

UNIVERSITY OF BURGUNDY

MASTERS IN COMPUTER VISION AND ROBOTICS

AUDIO GENRE CLASSIFICATION

A Project under the guidance of Prof. Desire Sidibe

PROJECT TEAM

VAMSHI KODIPAKA BHARGAV SHAH PARMAR HARDIKSINH

Overview

@Research Project for LAAS CNRS - 2018

- O Introduction
 - AUDIO FILES
 - MUSIC DATA SET @ ISMIR -2004 (729 TRACKS)
- Methodology
 - Feature Extraction MFCC
 - Feature Selection PCA
 - Feature Classification KNN
- Problems of Dimension Reductionality
- O GTZAN Dataset -1000 au files (Quick implementation)
- Output/Results Achieved
- Future Work

Audio Understanding: Pipeline

AIM:

- Using Machine Learning Pipeline on Music Dataset we need to classify the dataset

Audio Access in MATLAB

BASICS OF AUDIO PROCESSING:

- To load .mp3 file: [y,Fs]=audioread('artist_1_album_1_track_1.mp3')
 Here, y gives amplitude and Fs gives frequency.
- 2. Plot .mp3 with amplitude (vs) frequency:

plot(y(1:44100,1))

Audio Access in MATLAB

4. To play .mp3 using sound command:

sound(y(1:441000,1),Fs)

 To play .mp3 using audioplayer object in MATLAB:

```
p =audioplayer(y,Fs)
```

play (p) :: plays loaded music fil

pause(p) :: pauses music file

stop(p) :: stops music file

start(p) :: starts from point of stop

clear(p) :: clears 'p' object's music file.

```
>> p-audioplayer(y,Fs)
  audioplayer with properties:
          SampleRate: 44100
       BitsPerSample: 16
    NumberOfChannels: 2
            DeviceID: -1
       CurrentSample: 1
        TotalSamples: 1686000
             Running: 'off'
           StartFcn: []
            StopFon: []
            TimerFcn: []
         TimerPeriod: 0.0500
                Tag: ''
            UserData: []
                Type: 'audioplayer'
>> play (p)
>> pause (p)
>> stop(p)
```


Mel refers to 'Melody'.

Cepstrum means the IFT of the logarithm of the estimated spectrum of a signal.

Definition:

In sound processing, the Mel-Frequency Cepstrum (MFC) is a representation of the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency

To retrieve info of music file:

Audioinfo("filename")

FEATURE EXTRACTION: MFCC

- 1. Take the Fourier transform of (a windowed excerpt of) a signal.
- 2. Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping windows.
- 3. Take the logs of the powers at each of the mel frequencies.
- 4. Take the discrete cosine transform of the list of mel log powers, as if it were a signal.
- 5. The MFCCs are the amplitudes of the resulting spectrum.

FEATURE EXTRACTION: TYPES

From conventional spectral analysis:

- 1. IFT
 - a. Positive Cepstrum
 - b. Negative Cepstrum

Linear Predictive Coding Cepstrum(LPC Cpestrum):

The LPC vector is defined by $[a_0, a_1, a_2, ... a_p]$ and the CC vector is defined by $[c_0c_1c_2...c_p...c_{p-1}]$

LPC Cepstrum
$$(c_m)$$

$$c_0 = \log G^2$$

$$c_m = a_m + \sum_{k=1}^{m-1} \left(\frac{k}{m}\right) c_k a_{m-k}, \quad 1 \le m \le p$$

$$c_m = \sum_{k=1}^{m-1} \left(\frac{k}{m}\right) c_k a_{m-k}, \quad m > p$$

$$G = e^{c_0/2}$$

$$a_m = c_m - \sum_{k=1}^{m-1} \left(\frac{k}{m}\right) c_k a_{m-k}, \quad 1 \le m \le p$$

MEL-FREQUENCY

Note: Mel-Scale is approximately linear for low-frequency (f<500Hz) and logarithmic for high frequencies

- Noise Sensitivity
- 2. Use of MFCC
- Pre-processing
- 4. Calculation:

$$M(mel_freq) = 1127 * log(1 + f/700)$$

where f is frequency in linear scale and M is frequency is mel scale.

This modulation of log acts as a weight vector like in $(y = w^T X - t)$ in a classical regression model

MEL-FREQUENCY

Log- Representation of MEL-FREQ

MFCC FEATURES

MFCC FEATURES

Instead of IFT we can take DCT: MFCC

MFCC FEATURE EXTRACTION: OUTPUTS

Workspace		- 4
Name *	Value	
mfcc_artist_96_album_1_track_2	79x79 double	
mfcc_artist_97_album_1_track_1	79x79 double	
mfcc_artist_97_album_1_track_2	79x79 double	
mfcc_artist_97_album_1_track_3	79x79 double	
mfcc_artist_98_album_1_track_1	79x79 double	
mfcc_artist_98_album_1_track_2	79x79 double	
mfcc_artist_98_album_1_track_3	79x79 double	
mfcc_artist_99_album_1_track_1	79x79 double	
mfcc_artist_99_album_1_track_2	79x79 double	
mfcc_artist_99_album_1_track_3	79x79 double	
mfcc_artist_99_album_1_track_4	79x79 double	
mfcc_artist_9_album_1_track_1	79x79 double	
mfcc_artist_9_album_1_track_2	79x79 double	
mfcc_artist_9_album_1_track_3	79x79 double	
mfcc_artist_9_album_1_track_4	79x79 double	
mfcc_artist_9_album_1_track_5	79x79 double	
mfcc_artist_9_album_1_track_6	79x79 double	
mfcc_artist_9_album_2_track_1	79x79 double	
mfcc_artist_9_album_2_track_10	79x79 double	
mfcc_artist_9_album_2_track_11	79x79 double	
mfcc_artist_9_album_2_track_2	79x79 double	
mfcc_artist_9_album_2_track_3	79x79 double	
mfcc_artist_9_album_2_track_4	79x79 double	
mfcc_artist_9_album_2_track_5	79x79 double	
mfcc_artist_9_album_2_track_6	79x79 double	
mfcc_artist_9_album_2_track_7	79x79 double	
mfcc_artist_9_album_2_track_8	79x79 double	
mfcc_artist_9_album_2_track_9	79x79 double	
mfcc_artist_9_album_3_track_1	79x79 double	
mfcc_artist_9_album_3_track_2	79x79 double	
mfcc_artist_9_album_3_track_3	79x79 double	
mfcc_artist_9_album_3_track_4	79x79 double	
mfcc_artist_9_album_3_track_5	79x79 double	
mfcc_artist_9_album_3_track_6	79x79 double	
values	1x729 double	
() variables	745x1 cell	
<		>

MFCC FEATURE EXTRACTION: OUTPUTS

Calculation of Frobenius norm of the MFCC Euclidean Distance

Mean of MCC and GMM

WORKING ON GTZAN DATASET

Feature extraction

Data Visualization

GTZAN

Variance percentage vs. no. of eigenvalues Cumulated variance percentage (%) No. of eigenvalues

Feature Density

Dimension Reduction

GTZAN

LDA Reduction

SVM Classifier

GTZAN

	plues	classic	country	disco	hiphop	Jazz	metal	dod	reggae	rock
blues	83.00% (83)	0	2.00%	2.00% (2)	1.00% (1)	2.00%	5.00% (5)	0	0	5.00% (5)
lassical	0	94.00% (94)	0	0	2.00% (2)	2.00%	0	0	0	2.00%
country	4.00% (4)	0	70.00% (70)	5.00% (5)	0	1.00%	0	6.00%	2.00%	12.00%
disco	2.00%	0	3.00% (3)	66.00% (66)	7.00% (7)	1.00% (1)	2.00%	4.00% (4)	6.00% (6)	9.00% (9)
hiphop	3.00%	0	0	4.00% (4)	74.00% (74)	0	2.00%	1.00%	14.00% (14)	2.00%
jazz	0	5.00% (5)	1.00%	1.00% (1)	0	90.00%	0	0	0	3.00%
metal	6.00% (6)	0	2.00%	3.00%	1.00% (1)	0	83.00% (83)	0	0	5.00% (5)
pop	0	0	9.00%	4.00% (4)	2.00%	0	0	80.00% (80)	2.00% (2)	3.00%
reggae	5.00%	0	4.00%	6.00%	8.00%	0	0	4.00% (4)	71.00% (71)	2.00%
rock	4.00%	0	12.00%	11.00%	0	3.00%	7.00%	1.00%	3.00%	59.00° (59)

Confusion Matrix

FUTURE WORK

- 1. Problem of Dimension Reduction PCA
- 2. KNN Classifier
- 3. Testing and Classifying the Sample Audio

Thank you...