Web Algorithms

Eng. Fabio Persia, PhD

Overview

Approximation Algorithms

- Computational complexity
- Optimization problems
- Approximation
- Algorithmic techniques:
 - greedy
 - local search
 - linear programming
 - rounding
 - primal-dual
 - dynamic programming
- Approximation schemes
- Alternative approaches

Web Search

- Social networks and bibliometry
- Centrality measures
- Spectral analysis and prestige index
- Link Analysis
- Web structure

Sponsored search

- Search and advertising
- Matching markets
- Auctions
- VCG mechanism
- GSP mechanism

References (Approximation)

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi:

Complexity and Approximation

Springer 1999, ISBN: 3-540-65431-3

Vijay V. Vazirani:

Approximation algorithms

Springer 2001, ISBN: 3-540-65367-8

References (Web Search)

David Easley and Jon Kleinberg:

Networks, Crowds, and Markets

Cambridge University Press, 2010, ISBN: 9780521195331

Jure Leskovec, Anand Rajaraman and Jeff Ullman:

Mining of Massive Datasets (free version online)

Stanford University, 2011, ISBN: 9781107015357

Soumen Chakrabarti:

Mining the Web – Discovering Knowledge from Hypertex Data

Morgan Kaufmann, 2003, ISBN: 9781558607545

Computational Complexity

Problems in Computer Science

A problem π is a relation:

$$\pi \subseteq I_{\pi} \times S_{\pi}$$

where

 I_{π} = set of the input instances of the problem

 S_{π} = set of the solutions of the problem

Problem types

decision:

- They check if a given property holds for a certain input
- S_{π} ={true,false} or simply S_{π} ={0,1} and the relation $\pi \subseteq I_{\pi} \times S_{\pi}$ corresponds to a function $f:I_{\pi} \to \{0,1\}$
- Ex: satisfiablity, test of graph connectivity, etc...

search:

- Given an instance $x \in I_{\pi}$ they ask for the determination of a solution $y \in S_{\pi}$ such that the pair $(x,y) \in \pi$ belongs to the relation defining the problem
- Ex: satisfiablity, clique and vertex cover, in which we ask in output a satisfying truth assignment, a clique and a vertex cover, respectively, instead of simply yes or not

optimization:

- Given an instance $x \in I_{\pi}$, they ask for the determination of a solution $y \in S_{\pi}$ optimizing a given measure of cost function;
- Es: min spanning tree, max SAT, max clique, min vertex cover, min TSP, etc...

Complexity of algorithms and problems

Expressed as a function of the input size (denoted as $|x| \forall x \in I_{\pi}$).

Size of instance x

- Amount of memory necessary to store x in a computer
- Length |x| of the string encoding x in a particular natural code $c:I_{\pi} \to \Sigma$, where Σ is the alphabet of code c

Natural code:

- concise: strings encoding instances must not be redundant or unnecessarily lengthened
- numbers expressed in base ≥ 2

Example:

Instance: Graph G:

Code for G:

$$\sum = \{ \{,\},,,0,1,2,3,4,5,6,7,8,9 \}$$
 (Symbols)
$$c(G) = \{ 1,2,3,4,\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\},2,1,3,7,4 \}$$

$$|G|_{c} = 49$$

 Def: Let t_A(x) be the running time of algorithm A for input x; then the worst case running time of A is:

$$T_{A}(n)=\max\{t_{A}(x)\mid |x|\leq n\}\ (\forall n>0)$$

- Def: Algorithm A has (time) complexity:
 - O(g(n)) if $T_A(n) = O(g(n))$ (i.e. $\lim_{n \to \infty} \frac{T_A(n)}{g(n)} \le c$ for a constant c > 0)
 - $\Omega(g(n))$ if $T_A(n) = \Omega(g(n))$ (i.e. $\lim_{n \to \infty} \frac{T_A(n)}{g(n)} \ge c$ for a constant c > 0)
 - $\Theta(g(n))$ if $T_A(n) = \Theta(g(n))$ (i.e $T_A(n) = \Omega(g(n))$ and T(n) = O(g(n)))

- Def: A problem has complexity:
 - O(g(n)) if **there exists** an algorithm A solving it having complexity O(g(n));
 - $\Omega(g(n))$ if **every algorithm** A solving it has complexity $\Omega(g(n))$;
 - $\Theta(g(n))$ if it has complexity O(g(n)) and $\Omega(g(n))$.

Decision problems and complexity classes

- Decision problems are usually described by an input instance or simply INPUT and a QUESTION about the input.
- Examples:
 - Satisfiability:
 - INPUT: CNF formula defined on a set of variables V.
 - QUESTION: \exists a truth assignment $\tau:V \rightarrow \{0,1\}$ satisfying the formula?

A possible instance of the SATISFIABILITY problem

Figure 1.2 A nondeterministic algorithm for SATISFIABILITY with input $v_1 \lor v_2 \lor \bar{v}_3, \bar{v}_1 \lor \bar{v}_2 \lor v_3$

Clique:

- INPUT: non oriented graph G=(V,E) of n nodes and an integer k>0.
- QUESTION: ∃ in G a clique of at least k nodes, that is a subset U⊆V s.t. |U|≥k and {u,v}∈E ∀u,v∈U?

Vertex cover:

- INPUT: non oriented graph G=(V,E) of n nodes and an integer k>0.
- QUESTION: ∃ in G a vertex cover of at most k nodes, that is a subset U⊆V s.t. |U|≤k and u∈U or v∈U ∀{u,v} ∈E?

A possible instance of the CLIQUE problem

The graph shown has one maximum clique, the triangle {1,2,5}, and four more maximal cliques, the pairs {2,3}, {3,4}, {4,5}, and {4,6}.

A possible instance of the VERTEX COVER

In decision problems $I_{\pi} = Y_{\pi} \cup N_{\pi}$

where

 Y_{π} = Set of positive instances, that is with solution 1,

 N_{π} = Set of negative instances, that is with solution 0.

- Def: An algorithm A solves π if and only if ∀ input x∈I_π, A answers 1 if and only if x∈Y_π.
- Def: TIME(g(n)) = class of decision problems with complexity O(g(n)).

Non-deterministic algorithms for decision problems

They consist of 2 phases:

- Phase 1: non-deterministically generate a "Certificate" y;
- Phase 2: starting from the input X and the certificate Y, check if X is a positive instance.

Def: A non-deterministic algorithm A solves π if it stops for every possible certificate y and there exists a certificate y for which A answers 1 (TRUE) if and only if $x \in Y_{\pi}$.

Complexity:

- cost phase 2;
- expressed as a function of |x|.

$$NTIME(g(n))$$
 = class of decision problems with non-deterministice complexity $O(g(n))$

Example: non-deterministic algorithm for Clique

- Phase 1: Given the input graph G=(V,E), non-deterministically generate a subset U⊆V of k nodes.
- Phase 2: Check if U is a clique, that is if $\{u,v\} \in E \ \forall u,v \in U$, and in such a case answer 1, otherwise answer 0.

- Clearly the algorithm solves Clique, as it stops for any possible subset \underline{U} and there exists a subset \underline{U} for which it answers 1 if and only if there exists a clique of k nodes in G, that is if and only if $(G,k) \in Y_{Clique}$.
- Complexity: $O(n^2)$, since $|U| \le |V| = n$.

Remarks

- 1. A deterministic algorithm is less powerful than a non-deterministic one as it cannot execute Phase 1.
- If there is a deterministic algorithm A solving π , then there exists also a non-deterministic algorithm A' solving π with the same complexity as follows:
 - it executes Phase 1 and coincides with A in Phase 2, ignoring certificate y.

Corollary remark 2:

 $TIME(g(n)) \subseteq NTIME(g(n))$

Class of problems deterministically solvable in time O(g(n))

Class of problems non-deterministically solvable in time O(g(n))

- A problem is tractable if it can be solved efficiently (deterministically).
- Are considered tractable or efficiently solvable all the problems having complexity bounded by a polynomial of the input size.

TRACTABILITY = EFFICIENCY = POLINOMIALITY

Reason 1:

1. Growth of polynomial functions with respect to exponential ones.

Example: if $\pi_{\scriptscriptstyle 1}$ has complexity n and $\pi_{\scriptscriptstyle 2}$ has complexity 2^n

Running time of a function of the input size			
Size n	Time π ₁	Time π_2	
1	1	2	
2	2	4	
3	3	8	
4	4	16	
5	5	32	
•••			
10	10	1024	
100	100	2 ¹⁰⁰	

Size of instances solvable within a certain time as a function of the computer performance			
Speed	Size π ₁	Size π_2	
2	2	1	
4	4	2	
8	8	3	
***	•••		
256	256	8	
***	•••		
1024	1024	10	
2048	2048	11	
4096	4096	12	

Reason 2:

2. Robustness of the concept of polynomial time solvability

The composition of polynomials is a polynomial and thus the polynomial time solvability of a problem is independent of:

- the used natural code, as all the natural codes are polynomially related
- the adopted computational model if reasonable (that is constructible in practice or in better words able to perform a constant bounded work per step), as such models are polynomially related, that is they can simulate each other in polynomial time

Remark: the non-deterministic Turing machine is not a reasonable computational model, as the amount of work done at each step (each level of the tree of the computations) grows exponentially

Polynomially related codes

- Def: Two codes c_1 and c_2 for a problem π are polynomially related if there exist two polynomials p_1 and p_2 s.t. $\forall x \in I_{\pi}$:
 - 1. $|x|_{c1} \le p_1(|x|_{c2})$
 - $|x|_{c2} \le p_2(|x|_{c1})$
- If the complexity with respect to c_1 is $O(q_1(|x|_{c_1}))$ for a given polynomial q_1 , then with respect to c_2 it is $O(q_1(p_1(|x|_{c_2}))) = O(q_2(|x|_{c_2}))$, where q_2 is the polynomial such that $\forall \lambda \ q_2(\lambda) = q_1(p_1(\lambda))$.
- All the natural codes are polynomially related, that is polynomial solvability does not depend on the particular used code.
- Input size: any quantity polynomially related to a natural code (and thus to any
 possible natural code, given that all natural codes are polynomially related and
 the composition of polynomials is a polynomial).

Example

- Assume that for any graph G of n nodes
 - $|G|_{c1} = 10n^2$
 - $|G|_{c2} = n^3$

If
$$p_1(\lambda) = 10\lambda$$
 and $p_2(\lambda) = \lambda^2$ we have that

$$|G|_{c1} = 10n^2 \le 10n^3 = p_1(|G|_{c2})$$

 $|G|_{c2} = n^3 \le 100n^4 = p_2(|G|_{c1})$

Thus the two codes are polynomially related.

Rule of thumb: two quantities are polynomially related if they are polynomials ²⁶ on the same variables

Example: non natural encoding

Primality

- •INPUT: integer *n>0*.
- •QUESTION: is *n* a prime number?

scan all the numbers from 2 to n-1 and answer 1 if none of them divides n. ALGORITHM (trivial):

Complexity O(n): polynomial?

- •Code c_1 (natural): n expressed in base 2, i.e. $|n|_{c1} = log_2 n$ •Code c_2 (non natural): n expressed in base 1, i.e. $|n|_{c2} = n$

Thus the complexity of the algorithm is:

- $O(2^{|n|_{c_1}})$ with respect to c_1 , that is exponential
- $O(|n|_{c^2})$ with respect to c_2 , that is polynomial!!!

Input size (polynomially related to natural codes): $|n|_{c1} = \log_2 n$

Polynomially simulable computational models

- Def: Two computational models M_1 and M_2 are mutually polynomially simulable if there exist two polynomials p_1 and p_2 such that
 - 1. Every algorithm A for M_1 with complexity $T_A(n)$ can be simulated on M_2 in time $p_1(T_A(n))$
 - 2. Every algorithm A for M_2 with complexity $T_A(n)$ can be simulated on M_1 in time $p_2(T_A(n))$

Thus if A is polynomial in M_1 then it is polynomial also in M_2 and vice versa.

All the reasonable computational models are mutually polynomially simulable, that is polynomial solvability does not depend on the particular used model.

Classes P and NP

 P = class of all problems solvable deterministically in polynomial time, that is:

$$P = \bigvee_{k=0}^{\infty} IME(n^k)$$

 NP = class of all problems solvable non-deterministically in polynomial time, that is

$$NP = \bigvee_{k=0}^{\infty} TIME(n^k)$$

P=NP?

No one could prove it!

NP-Complete Problems

 NP-Complete problems: the most difficult problems of NP and such that if P≠NP they do not belong to P; vice versa, if one of them belongs to P then P=NP.

 So far no one succeeded to find a (deterministic) polynomial time algorithm for any NP-Complete problem

