EX.NO: 11

IMPLEMENTING ARTIFICIAL NEURAL NETWORKS FOR AN APPLICATION USING PYTHON - REGRESSION

AIM:

To implementing artificial neural networks for an application in Regression using python.

SOURCE CODE:

from sklearn.neural_network import MLPRegressor from sklearn.model_selection import train_test_split from sklearn.datasets import make_regression import numpy as np import matplotlib.pyplot as plt import seaborn as sns
% matplotlib inline

X, y = make_regression(n_samples=1000, noise=0.05, n_features=100)

X.shape, y.shape = ((1000, 100), (1000,))

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True, random_state =42)

clf = MLPRegressor(max_iter=1000) clf.fit(X_train,

y_train)

 $print(f"R2\ Score\ for\ Training\ Data = \{clf.score(X_train,\ y_train)\}")\ print(f"R2\ Score\ for\ Training\ Data = \{clf.score(X_training\ Data = \{clf.score(X_training\ Data = \{clf.score(X_training\ Data = \{clf.score(X_training\ Data = \{clf.sco$

Score for Test Data = {clf.score(X_test, y_test)}")

OUTPUT:

R2 Score for Test Data = 0.9686558466621529

RESULT: Thus the above python code is executed successfully and output is verified.