数据分析DAY02

matplotlib概述

matplotlib是python的一个绘图库,使用它可以很方便的绘制出版质量级别的图形.

matplotlib的基本功能

1. 基本绘图

- 1. 绘制坐标系中连续的线,设置线型/线宽/颜色
- 2. 设置坐标轴的范围
- 3. 设置坐标刻度
- 4. 设置坐标轴
- 5. 显示图例
- 6. 绘制特殊点
- 7. 为图像添加备注.
- 2. 高级绘图
 - 1. 绘制子图

- 2. 刻度定位器
- 3. 刻度网格线
- 4. 半对数坐标
- 5. 散点图
- 6. 图像填充
- 7. 条形图
- 8. 饼图

matplotlib基本功能详解

基本绘图

绘制一条线的相关API:

```
import numpy as ap
```

import matplotlib.pyplot as mp

#xarray: 散点的x坐标数组

#yarray: 散点的y坐标数组

mp.plot(xarray, yarray)

mp.show()

绘制水平线与垂直线相关API:

```
#绘制一条垂直x轴的线,需要给x坐标值value,指定y坐标范围
mp.vlines(value, ymin, ymax, ..)
#绘制一条垂直y轴的线,需要给y坐标值value,指定x坐标范围
mp.hlines(value, xmin, xmax, ..)
```

线型/线宽/颜色

```
#linestyle: 线型
   # - or solid 直线
   # -- or dashed 虚线
   # -. or dashdot 点虚线
   #: or dot 点线
#linewidth:线宽(数字代表n倍线宽)
#color: 英文的颜色单词 或 常见颜色单词的首字
母或
       #abcdef 或 (1, 1, 0.7) 或 (1,
1, 1, 1)
#alpha: 设置透明度 0~1 0为完全透明
mp.plot(xarray, yarray,
```

```
linestyle='', #线型
linewidth=1, #线宽
color='', #颜色
alpha=0.5 #透明度
```

设置坐标轴范围

设置图像的可视区域.

```
#x_lim_min: 可视区域x的最小值

#x_lim_max: 可视区域x的最大值

mp.xlim(x_lim_min, x_lim_max)

#同上

mp.ylim(y_lim_min, y_lim_max)
```

设置坐标刻度

```
#设置x轴的坐标刻度

#x_val_list: 坐标值列表

#x_text_list: 坐标刻度列表

mp.xticks(x_val_list, x_text_list)

mp.yticks(y_val_list, y_text_list)
```

刻度文本的特殊语法 -- LaTex排版语法规范(参考附录)

\$ $x^2 + y^2 = z^2, -\frac{pi}{2}$ \$

$$x^2 + y^2 = z^2, -rac{\pi}{2}$$

设置坐标轴

坐标轴包含四个: left / right / bottom / top

```
# getCurrentAxis 获取当前坐标轴对象
ax = mp.gca()
axl = ax.spines['left']
axr = ax.spines['right']
...

# 设置坐标轴的颜色
axl.set_color()
# 设置坐标轴的位置
# ('data', 0) 以坐标值作为定位参考,设置坐标轴到0位置
axl.set_position((type, val))
```

显示图例

```
# 自动在窗口中某个位置添加图例
#添加图例需要在调用mp.plot()绘制曲线时设置
label参数
mp.plot(..., label='y=sin(x)')
# 通过loc参数设置图例的位置
# Location String Location Code
# 'best'
                 \mathbf{0}
# 'upper right'
                 1
# 'upper left'
                 2
# 'lower left'
# 'lower right'
                 4
# 'right'
                 5
# 'center left'
                 6
# 'center right'
# 'lower center'
                 8
# 'upper center'
              9
# 'center'
                 10
===========
mp.legend(loc='')
```

绘制特殊点

marker点型详见附录

添加备注文本

```
mp.annotate(
                    # 备注内容
                    # 备注目标点使用
   xycoords='',
的坐标系
   xy=(x, y),
                   # 备注目标点的坐
标
   textcoords='', # 备注文本使用的
坐标系
   xytext=(x, y),
                   # 备注文本的坐标
   fontsize=14,
                   # 备注文本字体大
//\
   arrowprops=dict() # 指示箭头的属性
)
```

arrowprops参数使用字典定义指向目标点的箭头样式

```
arrowprops=dict(
    arrowstyle='', # 定义箭头样式
    connectionstyle='' # 定义连接线的样
式
)
```

arrowstyle参见help(mp.annotate)

高级图形窗口对象操作

一次绘制两个窗口

```
mp.figure(
'', # 窗口标题
figsize=(4, 3), # 窗口大小
facecolor='' # 窗口颜色
)
mp.show()
```

mp.figure()方法可以创建多个窗口,每个窗口的标题不同.后续调用mp的方法进行绘制时将作用于当前窗口.如果希望修改以前已经创建过的窗口,可以通过相同的窗口标题调用mp.figure()方法把该窗口置为当前窗口.

设置当前窗口的常用参数

```
#设置图表的标题
mp.title('', fontsize=18)
#设置窗口中x坐标轴的文本即y坐标轴的文本
mp.xlabel('', fontsize=12)
mp.ylabel('', fontsize=12)
#设置刻度参数(刻度字体大小)
mp.tick_params(labelsize=8)
#设置图表网格线
mp.gird(linestyle=':')
#设置紧凑布局
mp.tight_layout()
```

绘制子图

矩阵式布局

```
mp.figure('')
# 开始绘制一个子图
# 通过参数rows与cols拆分当前窗口,每个子窗口都将分配一
# 个序号,1~x
mp.subplot(rows, cols, 1)
mp.title()
mp.grid()
mp.subplot(2, 3, 2)
mp.subplot(233)
mp.show()
```

案例:绘制九宫格子图,每个子图写一个文本.

```
import numpy as np
import matplotlib.pyplot as mp
mp.figure('Sub Layout',
facecolor='gray')
for i in range(1, 10):
    mp.subplot(3, 3, i)
    mp.text(0.5, 0.5, i, ha='center',
            va='center', size=36,
alpha=0.8)
    mp.xticks([])
    mp.yticks([])
    mp.tight_layout()
mp.show()
```

网格式布局

```
import matplotlib.gridspec as mg
mp.figure('')
# 该方法将会返回子图的二维数组
gs = mg.GridSpec(3, 3)
# 通过subplot对子图进行合并
# gs[0, :2]->合并0行中的0/1列作为1个子图进
行绘制
mp.subplot(gs[0, :2])
mp.show()
```

自由布局

```
mp.figure('')
# left_bottom_x:子图左下角点的横坐标
# left_bottom_y:子图左下角点的纵坐标
# w: 宽度
# h: 高度
mp.axes([left_bottom_x,
left_bottom_y,w, h])
mp.show()
```

刻度定位器

```
# 获取当前坐标轴
ax = mp.gca()
# 设置x轴的主刻度定位器为NullLocator()
ax.xaxis.set_major_locator(mp.NullLocator())
# 设置x轴的次刻度定位器为MultipleLocator()
ax.xaxis.set_minor_locator(mp.MultipleLocator())
```

案例: 画个数轴

```
for i, locator in enumerate(locators):
    mp.subplot(len(locators), 1, i +
1)
    mp.xlim(0, 10)
    mp.ylim(-10, 10)
    mp.yticks([])
    ax = mp.gca()
    ax.spines['top'].set_color('none')
 ax.spines['left'].set_color('none')
 ax.spines['right'].set_color('none')
 ax.spines['bottom'].set_position(('da
ta', 0))
 ax.xaxis.set_major_locator(eval(locat
or))
    ax.xaxis.set_minor_locator(
        mp.MultipleLocator(0.1))
```

刻度网格线

半对数坐标系

y轴将会以指数方式递增.

```
mp.figure()
mp.semilogy(x, y, ....)
mp.show()
```

绘制散点图

```
mp.scatter(
    xarray,
    yarray,
    marker='',
    s=10,
    color='',
    edgecolor='',
    facecolor='',
    zorder=3
)
```

使用numpy.random的normal函数生成符合二项分布的随机数.

```
n = 100

# 172: 期望值

# 20: 标准差

# n: 数字生成数量

x = np.random.normal(172, 20, n)

y = np.random.normal(60, 10, n)
```

设置点的颜色

```
# d的值是一个大于0的数
# 若所有点计算出的d处于[0-1000]区间
# 那么绘制该点时所使用的颜色,可以根据d的值去
jet颜色映射
# 表中取值(即如果d取值为500,则使用jet颜色映
射表中最中心
# 的颜色值)
d = (x-172)**2 + (y-60)**2
mp.scatter(x, y, c=d, cmap='jet')
```

附录

LaTex语法字符串

表 3.1: 数学模式重音符

\hat{a}	\hat{a}	\check{a}	\check{a}	\tilde{a}	\hat{a}	\dot{a}	\acute{a}
\grave{a}	\grave{a}	\dot{a}	\dot{a}	\ddot{a}	\ddot{a}	ă	\breve{a}
\bar{a}	\bar{a}	\vec{a}	\vec{a}	\widehat{A}	\widehat{A}	\widetilde{A}	\widetilde{A}

表 3.2: 小写希腊字母

α	\alpha	θ	\theta	0	o	v	\upsilon
β	\beta	ϑ	\vartheta	π	\pi	ϕ	\phi
γ	\gamma	ι	\iota	\overline{w}	\varpi	φ	\varphi
δ	\delta	κ	\kappa	ρ	\rho	χ	\chi
ϵ	\epsilon	λ	\lambda	ρ	\varrho	ψ	\psi
ε	\varepsilon	μ	\mu	σ	\sigma	ω	\omega
ζ	\zeta	ν	\nu	ς	\varsigma		
η	\eta	ξ	\xi	τ	\tau		

表 3.3: 大写希腊字母

Γ	\Gamma	Λ	\Lambda	Σ	\Sigma	Ψ	\Psi
Δ	\Delta	Ξ	\Xi	Υ	\Upsilon	Ω	\Omega
Θ	\Theta	П	\Pi	Φ	\Phi		

表 3.4: 二元关系符

下述命令的前面加上 \not 来得到其否定形式。

<	<	>	>	=	=
\leq	\leq or \le	\geq	\geq or \ge	\equiv	\equiv
\ll	\11	\gg	\gg	÷	\doteq
\prec	\prec	\succ	\succ	\sim	\sim
\preceq	\preceq	≽	\succeq	$ \simeq $	\simeq
\subset	\subset	\supset	\supset	\approx	\approx
\subseteq	\subseteq	\supseteq	\supseteq	\cong	\cong
	\sqsubset a	\Box	\sqsupset a	\bowtie	\Join a
	\sqsubseteq	\supseteq	\sqsupseteq	\bowtie	\bowtie
\in	\in	∋	\ni , \owns	\propto	\propto
\vdash	\vdash	\dashv	\dashv	=	\models
	\mid		\parallel	\perp	\perp
$\overline{}$	\smile	$\overline{}$	\frown	\times	\asymp
:	:	∉	\notin	\neq	\neq or \ne

表 3.5: 二元运算符

+	+	_	-		
\pm	\pm	\mp	\mp	⊲	\triangleleft
	\ - 4 - 4-		\ aa	-	\

		\caot	÷	\a1v	D	\triangierignt			
	×	\times	\	\setminus	*	\star			
	U	\cup	\cap	\cap	*	\ast			
	Ш	\sqcup	П	\sqcap	0	\circ			
	V	\vee , \lor	\wedge	\wedge , \land	•	\bullet			
	\oplus	\oplus	\ominus	\ominus	\Diamond	\diamond			
	\odot	\odot	\oslash	\oslash	$\boldsymbol{\mathbb{H}}$	\uplus			
	\otimes	\otimes	\circ	\bigcirc	П	\amalg			
	Δ	\bigtriangleup	∇	\bigtriangledown	†	\dagger			
	⊲	$\backslash 1$ hd a	\triangleright	\rhd a	‡	\ddagger			
	⊴	$\$ unlhd a	≥	\unrhd a	?	\wr			
([{ /		or \rflo	\rbra \rbr gle	race \updownarro or \vert \lceil		↑ \Uparrow ↓ \Downarrow ↑ \Updownarrow \ or \Vert ↑ \rceil			
	表 3.9: 大尺寸定界符								
	1		group rrowv	,		\rmoustache			

\begin{displaymath}
\sum_{i=1}^{n} \qquad
\int_{0}^{\frac{\pi}{2}} \qquad
\prod_\epsilon
\end{displaymath}

 $\sum_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \prod_{\epsilon}$

 a_{1} \qquad \$x^{2}\$ \qquad \$e^{-\alpha t}\$ \qquad \$a^{3}_{ij}\$\\ \$e^{x^2} \neq {e^x}^2\$

 $a_1 x^2 e^{-\alpha t} a_{ij}^3$ $e^{x^2} \neq e^{x^2}$

\$\sqrt{x}\$ \qquad
\$\sqrt{ x^{2}+\sqrt{y} }\$
\qquad \$\sqrt[3]{2}\$\\[3pt]
\$\surd[x^2 + y^2]\$

 $\sqrt{x} \qquad \sqrt{x^2 + \sqrt{y}} \qquad \sqrt[3]{2}$ $\sqrt{[x^2 + y^2]}$

\$1\frac{1}{2}\$~hours
\begin{displaymath}
\frac{ x^{2} }{ k+1 }\qquad
x^{ \frac{2}{k+1} }\qquad
x^{ 1/2 }
\end{displaymath}

 $1\frac{1}{2} \, \text{hours}$ $\frac{x^2}{\frac{1}{k+1}} = x^{\frac{2}{k+1}} = x^{1/2}$

