

NÚMEROS COMPLEXOS

MATEMÁTICA A | 12.º Ano

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

- **1.** Em $\mathbb C$, conjuntos dos números complexos, considere os números $z_1=2+ai$ e $z_2=a+i$, como $a\in\mathbb R\setminus\{0\}$
 - **1.1.** Mostre que para todo o $a\in\mathbb{R}\setminus\{0\}$, $\dfrac{z_1}{\overline{z}_2}$ não é real nem imaginário puro.
 - **1.2.** Determine a de modo que a imagem geométrica de $(\overline{z}_1)^2 \times (z_2 a)^{325}$ pertença à bissectriz dos quadrantes ímpares.
 - **1.3.** Considere a = 1
 - a) Determine, na forma algébrica, $\frac{z_1 \times \left(\left(z_2\right)^3 + 4i\right)}{z_1 \overline{z}_2}$
 - **b)** Seja P(z) o polinómio definido por $P(z) = z^4 2z^3 + 3z^2 2z + 2$.
 - **b**₁) Mostre que z_2 é raiz do polinómio P(z).
 - b_2) Determine as restantes raízes de P(z) e decomponha-o num produto de polinómios irredutíveis.
 - c) Resolva, em C, a seguintes equações:

$$c_1) \ z^2 \times z_1 + z \times z_2 = 3z^2$$

$$c_2) z \times z_2 - \overline{z \times z_1} = -3 + 46$$

$$\frac{|z_2|^6}{z-z_1} = z^2 - 2z \times z_1 + (z_1)^2$$

2. Em \mathbb{C} , conjuntos dos números complexos, considere:

$$z_1 = \operatorname{sen} \alpha + i \operatorname{sen} \alpha \operatorname{tg} \alpha$$
, $\operatorname{com} \alpha \in \left] 0, \frac{\pi}{2} \right[$ e $z_2 = \frac{e^{i\frac{19\pi}{12}}}{\sqrt{2} + \sqrt{6}i}$

- **2.1.** Mostre que $z_1 = \operatorname{tg} \alpha e^{i\alpha}$
- **2.2.** Escreva, na forma algébrica, o número complexo $8\overline{z}_2 + i^{-8n+27} (1-3i)^2$, com $n \in \mathbb{N}$.
- **2.3.** Determine α de modo que a imagem geométrica de $(z_1)^2 \times z_2$ pertence à bissectriz dos quadrantes pares.
- **2.4.** Considere $\alpha = \frac{\pi}{3}$.
 - a) Determine as raízes quartas do número complexo $\frac{-\overline{z}_1}{\sqrt{3}i^6+\sqrt{3}i^9}$ e determine o perímetro do polígono cujos vértices são as imagens geométricas dessas raízes.

Apresente as raízes quartas na forma trigonométrica e o perímetro com denominador racional.

- b) Determine o conjunto solução da equação $\overline{\left(\frac{z}{z_2}\right)} + \frac{z^2 \times z_1}{\left|z_1\right|} = 0$.
- 3. Em \mathbb{C} , conjunto dos números complexos, considere o número complexo w, tal que:

$$\left(\sqrt{2} - \sqrt{2}i\right)^5 w = 2\operatorname{sen}\left(\frac{\pi}{12}\right) + 2i^{33}\operatorname{sen}\left(-\frac{5\pi}{12}\right)$$

- **3.1.** Mostre que $w = \frac{1}{32} \frac{\sqrt{3}}{32}i$.
- **3.2.** Determine o conjunto solução da equação $\frac{z^4}{w} = 1$ e determine a área do polígono cujos vértices são os afixos das soluções da equação.

Na sua resposta deve:

- apresentar as soluções da equação na forma trigonométrica
- caracterizar o polígono e indicar a medida da sua área.

4. Em \mathbb{C} , conjunto dos números complexos, seja $z = 2(\cos^2 \alpha - \sin^2 \alpha + i \sin(2\alpha))$, com $\alpha \in \left[0, \frac{3\pi}{2}\right[$.

Sabe-se que:

- o afixo de *z* pertence ao terceiro quadrante
- z é uma das raízes de índice n, com $n \in \mathbb{N}$, do número complexo -128

Qual das seguintes opções é a correcta?

$$\mathbf{A} \quad \alpha = \frac{10\pi}{7}$$

$$\mathbf{B} \quad \alpha = \frac{9\pi}{7}$$

$$\alpha = \frac{10\pi}{14}$$

D
$$\alpha = \frac{9\pi}{14}$$

5. Em \mathbb{C} , conjunto dos números complexos, considere $z_1 = \cos \alpha + i \sec \alpha$ e $z_2 = \frac{i^{35} - 2}{\left(2i - 1\right)\left(\overline{z}_1\right)^5}$, com $\alpha \in \left[0, \pi\right[$.

Determine os valores que α para os quais o afixo de z_2 pertence à região do plano complexo definida pela condição:

$$\operatorname{Arg}(z) = \operatorname{Arg}\left(\sqrt{6} - 3\sqrt{2}i\right)$$

6. Em \mathbb{C} , conjunto dos números complexos, considere:

•
$$w_1 = \frac{2 - i^{35}}{1 + 3i} - (1 - i)^3 - 4i^{200}$$

- $w_2 = \cos^2(2\alpha) \sin^2(2\alpha) + 2i \operatorname{sen}(2\alpha) \cos(2\alpha)$, com $\alpha \in \left] \frac{\pi}{2}, \pi \right[$
- **6.1.** Mostre que $w_1 = -\frac{3}{2} + \frac{3}{2}i$.
- **6.2.** Mostre que $w_2 = e^{i(4\alpha)}$
- **6.3.** Determine α de modo que $\frac{w_{\rm l}}{w_{\rm 2}}$ seja um número real negativo.

7. Na figura estão representados no plano complexo os pontos $A, B, C, D, P \in Q$, a circunferência centrada na origem e que contém o ponto de coordenadas (1,0), e a recta r, bissectriz dos quadrantes ímpares.

Sabe-se que:

- o ponto P pertence à circunferência e é o afixo do número complexo z_1
- o ponto Q é o afixo do número complexo z_2
- as rectas verticais a tracejado são paralelas ao eixo imaginário e as rectas horizontais a tracejado são paralelas aos eixo real.

Qual dos seguintes pontos pode ser o afixo do número complexo $\frac{\left(z_1\right)^2}{i}-z_2$?

 $\mathbf{A} A$

 B

C

D

Solucionário

1.2. $a = -2 + 2\sqrt{2} \lor \Leftrightarrow a = -2 - 2\sqrt{2}$

a) 2 + 6i

1.3. b2) $\{1+i,1-i,i,-i\}$; P(z) = (z-1-i)(z-1+i)(z-i)(z+i)

1.3. C1) $\{0,i\}$

1.3. **c**₂) $\left\{3 - \frac{2}{3}i\right\}$ 1.3. **c**₃) $\left\{4 + i, 1 + \left(1 - \sqrt{3}\right)i, 1 + \left(1 + \sqrt{3}\right)i\right\}$

 $2.3. \qquad \alpha = \frac{\pi}{4}$

2.4. a) $\frac{1}{\sqrt[8]{2}}e^{i\left(-\frac{\pi}{48}\right)}$; $\frac{1}{\sqrt[8]{2}}e^{i\frac{23\pi}{48}}$; $\frac{1}{\sqrt[8]{2}}e^{i\frac{47\pi}{48}}$; $\frac{1}{\sqrt[8]{2}}e^{i\frac{71\pi}{48}}$; Perímetro = $4\sqrt[8]{8}$

2.4. b) $\left\{ 0, 2\sqrt{2}e^{i\left(-\frac{\pi}{36}\right)}, 2\sqrt{2}e^{i\frac{23\pi}{36}}, 2\sqrt{2}e^{i\frac{47\pi}{36}} \right\}$

4.

5. $\alpha = \frac{7\pi}{30} \lor \alpha = \frac{19\pi}{30}$ 6.3. $\alpha = \frac{15\pi}{16}$

7. В