

Report No. FAA-RD-78-56, II

AD A O 7 O 5 7 4

TIME DEGRADATION FACTORS FOR TURBINE ENGINE EXHAUST EMISSIONS

VOLUME II JT8D-9 TEST DATA

MAY 1978

INTERIM REPORT

Document is available to the public through the National Technical Information Service.

Springfield, Virginia 22151

Prepared for

U. S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION

Systems Research & Development Service

Washington, D.C. 20590

DDC FILE COPY

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

Technical Report Documentation Page

FAA-RD-78-56, 11		15 18 19 19 19	
	ors for Turbine Engine	May 1978 /	_
Exhaust Emissions, Vol	lume II - JT8D-9 Test Date	B. Pertalking Organi patro	en Codo
	The state of the s	8. Parlarana Organizatio	n Report WA
7. Author/s)		FAA-NA-77-17	
		W NREC - 1238	
9. Performing Organization Home and Address Northern Research and	Engineering Corporation	M. Work Unit Ho. (TRAIS	5)
219 Vassar Street	engineering corporation	11. Contract or Grant No.	
Cambridge, Massachuset	tts 02139	S DOT-FA74NA-	-1100 1
		13 It speed Report and P.	Charles against the control of
12. Spansoring Agency Mano and Address Department of Transpor	rtation	Interim Repe	
FEDERAL AVIATION ADMIN		August 1974	- June
Systems Research and I	Development Service	18. Spensonny Agency Co	ado
Yashington, D. C. 2059	91		
15. Supplementary Notice This investigation wa	as performed under a cont	ract administere	d by the
Mational Aviation Fac	cilities Experimental Cen	ter, Atlantic Ci	ty,
New Jersey.			
This is the second vo		enart concerning	- 44-
i inis is the second to	lume of an eight-volume r	eport concerning	gthe
degradation of turbing	lume of an eight-volume re engine emissions. This	volume contains	g the
degradation of turbing	e engine emissions. This	volume contains	5 8
degradation of turbing compilation of all em	lume of an eight-volume r e engine emissions. This ission test data and anal ation factors for the JT8	volume contains	s a in the
degradation of turbine compilation of all em development of degrade	e engine emissions. This ission test data and anal ation factors for the JT8	volume contains ysis data used D-9 engine type:	s a in the . In
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and anal ation factors for the JT8 contains maintenance data testing, as well as analy	yolume contains ysis data used D-9 engine type for the test u	s a in the . In nits
degradation of turbine compilation of all em development of degrada addition, the volume of	e engine emissions. This ission test data and anal ation factors for the JT8 contains maintenance data testing, as well as analy	yolume contains ysis data used D-9 engine type for the test u	s a in the . In nits
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and anal ation factors for the JT8 contains maintenance data testing, as well as analy	yolume contains ysis data used D-9 engine type for the test u	s a in the . In nits
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and anal ation factors for the JT8 contains maintenance data testing, as well as analy	yolume contains ysis data used D-9 engine type for the test u	s a in the . In nits
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and anal ation factors for the JT8 contains maintenance data testing, as well as analy	yolume contains ysis data used D-9 engine type for the test u	s a in the . In nits
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and anal ation factors for the JT8 contains maintenance data testing, as well as analy	yolume contains ysis data used D-9 engine type for the test u	s a in the . In nits
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and anal ation factors for the JT8 contains maintenance data testing, as well as analy	yolume contains ysis data used D-9 engine type for the test u	s a in the . In nits
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and analation factors for the JT8 contains maintenance data testing, as well as analy t.	yolume contains ysis data used 10-9 engine type for the test un ses of the samp	in the . In nits les of
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and analation factors for the JT8 contains maintenance data testing, as well as analy t.	yolume contains ysis data used 10-9 engine type for the test un ses of the samp	in the . In nits les of
degradation of turbing compilation of all em development of degrada addition, the volume during the period of	e engine emissions. This ission test data and analation factors for the JT8 contains maintenance data testing, as well as analy t.	yolume contains ysis data used 10-9 engine type for the test un ses of the samp	in the . In nits les of
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and analation factors for the JT8 contains maintenance data testing, as well as analy t.	yolume contains ysis data used 10-9 engine type for the test un ses of the samp	in the . In nits les of
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and analation factors for the JT8 contains maintenance data testing, as well as analy t.	yolume contains ysis data used D-9 engine type for the test u	in the . In nits les of
degradation of turbine compilation of all em development of degrade addition, the volume during the period of	e engine emissions. This ission test data and analation factors for the JT8 contains maintenance data testing, as well as analy t.	yolume contains ysis data used 10-9 engine type for the test un ses of the samp	in the . In nits les of
degradation of turbing compilation of all emidevelopment of degrada addition, the volume of during the period of fuel used in each test	e engine emissions. This ission test data and analation factors for the JT8 contains maintenance data testing, as well as analy t.	volume contains ysis data used in 9 engine type. I for the test uses of the samp	in the . In nits les of
degradation of turbing compilation of all emit development of degrada addition, the volume of during the period of fuel used in each test and the second sec	e engine emissions. This ission test data and analy ation factors for the JT8 contains maintenance data testing, as well as analy t.	volume contains ysis data used in 9 engine type. I for the test unses of the samp	in the . In nits les of
degradation of turbine compilation of all emidevelopment of degrada addition, the volume of during the period of fuel used in each test. 17. Key Woods Aircraft Turbine Engine	e engine emissions. This ission test data and analy ation factors for the JT8 contains maintenance data testing, as well as analy t. 18. Distributes Step Document through the series of the series	volume contains ysis data used in 9 engine type. If for the test unsees of the samp is ses of the samp is available to the National Tech	in the . In nits les of
degradation of turbine compilation of all emidevelopment of degrada addition, the volume of during the period of fuel used in each tes 17. Key Woods Aircraft Turbine Engine Exhaust Emissions	e engine emissions. This ission test data and analy ation factors for the JT8 contains maintenance data testing, as well as analy t. 18. Distribution Step Document through the information of the step of the	volume contains ysis data used in 9 engine type. If for the test unsees of the samp is ses of the samp is available to the National Tector Service, Spr	in the . In nits les of
degradation of turbine compilation of all emit development of degradation, the volume of during the period of fuel used in each test and discounting the period of fuel used in each test and discounting the period of fuel used in each test and discounting the period of fuel used in each test and discounting the period of fuel used in each test and discounting the period of the p	e engine emissions. This ission test data and analyation factors for the JT8 contains maintenance data testing, as well as analy t. 18. Distribution Step Document through the information of the image of the ima	yolume contains ysis data used in 9 engine type. If for the test units is ses of the samp is available to the National Technology (Spr. 22151)	the publical ingfield
degradation of turbing compilation of all emit development of degrada addition, the volume of during the period of fuel used in each test and the description of turbine description of turbine description of turbine description of turbine description of all emit description of all emit description of turbine description of all emit development of degrada addition, the volume of during the period of fuel used in each test.	e engine emissions. This ission test data and analy ation factors for the JT8 contains maintenance data testing, as well as analy t. 18. Distribution Step Document through the information of the step of the	volume contains ysis data used in 9 engine type. If for the test unsees of the samp is ses of the samp is available to the National Tector Service, Spr	in the . In nits les of

. C. S. GOVERNMENT PRINTING OFFICE : 1973 725-904/32

- <u>260</u> 350.

TABLE OF CONTENTS

1.	INTRODUCTION		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	1
	1.1 Content of Volume																		1
2.	ENGINE TEST AND MAINTENANCE	C	HF	ROI	10L	.00	Y												3
3.	NOMENCLATURE																		17
4.	EMISSIONS AND ANALYSIS DATA																		29
	Baseline Test Series																•		31
	600 Hour Test Series																		88
	1200 Hour Test Series											•	•	•	•	•			145
	1800 Hour Test Series																		202
	2400 Hour Test Series														•				259
	3000 Hour Test Series																		316
5.	FUEL ANALYSIS DATA																		373
6.	REFERENCES																		377

	GRA&I	V
DDC T	cunced	H
	fication	
Ву		
Distr	ibution/	
Avai	lability Coc	les
Dist	Avail and/o	r
	1	

LIST OF FIGURES

Figure 1.	Estimated Corrected Total Air Flow versus Corrected Low Rotor Speed
Figure 2.	Estimated Engine Thrust versus Engine Pressure Ratio Characteristic with NAFEC Emissions Sampling Rake Installed
Figure 3.	Estimated Engine Thrust versus Corrected High Rotor Speed in the Idle Regime
Figure 4.	Typical Production Engine Performance

1. INTRODUCTION

This is the second volume of an eight-volume report concerning the degradation of turbine engine emissions. This volume contains test data obtained for the JT8D-9 engine type as installed on the 727-231 aircraft. The engines, owned and operated by TWA, were tested in Kansas City by NREC personnel.

The other volumes of the report are listed below:

Volume 1 - Program Description and Results

Volume 11' - JT8D-7 Test Data

Volume 'V - JTJD-7 Test Data

Volume V - JT30-38 Test Data

Volume VI - JT9D-3A Test Data

Volume VII - RB211-228 Test Data

Volume VIII - CF700-2D Test Data

Regarding the test data, it should be noted the EPA test specifications were not followed where they conflicted with the interests of degradation testing. Hence, comparison of <u>absolute</u> emission levels presented in this report with EPA standards may be misleading.

1.1 CONTENT OF VOLUME

There are four sections that make up the volume: Engine Test and Maintenance Chronology; Nomenciature; Emissions and Analysis Data; and Fuel Analysis Data.

The Engine Test and Maintenance Chronology section contains a chronological, unit-by-unit, listing of noteworthy events occurring to a particular engine in the course of the program. This includes test dates, dates and descriptions of maintenance, and the dates of installations onto other aircraft that may have occurred. If an engine was removed from the program, the date and reason are also included.

The Nomenclature section contains a listing and description of all the titles and column headings used in the two succeeding sections.

This includes all equations used in the various calculations.

The Emissions and Analysis Data section includes all data gathered during a test, plus the results of any calculations performed on that data.

It consists of a number of tables arranged according to test series. For the JT80-9 engine there were six such series; Baseline; 600 Hour; 1200 Hour; 1800 Hour; 2400 Hour; and 3000 Hour. The hour designations represent the nominal value of time since baseline (TSB) for each engine tested. The actual values of TSB are scattered about the nominal values. Within each test series, the data is further subdivided into a table of data pertinent to an entire test for an engine and a series of seven tables for each of the eight modes tested. Thus there are a total of 57 tables for each test series. In addition, the section begins with a set of notes documenting the data.

The Fuel Analysis Data section contains a unit-by-unit listing of the results of analyses performed on samples of jet fuel used during the emission tests. During each engine test, a sample of fuel was taken from the same fuel tank as used during the test and subsequently analyzed. The results of the analyses include API gravity, hydrogen-carbon ratio and the percentages of paraffins, olefins and aromatics.

2. ENGINE TEST AND MAINTENANCE CHRONOLOGY

Unit No./ Serial No	Date	Item
1/4023		Original Test A/C No. 4304, Position No. 1
174025	1.12125	Baseline Emission Test
	4/7/75	
	6/20/75	"601-Hour" Emission Test
	8/6/75	Cracked satellite assembly, sheetmetal fairing in the exhaust assembly. Dropped from program.
2/3919		Original Test A/C No. 4307, Position No. 2
	3/15/75	Baseline Emission Test
	5/4/75	Engine removed to repair loose stators.
	6/1/75	Engine reinstalled on A/C No. 4332, Position No. 2
	6/14/75	Engine removed due to F.O.D. first and second stage blades beyond minimum limits.
	6/19/75	Engine reinstalled on A/C No. 4310, Position No. 2
	12/17/75	"1800-Hour" Emission Test
	2/20/76	Engine removed due to first stage blade failure
3/4019		Original Test A/C No. <u>4307</u> , Position No. <u>3</u>
	3/15/75	Baseline Emission Test
	5/11/75	Engine removed due to high oil comsumption.
4/3962		Original Test A/C No. <u>4313</u> , Position No. <u>1</u>
	3/7/75	Replaced EPR transmitter
	3/8/75	Baseline Emission Test
	3/21/75	Problem: SAT gage inoperative
		Correct: Replaced SAT gage, operating normal
	5/23/75	"600-Hour" Emission Test
	6/6/75	Engine removed due to no. 6 bearing pressure tube failure.
6/3928		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Original Test A/C No. 4317, Position No. 3
	3/20/75	Baseline Emission Test
	3/27/75	Problem: All F/F indicators are inoperative, suspect bad power supply.
		Correct: Replaced power supply

Unit No./ Serial No.	Date	ltem
6/3928 Continued	4/21/75	Problem: Engine idle slow, approximately 50 per cent No
		Correct: Set idles, checked trim
	5/13/75	Problem: EPR gage reading 0.03 to 0.04 to low
		Correct: Replaced EPR indicator
	6/12/75	EPR system calibrated and EPR probe changed
	6/21/75	"600-Hour" Emission Test
	6/23/75	Problem: Throttle 1 knob behind engines 1 and 2 in cruise and climb
		Correct: Trimmed engine
	8/4/75	Problem: Unable to obtain chart EPR at T.O.
		Correct: Switched 2 and 3 EPR indicators for further troubleshooting
	8/6/75	Problem: Engine unable to obtain chart EPR at T.O.
		Correct: Trimmed engine
	9/9/75	"1200-Hour" Emission Test
	9/9/75	Problem: EPR went to 1.0 during descent and stayed there
		Correct: Changed EPR transmitter and indicator
	10/12/75	Problem: During climb EPR must be set 0.05 low to align other engine instruments
		Correct: Replaced EPR gage
	10/18/75	Problem: EPR high with all other parameters aligned
		Correct: Replaced EPR transmitter
	12/26/75	Engine removed due to metal in oil screen
	2/16/76	Engine installed on A/C No. $\underline{4320}$, Position No. $\underline{2}$
	3/17/76	"2400-Hour" Emission Test
7/3958		Original Test A/C No. 4318, Position No. 1
	4/4/75	Baseline Emission Test
	7/2/75	"600-Hour" Emission Test

こうとと、「ハインターないという」というと

Unit No./ Serial No.	Date	Item
7/3958 Continued	8/14/75	Problem: EGT reading fluctuates between 100 and 300 deg
		Correct: Switched I and 2 EGT indicators for further troubleshooting
	11/18/75	"1800-Hour" Emission Test
	11/19/75	Problem: SAT gage inoperative
		Correct: Replaced indicator
	11/21/75	Problem: EGT rose into yellow band on T.O. Throttle had to be retarded 0.10 EPR to stay in limits.
		Correct: Switched I and 2 EGT indicators for troubleshooting
	11/25/75	Problem: SAT gage inoperative
		Correct : Replaced SAT indicator
	2/8/76	"2400-Hour" Emission Test
	4/18/76	"3000-Hour" Emission Test
	4/26/76	Changed EPR transmitter
9/3917		Original Test A/C No. 4321. Position No. 3
	4/5/75	Baseline Emission Test
	4/5/75	Duskin supply low
	8/14/75	"600-Hour" Emission Test
	8/14/75	Problem: Throttle out of alignment
		Correct: Ratrimmed engine
	9/12/75	Problem: On start No tach sticks on O per cent
		Correct: Changed N2 tach
	9/27/75	Problem: SAT-TAT relationship out of limits
		Correct: Replaced TAT indicator
	9/28/75	Problem: Necessary to hold EPR 0.05 low to align engines
		Correct: Replaced EPR indicator
	12/4/75	Problem: EPR reads 0.04 low with other parameters aligned with no. 1 engine
		Correct: Replaced EPR transmitter

The state of the s

Unit No./ Serial No.	Date	l tem
9/3917	12/10/75	"1800-Hour" Emission Test
Continued	1/7/76	Problem: EPR indicates 0.2 low
		Correct: Changed EPR indicator, transmitter and replaced seals on coupler at bullet, leak checked.
	1/9/76	Problem: EPR still indicates low. Found apparent leak in PT7 but could not pinpoint.
	1/14/76	Repaired PT7 system leak
	3/13/76	"2400-Hour" Emission Test
10/3903		Original Fest A/C No. 4331, Position No. 3
	4/15/75	Baserine Emission Test
	7/2/75	Problem: SAT gage broken
		Correct: Replaced SAT gage
	7/26/75	"600-Hour" Emission Test
	8/2/75	Problem: Engine slow to accelerate to T.O. power also slow hot starts
		Correct: Changed both igniter plugs
	8/7/75	Problem: Engine would not spin up for T.O.
		Correct: Replaced JFC and trimmed engine
	8/19/75	Problem: Throttles out of alignment
		Correct: Trimmed engine
	10/17/75	"1200-Hour" Emission Test
	12/13/75	"1800-Hour" Emissic Test
	1/20/76	Problem: Engine vibrations felt at high power settings
		Correct: Adjust P&D valve, found anti-ice line off at JFK. Securred line and safetied same.
	2/3/76	Problem: TAT gage inoperative
		Correct: Replaced TAT gage and rosemont probe
	3/9/76	''2400-Hour'' Emission Test

wind!

THE THE WAY

医乙乙基 的原

Unit No./ Serial No.	Date	Item
10/3903 Continued	3/19/76	Problem: Engine idle slow and engine slow to accelerate
		Correct: Reset idle speed. Aircraft set up for JFC change on next overnite lay- over due to fluctuating idle.
11/3988		Original Test A/C No. 4333, Position No. 2
	4/13/75	Baseline Emission Test
	4/11:/75	Replaced bleed control valve
	6/27/75	"600-Hour" Emission Test
	8/25/75	Problem: N ₁ 30 per cent, N ₂ 53 per cent at idle
		Correct: Adjust idle
	9/12/75	Problem: Engine throttle knob behind engines 1 and 3 during cruise
		Correct: Trimmed engine
	9/16/75	"1200-Hour" Emission Test
	11/7/75	Problem: All three engines idle fast 60-61 per cent N ₂ and 1300-1400 lbs/hr F/F
		Correct: Trimmed all three engines and checked for T.O.
	11/17/75	"1800-Hour" Emission Test
	11/21/75	Problem: AVM reading markedly higher than previous readings at 75 per cent N ₁ AVH was steady 3.0 with occasional jumps to 3.5
		Correct: Provided clearance for T/R line chaffing duct, changed AVM pickup because of loose head
	1/7/76	Engine removed due to poor performance, turbine blades warped
	2/23/76	Engine reinstalled on A/C No. 4334, Position No. 1
	2/25/76	Problem: Fuel flow reads 3000-4000 lbs high, other parameters normal
		Correct: Replaced F/F transmitter and F/F gage

Unit No./ Serial No.	Date	ltem
Serial No.	vate	
11/3988 Continued	3/13/76	Froblem: Engine EPR reads low on T.O. and climb. Indicator and transducer changed but no help.
		Correct: Placarded inoperative. There is a leak in the PT7 manifold. MCI notified. No correction at this time.
	3/14/76	"2400-Hour" Emission Test EPR problem still reads low
	3/14/76	Replaced broken PT7. EPR checked OK on engine runup.
	4/21/76	Generator tach replaced (nite engine tested)
	4/21/76	"3000-Hour" Emission Test
12/3949		Original Test A/C No. 4333 , Position No. 3
	4/13/75	Baseline Emission Test
	6/27/75	"600-Hour" Emission Test
	8/9/75	Problem: Engine needs oil, has been using more than nos. 1 and 2. 12 quarts in two days.
		Correct: Serviced oil
	8/25/75	Problem: Throttles at T.O. and reduced thrust out of rig
		Correct: Cnecked rig, and trimmed all engines
	8/25/75	Problem: All parameters off, fuel leak at B- nut fitting on fuel flow transmitter in line from fuel control
		Correct: Fixed fuel leak at transmitter, leak checked OK on runup
	9/16/75	"1200-Hour" Emission Test
	11/7/75	Problem: All three engines idle fast 60-£1 per cent N ₂ and 1300-1400 lbs/hr F/F
		Correct: Trimmed all three engines and checked for T.O.
	11/7/75	Problem: Engine has large leak at bottom of cowling, found leak to be fuel
		Correct: Replaced "O" ring seal at aft fitting on F/F transmitter

Unit No./ Serial No.	Date	l tem
12/3949 Continued	11/9/75	Problem: At T.O. power engine throttle was 4-5 knobs ahead of nos. 1 and 2 to obtain T.O. EPR. N ₁ , N ₂ , EGT, and F/F were all just about equal across all three engines. Throttle stayed 4-5 knobs ahead until aircraft leveled at 5000 ft and power was reduced. At this time throttles were aligned. When climb power was applied engine was again 4-5 knobs ahead until about 28,000 ft, when it had to be gradually pulled back to maintain climb power. By-pass flow 350 all throttles were aligned at climb thrust.
		Correct: Found fuel line packing leaking above 85 per cent N ₂ at aft end of F/F transmitter. Replaced packing and aligned steel fuel line, ran engine to T.O. and found no leaks.
	11/17/75	Problem: Engine fuel flow gage nervous
		Correct: Replaced indicator
	11/17/75	"1800-Hour" Emission Test
	11/25/75	Problem: Louder than normal engine noise in aft cabin during flight, especially T.O. and climb. Nos. 2 and 3 AVM read in the 1.5 - 2.0 range. There is a noticeable vibration in throttle (not excessive).
		Correct: Checked inlet and exhaust sections of the engine and throttle linkages and found OK.
	1/9/76	Problem: Engine fuel flow erratic
		Correct: Changed F/F indicator and F/F transmitter
	2/27/76	"2400-Hour" Emission Test
	3/18/76	Removed from program, foreign object damage
14/1902		Original Test A/C No. 4338, Position No. 1
	3/11/75	Baseline Emission Test

Unit No./ Serial No.	Date	Item
14/1902	4/29/75	Reset idle
Continued	6/1/75	"600-Hour" Emission Test
	8/17/75	"1200-Hour" Emission Test
	1/11/76	"2400-Hour" Emission Test
	3/6/76	Problem: Engine fuel flow erratic and slow to respond to throttle changes
		Correct: Replaced F/F transmitter
	3/12/76	Problem: Suspect fuel leak due to high fuel flow readings
		Correct: Leak checked and found to be OK
	3/23/76	Engine removed for quadruple torquing of fuel manifold B-nuts
	3/23/76	Engine reinstalled on A/C No. 4339, Position No. 1
	4/7/76	"3000-Hour" Emission Test
15/1903		Original Test A/C No. 4338, Position No. 2
	3/11/75	Baseline Emission Test
	4/14/75	Replace oil pressure gage
	6/1/75	"600-Hour" Emission Test
	8/17/75	"1200-Hour" Emission Test
	1/11/76	"2400-Hour" Emission Test
	4/8/76	"3000-Hour" Emission Test
16/1904		Original Test A/C No. $\frac{14338}{1}$, Position No. $\frac{3}{2}$
	2/12/75	Replaced oil pressure relief valva
	2,124/75	Special P71 check due to increase fuel flow, no irregularities found
	3/11/75	Baseline Emission Test
	4/16/75	Replaced CSD (Constant Speed Drive)
	4/32/75	Replaced auto-fueling valve
	4/29/75	Reset idle
	6/1/75	"600-Hour" Emission Test
	6/30/75	Problem: Engine slightly unstable at all power settings. Fuel flow varies 200 lbm per hr N1 0.5 per cent, N2 0.25 per cent, EPR 0.04 per cent.

Unit No./ Serial No.	Date	l tem
16/1904 Continued	6/30/75	Correct: Inspected inlet and exhaust and found them to be OK
	7/4/75	Problem: Engine starting problems, and shutting down during operation
		Correct: Replaced JFC, fuel pump, and trimmed engine
	8/29/75	"1200-Hour" Emission Test
	1/11/76	"2400-Hour" Emission Test
	3/26/76	Engine removed for quadruple torquing of fuel manifold B-muts
	4/6/76	Engine reinstalled on A/C No. 4339, Position No.
	4/16/76	"3000-Hour" Emission Test
17/1905		Original Test A/C No. 4339, Position No. 1
	2/4/75	Baseline Emission Test No. 1A (NO, NO _x)
	3/5/75	Baseline Emission Test No. 1B (others)
	5/21/75	"600-Hour" Emission Test
	8/13/75	"1200-Hour" Emission Test
	9/12/75	Problem: EGT on engine exceeds engine no. 2 by 45 deg
		Correct: Installed new EGT indicator
	11/11/75	"1800-Hour" Emission Test
	12/29/75	Problem: Engine EGT incperative
		Correct: Replaced EGT indicator
	1/13/76	"2400-hour" Emission Test
	.1/23/76	Replaced damaged wire harness on EGT system
	3/26/76	Engine removed for quadruple torquing of fuel manifold B-nuts
	4/2/76	Engine reinstalled on A/C No. 4302, Position No.
	4/19/76	"3000-Hour" Emission Test
:8/1906		Original Test A/C No. 4339, Position No. 2
	2/4/75	Baseline Emission Test No. 1A (NO, NO _x)
	3/5/75	Baseline Emission Test No. 1B (others)

Unit No./ Serial No.	Date	l tem
18/1906	5/21/75	"600-Hour" Emission Test
Continued	8/13/75	"1200-Hour" Emission Test
	11/11/75	"1800-Hour" Emission Test
	1/13/76	"2400-Hour" Emission Test
	3/6/76	Engine removed for quadruple torquing of fuel manifold B-nuts
	3/29/76	Engine reinstalled on A/C No. 4327, Position No. 2
	4/23/76	"3000-Hour" Emission Test
19/1907		Original Test A/C No. 4339, Position No. 3
	2/4/75	Baseline Emission Test No. IA (NO, NO _X)
	3/5/75	Baseline Emission Test No. 1B (others)
	3/24/75	Replaced EGT indicator, reading 40 per cent low
	4/5/75	Replaced EPR indicator
	4/10/75	Replaced EGT indicator
	4/19/75	Special (No Bust) P71 check run on this engine due to fuel usage which caused engine to be suspect
	5/21/75	"600-Hour" Emission Test
	6/3/75	Problem: EGT flux 60 to 100 deg below engines 1 and 2
		Correct: Cleaned hot section electrical con- nector and securred. System now operating normal.
	6/4/75	Problem: Reduced power from 2.00 EPR to 1.90 EPR engine at 83 deg OAT (deg F) to keep from overtemping EGT
		Correct: Changed EGT indicator
	6/29/75	Problem: EGT on engine running 20 deg to 30 deg hotter than engines 1 and 2 in all phases of flight
		Correct: Replaced EGT indicator
	8/13/75	"1200-Hour" Emission Test
	9/15/75	Problem: N ₁ indicator at zero until T.O. power is reached, then reads normal
		Correct: Replaced N ₁ indicator

Unit No./ Serial No.	Date	l t em
19/1907	11/11/75	"1800-Hour" Emission Test
Continued	12/27/75	Problem: EGT spread between engine no. 3 and engines 1 and 2 is in excess of 40 deg
		Correct: Replaced EGT indicator
	12/28/75	Problem: EGT intermittently 40-50 deg C lower than engines 1 and 2
		Correct: Cleaned firewall connections and checked terminal block for security
	1/13/76	"2400-Hour" Emission Test
	1/23/76	Problem: EGT readings fluctuate
		Correct: Replaced cannon plug at firewall, operation is now normal
		Engine removed for quadruple torquing of ruel manifold B-nuts
20/1908		Original Test A/C No. 4340, Position No. 1
	4/16/75	Baseline Envission Test
	7/18/75	"600-Hour" Emission Test
	12/15/75	"1800-Hour Emission Test
	12/25/75	Fire in engine burned a 6-8 in diameter hole through case due to 8-nut leak. Engine removed for quadruple torquing of fuel manifold 8-nuts
21/1909		Original Test A/C No. 4340, Position No. 2
	4/16/75	Baseline Emission Test
	7/18/75	"600-Hour" Emission Test
	7/22/75	Problem: Engine throttle is one full knob behind engines 1 and 3
		Correct: Down-trimmed engine
	10/6/75	Problem: Numerous compressor stalls and torching on engine during taxi out
		Correct: Adjust engine idle and inspect inlet
	10/8/75	Problem: Check for damage related to previous stall problem:
		Correct: No damage found

	,	
Unit No./ Serial No.	Date	Item
21/1909 Continued	11/10/75	Problem: Engine stalls when coming out of idle when on the ground
		Correct: Tightened line on bleed control valve approximately 1/2 turn
	12/15/75	"1800-Hour" Emission Test
	12/27/75	Problem: Engine thrust lever is 4-knob widths ahead of engine 2
		Correct: Trimmed engines 1 and 2
	3/11/76	Engine removed for quadruple torquing of fuel manifold B-nuts
	3/29/76	Engine reinstalled on A/C No. 4210 , Position No. 2
	4/10/76	"3000-Hour" Emission Test
22/1910		Original Test A/C No. 4340, Position No. 3
	4/16/75	Baseline Emission Test
	6/28/75	Problem: Engine idles 61 per cent N ₂ ,35 per cent N ₁ , fuel flow 1200 lbm per hr on ground
		Correct: Down-trimmed engine
	7/18/75	"600-Hour" Emission Test
	12/15/75	"1800-Hour" Emission Test
	3/7/76	Engine removed for quadruple torquing of fuel manifold B-nuts
	3/23/76	Engine reinstalled on A/C No. 4338, Position No. 1 No problems found while in shop for modifications
	4/15/76	"3000-Hour" Emission Test
23/4020		Original Test A/C No. 4335, Position No. 3
	4/17/75	Baseline Emission Test
	4/18/75	Problem: SAT gage reads 6 deg warmer than actual temperature at cruise
		Correct: Changed indicator
	7/3/75	"3-0-Hour" Emission Test
	8/1/75	Problem: Engine 2 will not reach T.O. EPR
		Correct: EPR gages for engines 2 and 3 switched for troubleshooting.

Unit No./ Serial No.	Date	l tem
23/4020	8/3/75	Problem: No. 2 engine has high EGT history
Continued		Correct: Switched EPR gages for engines 2 and 3, no further remarks in log
	8/15/75	Problem: Throttle one knob aft of engines 1 and 2 at T.O. and climb settings
		Correct: Trimmed engine, run-up normal
	9/17/75	Problem: SAT gage reads 12 deg low
		Correct: Replace SAT indicator and probe
	11/1/75	"1200-Hour" Emission Test
	12/17/75	"1800-Hour" Emission Test
	12/20/75	Problem: Engine slow to accelerate after start, idles at 48 per cent N ₂
		Correct: Up-trimmed at idle and checked part- power
	3/3/76	''2400-Hour'' Emission Test

3. NOMENCLATURE

Name	Symbo1	Description	Unit
TSO	TSO	Ti. Since Overhaul	hrs
158	TSB	Time Since Baseline	hrs
AMB TEMP	Ta	Ambient temperature	deg R
AMB PRESS	Pa	Barometric pressure	in Hg abs
AMB HUMID	н	Ambient humidity	1bm H2O pe 1bm dry ai
MODE 1		Idle, initial - 58 per cent N ₂ nominal	
MODE 2		Idle "plus", initial - 62 per cent N ₂	
MODE 3		Take-off - T.O. EPR from airline engine operating guide	
MODE 4		Climb - EPR corresponding to 85 per cent T.O. thrust	
MODE 5		Intermediate - EPR corresponding to 60 per cent T.O. thrust	
MODE 6		Approach - EPR corresponding to 30 per cent T.O. thrust	
MODE 7		Idle "plus", firal - see MODE 2	
MODE 8		Idle, final - see MODE 1	
NI SPEED	N ₁	Rotational speed of low pressure turbine, given as a per cent of design speed (8700 rpm)	per cent
N2 SPEED	N ₂	Rotational speed of high pressure turbine, given as a per cent of design speed (12,250 rpm)	per cent
CORR NI	N1,	N ₁ speed corrected to standard ambient conditions	per cent
		$N_1' = N_1 \times \sqrt{518.7/T_a}$ (Ref 1)	

Name	Symboi	Description	Unit
CORR N2	N ₂ '	Corrected N ₂ speed $N_2' = N_2 \times \sqrt{518.7/T_a} \qquad (Ref 1)$	per cent
FUEL FLOW	F	Fuel Flow	1bm per hr
CB F/A	(F/A) _{CB}	Carbon balance fuel-air ratio (see Ref 2, dr) $ (F/A)_{CB} = \frac{(12+a) \times 4.77(1+0.25a)}{(1+0.25a)(32+3.73\times28+0.04\times40)} \div $	basis)
		$\left[\frac{\frac{100}{C0+C0_2+HC}}{\frac{10^{44}}{10^{44}}} + 0.25a - \frac{1}{2} \left(\frac{\frac{C0/10^{44}}{C0+C0_2+HC}}{\frac{10^{44}}{10^{44}}}\right) - \frac{\frac{(1+0.6)}{C0+C0}}{\frac{10^{44}}{10^{44}}}\right) - \frac{\frac{(1+0.6)}{C0+C0}}{\frac{10^{44}}{10^{44}}}$	25a) HC/10 ⁴ 2 ^{+HC} 10 ⁴
		where a is the hydrogen-carbon ratio of the fuel as obtained in the fuel analysis. (A mean value was used when the analysis was not available) amean = 1.90)	
PERF F/A	(F/A) _{PF}	Performance fuel-air ratio	
		$(\Gamma/A)_{PF} = F/AC \times \frac{Pa}{29.92} \times \sqrt{518.7/T_a}$	
		where AC is obtained from the curve shown in Figure 1	
117	т _{т7}	Exhaust gas temperature	deg R
EPR	EPR	Engine pressure ratio	
THRUST	ТН	Thrust, obtained from TH = TH'x($P_a/29.92$)	1bf
CORR FU FL	F'	Corrected fuel flow (Ref 1)	1bm per hr
		$F' = F \times (29.92/P_a) \times \sqrt{518.7/T_a}$	
LOR CB F/A	(F/A) 'CR	Corrected carbon balance fuel-air ratio	
		$(F/A)_{CB}^{!} = (F/A)_{CB} \times (518.7/T_a)$ (Ref 1)	
COR PF F/A	(F/A) F	Corrected performance fuel-air ratio (Ref 1)	
		$(F/A)_{PF}^{1} = (F/A)_{PF} \times (518.7/T_a)$	
CORR TT7	T _{T7} '	Corrected exhaust gas temperature	deg R
		$T_{T7}' = T_{T7} \times (518.7/T_a)$	
COR THRUST	тн'	Corrected thrust (obtained from curve shown in Fig 2 for modes 3 thru 6 and from the curve shown in Fig 3 for modes 1,2,7, and 8)	lbf

Figure 1. Estimated Corrected Total Air Flow versus Corrected Low Rotor Speed

T.Y.L.

Figure 2. Estimated Engine Thrust versus Engine Pressure Ratio Characteristic with NAFEC Emissions Sampling Rake Installed

Figure 3. Estimated Engine Thrust versus Corrected High Rotor Speed in the Idle Regime

WAR LESS AND MAN

Name	Symbol	Description	Unit
CO2 CONC	co ₂	Concentration of carbon dioxide	per cent
CO CONC	со	Concentration of carbon monoxide	"pm
HC CONC	нс	Concentration of hydorcarbons (propane)	ppm
NO CONC	NO	Concentration of NO	ppm
NOX CONC	NO _×	Concentration of NO x	ppm
CO2 EI	E1 _{C02}	Emission index of carbon dioxide (Ref 3) $EI_{CO2} = \frac{M_{CO2} \times CO_2 \times 1000}{(M_C + a \times M_H) \frac{(CO_2 + CO_2 + HC_1)}{10^{14}}}$	lbm per 1000 lbm fuel
		where: M _C = atomic weight of carbon M _H = atomic weight of hydrogen M _{CO2} = molecular weight of CO ₂	
CO EI	EI _{CO}	Emission index of carbon monoxide (Ref 3) $EI_{CO} = \frac{M_{CO} \times \frac{CO}{10^4} \times 1000}{\frac{(M_C + a \times M_A)}{10^4} \frac{(CO + CO_2 + aC_1)}{10^4}}$ where: $M_{CO} = \text{molecular weight of CO}$	lbm per 1000 lbm fuel
HC EI	EIHC	Emission index of hydrocarbons (Ref 3) $EI_{HC} = \frac{M_{HC}}{M_{C}} \times \frac{HC}{10^4} \times 1000$ $\frac{(M_{C} + a \times M_{H}) (LO_4 + CO_2) (HC)}{10^4}$ where: $M_{HC} = molecular weight of methane$	lbm per 1000 lbm fuel
NO EI	EINO	methane Emission index of NO (Ref. 3) $EI_{NO} = \frac{M_{NO_2} \times \frac{NO_0}{10^4} \times 1000}{(M_C + a \times M_H) (\frac{CO}{10^4} + \frac{CO}{10^4})}$ where: $M_{NO_2} = \text{molecular weight of NO}_2$	lbm per 1000 lbm fuel

大学を大学

一一一人以下不 公子子

Name	Symbol	Description	Unit
NOX E	EI _{NOx}	Emission index of NO (Ref 3)	lbm per 1000
		EINO = MNO2 × 104 × 1000	
		$(M_C + a \times M_H) (CO + CO_2 + HC)$	
SMK NUMBER FRONT SIDE	SN	Smoke Number (Ref 3)	
PROMI STOR		$SN = 100 \times (1-RS/RW)$	
		where RS = smoke spot reflectance RW = reflectance of clean filter paper	
SMK NUMBER CORRECTED	SN'	Smoke Number corrected in manner shown in Appendix III of Volume I	
NREC CO EI	(EI _{CO}) std	NREC corrected CO emission index (see Appen-	lbm per 1000 lbm fuel
		$(EI_{CO})_{std} = \frac{F_{CO}}{(F_{CO})_{std}} \times EI_{CO} \text{volume I})$	Ton Tues
NREG HC EI	(EI _{HC}) _{std}	NREC corrected HC emission index (see Appen-	1bm per 1000 1bm fuel
		$(EI_{HC})_{std} = \frac{F_{HC}}{(F_{HC})_{std}} \times EI_{HC} \text{ Volume I})$	
YREC CHO EN	(EI _{NO}) _{std}	NREC corrected NO emission index (see Appendix II of	Ibm per 1000
		$(EI_{NO})_{std} = \frac{(NO)std}{F_{NO}} \times EI_{NO}$ Volume 1)	
NR CNOX EI	(EINOx) std	NREC corrected NO emission index (see Appen-	Ibm per 1000 Ibm fuel
		$(EI_{NO_X})_{std} = \frac{(F_{NO})_{std} \times EI_{NO_X}}{F_{NO}}$ Volume I)	
FCO	F _{co}	CO emission factor	
		$F_{co} = \begin{bmatrix} P_{b,obs} \\ P_{b,ref} \end{bmatrix}^{3/4} \begin{bmatrix} T_{b,obs} \\ T_{b,ref} \end{bmatrix}^{1/2}.$	
		T _{b,obs} /315	
		$_{e}^{T}$ 5, ref / (400-F/A ref x 10 ⁴) for modes 1,2,7,	1
		$\frac{e^{\text{T}_{b,obs}/(400-\text{F/A}_{obs} \times 10^{4})}}{e^{\text{T}_{b,ref}/(400-\text{F/A}_{ref} \times 10^{4})}}$ for modes 3,4,5	,6
		where: Pb.ref = Pa.ref . f N2 ref 518.7	
		$T_{b,ref} = \frac{T_{a,ref}}{518.7} \cdot f_2 \left(\frac{N_{2,ref}}{\sqrt{\frac{T_{a,ref}}{518.7}}} \right)$	

Name	Symbol	Description
FCO Continued		$P_{b,obs} = P_{a,obs} \cdot f_1 \left(\frac{N_{2,obs}}{\sqrt{\frac{T_{a,obs}}{518.7}}} \right)$
		$T_{b,obs} = \frac{T_{a,obs}}{518.7} \cdot f_2 \left(\frac{N_{2,obs}}{\sqrt{\frac{T_{a,obs}}{518.7}}} \right)$
		where the functions f, and f ₂ are obtained from curves supplied by PEWA (see Fig 4)
		Subscript "obs" refers to actual values or values observed for a particular test and mode.
		Subscript "ref" refers to reference values, arbitrarily chosen as the average values for the baseline tests (and at take-off power where appropriate)
		The reference values were:
		F/A, ref = 0.0092 Pa, ref = 30.09 in Hg abs
		N _{2,ref} = 11,377 rpm T _{a,ref} = 501.8 deg R
FHC	F _{HC}	HC emission factor
		$F_{HC} = \frac{[P_{b,obs}]^{3/4}}{[P_{b,ref}]^{3/4}} \left[\frac{T_{b,obs}}{T_{b,ref}} \right]^{1/2}.$ $T_{b,obs}/(500 - F/A_{obs} \times 10)$
		Tb.obs/(500 -F/Aobs x 104) e b.ref/(500 -F/Aref x 104)
FNO	FNO	NO emission factor
		$F_{NO} = \left[\frac{P_{b,obs}}{P_{b,ref}}\right]^{1/2} \cdot e^{\left\{0.00138(T_{b,obs} - T_{b,ref}) - 19H\right\}}$
STD FCO	(F _{CO}) _{std}	Corrected CO emission factor
		$(F_{CO})_{std} = \begin{bmatrix} P_{b,std} \\ P_{b,ref} \end{bmatrix}^{3/l_1} \cdot \begin{bmatrix} T_{b,std} \\ T_{b,ref} \end{bmatrix}^{1/2}$
		Tb, ref / (400-F/A ref x 104) 1,2,7,8
		$\begin{cases} \frac{T_{b,std}/\{400-T_{a,std}(F/A_{obs}/T_{a,obs})\times 10^{4}\}}{e^{T_{b,ref}}/(400-F/A_{ref}\times 10^{4})} & \text{for modes} \\ \frac{T_{b,std}/\{400-F/A_{ref}\times 10^{4}\}}{3,4,5,6} \end{cases}$

Figure 4. Typical Production Engine Performance

Name	Symbol	Description
STD FCO		where: $P_{b,std} = P_{a,std} \cdot f! \left(\frac{N_{2,std}}{\sqrt{\frac{T_{a,std}}{518.7}}}\right)$
Continued		$T_{b,std} = \frac{T_{a,std}}{518.7} \cdot f_2 \left(\frac{N_{2,std}}{518.7} \right)$
		The values of the engine operating parameters in the standardized emission factors may be obtained by assuming that corrected thrust remains constant. Therefore,
		$\frac{F/A}{T_a}$ and $\frac{N_2}{\sqrt{T_a}}$
		remain constant, and the equations for $T_{b,std}$ and $P_{b,std}$ should be modified to read:
		$P_{b,std} = P_{a,std} \cdot f_1 \left(\frac{N_{2,obs}}{\sqrt{\frac{T_{a,obs}}{518.7}}} \right)$
		$T_{b,std} = f_2 \left(\frac{N_{2,obs}}{\sqrt{\frac{T_{a,obs}}{518.7}}} \right)$
		Subscript "std" refers to standard day conditions (i.e., 518.7 deg R. 29.92 in Hg abs and 0.0 lbm H ₂ 0/ lbm dry air), or a value corrected to standard day condition.
STD FHC	(F _{HC}) _{std}	Corrected HC emission index
		$HC^{3} \text{std} = \begin{bmatrix} \frac{P}{b}, \text{std} \\ \frac{P}{b}, \text{ref} \end{bmatrix}^{3/4} \cdot \begin{bmatrix} \frac{T}{b}, \text{std} \\ \frac{T}{b}, \text{ref} \end{bmatrix}^{1/2}.$
		$\frac{e^{T_{b,std}/\{500 - T_{a,std}(F/A_{obs}/T_{a,obs}) \times 10^4\}}}{e^{T_{b,ref}/(500 - F/A_{ref} \times 10^4)}}$
STD FNO	(F _{NO}) _{std}	Corrected NO emission index
		$(F_{NO})_{std} = \left[\frac{P_{b,std}}{P_{b,ref}}\right]^{1/2}$. $e^{0.00138(T_{b,std}-T_{b,ref})}$
API		Specific gravity of jet fuel measured at 60 deg F using 'Relative Density or Density of Liquid-Balance Method' and converted to API gravity using a conversion table.
H/C RATIO	а	Hydrogen-carbon ratio as determined using a Sanda- Carlo Erba Model 1100 elemental analyzer and the indium sample encapsulation technique.

Name	Symbol	Description	
FIA		Fluorescent Indicator Adsorption - Fuel samples were analyzed for paraffin,	
		olefin, and aromatic content using the	
		ASTM Method D1319-70.	

4. EMISSIONS AND ANALYSIS DATA

The data which appears on the following pages consists of actual test data as well as calculated values which were used for analysis purposes. In examining this data, certain points should be noted, as listed below:

- Data has been rounded off to no more than 4 significant figures.
- 2. In some instances, the NO analyzer gave higher readings than the NO $_{\rm X}$ analyzer. In these cases, the NO $_{\rm X}$ emission index and NO $_{\rm X}$ the NREC corrected emission index were set equal to the corresponding NO values. The NO $_{\rm X}$ concentration and the FAA corrected emission index were not changed.
- 3. During the course of testing, some units gave extremely high hydrocarbon readings in the high power modes. This was true of unit 23, tests one through five, unit 20, tests two and four, and unit 18, tests three through five. One possible explanation for these results is a leak in the fuel manifold B-nuts. The FAA issued an Airworthiness Directive, (A.D. 75-05-06) calling for the inspection of the B-nuts on certain engines. This was subsequently revised to require quadruple torqueing of the B-nuts, due to an increase in incidences of leaking and auto-iginition.
- 4. The original testing plan called for data to be taken at seven modes of engine operation. Subsequently, an eighth mode was added. However, units 4 and 14 through 19 were baseline tested under the old schedule, so there is no mode 6 (Approach) data listed for the baseline tests of these units. In addition, the mode 5 (Intermediate) setting for these tests was slightly different than the one eventually settled on.
- 5. The JT8D-9 engines were the first type to be tested and when testing began, certain instrument problems were experienced. On February 4, 1975, aircraft 4339, with units 17, 18 and 19, was tested. The sample line was not heating properly,

invalidating the hydrocarbon results. The same engine was tested again on March 5th, and this time the NO and NO $_{\rm X}$ analyzers malfunctioned. For the purposes of the degradation analysis the CO $_{\rm 2}$, CO and HC data collected on March 5th were considered the baseline data while the data from February 4th, were considered baseline for the NO and NO $_{\rm X}$. In the tables, the first test is designated A (i.e., 17-A, 18-A, and 19-A) while the second test is designated B.

- 6. During the "3000-Hour" test of unit 16, a zero off-set on the CO analyzer occurred which went uncorrected for modes 3 through 8. To obtain useful information from this data, the procedure described below was followed. The CO to HC ratio was established for mode 1; and, assuming the same ratio held for mode 8, a CO value for mode 8 was obtained. Subtracting this value from the value obtained from the analyzer established the magnitude of the zero-shift. This same shift was then applied to the data for modes 3 through 7 to obtain corrected values. These are the values reported in the tables.
- 7. The following items of data were found to be erroneous and were changed in the data base:

Unit Number	Test Series	Mode	Quantity
7	"2400-Hour"	2	EPR
9	" 600-Hour"	7	EPR
10	"Baseline"	7	EGT
10	"1800-Hour"	4	EPR
10	"2400-Hour"	4	N2
11	"2400-Hour"	7	EGT
12	"2400-Hour"	7	N1
14	" 600-Hour"	7	, N1
15	" 600-Hour"	7	NI
16	"1 200-Hour"	9	EPR
17	"1800-Hour"	5	NI

JTRD-9 . RASELINE TEST SERIES .

UNIT	TSO HR	158 HR	AMR TEUD DEG R	AMR PRESS	AMR HUMIN LA H20/41R
1	Alda.	0.	50A.7	30.08	.004450
5	15095.	0.	447.7	30.18	.003360
3	7261.	n.	487.7	30.18	.003360
. 4	13570.	0.	497.2	36.49	.002750
174	1248.	0.	499.7	30.12	.003730
6	14777.	n.	511.7	29.97	.005580
7	13935.	0.	491.7	30.24	.003400
194	1249.	0.	499.7	30.12	.003770
9	15314.	0.	503.7	30.17	.003410
10	15130.	0.	506.2	30.15	.005920
11	7350.	0.	507.7	30.17	.003900
12	13945.	0.	507.7	30.13	.003900
194	1242.	0.	498.7	30.18	.053720
14	1475.	0.	407.7	30.07	.003350
15	1475.	0.	492.7	30.07	.00335,0
16	1475.	n.	492.7	30.07	.003350
179	1470.	n.	494.7	29,98	.003580
188	1470.	.0.	491.7	29.98	.003700
199	1470.	0.	494.2	29.98	.003580
20	1669.	0.	512.2	29.99	.005660
21	1569.	0.	512.2	29.99	.005640
22	1669.	0.	512.2	29.99	.005660
23	APAn.	0.	525.2	29.67	.006430

JTRD-9 . RASELINE TEST SERIES .

MODE 1

	UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORP NI PER CENT	CORR NZ

	1	36.50	59.00	36.86	59.5A
	2	34.90	56.00	35.06	57.75
	3	33.00	55.70	34.03	57.44
	4	34.00	57.50	35.08	59.33
	174	34.70	58.50	35.39	59.66
	6	33.50	57.50	33.73	57.89
	7	34.50	54.00	35.43	59.57
	IAA	34.25	58.00	34.93	59.15
	9	36.00	59.00	36.53	59.87
	10	33.50	56.50	33.91	57.19
	11	31.50	-54.00	31.84	-54.5R
	12	35.00	59.00	35.38	59.64
	194	34.90	58.00	15.59	59.15
	14	36.00	59.25	36.94	60.79
	15	-37.00	59.00	-37.96	60.54
	16	36,00	59.00	36.94	60.54
	178	35.00	58.50	15.86	59.93
	188	32.00	55.50	32.40	56.89
	198	35.00	58.25	35.86	59.68
	20	34.50	58.00	34.72	58.37
	21	-37.00	60.00	37.23	60.38
	22	36.00	-61.00	36.23	61.39
)	23	34.00	58.00	33.79	57.64

THE REAL PRINTS

MOOF 1

UNIT	FUEL FLOW	CR F/A x100	PERF F/A	TT7 DEG R	FPR	THRUST LPF
1	-1300.	.3970	.3190	1167.	1.050	937.
5	1040.	.2400	.2550	1059.	1.070	897.
3	970.	.2470	.2440	1977.	1.060	891.
4	1135.	• 3600	.2750	1095.	1.070	919.
174	1100.	.2740	.2720	1050.	1.070	937.
6	1015.	•3030	.2690	1167.	1.050	909.
7	1100.	. 3650	. 2690	1096.	1.040	931.
184	1040.	.2800	.2590	1104.	1.970	927.
9	-1255.	.2740	.3070	1116.	1.060	940.
10	1040.	.3140	.2690	1140.	1.060	887.
11	-qnn.	4170	.2580	1158.	1.060	-832.
12	-1200.	. 3800	.2990	1122.	1.060	936.
194	1055.	.2930	.2600	1053.	1.070	925.
14	1117.	.2590	.2690	1086.	1.070	-1004.
15	1140.	.2740	.2710	1077.	-1.080	985.
16	1160.	.2670	.2900	1073.	-1.080	9.5.
179	1050.	.2640	.2580	1050.	1.070	947.
149	950.	.2730	.2570	1050.	1.060	AA6.
199	1115.	.2700	.2740	1032.	-1.080	942.
20	1050.	.2750	.2670	1140.	1.060	915.
21	1140.	.2730	.2800	1140.	1.070	976.
22	1110.	.2960	.2760	1140.	1.070	-1050.
23	1100.	.7410	.2960	1149.	1.060	911.

HODE 1

UNIT	CORR FII FL.	COR CR F/A	COR PF F/4	CORR TT7 COR	THRUST
1	-1294.	3940	3250	1190.	942.
2	1017.	•2550	.2710	1126.	905.
3	949.	.2780	.2600	1145.	A99.
4	1121.	.3830	.2930	1165.	937.
17A	1086.	.2850	.2R30	-1092.	943.
6	1005.	.3070	.2720	1193.	908.
7	1082.	.3850	.2840	1145.	941.
184	1026.	.2920	.2690	1148.	933.
9	-1247.	.2820	3160	1150.	947.
10	1035.	.3260	.2750	1168.	894.
11	-897.	4260	.2630	11A3.	A37.
12	-1195.	.3880	.3060	1146.	943.
194	1043.	•3040	.2700	1096.	933.
14	1090.	•2720	.2830	1143.	-1079.
15	11.6.	.2890	.2860	1134.	990.
16	1136.	.7810	.295	1130.	990.
178	1027.	•5850	2710	1102.	949.
188	-929.	.2860	.2700	1112.	888.
198	1091.	.2840	.2A80	-1083.	944.
20	1046.	.2790	.2700	1154.	917.
21	1135.	.2760	.2840	1154.	978.
22	1105.	.3000	.2800	1154.	-1053.
23	1097.	.3370	.2920	1134.	903.

JTRO-9 . RASELINE TEST SEPTES .

MODE 1

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	.789	114.9	16.4	5.7	-10.3
2	.495	89.7	16.3	1.8	5,6
3	.526	117.7	27.6	1.4	4.7
4	.727	139.0	31.6	5.7	5.7
174	.555	98.4	23.5	2.2	5.9
6	-614	107.0	17.5	5.0	7.3
7	.744	122.6	17.8	3.9	5.8
194	.547	110.0	72.7	5.8	6.1
9	.555	92.8	21.6	3.3	6.0
10	.549	104.7	15.1	3.5	6.4
11	945	166.9	30.4	3.7	-A.A
12	.779	114.7	14.1	5.5	-10.4
194	.591	117.1	29.6	2.2	6.3
14	.522	103.3	20.7	.4	3.7
15	•555	104.4	21.4	5	7.4
14	.542	91.5	19.9	.7	3.7
179	.544	42.6	21.4	3.0	6.4
199	.549	123.5	24.1	5.0	4.9
199	.545	111.1	25.1	4.1	P.1
20	.559	97.9	19.0	3.9	6.6
21	.552	102.1	19.5	9.3	-11.3
22	.501	104.2	19.7	1.5	2.9
23	.692	122.6	23.1	5.3	A.5

THE ACTION OF THE WAR THE WASHINGTON

35

MODE 1

UNIT	COS ET	CO ET	HC EI	NO FI LR/KLR FII	NOX ET	SMK NIMBER FRONT STOE
1	3085.	28.62	7.02	2.32	4.21	0.00
2	3066.	35.90	11.24	1.17	3.73	0.00
3	3040.	43.32	17.43	.93	2.86	0.00
4	3054.	37.20	14.53	2.50	2.51	
						0.00
174	3063.	34.59	14.17	1.76	3.40	-1.73
6	3074.	34.08	9,59	3.50	3.84	0.00
7	3080.	32.32	R.97	1.71	2.51	0.00
184	3060.	37.81	13.1A	1.60	3.46	-1.72
9	3069.	32.69	12.47	1.92	3.99	0.00
10	3095.	31.67	7.83	1.73	3.19	0.00
11	3065.	38.51	12.06	1.39	3.12	0.00
15	3093.	29.04	6.12	2.27	4.32	0.00
194	3049.	38.53	16.76	1.21	3.41	56
14	3059.	40.93	13.23	.39	5.29	0.00
15	3065.	36.71	12.94	•29	1.97	0.00
16	3072.	33.00	12.35	.42	2.17	0.00
179	3067.	13.25	13.20	1.7A	3.75	0.00
188	3047.	43.64	14.45	1.18	3.93	0,00
199	3051.	39.61	15.39	2.19	4.73	0.00
20	3072.	34.26	10.80	2.23	3.40	0.00
21	3067.	36.06	11.95	5.3A	-6.53	0.00
22	3073.	33.89	10.30	.79	1.47	0.00
23	3071.	34.64	11.22	2.65	3.94	0.00

なのはからいでは、これ

MODE 1

UNIT	FC0 *100	FHC x100	FNO X)OO	STO FCO X100	STO FHE X100	STO FNO
1	3.9780	5.0790	19.5500	4.1A70	5.2840	21.6410
2	3.2030	4.0840	14.2150	3.7670	4.6070	20.5290
7	7.1460	4.0490	18.0530	3.4990	4.5700	20.3420
4	3.5180	4.6020	19.7490	4.1340	5.2000	21.4890
174	3.7550	4.7230	19.4290	4.2079	5.1120	21.6920
6	3.6520	4.5770	17.4940	7.7980	4.7100	20.6130
7	3.6340	4.7220	19.3330	4.1850	5.2440	21.6370
184	3.4740	4.6180	10.2120	4.0860	4.9971	21.3800
9	3.9430	4.8730	19.9350	4.2590	5.1580	21.8220
10	3.4260	4.3770	17.6930	7.6440	4.5R4N	50.1010
11	-2.0450	3.9640	ואוה. דו	3.1050	4.1300	-1A.6420
12	3.0740	5.0KRD	19.7650	4.2010	5.2890	21.6770
194	7.4940	4.6440	10.2170	4.0860	5.0190	2).3900
14	3.8920	4.9710	10.0070	4.4850	5.3730	22.3900
15	3.9390	4.7070	10.8540	4.4710	5.3370	0252.55
16	3.4390	4.7970	10.5540	4.4210	5.3240	22.2320
179	7.7350	4.6730	19.6720	4.2720	5.1770	21,8500
FRI	3.1310	4.0260	17.7970	3.5730	4,4550	20.0080
199	7.6920	4.6200	19.3350	4.2110	5.1130	21.7020
20	3.7750	4.4680	18.5550	7.9050	4.7970	20.9020
21	4.2330	5.1410	19.6660	4.3820	5.2750	22.1340
22	-4.4770	-5.4330	20.1950	04.K35n	-5.5770	22.7580
23	3.8510	4.8040	18.2590	3.7470	4.7060	20.4610

MODE 1

UNIT	NREC CO ET	NREC HC ET	NRE CHO ET	NR CNOX ET	SMK NUMBER
	*******			*******	
1	27.19	6.75	2.57	4.55	0.00
5	30.52	9.97	1.32	4.20	0.00
3	14.85	15.44	.94	3.55	0.00
4	31.70	12.86	2.79	2.79	0.00
174	31.18	13.09	1.49	3.7A	-1.73
6	37.77	9.30	4.14	4.43	000
7	29.06	8.04	1.91	18.5	0.00
184	34.03	17.19	1.78	3.85	-1.72
9	39.27	11.78	5.10	4.36	0.00
10	29.78	7.48	1.98	3.63	0.00
11	34.53	11.58	1.52	3.63	0.00
15	27.47	-5.86	2.40	4.73	0.00
194	34.74	15.51	1.74	3.79	66
14	35,53	11.89	.44	2.56	0.00
15	31.47	11.63	.32	2.21	0.00
16	24.45	11.11	.47	2.43	0.00
179	29.07	11.93	2.00	4.21	0.00
144	38.19	13.24	1.33	4.47	0.00
198	34.66	13.90	2.69	5.31	0.00
30	33.12	10.53	2.51	4.29	0.00
21	34.84	11.54	6.05	-7.36	0.00
55	32.73	10.52	.88	1.66	0.00
23	15.45	11.46	2.74	4.41	0.00

38

NOTE - MINU! SIGNS DENOTE OUTLYING VALUES

MUUE S

UNIT	NI SPEED PER CENT	NZ SPEED	CORR NI	CORR NA
**	********			
1	39.00	62.00	39.3A	62.61
2	40.00	62.00	41.25	63.94
3	-41.00	62.00	-47.78	63.94
4	39.00	62.00	40.74	63.97
174	38.50	-61.70	10.26	62.93
4	39.00	62.00	78.26	62.42
7	38.50	62.00	19.54	63.68
194	39.00	62.00	39.77	63.23
9	30.00	62.00	19.58	65.95
10	39.00	62.00	19.48	62.75
11	79.00	62.00	19.42	62.67
12	38.00	52.00	18.41	62.67
194	39.00	62.00	39.77	63.23
14	39.00	42.00	40.02	63.61
15	-41.00	62.10	-42.07	63.41
16	39.50	42 10	40.53	63.41
173	39.00	62.00	19.96	63.52
199	3R.50	62.00	79.46	63.55
198	34.50	65.00	79.44	63.52
20	39.00	62.00	19.25	62.39
21	34.50	52.00	19.74	62.39
22	37.00	62.00	17.21	62.39
23	38.00	62.10	37.76	61.67

MUDE S

	UNIT	FUEL FLOW	CR F/A X100	PERF F/4 X100	TT7 DEG R	EPR	THRUST LAF
_	1	-1450.	3870	7440	1167.	1.060	1137
	2	1320.	.2330	.2930	1113.	1.090	1231
1,	3	1320.	.2490	.2850	1095.	1.040	123
	4	1350.	.3570	.3060	1086.	1.090	122
2	174	1250.	.2790	.2940	106A.	1.080	115
	6	1190.	.2A20	.2890	1176.	1.060	113
-	7	1290.	.3480	. 2990	1104.	1.060	120
	184	1220.	.2740	.2850	1172.	1.080	118
-	9	1390.	.2800	.3270	1140.	1.080	115
14	10	1345.	.2830	.3170	1149.	1.080	114
1	11	-1450.	4110	7430	1158.	1.000	114
2	12	1350.	-,3800	.3240	1140.	1.070	114
	194	1210.	.2910	.2820	1068.	1.080	117
	14	1270.	.2610	.2940	1122.	1.080	121
	15	1320.	.2690	.2890	1118.	1.080	121
	16	1215.	.2610	.3010	1107.	1.090	121
1	178	1275.	.2730	.2970	1068.	1.080	120
1	188	1265.	.2610	.2960	1104.	1.080	121
<i>E</i> ,	198	1255.	.2720	.2940	1068.	1.080	120
*	20	1200.	.2790	.2870	1158.	1.080	112
*	21	1230.	.2730	.2960	1140.	1.080	112
-	55	1140.	.2980	.2800	1140.	1.080	112
	23	1250.	.3540	.3120	1154.	1.070	107
*				40			

4

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

MOOF 2

IIVIT	CORR FILFL	COR CR F/A	COR PF F/A (CORR TIT COR	THRUST LAF
		2050	2510	1100	
1	-1444.	3750	3510	1190.	1143.
S	1291.	.2490	.3120	1193.	1242.
3	1291.	• 2640	.3030	1164.	1242.
4	1333.	3300	. 3250	1154.	1244.
174	1274.	• 3300	.3060	-1111.	1156.
6	1180.	.2460	.2930	1192.	1129.
7	1269.	. 3670	.3150	1164.	1222.
194	1204.	.2450	.2960	1167.	1189.
9	-1791.	. 2980	.3360	1174.	1156.
10	1339.	.2300	. 1250	1177.	1154.
11	-1444.	4200	3510	1193.	1147.
12	1 145.	3490	. 3310	1164.	1147.
194	1197.	•3050	.2970	-1111.	1189.
14	1744.	.2750	.3100	1181.	1217.
15	1293.	•2920	.3050	1177.	1217.
15	1284.	.2740	.7170	1166.	1217.
179	1247.	.2960	.3120	1121.	1210.
198	1237.	.2750	.3110	1160.	1213.
194	1227.	.2440	.3090	1121.	1210.
20	1195.	.2930	.2910	1172.	1127.
21	1225.	.2770	.3000	1154.	1127.
22	1175.	.3020	.2840	1154.	1127.
23	1247.	. 3490	.3080	1143.	1070.

41

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

MODE 2

UNIT	CO2 CONC PER CENT	CO CONC	HE CONC	NO CONC	NOX CONC
1	793	95.1	14.1	6.2	-11.0
2	.475	65.6	12.6	2.6	6.7
3	•506	68.2	17.1	2.5	6.1
4	.725	107.3	-27.6	6.9	7.3
174	.56R	75.4	20.4	3.1	6.8
6	.575	76.3	14.1	7.6	7.7
7	.711	93.2	15.9	4.9	. 6,4
188	.557	77.A	20.3	3.6	7,0
9	.54,0	86.1	18.2	3.6	7.6
10	,579	72.1	11.6	4.1	6,6
11	842	101.6	17.2	6.1	-11.1
12	780	94.2	11.9	6.4	-10.6
194	•593	A9.0	-29.6	3.3	7,6
14	532	69.7	16.6	1.9	4.8
15	.546	79.9	17.4	-1.2	4.1
16	.512	70.7	15.2	1.5	4.4
179	•555	76.4	18.4	3.6	7.4
188	.532	76.9	15.0	3.2	7.8
198	.55?	A9.7	20.3	3.9	8,3
20	.560	85.1	14.6	4.5	7.5
21	.557	82.4	14.9	4.8	7.5
SS	.607	96.1	17.2	3.9	7.1
23	.725	88.5	14.3	6.7	-9.A

MININAMENTAL MANAGEMENT OF THE MANAGEMENT OF THE PARTY OF

42

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

With the same

MODE S

11417	COS ET	CO FT LB/KLB FU	HC FT LR/KLR FII	NO FI LAZKLA FU	NOX ET	SMK NUMBER FRONT STOR
1	3195.	23.63	6.04	2.54	4.51	0.00
5	3084.	27.11	8,93	1.77	4.52	0.00
3	3087.	26.45	11.42	1.60	3.44	0.00
4	3075.	24.48	13.00	3.07	3.55	0.00
174	3797.	76.04	12.00	1.78	3.88	-1.07
4	anen.	26.09	A. 70	4.28	4.33	0.00
7	3095.	25.62	7,55	7.23	2.03	0.00
194	3079.	27.35	12.25	2.05	4.07	-,93
9	3077.	59.65	10.78	2.02	4.27	0.00
10	3030	24.59	4,92	2.32	3.70	0.00
11	3000.	23.80	6.93	2.35	4.27	0.00
12	3104.	23.86	5.10	2.65	4.50	0.00
194	3064.	29.26	-14.72	1.78	4.11	-1.32
14	3089.	25.75	10.51	1.13	2.93	0.00
15	3004.	28.71	10.71	60	2.19	0.00
14	3401.	26.14	9.47	.94	2.69	0.00
179	3087.	26.99	11.16	2.07	4.29	0.00
198	3085.	28.37	9.50	1.95	4.75	0.00
108	3072.	71.7A	12.32	2.24	4.85	0.00
20	3086.	29.47	R.64	2.53	4.26	0.00
21	3095.	29.08	9.05	2.79	4.37	0.00
25	Just.	31.05	9.57	2.07	3.79	0.00
23	3100.	24.0A	6.4A	3.00	4.36	0.00

43

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

A THE

S 300M

UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO	STO FHC	STO FNO
	**********		********			
1	4.7370	5.8990	21.31A0	4.9930	6.1430	23.6140
2	4.5910	5.5360	21.4010	5.4550	6.2880	24.6780
3	4.5910	5.5640	21.8010	5.4550	6.3240	24.6780
4	4.6230	5.8100	22.1680	5.4670	-6.6010	24.7040
174	4.5730	5.5560	21.4110	5.1010	0.0280	23.8670
6	4.7340	5.6680	20.3630	4.9320	5.8490	23.4490
7	4.6780	5.7740	21.8070	5.3620	6.4630	24.4690
184	4.6660	5.6420	21.6260	5.2060	4.1270	24.1110
9	4.7090	5.6780	21.7750	5.0980	6.0220	23.8600
10	4.7260	5.6900	20.7560	5.0450	5.9710	23.7370
11	4.7340	5.9510	21.5600	5.0140	5.2220	23.6430
12	4.7340	5.8860	21.5600	5.0140	6.1500	23.6630
194	4.6730	5.6970	21.6530	5.2060	6.1650	24.1110
14	4.6150	5.5990	21.7650	5.3390	6.2330	24.4170
15	4.6150	5.6020	21.7650	5.3390	6.2500	24.4170
16	4.6150	5.5980	21.7650	5.3390	6.2320	24.4170
178	4.5170	5.6040	21.6380	5.3060	6.2240	24.3400
189	4.6130	5.5810	21.5920	5.3170	6.2100	24.3660
199	4.6170	5.6630	21.6380	5.3060	6.2230	24.3400
20	4.7520	5.6810	20.8010	4.9210	5.8310	23.4450
51	4.7520	5.6700	20.8010	4.9210	5.8200	23.4450
55	4.7520	5.7180	20.8010	4.9210	5.8720	23.4450
23	4.8370	5.8610	20.4490	4.6940	5.7350	22.9010

44

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

大川大小小小小小小小小小小小小小小小小小小小小小小小

The state of the s

MUDE S

IINIT	NREC CO FI	NREC HC ET		NR CNOX ET	SMK NUMBER
	********				*******
1	22.41	5.80	2.92	4.99	0.00
2	55.45	7.87	2.00	5.12	0.00
3	22.27	10.05	1.42	4.39	0.00
4	24.51	11.26	3.42	3.5A	0.00
174	21.35	11.14	1.98	4.33	-1.07
4	25.04	A.04	4.93	4.99	0.00
7	22.28	6.74	2.50	3.78	0.00
194	24.51	. 11.28	5.50	4.53	93
9	27.36	19.17	2.21	4.69	0.00
10	23.03	4.49	2.66	4.23	0.00
11	27.47	4.62	2,58	4.69	0.00
12	22.53	4.97	5.40	4.94	0.00
194	26.27	-15.43	1.99	4.58	-1.12
14	22.26	9.42	1.27	3.29	0.00
15	24.81	9.60	-,77	2.68	0.00
16	22.59	4.67	1.06	3.01	0.00
179	23.48	10.04	2.11	4.82	0.10
144	24.62	4.53	2.20	5.36	0.00
198	27.45	11.10	2.54	5.46	0.00
20	28.46	A.42	2.25	4.81	0.00
21	29.08	4.31	3.14	4.93	0.00
22	29.94	9.32	2.34	4.27	0.00
23	24.81	6.82	3.36	4.88	0.00

45

NOTE- MINUS STONS DENOTE OUTLYING VALUES

A direction of the second

The state of the s

MODE 3

-	UNIT	NI SPEED	NZ SPEEN PER CENT	CORP NI PER CENT	CORR NZ
-		***************************************			
;	1	94.00	93.00	94.97	93.91
-	2	93.00	91.00	95.91	93.85
F	3	94.00	92.00	96.94	94.88
> *	4	93.50	91.50	96.48	94.41
-	174	96.00	93.50	-97.91	95.34
•	6	96.50	95.20	-97.16	95.85
=	7	94.65	92.90	-97.21	95.42
	184	95.00	93.00	96.89	94.85
_	9	94.00	93.00	95.39	94.37
-	10	94.50	92.62	95.66	93.76
5	11	94.00	93.00	95.01	94.00
·	12	94.00	94.00	95.01	95.01
3	1 .4	96.00	93.00	-97.91	94,85
1	14	93.75	92.00	96.19	94.40
_	15	94.50	92.00	96.96	94.40
	16	93.50	91.25	95.94	93.63
	179	94.50	93.00	96.81	95.29
	188	94.50	93.00	96.86	95.33
	198	94.25	92.50	96.56	94.77
	20	95.00	93.=0	95.60	94.09
	21	94.00	93.50	94.59	94.09
60	55	95.50	94.50	96.10	95.10
	23	95.00	94.00	94.41	93.42

MODE 3

ויאזד	FUFL FLOW	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
1	9100.	.9810	.7730	142A.	2,070	14618.
,	8640.	.9460	.7120	1369.	2.080	14676.
3	9070.	.9820	.7430	1395.	2.080	14676.
4	8700.	.9350	.7070	1356.	2.040	14527.
174	-10000.	.8920	9270	1429.	2,090	14707.
6	9200.	.9640	.7800	1444.	2.050	14508.
7	AANN.	.9910	.7770	1392.	2,080	14647.
184	H650.	.8530	.7190	1429.	2.080	14707.
9	Agnn.	1.0060	. 7490	1401.	2,080	14693.
10	8850.	.9770	.7450	1428.	2.070	14585.
11	ALON.	.9690	.7280	1446.	2.080	14703.
12	Hann.	.3000	.7450	1428.	2.080	14703.
194	3050.	.8520	. 7470	1392.	2.080	14676.
14	-9425.	.9840	.7830	1392.	2.080	14732.
15	annn.	.8900	.7440	1410.	2.080	14732.
16	2175.	.9500	.7630	1392.	2.080	14737.
178	9725.	.8350	.7250	1392.	2.080	14774.
193	8600.	. 4540	.7140	1428.	2.090	14774.
199	4850.	7770	.7370	1374.	2.080	14774.
20	gann.	.8660	.7500	1425.	2.050	14452.
21	8500.	.8270	.7280	1419.	2.050	14452.
22	8600.	.9240	.7310	1464.	2.050	14457.
23	9200.	.9860	.8080	1487.	2.040	14500.

MUNE 3

UNIT	CORR FU FL	COR CR F/A	COR PF F/4 X100	CORR TT7 DEG R	COR THRUST
	********				********
1	9060.	1.0000	.798	0 145	6. 14697.
2	8451.	1.0060	.75A	145	5. 14803.
3 .	8871.	1.0440	.791	0 148	4. 14803.
4	8597.	.9950	.753	0 144	3. 14803.
174	-9869.	.9270	860	0 149	5. 14803.
6	9122.	-9810	.790	0 148	4. 14493.
7	8660.	-1.0460	.761	0 146	A. 14893.
184	8537.	.8870	.748	0 148	5. 14803.
9	8842.	1.0360	.771	0 144	2. 14803.
10	8810.	1.0010	.764	0 146	3. 14697.
11	8567.	.9900	.744	0 147	7. 14803.
12	8766.	.9200	.762	0 145	9. 14803.
194	8951.	.8870	.777	0 144	8. 14803.
14	9230.	•9310	924	0 146	5. 14803.
15	AR14.	.9370	,784	0 148	4. 14803.
16	8985.	1.0000	803	0 146	5. 14803.
178	8534.	.8770	. 761	0 146	1. 14803.
188	8407.	.9020	.750	0 -150	0. 14803.
198	8656.	.8150	.773	0 144	2. 14803.
20	8754.	.8770	.759	0 144	6. 14483.
21	8465.	.8380	.737	0 143	7. 14483.
22	8565.	.9360	.740	0 148	2. 14483.
23	9179.	.9730	79A	0 146	3. 14377.

なりいとというとうないと

MODE 3

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC

1	2.051	14.6	10.2	101.1	98.4
2	1.991	16.6	5.6	40.2	96.6
3	2.056	16.6	11.1	-107.2	106.7
4	1.954	16.5	18.9	-115.5	-110.1
174	1.442	15.3	20.9	67.6	71.1
6	2.024	12.4	7.2	-116.6	-111.1
7	2.078	15.7	6.1	43.3	A9.3
184	1.790	15.8	19.9	68.1	69.9
9	2.116	15.5	9.4	95.3	100.4
10	2.047	15.4	5.6	85.5	96.5
11	2.031	17.3	4.6	93.7	102.9
12	1.224	13.5	3.0	101.1	99.9
194	1.779	16.2	20.7	72.5	75.5
14	1.951	14.5	8.9	90.6	100.5
15	1.065	13.9	8.2	97.5	91.4
16	1.990	15.6	8.5	96.2	103.9
178	1.745	14.2	17.9	95.9	97.3
199	1.796	15.3	4.7	95.4	99.1
198	-1.622	15.7	13.0	98.1	89.1
20	1.414	13.2	4.4	92.7	89.4
21	1.731	11.4	5.3	77.7	83.1
22	1.976	12.2	4.7	A6.4	93.1
23	2.060	15.2	25.6	93.1	100.

MODE 3

UNIT	COZ ET	CO ET	HC FT LR/KLR FII	NO FI LR/KLR FU	NOX ET	SMK NUMBER FRONT STOE
1	3147.	1.43	1.71	16.20	16.20	31.79
2	3148.	1.68	.97	14.05	16.14	33.33
3	3148.	1.62	1.86	-17.16	17.16	74.44
4	3144.	1.69	3.32	-19.43	-19.43	30.00
174	3143.	1.64	3.45	11.92	12.54	27.73
. 6	3144.	1.23	1.23	-19.94	-18.94	29,33
7	3151.	1.53	1.00	13.20	14-15	75.10
184	3147.	1.79	3.65	12.57	12.90	-21.19
9	3147.	1.48	1.53	14.99	15.68	32.67
10	3151.	1.51	.94	13.76	15.55	27.81
11	3151.	1.71	.78	15.19	16.68	35.10
12	3152.	1.44	.49	-17.66	17.66	72.67
194	3142.	1.82	4.00	13.39	13.94	23.18
14	3151.	1.57	1.65	14.15	-17.89	28.60
15	3152.	1.50	1.51	15.46	16.15	27.60
16	3152.	1.57	1.47	15.92	17.20	31.00
178	3144.	1.63	3.52	-18.07	-18.33	29.73
189	3150.	1.71	1.29	-17.49	-18-16	29.33
198	3145.	1.94	2.75	-17.85	-18.06	30.93
50	3151.	1.46	.83	15.03	16.23	29.14
21	3151.	1.32	1.05	14.78	15.81	26.49
55	3152.	1.26	.83	14.70	15.85	27.81
23	3142.	1.47	4.27	14.85	16.05	72.24

ムオーバスギングン

in Tilly

いまれ

MODE 3

UNIT	FC0 x100	FHC X100	FNO X100	STD FCD Xlnn	STO FHC	STD FNO X100
1	1.0.1140	105.6360	92.0460	123.3930	114.6360	107.3040
,	R6.7920	0.554.AB	A7.497h	123.7030	114.6170	103.0330
3	99.1780	97.9400	91.0850	-147.1970	-127.6320	107.4130
4	00.1670	92.0450	90.8870	128.2830	118,6960	105.5160
174	100.5170	101.6600	95,2100	125.5900	119.6477	109.0750
6	128.5710	120.5880	95.2690	-179.0610	-128.4320	110.4060
7	108.2160	104.8290	93.9200	-149.0770	-131.9391	109.2050
188	97.4496	95.9940	93.7030	114.8261	112.5920	107.3010
9	113.7470	107.9100	94.2530	175.4610	122.5400	105.3520
10	105.6440	105.3360	88.3010	121.6781	113.2850	102.6360
11	109.3000	104.7990	93.1350	122.6750	114.5770	107.7130
12	107.5410	106. 3543	96.4320	121.3970	116.5472	107.8738
194	92.5090	96.1320	nisk.re	114.7860	112.5590	107.3010
14	97.9320	91.1950	91.8520	117.2390	112.7570	105.4450
15	89.5041	91.5950	90.8520	119.2690	117.3190	105.4480
14	AG. 1 320	90.2767	99.0240	120.0570	112.0540	102.0700
178	49.2590	93.8701	07.5840	116.7400	114.5920	108,7990
199	91.4780	43230	93.3660	121.0470	117.0000	108.9670
198	911.4750	87.5820	92.0950	104.1600	106.2710	107.0190
20	99.0520	100.4740	91.5690	104.2500	105.7840	104.1020
21	94.7259	97.6749	91.5470	101.0020	102.7460	104.1020
22	115.9030	112.4180	95.1240	124.7370	118.5950	108.1730
2.2	121.4930	113.2740	91.1000	113.5210	107.9949	101.1600

MODE 3

		NRE CNO FT LB/KLB FU	NPEC HC ET	NREC CO FI LB/KLA FU	UNIT	
21 20		10.10				
31.79	19.19	19.18	1.58	1.27	1	
33.33	18.89	17.64	.75	1.18	S	
34.44	20.23	-20.23	1.43	1.12	3	
30.00	-22.56	-22.56	2.58	1.19	4	
27.73	14.36	13.46	3.27	1.32	174	
29.33	-22.04	-22.04	1.15	1.13	6	
35.10	16.48	15.36	.80	1.11	7	
-21.19	14.79	14.40	3.12	1,43	184	
32.67	17.53	16.64	1.35	1.74	9	
27.41	18.08	15.99	.85	1.31	10	
35-10	14.5R	16.92	.71	1.51	11	
32.67	19.60	-19.48	.63	1,28	12	
23-18	15.95	15.31	3,42	1.47	194	
28-60	-20.76	18.71	1.33	1.19	14	
27.60	18.74	17.94	1.22	1.12	15	
31.00	19.94	18.46	1.18	1.14	16	
29.73	-21.31	-21.01	2.89	1.74	179	
29.33	-21.20	-20.41	1.05	1.30	188	
30.93	-20.99	-20.74	2,26	1.50	198	
29.14	18.45	17.09	.79	1.35	20	
26.49	17.97	16.81	1.00	1.23	21	
27.81	18.03	16.72	.79	1.17	55	
32.24	17.82	16.49	4.43	1.5A	23	

UNIT	NI SPEFO PER CENT	NZ SPEEN PER CENT	COPP NI	PER CENT
	********		••••••	
1	A7.50	90.50	AR.36	91.39
?	R5.70	88.00	88.39	90.75
3	96.50	A9.20	15.98	91.99
4	95.25	98.00	87.96	90.80
174	A7.00	89.50	88.77	91.28
6	20.00	92.00	89.61	14.50
7	88.00	90.00	-91,78	92.44
184	87.00	89.50	AR.73	91.28
9	P7.75	96.00	89.05	91.33
10	88.00	90.00	PO.09	91.10
11	99.00	90.00	88.95	90.97
12	88.60	97.00	AA.95	-32.99
191	86.50	99.00	98.22	90.77
14	85.00	RR.OO	-97.21	90.29
15	96.75	88.10	10.09	90.29
16	86.00	AA.00	AB. 74	90.29
1 7R	86.25	89.50	98.34	91.69
188	P6.50	89.00	99.44	91.23
198	86.00	£7.00	89.11	91.19
20	99.00	91.00	89.56	91.54
21	89.00	91.00	A9.56	91.5A
77	99.00	92.00	89.56	92.58
23	A9.00	91.00	88.45	90.44

53

NOTE - MINUS SIGNS PENOTE OUTLYING VALUES

Land State of the state of

MODE 4

UNIT	FUEL FLOW	CB F/4 K100	PERF F/A X100	TT7 NFG R	EPR	THRUST LAF
1	7550.	.8070	.6750	1356.	-1.970	12453.
5	7100.	.8070	.6190	1302.	-1.880	12521.
3	7500.	.8060	.6490	1320.	-1.980	12521.
4	6900.	.7970	.5980	1302.	1.940	-11954.
17A	7400.	.6740	•6520	1302.	1.840	12103.
6	7300.	.7650	.6510	1392.	1.850	12321.
7	7200.	.8240	.6170	1320.	-1.980	12496.
184	6950.	.6920	.6030	1323.	1.840	12103.
9	7400.	.A270	•6520	1347.	-1.ARO	12527.
10	7200.	.8680	0.055.0	1354.	-1.870	12424.
11	7250.	.8610	.6430	1374.	-1.RRO	12544.
12	7360.	.8020	.6470	1354.	-1.9n0	12544.
194	7050.	.6640	.6230	1266.	1.940	12077.
14	7262.	.6910	.5460	1320.	1.840	12153.
15	7045.	.7040	-6160	1320.	1.840	12153•
16	7000.	.7510	.6170	1320.	1.940	12123.
178	6750.	.6900	.5970	1302.	1.840	12158.
189	-6650.	•6840	.5860	1320.	1.940	1715R.
198	7100.	6230	.6290	1284.	1.840	12158.
50	7400.	.7080	•5590	1365.	1.860	12383.
21	7151.	.7150	•6360	1356.	1.860	12383.
55	7100.	40	.6320	1383.	1.860	123A3.
23	-7700.	.8400	7090	1410.	1.850	12406.

54

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

1/1/17

THE .

MONF 4

UNIT	CORR FU FL	COR CB F/4 x100	COR PF F/A	DEG 8	LRF
				••••••	
1	7517.	. 62 30	.5880	1305.	-12520.
5	6944.	.8540	-4590	1384.	-12630.
3	7336.	·8570	6900	1404.	-12630.
4	4915.	.8490	.6360	1386.	12192•
174	7303.	.7010	.6720	1354.	12192.
6	723A.	.7760	.6600	1411.	. 12300.
7	7045.	.8690	.4510	1792.	-12630.
184	5750.	.7200	.6290	1376.	12192.
9	7352.	.R470	.4710	1397.	-12630.
10	7167.	2990	.5520	1389.	-12520.
11	7222.	.6790	.4570	1403.	-12630.
12	7272.	•=230	.6610	1385.	-12630.
194	6973.	•6900	.4480	-1316.	12182.
14	7112.	.7150	.4900	1389.	12192.
15	5899.	.7410	.4490	1389.	12182.
16	4855.	.7910	.6490	1389.	17197.
179	6602.	.7140	.4260	1366.	12192.
199	5501.	.7180	-6150	1347,	12192.
198	5944.	4540	.6600	1347.	12192.
20	7369.	.7170	.6670	1382.	12410.
21	7120.	.7740	.6440	1373.	12410.
25	7071.	.7730	.5400	1400.	12410.
23	7682.	.9290	7000	1392.	12300.

JTBD-9 . BASELINE TEST SERIES

MODE 4

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.684	15.9	7.R	64.3	71.1
S	1.686	20.0	5.1	60.8	6A.3
3	1.684	19.3	9.5	45.1	72.8
4	1.564	-21.1	17.5	64.2	-74.0
174	1.404	17.1	12.9	-42.A	46.1
6	1.599	13.7	5.4	68.3	71.0
7	1.724	18.6	5.6	58.7	63,5
184	1.441	19.2	19.7	44.9	48.5
9	1.718	17.9	9.0	65.3	71.3
10	1.416	17.2	5.5	60.5	69.0
11	1.802	18.9	4.7	67.7	-75.6
12	1.679	15.0	3.7	67.4	-74.0
194	1.380	18.7	22.5	46.0	49.0
14	1.421	18.9	7.9	52.0	60.7
15	1.471	16.6	я.6	53.3	57.0
16	1.569	18.3	9.4	57.A	63.7
178	1.418	18.6	13.9	59.0	65.0
188	1.428	18.8	5.A	58.9	63.3
198	-1.298	18.2	11.7	55.4	54.1
20	1.480	12.4	7.0	59.0	64.0
21	1.495	13.1	4.9	58.8	62.8
55	1.597	12.7	4.4	60.6	66.0
23	1.752	14.6	24.9	68.9	-76.4

MODE 4

IINIT	COZ ET	CO EI	HC EI	NO FT LA/KLA FU	NOX EI	SUK NIMBER FRONT STOE

1	3142.	1.89	1.50	12.54	13.88	31.13
2	3147.	2.39	1.04	11.47	13.32	35.10
3	3147.	7.29	1.94	12.71	14.22	13.95
4	3142.	2.54	7.60	12.67	14.60	30.67
174	3143.	2.43	3.15	10.03	10.79	-21.05
6	3147.	1.72	1.38	-14.05	14.61	30.00
7	3149.	2.16	1.12	11.22	15.15	15.36
184	3139.	2.66	4.68	10.22	11.05	-21.85
9	3145.	7.08	1.40	12.51	13.66	71.33
10	3150.	1.90	1.04	10.96	12.52	27.15
11	3150.	2.10	.41	12.37	13.41	34.00
12	3151.	1.79	.15	13.22	14.57	24.50
194	3134.	2.70	5.59	10.94	11.65	-22.31
14	3149.	2.47	1.92	12.04	14.05	27.90
15	3149.	2.27	2.12	11.93	12.75	25.00
15	1149.	2.34	2.17	12.13	13.37	28.80
178	3147.	2.62	3.37	-13.67	14.37	28.00
1 44	3148.	2.64	1.40	-13.5A	14.59	28.00
198	3147.	2.80	3.09	-14.01	-14.70	29.33
20	3140.	1.69	1.63	13.12	14.24	26.67
21	3150.	1.76	1.13	12.95	13.83	25.17
55	3151.	1.60	.94	12.69	13.61	26.32
23	3140.	1.66	4.09	12.91	14.33	71.58

MODE 4

UNIT	FCO X100	X100	FN0 X100	STD FCO X100	STO FHC X100	STD FNO X100
1	70.1590	76.5360	82.5990	77.4350	A2.3270	92,5900
2	55.2150	63.0540	76.3930	75.3900	79.4840	89.5380
3	62.2650	69.9640	R1.0000	85,4830	AA.5450	95.1230
4	55.1100	63.5550	77.7430	74,9450	79.3290	89.7610
174	55.1650	65.1770	80.6670	66.4210	75.0290	92.0640
6	76.3030	83.1590	84.1050	A2.0510	A7.8630	97.7880
7	69.5000	75.3400	A3.6530	-90.4320	-92.5080	96,9900
184	56.2570	65.9360	80.6570	67.8710	75.9880	92.0540
9	69.2470	74.6050	82.7740	79.2360	A3.2860	92.3230
10	71.7470	76.5820	78.6110	81.4410	R4.0130	91.2260
11	70.9590	75.9610	91.4720	79.2670	A2.36A0	90.5760
12	80.1190	85,7440	-89.2540	-89.4280	-93.2030	-99.3350
194	51.8390	61.9340	78.6520	62.1600	71.0620	89,6020
14	47.7100	57.5050	75.6470	60.7740	69.1200	87.3410
15	49.8800	58.3330	75.6470	62.4670	70.2420	87.3410
16	51.3690	60.0570	75.6470	66.0910	72.5920	A7.3410
178	55.5070	.5360	R1.0770	70.1810	78.3570	93.8830
188	53.0950	63.0120	79.0390	67.3860	75.5530	91.8140
198	49.5420	60.6630	79.1470	62.4550	72.1400	91.5890
20	65.5470	74.2920	37.2240	69.7170	77.82A0	93.4050
21	66.0530	74.6300	87.2240	70.2730	78.1930	93.4050
55	76.3780	A3.2860	85.8870	A1.4710	A7.4040	97,5970
23	74.5690	78.8660	79.1900	70.2920	75.5720	8A,0190

MODE 4

UNIT	LEVELS EI	LA/KLA FU	NRE CNO FT	NR CNOX FI	CORRECTED .

1	1.71	1.48	14.06	15.55	31.13
2	1.74	.83	17.91	15.61	35.10
3	1.67	1.53	14.92	16.70	33.95
4	1.46	2.97	14.63	16.86	30.67
174	2.02	2.74	11.44	12.30	-21.05
6	1.60	1.30	-15.34	14.99	30.00
7	1.54	.91	13.01	14.05	35.36
194	2.21	4.06	11.66	12.61	-21.85
9	. 1.40	1.61	13.95	15.23	31.33
10	1.48	.95	12.72	14.53	27.15
11	1.44	.75	13.75	15.36	34.00
12	1.51	.70	14.72	16.16	24.50
104	2.25	4.87	12.46	13.27	-22.71
14	. 2.10	1.59	13.90	14.23	27.90
15	1.7A	1.68	13.79	14.77	25.00
16	1.92	1.71	14.00	15.44	29.80
178	2.07	2.82	-15.83	16.54	28.00
198	2.09	1.17	-15.77	16.95	28.00
198	2.24	2.50	-16.22	17.01	29.33
20	1.58	1.56	14.90	14.18	26.67
21	1.45	1.09	14.71	15.71	25.17
22	1.50	.90	14.20	15.47	26.32
23	1.75	5.10	14.15	15.92	31.58

MODE 5

1.	UNIT	NI SPEED PER CENT	NE SPEED	CORR NI PER CENT	CORR NZ	
-						
×	1	79.00	86.00	79.77	86.84	
-	2	76.50	A3.00	78.89	85-60	
-	3	77.00	85.00	79.41	87.65	
	4	75 , 99	A3.00	-77.39	85.64	
	17A	76.00	84.00	77.51	95.67	
•	6	80.00	87.00	40.55	87.59	
	7	78.50	85.00	A0.63	87.30	
5	184	76.00	84.00	77.51	85-67	
	9	79.00	85.00	A0.17	86.26	
3.	10	78.25	85.00	79.21	86.04	
-	11	79.00	85.50	79.85	86.42	
•	12	79.00	87.00	79.85	87.94	
	194	75.50	84.00	-77,00	85.67	
>	14	75.00	83.00	-76.95	85.16	
	15	75.25	R3.00	-77.21	85.16	
	16	76.00	83.00	77.98	85.16	
	178	76.00	94.00	77.86	86.06	
=	188	75.00	84.00	77.90	86.10	
-	198	75.50	84.00	-77.35	86.06	
-	50	79.00	£6.50	79.50	87.05	
	21	79.00	86.00	79.50	86.54	
	55	79.50	87.00	80.00	87.55	
-0	23	76.00	85.00	-75.53	-84.47	

JTBD-9 * PASELINE TEST SERIES *

MONF 5

UNIT	FUFL FLOW	CR F/A	PFRF F/A	TT7 DEG R	FPR	THRUST LAF
1	4800.	•6260	.4850	1248.	1.555	9741.
2	4670.	-5870	.4670	1194.	-1.560	9774.
3	4801.	.5590	.4760	1203.	-1.560	9774.
4	-4251.	.5700	4320	1171.	-1.500	-7949.
174	-4200.	.4730	4360	1176.	-1.500	-R04R.
4	4940.	.5510	.4980	1293.	1.550	4740.
7	4850.	.5040	.4730	1212.	-1.560	A756.
184	-4180.	.4800	4740	1212.	-1.500	-R04R.
9	4970.	•5820	.4850	174R.	-1.560	977A.
10	4750.	.6460	.4820	1233.	1.550	R658.
11	4750.	•6550	.47R1	1248.	-1.560	9790,
12	4800.	.6070	.4930	1748.	-1.560	9790.
194	-4290.	.4510	.4480	-1140.	-1.500	-9030.
14	-4717.	.4540	.4500	1208.	-1.500	-9061.
15	-4275.	.4820	.4440	1203.	-1.500	-9061.
16	-4355.	.4900	.4470	1205.	-1.500	-8061.
178	-4755.	.4820	.4390	1195.	-1.500	-8084.
148	-4200.	.4790	4330	1212.	-1.500	-8084.
198	-4788.	.4410	.4570	1167.	-1.500	-9094.
20	4550.	.4970	.4650	1257.	1.550	A706.
21	4600.	.5390	.4700	1244.	1.550	9706.
22	4751.	.5360	.4810	1266.	1.550	9706.
23	-4150.	•5950	.4650	1248.	-1.450	-7451.

JT80-9 * RASELINE TEST SERIES *

MODE 5

UNIT	CORR FU FL	COR CR F/A C	COR PF F/A	CORR TT7 COR	THRUST LAF
1	4779.	.6380	.4950	1272.	8788.
2	456A.	•6240	.4970	1270.	-9850.
3	4695.	•5930	.5070	1279.	- 3850 -
4	-4197.	.6070	4600	1247.	-8100-
17A	-4145.	.4920	4540	-1223.	-8100.
6	4898.	•5590	.5050	-1310.	8725.
7	4773.	.6370	.4990	1274.	-AA50.
184	-4125.	.4990	4520	1260.	-5100.
9	4939.				-AA50·
		.5990	.5000	1285.	
10	4729.	.6620	.4040	1264.	8725.
11	4732.	•6690	.4890	1275.	-AA50.
15	4781.	•6200	.4941	1275.	-8950.
194	-4233.	•4690	4660	-1185.	-8100.
14	-4223.	.4780	.4740	1272.	-4100.
15	-41A7.	•5070	.4680	1266.	-8100.
16	4265.	•5160	.4700	1269.	-8100.
178	-4162.	•5050	-,4610	1243.	-8100.
188	-4106.	•5030	4550	1273.	-8100+
198	4292.	.4630	.4800	-1225.	-8100-
20	4531 •	.4980	.4710	1273.	8725.
21	4591.	.5460	.4760	1264.	8725.
22	4730.	•5430	.4880	1282.	8725.
23	-4140.	.5790	4590	1232.	-7398.

MODE 5

UNIT	CO2 CONC	CO CONC	HC CUHC	NO CONC	NOX CONC
1	1.302	21.1	7.3	38.6	-44.4
5	1.721	31.2	5.4	29.6	37.1
1	1.160	26.5	9.0	31.2	37.6
4	1.184	-36.7	16.6	31.4	37.0
174	.982	26.6	12.6	23.3	28.1
4	1.149	14.9	6.0	78.8	40.0
7	1.259	21.8	5.0	35.1	37,9
184	.992	30.8	20.7	22.9	27.9
9	1.210	25.2	9.1	35.7	-41.1
10	1.347	23.9	5.4	34.4	40.2
11	1.366	27.9	4.5	37.3	-43.5
12	1.747	18.3	4.7	38.9	-44.3
194	.972	29.4	22.9	-22.4	27.2
14	.944	31.3	a.0	-22.4	30.1
15	1.001	28.2	10.5	23.0	27.4
14	1.019	20.0	9.1	23.0	29.6
174	1.000	25.2	10.5	27.1	32.7
144	.996	20.8	6.0	27.6	33,6
199	.915	26.7	12.0	26.5	30.A
20	1.024	18.3	4.5	29.0	34.4
21	1.123	20.0	4.1	32.2	35.5
25	1.117	21.5	4.7	31.3	36.2
23	1.213	21.3	25.4	34.9	39.4

63

NATE- MINIC CICHE DENATE MITI VINE VALUE

MONF 5

UNIT	COZ ET	CO EI	HC FT LR/KLR FU	NO FI LR/KLR FU	NOX EI LR/KLB FU	SMK NIMPER FRONT STOF

1	3139.	3.23	1.91	9.72	11-18	25.17
2	3141.	5.10	1.51	7.95	9.97	27.15
3	3141.	4.56	2.45	8.83	10.54	26.67
4	3133.	-6.17	4.79	A.68	10.23	24.00
174	3135.	5.40	4.3A	7.7A	9.37	-15.23.
6	3144.	2.93	1.41	-11.10	-11.46	22.00
7	3147.	3.46	1.37	9.16	9.49	26.12
194	3127.	-6.1A	7.13	7.52	9.19	17.32
9	3140.	4.17	2.57	9.69	11.14	24.67
10	3147.	3.55	1.37	A.40	9.83	23.33
11	3146.	4.09	1.14	A.98	10.49	-10.72
12	3148.	2.89	1.17	10.11	-11.50	-10.72
ACT	3123.	-6.07	A.39	7.83	9.51	17.76
14	3140.	-6.63	2.91	7.80	10.45	-16.20
15	3139.	-5,63	3.59	7.54	8.98	21.20
16	3141.	-5.66	3.06	7.71	9.55	18.70
178	3139.	5.03	3.60	8.90	10.71	20.27
148	3141.	-5.99	2.17	9.10	11.09	20.00
198	3134.	-5.82	4.32	9.49	11.03	20.67
20	3146.	3.57	1.51	9.60	11-04	20.00
21	3147.	3.57	1.27	9.64	10.41	19.67
55	3146.	3.85	1.33	9.55	10.66	19.87
23	3131.	3.50	7.16	9.42	10.64	21.71

MODE 5

UNIT	FC0 x100	FHC x100	FN0 *100	STD FCD X100	STO FHO	STO FNO X100
1	34.8940	43.9341	64.1720	37.8830	44.7770	71.7590
2	25.3620	33.9100	57.6400	32.6590	41.2010	64,9900
1	30.5470	40.2980	64.3070	30.4880	49.1370	74.9760
4	25.2190	33.9190	50.4660	32.2940	40.9820	67.1560
174	25.0000	34.2150	50.2220	29.1150	38.5390	67.2570
6	35.7200	45.6730	64.3770	37.9320	47.8740	74.7110
7	31,7150	41.0460	47.0150	39.7370	48.8010	73.5640
194	25.1330	34.3251	59.2820	79.7840	38.6750	47.7576
9	30.3900	39.4860	62.5640	34.2500	43.2680	69.4798
10	32.1240	40.6970	59. 3840	35.5A70	47.9710	68.6650
11	34.0970	42.7430	63.2530	37.3410	45.7870	70.17
12	38.1430	47.4110	-69.5620	-41.7590	51.2100	74.00
194	24.5700	33.8780	59.7570	28.5160	39.0570	67.757
14	22.3440	31.1900	57.0000	-27.22R0	-34.4340	45.3540
15	22.8540	31.6250	57.0000	-27.9310	-37.0000	45.3540
16	23.0170	31.7550	57.0000	-28.1510	-37.1749	65.3540
174	25.3160	34.6080	59.7960	30.7140	40.2813	68.7360
189	25.2930	34.6010	59.7710	30.7940	60.3970	48.9030
198	24.4680	33.9000	59.7960	29.5680	30.3630	69.7360
20	32.1750	42.2490	63.9770	33.9560	47.9990	77.5420
21	31.8700	41.4290	62.2530	33.5660	43.1240	70.6950
22	75.2270	45.7560	65.7120	37.1879	47.2487	74.5420
23	29.0370	37.3660	54,5450	-27.7370	-34.10AD	-62.9990

MODE 5

UNIT	NREC CO ET	NREC HC ET	NRE CNO FT LB/KLB FU	NR CNOX EI	SMK NUMBER CORRECTED

1	2.98	1.80	10.87	12.50	25.17
5	3.96	1.25	9.24	11.59	27.15
1	3.53	2.18	10.29	12.41	26.67
4	-4.R?	3.97	9.94	11.72	24.00
174	4.64	3.89	P.A3	10.63	-15.23
6	2.76	1.73	-12.AA	-13.30	55.00
7	2.77	1.16	10.55	11.39	56.12
198	-5.31	6.33	8.53	10.43	17.32
9	3.70	2.35	10.76	12.37	24.67
10	3.20	1.27	9.72	11.36	23.33
11	3.73	1.06	9.96	11=63	-30.72
12	2.64	1.09	11.22	12.76	-30.77
194	-5.23	7,47	9.88	10.78	17.76
14	-5.44	2,49	R.94	11.99	-16.20
15	4.60	3.07	R.65	10.30	21.20
16	4.43	2.62	A.84	10.95	18.70
178	4.15	3.09	10.23	12.32	20.21
189	-4.92	1.78	10.50	12.79	20.00
198	-4.82	4.15	10.90	12.68	20.67
20	3.39	1.45	10.89	12.52	20.00
21	3.39	1.22	10.71	11.81	18.67
55	3.67	1.27	10.46	12.10	19.A7
53	3.66	7.41	10.50	11.85	21.71

66

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

64 117 1

12/11

MODE 6

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI	CORR NO

1	61.50	76.50	42.10	77.25
>	-54.20	-74.00	60.02	76.32
1	60.00	76.00	61.44	78.39
6	42.00	77.55	42.42	78.08
7	61.50	76.75	-63.17	78.83
9	61.75	76.25	45.44	77.38
10	59.00	75.50	59.72	76.43
11	60.00	76.00	60.65	76.82
12	63.00	78.00	-63.68	78.84
20	61.50	77.00	41.89	77.49
21	61.00	77.00	41.39	77,49
22	61.50	74.50	41.89	79.00
23	62.00	78.00	61.62	77.52

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

JTBD-9 . BASEL THE TEST SERIES .

MODE 6

UNIT	FUEL FLOW LRM/HR	CR F/4 X100	PERF F/A	TT7 DEG R	EPR	THRIIST LRF
1	2550.	4130	.3560	1122.	-1,215	-4091.
2	2220.	.2600	.3150	1062.	-1.240	-4164.
3	2370.	.2560	.3240	1068.	-1.240	-4164.
6	2450.	.2960	.3430	1140.	1.230	4037.
7	2525,	.3680	.3380	1077.	-1.240	-4156.
9	-2570.	.2630	.3520	1113.	-1.240	-4166.
10	2300.	.3320	.3350	1095.	1.230	3994.
11	2350.	4040	.3370	1104.	-1.240	-4171.
12	-2600.	4020	.7510	1104.	-1.240	-4171.
20	2750.	.2770	. 17720	1122.	-1.240	-4191.
21	2300.	•3180	. 1280	1155.	-1.240	-4191.
55	2400.	.3070	.3390	1155.	-1.240	-4191.
23	2450.	3770	.7560	1122.	1.230	4060.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

JT80-9 . RASELINE TEST SERIES .

שחחד 6

UNIT	CORP FILEL	COR CH F/A CO X100		RR TT7 COR NEG R	THRUST LBF
1	2539.	4210	.3630	1144.	-4113.
2	2171.	.2770	.3350	1130.	-4200.
3	2314.	.2720	.3450	1136.	-4200.
6	2429.	.3000	. 3480	1155.	4025.
7	2495.	.3990	.3560	1136.	-4200.
9	2551.	.2700	. 3630	1146.	-47nn.
10	2290.	.3400	. 7440	1122.	4125.
11	2741.	4130	.3440	1129.	-4700.
12	-2590.	4110	. 1590	1124.	-4700.
20	2740.	.2800	. 3360	1136.	-4200.
21	2791.	. 1220	. 1320	1136.	-4200.
22	2390.	.3110	.3430	1136.	-4200.
23	7444.	.7720	.3510	1109.	4025.

JTRD-9 . RASELINE TEST SERIES .

MODE 6

UNIT	COR CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	852	52.0	9.7	12.4	18.3
2	.534	50.4	9.9	5.2	10.9
3	.526	39.5	10.4	5.9	10.1
6	-612	30.6	7.2	14.2	13.8
7	.761	40.1	6.5	13.4	14.9
9	.539	43.2	12.1	7.3	. 11.7
10	.6A5	43.2	7.7	8.9	12.9
11	836	52.6	7.7	12.3	17.7
15	833	43.6	6.0	15.3	-20.4
20	•571	36.1	6.2	9.3	12.9
21	.656	43.9	6.5	10.0	13.9
55	634	45.5	7.6	9.0	13.4
23	.77A	32.8	14.7	14.A	18.4

JTRD-9 . * RASPLINE TEST SPRIES .

MODE 6

UNIT	COS FT	CO ET LAZKLA FU	HC FI	HO FI	NOX ET	SMK NIMAER FRONT STOF
1	3119.	12.12	3.90	4.74	6.99	11.18
,	3109.	18.67	5.66	-3.14	6.57	7.89
3	3114.	14.89	6.73	3.64	6.26	R.00
6	3127.	9,97	4.32	-7.60	7.60	7.89
7	3131.	10.49	2.63	5.75	6.19	12.59
9	3100.	15.44	7,42	4.70	7.04	7.95
10	3126.	12.53	7,57	4.75	6.14	9.27
11	3128.	12.52	3.14	4.83	6.93	-13.25
12	3133.	10.43	2.48	6.01	8.03	11.33
20	3126.	12.58	7,77	5.30	7.36	5.37
21	3124.	13.30	7,78	4.99	6.91	8.00
22					6.92	
	3122.	14.27	4.08	4.62		9.21
23	3125.	9.37	6.47	5.20	7.71	9.21

JTRO-9 . RASELINE TEST SERIES .

MODE 6

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STO FHC	STO FNO
1	11.2090	16.8490	39.1200	11.9410	17.70A0	43,5510
2	-R.1940	-13.2060	36.2170	9.8560	15.3410	41.5400
3	9.8410	15.6120	40.0280	11.9160	18.2140	46.0410
6	11.2880	17.3240	39.2200	11.8240	17.9900	45.3740
7	11.3750	17.3910	41.3970	13.5470	19.9620	47.1350
9	9.9350	15.6110	39.7030	10.8500	16.7500	43.8320
10	9.6600	15.0050	36.3220	10.4050	15.9120	41.7770
11	10.6390	16.1180	34.6240	11.3890	17.0030	47.6210
12	12.8640	19.1160	42.7070	13.9010	20.1980	47.1630
20	10.6090	16.4470	38.9710	11.0370	16.9770	44.0720
21	10.9150	16.7380	38.9710	11.3640	17.2860	44.0720
25	12.4860	18.9290	42.0230	13.0090	19.5600	47.5440
23	12.2500	18.2190	39.5460	11,8140	17.7190	44.1350

JIAD-9 . RASELINE TEST SERIES .

MODE 6

UNIT				NR CNOX EI	
	Fayer St.				
1	11.37	3.71	5.29	7.79	11-18
5	15.50	4.87	3.40	7.53	7.89
3	12.30	5.77	4.18	7.21	8.00
6	9.52	3.87	R.79	A.79	7.89
7	P. 91	2.55	6.55	7.2A	12.54
9	14.54	7.10	4.45	7.77	7.95
10	11.64	3.37	4.88	7.06	9.27
11	11.70	2.98	5.33	7.65	-13.25
12	9.72	2.34	0.64	9.97	11-33
20	12.00	3,62	6.00	A.73	5.37
21	12.79	3.27	5,45	7.97	R.00
22	. 13.70	3.95	5.22	7.83	9.71
23	R. 58	6.65	6.92	9.60	9.21

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

*XIIIIA C. Jon

JTAD-9 * RASELINE TEST SERIES *

MODE 7

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ

1	39.25	62.00	39.63	62.61
2	39.50	62.00	40.74	63.94
3	-40.01	62.00	41.25	63.94
4	38,50	-61.75	39.73	63.71
174	38.00	-61.50	34.75	62.12
6	3A.00	67.00	38.26	62.42
7	37.80	-61.75	34.82	63.42
184	38.00	61.90	38.75	63-13
9	39.00	62.00	19.58	62.92
10	39.00	62.00	79.4A	62.76
11	39.00	62.00	39.42	62.67
12	39.00	62.00	38.41	45.47
194	38.50	-61.75	39.26	62.98
14	38.00	62.00	38.99	63.61
15	19.50	62,00	40.53	63.61
16	-40.00	65.00	41.04	63.61
179	38.25	62.00	39.19	63.52
188	38.00	62.00	38.95	63.55
198	37.50	62.00	38.42	63.52
20	38.00	62.00	38.24	62.39
21	39.00	-61.50	38.24	61.89
25	37.50	62.00	37.74	62.39
23	39.00	65.00	38.76	61.62

JTAD-9 . RASPLINE TEST SERIES .

MODE 7

UNIT	FUEL FLOW	CR F/A X100	PERF F/A	TT7 DEG R	FPR	THRIIST I RF
1	-1450.	7830	-,3430	1140.	1.070	1137.
5	1250.	.2250	.2820	1104.	1.090	1231.
3	1250.	.2330	. 27RC	1077.	1.080	1231.
4	1270,	.3250	.2900	1077.	1.090	1202.
174	1100.	.2690	.2600	1077.	1.090	1144.
6	1150.	.2900	.2800	1167.	1.070	1131.
7	1250.	.3400	.2920	1086.	1.960	1191.
184	1145.	.2670	.2710	1122.	1.080	1174.
9	-1370.	.2300	3220	1131.	1.090	1156.
10	1290.	.2650	.3040	1140.	1.080	1145.
11	1200.	4230	.2840	1140.	1.080	1140.
12	1250.	3700	.3000	1172.	1.070	1140.
194	1150.	.2720	.2700	1050.	1.000	1160.
14	1160.	.2440	.2720	1113.	1.080	1212.
15	1745.	.2390	.2950	1102.	1.080	1212.
16	1260.	.2340	. 2840	1104.	1.090	1212.
178	1225.	.2560	.2990	1068.	1.080	1208.
149	1190.	.2590	.7910	1104.	1.090	1210.
198	1133.	.2590	.2690	1050.	1.080	1208.
20	1200.	.2520	.2910	1122.	1.090	1125.
21	1170.	.2670	.2840	1122.	1.090	1087.
55	1105.	.2780	.2700	1122.	1.070	1125.
23	1250.	.3280	. JOHO	1140.	1.070	1079.

JT8D-9 * BASELINE TEST SERIES *

MODE 7

UNIT	CORP FU FL	COR CB F/A C	COR PF F/A	CORR TT7	COR THRUST
	*********	********			
1	-1444.	3910	3500	116	2. 1143.
5	1220.	.2390	. 3000	117	4. 1242.
3	1223.	.2480	.2960	114	5. 1242.
4	1254.	3460	.3080	114	6. 1225.
17A	1086.	.2800	.2710	112	0. 1151.
6	1140.	.2840	.2840	118	3. 1129.
7	1230.	3590	.3080	114	5. 1203.
184	1130.	.2780	.2820	116	7. 1182.
9	-1361.	.2680	3310	116	4. 1166.
10	1284.	.2710	.3120	116	A. 1154.
11	1195.	4370	.2900	116	4. 1147.
12	1245.	3780	.3060	114	6. 1147.
194	1137.	.2830	.2810	-109	2. 1170.
14	1136.	•2570	.2A70	117	1. 1217.
15	1219.	.2510	.3000	116	0. 1217.
16	1234.	.2470	.2990	116	2. 1217.
178	1198.	•2690	. 3030	115	1. 1210.
188	1163.	.2720	.2950	116	0. 1213.
198	1108.	•2720	.2830	110	2. 1210.
20	1195.	•2550	.2950	113	6. 1127.
21	1165.	.2700	.2870	113	6. 1090.
22	1100.	.2310	.2730	113	6. 1127.
23	1247.	•3240	.3040	112	6. 1070.

THE WALL WAS A STANDED BY THE WALL THE TANK IN THE TAN

JIAD-9 . RASELINE TEST SERIES .

MODE 7

INIT	CO2 CONC PER CENT	CO CONC	PPM HC CONC	NO CONC	DDM NUX CUNC
1	783	101.9	15.2	5.1	-10.1
2	.457	6R.2	13.7	2.0	6.4
3	.473	75.9	18.1	2.0	5.7
4	.456	117.2	-32.1	6.5	6.4
174	.546	81.5	21.7	2.9	4.5
6	•571	75.0	13.4	A.4	7.7
7	,695	93.4	14.6	5.0	5.9
388	.549	84.0	-39.A	3.0	4.5
9	.526	84.5	21.9	3.2	4,8
10	.547	69.2	19.6	3.7	6.1
11	977	109.1	15.4	5.5	-10.7
12	75€	98.7	13.1	6.2	-10.8
194	.540	103.2	-51.3	2.6	6.9
14	.497	74.6	15.8	1.3	4.0
15	.494	76.0	20.9	1.1	-3.2
16	. 474	73.1	13.0	9	3.5
179	.520	44.9	20.1	3.1	7.5
142	.524	A2.A	14.8	7.4	A.0
139	.521	105.7	-29.6	3.1	9
20	.513	17.9	12.9	4.0	4.9
21	.540	39.5	17.2	3.9	6.7
22	.544	97.6	16.8	3.7	4.9
23	.449	94.9	17.9	5.2	9,3

JTRD-9 . RASELINE TEST SEPTES .

MODE 7

UNIT	CO2 ET	CO EI	HC FI LR/KLR FU	NO FI	NUX E1	SMK NIMBER FRONT STOE
						-00000000
1	3091.	25.5A	6.5A	2.19	4.15	0.00
2	3080.	29.26	10.11	1.41	4.50	0.00
3	3071.	31.35	12.83	1.33	3.97	0.00
4	3054.	34.72	16.37	3.17	3.17	0.00
17A	3074.	29.22	13.14	1.68	3.84	67
6	309! •	25.82	7.95	4.73	4.73	0.00
7	3095.	26.57	7.12	2.31	2.75	0.00
184	3056.	30.29	-19.06	1.78	3.43	-1.99
9	3065.	32.07	13.35	1.97	4.13	0.00
10	309A.	25.20	6.64	2.20	3.66	0.00
11	3101.	24.59	5.97	2.04	3.94	0.00
12	3099.	25.69	5.87	2.66	4.63	0.00
194	-3006.	36.56	-37.64	1.54	3.95	66
14	3093.	29.44	10.70	.95	2.63	0.00
15	3070.	30.71	14.48	.77	2.14	0.00
16	3070.	30.07	12.71	.60	2.35	0.00
178	3070.	31,92	12.98	1.48	4.64	0.00
199	3078.	10.80	10.72	2.09	4.90	0.00
198	-3042.	39.28	-18.93	1.92	-1.92	0,00
20	3086.	29.81	A,51	2.49	4.30	0.00
21	3067.	35.61	11.94	2.34	4.00	0.00
55	3077.	32.50	9,99	2.12	3.92	0.00
23	3086.	28.48	9.03	2.79	4.49	0.00

JTRI)-9 . RASEL INE TEST SERIES .

MONE 7

UNIT.	*C0	FHC X100	FN0 *100	STO FCO X100	STD FHC X100	STO FNO X100
1	4.7370	5.8900	21.3190	4.0930	6.1340	23.6140
2	4.5010	5.5210	21.8010	5.4550	4.2690	24.6780
3	4.5910	5.5771	21.9010	5.4550	4.2940	24.6780
4	4.5479	5.4680	21.9970	5,3750	6.4281	24.4070
174	4.5120	5.4741	21.2680	5,0310	5,9370	23.7050
6	4.7341	5.6650	20.3630	4,9320	5.8451	23.4490
7	4.5520	5.4780	21.6240	5.2720	4.3520	24.2440
1 44	4.6350	5.5970	21.5540	5.1700	6.0730	24.0290
9	4.7090	5.4410	21.7750	5.0980	5,9790	23.8400
10	4.7240	5.6560	20.7540	c.0450	5,9330	23.7370
11	4.7340	5.4470	21.5600	5.0140	6.2610	23.6430
12	4.1340	5.8653	21.5600	5.0140	6.1270	23,6630
194	4.5940	5.5680	21.4741	5.1190	4.0310	23.9080
14	4.6150	5.5540	21.7650	5.3396	6.1950	24.4170
15	4.6150	5.5440	21.7650	5.3390	6.1820	24.4170
16	4.4150	5.5400	21.7650	5.7390	6.1730	24.4170
174	4.6170	5.5740	21.6380	5.3060	6.1870	24.3400
144	4.6130	5.5770	21.5920	5.3170	6.2050	24.3669
199	4.6170	5.5790	21.6390	5.3060	6.1940	24.3400
20	4.7520	5.4290	20.9010	4.9210	5.7770	27.4450
21	4.6020	5.5060	20.4720	4.7640	5.6510	27.0720
22	·. 7526	5.6790	20.0010	4.9210	5.8300	23.4450
23	4.9370	5.8070	20.4490	4.6940	5.6840	25.9010

79

JTAD-9 . BASELINE TEST SERIES .

MODE 7

UNIT	NREC CO FI LB/KLB FU	NREC HC ET	MRE CHO FT	NR CNOX ET	SHK NUMBER CORRECTED
	********	*******	********		
1	24.26	6.31	2.42	4.60	0.00
2	24.63	R. 90	1.60	5.09	0.00
3	26.39	11.29	1.51	4.39	0.00
4	29.38	14.43	3,53	3.53	0.00
17A	26.21	12.11	1.88	4.78	67
6	24.79	7.71	5.45	5.45	0.00
7	22.94	6.36	2,59	3.10	0.00
194	27.15	-17.57	1.99	4.27	-1.99
9	29.63	13.07	2.16	4.53	0.00
10	23.60	6.33	2.52	4.19	0.00
11	23.22	5.71	2.24	4,72	0.00
15	24.25	5.62	2.92	5.09	0.00
194	32.83	-31.06	1.72	4.40	66
14	25.44	0.60	.95	2.95	0.00
15	26.55	12.99	.41	2.40	0.00
16	25.99	11.41	.67	2.65	0.00
178	27.78	11.69	2.16	5.22	0.00
188	24.72	9.64	2.36	5.53	0.00
198	34.1A	17.05	2.16	-2.16	0.00
20	2A.7A	H.29	2.80	4.84	0.00
21	14.19	11.63	2.64	4.50	0.00
22	11.17	9,73	2.30	4.47	0.00
21	29.14	9.23	3.13	5.03	0.00

JTRD-9 . RASELINE TEST SERIES .

MODE A

UNIT	NI SPEED PER CENT	NO SPEED PER CENT	CORP NI PER CENT	CORR NZ PER CENT
1	36.50	59,50	76.86	60.nA
,	35.00	57.00	36.10	58.79
3	33.00	56.50	34.03	58.27
4	35.00	58.00	36.11	59.85
174	15.00	59.50	35.69	59.66
4	35.00	54.50	15.24	58.90
7	35.00	58.50	35.95	60.08
184	14.50	57.20	35.19	59.05
9	37.00	Kn. nn	37.55	60.29
10	14.75	58.00	35.1A	58.71
11	35.00	58.00	35.3R	58.62
12	36.00	40.00	76.79	60.65
194	14.50	58.00	35.19	59.15
14	16.25	60.00	17.19	61.56
15	-78.00	60,00	-3R.QQ	61.56
16	35.00	59.00	36.04	50.54
179	35.50	59.50	36.37	60.96
184	33.00	57,00	33.93	50.41
199	36.00	59.50	36.88	60.95
21	35.00	50.00	35.22	58.37
21	37.00	-61.00	37.23	61.39
22	37.00	-41.50	37.23	-61.89
23	35.00	58.00	74.79	57.64

81

JT90-9 . RASELINE TEST SERIES .

MODE 8

UNIT	FUEL FLOW LRM/HR	CR F/A	PERF F/A	TTT DEG R	FPR	THRUST
1	-1300.	3940	3190	1158.	1.060	951.
5	1050.	.2330	.2540	1059.	1,070	918.
3	-930.	.2470	2340	1077.	1.060	907.
4	1130.	.3380	.2700	1068.	1.070	929.
174	1000.	.2560	.2460	1059.	1.070	937.
6	1050.	.2950	.2440	1:40.	1.050	930.
7	1120.	.3410	.2720	1096.	-1.040	946.
184	1000.	.2740	.2480	1104.	1.070	925.
9	-1280.	.2560	7090	1122.	1.070	-1007.
10	1125.	.2840	.2910	1107.	1.060	017.
11	1050.	4160	.2620	1140.	1.060	916.
12	-1200.	• 3620	.2950	1122.	1.060	991.
194	1000.	.2730	.2480	1032.	1.070	925.
14	1100.	.2490	.2640	1104.	1.070	-1061.
15	1135.	.2490	.2670	1100.	-1,080	-1061.
16	1105.	.2350	.2670	1095.	-1.080	985.
176	1125.	.2640	.2750	1750.	1.070	-1019.
198	1000.	.2590	.2580	1059.	1.060	917.
198	1068.	.2560	.2590	1032.	1.070	-1019.
20	1050.	.2600	.2650	1122.	1.060	915.
21	1150.	.2730	0EBS.	1122.	1.070	-1050.
25	1105.	.2920	.2710	1122.	1.070	-1087.
23	1100.	.3250	.2860	1122.	1.060	911.

JTRD-9 . RASELINE TEST SERIES .

MOOF A

UNIT	CORR FU FL	COR CA F/A	COR PF F/A	CORR TTT C	OR THRUST
1	-1794.	4020	3250	1180.	956.
2	1027.	.2440	.2700	1126.	924.
3	-910.	.2610	.2490	1145.	915.
4	1111.	. 3600	.2880	1137.	947.
174	997.	.2660	.2560	1101.	941.
4	1041.	. 2990	. 2690	1155.	928.
7	1102.	• 3600	.2970	1145.	956.
194	\$97.	.2950	. 2540	1144.	931.
9	-1272.	.2640	71 90	1155.	~1016.
10	1120.	.2910	. 2880	1135.	924.
11	1944.	4250	.7680	1164.	972.
1>	-1195.	3700	. 3020	1146.	994.
194	989.	.7840	.2570	-1073.	011.
14	1777.	.2610	.2790	1162.	-1056.
15	1112.	.2420	.2810	1154.	-1066.
14	1092.	.7440	.2810	1152.	990.
179	1100.	.2770	. 7880	1102.	-1021.
144	978.	.2720	.2710	1112.	910.
100	1045.	. 2680	.2750	-1093.	-1021.
20	1144.	.2630	.2680	1136.	917.
21	1145.	.2770	.7840	1134.	-1057.
22	1100.	.2850	. 2750	1136.	-1190.
23	1197.	. 1210	.2970	1108.	903.

JTAD-9 . BASELINE TEST SERIES .

MODE A

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NUX CONC
1	904	118.4	17.5	4.5	-9.4
2	.472	84.0	16.9	1.6	5.9
3	.496	104.3	27.0	1.2	4.9
	.682	132.3	-36.2	5.9	5.8
174	.517	93.1	24.7	2.3	5.8
6	.601	90.3	16.6	7.7	7.5
7	.694	110.3	18.0	4.?	5.4
184	.550	108.5	-34.7	2.2	6.0
9	.51A	RA.7	22.6	3.1	6.4
10	.579	85.4	13.0	2.9	5,9
11	-,848	136.3	21.8	4.0	-9.2
15	741	108.4	14.6	5.5	-10.4
194	.535	120.9	-70.3	5.0	5.9
14	.502	92.6	17.4	.9	3.A
15	.501	99.7	25.0	4	5.9
16	.476	A3.5	20.9	.4	-2.A
178	.534	94.3	22.7	2.7	7.3
188	.522	110.9	25.2	2.5	7.1
198	.513	110.0	31.0	2.9	7.3
20	.527	98.0	17.8	3.4	6.2
21	.553	101.8	20.4	3,A	6.4
55	.571	99.2	19.3	3.6	6.8
23	.658	119.5	23.6	4.5	8.1

84

JTAD-9 . RASELINE TEST SERIES .

MODE A

UNIT	COP FT LAZKLA FU	CO FI	HC FT LR/KLR FII	NO FI LA/KLA FII	NOX EI	SMK NIMBER FRONT SIDE
ı	3083.	28.92	7.15	1.79	3,76	0.00
>	3066.	34.69	17.03	1.07	4.01	0.00
1	3042.	40.73	18.11	.78	3.16	0.00
4	3049.	37.65	17.67	2.77	2.77	0.00
174	3057.	35.04	15.00	1.43	3.60	-1.33
4	3092.	29.46	9.29	4.11	4.11	0.00
7	3141.	31.17	A.77	1.96	2.52	0.00
194	3038.	39.12	-20.99	1.29	3.44	-1.99
9	JUET.	73,37	14.50	1.91	3.03	0.00
10	3090.	29.99	7.40	1.63	3.29	0.00
11	3097.	11.53	7,66	1.53	3.49	0.00
12	3092.	24.80	4.66	>.40	4.52	0.00
194	-2972.	42.77	-47,66	1.16	3.43	0.00
14	3070.	36.00	11.60	.57	2.40	0.00
15	1152.	78.64	14.45	.24	1.86	0.00
14	3064.	74.17	14.68	٠٦٥	1.91	0.00
179	3063.	34,45	14.23	1.50	4.79	0.00
1 44	3047.	41.21	16.78	1.53	4.33	0.00
198	3036.	41.45	20.07	1.90	4.51	0.00
20	3069.	16.31	11.77	2.04	7.77	0.00
21	3064.	15.90	12.78	2.22	3.73	0.00
>>	3073.	11.97	10.75	2.01	3.A1	0.00
21	3067.	75.44	12.01	2.21	3.95	0.00

85

JTAD-9 . BASELINE TEST SERIES .

MODE 8

UNIT	FCO X100	FHC X100	FN0 x100	STO FCO	STO FHC	STO FNO
1	4.0930	5.2180	10.6580	4.3090	5.4300	21,9510
2	3.3960	4.2850	19.7509	4.0000	4.8380	21.1550
3	3.2980	4.1970	18.4860	3.8820	4.7390	20.8410
4	3.6200	4.6850	19.6270	4.2510	5.2910	21.8050
174	3.7850	4.6960	19.4890	4.2070	5.0800	21.6920
6	3.8710	4.7990	18.4270	4.0270	4.9480	21.2260
7	3.7390	4.8000	19.6090	4.3090	5.3510	21.9530
194	3,6570	4.5860	19.1570	4.0620	4.9620	21.3180
9	4.1710	5.0830	20.5010	4.5080	5.3810	22.4480
10	3.7420	4.6680	19.4810	3.9840	4.8890	21.1110
11	3.7520	4.8830	19.2060	3.9640	5.0960	21.0590
15	4.2050	5.2870	20.3280	4.4480	5.5180	22.2990
194	3.6840	4.6140	19.2370	4.0860	4.9840	21.3900
14	4.0500	4.9880	20.4110	4.6810	5.5490	22.8690
15	4.0590	4.9900	20.4110	4.6810	5.5510	22.8690
16	3.5380	4.7399	19.8540	4.4210	5.2650	22.2320
178	3.9520	4.8960	20.0250	4.5260	5.4230	22.4920
198	3.4220	4.3270	18.6080	3.9180	4.7910	20.9370
198	3.9520	4.9830	20.0250	4.5260	5.4070	22.4920
20	3.7750	4.6450	18.5550	3.9050	4.7630	20.9720
21	-4.4770	-5.3910	20.1950	4.6350	5.5330	22.7580
55	-4.5020	-5.5340	20.4720	-4.7660	-5.6800	-23.0720
23	3.4510	4.7780	18.2590	3.7420	4.6810	20.4610

JTRN-9 * BASFLINE TEST SERIES *

MONE A

UNIT	NREC CO FI	NPEC HC ET		NR CNOX FT LR/KLR FU	CORPECTED
1	27.47	7.06	1.00	4.16	0.00
2	29.45	10.65	1.20	4.52	0.00
3	34.60	16.04	98.	3.56	0.00
. 4	32.07	15.65	7.08	7.09	0.00
174	31.53	14.78	1.59	4.01	-1.33
6	29,71	9.01	4.74	4.74	0.00
7	27.04	7.42	2.19	2.92	0.00
194	14.12	19.40	1.43	3.82	-1.99
9	30.07	13.78	2.10	4.31	0.00
10	27.21	7.26	1.86	7.76	0.00
11	79.84	A. 30	1.67	7.97	0.00
12	27.23	6.38	2.63	4.94	0.00
194	18.52	-39.50	1.29	3.A1	0.00
14	31.21	10.43	.44	2.69	0.00
15	77,50	14.97	.29	2.19	0.00
14	29.67	13.22	.33	2.13	0.00
178	30.08	12.94	1.79	4.92	1.11
189	34.10	14.52	1.72	4.99	0.00
198	34.19	19.12	2.02	5.05	0.00
20	35.10	11.05	2.30	4.25	0.00
21	34.47	12,06	2,50	4.20	0.00
22	32.90	10.47	2.26	4.79	0.00
23	34.47	12.25	2.4R	4.42	0.00

JTBD-9 . 600 HOUR TEST SERIES .

UNIT	TSO HR	TSB HR	AMR TEMP DEG R	AMR PRESS	AMR HUMIN
1	8910.	612.	539.2	30.04	.014610
4	14162.	592.	526.7	29.93	.012740
6	15317.	540.	536.7	30.03	.015900
7	14477.	642.	533.2	30.20	.013270
٥	16314.	998.	531.2	30.04	.015340
10	15909.	779.	530.7	30.07	.008570
11	7944.	594.	536.7	30.02	.016490
12	14459.	594.	536.7	30.02	.016490
14	2110.	635.	517.7	29.94	.008050
15	2110.	635.	517.7	29.94	.008050
16	2110.	635.	517.7	29.94	.008050
17	2100.	630.	524.7	29.74	.009960
18	2100.	630.	524.7	29.74	.009960
19	2100.	630.	524.7	29.74	.009960
20	2431.	762.	539.7	29.97	.012750
21	2431.	762.	539.7	29.97	.012750
55	2431.	762.	539.7	29.97	.012750
23	8905.	625.	536.7	30.21	.012460

THE VAN

さいないないで

JTAD-9 . GOO HOUR TEST SERIES .

MODE 1

UNIT	NI SPEFD PER CENT	PER CENT		CORR N2 PER CENT
1	32.75	55.75	32.15	54.73
4	34.00	59.00	33.74	58.55
4	33,50	58.00	32.95	57.05
7	33.00	54.00	32.55	57.21
9	36.00	40.50	35.57	59.78
10	32.00	55.50	31.64	54.A7
11	-30.00	-54.00	-29.49	-53.09
12	33.00	58.00	17.44	57.02
14	33.50	54.11	11.53	58.05
15	33.50	58.00	33,53	58.06
15	35.00	59.00	35.03	54.05
17	34.00	59.00	33.A1	58.65
14	31.00	55.00	30.82	54.68
19	32.50	56.50	32.31	56.18
20	32.50	56.00	31.86	54.90
21	35.50	59.25	34.80	58.09
22	32.50	57.50	31.86	56.37
23	33.75	57.50	33.19	56.53

JTAD-9 . GOO HOUR TEST SERIES .

MODE 1

UNIT	FUEL FLOW LRM/HR	CB F/A X100	PERF F/A	TT7 DEG R	Ebs	THRUST LAF
1	1180.	•3600	3440	1221.	1.040	839.
4	1150.	•3670	.3080	1140.	1.060	921.
6	1050.	4360	.2940	1212.	-1.100	888.
7	1089.	.2870	.3050	1221.	1.040	886.
9	-1220.	.3300	.3110	1176.	1.070	942.
10	1050.	.3210	.3110	1239.	1,060	842.
11	-900.	4620	.3020	1212.	1,050	-790.
12	1113.	-:4180	.3190	1194.	1,040	887.
14	1000.	•2890	.2680	1212.	1.060	911.
15	1030.	.3210	.2760	1190.	1.060	911.
16	1000.	•2560	.2550	1158.	1.050	911.
17	1010.	.2300	.2710	1122.	1.060	929.
18	1000.	•3090	.3110	1194.	1,050	846.
19	950.	•2830	.2740	1176.	1.060	879.
20	975.	.2750	.2890	-1248.	1.050	846.
21	1075.	.2710	. 2800	1212.	1.070	910.
55	950.	.2970	. 2A20	1212.	1,050	876.
23	1150.	.3270	.3160	1212.	1.050	8/2.

JIBD-9 + 600 HOUR TEST SERIES +

MODE 1

UNIT	CORR FILEL	COR CR F/A C	OR PF F/A (DEG R	R THRUST

1	-1207.	.3470	3310	1176.	R42.
4	1159.	•3610	.3030	1122.	921 •
6	1071.	4710	.2840	1172.	R91.
7	1105.	.2790	.2970	1188.	A94.
9	-1240.	. 7220	.3040	1148.	946.
10	1067.	.3140	.3040	-1211.	846.
11	-919.	4470	.2920	1171.	-793.
12	1135.	4040	OROF.	1154.	A90.
14	1000.	.2900	. 2680	-1214.	911.
15	1030.	.3220	.2760	1182.	911.
16	lann.	.2540	2550	1150.	211.
17	1010.	.2270	.2680	1109.	923.
19	1000.	• 3060	.3080	1180.	R41.
19	950.	.2800	.2710	1162.	974.
20	996.	.2650	.2790	1199.	A47.
21	1000.	.2600	.2690	1145.	912.
22	970.	.2850	.2710	1145.	A77.
23	1191.	.3160	.3060	1171.	ARI.

JT80-9 . 600 HOUR TEST SERIES .

HODE 1

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX COVC
	*******			070776000	
1	.734	114.3	20.7	7.0	5,3
4	.746	120.6	18.9	7.0	8,2
6	885	154.7	80.8	7.2	6,5
7	.579	136.7	19.8	7.1	6.5
9	.670	107.9	23.1	4.A	3.4
10	.654	95.1	16.6	6.3	5.7
11	938	-187.5	29.5	-10.8	-1.4
12	854	130.2	20.6	7.3	7.4
14	.586	99.3	23.5	5.5	6.1
15	.651	125.5	23.0	5.A	6.9
16	.51A	90.5	19,7	5.4	5,9
17	.468	75.7	12.1	7.6	5.0
18	.616	139.6	-48.6	6.6	7.3
19	.573	115.9	19.1	4.6	5.7
20	.552	125.8	25.3	3.6	3,3
21	.545	119.0	21.6	5.5	5.5
22	.593	158.1	29,8	5.2	6,3
22	.656	-167.3	33.0	7.6	a.3

JT8D-9 . 600 HOUR TEST SERIES .

MODE 1

UNIT	COS EI	CO ET	HC FI LB/KLB FU	NO FI	NOX EI LR/KLB FU	SHK NIJHRER
****			*********	E-17 KE-1 10		
1	30A2.	30.55	9.51	3.06	3.06	0.00
4	3076.	31.66	A.52	3.01	3.52	0.00
6	3072.	35.06	11.31	2.61	2.63	0.00
7	3057.	45.92	11.43	3.91	3.91	0.00
9	3068.	31.47	11.56	2.28	2.28	0.00
10	3081.	28.51	9,54	3.09	3.09	0.00
11	3044.	39.01	10.53	3.64	3.68	0.00
12	3087.	29,95	9.12	2.75	2.79	0.00
14	3069.	33.10	13.47	3.04	3.32	0.00
15	3067.	37,62	11.84	2.86	3.41	0.00
16	3070.	34.09	12.78	3.32	3.45	0.00
17	3084.	31.73	8.72	5.26	5.26	0.00
18	3018.	43.52	-26.01	3.3A	3.97	0.00
19	3065.	39.49	11.20	2.59	3.21	0.00
50	.7035.	41,53	15.19	2.05	2.05	0.00
21	3049.	42.38	13.21	3.22	3.23	0.00
55	3025.	-51.35	16.62	2.76	3.36	0.00
23	3032.	49.82	16.68	3.68	4.02	0.00

JTAD-9 . 600 HOUR TEST SERIES .

MODE 1

UNIT	FCO	FHC	FNO	STO FCO	STD FHC	STD FNO
	X100	X100	X100	XIOO	X100	X100
1	3.4810	4.4050	-14.7430	3.1340	4.0570	18,7290
4	4.1230	5.1340	14.7550	3.9470	4.9640	21.0130
6	3.9790	5.0760	15.3960	3.4120	4.6980	20.1020
7	7.9700	4.9250	16.2160	3.6470	4.5170	20.1990
9	-4.5520	-5.5060	16.7040	4.2360	5.2070	21.7680
10	3,3790	4.2600	16.3870	3.1610	4.0430	18.5100
11	3.1040	4.1350	-17.4450	-5.9220	-7.EZA0	-17.7470
12	3.9820	5.9470	-15.2240	3.6060	4.6540	20.0860
14	3.8160	4.7130	6 17.7450	3.4350	4.7310	20.7130
15	3.8160	4.7640	17.7450	3.A350	4.7820	20.7130
16	3.8160	4.4420	17.7450	3.8350	4.6790	20.7130
17	4.0860	4.8730	17.6000	3.9720	4.7770	21.0R10
18	7.2100	4.0720	15.6050	3.1250	3.9930	18.7020
19	3.5220	4.3700	16.3440	3.4270	4.2840	19.5840
50	3.5400	4.3390	15.3910	3.1670	3.9870	19,8780
21	4.3080	5.1180	14.9500	3.8410	4.6970	20.7310
55	3.8820	4.7260	16.1030	3.4690	4.3350	19.6990
23	3.8810	4.7990	16.2440	3.5010	4.4160	19.7930

JTAD-9 . 600 HOUR TEST SERIES .

MODE 1

UNIT		NREC HC EI			
••••	237160 10			EONED TO	The second second
1	37.94	10.33	3.89	3.99	0.00
4	33.07	8.82	3.78	4.41	0.00
6	39.61	15.55	3,43	3,43	0.00
7	49,98	12.21	4,97	4.87	C.00
9	33,81	12.23	2.97	2.97	0.00
10	30.48	8.99	3.54	3,54	0.00
11	42.91	11.38	4.86	4.86	0.00
12	33.07	8.79	3.64	3.69	0.00
14	32,94	13.42	3.55	3.44	0.00
15	37,43	11.80	3.34	3.98	0.00
16	31.92	12.74	3.88	4.26	0.60
17	32.63	8.89	6.31	5.31	0.00
18	44.71	-26.52	4.05	4.76	0.00
19	40.59	11.42	3.11	3.45	0.00
50	-53.12	16.53	2.51	2.51	0.00
21	47.53	14.41	3.93	3.95	0.00
55	-57.49	18.12	3.37	4-11	0.00
23	-55.23	19.08	4.48	4.90	0.00

JTAD-9 . 600 HOUR TEST SERIES .

MUDE 5

UNIT	NI SPFFI) PER CENT	NZ SPEFO PER CENT	CORP NI PER CENT	CORR NZ PER CENT
1	39.00	62.00	79.29	60.A7
4	39.00	62.00	38.70	61.53
6	37.00	62.00	16.39	60.98
7	39.00	62.00	77.49	61.15
9	-41.00	-65.00	40.51	64.23
10	39.00	62.00	14.56	61.30
11	38.50	52.00	17.45	60.95
12	39.00	62.00	37.34	60.95
14	38.00	62.00	78.04	62.05
15	34.50	62.00	78.54	62.05
16	39.00	62.00	39.04	62.06
17	34.00	65.00	17.78	61-64
18	39.00	62.00	37.7A	61.64
19	38.00	62.00	37.7A	61-64
20	39.50	62.00	37.74	60.78
21	38.00	62.00	37.25	60.78
22	37.00	62.00	36.27	60.79
23	38.00	62,00	17.36	60.95

JT80-9 . AND HOUR TEST SERIES .

MODE 2

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TTT DEG R	EPR	THRUST
1	-1435.	3880	3560	1239.	1.060	1010.
4	1300.	•3570	.3180	1140.	1.080	1063.
6	1170.	4500	.2970	1881.	-1.100	1019.
7	1270.	.2610	.3150	1251.	1.060	1026.
9	-1490.	•3170	3520	1199.	1.080	1258.
10	1300.	.2780	•3190	1239.	1.080	1041.
11	1200.	4420	.2990	1212.	1.080	1017.
12	1275.	4050	.3200	1194.	-1.050	1017.
14	1150.	.2770	.2610	1212.	1.070	1102.
15	1210.	•2950	.2940	1176.	1.080	1102.
15	1175.	.2400	.2840	1162.	1.080	1102.
17	1150.	.2290	.2850	1131.	1.070	1078.
18	1255.	.2870	.3120	1194.	1.080	1078.
19	1160.	.2830	.2A90	1176.	1.060	1078.
50	1120.	.2780	.2810	-1248.	-1.050	1005.
21	1175.	.2720	.2960	1212.	1.070	1006.
55	1113.	.2970	.2840	1212.	1.070	1006.
23	1305.	•3090	•3250	1212.	1.070	1011.

JTAD-9 . GOD HOUR TEST SERIES .

MODE 2

TIMI	CORR FII FL LRM/HR	x109	XIOO	CORR TT7 COR	LRF
	******			*******	
1	-145A.	.3740	3430	1194.	1014.
4	1310.	•3520	.3130	1122.	1063.
6	1194.	~.4350	.2870	1181.	1023.
7	1300.	•2540	.3060	1188.	1035.
9	-1504.	•3100	7440	1171.	1263.
10	1322.	.2720	.3110	1511•	1046.
11	1225.	4270	.2890	1171.	1020.
12.	1301.	3910	.3090	1154.	1020.
14	1150.	.27A0	.2820	1214.	1102.
15	1210.	.2950	.2950	1178.	1102.
16	1175.	.2400	.2840	1164.	1102.
17	1150.	.2270	.2830	1118.	1072.
16	1255.	.2840	.3090	1180.	1072.
19	1160.	•2R00	.2850	1162.	1072.
50	1144.	.2670	.7700	1199.	1008.
21	1200.	. •2610	.2850	1165.	1008.
25	1137.	•2860	.2730	1165.	1008.
23	1340.	.2990	.3140	1171.	1050.

JTRO-9 . 600 HOUR TEST SERIES .

MODE 2

UNIT	CO2 CONC PER CENT	CO CONC	HC CUAC	NO CONC	NOX CONC
1	796	85.4	16.6	8.5	7.9
4	.730	93.1	15.0	7.9	9,1
6	920	-128.7	23.6	7.A	8.6
7	•529	108.4	17.2	7.9	7.5
•	.648	73.4	16.6	4.8	5.0
10	•569	57.4	13.3	7.0	6.1
11	906	106.6	20.1	-11.6	-11.8
12	830	93.8	17.5	7.2	8,1
14	.545	68.0	19.7	6.5	7.3
15	.600	96.4	18.1	6.5	7.1
16	.489	64.6	15.6	5.9	6,2
17	.470	58.0	8.7	7.9	6,5
18	.588	74.6	12.2	6.3	7.0
19	.578	82.4	12.8	5.3	6.6
20	.565	83.2	19.0	3.9	5,1
21	•552	86.2	17.0	5.4	6.4
22	.602	-111.6	21.2	5.2	6.8
23	.62A	98.6	21.8	8.6	-9.3

JIAD-9 . AND HOUR TEST SERIES .

MUUE S

UNIT	COS ET	CO EI LR/KLR FU	HC FI LR/KLR FIJ	NO FI LR/KLR FU	NOX ET	SMK NUMBER FRONT SIDE
1	3103.	21.20	7.07	3.4A	3.48	0.00
4	3091.	25.07	6.93	3.49	4.01	0.00
6	3091.	27.53	R.6R	2.75	3.09	0.00
7	336A.	-40.02	10.93	4.76	4.75	0.00
9	3090.	55.26	A.65	2.41	2.49	0.00
10	3096.	-19.87	7.94	4.01	4.01	0.00
11	3099.	23.21	7.51	4.13	4.22	0.00
12	310).	22.32	7.15	2.93	3.17	0.00
14	3099.	23.66	11.76	1.70	4.15	0.00
15	3091.	31.4P	10.17	3,50	3.A3	0.00
16	3084.	25.94	10.78	3.44	4.11	0.00
17	3103.	24.33	6.29	5.45	5.45	0.00
19	3100.	24.99	7.03	3.45	3.86	0.00
19	3093.	28.08	7.50	2.96	3.67	0.00
20	3075.	28.79	11.29	2.20	2.49	0.00
51	3075.	30.55	10.36	3.14	3.71	0.00
25	3062.	-16.16	11.41	2.75	3.63	0.00
21	3076.	30.71	11.66	4.4!	4.77	0.00

JT80-9 . 600 HOUR TEST SERIES .

MODE 2

UNIT	FCO X100	FHC X100	FN0 ×100	STD FCO X100	STD FHC X100	STO FNO
1	5.0330	-6.0940	-17.7080	4,5030	5.5830	22.4360
4	4.8860	5.9190	18.2270	4.6720	5.7160	22.8460
6	5.0090	-6.2170	-17.2630	4.5320	5.7370	22,5060
7	4.9950	5.4100	18.1770	4.5750	5.4300	22.6120
9	-5.9910	-6.9190	19.1410	5.5590	6.5300	24.9110
10	4.9500	5.8070	19.8110	4.6120	- 5.5000	22.7020
11	5.0130	-6.2020	-17.0710	4.5240	5.7130	22.4880
12	5.0130	-6.1170	-17.0710	4.5240	5.6400	22.4880
14	4.7870	5.6900	19.8590	4.8120	5.7120	23,1820
15	4.7870	5.7250	19.8590	4.8120	5.7470	23.1820
16	4.7870	5.6190	19.8590	4.8120	5.6410	23.1920
17	4.8410	5.6200	19.1420	4.7020	5.5060	22.9200
18	4.9410	5.7330	19.1420	4.7020	5.6140	22.9200
19	4.9410	5.7240	19.1420	4.7020	5.6060	22.9200
20	5.0410	5.8600	18.3350	4.4820	5.3610	22.3A30
21	5.0410	5.8470	. 18.3350	4.4820	5.3500	22.3830
55	5.0410	5.9000	18.3350	4.4820	5.3940	22.3930
23	5.0360	5.9370	18.4880	4.5240	5.4620	22.4880

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

さいたいというではないというというという

JT8D-9 * 600 HOUR TEST SERIES *

MODE 2

UNIT	NREC CO ET		NRF CNO EI LR/KLB FU	NR CNOX ET	SMK NUMBER CORRECTED
1	23.49	7.71	4.41	4.41	0.00
4	26.22	7.17	4.37	5.03	0.00
6	30.43	9.41	3.58	4.02	0.00
7	-43.69	11.69	5,93	5.93	0.00
9	23.99	9.17	7.14	1.24	0.00
10	21.33	A.39	4.60	4.50	0.00
11	25.72	8.15	5,44	5.56	0.00
12	24.72	7.75	3.72	4.18	0.00
14	23.54	11.72	4.32	4.84	0.00
15	31.32	10.13	4.09	4.48	0.00
16	25.90	10.74	4.57	4.80	0.00
17	25.10	6.42	6.52	6.52	0.00
19	25.73	7.18	4.15	4.62	0.00
19	28.91	7.66	3.54	4.39	0.00
20	32.19	12.34	2.68	3.51	0.00
21	34.36	11.33	3.83	4.53	0.00
22	-40.67	12.91	3.36	4.43	0.00
23	34.18	12.69	5.36	5.80	0.00

JT80-9 . 600 HOUR TEST SERIES .

MODE 3

UNIT	N1 SPEED PER CENT	PER CENT		PER CENT
1	96.00	95.00	94.24	
4	96.00	94.00	95.27	93.28
6	96.00	96.00	94.42	94.42
7	96.20	95.00	94.88	93.70
9	97.00	96.00	95.85	94.86
10	95.00	93.00	93.92	-91.94
- 11	95,00	94,50	-93.39	92,90
12	96.00	96.00	94.38	94.38
14	96.00	94.25	96.09	94.34
15	95.50	94.00	95.59	94.09
16	96.00	94.00	95.09	94.09
17	96.00	95.00	95.45	94.46
18	96.00	95.00	95.45	94.46
19	96.00	95.00	95.45	94.46
20	97.00	95.75	95.09	93.87
21	96.50	95.50	94.60	93.62
22	97.50	96.75	95.58	94.85
23	96.00	94.25	94.38	-92.66

MODE 3

UNIT	FUEL FLOW	CR F/A X100	PERF F/A	TTT DEG R	EPR	THRUST LAF
1	9200.	.9210	.8080	1500.	2.040	14319.
4	AANA.	1.0420	.7630	1437.	2.040	14374.
6	9750.	-1.3050	.7670	1473.	2.040	14326.
7	BANN.	-1.0560	.7630	1527.	2.020	14032.
9	9000.	.4740	.7780	1491.	2.040	14319.
10	8870.	.9970	.7740	1500.	5.050	14093.
11	8250.	-1.0480	.7280	1446.	2.040	14329.
12	8700.	1.0030	.7630	1482.	7.040	14329.
14	-9401.	.9620	.8040	1470.	2.040	14367.
15	9650.	.9330	.7470	1464.	2.040	14367.
16	9850.	•9760	.7570	1464.	2.040	14367.
17	8750.	.9030	.7610	1464.	2.040	14464.
18	8500.	.9730	.7400	1500.	2.040	14464.
19	8851.	.A730	.7700	1464.	2.040	14464.
20	9100.	.9160	.7990	1500.	2.040	14355.
21	8600.	8700	.7570	1500.	2.040	14355.
55	8800.	. 9660	.7700	1509.	2.040	14355.
53	-9350.	.9710	8150	1509.	. 2.020	-14030.

MODE 3

UNIT	LAM/HA	X100	X100	ORR TT7 COR	LBF
		********	********	*********	
1	9409.	.8870	.7790	1445.	14377.
4	8869.	1.0270	.7520	1415.	14377.
6	8928.	-1.2620	.7420	1425.	14377.
7	9005.	1.0280	.7420	1485.	14163.
9	9144.	.9510	.7600	1456.	14377.
10	9017.	.9750	.7570	1466.	14153.
11	8420.	1.0130	7030	-1397-	14377.
12	8879.	.9690	.7370	1432.	14377.
14	9397.	.9640	8060	1473.	14377.
15	8647.	.9350	.7430	1467.	14377.
16	8847.	.9770	.75An	1467.	14377•
17	8749.	.8430	.7530	1447.	14377•
18	8498.	.9520	.7310	1483.	14377.
19	8947.	.8630	.7613	1447.	14377•
20	9796.	.8800	.7680	1441.	14377.
21	8786.	.8360	.7270	1441.	14377.
55	8990.	.9290	.7400	1450.	14377•
23	-9601.	.4410	.7980	1458.	14163.

MODF 3

INIT	COP CONC PER CENT	CO CONC	HC CONC	NU CUNC	NOX CONC
••••		***********			
1	1.924	13.0	9.6	84.3	87.7
4	2.143	13.2	4.3	A5.A	89.0
. 6	-7.745	15.6	9.4	-132.A	-128.7
7	-2.219	14.9	6.4	79.A	A7.6
9	2.036	10.1	10.1	72.9	64.5
10	2.088	-9.4	5.5	A7.7	82.7
11	-2.199	11.9	1.6	-111-0	-121.7
12	2.102	11.9	9.6	43,5	95.0
14	2.017	15.0	9.0	A9.A	93.7
15	1.957	14.7	6.0	. R6.6	91.8
16	2.046	11.9	7.5	89.6	96.1
. 17	1.897	10.7	9.4	73.2	79.7
18	2.039	11.2	9.6	A3.5	81.0
19	1.829	10.8	2.5	71.9	76.3
20	1.900	-26.5	-57.0	79.4	87.0
21	1.916	13.1	12.7	A1.7	77.3
22	5,022	13.3	6.3	-109.9	-113.2
23	1.212	12.5	-47.5	AP.6	95.1

MODE 3

UNIT	COS EI		HC EI		NOX EI	SMK NIMRER
	LB/KLB FU	CHYKED FU	LR/KLR FU	LHYKEH FU	LA/KLA FU	PRONT SIDE
1	3149.	1.35	1.71	14.40	14.97	27.15
4	3145.	1.21	.69	12.92	13.41	33.11
6	3153.	1.14	1.18	15.95	15.95	12.00
7	3156.	1.35	.99	11.86	13.03	33,77
9	3143.	.99	1.70	11.76	11.76	30.92
10	3145.	90	.91	13.81	13.81	12.45
11	3151.	1.08	1.19	16.63	-18.73	13.99
12	3150.	1.13	1.57	13.08	14.88	10.67
14	3152.	1.50	1.53	14.67	15.11	28.00
15	3152.	1.51	1.21	14.59	15.46	10.67
16	3153.	1.16	1.26	14.44	15.4R	29.33
17	3152.	1.14	1.70	12.74	13.87	26.32
18	3152.	1.10	1.62	13,49	13.47	25,66
19	3155.	1.19	.47	12.97	13.76	23.18
50	-3121.	-2.77	-9.34	13.65	14.96	27.33
21	3142.	1.44	2.40	14.77	14.77	25.17
55	3146.	1.31	1.08	-17.87	-18.42	28.00
23	-3132.	1.38	-8.04	16.01	17-18	25.56

JTRD-9 . AND HOUR TEST SERIES .

MUUE 3

IINIT	FC0 X100	FHC X100	FN0 X100	STD FCO	STD FHC X100	STO FNO
1	123.9880	117.4410	A1.3910	99.8340	99.9800	100.4990
4	132.6830	119.2950	A1.0900	120.7120	111.3910	100.5960
6	-24R.9640	-177.2040	82.9310	-193.8830	-14A.9730	105.5550
7	150.5060	131-5280	83.9110	125.7350	115.21A0	. 102.3860
÷	145.2550	131.9910	A7.8576	125.3350	118.3A20	107.3410
10	113.4370	106.5790	84.0830	99,0400	96.1750	-94.9200
11	141.5750	124.9700	-74,8950	114,2650	106.9300	98.9530
12	152.5970	135.5470	A1.9770	183.3620	116.0010	105.3600
14	120.6310	114.2430	90.0010	122.0660	115.2070	105.2030
15	113.4000	109.6100	89,0580	114.7180	110.5180	104.0990
16	120.0990	113.2290	89.0585	121.5270	114-1870	104.0990
17	119.1900	115.0600	99.0110	112.0690	110.0540	105.7100
14	131.0000	121.4580	89.0110	122,9310	116.0030	105.7100
19	114.4640	112.4240	A9.0110	107.7490	107.6000	105.7100
20	131.4060	123.7640	A6.9020	104,4920	104.1980	107.1250
21	121.0800	117.1600	45,9410	96,6290	99.0090	102.0570
22	-154.6920	-138.8700	90.5130	121.4380	116.2440	157,3100
23	108.5620	107.0470	A2.3850	-A9.1140	-92.23A0	-97.4100

MONE 3

UNIT	NREC CO EI LB/KLB FU			NR CNOX EI	
1	1.68	2.00	17.7A	18.49	27.15
•	1.33	.73	16.03	16.63	33-11
6	1.47	1.41	-20.30	20.30	32.00
7	1.62	1.13	14.47	15.89	33.77
9	1.15	1.89	15.06	15.06	30.92
10	1.04	1.01	15.59	15.59	32.45
11	1.34	1.39	-21.41	-23.46	33.99
12	1.40	1.84	16.81	19.12	30.67
14	1.48	1.52	17.15	17.90	28.00
15	1.49	1.20	17.05	18.07	30.67
16	1.15	1.25	16.87	18.09	29.33
17	1.21	1.78	15.13	16.48	26.32
18	1.17	1.70	16.03	16.03	25.66
19	1.26	.49	15.40	16.34	23.18
20	-3.50	-11.09	16.19	17.73	27.33
21	1.80	2.84	17.53	17.53	25.17
55	1.67	1.29	-21.19	-21.83	28.00
23	1.48	-9.33	19.03	20.41	25.56

JTAD-9 4 600 HOUR TEST SERIES +

MODE 4

UNTT	N) SPEFD PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
1	A9.50	92.50	87.86	90.41
4	99.00	91.00	AA.32	90.31
6	90.00	93.00	RR.52	91.47
7	49,75	92.00	88.57	90.74
9	90.50	93.00	R9.43	91.90
10	88.00	90.50	-87.00	-89.47
11	A9.00	97.00	-97.49	90.44
15	A9.50	93.00	A7.99	91.43
14	A9.00	91.50	A9.09	91.59
15	89,00	01.00	A9.09	91.09
16	99.00	91.00	R9.09	91.09
17	89.50	92.50	RR.99	91.97
18	89.00	92.00	98.49	91.47
19	89.00	92.00	88.49	91.47
20	90.75	93.00	RR.97	91-17
21	91.00	93.50	89.21	91.66
22	91.00	94.00	A9.21	92.15
23	A9.75	92.00	88.23	90.44

MODE 4

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A	TT7 OFG R	EPR	THRUST
1	7675.	.7520	7100	1428.	1.850	17251.
4	7200.	.8860	.6590	1338.	1.840	12180.
6	7325.	-1.1120	.6720	1410.	1.850	17257.
7	7225.	.8470	.6580	1424.	1.430	-11952.
9	7550.	.8390	.6830	1424.	1.850	12251.
10	7000.	.8570	.6480	1437.	1.830	12004.
	6900.	8920	.6400	1428.	1.850	12259.
12	730n.	.8540	.6740	1392.	1.850	12259.
14	-7750.	.7730	.6970	1392.	1.850	12292.
15	7225.	.7620	.6500	1392.	1.850	12292.
16	7250.	.7870	.6520	1392.	1.850	17292.
17	7200.	.7350	.6570	1383.	1.840	12256.
18	6950.	.7850	.6280	1392.	1.840	12256.
19	7300.	.7150	.6690	1392.	1.840	12256.
20	7400.	.7450	.6800	1428.	1.850	12202.
21	7325.	.7490	.6710	1429.	1.850	17282.
55	7250.	.7930	.6650	1437.	1.850	12282.
23	-7800.	.8730	7140	1410.	1.830	-11950.

JTAU-9 . 600 HOUR TEST SERIES

MODE 4

UNIT	CORP FIJ FL	COR CR F/A CO X100		RR TT7 COR	THRUST LBF
••••					
1	-7949.	.7250	.6R40	1376.	12300.
4	7257.	.8730	.6490	-1317.	12182.
6 .	7474.	-1.0750	.6500	1364.	12300.
7	7194.	.9240	.4400	1389.	12064.
9	7671.	.8190	.6670	1391.	12300.
10	7114.	.8390	.6330	1404.	12064.
11	7047.	.4620	.4190	1390.	12300.
12	7450.	.8250	.6510	1345.	15300•
14	7748.	.7740	6990	1394.	12300.
15	7227.	.7630	.6510	1394.	12300.
16	774A.	.7890	.6540	1394.	12300•
17 .	719A.	.7270	.4500	1367.	15145.
14	5849.	.7750	.4210	1376.	12182.
19	729A.	.7070	.5620	1376.	12182.
20	7566.	.7160	.4530	1372.	12300.
21	7481.	.7200	.4450	1372.	12300.
55	7406.	.7620	.6390	1381.	12300.
23	-8010.	.8440	6900	1362.	12064.

MODE 4

UNIT	COR CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.572	13.0	8.2	60.4	63,5
4	1.852	16.4	4.2	58.7	61.6
6	-2.334	16.5	8.1	-84.6	-93.2
7	1.775	15.5	6.6	57.A	64.4
9	1.751	12.3	9.2	51.9	49,6
10	1.791	10.9	6.1	63.7	61.4
11	-1.868	13.4	7.3	-75.9	-84.6
15	1.787	10.9	8.8	59.0	67.7
14	1.616	14.8	8.2	62.9	66.2
15	1.593	15.7	6.9	58.7	62,7
16	1.646	18.7	7.2	57.2	62.4
17	1.537	11.5	7.9	52.5	56.5
18	1.641	12.6	10.1	57.0	56.1
19	1.496	11.6	2.4	49.3	52.4
50	1.534	-10.3	-74.0	65.0	64,3
21	1.561	13.8	13.0	59.9	57.6
SS	1.657	13.5	6.6	-69.5	70.0
23	1.817	13.8	-40.1	64.7	70.7

MODE 4

UNIT	CO2 EI	CO ET	HC EI LB/KLB FU			SMK NUMBER FRONT SIDE
1	3149.	1.66	1.40	12.64	13.30	24.83
4	3144.	1.78	.78	10.42	10.93	32.67
6	3153.	1.42	1.20	11.94	13.16	32.00
7	3154.	1.76	1.28	10.75	11.96	30.92
9	3142.	1.41	1.31	9.73	9.73	10.92
10	3144.	1.22	1.16	11.68	11.68	32.67
11	3150.	1.44	1.34	13.38	-14.91	34.21
12	3149.	1.22	1.69	10.86	12.47	29.33
14	3150.	1.84	1.76	12.92	13.49	27.63
15	3151.	1.98	1.50	12.14	12.07	29.41
16	3150.	2.28	1.50	11.45	12.49	29.00
17	3151.	1.51	1.77	11.25	12.10	24.50
19	3150.	1.54	2.12	11.44	11.44	25.32
19	3154.	1.55	.55	10.87	11.55	23.5A
20	-3104.	1.32	-16.36	-13.75	13.75	26.61
21	3141.	1.77	2.86	12.59	12.59	26.00
55	3145.	1.63	1.37	-13.80	13.89	26.67
53	3133.	1.51	~7.56	11.55	12.75	25.33

MODE 4

UNIT	FC0 X100	FHC .X100	FN0 X100	STO FCO X100	STD FHC X100	STD FNO X100
1	78.5800	84.4390	72.5570	64.9080	77.9860	89.8020
4	79.2950	81.8050	-70.3830	72.9960	76.9160	87,4080
6	-134.4920	-116.6000	72.8660	-108.7230	-100.0360	92.9710
7	84.2940	87.1610	73.1760	72,2320	77.5130	89,4740
9	92.2520	94.4920	73.4730	80.8690	85.5540	94.7410
10	71.9350	75.8390	73.7490	63.5370	69.0520	-83.3A50
11	R8.4430	89.1230	-68.2910	73,1960	77.3780	88.0610
12	94.1520	95.3400	-72.0200	78,0180	R2.7910	92.7950
14	73.7800	80.3570	79.9640	74,5230	80.9500	93.4580
15	69.1890	76.2980	77.9880	69.8750	76.8540	91.1460
16	71.2530	77.6170	77.9990	71.9720	78.1800	91.1460
17	77.0510	84.0330	79.9540	73.0150	80.7510	95.0330
18	78.0280	83.6030	78.7280	73.8520	80.2900	92.9820
19	71.9580	79.7360	78.22RD	68.2570	76.6700	92.9820
20	81.9260	87.6520	76.9450	66.8120	75.0550	91.5570
21	86.5700	91.7810	78.8410	70.4680	7A.4890	93.7640
55	95.6540	98.4960	80.5890	77.3700	A3.9150	95.7970
23	86.6830	88.2760	73.9500	71.5560	76.3750	88.0610

MODE 4

UNTT	NREC CO ET	NREC HC EI		NR CNOX ET	
1	2.01	2.09	-15.64	16.47	24.83
4	1.93	.83	12.93	13.5A	32.67
6	1.76	1.39	15.24	16.79	32.00
7	2.05	1.44	13.14	14.62	30.92
9	1.61	5.00	12.48	17.48	30.92
10	1.78	1.28	13.21	13.21	32.67
11	1.73	1.55	-17.26	-19.24	34.21
12	1.47	1.94	14.00	16.07	29.33
14	1.82	1.74	14.98	15.77	27.63
15	1.96	1.49	14.18	15.16	29.41
15	2.26	1.49	13.39	14.60	28.00
17	1.59	1.85	13.16	14.38	24.50
18	1.62	15.51	13.60	13.60	25.32
19	1.64	.57	12.92	13.73	23.68
20	1.62	-19.11	-16.36	16.36	26.67
21	2.18	3.34	14.99	14.98	26.00
55	7.01	1.61	-16.40	16.51	26.67
23	1.83	-8.73	13.89	15.18	25.33

MODE 5

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR N2 PER CENT
	********		*******	*******
1	80.00	87.75	78.54	86.15
4	79.50	86.50	78.89	85.84
6	A0.00	88.00	78.68	86.55
7	80.00	A7.00	79.90	85.A1
9	81.00	89.50	A0.04	87.45
10	79.00	86.00	78.10	-85.02
11	79.50	87.00	78.16	85.53
12	80.00	89.00	79.65	87.49
14	79.00	86.50	79.08	86.58
15	79.00	86.00	79.08	86.08
16	79.00	86.00	79.08	86.08
17	80.50	88.00	R0.04	87.50
18	80.00	87.50	79.54	87.00
19	80.00	88.00	79.54	87.50
20	81.50	84.75	79.90	87.01
21	81.00	88.00	79.41	86.27
55	81.00	89.00	79.41	87.25
23	80.00	87.25	78.65	85.77

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

TO THE PARTY OF TH

JTAD-9 * 600 HOUR TEST SERIES *

MODE 5

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A	TTT7 DEG R	EPR	THRUST LAF
1	4925.	.5680	.5130	1305.	1.540	A566.
4	4670.	.6690	.4900	1248.	1.540	A599.
6	4875.	A370	.5140	1311.	1.540	A570.
7	4745.	•5650	.4960	1323.	1.530	A396.
9	4855.	•6020	.5000	1302.	1.540	A566.
10	45An.	.6120	.4A70	1320.	1.530	A433.
11	4650.	.6740	.4970	1294.	1,540	A571.
12	4867.	.6450	.5140	1302.	1.540	A571.
14	4660.	•5450	.4930	1284.	1.540	A594.
15	4565.	.5440	.4930	1266.	1.540	A594.
16	4650.	.5490	.4870	1275.	1.540	A594.
17	4430.	•5190	.4990	1248.	1.540	8652.
18	4720.	.5700	.4920	1302.	1.540	A652.
19	4825.	.5090	•5030	1284.	1,540	A652.
50	4950.	.613	.5160	1320.	1.540	A587.
21	4925.	.5510	.5070	1302.	1.540	A587.
22	4775.	.5520	.5020	1324.	1.540	A587.
23	4775.	•6340	.5030	1296.	1.530	6395.

400E 5

UNIT	CORR FU FL	COR CB F/A	COR PF F/A	CORR TT7 L	R THRUST
****					*******
1	4935.	•5480	.4940	1258.	8600.
4	4707.	•6590	.4830	1229.	8600.
6	4974.	9090	.4990	1268.	8600.
7	4956.	•5490	.4830	1287.	8475.
9	4933.	•5880	.4880	1271.	8500.
10	4656.	•5980	.4760	1290.	8475.
11	4746.	.6510	.4800	1241.	8600.
15	4963.	•6230	.4980	1258.	8600.
14	4659.	•5460	.4840	1286.	8600.
15	4664.	•5450	.4940	1269.	6600.
16	4649.	•5500	.4830	1277.	8600.
17	4829.	•5130	.4940	1233.	8600.
18	4719.	•5630	.4860	1287.	8600.
19	4824.	•5040	.4971	1269.	8600·
20	5057.	.4930	.4960	1268.	8600.
21	4929.	.5300	.4880	1251.	8600.
22	4878c	•5300	.4830	1273.	8600.
23	4903.	•6130	.4860	1253.	8475.

MODE 5

UNIT	COP CONC	CO CONC	HC COAC	NO CONC	NOX CONC

1	1.184	17.5	7.A	35.0	37.3
4	1.794	25,2	4.1	35.1	38,1
. 6	-1.752	22.2	3.4	-47.6	-53,5
7	1.178	1.15	7.8	34.4	3A,3
9	1.253	21.0	0.0	28.7	28.4
10	1.274	13.9	6.5	35.4	35,3
11	-1.405	20.2	7.A	-47.6	-48,5
15	1.345	14,3	A.9	34.0	39,9
14	1.134	23.6	8.7	12.5	35,4
15	1.133	20.4	A.A	32.2	34.8
16	1.144	50.5	7.1	30.A	34.4
. 17	1.083	14.3	د.۶	31.0	33,7
16	1.188	19.2	7.4	33-1	33,9
10	1.061	16.3	9.7	26.2	30,6
50	1.052	12.9	58.3	33.6	33,9
21	1.146	17.2	10.7	32.6	33.0
25	1-147	10.4	7.0	36.0	37.3
53	1.313	17.9	0.AF-	19.0	-43.1

MODE 5

UNIT		CO EI	HC EI	NO EI	NOX EI	SHK NUMBER
	LB/KLI FU		LR/KLR FU	LB/KLB FU		FRONT SIDE
1	3145.	2.97	5.26	9.73	10.35	21.07
4	3140.	3,62	1.07	A.26	8.97	26.60
6	3125.	2.54	.67	A.95	10.06	76.67
7	3149.	3,62	2.2A	9.62	10.72	17.76
9	3137.	3,35	7.47	7.53	-7.53	23.84
10	3141.	2.18	1.76	9.72	9.22	24.67
11	3146.	2.87	1.91	9.98	11.35	28.29
12	3146.	2.13	2.27	8.31	9.75	23.68
14	3145.	4.16	2.47	9.42	10.25	19.46
15	3147.	3.61	2.07	9.33	10.12	20.00
16	3147,	3,54	2.15	8.86	9.90	70.39
17	3150.	2.65	1.64	9.69	10.26	19.61
18	3147.	3,23	5.26	9.17	9.37	20.39
19	3145.	3,07	3.14	R.74	9.48	18.30
50	-3096.	2,42	-18.77	-10.34	10.43	20.95
21	3134.	3,00	3.20	9,34	9.43	18,67
35	3140.	3,39	2.09	10.31	10.66	21.33
23	3124.	2.71	9.89	4.72	10.73	23,18

MODE 5

UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO	STO FHC	STO FNO
	********					~~~~~~
1	37.9080	47.2180	55.5420	32.2360	41.5840	69.0750
4	37.1800	45.3890	54.5810	34.7140	43.0520	67,9120
4	-51.7430	-57.3880	55.1080	-43,9030	50.5440	70,6380
7	35.2670	44.4900	55.2340	31.1350	40.3060	67,7920
9	42.8930	52.3530	57.6490	39,4650	4R.07R0	74.1550
10	33.1200	41.5P00	57.1820	29,8990	38.3740	-64.R120
11	38.8970	46.9000	-51.5010	33.2750	41.5690	66.7310
15	-46.8430	-55.6950	57.4610	39.9840	49.2630	74.3730
14	33.4420	43.0250	60.5590	33.7100	43.2870	70.7590
15	31.6940	41.0240	58,9140	31.9360	41.2720	68.8360
16	31.9330	41.1400	58,9140	32.0870	41.3890	68.8360
17	37.5990	47.8240	62.4500	35.9720	46.23A0	74.3250
18	37.4580	47.0230	60.9000	35.9060	45.4430	72.3710
19	37.2470	47.5530	62.4500	35,4430	45.9R20	74,3250
20	39.7740	49.9600	60.5610	33.5600	43.7130	77 4020
21	38.1370	47.6410	58.1350	32.1350	41.6630	69.5550
22	42.3860	52.2910	61.3800	35.6260	45.6440	73.3630
23	38.5760	47.1310	56.5670	32.9330	41.6380	67.6610

MODE 5

UNIT	NREC CO ET	NREC HC EI LB/KLR FU	NRE CHO ET		
	*********				*******
1	3.49	2,56	12.10	12.87	21.07
. •	3.87	1.13	10.28	11.16	26.80
6	3.00	.76	11.47	12.90	26.67
7	4.11	2.52	11.00	13.16	17.76
9	3.74	2.69	9,68	9.68	23.84
10	-2.41	1.91	10.45	10.45	24.67
11	3.36	2.16	-12.93	-14.71	28.29
12	2.50	2.57	10.75	12.61	23.68
. 14	4.13	2.46	11.00	11.97	19.46
15	3.58	2.06	10.91	11.82	20.00
16	3.52	2.13	10.35	11.57	20.39
17	2.77	1.69	11.54	12.21	19.61
18	3.38	2.34	10.92	11-15	20.39
19	3.51	3,25	10.40	11.28	18.30
20	78.5	-21.45	-12.37	12.46	20.95
21	3.56	3.65	11.17	11.29	18.67
55	4.03	2,40	-12.32	12.75	21.33
23	3.17	-11.20	11.62	12.84	23.18

MODE 6

	NA EDETA	NO COECO	6000 NI	CODD N3
UNIT	NI SPEED PER CENT	NE SPEED PER CENT		
	********	********		
1	62.50	78.50	61.36	77.05
4	60.00	77.00	59.54	76.41
6	61.00	78.75	60.00	77.45
7	62.00	78.50	61.15	77.43
9	61.80	79.00	61.07	78.06
10	61.50	77.00	60.80	76.12
11	60.25	77.75	59.23	76.44
12	62.00	79.00	60.95	77.65
14	61.00	77.50	61.06	77.57
15	60.25	77.00	60.31	77.07
16	61.00	77.00	61.06	77.07
17	61.00	78.00	60.65	77.55
18	61.00	79.00	60.65	77.55
19	61.00	74.50	60.65	78.05
20	61.25	78.00	60.05	76.47
21	62.00	74.75	40.78	77.20
>>	61.75	79.25	40.54	77.69
23	62.00	79.00	60.95	76.68

MODE 6

UNIT	FUEL FLOW LRM/HR	CB F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
1	-2590.	.3930	3780	1167.	1.230	4009.
4	2360.	• 3650	.3550	1,55.	1.230	4024.
6	2375.	5530	.3560	1172.	1.230	4011.
7	2520.	.2930	.3660	1145.	1.230	3988.
9	2510.	.3480	.3660	1154.	1.230	4009.
10	2425.	.3280	.3550	1176.	1.230	4005.
- 11	2250.	.4000	.3430	1149.	1.230	4012.
12	2475.	.3940	.3640	1143.	1.230	4012.
14	2280.	.3080	. 3290	1135.	1.230	4022.
15	2270.	.2800	.3330	1095.	1.230	4022.
16	2235.	.2570	.3230	1122.	1.230	4022.
17	2265.	.2630	.3340	1104.	1.230	4049.
18	2255.	.3090	.3330	1140.	1.230	4049.
19	2310.	.2800	.3410	1140.	1.230	4049.
20	2250.	.2810	•3380	1173.	1.230	4019
21	2350.	.3150	.3480	1171.	1.230	4019.
55	2263.	•3030	.3370	1180.	1.230	4019.
23	2465.	.3390	•3600	1149.	1.230	3987.

JTAD-9 * 600 HOUR TEST SERIES *

MODE 6

CORR FII FL LAM/HR	COR CA F/A	x100	DEG R	THRUST LBF
-7649.	•3790	.3640	1174.	4025.
2379.	.3600	.3490	1105.	4025+
2423.	5350	.3440	1134.	4025.
-2579.	.2850	.3540	1152.	4025.
2550.	.3400	.3570	1127.	4025.
7465.	.3200	.3470	1149.	4025.
2296.	. 3870	.3310	1110.	4025.
2526.	.3810	.3520	1105.	4025.
2779.	.3090	.3300	1137.	4025.
7769.	.2810	.3340	1097.	4025.
2734.	•2570	.3240	1124.	4025.
2264.	.2600	.3310	1091.	4025.
2254.	• 3050	. 1290	1127.	4025.
2300.	.2770	.3370	1127.	4025.
2299.	.2700	•3250	1127.	4025.
2401.	•3030	.3350	1126.	4025.
2311.	.2910	. 3240	1134.	4025.
2531.	.3280	.3480	1110.	4025.
	2849. 2379. 2423. 2579. 2550. 2465. 2796. 2779. 2764. 2764. 2764. 2764. 2764. 2799. 2401.	LRM/HR X100 -26493790 23793600 24235350 -25792850 25503400 24653200 27963870 27963810 27792850 27792850 27792810 27792770 27642600 2770 27992770 27992770 27992770 27992770 27992770 27992770 27992770 27992770	LRM/HR X100 X100 -26493790 .3640 23793600 .3490 24235350 .3440 -25792850 .3560 25503400 .3570 24653200 .3470 27963810 .3520 27793090 .3300 27692810 .3340 27342570 .3240 27442600 .3310 27543600 .3310 27543600 .3310 27692770 .3370 27992700 .3250 24013030 .3350 23112910 .3240	-26493790 .3640 1124. 23793600 .3490 1105. 24235350 .3440 1134. -25792850 .3560 1152. 25503400 .3570 1127. 24653200 .3470 1149. 22963810 .3520 1105. 22793090 .3300 1137. 22692810 .3340 1097. 22342570 .3240 1124. 22643600 .310 1091. 22543050 .3290 1127. 23092770 .3370 1127. 22992700 .3250 1127. 24013030 .3350 1126. 23112910 .3240 1134.

MODE 6

UNIT	COR CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	.412	43.7	11.2	14.7	16.5
4	.753	56.2	7.9	12.4	14.0
6	-1.146	-64.9	12.7	-17.8	-22.4
7	.604	41.5	10.5	15.2	17.6
9	.717	47.9	11.9	8.3	9,8
10	.676	-28.4	9.2	12.3	13,0
11	828	42.3	13.1	15.1	18,0
12	.616	35.1	12.0	12.5	15.7
14	.636	41.0	11.2	11.4	13,1
15	.578	45.6	9.8	9.9	11.6
16	•529	36.7	9.1	9.4	10.5
17	•543	32.0	5.1	12.5	11.8
18	.639	37.7	5.9	9.9	12.4
19	.578	32.5	10.5	10.6	11.3
20	•565	38.2	-56.5	7.9	10.5
21	.649	42.2	12.1	10.2	12.3
55	.622	50.8	11.0	9.1	11.6
23	.694	36.7	-30.6	-16.1	19.0

MODE 6

UNIT	CUS EI	CO ET	HC FI LB/KLR FU	NO FI LR/KLR FU	HOX EI	SMK NUMBER FRONT SIDE
1	3126.	10.71	4.72	5.93	6.64	R.00
4	3116.	14.80	3.5R	5.35	6.04	9.21
6	3131.	11.29	3.80	5.09	6.40	11.33
7	3127.	13.66	5.96	-8.19	-9.54	1.0.60
9	3113.	13.24	5.67	3.75	4.45	κ. :
10	3127.	8.35	4.65	5.96	6.25	7.25
11	3125.	10.15	5.43	5.96	7.10	11.11
1?	3129.	A.57	5.01	5.00	6.30	4.21
14	3122.	12.80	6.03	5.84	6.72	5.67
15	311A.	15.66	5.79	5.59	6.57	6.58
16	3120.	13.80	5.91	5.79	6.47	5.33
17	3131.	11.73	3.22	7.54	7.54	5.30
18	3131.	11.76	3.17	5.06	6.35	7.19
19	3124.	11.17	6.21	5.98	6.40	5.30
Š0	-3040.	13.07	-33.74	4.66	5.92	7.33
21	3114.	12.89	6.35	5.12	6.17	7.95
55	3110.	16.15	5.99	4.75	6.06	9.27
23	3039.	10.44	14.92	7.49	8.85	10.50

MODE 6

UNIT	FC0 X100	FHC ×100	FN0 X100	STD FCO X100	STO FHC X100	STD FNO X100	
1	12.9640	19.0040	34.4150	11.3730	17.1020	43.1520	
4.	11.0970	16.7120	33.4370	10.5400	16.0330	41.7490	
6	-15.1020	-21.0190	34.0740	13.2970	19.0090	44.0000	
7	12.1480	18.3510	35.5970	11.0090	16.9220	43.9370	
9	13.2250	19.5900	35.0570	12.1510	18.2900	45.3430	
10	10.7900	16.3960	36.1030	9.9680	15.3670	41.1330	
11	12.1470	17.9050	-32.0160	10,7700	16.2580	41.7960	
12	13.6210	19.8680	34.0890	12.0600	18.3140	44.4590	
14	11.2860	17.2350	37.8990	11.3540	17.3170	44.2640	
15	10.5620	16.3260	36.9660	10,6240	16.4020	43.1730	
16	10.3900	16.1600	36.9660	10.4510	16.2350	43.1730	
17	11.3140	17.3640	37.0480	10.9480	16.9200	44.2160	
18	11.6900	17.7190	37.0480	11.3020	17.2580	44.2160	
19	11.9950	18.2370	37.9700	11,6000	17.7640	45.3100	
20	11.3500	17.2430	34-6600	9.9570	15.5030	41.8650	
21	12.4900	18.6630	35.9990	10.9200	16.7400	43.4520	
22	12.9700	19.3530	36.9030	11.3370	17.3540	44.5230	
23	11.9400	17.8730	35.1180	10.5710	16.1810	42.3230	

JT8D-9 * -600 HOUR TEST SERIES *

MODF 6

UNIT	NREC CO EI		LB/KLB FU	NR CNOX ET	
1	12.21	5.25	7.43	9.32	8.00
4	15.59	3,73	6.67	7.54	9.21
6	12.42	4.21	4.57	R.26	11.33
7	15.07	6.46	-10.11	-11.77	10.60
9	14.41	6.08	4.85	5.75	8.55
10	9.04	4.96	6.79	7.13	7.29
11	11.45	5.9A	7.7A	9.27	11.11
12	9.68	5.53	6.53	A.21	9.21
14	12.72	6.00	6.82	7.85	6.67
15	15.57	5.76	6.53	7,67	6.58
16	13.72	5.88	6.76	7.55	5.33
17	12.12	3.30	-9.00	9.00	5.30
18	12.16	3.25	6.04	7.5R	7.19
19	11.55	6.38	7.13	7.64	5.30
20	14.89	-36.97	5.19	7.15	7.39
21	14.74	7.08	6.18	7,45	7.95
SS	-18.4A	6.67	5.73	7.31	9.27
53	11.79	-16.48	-9.03	10.66	10.90

400E 1

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT		CORR NZ PER CENT
1	38.25	62.00	37.55	60.87
•	37.00	62.00	36.72	61.53
6	37.50	62.00	36.88	60.98
7	37.00	62.00	36.49	61.15
9	-40.30	-65-00	39.82	64.23
10	39.00	62.00	38.56	61.30
11	38.00	62.00	37.36	60.95
12	37.00	62.00	36.37	60.95
14	37.50	62.00	37.54	62.06
15	38,25	-61.75	38.29	61.81
16	38.75	62.00	38.79	62.06
17	37.50	62.00	37.28	61-64
18	39.00	62.00	37.78	61.64
19	37.00	62.00	36.79	61.64
20	37.75	62.00	37.01	60.78
21	38.00	62.00	37.25	60.78
55	36,50	62.00	35.78	60.78
23	38.00	62.00	37.36	60.95

JTRD-9 * 600 HOUR TEST SERIES *

MODE 7

UNIT	FUEL FLOW LRM/HR .	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	-1400.	.3270	3500	-1215.	-1.050	1010.
. 4	1200.	.3470	•3020	1122.	1.080	1063.
6	. 1160.	4440	.2930	-1212.	-1.100	1019.
. 7	1210.	•2650	.3040	1194.	1.060	1026.
9	-1475.	•3110	3470	1194.	1.090	1258.
10	1250.	.2640	. 3060	1194.	1.080	1041.
11	1150.	4740	.2880	1176.	1.080	1017.
12	1213.	3990	.3090	1176.	-1.050	1017.
14	1120.	.2590	.2760	1176.	1.070	1102.
15	1150.	12850	.2810	1140.	1.080	1083.
16	1150.	.2400	.2790	1140.	1.070	1102.
17	1110.	.2230	.2780	1104.	1.070	107A.
14	1195.	.2720	.2070	1158.	1.080	1078.
19	1080.	.2550	.2720	1122.	1.070	1078.
20	1150.	.2520	.2910	-1212.	1.080	1006.
21	1150.	.2660	.2900	1203.	1.090	1006.
25	1075.	.2740	.2770	1185.	1.070	1006.
23	1290.	.3290	3220	1176.	1.070	1011.

TOWN WETH AND A

HODE 7

UNIT	CORR FU FL LBM/HR	X100		_	THRUST LBF
1	-1432.	•3150	33A0	1171.	1014.
4	1209.	.3420	.2970	1105.	1063.
6	1184.	4290	.2A30	1172.	1023.
7	123A.	.2590	.2960	1161.	1035.
9	-145A.	.3030	3380	1166.	1263.
10	1271.	.2590	.2990	1167.	1046.
11	1174.	4090	.2790	1136.	1020.
12	1237.	3860	.2980	1136.	1020.
14	1120.	.2600	.2760	1178.	1102.
15	1150.	.2670	.2910	1142.	1084.
16	1150.	.2410	.2790	1142.	1102.
17	1110.	.7200	.2750	-1091.	1072.
18	1195.	.2690	.2940	1144.	1072.
19	1080.	.2520	.2690	1109.	1072.
50	1175.	.2420	.2800	1165.	1008.
21	1175.	•2550	.2790	1156.	1008-
22	1094.	.2630	.2660	1139.	1008.
23	-1325.	.3170	.3110	1136.	1020.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

现象会通常用人用 图 178. 蓝

MODE 7

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	.668	87.6	17.9	7.7	7.9
4	.705	112.5	17.9	8.2	8.4
. 6	905	-137.1	24.A	8.3	-11.1
7	.53A	107.6	17.6	7.6	-9.6
9	.633	81.4	17.6	4.4	5.7
10	.540	-57,-5	12.7	6.4	6.9
11	867	104.5	20.9	8.2	-10.6
12	417	103.9	20.6	5.9	8,5
14	.529	68.9	16.9	6.0	6.7
15	.541	85.4	19.0	5.7	6,6
16	.448	79.7	16.7	5.2	5.9
. 17	.454	56.2	9.1	8.0	6,6
19	.557	78.5	10.6	5.2	6,6
19	.519	84.8	16.5	5.9	5,4
20	.507	RR.3	-29.1	3.5	6,3
21	.577	92.5	21.4	4.4	6,5
25	.552	112.4	20.7	4.4	6.7
23	.662	-119.2	-33.2	7.0	-9.7

MODE 7

UNIT	CO2 EI LB/KLR FU		HC EI	NO EI LR/KLR FU	NOX EI LR/KLB FU	SMK NUMBER FRONT SIDE
1	3091.	25.81	9.05	3.72	3.83	0.00
4	3077.	31.22	8.52	3.73	3.83	0.00
6	3086.	29.74	9.25	2.96	3.94	0.00
7	3069.	39.05	10.99	4.53	5.75	0.00
9	3084.	25.25	9.36	2.24	2.93	0.00
10	3094.	-20.98	7.95	3.82	4.15	0.00
11	3095.	24,65	8.16	3.04	3.95	0.00
12	3093.	25.04	8.54	5.33	3.38	0.00
14	3058.	25.59	10.76	3.67	4.06	0.00
15	3079.	30.93	11.19	3.34	3.92	0.00
16	3076.	32.01	11.50	3.42	3.89	0.00
17	3095.	28.63	6.72	5.71	5.71	0.00
18	3097.	27.80	6.45	3.03	3.81	0.00
19	3078.	32.10	10.71	3.68	3.68	0.00
20	3046.	33.78	-19.13	5.50	3.94	0.00
21	3062.	33.56	13.32	2.65	3.85	0.06
55	3055.	39.59	12.55	2.65	3.89	0.00
23	3055.	35.00	16.77	3.37	4.69	0.00

JTBD-9 . AND HOUR TEST SERIES .

MODE 7

UNIT	FCO X100	FHC X100	FN0 X100	STO FCO X100	STD FHC X100	STO FNO X100
1	5.0330	5.9620	-17.7080	4.5030	5.4700	22.4360
4	4.8860	5.4960	18.2270	4.6720	5.6950	27.8460
6	5.0040	-6.2030	-17.2530	4.5320	5.7250	22.5060
7	4.9950	5.8190	18.1770	4.5750	5.4380	22,6120
9	-5.9910	-6.9010	19.1410	5.5590	46.5150	24.9110
10	4.9500	5.1790	19.4110	4.6120	5.4750	22,7020
11	5.0130	-6.1600	-17.0710	4.5240	5.6770	27,4880
12	5.0130	-6.1050	-17.0710	4.5240	5.6300	27.4880
14	4.7870	5.6570	19.8590	4.8120	5.67A0	23.1920
15	4.7210	5.6030	19.7230	4.7450	5.6240	23,0230
16	4.7970	5.6200	19.8590	4.8120	5.6410	23.1820
17	4.9410	5.6080	19.1420	4.7020	5.4950	27.9700
18	4.8410	5.7030	19.1420	4.7020	5.5860	22.9200
19	4.8410	5.6690	19.1420	4.7020	5.5530	22.9200
50	5.0410	5.8060	18.3350	4.4820	5.3160	27 3430
21	5.0410	5.8340	18.3350	4.4820	5.3390	22,3830
25	5.0410	5.8510	18.3350	4.4820	5.3530	22.3830
23	5.0360	5.9770	18.4880	4.5240	5.4960	22.4880

MODE 7

UNIT	NREC CO EI	NREC HC EI LB/KLB FU		NR CNOX ET	
1	28.85	9.86	4.72	4.86	0.00
. 4	32.65	8.82	4.67	4.80	0.00
6	32.46	10.02	3.86	5.14	0.00
7	-42.63	11.76	5.64	-7.15	0.00
9	27.22	9.91	2.92	3.81	0.00
10	22.52	8.39	4.37	4.76	0.00
11	27.31	8.85	4.01	5.20	0.00
12	27.75	9.26	3.07	4.46	0.00
14	25.46	10.72	4.28	4.74	0.00
15	31.77	11.15	3.94	4.57	0.00
16	31.84	11.45	4.00	4.54	0.00
17	29.48	6.86	-6.84	-6.84	0.00
18	28.63	6.59	3.63	4.57	0.00
19	33.05	10.94	4.41	4.41	0.00
20	38.00	-20.90	2.68	4.81	0.00
21	37.75	14.56	3.23	4.70	0.00
52	-44,53	13,72	3.23	4.76	0.00
23	38.96	-18.23	4.10	5.70	0.00

MODE 8

UNIT	NI SPEED PER CENT		CORP NI PER CENT	
1	33.00	-54.00	32.40	-54.98
4	34.75	59.00	34.49	58.55
6	34.50	54.25	33.43	57.29
7	34.00	58.00	31.53	57.21
9	36.30	-61.00	35.87	60.29
10	33,50	57.50	33.12	56.R5
11	-32.00	-54.00	-31.46	-55.05
12	35.00	59.00	34.41	58.00
14	33,50	57.50	33.53	57.56
15	₹5,00	59.00	35.03	58.06
16	35.00	58.00	35.03	58.06
17	35.00	59.50	34.80	59.16
18	12.50	57.00	12.31	56.67
10	34.50	58.50	34.30	58.16
50	34.00	57.50	13.13	56.37
21	36.50	-60.50	15.79	59.31
22	34.00	59.00	13.33	57.R4
23	15.00	54.00	34.41	57.02

600 HOUR TEST SERIES .

B BOOM

• •							•
11711							
تمز							
<u>-</u>			JTRD-9	• 600 HOUR	TEST SERIES	•	
1.				WARE A	*****	•••	
-				B 3ncm			
五十二 一	UNIT	FUEL F'.OW	CB F/A	PERF F/A	777	EPR	THRUST
A.		LBM/'	X100	X100	DEG R		Lat
1	1	-1200.	•3510	3450	-1221.	-1.040	-846.
-	4	1120.	.3590	.2900	1122.	1.060	921.
1/2	6	1040.	4310	.27A0	:203.	-1.100	893.
	7	1090.	.2740	.2940	1194.	-1.040	886.
46	9	-1245.	.3080	3170	1176.	1.070	967.
2 .	10	1070.	.2760	.2950	1194.	1.060	882.
W. W. L. H. W.	11	-925.	4250	.2790	1176.	1.050	848.
7	15	1125.	3930	.2940	1176.	-1.040	907.
-	14	960.	.2670	.2570	1185.	1.060	901.
2	15	1030.	.2800	.2620	1149.	1.060	911.
-	16	990.	.2450	.2520	1140.	1.050	911.
-	17	1030.	.2420	.2670	1113.	1.060	939.
-	18	1000.	.2840	.ZRAO	1158.	1.060	889.
1	19	970.	•2590	.2540	1122.	1.060	915.
2	50	975.	. ?630	.2690	-1212.	1.070	876
	21	1100.	.2710	.2830	1203.	1.070	935.
1	5.5	975.	.2820	.2690	1185.	1.050	905.
1	23	1160.	•3130	.3010	1167.	1.050	882.
TALK SEUL	NOTE	- MINUS SIGNS	S DENOTE OU	TLYING VALUES			
0				139			

JTAD-9 * 600 HOUR TEST SERIES *

MODE 8

UNIT	CORR FU FL	COR CR F/A C	COR PF F/A	CORR TT7 COR	THRUST LRF

1	-1227.	.3380	3330	1176.	R49.
4	1129.	. 3540	.2860	1105.	921•
6	1061.	4170	.2580	1163.	A96.
7	1115.	.2660	.2860	1161.	A94.
9	-1265.	.3010	3090	1144.	971.
10	1089.	.2710	.2980	1167.	887.
11	944.	4110	.2700	1136.	A51.
15	1148.	3790	.2840	1136.	910.
14	960.	.2670	.2580	-11R7.	901.
15	1030.	.2800	.2630	1151.	911.
16	990.	.7460	.2530	1142.	911.
17	1030.	.2390	.2640	1100.	933.
18	1000.	.2810	.2850	1144.	A83.
19	970.	.2560	.2510	1109.	913.
20	996.	.2530	. *590	1165.	A77.
21	1124.	2500	.2720	1154.	976.
55	996.	.2710	•2590	1139.	907.
23	-1191.	.3020	.2910	1124.	A90.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

140

JTBD-9 . 600 HOUR TEST SERIES .

MODE A

UNIT	CO2 CONC PER CENT	CO CONC	HC COVC	NO CONC	NOX COMC
1	.712	123.9	23.1	7.0	7.1
4	.729	124.0	20.2	7.8	8.0
6	476	-152.8	30.4	7.1	-8.8
7	.552	136.1	20.9	6.4	8.5
9	.624	97.8	25.1	3.5	5.0
10	•562	77.6	15.1	5.3	6.2
11	862	-157.6	31.9	5.9	8,5
12	801	115.7	23.4	5.2	7.9
14	•541	AA.2	21.2	5.2	6.2
15	•565	109.7	23.9	5.1	6.2
16	.495	94.8	25.5	4.4	5,2
17	.492	80.7	12.0	8.1	6.4
18	.576	112.8	17.5	4.3	5,6
19	.525	100.4	20.1	5.6	5,3
20	.52	105.6	29.2	2.8	5.7
21	•545	112.1	26.0	4.1	6.1
55	•565	-146.4	8.65	3.9	6.3
23	.626	-143.9	-36.4	6.2	-9.0

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

アンドートングラインストートライト、一大年一十二人

JTRD-9 . 600 HOUR TEST SERIES .

MODE A

UNIT	COS ET	CO EI LB/KLR FII	HC FI	NO EI LB/KLR FU	NOX ET	SMK NUMBER FRONT STOE
1	3072.	34.04	10.91	3.14	3.21	0.00
4	3071.	33.26	9.30	7.42	3.53	0.00
6	3077.	34.10	11.67	2.60	3.24	0.00
7	3051.	47.87	12.64	3.70	4.91	0.00
9	306A.	30.5A	11.47	1.82	2.59	0.00
10	3082.	27.10	9.06	3.02	3.53	0.00
11	3066.	35,65	12.38	2.18	3.16	0.00
12	3084.	29.36	9.84	5•11	3.18	0.00
14	3072.	31.95	13.16	3.11	3.67	0.00
15	3060.	37.81	14.16	2.91	3.53	0.00
16	3059.	37.23	14.96	>.87	3.37	0.00
17	3095.	32.19	8.20	5.29	5.29	0.00
18	3070.	39.23	10.18	2.41	3.14	0.00
19	3064.	37.32	12.45	3.40	3.40	0.00
20	3040.	34.71	18.40	1.70	3.43	0.60
51	3045.	39.91	15.90	2.39	3.56	0.00
55	3027.	-49.95	16.75	2.19	3.55	0.00
23	3037.	44.36	19.28	3.14	4.54	0.00

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

JT80-9 . 600 HOUR TEST SERIES .

MODE 8

\$100 FHC X100 -4.0980 4.9530 4.4980 5.2930 4.4210 4.2150	\$TD FNO X100 -18.8740 21.0130 20.2500 20.1990 22.0720 19.9930 -18.9190
4.9530 4.7510 4.4980 5.2930 4.4210	21.0130 20.2500 20.1990 22.0720 19.9430
4.9530 4.7510 4.4980 5.2930 4.4210	21.0130 20.2500 20.1990 22.0720 19.9430
4.7510 4.4980 5.2930 4.4210	20.2500 20.1990 22.0720 19.9430
4.4980 5.2930 4.4210	20.1990 22.0720 19.9430
5.2930	22.0720
4.4210	19,9430
4.2150	-18,0190
4.8620	20,6400
4.5800	20.4100
4.7160	20.7130
4.6640	20.7130
4,9130	21.3840
4.3980	19.8800
4.7050	20.7790
4.2910	19.6990
4.9840	21.4780
4.6520	20.5820
	20.0860
	4.2910

JT8D-9 . 600 HOUR TEST SERIES .

MODE P

UNTI	NREC CO FT			NR CNOX ET	
1	37.42	11.85	3.90	4.07	0.00
4	34.75	9.62	4.29	4.43	0.00
6	37.56	12.61	3.40	4.23	0.00
7	-52-11	13.50	4.61	6.12	0.00
9	32.87	12.55	2.37	3.37	0.00
10	29.01	9.55	3.46	4.05	0.00
11	39.29	13.38	2.A7	4.17	0.00
12	31.34	10.65	2.78	4.19	0.00
14	31.71	13.11	3.63	4.28	0.00
15	37.67	14.11	3.40	4.12	0.00
16	37.05	14.91	3.35	٦.93	0.00
17	33.11	8.37	-6.34	-6.34	0.00
18	39.30	10.38	2.88	3.76	0.00
10	38.38	13.11	4.07	4.07	0.00
20	47.74	20.04	2.09	4.20	0.00
21	44.97	17.36	2.91	4.34	0.00
22	-56.01	14.27	2,68	4.34	0.00
23	-49.21	20.90	3.42	5.53	0.00

JT8D-9 . 1200 HOUR TEST SERIES .

UNIT	TSO	TSB	AHR TEMP	AMB PRESS	AMR HUMID
	HR	HR	DEG R	IN HG	LB H20/AIR
	*******				*******
14	2718.	1243.	536.2	29.99	.009160
15	2718.	1243.	536.2	29.99	.009160
16	2808.	1333.	531.7	30.18	.013630
17	2758.	1288.	541.7	29.95	.012950
18	2754.	1298.	541.7	29.95	.012950
19	275A.	1288.	541.7	29.95	.012950
23	9870.	1590.	521.7	29.94	.006590

はんとなったがとれるという

Contract of the second

JTAD-9 . 1500 HOUR TEST SERIES .

MODE 1

UNIT	NI SPEED	NZ SPEED	CORP NI	CORR N2
	PER CENT	PER CENT	PER CENT	PER CENT

14	33.50	5A.50	32.95	57.54
15	34.75	59.75	34.18	58.77
16	31.00	-54.00	20.62	-53.34
17	34.00	60.50	33.27	59.20
18	31.50	59.00	30.82	57.73
19	33.00	58.00	32.29	56.76
23	32.25	56.00	32.16	55.84

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

图程:法

JTBD-9 * 1200 HOUR TEST SERIES *

MODE 1

UNIT	FUEL FLOW LAM/HR	CB F/A X100	PERF FA	TT7 DEG R	FPR	THRUST LRF
14	1070.	•3230	.2990	1230.	1,050	899.
15	1070.	4050	.2830	1185.	1.060	923.
16	-925.	•3220	.2890	1230.	1.040	-793.
17	1020.	•2010	.2830	1153.	1.060	933.
18	1025.	•2960	3226	1212.	1.050	904.
19	1000.	.2730	.2910	1117.	1.060	A84.
23	1000.	•3180	.2880	1140.	1.050	666.

J180-9 * 1200 HOUR TEST SERIES *

MODE 1

TIMI	CORR FU FL LRM/HR	COR CH F/A C	XION	CORR TTT COR	THRUST LRF
14	1090.	.3:30	.2900	1190.	901.
15	inen.	. 1910	.2730	1146.	925.
16	445.	.3150	0585	1200.	-800.
17	1043.	.1920	.2710	1104.	934.
14	1048.	.2840	. 3080	1160.	905.
19	1023.	.5620	.2790	-1070.	485.
23	1003.	.3160	.2960	1133.	967.

JT80-9 . 1200 HOUR TEST SERIES .

HODE 1

MC
•
2.5
3.9
3.5
-1.4
3.7
5.2
5,7

JTAD-9 * 1200 HOUR TEST SERIES *

MODF 1

UNIT	CO2 FI	CO ET	HC ET LA/KLA FU	NO FI LR/KLR FU	NOX ET	SMK NUMBER FRONT SIDE
14	3075.	32.54	10.08	.66	-1.21	0.00
15	3074.	31.40	9.65	.63	1.51	0.00
16	3055.	44.64	14.53	1.94	1.94	0.00
17	-3015.	41.94	-27.38	1.52	1.52	0.00
19	3032.	-50.98	15,97	1.50	1.98	0.00
19	-3012.	48.70	-24,49	1.70	3.05	0.00
53	3034.	46.02	17,38	3.70	3.70	0.00

JTBD-9 . 1200 HOUR TEST SERIES .

MODE 1

FCO	FHC	FNO	STO FCO	STD FHC	STD FNO
X100	x100	X100	X100	X100	X1n0
4.0940	5.0010	17.7490	3.7190	4.6440	20,3990
-4.4040	-5.4780	18.4070	3.9960	5.0730	21.1450
3.0870	3,9420	-14.2190	-2.8680	-3.7190	-17.9120
-4.5510	-5.3230	17.5210	4.0980	4.8490	21.4110
4.2620	5.1080	16.7790	3.7630	4.6460	20,5180
4.9160	4.8190	16.2880	3.5500	4.3890	19,9290
3.4120	4.3140	17.2030	3,3570	4.2600	19,3830
	X100 -4.0940 -4.4040 3.0870 -4.6590 4.2620	X100 X100 4.0940 5.0010 -4.4040 -5.4780 3.0870 3.9420 -4.6500 -5.3230 4.2620 5.1080 4.0160 4.8150	X100 X100 X100 4.0940 5.0010 17.7490 -4.4040 -5.4780 18.4070 3.0870 3.9420 -14.2190 -4.6590 -5.3230 17.5210 4.2620 5.1080 16.7790 4.0160 4.8190 16.2880	X100 X100 X100 X100 X100 4.0940 5.0010 17.7490 3.7190 -4.4040 -5.4780 18.4070 3.9960 3.0870 3.9420 -14.2190 -2.8680 -4.6590 -5.3230 17.5210 4.0980 4.2620 5.1080 16.7790 3.7630 4.0160 4.8190 16.2880 3.5500	X100 X100 X100 X100 X100 X100 4.0940 5.0010 17.7490 3.7190 4.6440 -4.4040 -5.4780 18.4070 3.9960 5.0730 3.0870 3.9420 -14.2190 -2.8680 -3.7190 -4.6500 -5.3230 17.5210 4.0980 4.8490 4.2620 5.1080 16.7790 3.7630 4.6460 4.0160 4.8190 16.2880 3.5500 4.3890

JTBD-9 * 1200 HOUR TEST SERIES *

MODE 1

UNIT	NREC CO FI	NREC HC EI	NRE CNO ET	NR CNOX ET	SHK NUMBER
	LB/KLR FU	LAZKLA FU	LR/KLA FU	LA/KLA FIJ	CORRECTED
	•••••	•••••			
14	35.42	10.85	.76	-1.39	0.00
15	34.40	10.43	.72	1.74	0.00
16	49.05	15.40	7.44	7.44	0.00
17	47.59	-30.05	1.86	1.86	0.00
19	-57.75	17.56	1.84	2.42	0.00
19	-55.10	-26.89	2.08	3.70	0.00
23	45.78	17.60	4.17	4.17	0.00

JT8D-9 . 1200 HOUR TEST SERIES .

MODE 2

UNIT	N) SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ
	***********	*********		
14	37.00	62.00	36.39	60,-98
15	37.50	62.00	16.88	60.98
16	3A.50	65.00	38.03	61.24
17	37.00	62.00	36.21	60.67
18	37.50	62.00	36.70	60.67
19	-36.50	-61.50	35.72	60.18
23	40.00	62.00	39.88	61.82

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

大学,

JTAD-9 . 1200 HOUR TEST SERIES .

MODE 2

UNIT	FUEL FLOW LBM/HR	CR F/A ×100	PERF F/A	TT7 NEG R	EPR	THRUST
14	1190.	•3170	.3000	1221.	1.070	1020.
15	1150.	3810	.2900	1185.	1.070	1020.
16	1200.	•5950	.2950	1225.	1.070	1033.
17	1100.	.1920	.2A20	1167.	1.050	999.
18	1240.	.2700	.3160	1212.	1.070	999.
19	1125.	.2720	.2900	1117.	1.060	963.
23	1250.	•3130	.3000	1140.	1.080	1084.

JT80-9 . 1200 HOUR TEST SERIES .

MODE 2

UNIT	CORR FU FL	COR CA F/A CO	X100	CORR TT7 COR	THRUST

14	1203.	.3070	.2900	1191.	1023.
15	1172.	•3690	.2810	1146.	1023.
16	1225.	•2850	.ZRRO	1195.	1042.
17	1125.	1840	.2700	1117.	1000.
18	1268.	.2580	.3030	1160.	1000.
19	1151.	.2610	.2780	-1070.	963.
23	1254.	•3110	.2980	1133.	1085.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

JT80-9 * 1200 HOUR TEST SERIES *

MODE S

UNIT	COR CONC	CO CONC	HC CONC	NO CONC	NOX CONC

14	.648	80.0	16.A	1.9	-3.7
15	780	107.6	16.2	-1.2	4.4
16	.597	75.5	19.5	4.8	5.0
17	. 345	64.5	-28.5	2.3	-2.0
18	.549	85.2	16.1	3.7	4.7
19	.549	105.8	-25.1	3.0	5.7
23	.647	89.0	12.8	9.6	7,5

JT8D-9 . 1200 HOUR TEST SERIES .

MODE 2

UNIT	COS EI	CO EI	HC EI	NO EI	NOX ET	SHK NUMBER FRONT STDE

14	3091.	24.29	8.75	.92	-1.82	0.00
15.	3092.	27.15	7.01	50	-1.83	0.00
16	3094.	24.91	11.06	2.59	2.70	0.00
17	-3035.	34.37	-24.54	1.91	-1.91	0.00
18	3081.	30.44	9.91	2.18	2.75	0.00
19	-3054.	-37.80	-15,40	1.77	3.30	0.00
23	3101.	24.61	6.76	4.83	4.A3	0.00

JIAD-9 . 1200 HOUR TEST SERIES .

MODE 2

UNIT	FCD X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
14	5.0030	5.9180	19.6080	4.5320	5.4840	22.5060
15	5.0030	-6,0560	19.6080	4.5320	5.6030	22.5060
16	4.9740	5.8580	18.0340	4.5970	5.5100	27.6660
17	5.0620	5.7010	14.2740	4.4540	-5.1AR0	22.3140
18	5.0620	5.8540	18.2740	4.4540	5.3160	22.3140
19	4.9220	5.7230	18.0220	4,3330	5.1990	22.0110
23	4.9310	5.7900	20.4470	4.7480	5.7140	23.0100

JT8D-9 * 1200 HOUR TEST SERIES *

MODE 2

UNI	T NREC CO EI		NRE CNO EI LB/KLB FU		SMK NUMBER CORRECTED
			********		*******
14	26.82	9.44	1.06	-2.09	0.00
15	29.98	7.58	5A	-2.10	0.00
16	26.95	11.76	3.25	3.40	0.00
17	-39.06	-26.96	2.33	-2.33	0.00
16	34.60	10.91	2.66	3.36	0.00
19	-42,93	-16.96	2.16	4.03	0.00
2	25.03	6.85	5.44	5.44	0.00

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

1月光期的以来又多多多人

JTRO-9 * 1200 HOUR TEST SERIES

MODE 3

UNIT	NI SPEED	N2 SPEED	CORP N1	CORR NZ
	PER CENT	PER CENT	PER CENT	PER CENT
14	97.00	96.00	95.40	94.42
15	98.00	96.00	96.39	94.42
16 .	96.00	95.00	94.82	93.83
17	97.50	96.00	95.41	93.94
18	97.00	97.00	94.92	94.92
19	98.00	97.00	95.90	94.92
23	94.50	93.00	94.23	92.73

JTBD-9 * 1200 HOUR TEST SERIES *

MODE 3

UNIT	FUEL FLOW	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF

14	-9700.	.9780	8460	1527.	2.040	14343.
15	9050.	-1-1100	.7850	1513.	2.040	14343.
16	8950.	.9930	,7750	1477.	2.020	14044.
17	9000.	.9070	.7900	-1554.	2.040	14365.
18	8600.	1.0330	.7570	1500.	2.040	14365.
19	9175.	•9610	.8040	1464.	2.040	14365.
23	-9375.	.9870	9140	1500.	2.040	14369.

JTAD-9 . 1200 HOUR TEST SERIES .

MONF 3

UNIT	CORR FILEL	COR CR F/4 X100	KIUU COG te tiv	CORR TTT COR	THRUST LBF
		*********	********	*******	
14	-9RR5.	.9470)P[A	1477.	14377.
15	9223.	-1.0740	.7400	1464.	14377.
16	4130.	.9690	.7560	1441.	14163.
17	9205.	.8680	.7570	14AA.	14377.
18	A79A.	.9890	.7250	1436.	14377.
19	9 184.	.9200	.7690	-1407.	14377.
23	9407.	.9820	8090	1491.	14377.

JTBD-9 . 1500 HOUR TEST SERIES .

MODE 3

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC

14	2.049	13.7	9.6	A6.7	80.8
15	-2.329	12.8	7.5	96.2	87.3
16	2.087	14.4	7.5	79.9	74.1
17	1.894	13.2	8.55	77.5	72.5
18	2.153	-22.8	-47.6	75.4	74.4
19	2.014	11.3	9.2	90.4	85.8
23	2.055	13.9	-59.1	88-1	86.4

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

对我们对人, 计相

JTAD-9 . 1200 HOUR TEST SERIES .

MODE 3

UNI	CO2 ET	CO EI LR/KLB FU	HC EI	NO EI LA/KLA FU	NOX EI LR/KLB FU	SMK NIMAER FRONT SIDE
14	3149.	1.34	1.44	13.92	13.92	12.24
15	3149.	1.10	1.10	13.60	13.60	70.46
16	3159.	1.39	1.23	. 2 . 45	12-45	11.79
17	3142.	1.39	4.14	13.44	13.44	27.15
18	-3132.	2.11	-7.5R	11.46	11.46	30.26
19	3150.	1.12	1.57	14.78	14.78	10.26
23	-3129.	1.35	-9.94	14.02	14.02	15.57

JTB0-9 • 1200 HOUR TEST SERIES •

HODE 3

UNIT	FCO X100	FHC X100	FN0 x100	STO FCO	STD FHC	STD FNO
	********			*******		
14	147.1140	132.7660	94.2000	120.0570	114.3580	105,5550
15	-179.2910	-148.2650	94.2000	-143.8880	126.5940	105.5550
16	137.0830	124.9140	83,3600	117.2340	111.1490	102.9420
17	133.3560	125.2550	87.3920	103,6010	103.8710	103.4360
18	-174.62A0	-149.4230	90.9590	132.6390	188.3630	107.5500
19	-157.0590	-140.7670	90.9590	120.6610	. 115.9740	107.5500
23	111.4140	105.5710	87.5490	107.6890	102.9600	-98.2120

JTBD-9 . 1200 HOUR TEST SERIES .

MODE 3

UNIT	NREC CO EI	NREC HC ET	NRE CHO FT	NR CNOX ET	SMK NUMBER
	FB/KFH EA	LB/KLB FU	LR/KLR FU	L9/KL9 FU	CORRECTED
••••					
14	1.64	1.67	15.40	15.60	32.24
15	1.38	1.29	15.24	15.24	30.45
16	1.63	1.39	15.63	15.63	31.79
17	1.79	4.99	15.90	15.90	27.15
18	-2.7A	-9.26	13.55	13.55	30.26
19	1.46	1.90	17.48	17.4A	30.26
23	1.40	-10.09	15.74	15.74	35.57

JTAD-9 . 1200 HOUR TEST SERIES .

HODE 4

UNIT	NI SPEFD	NZ SPEED	CORP NI	CORR N2
• • • • • • • • • • • • • • • • • • • •	PER CENT	PER CENT	PER CENT	PER CENT
	***************************************	********	***********	*******
14	90.00	93.50	A9.52	91.96
15	91.00	93.00	89.50	91.47
16	90.00	92.00	88.89	90.87
17	91.00	94.00	49.05	91.98
18	91.00	94.00	A9.05	91.98
19	91.00	94.00	A9.05	91.98
23	89.00	91.00	88.74	90.74

JTAD-9 . 1500 HOUR TEST SERIES .

MODE 4

UNIT	FUEL FLOW LRM/HR	CB F/A ×100	PERF F/A	TT7 DEG R	EPR .	THR(IST LRF
14	-7950.	.8310	7310	1446.	1.850	12271.
15	7450.	9610	.6780	1432.	1.450	12271.
16	7300.	.8290	.5620	1437.	1.830	11962.
17	7500.	.7240	.6900	1455.	1.850	17290.
18	7200.	.8480	.6630	1437.	1.950	12290.
19	-77nn.	.8010	7090	1392.	1.950	12290.
53	-7950.	.9470	7200	1437.	1.850	12294.

JT8D-9 . 1200 HOUR TEST SERIES .

MO 2 4

UNIT	CORR FU FL	COR CR F/A C	OR PF F/A	CORR TT7 COR	THRUST LBF
	*********	••••••	•••••••		
14	-8102.	.8040	7070	1399.	12300.
15	7592.	9290	.4560	1385.	12300•
16	7454.	.8080	.6450	1402.	12064.
17	7671.	.6930	.6610	1393.	12300.
18	7364.	.8120	•6350	1376.	12300.
19	-7875.	.7670	.6790	-1333.	12300.
23	-7977.	.8420	7160	-1428.	12300.

JT80-9 . 1500 HOUR TEST SERIES .

MODE 4

TINU	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
14	1.738	10.9	7.6	57.6	55.2
15	-2.011	14.6	7.4	61.4	57.9
16	1.738	13.6	5.4	56.3	52.9
17	1.507	14.2	77.8	52.4	49.9
18	1.759	15.3	-!:6.9	58.5	56.9
19	1.674	13.0	1.7	63.0	61.5
23	1.760	15.5	-51.3	64.7	63,3

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

11311

JT80-9 * 1200 HOUR TEST SERIES *

MODE 4

UNIT	COS EI	CO EI	HC EI LB/KLB FU	NO EI LB/KLB EU	NOX EI LB/KLB FU	SMK NIMRER FRONT SIDE
14	3147.	1.26	1.51	10.90	10.90	10.26
15	3148.	1.45	1.26	10.05	10.05	29.80
16	3159.	1.58	1.28	10.70	10.70	30.26
17	3139.	1.88	5.19	11.49	11-49	27.15
18	-3123.	1.73	-11.04	10.85	10.85	28.95
19	3148.	1.55	5.00	12.38	12.38	28.95
23	-312A.	1.75	-9.97	12.03	12.03	35.33

JTBD-9 . 1200 HOUR TEST SERIES .

MODE 4

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO	STD FHC X100	STO FNO
	**********	•••••				
14	95.7530	97.5040	84.6070	79.8930	85.08A0	94,9990
15	-105.2430	-103.2350	82.7570	-89.1930	89.4990	92.9710
16	A2.5170	A6.1990	72.8010	71.9160	77.6260	90,0480
17	87.9160	93.6580	A0,15A0	70.3730	79.0450	95.0480
19	-102.5170	-102.4130	80.1680	80.7960	85.6900	95.0480
19	96.5500	98.9280	80.1690	74,5580	A3.0540	95.0480
23	76.1110	80.3150	79.7090	73.8170	76.4950	89.4620

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

WALL VANAMIAN

JT8D-9 * 1200 HOUR TEST SERIES *

MODE 4

UNIT	NREC CO EI		NRE CNO EI		SMK NUMBER CORRECTED
	********		********		
14	1.51	1.74	12.24	12.24	30.26
15	1.76	1.46	11.29	11.29	29.80
16	1.41	1.42	13.25	13.25	30.26
17	2.35	6.15	13.63	13.63	27.15
18	2.20	-13.20	12.87	12.87	28.95
19	1.96	2.38	14.69	14.69	28.95
53	1.81	-10.21	13.50	13.50	35.33

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

アンストンスとというないというないというというというという

JTBD-9 . 1200 HOUR TEST SERIES .

MODE 5

UNIT	NI SPEED	N2 SPEED	COPR NI	CORR N2
	PER CENT	PER CENT	PER CENT	PER CENT
			********	********
14	90.50	88.50	79.18	87.04
15	A0.50	98,00	79.18	86.55
16	80.00	88.00	79.02	86.92
. 17	A1.50	89.00	79.75	87.09
19	91.00	89.00	79.26	A7.09
19	81.00	. 80,00	79.26	87.09
23	79.00	86.25	78.77	86.00

JT80-9 + 12 HOUR TEST SERIES +

MODE 5

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/4 X100	TT7 DEG R	EP9	THRUST LRF
14	4560.	•5950	.4790	1320.	1,540	9580.
15	4840.	5800	•5090	1315.	1,540	A580.
16	4775.	-5690	.4980	1311.	1.530	8403.
17	4950.	.4950	.5190	1302.	1.540	A593.
18	4840.	-6010	.5110	1320.	1.540	4593.
19	5000.	•5570	.5280	1257.	1,540	A593.
23	4800.	.6440	.5020	1293.	1,540	A596.

JIRO-9 . 1500 HOUR TEST SERIES .

MODE 5

INIT	COLP FU FL	COR CR F/A	COR PF F/A	CORR TT7 CO	R THRUST

14	4647.	•5750	4640	1277.	8600.
15	41132.	•6580	.4920	1272.	8600.
16	GRYF.	•5550	.4860	1279.	8475.
17	5063.	.4740	.4970	1245.	8600.
1 A	4950.	.5750	.4900	1264.	8600.
19	5114.	.5340	.5060	-1203.	860n ·
23	4815.	.6400	.4990	1295.	8600.

JTBU-9 . 1200 HOUR TEST SERIES .

MODE 5

UNIT	COS CONC	CO CONC	HC CONC	NO CONC	NOX CONC
				********	*******
14	1.238	16.8	11.2	30.8	30.6
15	-1.418	20.5	7.0	30.7	30.6
16	1.188	18.9	6,5	29.1	28.7
17	1.027	16.4	50.0	27.6	26.6
18	1.235	19.9	-65.5	32.4	32.4
19	1.160	16.4	10.5	33.2	32.4
23	1.334	19.0	-38,8	39.4	38.3

JTBD-9 * 1200 HOUR TEST SERIES *

400F 5

INIT	COS ET	CO ET	HC FT	NO FI LA/KLA FU	NOX ET	SMK NIMBER FRONT SIDE
••••				*********		
14	3141.	2.72	3.11	A.17	8.17	24.34
15	3144.	29	1.69	-7.13	-7.13	23.68
14	3155.	3.20	1.48	9.09	8.09	23.68
17	3137.	3.19	6.66	R.87	8.82	20.39
19	-3101.	3,19	-18.26	A.50	. 8.62	74.34
19	3147.	5.85	3.10	9.41	9.41	23.68
23	3174.	2.84	-9.95	9.66	9.65	27.81

JTBD-9 * 1200 HOUR TEST SERIES *

MODE 5

UNIT	FCO	FHC	FNO	STD FCO	STD FHC	STO FNO
	X100	x100	x100	X100	x100	X100

14	42.2170	51.5870	64.3180	36,3930	45.9510	72.5490
15	43.6750	51.8440	62.5950	37.4450	46.0440	70.6380
16	39.4530	49.1100	58,0680	35.2090	44.8790	72.0560
17	39,9920	50.3850	60,9520	33.2720	43.5920	72.7300
18	44.4010	53.6540	60.9520	36.5760	46.1530	72.7300
19	42.4960	52.2640	60,9520	35.1540	45.0660	72.7300
23	35.5720	44.1100	61.0090	34.6720	43.2410	68.5>50

JTRO-9 . 1200 HOUR TEST SERIES .

MODE 5

UNIT	NREC CO FI	NREC HC ET	NRE CHO ET	NR CNOX ET	SMK NUMBER
	LR/KLR FU	LA/KLA FU	LA/KLA FII	LA/KLA FU	CORRECTED
	******				*******
14	3.15	3,49	9.21	9.21	24.34
15	3,37	1.90	05	-A.05	23.68
16	1.58	2.06	10.04	10.04	23.69
17	7,83	7.69	10.52	10.52	20.39
18	3.87	-21.23	10.14	10.78	24.34
19	3.41	3,60	11.23	11.23	23.69
23	2.91	10.15	10.45	10.45	27.81

JT8D-9 . 1200 HOUR TEST SERIES .

MODE 6

UNIT	N1 SPEFO PER CENT	NE SPEED PER CENT	CORR NI	CORR NZ
****	-54 (54)			
14	62.00	79.50	60.98	78.19
15	61.25	78.75	60.24	77.45
16	63.00	79.00	65.83	78.03
17	62.00	79.50	60.67	77.79
18	62.00	79.00	49.67	77.30
19	62.00	80.00	40.67	78.28
23	60.75	77.00	40.58	76.78

UTBD-9 . 1200 HOUR TEST SERIES .

MONE 6

UNIT	FUFL FLOW	CB F/A	PERF F/A	TTT DEG R	FPR	THRUST

14	2450.	3380	.3600	1176.	1.230	4016.
15	2330.	.3420	.3440	1140.	1.230	4016.
16	2475.	.2950	. 1510	1176.	1.230	1991.
17	2355.	.2330	.3510	1140.	1.230	4022.
18	2300.	.2750	. 7470	1185.	1.230	4022.
19	2368.	.2700	.3530	1104.	1.230	4022.
53	2475.	4090	.3630	1144.	1,230	4023.

JT80-9 * 1200 HOUR TEST SERIES *

MODE 6

UNIT	CORR FU FL LRM/HR	COR CR F/A	COR PF F/A X100	CORR TT7 COR	THRUST LAF
14	2497.	•3270	.3480	1137.	4025.
15	2375.	•3310	.3360	1103.	4025.
16	2527.	.2530	.3430	1147.	4025.
17	2409.	.2230	.3360	1091.	4025.
18	2352.	•2630	.3280	1134.	4025.
19	2421.	.2580	.3780	-1057.	4025.
23	2483.	4060	. 7600	1138.	4025.

JTAD-9 * 1200 HOUR TEST SERIES *

MODE 6

UNIT	COS CONC	CO CONC	HC CONC	NO CONC	NOX CONC
14	.498	35,3	10.5	7.6	9.7
15	.705	46.3	9.6	5.6	A.5
16	.411	3A.3	9.1	8.6	10.5
17	.476	35.5	18.1	7.3	7.8
18	.55A	34.0	-35.7	8.6	1.0.9
19	.554	42.0	14.5	9.0	10.2
53	445	42.9	16.7	-17.4	16.5

JT80-9 * 1200 HOUR TEST SERIES *

MODE 6

TINU	CO2 ET	CO ET	HC ET	NO FI LAZKLA FU	NOX EI	SMK NUMBER FRONT SIDE
	********			*******		
14	3124.	10,05	5.14	3.56	4.53	7.89
15	3120.	13.05	4.65	-2.60	3.93	6.62
16	3131.	12.48	5.10	4.59	5.47	8.61
17	3097.	14.71	12.87	4.94	5.27	7.89
18	-3076.	13,34	-21.49	4.97	6.26	7.28
19	3108.	15.01	9.90	5.26	5.99	8.55
23	3124.	10.11	6.56	6.72	6.72	12,58

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

はいったとというできる

JTBD-9 . 1200 HOUR TEST SERIES .

MODE 6

UNIT	FCO	FHC	FNO	STO FCO	STD FHC	STO FNO
	x100	x100	KIOO	XIOO	X100	X100
•	*********	*********				
14	13,6740	20.1779	40.1550	12.1800	18.3760	45.6250
15	12.7840	18.9850	38.7040	11.4000	17.3050	44.0000
16	12.7590	19.1790	35.2790	11.6700	17.8210	45.2420
1	(5.01.140	1761770	3346140	1100100	17.00.13	43.2720
17	12.5920	19.0910	37.1260	10.9200	16.9970	44.7450
18	12.3840	18.6570	34.2190	10.7240	16.5970	43.6749
19	13.5360	20.2220	38.0430	11.6990	17.9640	45.8280
1,4	1 26 3 140	1002720	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11.0770	1,,,,,,,,,	4700700
23	11.5210	17.1700	37.8190	11.2920	16.8950	42,5130

JTAD-9 * 1200 HOUR TEST SERIES *

MODE 6

UNIT	NREC CO ET	NREC HC EI	NRE CHO EI	NR CNOX ET	SMK NUMBER
	LB/KLB FU	LB/KLB FU	LR/KLB FU	LR/KLR FU	CORRECTED
		*****	********		
14	11.28	5.64	4.05	5.15	7.89
15	14.64	5.10	-2.96	4.47	6.62
16	13.64	5.48	5.73	6.82	6.61
17	16.96	14.45	5.96	6.36	7.89
18	15.41	-24.15	6.00	7.54	7.28
19	17.37	10.02	6.34	7.22	8.55
53	10.32	6.67	7.55	7.55	12.58

JTBD-9 * 1200 HOUR TEST SERIES *

MODE 7

UNIT	NI SPEFO PER CENT	NZ SPETO PER CENT	CORP NI PER CENT	COPR NZ
14	36.75	62.00	36.15	60.98
15	37.75	65.00	37.13	60.99
16	38.00	62.00	37.53	61.24
17	37.50	62.00	36.70	60.67
18	37.00	62,00	36.21	60.67
19	-36.00	62,00	-35.23	60.67
23	-40.00	62.00	79,44	61.82

JT80-9 + 1200 HOUR TEST SERIES +

MODE 7

UNIT	FUEL FLOW LBM/HR	CB F/A	PERF F/A	TT7 DEG R	EPR	THEUST LAF
14	1050.	.2860	.2650	1176.	1.060	1020.
15	1100.	•3330		115A.	1.070	1020.
16	1150.	.2730	.2850	1176.	1.790	1033.
17	1075.	.1920	.2740	1159.	1.070	999.
18	1150.	•2560	.2950	1195.	1.070	999.
19	1068.	.2430	.2770	1104.	1.060	,47.
23	1250.	-2970	.3000	1113.	1.080	i084.

JT80-9 • 1200 HOUR TEST SERIES •

MODE 7

UNIT	CORR FU FL	COR CR F/A C	OR PF F/A C	DEG R	THRUST LBF
			*		
14	1070.	.2770	.2590	1137.	1023.
15	1121.	•3220	.76A0	1120.	1023.
16	1174.	•2660	.2780	1147.	1042.
17	1099.	.1840	.2420	1109.	1000.
18	1176.	•2450	.2A20	1134.	1000.
19	1092.	. • 2330	.2660	-1057.	1000.
23	1254.	.2950	.2980	1106.	1085.

JT90-9 * 1200 HOUR TEST SERIES *

MODE 7

UNIT	COS CONC	CO CONC	HC CONC	NO CONC	NOK CONC
14	.584	73.8	15.3	1.9	4.1
15	.679	102.7	17.1	1.2	4.2
16	.557	AR.4	17.9	4.0	5.9
17	.386	74.5	20.9	1.8	-3.0
18	.516	91.0	-29.3	3.1	5.7
19	.489	10A.2	24.0	3.7	4,8
53	.605	95.2	19.2	9.0	7.8

JTBD-9 . 1200 HOUR TEST SERIES .

MODE 7

UNIT	COS EI	13 00	HC EI	NO EI	NOX EI	SMK NUMBER
	LB/KLB FU	LB/KLB FU	LAZKLA FU	FB/KFB JA	LA/KLA FU	FRONT SIDE
	*********		********			
14	3090.	24.87	A.84	1.07	5.29	0.00
15	3084.	59.69	A.4A	.57	-2.01	0.00
16	3084.	31.17	10.82	2.34	3.43	0.00
17	3047.	37.48	19.07	1.50	2.46	0.00
18	3050.	34,23	-18.93	1.89	3.50	0.00
19	-3044.	-47.86	16.34	5.09	3.11	0.00
53	3080.	30,85	10.70	4.80	4.40	0.00

JTAD-9 * 1200 HOUR TEST SERIES *

MODE 7

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO	STD FHC	STD FNO
••••			*********		•••••	
14	5.0030	5.8530	19.6080	4.5320	5.4280	22.5060
15	5.0030	5.9520	19.6090	4.5320	5.5130	22.5060
16	4.9740	5.8200	18.0340	4.5970	5.4760	22.6460
17	5.0620	5.7000	18.2740	4.4540	5.1870	22.3140
18	5.0620	5.9270	18.2740	4.4540	5.2930	22.3140
19	5.0620	5.9710	18.2740	4.4540	5.2720	27.3140
23	4.8310	5.7590	20.4470	4.7480	5.6830	. 23.0300

JTRO-9 . 1200 HOUR TEST SERIES .

MODE 7

UNIT	NREC CO ET	NREC HC EI LB/KLR FU		NR CNOX ET	SMK NUMBER CORRECTED
				•••••	
14	27.45	9,53	1.23	2.63	0.00
15	32.79	9.16	.66	-5.31	0.00
16	33.73	11.50	2.95	4.31	0.00
17	-42.60	-19.85	1.83	3.00	0.00
18	38.91	-20.84	2.31	4.27	0.00
19	-48.72	-17.98	2.56	3.79	0.00
23	31.38	10.85	5.41	5.41	0.00

JTAD-9 . 1200 HOUR TEST SERIES .

MODE B

UNIT	NI SPEFO PER CENT	NZ SPFEO PER CENT	CORP NI PER CENT	CORR NO

14	35.50	-60.50	34.92	59.50
15	36.25	60.00	35.65	59.01
16	35.00	58.00	34.57	57.29
17	35.00	59.50	34.25	58.22
19	33.00	58.00	35.29	56.75
19	34.50	58.50	33.76	57.74
23	35.00	-56.00	35.90	-55-84

JT80-9 . 1200 HOUR TEST SERIES .

MODE 8

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
14	1025.	.2930	• 2660	1176.	1.050	938.
1,5	1050.	•3530	.2700	1158.	1.060	928.
16	1000.	.2820	.2580	1176.	1.050	888.
17	1000.	.2100	.2650	115A.	1.070	914.
18	1050.	-2640	3060	1185.	1.060	884.
19	975.	.2440	.2640	1104.	1.060	894.
23	1000.	. 2970	.2530	1104.	1.050	866.

JTAD-9 * 1200 HOUR TEST SERIES *

MODE 8

UNIT	CORP FU FL LBM/HR	COR CR F/A C	OR PF F/A	CORR TT7 COR	THRUST LBF
14	1045.	.2830	.2570	1137.	940.
15	1070.	•3410	.2610	1120.	930.
16	1021.	•2750	.2510	1147.	R96.
17	1027.	.2010	.2540	1109.	914.
18	1074.	•2530	.2930	1134.	485.
19	997.	• 2330	.2530	-1057.	895.
23	1003.	.2950	.2510	1097.	867·

JTBD-9 . 1200 HOUR TEST SERIES .

MODE 8

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC

14	•596	80.3	19.2	1.7	4.0
15	.718	117.6	20.7	.8	4.9
16	•571	110.7	22.1	3.5	5.7
17	.421	83.7	25.0	1.4	-2.6
18	.529	115.2	31.4	2.4	4,8
19	.487	125.6	28.3	2.5	4,4
23	.594	141.0	-34.4	8.0	6.7

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

ストングラーでは、からいとうできているという

JTHD-9 * 1200 HOUR TEST SERIES *

MODE 8

UNIT	COP ET	CO EI LR/KLR FU	HC ET LBZKLB FU	NO FI LA/KLA FU	NOX ET	SMK NUMBER FRONT SIDE
14	3082.	26.41	10.84	.92	2.19	0.00
15	3077.	32.07	9.70	.35	2.19	0.00
16	3070.	37.88	13.01	1.97	3.20	0.00
17	3041.	38.50	19.78	1.07	2.14	0.00
18	3036.	42.05	19.66	1.42	2.89	0.00
19	-3025.	-49.70	. 19.21	1.60	2.88	0.00
23	3034.	45.80	19.19	4.25	4.25	0.00

JT80-9 . 1200 HOUR TEST SERIES .

HODE 8

UNIT	FCO	FHC	FNO	STD FCO	STD FHC	STO FNO
	X100	X100	X100	X100	X100	X100
14	-4.59R0	-5.4620	18.8050	4.1700	5.0700	21.5960
15	-4.4680	-5,4440	18.5390	4.0540	5.0470	21.2950
16	3.9550	4.8060	16.0920	3.6640	4.5290	20.2470
17	4.3890	5.0860	17.0250	3.8720	4.6350	20.8140
18	4.0160	4.8040	16.2880	3.5500	4.3770	19,9290
19	4.1380	4.8940	16.5320	3.6550	4,4600	20.2220
23	3.4120	4.2R40	17.2030	3.3570	4.2300	-19,3A30

JTAD-9 * 1200 HOUR TEST SERIES *

MODE 8

SMK NUMBER	NP CNOX ET	NRE CHO ET	NPEC HC EI	NREC CO FI	UNIT
CORRECTED	LA/KLA FU	LA/KL9 FU	LR/KLR FII	LB/KLB FU	

0.00	2.51	1.06	11.68	29.12	14
0.00	2.51	.40	10.47	35.35	15
0.00	4.02	2.4R	13.80	40.88	16
0.00	2.62	1.31	-21.70	43.63	17
0.00	3,51	1.73	-21.58	47.58	14
0.00	3.52	1.95	-21.0A	-54.26	19
0.00	4.79	4.79	19.42	46.55	23

JT80-9 . * 1800 HOUR TEST SERIES .

UNIT	TSO HR	TSB	AMH TEMP	IN 46	LR HZOZATR
		*****		********	*******
2	16979.	1884.	474.7	30.36	.003100
7	15594.	1753.	522.2	30.14	.006970
. 9	17277.	1961.	491.7	29.99	.003430
10	16987.	1853.	500.7	29.99	.004530
11	9096.	1746.	517.7	30.02	.006830
12	15611.	1746.	517.7	30.02	.006830
17	3494.	202 1.	507.2	29.93	.005390
18	3494.	2024.	507.2	29.93	.005390
19	3494.	2024.	507.2	29.93	.005390
20	3629.	1960.	475.7	30.21	.003110
21	3629.	1960.	475.7	30.21	.003110
25	3629.	1960.	475.7	30.21	.003110
23	. 10224.	1944.	476.7	30.35	.003090

JTAD-9 . 1800 HOUR TEST SERIES .

MODE 1

UNIT	NI SPEFO PER CENT	NZ SPEED PER CENT	CORP NI	CORR NZ
	*********	••••••	******	
>	34.50	56.00	36.06	58.54
•	33.00	58.00	12.89	57.A1
9	34.10	56.50	14.47	58.03
10	33,00	55.01	13.59	55.99
11	33.00	56.00	33.03	56.05
12	35.00	59.00	15.03	59.06
17	36.00	60.00	16.41	60.69
19	13.25	57.25	33.42	57.90
19	13.75	58.00	34.13	58.65
50	36.00	58.00	17.59	60.56
71	-37.00	59.00	-3A.64	61.61
25	35.00	59.00	16.55	61-61
23	32.00	55.00	13.38	57.37

JT80-9 . 1900 HOUR TEST SERIES .

MODE 1

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TTT DEG R	EPR -	THRUST
5	-1210.	1340	.2870	1068.	1.050	908.
7	1075.	•3260	.2960	1158.	1.040	900.
9	1160.	.2680	.2440	1104.	1.060	908.
10	1065.	.2630	.2790	1149.	1.070	868.
11	-1200.	•3670	3280	1176.	1.060	868.
12	-1200.	.7810	. 3050	1140.	1.050	928.
17	1090.	.2380	.2700	1068.	1.050	-1000.
18	1050.	.2810	.2770	1122.	1.050	908.
19	1010.	.2640	.2610	1081.	1.050	923.
20	1150.	1610	.2690	1059.	-1.080	982.
21	1150.	.2620	.2650	1068.	-1.090	-1059.
55	1050.	.2670	.2490	106A.	1.070	-1059.
23	1050.	1690	.2680	1050.	1.060	885.

JTHD-9 * 1800 HOUR TEST SERIES *

MODE 1

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 COR	THPUST LOF
2	1174.	1460	3140	1167.	921.
7	10A6.	. 7240	.2940	1150.	906.
9	1132.	.2820	.3040	1164.	911.
10	1049.	.2720	.2890	1190.	A70.
11	-1207.	•36A0	7290	1178.	A71.
12	-1203.	.3820	.3050	1142.	931.
17	1078.	.2430	.2760	-1092.	-1000.
19	1039.	DARS.	.2840	1147.	908.
19	990.	.2700	.2670	1106.	923.
20	1112.	1750	.2930	1154.	=992.
21	1112.	.2860	.2890	1164.	-1069.
25	1015.	.2910	.2710	1164.	-1069.
23	1021.	1840	. 5920	1142.	A97.

JTAD-9 . 1800 HOUR TEST SERIES .

MODE 1

UNIT	COZ CONC PER CENT	CO CONC	HC CONS	NO CONC	NOX CONC
	*******		********		
2	267	72.1	13.0	4.7	3.2
7	.654	114.4	16.1	9.4	7.5
9	.538	123.8	25.5	7.4	4.2
10	.533	102.1	15.9	9.8	5.3
11	.744	154.0	25.1	-10.3	-8.7
12	.780	118.9	12.6	-13.4	-8.7
17	.4A3	79.2	13.4	9.9	7.1
18	.565	134.8	24.3	8.3	5,9
19	.532	112.0	21.8	7.3	5,5
20	316	108.7	23.0	8.2	5,6
51	.514	-177.6	-47.1	9.9	7.5
55	•538	106.4	25.4	9.5	4.9
23	-,325	146.0	-39.8	6.3	3,5

JTRD-9 * 1800 HOUR TEST SERIES *

MODE 1

UNIT	CO2 F1	CO ET	HC ET	NO FI	NOX ET	SHK NUMBER
	LB/KLB FII	LA/KLA FU	LA/KLA FU	LA/KLA FU	LA/KLA FU	FRONT STOE
	-					
5	3070.	-52.11	16.14	5.53	5.53	0.00
7	3078.	33.75	R.16	4.54	4.54	0.00
.9	3043.	44.56	15.76	4.36	4.36	0.00
10	3072.	37.47	10.01	-5.AA	-5.AS	0.00
11	3061.	40.36	11.12	4,44	4.44	0.00
15	3094.	30.02	-5.45	5.56	5.56	0.00
17	307A.	32.08	9.36	-6.5A	-6.KA	0.00
18	3042.	46.18	14.25	4.67	4.67	0.00
19	3052.	40.87	13.66	4.30	4.39	0.00
50	-2986.	-65,30	-23.71	-A.13	-8.13	0.00
21	-2969.	-65,28	-29.72	-5.97	-5.97	0.00
55	3050.	39,40	15.74	5.63	5.63	0.00
23	-2915.	-83,44	-39.02	-5.94	-5.94	0.00

JTBD-9 . 1800 HOUR TEST SERIES .

MODE 1

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STO FNO
2	3.1300	3.9220	18.3060	3.9440	4.6270	21.0060
7	3.8720	4.8200	18.1980	3,7790	4.7250	20.5610
9	3.3100	4.7220	18.4230	3.8290	4.7130	20.6970
10	3.0510	3.9410	17.2830	3,3860	4.2310	19.4670
11	3.3920	4.3750	17.1330	3,4010	4.3820	19.5110
12	4.0520	5.1200	18.7220	4,0640	5.1290	21.3220
. 1	4.1790	5.0440	19.6910	4,4550	5.2910	22.3180
18	3.5690	4.4730	18.2010	3.7990	4.6900	20.6150
19	3.7290	4.6170	18.6040	3.9700	4.8420	21.0760
20	3.5060	4.3460	19.3410	4.4280	5.1470	22.2490
21	3.7080	4.6990	19.8850	-4,6930	-5.6080	-22.8970
55	3.7080	4.7060	19.8850	-4,6930	-5.6180	-22.8970
23	-2.9630	-3.7750	17.7800	3,6830	4.4190	20.2990

JT80-9 * 1800 HOUR TEST SERIES *

MODE 1

UNIT	NREC CO FI	NPEC HC EI	NRE CNO FI	NR CNOX ET	SMK NUMBER
	LA/KLA FU	FB/KF6 EA	LB/KL9 FU	LR/KLR FU	CORRECTED
2	41.35	13.68	6.35	6.35	0.00
7	34.59	9.33	5.13	5,13	0.00
9	3A.53	14.11	4.90	4.90	0.00
10	34.09	9.32	4.43	-6.63	0.00
11	49.24	11.30	5.05	5.05	0.00
12	29.93	-5.44	6,33	6.33	0.00
17	30.10	8.92	-7.46	-7.46	0.00
19	43.39	13.62	5.29	5.29	0.00
19	38.38	13.03	4.98	4.98	0.00
50	51.70	-20.02	-9.15	-9.35	0.00
21	51.58	-24.90	-6.RR	-6.8R	0.00
55	30.34	13.19	6.4R	-6.48	0.00
23	-67.12	-33.34	-6.79	-5.79	0.00

JTAD-9 . 1800 HOUR TEST SERIES .

MODE 2

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	CORR NI	CORR NO
••••	PER CENT		PER CENT	PER CENT
5	-41.00	62.00	-42.86	64.A1
7	34.00	62.00	37.87	61.79
9 .	39.50	62.00	40.57	63.68
10	-41.00	62.00	-41.73	63.10
11	40.00	62.00	40.04	62.06
12	38.00	62.00	39.04	62.06
17	38.00	62.00	38.43	62.70
18	38.00	62.00	39.43	62.70
19	37.00	62.00	37.42	62.70
20	40.00	62.00	-41.77	64.74
21	39.00	62.00	40.72	64,74
55 .	38.00	62.00	39.69	64.74
23	-41.00	62.00	-42.77	64.67

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

小田屋一門人家 ガラー

JT80-9 * 1800 HOUR TEST SERIES *

MODE 2

UNIT	FUEL FLOW LBM/HR	CR F/	PERF F/A X100	TT7 DEG R	ряз	THRUST LAF
2	-1570.	1450	.3280	1071.	1.090	1287.
7	1300.	.3240	.7180	1167.	1.060	1075.
9	-1450.	.2640	3720	1140.	1.080	1219.
10	-1460.	.2600	. 1270	1176.	1.090	1177.
11	-1500.	. 3630	3570	1194.	1.090	1099.
12	1350.	3800	3300	1154.	1.060	1099.
17	1170.	.2370	.2A20	1071.	1.060	1150.
18	1250.	.2780	.3010	1140.	1.060	1150.
19	1170.	.2620	.2860	1086.	1.060	1150.
20	1300.	1590	.2810	1086.	1.090	1288.
21	1275.	.2520	.2840	1068.	1.040	1288.
22	1200.	.2720	.2730	1086.	1.080	1288.
23	1380.	.2050	.2890	1050.	1.090	1277.

JTBD-9 . 1800 HOUR TEST SERIES .

MODE 2

UNIT	CORR FU FL LBM/HR	COR CR F/A	COR PF F/A	CORR TT7 COR	THRUST LBF

2	-1524.	1580	3580	1171.	1306.
7	1314.	•3210	.3160	1159.	1083.
9	-1415,	•2790	3500	1202.	1555.
10	-1439.	•2690	.3380	-1218.	1180.
11	-1504.	•3640	3580	1196.	1102.
15	1353.	3810	.3300	1160.	1102.
17	1157.	•2420	.2890	-1096.	1150.
18	1236.	•2840	.3080	1166.	1150.
19	1157.	-2680	.2970	-1110.	1150.
20	1257.	1730	•3060	1184.	1301.
21	1233.	•2750	.3100	1164.	1301.
55	1160.	.2970	.2980	1184.	1301.
23	1342.	.2230	.3150	1142.	1296 •

JT80-9" * 1800 HOUR TEST SERIES *

MODE S

UNIT	COP CONC	CO CONC	HC CONC	NO CONC	NOX CONC
2	294	55.4	A.A	5.4	4.1
7	.664	78.5	8.7	-10.4	A.3
9	.538	85.7	15.9	8.1	5,3
10	•533	63.9	9.7	-10.6	6,6
11	.744	102.0	13.1	-12.3	-10.5
12	780	100.0	9.4	-13.1	-9.7
17	.483	68.3	11.0	10.2	7.4
18	.565	90.4	12.5	9.3	6.9
19	.532	89.1	16.1	7.4	6.0
50	314	86.5	-26.0	9.3	6,5
21	.503	-139.9	-27.9	9.7	A.6
22	. 554	79.0	15.7	9.5	5.4
23	.410	95.3	19.4	8.6	6.2

JT80-9 * 1800 HOUR TEST SERIES *

MODE 2

UNIT	COS EI	CO ET	HC EI LR/KLR FU	NO FI LR/KLR FU	NOX ET	SMK NIMBER FRONT STOE
						~~~~~~
5	3070.	-36,91	10.06	5.87	5.A7	0.00
7	3105.	23.35	4.44	5.06	5.06	0.00
9	3080.	31.23	9.94	4.87	4.87	0.00
10	3105.	23.72	5.44	-6.45	-6.45	0.00
11	3097.	27.03	5.98	5.34	5.34	0.00
12	3105.	25.34	4.10	5.44	5.44	0.00
17	3089.	27.80	7.69	-6.82	-6.82	0.00
18	3084.	31,38	7.46	5.28	5.28	0.00
19	3074.	32.76	10.19	4.45	4.45	0.00
50	-2997.	-52.48	-27.08	-9.23	-9.23	0.00
21	-3020.	-53.12	-18.31	-6.09	-6.09	0.00
55	3083.	27.96	9.57	5.51	5.51	0.00
23	-3040.	-44.93	-15.69	-6.65	-6.65	0.00

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

MAN STANKE STANK

#### JTAN-9 * 1900 HOUR TEST SERIES *

MODF 2

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
?	4.5140	-5.3640	21.9740	-5.7720	6.3950	-25.3790
7	4.8500	5.8440	20.3740	4.7400	5.7260	23.0120
9	4.5990	5.5A10	21.7050	5.3620	6.2656	24.4690
10	4.6440	5.6050	21.2550	5.1620	6.0450	24.0100
11	4.7970	5.9750	20.3540	4.8120	5.8860	23.1920
12	4.7970	5.9100	20.3540	4.6120	5.9220	23.1920
17	4.7070	5.5760	20.4440	5.0240	5.8540	23.6480
18	4.7070	5.6520	20.8840	5.0240	5.9380	23.6980
19	4.7070	5.6230	20.8880	5.1240	5.9060	23.6880
20	4.5050	5.3710	21.9190	-5.7470	5.4040	-25.3230
21	4.5050	5.5310	21.9190	-5.7470	-6.6320	-25.3230
22	4.5050	5.5670	21.9180	-5.7470	-6.6840	-25.3230
23	4.5280	5.4700	21.9770	-5.7220	5.4880	-25.2680

NOTE - MINUS SIGNS DENOTE OUTLYING VALUES

3 7 7 12

#### JTAD-9 . 1800 HOUR TEST SERIES .

MODE 2

UNIT			NRE CHO EI LB/KLB FU		SHK NUMBER CORRECTED
	********	********			
2	28.87	8.44	6.78	-6.78	0.00
7	23.94	4,53	5.72	5.72	0.00
9	26.78	8.86	5.49	5.49	0.00
10	21.44	5,45	-7.29	-7.29	0.00
11	25.95	5.97	6.08	6.08	0.60
12	25.26	4.09	6.20	6.20	0.00
17	26.05	7.33	-7.74	-7.74	0.00
18	29.40	7.10	5,99	5.99	0.00
19	30.69	9.70	5.04	5.04	0.00
20	-41.14	-22.71	-10.67	-10.67	0.00
21	-41.65	-15.27	-7.04	-7.04	0.00
22	21.92	7.97	6.37	6.37	0.00
23	-35.56	13.23	-7.64	-7.64	0.00

# JT90-9 * 1800 HOUR TEST SERIES *

#### MODE 3

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	COPP NI PER CENT	CORR NZ
		LEK CEAL		
2	-90.75	-R9.00	94.86	93.03
7	94.00	93.00	93.68	-92.69
9	91.50	90.50	93.98	92.95
10	93.00	90.00	94.66	-91-60
11	94.00	92.00	94.09	-92.09
12	94.00	94.00	94.09	94.09
17	94.00	94.00	95.06	95.06
18	93.50	94.00	94.55	95.06
19	94.50	94.00	95.57	95.06
20	-91.00	90.00	95.02	93.98
21	-91.00	91.00	95.02	95.02
22	-91.00	91.00	95.02	95.02
23	-89.00	-88.00	-92.84	-91.79

## JT80-9 * 1900 HOUR TEST SERIES *

HODE 3

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR .	THRUST LRF
2	9200.	.9160	.7480	1405.	2.020	-13960.
7	8800.	.9820	.7610	1464.	2.040	14274.
9	8500.	.9170	.7160	1392.	2,040	14343.
10	8584.	.9160	.7270	1424.	2.040	14343.
11	-9400.	.8890	8110	1446.	2.040	14329.
12	8700.	.9110	.7510	1437.	2.040	14329.
17	8675.	.8360	.7390	1392.	2.040	14374.
18 -	9300.	.9080	.7090	1410.	2,040	14374.
19	8800.	.8820	.7480	1383.	2.040	14374.
20	8600.	.8560	.7030	1338.	2.020	-14027.
21	8350.	.8220	6830	1356.	2.020	-14027.
55	-8100.	.8260	6620	1356.	2.020	-14027.
23	. 8700.	.9610	.7180	1392.	5.050	-13963.

# JTRD-9 . 1800 HOUR TEST SERIES .

MODE 3

UNIT	CORP FU FL LRM/HR	x100	XIOO	CORR TT7 COR	LBF
2	8929.	1.0010	8180	-1535.	14163.
7	9893.	.9760	.7560	1454.	14377.
9	A295.	.9670	.7550	1468.	14377.
10	8457.	.9490	.7530	1479.	14377.
11	-9477.	.8910	R130	1449.	14377.
12	8721.	.9120	.7520	1439.	14377.
17	8580.	.8550	.7560	1423.	14377.
18	.P058	.9290	.7250	1442.	14377.
19	8703.	.9020	.7650	1414.	14377.
20	9316.	.9330	.7670	1459.	14143.
21	8074.	.8960	.7440	1479.	14163.
55	-7832.	.9000	.7220	1478.	14163.
23	8450.	-1.0450	.7810	-1514.	14163.

## JTAD-9 . IRON HOUR TEST SERIES .

MODE 3

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
			********	••••••	
2	1.920	-19.8	1.6	70.7	70.2
7	2.059	16.5	1.0	75.0	70.7
9	1.921	17.4	2.1	62.6	61.3
10	1.921	-21.2	2.5	, 68.6	68,6
11	1.862	17.6	1.7	74.A	73,7
12	1.909	18.1	.1	101.0	97,5
17	1.747	13.9	10.1	73.4	71.6
18	1.872	-21.2	-95.4	65.2	67.2
19	1.848	13.7	.5	72.1	69.1
20	1.749	-19.0	-136.6	48.8	65.1
21	1.713	18.5	21.1	75.4	75.5
55	1.728	17.8	2.1	58.8	57.6
23	2,005	18.4	29.7	76.4	74.5

### JTRO-9 . 1800 HOUR TEST SERIES .

MODE 3

UNIT	COS EI		HC FT LB/KLR FU		NOX ET	SMK NUMBER FRONT STDE
2	3152.	2.07	.2A	12.13	12.13	-47.37
7	3151.	1.61	•17	12.05	12.00	36.00
9	3152.	1.82	.37	10.73	10.73	-46.67
10	3157.	-5.55	.46	11.77	11.77	38.00
11	3152.	1.90	.12	13.24	13.24	16.00
12	3151.	1.90	01	-17.44	17.44	14.21
17	3146.	1.60	1.98	13-81	13.41	22.52
18	-3103.	-2.24	-17.30	11.30	11.64	12.24
19	3151.	1.49	.09	12-86	12.86	11.79
20	-307A.	2.13	-26.28	12.56	12.66	16.67
21	3139.	-2.15	4.77	14.45	14.45	32.03
22.	3149.	2.06	.41	11.51	11.21	12.47
23 :	3137.	1.83	5.09	12.50	12.50	38.41

JTAD-9 . 1800 HOUR TEST SERIES .

MODE 3

UNIT	FCO	FHC X100	FN0 X100	STD FCO	STO FHC	STD FNO
	***		••••••		********	~~~~~~
2	69.6490	74.9000	81.6870	113.7970	107.0540	99.5140
7	111.2490	105.6890	87.1930	106.3970	102.1410	-98.0440
9	79.6470	82.9890	85.0720	107.7830	103.6040	99.1650
10	76.1920	79.4920	A1.0350	92.7260	-91.8220	-93.5700
11	89.1610	90.8740	83.7700	-89.9580	-91.4070	-95.5290
12	110.2400	107.9530	91.2760	111.2790	108.6180	104.0990
17	98.5410	101.3370	93.7940	111.7380	111.2790	108.0400
18	108.0610	106.8480	93.7940	123.2160	117.6840	108.0400
19	104.5120	104.8260	93.7940	118.9280	115.3310	109.0400
20	70.7160	77.3350	84.9500	113,1930	109.3730	103.6110
21	73.8050	. 91.0920	AA.3070	117.6710	114.5550	107.9160
22	74.1510	81.3110	88.3070	118.3590	114.9370	107.9160
23	67.0140	71.2900	-7A.1300	107.5800	100.3450	-94.3090

# JT8D-9 * 1800 HOUR TEST SERIES *

MODE 3

UNIT	NREC CO FI LB/KLB FU			NR CNOX ET LR/KLR FU	
S	1.27	.20	14.77	14.77	-47.37
7	1.68	.18	13.50	13.50	36.00
9	1.34	.30	12.51	12.51	37.38
10	1.82	.79	13.59	13.59	38.00
11	-1.48	.32	15.10	15.10	36.00
12	-1.88	.01	-19.89	19.89	34.21
17	1.41	1.81	15.91	15.91	22.52
19	-1.96	-15.70	13.01	13.41	32.24
19	1.31	.08	14.91	14.81	31.79
20	1.33	-18.58	15.44	15.44	36.67
21	1.35	2,99	17.46	17.66	32.03
55	1.29	.29	13.70	13,70	32.47
23	1.14	3,61	15.09	15.09	38.41

## JT8D-9 . 1800 HOUR TEST SERIES .

MODE 4

UNIT	NI SPEED	NZ SPEED	CORR NI	CORR NO
	PER CENT	HER CENT	PER CENT	PER CENT
	••••••	•••••		
2	85.00	-86.75	A8.A5	90.68
.7	88.00	91.00	87.70	90.69
9	85,50	88.00	87.82	90.38
10	87.00	88.00	88.55	-89.57
11	88.00	90.00	A8.08	90.09
15	89.00	92.00	88.08	92.09
17	. 88.00	91.00	88.99	92.03
18	88.25	91.00	89.24	92.03
19	87.50	91.00	88.49	92.03
20	-84.00	-87.00	A7.71	90.85
21	85.00	AA.00	88.76	91.89
22	85.00	89.00	88.76	-92.94
23	-84.00	-87.00	-87.62	90.75

# JT80-9 * 1800 HOUR TEST SERIES *

MODE 4

UNIT	FUEL FLOW LAM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
2	7650.	.8080	.6510	1356.	1.830	-11891.
7	7200.	.7860	.6550	1410.	1.850	12212.
9	7165.	.7780	.6350	1324.	1.850	17271.
10	7200.	.8310	.6790	1374.	1.850	17271.
11	-8000.	.7720	7250	1392.	1.940	12141.
12	7100.	.9210	.6430	1374.	1.54	1 • :
17	7200.	.7030	.6470	1306.	1.550	.>294.
18	5850.	.7460	.6090	1356.	1.860	12403.
19	7200.	.7110	.6450	1302.	1.850	12294.
20	7050.	.7320	.6110	1284.	1.830	-11948.
21	6800.	.6790	5A30	1284.	1.830	-11948.
22	6800.	.6840	5830	1284.	1.830	-11948.
23	7550.	.8870	.6520	1320.	1.830	-11893.

## JTAD-9 . 1800 HOUR TEST SERIES .

MODE 4

UNIT	CORR FU FL	COR CB F/A CO	OR PF F/A C	CORR TT7 COR	THRUST
	******				
2	7475.	.8830	7120	-1481.	12064.
7	7276.	.7800	.6510	1400.	12300.
9	6992.	.8200	.6700	1397.	12300.
10	7091.	.8610	.6620	-1423.	12300.
11	-8019.	.7740	7260	1394.	12182.
12	7117.	.8220	.6440	1376.	12182.
17	7121.	.7190	.6570	-1336.	15300•
18	6775.	•7620	.6230	1386.	12410.
19	7121.	.7270	.6600	-1331.	12300.
20	6917.	.7990	.6660	1400.	12064.
21	6575.	.7400	.6360	1400.	12064.
55	6575.	.7460	.6360	1400.	12064.
23	7342.	9660	7100	-1436.	12064.

### JTAD-9 . 1AND HOUR TEST SERIES .

400E 4

UNIT	CO2 CONC PER CENT .	CO CONC	HC CONC	NO CUNC	NOX CONC
2	1.690	-23.1	1.2	50.5	50.7
. 7	1.643	17.0	.A	54.6	50.5
9	1.627	-21.4	1.7	46.4	46.0
10	1.740	-23.7	2.3	53.0	53.0
11	1.415	19.2	1.4	54.9	54.6
12	1.719	18.2	3	65.0	60.2
17	1.467	15.5	7.4	54.5	53,1
18	1.530	18.0	-92.1	52.4	50.7
19	1.486	13.7	.1	48.6	46.6
50	1.499	-22.9	-139.7	49.2	46,1
21	1.414	-22.9	11.5	54.4	55.0
55	1.429	20.4	1.6	-42.9	41.6
53	1.350	-21.3	24.5	59.1	58.6

### JTAD-9 . 1440 HOUR TEST SERIES .

400E 4

UNIT	CO2 EI	CO ET	HC ET LR/KLR FU	NO EI LB/KLB FU	NOX EI LB/KLB FU	SMK NUMBER FRONT SIDE
2	3151.	2.74	.24	9.84	9.88	-40.79
7	3150.	2.08	.18	10.94	10.94	34.44
9	3151.	2,63	.36	-9.40	9.40	36.42
10	3153.	2.73	.46	10.03	10.03	-38.41
11	3151.	2.39	.38	11.20	11.20	35.81
12	3152.	2.12	.06	11.88	11.88	33.55
17	3146.	2.12	1.74	12.21	12.21	23.18
18	-3094.	2.31	-20.35	11.08	11.08	30.72
19	3151.	1.85	•02	10.77	10.77	30.92
20	-3063.	-3.00	-31.44	10.59	10.59	33.11
21	3141.	-3.24	2.80	12.64	12.78	29.87
22	3148.	-2.86	.39	9.87	9.87	29.61
23	3138.	2.30	4.54	10.48	10.48	-37.75

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

サントンボーナナー ロノメージーはいい

#### JIBD-9 . 1800 HOUR TEST SERIES .

MOOF 4

UNIT	FC0 ×100	FHC X100	FN0 X100	STD FCO X100	STD FHC	STD FNO
2	49,4540	57.7950	73.5990	77.0630	A0.3060	89.1920
7	71.0300	77.2890	79.3490	68.2770	74.9140	A9.2550
9	52.8700	61.0940	75.5520	69.1440	74,7340	A7.7750
10	55.1240	61.9290	72.8150	66.0570	70.8590	-83,8690
11	62.8680	70.0110	75.7500	63.3580	70.3740	-86.3740
12	A1.9220	86.5500	R1.7700	A2.6140	A7.0340	95.5290
17	65.0320	74.0930	A2.A370	72.7480	80.6890	95.2470
18	68.1890	76.1830	82.9370	76.4870	A3.0920	95.2670
19	65.6000	74.4730	82.8370	73.4200	81.1260	95.2470
05	46.6810	56.1740	74.2620	70,9260	76.9530	89.9850
21	48.7830	59.2780	77.9910	73,6120	80.9810	94.7080
22	53.6110	64.2180	81.4710	81.4760	AR-1670	-99.0960
23	55.3380	62.0150	74.3370	86.3150	85.8570	89.5286

## JT8D-9 . 1800 HOUR TEST SERIES .

MODE 4

UNIT		NREC HC EI			SMK NUMBER CORRECTED
				LOZKES FO	CORNECTED
2	1.76	.17	11.92	11.97	-40.79
7	2.16	.18	12.30	12.30	34.44
9	2.01	.30	-10.92	10.92	32.97
10	2.28	.40	11.56	11.56	-38-41
11	2.37	.38	12.77	12.77	35.81
12	2.10	.06	13.55	13.55	33.55
17	1.89	1.60	14.05	14.05	23.18
18	2.06	-18.66	12.74	12.74	30.72
19	1.65	.02	12.39	12.39	30.92
20	1.97	-22.95	12.83	12.63	33.11
21	2.15	2.05	15.35	15.53	29.87
55	1.98	.28	12.01	12.01	29.61
23	1.47	3.28	12.62	12.62	-37.75

### JTAN-9 . THOO HOUR TEST SERIES .

#### MODE 5

UNIT	NE SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
		*********		••••••
5	75.00	-81.00	78.40	-84.67
7	80.00	87.00	75.73	86.71
9	76.50	A3.50	78.57	85.76
17	77.00	A3.25	78.37	-84.73
11	78.00	A5.00	78.08	85.08
12	79.00	87.00	79.0A	87.05
17	80.00	87.00	A0.90	87.98
18	78.75	97.00	79.64	87.98
19	78.50	A7.00	79.3A	87.98
20	75.00	83.00	78.32	86.67
21	76.00	84.00	79.36	A7.71
55	76.00	84.00	79.36	87.71
23	75.00	-92.00	78.23	85.54

#### JT80-9 * 1800 HOUR TEST SERIES *

MODE 5

UNIT	FUEL FLOW LRM/HR	CB F/A X100	PERF F/A X100	TY7 DEG R	EPR .	THRUST LRF
2	4600.	.5730	.4560	1203.	1,530	A354.
7	4950.	.6220	.5060	1302.	1,540	R539.
9	4450.	•5080	.4530	1212.	1,540	A580.
10	4675.	•6330	.4810	1261.	1,540	8580.
11	4850.	.6080	•5100	1266.	1.540	A571.
15	4750.	.6220	.4910	1266.	1.540	A571.
17	4775.	4310	.4750	1203.	1.540	R599.
18	4700.	•5590	.4780	1257.	1.540	8599.
19	4775.	•5020	.4880	1194.	1.540	A599.
20	4600.	•5330	.4590	1176.	1.530	R394.
21	4650.	•5000	.4560	1176.	1,530	R394.
55	4500.	•4890	.4410	1185.	1.530	A394.
23	4600.	7370	.4580	1212.	1,530	R355.

# JT80-9 . 1800 HOUR TEST SERIES .

MODE 5

UNIT	CORR FIJ FI.	COR CB F/A CO	X100	CORR TT7 COR	THRUST LBF
2	4465.	.6260	.4980	-1314.	8475.
7	5002.	.6180	.5030	1293.	8600.
9	4343.	.5360	.4770	127A.	8600.
10	4604.	.6550	.4990	1307.	8600.
11	4962.	.6090	.5110	1268.	8600.
12	4761.	.6230	.4920	1264.	8600.
17	4723.	4400	.4R60	1230.	8600.
18	464R.	.5720	.4890	1285.	8600·
19	4723.	•5130	.4000	-1221.	8600.
50	44A.	.5810	.5000	1282.	8475.
21	4496.	.5450	.4970	1282.	8475.
25	4351.	•5330	.4810	1292.	8475.
23	4473.	8020	.4980	-1318.	8475.

# JTBD-9 • 1800 HOUR TEST SERIES •

MODE 5

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
2	1.194	-38.9	1.6	24.4	26,3
7	1.298	19.7	.9	35.8	32.9
9	1.057	-36.2	2.5	25.7	26,3
10	1.320	-34.8	3.1	32.9	32,2
11	1.268	26.8	1.9	34.1	33,1
12	1.298	21.3	.1	38.3	36.3
17	-,895	18.2	4.5	32,5	30.8
18	1.137	24.0	-93.6	32,3	30,6
19	1.047	17.4	.0	29.2	27.6
20	1.072	-37.5	-122.5	28.1	27.0
51	1.038	-37.9	6.1	32.4	34.3
55	1.016	-33.6	2.3	25.8	24.7
. 23	-1.532	-34.2	20.4	36.0	36.1

# JTAD-9 * 1800 HOUR TEST SERIES *

#### MODE 5

UNIT	COS EI	CO FI LB/KLR FU	HC ET LR/KLR FIJ	NO FI LR/KLR FU		SMK NUMBER FRONT SIDE
2	3144.	-6.52	.47	-6.72	-7.23	-30.52
7	3144.	3.03	.25	9.08	9.08	26.97
9	3147.	-6.44	.83	9.00	8.17	28.10
10	3149.	5.29	.80	A.21	8.21	-31.79
11	3144.	4,23	.51	R. RS	8.45	-13.56
12	3151.	3.28	.08	9.72	9.72	26.00
17	3142.	4.06	1.73	-11.92	-11.92	20.00
18	-3071.	4.13	-27.65	9.12	9.12	24.00
19	3144.	3.33	•01	9.19	9.19	24.50
20	-3039.	-5.76	-37.99	. A.33	8.33	27.33
21	3137.	-1.29	2.00	10.24	10.84	24.18
55	3141.	-6.62	.78	A.32	8.32	24.0A
23	3134.	4.45	4.57	7./0	7.71	-12.24

## JTAD-9 . 300 HOUR TEST SERIES .

MODE 5

UNIT	FC0 X100	FHC X100	FN0 *100	STD FCO X100	STO FHC X100	STD FNO
2	20.8320	-28.7960	-53.2330	29,6130	37.7580	-63.6360
7	37.9020	46.9520	63.2870	36.6030	45.6450	71.2410
9	24.6730	33.6560	58.5910	30.5940	39.8250	67.6140
10	26.3770	34.3980	55.6740	30.6420	38,6010	-63.8370
11	30.2240	38.6790	57.0690	30.4090	38.8380	65.0560
12	38.0330	47.2090	63.7740	38.2780	47.4150	72.7060
17	32.2570	43.1480	66.4730	35,3370	46.3750	76.2560
18	36.2590	46.3130	66.4730	39.9710	49.9590	76.2560
19	34.3920	44.8600	66.4730	37.8040	48.3120	76.2560
20	24.7990	33.9420	59.2400	35.1810	44.5260	71.0950
21	26.7390	36.5890	62.5150	37.9000	48.0180	75.1930
22	26.4940	36.3860	62.5150	37.4750	47.6940	75.1930
23	26.7700	34.4130	56.0760	38.8730	45.5500	66.7590

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

### UTBD-9 * 1800 HOUR TEST SERIES *

MODE 5

UNIT	NREC CO ET	NREC HC ET	NRE CNO ET	NR CNOX ET	SMK NUMBER
	LR/KLR FU			LA/KLA FU	
•			*********		
5	4.59	. 36	-8.03	A.64	-30.52
7	3.14	.24	10.23	10.23	26.97
9	-5,52	.70	9.74	9.43	23.20
10	4,55	.71	9.41	9.41	-31.79
11	4.21	.53	10.09	10.09	-33.56
12	3.26	.08	11.08	11.08	26.00
17	3.71	1.61	-13.68	-13.6A	20.00
18	3.74	-25.63	10.45	10.46	24.00
19	3.03	.01	10.55	10.55	24.50
20	4.77	-28.96	10.00	10.00	27.33
21	-5.14	1.52	-12.32	13.04	24.18
55	4.68	.59	10.01	10.01	24.68
23	3.07	3,45	9.17	9.18	-32.24

# JTAD-9 . 1800 HOUR TEST SERIES .

HODE 6

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
2	59.00	-73.00	61.67	76.31
.7	62.00	78.00	61.79	77.74
9	58.50	74.50	60.08	76.52
10	58.50	-74.00	59.54	-75.32
11	60.00	76.00	60.06	76.07
12	61.00	78.00	61.06	78.08
17	60.50	77.50	61.18	78.37
18	59.75	76.50	59.41	77.36
19	60.00	77.50	60.68	78.37
20	-57.00	-74.00	59.52	77.27
21	59.00	75.00	61.61	78.32
22	-58.00	75.00	60.56	75.32
53	58.50	-74.00	61.02	77.19

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

#### JTBD-9 . 1800 HOUR TEST SERIES .

MODE 6

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
2	2535.	1700	.3420	1068.	1.230	-3967.
7	-2600.	•3560	. 1690	1140.	1.230	3996.
9	2340.	.2630	.3750	1072.	1.230	4016.
10	2270.	.2620	.3320	1131.	1.230	4016.
11	2500.	.3600	. 3690	1122.	1.230	4012.
12	2550.	. 3950	.3670	1104.	1.230	4012.
17	2350.	.2690	.3350	1068.	1.230	4024.
18	-2125.	.3080	.3140	1104.	1.230	4024.
19	2250.	.2780	. 1740	1050.	1.230	4024.
20	2200.	1910	.3120	1032.	1.230	1986.
15	2300.	.2890	.3120	1041.	1.230	3986.
52	2250.	.2990	.3120	1050.	1.230	1986.
23	2450.	. 1380	.3350	1059.	1.230	-3968.

## JT8D-9 * 1800 HOUR TEST SERIES *

MODE 6

UNIT	CORR FU FL LBM/HR	COR CB F/A X109	COR PF F/A	CORR TT7 COR	THRUST LBF
2	2460.	1860	3730	1167.	4025
7	-262A.	•3530	.3670	1132.	4025.
9	2284.	.2770	•3540	:131.	4025.
10	2235.	.2710	.3440	-1171.	4025.
11	2506.	•3600	3680	1124.	4025.
12	2554.	.3960	3680	1106.	4025.
17	2324.	.2750	.3430	1092.	4025.
18	-2102.	•3150	.3210	1129.	4025.
19	2225.	.2840	•3320	-1074.	4025.
20	-2127.	2080	.3400	1125,	4025.
21	2224.	•3150	.3400	1135.	4025.
22	2176.	•3260	.3400	1145.	4025.
23	2392.	•3680	•3650	1152.	4025•

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

#### JT80-9 . 1800 HOUR TEST SERIES .

MODE 6

UNIT	COP CONC	CO CONC	HC CONC	NO CONC	NOX CONC
5	347	53.7	5.6	8.1	8.5
. 1	.738	8.95	1.9	-16.4	14.0
9	. 538	-66.3	9.7	10.1	10.2
- 10	.53A	49.8	9.5	13.6	11.1
11	.744	53.4	4.9	-16.5	14.9
12	.821	39.9	1.2	-16.9	14.3
17	.554	34.3	5.2	14.7	12.5
18	.628	53-1	-27.5	12.7	11.7
19	•573	45.6	3.6	11.1	10.6
20	334	-70.1	-184.8	10.5	10.2
21	.591	-72.6	9.R	13.2	13.7
55	615	-60.7	7.7	11.4	9.5
23	.695	-61.4	13.3	13.2	13.3

# JT80-9 * 1800 HOUR TEST SERIES *

MODE 6

UNIT	COZ EI LB/KLB FU		HC ET LB/KLB FU			
2	3093.	-30.44	5.45	7.52	7.87	10.39
7	3138.	-8.07	.90	7.30	7.30	11.26
9	3101.	-24.32	6.11	6.12	6.12	9.21
10	3115.	18.33	5,39	-8.21	8.21	9.33
11	3127.	14.30	2.25	7.25	7.25	-13.91
12	3139.	9.70	.57	6.77	6.77	10.00
17	3125.	12.32	3.21	-8.67	8.67	9,33
18	-3087.	16.62	14.79	6.55	6.55	8.00
19	3123.	15.82	2.16	6.31	6.31	6.67
20	-2657.	-35.51	-160.75	-8.77	8.77	11.18
21	3100.	-24.22	5.60	7.25	7.49	9.87
55	3111.	-19.54	4.26	6.01	6.01	9.68
23	3108.	17.48	6.53	6.16	6.21	-15.58

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

サンドンアナサーンはない、ノイトインと、一日ナンノン

#### JT80-9 * 1800 HOUR TEST SERIES *

MODF 6

UNIT	FCO X1GO	FHC X100	FN0 X100	STD FCO X100	STO FHC X100	STD FNO
2	-7.2090	-12.0290	35.3230	-9.2740	14.7660	41.5250
7	12.2410	18.3730	39.5820	11.9010	17.9040	44.6230
9	A.5110	13.6450	36.7320	10.0500	15.6130	41.9740
10	-7.9970	-12.8440	34.6540	-8,9990	-14.01A0	-30.4310
11	10.1590	15.5240	36.0020	10.2000	15.5670	41.0240
12	12.6190	19.7190	39.8090	12.6740	18.7740	45,3660
17	11.0980	17.1750	40.3350	11.9320	18.2270	46.0300
18	10.3850	16.0710	38.4000	11.1780	17.0560	43.8000
19	11.1570	17.2420	40.3350	12.0100	18.3020	46.0300
50	-7.9770	-13.1330	37.0210	10.2990	16.1700	43.6030
21	9.3020	14.8350	38.8960	12.2110	18.4640	45.9010
25	9.3670	14.8990	38.8960	12.3140	18.5600	45.9010
23	A.7710	13.9380	37.0700	11.4220	17.2050	43.4270

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

图 控心

#### JT8D-9 * 1800 HOUR TEST SERIES *

MODE 6

UNIT	NREC CO EI	NREC HC EI LB/KLB FU	NRE CHO ET		
	FRACE LO	FB/VF9 LO	CONFO 10	LB/KLR FU	CORRECTED
2	-23.67	4.44	8.84	9.26	10.39
7	-8.30	.93	A.23	8.23	11.26
9	-20.59	5,34	6.98	6.98	5.53
10	16.46	4.94	-9.34	9.34	9.33
11	14.24	2.24	8.27	A.27	-13.91
12	9.66	.52	7.72	7.72	10.00
17	11.45	3.02	-9.90	9.90	9.33
18	15.44	13.93	7.47	7.47	8.00
19	14.70	2.03	7.20	7.20	6.67
20	-27.50	-130.56	-10.33	10.33	11-18
21	-18.45	4.50	8.55	8.83	9.87
55	14.86	3.42	7.09	7.09	9.68
23	13.42	5.29	7.21	7.27	-15.58

# JTBD-9 * 1800 HOUR TEST SERIES *

40DE 7

UNIT	NI SPEFD PER CENT	NZ SPEED PER CENT	CORP NI PER CENT	CORR NZ
	********			
3	-41.00	62.00	-42.95	-64.A1
7	39.00	62.00	37.47	61.79
٩	19.50	62.00	40.57	63.69
10	39.50	62.00	40.20	63.10
11	19.00	62.00	19.04	62.06
12	37.00	52.00	37.04	62.06
17	37.50	62.00	37.92	62.70
18	34.00	62.00	38.43	62.70
19	37.00	62.00	37.42	62.70
20	39.00	62.00	40.72	-64.74
21	39.00	62.00	40.72	-64.74
55	37.00	62.00	19.64	-64.74
23	-40.00	62.00	-41.72	64.67

#### JT80-9 * 1800 HOUR TEST SERIES *

MODE 7

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF
5	-1530.	1110	•3190	1104.	1.090	1287.
7	1200.	•3190	.2940	1149.	-1.050	1075.
9	-1370.	•2650	•3140	1122.	1.090	1219.
10	-1345.	•5650	•3140	1167.	1.090	1177.
11	-1450.	3600	3490	1158.	1.080	1099.
12	1250.	3670	.3090	1122.	1.060	1099.
17	1120.	-2190	.2720	1068.	1.060	1150.
18	1220.	.2640	.2940	1122.	1.060	1150.
19	1100.	•2560	.2690	1050.	1.060	1150.
20	1250.	1390	.2780	1068.	1.090	1288.
15	1250.	.2510	.2780	1063.	1.080	1288.
SS	1100.	•2660	2540	1068.	1.080	1288.
53	-1350.	.1790	.2910	-1032.	1.090	1277.

## JTRD-9 . 1800 HOUR TEST SERIES .

MODE 7

UNIT	CORR FU FL	COR CR F/A COR		R TIT COR	THRUST LBF
2	-1485.	1210	3490	-1206.	-1306.
7	1213.	.3170	.2920	1141.	1083.
9	-1337.	.2800	3310	1193.	1555.
10	-1325.	.2720	1260	-1209.	1180.
11	-1453.	3610	3500	1160.	1102.
12	1251.	3680	.3100	1124.	1102.
17	1108.	.2240	.27A0	-1092.	1150.
14	1207.	.2700	.3010	1147.	1150.
19	1099.	• 2620	.2750	-1074.	1150.
20	1209.	1520	. 3040	1154.	-1301.
51	1200.	.2740	.3040	1150.	-1301.
55	1064.	.2900	.2770	1164.	-1301.
23	1317.	.1950	.3170	1123.	1296.

# JT8D-9 * 1800 HOUR TEST SERIES *

MODE 7

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
2	222	-55.3	8.6	5.4	3.7
7	.655	84.9	9.1	-10.4	8,5
9	.538	95.0	17.7	7.3	5.1
10	.538	67.8	9.4	-10.0	6.7
11	736	106.7	13.6	-11.9	-10,4
12	753	106.7	9.5	-11.4	9,2
17	.445	73.5	12.9	-10.1	7,9
18	.538	93.0	12.3	6.3	6.7
19	.518	97.4	17.0	6.A	5.8
50	271	92.9	-29.A	6.0	6.7
21	.500	-148.0	-30.2	-10.1	9.0
55	.538	95.7	19.2	9.1	5,3
23	• 355	104.1	22.8	6.3	5.8

### JTBD-9 . 1800 HOUR TEST SERIES .

MODE 7

UNIT	COS EI	CO EI	HC FT LB/KL9 FU	NO FI LR/KLR FU	NOX EI LR/KLB FU	SMK NUMBER FRONT SIDE
. 5	3045.	-48.21	12.85	-7.72	-7.72	0.00
7	3102.	25,60	4.19	5.18	5.18	0.00
9	3071.	34.49	11.02	4.3A	4.38	0.00
10	3104.	24.91	5.32	-6.07	-6.02	0.00
11	3094.	28.55	6.24	5.21	5.21	0.00
15	3100.	27.94	4,25	4.90	4.90	0.00
17	3076.	32.32	9.76	-7.32	-7.32	0.00
18	3079.	33.89	7.67	5.00	5.00	0.00
19	3066.	36.69	11.01	4.21	4.21	0.00
50	-2955.	-64.46	-35.50	-9.11	-9.11	0.00
21	-3010.	-56.75	-19.90	-6.39	-6.39	0.00
22 .	3066.	34.72	11.95	5.40	5.40	0,00
53	-300A.	-56.09	-21.09	5.54	5.54	0.00

### JTBD-9 * 1800 HOUR TEST SERIES *

MODE 7

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
2	4,5140	-5.3080	21.9740	-5.7720	6.3160	-25.3790
7	4.860-	5.8350	20.3740	4.7400	5.7180	23.0120
9	4.5990	5.5830	21.7050	5.3620	6.2670	24.4490
10	4.6660	5.6090	21.2550	5,1620	6.0510	24.0100
11	4.7970	5.8680	20.3540	4.8120	5.8790	23.1820
12	4.7970	5.8840	20.3540	4.8120	5.8950	23.1920
17	4.7070	5.5440	20.8880	5,0240	5.8190	23.6480
18	4.7070	5.6270	20.8880	5.0240	5.9110	23.6880
19	4.7070	5.6110	20.8880	5.0240	5.8930	23.6880
20	4.5050	5.3380	21.9180	-5.7470	6.3570	-25.3230
21	4.5050	5.5290	21.9180	-5.7470	-6.6310	-25.3230
55	4.5050	5.5550	21.9180	-5.7470	-6.6670	-25.3230
23	4.5280	5.4270	21.9770	-5.7220	6.4270	-25,2680

## JTRD-9 . 1800 HOUR TEST SERIES .

MONF 7

UNIT	NREC CO FT		NRE CHO FT LB/KLB FU		
			********		
5	37.70	10.80	-8.92	-8.92	0.00
7	26.25	4.28	5.85	5.85	0.00
9	29.58	9.82	4.94	4.94	0.00
10	22.51	4.93	-6.RO	6.80	0.00
11	2R.46	6,23	5.93	5.93	0.00
12	27.86	4.25	5.58	5.SA	0.00
17	30.28	9.30	-A.30	-8.30	0.00
18	31.75	7.30	5.67	5.67	0.00
19	34.7A	10.49	4.7R	4.7A	0.00
50	-50.54	-29.81	-10.53	-10.53	0.00
51	-44.49	15.60	-7.38	-7.38	0.00
55	27.22	9.95	6.23	6.23	0.00
23	-44.39	-17.80	6.38	6.38	0.00

### JTBD-9 * 1800 HOUR TEST SERIES *

MODE 8

UNIT	N1 SPEED PER CENT	NS SPEED PER CENT	CORR NI PER CENT	CORR NZ
****	********			
2	37.00	58.00	-38.68	60.63
7.	34.00	58.00	33.89	57.81
9	34.50	57.00	35.43	58.54
10	34.00	56.50	34.61	57.51
11	35.00	58.00	35.03	58.06
12	36.00	60,00	36.03	60.06
17	37.00	-61.00	37.42	61.69
18	34.00	58.00	34.38	58.65
19	34.00	58.50	34.38	59.16
20	37.00	59.00	-3A.64	61.61
21	37.00	60.00	-38.64	-62.65
55	36.00	59.00	37.59	61.61
23	33.00	~55.00	34.42	57.37

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

## JT8D-9 . 1800 HOUR TEST SERIES .

8 300M

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
s	-1330.	1070	3050	1104.	1.070	982.
7	1050.	•3210	.2760	1140.	1.050	900.
9	1160.	.2670	.2860	1095.	1.060	919.
10	1080.	•2540	.2720	1140.	1.070	898.
11	-1250.	. 3620	3180	1158.	1.070	908.
12	-1200.	3680	. 3010	1140.	1.050	951.
17	1100.	.2190	.2690	1068.	1.050	-1075.
18	1050.	.2670	.2680	1104.	1.050	923.
19	1000.	•2570	.2550	1050.	1.050	933.
20	1125.	1420	.2600	1050.	-1.090	-1059.
21	1150.	.2500	.2650	1068.	-1.080	-1135.
22	1050.	.2640	.2460	1068.	-1.080	-1059.
53	1020.	1440	.2480	-1014.	1.060	885.

## JT80-9 • 1800 HOUR TEST SERIES •

MODE 8

UNIT	CORR FU FL LBM/HR	COR CB F/A C	OR PF F/A	CORR TT7 COR DEG R	THRUST LBF
5	-1291.	1170	3330	-1206.	997.
7	1061.	•3190	.2740	1132.	906.
9	1132.	•2820	.3020	1155.	921•
10	1064.	.2630	.2810	1181.	900.
11	-1253.	•3630	~.3180	1160.	911.
12	-1203.	3690	.3010	1142.	954.
17	1099.	.2240	.2750	1092.	-1075.
18	1038.	.2730	.2740	1129.	923•
19	989.	.2630	.2610	-1074.	933.
50	1088.	1550	.2830	1145.	-1069+
21	1112.	.2730	.2890	1164.	-1146•
25	1015.	•2880	.2680	1164.	-1069+
53	992.	1570	.2700	1103.	897.

### JTAD-9 . 1AON HOUR TEST SERIES .

MODE 8

UNIT	COR CONC	CO CONC	HC CONC	NO CONC	NOX CONC
δ.	213	-62.0	10.6	4.9	3.3
. 7	• 155	104.8	12.7	-9.5	8.0
.9	5-1	117.3	25.1	6.9	4.4
10	-518	91.4	11.9	-9.1	6,3
11	736	136.3	20.9	-10.A	-9.7
12	753	115.6	-10.7	-11.0	8,8
17	.445	75.3	13.1	-10.2	8.0
18	•53A	127.4	20.5	7.4	6.0
19	.518	116.4	22.6	6.3	5,3
20	275	112.3	27.6	7.7	6,3
21	.492	-170.5	-40.7	-9.5	8.4
55	• • 532	107.4	22.6	-8.9	5.1
23	277	131.7	33.2	5.3	4.3

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

WAY WAY WAY

### JTAD-9 * 1800 HOUR TEST SERIES *

MODE 8

TINU	COS EI	CO EI	HC EI LB/KLB FII	NO EI LB/KLR FU		SMK NUMBER FRONT SIDE
2	-3023.	-56.03	16.47	-7.23	-7.23	0.00
7	3086.	31.45	6.57	4.69	4.69	0.00
9	3047.	42.28	15.55	4.06	4.06	0.00
10	3083.	34,64	7.73	-5.66	-5.66	0.00
11	3073.	35.21	9.55	4.71	4.71	0.00
12	3095.	30,23	-4.79	4.71	4.71	0.00
17	3075.	33.06	9.86	-7.35	-7.35	0.00
18	3047.	45.94	12.68	4.38	4.38	0.00
19	3045.	43,57	14.53	3.87	3.87	0.00
20	-2945.	- '6,45	-32.25	-8.60	-6.60	0.00
21	-2977.	-65,61	-26.93	-5.99	-5.99	0.00
22	3053.	39.20	14.15	-5.33	5.33	0.00
23	-2911.	-88.07	-38.14	-5.87	-5.82	0.00

### JT80-9 . 1800 HOUR TEST SERIES .

MODE 8

UNIT	FCO X100	FHC X100	FN0 X100	STD FCD X100	STD FHC X100	STO FNO
2	3.5110	4.2890	19.3850	4.4430	5.0680	22.2480
7	3.8720	4.8120	18.1980	3.7790	4.7170	20.5610
9	3.4090	4.3290	18.6960	3.9450	4.8350	21.0090
10	3.3730	4.2460	18.0820	3.7130	4.5630	20.3800
11	3.A230	4.9390	18.1870	3.8350	4.8480	20.7130
12	4.2900	5.3510	19.2610	4.3030	5.3610	21.9360
17	-4.4190	5.2550	20.2400	4.7130	5.5130	22.9460
18	3.7290	4.6220	18.6040	3.9700	4.8470	21.0760
19	3.8380	4.7220	18.8750	4.0880	4.9520	21.3950
50	3.7080	4.5310	19.8850	4.6930	5.3690	22.8970
21	3.9470	4.9390	20.5180	-5.0031	-5.9010	-23.6510
55	3.7090	4.7020	19.8950	4.6930	-5.6120	22.8970
23	-2,9630	-3.7490	17.7900	3.6830	4.3820	20.2990

## JT80-9 . 1800 HOUR TEST SERIES .

MODE 8

UNIT	NREC CO EI		NRE CHO ET		
	LB/KLB FU	LB/KLB FU	LR/KLR FU	LB/KLR FU	CORRECTED
2	44.27	13.94	-8.31	-A.31	0.00
7	32.22	6.70	5.30	5.30	0.00
9	36,53	13.93	4.57	4.57	0.00
10	31.48	7.20	-6.38	-6.39	0.00
11	36.11	9.53	5.37	5.37	0.00
12	30.14	4.78	5.37	5.37	0.00
17	30.99	9.40	-8.34	-8.34	0.00
18	43.15	12.10	4.96	4.96	0.00
19	40.90	13.86	4.38	4.38	0.00
50	-60.40	-27.22	-9.90	-9.90	0.00
21	-51.71	-22.54	-6.91	-6.91	0.00
55	30.97	11.85	-6.14	6.14	0.00
23	-70.85	-32.62	-6.64	-6.64	0.00

## JTRD-9 * 2400 HOUR TEST SERIES *

UNIT	TSO HR	TSR HR	AMR TEMP DEG R	AMR PRESS	AMR HUMID LR H20/AIR
6	17025.	2248.	492.7	30.12	.003410
7	16153.	2318.	492.7	29.96	.002720
9	17926.	2610.	484.7	30.19	.003370
10	17654.	2524.	500.7	29.91	.003310
11	9630.	22A0.	492.7	30.06	.002480
15	16361.	2496.	512.7	30.11	.002660
14	3AOA.	2333.	486.7	30.0A	.000970
15	3809.	2313.	486.7	30.0A	.000970
16	3804.	2333.	484.7	30.24	.000970
17	3925.	2455.	496.7	29.75	.003440
18	3925.	2455.	496.7	29.75	.003440
19	3925.	2455.	495.7	24.15	.003440
23	10403.	2523.	499.7	29.90	.003360

### JT80-9 * 2400 HOUR TEST SERIES *

MODE 1

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR N1 PER CENT	CORR N2 PER CENT
-				
6	34.50	500	35.40	58.48
7	33.00	57.00	33.86	58.48
9	32.00	-54.01	33.10	55.86
10	34.00	56.00	34.61	57.00
11	34.00	57.00	34.89	58.45
12	36.00	60.50	36.21	60.85
14	34,50	58.10	35.62	59.84
15	36.50	59.50	37.6R	61.42
16	35.50	57.75	36.65	59.62
17	35,00	58.00	35.77	59.27
18	34.00	58.00	34.74	59.27
19	33,50	57.00	34.23	58.25
23	36.00	58.00	36.71	59.15

### JTRD-9 * 2400 HOUR TEST SERIES *

MODE 1

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EP9	THRUST LRF
6	1060.	•1950	.2410	1086.	1.360	914.
7	1080.	.2510	.2780	1086.	1.050	918.
9	1150.	.7270	.3020	1095.	1.060	860.
10	1140.	.5550	.2880	1167.	1.060	890.
11	1125.	.1850	.2540	1104.	1.050	915.
12	1150.	.3150	.2850	1140.	1.050	-1007.
14	1075.	.1980	.2620	1104.	1.060	942.
15	1160.	.2310	.2750	1077.	1.075	-1050.
16	1068.	.2210	.2570	1077.	1.070	937.
17	1050.	1650	.2610	1068.	1.070	941.
19	1075.	.2590	.2710	1104.	1.070	941.
19	990.	.2810	.2530	1059.	1.060	925.
23	1120.	.2490	.2740	1050.	1.070	934.

# JTAD-9 . 2400 HOUR TEST SERIES .

### MODE 1

UNIT	CORR FU FL LBM/HR	COR CR F/A X100	COR PF F/A	CORR TT7 DEG R	COR THRUST
6	1040.	.2050	.2740	1143	. 920.
7	1054.	.2650			
9	1171.	.2430			
10	1120.	.2300	.2980	1209	. 890.
11	1004.	.1950	,2680	1162	. 920.
12	1151.	.3180	.2890	1153	-1013-
14	1047.	.2110	.2790	1176	948.
15	1130.	.2470	.2930	1147	-1055-
16	1040.	.2350	.2740	1147	942.
17	1021.	1720	.2730	1115	935.
18	1046.	.2810	) £#30	1153	. 435.
19	963.	. 2940	.2640	1106	. 915.
23	1097.	• 2590	.2850	-1092	. 933.

# JTRD-9 . 2400 HOUR TEST SERIES

MODE 1

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
6	.395	69.3	11.7	5.1	5.4
7	.506	107.3	20.7	5.3	5.7
9	.454	106.5	24.9	4.3	4.6
10	.453	70.0	10.7	4.7	5,3
11	.375	64.0	11.3	5.0	5.7
12	.642	102.6	11.5	5.7	5.7
14	. 199	81.9	16.9	5.2	5.2
15.	.46A	94.9	15.0	4.4	5.7
16	.479	142.8	20.3	5.6	4.6
17	333	65.5	12.5	4.9	4,5
18	.542	120.6	26.A	4.5	6.0
19	.567	119.4	23.9	4.2	. 6.1
23	. 506	83.6	15.8	6.1	6.0

# JTRD-9 * 2400 HOUR TEST SERIES *

MODE 1

UNIT	COS EI	CO EI	HC EI	NO EI	NOX ET	SMK NUMBER
	LB/KLB FU	LB/KLB FU	LB/KLB FU	LR/KLR FU	LH/KLH FU	FRONT SIDE
6	3079.	34 - 36	9.98	4.13	4,42	0.00
7	3047.	41.14	13.63	3.31	3.60	0.00
9	3035.	45.27	18.14	3.02	3.22	0.00
10	3089.	30.38	7.95	3.32	3.79	0.00
11	3078.	33.41	10.17	4.26	4.88	0.00
12	30AA.	31.40	6.07	2.07	2.87	0.00
14	3048.	40.79	14.13	4.13	4.15	0.00
15	3060.	39.50	10.73	3.03	3.93	0.00
16	-3012.	-62.35	15.22	4.02	4.02	0.06
17	3061.	38.27	12.57	4.74	4.74	0.00
18	3043.	43.14	16.44	2.65	3.55	0.00
19	3053.	40.92	14.10	2.39	3.42	0.00
53	3076.	32.35	10.51	3.85	3.85	0.00

### JT80-9 * 2400 HOUR TEST SERIES *

MODE 1

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
6	3.4270	4.2520	18.7460	3.9320	4.7010	20.9730
7	3.4130	4.3090	18.0460	3.9320	4.7930	20,9730
9	-2.8210	-3.6580	17.1360	3.3620	4.1660	19.3970
10	3.2600	4.0900	18.2080	3.6020	4.3990	20.0740
11	3.4220	4.2330	19.0640	3.9320	4.6860	20,9730
12	-4.3720	-5.3590	-21.1330	4.5000	5.4730	27.4770
14	3.5800	4.4360	20.1650	4.2590	5.0410	21.8740
15	3.8950	4.8140	-21.0280	-4.6450	5.4870	22.7A30
16	3.5290	4.4130	20,0230	4.1970	5.0180	21.6660
17	3.6280	4.4040	19,1920	4.1140	4.8350	21.4530
18	3.6290	4.5490	19.1880	4.1140	5.0090	21.4530
19	3.4240	4.3450	18.6390	3.8780	4.7930	20.8300
23	3.6580	4.5480	19.2780	4.0860	4.9440	21.3800

#### JTRD-9 . 2400 HOUR TEST SERIES .

MODE 1

UNIT	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU	NRE CNO ET	NR CNOX EI LB/KLB FU	SMK NUMBER CORRECTED
6	29.95	9.02	4.62	4.95	0.00
7	35.72	12.25	3.67	3.98	0.00
9	37.99	15.92	3.41	3.65	0.00
10	27.56	7.39	3.66	4.18	0.00
11	29.08	9.19	4.69	5.37	0.00
12	30.51	-5.94	3.05	3.05	. 0.00
14	34.29	12.44	4.47	4.49	0.00
15	33.12	9.41	3.28	4.26	0.00
16	-52.43	13.39	4.35	4.35	0.00
17	33.75	11.45	5.30	5.30	0.00
18	38.05	14.93	2.97	3.97	0.00
19	36.13	12.81	2.67	3.83	0.00
23	28.96	9.67	4.27	4.27	0.00

### JTRD-9 * 2400 HOUR TEST SERIES *

MODE 2

UNIT	N) SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORP NO PER CENT
	••••••			
6	39.50	62.00	40.53	63.61
7	39.00	62.00	40.02	63.61
9	40.00	62.00	41.3A	64.14
10	-41.00	62.00	-41.73	63.10
11	39.00	62.00	40.02	63.61
12	-36.50	-62.50	36.71	62.86
14	38.50	62.00	39.75	64.01
15	39.00	62.00	40.26	64.01
16	40.00	62.00	41.29	64.01
17	39.00	62.00	19.85	63.36
18	38.50	62.00	39.34	63.36
19	38.00	62.00	38.83	63.36
23	40.00	62.00	40.79	63.23

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

ATTENTAL TO

## JTBD-9 * 2400 HOUR TEST SERIES *

HODE 2

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
6	1300.	.2120	.2970	1122.	1.080	1209.
7	1360.	.2740	•3160	1104.	1.090	1216.
9	-1450.	•2200	.3200	1131.	1.090	1245.
10	-1490.	.2040	3340	1194.	1.090	1180.
11	1275.	-1950	.2960	1113.	1.070	1212.
12	1125.	•3220	.2770	1158.	1.060	1155.
14	1225.	.1970	.2A30	1113.	1.070	1240.
15	1275.	.2270	.2920	1104.	1.080	1240.
16	1268.	.2080	.2820	1104.	1.080	1240.
17	1225.	1610	.2890	1104.	1.080	1206.
18	1275.	.2570	.3030	1113.	1.080	1236.
19	1200.	.2790	.2870	1068.	1.070	1206.
23	1320.	.2720	.3030	1068.	1.090	1190.

#### JTAD-9 . * 2400 HOUR TEST SERIES *

MODE 2

UNET	CORR FU FL	COR CA F/A COR		R TT7 COR	THRUST LBF
6	1275.	.2240	.3130	1181.	1217.
. 7	1327.	.2880	.3330	1162.	1217.
9	-1414.	.2360	3430	1210.	1256.
10	-1467.	.2120	3440	-1237.	1180.
11	1748.	.2050	.3110	1171.	1217.
12	1126.	•3260	2A10	1171.	1162.
14	1197.	.2100	.3020	1186.	1246.
15	1242.	.2470	.3120	1176.	1246.
16	1234.	5150	.3010	1176.	1246.
17	1192.	:690	.3020	1153.	1199.
18	1240.	.7680	.3160	1162.	1199.
19	. 1167.	.2910	.2990	1.15.	1199.
53	1293.	.2830	.3160	-1111.	1199.

## JTAD-9 + 2400 HOUR TEST SERIES +

MODE 2

UNIT	COS CONC	CO CONC	HC CONC	NO CONC	NOX CONC
6	.436	-51.2	-6.2	5.6	6,5
7	•558	81.1	11.9	5.7	6.6
9	.449	59.1	13.5	5.7	6,6
10	.419	-48,3	6.6	5.4	6,3
11	.400	-47.9	8.1	5.0	6,1
15	.659	92.3	10.0	6.0	6.4
14	.400	64.2	9.9	5.1	5,6
15	.461	81.1	13.8	4.9	6.0
15	.420	90.9	12.2	5.9	4.9
17	325	79.2	9.1	5.0	4,8
18	•5?2	81.4	19.9	5.6	6.8
19	•568	86.6	15.1	4.9	6,8
53	•556	67.9	11.8	6.2	7.1

### JT8D-9 * 2400 HOUR TEST SERIES *

PODE 2

UNIT	COS EI	CO EI LR/KLB FU	HC FI LR/KLB FIJ	NO FI L9/KLR FU	LR/KLB FU	SMK NUMBER FRONT SIDE
6	3111.	23.23	4.80	4.20	4.86	0.00
7	3085.	28.53	7.16	3.30	3.84	0.00
9	3087.	25.85	10.17	4.09	4.71	0.50
10	3104.	22.79	5.33	4.19	4.49	0.00
11	3102.	23.69	6.86	4.08	4.92	0.00
12	3096.	27.57	5.11	2.93	3.15	0.00
14	3079.	31.49	8.30	4.11	4.54	0.00
15	3070.	34.38	10.07	3.42	4.19	0.00
16	-3054.	-42.19	9.74	4.51	4.51	0.00
17	-3057.	-46.77	9.36	4.97	4.87	0.00
19	3073.	30.54	12.42	3.47	4.19	0.00
iq	3084.	29.91	8.96	2.78	3.86	0.00
21	3098.	24.09	7.19	3.61	4.13	0.00

### JTE 3-9 * 24 HOUR TEST SERIES *

HODE 2

UN	IT	FCO	FHC	FNO	STO FCO	STD FHC	STD FNO
		X100	×105	X100	X100	X100	X100
-						T	
	6	4.6220	5.5090	21.7580	5.3390	6.1240	24,4170
	7	4,6030	5,5980	21.9900	5.3390	6.2620	24.4170
	9	.4.5690	5.5030	21.4010	5,5260	6.3300	24.8360
1	0.	4,6570	5.4930	21.7240	5.1620	5.9280	24.0100
1	1	4.5150	5.4700	22.1270	5.3390	6.0870	24.4170
1	2	4.9330	5.9540	22.4390	5.0800	6.0830	23.8190
1	4	4,5720	5.4550	22.7800	5.4780	4.2280	24,7300
1	5	4.5720	5.5090	22.7800	5.4780	6.2980	24.7300
1	6	4.5720	3.4740	22.7800	5.4780	6.2530	24.7300
1	7	4.6030	5.3820	21.6110	5.2500	5.9270	24.2120
1	A	4.6080	5.5510	21.6110	5.2500	6.1310	24.2120
1	9	4.60AG	5,5910	21.6110	5,2500	6.1790	24.2120
2	3	4.5410	5.6070	21.6990	5.2060	6.1170	24.1110

## JIBD-9 . 2400 HOUR TEST SERIES .

MODE S

UNIT		C. Carlotte	NRE CHO ET		
			LR/KLR FII		
6	20.11	4,32	4.72	5.46	0.00
7	24.40	6.40	3.66	4.26	0.00
9	21.37	8.84	4.66	5.37	0.00
10	20.56	4.93	4.63	5.41	0.00
11	20.47	6.16	4.51	5.43	0.00
12	24.77	5.00	3.11	3.35	0.00
14	24.29	7.27	4.47	4.93	0.00
15	24.70	A.81	3.71	4.54	0.09
16	-35.21	A.53	4.90	4.90	0.00
17	-41.05	9.50	5.45	5.45	0.00
13	26.21	11.61	3.98	4.70	0.00
19	24.25	A.11	3.12	4.32	0.00
23	21.47	5,59	4.01	4.5A	0.00

## JTHD-9 . 2400 HOUR TEST SERIES .

MODE 3

UNIT	NI SPEED	NS SPEED	CORP NI	CORR NZ
	PER CENT	PER CENT	PE : CENT	PER CENT
6	91.50	91.00	93.48	93.37
7	92.00	90.50	94.40	92.86
9	-89.00	-89.00	-92.07	-92.07
10	92.00	-89.50	93.64	-91.09
11	93.00	91.00	95.42	93.37
12	93.00	94.00	93.54	94.55
14	91.50	91.00	94.46	93.94
15	91.50	91.00	94.46	93.94
16	91.75	90.75	94.72	93.69
17	94.00	93.00	96.06	95.04
18	93,00	93.75	95.04	95,40
19	93,50	92.75	95.55	94.78
23	92.00	90.00	93.83	-91.79

## JTAD-9 * 2400 HOUR TEST SERIES *

MODE 3

UNIT	FUFL FLOW	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRIIST LRF
6	esuu.	.8670	.5890	1392.	2.040	14281.
7	8600.	.8180	.7740	1374.	2.040	14357.
9	8200.	.9330	.6890	1356.	2.020	14041.
10	8500.	.8630	.7260	1410.	7.040	14381.
11	8350.	.8930	.6970	1360.	2.040	14310.
12	A500.	.9420	.7300	1446.	2.030	14180.
14	RASO.	7710	.7370	1365.	2.020	14088.
15	8400.	.7980	.7000	1345.	5.050	14088.
16	A350.	7600	.6950	1365.	2.020	14088.
17	8600.	7840	.7250	1401.	2.040	14461.
19	8600.	.8830	. 1300	1392.	7,040	14461.
19	8500.	.9210	.7190	1378.	2.040	14461.
23	9000.	.9750	.7660	1392.	2,040	14386.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

小人"人"

# JT80-9 * 2400 HOUR TEST SERIES *

MODE 3

UNIT	CORR FU FL	COR CB F/4 CO X100		TTT COR	THRUST LBF
	••••••	••••••	•••••		
6	8045.	.9130	.7250	1465.	14377.
7	8393.	.8610	.7620	1446.	14377.
9	-7994.	.8920	.7370	1451.	14163.
10	834A.	.8940	.7520	1460.	14377.
11	8176.	.9400	.7330	1432.	14377.
12	8504.	.9530	.7340	1463.	14270.
14	8619.	.8220	.7860	1454.	14163.
15	8180.	.8510	.7460	1454.	14163.
16	8132.	8100	.7400	1454.	14163.
17	8366.	.9190	.7580	1463.	14377.
18	8346.	.9230	.7620	1453.	14377.
19	8269.	.9610	.7510	-1397.	14377.
23	8119.	1.0140	7970	1448.	14377.

## JTAD-9 * 2400 HOUR TEST SERIES *

MODE 3

UNIT	COZ CONC	CO CONC	HC CONC	NO CUNC	NOX CONC
6	1.819	13.7	1.0	79.0	77.4
7	1.709	12.6	2.0	62.0	60.0
9	1.744	17.7	1.8	50.2	60,9
10	1.408	15.4	2.0	71.4	70,2
11	1.974	11.6	1.3	78.6	76.9
12	1.973	14.4	1.7	A7.1	84.0
14	-1.612	15.1	1.4	61.5	61.9
15	1.448	15.4	5.2	61.0	63,8
16	-1.5A7	13.7	1.3	-56.A	58.4
17	-1.537	15.2	4.5	71.0	71.0
18	1.793	17.8	-189.1	45.3	67.6
19	1.929	14.6	2.4	70.5	71.9
23	2.030	16.4	-47.4	80.0	75.1

## JTBD-9 * 2400 HOUR TEST SERIES *

MODE 3

UNIT	COZ ET	CO EI	HC ET	NO EI LB/KLB FU	NOX EI	SMK NUMBER FRONT SIDE
	••••••	•••••	********	••••••		*******
6	315A.	1.52	.20	14.34	14.34	33.77
7	3146.	1.47	.40	11.92	11.92	-40.79
9	3152.	2.04	.35	11.37	11.50	31.33
10	3154.	1.72	.37	13.02	13.02	35,53
11	3156.	1.24	.74	13.84	13.84	-54.97
12	3150.	1.47	.30	14.53	14.53	-42,38
14	3144.	1.87	.30	12.55	12.64	-44.00
15	3145.	1.90	1.07	12.02	12.58	40.00
16	3148.	1.73	.29	11.77	12.12	74.4%
17	3147.	1.86	2.00	14.27	14.27	-50.33
18	-3056.	1.94	-35.25	11.63	12.05	-40.40
19	3157.	1.52	.43	12.05	12.28	31,33
23	-3131.	1.61	-A.03	12.91	12.90	16.42

## JTRD-9 * 2400 HOUR TEST SERIES *

MODE 3

UNIT	FCO	FHC X100	FN0 X) 00	STD FCD	STD FHC	STD FNO
	X100	*100	~10	×100	×100	~1110
6	78.7350	A3.5750	A7.0670	104.2460	102.7610	100.9600
7	70.6980	77.4260	86.1350	93.0180	95.0250	98.7630
9	63.0380	70.2230	-80.4720	-89.9010	-91.3260	-95.4450
10	67.6200	73.0850	-80.7900	-A1.A360	-84.2190	-91.1780
11	81.1580	84.9860	RR.5430	108.1060	104.9100	100.9600
15	114.8150	110.8090	-99.1770	122.5200	116.0570	106.1740
14	70.1540	78.3690	91.4790	97.7481	100.4560	103.4540
15	72.3630	79.7930	91.4790	101.3650	107.5860	103.4540
16	67.7230	76.3070	90.5180	94,1351	97.6120	102.3280
17	83.4710	90.3390	93.5630	106.4150	108.1770	107.9420
19	99.7720	101.2440	95.8311	128.6740	122.3470	110.6460
19	97.6500	98.1460	92.8140	126.3960	114.7590	107.0770
23	81.7920	A2.7700	92.8440	107.9110	97.8630	-94.2760

## JT80-9 . 2400 HOUR TEST SERIES .

MODE 3

UNIT	NREC CO EI LB/KLB FU		NRE CNO EI LB/KLR FU		SMK NUMBER CORRECTED
6	1.15	.16	16.62	16.62	30.41
7	1.12	.33	13.67	13.67	35.03
9	1,43	.27	13.49	13.64	31.33
10	1.42	.33	14.69	14.69	35.53
11	93	.19	15.78	15.7R	30.41
12	1.37	.28	15.55	15.55	35.03
14	1.34	.23	14.20	14.30	-22.28
15	1.36	.83	13.60	14.23	-40.00
16	1.25	.23	13.30	13.70	31.86
17	1.46	1.67	16.46	16.46	-50.33
18	1.50	-29.17	13.43	13.91	-40.40
19	1.18	.36	13.90	14.17	31.33
53	1.28	-6.79	14.67	14.67	36.42

NOTE- MINUS SIGNS PENOTE OUTLYING VALUES

アメイトニーナメング

### JIRD-9 * 2400 HOUR TEST SERIES *

MODE 4

UNIT	NI SPEED PER CENT			
				-
6	86.50	89.00	AA.75	91.32
7	86.00	88.00	A9.24	90.29
9	-84.00	-87.00	-86.90	-90.00
10	96.50	92.50	RR.04	-94.15
11	97.00	89.00	A9.27	91.35
12	A7.50	92.00	AR.01	92.54
14	45.00	88.25	A7.75	91.10
15	A5.50	88.50	AA.27	91.35
16	86.00	88.00	A8.7A	90.85
17	88.00	90.00	-89.93	91.97
18	97.00	90.00	AR.91	91.97
19	87.00	90.00	16.8R	91.97
23	87.00	A9.00	88.73	99.77

# JT80-9 * 2400 HOUR TEST SERIES *

MONE 4

UNIT	FUEL TLOW LBM/HR	CB F/A X100	PERF F/4 X100	TT7 DEG R	EPR	THRUST LAF
6	6925.	.7410	•6060	1329.	1.850	12218.
7	7200.	.6850	•6370	1320.	1.850	17284.
9	7000.	.7160	.6170	1302.	1,830	11960.
10	7200.	.8090	.6440	1356.	1,850	17325.
11	6888.	.7700	.6010	1293.	1.850	17243.
12	7200.	.8470	.6480	1374.	1,840	12105.
14	7175.	.6620	.6310	1320.	1,930	12000.
15	-6655.	.6600	5820	1293.	1.830	12000.
16	6725.	•6370	.5860	1293.	1.830	12000.
17	7000.	.6400	.6160	1320.	1.850	12372.
18	6800.	.7720	.6040	1338.	1,850	12372.
19	7200.	.7860	.6400	1275.	1.850	12372.
23	-7700.	.8040	•6930	1338.	1.850	12308.

## JTRD-9 * 2400 HOUR TEST SERIES *

MODE 4

UNIT	CORR FU FL	COR CR F/A	XIOU	DEG R	THRUST LBF
6	5794.	.7800	.6380	1394.	15300.
7	7027.	.7210	.6700	1389.	1230n.
9	6925.	.7670	.5610	1393.	12054.
10	7072.	.8380	.4670	1404.	15300.
11	5744.	.8100	.5330	1361.	12300.
12	7204.	.8520	.6550	1390.	12142.
14	4997.	.7060	.6730	1406.	12064.
15	-64A1.	.7040	.6210	1374.	12064.
16	4949.	.6790	.6740	137A.	12064.
17	681n.	.6680	.6430	1378.	12300.
18	4615.	.8075	.6310	1397.	12300.
19	7004.	.R210	.6680	-1331.	12300.
23	7545.	.8360	7110	1391.	12300.

#### JTBD-9 . 2400 HOUR TEST SERIES .

MODE 4

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
6	1.553	14.9	.5	55.7	56.3
7	1.428	13.3	1.3	45.A	45.7
9	1.497	-22.4	1.6	44.7	46.4
10	1.695	16.9	1.7	54.3	55.0
11	1.612	13.6	1.4	54.9	54.8
12	1.762	14.7	1.4	63.0	63.2
14	1.361	18.2	1.4	45.4	47.0
15	1.377	17.5	2.1	-42.1	45.3
16	1.328	15.4	1.1	-41.1	43.1
17	1.334	15.7	8.1	48.7	49.8
18	1.552	16.7	-211.8	51.4	51.4
19	1.644	16.1	1.6	50.0	51.7
23	1.670	19.0	-40.2	59.0	56.5

#### JTRD-9 . 2400 HOUR TEST SERIES .

MODE 4

UNIT	COS EI		HC FT LB/KLR FU		NOX ET LR/KLR FU	
6	3157.	1.93	.12	11.83	11.57	13.33
7	3145.	1.86	.12	10.54	10.54	13.55
9	3150.	-3.00	.37	9.83	10.20	30.00
10	3154.	2.00	. 74	10.57	10.70	34.00
11	3155.	1.69	.31	11.23	11:23	36.00
12	3150.	1.67	.28	11.78	11.81	31.79
14	3146.	2.63	. 35	10.41	11-19	31.33
15	3144.	2.54	.52	10.06	10.A2	30.92
16	3147.	2.32	.29	10.17	10.68	30.46
17	3146.	2.35	2.18	12.01	12.29	15.76
18	-3029.	2.03	-45.20	10.55	10.56	31.58
19	3152.	1.96	.34	10.01	10.35	30.46
23	-3130.	2.27	-8.24	11.55	11.55	34.00



#### JT80-9 * 2400 HOUR TEST SERIES *

MODE 4

UNIT	FC0 X100	FHC X100	FNO X100	STD FCO X100	STD FHC	STO FNO	
6	56.7430	65.6840	79.7640	73.0940	79.4530	97.2630	
7	47.7810	57.4940	76.4290	61.0580	69.3090	87.3410	
9	45.1590	54.5220	72.7440	62.2570	59.4680	-85.9650	
10	83.8270	89.4000	-92.2180	-101.6210	-103.2510	-104.3510	
11	50.4410	66.7840	81.1210	75.7140	81.0950	92.2430	
12	84.1470	88.1960	-91.0810	-89.2790	-92.0580	97.4060	
14	48.5920	58.95:0	W1.0550	65.5730	74.0830	91.2790	
15	49.7940	60.2650	A2.0990	47.2570	75.7770	92.4430	
. 16	46.1210	56.7360	79,9520	61.9020	71.0540	89.9850	
17	55.2920	65.9370	82.6210	68.3630	7.1.6830	95,0410	
18	63.8320	71.7520	82.6210	80.5000	95.3040	95,0410	
19	64.3070	72,3A80	82.6210	81.5760	A6.1440	95.0410	
23	59,9200	67.2270	78.8200	73.4900	78.3560	89.6020	

### JT80-9 . SADO HOUR TEST SERIES .

MODF 4

UNIT	NREC CO ET			NR CNOX ET	
	LB/KLR FU	LB/KLB FU	LR/KLR FU	LA/KLA FU	CORRECTED
6	1.50	.10	13.68	13.84	33.33
7	1.46	.26	12.05	12.05	33.55
9	2.18	.29	11.61	12.05	30.00
10	1.65	.30	11.55	12.11	34.00
11	-1.31	.25	12.77	12.77	29.24
12	1.58	.27	12.59	12.63	31.79
14	1.95	.28	12.18	12.60	23.05
15	1.88	.42	11.33	12.18	30,92
15	1.73	.23	11.45	15.05	28.67
17	1.90	1.77	13.42	14.73	35.76
18	1.45	-18.02	12.15	12.15	31.59
19	1.56	.28	11.52	11.92	30.46
53	1.85	-7.07	13.14	13.14	34.00

## JIAD-9 . 2400 HOUR TEST SERIES .

400F 5

UNIT	NI SPEFO PER CENT	NZ SPEEN PER CENT	CORP N1	CORR NZ
***		1.6- (64)	SER CERT	
6	78.00	84.50	A0.03	A6.7U
7	77.00	84.00	79.01	86.19
9	75.00	-87.00	77.59	-84.R3
10	77.00	82.50	74.37	-83.97
11	79.00	R4.00	A1.03	86.19
12	78.75	R7.00	19.51	A7.51
14	76.25	84.00	79.72	86.72
15	77.00	84.00	79.49	86.72
16	76.50	84.00	78.97	86.72
17	79.00	86.02	A0.73	87.88
18	78.90	85.00	79.71	85.86
19	77.50	A5.25	79.20	A7.12
23 .	-97.00	A4.00	-88.73	A5.67

### JT8D-9 * 2400 HOUR TEST SERIES *

MODE 5

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF
6	4635.	.5480	.4580	1551.	1.540	A543.
7	4700.	•5220	.4750	1203.	1,540	A589.
9	-4400.	•5010	.4490	1189.	1.530	A402.
10	4650.	•5980	.4800	1248.	1.540	8603.
11	468R.	-5190	.4650	1198.	1.540	A560.
15	4877.	.6390	.4910	1266.	1.540	A546.
14	4500.	.4850	.4530	1212.	1.530	R430.
15	4563.	.4950	.4530	1212.	1.530	A430.
16	4525.	.4750	.4530	1198.	1.530	M430.
17	4725.	.4720	.4700	1212.	1.540	A651.
18	4675.	•5860	.4730	1230.	1.540	8651.
10	4575.	.5820	.4670	1154.	1.540	8651.
53	4730.	.6540	4200	1248.	1.540	8606.

## JIRD-9 . S400 HOUR TEST SERIES .

MODE 5

UNIT	CORR FILEL	COR CA F/A COR		TTT COR	THRUST LRF
6	454A.	.5770	.4830	1285.	860g.
7	4587.	•5500	.5010	1256.	8500.
9	4790.	.5770	.4810	1273.	R475.
10	4547.	.6090	.4970	1293.	8600.
11	4590.	.5460	.4890	1261.	. 8600.
12	4902.	.6460	.4970	1541.	8600.
14	4792.	.5170	.4830	1291.	8475.
15	4447.	.5280	.4P30	1291.	8475.
16	4407.	.5070	.4A30	1277.	8475.
17	4597.	.4930	.4900	1265.	8600.
19	4544.	.6120	.4940	1284.	2600.
:9	4451.	.5080	.4970	-1209.	A600.
23	4635.	6900	4360	1298.	8600.

## JTAN-9 * 2400 HOUR TEST SERIES *

MODE 5

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
6	1.145	20.9	.7	30.8	33.2
7	1.086	19.1	1.2	26.4	21,3
9	1.043	-36.6	2.5	23.6	27.2
10	1.227	23.1	1.7	29.9	32.4
11	1.082	20.6	1.4	28.9	31.0
12	1.333	17.9	1.4	36.7	. 37.7
14	1.008	-33.0	2.3	24.6	27.4
15	1.031	26.5	1.6	24.2	27.7
. 16	.989	24.8	1.6	23.9	25.8
17	.982	20.4	3.9	28.3	29.9
18	1.152	27.4	-229.A	29.5	30.8
19	1.214	25.1	1.9	28.3	30,6
23	1.377	25.5	31.4	36.3	36.2

# JIND-9 . 2400 HOUR TEST SERIES .

MONE 5

UNIT	CO2 E1	CO ET	HC ET	NO FI	NOX ET	SMK NUMBER FRONT SIDE
•	FB/kFb En	CONCA PO		L9/KLR FU	FULKED LO	
6	3154.	3.66	.21	A.87	9.57	24.50
7	3142.	3.51	.39	7.9A	8.76	26.32
9	3147.	-7.02	.43	7.42	8.56	21.33
10	3151.	3.77	.47	R. 03	8.70	25.33
11	3151.	3.83	.44	R.90	9.43	28,00
12	3144.	2.69	.37	9.06	9.30	21.85
14	3139.	-6.54	.80	A.01	8.91	22.67
15	3147.	5.14	•53	7.71	8.83	22,67
16	3142.	5.02	.57	7.94	8.56	21.85
17	3146.	4.16	1.37	9.48	10.01	25,66
18	-2971.	4.49	-64.77	7.95	8.30	25.17
19	3148.	4.14	•53	7.68	8.29	26.49
23	3129.	3.68	7.90	9.63	8.63	27.81

#### JT80-9 • 2400 HOUR TEST SERIES •

MODE 5

UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO	STO FHC	STD FNO
	*****				*****	~~~~~~
6	28.4630	37.8280	61.9680	35.1560	44.5490	71.2140
7	26.2770	35.4510	60.9310	32,4380	41.7940	69.2370
9	21.2790	-29.6710	54.7760	-27.6690	-36.4140	-64.1410
10	23.4390	31.3490	54.7630	-27.1410	-35.1330	-61.3950
11	26.2660	35.4770	61.3096	32.3310	41.7170	69,2370
12	39.0490	48.2390	-69.6550	40,9710	50.0020	74.3730
14	25.8190	35.3540	63.7920	33.2880	43.1310	71.2780
15	26.0480	35.5430	63.7820	33.6300	43.3980	71.2780
16	25.6130	35.1820	63.7820	32,9800	42.8900	71.2780
17	30.5740	40.9480	66.2740	36.7160	47.3370	75.8690
18	30.5540	39.7480	62.6250	36,9930	46.1490	71.8400
19	31.2590	40.5990	63.6800	37.8580	47.1510	72,8380
23	29.5120	37.7120	59,4830	35.1350	43.1200	67.2570

#### JTAN-9 . 2400 HOUR TEST SERIES .

MODE 5

UNIT				NR CNOX ET	
	LH/KLR FIJ	LHYKLH FU	LUZKEH FII	LR/KLR FIJ	CURRECTED
6	2.96	.19	10.19	11.00	23.05
. 7	7.94	•32	9.07	9.39	26.32
9	-5.40	.67	A.69	10.02	21.33
10	3,26	.42	9.00	9.75	25.33
11	3.11	.37	9.94	10.65	24.60
12	2.56	.36	9.67	9.93	- 21.85
14	-5.07	. 65	A.95	9.96	22.67
15	3.9A	.43	8.61	9.97	22.67
16	3.90	.47	A.RR	9.56	21.A5
17	3.46	1.18	10.95	11.46	25.66
18	3.71	-55.79	9.09	9.49	25.17
19	3.42	.46	A.79	9.48	26.49
23	3.09	6.82	9.76	9.76	27.61

## JTRD-9 . 2400 HOUR TEST SERIES .

MODE 6

UNIT	NI SPEFD PER CENT	NO SPEED PER CENT	CORP NI PER CENT	CORR NZ PER CENT
6	60.50	76.00	45.08	77.98
7	59.00	75.00	60.54	76.95
9	59.00	-74.00	61.03	76.55
10	59.00	-73.50	60.05	-74.81
11	60.00	75.50	61.56	77.47
12	60.50	78.00	60.85	78.46
14	59.00	75.75	60.91	78.20
15	59.00	75.75	60.91	78.20
16	59.75	75.00	61.68	77.43
17	61.00	77.00	62.34	78.69
18	59.50	76.00	60.80	77.60
19	59,50	76.50	60.80	78-18
23	60.00	75.00	61.19	76.49

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

いとうというとかとないというというと

#### JIRD-9 * 2400 HOUR TEST SERIES *

MODE 6

UNIT	FUEL FLOW	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
6	2345.	.3310	•3220	1077.	1.230	399A.
7	2425.	.3160	. 3450	1068.	1.230	4020.
9	2400.	.2540	.3330	1059.	1.230	1990.
10	2355.	.2920	. 3470	1122.	1.230	4026.
11	2778.	.2520	. 3250	1064.	1.230	4006.
12	2400.	. 3480	. 7450	1113.	1,230	4000.
14	2275.	.2730	.31R0	1072.	1.230	4004.
15	231 '•	.2800	.1210	1050.	1.230	4004.
16	2304.	.2720	.3180	1059.	1.230	4004.
17	2430.	.2590	. 7340	1077.	1.230	4049.
18	2275.	.3350	.3260	1095.	1.230	4049.
19	2275.	.7150	.1260	1032.	1.230	4049.
23	2460.	.3880	. 1480	1104.	1.230	402A.

## JTAD-9 * 2400 HOUR TEST SERIES *

MODE 6

UNIT	COTR FU FL LBM/HR	COR CB F/A	COR FF F/A	CORR TT7 COR	THRUST LRF
6	2301.	.3480	.3390	1134.	4025.
7.	2367.	•3320	.3630	1124.	4025.
9	2340.	.2720	.3560	1133.	4025.
10	2313.	.3030	. 1540	1162.	4025.
11	2289.	.2650	.3420	1124.	4025.
12	2401.	•3520	,3490	1126.	4025.
14	2215.	.2910	.3390	1143.	4025•
15	2252.	.2990	.3450	1119.	4025.
16	2247.	• 2900	.3390	1128.	4025.
17	2364.	.2710	.3520	1124.	4025.
18	2213.	.3490	.3400	1143.	4025.
19	2213.	•3290	.3400	1077.	4025.
53	2410.	.4040	.3620	1148.	4025.

#### JTRD-9 * 2400 HOUR TEST SERIES *

MODE 6

TIVU	COP CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CÒNC
6	.696	39.7	2.5	10.4	13.6
7	•652	37.6	3.4	10.1	12.0
9	.522	51.7	6.R	7.8	10.7
10	.405	41.7	4,1	9.7	12.4
11	.521	37.0	5.2	9.>	11.4
12	.720	47.9	4.9	12.5	13,4
14	.560	54.7	6.8	8.3	11.3
15	.576	56.3	5.8	7.4	11.1
16	.559	5R.4	5.9	A.5	9,1
17	.575	40.4	6.0	10.0	11.5
19	.613	55.4	-194.A	9.5	11.8
19	.649	54.9	7.7	9.4	11.5
23	.800	49.6	17.1	13.2	15.8

#### JTRD-9 + 2400 HOUR TEST SERIES +

MODE 6

UNIT	COZ ET		HC EI	NO EI LR/KLB FU	NOX ET LA/KLG FU	SMK NIMRER FRONT STOE
6	3135.	11.55	1.24	4.96	6.60	8.61
7	3126.	11.49	1.79	5.06	6.02	10.53
9	3113.	-19,59	4.43	4.88	6.70	5.96
10	3130.	13,72	2.74	5.22	6.73	7.33
11	3127.	14.13	3.19	5.74	7.15	10.60
12	3128.	12.13	2.13	5.66	6.09	8.61
14	3110.	-19.30	4.13	4.81	6.57	8.00
15	3112.	-19.34	3,44	4.40	6.24	9.87
16	3109.	-20.70	3.56	4.97	5.24	7.89
17	3122.	15.02	3.41	5.09	7.05	9.33
18	-2866.	15.96	-96.41	4.50	5.59	3,67
19	311A.	16.78	4.03	4.73	5.79	7.89
23	3117.	12.30	7.29	5.38	6.45	9.27

## JIAD-9 . 2400 HOUR TEST SERIES .

MODE 6

UNIT	FC0 x100	FHC X100	FNC X100	STO FCO	STO FHC X100	STO FNO
6	10.2750	15.9650	39.7100	12.1260	18.2260	45.1540
7	9.2210	14.5190	38.1850	10.4850	16.5970	42.9110
9	-9.1870	-13.7430	36.3700	10.0470	15.6240	42.0450
10	-7.7420	-12.4300	34.5300	-9.6710	-13.59RD	-38.4260
11	9.2960	14.8000	39.3940	10.9060	16.8420	44.0>76
12	12.2790	18.4920	43.4050	12.7170	19,0030	46.2270
14	9.7120	15.3930	41.3440	11.4740	18.0970	45.6440
15	9.7600	15.4290	41.3430	11.9450	18.1600	45.6440
16	9.0540	14.4440	39.4440	11.0490	16.9620	43.9390
17	10.6090	16.5080	41.2650	15.5610	18.7030	46.7890
19	10.1620	15.7500	39.2510	11.7850	17.7620	7584.44
19	10.5040	16.2R70	40.2270	12.1800	18.3680	45.5990
23	9.6020	14.8020	37.3910	10.9600	16.4570	41.9120

#### JT80-9 * 2400 HOUR TEST SERIES

MODE 6

UNIT			NRE CHO ET		
	LB/KLB FU	LB/KLR FU	LR/KLB FU	LR/KLR FU	CORRECTED
6	9.79	1.09	5.64	7.51	8.61
7	9,73	1.56	5.68	6.76	10.53
9	15.97	3.76	5,65	7.74	5.96
10	12.28	2.05	5.A1	7.49	7.33
11	12.04	2.98	6.42	7.99	10.56
12	11.71	2.27	6.03	6.49	8.61
14	15.78	3.51	5.31	7.25	8.00
15	15.80	2.92	4.85	6.89	9.87
16	16.97	3.03	5.47	5.82	7.89
17	17.99	3,38	6.89	7.99	9.33
18	13.76	-85.49	5.09	6.33	6.67
19	14.47	3.58	5.36	6.56	7.89
23	10.77	6,56	6.03	7.23	9.27

## JIAD-9 . 2400 HOUR TEST SERIES .

MODE 7

UNIT	NI SPEED	NE SPEED	CORR NI	CORR N2
•	PER CENT	PER CENT	PER CENT	PER CENT
6	39.00	62.00	40.02	63.61
7	38.00	62.00	38.99	63.61
9	-40.00	62.00	-41.3R	64.14
10	-40.75	62.00	-41.48	63.10
11	39.00	62.00	40.02	63.61
12	38.00	62.00	38.22	62.36
14	39.00	62.00	40.26	64.01
15	39.00	62.00	40.26	64.01
16	-40.00	62.00	-41.29	64.01
17	38.00	62.00	38.83	63.36
18	38.00	62.00	38.83	63.36
19	37.75	42.00	38.58	63.36
23	-40.00	-61.00	40.79	62.21

# JTBD-9 . 2400 HOUR TEST SERIES .

MODE 7

UNIT	FUEL FLOW	CR F/A X100	PERF F/A X100	TTT DEG R	EPR	THRUST LAF
6	1230.	.2430	.2850	1086.	1.080	1209.
7	1300.	• 2680	.3060	1077.	1.070	1216.
9	-1450.	•5550	3200	1104.	1.090	1245.
10	-1450.	•2110	3280	1145.	-1.100	1180.
11	1243.	•2000	.2880	1095.	1.070	1212.
12	1120.	.3400	.2710	1122.	1.070	1116.
14	1185.	•2040	.2720	1104.	1.080	1240.
15	1225.	•2250	.2810	1068.	1.090	1240.
16	1230.	-2040	.2740	1104.	1.090	1240.
17	1150.	1610	.2750	1086.	1.080	1206.
18	1250.	•2500	.2990	1122.	1.080	1206.
19	1150.	.2710	.2760	1050.	1.070	1206.
23	1290.	•2620	.2940	1068.	1.090	1114.

#### JTBD-9 * 2400 HOUR TEST SERIES

MODE 7

UNIT	-	-			THRUST
	F BM\HD	x100	X100	DEG R	LRF
	•				
6	1707.	.2560	•3000	1143.	1217.
7	1269.	.2820	•3230	1134.	1217.
9	-1414.	.2380	3430	1181.	1256.
10	-1474.	.2190	3390	-1227.	1180.
11	1217.	.2100	.3030	1152.	1217.
12	1121.	. 3440	.2740	1135.	1125.
14	1154.	.2170	.2900	1176.	1246.
15	1193.	.2390	.2990	1139.	1246.
16	1194.	.2180	.2920	1176.	1246.
17	1119.	1680	.2870	1134.	1199.
18	1216.	.2610	.3120	1171.	1199.
19	1119.	.2830	.2880	1096.	1199.
23	1254.	.2730	•3060	1111.	1114.

## JT8D-9 * 2400 HOUR TEST SERIES *

MODE 7

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
6	.499	64.2	6.3	5.2	7.6
.7	•545	90.9	10.9	4.7	6.4
9	.452	75.0	13.A	5.1	6.7
10	.434	-52.4	5.9	5.2	6.9
11	.408	-57.3	9.5	5.1	6.7
12	.694	103.8	9.9	5.7	6.7
14	.415	. 64.9	8.7	4.8	6.0
15	.455	82.4	12.6	4.6	6.0
16	.413	A5.0	11.5	4.9	4.5
17	324	84.2	. 10.2	4.8	5.1
18	•506	86.9	21.7	5.2	6.8
19	•552	92.7	15.2	5.1	6.5
23	•532	90.7	18.6	5.0	7.2

# JTRO-9 * 2400 HOUR TEST SERIFS *

MODE 7

UNIT	COZ FT	CO ET	HC FI LB/KLB FU	NO FI	NOX ET	SHK NUMBER FRONT STOE
					*****	
6	3119.	25.42	4.29	3.3A	4.94	0.06
7	3079.	32.69	6.76	2.75	3.79	0.00
9	3077.	32,53	10.30	3.63	4.80	0.00
10	3109.	23.89	4.65	3.90	5.14	0.00
11	3093.	27.62	7.86	4.0A	5.30	0.00
12	3094.	29.43	4.94	2.65	3.10	0.00
14	3084.	30.72	7.09	3.74	4.67	0.00
15	3070.	35.17	9.30	3.23	4.20	0.00
16	3067.	-40.14	9.32	3.79	3.79	0.00
17	3048.	-50.44	10.46	4.72	5.01	0.00
18	3064.	33.50	14.15	3.32	4.28	0.00
19	3079.	35.95	9.28	2.99	3.79	0.00
53	3071.	13.32	11.74	3.04	4.33	0.00

### JT60-9 . 2400 HOUR TEST SERIES .

MODE 7

UNIT	FC0 X100	FHC X100	FNO X100	STO FCO	STO FHC X100	STD FNO X100
6	4.6270	5.5640	21.7580	5,3390	6.1930	24.4170
7	4.6010	5.5870	21.9900	5.3390	4.2490	24.4170
9	4.5690	5.5070	21.8010	5.5260	6.3350	24.8360
10	4.6570	5.5050	21.7240	5.1620	5.9430	24.0100
11	4.6150	5.4780	22.1270	5.3390	6.0970	24.4170
12	4.7700	5.8210	27.0650	4.9110	5.9470	23,4210
14	4.5720	5.4670	22.7800	5.4780	6.2440	24.7300
15	4.5720	5.5040	22.7900	5.4780	6.2920	24.7300
16	4.5720	5.4680	22.7800	5.4780	6.2450	24.7100
17	4.6080	5.3810	21.6110	5.2500	5.9260	24,2120
18	4.5080	5.5380	21.6110	5.2500	6.1150	24.2120
19	4.6080	5.5770	21.6110	5.2500	6.1(20	24.2120
23	-4.3390	-5.2790	20.9820	4.8620	5.7530	23.3020

#### JTAD-9 . PAND HOUR TEST SERIES .

MODE 7

UNIT			NOE CHO ET		
	LH/KLH FU	LR/KLB FL	I/KLR FU	LB/KLR FU	CORRECTED
6	27.00	3.85	3.79	5.55	0.00
. 7	28.18	6.04	3.06	4.21	0.00
9	26.49	9.96	4.13	5.47	0.00
10	21.55	4.31	4.11	5.6A	0.00
11	23.87	7.06	4.50	5.85	0.00
12	28.59	4.74	18.5	3.79	0.00
.14	25.64	6.21	4.06	5.07	0.00
15	29.52	A.13	3.51	4.56	0.00
16	33.50	. A.16	4.12	4.12	0.00
17	-44.27	9,50	5.29	5.61	0.00
18	29.40	12.99	3.72	4.80	0.00
19	. 28.90	8.40	3.35	4.24	0.00
23	29.74	10.77	3.38	4.81	0.00

#### JT80-9 . 2400 HOUR TEST SERIES .

MODE 8

UNIT	N1 SPEED PER CENT	entrance and a second of the second	CORP NI PER CENT	CORR N2 PER CENT
6	33.75	56.25	34.63	57.72
7	34.00	58.00	34.89	59.51
9	35.00	57.00	36.21	58.97
10	35.50	58.00	36.13	59.03
11	35.00	58.00	35.91	59.51
12	36.00	-60.50	36.21	60.85
14	35.50	58.00	36.65	59.88
15	37.00	59.50	-38.20	61.42
16	35.00	57.00	36.13	58.84
17	36.00	59.00	36.79	60.29
18	34.50	58.00	35.26	59.27
19	34.50	59.00	35.26	60.29
23	37.00	59.00	37.73	60.17

#### JTRD-9 * 2400 HOUR TEST SERIES *

MODE &

UNIT	FUEL FLOW LRM/HR	CB F/A X100	PERF F/4 X100	TT7 DEG R	EPR	THRUST
6	990.	•?490	.2460	1104.	1.055	898.
7	1090.	.2800	.2690	1068.	1.050	939.
9	1175.	.2030	.2830	1086.	1.060	921.
10	1180.	.1990	.2970	1158.	1.070	931.
11	1045.	•1960	.2560	1095.	1.060	936.
12	1115.	.3270	.2770	1122.	1.050	-1007.
14	1040.	•2040	.2500	1104.	1.060	942.
15	1125.	.2240	.2650	1068.	-1.080	-1050.
16	1000.	.2120	.2420	1068.	1.060	922.
17	1050.	1640	.2580	1086.	1.070	977.
18	1100.	•2570	.2750	1104.	1.070	941.
19	1025.	.2660	.2570	1032.	1.060	977.
23	1130.	.2560	.2730	1050.	1.070	963.

## JT80-9 . 2400 HOUR TEST SERIES .

MODE 8

UNIT	CORR FU FL LBM/HR	COR CR F/4	COR PF F/A	CORR TT7 DEG R	COR THRUST
6	971.	.2620	.259	0 116	2. 904.
7 .	1054.	•2950	.283	0 112	4. 940.
9	1146.	-2170	.303	0 116	2. 929.
10	1159.	.2060	•302	0 -119	931.
11	1023.	•2070	.269	0 115	2. 940.
12	1116.	•3310	.280	0 113	51013.
14	1013.	.2170	.267	0 117	6. 948.
15	1096.	.2390	.283	0 113	81055.
16	974.	.2260	.25A	0 113	927.
17	1021.	1710	.269	0 113	4. 972.
18	1070.	.2690	.288	0 115	3. 935.
19	997.	.2780	.268	0 -107	7. 972.
23	1107.	-2660	.284	0 109	2. 963.

### JTAD-9 . 2400 HOUR TEST SERIES .

MODE 8

UNIT	COS CONC PER CENT	CO CONC	HC CONC	DDM NU CUNC	NOX CONC
6	.505	96.0	14.1	3.7	6,6
7	.547	109.4	15.9	3.4	5.9
9	.407	92.1	50.0	4.6	6.0
10	.406	-63.3	-7.6	4.7	5.9
11	.199	-64.8	11.4	4.7	6.3
12	.666	112.2	11.6	5.0	6,5
14	-411	84.8	16.3	4.7	5,3
15	.452	93.2	15.A	4.2	5.6
16	.425	93.7	20.2	4.3	3.6
17	172	69,0	10.7	4.4	4,9
18	.517	112.A	25.4	5.0	5.3
19	.517	113.9	22.0	4.5	5.8
23	.518	95.5	19.2	4.6	6,6

## JT80-9 * 2400 HOUR TEST SERIES *

MODE B

UNIT	COS EI	CO ET	HC EI LA/KLB FU	NO EX	NOX EI LB/KLR FU	SMK NUMBER FRONT STDE
••••	*********					-4-44
6	3076.	37.21	7.39	2.36	4.18	0.00
7	3064.	37.61	9.39	2.14	3.32	0.00
9	3042.	43.80	16.32	1.57	4.65	0.00
10	3093.	3^.65	6.31	3.36	4.71	0.00
11	3079.	32.81	9.97	3.77	5.07	0.00
12	3086.	33.08	5.87	7.44	3.17	0.00
14	3052.	40.12	13.24	3.28	4.12	0.00
15	3054.	40.0A	11.68	2.93	3.94	0.00
16	3041.	42.69	15.82	3.25	3.25	0.00
17	3062.	41.06	10.41	4.21	4,44	0.00
19	3045.	42.23	16.37	3.09	3.86	0.00
19	3054.	41.19	13.67	2.69	3.47	0.00
53	3065.	35.98	12.40	2.86	4.07	0.00

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

一人人以中人人

# JIRD-9 . SAND HOUR TEST SERIES .

MODE A

INIT	FCO Kloo	FHC X100	FN0 1100	STO FCO X100	STO FHC	STO FNO
4	-3.2790	-4.1630	18.3370	3.7590	4.6090	20.5060
7	3.6160	4.5640	19.5010	4.1710	5.0910	21.6000
9	3.3740	4.2320	18.7430	4.0420	4.8320	21.2460
10	3.6750	4.4990	19.3110	4.0580	4.8320	21.3080
11	3.6250	4.4620	19.6220	4,1710	4.9460	21.6000
12	4.3720	-5.3810	21.1330	4.5000	5.4960	27.4270
14	3.5400	4.4440	20.1650	4.2590	5.0500	21.8240
15	3.8950	4.8030	21.0240	4.6450	5.4730	22.7430
16	3.3900	4.2420	19.5950	4.0140	4.8170	21.1920
17	3.8410	4.6200	19.7400	4.3600	5.0760	55.0810
18	3.6280	4.5320	19.1980	4.1140	4.9880	21.4530
19	3.8410	4.7700	19.7400	4.3600	5.2570	22.0A10
53	3.4730	4.7840	19.4330	4.3310	5.2050	55.0060

#### JT80-9 * 2400 HOUR TEST SERIES *

MODE 8

UNIT	NREC CO ET		NRE CNO ET	NR CNOX EI LR/KLR FU	SMK NUMBER CORRECTED
	********	********		••••••	******
6	32.47	8.48	2.64	4.67	0.00
7	32.61	8.43	2.37	3.69	0.00
9	36.56	14.29	4.06	5.28	0.00
10	27.75	5.86	3.71	5.20	0.00
11	28.52	9.00	4.15	5.5A	0.00
15	32.15	5.74	2,59	3.36	0.00
14	33.73	11.65	3,55	4.46	0.00
15	33.61	10.25	3,18	4.27	0.00
16	35,95	13,93	3.51	3.51	0.00
17	36.17	9.84	4.71	5.19	0.00
18	37.25	14.97	3.46	4.32	0.00
19	36.29	12.41	3.00	3.98	0.00
23	32.18	11.39	3.18	4.51	0.00

# JTRD-9 * 3000 HOUR TEST SERIES *

UNIT	TSO HR	TSB HR	AMR TEMP	AMB PRESS	THE HOMEO
1	16663.	2828.	521.7	29.97	.011190
11	9905.	2555.	510.7	29.62	.007480
14	4420.	2945.	520.7	29.92	.005650
15	4350.	2995.	520.7	30.12	.007200
16	4420.	2945.	527.7	29.68	.0105A0
17	4555.	3095.	515.7	30.13	.007790
18	4480.	3010.	527.7	29.83	.009230
21	4397.	2718.	512.7	30.10	.004460
55	4442.	2773.	529.7	29.85	.004690

## JTRD-9 . 3000 HOUR TEST SERIES .

MODE 1

UNIT	NI SPEED	NS SPEED	CORP NI	CORR N2
	PER CENT	PER CENT	PER CENT	PER CENT
7	31.60	56.00	31.51	55.84
11	35.25	58,50	35.53	58.96
14	33.00	54.00	32.94	57.89
15	34.00	58.00	13.93	57.89
16	-30.00	55.15	-29.74	54.68
17	31.75	56.50	31.84	56.66
18	32.00	56.00	31.73	55.52
21	34.25	58.25	34.45	58.59
55	33.00	54.00	32.66	57.39

## JT80-9 * 3000 HOUR TEST SERIES *

MODE 1

UNIT	FUEL FLOW	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST
-						
7	1070.	. 3860	.3180	1515.	1.040	865.
11	1113.	.2510	.2830	1154.	1.050	939.
14	1025.	.2530	.2840	1176.	1.050	908.
15	1050.	•3660	.2750	1167.	1.050	902.
16	-880.	.2720	.2920	1210.	1.060	R47.
17	1000.	• 1250	.2890	1113.	1.050	877.
18	1050.	.3750	.3120	1176.	1.060	863.
21	1100.	-2770	00A5.	1140.	1.050	916.
27	1050.	.3440	.2980	1185.	1.050	900.

# JTRD-9 * 3000 HOUR TEST SERIES *

MODE 1

UNIT	CORR FU FL LBM/HR	COR CR F/A X100	COR PF F/A	CORR TT7 CO	R THRUST
7	1075.	•3840	3160	1205.	867.
11	1093.	•2550	.2870	1176.	929.
14	1027.	•2520	•2820	1171.	908.
15	1059.	.3640	.2740	1162.	908.
16	-880.	.2680	.2870	1189.	840•
17	1004.	•3270	.2900	1119.	. 883.
18	1056.	.3680	.3060	1156.	860.
21	. 1100.	.2800	.2830	1153.	922.
. 55	1059.	.3370	.2910	1160.	898•

### JT80-9 * 3000 HOUR TEST SERIES *

MODE 1

UNTT	COR CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	********		*******		
7	.790	166.5	32.7	6.2	5.7
11	.508	85.0	19.4	6.6	3,3
14	.512	107.1	16.6	5.9	5.1
15	.746	124.8	19.5	7.7	6,9
15	.549	121.8	19.4	3.5	3,4
17	.454	152.7	74.6	4.9	3,6
18	.755	157.3	34.7	7.6	6.7
21	.557	131.4	25.4	6.2	5,6
55	.692	153.9	32.A	4.7	4.0

# JT80-9 * 3000 HOUR TEST SERIES *

MODE 1

UNIT	COS EI	CO EI LB/KLB FU	HC FI LR/KLR FU	NO EI LB/KLB FU	NOX EI LB/KLB FU	SMK NUMBER FRONT SIDE
7	3055.	41.48	14.01	2.54	2.54	0.00
11	3071.	32.67	13.10	4.18	4.18	0.00
14	3069.	40.86	10.86	3.68	3.68	0.00
15	30A5.	32.85	8.81	3.31	3.31	0.00
16	3053.	43.13	12.07	2.01	2.01	0.00
17	3043.	45.25	17.63	2.37	2.37	0.00
18	3048.	40,43	15.12	3.23	3.23	0.00
21	3043.	45.68	15.14	3.55	3.55	0.00
55	3045.	43.09	15.77	2.17	2.17	0.00

# JTAD-9 . 3600 HOUR TEST SERIES .

MODE 1

UNIT	FCO	FHC	FNO	STO FCO	STO FHC	STO FNO
	x100	X100	x100	XIOU	X100	X100
	********					~~~~~
7	3.4150	4.4160	15.7720	3.3570	4.3560	19.3430
.11	3.4340	4.6950	18.0650	4.0400	4.8900	21.2410
14	3.8380	4.6710	18.5860	3.7970	4.6340	20.6110
15	3.8580	4.8740	18.1050	3.7970	4.8100	20.6110
16	3.2550	4.0620	15.4890	3.1230	-3.9440	18,6980
17	3.4920	4.4300	17.1010	3.5300	4.4620	19.8740
18	3.4440	4.4120	16.3570	3.2920	4.2610	19,1950
21	3.8450	4.7450	19.1610	3.9560	4.6430	21.0370
55	3.9040	4.8570	18.9560	3.6880	4.64RO	20.3120

# JT8D-9 * 3000 HOUR TEST SERIES *

MODE 1

UNIT	NREC CO EI			NR CNOX ET	The second secon
7	42.20	14.21	3.12	3.12	0.00
11	31.03	12.58	4.92	4.97	0.00
14	41.30	10.95	4.08	4.08	0.00
15	33.37	, 8.92	3.77	3.77	0.00
16	44.94	12.43	2.43	2.43	0.00
17	44.77	17.50	2.75	2.75	0.00
18	42.30	15.86	3.79	3.79	0.00
21	44.40	14.84	3.89	3.89	0.00
55	45.64	16.48	2.33	2.33	0.00

#### JTAD-9 * 3000 HOUR TEST SERIES *

MODE S

UNIT	, N1 SPEED PER CENT	NZ SPFFD PER CENT	CORR NI-	CORR NO
	**************************************		(Cu)	
7	38.50	62.00	38.39	61.82
11	39.50	-62.50	39.81	62.99
14	38.00	62.00	37.93	61.88
15	38.00	62.00	17.93	61.88
16	37.65	62.00	37.33	61.47
17	37.25	-61.50	37.36	61.68
18	37.00	62.00	36.68	61.47
21	38.50	62.00	38.72	62.36
25	37.00	52.00	36.61	61.35

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

M. MAY II ANTINIA

#### JT8D-9 . 3000 HOUR TEST SERIES .

MODE 2

UNIT	FUEL FLOW LBM/HR	CB F/A	PERF F/A	TT7 DEG R	EPR	THRUST
••••	•••••					********
7	1315.	3850	.3210	1194.	1.060	1083.
11	1320.	-2340	•3170	1167.	1.070	1183.
14	1288.	.2400	•3170	1167.	1.070	1089.
15	1200.	•3470	•2930	1158.	1.070	1082.
16	1150.	.2370	.2890	1171.	1.065	1067.
17	1188.	•2950	.2910	1140.	1.060	1067.
18	1230.	•3250	•3110	1185.	1.070	1062.
21	1275.	•2650	•3060	1140.	1.060	1118.
55	1200.	•3140	•3040	1185.	1.070	1053.

NOTE- HINUS SIGNS DENGTE OUTLYING VALUES

The state of the s

#### JTAD-9 . 3000 HOUR TEST SERIES .

#### MODE 2

UNIT	CORR FU FL	COR CB F/4 CO		TT7 COR	THRUST LRF
	*******				
7	1321.	3830	.3190	1187.	1095.
11	1297.	.2380	. 3220	1145.	1171.
14	1290.	•2390	.3150	1162.	1099.
15	1710.	•3450	.2920	1153.	1089.
16	1151.	.2330	.2R40	1151.	1059.
17	1192.	.2970	.2930	1146.	1074.
18	1237.	.3190	.3050	1154.	1059.
21	1275.	.2680	.3100	1153.	1125.
25	1210.	.3070	.2970	1160.	1050.

### JT90-9 . 3000 HOUR TEST SERIES .

MODE 5

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	•••••				********
7	788	98.0	18.2	6.A	6.2
11	.477	6A.0	15.7	6.7	-3.7
14	.493	65.2	A.4	6.5	5.4
15	.710	100.9	13.2	7.6	7.4
16	.485	64.0	9.8	4.0	4.1
17	.604	88.0	15.7	5.2	4.4
18	.660	100.1	21.8	8.3	7.4
21	.539	91.9	14.5	5.9	6.4
55	.638	105.6	19.5	5.3	4.7

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

アストからは、大きを発します。 にいかいは、大いは、「見れた」とないアン

# JISO-9 . 3000 HOUR TEST SERIES .

MODE 2

UNIT	COS EI	CO ET	HC FI	NO EI LB/KLB FU	NOX ET	SMK NUMBER FRONT SIDE
			********			
7	3098.	24.52	7.80	2.7A	2.79	0.00
11	3084.	27.48	11.09	4.56	4.54	0.00
14	3106.	26.17	5.74	4.26	4.26	0.00
15	3099.	28.64	6.72	3.46	3.46	0.00
16	3094.	54.00	6.94	2.40	2.74	0.00
17	3094.	28.54	A.77	2.90	2.80	0.00
19	3077.	29.68	11.10	4.02	4.02	0.00
21	3079.	33.43	9.0A	4.11	4.11	0.00
22	3077.	32.42	10.28	2.67	2.67	0.00

## JT8D-9 . 3000 HOUR TEST SERIES .

MODE S

UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO	STD FHC	STD FNO
	********		*******			
7	4.8350	5.9430	18.7470	4.7480	5.8590	23.0100
11	4.8570	5.7000	20.3090	5.,1550	5.9420	23.9170
14	4.8170	5.6380	20.8040	4.7640	5.5910	23.0670
15	4.8420	5.8780	20.2660	4.7640	5.7980	23.0670
16	4.8670	5,6490	18.9220	4.6570	5.4740	22.8100
17	4.6560	5,6050	19.7330	4.7110	5.6480	22.9410
18	4.8860	5,8440	19.4600	4.6570	5.6360	22.8100
51	4.7690	5.6720	21.3220	4.9110	5.7930	23.4210
55	4.9110	5.8400	21.2400	4.6270	5.5820	22.7380

### JTRD-9 . 3000 HOUR TEST SERIES .

### MODE S

7 24.97 7.92 3.41 3.41 0.00 11 26.53 10.64 5.37 5.37 0.00 14 26.46 5.82 4.73 4.73 0.00 15 28.59 6.40 3.94 3.94 0.00 16 27.17 7.06 3.24 3.30 0.00 17 28.35 8.70 3.25 3.25 0.00 18 31.14 11.51 4.71 4.71 0.00 21 32.47 8.89 4.51 4.51 0.00						
7 24.97 7.92 3.41 3.41 0.00 11 26.53 10.64 5.37 5.37 0.00 14 26.46 5.82 4.73 4.73 0.00 15 28.59 6.40 3.94 3.94 0.00 16 27.17 7.06 3.24 3.30 0.00 17 28.35 8.70 3.25 3.25 0.00 18 31.14 11.51 4.71 4.71 0.00 21 32.47 8.89 4.51 4.51 0.00	UNIT	NREC CO ET				
11       26.53       10.64       5.37       5.37       0.00         14       26.46       5.82       4.73       4.73       0.00         15       28.59       6.40       3.94       3.94       0.00         16       27.17       7.06       3.24       3.30       0.00         17       28.35       8.70       3.25       3.25       0.00         18       31.14       11.51       4.71       4.71       0.00         21       32.47       9.89       4.51       4.51       0.00		LA/KLA FU	LB/KLB FU	LB/KLB FU	LA/KLA FU	CORRECTED
11       26.53       10.64       5.37       5.37       0.00         14       26.46       5.82       4.73       4.73       0.00         15       28.59       6.40       3.94       3.94       0.00         16       27.17       7.06       3.24       3.30       0.00         17       28.35       8.70       3.25       3.25       0.00         18       31.14       11.51       4.71       4.71       0.00         21       32.47       9.89       4.51       4.51       0.00		*******	********			
14       26.46       5.82       4.73       4.73       0.0         15       28.59       6.40       3.94       3.94       0.0         16       27.17       7.06       3.24       3.30       0.0         17       28.35       8.70       3.25       3.25       0.0         18       31.14       11.51       4.71       4.71       0.0         21       32.47       8.89       4.51       4.51       0.0	7	24.97	7.92	3.41	3.41	0.00
15 28.59 6.40 3.94 3.94 0.00 16 27.17 7.06 3.24 3.30 0.00 17 28.35 8.70 3.25 3.25 0.00 18 31.14 11.51 4.71 4.71 0.00 21 32.47 8.89 4.51 4.51 0.00	11	26.53	10.64	5.37	5.37	0.00
16     27.17     7.06     3.24     3.30     0.0       17     28.35     8.70     3.25     3.25     0.0       18     31.14     11.51     4.71     4.71     0.0       21     32.47     8.89     4.51     4.51     0.0	14	26.46	5.82	4.73	4.73	0.00
17 28.75 8.70 3.25 3.25 0.00 18 31.14 11.51 4.71 4.71 0.00 21 32.47 8.89 4.51 4.51 0.00	15	28.59	6.40	3.94	3.94	0.00
18 31.14 11.51 4.71 4.71 0.00 21 32.47 8.89 4.51 4.51 0.00	16	27.17	7.06	3.24	3.30	0.00
21. 32.47 8.89 4.51 4.51 0.0	17	24.15	8.70	3,25	3.25	0.00
	19	31.14	11.51	4.71	4.71	0.00
22 34-41 10-75 2-86 2-86 0-0	21.	32.47	8.49	4.51	4.51	0.00
	SS	34.41	10.75	2.86	2.86	0.00

# JTBD-9 * 3000 HOUR TEST SERIES *

### MONE 3

UNIT	NI SPEED	NZ SPEED	CORP NI	CORR NZ
••••	PER CENT	PER CENT	PER CENT	PER CENT
7	94.50	93,00	94.23	92.73
11	95.00	92.50	95.74	93.22
14	96.00	94.00	95.82	93.82
15	93,00	93.00	-97.82	92.82
16	97.50	95.35	96.66	94.53
17	94.50	94.00	94.77	94.27
18	96.00	95.50	95.18	94.68
21	93.50	93.00	94.05	93.54
25	97.00	97.00	95.99	-95.99

## JTAD-9 * 3000 HOUR TEST SERIES *

MODE 3

UNIT	FUEL FLOW LRM/HR	CB F/A X100	PERF F/4 X100	TT7 DEG R	EPR	THRUST LRF
7	8675.	. 9500	.7520	1464.	2.040	14353.
11	8400.	.9200	.7230	1410.	2.050	14630.
14	9000.	.9030	.7740	1450.	2.040	14377.
15	8350.	.9370	.7250	1437.	2.040	14281.
16	9100.	.9060	.7900	1531.	2.040	14493.
17	4713.	.8660	.7450	1401.	2.040	14276.
18	ASOO.	.9190	.7410	1464.	2.040	14420.
21	8350.	.9990	.7150	1478.	2.040	14291.
22	AROO.	1.0290	.7640	1509.	2.040	14410.

## JT8D-9 . 3000 HOUR TEST SERIES .

MODE 3

UNIT	CORR FU FL LBM/HR	COR CA F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
	*********		*******		
7	8715.	.9440	.7480	1455.	14377.
11	8251.	.9340	.7340	1432.	14483.
14	9017.	.8990	.7710	1445.	14377.
15	8422.	.9340	.7230	1431.	14377.
16	9105.	-8900	.7770	-1505.	14377.
17	8748.	.8710	.7490	-1409.	14377.
18	854A.	.9030	.7280	1439.	14377.
21	8352.	.9100	.7240	1444.	14377.
.55	8872.	1.0070	.7480	1477.	14377.

NOTE- MIJUS SIGNS DENOTE OUTLYING VALUES

WHY WIND WIND BY WALL WIND IN THE WIND WIND IN THE WARREN

### JTBD-9 * 3000 HOUR TEST SERIES *

MODE 3

UNIT	COS CONC	CO CONC	HC CONC	NO CONC	NOX CONC
••••	PER CENT	bb4			
7	1.992	16.8	4.7	68.2	64.0
11	1.928	16.3	6.5	82.2	77.8
14	1.896	15.1	1.6	A1.7	77.6
15	1.968	14.2	1.4	86.1	81.0
16	1.898	12.2	1.2	84.9	80.5
17	1.417	15.4	3.3	75.3	71.4
18	1.923	14.0	5.7	76.5	73.7
21	1.445	12.3	1.4	A2.3	77.9
22	2.15A	14.7	3.4	-107.2	-109.8

# J'80-9 . 3000 HOLR TEST SERIES .

400E 3

UNIT	FB/KFB ER	CO ET	HC EI LB/KLB FU	NO EI LA/KLA FU	NOX EI LR/KL8 FU	SMK NUMBER FRONT SIDE
7	3154.	1.69	.73	11.29	11.29	34.00
11	3152.	1.69	1.16	14.05	14.05	34.21
14	3159.	1.60	.30	14.24	14.24	29.33
15	315A.	1.45	.24	14.45	14.45	32.00
16	3151.	1.28	.23	14.74	14.74	30.00
17	3154.	1.70	.63	13.69	13.69	33.11
18	3148.	1.46	1.03	13.10	13.10	28.00
21	3153.	1.31	•29	14.40	14.40	25.83
22	3152.	1.37	.55	16.37	16.76	26.67

### JTRD-9 * 3000 HOUR TEST SERIES *

MONE 3

UNIT	FCO	FHC	FNO	STD FCO	STD FHC	STD FNO
••••	X100	X100	X100	X100	X100	X100
7	105.9740	102.6640	-80.2680	107.4140	100.0750	-9A.2320
-11	95.9290	95.8780	84.3210	105.7610	103.2160	100.3210
14	108.9950	107.0090	93.0600	106.6820	105.3130	102.9090
15	104.5690	102.0990	86.8580	101.8260	99.9780	94,6100
16	123,5530	118.2610	A9.0670	112.5160	110.5140	106.0580
17	104.1910	105.7210	89,8700	107.1590	106.7820	104.9020
18	127.9310	121.2810	92.1820	115.9550	112.8520	106.7210
15	99.0850	99,3400	91.8710	105,4800	103.9070	101.7060
55	-167.3190	-145.3900	-105.6060	-146.7630	-132.2640	111.2970

# JT8D+9 . 3000 HOUR TEST SERIES .

MODE 3

UN1*	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU	NRE CNO EI	NR CNOX EI	SMK NUMBER CORRECTED
		•••••		********	
7	1.75	.74	13.82	13.82	34.00
11	1.54	1.08	16.72	16.72	34.21
14	1.63	.30	15.75	15.75	29.33
15	1.49	.25	16.40	16.40	32.00
16	1.41	.24	17.55	17.55	30.60
17	1.66	.62	15.98	15.98	31.86
18	1.61	1.11	15.16	15.16	28.00
21	1.23	.27	15.94	15.94	25.14
22	1.56	.60	17.25	17.67	26.60

## JTRN-9 . 3000 HOUR TEST SERIES .

MODE 4

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI	CORR NZ PER CENT
7	89.00	91.00	AR.74	90.74
11	AR.50	90.25	A9.19	90.95
14	39.00	92.00	98.83	91.82
15	88.00	91.00	A7.83	90.83
16	89.15	92.50	AA.39	91.71
17	9A.50	91.50	88.76	91.77
18	90.00	93.00	49.23	92.20
21	89.00	90.50	88.51	91.03
55	90.00	94.00	A9.06	-93.02

#### JT80-9 * 3000 HOUR TEST SERIES *

HODE 4

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TT7 DFG R	EPR	THRUST
7	7275.	.7700	.6590	1396.	1.450	12279.
11	6800.	.7050	.6140	1356.	1.860	: :536.
14	7250.	.7820	.6560	1378.	1.850	12300.
15	. 7150.	9420	.6490	1392.	1.950	12218.
16	7350.	.7340	.6780	1437.	1,850	12399.
17	7263.	.7460	6500	1356.	1.850	12214.
18	7100.	.7410	.6460	1392.	1.850	12337.
21	7050.	.7430	.6310	1356.	1.850	12226.
SS	6900.	.7990	.6300	1437.	1.850	12329.

### JTHO-9 * 3000 HOUR TEST SERIES *

MODE 4

UNIT	CORR FU FL	COR CO F/A	COR PF F/A	CORR TT7 (	COR THRUST
7	730A.	.7660	.6550	1388	12300.
11	669.	.7170	.6230	1377	12410.
14	7264.	.7790	.6540	1373	12300.
15	7212.	9380	.6470	1386	. 12300.
16	7354.	.7220	.4440	1412	12300.
17	7292.	.7510	.6540	1364	12300.
18	7140.	.7280	.6350	1368	12300.
21	7051.	.7520	.6390	1372	12300.
22	6954.	.7820	-6170	1407	. 12300.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

图 位儿子

#### JTBD-9 * 3000 HOUR TEST SERIES *

400E 4

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
	********				
7	1.612	19.1	4.0	50.7	47.2
11	1.476	17.9	6.7	54,8	51.8
14	1.640	16.6	1.4	56.2	54.3
15	-1.978	14.4	1.3	66.3	62.4
16	1,535	13.1	1.3	53.6	51,8
17	1.564	18.0	3.0	53.7	51,4
18	1.547	15.4	5.A	55.9	54.3
21	1.555	14.9	1.3	50.2	57.9
55	1.672	17.5	3,3	62.1	59.8

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

Million Francisco Million Mill

# JIAD-9 . 3000 HOUR TEST SERIES .

HODE 4

INIT	CO2 FT	CO EI LR/KLR FU	FBNKFB ER	NO FI LR/KLR FU	NOX EI LR/KLR FU	SMK NUMBER FRONT SIDE
7	3152.	8.38	.45	10.37	10.37	13.33
11	3150.	2.43	1.56	12.23	12.23	13.11
14	3157.	2.03	.30	11.32	11.38	27.81
15	3154.	1.46	.83	11.07	11.07	29.80
16	3150.	1.71	.28	11.49	11.49	29.14
17	3157.	5.35	.66	11.34	11.34	33,55
14	3147.	1.99	1.29	11.90	11.90	28.95
51	3152.	1.92	.28	12.76	12.76	24.50
52	3151.	2.10	.6A	12.24	12.74	28,48

## .TBD-9 . 3000 HOUR TEST SERIES .

MODE 4

UNIT	FCO X100	FHC X100	FN0 X100	STO FCO	STD FHC	STD FNO
	*******		*******		*******	
7	69.5450	76.251)	73.0800	67,4730	74.4980	89.4620
11	60.0630	68.8960	76.1340	65.3670	73.6110	90.5010
14	7R.0830	83.9620	85.3720	76.5680	82.7230	94.4260
15	86.2350	86.5210	79.1530	84,0180	84.7570	89.8400
. 16	76.9190	83,7740	78.8040	70.9170	78.8700	93.9490
17	71.4670	79.3700	80.7200	73.6790	80.7710	94.1890
18	81.3820	87.8000	82.8400	74,6840	82.3000	96.0070
51	64.8750	72.8490	A2.1320	68.5190	75.8410	90.8570
55	95.7020	98.8370	-94,2370	85.4760	-90.9760	-99.4520

### JTRO-9 . 3000 HOUR TEST SERIES .

MODE 4

UNIT	NREC CO FT	WREC HC ET	NRE CNO ET	NR CNOX ET	SMK NUMBER
	LB/KLB FU	LB/KLB FU	LA/KLA FII	LA/KLA FU	CORRECTED
	*******	*******	*********	********	
7	-2.45	. 87	12.69	12.69	33.33
11	2.23	1.46	14.54	14.54	33.11
14	2.07	.31	12.51	12.53	27.A1
15	1.50	.24	12.57	12.57	29.80
16	1.86	.30	13.70	13.70	29.14
17	2.26	.64	13.24	13.24	31.26
18	2.17	1.37	13.79	13.79	28.67
21	1.82	.27	14.17	14.17	24.50
22	2.15	.74	12.91	12.91	28.48

# JTBD-9 . 3000 HOUR TEST SERIES .

### MODE 5

UNIT	N1 SPEED	NS SPEED	CORR NI	CCRR NZ
	PER CENT	PER CENT	PER CENT	PER CENT
••••	*********	~~~~~		
7	80.00	86.50	79.77	86.25
11	79.50	85.75	90.12	86.42
14	79.00	97.00	78.85	86.83
15	79.00	87.00	78.85	86.83
16	80.50	AR.20	79.81	87.44
17	80.00	87.50	80.23	87.75
18	80.75	88.00	80.06	87.25
21	79.00	86.00	79.46	86.50
55	80.00	89.00	79.16	88.07

## JTRD-9 . 3000 HOUR TEST SERIES .

#### MODE 5

UNIT	FUFL FLOW LRM/HR	CR F/4 X100	PERF F/A	TT7 DEG R	EPR	THRUST LAF
7	4925.	•6100	.4960	1302.	1.540	A586.
11	4445.	•5360	.4950	1749.	1,530	A813.
14	4688.	-5400	.4890	1248.	1,530	8475.
15	4450.	.6470	.4820	1 '75.	1,540	A543.
16	5025.	•5570	.5240	1320.	1.540	A670.
17	4944.	•5310	.5030	124A.	1.540	A540.
19	4840.	.5730	.5110	1302.	1.540	4626.
21	4763.	•5960	.4850	1249.	1.540	A549.
25	4555.	.5970	.4780	1320.	1.540	R620.

### JT80-9 * 3000 HOUR TEST SERIES *

HODE 5

UNIT	CORR FU FL LBM/HR	COR C8 F/A X100	COR PF F/A X100	CORR TT7 DEG R	COR THRUST
7	4847.	,6060	.4930	1294	. 8600·
11	4759.	•5440	.5030	1267	. 8725.
14	4697.	.5780	.4480	1243	. 8475.
15	4690.	.6450	.4800	1270	. A600.
16	502A.	•5480	5150	1297	. 8600·
17	500A.	•5340	.5060	1255	9600.
18	4867.	•5630	.4910	1280	. 8600.
21	4763.	.6030	.4910	1262	. 8600.
.55	4592.	•5840	.4680	1292	. 8600.

# JTAD-9 * 3000 HOUR TEST SERIES *

MODE 5

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	********				
7	1.273	21.6	4.3	30.0	27.7
11	1.116	22.7	7,3	30.4	27.8
14	1.213	21.7	1.5	30.6	30.7
15	1.354	21.0	1.8	37.6	35.4
16	1.161	55.0	1.3	29.8	30.1
17	1.108	20.7	3,4	30.7	29.4
18	1.193	21.4	6.2	32.9	32.4
21	1.244	22.2	1.5	35.9	35,5
25	1.244	23.9	3.5	30.9	30.2

## JTAD-9 . 3000 HOUR TEST SERIES .

MODE 5

UNIT	COP EI	CO EI	HC ET	NO FI LR/KLR FU	NOX EI LB/KLB FU	SMK NUMBER FRONT STOE
7	3150.	3.40	1.16	7.76	7.76	25.17
11	3146.	4.08	2.24	A.95	8.95	29.61
14	3154.	3,59	.42	9.32	8.35	21.85
15	3154.	3.11	.47	9.17	9.17	23.18
16	3147.	3.79	•40	A.45	8.52	22.52
17	3154.	3.74	1.04	9.15	9.15	27.63
18	3143.	3,59	1.78	9.08	9.08	24.18
21	3149.	3.58	.42	9.51	9.51	20.53
22	3147.	3.85	.98	8.18	8.16	21.33

### JTAD-9 * 3000 HOUR TEST SERIES *

### MODE 5

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO	STD FHC	STD FNO
	*10"	**********		×100	~100	~100
7	35.3870	44.3330	56.7150	34.4730	43.4290	69.4790
,11	30.7500	40.1590	59.1070	33.0820	42.5890	70.1250
14	36.2790	45.7120	64.8150	35,6890	45.1300	71.7260
15	38.9480	47.7840	63.1340	38.1030	46.9260	71.7260
16	39.5770	49.4390	62.0460	36,9570	46.9270	74.1240
17	36.9090	47.2000	64,6190	37.6500	47.8820	75.3510
18	39.5050	49.1700	63.1350	36.7360	46.4880	73.3430
21	33.6940	42.8610	63.7710	35.2920	44.3830	70.4440
25	44.7910	54.4780	-72.3920	40.8440	50.7420	76.6180

# JT8D-9 . 3000 HOUR TEST SERIES .

MODE 5

UNIT	NREC CO FI LB/KLB FU	NREC HC EI LB/KLB FU		NR CNOX ET	SMK NUMBER CORRECTED
	*******				
7	3.49	1.19	9.50	9.50	25.17
11	3.79	2.11	10.62	10.62	25.86
14	3.65	.43	9.21	9.24	21.45
15	3.18	.47	10.42	10.42	23.18
16	4.06	.42	10.10	10.18	22.52
17	3.67	1.03	10.67	10.67	27.16
18	3.86	1.89	10.54	10.54	23.35
21	3.42	.41	10.50	10.50	20.53
55	4.22	1.05	9.65	R.65	21.33

#### JT8D-9 * 3000 HOUR TEST SERIES *

#### MODE 6

NI SPEED	NZ SPEED	CORR N:	CORR NZ
PER CENT	PER CENT	PER CENT	PER CENT
********			
61.20	77.50	61.02	77.29
62.50	77.75	62.99	78.36
62.00	/4.00	61.99	77.85
60.00	77.00	59.88	76.85
-63.35	79.40	18.58	78.72
61.00	78.00	61.18	78.23
51.50	79.75	60.97	78.09
60.75	77.00	61.10	77.45
61.00	79.00	60.36	78.19
	PER CENT 61.20 62.50 62.00 60.00 -63.35 61.00 51.50	PER CENT PER CENT  61.20 77.50  62.50 77.75  62.00 /8.00  60.00 77.00  -63.35 79.40  61.00 78.00  51.50 78.75  60.75 77.00	PER CENT PER CENT PER CENT  61.20 77.50 61.02  62.50 77.75 62.99  62.00 /8.00 61.88  60.00 77.00 59.88  -63.35 79.40 62.81  61.00 78.00 61.18  51.50 78.75 60.97  60.75 77.00 61.10

MOTE- MINUS STONS DENOTE OUTLYING VALUES

ストンストントイントノートアインストラインストン

### JT80-9 . 3000 HOUR TEST SERIES .

MODE 6

**************************************	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF
7	2490.	.3360	.3610	1131.	1.230	4018.
11	. 2530.	•3070	.3530	1095.	-1.240	-4243.
14	2475.	.3440	.3530	1113.	1.230	4025.
15	2225.	•3260	.3280	1108.	1.230	3998.
16	2500.	.2670	•3550	1171.	1,230	4058.
17	2385.	.2830	.3410	1104.	1,230	3997.
18	2420.	•3330	•3550	1131.	1.230	4037.
21	2375.	4200	•3390	1084.	1.230	4001.
SS	2325.	.2800	.3460	1158.	1.230	4034.

#### JT80-9 . 3000 HOUR TEST SERIES .

#### MODE 6

UNIT	CORR FII FL LRM/HR	COR CB F/A (	COR PF F/A	CORR TT7 CO	LAF
7	2501.	.3340	•3590	1124.	4025.
11	2485.	.3120	•3590	1112.	-4200.
14	2480.	.3430	.3520	1108.	4025.
15	2744.	•3250	.3270	1104.	4025.
16	2501.	.2820	.7490	1151.	4025.
17	2195.	.2850	.3430	1110.	4025.
19	2434.	•3270	.3490	1111.	4025.
21	2375.	4250	.3430	1097.	4025.
22	2344.	.2740	.3380	1134.	4025.

## JT8D-9 . 3000 HOUR TEST SERIES .

MODE 6

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	********	*******		*********	
7	.695	38.0	5.6	11.3	10.5
11	.634	40.4	9,7	10.6	8,5
14	.713	42.2	4.0	11.3	12.5
15	.674	51.6	4.9	11.0	11.6
16	.593	40.8	3.4	8.8	9.4
17	.585	40.9	5.8	9.0	8,7
18	.687	45.2	8.5	12.4	12.4
21	869	56.4	5.4	13.1	14.7
55	.576	51.1	6.6	8.2	8.1

# JTAD-9 . 3000 HOUR TEST SERIES .

400E 6

UNIT	COZ ET	CO EI LH/KLB FU	HC FI LR/KLH FU	NO FI LB/KLR FU	NOX ET	SMK NUMBER FRONT STOP
7	3133.	10.90	2.76	5.34	5.34	9.93
11	3124.	12.66	5.22	5.45	5.45	-15.13
14	3139.	11.01	1.91	5.20	5.73	9.93
15	3130.	15.25	2.46	5.31	5.61	7.33
16	3127.	13.70	1.96	4.86	5.17	8.61
17	3131.	13.94	3.41	5.02	5.02	8,67
14	٠١٠٠١.	13.09	4.24	5.91	5.91	9.27
21	3130.	12.92	2.14	4.93	5.55	10.53
>>	3117.	17.59	3.92	4.63	4.63	7.33

#### JTBD-9 * 3000 HOUR TEST SERIES *

MODE 6

UNIT	FCO	FHC	FNO	STD FCO	STD FHC	STD FNO
	X100	X100	X100	X100	X100	X100
****	•••••	••••••	********	********		********
7	11.4680	17.3590	35.5570	11.2360	17.0710	43.6130
11	11.5250	17.6690	38.8820	12.2330	18.5030	45.9910
14	12.0970	18.1730	40.5110	11.9320	17.9950	44.8690
15	10.9160	16.6520	37.5460	10.7250	16.4010	42.6920
16	13.0660	19.6360	39.0890	12.4080	18.8530	46.8700
17	11.6490	17.9000	39.2450	11.8550	18,0860	45.7020
18	12.7460	19.0340	3R.9010	12.0500	18.2000	45,3670
21	11.7720	17.5480	39.9230	12.2060	18.0440	43.9890
55	12.5350	18.9370	42.8530	11.7110	17.9270	45,5880

#### JTBD-9 . 3000 HOUR TEST SERIES .

MODE 6

UNIT	NREC CO LI			NP CHOX EI	
	LAJKLB FU	LB/KLA FU	LANKLA EN	LB/KLR FU	CORRECTED
			*********	*********	
7	11.13	2.81	6.55	6.55	9.93
11	11.92	4.97	4.45	6.45	-15.13
14	11.96	1.93	5.76	6.35	9.93
15	15.52	2.50	6.04	6.37	7.33
16	14.43	2.04	5.43	6.20	8.61
10	[4442	2.04	3043	4050	0.00
17	13.75	3.38	5.94	5.84	8.67
18	13.44	4,43	6.90	6.90	8.40
21	12.46	2 00	E 43	6.12	10.53
21	12.46	2.09	5.43	0.17	10.53
22	-18.93	4.14	4.93	1.93	7.33
-					

## JT8D-9 * 3000 HOUR TEST SERIES *

MODE 7

UNIT	NI SPEED	NS SPEED	CORR NI	CORR NS
	PER CENT	PER CENT	PER CENT	PER CENT
7	38.20	67,00	38.09	61.82
11	38.50	62.00	38.80	62.48
14	38.00	62.00	37.93	61.88
15	38.00	62.00	37.93	61.88
16	37.40	62.00	37,08	51.47
17	37.00	62,00	37-11	62-18
18	37.00	62.00	36.68	61.47
21	38.15	62.00	38.37	65.36
55	-36.00	62.00	35.62	61.35

#### JTRD-9 . 3000 HOUR TEST SERIES .

MODE 7

UNIT	FUEL FLOW	CR F/A	PERF F/A	TT7 DEG R	Ebd	LRF
	*******		•			
7	1270.	.3500	•3120	1167.	1.060	1083.
11	1235.	.2510	.3000	1140.	1.060	1145.
14	1250.	.2150	.3070	1140.	1.070	1089.
15	1175.	. 7290	.2870	1140.	1.070	1082.
16	1075.	• 5020	.2710	1147.	.1.060	1067.
17	1140.	. 2740	.2800	1122.	1.060	1104.
18	1250.	•3450	•3160	1176.	1.070	1062.
21	1240.	.2490	.2990	1135.	1.070	1118.
25	1100.	.2950	.7870	1149.	1.070	1053.

# JT80-9 - 3000 HOUR TEST SERIES -

MODE 7

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 DEG R	COR THRUST
	*******			*********	
7	1276.	•3480	•3100	1160	. 1085.
11	1213.	•2550	.3050	1158	. 1134.
14	1252.	.2140	.3060	1135	. 1089.
15	1185.	• 3280	.2860	1135	. 1089.
16	1076.	•2020	.2670	1129	. 1059.
17	1145.	.2800	.2820	1128	1111-
18	1257.	.3390	.3100	1156	. 1059.
21	1240.	.2520	.3030	1148	. 1125.
. 22	1109.	.2890	.2760	1125	. 1050.

# JTAD-9 * 3000 HOUR TEST SERIES *

MODE 7

UNIT	COP CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
7	.716	96,9	13.6	5.8	5.8
11	.510	81.2	18.4	5.6	-3.1
14	.478	63.4	11.3	6.3	5.5
15	.673	100.0	12.6	6.2	6.5
16	.418	59.1	10.8	3.7	3.9
17	.549	84.7	13.4	4.3	4,2
19	.703	101.6	17.6	7.4	7.1
21	.504	94.5	15.4	5.6	6.1
22	.598	117.4	20.0	3.6	3.5

### JTBD-9 * 3000 HOUR TEST SERIES *

MODE 7

UNIT	COS EI	CO EI	HC ET	NO EI LB/KLB FU	NOX EI LR/KLB FU	SMK NUMBER FRONT SIDE
7	3099.	26.66	6.42	5.60	2.62	0.00
11	3076.	31.13	12.13	3.53	3.53	0.00
14	3094.	28.51	8.75	4.63	4.63	0.00
15	3097.	29.27	6,35	2.98	3.15	0,00
16	3086.	27.76	8.74	2.87	3.03	. 0.00
17	3093.	30.72	7,99	2.46	2.46	0.00
18	3086.	28,39	8.47	3.40	3.40	0.00
21	3069.	37.41	10.28	3.5A	3.90	0.00
55	3065.	34.32	11.19	1.94	-1.94	0.00

#### JTAD-9 * 3000 HOUR TEST SERIES *

MODE 7

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO
7	4.8350	5.8700	18.7470	4.7490	5.7870	23.0300
11	4.6970	5.5720	19.9700	4.9520	5.8080	23.5170
14	4.8170	5.5890	20.8040	4.7640	5.5430	23.0470
15	4.8420	5.8410	20.2660	4.7640	5.7620	23.0470
16	4.8670	5.5880	18.9220	4.6570	5.4170	22.8100
17	4.7951	5.7130	20.0220	4.8510	5.7570	23.2770
18	4.8860	5.8850	19.4600	4,6570	5.6740	27.8100
21	4.7590	5.6410	21.3220	4.9110	. 5.7610	23.4210
. 55	4.9110	5.8020	21.2400	4.6270	5.5480	22.7380

NOTE- MINUS STANS DENOTE DUTLYING VALUES

TOTAL T

ではないしまいい、これをおいる。

#### JT80-9 * 3000 HOUR TEST SERIES *

MODE 7

	NR CNOX EI		NREC HC ET	NREC CO ET	TINU
CORRECTED	LB/KLB FU	LB/KLB FU	LB/KLB FU	LB/KLB FU	
0.00	3.22	3.20	6,52	27.15	7
0.00	4.16	4.16	11.64	29.53	11
0.00	5.13	5.13	8.82	28.83	14
0.00	3.58	3.39	6.44	29.74	15
0.00	3.65	3,46	9.02	29.02	16
0.00	2.86	2.86	7,93	30.36	17
0.00	3.99	3,99	8.79	29.78	18
0.00	4.29	3.94	10.07	36.32	21
0.00	-2.09	2.08	11.70	-40.67	22

## JTAD-9 * 3000 HOUR TEST SERIES *

#### MODE A

UNIT	N1 SPEFD	NE SPEED	CORP N1	CORR NZ
	PER CENT	PER CENT	PER CENT	PER CENT
	********			
7	34.00	57.50	33.90	57.33
11	35.50	59.00	35.78	59.46
14	33.00	58.00	32.94	57.89
15	34.00	58.00	33.93	57.49
16	32.60	57.50	32.32	57.01
17	33.00	57.00	33.10	57.17
. 19	34.50	58.00	34.20	57.50
21	34.90	58.60	35.10	58.94
22	33.00	58.00	32.66	57.39

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

イントンをよること

#### JT89-9 * 3000 HOUR TEST SERIES *

MODE 8

'INIT	FUEL FLOW	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF
7	1085.	3790	.2860	1167.	1.050	895.
11	. 1100.	.2380	.2790	1140.	1.050	949.
14	1100.	.2430	3040	1140.	1.050	908.
15	1025.	•3510	.2690	1140.	1.050	902.
16	-900.	.2230	.2600	1149.	1.060	897.
17	980.	.2860	.2660	1113.	1.050	887.
16	1120.	•3440	.2950	1154.	1.060	903.
21	1100.	•2550	.2770	1131.	1.060	923.
55	1000.	•3360	.2830	1158.	1.050	900.

## JTAD-9 * 3000 HOUR TEST SERIES *

MODE B

UNIT	CORR FU FL LAM/HR	KINO	R PF F/A C	NRR TT? COR	THRUST LAF
7	1090.	3760	.2850	1160.	A97.
11	1051.	.2420	.2830	1154.	939.
14	1102.	.2420	.3030	1135.	909.
15	1034.	•3500	.2680	1135.	904.
16	-911.	.2200	.2560	1129.	A90.
17	944.	.2880	.2670	1119.	A93.
18	1124.	.3390	.2900	1134.	900.
51	1100.	.2580	.2800	1144.	929.
22	1008.	.3290	.2780	1134.	APR.

## JT80-9 . 3000 hour TEST SERIES .

MODE 8

. 11	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
7	772	129.6	18.4	4.9	5,4
1	.482	A9.7	20.4	5.3	2.9
4	.494	83.5	16.7	5.A	4.7
;5	.716	124.3	18.7	5.5	6.0
;6	.449	109.5	16.5	3.3	3.6
:7	.540	119.4	?2.5	3.7	3,7
8	.696	134.7	27.3	6.6	6.4
1	.513	112.8	20.8	4.6	5,1
2	.676	-155.1	30.9	3.2	3.2

OFF- MINUS STONS DENOTE OUTLYING VALUES

# JTRO-9 . 3000 HOUR TEST SERIES .

MODE B

UNIT	COS ET	CO EI	HC FT	NO FI	NOX ET	SMK NUMBER FRONT SIDE
	LB/KLA FU	LR/KLB FU	FB/KFB EII	LAZKLA FU	FANCE LO	-4041 2106
7	3084.	12.94	A. 12	2.03	2.25	0.00
11	3062.	36.27	14.20	1.54	3.54	0.00
14	3079.	33.14	11.39	7.76	3.76	0.00
15	30A7.	34.07	A.79	7.49	2.68	0.00
16	3044.	47.25	12.25	2.32	2.54	0.00
17	3064.	40.16	12.99	2.02	2.03	0.00
19	3054.	37.66	13.12	3.03	3.03	0.00
21	3052.	42.69	13,55	2.89	3.14	0.00
22	3044.	44.48	15.24	1.50	-1.50	0.00

# JT80-9 . 3000 HOUR TEST SERIES .

MODE 8

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO	STD FHC	STD FNO
****	*******	*********				
7	3.7390	4.7610	16.5)00	3.6750	4.6960	20.2760
11	3.9500	4.7920	18.3260	4.1590	4.9900	21.5690
14	3.8340	4.6550	18.5860	3.7970	4.6190	20.6110
15	3.8540	4.8510	18.1050	3.7970	4.7860	20.6110
16	3.7590	4.5200	16.6420	3.4040	4.3870	20.0400
17	3.5990	4.4890	17.3590	3.6390	4.5210	20.1740
18	3.8990	4.8440	17.3720	3.7120	4.6760	20.3780
51	3.9240	4.7930	19.3560	4.0370	4.8910	21.2520
55	3.9060	4.8440	18.9560	3.6880	4.6360	20.3120

#### JTRN-9 + 3000 HOUR TEST SERIES +

MODE 8

UNIT	NREC CO FI		NRE CNO ET	NR CNOX ET	SHK NUMBER CORRECTED
				*******	*****
7	33.52	8.13	2.49	2.77	0.00
11	34.45	13.64	4.17	4.17	0.00
14	33,50	11.49	4.17	4.17	0.00
15	34.61	8,91	7.84	3.06	0.00
16	-49.79	12.6?	2.90	3.07	0.00
17	39.75	12.90	2.35	2.36	0.00
19	39.45	13.59	3,55	3.55	0.00
21	41.50	13.28	3.17	3.45	0.00
55	47.11	15.93	1.61	-1.61	0.00

#### 5. FUEL ANALYSIS DATA

Unit	Test	deg	H/C	FI	A per c	
No.	Şeries	API	Ratio	Paraffin	Olefin	Aronatic
1	Baseline 600-Hour	44.5 43.8	1.95	83 84	2 2	15 14
2	Baseline 1800-Hour	44.1 43.2	1.93	84 82	2 2	14 16
3	Baseline	44.1	1.93	84	2	14
4	Baseline 600-Hour	43.2 43.4	1.92 1.95	84 84	2 2	14
6	Baseline 600-Hour 2400-Hour	43.8 44.1 42.8	1.93 1.91 1.90	84 84 81	2 1 2	14 15 17
7	Baseline 600-Hour 1800-Hour 2400-Hour 3000-Hour	43.4 43.0 43.4 43.8 42.6	1.92 1.90 1.93 1.95 1.91	83 83 84 83 80	2 1 1 2	15 16 15 16 18
9	Saseline 600-Hour 1800-Hour 2400-Hour	44.1 43.4 43.6 43.4	1.93 1.95 1.92 1.92	84 82 83 83	2 1 1 1	14 17 16 16
10	Saseline 600-Hour 1800-Hour 2400-Hour	43.4 43.0 43.2 43.2	1.92 1.95 1.91 1.91	84 82 83 83	2 2 1 1	14 16 16 16
11	9aseline 600-Hour 1800-Hour 2400-Hour 3000-Hour	43.6 43.2 43.6 43.6 43.4	1.92 1.92 1.92 1.91 1.91	84 82 84 82 82	2 2 1 2 2 2	14 16 15 16

Unit	Test	deg	H/C	FI	A, per c	ent
No.	Series	API	Ratio			Aromatic
12	01:	43.6	1 00	01.		1
12	Baseline		1.92	84	2	14
	600-Hour	43.2	1.92	82	2	16
	1800-Hour	43.6	1.92	84	!!	15
	2400-Hour	43.4	1.93	83	'	16
14	Baseline	43.8	1.91	83	2	15
	600-Hour	43.4	1.91	83	1	16
	1200-Hour	43.2	1.93	83	1	16
	2400-Hour	43.6	1.94	84	1	15
	3000-Hour	43.0	1.89	81	1	18
15	Baseline	43.8	1.91	83	2	-15
	600-Hour	43.4	1.91	83	1 1	16
/	1200-Hour	43.2	1.93	83	i i	16
/-	2400-Hour	43.6	1.94	84	! i	15
	3000-Hour	43.4	1.90	81	1	18
16	Baseline	43.8	1.91	83	2	15
	600-Hour	43.4	1.91	. 83	1	16
	1200-Hour	1 43.2	1.88	1 84	2	14
	2400-Hour	43.6	1.94	84	1	15
	3000-Hour	43.4	1.93	52	2	16
17	Baseline	43.4	1.92	83	2	15
. ,	600-Hour	43.8	1.91	84	2	14
	1200-Hour	42.1	1.92	83	li	1 16
	1800-Hour	43.2	1.93	81	ii	18
	2400-Hour	44.5	1.92	85	1	14
	3000-Hour	43.2	1.89	82	i	17
	3000 11001		,	1		
18	Baseline	43.4	1.92	83	2	15
	600-Hour	43.8	1.91	84	2	14
	1200-Hour	42.1	1.92	83	1	16
	1800-Hour	43.2	1.93	81	!	18
	2400-Hour	44.5	1.92	85	1	14
	3000-Hour	43.2	1.93	81	1 1	18

Unit	Tes:	deg	H/C	FI	A, per c	ent
No.	Series	API	Ratio	Paraffin	Olefin	Aromatic
19	Baseline 600-Hour 1200-Hour 1800-Hour 2400-Hour	43.4 43.8 42.1 43.2 44.5	1.92 1.91 1.92 1.93 1.92	83 84 83 81 85	2 2 1 1 1 1	15 14 16 18
20	Baseline 600-Hour 1800-Hour	43.8 43.4 43.4	1.92 1.94 1.93	85 84 83	2 1	13 15 16
21	Baseline 600-Hour 1800-Hour 3000-Hour *	43.8 43.4 43.4	1.92 1.94 1.93	85 84 83	2 1 1 .	13 15 16
22	Baseline 6CO-Hour 1800-Hour 3000-Hour *	43.8 43.4 43.4	1.92 1.94 1.93	85 84 83	2 1 1	13 15 16
23	Baseline 500-Hour 1200-Hour 1800-Hour 2400-Hour	43.6 43.2 42.8 42.1 43.0	1.92 1.92 1.91 1.93 1.92	83 63 82 81 81	1 1 1	16 16 17 18 18

^{*} Fuel analysis data not available

#### 6. REFERENCES

- Adams, H. T., <u>Elements of Internal Combustion Turbine Theory</u>. Cambridge University Press, 1949.
- "T53 and T55 Gas Turbine Combustor and Engine Exhaust Emission Measurements", USAAMRDL Technical Report 73-47, December 1973.
- "Control of Air Pollution from Aircraft and Aircraft Engines, Emissions Standards and Test Procedures for Aircraft", <u>Federal Register</u>, vol. 38, no. 136, Part 11, July 17, 1973.

# NA-6 NAFE ANTIC