

NORMAL RANDOM FUNCTIONS

Why

We want to discuss real-valued random functions whose family of random variables have simple densities.¹

Definition

A normal random function is a real-valued random function whose family of real-valued random variables has the property that any subfamily is jointly normal.

For this reason, we call the family of random variables corresponding to the random function a *normal process* or *Gaussian process*.²

Notation

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space and A a set. Let $x : \Omega \to (A \to \mathbf{R})$ be a random function with family $y : A \to (\Omega \to \mathbf{R})$.

The random function x is a normal if, for all $a^1, \ldots, a^m \in A$, $(y(a^1), \ldots, y(a^m))$ is jointly normal.

Mean and covariance function

Proposition 1. Let $x : \Omega \to (A \to \mathbb{R})$ be a normal random function with family $X : A \to (\Omega \to \mathbb{R})$. There exists unique

¹Future editions will expand.

²As usual, The choice of "normal" is a result of the Bourbaki project's convention to eschew historical names. Though here, as in Multivariate Normals the language of the project is nonstandard.

functions $m: A \to \mathbf{R}$ and $k: A \times A \to \mathbf{R}$ so that the mean of the random variable X_a is m(a) for all A and the covariance of the random variables X_a and $X_{a'}$ is k(a, a') for all $a, a' \in A$.

For this reason, we call m the mean function and k the covariance function of the random function.

Conversely, suppose that we have function $m: A \to \mathbb{R}$ and $k: A \times A \to \mathbb{R}$. Then if k satisfies the property that for all a^1, \ldots, a^m , the $m \times m$ matrix

$$\begin{pmatrix} k(a^1, a^1) & \cdot k(a^1, a^m) \\ \vdots & \cdot \cdot \cdot & \vdots \\ k(a^m, a^1) & \cdot \cdot \cdot k(a^m, a^m) \end{pmatrix}$$

is positive semidefinite, then we can construct a Gaussian process from m and k as its mean and covariance function.

Random function interpretation

Many authorities discuss a normal random function as "putting a prior" on a "space" (see, for example, Real Function Space) of functions. One samples functions by drawing an outcome $\omega \in \Omega$, and then defining the sample $f: I \to \mathbb{R}$ by $f(i) = x(i)(\omega)$.

Multivariate normal special case

If the index set is finite, and can be ordered, then the normal random function is in one-to-one correspondence with the multivariate normal random vectors.

³Future editions may include an account.

