Statistical Inference Course Project Part 2

Katya Demidova 26 December 2015

Overview

In this part of the course project we're going to use the ToothGrowth data from the R datasets package. We will analyse if the response is the length of odontoblasts (teeth) in each of 10 guinea pigs is different:

- at each of three dose levels of Vitamin C (0.5, 1, and 2 mg),
- with each of two delivery methods (orange juice or ascorbic acid).

Exploratory data analysis

The ToothGrowth data is a data frame with 60 observations of 3 variables:

- len: tooth length (numeric),
- supp: supplement type / delivery method (factor with 2 levels OJ and VC, orange juice and ascorbic acid respectively),
- dose: dose of Vitamin C in miligrams (numeric). This variable is factorised for convenience.

Basic summary of data can be seen in Appendix.

Tooth growth by dose of Vitamin C with different delivery methods

The plot above could help us with comparing tooth growth by supp and dose:

- it is clear from the plot that the higher the dose, the larger the teeth, in other words, it looks like there is a positive correlation between dose level and tooth length in guinea pigs;
- we might also make an assumption that orange juice causes larger tooth growth than ascorbic acid.

Statistical Inference

Tooth growth by dose level

As mentioned above, there seems to be a positive correlation between dose level and tooth length in guinea pigs. Mean values of tooth length by dose:

```
## Source: local data frame [3 x 2]
##
##
       dose mean(len)
##
     (fctr)
                  (dbl)
## 1
        0.5
                10.605
## 2
           1
                19.735
## 3
           2
                26.100
```

To compare tooth growth by dose and check if there is a statistically significant difference between the means, we will use t-tests (full results can be seen in Appendix).

```
with(tg, t.test(len[dose=="0.5"], len[dose=="1"]))
with(tg, t.test(len[dose=="1"], len[dose=="2"]))
with(tg, t.test(len[dose=="0.5"], len[dose=="2"]))
```

P-values of these t-tests, respectively:

```
## [1] 0.000001268301

## [1] 0.0000190643

## [1] 0.000000000004397525
```

From these numbers, we can make a conclusion that **dosage of Vitamin C affects tooth growth in guinea pigs**.

Tooth growth by supplement type

We have made an assumption that that orange juice causes larger tooth growth than ascorbic acid. Mean values of tooth length by supplement type:

To compare tooth growth by supp and check if there is a statistically significant difference between the means, we will use a t-test:

```
with(tg, t.test(len[supp=="OJ"], len[supp=="VC"]))
```

```
##
## Welch Two Sample t-test
##
## data: len[supp == "OJ"] and len[supp == "VC"]
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean of x mean of y
## 20.66333 16.96333
```

The resulting p-value is 0.06063. Though it is very close to 0.05 (most common alpha-level), the difference between the means is **not** significant. So, **delivery method doesn't affect tooth growth in guinea pigs**.

Tooth growth by supplement type and dosage

Now, let us compare tooth growth by delivery method (supp) in groups with different dosage:

```
with(tg, t.test(len[supp=="0J" & dose=="0.5"], len[supp=="VC" & dose=="0.5"]))$p.value
with(tg, t.test(len[supp=="0J" & dose=="1"], len[supp=="VC" & dose=="1"]))$p.value
with(tg, t.test(len[supp=="0J" & dose=="2"], len[supp=="VC" & dose=="2"]))$p.value
## [1] 0.006358607
## [1] 0.001038376
## [1] 0.9638516
```

As we can see, delivery method does affect tooth growth in guinea pigs when dosage is 0.5 or 1, with orange juice causing more tooth growth. However, when dosage is 2 miligrams, orange juice does not significantly differ from ascorbic acid. If we take into consideration the fact that this dosage causes largest tooth growth, these two supplement types are equally successful.

Appendix

Setting the workplace; loading the data

```
library(ggplot2)
library(dplyr)
options(scipen=99)
library(datasets)
tg <- ToothGrowth</pre>
```

Basic summary of the data

```
str(tg)
head(tg)
summary(tg)
```

```
60 obs. of 3 variables:
## 'data.frame':
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
  $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
  $ dose: Factor w/ 3 levels "0.5", "1", "2": 1 1 1 1 1 1 1 1 1 1 ...
##
     len supp dose
## 1 4.2
           VC 0.5
## 2 11.5
           VC 0.5
    7.3
## 3
           VC 0.5
## 4
     5.8
           VC 0.5
## 5 6.4
           VC 0.5
## 6 10.0
           VC 0.5
##
                            dose
        len
                   supp
          : 4.20
                   OJ:30
                           0.5:20
##
  Min.
                   VC:30
  1st Qu.:13.07
                           1 :20
## Median :19.25
                           2 :20
## Mean
         :18.81
## 3rd Qu.:25.27
## Max.
          :33.90
```

Plots

```
ggplot(data = tg, aes(dose, len)) +
  geom_point(aes(colour = supp), size=3) +
  ggtitle("Tooth growth by dose of Vitamin C\nwith different delivery methods") +
  ylab("tooth length") + facet_grid(. ~ supp)
```

```
ggplot(data = tg, aes(dose, len)) +
  geom_boxplot(aes(fill = dose)) +
  ggtitle("Tooth growth by dose") +
  ylab("Tooth length") + xlab("Dose of Vitamin C (miligrams)")
```



```
ggplot(data = tg, aes(supp, len)) +
  geom_boxplot(aes(fill = supp)) +
  ggtitle("Tooth growth by supplement type") +
  ylab("Tooth length") + xlab("Supplement type (orange juice/ascorbic acid)")
```

Tooth growth by supplement type

Supplement type (orange juice/ascorbic acid)

Sources for "Tooth Growth by Dose Level" section

```
with(tg, t.test(len[dose=="0.5"], len[dose=="1"]))
with(tg, t.test(len[dose=="0.5"], len[dose=="2"]))
with(tg, t.test(len[dose=="0.5"], len[dose=="1"]))$p.value
with(tg, t.test(len[dose=="1"], len[dose=="1"]))$p.value
with(tg, t.test(len[dose=="1"], len[dose=="2"]))$p.value
with(tg, t.test(len[dose=="0.5"], len[dose=="2"]))$p.value
with(tg, t.test(len[supp=="0J" & dose=="0.5"], len[supp=="VC" & dose=="0.5"]))$p.value
with(tg, t.test(len[supp=="0J" & dose=="1"], len[supp=="VC" & dose=="1"]))$p.value
with(tg, t.test(len[supp=="0J" & dose=="2"], len[supp=="VC" & dose=="2"]))$p.value
```