plotTDKCharField

Explore TDK TAS2141 characterization field.

Syntax

```
plotTDKCharField()
```

Description

plotTDKCharField() explore characterization field of TDK sensor.

Examples

```
plotTDKCharField();
```

Input Arguments

None

Output Arguments

None

Requirements

- Other m-files: none
- Subfunctions: none
- MAT-files required: data/TDK_TAS2141_Characterization_2020-10-22_18-12-16-827.mat, data/config.mat

See Also

plotTDKCharDataset

Created on October 28. 2020 by Tobias Wulf. Copyright Tobias Wulf 2020.

```
function plotTDKCharField()
   try
       \mbox{\%} load dataset path and dataset content into function workspace
       load('config.mat', 'PathVariables');
      load(PathVariables.tdkDatasetPath, 'Data', 'Info');
      close all;
   catch ME
       rethrow(ME)
   % load needed data from dataset in to local variables for better handling %%
   % get from user which field to investigate and limits for plateau
   fields = Info.SensorOutput.CosinusBridge.Determination;
   nFields = length(fields);
   fprintf('Choose 1 of %d fields ...\n', nFields);
   for i = 1:nFields
       fprintf('%s\t:\t(%d)\n', fields{i}, i);
   iField = input('Choice: ');
   field = fields{iField};
```

```
pl = input('Plateu limit in kA/m: ');
Vcos = Data.SensorOutput.CosinusBridge.(field);
Vsin = Data.SensorOutput.SinusBridge.(field);
gain = Info.SensorOutput.BridgeGain;
HxScale = Data.MagneticField.hx;
HvScale = Data.MagneticField.hy;
Hmin = Info.MagneticField.MinAmplitude;
Hmax = Info.MagneticField.MaxAmplitude;
% get unit strings from
kApm = Info.Units.MagneticFieldStrength;
mV = Info.Units.SensorOutputVoltage;
\mbox{\ensuremath{\$}} get dataset infos and format strings to place in figures
% subtitle string for all figures
infoStr = join([Info.SensorManufacturer, ...
   Info.Sensor, Info.SensorTechnology, ...
   Info.SensorType, "Sensor Characterization Dataset."]);
dateStr = join(["Created on", Info.Created, "by", 'Thorben Sch\"uthe', ...
   "and updated on", Info.Edited, "by", Info.Editor + "."]);
% clear dataset all loaded
clear Data Info;
fName = sprintf("tdk char field %s", field);
fPath = fullfile(PathVariables.saveFiguresPath, fName);
fSvgPath = fullfile(PathVariables.saveImagesPath, 'svg', fName);
fEpsPath = fullfile(PathVariables.saveImagesPath, 'eps', fName);
fPdfPath = fullfile(PathVariables.saveImagesPath, 'pdf', fName);
Hslice = [128\ 154\ 180\ 205]; % hit ca. 0, 5, 10, 15 kA/m
Hlims = [-pl pl];
mVpVlims = [-175 175];
fig = figure('Name', 'Char Field', ...
   'NumberTitle', 'off', ...
   'WindowStyle', 'normal', ...
   'MenuBar', 'none', ...
   'ToolBar', 'none', ...
   'Units', 'centimeters', ...
   'OuterPosition', [0 0 33 30], ...
   'PaperType', 'a4', ...
   'PaperUnits', 'centimeters', ...
   'PaperOrientation', 'landscape', ...
   'PaperPositionMode', 'auto', ...
   'DoubleBuffer', 'on', ...
   'RendererMode', 'manual', ...
   'Renderer', 'painters');
tdl = tiledlayout(fig, 2, 2, ...
   'Padding', 'compact', ...
   'TileSpacing' , 'compact');
title(tdl, sprintf('Characterization Field: %s', field), ...
   'FontWeight', 'normal', ...
```

```
'FontSize', 18, ...
   'FontName', 'Times', ...
   'Interpreter', 'latex');
subtitle(tdl, [infoStr; dateStr], ...
   'FontWeight', 'normal', ...
   'FontSize', 14, ...
   'FontName', 'Times', ...
   'Interpreter', 'latex');
% set colormap
colormap('jet');
nexttile(1):
im = imagesc(HxScale, HyScale, Vcos);
set(gca, 'YDir', 'normal');
set(im, 'AlphaData', ~isnan(Vcos));
yticks(xticks);
axis square xy;
grid on;
% plot lines for slice to investigate
hold on;
for i = Hslice
   yline(HyScale(i), 'k:', 'LineWidth', 2);
hold off;
xlabel(sprintf('$H_x$ in %s', kApm), ...
   'FontWeight', 'normal', ...
   'FontSize', 12, ...
   'FontName', 'Times', ...
   'Interpreter', 'latex');
ylabel(sprintf('$H_y$ in %s', kApm), ...
   'FontWeight', 'normal', ...
   'FontSize', 12, ...
   'FontName', 'Times', ...
   'Interpreter', 'latex');
title('$V_{cos}(H_x,H_y)$', ...
   'FontWeight', 'normal', ...
   'FontSize', 12, ...
   'FontName', 'Times', ...
   'Interpreter', 'latex');
cb = colorbar;
cb.Label.String = sprintf(...
   '$V_{cos}(H_x, H_y) $ in %s, Gain $ = %.1f$', mV, gain);
cb.Label.Interpreter = 'latex';
cb.Label.FontSize = 12;
nexttile(2);
% slices
p = plot(HxScale, Vcos(Hslice,:), 'LineWidth', 1.2);
% plateau limits
if p1 > 0
```

```
xline(Hlims(1), 'k-.', 'LineWidth', 1.5);
xline(Hlims(2), 'k-.', 'LineWidth', 1.5);
   hold off;
    text(Hlims(1)-9.5, 100, ...
       sprintf('$%.1f$ %s', Hlims(1), kApm), ...
       'Color', 'k', ...
       'FontSize', 12, ...
       'FontName', 'Times', ...
       'Interpreter', 'latex');
    text(Hlims(2)+0.5, -50, ...
       sprintf('$%.1f$ %s', Hlims(2), kApm), ...
       'Color', 'k', ...
       'FontSize', 12, ...
       'FontName', 'Times', ...
       'Interpreter', 'latex');
end
legend(p, {'$H_y \approx 0$ kA/m', ...
          '$H_y \approx 5$ kA/m', ...
          '$H_y \approx 10$ kA/m', ...
          '$H_y \approx 15$ kA/m'},...
       'FontWeight', 'normal', ...
       'FontSize', 9, ...
       'FontName', 'Times', ...
       'Interpreter', 'latex', ...
       'Location', 'SouthEast');
xlabel(sprintf('$H_x$ in %s', kApm), ...
    'FontWeight', 'normal', ...
    'FontSize', 12, ...
    'FontName', 'Times', ...
    'Interpreter', 'latex');
title('$V_{cos}(H_x,H_y) $ for $H_y = $ const.', ...
    'FontWeight', 'normal', ...
    'FontSize', 12, ...
    'FontName', 'Times', ...
   'Interpreter', 'latex');
grid on;
ylim(mVpVlims);
xlim([Hmin Hmax])
nexttile(3);
im = imagesc(HxScale, HyScale, Vsin);
set(gca, 'YDir', 'normal');
set(im, 'AlphaData', ~isnan(Vsin));
yticks(xticks);
axis square xy;
grid on;
% plot lines for slice to investigate
hold on;
for i = Hslice
   xline(HxScale(i), 'k:', 'LineWidth', 2);
end
hold off;
```

```
xlabel(sprintf('$H_x$ in %s', kApm), ...
    'FontWeight', 'normal', ...
    'FontSize', 12, ...
   'FontName', 'Times', ...
   'Interpreter', 'latex');
ylabel(sprintf('$H_y$ in %s', kApm), ...
   'FontWeight', 'normal', ...
    'FontSize', 12, ...
   'FontName', 'Times', ...
   'Interpreter', 'latex');
\texttt{title('$V_{sin}(H_x,H_y)$', \dots}
   'FontWeight', 'normal', ...
    'FontSize', 12, ...
   'FontName', 'Times', ...
   'Interpreter', 'latex');
cb = colorbar;
cb.Label.String = sprintf(...
    '$V_{sin}(H_x, H_y)$ in %s, Gain $ = %.1f$', mV, gain);
cb.Label.Interpreter = 'latex';
cb.Label.FontSize = 12;
nexttile(4);
% slices
p = plot(HxScale, Vsin(:,Hslice), 'LineWidth', 1.2);
% plateau limits
if p1 > 0
   hold on;
   xline(Hlims(1), 'k-.', 'LineWidth', 1.5);
   xline(Hlims(2), 'k-.', 'LineWidth', 1.5);
   hold off;
   text(Hlims(1)-9.5, 100, ...
       sprintf('$%.1f$ %s', Hlims(1), kApm), ...
       'Color', 'k', ...
       'FontSize', 12, ...
       'FontName', 'Times', ...
       'Interpreter', 'latex');
   text(Hlims(2)+0.5, -50, ...
       sprintf('$%.1f$ %s', Hlims(2), kApm), ...
       'Color', 'k', ...
       'FontSize', 12, ...
       'FontName', 'Times', ...
       'Interpreter', 'latex');
end
legend(p, {'$H_x \approx 0$ kA/m', ...
          '$H_x \approx 5$ kA/m', ...
          '$H_x \approx 10$ kA/m', ...
          '$H_x \approx 15$ kA/m'},...
       'FontWeight', 'normal', ...
       'FontSize', 9, ...
       'FontName', 'Times', ...
       'Interpreter', 'latex', ...
       'Location', 'SouthEast');
```

```
xlabel(sprintf('$H_y$ in %s', kApm), ...
      'FontWeight', 'normal', ...
      'FontSize', 12, ...
      'FontName', 'Times', ...
      'Interpreter', 'latex');
   title('$V_{sin}(H_x,H_y) $ for $H_x = $ const.', ...
      'FontWeight', 'normal', ...
      'FontSize', 12, ...
      'FontName', 'Times', ...
      'Interpreter', 'latex');
   grid on;
   ylim(mVpVlims);
   xlim([Hmin Hmax])
   yesno = input('Save? [y/n]: ', 's');
   if strcmp(yesno, 'y')
      savefig(fig, fPath);
      print(fig, fSvgPath, '-dsvg');
print(fig, fEpsPath, '-depsc', '-tiff', '-loose');
print(fig, fPdfPath, '-dpdf', '-loose', '-fillpage');
   end
   close(fig)
end
```

Published with MATLAB® R2020b