Dimostriamo proprieta` transitiva

- $d(n)=O(f(n)) e f(n)=O(g(n)) \rightarrow d(n)=O(g(n))$
- · Dim.
- 1. $d(n)=O(f(n)) \rightarrow esistono due costanti c'>0 ed n'_0 \ge 0 t.c. <math>d(n) \le c'f(n)$ per ogni $n \ge n'_0$
- 2. $f(n)=O(g(n)) \rightarrow esistono due costanti c">0 ed n"₀>0 t.c. <math>f(n)\le c"g(n)$ per ogni $n \ge n"_0$
- la 1 \rightarrow d(n) \leq c'f(n) per ogni n \geq n'₀ , la 2 \rightarrow f(n) \leq c"g(n) per ogni n \geq n"₀
- e di conseguenza, $d(n) \le c'f(n) \le c'(c''g(n)) = c'c''g(n)$ per ogni n maggiore di n'_0 e n''_0
- Ponendo c=c'c'' ed $n_0=max\{n'_0, n''_0\}$, possiamo quindi affermare che
- $d(n) \le cg(n)$ per ogni $n \ge n_0$ e cio` implica d(n) = O(g(n))

Dimostriamo l'additivita`

- d(n)=O(f(n)) ed $e(n)=O(g(n)) \rightarrow d(n)+e(n)=O(f(n)+g(n))$
- Dim.
- 1. $d(n)=O(f(n)) \rightarrow esistono due costanti c'>0 ed n'_0>0 t.c. <math>d(n)\le c'f(n)$ per ogni $n \ge n'_0$
- 2. $e(n)=O(g(n)) \rightarrow esistono due costanti c">0 ed <math>n"_0 \ge 0$ t.c. $e(n) \le c"g(n)$ per ogni $n \ge n"_0$
- la 1 \rightarrow d(n) \leq c'f(n) per ogni n \geq n'₀, la 2 \rightarrow e(n) \leq c"g(n) per ogni n \geq n"₀
- e di conseguenza, $d(n)+e(n)\le c'f(n)+c''g(n)\le \max\{c',c''\}f(n)+\max\{c',c''\}g(n)=\max\{c',c''\}$ (f(n)+g(n)) per ogni n maggiore di n'₀ e n''₀
- Ponendo c= $\max\{c',c''\}$ ed $n_0=\max\{n'_0,n''_0\}$, possiamo quindi affermare che
- $d(n)+e(n) \le c(f(n)+g(n))$ per ogni $n \ge n_0$ e cio` implica d(n)+e(n)=O(f(n)+g(n))

Bound asintotici per alcune funzioni di uso comune Logaritmi

• $O(\log_a n) = O(\log_b n)$, $\Omega(\log_a n) = \Omega(\log_b n)$, $\Theta(\log_a n) = \Theta(\log_b n)$, per ogni costante a, b > 0.

Dim. per O (per le altre notazioni asintotiche le dimostrazioni sono simili)

dalla proprieta` 1 dei logaritmi si ha, $\log_a n = \log_b n/(\log_b a)$ (*)

- siccome banalmente $log_b n = O(log_b n)$ allora, per la regola 1 della notazione asintotica (slide 39), si ha $log_b n/(log_b a) = O(log_b n)$
- siccome dalla (*) $\log_a n = \log_b n/(\log_b a)$ allora $\log_a n = O(\log_b n)$

analogamente possiamo dimostrare che $log_b n = O(log_a n)$

Bound asintotici per alcune funzioni di uso comune Logaritmi

• log n = O(n).

Dim. Dimostriamo per induzione che log₂ n ≤ n per ogni n≥1.

Base dell'induzione: Vero per n=1 in quanto $\log_2 1 = 0 < 1$

Passo Induttivo: Supponiamo log_2 n \leq n vera per n \geq 1.

Dimostriamo che è vera per n+1.

1. $\log_2(n+1) \le \log_2(2n) = \log_2 2 + \log_2 n = 1 + \log_2 n$

Per ipotesi induttiva log₂ n ≤ n e quindi

2. $1 + \log_2 n \le 1 + n$.

Dalla catena di disuguaglianze 1. e dalla disuguaglianza 2. si ha $log_2(n+1) \le n+1$.

Un utile richiamo

Parte intera inferiore:

La parte intera inferiore di un numero x è denotata con [x] ed è definita come quell'unico intero per cui vale che $x-1<[x] \le x$. In altre parole, [x] è il più grande intero minore o uguale di x (infatti dalla definizione si ha $[x] \le x$ ma [x] +1 > x) Esempio: [4.3]=4, [6.9]=6, [3]=3

Proprietà 1: L'intero più piccolo strettamente maggiore di $x \in [x]+1$.

Dim. Siccome [x] è il più grande intero minore o uguale di x allora qualsiasi intero più grande di [x] è maggiore di x. La proprieta discende allora dal fatto che il piu piccolo degli interi maggiori di [x] è [x] +1.

Proprietà 2: [[a/b]/c] = [a/(bc)], per a, b e c interi con b e c maggiori o uguali di 1

Un utile richiamo

Parte intera superiore:

La parte intera superiore di un numero x è denotata con [x] ed è definita come quell'unico intero per cui vale che $x \le [x] < x+1$ In altre parole, [x] è il più piccolo intero maggiore o uguale di x (infatti dalla definizione si ha $[x] \ge x$ ma [x]-1 < x)

Esempio: [4.3] = 5, [6.9] = 7, [3] = 3

Proprietà 3: L'intero più grande strettamente minore di \times è $[\times]$ -1.

Dim. Siccome [x] è il piu` piccolo intero maggiore o uguale di x allora qualsiasi intero piu` piccolo di [x] è minore di x. La proprieta` discende allora dal fatto che il piu` grande intero piu` piccolo di [x] e [x]-1.

Proprietà 4: $\lceil \lceil a/b \rceil / c \rceil = \lceil a/(bc) \rceil$ per a, b e c interi con b e c diversi da 0

Tempo logaritmico

Tipicamente si ha quando ogni passo riduce di un fattore costante il numero di passi che restano da fare.

Per esercizio dimostriamo che il seguente for richiede tempo $\Theta(\log n)$

For (i=n;
$$i \ge 1$$
; $i = \lfloor i/2 \rfloor$)
print(i)

Dimostrazione: Il for termina quando i diventa minore di 1.

Ad ogni iterazione il valore di i è minore o uguale della metà del valore che aveva in precedenza \rightarrow dopo la k-esima iterazione i = [...[[n/2]/2] /2].... /2]= [n/2^k] per la proprieta` 2 della parte intera inferiore k divisioni

Per sapere dopo quante iterazioni termina il for dobbiamo trovare il più piccolo k per cui $\lfloor n/2^k \rfloor < 1$. Vediamo per quali k è soddisfatta la disuguaglianza $\lfloor n/2^k \rfloor < 1$

$$[n/2^k] < 1 \leftrightarrow n/2^k < 1 \leftrightarrow 2^k > n \leftrightarrow k > \log_2 n \tag{1}$$

Noi vogliamo il piccolo intero k per cui vale la (1), cioe` il piu` piccolo intero strettamente maggiore di log_2 n. Per la proprieta` 1 della parte intera inferiore si ha $k=\lfloor log_2$ n $\rfloor+1$

N.B. Se invece di venire diviso per 2, il valore di i viene diviso per una generica costante c>1 allora la base del log è c ma ai fini della valutazione asintotica non cambia niente.

49 A. De Bonis

Tempo logaritmico

Il for in alto richiede tempo $\Theta(\log n)$

Dimostrazione: Il for termina quando i diventa maggiore di n.

- Ad ogni iterazione il valore di i raddoppia \rightarrow dopo la k-esima iterazione i = 2^k .
- · Per sapere dopo quante iterazioni termina il for dobbiamo trovare il più piccolo k per cui $2^k > n$.
- La disequazione 2^k > n se e solo se k > log₂n
- Tra tutti gli interi $k > \log_2 n$, noi vogliamo quello piu` piccolo. Per la proprieta` 1 della parte intera inferiore si ha $k=\lfloor \log_2 n \rfloor+1$
- Dopo esattamente k=[log₂ n] +1 iterazioni 2^k diventa più grande di n e il for termina.
- . → Numero iterazioni è $\lfloor \log_2 n \rfloor + 1 = \Theta(\log n)$

N.B. Se invece di raddoppiare, il valore di i viene moltiplicato per una generica costante c>1 allora la base del log è c ma ai fini della valutazione asintotica non cambia niente.

Tempo logaritmico: O(log n)

Tipicamente si ha quando ogni passo riduce di un fattore costante il numero di passi che restano da fare

Ricerca binaria. Dato un array A ordinato di n numeri ed un numero x vogliamo determinare se x è in A

```
binarySearch(A, n, x)
l = 0;
r = n-1
while l <= r
    c= (l+r)/ 2 //assumiamo troncamento
    if x = A[c]
        return true
    if x < A[c]
        r = c-1
    else l = c+1 //caso x>A[c]
return false
```

```
Se la dimensione r-l+1 dell'intervallo [l,r] è pari allora il sottointervallo di destra [c+1,r] ha un elemento in più rispetto a quello di sinistra. In caso contrario i due sottointervalli hanno la stessa dimensione.

Caso r-l+1 pari: intervallo di sinistra ha (r-l+1)/2 - 1 = [(r-l+1)/2] -1 elementi e quello di destra (r-l+1)/2= [(r-l+1)/2].

Caso r-l+1 dispari: entrambi gli intervalli hanno [(r-l+1)/2].
```

I+1)/2| elementi

Tempo logaritmico: O(log n)

Analisi ricerca binaria.

Il while termina quando l>r, cioè quanto il range [l,r] vuoto.

- Inizialmente [1,r]=[0,n-1] e quindi contiene n elementi
- Dopo la prima iterazione, [l,r] contiene al più [n/2] elementi
- Dopo la seconda iterazione, [l,r] contiene al più | |n/2|/2|= |n/4| elementi
- Dopo la terza iterazione, [1,r] contiene al più [[n/4]/2]= [n/8] elementi
- •
- Dopo la k-esima iterazione, [l,r] contiene al più [n/2k] elementi
- Per sapere quando termina il ciclo di while dobbiamo trovare il più piccolo intero k per cui $\lfloor n/2^k \rfloor < 1$
- Abbiamo gia` dimostrato che questo k e` ⊖(log n)
- NB: per sbarazzarci delle parti intere inferiori annidate abbiamo usato la proprieta` 2.

Espressione O	nome
O(1)	costante
$O(\log \log n)$	$\log \log$
$O(\log n)$	logaritmico
$\overline{O(\sqrt[c]{n}), \ c > 1}$	sublineare
$\overline{O(n)}$	lineare
$O(n \log n)$	$n \log n$
$O(n^2)$	quadratico
$O(n^3)$	cubico
$O(n^k) \ (k \ge 1)$	polinomiale
$O(a^n) \ (a > 1)$	esponenziale

Tempo $O(\sqrt{n})$

```
j=0;
i=0;
while(i<=n){
    j++;
    i=i+j;
}</pre>
```

Analisi:

Il while termina quando i diventa maggiore di n.

All'iterazione k al valore di i viene sommato j=k per cui dopo aver iterato il while k volte il valore di i è (1+2+3+...+k) = k(k+1)/2.

Affinche' si interrompa il while e` sufficiente che k(k+1)/2 > nPer semplicità osserviamo che $k^2/2 \le k(k+1)/2$ per cui se $k^2/2 > n$ allora k(k+1)/2 > n. Risolviamo $k^2/2 > n$.

 $k^2/2 > n \leftrightarrow k^2 > 2n \leftrightarrow k > (2n)^{1/2}$ (le implicazioni utili sono \leftarrow)

Dalla proprietà 1, $\lfloor (2n)^{1/2} \rfloor + 1$ e` il più piccolo intero maggiore di > $(2n)^{1/2}$ per cui dopo al piu` $\lfloor (2n)^{1/2} \rfloor + 1 = O(\sqrt{n})$ iterazioni il while termina.

Progettazione di Algoritmi, a.a. 2023-24

Tempo $O(\sqrt{n})$

```
j=0;
i=0:
while(i<=n){
  j++;
  i=i+j;
```

Analisi:

Il while termina quando i diventa maggiore di n.

All'iterazione k al valore di i viene sommato j=k per cui dopo aver iterato il while k volte il valore di i è (1+2+3+...+k) = k(k+1)/2

Affinche' si interrompa il while e` sufficiente che i=k(k+1)/2 > n

Risolviamo la diseguazione $k^2/2 + k/2 - n > 0$: le soluzioni di $k^2/2 + k/2 - n = 0$ sono

 $k_1 = -1/2 - (1/4 + 4n/2)^{1/2}$ e $k_2 = -1/2 + (1/4 + 4n/2)^{1/2}$ e la disequazione è soddisfatta per k< k_1 e k> k_2 . Siccome il nostro k è positivo puo' essere solo k> k2.

Quindi dopo $k > -1/2 + (1/4 + 2n)^{1/2}$ iterazioni si ha i = k(k+1)/2 > n e il while si interrompe.

Dalla proprietà 1, il piu piccolo intero strettamente maggiore di -1/2+(1/4+4n/2)1/2 è

 $|-1/2+(1/4+2n)^{1/2}|+1$. L'intero $|-1/2+(1/4+2n)^{1/2}|+1 \ge (1/4n+2n)^{1/2}|+1=|((9/4)n)^{1/2}|+1 \le (59/54) \int n+1$

ed è \geq [-1+ (1/4n+2n)^{1/2}]+1= [$\int 9/\int 4$) $\int n$] \geq ($\int 9/\int 4$) $\int n$ +1 per ogni n. Quindi dopo $\Theta(\int n)$ iterazioni il Progettazione di Algoritmi, a.a. 2023-24 while termina

A. De Bonis

Logaritmi a confronto con polinomi e radici

Per ogni costante x > 0, log $n = O(n^x)$. (N.B. x può essere < 1)

Dim.

Caso x ≥1:

Se $x \ge 1$ si ha $n \le n^x$ per ogni $n \ge 0 \rightarrow n = O(n^x)$.

Abbiamo già dimostrato che log n=O(n) per cui la proprietà transitiva $\rightarrow \log n=O(n^x)$

Caso x<1:

Vogliamo trovare le costanti c>0 e no≥0 tale che log n ≤cn× per ogni n≥no

Siccome sappiamo che $\log_2 m \le m$ per ogni m≥1 allora ponendo $m=n^\times$ con n≥1, si ha $\log_2 n^\times \le n^\times$ da cui $x\log_2 n \le n^\times$ e dividendo entrambi i membri per x si ha $\log_2 n < 1/x$ n^\times . Perchè la disequazione $\log_2 n \le cn^\times$ sia soddisfatta per ogni $n\ge n_0$, basta quindi prendere c=1/x ed $n_0=1$. NB: abbiamo visto che nella notazione asintotica possiamo eliminare la base del log se questa e` costante

Potenze di logaritmi a confronto con polinomi e radici

Per ogni x > 0 e b>0 costanti, $(\log n)^b = O(n^x)$.

Dim.

Vogliamo trovare le costanti c>0 e no≥0 tali che (log n)^b ≤cn× per ogni n≥no

Risolviamo la disequazione (log n)^b \leq cn^x :

 $(\log n)^b \le cn^x \longleftrightarrow \log n \le c^{1/b}n^{x/b} (\longleftrightarrow vale perchè assumiamo log n>0)$

Troviamo le costanti c>0 ed n_0 ≥0 tali che log n \leq $c^{1/b}n^{x/b}$ per ogni $n \geq n_0$

Abbiamo già dimostrato nella slide precedente che log n= $O(n^y)$ per ogni y>0. Ciò vale anche se poniamo y= x/b. Quindi esistono due costanti c'>0 e n'₀>0 tali che log n \le c'n^{x/b} per ogni n>n'₀.

Di conseguenza basta imporre $c^{1/b} = c'$ ed $n_0 = n'_0$ da cui $c = (c')^b$ ed $n_0 = n'_0$

Potenze di logaritmi a confronto con polinomi e radici

Dimostrare che per ogni x > 0, a > 0 e b > 0 costanti, $(\log n^a)^b = O(n^x)$.

La dimostrazione è molto semplice se si usa quanto visto nelle slide precedenti

Dim: Per quanto dimostrato nella slide precedente (log n) b = $O(n^x)$.

- Per la proprieta` 3. dei logaritmi log $n^a = a \log n$ log $n^a = a \log n \rightarrow (\log n^a)^b = a^b (\log n)^b$
- Per la prima regola della notazione asintotica (slide 42), moltiplicare una funzione per una costante non cambia la limitazione asintotica per cui log $n^b = O(n^x) \rightarrow a^b(\log n)^b = O(n^x)$ da cui (log $n^a)^b = O(n^x)$

Potenze di logaritmi a confronto con polinomi e radici

Per esercizio dimostriamo che per ogni $\times > 0$ costante, log n non è $\Omega(n^{\times})$.

Per definizione di Ω : $\log n = \Omega(n^x) \rightarrow \text{esistono due costanti c>0 e } n_0 \ge 0$ tali che $\log n \ge cn^x$ per ogni $n \ge n_0$

risolviamo la disequazione log $n \ge cn^x$ log $n \ge cn^x \leftarrow \rightarrow c \le (\log n)/n^x$

quindi la costante c e la costante n_0 devono essere tali che c \leq (log n)/n $^{\times}$ per ogni $n\geq n_0$

il limite di (log n)/n $^{\times}$ al tendere di n all'infinito è 0 per cui comunque scegliamo piccola la costante c esistera $^{\times}$ un n_c per cui (log n)/n $^{\times}$ <c per ogni n $^{\times}$ $^{\times}$ n $_c$

quindi per qualsiasi costante c non è possibile trovare una costante n_0 per cui $\log n \ge cn^x$ per ogni $n \ge n_0$ Progettazione di Algoritmi, a.a. 2023-24

A. De Bonis

Tempo O(n log n)

Tempo O(n log n). Tipicamente viene fuori quando si esamina la complessità di algoritmi basati sulla tecnica del divide et impera

Ordinamento. Mergesort e heapsort sono algoritmi di ordinamento che effettuano O(nlog n) confronti.

Il più grande intervallo vuoto. Dati n time-stamp $x_1, ..., x_n$ che indicano gli istanti in cui le copie di un file arrivano al server, vogliamo determinare qual è l'intervallo di tempo più grande in cui non arriva alcuna copia del file.

Soluzione O(n log n). Ordina in modo non decrescente i time stamp. Scandisci la lista ordinata dall'inizio computando la differenza tra ciascun istante e quello successivo. Prendi il massimo delle differenza calcolate. Tempo O(nlog n+n)=O(nlogn)

Grafo

Esempio (vedremo meglio questo concetto nelle prossime lezioni)

Tempo polinomiale $O(n^k)$

Insieme indipendente di dimensione k (k costante). Dato un grafo, esistono k nodi tali che nessuno coppia di nodi è connessa da un arco?

Soluzione O(nk). Enumerare tutti i sottoinsiemi di k nodi.

```
foreach sottoinsieme S di k nodi {
  controlla se S è un insieme indipendente
  if (S è un insieme indipendente)
     riporta che S è in insieme indipendente
  }
}
```

- Controllare se S è un insieme indipendente = $O(k^2)$
- Numero di sottoinsiemi di k elementi = $\binom{n}{k} = \frac{n(n-1)(n-2)...(n-k+1)}{k(k-1)(k-2)...(2)(1)} \le \frac{n^k}{k!}$
- Tempo totale $O(k^2 n^k / k!) = O(n^k)$

Insieme indipendente

Esempio: per k=3 l'algoritmo riporta gli insiemi $\{1,4,6\}$, $\{1,4,7\}$, $\{1,4,8\}$, $\{1,5,7\}$, $\{1,5,8\}$, $\{1,6,7\}$, $\{1,6,8\}$, $\{2,6,7\}$, $\{2,6,8\}$, $\{3,4,6\}$, $\{4,6,7\}$, $\{4,6,8\}$

Tempo esponenziale

Esempio:

Massimo insieme indipendente. Dato un grafo G, qual è la dimensione massima di un insieme indipendente di G?

Def. insieme indipendente: un insieme indipendente di un grafo è un sottoinsieme di vertici a due a due non adiacenti

Soluzione $O(n^2 2^n)$. Esamina tutti i sottoinsiemi di vertici. NB: Il numero totale di sottoinsiemi di un insieme di n elementi è 2^n

```
S* ← ¢
foreach sottoinsieme S di nodi {
  controlla se S è un insieme indipendente
  Se (S è il più grande insieme indipendente visto finora)
     aggiorna S* ← S
  }
}
```