Bioassays in fruits

2023-04-14

Preventive treatments

```
dat <- rio::import("data/bioassay_data.csv") %>%
    mutate_at(vars(fungicide, repetition, day, replicate, fruit), as.factor) %>%
    mutate(fungicide=fct_relevel(fungicide, "control"))
  dat %>% str
                600 obs. of 6 variables:
'data.frame':
 $ fungicide
                 : Factor w/ 5 levels "control", "Bellis", ...: 2 2 2 2 2 2 2 2 2 2 ...
                 : Factor w/ 2 levels "1", "2": 1 1 1 1 1 1 1 1 1 ...
 $ repetition
                  : Factor w/ 3 levels "1","7","15": 1 1 1 1 1 1 1 1 1 1 ...
                  : Factor w/ 4 levels "1", "2", "3", "4": 1 1 1 1 1 2 2 2 2 2 ...
 $ replicate
 $ fruit
                  : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
 $ spots_per_fruit: int  1 0 0 0 0 0 0 0 0 0 ...
Data scheme
  ftable(xtabs(~ fungicide + day + repetition + replicate, dat))
                         replicate 1 2 3 4
fungicide day repetition
control
          1
              1
                                   5 5 5 5
                                   5 5 5 5
              2
              1
                                   5 5 5 5
              2
                                   5 5 5 5
          15 1
                                   5 5 5 5
              2
                                   5 5 5 5
Bellis
              1
                                   5 5 5 5
              2
                                   5 5 5 5
          7
              1
                                   5 5 5 5
              2
                                   5 5 5 5
             1
                                   5 5 5 5
          15
                                   5 5 5 5
              2
                                   5 5 5 5
Merpan
              1
              2
                                   5 5 5 5
          7
                                   5 5 5 5
              1
              2
                                   5 5 5 5
                                   5 5 5 5
          15
             1
              2
                                   5 5 5 5
Timorex
                                   5 5 5 5
              1
```

5 5 5 5

2

```
5 5 5 5
         7 1
                                  5 5 5 5
             2
                                  5 5 5 5
         15 1
             2
                                  5 5 5 5
Ziram
            1
                                  5 5 5 5
         1
             2
                                  5 5 5 5
         7
                                  5 5 5 5
             1
                                  5 5 5 5
             2
          15 1
                                  5 5 5 5
                                  5 5 5 5
             2
```

Disease severity

```
dat %>%
   ggplot() +
   aes(x=day, y=spots_per_fruit) +
   geom_boxplot(width=.5) +
   geom_jitter(width=.2, col=2, alpha=.5) +
   labs(x="Treatment", y="Severity (spots per fruit)") +
   facet_grid(repetition~fungicide)
```



```
dat %>%
  count(spots_per_fruit) %>%
  ggplot() +
  aes(x=spots_per_fruit, y=n) +
  geom_col()
```


Model fitting

```
fit_zinbinom_prev <- update(fit_zipoisson_prev,family=nbinom2)
fit_zinbinom1_prev <- update(fit_zipoisson_prev,family=nbinom1)
fit_twediee_prev <- update(fit_zipoisson_prev,family=tweedie)
AIC(fit_zipoisson_prev,fit_zinbinom_prev,fit_zinbinom1_prev, fit_twediee_prev)</pre>
```

df	AIC
18	3.89e + 03
19	3.49e + 03
19	3.42e + 03
20	3.41e+03

```
# df AIC

# fit_zipoisson 18 3895.200

# fit_zinbinom 19 3489.228

# fit_zinbinom1 19 3418.201

# fit_twediee 20 3405.606
```

Goodness of fit

```
simulateResiduals(fit_twediee_prev) %>% testResiduals()
```


\$uniformity

Asymptotic one-sample Kolmogorov-Smirnov test

data: simulationOutput\$scaledResiduals

D = 0.021, p-value = 0.954

alternative hypothesis: two-sided

\$dispersion

 $\label{eq:def:DHARManonparametric} \begin{picture}(200,0) \put(0,0){\line(0,0){100}} \put(0,0){\li$

data: simulationOutput

dispersion = 0.76533, p-value = 0.064
alternative hypothesis: two.sided

\$outliers

 $\ensuremath{\mathsf{DHARMa}}$ outlier test based on exact binomial test with approximate expectations

data: simulationOutput

outliers at both margin(s) = 10, observations = 600, p-value = 0.03228 alternative hypothesis: true probability of success is not equal to 0.007968127 95 percent confidence interval:

0.008020507 0.030436459

sample estimates:

frequency of outliers (expected: 0.00796812749003984) 0.01666667

\$uniformity

Asymptotic one-sample Kolmogorov-Smirnov test

data: simulationOutput\$scaledResiduals

D = 0.021, p-value = 0.954

alternative hypothesis: two-sided

\$dispersion

DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

data: simulationOutput

dispersion = 0.76533, p-value = 0.064
alternative hypothesis: two.sided

\$outliers

DHARMa outlier test based on exact binomial test with approximate

expectations

car::Anova(fit_twediee_prev)

Chisq	\mathbf{Df}	Pr(>Chisq)
2.83e+03	4	0
148	2	5.92e-33
328	8	4.73e-66

Means comparison test

```
emm_prev <- emmeans(fit_twediee_prev, ~ fungicide|day, type="response")
res_prev <- cld(emm_prev, alpha=0.05, Letters=letters, type="response")
res_prev %>%
    mutate(`%Control`=abs((response/filter(.,fungicide=="control")%>% pull(response)-1)*100

res_prev %>%
    ggplot()+
    aes(x=day, y =response)+
    geom_pointrange(aes(ymin=asymp.LCL , ymax=asymp.UCL))+
    geom_col(alpha=.2, width=.2)+
    facet_wrap("fungicide")
```

fungicide	day	response	SE	df	asymp.LCL	asymp.UCL	.group	%Control
Bellis	1	0.127	0.0644	Inf	0.0468	0.343	a	99.8
Merpan	1	0.506	0.147	Inf	0.286	0.892	ab	99.3
Ziram	1	1.12	0.236	Inf	0.739	1.69	b	98.6
Timorex	1	19.4	1.33	Inf	17	22.2	c	73.7
control	1	73.9	3.23	Inf	67.8	80.5	d	2.77
Ziram	7	1.49	0.282	Inf	1.03	2.16	a	98.1
Merpan	7	2.32	0.369	Inf	1.7	3.17	a	96.9
Bellis	7	2.8	0.417	Inf	2.09	3.74	a	96.3
Timorex	7	54.2	2.61	Inf	49.3	59.5	b	32.2
control	7	76	3.29	Inf	69.8	82.7	c	2.84
Bellis	15	4.32	0.545	Inf	3.37	5.53	a	94.3
Ziram	15	6.13	0.661	Inf	4.96	7.57	a	92.3
Merpan	15	10.3	1.27	Inf	8.09	13.1	b	86.1
Timorex	15	57.5	2.72	Inf	52.4	63.1	c	24.3
control	15	79.9	3.41	Inf	73.5	86.8	d	0

Disease incidence

Outlier test n.s.

Histogram of frequBoot

Residuals (outliers are marked red)

\$uniformity

Exact one-sample Kolmogorov-Smirnov test

data: simulationOutput\$scaledResiduals

D = 0.065276, p-value = 0.7832 alternative hypothesis: two-sided

\$dispersion

data: simulationOutput

dispersion = 0.93691, p-value = 0.488
alternative hypothesis: two.sided

\$outliers

DHARMa bootstrapped outlier test

data: simulationOutput
outliers at both margin(s) = 0, observations = 96, p-value = 1
alternative hypothesis: two.sided
 percent confidence interval:
 0.00000000 0.01041667
sample estimates:
outlier frequency (expected: 0.00125)

\$uniformity

Exact one-sample Kolmogorov-Smirnov test

data: simulationOutput\$scaledResiduals
D = 0.065276, p-value = 0.7832
alternative hypothesis: two-sided

\$dispersion

 $\label{eq:def:DHARManonparametric} \begin{picture}(200,0) \put(0,0){\line(0,0){100}} \put(0,0){\li$

data: simulationOutput
dispersion = 0.93691, p-value = 0.488
alternative hypothesis: two.sided

\$outliers

DHARMa bootstrapped outlier test

Means comparison test

```
emm_inc <- emmeans(mod_inc, ~ day|fungicide, type="response")
res_inc <- cld(emm_inc, alpha=0.05, Letters=letters, type="response")
res_inc</pre>
```

day	fungicide	prob	SE	df	asymp.LCL	asymp.UCL	.group
1	Bellis	0.125	0.0523	Inf	0.053	0.267	a
7	Bellis	0.675	0.0741	Inf	0.517	0.801	b
15	Bellis	0.825	0.0601	Inf	0.676	0.914	b
1	Merpan	0.45	0.0787	Inf	0.305	0.604	a
7	Merpan	0.7	0.0725	Inf	0.543	0.821	ab
15	Merpan	0.8	0.0632	Inf	0.648	0.897	b
1	Timorex	1	1.37e-09	Inf	2.22e-16	1	a
7	Timorex	1	4.92e-10	Inf	2.22e-16	1	a
15	Timorex	1	3.13e-10	Inf	2.22e-16	1	a
7	Ziram	0.575	0.0782	Inf	0.42	0.717	a
1	Ziram	0.6	0.0775	Inf	0.443	0.738	a
15	Ziram	0.95	0.0345	Inf	0.821	0.987	b

```
res_inc %>%
  ggplot()+
  aes(x=day, y =prob)+
  geom_pointrange(aes(ymin=asymp.LCL , ymax=asymp.UCL))+
```

```
geom_col(alpha=.2, width=.2)+
facet_wrap("fungicide")
```


Curative treatments

```
cura <- rio::import("data/curative.csv") %>%
  mutate_at(vars(fungicide, repetition, replicate, fruit), as.factor) %>%
  mutate(fungicide=fct_relevel(fungicide, "Control"))
```

Data scheme

```
cura %>% str
```

```
'data.frame':
                200 obs. of 5 variables:
 $ fungicide
                 : Factor w/ 5 levels "Control", "Bellis", ...: 1 1 1 1 1 1 1 1 1 1 ...
 $ repetition
                : Factor w/ 2 levels "1", "2": 1 1 1 1 1 1 1 1 1 1 ...
                 : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 2 2 2 2 2 ...
 $ replicate
 $ fruit
                 : Factor w/ 5 levels "1", "2", "3", "4", ...: 1 2 3 4 5 1 2 3 4 5 ...
 $ spots_per_fruit: int 33 32 40 22 16 16 6 14 41 30 ...
  ftable(xtabs(~ fungicide + repetition + replicate, cura))
                     replicate 1 2 3 4
fungicide repetition
Control
         1
                               5 5 5 5
          2
                               5 5 5 5
Bellis
          1
                               5 5 5 5
                               5 5 5 5
          2
          1
                               5 5 5 5
Merpan
          2
                               5 5 5 5
Timorex
          1
                               5 5 5 5
          2
                               5 5 5 5
Ziram
                               5 5 5 5
          1
                               5 5 5 5
          2
```

Disease severity (spots per fruit)

Box plot: severity per treatment and repetition (1 and 2)

```
cura %>%
   ggplot() +
   aes(x=fungicide, y=spots_per_fruit) +
   geom_boxplot(width=.5) +
   geom_jitter(width=.2, col=2, alpha=.5) +
   labs(x="Treatment", y="Severity (spots per fruit)") +
   facet_wrap("repetition")
```


Model fitting

```
fit_zinbinom_cur <- update(fit_zipoisson_cur,family=nbinom2)
fit_zinbinom1_cur <- update(fit_zipoisson_cur,family=nbinom1)
fit_twediee_cur <- update(fit_zipoisson_cur,family=tweedie)
AIC(fit_zipoisson_cur,fit_zinbinom1_cur, fit_twediee_cur)</pre>
```

\mathbf{C}	AI	df
)3	1.26e+0	8
)3	1.18e+0	9
)3	1.18e+0	9
)3	1.18e+0	10

```
# df AIC

# fit_zipoisson 8 1270.421

# fit_zinbinom 9 1176.582

# fit_zinbinom1 9 1182.421

# fit_twediee 10 1180.572
```

Goodness of fit

```
simulateResiduals(fit_twediee_cur) %>% testResiduals()
```


\$uniformity

Asymptotic one-sample Kolmogorov-Smirnov test

data: simulationOutput\$scaledResiduals

D = 0.041, p-value = 0.8898

alternative hypothesis: two-sided

\$dispersion

 $\label{eq:def:DHARManonparametric} \begin{picture}(200,0) \put(0,0){\line(0,0){100}} \put(0,0){\li$

data: simulationOutput

dispersion = 0.73874, p-value = 0.16
alternative hypothesis: two.sided

\$outliers

 $\ensuremath{\mathsf{DHARMa}}$ outlier test based on exact binomial test with approximate expectations

data: simulationOutput

outliers at both margin(s) = 2, observations = 200, p-value = 0.6757 alternative hypothesis: true probability of success is not equal to 0.007968127

95 percent confidence interval: 0.001213349 0.035654668

sample estimates:

frequency of outliers (expected: 0.00796812749003984)

0.01

\$uniformity

Asymptotic one-sample Kolmogorov-Smirnov test

data: simulationOutput\$scaledResiduals

D = 0.041, p-value = 0.8898

alternative hypothesis: two-sided

\$dispersion

DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

data: simulationOutput

dispersion = 0.73874, p-value = 0.16
alternative hypothesis: two.sided

\$outliers

DHARMa outlier test based on exact binomial test with approximate

expectations

car::Anova(fit_twediee_cur)

Chisq	\mathbf{Df}	Pr(>Chisq)
533	4	3.98e-114

Means comparison test

```
emm_cura <- emmeans(fit_twediee_cur, ~ fungicide, type="response")
res_cura <- cld(emm_cura, alpha=0.05, Letters=letters, type="response")
res_cura %>%
    mutate(`%Control`=abs((response/filter(.,fungicide=="Control")%>% pull(response)-1)*10
```

fungicide	response	SE	df	asymp.LCL	asymp.UCL	.group	%Control
Bellis	4.8	0.445	Inf	4.01	5.76	a	82.8
Ziram	5.18	0.465	Inf	4.35	6.18	a	81.5
Merpan	5.48	0.48	Inf	4.61	6.51	a	80.4
Timorex	17.5	1.32	Inf	15.1	20.3	b	37.3
Control	28	1.96	Inf	24.4	32.1	\mathbf{c}	0

```
res_cura %>%
  ggplot()+
  aes(x=fungicide, y =response)+
  geom_pointrange(aes(ymin=asymp.LCL , ymax=asymp.UCL))+
  geom_col(alpha=.2, width=.2)
```


Disease incidence

Model

Goodness of fit

```
simulateResiduals(mod_inc_cura) %>% testResiduals()
```


Outlier test n.s.

Histogram of frequBoot

\$uniformity

Exact one-sample Kolmogorov-Smirnov test

data: simulationOutput\$scaledResiduals

D = 0.15123, p-value = 0.2895 alternative hypothesis: two-sided

\$dispersion

data: simulationOutput

dispersion = 0.79438, p-value = 0.736 alternative hypothesis: two.sided

\$outliers

DHARMa bootstrapped outlier test

data: simulationOutput
outliers at both margin(s) = 0, observations = 40, p-value = 1
alternative hypothesis: two.sided
 percent confidence interval:
 0.000 0.025
sample estimates:
outlier frequency (expected: 0.00125)

\$uniformity

Exact one-sample Kolmogorov-Smirnov test

data: simulationOutput\$scaledResiduals
D = 0.15123, p-value = 0.2895
alternative hypothesis: two-sided

\$dispersion

 $\label{eq:def:DHARManonparametric} \begin{picture}(200,0) \put(0,0){\line(0,0){100}} \put(0,0){\li$

data: simulationOutput
dispersion = 0.79438, p-value = 0.736
alternative hypothesis: two.sided

\$outliers

DHARMa bootstrapped outlier test

```
data: simulationOutput
outliers at both margin(s) = 0, observations = 40, p-value = 1
alternative hypothesis: two.sided
  percent confidence interval:
    0.000    0.025
sample estimates:
outlier frequency (expected: 0.00125 )
```

Means comparison test

```
emm_inc_cura <- emmeans(mod_inc_cura, ~ fungicide, type="response")
res_inc_cura <- cld(emm_inc_cura, alpha=0.05, Letters=letters, type="response")
res_inc_cura</pre>
```

fungicide	prob	SE	df	asymp.LCL	asymp.UCL	.group
Bellis	0.9	0.0474	Inf	0.762	0.962	a
Ziram	0.95	0.0345	Inf	0.821	0.987	a
Merpan	0.975	0.0247	Inf	0.843	0.996	a
Timorex	0.975	0.0247	Inf	0.843	0.996	a
Control	1	3.43e-06	Inf	2.22e-16	1	a