CUDA-Accelerated 2D Systolic Array for Low-Bit Quantized Matrix Multiplication

Ben Zhang

Project Motivation:

- Originated from an ASIC project for CNN acceleration using a 2D systolic array.
- Aim: Port and extend the hardware accelerator concept to CUDA for deep learning inference.
- Low-bit (2-bit) quantized neural networks reduce computational and memory requirements.
- Importance of efficient matrix multiplication in CNN inference.

Algorithm

2D Systolic Array Simulation:

- A parallel processing architecture where processing elements (PEs) are arranged in a two-dimensional grid.
- PEs exchange data only with adjacent neighbors.
- Operations are overlapped to maximize throughput.
- Uses local shared storage to reduce global memory accesses.

Low-Bit Quantization:

- Input matrices stored as 8-bit integers but only lower 2 bits are used.
- Optimized arithmetic for quantized data to simulate low-bit operations.

https://link.springer.com/chapter/10.1007/978-3-030-05677-3 16

Limitations of Algorithm using CPU

Limited Parallelism

 CPUs offer significantly fewer cores compared to GPUs, reducing the level of parallel processing available for large-scale matrix multiplications.

Performance Bottlenecks

 Processing is done sequentially and only in one core, leading to lower throughput.

Real-Time Inference Constraints

 Achieving low latency and high throughput for deep learning applications is more challenging without the massive parallelism

Energy Efficiency

 More time to process usually leads to high power consumption

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$C = AB = \begin{bmatrix} a_{11} * b_{11} + a_{12} * b_{21} + a_{13} * b_{31} & a_{11} * b_{12} + a_{12} * b_{22} + a_{13} * b_{32} \\ a_{21} * b_{11} + a_{22} * b_{21} + a_{23} * b_{31} & a_{21} * b_{12} + a_{22} * b_{22} + a_{23} * b_{32} \end{bmatrix}$$

https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/

CUDA Implementation Details

Memory Optimization:

- Shared Memory:
 - Tiled loading of matrices into shared memory for fast access.
 - Optionally implement a shared memory transpose to improve coalesced memory accesses.
- Global Memory Transpose:
 - Row-wise read, Column-wise write
 - Store SMEM of GMEM, load GMEM to SMEM.

Kernel Launch Configuration:

- Block and grid dimensions tuned to matrix dimensions and tile size.
- Use of CUDA events for GPU runtime measurement.
- Data Preprocessing & Testbench:
 - Random generation of quantized matrices.
 - CPU baseline implemented in C for result validation and performance benchmarking.

Demo

```
PASS
DICPU time: 23.366000 seconds
In GPU time: 376.973297 ms
```

Performance and Results

Comparative Analysis:

- o GPU vs. CPU implementation run times.
- Any Matrix smaller than 128 x 128 will run instantly and CPU timer doesn't work.
- Anything above 2048 x 2048 will take long time for CPU to execute
- Validating correctness by comparing output arrays between CPU and GPU.
- Input matrix are randomly generated with selected Dimension
- Speedup = 1/(1-(CPU/GPU)) as assuming "infinite" number of parallel processors for GPU

Observations:

- Significant speed-up using CUDA, especially for larger-scale matrix multiplications.
- Larger Matrix size will have better improvement in execution speed.

Matrix Size	CPU	GPU	Speedup
128x128	4	0.207872	94.80%
256x256	35	0.990208	97.17%
512x512	295	7.084032	97.60%
1024x1024	2836	54.031265	98.09%
2048x2048	22170	353.237	98.41%

CPU and GPU

Conclusion

Achievements:

- Successful design of a CUDA-accelerated systolic array for quantized matrix multiplication.
- Demonstrated performance gains over CPU-based implementations.

• Future Enhancements:

- Further memory and kernel optimizations, like use of concurrent kernel, multistream, and even async memory transfer.
- Bit-packing multiple 2-bit values per byte for reduced memory footprint.

References

https://telesens.co/2018/07/30/systolic-architectures/

https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-wav/

https://link.springer.com/chapter/10.1007/978-3-030-05677-3 16

https://docs.google.com/presentation/d/1m3y5f82RGP89rW5o2U_iY EZnltnKjtjVglkgyb7-nYY/edit?usp=sharing

https://github.com/khumpal/ECE284-Final-Project

Lecture Slides