11/1/22

Practice Problems

- 1. True, false, or neither (that is, sometimes true, sometimes false):
 - a) If v, w are eigenvectors of A, then so is v + w and cv for c any scalar.
 - b) If $v \in N(A)$ is not the zero vector, then v is an eigenvector of A.
- 2. Describe as many eigenvalues and corresponding eigenvectors as you can (without doing any serious calculation) for

a)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & 3 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{pmatrix}$.

- b) A projection matrix P onto some subspace S (pick a particular 2-dimensional subspace of \mathbb{R}^3 if you're confused).
- c) The permutation matrix

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

- d) A rank one matrix uv^T (pick particular 3-component vectors u, v if you're confused).
- **3.** For which angles θ does the rotation matrix

$$R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

have real eigenvalues? (Hint: The roots of the quadratic equation ax^2+bx+c are $(-b\pm\sqrt{b^2-4ac})/2a$.)

- **4.** Suppose that A, B, C are $m \times m$ matrices with eigenbases that you know. What do you know about the eigenvectors and eigenvalues of A^{2022} ? A^{-1} (assuming A is invertible)? A^{T} ? AB? A+B?
- **5.** Suppose that A is the matrix

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

a) What is the pattern when you multiply A repeatedly by some vector? After _____ multiplications, you get back the same vector, so

$$\overline{A} = \underline{\hspace{1cm}}$$
.

- b) What are eigenvalues and eigenvectors of A? Is this consistent with the previous part?
- c) Write the vector $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ in the basis of the eigenvectors and give a formula for $A^n x$.
- d) What are the eigenvectors and eigenvalues of B = 2A + I?