Exercice 1 : Somme de racines

Montrer que la série de terme général $u_n = \frac{1}{\sqrt{n-1}} - \frac{2}{\sqrt{n}} + \frac{1}{\sqrt{n+1}}$ est convergente et calculer cette série.

Solution. Il faut calculer une série, réfléchissez aux méthodes que vous avez pour calculer une série. Dans votre liste, il devrait y avoir le téléscopage. Cette méthode devrait vous séduire puisque vous voyez des rangs successifs. Essayez de faire apparaître un téléscopage ou plusieurs. Ici, on peut remarquer que:

$$u_n = \frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}$$

Par téléscopage, on a : $\sum_n \frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}} = 1 - 0$ et $\sum_n \frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}} = 0 - \frac{1}{\sqrt{2}}$. Et donc,

$$\sum_{n\geq 2} u_n = 1 - \frac{1}{\sqrt{2}}$$

Exercice 2: Convergent, pas convergent?

$$-\sum_{n} \frac{\sin(\frac{1}{n})}{n}$$

$$-\sum_{n} \frac{\cos(\frac{1}{n})}{n}$$

$$-\sum_{n} n\left(1 - \cos\left(\frac{1}{n}\right)\right)$$

$$-\sum_{n} \sqrt{n}\left(1 - \cos\left(\frac{1}{n}\right)\right)$$

 $D\acute{e}monstration. \qquad - \text{ Convergent car } \frac{\sin(\frac{1}{n})}{n} \sim \frac{1}{n^2}.$

- $\begin{array}{ll} & \text{Divergent car } \frac{\cos(\frac{1}{n})}{n} \sim \frac{1}{n}. \\ & \text{Divergent car } n\left(1 \cos\left(\frac{1}{n}\right)\right) \sim \frac{1}{n}. \end{array}$
- Convergent car $\sqrt{n} \left(1 \cos\left(\frac{1}{n}\right)\right) \sim \frac{1}{n^{\frac{3}{2}}}$.

Exercice 3:

On définit la suite u_n pour tout $n \in \mathbb{N}^*$ par $u_n = \left(\frac{1}{n}\right)^{1+\frac{1}{n}}$.

Démonstration. On remarque que $nu_n = \left(\frac{1}{n}\right)^{\frac{1}{n}}$. Or $\left(\frac{1}{n}\right)^{\frac{1}{n}} \to 1$ donc $u_n \sim \frac{1}{n}$ (par définition). Puisque $\sum_n \frac{1}{n}$ est une série divergente, $\sum_n u_n$ est aussi une série divergente.

Exercice 4:

Soit (u_n) une suite de réels positifs. On définit $v_n = u_{2n} + u_{2n+1}$. Montrer que $\sum_n u_n$ et $\sum_n v_n$ sont de même nature.

Démonstration. Une suite positive est une famille sommable si et seulement si $\sum_n u_n$ est convergente. On peut appliquer le théorème de sommation par paquets, si $(I_m)_m$ est une partition de \mathbb{N} , (u_n) est une famille sommable si et seulement si $(u_i)_{i\in I_m}$ est sommable pour tout $m\in\mathbb{N}$ et $\sum_{m\in\mathbb{N}}\sum_{i\in I_m}u_i$ est convergente. On applique le théorème dans le cas particulier où $I_m=\{2m,2m+1\}$. $(u_i)_{i\in I_m}$ est sommable car I_m est fini. On en déduit que (u_n) est une famille sommable si et seulement si $\sum_{m\in\mathbb{N}}\sum_{i\in I_m}u_i$ converge, c'est-à-dire si et seulement si $\sum_{m\in\mathbb{N}}(u_{2m}+u_{2m+1})$ converge. On conclut alors sur le résultat : $\sum_n u_n$ converge si et seulement si $\sum_n v_n$ converge. Une série de termes positifs converge ou diverge, donc on montre que $\sum_n u_n$ et $\sum_n v_n$ sont de même nature.

Exercice 5: Absolument convergente + Semi-convergente =?

Soit (u_n) une suite dont la série est absolument convergente et (v_n) une suite dont la série est semi-convergente. Montrer que $(u_n + v_n)$ est semi-convergente.

Solution. Remarquons d'abord que $\sum_n u_n$ et $\sum_n v_n$ sont des séries convergentes et donc $\sum_n u_n + v_n$ est aussi une série convergente. On utilise l'inégalité triangulaire :

$$|v_n| - |u_n| \le ||v_n| - |u_n|| \le |u_n + v_n|$$

Si $\sum_n |u_n + v_n|$ est une série convergente, alors $|v_n| \leq |u_n + v_n| + |u_n|$ et, par comparaison de suites à termes positifs, $\sum_n |v_n|$ convergerait, ce qui contredit l'hypothèse de semi-convergence de $\sum_n v_n$. Donc $\sum_n u_n + v_n$ est semi-convergente.

Exercice 6:

On définit u_n par $u_n = \sum_{k=1}^n k$. Calculer $\sum_n \frac{1}{u_n}$.

Solution. On a $u_n = \frac{n(n+1)}{2}$ et donc $\sum_{k=1}^n \frac{1}{u_k} = \sum_{k=1}^n \frac{2}{k(k+1)}$. Il suffit de remarquer alors que $\frac{2}{k(k+1)} \sim \frac{2}{k^2}$ et donc que $\sum_n \frac{1}{u_n}$ converge car de même nature que $\sum_n \frac{1}{n^2}$.

Exercice 7:

On considère la suite (u_n) définie pour $n \ge 1$ par $u_n = \sin\left(n\pi + \frac{1}{n}\right)$. Déterminer la nature de la série $\sum_n u_n$.

Solution. On peut remarquer que (u_n) vérifie les conditions pour le théorème des séries alternées.

- $u_n = (-1)^n \sin\left(\frac{1}{n}\right)$ et $\sin\left(\frac{1}{n}\right)$ est positive.
- $\sin\left(\frac{1}{n}\right)$ est décroissante.

Sinon, on peut faire un développement.

$$u_n = (-1)^n \left(\frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right)$$
$$= \frac{(-1)^n}{n} + \mathcal{O}\left(\frac{(-1)^n}{n^2}\right)$$
$$= \frac{(-1)^n}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Exercice 8:

On considère la suite (u_n) définie pour $n \ge 2$ par $u_n = \ln \left(1 - \frac{1}{n^2}\right)$.

- 1. Déterminer la nature de la série $\sum_{n\geq 2} u_n$.
- 2. Calculer $\sum_{n\geq 2} u_n$.
- Solution. 1. On a que $\ln\left(1-\frac{1}{n^2}\right)\sim-\frac{1}{n^2}$. Puisque $\sum_n\frac{1}{n^2}$ est une série convergente, on déduit par comparaison à une série à termes négatifs que \sum_nu_n est convergente.
 - 2. Il faut un peu creuser pour faire apparaître une somme téléscopique.

$$\sum_{k=2}^{n} \ln\left(1 - \frac{1}{k^2}\right) = \sum_{k=2}^{n} \ln\left(\frac{k^2 - 1}{k^2}\right)$$

$$= \sum_{k=2}^{n} \ln\left(\frac{(k-1)(k+1)}{k^2}\right)$$

$$= \sum_{k=2}^{n} \ln\left(\frac{(k-1)}{k}\right) + \ln\left(\frac{(k+1)}{k}\right)$$

$$= \sum_{k=2}^{n} \ln\left(\frac{(k-1)}{k}\right) - \ln\left(\frac{k}{(k+1)}\right)$$

$$= \ln\left(\frac{(2-1)}{2}\right) - \ln\left(\frac{n}{(n+1)}\right)$$

$$\ln\left(\frac{n}{(n+1)}\right) \to 0$$
 et donc

$$\sum_{n \in \mathbb{N}} u_n = -\ln(2)$$

Exercice 9:

On considère une suite (u_n) telle que $\sum_{n\in\mathbb{N}}u_n^2$ est une série convergente. Soient σ une bijection de \mathbb{N} dans lui-même, on définit v_n par : $v_n=u_{\sigma(n)}$.

- 1. Montrer que $\sum_{n\in\mathbb{N}} v_n^2$ est convergente et calculer sa valeur.
- 2. Déterminer la nature de la série $\sum_{n\in\mathbb{N}} |u_n v_n|$
- 3. Calculer $\max_{\sigma} \left(\sum_{n \in \mathbb{N}} |u_n v_n| \right)$
- Solution. 1. $\sum_{n\in\mathbb{N}}u_n^2$ est une série convergente et u_n est une série à termes positifs. $\sum_{n\in\mathbb{N}}u_n^2$ est donc absolument convergente et, en particulier, (u_n^2) est une famille sommable donc la permutation des indices ne changent rien à la convergence et la valeur de la série $\sum_n u_n^2$. On a donc $\sum_{n\in\mathbb{N}}u_n^2=\sum_{n\in\mathbb{N}}v_n^2$.

2. C'est une routine classique (détaillée dans un BCCINP). On peut montrer que pour tout $n \in \mathbb{N}$

$$|u_n v_n| \le \frac{u_n^2 + v_n^2}{2}$$

Pour la prouver, on part de $(u_n - v_n)^2 \ge 0$, ce qui donne ensuite $u_n^2 + v_n^2 - 2|u_nv_n| \ge 0$ et directement l'inégalité souhaitée.

Puisque u_n^2 et v_n^2 ont des séries convergentes, on en déduit que $u_n^2 + v_n^2$ aussi. Et en utilisant l'inégalité, on déduit par comparaison de fonctions à termes positifs que $\sum_n |u_n v_n|$ est une série convergente.

3. On peut partir de l'inégalité précédente

$$\forall n \in \mathbb{N}, \ |u_n v_n| \le \frac{u_n^2 + v_n^2}{2} \Longrightarrow \sum_{n \in \mathbb{N}} |u_n v_n| \le \sum_{n \in \mathbb{N}} u_n^2$$

car $\sum_{n\in\mathbb{N}} u_n^2 = \sum_{n\in\mathbb{N}} v_n^2$. Donc on a que :

$$\max_{\sigma} \left(\sum_{n \in \mathbb{N}} |u_n v_n| \right) \le \sum_{n \in \mathbb{N}} u_n^2$$

Or, on connaît une permutation σ qui atteint cette borne : $\sigma = \operatorname{Id}$ donne $\sum_{n \in \mathbb{N}} |u_n v_n| = \sum_{n \in \mathbb{N}} u_n^2$.

Exercice 10:

Soient a et b deux complexes distincts tels que |a|, |b| < 1. Montrer que

$$\sum_{n>0} \frac{a^{n+1}-b^{n+1}}{a-b} = \frac{1}{1-a} \cdot \frac{1}{1-b}$$

Solution. Puisque a et b sont des nombres complexes de modules strictement inférieurs à 1, on peut voir $\frac{1}{1-a}$ et $\frac{1}{1-b}$ comme des séries géométriques. Et donc :

$$\frac{1}{1-a} \cdot \frac{1}{1-b} = \left(\sum_{n \in \mathbb{N}} a^n\right) \left(\sum_{n \in \mathbb{N}} b^n\right)$$

Les séries $\sum_n a^n$ et $\sum_n b^n$ sont absolument convergentes et donc on peut calculer leur produit de

Cauchy:

$$\left(\sum_{n\in\mathbb{N}} a^n\right) \left(\sum_{n\in\mathbb{N}} b^n\right) = \sum_{n=0}^{+\infty} \sum_{k=0}^n a^k b^{n-k}$$

$$= \sum_{n=0}^{+\infty} b^n \sum_{k=0}^n a^k b^{-k}$$

$$= \sum_{n=0}^{+\infty} b^n \frac{1 - a^{n+1} b^{-(n+1)}}{1 - ab^{-1}}$$

$$= \sum_{n=0}^{+\infty} \frac{b^n - a^{n+1} b^{-1}}{1 - ab^{-1}}$$

$$= \sum_{n=0}^{+\infty} \frac{b^{n+1} - a^{n+1}}{b - a}$$

$$= \sum_{n=0}^{+\infty} \frac{a^{n+1} - b^{n+1}}{a - b}$$

Exercice 11:

Pour $n \in \mathbb{N}$, on pose $u_n = \ln(n!)$.

- 1. Montrer que $u_n \sim n \ln(n)$. En déduire la nature de la série $\sum_{n\geq 2} \frac{1}{u_n^2}$.
- 2. Déterminer la nature de $\sum_{n>2} \frac{1}{u_n}$

Démonstration. 1. Routine habituelle : étudier les suites définies à base de produit par leur logarithme, si possible. La première remarque est de faire apparaître la somme :

$$\ln(n!) = \sum_{k=1}^{n} \ln(k)$$

Déterminer un équivalent de u_n devient un simple problème de déterminer un équivalent d'une somme partielle. La forme de la somme suggère d'utiliser une méthode de comparaison série intégrale puisque $x\mapsto \ln(x)$ est croissante sur $[1,+\infty]$. Pour tout $k\geq 2$, on a :

$$\int_{k-1}^k \ln(t) \ dt \le \ln(k) \le \int_k^{k+1} \ln(t) \ dt$$

Et donc en sommant de 2 à n, on obtient :

$$\int_{1}^{n} \ln(t) \ dt \le \sum_{k=2}^{n} \ln(k) \le \int_{2}^{n+1} \ln(t) \ dt$$

Il suffit donc de calculer une primitive de ln. La méthode classique consiste à forcer une intégration par partie :

$$\int_{a}^{x} \ln(t) dt = \int_{a}^{x} 1 \cdot \ln(t) dt$$

$$= [t \ln(t)]_{a}^{x} - \int_{1}^{x} t \frac{1}{t} dt$$

$$= x \ln(x) - a \ln(a) - (x - a)$$

$$= x(\ln(x) - 1) - a(\ln(a) - 1)$$

On en déduit que $\int_1^n \ln(t) dt \sim n \ln(n)$. Et donc $\int_2^{n+1} \ln(t) dt \sim (n+1) \ln(n+1)$. Il ne faut pas se hâter, il reste à montrer que $(n+1) \ln(n+1) \sim n \ln(n)$. Pour le prouver, on remarque que

$$\frac{n \ln(n)}{(n+1) \ln(n+1)} \sim \frac{\ln(n)}{\ln(n+1)}$$

$$\sim \frac{\ln(n)}{\ln(n(1+\frac{1}{n}))}$$

$$\sim \frac{\ln(n)}{\ln(n) + \ln(1+\frac{1}{n})}$$

$$\sim \frac{\ln(n)}{\ln(n)} \quad (*)$$

$$\sim 1.$$

- (*) Il faut justifier un peu. $\ln\left(1+\frac{1}{n}\right) \sim \frac{1}{n}$ et donc il s'agit d'un terme négligeable devant $\ln(n)$. On conclut donc que $\ln(n!)$ est encadré par deux suites qui sont équivalentes à $n \ln(n)$ donc $\ln(n!) \sim n \ln(n)$.
- 2. Etudier la série $\sum_n \frac{1}{u_n}$ est équivalent à étudier la série $\sum_n \frac{1}{n \ln(n)}$ par équivalence des termes généraux. $x \mapsto \frac{1}{x \ln(x)}$ est décroissante sur $[2, +\infty]$, on peut donc une nouvelle fois appliquer une comparaison série intégrale (faites des deux côtés puisqu'on ne sait pas a priori s'il faut minorer ou majorer la somme, étant donné qu'on ne connaît pas encore la nature de la série).

$$\int_{k}^{k+1} \frac{1}{t \ln(t)} dt \le \frac{1}{k \ln(k)} \le \int_{k-1}^{k} \frac{1}{t \ln(t)} dt$$

Maintenant, on somme sur k de 3 à n et on obtient :

$$\int_{3}^{n+1} \frac{1}{t \ln(t)} dt \le \sum_{k=3}^{n} \frac{1}{k \ln(k)} \le \int_{1}^{n} \frac{1}{t \ln(t)} dt$$

On connaît une primitive de $t \mapsto \frac{1}{t \ln(t)}$, en effet il s'agit d'une fonction de la forme $\frac{u'}{u}$ dont la primitive est alors $\frac{1}{u}$:

$$\int_{a}^{x} \frac{1}{t \ln(t)} dt = \int_{a}^{x} \frac{\frac{1}{t}}{\ln(t)} dt = \frac{1}{\ln(x)} - \frac{1}{\ln(a)}$$

On en déduit alors l'inégalité suivante :

$$\frac{1}{\ln(n+1)} - \frac{1}{\ln(3)} \le \sum_{k=3}^{n} \frac{1}{k \ln(k)} \le \frac{1}{\ln(n)} - \frac{1}{\ln(2)}$$

On déduit alors par l'inégalité de droite que $\sum_{k=3}^n \frac{1}{k \ln(k)}$ est majorée à partir d'un certain rang. Etant donné qu'il s'agit d'une série à termes positifs, on déduit que $\sum_n \frac{1}{n \ln(n)}$ est une série convergente. La série $\sum_n \frac{1}{u_n}$ est donc convergente par comparaison à une suite à termes positifs dont la série est convergente.

Un exercice qui cache finalement beaucoup de résultats classiques qu'il faut savoir redémontrer. Une primitive de \ln , $\ln(n) \sim \ln(n+1)$ et comparaison série-intégrale.

Exercice 12:

On définit la suite $u_n = e - \left(1 + \frac{1}{n}\right)^n$. Etudier la nature de la suite $\sum_n u_n$

 $D\acute{e}monstration$. On remarque déjà que $u_n \to 0$ donc la série ne diverge pas grossièrement. Une idée peut-être de déterminer un équivalent de u_n . On a que $e - \left(1 + \frac{1}{n}\right)^n = e - e^{n\ln(1 + \frac{1}{n})}$. Et donc

$$u_n = e\left(1 - e^{n\ln(1 + \frac{1}{n}) - 1}\right)$$

On va ensuite le développement limité de $\ln(1+\frac{1}{n})$. Intuitivement, puisqu'on va multiplier par n et qu'on souhaite conserver un terme différent de o(1), on va le développer jusqu'à $o(1/n^2)$.

$$\ln\left(1+\frac{1}{n}\right) \underset{n\to+\infty}{=} \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

On déduit alors que $n \ln(1 + \frac{1}{n}) - 1 = -\frac{1}{2n} o(\frac{1}{n})$. On peut ensuite composer par l'exponentielle :

$$\exp\left(n\ln\left(1+\frac{1}{n}\right)-1\right) \underset{n\to+\infty}{=} 1-\frac{1}{2n}+o\left(\frac{1}{n}\right)$$

On peut conclure alors que $u_n = e\left(\frac{1}{2n} + o\left(\frac{1}{n}\right)\right)$ et donc

$$u_n \sim \frac{e}{2n}$$

Or, on sait que $\sum_n \frac{1}{n}$ est une série divergente donc $\sum_n u_n$ l'est aussi par comparaison.

Exercice 13: Restes des sommes de Riemann

Soit $\alpha \in \mathbb{R}$, on définit la suite $R_n^{(\alpha)}$ suivante

$$R_n^{(\alpha)} = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$$

- 1. Justifier $(R_n^{(\alpha)})$ est bien définie si et seulement si $\alpha > 1$.
- 2. Déterminer les $\alpha \in \mathbb{R}$ tels que la série de terme général $(R_n^{(\alpha)})$ soit convergente.

- Solution. 1. C'est un classique : convergence des séries de Riemann. $R_n^{(\alpha)}$ est définie si et seulement si la série $\sum_n \frac{1}{n^{\alpha}}$ converge.
 - 2. Il y a deux techniques pour parvenir au résultat. La première plus classique consiste à trouver un équivalent de $R_n^{(\alpha)}$. C'est aussi un classique (qu'il faut savoir redémontrer quand c'est nécessaire). Pour obtenir un équivalent d'une somme, il est bien de penser instinctivement à une comparaison avec une intégrale. Ici, on pose $\varphi: x \mapsto \frac{1}{x^{\alpha}}$. φ est décroissante sur \mathbb{R}_+^* . Et en particulier, si $x \in [k, k+1]$ alors $\varphi(x) \leq \varphi(k)$, et si $x \in [k-1, k]$ alors $\varphi(k) \leq \varphi(x)$. On déduit alors que pour tout $k \geq 2$:

$$\int_{k}^{k+1} \varphi(x) dx \le \varphi(k) \le \int_{k-1}^{k} \varphi(x) dx$$

On obtient en sommant n+1 à $+\infty$, on a que :

$$\int_{n+1}^{+\infty} \frac{dx}{x^{\alpha}} \le R_n^{(\alpha)} \le \int_n^{+\infty} \frac{dx}{x^{\alpha}}$$

On calcule ensuite le terme de gauche :

$$\int_{n}^{+\infty} \frac{dx}{x^{\alpha}} = \left[-\frac{1}{(\alpha - 1)x^{\alpha - 1}} \right]_{n}^{+\infty} = \frac{1}{(\alpha - 1)n^{\alpha - 1}}$$

On déduit en reprenant l'inégalité qu'on a eu par comparaison aux intégrales :

$$\frac{1}{(\alpha - 1)n^{\alpha - 1}} \le R_n^{(\alpha)} \le \frac{1}{(\alpha - 1)(n + 1)^{\alpha - 1}}$$

Puisque $\frac{1}{(\alpha-1)n^{\alpha-1}} \sim \frac{1}{(\alpha-1)(n+1)^{\alpha-1}}$, on déduit par le théorème d'encadrement (avec suites équivalentes) que $R_n^{(\alpha)} \sim \frac{1}{(\alpha-1)n^{\alpha-1}}$. Finalement, on remarque que la série de terme générale $R_n^{(\alpha)}$ converge si et seulement si la série de Riemann de paramètre $\alpha-1$ converge, i.e. $\alpha>2$.

On peut le faire autrement. Si on regarde bien la somme à calculer, beaucoup de termes se répètent. Au lieu de sommer $R_n^{(\alpha)}$, on somme les $\frac{1}{k^{\alpha}}$ ensemble en utilisant le théorème de sommation par paquets.

$$\begin{split} \sum_{n \in \mathbb{N}} R_n^{(\alpha)} &= \sum_{n \in \mathbb{N}} \sum_{k \geq n+1} \frac{1}{k^{\alpha}} \\ &= \sum_{k \in \mathbb{N}^*} \sum_{n=0}^{k-1} \frac{1}{k^{\alpha}} \\ &= \sum_{k \in \mathbb{N}^*} \frac{1}{k^{\alpha-1}} \end{split}$$

Cette technique est plus rapide mais ne donne pas d'équivalent.

Exercice 14:

Soit $x \in]-1,1[$, on définit S(x) la série $\sum_{n \in \mathbb{N}} (n+1)x^n$. Montrer que S est bien définie et calculer S(x).

Démonstration. On peut définir la somme partielle $S_n(x) = \sum_{k=0}^n (k+1)x^k$. Ce genre se calcule assez facilement en connaissant la technique. Regardons la somme partielle suivante : $R_n(x) = \sum_{k=0}^{n+1} x^k$. R_n est une fonction polynomiale tout à fait normale. On peut notamment la dériver : $R'_n(x) = \sum_{k=1}^{n+1} kx^{k-1}$. En réindexant la somme :

$$R'_n(x) = \sum_{k=0}^{n} (k+1)x^k = S_n(x)$$

Or, on connaît une autre expression de R_n , $R_n(x) = \frac{1-x^{n+2}}{1-x}$. On en déduit une nouvelle expression de $S_n(x)$:

$$S_n(x) = R'_n(x) = \frac{-(n+2)x^{n+1}(1-x) + 1 - x^{n+2}}{(1-x)^2}$$

Il ne reste plus qu'à regarder la limite (et notamment son existence). La suite $(-(n+2)x^{n+1})$ converge vers 0 (CC et |x| < 1). On déduit alors que $S(x) = \lim_n S_n(x) = \frac{1}{(1-x)^2}$.

Plus tard dans l'année, vous verrez des théorèmes qui permettent de directement dériver sous la somme, ce qui sera plus simple. \Box

Exercice 15:

On définit la suite v_n par $v_0 \in]1, \frac{\pi}{2}[$ et pour tout $n \ge 0$ $v_{n+1} = \sin(v_n + \pi)$. Montrer que $\sum_n v_n$ est convergente.

Démonstration. Remarquons d'abord que $|v_{n+1}| = |\sin(v_n)|$. Par ailleurs, on peut montrer que pour tout n on a $v_n \in [0, \frac{\pi}{2}[$. Or sur $[0, \frac{\pi}{2}[$, sin est croissante et donc si $|v_{n+1}| \le |v_n|$, alors $|v_{n+2}| \le |v_{n+1}|$. On a que $|v_1| \le |v_0|$ car $|v_1|$ est entre 0 et 1. Donc, on déduit par récurrence que $|v_n|$ est une suite décroissante. Puisqu'elle est bornée, on déduit qu'elle est aussi convergente et on note ℓ sa limite.

 $|v_{n+1}|$ tend vers ℓ et $|v_{n+1}| = |\sin(v_n)| = \sin|v_n|$. On déduit alors que $\sin|v_n| \to \ell$ et $\sin|v_n| \to \sin(\ell)$. On déduit par unicité de la limite que $\ell = \sin(\ell)$. Ce qui implique $\ell = 0$. Finalement, on déduit que $|v_n|$ est une suite décroissante de limite nulle.

Finalement, on montre que v_n alterne de signe. v_0 est positif. Supposons que $v_n = (-1)^n |v_n|$. On a $v_{n+1} = \sin(\pi + v_n) = -\sin(v_n)$. On sait que $v_n = (-1)^n |v_n|$ et donc $v_{n+1} = (-1)^{n+1} \sin |v_n|$. $|v_n| \in [0, \frac{\pi}{2}[$, on déduit donc que $\sin |v_n|$ est positif. On déduit donc que $v_{n+1} = (-1)^{n+1} |v_{n+1}|$. On applique le théorème des séries alternées qui permet de conclure.

Exercice 16 : Règle de Cauchy

Soit (u_n) une suite à termes positifs telle que $\sqrt[n]{u_n} \to \ell$.

- 1. Montrer que si $\ell > 1$, alors $\sum_{n} u_n$ est divergente.
- 2. Montrer que si $\ell < 1$, alors $\sum_{n} u_n$ est convergente.
- 3. Montrer que si $\ell=1$, alors $\sum_{n}u_{n}$ peut être aussi bien divergente que convergente.

Solution. Dans les deux premiers cas, nous utiliserons la définition de la limite.

$$\forall \epsilon > 0, \ \exists m \in \mathbb{N}, \forall n \geq m, \ |\sqrt[n]{u_n} - \ell| \leq \epsilon$$

1. On cherche à montrer que la série est divergente. Une idée, puique u_n est à termes positifs peut être de minorer u_n par une suite dont la série est divergente. Si on utilise la définition de la limite, on a pour $\epsilon > 0$ et le m associé $\forall n \geq m, \mid \sqrt[n]{u_n} - \ell \mid \leq \epsilon$ ce qui peut se réexprimer ainsi :

$$\forall n > m, -\epsilon < \sqrt[n]{u_n} - \ell < \epsilon$$

Et donc

$$\forall n > m, \ (\ell - \epsilon)^n < \sqrt[n]{u_n} < (\ell + \epsilon)^n$$

 $(\ell-\epsilon)^n$ est une suite géométrique et on sait qu'une telle suite admet une série divergente si $\ell-\epsilon>1$. Puisque $\ell>1$, on peut poser $\epsilon=\frac{\ell-1}{2}>0$ qui vérifie $\ell-\epsilon>\frac{\ell+1}{2}>1$. On a alors pour tout $n\geq m$:

$$\left(\frac{\ell+1}{2}\right)^n \le u_n$$

Puisque $\sum_n (\frac{\ell+1}{2})^n$ est divergente, $\sum_n u_n$ l'est aussi par comparaison de série à termes positifs à partir d'un certain rang.

2. Cette fois $\ell < 1$. On peut repartir de notre inégalité pour un ϵ arbitraire :

$$\forall n \geq m, \ (\ell - \epsilon)^n \leq \sqrt[n]{u_n} \leq (\ell + \epsilon)^n$$

Cette fois, on aimerait utiliser l'inégalité de droite pour majorer par une suite géométrique de série convergente. Pour ça, il faut choisir ϵ tel que $\ell+\epsilon<1$. On sait que $\ell<1$, alors on peut poser : $\epsilon=\frac{1-\ell}{2}>0$ qui vérifie $\ell+\epsilon=\frac{\ell+1}{2}<1$ (car $\ell<1$). On alors pour tout $n\geq m$:

$$u_n \le \left(\frac{1+\ell}{2}\right)^n$$

Puisque $\sum_n \left(\frac{\ell+1}{2}\right)^n$ est convergente, $\sum_n u_n$ l'est aussi par comparaison de série à termes positifs à partir d'un certain rang.

3. Il faut donner deux exemples de suites u_n qui vérifient les hypothèses avec $\ell=1$. Si on pose $u_n=1$, alors $\ell=1$ et la série diverge. Si on pose $u_n=\frac{1}{n^2}$, on $u_n^{\frac{1}{n}}=\exp\left(\frac{1}{n}\ln\left(\frac{1}{n^2}\right)\right)=\exp\left(\frac{-2\ln(n)}{n}\right)$. Donc $\ell=1$ et la série $\sum_n \frac{1}{n^2}$ est convergente (Riemann avec $\alpha=2$).

Exercice 17: Condensation

Soit (u_n) une suite décroissante positive. Montrer que $\sum_n u_n$ et $\sum_n 2^n u_{2^n}$ sont de même nature.

Solution. L'idée est que si on prend $k \in \{2^n, \dots, 2^{n+1} - 1\}$, alors $u_{2^{n+1}} \le u_k \le u_{2^n}$. Et donc en sommant sur $k \in \{2^n, \dots, 2^{n+1} - 1\}$, on a

$$2^{n+1}u_{2^{n+1}} \le \sum_{k=2^n}^{2^{n+1}-1} u_k \le 2 \cdot 2^n u_{2^n}$$

 (u_n) est positive et le terme général d'une série convergente, en particulier elle est sommable. On peut donc appliquer le théorème de sommation par paquets. Si on considère $I_n = \{2^n, \dots, 2^{n+1}-1\}$, on a $\mathbb{N} = \bigsqcup_{n \in \mathbb{N}} I_n$. On note alors $v_n = \sum_{k \in I_n} u_k$. Par le théorème de sommation par paquet, $\sum_{n \in \mathbb{N}^*} u_n$ a la même nature que $\sum_{n \in \mathbb{N}} v_n$. De plus, d'après notre inégalité précédente, on a pour $n \in \mathbb{N}$, $2^{n+1}u_{2^{n+1}} \le v_n \le 2 \cdot 2^n u_{2^n}$. On en déduit que $\sum_{n \in \mathbb{N}} v_n$ est convergente si et seulement si u_{2^n} est convergente.

Exercice 18: Somme des inverses de racines

On pose
$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$
.

- 1. Montrer qu'il existe $C \in \mathbb{R}$ tel que $S_n = 2\sqrt{n} + C + o(1)$.
- 2. Déterminer un équivalent de $S_n 2\sqrt{n} C$.

Solution. 1. On est dans les conditions d'application des comparaisons série-intégrale. En général, il faut retirer qu'une comparaison série-intégrale pour une série $\sum_k f(k)$ peut aussi donner une convergence, au-delà d'un équivalent.

On a pour $k \geq 2$:

$$\int_{k}^{k+1} \frac{1}{\sqrt{t}} dt \le \frac{1}{\sqrt{k}} \le \int_{k-1}^{k} \frac{1}{\sqrt{t}} dt$$

Après calcul, on a donc

$$2\sqrt{k+1} - 2\sqrt{k} \le \frac{1}{\sqrt{k}} \le 2\sqrt{k} - 2\sqrt{k-1}$$

On souhaite montrer que $u_n = S_n - 2\sqrt{n}$ converge. On va montrer comme suggéré que c'est une suite décroissante. $u_n - u_{n-1} = \frac{1}{\sqrt{n}} - (2\sqrt{n} - \sqrt{n-1})$. Donc, d'après l'inégalité précédente, on déduit que $u_n - u_{n-1} \leq 0$, et ainsi (u_n) est décroissante. Une suite décroissante minorée est convergente et avec nos comparaisons série-intégrale, on peut obtenir une borne. Puisque

$$2\sqrt{k+1} - 2\sqrt{k} \le \frac{1}{\sqrt{k}}$$

on déduit en sommant les inégalités que

$$2\sqrt{n+1} - 2 < S_n$$

D'où finalement $2\sqrt{n+1} - 2\sqrt{n} - 2 \le u_n$. Or $2\sqrt{n+1} - 2\sqrt{n}$ converge vers 0 et donc est minorée à partir d'un certain rang. Finalement, u_n est une suite décroissant minorée à partir d'un certain rang, donc elle est convergente de limite $C \in \mathbb{R}$. Une fois réécrit, on a

$$S_n \underset{n \to +\infty}{=} 2\sqrt{n} + C + o(1)$$

2. On pose $v_n = S_n - 2\sqrt{n} - C$. Une stratégie pour continuer un développement est d'étudier la série $\sum_n v_{n+1} - v_n$ et d'étudier asymptotiquement le reste de cette série qui sera bien convergente car téléscopique.

$$v_n - v_{n-1} = \frac{1}{\sqrt{n}} - 2\sqrt{n} + 2\sqrt{n-1}$$

On va réaliser un développement asymptotique de $\sqrt{n} - \sqrt{n-1}$

$$\begin{split} \sqrt{n} - \sqrt{n - 1} &= \sqrt{n} \left(1 - \sqrt{1 - \frac{1}{n}} \right) \\ &= \sqrt{n} \left(1 - \left(1 - \frac{1}{2n} - \frac{1}{8n^2} + o(1/n^2) \right) \right) \\ &= \sqrt{n} \left(\frac{1}{2n} + \frac{1}{8n^2} + o\left(\frac{1}{n^2} \right) \right) \\ &= \frac{1}{2\sqrt{n}} + \frac{1}{8n^{3/2}} + o\left(\frac{1}{n^{\frac{3}{2}}} \right) \end{split}$$

On a alors:

$$\begin{aligned} v_n - v_{n-1} &= \frac{1}{\sqrt{n}} - 2\left(\frac{1}{2\sqrt{n}} + \frac{1}{8n^{3/2}} + o\left(\frac{1}{n^3/2}\right)\right) \\ &= \frac{1}{4n^{3/2}} + o\left(\frac{1}{n^{\frac{3}{2}}}\right) \end{aligned}$$

On déduit donc que : $v_n - v_{n-1} \sim \frac{1}{4n^{3/2}}$. Classique : équivalent des restes des sommes de Riemman dans le cas convergent. On a $\sum_{k=n}^{+\infty} \frac{1}{k^{\alpha}} \sim \frac{1}{(\alpha-1)n^{\alpha-1}}$. On applique ensuite le théorème de sommation de comparaisons dans le cas convergent

$$v_n = \sum_{k=n}^{+\infty} v_k - v_{k-1} \sim \sum_{k=n}^{+\infty} \frac{1}{4k^{\frac{3}{2}}} \sim \frac{1}{2\sqrt{n}}$$

Finalement, on déduit que : $S_n = 2\sqrt{n} + C + \frac{1}{2\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$.

Exercice 19:

On définit la suite $(a_n)_n$ par la relation suivante : $a_1 = 1$ et pour tout $n \geq 2$, $a_n = 2a_{\lfloor \frac{n}{2} \rfloor}$. Montrer que la série $\sum_{n \in \mathbb{N}^*} \frac{1}{a_n^2}$ converge et calculer sa somme.

Solution. La définition invite à étudier la suite sur les rangs impairs puis pairs. Si on montre que la famille est sommable, on pourra arranger les termes comme on le souhaite. Pour $p \in \mathbb{N}^*$, on a :

$$a_{2p} = 2a_p$$
 $a_{2p+1} = 2a_p$.

On peut commencer par tatônner. Comment on calculerait a_4 ? $a_4 = 2a_2 = 4a_1 = 4$. On voit que ça se passe très bien des puissances de deux. Et en effet,

$$a_{2^m} = 2a_{2^{m-1}} = \dots = 2^m a_1 = 2^m$$

On peut étendre cette réflexion. Partons du rang n, qu'importe la parité, à combien d'étapes où on réalise l'opération $d: n \mapsto \left|\frac{n}{2}\right|$ arrive-t-on à 1?

Si vous vous rappelez de l'algorithme de dichotomie, ou ce genre de raisonnement, vous avez raison d'y penser. Encerclez d'abord n entre deux puissances de deux. Il existe ℓ tel que $2^{\ell} \leq n < 2^{\ell+1}$. d est une application croissante donc

$$2^{\ell-1} = d(2^\ell) \le d(n) \le d(2^{\ell+1}) = 2^\ell$$

On a perdu la stricte inégalité car d n'est pas strictement croissante. $d(n) = 2^{\ell}$ si et seulement si $n \in \{2^{\ell+1}, 2^{\ell+1} + 1\}$, ce qui n'est pas possible par hypothèse. On a alors

$$2^{\ell-1} < d(n) < 2^{\ell}$$

On peut donc appliquer successivement ce raisonnement et obtenir que $2^0 \le d^{\ell}(n) < 2^1$. On trouve le nombre d'étapes nécessaires pour obtenir 1. Revenons sur notre problème initial :

$$a_n = 2a_{d(n)} = \dots = 2^{\ell} a_{d^{\ell}(n)} = 2^{\ell}$$

Si on souhaite écrire correctement ce ℓ , on repart de sa définition : $2^{\ell} \le n < 2^{\ell+1}$. On applique un logarithme dessus, celui que vous préférez, je choisis celui en base 2 que je note log. $\ell \le \log(n) < \ell+1$. C'est encore une fois la définition de la partie entière et donc : $\ell_n = \lfloor \log(n) \rfloor$.

Une fois ceci de fait, on approche de la fin. Si on regarde notre suite, elle sera constante par morceau. Une idée peut-être de ranger les termes par valeur. La série étant à termes positifs, il sera équivalent de montrer qu'un arrangement donne une somme finie et de montrer que la famille est sommable.

On note I_ℓ l'ensemble suivant

$$I_{\ell} = \{ n \in \mathbb{N}^*, \ a_n = 2^{\ell} \}$$

On peut donc décomposer \mathbb{N}^* de la sorte : $\mathbb{N}^* = \bigsqcup_{\ell \in \mathbb{N}} I_{\ell}$. On a vu que $a_n = 2^{\ell}$ si et seulement si $2^{\ell} \leq n < 2^{\ell+1}$. On en déduit le cardinal de $I_{\ell} : |I_{\ell}| = 2^{\ell+1} - 2^{\ell} = 2^{\ell}$. On peut ensuite calculer la somme suivante pour ℓ :

$$\sum_{n \in I_{\ell}} \frac{1}{a_n^2} = \sum_{n \in I_{\ell}} \frac{1}{2^{2\ell}} = \frac{1}{2^{\ell}}$$

Désormais, il suffit de remarquer que $\sum_{\ell \in \mathbb{N}} \frac{1}{2^{\ell}}$ est une série converge dont on connaît la somme par ailleurs : 1. On conclut alors que :

$$\sum_{n\in\mathbb{N}^*}\frac{1}{a_n^2}=\sum_{\ell\in\mathbb{N}}\sum_{n\in I_\ell}\frac{1}{a_n^2}=1$$

Exercice 20:

Soit (u_n) une suite de réels positifs. Déterminer la nature de la série de terme général $v_n = \frac{u_n}{(1+u_1)\dots(1+u_n)}$ en fonction de la nature de la série $\sum_n u_n$.

Solution. On peut remarquer que

$$v_n = \frac{u_n + 1 - 1}{(1 + u_1) \dots (1 + u_n)} = \frac{1}{(1 + u_1) \dots (1 + u_{n-1})} - \frac{1}{(1 + u_1) \dots (1 + u_n)}$$

On a alors une somme téléscopique et donc :

$$\sum_{k=1}^{n} v_k = 1 - \frac{1}{(1+u_1)\dots(1+u_n)}$$

SERIES NUMERIQUES ET FAMILLES SOMMABLES

Etudier la convergence de la série $\sum_n v_n$ est donc équivalent à étudier la convergence de la suite $\frac{1}{(1+u_1)\dots(1+u_n)}$. Manipuler un produit peut être embêtant. On peut aussi bien considérer la somme des logarithmes (car tout est strictement positif).

$$\ln\left(\frac{1}{(1+u_1)\dots(1+u_n)}\right) = \sum_{i=1}^n \ln(1+u_n)$$

Supposons que $\sum_n u_n$ soit une série convergente. Alors u_n tend vers 0 et donc

$$\ln(1+u_n) \sim u_n$$

En conséquence, $\sum_{n} \ln(1+u_n)$ est une série convergente et donc $\frac{1}{(1+u_1)...(1+u_n)}$ est aussi une suite

convergente. Ce qui permet de conclure que $\sum_n v_n$ converge. Supposons maintenant que $\sum_n u_n$ soit une série divergente. Alors $\sum_n \ln(1+u_n)$ est aussi une série divergente et donc $\frac{1}{(1+u_1)...(1+u_n)}$ est suite convergente puisque le produit tend vers l'infini. Ce qui permet de conclure que $\sum_n v_n$ est convergente.