V203

Verdampfungswärme und Dampfdruck-Kurve

Julian Hochhaus julian.hochhaus@tu-dortmund.de

Niko Salewski niko.salewski@tu-dortmund.de

Durchführung: 2016-10-18 Abgabe: 2016-10-25

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3

1 Zielsetzung

2 Theorie

- Zustandsdiagramm:
 - Druck pgegen Temperatur Taufgetragen
 - Aggregatzustände (fest, flüssig, gasförmig) können als drei Bezirke abgegrenzt werden
 - Bezirke werden durch Kurven getrennt. Die Menge aller Tupel, die nicht auf einer Kurve liegen besitzen 2 Freiheitsgrade. Die Tupel auf der Kurve einen und das Tupel am Tripelpunkt (TP) besitzt keinen Freiheitsgrad
 - auf Kurven koexistieren zwei Aggregatzustände
 - Kurve, die AZ gasförmig und flüssig trennt heißt Dampfdruck-Kurve
 - -diese wird durch Verdampfungswärme ${\cal L}$ charakterisiert
 - * charakteristische Größe für jeden Stoff
 - * nicht konstant, hängt von Temperatur ab
 - * geht gegen 0, wenn sich Temperatur dem kritischen Punkt (KP) nähert.
 - * es existiert Temperatur-Bereich in dem L nahezu konstant
- Mikroskopische Vorgänge bei der Verdampfung