Projeto e Análise de Algoritmos* Introdução

Segundo Semestre de 2019

^{*}Criado por C. de Souza, C. da Silva, O. Lee, F. Miyazawa et al.

A maior parte deste conjunto de slides foi inicialmente preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para cursos de Análise de Algoritmos. Além desse material, diversos conteúdos foram adicionados ou incorporados por outros professores, em especial por Orlando Lee e por Flávio Keidi Miyazawa. Os slides usados nessa disciplina são uma junção dos materiais didáticos gentilmente cedidos por esses professores e contêm algumas modificações, que podem ter introduzido erros.

O conjunto de slides de cada unidade do curso será disponibilizado como guia de estudos e deve ser usado unicamente para revisar as aulas. Para estudar e praticar, leia o livro-texto indicado e resolva os exercícios sugeridos.

Lehilton

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - Flávio Keidi Miyazawa
 - José Coelho de Pina
 - Orlando Lee
 - Paulo Feofiloff
 - Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

Introdução à Análise de Algoritmos

- Como provar a "correção" de um algoritmo
- Estimar a quantidade de recursos (tempo, memória) de um algoritmo = análise de complexidade
- Técnicas e ideias gerais de projeto de algoritmos: indução, divisão-e-conquista, programação dinâmica, algoritmos gulosos etc.
- ► Tema recorrente: natureza recursiva de vários problemas
- A dificuldade intrínseca de vários problemas: inexistência de soluções eficientes

- Como provar a "correção" de um algoritmo
- Estimar a quantidade de recursos (tempo, memória) de um algoritmo = análise de complexidade
- Técnicas e ideias gerais de projeto de algoritmos: indução, divisão-e-conquista, programação dinâmica, algoritmos gulosos etc.
- ► Tema recorrente: natureza recursiva de vários problemas
- A dificuldade intrínseca de vários problemas: inexistência de soluções eficientes

- Como provar a "correção" de um algoritmo
- Estimar a quantidade de recursos (tempo, memória) de um algoritmo = análise de complexidade
- Técnicas e ideias gerais de projeto de algoritmos: indução, divisão-e-conquista, programação dinâmica, algoritmos gulosos etc.
- ► Tema recorrente: natureza recursiva de vários problemas
- A dificuldade intrínseca de vários problemas: inexistência de soluções eficientes

- Como provar a "correção" de um algoritmo
- Estimar a quantidade de recursos (tempo, memória) de um algoritmo = análise de complexidade
- Técnicas e ideias gerais de projeto de algoritmos: indução, divisão-e-conquista, programação dinâmica, algoritmos gulosos etc.
- Tema recorrente: natureza recursiva de vários problemas
- A dificuldade intrínseca de vários problemas: inexistência de soluções eficientes

- Como provar a "correção" de um algoritmo
- Estimar a quantidade de recursos (tempo, memória) de um algoritmo = análise de complexidade
- Técnicas e ideias gerais de projeto de algoritmos: indução, divisão-e-conquista, programação dinâmica, algoritmos gulosos etc.
- Tema recorrente: natureza recursiva de vários problemas
- A dificuldade intrínseca de vários problemas: inexistência de soluções eficientes

- Como provar a "correção" de um algoritmo
- Estimar a quantidade de recursos (tempo, memória) de um algoritmo = análise de complexidade
- Técnicas e ideias gerais de projeto de algoritmos: indução, divisão-e-conquista, programação dinâmica, algoritmos gulosos etc.
- ► Tema recorrente: natureza recursiva de vários problemas
- A dificuldade intrínseca de vários problemas: inexistência de soluções eficientes

O que é um algoritmo?

Informalmente, um algoritmo é um procedimento computacional bem definido que:

- recebe um conjunto de valores como entrada e
- produz um conjunto de valores como saída.

O que é um algoritmo?

Informalmente, um algoritmo é um procedimento computacional bem definido que:

- recebe um conjunto de valores como entrada e
- produz um conjunto de valores como saída.

O que é um algoritmo?

Informalmente, um algoritmo é um procedimento computacional bem definido que:

- recebe um conjunto de valores como entrada e
- produz um conjunto de valores como saída.

O que é um algoritmo?

Informalmente, um algoritmo é um procedimento computacional bem definido que:

- recebe um conjunto de valores como entrada e
- produz um conjunto de valores como saída.

O que é um algoritmo?

Informalmente, um algoritmo é um procedimento computacional bem definido que:

- recebe um conjunto de valores como entrada e
- produz um conjunto de valores como saída.

Problema: determinar se um dado número é primo

Exemplo:

Entrada: 9411461

Saída: É primo.

Exemplo:

Entrada: 8411461

Problema: determinar se um dado número é primo.

Exemplo:

Entrada: 9411461

Saída: É primo.

Exemplo:

Entrada: 8411461

Problema: determinar se um dado número é primo.

Exemplo:

Entrada: 9411461

Saída: É primo.

Exemplo:

Entrada: 8411461

Problema: determinar se um dado número é primo.

Exemplo:

Entrada: 9411461

Saída: É primo.

Exemplo:

Entrada: 8411461

Problema: determinar se um dado número é primo.

Exemplo:

Entrada: 9411461

Saída: É primo.

Exemplo:

Entrada: 8411461

Problema: determinar se um dado número é primo.

Exemplo:

Entrada: 9411461

Saída: É primo.

Exemplo:

Entrada: 8411461

Definição: um vetor A[1...n] é crescente se $A[1] \le ... \le A[n]$.

Problema: rearranjar um vetor A[1...n] de modo que fique crescente.

Entrada

Saída

Definição: um vetor A[1...n] é crescente se $A[1] \le ... \le A[n]$.

Problema: rearranjar um vetor A[1...n] de modo que fique crescente.

Entrada

Saída

Definição: um vetor A[1...n] é crescente se $A[1] \le ... \le A[n]$.

Problema: rearranjar um vetor A[1...n] de modo que fique crescente.

Entrada:

Saída

Definição: um vetor A[1...n] é crescente se $A[1] \le ... \le A[n]$.

Problema: rearranjar um vetor A[1...n] de modo que fique crescente.

Entrada:

Saída:

Uma instância de um problema é um conjunto de valores que corresponde a uma entrada.

Exemplo:

Os números 9411461 e 8411461 são instâncias do problema de primalidade.

Exemplo

O vetor

Uma instância de um problema é um conjunto de valores que corresponde a uma entrada.

Exemplo

Os números 9411461 e 8411461 são instâncias do problema de primalidade.

Exemplo:

O vetor

Uma instância de um problema é um conjunto de valores que corresponde a uma entrada.

Exemplo:

Os números 9411461 e 8411461 são instâncias do problema de primalidade.

Exemplo

O vetor

Uma instância de um problema é um conjunto de valores que corresponde a uma entrada.

Exemplo:

Os números 9411461 e 8411461 são instâncias do problema de primalidade.

Exemplo:

O vetor

Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?

rede mundial de computadores
comércio eletrónico
planejamento da produção de indústrias
logistica de distribuição
parties e filmes

Humm, vamos projetar um novo game neste curso? Não!

- Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?
 - projetos de genoma de seres vivos
 - rede mundial de computadores
 - comércio eletrônico
 - planejamento da produção de indústrias
 - logística de distribuição
 - games e filmes
 - **...**
- Humm, vamos projetar um novo game neste curso? Não!

- Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?
 - projetos de genoma de seres vivos
 - rede mundial de computadores
 - comércio eletrônico
 - planejamento da produção de indústrias
 - logística de distribuição
 - games e filmes
 - **...**
- Humm, vamos projetar um novo game neste curso? Não!

- Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?
 - projetos de genoma de seres vivos
 - rede mundial de computadores
 - comércio eletrônico
 - planejamento da produção de indústrias
 - logística de distribuição
 - games e filmes
 - **...**
- Humm, vamos projetar um novo game neste curso? Não!

- Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?
 - projetos de genoma de seres vivos
 - rede mundial de computadores
 - comércio eletrônico
 - planejamento da produção de indústrias
 - logística de distribuição
 - games e filmes
 - **...**
- Humm, vamos projetar um novo game neste curso? Não!

- Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?
 - projetos de genoma de seres vivos
 - rede mundial de computadores
 - comércio eletrônico
 - planejamento da produção de indústrias
 - logística de distribuição
 - games e filmes
 - **...**
- Humm, vamos projetar um novo game neste curso? Não!

- Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?
 - projetos de genoma de seres vivos
 - rede mundial de computadores
 - comércio eletrônico
 - planejamento da produção de indústrias
 - logística de distribuição
 - games e filmes
 - **.**...
- Humm, vamos projetar um novo game neste curso? Não!

- Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?
 - projetos de genoma de seres vivos
 - rede mundial de computadores
 - comércio eletrônico
 - planejamento da produção de indústrias
 - logística de distribuição
 - games e filmes
 - . . .
- Humm, vamos projetar um novo game neste curso? Não!

- Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?
 - projetos de genoma de seres vivos
 - rede mundial de computadores
 - comércio eletrônico
 - planejamento da produção de indústrias
 - logística de distribuição
 - games e filmes
 - **...**
- Humm, vamos projetar um novo game neste curso? Não!

- Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?
 - projetos de genoma de seres vivos
 - rede mundial de computadores
 - comércio eletrônico
 - planejamento da produção de indústrias
 - logística de distribuição
 - games e filmes
 - **.**..
- Humm, vamos projetar um novo game neste curso?

Não!

- Onde se encontram aplicações para o uso/desenvolvimento de algoritmos "eficientes"?
 - projetos de genoma de seres vivos
 - rede mundial de computadores
 - comércio eletrônico
 - planejamento da produção de indústrias
 - logística de distribuição
 - games e filmes
 - **...**
- Humm, vamos projetar um novo game neste curso? Não!

- Infelizmente, existem certos problemas para os quais não se conhecem algoritmos eficientes. Um subconjunto importante desses são os chamados problemas NP-difíceis.
 - Curiosamente, **não foi provado** que tais algoritmos não existem! Interprete isso como um desafio para inteligência humana.
- Esses problemas têm a característica notável de que, se <u>um</u> deles admitir um algoritmo "eficiente", então <u>todos</u> admitem algoritmos "eficientes".
- Por que devo me preocupar com problemas
 NP-sei-lá-o-quê?
 Problemas dessa classe surgem em inúmeras situações
 práticas.

- Infelizmente, existem certos problemas para os quais não se conhecem algoritmos eficientes. Um subconjunto importante desses são os chamados problemas NP-difíceis.
 - Curiosamente, não foi provado que tais algoritmos não existem! Interprete isso como um desafio para inteligência humana.
- Esses problemas têm a característica notável de que, se <u>um</u> deles admitir um algoritmo "eficiente", então <u>todos</u> admitem algoritmos "eficientes".
- Por que devo me preocupar com problemas
 NP-sei-lá-o-quê?
 Problemas dessa classe surgem em inúmeras situações
 práticas.

- ► Infelizmente, existem certos problemas para os quais não se conhecem algoritmos eficientes. Um subconjunto importante desses são os chamados problemas NP-difíceis.
 - Curiosamente, **não foi provado** que tais algoritmos não existem! Interprete isso como um desafio para inteligência humana.
- Esses problemas têm a característica notável de que, se <u>um</u> deles admitir um algoritmo "eficiente", então <u>todos</u> admitem algoritmos "eficientes".
- Por que devo me preocupar com problemas
 NP-sei-lá-o-quê?

 Problemas dessa classe surgem em inúmeras situações
 práticas.

- Infelizmente, existem certos problemas para os quais não se conhecem algoritmos eficientes. Um subconjunto importante desses são os chamados problemas NP-difíceis.
 - Curiosamente, **não foi provado** que tais algoritmos não existem! Interprete isso como um desafio para inteligência humana.
- Esses problemas têm a característica notável de que, se <u>um</u> deles admitir um algoritmo "eficiente", então <u>todos</u> admitem algoritmos "eficientes".
- Por que devo me preocupar com problemas
 NP-sei-lá-o-quê?

 Problemas dessa classe surgem em inúmeras situações
 práticas.

- Infelizmente, existem certos problemas para os quais não se conhecem algoritmos eficientes. Um subconjunto importante desses são os chamados problemas NP-difíceis.
 - Curiosamente, **não foi provado** que tais algoritmos não existem! Interprete isso como um desafio para inteligência humana.
- Esses problemas têm a característica notável de que, se <u>um</u> deles admitir um algoritmo "eficiente", então <u>todos</u> admitem algoritmos "eficientes".
- ▶ Por que devo me preocupar com problemas NP-sei-lá-o-quê?
 - Problemas dessa classe surgem em inúmeras situações práticas.

- Infelizmente, existem certos problemas para os quais não se conhecem algoritmos eficientes. Um subconjunto importante desses são os chamados problemas NP-difíceis.
 - Curiosamente, **não foi provado** que tais algoritmos não existem! Interprete isso como um desafio para inteligência humana.
- Esses problemas têm a característica notável de que, se <u>um</u> deles admitir um algoritmo "eficiente", então <u>todos</u> admitem algoritmos "eficientes".
- Por que devo me preocupar com problemas
 NP-sei-lá-o-quê?
 Problemas dessa classe surgem em inúmeras situações
 práticas.

Exemplo de problema \mathcal{NP} -difícil: calcular as rotas dos caminhões de entrega de uma distribuidora de bebidas em São Paulo, minimizando a distância percorrida. (vehicle routing)

Exemplo de problema \mathcal{NP} -difícil: calcular o número mínimo de containers para transportar um conjunto de caixas com produtos. (bin packing 3D)

Exemplo de problema \mathcal{NP} -difícil: calcular a localização e o número mínimo de antenas de celulares para garantir a cobertura de uma certa região geográfica. (facility location)

e muito mais...

É importante saber indentificar quando estamos lidando com um problema $\mathcal{NP}\text{-}\mathrm{dif}$ ícil!

Exemplo de problema \mathcal{NP} -difícil: calcular a localização e o número mínimo de antenas de celulares para garantir a cobertura de uma certa região geográfica. (facility location)

e muito mais...

É importante saber indentificar quando estamos lidando com um problema $\mathcal{NP}\text{-}\mathrm{dif}$ ícil!

Exemplo de problema \mathcal{NP} -difícil: calcular a localização e o número mínimo de antenas de celulares para garantir a cobertura de uma certa região geográfica. (facility location)

e muito mais...

É importante saber indentificar quando estamos lidando com um problema $\mathcal{NP}\text{-}\mathrm{dif}$ ícil!

- ➤ O Éden: os computadores têm velocidade de processamento e memória infinita. Neste caso, qualquer algoritmo é igualmente bom e esta analisar o tempo de um algoritmo é inútil! Porém...
- O mundo real: computadores têm velocidades de processamento e memória limitadas.

- ➤ O Éden: os computadores têm velocidade de processamento e memória infinita. Neste caso, qualquer algoritmo é igualmente bom e esta analisar o tempo de um algoritmo é inútil! Porém...
- O mundo real: computadores têm velocidades de processamento e memória limitadas.

- ➤ O Éden: os computadores têm velocidade de processamento e memória infinita. Neste caso, qualquer algoritmo é igualmente bom e esta analisar o tempo de um algoritmo é inútil! Porém...
- O mundo real: computadores têm velocidades de processamento e memória limitadas.

- ➤ O Éden: os computadores têm velocidade de processamento e memória infinita. Neste caso, qualquer algoritmo é igualmente bom e esta analisar o tempo de um algoritmo é inútil! Porém...
- O mundo real: computadores têm velocidades de processamento e memória limitadas.

- Suponha que os computadores A e B executam 1G e 10M instruções por segundo, respectivamente. Ou seja, A é 100 vezes mais rápido que B.
- Algoritmo 1: implementado em A por um excelente programador em linguagem de máquina (ultra-rápida). Executa 2n² instruções.
- Algoritmo 2: implementado na máquina B por um programador mediano em linguagem de alto nível dispondo de um compilador "meia-boca". Executa 50n log n instruções.

- Suponha que os computadores A e B executam
 1G e 10M instruções por segundo, respectivamente.
 Ou seja, A é 100 vezes mais rápido que B.
- Algoritmo 1: implementado em A por um excelente programador em linguagem de máquina (ultra-rápida). Executa 2n² instruções.
- Algoritmo 2: implementado na máquina B por um programador mediano em linguagem de alto nível dispondo de um compilador "meia-boca". Executa 50n log n instruções.

- Suponha que os computadores A e B executam
 1G e 10M instruções por segundo, respectivamente.
 Ou seja, A é 100 vezes mais rápido que B.
- Algoritmo 1: implementado em A por um excelente programador em linguagem de máquina (ultra-rápida). Executa 2n² instruções.
- Algoritmo 2: implementado na máquina B por um programador mediano em linguagem de alto níve dispondo de um compilador "meia-boca". Executa 50n log n instruções.

- Suponha que os computadores A e B executam
 1G e 10M instruções por segundo, respectivamente.
 Ou seja, A é 100 vezes mais rápido que B.
- Algoritmo 1: implementado em A por um excelente programador em linguagem de máquina (ultra-rápida). Executa 2n² instruções.
- Algoritmo 2: implementado na máquina B por um programador mediano em linguagem de alto nível dispondo de um compilador "meia-boca". Executa 50n log n instruções.

- O que acontece quando ordenamos um vetor de um milhão de elementos? Qual algoritmo é mais rápido?
- ► Algoritmo 1 na máquina A: $\frac{2.(10^6)^2 \text{ instruções}}{10^9 \text{ instruções /segundo}} \approx 2000 \text{ segundos}$
- Algoritmo 2 na máquina B: $\frac{50.(10^6 \log 10^6) \text{ instruções}}{10^7 \text{ instruções / segundo}} \approx 100 \text{ segundos}$
- Ou seja, B foi VINTE VEZES mais rápido do que A!
- Se o vetor tiver 10 milhões de elementos, esta razão será de 2.3 dias para 20 minutos!

- O que acontece quando ordenamos um vetor de um milhão de elementos? Qual algoritmo é mais rápido?
- ► Algoritmo 1 na máquina A: $\frac{2.(10^6)^2 \text{ instruções}}{10^9 \text{ instruções /segundo}} \approx 2000 \text{ segundos}$
- Algoritmo 2 na máquina B: $\frac{50.(10^6 \log 10^6) \text{ instruções}}{10^7 \text{ instruções / segundo}} \approx 100 \text{ segundos}$
- Ou seja, B foi VINTE VEZES mais rápido do que A!
- Se o vetor tiver 10 milhões de elementos, esta razão será de 2.3 dias para 20 minutos!

- O que acontece quando ordenamos um vetor de um milhão de elementos? Qual algoritmo é mais rápido?
- ► Algoritmo 1 na máquina A: $\frac{2.(10^6)^2 \text{ instruções}}{10^9 \text{ instruções /segundo}} \approx 2000 \text{ segundos}$
- ► Algoritmo 2 na máquina B: $\frac{50.(10^6 \log 10^6) \text{ instruções}}{10^7 \text{ instruções /segundo}} \approx 100 \text{ segundos}$
- Ou seja, B foi VINTE VEZES mais rápido do que A!
- Se o vetor tiver 10 milhões de elementos, esta razão será de 2.3 dias para 20 minutos!

- O que acontece quando ordenamos um vetor de um milhão de elementos? Qual algoritmo é mais rápido?
- ► Algoritmo 1 na máquina A: $\frac{2.(10^6)^2 \text{ instruções}}{10^9 \text{ instruções /segundo}} \approx 2000 \text{ segundos}$
- ► Algoritmo 2 na máquina B: $\frac{50.(10^6 \log 10^6) \text{ instruções}}{10^7 \text{ instruções /segundo}} \approx 100 \text{ segundos}$
- Ou seja, B foi VINTE VEZES mais rápido do que A!
- Se o vetor tiver 10 milhões de elementos, esta razão será de 2.3 dias para 20 minutos!

- O que acontece quando ordenamos um vetor de um milhão de elementos? Qual algoritmo é mais rápido?
- ► Algoritmo 1 na máquina A: $\frac{2.(10^6)^2 \text{ instruções}}{10^9 \text{ instruções /segundo}} \approx 2000 \text{ segundos}$
- ► Algoritmo 2 na máquina B: $\frac{50.(10^6 \log 10^6) \text{ instruções}}{10^7 \text{ instruções /segundo}} \approx 100 \text{ segundos}$
- Ou seja, B foi VINTE VEZES mais rápido do que A!
- Se o vetor tiver 10 milhões de elementos, esta razão será de 2.3 dias para 20 minutos!

E se tivermos os tais problemas \mathcal{NP} -difíceis ?

f(n)	n = 20	n = 40	n = 60	n = 80	n = 100
n	2,0×10 ⁻¹¹ s	4,0×10 ⁻¹¹ s	6,0×10 ⁻¹¹ s	8,0×10 ⁻¹¹ s	1,0×10 ⁻¹⁰ s
n^2	$4,0\times10^{-10}$ s	1,6×10 ⁻⁹ s	3,6×10 ⁻⁹ s	6,4×10 ⁻⁹ s	$1,0 \times 10^{-8}$ s

E se tivermos os tais problemas \mathcal{NP} -difíceis ?

f(n)	n = 20	n = 40	n = 60	n = 80	n = 100
n	2,0×10 ⁻¹¹ s	4,0×10 ⁻¹¹ s	6,0×10 ⁻¹¹ s	8,0×10 ⁻¹¹ s	1,0×10 ⁻¹⁰ s
n^2	4,0×10 ⁻¹⁰ s	1,6×10 ⁻⁹ s	3,6×10 ⁻⁹ s	6,4×10 ⁻⁹ s	1,0×10 ⁻⁸ s
n^3	8,0×10 ⁻⁹ s	6,4×10 ⁻⁸ s	$2,2\times10^{-7}$ s	5.1×10^{-7} s	$1,0 \times 10^{-6}$ s

E se tivermos os tais problemas \mathcal{NP} -difíceis ?

f(n)	n = 20	n = 40	n = 60	n = 80	n = 100
n	2,0×10 ⁻¹¹ s	4,0×10 ⁻¹¹ s	6,0×10 ⁻¹¹ s	8,0×10 ⁻¹¹ s	1,0×10 ⁻¹⁰ s
n^2	4,0×10 ⁻¹⁰ s	1,6×10 ⁻⁹ s	3,6×10 ⁻⁹ s	6,4×10 ⁻⁹ s	1,0×10 ⁻⁸ s
n^3	8,0×10 ⁻⁹ s	6,4×10 ⁻⁸ s	2,2×10 ⁻⁷ s	5,1×10 ⁻⁷ s	1,0×10 ⁻⁶ s
n^5	2,2×10 ⁻⁶ s	1,0×10 ⁻⁴ s	7,8×10 ⁻⁴ s	3.3×10^{-3} s	$1,0 \times 10^{-2}$ s

E se tivermos os tais problemas \mathcal{NP} -difíceis ?

f(n)	n = 20	n = 40	n = 60	n = 80	n = 100
n	2,0×10 ⁻¹¹ s	4,0×10 ⁻¹¹ s	6,0×10 ⁻¹¹ s	8,0×10 ⁻¹¹ s	1,0×10 ⁻¹⁰ s
n ²	4,0×10 ⁻¹⁰ s	1,6×10 ⁻⁹ s	3,6×10 ⁻⁹ s	6,4×10 ⁻⁹ s	1,0×10 ⁻⁸ s
n ³	8,0×10 ⁻⁹ s	6,4×10 ⁻⁸ s	2,2×10 ⁻⁷ s	5,1×10 ⁻⁷ s	1,0×10 ⁻⁶ s
n ⁵	2,2×10 ⁻⁶ s	1,0×10 ⁻⁴ s	7,8×10 ⁻⁴ s	3.3×10^{-3} s	1,0×10 ⁻² s
2 ⁿ	1,0×10 ⁻⁶ s	1,0 s	13,3dias	1,3×10 ⁵ séc	1,4×10 ¹¹ séc

E se tivermos os tais problemas \mathcal{NP} -difíceis ?

f(n)	n = 20	n = 40	n = 60	n = 80	n = 100
n	2,0×10 ⁻¹¹ s	4,0×10 ⁻¹¹ s	6,0×10 ⁻¹¹ s	8,0×10 ⁻¹¹ s	1,0×10 ⁻¹⁰ s
n^2	4,0×10 ⁻¹⁰ s	1,6×10 ⁻⁹ s	3,6×10 ⁻⁹ s	6,4×10 ⁻⁹ s	1,0×10 ⁻⁸ s
n ³	8,0×10 ⁻⁹ s	6,4×10 ⁻⁸ s	2,2×10 ⁻⁷ s	5,1×10 ⁻⁷ s	1,0×10 ⁻⁶ s
n ⁵	2,2×10 ⁻⁶ s	1,0×10 ⁻⁴ s	7,8×10 ⁻⁴ s	$3,3\times10^{-3}$ s	1,0×10 ⁻² s
2 ⁿ	1,0×10 ⁻⁶ s	1,0s	13,3 dias	1,3×10 ⁵ séc	1,4×10 ¹¹ séc
3 ⁿ	$3,4\times10^{-3}$ s	140,7dias	1,3×10 ⁷ séc	1,7×10 ¹⁹ séc	5,9×10 ²⁸ séc

E se tivermos os tais problemas \mathcal{NP} -difíceis ?

f(n)	n = 20	n = 40	n = 60	n = 80	n = 100
n	2,0×10 ⁻¹¹ s	4,0×10 ⁻¹¹ s	6,0×10 ⁻¹¹ s	8,0×10 ⁻¹¹ s	1,0×10 ⁻¹⁰ s
n^2	4,0×10 ⁻¹⁰ s	1,6×10 ⁻⁹ s	3,6×10 ⁻⁹ s	6,4×10 ⁻⁹ s	1,0×10 ⁻⁸ s
n^3	8,0×10 ⁻⁹ s	6,4×10 ⁻⁸ s	2,2×10 ⁻⁷ s	5,1×10 ⁻⁷ s	1,0×10 ⁻⁶ s
n^5	2,2×10 ⁻⁶ s	1,0×10 ⁻⁴ s	7,8×10 ⁻⁴ s	3.3×10^{-3} s	1,0×10 ⁻² s
2 ⁿ	1,0×10 ⁻⁶ s	1,0s	13,3 dias	1,3×10 ⁵ séc	1,4×10 ¹¹ séc
3 ⁿ	$3,4\times10^{-3}$ s	140,7 dias	1,3×10 ⁷ séc	1,7×10 ¹⁹ séc	5,9 ×10 ²⁸ séc

E se tivermos os tais problemas \mathcal{NP} -difíceis ?

f(n)	n = 20	n = 40	n = 60	n = 80	n = 100
n	2,0×10 ⁻¹¹ s	4,0×10 ⁻¹¹ s	6,0×10 ⁻¹¹ s	8,0×10 ⁻¹¹ s	1,0×10 ⁻¹⁰ s
n^2	4,0×10 ⁻¹⁰ s	1,6×10 ⁻⁹ s	3,6×10 ⁻⁹ s	6,4×10 ⁻⁹ s	1,0×10 ⁻⁸ s
n^3	8,0×10 ⁻⁹ s	6,4×10 ⁻⁸ s	2,2×10 ⁻⁷ s	5,1×10 ⁻⁷ s	1,0×10 ⁻⁶ s
n ⁵	2,2×10 ⁻⁶ s	1,0×10 ⁻⁴ s	7,8×10 ⁻⁴ s	3.3×10^{-3} s	1,0×10 ⁻² s
2 ⁿ	1,0×10 ⁻⁶ s	1,0s	13,3 dias	1,3×10 ⁵ séc	1,4×10 ¹¹ séc
3 ⁿ	$3,4\times10^{-3}$ s	140,7dias	1,3×10 ⁷ séc	1,7×10 ¹⁹ séc	5,9 ×10 ²⁸ séc

E se usarmos um super-computador para resolver os problemas \mathcal{NP} -difíceis ?

f(n)	Computador atual	100×mais rápido	1000×mais rápido
n	N_1	100N ₁	1000N ₁
	N_3		
	N_4		

Fixando o tempo de execução: Não iremos resolver problemas muito maiores.

E se usarmos um super-computador para resolver os problemas \mathcal{NP} -difíceis ?

f(n)	Computador atual	100×mais rápido	1000×mais rápido
n	N_1	100N ₁	1000N ₁
n ²	N_2	10N ₂	31,6N ₂
	N_3		
	N_4		

E se usarmos um super-computador para resolver os problemas \mathcal{NP} -difíceis ?

f(n)	Computador atual	100×mais rápido	1000×mais rápido
n	N_1	100N ₁	1000N ₁
n ²	N ₂	10N ₂	31,6N ₂
n^3	N_3	4,64N ₃	10 <i>N</i> ₃
	N_4		

E se usarmos um super-computador para resolver os problemas \mathcal{NP} -difíceis ?

f(n)	Computador atual	100×mais rápido	1000×mais rápido
n	N_1	100N ₁	1000 <i>N</i> ₁
n^2	N ₂	10N ₂	31,6N ₂
n^3	N ₃	4,64N ₃	10 <i>N</i> ₃
n ⁵	N_4	2,5N ₄	3,98N ₄

E se usarmos um super-computador para resolver os problemas \mathcal{NP} -difíceis ?

f(n)	Computador atual	100×mais rápido	1000×mais rápido
n	N_1	100N ₁	1000N ₁
n ²	N ₂	10N ₂	31,6N ₂
n ³	N ₃	4,64N ₃	10 <i>N</i> ₃
n ⁵	N ₄	2,5N ₄	3,98N ₄
2 ⁿ	N_5	N ₅ + 6,64	$N_5 + 9,97$

E se usarmos um super-computador para resolver os problemas \mathcal{NP} -difíceis ?

f(n)	Computador atual	100×mais rápido	1000×mais rápido
n	N_1	100N ₁	1000N ₁
n ²	N ₂	10N ₂	31,6N ₂
n ³	N ₃	4,64N ₃	10 <i>N</i> ₃
n ⁵	N ₄	2,5N ₄	3,98N ₄
2 ⁿ	N ₅	$N_5 + 6,64$	$N_5 + 9,97$
3 ⁿ	N ₆	$N_6 + 4,19$	$N_6 + 6,29$

E se usarmos um super-computador para resolver os problemas \mathcal{NP} -difíceis ?

f(n)	Computador atual	100×mais rápido	1000×mais rápido
n	N_1	100N ₁	1000N ₁
n ²	N ₂	10N ₂	31,6N ₂
n ³	N ₃	4,64N ₃	10 <i>N</i> ₃
n ⁵	N ₄	2,5N ₄	3,98N ₄
2 ⁿ	N ₅	$N_5 + 6,64$	$N_5 + 9,97$
3 ⁿ	N ₆	$N_6 + 4,19$	$N_6 + 6,29$

E se usarmos um super-computador para resolver os problemas \mathcal{NP} -difíceis ?

f(n)	Computador atual	100×mais rápido	1000×mais rápido
n	N_1	100N ₁	1000N ₁
n^2	N ₂	10N ₂	31,6N ₂
n^3	N ₃	4,64N ₃	10 <i>N</i> ₃
n ⁵	N ₄	2,5N ₄	3,98N ₄
2 ⁿ	N_5	$N_5 + 6,64$	$N_5 + 9,97$
3 ⁿ	N ₆	$N_6 + 4,19$	$N_6 + 6,29$

- O uso de um algoritmo adequado pode levar a ganhos extraordinários de desempenho.
- Isso pode ser tão importante quanto o projeto de hardware.
- A melhora obtida pode ser tão significativa que não poderia ser obtida simplesmente com o avanço da tecnologia.
- As melhorias nos algoritmos produzem avanços em outras componentes básicas das aplicações (pense nos compiladores, buscadores na internet, etc).

- O uso de um algoritmo adequado pode levar a ganhos extraordinários de desempenho.
- Isso pode ser tão importante quanto o projeto de hardware.
- A melhora obtida pode ser tão significativa que não poderia ser obtida simplesmente com o avanço da tecnologia.
- As melhorias nos algoritmos produzem avanços em outras componentes básicas das aplicações (pense nos compiladores, buscadores na internet, etc).

- O uso de um algoritmo adequado pode levar a ganhos extraordinários de desempenho.
- Isso pode ser tão importante quanto o projeto de hardware.
- A melhora obtida pode ser tão significativa que não poderia ser obtida simplesmente com o avanço da tecnologia.
- As melhorias nos algoritmos produzem avanços em outras componentes básicas das aplicações (pense nos compiladores, buscadores na internet, etc).

- O uso de um algoritmo adequado pode levar a ganhos extraordinários de desempenho.
- Isso pode ser tão importante quanto o projeto de hardware.
- A melhora obtida pode ser tão significativa que não poderia ser obtida simplesmente com o avanço da tecnologia.
- As melhorias nos algoritmos produzem avanços em outras componentes básicas das aplicações (pense nos compiladores, buscadores na internet, etc).

- O uso de um algoritmo adequado pode levar a ganhos extraordinários de desempenho.
- Isso pode ser tão importante quanto o projeto de hardware.
- A melhora obtida pode ser tão significativa que não poderia ser obtida simplesmente com o avanço da tecnologia.
- As melhorias nos algoritmos produzem avanços em outras componentes básicas das aplicações (pense nos compiladores, buscadores na internet, etc).

Podemos descrever um algoritmo de várias maneiras:

- usando uma linguagem de programação de alto nível: C, Pascal, Java etc.
- implementando-o em linguagem de máquina diretamente executável em hardware
- em português
- em um pseudocódigo de alto nível, como no livro de CLRS

Podemos descrever um algoritmo de várias maneiras:

- usando uma linguagem de programação de alto nível: C, Pascal, Java etc.
- implementando-o em linguagem de máquina diretamente executável em hardware
- em português
- em um pseudocódigo de alto nível, como no livro de CLRS

Podemos descrever um algoritmo de várias maneiras:

- usando uma linguagem de programação de alto nível: C,
 Pascal, Java etc.
- implementando-o em linguagem de máquina diretamente executável em hardware
- em português
- em um pseudocódigo de alto nível, como no livro de CLRS

Podemos descrever um algoritmo de várias maneiras:

- usando uma linguagem de programação de alto nível: C,
 Pascal, Java etc.
- implementando-o em linguagem de máquina diretamente executável em hardware
- em português
- em um pseudocódigo de alto nível, como no livro de CLRS

Podemos descrever um algoritmo de várias maneiras:

- usando uma linguagem de programação de alto nível: C,
 Pascal, Java etc.
- implementando-o em linguagem de máquina diretamente executável em hardware
- em português
- em um pseudocódigo de alto nível, como no livro de CLRS

Podemos descrever um algoritmo de várias maneiras:

- usando uma linguagem de programação de alto nível: C,
 Pascal, Java etc.
- implementando-o em linguagem de máquina diretamente executável em hardware
- em português
- em um pseudocódigo de alto nível, como no livro de CLRS

Exemplo de pseudocódigo

Algoritmo Ordena-Por-Inserção: rearranja um vetor A[1...n] de modo que fique crescente.

```
ORDENA-POR-INSERÇÃO(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1...j-1]

4 i \leftarrow j-1

5 enquanto i \ge 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

- Um algoritmo (para um certo problema) está correto se, para toda instância do problema, ele para e devolve uma resposta correta.
- Algoritmos aleatorizados são algoritmos que utilizam passos probabilísticos (como obter um número aleatório). Alguns tipos de algoritmos aleatorizados podem errar ou gastar muito tempo, mas neste caso, queremos que a probabilidade de errar ou de executar por muito tempo seja muuuuito pequena.
- O curso será focado principalmente em algoritmos determinísticos, mas veremos um exemplo de algoritmo aleatorizado.

- Um algoritmo (para um certo problema) está correto se, para toda instância do problema, ele para e devolve uma resposta correta.
- Algoritmos aleatorizados são algoritmos que utilizam passos probabilísticos (como obter um número aleatório). Alguns tipos de algoritmos aleatorizados podem errar ou gastar muito tempo, mas neste caso, queremos que a probabilidade de errar ou de executar por muito tempo seja muuuuito pequena.
- O curso será focado principalmente em algoritmos determinísticos, mas veremos um exemplo de algoritmo aleatorizado.

- Um algoritmo (para um certo problema) está correto se, para toda instância do problema, ele para e devolve uma resposta correta.
- Algoritmos aleatorizados são algoritmos que utilizam passos probabilísticos (como obter um número aleatório).
 - Alguns tipos de algoritmos aleatorizados podem errar ou gastar muito tempo, mas neste caso, queremos que a probabilidade de errar ou de executar por muito tempo seja muuuuito pequena.
- O curso será focado principalmente em algoritmos determinísticos, mas veremos um exemplo de algoritmo aleatorizado.

- Um algoritmo (para um certo problema) está correto se, para toda instância do problema, ele para e devolve uma resposta correta.
- Algoritmos aleatorizados são algoritmos que utilizam passos probabilísticos (como obter um número aleatório). Alguns tipos de algoritmos aleatorizados podem errar ou gastar muito tempo, mas neste caso, queremos que a probabilidade de errar ou de executar por muito tempo seja muuuuito pequena.
- O curso será focado principalmente em algoritmos determinísticos, mas veremos um exemplo de algoritmo aleatorizado.

- Um algoritmo (para um certo problema) está correto se, para toda instância do problema, ele para e devolve uma resposta correta.
- Algoritmos aleatorizados são algoritmos que utilizam passos probabilísticos (como obter um número aleatório). Alguns tipos de algoritmos aleatorizados podem errar ou gastar muito tempo, mas neste caso, queremos que a probabilidade de errar ou de executar por muito tempo seja muuuuito pequena.
- ▶ O curso será focado principalmente em algoritmos determinísticos, mas veremos um exemplo de algoritmo aleatorizado.

- Em geral, não basta saber que um dado algoritmo para. Se ele for muito leeeeeeeeeeento terá pouca utilidade.
- Queremos projetar/desenvolver algoritmos eficientes (rápidos).
- Mas o que seria uma boa medida de eficiência de um algoritmo?
- Não estamos interessados em quem programou, em que linguagem foi escrito e nem qual a máquina foi usada!
- Queremos um critério uniforme para comparar algoritmos.

- Em geral, não basta saber que um dado algoritmo para. Se ele for muito leeeeeeeeeeento terá pouca utilidade.
- Queremos projetar/desenvolver algoritmos eficientes (rápidos).
- Mas o que seria uma boa medida de eficiência de um algoritmo?
- Não estamos interessados em quem programou, em que linguagem foi escrito e nem qual a máquina foi usada!
- Queremos um critério uniforme para comparar algoritmos.

- Em geral, não basta saber que um dado algoritmo para. Se ele for muito leeeeeeeeeeento terá pouca utilidade.
- Queremos projetar/desenvolver algoritmos eficientes (rápidos).
- Mas o que seria uma boa medida de eficiência de um algoritmo?
- Não estamos interessados em quem programou, em que linguagem foi escrito e nem qual a máquina foi usada!
- Queremos um critério uniforme para comparar algoritmos.

- Em geral, não basta saber que um dado algoritmo para. Se ele for muito leeeeeeeeeeento terá pouca utilidade.
- Queremos projetar/desenvolver algoritmos eficientes (rápidos).
- Mas o que seria uma boa medida de eficiência de um algoritmo?
- Não estamos interessados em quem programou, em que linguagem foi escrito e nem qual a máquina foi usada!
- Queremos um critério uniforme para comparar algoritmos.

- Em geral, não basta saber que um dado algoritmo para. Se ele for muito leeeeeeeeeeento terá pouca utilidade.
- Queremos projetar/desenvolver algoritmos eficientes (rápidos).
- Mas o que seria uma boa medida de eficiência de um algoritmo?
- Não estamos interessados em quem programou, em que linguagem foi escrito e nem qual a máquina foi usada!
- Queremos um critério uniforme para comparar algoritmos.

- Em geral, não basta saber que um dado algoritmo para.
 Se ele for muito leeeeeeeeeeento terá pouca utilidade.
- Queremos projetar/desenvolver algoritmos eficientes (rápidos).
- Mas o que seria uma boa medida de eficiência de um algoritmo?
- Não estamos interessados em quem programou, em que linguagem foi escrito e nem qual a máquina foi usada!
- Queremos um critério uniforme para comparar algoritmos.

- Uma possibilidade é definir um modelo computacional de um máquina.
- O modelo computacional estabelece quais os recursos disponíveis, as instruções básicas e quanto elas custam (=tempo).
- Dentre desse modelo, podemos estimar através de uma análise matemática o tempo que um algoritmo gasta em função do tamanho da entrada (=análise de complexidade).
- A análise de complexidade depende sempre do modelo computacional adotado.

- Uma possibilidade é definir um modelo computacional de um máquina.
- O modelo computacional estabelece quais os recursos disponíveis, as instruções básicas e quanto elas custam (=tempo).
- Dentre desse modelo, podemos estimar através de uma análise matemática o tempo que um algoritmo gasta em função do tamanho da entrada (=análise de complexidade).
- A análise de complexidade depende sempre do modelo computacional adotado.

- Uma possibilidade é definir um modelo computacional de um máquina.
- O modelo computacional estabelece quais os recursos disponíveis, as instruções básicas e quanto elas custam (=tempo).
- Dentre desse modelo, podemos estimar através de uma análise matemática o tempo que um algoritmo gasta em função do tamanho da entrada (=análise de complexidade).
- A análise de complexidade depende sempre do modelo computacional adotado.

- Uma possibilidade é definir um modelo computacional de um máquina.
- O modelo computacional estabelece quais os recursos disponíveis, as instruções básicas e quanto elas custam (=tempo).
- Dentre desse modelo, podemos estimar através de uma análise matemática o tempo que um algoritmo gasta em função do tamanho da entrada (=análise de complexidade).
- A análise de complexidade depende sempre do modelo computacional adotado.

- Uma possibilidade é definir um modelo computacional de um máquina.
- O modelo computacional estabelece quais os recursos disponíveis, as instruções básicas e quanto elas custam (=tempo).
- Dentre desse modelo, podemos estimar através de uma análise matemática o tempo que um algoritmo gasta em função do tamanho da entrada (=análise de complexidade).
- A análise de complexidade depende sempre do modelo computacional adotado.

Máquinas RAM

Salvo mencionado o contrário, usaremos o Modelo Abstrato RAM (Random Access Machine):

- simula máquinas convencionais (de verdade),
- possui um único processador que executa instruções sequencialmente,
- tipos básicos são números inteiros e pontos flutuantes,
- há um limite no tamanho de cada palavra de memória: se a entrada tem "tamanho" n, então cada inteiro/ponto flutuante é representado por $c \log n$ bits onde $c \ge 1$ é uma constante.

Isto é razoável?

Salvo mencionado o contrário, usaremos o Modelo Abstrato RAM (Random Access Machine):

- simula máquinas convencionais (de verdade),
- possui um único processador que executa instruções sequencialmente,
- tipos básicos são números inteiros e pontos flutuantes,
- há um limite no tamanho de cada palavra de memória: se a entrada tem "tamanho" n, então cada inteiro/ponto flutuante é representado por $c \log n$ bits onde $c \ge 1$ é uma constante.

Salvo mencionado o contrário, usaremos o Modelo Abstrato RAM (Random Access Machine):

- simula máquinas convencionais (de verdade),
- possui um único processador que executa instruções sequencialmente,
- tipos básicos são números inteiros e pontos flutuantes,
- há um limite no tamanho de cada palavra de memória: se a entrada tem "tamanho" n, então cada inteiro/ponto flutuante é representado por $c \log n$ bits onde $c \ge 1$ é uma constante.

Salvo mencionado o contrário, usaremos o Modelo Abstrato RAM (Random Access Machine):

- simula máquinas convencionais (de verdade),
- possui um único processador que executa instruções sequencialmente,
- tipos básicos são números inteiros e pontos flutuantes,
- ▶ há um limite no tamanho de cada palavra de memória: se a entrada tem "tamanho" n, então cada inteiro/ponto flutuante é representado por $c \log n$ bits onde $c \ge 1$ é uma constante.

Salvo mencionado o contrário, usaremos o Modelo Abstrato RAM (Random Access Machine):

- simula máquinas convencionais (de verdade),
- possui um único processador que executa instruções sequencialmente,
- tipos básicos são números inteiros e pontos flutuantes,
- há um limite no tamanho de cada palavra de memória: se a entrada tem "tamanho" n, então cada inteiro/ponto flutuante é representado por $c \log n$ bits onde $c \ge 1$ é uma constante.

Salvo mencionado o contrário, usaremos o Modelo Abstrato RAM (Random Access Machine):

- simula máquinas convencionais (de verdade),
- possui um único processador que executa instruções sequencialmente,
- tipos básicos são números inteiros e pontos flutuantes,
- há um limite no tamanho de cada palavra de memória: se a entrada tem "tamanho" n, então cada inteiro/ponto flutuante é representado por $c \log n$ bits onde $c \ge 1$ é uma constante.

- executa operações aritméticas (soma, subtração, multiplicação, divisão, piso, teto), comparações, movimentação de dados de tipo básico e fluxo de controle (teste if/else, chamada e retorno de rotinas) em tempo constante,
- Certas operações caem em uma zona cinza, por exemplo exponenciação,
- veja maiores detalhes do modelo RAM no CLRS.

- executa operações aritméticas (soma, subtração, multiplicação, divisão, piso, teto), comparações, movimentação de dados de tipo básico e fluxo de controle (teste if/else, chamada e retorno de rotinas) em tempo constante,
- Certas operações caem em uma zona cinza, por exemplo, exponenciação,
- veja maiores detalhes do modelo RAM no CLRS.

- executa operações aritméticas (soma, subtração, multiplicação, divisão, piso, teto), comparações, movimentação de dados de tipo básico e fluxo de controle (teste if/else, chamada e retorno de rotinas) em tempo constante,
- Certas operações caem em uma zona cinza, por exemplo, exponenciação,
- veja maiores detalhes do modelo RAM no CLRS.

- executa operações aritméticas (soma, subtração, multiplicação, divisão, piso, teto), comparações, movimentação de dados de tipo básico e fluxo de controle (teste if/else, chamada e retorno de rotinas) em tempo constante,
- Certas operações caem em uma zona cinza, por exemplo, exponenciação,
- veja maiores detalhes do modelo RAM no CLRS.

Tamanho da entrada

Problema: Primalidade

Entrada: inteiro n

Tamanho: número de bits de $n \approx \lg n = \log_2 n$

Problema: Ordenação

Entrada: vetor A[1...n]

Tamanho: $n \lg U$ onde U é o maior número em A[1...n]

Tamanho da entrada

Problema: Primalidade

Entrada: inteiro n

Tamanho: número de bits de $n \approx \lg n = \log_2 n$

Problema: Ordenação

Entrada: vetor A[1...n]

Tamanho: $n \lg U$ onde U é o maior número em A[1...n]

- A complexidade de tempo (=eficiência) de um algoritmo é o número de instruções básicas que ele executa em função do tamanho da entrada.
- Normalmente se adota uma "atitude pessimista" e faz-se uma análise de pior caso:
 Determina-se o tempo máximo necessário para resolver uma instância de um certo tamanho.
- Além disso, a análise concentra-se no comportamento do algoritmo para entradas de tamanho GRANDE = análise assintótica.

- A complexidade de tempo (=eficiência) de um algoritmo é o número de instruções básicas que ele executa em função do tamanho da entrada.
- Normalmente se adota uma "atitude pessimista" e faz-se uma análise de pior caso:
 Determina-se o tempo máximo necessário para resolver uma instância de um certo tamanho.
- Além disso, a análise concentra-se no comportamento do algoritmo para entradas de tamanho GRANDE = análise assintótica.

- A complexidade de tempo (=eficiência) de um algoritmo é o número de instruções básicas que ele executa em função do tamanho da entrada.
- Normalmente se adota uma "atitude pessimista" e faz-se uma análise de pior caso:
 - Determina-se o tempo máximo necessário para resolver uma instância de um certo tamanho.
- Além disso, a análise concentra-se no comportamento do algoritmo para entradas de tamanho GRANDE = análise assintótica.

- A complexidade de tempo (=eficiência) de um algoritmo é o número de instruções básicas que ele executa em função do tamanho da entrada.
- Normalmente se adota uma "atitude pessimista" e faz-se uma análise de pior caso:
 Determina-se o tempo máximo necessário para resolver uma instância de um certo tamanho.
- Além disso, a análise concentra-se no comportamento do algoritmo para entradas de tamanho GRANDE = análise assintótica.

- A complexidade de tempo (=eficiência) de um algoritmo é o número de instruções básicas que ele executa em função do tamanho da entrada.
- Normalmente se adota uma "atitude pessimista" e faz-se uma análise de pior caso:
 Determina-se o tempo máximo necessário para resolver uma instância de um certo tamanho.
- Além disso, a análise concentra-se no comportamento do algoritmo para entradas de tamanho GRANDE = análise assintótica.

Um algoritmo é chamado eficiente se a função que mede sua complexidade de tempo é limitada por um polinômio no tamanho da entrada.

- Mas por que polinômios?
 - polinômios são funções bem "comportadas"
 - reveja a nossa tabela anterior!

Um algoritmo é chamado eficiente se a função que mede sua complexidade de tempo é limitada por um polinômio no tamanho da entrada.

- Mas por que polinômios?
 - polinômios são funções bem "comportadas"
 - reveja a nossa tabela anterior!

Um algoritmo é chamado eficiente se a função que mede sua complexidade de tempo é limitada por um polinômio no tamanho da entrada.

- Mas por que polinômios?
 - polinômios são funções bem "comportadas"
 - reveja a nossa tabela anterior!

Um algoritmo é chamado eficiente se a função que mede sua complexidade de tempo é limitada por um polinômio no tamanho da entrada.

- Mas por que polinômios?
 - polinômios são funções bem "comportadas"
 - reveja a nossa tabela anterior!

Um algoritmo é chamado eficiente se a função que mede sua complexidade de tempo é limitada por um polinômio no tamanho da entrada.

- Mas por que polinômios?
 - polinômios são funções bem "comportadas"
 - reveja a nossa tabela anterior!

- O modelo RAM é robusto e permite prever o comportamento de um algoritmo para instâncias GRANDES.
- O modelo permite comparar algoritmos que resolvem um mesmo problema.
- A análise é mais robusta em relação às evoluções tecnológicas.

- O modelo RAM é robusto e permite prever o comportamento de um algoritmo para instâncias GRANDES.
- O modelo permite comparar algoritmos que resolvem um mesmo problema.
- A análise é mais robusta em relação às evoluções tecnológicas.

- O modelo RAM é robusto e permite prever o comportamento de um algoritmo para instâncias GRANDES.
- O modelo permite comparar algoritmos que resolvem um mesmo problema.
- A análise é mais robusta em relação às evoluções tecnológicas.

- O modelo RAM é robusto e permite prever o comportamento de um algoritmo para instâncias GRANDES.
- O modelo permite comparar algoritmos que resolvem um mesmo problema.
- A análise é mais robusta em relação às evoluções tecnológicas.

- Fornece um limite de complexidade pessimista sempre considerando o pior caso.
- Em uma aplicação real, nem todas as instâncias ocorrem com a mesma frequência e é possível que as "instâncias ruins" ocorram raramente.
- Não fornece nenhuma informação sobre o comportamento do algoritmo no caso médio.
- A análise de complexidade de algoritmos no caso médio é complicada e depende do conhecimento da distribuição das instâncias.

- Fornece um limite de complexidade pessimista sempre considerando o pior caso.
- Em uma aplicação real, nem todas as instâncias ocorrem com a mesma frequência e é possível que as "instâncias ruins" ocorram raramente.
- Não fornece nenhuma informação sobre o comportamento do algoritmo no caso médio.
- A análise de complexidade de algoritmos no caso médio é complicada e depende do conhecimento da distribuição das instâncias.

- Fornece um limite de complexidade pessimista sempre considerando o pior caso.
- Em uma aplicação real, nem todas as instâncias ocorrem com a mesma frequência e é possível que as "instâncias ruins" ocorram raramente.
- Não fornece nenhuma informação sobre o comportamento do algoritmo no caso médio.
- A análise de complexidade de algoritmos no caso médio é complicada e depende do conhecimento da distribuição das instâncias.

- Fornece um limite de complexidade pessimista sempre considerando o pior caso.
- Em uma aplicação real, nem todas as instâncias ocorrem com a mesma frequência e é possível que as "instâncias ruins" ocorram raramente.
- Não fornece nenhuma informação sobre o comportamento do algoritmo no caso médio.
- A análise de complexidade de algoritmos no caso médio é complicada e depende do conhecimento da distribuição das instâncias.

- Fornece um limite de complexidade pessimista sempre considerando o pior caso.
- Em uma aplicação real, nem todas as instâncias ocorrem com a mesma frequência e é possível que as "instâncias ruins" ocorram raramente.
- Não fornece nenhuma informação sobre o comportamento do algoritmo no caso médio.
- A análise de complexidade de algoritmos no caso médio é complicada e depende do conhecimento da distribuição das instâncias.

Ordenação

Problema: ordenar um vetor em ordem crescente

Entrada: um vetor A[1...n]

Saída: vetor A[1...n] rearranjado em ordem crescente

Vamos começar estudando o algoritmo de ordenação baseado no método de inserção.

Ordenação

Problema: ordenar um vetor em ordem crescente

Entrada: um vetor A[1...n]

Saída: vetor A[1...n] rearranjado em ordem crescente

Vamos começar estudando o algoritmo de ordenação baseado no método de inserção.

Inserção em um vetor ordenado

- ▶ O subvetor A[1...j-1] está ordenado.
- ▶ Queremos inserir a chave = 38 = A[j] em A[1...j-1] de modo que no final tenhamos:

Agora A[1...j] está ordenado.

Inserção em um vetor ordenado

- ▶ O subvetor A[1...j-1] está ordenado.
- ▶ Queremos inserir a chave = 38 = A[j] em A[1...j-1] de modo que no final tenhamos:

Agora A[1...j] está ordenado.

Inserção em um vetor ordenado

- ▶ O subvetor A[1...j-1] está ordenado.
- ▶ Queremos inserir a chave = 38 = A[j] em A[1...j-1] de modo que no final tenhamos:

Agora A[1...j] está ordenado.

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50
chave	_1_									j	n
65	10	20	25	35	38	40	44	55	99	65	50

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50
chave	1									j	n
65	10	20	25	35	38	40	44	55	65	99	50

Ordena-Por-Inserção

Pseudocódigo

```
ORDENA-POR-INSERÇÃO(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1...j-1]

4 i \leftarrow j-1

5 enquanto i \ge 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

O que é importante analisar?

- ▶ Correção:
 - o algoritmo para (finitude)
 - o algoritmo faz o que promete?
- Complexidade de tempo:
 - quantas instruções são necessárias no pior caso para ordenar os n elementos?

O que é importante analisar?

- ► Correção:
 - o algoritmo para (finitude)
 - o algoritmo faz o que promete?
- Complexidade de tempo:
 - quantas instruções são necessárias no pior caso para ordenar os n elementos?

O que é importante analisar?

- ▶ Correção:
 - o algoritmo para (finitude)
 - o algoritmo faz o que promete?
- Complexidade de tempo:
 - quantas instruções são necessárias no pior caso para ordenar os n elementos?

O que é importante analisar?

- ► Correção:
 - o algoritmo para (finitude)
 - o algoritmo faz o que promete?
- Complexidade de tempo:
 - quantas instruções são necessárias no pior caso para ordenar os n elementos?

O que é importante analisar?

- ▶ Correção:
 - o algoritmo para (finitude)
 - o algoritmo faz o que promete?
- Complexidade de tempo:
 - quantas instruções são necessárias no pior caso para ordenar os n elementos?

O que é importante analisar?

- ▶ Correção:
 - o algoritmo para (finitude)
 - o algoritmo faz o que promete?
- Complexidade de tempo:
 - quantas instruções são necessárias no pior caso para ordenar os n elementos?

```
ORDENA-POR-INSERÇÃO(A, n)
1 para j \leftarrow 2 até n faça
...
4 i \leftarrow j - 1
5 enquanto i \ge 1 e A[i] > chave faça
6 ...
7 i \leftarrow i - 1
8 ...
```

No laço enquanto na linha 5 o valor de i diminui a cada iteração e o valor inicial é $i=j-1\geq 1$. Logo, a sua execução para em algum momento por causa do teste condicional $i\geq 1$.

O laço na linha 1 evidentemente para (o contador j atingirá o valor n+1 após n-1 iterações).

Portanto, o algoritmo para

```
ORDENA-POR-INSERÇÃO(A, n)
1 para j \leftarrow 2 até n faça
...
4 i \leftarrow j - 1
5 enquanto i \ge 1 e A[i] > chave faça
6 ...
7 i \leftarrow i - 1
8 ...
```

No laço **enquanto** na linha 5 o valor de i diminui a cada iteração e o valor inicial é $i=j-1\geq 1$. Logo, a sua execução para em algum momento por causa do teste condicional $i\geq 1$.

O laço na linha 1 evidentemente para (o contador j atingirá o valor n+1 após n-1 iterações).

Portanto, o algoritmo para

```
ORDENA-POR-INSERÇÃO(A, n)
1 para j \leftarrow 2 até n faça
...
4 i \leftarrow j - 1
5 enquanto i \ge 1 e A[i] > chave faça
6 ...
7 i \leftarrow i - 1
8 ...
```

No laço **enquanto** na linha 5 o valor de i diminui a cada iteração e o valor inicial é $i=j-1\geq 1$. Logo, a sua execução para em algum momento por causa do teste condicional $i\geq 1$.

O laço na linha 1 evidentemente para (o contador j atingirá o valor n+1 após n-1 iterações).

Portanto, o algoritmo para

```
ORDENA-POR-INSERÇÃO(A, n)
1 para j \leftarrow 2 até n faça
...
4 i \leftarrow j - 1
5 enquanto i \ge 1 e A[i] > chave faça
6 ...
7 i \leftarrow i - 1
8 ...
```

No laço **enquanto** na linha 5 o valor de i diminui a cada iteração e o valor inicial é $i=j-1\geq 1$. Logo, a sua execução para em algum momento por causa do teste condicional $i\geq 1$.

O laço na linha 1 evidentemente para (o contador j atingirá o valor n+1 após n-1 iterações).

Portanto, o algoritmo para.

- Vamos tentar determinar o tempo de execução (ou complexidade de tempo) de Ordena-Por-Inserção em função do tamanho de entrada.
- Para o problema de Ordenação vamos usar como tamanho de entrada a dimensão do vetor e ignorar os valores dos seus elementos (modelo RAM).
- A complexidade de tempo de um algoritmo é o número de instruções básicas (operações elementares ou primitivas) que executa a partir de uma entrada.
- Exemplo: comparação e atribuição entre números ou variáveis numéricas, operações aritméticas, etc.

- Vamos tentar determinar o tempo de execução (ou complexidade de tempo) de Ordena-Por-Inserção em função do tamanho de entrada.
- Para o problema de Ordenação vamos usar como tamanho de entrada a dimensão do vetor e ignorar os valores dos seus elementos (modelo RAM).
- A complexidade de tempo de um algoritmo é o número de instruções básicas (operações elementares ou primitivas) que executa a partir de uma entrada.
- Exemplo: comparação e atribuição entre números ou variáveis numéricas, operações aritméticas, etc.

- Vamos tentar determinar o tempo de execução (ou complexidade de tempo) de Ordena-Por-Inserção em função do tamanho de entrada.
- Para o problema de Ordenação vamos usar como tamanho de entrada a dimensão do vetor e ignorar os valores dos seus elementos (modelo RAM).
- A complexidade de tempo de um algoritmo é o número de instruções básicas (operações elementares ou primitivas) que executa a partir de uma entrada.
- Exemplo: comparação e atribuição entre números ou variáveis numéricas, operações aritméticas, etc.

- Vamos tentar determinar o tempo de execução (ou complexidade de tempo) de Ordena-Por-Inserção em função do tamanho de entrada.
- Para o problema de Ordenação vamos usar como tamanho de entrada a dimensão do vetor e ignorar os valores dos seus elementos (modelo RAM).
- A complexidade de tempo de um algoritmo é o número de instruções básicas (operações elementares ou primitivas) que executa a partir de uma entrada.
- Exemplo: comparação e atribuição entre números ou variáveis numéricas, operações aritméticas, etc.

Ort	DENA-POR-INSERÇÃO (A, n)	Custo	Qnts vezes?
1 pa	ara j ← 2 até n faça	?	?
2	$chave \leftarrow A[j]$?	?
3	\triangleright Insere $A[j]$ em $A[1j-1]$?	
4	$i \leftarrow j - 1$?	?
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	?	?
6	$A[i+1] \leftarrow A[i]$?	?
7	$i \leftarrow i - 1$?	?
8	$A[i+1] \leftarrow chave$?	?

A constante c_k é o tempo de uma execução da linha k.

Denote por t_j o número de vezes que o teste no laço enquanto na linha 5 é feito para aquele valor de j.

Or	RDENA-POR-INSERÇÃO (A,n)	Custo	Qnts vezes?
1 p	oara j ← 2 até n faça	?	?
2	$chave \leftarrow A[j]$?	?
3	\triangleright Insere $A[j]$ em $A[1j-1]$?	
4	$i \leftarrow j - 1$?	?
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	?	?
6	$A[i+1] \leftarrow A[i]$?	?
7	$i \leftarrow i - 1$?	?
8	$A[i+1] \leftarrow chave$?	?

- A constante c_k é o tempo de uma execução da linha k.
- Denote por t_j o número de vezes que o teste no laço enquanto na linha 5 é feito para aquele valor de j.

Or	RDENA-POR-INSERÇÃO (A,n)	Custo	Qnts vezes?
1 p	oara j ← 2 até n faça	c_1	?
2	$chave \leftarrow A[j]$	<i>c</i> ₂	?
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	
4	$i \leftarrow j - 1$	<i>c</i> ₄	?
5	enquanto $i \ge 1$ e $A[i] > $ chave faça	<i>c</i> ₅	?
6	$A[i+1] \leftarrow A[i]$	c ₆	?
7	$i \leftarrow i - 1$	c ₇	?
8	$A[i+1] \leftarrow chave$	<i>c</i> ₈	?

- A constante c_k é o tempo de uma execução da linha k.
- Denote por t_j o número de vezes que o teste no laço enquanto na linha 5 é feito para aquele valor de j.

Or	dena-Por-Inserção (A, n)	Custo	Qnts vezes?
1 p	oara j ← 2 até n faça	c_1	?
2	$chave \leftarrow A[j]$	<i>c</i> ₂	?
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	
4	$i \leftarrow j - 1$	<i>c</i> ₄	?
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	<i>c</i> ₅	?
6	$A[i+1] \leftarrow A[i]$	c ₆	?
7	$i \leftarrow i - 1$	c ₇	?
8	$A[i+1] \leftarrow chave$	<i>c</i> ₈	?

- A constante c_k é o tempo de uma execução da linha k.
- Denote por t_j o número de vezes que o teste no laço enquanto na linha 5 é feito para aquele valor de j.

Or	RDENA-POR-INSERÇÃO (A,n)	Custo	Qnts vezes?
1 p	oara j ← 2 até n faça	c_1	n
2	$chave \leftarrow A[j]$	<i>c</i> ₂	?
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	
4	$i \leftarrow j - 1$	<i>c</i> ₄	?
5	enquanto $i \ge 1$ e $A[i] > $ chave faça	<i>c</i> ₅	?
6	$A[i+1] \leftarrow A[i]$	c ₆	?
7	$i \leftarrow i - 1$	c ₇	?
8	$A[i+1] \leftarrow chave$	<i>c</i> ₈	?

- A constante c_k é o tempo de uma execução da linha k.
- Denote por t_j o número de vezes que o teste no laço enquanto na linha 5 é feito para aquele valor de j.

Or	dena-Por-Inserção (A, n)	Custo	Qnts vezes?
1 p	oara j ← 2 até n faça	c_1	n
2	$chave \leftarrow A[j]$	<i>c</i> ₂	n-1
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	
4	$i \leftarrow j - 1$	<i>c</i> ₄	?
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	<i>c</i> ₅	?
6	$A[i+1] \leftarrow A[i]$	c ₆	?
7	$i \leftarrow i - 1$	c ₇	?
8	$A[i+1] \leftarrow chave$	c ₈	?

- A constante c_k é o tempo de uma execução da linha k.
- Denote por t_j o número de vezes que o teste no laço enquanto na linha 5 é feito para aquele valor de j.

Ordena-Por-Inserção (A, n)			Qnts vezes?
1 p	oara j ← 2 até n faça	c_1	n
2	$chave \leftarrow A[j]$	<i>c</i> ₂	n-1
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	
4	$i \leftarrow j - 1$	<i>c</i> ₄	n-1
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	<i>c</i> ₅	?
6	$A[i+1] \leftarrow A[i]$	c ₆	?
7	$i \leftarrow i - 1$	c ₇	?
8	$A[i+1] \leftarrow chave$	<i>C</i> 8	?

- A constante c_k é o tempo de uma execução da linha k.
- Denote por t_j o número de vezes que o teste no laço enquanto na linha 5 é feito para aquele valor de j.

Or	dena-Por-Inserção (A, n)	Custo	Qnts vezes?
1 p	oara j ← 2 até n faça	c_1	n
2	$chave \leftarrow A[j]$	<i>c</i> ₂	n-1
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	
4	$i \leftarrow j - 1$	<i>c</i> ₄	n-1
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	<i>c</i> ₅	$\sum_{j=2}^{n} t_j$
6	$A[i+1] \leftarrow A[i]$	c ₆	$\sum_{j=2}^{n}(t_j-1)$
7	$i \leftarrow i - 1$	c ₇	$\sum_{j=2}^{n}(t_j-1)$
8	$A[i+1] \leftarrow chave$	<i>c</i> ₈	?

- A constante c_k é o tempo de uma execução da linha k.
- Denote por t_j o número de vezes que o teste no laço enquanto na linha 5 é feito para aquele valor de j.

Vamos contar?

Ordena-Por-Inserção (A, n)		Custo	Qnts vezes?
1 p	oara j ← 2 até n faça	c_1	n
2	$chave \leftarrow A[j]$	<i>c</i> ₂	n-1
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	
4	$i \leftarrow j - 1$	<i>c</i> ₄	n-1
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	c ₅	$\sum_{j=2}^{n} t_j$
6	$A[i+1] \leftarrow A[i]$	c ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	c ₇	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow chave$	<i>c</i> ₈	n – 1

- A constante c_k é o tempo de uma execução da linha k.
- ▶ Denote por t_j o número de vezes que o teste no laço enquanto na linha 5 é feito para aquele valor de j.

Tempo de execução total

Logo, o tempo total de execução T(n) de Ordena-Por-Inserção é a soma dos tempos de execução de cada uma das linhas do algoritmo, ou seja:

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

Como se vê, entradas de tamanho igual (i.e., mesmo valor de n), podem apresentar tempos de execução diferentes já que o valor de T(n) depende dos valores dos t_j .

Tempo de execução total

Logo, o tempo total de execução T(n) de Ordena-Por-Inserção é a soma dos tempos de execução de cada uma das linhas do algoritmo, ou seja:

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

Como se vê, entradas de tamanho igual (i.e., mesmo valor de n), podem apresentar tempos de execução diferentes já que o valor de T(n) depende dos valores dos t_j .

O melhor caso de Ordena-Por-Inserção ocorre quando o vetor A já está ordenado. Para $j=2,\ldots,n$ temos $A[i] \leq chave$ na linha 5 quando i=j-1. Assim, $t_j=1$ para $j=2,\ldots,n$.

Logo

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$

Este tempo de execução é da forma an + b para constantes a e b que dependem apenas dos c_i .

O melhor caso de Ordena-Por-Inserção ocorre quando o vetor A já está ordenado. Para $j=2,\ldots,n$ temos $A[i] \leq chave$ na linha 5 quando i=j-1. Assim, $t_j=1$ para $j=2,\ldots,n$.

Logo

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$

Este tempo de execução é da forma an + b para constantes a e b que dependem apenas dos c_i .

Logo,

O melhor caso de Ordena-Por-Inserção ocorre quando o vetor A já está ordenado. Para $j=2,\ldots,n$ temos $A[i] \leq chave$ na linha 5 quando i=j-1. Assim, $t_j=1$ para $j=2,\ldots,n$.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$

Este tempo de execução é da forma an + b para constantes a e b que dependem apenas dos c_i .

O melhor caso de Ordena-Por-Inserção ocorre quando o vetor A já está ordenado. Para $j=2,\ldots,n$ temos $A[i] \leq chave$ na linha 5 quando i=j-1. Assim, $t_j=1$ para $j=2,\ldots,n$. Logo,

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$

Este tempo de execução é da forma an + b para constantes a e b que dependem apenas dos c_i .

O melhor caso de Ordena-Por-Inserção ocorre quando o vetor A já está ordenado. Para $j=2,\ldots,n$ temos $A[i] \leq {\it chave}$ na linha 5 quando i=j-1. Assim, $t_j=1$ para $j=2,\ldots,n$.

Logo,

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$

Este tempo de execução é da forma an + b para constantes a e b que dependem apenas dos c_i .

Pior Caso

Quando o vetor A está em ordem decrescente, ocorre o pior caso para Ordena-Por-Inserção. Para inserir a *chave* em A[1...j-1], temos que compará-la com todos os elementos neste subvetor. Assim, $t_j = j$ para j = 2,...,n.

Lembre-se que:

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

е

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

Pior Caso

Quando o vetor A está em ordem decrescente, ocorre o pior caso para Ordena-Por-Inserção. Para inserir a *chave* em A[1...j-1], temos que compará-la com todos os elementos neste subvetor. Assim, $t_j = j$ para j = 2,...,n.

Lembre-se que:

$$\sum_{i=2}^{n} j = \frac{n(n+1)}{2} - 1$$

е

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}.$$

Pior Caso

Quando o vetor A está em ordem decrescente, ocorre o pior caso para Ordena-Por-Inserção. Para inserir a *chave* em A[1...j-1], temos que compará-la com todos os elementos neste subvetor. Assim, $t_j = j$ para j = 2,...,n.

Lembre-se que:

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

е

$$\sum_{i=2}^{n} (j-1) = \frac{n(n-1)}{2}.$$

Temos então que

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

O tempo de execução no pior caso é da forma $an^2 + bn + c$ onde a, b, c são constantes que dependem apenas dos c_i .

Temos então que

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

O tempo de execução no pior caso é da forma $an^2 + bn + c$ onde a, b, c são constantes que dependem apenas dos c_i .

Temos então que

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

O tempo de execução no pior caso é da forma $an^2 + bn + c$ onde a, b, c são constantes que dependem apenas dos c_i .

Temos então que

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

O tempo de execução no pior caso é da forma $an^2 + bn + c$ onde a, b, c são constantes que dependem apenas dos c_i .

- Como dito anteriormente, na maior parte desta disciplina estaremos nos concentrando na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- O algoritmo Ordena-Por-Inserção tem como complexidade (de pior caso) uma função quadrática an² + bn + c, onde a, b, c são constantes absolutas que dependem apenas dos custos c_i.
- O estudo assintótico nos permite "jogar para debaixo do tapete" os valores destas constantes, i.e., aquilo que independe do tamanho da entrada (neste caso os valores de a, b e c).
- Por que podemos fazer isso?

- Como dito anteriormente, na maior parte desta disciplina, estaremos nos concentrando na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- O algoritmo Ordena-Por-Inserção tem como complexidade (de pior caso) uma função quadrática an² + bn + c, onde a, b, c são constantes absolutas que dependem apenas dos custos c_i.
- O estudo assintótico nos permite "jogar para debaixo do tapete" os valores destas constantes, i.e., aquilo que independe do tamanho da entrada (neste caso os valores de a, b e c).
- Por que podemos fazer isso?

- Como dito anteriormente, na maior parte desta disciplina, estaremos nos concentrando na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- O algoritmo Ordena-Por-Inserção tem como complexidade (de pior caso) uma função quadrática an² + bn + c, onde a, b, c são constantes absolutas que dependem apenas dos custos c_i.
- O estudo assintótico nos permite "jogar para debaixo do tapete" os valores destas constantes, i.e., aquilo que independe do tamanho da entrada (neste caso os valores de a, b e c).
- Por que podemos fazer isso?

- Como dito anteriormente, na maior parte desta disciplina, estaremos nos concentrando na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- O algoritmo Ordena-Por-Inserção tem como complexidade (de pior caso) uma função quadrática an² + bn + c, onde a, b, c são constantes absolutas que dependem apenas dos custos c_i.
- ▶ O estudo assintótico nos permite "jogar para debaixo do tapete" os valores destas constantes, i.e., aquilo que independe do tamanho da entrada (neste caso os valores de a, b e c).
- Por que podemos fazer isso?

- Como dito anteriormente, na maior parte desta disciplina, estaremos nos concentrando na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- O algoritmo Ordena-Por-Inserção tem como complexidade (de pior caso) uma função quadrática an² + bn + c, onde a, b, c são constantes absolutas que dependem apenas dos custos c_i.
- O estudo assintótico nos permite "jogar para debaixo do tapete" os valores destas constantes, i.e., aquilo que independe do tamanho da entrada (neste caso os valores de a, b e c).
- Por que podemos fazer isso?

Considere a função quadrática $3n^2 + 10n + 50$:

64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	
32768	3221553202	3221225472

Como se vê, $3n^2$ é o termo dominante quando n é grande.

Considere a função quadrática $3n^2 + 10n + 50$:

64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	
32768	3221553202	3221225472

Como se vê, $3n^2$ é o termo dominante quando n é grande.

Considere a função quadrática $3n^2 + 10n + 50$:

n	$3n^2 + 10n + 50$	3n ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

Como se vê, $3n^2$ é o termo dominante quando n é grande.

Considere a função quadrática $3n^2 + 10n + 50$:

n	$3n^2 + 10n + 50$	3n ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

Como se vê, $3n^2$ é o termo dominante quando n é grande.

Considere a função quadrática $3n^2 + 10n + 50$:

n	$3n^2 + 10n + 50$	3n ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472
	1	

Como se vê, $3n^2$ é o termo dominante quando n é grande.

- ▶ Usando notação assintótica, dizemos que o algoritmo Ordena-Por-Inserção tem complexidade de tempo de pior caso $\Theta(n^2)$.
- ► Isto quer dizer duas coisas:
 - a complexidade de tempo é limitada (superiormente) assintoticamente por algum polinômio da forma an² para alguma constante a,
 - para todo n suficientemente grande, existe alguma instância de tamanho n que consome tempo pelo menos dn², para alguma constante positiva d.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.

- ▶ Usando notação assintótica, dizemos que o algoritmo Ordena-Por-Inserção tem complexidade de tempo de pior caso $\Theta(n^2)$.
- Isto quer dizer duas coisas:
 - a complexidade de tempo é limitada (superiormente) assintoticamente por algum polinômio da forma an² para alguma constante a,
 - para todo n suficientemente grande, existe alguma instância de tamanho n que consome tempo pelo menos dn², para alguma constante positiva d.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.

- ▶ Usando notação assintótica, dizemos que o algoritmo Ordena-Por-Inserção tem complexidade de tempo de pior caso $\Theta(n^2)$.
- Isto quer dizer duas coisas:
 - a complexidade de tempo é limitada (superiormente) assintoticamente por algum polinômio da forma an² para alguma constante a,
 - para todo n suficientemente grande, existe alguma instância de tamanho n que consome tempo pelo menos dn², para alguma constante positiva d.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.

- ▶ Usando notação assintótica, dizemos que o algoritmo Ordena-Por-Inserção tem complexidade de tempo de pior caso $\Theta(n^2)$.
- Isto quer dizer duas coisas:
 - a complexidade de tempo é limitada (superiormente) assintoticamente por algum polinômio da forma an² para alguma constante a,
 - para todo n suficientemente grande, existe alguma instância de tamanho n que consome tempo pelo menos dn², para alguma constante positiva d.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.

- ▶ Usando notação assintótica, dizemos que o algoritmo Ordena-Por-Inserção tem complexidade de tempo de pior caso $\Theta(n^2)$.
- Isto quer dizer duas coisas:
 - a complexidade de tempo é limitada (superiormente) assintoticamente por algum polinômio da forma an² para alguma constante a,
 - para todo n suficientemente grande, existe alguma instância de tamanho n que consome tempo pelo menos dn², para alguma constante positiva d.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.

- ▶ Usando notação assintótica, dizemos que o algoritmo Ordena-Por-Inserção tem complexidade de tempo de pior caso $\Theta(n^2)$.
- Isto quer dizer duas coisas:
 - a complexidade de tempo é limitada (superiormente) assintoticamente por algum polinômio da forma an² para alguma constante a,
 - para todo n suficientemente grande, existe alguma instância de tamanho n que consome tempo pelo menos dn², para alguma constante positiva d.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.

- Vimos o algoritmo Ordena-Por-Inserção, que ordena números de maneira incremental
- Analisamos sua complexidade de pior caso e obtivemos $\Theta(n^2)$
- Vamos obter um tempo bem menor com o algoritmo de Ordenação por intercalação.
- Pra isso vamos projetar o algoritmo usando uma técnica distinta: divisão e conquista.

- Vimos o algoritmo Ordena-Por-Inserção, que ordena números de maneira incremental
- Analisamos sua complexidade de pior caso e obtivemos $\Theta(n^2)$
- Vamos obter um tempo bem menor com o algoritmo de Ordenação por intercalação.
- Pra isso vamos projetar o algoritmo usando uma técnica distinta: divisão e conquista.

- Vimos o algoritmo Ordena-Por-Inserção, que ordena números de maneira incremental
- Analisamos sua complexidade de pior caso e obtivemos $\Theta(n^2)$
- Vamos obter um tempo bem menor com o algoritmo de Ordenação por intercalação.
- Pra isso vamos projetar o algoritmo usando uma técnica distinta: divisão e conquista.

- Vimos o algoritmo Ordena-Por-Inserção, que ordena números de maneira incremental
- Analisamos sua complexidade de pior caso e obtivemos $\Theta(n^2)$
- Vamos obter um tempo bem menor com o algoritmo de Ordenação por intercalação.
- Pra isso vamos projetar o algoritmo usando uma técnica distinta: divisão e conquista.

Ordenação por intercalação

O que significa intercalar dois (sub)vetores ordenados?

Problema: Dados A[p...q] e A[q+1...r] crescentes, rearranjar A[p...r] de modo que ele fique em ordem crescente.

Entrada

Saída

Ordenação por intercalação

O que significa intercalar dois (sub)vetores ordenados?

Problema: Dados A[p...q] e A[q+1...r] crescentes, rearranjar A[p...r] de modo que ele fique em ordem crescente.

Entrada:

Saída:

В

В

Intercalação

Pseudocódigo

Intercalação

Pseudocódigo

```
INTERCALA(A, p, q, r)
     para i ← p até q faça
 2 B[i] \leftarrow A[i]
 3 para j \leftarrow q + 1 até r faça
           B[r+q+1-j] \leftarrow A[j]
 5 \quad i \leftarrow p
 6 i \leftarrow r
    para k \leftarrow p até r faça
 8
          se B[i] \leq B[j]
               então A[k] \leftarrow B[i]
 9
10
                        i \leftarrow i + 1
               senão A[k] \leftarrow B[j]
11
12
                        i \leftarrow i - 1
```

Complexidade de Intercala

Entrada:

Saída:

Tamanho da entrada: n = r - p + 1

Consumo de tempo: $\Theta(n)$

"To understand recursion, we must first understand recursion."

(anônimo)

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a correção de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?
- O que significa resolver uma fórmula de recorrência?

"To understand recursion, we must first understand recursion."

(anônimo)

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a correção de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?
- O que significa resolver uma fórmula de recorrência?

"To understand recursion, we must first understand recursion." (anônimo)

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a correção de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?
- O que significa resolver uma fórmula de recorrência?

"To understand recursion, we must first understand recursion." (anônimo)

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a correção de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?
- O que significa resolver uma fórmula de recorrência?

"To understand recursion, we must first understand recursion."

(anônimo)

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a correção de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?
- O que significa resolver uma fórmula de recorrência?

"To understand recursion, we must first understand recursion."

(anônimo)

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a correção de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?
- O que significa resolver uma fórmula de recorrência?

- Um algoritmo recursivo resolve uma instância de um problema executando a si mesmo com instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - Divisão: o problema é dividido em subproblemas semelhantes ao problema original, porém tendo como entrada instâncias de tamanho menor.
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", quando este é resolvido diretamente.
 - Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

- Um algoritmo recursivo resolve uma instância de um problema executando a si mesmo com instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - Divisão: o problema é dividido em subproblemas semelhantes ao problema original, porém tendo como entrada instâncias de tamanho menor.
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", quando este é resolvido diretamente.
 - Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

- Um algoritmo recursivo resolve uma instância de um problema executando a si mesmo com instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - 1. **Divisão:** o problema é dividido em subproblemas semelhantes ao problema original, porém tendo como entrada instâncias de tamanho menor.
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", quando este é resolvido diretamente.
 - Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

- Um algoritmo recursivo resolve uma instância de um problema executando a si mesmo com instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - 1. Divisão: o problema é dividido em subproblemas semelhantes ao problema original, porém tendo como entrada instâncias de tamanho menor.
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", quando este é resolvido diretamente.
 - Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

- Um algoritmo recursivo resolve uma instância de um problema executando a si mesmo com instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - 1. Divisão: o problema é dividido em subproblemas semelhantes ao problema original, porém tendo como entrada instâncias de tamanho menor.
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", quando este é resolvido diretamente.
 - Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

- Um algoritmo recursivo resolve uma instância de um problema executando a si mesmo com instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - 1. **Divisão:** o problema é dividido em subproblemas semelhantes ao problema original, porém tendo como entrada instâncias de tamanho menor.
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", quando este é resolvido diretamente.
 - 3. Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível:
 - 1. **Divisão**: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$, respectivamentos em dois
 - 2. **Conquista**: ordene os dois vetores recursivamente usando o Mergesort;
 - 3. **Combinação**: intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala.

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível:
 - 1. **Divisão**: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$, respectivamento
 - Conquista: ordene os dois vetores recursivamente usando o Mergesort;
 - 3. **Combinação**: intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala.

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível:
 - 1. **Divisão:** divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$, respectivament
 - Conquista: ordene os dois vetores recursivamente usando o Mergesort;
 - 3. **Combinação**: intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala.

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível:
 - 1. Divisão: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$, respectivamente.
 - Conquista: ordene os dois vetores recursivamente usando o Mergesort;
 - 3. **Combinação**: intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala.

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível:
 - 1. Divisão: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$, respectivamente.
 - Conquista: ordene os dois vetores recursivamente usando o Mergesort;
 - 3. **Combinação**: intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala.

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível:
 - 1. Divisão: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$, respectivamente.
 - 2. **Conquista**: ordene os dois vetores recursivamente usando o Mergesort;
 - 3. **Combinação**: intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala.

Ordenando por intercalação

Ordenando por intercalação

	Р				q				r	
Α	11	22	33	44	55	66	77	88	99	

Ordenando por intercalação


```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

2 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```



```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

2 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

2 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```



```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

2 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```



```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

- Primeiro, defina o tamanho da entrada como n := r p + 1
- Qual é a complexidade de Merge-Sort?

$$T(n) :=$$
 "o tempo de execução máximo de Merge-Sort
entre todas as instâncias de tamanho n "

```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

- Primeiro, defina o tamanho da entrada como n := r p + 1
- Qual é a complexidade de Merge-Sort?

```
T(n) := "o tempo de execução máximo de Merge-Sort
entre todas as instâncias de tamanho n"
```

```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

- Primeiro, defina o tamanho da entrada como n := r p + 1
- Qual é a complexidade de Merge-Sort?

```
I(n) := "o tempo de execução máximo de MERGE-SORT
entre todas as instâncias de tamanho n"
```

```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

- Primeiro, defina o tamanho da entrada como n := r p + 1
- Qual é a complexidade de Merge-Sort?

```
T(n) := "o tempo de execução máximo de MERGE-SORT entre todas as instâncias de tamanho n"
```

```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

- Primeiro, defina o tamanho da entrada como n := r p + 1
- Qual é a complexidade de Merge-Sort?

```
T(n) := "o tempo de execução máximo de MERGE-SORT entre todas as instâncias de tamanho n"
```

```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Linha	Tempo
1	?
2	?
3	?
4	?
5	?
T(n) = ?	

```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Linha	Tempo	_
1	$\Theta(1)$	
2	$\Theta(1)$	
3	$T(\lceil n/2 \rceil)$	
4	$T(\lfloor n/2 \rfloor)$	
5	$\Theta(n)$	
T(n) = ?		

```
MERGE-SORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Linha	Tempo
1	$\Theta(1)$
2	$\Theta(1)$
3	$T(\lceil n/2 \rceil)$
4	$T(\lfloor n/2 \rfloor)$
5	$\Theta(n)$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) + \Theta(2)$$

- Obtemos o que chamamos de fórmula de recorrência:
 - ▶ É a descrição de uma função em termos de si mesma.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Normalmente, algoritmos baseados em divisão-e-conquista têm complexidade T(n) dada por uma recorrência.
- Basta então resolver a recorrência! Mas, o que significa resolver uma recorrência?
 - Significa encontrar uma "fórmula fechada" para T(n)
 - No caso, $T(n) = \Theta(n \lg n)$.
 - Assim, o tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos mais tarde como resolver recorrências

- Obtemos o que chamamos de fórmula de recorrência:
 - É a descrição de uma função em termos de si mesma.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Normalmente, algoritmos baseados em divisão-e-conquista têm complexidade T(n) dada por uma recorrência.
- Basta então resolver a recorrência! Mas, o que significa resolver uma recorrência?
 - ► Significa encontrar uma "fórmula fechada" para *T*(*n*)
 - No caso, $T(n) = \Theta(n \lg n)$.
 - Assim, o tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos mais tarde como resolver recorrências.

- Obtemos o que chamamos de fórmula de recorrência:
 - É a descrição de uma função em termos de si mesma.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Normalmente, algoritmos baseados em divisão-e-conquista têm complexidade T(n) dada por uma recorrência.
- Basta então resolver a recorrência! Mas, o que significa resolver uma recorrência?
 - ► Significa encontrar uma "fórmula fechada" para *T*(*n*)
 - No caso, $T(n) = \Theta(n \lg n)$.
 - Assim, o tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos mais tarde como resolver recorrências.

- Obtemos o que chamamos de fórmula de recorrência:
 - É a descrição de uma função em termos de si mesma.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Normalmente, algoritmos baseados em divisão-e-conquista têm complexidade T(n) dada por uma recorrência.
- Basta então resolver a recorrência! Mas, o que significa resolver uma recorrência?
 - Significa encontrar uma "fórmula fechada" para T(n).
 - No caso, $T(n) = \Theta(n \lg n)$.
 - Assim, o tempo do Mergesort é $\Theta(n \lg n)$ no pior caso
- Veremos mais tarde como resolver recorrências.

- Obtemos o que chamamos de fórmula de recorrência:
 - ▶ É a descrição de uma função em termos de si mesma.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Normalmente, algoritmos baseados em divisão-e-conquista têm complexidade T(n) dada por uma recorrência.
- Basta então resolver a recorrência! Mas, o que significa resolver uma recorrência?
 - ► Significa encontrar uma "fórmula fechada" para *T*(*n*)
 - No caso, $T(n) = \Theta(n \lg n)$.
 - Assim, o tempo do Mergesort é $\Theta(n \lg n)$ no pior caso
- Veremos mais tarde como resolver recorrências.

- Obtemos o que chamamos de fórmula de recorrência:
 - É a descrição de uma função em termos de si mesma.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Normalmente, algoritmos baseados em divisão-e-conquista têm complexidade T(n) dada por uma recorrência.
- Basta então resolver a recorrência! Mas, o que significa resolver uma recorrência?
 - Significa encontrar uma "fórmula fechada" para T(n).
 - No caso, $T(n) = \Theta(n \lg n)$.
 - Assim, o tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos mais tarde como resolver recorrências.

- Obtemos o que chamamos de fórmula de recorrência:
 - É a descrição de uma função em termos de si mesma.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Normalmente, algoritmos baseados em divisão-e-conquista têm complexidade T(n) dada por uma recorrência.
- Basta então resolver a recorrência! Mas, o que significa resolver uma recorrência?
 - ▶ Significa encontrar uma "fórmula fechada" para T(n).
 - No caso, $T(n) = \Theta(n \lg n)$.
 - Assim, o tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos mais tarde como resolver recorrências.

- Obtemos o que chamamos de fórmula de recorrência:
 - É a descrição de uma função em termos de si mesma.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Normalmente, algoritmos baseados em divisão-e-conquista têm complexidade T(n) dada por uma recorrência.
- Basta então resolver a recorrência! Mas, o que significa resolver uma recorrência?
 - ▶ Significa encontrar uma "fórmula fechada" para T(n).
 - ▶ No caso, $T(n) = \Theta(n \lg n)$.
 - Assim, o tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos mais tarde como resolver recorrências.

- Obtemos o que chamamos de fórmula de recorrência:
 - É a descrição de uma função em termos de si mesma.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Normalmente, algoritmos baseados em divisão-e-conquista têm complexidade T(n) dada por uma recorrência.
- Basta então resolver a recorrência! Mas, o que significa resolver uma recorrência?
 - Significa encontrar uma "fórmula fechada" para T(n).
 - ▶ No caso, $T(n) = \Theta(n \lg n)$.
 - Assim, o tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos mais tarde como resolver recorrências.

- Obtemos o que chamamos de fórmula de recorrência:
 - É a descrição de uma função em termos de si mesma.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Normalmente, algoritmos baseados em divisão-e-conquista têm complexidade T(n) dada por uma recorrência.
- Basta então resolver a recorrência! Mas, o que significa resolver uma recorrência?
 - ▶ Significa encontrar uma "fórmula fechada" para T(n).
 - ▶ No caso, $T(n) = \Theta(n \lg n)$.
 - Assim, o tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos mais tarde como resolver recorrências.