

Tópicos de Matemática I 2º Teste 25 · 01 · 2019

Duração: 90 minutos

Nome: Turma:

Justifique convenientemente todas as suas respostas.

Exercício 1 Um avião levanta voo formando um ângulo de 30° com o solo. Determine a altura do avião após ter percorrido 4000 m em linha reta.

Exercício 2 Calcule o valor exato de:

$$\left(\sin\frac{4\pi}{3}-\cos\frac{11\pi}{6}\right)\times\tan\left(-\frac{5\pi}{6}\right).$$

Exercício 3 Calcule o valor das seguintes expressões:

 $\mathrm{a})$ tan 0^{o} ;

c) cos 150°;

b) sin 120°;

d) sin 330°.

Exercício 4 Simplifique

$$\sin(3\pi - \alpha) + \cos\left(\frac{\pi}{2} - \alpha\right) + \sin(-\alpha).$$

Exercício 5 — Acerca de um ângulo α , sabe-se que $\cos \alpha = -\frac{1}{3}$ e que $\pi < \alpha < 2\pi$. Calcule o valor de

$$\frac{\tan \alpha}{\sqrt{2}}$$
 .

Exercício 6 Determine o parâmetro real k de modo que seja possível a expressão

$$\sin\alpha = -2k + 1 \wedge \alpha \in]\pi, 2\pi[\,.$$

Exercício 7 Mostre, no domínio em que a expressão é válida, que:

$$\tan\alpha + \frac{\cos\alpha}{1+\sin\alpha} = \frac{1}{\cos\alpha}.$$

Exercício 8 Considere, em \mathbb{R}^2 , a circunferência \mathcal{C} definida pela equação $x^2-2x+y^2+8y=-8$.

a) Calcule as coordenadas do centro da circunferência e o respetivo raio.

b) Indique dois pontos pertencentes à circunferência \mathcal{C} .

Exercício 9 Considere as retas definidas por $r: \frac{x-1}{2} = \frac{y+1}{3}$ e s: -6x + 4y - 20 = 0.

a) Mostre que as retas r e s são paralelas.

b) Determine a distância entre as duas retas r e s.

Exercício 10 Considere os pontos S=(2,0), T=(1,3) e U=(5,-1) e seja v a reta que passa pelos pontos S e T.

a) Mostre que a equação reduzida da reta v é y=-3x+6.

b) Determine uma **equação geral** da reta que passa no ponto U é perpendicular a v.

Exercício 11 a) Escreva uma condição que caracterize, em \mathbb{R}^2 , os pontos da região assinalada na figura.

 $b) \quad \hbox{Represente num referencial cartesiano o seguinte conjunto:} \\$

$$\{(x,y) \in \mathbb{R}^2: x^2 + y^2 = 9 \land y < 0 \land x < 0\}.$$

FORMULÁRIO e COTAÇÃO

 $d_{P,r}=rac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}$ dá a distância do ponto $P(x_0,y_0)$ à reta r de equação Ax+By+C=0

	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
sin	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	<u>1</u> 2
tan	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Cotação: