- 5.10 Here, n = 15 and p = 0.1, so from Table A.1, we get
 - (a) $P(3 \le X \le 6) = 0.1838$.
 - (b) $P(X \le 3) = 0.9444$.
 - (c) $P(X \ge 6) = 0.0022$.
- $5.28 \ n = 20;$
- 5.40 The binomial approximation of the hypergeometric with p = 1 4000/10000 = 0.6 gives a probability of $\sum_{x=0}^{7} b(x; 15, 0.6) = 0.2131$.
- 5.80 $\lambda = 2.7$ call/min.

(a)
$$P(X \le 4) = \sum_{x=0}^{4} \frac{e^{-2.7}(2.7)^x}{x!} = 0.8629.$$

(b)
$$P(X \le 1) = \sum_{x=0}^{1} \frac{e^{-2.7}(2.7)^x}{x!} = 0.2487.$$

(c)
$$\lambda t = 13.5$$
. So,

$$P(X > 10) = 1 - P(X \le 10) = 1 - \sum_{x=0}^{10} \frac{e^{-13.5}(13.5)^x}{x!} = 1 - 0.2112 = 0.7888.$$