6. gaia - Sistema Adimendunak

Azken eguneraketa: 2019 - 08 - 29

1 Formula DNF monotonoak

Formula DNF monotonoak ikasten dituen algoritmoa erabili. Urratsez urrats adierazi behar dira algoritmoak erabiltzaileari egin dizkion galderak eta osatzen dituen hipotesiak.

1.1

Formulak 5 aldagai erabiltzen ditu (n=5) eta erabiltzaileak hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (T, T, T, F, T)$
- $v_2 = (T, T, T, T, F)$
- $v_3 = (T, T, T, F, F)$

Gainera, erabiltzaileak hurrengo egia-taulak erabiltzen ditu balorazio batek formula True egiten al duen erabakitzeko:

$\neg x_5$	$\neg x_1 \land \neg x_2$	$\neg x_1 \land x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\neg x_3 \wedge \neg x_4$	F	F	F	F
$\neg x_3 \wedge x_4$	F	F	F	F
$x_3 \land \neg x_4$	F	F	F	T
$x_3 \wedge x_4$	T	T	T	T
x_5	$\neg x_1 \land \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\frac{x_5}{\neg x_3 \land \neg x_4}$	$\frac{\neg x_1 \land \neg x_2}{F}$	$\frac{\neg x_1 \land x_2}{T}$	$\frac{x_1 \land \neg x_2}{F}$	$\frac{x_1 \wedge x_2}{T}$
$\neg x_3 \wedge \neg x_4$	F	T	F	T

1.2

Formulak 4 aldagai erabiltzen ditu (n=4) eta erabiltzaileak hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (T, T, T, T)$
- $v_2 = (T, T, F, T)$
- $v_3 = (F, T, T, F)$

Gainera, erabiltzaileak hurrengo egia-taula erabiltzen du balorazio batek formula True egiten al duen erabakitzeko:

	$\neg x_1 \wedge \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\neg x_3 \wedge \neg x_4$	F	F	F	T
$\neg x_3 \wedge x_4$	F	F	F	T
$x_3 \land \neg x_4$	F	T	F	T
$x_3 \wedge x_4$	T	T	T	T

1.3

Formulak 5 aldagai erabiltzen ditu (n=5) eta erabiltzaileak hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (F, T, T, F, T)$
- $v_2 = (T, T, T, T, F)$
- $v_3 = (T, T, T, F, F)$

Gainera, erabiltzaileak hurrengo egia-taulak erabiltzen ditu balorazio batek formula True egiten al duen erabakitzeko:

$\neg x_5$	$\neg x_1 \wedge \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\neg x_3 \wedge \neg x_4$	F	F	F	F
$\neg x_3 \wedge x_4$	F	T	F	T
$x_3 \wedge \neg x_4$	F	F	T	T
$x_3 \wedge x_4$	F	T	T	T
x_5	$\neg x_1 \wedge \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\frac{x_5}{\neg x_3 \land \neg x_4}$		$\frac{\neg x_1 \land x_2}{F}$	$\frac{x_1 \land \neg x_2}{F}$	$\frac{x_1 \wedge x_2}{F}$
$\neg x_3 \wedge \neg x_4$	F	\overline{F}	\overline{F}	\overline{F}

2 k-CNF formulak

k-CNF formulak ikasten dituen algoritmoa erabili. Urratsez urrats adierazi behar dira algoritmoak erabiltzaileari egin dizkion galderak eta osatzen dituen hipotesiak.

2.1

Erabiltzaileak 2-CNF formula bat (k = 2) asmatzen du 3 aldagai erabiliz (n = 3), eta hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (T, T, T)$
- $v_2 = (F, F, F)$
- $v_3 = (T, F, F)$
- $v_4 = (F, T, T)$

2.2

Erabiltzaileak 1-CNF formula bat (k = 1) asmatzen du 3 aldagai erabiliz (n = 3), eta hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (F, T, T)$
- $v_2 = (T, T, T)$

2.3

Erabiltzaileak 2-CNF formula bat (k=2) asmatzen du 3 aldagai erabiliz (n=3), eta hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (T, T, F)$
- $v_2 = (F, F, T)$
- $v_3 = (T, F, T)$
- $v_4 = (T, F, F)$

3 k-DNF formulak

k-DNF formulak ikasten dituen algoritmoa erabili. Urratsez urrats adierazi behar dira algoritmoak erabiltzaileari egin dizkion galderak eta osatzen dituen hipotesiak.

3.1

Erabiltzaileak 1-DNF formula bat (k=1) asmatzen du 5 aldagai erabiliz (n=5), eta hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (T, F, F, F, T)$
- $v_2 = (T, T, F, T, T)$

3.2

Erabiltzaileak 2-DNF formula bat (k = 2) asmatzen du 3 aldagai erabiliz (n = 3), eta hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (F, F, F)$
- $v_2 = (F, F, T)$
- $v_3 = (F, T, F)$
- $v_4 = (T, F, F)$
- $v_5 = (T, F, T)$
- $v_6 = (T, T, F)$

3.3

Erabiltzaileak 2-DNF formula bat (k = 2) asmatzen du 3 aldagai erabiliz (n = 3), eta hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (T, T, T)$
- $v_2 = (F, F, T)$
- $v_3 = (T, T, F)$
- $v_4 = (T, F, T)$
- $v_5 = (F, T, F)$