Assignment W8: Statistical Analysis

H0 - Null hypothesis is that the relationship between sample type or age (fetal vs adult) and expression is exactly zero.

H1 - Alternative Hypothesis is that the relationship between sample type or age is not zero

<u>Differential Gene Expression Analysis of RNASeq data using DESeq2</u>

Filter genes with rowSums less than 10

Check factor levels:

fetal fetal fetal fetal fetal adult adult adult adult adult adult

Levels: adult fetal

Create the DESeq Data object or container from the input data

Run the DESeq() function on this object brain_dds

The DESeq() will do the following in a single step

- * estimating size factors
- * estimating dispersions
- * gene-wise dispersion estimates
- * mean-dispersion relationship
- * final dispersion estimates
- * fitting model and testing

Correcting for Multiple Testing:

The DESeq() uses Benjamini Hochberg correction for the False Discovery Rate(padj-"BH adjusted p-values"). We run the results() on the above with an alpha parameter set to 0.05 to set the FDR at 0.05 level.

Next we reorder the result to order genes from lowest p-values to highest and save the table to tab delimited file differentialExp.txt (attached).

log2 fold change (MLE): type fetal vs adult

Wald test p-value: type fetal vs adult

DataFrame with 22872 rows and 6 columns

	baseMean lo	g2FoldChar	nge lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric< td=""><td>> <numeric></numeric></td><td><numeric></numeric></td><td><numeric></numeric></td><td><numeric></numeric></td></numeric<>	> <numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
LINC01103	1428.9972	3.05500	0.457759	6.67382	2.49234e-11	3.89328e-07
VPS28	14.3446	-4.66964	0.750377	-6.22305	4.87569e-10	3.80816e-06
PHLPP1	1285.1848	4.69888	0.763629	6.15336	7.58601e-10	3.95003e-06
IPO11	2016.3569	1.04338	0.171956	6.06774	1.29723e-09	5.06602e-06
RETSAT	16.1999	3.34740	0.605471	5.52860	3.22803e-08	1.00850e-04

Summary:

out of 22872 with nonzero total read count

adjusted p-value < 0.05

LFC > 0 (up) : 1209, 5.3% LFC < 0 (down) : 1679, 7.3% outliers [1] : 173, 0.76% low counts [2] : 7078, 31%

(mean count < 4)

2888 genes have an adjusted p value below the given FDR cutoff, alpha = 0.05 out of the total 22872, and are thus significant.

Volcano Plot: Plot the logFold change vs -log 10 p-value

Log Fold Change Shrinkage for visualization using volcano plots and ranking genes We can use the IfcShrinkage() with coef="type_fetal_vs_adult", type="apeglm" to shrink the results data from above to use in volcano plot

Here we are going to use the EnhancedVolcanoPlot() with all default parameters

logFold change vs -log 10 p-value

EnhancedVolcano

total = 22872 variables