This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Docket No. 250528US0

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPI	LICATION OF: Kenji YA	MAMOTO, et	al.	GAU	J:
SERIAL NO): New Application			EXA	AMINER:
FILED:	Herewith				
FOR:	HARD FILM		•		,
		REQUES	ST FOR PRIC	DRITY	
	ONER FOR PATENTS RIA, VIRGINIA 22313				
SIR:					
	nefit of the filing date of U.S. ons of 35 U.S.C. §120.	S. Application	Serial Number	, filed	, is claimed pursuant to the
☐ Full ben §119(e)		U.S. Provision Application		is claimed purs <u>Date File</u>	uant to the provisions of 35 U.S.C.
	nts claim any right to prior visions of 35 U.S.C. §119, a			ations to which	they may be entitled pursuant to
In the matte	r of the above-identified ap	plication for pa	atent, notice is he	reby given that	the applicants claim as priority:
COUNTRY Japan	<u>'</u>	APPLICAT 2003-082955	ION NUMBER		NTH/DAY/YEAR th 25, 2003
	pies of the corresponding Coubmitted herewith	Convention App	plication(s)		
□ will	be submitted prior to paym	ent of the Fina	l Fee		
□ were	e filed in prior application S	erial No.	filed		
Rece	e submitted to the Internation cipt of the certified copies be cowledged as evidenced by	y the Internati	onal Bureau in a	Number timely manner	under PCT Rule 17.1(a) has been
□ (A)	Application Serial No.(s) w	ere filed in pri	or application Se	rial No.	filed ; and
□ (B)	Application Serial No.(s)				
	are submitted herewith		•		
	will be submitted prior to	payment of th	ne Final Fee		
				Respectfully S	ubmitted,
					'AK, McCLELLAND, USTADT, P.C.
				_ alm	MGnHand
Customer	Number			Norman F. Obl Registration No	
228:				_	
Tel. (703) 413-					in McClelland on Number 21,124

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 05/03)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 3月25日

出 願 番 号 Application Number:

特願2003-082955

[ST. 10/C]:

[J P 2 0 0 3 - 0 8 2 9 5 5]

出 願
Applicant(s):

人

株式会社神戸製鋼所

2004年 2月16日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 15PK5461

【提出日】 平成15年 3月25日

【あて先】 特許庁長官殿

【国際特許分類】 C23C 14/06

【発明の名称】 硬質皮膜

【請求項の数】 5

【発明者】

【住所又は居所】 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸

製鋼所 神戸総合技術研究所内

【氏名】 山本 兼司

【発明者】

【住所又は居所】 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸

製鋼所 神戸総合技術研究所内

【氏名】 大元 誠一郎

【発明者】

【住所又は居所】 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸

製鋼所 神戸総合技術研究所内

【氏名】 武田 実佳子

【特許出願人】

【識別番号】 000001199

【氏名又は名称】 株式会社 神戸製鋼所

【代理人】

【識別番号】 100089196

【弁理士】

【氏名又は名称】 梶 良之

【選任した代理人】

【識別番号】 100104226

【弁理士】

【氏名又は名称】 須原 誠

【手数料の表示】

【予納台帳番号】 014731

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0103969

【包括委任状番号】 0000795

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 硬質皮膜

【特許請求の範囲】

【請求項1】 $(M_{1-x}$, Si_x) $(C_{1-d}N_d)$ を含んでなる硬質皮膜であって、Mは周期律表 3A、4A、5A族、6A族の元素およびA1から選択される 1 種以上の元素であると共に、

 $0.45 \le x \le 0.98$

 $0 \le d \le 1$

(ただし、x はS i の原子比、1-x はM の原子比、d はN の原子比、1-d は C の原子比を示すものである)であることを特徴とする水環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜。

【請求項2】 酸素を原子比で0.01~0.2含有する請求項1記載の硬質皮膜。

【請求項3】 X線回折で測定される皮膜中の(M_{1-x} , Si_x)(C_{1-d} N_d)の(111)面の回折線の半値幅が1.5°以上である請求項1または2 記載の硬質皮膜。

【請求項4】 請求項1~3のいずれかに記載の硬質皮膜と、

 $(M_{1-x}$, Si_x) $(C_{1-d}N_d)$ を含んでなる硬質皮膜であって、Mは周期律表 3A、4A、5A族、6A族の元素およびA1から選択される1種以上の元素であると共に、

 $0 \le x < 0.45$

 $0 \le d \le 1$

(ただし、x はS i の原子比、1-x はM の原子比、d はN の原子比、1-d は C の原子比を示すものである)である硬質皮膜とを、

交互に積層周期1~1000nmで積層した積層構造としたことを特徴とする水 環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜。

【請求項 5 】 $(M_{1-x}$, S_{1x}) $(C_{1-d}$ N_d)を含んでなる硬質皮膜であって、Mは周期律表 3 A 、 4 A 、 5 A 族、6 A 族の元素およびA 1 から選択される 1 種以上の元素である硬質皮膜が基材上に積層された積層構造の硬質皮膜で

あって、

基材上の最下層の硬質皮膜は、

 $0 \le x < 0$. 4 5

 $0 \le d \le 1$

(ただし、x はS i の原子比、1-x はM の原子比、d はN の原子比、1-d は C の原子比を示すものである)であり、

最上層の硬質皮膜は、

 $0.45 \le x \le 0.98$

 $0 \le d \le 1$

であると共に、

最下層の硬質皮膜から最上層の硬質皮膜に向かって各層の硬質皮膜はxが大きくなる傾斜構造を有することを特徴とする水環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、硬質皮膜に関する技術分野に属し、詳細には、水環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜に関し、特には、従来の油潤滑に代替して水をベースとした潤滑環境下で使用される摺動部材の潤滑性および耐摩耗性を向上するための硬質皮膜に関する技術分野に属するものである。

[0002]

【従来の技術】

産業機械用の駆動力として、現在、油圧によるものが主流を占めているが、作動媒体(油)の流出に伴う環境汚染の問題や食品産業など衛生上、油の作動媒体としての使用が望ましくない場合、あるいは、ゴミ焼却炉など引火性の問題がある場合もあり、作動媒体を油から無害であると共に引火性のない水へと代替の可能性の検討が行われている。

[0003]

作動媒体を油より水へ転換した場合、次のような問題点がある。即ち、水は油

のような潤滑作用がないために、従来の金属系材料では摺動部において焼き付きが生じるために使用できない。そこで、摺動部材としてセラミックやエンジニアリングプラスチックの使用が提案されているが、これらの材料は金属系材料に比較して高価である上に、加工性や耐衝撃性に劣り、実用化には至っていない。

[0004]

[0005]

前述の産業機械用の作動媒体を油より水へ転換した場合、摺動部材として金属系材料に上記のような硬質皮膜(被覆層)を被覆したものを使用することが考えられる。しかしながら、上記公報(特許文献1)に記載された組成の皮膜(被覆層)では、水環境中での潤滑性および耐摩耗性が不十分であり、このため、摺動部での焼き付きを十分に防止することはできない。

[0006]

【特許文献1】

特開平2002-18606号公報

[0007]

【発明が解決しようとする課題】

本発明はこのような事情に着目してなされたものであって、その目的は、水環境下において優れた潤滑性および耐摩耗性を有する硬質皮膜を提供しようとするものである。

[0008]

【課題を解決するための手段】

本発明者らは、上記目的を達成するため、鋭意研究を重ねた結果、本発明を完成するに至った。本発明は、水環境下において優れた潤滑性(以下、水潤滑性ともいう)および耐摩耗性を有する硬質皮膜であり、上記目的を達成できるものである。

[0009]

このようにして完成されて上記目的を達成することのできた本発明は、硬質皮膜に係わり、請求項 $1\sim5$ 記載の硬質皮膜(第 $1\sim5$ 発明に係る硬質皮膜)であり、それは次のような構成としたものである。

[0010]

即ち、請求項1記載の硬質皮膜は、 $(M_{1-x}$, Si_x) $(C_{1-d}N_d)$ を含んでなる硬質皮膜であって、Mは周期律表3A、4A、5A族、6A族の元素およびA1から選択される1種以上の元素であると共に、

$0.45 \le x \le 0.98$

$0 \le d \le 1$

(ただし、x はS i の原子比、1-x はM の原子比、d はN の原子比、1-d は C の原子比を示すものである)であることを特徴とする水環境中で優れた潤滑性 および耐摩耗性を発揮する硬質皮膜である〔第 1 発明〕。

[0011]

請求項2記載の硬質皮膜は、酸素を原子比で0.01~0.2含有する請求項 1記載の硬質皮膜である〔第2発明〕。

[0012]

請求項3記載の硬質皮膜は、X線回折で測定される皮膜中の(M_{1-x} , Si_x)(C_{1-d} N_d)の(111)面の回折線の半値幅が1.5。以上である請求項

1または2記載の硬質皮膜である〔第3発明〕。

$[0\ 0\ 1\ 3]$

請求項4記載の硬質皮膜は、請求項1~3のいずれかに記載の硬質皮膜と、

 $(M_{1-x}$, Si_x) $(C_{1-d}N_d)$ を含んでなる硬質皮膜であって、Mは周期律表 3A、4A、5A族、6A族の元素およびA1から選択される 1 種以上の元素であると共に、

 $0 \le x < 0.45$

 $0 \le d \le 1$

(ただし、x はS i の原子比、1-x はMの原子比、d はNの原子比、1-d は Cの原子比を示すものである)である硬質皮膜とを、

交互に積層周期1~1000nmで積層した積層構造としたことを特徴とする水環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜である〔第4発明〕。

$[0\ 0\ 1\ 4]$

請求項5記載の硬質皮膜は、 $(M_{1-x}$, Si_x) $(C_{1-d}N_d)$ を含んでなる 硬質皮膜であって、Mは周期律表3A、4A、5A族、6A族の元素およびA1から選択される1種以上の元素である硬質皮膜が基材上に積層された積層構造の 硬質皮膜であって、

基材上の最下層の硬質皮膜は、

 $0 \le x < 0.45$

 $0 \le d \le 1$

(ただし、x はS i の原子比、1-x はM の原子比、d はN の原子比、1-d はC の原子比を示すものである)であり、

最上層の硬質皮膜は、

 $0.45 \le x \le 0.98$

 $0 \le d \le 1$

であると共に、

最下層の硬質皮膜から最上層の硬質皮膜に向かって各層の硬質皮膜はxが大きくなる傾斜構造を有することを特徴とする水環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜である〔第5発明〕。

[0015]

【発明の実施の形態】

本発明においては、(M_{1-x} , S_{ix})(C_{1-d} N_d)化合物系よりなる硬質皮膜(以下、皮膜ともいう)について、水環境中において優れた潤滑性および耐摩耗性を兼備させるために、M(金属元素)と S_i の組成比に関して検討し、以下のように組成を定めた。

$[0\ 0\ 1\ 6]$

図3は上記(M_{1-x} , Si_x)(C_{1-d} N_d)よりなる皮膜について水環境中にて摺動試験を実施したときの摩擦係数とSi 量 x 〔atomic ratio(原子比)〕との関係を示すものである。図3からわかるように、Si 量 x が0. 45以上の領域において摩擦係数は0.05以下の低摩擦係数を示す。このため、Si 量 x が0.45以上の場合、水潤滑性に優れると共に耐摩耗性に優れたものとなる。従って、Si 量 x (原子比)の下限値を0.45と定めた。

[0017]

一方、Sillar が大きい(多い)領域では、皮膜が絶縁性となり、成膜が困難になること、及び、皮膜の密着性が低下する挙動が認められたことから、Sillar x (原子比)の上限値を 0.98 と定めた。

[0018]

また、C、Nに関しては、いずれのC、Nの比率であっても、皮膜は水環境中において優れた潤滑性および耐摩耗性を示す。従って、Nの原子比 d は $0 \sim 1$ と定めた。なお、Cの原子比は 1-d で、 $1 \sim 0$ となる。

[0019]

また、M(金属元素)に関しては、皮膜の硬度を充分高くし、水環境中において優れた耐摩耗性を確保するために、周期律表3A、4A、5A族、6A族の元素およびAlから選択される1種以上の元素と定めた。

[0020]

これらに基づいて、本発明に係る硬質皮膜は、「 (M_{1-x}, Si_x) $(C_{1-d}N_d)$ を含んでなる硬質皮膜であって、Mは周期律表 3A、4A、5A族、6A族の元素およびA1から選択される 1種以上の元素であると共に、

$0.45 \le x \le 0.98$

$0 \le d \le 1$

(ただし、x はS i の原子比、1-x はM の原子比、d はN の原子比、1-d はC の原子比を示すものである)であることを特徴とする水環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜」であることとした〔第1発明〕。

[0021]

以上よりわかるように、本発明に係る硬質皮膜は、水環境下において優れた潤滑性および耐摩耗性を有する。

[0022]

本発明に係る硬質皮膜において、Mは前述のように3A、4A、5A族、6A 族の元素およびAlから選択される1種以上の元素である。これらの元素の中で も、Crを含有する(MSi)Nは比較的硬度が低く、摺動時における相手傷つ け性が低いこと、及び、皮膜が割れにくいことから、特にCrが推奨される。

[0023]

Sillar (原子比)が大きくなるに伴って低摩擦係数を示す原因については、詳細は不明であるが、添加されたSi が水環境中のOH 基と反応し、軟質潤滑性を有する化合物を形成しているためと推定される。

[0024]

Si量x (原子比)としては、水環境中における皮膜の摩擦係数をより小さい水準にし、かつ、成膜を容易にすると共に皮膜の密着性を向上させるために、 $x=0.6\sim0.9$ とすることが望ましく、更には、 $x=0.7\sim0.9$ とすることが一層望ましい。

[0025]

C、Nの原子比に関しては特に制限を設けないが、金属元素Mの種類によっては安定な炭化物を形成しない場合があり、この場合にはNの原子比dは0.5~1の範囲とすることが推奨される。このように安定な炭化物を形成しない金属元素Mに該当するものとして、Cr、Alがある。

[0026]

本発明に係る硬質皮膜は、(M_{1-x} , Si_x)(C_{1-d} N_d)を含んでなるも

のであり、(M_{1-x} , S_{ix})(C_{1-d} N_d)からのみなることを意味するものではなく、(M_{1-x} , S_{ix})(C_{1-d} N_d)からのみなる場合もあるが、これには限定されず、前記成分以外の他成分を含むことができる。

[0027]

この他成分として酸素を含有させ、その含有量を原子比で 0.01~0.2となるようにすると、水環境下での皮膜の摩擦係数をより小さい水準にすることができ、このため、水環境下における水潤滑性および耐摩耗性をより高めることができる [第2発明]。即ち、酸素の添加により Siの一部が酸化物となり、水環境中の OH基との結合が促進され、摩擦係数をより小さい水準にすることができる。ただし、原子比で 0.01未満では添加の効果が低く、0.1を越えると皮膜の密着性が低下すると共に皮膜が絶縁性になって成膜が困難になることから、酸素を含有させる場合は、その含有量を原子比で 0.01~0.2とする。

[0028]

本発明に係る硬質皮膜において、Sillaxの低い領域では皮膜はM(CN)化合物の結晶構造(多くの場合は岩塩構造)を有するが、Sillaxが増加するに伴い、皮膜の結晶粒が微細化し、Sillaxが多い領域では皮膜は非晶質構造となっていることが観測された。図4に示すように、結晶構造の皮膜では表面に微細な凹凸を有しているのに対して、非晶質構造の膜では表面は非常になめらかな(平滑な)構造を有しており、この表面の平滑性が水環境下での低摩擦係数の発現に寄与していると考えられる。ここで、非晶質化の度合いを、X線回折により測定される皮膜中の(M_{1-x} , Si_x)(C_{1-d} N_d)の(111)面の半値幅で定義する。即ち、この半値幅が大きいほど、非晶質化の度合いが大きいということとする。この半値幅が1.5°以上の場合、皮膜表面が非常に平滑であることを見出した。従って、X線回折で測定される皮膜中の(M_{1-x} , Si_x)(C_{1-d} N_d)の(111)面の回折線の半値幅が1.5°以上である場合、皮膜表面が非常に平滑であり、水環境下での摩擦係数がより小さい水準の皮膜となる〔第3 発明〕。

[0029]

前述のように、水環境中において、(M_{1-x} , Si_x)(C_{1-d} N_d)よりな

9/

る皮膜は、Sillax(原子比)が0.45以上の領域において水環境下での摩擦係数が0.05以下と低く、水環境下において優れた潤滑性、耐摩耗性を有することを見出したが、図3からわかるように、Sillaxが0.45未満の領域であっても水環境下での摩擦係数は0.3以下であり、用途によっては使用可能である。更に、Sillaxが0.45以上の皮膜ではSillaxが0.45未満の皮膜に比較して、基材との密着性がわずかに低下する傾向があることから、これを改善するために、Sillaxが0.45未満の被膜(皮膜)とSillaxが0.45以上の被膜を積層構造にして用いることで、水環境における特性(水潤滑性、耐摩耗性)と被膜密着性の両立が可能であることを見出した。積層の周期は用途によっても異なるが、 $1\sim1000$ n mの範囲で有効であり、好ましい範囲は $10\sim100$ n mである。

[0030]

更に、上記密着性を改善するために基材上にSill x i 0.45未満の皮膜を形成し、最表面側にかけてxを増加させるような皮膜構造をとることが有効である。

$[0\ 0\ 3\ 1]$

これらに基づき、本発明の第 $4\sim5$ 発明を完成させた。即ち、第 4 発明に係る 硬質皮膜は、請求項 $1\sim3$ のいずれかに記載の硬質皮膜(第 $1\sim3$ 発明に係る硬質皮膜のいずれか)と、

 $(M_{1-x}$, Si_x) $(C_{1-d}N_d)$ を含んでなる硬質皮膜であって、Mは周期律表3A、4A、5A族、6A族の元素およびA1から選択される1種以上の元素であると共に、

 $0 \le x < 0$. 4 5

 $0 \le d \le 1$

(ただし、x はS i の原子比、1-x はMの原子比、d はNの原子比、1-d はCの原子比を示すものである)である硬質皮膜とを、

交互に積層周期 $1\sim1000$ n m で積層した積層構造としたことを特徴とする水環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜であることとした〔第4発明〕。

[0032]

また、第5発明に係る硬質皮膜は、(M_{1-x} , Si_x)(C_{1-d} N_d)を含んでなる硬質皮膜であって、Mは周期律表 3 A、4 A、5 A族、6 A族の元素およびA 1 から選択される 1 種以上の元素である硬質皮膜が基材上に積層された積層構造の硬質皮膜であって、

基材上の最下層の硬質皮膜は、

 $0 \le x < 0.45$

 $0 \le d \le 1$

(ただし、x はS i の原子比、1-x はM の原子比、d はN の原子比、1-d は C の原子比を示すものである)であり、

最上層の硬質皮膜は、

 $0.45 \le x \le 0.98$

 $0 \le d \le 1$

であると共に、

最下層の硬質皮膜から最上層の硬質皮膜に向かって各層の硬質皮膜はxが大きくなる傾斜構造を有することを特徴とする水環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜であることとした〔第5発明〕。

本発明の第4発明に係る硬質皮膜は、水環境下において優れた潤滑性および耐 摩耗性を有すると共に、皮膜密着性に優れている。また、本発明の第5発明に係 る硬質皮膜は、水環境下において優れた潤滑性および耐摩耗性を有すると共に、 より確実に皮膜密着性に優れている。

[0034]

さらに基材との密着性が必要な場合には、基材直上にMからなる金属中間層を 設けてやることも有効である。

[0035]

本発明に係る硬質皮膜は、その用途によっても異なるが、 $0.5 \sim 10~\mu$ m の 膜厚を有していればよい。

[0036]

なお、本発明の第2発明に係る硬質皮膜は、第1発明に係る硬質皮膜において酸素(O)を原子比で $0.01\sim0.2$ 含有させたものである。すなわち、第1発明に係る(M_{1-x} , Si_x)($C_{1-d}N_d$)にOを原子比で $0.01\sim0.2$ 含有させたものを含む硬質皮膜である。これは、次のように表現することができる。

[0037]

即ち、上記の第2発明に係る硬質皮膜は、(M_{1-x} , Si_x)($C_aN_bO_c$)を含んでなる硬質皮膜であって、Mは周期律表 3A、4A、5A族、6A族の元素およびA1から選択される 1種以上の元素であると共に、

- $0.45 \le x \le 0.98$
- $0 \le a \le 1$
- $0 \le b \le 1$
- 0 < c < 1

a + b + c = 1

(ただし、x はS i の原子比、1-x はM の原子比を示し、a はC の原子比、b はN の原子比、c はO の原子比を示すものである)であることを特徴とする水環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜である。

[0038]

【実施例】

本発明の実施例および比較例を以下説明する。なお、本発明はこの実施例に限 定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実 施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。

[0039]

〔実施例1、比較例1〕

図1に示すようなUBM [Unbalanced Magnetron Sputtering(非平衡磁場型マグネトロンスパッタリング)] 蒸発源 2 基を有するスパッタリング装置を用い、このUBM蒸発源 2 基の一方にM(金属)ターゲット、他方にSiターゲットを取り付け、基材上に皮膜を形成させる成膜を実施した。本実施例 1、比較例 1においては、MSi(C、N)皮膜〔即ち、(M_{1-x} , Si $_x$)(C_{1-d} N_d)よ

りなる皮膜〕を基材上に成膜した。

[0040]

この成膜はMおよびSiのターゲットを同時放電させて行い、ターゲットへの電力投入比を変えることで皮膜組成(即ち、Siの原子比x等)を変化させた。成膜ガスにはArと窒素及び/又はメタンの混合ガスを用い、圧力0.6PaでArと反応ガス(窒素及び/又はメタン)の比は $0.2\sim0.5$ の範囲で制御した。基材へのバイアス印可は $50\sim100$ V、基材温度は $300\sim400$ Cの間である。基材には、後述するように、試験の内容に応じて超硬チップ、SUS304製のベーン及びディスクを用いた。

[0041]

このようにして得られた成膜材(基材上に皮膜を成膜したもの)について、次の試験を行った。即ち、皮膜の構造解析(組成、X線回折)、皮膜の硬度、皮膜の基材との密着性、表面形態観察を行った。また、図2に示すようなベーンオンディスクタイプの摺動試験にて、純水中にて摺動試験を行い、摩擦係数及び比摩耗量を測定した。荷重はすべて20Nとし、摺動距離は1kmである。上記試験の結果を表1に示す。

[0042]

なお、基材としては、試験の内容に応じて超硬チップ、SUS304製のベーン及びディスクを用いた。即ち、皮膜の構造解析、硬度、密着性、表面形態観察用の成膜材の場合には、基材として鏡面の超硬チップを用い、摺動試験用の成膜材の場合には、SUS304製のベーン及びディスクを用いた。

[0043]

前記皮膜の硬度は、マイクロビッカース硬度計にて荷重25kgf、保持時間15秒で測定した。皮膜の基材との密着性は、ダイヤモンド圧子(先端半径200ミクロンR)を用いたスクラッチ試験機で垂直荷重範囲0~100N、荷重増加速度100N/分、スクラッチ速度10mm/分にてスクラッチを行い、皮膜が剥離する点で測定した。摺動試験は、図2に示すように、MSiNをコーティングしたディスク及びベーンの組合せで実施した。ベーン、ディスクの形状は図2に示すとおりである。評価としては、試験中の摩擦係数ならびに摺動試験後の

ベーン側の摩耗体積を算出し、垂直荷重と摺動距離で割った比摩耗量で評価した。 。摺動試験時の水には蒸留水を使用した。

[0044]

〔実施例2〕

図1に示すようなUBM蒸発源2基を有するスパッタリング装置を用い、このUBM蒸発源2基の一方にM(金属)ターゲット、他方にSiターゲットを取り付け、基材上に皮膜を形成させる成膜を実施した。本実施例2においては、MSi (NO)皮膜〔即ち、(M_{1-x} , Si_x)(N_b O_{1-b})よりなる皮膜、換言すれば、(M_{1-x} , Si_x)(N_b O_c)よりなる皮膜(但し、b+c=1)〕を基材上に成膜した。

[0045]

[0046]

このようにして得られた成膜材(基材上に皮膜を成膜したもの)について、実施例1、比較例1の場合と同様の試験を行った。この試験の結果を表2に示す。

[0047]

〔実施例3〕

図1に示すようなUBM蒸発源2基を有するスパッタリング装置を用い、このUBM蒸発源2基の一方にM(金属)ターゲット、他方にSi ターゲットを取り付け、基材上に皮膜を形成させる成膜を実施した。本実施例3においては、積層構造あるいは傾斜組成構造を有するMSi (N) 皮膜〔即ち、(M_{1-x} , Si_x) (N) よりなる皮膜〕を基材上に成膜した。なお、本実施例3に係る積層構造の皮膜は、本発明の第4発明の実施例に相当する。本実施例3に係る傾斜組成構

造の皮膜は、本発明の第5発明の実施例に相当する。

[0048]

この成膜に際し、各層の成膜はMおよびSiのターゲットを同時放電させて行い、ターゲットへの電力投入比を変えることにより皮膜組成(即ち、Siの原子比x)を変化させた。成膜ガスにはArと窒素の混合ガスを用い、圧力0.6PaでArと反応ガス(窒素)の比は0.2~0.5の範囲で制御した。基材へのバイアス印可は50~100V、基材温度は300~400℃の間である。基材には、実施例1、比較例1の場合と同様に、試験の内容に応じて超硬チップ、SUS304製のベーン及びディスクを用いた。

[0049]

このようにして得られた成膜材(基材上に皮膜を成膜したもの)について、実施例1の場合と同様の試験を行った。この試験の結果を表3に示す。

[0050]

〔評価結果〕

(1) 実施例 1、比較例 1 に係る皮膜についての試験結果を表 1 に示す。なお、表 1 において、皮膜の硬度はビッカース硬度(H V)であり、これが大きいほど硬いことを示すものである。皮膜の基材との密着性はその数値(N)が大きいほど優れていることを示すものである。摩擦係数はその数値(μ)が小さいほど小さくて水潤滑性(水環境下での潤滑性)に優れていることを示すものである。比摩耗量はベーン側の摩耗体積を算出後、垂直荷重と摺動距離で割った値であり、単位荷重、単位摺動距離あたりの摩耗体積($mm^3/N-m$)を示すものであり、比摩耗量が小さいほど耐摩耗性に優れるといえる(以降の表 $2\sim3$ においても同様)。比摩耗量($mm^3/N-m$)の欄において、1.00E-07は、1.00×10-7の意味であり、6.00E-08は、6.00×10-8の意味である(以降の表 $2\sim3$ においても同様)。

[0051]

表 1 からわかるように、表 1 に示す $No.1\sim10$ の皮膜はMがC r であり、この中の $No.1\sim5$ の皮膜はS i 量 x (原子比)が本発明の第 1 発明に係るS i 量 x (原子比)の下限値(0.45)よりも小さく、比較例に係る皮膜に相当する。このNo.1

 \sim 5 の皮膜は、基材との密着性に優れているものの、硬度(HV)が低く、摩擦係数 (μ) が $0.24\sim0.09$ と大きくて水潤滑性が悪く、比摩耗量 (mm^3 /N-m) が $1.00E-07\sim2.60E-07$ と大きくて水環境下での耐摩耗性が悪い。

[0052]

No.7~9 の皮膜は本発明の第1発明に係る皮膜に相当し、No.6の皮膜は半値幅が2.3であり、本発明の第3発明に係る皮膜に相当する。このNo.6~9 の皮膜は、基材との密着性に優れていると共に、硬度(HV)が高く、摩擦係数(μ)が小さくて(<0.01)水潤滑性に優れ、比摩耗量(mm^3 /N-m)が1.20E-08~6.00 E-08と小さくて水環境下での耐摩耗性に優れている。中でも、No.8、No.9の皮膜は、比摩耗量(mm^3 /N-m)が特に小さくて水環境下での耐摩耗性に優れている。

[0053]

No. 10 の皮膜はSillax(原子比)が本発明の第1発明に係るSillax(原子比)の上限値(0.98)よりも大きく、比較例に係る皮膜に相当する。このNo. 10 の皮膜は、硬度(HV)が高く、摩擦係数(μ)が小さくて(<0.01)水潤滑性に優れ、比摩耗量(mm^3 /N-m)が1.00E-08と小さくて水環境下での耐摩耗性に優れているものの、基材との密着性が悪い(40N)。

[0054]

表 1 に示すNo. 11 ~20の皮膜はMがT i であり、この中のNo. 11 ~15の皮膜は S i 量 x (原子比)が本発明の第 1 発明に係る S i 量 x (原子比)の下限値よりも小さく、比較例に係る皮膜に相当する。このNo. 11 ~15の皮膜は、基材との密着性に優れているものの、摩擦係数(μ)が0.13~0.27と大きくて水潤滑性が悪く、比摩耗量(mm^3 /N-m)が大きくて水環境下での耐摩耗性が悪い。

[0055]

No. 17 ~19の皮膜は本発明の第 1 発明に係る皮膜に相当し、No. 16 の皮膜は半値幅が 2. 6 であり、本発明の第 3 発明に係る皮膜に相当する。このNo. 16 ~19 の皮膜は、基材との密着性に優れていると共に、硬度(HV)が高く、摩擦係数が小さくて($<0.01\mu$)水潤滑性に優れ、比摩耗量($mm^3/N-m$)が小さくて水環境下での耐摩耗性に優れている。中でも、No. 18 、No. 19 の皮膜は、比摩耗量($mm^3/N-m$)が特に小さくて水環境下での耐摩耗性に優れている。

[0056]

No. 20 の皮膜はS i 量 x (原子比)が本発明の第 1 発明に係るS i 量 x (原子比)の上限値 (0.98) よりも大きく、比較例に係る皮膜に相当する。このNo. 20 の皮膜は、硬度 (HV) が高く、摩擦係数 (μ) が小さくて (<0.01) 水潤滑性に優れ、比摩耗量 $(nm^3/N-m)$ が小さくて水環境下での耐摩耗性に優れているものの、基材との密着性が悪い(40N)。

[0057]

表 1 に示すNo. 21 ~23の皮膜は、C を含有するものであり、前記No. 8 の場合に比べて、N 量 d (原子比)が小さいか、または、N 量 d = 0 のものである。いずれも、本発明の第 1 発明に係る皮膜に相当する。C 量の増大(N 量 d の減少)に伴い、基材との密着性が低下し、硬度(H V)が低下している。

[0058]

(2) 実施例 2 に係る皮膜についての試験結果を表 2 に示す。表 2 からわかるように、表 2 に示す $No.1\sim5$ の皮膜はMがC r であり、この中のNo.1の皮膜は表 1 に示したNo.8の皮膜に相当し、 $No.2\sim4$ の皮膜は本発明の第 2 発明に係る皮膜に相当する。

$[0\ 0\ 5\ 9]$

表 2 からわかるように、No. 2~4 の皮膜はNo. 1の皮膜(表 1 ではNo. 8の皮膜)に比べて、比摩耗量 $(mm^3/N-m)$ が小さくて水環境下での耐摩耗性に優れている。No. 5の皮膜は、酸素量(原子比)が本発明の第 2 発明に係る酸素量(原子比)の上限値(0.2)よりも大きく、このため、皮膜の密着性が低下している。

$[0\ 0\ 6\ 0\]$

表 2 に示すNo. $6\sim10$ の皮膜はMがZ rであり、この中のNo. $7\sim9$ の皮膜は本発明の第 2 発明に係る皮膜に相当する。No. $7\sim9$ の皮膜はNo. 6の皮膜に比べて、比摩耗量 $(mm^3/N-m)$ が小さくて水環境下での耐摩耗性に優れている。No. 10 の皮膜は酸素量が本発明の第 2 発明に係る酸素量(原子比)の上限値(0. 2)よりも大きく、このため、皮膜の密着性が低下している。

$[0\ 0\ 6\ 1]$

なお、表 2 に示すNo.5の皮膜、No.10 の皮膜は、表 1 に示した比較例に係る皮

膜全般に比べて皮膜硬度が低くなっているが、水環境下での比摩耗量(mm³/N-m)が小さくて耐摩耗性に優れている。また、表1に示したNo.20 (比較例)に係る皮膜は、密着性に多少劣っている。従って、表2に示すNo.5の皮膜、No.10 の皮膜は、密着性と水環境下での耐摩耗性の両立を考えると、本発明の第2発明の実施例に係る皮膜よりは劣るが、本発明の第1発明の実施例に対する比較例より優れているということになる。

[0062]

[0063]

(3) 実施例3に係る皮膜についての試験結果を表3に示す。表3に示すNo.1~4 の皮膜は、本発明の第4発明に係る皮膜であり、皮膜1と皮膜2を交互に表3に示す積層周期で積層したものである。このとき、基材上の最下層の皮膜は皮膜1、最上層の皮膜は皮膜2となるようにした。この皮膜2の組成は、表1に示したNo.8のものと同様である。No.1~4 の皮膜の間では、積層周期が異なる。

$[0\ 0\ 6\ 4]$

これらのNo.1~4 の皮膜は、表1に示したNo.8の皮膜に比べて、基材との密着性に優れていることがわかる。また、積層周期が増えるに伴い、摩擦係数および比摩耗量には大きな変化はないが、密着性が改善される傾向がある。

[0065]

表3に示すNo.6の皮膜は、本発明の第5発明に係る皮膜であり、基材上の最下層の皮膜は表3において基材側と表示した皮膜、最上層の皮膜は表3において最表面側と表示した皮膜である。この最下層の硬質皮膜から最上層の硬質皮膜に向かって各層の硬質皮膜はSi量x(原子比)が大きくなる傾斜構造を有する。

[0066]

上記No.6の皮膜は、表1に示したNo.8の皮膜に比べて、基材との密着性に優れ

ていることがわかる。

[0067]

【表1】

П		0.36	0.37	0.45	1.2	1.48	2.3					0.25	0.27	0.27	0.8	1.45	2.6							
半値幅	0							(111)検出不可	(111) 検出不可	(111) 検出不可	(111) 検出不可							(111) 検出不可	(111) 検出不可	(111) 検出不可	(111)検出不可	(111) 検出不可	(111) 検出不可	(111) 検出不可
比摩耗量	mm3/N-m	1.00E-07	1. 50E-07	2. 60E-07	2. 30E-07	1. 20E-07	6. 00E-08	4. 20E-08	3. 40E-08	1. 20E-08	1.00E-08	2. 00E-07	2. 30E-07	4. 50E-07	3. 50E-07	3. 40E-07	8. 00E-08	5. 50E-08	3. 20E-08	2. 80E-08	1. 00E-08	3, 40E-08	3. 20E-08	3. 20E-08
摩擦係對	π	0.12	0.15	0.24	0. 22	0.09	<0.01	<0.01	<0.01	<0.01	<0.01	0.13	0.16	0.27	0.24	0.13	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	(0.01	<0.01
密着性	Z	80	9/	75	<i><u> </u></i>	7.5	L 9	<i>L</i> 9	9	65	40	70	70	89	<i>L</i> 9	65	64	63	63	57	40	65	55	52
硬度	λН	1500	1550	1570	1650	1700	2000	2050	2000	2010	1900	2000	2200	2300	2250	2200	2150	2200	2150	2100	2010	2050	1950	1900
ಶ	2	-	—	_	-	-	_	_	-	-	_	_	_	-	_	_	-	-	_	-	_	0,6	0.8	0
1-d	ပ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.4	0.2	-
х	Si	0	0.05	0.1	0.25	0.4	0.5	0.65	0.8	0.9	-	0	0.05	0.1	0.25	0.4	0.5	0.65	0.8	0.9	_	0.8	0.8	0.8
x-1	3 E	_	0.95	0.9	0.75	9.0	0.5	0.35	0.2	0.1	0	_	0.95	0.9	0.75	9.0	0.5	0.35	0.2	0.1	0	0.2	0.2	0.2
	=	S	స	j	ည်	Ċ	င်	స	ည်	ပ်	ည်	ij	ij	Ξ	ij	<u>:-</u>	I	Ë	ij	E	Ę	င်	ပ်	පි
			2	3	7	5	9	7	8	6	10	=	12	13	14	15	16	12	81	19	.20	21	22	23

[0068]

【表2】

											_
比摩耗量	mm3/N-m	3. 40E-08	2. 30E-08	2. 40E-08	3. 10E-08	6. 70E-08	4. 20E-08	2. 90E-08	2. 50E-08	3.30E-08	7. 00E-08
摩擦係数	η	(0.01	<0.01	<0.01	<0.01	0.03	<0.01	<0.01	<0.01		0.03
密着性	Z	65	65	65	9	45	92	65	65	65	45
硬度	λH	2000	2000	2000	1950	1700	2350	2350	2250	2200	1900
1-p	0	0	0.02	0.08	0.15	0.25	0	0.02	0.08	0.12	0.25
ф	2	-	0.98	0.92	0.85	0.75		0.98	0.92	0.88	0.75
	၁	0	0	0	0	0	0	0	0	0	0
×	S.	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
1-x	×	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	=	ပ်	ပ်	Ç	င်	'n	Zr	Zr	77	Zr	Zr
		-	2	က	4	- 5	9	7	8	6	10

[0069]

【表3】

			積層周期	硬度	密着性	摩擦係数	比摩耗量
	皮膜 1	皮膜 2	ШU	HV	Z	π	mm3/N-m
_	(Cr0. 95Si0. 05) N	(Cr0, 2Si0, 8) N	7	1950	70		4. 50E-08
2	(Cr0, 95Si0, 05) N	(Cr0, 2Si0, 8) N	70	1950	89	<0.01	3. 40E-08
က	(Cr0, 95Si0, 05) N	(Cr0, 2Si0, 8) N	300	1950	72		3. 60E-08
4	(Cr0, 95Si0, 05) N	(Cr0, 2Si0, 8) N	800	1950	74	<0.01	4. 10E-08
5	基材側	最表面					
9	(Cr0, 95Si0, 05) N	(Cr0, 2Si0, 8) N	傾斜構造	1950	9/	<0.01	3. 50E-08

[0070]

【発明の効果】

本発明に係る硬質皮膜によれば、水環境下において優れた潤滑性(水潤滑性) および耐摩耗性を得ることができる。従って、産業機械等の作動媒体を油より水

へ転換した場合の摺動部材の被覆層として好適に用いることができ、水環境下で の摺動部材の潤滑性および耐摩耗性を向上することができる。

【図面の簡単な説明】

- 【図1】 実施例に係る皮膜の形成(成膜)用のスパッタリング装置の概要を示す模式図である。
 - 【図2】 実施例に係る皮膜の摺動試験の概要を示す模式図である。
- 【図3】 $(M_{1-x}$, Si_x) $(C_{1-d}N_d)$ 皮膜について水環境中にて摺動試験をしたときのx/atomic ratio (原子比) とFriction Coef. (摩擦係数) との関係を示す図である。
- 【図4】 結晶質(半値幅0.37°)の皮膜および非晶質(半値幅>1.5°)の皮膜の表面状態を示す図である。

【書類名】

図面

【図1】

【図2】

【図3】

[図4]

【書類名】

要約書

【要約】

【課題】 水環境下において優れた潤滑性および耐摩耗性を有する硬質皮膜を提供する。

【解決手段】 (1) $(M_{1-x}$, Si_x) $(C_{1-d}N_d)$ を含んでなる硬質皮膜であって、Mは周期律表 3A、 4A、 5A族、6A族の元素およびA1から選択される 1種以上の元素であると共に、0. $45 \le x \le 0$. 98、 $0 \le d \le 1$ (ただし、x はSi の原子比、1-x はMの原子比、d はNの原子比、1-d はCの原子比を示すものである)であることを特徴とする水環境中で優れた潤滑性および耐摩耗性を発揮する硬質皮膜、(2) 前記硬質皮膜において酸素を原子比で $0.01\sim0.2$ 含有するもの等。

【選択図】

図 3

特願2003-082955

出願人履歴情報

識別番号

[000001199]

1. 変更年月日

2002年 3月 6日

[変更理由]

住所変更

住所

兵庫県神戸市中央区脇浜町二丁目10番26号

氏 名

株式会社神戸製鋼所