Проект по курсу «Эвристические методы планирования»

Алгоритмы поиска с бикритериальной

оптимизацией

https://github.com/ugadiarov-la-phystech-edu/hs-project

Угадяров Л.А.

МФТИ, группа М05-006а

11 мая 2021 г.

1 Задачи многокритериальной оптимизации

Многокритериальная оптимизация заключается в поиске множества оптимальных решений с учётом нескольких неоднородных критериев, которые невозможно свести друг к другу.

Практические приложения:

- Прокладка телекомуникационных сетей: минимизация стоимость и вероятность отказа
- Планирование в робототехнике: минимизация длины пути и потребления энергии
- Езда на велосипеде: минимизация длины пути и максимизация безопасности велосипедиста
- Грузоперевозки: минимизация стоимости транспортировки, минимизация времени в пути, учёт экологических факторов
- Перевозки опасных грузов: минимизация длины пути, минимизация риска человеческих жертв при возможной аварии
- Пассажирские перевозки: минимизация стоимости проезда, времени в пути, количества пересадок
- Планирование спутниковой фотосъёмки: удовлетворение максимального количества запросов пользователей с учётом приоритета запросов, минимизация износа оборудования

2 Математическая постановка бикритериальной задачи

Определение. Пусть $p=(p_1,p_2)$ и $q=(q_1,q_2)$ — пары вещественных чисел, тогда:

- р < q (р доминирует q), если $(p_1 < q_1) \land (p_2 \le q_2)$ или $(p_1 = q_1) \land (p_2 < 2)$
- $p \le q$ (p слабо доминирует q), если $(p_1 \le q_1) \land (p_2 \le q_2)$

Определение. Бикритериальная задача поиска маршрутов с наименьшей стоимостью $\mathcal{U} = (S, E, \mathbb{h}, \mathbb{c}, s_{start}, s_{goal})$, где:

- S конечное множество состояний
- $E \subseteq S \times S$ множество рёбер
- $\varepsilon: E \to \mathbb{R}^+ \times \mathbb{R}^+$ функция стоимости, $\varepsilon(e) = (c_1(e), c_2(e))$
- $\mathbb{h}: S \to \mathbb{R}^+ \times \mathbb{R}^+$ эвристическая функция, $\mathbb{h}(s) = (h_1(s), h_2(s))$
- s_{start} начальное состояние
- \bullet s_{qoal} целевое состояние

Определение. $\pi(s_1, s_n) = s_1, \dots, s_n$ — маршрут из s_1 в s_n , где $\{s_i\} \subseteq S$ и $\{(s_i, s_{i+1})\} \subseteq E$.

Определение. $\mathfrak{c}(\pi) = \sum_{i=1}^{n-1} \mathfrak{c}(s_i, s_{i+1})$ — стоимость маршрута π .

Определение. Маршрут $\pi(s_1, s_n)$ доминирует маршрут $\pi'(s_1, s_n)$: $\pi \prec \pi' \Leftrightarrow \varepsilon(\pi) \prec \varepsilon(\pi')$.

Определение. Маршрут $\pi(s_{start}, s_{goal})$ называется парето-оптимальным решением задачи $\mathcal{U} \Leftrightarrow \nexists \pi^{'}(s_{start}, s_{goal}) : \pi^{'} \prec \pi$.

Определение. Решением задачи \mathcal{U} называется множества всех паретооптимальных решений с уникальной стоимостью.

Замечание. Рассматриваются монотонные эвристические функции: $\mathbb{h}(s_{goal}) = (0,0)$ и $\forall (s,t) \in E$ $\mathbb{h}(s) \leq \mathbb{c}(s,t) + \mathbb{h}(t)$.

Отношение доминирования задаёт частичный порядок на множестве пар, т.е. не все пары сравнимы друг с другом. Таким образом множество парето-оптимальных решений можно рассматривать как множество всех решений, которые являются лучшими среди тех, с которыми их можно сравнить. Пример парето-оптимального множества представлен на рисунке 1.

3 Общий подход к решению бикритериальной задачи

Адаптация алгоритма A^* для решения бикритериальной задачи. Изменения в списке OPEN узлов – кандидатов на раскрытие:

Рис. 1: Пример парето-оптимального множества. Оптимальное решение (10,5) доминирует неоптимальное решение (10,8). Оптимальные решения (10,5) и (8,6) не доминируют друг друга.

- OPEN содержит нераскрытые узлы кортежи x = (s, g, f), где g и f векторы
- Для состояния s в OPEN одновременно могут находится несколько узлов (s,g_1,f_1) и (s,g_2,f_2)

Выбор узла из OPEN:

• Для раскрытия выбирается такой узел $(s,g,f) \in OPEN$, что $\sharp (s^{'},g^{'},f^{'}) \in OPEN: f^{'} \prec f$ Для бикритериальной задачи это условие эквивалентно извлечению узла с лексикографически минимальным значением f

Обработка узлов вида (s_{goal}, g, f) :

- Поддерживается множество найденный решений: $SOL = \{\pi_i(s_{start}, s_{goal})\}$
- Если для найденного маршрута $\pi(s_{start}, s_{goal}) \Rightarrow \nexists \pi' \in SOL : \pi' \prec \pi$, то удаляем из SOL все маршруты $\tilde{\pi} : \pi \prec \tilde{\pi}$ и добавляем π в SOL

Раскрытие узла (s, g, f):

- Дочерний узел $(s^{'},g^{'},f^{'})$ добавляется в OPEN при одновременном выполнении двух условий:

- $$\begin{split} &- \not \exists (s^{'}, \tilde{g}, \tilde{f}) \in OPEN : \tilde{f} \prec f^{'} \\ &- \not \exists \pi \in SOL : \mathfrak{C}(\pi) \prec f^{'} \end{split}$$
- Если $(s^{'},g^{'},f^{'})$ добавляется в OPEN, то из OPEN удаляются все узлы $(s^{'},\tilde{g},\tilde{f}):f^{'}\prec\tilde{f}$

Если OPEN пустой, то алгоритм завершает работу и возвращает SOL. Следует отметить, что общий подход совершает большое количества проверок доминирования, что сказывается на производительности.

4 Алгоритмы бикритериальной оптимизацией

Проект основан на работе [1], в которой описаны алгоритмы NAMOA*, NAMOA*dr, BOA*, выполняющие бикритериальный поиск. Псевдокод алгоритма NAMOA* представлен на рисунке 2. Псевдокод алгоритма BOA* представлен на рисунке 3. Ниже описаны основные особенности алгоритмов.

Алгоритм NAMOA*:

• Реализация общего подхода с незначительными оптимизациями за счёт поддержки множества всех раскрытых узлов $G_{cl}(s)$

Алгоритм NAMOA*dr

- Оптимизация операции добавления дочернего узла в OPEN для случая монотонной эвристической функции и извлечения узлов из OPEN в лексикографическом порядке по f:
 - Проверка $\nexists \pi \in SOL: \mathbb{c}(\pi) \prec (f_1^{'}, f_2^{'})$ заменяется на $\min_{\pi \in SOL} c_2(\pi) \geq f_2^{'}$
 - В некоторых случаях проверку $\sharp(s^{'},\tilde{g},\tilde{f})\in OPEN:\tilde{f}\prec f^{'}$ можно можно заменить на $\min_{\tilde{f}\in OPEN}\tilde{f}_2\geq f_2^{'}$

Алгоритм ВОА*:

- Для случая монотонной эвристической функции и извлечения узлов из OPEN в лексикографическом порядке по f авторами работы доказаны ещё более сильные утверждения, которые позволяют все проверки доминирования совершать за константное время за счёт поддержки $g_2^{min}(s)$ минимального значения g_2 для раскрытых узлов с состоянием s
- В узлах дополнительно хранятся ссылки на родительские узлы: x = (s, g, f, parent(x))

```
Algorithm 1: NAMOA*
    Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
                  consistent heuristic function h
    Output: The Pareto-optimal solution set
 1 sols \leftarrow \emptyset
 2 for each s \in S do
     \mathbf{G}_{op}(s) \leftarrow \emptyset; \mathbf{G}_{cl}(s) \leftarrow \emptyset
 4 G_{op}(s) \leftarrow \{(0,0)\}
   parent((0,0)) \leftarrow \emptyset
 6 Initialize Open and add (s_{start}, (0, 0), \mathbf{h}(s_{start})) to it
    while Open \neq \emptyset do
          Remove a node (s, \mathbf{g}_s, \mathbf{f}_s) from Open with the
            lexicographically smallest f-value of all nodes in
            Open
          Remove \mathbf{g}_s from \mathbf{G}_{op}(s) and add it to \mathbf{G}_{cl}(s)
 9
          if s = s_{goal} then
10
                Add \mathbf{g}_s to sols
11
                Remove all nodes (u, \mathbf{g}_u, \mathbf{f}_u) with \mathbf{f}_s \prec \mathbf{f}_u from
12
                 Open
                continue
13
          for each t \in Succ(s) do
14
                \mathbf{g}_t \leftarrow \mathbf{g}_s + \mathbf{c}(s,t)
15
                if \mathbf{g}_t \in \mathbf{G}_{op}(t) \cup \mathbf{G}_{cl}(t) then
16
                     Add \mathbf{g}_s to parent(\mathbf{g}_t)
17
                     continue
18
                if G_{op}(t) \cup G_{cl}(t) \prec g_t then
19
                 continue
20
                \mathbf{f}_t \leftarrow \mathbf{g}_t + \mathbf{h}(t)
21
                if sols \prec f_t then
22
                    continue
23
                Remove all g-values \mathbf{g}'_t from \mathbf{G}_{op}(t) that are
24
                 dominated by g_t and remove their
                 corresponding nodes (t, \mathbf{g}'_t, \mathbf{f}'_t) from Open
                Remove all g-values from \mathbf{G}_{cl}(t) that are
25
                 dominated by \mathbf{g}_t
                parent(\mathbf{g}_t) \leftarrow \{\mathbf{g}_s\}
26
                Add \mathbf{g}_t to \mathbf{G}_{op}(t)
27
                Add (t, \mathbf{g}_t, \mathbf{f}_t) to Open
29 return sols
```

Рис. 2: Псевдокод алгоритма NAMOA*

Авторы работы [1] сравнили производительность BOA* с другими алгоритмами на дорожных картах городов США соревнования 9th DIMACS Implementation Challenge - Shortest Paths (http://www.diag.uniroma1.it/challenge9/download.shtml). В качестве критериев используется длина марш-

```
Algorithm: Bi-Objective A* (BOA*)
    Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
                consistent heuristic function h
    Output: A cost-unique Pareto-optimal solution set
 1 sols \leftarrow \emptyset
 2 for each s \in S do
   g_2^{\min}(s) \leftarrow \infty
 4 x \leftarrow new node with s(x) = s_{start}
 \mathbf{g}(x) \leftarrow (0,0)
 6 parent(x) \leftarrow null
 7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
   while Open \neq \emptyset do
        Remove a node x from Open with the
          lexicographically smallest f-value of all nodes in
        if g_2(x) \ge g_2^{\min}(s(x)) \lor f_2(x) \ge g_2^{\min}(s_{qoal}) then
11
          continue
12
         g_2^{\min}(s(x)) \leftarrow g_2(x)
13
        if s(x) = s_{goal} then
14
              Add x to sols
15
             continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
19
              parent(y) \leftarrow x
20
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
             if g_2(y) \geq g_2^{\min}(t) \vee f_2(y) \geq g_2^{\min}(s_{goal}) then
22
               continue
23
              Add y to Open
24
25 return sols
```

Рис. 3: Псевдокод алгоритма ВОА*

рута и время движения по маршруту:

- NAMOA*, NAMOA*dr, BOA* авторские реализации (язык Си)
- sBOA* модификация BOA* без применения оптимизаций, приводящих к константному времени проверки условий доминирования, авторская реализация (язык Си)
- Оригинальные реализации на Си для Bi-Objective Dijkstra (BDijkstra) и Bidirectional Bi-Objective Dijkstra (BBDijkstra) предоставлены авторами этих алгоритмов

Некоторые результаты работы алгоритмов представлены на рисунке 4.

New York City (NY)				
264,346 states, 730,100 edges, sols = 199 on average				
	Solved	Average	Max	Min
NAMOA*	50/50	157.17	1,936.36	0.02
sBOA*	50/50	9.75	148.65	0.10
NAMOA*dr	50/50	0.65	4.99	0.11
BOA*	50/50	0.32	1.95	0.11
BBDijkstra	50/50	1.94	23.43	0.26
BDijkstra	50/50	2.55	21.16	0.17

San Francisco Bay (BAY)					
321,270 states, 794,830 edges, sols = 119 on average					
	Solved	Average	Max	Min	
NAMOA*	50/50	58.87	1,474.76	0.02	
sBOA*	50/50	3.38	120.57	0.12	
NAMOA*dr	50/50	0.38	6.08	0.12	
BOA*	50/50	0.29	4.17	0.12	
BBDijkstra	50/50	0.87	9.61	0.28	
BDijkstra	50/50	1.83	33.39	0.22	

Рис. 4: Сравнение алгоритмов бикритериальной оптимизации на дорожных картах городов США из 9th DIMACS Implementation Challenge для 50 случайно выбранных пар начальная вершина - целевая вершина. Average, Мах, Міп — время выполнения алгоритма в секундах

5 Собственная реализация алгоритмов NAMOA* и BOA*

В рамках проекта были реализованы алгоритмы ВОА*, NAMOA*. Репозиторий проекта с тетрадкой Jupyter Notebook и всеми необходимыми данными: https://github.com/ugadiarov-la-phystech-edu/hs-project. Используемый язык программирования: Python 3.6. Задействованные библиотеки:

- NetworkX, версия 2.5
- Numpy, версия 1.19.2
- Pandas, версия 1.0.5
- Matplotlib, версия 3.2.2
- tqdm, версия 4.47.0

Используемые данные:

- Граф расстояний и граф времени в пути для New York City из 9th DIMACS Implementation Challenge: http://www.diag.uniroma1.it/challenge9/download.shtml
- Kapta duskwood из Moving AI Lab: https://movingai.com/benchmarks/wc3maps512/index.html

Особенности реализации NAMOA*:

- Класс ОрепNAMOA представляет список узлов кандидатов на раскрытие для алгоритма NAMOA*. Список реализован с помощью кучи и предоставляет интерфейс для эффективного извлечения лексикографически минимального по f-значению узла. Удаление других элементов из списка происходит ленивым способом: удаляемый элемент помечается как удалённый, а фактическое удаление происходит только при извлечении элемента с вершины кучи
- Функция namoa реализует алгоритм NAMOA*. Принимает на вход граф graph экземпляр класса networkx.classes.graph.Graph, start стартовая вершина, goal целевая вершина, weights пара названий атрибутов ребра, которые используются в качестве весов. Функция возвращает словарь с элементами: solutions парето-оптимальное множество весов кротчайших путей из start в goal, parent множество родительских вершин, n_expansions количество совершённых раскрытий вершин при выполнении алгоритма, runtime время выполнения в секундах, max_size_invalid максимальный размер списка OpenNAMOA с учётом помеченных «удалённых» вершин, max_size максимальный размер списка OpenNAMOA без учёта помеченных «удалённых» вершин.

Особенности реализации ВОА*:

- Класс OpenBOA представляет список узлов кандидатов на раскрытие для алгоритма BOA*. Список реализован с помощью кучи и предоставляет интерфейс для эффективного извлечения лексикографически минимального по f-значению узла. Другие операции удаления из списка не реализованы, т.к. алгоритм BOA* не требует таких операций
- Функция boa реализует алгоритм NAMOA*. Принимает на вход граф graph экземпляр класса networkx.classes.graph.Graph, start стартовая вершина, goal целевая вершина, weights пара названий атрибутов ребра, которые используются в качестве весов. Функция возвращает словарь с элементами: solutions множество узловэкземпляров класса Node для целевой вершины goal, g-значения которых образуют парето-оптимальное множество весов кротчайших путей из start в goal (оптимальные пути восстанавливаются с помощью атрибута parent экземпляров Node), n_expansions количество совершённых раскрытий вершин при выполнении алгоритма, runtime —

время выполнения в секундах, max_size максимальный размер списка OpenBOA.

6 Проверка корректности реализаций NAMOA* и BOA*

Корректность реализаций NAMOA* и BOA* были проверены дважды:

- 1. **Проверка на случайном графе из 1000 вершин**. Проверка корректности на случайном графе, который был сгенерирован с помощью библиотеки NetworkX. Параметры графа:
 - \bullet Количество вершин 1000
 - \bullet Вероятность создания ребра между вершинами 0.1
 - Веса рёбер кортежи из двух элементов случайные целые числа от 1 до 1000
- 2. Проверка на подграфе дорожной сети New York City (DIMACS) из 10000 вершин.

Результаты подтвердили корректность реализаций алгоритмов BOA^* и $\mathrm{NAMOA}^*.$

7 Сравнение производительности реализаций NAMOA* и BOA*

Производительность алгоритмов сравнивалась на 100 случайно выбранных парах вершин из графа дорожной сети New York City (DIMACS). Результаты представлены в таблицах 1 и 2.

	Количество	Время	Максимальный размер
	раскрытий	выполнения, с	списка OPEN
Min	$4.9*10^{1}$	1.8	$2.8 * 10^{1}$
Mean	$4.9*10^{5}$	27.9	$2.2 * 10^4$
Max	$8.5*10^{6}$	521.7	$2.4 * 10^5$
Std	$1.3*10^{6}$	78.4	$3.6 * 10^4$

Таблица 1: Производительность реализации ВОА*

	Количество	Время	Максимальный размер	Максимальный размер
	раскрытий	выполнения, с	списка OPEN (без учёта	списка OPEN
			удалённых вершин)	
Min	$4.9 * 10^{1}$	1.6	$2.2 * 10^{1}$	$2.7 * 10^{1}$
Mean	$4.9 * 10^5$	189.9	$1.3 * 10^4$	$1.9 * 10^4$
Max	$8.5*10^{6}$	4236.6	$1.5 * 10^5$	$2.1 * 10^5$
Std	$1.3 * 10^6$	643.7	$2.3 * 10^4$	$3.2*10^4$

Таблица 2: Производительность реализации NAMOA*

Сравнение производительности реализаций ВОА* и NAMOA*:

- NAMOA* и BOA* делают одинаковое количество раскрытий узлов
- NAMOA* работает в среднем в 6.8 раз медленне
- Размер списка OPEN для алгоритма NAMOA* в среднем в 1.15 раз меньше

8 Применение BOA* для поиска множества оптимальных путей

Рассматривается применение реализации BOA* к задаче поиска оптимальных путей на примере 8-связной карты duskwood (https://movingai.com/benchmarks/wc3maps512/index.html) с двумя критериями: минимизация длины пути и максимизация безопасности пути. Безопасность проходимой клетки определяется как расстояние до ближайшей непроходимой клетки. Безопасность маршрута принимается равной сумме значений метрики безопосности для каждой клетки маршрута.

Особенности реализации:

- Класс PassableMap предоставляет интерфейс для поиска парето-оптимального множества путей между парой проходимых клеток по двум критериям: длинна пути и безопасность. Параметры конструктора: symbol_- map карта символов, по которой будет построен 8-связный граф проходимых клеток (см. формат карты: https://movingai.com/benchmarks/formats.html); passable_symbol символ проходимой клетки.
- Metog passable_coordinates возвращает список координат всех проходимых клеток
- Метод danger_score возвращает словарь, ключом которого является координата проходимой клетки, а значением - величина «опасности» клетки:

$$\forall v \in V \Rightarrow danger(v) = -safety(v) + \max_{v^* \in V} safety(v^*) + 1,$$

где максимум берётся по всем проходимым клеткам графа. С учётом определения и аддитивности метрик danger и safety по длине пути, максимизация безопасности эквивалентна минимизации опасности. Параметр normalize позволяет нормировать метрику опасности на 1.

• Metog optimal_routes принимает на вход начальную вершину start и целевую goal и возвращает можество путей, оптимальное по длине и опасности, а также веса этих путей в виде словаря с ключами routes и costs.

На рисунке 5 показана оригинальная карта duskwood и визуализация метрики «опасность».

Рис. 5: Визуализация карты duskwood (слева) и метрики «опасность» (справа). Чёрные и зелёные клетки не являются проходимыми. Безопасность проходимой клетки принимается равной расстоянию до ближайшей непроходимой клетки. Интенсивностью красного цвета показана опасность клетки.

В качестве примера с помощью алгоритма BOA^* было построено множества парето-оптимальных маршрутов из клетки (100, 110) в клетку (430, 400). Полученное множество содержит 258 маршрутов и показано на рисунке 6. График стоимости парето-оптимальных маршрутов показан на рисунке 7.

Рис. 6: Визуализация парето-оптимального множества маршрутов из клетки (100, 110) в клетку (430, 400) для карты duskwood. Градацией цвета от зелёного к синему показано увеличение опасности маршрута.

Рис. 7: График стоимости парето-оптимальных маршрутов из клетки (100, 110) в клетку (430, 400) для карты duskwood.

Список литературы

[1] Carlos Hernández Ulloa и др. «A Simple and Fast Bi-Objective Search Algorithm». в: Proceedings of the International Conference on Automated Planning and Scheduling 30.1 (июнь 2020), с. 143—151. URL: https://ojs.aaai.org/index.php/ICAPS/article/view/6655.