Álgebra lineal I, Grado en Matemáticas

Febrero 2019, Primera Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz triangular inferior y triangular superior.
- (b) Rango de un conjunto de vectores. Rango de una matriz.
- (c) Subespacio vectorial.
- (d) Matriz de una aplicación lineal.

Ejercicio 1: (2 puntos)

Demuestre que si A es una matriz de tamaño $n \times 1$ y B es una matriz de tamaño $1 \times n$, entonces la matriz AB no es invertible. Determine el rango de AB si A y B no son nulas.

Ejercicio 2: (3 puntos)

Sea U_a , con $a \in \mathbb{K}$, el subespacio vectorial de \mathbb{K}^4 formado por las soluciones del siguiente sistema lineal homogéneo

$$\begin{cases} x + ay + z + t = 0 \\ 2x + (1+2a)y + 2z + (a+2)t = 0 \\ x + ay + az + t = 0 \end{cases}$$

- (a) Determine los valores de $a \in \mathbb{K}$ para los cuales U_a es un plano de \mathbb{K}^4 .
- (b) ¿Existe algún valor de a para el cual U_a sea un hiperplano de \mathbb{K}^4 ?
- (c) Encuentre una base del subespacio U_a en el caso a=3.

Ejercicio 3: (3 puntos)

Sea s la simetría de \mathbb{R}^3 que transforma el vector (1,0,0) en el vector (0,1,0) y deja fijo el vector (0,0,1).

- (a) Determine la matriz de s respecto de la base canónica.
- (b) Determine los subespacios base y dirección de la simetría.

Nota: un endomorfismo s es una simetría si $s \circ s = \operatorname{Id}$.

Ejercicio 1: Demuestre que si A es una matriz de tamaño $n \times 1$ y B es una matriz de tamaño $1 \times n$, entonces la matriz AB no es invertible. Determine el rango de AB si A y B no son nulas.

Solución

Sean
$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 y $B = (b_1 \ b_2 \ \cdots \ b_n)$, entonces la matriz AB es de tamaño $n \times n$.

Las columnas y las filas de AB son de la forma:

$$AB = \left(Ab_1 \mid Ab_2 \mid \cdots \mid Ab_n \right) = \left(\frac{a_1B}{a_2B} \right).$$

luego todas las filas son proporcionales y todas las columnas son proporcionales. Al ser tanto A como B no nulas, alguna fila y columna son no nulas, luego el rango de AB es igual a 1 para cualquier valor de n.

Por otro lado, la matriz AB es invertible si y sólo si rg(AB) = n, por lo que AB no es invertible (salvo en el caso trivial n = 1).

Ejercicio 2:

Sea U_a , con $a \in \mathbb{K}$, el subespacio vectorial de \mathbb{K}^4 formado por las soluciones del siguiente sistema lineal homogéneo

$$\begin{cases} x + ay + z + t = 0 \\ 2x + (1+2a)y + 2z + (a+2)t = 0 \\ x + ay + az + t = 0 \end{cases}$$

- (a) Determine los valores de $a \in \mathbb{K}$ para los cuales U_a es un plano de \mathbb{K}^4 .
- (b) ¿Existe algún valor de a para el cual U_a sea un hiperplano de \mathbb{K}^4 ?
- (c) Encuentre una base del subespacio U_a en el caso a=3.

Solución:

Si escribimos el sistema lineal de forma abreviada como AX = 0, entonces, por el Teorema 3.55, pág. 127, sabemos que el conjunto de soluciones determina un subespacio vectorial, que en este caso llamamos U_a , cuya dimensión es:

$$\dim U_a = n - \operatorname{rg}(A)$$

Escalonamos la matriz A para estudiar su rango

$$A = \begin{pmatrix} 1 & a & 1 & 1 \\ 2 & (1+2a) & 2 & (a+2) \\ 1 & a & a & 1 \end{pmatrix} \xrightarrow{f_2 \to f_2 - 2f_1} \begin{pmatrix} 1 & a & 1 & 1 \\ 0 & 1 & 0 & a \\ 0 & 0 & a-1 & 0 \end{pmatrix} = A'$$

Así, rg(A) = rg(A') = 2 si y sólo si a = 1; y rg(A) = rg(A') = 3 para el resto de valores.

- (a) El subespacio U_a es un plano de \mathbb{K}^4 si y sólo si $\dim(U_a) = 2$ si y sólo si $\operatorname{rg}(A) = 2$ si y sólo a = 1.
- (b) El subespacio U_a es un hiperplano \mathbb{K}^4 si y sólo si $\dim(U_a) = 3$ si y sólo si $\operatorname{rg}(A) = 1$, lo cual es imposible. Luego, no existe ningún valor de a tal que U_a sea un hiperplano.

(c) Si a=3, entonces rg(A)=3, por lo que U_3 es una recta. Resolvemos el sistema equivalente A'X=0 para encontrar una base de U_3 :

$$\begin{cases} x + 3y + z + t = 0 \\ y + + 3t = 0 \\ 2z = 0 \end{cases}$$

De la tercera ecuación obtenemos z=0 y llamamos $t=\lambda$ a la incógnita que es un parámetro. A continuación despejamos las incógnitas principales (x e y) y se obtienen las soluciones que determinan unas ecuaciones paramétricas de U

$$\begin{cases} x = 8\lambda \\ y = -3\lambda \\ z = 0 \\ t = \lambda \end{cases}$$

o lo que es lo mismo

$$U = \{\lambda(8, -3, 0, 1) : \lambda \in \mathbb{K}\},\$$

lo que nos proporciona una base $\{(8, -3, 0, 1)\}\$ de U_3 .

Ejercicio 3:

Sea s la simetría de \mathbb{R}^3 que transforma el vector (1,0,0) en el vector (0,1,0) y deja fijo el vector (0,0,1).

- (a) Determine la matriz de s respecto de la base canónica.
- (b) Determine los subespacios base y dirección de la simetría.

Nota: un endomorfismo s es una simetría si $s \circ s = \text{Id}$.

Solución:

(a) Es el ejercicio 4.9 del libro. La matriz de la simetría es

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

(b) La base de la simetría es el subespacio formado por los vectores (x,y,z) que quedan fijos por la simetría. Es decir

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff x - y = 0$$

La dirección de la simetría es el subespacio formado por los vectores (x, y, z) que se transforman en sus opuestos. Es decir

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix} \iff x+y=0, \ z=0$$