Francis's (Implicit) QR Algorithm

Single shift or degree one: Let $A_0 = A$.

for
$$j = 1, 2, \dots$$

(i) Find reflector $Q_{j-1}^{(1)}$ such that

$$Q_{j-1}^{(1)}(A_{j-1}-
ho_{j-1}I)e_1=\left[egin{array}{c}lpha\0\ dots\0\end{array}
ight]$$

and compute $Q_{j-1}^{(1)}A_{j-1}Q_{j-1}^{(1)}$.

(i) Find reflectors $\hat{Q}_{j-1}^{(2)},\ldots,\hat{Q}_{j-1}^{(n-2)}$ such that

$$A_{j} = \hat{Q}_{j-1}^{(n-1)} \cdots \hat{Q}_{j-1}^{(2)} Q_{j-1}^{(1)} A_{j-1} Q_{j-1}^{(1)} \hat{Q}_{j-1}^{(2)} \cdots \hat{Q}_{j-1}^{(n-1)}$$

is upper Hessenberg.

Francis's (Implicit) QR Algorithm

Double shift or degree two: Let $A_0 = A$.

for
$$j = 1, 2, ...$$

(i) Find reflector $Q_{j-1}^{(1)}$ such that

$$Q_{j-1}^{(1)}(A_{j-1}-\rho_{j-1}I)(A_{j-1}-\tau_{j-1}I)e_1 = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

and compute $Q_{j-1}^{(1)} A_{j-1} Q_{j-1}^{(1)}$.

(i) Find reflectors $\hat{Q}_{j-1}^{(2)},\ldots,\hat{Q}_{j-1}^{(n-1)}$ such that

$$A_{j} = \hat{Q}_{j-1}^{(n-1)} \cdots \hat{Q}_{j-1}^{(2)} Q_{j-1}^{(1)} A_{j-1} Q_{j-1}^{(1)} \hat{Q}_{j-1}^{(2)} \cdots \hat{Q}_{j-1}^{(n-1)}$$

is upper Hessenberg.

Let

$$A_0 = \left[\begin{array}{cccc} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \end{array} \right].$$

Then
$$(A_0 - \rho I)(A_0 - \tau I)e_1 = \begin{bmatrix} (a_{11} - \rho_1)(a_{11} - \tau) + a_{12}a_{21} \\ a_{21}((a_{11} + a_{22}) - (\rho + \tau)) \\ a_{32}a_{21} \\ 0 \end{bmatrix}.$$

Let
$$Q_0^{(1)}=\left[\begin{array}{cc} \tilde{Q}_0^{(1)} & 0 \\ 0 & 1 \end{array}\right]$$
 where

$$\tilde{Q}_0^{(1)} \left[\begin{array}{c} (a_{11} - \rho)(a_{11} - \tau) + a_{12}a_{21} \\ a_{21}((a_{11} + a_{22}) - (\rho + \tau)) \\ a_{32}a_{21} \end{array} \right] = \left[\begin{array}{c} \alpha \\ 0 \\ 0 \end{array} \right].$$

Then
$$Q_0^{(1)}A_0 = \begin{bmatrix} \tilde{Q}_0^{(1)} & 0 \\ 0 & 1 \end{bmatrix} A_0 = \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ b & \times & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix}$$

and
$$Q_0^{(1)}A_0Q_0^{(1)} = \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ b_1 & \times & \times & \times \\ b_2 & b_3 & \times & \times \end{bmatrix}$$
.

Bulge chasing:

Let
$$\hat{Q}_0^{(2)} = \begin{bmatrix} 1 & 0 \\ 0 & \tilde{Q}_0^{(2)} \end{bmatrix}$$
 where $\tilde{Q}_0^{(2)} \begin{bmatrix} \times \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}$.

Then
$$\hat{Q}_0^{(2)}Q_0^{(1)}A_0Q_0^{(1)}=\begin{bmatrix} \times&\times&\times&\times&\times\\ \times&\times&\times&\times&\times\\ 0&\times&\times&\times&\times\\ 0&b_4&\times&\times \end{bmatrix}$$
, and
$$\hat{Q}_0^{(2)}Q_0^{(1)}A_0Q_0^{(1)}\hat{Q}_0^{(2)}=\begin{bmatrix} \times&\times&\times&\times&\times\\ \times&\times&\times&\times&\times\\ 0&b_4&\times&\times \end{bmatrix}.$$
 Let $\hat{Q}_0^{(3)}=\begin{bmatrix} I_2&0\\0&\tilde{Q}_0^{(3)}\end{bmatrix}$ where $\tilde{Q}_0^{(3)}\begin{bmatrix} \times\\b_5\end{bmatrix}=\begin{bmatrix} \times\\0\end{bmatrix}$.

Then
$$\hat{Q}_0^{(3)} \hat{Q}_0^{(2)} Q_0^{(1)} A_0 Q_0^{(1)} \hat{Q}_0^{(2)} = \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix}$$
, and

$$\hat{Q}_0^{(3)}\hat{Q}_0^{(2)}Q_0^{(1)}A_0Q_0^{(1)}\hat{Q}_0^{(2)}\hat{Q}_0^{(3)} = \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix} = A_1.$$

Then
$$\hat{Q}_0^{(3)} \hat{Q}_0^{(2)} Q_0^{(1)} A_0 Q_0^{(1)} \hat{Q}_0^{(2)} = \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix}$$
, and

$$\hat{Q}_0^{(3)}\hat{Q}_0^{(2)}Q_0^{(1)}A_0Q_0^{(1)}\hat{Q}_0^{(2)}\hat{Q}_0^{(3)} = \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix} = A_1.$$

The bulge is gone and A_1 is in upper Hessenberg form!

Why is Francis's QR algorithm the same as the theoretical QR algorithm?

Let $A \in \mathbb{C}^{n \times n}$ and $x \in \mathbb{C}^n$. Then,

$$K(A, x) = [x \quad Ax \cdots A^{n-1}x] \in \mathbb{C}^{n \times n}$$

is called the Krylov matrix associated with A and x.

Key properties of K(A, x):

- (1) For any $\alpha \in \mathbb{C}$, $\alpha K(A, x) = K(A, \alpha x)$.
- (2) If A is upper Hessenberg, then $K(A, e_1)$ is upper triangular.
- (3) If A is properly or irreducible upper Hessenberg, then $K(A, e_1)$ is upper triangular and non singular.
- (4) For any polynomial p(z), p(A)K(A, x) = K(A, p(A)x).
- (5) For any nonsingular matrix $S \in \mathbb{C}^{n \times n}$, $K(S^{-1}AS, x) = S^{-1}K(A, Sx)$.

Let $A \in \mathbb{C}^{n \times n}$ and $x \in \mathbb{C}^n$. Then,

$$K(A, x) = [x \quad Ax \cdots A^{n-1}x] \in \mathbb{C}^{n \times n}$$

is called the Krylov matrix associated with A and x.

Key properties of K(A, x):

- (1) For any $\alpha \in \mathbb{C}$, $\alpha K(A, x) = K(A, \alpha x)$.
- (2) If A is upper Hessenberg, then $K(A, e_1)$ is upper triangular.
- (3) If A is properly or irreducible upper Hessenberg, then $K(A, e_1)$ is upper triangular and non singular.
- (4) For any polynomial p(z), p(A)K(A, x) = K(A, p(A)x).
- (5) For any nonsingular matrix $S \in \mathbb{C}^{n \times n}$, $K(S^{-1}AS, x) = S^{-1}K(A, Sx)$.

Exercise: Prove (1) - (5)

Theorem Let A be a properly upper Hessenberg matrix and p(x) be a polynomial over \mathbb{R} or \mathbb{C} . Let Q be a unitary matrix such that $\hat{A} := Q^*AQ$ is upper Hessenberg and the first column of Q is proportional to the first column of p(A). Then there exists an upper triangular matrix P such that p(A) = QP.

Theorem Let A be a properly upper Hessenberg matrix and p(x) be a polynomial over \mathbb{R} or \mathbb{C} . Let Q be a unitary matrix such that $\hat{A} := Q^*AQ$ is upper Hessenberg and the first column of Q is proportional to the first column of p(A). Then there exists an upper triangular matrix P(A) = QP(A).

Theorem Let A be a properly upper Hessenberg matrix and $\hat{A} = \hat{Q}^* A \hat{Q}$ be the matrix obtained after a single iteration of Francis's implicit QR algorithm of degree 1 or 2. Let $p(A) = A - \rho I$ for degree 1 and $p(A) = (A - \rho I)(A - \tau I)$ for degree 2. Then $\hat{Q}e_1 = \alpha p(A)e_1$ for some $\alpha \in \mathbb{C} \setminus \{0\}$.

Theorem Let A be a properly upper Hessenberg matrix and p(x) be a polynomial over \mathbb{R} or \mathbb{C} . Let Q be a unitary matrix such that $\hat{A} := Q^*AQ$ is upper Hessenberg and the first column of Q is proportional to the first column of p(A). Then there exists an upper triangular matrix R such that p(A) = QR.

Theorem Let A be a properly upper Hessenberg matrix and $\hat{A} = \hat{Q}^* A \hat{Q}$ be the matrix obtained after a single iteration of Francis's implicit QR algorithm of degree 1 or 2. Let $p(A) = A - \rho I$ for degree 1 and $p(A) = (A - \rho I)(A - \tau I)$ for degree 2. Then $\hat{Q}e_1 = \alpha p(A)e_1$ for some $\alpha \in \mathbb{C} \setminus \{0\}$.

Corollary Let A be a properly upper Hessenberg matrix and $\hat{A} = \hat{Q}^* A \hat{Q}$ be the matrix obtained after a single iteration of Francis's implicit QR algorithm of degree 1 or 2. Let $p(A) = A - \rho I$ for degree 1 and $p(A) = (A - \rho I)(A - \tau I)$ for degree 2. Then

$$p(A) = \hat{Q}R$$

where $R = \frac{1}{\alpha}K(\hat{A}, e_1)[K(A, e_1)]^{-1}$ is upper triangular.

Let A be properly upper Hessenberg.			
Shifted QR		Francis's Shifted QR	
Set $A_0 = A$		Set $A_0 = A$	
for $j=0,1,\ldots$		for $j = 0, 1,$	

Let A be properly upper Hessenberg.		
Shifted QR	Francis's Shifted QR	
Set $A_0 = A$	Set $A_0 = A$	
for $j = 0, 1,$	for $j = 0, 1,$	
(i) Compute $p_j(A_j)$.		

Let A be properly upper Hessenberg.		
Shifted QR	Francis's Shifted QR	
Set $A_0 = A$	Set $A_0 = A$	
for $j=0,1,\ldots$	for $j = 0, 1,$	
(i) Compute $p_j(A_j)$.	(i) Compute $p_j(A_j)e_1$.	

Let A be properly upper Hessenberg.			
Shifted QR	Francis's Shifted QR		
Set $A_0 = A$	Set $A_0 = A$		
for $j=0,1,\ldots$	for j = 0, 1,		
(i) Compute $p_i(A_i)$.	(i) Compute $p_i(A_i)e_1$.		
(ii) Find reflectors $Q_j^{(1)}, \dots Q_j^{(n-1)}$ such that			

Let A be properly upper Hessenberg.		
Shifted QR	Francis's Shifted QR	
Set $A_0 = A$	Set $A_0 = A$	
for $j=0,1,\ldots$	for $j = 0, 1,$	
(i) Compute $p_i(A_i)$.	(i) Compute $p_j(A_j)e_1$.	
(ii) Find reflectors $Q_j^{(1)}, \dots Q_j^{(n-1)}$ such that	(ii) Find reflector $Q_j^{(1)}$	

Let A be properly upper Hessenberg.			
Shifted QR	Francis's Shifted QR		
Set $A_0 = A$	Set $A_0 = A$		
$for j = 0, 1, \dots$	for $j = 0, 1,$		
(i) Compute $p_i(A_i)$.	(i) Compute $p_i(A_i)e_1$.		
(ii) Find reflectors $Q_j^{(1)}, \dots Q_j^{(n-1)}$ such that $Q_j^{(n-1)} \dots Q_j^{(1)} p_j(A_j) = R_j$ is upper triangular	(ii) Find reflector $Q_j^{(1)}$		

Let A be properly upper Hessenberg.		
Shifted QR	Francis's Shifted QR	
$\overline{\text{Set } A_0 = A}$	Set $A_0 = A$	
for $j=0,1,\ldots$	for j = 0, 1,	
(i) Compute $p_i(A_i)$.	(i) Compute $p_i(A_i)e_1$.	
(ii) Find reflectors $Q_i^{(1)}, \dots Q_i^{(n-1)}$ such that	(ii) Find reflector $Q_i^{(1)}$	
$Q_j^{(n-1)}\cdots Q_j^{(1)}p_j(A_j)=R_j$ is upper triangular	such that $Q_j^{(1)}p_j(A_j)e_1=lpha_je_1$	

Let A be properly upper Hessenberg.			
Shifted QR	Francis's Shifted QR		
Set $A_0 = A$	Set $A_0 = A$		
$for j = 0, 1, \dots$	for $j = 0, 1,$		
(i) Compute $p_j(A_j)$.	(i) Compute $p_j(A_j)e_1$.		
(ii) Find reflectors $Q_i^{(1)}, \dots Q_i^{(n-1)}$ such that	(ii) Find reflector $Q_i^{(1)}$		
$Q_j^{(n-1)}\cdots Q_j^{(1)}p_j(A_j)=R_j$ is upper triangular	such that $Q_j^{(1)}p_j(A_j)e_1=lpha_je_1$		
(iii) Compute			

Let A be properly upper Hessenberg.		
Shifted QR	Francis's Shifted QR	
Set $A_0 = A$	Set $A_0 = A$	
for $j = 0, 1, \ldots$	for $j = 0, 1,$	
(i) Compute $p_j(A_j)$.	(i) Compute $p_j(A_j)e_1$.	
(ii) Find reflectors $Q_i^{(1)}, \dots Q_i^{(n-1)}$ such that	(ii) Find reflector $Q_i^{(1)}$	
$Q_j^{(n-1)}\cdots Q_j^{(1)}p_j(A_j)=R_j$ is upper triangular	such that $Q_j^{(1)}p_j(A_j)e_1=lpha_je_1$	
(iii) Compute	(iii) Compute $Q_j^{(1)}A_jQ_j^{(1)}$.	

Let A be properly upper Hessenberg.		
Shifted QR	Francis's Shifted QR	
Set $A_0 = A$	Set $A_0 = A$	
$for j = 0, 1, \dots$	for $j=0,1,\ldots$	
(i) Compute $p_j(A_j)$.	(i) Compute $p_j(A_j)e_1$.	
(ii) Find reflectors $Q_i^{(1)}, \dots Q_i^{(n-1)}$ such that	(ii) Find reflector $Q_i^{(1)}$	
$Q_j^{(n-1)}\cdots Q_j^{(1)}p_j(A_j)=R_j$ is upper triangular	such that $Q_j^{(1)}p_j(A_j)e_1=lpha_je_1$	
(iii) Compute	(iii) Compute $Q_i^{(1)}A_jQ_i^{(1)}$.	
$A_{j+1} := Q_j^{(n-1)} \cdots Q_j^{(1)} A_j Q_j^{(1)} \cdots Q_j^{(n-1)}.$,	

Let A be properly upper Hessenberg.		
Shifted QR	Francis's Shifted QR	
Set $A_0 = A$	Set $A_0 = A$	
$for j = 0, 1, \dots$	for $j = 0, 1,$	
(i) Compute $p_j(A_j)$.	(i) Compute $p_j(A_j)e_1$.	
(ii) Find reflectors $Q_i^{(1)}, \dots Q_i^{(n-1)}$ such that	(ii) Find reflector $Q_i^{(1)}$	
$Q_j^{(n-1)}\cdots Q_j^{(1)}p_j(A_j)=R_j$ is upper triangular	such that $Q_j^{(1)}p_j(A_j)e_1=\alpha_je_1$	
(iii) Compute	(iii) Compute $Q_i^{(1)}A_jQ_i^{(1)}$.	
$A_{j+1} := Q_j^{(n-1)} \cdots Q_j^{(1)} A_j Q_j^{(1)} \cdots Q_j^{(n-1)}.$	(iv) Find reflectors $\hat{Q}_j^{(2)},\ldots,\hat{Q}_j^{(p)}$ such that	

Let A be	properly	upper	Hessenberg.
----------	----------	-------	-------------

Shifted QR	Francis's Shifted QR
Set $A_0 = A$	Set $A_0 = A$
for $j=0,1,\ldots$	for $j = 0, 1,$
(i) Compute $p_j(A_j)$.	(i) Compute $p_j(A_j)e_1$.
(ii) Find reflectors $Q_i^{(1)}, \dots Q_i^{(n-1)}$ such that	(ii) Find reflector $Q_i^{(1)}$
$Q_j^{(n-1)}\cdots Q_j^{(1)}p_j(A_j)=R_j$ is upper triangular	such that $Q_j^{(1)}p_j(A_j)e_1=\alpha_je_1$
(iii) Compute	(iii) Compute $Q_i^{(1)}A_jQ_j^{(1)}$.
$A_{j+1} := Q_i^{(n-1)} \cdots Q_i^{(1)} A_j Q_i^{(1)} \cdots Q_i^{(n-1)}.$	(iv) Find reflectors $\hat{Q}_i^{(2)}, \ldots, \hat{Q}_i^{(p)}$ such that
, , , ,	$A_{j+1} := \hat{Q}_j^{(p)} \cdots \hat{Q}_j^{(2)} Q_j^{(1)} A_j Q_j^{(1)} \hat{Q}_j^{(2)} \cdots \hat{Q}_j^{(p)}$

Let A be properly upper Hessenberg.

Shifted QR	Francis's Shifted QR
Set $A_0 = A$	Set $A_0 = A$
for $j = 0, 1,$	for $j = 0, 1,$
(i) Compute $p_j(A_j)$.	(i) Compute $p_j(A_j)e_1$.
(ii) Find reflectors $Q_i^{(1)}, \dots Q_i^{(n-1)}$ such that	(ii) Find reflector $Q_i^{(1)}$
$Q_j^{(n-1)}\cdots Q_j^{(1)}p_j(A_j)=R_j$ is upper triangular	such that $Q_j^{(1)}p_j(A_j)e_1=lpha_je_1$
(iii) Compute	(iii) Compute $Q_i^{(1)}A_jQ_i^{(1)}$.
$A_{j+1} := Q_i^{(n-1)} \cdots Q_i^{(1)} A_j Q_i^{(1)} \cdots Q_i^{(n-1)}.$	(iv) Find reflectors $\hat{Q}_i^{(2)},\ldots,\hat{Q}_i^{(p)}$ such that
	$A_{j+1} := \hat{Q}_{j}^{(p)} \cdots \hat{Q}_{j}^{(2)} Q_{j}^{(1)} A_{j} Q_{j}^{(1)} \hat{Q}_{j}^{(2)} \cdots \hat{Q}_{j}^{(p)}$
	is upper Hessenberg.

Let A be properly upper Hessenberg. Shifted QR Francis's Shifted QR Set $A_0 = A$ Set $A_0 = A$ for j = 0, 1, ...for j = 0, 1, ...(i) Compute $p_i(A_i)$. (i) Compute $p_i(A_i)e_1$. (ii) Find reflectors $Q_i^{(1)}, \dots Q_i^{(n-1)}$ such that (ii) Find reflector $Q_i^{(1)}$ $Q_i^{(n-1)} \cdots Q_i^{(1)} p_i(A_i) = R_i$ is upper triangular such that $Q_i^{(1)}p_i(A_i)e_1=\alpha_ie_1$ (iii) Compute $Q_i^{(1)}A_jQ_i^{(1)}$. (iii) Compute (iv) Find reflectors $\hat{Q}_{j}^{(2)}, \dots, \hat{Q}_{j}^{(p)}$ such that $A_{j+1} := \hat{Q}_{i}^{(p)} \cdots \hat{Q}_{i}^{(2)} Q_{i}^{(1)} A_{j} Q_{i}^{(1)} \hat{Q}_{i}^{(2)} \cdots \hat{Q}_{i}^{(p)}$ $A_{i+1} := Q_i^{(n-1)} \cdots Q_i^{(1)} A_i Q_i^{(1)} \cdots Q_i^{(n-1)}.$

is upper Hessenberg.

Shifted QR finds $Q_j := Q_j^{(1)} \cdots Q_j^{(n-1)}$ such that $p_j(A_j) = Q_j R_j$ is a QR decomposition of $p_j(A_j)$ and sets $A_{j+1} = Q_j^* A_j Q_j$.

Let A be properly upper Hessenberg.

Shifted QR	Francis's Shifted QR
Set $A_0 = A$	Set $A_0 = A$
$for j = 0, 1, \dots$	for $j = 0, 1,$
(i) Compute $p_j(A_j)$.	(i) Compute $p_j(A_j)e_1$.
(ii) Find reflectors $Q_i^{(1)}, \dots Q_i^{(n-1)}$ such that	(ii) Find reflector $Q_i^{(1)}$
$Q_j^{(n-1)}\cdots Q_j^{(1)}p_j(A_j)=R_j$ is upper triangular	such that $Q_j^{(1)}p_j(A_j)e_1=lpha_je_1$
(iii) Compute	(iii) Compute $Q_i^{(1)}A_jQ_i^{(1)}$.
$A_{j+1} := Q_i^{(n-1)} \cdots Q_i^{(1)} A_j Q_i^{(1)} \cdots Q_i^{(n-1)}.$	(iv) Find reflectors $\hat{Q}_i^{(2)},\ldots,\hat{Q}_i^{(p)}$ such that
, , , ,	$A_{j+1} := \hat{Q}_{i}^{(p)} \cdots \hat{Q}_{i}^{(2)} Q_{i}^{(1)} A_{j} Q_{i}^{(1)} \hat{Q}_{i}^{(2)} \cdots \hat{Q}_{i}^{(p)}$
	is upper Hessenberg.

Shifted QR finds $Q_j := Q_j^{(1)} \cdots Q_j^{(n-1)}$ such that $p_j(A_j) = Q_j R_j$ is a QR decomposition of $p_j(A_j)$ and sets $A_{j+1} = Q_j^* A_j Q_j$.

But Francis's Shifted QR **also** finds a QR decomposition $p_j(A_j) = \tilde{Q}_j \tilde{R}_j$ and sets $A_{j+1} = \tilde{Q}_j^* A_j \tilde{Q}_j$ where

$$ilde{Q}_j := Q_j^{(1)} \hat{Q}_j^{(2)} \cdots \hat{Q}_j^{(p)} ext{ and } ilde{R}_j := lpha_j K(A_{j+1}, e_1) [K(A_j, e_1)]^{-1}.$$