1. Solution

The sample size, *n*, is 49. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 49 ceil$	13	61.96
Q2	$\lceil 0.5 \times 49 \rceil$	25	62.48
Q3	$\lceil 0.75 imes 49 ceil$	37	62.79

We determine the IQR.

$$IQR = Q3 - Q1$$

= 62.79 - 61.96
= 0.83

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $61.96 - 1.5 \times 0.83$
= 60.715
upper boundary = Q3 + $1.5 \times IQR$
= $62.79 + 1.5 \times 0.83$
= 64.035

We determine the outliers.

outliers =
$$\{60.34, 60.42\}$$

We identify the ends of the whiskers: 60.74 and 63. We plot the boxplot.

2. Solution

The sample size, *n*, is 45. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 45 ceil$	12	12.06
Q2	$\lceil 0.5 \times 45 \rceil$	23	13.91
Q3	$\lceil 0.75 \times 45 \rceil$	34	16.04

We determine the IQR.

$$IQR = Q3 - Q1$$

= 16.04 - 12.06
= 3.98

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $12.06 - 1.5 \times 3.98$
= 6.09
upper boundary = Q3 + $1.5 \times IQR$
= $16.04 + 1.5 \times 3.98$
= 22.01

We determine the outliers.

outliers =
$$\{24.33\}$$

We identify the ends of the whiskers: 10.51 and 21.15. We plot the boxplot.

