Esercizi Termologia – cambiamenti di stato

- 1) Calcolare il calore necessario per riscaldare un cubetto di ghiaccio di massa m = 24 g preso dal congelatore alla temperatura di $-18^{\circ}C$ fino ad ottenere acqua a $22^{\circ}C$.
- 2) Per determinare il calore di fusione del ghiaccio si procede nel seguente modo: in un calorimetro di capacità termica C si versa una massa m_1 d'acqua calda e dopo aver atteso qualche istante in modo che acqua calda e calorimetro abbiano la stessa temperatura si legge il valore di quest'ultima (ϑ_1). Si versano nell'acqua alcuni cubetti di ghiaccio (m_2) alla temperatura di fusione (facendo attenzione di asciugarli bene in modo da non versare nel calorimetro anche dell'acqua). Si attende che tutto il ghiaccio sia fuso e si legge la temperatura all'equilibrio termico (ϑ_f).
 - a) Scrivere l'equazione di bilancio termico e risolverla rispetto al calore specifico di fusione del ghiaccio.
 - b) Determinare il valore del calore specifico di fusione del ghiaccio nei seguenti casi (riempire la tabella). La capacità termica del calorimetro vale $C=48\frac{J}{^{\circ}C}$.

$m_1(g)$	$\theta_1(^{\circ}C)$	$m_2(g)$	$\vartheta_f(^{\circ}C)$	$L_f\left(\frac{J}{g}\right)$
145,2	38,5	32,5	18,5	
138,4	38	29,5	18,6	
150,5	37,7	25,4	21,8	
143,6	37,4	26,6	20,4	
132,7	37,1	28,9	17,9	

- c) Calcolare il valore medio e paragonare il risultato con il valore tabulato.
- 3) In un recipiente di polistirolo ben isolato verso l'esterno vengono versati $250\,g$ di acqua alla temperatura ambiente di $22\,^{\circ}C$. In seguito si versano nell'acqua $225\,g$ di ghiaccio presi dal congelatore alla temperatura di $-18\,^{\circ}C$. Determinare:
 - a) quanta acqua e quanto ghiaccio si avranno all'equilibrio termico;
 - b) quanto ghiaccio avrei dovuto versare per avere alla fine solo acqua a $5^{\circ}C$.
- 4) Per determinare il calore specifico di fusione dello stagno si prende una provetta di vetro di massa $m=3.5\,g$ e calore specifico $c_{\mathrm{vetro}}=0.75\,\frac{J}{g^{\circ}C}$ contenente $14.3\,g$ di stagno (calore specifico dello stagno quando si trova nella fase solida $c_{\mathrm{Sn}}=0.227\,\frac{J}{g^{\circ}C}$) alla temperatura di $20^{\circ}C$ e la si riscalda con un flusso costante di calore (potenza costante). La seguente tabella fornisce l'andamento della temperatura in funzione del tempo.

0 s	20°C	
50 s	232°C	Inizio fusione
84 s	232°C	Fine fusione
96 <i>s</i>	280°C	

- a) Determinare il flusso di calore (potenza) con il quale si riscalda il tutto.
- b) Calcolare il calore specifico di fusione Lf_{Sn} dello stagno.
- c) Calcolare il calore specifico dello stagno nella fase liquida.
- 5) Calcolare quanto vapore a $100^{\circ}C$ bisogna far condensare in un bicchiere (capacità termica trascurabile) contenente $180\,g$ di acqua alla temperatura di $18^{\circ}C$ per ottenere all'equilibrio termico acqua a $60^{\circ}C$.