Lista 3 - MAC0122 Princípios de Desenvolvimento de Algoritmos - POLI

Prof. Ronaldo Fumio Hashimoto

1 Exercícios

Os exercícios de 24 a 33 correspondem, respectivamente, aos exercícios de 3.24 a 3.33 do livro de Robert Sedgewick [1].

- 24. Escreva uma função que retorna o número de nós de uma lista circular, dado um ponteiro para um dos nós desta lista.
- 25. Escreva um fragmento de código que determina o número de nós que estão entre dois nós referênciados por dois ponteiros de nós x e t em uma lista circular.
- 26. Escreva um fragmento de código que, dados dois ponteiros x e t para duas listas circulares disjuntas, insire a lista apontada por t na lista apontada por x, no ponto seguinte a x.
- 27. Dados dois ponteiros para nós x e t em uma lista circular, escreva um fragmento de código que move o nó seguinte a t para a posição do nó seguinte ao nó seguinte de x.
- 28. No programa abaixo (Programa 3.9 no livro), quando a lista está sendo construida, cada *link* é estabelecido duas vezes porque a lista circular é mantida depois que cada nó é inserido. Modifique o programa para construir a lista circular sem este trabalho extra.

Programa 3.9 (Problema de Josephus: é formada uma roda com N pessoas. No primeiro passo, a M-ésima pessoa é removida da roda. A cada passo subsequente, a M-ésima pessoa, contada a partir do ponto de parada do passo anterior, é removida da roda, até que sobre apenas uma pessoa).

```
#include <stdio.h>
typedef struct node* link;
struct node { int item; link next; };
main(int argc, char* argv[])
{ int i, N = atoi(argv[1]), M = atoi(argv[2]);
  link t = malloc(sizeof(*t)), x = t;
  t->item = 1; t->next = t;
  for (i = 2; i \le N; i++)
      x = (x->next = malloc(sizeof(*x)));
      x->item = i; x->next = t;
  while (x != x->next)
    {
      for (i = 1; i < M; i++) x = x->next;
      x-next = x-next->next; N--;
  printf("%d\n", x->item);
}
```

- 29. Dê o tempo de execução do programa do exercicio 28 (Programa 3.9 do livro), com o fator constante, como uma função de M e N.
- 30. Use o programa do exercicio 28 (Programa 3.9 do livro) para determinar o valor da função de Josephus para M=2,3,5,10 e $N=10^3,\,10^4,\,10^5,\,$ e $10^6.$
- 31. Use o programa do exercicio 28 (Programa 3.9 do livro) para plotar a função Josephus versus N para M=10 e N de 10 a 1000.
- 32. Refaça a tabela da Fig 3.6, começando com o item i inicialmente na posição N-i no vetor (array).
- 33. Desenvolva uma versão do programa do exercicio 28 (Programa 3.9) que usa um vetor (*array*) de índices para implementar a lista ligada (veja Figura abaixo, Figura 3.6 do livro).

	0	1	2	3	4	5	6	7	8
item	1	2	3	4	5	6	7	8	9
next	1	2	3	4	5	6	7	8	0
5	1	2	3	4	5	6	7	8	9
	1	2	3	5	5	6	7	8	0
1	1	2	3	4	5	6	7	8	9
	1	2	3	5	5	6	7	8	1
7	1	2	3	4	5	6	7	8	9
	1	2	3	5	5	7	7	8	1
4	1	2	3	4	5	6	7	8	9
	1	2	5	5	5	7	7	8	1
3	1	2	3	4	5	6	7	8	9
	1	5	5	5	5	7	7	8	1
6	1	2	3	4	5	6	7	8	9
	1	7	5	5	5	7	7	8	1
9	1	2	3	4	5	6	7	8	9
	1	7	5	5	5	7	7	1	1
2	1	2	3	4	5	6	7	8	9
	1	7	5	5	5	7	7	7	1

Figura 1: Figura adaptada de [2].

Representação de lista ligada como vetor.

Essa sequência exibe a lista ligada para o problema de Josephus, implementada como índices de vetores em vez de ponteiros. O índice do item seguinte ao item com índice 0 na lista é $\mathtt{next}[0]$, e assim por diante. Inicialmente (as três linhas do topo), o item da pessoa i tem índice i-1, e nós formamos uma lista circular estabelecendo $\mathtt{next}[i]$ para i+1 para i de 0 a 8 e $\mathtt{next}[8]$ para 0. Para simular o processo de remoção, nós trocamos os links (entrada de vetor \mathtt{next}) mas não movemos os itens. Cada par de linhas exibe o resultado de andar pela lista quatro vezes através de $\mathtt{x} = \mathtt{next}[\mathtt{x}]$. Então, apaga-se o quinto item (exibida ao lado esquerdo) ao modificarmos $\mathtt{next}[\mathtt{x}]$ para $\mathtt{next}[\mathtt{next}[\mathtt{x}]]$.

Referências

- [1] R. Sedgewick, "Algorithms in c—third edition," p. 82, 1998.
- [2] R. Sedgewick, "Algorithms in c—third edition," 1998.