

Belos: Next-Generation Iterative Solvers

2009 Trilinos User Group Meeting November 4, 2009

Chris Baker
David Day
Mike Heroux
Mike Parks
Heidi Thornquist (Lead)

Outline

- What is Belos?
 - Solvers
 - Belos: What's in a name?
 - Solver framework structure
 - Simple example
- Spotlight on "Recycling" Solvers
 - Why recycle?
 - Examples
 - Structure of recycling solver
- Summary

What is Belos?

- Solve Ax=b where A large, sparse. Matrix-free.
- Next-generation linear solver library (templated C++)
- Provide generic solver framework solution of large-scale linear systems
- Belos provides solvers for:
 - Single RHS: *Ax* = *b*
 - Multiple RHS (available simultaneously): AX = B
 - Multiple RHS (available sequentially): Ax_i = b_i, i=1,...,k
 - Sequential Linear systems: A_ix_i = b_i, i=1,...,k
- Leverage research advances of solver community:
 - Block methods: block GMRES [Vital], block CG/BICG [O'Leary]
 - "Seed" solvers: hybrid GMRES [Nachtigal, et al.]
 - "Recycling" solvers for sequences of linear systems [Parks, et al.]
 - Restarting, orthogonalization techiques
- Belos solver components are: interoperable, extensible, reusable
- Block linear solvers → Better multicore performance
- Multiprecision capability (via Tpetra)

Solvers

- Hermitian Systems (A = A^H)
 - Block CG
 - Pseudo-Block CG (Perform single-vector algorithm simultaneously)
 - ◆ RCG (Recycling Conjugate Gradients) New!
 - PCPG (Projected CG)
- Non-Hermitian System (A ≠ A^H)
 - Block GMRES
 - Pseudo-Block GMRES (Perform single-vector algorithm simultaneously)
 - Block FGMRES (Variable preconditioner)
 - Hybrid GMRES
 - ◆ TFQMR New!
 - GCRODR (Recycling GMRES)

Belos: What's in a name?

Belus - Wikipedia, the free encyclopedia

Belus in Latin or **Belos** in Greek transliteration is one of ... Belus (Babylonian): the Greek Zeus **Belos** and Latin Jupiter Belus as translations of the ...

en.wikipedia.org/wiki/Belus - Cached - Similar

Ba'al Zebûb

Main article: Beelzebub

Another version of the demon Baal is Beelzebub, or more accurately Ba'al Zebûb or Ba'al Z⁹bûb (Hebrew בעל-זבוב, Ba'al zvuv), who was originally the name of a deity worshipped in the Philistine city of Ekron. Ba'al Zebûb might mean 'Lord of Zebûb', referring to an unknown place named Zebûb, a pun with 'Lord of flies', zebûb being a Hebrew collective noun meaning 'fly'. This may mean that the Hebrews were derogating the god of their enemy. Later, Christian writings referred to Ba'al Zebûb as a demon or devil, often interchanged with **Beelzebub**. Either form may appear as an alternate name for Satan or

Let's just stick to the linear algebra...


```
x^{(0)} is an initial guess
for j = 1, 2, ....
    Solve r from Mr = b - Ax^{(0)}
    v^{(1)} = r/||r||_2
    s := ||r||_2 e_1
    for i = 1, 2, ..., m
        Solve w from Mw = Av^{(i)}
        for k = 1, ..., i
            h_{k,i} = (w, v^{(k)})
            w = w - h_{k,i}v^{(k)}
        end
        h_{i+1,i} = ||w||_2
        v^{(i+1)} = w/h_{i+1,i}
        apply J_1, ..., J_{i-1} on (h_{1,i}, ..., h_{i+1,i})
        construct J_i, acting on ith and (i + 1)st component
        of h_{..i}, such that (i+1)st component of J_i h_{..i} is 0
        s := J_i s
        if s(i + 1) is small enough then (UPDATE(\tilde{x}, i) and quit)
    end
    UPDATE(\tilde{x}, m)
end
```


SolverManager Class

```
x^{(0)} is an initial guess
for j = 1, 2, ....
    Solve r from Mr = b - Ax^{(0)}
    v^{(1)} = r/||r||_2
    s := ||r||_2 e_1
    for i = 1, 2, ..., m
        Solve w from Mw = Av^{(i)}
        for k = 1, ..., i
            h_{k,i} = (w, v^{(k)})
            w = w - h_{k,i}v^{(k)}
        end
        h_{i+1,i} = ||w||_2
        v^{(i+1)} = w/h_{i+1,i}
        apply J_1, ..., J_{i-1} on (h_{1,i}, ..., h_{i+1,i})
        construct J_i, acting on ith and (i + 1)st component
        of h_{..i}, such that (i+1)st component of J_i h_{..i} is 0
        s := J_i s
        if s(i + 1) is small enough then (UPDATE(\tilde{x}, i) and quit)
    end
    UPDATE(\tilde{x}, m)
end
```


SolverManager Class

Iteration Class

```
x^{(0)} is an initial guess
for j = 1, 2, ....
    Solve r from Mr = b - Ax^{(0)}
    v^{(1)} = r/||r||_2
    s := ||r||_2 e_1
    for i = 1, 2, ..., m
        Solve w from Mw = Av^{(i)}
        for k = 1, ..., i
            h_{k,i} = (w, v^{(k)})
            w = w - h_{k,i}v^{(k)}
        end
        h_{i+1,i} = ||w||_2
        v^{(i+1)} = w/h_{i+1,i}
        apply J_1, ..., J_{i-1} on (h_{1,i}, ..., h_{i+1,i})
        construct J_i, acting on ith and (i + 1)st component
        of h_{..i}, such that (i+1)st component of J_i h_{..i} is 0
        s := J_i s
        if s(i + 1) is small enough then (UPDATE(\tilde{x}, i) and quit)
    end
    UPDATE(\tilde{x}, m)
end
```


SolverManager Class

LinearProblem, Operator Classes Iteration

```
x^{(0)} is an initial guess
for j = 1, 2, ....
    Solve r from Mr = b - Ax^{(0)}
    v^{(1)} = r/||r||_2
    s := ||r||_2 e_1
    for i = 1, 2, ..., m
        Solve w from Mw = Av^{(i)}
        for k = 1, ..., i
            h_{k,i} = (w, v^{(k)})
            w = w - h_{k,i}v^{(k)}
        end
        h_{i+1,i} = ||w||_2
        v^{(i+1)} = w/h_{i+1,i}
        apply J_1, ..., J_{i-1} on (h_{1,i}, ..., h_{i+1,i})
        construct J_i, acting on ith and (i + 1)st component
        of h_{..i}, such that (i+1)st component of J_i h_{..i} is 0
        s := J_i s
        if s(i + 1) is small enough then (UPDATE(\tilde{x}, i) and quit)
    end
    UPDATE(\tilde{x}, m)
end
```


Class

SolverManager Class

LinearProblem, Operator Classes Iteration

```
Class
x^{(0)} is an initial guess
for j = 1, 2, ....
    Solve r from Mr = b - Ax^{(0)}
   v^{(1)} = r/||r||_2
    s := ||r||_2 e_1
   for i = 1, 2, ..., m
        Solve w from Mw = Av^{(i)}
                                                                                OrthoManager
        for k = 1, ..., i
                                                                                        Class
           h_{k,i} = (w, v^{(k)})
           w = w - h_{k,i} v^{(k)}
                                                                                 (ICGS, IMGS,
                                                                                       DGKS)
        h_{i+1,i} = ||w||_2
       v^{(i+1)} = w/h_{i+1,i}
        apply J_1, ..., J_{i-1} on (h_{1,i}, ..., h_{i+1,i})
        construct J_i, acting on ith and (i + 1)st component
        of h_{..i}, such that (i + 1)st component of J_i h_{..i} is 0
        s := J_i s
        if s(i + 1) is small enough then (UPDATE(\tilde{x}, i) and quit)
   end
   UPDATE(\tilde{x}, m)
end
```


SolverManager Class

LinearProblem, Operator Classes Iteration

LinearProblem, Operator Classes Iteration SolverManager Class Class $x^{(0)}$ is an initial guess for j = 1, 2,Solve r from $Mr = b - Ax^{(0)}$ $v^{(1)} = r/||r||_2$ $s := ||r||_2 e_1$ for i = 1, 2, ..., mSolve w from $Mw = Av^{(i)}$ OrthoManager for k = 1, ..., iClass $h_{k,i} = (w, v^{(k)})$ $w = w - h_{k,i} v^{(k)}$ (ICGS, IMGS, DGKS) $h_{i+1,i} = ||w||_2$ $v^{(i+1)} = w/h_{i+1,i}$ **StatusTest** apply $J_1, ..., J_{i-1}$ on $(h_{1,i}, ..., h_{i+1,i})$ construct J_i , acting on ith and (i + 1)st component Class of $h_{..i}$, such that (i+1)st component of $J_i h_{..i}$ is 0 $s := J_i s$ if s(i+1) is small enough then (UPDATE(\tilde{x}, i) and quit)

OutputManager Class

end

end

UPDATE(\tilde{x}, m)

Example (Step #1 – Initialize System)

```
int main(int argc, char *argv[]) {
 MPI Init(&argc,&argv);
 Epetra MpiComm Comm(MPI COMM WORLD);
  int MyPID = Comm.MyPID();
  typedef double
                                            ST;
  typedef Teuchos::ScalarTraits<ST>
                                           SCT;
  typedef SCT::magnitudeType
                                            MT;
                                                     Parameters for
  typedef Epetra MultiVector
                                            MV;
                                                        Templates
 typedef Epetra_Operator
                                            OP;
 typedef Belos::MultiVecTraits<ST,MV>
                                           MVT:
  typedef Belos::OperatorTraits<ST,MV,OP>
                                           OPT;
 using Teuchos::ParameterList;
 using Teuchos::RCP;
 using Teuchos::rcp;
  // Get the problem
 std::string filename("orsirr1.hb");
 RCP<Epetra_Map> Map;
 RCP<Epetra CrsMatrix> A;
 RCP<Epetra MultiVector> B, X;
 RCP<Epetra_Vector> vecB, vecX;
 EpetraExt::readEpetraLinearSystem(filename, Comm, &A, &Map, &vecX, &vecB);
 X = Teuchos::rcp implicit cast<Epetra MultiVector>(vecX);
 B = Teuchos::rcp implicit cast<Epetra MultiVector>(vecB);
```

Get linear system from disk

Example (Step #2 – Solver Params)

```
bool verbose = false, debug = false, proc_verbose = false;
int frequency = -1;
                           // frequency of status test output.
int blocksize = 1;
                           // blocksize
int numrhs = 1;
                           // number of right-hand sides to solve for
                                                                                Solver
int maxiters = 100;
                           // maximum number of iterations allowed
int maxsubspace = 50;
                           // maximum number of blocks
                                                                             Parameters
int maxrestarts = 15;
                           // number of restarts allowed
                           // relative residual tolerance
MT tol = 1.0e-5;
const int NumGlobalElements = B->GlobalLength();
ParameterList belosList;
belosList.set( "Num Blocks", maxsubspace);
                                                      // Maximum number of blocks in Krylov
  factorization
belosList.set( "Block Size", blocksize );
                                                      // Blocksize to be used by iterative solver
belosList.set( "Maximum Iterations", maxiters );
                                                      // Maximum number of iterations allowed
belosList.set( "Maximum Restarts", maxrestarts );
                                                      // Maximum number of restarts allowed
belosList.set( "Convergence Tolerance", tol );
                                                       // Relative convergence tolerance requested
int verbosity = Belos::Errors + Belos::Warnings;
if (verbose) {
  verbosity += Belos::TimingDetails + Belos::StatusTestDetails;
  if (frequency > 0)
    belosList.set( "Output Frequency", frequency );
                                                                    ParameterList for
if (debug) {
                                                                     SolverManager
  verbosity += Belos::Debug;
belosList.set( "Verbosity", verbosity );
```


Example (Step #3 – Solve)

```
// Construct linear problem instance.
Belos::LinearProblem<double,MV,OP> problem( A, X, B );
                                                                          LinearProblem
bool set = problem.setProblem();
if (set == false) {
                                                                                Object
  std::cout << std::endl << "ERROR:</pre>
                                    Belos::LinearProblem failed to
  set up correctly!" << std::endl;
  return -1;
                                 Template Parameters
// Start block GMRES iteration
                                                          SolverManager Object
Belos::OutputManager<double> My_OM();
// Create solver manager.
RCP< Belos::SolverManager<double,MV,OP> > newSolver =
  rcp( new Belos::BlockGmresSolMgr<double,MV,OP>(rcp(&problem,false), rcp(&belosList,false)));
// Solve
Belos::ReturnType ret = newSolver->solve();
if (ret!=Belos::Converged) {
  std::cout << std::endl << "ERROR: Belos did not converge!" << std::endl;</pre>
  return -1;
std::cout << std::endl << "SUCCESS: Belos converged!" << std::endl;</pre>
return 0;
```


Spotlight on Recycling

Sequences of Linear Systems

Consider sequence of linear systems

- Applications:
 - Newton/Broyden method for nonlinear equations
 - Materials science and computational physics
 - Transient circuit simulation
 - Crack propagation
 - Optical tomography
 - Topology optimization
 - Large-scale fracture in disordered materials
 - Electronic structure calculations
 - Stochastic finite element methods
- Iterative (Krylov) methods build search space and select optimal solution from that space
- Building search space is dominant cost
- For sequences of systems, get fast convergence rate and good initial guess immediately by recycling selected search spaces from previous systems

Why Recycle?

 Typically, dominant subspace exists such that almost any Krylov space (from any starting vector) has large components in that space (why restarting is bad)

Why Recycle?

- Typically, dominant subspace exists such that almost any Krylov space (from any starting vector) has large components in that space (why restarting is bad)
- Optimality derives from orthogonal projection
 - new search directions should be far from this dominant subspace for fast convergence
- If such a dominant subspace persists (approximately) from one system to the next, it can be recycled
 - Typically true when changes to problem are small and/or highly localized

Matrix	Off-the-shelf solver	Recycling Solver	Release
General	GMRES	GCRODR	Trilinos 8
SPD	CG	Recycling CG (RCG)	Trilinos 10
Symmetric Indefinite	MINRES	Recycling MINRES (RMINRES) N/A	

Deflation

- Invariant subspace associated with small eigenvalues delays convergence
- Corresponds to smooth modes that change little for small localized changes in the problem
- Remove them to improve convergence!
 - Recycle space = approximate eigenspace

$$\begin{split} \min_{\mathbf{z} \in K^{m}(\mathbf{A}, \mathbf{r}_{0})} & \left\| \mathbf{r}_{0} - \mathbf{A} \mathbf{z} \right\|_{2} = \min_{P_{m}(\mathbf{0}) = 1} \left\| \mathbf{p}_{m} \left(\mathbf{A} \right) \mathbf{r}_{0} \right\|_{2} \\ & \leq \kappa \left(\mathbf{V} \right) \left\| \mathbf{r}_{0} \right\|_{2} \min_{P_{m}(\mathbf{0}) = 1} \max_{\lambda \in \Lambda(\mathbf{A})} \left| \mathbf{p}_{m} \left(\lambda \right) \right| \end{split}$$

 If κ(V) is not large (normality assumption) we can improve bound by removing select eigenvalues

Typical Convergence with Recycling

- IC(0) preconditioner
- GMRES full recurrence
- All Others Max subspace size 40

Example #1 Topology Optimization*

- Optimize material distribution, ρ, in design domain
- Minimize compliance $u^TK(\rho)u$, where $K(\rho)u=f$

Example #1: Topology Optimization

Size	Num. DOFs	Direct Solve Time	Recycling Solve Time
Small	9,360	0.96	1.68
Medium	107,184	179.30	50.41
Large	1,010,160	26154.00	1196.30

Recycling Solve = RMINRES + IC(0) PC

Direct Solve = multifrontal, supernodal Cholesky factorization from TAUCS

Sandia

^{*}S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods with recycling, International Journal for Numerical Methods in Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007.

Example #2 Stochastic PDEs*

Stochastic elliptic equation

$$-\nabla \cdot (\mathbf{a}(\mathbf{x}, \omega)) \nabla \mathbf{u}(\mathbf{x}, \omega) = \mathbf{f}(\mathbf{x}) \quad \mathbf{x} \in \mathbf{D}, \omega \in \Omega$$
$$\mathbf{u}(\mathbf{x}, \omega) = \mathbf{0} \quad \mathbf{x} \in \partial \mathbf{D}, \omega \in \Omega$$

- KL expansion + double orthogonal basis + discretization
 - Separate deterministic and stochastic components
 - Yield sequence of uncoupled equations

- Preprocess for recycling Krylov solver
 - Use reordering scheme to minimize change in spectra of linear system

Example #2 Stochastic PDEs*

- Scheme #1: No Krylov recycling
- Scheme #4: Recycle Krylov spaces using reordering
- Many systems require zero iterations!

*C. Jin, X-C. Cai, and C. Li, *Parallel Domain Decomposition Methods for Stochastic Elliptic Equations*, SIAM Journal on Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007.

Structure of Recycling Solver

Structure of Recycling Solver

Summary

- Belos is a next-generation linear solver library
- Belos lets you solve:
 - Single RHS: Ax = b
 - Multiple RHS (available simultaneously): AX = B
 - Multiple RHS (available sequentially): $Ax_i = b_i$, i=1,...,k
 - Sequential Linear systems: $A_i x_i = b_i$, i=1,...,k
- Belos contains these solvers:
 - Block CG, Pseudo-Block CG, RCG, PCPG, Block GMRES, Pseudo-Block GMRES, Block FGMRES, Hybrid GMRES, TFQMR, GCRODR
- Check out the Trilinos Tutorial:

http://trilinos.sandia.gov/Trilinos10.0Tutorial.pdf

See Belos website for more:

http://trilinos.sandia.gov/packages/belos

