

Exploration: Distance Between Graphs

Justin Lee Maria Noriega Vanessa Vy Gerardo Gutierrez

Introduction

How close to being isomorphic are two non-isomorphic graphs?

This suggest the problem of comparing two graphs, at least two graphs of the same order and same size.

Edge Rotations

Edge Rotations: Suppose that $G \ncong H$. We say that G can be transformed into H by an edge rotation (or G can be rotated into H) if G contains distinct vertices u, v, and w such that $uv \in E(G)$, $uw \notin E(G)$ and H = G - uv + uw.

If we let G and H be graph of order 6 and size 6. The distance between them can be define as d(H,G). For example the distance between two isomorphic graph would be d(H,G)=0. Assume G and H are not isomorphic then we **transform** G into H by **rotating the edges** (or vise versa H into G). Suppose G contains two vertices u,v and w such that $uv \in E(G)$ but $uw \notin E(G)$. Then $H \cong G - uv + uw$. In the figure above the graph G can be rotated into H but G cannot be rotated into G. Since the G0, G1 but G2.

Greatest Common Subgraphs

For two nonempty graphs G_1 and G_2 (not necessarily having the same order or same size), a graph G is called a greatest common subgraph of G_1 and G_2 . If G is a graph of maximum size that is isomorphic to both an edge-induced subgraph of G_1 and an edge-induced subgraph of G_2 . The graphs G_1 and G_2 of have three distinct greatest common subgraphs, namely G, G' and G''

Rotation Distance

Rotation Distance: For two graphs G and H of the same order and same size, the **rotation distance** d(G, H) between G and H is defined as the *smallest nonnegative integer* k for which there exists a sequence G_0, G_1, \ldots, G_k of graphs such that $G_0 \cong G, G_k \cong H$ and G_i can be rotated into G_{i+1} for $i = 0, 1, \ldots, k-1$.

Theorem 12.21

Theorem 12.21 Let G and H be graphs of order n and size m for positive integers n and m and let F be a greatest common subgraph of G and H, where F has size s. Then $d(G, H) \leq 2(m - s)$

Proof. If s=m, then G=H and d(G,H)=0. Hence we may assume that $1 \le s < m$. Let G^* and H^* be edge-induced subgraphs of G and H, respectively, such that $G^* \cong H^* \cong F$. Furthermore, assume that $V(G)=V(H)=v_1,v_2,...,v_n$ and that the subgraphs G^* and H^* are identically labeled. Since $G \not\cong H$, the graph G contains an edge v_iv_j that is not in G and G contains an edge G and G and G and G are G and G and G are G and G are G and G and G are G and G and G and G are G are G and G are G and G are G are G and G are G and G are G are G and G are G are G and G are G and G are G are G and G and G are G and G are G are G and G are G are G and G are G and G are G are G and G are G are G and G are G and G are G are G and G are G are G and G are G and G are G are G and G are G are G are G and G are G and G are G and G are G and G are G are G are G and G are G are G and G are G are G and G are G are G are G are G and G are G are G and G are G are G are G are G and G are G and G are G are G are G are G and G are G are

Suppose that at least one of v_i and v_j is not adjacent in G to at least one of v_p and v_q , say $v_iv_p \notin E(G)$. Then G can be rotated into $G' = G - v_iv_j + v_iv_p$ and G' can be rotated into $G'' = G' - v_iv_p + v_pv_q$ and so $d(G, G'') \le 2$.

If, on the other hand, each of v_i and v_j is adjacent to both v_p and v_q , then G can be rotated into $G_1 = G - v_i v_p + v_p v_q$ and G_1 can be rotated into $G_2 = G_1 - v_i v_j + v_i v_p$ and so $d(G, G_2) \le 2$.

In any case, G can be transformed into $H' = G - v_i v_j + v_p v_q$ by at most two rotations and so $d(G, H') \le 2$. The graphs H' and H have s+1 edges in common. Continuing in this manner, we have $d(G, H) \le 2(m-s)$.

Exercise 12.57

For each positive integer k, show that there exists two graphs G and H such that d(G, H) = k. Proof. Let $G = S_n$ and $H = P_n$ where $n \ge 3$. So, d(G, H) = k = n - 3

$$k = 1$$

$$k = 3$$

$$k = 4$$

$$k = 4$$

Exercise 12.58

Give an example of two graphs G and H that have a unique greatest common subgraph.

Exercise 12.59

For each positive integer k, give an example of two graphs G and H that have exactly k greatest common subgraphs.

Proof. Consider any integer $k \geq 2$.

Let $G = P_2 C_{2k-1}$ and $H = P_2 C_{2k}$.

$$k = 2$$

$$K = 3$$

$$H : \downarrow \downarrow \downarrow$$

$$k = 3$$

$$H : \downarrow \downarrow$$

$$k = 4$$

$$H : \downarrow \downarrow$$

$$K = 4$$