Internet Protocol Version 6 (IPv6)

IPv6 Features

- Expanded addressing capabilities: From 32 bits to 128 bits
- Header format simplification.
- End to End reachability: avoids NAT
- Support for resource allocation.
- Faster forwarding or routing.
- Improved support for extensions and options.
- Support for more security.
- Support for mobility.
- Stateless Autoconfiguration No DHCP

Simplified Header

End-to-end Connectivity

No NAT required

Auto-configuration

IPv6 Auto Configuration

IPSec

Initially it was decided that IPv6 must have IPSec security, making it more secure than IPv4.

Optional

Anycast Support

Mobility

Faster Forwarding/Routing

Enhanced Priority Support

IPv4 Header

Version	IHL	Type of Service	Total Length		
Identification			Flags	Fragment	
TTL		Protocol	Header Checksum		
	Sou	rce Addres	s		
	Destin	ation Addre	988		
Options		()	Padding		

IPv6 Header

Only can be used if end-to-end supports

Smooth Transition

Extensibility

Large IP address scheme

Globally unique IP address scheme

NAT is not required

Header is less loaded

Forwarding Decision

IPv6 Address:

- 128 bit address
- Notations:

- IPv6 = 128 Bits
- Dotted decimal notation
- Colon Hexadecimal notation
 - 128 bits is divided into 8 sections, each 2 bytes in length.
 - Ex: FDEC:BA98:7654:3210:ADBF:BBFF:2922:FFFF

Shortening the address:

- Zero Compression:
 - Step1: FDEC:0000:0000:0000:0000:BBFF:0000:FFFF
 - Step2: FDEC:0:0:0:0:BBFF:0:FFFF
 - Step3: FDEC::BBFF:0:FFFF

Abbreviating IPv6 Addresses

Two basic rules let you, or any computer, shorten or abbreviate an IPv6 address:

- 1. Inside each quartet of four hex digits, remove the leading 0s (0s on the left side of the quartet) in the three positions on the left. (Note: at this step, a quartet of 0000 will leave a single 0.)
- 2. Find any string of two or more consecutive quartets of all hex 0s, and replace that set of quartets with a double colon (::). The :: means "two or more quartets of all 0s." However, you can only use :: once in a single address, because otherwise the exact IPv6 might not be clear.

Address Abbreviation and Expansion:

Full	Abbreviation
2340:0000:0010:0100:1000:ABCD:0101:1010	
	30A0:ABCD:EF12:3456:ABC:B0B0:9999:9009
2222:3333:4444:5555:0000:0000:6060:0707	
	3210::
210F:0000:0000:0000:CCCC:0000:0000:000D	
	34BA:B:B::20
FE80:0000:0000:0000:DEAD:BEFF:FEEF:CAFE	
	FE80::FACE:BAFF:FEBE:CAFE

Answers:

Full	Abbreviation
2340:0000:0010:0100:1000:ABCD:0101:1010	2340:0:10:100:1000:ABCD:101:1010
30A0:ABCD:EF12:3456:0ABC:B0B0:9999:9009	30A0:ABCD:EF12:3456:ABC:B0B0:9999:9009
2222:3333:4444:5555:0000:0000:6060:0707	2222:3333:4444:5555::6060:707
3210:0000:0000:0000:0000:0000:0000	3210::
210F:0000:0000:0000:CCCC:0000:0000:000D	210F::CCCC:0:0:D
34BA:000B:000B:0000:0000:0000:0000:0020	34BA:B:B::20
FE80:0000:0000:0000:DEAD:BEFF:FEEF:CAFE	FE80::DEAD:BEFF:FEEF:CAFE
FE80:0000:0000:0000:FACE:BAFF:FEBE:CAFE	FE80::FACE:BAFF:FEBE:CAFE

Example:

Hexadecimal (32		64		96			128		
Straight Hex	805B	2D9D	DC28	0000	0000	FC57	D4	C8	1F	FF
Leading-Zero Suppressed	805B	2D9D	DC28	0	0	FC57	D4	C8	1F	FF
Zero- Compressed	805B	2D9D	DC28	ä		FC57	D4C8		1F	FF
Mixed Notation	805B	2D9D	DC28		-	FC57	212	200	31	255

IPv6 Address

- Prefixes for IPv6 subnets, routes, and address ranges are expressed in the same way as Classless Inter-Domain Routing (CIDR) notation.
- An IPv6 prefix is written in *address/prefix-length* notation.
- For example, in IPv6 address: **2001:0DB8:0000:000b:0000:0000:0000:001A/64**
 - **2001:0DB8:0000:000b::/64** represents the network prefix and the possible IPv6 addresses ranges from:
 - 2001:0DB8:0000:000b:0000:0000:0000:0001/64 to
 2001:0DB8:0000:000b:ffff:ffff:ffff/64.

Prefix length is multiple of 4 here,

2001:0DB8:AAAA:0002:1234:5678:9ABC:EF01/64

2001:DB8:AAAA:2::/64

Find the IPv6 Prefix from an Address/PL

2340:0:10:100:1000:ABCD:101:1010/64

2340:0:10:100::/64

When the prefix length is not a multiple of 16 or 4 it means we have to do some binary calculations.

2001:1234:abcd:5678:9877:3322:5541:aabb/53

2001:1234:abcd:5000:0:0:0:0/53

IPv6 Address

- IPv6 Addresses:
 - Network address or site prefix : First 48 bits
 - Subnet Address or subnet prefix: Next 16 bits
 - Device Address : Last 64 bits
 - Example: in the following IPv6 address:
 - 2001:db8:abcd:0012:0000:0000:0000:0000
 - The network address is 2001:db8:abcd, and the subnet address is 12 (using the short form notation and eliminating the leading zeroes).
 - Together, these two groupings are the IPv6 prefix. The device address in the example is 0000:0000:0000:0000.

Finding IPv6 Prefix

For example, consider the following IPv6 address that is assigned to a host on a LAN:

2000:1234:5678:9ABC:1234:5678:9ABC:1111/64

zeroing out the last 64 bits (16 digits) of the address, you find the following prefix value:

2000:1234:5678:9ABC:0000:0000:0000:0000/64

Abbreviated: 2000:1234:5678:9ABC::/64

Problems:

Address/Length	Prefix
2340:0:10:100:1000:ABCD:101:1010/64	
30A0:ABCD:EF12:3456:ABC:B0B0:9999:9009/64	
2222:3333:4444:5555::6060:707/64	
3210::ABCD:101:1010/64	

Variable Length Prefix

2BCD::FACE:BEFF:FEBE:CAFE/48	
3FED:F:E0:D00:FACE:BAFF:FE00:0/48	
210F:A:B:C:CCCC:B0B0:9999:9009/40	
34BA:B:B:0:5555:0:6060:707/36	

Answers:

Prefix
2340:0:10:100::/64
30A0:ABCD:EF12:3456::/64
2222:3333:4444:5555::/64
3210::/64
֡

2BCD::FACE:BEFF:FEBE:CAFE/48	2BCD::/48
3FED:F:E0:D00:FACE:BAFF:FE00:0/48	3FED:F:E0::/48
210F:A:B:C:CCCC:B0B0:9999:9009/40	210F:A::/40
34BA:B:B:0:5555:0:6060:707/36	34BA:B::/36

IPv6 Addressing Modes

- Unicast
- Multicast
- Anycast
 - In this addressing mode, multiple interfaces (hosts) are assigned same Anycast IP address.
 - When a host wishes to communicate with a host equipped with an Anycast IP address, sends a Unicast message.
 - With the help of complex routing mechanism, that Unicast message is delivered to the host closest to the Sender, in terms of Routing cost

Anycast

google × Q

Images

: More

Tools

■ Books

About 4,06,00,00,000 results (0.52 seconds)

■ News

https://www.google.co.in

Google

Q All

Search the world's information, including webpages, images, videos and more. **Google** has many special features to help you find exactly what you're looking ...

▶ Videos

Google Input Tools

Google Input Tools makes it easy to type in the language you ...

More results from google.co.in »

Global Unicast Address

- Addressing starts with 2000::/3
- Addressing assigned by the IANA

Global Unicast Address Range

Global Routing Prefix Subnet ID Interface ID

Range: 2000: 0010 0000 0000 0000 : First hextet

Range:

2000::/64 to 3fff:fff:fff::/64

/64 Global Unicast Address and the 3-1-4 Rule

2001:DB8:CAFE:1::100/64

Link Local Address

- Addressing starts with FE80::/10
- · Can only communicate on one network segment
- Similar to the IPv4 APIPA addresses (169.254.0.0/16)
- · Can be automatically or statically assigned

Link local

Local-link

Duplicate Address Detection (DAD)

FE80::/10

Unique Local Address

Addressing starts with FC00::/7

fc00::/7 to fdff::/7

- · Cannot be routed over the public Internet
- Similar to IPv4 private addresses
- . If the address is locally assigned, the L bit is set to a I

Special Addresses


```
C:\Users\Ashish.P>ping 127.0.0.1 -t

Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time=25ms TTL=64
Reply from 127.0.0.1: bytes=32 time=26ms TTL=64
Reply from 127.0.0.1: bytes=32 time=26ms TTL=64
Reply from 127.0.0.1: bytes=32 time=33ms TTL=64
Reply from 127.0.0.1: bytes=32 time=20ms TTL=64
Reply from 127.0.0.1: bytes=32 time=23ms TTL=64
```

Reply from 127.0.0.1: bytes=32 time=19ms TTL=64 Reply from 127.0.0.1: bytes=32 time=18ms TTL=64 Reply from 127.0.0.1: bytes=32 time=17ms TTL=64 Reply from 127.0.0.1: bytes=32 time=18ms TTL=64 Reply from 127.0.0.1: bytes=32 time=16ms TTL=64 Reply from 127.0.0.1: bytes=32 time=16ms TTL=64 Reply from 127.0.0.1: bytes=32 time=16ms TTL=64 Reply from 127.0.0.1: bytes=32 time=18ms TTL=64 Reply from 127.0.0.1: bytes=32 time=16ms TTL=64 Reply from 127.0.0.1: bytes=32 time=17ms TTL=64 Reply from 127.0.0.1: bytes=32 time=20ms TTL=64 Reply from 127.0.0.1: bytes=32 time=20ms TTL=64 Reply from 127.0.0.1: bytes=32 time=21ms TTL=64 Reply from 127.0.0.1: bytes=32 time=23ms TTL=64 Reply from 127.0.0.1: bytes=32 time=24ms TTL=64 Reply from 127.0.0.1: bytes=32 time=21ms TTL=64

Unspecified Address

- Written as ::
- Used for a client's source address when sending a Neighbor Solicitation message
- Used for a client's source address when sending a Router Solicitation message

Contd...

- Entire address consists of zeros
- Prefix is of 8 bits (0000000)
- Rest 120 bits (000....000)

00000000	00)

- It is used when host does not know its own address and sends an enquiry to find its own address
- In enquiry it must define an source address.
- This addresses can not used as a destination addresses

Solicited-Node Multicast Address

- Address begins with FF02::1:FF
- Address ends with the last 24 bits of the corresponding IPv6 address
- Used instead of an IPv4 ARP broadcast
- Also used for Duplicate Address Detection (DAD)

Solicited-Node Multicast Addresses

TCP/IP defines ARP to map an IP address to MAC address on the same LAN

IPv6 Neighbor Discovery Protocol (NDP) replaces IPv4 ARP and it uses solicited-nodemulticast address Router calculates solicited-node multicast address for each interface as follows

Address Scope

