CODES FOR CHAPTERS 2 AND 3

Chapters 2 and 3

fresnel.f, fresnel.cpp, fresnel.m

Subroutine fresnel (n, k, th, rhos, rhop, rho) calculates Fresnel reflectances from equation (2.113). Input: n = n and k = k are real and imaginary parts of the complex index of refraction, and th $(= \theta)$ is the off-normal angle of incidence (in radians).

Output: rhos (= ρ_{\perp}) and rhop (= ρ_{\parallel}) are perpendicular and parallel-polarized reflectance, respectively, while rho (= ρ) is the unpolarized reflectance.

Chapter 3

emdiel.f90, emdiel.cpp, emdiel.m

Function emdiel(n) calculates the unpolarized, spectral, hemispherical emissivity of an optical surface of a dielectric material from equation (3.82).

Input: n = n refractive index of dielectric.

emmet.f90, emmet.cpp, emmet.m

Function emmet(n,k) calculates the unpolarized, spectral, hemispherical emissivity of an optical surface of a metallic material from equation (3.77).

Input: n = n and k = k are the real and imaginary parts of the metal's complex index of refraction.

callemdiel.f90, callemdiel.cpp, emmet.m, callemdiel.exe

Program callemdiel is a stand-alone front end for function emdiel, prompting for input (refractive index *n*) and returning the unpolarized, spectral, hemispherical as well as normal emissivities.

callemmet.f90, callemmet.cpp, callemmet.m, callemmet.exe

Program callemmet is a stand-alone front end for function emmet, prompting for input (complex index of refraction n, k) and returning the unpolarized, spectral, hemispherical as well as normal emissivities.

dirreflec.f, dirreflec.cpp, dirreflec.m, dirreflec.exe

Program dirrecflec is a stand-alone front end for subroutine fresnel, calculating reflectivities for various incidence angles. The user is prompted to input the complex index of refraction, n and k, and the (equal) spacing of incidence angles $\Delta\theta$ (in degrees); the program then returns perpendicular polarized, parallel polarized, and unpolarized reflectivities, as well as unpolarized emissivities.

totem.f90, totem.cpp, totem.m

Program totem is a routine to evaluate the total, directional or hemispherical emittance or absorptance of an opaque material, based on an array of spectral data, by 10-point Gaussian quadrature.

Input (by changing data in the heading of function emlcl(y)):

N = number of data points for spectral emittance,

nrefr = refractive index of adjoining material (nrefr=1 for vacuum and gases),

T = temperature of material (for total emittance), or of gray irradiating source (for total absorptance), in K,

lambda(N) = N distinct wavelengths in ascending order, for which the spectral emittance is given, in μ m, eps(N) = N corresponding spectral emittances.

Output (printed to screen):

emitt = total directional or hemispherical emittance or absorptance.

Case 1: Total, directional emittance (eps contains spectral, directional values at temperature T): From equation (3.8)

$$\epsilon'(T, \hat{\mathbf{s}}) = \frac{1}{n^2 \sigma T^4} \int_0^\infty \epsilon'_{\lambda}(\lambda, T, \hat{\mathbf{s}}) E_{b\lambda}(T) \, d\lambda$$
$$= \int_0^1 \epsilon'_{\lambda}(\lambda(f), T, \hat{\mathbf{s}}) \, df, \tag{CC-3-1}$$

where, from equation (1.23)

$$f(n\lambda T) = \int_0^{\lambda} \frac{E_{b\lambda} d\lambda}{n^2 \sigma T^4}.$$
 (CC-3-2)

In order to write equation (CC-3-1) in terms of blackbody fraction f, wavelength must be known as a function of f (for given n and T), i.e., equation (CC-3-2) must be inverted. The 10 values of $(n\lambda T)$, corresponding to the 10 Gaussian quadrature points $f_i(n\lambda T)$ have been precalculated (using function bbfn) and are stored in array y(i). The total emittance is then calculated by expressing equation (CC-3-1) in quadrature form, or

$$\epsilon'(T, \hat{\mathbf{s}}) \simeq \sum_{i=1}^{10} \epsilon'_{\lambda}(\lambda_i, T, \hat{\mathbf{s}}) w_i,$$
 (CC-3-3)

where

$$\lambda_i = y_i / nT, \tag{CC-3-4}$$

and the w_i are Gaussian quadrature weights. This necessitates that ϵ'_{λ} must be known at very specific wavelengths, that are not ordinarily part of the given array. The "correct" value for ϵ'_{λ} is evaluated by linear interpolation between array values, assuming $\epsilon'_{\lambda} = \text{const} = \text{eps}(1)$ for $\lambda_i < \text{lambda}(1)$, and $\epsilon'_{\lambda} = \text{const} = \text{eps}(N)$ for $\lambda_i > \text{lambda}(N)$.

Case 2: Total, hemispherical emittance (eps contains spectral, hemispherical values at temperature T): From equation (3.10)

$$\epsilon(T) = \frac{1}{n^2 \sigma T^4} \int_0^\infty \epsilon_{\lambda}(\lambda, T) E_{b\lambda} d\lambda = \int_0^1 \epsilon_{\lambda}(\lambda(f), T) df$$

$$\simeq \sum_{i=1}^{10} \epsilon_{\lambda}(\lambda_i, T) w_i.$$
(CC-3-5)

Thus, the calculation is identical to Case 1.

Case 3: Total, directional absorptance (eps contains spectral, directional values at the surface temperature T_s , irradiation is assumed to come from a gray source at temperature T). From equations (3.23) and (3.31)

$$\alpha'(T_s, T, \hat{\mathbf{s}}) = \frac{1}{n^2 \sigma T^4} \int_0^\infty \epsilon_{\lambda}'(\lambda, T, \hat{\mathbf{s}}) E_{b\lambda}(T) d\lambda$$

$$= \int_0^1 \epsilon_{\lambda}'(\lambda(f), T_s) df \simeq \sum_{i=1}^{10} \epsilon_{\lambda}'(\lambda_i, T_s) w_i,$$
(CC-3-6)

and the calculation is again identical.

Case 4: Total, hemispherical absorptance (eps contains spectral, hemispherical values at surface temperature T_s ; irradiation is assumed to be gray and diffuse with source temperature T). Then, from equations (3.27) and (3.31)

$$\alpha(T_s, T) = \frac{1}{n^2 \sigma T^4} \int_0^\infty \epsilon_{\lambda}(\lambda, T_s) E_{b\lambda}(T) d\lambda$$

$$= \int_0^1 \epsilon_{\lambda}(\lambda(f), T_s) df \simeq \sum_{i=1}^{10} \epsilon_{\lambda}(\lambda_i, T_s) w_i.$$
(CC-3-7)

Examples

Two examples have been programmed into totem (or, rather, function emlcl):

1.: The material of Problem 3.1, with a step function in spectral emittance of

$$\epsilon_{\lambda} = \begin{cases} 0.5, \ \lambda < 5\mu \text{m}, \\ 0.3, \ \lambda > 5\mu \text{m}, \end{cases}$$

and a temperature of T = 500 K. For part a) nrefr=1.0, and for b) nrefr=2.0 (implemented here) This results in emitt=0.3435 for a) and emitt=0.4296 for b).

2.: Aluminum oxide, as given in Fig. 1-14, discretized into eight equally-spaced values (commented out as given here). For temperature of T = 500 K and nrefr=1.0 this results in emitt=0.7494.