Lexical-Analyser: Automata

Automata – Transition Diagrams

- Transition Diagram(Stylized flowchart)
 - Depict the actions that take place when a lexical analyzer is called by the parser to get the next token

Example NFA

Example for Identifier

Which represent the rule:
 identifier=letter(letter | digit)*

Finite Automata

- By default a Deterministic one.
- Five tuple representation
 (Q, ∑, δ, q0, F), q0 belongs to Q and F is a subset of Q
- δ is a mapping from Q x Σ to Q
- Every string has exactly one path and hence faster string matching

DFA

- In a DFA, no state has an ε -transition
- In a DFA, for each state s and input symbol a, there is at most one edge labeled a leaving s
- To describe a FA, we use the transition graph or transition table

DFA

• A DFA accepts an input string x if and only if there is some path in the transition graph from start state to some accepting state

Example

- Recognition of Tokens
- Construct a DFA M, which can accept the strings which begin with a or b, or begin with c and contain at most one a_{\circ}

Example

cbbcc cccba cccaab X

Non-deterministic Finite automata

- Same as deterministic, gives some flexibility.
- Five tuple representation
 (Q, ∑, δ, q0, F), q0 belongs to Q and F is a subset of Q
 δ is a mapping from Q x ∑ to 2^Q
- More time for string matching as multiple paths exist.

Non-Deterministic Finite automata with e

- Same as NFA. Still more flexible in allowing to change state without consuming any input symbol.
- δ is a mapping from Q x Σ U { ϵ } to 2^Q
- Slower than NFA for string matching

NFA Some Observations

- In a NFA, the same character can label two or more transitions out of one state;
- In a NFA, ε is a legal input symbol.
- A DFA is a special case of a NFA

NFA Some Observations

- A NFA accepts an input string 'x' if and only if there is some path in the transition graph from start state to some accepting state. A path can be represented by a sequence of state transitions called moves.
- The language defined by a NFA is the set of input strings it accepts

RE to DFA

- Regular Expression could be converted to E-NFA using Thompson Construction Algorithm
- E-NFA could be converted to DFA using Subset construction algorithm

Basic Regular Expression and its NFA

Regular expression – Union operator and its corresponding NFA

$$r = s \mid t$$

Regular expression with concatenation operator and its corresponding NFA

r = st

Regular expression involving kleene closure operator and its NFA

$$r = s^*$$

Algorithm

- Construct the basic NFA for each of the input symbols
- Prioritize the operators (), *, .,
- Use the discussed variations and form an NFA.

Example: (a|b)*abb

Example

(a(b)*abb

Conversion from NFA to DFA

- Reasons to conversion
 Avoiding ambiguity
- The algorithm idea

Subset construction: The state set of a state in a NFA is thought of as a following STATE of the state in the converted DFA

Subset Construction algorithm

- Input. An NFA N=(S,Σ , move, S_0,Z)
- Output. A DFA D= $(Q, \Sigma, \delta, I_0, F)$, accepting the same language
- Requires Pre-processing Determination of E-Closure

Pre-process-- ε-closure(T)

- Obtain ε -closure(T) T \subseteq S
- ε-closure(T) definition
 - A set of NFA states reachable from NFA state s in T on ε -transitions alone

Conversion from NFA to DFA – The pre-process--- ε -closure(T)

• ε-closure(T) algorithm

```
push all states in T onto stack; initialize \epsilon-closure(T) to T; while stack is not empty do { pop the top element of the stack into t; for each state u with an edge from t to u labeled \epsilon do { if u is not in \epsilon-closure(T) { add u to \epsilon-closure(T) push u into stack}}
```

Subset Construction Algorithm

- $I_0 = \varepsilon$ -closure(S_0), $I_0 \in Q$
- For each I_i, I_i ∈Q,
 let I_t= ε-closure(move(I_i,a))
 if I_t ∉Q, then put I_t into Q
- Repeat above step until there are no new states to put into Q
- Let $F=\{I \mid I \in Q, \text{ such that } I \cap Z <>\Phi\}$

Example

A or A => E-closure (0) = {0,1,2,4,7}

E-dosure (3,8)

Result

1	а	b
A={0,1,2,4,7}	B={1,2, 3, 4, 6, 7, 8}	C = {1,2,4,5,6,7}
B={1,2, 3, 4, 6, 7, 8}	B={1,2, 3, 4, 6, 7, 8}	D = {1,2,4,5,6,7,9}
C = {1,2,4,5,6,7}	B={1,2, 3, 4, 6, 7, 8}	C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}	B={1,2, 3, 4, 6, 7, 8}	E = {1,2,3,5,6,7,10}
E = {1,2,3,5,6,7,10}	B={1,2, 3, 4, 6, 7, 8}	C = {1,2,4,5,6,7}

$$\delta(A, a)$$
= 2-closure (move (A, a))
= B

Example

Example

Subset Construction Algorithm

- RE to E-NFA and then to DFA is time consuming and results in redundant states in the DFA
- Need to minimize the DFA for faster string matching

Summary till now

- DFA,NFA and NFA with ϵ as ways of defining patterns.
- DFA is faster, but construction is difficult
- NFA construction is easier but slower during string matching
- Conversion of RE to E-NFA
- Convert NFA to DFA

NFA and DFA

- Constructing NFA is easier. But string matching with DFA is faster.
- RE to DFA done by converting to E-NFA and then to DFA
- This results in an increased number of states in the DFA need for minimization

Minimized DFA

- Construct the DFA directly from RE by using a new algorithm
- Table filling minimization algorithm
 - Construct DFA and then use a procedure to eliminate redundant state

From Regular Expression to DFA Directly (Algorithm)

- Augment the regular expression r with a special end symbol # to make accepting states important: the new expression is r #
- Construct a syntax tree for r#
- Traverse the tree to construct functions nullable, firstpos, lastpos, and followpos

Example Syntax tree for (a|b)* abb

From Regular Expression to DFA Directly: Annotating the Tree

- *nullable*(*n*): the subtree at node *n* generates languages including the empty string
- firstpos(n): set of positions that can match the first symbol of a string generated by the subtree at node n

Algorithm

- *lastpos*(*n*): the set of positions that can match the last symbol of a string generated be the subtree at node *n*
- followpos(i): the set of positions that can follow position i in the tree

Annotating tree

Node <i>n</i>	nullable(n)	firstpos(n)	lastpos(n)
Leaf ε	true	Ø	Ø
Leaf i	false	$\{i\}$	$\{i\}$
c_1 c_2	$nullable(c_1)$ or $nullable(c_2)$	$firstpos(c_1)$ \cup $firstpos(c_2)$	$lastpos(c_1)$ \cup $lastpos(c_2)$

Annotating tree

Node <i>n</i>	nullable(n)	firstpos(n)	lastpos(n)
c_1 c_2	$nullable(c_1)$ and $nullable(c_2)$	if $nullable(c_1)$ then $firstpos(c_1) \cup firstpos(c_2)$ else $firstpos(c_1)$	if $nullable(c_2)$ then $lastpos(c_1) \cup lastpos(c_2)$ else $lastpos(c_2)$
*	true	$firstpos(c_1)$	$lastpos(c_1)$

Syntax tree for (a|b)*abb

followpos

```
for each node n in the tree do

if n is a cat-node with left child c_1 and right child c_2 then

for each i in lastpos(c_1) do

followpos(i) := followpos(i) \cup firstpos(c_2)
end do

else if n is a star-node

for each i in lastpos(n) do

followpos(i) := followpos(i) \cup firstpos(n)
end do

end if end do
```

a, ora, aaa

(orb)*

ab, abab,

abab abab

Follow pos

Node	Followpos(n)
1	{1, 2, 3}
2	{1,2,3}
3	{4}
4	{5}
5	{6}
6	Φ

Algorithm

```
s_0 := firstpos(root) where root is the root of the syntax tree
Dstates := \{s_{\cap}\} and is unmarked
while there is an unmarked state T in Dstates do
       mark T
       for each input symbol a \in \sum do
       let U be the set of positions that are in followpos(p)
          for some position p in T,
         such that the symbol at position p is a
         if U is not empty and not in Dstates then
         add U as an unmarked state to Dstates
         end if
         Dtran[T,a] := U
       end do
end do
```

From Regular Expression to DFA Directly: Example

Minimized DFA - Table filling minimization algorithm

- Table filling minimization algorithm
 - Construct DFA and then use a procedure to eliminate redundant state
- Construct the DFA directly from RE by using a new algorithm

Basic Idea

- Find all groups of states that can be distinguished by some input string.
- At beginning of the process, we assume two distinguished groups of states:
 - the group of non-accepting states
 - the group of accepting states..
- Then we use the method of partition of equivalent class on input string to partition the existed groups into smaller groups

- Input: A DFA M={S, Σ , move, s₀, F}
- Output: A DFA M' accepting the same language as M and having as few states as possible.

- 1. Construct an initial partition \prod of the set of states with two groups: the accepting states F and the non-accepting states S-F. $\prod_0 = \{|_0^1,|_0^2\}$
- 2. For each group I of Π_i , partition I into subgroups such that two states s and t of I are in the same subgroup if and only if for all input symbols a, states s and t have transitions on a to states in the same group of Π_i ; replace I in Π_{i+1} by the set of subgroups formed.
- 3. If $\prod_{i+1} = \prod_i$, let $\prod_{final} = \prod_{i+1}$ and continue with step (4). Otherwise, repeat step (2) with \prod_{i+1}

- Choose one state in each group of the partition Π_{final} as the representative for that group which are the representatives will be the states of the reduced DFA M'.
- Let s and t be representative states for s's and t's group respectively, and suppose on input a there is a transition of M from s to t. Then M' has a transition from s to t on a.

• If M' has a dead state(a state that is not accepting and that has transitions to itself on all input symbols), then remove it. Also remove any states not reachable from the start state.

Example

Example

- Initialization: $\prod_0 = \{\{0,1,2\}, \{3,4,5,6\}\}$
- For Non-accepting states in \prod_0 :
 - a: move($\{0,2\}$,a)= $\{1\}$; move($\{1\}$,a)= $\{3\}$. 1,3 do not in the same subgroup of \prod_{0} .
 - So $\prod_{1} = \{\{1\}, \{0,2\}, \{3,4,5,6\}\}$
 - b: move($\{0\}$,b)= $\{2\}$; move($\{2\}$,b)= $\{5\}$. 2,5 do not in the same subgroup of \prod_1 .
 - So, Π_1 = {{1}, {0}, {2}, {3,4,5,6}}

Example

- For accepting states in \prod_0 :
 - a: move($\{3,4,5,6\}$,a)= $\{3,6\}$, which is the subset of $\{3,4,5,6\}$ in \prod_{1}
 - b: move($\{3,4,5,6\}$,b)= $\{4,5\}$, which is the subset of $\{3,4,5,6\}$ in \prod_{1}
 - So, $\prod_{1} = \{\{1\}, \{0\}, \{2\}, \{3,4,5,6\}\}.$
- Apply the same step again to Π_1 , and get Π_2 .
 - $\Pi_2 = \{\{1\}, \{0\}, \{2\}, \{3,4,5,6\}\} = \Pi_1$,
 - So, $\prod_{\text{final}} = \prod_{1}$
- Let state 3 represent the state group {3,4,5,6}

Minimized DFA

