Derjaguinov približek

Miha Čančula

6. maj 2013

1 Izpeljava

Vzemimo dve veliki krogli s polmeroma R_1 in R_2 na majhni medsebojni razdalji D. Če sta oba polmera mnogo večja od razdalje med sferama, k sili med njima prispeva le interakcija med tankimi obroči na obeh sferah, ki so od zveznice med sferama oddaljeni x in imajo $2\pi x$ dx. Skupna sila med dvema sferama je torej enaka

$$F(D) = \int_{r=0}^{r=\infty} 2\pi r \, \mathrm{d}r f(Z) \tag{1}$$

kjer je Z razdalja med tankima obročema na oddaljenosti x od zveznice, f(Z) pa sila na enoto površine med dvema ravnima površinama. Za majhne r lahko kroglo približamo s parabolo in dobimo zvezo med Z in r kot

$$Z = D + z_1 + z_2 = D + \frac{r^2}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$
 (2)

$$dZ = \frac{r^2}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) r \, dr \tag{3}$$

Izraza lahko vstavimo v enačbo (1) in dobimo

$$F(D) \approx \int_{D}^{\infty} 2\pi \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} f(Z) dZ = 2\pi \left(\frac{R_1 R_2}{R_1 + R_2}\right) W(D)$$
 (4)

kjer je W(D) interakcijska energija med dvema ravnima površinama na razdalji D. Iz definicije f(Z) sledi, da je $\int 2\pi x \, \mathrm{d}x f(Z) = W(D)$.

2 Drugačne geometrije

V gornji izpeljavi smo dejstvo, da imamo opravka ravno s sferami in ne s kakšnimi drugimi zaobljenimi površinami, upoštevali le pri zvezi med Z in r. Zelo podobno izpeljavo lahko ponovimo tudi za drugačne geometrije, na primer za interakcijo med sfero in ravno ploščo, ali pa med prekrižanima valjema.

Geometrija	Z-D	$\mathrm{d}Z$	F(D)/W(D)
Dve sferi	$rac{r^2}{2}\left(\frac{1}{R_1}+\frac{1}{R_2}\right)$	$\left(\frac{1}{R_1} + \frac{1}{R_2}\right) r \mathrm{d}r$	$2\pi \left(\frac{R_1 R_2}{R_1 + R_2}\right)$
Sfera in plošča	$\frac{r^2}{2R}$	$\frac{1}{R}r dr$	$2\pi R$
Prekrižana valja	$\frac{x^2}{2R_1} + \frac{y^2}{2R_2}$	$\frac{x \mathrm{d}x}{R_1} + \frac{y \mathrm{d}y}{R_2}$	$2\pi\sqrt{R_1R_2}$

2.1 Sfera in plošča

Silo med sfero in ravno ploščo lahko izračunamo kar kot limito, ko se polmer ene izmed sfer približuje neskončno.

$$F(D) \approx 2\pi R \cdot W(D) \tag{5}$$

2.2 Prekrižana valja

V tem primeru nimamo osne simetrije, zato integral $\int 2\pi r \, dr$ nadomestimo z $\int dx \, dy$. Razdalja med točkama na valjih Z je odvisna od x in y posebej.

$$F(D) = \iint_{-\infty}^{\infty} f(Z) \, \mathrm{d}x \, \mathrm{d}y \tag{6}$$

$$Z = D + \frac{x^2}{2R_1} + \frac{y^2}{2R_2} \tag{7}$$

Primer, ko imata oba valja enak polmer, je enostaven, saj je $Z = \frac{x^2+y^2}{2R}$ odvisen le od oddaljenosti od zveznice, enako kot pri sferah. Integral pa lahko izračunamo tudi za dva različna valja s spretno zamenjavo spremenljivk, nampreč $\tilde{y} = y\sqrt{R_1/R_2}$. Sila med valjema lahko izračunamo kot prej

$$Z = D + \frac{x^2 + \tilde{y}^2}{2R_1} = D + \frac{r^2}{2R_1} \tag{8}$$

$$dZ = \frac{x dx}{R_1} + \frac{\tilde{y} d\tilde{y}}{R_1} = \frac{r dr}{R_1}$$
(9)

$$F(D) \approx \int_{D}^{\infty} \sqrt{\frac{R_2}{R_1}} 2\pi R_1 f(Z) \, dZ = 2\pi \sqrt{R_1 R_2} W(D)$$
 (10)

kjer je faktor $\sqrt{R_2/R_1}$ Jacobijeva determinanta prehoda iz koordinate (x,y) na $(x,\tilde{y}).$

Literatura

[1] J. N. Israelachvili. *Intermolecular and Surface Forces*. Academic Press (1992).