ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Nombre: Sebastián Alexander Morales Cedeño

Curso: GR1CC

Fecha: 16/07/2025

[Tarea 10] Ejercicios Unidad 04-C | Descomposición LU

Repositorio:

https://github.com/SebastianMoralesEpn/Github1.0/tree/dafe7ac237369d0ff222d49bd39c60158b3ed15e/Tareas/%5BTarea%2010%5D%20Ejercicios%20Unidad%2004-C%20%20Descomposici%C3%B3n%20LU

CONJUNTO DE EJERCICIOS

1. Realice las siguientes multiplicaciones matriz-matriz:

a.
$$\begin{bmatrix} 2 & -3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 2 & 0 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & -3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 5 & -4 \\ -3 & 2 & 0 \end{bmatrix}$$

c.
$$\begin{bmatrix} 2 & -3 & 1 \\ 4 & 3 & 0 \\ 5 & 2 & -4 \end{bmatrix} \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -1 \\ 2 & 3 & -2 \end{bmatrix}$$

d.
$$\begin{bmatrix} 2 & 1 & 2 \\ -2 & 3 & 0 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -4 & 1 \\ 0 & 2 \end{bmatrix}$$

Resultados:

Resultado literal a:

[[-4 10] [1 15]]

Resultado literal b:

Resultado literal c:

Resultado literal d:

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

2. Determine cuáles de las siguientes matrices son no singulares y calcule la inversa de esas matrices:

a.
$$\begin{bmatrix} 4 & 2 & 6 \\ 3 & 0 & 7 \\ -2 & -1 & -3 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$\mathbf{c.} \left[\begin{array}{cccc} 1 & 1 & -1 & 1 \\ 1 & 2 & -4 & -2 \\ 2 & 1 & 1 & 5 \\ -1 & 0 & -2 & -4 \end{array} \right]$$

d.
$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 6 & 7 & 0 & 0 \\ 9 & 11 & 1 & 0 \\ 5 & 4 & 1 & 1 \end{bmatrix}$$

Resultados:

Literal a:

¿Es no singular?: No

Literal b:

Literal c:

¿Es no singular?: No

Literal d:

¿Es no singular?: Sí

Matriz inversa:

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

3. Resuelva los sistemas lineales 4 x 4 que tienen la misma matriz de coeficientes:

$$x_1 - x_2 + 2x_3 - x_4 = 6,$$

 $x_1 - x_3 + x_4 = 4,$
 $2x_1 + x_2 + 3x_3 - 4x_4 = -2,$
 $-x_2 + x_3 - x_4 = 5;$

$$x_1 - x_2 + 2x_3 - x_4 = 1,$$

 $x_1 - x_3 + x_4 = 1,$
 $2x_1 + x_2 + 3x_3 - 4x_4 = 2,$
 $-x_2 + x_3 - x_4 = -1.$

Resultado:

Solución para el primer sistema (b = [6, 4, -2, 5]):

$$x1 = 3.00, x2 = -6.00, x3 = -2.00, x4 = -1.00$$

Solución para el segundo sistema (b = [1, 1, 2, -1]):

$$x1 = 1.00, x2 = 1.00, x3 = 1.00, x4 = 1.00$$

4. Encuentre los valores de A que hacen que la siguiente matriz sea singular.

$$A = \left[\begin{array}{rrr} 1 & -1 & \alpha \\ 2 & 2 & 1 \\ 0 & \alpha & -\frac{3}{2} \end{array} \right]$$

Resultado:

Los valores de α que hacen singular la matriz son:

$$\alpha = -1.5000$$

$$\alpha = 2.0000$$

5. Resuelva los siguientes sistemas lineales:

a.
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 3 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix}$$

Resultados:

Solución literal a:

$$x1 = -3.0000$$
, $x2 = 3.0000$, $x3 = 1.0000$

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Solución literal b:

$$x1 = 0.5000, x2 = -4.5000, x3 = 3.5000$$

6. Factorice las siguientes matrices en la descomposición LU mediante el algoritmo de factorización LU con $l_{ii}=1$ para todas las i.

a.
$$\begin{bmatrix} 2 & -1 & 1 \\ 3 & 3 & 9 \\ 3 & 3 & 5 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1.012 & -2.132 & 3.104 \\ -2.132 & 4.096 & -7.013 \\ 3.104 & -7.013 & 0.014 \end{bmatrix}$$

$$\mathbf{c.} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 1.5 & 0 & 0 \\ 0 & -3 & 0.5 & 0 \\ 2 & -2 & 1 & 1 \end{bmatrix}$$

$$\mathbf{d.} \left[\begin{array}{ccccc} 2.1756 & 4.0231 & -2.1732 & 5.1967 \\ -4.0231 & 6.0000 & 0 & 1.1973 \\ -1.0000 & -5.2107 & 1.1111 & 0 \\ 6.0235 & 7.0000 & 0 & -4.1561 \end{array} \right]$$

Resultados:

Factorización literal a:

Matriz L:

[[1. 0. 0.]

[1.5 1. 0.]

[1.5 1. 1.]]

Matriz U:

[[2. -1. 1.]

[0. 4.5 7.5]

[0. 0. -4.]]

Factorización literal b:

Matriz L:

Matriz U:

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Factorización literal c:

Matriz L:

[[1.	0.	0.	0.]	
[0.5	1.	0.	0.]	
[0.	-2.	1.	0.]	
[1.	-1.333	333333	2.	1.	- 11

Matriz U:

[[2. 0. 0. 0.] [0. 1.5 0. 0.] [0. 0. 0.5 0.] [0. 0. 0. 1.]]

Factorización literal d:

Matriz L:

Matriz U:

 Modifique el algoritmo de eliminación gaussiana de tal forma que se pueda utilizar para resolver un sistema lineal usando la descomposición LU y, a continuación, resuelva los siguientes sistemas lineales.

a.
$$2x_1 - x_2 + x_3 = -1$$
,
 $3x_1 + 3x_2 + 9x_3 = 0$,
 $3x_1 + 3x_2 + 5x_3 = 4$.

b.
$$1.012x_1 - 2.132x_2 + 3.104x_3 = 1.984$$
, $-2.132x_1 + 4.096x_2 - 7.013x_3 = -5.049$,

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

$$3.104x_1 - 7.013x_2 + 0.014x_3 = -3.895.$$

c.
$$2x_1 = 3$$
, $x_1 + 1.5x_2 = 4.5$, $-3x_2 + 0.5x_3 = -6.6$, $2x_1 - 2x_2 + x_3 + x_4 = 0.8$;

d.
$$2.1756x_1 + 4.0231x_2 - 2.1732x_3 + 5.1967x_4 = 17.102$$
, $-4.0231x_1 + 6.0000x_2 + 1.1973x_4 = -6.1593$, $-1.0000x_1 - 5.2107x_2 + 1.1111x_3 = 3.0004$, $6.0235x_1 + 7.0000x_2 - 4.1561x_4 = 0.0000$.

Resultados:

Solución literal a:

$$x1 = 1.000000$$
, $x2 = 2.000000$, $x3 = -1.000000$

Matriz L:

Matriz U:

Solución literal b:

$$x1 = 1.000000$$
, $x2 = 1.000000$, $x3 = 1.000000$

Matriz L:

Matriz U:

Solución literal c:

$$x1 = 1.500000$$
, $x2 = 2.000000$, $x3 = -1.200000$, $x4 = 3.000000$

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

		-
Ma	tri7	
ivia	uiz	

[[1.	0.	0.	0	.]	
[0.	1.	0.	0	.]	
[1.	0.666	66667	1.	0.]
[0.5	-0.5	0.3	75	1.]]

Matriz U:

[[2.	0.	0. 0.]
[0.	-3.	0.5 0.]
[0.	0.	0.66666667 1.
[0.	0.	00.375]]

Solución literal d:

```
x1 = 2.939851, x2 = 0.070678, x3 = 5.677735, x4 = 4.379812
```

Matriz L:

Matriz U:

```
[[ 6.0235 7. 0. -4.1561 ]

[ 0. 10.67530506 0. -1.57856219]

[ 0. 0. -2.1732 6.91885959]

[ 0. 0. 0. 2.24878393]]
```