Econ 106: Data Analyis for Economics

Lecture 12

slides adapted from: https://r4ds.had.co.nz/tidy-data.html

Reminders

- Lab #3 is due Sunday 11:59pm
- MS #2 is posted, will be due the following Sunday (start it early!)
- No lecture next Monday (Veteran's Day)

#tidytuesday

10 most popular dog breeds and their drooling level

Popularity of dog breeds by AKC registration statistics from 2013-2020

TidyTuesday Week 5 | Data from American Kennel Club courtesy of KKakey

#tidytuesday

 Missing: the ranking of dogs most likely to use a basket at a pillow

Louberto!

Outline

- Joins:
 - left
 - inner
 - anti

Combining Data Tables

- Suppose you wanted to add the year founded column to the superheroes data
- How do we do this?

^	name [‡]	alignment [‡]	gender [‡]	publisher
1	Magneto	bad	male	Marvel
2	Storm	good	female	Marvel
3	Mystique	bad	female	Marvel
4	Batman	good	male	DC
5	Joker	bad	male	DC
6	Catwoman	bad	female	DC
7	Hellboy	good	male	Dark Horse Comics

^	publisher [‡]	yr_founded [‡]
1	DC	1934
2	Marvel	1939
3	Image	1992

Combining Data Tables

 First, we need to identify the variables that will link the tables together

^	publisher [‡]	yr_founded [‡]
1	DC	1934
2	Marvel	1939
3	Image	1992

Identify the Linking Variable(s)

- publisher is a variable that can tell us how to add yr_founded information to the superhero dataframe
- The variables used to connect two tables are called keys

^	name [‡]	alignment [‡]	gender [‡]	publisher [‡]
1	Magneto	bad	male	Marvel
2	Storm	good	female	Marvel
3	Mystique	bad	female	Marvel
4	Batman	good	male	DC
5	Joker	bad	male	DC
6	Catwoman	bad	female	DC
7	Hellboy	good	male	Dark Horse Comics

•	publisher [‡]	yr_founded [‡]
1	DC	1934
2	Marvel	1939
3	Image	1992

Primary Keys

- publisher uniquely identifies an observation in the publishers table (it is a primary key)
- It shows up in more than one row in the superhero data, but that's ok.

^	name [‡]	alignment [‡]	gender [‡]	publisher [‡]
1	Magneto	bad	male	Marvel
2	Storm	good	female	Marvel
3	Mystique	bad	female	Marvel
4	Batman	good	male	DC
5	Joker	bad	male	DC
6	Catwoman	bad	female	DC
7	Hellboy	good	male	Dark Horse Comics

•	publisher [‡]	yr_founded [‡]
1	DC	1934
2	Marvel	1939
3	Image	1992

Many-to-one Matching

- It's ok that information on the right table will show up on multiple rows of the left table (it has a clear destination)
- this is called many-to-one matching

Problems: wrong primary key

 In this example, term does not uniquely identify rows in the right data frame or the left data frame (it is not a primary key in either data frame)

Term	Year	GPA
Fall	2022	3.4
Winter	2023	3.3
Spring	2023	3.1
Fall	2023	3.2

Term	Year	Hours worked
Fall	2022	20
Winter	2023	30
Spring	2023	10
Fall	2023	40

Problems: wrong primary key

• If we tried to combine the data based on Term, The fall data rows on the right will match to the same rows on the left (many-to many matching)

Term	Year	GPA	
Fall	2022	3.4	•
Winter	2023	3.3	
Spring	2023	3.1	
Fall	2023	3.2	

Term	Year	Hours worked
Fall	2022	20
Winter	2023	30
Spring	2023	10
Fall	2023	40

Problems: wrong primary key

As a result, R will add extra rows for every combination of matches to the Term variable

Term	Year	GPA	
Fall	2022	3.4	
Winter	2023	3.3	
Spring	2023	3.1	
Fall	2023	3.2	

Term	Year	Hours worked
Fall	2022	20
Winter	2023	30
Spring	2023	10
Fall	2023	40

Term	Year	GPA	Hours worked
Fall	2022	3.4	20
Fall	2023	3.4	40
Winter	2023	3.3	30
Spring	2023	3.1	10
Fall	2023	3.2	40
Fall	2022	3.2	20

Solution: Primary key can be multiple variables

- We need to use more than one variable to link these two data frames correctly
- The primary key is year and term

Term	Year	GPA
Fall	2022	3.4
Winter	2023	3.3
Spring	2023	3.1
Fall	2023	3.2

Term	Year	Hours worked
Fall	2022	20
Winter	2023	30
Spring	2023	10
Fall	2023	40

Solution: Primary key can be multiple variables

- We need to use more than one variable to link these two data frames correctly
- The primary key is year and term
- there is no ambiguity on which rows should be matched together

Term	Year	GPA
Fall	2022	3.4
Winter	2023	3.3
Spring	2023	3.1
Fall	2023	3.2

Term	Year	Hours worked
Fall	2022	20
Winter	2023	30
Spring	2023	10
Fall	2023	40

Term	Year	GPA	Hours worked
Fall	2022	3.4	20
Winter	2023	3.3	30
Spring	2023	3.1	10
Fall	2023	3.2	40

Structure of a join

Required arguments:

- x: Data on the left:
- y: Data on the right

Optional, but recommended argument:

by: primary key

Types of Joins

- Left Join: keep all rows in the left dataset, even if they can't be matched
- Inner join: only keep rows in the left dataset that can be matched

Inner Join

Only keep matches

https://pollev.com/vsovero

inner_join(x=superheroes, y=publishers, by="publisher")

- Only keep the observations from x that can be matched to y
- Hellboy is dropped from the final table

publisher yr_founded			
1934			
1939			
1992			

inner_join(x = superheroes, y = publishers)				
name	alignment	gender	publisher	yr_founded
Magneto	bad	male	Marvel	1939
Storm	good	female	Marvel	1939
Mystique	bad	female	Marvel	1939
Batman	good	male	DC	1934
Joker	bad	male	DC	1934
Catwoman	bad	female	DC	1934

Left Join

- A left join keeps all rows in the left data table
- For matched rows, it merges in the values from the right data table
- For unmatched rows, it fills in NA values for the variables coming from the right data table.

https://pollev.com/vsovero

left_join (x=superheroes, y=publishers, by="publisher")

- Keep all the observations from x (table on the left), regardless of whether or not they can be matched to y
- Hellboy cannot be matched, so there is no information on yr_founded (NA)

publishers			
publisher yr_founded			
DC	1934		
Marvel	1939		
Image	1992		

left_join(x = superheroes, y = publishers)				
name	alignment	gender	publisher	yr_founded
Magneto	bad	male	Marvel	1939
Storm	good	female	Marvel	1939
Mystique	bad	female	Marvel	1939
Batman	good	male	DC	1934
Joker	bad	male	DC	1934
Catwoman	bad	female	DC	1934
Hellboy	good	male	Dark Horse Comics	NA

Be Careful: Order Matters

What happens if we swap the order of the datasets?

- 1. Data on the left: publishers
- 2. Data on the right: superheroes
- 3. Linking variable(s): publisher

left_join (x=publishers, y=superheroes, by="publisher")

- Keep all the observations from x (table on the left), regardless of whether or not they can be matched to y
- Image cannot be matched, so there is no information on variables in the superheroes data table(set to NA)

superheroes				
name	alignment	gender	publisher	
Magneto	bad	male	Marvel	
Storm	good	female	Marvel	
Mystique	bad	female	Marvel	
Batman	good	male	DC	
Joker	bad	male	DC	
Catwoman	bad	female	DC	
Hellboy	good	male	Dark Horse Comics	

	left_join(x = publishers, y = superheroes)						
publisher	yr_founded	name	alignment	gender			
DC	1934	Batman	good	male			
DC	1934	Joker	bad	male			
DC	1934	Catwoman	bad	female			
Marvel	1939	Magneto	bad	male			
Marvel	1939	Storm	good	female			
Marvel	1939	Mystique	bad	female			
Image	1992	NA	NA	NA			

Best Practices for Joins

- Define your "main" dataset as x (the data on the left)
- If you want to add variable to your main dataset, left joins are safer
- Left joins preserve all the original observations in your main dataset

The Recommended Join

left_join (x=superheroes, y=publishers, by="publisher")

publishers					
publisher	yr_founded				
DC	1934				
Marvel	1939				
lmage	1992				

left_	$left_join(x = superheroes, y = publishers)$							
name	alignment	gender	publisher	yr_founded				
Magneto	bad	male	Marvel	1939				
Storm	good	female	Marvel	1939				
Mystique	bad	female	Marvel	1939				
Batman	good	male	DC	1934				
Joker	bad	male	DC	1934				
Catwoman	bad	female	DC	1934				
Hellboy	good	male	Dark Horse Comics	NA				

Anti Join

- An anti-join keeps the rows from the left data table that *don't* have a match
- Anti-joins are useful for checking what didn't match and figuring out why

anti_join(x=superheroes, y=publishers, by="publisher")

- Keep the observations from x that have no match to y
- Hellboy cannot be matched, so this is the only observation kept
- There is no yr_founded because by definition there is no match to the publishers data

Example: NYC Flights

 Datasets containing information on flights in and out of the New York area in 2013 library(nycflights13) data(flights) data(weather)

Flights and Weather

- Suppose you wanted to add weather data to the flights data table
- Specifically, you want to add information on the weather at the time of the scheduled departure
- Look at all the variables in each data table. Which are needed to link these tables?

•	year [‡]	month [‡]	day [‡]	dep_time	sched_dep_time	dep_delay [‡]	arr_time	sched_arr_time	arr_c
1	2013	1	1	517	515	2	830	819	
2	2013	1	1	533	529	4	850	830	
3	2013	1	1	542	540	2	923	850	
4	2013	1	1	544	545	-1	1004	1022	
5	2013	1	1	554	600	-6	812	837	
6	2013	1	1	554	558	-4	740	728	
7	2013	1	1	555	600	-5	913	854	
8	2013	1	1	557	600	-3	709	723	
9	2013	1	1	557	600	-3	838	846	
10	2013	1	1	558	600	-2	753	745	
11	2013	1	1	558	600	-2	849	851	
12	2013	1	1	558	600	-2	853	856	
13	2013	1	1	558	600	-2	924	917	
14	2013	1	1	558	600	-2	923	937	
15	2013	1	1	559	600	-1	941	910	

•	origin [‡]	year [‡]	month [‡]	day [‡]	hour ‡	temp [‡]	dewp [‡]
1	EWR	2013	1	1	1	39.02	26.06
2	EWR	2013	1	1	2	39.02	26.96
3	EWR	2013	1	1	3	39.02	28.04
4	EWR	2013	1	1	4	39.92	28.04
5	EWR	2013	1	1	5	39.02	28.04
6	EWR	2013	1	1	6	37.94	28.04
7	EWR	2013	1	1	7	39.02	28.04
8	EWR	2013	1	1	8	39.92	28.04
9	EWR	2013	1	1	9	39.92	28.04
10	EWR	2013	1	1	10	41.00	28.04

Flights with Weather Added

- Flights is the "main" dataset
- we want to keep all flights, even if there isn't weather data available

```
flights_with_weather<-
left_join(x=flights,y=weather,
by=c("origin", "year", "month", "day",
"hour", "time_hour"))</pre>
```

What if we forget variables?

- let's suppose we forgot to include time_hour as a linking variable
- We still have enough information to make the join happen correctly
- data table will contain two new variables:
 - time_hour.x
 - time_hour.y

```
flights_with_weather<-
left_join(x=flights, y=weather,
by=c("origin", "year", "month", "day",
"hour"))</pre>
```

What if we forget variables?

```
flights_with_weather<-left_join(x=flights,y=weather,
by=c("origin", "year", "month", "day", "hour"))
```

minute [‡]	time_hour.x	temp [‡]	dewp [‡]	humid [‡]	wind_dir [‡]	wind_speed [‡]	wind_gust [‡]	precip [‡]	pressure [‡]	visib [‡]	time_hour.y [‡]
15	2013-01-01 05:00:00	39.02	28.04	64.43	260	12.65858	NA	0	1011.9	10	2013-01-01 05:00:00
29	2013-01-01 05:00:00	39.92	24.98	54.81	250	14.96014	21.86482	0	1011.4	10	2013-01-01 05:00:00
40	2013-01-01 05:00:00	39.02	26.96	61.63	260	14.96014	NA	0	1012.1	10	2013-01-01 05:00:00
45	2013-01-01 05:00:00	39.02	26.96	61.63	260	14.96014	NA	0	1012.1	10	2013-01-01 05:00:00
0	2013-01-01 06:00:00	39.92	24.98	54.81	260	16.11092	23.01560	0	1011.7	10	2013-01-01 06:00:00
58	2013-01-01 05:00:00	39.02	28.04	64.43	260	12.65858	NA	0	1011.9	10	2013-01-01 05:00:00
0	2013-01-01 06:00:00	37.94	28.04	67.21	240	11.50780	NA	0	1012.4	10	2013-01-01 06:00:00

Bigger Problem

 The join will not work correctly if we don't provide the primary key needed to match the flight data to the weather data

flights_with_weather<-left_join(x=flights,y=weather,

```
by=c("origin", "year", "month", "day"))

Detected an unexpected many-to-many relationship between `x` and `y`.
i Row 1 of `x` matches multiple rows in `y`.
i Row 8704 of `y` matches multiple rows in `x`.
i If a many-to-many relationship is expected, set `relationship = "many-to-many"` to silence this warning.
```

Solution: Have R identify the primary key

- If you don't include the by argument, R will "guess" which variables should be used to link two data tables
- It will assume any variables in common are linking variables
- The selections will be listed in the console

```
flights_with_weather<-
left_join(x=flights,y=weather)
```

```
> flights_with_weather<-left_join(x=flights,y=weather)
Joining with `by = join_by(year, month, day, origin, hour, time_hour)`
>
```

Health Coverage (tidy version)

 Each observation represents enrollment numbers by region, and year, and insurance type

⇒ Æ ▼ Filter						
*	Location [‡]	year [‡]	type [‡]	tot_coverage [‡]		
1	United States	2013	Employer	155696900		
2	United States	2013	Non-Group	13816000		
3	United States	2013	Medicaid	54919100		
4	United States	2013	Medicare	40876300		
5	United States	2013	Other Public	6295400		
6	United States	2013	Uninsured	41795100		
7	United States	2013	Total	313401200		
8	United States	2014	Employer	154347500		
9	United States	2014	Non-Group	19313000		
10	United States	2014	Medicaid	61650400		
11	United States	2014	Medicare	41896500		
12	United States	2014	Other Public	5985000		
13	United States	2014	Uninsured	32967500		
14	United States	2014	Total	316159900		

Expenditure Data

- We will try to add healthcare expenditure information to the coverage data table
- First, we need to load it and make it tidy

 Create a new data frame called spending_long that looks like the table on the right

^	Location [‡]	year	tot_spending [‡]
1	United States	1991_Total Health Spending	675896
2	United States	1992_Total Health Spending	731455
3	United States	1993_Total Health Spending	778684
4	United States	1994_Total Health Spending	820172
5	United States	1995_Total Health Spending	869578
6	United States	1996_Total Health Spending	917540
7	United States	1997_Total Health Spending	969531
8	United States	1998_Total Health Spending	1026103
9	United States	1999_Total Health Spending	1086280
10	United States	2000_Total Health Spending	1162035
11	United States	2001_Total Health Spending	1261944
12	United States	2002_Total Health Spending	1367628
13	United States	2003_Total Health Spending	1477697
14	United States	2004_Total Health Spending	1587994
15	United States	2005_Total Health Spending	1696222
16	United States	2006_Total Health Spending	1804672
17	United States	2007 Total Health Spending	1918820

 Create a new data frame called spending_sep that looks like the table on the right

•	Location [‡]	year [‡]	tot_spending [‡]
1	United States	1991	675896
2	United States	1992	731455
3	United States	1993	778684
4	United States	1994	820172
5	United States	1995	869578
6	United States	1996	917540
7	United States	1997	969531
8	United States	1998	1026103
9	United States	1999	1086280
10	United States	2000	1162035
11	United States	2001	1261944
12	United States	2002	1367628
13	United States	2003	1477697
14	United States	2004	1587994
15	United States	2005	1696222
16	United States	2006	1804672
17	United States	2007	1918820

Left join coverage_sep and spending_sep, call it coverage_left

- Create a data frame of all the observations in the coverage data that cannot be matched to the spending data
- Why do you think they couldn't be matched?

- Create a data frame of all the observations in the spending data that cannot be matched to the coverage data
- Why do you think they couldn't be matched?

https://pollev.com/vsovero