LECTURE &-A.

CROSS PRODUCT

 $\frac{\text{Recall}}{\text{Produces}}$: Taking the dot product of two vectors in \mathbb{R}^n

 $\underline{\mathsf{In}\ \mathbb{R}^3}$: there is another operation that produces a vector.

Definition: The cross product of two vectors $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$

in \mathbb{R}^3 is the vector

$$\vec{u} \times \vec{v} := \begin{bmatrix} u_2 u_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

Input: two vectors in IR3

Output: one vector in \mathbb{R}^3

How are we supposed to remember this?

- (a) Practice!
- (b) Thick #1: Memorise the first component $u_2v_3 u_3v_v$.
 Now you can deduce the second & third components by permuting the subscripts:

second: ugv, - u, vg

(c) Trick #2:

$$u_1$$
 v_2 v_3 v_3 (solid line) - (dashed line) u_1 v_1 v_2 v_3 e.g. 3rd comparent u_2 v_3 v_3 v_4 v_4 v_5 v_5 v_6 v_7 v_8 v_8 v_8 v_8 v_8 v_8 v_9 v_9

(d) Trick #3: we'll see a mnemonic later on using determinants.

Example #1 Let
$$\vec{a} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} 5 \\ 0 \\ 4 \end{bmatrix}$.

Then
$$\vec{a} \times \vec{b} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 5 \\ 6 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 4 - 2 \times 0 \\ 2 \times 5 - 3 \times 4 \\ 3 \times 0 - 1 \times 5 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ -5 \end{bmatrix}$$

Example #2: Recall the standard vectors $\vec{e}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\vec{e}_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Exercise: Find $\vec{e}_1 \times \vec{e}_2$, $\vec{e}_2 \times \vec{e}_3$, $\vec{e}_3 \times \vec{e}_1$.

Solution:
$$\vec{e}_1 \times \vec{e}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 - 0 \\ 0 - 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{e}_3.$$

Similarly, $\vec{e}_2 \times \vec{e}_3 = \vec{e}_1$; $\vec{e}_3 \times \vec{e}_4 = \vec{e}_2$.

Exercise:

Tor à, b e R3, is it true that àxb = bxà?

Solution: No!

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{bmatrix}$$

$$\vec{b} \times \vec{a} = \begin{bmatrix} b_2 a_3 - b_3 a_2 \\ b_3 a_1 - b_1 a_3 \\ b_1 a_2 - b_2 a_1 \end{bmatrix}$$

Properties of the cross product

Let vi, vi, vi e R3, ceR. men

(a)
$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$$
 anti-commutativity.

The order is important.

(b)
$$\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$$
 distributivity.

(c)
$$(c\vec{u}) \times \vec{v} = \vec{u} \times (c\vec{v}) = c(\vec{u} \times \vec{v})$$

(d)
$$\vec{u} \times \vec{u} = \vec{0}$$

Exercise: prove (d): $\vec{u} \times \vec{u} = \vec{0}$

Solution: Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
.

So $\vec{u} \times \vec{u} = \begin{bmatrix} u_2 u_3 - u_3 u_2 \\ u_3 u_1 - u_1 u_3 \\ u_1 u_2 - u_3 u_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 0 \end{bmatrix}$.

proof of
$$(f)$$
: We need to show $(\vec{u} \times \vec{v}) \cdot \vec{u} = 0$ $(\vec{u} \times \vec{v}) \cdot \vec{v} = 0$.

$$\begin{pmatrix} \vec{u} \times \vec{v} \end{pmatrix} \cdot \vec{u} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$= (u_2v_3 - u_3v_2)u_1 + (u_3v_1 - u_1v_3)u_2 + (u_1v_2 - u_2v_1)u_3$$

$$= u_1u_2v_3 - u_1v_2u_3 + v_1u_2u_3 - u_1u_2v_3 + u_1v_2u_3 - v_1u_2u_3$$

•
$$(\vec{u} \times \vec{v}) \cdot \vec{v}$$
 is similar.

= 0

D

Remark: There is no associative law for the cross product.

Example: We can show that $(\hat{e}_1 \times \hat{e}_1) \times \hat{e}_2 \neq \hat{e}_1 \times (\hat{e}_1 \times \hat{e}_2)$.

$$\vec{e}_{1} \times (\vec{e}_{1} \times \vec{e}_{2}) = \vec{e}_{1} \times \vec{e}_{3} = -(\vec{e}_{3} \times \vec{e}_{1}) = -\vec{e}_{2}.$$

Example: for \vec{a} , $\vec{v} \in \mathbb{R}^3$, simplify $(\vec{u} + \vec{v}) \times (\vec{u} - \vec{v})$ using the above properties.

Solution:
$$(\vec{u} + \vec{v})_{\times} (\vec{u} - \vec{v}) = \vec{u}_{\times} (\vec{u} - \vec{v}) + \vec{v}_{\times} (\vec{u} - \vec{v})$$
 [dist.]
$$= \vec{u}_{\times} \vec{u} - \vec{u}_{\times} \vec{v} + \vec{v}_{\times} \vec{u} - \vec{v}_{\times} \vec{v}$$
 [dist]

$$= \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$$

$$= a \overrightarrow{v} \times \overrightarrow{u}$$

Summary of the lecture:

The cross product of
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathbb{R}^3$ is the vector $\vec{u} \times \vec{v} := \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} \in \mathbb{R}^3$.

Satisfies nice properties

- · anti-commutativity
- · distributivity
- · uxu =0
- · ux is a mogonal to u & to v.
- · No associativity low.

You should be able to:

- · calculate cross products
- manipulate expressions involving cross products
 8- linear combinations using the properties histed above.