ESTATÍSTICA

Introdução à Estatística

Medidas Descritivas

Medidas Descritivas

Medidas de Tendência Central

Medidas Separatrizes

■ Medidas de Dispersão ou Variabilidade

Medidas de Tendência Central

Servem para termos uma idéia acerca dos valores médios da variável em estudo.

São usados para sintetizar em um único número os dados observados.

- São exemplos de medidas de tendência central: Média, Moda e Mediana.
- A escolha de qual medida usar, depende...

Média Amostral

Se os dados consistem de n observações x₁, x₂,...,xn, a média é dada pela soma das observações dividida pelo o número de observações. Por exemplo, se os dados são x₁=2, x₂=3, x₃=1, então a média é (2+3+1)/3=2.

A média amostral é definida por :

$$\overline{X} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

Média Amostral - Exemplo

Turma A: 23445677778
Turma B: 23444567789

Objetivo: Obter a média de cada turma: Turma A (2+3+4+4+5+6+7+7+7+7+8) / 11 = 60/11 Média turma A = 5,45 Turma B (2+3+4+4+4+5+6+7+7+8+9)/11 = 59/11Média turma B = 5,36

Mediana

- Divide uma distribuição ordenada de dados em duas partes iguais.
- A mediana (Md) á a observação central, depoisde ordenada a amostra.
- Se a amostra tiver dimensão ímpar, a mediana coincide com a observação central.

Exemplo: Na amostra 1.2; 1.7; 2.1; 2.2; 2.4 a mediana é 2.1

Se a amostra tiver dimensão par, a mediana toma o

Mediana

- Para calcularmos a mediana é preciso ordenarmos os dados: x₍₁₎, x₍₂₎, ..., x_(n).
- A mediana de um conjunto de dados é:

Md =
$$x_{(n+1/2)}$$
, se n é impar
Md = $[x_{(n/2)} + x_{(n/2+1)}]/2$, se n é par

A mediana é mais robusta que a média a erros ou a observações afastadas.

Mediana - Exemplo

Exemplo 1:Turma A: 23445677778

Turma B: 23444567789

 $Turma\ A: Mediana = 6$

Turma B : Mediana = 5

Exemplo 2: Turma A: 2344567778

Turma B: 2344456 789

Turma A : Mediana = (5+6)/2=5,5

Turma B : Mediana = (4+5)/2=4,5

Mediana - Exemplo

Caso	1	2	3	4	5	6	7	8
Xi	X ₁	X ₂	X 3	X ₄	X 5	X 6	X ₇	X 8
Valores	2	4	5	5	7	9	10	30

Qual a média e a mediana? Resposta: 6 e 5

Qual a média e a mediana ao acrescentarmos a observação 8?

Resposta: 9 e 6

Moda

■ Valor que ocorre com maior frequência.

Obtida por inspeção da tabela de distribuição de frequências.

Ao contrário do que acontece com a mediana e a média, uma amostra pode possuir mais do que uma moda.

Moda - Exemplo

Turma A: 23445677778

Turma B: 23444567789

 \blacksquare Moda turma A = 7

 \blacksquare Moda turma B = 4

Medidas Separatrizes

- Medidas que separam a distribuição em partes iguais.
 - Quartis
 - Decis
 - Percentis

Quartis

Quartis são os valores (Q_1 , Q_2 e Q_3) que dividem a amostra, depois de ordenada, em quatro partes iguais (ou o mais iguais possível).

- Obtendo os quartis
 - ► Ordena-se os dados;
 - ► Calcula-se a posição do quartil através da fórmula: $P_{Qi} = i \cdot \frac{n}{4}$
 - O quartil será o valor que ocupa a posição calculada anteriormente.

Decis

- Dividem um conjunto de dados em dez partes iguais
- Encontra se o valor do decil desejado, procedendo se como no caso dos quartis, sendo a posição do decil, encontrada por:

$$P_{Di} = i \cdot \frac{n}{10}$$

Percentis

- Dividem um conjunto de dados em cem partes iguais
- Procede se como no caso dos quartis, sendo que para o cálculo da posição do percentil, a fórmula será:

$$P_{Pi} = i \cdot \frac{n}{100}$$

Medidas Sepatrizes - Exemplo

Turma A 2 3 4 4 5 5 7 7 7 8 8 $\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad Q_1 \qquad Q_2 \quad Q_3 \qquad \qquad P_{25} \qquad P_{50} \quad P_{75} \qquad \qquad Md$

Medidas de Variabilidade

- Medidas de tendência central são descritores insuficientes de uma amostra.
- São necessárias medidas que reflitam a variação dentro de um conjunto de dados (medidas de variabilidade).
- Essas medidas serão pequenas se os dados forem próximos e grandes se eles estiverem muito espalhados.
- Além disso, tais medidas devem permitir comparar amostras de diferentes tamanhos e determinar se uma amostra é mais variável (ou heterogênea) que a outra.

Exemplo

Os dados abaixo referem-se aos pesos dos pacientes em dois grupos:

	GrupoA	Grupo B
	78	65
	80	69
	82	78
	8 <i>5</i>	85
	85	85
	8 <i>5</i>	93
	8б	9б
	88	98
Soma	669	669
Média	83,6	83,6
Mediana	85	85
Moda	85	85
N	8	8

Amplitude Total

■ Diferença entre o maior e o menor valor do conjunto de dados.

Grupo A

AMPLITUDE TOTAL = 88 - 78 = 10

Grupo B

AMPLITUDE TOTAL = 98 - 65 = 33

AT (grupo A) < AT (grupo B)

Variância

É um indicativo da dispersão de um conjunto de dados em relação à média.

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{n} \right)$$

- A variância populacional é denotada por σ^2 . Usualmente σ^2 é desconhecida.
- A variância amostral é denotada por S². Desvantagem - não é expressa na unidade de medida do dado original.

Desvio Padrão

- Corresponde à raiz quadrada da variância, tendo portanto a mesma unidade da variável que está sendo estudada. O desvio padrão será denotado por S.
- É a medida mais usada na comparação de diferenças entre grupos.
- Fornece um número que permite especificar quão acima ou quão abaixo da média está um determinado valor.
- Quanto maior o desvio padrão, maior a variabilidade dos dados.

Coeficiente de Variação

- Muitas vezes o desvio padrão pode ser considerado grande ou pequeno dependendo da ordem de grandeza da variável.
- Pode- œobter um índice relativo de dispersão:

$$CV = \frac{S}{\overline{X}}.100$$

Alguns analistas consideram:

Baixa dispersão: CV ≤ 15%

Média dispersão:15% < CV <30%

Alta dispersão: CV ≥ 30%