$\label{eq:Licence} Licence \ de \ Math\'ematiques \ L2 \ S4 - Universit\'e \ de \ Lille - 2020-2021$ $M42 \ « \ Formes \ bilin\'eaires, \ espaces \ euclidiens \ »$

Devoir surveillé du 13 mars 2021

Corrigé

Question de cours (3 points) : Démontrer la formule $\dim(E) = \dim(F) + \dim(F^{\perp_{\varphi}})$, où E est un espace vectoriel de dimension finie, F est un sous-espace vectoriel de E et φ est une forme bilinéaire non-dégénérée sur E.

RÉPONSE. Voir le cours.

EXERCICE 1 (4,5 points). On considère les formes linéaires f_1, f_2 sur l'espace vectoriel $E = \mathbb{R}_1[X]$ des polynômes de degré ≤ 1 en une variable sur \mathbb{R} ,

$$f_k(P(X)) = 2 \int_0^1 P(x) \sin(k\pi x) dx, \ k = 1, 2.$$

- (1,5) (a) Montrer que (f_1, f_2) est une base de E^* .
- (1,5) (b) Trouver la base anté-duale (b_1, b_2) de (f_1, f_2) .
- (1,5) (c) Déterminer ${}^t\delta(\ell)$, où $\delta \in \mathcal{L}(E)$ et $\ell \in E^*$ sont définis par

$$\delta(P(X)) = P'(X), \ \ell(P(X)) = P(1) \text{ pour tout } P(X) \in E.$$

RÉPONSE. Dans l'énoncé il y avait une coquille : il manquait le facteur π dans l'argument du sinus. Voici la solution de la version avec la coquille corrigée.

(a) On calcule:

 $f_1(a_0 + a_1 X) = 2 \int_0^1 (a_1 + a_2 x) \sin \pi x \, dx = -\frac{2}{\pi} [(a_0 + a_1 x) \cos \pi x]_0^1 + \frac{2a_1}{\pi} \int_0^1 \cos \pi x \, dx = \frac{2}{\pi} (2a_0 + a_1);$ $f_2(a_0 + a_1 X) = 2 \int_0^1 (a_1 + a_2 x) \sin 2\pi x \, dx = -\frac{1}{\pi} [(a_0 + a_1 x) \cos 2\pi x]_0^1 + \frac{a_1}{\pi} \int_0^1 \cos 2\pi x \, dx = -\frac{a_1}{\pi}.$ On trouve:

$$f_1(a_0 + a_1 X) = f_2(a_0 + a_1 X) = 0 \Leftrightarrow \frac{2}{\pi}(2a_0 + a_1) = -\frac{a_1}{\pi} = 0 \Leftrightarrow a_0 = a_1 = 0.$$

Donc $\ker f_1 \cap \ker f_2 = \{0\}$ et f_1, f_2 sont linéairement indépendantes. Puisque $\dim E^* = \dim E = 2$, c'est une base de E^* .

(b) On trouve b_1 comme solution $a_0 + a_1X$ du système $f_1(a_0 + a_1X) = 1, f_2(a_0 + a_1X) = 0$:

$$\frac{2}{\pi}(2a_0 + a_1) = 1, \ -\frac{a_1}{\pi} = 0 \iff a_0 = \frac{\pi}{4}, \ a_1 = 0, \ b_1 = \frac{\pi}{4},$$

et b_2 comme solution du système $f_1(a_0 + a_1X) = 0, f_2(a_0 + a_1X) = 1$:

$$\frac{2}{\pi}(2a_0 + a_1) = 0, \ -\frac{a_1}{\pi} = 1 \iff a_0 = \frac{\pi}{2}, \ a_1 = -\pi, \ b_2 = \frac{\pi}{2} - \pi X.$$

(c) $\delta \in \mathcal{L}(E) \implies {}^t \delta \in \mathcal{L}(E^*)$, donc ${}^t \delta(\ell)$ est un élément de E^* , soit une forme linéaire sur E. On peut déterminer une forme linéaire sur E en donnant sa valeur sur chaque vecteur de E. Par la définition de ${}^t \delta(\ell) = \ell \circ \delta$, donc

$$\forall P(X) = a_0 + a_1 X \in E, \ ^t \delta(\ell)(P(X)) = \ell(\delta(P(X))) = P'(1) = a_1.$$

EXERCICE 2 (12,5 points). On munit \mathbb{R}^3 de la forme quadratique $q:\mathbb{R}^3\to\mathbb{R}$, donnée par

$$q(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 - 2x_2x_3 - x_3^2.$$

On note par φ la forme bilinéaire polaire de q.

- (0,5) (a) Donner la matrice de q dans la base canonique (e_1, e_2, e_3) .
- (0,5) (b) Donner l'expression de φ en fonction des coordonnées de deux vecteurs $x,y\in\mathbb{R}^3$ dans la base canonique.
- (0,5) (c) Déterminer le noyau de φ .
- (0,5) (d) Est-ce que q est définie positive? définie négative? non-dégénérée?
- (1,5) (e) Trouver la signature de q.
- (2) (f) Trouver une base φ -orthogonale et donner une expression de q en fonction des coordonnées dans cette base.
- (0,5) (g) Parmi les vecteurs e_1 , e_2 , $e_1 e_2 + e_3$, lesquels sont non isotropes par rapport à q?
- (1,5) (h) Rappeler la définition de la projection orthogonale p_F sur un sous-espace vectoriel F. Déterminer $p_F(e_3)$ et $p_{F^{\perp}}(e_3)$ pour $F = \mathbb{R}e_1$ (ici, comme partout dans cet exercice, l'orthogonalité est définie par φ).
- (1,5) (i) Rappeler la définition de la symétrie orthogonale s_F par rapport à un sous-espace vectoriel F. Déterminer $s_F(e_3)$ pour $F = \mathbb{R}e_1$.
- (1,5) (j) Démontrer que chaque base φ -orthogonale contient un vecteur colinéaire à $e_1 e_2 + e_3$.
- (2) (k) Soit $\langle x, y \rangle = x_1y_1 + x_2y_2 + x_3y_3$ le produit scalaire standard de \mathbb{R}^3 . Pour quels $\lambda \in \mathbb{R}$ la forme quadratique q_{λ} sur \mathbb{R}^3 , définie par $q_{\lambda} : x \mapsto q(x) + \lambda \langle x, x \rangle$, est-elle définie positive?

RÉPONSE. (a)
$$A = \text{Mat}_{(e_1, e_2, e_3)}(q) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix}$$
.

- (b) $\varphi(x,y) = x_1y_1 + x_1y_2 + x_2y_2 x_2y_3 x_3y_2 x_3y_3$.
- (c) $\ker \varphi = \ker A = \{x \in \mathbb{R}^3 \mid x_1 + x_2 = x_1 x_3 = -x_2 x_3 = 0\} = \text{Vect}(v)$, où v = (1, -1, 1).
- (d) q a un noyau non trivial, donc q est dégénérée et non définie : ni définie positive, ni définie négative.
- (e) Méthode 1 : on calcule les deux premiers mineurs principaux dominants (sachant que le troisième est nul car q est dégénérée) : $\Delta_1 = 1, \Delta_2 = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1$, donc la signature est (1,1).

Méthode 2 : $q(x) = x_1^2 + 2x_1x_2 - 2x_2x_3 - x_3^2 = (x_1 + x_2)^2 - (x_2 + x_3)^2$, donc la signature est (1,1).

(f) On peut représenter q comme la différence de carrés de forme linéaires $\ell_1(x) = x_1 + x_2, \ell_2(x) = x_2 + x_3$ linéairement indépendantes : $q = \ell_1^2 - \ell_2^2$. On complète de façon arbitraire (ℓ_1, ℓ_2) a une base (ℓ_1, ℓ_2, ℓ_3) de E^* , et alors la base anté-duale (u_1, u_2, u_3) de (ℓ_1, ℓ_2, ℓ_3) est q-orthogonale. Choisissons, par exemple, $\ell_3 = x_3$. La matrice de passage de (e_1^*, e_2^*, e_3^*)

à (ℓ_1, ℓ_2, ℓ_3) est $Q = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, donc la matrice de passage de (e_1, e_2, e_3) à (u_1, u_2, u_3) est $Q = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$. Le base est because la segment and set $Q = (e_1, e_2, e_3)$ is $Q = (e_1, e_2, e_3)$.

$$P = ({}^tQ)^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
. La base orthogonale correspondante est

$$(u_1, u_2, u_3) = (e_1, -e_1 + e_2, e_1 - e_2 + e_3).$$

Les coordonnées dans cette base sont (ℓ_1, ℓ_2, ℓ_3) , et l'expression $q = \ell_1^2 - \ell_2^2$ répond à la question; de façon plus explicite, pour tous $(y_1, y_2, y_3) \in \mathbb{R}^3$, on a

$$q(y_1u_1 + y_2u_2 + y_3u_3) = y_1^2 - y_2^2.$$

- (g) On a $q(e_1) = 1$, $q(e_2) = 0$ et $q(e_1 e_2 + e_3) = 0$ (car $u_3 = v = e_1 e_2 + e_3$ est le vecteur directeur du noyau que nous avons trouvé au point (c)). Donc e_1 est non isotrope, e_2 et $e_1 e_2 + e_3$ sont isotropes.
- (h) Soit E un espace vectoriel muni d'une forme bilinéaire symétrique φ et F un sous-espace non dégénéré de E. Alors $E = F \oplus F^{\perp}$, et on définit la projection orthogonale p_F par : pour tout vecteur $z \in E$, il existe une unique paire de vecteurs $x \in F$, $y \in F^{\perp}$ telle que z = x + y, et $p_F(z) = x$. Donc $p_F(z)$ est l'unique vecteur x de F tel que $y = z p_F(z) \in F^{\perp}$, et $p_{F^{\perp}}(z)$ est l'unique vecteur y de F^{\perp} tel que $x = z p_{F^{\perp}}(z) \in F^{\perp \perp} = F$, et on a $z = x + y = p_F(z) + p_{F^{\perp}}(z)$, soit $p_F + p_{F^{\perp}} = \mathrm{id}_E$.

Pour $F = \mathbb{R}e_1$, on a :

$$p_F(z) = \frac{\varphi(e_1, z)}{\varphi(e_1, e_1)} e_1, \ p_F(e_3) = \frac{\varphi(e_1, e_3)}{\varphi(e_1, e_1)} e_1 = 0, \ p_{F^{\perp}}(e_3) = e_3 - p_F(e_3) = e_3.$$

(i) Soit E un espace vectoriel muni d'une forme bilinéaire symétrique φ et F un sous-espace non dégénéré de E. Alors $E = F \oplus F^{\perp}$, et on définit la symétrie orthogonale s_F par rapport à F par : pour tout vecteur $z \in E$, il existe une unique paire de vecteurs $x \in F$, $y \in F^{\perp}$ telle que z = x + y, et $s_F(z) = x - y$. En d'autres mots, $s_F = p_F - p_{F^{\perp}}$. On a

$$s_F(e_3) = p_F(e_3) - p_{F^{\perp}}(e_3) = 0 - e_3 = -e_3.$$

(j) Dans une base orthogonale (b_1, b_2, b_3) , la forme q s'écrit par

$$q(\lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3) = q(b_1)\lambda_1^2 + q(b_2)\lambda_2^2 + q(b_3)\lambda_3^2$$

et a $B = \begin{pmatrix} q(b_1) & 0 & 0 \\ 0 & q(b_2) & 0 \\ 0 & 0 & q(b_3) \end{pmatrix}$ pour matrice. Son rang est le nombre des vecteurs b_i pour

lesquels $q(b_i) \neq 0$ et ker q est engendré par les b_i pour lesquels $q(e_i) = 0$. Pour la forme donnée q, le noyau est de dimension 1, engendré par $e_1 - e_2 + e_3$, donc parmi les b_i il y a un vecteur qui engendre ker $q = \mathbb{R}(e_1 - e_2 + e_3)$, c'est à dire, un vecteur colinéaire à $e_1 - e_2 + e_3$.

(k) La matrice de q_{λ} est $A_{\lambda} = A + \lambda \mathbb{1}_3$, ses mineurs principaux dominants sont

$$\Delta_1 = 1 + \lambda, \ \Delta_2 = \begin{vmatrix} 1 + \lambda & 1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + \lambda - 1, \ \Delta_3 = \begin{vmatrix} \lambda + 1 & 1 & 0 \\ 1 & \lambda & -1 \\ 0 & -1 & \lambda - 1 \end{vmatrix} = \lambda(\lambda^2 - 3).$$

Par le critère de Sylvester, q_{λ} est définie positive si et seulement si $\Delta_i > 0$ pour i = 1, 2, 3, ce qui équivaut à $\lambda > \sqrt{3}$.