RC4136

General Performance Quad 741 Operational Amplifier

Description

The 4136 is made up of four 741 type independent high gain operational amplifiers internally compensated and constructed on a single silicon chip using the planar epitaxial process.

This amplifier meets or exceeds all specifications for 741 type amplifiers. Excellent channel separation allows the use of the 4136 quad amplifier in all 741 operational amplifier applications providing the highest possible packaging density.

The specially designed low noise input transistors allow the 4136 to be used in low noise signal processing applications such as audio preamplifiers and signal conditioners.

Features

- ♦ Unity gain bandwidth 3 MHz
- Short circuit protection
- No frequency compensation required
- No latch-up
- Large common mode and differential voltage ranges
- ◆ Low power consumption
- Parameter tracking over temperature range
- ◆ Gain and phase match between amplifiers

Connection Information

Thermal Characteristics

	14-Lead Small Outline	14-Lead 14-Lea Plastic Ceram DIP DIP			
Max. Junction Temp.	+125°C	+125°C	+175℃		
Max. P _D T _A <50°C	300 mW	468 mW	1042 mW		
Therm. Res θ _{JC}			60°C/W		
Therm. Res. θ _{JA}	200°C/W	160°C/W	120°C/W		
For T _A >50°C Derate at	5.0 mW per °C	6.25 mW per °C	8.38 mW per *C		

Absolute Maximum Ratings

Supply Voltage	
RM4136	±22V
RC4136	±18V
Input Voltage ¹	±30V
Differential Input Voltage	
Output Short Circuit Duration2	Indefinite
Storage Temperature	
Range	65°C to +150°C
Operating Temperature Range	
RM4136	55°C to +125°C
RC4136	0°C to +70°C
Lead Soldering Temperature	
(DIP, 60 sec)	+300°C
(SO-14, 10 sec)	
•	

Notes:

Ordering Information

Part Number	Package	Operating Temperature Range
RC4136N	N	0°C to +70°C
RC4136M	M	0°C to +70°C
RM4136D	D	-55°C to +125°C
RM4136D/883B	D	-55°C to +125°C

Notes:

883B suffix denotes Mil-Std-883, Level B processing

N = 14-lead plastic DIP

D = 14-lead ceramic DIP

M = 14-lead plastic SOIC

For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
Short circuit may be to ground, typically 45 mA.

Electrical Characteristics

 $(V_S = \pm 15V \text{ and } T_A = +25^{\circ}C, \text{ unless otherwise noted})$

		RM4136			RC4136			
Parameters	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	R _S ≤10kΩ		0.5	5.0		0.5	6.0	mV
Input Offset Current			5.0	200		5.0	200	nA
Input Bias Current			40	500		40	500	nA
Input Resistance		0.3	5.0		0.3	5.0		MΩ
Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_{OUT} = \pm 10V$	50	300		20	300		V/mV
Output Voltage Swing	$R_L \ge 10k\Omega$	±12	±14		±12	±14	1	٧
	$R_L \ge 2k\Omega$	±10	±13		±10	±13		
Input Voltage Range		±12	±14		±12	±14		٧
Common Mode Rejection Ratio	R _S ≤10kΩ	70	100		70	100		dB
Power Supply Rejection Ratio	R _S ≤10kΩ	76	100		76	100		dB
Power Consumption	R _L = ∞, All Outputs		210	340		210	340	mW
Transient Response						<u> </u>		
Rise Time	$V_{IN} = 20$ mV, $R_L = 2$ k Ω		0.13			0.13		μS
Overshoot	C _L ≤ 100pF		5.0		-	5.0		%
Unity Gain Bandwidth		†	3.0			3.0	1	MHz
Slew Rate	R _L ≥2kΩ		1.5			1.0	+	V/µS
Channel Separation	$F = 1.0kHz$, $R_S = 1k\Omega$		90			90		dB

The following specifications apply for RM = -55°C \leq T_A \leq = 125° RC = 0°C \leq T_A \leq = 70°, V_S = \pm 15V

Input Offset Voltage	R _S ≤10kΩ			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1500			800	nA
Large Signal Voltage Gain	$R_L ≥ 2kΩ, V_{OUT} = ±10V$	25			15			V/mV
Output Voltage Swing	R _L ≥2kΩ	±10		1	±10			V
Power Consumption			240	400		240	400	mW

RC4136

Electrical Characteristics Comparison

 $(V_S = \pm 15V \text{ and } T_A + 25^{\circ}C \text{ unless otherwise noted})$

Parameter	RC4136(Typ)	RC741(Typ)	LM324(Typ)	Units
Input Offset Voltage	0.5	2.0	2.0	mV
Input Offset Current	5.0	10	5.0	nA
Input Bias Current	40	80	55	nA
Input Resistance	5.0	2.0		MΩ
Large Signal Voltage Gain ($R_L = 2k\Omega$)	300	200	100	V/mV
Output Voltage Swing (R _L = 2kΩ)	±13V	±13V	+V _S - 1.2V	٧
-			to -V _S	
Input Voltage Range	±14V	±13V	+V _S -1.5V	٧
			to -V _S	
Common Mode Rejection Ratio	100	90	85	dB
Power Supply Rejection Ratio	100	90	100	dB
Transient Response				
Rise Time	0.13	0.3		μS
Overshoot	5.0	5.0		%
Unity Gain Bandwidth	3.0	0.8	0.8	MHz
Slew Rate	1.0	0.5	0.5	V/µS
Input Noise Voltage Density (F= 1kHz)	10	22.5		nV/√Hz
Short Circuit Current	±45	±25		mA

Typical Performance Characteristics

Input Bias Current vs. of Temperature

Input Offset Current vs. Temperature

Input Common Mode Voltage Range vs. Supply Voltage

Output Voltage vs. Supply Voltage

Open Loop Gain vs. Temperature

Power Consumption vs. Temperature

Typical Performance Characteristics (Continued)

Open Loop Gain vs. Frequency

Output Voltage Swing vs. Frequency

Input Noise Voltage Density vs. Frequency

Input Noise Current Density vs. Frequency

Output Voltage Swing vs. Load Resistance

Quiescent Current vs. Supply Voltage

Typical Performance Characteristics (Continued)

Total Harmonic Distortion vs. Output Voltage

4136 Versus 324

Although the 324 is an excellent device for singlesupply applications where ground sensing is important, it is a poor substitute for four 741s in split supply circuits. The simplified input circuit of the 4136 exhibits much lower noise than that of the 324 and exhibits no crossover distortion as compared with the 324 (see illustration). The 324 shows significant crossover distortion and pulse delay in attempting to handle a large signal input pulse.

Follower Large Signal Pulse Response Output Voltage vs. Time

Input Common Mode Voltage Range vs. Supply Voltage

Lamp Driver

Voltage Follower

Comparator with Hysteresis

DC Coupled 1 kHz Lowpass Active Filter

Squarewave Oscillator

1 kHz Bandpass Active Filter

AC Coupled Non-Inverting Amplifier

AC Coupled Inverting Amplifier

Voltage Control Oscillator (VCO)

Full-Wave Rectifier and Averaging Filter

Notch Filter Using the 4136 as a Gyrator

Notch Frequency vs. C1

Multiple Aperture Window Discriminator

Differential Input Instrumentation Amplifier with High Common Mode Rejection

Analog Multiplier/Divider

Spot Noise Measurement Test Circuit

Schematic Diagram

