

Applied Geodata Science I

Session 12

Prof. Dr. Benjamin Stocker 12.05.2025

What's the weight of Field Marshall?

A decision tree

A decision tree

Tree growth

Bradley & Boehmke Hands On Machine Learning in R

Too deep a tree (overfitted)

Bradley & Boehmke Hands On Machine Learning in R

From a tree to a forest

By generating randomness and averaging across samples for a robust estimate:

- Subsampling predictors considered for each decision (branch) within a tree
- Subsampling number of training data points for each tree

Hyperparameters in Random Forst

- number of trees
- mtry: number of predictors considered at each branch
- min.node.size: the number of data points at the "bottom" of each decision tree (leaf nodes)
- *splitrule*: the function applied for determining the goodness of a decision (default: SSE for regression, Gini impurity for classification).

Gini impurity

For a node with classes $k \in \{1, 2, \dots, K\}$, and proportion p_k of class k, the **Gini impurity** is:

$$G=1-\sum_{k=1}^K p_k^2$$

Left group:

- Class A: 2/2 = 1.0
- Class B: 0/2 = 0.0

$$G_{
m left} = 1 - (1.0^2 + 0.0^2) = 0$$

Right group:

- Class A: 0/2 = 0.0
- Class B: 2/2 = 1.0

$$G_{
m right} = 1 - (0.0^2 + 1.0^2) = 0$$

$$G_{ ext{split}} = rac{2}{4} \cdot G_{ ext{left}} + rac{2}{4} \cdot G_{ ext{right}} = 0.5 \cdot 0 + 0.5 \cdot 0 = 0$$