

By: Omer Canca, Ben Caggiano, Sarvjot Baxi, Ray Chen

About the Data Set

- Reviews taken from 21 hotels on the Las Vegas Strip
- Two reviews selected per month from 2015
 - o 24 reviews per hotel, 504 total reviews
- 20 features

Score Distribution of All Hotels

```
ggplot(hotel_review_df,
   aes(x = Score,
    y = Hotel.name,
    fill = Hotel.name)) +
geom_density_ridges() +
theme_ridges() +
 labs("Hotel Rating Distribution") +
ylab("Hotel")+
theme(legend.position = "none")
```


Score Distribution of All Traveler Types

```
ggplot(hotel_review_df,
   aes(x = Hotel.name,
    fill = Traveler.type)) +
geom_bar(position = "fill") +
theme(axis.text.x =
element_text(angle = 90, vjust =
0.1,hjust=1, size = 5))+
scale_y_continuous(breaks = seq(0, 1,
.2)) +
labs(y = "Proportion of Reviews", x =
"Hotels", fill = "Traveler Types")
```


Simple Linear Regression

Coding Variables

Our results tell us that Pool is the most significant variable

 $Spa=1 \ for \ yes; \ 0 \ for \ no \ Gym=1 \ for \ yes; \ 0 \ for \ no \ Pool=1 \ for \ yes; \ 0 \ for \ no \ Casino=1 \ for \ yes; \ 0 \ for \ no \ Free.internet=1 \ for \ yes; \ 0 \ for \ no \ Tennis.court=1 \ for \ yes; \ 0 \ for \ no$

```
data$Spa<-ifelse(data$Spa=="YES",1,0)
data$Gym<-ifelse(data$Gym=="YES",1,0)
data$Pool<-ifelse(data$Fool=="YES",1,0)
data$Casino<-ifelse(data$Casino=="YES",1,0)
data$Free.internet<-ifelse(data$Free.internet=="YES",1,0)
data$Tennis.court<-ifelse(data$Tennis.court=="YES",1,0)
data$Tenpis.court<-ifelse(data$Tennis.court=="YES",1,0)
df <- dplyr::select_if(data, is.numeric)</pre>
```

```
## Subset selection object
## Call: regsubsets.formula(Score ~ ., data = df, nvmax = 1, method = "backward")
## 11 Variables (and intercept)
##
                    Forced in Forced out
## Nr. reviews
                         FALSE
                                   FALSE
## Nr..hotel.reviews
                        FALSE
                                   FALSE
## Helpful.votes
                         FALSE
                                   FALSE
## Pool
                         FALSE
                                   FALSE
## Gym
                         FALSE
                                   FALSE
## Tennis.court
                         FALSE
                                   FALSE
## Spa
                         FALSE
                                   FALSE
                         FALSE
## Casino
                                   FALSE
## Free.internet
                         FALSE
                                   FALSE
## Nr..rooms
                         FALSE
                                   FALSE
                         FALSE
                                   FALSE
## Member.vears
## 1 subsets of each size up to 1
## Selection Algorithm: backward
            Nr..reviews Nr..hotel.reviews Helpful.votes Pool Gym Tennis.court Spa
## 1 (1) " "
                                                        .........
            Casino Free.internet Nr..rooms Member.vears
```

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.2083 0.2015 15.920 < 2e-16 ***

## Pool 0.9604 0.2065 4.651 4.23e-06 ***
```


Multiple Linear Regression

```
## Casino
                         FALSE
                                    FALSE
## Free internet
                         FALSE
                                    FALSE
                                    FALSE
## Nr. rooms
                         FALSE
## Member.vears
                         FALSE
                                    FALSE
## 1 subsets of each size up to 5
## Selection Algorithm: forward
            Nr..reviews Nr..hotel.reviews Helpful.votes Pool Gym Tennis.court Spa
            Casino Free.internet Nr..rooms Member.vears
```

```
model2 = lm(Score ~ Pool + Free.internet, data = df)
model3 = lm(Score ~ Pool + Free.internet + Member.years, data = df)
model4 = lm(Score ~ Pool + Free.internet + Member.years + Gym, data = df)
model5 = lm(Score ~ Pool + Free.internet + Member.years + Gym + Spa, data = df)
```

```
AIC

We will use AIC to determine which model is the best of the three. AIC is a score that is used to determine which model is best based on prediction error. A lower AIC is better

AIC(model2)

## [1] 1402.934

AIC(model3)

## [1] 1404.342

AIC(model4)

## [1] 1405.88

AIC(model5)

## [1] 1407.411

## Analysis of Variance Table
```

```
##
## Model 1: Score ~ Pool + Free.internet
## Model 2: Score ~ Pool
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 501 469.86
## 2 502 489.29 -1 -19.434 20.723 6.671e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Our results tell us that the extra predictor in model2 is significant.
```

Multiple Linear Regression 2

Conclusion

Our final model includes free internet and pool as the best predictors for score. This tells us that when looking for a hotel in Vegas, we should look for these two predictors to find the hotels with the best experience.

Dimensionality reduction through PCA

We did some dimensionality reduction and clustering too

Here we can see the actual PCA we get, there are 4

[1] 0

Importance of components:

PC1 PC2 PC3 PC4 Standard deviation 1.5501 1.0007 0.6369 0.43597 Proportion of Variance 0.6007 0.2504 0.1014 0.04752 Cumulative Proportion 0.6007 0.8511 0.9525 1.00000

1-variablity_explained, within 3 PCA we get 90% of variability in the dataset

[1] 0.3992821 0.7496315 0.8986044 0.9524820

Most of the predictors contribute to PC2 and only Hotel. Stars contributes to PC1

Some clustering

We also tried k-means clustering on our data set to see if there were nay more trends or patterns within it

We found that 2 clusters can be clearly identified both of which when combined can explain 85.11% point variability in the data

Feature Selection (Remove Irrelevant Variables)

- Model <- Im(data = LasVegas, Score ~ Pool + Gym + Tennis_court + Spa + Casino + Free_internet)
- We can use Adjusted R squared, AIC and BIC to see which model is the best fit.
- Backward Stepwise Selection: Begins with the full least squares model containing all p predictors, and then iteratively removes the least useful predictor, one-at-a-time.
- Forward Stepwise Selection: Starts with a model with no predictors and then we add predictors to the model one-at-time until getting the complete model (all the predictors). At each step we add the variable that gives the greatest additional improvement to the fit: usually R2 or RSS.

Backward Stepwise Selection

```
regfit.bwd = regsubsets(Score ~ Pool + Gym + Tennis_court + Spa + Casino + Free_internet, data = LasVegas, nvma
x = 6, method="backward")
reg.summary <- summary (regfit.bwd) #get the summary
par (mfrow=c(2,2))
#rss plot - NOT USEFUL
plot(reg.summary$rss ,xlab="Number of Variables ",ylab="RSS",type="1")
plot(reg.summary$adjr2 ,xlab="Number of Variables ", ylab="Adjusted RSq",type="1")
max adjr2 <- which.max(reg.summary$adjr2)
points(max adjr2,reg.summary$adjr2[max adjr2], col="red",cex=2,pch=20)
# AIC criterion (Cp) to minimize
plot(reg.summary$cp ,xlab="Number of Variables ",ylab="Cp", type='1')
min_cp <- which.min(reg.summary$cp )
points(min_cp, reg.summary$cp[min_cp],col="red",cex=2,pch=20)
# BIC criterion to minimize
plot(reg.summary$bic ,xlab="Number of Variables ",ylab="BIC",type='1')
min bic <- which.min(reg.summary$bic)
points (min_bic, reg.summary$bic[min_bic], col="red", cex=2, pch=20)
```

Adjusted R-Square highest at 5 variables. (2 ~ 6 variables are about the same)
C(p) lowest at 2 variables.
BIC lowest at 2 variables.

Forward Stepwise Selection

```
regfit.fwd = regsubsets(Score ~ Pool + Gym + Tennis_court + Spa + Casino + Free_internet, data = LasVegas, nvma
x = 6, method="forward")
reg.summarv <- summarv(regfit.fwd) #get the summarv
par (mfrow=c(2,2))
#rss plot - NOT USEFUL
plot(reg.summary$rss ,xlab="Number of Variables ",ylab="RSS",type="1")
#adir2 plot
plot(reg.summarySadjr2 ,xlab="Number of Variables ", ylab="Adjusted RSq",type="1")
max adjr2 <- which.max(reg.summary$adjr2)
points(max adjr2,reg.summary$adjr2[max adjr2], col="red",cex=2,pch=20)
# AIC criterion (Cp) to minimize
plot(reg.summarvScp ,xlab="Number of Variables ",vlab="Cp", tvpe='1')
min cp <- which.min(reg.summary$cp )
points (min cp, reg.summary$cp[min cp],col="red",cex=2,pch=20)
# BIC criterion to minimize
plot(reg.summary$bic ,xlab="Number of Variables ",ylab="BIC",type='1')
min bic <- which.min(reg.summary$bic)
points (min bic, reg.summary$bic[min bic], col="red", cex=2, pch=20)
```

Adjusted R-Square highest at 5 variables. (2 ~ 6 variables are about the same) C(p) lowest at 2 variables. BIC lowest at 2 variables.

Summary

Best	Subsets	Regression	
------	---------	------------	--

Model Index	Predictors				
1	Pool				
2	Pool Free_internet				
3	Pool Gym Free_internet				
4	Pool Gym Spa Free_internet				
5	Pool Gym Spa Casino Free_internet				
6	Pool Gym Tennis_court Spa Casino Free_internet				

Model 2 will be the best model based on Adj.R-Square, C(p), AIC, and SBIC. The predictor variables that are relevant to the hotel score are Pool and Free internet.

Subsets Regression Summary

Model	R-Square	Adj. R-Square	Pred R-Square	C(p)	AIC	SBIC	SBC	MSEP	FPE	HSP	APC
1	0.0413	0.0394	0.0327	21.3393	1421.3607	-9.0646	1434.0284	491.2390	0.9785	0.0019	0.9663
2	0.0794	0.0757	0.0666	2.6319	1402.9336	-27.3161	1419.8240	472.6707	0.9434	0.0019	0.9316
3	0.0802	0.0747	0.062	4.1646	1404.4630	-25.7659	1425.5758	473.1758	0.9463	0.0019	0.9345
4	0.0811	0.0737	0.06	5.7207	1406.0154	-24.1892	1431.3509	473.7051	0.9492	0.0019	0.9374
5	0.0855	0.0763	0.0626	5.3233	1405.5917	-24.5376	1435.1497	472.3811	0.9484	0.0019	0.9366
6	0.0861	0.0750	0.0598	7.0000	1407.2640	-22.8293	1441.0446	473.0258	0.9516	0.0019	0.9397

$$\widehat{\text{Score}} = 2.29 + 1.01(\text{Pool}) + 0.92(\text{Free_internet})$$

$$Yes = 1$$

$$No = 0$$