CS 188: Artificial Intelligence

Bayes' Nets: Inference

Pieter Abbeel and Dan Klein University of California, Berkeley

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

Е	P(E)
+e	0.002
-е	0.998

Α	М	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) =$$

В	E	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network

Е	P(E)
+e	0.002
-e	0.998

Α	Μ	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) = 0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$$

В	E	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Bayes' Nets

- **✓** Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data

Inference

 Inference: calculating some useful quantity from a joint probability distribution

Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL atomic probabilities you need
 - Calculate and combine them

• Example:
$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+j,+m)}$$

$$P(+b,+j,+m) = P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a) + P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a) + P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a) + P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a)$$

Inference by Enumeration?

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1
- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals = dimensionality of the table

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Τ	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all
 - Sums to 1

P	(W	$ cold\rangle$
	(''	

Т	W	Р
cold	sun	0.4
cold	rain	0.6

- Family of conditionals:
 P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P	(W)	T)

			_
Т	W	Р	
hot	sun	0.8	
hot	rain	0.2	ightharpoonup P(W hot)
cold	sun	0.4	
cold	rain	0.6	$\mid \mid P(W cold)$

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P(rain|T)

Т	W	Р	
hot	rain	0.2	$\bigcap P(rain hot)$
cold	rain	0.6	$ig igr\}P(rain cold)$

Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are all $P(y_1 ... y_N \mid x_1 ... x_M)$
 - Any assigned X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

Random Variables

R: Raining

■ T: Traffic

■ L: Late for class!

P(R)		
+r	0.1	
-r	0.9	

P(T|R)

$I \left(I \mid I \right)$			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

P(L T)				
+t +l 0.3				
+t	-	0.7		
-t	+	0.1		
-t	-	0.9		

Variable Elimination (VE)

Variable Elimination Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)		
+r	0.1	
-r	0.9	

+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

P(T|R)

$$\begin{array}{c|cccc} P(L|T) \\ \hline +t & +l & 0.3 \\ \hline +t & -l & 0.7 \\ \hline -t & +l & 0.1 \\ \hline -t & -l & 0.9 \\ \hline \end{array}$$

- Any known values are selected
 - E.g. if we know $L=+\ell$ the initial factors are

$$P(R)$$
+r 0.1
-r 0.9

$$\begin{array}{c|cccc} P(T|R) \\ \hline +r & +t & 0.8 \\ +r & -t & 0.2 \\ \hline -r & +t & 0.1 \\ \hline -r & -t & 0.9 \\ \hline \end{array}$$

$$P(+\ell|T)$$
+t +l 0.3
-t +l 0.1

VE: Alternately join factors and eliminate variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

Example: Join on R

ullet Computation for each entry: pointwise products $\forall r,t$: $P(r,t)=P(r)\cdot P(t|r)$

Example: Multiple Joins

Example: Multiple Joins

P(R)
----	----

+r	0.1
-r	0.9

P(T|R)

Join R

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

R, *T*

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

P(R,T,L)

+r	+t	+	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	-	0.018
-r	+t	+	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-	0.729

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

P(L|T)

Operation 2: Eliminate

Second basic operation: marginalization

Take a factor and sum out a variable

Shrinks a factor to a smaller one

A projection operation

Example:

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Marginalizing Early! (aka VE)

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)		
+r	0.1	
-r	0.9	

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

P(L I)			
+t	+	0.3	
+t	- -	0.7	
-t	+	0.1	
-t	-1	0.9	

D/T/T

• Computing P(L|+r) the initial factors become:

$$P(+r)$$

$$\begin{array}{c|c} P(+r) & P(T|+r) \\ \hline +r & 0.1 & \hline +r & +t & 0.8 \\ \hline +r & -t & 0.2 & \hline \end{array}$$

$$\begin{array}{c|cccc} P(L|T) \\ \hline +t & +l & 0.3 \\ +t & -l & 0.7 \\ \hline -t & +l & 0.1 \\ \hline -t & -l & 0.9 \\ \hline \end{array}$$

We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we'd end up with:

P(L	+	r)
•		

+	0.26
-	0.74

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

$$\uparrow \star \blacksquare = \blacksquare \times \frac{1}{Z}$$

Example

$$P(B|j,m) \propto P(B,j,m)$$

P(B)

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

P(m|A)

P(j, m, A|B, E) D(j, m|B, E)

P(B)

P(E)

P(j,m|B,E)

Example

P(B)P(E)P(j,m|B,E)

Choose E

P(j,m|B,E)

P(j, m, E|B) \sum

P(j,m|B)

Finish with B

P(B|j,m)

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

P(B) P(E) P(A|B,E) P(j|A) P(m|A)

$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a) \qquad \text{marginal can be obtained from joint by summing out}$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a) \qquad \text{use Bayes' net joint distribution expression}$$

$$= \sum_{e} P(B)P(e)\sum_{a} P(a|B,e)P(j|a)P(m|a) \qquad \text{use } x^*(y+z) = xy + xz$$

$$= \sum_{e} P(B)P(e)f_1(B,e,j,m) \qquad \text{joining on a, and then summing out gives } f_1$$

$$= P(B)\sum_{e} P(e)f_1(B,e,j,m) \qquad x^*(y+z) = xy + xz$$

$$= P(B)f_2(B,j,m) \qquad \text{joining on e, and then summing out gives } f_2$$

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy + vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z, y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z, y_1)f_2(Z, y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1,y_2,y_3)$.

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X₃ respectively).

Variable Elimination Ordering

■ For the query $P(X_n|y_1,...,y_n)$ work through the following two different orderings as done in previous slide: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}$, Z. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

CSP:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7)$

- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!
- Cut-set conditioning for Bayes' net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!

Bayes' Nets

- **✓** Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - ✓ Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓ Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data