Problem

Chef has a string S consisting of lowercase English characters. Chef defined functions left shift L(X) and right shift R(X) as follows.

- L(X) is defined as shifting all characters of string X one step towards left and moving the first character to the end.
- R(X) is defined as shifting all characters of string X one step towards the right and moving the last character to the beginning.

For example, L("abcd") = "bcda" and R("abcd") = "dabc"

Chef wants to find out whether there exists a string V of the same length as S such that both L(V)=S and R(V)=S holds.

Input:

- ullet The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows.
- The first line of each test case contains a string S.

Output:

For each test case, If there exists a valid string \it{V} , print "YES", otherwise print "NO" (without the quotes).

Constraints

- $1 \le T \le 100$
- $1 \le |S| \le 10^6$
- ullet S contains all lower case English alphabets.
- It's guaranteed that the total length of the strings in one test file doesn't exceed $10^6\,$

Sample 1:

Input	Output
4	YES
а	YES
ab	NO
abcd	YES
aaaaa	

Explanation:

- ullet In the first test case, Chef can choose $\,V=S\,$
- ullet In the second test case, Chef can choose V = "ba" which satisfies both conditions.
- ullet There doesn't exist any valid choice for string $\,V\,$ in the third test case.

Problem

Chef has a string S consisting of lowercase English characters. Chef defined functions left shift L(X) and right shift R(X) as follows.

- L(X) is defined as shifting all characters of string X one step towards left and moving the first character to the end.
- R(X) is defined as shifting all characters of string X one step towards the right and moving the last character to the beginning.

For example, L("abcd") = "bcda" and R("abcd") = "dabc"

Chef wants to find out whether there exists a string V of the same length as S such that both L(V)=S and R(V)=S holds.

Input:

- ullet The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows.
- The first line of each test case contains a string S.

Output:

For each test case, If there exists a valid string \it{V} , print "YES", otherwise print "NO" (without the quotes).

Constraints

- $1 \le T \le 100$
- $1 \le |S| \le 10^6$
- ullet S contains all lower case English alphabets.
- It's guaranteed that the total length of the strings in one test file doesn't exceed $10^6\,$

Sample 1:

Input	Output
4	YES
а	YES
ab	NO
abcd	YES
aaaaa	

Explanation:

- ullet In the first test case, Chef can choose $\,V=S\,$
- ullet In the second test case, Chef can choose V = "ba" which satisfies both conditions.
- ullet There doesn't exist any valid choice for string $\,V\,$ in the third test case.