Object detection with CNNs

Strasbourg 13.02.2020

Robert Maria

Main Points

1. Two-stage detectors

2. Single-stage detectors

3. Demo

ImageNet – dataset

~ 14 million images with annotations (link)

Classification: For each of the 1000 classes, predicting presence/absence of an example of that class in the test image.

KITTI, CityScaped – datasets for autonomous driving

source

Segmentation: mapping each pixel in an image to an object class

source

Datasets: ImageNet, MS COCO, Pascal VOC

Detection: what is present in an image and where.

Impact of deep learning on Object Detection

Region-based detectors: R-CNN, Fast R-CNN, Faster R-CNN

- (1) The model proposes a set of regions where an object might be located
- (2) A classifier only processes these regions (because classifiers work well!)

R-CNN (3 stages)

- (1) Generate category-independent region proposals
- (2) A CNN extracts a fixed length feature vector for each region
- (3) A class-specific linear SVM (support vector machine) is used for classification

(1) Generate category-independent region proposals

Based on **selective search**, an April 2013 SOTA algorithm for object detection

Won ImageNet object detection competition in 2011!! And Pascal VOC 2012 competition!!

Selective search is based on "Efficient Graph-Based Image Segmentation", 2004.

source

(1) Generate category-independent region proposals

Selective search – starts with over-segmentation (bottom grouping) merges similar regions and produce region proposals

- graph-based image segmentations to get small starting regions
- similarities between neighborhood regions are computed: the most similar regions are grouped together
- neighbors
- new similarities are computed between the resulting regions and the
- hierarchical grouping to deal with different scales

(1) Generate category-independent region proposals

Selective search – produces ~ 2000 region proposals

(2) A CNN extracts a fixed length feature vector for each region

AlexNet architecture (SOTA in 2012 for image classification)

Extracts a fixed number of feature: 4096 from each region proposal

Images with fixed input size: 256 x 256

(1) Generate category-independent region proposals

Selective search – produces ~ 2000 region proposals

(2) A CNN extracts a fixed length feature vector for each region

(1) Generate category-independent region proposals

Selective search – produces ~ 2000 region proposals

(2) A CNN extracts a fixed length feature vector for each region

(3) A class-specific linear SVM (support vector machine) is used for classification

- dot products between features and SVM weights
- non-maximum suppression
- bounding box regression for small adjustments after classification

Training

Observations

Far from real-time

Training is slow and takes a lot of disk space

Much of the network's representational power comes from the convolutional layers

CNN classification results on ImageNet can generalize to object detection on Pascal VOC

R-CNN

- (1) Selective search for object proposals
- (2) Run AlexNet for each of the 2000 proposals(no sharing computations)
 - (3) Refinement for spatial location

Fast R-CNN

- (1) Selective search for object proposals
- (2) Run VGG16 for the whole image(sharing computations)
- (3) Jointly learns to classify object proposals and refine their spatial locations

AlexNet was replaced with 2014 SOTA for image classification, VGG

Architecture:

Architecture:

Observation:

Region proposals (selective search) remains the bottleneck at detection time

	R-CNN	Fast R-CNN
	AlexNet	VGG-16
SOTA	2012 ILSVRC winner (classification)	2014 ILSVRC winner (ensemble, classification)
Train		9x faster
Test		25x faster
mAP	58.5 %	66.9 %
(VOC 2007 test)		

^(*) R-CNN using VGG-16 obtains 66 % mAP

How to make Fast R-CNN faster?

Faster R-CNN (Jun. 2015)

Region proposals (selective search)

Bottleneck at detection time

Takes 2 sec / image to compute

SOLUTION:

Compute proposals with a deep convolutional neural network

Use Region Proposal Networks (RPNs)

Faster R-CNN (Jun. 2015)

Faster R-CNN (Jun. 2015)

Region proposal networks (RPNs)

Faster R-CNN (Jun. 2015)

The loss function

$$L(p_i, t_i) = \frac{1}{N_{cls}} \sum_i L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_i p_i^* L_{reg}(t_i, t_i^*)$$

 p_i - predicted probability of anchor i being an object

 $oldsymbol{p_i^*}$ - ground truth label, 1 if the anchor is positive, 0 otherwise

 t_i - predicted bounding-box coordinates

 t_i^* - ground truth bounding-box coordinates

 N_{cls} - number of anchors in an image (256)

 L_{cls} - log loss over two classes (object vs non-object)

 λ – balancing parameter

 N_{reg} – number of anchor locations

 L_{reg} – regression loss (activated only for positive anchors)

Comparing inference runtimes

R-CNN Test-Time Speed

	R-CNN	Fast R-CNN	Faster R- CNN
mAP (VOC 2007 test)	66 %	66.9 %	70 %

Main Points

1. Two-stage detectors

2. Single-stage detectors

3. Demo

Detection as a single regression problem

YOLO (You Only Look Once)

- 1. Divide the input image in a SxS grid
- 2. Each grid predicts: class probability and bounding boxes
- 3. Each bounding box : 4 coordinates (x,y,w,h) + confidence

- 1. Divide the input image in a SxS grid
- 2. Each grid predicts: class probability and bounding boxes
- 3. Each bounding box : 4 coordinates (x,y,w,h) + confidence

- 1. Divide the input image in a SxS grid
- 2. Each grid predicts: class probability and bounding boxes
- 3. Each bounding box : 4 coordinates (x,y,w,h) + confidence

The output from YOLO

The output size becomes: $7 \times 7 \times (2 \times 5 + 20) = 1470$

source

Observations

Problems in detecting small and far objects

Faster than Faster R-CNN but real-time only on GPU

Lower MAP than Faster R-CNN

Proved that we can do classification and detection in a single shot

Changes:

- 1. Batch normalization
- 2. Higher resolution images: from 256x256 to 448x448
- 3. Introduction of anchor boxes

predict the width and height of the box as offsets from cluster centroid

Changes:

- 1. Batch normalization
- 2. Higher resolution images: from 256x256 to 448x448 at training time
- 3. Introduction of anchor boxes
- 4. Multi-scale training

Improves detection of small objects

Cost function:

$$L = \lambda_{\text{coord}} \sum_{i=0}^{s^2} \sum_{j=0}^{B} 1_{ij}^{\text{obj}} [(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2] + \lambda_{\text{coord}} \sum_{i=0}^{s^2} \sum_{j=0}^{B} 1_{ij}^{\text{obj}} [(\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2] + \sum_{i=0}^{S^2} \sum_{j=0}^{B} 1_{ij}^{\text{obj}} (C_i - \hat{C}_i)^2 + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} 1_{ij}^{\text{noobj}} (C_i - \hat{C}_i)^2 + \sum_{i=0}^{s^2} 1_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2$$

Results on Pascal VOC 2007

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288 × 288	2007+2012	69.0	91
$YOLOv2\ 352 \times 352$	2007+2012	73.7	81
$YOLOv2\ 416 \times 416$	2007+2012	76.8	67
$YOLOv2 480 \times 480$	2007+2012	77.8	59
$YOLOv2\ 544 \times 544$	2007+2012	78.6	40

FPS are calculated on a Titan X GPU

Detection at 3 scales:

- downsampling the dimensions of the input image by 32, 16 and 8

Change in the loss function:

- instead of softmax of the class score, use logistic regression

Results:

Merci pour your attention !!!