

EGR 106 Foundations of Engineering II

Lecture 3 – Part B
Arrays and Array Mathematics

This Week's Topics

Review of last week's topics Today's topics:

Array addressing

Special arrays

Some array operators

Character arrays

Array mathematics

Vector operations

Element by element operations

- addition, subtraction, multiplication, division

Matrix multiplication

Solving systems of equations

Review of Last Week

Arrays are the fundamental data units in MATLAB Rectangular collection of data

All variables are considered to be arrays

$$yield = \begin{bmatrix} 4 & 5 & 3 & 9 \\ 10 & 4 & 66 & 20 \\ 18 & -3 & 2 & 0 \end{bmatrix}$$

Data values organized into rows and columns

Review of Last Week (cont.)

Size of an array (R x C)

Array Construction:

Brute force using brackets

Concatenation of other arrays – side-by-side and top-tobottom

The colon operator

The linspace command

MATLAB scripts

File editor

Useful commands: clc, clear, close, %, pause, disp

Array Addressing

We indicate a particular element within an array by it's row/column position:

use parentheses after the array name

e.g.

yield(2,4)

yield =
$$\begin{bmatrix} 4 & 5 & 3 & 9 \\ 10 & 4 & 66 & 20 \\ 18 & -3 & 2 & 0 \end{bmatrix}$$

Array Addressing (cont.)

Used to read a value from an array

```
test =

0.4565    0.8214    0.6154
0.0185    0.4447    0.7913

>> x = test(1,3)

x =

0.6154
```

Array Addressing (cont.)

How about more than one entry?

Can specify a <u>rectangular</u> sub-array

again, use parenthesis after the array name

list desired rows, comma, desired columns

as separate vectors, typically in brackets

e.g.
$$yield = \begin{bmatrix} 4 & 5 & 3 & 9 \\ 10 & 4 & 66 & 20 \\ 18 & -3 & 2 & 0 \end{bmatrix}$$
 yield([1 2],[3 4])

Special Arrays

Special predefined arrays:

zeros(R,C) all zeros

all ones

ones(R,C)

zeros with ones on the diagonal

eye(R,C)

eye(N)

random numbers (within [0 1])

rand(R,C)

rand(N)

zeros(N)

ones(N)

Square versions

Examples

```
Command Window
>> eye(3,4)
ans =
         0
                     0
    0
                     0
    0
          0
                     0
\gg rand(2,5)
                          random on [0, 1]
ans =
   0.9501
         0.6068 0.8913
                              0.4565
                                        0.8214
   0.2311
            0.4860
                     0.7621
                               0.0185
                                        0.4447
```

Transpose Operation

Transpose (single quote symbol ')

switches rows and columns

```
test =

1 2 3 4
5 6 7 8
9 10 11 12
```

Array Size and Length

Size – the number of rows and columns

Length – the larger of these two

```
>> bob=[5; 7; 3; 6]
bob =
5
7
3
6
>> size(bob)
ans =
4 1
>> length(bob)
ans =
4
```

Character Arrays

Rows of the array are strings of alphanumeric characters, one array entry per character

Enter using a single quotation mark (') at each end of the string

```
>> test = 'John'
test =
John
>> size(test)
ans =
```

Character Arrays (cont.)

For multi-row alphanumeric arrays, each row must have the same number of characters

```
name = [ 'Marty' ; 'James' ; 'Bob 📜
```

Note – need 2 spaces

Note that we have already used character arrays in plotting functions – recall Week 1 homework:

```
v=100; A=35*pi/180;
t=0:0.01:14;
x=v*cos(A)*t;
y=v*sin(A)*t-0.5*9.81*t.^2;
plot(x,y)
xlabel('x')
ylabel('y')
title('Trajectory Plot')
text(750,150,'Bill Smith, 1/29/2013')
```

"num2str" command

The built-in function, num2str(N), takes a number, N, and converts it to a character string.

Useful in displaying results

Ex.

```
%
N=254;
%
T=['The number is ' num2str(N)];
%
size(T)
%
disp(T)
```

Concatenates the strings 'The number is 'and '254'

```
ans =
1 17
The number is 254
```

Demonstration Problem

Create a script which:

1. Creates the following array of characters:

This is a Matlab demo of a character string array

- 2. Determines and displays the size of the array
- 3. Adds a row with the characters:

which has 24 columns

4. Determines and displays the new size of the array

Demonstration Problem (cont.)

Script

```
% Demo Problem
clear; clc
disp ('Demo Problem')
B=['This is a Matlab demo of'
    'a character string array']
pause
s=size(B);
disp(['The size of array B is ' num2str(s)])
pause
B(3,1:20)='which has 24 columns'
pause
s=size(B);
disp(['The size of array B is now ' num2str(s)])
```

Command Window Output

```
Demo Problem
B =
This is a Matlab demo of
a character string array
The size of array B is 2 24
B =
This is a Matlab demo of
a character string array
which has 24 columns
The size of array B is now 3 24
```

Vector Based Operations

Some operations analyze a vector to yield a single value.

For example:

Vector Operations (cont.)

Some operators yield vector results

size(A) we've already seen – gives rows and columns

sort (A)

```
A =
6 3 5 1
>> sort(A)
ans =
1 3 5 6
```

Vector Operations (cont.)

Some operators give multiple vectors

```
A =
>> [vals,locs] = sort(A)
vals =
locs =
```

Other Vector Operations

Minimum: min(A)

Maximum: max(A)

Median: median(A)

Mean or average: mean(A)

Standard deviation: std(A)

Product of the elements: prod(A)

Vector Operations (cont.)

Use help to discover how to use these work

```
>> help sum
SUM Sum of elements.
   S = SUM(X) is the sum of the elements of the vector X. If
   X is a matrix, S is a row vector with the sum over each
   column. For N-D arrays, SUM(X) operates along the first
   non-singleton dimension.
   If X is floating point, that is double or single, S is
   accumulated natively, that is in the same class as X,
   and S has the same class as X. If X is not floating point,
   S is accumulated in double and S has class double.

S = SUM(X,DIM) sums along the dimension DIM.
```

Element by Element Math Operations

For arrays of identical sizes, addition and subtraction is defined term by term:

the command F = A + B means

$$F(r,c) = A(r,c) + B(r,c)$$

for all row and column pairs r,c

"element-by-element" addition

Array Addition and Subtraction

Arrays must be of identical size

Term by term (or element by element) operation:

```
>> A=[1 2;3 4;5 6]
A =

1 2
3 4
5 6
>> B=[7 8;9 10; 11 12]
B =

7 8
9 10
11 12
>> C=A+B
C =

8 10
12 14
16 18
```

Addition and Subtraction of Arrays (cont.)

Sizes must match:

```
>> A=[1 2;3 4;5 6]
A =

1 2
3 4
5 6
>> B=[7 8;9 10]
B =

7 8
9 10
>> C=A+B
??? Error using ==> plus
Matrix dimensions must agree.
```

Array subtraction is identical:

Built in Functions

Built-in functions also work element-by-element: (sqrt, log, exp, sin, cos, etc.)

Example:

```
>> b = [ 4 9 25; 1 2 10 ]
b =
4 9 25
1 2 10

>> sqrt(b)
ans =
2.0000 3.0000 5.0000
1.0000 1.4142 3.1623
```

Matrix Multiplication

In linear algebra:

- Matrix multiplication of an M x N matrix times an N X P matrix yields an M X P matrix
- Each term is found by taking the dot product of rows of the first matrix with columns of the second

Matrix Multiplication (cont.)

Example from high school algebra text

EXAMPLE 2 Finding the Product of Two Matrices

Find
$$AB$$
 if $A = \begin{bmatrix} -2 & 3 \\ 1 & -4 \\ 6 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$.

SOLUTION

Because A is a 3×2 matrix and B is a 2×2 matrix, the product AB is defined and is a 3×2 matrix. To write the entry in the first row and first column of AB, multiply corresponding entries in the first row of A and the first column of B. Then add. Use a similar procedure to write the other entries of the product.

$$AB = \begin{bmatrix} -2 & 3 \\ 1 & -4 \\ 6 & 0 \end{bmatrix} \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} (-2)(-1) + (3)(-2) & (-2)(3) + (3)(4) \\ (1)(-1) + (-4)(-2) & (1)(3) + (-4)(4) \\ (6)(-1) + (0)(-2) & (6)(3) + (0)(4) \end{bmatrix}$$

$$= \begin{bmatrix} -4 & 6 \\ 7 & -13 \\ -6 & 18 \end{bmatrix}$$

MATLAB

Array Multiplication (cont.)

The number of columns of the 1st must match the number of rows of the 2nd

Array Multiplication vs. Element by Element Multiplication

Array Multiplication

Element by Element Multiplication

Other Element by Element Operations

The other basic math operations work element by element using the dot notation (with A,B the same sizes):

multiplication

F = A .* B
$$\rightarrow$$
 F(r,c) = A(r,c) * B(r,c) division

F = A ./ B \rightarrow F(r,c) = A(r,c) / B(r,c) exponentiation:

F = A .^ B \rightarrow F(r,c) = A(r,c) ^ B(r,c) note periods!

Element by Element Operations - Examples

Solving System of Equations - Example

$$2x_{1} + 3x_{2} + 3x_{3} = 7$$

$$4x_{1} + 2x_{2} + 9x_{3} = 5$$

$$6x_{1} - 7x_{2} + 2x_{3} = 1$$

In matrix form this is

$$A * x = b$$

where

$$A = \begin{bmatrix} 2 & 3 & 3 \\ 4 & 2 & 9 \\ 6 & -7 & 2 \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad b = \begin{bmatrix} 7 \\ 5 \\ 1 \end{bmatrix}$$

Recall the command eye(n)

This result is the array

multiplication identity matrix I

For any array A

$$\mathbf{A} * \mathbf{I} = \mathbf{I} * \mathbf{A} = \mathbf{A}$$

must be properly sized!

Imagine that for square arrays A and B we have

$$\mathbf{A} * \mathbf{B} = \mathbf{B} * \mathbf{A} = \mathbf{I}$$

then we call them inverses

$$A = B^{-1}$$
 $B = A^{-1}$

In MATLAB: A ^ -1 or inv(A)

When does A^{-1} exist?

A is square

A has a non-zero determinant $(det(A) \neq 0)$

Example:

Solving
$$\mathbf{A} * \mathbf{x} = \mathbf{b}$$

Assume that **A** is square and $det(\mathbf{A}) \neq 0$ Multiply both sides by \mathbf{A}^{-1} on the left

$$\mathbf{A}^{-1} * \mathbf{A} * \mathbf{x} = \mathbf{A}^{-1} * \mathbf{b}$$

$$= \mathbf{X}$$
so $\mathbf{x} = \mathbf{A}^{-1} * \mathbf{b}$ backwards slash
In MATLAB, $\mathbf{x} = \mathbf{A}^{-1} * \mathbf{b}$, $\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$ or $\mathbf{x} = \text{inv}(\mathbf{A}) * \mathbf{b}$

Example:

