GenX3[™] 600V IGBT with Diode

IXGH48N60B3D1

Medium speed low Vsat PT IGBTs 5-40 kHz switching

V _{CES}	=	600V
C110	=	48A
V _{CE(sat)}	≤	1.8V

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _c = 25°C to 150°C	600	V	
V _{CGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GE} = 1M\Omega$	600	V	
V _{GES}	Continuous	± 20	V	
V _{GEM}	Transient	± 30	V	
I _{C110}	T _c = 110°C	48	A	
I _{D110}	$T_c = 110^{\circ}C$	30	А	
I _{CM}	$T_c = 25$ °C, 1ms	280	Α	
SSOA	$V_{GE} = 15V, T_{VJ} = 125^{\circ}C, R_{G} = 5\Omega$	I _{CM} = 120	A	
(RBSOA)	Clamped inductive load @ ≤ 600V			
P _c	T _C = 25°C	300	W	
T,		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
Т,	1.6mm (0.062 in.) from case for 10s	300	°C	
T _{SOLD}	Plastic body for 10 seconds	260	°C	
M _d	Mounting torque	1.13/10	Nm/lb.in.	
Weight		6	g	

Symbol Test Conditions (T _J = 25°C unless otherwise specified)		Characteristic Values Min. Typ. Max.			
BV _{CES}	I_{C} = 250 μ A, V_{GE} = 0V	600		V	
V _{GE(th)}	$I_{_{\mathrm{C}}}$ = 250 μ A, $V_{_{\mathrm{CE}}}$ = $V_{_{\mathrm{GE}}}$	3.0		5.0 V	
I _{CES}	$V_{CE} = V_{CES}$ $V_{GE} = 0V$ $T_{J} = 125^{\circ}C$			300 μA 1.75 mA	
I _{GES}	$V_{CE} = 0V$, $V_{GE} = \pm 20V$			±100 nA	
V _{CE(sat)}	$I_{\rm C}=32A,V_{\rm GE}=15V,{\rm Note}1$			1.8 V	

TO-247(IXGH)

$$G = Gate$$
 $C = Collector$ $E = Emitter$ $TAB = Collector$

Features

- Optimized for low conduction and switching losses
- Square RBSOA
- Anti-parallel ultra fast diode
- International standard package

Advantages

- High power density
- Low gate drive requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

Symbol	Symbol Test Conditions Characteristic			Values	;
$(T_{_{\rm J}} = 25^{\circ}\text{C unless otherwise specified})$ Min.		Min.	Тур.	Max.	
g _{fs}	$I_{\rm C} = 30$ A, $V_{\rm CE} = 10$ V, Note 1	28	46		S
C _{ies}			3980		рF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		190		рF
C _{res}			45		рF
$\overline{\mathbf{Q}_{g}}$			115		nC
\mathbf{Q}_{ge}	$I_{\rm C} = 40 \text{A}, V_{\rm GE} = 15 \text{V}, V_{\rm CE} = 0.5 \bullet V_{\rm CES}$		21		nC
Q_{gc}			40		nC
t _{d(on)}			22		ns
t _{ri}	Inductive Load, T _J = 25°C		25		ns
E _{on}	$I_{\rm C} = 30A, V_{\rm GE} = 15V$		0.84		mJ
$\mathbf{t}_{d(off)}$	$V_{CE} = 480V, R_{G} = 5\Omega$		130	200	ns
t _{fi}	CE CE COT, L.G		116	200	ns
E _{off}			0.66	1.20	mJ
t _{d(on)}			19		ns
t _{ri}	Inductive Load, T _J = 125°C		25		ns
E _{on}	$I_{\rm C} = 30$ A, $V_{\rm GE} = 15$ V		1.71		mJ
$\mathbf{t}_{d(off)}$	$V_{CF} = 480V, R_{c} = 5\Omega$		190		ns
t _{fi}	CE - 700 V, 11 _G - 352		157		ns
E _{off}			1.30		mJ
R _{thJC}				0.42 °	C/W
R _{thCS}			0.21	0	C/W

Reverse Diode (FRED) (D1 Version ONLY)

Characteristic Values

 $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$

Symbol	Test Conditions	Min.	Тур.	Max.
V _F	I _F = 30A, V _{GE} = 0V, Note 1			2.8 V
•	$T_J = 150$ °C		1.6	V
I _{RM}	$I_F = 30A$, $V_{GE} = 0V$, $V_R = 100V$ -di_/dt =100A/µs		4	А
t _{rr}	$I_F = 1A$; -di/dt = 100A/ μ s, $V_R = 30V$ $T_J = 100$ °C		100	ns
R _{thJC}				1.5 °C/W
R _{thCS}			1.5	°C/W

Note 1: Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions and dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 125°C

Fig. 4. Dependence of V_{CE(sat)} on Junction Temperature

Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage

Fig. 6. Input Admittance

Fig. 7. Transconductance

Fig. 8. Gate Charge

Fig. 9. Capacitance

Fig. 10. Reverse-Bias Safe Operating Area

Fig. 11. Maximum Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions and dimensions.

Fig. 12. Inductive Switching Energy Loss vs. Gate Resistance

Fig. 14. Inductive Switching Energy Loss vs. Junction Temperature

Fig. 16. Inductive Turn-off Switching Times vs. Collector Current

Fig. 13. Inductive Switching Energy Loss vs. Collector Current

Fig. 15. Inductive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Inductive Turn-off Switching Times vs. Gate Resistance

Fig. 18. Inductive Turn-on Switching Times vs. Gate Resistance

Fig. 20. Inductive Turn-on Switching Times vs. Junction Temperature

Fig. 19. Inductive Turn-on Switching Times vs. Collector Current

IXGH48N60B3D1

LIXYS

Fig. 21. Forward current I_F versus V_F

Fig. 22. Reverse recovery charge Q_r versus -di_F/dt

Fig. 23. Peak reverse current I_{RM} versus -di₋/dt

Fig. 24. Dynamic parameters \mathbf{Q}_{r} , \mathbf{I}_{RM} versus \mathbf{T}_{VJ}

Fig. 25. Recovery time t_{rr} versus $-di_{F}/dt$

Fig. 26. Peak forward voltage V_{FR} and t_{r} versus di_{r}/dt

Fig. 27. Transient thermal resistance junction to case