6.4 集合恒等式

集合算律

1. 只涉及一个运算的算律: 交换律、结合律、幂等律

	U	^	•
交换	$A \cup B = B \cup A$	$A \cap B = B \cap A$	$A \oplus B = B \oplus A$
结合	$(A \cup B) \cup C$ $=A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \oplus B) \oplus C$ $=A \oplus (B \oplus C)$
幂等	$A \cup A = A$	$A \cap A = A$	

集合算律

2. 涉及两个不同运算的算律:

分	呶収律

	∪与○	○与⊕
分配	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
吸收	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	

集合算律

3. 涉及补运算的算律:

DM律,双重否定律

	_	//~ A
D.M律	$A-(B\cup C)=(A-B)\cap (A-C)$ $A-(B\cap C)=(A-B)\cup (A-C)$	$\sim (B \cup C) = \sim B \cap \sim C$ $\sim (B \cap C) = \sim B \cup \sim C$
双重否定		~~A=A

集合算律

4. 涉及全集和空集的算律: 补元律、零律、同一律、否定律

	Ø	E
补元律	<i>A</i> ∩~ <i>A</i> =Ø	$A \cup \sim A = E$
零律	$A \cap \emptyset = \emptyset$	$A \cup E = E$
同一律	$A \cup \emptyset = A$	$A \cap E = A$
否定	~Ø=E	~ <i>E</i> =Ø

集合证明题

证明方法: 命题演算法、等式代入法

命题演算证明法的书写规范 (以下的X和Y代表集合公式)

(1) 证*X*⊆Y

任取x, $x \in X \Rightarrow ... \Rightarrow x \in Y$

(2) 证*X*=Y

方法一 分别证明 ✗⊆Y和 Ү⊆Х

方法二 任取x, $x \in X \Leftrightarrow ... \Leftrightarrow x \in Y$

注意: 在使用方法二的格式时,必须保证每步推理都是充分必要的

命题演算法

方法一: 命题演算法

例1 证明 $A \cup (A \cap B) = A$ (吸收律)

证 任取x,

 $x \in A \cup (A \cap B) \Leftrightarrow x \in A \lor x \in A \cap B$

 $\Leftrightarrow x \in A \lor (x \in A \land x \in B) \Leftrightarrow x \in A$

因此得 $A \cup (A \cap B) = A$.

命题演算法

例2 证明 $A-(B\cup C)=(A-B)\cap (A-C)$

等式代入法

方法二: 等式代入法

例3 假设交换律、分配律、同一律、零律已经成立,证明 吸收律.

证

$$A \cup (A \cap B)$$

$$= (A \cap E) \cup (A \cap B)$$

$$= A \cap (E \cup B)$$

$$= A \cap (B \cup E)$$

$$=A\cap E$$

$$= A$$

(同一律)

(分配律)

(交換律)

(零律)

(同一律)

包含等价条件的证明

例4 证明
$$A\subseteq B \Leftrightarrow A\cup B=B \Leftrightarrow A\cap B=A \Leftrightarrow A-B=\emptyset$$

1

2

(3)

4

证明思路:

确定问题中含有的命题:本题含有命题①,②,③,④

确定证明顺序: ①⇒②, ②⇒③, ③⇒④, ④⇒①

按照顺序依次完成每个证明(证明集合相等或者包含)

证明

证明 $A\subseteq B \Leftrightarrow A\cup B=B \Leftrightarrow A\cap B=A \Leftrightarrow A-B=\emptyset$

1

2

3

4

证 ①⇒②

显然 $B \subseteq A \cup B$,下面证明 $A \cup B \subseteq B$.

任取x,

 $x \in A \cup B \Leftrightarrow x \in A \lor x \in B \Rightarrow x \in B \lor x \in B \Leftrightarrow x \in B$

因此有 $A \cup B \subseteq B$. 综合上述②得证.

 $2\Rightarrow3$

 $A=A\cap (A\cup B)\Rightarrow A=A\cap B$ (由②知 $A\cup B=B$,将 $A\cup B$ 用B代入)

证明

 $3\Rightarrow4$

假设 $A-B\neq\emptyset$, 即 $\exists x\in A-B$,那么知道 $x\in A$ 且 $x\notin B$. 而 $x\notin B \Rightarrow x\notin A\cap B$ 从而与 $A\cap B=A$ 矛盾.

④⇒①
假设 $A \subseteq B$ 不成立,那么 $\exists x(x \in A \land x \notin B) \Rightarrow x \in A - B \Rightarrow A - B \neq \emptyset$ 与条件④矛盾。

证明例题

例5 已知 $A \oplus B = A \oplus C$, 证明 B = C.

小结

集合恒等式. (6.1)-(6.23)

集合证明题方法. 命题演算法、等式代入法

课后习题

P108:

31;

32;

