PRUEBA 2

Análisis Funcional y Aplicaciones I (525401).

Viernes 14 de Junio de 2002

Prof. Gabriel N. Gatica.

Problema 1 (10 Puntos). Demuestre que las condiciones suficientes del Teorema de Babuška-Brezzi (versión general) son también necesarias.

Problema 2 (20 Puntos). Sea X un espacio de Hilbert y sea V un subespacio cerrado de X. Demuestre que X/V y V^{\perp} son isomorfos.

Problema 3 (30 Puntos). Sean X, Y espacios de Hilbert, $A \in \mathcal{L}(X,Y)$ tal que $\mathcal{R}(A) = Y$, y sea V = N(A). Dado el operador de proyección ortogonal $P: X \to V$, considere $B: Y \to X$ tal que B(y) = x - P(x) para todo $y \in Y$, donde $x \in X$ es tal que A(x) = y.

- a) Demuestre que B está bien definido y que B es una biyección lineal y acotada de Y en V^{\perp} . Pruebe, además, que B es un *inverso a derecha* de A, esto es AB(y) = y para todo $y \in Y$.
- **b)** Defina $A_0: V^{\perp} \to Y$ como $A_0(x) = A(x)$ para todo $x \in V^{\perp}$, es decir $A_0 = A|_{V^{\perp}}$, y pruebe que $A_0^{-1} = B$.
- c) Extienda los resultados anteriores al caso en que $\mathcal{R}(A)$ es un subespacio cerrado propio de Y.

Problema 4 (Lema de Aubin-Nitsche) (20 Puntos). Sean $(H, \langle \cdot, \cdot \rangle_H)$, $(V, \langle \cdot, \cdot \rangle_V)$ espacios de Hilbert tal que $V \subseteq H$ y el operador identidad $\mathbf{i}: V \to H$ es continuo. Sea $A: V \times V \to \mathbf{R}$ una forma bilineal acotada y V-elíptica, y considere el operador $\mathbf{P}: H \to V$, donde para todo $g \in H$, $\mathbf{P}(g)$ es el único elemento en V que satisface

$$A(v, \mathbf{P}(g)) = \langle g, v \rangle_H \quad \forall v \in V.$$

Dados $F \in V'$ y V_h un subespacio de dimensión finita de V, denote por $u \in V$ y $u_h \in V_h$ las únicas soluciones de los esquemas continuo y de Galerkin, respectivamente, esto es

$$A(u,v) = F(v) \quad \forall v \in V,$$

y

$$A(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$$
.

Demuestre que existe C>0 tal que

$$||u-u_h||_H \le C ||u-u_h||_V \sup_{g\in H} \left\{ \frac{1}{||g||_H} \inf_{v_h\in V_h} ||\mathbf{P}(g)-v_h||_V
ight\}.$$

Problema 5 (30 Puntos). Dados $\Omega := (0,1)$ y $f \in L^2(\Omega)$, interesa resolver el siguiente problema:

$$-u'' = f \text{ en } \Omega, \quad u(0) = 0, \quad u'(1) = 1.$$
 (1)

a) Defina $\sigma := u'$ en Ω y demuestre que una formulación variacional **mixta** de (1) se reduce a: $Hallar(\sigma, (u, \varphi)) \in H \times Q \ tal \ que$

$$a(\sigma,\tau) + b(\tau,(u,\varphi)) = F(\tau) \quad \forall \tau \in H, b(\sigma,(v,\psi)) = G((v,\psi)) \quad \forall (v,\psi) \in Q,$$
(2)

donde $H:=H^1(\Omega),\ Q:=L^2(\Omega)\times \mathbf{R},\ F\in H',\ G\in Q',\ \mathrm{y}\ a:H\times H\to \mathbf{R},$ $b:H\times Q\to \mathbf{R}$ son las formas bilineales definidas por

$$\begin{split} a(\sigma,\tau) := & \int_{\Omega} \, \sigma \, \tau \, dx \qquad \forall \, \sigma, \, \tau \in H \,, \\ b(\tau,(v,\psi)) := & \int_{\Omega} \, v \, \tau' \, dx \, + \, \psi \, \tau(1) \quad \forall \, (\tau,(v,\psi)) \in H \times Q \,. \end{split}$$

b) Defina los funcionales F y G, y aplique la teoría de Babuška-Brezzi para demostrar que (2) tiene una única solución.