AUTOMATIC DIFFERENTIATION

KAIM Anand Krish

Agenda

- Differentiation Strategies
- Nuts & Bolts of Autodiff
 - Modes of Operation
- Autodiff for Deep Learning
- Tutorial

Differentiation

- ML algorithms require Gradients & Hessians for optimization
- Computers can perform differentiation in 3 ways
 - Numerical Differentiation
 - Easy to implement
 - Finite Approximations X
 - Prone to numerical error X
 - Slow and inefficient (scales poorly $\approx \mathcal{O}(d)$ in d dimensions)
 - Symbolic Differentiation
 - Efficient and accurate
 - Requires closed form expressions X
 - Difficult to implement X
 - Mathematica, Maple etc
 - Automatic Differentiation
 - Best of both worlds!!

Automatic Differentiation

- Breakdown complex function → list of Elementary functions (Wengert List)
 - Use Chain Rule!
- Can be applied for any computational structure
 - Sequential, recursive, branched or iterative
 - These does not alter the numeric values
 - Represented as a computation graph
- Which elementary functions?
 - Transcendental functions (exp, log, trigonometric)
 - Arithmetic
- Requires pre-computed derivatives of elementary functions
- Nothing "Automatic" in autodiff Algorithmic Differentiation is more proper.

Computation Graph

Computation graph of $f(x_1, x_2) = \log(x_1) + x_1x_2 - \sin(x_2)$

Intermediate Variables

 $v_{1} = \log(x_{1})$ $v_{2} = x_{1}x_{2}$ $v_{3} = \sin(x_{2})$ $v_{4} = v_{1} + v_{2}$ $f = v_{5} = v_{4} - v_{3}$

Backprop rule -

$$\dot{v}_i = \dot{v}_i + \dot{v}_{\{i+1\}} \frac{\partial v_{\{i+1\}}}{\partial v_i}$$

Forward Accumulation Mode

- Straight-forward chain rule
- Idea Jitter the input to see how to the output changes
- Suitable for functions with No. of inputs << No. of outputs</p>
 - Single pass can compute derivatives of all outputs for one input
 - N passes for N inputs, irrespective of no. of outputs.
 - Best suited for computing Jacobians (one pass computes one column);

$$\mathbf{J} = \begin{bmatrix} \nabla f_1 \\ \nabla f_2 \\ \nabla f_3 \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_1} \end{bmatrix}$$

Reverse Accumulation Mode

- Chain rule in reverse (Essentially the backpropagation algorithm)
- Idea jitter the output(s) and check how the inputs vary
- Suitable for functions with No. of inputs ≥ No. of outputs
 - This is the case for almost all neural networks
 - *M* passes for *M* outputs, irrespective of the no. of inputs
- Two phases:
 - **Forward phase** : Compute all the intermediate values
 - Reverse phase: Compute the gradients with respect to the previous values (fancy term - adjoint)
- Seems complex but number of operations (flops) are in fact less
 - Higher space complexity
- Speed Vs Space complexity trade-off

Autograd Package

- Developed by HIPS Group, Harvard University
- The following operations are done *dynamically*
 - Decompose a complex function into a compound list of elementary functions
 - Construct Computation graphs
 - Derivatives of complex functions
 - Fourier transforms, logsumexp, tensor operations etc.
- Pytorch and Chainer extends the functionality through -
 - In-place computations (no additional memory)
 - Require only the subset of computation graph
 - Enables multi-threading

QUESTION TIME