A bayesian semiparametric archimedean copula

Luis E. Nieto Barajas

(joint with R. Hoyos)

Department of Statistics ITAM

ISBA 2022 - July 1, 2022

1/24

 Model
 Inference
 Data analysis

 00000
 000
 0000000000

Contents

- 1 Introduction
- 2 Model
- 3 Inference
- 4 Data analysis

Copulas

Introduction

- Let $\varphi(\cdot): [0,1] \to [0,\infty)$ be a continuous, strictly decreasing function s.t. $\varphi(1)=0.$
- Let $\varphi^{-1}(\cdot)$ be the pseudo-inverse of φ , where $\varphi(t)=0$ for $t>\varphi(0)$. If $\varphi(0)=\infty$ the generator is called strict.
- An archimedean copula $C:[0,1]^2 \rightarrow [0,1]$ with generator φ defined as

$$C(u, v) = \varphi^{-1} \left(\varphi(u) + \varphi(v) \right) \tag{1}$$

- Require that φ is convex so C(u, v) is well defined
- Properties : symmetric, associative and $C(u, u) < u \ \forall u \in (0, 1)$
- Kendall's tau:

$$\kappa_{\tau} = 1 + 4 \int_0^1 \frac{\varphi(t)}{\varphi'(t^+)} dt, \tag{2}$$

where $\varphi'(t^+)$ denotes right derivative of φ at t.

Survival analysis

- We realised that φ^{-1} is a decreasing function from $[0,\infty)$ to [0,1] so it behaves as a survival function
- Idea : propose a semi/nonparametric inverse generator φ^{-1} by using survival analysis ideas
- We recall some basic definitions :
 - h(t) is a hazard rate, i.e., a nonnegative function with domain $[0, \infty)$
 - $H(t) = \int_0^t h(s) ds$ is a cumulative hazard rate s.t. $H(t) \to \infty$ as $t \to \infty$
 - $S(t) = \exp\{-H(t)\}$ is a survival function which decreases from $[0, \infty)$ to [0, 1]
- Therefore S(t) behaves like an inverse generator $\varphi^{-1}(t)$
- Plus the convexity condition (not free)
- Simple case : Let $h(t) = \theta$ for all $t \Rightarrow S(t) = e^{-\theta t} = \varphi(t)^{-1} \Rightarrow \varphi(t) = -(\log t)/\theta$. Using (1) we get C(u, v) = uv is the independent copula (and does not depend on θ).

Main proposal

■ Consider a partition of the positive real line $0 = \tau_0 < \tau_1 < \cdots < \tau_K = \infty$. Then the first derivative of the hazard rate is

$$h'(t) = \sum_{k=1}^K \theta_k I(\tau_{k-1} < t \le \tau_k)$$
 with $\theta_K = 0$

The hazard rate becomes

$$h(t) = \sum_{k=1}^{K} (A_k + \theta_k t) I(\tau_{k-1} < t \le \tau_k)$$
 with $\theta_0 = h(0) > 0$

The cumulative hazard function is

$$H(t) = \sum_{k=1}^{K} \left(B_k + A_k t + \frac{\theta_k t^2}{2} \right) I(\tau_{k-1} < t \le \tau_k)$$

where
$$A_1 = \theta_0$$
, $A_k = \theta_0 + \sum_{j=1}^{k-1} (\theta_j - \theta_{j+1}) \tau_j$, $B_1 = 0$ and $B_k = \sum_{i=2}^k (\theta_i - \theta_{j-1})^{\frac{\tau_j^2 - 1}{2}}$ for $k = 2, \dots, K$

Main proposal

Proposition

Consider the semiparametric inverse generator

$$\varphi^{-1}(t) = S(t) = \exp\{-H(t)\}\$$

and assume that $\{\theta_k, k=0,1,\ldots,K\}$ are such that $\theta_0>0$, $\theta_K=0$ and satisfy conditions (C1) and (C2) given by

- (C1) $A_k + \theta_k t > 0$, for $t \in (\tau_{k-1}, \tau_k]$ and for all k = 1, ..., K.
- (C2) $(A_k + \theta_k t)^2 > \theta_k$, for $t \in (\tau_{k-1}, \tau_k]$ and for all $k = 1, \dots, K$.

Then,

- (i) $\varphi^{-1}(t)$ is a continuous and injective function of t.
- (ii) $\varphi^{-1}(t)$ is a convex function,
- (iii) $\varphi^{-1}(t)$ induces a strict generator.

Main proposal

■ By property (i) in previous Proposition, we can obtain

$$\varphi(t) = \sum_{k=1}^{K} \left(\left[\operatorname{sgn}(\theta_k) \left\{ \frac{2}{\theta_k} \left(\frac{A_k^2}{2\theta_k} - B_k - \log(t) \right) \right\}^{1/2} - \frac{A_k}{\theta_k} \right] I(\theta_k \neq 0) - \frac{B_k + \log(t)}{A_k} I(\theta_k = 0) \right) I\left(\varphi^{-1}(\tau_k) \leq t < \varphi^{-1}(\tau_{k-1})\right).$$

■ Kendall's tau satisfies $\kappa_{\tau} \in (-1,1)$ and has expression

$$\kappa_{\tau} = -1 + 2 \sum_{k=1}^{K} A_k \int_{\tau_{k-1}}^{\tau_k} \exp\left(-2B_k - 2A_k t - \theta_k t^2\right) dt.$$

- If $K = 1 \Rightarrow$ independence copula
- For larger $K \Rightarrow$ semiparametric flexible copula

Simulated illustrations

Figure – Functions h'(t) (first panel), h(t) (second panel) and $\varphi^{-1}(t)$ (third panel) for two scenarios of $\{\theta_k\}$. All negative values (solid line), and all positive values (dotted line).

 Model
 Inference
 Data analysis

 0
 0000 €0
 000
 000000000

Simulated illustrations

Figure – Kendall's tau prior distributions induced by our model, under three different scenarios.

Non uniqueness

■ Nelsen (2006): new generators can be defined by a scale transformation

$$\phi^{-1}(t) = \varphi^{-1}(\beta t) \iff \phi(t) = \varphi(t)/\beta, \text{ for } \beta > 0$$

- Di Bernardino & Rullière (2013) : $\phi(t)$ and $\varphi(t)$ induce exactly the same copula
- Moreover, in terms of the hazard rate functions, $h_{\phi}(t)$ and $h_{\varphi}(t)$, induced by generators ϕ and φ , the relationship becomes

$$h_{\phi}(t) = \beta h_{\varphi}(\beta t).$$

 In order to make our semiparametric generator identifiable we impose the new constraint

(C3)
$$\theta_0 = h(0) = 1$$
.

Likelihood

■ The copula density $f_C(u, v)$ becomes

$$f_{\mathcal{C}}(u,v) = \varphi^{-1(\prime\prime)} \left(\varphi(u) + \varphi(v) \right) \varphi^{(\prime)}(u) \varphi^{(\prime)}(v),$$

where

$$\varphi^{-1(\prime\prime)}(t) = \sum_{k=1}^{K} \left\{ (A_k + \theta_k t)^2 - \theta_k \right\} \exp \left\{ -\left(B_k + A_k t + \frac{\theta_k}{2} t^2\right) \right\} I(\tau_{k-1} < t \le \tau_K)$$

and

$$\varphi^{(\prime)}(t) = -\sum_{k=1}^{K} \frac{1}{t} \left(-2\theta_k B_k + A_k^2 - 2\theta_k \log(t) \right)^{-1/2} I\left(\varphi^{-1}(\tau_k) \le t < \varphi^{-1}(\tau_{k-1}) \right).$$

■ Let (U_i, V_i) , i = 1, ..., n be a bivariate sample from $f_C(u, v)$. Then the likelihood for θ is just lik $(\theta \mid \mathbf{u}, \mathbf{v}) = \prod_{i=1}^n f_C(u_i, v_i \mid \theta)$

Prior distributions

- Recall that θ must satisfy conditions : (C1), (C2), (C3) and $\theta_K = 0$.
- Prior : Spike and slab

$$f(\boldsymbol{\theta}) \propto \prod_{k=1}^{K-1} \left\{ \pi_0 I(\theta_k = 0) + (1 - \pi_0) \mathsf{N}(\theta_k \mid \mu_0, \sigma_0^2) \right\} I(\boldsymbol{\theta} \in \Theta)$$

■ We can thus define an independence test :

 $H_0: U$ and V independent $(\theta_1 = \cdots = \theta_{K-1} = 0)$ vs.

 $H_1: U$ and V dependent $(\theta_k \neq 0 \text{ for one } k)$

■ We report $P(H_1 \mid data)$ as an evidence in favour of dependence

Posterior distributions

■ Posterior conditionals : for k = 1, ..., K - 1

$$f(\theta_k \mid \boldsymbol{\theta}_{-k}, \text{data}) \propto \text{lik}(\boldsymbol{\theta} \mid \mathbf{u}, \mathbf{v}) f(\boldsymbol{\theta})$$

■ Suggest a MH step by sampling θ_k^* at iteration (r+1) from a random walk proposal dist.

$$\begin{split} q(\theta_k \mid \boldsymbol{\theta}_{-k}, \theta_k^{(r)}) &= \pi_1 I(\theta_k = 0) + (1 - \pi_1) \text{Un}(\theta_k \mid \max\{a_k, \theta_k^{(r)} - \delta c_k\}, \min\{b_k, \theta_k^{(r)} + \delta c_k\}) \\ \text{where } b_k &= \left(\theta_0 + \sum_{j=1}^{k-1} (\tau_j - \tau_{j-1}) \theta_j\right)^2 \text{ and } \\ a_k &= \max_{k \leq j \leq k-1} \left\{ \left(\sqrt{\theta_{j+1}} I(\theta_{j+1} \geq 0) - \theta_0 - \sum_{j=1, i \neq k}^{j} (\tau_i - \tau_{i-1}) \theta_i\right) / (\tau_k - \tau_{k-1}) \right\} \end{split}$$

- Parameters π_1 and δ are tuning parameters that control the acceptance rate
- We define $\{\tau_k\}$ via a Log- α partition defined by $\tau_k = -\alpha \log(1 k/K)$ for $k = 0, \ldots, K 1$, with $\alpha > 0$

Simulation study

Clayton copula with $\theta = -0.8$, n = 200

Figure – Posterior estimates of h(t) and $\varphi^{-1}(t)$, obtained with a Log-0.5 partition of size K=10.

14 / 24

Luis E. Nieto Barajas Archimedian copula ISBA 2022 – July 1, 2022

Simulation study

Clayton copula with $\theta = 1$, n = 200

Figure – Posterior estimates of h(t) and $\varphi^{-1}(t)$, obtained with a Log-6 partition of size K=10.

Simulation study

AMH copula with $\theta = 0.7$, n = 200

Figure – Posterior estimates of h(t) and $\varphi^{-1}(t)$, obtained with a Log-1 partition of size K=20.

Simulation study

AMH copula with $\theta = -0.7$, n = 200

Figure – Posterior estimates of h(t) and $\varphi^{-1}(t)$, obtained with a Log-6 partition of size K=10.

Simulation study

Gumbel copula with $\theta = 1.4$, n = 200

Figure – Posterior estimates of h(t) and $\varphi^{-1}(t)$, obtained with a Log-3 partition of size K=10.

Real data analysis

- We study the dependence between the age of a mother (X) and the weight of her child (Y)
- Concentrated on mothers of 35 years old and above in the year 2017 in Mexico
 City (n = 208)
- Transform the original data, (X_i, Y_i) , i = 1, ..., n, to the unit interval via a modified rank transformation : $U_i = \text{rank}(i, \mathbf{X})/n$ and $V_i = \text{rank}(i, \mathbf{Y})/n$ where

$$rank(i, \mathbf{X}) = k \iff X_i = X_{(k)}$$

for
$$i, k = 1, \ldots, n$$

- To avoid problems due to ties we first include a perturbation by adding a Un(-0.0, 0.01) to each coordinate
- The sample Kendall's tau value for the transformed data is $\tilde{\kappa}_{\tau} = -0.1162$.

Luis E. Nieto Barajas

Real data analysis

Figure - Scatter plots. Original data (left) and rank transformed data (right).

 Luis E. Nieto Barajas
 Archimedian copula
 ISBA 2022 – July 1, 2022
 20 / 24

 Introduction
 Model
 Inference
 Data analysis

 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○

Real data analysis

- Define partitions as Log- α with $\alpha \in \{0.3, 0.5, 0.9, 1, 2, ..., 10\}$ and $K \in \{10, 20\}$.
- For the prior we took : $\pi_0=0$, $\mu_0=-1$ and $\sigma_0^2=10$
- MCMC specifications :
 - For the proposal dist. $\pi_1 = 0$ and $\delta = 0.25 \Rightarrow$ an acceptance rate of around 30%.
 - Chains were ran for 20,000 iterations with a burn-in of 2,000 and keeping one of every 5th iteration

Real data analysis

Table - GOF measures for the real dataset

Part.Type	K	$Q_{\kappa_{\tau}}^{(0.025)}$	$\hat{\kappa}_{ au}$	$Q_{\kappa_{ au}}^{(0.975)}$	Sample $\tilde{\kappa}_{ au}$	LPML
Log-6	10	-0.212	-0.153	-0.092	-0.116	2.967
Log-8	10	-0.220	-0.153	-0.087	-0.116	2.294
Log-10	10	-0.208	-0.150	-0.094	-0.116	3.702
Log-6	20	-0.212	-0.153	-0.091	-0.116	0.461
Log-8	20	-0.217	-0.150	-0.097	-0.116	1.303
Log-10	20	-0.231	-0.158	-0.096	-0.116	2.046

 Luis E. Nieto Barajas
 Archimedian copula
 ISBA 2022 – July 1, 2022
 22 / 24

Real data analysis

Figure – Posterior estimates obtained with a Log-10 partition of size K = 10.

23 / 24

 Introduction
 Model
 Inference
 Data analysis

 ○○
 ○○○○○○
 ○○○○○○○○○○○○

References

- Di Bernardino, E. and Rullière, D. (2013). On certain transformation of Archimedean copulas: Application to non-parametric estimation of their generators. *Dependence Modeling* 1, 1–36.
- Hoyos-Argüelles, R. and Nieto-Barajas, L.E. (2020). A Bayesian semiparametric Archimedean copula. *Journal of Statistical Planning and Inference* 206, 298–311.
- Nelsen, R.B. (2006). *An introduction to copulas*. Springer, New York.

