cisco life!

Introduction to SRv6 uSID

Jakub Horn
Principal Technical Marketing Engineer
BRKSPG-3058

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until Thursday 22 December, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKSPG-3058

Agenda

- Introduction
- SRv6 uSID Dataplane
- SRv6 uSID Control Plane
- Flexible Algorithm
- SRv6 Addressing
- MPLS to SRv6 Migration
- Conclusion

Introduction

Understanding Today's Service Creation

SR-MPLS: SDN ready "Network as a Fabric" for Service Creation

SRv6: SDN, NfV, 5G ready "Network as an API" for Service Creation

Homogenous Cross-domain Automation & Assurance Contro Cloud Scale Networking Central Office SDN SDN SDN Metro Network Domain Core Network Domain Data Center Domain Segment Routing v6 (transport, services and programmability) Centralized Services Delivery End-to-end service provisioning is integrated with NfV, SDN Multiple network domains under same management teams Automated operations Integrated underlay and overlay networks (NfV) Network as API (NfV) Hyper Scale (5G)

Dataplane

IPv6 SR Header

- IPv6 header
 - Next header field: 43 → Routing
- IPv6 Routing extension header
 - Generic header format defined in RFC 2460
 - Next Header: IPv4, TCP, UDP, ...
 - Hdr Ext Len: Any IPv6 device can skip this header
 - Segments Left: Ignore extension header if equal to 0
 - Specific data depends on Routing Type field:
 - O Source Route (deprecated since 2007)
 - 1 Nimrod (deprecated since 2009)
 - 2 Mobility (RFC 6275)
 - 3 RPL Source Route (RFC 6554)
 - 4 Segment Routing (tentative)

IPv6 SR Header

- Each segment is an IPv6 address
- Segments are encoded in reverse order
 - Last segment index is 0
 - First segment index is First Segment
 - Active segment index is Segments Left
- Active Segment is copied in the Destination Address field of the IP header
- Additional data can be stored in TLVs
 - Security (HMAC), NFV metadata, ...

SRv6 Full SID

BGP:2001:db8:0:4:eeee::

```
SA:2001::1
DA:2001:db8:0:1:1::
NH:RH

Type:4(SRH)
NH:IPv4|SL:3
Segment List:
[0]:2001:db8:0:4:eeee::
[1]:2001:db8:0:3:48::
[2]:2001:db8:0:2:1::
[3]:2001:db8:0:1:1::
```

```
SA:2001::1
DA:2001:db8:0:2:1::
NH:RH

Type:4(SRH)
NH:IPv4|SL:2
Segment List:
[0]:2001:db8:0:4:eeee::
[1]:2001:db8:0:3:48::
[2]:2001:db8:0:2:1::
[3]:2001:db8:0:1:1::
```

```
SA:2001::1
DA:2001:db8:0:3:48::
NH:RH

Type:4(SRH)
NH:IPv4|SL:1
Segment List:
[0]:2001:db8:0:4:eeee::
[1]:2001:db8:0:3:48::
[2]:2001:db8:0:2:1::
[3]:2001:db8:0:1:1::
```

SA:2001::1 DA:2001:db8:0:4:eeee:: NH:RH

SID Structure

128 Bits, like IPv6 address but different semantics

SRv6 uSID format

: 0100 : =SRV6 uSID

16 bits here, but can be anything

SRV6 uSID Carrier

```
2001 :0db8 : 0100 : 0200 : 0300 : 0400 : 0500 : 0000

SRv6 uSID uSID uSID uSID uSID EoC

Block 1 2 3 4 5 6
```

32 bits here, but can be anything

SRV6 Encapsulation

```
SA:2001::1
DA:2001:db8:0:4:1:0:0:0
NH:RH
```

```
Type:4(SRH)
NH:IPv4|SL:1
Segment List:
[0]: 2001:db8:0:5:45:0:0:0
[1]: 2001:db8:0:4:1:0:0:0
[2]: 2001:db8:0:3:48:0:0:0
[3]: 2001:db8:0:2:1:0:0:0
[4]: 2001:db8:0:1:42:0:0:0
```

```
SA:7.5.4.3
DA:11.6.19.71
Port:UDP
```

UDP Header/Data

SRV6 uSID Encapsulation

```
SA:2001::1
DA:2001:db8:100:200:300:400:500::
NH:Ipv4
```

```
SA:7.5.4.3
DA:11.6.19.71
Port:UDP
```

UDP Header/Data

SRv6 uSID F3216

BGP:2001:db8:4:eeee::

SA:2001::1 DA:2001:db8:1:2:3:48:4:eeee NH:IPV4 SA:2001::1 DA:2001:db8:2:3:48:4:eeee NH:IPV4 SA:2001::1 DA:2001:db8:3:48:4:eeee:: NH:IPV4

SA:2001::1 DA:2001:db8:4:eeee:: NH:IPV4

Srv6 uSID More Than 6 SIDs?

100->200->300->400->500->600->700->800->900->a00->b00

Carrier 1 2001: 0db8: 0100: 0200: 0300: 0400: 0500: 0600

Carrier 2 2001: 0db8: 0700: 0800: 0900: 0a00: 0b00: 0000

SA:2001::1

DA:2001:db8:\$00:\$00:\$00:\$00:500:600

NH:RH

Type: 4 (SRH)

NH: IPv4 | SL: 0

Segment List:

[0]: 2001:db8:700:800:900:a00:b00::

SA:7.5.4.3

DA:11.6.19.71

Port:UDP

UDP Header/Data

Shift & Forward
END of Carrier
-> is there SRH?
Decrement SL
Copy New SID (Carrier)
PSP

The Power of SRv6 uSID

Realizing a network program with "n" intermediate segments ...

END - Default endpoint

- Default endpoint behavior (node segment)
 - Decrement Segments Left, update DA
 - Forward according to new DA
- Node B advertises prefix B::/64 (B::/64 is the SID locator)
 - Packets are forwarded to B along the default routes (shortest path)
- On B, the *default endpoint* behavior is associated with ID 0 (0 is the **function**)
- The SID corresponding to the default endpoint behavior on node B is B::1

uN: shortest-path to a Node

- Global uSID that represents the shortest path to a node N
 - 2001:db8:0N00...
- Shift&Forward

Just Like FND

If EoC -> then it is exactly END example: 2001:db8:200:0::

```
SA:2001::1
```

DA: 2001: db8:100:200:f2a3:500:f5d1::

NH: Ipv4

SA:2001::1

DA: 2001: db8: 200: f2a3: 500: f5d1::

NH: Ipv4

END.X - Endpoint then Xconnect

- Endpoint xconnect behavior (adjacency segment)
 - Decrement Segments Left, update DA
 - Forward on the interface associated with the Xconnect segment
- Node C advertises prefix C::/64
 - Packets are forwarded to C along the default routes (shortest path)
- On C, the endpoint xconnect behavior for link (C, E) is associated with ID CE
- The SID corresponding to endpoint xconnect-(C,E) behavior on node C is

C::CE

uA: xconnect into L3 adjacency

- Local uSID that represents the L3 adjacency from node N to J
 - 2001:db8:FNAJ::
- Shift&Forward to xconnect

END.DX4 - Endpoint with Decapsulation and Xconnect (END.DX6, END.DX2)

- Endpoint xconnect behavior (adjacency segment)
 - Segments Left must be 0
 - NH must be IPv4 (or IPv6 or L2)
 - Decapsulate inner packet
 - Forward on the interface associated with the Xconnect
- Node D advertises prefix C::/64
 - Packets are forwarded to D along the default routes (shortest path)
- On C, the endpoint xconnect behavior for link (D, E) is associated with ID DE
- It is like L3 VPN with per CE label allocation

END.DT4 - Endpoint with Decapsulation and Table lookup(END.DT6)

- Endpoint xconnect behavior (adjacency segment)
 - Segments Left must be 0
 - NH must be IPv4 (or IPv6)
 - Decapsulate inner packet
 - Do the lookup for IPv4 destination of inner packet and forward accordingly
- Node D advertises prefix D::/64
 - Packets are forwarded to D along the default routes (shortest path)
- On C, the endpoint behavior for link (D, E) is associated with ID CE

It is like L3 VPN with per VRF label allocation

Control Plane

Functions might be signaled differently

Signalling	IGP	BGP-LS	BGP- IP/VPN
End, uN	Yes	Yes	
End.X, uA	Yes	Yes	
End.T	Yes	Yes	
End.DX4,uDX4		Yes	Yes
End.DX6,uDX6	Yes	Yes	Yes
End.DX2,uDX2		Yes	Yes
END.DT4,uDT4		Yes	Yes
End.DT6,uDT6	Yes	Yes	Yes
End.B		Yes	

Signalling	IGP	BGP- LS	BGP- IP/VPN
T.insert		Yes	
T.Encap		Yes	

Locator - routing table

IGP for uSID

- Uses TLVs
- For Srv6:
 - Locator for Reachability (twice for backward compatibility)
 - END function TI-LFA and TE
 - END.X function for each interface in routing protocol TI-LFA and TE
 - Capabilities:
 - Max SID depth for different functions

uN: fcbb:bb00:2:: uA: fcbb:bb00:2:e000 Ten0/0/0/0 2001:0:12::/64

Lo0 Router 2

2001::2/128

Ten0/0/0/1

Locator: fcbb:bb00:2::/48

uA: fcbb:bb00:2:e001 fe80::dead/64

OSPF will follow

ISIS example

```
IS-IS 1 (Level-2) Link State Database
                     LSP Seg Num LSP Checksum LSP Holdtime/Rcvd ATT/P/OL
LSPID
r2.00-00
                     0x00000000 0x4f06
                                               1145 /1200
                                                                  0/0/0
 Area Address: 49
 NIPID:
                0x8e
 Hostname:
                 r1
 IPv6 Address: 2001::2
 Metric: 10
                 MT (IPv6 Unicast) IPv6 2001::2/128
   Prefix Attribute Flags: X:0 R:0 N:1 E:0 A:0
                    MT (IPv6 Unicast) IPv6 fcbb:bb00:2::/48
  Metric: 1
   Prefix Attribute Flags: X:0 R:0 N:0 E:0 A:0
 MT:
                 IPv6 Unicast
                                                              0/0/0
  SRv6 Locator: MT (IPv6 Unicast) fcbb:bb00:2::/48 D:0 Metric: 0 Algorithm: 0
   Prefix Attribute Flags: X:0 R:0 N:0 E:0 A:0
   END SID: fcbb:bb00:2:: uN (PSP/USD)
               0.0.0.0 D:0 S:0
  Router Cap:
    IPv6 Router ID: 2001::2
   SR Algorithm:
     Algorithm: 0
     Algorithm: 1
    SRv6: 0:0
   Node Maximum SID Depth:
     SRH Max SL:
     SRH Max End Pop: 3
     SRH Max T.insert: 3
     SRH Max T.encaps: 4
     SRH Max End D: 4
  Metric: 10
                   MT (IPv6 Unicast) IS-Extended r2.00
   Local Interface ID: 6, Remote Interface ID: 6
   Interface IPv6 Address: 2001:0:0:12::1
   Neighbor IPv6 Address: 2001:0:0:12::2
   END.X SID: fcbb:bb00:2:e000:: B:0 S:0 P:0 uA (PSP/USD) Alg:0
Total Level-2 LSP count: 1 Local Level-2 LSP count: 0
```

Locator
Capabilities
END
END.X
SID Structure

BGP

Flexible Algorithm

Flexible Algorithm

- We call "Flex-Algo"
 - The algorithm is defined by the operator, on a per-deployment basis
- Flex-Algo K is defined as
 - The minimization of a specified metric: IGP, delay, ...
 - The exclusion of certain link properties: link-affinity, SRLG, ...
- Example
 - Operator1 defines Flex-Algo 128 as "minimize IGP metric and avoid link-affinity "green"
 - Operator2 defines Flex-Algo 128 as "minimize delay metric and avoid link-affinity "blue"

IPv6 Only -SRv6

Flex ALGO 128

Link Delay Measurement Protocol

One-Way Delay = (T2 – T1) Two-Way Delay = (T4 – T1) – (T3 – T2) One-Way Delay = Two-Way Delay/2 • For one-way delay measurement, hardware clocks must be synchronized using PTP (IEEE 1588) between querier and responder nodes.

All Together

#CiscoLiveAPJC BRKSPG-3058

SRv6 Addressing

Separation between SIDs and addresses

- Infrastructure addressing and SRv6 SID allocation belong to two different planes and are different
 - Infrastructure IP addresses (e.g., link interfaces, loopbacks) are allocated on the management plane
 - SRv6 SIDs are allocated on the service plane
- SRv6 SIDs are assigned to a node independently from the IP addressing of that node
- Even if they are both represented as IPv6 addresses, infrastructure addresses and SIDs cannot be merged and should be allocated off different blocks.

An existing IPv6 address plan is not a constraint for a future SRv6 SID allocation plan.

SRv6 Space allocation recommendation

- Private range allocation
 - Recommended allocation

- Use /24 sub-range from ULA FC00::/8 space
- FCBB:BB00::/24, with B indicating a nibble value picked by operator

- Public range allocation
 - Supported, not advised
 - From allocated public GUA range

Summarization

Block: FCBB; BB00::/32

Region 1

600 nodes 3 Sets (02, 03, 04)

Core Region

200 nodes 1 Set (01)

Region 2

400 nodes 2 Sets (05, 06)

summarize

FCBB:BB00:0200::/40

FCBB:BB00:0300::/40

FCBB:BB00:0400::/40

summarize

FCBB:BB00::/32

summarize

FCBB:BB00:0500::/40

FCBB:BB00:0600::/40

summarize

FCBB:BB00::/32

Summarization gain:

× 256

MPLS to SRv6 Migration

Dual Connected PE

Conclusion

Rich Ecosystem

Open-Source Networking Stacks

Smart NIC

Open-Source Applications

Partners

Simplicity Always Prevails

LDP

RSVP-TE

BGP 3108

MPLS

UDP/VxLAN

NSH

Furthermore, with more scale

and functionality

Session Surveys

We would love to know your feedback on this session!

- Complete the session surveys in the Cisco Events mobile app. You'll earn some points in the Cisco Live Game and potentially win a prize.
- Complete a minimum of four session and the overall event surveys to claim a Cisco Live cable bag.

Continue your education

Visit the Cisco Showcase for related demos

Book your one-on-one Meet the Expert meeting

Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs

Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

Pay for Learning with **Cisco Learning Credits**

with Cisco.

.earn

Frain

Certify

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology. and certification training

Cisco Modeling Labs

Network simulation platform for design. testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

Cisco Training Bootcamps

Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product. technology, and certification courses

Cisco Certifications and **Specialist Certifications**

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuina **Education Program**

Recertification training options for Cisco certified individuals

The bridge to possible

Thank you

cisco life!

