FMFM13

王胤雅

SID:201911010205

201911010205@mail.bnu.edu.cn

2023年9月18日

Problem I. 设 F 是只有有限项不为零的实数列全体, 在 F 上引入距离

$$\rho(x,y) = \sup_{k>1} |\xi_k - \eta_k|, \quad \forall x = (\xi_k)_{k\geq 1}, y = (\zeta_k)_{k\geq 1} \in F.$$

求证 (F, ρ) 不完备. 并求其完备化空间.

- 证明. (F, ρ) is not complete:
 - $\{x^{(n)} \in F : x_k^{(n)} = \frac{1}{k} \mathbb{1}_{k \le n}, n \in \mathbb{N}_+, k \in \mathbb{N}_+ \}, x := \{\frac{1}{n}\}_{n=1}^{\infty}. \text{ Since } \forall x^{(n)}, x^{(m)} \in F, n \le m, \ \rho(x^{(n)}, x^{(m)}) = \sup_{k \ge 1} |x_k^{(n)} x_k^{(m)}| = \frac{1}{n+1} \to 0, \text{ when } n, m \to \infty, \text{ then } \{x^{(n)}\}_{n=1}^{\infty} \text{ is a cauchy sequence on } (F, \rho). \text{ However, } \rho(x^{(n)}, x) = \frac{1}{n+1} \to 0, n \to \infty, \text{ by the uniqueness of limit, } \lim_{n \to \infty} x^{(n)} = x \notin F.$
 - Consider (E, ρ) where $E := \{\{x_n\}_{n=1}^{\infty} : x_n \in \mathbb{R}\}$, which is a complete metric space. It is obvious that $(E, \rho) \supset (F, \rho)$. We need to find the closer of F in E. $\forall \varepsilon > 0, x \in F$, $B(x, \varepsilon) := \{y \in E : \rho(y, x) < \varepsilon\}$, let $m := \sup\{k : x_k \neq 0\}, \forall y \in B(x, \varepsilon), \rho(x, y) = \sup\{\max_{1 \leq k \leq m} |x_k y_k|, \sup_{k > m} |y_k|\} < \varepsilon$, then $\sup_{k > m} |y_k| < \varepsilon$, so $\lim_{k \to \infty} y_k = 0$, as $\varepsilon \to 0$.
 - $-H := \{\{x_n\}_{n=1}^{\infty} \in E : \lim_{k \to \infty} x_k = 0\}$ is complete. We need to proof H is closed in E. $\forall x^{(n)} \in H, n \in \mathbb{N}_+$, and $x^{(n)} \to x := \{x_n\}_{n=1}^{\infty}$, then $\forall \varepsilon > 0$, $\exists N$, $\forall n \geq N$, $\sup_{k \geq 1} |x_k^{(n)} x_k| < \varepsilon/3$, $\exists G, \forall k, j \geq G, |x_k^{(N)} x_j^{(N)}| < \varepsilon/3$, $\exists M, \forall j \geq M$, satisfies $|x_j^{(N)}| \leq \varepsilon/3$. Therefore $L := \max\{G, M\}, \forall k, j \geq L, |x_k| \leq |x_k x_k^{(N)}| + |x_k^{(N)} x_j^{(N)}| + |x_j^{(N)}| < \varepsilon$. Thus, $x \in H$.
 - Consider $\varphi: F \to H$ which is an embedding map. $\forall x \in H$, then $y_k := \{x_k \mathbb{1}_{k \leq n}\} \in F$. And $\rho(y_k, x) = \sup_{i \geq k+1} |x_i| \to 0$ means F is dense in H.

Problem II. 设 (X, ρ) 完备, $\{F_n\}$ 是 X 内的单调下降非空闭集序列, 即

$$F_1 \supset F_2 \supset \cdots \supset F_n \supset \cdots, F_n \neq \emptyset$$

且 F_n 的直径 $d_n = d(F_n) \to 0$. 证明: $\bigcap_{n \ge 1} F_n \neq \emptyset$. 如果没有条件 $d_n \to 0$, 结论成立吗? 如果 X 为列紧空间时, 关于直径的条件是否还需要?

- 证明. 1. Let $x_1 \in F_1$, $x_{k+1} \in F_{k+1} \setminus F_k$ if $F_{k+1} \setminus F_k \neq \emptyset$, otherwise $x_{k+1} = x_k$, if $F_{k+1} \setminus F_k = \emptyset$. Consider $\{x_n\}_{n=1}^{\infty}$. $\forall \varepsilon > 0$, $\exists N$, $\forall n > m \geq N$, $\rho(x_n, x_m) \leq d_m < \varepsilon$. So $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence. Since (x, ρ) is complete, $x = \lim_{n \to \infty} x_n \in X$. Besides, $\forall n$, F_n is close, so $\{x_k\}_{k \geq n} \in F_n$, so $x \in F_n$. Then $x \in \bigcap_{n=1}^{\infty} F_n$.
 - 2. $(X, \rho) = (\mathbb{R}, \rho)$, where $\rho(x, y) := |x y|$, $F_n := [n, \infty)$, $\bigcap_{n=1}^{\infty} F_n = \emptyset$. Another example, (\mathbb{R}, ρ) , where $\rho(x, y) = 1$, $x \neq y$, $\rho(x, y) = 0$, x = y. (\mathbb{R}, ρ) is complete, let $F_1 := \{x_1, \dots, x_n, \dots\} \subset \mathbb{R} : |F_1| = \aleph_0$, $F_{k+1} = F_k \setminus \{x_k\}$, $\bigcap_{k=1}^n F_k = \emptyset$
 - 3. Unnecessary. Since X is sequence compact and complete, X is compact. If $B = \bigcap_{n\geq 1} F_n = \emptyset$, then $\exists F_n, F_n \cap B = \emptyset$, then $\forall x \in F_n, \exists u_x : x \in u_x \subset X$ is open, and $\exists F_x \in \{F_n\}$ satisfies $u_x \cap F_x =$. Let $\mathcal{U} := \{u_x : x \in F_n\}$, which is an open covery of F_n . Since X is compact, F_n is close in X, then F_n is compact. So, $\exists \{u_{x_1}, \dots, u_{x_n}\} \subset \mathcal{U}$ is a finite open covery of F_n , and $u_{x_k} \cap F_{x_k} = \emptyset$, thus $\emptyset = \bigcup_{k=1}^n (u_{x_k} \cap F_{x_k}) \supset \bigcup_{k=1}^n u_{x_k} \cap (\bigcap_{k=1}^n F_{x_k}) \supset F_n \cap (\bigcap_{k=1}^n F_{x_k}) = F_m \neq \emptyset$, where $m = \min\{n, x_1, \dots x_n\}$, contraction!