B. Claims

The following is a complete listing of the claims, and replaces all earlier versions and listings.

1. (Currently Amended) A polyhydroxy alkanoate copolymer eharacterized in includingcomprising at least a 3-hydroxy-ω-alkenoic acid unit represented by a chemical formula (1) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule:

[Chemical Formula (1)]chemical formula (1)

in which n represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, n is the same or different for each unit;

[Chemical Formula (2)]chemical formula (2)

in which m represents an integer selected within a range indicated in the chemical formula; R represents a residue having any of a phenyl structure or a thienyl structure; and in case plural units are present, m and R are the same or different for each unit;

[Chemical Formula (3)]chemical formula (3)

in which R_1 being a substituent on a cyclohexyl group represents a hydrogen atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R_1 and k may be the same or different for each unit,

wherein the polyhydroxy alkanoate copolymer is biosynthesized by using a

microorganism capable of producing it with at least an ω-alkenoic acid represented by a chemical formula (24) and at least a compound represented by a chemical formula (25) or at least an ω-cyclohexylalkanoic acid represented by a chemical formula (26) as starting materials:

chemical formula (24)

$$H_2C = HC - (CH_2)_p - CH_2 - CH_2$$

in which p represents an integer selected within a range indicated in the chemical formula;

chemical formula (25)

$$R_{23}$$
—(CH₂)q—CH₂—CH₂—COH
q = 1-8 (25)

in which q represents an integer selected within a range indicated in the chemical formula; and R_{23} is a residue having a phenyl structure or a thienyl structure; and chemical formula (26)

$$R_{24}$$
 CH_2 CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 CH_5

in which R₂₄ is a substituent on a cyclohexyl group and represents an H

atom, a CN group, a NO₂ group, a halogen atom, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and r represents an integer selected within a range indicated in the chemical formula.

2. (Currently Amended) The polyhydroxy alkanoate copolymer according to claim 1, wherein R in the chemical formula (2) represents athe residue having a phenyl structure or a thienyl structure of R in the chemical formula (2) and of R₂₃ in the chemical formula (25) is selected from the group consisting of chemical formulas (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18):

the chemical formula (8):

represents a group of non-unsubstituted or substituted phenyl groups in which R_2 , a is a substituent on an aromatic ring and represents an H atom, represents a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CH=CH₂ group, a COOR₃ group (R₃ represents an H atom, a Na atom or a K atom), a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₂ is the same or different for each unit;

the chemical formula (9):

- 5 -

represents a group of non-unsubstituted or substituted phenoxy groups in which R_4 represents is a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a SCH_3 group, a SC

the chemical formula (10):

represents a group of non-unsubstituted or substituted benzoyl groups in which R_5 represents is a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R_5 may be the same or different for each unit;

the chemical formula (11)

represents a group of substituted or non-unsubstituted phenylsulfanyl groups in which R₆

-6-

represents is a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ represents either one of H, Na, K, CH₃ and C₂H₅; and R₈ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₆ may be the same or different for each unit;

the chemical formula (12):

$$R_9$$
 CH_2 CH_2

represents a group of substituted or non-unsubstituted (phenylmethyl)sulfanyl groups in which R₉ represents is a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₀ group, a SO₂R₁₁ group (R₁₀ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₁ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₉ may be the same or different for each unit;

the chemical formula (13):

represents a 2-thienyl group;

the chemical formula (14)

represents a 2-thienylsulfanyl group;

the chemical formula (15):

represents a 2-thienylcarbonyl group;

the chemical formula (16):

$$R_{12}$$
 S S (16)

represents a group of substituted or non-substituted phenylsulfinyl groups in which R₁₂ represents is a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₃ group, a SO₂R₁₄ group (R₁₃ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₄ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₂ may be the same or different for each unit;

the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R₁₅ represents is a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₆ group, a SO₂R₁₇ group (R₁₆ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₇ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₅ may be the same or different for each unit; and

the chemical formula (18):

$$-CH_2-O-$$

represents a (phenylmethyl)oxy group.

- 3. (Currently Amended) The polyhydroxy alkanoate copolymer according to claim 1, wherein which has a number-averaged molecular weight is within a range from 1000 to 1000000.
- 4. (Withdrawn) A polyhydroxy alkanoate copolymer characterized in including at least a 3-hydroxy-ω-carboxyalkanoic acid unit represented by a chemical

- 9 -

formula (19) or 3-hydroxy-ω-alkoxycarbonylalkanoic acid unit represented by a chemical formula (32) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule, [Chemical Formula (19)]

$$CH - CH_{2} - C$$

$$CH_{2} \cap C$$

$$COOR_{18}$$

$$n = 1-8 \quad (19)$$

in which n represents an integer selected within a range indicated in the chemical formula; R_{18} represents an H atom, a Na atom or a K atom: and in case plural units are present, n and R_{18} may be the same or different for each unit;

and

[Chemical Formula (32)]

$$CH - CH_{2} - C$$

$$CH_{2} \cap C$$

$$CH_{2} \cap C$$

$$COOR_{27}$$

$$n = 1-8$$
 (32)

$$\mathsf{R_{27}}:\mathsf{H_3C} \longrightarrow \mathsf{, C_2H_5} \longrightarrow \mathsf{, HC} \longrightarrow \mathsf{, H_3C} \longrightarrow \mathsf{CH_3}$$

which n represents an integer selected within a range indicated in the chemical formula; R_{27} represents any of residues indicated in the chemical formula; and in case plural units are present, n and R_{27} may be the same or different for each unit [Chemical Formula (2)]

in which m represents an integer selected within a range indicated in the chemical formula; R includes a residue having any of a phenyl structure or a thienyl structure; and in case plural units are present, m and R may be the same or different for each unit; and [Chemical Formula (3)]

in which R_1 represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R_1 and k are the same or different for each unit.

5. (Withdrawn) The polyhydroxy alkanoate copolymer according to claim 4, wherein R in the chemical formula (2), represents a residue having a phenyl structure or a thienyl structure selected from chemical formulas (8), (9), (10), (11), (12), (13), (14), (15), (16), (17), and (18):

the chemical formula (8):

represents a group of non-substituted or substituted phenyl groups in which R₂ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a

 NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $CH=CH_2$ group, a $COOR_3$ group (R_3 representing an H atom, a Na atom or a K atom), a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are present, R_2 is the same or different for each unit;

the chemical formula (9):

represents a group of non-substituted or substituted phenoxy groups in which R_4 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a SCH_3 group, a SCH_3

the chemical formula (10):

represents a group of non-substituted or substituted benzoyl groups in which R₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₅ is the same or different for each unit;

the chemical formula (11):

$$R_6$$
 $S-$

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ represents either one of H, Na, K, CH₃ and C₂H₅; and R₈ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₆ is the same or different for each unit;

the chemical formula (12):

$$R_9$$
 CH_2 $S (12)$

represents a group of substituted or non-substituted (phenylmethyl)sulfanyl groups in which R₉ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₀ group, a SO₂R₁₁ group (R₁₀ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₁ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₉ is the same or different for each unit;

the chemical formula (13):

represents a 2-thienyl group;

the chemical formula (14):

represents a 2-thienylsulfanyl group;

the chemical formula (15):

represents a 2-thienylcarbonyl group;

the chemical formula (16):

$$R_{12}$$
 S S (16)

represents a group of substituted or non-substituted phenylsulfinyl groups in which R_{12} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{13}$ group, a SO_2R_{14} group (R_{13} represents either one of H, Na, K, CH₃ and C_2H_5 ; and R_{14} represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC_2H_5), a CH₃ group, a C_2H_5 group, a C_3H_7 group, a (CH₃)₂-CH group or a

(CH₃)₃-C group; and in case plural units are present, R₁₂ is the same or different for each unit;

the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R₁₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₆ group, a SO₂R₁₇ group (R₁₆ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₇ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₅ is the same or different for each unit; and

the chemical formula (18):

$$-CH_{2}-O-$$
 (18)

represents a (phenylmethyl)oxy group.

6. (Withdrawn) The polyhydroxy alkanoate copolymer according to claim 4, wherein a number-averaged molecular weight is within a range from 1000 to 1000000.

7. (Withdrawn) A method for producing a polyhydroxy alkanoate copolymer characterized in including a biosynthesis by a microorganism having an ability of producing a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-ω-alkenoic acid unit represented by a chemical formula (1) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule, from at least an ω-alkenoic acid represented by a chemical formula (24) and at least a compound represented by a chemical formula (25) or at least an ω-cyclohexylalkanoic acid represented by a chemical formula (26) as starting materials:

[Chemical Formula (24)]

$$H_2C = HC - (CH_2)_p - CH_2 - CH_2$$

in which p represents an integer selected within a range indicated in the chemical formula; [Chemical Formula (25)]

$$R_{23}$$
—(CH₂)q—CH₂—CH₂—COH
q = 1-8 (25)

in which q represents an integer selected within a range indicated in the chemical formula; and R_{23} includes a residue having a phenyl structure or a thienyl structure;

[Chemical Formula (26)]

$$R_{24}$$
 (CH₂)r—CH₂—CH₂—CH₂—C-OH
r = 0-8 (26)

in which R₂₄ represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO₂ group, a halogen atom, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and r represents an integer selected within a range indicated in the chemical formula;

[Chemical Formula (1)]

$$\begin{array}{c|cccc}
\hline
O & CH & CH_2 & C \\
\hline
CH_2)n & CH \\
\hline
CH_2 & n = 1-8 \\
\hline
CH_2 & (1)
\end{array}$$

in which n represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, n is the same or different for each unit;

[Chemical Formula (2)]

in which m represents an integer selected within a range indicated in the chemical formula; R represents a residue having any of a phenyl structure or a thienyl structure; and in case plural units are present, m and R are the same or different for each unit; and [Chemical Formula (3)]

in which R_1 represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R_1 and k are the same or different for each unit.

8. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 7, wherein R_{23} in the chemical formula (25) and R in the chemical formula (2), each represents a residue having a phenyl structure or a thienyl structure, are selected from chemical formulas (31), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18):

the chemical formula (31):

represents a group of substituted or non-substituted phenyl groups in which R_{26} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a CH_5 group, a CH

the chemical formula (9):

represents a group of non-substituted or substituted phenoxy groups in which R₄ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a SCH₃ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₄ is the same or different for each unit;

the chemical formula (10):

represents a group of non-substituted or substituted benzoyl groups in which R₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a

 NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are present, R_5 is the same or different for each unit;

the chemical formula (11):

$$R_6$$
 $-s$

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ representing either one of H, Na, K, CH₃ and C₂H₅; and R₈ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₆ is the same or different for each unit;

the chemical formula (12):

$$R_9$$
 CH_2 $-S$ (12)

represents a group of substituted or non-substituted (phenylmethyl)sulfanyl groups in which R₉ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₀ group, a SO₂R₁₁ group (R₁₀ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₁ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₉ is the same or different

for each unit;

the chemical formula (13):

represents a 2-thienyl group;

the chemical formula (14):

represents a 2-thienylsulfanyl group;

the chemical formula (15):

represents a 2-thienylcarbonyl group;

the chemical formula (16):

represents a group of substituted or non-substituted phenylsulfinyl groups in which R_{12} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{13}$ group, a SO_2R_{14} group (R_{13} representing either one of

H, Na, K, CH₃ and C₂H₅; and R₁₄ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₂ is the same or different for each unit;

the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R₁₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₆ group, a SO₂R₁₇ group (R₁₆ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₇ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₅ is the same or different for each unit; and

the chemical formula (18):

represents a (phenylmethyl)oxy group.

9. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 7, wherein said microorganism is cultured in a culture

medium including at least an ω -alkenoic acid represented by the chemical formula (24) and at least a compound represented by the chemical formula (25) or at least an ω -cyclohexylalkanoic acid represented by the chemical formula (26).

- 10. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 9, wherein said microorganism is cultured in a culture medium including, in addition to at least an ω-alkenoic acid represented by the chemical formula (24) and at least a compound represented by the chemical formula (25) or at least an ω-cyclohexylalkanoic acid represented by the chemical formula (26), at least one of a peptide, an yeast extract, an organic acid or a salt thereof, an amino acid or a salt thereof, a sugar, a linear alkanoic acid with 4 to 12 carbon atoms or a salt thereof.
- 11. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 7, characterized in including a step of culturing said microorganism in a culture medium including at least an ω-alkenoic acid represented by the chemical formula (24) and at least a compound represented by the chemical formula (25) or at least an ω-cyclohexylalkanoic acid represented by the chemical formula (26), and recovering a polyhydroxy alkanoate copolymer including simultaneously at least a 3-hydroxy-ω-alkenoic acid unit represented by the chemical formula (1) and a 3-hydroxy-ω-alkanoic acid unit represented by the chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by the chemical formula (3) in the molecule, produced by said microorganism, from cells of the microorganism.

- 12. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 7, wherein said microorganism is a microorganism belonging to *Pseudomonas* genus.
- 13. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 12, wherein said microorganism is at least one of *Pseudomonas cichorii* YN2 strain (FERM BP-7375), *Pseudomonas cichorii* H45 strain (FERM BP-7374), *Pseudomonas jessenii* P161 (FERM BP-7376) and `Pseudomonas putida P91 (FERM BP-7373).
- 14. (Withdrawn) A method for producing a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-ω-carboxyalkanoic acid unit represented by a chemical formula (19) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule comprising the steps of:

preparing a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-ω-alkenoic acid unit represented by a chemical formula (1) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule as a starting material, and

oxidizing a double bond portion in the polyhydroxy alkanoate represented in

the chemical formula (1) thereby generating a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-ω-carboxyalkanoic acid unit represented by a chemical formula (19) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule:

[Chemical Formula (1)]

in which n represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, n is the same or different for each unit;

[Chemical Formula (2)]

$$CH - CH_2 - C - CH_2$$
 CH_2) m

 CH_2) m

 CH_2 m = 1-8 (2)

in which m represents an integer selected within a range indicated in the

chemical formula; R includes a residue having any of a phenyl structure and a thienyl structure; and in case plural units are present, m and R are the same or different for each unit;

[Chemical Formula (3)]

$$\begin{array}{c|c}
\hline
O & CH - CH_2 - C - \\
\hline
(CH_2)k & \\
k = 0-8 \\
\hline
R_1 & (3)
\end{array}$$

in which R_1 represents a substituent on a cyclohexyl group selected from an H atom, a CN group, a NO_2 group, a halogen atom, a CH₃ group, a C_2H_5 group, a C_3H_7 group, a CF₃ group, a C_2F_5 group, and a C_3F_7 group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R_1 and k are the same or different for each unit; and

[Chemical Formula (19)]

in which n represents an integer selected within a range indicated in the chemical formula; R_{18} represents an H atom, a Na atom, or a K atom; and in case plural units are present, n and R_{18} are the same or different for each unit.

15. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 14, wherein R in the chemical formula (2) represents a residue having a phenyl structure or a thienyl structure selected from chemical formulas (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18):

the chemical formula (8):

represents a group of non-substituted or substituted phenyl groups in which R_2 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CH=CH₂ group, a COOR₃ group (R₃ representing an H atom, a Na atom or a K atom), a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₂ is the same or different for each unit;

the chemical formula (9):

- 28 -

represents a group of non-substituted or substituted phenoxy groups in which R₄ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a SCH₃ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₄ is the same or different for each unit;

the chemical formula (10):

represents a group of non-substituted or substituted benzoyl groups in which R_5 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R_5 is the same or different for each unit;

the chemical formula (11):

$$R_6$$
 $S-$

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ represents either one of H, Na, K, CH₃ and C₂H₅; and R₈ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a

 $(CH_3)_3$ -C group; and in case plural units are present, R_6 is the same or different for each unit;

the chemical formula (12):

$$R_9$$
 CH_2 CH_2 CH_2

represents a group of substituted or non-substituted (phenylmethyl)sulfanyl groups in which R_9 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{10}$ group, a SO_2R_{11} group (R_{10} represents either one of H, Na, K, CH₃ and C_2H_5 ; and R_{11} represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C_2H_5 group, a C_3H_7 group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R_9 is the same or different for each unit;

the chemical formula (13):

represents a 2-thienyl group;

the chemical formula (14)

represents a 2-thienylsulfanyl group;

the chemical formula (15):

represents a 2-thienylcarbonyl group;

the chemical formula (16):

$$\begin{array}{c|c} R_{12} & O \\ & || \\ & S \end{array}$$

represents a group of substituted or non-substituted phenylsulfinyl groups in which R_{12} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{13}$ group, a SO_2R_{14} group (R_{13} represents either one of H, Na, K, CH₃ and C_2H_5 ; and R_{14} represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C_2H_5 group, a C_3H_7 group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R_{12} is the same or different for each unit;

the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R_{15} represents a substituent on an aromatic ring and represents an H atom, a

halogen atom, a CN group, a NO_2 group, a $COOR_{16}$ group, a SO_2R_{17} group (R_{16} represents either one of H, Na, K, CH₃ and C_2H_5 ; and R_{17} represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C_2H_5 group, a C_3H_7 group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R_{15} is the same or different for each unit;

the chemical formula (18):

represents a (phenylmethyl)oxy group.

- 16. (Withdrawn) The method according to claim 14, wherein said starting material polyhydroxy alkanoate copolymer including at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (1) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule, is produced by a method according to claim 7.
- 17. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 16, wherein R in the chemical formula (2), representing a residue having a phenyl structure or a thienyl structure, is at least one of chemical formulas (31), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18):

the chemical formula (31):

represents a group of substituted or non-substituted phenyl groups in which R_{26} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $CH=CH_2$ group, a CF_3 group, a C_2F_5 group or a C_3F_7 group; and in case plural units are present, R_{26} is the same or different for each unit;

the chemical formula (9):

represents a group of non-substituted or substituted phenoxy groups in which R_4 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a SCH_3 group, a SCH_3

the chemical formula (10):

represents a group of non-substituted or substituted benzoyl groups in which

R₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₅ is the same or different for each unit;

the chemical formula (11):

$$R_6$$
 $-s$

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ representing either one of H, Na, K, CH₃ and C₂H₅; and R₈ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₆ is the same or different for each unit;

the chemical formula (12):

$$H_9$$
 CH_2 $-S$ (12)

represents a group of substituted or non-substituted (phenylmethyl)sulfanyl groups in which R₉ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₀ group, a SO₂R₁₁ group (R₁₀ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₁ representing either one of OH,

ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a $(CH_3)_2$ -CH group or a $(CH_3)_3$ -C group; and in case plural units are present, R₉ is the same or different for each unit;

the chemical formula (13):

represents a 2-thienyl group;

the chemical formula (14):

represents a 2-thienylsulfanyl group;

the chemical formula (15):

represents a 2-thienylcarbonyl group;

the chemical formula (16):

$$R_{12}$$
 O II S (16)

represents a group of substituted or non-substituted phenylsulfinyl groups in

which R₁₂ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₃ group, a SO₂R₁₄ group (R₁₃ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₄ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₂ is the same or different for each unit;

the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R₁₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₆ group, a SO₂R₁₇ group (R₁₆ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₇ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₅ is the same or different for each unit; and

the chemical formula (18):

$$\sim$$
 CH₂-O- (18)

represents a (phenylmethyl)oxy group.

- 18. (Withdrawn) The producing method according to claim 14, wherein said oxidation reaction is carried out with an oxidant selected from a group consisting of a permanganate, a bichromate and a periodate.
- 19. (Withdrawn) The producing method according to claim 18, wherein said oxidation reaction is carried out with a permanganate as an oxidant and under an acidic condition.
- 20. (Withdrawn) The producing method according to claim 14, wherein said oxidation reaction is carried out with ozone.
- 21. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer including a biosynthesis by a microorganism having an ability of producing a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-ω-alkoxycarbonylalkanoic acid unit represented by a chemical formula (32) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule, from a dicarboxylic acid monoester compound represented by a chemical formula (42):

$$R_{41}$$
 O CH_2 P CH_2 CH_2 CH_2 OH OH OH OH

$$\mathsf{R_{41}}:\mathsf{H_{3}C} \longrightarrow \mathsf{, C_{2}H_{5}} \longrightarrow \mathsf{, HC} \longrightarrow \mathsf{CH_{3}} \qquad \mathsf{, H_{3}C} \longrightarrow \mathsf{CH_{3}} \qquad \mathsf{, CH_{2}} \longrightarrow \mathsf{CH_{2}} \longrightarrow \mathsf{CH_{2}}$$

in which p may assume one or more arbitrary integral values within a range indicated in the chemical formula; and R_{41} may arbitrarily represent one or more residues indicated in the chemical formula; and at least a compound represented by a chemical formula (25) or at least a ω -cyclohexylalkanoic acid represented by a chemical formula (26) as starting materials:

[Chemical Formula (25)]

$$R_{23}$$
—(CH₂)q—CH₂—CH₂—COH
q = 1-8 (25)

in which q represents an integer selected within a range indicated in the chemical formula; and R_{23} includes a residue having a phenyl structure or a thienyl structure;

[Chemical Formula (26)]

$$R_{24}$$
 CH_2 CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 CH_5

in which R_{24} represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7

group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and r represents an integer selected within a range indicated in the chemical formula;

[Chemical Formula (32)]

$$CH - CH_{2} - C$$

$$CH_{2} - CH_{2}$$

$$CH_{2} - CH_{2}$$

$$COOR_{27}$$

$$n = 1-8 \quad (32)$$

in which n represents an integer selected within a range indicated in the chemical formula;

 R_{27} represents any of residues indicated in the chemical formula; and in case plural units are present, n and R_{27} are the same or different for each unit;

[Chemical Formula (2)]

in which m represents an integer selected within a range indicated in the

chemical formula; R represents a residue having any of a phenyl structure and a thienyl structure; and in case plural units are present, m and R are the same or different for each unit; and

[Chemical Formula (3)]

$$\begin{array}{c|c}
\hline
 O & CH - CH_2 - C - \\
\hline
 (CH_2)k & k = 0-8
\end{array}$$

$$\begin{array}{c|c}
R_1 & (3)
\end{array}$$

in which R_1 represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R_1 and k are the same or different for each unit.

22. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 21, wherein R_{23} in the chemical formula (25) and R in the chemical formula (2), each representing a residue having a phenyl structure or a thienyl structure, represents at least one of chemical formulas (31), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18):

the chemical formula (31):

represents a group of substituted or non-substituted phenyl groups in which R_{26} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $CH=CH_2$ group, a CF_3 group, a C_2F_5 group or a C_3F_7 group; and in case plural units are present, R_{26} is the same or different for each unit;

the chemical formula (9):

represents a group of non-substituted or substituted phenoxy groups in which R₄ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a SCH₃ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₄ is the same or different for each unit;

the chemical formula (10):

represents a group of non-substituted or substituted benzoyl groups in which R_5 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a

CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₅ is the same or different for each unit;

the chemical formula (11):

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ representing either one of H, Na, K, CH₃ and C₂H₅; and R₈ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₆ is the same or different for each unit;

the chemical formula (12):

$$R_9$$
 CH_2 CS (12)

represents a group of substituted or non-substituted (phenylmethyl)sulfanyl groups in which R₉ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₀ group, a SO₂R₁₁ group (R₁₀ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₁ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a

(CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₉ is the same or different for each unit;

the chemical formula (13):

represents a 2-thienyl group;

the chemical formula (14):

represents a 2-thienylsulfanyl group;

the chemical formula (15):

represents a 2-thienylcarbonyl group;

the chemical formula (16):

represents a group of substituted or non-substituted phenylsulfinyl groups in which R_{12} represents a substituent on an aromatic ring and represents an H atom, a halogen

atom, a CN group, a NO_2 group, a $COOR_{13}$ group, a SO_2R_{14} group (R_{13} representing either one of H, Na, K, CH₃ and C_2H_5 ; and R_{14} representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C_2H_5 group, a C_3H_7 group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R_{12} is the same or different for each unit;

the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R₁₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₆ group, a SO₂R₁₇ group (R₁₆ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₇ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₅ is the same or different for each unit; and

the chemical formula (18):

$$\bigcirc CH_2-O-$$
(18)

represents a (phenylmethyl)oxy group.

23. (Withdrawn) The method for producing a polyhydroxy alkanoate

copolymer according to claim 21, wherein the microorganism is cultured in a culture medium including at least a dicarboxylic acid monoester compound represented by the chemical formula (42) and at least a compound represented by the chemical formula (25) or at least an ω-cyclohexylalkanoic acid represented by the chemical formula (26).

- 24. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 23, wherein the microorganism is cultured in a culture medium including, in addition, at least one of a peptide, an yeast extract, an organic acid or a salt thereof, an amino acid or a salt thereof, a sugar, a linear alkanoic acid with 4 to 12 carbon atoms or a salt thereof.
- 25. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 21, characterized in including a step of recovering a polyhydroxy alkanoate copolymer, produced by said microorganism, from cells of the microorganism.
- 26. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 21, wherein said microorganism is a microorganism belonging to *Pseudomonas* genus.
- 27. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 26, wherein said microorganism is at least one of

Pseudomonas cichorii YN2 strain (FERM BP-7375), Pseudomonas cichorii H45 strain (FERM BP-7374), Pseudomonas jessenii P161 (FERM BP-7376) and Pseudomonas putida P91 (FERM BP-7373).

28. (Withdrawn) A method for producing a polyhydroxy alkanoate copolymer, characterized in employing a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-ω-alkoxycarbonylalkanoic acid unit represented by a chemical formula (32) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule as a starting material, and executing a hydrolysis in the presence of an acid or an alkali or executing a hydrogenolysis including a catalytic reduction, thereby generating a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-ω-carboxyalkanoic acid unit represented by a chemical formula (19) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule:

[Chemical Formula (32)]

$$CH - CH_{2} - C - \frac{1}{C}$$

$$CH_{2} = C$$

$$CH_{2} = C$$

$$COOR_{27}$$

$$n = 1-8$$

$$(32)$$

in which n represents an integer selected within a range indicated in the chemical formula; R_{27} represents any of residues indicated in the chemical formula; and in case plural units are present, n and R_{27} are the same or different for each unit;

[Chemical Formula (2)]

in which m represents an integer selected within a range indicated in the chemical formula; R includes a residue having any of a phenyl structure and a thienyl structure; and in case plural units are present, m and R are the same or different for each unit;

[Chemical Formula (3)]

in which R_1 represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R_1 and k are the same or different for each unit; and

[Chemical Formula (19)]

$$\begin{array}{c}
O \\
CH \\
CH_2 \\
COOR_{18}
\end{array}$$

$$\begin{array}{c}
O \\
CH_2 \\
O \\
CH_2
\end{array}$$

$$\begin{array}{c}
O \\
CH_2
\end{array}$$

in which n represents an integer selected within a range indicated in the chemical formula; R_{18} represents an H atom, a Na atom, or a K atom; and in case plural units are present, n and R_{18} are the same or different for each unit.

29. (Withdrawn) The method for producing a polyhydroxy alkanoate copolymer according to claim 28, wherein R in the chemical formula (2), representing a residue having a phenyl structure or a thienyl structure, represents at least one of chemical formulas (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18):

the chemical formula (8):

represents a group of non-substituted or substituted phenyl groups in which R_2 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CH=CH₂ group, a COOR₃ group (R₃ representing an H atom, a Na atom or a K atom), a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₂ is the same or different for each unit;

the chemical formula (9):

$$R_4$$
 $O-$

represents a group of non-substituted or substituted phenoxy groups in which R₄ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a SCH₃ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₄ is the

same or different for each unit;

the chemical formula (10):

represents a group of non-substituted or substituted benzoyl groups in which R_5 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R_5 is the same or different for each unit;

the chemical formula (11):

$$R_6$$
 $S-$

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ represents either one of H, Na, K, CH₃ and C₂H₅; and R₈ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₆ is the same or different for each unit;

the chemical formula (12):

$$R_9$$
 CH_2 CS (12)

represents a group of substituted or non-substituted (phenylmethyl)sulfanyl groups in which R_9 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{10}$ group, a SO_2R_{11} group (R_{10} represents either one of H, Na, K, CH₃ and C_2H_5 ; and R_{11} represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C_2H_5 group, a C_3H_7 group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R_9 is the same or different for each unit;

the chemical formula (13):

represents a 2-thienyl group;

the chemical formula (14):

represents a 2-thienylsulfanyl group;

the chemical formula (15):

represents a 2-thienylcarbonyl group;

the chemical formula (16):

$$R_{12}$$
 S S (16)

represents a group of substituted or non-substituted phenylsulfinyl groups in which R₁₂ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₃ group, a SO₂R₁₄ group (R₁₃ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₄ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₂ is the same or different for each unit;

the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R₁₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₆ group, a SO₂R₁₇ group (R₁₆ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₇ represents either one of OH, ONa, OK, a

halogen atom, OCH_3 and OC_2H_5), a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2$ -CH group or a $(CH_3)_3$ -C group; and in case plural units are present, R_{15} is the same or different for each unit; and

the chemical formula (18):

represents a (phenylmethyl)oxy group.