Exam in TSKS04 Digital Communication Continuation Course

Exam Code: TEN1

Date & Time: 8:00 - 12:00, 17 August, 2012

Place: TER4

Teacher: Saif Khan Mohammed, tel: 281386

Exam Visit: 08:45 and 11:00

Department: ISY

Allowed aids: Olofsson: Tables and Formulas for Signal Theory

U. Madhow: Fundamentals of Digital Communication

Calculator with clear memory

Grade Translation: Grades 3,4, and 5, are translated to ECTS C,B, and A

Solutions: Within four working days after the exam on the course web page

Grading: Maximum points: 100, Pass: > 41,

Grade 3: 42 - 59, Grade 4: 60 - 79, Grade 5: 80 - 100

Important Instructions: All answers must be given in English

Please write legibly since partial points will be awarded for each

question even if the final answer is incorrect

1) Linearly Modulated Signals: Inducing wide sense stationarity using random delay (30 points)

Consider the linearly modulated signal

$$s(t) = \sum_{n=-\infty}^{\infty} b[n]p(t-nT). \tag{1}$$

- a) (4 points) Show that s is cyclostationary with respect to the interval T if $\{b[n]\}$ is a stationary discrete-time sequence.
- b) (6 points) Show that s is wide sense cyclostationary with respect to the interval T if $\{b[n]\}$ is a wide sense stationary (WSS) sequence.
- c) (20 points) Assume that $\{b[n]\}$ is a zero mean wide sense stationary (WSS) sequence with autocorrelation function $R_b[k] = \mathbb{E}[b[n]b^*[n-k]]$. Let v(t) = s(t-D), where D is a random variable distributed uniformly in [0, T] (D is independent of s).

Show that v is wide sense stationary.

(Hint: Show that the mean of v(t) is independent of t. Compute the autocorrelation function of v (i.e., $R_v(t_1,t_2)=\mathbb{E}[v(t_1)v^*(t_2)]$) and show that it depends on t_1 and t_2 only through the time difference t_1-t_2 . Be careful to take the expectation over D also, in addition to taking it over $\{b[n]\}$.)

2) **FSK tone spacing** (20 points)

Consider two real-valued passband pulses of the form

$$s_0(t) = \cos(2\pi f_0 t + \phi_0), \ 0 \le t \le T,$$

$$s_1(t) = \cos(2\pi f_1 t + \phi_1), \ 0 \le t \le T,$$
(2)

where $f_1>f_0\gg 1/T$ and $2f_0T$, $2f_1T$ are integers. The pulses are said to be orthogonal if $\int_0^T s_0(t)s_1(t)\,dt=0$.

- a) (10 points) If $\phi_0=\phi_1=0$, show that the minimum frequency separation such that the pulses are orthogonal is $f_1-f_0=\frac{1}{2T}$.
- b) (10 points) If ϕ_0 and ϕ_1 are arbitrary phases, show that the minimum separation for the pulses to be orthogonal regardless of ϕ_0, ϕ_1 is $f_1 f_0 = \frac{1}{T}$.

(Remark: This is the reason why noncoherent FSK requires twice the bandwidth as that required with coherent FSK.)

3) Maximum Likelihood Sequence Estimation (MLSE) (25 points)

Consider a received signal of the form $y(t) = \sum_l b[l]p(t-lT) + n(t)$, where $b[l] \in \{-1, +1\}$ is the transmitted sequence of information bits, n(t) is AWGN (real), and the pulse shaping waveform p(t) is a real-valued and even function of t (i.e., $p(t) = p^*(t)$, p(t) = p(-t)).

At the receiver, the signal y(t) is passed through a receive filter having impulse response g(t) (not necessarily matched to p(t)). Suppose that g(t) is such that it satisfies $g(t)\star h(t)=p(t)$ where $h(t)=\delta(t-\frac{T}{4})+\delta(t+\frac{T}{6})$ (here \star denotes the convolution operation, and $\delta(t)$ denotes the diracdelta function).

Let $r(t) = y(t) \star g(t)$ denote the output of the receive filter. Let the filtered received signal r(t) be sampled at a rate $1/T_s$ Hz and with a delay of τ seconds, to result in the discrete-time received sequence $r[l] = r(lT_s - \tau)$.

Show that it is possible to implement the MLSE for the original continuous-time signal y(t), using only the discrete-time samples $\{r[l]\}$ for some choice of T_s and τ . Specify a choice of T_s and τ that makes this possible.

Fig. 1. Rate-1/3 binary convolutional encoder.

4) (25 points) Consider a rate R = 1/3 binary convolutional encoder with generator matrix

$$G(D) = \begin{bmatrix} D & 1+D & 1+D+D^2 \end{bmatrix}$$
 (3)

as shown in Fig. 1.

- a) (10 points) Draw the state diagram for the binary convolutional encoder with generator matrix given in (3).
- b) (15 points) Draw the signal flow-chart for the convolutional encoder above and compute an expression for the path weight enumerator $T(X) = \sum_i A(i)X^i$ where A(i) is the number of simple-paths (first error event paths in the trellis) whose output sequence has Hamming weight equal to i. Using the expression for T(X), find out the free-distance d_{free} of the above convolutional code, and also, how many different simple-paths exist with Hamming weight equal to 10?