UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Riadkovo-stĺpcové návrhy štatistických experimentov

BAKALÁRSKA PRÁCA

2020 Róbert Druska

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Riadkovo-stĺpcové návrhy štatistických experimentov

BAKALÁRSKA PRÁCA

Študijný program: Matematika

Študijný odbor: 1114 Matematika

Školiace pracovisko: Katedra aplikovanej matematiky a štatistiky

Vedúci práce: doc. Mgr. Radoslav Harman, PhD.

Bratislava 2020 Róbert Druska

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta:	Róbert Druska
-----------------------------	---------------

Študijný program: matematika (Jednoodborové štúdium, bakalársky I. st., denná

forma)

Študijný odbor:matematikaTyp záverečnej práce:bakalárskaJazyk záverečnej práce:slovenskýSekundárny jazyk:anglický

Názov: Riadkovo-stĺpcové návrhy štatistických experimentov

Row-column designs of statistical experiments

Anotácia: Prvým cieľom je analyzovať vlastnosti odhadov parameterov regresného

modelu pre takzvaný riadkovo-stĺpcový experimentálny návrh. Druhým cieľom je navrhnúť algoritmus na výpočet optimálneho návrhov tohto typu, v závislosti

na požiadavkách experimentátora.

Vedúci: doc. Mgr. Radoslav Harman, PhD.

Katedra: FMFI.KAMŠ - Katedra aplikovanej matematiky a štatistiky

Vedúci katedry: prof. RNDr. Marek Fila, DrSc.

Dátum zadania: 15.10.2019

Dátum schválenia: 18.10.2019 prof. RNDr. Ján Filo, CSc.

garant študijného programu

študent	vedúci práce

Abstrakt

TODO

Kľúčové slová: lineárny regresný model

Abstract

TODO

Keywords: linear regression

Obsah

Ú	vod		8
1	Line	eárny regresný model	9
	1.1	Metóda najmenších štvorcov	9
	1.2	Maticová príprava	11
	1.3	Metodika skúmania	12
2	Ria	dkovo-stĺpcový aditívny model s dvoma typmi ošetrení	13
	2.1	Odhadnuteľnosť h^Tb	15
	2.2	Optimálnosť návrhu modelu	18
Zá	Záver		
Zo	Zoznam použitej literatúry		21
Pı	ríloha	a A	22

$\mathbf{\acute{U}vod}$

TODO

1 Lineárny regresný model

Majme n nameraných štatistických jednotiek tvaru $\{y, x_1, \ldots, x_p\}$, ktoré sme dostali ako výsledok experimentu. Lineárny regresný model predpokladá, že medzi jednotlivými prvkami $y, x_1, \ldots x_p$ je lineárny vzťah. Motiváciou za lineárnym regresným modelom je spravidla aproximovať tento lineárny vzťah.

Aproximácia lineárneho vzťahu nám v praxi ponúkne mechanizmus, ktorým možno predikovať neznámu hodnotu y na základe známych hodnôt $y, x_1, ...x_p$, čo v reálnom živote predstavuje často sa vyskytujúci problém.

Označme teda daný lineárny vzťah medzi zložkami nameranej štatistickej jednotky:

$$y_i = b_0 + b_1 x_{i_1} + \dots + b_p x_{i_p} + e_i = b^T x_i + e_i$$

kde $\{y_i, x_i\}$ je i-ta nameraná jednotka, b je vektor lineárneho vzťahu a e_i je chyba merania.

Keď lineárne vzťahy pre každú z n nameraných jednotiek zapíšeme maticovo, dostaneme vzťah

$$y = Xb + e \tag{1}$$

kde $y = (y_1, y_2, \dots, y_n)^T$, $e = (e_1, e_2, \dots, e_n)^T$ a

$$X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ \vdots & \vdots & \ddots & \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix}$$

je matica tvaru $n \times p$. V praxi je b neznámy vektor, ktorý sa snažíme odhadnúť.

Na spočítanie odhadu b sa používajú rôzne metódy, najčastejšie napr. metóda najmenších štvorcov alebo metóda maximálnej vierohodnosti.

1.1 Metóda najmenších štvorcov

Metódou najmenších štvorcov vypočítame odhad \hat{b} parametra b nasledovne:

$$\hat{b} = \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} (y - Xb)^T C (y - Xb) = \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} ||y - Xb||_{C^{-1}}^2$$

kde C je nejaká kladne definitná matica. Ak C = I, potom minimalizujeme výraz $||y - Xb||_I^2 = ||y - Xb||^2 = \sum_{i=1}^n (y_i - X_i.b)^2$, kde X_i . značí i-ty riadok matice X. V našej práci budeme predpokladať nezávislosť chýb a tiež homogenitu ich rozptylu, čo v praxi znamená, že skutočne budeme môcť dosadiť C = I. Preto maticu C v ďalšom opise teórie spomínať nebudeme.

Geometricky metódu najmenších štvorcov možno interpretovať ako projekciu vektora y na stĺpcový priestor matice X. Hľadáme teda taký vektor \hat{b} , pre ktorý platí $X\hat{b}=Py$, kde P je matica ortogonálnej projekcie na stĺpcový priestor X. Z teórie lineárnej algebry vieme, že $P=X(X^TX)^-X^T$, kde znamienko – označuje g-inverziu. (g-inverziou matice A je taká matica A^- , pre ktorú platí $AA^-A=A$).

Odhad \hat{b} parametra b je teda riešením rovnice

$$Xb = X(X^T X)^- X^T y (2)$$

Všetky riešenia tejto rovnice musia mať tvar:

$$(X^TX)^-X^Ty$$

kde použitá g-inverzia je ľubovoľná.

Z uvedeného vyplýva, že v prípade regulárnosti X^TX je odhad \hat{b} parametra b jednoznačný. V našej práci budeme skúmať matice (modely) X, ktoré nie sú regulárne, takže jednoznačný odhad \hat{b} nebudeme schopní nájsť (čo v konečnom dôsledku ani nie je naším záujmom). Budeme odhadovať lineárnu funkciu zložiek vektora b, konkrétne $h^Tb = h_1b_1 + \ldots + h_pb_p$, ktorá býva jednoznačne odhadnuteľná aj v prípade singularity X^TX , ak vektor h spĺňa určité podmienky.

Definícia 1.1. Lineárnu kombináciu h^Tb zložiek vektora b nazývame odhadnuteľnou, ak pre ľubovoľné riešenia b^* a b^{**} rovnice (2) platí $h^Tb^* = h^Tb^{**}$.

Je niekoľko ekvivalentných podmienok, ktoré stačia na to, aby $h^T b$ bolo odhadnuteľné. Z nich spomenieme dve v nasledovnej vete, ktorú použijeme neskôr v našej práci.

Veta 1.2. h^Tb je odhadnuteľné, ak platia nasledovné ekvivalentné podmienky:

1.
$$h \in \mathcal{M}(X^T)$$

2.
$$h \in \mathcal{M}(X^TX)$$
,

kde M označuje stĺpcový priestor matice.

Ak h patrí do riadkového priestoru matice X, potom existuje také u, že $h=X^Tu$. Potom pre jednoznačný odhad $h^T\hat{b}$ vektora h^Tb platí:

$$h^T \hat{b} = u^T X \hat{b} = u^T P y = u^T X (X^T X)^{-} X^T y$$

Vidíme, že v strede výrazu na pravej strane je projekčná matica $X(X^TX)^-X^T$, ktorá je vždy jednoznačne určená, nezávisle na voľbe zovšeobecnenej g-inverzie v danom výraze.

Výsledok predchádzajúcej vety je dôležitý pre našu prácu, pretože nebudeme skúmať odhady b, ale odhady niektorých lineárnych kombinácií zložiek vektora b, konkrétne napr. rozdiely medzi parametrami.

Odhad \hat{b} parametra b, ako aj odhad $h^T\hat{b}$ parametra h^Tb , sú lineárne nevychýlené odhady, ktorým prislúcha disperzia (TODO: popremýšľaj, či treba bližšie opísať lineárny nevychýlený odhad). Neskôr v našej práci budeme hľadať také modely X, pri ktorých je disperzia odhadov h^Tb najmenšia možná, čo nám dá najlepší lineárny nevychýlený odhad. Ak nami navrhované modely X budú opisovať ten istý experiment, ten model X, pre ktorý disperzia odhadu h^Tb bude najmenšia, bude svojím spôsobom optimálny.

K nájdeniu optimálneho modelu X nám poslúži Gaussova-Markovova veta, ktorá určuje minimálnu možnú disperziu odhadu h^Tb .

Veta 1.3. (Gaussova-Markovova) Nech h je z riadkového priestoru X. Potom minimálna možná disperzia lineárneho nevychýleného odhadu h^Tb je

$$m = h^T M^- h$$

 $kde\ M=X^TX$ je informačná matica parametra b a M^- je jej ľubovoľná g-inverzia.

1.2 Maticová príprava

V našej práci budeme často pracovať s poznatkami z lineárnej algebry, preto v krátkosti zhrnieme niektoré najdôležitejšie z nich.

Definícia 1.4. Nech A je ľubovoľná matica. Potom matica A⁻ taká, že

$$AA^{-}A = A$$

sa nazýva g-inverzia (alebo pseudoinverzia) matice A.

Poznámka: Ak A^{-1} neexistuje, tak pre maticu A existuje nekonečný počet g-inverzií.

Pseudoinverzie použijeme neskôr v našej práci, keď budeme skúmať, či vektor patrí do stĺpcového priestoru matice. Na to nám poslúži nasledovná veta.

Veta 1.5. Nech rovnica Ax = y má riešenie a nech A^- je ľubovolná g-inverzia. Potom A^-y je riešením tejto rovnice.

Dôkaz: Keďže Ax = y má riešenie, tak existuje take x_0 , že $Ax_0 = y$. Potom

$$A(A^-y) = A(A^-Ax_0) = Ax_0 = y$$

1.3 Metodika skúmania

Cieľom nášho skúmania bude nájsť ideálnu maticu vstupu do experimentu (konkrétny problém popíšeme v nasledujúcej kapitole). Pokúsime sa vysloviť závery pre všeobecný prípad matice $m \times n$, avšak pre istý prvotný náhľad do problematiky problém popíšeme a preskúmame na menších rozmeroch, konkrétne do rozmeru, do ktorého nám to umožní výpočtová technika. Pracovať budeme s programovacím jazykom python.

Od "preskúmania situácie" do istého rozmeru si sľubujeme dôležité náhľady, ktoré nám umožnia vysloviť závery a hypotézy pre všeobecný prípad $m \times n$. Tie sa následne pokúsime dokázať matematickými metódami.

2 Riadkovo-stĺpcový aditívny model s dvoma typmi ošetrení

Cieľom tejto práce je skúmať experiment reprezentovaný binárnou maticou. Možná reprezentácia nášho modelu pri matici rozmeru $m \times n$ je takáto:

Uvažujeme model s dvomi kvalitatívnymi faktormi A a B, pričom faktor A má m úrovní a faktor B n úrovní. Pre každú kombináciu faktorov experimentátor zvolí jedno z dvojice ošetrení (angl. treatment). Budeme uvažovať len aditívny model bez interakcií.

Napríklad faktor A môže označovať dobrovoľníka (t.j. máme m dobrovoľníkov) a faktor B účinnú látku, ktorú nazveme liečivo (t.j. máme n liečiv). Ošetrenie 0 reprezentuje podanie liečiva orálnym spôsobom a ošetrenie 1 vnútrožilne). Účinok, ktorý po čase nameriame na dobrovoľníkovi, závisí aditívne od efektu samotného dobrovoľníka (jeho predispozícií), efektu liečiva a efektu ošetrenia. Všetky tieto efekty uvažujeme ako neznáme parametere modelu.

Návrh teda možno reprezentovať binárnou maticou (alebo bipartitným grafom, čo opíšeme neskoršie vnašej práci).

Cieľom experimentu je odhadnúť rozdiel medzi dvoma efektmi (treamentami). Cieľom hľadania optimálneho modelu je nájsť taký návrh, pri ktorom rozptyl Gauss-Markovovho odhadu rozdielu medzi efektmi dvojice ošetrení (t.j. odhadu kontrastu ošetrení) bude čo najmenší. (Použijeme pri tom Gaussovu-Markovovu vetu z predošlej kapitoly.)

Pre maticu typu $m \times n$ dostaneme teda mn vzťahov tvaru:

$$y_{ij} = a_i + b_j + t + e_{ij}$$

 $i=1,\ldots,m;\,j=1,\ldots,n;\,t$ je t_0 alebo t_1 podľa hodnoty na ij-tej pozícii matice a e_{ij} je chyba. Budeme odhadovať rozdiel medzi t_0 a t_1 .

Z návrhu modelu v podobe binárnej matice tvaru $m \times n$ vytvoríme lineárny regresný model s maticou tvaru $mn \times (m+n+2)$, pretože máme mn meraní závislých od m+n+2 premenných.

Príklad:

Maticu návrhu experimentu

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \tag{3}$$

prepíšeme ako (TODO: popíš tými strapatými zátvorkami čo znamená čo):

$$\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0
\end{bmatrix}$$

$$(4)$$

Označme vo všeobecnosti maticu modelu (3) B a maticu lineárneho zobrazenia (4) X. Predpokladáme lineárne vzťahy, preto dostávame lineárnu regresiu

$$y = Xb + e$$

kde y je vektor dát nameraných v experimente, b je vektor neznámych koeficientov a $e = (e_{11}, e_{12}, e_{13}, \dots, e_{m1}, \dots, e_{mn})^T$ je vektor chýb merania. Uvedomme si, že v našej práci nebudeme pracovať s konkrétnym vektorom y; snažíme sa totiž navrhnúť maticu modelu B (a z nej vyplývajúcu maticu X) ešte pred tým, než experiment vykonáme.

Naším cieľom teraz bude odhadnúť rozdiel medzi efektmi t_0 a t_1 , resp. zistiť, aká môže byť disperzia tohto odhadu pri danej matici návrhu B. Modely, pre ktoré bude možná disperzia najmenšia, budeme považovať za optimálne.

V danej lineárnej regresii y = Xb + e teda nebudeme odhadovať celý vektor b, ale len jeho lineárnu kombináciu h^Tb , kde h je vektor rozmeru m + n + 2, ktorý má na m + n miestach 0 a na zvyšných dvoch miestach +1 a -1, ktoré zodpovedajú efektom t_0 a t_1 . Z algoritmu, ktorým sme z matice návrhu B vytvorili maticu lineárnej regresie X, vyplýva, že vektor h má tvar $(0,0,0,\ldots,+1,-1)^T$.

Na zistenie, či $h^T b$ je odhadnuteľné, použijeme vetu (1.2), a na následné nájdenie minimálneho rozptylu Gauss-Markovovho odhadu rozdielu medzi efektmi použijeme Gaussovu-Markovovu vetu (1.3).

2.1 Odhadnuteľnosť $h^T b$

Pokúsime sa preskúmať, kedy matica návrhu umožňuje odhadnuteľnosť hodnoty h^Tb pre vyššie spomenuté h. Situáciu preskúmame do rozmeru 4×5 a na základe našich zistení vyslovíme hypotézu pre všeobecný prípad $m \times n$.

Postupovať budeme nasledovne: vyberieme si malý rozmer a pre všetky matice daného rozmeru zistíme, či h^Tb bude alebo nebude odhadnuteľné, a to nasledovným spôsobom. Z danej matice návrhu B vytvoríme maticu lineárnej regresie X spôsobom spomenutým vyššie. Hodnota h^Tb bude na základe vety (1.2) odhadnuteľná práve vtedy, keď vektor $h = (0, 0, 0, \ldots, +1, -1)^T$ patrí do stĺpcového priestoru matice X^TX .

Označme $M = X^T X$, túto maticu budeme nazývať informačnou maticou. Ak h patrí do stĺpcového priestoru M, potom existuje taký vektor v, že Mv = h. Na základe vety (1.5) vieme, že ak toto riešenie existuje, tak sa rovná M^-h , pričom zvolená g-inverzia môže byť ľubovoľná. Preto na zistenie, či h patrí do stĺpcového priestoru $M = X^T X$ stačí overiť platnosť rovnosti $M(M^-h) = h$.

Demonštrujme algoritmus na maticiach rozmeru 3×3 . Existuje $2^9 = 512$ binárnych matíc typu 3×3 , a keď sme na nich rozbehli daný algoritmus, dospeli sme k zisteniu, že pri 12 z nich hodnota h^Tb NIE JE odhadnuteľná. To znamená, že optimálne matice návrhu budeme hľadať v zvyšných 500 maticiach.

Ako vyzerajú matice, pri ktorých h^Tb nie je odhadnuteľné? Zoznam všetkých sa nachádza v Prílohe A, tu uvedieme 3 z nich:

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Týmto spôsobom sme pri našom výskume získali zoznam matíc, pri ktorých h^Tb nie je odhadnuteľné, až do rozmeru 4×5 . Zoznam všetkých sa nachádza v GitHub repozitári spomenutom v úvode. Na základe podobnosti matíc daného typu sme prišli s nasledovnou hypotézou.

Tvrdenie 2.1. h^Tb je odhadnuteľné práve vtedy, keď v matici návrhu B existuje aspoň jeden riadok a aspoň jeden stĺpec taký, ktorý má aspoň jednu 0 a aspoň jednu 1.

Dôkaz: Na základe vety (1.2) vieme, že $h^T b$ je odhadnuteľné práve vtedy, keď $h \in \mathcal{M}(X^T)$ (keď h patrí do riadkového priestoru X), preto s danými podmienkami môžeme pracovať ekvivalentne.

Nech $h = (0, ..., +1, -1) \in \mathcal{M}(X^T)$. Použijeme dôkaz sporom. Nech v matici B typu $m \times n$ neexistuje taký riadok, ktorý má aspoň jednu 0 a aspoň jednu 1, t. j všetky riadky obsahujú buď samé 0 alebo samé 1. Ako vyzerá matica X?

Pozrime sa na riadky matice X zodpovedajúce prvému riadku matice B. Sú to práve tie riadky, ktoré majú na prvej pozícii 1, pričom si uvedomme, že všetky ostatné riadky majú na prvej pozícii 0.

$$x_1 = (1, 0, \dots, 1, 0, \dots, 0, 1, 0),$$

 $x_2 = (1, 0, \dots, 0, 1, \dots, 0, 1, 0),$
 \vdots
 $x_n = (1, 0, \dots, 0, 0, \dots, 1, 1, 0)$

Keďže $h \in \mathcal{M}(X^T)$, existuje taká lineárna kombinácia riadkov X, ktorá dokopy dáva vektor h. Aké môžu mať v tejto lineárnej kombinácii zastúpenie riadky $x_1, ..., x_n$? Označme postupne $a_1, ..., a_n$ koeficienty vektorov $x_1, ..., x_n$ v lineárnej kombinácii riadkov X, ktorá dáva vektor h. Keďže $x_1, ..., x_n$ sú jediné riadky matice X s 1 na prvej pozícii a vektor h má na prvej pozícii 0, musí platiť $\sum_{i=1}^n a_i = 0$.

Z predpokladu, že každý z riadkov matice B obsahuje buď samé 0 alebo samé 1, vyplýva, že každý z vektorov $x_1, ..., x_n$ má rovnaké posledné dve hodnoty, a to buď (0,1) alebo (1,0). Z toho spolu s rovnosťou $\sum_{i=1}^n a_i = 0$ vyplýva, že lineárna kombinácia $\sum_{i=1}^n a_i x_i$ bude mať na posledných dvoch miestach hodnoty (0,0), a teda nijako "neprispeje" do vektoru h. Vektor h teda nemožno napísať ako lineárnu kombináciu riadkov X, čo je podmienka odhadnuteľnosti.

Analogicky môžeme postupovať pre všetky riadky matice B. Týmto spôsobom pokryjeme všetky riadky matice X, vďaka čomu dospejeme k záveru, že z riadkov X nie je možné lineárnou kombináciou zostrojiť vektor h. To nám dáva spor s predpokladom

 $h \in \mathcal{M}(X^T)$. Preto nemôže platiť, že všetky riadky matice B obsahujú buď samé 0 alebo samé 1, a platí opačné tvdenie, t.j v B existuje aspoň jeden riadok taký, ktorý obsahuje 0 aj 1.

Rovnakou úvahou pre stĺpce B dospejeme k záveru, že B musí takisto obsahovať aspoň jeden stĺpec obsahujúci 0 aj 1.

Nech matica B je taká, že existuje aspoň jeden riadok a aspoň jeden stĺpec také, že majú 0 aj 1. Zostrojíme takú lineárnu kombináciu riadkov X, ktorá sa bude rovnať h.

Nech riadok, ktorý má 0 aj 1, je *i*-ty v poradí a stĺpec s rovnakou vlastnosťou je j-ty v poradí. Bez ujmy na všeobecnosti, nech na ij-tom mieste matice B sa nachádza 0, teda $B_{ij} = 0$.

Potom v *i*-tom riadku B sa určite nachádza hodnota $B_{ik} = 1$ a v j-tom stĺpci sa nachádza hodnota $B_{lj} = 1$, pričom, samozrejme, $k \neq j$ a $l \neq i$. Označme $x_{ij}, x_{ik}, x_{lj}, x_{lk}$ riadky matice X prislúchajúce prvkom $B_{ij}, B_{ik}, B_{lj}, B_{lk}$ matice B. Potom:

$$x_{ij} - x_{ik} - x_{lj} + x_{lk} = (0, 0, 0, \dots, 0, N_1, N_2)$$

je vektor, ktorý má na prvých m+n miestach 0, a na posledných dvoch hodnoty N_1 a N_2 , ktoré zatiaľ necháme bokom. Prečo má daný vektor na prvých m+n miestach 0? Vo všeobecnosti má riadok x_{rs} matice X prislúchajúci prvku B_{rs} matice B na prvých m+n miestach dve 1, jednu prislúchajúcu riadku, druhú stĺpcu matice B. Konkrétne, riadok x_{rs} má 1 na r-tom mieste a (m+s)-tom mieste.

Súčet $x_{ij} + x_{lk}$ má teda štyri jednotky na miestach i, j, m + j, m + k. Súčet $x_{ik} + x_{lj}$ má jednotky na tých istých miestach, preto $x_{ij} - x_{ik} - x_{lj} + x_{lk} = x_{ij} + x_{lk} - (x_{ik} + x_{lj})$ má na prvých m + n miestach 0.

Takto to vyzerá, keď zanedbáme stĺpce so samými nulami:

$$+(1,0,1,0)$$

$$-(1,0,0,1)$$

$$-(0,1,1,0)$$

$$+(0,1,0,1)$$

$$=(0,0,0,0)$$

Ako vyzerá chvost (N_1, N_2) ? Keď že $B_{ij} = 0$ a $B_{ik} = B_{lj} = 1$, výraz $x_{ij} - x_{ik} - x_{lj}$ nám vytvorí chvost (1, -2) (prípadne (-2, 1), na tom ale nezáleží). Potom na základe toho, či na mieste B_{lk} matice návrhu bola 0 alebo 1, nám výraz $x_{ij} - x_{ik} - x_{lj} + x_{lk}$ dá na posledných dvoch miestach (2, -2) alebo (1, -1). Vo všetkých prípadoch vektor h dostaneme ihneď, prípadne po prenásobení konštantou. Našli sme teda lineárnu kombináciu riadkov X, ktorá nám dala vektor h, preto $h \in \mathcal{M}(X^T)$. \square

2.2 Optimálnosť návrhu modelu

Teraz sa pokúsime nájsť modely, ktoré pre nás budú v určitom zmysle optimálne. Najprv ale definujme, čo presne optimalita modelu znamená.

Definícia 2.2. Binárnu maticu B návrhu modelu, $B \in \mathbb{R}^{m \times n}$, nazývame optimálnou, ak pre všetky binárne matice $C \in \mathbb{R}^{m \times n}$ platí:

$$h^T M_B^- h \le h^T M_C^- h$$

 $kde\ h=(0,0,\ldots,+1,-1)$ je vektor zodpovedajú lineárnej kombinácii dvoch efektov, M_B a M_C sú informačné matice prislúchajúce návrhom $B,\ C$ a $M_B^-,\ M_C^-$ sú ich ľubovolné pseudoinverzie.

Nájsť optimálne matice v zmysle definície (2.2) je cieľom tejto práce. Podobne ako pri skúmaní, či hodnotu $h^T b$ vôbec budeme môcť odhadnúť, preskúmame najprv matice malého rozmeru a na základe výsledkov vyslovíme hypotézu pre všeobecný rozmer.

Postupovať budeme nasledovne: zoberieme si malý rozmer a pre všetky binárne matice tohto rozmeru spočítame hodnotu $h^T M^- h$, pokiaľ je to možné (viď tvrdenie (2.1)). Z množiny týchto hodnôt vyberieme minimum. Optimálne návrhy budú tie, ktorých prislúchajúca hodnota bude práve toto minimum.

Optimálne návrhy sme určili do rozmeru 6×5 , tu sú niektoré z nich pre štvorcové rozmery:

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Ďalšie matice sa nachádzajú v prílohe B. Na základe týchto návrhov sme pre štvorcové matice prišli s nasledovnou hypotézou.

Hypotéza 2.1. (pre štvorcové matice)

Binárna matica návrhu B rozmeru $2k \times 2k$ je optimálna v zmysle definície (2.2) práve vtedy, keď má v každom riadku a v každom stĺpci práve k jednotiek (a práve k núl).

Binárna matica návrhu B rozmeru $(2k+1) \times (2k+1)$ je optimálna práve vtedy, keď všetky jej riadky aj stĺpce majú rovnaký počet jednotiek, a ten počet je buď k alebo k+1.

Záver

TODO

Zoznam použitej literatúry

[1] Pázman, A., Lacko, V.: *Prednášky z regresných modelov*, Vydavateľstvo UK, Bratislava, 2012, 2015

Príloha A