Sterownik robota miękkiego z wykorzystaniem czujnika ciśnienia oraz przepływu.

Modernizacja elektroniki urządzenia wspomagającego rehabilitację sparaliżowanej ręki do smartwatcha.

Martyna Samowicz 233838

Piotr Peć

233831

Filip Wojciechowski 233854

Cele projektu

- → Sterownik do pneumatycznego układu robota miękkiego
 - sterowaniem doborem poziomu ciśnienia powietrza, jakie ma być wtłaczane do aktuatorów
 - zaangażowanie czujników kontrolujących ciśnienie i stopień ugięcia aktuatorów przymocowanych do palców
- → Minimalizacja urządzenia wspomagającego rehabilitację osób po udarze z niedowładem ręki (przypominanie o ćwiczeniach, wyświetlanie instrukcji w postaci graficznej, przedstawienie wyników ćwiczenia) na wyświetlaczu smartwatcha

Dostępne rozwiązania

ARMEO + Manovo Spring /Hocoma

Amadeo/ Tyromotion

Rękawica wykorzystująca elastyczne aktuatory hydrauliczne (Polygerinos, P i inni, 2015)

EsoGlove/ Roceso Technologies

Układ wykorzystujący jako siłę napędową cylinder ze sprężonym dwutlenkiem węgla CO_{2 ,} źródło (Heung, Kelvin i inni, 2019)

Wady dotychczasowych urządzeń

Sztywne szkielety

Duże rozmiary

Urazowość

Wady

Brak personalizacji Brak wielofunkcyjności

Wysoka cena

Charakterystyka docelowych urządzeń

- → niskie ciśnienia
- → niewielkie rozmiary
- możliwość dostosowania ruchów do konkretnego pacjenta- personalizacja ćwiczeń
- → biofeedback
- → gratyfikacja ćwiczeń wzrost motywacji pacjenta

To co aktualnie mamy

- → pierwsze prototypy zarówno aktuatorów miękkich jak i elektronicznego systemu nadzoru ćwiczeń
- → konsultacje z lekarzami na temat doboru ćwiczeń do wybranego schorzenia
- → wstępny przegląd dostępnych podobnych rozwiązań prototypowych oraz komercyjnych

Zdjęcie projektu prototypu do rehabilitacji dłoni z niedowładem. Praca inżynierska Ilona Dominik

Prototyp rękawicy, z miękkimi akutatorami atrywowanymi pod wpływem ciśnienia. Praca inżynierska Martyna Samowicz

Aktualny układ elektroniczny

Diagram zależności między wykorzystanymi elementami elektronicznymi. Praca inżynierska Ilona Dominik

Schemat połączeń elementów układu elektronicznego urządzenia.

Praca inżynierska Ilona Dominik

Oczekiwany efekt końcowy

Dwa różne zestawy elektroniczne, które pomagają temu samemu schorzeniu:

- → Układ pneumatyczny, który w sposób kontrolowany wtłacza pożądaną ilość powietrza przy jednoczesnym nadzorze przez czujniki
- → Zminimalizowany układ elektroniczny z wyświetlaczem pozwalający użytkownikowi na interakcję z urządzeniem

Plan pracy

- → rozeznanie literaturowe
- → dopracowanie projektu do końcowej wersji
- → wykonanie prototypu sterownika systemu pneumatycznego
- → test sterowników urządzenia
- → wykonanie docelowego sterownika
- → zaprojektowanie elektronicznego układu sterowania sensorami zamontowanymi na urządzeniu
- → kompletacja smartwatcha
- → *** dodatkowo zamontowanie modułu wifi do komunikacji z bazą danych w aplikacji zewnętrznej