

Dependency Pairs and Polynomial Path Orders

Martin Avanzini and Georg Moser

Computational Logic Faculty of Computer Science, University of Innsbruck

RTA '09

Automatic Complexity Analysis

Goal

purely automatic complexity analysis

Approach

- employ term rewriting as model of computation
 - 1. proof termination
 - 2. extract complexity certificates from termination proof

Automatic Complexity Analysis

Goal

purely automatic complexity analysis

Approach

- employ term rewriting as model of computation
 - 1. proof termination
 - 2. extract complexity certificates from termination proof

Problem

▶ to detect feasible computation, restrictions on termination technique usually inevitable

Term Rewriting TRS $\mathcal{R}_{\text{hits}}$

$$\begin{aligned} \mathsf{half}(0) &\to 0 & \mathsf{bits}(0) &\to 0 \\ \mathsf{half}(\mathsf{s}(0)) &\to 0 & \mathsf{bits}(\mathsf{s}(0)) &\to \mathsf{s}(0) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{aligned}$$

Term Rewriting TRS $\mathcal{R}_{\mathsf{bits}}$

$$\begin{aligned} \mathsf{half}(0) &\to 0 & \mathsf{bits}(0) &\to 0 \\ \mathsf{half}(\mathsf{s}(0)) &\to 0 & \mathsf{bits}(\mathsf{s}(0)) &\to \mathsf{s}(0) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{aligned}$$

bits(s(s(0)))

Term Rewriting

TRS $\mathcal{R}_{\mathsf{bits}}$

$$\begin{split} &\mathsf{half}(0) \to 0 & \mathsf{bits}(0) \to 0 \\ &\mathsf{half}(\mathsf{s}(0)) \to 0 & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) \\ &\mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{split}$$

$$\mathsf{bits}(\mathsf{s}(\mathsf{s}(0))) \to_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(0))))$$

Term Rewriting TRS $\mathcal{R}_{\text{bits}}$

$$\begin{aligned} & \mathsf{half}(0) \to 0 & \mathsf{bits}(0) \to 0 \\ & \mathsf{half}(\mathsf{s}(0)) \to 0 & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) \\ & \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{aligned}$$

$$\mathsf{bits}(\mathsf{s}(\mathsf{s}(\mathsf{0}))) \to_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(\mathsf{0})))) \to_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{0})))$$

Term Rewriting TRS $\mathcal{R}_{\text{bits}}$

$$\begin{split} & \mathsf{half}(0) \to 0 & \mathsf{bits}(0) \to 0 \\ & \mathsf{half}(\mathsf{s}(0)) \to 0 & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) \\ & \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{split}$$

$$\mathsf{bits}(\mathsf{s}(\mathsf{s}(0))) \to_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(0)))) \to_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(0))) \to_{\mathcal{R}} \mathsf{s}(\mathsf{s}(0))$$

Term Rewriting TRS $\mathcal{R}_{\text{bits}}$

$$\begin{aligned} \mathsf{half}(0) &\to 0 & \mathsf{bits}(0) &\to 0 \\ \mathsf{half}(\mathsf{s}(0)) &\to 0 & \mathsf{bits}(\mathsf{s}(0)) &\to \mathsf{s}(0) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{aligned}$$

$$\mathsf{bits}(\mathsf{s}(\mathsf{s}(0))) \to_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(0)))) \to_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(0))) \to_{\mathcal{R}} \mathsf{s}(\mathsf{s}(0))$$

$$\mathsf{bits}(n) = \mathsf{v} \Longleftrightarrow \mathsf{bits}(\lceil n \rceil) \to_{\mathcal{R}}^! \lceil \mathsf{v} \rceil$$

computation

MA (ICS @ UIBK) Dependency Pairs and ${
m POP}^*$ 4,

Term Rewriting

TRS
$$\mathcal{R}_{\mathsf{bits}}$$

$$\begin{split} & \mathsf{half}(0) \to 0 & \mathsf{bits}(0) \to 0 \\ & \mathsf{half}(\mathsf{s}(0)) \to 0 & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) \\ & \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \\ & & \mathsf{confluent} \ \mathsf{and} \\ & & \mathsf{terminating} \\ & & \mathsf{constructor} \ \mathsf{TRS} \end{split}$$

$$\mathsf{bits}(n) = v \iff \mathsf{bits}(\lceil n \rceil) \to_{\mathcal{R}}^! \lceil v \rceil$$

computation

Term Rewriting

TRS $\mathcal{R}_{\mathsf{bits}}$

$$\begin{split} & \mathsf{half}(0) \to 0 & \mathsf{bits}(0) \to 0 \\ & \mathsf{half}(\mathsf{s}(0)) \to 0 & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) \\ & \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \\ & & \mathsf{confluent} \ \mathsf{and} \\ & \mathsf{terminating} \\ & \mathsf{constructor} \ \mathsf{TRS} \end{split}$$

$$\mathsf{bits}(n) = \mathsf{v} \iff \mathsf{bits}(\lceil n \rceil) \to_{\mathcal{R}}^! \lceil \mathsf{v} \rceil = \lceil \log(n+1) \rceil$$
 computation

► derivation length

$$\begin{split} \mathsf{dl}(t,\to) &= \mathsf{max}\{n \mid \exists s.\ t \to^n s\} \\ \\ \mathsf{dl}(n,T,\to) &= \mathsf{max}\{\mathsf{dl}(t,\to) \mid t \in T \text{ and } |t| \leqslant n\} \end{split}$$

► derivation length

$$\begin{split} & \mathsf{dl}(t, \to) = \mathsf{max}\{n \mid \exists s. \ t \to^n s\} \\ & \mathsf{dl}(n, T, \to) = \mathsf{max}\{\mathsf{dl}(t, \to) \mid t \in T \text{ and } |t| \leqslant n\} \end{split}$$

derivational complexity

$$dc_{\mathcal{R}}(n) = dl(n, \mathcal{T}, \rightarrow_{\mathcal{R}})$$

(ICS @ UIBK) Dependency Pairs and POP*

► derivation length

$$\begin{aligned} &\operatorname{dl}(t,\to) = \max\{n \mid \exists s.\ t \to^n s\} \\ &\operatorname{dl}(n,T,\to) = \max\{\operatorname{dl}(t,\to) \mid t \in T \text{ and } |t| \leqslant n\} \end{aligned}$$

derivational complexity

$$\mathsf{dc}_{\mathcal{R}}(n) = \mathsf{dl}(n, \mathcal{T}, \to_{\mathcal{R}})$$

runtime complexity

capture complexity of computed functions

$$\operatorname{rc}_{\mathcal{R}}(n) = \operatorname{dl}(n, \mathcal{B}, \rightarrow_{\mathcal{R}})$$

 $\mathcal{B} := \{ f(v_1, \dots, v_n) \mid f \text{ defined}, v_i \text{ build from constructors} \}$

► derivation length

$$\begin{aligned} &\operatorname{dl}(t,\to) = \max\{n \mid \exists s.\ t \to^n s\} \\ &\operatorname{dl}(n,T,\to) = \max\{\operatorname{dl}(t,\to) \mid t \in T \text{ and } |t| \leqslant n\} \end{aligned}$$

derivational complexity

$$dc_{\mathcal{R}}(n) = dl(n)$$
avoid duplication
of redexes

▶ innermost runtime complexity

$$\operatorname{rc}_{\mathcal{R}}^{\mathsf{i}}(n) = \operatorname{dl}(n, \mathcal{B}, \xrightarrow{\mathsf{i}}_{\mathcal{R}})$$

 $\mathcal{B} := \{ f(v_1, \dots, v_n) \mid f \text{ defined}, v_i \text{ build from constructors} \}$

$$\triangleright$$
 $>_{pop*} \subseteq$ $>_{mpo}$

$$\mathcal{R}\subseteq >_{\mathsf{pop}*} \Rightarrow \mathsf{rc}_{\mathcal{R}}^{\mathsf{i}}$$
 polynomially bounded

- \triangleright $>_{pop*} \subseteq$ $>_{mpo}$
- \triangleright $>_{pop*} \approx >_{mpo} \cap$ predicative recursion

Predicative Recursion [Bellantoni, Cook 1992]

$$f(\varepsilon, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(z \cdot i, \vec{x}; \vec{y}) = h_i(z, \vec{x}; \vec{y}, f(z, \vec{x}; \vec{y})), i \in \{0, 1\}$$

$$f(\underbrace{x_1,\ldots,x_m}_{\text{normal}};\underbrace{y_1,\ldots,y_n}_{\text{safe}})$$

$$\mathcal{R}\subseteq >_{\mathsf{pop}*} \Rightarrow \mathsf{rc}^{\mathsf{i}}_{\mathcal{R}}$$
 polynomially bounded

- \triangleright $>_{pop*} \subseteq$ $>_{mpo}$
- ightharpoonup $>_{\mathsf{pop}*} \approx >_{\mathsf{mpo}} \cap \mathsf{predicative}$ recursion
- $ightharpoonup \mathcal{R} \subseteq \ \gt_{\mathsf{pop}*} \ \mathsf{and} \ s \to_{\mathcal{R}} t \not\Rightarrow s \gt_{\mathsf{pop}*} t$

$$\mathcal{R} \subseteq >_{pop*} \Rightarrow rc_{\mathcal{R}}^{i}$$
 polynomially bounded

- \triangleright $>_{pop*} \subseteq$ $>_{mpo}$
- $ightharpoonup >_{pop*} \approx >_{mpo} \cap \text{ predicative recursion}$
- $ightharpoonup \mathcal{R} \subseteq \ \gt_{\mathsf{pop}*} \ \mathsf{and} \ s \to_{\mathcal{R}} t \not\Rightarrow s \gt_{\mathsf{pop}*} t$

Lemma

if $\mathcal{R} \subseteq >_{pop*}$ then there exists $\mathcal{I}: \mathcal{T}(\mathcal{F}, \mathcal{V}) \to \mathbb{N}$ satisfying

1.
$$s \xrightarrow{i}_{\mathcal{R}} t \Rightarrow \mathcal{I}(s) > \mathcal{I}(t)$$

$$\mathcal{R}\subseteq >_{\mathsf{pop}*} \Rightarrow \mathsf{rc}^{\mathsf{i}}_{\mathcal{R}}$$
 polynomially bounded

- \triangleright $>_{pop*} \subseteq$ $>_{mpo}$
- ightharpoonup $>_{\mathsf{pop}*} \approx >_{\mathsf{mpo}} \cap \mathsf{predicative}$ recursion
- $lackbox{} \mathcal{R} \subseteq \ >_{\mathsf{pop}*} \ \mathsf{and} \ s \to_{\mathcal{R}} t \not\Rightarrow s >_{\mathsf{pop}*} t$

Lemma

if $\mathcal{R} \subseteq \mathbb{R}_{pop*}$ then there exists $\mathcal{I}: \mathcal{T}(\mathcal{F}, \mathcal{V}) \to \mathbb{N}$ satisfying

- 1. $s \xrightarrow{i}_{\mathcal{R}} t \Rightarrow \mathcal{I}(s) > \mathcal{I}(t)$
- 2. $\mathcal{I}(t)$ polynomially bounded (in the size of t) for basic terms t

$$\mathcal{R}\subseteq >_{pop*} \Rightarrow rc_{\mathcal{R}}^{i}$$
 polynomially bounded

Polynomial Path Orders $>_{pop*}$ (continued)

Observation

$$>_{\mathsf{pop}*} \subseteq >_{\mathsf{mpo}}$$

► application of polynomial path orders restricted to MPO-terminating TRS's

Polynomial Path Orders >_{pop*} (continued)

Observation

$$>_{\mathsf{pop}*} \subseteq >_{\mathsf{mpo}}$$

 application of polynomial path orders restricted to MPO-terminating TRS's

dependency pairs for complexity analysis

► reduction pairs, argument filterings, usable rules, dependency graphs, subterm criterion . . .

Polynomial Path Orders >_{pop*} (continued)

Observation

$$>_{\mathsf{pop}*} \subseteq >_{\mathsf{mpo}}$$

 application of polynomial path orders restricted to MPO-terminating TRS's

dependency pairs for complexity analysis

► reduction pairs, argument filterings, usable rules, dependency graphs, subterm criterion . . .

Dependency Pairs for Complexity Analysis

$$t^{\sharp} = \begin{cases} t & \text{if } t \text{ a variable} \\ f^{\sharp}(t_1, \dots, t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

$$\text{WIDP}(\mathcal{R}) = \{ I^{\sharp} \to \mathsf{c}(r_1^{\sharp}, \dots r_n^{\sharp}) \mid I \to \pmb{C}[r_1, \dots, r_n] \in \mathcal{R} \}$$

- ▶ C maximal context built from constructors and variables
- ightharpoonup c fresh compound symbol (but we set c(t) = t)

Dependency Pairs for Complexity Analysis

$$t^{\sharp} = \begin{cases} t & \text{if } t \text{ a variable} \\ f^{\sharp}(t_1, \dots, t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

$$\text{WIDP}(\mathcal{R}) = \{ I^{\sharp} \to c(r_1^{\sharp}, \dots r_n^{\sharp}) \mid I \to C[r_1, \dots, r_n] \in \mathcal{R} \}$$

- ▶ C maximal context built from constructors and variables
- ightharpoonup c fresh compound symbol (but we set c(t) = t)

TRS
$$\mathcal{R}$$
 WIDP(\mathcal{R})
$$f(0) \to 0 \qquad \qquad f^{\sharp}(0) \to c_1$$

$$f(s(x)) \to d(f(x), f(x)) \qquad f^{\sharp}(s(x)) \to c_2(f^{\sharp}(x), f^{\sharp}(x))$$

TRS $\mathcal{R}_{\mathsf{bits}}$

$$\begin{split} \mathsf{half}(0) &\to 0 & \mathsf{bits}(0) \to 0 \\ \mathsf{half}(\mathsf{s}(0)) &\to 0 & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{split}$$

$$\mathcal{P} := \mathsf{WIDP}(\mathcal{R}_\mathsf{bits})$$

$$\begin{array}{ll} \mathsf{half}^{\sharp}(0) \to \mathsf{c}_1 & \mathsf{bits}^{\sharp}(0) \to \mathsf{c}_3 \\ \mathsf{half}^{\sharp}(\mathsf{s}(0)) \to \mathsf{c}_2 & \mathsf{bits}^{\sharp}(\mathsf{s}(0)) \to \mathsf{c}_4 \end{array}$$

 $\mathsf{half}^\sharp(\mathsf{s}(\mathsf{s}(\mathsf{x}))) \to \mathsf{half}^\sharp(\mathsf{x}) \qquad \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{s}(\mathsf{x}))) \to \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{half}(\mathsf{x})))$

TRS $\mathcal{R}_{\mathsf{bits}}$

$$\begin{split} \mathsf{half}(0) &\to 0 & \mathsf{bits}(0) \to 0 \\ \mathsf{half}(\mathsf{s}(0)) &\to 0 & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{split}$$

$$\mathcal{P} := \mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}})$$

$$\begin{split} & \mathsf{half}^{\sharp}(0) \to c_1 & \mathsf{bits}^{\sharp}(0) \to c_3 \\ & \mathsf{half}^{\sharp}(\mathsf{s}(0)) \to c_2 & \mathsf{bits}^{\sharp}(\mathsf{s}(0)) \to c_4 \\ & \mathsf{half}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{half}^{\sharp}(x) & \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{half}(x))) \end{split}$$

$$\mathsf{bits}(\mathsf{s}(\mathsf{s}(0))) \ \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \ \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(0)))) \ \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \ \mathsf{s}(\mathsf{bits}(\mathsf{s}(0))) \ \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \ \mathsf{s}(\mathsf{s}(0))$$

TRS $\mathcal{R}_{\mathsf{bits}}$

$$\begin{split} \mathsf{half}(0) &\to 0 & \mathsf{bits}(0) \to 0 \\ \mathsf{half}(\mathsf{s}(0)) &\to 0 & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{split}$$

$$\mathcal{P} := \mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}})$$

$$\begin{array}{ll} \mathsf{half}^{\sharp}(0) \to \mathsf{c}_1 & \mathsf{bits}^{\sharp}(0) \to \mathsf{c}_3 \\ \mathsf{half}^{\sharp}(\mathsf{s}(0)) \to \mathsf{c}_2 & \mathsf{bits}^{\sharp}(\mathsf{s}(0)) \to \mathsf{c}_4 \\ \mathsf{half}^{\sharp}(\mathsf{s}(\mathsf{s}(\mathsf{x}))) \to \mathsf{half}^{\sharp}(\mathsf{x}) & \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(\mathsf{x}))) \to \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{half}(\mathsf{x}))) \end{array}$$

$$\mathsf{bits}(\mathsf{s}(\mathsf{s}(0))) \ \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \ \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(0)))) \ \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \ \mathsf{s}(\mathsf{bits}(\mathsf{s}(0))) \ \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \ \mathsf{s}(\mathsf{s}(0))$$

bits $\sharp(s(s(0)))$

TRS $\mathcal{R}_{\mathsf{bits}}$

$$\begin{split} \mathsf{half}(0) &\to 0 & \mathsf{bits}(0) \to 0 \\ \mathsf{half}(\mathsf{s}(0)) &\to 0 & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{split}$$

$$\mathcal{P} := \mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}})$$

$$\begin{array}{ll} \mathsf{half}^\sharp(0) \to \mathsf{c}_1 & \mathsf{bits}^\sharp(0) \to \mathsf{c}_3 \\ \mathsf{half}^\sharp(\mathsf{s}(0)) \to \mathsf{c}_2 & \mathsf{bits}^\sharp(\mathsf{s}(0)) \to \mathsf{c}_4 \\ \mathsf{half}^\sharp(\mathsf{s}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{half}^\sharp(x) & \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{half}(x))) \end{array}$$

$$\mathsf{bits}(\mathsf{s}(\mathsf{s}(0))) \xrightarrow{\mathsf{i}}_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(0)))) \xrightarrow{\mathsf{i}}_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(0))) \xrightarrow{\mathsf{i}}_{\mathcal{R}} \mathsf{s}(\mathsf{s}(0))$$

 $\mathsf{bits}^\sharp(\mathsf{s}(\mathsf{s}(0))) \xrightarrow{\mathsf{i}}_{\mathcal{P} \cup \mathcal{R}} \; \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{half}(0)))$

TRS $\mathcal{R}_{\mathsf{bits}}$

$$\begin{array}{ll} \mathsf{half}(\mathsf{0}) \to \mathsf{0} & \mathsf{bits}(\mathsf{0}) \to \mathsf{0} \\ \mathsf{half}(\mathsf{s}(\mathsf{0})) \to \mathsf{0} & \mathsf{bits}(\mathsf{s}(\mathsf{0})) \to \mathsf{s}(\mathsf{0}) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{array}$$

$$\mathcal{P} := \mathsf{WIDP}(\mathcal{R}_\mathsf{bits})$$

$$\begin{array}{ll} \mathsf{half}^{\sharp}(0) \to \mathsf{c}_1 & \mathsf{bits}^{\sharp}(0) \to \mathsf{c}_3 \\ \mathsf{half}^{\sharp}(\mathsf{s}(0)) \to \mathsf{c}_2 & \mathsf{bits}^{\sharp}(\mathsf{s}(0)) \to \mathsf{c}_4 \\ \mathsf{half}^{\sharp}(\mathsf{s}(\mathsf{s}(\mathsf{x}))) \to \mathsf{half}^{\sharp}(\mathsf{x}) & \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(\mathsf{x}))) \to \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{half}(\mathsf{x}))) \end{array}$$

$$bits(s(s(0))) \xrightarrow{i}_{\mathcal{R}} s(bits(s(half(0)))) \xrightarrow{i}_{\mathcal{R}} s(bits(s(0))) \xrightarrow{i}_{\mathcal{R}} s(s(0))$$

$$bits^{\sharp}(s(s(0))) \xrightarrow{i}_{\mathcal{P} \cup \mathcal{R}} bits^{\sharp}(s(half(0))) \xrightarrow{i}_{\mathcal{P} \cup \mathcal{R}} bits^{\sharp}(s(0))$$

TRS $\mathcal{R}_{\mathsf{bits}}$

$$\begin{split} \mathsf{half}(0) &\to 0 & \mathsf{bits}(0) \to 0 \\ \mathsf{half}(\mathsf{s}(0)) &\to 0 & \mathsf{bits}(\mathsf{s}(0)) \to \mathsf{s}(0) \\ \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) &\to \mathsf{s}(\mathsf{half}(x)) & \mathsf{bits}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(x)))) \end{split}$$

$$\mathcal{P} := \mathsf{WIDP}(\mathcal{R}_\mathsf{bits})$$

$$\begin{array}{ll} \mathsf{half}^\sharp(0) \to \mathsf{c}_1 & \mathsf{bits}^\sharp(0) \to \mathsf{c}_3 \\ \mathsf{half}^\sharp(\mathsf{s}(0)) \to \mathsf{c}_2 & \mathsf{bits}^\sharp(\mathsf{s}(0)) \to \mathsf{c}_4 \\ \mathsf{half}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{half}^\sharp(x) & \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{half}(x))) \end{array}$$

 $bits(s(s(0))) \xrightarrow{i}_{\mathcal{R}} s(bits(s(half(0)))) \xrightarrow{i}_{\mathcal{R}} s(bits(s(0))) \xrightarrow{i}_{\mathcal{R}} s(s(0))$ $bits^{\sharp}(s(s(0))) \xrightarrow{i}_{\mathcal{P} \sqcup \mathcal{R}} bits^{\sharp}(s(half(0))) \xrightarrow{i}_{\mathcal{P} \sqcup \mathcal{R}} bits^{\sharp}(s(0)) \xrightarrow{i}_{\mathcal{P} \sqcup \mathcal{R}} c_{4}$

```
\mathcal{U} := \mathcal{U}(\mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}}))
                                                                                                                                                                                      usable rules
                             half(0) \rightarrow 0
                    half(s(0)) \rightarrow 0
            half(s(s(x))) \rightarrow s(half(x))
\mathcal{P} := \mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}})
                               half^{\sharp}(0) \rightarrow c_1
                                                                                                                          bits^{\sharp}(0) \rightarrow c_3
                     half^{\sharp}(s(0)) \rightarrow c_2
                                                                                                                  bits^{\sharp}(s(0)) \rightarrow c_{4}
             half^{\sharp}(s(s(x))) \rightarrow half^{\sharp}(x)
                                                                                                     \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{half}(x)))
     \mathsf{bits}(\mathsf{s}(\mathsf{s}(0))) \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(0)))) \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(0))) \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \mathsf{s}(\mathsf{s}(0))
    \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(0))) \xrightarrow{\mathsf{i}}_{\mathcal{P} \cup \mathcal{U}} \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{half}(0))) \xrightarrow{\mathsf{i}}_{\mathcal{P} \cup \mathcal{U}} \mathsf{bits}^{\sharp}(\mathsf{s}(0)) \xrightarrow{\mathsf{i}}_{\mathcal{P} \cup \mathcal{U}} \mathsf{bits}^{\sharp}(\mathsf{s}(0))
```

```
\mathcal{U} := \mathcal{U}(\mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}}))
                                                                                                                                                                                     usable rules
                            half(0) \rightarrow 0
                    half(s(0)) \rightarrow 0
            half(s(s(x))) \rightarrow s(half(x))
\mathcal{P} := \mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}})
                               half^{\sharp}(0) \rightarrow c_1
                                                                                                                         bits^{\sharp}(0) \rightarrow c_3
                     half^{\sharp}(s(0)) \rightarrow c_2
                                                                                                                 bits^{\sharp}(s(0)) \rightarrow c_{4}
             half^{\sharp}(s(s(x))) \rightarrow half^{\sharp}(x)
                                                                                                    \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{half}(x)))
     \mathsf{bits}(\mathsf{s}(\mathsf{s}(0))) \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(\mathsf{half}(0)))) \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \mathsf{s}(\mathsf{bits}(\mathsf{s}(0))) \stackrel{\mathsf{i}}{\to}_{\mathcal{R}} \mathsf{s}(\mathsf{s}(0))
    \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{s}(0))) \xrightarrow{\mathsf{i}}_{\mathcal{P} \cup \mathcal{U}} \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{half}(0))) \xrightarrow{\mathsf{i}}_{\mathcal{P} \cup \mathcal{U}} \mathsf{bits}^\sharp(\mathsf{s}(0)) \xrightarrow{\mathsf{i}}_{\mathcal{P} \cup \mathcal{U}} \mathsf{bits}^\sharp(\mathsf{s}(0))
```

$$\xrightarrow{\mathcal{P}/\mathcal{U}} := \xrightarrow{*}_{\mathcal{U}}^{*} \cdot \xrightarrow{\mathcal{P}} \cdot \xrightarrow{*}_{\mathcal{U}}^{*}$$

Dependency Pairs for Complexity Analysis (continued)

Notation

$$\overrightarrow{\vdash}_{\mathcal{P}/\mathcal{U}} := \overrightarrow{\vdash}_{\mathcal{P}\cup\mathcal{U}}^+$$
 with exactly one step due to \mathcal{P}

Dependency Pairs for Complexity Analysis (continued)

Notation

$$\stackrel{\text{i}}{
ightarrow}_{\mathcal{P}/\mathcal{U}}:=\stackrel{\text{i}}{
ightarrow}_{\mathcal{P}\cup\mathcal{U}}^+$$
 with exactly one step due to \mathcal{P}

Theorem (Hirokawa, Moser 2008)

$$\mathsf{rc}^{\mathsf{i}}_{\mathcal{R}}(\mathit{n}) \, \leqslant \mathcal{O}(\,\mathsf{dl}(\mathit{n},\mathcal{B}^{\sharp}, \xrightarrow{\mathsf{i}}_{\mathsf{WIDP}(\mathcal{R})/\mathcal{U}(\mathsf{WIDP}(\mathcal{R}))}) + |\mathit{t}|\,)$$

provided

- ightharpoonup WIDP(\mathcal{R}) is non-duplicating
- ▶ $\mathcal{U}(\mathsf{WIDP}(\mathcal{R})) \subseteq >_{\mathcal{A}}$ for some strongly linear interpretation \mathcal{A}

interpretations are weight functions

Dependency Pairs for Complexity Analysis (continued)

Notation

$$\stackrel{\text{i}}{
ightarrow}_{\mathcal{P}/\mathcal{U}}:=\stackrel{\text{i}}{
ightarrow}_{\mathcal{P}\cup\mathcal{U}}^+$$
 with exactly one step due to \mathcal{P}

Theorem (Hirokawa, Moser 2008)

$$\mathsf{rc}^{i}_{\mathcal{R}}(\textit{n}) \, \leqslant \mathcal{O}(\,\mathsf{dl}(\textit{n},\mathcal{B}^{\sharp}, \overset{\mathsf{i}}{\rightarrow}_{\mathsf{WIDP}(\mathcal{R})/\mathcal{U}(\mathsf{WIDP}(\mathcal{R}))}) + |\textit{t}|\,)$$

provided

- ightharpoonup WIDP(\mathcal{R}) is non-duplicating
- ▶ $\mathcal{U}(\mathsf{WIDP}(\mathcal{R})) \subseteq >_{\mathcal{A}}$ for some strongly linear interpretation \mathcal{A}

interpretations are weight functions

measure WIDP(\mathcal{R})-steps with reduction pairs

Definition

- a safe reduction pair is a pair (\succsim, \succ) of orderings such that
 - ► \(\sigma \) is a rewrite preorder,
 - ► > is closed under substitutions,
 - \triangleright
 - $ightharpoonup s_i \succ t_i \Rightarrow \mathsf{c}(s_1,\ldots,s_i,\ldots,s_n) \succ \mathsf{c}(s_1,\ldots,t_i,\ldots,s_n)$ for compound symbols c

Definition

a safe reduction pair is a pair (\succsim, \succ) of orderings such that

- ► ≿ is a rewrite preorder,
- ▶ > is closed under substitutions,
- \triangleright $\succeq \cdot \succ \cdot \succeq \subseteq \succ$
- ▶ $s_i \succ t_i \Rightarrow c(s_1, ..., s_i, ..., s_n) \succ c(s_1, ..., t_i, ..., s_n)$ for compound symbols c

Lemma (Hirokawa, Moser 2008)

suppose
$$\mathsf{WIDP}(\mathcal{R}) \subseteq \succ \text{ and } \mathcal{U}(\mathsf{WIDP}(\mathcal{R})) \subseteq \succsim$$

$$\xrightarrow{i}_{\mathsf{WIDP}(\mathcal{R})/\mathcal{U}(\mathsf{WIDP}(\mathcal{R}))} \subseteq \; \succ$$

Definition

a safe reduction pair is a pair (\succsim, \succ) of orderings such that

- ► ≿ is a rewrite preorder,
- ► > is closed under substitutions,
- \triangleright $\succeq \cdot \succ \cdot \succeq \subseteq \succ$
- ▶ $s_i \succ t_i \Rightarrow c(s_1, ..., s_i, ..., s_n) \succ c(s_1, ..., t_i, ..., s_n)$ for compound symbols c

Lemma (Hirokawa, Moser 2008)

suppose
$$\mathsf{WIDP}(\mathcal{R}) \subseteq \succ \text{ and } \mathcal{U}(\mathsf{WIDP}(\mathcal{R})) \subseteq \succsim$$

$$\xrightarrow{i}_{\mathsf{WIDP}(\mathcal{R})/\mathcal{U}(\mathsf{WIDP}(\mathcal{R}))} \subseteq \; \succ$$

Polynomial Path Orders as Reduction Pair Problem

 $lackbrack (\gtrsim_{\mathsf{pop*}},>_{\mathsf{pop*}})$ is not a reduction pair

Polynomial Path Orders as Reduction Pair

 \triangleright $(\geq_{pop*}, \geq_{pop*})$ is not a reduction pair

Theorem

$$\textit{suppose} \; \mathsf{WIDP}(\mathcal{R}) \subseteq >_{\mathsf{pop}*} \textit{and} \; \mathcal{U}(\mathsf{WIDP}(\mathcal{R})) \subseteq \gtrsim_{\mathsf{pop}*}$$

$$s \xrightarrow{i}_{\mathsf{WIDP}(\mathcal{R})/\mathcal{U}(\mathsf{WIDP}(\mathcal{R}))} t \Rightarrow \mathcal{I}(s) > \mathcal{I}(t)$$

WIDP(\mathcal{R})-steps bounded by interpretation \mathcal{I} , i.e. polynomially bounded in the sizes of starting terms \mathcal{B}

Polynomial Path Orders as Reduction Pair

 \triangleright $(\gtrsim_{pop*}^{\pi}, >_{pop*}^{\pi})$ is not a reduction pair

Theorem

suppose
$$\mathsf{WIDP}(\mathcal{R})\subseteq >^\pi_{\mathsf{pop}*}$$
 and $\mathcal{U}(\mathsf{WIDP}(\mathcal{R}))\subseteq \gtrsim^\pi_{\mathsf{pop}*}$

$$s \xrightarrow[]{i}_{\mathsf{WIDP}(\mathcal{R})/\mathcal{U}(\mathsf{WIDP}(\mathcal{R}))} t \Rightarrow \mathcal{I}(\pi(s)) > \mathcal{I}(\pi(t))$$

WIDP(\mathcal{R})-steps bounded by interpretation \mathcal{I} , i.e. polynomially bounded in the sizes of starting terms \mathcal{B}

Polynomial Path Orders as Reduction Pair (continued)

Corollary

let $\mathcal{P} := \mathsf{WIDP}(\mathcal{R})$ and $\mathcal{U} := \mathcal{U}(\mathsf{WIDP}(\mathcal{R}))$, and suppose

- ▶ P is non-duplicating
- $ightharpoonup \mathcal{U} \subseteq >_{\mathcal{A}}$ for some strongly linear interpretation \mathcal{A}

then

$$\mathcal{P} \subseteq >^{\pi}_{pop*}, \ \mathcal{U} \subseteq \gtrsim^{\pi}_{pop*} \Rightarrow rc^{i}_{\mathcal{R}} \ polynomially \ bounded$$

$$\begin{split} \mathcal{U} &:= \mathcal{U}(\mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}})) \\ &\quad \mathsf{half}(0) \ \rightarrow \ 0 \\ &\quad \mathsf{half}(\mathsf{s}(\mathsf{o})) \ \rightarrow \ \ \mathsf{o} \\ &\quad \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \ \rightarrow \ \ \mathsf{s}(\mathsf{half}(x)) \end{split}$$

$$\mathcal{P} := \mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}}) \\ &\quad \mathsf{half}^{\sharp}(0) \ \rightarrow \ \ \mathsf{c}_1 \qquad \mathsf{bits}^{\sharp}(0) \ \rightarrow \ \ \mathsf{c}_3 \\ &\quad \mathsf{half}^{\sharp}(\mathsf{s}(0)) \ \rightarrow \ \ \mathsf{c}_2 \qquad \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{o})) \ \rightarrow \ \ \mathsf{c}_4 \\ &\quad \mathsf{half}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) \ \rightarrow \ \ \mathsf{half}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) \ \rightarrow \ \ \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) \ \rightarrow \ \ \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(\mathsf{half}(x)))) \end{split}$$

$$\label{eq:U} \begin{split} \mathcal{U} &:= \mathcal{U}(\mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}})) \\ &\quad \mathsf{half}(0) \,\rightarrow\, 0 \qquad \qquad 2 > 1 \\ &\quad \mathsf{half}(\mathsf{s}(0)) \,\rightarrow\, 0 \qquad \qquad 3 > 1 \\ &\quad \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \,\rightarrow\, \mathsf{s}(\mathsf{half}(x)) \qquad 3 + x > 2 + x \end{split}$$

$$\mathcal{P} &:= \mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}}) \\ &\quad \mathsf{half}^\sharp(0) \,\rightarrow\, \mathsf{c}_1 \qquad \mathsf{bits}^\sharp(0) \,\rightarrow\, \mathsf{c}_3 \\ &\quad \mathsf{half}^\sharp(\mathsf{s}(0)) \,\rightarrow\, \mathsf{c}_2 \qquad \mathsf{bits}^\sharp(\mathsf{s}(0)) \,\rightarrow\, \mathsf{c}_4 \\ &\quad \mathsf{half}^\sharp(\mathsf{s}(\mathsf{s}(x))) \,\rightarrow\, \mathsf{half}^\sharp(x) \,\, \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{s}(x))) \,\rightarrow\, \mathsf{bits}^\sharp(\mathsf{s}(\mathsf{half}(x))) \end{split}$$

$$weight(half) = weight(0) = weight(s) = 1$$

$$egin{aligned} \mathcal{U} &:= \mathcal{U}(\mathsf{WIDP}(\mathcal{R}_\mathsf{bits})) \ &0 & o 0 \ & \mathsf{s}(0) & o 0 \ & \mathsf{s}(\mathsf{s}(x)) & o & \mathsf{s}(& x) \end{aligned}$$
 $\mathcal{P} := \mathsf{WIDP}(\mathcal{R}_\mathsf{bits}) \ & \mathsf{half}^\sharp(0) & o & \mathsf{c}_1 \end{aligned}$ bits $^\sharp(0) & o & \mathsf{c}_3$

$$\begin{array}{cccc} \mathsf{half}^{\sharp}(\mathsf{s}(0)) & \to & \mathsf{c}_2 & \mathsf{bits}^{\sharp}(\mathsf{s}(0)) & \to & \mathsf{c}_4 \\ \mathsf{half}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) & \to & \mathsf{half}^{\sharp}(x) & \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) & \to & \mathsf{bits}^{\sharp}(\mathsf{s}(& x)) \end{array}$$

$$\pi(\mathsf{half}) = 1$$
 $\pi(\mathsf{half}^\sharp) = \pi(\mathsf{bits}^\sharp) = \pi(\mathsf{s}) = [1]$

MA (ICS @ UIBK) Dependency Pairs and POP* 14

$$\begin{split} \mathcal{U} &:= \mathcal{U}(\mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}})) \\ &0 \gtrsim_{\mathsf{pop*}} 0 \\ &s(0) \gtrsim_{\mathsf{pop*}} 0 \\ &s(\mathsf{s}(x)) \gtrsim_{\mathsf{pop*}} \mathsf{s}(\qquad x \) \\ \\ \mathcal{P} &:= \mathsf{WIDP}(\mathcal{R}_{\mathsf{bits}}) \\ & \mathsf{half}^{\sharp}(0) >_{\mathsf{pop*}} \mathsf{c}_1 \qquad \mathsf{bits}^{\sharp}(0) >_{\mathsf{pop*}} \mathsf{c}_3 \\ & \mathsf{half}^{\sharp}(\mathsf{s}(0)) >_{\mathsf{pop*}} \mathsf{c}_2 \qquad \mathsf{bits}^{\sharp}(\mathsf{s}(0)) >_{\mathsf{pop*}} \mathsf{c}_4 \\ & \mathsf{half}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) >_{\mathsf{pop*}} \mathsf{half}^{\sharp}(x) \quad \mathsf{bits}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) >_{\mathsf{pop*}} \mathsf{bits}^{\sharp}(\mathsf{s}(x \)) \end{split}$$

$$\mathsf{half}^{\sharp} > \mathsf{c}_1, \mathsf{c}_2 \quad \mathsf{bits}^{\sharp} > \mathsf{c}_3, \mathsf{c}_4$$
 $\mathsf{safe}(\mathsf{s}) = \{1\}, \mathsf{safe}(\mathsf{half}^{\sharp}) = \mathsf{safe}(\mathsf{bits}^{\sharp}) = \varnothing$

 $\mathcal{R}_{\mathsf{bits}}$ admits polynomial (innermost) runtime complexity

MA (ICS @ UIBK) Dependency Pairs and POP^* 14

Number of Yes-Instances

MA (ICS @ UIBK) Dependency Pairs and POP* 15

Number of Yes-Instances

Number of Yes-Instances

Number of Yes-Instances

Theorem

let $\mathcal{P}:=\mathsf{WIDP}(\mathcal{R})$ and $\mathcal{U}:=\mathcal{U}(\mathsf{WIDP}(\mathcal{R}))$, and suppose

- ▶ P is non-duplicating
- lacksquare $\mathcal{U}\subseteq >_{\mathcal{A}}$ for some strongly linear interpretation \mathcal{A}

then

$$\mathcal{P}\subseteq >^\pi_{pop*},\ \mathcal{U}\subseteq \gtrsim^\pi_{pop*}\ \Rightarrow\ rc^i_{\mathcal{R}}\ polynomially\ bounded$$

Theorem

let $\mathcal{P}:=\mathsf{WIDP}(\mathcal{R})$ and $\mathcal{U}:=\mathcal{U}(\mathsf{WIDP}(\mathcal{R}))$, and suppose

- ▶ P is non-duplicating
- lacksquare $\mathcal{U}\subseteq >_{\mathcal{A}}$ for some strongly linear interpretation \mathcal{A}

then

$$\mathcal{P}\subseteq >^\pi_{\mathsf{pop}*},\ \mathcal{U}\subseteq \gtrsim^\pi_{\mathsf{pop}*}\ \Rightarrow\ \mathsf{rc}^{\mathsf{i}}_{\mathcal{R}}\ \mathit{polynomially\ bounded}$$

can we say something about the complexity of the functions computed by \mathcal{R} ?

Theorem

let $\mathcal{P}:=\mathsf{WIDP}(\mathcal{R})$ and $\mathcal{U}:=\mathcal{U}(\mathsf{WIDP}(\mathcal{R}))$, and suppose

- ▶ P is non-duplicating
- $ightharpoonup \mathcal{U} \subseteq >_{\mathcal{A}}$ for some strongly linear interpretation \mathcal{A}
- $ightharpoonup \mathcal{R}$ is based on a simple signature

then

$$\mathcal{P} \subseteq >_{\mathsf{pop*}}^{\pi}, \ \mathcal{U} \subseteq \gtrsim_{\mathsf{pop*}}^{\pi} \ \Rightarrow \ \begin{array}{c} \textit{functions computed by } \mathcal{R} \\ \textit{are polytime-computable} \end{array}$$

Theorem

let $\mathcal{P} := \mathsf{WIDP}(\mathcal{R})$ and $\mathcal{U} := \mathcal{U}(\mathsf{WIDP}(\mathcal{R}))$, and suppose

- ▶ P is non-duplicating
- $\triangleright \mathcal{U} \subseteq >_{\mathcal{A}}$ for some strongly linear interpreta-
- $ightharpoonup \mathcal{R}$ is based on a simple signature

then

$$\mathcal{P} \subseteq >_{\mathsf{pop*}}^{\pi}, \ \mathcal{U} \subseteq \gtrsim_{\mathsf{pop*}}^{\pi} \ \Rightarrow \ \begin{array}{c} \textit{functions computed by } \mathcal{R} \\ \textit{are polytime-computable} \end{array}$$

Example

- \triangleright $s_1: Word \rightarrow Word$
- \blacktriangleright (:): a \times List(a) \rightarrow List(a)
- ightharpoonup node: Tree imes Tree imes Tree

terms grow only polynomial in size

Conclusion

Complexity Analysis By Rewriting

- 1. use rewriting as model of computation
- 2. estimate number of rewrite steps

modular ©, from termination proofs

3. conclude polytime-computability of functions defined by TRS

MA (ICS @ UIBK) Dependency Pairs and POP^*

Conclusion

Complexity Analysis By Rewriting

- 1. use rewriting as model of computation
- 2. estimate number of rewrite steps

modular $\stackrel{\smile}{\bigcirc}$, from termination proofs

3. conclude polytime-computability of functions defined by TRS

Related Work

Jean-Yves Marion and Romain Péchoux

Characterizations of polynomial complexity classes with a better intensionality
In Proc. PPDP '08, LNCS, pp. 79–88, 2008

 $3 \land \neg 2$