Petunjuk penggunaan HD-30

Made In Indonesia

PETUNJUK KESELAMATAN

Hal-hal yang harus diperhatikan sebelum menggunakan alat bantu HiDS:

- Baca semua petunjuk pada Buku Petunjuk Penggunaan ini.
- 2. Simpanlah buku ini sebagai referensi.
- 3. Apabila alat ini terjatuh atau rusak pastikan untuk diperiksa dan diperbaiki oleh pihak STARNICS.
- 4. Pastikan alat ini tidak terkena air.
- Pastikan untuk melepaskan alat ini dari sepeda motor apabila tidak dipergunakan.
- 6. Perhatikan benda-benda yang menimbulkan panas.

DAFTAR ISI

	Hal
PETUNJUK KESELAMATAN	1
DAFTAR ISI	ii
DAFTAR GAMBAR	iv
DESKRIPSI ALAT	V
KELENGKAPAN	vii
SPESIFIKASI ALAT	vii
DAFTAR SINGKATAN	viii
FUNGSI-FUNGSI DAN MENU HIDS	1
PEMASANGAN	4
PENGGUNAAN HIDS	5
DIAGNOSA DATA PARAMETER	9
DIAGNOSA DTC	11
MELAKUKAN RESET ECM	16
MEMERIKSA KONDISI SEPEDA MOTOR	19
KETERANGAN SINYAL-SINYAL ECM	25
MENU-MENU PADA HIDS	28
KETERANGAN DTC DAN PENANGANAN	30
SUPRA ANF- 125	
SINYAL-SINYAL	31
NILAI STANDAR STASIONER PADA	32
LOKASI DTC SUPRA	32
DAFTAR KESALAHAN-KESALAHAN	33
REVO AT – 110	
SINYAL-SINYAL	34
NILAI STANDAR STASIONER PADA	35
LOKASI DTC	35
DAETAD VECALALIANI VECALALIANI	26

PCX – 125	
SINYAL-SINYAL	37
NILAI STANDAR STASIONER PADA	38
LOKASI DTC	38
DAFTAR KESALAHAN-KESALAHAN	39
CBR - 150	
SINYAL-SINYAL	40
NILAI STANDAR STASIONER PADA	41
LOKASI DTC	41
DAFTAR KESALAHAN-KESALAHAN	42
CBR - 250	
SINYAL-SINYAL	43
NILAI STANDAR STASIONER PADA	44
LOKASI DTC	44
DAFTAR KESALAHAN-KESALAHAN	45
SURPA AFS - 125	
SINYAL-SINYAL	46
NILAI STANDAR STASIONER PADA	47
LOKASI DTC	47
DAFTAR KESALAHAN-KESALAHAN	48
SPACY - FI	
SINYAL-SINYAL	49
NILAI STANDAR STASIONER PADA	50
LOKASI DTC	50
DAFTAR KESALAHAN-KESALAHAN	51
VARIO ANC - 125	
SINYAL-SINYAL	52
NILAI STANDAR STASIONER PADA	53
LOKASI DTC	53

54

DAFTAR KESALAHAN-KESALAHAN

DAFTAR GAMBAR

	Gb	Hal
Tombol-tombol dan peraga HiDS	1	1
Posisi DLC pada CBR-250	2	4
Tampilan Awal	3	5
Inisialisasi	4	6
Pemilihan jenis sepeda motor	5	6
Parameter-parameter sepeda motor	6	7
Menu pilihan apabila terjadi DTC	7	8
Tampilan parameter	8	10
Menu pilihan DTC untuk Supra X-125	9	11
Menu pilihan DTC dengan kedipan MIL	10	12
Tampilan data kesalahan	11	13
Tampilan DTC terjadi	12	15
Penghapusan kode DTC terjadi T	13	17
Penghapusan kode DTC terjadi Y	14	18
Proses penghapusan data DTC	15	18
Menu pilihan pemeriksaan kondisi motor	16	19
Proses pemeriksaan kondis motor	17	21
Parameter kondisi motor	18	21
Menu pilihan parameter	19	22
Diagram alir menu reset DTC	20	28
Diagram alir menu kondisi seneda motor	21	29

DESKRIPSI ALAT

Terima kasih Anda telah memilih HiDS produk STARNICS sebagai alat bantu di Bengkel Anda, sebagai perusahaan yang selalu mengikuti perkembangan teknologi sepeda motor, STARNICS terus mengembangkan dan memproduksi alat bantu elektronik Bengkel.

Seiring dengan kemajuan teknologi elektronik, kendaraankendaraan pun mengaplikasikan dan menerapkannya pada produk-produk mereka berupa Sistim Injeksi menggantikan Sistim Karburasi, dimulai dengan kendaraan roda empat dan saat ini mulai merambah ke kendaraan roda dua, sepeda motor Honda yang dipasarkan di Indonesia mulai menerapkan Sistim Injeksi ini pada Supra-X 125 PGM-FI, disusul PCX-125 lalu Revo-AT 110 kemudian CBR-250 dan CBR-150.

Di masa-masa mendatang, penerapan teknologi Sistim Injeksi pada sepeda motor akan terus berkembang dengan cepat dan lebih kompleks, hal mana tentu akan menyulitkan para mekanik Bengkel apabila ada permasalahan pada Sistim Injeksi ini, untuk itu diperlukan adanya satu alat untuk membantu mangatasi masalah-masalah pada sepeda motor yang menggunakan Sistim Injeksi ini.

HiDS adalah alat bantu yang dikembangkan STARNICS untuk membantu Bengkel-bengkel melakukan analisis dan diagnosis atas alat-alat kontrol elektronik pada sepeda motor Honda yang menggunakan Sistim Injeksi

HiDS adalah alat yang mampu berkomunikasi dengan Engine Control Module (ECM), data-data berupa sinyal dari ECM akan dibaca HiDS dan ditampilkan pada layar peraga dalam bentuk besaran-besaran fisika, seperti:

- Suhu ditampilkan dalam °C.
- Tekanan ditampilkan dalam kPA.
- Putaran mesin ditampilkan dalam RPM.
- DII.

HiDS juga dilengkapi dengan fasilitas untuk menampilkan data-data kesalahan sensor yang terdeteksi ECM, baik data kesalahan yang sudah terjadi dan tersimpan dalam memory ECM ataupun data yang sedang terjadi yang terdeteksi ECM, data-data tersebut akan ditampilkan pada layar peraga HiDS dengan menggunakan Bahasa Indonesia sehingga mudah dimengerti dan informatif, HiDS juga memiliki fasilitas untuk melakukan re-set atau menghapus data-data kesalahan yang tersimpan di ECM dengan amat mudah, HiDS juga memiliki kemampuan untuk menampilkan data-data saat sepeda motor dalam kondisi stasioner.

<u>Catatan</u>: Data-data yang ditampilkan berbeda untuk masingmasing type sepeda motor. Buku Petunjuk Penggunaan ini akan menerangkan fungsi-fungsi dari HiDS dan cara penggunaanya.

KELENGKAPAN

1 Unit HiDS 1 unit 2. Kabel DLC-DB9 1 unit 3. Buku petunjuk pemakaian 1 unit 4. Tas 1 unit

SPESIFIKASI ALAT

Dimensi: 122 x 82 x 33 mm (p x l x t).

Tegangan: 8 - 15 Volt DC. 100 - 150 mA. Arus: Tampilan:

Peraga 20 x 4.

SINGKATAN

ADV: Sudut Percepatan Pengapian

ALT: Nilai koreksi ketinggian

BAS: Sensor Kemiringan.

BAT: Tegangan Aki.

ECT: Suhu Pendingin Mesin

EOT: Suhu Oli Mesin.

EVA: Evaporator PC Solenoid

FAN: Kipas Pendingin.
FIS: Fast Idle Switch

GG: Posisi Gigi Transmisi.

IAC: Idle Air Control Valve.

IAT: Suhu Masukkan Udara.

INJ: Lamanya Penyemprotan Bahan Bakar di Injektor.

MAP: Tekanan Udara pada Manifold.

MIL: Menunjukkan kejadian DTC.

MOD: Mode setting altitude

O2: Jumlah Oksigen.

POM: Pompa Bahan Bakar.

PR: Pair Control Solenoid Valve

PUT: Putaran Mesin.

SCS: Service Check Signal

SS: Posisi Standar Samping.

SSW: Starter Switch Actuator

STF: Short Term Fuel Trim

StS: Starter Switch.

TP: Posisi Throttle

VSS: Sensor Kecepatan.

MOD: Untuk pembacaan mode yang lebih akurat pastikan memasang HiDS pada saat sepeda motor belum dihidupkan.

- MODE 1: Dari titik berangkat dengan altitude tinggi (ketinggian di atas permukaan laut melebihi 2.000m) ke tempat dengan altitude rendah (ketinggian di atas permukaan laut kurang dari 2.000 m).
- MODE 2: Ke tempat pada ketinggian 2.000 2.500 m di atas permukaan laut (berangkat dari ketinggian manapun).
- MODE 3: Ke tempat pada ketinggian 2.500 3.500 m di atas permukaan laut (berangkat dari ketinggian manapun).
- MODE 4: Ke tempat pada ketinggian 3.500 m atau lebih di atas permukaan laut.

Lihat buku pedoman reparasi untuk penyetelan mode.

FUNGSI-FUNGSI DAN MENU HIDS

Tombol-tombol dan peraga HiDS (Gambar 1).

Lampu Indikator.

- Gigi/StS (Starter Switch)
 - Pada Supra X 125

HIJAU: Posisi gigi Netral

• MERAH: Posisi gigi masuk

•

- Pada REVO/PCX
 - HIJAU: Starter Switch tidak ditekan
 - MERAH: Starter Switch ditekan
- 2. DTC (Diagnostic Trouble Codes/Kode Diagnosis Kesalahan)
 - HIJAU: Tidak ada DTC
 - MERAH berkedip-kedip: Terjadi DTC
- 3. BAS(Bank Angle Sensor/Sesor Kemiringan)/SS(Side Stand)
 - Pada SUPRA X 125.
 - HIJAU: Tidak ada masalah pada BAS.
 - MERAH: Terjadi masalah dengan BAS.
 - Pada REVO/ATX
 - HIJAU: Posisi standar samping di atas
 - MERAH: Posisi standar samping di bawah
- 4. POMPA
- HIJAU: Pompa sedang bekerja
- MERAH: Pompa tidak bekerja
- 5. HEALTH
- HIJAU: Pengecekan kondisi kendaraan siap
- MERAH: Pengecekan kondisi kendaraan belum siap
- 6. Comm (Komunikasi antara HiDS dan ECM)
 - HIJAU: Terjadi komunikasi
 - MERAH: Komunikasi terputus

Tombol-tombol

- Panah atas ↑:
 - Untuk menaikkan peraga ke atas.
 - Untuk pilihan T.
- Panah bawah ↓:
 - Untuk menurunkan peraga ke bawah.
 - Untuk pilihan Y.
- ENTER
 - Untuk mengeksekusi pilihan.

Keterangan simbol-simbol pada layar peraga HiDS

- Menunjukkan bahwa masih ada data tampilan di atas tampilan yang sedang ditampilkan, pemilihan tombol panah atas ↑ akan menampilkan data tersebut.
- Menunjukkan bahwa masih ada data tampilan di bawah tampilan yang sedang ditampilkan, pemilihan tombol panah bawah ↓ akan menampilkan data tersebut.
- 3. 👮 : Penunjuk pilihan.
- 4. 🍍 : Menunjukkan nilai yang terlalu tinggi.
- 5. * : Menunjukkan nilai yang terlalu rendah.

PEMASANGAN

 Pasangkan connector DB9 ke bagian bawah HiDS, dan kencangkan baudnya. Pasangkan connector DLC ke konektor DLC motor yang akan diperiksa. Lokasi konektor DLC berbeda-beda untuk tiap jenis sepeda motor.

<u>Catatan</u>: Lihat halaman belakang untuk mengetahui lokasi konektor DLC.

Lihat posisi DLC pada BUKU PEDOMAN REPARASI.

- Putar Kunci Kontak ke Posisi ON.
- Hidupkan mesin sepeda motor.
 HiDS akan terhubung dengan ECM untuk melakukan komunikasi.

Posisi DLC pada CBR-250 (Gambar 2).

PENGGUNAAN HIDS

Setelah connector DB9 terpasang dengan baik pada alat HiDS dan juga kabel DLC di sepeda motor, putar Kunci Kontak ke Posisi ON dan HiDS akan berkomunikasi dengan ECM dari sepeda motor tersebut. Pada layar peraga HiDS akan keluar tampilan seperti pada gambar 3.

Tampilan Awal (Gambar 3).

Kemudian HiDS akan melakukan inisialisasi untuk mendeteksi apakah sepeda motor terhubung dengan HiDS, seperti pada gambar 4, yang akan dilanjutkan dengan tampilan seperti pada gambar 5.

Sepeda motor terhubung dengan HiDS (Gambar 4).

Pemilihan jenis sepeda motor (Gambar 5).

Tekan tombol ↓ untuk memilih jenis sepeda motor yang dikehendak lalu ◀ untuk mengeksekusinya, maka tampilan pada layar peraga akan berganti.

 Apabila tidak terdapat kesalahan pada Sistim Injeksi, tampilan layar peraga akan seperti pada gambar 6.

Parameter-parameter sepeda motor (Gambar 6).

 Apabila terdapat kesalahan pada Sistim Injeksi, tampilan layar peraga akan seperti pada gambar 7 atau gambar 10 apabila kesalahan tersebut sedang terjadi (untuk jenis motor bukan Supra X – 125).

Menu pilihan apabila telah terjadi DTC (Gambar 7).

DIAGNOSA DATA PARAMETER

Amati dan perhatikan data-data yang ditampilkan pada layar peraga.

Penunjuk panah ke bawah 🔆 pada layar peraga di baris ke 4 kolom ke 20 menunjukkan ada data di bawahnya.

Tekan tombol ke bawah ψ untuk menurunkan peraga dan melihat data-data tersebut. Apabila tanda ψ sudah tidak nampak lagi berarti sudah tidak ada lagi data.

Penunjuk panah ke atas † pada peraga di baris ke 1 kolom ke 20 menunjukkan ada data di atasnya

Tekan tombol ke atas \uparrow untuk menaikkan peraga dan melihat data-data tersebut. Apabila tanda \uparrow sudah tidak Nampak lagi berarti sudah tidak ada lagi data di atasnya.

Hidupkan mesin sepeda motor yang akan diperiksa, PUT (Putaran mesin) akan berubah menunjukkan besarnya putaran mesin sepeda motor dengan satuan RPM seperti pada gambar 8.

Data-data yang lain akan menampilkan data sesuai dengan nilai pada ECM.

Pergunakan sinyal-sinyal yang dikeluarkan ECM sebagai alat bantu analisis.

Kita dapat mengamati perubahan suhu mesin terhadap putaran mesin dan fungsi IAC.

Amati perubahan ECT/EOT terhadap besarnya putaran mesin, apabila tidak terjadi perubahan besarnya putaran ketika suhu sudah cukup tinggi, amati perubahan nilai IAC.

Tampilan parameter (Gambar 8)

Apabila indikator DTC berkedip-kedip, penekanan tombol 4 akan mengganti tampilan ke gambar 9 atau gambar 10, tetapi apabila indikator DTC tidak berkedip-kedip penekanan tombol tersebut tidak berpengaruh apa-apa.

Apabila indikator HEALTH berganti warna menjadi hijau, penekanan tombol ◀ akan mengganti tampilan ke gambar 16.

DIAGNOSA DTC

Apabila lampu DTC berkedip-kedip dengan warna merah menunjukkan telah terjadi kesalahan pada sepeda motor.

- Untuk jenis SUPRA X, data DTC yang ditampilkan hanya data DTC yang tersimpan saja.
 - Pada baris ke 4 akan menampilkan data kesalahan yang pertama kali terjadi seperti pada gambar 10.

Menu pilihan apabila terjadi DTC untuk SUPRA X (Gambar 9).

 Untuk jenis motor selain SUPRA X – 125 data DTC yang ditampilkan adalah data DTC yang tersimpan dan data DTC yang sedang terjadi yang dibarengi dengan kedipan MIL pada speedo meter.

- Apabila tidak ada kedipan MIL pada speedo meter, pada baris ke 4 akan menampilkan data kesalahan yang pertama kali terjadi seperti pada gambar 10.
- Apabila terjadi kedipan MIL pada speedo meter pada baris ke
 4 akan menampilkan LIHAT DTC TERJADI seperti pada gambar 11.

Menu pilihan apabila terjadi DTC yang dibarengi dengan kedipan MIL untuk jenis sepeda motor selain SUPRA X-125 (Gambar 10).

Data kesalahan-kesalahan tersebut dapat dilihat lebih lengkap di menu pilihan LIHAT DTC TERSIMPAN.

 Tekan tombol ke bawah ↓, panah penunjuk pada kolom ke 20 baris ke 1 akan bergerak turun ke bawah dan tempatkan pada menu pilihan LIHAT DTC TERSIMPAN.

Tampilan peraga akan menampilkan menu kesalahan seperti pada gambar 12. Data-data tersebut akan diurutkan berdasarkan kode kedipan, jumlah kedipan yang lebih sedikit akan berada pada posisi paling atas. Seperti pada contoh gambar 12 dimana ECT mempunyai kode 07 berada paling atas dan berikutnya adalah TP yang mempunyai kode 08.

Kesalahan yang pertama kali terjadi dibedakan dengan tanda * pada kolom ke 5.

Tampilan data kesalahan (Gambar 11).

Pada contoh gambar di atas kesalahan TP adalah kesalahan yang pertama kali terjadi.

Pemilihan menu LIHAT DTC TERJADI dimaksudkan untuk membantu mekanik dalam memperbaiki kesalahan-kesalahan

yang sedang terjadi. Pada gambar 12 menampilkan pilihan menu tersebut.

연5/연구 pada baris pertama berarti data ke 5 dari 7 data yang terjadi.

Ø9−2 IAT TEGANGAN **A** menunjukkan kesalahan yang terjadi.

IAT: -40° menunjukkan suhu IAT yang terbaca ECM.

IAT: 4.973 U menunjukkan tegangan yang terbaca ECM.

Pada contoh ini menunjukkan bahwa terjadi kesalahan pada IAT dimana kesalahan yang terjadi adalah sensor IAT mempunyai tegangan yang tinggi, tegangan yang tinggi pada IAT disebabkan tidak tersambungnya IAT dengan ECM atau sinyal sambungan IAT pada ECM tersambung dengan VCC ECM, periksa sambungan-sambungan antara konektor IAT dan konektor ECM, apabila memang ada sambungan yang tidak baik pada tampilan suhu IAT akan menunjukkan angka yang normal, suhu normal untuk mesin yang dingin adalah sekitar 25-30 °C, dan tegangannya sekitar 3 Volt.

Tampilan DTC terjadi (Gambar 12).

Apabila semua data kesalahan sudah selesai diperbaiki.

- Putar kunci kontak ke posisi OFF lalu putar kembali ke posisi ON, untuk memulai proses dari awal dan tampilan HiDS akan memulai inisialisasi yang dilanjutkan dengan proses-proses berikutnya dan akan berakhir seperti pada gambar 9.

Lihat RESET ECM.

MELAKUKAN RESET ECM

Pemilihan menu RESET KODE DTC akan mengubah layar peraga seperti gambar 13.

Tekan tombol ke bawah ↓, maka huruf T pada baris ke 4 akan berubah menjadi huruf Y seperti pada gambar 14, tekan tombol ↑ untuk kembali ke menu pada gambar 13.

Catatan:

Menu ini dimaksudkan untuk menghapus DTC tersimpan di ECM. Menu ini sebaiknya dipilih setelah Anda yakin semua kesalahan yang ada sudah diperbaiki.

Lakukan perbaikan pada kesalahan yang terjadi.

Pada contoh kesalahan di atas kita dapat melihat nilai IAT, apabila nilai IAT menunjukkan nilai -40°C berarti telah terjadi kesalahan pada IAT karena udara yang masuk ke throttle body di daerah tropis tidak mungkin sampai pada suhu tersebut.Pemilihan seperti pada gambar 14 yang dilanjutkan dengan menekan tombol

Apabila setelah diperbaiki dan nilai tersebut menunjukkan nilai 27°C berarti IAT sudah berfungsi sebagaimana mestinya, sehingga Anda dapat melakukan reset ECM dan melihat apakah masih ada data kesalahan lain yang terjadi.

Penghapusan kode DTC (Gambar 13).

Setelah proses penghapusan data DTC selesai dilakukan HiDS dan semua data ECM telah terhapus, tampilan HiDS akan memulai inisialisasi seperti pada gambar 6 dan akan dilanjutkan dengan proses-proses lain berikutnya.

Penghapusan kode DTC (Gambar 14).

Proses penghapusan data DTC (Gambar 15).

MEMERIKSA KONDISI SEPEDA MOTOR

Apabila Anda sudah memperbaiki semua kesalahan-kesalahan yang terjadi pada sepeda motor, hidupkan mesin dalam keadaan stasioner amati data-data yang anda perlukan.

Apabila suhu EOT/ECT sudah mencapai 80°C , maka indikator lampu HEALTH akan berwarna hijau. Indikator ini menunjukkan bahwa HiDS siap melakukan diagnosa data pada keadaan stasioner.

Tekan tombol ◀, tampilan peraga akan berganti ke menu pilihan pengecekan kondisi sepeda motor seperti pada gambar 16.

Menu pilihan pemeriksaan kondisi motor (Gambar 16).

Tekan tombol ↓ untuk memindahkan kursor penunjuk ke CEK KONDISI MOTOR lalu tekan tombol ◄ untuk mengeksekusi perintah tersebut.

Tampilan peraga akan berganti ke tampilan data kondisi stasioner seperti pada gambar 17. Dimana HiDS akan melakukan analisis data-data yang diperlukan untuk menganalisis kesehatan untuk jenis sepeda motor yang dipilih. Lalu tampilan akan diteruskan ke peraga seperti pada gambar 18.

Tanda F pada kolom ke 4 pada masing-masing baris menandakan abahwa data tersebut dalam daerah kondisi mesin dalam keadaan stasioner.

Sedangkan tanda dan tanda menunjukkan bahwa data tersebut berada di luar daerah kondisi mesin dalam keadaan stasioner, tanda menunjukkan nilai yang lebih tinggi dari daerah kondisi statsioner, sedangkan tanda menunjukkan nilai yang lebih rendah dari daerah kondisi stasioner.

Proses pemeriksaan kondisi motor (Gambar 17).

Parameter kondisi motor (Gambar 18).

Apabila pada waktu pemilihan kondisi kesehatan ini suhu pada ECT/EOT turun atau terjadi kesalahan DTC maka menu berikutnya tidak bisa dilanjutkan, menu tampilan akan berganti seperti pada gambar 20.

Menu pilihan parameter (Gambar 19).

KETERANGAN SINYAL-SINYAL ECM

Tidak semua sinyal-sinyal pada daftar ini ditampilkan pada semua sepeda motor.

PUTARAN MESIN (PUT)

Sinyal dari crank speed sensor (CKP) yang menghasilkan pembacaan putaran.

Satuan: RPM

TP SENSOR (TP)

Posisi sensor throttle sensor ini berfungsi menunjukkan besarnya bukaan throttle atau besarnya bukaan gas tangan.

Posisi tertutup penuh (dalam keadaan stasioner) dan posisi terbuka penuh atau gas tangan dibuka penuh.

Satuan: Posisi dalam derajat (°)

Tegangan dalam Volt.

ENGINE OIL TEMPERATURE (EOT) ENGINE COOLANT TEMPERATURE (ECT)

Sensor panas oli mesin / EOT, dan sensor panas suhu air pada silinder blok / ECT, Sensor ini mempunyai efek langsung terhadap campuran bahan bakar dan waktu pengapian.

INTAKE AIR TEMPERATURE (IAT)

Sensor panas untuk temperatur udara yang masuk pada manifold. Sensor ini mempunyai efek langsung terhadap campuran bahan bakar dan waktu pengapian.

Semua sensor panas mempunyai karakteristik yang sama baik pada EOT, ECT maupun IAT.

Nilai tegangan yang sama akan menghasilkan tampilan yang sama. Apabila tegangan berkurang maka temperatur akan bertambah.

Sifat elektronik dari sensor ini adalah NTC (Negative Temperature Coeficient).

Apabila nilai temperatur bertambah maka nilai tahanannya akan berkurang.

Satuan: Suhu dalam derajat Celcius (°C)

Tegangan dalam Volt.

MANIFOLD ABSOLUTE PRESSURE (MAP)

Untuk mendeteksi tekanan udara pada manifold sensor ini berada di belakang throttle valve.

Sensor ini merupakan sensor parameter utama untuk pencampuran bahan bakar.

Satuan: MAP dalam kPA (kilo Pascal)

Tegangan dalam Volt.

SPARK ADVANCE (ADV)

Sudut percepatan pengapian

Waktu pengapian dikontrol oleh peta dari kecepatan dan besarnya pembukaan throttle.

Pada sebagian jenis sepeda motor parameter ECT juga ditambahkan sebagai pengaturan sudut percepatan pengapian.

Satuan: ADV dalam derajat (°)

BATTERY (BAT)

Menunjukkan besarnya tegangan battery (tegangan aki) yang dibaca oleh ECM.

Pada saat stasioner tegangan aki antara 12 ~15 Volt DC.

Satuan: Tegangan aki dalam Volt.

INJECTOR (INJ)

Menunjukkan lamanya pembukaan *injector valve* menyemprotkan bahan bakar ke ruang bakar.

Semakin lama pembukaan injektor semakin banyak bahan bakar yang disemprotkan ke ruang bakar.

Nilai normal pada saat stasioner pada 20°C: ~2.6mS-3.8mS.

Nilai maksimumnya sebesar 18mS.

Satuan: Lamanya waktu penyemprotan dalam mili Second (mS).

OXYGEN SENSOR (O2)

Perbandingan antara udara dan bahan bakar.

Nilai ideal untuk perbandingan combustion adalah 14.7:1 (Udara : 1 gram Bahan bakar). Nilai standar dari perbandingan ini adalah 0.2 Volt sampai 0.9 Volt.

Nilai O_2 mendekati nilai tegangan 0.1 Volt menunjukkan campuran bahan bakar miskin (lean/poor fuel mixtures) dan nilai tegangan mendekati 1.0 Volt menunjukkan campuran bahan bakar kaya (rich fuel mixtures).

Ketika sensor ini sedang mengatur campuran bahan bakar dan udara nilainya akan berubah dengan cepat antara 0.2 V – 0.9 V.

Pada kondisi tertentu seperti pada pembukaan throttle penuh atau pada suhu mesin dingin ECM akan mengabaikan nilai O_2 dan akan menggunakan tabel pencampuran yang telah terprogram pada ECM.

Satuan: Tegangan dalam Volt.

SHORT TERM FUEL TRIM (ST)

Merupakan faktor koreksi perhitungan yang dilakukan ECM. Target nilai yang diinginkan adalah 1.0 (pada campuran stoikiometri), tetapi nilai ini bukan nilai yang tetap.

Nilai ini adalah nilai kalkulasi rata-rata pengeluaran O2.

Bertambahnya nilai ST berarti campuran kaya dan berkurangnya nilai ST berarti campuran miskin.

BANK ANGLE SENSOR (BAS)

BAS adalah sensor untuk mendeteksi derajat kemiringan. Sensor ini akan memerintahkan ECM untuk mematikan mesin apabila derajat kemiringan sepeda motor terlalu besar.

Nilai standar BAS adalah 3.978 Volt.

Satuan: Tegangan dalam Volt.

IDLE AIR CONTROL VALVE (IAC)

Sensor ini berfungsi untuk mengatur udara yang masuk ke throttle body dan mengatur besarnya putaran stasioner mesin.

Satuan: Gallon per Second (g/S)

KIPAS PENDINGIN RADIATOR (FAN)

Membantu pendinginan radiator.

EVAPORATOR PC SOLENOID (EVA)

Alat ini berfungsi untuk mengatur pembukaan saluran Evaporator, agar penguapan yang terjadi pada tangki ditangkap oleh satu sistim yang kemudian dimasukkan ke dalam mesin agar tidak mencemari udara.

PAIR CONTROL SOLENOID VALVE (PR)

Alat ini berfungsi untuk mengatur pembukaan SASS (Secondary Air Supply System), untuk menambah udara yang baru pada saluran pembuangan sehingga terjadi reaksi antara gas sisa, panas dan O2 untuk menghasilkan emisi yang baik.

MENU-MENU PADA HIDS

Melakukan reset DTC (Gambar 20).

Urutan menu kondisi sepeda motor (Gambar 21).

KETERANGAN DTC DAN PENANGANAN

MIL	Keterangan Masalah
01-1	Sensor MAP rusak / terjadi hubungan singkat sinyal MAP
	dengan Ground
01-2	Sensor MAP rusak / terjadi hubungan singkat sinyal MAP
	dengan VCC / hubungan terbuka sinyal MAP
07-1	Sensor EOT rusak / terjadi hubungan singkat sinyal EOT
	dengan Ground
07-2	Sensor EOT rusak / terjadi hubungan singkat sinyal EOT
	dengan VCC / hubungan terbuka sinyal EOT
08-1	Sensor TP rusak / terjadi hubungan singkat sinyal TP
	dengan Ground / hubungan terbuka sinyal TP
08-2	Sensor TP rusak / terjadi hubungan singkat sinyal EOT
	dengan VCC
09-1	Sensor IAT rusak / terjadi hubungan singkat sinyal IAT
	dengan Ground
09-2	Sensor IAT rusak / terjadi hubungan singkat sinyal IAT
	dengan VCC / hubungan terbuka sinyal IAT
12-1	Injektor No 1. Tidak bekerja
21-1	O ₂
	Sensor O2 tidak normal
29-1	IACV
	Sensor IACV tidak normal
54-1	Sensor BAS rusak / terjadi hubungan singkat sinyal BAS
	dengan Ground
54- <mark>2</mark>	Sensor BAS rusak / terjadi hubungan singkat sinyal BAS
	dengan VCC / hubungan terbuka sinyal BAS

SINYAL-SINYAL SUPRA X

Nama	Satuan	Keterangan	
PUT	RPM	Putaran Mesin	
EOT	°C	Sensor panas oli mesin	
IAT	°C	Sensor panas udara masuk	
MAP	kPA	Sensor tekanan udara masuk	
TP	0	Posisi tarikan gas	
INJ	mS	Lamanya bukaan Injektor	
ADV	0	Sudut percepatan pengapian	
BAT	Volt	Tegangan Aki	
BAS	Volt	Sensor kemiringan sepeda motor	
EOT	Volt	Tegangan EOT	
IAT	Volt	Tegangan IAT	
MAP	Volt	Tegangan MAP	
TP	Volt	Tegangan TP	
BAS		Status sensor kemiringan	
POM		Status pompa bahan bakar	
GG		Status Gigi Transmisi	
SCS		Status SCS	

NILAI STANDAR PADA SUPRA X PADA SAAT STASIONER

Nama	Satuan	Min	Max
Putaran Mesin	RPM	1300	1500
Tegangan Aki	Volt	12	15
Kondisi Pompa	ON		
Injector	mS	1.200	3.800

LOKASI DTC SUPRA X - 125

DAFTAR KESALAHAN-KESALAHAN SUPRA X

MIL	Masalah	Keterangan
01-1	MAP	Tegangan MAP rendah
01-2	MAP	Tegangan MAP tinggi
07-1	EOT	Tegangan EOT rendah
07-2	EOT	Tegangan EOT tinggi
08-1	TP	Tegangan TP rendah
08-2	TP	Tegangan TP tinggi
09-1	IAT	Tegangan IAT rendah
09-2	IAT	Tegangan IAT tinggi
12-1	INJ	Injektor tidak bekerja
33-1	EEPROM	EEPROM rusak
54-1	BAS	Tegangan BAS rendah
54-2	BAS	Tegangan BAS tinggi

SINYAL-SINYAL REVO AT-110

Nama	Satuan	Keterangan
PUT	RPM	Putaran Mesin
EOT	°C	Sensor panas oli mesin
IAC	g/s	Katup pengatur udara masuk
IAT	°C	Sensor panas udara masuk
MAP	kPA	Sensor tekanan udara masuk
TP	0	Posisi tarikan gas
INJ	mS	Lamanya bukaan Injektor
ADV	0	Sudut percepatan pengapian
BAT	Volt	Tegangan Aki
EOT	Volt	Tegangan EOT
IAT	Volt	Tegangan IAT
MAP	Volt	Tegangan MAP
TP	Volt	Tegangan TP
STF		Pengatur pencampuran bahan bakar
02	Volt	Tegangan O2
PUL	STEP	
SS		Status standar samping
SCS		Status SCS

NILAI STANDAR PADA REVO AT PADA SAAT STASIONER

Nama	Satuan	Min	Max
Putaran Mesin	RPM	1300	1500
MAP	kPA	20	110
TP	0	-2 °	2°
02	Volt	0.000	1.400
Tegangan Aki	Volt	12.0	15.0
Kondisi Pompa	ON		
Injector	mS	2.100	4.000
Sudut pengapian	0	8.0°	12.0°

LOKASI DTC REVO AT-110

DAFTAR KESALAHAN-KESALAHAN REVO AT

MIL	Masalah	Keterangan
01-1	MAP	Tegangan MAP rendah
01-2	MAP	Tegangan MAP tinggi
07-1	EOT	Tegangan EOT rendah
07-2	EOT	Tegangan EOT tinggi
08-1	TP	Tegangan TP rendah
08-2	TP	Tegangan TP tinggi
09-1	IAT	Tegangan IAT rendah
09-2	IAT	Tegangan IAT tinggi
12-1	INJ	Injektor tidak bekerja
21-1	02	Sensor O2 tidak normal
29-1	IACV	Sensor IACV tidak normal

SINYAL-SINYAL PCX

Nama	Satuan	Keterangan
PUT	RPM	Putaran Mesin
ECT	°C	
	_	Sensor panas pendingin mesin
IAC	g/s	Katup pengatur udara masuk
IAT	°C	Sensor panas udara masuk
MAP	kPA	Sensor tekanan udara masuk
TP	0	Posisi tarikan gas
INJ	mS	Lamanya bukaan Injektor
ADV	0	Sudut percepatan pengapian
VSS	kM/H	Sensor kecepatan
BAT	Volt	Tegangan Aki
ECT	Volt	Tegangan ECT
IAT	Volt	Tegangan IAT
MAP	Volt	Tegangan MAP
TP	Volt	Tegangan TP
02	Volt	Tegangan O2
STF		Pengatur pencampuran bahan bakar
PUL	STEP	
SS		Status standar samping
SW		Status starter switch
SCS		Status SCS

NILAI STANDAR PADA PCX SAAT STASIONER

Nama	Satuan	Min	Max
Putaran Mesin	RPM	1600	1800
ECT	°C	80	100
MAP	kPA	20	110
TP	0	-2°	2°
O ₂	Volt	0.000	1.400
Tegangan Aki	Volt	12.0	15.0
Kondisi Pompa	ON		
Injector	mS	1.700	3.200
Sudut pengapian	0	12°	16°

LOKASI DTC PCX-125

DAFTAR KESALAHAN-KESALAHAN PCX

MIL	Masalah	Keterangan	
01-1	MAP	Tegangan MAP rendah	
01-2	MAP	Tegangan MAP tinggi	
07-1	EOT	Tegangan EOT rendah	
07-2	EOT	Tegangan EOT tinggi	
08-1	TP	Tegangan TP rendah	
08-2	TP	Tegangan TP tinggi	
09-1	IAT	Tegangan IAT rendah	
09-2	IAT	Tegangan IAT tinggi	
11-1	VS	Sensor kecepatan tidak normal	
12-1	INJ	Injektor tidak bekerja	
21-1	02	Sensor O2 tidak normal	
29-1	IACV	Sensor IACV tidak normal	
52-1	СКР	Sensor CKP tidak bekerja	

SINYAL-SINYAL CBR-150

Nama	Satuan	Keterangan	
PUT	RPM	Putaran Mesin	
ECT	°C	Sensor panas pendingin mesin	
IAC	g/s	Katup pengatur udara masuk	
IAT	°C	Sensor panas udara masuk	
MAP	kPA	Sensor tekanan udara masuk	
TP	0	Posisi tarikan gas	
INJ	mS	Lamanya bukaan Injektor	
ADV	0	Sudut percepatan pengapian	
BAT	Volt	Tegangan aki	
ECT	Volt	Tegangan ECT	
IAT	Volt	Tegangan IAT	
MAP	Volt	Tegangan MAP	
TP	Volt	Tegangan TP	
BAS	Volt	Tegangan Sensor Kemiringan	
02	Volt	Tegangan O2	
STF		Pengatur pencampuran bahan bakar	
PUL	STEP		
POM		Status Pompa bahan bakar	
FAN		Status Kipas Pendingin	
BAS	_	Status Sensor Kemiringan	
GG		Status Gigi Transmisi	
EVA		Status Evaporator	
SCS		Status SCS	

NILAI STANDAR PADA CBR-150 SAAT STASIONER

Nama	Satuan	Min	Max
Putaran Mesin	RPM	1.500	1.700
ECT	°C	60°	130°
MAP	kPA	20	110
TP	0	-2°	2°
O ₂	Volt	0.000	1.400
Tegangan Aki	Volt	12.0	15.0
Kondisi Pompa	ON		
Injector	mS	1.200	2.800
Sudut pengapian	0	7°	11°

LOKASI DTC CBR-150

DAFTAR KESALAHAN-KESALAHAN CBR-150

MIL	Masalah	Keterangan	
01-1	MAP	Tegangan MAP rendah	
01-2	MAP	Tegangan MAP tinggi	
07-1	EOT	Tegangan EOT rendah	
07-2	EOT	Tegangan EOT tinggi	
08-1	TP	Tegangan TP rendah	
08-2	TP	Tegangan TP tinggi	
09-1	IAT	Tegangan IAT rendah	
09-2	IAT	Tegangan IAT tinggi	
12-1	INJ	Injektor tidak bekerja	
21-1	02	Sensor O2 tidak normal	
29-1	IACV	Sensor IACV tidak normal	
54-1	BAS	Tegangan BAS rendah	
54-2	BAS	Tegangan BAS tinggi	

SINYAL-SINYAL CBR-250

Nama	Satuan	Keterangan
PUT	RPM	Putaran Mesin
ECT	°C	Sensor panas pendingin mesin
IAC	g/s	Katup pengatur udara masuk
IAT	°C	Sensor panas udara masuk
MAP	kPA	Sensor tekanan udara masuk
TP	0	Posisi tarikan gas
INJ	mS	Lamanya bukaan Injektor
ADV	0	Sudut percepatan pengapian
BAT	Volt	Tegangan aki
ECT	Volt	Tegangan ECT
IAT	Volt	Tegangan IAT
MAP	Volt	Tegangan MAP
TP	Volt	Tegangan TP
BAS	Volt	Tegangan Sensor Kemiringan
02	Volt	Tegangan O2
STF		Pengatur pencampuran bahan bakar
PUL	STEP	
POM		Status Pompa bahan bakar
FAN		Status Kipas Pendingin
BAS		Status Sensor Kemiringan
GG		Status Gigi Transmisi
PR		Status Pair Control Valve
EVA		Status Evaporator
SCS		Status SCS

NILAI STANDAR PADA CBR-250 SAAT STASIONER

Nama	Satuan	Min	Max
Putaran Mesin	RPM	1.300	1.500
ECT	°C	80°	120°
MAP	kPA	20	110
TP	0	-2°	2°
O ₂	Volt	0.000	1.400
Tegangan Aki	Volt	12	15
Kondisi Pompa	ON		
PR	OFF		
Injector	mS	1.700	3.200
Sudut pengapian	0	12°	16°

LOKASI DTC CBR-250

DAFTAR KESALAHAN-KESALAHAN CBR-250

MIL	Masalah	Keterangan	
01-1	MAP	Tegangan MAP rendah	
01-2	MAP	Tegangan MAP tinggi	
07-1	EOT	Tegangan EOT rendah	
07-2	EOT	Tegangan EOT tinggi	
08-1	TP	Tegangan TP rendah	
08-2	TP	Tegangan TP tinggi	
09-1	IAT	Tegangan IAT rendah	
09-2	IAT	Tegangan IAT tinggi	
12-1	INJ	Injektor tidak bekerja	
21-1	02	Sensor O2 tidak normal	
29-1	IACV	Sensor IACV tidak normal	
54-1	BAS	Tegangan BAS rendah	
54-2	BAS	Tegangan BAS tinggi	

SINYAL-SINYAL SUPRA X AFS-125

Nama	Satuan	Keterangan
PUT	RPM	Putaran Mesin
EOT	°C	Sensor panas oli
TP	0	Posisi tarikan gas
INJ	mS	Lamanya bukaan Injektor
ADV	0	Sudut percepatan pengapian
BAT	Volt	Tegangan aki
EOT	Volt	Tegangan sensor panas oli
TP	Volt	Tegangan TP
02	Volt	Tegangan O2
STF		Pengatur pencampuran bahan bakar
POM	ON-OFF	Status Pompa bahan bakar
GG	ON-OFF	Status Gigi Transmisi
MOD	1-4	Mode setting altitude
ALT		Nilai koreksi ketinggian
SCS	ON-OFF	Status SCS
MIL	ON-OFF	Menunjukkan kejadian DTC

NILAI STANDAR PADA SUPRA X AFS-125 SAAT STASIONER

Nama	Satuan	Min	Max
Putaran Mesin	RPM	1.300	1.500
EOT	°C	75°	130°
TP	0	-2°	2°
02	Volt	0.000	1.400
Tegangan Aki	Volt	12	15
Kondisi Pompa	ON		
Injector	mS	1.700	4.000
Sudut pengapian	0	10°	14°

LOKASI DTC SUPRA X AFS-125

DAFTAR KESALAHAN-KESALAHAN SUPRA X AFS-125

MIL	Masalah	Keterangan	
07-1	EOT	Tegangan EOT rendah	
07-2	EOT	Tegangan EOT tinggi	
08-1	TP	Tegangan TP rendah	
08-2	TP	Tegangan TP tinggi	
12-1	INJ	Injektor tidak bekerja	
21-1	O ₂	Sensor O2 tidak normal	
33-1	EEPROM	EEPROM Rusak	

SINYAL-SINYAL SPACY - FI

	·
Satuan	Keterangan
RPM	Putaran Mesin
°C	Sensor panas oli
0	Posisi tarikan gas
mS	Lamanya bukaan Injektor
0	Sudut percepatan pengapian
Volt	Tegangan aki
Volt	Tegangan sensor panas oli
Volt	Tegangan TP
Volt	Tegangan O2
	Pengatur pencampuran bahan bakar
ON-OFF	Status Pompa bahan bakar
ON-OFF	Kondisi Standard Samping
ON-OFF	Kondisi Starter Switch
ON-OFF	Kondisi dynamo starter
1-4	Mode setting altitude
	Nilai koreksi ketinggian
ON-OFF	Kondisi Fast Idle Selenoid
ON-OFF	Status SCS
ON-OFF	Menunjukkan kejadian DTC
	RPM °C ° C ° mS ° Volt Volt Volt Volt ON-OFF ON-OFF ON-OFF 1-4 ON-OFF

NILAI STANDAR PADA SPACY-FI SAAT STASIONER

Nama	Satuan	Min	Max
Putaran Mesin	RPM	1.600	1.600
EOT	°C	70°	110°
TP	0	-2°	2°
02	Volt	0.000	1.400
Tegangan Aki	Volt	12	15
Kondisi Pompa	ON		
Injector	mS	2.000	4.100
Sudut pengapian	0	5°	9°

LOKASI DTC SPACY FI

DAFTAR KESALAHAN-KESALAHAN SPACY-FI

MIL	Masalah	Keterangan	
07-1	EOT	Tegangan EOT rendah	
07-2	EOT	Tegangan EOT tinggi	
08-1	TP	Tegangan TP rendah	
08-2	TP	Tegangan TP tinggi	
12-1	INJ	Injektor tidak bekerja	
21-1	02	Sensor O2 tidak normal	
33-1	EEPROM	EEPROM Rusak	

SINYAL-SINYAL VARIO ANC-125

	,
Satuan	Keterangan
RPM	Putaran Mesin
°C	Sensor panas pendingin mesin
0	Posisi tarikan gas
mS	Lamanya bukaan Injektor
0	Sudut percepatan pengapian
Volt	Tegangan aki
Volt	Tegangan sensor panas pendingin mesin
Volt	Tegangan TP
Volt	Tegangan O2
	Pengatur pencampuran bahan bakar
ON-OFF	Status Pompa bahan bakar
ON-OFF	Kondisi Standard Samping
ON-OFF	Kondisi Starter Switch
ON-OFF	Kondisi dynamo starter
	Mode setting altitude
	Nilai koreksi ketinggian
ON-OFF	Kondisi Fast Idle Selenoid
ON-OFF	Status SCS
ON-OFF	Menunjukkan kejadian DTC
	RPM °C ° C ° mS ° Volt Volt Volt Volt ON-OFF ON-OFF ON-OFF ON-OFF

NILAI STANDAR PADA VARIO ANC-125SAAT STASIONER

Nama	Satuan	Min	Max
Putaran Mesin	RPM	1.600	1.600
ECT	°C	70°	110°
TP	0	-2°	2°
O ₂	Volt	0.000	1.400
Tegangan Aki	Volt	12	15
Kondisi Pompa	ON		
Injector	mS	1.500	3.100
Sudut pengapian	0	10°	14°

LOKASI DTC VARIO ANC-125

DAFTAR KESALAHAN-KESALAHAN VARIO ANC-125

MIL	Masalah	Keterangan
07-1	ECT	Tegangan ECT rendah
07-2	ECT	Tegangan ECT tinggi
08-1	TP	Tegangan TP rendah
08-2	TP	Tegangan TP tinggi
12-1	INJ	Injektor tidak bekerja
21-1	02	Sensor O2 tidak normal
33-1	EEPROM	EEPROM Rusak
52-1	СКР	Sensor CKP tidak bekerja