1 Poisson population comparisons:

6.1 (pg 237) Let's reconsider the number of children data of Exercise 4.8. We'll assume Poisson sampling models for the two groups as before, but now we'll parameterize θ_A and θ_B as $\theta_A = \theta$, $\theta_B = \theta \times \gamma$. In this parameterization, γ represents the relative rate θ_B/θ_A . Let $\theta \sim gamma(a_{\theta}, b_{\theta})$ and let $\gamma \sim gamma(a_{\gamma}, b_{\gamma})$.

a) Are θ_A and θ_B independent or dependent under this prior distribution? In what situations is such a joint prior distribution justified?

 θ_A and θ_B be the average number of children of men in their 30s with and without bachelor's degrees, respectively. In order to prove θ_A and θ_B are independent or not, we can check

$$\theta \sim gamma(a_{\theta}, b_{\theta}), E[\theta] = \frac{a_{\theta}}{b_{\theta}}, V[\theta] = \frac{a_{\theta}}{b_{\alpha}^2},$$

$$E[\theta^2] = E[\theta]^2 + V[\theta] = (\tfrac{a_\theta}{b_\theta})^2 + \tfrac{a_\theta}{b_\theta^2} = \tfrac{a_\theta(a_\theta+1)}{b_\theta^2}$$

 $\gamma \sim gamma(a_{\gamma}, b_{\gamma}), E[\gamma] = \frac{a_{\gamma}}{b_{\gamma}}$

$$E[\theta_A]E[\theta_B] = E[\theta]E[\theta \cdot \gamma] \underset{\theta \perp \gamma}{=} E[\theta]^2 \cdot E[\gamma] = \frac{a_\theta^2}{b_\theta^2} \frac{a_\gamma}{b_\gamma}$$

$$E[\theta_A\theta_B] = E[\theta \cdot \theta \cdot \gamma] \underset{\theta \perp \gamma}{=} E[\theta^2] \cdot E[\gamma] = \frac{a_\theta(a_\theta + 1)}{b_\theta^2} \frac{a_\gamma}{b_\gamma}$$

For $a_{\theta} \neq a_{\theta} + 1$, $E[\theta_A \theta_B] \neq E[\theta_A] E[\theta_B]$

Thus, θ_A and θ_B are dependent under the prior distribution θ and γ .

We assume the model includes two parameters θ_A and θ_B . θ_A follows a Gamma distribution. θ_B equal θ_A times another Gamma distributed parameter γ which represents the relative rate.

b) Obtain the form of the full conditional distribution of θ given y_A , y_B and γ .

Denote # of y_A is n_A , # of y_B is n_B

$$\begin{split} p(\theta|y_A,y_B,\gamma) &\propto p(y_A,y_B|\theta,\gamma)p(\theta) \\ &\propto p(y_A|\theta)p(y_B|\theta,\gamma)p(\theta) \\ &\propto \prod_{i=1}^{n_A}(\theta^{y_A}e^{-\theta}) \cdot \prod_{i=1}^{n_B}((\theta\gamma)^{y_B}e^{-\theta\gamma}) \cdot \theta^{a_\theta-1}e^{-b_\theta\theta} \\ &\propto \theta^{\sum_{i=1}^{n_A}y_A}e^{-n_A\theta} \cdot (\theta\gamma)^{\sum_{i=1}^{n_B}y_B}e^{-n_B\theta\gamma} \cdot \theta^{a_\theta-1}e^{-b_\theta\theta} \\ &\propto \theta^{n_A\bar{y}_A}e^{-n_A\theta} \cdot \theta^{n_B\bar{y}_B}e^{-n_B\theta\gamma} \cdot \theta^{a_\theta-1}e^{-b_\theta\theta} \\ &\propto \theta^{n_A\bar{y}_A}e^{-n_A\theta} \cdot \theta^{n_B\bar{y}_B}e^{-n_B\theta\gamma} \cdot \theta^{a_\theta-1}e^{-b_\theta\theta} \\ &\propto \theta^{n_A\bar{y}_A+n_B\bar{y}_B+a_\theta-1}e^{-\theta(n_A+n_B\gamma+b_\theta)} \\ &\theta|y_A,y_B,\gamma \sim Gamma(n_A\bar{y}_A+n_B\bar{y}_B+a_\theta,n_A+n_B\gamma+b_\theta) \end{split}$$

c) Obtain the form of the full conditional distribution of γ given y_A , y_B and θ .

```
p(\gamma|y_A, y_B, \theta) \propto p(y_B|\theta, \gamma)p(\gamma)
\propto ((\theta\gamma)^{n_B\bar{y}_B}e^{-n_B\theta\gamma}) \cdot \gamma^{a_{\gamma}-1}e^{-b_{\gamma}\gamma}
\propto \gamma^{n_B\bar{y}_B}e^{-n_B\theta\gamma} \cdot \gamma^{a_{\gamma}-1}e^{-b_{\gamma}\gamma}
\propto \gamma^{n_B\bar{y}_B+a_{\gamma}-1}e^{-\gamma(n_B\theta+b_{\gamma})}
\gamma|y_A, y_B, \theta \sim Gamma(n_B\bar{y}_B + a_{\gamma}, n_B\theta + b_{\gamma})
```

d) Set $a_{\theta} = 2$ and $b_{\theta} = 1$. Let $a_{\gamma} = b_{\gamma} \in \{8, 16, 32, 64, 128\}$. For each of these five values, run a Gibbs sampler of at least 5,000 iterations and obtain $E[\theta_B - \theta_A | y_A, y_B]$. Describe the effects of the prior distribution for γ on the results

```
rm(list = ls())
y.A <- scan("menchild30bach.dat"); y.B <- scan("menchild30nobach.dat")
nA <- length(y.A); nB <- length(y.B)
sumA \leftarrow sum(y.A); sumB \leftarrow sum(y.B)
a_theta<- 2; b_theta<- 1
S = 5000
ybar_a = mean(y.A); ybar_b = mean(y.B)
# Starting values
a_{gamma} \leftarrow b_{gamma} \leftarrow c(8, 16, 32, 64, 128)
theta_diff <-A_theta <-B_theta <- numeric(5)</pre>
PHI<-matrix(nrow=S,ncol=3)</pre>
PHI[1,]<-phi<-c(ybar_a,ybar_b, ybar_b/ybar_a)</pre>
set.seed(1)
for (i in 1:5) {
 for (s in 1:S) {
# Sample theta_A from Gamma1
phi[1] = rgamma(1, a_theta + nA * ybar_a + nB * ybar_b,b_theta + nA + nB *phi[3])
# Sample gamma from Gamma2
phi[3] = rgamma(1,a_gamma[i] + nB * ybar_b,b_gamma[i] + nB * phi[1])
# Calculate theta_B
phi[2]=phi[1]*phi[3]
PHI[s,]<-phi
A_theta[i] <- mean(PHI[,1]);B_theta[i] <- mean(PHI[,2])
theta_diff[i] <- mean(PHI[,2]-PHI[,1])</pre>
}
```


For $a_{\gamma} = b_{\gamma}$, the 5 sets of a_{γ} and b_{γ} give same expected γ value. However, the larger a_{γ} and b_{γ} will give smaller mean posterior difference between θ_B and θ_A .

2. Gibbs sampling

Gibbs sampling is incredibly flexible and can easily handle hierarchical models, particularly when each piece of the model involves a conjugate (or at least semi-conjugate) prior. Hierarchical models are particularly useful when we don't have sufficient information to specify meaningfully some parameters in the priors, or when there is an inherent hierarchical structure to the relationships between the data, latent variables, and parameters. So in these cases, we may want to put a prior not only on the parameters, but also on the hyperparameters. Priors on the prior parameters are often called hyperpriors.

Consider the Normal model with the semi-conjugate prior we defined in class, and assume that $\lambda_0 \sim \text{Gamma}(\nu/2, \nu/1000)$, so that the model is defined by:

$$\begin{array}{ccc} \pmb{\lambda}_0 & \sim & \operatorname{Gamma}(\nu/2, \nu/1000) \\ \pmb{\theta}|\lambda_0 & \sim & \operatorname{N}(\mu_0, \lambda_0^{-1}) \\ \pmb{\lambda} & \sim & \operatorname{Gamma}(1/2, 1/2) \\ Y_1, \dots, Y_n & \stackrel{iid}{\sim} & \operatorname{N}(\theta, \lambda^{-1}) \end{array}$$

• Derive the Gibbs sampling algorithm to sample from the posterior $p(\theta, \lambda, \lambda_0 | y_{1:n})$.

$$\begin{split} p(\lambda_0|\theta,\lambda) &\propto p(\theta|\lambda_0) p(\lambda_0) \\ &\propto \lambda_0^{\frac{1}{2}} \exp[-\frac{1}{2}\lambda_0(\theta-\mu_0)^2] \cdot \lambda_0^{\frac{\nu}{2}-1} \exp[-\frac{\nu}{1000}\lambda_0] \\ &\propto \lambda_0^{\frac{1}{2}+\frac{\nu}{2}-1} \exp[-\lambda_0(\frac{1}{2}(\theta-\mu_0)^2+\frac{\nu}{1000})] \\ &\lambda_0|\theta,\lambda \sim Gamma\left(\frac{1}{2}+\frac{\nu}{2},\frac{1}{2}(\theta-\mu_0)^2+\frac{\nu}{1000}\right) \end{split}$$

$$p(\theta|\lambda_{0}, \lambda, y_{1:n}) \propto p(y_{1:n}|\theta, \lambda_{0}, \lambda)p(\theta|\lambda_{0})$$

$$\propto \prod_{i=1}^{n} \lambda^{\frac{1}{2}} \exp\left[-\frac{1}{2}\lambda(y_{i}-\theta)^{2}\right] \cdot \lambda_{0}^{\frac{1}{2}} \exp\left[-\frac{1}{2}\lambda_{0}(\theta-\mu_{0})^{2}\right]$$

$$\propto \lambda^{\frac{n}{2}} \exp\left[-\frac{1}{2}\lambda\sum_{i=1}^{n}(y_{i}-\theta)^{2}\right] \cdot \lambda_{0}^{\frac{1}{2}} \exp\left[-\frac{1}{2}\lambda_{0}(\theta^{2}-2\mu_{0}\theta)\right]$$

$$\propto \lambda^{\frac{n}{2}}\lambda_{0}^{\frac{1}{2}} \exp\left[-\frac{1}{2}(n\lambda+\lambda_{0})\theta^{2}+(n\bar{y}\lambda+\mu_{0}\lambda_{0})\theta\right]$$

$$\propto (n\lambda+\lambda_{0})^{\frac{1}{2}} \exp\left[-\frac{n\lambda+\lambda_{0}}{2}(\theta-\frac{n\bar{y}\lambda+\mu_{0}\lambda_{0}}{n\lambda+\lambda_{0}})^{2}\right]$$

$$\theta|\lambda_{0}, \lambda, y_{1:n} \sim Normal\left(\frac{n\bar{y}\lambda+\mu_{0}\lambda_{0}}{n\lambda+\lambda_{0}}, (n\lambda+\lambda_{0})^{-1}\right)$$

$$p(\lambda|\lambda_{0}, \theta, y_{1:n}) \propto p(y_{1:n}|\theta, \lambda_{0}, \lambda)p(\lambda)$$

$$\propto \prod_{i=1}^{n} \lambda^{\frac{1}{2}} \exp[-\frac{1}{2}\lambda(y_{i} - \theta)^{2}] \cdot \lambda^{\frac{1}{2} - 1} \exp[-\frac{1}{2}\lambda]$$

$$\propto \lambda^{\frac{n}{2}} \exp[-\frac{1}{2}\lambda \sum_{i=1}^{n} (y_{i} - \theta)^{2}] \cdot \lambda^{\frac{1}{2} - 1} \exp[-\frac{1}{2}\lambda]$$

$$\propto \lambda^{\frac{n}{2} + \frac{1}{2} - 1} \exp[-\lambda(\frac{1}{2} + \frac{1}{2}\sum_{i=1}^{n} (y_{i} - \theta)^{2})]$$

$$\propto \lambda^{\frac{n}{2} + \frac{1}{2} - 1} \exp[-\lambda(\frac{1}{2} + \frac{1}{2}((n - 1)S_{n}^{2} + \frac{n}{2}(\bar{y} - \theta)^{2}))]$$

where

$$\sum_{i=1}^{n} (y_i - \theta)^2 = \sum_{i=1}^{n} (y_i - \bar{y} + \bar{y} - \theta)^2$$

$$= \sum_{i=1}^{n} (y_i - \bar{y})^2 + 2 \sum_{i=1}^{n} (y_i - \bar{y})(\bar{y} - \theta) + \sum_{i=1}^{n} (\bar{y} - \theta)^2$$

$$= \sum_{i=1}^{n} (y_i - \bar{y})^2 + 2(\bar{y} - \theta) \sum_{i=1}^{n} (y_i - \bar{y}) + n(\bar{y} - \theta)^2$$

$$= \sum_{i=1}^{n} (y_i - \bar{y})^2 + n(\bar{y} - \theta)^2$$

$$= (n-1)S_n^2 + n(\bar{y} - \theta)^2$$

$$\lambda | \lambda_0, \theta, y_{1:n} \sim Gamma\left(\frac{n+1}{2}, \frac{1 + (n-1)S_n^2 + n(\bar{y} - \theta)^2}{2}\right)$$

• Assume that:

$$n = 50$$
, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 150$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y}) = 81$.

Implement and run the Gibbs sampler for $S=10^4$ iterations, with each of the following: $(\mu_0=110, \nu=1)$, $(\mu_0=0, \nu=1)$, and $(\mu_0=110, \nu=10)$. Comment on your results.

```
rm(list = ls()); set.seed(1)
# data
n<-50; mean.y<-150; var.y<- 81
# priors
mu0<-c(110,0,110); nu0<-c(1,1,10)
S<-10^4
alpha<-1/2; beta<-1/2
lambda0 <- 500
PHI<-matrix(nrow=S,ncol=3); Theta<-Lambda <- numeric(3)
PHI[1,]<-phi<-c(lambda0, mean.y, 1/var.y)</pre>
```

```
for(i in 1:3) {
alpha0<-nu0[i]/2; beta0<-nu0[i]/1000
# Gibbs sampling
for(s in 2:S) {
# generate a new lambdaO value from its full conditional
  phi[1] <- rgamma(1, alpha0+alpha, beta0+beta*(phi[2]-mu0[i])^2 )</pre>
# generate a new theta value from its full conditional
  mu.n<- (mu0[i]*phi[1]+ n*mean.y*phi[3])/(phi[1]+ n*phi[3])</pre>
  lambda.n<- (phi[1]+ n*phi[3])
  phi[2]<- rnorm(1, mu.n, sqrt(1/lambda.n))</pre>
# generate a new lambda value from its full conditional
  alpha.n < - alpha + n/2
  beta.n<- beta + 1/2*((n-1)*var.y + n*(mean.y-phi[2])^2)
  phi[3]<- rgamma(1, alpha.n, beta.n)</pre>
 PHI[s,]<-phi
}
Theta[i] <- mean(PHI[,2]); Lambda[i] <- mean(PHI[,3])</pre>
Theta; Lambda
```

```
## [1] 149.9137 149.9679 149.5470
```

[1] 0.01256768 0.01256851 0.01254272

It shows that the starting value of μ_0 and $\nu = 10$ will not affects the results, if runing the Gibbs sampler for a large-enough number of iterations.

• For each of these values of (μ_0, ν) , make traceplots for θ and λ , and scatterplots (i.e., xy-plots) for (θ, λ) .

Shen Qu

- Calculate the means and 95% credible intervals for $\boldsymbol{\theta}$ and $\boldsymbol{\lambda}.$

```
### Gibbs based credible intervals
CI.theta <- round(quantile(PHI[1:S,2],probs=c(0.025,0.975)),4)
CI.lambda <- round(quantile(PHI[1:S,3],probs=c(0.025,0.975)),4)</pre>
```

CI.theta1;CI.lambda1;CI.theta2;CI.lambda2;CI.theta3;CI.lambda3

2.5% 97.5% ## 147.3491 152.5017

2.5% 97.5% ## 0.0082 0.0179

2.5% 97.5% ## 147.4494 152.5265

2.5% 97.5% ## 0.0081 0.0179

2.5% 97.5% ## 146.9954 152.0275

2.5% 97.5% ## 0.0082 0.0181