

Quantum Secure Key Exchange for IEEE 802.1AE (MACSec)

Antrittsvortrag zur Masterarbeit

Robin Lösch

loesch@cip.ifi.lmu.de

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Sophia Grundner-Culemann

Dr. Tobias Guggemos

September 8, 2020

IEEE 802.1X

 Mutual authentication in LANs

- Mutual authentication in LANs
 - Supplicant (Peer)

- Mutual authentication in LANs
 - Supplicant (Peer)
 - Authenticator (Switch)

- Mutual authentication in LANs
 - Supplicant (Peer)
 - Authenticator (Switch)
 - Radius (AAA Server)

- Mutual authentication in LANs
 - Supplicant (Peer)
 - Authenticator (Switch)
 - Radius (AAA Server)
- Mutually trusted CAs (c)

- Mutual authentication in LANs
 - Supplicant (Peer)
 - Authenticator (Switch)
 - Radius (AAA Server)
- Mutually trusted CAs (c)
- EAP framework (e,f)
 - Asymmetric key exchange

IEEE 802.1AE (MACSec)

• Ethernet frame encryption

IEEE 802.1AE (MACSec)

- Ethernet frame encryption
 - Uses 802.1X CAs for authentication

IEEE 802.1AE (MACSec)

- Ethernet frame encryption
 - Uses 802.1X CAs for authentication
 - Uses MKA for symmetric key exchange

Motivation

• Quantum Computing is a "Hype Topic"

- Quantum Computing is a "Hype Topic"
- Faster algorithms:
 - Search problems
 - Optimizations (Adiabatic QC)

- Quantum Computing is a "Hype Topic"
- Faster algorithms:
 - Search problems
 - Optimizations (Adiabatic QC)
- New algorithms:
 - Quantum teleportation

Motivation

• Efficient solution for (some) computational problems

- Efficient solution for (some) computational problems
- Modern crypto is based in such problems:

- Efficient solution for (some) computational problems
- Modern crypto is based in such problems:
 - Grover's search algorithm

- Efficient solution for (some) computational problems
- Modern crypto is based in such problems:
 - Grover's search algorithm

 Reduce symmetric crypto keyspace by $\mathcal{O}(\sqrt{n})$

- Efficient solution for (some) computational problems
- Modern crypto is based in such problems:
 - Grover's search algorithm Reduce symmetric crypto keyspace by $\mathcal{O}(\sqrt{n})$
 - Shor's factorization algorithm

- Efficient solution for (some) computational problems
- Modern crypto is based in such problems:
 - Grover's search algorithm Reduce symmetric crypto keyspace by $\mathcal{O}(\sqrt{n})$
 - Shor's factorization algorithm
 Breaks (EC)DH and RSA based crypto in polynomial time

Practical Quantum Computer

When to panic?

Practical Quantum Computer

When to panic?

- #Qubits to break a n-bit key
 - RSA: 2n + 2 [1]
 - DLP: $9n + 2 \ln(n)$ [2]

Practical Quantum Computer

When to panic?

- #Qubits to break a n-bit key
 - RSA: 2n + 2 [1]
 - DLP: $9n + 2 \ln(n)$ [2]
- Coherency time
 - Keeping a state is tricky
 - Implementation dependent
 - Hard to predict

Practical Quantum Computer

• Even if we assume a Moore-like exp growth we still got plenty of time

Practical Quantum Computer

- Even if we assume a Moore-like exp growth we still got plenty of time
- We should use this time!

Practical Quantum Computer

- Even if we assume a Moore-like exp growth we still got plenty of time
- We should use this time!
 - 1. Design quantum safe algorithms

Practical Quantum Computer

- Even if we assume a Moore-like exp growth we still got plenty of time
- We should use this time!
 - 1. Design quantum safe algorithms
 - 2. Implement quantum safe algorithms

Developing New Algorithms

NIST PQ Project

- Start Dec 20, 2016
- 3. Round announced Jul 22, 2020

Developing New Algorithms

NIST PQ Project

- Start Dec 20, 2016
- 3. Round announced Jul 22, 2020
- Goal: Select quantum safe key exchange and signature algorithms

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Developing New Algorithms

A clear winner?

Developing New Algorithms

A clear winner?

- Different Foundations
 - Lattice-based
 - Isogeny-based
 - Code-based

Developing New Algorithms

A clear winner?

- Different Foundations
 - Lattice-based
 - Isogeny-based
 - Code-based
- Different Trade-offs
 - Latency
 - Key size
 - Maturity

Requirements on Public Key Crypto

- Web-Server
 - Thousands of handshakes/s
 - Forward secrecy

Requirements on Public Key Crypto

- Web-Server
 - Thousands of handshakes/s
 - Forward secrecy
- IoT & WSN
 - Small traffic volume

Requirements on Public Key Crypto

- Web-Server
 - Thousands of handshakes/s
 - Forward secrecy
- IoT & WSN
 - Small traffic volume
- Long-term signatures
 - Maturity

Existing Applications

- Internet-Drafts for TLS 1.X[3][4][5][6][7]
- QuaSiModO: Quantum resistant IKEv2[8]
- "New Hope" in Google Chrome[9]

Outline

Why 802.1(X|AE)?

• Widely used in practice

- Widely used in practice
 - Enterprise LANs
 - WPA2-Enterprise

- Widely used in practice
 - Enterprise LANs
 - WPA2-Enterprise
- Heterogeneous environments

- Widely used in practice
 - Enterprise LANs
 - WPA2-Enterprise
- Heterogeneous environments
 - Data centers ⇔ IoT networks
 - Helps understanding algorithms

- Widely used in practice
 - Enterprise LANs
 - WPA2-Enterprise
- Heterogeneous environments
 - Data centers ⇔ IoT networks
 - Helps understanding algorithms
- Industry relevance

- Widely used in practice
 - Enterprise LANs
 - WPA2-Enterprise
- Heterogeneous environments
 - Data centers ⇔ IoT networks
 - Helps understanding algorithms
- Industry relevance
 - Part of QuaSiModO/ADVA cooperation

Outline

Goals

• Evaluation of IEEE 802.1(X|AE)

- Evaluation of IEEE 802.1(X|AE)
 - Identify vulnerable components
 - Extract requirements for quantum safe design

- Evaluation of IEEE 802.1(X|AE)
 - Identify vulnerable components
 - Extract requirements for quantum safe design
- Evaluation of quantum safe algorithms

- Evaluation of IEEE 802.1(X|AE)
 - Identify vulnerable components
 - Extract requirements for quantum safe design
- Evaluation of quantum safe algorithms
- Design of a quantum safe alternative

- Evaluation of IEEE 802.1(X|AE)
 - Identify vulnerable components
 - Extract requirements for quantum safe design
- Evaluation of quantum safe algorithms
- Design of a quantum safe alternative
- Implementation in a real-world test-case

- Evaluation of IEEE 802.1(X|AE)
 - Identify vulnerable components
 - Extract requirements for quantum safe design
- Evaluation of quantum safe algorithms
- Design of a quantum safe alternative
- Implementation in a real-world test-case
- Extensive experimental evaluation

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Outline

Auth. Server

Outline

Auth. Server

Out

A short history of quantum computing

Benioff's Quantum TM[10]

References I

- [1] T. Häner, M. Roetteler, and K. M. Svore, "Factoring using 2n+ 2 qubits with toffoli based modular multiplication," arXiv preprint arXiv:1611.07995, 2016.
- [2] M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter, "Quantum resource estimates for computing elliptic curve discrete logarithms," in *International Conference on the Theory and Application of Cryptology and Information Security*, Springer, 2017, pp. 241–270.
- [3] D. Steblia, S. Fluhrer, and S. Gueron, "Hybrid key exchange in TLS 1.3," Internet Engineering Task Force, Internet-Draft draft-ietf-tls-hybrid-design-00, Apr. 2020, Work in Progress, 34 pp. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-00.

References II

- [4] W. Whyte, Z. Zhang, S. Fluhrer, and O. Garcia-Morchon, "Quantum-Safe Hybrid (QSH) Key Exchange for Transport Layer Security (TLS) version 1.3," Internet Engineering Task Force, Internet-Draft draft-whyte-qsh-tls13-06, Oct. 2017, Work in Progress, 19 pp. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls13-06.
- [5] J. M. Schanck and D. Stebila, "A Transport Layer Security (TLS) Extension For Establishing An Additional Shared Secret," Internet Engineering Task Force, Internet-Draft draft-schanck-tls-additional-keyshare-00, Apr. 2017, Work in Progress, 10 pp. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00.

References III

- F. Kiefer and K. Kwiatkowski, "Hybrid ECDHE-SIDH Key Exchange for TLS," [6] Internet Engineering Task Force, Internet-Draft draft-kiefer-tls-ecdhe-sidh-00, Nov. 2018, Work in Progress, 13 pp. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-kiefer-tls-ecdhe-sidh-00.
- [7] J. M. Schanck, W. Whyte, and Z. Zhang, "Quantum-Safe Hybrid (QSH) Ciphersuite for Transport Layer Security (TLS) version 1.2," Internet Engineering Task Force, Internet-Draft draft-whyte-gsh-tls12-02, Jul. 2016, Work in Progress. 19 pp. [Online]. Available:

https://datatracker.ietf.org/doc/html/draft-whyte-gsh-tls12-02.

References IV

- [8] Q.-R. K. Exchange, "Towards a verifiably secure quantum-resistant key exchange in ikev2,",
- [9] M. Braithwaite, Experimenting with post-quantum cryptography, https: //security.googleblog.com/2016/07/experimenting-with-post-quantum.html, Accessed: 2020-05-13.
- [10] P. Benioff, "The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines," *Journal of statistical physics*, vol. 22, no. 5, pp. 563–591, 1980.

References V

- [11] L. K. Grover, "A fast quantum mechanical algorithm for database search," in *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing*, 1996, pp. 212–219.
- [12] P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," *SIAM review*, vol. 41, no. 2, pp. 303–332, 1999.
- [13] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve, and I. L. Chuang, "Experimental realization of an order-finding algorithm with an nmr quantum computer," *Physical Review Letters*, vol. 85, no. 25, p. 5452, 2000.

References VI

- [14] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al., "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, no. 7779, pp. 505–510, 2019.
- [15] D. Stebila and M. Mosca, "Post-quantum key exchange for the internet and the open quantum safe project," in *International Conference on Selected Areas in Cryptography*, Springer, 2016, pp. 14–37.
- [16] D. J. Bernstein and T. L. (editors), Ebacs: Ecrypt benchmarking of cryptographic systems, https://bench.cr.yp.to, Accessed: 2020-06-25.