Übungsblatt 6

Topologie

Viktor Kleen viktor.kleen@uni-due.de Sabrina Pauli sabrinp@math.uio.no

Aufgabe 6.1. Seien X und Y topologische Räume mit Punkten $x \in X$ und $y \in Y$. Zeigen Sie, dass die Projektionen $\pi_X \colon X \times Y \longrightarrow X$ bzw. $\pi_Y \colon X \times Y \longrightarrow Y$ einen Isomorphismus

$$\pi_1(X \times Y, (x, y)) \longrightarrow \pi_1(X, x) \times \pi_1(Y, y), \quad [\gamma] \longmapsto ([\pi_X \circ \gamma], [\pi_Y \circ \gamma])$$

induzieren.

AUFGABE 6.2. Sei $x \in \mathbb{R}^n$. Finden Sie eine Homotopieäquivalenz $\mathbb{R}^n \setminus \{x\} \simeq S^{n-1}$ und folgern Sie, dass es keinen Homöomorphismus $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$ geben kann.

Aufgabe 6.3. Sei X ein topologischer Raum, $x \in X$ und $\gamma \colon S^1 \longrightarrow X$ eine Schleife bei x. Zeigen Sie, dass genau dann $[\gamma] = e$ in $\pi_1(X, x)$ gilt, wenn es eine stetige Abbildung $f \colon D^2 \longrightarrow X$ gibt mit $f|_{S^1} = \gamma$:

$$S^1 \xrightarrow{\gamma} X$$

$$\downarrow \qquad \qquad f$$

$$D^2$$

Hier ist D^2 die abgeschlossene Kreisscheibe $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$ mit Rand $S^1 = \{x \in \mathbb{R}^2 : ||x|| = 1\}$.

AUFGABE 6.4. Sei G eine topologische Gruppe. Wir wollen zeigen, dass dann $\pi_1(G,e)$ immer abelsch ist. Sei dafür M eine Menge mit zwei Operationen $\times: M \times M \longrightarrow M$ und $\circ: M \times M \longrightarrow M$, die jeweils ein Einheitselement e_{\times} bzw. e_{\circ} besitzen. Das heißt, es ist $e_{\times} \times x = x \times e_{\times} = x$ und $e_{\circ} \circ x = x \circ e_{\circ} = x$ für alle $x \in M$. Wir nehmen außerdem an, dass

$$(a \circ b) \times (c \circ d) = (a \times c) \circ (b \times d)$$

für alle $a, b, c, d \in M$ gilt. Zeigen Sie:

- (i) Es gilt $e_{\times} = e_{\circ}$.
- (ii) Es gilt $a \circ b = b \times a = b \circ a = a \times b$ für alle $a, b \in M$.
- (iii) Sei \times : $G \times G \longrightarrow G$ die Gruppenoperation auf G. Dann induziert \times eine binäre Operation \times : $\pi_1(G,e) \times \pi_1(G,e) \longrightarrow \pi_1(G,e)$ auf $\pi_1(G,e)$.
- (iv) Für die Operation × aus (iii) gilt $(\alpha \cdot \beta) \times (\gamma \cdot \delta) = (\alpha \times \gamma) \cdot (\beta \times \delta)$ für $\alpha, \beta, \gamma, \delta \in \pi_1(G, e)$. Hier bezeichnet · die übliche Gruppenstruktur auf der Fundamentalgruppe $\pi_1(G, e)$.
- (v) Die Gruppe $\pi_1(G, e)$ ist abelsch.