INTEUIGENT CONTROLOF DC MOTOR USING COMPUTATIONAL INTEUIGENCE TECHNIQUES

TAWHIDIC EPISTEMOLOGY
LEADING THE WAY

LEADING THE WORLD

KHALIFAH • AMĀNAH • IQRA' • RAHMATAN LIL-ALAMĪN

Izzah

Qashrina

Shareefah

Adibah

THODUCTION

DC motors are essential in many applications like automation and robotics because they require precise speed and position control. However, traditional PID controllers often struggle when dealing with nonlinearities, load changes, and disturbances. To overcome these challenges, Computational Intelligence methods such as Fuzzy Logic and ANFIS provide better adaptability and robustness. This project focuses on designing and comparing PID, Fuzzy Logic, and ANFIS controllers to achieve more accurate and reliable DC motor performance.

OBJECTIVES

2.Implement PID, Fuzzy Logic, and ANFIS controllers.

1 To understand and model how a DC motor behaves.

+

3. Analyze controller performance using MATLAB on speed tracking, overshoot, settling time, steady state error and MSE.

DCMOTORMODEUNG

DC MOTOR PARAMETERS

Resistance, R=1 Ohm

Inductance, L=0.5 H

Rotor Inertia, J=0.01 kg.m²

Viscous Damping, B=0.1 N.m.s

Motor Constant, K=0.01

TRANSFER FUNCTION:

$$P(s) = \frac{K}{(Js + b)(Ls + R) + K^2}$$

CONTROUER COVERVIEW*

PIDCONTROLER

GAINS Input:

K_p: 100 Error (e)

Kd:10

K_i:200 Output:

Control Signal (u)

Results:

- Setpoint 1 rad/s
- Rise Time: 0.1311 s
- Settling Time: 0.2578 s
- Overshoot 0.4%
- Peak Value: 101 rad/s at 0.5970 s
- Mean Squared Error (MSE): 0.00537
- Steady-state achieved with no undershoot

FUZZY LOGIC CONTROLER

Sugeno Fuzzy Logic

Inputs:

Error

Change in Error

Output:

Control Signal (u)

Results:

Setpoint 1 rad/s

• Rise Time: 0.53100s

• Overshoot 0.00%

Mean Squared Error (MSE):

0.20822

Steady-state: 0.70567

ANFIS CONTROLER

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

(Neural Networks + Fuzzy Logic)

Inputs:

Output:

• Error (e)

Control Signal (V),

Change of Error (de) cal

calculated using a PID-like equation

Generated training data by simulating the DC motor under different

setpoints and collected the corresponding errors and control actions.

- Training Data: [e, de, V] for various setpoints
- anfis to train the model

Results:

- Rise Time: 0.57000 s
- Overshoot 0.00%
- Steady-state value: 0.49791
- Mean Squared Error (MSE): 0.35918

SIMULATION ENVIRONMENT

SIMULATION DETAILS

- MATLAB + Simulink (optional)
- Setpoint for speed: 1 rad/s
- Ran for 2–5 seconds, time step of 0.001 seconds

PERFORMANCE METRICS

- Rise Time
- Settling Time
- Overshoot
- Peak Value
- Mean Squared Error (MSE)
- Steady-state

RESULTS COMPARISON

Metric	PID	Fuzzy Logic	ANFIS
Rise Time (s)	0.1311	0.531	0.57
Settling Time (s)	0.2578	_	_
Overshoot (%)	1.004	О	О
Mean Squared Error (MSE)	0.00537	0.20822	0.35918
Steady-state Value	1	0.70567	0.49791

CONCLUSION

PID CONTROLLER

- Simple and widely used
- Excellent for linear systems
- Fast response and precise tracking
- X Can produce overshoot
- Struggles with nonlinearities, uncertainties, or changing conditions

Fuzzy Logic CONTROLLER

- Handles nonlinearities well
- No need for precise mathematical model
- Can eliminate overshoot
- X Requires careful design of fuzzy rules and membership functions
- X May show steady-state errors if not tuned properly

ANFIS CONTROLLER

- Combines fuzzy logic's interpretability with neural networks' learning ability
- Learns complex nonlinear relationships from data
- Adaptive to system changes
- X Needs large, high-quality training data
- X Can be complex to design and train

