Espaces vectoriels et applications linéaires

Questions de cours.

- **1.** Soit $u: E \to F$ une application linéaire entre deux \mathbb{K} -espaces vectoriels. Caractériser le fait que u soit injective.
- 2. Énoncer et démontrer les propriétés élémentaires des projecteurs.
- 3. Énoncer et démontrer les propriétés élémentaires des symétries.

1 Espaces vectoriels

Exercice 1.1 (*). On se place dans $E = C^0(\mathbb{R}, \mathbb{R})$. On note $\mathcal{P} = \{f \in E, \forall x \in \mathbb{R}, f(-x) = f(x)\}$ et $\mathcal{I} = \{f \in E, \forall x \in \mathbb{R}, f(-x) = -f(x)\}$.

- **1.** Montrer que \mathcal{P} et \mathcal{I} sont des sous-espaces vectoriels de E.
- **2.** Montrer que \mathcal{P} et \mathcal{I} sont supplémentaires dans E.
- **3.** Expliciter:
 - **a.** La projection sur \mathcal{P} parallèlement à \mathcal{I} ,
 - **b.** La symétrie de base \mathcal{P} parallèlement à \mathcal{I} .

Exercice 1.2 (*). On se place dans $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et on considère $d: f \in E \longmapsto f' \in E$.

- 1. Montrer rapidement que d est un endomorphisme de E.
- **2.** Existe-t-il un endomorphisme $u: E \to E$ tel que $u \circ d = \mathrm{id}_E$? Tel que $d \circ u = \mathrm{id}_E$?

Exercice 1.3 (\star) . $C^1(\mathbb{R},\mathbb{R})$ est-il un hyperplan de $C^0(\mathbb{R},\mathbb{R})$?

Exercice 1.4 (\star). Soit E l'espace vectoriel des suites réelles convergentes. On considère :

$$\psi: (u_n)_{n\in\mathbb{N}} \in E \longmapsto (u_{n+1} + u_{n+2})_{n\in\mathbb{N}} \in E.$$

- 1. Montrer que ψ est un endomorphisme de E
- **2.** ψ est-il injectif? Surjectif?
- **3.** Pour $\lambda \in \mathbb{R}_+$, déterminer le noyau de $\psi \lambda \operatorname{id}_E$.

Exercice 1.5 (*). Soit p et q deux projecteurs d'un espace vectoriel E t.q. Im $p \subset \text{Ker } q$. Soit r = p + q - pq.

- 1. Montrer que r est un projecteur.
- **2.** Déterminer $\operatorname{Ker} r$ et $\operatorname{Im} r$.

Exercice 1.6 (*). Soit E un \mathbb{K} -espace vectoriel. Soit $u \in \mathcal{L}(E)$ t.q. $u^2 - 3u + 2 \operatorname{id}_E = 0$.

1. On note $E_1 = \operatorname{Ker}(u - \operatorname{id}_E)$ et $E_2 = \operatorname{Ker}(u - 2\operatorname{id}_E)$. Montrer que $E = E_1 \oplus E_2$.

On note p_1 (resp. p_2) le projecteur sur E_1 parallèlement à E_2 (resp. sur E_2 parallèlement à E_1).

- **2.** Exprimer u en fonction de p_1 et p_2 .
- **3.** Exprimer p_1 et p_2 en fonction de u et id_E .
- **4.** Pour $n \in \mathbb{N}$, en déduire une expression simple de u^n en fonction de n et u.
- **5.** L'endomorphisme u est-il inversible? Si oui, généraliser l'expression obtenue à n < 0.

Exercice 1.7 (*). Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$.

- 1. Montrer l'équivalence des conditions suivantes :
 - (i) u est une homothétie.
 - (ii) La famille (id_E, u) est liée dans $\mathcal{L}(E)$.
 - (iii) Pour tout $x \in E$, la famille (x, u(x)) est liée dans E.

2. En déduire qu'un endomorphisme commutant avec tous les endomorphismes de E est une homothétie. On pourra admettre que tout sous-espace vectoriel admet un supplémentaire.

Exercice 1.8 (*). Soit E un \mathbb{K} -espace vectoriel et $p \in \mathcal{L}(E)$ un projecteur. Montrer que $u \in \mathcal{L}(E)$ commute avec p ssi $\operatorname{Ker} p$ et $\operatorname{Im} p$ sont stables par u.

Exercice 1.9 (*). Soit u et v deux formes linéaires sur un \mathbb{K} -espace vectoriel E. Montrer que u et v sont colinéaires ssi $\operatorname{Ker} u = \operatorname{Ker} v$.

Exercice 1.10 (\star) .

- **1.** Montrer que les \mathbb{R} -endomorphismes de \mathbb{C} sont exactement les applications $\psi_{a,b}: z \longmapsto az + b\overline{z}$, avec $(a,b) \in \mathbb{C}^2$.
- **2.** À quelle condition $\psi_{a,b}$ est-elle \mathbb{C} -linéaire ?
- **3.** À quelle condition $\psi_{a,b}$ est-elle inversible?

Exercice 1.11 (*). Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et E un \mathbb{K} -espace vectoriel.

- **1.** Si F_1 et F_2 sont des sous-espaces vectoriels stricts de E, montrer que $F_1 \cup F_2 \subsetneq E$.
- **2.** Plus généralement, si $n \in \mathbb{N}^*$ et F_1, \ldots, F_n sont des sous-espaces vectoriels stricts de E, montrer que $F_1 \cup \cdots \cup F_n \subsetneq E$.