

wellcometrust

[Sporns 2007, Scholarpedia]

- functional connectivity
- = statistical dependencies between regional time series
- effective connectivity
 - = causal (directed) influences between neurons or neuronal populations

For understanding brain function $\underline{\text{mechanistically}}, \text{we need models of } \underline{\text{effective}}$ connectivity,

i.e. **models of <u>causal</u> interactions** among neuronal populations to explain regional effects in terms of interregional connectivity

An overview:

- 1- anatomical/structural connectivity anatomy is not enough?
- 2- functional connectivity
 methods and types.
 a limited inference?
- 3- effective connectivity
 methods (PPI, SEM).
 limitations.

Structural connectivity

DTI: diffusion tensor imaging

-Anisotropy analyses on RA or FA images; [Basser and Pierpaoli 1996 JMR] + in SPM: - correlations with behaviour - group comparisons.

-Tractography techniques: (e.g. seed/target/crossing regions) + deterministic [Mori et al. 1999 Ann Neurol]

+ probabilistic [Parker et al. 2002 IEEE TMI]

DSI: diffusion spectrum imaging

-Fibers orientation at high definition (6D-space); + Resolving fibers intersections [Wedeenet al. 2005 MRM]

-Identify structural connector hubs; [Hagmann et al. 2008 PLoS Biol]

Structural connectivity

→ An atlas of white matter tracts in MNI [Catani and Thiebaut de Schotten 2008 Cortex]

Knowing anatomical connectivity is not enough...

- · Connections are recruited in a contextdependent fashion:
 - Local functions depend on network activity
- Connections show plasticity
 - Synaptic plasticity = change in the structure and transmission properties of a synapse

 - Critical for learning
 Can occur both rapidly and slowly

Need to look at functional/effective connectivity.

- Anatomo-functional connectivity: combine functional with structural connectivity.

 → explain function by anatomy: RSNs and WM tracts; Ivan den Heuvel et al. 2009 #BMI

 → link to brain dynamics; [Bariate al. 2013 Neuroimage; Pinotsis et al. 2013 Neuroiminage]

 → constrain priors in DCM by DTI tractography; [Stephan et al. 2009 Neuroimage]

Functional connectivity	
= statistical dependencies (temporal correlation	ons) between activations. [Friston et al. 1993 JCBFM]
- Seed-based correlation analysis (in SPM)	- Coherence analysis
- Eigen-decomposition (e.g. PCA, SVD)	- Clustering (e.g. FCM)
- Independent component analysis (ICA)	[Li et al. 2009 CMG/]
◆ Task-related connectivity	♣ Intrinsic/endogenous task-unrelated connectivity
Controlled stimulations (known inputs) Uncontrolled conditions (free-model inputs)	* "rest" (external stim. = 0) * passive fixation.
[Cordes et al. 2000 AJNR] + Hypothesis-driven, using seed regions; [Biswalet al. 1995 MRM]	
[McKeown et al. 1998 HBM] ◆ <u>Data-driven</u> ((ICA, FCM), over all voxels; [Damoiseaux et al. 2006 PNAS]
• Within-subject: inter-regional tem	
	ariance or inter-subject synchronisation. n et al. 2004 Science; Seghier et al. 2008 Neuroimage]
£	

Flexibility of the GLM in SPM: Resting-networks with a GLM analysis (without seed ROIs)

Regressors = a discrete cosine basis set containing 120 regressors that together spanned the frequency range of 0–0.1 Hz.

identify any signal change as a linear combination of the individual basis functions.

Pros & Cons of functional connectivity analysis Pros: - useful when we have no experimental control over the system of interest and no model of what caused the data (e.g. sleep, hallucinations, natural vision) Cons: - interpretation of resulting patterns is difficult / arbitrary; - no mechanistic insight; - operates at the level of BOLD time series; - usually suboptimal for situations where we have a priori knowledge / experimental control

Effective connectivity

fMRI experiment; GLM, task contras

Can we go beyond this "static" picture?

→ Dynamics or interactions between regions...

= causal (directed) influences between neurons or neuronal populations.

- = explain regional effects in terms of interregional connectivity.
- → Hypotheses constrained by the main effects or interactions from the GLM.

Some models for computing effective connectivity from fMRI data

Structural Equation Modelling (SEM) [McIntosh and Gonzalez-Lima 1991, 1994]

Psycho-Physiological Interactions (PPI) [Friston et al. 1997]

Volterra kernels [Friston and Büchel 2000]

Multivariate Autoregressive Model (MAR) [Harrison et al. 2003]

Granger causality [Goebel et al. 2003]

Dynamic Causal Modelling (DCM)
[Friston et al. 2003]

Dynamic Bayesian networks (DBN) [Rajapakse and Zhou 2007]

Nonlinear system identification [Li et al. 2010]

Psycho(physiological)interaction (PPI)

bilinear model of how the psychological context A changes the influence of area B on area C :

 $B \mathrel{x} A \to C$

→ PPI corresponds to differences in regression slopes for different contexts.

Pros & Cons of PPIs

- Pros:
 - given a single source region, we can test for its context-dependent connectivity across the entire brain;
 - easy to implement (in SPM);
- · Cons:
 - only allows to model contributions from a single area;
 - operates at the level of BOLD time series;
 - ignores time-series properties of the data;
 - can have multiple interpretations.
 - → Dynamic Causal Models

Some models for computing effective	ve connectivity:
Structural Equation Modelling (SEM) [McIntosh and Gonzalez-Lima 1991, 1994]	Psycho-Physiological Interactions (PPI) [Friston et al. 1997]
Volterra kernels [Friston and Büchel 2000]	Multivariate Autoregressive Model (MAR) [Harrison et al. 2003]
Dynamic Causal Modelling (DCM) [Friston et al. 2003]	Granger causality [Goebel et al. 2003]
Dynamic Bayesian networks (DBN) [Rajapakse and Zhou 2007]	Nonlinear system identification [Li et al. 2010]
Conclusion: For effective	connectivity:
Each method has its advantages and weaknesses and its use should be motivated by the question of interest, level of inference, paradigm design, data acquisition and analysis.	
→ An alternative method = DCM (next talk!).	