Character-Aware Neural Language Models

Paper authors: Y. Kim, Y. Jernite, D. Sontag, A. M. Rush

2018. 10. 20. 5th flipped school, NLP bootcamp

Modulabs Research Scientist

II Gu Yi

Contents

- Introduction
- Architecture
- Results

Introduction

- Neural Language Models (NLM)
 - Words as vectors (word embeddings)
- In this work (한 줄 요약)
 - RNN input 으로 들어가는 word embedding vector를 character-level CNN을 통해 만들었다

Architecture

Architecture

Word embedding by Character-aware CNN

RNN

1. Character Embedding

2. Convolution Layer

Use ConvID Highway network (Kernel size, output channels) blue : (2,3) Max-over-time pooling layer yellow: (3,4) red: (4,5) Convolution layer with multiple filters of different width Clike inception Concatenation of character embeddings recognized the moment absurdity

3. Max Pooling over Time

4. Highway Network

Optimization

- Truncated backpropagation through time
- Dropout rate: 0.5
- Norm of gradients to be below 5

• Use a hierarchical softmax
$$\Pr(w_{t+1} = j | w_{1:t}) = \frac{\exp(\mathbf{h}_t \cdot \mathbf{s}^r + t^r)}{\sum_{r'=1}^c \exp(\mathbf{h}_t \cdot \mathbf{s}^{r'} + t^{r'})}$$
first term: Pr of picking cluster r second term: Pr of picking word j
$$\times \frac{\exp(\mathbf{h}_t \cdot \mathbf{p}_r^j + q_r^j)}{\sum_{j' \in \mathcal{V}_r} \exp(\mathbf{h}_t \cdot \mathbf{p}_r^{j'} + q_r^{j'})}$$

given that cluster r is picked

Datasets

	DATA-S			DATA-L		
	$ \mathcal{V} $	$ \mathcal{C} $	T	$ \mathcal{V} $	$ \mathcal{C} $	T
English (EN)	10 k	51	1 m	60 k	197	20 m
Czech (Cs)	$46 \mathrm{k}$	101	1 m	206 k	195	17 m
German (DE)	37 k	74	1 m	339 k	260	51 m
Spanish (ES)	27 k	72	1 m	152 k	222	56 m
French (FR)	$25 \mathrm{k}$	76	1 m	137 k	225	57 m
Russian (RU)	62 k	62	1 m	497 k	111	$25 \mathrm{m}$
Arabic (AR)	86 k	132	4 m			

Results

	PPL	Size
LSTM-Word-Small	97.6	5 m
LSTM-Char-Small	92.3	5 m
LSTM-Word-Large	85.4	20 m
LSTM-Char-Large	78.9	19 m
KN-5 (Mikolov et al. 2012)	141.2	2 m
RNN [†] (Mikolov et al. 2012)	124.7	6 m
RNN-LDA [†] (Mikolov et al. 2012)	113.7	7 m
genCNN [†] (Wang et al. 2015)	116.4	8 m
FOFE-FNNLM [†] (Zhang et al. 2015)	108.0	6 m
Deep RNN (Pascanu et al. 2013)	107.5	6 m
Sum-Prod Net [†] (Cheng et al. 2014)	100.0	5 m
LSTM-1 [†] (Zaremba et al. 2014)	82.7	20 m
LSTM-2 [†] (Zaremba et al. 2014)	78.4	52 m

Thank you for your attention!!