Matemáticas Discretas II - Ejercicios #3

David Santiago Cruz Hernández

2023-02-27

1. Comprobar si el Kernel (θ) es un subgrupo:

Si
$$k_1, k_2 \in Kernel(\theta)$$
, entonces se afirma que $\theta(k_1) = \theta(k_2) = e$
Por lo tanto, $\theta(k_1, k_2) = \theta(k_1) \cdot \theta(k_2) = e$
De esta manera, $k_1 \cdot k_2 \in Kernel(\theta)$.

Si
$$k_1 \in Kernel(\theta)$$
, entonces $\theta(k_1) = e$.
Por ende, $\theta(k_1^{-1}) = \theta(k_1)^{-1}$
Así que, $e^{-1} = e$
Por lo tanto, $k_1^{-1} \in Kernel(\theta)$.

2. Comprobar si la Imagen (θ) es un subgrupo:

Si
$$I_1$$
 y I_2 pertenecen al grupo inicial, entonces se da el hecho de que $\theta(I_1) = \hat{I_1}$ y $\theta(I_2) = \hat{I_2}$.
Asi que, $\theta(I_1, I_2) = \theta(I_1) \cdot \theta(I_2) = \hat{I_1} \cdot \hat{I_2}$
Por lo tanto, $\hat{I_1} \cdot \hat{I_2} \in Img(\theta)$.

Si $I \in Img(\theta)$, entonces existe un elemento b
 en el grupo tal que $\theta(b) = I$. Como este elemento existe, entonces su inversa b^{-1} también se encuentra en el grupo.
 Por lo tanto, $\theta(b^{-1}) = \theta(b)^{-1} = I^{-1}$, donde $I^{-1} \in Img(\theta)$.