Mathématiques pour l'informatique 1

Systèmes linéaires

Émilie Charlier

Département de Mathématique Université de Liège

Menu équilibré

Votre livre de diététique vous indique qu'un menu équilibré doit contenir 32g de protéines, 30mg de vitamine C, 0,3g de calcium et 900 calories.

Vous décidez de composer votre menu de poulet, de salade, de yaourt et d'épinard.

Le tableau ci-dessous reprend la teneur en protéines, vitamine C, calcium et calories de ces aliments par 100g.

	protéines	vitamine C	calcium	calories
poulet	20g	0mg	0,01g	325
salade	1g	15mg	0,04g	80
yaourt	3,3g	1,5mg	0,12g	70
épinard	2,3g	50mg	0,07g	22

Quelles quantités de chaque aliment devez-vous inclure dans votre menu pour qu'il soit équilibré ?

Analyse input-output d'une production

À partir de ℓ types d'inputs, on produit c types d'outputs.

On assigne des unités de mesure à chaque input et output.

Soit A_{ij} la quantité de l'input i nécessaire pour produire une unité du produit j.

On suppose deux choses:

- 1. Pour produire x_j unités du produit j, il faut $A_{ij}x_j$ unités de l'input i (hypothèse de rendement constant).
- 2. Pour produire x_1, x_2, \dots, x_c unités des différents outputs, il faut $A_{i1}x_1 + A_{i2}x_2 + \dots + A_{ic}x_c$ unités de l'input i (hypothèse d'additivité).

La quantité b_1, b_2, \ldots, b_ℓ des différents inputs utilisée pour fabriquer x_1, x_2, \ldots, x_c unités des différents outputs est donnée par les relations :

$$\begin{cases}
A_{11}x_1 + A_{12}x_2 + \dots + A_{1c}x_c &= b_1 \\
A_{21}x_1 + A_{22}x_2 + \dots + A_{2c}x_c &= b_2 \\
& \vdots \\
A_{\ell 1}x_1 + A_{\ell 2}x_2 + \dots + A_{\ell c}x_c &= b_{\ell}
\end{cases}$$

Système d'équations linéaires

$$\begin{cases}
A_{11}x_1 + A_{12}x_2 + \dots + A_{1c}x_c &= b_1 \\
A_{21}x_1 + A_{22}x_2 + \dots + A_{2c}x_c &= b_2 \\
& \vdots \\
A_{\ell 1}x_1 + A_{\ell 2}x_2 + \dots + A_{\ell c}x_c &= b_{\ell}
\end{cases}$$

Les quantités supposées connues sont les nombres A_{ij} et b_i et les inconnues sont les quantités x_j , où $1 \leq i \leq \ell$ et $1 \leq j \leq c$.

Définitions

- L'ensemble des équations ci-dessus est appelé un système de ℓ équations linéaires à c inconnues.
- \triangleright Les nombres b_i sont les termes indépendants.
- ▶ Si $b_i = 0$ pour tout i, le système est dit homogène.
- ▶ Résoudre le système signifie trouver l'ensemble de toutes les solutions du système, c'est-à-dire l'ensemble de tous les c-uples $(x_1, x_2, ..., x_c) \in \mathbb{C}^c$ pour lesquels les égalités ci-dessus sont simultanément vérifiées.
- Le système est dit impossible (ou incompatible) s'il n'admet pas de solution.
- Le système est dit compatible s'il admet au moins une solution.

Forme matricielle d'un système linéaire

On écrit les c inconnues et les ℓ termes indépendants sous forme de matrices-colonnes :

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_c \end{pmatrix} \quad \text{et} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_\ell \end{pmatrix}.$$

On écrit les coefficients A_{ij} sous forme d'une matrice $\ell \times c$, appelée la matrice des coefficients du système :

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1c} \\ A_{21} & A_{22} & \cdots & A_{2c} \\ \vdots & \vdots & & \vdots \\ A_{\ell 1} & A_{\ell 2} & \cdots & A_{\ell c} \end{pmatrix}.$$

Ainsi, le système peut s'écrire sous forme d'une équation matricielle :

$$Ax = b$$
.

Une solution du système est alors une matrice-colonne $x \in \mathbb{C}^{c \times 1}$ telle que l'égalité Ax = b est vérifiée.

Exemple

On voudrait écrire l'élément (1,2,3) de \mathbb{C}^3 comme combinaison linéaire des éléments (1,0,-1),(0,1,1),(1,-1,0), c'est-à-dire trouver des nombres complexes a,b,c tels que

$$a(1,0,-1) + b(0,1,1) + c(1,-1,0) = (1,2,3),$$

ou encore

$$(a+c,b-c,-a+b)=(1,2,3).$$

Cette égalité de vecteurs à trois composantes est équivalente au système de trois équations à trois inconnues suivant :

$$\begin{cases} a+c = 1 \\ b-c = 2 \\ -a+b = 3 \end{cases}$$

qui, lui-même, s'écrit sous forme matricielle comme suit :

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Exemple (suite)

Écrivons
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$
, $x = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ et $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

On doit donc résoudre l'équation matricielle Ax = b.

Comme $det(A) = 2 \neq 0$, la matrice A est inversible.

En multipliant chaque membre de l'équation Ax = b par A^{-1} à gauche, on obtient

$$A^{-1}Ax = A^{-1}b,$$

c'est-à-dire

$$x=A^{-1}b.$$

If y a donc une unique solution $A^{-1}b$.

Il ne reste plus qu'à la calculer.

Exemple (suite et fin)

On calcule d'abord la matrice inverse de A :

$$A^{-1} = rac{1}{2} egin{pmatrix} 1 & 1 & -1 \ 1 & 1 & 1 \ 1 & -1 & 1 \end{pmatrix}.$$

Ensuite, on obtient

$$x = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}.$$

Systèmes équivalents

Définition

Deux systèmes linéaires sont équivalents s'ils possèdent le même ensemble de solutions.

On écrit $S_1 \iff S_2$ pour signifier que les systèmes linéaires S_1 et S_2 sont équivalents.

Système de Cramer

Définition

Un système d'équations linéaires est appelé un système de Cramer si le nombre d'équations est égal au nombre d'inconnues et si la matrice des coefficients est inversible.

Remarquez que la matrice des coefficients d'un système de Cramer est toujours carrée.

Théorème

Un système de Cramer admet une solution unique.

Démonstration.

En effet, puisque A est inversible, on a $Ax = b \iff x = A^{-1}b$.

Corollaire

Un système de Cramer homogène Ax = 0 admet pour unique solution la matrice-colonne 0.

Exemple

Le système d'équations linéaires

$$\begin{cases} 2x + 6y = 0 \\ x + 13y = 0 \end{cases}$$

est un système de Cramer car det $\begin{pmatrix} 2 & 6 \\ 1 & 13 \end{pmatrix} = 20 \neq 0$.

Il n'admet donc que la solution nulle (x, y) = (0, 0).

Méthode de la matrice inverse

Pour résoudre un système de Cramer, on peut toujours procéder comme suit.

On calcule A^{-1} , l'inverse de la matrice des coefficients A et on effectue le produit $A^{-1}b$.

Cette méthode est toutefois assez difficile en pratique car elle nécessite le calcul d'un grand nombre de déterminants.

La méthode de Gauss décrite plus loin mène à des algorithmes de résolution des systèmes linéaires beaucoup plus efficaces.

Système sous forme triangulaire

Un système linéaire est sous forme triangulaire s'il est du type

$$\begin{cases}
A_{11}x_1 + A_{12}x_2 + A_{13}x_3 + \cdots + A_{1m}x_m = b_1 \\
A_{22}x_2 + A_{23}x_3 + \cdots + A_{2m}x_m = b_2 \\
A_{33}x_3 + \cdots + A_{3m}x_m = b_3 \\
\vdots \\
A_{mm}x_m = b_m
\end{cases}$$

Comme $det(A) = A_{11} \cdots A_{mm}$, un système triangulaire est de Cramer si et seulement si les coefficients diagonaux A_{ii} sont tous non nuls.

Un système de Cramer sous forme triangulaire est particulièrement facile à résoudre.

- La dernière équation donne immédiatement $x_m = \frac{b_m}{A_{mm}}$.
- ▶ En remplaçant x_m par la valeur trouvée dans l'avant-dernière équation, on obtient x_{m-1} .
- ▶ En remontant de cette façon toutes les équations jusqu'à la première, on obtient successivement les valeurs de x_m, x_{m-1}, \dots, x_1 .

Système sous forme triangulaire : exemple

Considérons le système

$$\begin{cases}
-x_1 + x_2 - 3x_3 = 6 \\
2x_2 + x_3 = 2 \\
-4x_3 = 0
\end{cases}$$

La dernière équation donne $x_3 = 0$, la deuxième donne $x_2 = 1$ et la première donne $x_1 = -5$.

L'unique solution est donc $(x_1, x_2, x_3) = (-5, 1, 0)$.

Quelques observations valables pour tous les systèmes linéaires

- 1. On ne modifie pas les solutions d'un système en changeant l'ordre des lignes du système.
- 2. On ne modifie pas les solutions d'un système en multipliant une ligne du système par un nombre complexe non nul.
- **3.** On ne modifie pas les solutions d'un système en ajoutant à une ligne une combinaison linéaire des autres lignes.

Méthode de Gauss (ou du pivot)

Étant donné un système de Cramer, on peut toujours se ramener à un système triangulaire en procédant comme suit.

▶ On choisit une ligne dont le coefficient de x_1 est non nul et on la place en première place. Cela revient à supposer que $A_{11} \neq 0$. Ce coefficient est appelé un pivot de Gauss.

$$\begin{cases}
A_{11}x_1 + A_{12}x_2 + \dots + A_{1m}x_m &= b_1 \\
A_{21}x_1 + A_{22}x_2 + \dots + A_{2m}x_m &= b_2 \\
& \vdots \\
A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mm}x_m &= b_m
\end{cases}$$

▶ On remplace la deuxième ligne par elle-même plus un multiple de la première de sorte que le coefficient de x_1 dans la nouvelle seconde ligne soit nul : pour chaque $j \in \{1, ..., m\}$, on calcule

$$A_{2j}' = A_{2j} - rac{A_{21}}{A_{11}}A_{1j} \quad ext{ et } \quad b_2' = b_2 - rac{A_{21}}{A_{11}}b_1.$$

Ainsi, on a $A'_{21} = 0$, comme souhaité.

- On procède ainsi jusqu'à avoir supprimé les coefficients de x_1 dans chaque ligne sauf la première.
- ► Ainsi, on obtient un système équivalent du type :

$$\begin{cases}
A_{11}x_1 + A_{12}x_2 + \dots + A_{1m}x_m &= b_1 \\
A'_{22}x_2 + \dots + A'_{2m}x_m &= b'_2 \\
& \vdots \\
A'_{m2}x_2 + \dots + A'_{mm}x_m &= b'_m
\end{cases}$$

Remarquons que le déterminant de la matrice des coefficients est inchangé.
 On a donc

$$\det(A) = A_{11} \det(A')$$

οù

$$A' = \begin{pmatrix} A'_{22} & \cdots & A'_{2m} \\ \vdots & & \vdots \\ A'_{m2} & \cdots & A'_{mm} \end{pmatrix}.$$

Ceci implique que $det(A') \neq 0$. Le sous-système de m-1 équations en les m-1 inconnues x_2, \ldots, x_m est donc encore de Cramer.

- On choisit une ligne pour laquelle le coefficient de x₂ est non nul, et on la place en deuxième ligne. Le coefficient correspondant A'_{j2} de x₂ est notre nouveau pivot de Gauss.
- ➤ On procède ensuite comme précédemment pour supprimer les coefficients de x₂ de toutes les lignes suivantes.
- ► En continuant ce processus, on aboutit à un système de Cramer triangulaire équivalent au système de départ, pour lequel il est facile d'obtenir la solution.

Méthode de Gauss sur un exemple

Considérons le système linéaire S suivant

$$\begin{cases} x + y - 2z = 1 \\ 2x + 3y + z = 4 \\ x + 4y + z = 1 \end{cases}$$

On obtient successivement les équivalences

$$S \iff \begin{cases} x + y - 2z = 1 \\ y + 5z = 2 \iff \begin{cases} x + y - 2z = 1 \\ y + 5z = 2 \\ -12z = -6 \end{cases}$$

On en tire $z = \frac{1}{2}$, puis $y = 2 - 5z = -\frac{1}{2}$ et $x = 1 - y + 2z = \frac{5}{2}$.

L'unique solution du système est donc $(x, y, z) = (\frac{5}{2}, -\frac{1}{2}, \frac{1}{2})$.

Remarque importante

Pas besoin de vérifier a priori qu'on est en présence d'un système de Cramer!

La méthode de Gauss aboutira à un système triangulaire de Cramer si et seulement si le système S de départ est de Cramer.

En effet, le déterminant de la matrice des coefficients étant inchangé à chaque étape, la méthode de Gauss ne s'interrompt que si on ne peut plus trouver de pivot, auquel cas le déterminant du sous-système correspondant est nul, et donc celui de départ aussi.