WeatherData descriptive statistics.

September 27, 2017

0.1 Import

```
In [3]: # necessary imports for the descriptive statistics
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
```

0.2 General description

The following dataset is the rain and temperature data from January to December for the period of 1961-2000, which is from four county meteorological stations representing Mengla, Menglun, Menghai, Jinghong.

Variable tag description:

1

Mla=Mengla; Mlun=Menglun; Mhai=Menghai; Jhong=Jinghong.

24.5 23.9

R=monthly rainfall; AT=monthly temperature; 01,02,...,12 means 12 months from January through December.

In [41]:	df		das as po		'Admini	str	ator/Des	sktop/Pyt	hon/exei	rcise/We	atherData
Out[41]:		MlaR01	MlaR02	MlaR03	MlaR	04	MlaR05	MlaR06	MlaR07	MlaR08	MlaR09
	0	4.8	46.8	41.4	97	.7	262.8	205.4	215.5	415.2	245.1
	1	12.9	45.0	16.8	3 105	.3	166.0	258.6	91.0	330.9	93.0
	2	3.3	5.2	42.0) 114	. 7	90.0	314.1	363.8	350.6	72.9
	3	6.1	9.7	46.5	88	.7	125.4	335.7	448.6	241.5	104.6
	4	19.2	28.3	19.8	3 44	.1	176.2	228.2	340.3	235.8	194.2
		MlaR10		Jhc	ongAT3	Jh	nongAT4	JhongAT5	Jhong <i>I</i>	AT6 Jho	ngAT7 \
	0	21.5	• • •		21.3		24.2	25.8	26	6.0	25.6
	1	115.8			19.4		24.4	26.1	2!	5.1	25.6
	2	228.1			20.4		24.0	26.3	2!	5.9	25.3
	3	155.6			20.5		23.7	24.8	2!	5.1	24.2
	4	128.6	• • •		20.2		24.3	25.9	25	5.3	25.4
	0	JhongAT	_	AT9 Jh 4.1	nongAT1		JhongAT1	_	AT12 16.7		

22.1 18.8

15.4

```
2
        24.6
                   25.0
                                22.0
                                             19.4
                                                         15.4
3
        24.9
                   24.7
                                23.3
                                             18.8
                                                         15.1
4
        24.3
                   24.1
                                22.2
                                             18.5
                                                         17.4
```

[5 rows x 96 columns]

```
In [6]: df.shape
Out[6]: (40, 96)
```

0

21.5

. . .

We can see that the index of the DataFrame consists of 40 rows representing 40 years(1961-2000), and there are 96 columns in the DataFrame, which consist of the rain and temperature data from January to December.

```
In [7]: df.index #examine the index
Out[7]: RangeIndex(start=0, stop=40, step=1)
In [8]: df.columns #get the columns
Out[8]: Index(['MlaR01', 'MlaR02', 'MlaR03', 'MlaR04', 'MlaR05', 'MlaR06', 'MlaR07
               'MlaR08', 'MlaR09', 'MlaR10', 'MlaR11', 'MlaR12', 'MlaAT01', 'MlaAT0
               'MlaAT03', 'MlaAT04', 'MlaAT05', 'MlaAT06', 'MlaAT07', 'MlaAT08',
               'MlaAT09', 'MlaAT10', 'MlaAT11', 'MlaAT12', 'MlunR1', 'MlunR2',
               'MlunR3', 'MlunR4', 'MlunR5', 'MlunR6', 'MlunR7', 'MlunR8', 'MlunR9
               'MlunR10', 'MlunR11', 'MlunR12', 'MlunAT1', 'MlunAT2', 'MlunAT3',
               'MlunAT4', 'MlunAT5', 'MlunAT6', 'MlunAT7', 'MlunAT8', 'MlunAT9',
               'MlunAT10', 'MlunAT11', 'MlunAT12', 'MhaiR1', 'MhaiR2', 'MhaiR3',
               'MhaiR4', 'MhaiR5', 'MhaiR6', 'MhaiR7', 'MhaiR8', 'MhaiR9', 'MhaiR10
               'MhaiR11', 'MhaiR12', 'MhaiAT1', 'MhaiAT2', 'MhaiAT3', 'MhaiAT4',
               'MhaiAT5', 'MhaiAT6', 'MhaiAT7', 'MhaiAT8', 'MhaiAT9', 'MhaiAT10',
               'MhaiAT11', 'MhaiAT12', 'JhongR1', 'JhongR2', 'JhongR3', 'JhongR4',
               'JhongR5', 'JhongR6', 'JhongR7', 'JhongR8', 'JhongR9', 'JhongR10',
               'JhongR11', 'JhongR12', 'JhongAT1', 'JhongAT2', 'JhongAT3', 'JhongAT
               'JhongAT5', 'JhongAT6', 'JhongAT7', 'JhongAT8', 'JhongAT9', 'JhongAT
               'JhongAT11', 'JhongAT12'],
              dtype='object')
In [9]: df.head() #peek at the first 5 rows of the data using the .head() method
Out [9]:
           MlaR01
                   MlaR02
                           MlaR03
                                   MlaR04 MlaR05
                                                    MlaR06
                                                            MlaR07
                                                                   MlaR08
                                                                            MlaR09
        0
              4.8
                     46.8
                             41.4
                                      97.7
                                             262.8
                                                     205.4
                                                             215.5
                                                                      415.2
                                                                              245.1
        1
             12.9
                     45.0
                             16.8
                                                     258.6
                                    105.3
                                             166.0
                                                              91.0
                                                                      330.9
                                                                               93.0
        2
              3.3
                      5.2
                             42.0
                                     114.7
                                              90.0
                                                     314.1
                                                             363.8
                                                                      350.6
                                                                               72.9
        3
              6.1
                      9.7
                             46.5
                                     88.7
                                             125.4
                                                     335.7
                                                             448.6
                                                                      241.5
                                                                              104.6
             19.2
                     28.3
                             19.8
                                      44.1
                                             176.2
                                                     228.2
                                                             340.3
                                                                     235.8
                                                                              194.2
           MlaR10
                              JhongAT3
                                         JhongAT4
                                                   JhongAT5
                                                             JhongAT6
                                                                        JhongAT7 \
                     . . .
```

21.3

24.2

25.8

26.0

25.6

1	115.8		19.4	24.4	26.1	25.1	25.6
2	228.1		20.4	24.0	26.3	25.9	25.3
3	155.6		20.5	23.7	24.8	25.1	24.2
4	128.6		20.2	24.3	25.9	25.3	25.4
	JhongAT8	JhongAT9	JhongAT10	JhongAT11	JhongAT12		
0	24.8	24.1	22.9	19.0	16.7		
1	24.5	23.9	22.1	18.8	15.4		
2	24.6	25.0	22.0	19.4	15.4		
3	24.9	24.7	23.3	18.8	15.1		
4	24.3	24.1	22.2	18.5	17.4		

[5 rows x 96 columns]

The first 5 rows representing the rain and air temperature monthly data from the 4 count meteorological stations for the period of 1961-1965. Likewise, the last 5 rows representing the data for the period of 1996-2000.

In [10]: df.tail() #peek at the last 5 rows of the data using the .tail() method

Out[10]:	MlaR01 N	MlaR02 M	laR03	MlaRO)4 MlaR05	MlaR06	MlaR07	MlaR08	MlaR0
35	0.0	41.5	72.7	67.	0 153.0	137.8	354.4	316.5	134.
36	0.5	0.0	63.8	122.	5 29.6	107.9	547.8	186.1	273.
37	0.0	4.5	30.2	183.	2 176.7	103.0	351.3	184.3	127.
38	46.1	0.1	61.1	79.	4 182.9	305.3	179.2	281.0	211.
39	11.8	42.5	79.9	85.	4 241.3	242.9	390.7	388.4	221.
	510		-1	7.00	T1 7 7 7 4	-1 2.E.	-1	7 T C T1	3.87
	MlaR10	• • •		_	JhongAT4	JhongAT5	_		ngAT7
35	74.3			22.6	24.5	26.0	2	6.0	25.3
36	56.3			22.4	23.0	26.9	2	6.6	25.7
37	61.3			22.7	24.2	26.3	2	6.8	25.4
38	74.0			22.0	25.8	24.4	2	6.5	25.7
39	213.5	• • •		20.6	24.6	24.2	2.5	5.7	25.7
	JhongAT8	JhongAT	9 Tho	ngAT10) JhongAT	'11 Jhong	Д Т12		
35	25.4	25.		23.0	_	_	18.3		
36	26.0	24.		23.4			19.4		
37	25.6	24.	9	23.6	5 20	.2	18.2		
38	25.3	24.	8	23.4	19	.7	14.6		
39	25.8	24.	4	23.6	5 19	.3	18.6		

[5 rows x 96 columns]

0.3 Summary statistics

The following code returns summary statistics on the rain and temperature data, including the count of items that are not part of NaN; the mean and standard deviation; minimum and maximum values; and the values of the 25,50,and 75 percentiles:

In [11]: df.describe() # returns summary statistics

Out[11]:		MlaR01	MlaR02	Mla	R03	Ml	aR04		MlaR05		MlaF
	count	40.000000	40.000000	40.000	000	40.00	0000	40.	000000	40	.0000
	mean	19.562500	22.697500	37.550	000	96.35	2500	167.	657500	225	.6800
	std	24.024557	24.924578	28.946	662	45.08	6094	69.	049926	76	.8601
	min	0.000000	0.000000	0.000	000	25.70	0000	29.	600000	103	.0000
	25%	3.300000	4.225000	12.975	000	62.92	5000	120.	950000	163	.6750
	50%	12.150000	11.900000	34.000	000	91.25	0000	170.	950000	219	.9000
	75%	28.875000	38.200000	53.800	000	122.90	0000	202.	675000	278	.9000
	max	111.400000	96.700000	130.800	000	202.10	0000	377.	200000	410	.7000
		MlaR07	MlaR08	Mla	R09	Ml	aR10		•	Jho	ngAT3
	count	40.00000	40.000000	40.000	000	40.00	0000		•	40.0	00000
	mean	303.86000	308.070000	158.290	000	93.92	7500		•	21.4	77500
	std	100.31874	90.486716	72.134	205	52.92	8239		•	0.8	81283
	min	91.00000	173.800000	40.300	000	13.30	0000		•	19.4	00000
	25%	234.95000	236.400000	108.350	000	55.65	0000		•	20.7	00000
	50%	291.80000	302.350000	140.350	000	84.60	0000		•	21.4	00000
	75%	356.75000	360.050000		000	129.67	5000		•	22.1	00000
	max	547.80000	508.100000	321.700	000	228.10	0000		•	23.4	00000
			_			_	_	_	_		,
		JhongAT4	JhongAT5	JhongAT6		ongAT7	Jhong	•	Jhong		\
	count	40.000000	40.0000	40.00000		000000	40.00		40.000		
	mean	24.377500	25.7775	25.91500		507500	25.22		24.600		
	std	1.041323	0.8980	0.59938		460984	0.52		0.458		
	min	22.300000	24.2000	24.90000		200000	24.00		23.400		
	25%	23.800000	25.1000	25.37500		300000	24.97		24.300		
	50%	24.400000	25.7000	26.00000		550000	25.30		24.650		
	75%	24.925000	26.3000	26.30000		725000	25.60		24.900		
	max	26.800000	27.7000	27.20000	26.	700000	26.40	0000	25.500	0000	
		JhongAT10	JhongAT11	Therean T1	2						
	count	40.00000	40.000000	JhongAT1 40.00000							
			19.622500	16.47250							
	mean	22.79750									
	std	0.74644	0.914691	1.20170							
	min	21.10000	17.100000	13.30000							
	25%	22.27500	19.000000	15.62500							
	50%	22.85000	19.450000	16.55000							
	75%	23.40000	20.200000	17.12500							
	max	24.10000	21.400000	19.40000	U						

[8 rows x 96 columns]

Out[12]: MlaR01 0.0 MlaR02 0.0

```
MlaR03
           0.0
MlaR04
           25.7
MlaR05
           29.6
MlaR06
          103.0
MlaR07
           91.0
MlaR08
          173.8
MlaR09
           40.3
           13.3
MlaR10
MlaR11
             0.0
MlaR12
             0.0
dtype: float64
```

We can see that the smallest rainfall occurred in January, February, March, November and December within the 40 years in Mla.

```
In [14]: MlaATmin=df.min()
         MlaATmin[12:24]
Out[14]: MlaAT01
                     13.1
                     15.6
         MlaAT02
         MlaAT03
                     18.0
                     21.3
         MlaAT04
                     23.4
         MlaAT05
         MlaAT06
                     24.2
         MlaAT07
                     23.8
         MlaAT08
                     23.2
         MlaAT09
                     22.7
                     20.4
         MlaAT10
         MlaAT11
                     16.6
         MlaAT12
                     12.4
         dtype: float64
```

We can see that the temperature are lower than 20 degrees for 5 months, which also have the smallest rainfall.

0.4 Selecting DataFrame

Selecting the rainfall data from January to December within 40 years in Mla:

```
In [16]: # rows and columns can be retrieved by location using .iloc[]
         # get rows from 0 to 39, and columns from 0 to 12
         MlaR=df.iloc[:40,0:12]
         MlaR.head() # show the first 5 years' data
                    MlaR02
                                                                               MlaR09
Out [16]:
            MlaR01
                            MlaR03
                                     MlaR04
                                             MlaR05
                                                     MlaR06
                                                             MlaR07
                                                                      MlaR08
         0
               4.8
                      46.8
                               41.4
                                       97.7
                                              262.8
                                                       205.4
                                                               215.5
                                                                        415.2
                                                                                245.1
         1
              12.9
                      45.0
                               16.8
                                      105.3
                                              166.0
                                                       258.6
                                                                91.0
                                                                        330.9
                                                                                 93.0
         2
               3.3
                        5.2
                               42.0
                                      114.7
                                               90.0
                                                       314.1
                                                               363.8
                                                                        350.6
                                                                                 72.9
         3
               6.1
                        9.7
                               46.5
                                      88.7
                                              125.4
                                                       335.7
                                                               448.6
                                                                       241.5
                                                                                104.6
```

```
19.2
           28.3
                        44.1 176.2 228.2 340.3 235.8 194.2
4
                  19.8
  MlaR10 MlaR11 MlaR12
0
    21.5
           47.9
                   53.6
  115.8
1
          12.3
                  5.4
   228.1
          101.9
                  11.3
   155.6
3
          33.4
                  47.1
   128.6
                  68.7
          140.2
```

The following code returns summary statistics on the rainfall data from January to December within 40 years in Mla:

In [17]: MlaR.describe() # returns summary statistics

Out[17]:		MlaR01	MlaR02	MlaR03	MlaR04	MlaR05	Mla
	count	40.000000	40.000000	40.000000	40.000000	40.00000	40.0000
	mean	19.562500	22.697500	37.550000	96.352500	167.657500	225.6800
	std	24.024557	24.924578	28.946662	45.086094	69.049926	76.860
	min	0.000000	0.000000	0.000000	25.700000	29.600000	103.000
	25%	3.300000	4.225000	12.975000	62.925000	120.950000	163.6750
	50%	12.150000	11.900000	34.000000	91.250000	170.950000	219.9000
	75%	28.875000	38.200000	53.800000	122.900000	202.675000	278.9000
	max	111.400000	96.700000	130.800000	202.100000	377.200000	410.7000
		MlaR07	MlaR08	MlaR09	MlaR10	MlaR11	Mla
	count	40.00000	40.000000	40.000000	40.000000	40.000000	40.000
	mean	303.86000	308.070000	158.290000	93.927500	54.047500	29.542
	std	100.31874	90.486716	72.134205	52.928239	49.021225	32.107
	min	91.00000	173.800000	40.300000	13.300000	0.000000	0.000
	25%	234.95000	236.400000	108.350000	55.650000	19.700000	4.2750
	50%	291.80000	302.350000	140.350000	84.600000	41.500000	17.8500
	75%	356.75000	360.050000	210.850000	129.675000	76.475000	47.1750
	max	547.80000	508.100000	321.700000	228.100000	193.500000	130.7000

The following example selects all line data whose index label is 4, performing the monthly rainfall data for 12 months in the year 1965:

```
In [19]: # using .ix() method to select rows by index label or location
        MlaR1965=MlaR.ix[4]
        MlaR1965
Out[19]: MlaR01
                   19.2
                   28.3
        MlaR02
        MlaR03
                   19.8
                   44.1
        MlaR04
        MlaR05
                176.2
        MlaR06
                 228.2
        MlaR07
                 340.3
        MlaR08
                 235.8
```

```
MlaR10 128.6
MlaR11 140.2
MlaR12 68.7
Name: 4, dtype: float64
```

0.5 Boolean selection

The following code demonstrates identifying items in a Series where the rainfall are greater than 200:

```
In [20]: # A Boolean selection applies a logical expression
        #to the value of the Series
        MlaR1965>200
Out[20]: MlaR01
                  False
        MlaR02
                  False
        MlaR03
                False
        MlaR04
                 False
        MlaR05
                 False
        MlaR06
                   True
        MlaR07
                   True
        MlaR08
                   True
        MlaR09
               False
        MlaR10
                False
        MlaR11
                 False
        MlaR12
                  False
        Name: 4, dtype: bool
```

The following code extracts subsets whose values are greater than 200:

We can see that the rainfall values in June, July and August are great than 200. The following code extracts subsets whose values are greater than 100 and less than 200:

It is convenient for us to see that the rainfall values in May, September, October and November are great than 100 and less than 200.

The following code extracts the air temperature monthly data in Mla in the year 1961:

```
In [24]: # get row in location 1, and columns from 12 to 24
         MlaAT1961=df.iloc[:1,12:24]
         MlaAT1961
Out [24]:
            MlaAT01 MlaAT02
                              MlaAT03
                                       MlaAT04 MlaAT05 MlaAT06
                                                                   MlaAT07
                                                                            MlaAT08
         0
               15.8
                        18.7
                                 20.5
                                           22.9
                                                    24.5
                                                             24.4
                                                                      24.8
                                                                               24.2
            MlaAT09 MlaAT10
                              MlaAT11
                                       MlaAT12
         0
               23.6
                        22.2
                                 18.7
                                          16.2
In [25]: # acquire the mean of the series
         MlaAT1961.ix[0].mean()
Out[25]: 21.375
```

We can see the annual air temperature value is 21.375 degree in the year 1961.

Taking the rainfall data of the four places in January within 40 years as an example, I want to do some summary statistics and make further comparisons. The codes are as follows:

```
In [31]: # or type: df[[0,24,48,72]]
          # to look up the rows with special index labels
         dfR1=df[['MlaR01','MlunR1','MhaiR1','JhongR1']]
         dfR1
Out [31]:
              MlaR01 MlunR1
                               MhaiR1
                                        JhongR1
                 4.8
                          4.2
                                   4.2
                                            5.6
         \Omega
         1
                12.9
                         11.9
                                   8.0
                                            6.0
         2
                 3.3
                          4.1
                                   2.3
                                            2.0
         3
                 6.1
                          4.3
                                   3.7
                                            5.0
         4
                19.2
                         31.8
                                 10.9
                                            9.6
         5
                65.2
                         32.9
                                 13.0
                                            9.6
          6
                30.6
                         22.8
                                 12.8
                                           28.7
         7
                51.4
                         85.6
                                           88.1
                                 89.9
                         4.6
         8
                16.1
                                 11.3
                                            6.4
         9
                20.4
                         19.6
                                   8.7
                                            8.3
                9.6
                         5.6
                                  7.1
         10
                                           10.8
         11
                14.0
                         25.2
                                  20.6
                                           21.9
                 3.2
                          6.1
                                   4.0
                                            3.4
         12
         13
                 3.0
                          3.5
                                  1.0
                                            2.3
         14
               111.4
                         79.1
                                  62.4
                                           62.0
         15
                 9.4
                         34.7
                                  24.5
                                           31.0
                                  14.1
         16
                20.1
                         0.1
                                            9.9
         17
                77.6
                         52.0
                                 76.2
                                           51.7
         18
                28.3
                          1.6
                                 10.1
                                           19.4
         19
                 0.5
                          1.4
                                  0.0
                                            0.3
```

```
20
       50.0
                 35.5
                            6.2
                                     17.4
       12.7
21
                 30.2
                          21.2
                                     14.9
22
       33.2
                 22.0
                          12.7
                                     17.1
23
        2.0
                  3.2
                            0.0
                                      0.9
       31.4
24
                 10.1
                            0.0
                                      0.0
25
        0.5
                  4.0
                            0.6
                                      1.6
26
       33.9
                  8.0
                          14.1
                                     16.3
27
        3.7
                  1.9
                            0.0
                                      0.0
       10.4
                 15.4
                            3.1
                                     17.3
28
29
       12.5
                  2.6
                            0.5
                                      0.0
        3.3
                  0.3
                            1.7
30
                                      0.1
       13.5
                 23.3
                            7.7
                                      6.5
31
        2.0
                  1.7
                            1.3
32
                                      3.3
                  0.3
33
        4.0
                            0.9
                                     17.0
34
        3.9
                  3.8
                            1.1
                                      0.7
35
        0.0
                  0.5
                            0.0
                                      0.0
36
        0.5
                  5.0
                            2.5
                                      0.0
37
        0.0
                  0.0
                            0.2
                                      0.0
38
       46.1
                 61.8
                          29.5
                                     35.6
39
       11.8
                  7.0
                            9.2
                                     11.6
```

In [32]: dfR1.describe() # returns summary statistics

Out[32]:		MlaR01	MlunR1	MhaiR1	JhongR1
	count	40.000000	40.000000	40.000000	40.000000
	mean	19.562500	16.692500	12.432500	13.557500
	std	24.024557	21.381988	20.021327	18.480161
	min	0.000000	0.000000	0.000000	0.000000
	25%	3.300000	3.050000	1.075000	1.425000
	50%	12.150000	5.850000	6.650000	7.400000
	75%	28.875000	23.775000	12.850000	17.150000
	max	111.400000	85.600000	89.900000	88.100000

We can see that for the period of 1961-2000, January rainfall in Mla is larger than the other three counties, and the degree of dispersion in which is the largest too. In addition, the average rainfall in January is as low as 0 in the four counties.

```
In [33]: dfAT1=df[['MlaAT01','MlunAT1','MhaiAT1','JhongAT1']]
          dfAT1.head()
Out [33]:
             MlaAT01
                       MlunAT1
                                 MhaiAT1
                                           JhongAT1
                          16.4
          0
                15.8
                                    12.8
                                               16.3
          1
                14.8
                          15.3
                                    12.4
                                               15.7
          2
                13.2
                          14.0
                                    11.3
                                               14.3
          3
                15.7
                          15.7
                                               15.4
                                    11.8
                14.3
                          14.3
                                    11.5
                                               14.6
```

0.6 Visualization

The .plot() method makes plots of pandas data very easy to create, and the .hist() method is useful for visualizing distributions of data.

The picture indicates that there are four peaks of rainfall from 1961 to 2000.

The picture indicates that January air temperature values in Mhai are lower than the others within 40 years, while the temperature values of the other three counties are close.

If the data has multiple series, the histogram function will automatically generate multiple histograma, one for each series:

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x8bd95d0>

A kernel density estimate plot makes an attempt and estimates the true distribution of the data, and hence smoothes it into a continuous plot.

The picture indicates that Mla temperature in 1961 has began to fall continously from July.

In []:

In []: