Práctica 2. Cova Pacheco Felipe de Jesús

1) Implicación:

Α	В	->
0	0	1
0	1	1
1	0	0
1	1	1

2) Desarrolla un circuito que dado $x \in \{0, 1, 2, ..., 7\}$, indique si el número es primo:

A	В	С	Número
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Mintérminos:

ABC + ABC + ABC + ABC

Mapa de Karnaugh:

- 3) Sean x, $y \in \{0, 1, 2, 3\}$:
 - Desarrolla un circuito que indique si x < y.

2	X		Y	X (Valor	<	Y (Valor de y en
A	В	С	D	de x en binario)		binario)
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	0	1	0	0	1	2
0	0	1	1	0	1	3
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	2
0	1	1	1	1	1	3
1	0	0	0	2	0	0
1	0	0	1	2	0	1
1	0	1	0	2	0	2
1	0	1	1	2	1	3
1	1	0	0	3	0	0
1	1	0	1	3	0	1
1	1	1	0	3	0	2
1	1	1	1	3	0	3

Mintérminos:

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Mapa de Karnaugh:

AB\CD	00	01	11	10
00	0	1	1	1
01	0	0	1	1
11	0	0	0	0
10	0	0	1	0

• Desarrolla un circuito que indique si x = y.

	Desarrona un cricuito que muique si x – y.							
2	K	3	y	X (Valor	=	Y (Valor		
A	В	С	D	de x en		de y en		
**	B	ij	2	binario)		binario)		
0	0	0	0	0	1	0		
0	0	0	1	0	0	1		
0	0	1	0	0	0	2		
0	0	1	1	0	0	3		
0	1	0	0	1	0	0		
0	1	0	1	1	1	1		
0	1	1	0	1	0	2		
0	1	1	1	1	0	3		
1	0	0	0	2	0	0		
1	0	0	1	2	0	1		
1	0	1	0	2	1	2		
1	0	1	1	2	0	3		
1	1	0	0	3	0	0		
1	1	0	1	3	0	1		
1	1	1	0	3	0	2		
1	1	1	1	3	1	3		

Mintérminos:

ABCD + ABCD + ABCD + ABCD

Mapa de Karnaugh:

AB\CD	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	
10	0	0	0	1

4) Un elevador, ubicado en un edificio con cuatro pisos, cuenta con un motor al cual se le debe indicar cuantos pisos se debe desplazar y en qué dirección (arriba o abajo). Desarrolla un circuito que, dependiendo del piso en el que se encuentre el elevador y el botón del piso seleccionado por el usuario, indique al motor la dirección y número de pisos que debe desplazarse:

x (Pis el que			ección oiso)	X (Valor de x en	Y (Valor de y en	Dirección de	Pisos que se
A	В	С	D	binario)			desplaza
0	0	0	0	0	0	Misma "0"	0
0	0	0	1	0	1	Sube "1"	1
0	0	1	0	0	2	Sube "1"	2
0	0	1	1	0	3	Sube "1"	3
0	1	0	0	1	0	Baja "0"	1
0	1	0	1	1	1	Misma "0"	0
0	1	1	0	1	2	Sube "1"	1
0	1	1	1	1	3	Sube "1"	2
1	0	0	0	2	0	Baja "0"	2
1	0	0	1	2	1	Baja "0"	1
1	0	1	0	2	2	Misma "0"	0
1	0	1	1	2	3	Sube "1"	1
1	1	0	0	3	0	Baja "0"	3
1	1	0	1	3	1	Baja "0"	2
1	1	1	0	3	2	Baja "0"	1
1	1	1	1	3	3	Misma "0"	0

Mintérminos:

ABCD + ABCD + ABCD + ABCD + ABCD

Mapa de Karnaugh de los casos donde sube el elevador:

AB\CD	00	01	11	10
00	0	1	1	1
01	0	0	1	1
11	0	0	0	0
10	0	0	1	0

Mintérminos:

ABCD + ABCD + ABCD + ABCD + ABCD

Mapa de Karnaugh de los casos donde baja el elevador:

AB\CD	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
10	1	1	0	0

Mintérminos:

ABCD + ABCD + ABCD + ABCD

Mapa de Karnaugh de los casos donde se queda el elevador:

AB\CD	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

Preguntas:

- 1. ¿Cuál es el procedimiento a seguir para desarrollar un circuito que resuelva un problema que involucre lógica combinacional?
- R. Realizar su tabla de verdad, hacer sus mintérminos y su mapa de karnaugh para reducirlo
 - 2. Si una función de conmutación se evalúa a más ceros que unos ¿es conveniente usar mintérminos o maxtérminos? ¿En el caso que se evalúe a más sunos que ceros?
- R. En el caso donde donde se evalúa a más ceros que unos, es más conveniente usar maxtérminos, porque es lo que buscamos en ellos, además de reducir. En el caso donde se evalúa a más unos que ceros, es más conveniente usar mintérminos por la misma razón.
 - 3. Analizando el trabajo realizado, ¿cuáles son los inconvenientes desarrollar los circuitos de forma manual?
- R. No es muy confiable realizar circuitos de forma manual, ya que es más probable cometer errores por diferentes razones.