grade 100%

Practice quiz on Types of Functions

TOTAL POINTS 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function $f:A\to B$?

1 / 1 point

- f(1) = 4, f(2) = 4, and f(10) = 4.
- $\bigcirc \ f(a) = 4a$, for each $a \in A$
- f(1) = 4, f(2) = 40, and f(10) = 8.
- f(1) = 5, f(2) = 8, and f(10) = 40.
 - ✓ Correct

A function f:A o B is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1)=5\notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1 / 1 point

Suppose that T:A o Y is the function which gives T(a)=+ if person a tests positive and T(a)=- if they test negative.

Suppose that $D:A\to Z$ is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

- \bigcirc T(a) = + and D(a) = H
- $\bigcirc T(a) = + \text{ and } D(a) = S$
- $\bigcirc T(a) = \text{ and } D(a) = S$
- $\bigcirc \ T(a) = \ \mathsf{and} \ D(a) = H$

✓ Correct

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

3. Consider the function $g:\mathbb{R}\to\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are *not* on the graph of g?

1 / 1 point

- \bigcirc (1,0)
- \bigcirc (0,-1)
- $\bigcirc \ (-1,0)$
- \bigcirc (2,-1)

✓ Correct

Recall that the graph of g consists of all points (x,y) such that y=g(x). Here $g(2)=3\neq -1$, so the point (2,-1) is \emph{not} on the graph of g.

4. Let the point A = (2, 4). Which of the following graphs does *not* contain the point A?

 h is neither a strictly increasing function nor a strictly decreasing function. All statements are correct h is a strictly increasing function h is a strictly decreasing function ✓ correct A function h is called strictly decreasing if whenever a < b, then h(a) > h(b) Since the graph of h is a line with negative slope, this is in fact true! 	The graph of $s(x) = x^2$ The graph of $g(x) = x + 2$ The graph of $f(x) = 2x$ ✓ correct The graph of h consists of all points (x, y) such that $y = h(x)$. Here $h(2) = 1 \neq 4$, so the point $(2, 4)$ is not on the graph of h . 5. Suppose that $h(x) = -3x + 4$. Which of the following statements is true? • h is neither a strictly increasing function nor a strictly decreasing function. • A is a strictly increasing function • h is a strictly decreasing function • h is a line with negative slope, this is in fact true! 6. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with h is a line with of the following is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a suppose that h is a possible value for h is a			
The graph of $g(x) = x + 2$ The graph of $f(x) = 2x$ ✓ Correct The graph of h consists of all points (x,y) such that $y = h(x)$. Here $h(2) = 1 \neq 4$, so the point $(2,4)$ is not on the graph of h . 5. Suppose that $h(x) = -3x + 4$. Which of the following statements is true? h is neither a strictly increasing function nor a strictly decreasing function. All statements are correct h is a strictly increasing function ✓ Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true! 6. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with $f(3) = 15$ Which of the following is a possible value for $f(3.7)$? 17 3 14.7 -3 ✓ Correct A function f is called strictly increasing if whenever f is f in the following is a possible value for f is f in the following is a possible value for f in the following	The graph of $g(x) = x + 2$ The graph of $f(x) = 2x$ Correct The graph of h consists of all points (x,y) such that $y = h(x)$. Here $h(2) = 1 \neq 4$, so the point $(2,4)$ is not on the graph of h . Suppose that $h(x) = -3x + 4$. Which of the following statements is true? h is neither a strictly increasing function nor a strictly decreasing function. All statements are correct h is a strictly increasing function \bullet h is a strictly decreasing function \bullet h is a strictly increasing function h is in fact true! \bullet h is a strictly increasing function, with h			
 The graph of f(x) = 2x ✓ correct The graph of h consists of all points (x, y) such that y = h(x). Here h(2) = 1 ≠ 4, so the point (2, 4) is not on the graph of h. Suppose that h(x) = -3x + 4. Which of the following statements is true? h is neither a strictly increasing function nor a strictly decreasing function. All statements are correct h is a strictly increasing function A function h is called strictly decreasing if whenever a < b, then h(a) > h(b) Since the graph of h is a line with negative slope, this is in fact true! Suppose that f: R → R is a strictly increasing function, with f(3) = 15 Which of the following is a possible value for f(3.7)? 17 3 14.7 -3 14.7 -3 14.7 -3 15 is given and 3 < 3.7, it must be that 15 < f(3.7), and this answer satisfies 	The graph of $f(x) = 2x$ ✓ correct The graph of h consists of all points (x,y) such that $y = h(x)$. Here $h(2) = 1 \neq 4$, so the point $(2,4)$ is not on the graph of h . 5. Suppose that $h(x) = -3x + 4$. Which of the following statements is true? • h is neither a strictly increasing function nor a strictly decreasing function. • h is a strictly increasing function • h is a strictly decreasing function ✓ correct • A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true! 6. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with $f(3) = 15$ Which of the following is a possible value for $f(3.7)$? • 17 • 3 • 14.7 • 3 • 14.7 • 3 • 14.7 • 3 • 14.7 • 3 • 15 is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies			
The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1 \neq 4$, so the point $(2,4)$ is not on the graph of h . Suppose that $h(x)=-3x+4$. Which of the following statements is true? h is neither a strictly increasing function nor a strictly decreasing function. All statements are correct h is a strictly increasing function \bullet h is a strictly decreasing function \bullet h is a strictly decreasing function \bullet h is a strictly decreasing function \bullet h is a line with negative slope, this is in fact true! \bullet h is a line with negative slope, this is in fact true! \bullet h is a strictly increasing function, with h	✓ correct The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1 \neq 4$, so the point $(2,4)$ is not on the graph of h . 5. Suppose that $h(x)=-3x+4$. Which of the following statements is true? • h is neither a strictly increasing function nor a strictly decreasing function. • A is a strictly increasing function • h is a strictly increasing function • h is a strictly decreasing function • h is a strictly increasing function h is a line with negative slope, this is in fact true! • h is a strictly increasing function, with h is a line with negative slope, this is in fact true! • h is a strictly increasing function, with h is a line with negative slope, this is in fact true! • h is a strictly increasing function, with h is a line with negative slope, this is in fact true! • h is a strictly increasing function, with h is a line with negative slope, this is in fact true! • h is a strictly increasing function h is a line with negative slope, this h is a strictly increasing function, with h is a strictly increasing function h is a strictly decreasing function.		\bigcirc The graph of $g(x)=x+2$	
The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1 \neq 4$, so the point $(2,4)$ is not on the graph of h . 5. Suppose that $h(x)=-3x+4$. Which of the following statements is true? (a) h is neither a strictly increasing function nor a strictly decreasing function. (b) h is a strictly increasing function (c) h is a strictly decreasing function (e) h is a strictly decreasing function (f) h is a strictly decreasing function (g) h is a strictly decreasing function (g) h is a strictly decreasing function (g) h is a strictly increasing function (g) h is a strictly increasing function (g) h is a strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ (g) Since the graph of h is a line with negative slope, this is in fact true! (g) h is a strictly increasing function, with h is in fact true! (g) h is a strictly increasing function, with h is in fact true! (g) h is a strictly increasing function, with h is in fact true! (g) h is a strictly increasing function, with h is in fact true! (g) h is a strictly increasing function, with h is in fact true! (g) h is a strictly increasing function in fact true! (g) h is a strictly increasing function in fact true! (g) h is a strictly increasing function in fact true! (g) h is a strictly increasing function in fact true! (g) h is a strictly increasing function in h is a strictly increasing function.	The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1 \neq 4$, so the point $(2,4)$ is not on the graph of h . 5. Suppose that $h(x)=-3x+4$. Which of the following statements is true? (a) h is neither a strictly increasing function nor a strictly decreasing function. (b) h is a strictly increasing function (c) h is a strictly decreasing function (e) h is a strictly decreasing function (f) h is a strictly decreasing function (g) h is a strictly decreasing function (g) h is a strictly increasing function (g) h is a strictly decreasing function (g) h is a strictly increasing function (g) h is a strictly increasing function (g) h is a strictly increasing function in fact true! (g) h is a strictly increasing function, with h is in fact true! (g) h is a strictly increasing function, with h is in fact true! (g) h is a strictly increasing function, with h is in fact true! (g) h is a strictly increasing function, with h is a line with negative slope, this is in fact true! (g) h is a strictly increasing function in fact true! (g) h is a strictly increasing function in fact true! (g) h is a strictly increasing function in fact true! (g) h is a strictly increasing function in h is a line with negative slope, this is in fact true! (g) h is a strictly increasing function in h is a line with negative slope, this is in fact true! (g) h is a strictly increasing function in h is a line with negative slope, this is in fact true! (g) h is a strictly increasing function in h is a line with negative slope, this is in fact true! (g) h is a strictly increasing function in h is a line with negative slope, this is in fact true! (g) h is a strictly increasing function in h is a line with negative slope, this is in fact true!		\bigcirc The graph of $f(x)=2x$	
 h is neither a strictly increasing function nor a strictly decreasing function. A All statements are correct h is a strictly increasing function \bullet h is a strictly decreasing function \bullet \bullet \bullet is a strictly decreasing function \bullet Correct A function \bullet is called strictly decreasing if whenever \bullet \bullet \bullet, then \bullet \bullet \bullet \bullet is a line with negative slope, this is in fact true! 6. Suppose that \bullet \bullet \bullet is a strictly increasing function, with \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet	 h is neither a strictly increasing function nor a strictly decreasing function. A is a strictly increasing function \bullet h is a strictly decreasing function \bullet h is a strictly decreasing function \bullet \bullet h is a strictly decreasing function \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet		The graph of h consists of all points (x,y) such that $y=h(x).$ Here $h(2)=1 eq 4$, so the point	
All statements are correct h is a strictly increasing function	All statements are correct h is a strictly increasing function	5.	Suppose that $h(x)=-3x+4$. Which of the following statements is true?	1 / 1 poi
All statements are correct h is a strictly increasing function	All statements are correct h is a strictly increasing function			
 h is a strictly increasing function h is a strictly decreasing function ✓ Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true! Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with $f(3) = 15$ Which of the following is a possible value for $f(3.7)$?	 h is a strictly increasing function h is a strictly decreasing function ✓ Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true! Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with $f(3) = 15$ Which of the following is a possible value for $f(3.7)$?			
• h is a strictly decreasing function Verrect A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true! 6. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with $f(3) = 15$ Which of the following is a possible value for $f(3.7)$? 17 3 14.7 -3 Verrect A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies	• h is a strictly decreasing function ✓ Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true! 6. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with $f(3) = 15$ Which of the following is a possible value for $f(3.7)$? ① 17 ③ 3 ① 14.7 ○ -3 ✓ Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies			
Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true! 6. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with $f(3) = 15$ Which of the following is a possible value for $f(3.7)$? 17 3 14.7 -3 Vorrect A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies	Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true! 6. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with $f(3) = 15$ Which of the following is a possible value for $f(3.7)$? 17 3 14.7 -3 Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies			
A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true! Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with $f(3) = 15$ Which of the following is a possible value for $f(3.7)$? 17 3 14.7 -3 Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies	A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true! Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with $f(3) = 15$ Which of the following is a possible value for $f(3.7)$? 17 3 14.7 -3 Vorrect A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies		it is a strictly decreasing function	
Which of the following is a possible value for $f(3.7)$? ① 17 ② 3 ② 14.7 ③ -3 ✓ Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies	Which of the following is a possible value for $f(3.7)$? ① 17 ② 3 ② 14.7 ③ -3 ✓ Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies		A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$	
● 17 ○ 3 ○ 14.7 ○ -3 ✓ Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies	● 17 ○ 3 ○ 14.7 ○ -3 ✓ Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies	6.	Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$	1/1 po
\bigcirc 3 \bigcirc 14.7 \bigcirc -3 \checkmark Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies	\bigcirc 3 \bigcirc 14.7 \bigcirc -3 \bigcirc Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies		Which of the following is a possible value for $f(3.7)$?	
\bigcirc 14.7 \bigcirc \bigcirc 3 \bigcirc Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies	\bigcirc 14.7 \bigcirc \bigcirc 3 \bigcirc Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies		17	
\bigcirc -3 \checkmark Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies	\bigcirc -3 \checkmark Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3)=15$ is given and $3<3.7$, it must be that $15< f(3.7)$, and this answer satisfies		\bigcirc 3	
\checkmark Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3)=15$ is given and $3<3.7$, it must be that $15 < f(3.7)$, and this answer satisfies	\checkmark Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3)=15$ is given and $3<3.7$, it must be that $15 < f(3.7)$, and this answer satisfies		O 14.7	
A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3)=15$ is given and $3<3.7$, it must be that $15< f(3.7)$, and this answer satisfies	A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3)=15$ is given and $3<3.7$, it must be that $15 < f(3.7)$, and this answer satisfies		○ -3	