Math 1003 Functions and Models

Dr. Tim Alderson

University of New Brunswick Saint John

Chapter 1

Outline

- 1.1 Ways to Represent a Function
 - The Definition of a Function
 - The Vertical Line Test
 - Piecewise Defined Functions
 - Symmetry
 - Increasing and Decreasing Functions
 - A Note on Domains of Functions

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

• Functions are also synonymously called "maps".

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Functions are also synonymously called "maps".

Definition (Domain)

The set D in the definition of f is called the domain of f.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Co-domain)

The set E in the definition of f is called the co-domain of f.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Value of f at x)

The number f(x) is called *the value of f at x* and is read "f of x".

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Value of f at x)

The number f(x) is called *the value of f at x* and is read "f of x".

• The value of f at x is also called the image of x under the map f.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Value of f at x)

The number f(x) is called the value of f at x and is read "f of x".

- The value of f at x is also called the image of x under the map f.
- In the expression f(x), x is referred to as the *argument* of f.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Range)

The set of all possible values taken by f(x) as the element x runs over elements of D is called the range of f.

Question

Given a curve in the plane, is it the graph of a function or not?

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

Question

Given a curve in the plane, is it the graph of a function or not?

The answer is as follows.

Proposition (The Vertical Line Test)

Piecewise Defined Functions

Definition (Piecewise Defined Function)

A piecewise defined function is a function that is defined by different algebraic formulas on different subsets of its domain.

Piecewise Defined Functions

Definition (Piecewise Defined Function)

A piecewise defined function is a function that is defined by different algebraic formulas on different subsets of its domain.

Example

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

The filled red circle means (0,1) is on the curve.

The open circle means (0,-1) is not on the curve.

The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

The absolute value |x| of a number a is defined to be

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

Find a formula for the function f whose graph is given below.

Find a formula for the function f whose graph is given below.

Different formulas on [0,1), [1,2), and [2,5).

Find a formula for the function f whose graph is given below.

$$f(x) = \begin{cases} & \text{if } 0 \leq x < 1 \\ & \text{if } 1 \leq x < 2 \\ & \text{if } 2 \leq x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

Different formulas on [0,1), [1,2), and [2,5).

$$f(x) = \begin{cases} f(x) & \text{if } 0 \leq x < 1 \\ & \text{if } 1 \leq x < 2 \\ & \text{if } 2 \leq x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

Different formulas on [0,1), [1,2), and [2,5).

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ & \text{if } 1 \le x < 2\\ & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ ? & \text{if } 1 \le x < 2\\ \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ 2 - x & \text{if } 1 \le x < 2\\ \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ 2 - x & \text{if } 1 \le x < 2\\ ? & \text{if } 2 \le x < 5 \end{cases}$$

Find a formula for the function f whose graph is given below.

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ 2 - x & \text{if } 1 \le x < 2\\ 0 & \text{if } 2 \le x < 5 \end{cases}$$

Sketch the function f(x) = |2x - 3|.

Sketch the function f(x) = |2x - 3|.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

Sketch the function f(x) = |2x - 3|.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$
$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

Sketch the function
$$f(x) = |2x - 3|$$
.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

Sketch the function
$$f(x) = |2x - 3|$$
.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } x \ge 3/2 \\ -2x + 3 & \text{if } x < 3/2. \end{cases}$$

Sketch the function
$$f(x) = |2x - 3|$$
.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } x \ge 3/2 \\ -2x + 3 & \text{if } x < 3/2. \end{cases}$$

Sketch the function
$$f(x) = |2x - 3|$$
.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0 \\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3 \\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

$$= \begin{cases} 2x - 3 & \text{if } x \ge 3/2 \\ -2x + 3 & \text{if } x < 3/2. \end{cases}$$

$$|u| = \begin{cases} u & \text{if } u \ge 0 \\ -u & \text{if } u < 0. \end{cases}$$

Sketch the function
$$f(x) = \frac{|4x+2|}{2x+1}$$

$$|u| = \begin{cases} u & \text{if } u \ge 0\\ -u & \text{if } u < 0. \end{cases}$$
$$\frac{|4x+2|}{2x+1} = \begin{cases} \frac{4x+2}{2x+1} & \text{if } 4x+2 > 0\\ \frac{-(4x+2)}{2x+1} & \text{if } 4x+2 < 0 \end{cases}$$

$$|u| = \begin{cases} u & \text{if } u \ge 0 \\ -u & \text{if } u < 0. \end{cases}$$

$$\frac{|4x+2|}{2x+1} = \begin{cases} \frac{4x+2}{2x+1} & \text{if } 4x+2 > 0 \\ \frac{-(4x+2)}{2x+1} & \text{if } 4x+2 < 0 \end{cases}$$

$$= \begin{cases} \frac{?}{2x+1} & \text{if } 4x > -2 \\ \frac{?}{2x+1} & \text{if } 4x < -2 \end{cases}$$

$$|u| = \begin{cases} u & \text{if } u \ge 0 \\ -u & \text{if } u < 0. \end{cases}$$

$$\frac{|4x+2|}{2x+1} = \begin{cases} \frac{4x+2}{2x+1} & \text{if } 4x+2 > 0 \\ \frac{-(4x+2)}{2x+1} & \text{if } 4x+2 < 0 \end{cases}$$

$$= \begin{cases} \frac{2(2x+1)}{2x+1} & \text{if } 4x > -2 \\ \frac{2}{2x+1} & \text{if } 4x < -2 \end{cases}$$

$$|u| = \begin{cases} u & \text{if } u \ge 0 \\ -u & \text{if } u < 0. \end{cases}$$

$$\frac{|4x+2|}{2x+1} = \begin{cases} \frac{4x+2}{2x+1} & \text{if } 4x+2 > 0 \\ \frac{-(4x+2)}{2x+1} & \text{if } 4x+2 < 0 \end{cases}$$

$$= \begin{cases} \frac{2(2x+1)}{2x+1} & \text{if } 4x > -2 \\ \frac{2}{2x+1} & \text{if } 4x < -2 \end{cases}$$

Sketch the function
$$f(x) = \frac{|4x+2|}{2x+1}$$

$$|u| = \begin{cases} u & \text{if } u \ge 0 \\ -u & \text{if } u < 0. \end{cases}$$

$$\frac{|4x+2|}{2x+1} = \begin{cases} \frac{4x+2}{2x+1} & \text{if } 4x+2 > 0 \\ \frac{-(4x+2)}{2x+1} & \text{if } 4x+2 < 0 \end{cases}$$

$$= \begin{cases} \frac{2(2x+1)}{2x+1} & \text{if } 4x > -2 \\ \frac{-2(2x+1)}{2x+1} & \text{if } 4x < -2 \end{cases}$$

$$|u| = \begin{cases} u & \text{if } u \ge 0 \\ -u & \text{if } u < 0. \end{cases}$$

$$\frac{|4x+2|}{2x+1} = \begin{cases} \frac{4x+2}{2x+1} & \text{if } 4x+2 > 0 \\ \frac{-(4x+2)}{2x+1} & \text{if } 4x+2 < 0 \end{cases}$$

$$= \begin{cases} \frac{2(2x+1)}{2x+1} & \text{if } 4x > -2 \\ \frac{-2(2x+1)}{2x+1} & \text{if } 4x < -2 \end{cases}$$

$$= \begin{cases} 2 & \text{if } x > -\frac{1}{2} \\ -2 & \text{if } x < -\frac{1}{2}. \end{cases}$$

$$|u| = \begin{cases} u & \text{if } u \ge 0 \\ -u & \text{if } u < 0. \end{cases}$$

$$\frac{|4x+2|}{2x+1} = \begin{cases} \frac{4x+2}{2x+1} & \text{if } 4x+2 > 0 \\ \frac{-(4x+2)}{2x+1} & \text{if } 4x+2 < 0 \end{cases}$$

$$= \begin{cases} \frac{2(2x+1)}{2x+1} & \text{if } 4x > -2 \\ \frac{-2(2x+1)}{2x+1} & \text{if } 4x < -2 \end{cases}$$

$$= \begin{cases} 2 & \text{if } x > -\frac{1}{2} \\ -2 & \text{if } x < -\frac{1}{2}. \end{cases}$$

$$|u| = \begin{cases} u & \text{if } u \ge 0 \\ -u & \text{if } u < 0. \end{cases}$$

$$\frac{|4x+2|}{2x+1} = \begin{cases} \frac{4x+2}{2x+1} & \text{if } 4x+2 > 0 \\ \frac{-(4x+2)}{2x+1} & \text{if } 4x+2 < 0 \end{cases}$$

$$= \begin{cases} \frac{2(2x+1)}{2x+1} & \text{if } 4x > -2 \\ \frac{-2(2x+1)}{2x+1} & \text{if } 4x < -2 \end{cases}$$

$$= \begin{cases} 2 & \text{if } x > -\frac{1}{2} \\ -2 & \text{if } x < -\frac{1}{2}. \end{cases}$$

Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example (x^2 is Even, x^3 is Odd)

The function $f(x) = x^2$ is even:

The function $g(x) = x^3$ is odd:

Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example (x^2 is Even, x^3 is Odd)

The function $f(x) = x^2$ is even:

$$f(-x) = (-x)^2 = x^2 = f(x).$$

The function $g(x) = x^3$ is odd:

Definition (Even and Odd Functions)

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example (x^2 is Even, x^3 is Odd)

The function $f(x) = x^2$ is even:

$$f(-x) = (-x)^2 = x^2 = f(x).$$

The function $g(x) = x^3$ is odd:

$$g(-x) = (-x)^3 = -x^3 = -g(x).$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = g(-x) = h(-x) =$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = h(-x) =$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = h(-x) = 0$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = h(-x) =$$

$$= -x^{5} - x$$

$$= -(x^{5} + x)$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = h(-x) =$$

$$= -x^{5} - x$$

$$= -(x^{5} + x)$$

$$= -f(x)$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = h(-x) =$$

$$= -x^{5} - x = -(x^{5} + x)$$

$$= -f(x)$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = 1 - (-x)^{4} h(-x) =$$

$$= -x^{5} - x e - (x^{5} + x) e - f(x)$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = 1 - (-x)^{4} h(-x) = 1 - x^{4}$$

$$= -x^{5} - x = 1 - x^{4}$$

$$= -(x^{5} + x)$$

$$= -f(x)$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x g(x) = 1 - x^{4} h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) g(-x) = 1 - (-x)^{4} h(-x) = 1 - x^{5} - x e 1 - x^{4}$$

$$= -(x^{5} + x) e g(x)$$

$$= -f(x)$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = 1 - (-x)^4$ $h(-x) = 1 - x^4$
 $= -x^5 - x$ $= 1 - x^4$
 $= -(x^5 + x)$ $= g(x)$
 $= -f(x)$ Therefore g is even.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x \qquad g(x) = 1 - x^4 \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^5 + (-x) \qquad g(-x) = 1 - (-x)^4 \qquad h(-x) = 2(-x) - 1$$

$$= -x^5 - x \qquad = 1 - x^4$$

$$= -(x^5 + x) \qquad = g(x)$$

$$= -f(x) \qquad \text{Therefore } g \text{ is even.}$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x \qquad g(x) = 1 - x^4 \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^5 + (-x) \qquad g(-x) = 1 - (-x)^4 \qquad h(-x) = 2(-x) - 1$$

$$= -x^5 - x \qquad = 1 - x^4 \qquad = -2x - 1$$

$$= -(x^5 + x) \qquad = g(x)$$

$$= -f(x) \qquad \text{Therefore } g \text{ is even.}$$

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x \qquad g(x) = 1 - x^4 \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^5 + (-x) \qquad g(-x) = 1 - (-x)^4 \qquad h(-x) = 2(-x) - 1$$

$$= -x^5 - x \qquad = 1 - x^4 \qquad = -2x - 1$$

$$= -(x^5 + x) \qquad = g(x) \qquad \neq h(x), -h(x)$$
Therefore g is even.

A function f is called even if f(-x) = f(x) for all x in its domain. A function f is called odd if f(-x) = -f(x) for all x in its domain.

Example

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x)$ $g(-x) = 1 - (-x)^4$ $h(-x) = 2(-x) - 1$
 $= -x^5 - x$ $= 1 - x^4$ $= -2x - 1$
 $= -(x^5 + x)$ $= g(x)$ $\neq h(x), -h(x)$
Therefore g is even.

Therefore f is odd.

Therefore *h* is neither even nor odd.

Increasing and Decreasing Functions

Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

It is called decreasing on the interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Increasing and Decreasing Functions

Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

It is called decreasing on the interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Example (Increasing and Decreasing)

Increasing and Decreasing Functions

Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

It is called decreasing on the interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Example (Increasing and Decreasing)

• f is increasing on $[-1, -\frac{1}{2}]$.

Increasing and Decreasing Functions

Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

It is called decreasing on the interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Example (Increasing and Decreasing)

- f is increasing on $[-1, -\frac{1}{2}].$
- f is decreasing on $[-\frac{1}{2},\frac{1}{2}]$.

Increasing and Decreasing Functions

Definition (Increasing and Decreasing Functions)

A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

It is called decreasing on the interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Example (Increasing and Decreasing)

- f is increasing on $[-1, -\frac{1}{2}]$.
- f is decreasing on $[-\frac{1}{2},\frac{1}{2}]$.
- f is increasing on $[\frac{1}{2}, 1]$.

If the domain of a function isn't specified, it is assumed to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

If the domain of a function isn't specified, it is assumed to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

Can't divide by 0.

If the domain of a function isn't specified, it is assumed to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

- Can't divide by 0.
- Can't take the even root of a negative number $(\sqrt{-1}, \sqrt[4]{-2053}, \sqrt[6]{-15}...$ not allowed).

If the domain of a function isn't specified, it is assumed to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

- Can't divide by 0.
- Can't take the even root of a negative number $(\sqrt{-1}, \sqrt[4]{-2053}, \sqrt[6]{-15} \dots$ not allowed).
- Can't take $\log x$ if $x \le 0$.

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

• Any risk of dividing by 0?

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

• Any risk of dividing by 0? No.

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number?

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$x - 2 > 0$$

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$\begin{array}{ccc}
x - 2 & \geq & 0 \\
x & \geq & 2
\end{array}$$

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$x-2 \geq 0$$

 $x > 2$

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$x-2 \geq 0$$
 $x > 2$

Domain is all real numbers bigger than or equal to 2; that is, $[2, \infty)$.

• Any risk of dividing by 0?

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$x-2 \geq 0$$

 $x > 2$

Domain is all real numbers bigger than or equal to 2; that is, $[2, \infty)$.

Any risk of dividing by 0? Yes.

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$x-2 \geq 0$$
 $x > 2$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number?

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$x-2 \geq 0$$
 $x > 2$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$x-2 \geq 0$$
 $x > 2$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$ can't be 0.

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$x-2 \geq 0$$

 $x > 2$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$ can't be 0.

$$x^2 - x - 6 \quad \neq \quad 0$$

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$x-2 \geq 0$$
 $x > 2$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$ can't be 0. $x^2 - x - 6 \neq 0$ $(x - 3)(x + 2) \neq 0$

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$x-2 \geq 0$$

 $x > 2$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$ can't be 0.

$$x^{2} - x - 6 \neq 0$$

$$(x - 3)(x + 2) \neq 0$$

$$x \neq 3 \text{ or } -2$$

Find the domains of the following two functions:

$$f(x) = \sqrt[4]{x - 2} + \sqrt[3]{6 - x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x-2 can't be negative.

$$\begin{array}{ccc}
x - 2 & \geq & 0 \\
x & > & 2
\end{array}$$

Domain is all real numbers bigger than or equal to 2; that is, $[2, \infty)$.

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$ can't be 0.

$$x^{2} - x - 6 \neq 0$$

$$(x - 3)(x + 2) \neq 0$$

$$x \neq 3 \text{ or } -2$$

Domain is all real numbers except 3 and -2; that is, $(-\infty, -2) \cup (-2, 3) \cup (3, \infty)$.