Tarea 3 - Econometría Otoño 2025

Fecha de entrega: 16 de Mayo a las 18:00

Preguntas

1. Varianza con asignación individual (10 puntos)

Suponga que un programa se asigna aleatoriamente a individuos, con probabilidad P de recibir tratamiento. Cada individuo tiene un resultado Y_i con varianza σ^2 , y las observaciones son independientes entre sí.

Demuestre que el estimador de diferencias de medias entre el grupo tratado y el grupo de control, definido como:

$$\hat{\beta} = \bar{Y}_1 - \bar{Y}_0$$

tiene varianza:

$$\operatorname{Var}(\hat{\beta}) = \frac{\sigma^2}{NP(1-P)}$$

donde N es el tamaño total de la muestra.

2. Varianza con asignación por grupos (15 puntos)

Ahora suponga que el tratamiento se asigna aleatoriamente a grupos (clústeres) en lugar de individuos, y que hay J grupos de tamaño n cada uno. Los individuos dentro de un grupo tienen resultados correlacionados, con:

- $\bullet\,$ varianza individual $\sigma^2,$ y
- correlación intra-cluster $\rho = \text{Corr}(Y_{ij}, Y_{ik})$ para j = k (mismo grupo), $i \neq k$.

Demuestre que la varianza del estimador de diferencia de medias entre grupos tratados y de control es:

$$\operatorname{Var}(\hat{\beta}) = \frac{\sigma^2}{JP(1-P)} \cdot \left(\rho + \frac{1-\rho}{n}\right)$$

3. Cálculo del MDE usando datos agrupados (5 puntos)

Suponga que tiene un experimento con aleatorización a nivel de grupo. Hay J=40 grupos, cada uno con n=10 personas. La proporción de tratamiento es P=0.5, la varianza individual del resultado es $\sigma^2=1$, y la correlación intra-grupo es $\rho=0.05$. Calcule el tamaño mínimo detectable (MDE) para un test bilateral con nivel de significancia $\alpha=0.05$ y poder estadístico del 80%.

4. Simulación Monte Carlo para detectar efectos pequeños (20 puntos)

Simule un experimento con las siguientes características:

- 40 grupos, 10 individuos por grupo
- Varianza individual del resultado: 1
- ICC $(\rho) = 0.05$
- Proporción de tratamiento: 0.5
- a) Simule 1000 experimentos donde el efecto verdadero es de 0.3 desviaciones estándar. ¿En qué proporción se rechaza H_0 ?
- b) Repita el experimento con un efecto verdadero de 0.4 desviaciones estándar. Compare los resultados. Explique sus resultados.

5. Error al usar fórmula individual cuando hay agrupamiento (20 puntos)

Suponga que se desea detectar un efecto de 0.1 desviaciones estándar (0.1σ) usando la fórmula para el MDE bajo aleatorización individual, con $\alpha = 0.05$ y poder estadístico de 80%. La fórmula es:

$$MDE_{indiv} = \frac{z_{1-\alpha} + z_{1-\kappa}}{\sqrt{NP(1-P)}} \cdot \sigma$$

a) Calcule el tamaño muestral N necesario para detectar un efecto de 0.1 usando esta fórmula. Use $P=0.5, \, \sigma=1.$

Ahora, suponga que en realidad existen 4 grupos iguales (clústeres), cada uno con N/4 observaciones, y que existe una correlación intra-grupo de $\rho = 0.05$.

- b) Genere un experimento de Monte Carlo en el que simule esta estructura (aleatorización por grupos con correlación intra-cluster) y repita la estimación 1000 veces. Utilice el mismo N de la pregunta a). Calcule en qué proporción se rechaza la hipótesis nula de que $\beta = 0$.
- c) Compare el poder efectivo de este diseño de clústers con el supuesto de la parte a). Comente los resultados.