1 Цель работы

В ходе выполнения работы необходимо вычислить вероятность существования пути между заданными вершинами в графе с помощью алгоритма полного перебора и декомпозиции, построить зависимость вероятности существования пути в случайном графе от вероятности существования ребра.

2 Исходные данные

Пусть задан случайный граф $\tilde{G}(X,Y,P)$, где $X=\{x_i\}$ — множество вершин, $Y=\{(x_i,x_j)\}$ — множество ребер, $P=\{p_i\}$ — множество вероятностей существования ребер, причем

$$P = \{p_i\} : p_i = p$$
 для $\forall i$

Согласно полученному варианту, дан граф с параметрами $\tilde{G}(7,9,P)$, где $P=\{p\}$ и p пробегает значения от 0 до 1 с шагом 0,1. Граф изображен ниже.

Схема 1 - Исходный граф

Необходимо вычислить вероятность существования пути между вершинами 1 и 4 ($P_{\rm cg}(1,4)$) и построить зависимость вероятности существования пути в случайном графе от вероятности существования ребра.

3 Переборный алгоритм вычисления вероятности связности вершин

Рассмотрим множество $\Gamma = \{g_1, ..., g_N\}$ всех возможных неслучайных графов, которые можно получить на основе случайного. Каждый такой граф g_i может появиться с вероятностью $P(g_i)$. Среди них выделим подмножество $\Gamma' = \{g'_1, ..., g'_K\}$, где $K \leq N$, в котором путь из вершины 1 в 4 существует. Тогда $\Pr\{\text{путь 1,4}\} = \sum_{i=1}^k P(g'_i)$.

Данный метод реализуется программно. Для данного графа существует $2^l = 2^9 = 512$ различных подграфов. Краткие итоги работы программы приведены ниже.

Таблица 1 - Полный перебор

Количество ребер в подграфе	Вероятность появления	Общее число подграфов с заданным количеством ребер	Количество подграфов, где есть путь (1,4)
0	0	1	0
1	$p(1-p)^{8}$	9	0
2	$p^2(1-p)^7$	36	1
3	$p^3(1-p)^6$	84	9
4	$p^4(1-p)^5$	126	33
5	$p^5(1-p)^4$	126	62
6	$p^6(1-p)^3$	84	65
7	$p^7(1-p)^2$	36	34
8	$p^{8}(1-p)$	9	9
9	$(1-p)^9$	1	1

Таким образом, получаем: $\Pr\{\text{путь 1,4}\} = p^2(1-p)^7 + 9p^3(1-p)^6 + 33p^4(1-p)^5 + 62p^5(1-p)^4 + 65p^6(1-p)^3 + 34p^7(1-p)^2 + 9p^8(1-p) + (1-p)^9$

После работы программы в файл выводится таблица результатов, которая приведена ниже.

Таблица 2 - Таблица результатов полного перебора

p	Pr{путь 1,4}
0	0
0.1	0.011971558000000004
0.2	0.05511833600000003
0.3	0.13742879400000005
0.4	0.260687872
0.5	0.41796875
0.6	0.592685568
0.7	0.760497346
0.8	0.8948695039999999
0.9	0.9758897819999999
1	1.0

Таким образом, график имеет следующий вид и представлен ниже.

График 1 - График, полученный полным перебором

4 Декомпозиция

Рисунок 1 – Декомпозиция

Распишем каждое из полученных решений:

- I. $\Pr\{\Pi 1 \cup \Pi 2\} = \Pr\{\Pi 1\} + \Pr\{\Pi 2\} \Pr\{\Pi 1\} \Pr\{\Pi 2\}$ (т. к. пути независимы) = $p^2 + p^5 p^2 p^5 = p^2 + p^5 p^7$
- II. $\Pr\{\Pi 1 \cup \Pi 2\} = \Pr\{\Pi 1\} + \Pr\{\Pi 2\} \Pr\{\Pi 1\} \Pr\{\Pi 2\}$ (т. к. пути независимы) = $p^2 + p^2 p^2 p^2 = 2p^2 p^4$
- III. $Pr\{\pi 1 \cup \pi 2\} \cap Pr\{\pi 3 \cup \pi 4\} = (Pr\{\pi 1\} + Pr\{\pi 2\} Pr\{\pi 1\} Pr\{\pi 2\}) (Pr\{\pi 3\} + Pr\{\pi 4\} Pr\{\pi 3\} Pr\{\pi 4\}) = (p + p p^2)(p + p^4 p^5) = (2p p^2)(p + p^4 p^5) = 2p^2 p^3 + 2p^5 3p^6 + p^7$
- IV. $\Pr\{\pi 1 \cup \pi 2\} \cap \Pr\{\pi 3 \cup \pi 4\} = (\Pr\{\pi 1\} + \Pr\{\pi 2\} \Pr\{\pi 1\} \Pr\{\pi 2\}) (\Pr\{\pi 3\} + \Pr\{\pi 4\} \Pr\{\pi 3\} \Pr\{\pi 4\}) = (p + p p^2)(p + p p^2) = (p + p p^2)^2 = 4p^2 4p^3 + p^4$

Объединяя все промежуточные решения, получаем:

$$\Pr{\{\text{путь 1,4}\}} = (1-p)\big((1-p)I + pII\big) + p\big((1-p)III + pIV\big) =$$

$$= (1-p)\big((1-p)(p^2 + p^5 - p^7) + p(2p^2 - p^4) +$$

$$+p((1-p)(2p^2 - p^3 + 2p^5 - 3p^6 + p^7) + p(4p^2 - 4p^3 + p^4)$$

Итак,
$$\Pr\{\text{путь 1,4}\} = p^2 + 2p^3 - 3p^5 + 2p^6 - 5p^7 + 6p^8 - 2p^9$$

Тогда, получаем таблицу для различных p:

Таблица 3 – Таблица результатов декомпозиции

p	Pr{путь 1,4}
0	0
0.1	0.0119715580000000
0.2	0.0551183360000000
0.3	0.137428794000000
0.4	0.260687872000000
0.5	0.417968750000000
0.6	0.592685568000000
0.7	0.760497346000000
0.8	0.894869504000000
0.9	0.975889782000000
1	1

Таким образом, график имеет следующий вид и представлен ниже.

График 2 – График, полученный в результате декомпозиции

5 Выводы

Таким образом, двумя способами была получена зависимость вероятности существования пути в случайном графе от вероятности существования ребра. Можно сделать вывод о том, что зависимость прямая, и с увеличением p, вероятность пути так же увеличивается.

График 3 - Сравнение результатов

Сравнивая результаты таблицы и графики, полученные двумя методами, можно сделать вывод, что разница между полученными результатами пренебрежительно мала, а значит, можно утверждать о корректной работе программы.