DESCRIPTIVE ST	2TAT	
Measures of Central Tendency:		
Mean:		
N St		
n Ef		
There are the two typical tomulas used to data		· · · · · · · · · · · · · · · · · · ·
4 If is continuous, and not discrete, to as the value of a to estimate a	the widpoint of the clans value for the mean	will be used
Assumed mean: This method can also be used to calcul set of data using the following form	late the mean (and vou	ionce) of a
ν = a + Ed where a is	au mean that you a	muned
$\bar{x} = a + \underline{\Sigma} d$ where a is	s the deviation of that w	ean roma
	value in the date set	
<u> </u>	is the total number of ele	ments in the
	data set	
For example:		
1, 3, 5, 3, 10, 13 ->.	sel of data	
Using the typical method:	Using assumed wear m	ethod:
$\bar{x} = \sum_{x} = 1 + 3 + 5 + 3 + 10 + 13 = 5.83$	x = a + Zd and u	ve arrung that
6		u is 7
9 mean		
	= 7 + <u>\$1d</u>	d= (-x-a)
	h	
The anumed mean formle		
can also be written as:		
	بر ب	
$x = a + \Sigma(x-a)$	1 1-	
<u> </u>	<u> </u>	
	<u> </u>	
	10 10-	
	13 (3-	
		-7 = \(\Sid\)
	× = 7 + -7 = 7 -	1.16667 = 5.83

Combined mean: This is used to find the combined mean of two	o separate sets of data
combined = $\sum x + \sum y$ mean $n_x + n_y$	
Measures of Variation Just like how there are different approaches	to calculating the mean,
Just like how there are different approaches depending on the information given, there on calculate the variance of the date, and here is a rule, remember: (standard deviate	
In a normal set of data: ie. 1, 5, 9, 10, 15 Mean = 8	
Variance = $\frac{\sum x^2 - (\overline{x})^2}{n}$ or $\frac{\sum (n - \overline{x})^2}{n}$	
7	$\frac{(-3)_5 + (1)_5 + (5)_5 + (3)_5}{2}$ $\frac{(2-8)_5 + (4-8)_5 + (10-8)_5 + (12-8)_5}{2}$
$\sigma^2 = 22.4$ $\Rightarrow vanance = 49 + 9$	S +1+4+49 S
Unique through arrunged mean: When wany the arrunged mean formula to a can be calculated using the following formula	= a+ [[x-a]), the variance
$\sigma^2 = \frac{\sum (x-a)^2}{n} = \left[\frac{\sum (x-a)}{n}\right]^2$	
vong the same data set as an example: where we assume a = 7	
$\sigma^2 = \frac{\sum (x-7)^2}{5} - \left[\frac{\sum (x-7)}{5}\right]^2$ $= \frac{117}{5} - \left[\frac{5}{5}\right]^2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
S (S) = 117-1 S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

112	(5 /2: 2)	
5	(5 E(n-a)	Si(x-a)
[σ² = 22.4]		2(1-1)
→ Variousce		
Combined Variance:		
# d like her has consolered to be on house of the	1 1	00
Just like now two separate gets of application have a co	menned mean, the	1 cour
Just like how two separate sets of data can have a co- also have a combined variance, which is calculated	I work the following	,
fonula:	3	8
combined $\sigma^2 = \frac{\sum x^2 + \sum y^2}{N_x + N_y} - (Combined mean)^2$		
$N_{Y} + N_{u}$		