

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) March 2014		2. REPORT TYPE Briefing Charts		3. DATES COVERED (From - To) March 2014- April 2014	
4. TITLE AND SUBTITLE Novel Methodology for the Highly-Efficient Separation of Oil and Water (Briefing Charts)		5a. CONTRACT NUMBER			
		5b. GRANT NUMBER			
		5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S) Joseph Mabry, Anish Tuteja, Andrew Guenthner, Josiah Reams, Arun Kota, Gibum Kwon, Wonjae Choi		5d. PROJECT NUMBER			
		5e. TASK NUMBER			
		5f. WORK UNIT NUMBER Q014			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQRP 10 E. Saturn Blvd. Edwards AFB CA 93524-7680			8. PERFORMING ORGANIZATION REPORT NO.		
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQR 5 Pollux Drive Edwards AFB CA 93524-7048			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-RQ-ED-VG-2014-051		
12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for Public Release; Distribution Unlimited.					
13. SUPPLEMENTARY NOTES Briefing charts presented at ACS National Meeting and Expo, Dallas, TX, 16 March 2014. PA#14128					
14. ABSTRACT Briefing Charts					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 37	19a. NAME OF RESPONSIBLE PERSON Joseph Mabry
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified			19b. TELEPHONE NO (include area code) 661-275-5857

Novel Methodology for the Highly-Efficient Separation of Oil and Water

16 March 2014

Joseph Mabry, Anish Tuteja, Andrew Guenthner, Josiah Reams,
Arun Kota, Gibum Kwon, Wonjae Choi
Air Force Research Laboratory
Aerospace Systems Directorate
joseph.mabry@us.af.mil
(661) 275-5857

Distribution Statement A: Approved for public release; distribution unlimited.

Non-wetting surfaces

Contact angles with water:

Superhydrophilic

$$\theta \sim 0^\circ$$

Hydrophilic

$$0^\circ < \theta < 90^\circ$$

Hydrophobic

$$\theta > 90^\circ$$

Superhydrophobic

$$\theta^* > 150^\circ$$

Similarly, superoleophobic surfaces display contact angle $\theta^* > 150^\circ$ with oils or alkanes

Nanocomposite Materials

POSS

Nanosilicas

Layered silicates

Linear silicates

Fluorinated POSS Synthesis

Angew Chem 2008

DISTRIBUTION A. Approved for public release; distribution unlimited.

Hydrophobic Materials

- Spin-cast surface of Fluorodecyl POSS
- ~4 μm rms roughness by AFM
- 154° Water contact angle

Zisman Analysis

Fluorodecyl:

$R = -\text{CH}_2-\text{CH}_2-(\text{CF}_2)_7-\text{CF}_3$

GG analysis results in
surface energy calculation
of: $\gamma_c = 8 \text{ mN/m}$

Contacting liquids:

hexadecane ($\gamma_v = 27.5 \text{ mN/m}$), dodecane (25.3), decane (23.8),
octane (21.6), heptane (20.1) and pentane (15.5)

The Lotus Leaf

Water, $\gamma_{LV} = 72.1 \text{ mN/m}$

Hexadecane, $\gamma_{LV} = 27.5 \text{ mN/m}$

On most surfaces, $\theta_{oil} < \theta_{water}$. This is because the surface tension (γ_{LV}) of water is significantly higher than that for oils.

Critical role of re-entrant texture ($\psi < 90^\circ$)

It is possible to support a composite interface even if $\theta < 90^\circ$

Re-entrant curvature : $180^\circ > \theta > 0^\circ$

Lotus Leaf

Cylinders / Fibers

Herminghaus, *Euro. Phys. Lett.* (2000), Tuteja et al. *Science* (2007); Tuteja et al., PNAS, (2008).

Designing Omniphobic Surfaces

- Constructing super-repellent surfaces
 - Three key ingredients

PMMA + 44 wt% POSS
electrospun coating (beads on a string) morphology

The Dip-Coating Process

Hexadecane ($\gamma_L = 27.5 \text{ mN/m}$) on an as-received commercial polyester fabric

Dip

Before

Dry (heat in oven at 60° C for 20 minutes)

After dip-coating with a solution of fluorodecyl POSS

Solution of fluorodecyl POSS in Asahiklin (30 mg/ml)

Dip-Coated Polyester Fabric

Before coating

Hexadecane

After coating with fluorodecyl POSS in Asahiklin (30 mg/ml)

$\gamma_{lv} = 22.7 \text{ mN/m}$ $\gamma_{lv} = 27.5 \text{ mN/m}$ $\gamma_{lv} = 50.8 \text{ mN/m}$ $\gamma_{lv} = 72 \text{ mN/m}$

Methanol

Hexadecane

Methylene
Iodide

Water

Dip-coating process for conformal coating of textured surfaces

$R_f = -CH_2-CH_2-(CF_2)_7-CF_3$
Fluorodecyl POSS

$\gamma_{sv} \approx 8 \text{ mN/m}$

Tecnoflon® (BR9151)
Fluoro-elastomer from
Solvay-Solexis
 $\gamma_{sv} \approx 18 \text{ mN/m}$

50:50 mixture, total solids = 10 mg/ml

Anticon 100 polyester fabric

Before Dip-coating

200 μm

EDAXS spectrum for fluorine

After Dip-coating

200 μm

Designing Superoleophobic Surfaces

Anish Tuteja,¹ Wonjae Choi,² Minglin Ma,¹ Joseph M. Mabry,³ Sarah A. Mazzella,³ Gregory C. Rutledge,¹ Gareth H. McKinley,^{2*} Robert E. Cohen,^{1*}

**Superhydrophobic
Superoleophilic**

At low POSS concentrations many surfaces are *both* superhydrophobic and superoleophilic ($\theta_{\text{alkane}}^* \approx 0^\circ$). Thus, these porous surfaces form ideal membranes for separating mixtures / dispersions of alkanes (oils) and water

Science, 2007, 318, 1618.

DISTRIBUTION A. Approved for public release; distribution unlimited.

PEGDA + Fluorodecyl POSS

Can hydrogen bond with water

Photo-crosslinkable

$$R_f = -\text{CH}_2\text{-CH}_2\text{-(CF}_2\text{)}_7\text{-CF}_3$$

Fluorodecyl POSS

$$\gamma_{sv} \approx 8 \text{ mN/m}$$

Fluorodecyl POSS molecules preferentially segregate to the air interface and crystallize.

AFM Phase images of spin-coated PEGDA + POSS films

20% POSS
Under water

DISTRIBUTION A. Approved for public release; distribution unlimited.

PEGDA + Fluorodecyl POSS

PEGDA + fluorodecyl POSS blends

Surfaces with inherent re-entrant curvature **dip-coated** with PEGDA + POSS blends

PEGDA surface reconfiguration leads to superhydrophilic behavior.

Free oil – water separation

Stainless steel mesh coated with PEGDA + 20 wt% fluorodecyl POSS.

Free oil – water separation

DISTRIBUTION A. Approved for public release; distribution unlimited.

1-Liter scale separation

DISTRIBUTION A. Approved for public release; distribution unlimited.

Separation of Oil-Water Emulsions

Water-in-Oil Emulsion

Oil-in-Water Emulsion

A simple, scalable, gravity-based system for the separation of both oil-in-water and water-in-oil emulsions. This is one of the first gravity-based systems to achieve such high emulsion separation efficiencies.

Gravity-driven, continuous-flow device

DISTRIBUTION A. Approved for public release; distribution unlimited.

Oil-Water Emulsion Separation

Separation Efficiency

Summary

- We have developed surfaces that for the first time are superhydrophilic and superoleophobic.
- Such surfaces are ideal for the separation of both free-oil and oil-water emulsions.
- The designed membranes, for the first time, allow continuous-flow oil-water emulsion separation.

Acknowledgements

Professor Anish Tuteja
Oil/Water Separation Membranes

Polymer Working Group
Fluorinated POSS

Financial Support

Air Force Office of Scientific Research

Air Force Research Laboratory, Propulsion Directorate

Impact of a Novel Fuel Processing Technique

Payload:
\$0.5B - 2B
10-15 yr.

**Launch
Vehicle:**
\$40M - 100M

Fuel
\$100k

A novel fuel processing technique will enable:
Composition modification without the need of large refineries
Preparation of fuel in remote locations
Assured access
Reduced logistics costs

Novel Liquid-Liquid Extraction Process

Vision

To develop the capability to produce high-performance military fuels at reduced cost with increased availability.

Thesis: Use ℓ/ℓ extraction to provide improvements in several critical areas

Objective: Utilize liquid/liquid extraction process to improve performance, increase availability, and reduce cost of RP by producing these fuels from less expensive feed streams.

Undesirables in RP-1

Oil Red B4 (ORB4)

Dye in RP-1

65 wt% Solvent Red 164

15-30 wt% xylene

5-10 wt% ethylbenzene

Detrimental to
Thermal Stability!

Sulfur Compounds

Present in RP-1

Concentration varies

Aromatics

Present in RP-1

Concentration varies

Detrimental to
Performance

RP-2 is expensive and requires an additional supply chain, which also consumes resources and may be put at risk due to unforeseen circumstances.

Removal from less expensive feed streams will increase availability, reduce supply risk, reduce cost, and improve performance.

Extraction Parameter Determination

Visible spectroscopy was used to determine concentration of dye from 2-40 ppm.

Small scale extractions show IPA is the most efficient extraction solvent for dyes.

Higher IPA : Water ratio results in higher dye concentration.

Optimum IPA : Water ratio is ~13 : 1 based on small scale extractions.

Extraction Curves

Equilibrium curve for compounds extracted from dodecane with IPA:water 10:1 v:v ratio

Extraction Apparatus

Extraction of Sulfur from RP-1

Sulfur Compounds by GC-SCD (Sulfur Speciation)	Concentration (ppm)
C2 Thiophenes	<0.1
C3-C4 Thiophenes	1.6
C5 Thiophenes	6.3
C6 Thiophenes	6.1
C7 Thiophenes	5.8
C8-C9 Thiophenes	4.9
C10 Thiophenes	1.3
C11 Thiophenes	0.9
C12+ Thiophenes	2.0

Standard Grade RP-1
(Errors are ± 0.3 ppm)

Sulfur Compounds by GC-SCD (Sulfur Speciation)	Concentration (ppm)
C2 Thiophenes	0.3
C3-C4 Thiophenes	1.4
C5 Thiophenes	3.7
C6 Thiophenes	3.5
C7 Thiophenes	4.1
C8-C9 Thiophenes	2.9
C10 Thiophenes	0.6
C11 Thiophenes	0.6
C12+ Thiophenes	<0.1

Standard Grade RP-1 after extraction with 10:1 IPA water in extraction apparatus

Applied Materials Group

The Applied Materials Group at Edwards Air Force Base

Dr. Greg Yandek

Dr. Andrew Guenthner

Dr. Josiah Reams

Dr. Tim Haddad

Mr. Jason Lamb

Dr. Jeff Alston

Mr. Jacob Marcischak

Mr. Kevin Lamison

Dr. Joe Mabry

Lt Diane Fernandez

Mr. Michael Ford

AFRL/RQR

AFOSR

Acknowledgements

Professor Anish Tuteja

Oil/Water Separation Membranes

Polymer Working Group

Fluorinated POSS and Extraction Work

Financial Support

Air Force Office of Scientific Research

*Air Force Research Laboratory, Aerospace Systems
Directorate*

QUESTIONS?

U.S. AIR FORCE