SETTING METHOD FOR DECENTRALIZED SYSTEM

Publication number: JP2000269998 (A)

Also published as:

Publication date: 2000-09-29

JP3757669 (B2)

Inventor(s):

AIZONO TAKEO; KONO KATSUMI +

Applicant(s):

HITACHI LTD +

Classification: - international:

G06F13/00; H04L12/28; H04L12/40; H04Q9/00; G06F13/00; H04L12/28; H04L12/40; H04Q9/00; (IPC1-7): G06F13/00;

HU4L12/20; HU4L12/40; HU4Q3/

H04L12/28; H04L12/40; H04Q9/00

- European:

Application number: JP19990075004 19990319 Priority number(s): JP19990075004 19990319

Abstract of JP 2000269998 (A)

PROBLEM TO BE SOLVED: To facilitate setting and information management of devices by automatically recognizing devices connected via networks, gathering information that the devices holds, generating information for setting the devices according to the gathered information, and setting the generated information in the devices and actualizing a communication between the devices. SOLUTION: A controller 110 communicates with devices via a network 100 for control, for example, conveyors in a production line. A computer 120 is connected even to a network 150. The network 150 is connected to the Internet via a gateway 151 and is able to communicate with a computer 161 connected to another network 160 through another gateway 152. The network 150 and network 160 are networks, such as Ethernet(R) computer, which allow computers to communicate with each other. Here, the controller 110 may be any computer which can execute a control program.

Data supplied from the espacenet database -- Worldwide

(19)日本国外部庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-269998 (P2000-269998A)

(43)公開日 平成12年9月29日(2000.9.29)

(51) Int.Cl.7		戲別記号	FI	ゲーマコート*(参考)
H04L	12/40		H04L 11/00	320 5B089
G06F	13/00	3 5 7	C 0 6 F 13/00	357A 5K032
H04L	12/28		H 0 4 Q 9/00	301D 5K033
H04Q	9/00	3 0 1	H 0 4 L 11/00	310D 5K048

		審查請求	未請求 請求項の数5 〇L (全 14 頁)			
(21)出顧番号	特顯平11-75004	(71)出願人	000005108 株式会社日立製作所			
(22) 出顧日	平成11年3月19日(1999.3.19)	東京都千代田区神田駿河台四丁目6番地				
		(72)発明者	相随 - 出生 神奈川県川崎市麻生区王禅寺1099番地 株 式会社日立製作所システム開発研究所内			
		(72)発明者	河野 克己 神奈川県川崎市麻生区王禅寺1099番地 株 式会社打立製作所システム開発研究所内			
		(74)代理人	100068504 弁理士 小川 勝男			

最終頁に続く

(54) 【発明の名称】 分散システムの設定方法

(57)【要約】

【課題】本発明は、複数の機器をネットワークに接続し て構成する分散システムにおいて、自動的に機器を設定 して相互に通信を行うことを可能にする分散システムの 設定方式に関する。

【解決手段】複数の機器をネットワークに接続して構成 した分散システムにおいて、ネットワークに接続された 機器を自動的に検出するステップと、検出された機器よ り機器が保持する情報を読み込むステップと、読み込ん だ情報をもとにシステム構成を判断して通信を行うのに 必要な構築情報を生成するステップと、生成された構築 情報を各機器に設定するステップを実行することのよ り、機器間の通信設定を自動的に行うことを可能とす 3.

図1

【特許請求の範囲】

【請求項1】ネットワークに接続された複数の機器により構成される分散システムの設定方法であって、ネッ ウ 利成される分散システムの設定方法であって、ネッ ウークに接続された機器を検制するステップと、収集された情 報をもとに機器に設定する情報を判断するステップと、 判断された情報を機器に設定するステップとからなる分 散システムの設定方法。

【請求項2】請求項1記載の分散システムの設定方法に おいて、ネットワークに計算機を接続し、該計算機にイ ンストールされた構築ツールにより、機器を設定する分 散システムの設定方法。

【請求項3】請求項2記載の分散システムの設定方法に おいて、構築ツールが機器に関する情報を持たず、機器 より収集した情報のみに基づいて機器の設定を行う分散 システムの設定方法。

【請求項4】請求項1記載の分散システムの設定方法に おいて、ネットワーク上にノードアドレスを植物したメ ッセージをプロードキャストし、該メッセージのノード アドレスと同じノードアドレスが設定されたノードが応 答を送信し、該応答を受信することにより該ノードアド レスが設定されたノードがネットワークに接続されてい ドを自動物に検出する分散システムの設定方法。

【請求項5】ネットワークに接続された複数の機器により構成される分散システムの設定方法であって、ネットワークに接続された機器と自動的に検出するステップと、検出された機器より情報を収集するステップと、火銀された情報をもとに機器に設定する情報を判断するステップと、判断した設定情報が問題っているときにはユーザインターフェースより入力された情報に基づいて修正するステップと、修正された情報を機器に設定するステップとからな分散システムの設定方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ネットワークに接続された複数の機器と計算機により構成される分散システムにおいて、これらのノード間でデータを授受するのに必要な各ノードの設定を行う分散システムにおける設定方法に関する。

[0002]

【従来の技術】ネットワークに複数の計な機と少なくと 61つのアリンタが接続され、計算機にインストールさ れたアプリケーションプログラムより印刷要求がある と、該計算機に接続されたローカルプリンタが存在する か否かを判断したのち、ローカルプリンタが存在する か否はでは実践が自内のファイルを読み込でネット ワークに接続されたリモートプリンタの接続処理を自動 的に行うパソコンネットワークにおけるプリング接続 ひかの限定方式が、例えば特開平6-242903にお いて示されている。

[00003]

【発明が解決しようとする課題】従来の設定方式により 機器の設定を行った場合、該機器と通信を確立するため に該機器に関する情報が必要であった。例えば、新しい 機器をネットワークに接続した場合、該機器と通信する ためには、機器の開発メーカーより通信ドライバなどの ソフトウエアやデータを入手して、該機器と通信するた めの接続処理を行わなければならなかった。このため、 多数の機器がネットワークに接続されるシステムでは入 手しなければならない機器情報が増え、該情報の入手や 管理が困難になるといった問題が生じた。特に、機器の 追加やリプレースが頻繁に発生するシステムでは、頻繁 に機器情報を入手し、これらの情報の追加や入れ替えも 頻繁に行わなければならず、機器情報の管理が一層困難 になる。また、管理している機器情報を更新せずに、機 器の取り外しや変更を行うことにより、実際にネットワ 一クに接続された機器とこれらの機器に関する機器情報 とが一致しなくなるといった問題が生じ、システムの管 理を非常に困難なものにしていた。

【0004】本発明では、多数の機器が接続された分散 システムにおいて、機器の設定と機器の情報管理が困難 であるという課題を解決することを目的とする。 【0005】

【課題を解決するための手段】上記課題を解決するため、本場明における設定方式では、(1)ネットワーク 接続された機器を自動的に認識し、(2)認識された該 機器から減機器が保持する情報を収集し、(3)収集された該情報に基づいて機器の設定を行うのに必要な情報 を生成し、(4)生成された該情報を機器に設定することにより機器間の通信を実現すること、を特徴とする。 【0006】

【発明の実施の形態】本発明における第1の実施例を説明する。

【0007】本発明における第1の実施例では、生産シ ステムにおける機器の設定方式を例に説明する。図1は 本発明におけるシステムの構成例である。コントローラ 110と機器111、機器112、機器113、機器1 14がネットワーク100に接続されている。機器11 1と機器112はセンサーなどの生産ラインの情報を収 集する入力機器であり、機器113と機器114はモー ター制縦などを行う生産ラインを動かす出力機器であ る。コントローラ110は、ネットワーク100を介し てこれらの機器と通信を行い、例えば生産ラインのコン ベアを制御する。このシステムでは、コントローラ11 Oにより機器を集中制御する。計算機120は、ネット ワーク100に接続されたノードを設定するための構築 ツールをインストールしており、計算機120の構築ツ ールはネットワーク100を介して、コントローラ10 0、機器111、機器112、機器113、機器114 を設定する。計算機120は、ネットワーク150は 接続されている。ネットワーク150は、ゲートウエイ 151を介してインターネットに接続され、他のゲート ウエイ 152を介して他のネットワーク160は続された計算機161と通信することができる。ネットワーク150とネットワーク160は、例えばイーサネット などの計算機間で通信を行うためのネットワークである。ここで、コントローラ110は制御プログラムを実 でできるものであればよく、計算機であってもよい。また、機器と計算機を接続するネットワーク100はノード間で相互にデータを交換できる手段であればバス型のネットワークでなくてもよく、無線通信などの手段を用いてもよい。

【0008】ネットワーク100に接続された機器とコ ントローラの構成例を図2示す。ネットワーク200に 接続された機器250は、通信や機器の制御を行う制御 部260と、機械的あるいは電気的に機器を駆動する機 械部270により構成される。例えば、光センサーの場 合、機械部270は赤外線などを送信して物体を検出す る部分であり、検出結果を電気信号として制御部260 に伝達する。制御部260は、この電気信号をデジタル 信号に変換したり、工学値に変換するなどの処理を行 い、メッセージにこの処理結果を格納してネットワーク 200に送信する。制御部260は、ネットワーク10 0上の信号を処理するトランシーバ206、メッセージ の組み立てなどの通信制御を行う通信プロセッサ20 機器の制御プログラムを実行するプロセッサ20 2、通信や機器の制御プログラムと種々のデータを格納 するための不揮発性記憶装置であるROM203、プロ グラムを実行する際に使用する揮発性記憶装置であるR AM204、機械部270とデータを交換するためのI ✓Oインターフェース205により構成される。I ✓O インターフェース205には、I/O(207)が接続 され、制御部260はこの1/0インターフェース20 5を介して機械部270からの信号の入力および機械部 270への信号の出力を行う。プロセッサ201、プロ セッサ202、ROM203、RAM204、I/Oイ ンターフェース205は内部バス210に接続されてお り、相互にデータを交換することができる。コントロー ラは、プロセッサ202の処理能力、ROM203とR AM204の記憶容量が機器と異なる。またI/Oイン ターフェース205と機械部270は備えていない。他 の構成は機器250と同じである。

【0009】ネットワーク100を介して多ノードが送 受信するメッセージのフォーマットを図3に示す。メッ セージ300は、識別子301、アドレス302、デー タ303により構成される。識別子301はメッセージ を識別するために付与される文字列であり、アドレス3 02はネットワーク100に接続された各ノードのノー ドアドレスであり、データ303はセンサーの測定結果 やモーターを削削するたかの制削データなどである。アドレス302には、メッセージを送信したノードのノードアドレス、あるいはメッセージを送信する先のノードアドレスなどが設定される。メッセージ300を受信したノードは、メッセージの識別子301により、アドレスが何を示すかを判断する。ネットワーク100は接続された各ノードは、メッセージ300に付与された説別子301、あるいは、説別子301とアドレス302により、メッセージ300を受信するか否かを判断する。

【0010】各ノードの設定を行う構築ツールは、ネッ トワーク100に接続されたノードを自動的に認識す る。このときのデータの流れを図4に示す。構築ツール は処理を開始すると、まずネットワークに接続されてい るノードを全て検出する。図4(a)に示すように、ネ ットワーク400にコントローラ410、入力機器41 1、入力機器412、出力機器413、構築ツール43 0をインストールした計算機420が接続されている。 ネットワーク400に接続される各ノードには重複しな いようノードアドレスが付与される。ノードアドレス は、ディプスイッチまたはローカルな端末などにより各 ノードに事前に設定される。構築ツール430は、起動 されるとメッセージ401をネットワーク400に送信 する。メッセージ401には、識別子301としてノー ド確認メッセージであることを示す識別子Aが付与さ れ、アドレス302には構築ツールが適当なノードアド レスを設定する。データ303は付与されない。

【0011】ネットワーク400に接続された各ノード はメッセージ401を受信すると、メッセージ401の 識別子301によりメッセージ401がノード確認メッ セージであると判断する、これにより、ノード確認メッ セージに適した処理を実行する。各ノードはメッセージ 401内のアドレス302を読み出し、自ノードのノー ドアドレスと比較する。もしも、メッセージ401内の アドレス302と自ノードのノードアドレスが一致した 場合、アドレス302に自ノードアドレスを設定し、メ ッセージ確認メッセージであることを示す識別子Aを付 与して応答メッセージ402をネットワーク400に送 信する。構築ツール430は、他ノードからの応答メッ セージ402を受信することにより、自分がメッセージ 401に設定したノードアドレスと同じノードアドレス を持つノードがネットワーク400に接続されていると 判断する。図4(a)の例では、構築ツール430がノ ード確認メッセージ401にノードアドレス1番を設定 してネットワーク400にブロードキャストしている。 これを受信した各ノードは自ノードのノードアドレスが ノードアドレス1番であるか否かを判断する。入力機器 411には、ノードアドレス1番が割り当てられてお り、入力機器411は自ノードのノードアドレス1番を 応答メッセージ402に設定してブロードキャストす

る。構築ツールは、ノードアドレス1番が設定された応答メッセージ402を受信することにより、ノードアドレス1番が設定されたノードがネットワーク400に接続されていることを検出する。構築ツール430は、ノードアドレスの最小値からノードアドレスの最大値までの全てのアドレスに対して同じ処理を削次線り返すことにより、ネットワークに接続されている全てのノードのノードアドレスを検出することができる。

【0012】また、定期的にこの処理を繰り返してネッ トワークに接続されている全ノードを検出し、新たに検 出したノードと前回検出したノードとを比較することに より、ネットワークから切り離されたノードを検出でき る。ここで、図3にて示したメッセージの識別子やアド レスのサイズは事前に決定っており、例えば各2バイト である。ノード確認メッセージであることを示す識別子 Aも事前に決まっており、例えば数次の1000で表さ れる。各ノードはメッセージの最初の2バイトに100 Oが付与されたメッセージを受信すると、そのメッセー ジがノード確認メッセージであると判断する。ノード確 認メッセージのメッセージフォーマットは事前に定義さ れており、ノード確認メッセージではアドレスとして2 バイトのノードアドレスが設定され、データは存在しな いことが事前に決まっている。新しいノードがネットワ ーク400に接続されると、構築ツール430はこのノ ドを自動的に検出する。図4(b)に示すように、図 4(a)のシステム構成に新たに出力機器414が追加 された場合、出力機器414は自ノードのノードアドレ スにノード確認メッセージであることを示す識別子Aを 付与したメッセージ403をネットワーク400にプロ ードキャストする。構築ツール430は、このメッセー ジを受信することにより、新しくノードが追加されたこ とを輸出し、そのノードのノードアドレスを知ることが できる。新たにネットワーク400に接続されたノード は、必ず自ノードのノードアドレスを設定したノード確 認メッセージを送信する。

【0013】 構築ツール430は、ネットワーク400 に接続されたノードのノードアドレスを検出すると、そ のノードアドレスを使い、そのノードにメッセージを送 信する。メッセージのアドレスとして送信先ノードアド レスを指定してメッセージを送信することにより、その ノードに対してデータ送信を要求することにより、その クノードに対してデータ送信を要求することにより、力 ・ドに対してデータ送信を要求することにより、力 ・は、機器の出荷時に機関に関する種々の情報をROM 203に結婚している。機器に格納されたこれらの情報 トランシーバ206を介してプロセッサ201ドータ込み み込み要求送信することにより読み込むことができ る。これらの情報へのアクセス方式は、標準規格などに より予め波められており、各メーカーから機械される機 器の情報を同じように読み込むことが可能である。例え ば、機器を開発したメーカー名は30バイトで表現し、 その情報の番号が3番であることが予め決まっている。 機器Aの開発メーカー名をネットワーク経由で読み込む ためには、識別子としてデータを要求するメッセージで あることを示す識別子、アドレスとして機器Aのノード アドレス、そしてデータとして情報の番号を示す3とい うデータ(情報番号3番を指定)を設定してメッセージ をプロードキャストする、これを受信した機器Aの通信 プロセッサ201は、ROM203より開発メーカー名 を読み出す。データを要求するメッセージの応答メッセ ージであることを示す識別子、自ノードのノードアドレ ス、データとして読み出した開発メーカー名をメッセー ジに設定してネットワークにブロードキャストする。 【0014】構築ツールは識別子とアドレスをもとに、 この応答メッセージを受信し、機器Aの開発メーカー名 を受信することができる。このアクセス方式を用いて構 築ツール430は検出したネットワークに接続される全 てのノードからノードが保持する情報を読み出す。読み 出された情報は、図5に示したノード管理テーブル50 0に登録される。ノードアドレス501には検出したノ ードのノードアドレスが登録され、これらのノードより 読み出した情報を順次ノード管理テーブル500に登録 する。入出力区分502は、ノードが入力機器である か、出力機器であるかを示す情報であり、データ長50 3はノードが送信または受信できるデータのデータ長で あり、メーカー504はノードを開発したメーカーのメ ーカー名であり、ファイルアドレス505は機器の情報 が十分である場合にアクセスするファイルのインターネ ット上のアドレスであり、カタログ番号506はノード のカタログ番号であり、時間間隔507はノードがメッ セージを送信する時間間隔またはメッセージを受信処理 可能な時間間隔である。センサーのような機器の場合、 コストや実装スペースの問題から計算機のように十分な ROMを備えていない。このため、構築ツールが必要と する全てのデータをROMに格納しているとは限らな い。したがって、構築ツールが必要とする情報を機器が 保持していない場合もある。

【0015】生廃ラインのようなシステムを動かすには、センサーなどの入力機器からの情報を読み込みんで 処理し、その処理結果をモーターをどの出力機器に送ってモーターを駆動する。これを実行するには、センサーのプログラム、コントローラの制算プログラム、モーターのプログラム。コントローラの制算プログラム、モーターのプログラム間の通信を行う必要がある。つまり、プログラム間の通信設定を行うが受がなるない。 構築ツールはノード管理テーブルに登録された情報をもとに、通信設定を行うのに必要な情報情報を生成する。 構築ツールの設定所を図合に示す。 図合に示したシステムは、コントローラ610、入力機器620、出力機器630により構成され、これらのノードはネットワーク600

を介してメッセージを送受信する。このネットワーク6 00には、構築ツールをインストールした計算機も接続 されているが図中には記していない。コントローラ61 0にはプログラムがインストールされている。これらの プログラムは、機器を制御するための制御プログラムで あるアプリケーションプログラム611と、通信を制御 するプログラムであるプロトコル処理プログラム612 である。同様に入力機器620には、入力機器を制御す るアプリケーションプログラム621とプロトコル処理 プログラム622がインストールされており、出力機器 630には、出力機器を制御するアプリケーションプロ グラム631とプロトコル処理プログラム632がイン ストールされている。これらのプログラムはROM20 3からプロセッサ202によりRAM204にインスト ールされるか、あるいはネットワークよりRAM204 に直接インストールされる。入力機器620のアプリケ ーションプログラム621にて測定されたデータは、プ ロトコル処理プログラム622を介してネットワーク6 00に送信される。このデータはコントローラ610の プロトコル処理プログラム612にて受信され、アプリ ケーションプログラム611にて処理される。処理結果 はプロトコル処理プログラム612によりネットワーク 600に送信され、出力機器630のプロトコル処理プ ログラム632にて受信される。受信された処理結果 は、アプリケーションプログラム631に渡され、出力 機器630はこの処理結果をもとにモーターの回転数を 変更するなどの制御を行う。

【0016】構築ツールは、構築情報に基づいてプロト コル処理プログラム612、622、632に情報を設 定し、このデータの流れを実現する。情報の設定方法 は、各ノードの情報へのアクセス方式と同様に、標準規 格などにより予め決まっているものとする。入力機器6 20のプロトコル処理プログラム622には、構築ツー ルにより送信するメッセージの識別子、メッセージの送 信時間間隔などが設定される。 コントローラ610のプ ロトコル処理プログラム612には、入力機器620が 送信したメッセージを受信するために必要な情報とし て、入力機器620が送信するメッセージの識別子、入 力機器620のノードアドレス、メッセージのデータ 長、メッセージの送信時間間隔などが設定される。これ らの情報を設定することにより、入力機器620が送信 したメッセージをコントローラ610が識別して受信す ることができ、通信が確立する。送信時間間隔は、入力 機器620がメッセージを送信する時間間隔であり、コ ントローラ610では入力機器620のタイムアウト監 視などを行うのに使用する。プロトコル処理プログラム 612により受信されたメッセージは、アプリケーショ ンプログラム611にて受信される。

【0017】アプリケーションプログラムは、rece ive(id, address,data)といった 関数を使って受信メッセージを受け取る。idはメッセ ージの識別子であり、例えばセンサーの情報であること を示す。addressは入力機器620のノードアド レスであり、例えばどのセンサーが測定した情報である かを示す。dataは、例えばセンサーの測定結果であ る。アプリケーションプログラム611は、入力機器6 20からのデータを処理し、出力機器630に送信す る。コントローラ610から出力機器630へメッセー ジを送信するには、入力機器620からコントローラ6 10にメッセージを送信したときと同様に、コントロー ラ610のプロトコル処理プログラム612と出力機器 630のプロトコル処理プログラム632に構築ツール が必要な情報を設定する。コントローラ610から出力 機器630にメッセージを送信する場合、コントローラ 610は出力機器630の時間間隔507以上の時間間 隔を空けてメッセージを送信することにより、出力機器 630の受信額度が高まり、メッセージを受信しきれな くなるという状況を回避する。構築ツールがプロトコル 処理プログラムに設定するこれらの構築情報は、ノード 管理テーブル5○○より構築ツールが自動的に生成す。

【0018】以下、この生成方式を説明する。まずノー ドの入出力区分502により、ノードがコントローラで あるか、入力機器であるか、出力機器であるかを判断す る。コントローラである場合には、入力と出力が設定さ れている。次にデータ長503を読み込み、入力機器が 送信するデータ長と出力機器が受信するデータ長を判断 する。コントローラの送受信データ長は、機器側のデー 夕長に合わせて設定する。例えば、入力機器の送信デー 夕長が2バイトであった場合、コントローラの受信デー 夕長は2バイトにする。さらに、時間間隔507を読み こむ。時間間隔507も機器に合わせてコントローラを 設定する。例えば、入力機器の時間間隔507が100 ミリ秒であった場合、コントローラには受信時間間隔1 00ミリ秒が設定され、この時間間隔をもとに入力機器 のタイムアウト監視を行う。出力機器の時間間隔507 が500ミリ秒であった場合、出力機器の受償限界性能 が500ミリ秒であるため、コントローラには送信時間 間隔として500ミリ秒が設定され、コントローラは5 00ミリ秒以上の時間間隔を空けて出力機器にメッセー ジを送信する。コントローラの設定を機器に合わせるの は、コントローラのプロセッサ性能の方が高く、ROM やRAMといったリソースを十分持っているからであ る。さらにコントローラと機器間の通信に識別子を割り 当てる。メッセージの識別子が、ノード確認メッセージ を示す識別子やノード情報の読み込みを要求するメッセ ージであることを示す識別子のように、事前に決められ ていない場合、構築ツールが自動的に識別子を割り当て る。コントローラが入力機器Aと入力機器Bからメッセ ージを受信して、出力機器Cと出力機器Dにメッセージ

を送信する場合、例えばメッセージの識別子を番号で表 し、1番から順に番号で割り当てる。つまり、入力機器 Aからコントローラに送信するメッセージには識別子1 を割り当て、入力機器Bからコントローラに送信するメ ッセージには識別子2を割り当てる。以上のようにし て、構築情報が生成される。例えば、入力機器Aでは送 信するメッセージの識別子は1、2バイトのデータを1 00ミリ秒間隔で送信するといった構築情報が生成され る。入力機器Aとコントローラのプロトコル処理プログ ラムに設定する。またコントローラ側に関しては、識別 子1とノードアドレス1番が付与されたメッセージを受 信し、データのデータ長は2パイトであり、100ミリ 秒周期で受信するという構築情報を生成する。これらの 構築情報を入力機器Aとコントローラに設定することに より、入力機器Aより送信されたメッセージをコントロ ーラにて受信できる。

【0019】構築ツールの処理フローを図7と図8に示す。構築ツールの処理は大きく4つのステップに分けられる。

【0020】(1) ネットワークに接続されたノードを 自動的に検出するステップ1。

【0021】(2)検出したノードより情報を読み込むステップ2。

【0022】(3)読み込んだ情報をもとに構築情報を 生成するステップ3。

【0023】(4)生成された構築情報を各ノードに設定するステップ4。

【0024】図7にステップ1とステップ2の処理を、 図8にステップ3とステップ4の処理を示す。

【0025】構築ツールは起動すると、ノードのノード 番号を表す変数NにOを設定して初期化し(ステップ7 01)、ノードアドレスとしてNを設定したノード確認 メッセージをネットワークに送信する(ステップ70 2)。もしも、ノード確認メッセージの応答メッセージ を受信できた場合、つまりノードアドレスNのノードが ネットワークに接続されていた場合(ステップ70 3)、ノードアドレスNをノード管理テーブルに登録す る(ステップ704)。もしも一定時間応答が得られな かった場合(ステップ703)、ノードアドレスNはノ ード管理テーブルに登録されない。ノードアドレスNが 最後のノードアドレスでなければ(ステップ705)、 ノードアドレスNに1を加え(ステップ706)、次の ノードアドレスに対して同じ処理を繰り返す。もしも最 後のノードアドレスであった場合(ステップ705). ノード管理テーブルに登録されたノードアドレスを1つ 読み出し(ステップ707)、読み出したノードアドレ スが示すノードよりネットワークを介して必要な情報を 読み込む(ステップ708)。ノード管理テーブルに登 録された全てのノードアドレスが示すノードに対して情 報を読み込む処理を終了しているか否かを判断する(ス テップ709)。全てのノードから読み込んでいなかっ た場合、次のノードアドレスを読み込んで同じ処理を練 り返す。ノード管理テープルに登録された全でのノード アドレスが示すノードより情報を読み込む処理を終了し た場合(ステップ709)、図8に示した次のステップ に移行する。

【0026】ネットワークに接続したノードより収集し た情報を登録したノード管理テーブルをもとに、まずマ スターノードを決める(ステップ801)。マスターノ ードとは、機器を制御するコントローラや計算機であ り、入出力区分502が入出力であることから判断され る。スレープとは、マスターノードにより制御される機 器である。本実施例におけるシステムは集中制御システ ムであり、マスターノードとなりうるノードは1つしか 存在しない。もしも、マスターノードとなりうるノード が2つ以上存在した場合(ステップ802)、つまり入 出力区分502に入出力が登録されたノードが2つ以上 存在した場合、オペレータに対して異常を通知し(ステ ップ807)、処理を終了する。マスターノードが識別 できた場合(ステップ802)、スレーブノードの通信 条件を確認する(ステップ803)。つまり、入出力機 器のデータ長や時間間隔など、横築情報を生成するのに 必要な情報が全て揃っているか否かを判断する。もしも 必要な情報が揃っていない場合(ステップ804)、イ ンターネットにアクセスして不足している情報を収集す ることを試みる(ステップ805)。各機器は保持でき る情報量が限られているため、不足している情報を補う データを格納したファイルにアクセスするためのファイ ルアドレス505を保持している。このファイルは、例 えば機器を開発したメーカーが自社のサーバー上に保持 している。ファイル名は、例えばカタログ番号506で ある。ファイルアドレス505は、例えばftp:// www. hitachi. co. jp/Device/ Data/であり、構築ツールはこのファイルアドレス 505をもとにインターネットを介して図1で示された 開発したメーカーのファイルサーバーである計算機16 1にアクセスする。機器に関する情報はカタログ番号5 06と間じ名称のH-XY3. TXTというテキストフ ァイルで保存されている。このファイルフォーマットは 各社同じであり、標準規格などで予め規定されている。 構築ツールは、例えば機器が時間間隔507を保持して いなかった場合、ファイルアドレス505で示されたア ドレスよりファイルを読み込んで時間間隔507をノー ド管理テーブル500に登録する。

【0027】もしも、ファイルが存在しないなどの理由 により、構築情報を生成するのに必要なスレーブノード の情報が入手できなかった場合(ステッア806)、ノ ードの構築が行えないことをオペレータに通知し(ステッア807)、処理を探する。 大手できた場合には(ステッア806)、処理を情報が 人共平含た場合には(ステッア806)、処理を維載す

る。構築情報を生成するのに必要なスレーブ情報が揃っ た場合(ステップ804、ステップ806)、図6で説 明したように、構築情報を生成する(ステップ80 8)。生成された構築情報をもとにマスターノードのリ ソースが十分であるかを判断する。もしもリソースが不 足している場合(ステップ809)、オペレータに対し てリソースが不足していることを通知し(ステップ80 7)、処理を終了する。例えば、通信を行う機器の数が 多く、マスターノードのプロトコル処理プログラムを実 行するのに必要なメモリ容量が足りない場合、リソース が不足していると見なす。最後に、生成した構築情報を 各ノードに設定し(ステップ810)、処理を終了す る。なお、ここでは必要な情報が不足している場合、イ ンターネットを介してファイルを読み込む例を示した が、この情報は構築ツールがインストールされている計 算機のローカルなデータベース上にあってもよい。この 場合、ファイルアドレス505は、例えばfile:/ /c:\/Device/Data/となりローカルな ディレクトリを指定する。

【0028】図7と図8では、ネットワークに接続して いるノードを自動的に検出し、これらのノードからノー ドが保持する情報を読み出し、これらのノードより読み 込んだ情報をもとに構築情報を生成し、ノードを設定す る方式を説明した。しかし、実際のシステムでは一旦ノ ードを設定したあとでシステムの拡弾に伴うノードの追 加が発生したり、機器の劣化に伴うリプレースが発生 し、システムの状態は常に変化する。システム構成が変 化により追加・変更されたノードを自動的に設定する方 式がもとめられる。追加されたノードを自動的に検出し て構築する処理を表す処理フローを図9に示す。図9の 処理は、図7と図8で示した処理が終了したのち、総続 して行われる。図4(b)で説明したように構築ツール は常にネットワークを流れるメッセージを受信し、ノー ド確認メッセージが流れていないかを判断している。構 築ツールは、ノード確認メッセージを受信すると(ステ ップ901)、ノード管理テーブル500より受信した ノード確認メッセージに設定してあるアドレスと同じノ ードアドレスがすでにノード管理テーブル500に登録 されているか否かを判断する。もしも、すでに同じアド レスが存在している場合(ステップ902)。追加され たノードのノードアドレスの設定が間違っているため、 ノードの構築が行えない。ノードアドレスの設定が間違 っていることをオペレータに通知し(ステップ90

っていることをオペレータに適知し(ステップ903)、処理を終了する。アドレスが重複していない場合 (ステップ902)、ノード管理テーブルにノードアドレスを追加する(ステップ904)。そして、ノードアドレスが示すノードより情報を収集してノード管理テーブルに登録する(ステップ905)。必要で情報が収集できたかどうかを判断し(ステップ906)、もしも必要な情報がない場合には(ステップ907)、インター ネットにアクセスして(ステッア908)、不足している情報をファイルより読み込むことを試みる。もしも必要情報が入手できない場合には(ステップ909)、必要情報が入手できないことをオペレータに通知し(ステップ903)、処理を終了する。もしも必要な情報が満った場合(ステップ907、ステップ909)、精報を情報を生成する(ステップ910)。新しくノードが通加されたことにより、マスターノードのリソースが不足するお否かを判断し、もしもリソースが不足するを否かを判断し、もしもリソースが不足しない場合には(ステップ911)、各ノードに精染情報を設定し(ステップ912)、処理を終了する。

【0029】機器のリプレースは、ノードのネットワー クからの切り離しとノードの追加という2つの処理が発 生したと捉える。ノードの追加が行われた場合、図9に 示したノード追加時の設定方式を用いればよい。切り離 されたノードの検出は、先に説明した通り図7に示した ネットワークに接続されたノードの自動検出を一定時間 間隔で繰り返せばよい。ただし、自動検出されたノード のノードアドレスはノード管理テーブル500とは別の テーブルを準備して管理する。ノード管理テーブル50 0のノードアドレス501と新たに準備したテーブルに 登録されたノードアドレスを比較し、前回の検出時に検 出したノードと、新たに検出したノードを比較すること により、検出できなくなったノードが存在しないかを確 認する。もしも、検出できなくなったノードが存在した 場合、このノードはネットワークから切り離されたと見 なし、ノード管理テーブル500に登録されているこの ノードに関する情報を消去する。このようにして切り離 されたノードの情報をノード管理テーブル500より消 去したのち、図9に示した追加ノードの自動設定方式を 用いれば、リプレースされた機器も自動的に設定するこ とができる。

トが削減され、またシステム構築のための作業期間が大 幅に短縮され、生産システム導入後すぐに生産を開始す ることができる。

【0031】本発明における第2の実施例を説明する。 【0032】本発明における第2の実施例は、集中制御 を行うコントローラや計算機が存在しない点において第 1の実施例と異なる。ネットワークに接続されたノード を自動検出する第1のステップと、検出されたノードよ り情報を収集する第2のステップは、第1の実施例と同 じである。

【0033】第2の実施例では、家庭内の電化製品をネ ットワークで接続して制御するホームオートメーション システムを例に説明する。システム構成を図10に示 す。監視パネル1010、AV機器コントローラ101 1. テレビ1012、ビデオ1013、オーディオ10 14、照明スイッチ1(1015)、照明スイッチ2 (1016)、照明1(1017)、照明2(101 8)、照明3(1019)がネットワーク1000に接 続され、ネットワーク1000を介して相互にデータを 交換することができる。各機器は図2にて説明した機器 250と同様に、通信インターフェースを備え、機器を 制御するプログラムを内蔵する。AV機器コントローラ 1011は、テレビやオーディオなどのAV機器を制御 するコントローラであり、オーディオ1014はミニコ ンポのようなオーディオ機器である。監視パネル101 Oは、機器の動作状況を表示したり、機器を操作するた めのコントローラであり、液晶ディスプレイのような表 示装置を備える、監視パネル1010には構築ツール1 050がインストールされており、この構築ツール10 50が各ノードを構築する。ここでは、構築ツール10 50が監視パネル1010にインストールされている例 を示したが、表示装置を備え、ネットワークに接続され ているノードであれば、テレビやパーソナルコンピュー 夕などの他の機器や計算機にインストールされていても よい。また、ここではネットワーク1000としてバス 型のネットワークを使った例を示したが、データを送受 信できる手段であれば無線通信や電力線を使った通信を 用いてもよい。構築ツール1050がネットワーク10 00に接続されたノードを自動的に検出するステップ と、検出されたノードより情報を読み込むステップは第 1の実施例と同じである。しかし、ノードより読み出す 情報は異なる。

【0034】第2の実施例におけるノード管理テーブルを図11に示す。ノードアドレス1101は、ネットワークより自動的に検出されたノードのノードアドレスである。機器値別1102は、AV機器、原明機器、空調機器、セキュリティ機器といった機器の値類を表す。人出力区分1103、ボータ長1104、メーカー1106は、第1の実施例と同じである。設定位置1105は、機器の設置された場所を示す。機器名称1107

は、機器や金紙を表し、例えば インバーターエアコン 白くまくんといった製品を称である。ノードアドレス 1101、機器種別1102、入出力区分1103、デ ータ長1104、メーカー1106、機器名称1107 、製品出荷時にROMに格納される情報であり、第1 の実施例と同じ方式により情報アールは機器より読み込むことができる。ノードアドレス1101は、例えば各 がイトのアドレスであり、最初の4バイトがメーカー ラ、次の4バイトが各メーカーにて管理する製品番号で ある。メーカー番号を各メーカー間で重復しないように 調整することにより。全ての機器に重復しないように 野と力を付ける

【0035】設置位置1105は機器のユーザが機器を 購入し、設置したあとでないと決めることができない。 設置位置1105の取得方式を図12に示す。機器の設 置位置は、各機器毎に自動的に取得し、自ノード内に保 存する。家の中の部屋であるB室1200には、赤外線 通信の発信機能を持つ位置発信機器1220、照明スイ ッチ1(1221)、照明1(1222)、照明2(1 223)、照明3(1224)が設置されている。照明 スイッチ1(1221)、照明1(1222)、照明2 (1223)、照明3(1224)は赤外線通信の受信 機を備え、赤外線通信により得られたデータを自内に読 み込み、内部のRAMに格納する。位置発信機器122 0は、位置発信機器1220出荷時に異なる識別子が割 り当てられており、電源が供給されるとこの識別子を周 期的に送信する。各部屋には、この位置発信機器122 Oが設置されており、異なる識別子を発信している。以 下、この識別子を位置識別子と呼ぶ。照明スイッチ1 (1221)、照明1(1222)、照明2(122

3)、照明3 (1224)は、位置発信機器1220が 送信する位置鏡別子1250を受信し、ノード管理テー ブル1100に設置位置1105として登録する。これ により、同じ額屋に設置された機器は同じ設置位置11 05を保持することができる。

【0036] 精察ツールの処理・ローを図15に示す。 ネットワークに接続されたノードを自動的に検出するス テップと、検出されたノードと自動的に検出するス テップと、検出されたノードより情報を膨み出すステッ プル120~同情報をもとに各機器の設定を行う。ま ず、名ノードを機器種別1102により分類する(ステップ1301)、次に、入井力区分110多を読み込み、 の生成を試みる(ステップ1302)。各グループに入 数で出力機器が1つで出力機器が減敗、あるいは入力機器が複数で出力機器が1つで出力機器が載敗、あるがは入力機器が複敗 まる。このため、データ長1104をどの情報をもとに 第10次賠例に同じように全機器グループ毎に構築情報 を生成できる。しかし、入力機器と出力機器が各々複数 存在する場合は、通信の関係が一意に決まるす。機器 の設定を行えない。例えば、図10に示したシステム構成例では、AV機器はAV機器コントローラ1011、 たレビ1012、ビデオ1013、オーディオ1014 である。メッセージを送信する入力機器はAV機器コントローラ1011の次あり、他は全てメッセージを受信をある力機器はAV機器コントローラ1011のがあり、他は全てメッセージを受信する出力機器がある。

【0037】このため、AV機器コントローラ1011 より、テレビ1012、ビデオ1013、オーディオ1 014にメッセージを送信するという通信の関係が一意 に決まり、各機器の設定を行うことができる。しかし照 明機器は、照明スイッチ1(1015)、照明スイッチ 2(1016). 照明1(1017)、照明2(101 8) 、照明3(1019)があり、入力機器が照明スイ ッチ1(1015)、照明スイッチ2(1016)の2 つであるのに対し、出力機器は照明1(1017)、照 明2(1018)、照明3(1019)の3つである。 このため、どの照明スイッチが送信したメッセージをど の照明が受信するのかが判断できず、通信の関係を一意 に定義することができない。このように、機器種別11 02と入出力区分1103により通信の関係が一意に決 まり構築情報を生成できる場合(ステップ1303)、 構築情報を各ノードに設定し(ステップ1311)、処 理を終了する。もしも、構築情報を生成できない場合 (ステップ1303)、さらに設置位置1105を使っ で通信の関係を判断する(ステップ1304). 機器種 別1102、入出力区分1103、設置位置1105に より、構築情報を生成できる場合(ステップ130 6)、構築情報を各ノードに設定し(ステップ131 1)、処理を終了する。例えば、図10に示した照明ス イッチ1(1015)、照明スイッチ2(1016)、 照明1(1017)、照明2(1018)、照明3(1 019)の中で、照明スイッチ1(1015)と照明1 (1017)が同じ部屋に設置されていて、同じ位置識 別子が設置位置1105としてノード管理テーブル11 00に登録されており、照明スイッチ2(1016)、 照明2(1018)、照明3(1019)が同じ部屋に 設置されていて、同じ位置識別子が設置位置1105と してノード管理テーブル1100に登録されている場 合、同じ部屋に設置している機器間で通信を行うと判断 して構築情報を生成する。これらの2つの部屋には入力 機器が1つずつしかなく、一意に通信の関係を定義でき る。しかし、これらの機器が同じ部屋に設置されている 場合、どの照明スイッチとどの照明で通信を行うかが判 断できない。このように構築情報を生成できない場合 (ステップ1306)、構築ツールはシステム構成を仮 定して構築情報を生成する(ステップ1307)。 【0038】例えば、照明スイッチ1(1015)と照 明スイッチ2(1016)が同数の照明を制御すると仮 定し、照明1(1017)、照明2(1018)、照明 3(1019)のうち、2つを照明スイッチ1(101

5)に、1つを照明スイッチ2(1016)にて制御す ると判断する。ノードアドレスの小さいに順に自動的に 入力機器に対して出力機器を割り当てる。例えば、照明 スイッチ1(1015)より照明1(1017)と照明 2(1018)にメッセージを送信し、照明スイッチ2 (1016)より照明3(1019)にメッセージを送 信すると判断し、構築情報を生成する。しかし、このよ うな仮定により判断した通信の関係が必ずしもユーザー の要求と一致するとは限らない。このため、ユーザーに 通信の関係を提示し、判断結果が正しいか否かを確認す る(ステップ1308)。ユーザーが正しいと判断した 場合(ステップ1309)、生成した構築情報を各ノー ドに設置する(ステップ1311)。もしも、ユーザー が正しくないと判断した場合(ステップ1309)、ユ ーザーは通信の関係を変更する(ステップ1310)。 構築ツールは、この変更結果により構築情報を修正し、 この修正された構築情報を各ノードに設定し(ステップ 1311) . 処理を終了する。

【0039】ステップ1309におけるユーザーへの構 築情報の確認画面の構成例を図14に、ステップ131 0における構築情報の変更画面の構成例を図15に示 す。図14は、ユーザに対して構築ツールが生成した構 築情報を表示する構築情報表示画面1400である。ユ ーザーが構築情報が正しいか否かを判断するのに不要な 識別子やメッセージのデータ長などは表示していない が、これらの情報を表示してもよい。構築情報表示画面 1400では、ノードを識別するための情報としてノー ド管理テーブル1100に登録されているメーカー11 06と機器名称1107を各機器毎に表示している。構 築情報表示画面1400は、A社製AVリモコン140 1がA社製Xテレビ1402、B社製Yビデオ140 C社製乙カセットプレーヤー1404にメッセージ を送信して制御することを示している。同様に、N社製 Y照明スイッチ1405はH社製Y照明1407とJ社 製Z照明1408にメッセージを送信して制御し、M社 製X昭明スイッチ1406はK計製X昭明スイッチ14 09にメッセージを送信して制御する。ここで、制御と は電源のオン/オフ制御などである。この内容が正しけ れば、ユーザーはマウスやタッチパネルなどの入力手段 を用いて はい、を選択し、この内容が正しくなければ いいえ、を選択する。 いいえ、が選択されると図15に 示す構築情報変更画面1500に移行する。

【0040】構築情報変更画面1500は、構築情報表示画面1400と同じ情報を表示しているが、構築内容を変更できる点が異なる。例えば、J社製と照明をN社製Y照明スイッチが押されたときに点灯するようにしたい場合には、マウスやタッチパネルなどの入力手段により、M社製X照明スイッチを示す図(155)、M社製X限明スイッチを示す図(155)と力社製Z照明を示す図(1552)を選択する。

これにより、J社製Z照明が通信する相手がN社製Y照明スイッチから所社製X照明スイッチ作変更される。構築ツールは、ユーザーにより終了ボタンが延択され、構築内容の変更作業が終了すると、ユーザーが変更した内容にしたがって構造情報を修下する。

【0041】この実施例によれば、複数の機器により構 成される分散システムにおいて、構築ツールがネットワ ークに接続されたノードを自動検出するステップと、検 出されたノードの情報を収集するステップと、この情報 によりシステムの構築情報を生成するステップと、構築 情報が生成できない場合にはユーザーが構築情報を変更 するステップと 生成された構築情報を各ノードに設定 するステップにより、分散システムを自動的に設定する ことができる、従来では、機器の通信設定を行うには通 信に関する知識や機器自体に関する知識を必要とした が、これらの設定が自動的に行われるようになり、シス テムエンジニアなどのサポートなしにシステムを構築す ることができ、一般家庭などにもシステムを容易に遮入 できる。仮に、システムが複雑な構成をしているために 自動設定が行えず、ユーザーによる設定補助を必要とし た場合でも、ユーザーに分かりやすい形で構築内容を表 示し、特別な通信や機器に関する知識無しに設定変更が 行える。

[0042]

【発明の効果】本発明によれば、多数の機器が接続され た分散システムにおいて、機器の設定と機器の管理を容 易にすることができる。

【図面の簡単な説明】

【図1】本発明における第1の実施例を適応したシステムの構成図である。

【図2】第1の実施例を適応した機器の構成図である。

【図3】第1の実施例におけるメッセージのフォーマットである。

【図4】第1の実施例におけるノードの自動検出を説明 する図である。

【図5】第1の実施例におけるノード管理テーブルの構成図である。

【図6】第1の実施例における各ノードに設定する構築 情報である。

【図7】第1の実施例における構築ツールの処理フロー である。

【図8】第1の実施例における構築ツールの処理フローである。

【図9】第1の実施例における構築ツールの処理フローである。

【図10】本発明における第2の実施例を適用したシステム構成図である。

【図11】第2の実施例におけるノード管理テーブルの 構成図である。

【図12】第2の実施例における機器の設置位置を検出 するための説明図である。

【図13】第2の実施例における構築ツールの処理フローである。

【図14】第2の実施例におけるユーザーが構築ツールが生成した構築情報を確認する構築情報確認画面である。

【図15】第2の実施例におけるユーザーが構築ツール が生成した構築情報を変更する構築情報変更画面であ る。

【符号の説明】

100…ネットワーク、110…コントローラ、120 …計算機。

【図3】

四 J I 図3

301 302 303 資別子 アドレス データ 300 【図5】 **図**5

±91	5	2 5	3 50	4 505	598	6	07
ノード アドレス	入出力 成分	データ 長	メーカー	ファイル アドレス	カタ:1グ 番号	時間間隔	
1	出	2	A社	ftp://A	A-XY3	200	
- 6	出	2	時	îtp://B	B-EF0	100	
12	λ	4	C社	řtp://C	C-KI2	300	
33	λ	4	D社	ftp://D	D-WX1	500	
61	入出	-	D社	Rp://D	D-WX1	_	
				•		Common	
				:			
اــــــا							

500

【図12】

[図11]

図11

1101 1102 1103 1104 1106 1106 1107							
ノード アドレス	機器 種別	入出力 区分	データ 長	設置 位置	メーカー	機器 名称	
1059	ΑV	出	4	1	A社	х	
2049	ΑV	λ	4	1	排社	Υ	
6052	題明	λ	1	3	()社	z	
8099	類明	λ	1	5	Cŧ±	w	
				:			
						110	

図12

【図13】

[3]14]

図14

【図15】

图15

フロントページの続き

ドターム(参考) 58089 GAO1 GR02 JA35 JB22 KA13 KR04 KC44 5K032 RA04 EA07 EC01 RC03 5K033 RA04 CB13 EA07 EC01 EC03 5K048 BA02 BA07 DC04 DC07 EA14 FC01