

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: sns.set(style="whitegrid")
plt.rcParams["figure.figsize"] = (10, 5)

In [3]: # Load dataset
df = pd.read_csv(r"C:\Users\HP\Downloads\archive (2)\train.csv")
df
```

Out[3]:		Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segme
	0	1	CA-2017-152156	08/11/ 2017	11/ 11/ 2017	Second Class	CG-12520	Claire Gute	Consun
	1	2	CA-2017-152156	08/11/ 2017	11/ 11/ 2017	Second Class	CG-12520	Claire Gute	Consun
	2	3	CA-2017-138688	12/06/ 2017	16/ 06/ 2017	Second Class	DV-13045	Darrin Van Huff	Corpora
	3	4	US-2016-108966	11/10/ 2016	18/ 10/ 2016	Standard Class	SO-20335	Sean O'Donnell	Consun
	4	5	US-2016-108966	11/10/ 2016	18/ 10/ 2016	Standard Class	SO-20335	Sean O'Donnell	Consun
	9795	9796	CA-2017-125920	21/05/ 2017	28/ 05/ 2017	Standard Class	SH-19975	Sally Hughsby	Corpora
	9796	9797	CA-2016-128608	12/01/ 2016	17/ 01/ 2016	Standard Class	CS-12490	Cindy Schnelling	Corpora
	9797	9798	CA-2016-128608	12/01/ 2016	17/ 01/ 2016	Standard Class	CS-12490	Cindy Schnelling	Corpora
	9798	9799	CA-2016-128608	12/01/ 2016	17/ 01/ 2016	Standard Class	CS-12490	Cindy Schnelling	Corpora
	9799	9800	CA-2016-128608	12/01/ 2016	17/ 01/ 2016	Standard Class	CS-12490	Cindy Schnelling	Corpora

```
In [4]: # Drop duplicates
         df.drop duplicates(inplace=True)
 In [5]: # Clean the dataset
         df.columns = df.columns.str.strip().str.lower().str.replace(' ', ' ')
         df['order date'] = pd.to datetime(df['order date'], dayfirst=True)
         df['ship date'] = pd.to datetime(df['ship date'], dayfirst=True)
In [6]: # Check for missing values
         df.isnull().sum()
Out[6]: row id
                           0
         order id
                           0
         order date
                           0
         ship date
                           0
         ship mode
                           0
         customer id
         customer name
         segment
                           0
         country
                           0
         city
                           0
         state
                           0
         postal_code
                          11
                           0
         region
                           0
         product id
         category
                           0
         sub-category
                           0
         product name
                           0
         sales
                           0
         dtype: int64
 In [7]: import warnings
         warnings.filterwarnings('ignore')
In [10]: #sales by category
         category sales = df.groupby('category')['sales'].sum().sort values(ascending=F
         sns.barplot(x=category_sales.values, y=category_sales.index, palette='Blues_r'
         plt.title("Total Sales by Category")
         plt.xlabel("Sales ($)")
         plt.ylabel("Category")
         plt.show()
```


Sales by Category - Key Insights

- Technology leads in sales high demand and high-value items.
- Furniture has moderate sales room for growth.
- Office Supplies has lowest sales frequent but low-value purchases.

```
In [11]: #"Top 10 States by Total Sales
top_states = df.groupby('state')['sales'].sum().sort_values(ascending=False).h
sns.barplot(x=top_states.values, y=top_states.index, palette='coolwarm')
plt.title("Top 10 States by Total Sales")
plt.xlabel("Sales ($)")
plt.ylabel("State")
plt.show()
```


Top 10 States by Sales - Key Insights

- California dominates sales by a large margin it's the primary revenue driver.
- New York, Texas, and Washington follow with strong performance.
- Other top states (e.g., Michigan, Pennsylvania) contribute steadily but with lower volume.

```
In [13]: #Sales by Region
    region_sales = df.groupby('region')['sales'].sum().sort_values()

sns.barplot(x=region_sales.values, y=region_sales.index, palette='Spectral')
    plt.title("Sales by Region")
    plt.xlabel("Sales ($)")
    plt.ylabel("Region")
    plt.show()
```


Sales by Region - Key Insights

- West region leads in total sales, followed by East.
- Central and South regions have lower sales comparatively.
- Strengthen marketing in Central and South to balance regional performance.

♦ Summary:

- Technology is the top-selling category.
- California leads all states in total sales.
- West region outperforms others in revenue.

Recommendation: Boost marketing in underperforming regions and expand high-profit categories.

In []: