Quantitative Analysis of Delta-Hedged Portfolio Risk: Monte Carlo Simulation Approach

Define the functions for calculation and simulation

```
In [ ]: import numpy as np
        from scipy.stats import norm, t
        import math
        import pandas as pd
        import matplotlib.pyplot as plt
        import os
        from tqdm import tqdm
        def simulate_brownian_motion_paths(S0, r, sigma, T, M, I):
            Simulate stock price paths using geometric Brownian motion.
            :param S0: Initial stock price.
            :param r: Risk-free rate.
            :param sigma: Volatility of the underlying asset.
            :param T: Time to maturity.
            :param M: Number of time steps .
            :param I: Number of simulation paths.
            :return: Simulated paths array.
            dt = T / M
            paths = np.zeros((M + 1, I))
            paths[0] = S0
            for t in range(1, M + 1):
                Z = np.random.normal(0, np.sqrt(dt), I)
                paths[t] = paths[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt + sigma * Z)
            return paths
        def simulate_student_t_paths(S0, r, sigma, T, M, I, v):
            Simulate stock price paths with increments distributed according to a Student-t distribution.
            :param S0: Initial stock price.
            :param r: Risk-free rate.
            :param sigma: Volatility of the underlying asset.
            :param T: Time to maturity.
            :param M: Number of time steps .
            :param I: Number of simulation paths.
            :param v: Degrees of freedom for the Student-t distribution.
            :return: Simulated paths array.
            dt = T / M
            paths = np.zeros((M + 1, I))
            paths[0] = S0
            for i in range(1, M + 1):
                Z = t.rvs(df=v, size=I)
                paths[i] = paths[i - 1] * np.exp((r - 0.5 * sigma ** 2) * dt + sigma * np.sqrt(dt) * Z)
            return paths
        def calculate_delta(S, K, r, sigma, T, t):
            Calculate the delta of an option using the Black-Scholes formula.
            :param S: Current stock price.
            :param K: Strike price of the option.
```

```
:param r: Risk-free rate.
    :param sigma: Volatility of the underlying asset.
    :param T: Time to maturity.
   :param t: Current time.
   :return: Delta value.
   d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * (T - t)) / (sigma * np.sqrt(T - t))
   return norm.cdf(d1)
def black_scholes_price(S, K, r, sigma, T, t, option_type='call'):
    Calculate the Black-Scholes option price.
   :param S: Current stock price.
    :param K: Strike price.
   :param r: Risk-free interest rate.
   :param sigma: Volatility of the stock.
   :param T: Time to maturity.
    :param t: Current time.
   :param option type: Type of the option - 'call' or 'put'.
   :return: Price of the option.
   d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * (T - t)) / (sigma * np.sqrt(T - t))
   d2 = d1 - sigma * np.sqrt(T - t)
   if option type == 'call':
        return S * norm.cdf(d1) - K * np.exp(-r * (T - t)) * norm.cdf(d2)
   else: # put option
        return K * np.exp(-r * (T - t)) * norm.cdf(-d2) - S * norm.cdf(-d1)
def calculate_var_es(losses, confidence_level=0.95):
   Calculate VaR and ES for a series of losses.
   :param losses: Array of losses.
   :param confidence_level: Confidence level for VaR and ES calculation.
    :return: VaR and ES values.
   .....
   sorted_losses = np.sort(losses)
   var_index = int((1 - confidence_level) * len(sorted_losses))
   VaR = sorted_losses[var_index]
   ES = sorted_losses[:var_index].mean()
   return VaR, ES
def calculate_portfolio_value(price_path, K, r, sigma, T):
   Calculate the delta-hedged self-financing portfolio values
   .....
   M = len(price_path) - 1 # Number of time steps
   dt = T / M # Length of each time step
   # Calculate initial option price, delta, and theta
   C0 = black_scholes_price(price_path[0], K, r, sigma, T, 0)
   delta_0 = calculate_delta(price_path[0], K, r, sigma, T, 0)
   theta_call = -1 # The number of call options held
   theta_stock = 0-(delta_0*theta_call) # To ensure delta-hedging
```

```
portfolio values = []
    # Initialize portfolio value
    portfolio_value = theta_stock * price_path[0] + theta_call * CO
    portfolio_shares={'call':1,
               'stock':theta stock}
    portfolio_values.append(portfolio_value)
    # Iterate through the price path to update the portfolio
    for t in range(1,M):
        # stock price
        St = price_path[t]
        # Calculate option price at t+1 and delta at t+1
        Ct = black_scholes_price(St, K, r, sigma, T , dt * (t))
        delta_t = calculate_delta(St, K, r, sigma, T , dt * (t))
        portfolio_value = St * portfolio_shares['stock'] + portfolio_shares['call'] * Ct
        portfolio values.append(portfolio value)
        # # Update theta for call and stock based on delta-hedging and self-financing condition
        # theta_call = (portfolio_shares['stock']*St+portfolio_shares['call']*Ct)/(Ct-delta_t*St) # From the delta-hedging equation
        # theta_stock = -theta_call * delta_t # From the self-financing condition
        # Set up the coefficient matrix A and constant vector b
        A = np.array([[St, Ct], [1,delta_t]])
        b = np.array([St * portfolio_shares['stock'] + portfolio_shares['call'] * Ct, 0])
        # Solve for the unknowns theta_{t+1}^S and theta_{t+1}^C
        # theta_t_plus_1 = np.linalg.solve(A, b)
            portfolio_shares['stock'],portfolio_shares['call'] = np.linalg.solve(A, b)
        except:
            continue
    return portfolio_values
def calculate_portfolio_VaR(portfolioprice,confidence_level):
    This function is used to calculate the portfolio loss (e.g simple return, or log return)
    portfolioprice = pd.Series(portfolioprice)
    # Calculate loss (considering them as 'losses')
    loss = portfolioprice - portfolioprice.shift(-1).dropna()
    # Sort the log returns in ascending order (since losses are negative, this actually sorts them by severity)
    sorted_loss = loss.sort_values(ascending=True)
    # Calculate VaR given confidence level
    var = sorted_loss.quantile(1 - confidence_level)
    return var
```

```
def calculate_portfolio_ES(portfolioprice,confidence_level):
    This function is used to calculate the expected shortfall (e.g simple return, or log return)
    portfolioprice = pd.Series(portfolioprice)
    # Calculate loss (considering them as 'losses')
    loss = portfolioprice - portfolioprice.shift(-1).dropna()
    # Sort the log returns in ascending order (since losses are negative, this actually sorts them by severity)
    sorted_loss = loss.sort_values(ascending=True)
    # Calculate VaR given confidence level
    var = sorted_loss.quantile(1 - confidence_level)
    # Calculate Expected Shortfall (ES)
    es = sorted_loss[sorted_loss >= var].mean()
    return es
def quantile_removal(values):
    #remove the top 10 and bot 10 percent of the data to aviod the abnomal data generated calculation errors by solve the
    # system of equations
    # Calculate the 10th and 90th percentiles
    values = np.array(values)
    p15 = np.percentile(values, 10)
    p85 = np.percentile(values, 90)
    # Keep only data between the 15th and 85th percentiles
    filtered_data = values[(values > p15) & (values < p85)]</pre>
    return filtered_data
```

Simulation step: Modify "I" below to increase the simulation times

```
In []: # Consider the different strike prices and different Vailty

results = {}

# for different strike price
for K in tqdm([100,140,180]):

# for different variance
for sigma in tqdm([0.2, 0.4]):

key = f'K={K}_sigma={sigma}'
results[key] = {
    'VaRs_Prownian': [],
    'VaRs_Student_t_1': [],
    'VaRs_Student_t_2': [],
    'VaRs_Student_t_2': [],
    'VaRs_Student_t_3': [],
```

```
'ES Student t 1': [],
    'ES_Student_t_2': [],
    'ES_Student_t_3': []
# Parameters for simulation
S0 = 100 # Initial stock price
#K = 100 # Strike price
T = 1.0 # Time to maturity (1 year)
r = 0.05 \# Risk-free rate
#sigma = 0.2 # Volatility of the underlying asset
M = 365 # Number of time steps
# change the I here for increase the simulation path
I = 2000 # Number of simulation paths
v_1 = 4  # Degrees of freedom for the Student-t distribution
v_2 = 6 # Degrees of freedom for the Student-t distribution
v_3 = 8 # Degrees of freedom for the Student-t distribution
dt = T / M # Length of each time step in years
# Simulate paths using both methods
paths_brownian = simulate_brownian_motion_paths(S0, r, sigma, T, M, I)
paths_student_t_1 = simulate_student_t_paths(S0, r, sigma, T, M, I, v_1)
paths_student_t_2 = simulate_student_t_paths(S0, r, sigma, T, M, I, v_2)
paths_student_t_3 = simulate_student_t_paths(S0, r, sigma, T, M, I, v_3)
# VaRs_Brownian = []
# VaRs_Student_t_1 = []
# VaRs Student t 2 = []
\# VaRs\_Student\_t\_3 = []
# ES Brownian=[]
\# ES\_Student\_t\_1 = []
\# ES\_Student\_t\_2 = []
\# ES\_Student\_t\_3 = []
# monte carlo simulation for all the price paths
for i in range(I):
    # Brownian
    price_path=paths_brownian.T[i]
    portfolioprice = calculate_portfolio_value(price_path, K, r, sigma, T)
    var = calculate_portfolio_VaR(portfolioprice, confidence_level=0.95)
    ES = calculate_portfolio_ES(portfolioprice, confidence_level=0.95)
    results[key]['VaRs_Brownian'].append(var)
    results[key]['ES_Brownian'].append(ES)
    # VaRs_Brownian.append(var)
    # ES_Brownian.append(ES)
    # Student t , df = 4
    price_path=paths_student_t_1.T[i]
    portfolioprice = calculate_portfolio_value(price_path, K, r, sigma, T)
    var = calculate_portfolio_VaR(portfolioprice, confidence_level=0.95)
    ES = calculate_portfolio_ES(portfolioprice,confidence_level=0.95)
    results[key]['VaRs_Student_t_1'].append(var)
    results[key]['ES_Student_t_1'].append(ES)
    # VaRs_Student_t_1.append(var)
```

```
# ES_Student_t_1.append(ES)
# Student t , df = 6
price_path=paths_student_t_2.T[i]
portfolioprice = calculate_portfolio_value(price_path, K, r, sigma, T)
var = calculate_portfolio_VaR(portfolioprice, confidence_level=0.95)
ES = calculate_portfolio_ES(portfolioprice,confidence_level=0.95)
results[key]['VaRs_Student_t_2'].append(var)
results[key]['ES_Student_t_2'].append(ES)
# VaRs_Student_t_2.append(var)
# ES_Student_t_2.append(ES)
# Student t , df = 8
price_path=paths_student_t_3.T[i]
portfolioprice = calculate_portfolio_value(price_path, K, r, sigma, T)
var = calculate_portfolio_VaR(portfolioprice, confidence_level=0.95)
ES = calculate_portfolio_ES(portfolioprice,confidence_level=0.95)
results[key]['VaRs Student t 3'].append(var)
results[key]['ES_Student_t_3'].append(ES)
# VaRs_Student_t_3.append(var)
# ES_Student_t_3.append(ES)
```

Out[]: 0 2 3 5 6 7 8 9 ... 1990 1991 1992 1993 1994 (K=100_sigma=0.2, -0.033592 -0.061254 -0.204885 -0.115617 -0.135150 -0.024037 -0.093868 -0.041426 -0.075178 -0.024620 -0.033339 -0.022048 -0.039765 -0.021967 -0.059596 VaRs_Brownian) (K=100_sigma=0.2, -0.138837 -0.021956 -0.048053 -0.097157 -0.080911 -0.020875 -0.104531 -0.022526 -0.029385 -0.169044 -0.080344 -0.045329 -0.175078 -0.021132 -0.020347 VaRs_Student_t_1) (K=100_sigma=0.2, -0.027025 -0.089333 -0.039547 -0.173320 -0.024367 -0.281438 -0.066665 -0.031755 -0.026873 -0.079674 -0.055933 -0.066058 -0.165361 -0.021104 -0.069476 VaRs_Student_t_2) (K=100_sigma=0.2, -0.235291 -0.030196 -0.023698 -0.025704 -0.021416 -0.232304 -0.184760 -0.022065 -0.112939 -0.025869 -0.024579 -0.325046 -0.237069 -0.027283 -0.088197 VaRs_Student_t_3) (K=100_sigma=0.2, -0.008132 0.012889 -0.003994 -0.005534 -0.000954 0.020242 -0.007034 -0.008940 -0.010187 -0.013586 -0.009301 -0.009676 -0.010740 -0.010203 -0.006536 ES_Brownian) (K=100_sigma=0.2, 0.019383 0.177665 0.146436 0.004568 0.128298 -0.000069 0.007030 0.046088 0.024453 0.018760 0.096126 -0.006711 0.229709 -0.004454 -0.007819 ES_Student_t_1) (K=100_sigma=0.2, -0.008020 0.005843 0.128807 0.009245 0.014225 0.020312 -0.002410 0.050828 -0.002364 0.104717 -0.009260 0.031568 -0.004400 -0.006969 0.021661 ES_Student_t_2) (K=100_sigma=0.2, -0.003970 -0.007559 -0.007522 -0.005916 0.013447 0.024059 -0.008158 0.032757 -0.005929 -0.008092 0.050182 0.103652 -0.007137 0.035520 0.013431 ES_Student_t_3) (K=100_sigma=0.4, -0.294667 -0.047669 -0.390430 -0.307641 -0.606021 -0.546994 -0.096720 -0.090991 -0.308471 -0.095183 -0.242422 -0.073171 -0.058504 -0.059312 -0.292354 VaRs_Brownian) (K=100_sigma=0.4, -0.162930 -0.344015 -0.485498 -0.037792 -0.404794 -0.082511 -0.195672 -0.200304 -0.266989 -0.042978 -0.148605 -0.293637 -0.070517 -0.219820 -0.192277 VaRs_Student_t_1) (K=100_sigma=0.4, -0.295762 -0.243323 -0.065487 -0.041901 -0.029045 -0.064258 -0.066791 -0.033785 -0.440731 -0.046329 -0.036393 -0.065372 -0.235482 -0.175774 -0.048786 VaRs_Student_t_2) (K=100_sigma=0.4, -0.092829 -0.090233 -0.039386 -0.036993 -0.042393 -0.378788 -0.125711 -0.557348 -0.043367 -0.071390 -0.106718 -0.128321 -0.056198 -0.077576 -0.044927 VaRs_Student_t_3) (K=100_sigma=0.4, 0.009007 -0.013096 0.024730 0.024440 0.051086 0.010766 -0.002285 -0.013797 0.040634 -0.014466 0.039478 -0.010574 -0.008179 -0.007199 -0.001716 ES_Brownian) (K=100_sigma=0.4, 0.075231 0.114025 0.104491 0.075822 -0.000450 0.096124 0.222609 0.078535 0.082886 0.131264 0.015822 0.109956 0.104326 0.163472 0.064281 ES Student t 1) (K=100_sigma=0.4, 0.080220 0.022716 -0.001439 -0.001657 0.030133 0.031539 -0.003890 0.001494 0.000724 -0.001128 0.174859 1.165338 0.180597 0.097815 0.001665 ES Student t 2) (K=100_sigma=0.4, 0.023637 0.007786 0.016013 0.030185 0.001695 0.001028 -0.005022 -0.004169 0.070237 0.000857 -0.005102 0.026997 0.058181 -0.002636 0.013847 ES_Student_t_3) (K=140_sigma=0.2, -0.057038 -0.048475 -0.013695 -0.008238 -0.036814 -0.034914 -0.047795 -0.058009 -0.023464 -0.005798 -0.055762 -0.028106 -0.012566 -0.007459 -0.020822 VaRs Brownian) (K=140_sigma=0.2, -0.006742 -0.066125 -0.019127 -0.005080 -0.066958 -0.010428 -0.009225 -0.019728 -0.026549 -0.010845 -0.012023 -0.014114 -0.037255 -0.015740 -0.011610 VaRs Student t 1) (K=140_sigma=0.2, -0.005703 -0.031725 -0.036197 -0.027188 -0.014774 -0.014690 -0.054475 -0.031375 -0.036455 -0.021984 -0.052238 -0.016397 -0.044109 -0.008621 -0.057575 VaRs_Student_t_2) (K=140_sigma=0.2, -0.022739 -0.059336 -0.016899 -0.006138 -0.018754 -0.047114 -0.030722 -0.010191 -0.009576 -0.033803 -0.019889 -0.046101 -0.034924 -0.050850 -0.015272 VaRs_Student_t_3) (K=140_sigma=0.2, 0.006542 -0.000291 0.005609 0.000546 0.000527 -0.000869 0.003056 -0.000619 0.000941 0.004145 0.000193 -0.001218 0.002638 -0.000171 0.001686 ES_Brownian) (K=140_sigma=0.2, 0.013115 0.006847 28044.420137 0.004074 0.008989 0.002081 0.004556 0.044539 0.005026 0.010984 0.009053 0.041076 0.027467 0.173787 0.013437 ES_Student_t_1)

	0	1	2	3	4	5	6	7	8	9	1990	1991	1992	1993	1994
(K=140_sigma=0.2, ES_Student_t_2)	0.001706	0.007015	0.010513	0.009800	0.005547	8.946885	0.003834	0.008740	0.009038	0.021295	. 0.031723	0.006118	0.004054	0.003619	0.002219
(K=140_sigma=0.2, ES_Student_t_3)	0.009956	0.075874	0.008879	0.004551	0.000532	0.004044	0.002517	0.002412	0.002690	0.008258	0.006476	0.003994	0.005064	-0.000496	0.003098
(K=140_sigma=0.4, VaRs_Brownian)	-0.254815	-0.144695	-0.321912	-0.374122	-0.687065	-0.165858	-0.095517	-0.102529	-0.082423	-0.057142	0.221299	-0.197841	-0.208430	-0.336534	-0.261514
(K=140_sigma=0.4, VaRs_Student_t_1)	-0.157360	-0.098552	-0.118967	-0.138171	-0.051464	-0.181979	-0.233273	-0.129322	-0.059163	-0.092178	0.036789	-0.047196	-0.180657	-0.128806	-0.070118
(K=140_sigma=0.4, VaRs_Student_t_2)	-0.039539	-0.131122	-0.224625	-0.254446	-0.032285	-0.238278	-0.065916	-0.124407	-0.203284	-0.064369	0.112277	-0.070266	-0.170818	-0.088893	-0.100125
(K=140_sigma=0.4, VaRs_Student_t_3)	-0.130075	-0.302898	-0.114718	-0.056522	-0.058210	-0.033583	-0.116422	-0.201154	-0.105906	-0.052030	0.158417	-0.294712	-0.046833	-0.227746	-0.079547
(K=140_sigma=0.4, ES_Brownian)	0.055450	0.033502	0.007887	0.020598	-0.028430	0.016223	0.061201	0.016420	-0.000365	0.005614	0.097551	0.033087	0.019831	0.018614	0.014501
(K=140_sigma=0.4, ES_Student_t_1)	0.058084	0.046134	0.081601	0.125863	0.038782	0.068427	0.142104	0.041392	0.109688	0.063121	0.008044	0.030206	0.172670	0.041511	0.029348
(K=140_sigma=0.4, ES_Student_t_2)	0.019759	0.242311	0.078988	0.062850	0.002911	0.070758	0.021268	0.066848	0.035371	0.048746	. 0.049348	0.009963	0.052914	0.012507	0.037528
(K=140_sigma=0.4, ES_Student_t_3)	0.031481	0.045615	0.035473	0.006519	0.010750	0.002571	0.041754	0.022056	0.038653	0.003995	. 0.047077	0.026695	0.004996	0.076185	0.013787
(K=180_sigma=0.2, VaRs_Brownian)	-0.002325	-0.002448	-0.002614	-0.002511	-0.002593	-0.002599	-0.003820	-0.003368	-0.002795	-0.002680	0.001734	-0.002054	-0.002747	-0.002481	-0.002389
(K=180_sigma=0.2, VaRs_Student_t_1)	-0.002827	-0.001430	-0.001783	-0.001853	-0.001733	-0.001009	-0.001084	-0.001450	-0.001463	-0.001094	0.000702	-0.006443	-0.001241	-0.001898	-0.001997
(K=180_sigma=0.2, VaRs_Student_t_2)	-0.002224	-0.001691	-0.001288	-0.001278	-0.001396	-0.001281	-0.000383	-0.002092	-0.001932	-0.001649	0.001346	-0.001864	-0.000911	-0.003192	-0.000588
(K=180_sigma=0.2, VaRs_Student_t_3)	-0.001707	-0.002042	-0.001491	-0.002134	-0.002176	-0.003758	-0.002187	-0.002452	-0.002668	-0.001470	0.002428	-0.002350	-0.002584	-0.002459	-0.002737
(K=180_sigma=0.2, ES_Brownian)	0.000092	0.000288	0.000199	0.001107	0.000344	0.000325	0.000444	0.000046	0.000397	0.000007	0.000302	0.000071	0.000024	-0.000023	0.000223
(K=180_sigma=0.2, ES_Student_t_1)	0.003090	0.001052	0.000907	0.000605	0.000734	0.001237	44.066957	0.002047	0.013878	0.002123	. 0.002284	0.003797	0.000865	0.000685	0.002613
(K=180_sigma=0.2, ES_Student_t_2)	0.000449	0.000721	0.001460	0.000250	0.000565	0.000595	0.000059	0.000667	0.000528	0.001593	0.003986	0.000910	0.000783	0.033625	0.000160
(K=180_sigma=0.2, ES_Student_t_3)	0.000582	0.000416	0.001826	0.000261	0.000835	0.000304	0.000224	0.000303	0.000450	0.000314	. 0.003576	0.002121	0.000579	0.000331	0.000363
(K=180_sigma=0.4, VaRs_Brownian)	-0.109017	-0.124563	-0.207351	-0.076926	-0.034914	-0.075195	-0.205205	-0.131486	-0.152973	-0.037203	0.039689	-0.038729	-0.039098	-0.276168	-0.154277
(K=180_sigma=0.4, VaRs_Student_t_1)	-0.018915	-0.051258	-0.037170	-0.048818	-0.083621	-0.068893	-0.033734	-0.031889	-0.061032	-0.034458	-0.016410	-0.048384	-0.047914	-0.036215	-0.025814
(K=180_sigma=0.4, VaRs_Student_t_2)	-0.069966	-0.063453	-0.104241	-0.014299	-0.058486	-0.049046	-0.027803	-0.063395	-0.058319	-0.109605	0.092039	-0.084854	-0.073990	-0.066522	-0.076863
(K=180_sigma=0.4, VaRs_Student_t_3)	-0.106598	-0.101444	-0.028850	-0.079388	-0.081125	-0.091418	-0.083483	-0.068151	-0.169627	-0.049163	-0.068602	-0.091495	-0.109478	-0.050041	-0.123160

	0	1	2	3	4	5	6	7	8	9	•••	1990	1991	1992	1993	1994
(K=180_sigma=0.4, ES_Brownian)	0.005044	0.017858	0.017001	0.058992	0.000113	0.009076	0.002709	0.013735	0.006468	0.000327		0.001310	0.003464	-0.001873	0.002535	0.006961
(K=180_sigma=0.4, ES_Student_t_1)	0.048151	0.044118	0.012770	0.029211	0.977060	0.799278	0.035505	0.044321	0.029109	0.072355		0.006245	0.030835	0.027454	0.032023	0.023082
(K=180_sigma=0.4, ES_Student_t_2)	0.020978	0.010042	0.012176	0.001686	0.032669	1.125316	0.037772	0.024677	0.035145	0.030982		0.033113	0.025192	0.014224	0.024778	0.025478
(K=180_sigma=0.4, ES_Student_t_3)	0.109782	0.019683	0.007394	0.010196	0.030001	0.009757	0.022313	0.017492	0.008384	0.007032		0.024162	0.020568	0.012581	0.014567	0.018409

48 rows × 2000 columns

plots for VaR at different strike prices, Volatility and different price paths

```
In []: os.makedirs('plots', exist ok=True)
        for K in [100,140,180]:
            \#K = 100
            for sigma in [0.2,0.4]:
            \#sigma = 0.2
                key = f'K={K} sigma={sigma}'
                # Extracting the data for the specific K and sigma
                VaRs_Brownian = results[key]['VaRs_Brownian']
                VaRs_Student_t_1 = results[key]['VaRs_Student_t_1']
                VaRs Student t 2 = results[key]['VaRs Student t 2']
                VaRs Student t 3 = results[key]['VaRs Student t 3']
                # We need to clean out some data that will generate extreme VaR which does not make sense in our model. Those extreme data is not the extreme
                # loss but the computational error from solving the equations
                VaRs_Brownian = quantile_removal(VaRs_Brownian)
                VaRs_Student_t_1 = quantile_removal(VaRs_Student_t_1)
                VaRs_Student_t_2 = quantile_removal(VaRs_Student_t_2)
                VaRs_Student_t_3 = quantile_removal(VaRs_Student_t_3)
                # Function to add text annotations to the plots
                def add_annotations(ax, mean_var, K, sigma):
                    ax.text(0.05, 0.95, f'Mean VaR: {mean_var:.4f}', transform=ax.transAxes, fontsize=10, verticalalignment='top')
                    ax.text(0.05, 0.85, f'Strike Price: {K}', transform=ax.transAxes, fontsize=10, verticalalignment='top')
                    ax.text(0.05, 0.75, f'Sigma: {sigma}', transform=ax.transAxes, fontsize=10, verticalalignment='top')
                # Plotting the histograms
                plt.figure(figsize=(12, 8))
                ax1 = plt.subplot(2, 2, 1)
                plt.hist(VaRs_Brownian, bins=50, color='blue', alpha=0.7)
                plt.xlabel('VaR')
                plt.ylabel('Frequency')
                plt.title('Brownian Motion VaR')
                add_annotations(ax1, np.mean(VaRs_Brownian), K, sigma)
                ax2 = plt.subplot(2, 2, 2)
                plt.hist(VaRs_Student_t_1, bins=100, color='green', alpha=0.7)
                plt.xlabel('VaR')
                plt.ylabel('Frequency')
                plt.title('Student-t (v=4) VaR')
```

```
add_annotations(ax2, np.mean(VaRs_Student_t_1), K, sigma)
ax3 = plt.subplot(2, 2, 3)
plt.hist(VaRs_Student_t_2, bins=50, color='red', alpha=0.7)
plt.xlabel('VaR')
plt.ylabel('Frequency')
plt.title('Student-t (v=6) VaR')
add_annotations(ax3, np.mean(VaRs_Student_t_2), K, sigma)
ax4 = plt.subplot(2, 2, 4)
plt.hist(VaRs_Student_t_3, bins=50, color='purple', alpha=0.7)
plt.xlabel('VaR')
plt.ylabel('Frequency')
plt.title('Student-t (v=8) VaR')
add_annotations(ax4, np.mean(VaRs_Student_t_3), K, sigma)
plt.tight_layout()
#plt.show()
file_name = f'plots/Var_{K}_{sigma}.png'
plt.savefig(file_name)
plt.show()
plt.close()
```


plots for ES at different strike prices, Volatility and different price paths

```
In []: #
    for K in [100,140,180]:
        #K = 100
        for sigma in [0.2,0.4]:
        key = f'K={K}_sigma={sigma}'
        # Extracting the ES data for the specific K and sigma
```

```
ES Brownian = results[key]['ES Brownian']
ES_Student_t_1 = results[key]['ES_Student_t_1']
ES_Student_t_2 = results[key]['ES_Student_t_2']
ES_Student_t_3 = results[key]['ES_Student_t_3']
# We need to clean out some data that will generate extreme VaR which does not make sense in our model. Those extreme data is not the extreme
# loss but the computational error from solving the equations
ES_Brownian = quantile_removal(ES_Brownian)
ES Student t 1 = quantile removal(ES Student t 1)
ES_Student_t_2 = quantile_removal(ES_Student_t_2)
ES Student t 3 = quantile removal(ES Student t 3)
# Function to add text annotations to the plots
def add_annotations(ax, mean_es, K, sigma):
    ax.text(0.95, 0.95, f'Mean ES: {mean_es:.4f}', transform=ax.transAxes, fontsize=10, verticalalignment='top', horizontalalignment='right')
    ax.text(0.95, 0.85, f'Strike Price: {K}', transform=ax.transAxes, fontsize=10, verticalalignment='top', horizontalalignment='right')
    ax.text(0.95, 0.75, f'Sigma: {sigma}', transform=ax.transAxes, fontsize=10, verticalalignment='top', horizontalalignment='right')
# Plotting the histograms for Expected Shortfall
plt.figure(figsize=(12, 8))
# Brownian Motion ES
ax1 = plt.subplot(2, 2, 1)
plt.hist(ES Brownian, bins=50, color='blue', alpha=0.7)
plt.xlabel('Expected Shortfall')
plt.ylabel('Frequency')
plt.title('Brownian Motion ES')
add_annotations(ax1, np.mean(ES_Brownian), K, sigma)
# Student-t (v=4) ES
ax2 = plt.subplot(2, 2, 2)
plt.hist(ES_Student_t_1, bins=50, color='green', alpha=0.7)
plt.xlabel('Expected Shortfall')
plt.ylabel('Frequency')
plt.title('Student-t (v=4) ES')
add_annotations(ax2, np.mean(ES_Student_t_1), K, sigma)
# Student-t (v=6) ES
ax3 = plt.subplot(2, 2, 3)
plt.hist(ES_Student_t_2, bins=50, color='red', alpha=0.7)
plt.xlabel('Expected Shortfall')
plt.ylabel('Frequency')
plt.title('Student-t (v=6) ES')
add_annotations(ax3, np.mean(ES_Student_t_2), K, sigma)
# Student-t (v=8) ES
ax4 = plt.subplot(2, 2, 4)
plt.hist(ES_Student_t_3, bins=50, color='purple', alpha=0.7)
plt.xlabel('Expected Shortfall')
plt.ylabel('Frequency')
plt.title('Student-t (v=8) ES')
add_annotations(ax4, np.mean(ES_Student_t_3), K, sigma)
plt.tight_layout()
#plt.show()
#plt.show()
file_name = f'plots/ES_{K}_{sigma}.png'
plt.savefig(file_name)
```


Mean VaR on different strike price

```
In []: # Mean VaR on different strike price

strike_prices = [100, 140,180]
for sigma in [0.2,0.4]:
    #sigma = 0.2 # Example volatility value
    distribution_types = ['VaRs_Brownian', 'VaRs_Student_t_1', 'VaRs_Student_t_2', 'VaRs_Student_t_3']
    plt.figure(figsize=(10, 6))
```

12/14/23, 11:30 PM

```
for dist in distribution_types:
    avg_vars = []
    for K in strike_prices:
        key = f'K={K}_sigma={sigma}'
        avg_var = np.mean(quantile_removal(results[key][dist]))
        avg_vars.append(avg_var)
    plt.plot(strike_prices, avg_vars, label=dist)
plt.xlabel('Strike Price')
plt.ylabel('Average VaR')
plt.title('Average VaR for Different Strikes')
plt.legend()
plt.grid(True)
#plt.show()
#plt.show()
file_name = f'plots/AvgVaRonStrike_{K}_{sigma}.png'
plt.savefig(file_name)
plt.show()
plt.close()
```


Mean ES on different strike price

```
In [ ]: # Mean ES for different strike price
        strike_prices = [100, 140, 180]
        for sigma in [0.2,0.4]:
            plt.figure(figsize=(10, 6))
            distribution_types = ['ES_Brownian', 'ES_Student_t_1', 'ES_Student_t_2', 'ES_Student_t_3']
            for dist in distribution_types:
                avg_es = []
                for K in strike_prices:
                    key = f'K={K}_sigma={sigma}'
                    avg_es_value = np.mean(quantile_removal(results[key][dist]))
                    avg_es.append(avg_es_value)
                plt.plot(strike_prices, avg_es, label=dist)
            plt.xlabel('Strike Price')
            plt.ylabel('Average ES')
            plt.title('Average ES for Different Strikes')
            plt.legend()
            plt.grid(True)
            #plt.show()
```

12/14/23, 11:30 PM

```
file_name = f'plots/AvgESonStrike_{K}_{sigma}.png'
plt.savefig(file_name)
plt.show()
plt.close()
```


12/14/23, 11:30 PM

In []:
In []: