Keep Learning

GRADE 100%

Introduction to deep learning

LATEST SUBMISSION GRADE

100%

1.	What does the an	nalogy "Al is the new electricity" refer to?	
	Al is powering	ng personal devices in our homes and offices, similar to electricity.	
	○ Through the	"smart grid", AI is delivering a new wave of electricity.	
	Similar to elect	ectricity starting about 100 years ago, Al is transforming multiple industries.	
	Al runs on col before.	omputers and is thus powered by electricity, but it is letting computers do things r	not possible
	✓ Correct		
	Yes. Al is t	transforming many fields from the car industry to agriculture to supply-chain	

Being able to try out ideas quickly allows deep learning engineers to iterate more quickly.

Yes, as discussed in Lecture 4.

Faster computation can help speed up how long a team takes to iterate to a good idea.

✓ Correct

Yes, as discussed in Lecture 4.

- It is faster to train on a big dataset than a small dataset.
- Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPU/GPU hardware).

Yes. For example, we discussed how switching from sigmoid to ReLU activation functions allows faster training.

- True
- False

Yes. Finding the characteristics of a model is key to have good performance. Although experience can help, it requires multiple iterations to build a good model.

5. Which one of these plots represents a ReLU activation function?

1/1 point

Figure 1:

Figure 3:

б.	Images for cat recognition is an example of "structured" data, because it is represented as a structured array in a computer. True/False?	1/1 point			
	True False				
	 Correct Yes. Images for cat recognition is an example of "unstructured" data. 				
7.	A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "unstructured" data because it contains data coming from different sources. True/False? True False				
	Correct A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "structured" data by opposition to image, audio or text datasets.				

Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French? (Check all that apply.)	1/1 point
✓ It can be trained as a supervised learning problem.	
✓ Correct Yes. We can train it on many pairs of sentences x (English) and y (French).	
It is strictly more powerful than a Convolutional Neural Network (CNN).	
It is applicable when the input/output is a sequence (e.g., a sequence of words).	
✓ Correct Yes. An RNN can map from a sequence of english words to a sequence of french words.	
RNNs represent the recurrent process of Idea->Code->Experiment->Idea->	

8.

9. In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis) represent?

- x-axis is the amount of data
 - · y-axis (vertical axis) is the performance of the algorithm.
- x-axis is the amount of data
 - · y-axis is the size of the model you train.
- x-axis is the input to the algorithm
 - · y-axis is outputs.
- x-axis is the performance of the algorithm
 - · y-axis (vertical axis) is the amount of data.

10.	_	e trends described in the previous question's figure are accurate (and hoping you got the axis which of the following are true? (Check all that apply.)	1 / 1 point
	Decreasii significar	ing the size of a neural network generally does not hurt an algorithm's performance, and it may help ntly.	
	Increasin significar	ng the size of a neural network generally does not hurt an algorithm's performance, and it may help ntly.	
	✓ Corre	ect According to the trends in the figure above, big networks usually perform better than small networks.	
	✓ Increasin	ng the training set size generally does not hurt an algorithm's performance, and it may help significantly.	
	✓ Corre Yes. I	ect Bringing more data to a model is almost always beneficial.	
	Decreasii significar	ing the training set size generally does not hurt an algorithm's performance, and it may help ntly.	