

key distribution problems

public-key encryption helps key distribution

- two aspects:
 - ✓ distribution of public keys
 - ✓ use of public-key encryption to distribute secret keys

Distribution of Public Keys

can be considered as using one of:

- public announcement of public-key(发布)
- publicly available directory (可访问目录)
- public-key authority (授权)
- public-key certificates (证书)

Public announcement of public-key(发布)

- users distribute public keys to recipients or broadcast to community
- ➤ major weakness is forgery (伪造)
 - anyone can create a key claiming to be someone else and broadcast it
 - until forgery is discovered can masquerade (假冒) as claimed user

publicly available directory (可访问目录)

A

greater security by registering keys with a public directory

- directory must be trusted with properties:
 - contains {name,public-key} entries
 - register securely with directory
 - replace key at any time
 - periodically published
 - accessed electronically

still vulnerable (攻击) to tampering (篡改) or forgery (假冒)

Figure 10.2 Public Key Publication

public-key authority (授权)

- tightening control (严密控制) over distribution of keys from directory
- requires users to know public key for the directory
- users interact with directory to obtain any desired public key securely

Public-Key Authority

public-key certificates (证书)

- allow key exchange without real-time access to public-key authority
- binds identity to public key
 - usually with other info such as period of validity, rights of use etc
- with all contents **signed** by a trusted (信赖) Public-Key or Certificate Authority (CA)
- can be verified by anyone who knows the public-key authorities public-key

Public-Key Distribution of Secret Keys

- * use for secrecy or authentication
- * public-key algorithms are slow usually use symmetric-key encryption to protect message contents
- * need a session key How to negotiate a suitable session key?

Simple Secret Key Distribution

- proposed by Merkle in 1979
 - "A" generates a new temporary public key pair
 - "A" sends "B" the public key and the identity
 - B generates a session key "K" sends it to "A" encrypted using the supplied A's public key
 - "A" decrypts the session key and will use for coming comm.
- problem is that an opponent can intercept (截取) and impersonate (模仿)

Secret Key Distribution with confidentiality and authentication

if have securely exchanged public-keys:

Figure 10.6 Public-Key Distribution of Secret Keys