You submitted this quiz on **Wed 7 May 2014 10:37 PM PDT**. You got a score of **11.00** out of **11.00**.

Question 1

In this assignment we will work with the model of yeast glycolytic oscillations developed by Bier et al. that was discussed in the lecture. To review, this model calculates concentrations of two chemical species, glucose ([G]) and [ATP], according to the following ODEs:

$$\frac{d[ATP]}{dt} = 2k_1[G][ATP] - \frac{k_p[ATP]}{[ATP] + K_m}$$

$$\frac{d[G]}{dt} = V_{in} - k_1[G][ATP]$$

Part 1 -- Programming

In the lectures, we discussed a very simple Matlab script that uses Euler's method to integrate the differential equation dx/dt = a - bx, x(0) = c. You are provided with this script (euler.m) and should use this as a template to implement the Bier model. These are the steps you will need to take to achieve this.

- 1. Change the parameters defined at the top of the script from a, b, and c to those relevant to the Bier et al model: V_{in} , k_1 , k_p , and K_m . Control values are in the slides. (Use $K_m = 13$ rather than $K_m = 20$).
- 2. Replace the statement defining the initial condition for x with statements that assign initial conditions of G and ATP. Good initial values are ATP = 4; G = 3.

- 3. Replace the differential equation describing dx/dt with two equations describing d[ATP]/dt and d[G]/dt.
- 4. Replace the statement that updates x at each time step with statements that update ATP and G.
- 5. Alter the code so that it keeps track of values of G and ATP at all points in time.
- 6. Change the time of the simulation to one that is long enough to observe interesting behavior such as oscillations. Determine the relevant time scale by trial and error.
- 7. Remember that Euler's method can "blow up" if the time step is too large. You may need to adjust the time step to make sure you have a stable solution. One way to verify this is to start with a time step that gives "reasonable looking" output, then reduce the time step by a factor of 2. If this gives the same output as the larger time step, then the time step is small enough (Perhaps a mathematician would contend that this statement cannot be proven correct, but this works in practice).
- 8. Plot G and ATP versus time in different colors on the same plot.

(For answering the following questions use time step=0.2, simulation time=500, Initial ATP=4 and Initial Glucose=3)

Which of the following statements is correct about the behavior of this system if you use the following parameter set?

$$V_{in} = 0.36$$
, $k_1 = 0.02$, $k_p = 6$, and $K_m = 12$.

Your Answer

The concentration of ATP will reach a stable steady-state level after t=200.

The concentration of Glucose will reach a stable steady-state level after t=200.

•The concentrations of ATP and Glucose never reach a stab steady-state.	ble ✓ 1.00
The concentration of ATP will reach a stable steady-state level after t=1000.	
Total	1.00 /
	1.00

If you use the parameters listed below and the initial conditions listed above (Glucose = 3, ATP = 4), what will be the maximum concentration of Glucose and ATP respectively in your simulations?(Round answers to two decimal places)

 V_{in} =0.36, k_1 =0.02, k_p =6, and K_m =12.

Your Answer		Score	Explanation
<u>16.29, 11.22</u>			
20.98, 18.66	~	1.00	
40.00,47.75			
28.19, 22.40			
Total		1.00 / 1.00	

Question 3

Which of the following parameter sets will lead to sustained oscillatory behavior in ATP and Glucose concentrations?

Your Answer		Score	Explanation
$V_{in} = 0.1$, $k_1 = 0.01$, $k_p = 3$, and $K_m = 12$.	~	1.00	

$V_{in} = 0.36, k_1 = 0.02, k_T$	$_{p}$ =6, and $K_{\mathbf{m}}$ =50.
----------------------------------	--------------------------------------

$$V_{in}$$
 =0.7, k_1 =0.01, k_p =2, and K_m =23.

$$V_{in} = 0.01$$
, $k_1 = 0.01$, $k_p = 6$, and $K_m = 20$.

Which of the following parameter sets will lead to oscillatory behavior in ATP and Glucose concentrations with higher frequency compared to the other choices?

Your Answer	Score	Explanation
$V_{in} = 0.2$, $k_1 = 0.02$, $k_p = 5$, and $K_m = 13$.		
$V_{in} = 0.36$, $k_1 = 0.02$, $k_p = 6$, and $K_m = 10$.		
$V_{in} = 0.36$, $k_1 = 0.02$, $k_p = 5$, and $K_m = 5$.		
$V_{in} = 0.36$, $k_1 = 0.02$, $k_p = 6$, and $K_m = 15$.	✓ 1.00	
Total	1.00 / 1.00	

Question 5

Which of the following parameter sets will lead to oscillatory behavior in ATP and Glucose concentrations with higher amplitude compared to the other choices?

Your Answer		Score	Explanation
$v_{in} = 0.36$, $v_{in} = 0.02$, $v_{in} = 6$, and $v_{in} = 7$.	~	1.00	
V. =0.1 k. =0.02 k =6 and K =13			

 $v_{in} = 0.36$, $k_1 = 0.02$, $k_p = 4$, and $K_m = 15$.

 $\mathbb{C}V_{in}$ =0.2, \mathbf{k}_1 =0.02, \mathbf{k}_p =5, and \mathbb{K}_m =13.

Total 1.00 / 1.00

Question 6

Which of the following parameter sets will lead to damped oscillation in ATP and Glucose concentrations?

Your Answer Score Explanation

 $v_{in} = 0.5$, $k_1 = 0.02$, $k_p = 6$, and $K_m = 12$.

 $●V_{in} = 0.3, k_1 = 0.02, k_p = 6, \text{ and } K_m = 18.$
✓ 1.00

 $v_{in} = 0.36$, $k_1 = 0.01$, $k_p = 6$, and $k_m = 13$.

 $V_{in} = 0.4$, $k_1 = 0.02$, $k_p = 7$, and $K_m = 13$.

Total 1.00 / 1.00

Question 7

Visualize the trajectory in the phase plane, i.e. generate a plot of ATP versus G. Which of the following phase plane trajectories can represent damped oscillatory behavior in Glucose and ATP concentrations?

Your Answer Score Explanation

◆ 1.00

Once the model is working, you can simulate biologically meaningful changes to the system. For instance, results presented in the lectures showed the effects of changes in the Michaelis constant of ATPase activity. Here we will simulate a potentially important perturbation and investigate how this alters the behavior of the model.

Simulate increases and decreases in the glucose transport rate (V_{in}). Use the default values of parameters. How do these changes affect the amplitude and frequency of glycolytic oscillations? If glucose transport rate becomes large enough, oscillations will cease. Plot time courses, and trajectories in the phase plane, under both oscillating and non-oscillating conditions. Which of the following statements is correct?

Your Answer	Score	Explanation
Increased V_{in} can suppress the oscillation and at the end decreases the steady-state concentration of ATP		
Increased V_{in} can suppress the oscillation and at the end increases the steady-state concentration of glucose.		
Regardless of the value $\boldsymbol{V}_{\text{in}}$, the system always has an oscillatory behavior.		
$ \hline \textbf{When } V_{\text{in}} \ \text{ is higher than 1 no sustained oscillations will be observed.} $	✓ 1.00	
Total	1.00 /	
	1.00	

Question 9

Which of the following statements is correct? (using the following parameter set: V_{in} =0.36, k_1 =0.02, k_p =6)

Your Answer	Score	Explanation
For K _m >16 we will always see oscillations in Glucose and ATP concentrations.		
For 4< K _m <12 we will always see oscillations in Glucose and ATP concentrations.	1.00	
For K _m >12 we will always see oscillations in Glucose and ATP concentrations.		

\bigcirc For K_m <16 we will always see oscilla ATP concentrations.	ations in Glucose and
Total	1.00 /
	1.00

Which of the following statements is correct? (V_{in} =0.36, k_1 =0.02, k_p =6)

Your Answer		Score	Explanation
The oscillation in the system does not depend on $V_{\mbox{\scriptsize in}}$.			
$\bigcirc \mathbb{K}_{\mathtt{m}}$ is the only parameter which determines if the system shows oscillations.			
The oscillation in the system just depends on $K_{\mathtt{m}}$ and $V_{\mathtt{in}}$.			
oscillations in some ranges of $K_{\underline{\mathtt{m}}}$.	~	1.00	
Total		1.00 /	
		1.00	

Question 11

Part 3 - More complex programming

To answer Part 2, you can manually test different values for $V_{\rm in}$, and then report which cause oscillations and which do not. A more complete and rigorous way to do this is to generate a bifurcation diagram such as the one shown in the lecture.

To generate this plot, I simply created a for loop to cycle through different values of $V_{\rm in}\,$.At each value of $V_{\rm in}\,$, I determined the minimum and maximum values of glucose or ATP that were

achieved after a certain time interval (to avoid effects of transient oscillations at the beginning), and then plotted these.

(Hint: Try values of $V_{\rm in}$ in range of 0.1-1.6 and for your simulations use time step= 0.05 and simulation time=2000).

How do you interpret these results in the context of the role of glucose transport rate?

Your Answer	Score	Explanation
After oscillation is ceased by increasing glucose transport rate, steady-state concentration of glucose will be increased due to decreased steady-state level of ATP.		
Glucose transport rate is the only parameter that controls the oscillations in ATP and Glucose concentrations.		
After oscillation is ceased by increasing glucose transport rate, steady-state concentration of glucose will be increased due to increased rate of its transportation to the yeast cell.		
• After oscillation is ceased by increasing glucose transport rate, steady-state concentration of glucose will be decreased due to increased steady-state level of ATP.	✓ 1.00	
Total	1.00 / 1.00	