中国科学院研究生院

2006 年招收攻读硕士学位研究生入学统一考试试题 科目名称: 信号与系统 (A卷)

20	.1	17	1	
考	生	20	411	
		//	VH	

考	王须知:
	本试卷满分为 150 分,全部考试时间总计 180 分钟。 所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
,	填空题 (每空1分,共50分)
1.	已知信号 $x(t) = \sin(100\pi t)$,计算 $x(t)$ 的周期和平均功率
2.	己知两个信号 $x(t) = \max[\sin(2\pi t), 0], y(t) = \min[\sin(2\pi t), 0], i $
	期,计算 $y(t)$ 的周期,计算 $x(t)+y(t)$ 的周期。
3.	已知信号 $f(t)$ 在 t_0 时刻的幅度值为 1. 求信号 $f(-2t+\frac{3}{4})$ 取相同幅度值 1 时. 时间 t 等
	于多少, $f(t)\delta(t-t_0)$ 的结果是。
4.	已知系统 $y(t) = x(t+2)\sin(\omega t+2), \omega \neq 0$,该系统是否为线性系统
	是否为时不变系统, 该系统是否为因果系统, 该系统是否为稳定系
	统。
5.	已知系统 $y[n] = (-\frac{1}{2})^n (x[n]+1)$,该系统是否为线性系统 该系统是否为时
	不变系统, 该系统是否为因果系统, 该系统是否为稳定系统
6	已知系统 $h_1(t)$ 和系统 $h_2(t)$,这两个系统串联起来后的等效系统的传递函数 $h(t)$ 是什
	么,若其中系统 $h_2(t) = \frac{d\delta(t)}{dt}$,求 $h(t)$
7	. 已知系统 $h_1(t)=\sin(2\pi)$ 和系统 $h_2(t)=v(t)-u(t-1)$,这两个系统串联起来后的等效
	系统的传递函数 $h(t)$ 是什么
	h(t)

科目名称: 信号与系统

第1页 共5页

	已知系统 $h_1[n] = (1-(\frac{1}{2})^n)u[n]$ 和系统 $h_2[n] = u[n-1] - u[n-3]$, 这两个系统串联起
	来后,当输入信号 $x[n]=u[n]$ 时,第一级输出 $y_1[4]$ 是,第二级输出 $y_2[4]$
	是
9.	某离散时不变系统的冲散响应为 $h[n]=(\frac{1}{2})^{ n }$,求 $n>0$ 时的阶跃响应、和
	n ≤ 0 时的阶跃响应。
10.	设无记忆因果线性系统 $\frac{d^2r(t)}{dt^2} + 2\frac{dr(t)}{dt} + 3r(t) = e(t)$ 。求其零输入响应,若
	该系统的输入信号为指数衰减信号 $e(t)=e^{-2t}$,则系统输出的稳态响应等于。
11.	傅里叶变换正变换表达式
	傅里叶变换逆变换表达式
i2.	周期信号 $\sin(\omega_c t)$ 傅里叶变换结果是
	周期信号 $\cos(\omega_c t)$ 傅里叶变换结果是
13.	已知某信号的最高频率 $f_{\mathbf{z}}=2000H\mathbf{z}$,为了保证该信号被抽样后能够完全恢复需要使
	用的采样频率最低为,为完成恢复使用的滤波器应具有什么样的
	用的采样频率最低为
14	
14	形式
	形式
	形式
15	形式 . 某连续系统具有一个极点 $H(s) = \frac{1}{s-2}$, 求该系统的收敛域

19. 石边序列的收敛域形状是______. 左边序列的收敛域形状是_____.

双边序列的收敛域的形状是_____

20. 为了保证稳定系统的收敛性, z 变换的收敛遏应满足_______, 写出后向差分方程表达式是_____。

- 22. IIR 数字滤波器中是否包含极点______. FIR 数字滤波器中是否包含极

<u>k</u>_____

- 二、 计算题 (每题 20 分, 共 100 分)
- 1. 下图 1 为某一连续线性时不变滤波器

图 1

其中输入信号 x,(t)的波形如下:

输入信号 $x_2(t) = 2\cos(\pi t)$

求:

设计该滤波器使得 $y(t)=\cos(\pi)$, 给出该滤波器的幅度 A 和起始频率 Ω_1 和终止频率 Ω_2 。

2. 下图 2 所示为某一通信系统

图 2

其中,载频 $\omega_e=2\pi$ MHz,信号 $x_1(t),x_2(t),x_3(t)$ 的频谱如下:

求:

- (1) 确定 ω_{b} 的最大值,保证 $\nu_{1}(t), \nu_{2}(t), \nu_{3}(t)$ 的不混(10 分).
- (2) 当 $\omega_b=30\pi$ KHz 时,为了获得 $y(t)=x_1(t)$,确定 ω_r 和低通滤波器的增益 A (10 分)。
- 3. 给定系统的拉普拉斯变换如下:

$$H(s) = \frac{10(-s+1)}{(s+10)(s+1)}$$

求:

- (1) 写出该系统的微分方程。(5分)
- (2) 判断该系统是否因果, (5分)
- (3) 求该系统的初值。(5分)
- (4) 求该该系统的逆系统及其收敛域。(5分)

4. 某一离散线性时不变及其单位冲激响应如下图 3:

其中k,a,b,c为未知参数。并且下面条件成立:

(a) $H(e^{j\omega})e^{j\omega}$ 是实偶函数: (b) 当 $x[n] = (-1)^n$ 时,y[n] = 0; (c) 当 $x[n] = (\frac{1}{2})^n u[n]$ 时, $y[2] = \frac{9}{2}$. 当输入信号波形如下:

求:

确定未知参数 k,a,b,c,并画出输出波形 y[n]

5. 下图为一连续反馈系统

求:

- (1) 使该系统稳定的 K 的取值范围, (5 分)
- (2) K取何值时,该系统在-1处有一个极点,并求出此情况下的阶跃响应,(5分)
- (3) K 取何值时,该系统的冲激响应为 $h(t) = A\cos(t)u(t)$, (5分)
- (4) K取何值时,该系统具有如下的频率响应。(5分)

