1 What is the asymptotic running time of the code above for searching one array, as a function of the array length n?

$$for \ i \coloneqq 1 \ to \ n \ do$$

$$if \ A[i] = t \ then$$

$$return \ TRUE$$

$$return \ FALSE$$

- 1. O(1)
- $2.\ O(logn)$
- O(n)
- 4. $O(n^2)$

(3) is correct. The algorithm in the worst case does n comparisons to evaluate whether in fact t does exist in the array. The algorithm is order of at most n and hence O(n).

2 What is the asymptotic running time of the code above for searching two arrays, as a function of the array lengths n?

- 1. O(1)
- 2. O(log n)
- O(n)
- 4. $O(n^2)$

(3) is the correct answer. Given two n length arrays the number of comparison will be $2 \cdot n$. The order of growth is then at most order of n and hence O(n).

3 What is the asymptotic running time of the code above for checking for a common element, as a function of the lengths n?

- 1. O(1)
- 2. O(log n)
- O(n)
- 4. $O(n^2)$

(4) is the correct answer. $n \cdot \sum_{i=1}^{n} 1 = n \cdot n = n^2$ which is order of at most n^2 hence we have $O(n^2)$.

4 What is the asymptotic running time of the code above for checking for duplicates, as a function of the array length n?

- 1. O(1)
- 2. O(logn)
- 3. O(n)
- 4. $O(n^2)$
- (4) is correct.

$$\sum_{i=1}^{n} (n-i) = n \cdot \sum_{i=1}^{n} 1 - \sum_{i=1}^{n} i$$

$$= n^{2} - \frac{n^{2}}{2} - \frac{n}{2}$$

$$= \frac{n^{2}}{2} - \frac{n}{2}$$

Which is order of at most n^2 and hence $O(n^2)$.

5 Let $T(n) = \frac{1}{2} \cdot n^2 + 3 \cdot n$. Which of the following statements are true?

- 1. T(n) = O(n)
- 2. $T(n) = \Omega(n)$
- 3. $T(n) = \Theta(n^2)$
- 4. $T(n) = O(n^3)$

(2), (3) and (4) are correct. We first show that (2) is correct. $\frac{1}{2} \cdot n^2 + 3 \cdot n \ge n, n \ge 1$ hence $\Omega(n)$. We next show that (3) is correct. $n^2 \le \frac{1}{2} \cdot n^2 + 3 \cdot n \le \frac{7}{2} \cdot n^2, n \ge 1$ hence $\Theta(n^2)$. Finally we show that (4) is correct. $\frac{1}{2} \cdot n^2 + 3 \cdot n \le \frac{7}{2} \cdot n^2, n \ge 1$, hence $T(n) = O(n^3)$.

6 show that
$$T(n) = 2^{n+10} \implies T(n) = O(2^n)$$

 $2^{n+10} = 2^{10} \cdot 2^n \le 2^{11} \cdot 2^n, n \ge 1 \text{ hence } O(2^n).$

7 If
$$T(n) = 2^{10 \cdot n} \implies T(n)$$
 is not $O(2^n)$

We proof this fact by contradiction. Suppose that in fact $2^{10 \cdot n}$ is indeed $O(2^n)$. Then there exists constants c and n_0 such that $2^{10 \cdot n} \leq c \cdot 2^n, n \geq n_0$. Dividing by 2^n this inequality becomes $2^{9 \cdot 1} \leq c, n \geq n_0$ which is clearly false hence we have shown that T(n) could not be $O(2^n)$.

8 Let f and g denote functions from the positive integers to the nonnegative real numbers, and define

$$T(n) = max\{f(n), g(n)\}, n \ge 1.$$

show that $T(n) = \Theta(f(n) + q(n))$.

We show first that the function T(n) is O(f(n)+g(n)). $\max\{f(n),g(n)\} \le f(n)+g(n), n \ge 1$ hence O(f(n)+g(n)). We next show that T(n) is $\Omega(f(n)+g(n))$.

$$\begin{aligned} 2 \cdot \max\{f(n), g(n)\} & \geq & f(n) + g(n) \\ \max\{f(n), g(n)\} & \geq & \frac{1}{2} \cdot (f(n) + g(n)), n \geq 1 \end{aligned}$$

Hence $\Omega(f(n)+g(n))$. Since the function is $\Omega(f(n)+g(n))$ and O(f(n)+g(n)) then it must be $\Theta(f(n)+g(n))$.

9 Let f and g be non-decreasing real-valued functions defined on the positive integers. with f(n) and g(n) at least 1 for all $n \ge 1$. assume that f(n) = O(g(n)) and let g be a positive constant. Is $f(n) \cdot log_2(f(n)^c) = O(g(n) \cdot log_2(g(n))$

- 1. Yes, for all such f, g and c
- 2. Never, no matter what f, g and c are
- 3. Sometimes yes, sometimes no, depending on the constant c
- 4. Sometimes yes, sometimes no, depending on the function f and g
- (1) is correct

$$\begin{array}{rcl} f(n) & \leq & c_1g(n) \\ f(n^c) & \leq & (c_1g(n))^c \\ log_2(f(n^c)) & \leq & log_2(c_1g(n))^c \\ f(n) \cdot log_2(f(n^c)) & \leq & g(n) \cdot log_2(c_1 \cdot g(n))^c) \\ f(n) \cdot log_2(f(n^c)) & \leq & g(n) \cdot log_2c1 + c \cdot g(n) \cdot log_2(g(n)) \\ f(n) \cdot log_2(f(n^c)) & \leq & g(n) \cdot log_2c1 \cdot log_2(g(n)) + c \cdot g(n) \cdot log_2(g(n)) \\ f(n) \cdot log_2(f(n^c)) & \leq & (log_2c1 + c) \cdot g(n) \cdot log_2(g(n)), n \geq 1 \end{array}$$

10 Assume again two positive non-decreasing function f and g such that f(n) = O(g(n)). Is $2^{f(n)} = O(2^{g(n)})$?

1. Yes, for all such f and g

- 2. Never, no matter what f and g are
- 3. Sometimes yes, sometimes no, depending on the functions f and g
- 4. Yes, whenever $f(n) \leq g(n)$ for all sufficiently large n

(3) and (4) are correct. To see why we first disprove (1) by contradiction. Let $f(n)=2\cdot n$ and g(n)=n since f(n)=O(g(n)) then $2^{2\cdot n}\leq 2^n$ but $2^{2n}=4^n$ is clearly not $O(2^n)$ hence (1) is incorrect. (2) is also incorrect because if f(n)=g(n) then $2^{f(n)}\leq 2^{g(n)}$ which is true. Hence we have that (3) is correct, the correctness of the argument depends on the functions f and g. We now show that (4) is correct. Since

$$\begin{array}{cccc} 2^{f(n)} & \leq & c \cdot 2^{g(n)} \\ 1 & \leq & c \cdot 2^{g(n) - f(n)} \end{array}$$

This holds when $g(n) - f(n) \ge 0$ hence we have $g(n) \ge f(n)$. Thus (4) is correct.

11 Arrange the following function in order of increasing grow rate, with g(n) following f(n) in your list if and only if f(n) = O(g(n)).

- 1. \sqrt{n}
- 2. 10^n
- 3. $n^{1.5}$
- 4. $2^{\sqrt{\log_2 n}}$
- 5. $n^{\frac{5}{3}}$

The list is as followed $2^{\sqrt{log_2x}}, \sqrt{x}, x^{1.5}, x^{\frac{5}{2}}, 10^x$

12 Arrange the following functions in order of increasing growth rate, with g(n) following f(n) in your list if and only if f(n) = O(g(n)).

- 1. $n^2 log_2 n$
- $2. \ 2^n$
- 3. 2^{2^n}
- 4. n^{log_2n}
- 5. n^2

The list is as followed $n^2, n^2 \log_2 n, n^{\log_2 n} \ 2^n, \ 2^{2^n}$

13 Arrange the following functions in order of increasing growth rate, with g(n) following f(n) in your list if and only if f(n) = O(g(n)).

- 1. 2^{log_2n}
- 2. $2^{2^{\log_2 n}}$
- 3. $n^{\frac{5}{2}}$
- 4. 2^{n^2}
- 5. $n^2 log_2 n$

 $2^{\log_2 n}, n^2 \cdot \log_2 n, n^{\frac{5}{2}}, 2^{2^{\log_2 n}}, 2^{n^2}$