Task 4 Synthetic Data Vault

By 白宸宇

Overview

01

Single Table

使用Tabular Model, 合成單一筆資料集中的欄位,

對應非潛在客戶的資料 non_potential_customers

02

Multi Table

使用Relational Model, 合成跨資料集的多重資料。

對應潛在客戶的資料 potential _customers和 ads.csv有相同的user_id作為 key

03

Sequential

使用Sequential及Time series Model, 合成時間依賴性或序列性的資料。

對應兩資料集中的時間戳資料 e_et、pt_d

The SDV ecosystem

	Туре	Description	Usage
Copulas	Tabular	使用 copula 函數來描述多變量數據之間的相 依性,並根據這些相依性生成新的數據。	生成表格內較簡單的合成數據
CTGAN	Tabular	基於生成對抗網絡(GAN)的模型, 專門用於生 成高保真度的合成表格數據。	生成表格內較複雜的合成數據
DeepEcho	Time Series	結合了經典的統計模型和深度學習方法,能夠 生成遵循時間依賴性的數據	生成時間戳的合成數據
RDT	Transforms	將原始資料轉換為數值資料以便用於資料科 學專案,需要時將其轉回原始格式	可將涉及隱私問題的PII匿名化

另有提供SDGym來做Benchmarking、SDMetrics來評估績效

流程圖(Single Table)

Data Preparation

Modeling

Gaussian Copula

- -使用高斯分布和Copula函數來捕捉變數間的依賴性,
- 分離邊際分佈和依賴結構。。
- -適合數值和連續變數的合成。
- -Pros:能夠處理複雜的相關結構。

CTGAN

- -基於生成對抗網絡(GAN), 專為表格數據設計。
- -擅長處理複雜分佈和高稀疏性數據。
- -Pros:生成高保真度的合成數據。

TVAE

- -基於變分自動編碼器, 適合生成連續和分類數據的混合數據集。
- -採用概率方法來表示隱變數並重建數據。
- -Pros:處理非線性關係和混合數據類型。

Direct sampling

直接從合成模型生成的數據分佈中隨機抽樣,不考慮特定條件。

適用於需要生成與整體數據相似的數據集。

Conditional sampling

根據指定的條件或特徵(如特定變數的值)生成數據。

能夠更精細地控制合成數據的屬性, 使 其符合特定需求或分析場景。例如: 設定 年齡分佈的比例

EX:可以設定只要生成Task_count大於一定數量的數據, 亦或生成特定時間戳的資料。

Evaluation

01

Diagnostic

執行基本的<mark>數據格式</mark>和有效性 檢查,確保合成數據是有效的。

EX:

有效性: Primary Key唯一性、連續值的範圍、離散值的類別。

數據結構:真實數據和合成數據的欄位名稱一致性。

02

Data Quality

評估合成數據與真實數據在統計上的相似性。試圖理解合成數據在多大程度上反映了真實數據的屬性。

主要測量數據的統計特徵,如分布和相關性。

03

Visualization

進行視覺化有助於更直觀地識別數據<mark>分佈和趨勢</mark>之間的差 異。

Part 3

```
# Step 2: Train the synthesizer
synthesizer.fit(non_potential_customers_2)

# Step 3: Generate synthetic data
synthetic_data = synthesizer.sample(num_rows=100)

    3m 37.2s
```

```
~/opt/anaconda3/lib/python3.9/site-packages/sdv/lite/single_table.py in <module>
    8 import cloudpickle
9
---> 10 from sdv.single_table import GaussianCopulaSynthesizer
11
    12 LOGGER = logging.getLogger(__name__)
...
3
    4 from ..common import _linalg
5 from .._internal import get_xp

ImportError: cannot import name '__all__' from 'numpy.linalg' (/Users/castle/opt/anaconda3/lib/python3.9/site-packages/numpy/linalg/__init__.py.
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...
```

