- 1. For each of the following statements, produce a counterexample to show that the statement is **false**.
 - (a) If A and B are square matrices, AB = BA.
 - (b) If $AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A and B are 2×2 matrices.
 - (c) If AB = I then BA = I.
 - (d) If $A^2 = 0$, then A = 0.
- 2. Let $R = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.
 - (a) Find all solutions to the matrix equation $R\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$.
 - (b) Prove that the set $X = \{\vec{x} \in \mathbb{R}^3 : R\vec{x} = \vec{0}\}$ is a subspace.
- 3. Suppose E is a 4×3 matrix with columns $\vec{c}_1, \vec{c}_2, \vec{c}_3$ and rows $\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4$. Let $\vec{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$.
 - (a) Express $E\vec{v}$ as a linear combination of $\vec{c}_1, \vec{c}_2, \vec{c}_3$.
 - (b) Supposing $\vec{r}_1 \cdot \vec{v} = 1$, $\vec{r}_2 \cdot \vec{v} = 6$, $(\vec{r}_3 + \vec{r}_4) \cdot \vec{v} = 2$, and $(\vec{r}_3 \vec{r}_4) \cdot \vec{v} = -2$, compute $E\vec{v}$.
- 4. Suppose that \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^2 that are related by the following diagram.

Let $A = [\vec{u}|\vec{v}|\vec{w}]$ be the matrix with columns \vec{u} , \vec{v} , and \vec{w} .

- (a) What is the rank of A?
- (b) Find all solutions to the equation $A\vec{x} = \vec{0}$.
- (c) Find a basis for the subspace $V = \{\vec{x} \in \mathbb{R}^3 : A\vec{x} = \vec{0}\}.$