

Geodatenanalyse I: Fortgeschrittene Sensitivitätsanalyse

Kathrin Menberg

Stundenplan

	08:30 – 12:30 Uhr	13:30 – 17:30 Uhr
Montag	Tag 1 / Block 1	Tag 1 / Block 2
Dienstag	Tag 2 / Block 1	Tag 2 / Block 2
Mittwoch	Tag 3 / Block 1	Tag 3 / Block 2
Donnerstag	Tag 4 / Block 1	Tag 4 / Block 2
Freitag	Tag 5 / Block 1	Tag 5 / Block 2

- 2.7 Monte Carlo Methoden
- 2.8 Grundlagen der Sensitivitätsanalyse
- **▶ 2.9 Fortgeschrittene Sensitivitätsanalyse**

Lernziele Block 2.9

Am Ende der Stunde werden die Teilnehmer:

- mit den mathematischen Grundlagen der Varianzdekomposition vertraut sein.
- verschiedene quantitative Methoden zur Sensitivitätsanalyse und deren Einsatzgebiete kennen.
- … in Python Sobol Indizes bestimmen und interpretieren können.

Parameter Screening

- ➤ Ziel: Identifikation von nicht-einflussreichen Parameter
- Semi-quantitative Methoden zum Parameter Ranking
- Effiziente Methode um große Anzahl an Parameter zu testen
- Morris Method
- Factorial Sampling Strategie
 - Multidimensionalen Parameterraum durch wenige Stichproben abdecken
 - Anzahl an benötigten Modellauswertungen gering halten

Factorial Sampling

- ▶ Parameter-Kombinationen entlang von "Pfaden" t (engl. trajectory) durch den Parameterraum
 - Unterteilung des Parameterraums in ein regelmäßiges Gitter mit Anzahl an Leveln (oft p)
 - Zwischen jedem Schritt entlang des Pfades ändert sich genau ein Wert

X_1	X_2	X_3
1	1	1
-1 1	1 -1	1 1
-1	-1 1	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$
$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$	1 -1	-1 -1
-1	-1	-1

trajectory

Saltelli et al. (2008)

Elementary Effects

Änderung im Modell-Output zwischen konsekutivem Schritten

$$EE_i = \frac{Y(X + e_i \Delta_i) - Y(X)}{\Delta_i}$$

- Statistische Auswertung der Elementary Effects sortiert nach Parametern über alle Trajectories
 - \triangleright z.B. bei 10 Trajectories, 10 mal Änderungen von Wert von X_i

$$\mu_{i}^{*} = 0.5 \sum_{t=1}^{k} |EE_{it}|$$
 $\sigma = \sqrt{\frac{1}{(k-1)} \sum_{t=1}^{k} (EE_{it} - \mu_{i})^{2}}$

- ightharpoonup Absoluten Mittelwert: Einfluss von X_i auf Modell-Output
- Standardabweichung: Maß für die Varianz in Modell-Output aufgrund von X_i

Auswertung Morris Method

- Parameter Ranking nach Mittelwerten der Elementary Effects
- Analyse des Verhältnisses σ/μ der einzelnen Parameter

Menberg et al. (2016)

Varianzdekomposition

► Generisches Modell $Y = f(X_1, X_2, ..., X_k)$

$$Y = f_0 + \sum_{i=1}^{d} f_i(X_i) + \sum_{j$$

$$V(Y) = \sum_{i} V_{i} + \sum_{i} \sum_{j < i} V_{ij} + \dots$$

- Ableitung von verschiedenen Indizes zur Sensitivitätsanalyse für nicht-lineare Systeme, bzw. Modelle
- Sobol Indizes (nach Ilya Sobol):
 - Sobol Effekte erster Ordnung, Effekte höherer Ordnung, Totale Effekte

Bedingte Varianzen (1. Option)

- ► Generisches Modell $Y = f(X_1, X_2, ..., X_k)$
- ▶ Jedes X variiert innerhalb eines bestimmten Wertebereichs
 - ightharpoonup Quantifizieren über Varianz V_{X_i}
- Sensitivität definieren als Effekt den das Fixieren von X_i auf die Varianz in Y hat
 - $\triangleright E_{X_{\sim i}}(Y|X_i)$
- Für gesamten Wertebereich von X_i und normiert auf die Gesamtvarianz

$$S_i = \frac{V_{X_i}(E_{X_{\sim i}}(Y|X_i))}{V(Y)}$$

Sobol Effekte erster Ordnung

- Sampling Strategie über Monte Carlo Simulation mit Zufallswerten für Modell-Inputs
- Referenzmatrix und eine Vergleichs-Matrix für jedes X_i

$$X^{ref} = \begin{bmatrix} X_{11}^{ref} & \cdots & X_{1i}^{ref} & \cdots & X_{1k}^{ref} \\ X_{21}^{ref} & \cdots & X_{2i}^{ref} & \cdots & X_{2k}^{ref} \\ \vdots & & & & \vdots \\ X_{N1}^{ref} & \cdots & X_{Ni}^{ref} & \cdots & X_{Nk}^{ref} \end{bmatrix} \qquad X^{(i)} = \begin{bmatrix} X_{11}^{(i)} & \cdots & X_{1i}^{ref} & \cdots & X_{1k}^{(i)} \\ X_{21}^{(i)} & \cdots & X_{2i}^{ref} & \cdots & X_{2k}^{(i)} \\ \vdots & & & & \vdots \\ X_{N1}^{(i)} & \cdots & X_{Ni}^{ref} & \cdots & X_{Nk}^{(i)} \end{bmatrix}$$

$$X^{(i)} = \begin{bmatrix} X_{11}^{(i)} & \cdots & X_{1i}^{ref} & \cdots & X_{1k}^{(i)} \\ X_{21}^{(i)} & \cdots & X_{2i}^{ref} & \cdots & X_{2k}^{(i)} \\ \vdots & & \cdots & & \vdots \\ X_{N1}^{(i)} & \cdots & X_{Ni}^{ref} & \cdots & X_{Nk}^{(i)} \end{bmatrix}$$

 \rightarrow die Werte von X_i bleiben gleich, alle anderen werden variiert

Benötigte Modelldurchläufe: (1 + *Anzahl Paratemeter*) * *N*

Sobol Totale Effekte

Bedingte Varianzen (2. Option)

- Generisches Modell $Y = f(X_1, X_2, ..., X_n)$
- Jedes X variiert innerhalb eines bestimmten Wertebereichs
 - ightharpoonup Quantifizieren über Varianz V_{X_i}
- Sensitivität als Effekt den Variieren von X_i auf die Varianz in Y hat, wenn alle $X_{\sim i}$ fixiert sind
 - $V_{X_i}(Y|X_{\sim i})$
- Für gesamten Wertebereich von X_i und normiert auf die Gesamtvarianz

$$S_{T_i} = \frac{E_{X_{\sim i}}(V_{X_i}(Y|X_{\sim i}))}{V(Y)} = S_i + S_{ij} + S_{ij...k}$$

Sobol totale Effekte

- Sampling Strategie über Monte Carlo Simulation mit Zufallswerten für Modell-Inputs
- Referenzmatrix und eine Vergleichs-Matrix für jedes X_i

$$X^{ref} = \begin{bmatrix} X_{11}^{ref} & \cdots & X_{1i}^{ref} & \cdots & X_{1k}^{ref} \\ X_{21}^{ref} & \cdots & X_{2i}^{ref} & \cdots & X_{2k}^{ref} \\ \vdots & & \dots & & \vdots \\ X_{N1}^{ref} & \cdots & X_{Ni}^{ref} & \cdots & X_{Nk}^{ref} \end{bmatrix} \qquad X^{(i)} = \begin{bmatrix} X_{11}^{ref} & \cdots & X_{1i}^{i} & \cdots & X_{1k}^{ref} \\ X_{21}^{ref} & \cdots & X_{2i}^{i} & \cdots & X_{2k}^{ref} \\ \vdots & & \dots & & \vdots \\ X_{N1}^{ref} & \cdots & X_{Ni}^{i} & \cdots & X_{Nk}^{ref} \end{bmatrix}$$

 \rightarrow Nur die Werte von X_i werden variiert, alle anderen bleiben gleich

► Benötigte Modelldurchläufe: (1 + *Anzahl Paratemeter*) * *N*

Effekte erster Ordnung vs. Totale Effekte

- Definition der "Wichtigkeit" von Parametern
- Ziel: Reduzierung von Unsicherheiten
 - Parameter der bei Fixierung Varianz in Y verringert
 - Effekt erster Ordnung
- Ziel: Modellvereinfachung
 - Parameter, der bei Variation möglichst viel der Varianz in Y erhält
 - Totale Effekte
- für additive Modellen ergibt die Summe aller Effekte erster Ordnung 1

Fazit Sensitivitätsanalyse

- Methoden mit unterschiedlichem Aufwand für verschiedene Zwecke
- Sobol Indizes: <u>die</u> Methode für quantitative und globale Sensitivitätsanalyse
- Rechenkosten für Effekte erster Ordnung und totale Effekte: (1 + Anzahl Parameter) * N * 2
 - ... schnell auf mehrere 10.000 iterative Simulationen
- Parameter Reihenfolge mit Screening Methoden (z.B. Morris Method) verlässlich und effizient zu bestimmen

Übung 2.9: Sensitivitätsanalyse II

- Basierend auf MC Simulation aus Übung 2.7 fortgeschrittene Methoden zur Sensitivitätsanalyse
 - Factorial sampling
 - Morris Method
 - Sobol Indizes
 - Visualisierung

Aufgaben in Jupyter Notebook: geodatenanalyse_1-2-9

$$\lambda = \frac{\Delta \delta^{13} C \cdot k_f \cdot i}{\varepsilon \cdot s \cdot n_{\rho}}$$

▶ Factorial Sampling

index	A	0	1	2	3	4	5
0		4.085714	-2.6	416.1428	0.171428	31285714	0.001385
1		4.657142	-2.6	416.1428	0.171428	31285714	0.001385
2		4.657142	-2.6	420.7142	0.171428	31285714	0.001385
3		4.657142	-2.6	420.7142	0.171428	330000000	0.001385
4		4.657142	-1.4	420.7142	0.171428	330000000	0.001385
5		4.657142	-1.4	420.7142	0.171428	330000000	0.001557
6		4.657142	-1.4	420.7142	0.274285	330000000	0.001557
7		4.514285	-2.6	415	0.145714	32571428	0.001514
8		4.514285	-2.6	415	0.145714	32571428	0.001342
9		4.514285	-2.6	419.5714	0.145714	32571428	0.001342
10		3.942857	-2.6	419.5714	0.145714	32571428	0.001342
11		3.942857	-2.6	419.5714	0.145714	30857142	0.001342
12		3.942857	-2.6	419.5714	0.248571	30857142	0.001342
13		3.942857	-1.4	419.5714	0.248571	30857142	0.001342
14		4.657142	-3.2	423	0.171428	31714285	0.001428
15		4.657142	-3.2	418.4285	0.171428	31714285	0.001428
16		4.657142	-3.2	418.4285	0.274285	31714285	0.001428
17		4.657142	-2	418.4285	0.274285	31714285	0.001428
18		4.085714	-2	418.4285	0.274285	31714285	0.001428
19		4.085714	-2	418.4285	0.274285	31714285	0.0016
20		4.085714	-2	418.4285	0.274285	300000000	0.0016
21		4.371428	-2	421.8571	0.248571	32571428	0.001385
22		4.371428	-2	421.8571	0.248571	30857142	0.001385
23		4.371428	-2	421.8571	0.248571	30857142	0.001557
24		3.8	-2	421.8571	0.248571	30857142	0.001557
25		3.8	-2	417.2857	0.248571	30857142	0.001557

Morris Method

Parameter	Mu_Star	Mu	Mu_Star_Conf	Sigma
deltaC	0.054	0.054	0.002	0.019
epsilon	0.236	0.236	0.008	0.083
S	0.000	0.000	0.000	0.000
neff	0.000	-0.000	0.000	0.000
t	0.021	-0.021	0.001	0.008
grad	0.000	0.000	0.000	0.000

set point temperature thermal capacitance

- infiltration rate
 radiative proportion of
- heating system
 discharge coefficient
- wind reduction factor
- C, factor variation
 - appliances heat gain
- occupant heat gain lighting heat gain
- dH_{NPL}

Menberg et al. (2016)

Sobol Indizes

	1st order effects	total effects
deltaC	0.043	0.047
Epsilon	0.974	0.972
Distance	0.000	0.000
n_eff	0.000	0.000
time	0.006	0.007
Gradient	0.000	0.00

Beispiel für unterschiedliche Sobol Indizes

Menberg et al. (2016)

10.03.2021

Literatur

- Saltelli et al. (2008): Global Sensitivity Analysis. The Primer, John Wiley & Sons.
- Menberg et al. (2016): Sensitivity analysis methods for building energy models: Comparing computational costs and extractable information, Energy and Buildings 133, 433-445.
- Würth et al. (2021): Quantifying biodegradation rate constants of o-xylene by combining compound-specific isotope analysis and groundwater dating. Journal of Contaminant Hydrology, 238, 103757

