

6) Muestre que el con forman el grupo Go:	junto de		
i) Cerrado respecto a s que las operaciones en dentro del conjunto.	: De la ta	Lea GA &	odemos ver antiene
ii) Asociativa respecto a	V:	TSA	
RID(XA D RJ) = (A A
RIDXB = XI	4		80 - 98 (PA)
iii) Existencia de un el	Col Ba hard	to office !	had a made a to a day
IDR, = RJDI =			
iv) Existencia de un es			
$R \cdot \Delta R J = I = R$ $XA \Delta XA = I \cdot D \cdot D$			XA = (AYA)
XADXA = I $XBDXB = I$ $XcDXc = I$	X X	80,00	78A)=8X
v) Conmutativa			
XADXC = Ry +			9 9 1 4
Esno es un grupo ab	eliano, p	ero es un	gripo.
		X X OX	2 1 3 2

2.1.8 Problema 10. Sea Pr el conjunto de todos los polinomios de grado n, en X, con coeficientes reales: $|Pn| = p(x) = a_0 + a_1 x' + \cdots + a_n x'' = \sum_{i=1}^{n-1} a_i x^i = \sum_{i=1}^{n-1} a_i x^i$ O) Demostrar que Pn es un espacio vectorial respecto a la suma de polinomios y la multiplicación de polinomios por un mimero (real) 1) Pn es cerrado bajo la suma: Sean $P(x) = \sum_{i=0}^{n-1} a_i x^i$ y $P_{2(x)} = \sum_{i=0}^{n-1} b_i x^i \in P_n$ $P_{i}(x) + P_{z}(x) = \sum_{i=0}^{n-1} a_{i} x^{i} + \sum_{i=0}^{n-1} b_{i} x^{i}$ $=\sum_{i=1}^{n-1} (ai+bi) \chi^{i}$ Como ai, bi & R, entonees existe ci=ai+bi Picx) + Pzcx) = 5 Cix2 & Pn ; CiER 2) la suma es conmutativas Sean P. CXI, PZLX) E Pn PICX) + PICX) = PICX) + PICX) $\sum_{i=0}^{n-1} a_i x^i + \sum_{i=0}^{n-1} b_i x^i + \sum_{i=0}^{n-1} a_i x^i$ $\sum_{i=0}^{n-1} (ai+bi)\chi^{i} = \sum_{i=0}^{n-1} (bi+ai)\chi^{i}$ · la suma de números reales es conmutativas por lo tento aitbi = bitai $\sum_{i=0}^{n-1} (ai + bi) \chi^{i} = \sum_{i=0}^{n-1} (ai + bi) \chi^{i}$

```
3) La operación suma es asociativa
   Sean Picki, Packi y Boxi E Pri
    P, (x) + P2(x) + P3(x) = [P, (x) + P2(x)] + P3(x)
 \sum_{i=0}^{n-1} a_i x^i + \left[\sum_{i=0}^{n-1} b_i x^i + \sum_{i=0}^{n-1} c_i x^i\right] = \left[\sum_{i=0}^{n-1} a_i x^i + \sum_{i=0}^{n-1} b_i x^i\right] + \sum_{i=0}^{n-1} c_i x^i
  \sum_{i=0}^{n-1} a_i x^i + \sum_{i=0}^{n-1} (b_i + c_i) \chi^i = \sum_{i=0}^{n-1} (a_i + b_i) \chi^i + \sum_{i=0}^{n-1} c_i \chi^i
      \sum_{i=0}^{n-1} (a_i + b_i + c_i) \chi^i = \sum_{i=0}^{n-1} (a_i + b_i + c_i) \chi^i
  4) Existe un unico elemento neutro.
  10) = POCK)= 2 0 X 2
  P.(X) + POLX) = POLX) + P.(X) = POLX)
 \sum_{i=0}^{n-1} a_i x^i + \sum_{i=0}^{n-1} o_i x^i = \sum_{i=0}^{n-1} a_i x^i + \sum_{i=0}^{n-1} a_i x^i = \sum_{i=0}^{n-1} a_i x^i
\sum_{i=0}^{n-i} (a_i + o) \times i = \sum_{i=0}^{n-i} (o + a_i) \times i = \sum_{i=0}^{n-i} (a_i \times i)
  5) Existe un elemento simetrico pora cada elemento de Pn
   Sean Pilx) & Pn y Pilx) & Pn
  P_{i(x)} = \sum_{i=0}^{n-1} a_i x^i, P_{-i(x)} = \sum_{i=0}^{n-1} (-\alpha_i) x^i
  P_{i}(x) + P_{-i}(x) = P_{0}(x)
\sum_{i=0}^{n-1} a_{i}x_{i} + \sum_{i=0}^{n-1} (-a_{i})x_{i} = \sum_{i=0}^{n-1} a_{i}x_{i}
    \sum_{i=0}^{n-1} (a_i + (-a_i)) \chi_i = \sum_{i=0}^{n-i} 0 v^i
           Siendo - ai el simetrico de ai en los realles à
       DOXU = DOXU
```

6) Span 2,8 ER y 2 PCX) EPn · d (BP.(x)) = (dp)P.(x) $\alpha\left(\sum_{i=0}^{n-1}(\beta ai)x^{i}\right)=(\lambda\beta)\sum_{i=1}^{n-1}\alpha_{i}x^{i}$ Bes un numero constante, por lo tanto puede solir de la sumatoria. 28 2 ai y 2 = (28) 2 ai y i (X+B)P(LX) = XP(LX) + BP(LX) $(X+B)\sum_{i=0}^{n-1}a_iX^i = X\sum_{i=0}^{n-1}a_iX^i + B\sum_{i=0}^{n-1}a_iX^i$ = (d+B)ai]x = = propiedad distributiva R > (dai + Bai) Xi = 00-0 E Lai vi + Bai Xi = 5 Laixi + 5 Baixi = 2 Caixi + B Zaixi
i=0 Si es espacio rectorial

d(Pick) + Pzcx)) = dPicx) + dPzcx) d [Zaxi + Zbixi] = d Zaixi + d Z bixi 2 2 ai x 2 + 2 2 bi x 2 =) · 1 = R -> 1 x P. (x) = P. (x) $1 \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} = \mathbb{Z} \times \mathbb{Z$ 1675: los coeficientes ai son enteros, ¿Pn será un espacio vectorial? ¿ por que? No, el producto por escalar, perteneciente a los reales, podria no pertenece i a Pn. der y pex) € Pn → Pex) = 5 aixi, ai € Z decx = ∑xaixi → Rodemos afirmor que dai €R pero no que perteneza a Z pero no que pertenezaa 2 subespació vectorial? 1) El polinomio cero y todos los polinomios de grado n-1 Pn-1 C Pn Sean Picxiy Perxit Pan y &, PER Sean (i, x, y) $\in P_{n-1}$? $\rightarrow P_{n-2}$ $\rightarrow P_{n-2}$ Si es subespaciode Pn.

2) El polinomio cero y todos los polinomios de gradogar. $P_p \subseteq P_n$ $P(x) \in P_p$ $\rho(x) = \sum_{i \in \mathbb{N}} q_i \chi^i , 2m \leq n-1$ PICKT y PECK) EPP , 2 y PER $x p_{i}(x) + \beta p_{z}(x) \in Pp$? $x = \sum_{i=0}^{z_{im}} (x^{i} + \beta \sum_{i=0}^{z_{i}} b_{i} x^{i} = \sum_{i=0}^{z_{i}} (x^{i} + \beta b_{i}) x^{i} \in Pp$ $x = \sum_{i=0}^{z_{i}} (x^{i} + \beta b_{i}) x^{i} \in Pp$ 3) Todos los polinomios que trenen a x como un factor (grado no1) No es subespacio de Pn porque no contiene el nulo de Pn 4) Todos los polinomios que tienen a X-1 como un factor No es subespació de en parque no contrene el nulo de Pr