

Spectral Line Processing

Karen Lee-Waddell | Research+ Postdoctoral Fellow ICRAR/CASS Radio School 2018

CSIRO ASTRONOMY AND SPACE SCIENCE

www.csiro.au

Outline

- Motivation
 - What can spectral lines tell us?
- What are spectral lines
 - How do they form, types: masers, recombination, molecular, atomic
- Data processing
 - Doppler correction, continuum subtraction
- Data products

Radio spectral lines

Spectral lines

 narrow emission or absorption features in the spectra of gaseous and ionized sources

 enable us to probe the physical, chemical and dynamical properties of the interstellar medium (ISM) in galaxies

Formation of spectral lines

- spectral lines are quantum phenomena
- quantum systems (atoms or molecules) change their state in discrete amounts of energy (E)
- transition between states caused by **emission** or **absorption** of a photon at a **specific** frequency $(f_o = E_{photon}/h)$

Information from spectral lines

rest frequencies identify specific atoms and molecules

	Rest frequency (GHz)	
¹³ CO	110.201	
C ¹⁸ O	109.782	
C ³ H ²	18.343	
CH3OH	6.669, 12.179	
СО	115.271	
CS	48.991, 97.981	
DCO ⁺ H CO ⁺	72.039	
H ¹³ CO [†]	86.754	
H ² O	22.235	
H ² CO	4.83, 14.488	
HC3N	9.098	
HCN	88.632	
HCO [⁺]	89.189	
HI	1.420	
HNC	90.664	
N^2H^{+}	93.174	
NH ³	23.695, 23.723, 23.870	
ОН	1.612, 1.665, 1.667, 1.721	
SiO	42.821, 43.122, 43.424,	
	85.64, 86.243, 86.847	

Information from spectral lines

- rest frequencies identify specific atoms and molecules
- Doppler shifts provide radial velocities
 - redshifts and Hubble distances of extragalactic sources
 - rotation curves and radial mass distribution

Information from spectral lines

- rest frequencies identify specific atoms and molecules
- Doppler shifts measure radial velocities
 - redshifts and Hubble distances of extragalactic sources
 - rotation curves and radial mass distribution
- line broadening can indicate collapse speeds, turbulent velocities and thermal motions
- line intensities can constrain temperatures, densities and chemical compositions

Unique characteristics of radio spectral lines

- line widths are smaller than Doppler-broadened → measure gas temperatures and small changes in radial velocity
- stimulated emission -> formation of natural masers
- radio waves can penetrate dust

 detection of line emission from molecular clouds, protostars and disks around AGNs
- frequency can be measured with very high precision ->
 detect small changes in fundamental physical constants over
 cosmic timescales

Neutral atomic hydrogen (HI)

Neutral atomic hydrogen (HI)

hyperfine splitting

emission spectrum

HI in absorption

Recombination lines

Molecular lines

• molecules can vibrate or rotate around an axis and emit or

absorb line radiation

(www.shokabo.co.jp/sp_e/optical/labo/opt_line/opt_line.htm)

Masers

- microwave amplification by stimulated emission of radiation
- requires pumping mechanism for population inversion
- incident photon causes atom/molecule to emit two coherent photons in a beam of emission

Molecule	Name	Frequency (GHz
OH	hydroxyl	1.612
ОН	hydroxyl	1.667
OH	hydroxyl	1.72
H ₂ CO	formaldehyde	4.829
CH₃OH	methanol	12.178
SiS	silicon sulphide	18.155
H ₂ O	water	22.235
NHз	ammonia	23.87
SiO	silicon oxide	43.122
SiO	silicon oxide	86.243
HCN	hydrogen cyanide	89.087

Spectral line data

Telescope properties

	ASKAP	MWA
Frequency range (MHz)	700 – 1800	80 – 300
Wavelength range (m)	0.17 - 0.43	1 - 3.7
Instantaneous bandwidth (MHz)	300	30.72
Number of channels	16k	3k
Spectral resolution (kHz)	18.5	30
Field of view (deg ²)	30	200 – 2500

Data Processing

- Splitting, flagging/editing
- Calibration
- Continuum imaging & validation
- Doppler correction / velocity considerations
- Subtract continuum
- Spectral line imaging & validation

Doppler correction

- due to Earth's motion, our velocity with respect to astronomical sources is **not constant** in time or direction
- if not corrected, the spectral line will slowly drift through spectrum

Doppler correction

 Doppler track during observations or apply correction during post-processing

Velocity convention

relativistic expression:

$$v_{radial} = c \frac{f_o^2 - f^2}{f_o^2 + f^2}$$

two approximations:

$$v_{radio} = c \left(1 - \frac{f}{f_0} \right) \leftarrow \frac{\text{depreciated}}{\text{by IAU}}$$

$$v_{optical} = c \left(\frac{f}{f_o} - 1 \right)$$

Continuum subtraction

Spectral line cube with two continuum sources – structure independent of frequency – and one spectral line source

- continuum emission complicates
 the detection and analysis of
 spectral line data
- can affect image quality of the spectral cube (e.g. deconvolution differences, sidelobes of bright continuum sources)

Continuum subtraction - visibility based

- low order polynomial, fit to line free channels in each visibility spectrum, then subtracted from whole spectrum
 - works well for small field of view

 continuum model (clean model or source catalogue) subtracted from the visibility cube

Continuum subtraction - image based

- low order polynomial fitted to and subtracted from each spectrum in the cube
 - better at removing point sources far away from phase centre

 ASKAPsoft option: Savitzky-Golay filter fits and then removes the spectral baseline in each spectrum

Continuum subtraction

Spectral line imaging

- spatially distributed spectra are interpolated onto a grid to make 3D data cubes with two spatial and one spectral axis
- similar to deconvolution of continuum maps; however, emission structures vary across channels
 - try to keep deconvolution as similar as possible for all channels (same restoring beam, clean to same depth)

Smoothing

- bring out fainter features
- useful for comparing to other data (different beam sizes & resolution)
- reduce data size

- **spectral smoothing** \rightarrow emphasize low signal-to-noise lines

Data products – image cubes

Data products – spectra

Methanol maser in NGC 253

Molecular lines in Orion KL

Data products - HI spectra

- integral of HI profile \rightarrow flux density (F_{HI})
- HI in galaxies is optically thin → HI mass

$$\frac{M_{HI}}{M_{\odot}} = 2.356 \times 10^5 \frac{F_{HI}}{Jy \text{ km/s}} \left(\frac{d}{Mpc}\right)^2$$

dynamical mass

total contained mass

dynamical mass → total contained mass
$$M_r = \frac{rv_r^2}{G} \rightarrow M_{dyn} = 3.39 \times 10^4 \frac{a_{HI}}{arcmin} \frac{d}{Mpc} \left(\frac{\frac{12}{2} W_{50}}{km/s}\right)^2$$

Data products – moment maps

"moment 0" = total intensity (integrated spectrum)

"moment 1" = intensity weighted velocity field

"moment 2" = intensity weighted velocity dispersion

References and inspiration

Essential Radio Astronomy ~ J. Condon & S. Ransom

Various online lecture slides from previous radio schools, including but not limited to:

- Spectral Line Observing, ESSEA ~ D. Muders
- Spectral Line Data Analysis, NRAO Workshop ~ Y. Pihlström
- Spectral Line Science, ATNF Radio School ~ O.I. Wong

Thank you!

Karen Lee-Waddell
Research+ Postdoctoral Fellow

t +61 2 9372 4129

e karen.lee-waddell@csiro.au

@KarenLeeWaddell

www.csiro.au

