

MMBT2907A

PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR

Features

- **Epitaxial Planar Die Construction**
- Complementary NPN Type Available (MMBT2222A)
- Ideal for Low Power Amplification and Switching
- Lead Free/RoHS Compliant (Note 2)

Mechanical Data

- Case: SOT-23
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminal Connections: See Diagram
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- Marking (See Page 4): K2F
- Ordering & Date Code Information: See Page 4
- Weight: 0.008 grams (approximate)

SOT-23									
Dim	Min	Max							
Α	0.37	0.51							
В	1.20	1.40							
С	2.30	2.50							
D	0.89	1.03 0.60							
E	0.45								
G	1.78	2.05							
Н	2.80	3.00							
J	0.013	0.10							
K	0.903	1.10							
L	0.45	0.61							
М	0.085	0.180							
α	0°	8°							
All Dimensions in mm									

Maximum Ratings @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit	
Collector-Base Voltage	V _{CBO}	-60	V	
Collector-Emitter Voltage	V _{CEO}	-60	V	
Emitter-Base Voltage	V _{EBO}	-5.0	V	
Collector Current - Continuous (Note 1)	I _C	-600	mA	
Peak Collector Current	I _{CM}	-800	mA	
Power Dissipation (Note 1)	P _d	300	mW	
Thermal Resistance, Junction to Ambient (Note 1)	$R_{ hetaJA}$	417	°C/W	
Operating and Storage and Temperature Range	T _i , T _{STG}	-55 to +150	°C	

Notes: 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

^{2.} No purposefully added lead.

Electrical Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 3)					
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-60	_	V	$I_C = -10\mu A, I_E = 0$
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	-60		V	$I_C = -10 \text{mA}, I_B = 0$
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	-5.0		V	$I_E = -10\mu A, I_C = 0$
Collector Cutoff Current	I _{CBO}	_	-10	nA	$V_{CB} = -50V, I_E = 0$
Collector Cutoff Current				μΑ	$V_{CB} = -50V, I_E = 0, T_A = 125^{\circ}C$
Collector Cutoff Current	I _{CEX}	_	-50	nA	$V_{CE} = -30V, V_{EB(OFF)} = -0.5V$
Base Cutoff Current	I_{BL}	_	-50	nA	$V_{CE} = -30V, V_{EB(OFF)} = -0.5V$
ON CHARACTERISTICS (Note 3)	,			1	
		75	_		$I_C = -100\mu A, V_{CE} = -10V$
		100	_		$I_C = -1.0 \text{mA}, V_{CE} = -10 \text{V}$
DC Current Gain	h _{FE}	100	_	_	$I_C = -10 \text{mA}, V_{CE} = -10 \text{V}$
		100 50	300		$I_C = -150 \text{mA}, V_{CE} = -10 \text{V}$
		30			$I_C = -500 \text{mA}, V_{CE} = -10 \text{V}$
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	_	-0.4 -1.6	V	$I_C = -150 \text{mA}, I_B = -15 \text{mA}$
Consider Entition Saturation Voltage					$I_C = -500 \text{mA}, I_B = -50 \text{mA}$
Base-Emitter Saturation Voltage	V _{BE(SAT)}	_	-1.3	V	$I_C = 150 \text{mA}, I_B = 15 \text{mA}$
Ü	VBE(SAT)		-2.6	, ,	$I_C = 500 \text{mA}, I_B = 50 \text{mA}$
SMALL SIGNAL CHARACTERISTICS	T 7			ı	
Output Capacitance	C _{obo}		8.0	pF	$V_{CB} = -10V, f = 1.0MHz, I_E = 0$
Input Capacitance	C _{ibo}		30	pF	$V_{EB} = -2.0V$, $f = 1.0MHz$, $I_C = 0$
Current Gain-Bandwidth Product	f _T	200		MHz	$V_{CE} = -20V, I_{C} = -50mA,$ f = 100MHz
SWITCHING CHARACTERISTICS					
Turn-On Time	t _{off}	_	45	ns	
Delay Time	t _d	_	10	ns	$V_{CC} = -30V, I_{C} = -150mA,$
Rise Time	t _r		40	ns	I _{B1} = -15mA
Turn-Off Time	t _{off}		100	ns	V 6.0V I 450mA
Storage Time	ts		80	ns	$V_{CC} = -6.0V, I_{C} = -150mA,$
Fall Time	t _f	_	30	ns	$I_{B1} = I_{B2} = -15\text{mA}$

Notes: 3. Short duration pulse test used to minimize self-heating effect.

 T_A , AMBIENT TEMPERATURE (°C) Fig. 1, Max Power Dissipation vs Ambient Temperature

 $\rm V_R,\,REVERSE\,VOLTAGE\,(V)$ Fig. 2, Typical Capacitance Characteristics

Fig. 3, Typical Collector Saturation Region

I_C, COLLECTOR CURRENT (mA) Fig. 5, DC Current Gain vs Collector Current

I_C, COLLECTOR CURRENT (mA) Fig. 7, Gain Bandwidth Product vs. Collector Current

Fig. 4, Collector-Emitter Saturation Voltage vs.
Collector Current

I_C, COLLECTOR CURRENT (mA) Fig. 6, Base-Emitter Voltage vs. Collector Current

Ordering Information (Note 4)

Device	Packaging	Shipping			
MMBT2907A-7-F	SOT-23	3000/Tape & Reel			

Notes: 4. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

K2F = Product Type Marking Code YM = Date Code Marking Y = Year ex: N = 2002M = Month ex: 9 = September

Date Code Key

Year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Code	J	K	L	М	N	Р	R	S	Т	J	V	W	Х	Υ	Z
N	Month		Jan	Feb	Mar	Apr	May	Jun	Ju	ΙΑι	ıg	Sep	Oct	Nov	Dec
Code			1	2	3	4	5	6	7	8	3	9	0	Ν	D

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.