The formal demography of kinship: Two-sex models

Hal Caswell University of Amsterdam

IDEM 128 May 2023

The kinship model

The kin of Focal as a population

$$\mathbf{k}(x+1) = \mathbf{U}\mathbf{k}(x) + \beta(x)$$
$$\mathbf{k}(0) = \mathbf{k}_0$$

where

 $\mathbf{k}(x)$ = age distribution of a kin at age x of Focal¹

eta(x) = recruitment 'subsidy' at age x of Focal $= \begin{cases} \mathbf{0} & \text{no subsidy} \\ \mathbf{F} \mathbf{k}^*(x) & \text{subsidy from } \mathbf{k}^* \end{cases}$

 \mathbf{k}_0 = initial condition

Why kinship?

Dynamics of kin of Focal at age x

Symbol	Kin	i.c. k ₀	$\beta(x)$
а	daughters	0	Fe _x
b	granddaughters	0	Fa(x)
С	great-granddaughters	0	Fb(x)
d	mothers	π	0
g	grandmothers	$\sum_{i} \pi_{i} \mathbf{d}(i)$	0
h	great-grandmothers	$\sum_{i} \pi_{i} \mathbf{g}(i)$	0
m	older sisters	$\sum_{i} \pi_{i} \mathbf{a}(i)$	0
n	younger sisters	0	Fd(x)
р	nieces via older sisters	$\sum_i \pi_i \mathbf{b}(i)$	Fm(x)
q	nieces via younger sisters	0	Fn(x)
r	aunts older than mother	$\sum_{i} \pi_{i} \mathbf{m}(i)$	0
s	aunts younger than mother	$\sum_{i} \pi_{i} \mathbf{n}(i)$	Fg(x)
t	cousins from aunts older than mother	$\sum_{i} \pi_{i} \mathbf{p}(i)$	Fr(x)
V	cousins from aunts younger than mother	$\sum_{i} \pi_{i} \mathbf{q}(i)$	Fs(x)

¹To be more precise, the expectation of the age distribution. < ≥ > < ≥ > > > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < >

Female kin through female lines of descent

We want both sexes through all lines of descent

Female and male rates²

- mortality differences universal and well known
- fertility differences can be large
 - in timing
 - in amount

²Schoumaker, B. 2019. Male Fertility Around the World and Over Time: How Different is it from Female Fertility? Population and Development Review 45(3): 459-487

Two-sex kinship: demographic components

 $\mathbf{U}_f, \mathbf{U}_m = \text{female and male survival}$

 $\mathbf{F}_f, \mathbf{F}_m = \text{female and male fertility}$

 π_f, π_m = female and male ages at birth

 $\alpha = \text{proportion male births}$

 $\bar{\alpha} = 1 - \alpha$

Female and male fertility

Female and male fertility

FIGURE 3 Comparison of mean age at childbearing (women) and mean age at fatherhood (men), circa 2011 in 163 countries

Female and male fertility

FIGURE 6 Relationship between male-female fertility ratio and polygyny, circa 2011 in 43 countries

Female and male fertility

FIGURE 5 Relationship between the ratio of male TFR to female TFR and the difference between mean age at fatherhood and mean age at childbearing, circa 2011 in 163 countries

Descendants: one-sex lineage

Descendants of both sexes, both lineages

female and male lineages

Two-sex models

Block-structured population vector

$$\widetilde{\mathbf{k}} = \left(\frac{\mathbf{k}_{\mathrm{f}}}{\mathbf{k}_{\mathrm{m}}}\right)$$

Descendants of both sexes

rates independent of lineage

block-structured vectors

4 D > 4 A > 4 B > 4 B > B 9 9 9

Two-sex models

Block-structured matrices

$$\widetilde{f U} = \left(egin{array}{c|c} f U_f & m 0 \\ \hline m 0 & m U_m \end{array}
ight)$$

$$\widetilde{\mathbf{F}} = \left(\frac{\bar{\alpha} \mathbf{F}_f \mid \bar{\alpha} \mathbf{F}_m}{\alpha \mathbf{F}_f \mid \alpha \mathbf{F}_m} \right)$$

$$\widetilde{\mathbf{F}}^* = \left(\frac{\bar{\alpha} \mathbf{F}_{\mathrm{f}} \mid \mathbf{0}}{\alpha \mathbf{F}_{\mathrm{f}} \mid \mathbf{0}} \right)$$

where

 $\alpha =$ sex ratio (proportion male births)

$$\bar{\alpha} = 1 - \alpha$$

Age at maternity and paternity

$$\widetilde{m{\pi}} = \left(egin{array}{c} m{\pi}_{ ext{m}} \end{array}
ight)$$

where

$$\|\pi_f\| = \|\pi_m\| = 1$$

Children, grandchildren, ...

Children

$$\widetilde{\mathbf{a}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{a}}(x) + \widetilde{\mathbf{F}}\widetilde{\phi}(x)$$

Grandchildren

$$\widetilde{\mathbf{b}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{b}}(x) + \widetilde{\mathbf{F}}\widetilde{\mathbf{a}}(x)$$

etc.

The dynamics of $\widetilde{\mathbf{k}}(x)$

$$\left(\begin{array}{c|c} \mathbf{k}_{\mathrm{f}} \\ \hline \mathbf{k}_{\mathrm{m}} \end{array}\right) (x+1) = \left(\begin{array}{c|c} \mathbf{U}_{\mathrm{f}} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{U}_{\mathrm{m}} \end{array}\right) \left(\begin{array}{c|c} \mathbf{k}_{\mathrm{f}} \\ \hline \mathbf{k}_{\mathrm{m}} \end{array}\right) (x) + \left(\begin{array}{c|c} \boldsymbol{\beta}_{\mathrm{f}} \\ \hline \boldsymbol{\beta}_{\mathrm{m}} \end{array}\right) (x)$$

$$\widetilde{\mathbf{k}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{k}}(x) + \widetilde{\boldsymbol{\beta}}(x).$$

One-sex lineage of ancestry

Parents, grandparents, ...

Parents

$$\widetilde{\mathbf{d}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{d}}(x) + \mathbf{0}$$
 $\widetilde{\mathbf{d}}(0) = \widetilde{\pi}$

Grandparents

$$\widetilde{\mathbf{g}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{g}}(x) + \mathbf{0}$$

$$\widetilde{\mathbf{g}}(0) = \sum_{i} [\pi_{\mathbf{f}}(i) + \pi_{\mathbf{m}}(i)] \widetilde{\mathbf{d}}(i)$$

Ancestors don't reproduce independently

$$\left(\frac{\mathbf{n}_{f}}{\mathbf{n}_{m}}\right)(x+1) = \widetilde{\mathbf{U}}\left(\frac{\mathbf{n}_{f}}{\mathbf{n}_{m}}\right)(x) + \left(\frac{\bar{\alpha}\mathbf{F}_{f}}{\alpha\mathbf{F}_{f}} \mid \mathbf{0}\right)\left(\frac{\mathbf{d}_{f}}{\mathbf{d}_{m}}\right)(x)$$

$$\widetilde{\mathbf{n}}(x+1) = \widetilde{\mathbf{U}}\widetilde{\mathbf{n}}(x) + \widetilde{\mathbf{F}}^{*}\widetilde{\mathbf{d}}(x)$$

Counting ancestors of both sexes

(and then combine to get block-structured vectors, as with descendants)

Recruitment

1. by a direct ancestor of Focal

$$\left(\frac{\beta_{f}}{\beta_{m}}\right)(x) = \left(\frac{\bar{\alpha}\mathbf{F}_{f} \mid \mathbf{0}}{\alpha\mathbf{F}_{f} \mid \mathbf{0}}\right) \left(\frac{\mathbf{k}^{*}_{f}}{\mathbf{k}^{*}_{m}}\right)(x)$$

$$\widetilde{\beta}(x) = \widetilde{\mathbf{F}}^{*}\widetilde{\mathbf{k}}(x)$$

2. by any other kin type

$$\left(\frac{\beta_{f}}{\beta_{m}}\right)(x) = \left(\frac{\bar{\alpha}\mathbf{F}_{f} \mid \bar{\alpha}\mathbf{F}_{m}}{\alpha\mathbf{F}_{f} \mid \bar{\alpha}\mathbf{F}_{m}}\right)\left(\frac{\mathbf{k}^{*}_{f}}{\mathbf{k}^{*}_{m}}\right)(x)$$

$$\widetilde{\boldsymbol{\beta}}(x) = \widetilde{\mathbf{F}}\widetilde{\mathbf{k}}(x)$$

3. no recruitment subsidy, then $\widetilde{\boldsymbol{\beta}} = \mathbf{0}$.

The complete two-sex model

Symbol	Kin	initial condition \mathbf{k}_0	Subsidy $\beta(x)$
ã	children	0	$\tilde{\mathbf{F}}\phi(x)$
$\widetilde{\mathbf{b}}$	grandchildren	0	$\widetilde{\mathbf{F}}\widetilde{\mathbf{a}}(x)$
$\widetilde{\widetilde{\mathbf{d}}}$	great-grandchildren	0	$\widetilde{\mathbf{Fb}}(x)$
	parents	$\widetilde{m{\pi}}$	0
\widetilde{g}	grandparents	$\sum_{i} \boldsymbol{\pi}_{fm}(i) \widetilde{\mathbf{d}}(i)$	0
	great-grandparents	$\frac{\sum_{i} \boldsymbol{\pi}_{\mathrm{fm}}(i) \mathbf{d}(i)}{\sum_{i} \boldsymbol{\pi}_{\mathrm{fm}}(i) \widetilde{\mathbf{g}}(i)}$	0
m̃	older siblings	$\sum_i \boldsymbol{\pi}_{\mathrm{f}}(i) \widetilde{\mathbf{a}}(i)$	0
ñ	younger siblings	0	$\widetilde{\mathbf{F}}^* \widetilde{\mathbf{d}}(x)$
$\widetilde{\mathbf{p}}$	nieces/nephews via older siblings	$\sum_i \pi_{\mathrm{f}}(i) \widetilde{\mathbf{b}}(i)$	$\widetilde{\mathbf{F}}\widetilde{\mathbf{m}}(x)$
$\widetilde{\widetilde{\mathbf{r}}}$	nieces/nephews via younger siblings	0	$\widetilde{\mathbf{F}}\widetilde{\mathbf{n}}(x)$
	aunts/uncles older than mother	$\sum_{i} \pi_{\mathrm{fm}}(i) \widetilde{\mathbf{m}}(i)$	_ O
ŝ	aunts/uncles younger than mother	$\sum_i \pi_{\mathrm{fm}}(i) \mathbf{n}(i)$	$\widetilde{F}^* \widetilde{g}(x)$
ĩ	cousins from aunts/uncles older than mother	$\sum_{i} \pi_{\mathrm{fm}}(i) \widetilde{\mathbf{p}}(i)$	$\widetilde{Fr}(x)$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	cousins from aunts/uncles younger than mother	$\sum_{i} \pi_{\mathrm{fm}}(i)  \widetilde{q}(i)$	$\widetilde{F}\widetilde{s}(x)$



# 

	Senegal	Haiti	France
TFR female	5.3	3.7	2.0
TFR male	11.0	5.1	2.0
age at maternity	29.8	30.0	30.1
age at paternity	44.1	37.0	33.5



# Female and male kin, through all lineages





# Approximations to a two-sex model

$$\widetilde{\boldsymbol{U}} = \left( \begin{array}{c|c} \boldsymbol{U}_f & \boldsymbol{0} \\ \hline \boldsymbol{0} & \boldsymbol{U}_m \end{array} \right) \qquad \widetilde{\boldsymbol{F}} = \left( \begin{array}{c|c} \bar{\alpha} \boldsymbol{F}_f & \bar{\alpha} \boldsymbol{F}_m \\ \hline \alpha \boldsymbol{F}_f & \alpha \boldsymbol{F}_m \end{array} \right)$$

- model 1: full two-sex model
- model 2: use female fertility for both sexes
- model 3: use female mortality for both sex
- model 4: males and females identical (the 'androgynous approximation')

Put appropriate survival and fertility matrices into  $\widetilde{\mathbf{U}}$  and  $\widetilde{\mathbf{F}}$ 



# Androgynous approximation: the GKP factors⁴

$$\left( \text{1-sex } \mathbf{k}(x) \right) \times \mathsf{GKP} \; \mathsf{factor} = \left( \mathsf{androgynous} \; \mathsf{2\text{-sex}} \; \mathbf{k}(x) \right)$$

# The androgynous approximation³



³for Senegal

# Androgynous approximation: the GKP factors

