac{X_i - E[X]}{\sigma} \to \mathcal{N}(0,1)$

4 Martingales

Theorem 20 (Radon-Nikodym) $\mu_2 \ll \mu_1 \Rightarrow \exists f unique \ \mu_1 - a.s \ f = \frac{d\mu_2}{d\mu_1}$

Theorem 21 (Stopping times) • $X_n^{\tau} = X_0 + (V.X)_n$ is martingale because V is predictable.

- If τ bounded $E[X_0] = E[X_{\tau}]$
- $M \ge \tau \ge \sigma$ stopping times, then $E[X_{\tau}|F_{\sigma}] = X_{\sigma}$

Theorem 22 (Upcrossing inequality) X_n submartingale. $E[B_n(a,b)] \leq \frac{E[(X_n-a)^+]}{b-a}$

Theorem 23 (Convergence) • X_n submartingale, L_1 bounded, then there exists X_{∞} such that $X_n \stackrel{a.s}{\to} X_{\infty}$, and $E[|X_{\infty}|] < \sup E[|X_n|]$

- a submartingale that is bounded above converges a.s.
- X_n ui submartingale, then there exists $X_\infty \in L_1$ such that $X_n \to X_\infty$ in L_1 . Moreover $E[X_\infty|F_n] \ge X_n$.
- (F_n) filtration, $E[X|F_n] \to E[X| \cup F_n]$ a.s and L_1 (because u.i.)
- X_i iid, $\mathcal{G} = \bigcup \sigma(X_n, \ldots)$, then $\forall A \in \mathcal{G} \ P(A) \in \{0,1\}$ (because $1_A = E[1_A]$)
- (G_i) dec-filtration, $E[X|G_n] \to E[X| \cap G_n]$ as and in L_1 .

Theorem 24 (Doob Maximal inequality) X_n non-negative submartingale.

- $\forall \lambda > 0$, then $\lambda^p \mathbb{P}[\max k \leq nX_k \geq \lambda] \leq E[X_n^p]$
- $|\max_{k \le n} X_k|_p \le \frac{p}{p-1} |X_n|_p$
- $|\max_{k \le n} X_k|_1 \le \frac{e}{e-1} (1 + |X_n \log(X_n)|_1)$

5 Markov

Theorem 25 (Markov property) (X_n) markov (λ, P) . Conditional on $X_m = i$, X_{n+m} is markov (δ_i, P) independent of $X_0, ..., X_m$. (X_n) markov (λ, P) . Conditional on $X_T = i$, X_{n+T} is markov (δ_i, P) independent of $X_0, ..., X_T$.

Definition 7 (Some defs) • C Closed $\iff i \in C, i \rightarrow j \Rightarrow j \in C$

- C irreducible $\iff \forall i, j \in C, i \to j$
- $H_i = \inf\{n \geq 0; X_n = i\}, T_i = \inf\{n \geq 1; X_n = i\}, V_i := \sum_n 1_{\{X_n = i\}}, f_i = P_i(T_i < \infty), m_i = [T_i]$
- i is reccurrent if $P_i(\sum_n 1_{\{X_n=i\}} = \infty) = 1 \iff f_i = 1 \iff \sum_{i=1}^n p_{ii}^{(n)} = \infty$, otherwise transient.
- $\bullet \ P_i(V_i \ge k+1) = f_i^k$
- •