Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники Направление системного и прикладного программного обеспечения

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 3

курса «Функциональная схемотехника»

по теме: «Прототипирование цифровой схемы с помощью ПЛИС» Вариант N 6

Выполнил студент:

Тюрин Иван Николаевич

группа: Р33102

Преподаватель:

Кустарев П. В.,

Васильев С.Е.

Содержание

Лабораторная работа № 3. Прототипирование цифровой схемы
с помощью ПЛИС
1. Введение
2. Задание варианта № 6
1. Модуль «Arbiter»
3. Выполнение задания
1. Архитектура верхнего модуля
2. Переключатели платы ПЛИС
3. Семисегментный дисплей платы ПЛИС
4. Финальный результат
4. Вывод

Лабораторная работа № 3 Прототипирование цифровой схемы с помощью ПЛИС

1. Введение

Лабораторная работа посвящена прототипированию разработанных модулей на FPGA. В качестве задания необходимо будет разместить сложнофункциональный блок, разработанный вами в второй лабораторной работе, на специализированной плате, подключив к нему часть доступных периферийных устройств

2. Задание варианта № 6

Для реализации был выбран блок из второй части лабораторной работы - Арбитр, Очередь FIFO/LIFO, Буфер MRU/LRU.

Для подачи запросов в ваш модуль следует использовать кнопки и переключатели на плате. Для вывода информации следует использовать семисегментные индикаторы и светодиоды. В каждом варианте должен быть реализован сигнал асинхронного сброса и его активация должна быть привязана к кнопке на плате.

2.1. Модуль «Arbiter»

Для передачи нескольких потоков транзакций необходимо организовать потактовую симуляцию с использованием кнопки. Одно нажатие на кнопку должно симулировать один тактовый период. Так как потоков всего четыре, а переключателей на плате 16, то каждому потоку отводится 3 переключателя на биты шины данных и один переключатель на бит валидности данных. При выдаче транзакции арбитром, на одной группе семисегментных индикаторов должен отобразиться номер потока, а на другой группе - переданные данные. На светодиодах необходимо отображать сигналы "ready" к

каждому потоку. Если в текущий такт данных не было, то семисегментные индикаторы должны быть погашены.

3. Выполнение задания

3.1. Архитектура верхнего модуля

В начале выполнения работы была разработана архитектура требуемого модуля, рис. 1.1, для этого пришлось изучить возможности платы Nexys A7 100T. Ключевыми особенностями были интерфейс взаимодействия с 7-сегментным дисплеем с помощью катодов и анодов и обработка сигнала кнопок. Главную действующую роль выполняет модуль арбитра, а драйвер дисплея лишь правильным образом распределяет сигналы арбитра во времени для подачи на порты дисплея. Состояние арбитра (сигнал валидности и занятости) подаются на пару RGB-светодиодов.

Рис. 1.1: Архитектура верхнего модуля

Особого внимания требует механизм обработки входного сигнала с различных механических элементов платы, таких как кнопки и сдвиговые переключатели. В силу их внутреннего устройства, в процессе нажатия и отпускания может происходить дребезг контактов, из-за чего возникает высокочастотный сигнал, который может спровоцировать ложное срабатывание. На сдвиговых переключателях дребезга контактов не было замечено и поэтому модуль защиты использовался только для нажимных кнопок. Более того, в ходе разработки этого модуля выло выяснено, что ему требуется

сигнал сброса, и поэтому он не может быть использован для подавления дребезга на кнопке сброса ЦПУ, да оно и не нужно — процессор в какой-то момент будет сброшен в последний раз.

3.2. Переключатели платы ПЛИС

Для разработки модуля защиты от дребезга пришлось изучить примеры решений представленных в различных источниках. Все они работают поразному, но придерживаются одного принципа — перенос входного сигнала с одной частоты на другую, т.е. считывание промежуточных значений с некоторым промежутком времени и работа именно с ними. Графики показывающие описанный принцип работы можно видеть на рис. 1.2.

Рис. 1.2: Диаграмма сигналов модуля подавления дребезга

В процессе разработки модуля стало ясно насколько важно писать симуляционные тесты перед тем, как программировать ПЛИС и проверять на нем. Ведь компиляция для ПЛИС занимает значительно большее время и невозможно установить в точности, какие сигналы протекают внутри схемы. Потому для тестирования модуля был разработан тест симулирующий дребезг с помощью высокочастотного сигнала, рис. 1.3.

Рис. 1.3: Визуализация сигналов при работе защиты от дребезга

Возможно, разработанное мной решение не самое лучшее, но это единственное решение которое стабильно работает из других протестированных. Я рассматривал решения на основе FSM, ожидания только после обнаружения изменения сигнала и другие схемы с использованием регистров и счетчиков (о представленном в методичке способе я не знал, но после подробного его изучения, он показался не слишком подходящим).

3.3. Семисегментный дисплей платы ПЛИС

Управление семисегментным дисплем, на который по заданию требовалось выводить данные, оказалось неочевидным, поэтому для начала работы пришлось обратиться к официальной документации к плате и видеоурокам на YouTube («Занятие 2 (2023-24): Схемы с тактовым сигналом и состоянием. Отечественный симулятор Delta Design.» Школа синтеза цифровых схем), где наглядно объясняется принцип работы этого дисплея. Для удобной работы с ним пришлось разработать отдельный модуль, выполняющий декодирование входных сигналов в нужный набор сигналов на катоды и аноды дисплея, чтобы отображались нужные символы. Отдельную проблему представляет контроль времени, в которое нужно обновлять выходные сигналы, чтобы символы выводились в нужном порядке. Так же много проблем с отлаживанием вызвало то, что дисплей управляется активным низким уровнем сигнала. Процесс анализа ошибок усложнял тот факт, что человеческий глаз не разделяет быстро мерцающие объекты и потому иногда цифры сливались в непонытные символы.

По описанным ранее причинам, для этого модуля так же стала очевидна необходимость разработать симуляционный тест. Интересным моментом тут было то, что в устройстве драйвера имеет задержка в тысячи тактов, которые было бы трудно симулировать правильным образом, поэтому значение

задержки было вынесено во внешние параметры модуля и при тестировании задержка была по сути отключена. Временную диаграмму сигналов можно видеть на рис. 1.4.

Рис. 1.4: Визуализация сигналов при работе драйвера 7-сегментного дисплея

3.4. Финальный результат

В результате, после отладки ошибок работы модулей, получилось синтезировать схему и запрограммировать ПЛИС на выполнение требуемой задачи. На рис. 1.5 представлен **пред**финальный результат, в финальной версии в каждой части 7-сегментного дисплея отображается только одна цифра. Система обладает интересным свойством: если при передаче данных от конкретного «транзакта» на дисплей начать их менять, то они изменятся и на дисплее, потому что арбитр не «кеширует» данные и по контракту данные на входах данные арбитра не должны меняться как только арбитр начинает их использовать. А так же у арбитра имеется один такт, в котором он перестает передавать данные и считывает новый вектор запросов для дальнейшей работы.

Рис. 1.5: Предфинальный результат работы разработанной схемы.

4. Вывод

Во время лабораторной работы хорошо чувствовалась необходимость в тестировании программ и уж тем более цифровых схем. В то время как на симуляцию тратится меньше минуты, на прошивку платы тратится несколько минут. Если не использовать возможности симуляции, процесс разработки цифровых устройств затянется очень сильно, либо в конечных изделиях будет катастрофическое количество ошибок работы.

Так же стало понятно, что разработка цифровых схем, которые выполняли бы полезную функцию, довольно сложна, но еще сложнее налаживание взаимодействия цифровых схем с внешним «физическим и биологическим миром», где имеются такие явления, как дребезг и адаптивность человеческого зрения.

Во время работы с ПЛИС обнаруживаются такие нюансы схемотехники, как пути по которым проходит тактовый сигнал: при попытке синтезировать первые версии схемы, возникала ошибка о слишком длинных путях подвода тактового сигнала, что недопустимо для качественного использования схем.

Проблема решилась добавлением флага превращающего эту ошибку в предупреждение.

В процессе разработки были выработаны новые принципы написания кода, для достижения большей выразительности, такие, например, как дополнительные сигналы разрешения и флаги. Для реализации модуля драйвера 7-сегментного дисплея было удобно использовать епит из языка SystemVerilog. И пришлось переписать модуль арбитра на более простые конструкции (без интерфейсов). Стало видно, что языки для описания аппаратуры довольно консервативные и ограниченные в своей выразительности, а результат синтеза под конкретную ПЛИС зависит от версии среды разработки, потому что в более новых версиях Vivado некоторых проблем синтеза не возникало.

В общем, получен очень ценный опыт работы с ПЛИС. Мне удалось наблюдать, что на тех же платах можно запустить целый Linux сервер, что показывает, насколько обширные возможности суть при работе с этими устройствами.