State: fn is measurable, complexed-value function.
fn
$$\rightarrow$$
 f for all $x \in X$ and $\exists g \neq x$. non-negative integrable with $|f_n| \leq g$. Then $\int f_n \rightarrow \int f$.

Proof: let
$$f_n = u_n + i \cdot v_n$$
, $f = u + i \cdot v$. where $u_n, v_n, u, v : X \to IR$.

Then $|u_n| \le q$, $|v_n| \le q$. $\Rightarrow \int u_n \to \int u$, $\int v_n \to \int v$.

 $\int f_n = \int u_n + i \cdot \int v_n \to \int u + i \int v_m$

3
$$f \cdot x_{A_n}$$
 $f \cdot x_A$ clearly.
And $|f \cdot x_{A_n}| \le g = |f|$
By dominated convergence theorem, done.

In case of
$$A_n \downarrow A$$
, let $B_n = A_n^c \uparrow B = A^c$.
Since f integrable
$$\int_{A_n} f = \int_{F} f - \int_{B_n} f$$

$$\longrightarrow \int_{F} f - \int_{B} f = \int_{A} f_n$$

From proposition 7.6.,
$$\int \sum_{n=1}^{\infty} |f_n| = \sum_{n=1}^{\infty} \int |f_n| < \infty \quad \text{Thus } h \in L^1$$

$$\iint \sum_{n=1}^{\infty} |f_n| \leq \int \sum_{n=1}^{\infty} |f_n| < \infty \quad \text{Let } h$$

Thus
$$q = \sum_{n=1}^{\infty} f_n \in L^1$$
(2) Converges absolutely: should show $\sum_{n=1}^{\infty} |f_n(x)| < \infty$. a.e. By exercise 6.1. $\mu(\sum_{n=1}^{\infty} |f_n| = \infty) = 0$. $0 = \sum_{n=1}^{\infty} |f_n| < \infty$ a.e.

$$\begin{array}{ll} \text{ (3)} & \int \sum\limits_{n=1}^{\infty} f_n(x) = \sum\limits_{n=1}^{\infty} \int f_n(x) \,. \\ \text{ Let } h_N = \sum\limits_{k=1}^{N} f_k & \sim |h_N| \leq h \in L^1 \\ \text{ By } \text{ PCT } \lim\limits_{N \to \infty} \sum\limits_{k=1}^{N} \int f_k = \int \lim\limits_{N \to \infty} \sum\limits_{k=1}^{N} f_k \,. \end{array}$$

8 Let
$$|f_n(x)| \le M$$
 $\forall x \in X, n \in \mathbb{N}$.

Then let $g = M \cdot x_X \rightarrow \int g = M \cdot \mu(x) < \infty$: non-negative & integrable.

Done by dominated convergence theorem.

And
$$|f_n \cdot \chi_A(x)| \le f_n(x)$$
 $\forall x \in X$.

Solution

Another solution

Another solution
$$\text{Claim}: \int f_n \to \int f \text{ and } f_n \to f \text{ a.e. } (f_n, f \in L^1) \Rightarrow \int |f_n - f| = 0 \longrightarrow \text{Then, } |\int_A f_n - f| \leq \int_A |f_n - f| \leq \int |f_n - f| \longrightarrow 0,$$

$$|f_n - f| \leq |f_n| + |f|$$
 By generalized PCT
$$\int |f_n - f| = 0$$

$$|f_n - f| \leq |f_n| + |f| \atop \text{non-negative, integrable.}} \& \int |f_n| + |f| \longrightarrow \int 2|f|$$

II let
$${}^{y} \in >0$$
 be given.
By exercise 6.8., ${}^{3} \delta >0$ s.t. ${}^{y} m([x,y]) = |y-x| < \delta$, $\int_{x}^{y} |f| dx < \epsilon$.
 ${}^{\circ} \circ \left| \int_{x}^{y} f(x) dx \right| < \int_{x}^{y} |f(x)| dx < \epsilon$ whenever $|x-y| < \delta$.

12 No.

$$f_n = n \chi_{[0, \frac{1}{\sqrt{n}})} \qquad \lim_{n \to \infty} f_n = 0 \quad \forall x \in X.$$

$$\int f_n = \sqrt{n} \qquad \lim_{n \to \infty} \int f_n = \infty.$$

$$(1+\frac{x}{n})^{-n} \le 2^{-x} & 2^{-x} \text{ integrable.}$$

As
$$\log (2 + \cos(\frac{\pi}{n})) \le \log 3$$

| Note that
$$2^{-t} \le |-t|$$
 for $t \in [0,1]$
 $\Rightarrow 2^{nt} \ge (|-t|)^n$, $t = \frac{x}{n} \in [0,1]$.

 $\therefore (|-\frac{x}{n}|)^n \le 2^x & 2^x \text{ integrable.}$

$$(1 - \frac{\chi}{n})^n \le 2^{\chi} \& 2^{\chi}$$
 integra

As
$$\log \left(2 + \cos\left(\frac{x}{n}\right)\right) \le \log 3$$

We see that
$$1+nx^2 \le (1+x^2)^n$$
 for $n \ge 1$ & $\forall 0 \le x \le 1$

pf) It suffices to show $\log (1+nx^2) \le n \log (1+x^2)$

Let $h(x) = n \log (1+x^2) - \log (1+nx^2)$
 $h'(x) = \frac{2nx}{1+x^2} - \frac{2nx}{1+nx^2} \ge 0$ for $\forall n \ge 1, 0 \le x \le 1$. $h(0) = 0$ $\therefore h(x) \ge 0$,

Let
$$h(x) = n \log (1+x^2) - \log (1+nx^2)$$

 $h'(x) = \frac{2nx}{1+x^2} - \frac{2nx}{1+x^2} \ge 0$ for $\forall n \ge 1$

$$\log \left(2 + \cos \frac{x}{n}\right) \leq \log 3 \quad \forall x \in [0,1]$$

$$\int_{0}^{\infty} ne^{-nx} \cdot dx = 1 \quad (integrable)$$

$$0 \le f_n(x) \le ne^{-nx}$$
 $\forall n \in \mathbb{N}$.

$$\left| \int_{0}^{\infty} n e^{-nx} - \int_{0}^{\infty} n e^{-nx} \cdot \frac{x+1}{x^2+x+1} \right| = \int_{0}^{\infty} \frac{n x e^{-nx}}{x^2+x+1} \cdot dx$$
 te^{-t} (t>0) has the maximum e^{-1}

Thus
$$0 \le \frac{n x e^{-n x}}{x^2 + x + 1} \le \frac{e^{-1}}{x^2 + 1}$$
 $\forall n \in \mathbb{N}$ & $\forall x > 0$. $\frac{1}{x^2 + 1}$ integrable.

... By D.C.T,
$$\int_{0}^{\infty} \frac{n x e^{-nx}}{x^{2} + x + 1} \cdot dz L \longrightarrow 0$$

$$\lim_{N\to\infty} f(1+\frac{x}{n^2}) = f(1) \quad \text{as} \quad f \text{ is continuous} \quad \text{at } 1$$

Spse
$$|f| \le M$$
. Then $|f(1+\frac{\varkappa}{n^2})|g(\varkappa)| \le M \cdot |g|$, $|g|$ is non-negative integrable.

... By dominated convergence theorem, it converges to
$$\int_{-n}^{n} f(1) \cdot g(2) \cdot d2$$

$$|\mathcal{S}| = |\mathcal{S}| + |$$

Since
$$f_n \to f$$
 unif. $\exists N_0 \in |N|$ st. $|f_n - f| < \varepsilon \cdot \mu(x)^{-1} < \infty$ $\forall n \ge N_0$ $\forall x \in X$. Let $n_0 = N_0$

Then,
$$|\int f_n - \int f| = |\int f_n - f| \le \int |f_n - f| < \epsilon$$
 $\forall n \ge n_0$.

$$^{\circ}_{\circ}$$
 $\int f_{n} \rightarrow \int f$

And from the proof we can see that $\mu(X) < \infty$ necessary. counterex)

$$f_n = \frac{1}{n} \chi_{[0,n]}, f = 0. \quad \Rightarrow \ ^{\forall} \epsilon > 0, \text{ for } n >> 1 \quad \frac{1}{n} < \epsilon \\ \quad \Rightarrow \quad |f_n(x) - f(x)| < \epsilon \quad ^{\forall} x \in |R^+|$$

But
$$\int f_n = 1$$
, $\int f = 0$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots = \sum_{k=1}^{\infty} x^{k-1} \text{ for } x < 1.$$

$$\frac{-x^{p}}{1-x} \log x = \sum_{k=1}^{\infty} -x^{k+p-1} \cdot \log x$$

$$\int_{0}^{1-\frac{1}{n}} \frac{1}{1-x} \log x \, dx = \sum_{k=1}^{\infty} \int_{0}^{1-\frac{1}{n}} -x^{k+p-1} \cdot \log x \cdot dx$$

By MCT for
$$n$$
, $-\int_0^1 \frac{x^p}{1-x} \log x = \sum_{k=1}^{\infty} \int_0^1 -x^{k+p-1} \log x \cdot dx$

$$= \frac{1}{(p+k)^2} \int_0^1 dx \cdot \frac{1}{p+k} \int_0^1 dx \cdot \frac{1}{p+k} \cdot dx$$

$$\int |f| < \varepsilon.$$
If >M)

$$\iff \sup \int |f_n| \cdot d\mu < \infty$$

$$|\mathcal{A}| |\mathcal{A}| \leq \int \frac{|\mathcal{A}|}{M} d\mathcal{A}.$$

$$= \frac{L}{M} \rightarrow 0 \text{ as } M > 4$$

21
$$\longrightarrow$$
) Let $\forall \varepsilon > 0$ be given. $\exists M$ s.t. $\int_{\{x: |f_n(x)| > M\}} |f_n| \cdot d\mu < \varepsilon$.
 $\Rightarrow \int |f_n| d\mu = \int_{\{x: |f_n(x)| > M\}} |f_n| \cdot d\mu + \int_{\{x: |f_n(x)| \le M\}} |f_n| \cdot d\mu$
 $< \varepsilon + M \cdot \mu(X) < \infty \quad \forall n \in \mathbb{N}$
 $\circ \circ \sup_{x \in \mathbb{N}} |f_n| d\mu < \varepsilon + M \cdot \mu(X) < \infty$

Also, for $\frac{\varepsilon}{2} > 0$, $\frac{3}{M}$ s.t. $\int_{\{x: |f_n(x)| > M\}} |f_n| \cdot d\mu < \varepsilon/2$. Let $\delta = \frac{\varepsilon}{2M} > 0$.

Then $\int_A |f_n| \cdot d\mu = \int_{A \cap \{x: |f_n(x)| > M\}} |f_n| \cdot d\mu + \int_{A \cap \{x: |f_n(x)| \le M\}} |f_n| \cdot d\mu$ $< \frac{1}{2} \varepsilon + M \cdot \mu(A) < \varepsilon.$

$$\leftarrow$$
) Let $\forall \epsilon > 0$ be given. $\longrightarrow {}^{3}\delta > 0$ s.t. $\left| \int_{A} f_{n} \right| < \frac{\epsilon}{2}$ whenever $\mu(A) < \delta$.

Let $L = \sup_{n} \int |f_{n}| \cdot d\mu < \infty$.

Then, we have

$$\mathcal{M}\left(\left\{\left.\pi:\left|f_{n}(x)\right|>M\right\}\right)\leq\int_{\left\{x:\left|f_{n}(x)\right|>M\right\}}\frac{\left|f_{n}(x)\right|}{M}\cdot\mathrm{d}\mu\leq\frac{L}{M}.<\delta \text{ for sufficiently large }M.>0$$

$$\int_{\left|f_{n}\right|>M}\left|f_{n}\right|=\int_{\left\{f_{n}>M\right\}}f_{n}+\int_{\left\{f_{n}<-M\right\}}-f_{n}$$

$$\leq\left|\int_{\left\{f_{n}>M\right\}}f_{n}\right|+\left|\int_{\left\{f_{n}<-M\right\}}-f_{n}\right|<\xi$$

Tfn, f is integrable.

$$\int |f| = \int \lim_{n} \inf |f_n| \leq \lim_{n} \inf \int |f_n| \qquad & \int |f_n| = \int_{|f_n| > M} |f_n| + \int_{|f_n| < M} |f_n| < \varepsilon + M \cdot \mathcal{M}(X) < \infty.$$

Thus $|f| < \infty$ a.e. by exercise 6.1.

$$\rightarrow$$
 By DCT $\int_{\{z: |f|>M\}} |f| d\mu \rightarrow 0$ as $M \rightarrow \infty$.

2 fn → f in L' metric

Let
$$A_n = \{x : |f_n(x) - f(x)| \le \frac{\varepsilon}{5\mu(x)}\}$$
 As $f_n \to f$ a.e. & μ finite $\mu(A_n^c) \to 0$ as $n \to \infty$
Choose M s.t. $\int_{\{x : |f_n| > M\}} |f_n| \cdot d\mu < \frac{\varepsilon}{5}$ $\Rightarrow \exists N$ s.t. $\mu(A_n^c) < \frac{\varepsilon}{5M}$ $\forall n \ge N$.
$$\int_{\{x : |f| > M\}} |f| \cdot d\mu < \frac{\varepsilon}{5}$$

$$\begin{split} \int |f_{n} - f| \cdot d\mu &= \int_{A_{n}} |f_{n} - f| + \int_{A_{n}^{c}} |f_{n} - f| \\ &\leq \int_{A_{n}} |f_{n} - f| + \int_{A_{n}^{c}} |f_{n}| + \int_{A_{n}^{c}} |f| \\ &\leq \int_{A_{n}} |f_{n} - f| + \int_{A_{n}^{c}} |f_{n}| + \int_{A_{n}^{c}} |f_{n}| + \int_{A_{n}^{c}} |f_{n}| + \int_{A_{n}^{c}} |f| + \int_{A_{n}^{c}} |f|$$

let
$$\forall \varepsilon > 0$$
 be given.
As $|f| \land M \uparrow |f|$, by MCT $\exists large \ M$ s.t. $\int |f| - \int |f| \land M = \int_{|f| > M} |f| < \frac{\varepsilon}{3}$
Also, as $\int |f_n - f| \longrightarrow 0$ $\exists large \ N$ s.t. $\int |f_n - f| < \frac{\varepsilon}{3}$ $\forall n \ge N$.
For $\forall n \ge M$, let $A_n = \{|f_n| > 2M \ \& |f| \le M\}$
 $\Rightarrow \text{ in } A_n, |f_n - f| > M$
Thus $M \cdot \mu(A_n) \le \int_{A_n} |f_n - f| + |f| = \int_{|f_n| > 2M} |f_n - f| + \int_{A_n} |f| + \int_{|f_n| > 2M, |f| > M} |f|$
 $\le \varepsilon \quad \forall n \ge N$.

In case of n=1,2,..., N-1, by MCT for each n=1,2,..., N-1,
$${}^{\exists}M_n$$
 s.t. ${}^{\int}_{\{f_n\}>M_n}|f_n|<\epsilon$.

To Done by setting
$$M = \max\{M_1, \dots, M_{n-1}, 2M\}$$

24 Let
$$K = \sup_{n} \int |f_n|^{1+\delta} < \infty$$
 and any $\epsilon > 0$ be given.
For any $M > 0$,

27 (1)
$$\nu(\emptyset) = \int_{\emptyset} f \cdot d\mu = 0$$
.
Let $\{A_j\}$ be pairwise disjoint.
 $\nu(\bigcup_{j=1}^{\infty} A_j) = \int f \cdot \chi_{V_j A_j} \cdot d\mu = \sum_{j=1}^{\infty} \int f \cdot \chi_{A_j} \cdot d\mu$ by proposition 7.6.

(2) Without loss of generality, let g be non-negative.

Let s be any simple s.t.
$$0 \le s \le q$$
. $(s = \sum_{j=1}^{n} a_j \chi_{E_j})$
 $\int s \cdot d\nu = \sum_{j=1}^{n} a_j \nu(E_j) = \int f \cdot s \cdot d\mu \le \int f \cdot q d\mu$

Since q is integrable, i.e. measurable, 3 sequence of non-negative simple functions {Sn} increasing to q.

.° By MCT
$$\int_{\mathbf{q}} \mathbf{q} \cdot d\mathbf{r} = \lim_{n \to \infty} \int_{\mathbf{s}_n} \mathbf{s}_n \cdot d\mathbf{r}$$

= $\lim_{n \to \infty} \int_{\mathbf{r}} \mathbf{f} \cdot \mathbf{s}_n \cdot d\mathbf{r} = \int_{\mathbf{r}} \mathbf{f} \cdot \mathbf{g} \cdot d\mathbf{r}$

Jopen O, closed F s.t. FSESO M(0-F)<8

Jopen O, closed F' s.t.
$$F' \subseteq E \subseteq O' \quad \nu (O'-F') < \varepsilon$$

Let $f = \begin{cases} 1 & \text{on } FUF' \\ 0 & \text{on } O^{c}UO'^{c} \end{cases}$ by $Ury sohn's \ \text{lemma.} \ \sim \text{continuous.}$

Similarly,
$$\left| \int f \, d\nu - \nu(E) \right| < \epsilon/2$$

$$| \mathcal{L}(E) - \mathcal{L}(E) | \leq \left| \int f \cdot d\mu - \mathcal{L}(E) \right| + \left| \int f \cdot d\nu - \mathcal{L}(E) \right| < \epsilon.$$

Note that for
$$g(x) = e^{\sin x}$$
, $|g'(x)| = |e^{\sin x} \cdot \cos x| \le e$

Let $x, y, h \in \mathbb{R}$.

$$\left| \frac{e^{\sin(x + h + y)} - e^{\sin(x + y)}}{h} \right| \stackrel{f}{=} \frac{\int_{0}^{h} \int_{0}^{h} g'(x + y + t) \cdot dt}{h} \le e$$

$$\frac{F(x + h) - F(x)}{h} = \int_{\mathbb{R}} e^{-y^{2}} \frac{e^{\sin(x + h + y)} - e^{\sin(x + y)}}{h} \cdot dy \le \int e \cdot e^{-y^{2}} \cdot dy < \infty. \longrightarrow F'(x) \text{ is finite}$$
 $\stackrel{\circ}{\circ} \circ g_{y} \quad P. C. T. \quad F'(x) = \int_{\mathbb{R}} e^{-y^{2} + \sin(x + y)} \cdot \cos(x + y) \cdot dy.$