Semaine du 25 Novembre - Planche nº 1

Exercice no 1:

(Question de cours) : L'ensemble des classes d'équivalences forme une partition de E (Propriété 11 du Chapitre 10).

Exercice nº 2:

(Applications) : Soit E un ensemble non vide et A et B deux parties de E.

- 1. Montrer que si $A \cap B = \emptyset$, alors pour toute partie X de E, $(X \cup A) \cap (X \cup B) = X$
- 2. On considère l'application suivante $f: X \in \mathcal{P}(E) \mapsto (X \cup A, X \cup B) \in \mathcal{P}(E)^2$. Montrer que f n'est pas surjective.
- 3. Montrer que f est injective si et seulement si $A \cap B = \emptyset$.

Exercice no 3:

(Relations binaire): On note $E = \{(x, y) \in \mathbb{R}^2, 2x + 5y \le 0 \text{ et } 3x - 5y \le 0\}$. Pour $c_1 = (x_1, y_1)$ et $c_2 = (x_2, y_2) \in \mathbb{R}^2$, on note $c_1 - c_2$ le couple $(x_1 - x_2, y_1 - y_2)$ on définit une relation comme suit :

$$c_1 \prec c_2 \Leftrightarrow c_1 - c_2 \in E$$

- 1. Montrer que la relation \prec est une relation d'ordre sur \mathbb{R}^2 .
- 2. Est-ce une relation d'ordre totale ou partielle?

Semaine du 25 Novembre - Planche nº 2

Exercice nº 1:

(Question de cours) : Toute partie non vide et majorée de \mathbb{N} possède un plus grand élément (Propriété 13 du Chapitre 10).

Exercice nº 2:

(Applications) : Soient X et Y deux ensembles non vides et f une application de X dans Y. Une application s, de Y dans X, telle que $f \circ s = Id_Y$ s'appelle une section de f.

- 1. Montrer que si f admet au moins une section alors f est surjective.
- 2. Montrer que toute section de f est injective.

Une application r de Y dans X, telle que $r \circ f = Id_X$ s'appelle une rétraction de f.

- 3. Montrer que si f possède une rétraction alors f est injective.
- 4. Montrer que si f est injective alors f possède une rétraction.
- 5. Montrer que toute rétraction de f est surjective.
- 6. En déduire que si f possède à la fois une section s et une rétraction r, alors f est bijective et l'on a : $r = s(=f^{-1}$ par conséquent).

Exercice no 3:

(Relations binaires) : Soit E un ensemble. On rappelle que E^E est l'ensemble des applications de E dans E. Si f et g sont deux éléments de E^E , on dira que f est conjuguée à g s'il existe une bijection φ de E dans E telle que $f = \varphi^{-1} \circ g \circ \varphi$. On notera alors $f \sim g$.

- 1. Montrer que \sim est une relation d'équivalence sur E^E .
- 2. Quelle est la classe d'équivalence de Id_E ?
- $3.\,$ Quelle est la classe d'équivalence d'une application constante ?
- 4. On suppose à partir de maintenant que $E = \mathbb{R}$. Soit $a \in \mathbb{R}^*$, Les applications $f : x \in E \mapsto x^2 \in E$ et $g : x \in E \mapsto ax^2$ sont-elles conjuguées?
- 5. Les applications sin et cos sont-elles conjuguées?

Semaine du 25 Novembre - Planche nº 3

Exercice no 1:

(Question de cours) : Composition et injectivité/surjectivité (Propriétéz 3 et 5 du Chapitre 10).

Exercice $n^o 2$:

(Applications) : Soit f l'application de \mathbb{C}^* dans \mathbb{C} définie par $f(z) = \frac{1}{z}$

- 1. f est-elle injective? surjective?
- 2. On considère les ensemble $E = \{z \in \mathbb{C}, |z-1|=1\}$ et $F = \{z \in \mathbb{C}, \operatorname{Re}(z) = \frac{1}{2}\}$. Si on identifie \mathbb{C} au plan, donner la nature géométrique de E et F, et donner leurs équations cartésiennes.
- 3. Vérifier que $f(E \setminus \{0\}) \subseteq F$.
- 4. Montrer que f induit une bijection de $E \setminus \{0\}$ sur F.

Exercice no 3:

(Relations binaires) : Dans \mathbb{N}^* , on considère la relation \mathcal{R} suivante :

$$p\mathcal{R}q \Leftrightarrow \exists n \in \mathbb{N}^*, q = p^n$$

- 1. Démontrer que \mathcal{R} est une relation d'ordre.
- 2. Cette relation d'ordre est-elle totale?
- 3. La partie $\{2,3\}$ est-elle majorée (sous-entendu pour cette relation)?