Coordenadas

Gabriel Petrini

June 7, 2021

Contents

Carregando pacotes e dados

Pacotes

Capitais

```
capitals <-maps::world.cities %>%
filter(capital == "1") %>%
select(country.etc, name) %>% # long and lat will be used in osm method
rename(pais = country.etc, capital = name) %>%
geocode(city = capital, country = pais, method = 'osm', lat = latitude, long = longitude) %>%
mutate(ISO3C = countrycode::countrycode(pais, origin ='country.name',destination ='iso3c', warn = FALSE))
data.table::fwrite(capitals, file = "./clean/coord_capitais.csv")
```

Conflitos violentos

Tabela no texto (p. 366-7)

Importando dados

```
capitais <- data.table::fread(file = "./clean/coord_capitais.csv")</pre>
    conflicts <- conflicts %>%
3
      rename(Year = V1, Country = V2, Proxy = V3, Continente = V4) %>%
      mutate(ISO3C = countrycode::countrycode(Country, origin ='country.name',destination ='iso3c', warn = FALSE)) %>%
      left_join(capitais) %>%
      mutate(pais = # Keep countries not found in dataset
               pais %>%
                 is.na %>%
9
                 ifelse(Country, pais) ) %>%
10
      mutate(ISO3C = replace_na(ISO3C, "404")) %>%
11
      mutate(Continente = factor(Continente))
12
14
    ## proxies <-conflicts %>% filter(ISO3C == "404") %>%
15
    ## mutate(capital = case_when())
16
         mutate(capital = Proxy) %>% # Keep countries not found in dataset
17
18
         ## select(-c(latitude, longitude)) %>%
         qeocode(city = capital, method = 'osm', lat = latitude, long = longitude)
19
   conflicts <- conflicts %>%
^{21}
      mutate(capital = case_when(
22
             ISO3C == "404" ~ Proxy,
23
```

Table 1: Communist-led events						
1945	Poland		Europa			
1945	Austria		Europa			
1946	North Korea		Asia			
1946	China		Asia			
1946	Greece		Europa			
1947	Bulgaria		Europa			
1948	Czechoslovakia	Prague	Europa			
1948	East Germany	Bonn	Europa			
1948	East Germany	Bonn	Europa			
1948	China		Asia			
1949	China		Asia			
1950	South Korea		Asia			
1950	China		Asia			
1950	North and South Korea	South Korea	Asia			
1953	East Germany	Bonn	Europa			
1954	Vietinam		Asia			
1954	Vietinam		Asia			
1955	North and South Korea	South Korea	Asia			
1956	Poland		Europa			
1956	Hungary		Europa			
1958	Taiwan		Asia			
1959	Cuba		Americas			
1960	East Germany	Bonn	Europa			
1961	East Germany	Bonn	Europa			
1962	Laos		Asia			
1962	Cuba		Americas			
1968	Vietinam		Asia			
1968	Czechoslovakia	Prague	Europa			
1969	North Korea		Asia			
1969	Libya		Africa			
1970	Cambodia		Asia			
1975	Cambodia		Asia			
1975	Vietinam		Asia			
1975	Laos		Asia			
1978	Afghanistan		Asia			
1979	Nicaragua		Americas			
1979	El Salvador		Americas			
1979	Afghanistan		Asia			
1981	Poland		Europa			
1989	China		Asia			

```
TRUE ~ capital)) %>%
24
25
      mutate(ISO3C = case_when(
               pais == "East Germany" ~ "GERe",
26
               pais == "Czechoslovakia" ~ "oCZE",
pais == "North and South Korea" ~ "PRK",
27
28
29
               TRUE ~ ISO3C # Não sei se faz isso, mas a ideia dessa linha é manter todo o restante como antes
             )) %>%
30
31
      mutate(pais = case_when( # Atualizando nome dos países para preencher coordenadas faltantes
               pais == "East Germany" ~ "Germany",
32
               pais == "Czechoslovakia" ~ "Czech Republic",
33
               pais == "North and South Korea" ~ "North Korea",
34
35
               TRUE ~ pais
             )) %>%
36
37
      select(-c(latitude, longitude)) %>%
38
      geocode(city = capital, country = pais, method = 'osm', lat = latitude, long = longitude)
39
40
    conflicts <- conflicts %>%
41
      mutate(latitude = case_when(
42
               43
               TRUE ~ as.numeric(latitude)))
44
    conflicts <- conflicts %>%
45
46
      mutate(longitude = case_when(
               ISO3C == "PRK" ~ 125.75, # https://pt.db-city.com/Coreia-do-Norte--Pyongyang
47
48
               TRUE ~ as.numeric(longitude)))
49
50
    conflicts <- conflicts %>%
51
52
      arrange(Year) %>%
      mutate(
53
54
        name = pasteO(capital, "_", Year %>% as.character() %>% str_sub(start=-2), "_", Continente)
55
      ) %>%
      mutate(name = str_replace_all(name, " ", ""))
56
57
58
    data.table::fwrite(conflicts, file = "./clean/coord_conflitos_violentos.csv")
```

Joining, by = "ISO3C"

Criando dataframe vazio

```
capitais <- data.table::fread(file = "./clean/coord_capitais.csv") %>% arrange(ISO3C)
    conflitos <- data.table::fread(file = "./clean/coord_conflitos_violentos.csv") %>% arrange(ISO3C)
    repeticoes <- conflitos %>% group_by(name) %>% group_size() # Equivalente ao Cr do artigo (vezes que ocorreu)
5
    df <- matrix(</pre>
      nrow = capitais$longitude %>% length(),
8
      ncol = conflitos$name %>% unique() %>% length()
    ) %>%
9
     as.data.frame()
10
11
12
    names(df) <- conflitos$name %>% unique()
13
14
    df$ISO <- capitais$ISO3
    df <- df[,c("ISO", conflitos$name)] %>%
15
      arrange(ISO)
16
    df <- df %>% pivot_longer(!ISO,names_to = "Origem")
17
```

Função para calcular distância

```
distancia <- function(method = "geodesic", Destino, Origem) {
geodist::geodist(</pre>
```

Aplicando função

```
## start <- sum(df$ISO == "") + 1
1
    ## for(i in start:nrow(df)){
2
        for(j in 2:ncol(df)){}
3
           df[i,j] = distancia(
4
    ##
             matrix_col = names(df)[j],
5
             matrix_row = df$ISO[i]
6
    ##
    ##
7
    ##
    ## }
9
11
    df <- data.table(df)</pre>
    df[, Distancia := distancia(Origem = Origem, Destino = ISO), by = 1:nrow(df)]
   df <- df %>% as.data.frame()
```

Exportando

```
df <- df %>%
distinct() %>%
pivot_wider(names_from = Origem, values_from = Distancia)
data.table::fwrite(df, file = "./raw/distancia_geodesica.csv")
```

Agrupando por regiões

```
df <- data.table::fread("./raw/distancia_geodesica.csv") %>% select(!c(value))
2
    df <- df %>% # Remove colunas que contêm apenas NA
      select(
         where(
 4
           ~!all(is.na(.x))
 5
 6
         )
      )
    continentes <- c(
9
10
       "Africa",
      "Americas".
11
      "Asia",
12
      "Europa"
13
14
15
    for(continente in continentes){
16
      subset <- str_subset(names(df), continente)</pre>
17
      df <- df %>%
18
         drop_na(any_of(subset)) %>%
19
20
         mutate("Violentos_{continente}" := rowMeans(across(all_of(subset))))
21
22
    }
23
24
    subset <- str_subset(names(df), "Violentos")</pre>
```

```
26 df <- df %>% select(ISO, all_of(subset)) %>%
27 mutate("Violentos" := rowMeans(across(all_of(subset))))
```

Exportando

```
data.table::fwrite(df, file = "./clean/conflitos_violentos_continentes.csv")
```

Conflitos não-violentos

Tabela no texto (p. 2 (apêndice))

Table 2: Communist-led events (non-violents)						
1945	Czechoslovakia	Prague	Europa			
1945	Bulgaria		Europa			
1945	Yugoslavia	Belgrade	Europa			
1945	Romania		Europa			
1947	Poland		Europa			
1947	Hungary		Europa			
1947	Bulgaria		Europa			
1947	Romania		Europa			
1948	North Korea		Asia			
1948	Hungary		Europa			
1948	East Germany	Bonn	Europa			
1949	USSR	Moscow	Europa			
1949	North Korea		Asia			
1949	East Germany	Bonn	Europa			
1949	China		Asia			
1952	East Germany	Bonn	Europa			
1954	East Germany	Bonn	Europa			
1960	Cuba		Americas			
1960	Cuba		Americas			
1970	Chile		Americas			
1976	Vietinam		Asia			
1977	Ethiopia		Africa			

Importando dados

```
capitais <- data.table::fread(file = "./clean/coord_capitais.csv")

conflicts <- conflicts %>%

rename(Year = V1, Country = V2, Proxy = V3, Continente = V4) %>%

mutate(ISO3C = countrycode::countrycode(Country, origin = 'country.name',destination = 'iso3c', warn = FALSE)) %>%

left_join(capitais) %>%

mutate(pais = # Keep countries not found in dataset

pais %>%

pais %>%

is.na %>%

ifelse(Country, pais) ) %>%

mutate(ISO3C = replace_na(ISO3C, "404")) %>%
```

```
mutate(Continente = factor(Continente))
12
13
14
15
    conflicts <- conflicts %>%
16
17
      mutate(capital = case_when(
              ISO3C == "404" ~ Proxy,
18
19
             TRUE ~ capital)) %>%
      mutate(ISO3C = case_when(
20
               pais == "East Germany" ~ "GERe",
^{21}
               pais == "Czechoslovakia" ~ "oCZE",
22
               pais == "North and South Korea" ~ "PRK",
               pais == "Yugoslavia" ~ "YUG",
24
                pais == "USSR" ~ "USSR",
25
               TRUE ~ ISO3C # Não sei se faz isso, mas a ideia dessa linha é manter todo o restante como antes
26
             )) %>%
27
      mutate(pais = case_when( # Atualizando nome dos países para preencher coordenadas faltantes
               pais == "East Germany" ~ "Germany",
29
                pais == "Czechoslovakia" ~ "Czech Republic",
30
                pais == "North and South Korea" ~ "North Korea",
31
               pais == "Yugoslavia" ~ "Serbia",
32
               pais == "USSR" ~ "Russia",
33
               TRUE ~ pais
34
35
             )) %>%
36
      select(-c(latitude, longitude)) %>%
      geocode(city = capital, country = pais, method = 'osm', lat = latitude, long = longitude)
37
38
39
40
    conflicts <- conflicts %>%
      mutate(latitude = case_when(
41
42
               ISO3C == "PRK" ~ 39.032, # https://pt.db-city.com/Coreia-do-Norte--Pyongyang
               TRUE ~ as.numeric(latitude)))
43
    conflicts <- conflicts %>%
44
      mutate(longitude = case_when(
45
               ISO3C == "PRK" ~ 125.75, # https://pt.db-city.com/Coreia-do-Norte--Pyongyang
46
                TRUE ~ as.numeric(longitude)))
47
48
49
50
    conflicts <- conflicts %>%
      arrange(Year) %>%
51
     mutate(
        name = paste0(capital, "_", Year %>% as.character() %>% str_sub(start=-2), "_", Continente)
53
54
      mutate(name = str_replace_all(name, " ", ""))
55
56
57
    data.table::fwrite(conflicts, file = "./clean/coord_conflitos_nao_violentos.csv")
58
```

Joining, by = "ISO3C"

Criando dataframe vazio

```
capitais <- data.table::fread(file = "./clean/coord_capitais.csv") %>% arrange(ISO3C)
conflitos <- data.table::fread(file = "./clean/coord_conflitos_nao_violentos.csv") %>% arrange(ISO3C)

repeticoes <- conflitos %>% group_by(name) %>% group_size() # Equivalente ao Cr do artigo (vezes que ocorreu)

df <- matrix(
nrow = capitais$longitude %>% length(),
ncol = conflitos$name %>% unique() %>% length()
) %>%
as.data.frame()

names(df) <- conflitos$name %>% unique()
```

```
14    df$ISO <- capitais$ISO3
15    df <- df[,c("ISO", conflitos$name)] %>%
16         arrange(ISO)
17    df <- df %>% pivot_longer(!ISO,names_to = "Origem")
```

Aplicando função

```
df <- data.table(df)
df[, Distancia := distancia(Origem = Origem, Destino = ISO), by = 1:nrow(df)]
df <- df %>% as.data.frame()
```

Exportando

Agrupando por regiões

```
df <- data.table::fread("./raw/distancia_geodesica_naoviolentos.csv") %>% select(!c(value))
    \tt df \leftarrow \tt df \%>\% \# \it Remove colunas que contêm apenas \it NA
2
3
      select(
         where(
           ~!all(is.na(.x))
5
 6
         )
 8
9
    continentes <- c(
       "Africa",
10
11
      "Americas",
       "Asia",
12
       "Europa"
13
        )
14
15
    for(continente in continentes){
      subset <- str_subset(names(df), continente)</pre>
17
      df <- df %>%
18
         drop_na(any_of(subset)) %>%
19
         mutate("NaoViolentos_{continente}" := rowMeans(across(all_of(subset))))
20
^{21}
    }
22
23
    subset <- str_subset(names(df), "Violentos")</pre>
25
    df <- df %>% select(ISO, all_of(subset)) %>%
         mutate("NaoViolentos" := rowMeans(across(all_of(subset))))
```

Exportando

```
data.table::fwrite(df, file = "./clean/conflitos_naoviolentos_continentes.csv")
```

Selecionando países

Importando e combinando dataframes

```
data.table::fread("./clean/conflitos_violentos_continentes.csv") -> violentos
data.table::fread("./clean/conflitos_naoviolentos_continentes.csv") -> naoviolentos

df <- violentos %>%
    arrange(ISO) %>%
    left_join(naoviolentos) %>%
    arrange(ISO)
```

Joining, by = "ISO"

Filtrando países (Tabela A.1)

```
paises <- c(
       "Australia",
2
      "Canada",
      "Denmark",
      "Finland",
 5
       "France",
      "Germany",
      "Ireland",
      "Italy",
9
      "Japan",
10
      "Netherlands",
11
12
      "New Zealand",
      "Norway",
      "Portugal",
14
      "Spain",
15
      "Sweden",
16
      "Switzerland",
17
      "UK",
18
       "USA" # Ausente no original
19
20
21
    ISOs <- data.table::fread(file = "./clean/coord_capitais.csv") %>%
     filter(pais %in% paises) %>%
24
25
      select(ISO3C) %>%
      rename(ISO = ISO3C)
26
    df <- df %>%
28
      filter(ISO %in% ISOs$ISO %>% c())
```

Exportando

```
data.table::fwrite(df, file = "./clean/conflitos_filtrados_n_violentos_continentes.csv")
```

Calculando inverso da distância

$$ColdwarEvent = 1000 \cdot \sum W_j \cdot CR_j \tag{1}$$

$$W_j = dist^{-2} (2)$$

em que dist é medido em quilometros.

```
data.table::fread("./clean/conflitos_filtrados_n_violentos_continentes.csv") -> df

inv_dist2 <- function(x, pow=-1){
    x^pow*10^3
}

df <- df %>%
    mutate(across(where(is.numeric), ~inv_dist2(.x)))

data.table::fwrite(df, file = "./clean/coldwar_inv2_n_violentos_selectionados.csv")
```

Incluindo dados de distribuição

Script Lorena

```
one_percent_income <- read.csv2("./raw/WID_Data_11042021-185939.csv")</pre>
2
3
    # subseting
    year <- one_percent_income[, 1, drop = FALSE]</pre>
    income <- one_percent_income[, 2:19]</pre>
    # cleaning data
    # gsub() or nchar() as additional options
8
    colnames(income) <- substring(colnames(income), 52)</pre>
9
10
11
    # transforming in ISO3
    colnames(income) <- countrycode(colnames(income), origin = "country.name", destination = "iso3c")</pre>
12
    # joining subsets again
14
    income_concentration <- cbind(year, income)</pre>
15
16
17
    # exporting to csv
    write.csv(income_concentration, "./clean/income_concentration.csv")
```

Renomeando países para ISO

```
inicio <- "1945"
1
    fim <- "1989"
2
    df <- data.table::fread(</pre>
                         './clean/income_concentration.csv',
5
                         header=TRUE
6
                         ) %>%
      select(-c(V1)) %>%
8
      mutate(Year = lubridate::ymd(Year, truncated = 2L)) %>%
9
      rename(UK = United.Kingdom, `New Zealand` = New.Zealand) %>%
10
      pivot_longer(!Year, names_to = "pais", values_to = "concentracao") %>%
11
      mutate(ISO = countrycode::countrycode(pais, origin ='country.name',destination ='iso3c', warn = FALSE)) %>%
12
      select(-c(pais)) %>%
13
14
      pivot_wider(names_from = ISO, values_from = concentracao) %>% # Preenchendo NAs para selectionar os primeiros
      fill(everything(), .direction = "updown") %>% # Transpondo para criar primeiro e último valor
15
      pivot_longer(-Year) %>%
      pivot_wider(names_from = Year, values_from = value) %>%
17
18
      select(name, starts_with(fim), starts_with(inicio)) %>%
      setNames(c("ISO", "Fim", "Inicio")) %>%
19
20
      mutate(Diff = Fim - Inicio)
^{21}
    data.table::fwrite(df, paste0("./clean/diff_concentracao_", fim, "_", inicio, ".csv"))
```

Unindo com distâncias

```
data.table::fread(paste0("./clean/diff_concentracao_", fim, "_", inicio, ".csv")) -> concentracao
data.table::fread("./clean/coldwar_inv2_n_violentos_selecionados.csv") -> coldwar

df <- coldwar %>%
    left_join(concentracao)

data.table::fwrite(df, paste0("./clean/coldwar_concentracao_", fim, "_", inicio, ".csv"))
```

Joining, by = "ISO"

Unindo com dados do artigo de referência

Dicionário de variáveis

Variavel	Descricao	Uso
year	Year	Input
code	ISO code	Explicativa
$cold_war_events$	Cold War Events	Consulta
pc	Communist Party Share of seats	Explicativa
wage_bargaining_centralization	Wage bargaining centralization	Alternativa
decentralized	Decentralized Bargain	Explicativa
union	Union Density	Explicativa
Left_Executive	Left Executive	Alternativa
polity2	Polity IV index (Polity2 index?)	Explicativa
war_risk	War risk	Alternativa
cultural_distance_cw	Cultural Distance	Alternativa
strikes	Labor Strikes (?)	Alternativa
top_1	Top 1% of income	Consulta
top_5	Top 5% of income	Resultado
top_10	Top 10% of income	Resultado
gini	Gini	Resultado
sstran	Social security transfers (% GDP)	Resultado
yr_sch	Years of Schooling	Resultado

Importando dados

```
names(dicionario) <- as.matrix(dicionario[1, ])</pre>
    dicionario <- dicionario[-1, ]</pre>
    dicionario[] <- lapply(dicionario, function(x) type.convert(as.character(x)))</pre>
    haven::read_dta('./raw/base_JCP_vR1_dez18.dta') -> df
        data.table::fwrite(paste0('./clean/santanna_weller_full.csv'))
8
9
    df <- df %>%
10
     filter(year >= 1945) %>%
11
12
      filter(year <= 1990) %>%
      group_by(code) %>%
13
      summarise(across(where(is.numeric), ~mean(.x, rm.na = TRUE))) %>%
14
```

```
ungroup() %>%
15
16
      select(all_of(dicionario$Variavel)) %>%
17
      select(-c(year))
18
    df %>%
19
        data.table::fwrite(paste0('./clean/santanna_weller_subset_media.csv'))
20
21
^{22}
    flags <- dicionario %>% select(Uso) %>% filter(Uso != "Input") %>% unique() %>% pull() %>% as.character()
23
^{24}
    exporter <- function(df, flag){
      dicionario %>% filter(Uso == flag) %>% select(Variavel) %>% pull() %>% as.character() -> subset
25
26
      subset <- append("code", subset)</pre>
27
28
      df %>%
29
        select(all_of(subset)) %>%
        data.table::fwrite(paste0('./clean/santanna_weller_', flag, '_media.csv'))
30
31
32
    for(flag in flags){exporter(df = df, flag = flag)}
```

Unindo as bases

Importante: A base de dados de Santanna e Weller que será mesclada é a que esta no arquivo santanna_weller_Explicativa_medias.csv em que estão os dados médios.

```
data.table::fread(paste0("./clean/coldwar_concentracao_", fim, "_", inicio, ".csv")) -> df
data.table::fread("./clean/santanna_weller_Explicativa_media.csv") -> santanna_weller
santanna_weller <- santanna_weller %>%
rename(ISO = code)

df <- df %>%
left_join(santanna_weller)

data.table::fwrite(df, './clean/coldwar_concentracao_santanna_weller.csv')
```

Calibragem

Calibrando conflitos

Os conflitos serão calibrados de acordo com o método indireto. Para evitar a sensibilidade da amostra, transpõe-se o dataframe. Desse modo, as âncoras qualitativas serão associadas aos países e não as continentes que os conflitos ocorreram.

```
data.table::fread('./clean/coldwar_concentracao_santanna_weller.csv') -> df
1
    tmp <- df %>%
      select(
4
5
        ISO,
6
        Violentos_Europa, NaoViolentos_Europa,
        Violentos_Asia, NaoViolentos_Asia,
        Violentos_Africa, NaoViolentos_Africa,
        Violentos_Americas, NaoViolentos_Americas,
9
        Violentos, NaoViolentos
10
      ) %>%
11
      rename_with(.cols = -ISO, .fn = ~ paste0(.x, "_cal")) %>%
12
13
       pivot_longer(-ISO) %>%
       pivot_wider(names_from=ISO, values_from=value)
14
    for(country in names(tmp)[-1]){
16
      new_name <- pasteO(country, "_cal")</pre>
17
```

```
x <- tmp[country] %>% as.vector() %>% t()
18
19
       # Find quantiles
      quant <- quantile(x, probs = seq(0, 1, 0.2))
20
21
22
       # Theoretical calibration
      x cal <- NA
23
      x_cal[x <= quant[1]] <- 0</pre>
^{24}
25
      x_{cal}[x > quant[1] & x \le quant[2]] < .2
      x_cal[x > quant[2] & x <= quant[3]] <- .4
26
27
      x_cal[x > quant[3] & x \le quant[4]] < .6
      x_{cal}[x > quant[4] & x <= quant[5]] <- .8
28
      x_cal[x > quant[5]] <- 1</pre>
30
31
      tmp[country] <- indirectCalibration(x %>% as.vector(), x_cal, binom = TRUE)
32
33
    tmp <- tmp %>%
       ## select(name, ends\_with("\_cal")) %>%
35
      rename(Conflito = name) %>%
36
37
      pivot_longer(-Conflito) %>%
      pivot_wider(names_from=Conflito, values_from=value) %>%
38
39
      rename(ISO = name)
40
41
    df <- df %>%
42
      left_join(tmp)
43
    data.table::fwrite(df, './clean/full_distancias_calibradas.csv')
44
```

Calibrando outras variáveis

Tal como para os conflitos, será utilizado o método indireto. Diferentemente dos conflitos, o cálculo será feito entre países.

```
data.table::fread('./clean/full_distancias_calibradas.csv') -> df
3
    tmp <- df %>%
      select(
 4
         ISO,
5
 6
        Diff.
        pc,
         decentralized
      ) %>%
9
      as.data.frame()
10
11
    for(variable in names(tmp)[-1]){
12
      x <- tmp[variable] %>% as.vector() %>% t()
13
       # Find quantiles
14
15
       quant <- quantile(x, probs = seq(0, 1, 0.2))
16
17
       # Theoretical calibration
18
      x_{cal} \leftarrow NA
      x_cal[x <= quant[1]] <- 0</pre>
19
20
      x_{cal}[x > quant[1] & x \le quant[2]] < .2
      x_{cal}[x > quant[2] & x \le quant[3]] < .4
21
22
      x_cal[x > quant[3] & x \le quant[4]] < .6
23
       x_{cal}[x > quant[4] & x \le quant[5]] < .8
24
      x_cal[x > quant[5]] <- 1</pre>
25
26
      tmp[variable] <- indirectCalibration(x %>% as.vector(), x_cal, binom = TRUE)
    }
27
^{28}
29
    tmp <- tmp %>%
      rename_with(.cols = -ISO, .fn = ~ pasteO(.x, "_cal"))
30
31
    df <- df %>%
```

Tabela verdade

Presença do resultado (menor concentração, Diff decrescente)

```
df <- data.table::fread('./clean/calibrados.csv') %>% as.data.frame()
2
    df <- df %>%
3
 4
      set_names(
        ~ str_to_upper(.) %>%
                       str_replace_all("_CAL", "") %>%
                       str_replace_all("VIOLENTOS", "V") %>%
 8
                       str_replace_all("AFRICA", "AFR") %>%
                       str_replace_all("AMERICAS", "AME") %>%
9
                       str_replace_all("EUROPA", "EUR") %>%
10
                       str_replace_all("NAO", "N")
11
12
      ) %>%
      rename(DEC = DECENTRALIZED)
13
14
    conds <- df %>% select(-c(DIFF, V, NV, ISO)) %>%
15
16
      names() %>%
      as.vector()
17
18
   TT <- truthTable(
19
     data = df,
20
      outcome = "~DIFF",
^{21}
      conditions = conds,
22
23
      complete = TRUE,
     show.cases = TRUE,
24
25
     incl.cut = 0.7,
      sort.by = "out, incl"
26
27
28
    stargazerTT(TT, show.cases = TRUE, type = "text")
```

V EUR NV EUR V ASIA NV ASIA V AFR NV AFR V AME NV AME PC DEC OUT n

V_EUR NV_EUR V_ASIA NV_ASIA V_AFR NV_AFR V_AME NV_AME PC DEC OUT n incl PRI cases

Ausência do resultado (maior concentração, Diff crescente)

Minimização

TODOs

TODO Conferir NAs da base

 $\hfill\Box$ Como preencher se forem faltantes

TODO Decidir se as medidas de centralidade são sempre as médias