Detection in ultrasound

Paul Liu 9/13/2012

Background

- In an ultrasound image, define a target as a cyst, lesion, or other object (possibly small)
- Question: Is there a target inside the ultrasound image?

Example: Is there something in this image?

60 db log transformed display

Example: What about now?

Previous image target was at -3db (0.71) of background brightness This image is at -10db (0.31)

A harder example. What about this pic?

Should be clearer now (-6 db contrast)

-20 db contrast

On the image simulation

- All images are simulated by convolution of random scatterers with a point spread function
- Scatterers are located in a fixed (fine) rectangular grid. Their reflection is a random uniform variable between 0 and 1
- The random scatterers are then multiplied by a reflectivity image

Detection problem

- Define the following problem:
 - An observer decides on two hypotheses
 - H₁: target exists in image 1 but not in image 2
 - H₂: target exists in image 2 but not in image 1
- The optimal solution is the ideal observer proposed and discussed in:
 - Smith, Wagner, et al. "Low Contrast Detectability and Contrast/Detail Analysis in Medical Ultrasound," IEEE Trans. Sonics Ultrasonics, 1983
 - Insana and Hall. "Visual detection efficiency in ultrasonic imaging. A framework for objective assessment of image quality," JASA, 1994

H₁: Image 1 and image 2 backgrounds are independent

Image 1

Image 2

H₂: Image 1 and image 2 backgrounds are independent

Image 1

Image 2

Note the definition of "images"

Detection

- Let y₁ and y₂ be the envelope of image 1 and 2 respectively
- Let p(y₁, y₂ | H₁) and p(y₁, y₂ | H₂) be the joint probability distribution function (pdf) under each hypothesis
- Then from detection theory the decision function is the likelihood ratio

$$D' = \frac{p(y_1, y_2 | H_1)}{p(y_1, y_2 | H_2)}$$

Decision function

- After these steps:
 - Assume fully developed speckle (Rayleigh distribution of envelope)
 - Take a scaled version of the log of the likelihood function (this
 is valid as long as the function is monotonic)
- Then the decision function D is

$$D = \sum_{i=1}^{M} y_{1i}^{2} - \sum_{j=1}^{M} y_{1j}^{2}$$

- where summation is taken by sampling M independent samples
- If the target is lower brightness than background, we decide that target exists in image 1 if D < 0. Otherwise, we decide that target exists in image 2

Zoomed in. Notice the correlation of the speckle

Number of independent samples M is proportional to the number of speckle spots

How well can we detect?

The detection ability is determined by

$$SNR = \frac{|E(D|H_1) - E(D|H_2)|}{\sqrt{(\sigma_{D|H_1}^2 + \sigma_{D|H_2}^2)/2}}$$

- where E() denotes expectation
- This simplifies into

$$- SNR = 2\sqrt{M} \frac{|\psi_t - \psi_b|}{\sqrt{\psi_t^2 + \psi_b^2}}$$

– where ψ_t and ψ_b are the mean square averages of the target and background respectively

How to improve detection

1) increase independent samples M

- 2) increase contrast (difference between means of background and target)
 - Somewhat obvious, so we will not discuss this in particular

• 3) reduce variance

Increasing independent samples M

• 1) Can be done by increasing target area

 2) Can be done by decreasing speckle size

-3 db contrast. Thin vs thick

-10 db contrast Thin vs thick

Decreasing speckle size

- In real life, we cannot just make a small cyst larger just so we can see it clearer!
- If target is fixed in size, we can increase the number of independent samples by decreasing speckle size
 - higher frequency
 - higher bandwidth
 - larger aperture

5 MHz, 50% fractional BW

7.5 MHz, 50% fractional BW

10 MHz, 50% fractional BW

15 MHz, 50% fractional BW

Side by side comparison

7.5 MHz, 50% BW.

Left represents a 64 channel system with 3.8 cm 128 element linear probe (1.9 cm aperture). Right represents a full 5 cm aperture.

Reduce variance

- Last way to increase detectability is to reduce variance
- For Rayleigh envelope, mean over standard deviation is fixed at 1.91 regardless of frequency, bandwidth or other parameters
- Hence for a fixed brightness, it seems as if variance is fixed

Solution

- Speckle reduction methods change the envelope statistics and will lower variance
- We give an example of ideal compounding, which is using independent scatterers to give independent speckle patterns
 - Note that this cannot be done in real life, but in simulation this can be done
- Variance drops by the number of averaged envelope

10 MHz, 50% BW, instance 1 and original picture

-20 db contrast between target and background

10 MHz, 50% BW, instance 2 and 3

10 MHz, 50% BW, instance 4 and 5

10 MHz, 50% BW, average over 3 instances

Averaged over 3 instances

Original picture

10 MHz, 50% BW, average over 3 instances

Averaged over 3 instances

Original picture

Side by side comparison

Spatial compounding – a more realistic simulation

- Fix the scatterer field to be identical
- Vary the angle of isonification

Images

Spatial compounding

0.5 1.5 -CI 2.5 3.5 0.5 2.5 1.5 2

average of -7.5, 0, 7.5 angles

Speckle reduction

 Image processing based methods also will reduce speckle, at the trade off of manipulating images

Conclusion

- The question of if a target is present in the background can be solved using detection theory
 - Decision function is: (sum of squared envelope of target) (sum of squared envelope of background)
- Better detection occurs with
 - More independent speckle spots of target area
 - Higher contrast between target and background
 - Lower variance of envelope
- All three observations match intuition
 - Simulation allows one to vary many variables and get a feel for what is "detectability"
 - Human observation then matches the theoretical derivation