Álgebra Linear

Mestrado Integrado em Engenharia Informática

Teste 2 - A

18 janeiro 2021 Duração: 1h 30m

Nome: _____

Número: _____ Turno: _____

Grupo I

Responda às questões deste grupo nos espaços indicados, sem apresentar os seus cálculos.

- **1.** Seja $U = \langle \mathbf{u}, \mathbf{v} \rangle$, onde $\mathbf{u} = (1, 1, 1)$ e $\mathbf{v} = (0, 1, 1)$.
 - a) Duas possíveis bases de U são: ((1,1,1),(0,1,1)) e ((2,2,2),(0,3,3)).
 - $b) \quad U = \{(a,b,c) \in \mathbb{R}^3 : b = c\}.$ Temos

$$\begin{pmatrix} 1 & 0 & | & a \\ 1 & 1 & | & b \\ 1 & 1 & | & c \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & | & a \\ 0 & 1 & | & b - a \\ 0 & 1 & | & c - a \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & | & a \\ 0 & 1 & | & b - a \\ 0 & 0 & | & c - b \end{pmatrix}.$$

Logo, $(a, b, c) \in U \Leftrightarrow c - b = 0 \Leftrightarrow b = c$.

- c) Um vetor $\mathbf{w} \in \mathbb{R}^3$ tal que $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ é uma base de \mathbb{R}^3 pode ser: $\mathbf{w} = (0, 0, 1)$. Nota: Podemos escolher qualquer vetor (a, b, c) tal que $b \neq c$.
- **d)** $V = \langle (1,2,2) \rangle$ é um subespaço de U? Sim, porque $(1,2,2) \in U$, já que verifica a condição que define U encontrada em b) (podemos também argumentar que $(1,2,2) \in U$ uma vez que $(1,2,2) = \mathbf{u} + \mathbf{v}$).
- 2. Seja T a aplicação linear cuja representação matricial é $\begin{pmatrix} 1 & 1 & -1 & 0 & 1 \\ -2 & -2 & 2 & 0 & -2 \\ 1 & 1 & -1 & 0 & 3 \\ 2 & 2 & -2 & 0 & 6 \end{pmatrix}$
 - a) Uma base para $\text{Im } T \in ((1, -2, 1, 2), (1, -2, 3, 6)).$

As colunas principais de A são a primeira e a quinta; logo ((1, -2, 1, 2), (1, -2, 3, 6)) é uma base de $\operatorname{Im} T$.

- **b)** dim Nuc T=3. dim Nuc $T=\dim \mathcal{N}(A)=5-\operatorname{car} A=5-2=3$.
- c) A aplicação linear T é sobrejetiva? Não, porque T é uma aplicação de \mathbb{R}^5 em \mathbb{R}^4 e dim Im T= car A=2<4.
- **d)** O vetor (3,3,6,5,0) pertence a Nuc T? Sim, porque T(3,3,6,5,0) = (0,0,0,0). Como

$$\begin{pmatrix} 1 & 1 & -1 & 0 & 1 \\ -2 & -2 & 2 & 0 & -2 \\ 1 & 1 & -1 & 0 & 3 \\ 2 & 2 & -2 & 0 & 6 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 6 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

temos T(3,3,6,5,0) = (0,0,0,0)

- **3.** Seja A uma matriz quadrada cujo polinómio característico é $p_A(\lambda) = (\lambda + \frac{1}{2})(\lambda \frac{1}{2})(\lambda 2)^2$.
 - a) $\det(A) = -1$ e $\operatorname{tr}(A) = 4$ Os valores próprios de A são: $-\frac{1}{2}, \frac{1}{2}$ e 2 (duplo). Logo, temos

$$\det A = -\frac{1}{2} \times \frac{1}{2} \times 2 \times 2 = -1$$

$$\operatorname{tr} A = -\frac{1}{2} + \frac{1}{2} + 2 + 2 = 4$$

- **b)** Existe um vetor não nulo $\mathbf{x} \in \mathbb{R}^4$ tal que $A\mathbf{x} = 2\mathbf{x}$? Sim, porque 2 é um zero do polinómio característico de A, logo é um valor próprio de A (e A é uma matriz de ordem 4, uma vez que o seu polinómio característico é um polinómio do 4° grau, logo os vetores próprios são vetores de \mathbb{R}^4).
- c) car(A) = 4, porque A é uma matriz de ordem 4, uma vez que o seu polinómio característico é um polinómio do 4° grau, e invertível, pois, como vimos em a), o seu determinante é diferente de zero (também se poderia argumentar que A é invertível, já que nenhum dos seus valores próprios é igual a zero).
- **d)** A matriz 2A + I é invertível? Não, porque zero é um dos seus valores próprios (os valores próprios de 2A + I são: $2 \times (-\frac{1}{2}) + 1, 2 \times \frac{1}{2} + 1$ e $2 \times 2 + 1$, isto é, são 0, 2 e 5).
- **4.** Considere a matriz $A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.
 - a) O polinómio característico de A é $p_A(\lambda) = (3 \lambda)(\lambda 2)^2$.

$$p_A(\lambda) = \begin{vmatrix} 1 - \lambda & 1 & 2 \\ -1 & 3 - \lambda & 1 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda) \begin{vmatrix} 1 - \lambda & 1 \\ -1 & 3 - \lambda \end{vmatrix} = (3 - \lambda) ((1 - \lambda)(3 - \lambda) + 1)$$
$$= (3 - \lambda) (\lambda^2 - 4\lambda + 4) = (3 - \lambda)(\lambda - 2)^2.$$

b) O subespaço próprio associado ao <u>menor</u> dos valores próprios de A é: $V_2 = \langle (1,1,0) \rangle$. Os valores próprios de A são: 2 (duplo) e 3, pelo que o menor dos valores próprios é 2. Temos

$$A - 2I = \begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\longleftrightarrow \begin{cases} -x + y + 2z = 0 \\ -z = 0 \end{cases} \Leftrightarrow \begin{cases} x = y \\ z = 0 \end{cases} \Leftrightarrow \begin{cases} x = \alpha \\ y = \alpha \\ z = 0 \end{cases}, \alpha \in \mathbb{R}.$$

Logo $V_2 = \{(\alpha, \alpha, 0) : \alpha \in \mathbb{R}\} = \langle (1, 1, 0) \rangle$.

c) O maior dos valores próprios de A tem multiplicidade algébrica igual a 1 e multiplicidade geométrica igual a 1.

Como 3 é um zero simples do polinómio característico de A, a multiplicidade algébrica do valor próprio 3 (o maior dos valores próprios de A) é igual a 1; como, para qualquer valor próprio λ de uma matriz A, se tem $1 \le \text{mg}(\lambda) \le \text{ma}(\lambda)$, é imediato concluir que mg(3) = 1.

d) A matriz A é diagonalizável? Não, porque o valor próprio duplo 2 tem multiplicidade geométrica apenas igual a 1 (como mostra o resultado da alínea b)), logo a soma das multiplicidades geométricas dos valores próprios (distintos) de A é 1+1=2<3.

Grupo II

Responda às questões deste grupo numa folha de teste, apresentando os seus cálculos.

1. Considere os seguintes subespaços do espaço vetorial \mathbb{R}^4 :

$$U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 = 0\},$$

$$V = \langle (1, -1, 0, 1), (0, -1, 1, 0), (2, -1, -1, 2), (-3, 1, 2, -3) \rangle.$$

- a) Determine uma base e indique qual a dimensão de V. Existem várias formas de resolver esta questão. Apresentamos duas delas.
 - 1. Sejam $\mathbf{v}_1 = (1, -1, 0, 1), \mathbf{v}_2 = (0, -1, 1, 0), \mathbf{v}_3 = (2, -1, -1, 2)$ e $\mathbf{v}_4 = (-3, 1, 2, -3)$ e seja A a matriz com esses vetores como colunas, i.e. seja $A = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{pmatrix}$. Como sabemos, as colunas principais de A formam uma base do espaço das colunas de A e, portanto, constituem uma base do espaço $V = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \rangle$ e, além disso, dim $\mathcal{C}(A) = \dim V = \operatorname{car} A$. Temos:

$$\begin{pmatrix} 1 & 0 & 2 & -3 \\ -1 & -1 & -1 & 1 \\ 0 & 1 & -1 & 2 \\ 1 & 0 & 2 & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 2 & -3 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 2 & -3 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Então, podemos concluir que ((1,-1,0,1),(0,-1,1,0)) é uma base de V e que dim V=2.

2. Sejam $\mathbf{v}_1 = (1, -1, 0, 1), \mathbf{v}_2 = (0, -1, 1, 0), \mathbf{v}_3 = (2, -1, -1, 2)$ e $\mathbf{v}_4 = (-3, 1, 2, -3)$ e seja B a matriz

com esses vetores como linhas, i.e.
$$B = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{pmatrix}$$
. Como sabemos, se convertermos B , por operações

elementares sobre linhas, numa matriz B' com a forma em escada, as linhas não nulas de B' formam uma base do espaço das linhas de B e, portanto, constituem uma base do espaço $V = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \rangle$. Além disso, tem-se dim $\mathcal{L}(B) = \dim V = \operatorname{car} B$. Temos:

$$B = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 2 & -1 & -1 & 2 \\ -3 & 1 & 2 & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -2 & 2 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = B'.$$

Então, podemos concluir que ((1,-1,0,1),(0,-1,1,0)) é uma base de V e dim $V=\operatorname{car} B=2$.

b) Diga, justificando, se U = V.

Apresentamos duas formas alternativas de resolver esta questão.

1. U é o conjunto das soluções do sistema homogéneo (de uma equação e quatro incógnitas) $x_1+x_2+x_3=0$, ou seja, é o espaço nulo da matriz $A=\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$. Trata-se de uma matriz 1×4 , de característica 1, logo a dimensão do seu espaço nulo é 4-1=3; assim, temos que dim $U=3\neq \dim V$, pelo que $U\neq V$.

2. Já vimos, na alínea anterior, que $V = \langle (1, -1, 0, 1), (0, -1, 1, 0) \rangle$. Identifiquemos V de outro modo.

$$\begin{pmatrix} 1 & 0 & | & x_1 \\ -1 & -1 & | & x_2 \\ 0 & 1 & | & x_3 \\ 1 & 0 & | & x_4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & | & x_1 \\ 0 & -1 & | & x_1 + x_2 \\ 0 & 1 & | & x_3 \\ 0 & 0 & | & x_4 - x_1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & | & x_1 \\ 0 & -1 & | & x_1 + x_2 \\ 0 & 0 & | & x_1 + x_2 + x_3 \\ 0 & 0 & | & x_4 - x_1 \end{pmatrix}$$

Então, temos que $V=\{(x_1,x_2,x_3,x_4)\in\mathbb{R}^4:x_1+x_2+x_3=0\ {\rm e}\ x_1=x_4\}.$ Como os vetores (x_1,x_2,x_3,x_4) de V têm de satisfazer, para além da condição $x_1+x_2+x_3=0$ que caracteriza os elementos de U, a condição adicional $x_1=x_4$, é imediato reconhecer que $U\neq V$ (mais precisamente, tem-se $V\subsetneq U$.)

c) Determine $\alpha, \beta \in \mathbb{R}$ tais que $(\alpha, 1, 2, \beta) \in V$.

Apresentamos duas resoluções, correspondentes às duas formas de resolução da alínea b) que demos.

1. Temos $V = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$, com $\mathbf{v}_1 = (1, -1, 0, 1)$ e $\mathbf{v}_2 = (0, -1, 1, 0)$. Seja $\mathbf{v} = (\alpha, 1, 2, \beta)$. Como sabemos, tem-se $\mathbf{v} \in \langle \mathbf{v}_1, \mathbf{v}_2 \rangle \Leftrightarrow \operatorname{car} \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{pmatrix} = \operatorname{car} \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 \mid \mathbf{v} \end{pmatrix}$. Como,

$$\begin{pmatrix} 1 & 0 & \alpha \\ -1 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & \beta \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \alpha \\ 0 & -1 & 1 + \alpha \\ 0 & 1 & 2 \\ 0 & 0 & \beta - \alpha \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \alpha \\ 0 & -1 & 1 + \alpha \\ 0 & 0 & 3 + \alpha \\ 0 & 0 & \beta - \alpha \end{pmatrix},$$

concluímos que

$$(\alpha, 1, 2, \beta) \in V \Leftrightarrow 3 + \alpha = 0 \in \beta - \alpha = 0 \Leftrightarrow \alpha = \beta = -3.$$

2. Como vimos, $V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 = 0 \text{ e } x_1 = x_4\}$. Então, tem-se

$$(\alpha, 1, 2, \beta) \in V \Leftrightarrow \alpha + 1 + 2 = 0 \text{ e } \alpha = \beta \Leftrightarrow \alpha = \beta = -3.$$

2. Sejam V um espaço vetorial real e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ uma sua base e seja $T: V \to V$ uma transformação linear. Mostre que, se $(T(\mathbf{v}_1), \dots, T(\mathbf{v}_n))$ é uma base de V, então T é uma aplicação injetiva.

Como sabemos, T é injetiva se e só se $\operatorname{Nuc} T = \{\mathbf{0}\}$. Seja $\mathbf{v} \in \operatorname{Nuc} T$, isto é, seja $\mathbf{v} \in V$ tal que $T(\mathbf{v}) = \mathbf{0}$, e mostremos que $\mathbf{v} = \mathbf{0}$.

Como $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ é uma base de V, o vetor \mathbf{v} escreve-se como combinação linear de $\mathbf{v}_1, \dots, \mathbf{v}_n$ (porque uma base é formada por vetores geradores), ou seja, existem escalares $\alpha_1, \dots, \alpha_n$ tais que

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n \tag{1}$$

Temos, então

$$T(\mathbf{v}) = \mathbf{0} \underset{\textcircled{0}}{\Rightarrow} T(\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n) = \mathbf{0} \underset{\textcircled{0}}{\Rightarrow} \alpha_1 T(\mathbf{v}_1) + \dots + \alpha_n T(\mathbf{v}_n) = \mathbf{0}$$
$$\underset{\textcircled{0}}{\Rightarrow} \alpha_1 = \dots = \alpha_n = \mathbf{0} \underset{\textcircled{0}}{\Rightarrow} \mathbf{v} = \mathbf{0}.$$

Justificações:

- ① Por (1).
- 2 Porque T é uma aplicação linear.
- 3 Porque os vetores $T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)$ são linearmente independentes, uma vez que formam uma base de V.