# Feature Space Particle Inference for Neural Network Ensembles

2023.02.21 (Tue.)

Superb Al Machine Learning Team

Presenter: Kyeongryeol, Go

## Approximate Posterior Inference

Goal : Find q(w) that approximates p(w|D)

- (Parametric) Variational Inference
  - q(w) has certain parametric form (e.g.  $\mathcal{N}(w; \mu, \sigma)$ )
  - $\min_{\{\mu,\sigma\}} D(q(w)||p(w|D))$
- Markov Chain Monte Carlo (MCMC)
  - $w^{t+1} \sim m(w|w^t)$
  - Accept prob :  $\min\left(1, \frac{p(w^{t+1}|D)}{p(w^t|D)}\right) = \min\left(1, \frac{p(w^{t+1})p(D|w^{t+1})}{p(w^t)p(D|w^t)}\right)$
  - $q(w) \approx \frac{1}{T} \sum_{t=1}^{T} \delta(w w^t)$

#### Particle-based Variational Inference (PVI)

Goal : Find q(w) that approximates p(w|D)

• 
$$\{w_i^0\}_{i=1}^n \sim q_0(w), \ \{w_i^1\}_{i=1}^n \sim \mathcal{A}q_0(w)$$

• 
$$\mathcal{A}: w_i^{t+1} \leftarrow w_i^t + \epsilon \cdot v(w_i^t) \quad \forall i, for \ t = 0, ..., T-1$$



ullet Steepest decreasing direction of the distance b/t q and p



### Particle-based Variational Inference (PVI)

$$w_i^t$$
  $w_j^t$ 

#### Compare: Langevin dynamics

• 
$$v(w_i^t) = \nabla_{w_i} \log p(w_i^t|D) + \frac{2}{\sqrt{\epsilon}} z_i^t$$
 where  $z_i^t \sim \mathcal{N}(0,1)$ 

• Stochastic, computationally efficient

#### Particle-based Variational Inference (PVI)

$$\mathsf{WGD}: \mathcal{F} = \mathcal{W}$$
,

• 
$$v(w_i^t) = \nabla_{w_i} \log p(w_i^t|D) - \nabla_{w_i} \log q(w_i^t)$$

Kernel density estimation (KDE) → vulnerable to <u>curse of dimensionality</u>

• 
$$q(w_i^t) \propto \sum_{j=1}^n k(w_i^t, w_j^t)$$

• 
$$\nabla_{w_i} \log q(w_i^t) = \sum_{j=1}^n \nabla_{w_i} k(w_i^t, w_j^t) / \sum_{j=1}^n k(w_i^t, w_j^t)$$

#### In summary

- greater flexibility than parametric VI
- greater sampling efficiency than MCMC
- lower redundancy than deep ensemble

#### Where to apply PVI - previous

- 1. weight-WGD :  $\phi = \{w, \theta\}$ 
  - $p(\phi|D) = p(\phi) \prod_{(x,y) \in D} p(y|x,\phi)$
  - $-\phi_i^{t+1} \leftarrow \phi_i^t + \epsilon \cdot v(\phi_i^t)$
  - Overparameterized nature
- 2. function-WGD : *f* 
  - $p(f|D) = p(f) \prod_{(x,y) \in D} p(y|x, f)$
  - $\phi_i^{t+1} \leftarrow \phi_i^t + \epsilon \cdot \left(\frac{df_i^t}{d\phi_i^t}\right)^T v(f_i^t)$
  - Severe underfitting



### Where to apply PVI - proposed

- feature-WGD : h
  - $p(h|D) = p(h) \prod_{(x,y) \in D} p(y|x,h)$
  - $w_i^{t+1} \leftarrow w_i^t + \epsilon \cdot \left(\frac{dh_i^t}{dw_i^t}\right)^T v(h_i^t)$
  - $-\theta_i^{t+1} \leftarrow \theta_i^t + \epsilon \cdot \frac{1}{n} \sum_{j=1}^n \log p(D|\theta_j^t)$
  - semantically shared feature space
  - multi-view structured data

- \*\* Curse of dimensionality of KDE \*\*
  Find subspace where likelihood change substantially
- (FxF):  $H^t = \frac{1}{n} \sum_{j=1}^n \nabla_h \log(D|h_j^t) (\nabla_h \log(D|h_j^t))^T$
- (rxF) : Φ (r dominant eigenvectors)
- $q(h_i^t) \propto \sum_{j=1}^n k(h_i, h_j) \rightarrow \sum_{j=1}^n k(\Phi h_i, \Phi h_j)$





#### Experiment

Table 1. Results for Wide ResNet-16-4 on CIFAR-10 with an ensemble size of 10, evaluated over 5 seeds.

| Метнор                    | Accuracy(†)                      | $NLL(\downarrow)$                      | $Brier(\downarrow)$                    | ECE(↓)                                                               | CA / CNLL / CBRIER / CECE                                    |
|---------------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
| SINGLE                    | $95.4 \pm 0.2$                   | $0.145\pm0.006$                        | $\boldsymbol{0.069 \pm 0.003}$         | $0.007\pm0.000$                                                      | 73.7 / 0.796 / 0.349 / <b>0.020</b>                          |
| DEEP ENSEMBLES WEIGHT-WGD | $96.4 \pm 0.1$<br>$96.4 \pm 0.1$ | $0.110 \pm 0.001$<br>$0.111 \pm 0.002$ | $0.054 \pm 0.001$<br>$0.054 \pm 0.001$ | $0.007 \pm 0.000$<br>$0.007 \pm 0.001$                               | 76.7 / 0.698 / 0.310 / 0.025<br>76.7 / 0.702 / 0.312 / 0.026 |
| FUNCTION-WGD FEATURE-WGD  | $96.1 \pm 0.1$<br>$96.5 \pm 0.1$ | $0.124 \pm 0.001$<br>$0.107 \pm 0.001$ | $0.059 \pm 0.001$<br>$0.052 \pm 0.001$ | $egin{array}{l} 0.007 \pm 0.001 \ m{0.006} \pm m{0.001} \end{array}$ | 75.7 / 0.736 / 0.322 / 0.024<br>77.3 / 0.681 / 0.302 / 0.020 |

Table 2. Results for Wide ResNet-16-4 on CIFAR-100 with an ensemble size of 10, evaluated over 5 seeds.

| Метнор                    | Accuracy(†)                  | NLL(↓)                         | Brier(↓)                       | ECE(↓)            | CA / CNLL / CBRIER / CECE    |
|---------------------------|------------------------------|--------------------------------|--------------------------------|-------------------|------------------------------|
| SINGLE                    | $77.4 \pm 0.3$               | $\boldsymbol{0.835 \pm 0.007}$ | $\boldsymbol{0.316 \pm 0.003}$ | $0.030\pm0.003$   | 46.7 / 2.279 / 0.658 / 0.035 |
| DEEP ENSEMBLES WEIGHT-WGD | $82.3 \pm 0.2$               | $0.632 \pm 0.004$              | $0.249 \pm 0.001$              | $0.020 \pm 0.001$ | 52.9 / 1.971 / 0.590 / 0.032 |
|                           | $82.3 \pm 0.1$               | $0.633 \pm 0.002$              | $0.250 \pm 0.001$              | $0.021 \pm 0.001$ | 52.8 / 1.967 / 0.589 / 0.031 |
| FUNCTION-WGD FEATURE-WGD  | $79.0 \pm 0.1$               | $0.715 \pm 0.003$              | $0.286 \pm 0.001$              | $0.018 \pm 0.002$ | 49.5 / 2.133 / 0.623 / 0.034 |
|                           | <b>82.9</b> $\pm$ <b>0.2</b> | $0.624 \pm 0.002$              | $0.243 \pm 0.001$              | $0.017 \pm 0.001$ | 53.5 / 1.955 / 0.584 / 0.029 |

Table 3. Results for ResNet-50 on ImageNet with an ensemble size of 5. Note that we only evaluate 1 run due to the computational cost.

| Метнор                     | Accuracy(†)  | NLL(↓)             | Brier(↓)       | ECE(↓)                | CA / CNLL / CBRIER / CECE                                                         |
|----------------------------|--------------|--------------------|----------------|-----------------------|-----------------------------------------------------------------------------------|
| SINGLE                     | 75.7         | 0.954              | 0.338          | 0.018                 | 37.7 / 3.235 / 0.738 / 0.021                                                      |
| DEEP ENSEMBLES FEATURE-WGD | 78.0<br>78.0 | <b>0.853</b> 0.859 | 0.309<br>0.309 | 0.019<br><b>0.015</b> | 40.9 / 3.011 / 0.706 / <b>0.015</b><br>42.4 / <b>2.923</b> / <b>0.693</b> / 0.018 |





E.O.D