

<u>Help</u>

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Course Notes</u>

☆ Course / Assignment 3 (due Oct 31) / Lab 3: FSMs

()

Next >

FSM implementation

 \square Bookmark this page

< Previous</pre>

■ Calculator

Lab due Oct 31, 2016 21:59 -02 Past due

FSM implementation

0.0/2.0 points (graded)

A possible implementation of a finite state machine with two inputs and one output is shown below.

1. If the register is 5 bits wide (i.e., k = 5) what is the appropriate size of the ROM? Give the number of locations and the number of bits in each location.

Number of locations:	Answer: 128	
Number of bits in each location:	Answer: 6	
2. If the register is 5 bits wide what is circuit?	the maximum number of states in an FSM implemented using	this
Maximum number of states?	Answer: 32	
3. What is the smallest possible value timing specifications are met?	for the ROM's contamination delay that still ensures the neces	sary
Smallest possible value for t_{CD} (in	ns): Answer: 0.7	
4. Assume that the ROM's $t_{CD}=3 \mathrm{ns}$ necessary timing specifications are	s. What is the shortest possible clock period that still ensures t met?	hat the
Smallest clock period (in ns):	Answer: 12.5	
Submit		
Answers are displayed within the pro	olem	

Discussion

Hide Discussion

 $\textbf{Topic:} \ \mathsf{Assignment} \ \mathsf{3} \ \mathsf{(due} \ \mathsf{Oct} \ \mathsf{31)} \ \mathsf{/} \ \mathsf{FSM} \ \mathsf{implementation}$

Add a Post

Show all posts
by recent activity

FSM implementation Q1.B

1.B) Number of hits in each leastion. N if the number of leastions in memory are 20N. But the grading system is showing wrong for

 $\underline{\text{1.B) Number of bits in each location: N if the number of locations in memory are 2^N. But the grading system is showing wrong for ...}$

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

News

Legal

Terms of Service & Honor Code

<u>Privacy Policy</u>

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2024 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>