TRƯỜNG CAO ĐẮNG KỸ THUẬT CAO THẮNG KHOA CƠ KHÍ ĐỘNG LỰC BỘ MÔN CƠ ĐIỆN TỬ

BÀI TẬP CHI TIẾT MÁY

Sinh viên hiện hành:

Trần Hoàng Anh

LÓP: CĐ CĐT19B

BẢN THUYẾT MINH

BÀI TẬP LỚN - CHI TIẾT MÁY HỘP GIẢM TỐC BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Họ và tên: Trần Hoàng Anh

Lóp: CĐ CĐT 19B

MSSV: 0307171101

ĐÈ: 04, Phương án 18, P=1500(N), V=2.3~(m/s), D=280(mm)

1. CHỌN ĐỘNG CƠ ĐIỆN

Tính công suất của băng tải.

- -Lực tiếp tuyến trên băng tải P = 1500N
- Vận tốc tiếp tuyến trên băng tải V = 2.3 m/s
- -Đường kính tang băng tải D = 280mm

$$Nt = \frac{P.V}{1000} = \frac{1500 * 2.3}{1000} = 3,45(KW)$$

Tính hiệu suất chung của bộ truyền

$$\eta = \eta_X$$
. η_{BRT} . η^3 ol. η_{NT}

Trong đó:

 η : Hiệu suất chung của bộ truyền

 η_{OL} : Hiệu suất của ổ lăn (3 cặp)

 ηNT : Hiệu suất của nối trục

 η_{BRT} : Hiệu suất của bộ truyền bánh răng trụ răng nghiêng

 η_X : Hiệu suất của bộ truyền xích

Dựa vào bảng (2-1/ trang 18), ta chọn:

$$\eta_{OL} = 0.99$$

$$\eta_{BRT} = 0.97$$

$$\eta_X = 0.92$$

Theo kinh nghiệm: $\eta_{NT} = 1$

Tính hiệu suất chung của bộ truyền

 $\eta = \eta_X.\eta_{BRT}.\eta^3_{OL}.\eta_{NT} = 0.92.0.97.0.99^3.1 = 0.87$

Tính công suất cần thiết của động cơ

$$Nct = \frac{N_t}{\eta} = \frac{3,45}{0,87} = 3.965(KW)$$

Chọn động cơ theo bảng tra (2-2 trang 19,20):

+ Động cơ: A02-42-4

+ Công suất động cơ: $N_{dc} = 5.5 \text{ KW}$

+ Tốc độ động cơ: $n_{dc} = 1450$ (vòng/phút)

+ Hiệu suất động cơ: $\eta_{\text{dc}} = 88\%$

Kiểm nghiệm lại công suất làm việc của động cơ theo điều kiện : Nlv $\geq N_{ct}$

 $N_{lv} = N_{dc}$. $\eta_{dc} = 5.5.88\% = 4.84$ (kw)

=> Vậy: Nlv ≥ Nct nên động cơ thỏa điều kiện.

2. PHÂN PHÓI TỶ SỐ TRUYỀN

Tính tốc độ quay của băng tải

 $n_{bt} = (60*1000*\ V)/(\ \pi*D) = (60*1000*2.3)/(\pi*280) = 156.88\ (vong/phútt)$

Tính tỷ số truyền chung của hệ thống

$$i_{ch} = n_{dc}/n_{bt} = 1450/156.88 = 9,24$$

Tính tỷ số truyền chung của hệ thống

$$i_{ch} = i_X$$
. $i_{BRT} = 9.24$

Tra Bảng 2-5, trang 23

Ta có: chọn một thông số i_{BRT} =(3...5)

Vậy ta chọn $i_{BRT} = 3$

$$i_X = i_{ch}/i_{BRT} = 9.24/3 = 3.08$$

Vậy $i_x = 3.08$ thỏa mản điều kiện.

Bảng phân phối tỷ số truyền

	Trục động cơ		Trục I		Trục II
Tỷ số truyền i		$i_{BRT} = 3$		$i_X = 3,1$	
Tốc độ n (vòng/phút)	$n_{\text{dc}} = 1450$		$n_{I}=n_{dc}/i_{BRT}$ =1450/3 $n_{I}=483.3$		$n_{II}=n_{I}/i_{X}$ =483.3/3.08 $n_{II}=156.9$
Công suất N (KW)	N _{lv} = 4.84		N_{I} = N_{Iv} . η_{BRT} . η^{2}_{OL} = $4.84*0.97*0.99^{2}$ N_{I} = $4,6$		N _{II} =NI .η _X .η _{OL} =4,6*0,92*0,99 N _{II} =4,14

3. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng trong hộp giảm tốc truyền động với công suất N1 =4,84KW, N2 =4,6KW, số vòng quay trong 1 phút của trục dẫn n1=1450v/p, trục bị dẫn n2=483,3v/p, tỉ số truyền i=3. Thời gian làm việc 5 năm, mỗi năm làm việc 300 ngày, mỗi ngày 2 ca, mỗi ca 8 giờ, tải trọng ổn định, có va đập nhẹ, yêu cầu kích thước nhỏ gọn.

3.1. Chọn vật liệu

Bộ truyền làm việc có va đập nhẹ, yêu cầu kích thước nhỏ gọn nên chọn Thép cacbon chất lượng tốt để chế tạo.

Tra Bảng 3-29/Trang 57

+ Bánh răng nhỏ ta chọn: thép 45

+ Bánh răng lớn ta chọn: thép 35

Tra Bång 3-30/Trang 57-59

+ Bánh răng nhỏ

 $\sigma_k = 580 \; (N/mm2)$

 $\sigma_{ch} = 290 \text{ (N/mm2)}$

HB = 200

Bánh răng lớn

 $\sigma_k = 480 \, (N/mm2)$

 $\sigma_{ch} = 240 \text{ (N/mm2)}$

HB = 170

3.2. Úng suất cho phép

Tổng thời gian làm việc: T = 5*300*2*8 = 24000 giờ

Số chu kỳ làm việc:

Bánh răng nhỏ:

- Bánh răng nhỏ: $N_{t\bar{d}1} = 60.u.n1$.T = 60 . 1 . 1450 . 24000 = 208,8.10 7 (Chu kỳ)

Bánh răng lớn:

- Bánh răng lớn: $N_{td2} = 60.u.n2$.T = 60 . 1 . 483,3 . $24000 = 69,5.10^7$ (Chu kỳ)

u: số lần ăn khớp của một răng khi bánh răng đó quay 1 vòng.

=> Trường hợp một cặp bánh răng ăn khớp nhau thì **u= 1**

a. Úng suất tiếp xúc cho phép: $[\sigma]_{tx} = [\sigma]_{Notx}$. k'_N

Trong đó: k' $_{N}$: Hệ số chu kỳ ứng suất tiếp xúc

$$K'_{N=} \sqrt[6]{\frac{N_0}{N_{td}}}$$

 $N_0: S \hat{o}$ chu kỳ cơ sở, nếu $N_{t \hat{d}} \geq N_0$, ta có thể lấy $k'_N = 1$

Tra Bảng 3-30/Trang 57-59, ta có:

- + Vật liệu và nhiệt luyện (200-250)HB
- + $[\sigma]_{Notx}$ N/mm²: 2,6 HB
- + Số chu kỳ cơ sở No: 10^7

Bánh răng nhỏ:

$$[\sigma]_{tx1} = [\sigma]_{Notx1} \cdot k'_{N}$$

= 2,6HB.1

$$= 2,6.200.1$$

= 520 (N/mm²)

Bánh răng lớn:

$$[\sigma]_{tx2} = [\sigma]_{Notx2} \cdot k'_{N}$$

= 2,6HB.1
= 2,6.170.1
= 442 (N/mm²)

b. Ứng suất uốn cho phép:

Răng làm việc 1 mặt:
$$\left[6 \right] = \frac{6_0.K''_N}{n.K_6} = \frac{(1,4-1,6).6_{-1.}K''_N}{n.K_6}$$

Trong đó:

σ-1: ứng suất giới hạn mỏi uốn trong chu kỳ đối xứng.

Đối với vật liệu là Thép: $\sigma_{-1} = (0.4 \div 0.45).\sigma_k = 0.45.\sigma_k$

Đối với vật liệu là Gang: $\sigma_{-1} = 0.25.\sigma_k$

k " $_{\rm N}$: Hệ số chu kỳ ứng suất uốn. K " $_{\rm N}=\sqrt[6]{\frac{N_0}{N_{td}}}$

N0: Số chu kỳ cơ sở của đường cong mỏi uốn, có thể lấy $N_0\!=5.10^6$

Bảng tra/Trang 61

n: Hệ số an toàn.

 K_{σ} : Hệ số tập trung ứng suất ở chân răng k_{6} =1,8

Bánh răng nhỏ:

$$[6]_{u1} = \frac{(1,4 \div 1,6).6_{-1.}K''_{N1}}{n.K_6} = \frac{1,5.0,45.580. \sqrt[6]{\frac{5.10^6}{208,8.10^7}}}{1,5.1,8} = 53(N/mm^2)$$

Bánh răng lớn:

$$[6]_{u2} = \frac{(1,4 \div 1,6).6_{-1.}K''_{N}}{n.K_{6}} = \frac{1,5.0,45.480 \sqrt[6]{\frac{5.10^{6}}{69,6.10^{7}}}}{1,5.1,8} = 52,7(N/mm^{2})$$

3.3. Chọn sơ bộ hệ số tải trọng

$$K_{sb} = (1,3 \div 1,5) => K_{sb} = 1,4$$

4.4. Chọn sơ bộ hệ số chiều rộng bánh răng ψ_A

 $\psi_A=(0,3\div 0,45)$: Tải trọng trung bình $\psi_A=(0,45\div 0,6)$: Tải trọng nặng => ψA =0,4

3.5. Xác định khoảng cách trục A

$$A \ge (i+1) \sqrt[3]{\left(\frac{1,05.10^6}{[6]_{tx2}.i}\right)^2 \cdot \frac{K_{sb}.N_2}{\psi_A.\phi.n_2}} = \sqrt[3]{\left(\frac{1,05.10^6}{442*3}\right)^2 \cdot \frac{1.4*4.6}{0.4*1.25*483.5}} = 102.2 \ mm$$

Trong đó:

 $\theta = (1,15 \div 1,35)$: Hệ số bánh răng nghiêng => $\theta = 1,25$

3.6. Tính vận tốc vòng V và chọn cấp chính xác chế tạo bánh răng a. Vận tốc vòng

$$V = \frac{2\pi \cdot A \cdot n1}{60.1000 \cdot (i \pm 1)} = \frac{2\pi \cdot 102, 2.1450}{60.1000 \cdot (3 + 1)} = 3,87 \left(\frac{m}{s}\right)$$

b. Chọn cấp chính xác của bánh răng

Bång 3-32/Trang 65:

Hệ số tải trọng K được xác định theo công thức: $K=K_{\text{tt}}$. K_{d}

Trong đó:

 K_{tt} : Hệ số tập trung tải trọng

Đối với bộ truyền không chạy mòn HB > 350 thì K_{tt} được tra theo bảng 3-33/Trang 66.

Đối với bộ truyền không chạy mòn $HB \le 350$

+ Tải trọng không đổi hoặc ít thay đổi thì lấy $K_{tt}=1$

Bång 3-34 / Trang 67:

 K_d : hệ số tải trọng động => K_d = 1,4

Hệ số tải trọng K được xác định theo công thức: $K=K_{tt}$. $K_{d}=1$. 1,4 = 1,4

Độ sai lệch:

$$\Delta K = \frac{|K_{Sb-K}|}{K_{Sb}} \le \pm (3 \div 5)\% = \frac{|1,4-1,4|}{1.4} = 0\% \le 5\%$$

Vậy thỏa điều kiện.

3.8. Xác định môđun, số răng, chiều rộng bánh răng và góc nghiêng của răng

3.8.1. Môđun của bộ truyền

$$m_n = (0.01 \div 0.02).A = (1.25 \div 2.5)$$

Bång 3-36/Trang 69

 \Rightarrow Chọn Môđun $m_n = 2 \text{ (mm)}$

3.8.2. Số răng của bánh dẫn

$$Z_1 = \frac{2A.\cos\beta}{mn(i\pm 1)} = \frac{2.102,3\cos(12^\circ)}{2.(3+1)} = 24.9$$

 $Z_1 = 25 \text{ răng}$

β: Góc nghiêng răng, $\beta = (8 \div 20)^0$, sơ bộ chọn $\beta = 12^0$

3.8.3. Số răng của bánh răng bị dẫn: Z2 = Z1 .i = 25.3 = 75 (răng)

Xác định chính xác góc nghiêng răng

$$\cos\beta = \frac{(z_1 + z_2).m_n}{2A} = \frac{(z_5 + 7_5)}{2.102,3} = 0.978$$

 $\beta=11,5 => \text{Thỏa điều kiện: } \beta=(8 \div 20)^0$

4.8.4. Xác định chiều rộng bánh răng: $b = \psi A$. A = 0,4.102,3=40,92 (mm)

Chú ý: đối với bộ truyền bánh răng trụ, nên lấy chiều rộng b của bánh răng nhỏ lớn hơn của bánh răng lớn khoảng $5 \div 10$ mm.

$$=>$$
Ta lấy b2 = 41mm, b1 = 49mm

3.9. Kiểm nghiệm sức bền uốn của răng

3.9.1. Tính số răng tương đương Ztd và xác định hệ số dạng răng y của bánh dẫn và bị dẫn

Số răng tương đương của bánh dẫn:

$$Z_{\text{td1}} = \frac{Z_1}{\cos^3 \beta} = \frac{25}{\cos^3(12^\circ)} = 26.7$$

Số răng tương đương của bánh bị dẫn:

$$Z_{\text{td2}} = \frac{Z_2}{\cos^3 \beta} = \frac{75}{\cos^3(12^\circ)} = 80.1$$

Bảng 3-37 /Trang 70:

$$Y1 = 0.429$$

$$Y2 = 0.511$$

3.9.2. Kiểm tra bền theo ứng suất uốn

Ứng suất uốn của bánh răng nhỏ:

$$G_{u1} = \frac{19,1.10^{6}.KN_{.1}}{m_{n}^{2}.Z_{1}.b_{1}.y_{1}n_{1}.\phi'} = \frac{19,1.10^{6}.1,4.4,84}{2^{2}.25.49.0,429.1450.1,5} = 28,3(N/mm^{2})$$

$$\theta' = (1,4 \div 1,6) => \theta' = 1,5$$

Vậy σ u1 = 28.3 \leq [σ]u1 = 53 (N/mm2) => Thỏa điều kiện bền uốn Ứng suất uốn của bánh răng lớn:

$$G_{u2} = G_{u1} \cdot \frac{y_1}{y_2} = 28,3 * \frac{0.429}{0.511} = 23.7 (N/mm^2)$$

Vậy σ u2 = 23.7 \leq [σ]u2 =52.7(N/mm2) => Thỏa điều kiện bền uốn

3.10. Định các thông số chủ yếu của bộ truyền

Đường kính vòng chia:

$$d_1 = \frac{m_{n.}Z_1}{\cos\beta} = \frac{2.25}{\cos(12^\circ)} = 51.117 \text{(mm)}$$

$$d_2 = \frac{m_n \cdot Z_2}{\cos \beta} = \frac{2.75}{\cos(12^\circ)} = 153,3 \text{ (mm)}$$

Đường kính vòng đỉnh răng:

$$d_{a1} = d_1 + 2m_n = 51. + 2.2 = 55.1 \text{ (mm)}$$

$$d_{a2}=d_2+2m_n=153,3+2.2=157.3$$
 (mm)

Đường kính vòng chân răng:

$$d_{f1} = d_1 - 2.5.m_n = 51.1 - 2.5.2 = 46.1 \text{ (mm)}$$

$$d_{f1} = d_2 - 2.5.mn = 153.3 - 2.5.2 = 148.3$$
 (mm)

Chiều cao răng:

$$h_1 = h_2 = h_a + h_f = m_n + 1,25.m_n = 2,25.mn = 2,25.2 = 4,5 (mm)$$

4.11. Lực tác dụng lên bộ truyền

Lực vòng:

$$P_1 = p_2 = \frac{2.9,55.10^6.K.N_1}{d_1.n_1} = \frac{2.9,55.10^61,4.4,84}{51.1*1450} = 1746.7 \text{ (N)}$$

Lực hướng tâm:

$$P_{r1} = p_{r2} = \frac{p_1.tan\alpha}{cos\beta} = \frac{1746.7*tan(20^\circ)}{cos(12^\circ)} = 650 \text{ (N)}$$

Lực dọc trục:

$$Pa1=pa2=p1.tan\beta=1746.7.tan12=371.2$$
 (N)

Thông số		Giá trị		
	Bánh răng	nhỏ	Bánh răng lớn	
Số răng	$Z_1 = 25$		Z2=75	
Đường kính vòng chia	$d_1 = 51$		d ₂ =153,1	
Đường kính vòng đỉnh răng	D _{a1} =55		d _{a2} =157,1	
Bề rộng răng	b ₁ =49		b2=41	
Chiều cao răng		$h_1 = h_2 = 4,5$		
Mô đun		$m_n=2$		
Góc nghiêng răng		β=11,5		
Khoảng cách trục		A=102,3		
Lực vòng		$P_1=p_2=1750$		
Lực hướng tâm		$P_{r1}=p_{r2}=650$		
Lực dọc trục		$P_{a1}=p_{a2}=356$		

4. THIẾT KẾ BỘ TRUYỀN XÍCH

Thiết kế bộ truyền động Xích truyền với công suất N1=4,6 Kw, tỉ số truyền iX= 3,1 số vòng quay trong 1 phút của bánh dẫn n1=483,3v/p, bộ truyền làm việc 2 ca/ngày, tải trọng êm, bôi trơn định kỳ.

1.Chọn loại xích

Chọn loại Xích ống con lăn.

2. Định số răng đĩa xích

Tùy theo tỷ số truyền i_X , ta chọn số rang đĩa xích nhỏ tương ứng theo Bảng 3-22/ Trang 45

Vậy ta chọn số răng đĩa xích nhỏ $Z_1 = 24$

Vậy ta chọn số răng đĩa xích lớn: $Z_2 = Z_1$. $i_X = 24$. 3,1 = 74.4

=> Chọn $\mathbb{Z}_2=74$ (số nguyên)

3. Định bước xích pt

3.1. Xác định hệ số điều kiện sử dụng k theo công thức: K = Kt . $K\alpha$. $K\alpha$

Trong đó các hệ số K được tra theo các bảng trang 46:

- K_t : Hệ số xét đến ảnh hưởng của tính chất tải trọng ngoài.
- + Tåi trọng êm: Kt = 1
- $K_{\mbox{\scriptsize A}}$: Hệ số phụ thuộc khoảng cách giữa 2 trục.
- + Nếu A = $(30 \div 50)$.pt : $K_A = 1$
- K_{α} : Hệ số phụ thuộc sự bố trí của bộ truyền.
- + Nếu $\alpha = (0 \div 600) : K_{\alpha} = 1$

- K_{dc} : Hệ số phụ thuộc sự điều chỉnh khoảng cách 2 trục
- + Điều chỉnh được: $K_{dc} = 1$
- K_b : Hệ số phụ thuộc chế độ bôi trơn của bộ truyền
- + Bôi tron định kỳ: $K_b = 1,25$
- Kc : Hệ số phụ thuộc chế độ làm việc của bộ truyền
- + Làm việc 2 ca/ngày: Kc = 1,25

Hệ số điều kiện sử dụng: K=Kt . $K\alpha$. $K\alpha$. K_{dc} . K_{b} . K_{c} = 1 . 1 . 1 . 1 . 1 . 1 . 1 . 25 . 1,25=> K=1,56

3.2. Xác định hệ số răng đĩa dẫn KZ:

$$Kz = \frac{Z_{01}}{Z_1} = \frac{25}{24} = 1,04$$

3.3. Xác định hệ số vòng quay trong 1 phút của đĩa dẫn Kn

$$Kn = \frac{z_{01}}{N_1} = \frac{600}{483,3} = 1,24$$

n01: số vòng quay trong một phút của đĩa xích dẫn của bộ truyền cơ sở, n01 = 50, 200, 400, 600, 800, 1000, 1200, 1600. Chọn n01 một trong các giá trị trên và nên chọn $n01 \ge n1$

=

Xác định công suất tính toán của bộ truyền=>Nt=k.kz.kn.N

1.56.1,04.1,24.4,6=9,25(kw)

Chọn bước xích pt theo điều kiện $Nt = 9,25 \text{ kW} \leq [N]$

Bång 3 - 23/Trang 48 => pt=15.875

Kiểm nghiệm số vòng quay của đĩa xích theo điều kiện: $n_1 \le n_{gh}$

Bång 3 – 24/trang 48:

$$n_1 = 483,3 \le n_{gh} = 2150(v/P)$$

4. Xác định khoảng cách trục A và số mắc xích cho phép X

4.1. Chọn sơ bộ khoảng cách trục A

Nên chọn khoảng cách trục trong khoảng:

$$A = (30 \div 50)p_t = 40*15.875 = 700(mm)$$

4.2. Xác định số mắt xích X.

Sau khi đã xác định được khoảng cách trục A, tính số mắt xích X theo công thức:

$$X = \frac{(Z_1 + Z_2)}{2} + \frac{2A}{p_t} + \left(\frac{Z_2 - Z_1}{2\pi}\right)^2 \cdot \frac{p_t}{A}$$
$$X = \frac{24 + 74}{2} + \frac{2 * 700}{15.9} + \left(\frac{74 - 24}{2\pi}\right)^2 * \frac{15.9}{700} = 138.5$$

Kiểm nghiệm số lần va đập của mỗi mắt xích trong một giây u theo điều kiên:

$$U = \frac{n_1.Z_1}{15X} = \frac{483,3*24}{15.138} = 5,6 \le U = 45$$
 vậy thỏa điều kiện

4.3. Xác định khoảng cách trục A theo công thức:

$$A = \frac{p_t}{4} \cdot \left[X - \frac{Z_1 + Z_2}{2} + \sqrt{\left(X - \frac{Z_1 + Z_2}{2}\right)^2 - 8\left(\frac{Z_2 - Z_1}{2\pi}\right)^2} \right]$$

$$= 756,3 \text{ (mm)}$$

$$\Delta A = (0.002 \div 0.004) A = (0.002 \div 0.004) .756, 3 = (1.5126 \div 3.0252)$$

$$V_{ay} A = 756,3-2,3 = 696 (mm)$$

5. Tính đường kính vòng chia của đĩa xích và đường kính vòng đỉnh răng của đĩa xích dẫn và bị dẫn

Đường kính vòng chia đĩa xích:

$$D_1 = \frac{p_t}{\sin(\frac{180}{Z_1})} = \frac{15.9}{\sin(\frac{180}{24})} = 121,8 \text{ (mm)}$$

$$D_2 = \frac{p_t}{\sin(\frac{180}{Z_2})} = \frac{15.9}{\sin(\frac{180}{74})} = 448,9 \text{ (mm)}$$

Đường kính vòng đỉnh răng của đĩa xích:

$$D_{a1}=p_t. (cotg. \frac{180}{Z_1} + K) = 15.9*(cotg. \frac{180}{24} + 0.5) = 128.7(mm)$$

$$D_{a2}=p_t. (cotg. \frac{180}{Z_2} + K) = 15.9. (cotg. \frac{180}{74} + 0.5) = 382.2 (mm)$$

Trong đó k thường chọn như sau: $k = (0.5 \div 0.6)$

6. Tính lực tác dung lên trục R.

Lực tác dụng lên trục (R) được tính theo công thức:

$$R = k_t \cdot \frac{6.10^7 \cdot N_1}{n_1 \cdot Z_1 \cdot p_t} = 1,15 \cdot \frac{6.10^7 * 4,6}{483.3 * 24 * 15,9} = 1434.3(N)$$

 K_t : hệ số xét đến tác dụng của trọng lượng xích lên trục, khi bộ truyền nằm ngang hoặc nghiêng một góc nhỏ hơn 400 thì chọn $K_t = 1,15$; khi bộ truyền nghiêng một góc lớn hơn 400 so với đường nằm ngang thì chọn $K_t = 1,05$.

Thông số	Giá trị		
	Đĩa xío	ch dẫn	Đĩa xích bị dẫn
Số răng	Z1=	=24	Z2=74
Bước xích		Pt=25.4 mm	
Số mắc xích		X=138	
Khoảng cách trục A		A=694	
		Rx=1497 (N)	
Đường kính vòng chia. D	D1=121,8(mm) D2=374.6(mm)		D2=374.6(mm)
Đường kính vòng đỉnh	Da1=128,7(mm)		Da2=382.2(mm)
Da			

5. TÍNH TOÁN, THIẾT KẾ TRỤC

5.1. Tính sơ bộ

- Tính theo công thức moment xoắn

$$\tau_Z = \frac{M_z}{W_0} = \frac{M_z}{0,2d^3} \le \left[\tau_Z\right] \quad \Rightarrow d \ge \sqrt[3]{\frac{M_z}{0,2.\left[\tau_z\right]}}$$

- Tính theo công thức kinh nghiệm:

$$d \ge C_{\sqrt{N}}^{3} \frac{N}{n}$$

$$[\tau_{z}] = (20 - 35)N / mm^{2} \qquad C = (120 \div 130)$$

$$[\tau_{z}] = (10 - 15)N / mm^{2} \qquad C = (150 \div 160)$$

Tính toán, thiết kế trục cho các chi tiết quay trong hộp giảm tốc với các thông số sau:

Trục I: Công suất $N_1 = 4.6KW$, Tốc độ $n_1 = 483.3$ vòng//phút

Trục II: Công suất $N_2 = 4,14KW$, Tốc độ $n_2 = 156.9$ vòng/phút

TRUC I:

$$d_{sb}^{I} = C.\sqrt[3]{\frac{N_{I}}{n_{I}}}$$

=
$$(120 \div 130)$$
. $\sqrt[3]{\frac{4,6}{483.3}}$ = $(17,93 \div 19,4)$

 $V_{ay}^2 d_{sb}^{-1} = 30 (mm)$

Tra bảng 5-5/ trang 110 -111, chọn Ô lăn tương ứng với đường kính trục sơ bộ

Vậy d_{sb}^{1} =30(mm) => **Chọn ổ lăn 6306** có bề rộng B_{1} = 19mm

TRUC II:

$$d_{sb}^{II} = C.\sqrt[3]{\frac{N_{II}}{n_{II}}}$$
$$= (120 \div 130).\sqrt[3]{\frac{4.14}{156.9}} => d_{sb}^{II} = (35.7 \div 38.7)$$

Vây $d_{sb}^{II} = 40 \text{ (mm)}$

Tra bảng 5-5/ trang 110 -111, chọn $\mathring{\mathrm{O}}$ lăn tương ứng với đường kính trục sơ bộ

Vậy $d_{sb}^{II} = 30 \text{ (mm)} = > \text{chọn } \tilde{o} \text{ lăn } 6308 \text{ bề rộng } B_2 = 3 \text{ (mm)}$

5.2. Tính gần đúng

a. Xác định chiều dài các đoạn trục

$$a = b = \frac{B_1}{2} + l_2 + a + \frac{b_1}{2}$$

$$a = b = \frac{B_1}{2} + (5 \div 10) + (10 \div 15) + \frac{b_1}{2}$$

$$a = b = \frac{19}{2} + 7.5 + 12.5 + \frac{49}{2} = 54 mm$$

$$c = \frac{l_5}{2} + l_4 + l_3 + \frac{B_2}{2}$$

$$c = \frac{(1 \div 1, 2) \cdot d_{sb}^{II}}{2} + (10 \div 20) + (15 \div 20) + \frac{B_2}{2}$$

$$c = \frac{1.1 * 40}{2} + 15 + 17.5 + \frac{41}{2} = 75 mm$$

Trong đó:

 $d_{sb}{}^{II}$: Đường kính trục sơ bộ

 $B_1: B\grave{\hat{e}}$ rộng ổ lăn chọn sơ bộ.

b₁: Bề rộng bánh răng nhỏ.

5.2. Tính gần đúng

b. Xác định lực tác dụng lên trục

Trong đó:

P₁, P₂: Lực vòng

P_{r1}, P_{r2}: Lực hướng tâm

Pa1, Pa2: Lực dọc trục

R_X: Lực tác dụng lên trục lắp bánh xích.

c. Xác định đường kính trục

Xét mặt phẳng YOZ:

$$\sum M_A = 0 \le P_{r1} * AB + M_{Pa1} - R_{yc} * AC = 0$$

$$R_{yc} = \frac{P_{r1} * AB + M_{Pa1}}{AC} = \frac{650 * 54 + 9479.05}{54.2} = 412.8 (N)$$

$$\sum Y = 0 \le P_{r1} * AB + M_{Pa1} - R_{yc} = 0$$

$$R_{\gamma A} = P_{r1} - R_{\gamma C} = 650 - 412.8 = 237.2 (N)$$

Xét mặt phẳng XOZ:

$$R_{xA} = R_{xC} = \frac{P_1}{Z} = \frac{1747}{2} = 873.5 (N)$$

Xét mặt phẳng XOY:

$$MP_1 = P_1 * \frac{d_1}{2} = 1747 * \frac{51.1}{2} = 44635.85 (Nmm)$$

VỄ BIỂU ĐỒ NỘI LỰC:

$$d \ge \sqrt[3]{\frac{M_{id}}{0,1.[\sigma]_u}} \qquad [\sigma]_u: \text{ \dot{U}ng suất uốn cho phép,}$$

$$\text{$L\acute{a}y \ [\sigma]_u = 50 \ (N/mm^2)$}$$

$$M_{td} = \sqrt{M_{uX}^2 + M_{uY}^2 + 0,75M_Z^2}$$

TẠI A:

$$M_{tdA} = \sqrt{M_{uX}^2 + M_{uY}^2 + 0.75M_Z^2}$$

$$= \sqrt{0^2 + 0^2 + 0.75 * 44635.85^2}$$

$$d_A \ge \sqrt[3]{\frac{M_{tdA}}{0.1.[\sigma]_u}}$$

$$d_A \ge \sqrt[3]{\frac{38656}{0.1 * 50}} = 19.8$$

 \Rightarrow Chọn dA tăng thêm 1 khoảng theo hệ số an toàn (10 -> 15mm)

$$=>$$
 Chọn $d_A=30~(mm)=d_C~($ Cùng lắp ổ lăn $)$

TAI B:

$$M_{tdB} = \sqrt{M_{uX}^2 + M_{uY}^2 + 0.75M_Z^2}$$
$$= \sqrt{22291.2^2 + 47169^2 + 0.75 * 44635.85^2} = 64931 (Nmm)$$

$$d_{B} \ge \sqrt[3]{\frac{M_{tdB}}{0, 1. [\sigma]}_{u}}$$

$$d_{B} \ge \sqrt[3]{\frac{64931}{0.1 * 50}} = 23.5 (mm)$$

- \Rightarrow Chọn d_C tăng thêm 1 khoảng theo hệ số an toàn (15 -> 20mm)
- => Chọn $d_B=40$ (mm) (Có rãnh then)

b. Xác định lực tác dụng lên trục

Trục II

$$P_2 = 1747N, P_{r2} = 650 N, P_{a2} = 371 N, R_x = 1497 N, d_2 = 153.3$$

c. Xác định đường kính trục

Xét mặt phẳng YOZ:

$$P_2=1750$$
 (N), $P_{r2}=650$ (N), $P_{a2}=356$ (N), $P_{x}=1437$ (N)

$$d_2\!=188\ mm$$

$$M_{Pa2} = Pa2 * d_2 / 2 = 356 * 153 / 2 = 27234 (N.mm)$$

$$M_{P2} = P2 *d_2/2 = 1750 * 153/2 = 133875 (N.mm)$$

Xét mặt phẳng XOZ:

Xét mặt phẳng XOY:

$$d \ge \sqrt[3]{\frac{M_{td}}{0,1.[\sigma]_u}} \qquad [\sigma]_u: \text{ \dot{U}ng suất uốn cho phép,}$$

$$\text{$L\acute{a}y \ [\sigma]_u = 50 \ (N/mm^2)$}$$

$$M_{td} = \sqrt{M_{uX}^2 + M_{uY}^2 + 0.75M_Z^2}$$

TAI D:

$$M_{tdD} = \sqrt{M_{uX}^2 + M_{uY}^2 + 0.75M_Z^2}$$

$$= \sqrt{\mathbf{0}^2 + \mathbf{0}^2 + \mathbf{0}.75 * \mathbf{133907.55^2}} = \mathbf{115967} (N)$$

$$d_D \ge \sqrt[3]{\frac{M_{tdD}}{0.1.[\sigma]}}$$

$$\sqrt[3]{\frac{115*967}{0.1*50}} = 28.5, d_D \ge 28.5 \ (mm)$$

 \Rightarrow Chọn d_D tăng thêm 1 khoảng theo hệ số an toàn (5 -> 10mm)

$$=>$$
 Chọn $d_D = 35 \text{ (mm)}$

TAI E:

$$M_{tdE} = \sqrt{M_{uX}^{2} + M_{uY}^{2} + 0.75M_{Z}^{2}}$$

$$= \sqrt{11275^{2} + 0^{2} + 0.75 * 133907.55^{2}} = 161413 (N)$$

$$d_{E} \ge \sqrt[3]{\frac{M_{tdE}}{0.1.[\sigma]}}$$

$$\sqrt[3]{\frac{161413}{0.1*50}} = 31.8, d_E \ge 31.5 \ (mm)$$

 \Rightarrow Chọn d_E tăng thêm 1 khoảng theo hệ số an toàn (10 -> 15mm)

=> Chọn $d_E=45~(mm)=d_G~($ Cùng lắp ổ lăn)

TAIF:

$$M_{tdF} = \sqrt{M_{uX}^2 + M_{uY}^2 + 0.75M_Z^2}$$

$$= \sqrt{87904.8^2 + 471.69^2 + 0.75 * 133907.55^2} = 145519 (N)$$

$$d_F \ge \sqrt[3]{\frac{M_{tdF}}{0,1.[\sigma]}}_{u}$$

$$\sqrt[3]{\frac{145519}{0.1 * 50}} = 30.8, d_F \ge 30.8 \ (mm)$$

 \Rightarrow Chọn d_F tăng thêm 1 khoảng theo hệ số an toàn (15 -> 20mm)

=> Chọn d_F = 50 (mm) (Có rãnh then)

TRUC I:

$$d_A = 30 \ mm, l_{dA} = \frac{a}{2} = \frac{54}{2} = 27mm$$

$$d_B = 40 \ mm, l_{dB} = \frac{a}{2} + \frac{b}{2} = 54 \ mm$$

$$d_C = 30 \ mm, l_{dC} = \frac{b}{2} = \frac{54}{2} = 27 \ mm$$

TRUC II:

$$d_D = 35 \ mm, l_{dD} = \frac{c}{2} = \frac{75}{2} = 37.5 \ mm$$
 $d_E = 45 \ mm, l_{dE} = \frac{c}{2} + \frac{a}{2} = \frac{75}{2} + \frac{54}{2} = 64.5 \ mm$
 $d_F = 50 \ mm, l_{dF} = \frac{a}{2} + \frac{b}{2} = 54 \ mm$
 $d_G = 45 \ mm, l_{dG} = \frac{b}{2} = \frac{54}{2} = 27 \ mm$

6. TÍNH TOÁN THEN

TRUC I:

Tại vị trí lắp bánh răng Z_1 (B), có $d_B = 40$ (mm), Tra bảng các thông số của then bằng (7-23)

b = 12mm, h = 8mm, t1 = 5mm

Theo biểu đồ nội lực, ta có $M_Z = 44625$ (N.mm)

Úng suất dập $[\sigma]_d$ và cắt $[\tau]_c$ cho phép của mối ghép then Bảng (7-20)

Mối ghép	Vật	Ứng suất	Tính chất tải trọng			
gnep	liệu		Tĩnh	Va đập nhẹ	Va đập mạnh	
Cố định	Thép		150	100	50	
Coupin	Gang	<mark>[σ]</mark> ₄	80	53	27	
Di động	Thép		50	40	30	
Thép, Gang		[τ] _c	120	87	54	

Tra bản ta có:

 $[\sigma]d=150(N/mm^2)$

 $[\tau]c=120(N/mm^2)$

TRUC I:

Đường kính trục lắp then bằng (lắp bánh răng Z_1): $d_B=40$ mm Các thông số của then bằng: b=12mm, h=8mm, t1=5mm Moment xoắn $M_Z=44635.85$ (N.mm) Ứng suất cho phép: $[\sigma]_d=150$ (N/mm²) $[\tau]_c=120$ (N/mm²)

Xác định chiều dài then bằng theo điều kiện bền dập:

$$\sigma_{d} = \frac{2M_{z}}{dtl} \leq \left[\sigma\right]_{d} \Longrightarrow l \geq \frac{2.M_{Z}}{d.t.\left[\sigma\right]_{d}}$$

$$=\frac{2*44635.85}{40*5*150}=2.9 mm$$

Xác định chiều dài then bằng theo điều kiện bền cắt:

$$\tau_{c} = \frac{2M_{z}}{dbl} \leq \left[\tau\right]_{c} \Longrightarrow l \geq \frac{2M_{z}}{d.b.\left[\tau\right]_{c}}$$

$$=\frac{2*44635.85}{40*12*120}=1.5 mm$$

⇒ Chọn chiều dài then bằng 1=30.

TRUC II:

Tại vị trí lắp đĩa xích (D), có $d_D = 35 mm$ Tra bảng các thông số của then bằng (7-23)

 $b=10mm,\,h=8mm,\,t1=5mm.$ Theo biểu đồ nội lực, ta có $M_Z=133907.55\;(N.mm)$

Úng suất dập $[\sigma]_d$ và cắt $[\tau]_c$ cho phép của mối ghép then Bảng (7-20)

Mối ghép	Vật liệu	Úng suất	Tính chất tải trọng			
			Tĩnh	Va đập nhẹ	Va đập mạnh	
Cố định	Thép		150	100	50	
Codim	Gang	<mark>[σ]</mark> ₫	80	53	27	
Di động	Thép		50	40	30	
Thép, Gang		[τ] _c	120	87	54	

Tra bản ta có:

$$[\sigma]d=150(N/mm^2)$$

$$[\tau]c=120(N/mm^2)$$

Đường kính trục lắp then bằng (lắp đĩa xích): $d_D = 35 mm$ Các thông số của then bằng: b = 10 mm, h = 8 mm, t1 = 5 mm Moment xoắn MZ = 133875 (N.mm) Ứng suất cho phép: $[\sigma]_d = 150$ (N/mm²) $[\tau]_c = 120$ (N/mm²)

Xác định chiều dài then bằng theo điều kiện bền dập:

$$\sigma_d = \frac{2M_z}{dtl} \le [\sigma]_d \Longrightarrow l \ge \frac{2.M_Z}{d.t.[\sigma]_d}$$

$$=\frac{2*133907.55}{35*5*150}=10.2 \, mm$$

Xác định chiều dài then bằng theo điều kiện bền cắt:

$$\tau_{c} = \frac{2M_{z}}{dbl} \le \left[\tau\right]_{c} \Longrightarrow l \ge \frac{2M_{z}}{d.b.\left[\tau\right]_{c}}$$

$$=\frac{2*133907.55}{35*10*120}=6.37 mm$$

⇒ Chọn chiều dài then bằng l = 25 mm

Tại vị trí lắp bánh răng Z_2 (F), có $d_F = 50 mm$ Tra bảng các thông số của then bằng (7-23)

Tra bảng các thông số của then bằng b=16mm, h=10mm, t1=6mm Theo biểu đồ nội lực, ta có MZ=133875 (N.mm)

Úng suất dập $[\sigma]_d$ và cắt $[\tau]_c$ cho phép của mối ghép then Bảng (7-20)

Mối ghép	Vật liệu	Úng suất	Tính chất tải trọng			
			Tĩnh	Va đập nhẹ	Va đập mạnh	
Cố định	Thép		150	100	50	
Coulin	Gang	<mark>[σ]</mark> ₄	80	53	27	
Di động	Thép		50	40	30	
Thép, Gang		[τ] _c	120	87	54	

Tra bản ta có:

$$[\sigma]d=150(N/mm^2)$$

$$[\tau]c=120(N/mm^2)$$

Đường kính trục lắp then bằng (lắp bánh rang Z_2): $d_F = 50 mm$ Các thông số của then bằng: b = 16 mm, h = 10 mm, t1 = 6 mm Moment xoắn MZ = 133875 (N.mm) Ứng suất cho phép: $[\sigma]d = 150$ (N/mm²) $[\tau]c = 120$ (N/mm²)

Xác định chiều dài then bằng theo điều kiện bền dập:

$$\sigma_{d} = \frac{2M_{z}}{dtl} \le \left[\sigma\right]_{d} \Longrightarrow l \ge \frac{2M_{Z}}{d.t.\left[\sigma\right]_{d}}$$

$$= \frac{2 * 133907.55}{50 * 5.5 * 150} = 6.5 \, mm$$

Xác định chiều dài then bằng theo điều kiện bền cắt:

$$\tau_{c} = \frac{2M_{z}}{dbl} \le \left[\tau\right]_{c} \Longrightarrow l \ge \frac{2M_{z}}{d.b.\left[\tau\right]_{c}}$$

$$=\frac{2*133907.55}{50*14*120}=3.2 \ mm$$

7. TÍNH TOÁN Ổ LĂN

7.1. TRỤC I

Đường kính ngõng trục $d_A = d_C = 30 \text{ mm}$

Chọn Ô bi đỡ chặn góc $\beta=12$ độ , Kiểu 36000

Thời gian ổ lăn làm việc: h =5*300*2*8= 24000 giờ

 $P_{a1} = 356$ (N), $R_{YA} = 412,3$ (N), $R_{YC} = 237,7$ (N), $R_{XA} = 875$ (N), $R_{XC} = 875$ (N)

$$R_A = \sqrt{R_{XA}^2 + R_{YA}^2}$$

$$= \sqrt{873.5^2 + 237.2^2} = 905 N$$

$$R_C = \sqrt{R_{XC}^2 + R_{YC}^2}$$

$$= \sqrt{873.5^2 + 41.8^2} = 966 \, N$$

$$S_A = 1.3 \cdot R_A \cdot \tan \beta$$

$$= 1.3 * 905 * tan(12^\circ) = 250 N$$

$$S_C = 1.3 \cdot R_C \cdot \tan \beta$$

$$= 1.3 * 966 * tan(12^\circ) = 267 N$$

Phương án 1:

$$\mathbf{A}_{\mathrm{t}1} = \mathbf{P}_{\mathrm{a}1} - \mathbf{S}_{\mathrm{A}} + \mathbf{S}_{\mathrm{C}}$$

$$= 371 + 250 - 267 = 354 N$$

Phương án 2:

$$\mathbf{A}_{t2} = \mathbf{P}_{a1} + \mathbf{S}_{A} - \mathbf{S}_{C}$$

$$= 371 - 250 + 267 = 388 N$$

$$A_{t2} > A_{t1} > 0 \Longrightarrow A_t$$
 tác dụng vào A

Vậy ta cần tính lực cắt Q_A và Q_C , khi tính Q_A có lực dọc trục A_t , khi tính Q_C không có lực dọc trục A_t

Ta chọn $A_t = A_{t1}$ để tính vì $A_{t1} < A_{t2}$

 K_t : hệ số phụ thuộc vào tính chất của tải trọng tác dụng lên ổ lăn => k_t =1

 K_n : hệ số phụ thuộc nhiệt độ sinh ra trong ổ lăn => k_n =1

 K_v : hệ số động phụ thuộc vào vòng quay => k_v =1

m: hệ số chuyển tải trọng dọc trục sang tải trọng hướng tâm=> m=1,5

$$Q_A = (R_A * K_V + m * A_{t1}) * K_t * K_n$$

$$= (905 * 1 + 1.5 * 354) * 1.1 = 1436N$$

$$Q_C = (R_C * K_V + m*0)*K_t *K_n$$

$$= (966 * 1 + 1.5 * 0) * 1.1 = 966 N$$

Ta thấy $Q_A > Q_C$ nên ta lấy Q_A thay vào công thức tính Hệ số tải trọng C_t

$$C_t = Q_A * (n*h)^{0.3}$$

$$= 143.6 * (483.3 * 24000)^{0.3} = 18901 \, daN$$

Dựa vào bảng 17P chọn ổ bi đỡ chặn cỡ nhẹ có: d=30mm, kí hiệu: 6206, $C_{\text{bång}}$ =27000, có đường kính ngoài D=62 mm, chiều rộng B=16 mm.

7.2 TRỤC II:

Thời gian làm việc 5 năm, năm 350 ngày, ngày 2 ca, ca 9h

Tốc độ quay của trục : $n_{II} = 483,3 \text{ (v/p)}$

Đường kính ngõng trục $d_E = d_G = 45 \text{ mm}$

Chọn Ô đũa đỡ chặn góc $\beta = 11.3$, Kiểu 7000

 $P_{a2} = 371$ (N), $R_{XE} = 1302$ (N), $R_{YE} = 2879$ (N), $R_{XG} = 1302$ (N), $R_{YG} = 1860$ (N)

Tính giá trị các lực cần thiết:

$$R_E = \sqrt{R_{XE}^2 + R_{YE}^2}$$

$$= \sqrt{873.5^2 + 1948.3^2} = 2135 N$$

$$R_G = \sqrt{R_{XG}^2 + R_{YG}^2}$$

$$= \sqrt{873.5^2 + 1101.3^2} = 1406 N$$

$$S_E = 1,3 \cdot R_E \cdot \tan \beta$$

$$= 1.3 * 2135 * \tan(11^{\circ}30') = 564.7 N$$

$$S_G = 1,3 \cdot R_G \cdot \tan \beta$$

$$= 1.3 * 1460 * \tan(11^{\circ}30') = 371.9 N$$

Phương án 1:

$$A_{t1} = P_{a2} + S_E - S_G$$

= 371 - 564.7 + 371.9 = 178.2 N

Phương án 2:

$$A_{t2} = P_{a2} - S_E + S_G$$

= 371 + 564.7 - 371.9 = 563.8 N

 $A_{t1} > A_{t2} > 0 \Longrightarrow A_t \text{ tác dụng vào } G$

Vậy ta cần tính Q_E và Q_G , khi tính QE không có lực dọc trục A_t , khi tính Q_G có lực dọc trục A_t

Ta chọn $A_t = A_{t2}$ để tính vì $A_{t2} < A_{t1}$

 K_t : hệ số phụ thuộc vào tính chất của tải trọng tác dụng lên ổ lăn => k_t =1

 K_n : hệ số phụ thuộc nhiệt độ sinh ra trong ổ lăn => $k_n=1$

 K_v : hệ số động phụ thuộc vào vòng quay => k_v =1

m: hệ số chuyển tải trọng dọc trục sang tải trọng hướng tâm=> m=1,8

$$Q_E = (R_E * K_V + m*0)*K_t *K_n$$

$$= (2135 * 1 + 1.8 * 0) * 1 * 1 = 2135N = 213.5 daN$$

$$Q_G = (R_G * K_V + m * A_{t2}) * K_t * K_n$$

$$= (1406 * 1 + 1.8 * 178.2) * 1 * 1 = 1726.8 N = 172.7 daN$$

Ta thấy $Q_E > Q_G$ nên ta lấy Q_E thay vào công thức tính Hệ số tải trọng C_t

$$C_t = Q_E * (n_{II} * h)^{0.3}$$

$$= 213.5 * (156.9 * 24000)^{0.3} = 200522 daN$$

Dựa vào bảng 18P chọn ổ côn đỡ chặn cỡ đặc biệt nhẹ có: d=45 (mm), kí hiệu: 7109, Cbảng =62000, có đường kính ngoài D=75 (mm), chiều rộng B=19 (mm)

Tính toán các kích thước của vỏ hộp:

Với A là khoảng cách trục của 2 bánh răng trụ răng nghiêng => A=102,3

- 1. Chọn vỏ hộp đúc.
- 2.Chiều dày thành thân hộp

$$\delta = 0.025 \text{A} + 1 \text{ mm} = 0.025*102.2 + 1 = 3.55 \text{ mm}, \text{ lấy } \delta = 8 \text{ mm}$$

3. Chiều dày thành nắp hộp

$$\delta 1 = 0.02A + 1 \text{ mm} = 0.02.102.2 + 1 = 3.044 \text{ mm}, \text{ lấy } \delta 1 = 8 \text{ mm}$$

4. Chiều dày mặt bích dưới của than.

$$b = 1,5\delta. = 1,5 . 8 = 12 mm$$

5. Chiều dày mặt bích trên của nắp.

$$b1 = 1.5 \delta 1. = 1.5 \cdot 8 = 12 \text{ mm}$$

6. Chiều dày đáy hộp không có phần lồi.

$$p = 2,35$$
. $\delta = 2,35$. $\delta = 18,8$ mm

7. Chiều dày đáy hộp có phần lồi.

$$p1 = 1,5. \delta = 1,5. 8 = 12 \text{ mm}$$

$$p2 = (2,25 \ 2,75) \ \delta = 2,25 \ . \ 8 = 18 \ mm$$

8. Chiều dày gân ở thân hộp.

$$m = (0.85 \div 1) . \delta 1 = 8 mm$$

9. Đường kính bu lông nền.

dn = 12 mm (bång 10-13)

10. Đường kính các bu lông.

 \mathring{O} cạnh \mathring{o} : $d_1 = 0.7$. dn = 0.7.12 = 8.4 mm

Ghép nắp với thân : $d2 = (0,5 \div 0,6)dn = 8 \text{ mm}$

Ghép nắp cửa thăm : $d4 = (0,3 \div 0,4) dn = 6 \text{ mm}$

11. Số lượng bu lông nền

n = 4 (bång 10-3)

CHON CÁC CHI TIẾT KHÁC:

Bu lông vòng:

Tra bảng 18-3b, ứng với A = 102,3mm, ta xác định được trọng lượng của hộp giảm tốc là 80kg.

Tra bảng 10-11a, theo phương án b, ta chọn bu lông vòng có kích thước là M8 (nâng được 160kg).

Que thăm dầu.

Nút tháo dầu. kích thước tra bảng 10-14.

Nắp cửa thăm.