Terminale S 2014/2015

Chapitre 10 : Lois de probabilités à densités

Cours (partie 1)

Loi à densité sur un intervalle

Comme nous l'avons déjà observé dans l'activité d'introduction à la notion d'intégrale, la représentation de la répartition des probabilités sous la forme d'un diagramme en bâtons, pour une loi binomiale correspondant à un grand nombre de répétitions conduit à approcher l'aire des rectangles par l'aire sous la courbe d'une fonction continue, comme le suggère la figure ci-dessous.

La situation précédente montre que l'on peut calculer des probabilités à partir des intégrales de fonctions continues et positives.

Définition 1

- Ton appelle fonction de densité de probabilité sur un intervalle I toute fonction continue et positive sur I telle que l'intégrale de f sur I soit égale à 1.
- On dit qu'une variable aléatoire X suit la loi de probabilité de densité f lorsque la probabilité que X appartienne à un intervalle [a;b] est égale à l'aire sous la courbe de f sur [a;b], c'est-à-dire :

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} f(x) \ dx.$$

- Remarques

 Dans le cou des in P(X = a)Dans le cas d'une loi de probabilité à densité, la valeur d'une probabilité est la même pour des inégalités strictes ou des inégalités larges : par exemple, $P(X < a) = P(X \le a)$.
 - $P(X = a) = \int_{a}^{a} f(x)dx = 0.$

Définition 2

L'espérance mathématique d'une variable aléatoire X de densité f sur un intervalle [a;b] est donnée par :

$$E(X) = \int_{a}^{b} x f(x) \ dx$$

Remarque

Ce théorème est admis. On remarquera néanmoins l'analogie avec la formule donnant l'espérance mathématique pour une variable aléatoire X de loi de probabilité discrète : $E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$.

Lycée Émile Duclaux Page 1/3 Terminale S 2014/2015

Méthode 1

Soit la fonction f définie sur [0;2] par $f(x) = \frac{1}{2}x$ dont la représentation graphique est donnée ci-dessous.

- 1. Montrer que cette fonction est une fonction de densité de probabilité sur l'intervalle [0; 2].
- 2. Soit X est une variable aléatoire dont la loi de probabilité a pour densité f. Calculer $P(X \le 1,7)$.
- 3. Calculer l'espérance mathématique de X.

La loi uniforme

Définition 3

Étant donnés deux réels a et b, avec $a \le b$, on appelle loi uniforme sur l'intervalle [a;b] la loi dont la fonction de densité est la fonction constante définie par :

$$\forall x \in [a; b], f(x) = \frac{1}{b - a}.$$

Théorème 1

Si X est une variable aléatoire de loi uniforme sur un intervalle [a; b], alors son espérance mathématique est donnée par la formule suivante :

$$E(X) = \frac{b+a}{2}$$

Démonstration, voir cahier,

🖰 Remarque

La commande NbrAléat de la calculatrice retourne une nombre décimal choisi au hasard dans l'intervalle [0;1], avec 10 décimales. En assimilant ce choix au choix d'un nombre réel au hasard dans l'intervalle [0;1], on peut considérer que cette commande simule une loi uniforme sur l'intervalle [0;1].

Méthode 2 Utilisation d'une loi uniforme

Martin arrive tous les matins entre 7 : 15 et 7 : 35 à son arrêt de bus. On considère que son heure d'arrivée est une variable aléatoire suivant une loi uniforme, notée X, sur l'intervalle [15;35]. Le bus qu'il attend passe à 7 : 00, puis toutes les 10 minutes.

- 1. Quelle est la probabilité que Martin attende moins de 5 min le prochain bus?
- 2. S'il rate le bus de 7 : 30, Martin arrive en retard. Quelle est la probabilité que Martin soit en retard?

La loi exponentielle

Dans ce paragraphe, nous allons étudier un exemple un peu plus général que ceux des paragraphes précédents. La loi exponentielle est en effet une loi de probabilité à densité définie sur l'intervalle [0;+∞[, et non sur un intervalle du type [a;b].

Lycée Émile Duclaux Page 2/3 Terminale S 2014/2015

Soit λ un réel strictement positif. On a alors, pour tout réel t: $\int_0^t \lambda e^{-\lambda x} = [-e^{-\lambda x}]_0^t = 1 - e^{-\lambda t}.$

On a donc :
$$\lim_{t \to +\infty} \int_0^t \lambda e^{-\lambda x} = 1$$
.

Par analogie avec les definitions du premier paragraphe, on peut donc dire que la fonction $f: x \mapsto \lambda e^{-\lambda x}$ est une fonction de densité sur l'intervalle $[0; +\infty[$.

Définition 4

Soit λ un réel strictement positif.

On appelle loi exponentielle de paramètre λ la loi de probabilité de densité $f: x \mapsto \lambda e^{-\lambda x}$, définie sur $[0; +\infty[$.

🛂 Théorème 2

Si X est une variable aléatoire de loi exponentielle de paramètre $\lambda > 0$, alors l'espérance mathématique de X est donnée par :

$$E(X) = \lim_{t \to +\infty} \int_0^t x \times \lambda e^{-\lambda x} = \frac{1}{\lambda}$$

Démonstration. Voir cahier. Attention, cette démonstration est exigible.

Méthode 3 Utilisation d'une loi exponentielle (Pondichéry 2014)

La durée de vie, exprimée en années, d'un moteur pour automatiser un portail fabriqué par une entreprise A est une variable aléatoire X qui suit une loi exponentielle de paramètre $\lambda > 0$.

- 1. On sait que $P(X \le 2) = 0.15$. Déterminer la valeur exacte de λ (dans la suite de l'exercice on prendra 0.081 pour valeur de λ).
- 2. Calculer $P(X \ge 3)$.
- 3. Calculer l'espérance de la variable aléatoire X et donner une interprétation de ce résultat.

La loi exponentielle a une propriété bien particulière, dite de "durée de vie sans vieillissement". Cette propriété traduit l'idée que, si la variable aléatoire X modélise par exemple la durée de vie d'un composant électronique, la probabilité que ce composant fonctionne encore au moins 10 heures sachant qu'il a déjà fonctionné n heures ne dépend pas de n : elle est égale à la probabilité que ce composant fonctionne au moins 10 heures quand il est neuf.

Théorème 3 durée de vie sans vieillissement

Si X est une variable aléatoire de loi exponentielle de paramètre $\lambda > 0$, alors pour tous réels positifs t et h, on a :

$$P_{X \geqslant t}(X \geqslant t + h) = P(X \geqslant h)$$

Démonstration. Voir cahier. Cette preuve est au programme, non exigible.

Méthode 4 Utilisation d'une exponentielle - Suite - (Pondichéry 2014)

La durée de vie, exprimée en années, d'un moteur pour automatiser un portail fabriqué par une entreprise A est une variable aléatoire X qui suit une loi exponentielle de paramètre $\lambda > 0$.

4. Le moteur a déjà fonctionné durant 3 ans. Quelle est la probabilité pour qu'il fonctionne encore 2 ans?

Lycée Émile Duclaux Page 3/3