FEUILLE 3: PROGRAMMATION LINÉAIRE ET SIMPLEXE

Exercice 1. Algorithme du simplexe et méthode des dictionnaires

Une usine fabrique 4 produits P_1, \dots, P_4 nécessitant une certaine quantité d'équipement, de maind'oeuvre et de matière première. Pour chacun des produits, les besoins unitaires (c'est-à-dire par unité de produit) sont indiqués dans le tableau ci-dessous.

	P_1	P_2	P_3	P_4	disponibilité
équipement	2	4	8	6	100
main d'oeuvre	10	8	6	10	160
mat. première	1	1	2	2	20
bénéfice (€/unité)	50	40	70	80	

On veut maximiser le bénéfice total qui provient de la vente de ces produits.

- 1. Modéliser ce problème sous forme de programmation linéaire.
- 2. Utiliser l'algorithme du simplexe pour le résoudre. Vous mettrez en place la méthode des dictionnaires qui consiste à exprimer à chaque étape du simplexe les variables de base ainsi que la fonction objectif en fonction des variables hors-base.

Exercice 2. Différents déroulements du simplexe

Interpréter les dictionnaires obtenus pour chacun des problèmes de programmation linéaire suivants. Les variables d'écarts sont notées e_i .

$$(a) \begin{cases} \max [F = x_1 + x_2] \\ 3x_1 + 2x_2 \le 15 \\ 3x_1 + 4x_2 \le 21 \\ x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases}$$

$$(b) \begin{cases} \max [F = 3x_1 + 2x_2] \\ 3x_1 + 2x_2 \le 15 \\ 3x_1 + 2x_2 \le 15 \\ 3x_1 + 4x_2 \le 21 \\ x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases}$$

$$(c) \begin{cases} \max [F = x_1 + 3x_2] \\ F = 6 - \frac{1}{6}e_1 - \frac{1}{6}e_2 \end{cases}$$

$$(dictionnaire)$$

$$(dictionnaire)$$

$$x_1 = 3 - \frac{2}{3}e_1 + \frac{1}{3}e_2 \\ x_2 = 3 + \frac{1}{2}e_1 + \frac{1}{2}e_2 \\ e_3 = -\frac{1}{2}e_1 + \frac{1}{2}e_2 \\ F = 6 - \frac{1}{6}e_1 - \frac{1}{6}e_2 \end{cases}$$

$$(dictionnaire)$$

$$x_1 = 5 - \frac{1}{3}e_1 - \frac{2}{3}x_2 \\ e_2 = 6 + e_1 - 2x_2 \\ e_3 = 3 - x_2 \end{cases}$$

$$F = 15 - e_1$$

$$x_1 = 5 + 2x_2 + e_2 \\ e_1 = 2 + 3x_2 + e_2 \\ e_1 = 2 + 3x_2 + e_2 \\ e_3 = 15 + 3x_2 + 2e_2 \\ F = 15 + 5x_2 + e_2 \end{cases}$$

Exercice 3. Recherche de solutions de base réalisables et problème auxiliaire

1. On considère un (PL) sous forme canonique pure

$$\max_{\mathbf{x}} F(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x}$$
$$\begin{cases} A\mathbf{x} \le \mathbf{b} \\ \mathbf{x} \ge 0 \end{cases}$$

Donner une condition suffisante sur le second membre \mathbf{b} pour obtenir sans calcul une solution de base réalisable de (PL) mis sous forme standard. Donner la solution de base réalisable dans ce cas.

2. Résoudre le problème de programmation linéaire suivant par l'algorithme du simplexe (méthode des dictionnaires)

$$\max [F = 3x_1 + 4x_2 + x_3]$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 \le 8 \\ x_1 + 2x_2 + 3x_3 \ge 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Exercice 4. Différents déroulements du simplexe en phase d'initialisation

Pour chacun des problèmes de programmation linéaire suivants, écrire les problèmes auxiliaires (PLA) pour les variables artificielles et interpréter les dictionnaires obtenus sur les (PLA). Les variables artificielles sont notées a_i et les variables d'écarts e_i .

$$(a) \left\{ \begin{array}{l} \max \left[F = x_1 - x_2 \right] \\ x_1 + 2x_2 \leq 5 \\ 2x_1 + x_2 \leq 6 \\ x_1 + x_2 \geq 4 \\ x_1, \ x_2 \geq 0 \end{array} \right. \left\{ \begin{array}{l} \max \left[F = x_1 - x_2 \right] \\ x_1 = \frac{4}{3} - \frac{2}{3}e_1 + \frac{1}{3}e_2 \\ x_2 = \frac{7}{3} + \frac{1}{3}e_1 - \frac{2}{3}e_2 \\ a_3 = \frac{1}{3} + \frac{1}{3}e_1 + \frac{1}{3}e_2 + e_3 \\ F_{aux} = \frac{1}{3} + \frac{1}{3}e_1 + \frac{1}{3}e_2 + e_3 \end{array} \right. \left. \begin{array}{l} (b) \left\{ \begin{array}{l} \max \left[F = 3x_1 + 2x_2 + x_3 \right] \\ x_1 + 2x_2 + x_3 = 10 \\ 2x_1 + x_2 - 2x_3 = 5 \\ -x_1 + x_2 + 3x_3 = 5 \\ x_1, \ x_2, \ x_3 \geq 0 \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_2 = 5 - \frac{4}{3}x_3 \\ a_3 = 0 \\ \hline F_{aux} = 0 \end{array} \right. \right. \right. \left. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_2 = 5 - \frac{4}{3}x_3 \\ x_3 = 0 \\ \hline F_{aux} = 0 \end{array} \right. \right. \right. \left. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_2 = 5 - \frac{4}{3}x_3 \\ x_3 = 0 \\ \hline F_{aux} = 0 \end{array} \right. \right. \right. \left. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_2 = 5 - \frac{4}{3}x_3 \\ x_3 = 0 \\ \hline F_{aux} = 0 \end{array} \right. \right. \right. \left. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_2 = 5 - \frac{4}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_2 = 5 - \frac{4}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_2 = 5 - \frac{4}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_2 = 5 - \frac{4}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_2 = 5 - \frac{4}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_2 = 5 - \frac{4}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{5}{3}x_3 \\ x_3 = 0 \\ \hline \end{array} \right. \left. \begin{array}{l} x_1 = \frac{$$

Exercice 5. Analyse de sensibilité sur un problème de production

On reprend le problème de production de l'Exercice 1.

- 1. Préalable
 - Interpréter la solution trouvée et caractériser l'optimum
- 2. Analyse de sensibilité de l'objectif
 - le produit P_1 est fabriqué : de combien peut-on augmenter ou diminuer le prix unitaire sans changer le plan de production?
 - le produit P_2 n'est pas fabriqué : à partir de quel prix devient-il rentable?
- 3. Analyse de sensibilité du second membre
 - l'équipement est en excédent : de combien peut-on le réduire pour faire de la maintenance?
 - un accident du travail entraı̂ne une baisse de 30% de la main d'oeuvre : que devient le plan de production ?
 - il manque de la matière première : combien en acheter? à quel prix maximal?