1. Timing Analysis of the CAN Protocol — Part I

(1) What is the worst-case response time of μ 0?

Iteration	LHS(Q0)	В0	RHS	Stop?
1	30	30	30	Yes

B0 = Max(C0,C1,C2) = 30

Q0 = B0 = 30

LHS = RHS, Stop!

worst-case response time = 10 + 30 = 40

(2) What is the worst-case response time of μ 1?

Iteration	LHS	B1	j	Q1 +	Tj	$Q_1 + \tau$	Cj	RHS	Stop?
	(Q1)			τ		T_j			
1	30	30	0	30.1	50	1	10	40	No
2	40	30	0	40.1	50	1	10	40	Yes

Iteration1:

B1 = Max(C1,C2) = 30

Q1 = B1 = 30

LHS = 30 < 30+1*10 = 40 = RHS

Iteration2:

LHS = 40 = 30+1*10 = 40 = RHS, Stop!

worst-case response time = 30 + 40 = 70

(2) What is the worst-case response time of μ 2?

Iteration	LHS	B2	j	Q2 +	Tj	$Q_2 + \tau$	Cj	RHS	Stop?
	(Q2)			τ		T_j			
1	20	20	0	20.1	50	1	10	60	No
			1		200	1	30		
2	60	20	0	60.1	50	2	10	70	No
			1		200	1	30		
3	70	20	0	70.1	50	2	10	70	Yes
			1		200	1	30		

Iteration1:

B2 = C2 = 20

Q2 = B2 = 20

LHS = 20 < 20+1*10+1*30 = 60 = RHS

```
Iteration2: LHS = 60 < 20+2*10+1*30 = 70 = RHS Iteration3: LHS = 70 = 20+2*10+1*30 = 70 = RHS, Stop! worst-case response time = 20 + 70 = 90
```

2. Timing Analysis of the CAN Protocol — Part 2(coding)

worst-case response time 結果如下:

```
1.44
2.04
2.56
3.16
3.68
4.28
5.2
8.4
9.0
9.68
10.2
19.36
19.8
20.32
29.40
29.76
30.28
```

Source code 的部分:

```
import numpy as np
messages = []
with open('input.dat', 'r', encoding='UTF-8') as file:
numbers = float(file.readline())
tau = float(file.readline())
for data in file.readlines():
data = data.strip()
data = data.split()
messages.append(data)

# print(numbers, tau, messages)
```

```
12 vdef worstwaitingtime(number):
13
        num = number
14
15
        blocking_list = []
16 ~
        for i in range(num, 17):
17
            blocking list.append(messages[i][1])
        block = float(max(blocking_list))
18
        # print(block)
19
20
21
        LHS = block
22
        Q = block
23
        RHS = 0
24 ~
        while (1<2):
25
            RHS = 0
26 ~
            for i in range(0, num):
27
                RHS += np.ceil((Q+tau)/float(messages[i][2]))*float(messages[i][1])
28
                print(RHS)
29
            RHS += block
30
            print(RHS)
31 ~
            if LHS == RHS:
32
               break
33
            LHS = RHS
34
            Q = RHS
35
        return RHS+float(messages[num][1])
     if __name__ == "__main__":
38
           with open('output.txt', 'w', newline='') as f:
39
```

```
for i in range(17):
40
                f.writelines(str(worstwaitingtime(i))+'\n')
41
```

3. Timing Analysis of TDMA-Based Protocols

- (1)Please duplicate the schedule pattern (4,10,1,2,6,7)
- (2) Please duplicate the arriving times of frames in the frame arrival pattern (0,3,5,6,10,13,15,16)
- (3) Please duplicate the starting times of time slots in the schedule pattern (1,2,6,7,11,12,16,17)
- (4) Please complete the following table

k	$\max_{1 \le j \le n} (s_{j+k} - s_j)$	=	$\min_{1 \le i \le m} (a_{i+k-1} - a_i)$	=	(Column-3) - (Column-5)
1	$\max_{1 \le j \le 4} (s_{j+1} - s_j)$		$\min_{1 \le i \le 4} (a_i - a_i)$		
2	$\max_{1 \le j \le 4} (s_{j+2} - s_j)$		$\min_{1 \le i \le 4} (a_{i+1} - a_i)$		
3	$\max_{1 \le j \le 4} (s_{j+3} - s_j)$		$\min_{1 \le i \le 4} (a_{i+2} - a_i)$		
4	$\max_{1 \le j \le 4} (s_{j+4} - s_j)$		$\min_{1 \le i \le 4} (a_{i+3} - a_i)$		

(5)) Please compute the worst-case response time

Answer = 9