```
修订一: P61 程序 3.38
   initial clock=0;
   always #5 clock=~clock; //生成时钟信号
   initial
   begin
    d=1;
    reset=1;
    #12 reset=0;
                             //仿真信号产生
    #11 reset=1;
                               //仿真控制
    #17 $stop;
   end
修订二: P90
 (6) Implementation (实现)
   1) Implementation Settings (实现设置)。
   2) Run Implementation (运行实现)。
   3) Open Implementation Design (打开实现后的设计)。
修订三: P101 程序 4.2
set property IOSTANDARD LVCMOS18 [get ports led]
set property IOSTANDARD LVCMOS18 [get ports {sw[2]}]
set_property IOSTANDARD LVCMOS18 [get_ports {sw[1]}]
set_property IOSTANDARD LVCMOS18 [get_ports {sw[0]}]
修订四: P104 程序 4.3
module led tb();
reg [2:0]sw;
```

wire led;

led uut(sw,led);

修订五: P149 程序 4.8

```
set property IOSTANDARD LVCMOS18 [get ports {led[15]}]
set property IOSTANDARD LVCMOS18 [get ports {led[14]}]
set property IOSTANDARD LVCMOS18 [get ports {led[13]}]
set property IOSTANDARD LVCMOS18 [get ports {led[12]}]
set property IOSTANDARD LVCMOS18 [get ports {led[11]}]
set property IOSTANDARD LVCMOS18 [get ports {led[10]}]
set property IOSTANDARD LVCMOS18 [get ports {led[9]}]
set_property IOSTANDARD LVCMOS18 [get_ports {led[8]}]
set property IOSTANDARD LVCMOS18 [get ports {led[7]}]
set property IOSTANDARD LVCMOS18 [get ports {led[6]}]
set property IOSTANDARD LVCMOS18 [get ports {led[5]}]
set property IOSTANDARD LVCMOS18 [get ports {led[4]}]
set property IOSTANDARD LVCMOS18 [get ports {led[3]}]
set property IOSTANDARD LVCMOS18 [get ports {led[2]}]
set property IOSTANDARD LVCMOS18 [get ports {led[1]}]
set property IOSTANDARD LVCMOS18 [get ports {led[0]}]
set_property IOSTANDARD LVCMOS18 [get ports clk]
```

修订六: P171

1. 在 Objects 窗口中查看

如图 5.28 所示,Objects 窗口中显示了信号变量的位数及数值。如果默认未显示Objects 窗口的话,可以在 View 菜单栏中把它调出来。

修订七: P192

(2) Verilog 代码描述:

```
module extend #(parameter WIDTH = 16)(
    input [WIDTH-1:0] a,
    input sext, //sext 有效是高电平为符号扩展, 否则为 0 扩展
    output [31:0] b
);
assign b=sext? {{(32-WIDTH){a[WIDTH-1]}},a} : {(32-WIDTH)'b0,a};
endmodule
```

(3) TestBench 代码描述:

```
`timescale 1ns/1ns
module extend_tb;
reg [15:0] a,sext;
wire [31:0] b;
// Instantiate the Unit Under Test (UUT)
extend uut (.a(a),.sext(sext),.b(b));
initial
```

修订八: P199 图 6.14

	\overline{D}_0	\overline{D}_1	\overline{D}_2	\overline{D}_3	\overline{D}_4	\overline{D}_5	\overline{D}_6	\overline{D}_7	Ÿ	\overline{Q}_{1}	<u>7</u> 0	EI	EO
	×	×	×	×	×	×	×	×	1	1	1	1	0
	1	1	1	1	1	1	1	1	1	1	1	0	0
2	×	×	×	×	×	×	×	0	0	0	0	0	1
	×	×	×	×	×	×	0	1	0	0	1	0	1
l	×	×	×	×	×	0	1	1	0	1	0	0	1
	×	×	×	×	0	1	1	1	0	1	1	0	1
)	×	×	×	0	1	1	1	1	1	0	0	0	1
	×	×	0	1	1	1	1	1	1	0	1	0	1
	×	0	1	1	1	1	1	1	1	1	0	0	1
	0	1	1	1	1	1	1	1	1	1	1	0	1

修订九: P206 表 6.16

表 6.16 8 位加法器 XDC 文件配置

	iData_a	iData_b	iC	oData	oData C	
变量	[0]~[7]	[0]~[7]	IC	[0]~[7]	oData_C	
	SW0~7	SW8~15		LD0~7		
N4 板上	(J15、L16、	(T8, U8,	BNTR	(H17、K15、	LD8 (V16)	
的管脚	M13、R15、	R16、T13、	(M17)	J13、N14、		
印启加	R17、T18、	н6、U12、	(MT /)	R18、V17、	(VIO)	
	U18、R13)	U11、V10)		U17, U16)		

修订十: P212

4. 实验步骤

- (1) 用 logicsimLogisim 画出同步模 8 计数器电路原理图,验证逻辑。
- (2) 新建 Vivado 工程,编写各个模块。
- (3) 用 ModelSim 仿真测试各模块。
- (4) 配置 XDC 文件, 综合下板, 并观察实验现象。
- (5) 按照要求书写实验报告。

修订十一: P216 图 6.30

修订十二: P217 表 6.22

SLT	r=(a <b)?1:0 td="" 有符号<=""><td>1</td><td>0</td><td>1</td><td>1</td></b)?1:0>	1	0	1	1
SLTU	r=(a <b)?1:0 td="" 无符号<=""><td>1</td><td>0</td><td>1</td><td>0</td></b)?1:0>	1	0	1	0
SRA	r=b>>>a	1	1	0	0
SLL/SLA	r=b< <a< td=""><td>1</td><td>1</td><td>1</td><td>Х</td></a<>	1	1	1	Х
SRL	r=b>>a	1	1	0	1

修订十三: P232 表 7.4

srlv	000000	rs	rt	rd	00000	000110	srlv \$1,\$2,\$3	\$1=\$2>>\$3	rd <- rt >> rs ; (logical)其中 rs= \$3,rt=\$2, rd=\$1
srav	000000	rs	rt	rd	00000	000111	srav \$1,\$2,\$3	\$1=\$2>>\$3	rd <- rt >> rs ; (arithmetic) 注意符 号位保留 其中 rs=\$3,rt=\$2, rd=\$1
jr	000000	rs	00000	00000	00000	001000	jr \$31	goto \$31	PC <- rs
I-type	op	rs	rt	immediate					
addi	001000	rs	rt	immediate		addi \$1,\$2,100	\$1=\$2+100	rt <- rs + (sign-extend)immediate ; $ \label{eq:property} $	
addiu	001001	rs	rt	immediate		addiu \$1,\$2,100	\$1=\$2+100	rt <- rs + (sign-extend)immediate ; 其中 rt=\$1,rs=\$2	

修订十四: P234

ADDIU:

格式: ADDIU rt, rs, immediate

目的: 使 32 位数据与一个立即数相加

描述: rt ← rs + immediate

一个 16 位无符号的立即数与通用寄存器 rs 中的 32 位数相加产生一个 32 位的数存入目标寄存器 rt。

在任何情况下都不会有溢出的异常。

修订十五: P256

Memory)、寄存器堆 (Regfile)、ALU、<mark>带符号扩展模块</mark> Ext18、加法器 ADD, 完成转移地址的计算。如表 7.18 所示。

修订十六: P261 表 7.22

表 7.22 ALU 功能控制

	ALUC2	ALUC1	ALUC0	
Add	0	0	0	ALU 完成"加"
Sub	0	0	1	ALU 完成"减"
Or	0	1	0	ALU 完成"或"
Sll	0	1	1	ALU 完成"左移"

修订十七: P299 图 7.53

原图替换为:

修订十八: P306 接口定义

修订十九: P307 接口定义

修订二十: P308

```
reg [15:0] add4_5;
reg [15:0] add6_7;
reg [15:0] add0t1_2t3;
reg [15:0] add4t5_6t7;
reg [15:0] add0t3_4t7;

always @(posedge clk or posedge reset)
begin
    // reset 置零
    if(reset) begin
        temp <= 0;
        stored0 <= 0;
        stored1 <= 0;
        stored3 <= 0;
```

修订二十一: P310 接口定义

```
module DIVU(
     input [31:0]dividend,
                              //被除数
     input [31:0]divisor,
                              //除数
     input start,
                              //启动除法运算
     input clock,
     input reset,
                              //高电平有效
     output [31:0]q,
                              //商
     output [31:0]r,
                              //余数
     output busy
                              //除法器忙标志位
     );
```

```
module DIV(
    input [31:0]dividend,
                             //被除数
    input [31:0]divisor,
                             //除数
    input start,
                             //启动除法运算
    input clock,
                             //高电平有效
    input reset,
                             //商
    output [31:0]q,
                             //余数
    output [31:0]r,
    output busy
                             //除法器忙标志位
    );
```