Test 3 - Solutions

Intermediate Statistics - 36-705

November 11, 2016

Problem 1. [30 points]

Let $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$. Hence, the probability function for X_i is

$$p(x;\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots$$

(a) [15 pts.] Find the maximum likelihood estimator, the score function and the Fisher information.

$$L(\lambda) = \frac{\lambda^{\sum_{i=1}^{n} X_i} e^{-n\lambda}}{X_1! \cdots X_n!}$$

$$\ell(\lambda) = \log(\lambda) \sum_{i=1}^{n} X_i - n\lambda - \sum_{i=1}^{n} \log(X_i!)$$

$$S(\lambda) = \ell'(\lambda) = \frac{1}{\lambda} \sum_{i=1}^{n} X_i - n$$

and letting $\ell'(\lambda) = 0$, we have

$$\frac{1}{\lambda} \sum_{i=1}^{n} X_i - n = 0$$

$$\implies \hat{\lambda} = \overline{X}.$$

$$\ell''(\lambda) = -\frac{1}{\lambda^2} \sum_{i=1}^n X_i$$

$$I_n(\lambda) = -\mathbb{E}[\ell''(\lambda)] = \frac{n}{\lambda}.$$

(b) [15 pts.] Construct an asymptotic $1 - \alpha$ confidence interval for $\psi = \log(\lambda)$.

By the asymptotic normality of the MLE,

$$\frac{\sqrt{n}(\widehat{\lambda} - \lambda)}{1/\sqrt{I_1(\lambda)}} \rightsquigarrow N(0, 1).$$

By the delta method,

$$\frac{\sqrt{n}(\widehat{\psi} - \psi)}{1/\sqrt{\lambda}} \leadsto N(0, 1),$$

where $\widehat{\psi} = \log(\widehat{\lambda})$. Therefore, an asymptotic $1 - \alpha$ confidence interval for ψ is

$$C_n = \left[\widehat{\psi} - z_{\alpha/2}\sqrt{\frac{1}{n\widehat{\lambda}}}, \ \widehat{\psi} + z_{\alpha/2}\sqrt{\frac{1}{n\widehat{\lambda}}}\right].$$

Problem 2. [40 points]

Let $X_1, \ldots, X_n \sim \text{Uniform}(0, \theta)$.

(a) [15 pts.] Let
$$X_{(n)} = \max\{X_1, \dots, X_n\}$$
. Let

$$C_n = [X_{(n)}, a_n X_{(n)}].$$

Find a_n so that C_n is a $1-\alpha$ confidence interval for θ . (Do not use any asymptotic approximations.)

For any $t \in (0, \theta)$,

$$\mathbb{P}(X_{(n)} \le t) = \left(\frac{t}{\theta}\right)^n.$$

Let $\alpha \in (0,1)$.

$$\left(\frac{t}{\theta}\right)^n = \alpha$$

$$\implies t = \theta \alpha^{1/n}$$

Therefore,

$$\mathbb{P}(X_{(n)} \le \theta \alpha^{1/n}) = \alpha$$
$$\mathbb{P}(\theta \ge \alpha^{-1/n} X_{(n)}) = \alpha$$

and
$$\mathbb{P}(\theta \geq X_{(n)}) = 1$$
, so

$$C_n = \left[X_{(n)}, \frac{X_{(n)}}{\alpha^{1/n}} \right]$$

is a $1 - \alpha$ confidence interval for θ .

Alternate solution. (using a pivot)

Let $Q = X_{(n)}/\theta$. Then

$$\mathbb{P}(Q \le t) = \prod_{i=1}^{n} \mathbb{P}(X_i \le t\theta) = t^n.$$

Let $c = \alpha^{1/n}$. Then

$$\mathbb{P}(Q \le c) = \alpha.$$

Also, $\mathbb{P}(Q \leq 1) = 1$. Therefore,

$$1 - \alpha = \mathbb{P}(c \le Q \le 1)$$

$$= \mathbb{P}\left(c \le \frac{X_{(n)}}{\theta} \le 1\right)$$

$$= \mathbb{P}\left(\frac{1}{c} \ge \frac{\theta}{X_{(n)}} \ge 1\right)$$

$$= \mathbb{P}\left(X_{(n)} \le \theta \le \frac{X_{(n)}}{c}\right)$$

$$= \mathbb{P}\left(X_{(n)} \le \theta \le \frac{X_{(n)}}{c}\right)$$

so a $1 - \alpha$ confidence interval for θ is

$$C_n = \left[X_{(n)}, \frac{X_{(n)}}{\alpha^{1/n}} \right].$$

(b) [15 pts.] Consider testing

$$H_0: \theta = \theta_0 \text{ versus } \theta > \theta_0.$$

Suppose we reject H_0 if $X_{(n)} > w_n$ so that the test has size α . Find w_n so that the test has size α .

From part (a) we have

$$\mathbb{P}_{\theta_0}(X_{(n)} \le \theta_0 \alpha^{1/n}) = \alpha$$

for any $\alpha \in (0,1)$. Therefore,

$$\mathbb{P}_{\theta_0} (X_{(n)} \le \theta_0 (1 - \alpha)^{1/n}) = 1 - \alpha$$

$$1 - \mathbb{P}_{\theta_0} (X_{(n)} > \theta_0 (1 - \alpha)^{1/n}) = 1 - \alpha$$

$$\mathbb{P}_{\theta_0} (X_{(n)} > \theta_0 (1 - \alpha)^{1/n}) = \alpha$$

and thus,

reject
$$H_0$$
 if $X_{(n)} > \theta_0 (1 - \alpha)^{1/n}$

is a size α test.

(c) [10 pts.] Now suppose that the true value of the parameter is θ where $\theta > \theta_0$. Show that the power tends to 1 as $n \to \infty$.

$$\beta(\theta) = \mathbb{P}_{\theta} \left(X_{(n)} > \theta_0 (1 - \alpha)^{1/n} \right)$$

$$= 1 - \mathbb{P}_{\theta} \left(X_{(n)} \leq \theta_0 (1 - \alpha)^{1/n} \right)$$

$$= 1 - \left(\frac{\theta_0 (1 - \alpha)^{1/n}}{\theta} \right)^n$$

$$= 1 - \underbrace{\left(\frac{\theta_0}{\theta} \right)^n}_{\to 0} (1 - \alpha)$$

$$\to 1.$$

Problem 3. [30 points]

(a) [20 pts.] Let $X \sim N(\theta, 1)$. Consider the size α Neyman-Pearson test of

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta = \theta_1$

where $\theta_0 < \theta_1$. Show that the test rejects H_0 when X > c and find an expression for c.

$$\frac{L(\theta_1)}{L(\theta_0)} = \frac{\exp\left\{-\frac{1}{2}(X - \theta_1)^2\right\}}{\exp\left\{-\frac{1}{2}(X - \theta_0)^2\right\}}
= \exp\left\{(\theta_1 - \theta_0)X + \frac{1}{2}(\theta_0^2 - \theta_1^2)\right\}$$

We reject H_0 when

$$\exp\left\{(\theta_1 - \theta_0)X + \frac{1}{2}(\theta_0^2 - \theta_1^2)\right\} > k$$

$$\iff (\theta_1 - \theta_0)X + \frac{1}{2}(\theta_0^2 - \theta_1^2) > \log(k)$$

$$\iff X > \frac{\log(k) + \frac{1}{2}(\theta_1^2 - \theta_0^2)}{\theta_1 - \theta_0}$$

where k is chosen so that

$$\mathbb{P}_{\theta_0} \left(X > \frac{\log(k) + \frac{1}{2}(\theta_1^2 - \theta_0^2)}{\theta_1 - \theta_0} \right) = \alpha$$

$$\implies \mathbb{P}_{\theta_0} \left(Z > \frac{\log(k) + \frac{1}{2}(\theta_1^2 - \theta_0^2)}{\theta_1 - \theta_0} - \theta_0 \right) = \alpha.$$

Therefore, we take

$$\frac{\log(k) + \frac{1}{2}(\theta_1^2 - \theta_0^2)}{\theta_1 - \theta_0} - \theta_0 = z_\alpha$$

$$k = \exp\left\{ (z_\alpha + \theta_0)(\theta_1 - \theta_0) + \frac{1}{2}(\theta_0^2 - \theta_1^2) \right\}$$

So the test rejects H_0 when

$$X > \frac{\log(k) + \frac{1}{2}(\theta_1^2 - \theta_0^2)}{\theta_1 - \theta_0}$$

$$\iff X > \theta_0 + z_{\alpha}.$$

(b) [10 pts.] Show that the $\beta(\theta_1) \to 1$ as $\theta_1 \to \infty$, where β is the power function.

$$\beta(\theta_1) = \mathbb{P}_{\theta_1}(X > \theta_0 + z_\alpha)$$

$$= \mathbb{P}(Z > \theta_0 + z_\alpha - \theta_1)$$

$$= 1 - \Phi(\theta_0 + z_\alpha - \theta_1)$$

$$\xrightarrow{\theta_1 \to \infty} 1.$$