Assignment3

October 28, 2020

1 (Grammar Basics): Consider the following context-free grammar *G*:

$$S \rightarrow SS + |SS * |a|$$

1.1 Is the string a + a * a in L(G)? [10points]

No. + must have at lease 2 terminal before, but it has only one.

1.2 Give a leftmost derivation for the string aa * aa + *. [10points]

$$S \rightarrow SS* \rightarrow SS + S* \rightarrow aS + S* \rightarrow aa*S* \rightarrow aa*SS + * \rightarrow aa*aS + * \rightarrow aa*aa + *$$

1.3 Give a rightmost derivation for the string aa * aa + *. [10points]

$$S \rightarrow SS* \rightarrow SSS + * \rightarrow SSa + * \rightarrow Saa + * \rightarrow SS* aa + * \rightarrow Sa* aa + * \rightarrow aa* aa + *$$

1.4 Give a parse tree for the string aa * aa + *. [10points]

Figure 1: paser tree

1.5 Give an equivalent grammar without immediate left recursions. [10points]

$$S \rightarrow aS'$$

 $S' \rightarrow S + S'|S * S'|\epsilon$

2 (Top-Down Parsing): Consider the following grammar *G*:

$$S \to aB$$
$$B \to S + B|\epsilon$$

2.1 Construct the predictive parsing table for *G*. Please put down the detailed steps, including the calculation of FIRST and FOLLOW sets. [25 points]

non-terminal = $\{S, B\}$ terminal = $\{a, +, \epsilon\}$

- FIRST sets
 - FISTR(S) = $\{a\}$
 - FIRST(B) = FIRST(S) $\cup \epsilon = \{a, \epsilon\}$
- FOLLOW sets
 - $FOLLOW(S) = \{\$, +\}$
 - $FOLLOW(B) = \{\$, +\}$

		a	+	\$	
ĺ	S	$S \rightarrow aB$			
ĺ	В	$B \longrightarrow S + B$	$B \to \epsilon$	$B \to \epsilon$	

2.2 Is the grammar LL(1)? [5 points]

Recursive-descent parsers needing no backtracking can be constructed for a class of grammars called LL(1). The grammar should hold:

- There is no terminal α such that α and β derive strings beginning with α
- At most one of α and β can derive the empty string
- If $\beta \Rightarrow \epsilon$, then does not derive any string beginning with a terminal in FOLLOW(A) and vice versa

More formally

- $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$
- If $\epsilon \in FIRST(\beta)$, then $FIRST(\alpha) \cap FOLLOW(A) = \emptyset$ and vice versa

So, this grammar is LL(1).

2.3 Can an LL(1) parser accept the input string aaaa+++? If yes, please list the moves made by the parser; otherwise, state the reason. Before parsing, please resolve conflicts in the parsing table if any. [20 points]

Yes.

Matched	Stack	Input	Action
	S\$	aaaa+++\$	
	aB\$	aaaa+++\$	$S \rightarrow aB$
a	B\$	aaa+++\$	match a
	S+B\$	aaa+++\$	$B \rightarrow S + B$
	aB+B\$	aaa+++\$	$S \rightarrow aB$
a	B+B\$	aa+++\$	match a
	S+B+B\$	aa+++\$	$B \rightarrow S + B$
	aB+B+B\$	aa+++\$	$S \rightarrow aB$
a	B+B+B\$	a+++\$	match a
	S+B+B+B\$	a+++\$	$B \rightarrow S + B$
	aB+B+B+B\$	a+++\$	$S \rightarrow aB$
a	B+B+B+B\$	+++\$	match a
	+B+B+B\$	+++\$	$B \to \epsilon$
+	B+B+B\$	++\$	match +
	+B+B\$	++\$	$B \to \epsilon$
+	B+B\$	+\$	match +
	+B\$	+\$	$B \to \epsilon$
+	+\$	\$	match +
	\$	\$	$B \to \epsilon$
\$	empty	empty	match \$

3 Optional Exercise

Figure 2: I like U like I