

Intelligence artificielle Support vector machines

NXV

Mastère Data Scientist

Antoine Vacavant

antoine.vacavant@ynov.com antoine.vacavant@nxv.fr

Plan

- 1. Principe
 - Cas linéaire
 - Première formulation
 - Cas linéairement non-séparable
- 2. Méthodes de résolution
 - Primal et dual
 - Cas non linéaire
- 3. Bilan

Principe

- Machines à vecteurs de support
- Calculer une fonction séparatrice des données
- En utilisant certaines d'entre elles comme support
- Inclut une marge d'erreur

- Deux approches
 - Linéaire
 - Non-linéaire

Cas linéaire

- Dans un cadre 2-classes
- On cherche à déterminer l'hyperplan tel que
 - $-w.x_i + b \ge +1$ lorsque $y_i = +1$
 - $-w.x_i + b \le -1$ lorsque $y_i = -1$
- La marge : d

Cas linéaire

• La distance d s'exprime de la manière suivante :

$$d_i = \frac{y_i(w.x_i + b)}{\|w\|}$$

- Notre objectif : maximiser la marge $2d_i$
- Plus simplement, on cherche à maximiser $\frac{1}{2} ||w||^2$
- Forme quadratique
- Résolution plus simple par une approche lagrangienne

Cas linéaire

- On ne souhaite pas de points entre H_1 et H_2
 - $-w.x_i + b \ge +1$ lorsque $y_i = +1$
 - $-w.x_i + b \le -1$ lorsque $y_i = -1$
- Combinés ensemble :

$$y_i(w.x_i + b) \ge 1$$

Première formulation

On cherche à résoudre le problème suivant :

$$\min_{\substack{w,b \ v,b}} \frac{1}{2} ||w||^2$$
tel que $y_i(w, x_i + b) > 1 \quad \forall i = 1, ..., n$

Première formulation

Problème de cette formulation ?

Première formulation

Problème de cette formulation ?

Elle n'accepte pas d'outliers!

Cas linéairement non-séparable

On cherche à résoudre le problème suivant :

$$\min_{w,b} \frac{1}{2} ||w||^2 + \frac{C}{n} \sum_{i=1}^{n} \xi_i$$
tel que $y_i(w, x_i + b) > 1 - \xi_i \quad \forall i = 1, ..., n$

$$\xi_i \ge 0$$

- $-\xi_i \geq 0$: échantillon mal classifié
- $-\xi_i = 0$: échantillon bien classifié
- C grand: pas d'erreur dans le calcul de la marge

Retour sur SVMjs

- Sur ce site
 - → https://cs.stanford.edu/~karpathy/svmjs/demo/
- Passer en mode linéaire
- Etudier l'influence du paramètre C

- Méthodes d'optimisation
- Descente de gradient stochastique
- On peut également reformuler le calcul de w :

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

Où $\alpha_i \in \mathbb{R}$

- Méthodes d'optimisation
- Descente de gradient stochastique
- On peut également reformuler le calcul de w :

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

Où $\alpha_i \in \mathbb{R}$

La solution est combinaison linéaire des données

- Changement de variable de w, b à α
- Calcul original : primal
- Nouvelle version : dual

- Changement de variable de w, b à α
- Calcul original : primal
- Nouvelle version : dual
- Le problème devient alors :

$$\max_{\alpha_i \ge 0} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j (x_i x_j)$$

$$\text{tel que } 0 \le \alpha_i \le C$$

$$\sum_i \alpha_i y_i = 0$$

- Changement de variable de w, b à α
- Calcul original : primal
- Nouvelle version : dual
- Le problème devient alors :

$$\max_{\alpha_i \ge 0} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j (x_i x_j)$$
tel que $0 \le \alpha_i \le C$

$$\sum_i \alpha_i y_i = 0$$

Interlude

• Le calcul x_i . x_j représente l'« éloignement » des données x_i et x_j

Interlude

- Le calcul x_i . x_j représente l'« éloignement » des données x_i et x_j
- Si x_i $x_j = 1$ les vecteurs sont colinéaires
 - Donc complètement similaires
- Si x_i $x_j = 0$ les vecteurs sont perpendiculaires
 - Donc complètement différents

Interlude

- Le calcul x_i . x_j représente l'« éloignement » des données x_i et x_j
- Si x_i $x_j = 1$ les vecteurs sont colinéaires
 - Donc complètement similaires
- Si $x_i \cdot x_j = 0$ les vecteurs sont perpendiculaires
 - Donc complètement différents

Comment améliorer cette mesure de dissimilarité?

Augmentation de dimension

Supposons une feature map suivante :

$$\phi(x): x \to \phi(x)$$
$$\mathbb{R}^d \to \mathbb{R}^D$$

- Permet d'augmenter la représentation des données
- On pourrait être tenté de calculer $\phi(x_i)$. $\phi(x_j)$
- Mais calcul complexe... voire impossible numériquement

Augmentation de dimension

- A la place, on utilise des noyaux de la forme $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$
- Inutile de calculer ϕ directement
- Le noyau devient une mesure de dissimilarité
- Exemples de noyaux pour un SVM non-linéaire
 - Polynomial: $K(x_i, x_j) = (x_i, x_j + 1)^p$
 - RBF (radial basis function): $K(x_i, x_j) = \exp\left(\frac{\|x_i x_j\|^2}{2\sigma^2}\right)$
 - Sigmoide : $K(x_i, x_j) = \tanh(\kappa x_i, x_j \delta)$

Bilan

- Le SVM permet une classification efficace
- Surtout dans le cadre de 2 classes
- Possibilité d'une approche multi-classes
- Avec moins de paramètres qu'un réseau de neurones artificiels standard

 Mais nécessite généralement l'extraction de caractéristiques au préalable (ex. ondelettes)