

DM-Spring-2020-Q3-Grade

92.31% (12/13)

- Logistic Regression Model is used to describe
 - A Relationship between one categorical dependent variable and one or more (any) explanatory variables
 - B Relationship between one numeric dependent variable and one or more (any) explanatory variables
 - C Relationship between one categorical dependent variable and one explanatory variable
 - D Relationship between one categorical dependent variable and one or more numeric explanatory variables
 - E I do not know
- **2.** Why Linear Regression cannot be used to predict the binary response variable?
 - A Some of the estimates might be outside the [0,1] interval
 - B Coefficients of linear regression models do not exist
 - c There will be the multicollinearity
 - D All of the variants
 - E I do not know
- ✓ 3. The most common approach to estimate coefficients of logistic regression is
 - A The Maximum Likelihood
 - **B** Ordinary Least Squares
 - c Generalized Method of Moments
 - D I do not know
- 4. The model of Logistic Regression is
 - A $\ln(\lambda) = e^{(xb)}/(1+e^{(xb)})$
 - **B** $\ln(y)=e^{(xb)}/(1+e^{(xb)})$
 - Pr(y=1)=e^(xb)/(1+e^(xb))
 - **D** I do not know

	Α	lm()		
	В	glm()		
	C	flm()		
	D	logit()		
	E	I do not know		
/	6.	• Which one of these is the correct interpretation of the coefficient of Logistic Regression?		
	A	For a 1-unit increase in X, we expect a b1 unit increase in Y.		
	В	For a 1-unit increase in X, we expect b1 percentage increase in Y.		
	C	For a 1-percentage increase in X, we expect b1 percentage increase in Y.		
	D	Increasing X by one unit changes the log odds by b1		
	E	I do not know		
/	7.	Logistic Regression cannot be used to model the response variable which		
	A	has two categories		
	В	has more than two categories		
	C	is ordinal		
	D	is numeric		
	E	I do not know		
/	8.	Accuracy =		
	A	(TP+TN)/Total Negative (0) Positive (1) Negative (0) TN FP		
	В	TP/(TP+FN) Actual Positive (1) FN TP		

5. We can estimate Logistic Regression in R using the function

Predicted	

Negative (0)

TN

Negative (0)

Positive (1)

Positive (1)

FP

TP

/	9.	Sensitivity =
	^	(TD+TN)/To+

Α	(TP+TN)/Total
_	

c TN/(TN+FP)

D I do not know

c TN/(TN+FP)

D I do not know

/	10.	Your lecturer decided that you are cheating while you are not. It is
	A	Type 1 error (false positive)
	В	Type 2 error (false negative)
	C	I do not know
/		1Suppose the data with the number of observations equals to 142, where 89 observations belong to class 1, and another part to 0. Let the level 1 is the positive case. We performed the logit model and obtained the accuracy = 60%. Does the model have a high predictive power?
		Yes, because it is less than the non-information rate
		No, because it is less than the non-information rate
		Yes, because it is less than the non-information rate
		No, as a result of other reasons.
	E	The non-information rate? What is it?
/	12.	Is Logistic regression a supervised machine learning algorithm?
	A	Yes
		No
	C	I do not know
×	13.	By using MLE for estimating the coefficient in the Logistic Regression model
	A	we can obtain the unique formula for coefficients
	В	we can obtain the unique formula for coefficients only for 1-D case
	C	we cannot obtain the unique formula for coefficients
	D	I do not know