

Designing A Real Time System

Ebrahem Mostafa Sprints

Table of content

Table of content	1
Overview	2
Goals	2
Flow chart	3
Tasks needed	3
System Tick Rate	4
Hyperperiod	4
CPU Load	4
Timeline Manually	
Design in Simso	•

Overview

Design a healthcare system using RTOS with the following requirements:

- A touch LCD as input that can control the system and give commands. Every LCD command is represented in 4 bytes. The LCD is connected to the micro controller through UART with a speed of 9600 bps.[Execution time: 3ms]
- Blood pressure sensor with new data every 25 ms.[Execution time: 1.5ms]
- Heart beat detector with new data every 100ms .[Execution time: 2.5ms]
- Temperature sensor with new data every 10ms .[Execution time: 1 ms]
- Alert siren.

Goals

- 1. Decide how many tasks are needed
- 2. Decide the task parameters (Priority Periodicity Deadline).
- 3. Decide the system tick rate.
- 4. Calculate:
 - Hyperperiod
 - CPU load
 - Draw the timeline manually and analyze system schedulability.
 - Model the system in Simso and verify that your design is schedulable.

Flow chart

Tasks needed

Task 1: Touch LCD

[P: 100ms, E: 2ms, D:100ms, Priority:1]

Task 3: Heart Beat Detector

[P: 100ms, E: 1.5ms, D:100ms, Priority:1]

Task 2: Blood Pressure Sensor

[P: 25ms, E: 3ms, D:25ms, Priority:1]

Task 4: Temperature Sensor

[P: 10ms, E: 2.5ms, D:10ms, Priority:1]

Task 5: Alart

[P: 10ms, E: 1ms, D:10ms, Priority:1]

System Tick Rate

- We can calculate System tick rate by summing all execution time of all tasks and take the system tick rate bigger than it.
- Sum of execution tasks = 2+3+1.5+2.5+1= 10 ms
- So .. System tick Rate > 10ms = <u>12 ms</u>

Hyperperiod

Hyperperiod = LCM(100,25,10)

Hyperperiod = 100 ms

CPU Load

Task	Periodicity	Execution Time	Hyperperiod	Number of repetitions of task	Busy Time	
Task1	100	2	100	1	2x1=2	
Task2	25	3	100	4	3x4=12	
Task3	100	1.5	100	1	1.5x1=1.5	
Task4	10	2.5	100	10	2.5x10=25	
Task5	10	1	100	10	1x10=10	
Total Busy Time = 2+12+1.5+25+10 = 50.5 ms						

So ... CPU load = (50.5 * 100)/100 = 50.5%

• The System has a good schedulability

Timeline Manually

Design in Simso

