C		
Surname	1	Other names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidial Unit 2: Application of	ry	ciples of Chemistry
1		
Friday 10 June 2016 – After Time: 1 hour 30 minutes	rnoon	Paper Reference WCH02/01

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \bowtie . If you change your mind, put a line through the box \bowtie and then mark your new answer with a cross \boxtimes .

How many molecular ion peaks are in the mass spectrum of 1,2-dichloroethane? Assume the only isotopes present are ¹H, ¹²C, ³⁵Cl and ³⁷Cl.

- A 4
- \mathbb{Z} B 3
- \times C
- **D** 1

(Total for Question 1 = 1 mark)

- 2 Four compounds that contribute to global warming are
 - A carbon dioxide
 - methane
 - **C** dichlorodifluoromethane
 - **D** sulfur hexafluoride
 - (a) Which of these molecules is polar?

(1)

- X A
- \mathbf{B}
- X C
- \times D
- (b) Which of these compounds is emitted in the largest quantity by anthropogenic activity?

- X A
- \times C
- \square D

(c) Which of these compounds depletes the ozone layer?	(1)
	(1)
(d) Which of these molecules has an octahedral structure?	
	(1)
□ D	
(Tota	al for Question 2 = 4 marks)
Which of the following is a tertiary alcohol?	
☑ A 4-methylpentan-2-ol	
☑ B 3-methylpentan-2-ol	
C 2-methylpentan-3-ol	
☑ D 3-methylpentan-3-ol	
(To	tal for Question 3 = 1 mark)

4 This question is about two isomeric alcohols and two isomeric carbonyl compounds.

Propan-1-ol, CH₃CH₂CH₂OH

Propan-2-ol, CH₃CH(OH)CH₃

Propanal, CH₃CH₂CHO

Propanone, CH₃COCH₃

(a) Which of these compounds would **not** produce a colour change when heated with acidified sodium dichromate(VI) solution?

(1)

- A Propan-1-ol
- B Propan-2-ol
- C Propanal
- D Propanone
- (b) Which pair of compounds would you expect to both have a singly charged peak at m/e = 29 in their mass spectra?

(1)

- ☑ A Propan-1-ol and propan-2-ol
- ☑ B Propan-2-ol and propanal
- C Propanal and propanone
- D Propan-1-ol and propanal
- (c) Which compound would you expect to give a peak at m/e = 31 in its mass spectrum?

- A Propan-1-ol
- ☑ B Propan-2-ol
- C Propanal
- D Propanone

(d) The infrared spectrum of one of these compounds is given below.

Use the infrared absorptions, in wavenumbers, to identify the compound.

Bond	Wavenumber range / cm ⁻¹
O—H (alcohol)	3750 – 3200
C—H (alkane)	2962 – 2853
C—H (aldehyde)	2900 – 2820 and 2775 – 2700
C=O (aldehyde or ketone)	1740 – 1680

The compound with this infrared spectrum is

(1)

- ☑ A propan-1-ol.
- ☑ B propan-2-ol.
- C propanal.
- **D** propanone.

(Total for Question 4 = 4 marks)

- **5** A Maxwell-Boltzmann curve shows the distribution of molecular energies in a reaction system. When the temperature in this system is **decreased**, the peak is

 - **B** higher and further to the left.
 - C lower and further to the right.
 - **D** lower and further to the left.

(Total for Question 5 = 1 mark)

Use this space for rough working. Anything you write in this space will gain no credit.

6 This question is about the equilibrium reaction between hydrogen and carbon dioxide.

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$
 $\Delta H^{\oplus} = +40 \text{ kJ mol}^{-1}$

What effect would the following changes have on the rate of the reaction and the yield of carbon monoxide?

(a) **Decrease** in temperature from 700 K to 600 K.

(1)

	Rate	Yield of CO
⊠ A	no change	decrease
⊠ B	decrease	decrease
⊠ C	decrease	increase
⊠ D	no change	increase

(b) **Increase** in pressure.

(1)

	Rate	Yield of CO
⋈ A	increase	increase
ВВ	increase	no change
⊠ C	no change	increase
⊠ D	no change	no change

(Total for Question 6 = 2 marks)

- 7 What is produced when magnesium burns in air?
 - ☑ A Magnesium oxide only
 - B Magnesium oxide and magnesium carbonate
 - ☑ C Magnesium oxide and magnesium nitride
 - **D** Magnesium oxide, magnesium nitride and magnesium carbonate

(Total for Question 7 = 1 mark)

8 What happens to the solubilities of hydroxides and sulfates as Group 2 is **ascended** from barium to magnesium?

		Solubility of hydroxides	Solubility of sulfates
×	Α	decreases	decreases
×	В	decreases	increases
×	C	increases	decreases
×	D	increases	increases

(Total for Question 8 = 1 mark)

- **9** Which of the following substances does **not** form when a few drops of concentrated sulfuric acid are added to potassium bromide?
 - \boxtimes **A** Br₂
 - B H₂S

 - \square **D** SO_2

(Total for Question 9 = 1 mark)

- **10** 10.00 cm³ of 1.00 mol dm⁻³ sulfuric acid is fully neutralized by 20.00 cm³ of 1.00 mol dm⁻³ of sodium hydroxide.
 - (a) What is the concentration, in mol dm⁻³, of sodium sulfate solution produced by the reaction?

- **■ B** 0.50
- **C** 0.67
- **D** 1.00

		e volumes are measured using burettes, with each burette reading having an certainty of $\pm 0.05 \; \text{cm}^3$.
	Th	e percentage uncertainty in measuring the 10.00 cm³ of the acid is (1)
	⊠ A	±0.05%
	⊠ B	±0.10%
	⊠ C	±0.50%
	⊠ D	±1.00%
		(Total for Question 10 = 2 marks)
11	In wat	er, hexan-1-ol is less soluble than ethanol. The best explanation for this is that
	⊠ A	hexan-1-ol molecules cannot form hydrogen bonds with water molecules but ethanol molecules can.
	⋈ B	carbon-carbon bonds are stronger in hexan-1-ol than in ethanol.
	⊠ C	London forces between hexan-1-ol molecules are stronger than between ethanol molecules.
	⊠ D	permanent dipole forces are stronger in hexan-1-ol than in ethanol.
		(Total for Question 11 = 1 mark)
12	As Gro	oup 7 is descended , the boiling temperatures of the hydrogen halides, from HF to HI,
	⊠ A	decrease then increase.
	⊠ B	decrease.
	⊠ C	increase then decrease.
	⋈ D	increase.
		(Total for Question 12 = 1 mark)
_		
		TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided. 13 This question is about three chlorine compounds: BCl₃, NCl₃ and Cl₂O₇. (a) For BCl₃, give the shape of the molecule and give the CIBCl bond angle. (2)Shape Bond angle *(b) For the NCl₃ molecule, draw the shape you would expect, and suggest the CINCl bond angle. Explain why the molecule has this shape and bond angle. (4)Shape Bond angle Explanation (c) (i) What is the oxidation number of chlorine in Cl_2O_7 ? (1)

(ii) One oxygen atom bonds to both chlorine atoms in Cl_2O_7 . Suggest a displayed formula for Cl_2O_7 .

(1)

(iii) Water reacts with ${\rm Cl_2O_7}$ to form a single product. Suggest the equation for this reaction. State symbols are not required.

(1)

(Total for Question 13 = 9 marks)

- **14** This question is about 1-chlorobutane, 1-bromobutane, and 1-iodobutane.
 - (a) 1-chlorobutane can be made by adding potassium chloride to a mixture of butan-1-ol and concentrated sulfuric acid.
 - (i) Explain why it is not possible to make 1-iodobutane from butan-1-ol using potassium iodide and concentrated sulfuric acid.

(2)

(ii) 1-iodobutane is prepared by adding iodine in small portions to a mixture of red phosphorus and butan-1-ol.

When all the iodine has been added, the mixture is refluxed.

In this reaction, iodine reacts with phosphorus to produce phosphorus triiodide, which then reacts with the butan-1-ol to form 1-iodobutane.

Write an equation for each reaction. State symbols are not required.

(2)

(b) The rates of reaction of thr	ee halogenoalkanes with water are	e compared.
2 cm³ of ethanol is added t	o three test tubes, A , B and C .	
Three drops of the haloger	noalkane are added separately to e	each of these three test tubes.
1-chlorobutane is added to	test tube A .	
1-bromobutane is added to	o test tube B .	
1-iodobutane is added to t	est tube C .	
2 cm³ portions of hot aque	ous silver nitrate solution are adde	ed to each test tube.
(i) Explain why ethanol is	added to each test tube.	
		(1)
 (ii) Give the name of the organic product which forms in all of these reactions. (iii) The halide ion formed in each reaction reacts with the silver nitrate solution to give a precipitate. Give the colour of the precipitate formed in test tube C and give the ionic equation for the formation of this precipitate. Include state symbols in your equation. 		
(ii) Give the name of the o	rganic product which forms in all o	
	n each reaction reacts with the sil	ver nitrate solution to
equation for the format	tion of this precipitate.	
Colour		(-/
Fauation		
Equation		
the precipitates formed	-	separate samples of
		(2)
Precipitate from Tube A		
Precipitate from Tube C		

(v) Give the order in which the precipitates form, in the test tubes A , B and C , giving the fastest first.	(1)
*(vi) State how the bond polarities of carbon-halogen bonds vary.	
Explain why bond polarity does not determine the rate of this reaction.	(2)
(c) When these halogenoalkanes are heated separately with concentrated potassium hydroxide in ethanol, the same gaseous organic produc	t forms.
(i) Give the structural formula for this organic product.	(1)
(ii) State the type of reaction which occurs.	(1)
(iii) Give a chemical test for this organic product and state the colour change that occurs.	t
Test	(2)
Colour change	

- (d) All three halogenoalkanes undergo substitution reactions with ammonia. The initial reaction forms butylamine, CH₃CH₂CH₂CH₂NH₂.
 - (i) Write the equation for the initial reaction of 1-iodobutane with ammonia. State symbols are not required.

(1)

(ii) The butylamine formed also reacts with the 1-iodobutane in a further substitution reaction.

Suggest a structural formula for the product of this reaction.

(1)

(Total for Question 14 = 19 marks)

15	Hydrated	barium nitrate, Ba(NO ₃) ₂ .4H ₂ O, is strongly heated in a boiling tube and the
	following	changes occur.
	Stage 1	The white solid forms a clear colourless solution

- Condensation forms around the mouth of the boiling tube and a white Stage 2 solid starts to form at the bottom of the tube.
- As the heating continues, the colourless solution disappears leaving Stage 3 another white solid.
- This white solid melts. Stage 4
- Stage 5 Nitrogen dioxide and oxygen gases are given off, and barium oxide is left in the test tube.
- (a) (i) Give the formula for the white solid formed in Stage 3.

(1)

(ii) What would you see when nitrogen dioxide is given off in Stage 5?

(1)

(iii) Describe the test for oxygen and its positive result.

(1)

(iv) Write the equation for the complete thermal decomposition of hydrated barium nitrate, Ba(NO₃)₂.4H₂O.

State symbols are not required.

(2)

	(Total for Question 15 = 13 ma	rks)
cium chloride	Barium chloride	
State what you would see in each t	test.	(2)
	m can be distinguished using flame tests.	
		(3)
*(c) Explain why anhydrous calcium nit anhydrous barium nitrate.	rate decomposes more readily than	(2)
		(3)
Detailed measurements are not red	quired.	
State two essential conditions neconstruction of the State two essential conditions neconstructions and the State two essential conditions neconstructions.	essary to ensure a rail test.	

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

16 Sunflower oil is an important edible oil. It can be used as an alternative to butter in cooking.

A useful method of comparing fats and oils is by measuring their iodine values. An iodine value is the amount of iodine in grams that reacts with 100 g of a fat or oil. The iodine value is a measure of the degree of unsaturation of the fat or oil.

The iodine value of sunflower oil can be determined in the following way.

Add 0.200 g of sunflower oil to a 250 cm³ conical flask.

Add 10 cm³ of solvent to dissolve the oil.

Add 10.0 cm³ of a solution of iodine monochloride, called Wijs solution.

Stopper the flask and allow to stand in the dark for half an hour.

Add 15 cm³ (an excess) of 10% potassium iodide solution and 100 cm³ of water, and shake the mixture.

Titrate the liberated iodine with 0.100 mol dm⁻³ sodium thiosulfate solution. This gives the sample titre.

Carry out a blank titration with the same sodium thiosulfate solution, using 10 cm³ of solvent, 10.0 cm³ of Wijs solution, 15 cm³ of 10% potassium iodide solution and 100 cm³ of water.

- (a) Trichloromethane and 1,1,1-trichloroethane are two possible solvents for this reaction.
 - (i) Give the **skeletal** formulae for trichloromethane and 1,1,1-trichloroethane.

(2)

Trichloromethane

1,1,1-trichloroethane

(ii) Explain why 1,1,1-trichloroethane has a higher boiling temperature than trichloromethane.	(2)
(iii) Suggest why solvents such as trichloromethane and 1,1,1-trichloroethane are no longer used.	(1)
(b) (i) Complete the formula of the product when iodine monochloride reacts with linoleic acid, CH ₂ (CH ₂) ₄ CH=CHCH ₂ CH=CH(CH ₂) ₇ COOH, the most abundant unsaturated compound in sunflower oil.	(1)
CH ₃ (CH ₂) ₄ —C—C—CH ₂ —C—C—(CH ₂) ₇ COOH	
(ii) Iodine monochloride solution is preferred to iodine solution for this reaction because it is more reactive.	
Explain why this is so.	(1)
(iii) Suggest why Wijs solution is stored in a brown bottle.	(1)

(iv) The equation for the reaction between iodide ions and iodine monochloride is given below.

Show that this is a redox reaction by giving all the oxidation numbers and identifying the oxidizing agent.

(2)

$$ICI + I^{-} \rightarrow I_{2} + CI^{-}$$

Oxidation numbers

Oxidizing agent

(c) (i) Starch solution is usually added as an indicator towards the end of the titration.

Describe how the colour of the mixture would change during the titration, **before** starch is added.

(1)

(ii) Explain why starch solution is not added at the start of the titration.

(1)

- (d) In the blank titration, 40.0 cm³ of 0.100 mol dm⁻³ sodium thiosulfate solution reacted with 10.0 cm³ of Wijs solution.
 - (i) Calculate the number of moles of 0.100 mol dm⁻³ sodium thiosulfate that reacted in the **blank** titre.

(1)

(ii) Calculate the number of moles of iodine, I₂, which reacted with the thiosulfate solution in the blank titration.

$$2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$$

(iii) Using your answer to (d)(ii), and the equation in (b)(iv), deduce the corresponding number of moles of iodine monochloride solution in 10.0 cm³ of Wijs solution.

(1)

(iv) The number of moles of iodine monochloride left after reacting the Wijs solution with the sample of the sunflower oil, calculated from the titre, is 1.10×10^{-3} mol.

Use this, and your answer to (d)(iii), to calculate the number of moles of iodine monochloride that reacted with the sample.

(1)

(v) Your answer to (d)(iv) is equal to the number of moles of iodine that would have reacted with 0.2 g of sunflower oil.

Calculate the number of moles of iodine that would have reacted with 100 g of sunflower oil.

(1)

(vi) Calculate the mass of iodine, I_2 , which would have reacted with 100 g of sunflower oil, which is the iodine value for the sunflower oil.

(e) Butter contains a smaller percentage of unsaturated molecules than sunflower oil.

Would the titre value and iodine value for butter be higher, lower or about the same as the values for sunflower oil?

(1)

Titre value

lodine value

(Total for Question 16 = 19 marks)

TOTAL FOR SECTION C = 19 MARKS TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

1	2	3
	pmpnts	;
	Ē	=
1	a	?
Ĺ	ī	J
	_	
	ö)
	a	,
î	7	1
ŀ	0	3
	ンにつつによると)
÷	7	3
	č	5
•	Ē	-
	ā	j
۵	2	-
	a	1
	9	É
ĩ		3

ted	[222] Rn radon 86	Xe xenon 54	83.8 Kr krypton 36	2 20.2 Ne neon 10 39.9 Ar argon 18	(18) 4.0 He hellum 2	0 (8)
een repor	[210] At astatine 85	126.9 I iodine 53	79.9 Br bromine 35	(17) 19.0 F fluorine 9 35.5 CI chlorine 17	(17)	7
116 have b ticated	[209] Po polonium 84	127.6 Te tellurium 52	79.0 Se selenium 34	(16) 16.0 0 0 0 0 0 32.1 5 sulfur 16	(16)	9
tomic numbers 112-116 hav but not fully authenticated	209.0 Bi bismuth 83	121.8 Sb antimony 51	74.9 As arsenic 33	(15) 14.0 N nitrogen 7 31.0 P phosphorus 15	(15)	2
atomic nur but not fi	207.2 Pb lead 82	118.7 Sn tin 50	72.6 Ge germanium 32	(14) C Carbon 6 6 Si stitcon 14	(14)	4
Elements with atomic numbers 112-116 have been reported but not fully authenticated	204.4 Ti thallium 81	In In indium 49	69.7 Ga gallium 31	(13) 10.8 B boron 5 27.0 Al aluminium 13	(13)	m
Elem	Hg mercury 80	Cd Cd cadmium 48	65.4 Zn zinc 30	(12)		
Rg roentgenium 111	197.0 Au gold 79	Ag silver 47	63.5 Cu copper 29	(11)		
Ds damstactium n	195.1 Pt platinum 78	106.4 Pd palladium 46	58.7 Ni nickel 28	(10)		
[268] Mt meitnerium (109	192.2 Ir iridium 77	102.9 Rh rhodium 45	58.9 Co cobalt 27	(6)		
Hs Hassium r	190.2 Os osmium 76	Ru Ru ruthenium 44	55.8 Fe iron 26	(8)	1.0 Hydrogen	
[264] Bh bohrium 107	Re rhenium 75		Mn Manganese 25	(2)		
Sg seaborgium 106	183.8 W tungsten 74	95.9 [98] Mo Tc molybdenum technetium 42 43	Cr Mn chromium manganese 24 25	nass ool umber (6)		
[262] Db dubnium s	180.9 Ta tantalum 73	92.9 Nb ntobium r 41	50.9 V vanadium 23	relative atomic mass atomic symbol name atomic (proton) number (4) (5) (6)	Key	
[261] Rf rutherfordium	178.5 Hf hafnium 72	91.2 Zr Zrrconium 40	47.9 Ti titanium 22	relativatoric atomic (4)		
[227] Ac* actinium	138.9 La* (anthanum 57	88.9 Y yttrium 39	45.0 Sc scandium 21	(3)		
[226] Ra radium 88	137.3 Ba barium 1 56	87.6 Sr strontium 38	Ca calcium 20	(2) 9.0 Be beryllium 4 24.3 Mg magnesium 12	(2)	7
[223] Fr Fr franctum 87	Cs Cs caesium 55	85.5 Rb rubidium 37	39.1 K K potassium 19	6.9 Li Li lithium 3 23.0 Na sodium r 11	ε	-

157 159 163 165	152 157 159 163 165 165 Eu Gd Tb Dy Ho Ho Ho Ho Ho Ho Ho H	150 152 157 159 163 165	169	πL	n thulium ytterbio
157 159 163 163 164 164 164 164 164 164 165 164 165	152 157 159 163 163 Eu Gd Tb Dy Dy	Sm Eu Gd Tb Dy samarium europium gadotlinium terbium dysprosium h 62 63 64 65 66 6 [242] [243] [247] [245] [251]	-		-
Gd Tb Ga Tb gadolinium terbium dy 64 65 [247] [245]	152 157 159 150	150 152 157 159 Sm Eu Gd Tb samarium europium gadotinium terbium dy 62 63 64 65 (242) (243) (247) (245)	165	유	m holmiur
157 Gd m gadolinium 64 [247]	152 157 Eu Gd n europium gaddinium 163 64 [243] [247]	150 157 157 157	163	6	dysprosiur
B E	152 Eu n europium ga 63	Sm Eu Samarium europium ga 62 63 [243]	159	4	terbium 65
152 Eu europium 63	ő F	150 Sm samarium et 62 [242]	157	8	gadolinium 64
	150 Sm samarium 62 [242]	S S	152	品	europium 63
E E	Nd Neodymium 60 238		141	<u>P</u>	praseodymium 50
Nd Nd nm neodymium pr 60	ě	141 Pr praseodymum 59 [231]	140	å	cerium 58

* Lanthanide series * Actinide series [257]