Key ID: 022

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 5$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	10.6	9.4	9.9	9.4	11.6	9.8
sample 2:	19.4	14.2	14	15.9	15.7	

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

١.	(a)				4	. 0	0	0
	(b)				4	. 6	0	0
	(c)				1	. 0	3	1
	(d)				0	. 9	5	7
	(e)			1	0	. 4	4	3
	(f)				5	. 5	3	1
	(g)				0	. 0	0	5
	(h)				0	. 0	1	0

(i) yes

Key ID: 022

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 10.1$$

$$\overline{X_2} = 15.8$$

$$s_1 = 0.85$$

$$s_2 = 2.17$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 5) - 1 = 4$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 4.6$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.85)^2}{6} + \frac{(2.17)^2}{5}} = 1.031$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (0.957, 10.443)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(15.8 - 10.1) - 0}{1.031} = 5.53$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.53$$

We use the table to determine bounds on *p*-value. Remember, df = 4 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

Thus, we reject the null hypothesis. Also notice the confidence interval does not contain 0.

- (a) 4
- (b) 4.6
- (c) 1.031
- (d) 0.957
- (e) 10.443
- (f) 5.531
- (g) 0.005
- (h) 0.01
- (i) yes