

.....

3	Test the series for convergence or divergence.
	$\frac{2}{n=1} \frac{\sin(n\pi/z)}{n!}$
	nei n!
	We know that when n is even, sin (nt/2)=0.
	Also when n=ZK+1, sin(nt/k)=(-1)k.
	So 3, sin T/2 = 3, (-1) Here b = 1
	Also when $n = 2k+1$, $sin(n\pi/2) = (-1)^k$. So $\frac{\pi}{2} \frac{\sin \pi \pi/2}{n!} = \frac{\pi}{2} \frac{(-1)^n}{(2n+1)!}$ Here $b_n = 1$ >0.
	Also, 36, is decreasing, and lim 1 =0, so
	the series converges by the Alternating Series Test.
4	How many terms of the series do we need to odd in order
	3 (-1) (1error < 0.001)
	to tind the Sum to the indicated accuray: 3 (-1) (terror/< 0.001) n=1 n ²
	We know the series converges by the Alternating series
:	test because $b_{n+1} = 1 \ge 1 = b_n$ and because $(n+1)^{4}$ n^{4}
	1im /n4 = 0. Now we use the Alternating Series Estimation
	Theorem. $b_s = 1 = 0.0016 > 0.001$
	54
	and $b_0 = (-1)^{6+1} \approx 0.00077 < 0.001$
	6 ⁴
	So we need 5 terms.
·	

5	For	what	values	of pi	s each	series	converge	ent?
	8	$(-1)^{n-1}$	•	Į.		•		
	N=	NP						

Consider p>0, 1 < 1 (So, he is decreasing)

and lim 1 = 0, so the series converges by the

Alternating Series Test. Now consider p < 0, limb Enny does not exist, so the series diverges

by the Test for Divergence. So 2 (-1) converges

only when p>d

O Determine whether the series is absolutely convergent, conditionally convergent, or divergent. 31 (-1)"

Since Z 14 is a convergent p-series with p=4>1, so

n=1 n=1 is absolutely convergent.

De termine whether the series is absolutely convergent, conditionally convergent, or divergent: $\frac{2}{5+n} \frac{(-1)^n - 1}{5+n} = \frac{1}{5+n} \frac{1}{5+n}$

 $\frac{\lim_{n\to\infty} |a_n| = \lim_{n\to\infty} \frac{n}{5+n} = \lim_{n\to\infty} \frac{1}{5+1} = 1. \quad 80 \quad \lim_{n\to\infty} a_n \neq 0.$

So Z (-1)" n is aivergent by the Test for Divergence

