Continuous Functions: Solutions

September 12, 2018

- 1. Use the Delta-Epsilon method to prove the continuity of f(x) = |x| under the d_1 (absolute value) metric.
- 2. If $f: X \to Y$ and $g: Y \to Z$ are continuous functions, then $g \circ f: X \to Z$ is also continuous.¹
- 3. Let (X,d) be a compact metric space and f be a continuous function. Prove f(X) is closed and bounded.²
- 4. Prove: If a function $f: X \to Y$ is continuous, then every open subset S of a metric space Y, $f^{-1}(S)$ is open in metric space X.³

¹ Carter 2.72

- ² Hint: The limit definition of continuity and the Bolzano-Weierstrass theorem will be useful.
- ³ Hint: $\bigcup_{i=1}^{\infty} O_i$ with O_i open for all i is open.