OBJETIVOS:

- CONOCER LAS DIFERENTES RELACIONES MÉTRICAS DE LOS ELEMENTOS DEL TRIÁNGULO RECTÁNGULO.
- APLICAR DICHOS TEOREMAS EN LA SOLUCIÓN DE PROBLEMAS TIPO EXAMEN DE ADMISIÓN UNI.
- FINALMENTE A PARTIR DEL DESARROLLO DE PROBLEMAS TENER LA EXPERIENCIA SUFICIENTE PARA AFRONTAR UN EXAMEN DE ADMISION UNI.

RELACIONES MÉTRICAS II

- TEOREMAS EN EL TRIÁNGULO RECTÁNGULO
 - ✓ CÁLCULO DE UN CATETO.
 - ✓ TEOREMA DE PITÁGORAS.
 - ✓ CALCULO DE LA ALTURA RELATIVA A LA HIPOTENUSA.
 - ✓ TEOREMA DEL PRODUCTO DE CATETOS.

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

TEOREMA DEL CÁLCULO DEL CATETO.

TEOREMA DE LA RAZÓN DE CATETOS.

 $\frac{a^2}{c^2} = \frac{n}{m}$

Para verificar el teorema dividimos las dos relaciones del cálculo del cateto.

$$a^{2} = (b)(n)$$

$$c^{2} = (b)(m)$$

$$\vdots$$

$$\frac{a^2}{c^2} = \frac{n}{m}$$

Del gráfico AOB es un cuadrante, si AP=4 y PC=5. Calcule R B TEOREMA DEL CÁLCULO DEL CATETO. $c^2 = (b)(m)$ $a^2 = (b)(n)$

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

TEOREMA DE PITÁGORAS.

TEOREMA DEL CÁLCULO DE LA ALTURA.

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

DEMOSTRACIÓN:

Demostrar que : $b^2 = a^2 + c^2$

Para la demostración del teorema de Pitágoras aprovecharemos el teorema del calculo del cateto.

$$a^{2} = (b)(n)$$

$$c^{2} = (b)(m)$$

$$a^{2} + c^{2} = b(m+n)$$

 $a^2 + c^2 = b^2$

Demostrar que :

$$h^2 = (m)(n)$$

Completamos las medidas y buscamos semejanza.

• El \triangle AHB \cong \triangle BHC:

$$\frac{h}{n} = \frac{m}{h}$$

$$h^2 = (m)(n)$$

Del gráfico, si BP=3(PH). Calcule $\frac{HD}{DC}$ TEOREMA DEL CÁLCULO DE LA ALTURA. $h^2 = (m)(n)$

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

- En el △APD, por teorema del cálculo de la altura:
 1² = (m)(x)
- En el $\triangle ABC$, por teorema del cálculo de la altura: $4^2 = (m)(x+y)$

$$\therefore \frac{X}{y} = \frac{1}{15}$$

TEOREMA DEL PRODUCTOD DE CATETOS.

TEOREMA DE LA INVERSA DE PITÁGORAS.

$$\frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{c^2}$$

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

Demostrar que :

$$(a)(c)=(b)(h)$$

Completamos las medidas y buscamos semejanza.

• El ⊿ABC ~ ⊿AHB:

$$\frac{a}{h} = \frac{b}{c}$$

$$(a)(c)=(b)(h)$$

Demostrar que :

$$\frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{c^2}$$

Para la demostración, aprovechemos el teorema de producto de catetos y el teorema de Pitágoras.

• Teorema de Pitágoras:

$$b^2 = a^2 + c^2$$

Teorema del producto de catetos:

(a)(c)=(b)(h).... elevamos al cuadrado

$$(a^2)(c^2) = (b^2)(h^2)$$

$$(a^2)(c^2) = (a^2 + c^2)(h^2)$$

$$\frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{c^2}$$

Del gráfico ABCD es un cuadrado si PQ=12 y $(AB)^2$ - $(BP)^2$ =60. Calcule la distancia de A al \overline{PQ} .

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

b

В

a

Nos piden la distancia de A al \overline{PQ} = \mathbf{x} Dato:

$$PQ=12$$

$$(AB)^{2} - (BP)^{2} = 60$$

$$(a)^{2} - (b)^{2} = 60$$

Como ABCD es un cuadrado:

$$AB=BC=CD=AD=a$$

En el vértice C:

$$m \not\triangleleft QCD = m \not\triangleleft PCB = \theta$$

• Entonces el $\triangle PBC \cong \triangle QDC$ (ALA):

$$AQ=a-b$$

En el ⊿PAQ, por teorema del producto de catetos:

$$(a+b)(a-b)=(12)(x)$$

$$(a)^{2} - (b)^{2} = 12(x)$$

$$60 = 12x$$

$$\therefore x = 5$$

TEOREMAS ADICIONALES:

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

4.

P, Q y T son puntos de tangencia

$$x = 2\sqrt{(a)(b)}$$

P, Q y T son puntos de tangencia de las circunferencias tangentes externas

$$\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}}$$

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RETO DEL TEMA:

Si T y Q son puntos de tangencia

Demuestre que:

A, B, C Y P son puntos armónicos

$$\frac{a}{b} = \frac{d}{c}$$