Name: Elif Cemre Durgut

10:26493

Recitation section: B10

Question 10: Show that for any $n \in \mathbb{Z}^+$, the numbers of positive divisors of n^2 is odd.

Let
$$n = \rho_1^{\ell_1} \cdot \rho_2^{\ell_2} \cdot \rho_3^{\ell_3} \cdot \dots \cdot \rho_m^{\ell_m}$$
 (ρ_i 's are prime numbers)

Then,

$$n^2 = P_1^{2\ell_1}, P_2^{2\ell_2}, P_3^{2\ell_3}, \dots, P_m^{2\ell_m}$$

Let be Z' such that

Let b a divisor of n2.

numbers of pos divisors =
$$(2l_1+1)(2l_2+1)(2l_3+1)$$
. --- $(2l_m+1)$ odd odd odd odd

multiplication of odd numbers results in an odd number. (Because they do not include)

so, we showed that for any n EZt, the numbers of positive divisors of n2 is odd.

Name: Elif Cemre Durgut

1D: 26493

Recitation Section: B10

Question 12: How many bit strings are there of length n?

n many		
character — 2 options character — 2 options character — 2 options	For every character in string 2 options as p and 1. topions by options 2 options 2 options 2 options 4 options 4 options 3 bit srings	, there are
	_ 2 511 31111g3 //	
n many 2's.		

=> There exist 2" bit strings of length n.

Name: Elif Cemre Durgut

ID: 26493

Recitation section: B10

Question 13: How many palindrome binary strings are there of length 9?

To be a palindrome:

1. character = 9. character

$$3. = 7.$$

5, is independent.

So, it is enough to calculate first five characters because remaining ones will be dependent on first four characters reverse respectively.

Answer: There are 32 parindrome bit strings of length 9.