Optische Technologie, Übung 3, Prof. Rateike

Christoph Hansen

chris@university-material.de

Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.

Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls ihr Fehler findet oder etwas fehlt, dann meldet euch bitte über den Emailkontakt.

Inhaltsverzeichnis

Aufgabe 1	2
Aufgabe 2	2

C. Hansen 2

Aufgabe 1

In dieser Aufgabe ist h eine Variable. In Abhängigkeit der Variable h bestimmen wir die Position x_2 . Wir lassen h dabei von 0-0.7 laufen.

Zunächst bestimmen wir h und x_1 :

$$sin(\alpha) = h \Leftrightarrow \alpha = arcsin(h)$$

 $x_1 = cos(\alpha)$

Zudem können wir γ ablesen:

$$\gamma = \beta - \alpha$$

Über das Brechungsgesetz bestimmen wir nun β :

$$n \cdot \sin(\alpha) = \sin(\beta)$$

 $\Leftrightarrow \beta = \arcsin(\sin(\alpha) \cdot n) = \arcsin(h \cdot n)$

Wir berechnen die Strecke zwischen x_1 und x_2 :

$$\tan(\gamma) = \frac{h}{x_2 - x_1} \Leftrightarrow x_2 - x_1 = \frac{h}{\tan(\gamma)}$$

Man generiert sich jetzt eine Menge Werte für $x_1, \alpha, \gamma, \beta$ berechnet daraus x_2 . Das packt man in einen Graphen indem man auf der x-Achse die Höhe h aufträgt und auf der y-Achse x_2 . Da erkennt man wie stark x_2 sich verändert.

Aufgabe 2

Diese Aufgabe funktioniert ähnlich wie die Aufgabe 1, aber es sind zwei Schritte nötig: