Contents

1 σ -algebras and Measures

2

1 σ -algebras and Measures

We begin by discussing the concept of a measure, or how to 'measure' space on the real line, and in \mathbb{R}^n . Then we extend the concept, to allow measuring of non-Euclidean space.

Definition 1.1 (Area in \mathbb{R}^2)

Consider a set function $\lambda_2 : \mathcal{P}(\mathbb{R}^2) \to [0, \infty]$ satisfying:

- 1. $\lambda_2(\emptyset) = 0$
- 2. $\lambda_2(\bigcup_{i \in I} A_i) = \sum_{i \in I} \lambda_2(A_i)$ for disjoint A_i and countable I.
- 3. $\lambda_2((a_1,b_1)\times(a_2,b_2))=(b_1-a_1)(b_2-a_2)$
- 4. Measure is invariant of translation and rotation.

Definition 1.2 (σ -algebra in \mathbb{R}^2)

A σ -algebra is a system \mathcal{E} of subsets of \mathbb{R}^2 satisfying:

- 1. $\mathbb{R}^2 \in \mathcal{E}$
- 2. If $A \in \mathcal{E}$, then $A^c \in \mathcal{E}$.
- 3. if $\{A_n\}_{n\in\mathbb{N}}$ is a sequence of sets in from \mathcal{E} , then $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{E}$

The common choice for a σ -algebra in \mathbb{R}^2 is the Borel Algebra $\mathcal{B}(\mathbb{R}^2)$, which is the smallest σ -algebra containing all open rectangles $(\alpha_1, b_1) \times (\alpha_2, b_2) \subseteq \mathbb{R}^2$.

Definition 1.3 (σ -algebra)

A σ -algebra in a set X is a nonempty collenction \mathcal{E} of subsets of X which contains X, and is closed under complement and countable union; if $A_1, A_2, \dots \in \mathcal{E}$; then

- 1. $X, \emptyset \in \mathcal{E}$
- 2. $A^c \in \mathcal{E}$
- 3. $\bigcup_{i=1}^{\infty} A_i \in \mathcal{E}$

Elements of $\mathcal E$ are called measureable sets, or just measurable. X is a measurable space. We may consider only finite unions, in which case we call $\mathcal E$ just an Algebra (This is equivalent to only requiring $A \cup B \in \mathcal E$ when $A, B \in \mathcal E$).

Definition 1.4 (Measure)

Let \mathcal{E} be a σ -algebra in a set X. A measure on \mathcal{E} is a set function $\mu : \mathcal{E} \to [0, \infty]$, satisfying the following:

- 1. $\mu(\emptyset) = 0$
- 2. $\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}\mu(A_{n})$

A measure satisfying $\mu(X) = 1$ may be called a probability measure.

Proposition 1.1

Let \mathcal{E} be an algebra on X. Then:

- 1. $\emptyset \in \mathcal{E}$.
- 2. If $A, B \in \mathcal{E}$, then $A \cup B \in \mathcal{E}$.
- 3. If $A, B \in \mathcal{E}$ then $A \setminus B \in \mathcal{E}$.
- 4. If \mathcal{E} is a σ -algebra, and $A_1, A_2, \dots \in \mathcal{E}$, then $\bigcap_{i=1}^{\infty} A_n \in \mathcal{E}$.

Example 1.1

Below are some examples of σ -algebras, for some set X

1.
$$\mathcal{E}_{min} = \{\emptyset, X\}$$

2.
$$\mathcal{E}_{max} = \mathcal{P}(X)$$

3.
$$\mathcal{E} = \{\emptyset, A, A^c, X\}$$

4. If
$$A_1, \ldots, A_n$$
 are disjoint but cover X , $\mathcal{E} = \left\{ \bigcup_{j \in I} A_j : I \subseteq \{1, \ldots, n\} \right\}$

Theorem 1.2 (Generated σ -algebras)

Let $\{\mathcal{E}_i\}_{i\in I}$ be a family of σ -algebras in X. Then the system:

$$\bigcap_{i\in I}A_i=\{A\subseteq X:A\in\mathcal{E}_i\forall i\in I\}.$$

Is a σ -algebra in X. In fact this is the smallest σ -algebra in X. Members of this σ -algebra are sometimes called Borel sets.