CAR ACCIDENT SEVERITY PREDICTION

ASVIN SRITHARAN OCTOBER 8, 2020

PREDICTING SEVERITY OF AN ACCIDENT CAN BE BENEFICIAL FOR GPS COMPANIES

- Predicting the severity of an accident can route drivers away from the scene of a dangerous accident with heavy traffic, and predict a more efficient route
 - Builds loyalty to GPS brand
 - Allows for safer travel
 - Allows drivers to reach destination on time

DATA ACQUISITION AND CLEANING

- Source: IBM Applied Data Science Capstone
 - Seattle Collision Information
- Variables of very high correlation, duplicate variables, identifier variables were dropped from dataset
- Columns with excessive missing data was also dropped
- Missing data in columns were replaced with column modes
 - Weather related columns had missing data replaced with weather data of same day from other observations
- Remaining data was plotted against Accident Severity Code
 - Those with low variation between severity codes were dropped

NOTABLE GRAPHS

High variation in vehicle count in accidents with severity code

NOTABLE CHARTS

Higher percentage of accidents involved an intersection in accidents with severity code 2

Severity Code I

Severity Code 2

VARIABLE SELECTION AND PREPARATION

- Variables were selected based on reasonable variation between severity codes
- Classification Problem
 - Decision Trees
 - K Nearest Neighbours
 - SVM
 - Logistic Regression

DECISION TREES

- Trees of branch depth I to I0,50, I00 were trained and tested on
- Focus on all Precision, Recall and F1-Scores
- Highest score all around score is from decision tree with depth 7.

Depth = 7	Precision	Recall	FI-
			score
Macro	.67	.71	.67
Avg			
Weighted	.74	.70	.71
Avg			

K NEAREST NEIGHBOURS

- K nearest neighbours model tested on k values from 1 to 10
- Highest scores obtained from model with k = 8

k = 8	Precision	Recall	FI-
			score
Macro Avg	.66	.68	.66
Weighted Avg	.72	.70	.70

SVM

- SVM Model was trained using Radial Basis Functions Kernel
- Worse overall prediction results compared to KNN and Decision Trees

SVM	Precision	Recall	FI-
			score
Macro Avg	.67	.70	.66
Weighted Avg	.74	.68	.69

LOGISTIC REGRESSION

- Trained model with lambda value of 0.01.
- Worse performing model compared to best Decision Tree and KNN models and SVM model

Logistic Regression	Precision	Recall	FI- score
Macro Avg	.63	.65	.63
Weighted Avg	.7	.65	.67

CONCLUSION

- Various models created to fit accident data
- Need more information for higher prediction scores
 - Vehicle information
 - Responder Information
 - Tow Truck Information
- Decision Tree is best choice for a model using this data.