1-1 Time Complexity


```
for (int i=0; i<N; i++)
  for (int j=0; j<i*i; j++)
   for (int k=1; k<j; k=k*2)
     print("Hello");</pre>
```

```
\Omega( N<sup>3</sup> log (N) )
O( N<sup>3</sup> log (N) )
```

```
\begin{split} f(N) &= (1 \text{ log } 1 + 4 \text{ log } 4 + 9 \text{ log } 9 + .... + N^2 \text{ log } N^2) \\ N \overline{\mathfrak{g}} \\ f(N) & \leq \left(N * N^2 \text{ log } N^2\right) \\ &= \Theta \left(N^3 \text{ log } (N)\right) \end{split} \begin{subarray}{l} $i \to N \\ $j \to N^2$ \\ $k \to N^2
```

$$f(N) \ge \left(\frac{N}{2} * \left(\frac{N}{2}\right)^2 \log \left(\frac{N}{2}\right)^2\right)$$

$$= C N^3 \log \left(\frac{N}{2}\right)$$

$$= C N^3 \log (N) - C N^3$$

$$= \Theta (N^3 \log (N))$$

1-2 Time Complexity

令 j 全部等於1 && --> 得到最小值 令 j 全不等於0 && y>x --> 得到最大值

```
x = 2; y = 2;
while (x<N) {</pre>
  j = random 0 or 1;
  if (j == 0 && y<x) {
    y=y+1;
  }else{
     x=x*x;
         (2<sup>2</sup>)^m >= N --> m複雜度為 log log N
         log log (N)
  \Omega(
  0(
               Ν
```


2 Complexity Hierarchy

3 Recursive MAX


```
int RMAX(int array[], int size)
                                                       your code goes here
   int m;
  if (size == 1) return array[0];
  int m1 = RMAX (array, size/2);
  int m2 = RMAX (array+size/2, size-size/2);
  if (m1>m2) m = m1;
  else m = m2;
   return m;
```

Time Complexity

• T(size) = 2 T(size/2) + 1

3 Recursive MAX


```
int RMAX(int array[], int size)
                                                         your code goes here
   int m;
  if (size == 1) return array[0];
  int m1 = array [0];
  for(int i=0; i<size/2; i++)
     if (m1 > array[i]) m1 = array[i];
  int m2 = RMAX (array+size/2, size-size/2);
  m = (m1 > m2)? m1 : m2;
   return m;
```



```
int RMAX(int array[], int size)
{
                                                            your code goes here
   int m;
  if (size == 1) return array[0];
   for(int i=0; i<size/2; i++) {
     if (array[i] < array[size-i-1])</pre>
        swap(array[i], array[size-i-1]);
   m = RMAX (array, size/2);
   return m;
```

Time Complexity

• T(size) = **T(size/2) + size/2**

```
= T(size/4) + size/4 + size/2
= T(size/8) + size/8 + size/4 + size/2
= 1 + ... + size/8 + size/4 + size/2
```

= Θ (size)

-1 KMP

											<u>, </u>
S₊	D₽	T₽	D₽	S₊	S₊	D₽	T₽	D₽	S₊	S₽	X ↔
											7 if $x == 'D'_{\leftarrow}$
0	0			4	4	_	2	4	_		1 if x == 'S'
O ₂	0₽	0.	0.	1.	1.	2₽	3₽	4.	5₽	6₽	0 if $x == 'T'$
						\uparrow		^		^	0 otherwise.
		丝後面來		_			2個與前				
	Ā	前面同…"	S" = "S"	··	面同'	'SD" = "S	SD"				從後面來看有6個與前面
									個與前面 "SDTD"		 同…"SDTDSS" = "SDTDSS"

4-2 KMP

5 Infix to Postfix

7 WYLL LINIVE

Token	+		Sta	ack		Ou	tpu	t Sc	Fa	r					orit	-			Ope				
Α						Α	•							High			In-coming (*, /, %						
	 			<u> </u>	ļ <u></u>	 										H	+, -						
				ļ		 A 								_			<, <=, >=, >						
((<u> </u>		 Α											==, !=						
Α	Ш	(Α	Α												- &	&			
+		(+			 Α	Α							L	.ow				l n-st	l :ack	. (
В		(+			Α	Α	В													Ù	Ī	
*		(+	*		 Α	Α	В															
С		(+	*		 Α	Α	В	С														
%	-	(+	%		Α	Α	В	С	*												Ī	
9		(+	%		Α	Α	В	С	*	9												
)						Α	Α	В	С	*	9	%	+										
<		<				Α	Α	В	С	*	9	%	+										
D		<				Α	Α	В	С	*	9	%	+	D									
==		==				Α	Α	В	С	*	9	%	+	D	С								
T		==				 Α	Α	В	С	*	9	%	+	D	<	Т							
&&		&&				Α	Α	В	С	*	9	%	+	D	<	Т	==						
В		&&				Α	Α	В	С	*	9	%	+	D	С	Т	==	В				Ī	

6 Asymptotic Notations


```
F(N) + G(N) = O(N!)
\rightarrow exist natural numbers c and N<sub>0</sub> such that
   F(N) + G(N) \leq c N! for N \geq N_0
F(N)*G(N) \le (F(N) + G(N))^2/4
\leq c<sup>2</sup>/4 (N!)<sup>2</sup> for N \geq N<sub>0</sub>
(N!)^2 < (2N)!
Let c' = c^2/4 N_0' = N_0
F(N)*G(N) \le c'(2N)! = O((2N)!) for N \ge N_0' QED
```

7-1 Three Basic Structures

- Sequential
- Selection (if-else)
- Iteration (loop)

7-2 Structured vs non-Structured

 Structured program cannot always achieve better speed than a non-structured one

 Structured programs are <u>always compiled into</u> <u>machine language programs</u>, which are <u>non-</u> <u>structured</u> programs

7-3 Access levels of objects

- Changing the access levels of objects cannot affect the function of a program
 - Access levels are NOT designed for realizing functions
 - Access levels are NOT designed for protecting 智慧財產權
- Ch1_33
 Access levels are for maintaining a clean object interface
 - Preventing object users from accidently messing up the internal values of the object
 - Preventing object users from relying on the internal values of the object

8 Lower-Triangular Matrix

$$\begin{bmatrix} T_{00} & 0 & 0 \\ T_{10} & T_{11} & 0 \\ T_{20} & T_{21} & T_{22} \end{bmatrix}_{2^{*}2}$$

$$\begin{bmatrix} T_{00} & T_{10} & T_{11} & T_{20} & T_{21} & T_{22} \\ 0 & 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

- Number of integers for storing directly using a raw array
- 1 + 2 + 3 + ... + N = (1+N)N/2

8 Lower-Triangular Matrix

位置

T ₀₀	T ₁₀	T ₁₁	T ₂₀	T ₂₁	T ₂₂		
0	1	2	3	4	5		

- Offset of T_{ij}
- = (1+i) i / 2 + j
- T₂₀

$$=(1+2)*2/2+0=3$$

Ch2_37~ Lower-Triangular Matrix

$$\begin{bmatrix} T_{00} & 0 & 0 \\ T_{10} & T_{11} & 0 \\ T_{20} & T_{21} & T_{22} \end{bmatrix}$$

$$\begin{bmatrix} T_{00} & T_{10} & T_{11} & T_{20} & T_{21} & T_{22} \\ 0 & 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

of integers = (1-R) * (1+N)N/2 * $\frac{1}{3}$ + 2

If the matrix is stored in a sparse matrix