CS 577 Final Project

Tania Chakraborty, Jihyun Pyun, Poonyapat Sinpanyalert

Introduction

- Goal: classification
 - Challenging due to the length of the articles and subtle indicators of political leanings.
- **Solution**: Classify other features of the text and use the results as input for a neural model.
 - The approach is a form of multi-task learning, with disjoint datasets used for training.

Methods - naive models

Political stance classifier

- Model: LSTM with GloVe 50 embeddings
- Input: subset of 600,000 news articles
- Output: 2 categories
 - left and right

Hyperpartisanism classifier

- Model: LSTM with GloVe 50 embeddings
- **Input**: subset of 600,000 news articles
- Output: {0,1} hyperpartisan (or not {1,0})

Methods (Cont.)

Political tweets stance classifier

- Models: NN, RNN
- Input representation: TF-IDF, word embedding
- Output: three stance classes
 - Republican
 - Democrats
 - Neutral

Politically biased tweets classifier

- Model: LSTM with Glove embeddings
- Input: 5000 posts from the social media accounts of politicians
- Output: neutral, partisan

Experiments

Predicting political stance

Architecture	Baseline (random)	Training Accuracy	Validation Accuracy
LSTM with only text as input	50%	90%	53.80%
LSTM with NER	50%	68.2%	56.4%
LSTM with NER and election tweet classifier	50%	68.2%	56.4%

Experiments (Cont.)

Predicting hyperpartisanism

Architecture	Baseline (random)	Training Accuracy	Validation Accuracy
LSTM with only text as input	50%	84%	55.68%
LSTM with NER	50%	50%	50%

Discussion

- **Challenges** classifiers from our twitter datasets did not improve performance of LLVM
- The primary intuition: CRF/structured learning approach
- **If more time is allowed,** run the classifier over shorter spans of the news article and then use the aggregated result
- **Given years,** learn to model dependencies that exist in the world and use these dependencies for a prediction task
- Other idea learn the dependencies as we train our model