Danilo Souza Hugo Santos Welton Araújo

<sup>1</sup>Universidade Federal do Pará

4 de Junho de 2012

## **Agenda**

- Histórico
- 2 Introdução
- 3 Características
  - Propriedades
  - Benchmarks
  - Processo de fabricação X Consumo
  - Arquitetura vSMP
    - Vantagens
- 4 Aplicações

### **Histórico**

- Fundada em 1993
- Primeiro produto: NV1 (1995)
- Em 1996 lançou o DirectX
- Em 1999
  - Lançou a GPU
  - Abriu seu capital para o mercado de ações
- Em 2011 apresentou o Projeto Kal-El

## Evolução do Processador Tegra



## Introdução

- Por que Multi Porcessamento
  - Aplicações mais robustas
  - Menor consumo de energia
    - Opera em frequências menores
    - Opera por menos tempo na frequência de pico
  - Mais Eficiente
    - Realiza tarefas simultaneamente

# Tabela: Características dos Tegra 2 e 3

| Tegra 2              | Tegra 3                    |  |  |
|----------------------|----------------------------|--|--|
| Processador          |                            |  |  |
| DualCore             | QuadCore mais núcleo       |  |  |
|                      | econômico                  |  |  |
| Acima de 1.2 GHz     | Acima de 1.5 GHz - Sin-    |  |  |
|                      | gleCore/Acima de 1.4 Ghz - |  |  |
|                      | QuadCore                   |  |  |
| Cache L1(I/D)        |                            |  |  |
| 32KB/32KB por núcleo | 32KB/32KB por núcleo       |  |  |
| Cache L2             |                            |  |  |
| 1 MB                 | 1 MB                       |  |  |
| Memória              |                            |  |  |
| Acima de 1 GB        | Acima de 2 GB              |  |  |

Propriedades

## Tabela: Características dos Tegra 2 e 3

| Tegra 2         | Tegra 3     |  |
|-----------------|-------------|--|
| Arquitetura GPU |             |  |
| GPU GeForce ULP | GeForce ULP |  |
| Performance 3D  |             |  |
| 1x              | 3X          |  |
| Núcleos GPU     |             |  |
| 8               | 12          |  |









Benchmarks



Características 

Características 000000•00000000

- Consumo
  - (ET) = (EF) + (ED)•  $(ED) \alpha f(V)^2$

Processo de fabricação X Consumo

- Tecnologias usadas para fabricação do chip silício
  - Tecnologia de processo rápido
    - Maior EV
    - Menor tempo de troca
  - Tecnologia de processo de baixa potência
    - Menor EV
    - Maior tempo de troca



Histórico

- Multi Processamento Simétrico variável
  - 4 núcleos principais
  - 1 Companion Core (até 500 Mhz)
  - Combinação dos dois processos de fabricação





### Vantagens

- Transparência para o SO
  - Monitoramento do workload das CPU's
  - A própria arquitetura faz a troca dos processadores
- Coerência de Cache
  - Sincronização de memória cache
  - Núcleos compartilham a mesma cache L2
  - Os núcleos principais não podem atuar junto com o Companion Core



| Mobile Processor                              | Measured<br>Power (mW) <sup>2</sup> | Coremark<br>Performance |
|-----------------------------------------------|-------------------------------------|-------------------------|
| Project Kal-El (each core running at 480 MHz) | 579 <sub> </sub>                    | 5589                    |
| OMAP4 (each core running at 1 GHz)            | 1501                                | 5673                    |
| QC8660 (each core running at 1.2 GHz)         | 1453                                | 5690                    |
| Project Kal-El (each core running at 1 GHz)   | 1261                                | 11667                   |

#### Arquitetura vSMP



#### Arquitetura vSMP



- Smatphones
- Tablets

