Please note: Some of the questions in this former practice exam may no longer perfectly align with the AP exam. Even though these questions do not fully represent the 2020 exam, teachers indicate that imperfectly aligned questions still provide instructional value. Teachers can consult the Question Bank to determine the degree to which these questions align to the 2020 Exam.

This exam may not be posted on school or personal websites, nor electronically redistributed for any reason. This exam is provided by the College Board for AP Exam preparation. Teachers are permitted to download the materials and make copies to use with their students in a classroom setting only. To maintain the security of this exam, teachers should collect all materials after their administration and keep them in a secure location.

Further distribution of these materials outside of the secure College Board site disadvantages teachers who rely on uncirculated questions for classroom testing. Any additional distribution is in violation of the College Board's copyright policies and may result in the termination of Practice Exam access for your school as well as the removal of access to other online services such as the AP Teacher Community and Online Score Reports.

back cover. When you have finished, place the booklet on your desk, faceup. I will now collect your Section I booklet....

Collect a Section I booklet from each student. Check that each student has signed the front cover of the sealed Section I booklet.

There is a 10-minute break between Sections I and II.

When all Section I materials have been collected and accounted for and you are ready for the break, say:

Please listen carefully to these instructions before we take a 10-minute break. All items you placed under your chair at the beginning of this exam, including your Student Pack, must stay there, and you are not permitted to open or access them in any way. Leave your shrinkwrapped Section II packet on your desk during the break. You are not allowed to consult teachers, other students, notes, textbooks, or any other resources during the break. You may not make phone calls, send text messages, use your calculators, check email, use a social networking site, or access any electronic or communication device. You may not leave the designated break area. Remember, you may never discuss the multiple-choice exam content with anyone, and if you disclose the content through any means, your AP Exam score will be canceled. Are there any questions? . . .

You may begin your break. Testing will resume at ______.

SECTION II: Free Response

After the break, say:

May I have everyone's attention? Place your Student Pack on your desk....

You may now remove the shrinkwrap from the Section II packet, but do not open the exam booklet until you are told to do so....

Read the bulleted statements on the front cover of the exam booklet. Look up when you have finished....

Now take an AP number label from your Student Pack and place it on the shaded box. If you don't have any AP number labels, write your AP number in the box. Look up when you have finished....

Read the last statement....

Using your pen, print the first, middle, and last initials of your legal name in the boxes and print today's date where indicated. This constitutes your signature and your agreement to the statements on the front cover. . . .

Now turn to the back cover. Using your pen, complete Items 1 through 3 under "Important Identification Information."...

Read Item 4....

Are there any questions? ...

If this is your last AP Exam, you may keep your Student Pack. Place it under your chair for now. Otherwise if you are taking any other AP Exams this year, leave your Student Pack on your desk and I will collect it now....

Read the information on the back cover of the exam booklet. Do not open the booklet until you are told to do so. Look up when you have finished. . . .

AP Statistics Exam 273

Collect the Student Packs from students who are taking any other AP Exams this year.

Then say:

Are there any questions?...

Section II has two parts. You have 1 hour and 30 minutes to complete all of Section II. You are responsible for pacing yourself and may proceed freely from one part to the next. You must write your answers in the exam booklet using a pen with black or dark blue ink or a No. 2 pencil. If you use a pencil, be sure that your writing is dark enough to be easily read. If you need more paper to complete your responses, raise your hand. At the top of each extra sheet of paper you use, write only:

- your AP number,
- the exam title, and
- the question number you are working on.

Do not write your name. Are there any questions? . . .

You may begin Section II.

Note Start Time ______. Note Stop Time _____.

You should also make sure that Hewlett-Packard calculators' infrared ports are not facing each other and that students are not sharing calculators.

After 1 hour and 5 minutes, say:

There are 25 minutes remaining and you may want to move on to Part B, if you have not already started answering that question.

After 15 minutes, say:

There are 10 minutes remaining.

After 10 minutes, say:

Stop working and close your exam booklet. Place it on your desk, faceup....

If any students used extra paper for a question in the free-response section, have those students staple the extra sheet(s) to the first page corresponding to that question in their free-response exam booklets. Complete an Incident Report after the exam and return these free-response booklets with the extra sheets attached in the Incident Report return envelope (see page 68 of the 2018-19 AP Coordinator's Manual for complete details).

Then say:

Remain in your seat, without talking, while the exam materials are collected. . . .

Collect a Section II booklet from each student. Check for the following:

- Exam booklet front cover: The student placed an AP number label on the shaded box and printed their initials and today's date.
- Exam booklet back cover: The student completed the "Important Identification Information" area.

When all exam materials have been collected and accounted for, return to students any electronic devices you may have collected before the start of the exam.

274 AP Statistics Exam

If you are giving the regularly scheduled exam, say:

You may not discuss or share the free-response exam content with anyone unless it is released on the College Board website in about two days. Your AP Exam score results will be available online in July.

If you are giving the alternate exam for late testing, say:

None of the content in this exam may ever be discussed or shared in any way at any time. Your AP Exam score results will be available online in July.

If any students completed the AP number card at the beginning of this exam, say:

Please remember to take your AP number card with you. You will need the information on this card to view your scores and order AP score reporting services online.

Then say:

You are now dismissed.

After-Exam Tasks

Be sure to give the completed seating chart to the AP coordinator. Schools must retain seating charts for at least six months (unless the state or district requires that they be retained for a longer period of time). Schools should not return any seating charts in their exam shipments unless they are required as part of an Incident Report.

NOTE: If you administered exams to students with accommodations, review the 2018-19 AP Coordinator's Manual and the 2018-19 AP SSD Guidelines for information about completing the Nonstandard Administration Report (NAR) form, and returning these exams.

The exam proctor should complete the following tasks if asked to do so by the AP coordinator. Otherwise, the AP coordinator must complete these tasks:

- Complete an Incident Report for any students who used extra paper for the free-response section. (Incident Report forms are provided in the coordinator packets sent with the exam shipments.) These forms must be completed with a No. 2 pencil. It is best to complete a single Incident Report for multiple students per exam subject, per administration (regular or late testing), as long as all required information is provided. Include all exam booklets with extra sheets of paper in an Incident Report return envelope (see page 68 of the 2018-19 AP Coordinator's Manual for complete details).
- Return all exam materials to secure storage until they are shipped back to the AP Program. (See page 27 of the 2018-19 AP Coordinator's Manual for more information about secure storage.) Before storing materials, check the "School Use Only" section on page 1 of the answer sheet and:
 - Fill in the appropriate section number circle in order to access a separate
 AP Instructional Planning Report (for regularly scheduled exams only) or subject
 score roster at the class section or teacher level. See "Post-Exam Activities" in the
 2018-19 AP Coordinator's Manual.
 - Check your list of students who are eligible for fee reductions and fill in the appropriate circle on their registration answer sheets.

AP Statistics Exam 275

AP[®] Statistics Exam

SECTION II: Free Response

2019

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

At a Glance

Total Time

1 hour and 30 minutes

Number of Questions

6

Percent of Total Score

50%

Writing Instrument

Either pencil or pen with black or dark blue ink

Electronic Device

Graphing calculator expected

Part A

Number of Questions

5

Suggested Time

1 hour and 5 minutes
Percent of Section II Score

Percent of Section II Score 75%

Part B

Number of Questions

1

Suggested Time

25 minutes

Percent of Section II Score

25%

IMPORTANT Identification Information PLEASE PRINT WITH PEN: 1. First two letters of your last name 4. Unless I check the box below, I grant the College Board the unlimited right to use, First letter of your first name reproduce, and publish my free-response materials, both written and oral, for educational research and instructional 2. Date of birth purposes. My name and the name of my school will not be used in any way in Month connection with my free-response materials. I understand that I am free to 3. Six-digit school code mark "No" with no effect on my score or its reporting. No, I do not grant the College Board these rights.

Instructions

The questions for both Part A and Part B are printed in this booklet. You may use any blank space in the booklet to organize your answers and for scratch work, but you must write your answers in the spaces provided for each answer. Pages containing statistical tables and useful formulas are printed in this booklet.

You may wish to look over the questions before starting to work on them. It is not expected that everyone will be able to complete all parts of all questions. Show all your work. Indicate clearly the methods you use because you will be scored on the correctness of your methods as well as the accuracy and completeness of your results and explanations. Correct answers without supporting work may not receive credit. Write your solution to each part of each question in the space provided for that part. Write clearly and legibly. Cross out any errors you make; erased or crossed-out work will not be scored.

Manage your time carefully. The proctor will announce the suggested time for Part A and Part B, but you may proceed freely from one question to the next. You may review your responses if you finish before the end of the exam is announced.

Formulas begin on page 3. Questions begin on page 6. Tables begin on page 22.

Formulas

(I) Descriptive Statistics

$$\overline{x} = \frac{\sum x_i}{n}$$

$$s_x = \sqrt{\frac{1}{n-1} \sum \left(x_i - \overline{x}\right)^2}$$

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}}$$

$$\hat{y} = b_0 + b_1 x$$

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

$$b_1 = r \frac{s_y}{s_x}$$

$$s_{b_1} = \frac{\sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2}}}{\sqrt{\sum (x_i - \overline{x})^2}}$$

(II) Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$E(X) = \mu_{\mathcal{X}} = \sum x_i p_i$$

$$Var(X) = \sigma_x^2 = \sum (x_i - \mu_x)^2 p_i$$

If X has a binomial distribution with parameters n and p, then:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

$$\mu_{\mathcal{X}} = np$$

$$\sigma_{\chi} = \sqrt{np(1-p)}$$

$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

If \bar{x} is the mean of a random sample of size n from an infinite population with mean μ and standard deviation σ , then:

$$\mu_{\overline{x}} = \mu$$

$$\sigma_{\overline{\chi}} = \frac{\sigma}{\sqrt{n}}$$

(III) Inferential Statistics

 $Standardized \ test \ statistic: \frac{statistic - parameter}{standard \ deviation \ of \ statistic}$

Confidence interval: statistic ± (critical value) • (standard deviation of statistic)

Single-Sample

Statistic	Standard Deviation of Statistic
Sample Mean	$\frac{\sigma}{\sqrt{n}}$
Sample Proportion	$\sqrt{\frac{p(1-p)}{n}}$

Two-Sample

Statistic	Standard Deviation
Difference of sample means	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
	Special case when $\sigma_1 = \sigma_2$ $\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
Difference of sample proportions	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$ Special case when $p_1 = p_2$ $\sqrt{p(1-p)} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
	, , ,

Chi-square test statistic =
$$\sum \frac{(observed - expected)^2}{expected}$$

STATISTICS SECTION II

Part A

Questions 1-5

Spend about 1 hour and 5 minutes on this part of the exam. Percent of Section II score—75

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

1. Thirty-four college students were asked how much money they spent on textbooks for the current semester. Their responses are shown in the following stemplot.

Key:
$$1 \mid 2 = $120$$

(a) Describe a procedure for identifying potential outliers, and use the procedure to decide whether there are outliers among the responses for the money spent on textbooks.

(b)	Based on the stemplot, write a few sentences describing the distribution of money spent on textbooks the 34 students.	for

2. A real estate agent working in a large city believes that, for three-bedroom houses, the selling price of the house decreases by approximately \$2,000 for every mile increase in the distance of the house from the city center. To investigate the belief, the agent obtained a random sample of 20 three-bedroom houses that sold in the last year. The selling price, in thousands of dollars, and the distance from the city center, in miles, for each of the 20 houses are shown in the scatterplot. The table shows computer output from a regression analysis of the data.

(a) Assume all conditions for inference are met. Construct and interpret a 95 percent confidence interval for the slope of the least-squares regression line.

(b) Does the confidence interval contradict the agent's belief about the relationship between selling price and distance from the city center? Justify your answer.	ıd
distance from the city center? Justify your answer.	

3. River Run campground has sites for people to use for camping. The sites can be reserved for a certain number of days. To help with cleaning and maintenance, the campground requests an exit time (the time at which campers leave the site) of 9 A.M. on the last day of the reservation.

To estimate the typical exit time, the manager of River Run selected a random sample of 60 sites. Of the selected sites, 40 were reserved by people without young children, and 20 were reserved by people with young children. The following histograms summarize the exit times, recorded as minutes relative to 9 A.M. For example, an exit time of 9:30 A.M. is 30 minutes relative to an exit time of 9 A.M. Each interval contains possible values from the left endpoint up to but not including the right endpoint.

- (a) Consider the two histograms.
 - (i) How many of the 60 sites had an exit time before 8:30 A.M.?
 - (ii) How many of the 60 sites had an exit time of 11:00 A.M. or later?

(b) Compare the distributions of the exit times for those without young children and those with young children
(a) Doord on the history what is a recognished estimate of the median spit time for the median counts of
(c) Based on the histograms, what is a reasonable estimate of the median exit time for the random sample of 60 sites? Explain your reasoning.

4. Arsenic is a naturally occurring chemical that can enter groundwater through eroding granite or from a burned forest. A health organization recommends drinking water should contain no more than 10 parts per billion (ppb) of arsenic. A company produces filters to clean arsenic from private wells that could be affected by the groundwater.

The company wants to investigate the effectiveness of a new filter compared to that of an older filter. They will test the filters on a field that is bordered on one side by a granite ledge and on the other side by a burned forest. The field is divided into 8 square plots of equal size, and a well to collect groundwater is drilled in the center of each plot. One filter will be used in each well. The following diagram shows the placement of the wells in the field.

Granite Ledge									
• Well 1	• Well 2	• Well 3	• Well 4						
• Well 5	• Well 6	• Well 7	• Well 8						
Burned Forest									

The company will use four of each type of filter to conduct the investigation. A randomized block design will be used.

(a) Assuming there is a difference in the effectiveness of the two filters, under what conditions will a randomized block design be better for detecting the difference than a completely randomized design?

(b) Identify the wells, by number, that will be included in each block.
(c) Describe how to assign filters to wells to create a randomized block design.

For day	each day that Sasha travels to work, the probability that she will experience a delay due to traffic is 0.2. Each can be considered independent of the other days.
(a)	For the next 21 days that Sasha travels to work, what is the probability that Sasha will experience a delay due to traffic on at least 3 of the days?
(b)	What is the probability that Sasha's first delay due to traffic will occur after the fifth day of travel to work?

(c)	Consider a random sample of 21 days that Sasha will travel to work. For the proportion of those days that she will experience a delay due to traffic, is the sampling distribution of the sample proportion approximately normal? Justify your answer.

STATISTICS SECTION II

Part B

Question 6

Spend about 25 minutes on this part of the exam.

Percent of Section II score—25

Directions: Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

6. Researchers are studying two different designs of computer keyboards, J and K, to investigate the effectiveness of the design on the speed of data entry. The researchers believe there is a tendency for people entering data with keyboard J to have faster entry times compared with people entering data with keyboard K. Using the same set of data for entry, the researchers randomly assigned 5 people to keyboard J and 6 people to keyboard K and recorded the number of seconds each person took to enter the data. The following dotplots show the observed entry times for the two keyboards.

(a) Explain why it is <u>not</u> appropriate to conduct a two-sample *t*-test for the difference in population means.

(b) Based on the dotplots, explain why it might be more appropriate to compare population medians instead of population means.

One test used to compare population medians is the Wilcoxon Rank Sum Test. Under the assumption that the shape and variability of the distributions are the same, the test uses the rankings of the combined observed values. To conduct the test, the entry times for keyboards J and K are combined into one group and then ranked from 1 to $n_{\rm T}$, the total number of observed values in the combined group. The observed entry times, in seconds, for both keyboard types are shown in the following table.

	Observed Entry Times								
J	158	240	248	251	261				
K	184	267	279	280	284	305			

- (c) Consider the observed entry times for keyboards J and K.
 - (i) Complete the following table to assign ranks to the observed entry times for keyboards J and K combined.

Rank	1	2	3	4	5	6	7	8	9	10	11
Keyboard	J	K	J							K	K
Time	158	184	240							284	305

(ii) Use the completed table in (i) to calculate the sum of the ranks assigned to each keyboard.

Sum of ranks for J (SR_1) :

Sum of ranks for K (SR_K) :

The hypotheses for the Wilcoxon Rank Sum Test are as follows.

 H_0 : The median of the distribution of entry times for all users of keyboard J and the median of the distribution of entry times for all users of keyboard K are the same.

H_a: The median of the distribution of entry times for all users of keyboard J is less than the median of the distribution of entry times for all users of keyboard K.

The test statistic W for the test is $W = SR_J - \frac{n_J(n_J + 1)}{2}$, where n_J is the number of observations for keyboard J.

(d) Use the formula to calculate the test statistic W for the keyboard data.

There are 462 possible assignments of 11 ranks to 5 Js and 6 Ks. If the null hypothesis is true, the 462 assignments are equally likely. The following graph shows the sampling distribution of all possible values of W resulting from the 462 assignments.

- (e) The least possible value of W in the sampling distribution is 0.
 - (i) Find the value of $SR_{\rm J}$ for W = 0.
 - (ii) Assign 5 ranks to keyboard J and 6 ranks to keyboard K so that W = 0. Show your assignments by completing the following table.

Rank	1	2	3	4	5	6	7	8	9	10	11
Keyboard											

(f)	Use the test statistic from part (d) and the graph of the sampling distribution to decide whether there is convincing statistical evidence, at the level of $\alpha=0.05$, that the median of the distribution for all users of keyboard J is less than the median of the distribution for all users of keyboard K. Support your answer.

STOP

END OF EXAM

THE FOLLOWING INSTRUCTIONS APPLY TO THE COVERS OF THE SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE FRONT <u>AND</u> BACK COVERS OF THE SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER LABEL APPEARS IN THE BOX ON THE FRONT COVER.
- MAKE SURE YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON <u>ALL</u> AP EXAMS YOU HAVE TAKEN THIS YEAR.

Table entry for z is the probability lying below z.

Table A Standard normal probabilities

able 11	Standar	a normar p	1 ODUDINIC	3						
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Table entry for z is the probability lying below z.

Table A (Continued)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Table entry for p and C is the point t^* with probability p lying above it and probability C lying between $-t^*$ and t^* .

Table B t distribution critical values

	Tail probability p											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21 22	.686 .686	.859 .858	1.063 1.061	1.323 1.321	1.721 1.717	2.080 2.074	2.189 2.183	2.518 2.508	2.831 2.819	3.135 3.119	3.527 3.505	3.819 3.792
23	.685	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.485	3.768
23	.685	.857	1.059	1.319	1.714	2.069	2.177	2.492	2.797	3.104	3.467	3.745
25	.684	.857 .856	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.463	2.779	3.067	3.435	3.723
27	.684	.855	1.058	1.313	1.703	2.050	2.158	2.473	2.779	3.057	3.421	3.690
28	.683	.855	1.057	1.314	1.703	2.032	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.313	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.311	1.697	2.043	2.147	2.457	2.750	3.030	3.385	3.646
40	.681	.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	.679	.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	.679	.848	1.047	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	.678	.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	.677	.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	.675	.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
∞	.674	.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%

Confidence level $\,C\,$

Table entry for p is the point (χ^2) with probability p lying above it.

Table C χ^2 critical values

Table C	χ critica	i values										
	Tail probability p											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83	12.12
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82	15.20
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27	17.73
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47	20.00
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51	22.11
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	24.10
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32	26.02
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12	27.87
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88	29.67
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59	31.42
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26	33.14
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91	34.82
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53	36.48
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12	38.11
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70	39.72
16	19.37	20.47	21.79	23.54	26.30	28.85	29.63	32.00	34.27	36.46	39.25	41.31
17	20.49	21.61	22.98	24.77	27.59	30.19	31.00	33.41	35.72	37.95	40.79	42.88
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	42.31	44.43
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82	45.97
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31	47.50
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80	49.01
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27	50.51
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73	52.00
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18	53.48
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62	54.95
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05	56.41
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48	57.86
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89	59.30
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30	60.73
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70	62.16
40	45.62	47.27	49.24	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40	76.09
50	56.33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66	89.56
60	66.98	68.97	71.34	74.40	79.08	83.30	84.58	88.38	91.95	95.34	99.61	102.7
80	88.13	90.41	93.11	96.58	101.9	106.6	108.1	112.3	116.3	120.1	124.8	128.3
100	109.1	111.7	114.7	118.5	124.3	129.6	131.1	135.8	140.2	144.3	149.4	153.2