same line of reasoning, we could calculate the S_4 is number of degrees of freedom of S_4 , that is, of the system made up by n particles with fixed relative distances, but which is, unlike S_3 , immerse in a four dimentional space.

In this four-dimentional case, four coordinates are needed to locate the center of mass of each particle, which makes 4n coordinates for the set of n particles. And the number of constraint equations is the same as for S_3

In principle, the number of degrees of freedom should be the same as for a tetradimensional rigid body. And in four dimensions there are ten degrees of freedom for the rigid body: four coordinates are needed to locate its center of mass and there are six possible rotation angles. Now, in the case of the n particles with fixed distances, we need 4n coordinates to locate the particles' centers of mass, while the number of distances is still $\frac{n(n-1)}{2}$. And the number of possible rotation angles is obtain observing that a "hiperplane" can be defined with four points and that the number of different ways in which pairs may be chosen from a group of n-4particles is given by:

$$C_{n-4}^2 = \frac{(n-4)!}{2!(n-6)!} = \frac{(n-4)(n-5)}{2}, \quad (8)$$

for
$$n \geq 4$$
.

Then, the number of degrees of freedom of

$$N_4 = 4n - \frac{n(n-1)}{2} + \frac{(n-4)(n-5)}{2} = 10,$$
(9)

when n > 4,

and

$$N_4 = 4n - \frac{n(n-1)}{2},$$
 (10)
when $2 \le n \le 5,$

since the number of possible φ_i is equal to zero for these values of n.

That N_4 is equal to ten for any value of nless than or equal to four is consistent with the fact that ten is also the number of degrees of freedom of a rigid body in four-dimentional space (four coordinates are needed to locate the center of mass, and six more to describe the orientation of the body. Indeed, our procedure works for the four-dimentional as it does for the three-dimensional case. Moreover, we believe that it works for the general case. We propose that for a system of n particles with fixed relative distances, immerse in a space of D dimensions, the number of degrees of freedom is given by:

$$N_{D} = Dn - \frac{n(n-1)}{2} + \frac{(n-D)(n-D-1)}{2}$$

$$= \frac{D(D+1)}{2}, \text{ when } n \ge D,$$
(11)

and by:

$$N_D = Dn - \frac{n(n-1)}{2},$$
 (12)

when $2 \le n \le D + 1$.