GRAFURI

ȘI. Dr. Ing. Șerban Radu Departamentul de Calculatoare Facultatea de Automatică și Calculatoare

Introducere

- Grafurile reprezintă unele dintre cele mai utile structuri de date
- Grafurile sunt structuri de date asemănătoare cu arborii
- Arborii reprezintă un caz particular de grafuri

Introducere

- Grafurile se utilizează într-un mod diferit față de arbori
- Structurile de date discutate anterior au o arhitectură determinată de algoritmii care le prelucrează
- De exemplu, un arbore binar are o formă adecvată unei căutări facile a datelor memorate și a unei inserări simple a elementelor noi

Introducere

- Grafurile au o formă deteminată de o problemă concretă
- De exemplu, nodurile unui graf pot reprezenta orașe, iar arcele pot fi curse aeriene între acele orașe

- Nodurile se numesc vârfuri
- Arcele se numesc muchii
- Două vârfuri se numesc adiacente dacă sunt conectate direct printr-o muchie
- Vârfurile adiacente cu un vârf se numesc
 vecinii vârfului dat
- Un drum reprezintă o secvență de muchii

×

- Un graf este un model abstract (matematic) pentru multe probleme reale, concrete, a căror rezolvare necesită folosirea unui calculator
- În matematică, un graf este definit ca o pereche de două mulțimi G = (V, M), unde V este mulțimea (nevidă) a vârfurilor (nodurilor), iar M este mulțimea muchiilor (arcelor)
- O muchie din M unește o pereche de două vârfuri din V și se notează (v,w)

- Nodurile unui graf se numerotează începând cu 1 și mulțimea V este o submulțime a numerelor naturale
- Termenii "vârf" şi "muchie" provin din analogia unui graf cu un poliedru şi se folosesc mai ales pentru grafuri neorientate
- Termenii "nod" și "arc" se folosesc mai ales pentru grafuri orientate

- Un **drum** (o **cale**) într-un graf unește o serie de noduri v[1], v[2],..., v[n] printr-o secvență de arce (v[1],v[2]), (v[2],v[3]),...
- Între două noduri date poate să nu existe un arc, dar să existe o cale, ce trece prin alte noduri intermediare

Grafuri conexe și neconexe

- Un graf se numeşte conex dacă există cel puţin un drum de la fiecare nod până la fiecare alt nod
- Un graf este conex dacă, pentru orice pereche de noduri (v,w), există cel puţin o cale de la v la w sau de la w la v
- Un graf neconex este alcătuit din mai multe componente conexe

a) Connected Graph

- Vârfurile A şi B alcătuiesc una din componentele conexe, iar C şi D alcătuiesc a doua componentă conexă
- Grafurile prezentate sunt grafuri neorientate
- Aceasta înseamnă că muchiile nu au o direcţie, ne putem deplasa pe ele în orice sens

Grafuri orientate

- Un graf în care ne putem deplasa într-o singură direcție de-a lungul unei muchii date se numește graf orientat
- Direcţia de deplasare permisă este indicată printr-o săgeată plasată pe muchie

Componentă conexă

- O componentă conexă a unui graf (V,M) este un subgraf conex (V',M'), unde V' este o submulțime a lui V, iar M' este o submulțime a lui M
- Împărţirea unui graf neorientat în componente conexe este unică, dar un graf orientat poate fi partiţionat în mai multe moduri în componente conexe

M

Exemplu

Graful (1,2), (1,4), (3,2), (3,4) poate avea componentele conexe:

- □ {1,2,4} și {3}
- □ {3,2,4} și {1}

M

Graf orientat tare conex

- Un graf orientat este tare conex (puternic conectat) dacă, pentru orice pereche de noduri (v,w), există (cel puţin) o cale de la v la w şi (cel puţin) o cale de la w la v
- Exemplu de graf tare conex graf care conține un ciclu ce trece prin toate nodurile:
- **1** (1,2), (2,3), (3,4), (4,1)

- Într-un graf orientat, numit şi digraf (prescurtare din limba engleză de la "directed graph"), arcul (v,w) pleacă din nodul v si intră în nodul w
- Acesta este diferit de arcul (w,v), care pleacă de la w la v
- Într-un graf neorientat poate exista o singură muchie între două vârfuri, notată (v,w) sau (w,v)

- Două noduri între care există un arc se numesc și noduri vecine sau adiacente
- Într-un graf orientat ne putem referi la succesorii şi predecesorii unui nod, respectiv la arce care ies şi la arce care intră într-un nod

Grafuri ponderate

- În unele grafuri, muchiile au asociate **ponderi**, adică numere care reprezintă distanțe fizice între două vârfuri, sau timpul necesar parcurgerii drumului dintre două vârfuri, sau costul drumului dintre cele două vârfuri
- Astfel de grafuri se numesc grafuri ponderate

- Un ciclu într-un graf (un circuit) este o cale care pornește și se termină în același nod
- Un ciclu hamiltonian este un ciclu complet, care unește toate nodurile dintr-un graf

- Un graf neorientat conex este ciclic dacă numărul de muchii este mai mare sau egal cu numărul de vârfuri
- Un arbore liber este un graf conex fără cicluri

Tipul de date abstract graf

- Un graf poate fi privit ca un tip de date abstract, care permite orice relaţii între componentele structurii
- Operaţiile uzuale asociate tipului "graf" sunt:

Tipul de date abstract graf

- 1) Inițializare graf cu număr dat de noduri:
 - □ initG (Graf & g, int n);
- 2) Adăugare muchie (arc) la un graf:
 - □ addArc (Graf & g, int x, int y);
- Verificare existența unui arc de la un nod x la un nod y:
 - □ int arc(Graf g, int x, int y);
- 4) Eliminare arc dintr-un graf:
 - □ delArc (Graf & g, int x, int y);
- 5) Eliminare nod dintr-un graf:
 - □ delNod (Graf & g, int x);

- Mai mulţi algoritmi pe grafuri necesită parcurgerea vecinilor (succesorilor) unui nod dat, care poate folosi funcţia "arc" într-un ciclu repetat pentru toţi vecinii posibili (pentru toate nodurile din graf)
- Pentru grafuri reprezentate prin liste de vecini, este suficientă parcurgerea listei de vecini a unui nod (egală cu numărul de arce asociate acelui nod), mult mai mică decât numărul de noduri din graf

Vârfuri

- Vârfurile sunt numerotate cu indici cuprinși între 1 și N, unde N este numărul lor
- Vârfurile pot fi memorate într-un tablou și referite utilizând indicele fiecăruia
- În locul tabloului, putem utiliza o listă înlănțuită sau o altă structură
- Indiferent de structura utilizată, aceasta este numai o convenţie, care nu afectează modul în care vârfurile sunt conectate prin muchii

Muchii

- Într-un graf, fiecare vârf poate fi conectat cu un număr arbitrar de alte vârfuri
- Pentru modelarea conectării nodurilor, cele mai frecvente două metode sunt:
 - Matricea de adiacență
 - Lista de adiacență

Matricea de adiacență

- O matrice de adiacență este un tablou bidimensional, în care elementele indică prezența unei muchii între două vârfuri
- Dacă graful are N vârfuri, matricea de adiacență este un tablou cu N*N elemente

	Α	В	C	D
Α	0	1	1	1
В	1	0	0	1
C	1	0	O	0
D	1	1	0	0

Exemplu

- Vârfurile sunt trecute atât la capetele liniilor, cât și ale coloanelor din tabel
- O muchie între două vârfuri este indicată printr-o valoare 1 în tabel
- Valoarea 0 înseamnă absența unei muchii
- Legătura dintre un vârf și el însuși este reprezentată prin 0, formând diagonala principală a matricei

- Triunghiul superior al matricei (situat deasupra diagonalei principale) reprezintă imaginea în oglindă a celui inferior
- Ambele triunghiuri conţin aceeaşi informaţie
- Această redundanță pare ineficientă, dar, în majoritatea limbajelor de programare, nu dispunem de o modalitate convenabilă de a crea un tablou triunghiular

Reprezentarea matricială este preferată în determinarea drumurilor dintre oricare două vârfuri (tot sub formă de matrice), în determinarea drumurilor minime dintre oricare două vârfuri dintr-un graf ponderat, în determinarea componentelor conexe ale unui graf orientat (prin transpunerea matricei se obține graful cu arce inversate, numit și **graf dual** al grafului inițial), și în alte aplicații cu grafuri

- Dezavantajul matricei de adiacenţe apare atunci când numărul de noduri din graf este mult mai mare ca numărul de arce, iar matricea este rară (cu peste jumătate din elemente nule)
- În aceste cazuri se preferă reprezentarea prin liste de adiacențe

.

Definirea structurii de graf

- Definirea structurii de graf printr-o matrice de adiacență alocată dinamic:
- typedef struct {
- int n, m;
- // n = număr de noduri, m = număr de arce
- int ** a; // adresa matrice de adiacență
- } Graf ;

- Succesorii unui nod v sunt reprezentaţi de elementele nenule din linia v
- Predecesorii unui nod v sunt reprezentaţi de elementele nenule din coloana v
- În general, nu există arce de la un nod la el însuși, deci a[i][i] = 0

```
// funcție de inițializare a grafului
void initG (Graf & g, int n) {
int i;
 g.n = n;
 g.m = 0;
 g.a = (int^*) malloc((n+1)*sizeof(int^*));
 // vârfuri numerotate 1...n
 for (i = 1; i \le n; i++)
  g.a[i] = (int^*) calloc((n+1), sizeof(int));
  // linia 0 și coloana 0 sunt nefolosite
```

```
// funcție de adăugare a arcului (x,y) la graful g
void addArc (Graf & g, int x, int y) {
g.a[x][y]=1;
g.m++;
// funcție care întoarce arcul (x,y) din graful g
int arc (Graf g, int x, int y) {
return g.a[x][y];
```

```
// funcție de eliminare a arcului (x,y) din graful g
void delArc (Graf & g, int x, int y) {
      g.a[x][y] = 0;
      g.m--;
/*Eliminarea unui nod din graf ar trebui să modifice și
dimensiunile matricei, dar se elimină doar arcele ce
pleacă și vin din/în acel nod*/
// funcție de eliminare a nodului x din graful g
void delNod (Graf & g, int x) {
int i;
 for (i = 1; i \le g.n; i++) {
  delArc(g,x,i);
   delArc(g,i,x);
```


Lista de adiacență

- Cealaltă soluție de reprezentare a muchiilor este utilizând o listă de adiacență
- O listă de adiacență reprezintă un tablou de liste (sau o listă de liste)
- Fiecare listă individuală conține vârfurile adiacente unui vârf dat

Vertex List Containing Adjacent Vertices A B—>C—>D B A—>D C A D A—>B

- Fiecare legătură din listă reprezintă un vârf din graf
- În exemplu, vârfurile sunt ordonate alfabetic, deşi această ordine nu este necesară
- Nu trebuie confundat conţinutul listelor de adiacenţă cu drumurile din graf

- Lista tuturor arcelor din graf este împărțită în mai multe subliste, câte una pentru fiecare nod din graf
- Listele de noduri vecine pot avea lungimi diferite şi se preferă implementarea lor prin liste înlănţuite

Exemplu

 Reprezentarea grafului (1,2),(1,4),(3,2),(3,4) printr-un tablou de pointeri la liste de adiacenţă

 Ordinea nodurilor într-o listă de adiacență nu este importantă și de aceea se poate adăuga mereu la începutul listei de noduri vecine

.

Definirea structurii de graf

```
typedef struct nod {
                      // număr nod
  int val;
struct nod * leg;
    // adresa listei de succesori pentru un nod
* pnod ;
                      // pnod este un tip pointer
typedef struct {
    int n;
                      // număr de noduri în graf
  pnod * v;
    // tablou de pointeri la liste de succesori
} Graf;
```

м

```
// funcție de inițializare a grafului
void initG (Graf & g, int n) {
g.n = n; // număr de noduri
g→v = (pnod*) calloc(n + 1, sizeof(pnod));
// inițializare pointeri cu 0
}
```

m

```
// funcție de adăugare a arcului (x,y)
void addArc (Graf & g, int x, int y) {
pnod nou = (pnod) malloc (sizeof(nod));
  nou \rightarrow val = y;
  nou \rightarrow leg = g \rightarrow v[x];
  g \rightarrow v[x] = nou;
  // se adaugă la începutul listei de adiacență
```

M

```
// funcție care testează dacă există arcul (x,y) în graful g
int arc (Graf g, int x, int y) {
   pnod p;
   for (p = g→v[x]; p != NULL; p = p→leg)
      if ( y == p→val) return 1;
   return 0;
}
```


Reprezentarea unui graf prin liste de adiacență pentru fiecare vârf asigură cel mai bun timp de explorare a grafurilor (timp proporțional cu suma dintre numărul de vârfuri și numărul de muchii din graf), iar explorarea apare ca operație în mai mulți algoritmi pe grafuri

- Pentru un graf neorientat, fiecare muchie (x,y) este memorată de două ori: y în lista de adiacență a lui x și x în lista de adiacență a lui y
- Pentru un graf orientat, listele de adiacență sunt de obicei liste de succesori, dar pentru unele aplicații ne interesează predecesorii unui nod
- Lipsa de simetrie poate fi un dezavantaj al listelor de adiacenţă pentru reprezentarea grafurilor orientate

Arbore liber

- Un arbore liber este un graf neorientat aciclic
- Într-un arbore liber nu există un nod special rădăcină
- Într-un arbore, fiecare vârf are un singur părinte (predecesor), deci se poate reprezenta arborele printr-un tablou de noduri părinte

- Rezultatul mai multor algoritmi este un arbore liber si acesta se poate reprezenta compact printr-un singur tablou
- Exemple: arbori de acoperire de cost minim, arborele cu drumurile minime de la un nod la toate celelalte noduri (Dijkstra)

- Un graf conex se poate reprezenta printr-o singură listă - lista arcelor, iar numărul de noduri este valoarea maximă a unui nod prezent în lista de arce (toate nodurile din graf apar în lista de arce)
- Lista arcelor poate fi un tablou sau o listă de structuri, sau două tablouri de noduri

M

Exemplu

	1	2	3	4	5
X	11	2	3	4	4
y	3	3	4	5	6

- Pentru arbori liberi, această reprezentare poate fi simplificată și mai mult, dacă se impune ca poziția în tablou să fie egală cu unul dintre noduri
- Se folosește un singur tablou P, în care P[k] este perechea (predecesorul) nodului k
- Este posibil să se noteze arcele din arbore astfel încât fiecare nod să aibă un singur predecesor (sau un singur succesor)

M

Exemplu

■ Tabloul P este:

Lista arcelor (k, P[k]) este: (2,3),(3,1),(4,3),(5,4),(6,4)

Se consideră că nodul 1 nu are niciun predecesor, dar se poate considera că ultimul nod nu are niciun predecesor:

Arbori minimi de acoperire

 Un arbore minim de acoperire reprezintă un arbore cu numărul minim de muchii necesare pentru conectarea tuturor vârfurilor

a) Extra Edges

b) Minimum Number of Edges

- În prima figură, avem cinci vârfuri conectate printr-un număr excesiv de muchii
- Aceleași vârfuri sunt conectate în a doua figură printr-un număr minim de muchii
- Acesta reprezintă un arbore minim de acoperire

- Pentru o mulţime dată de vârfuri, este posibilă construcţia mai multor arbori minimi de acoperire
- Arborele din a doua figură conține muchiile AB, BC, CD și DE
- Un alt arbore este cel care conţine muchiile AC, CE, ED şi DB

M

Arbori minimi de acoperire

- Pentru un graf conex neorientat G = (V, E), se numeşte arbore minim de acoperire al lui G, un subgraf G' = (V, E'), care conţine toate vârfurile grafului G şi o submulţime minimă de muchii E'⊆E, cu proprietatea că uneşte toate vârfurile şi nu conţine cicluri
- Cum G' este conex şi aciclic, el este arbore

- Numărul E de muchii dintr-un arbore minim de acoperire este cu o unitate mai mic decât numărul V de vârfuri
- E = V 1
- Executând o parcurgere în adâncime şi notând muchiile traversate, se obţine un arbore minim de acoperire

Conectivitate în grafuri orientate

- Într-un graf neorientat, se pot găsi toate vârfurile care sunt conectate, utilizând parcurgerea în adâncime sau parcurgerea pe nivel
- Dacă se dorește găsirea tuturor vârfurilor conectate într-un graf orientat, nu se poate porni dintr-un vârf selectat aleator, pentru a ajunge la toate celelalte vârfuri conectate

Exemplu

- Dacă se pornește din A, se poate ajunge la C, dar nu și la alte vârfuri
- Dacă se pornește din B, nu se poate ajunge la D
- Dacă se pornește din C, nu se poate ajunge la niciun alt vârf
- La ce vârfuri se poate ajunge dacă se pornește dintr-un vârf anume ?

- Se poate modifica explorarea în adâncime, pentru a începe explorarea pe rând, din fiecare vârf
- Pentru graful anterior, se obține rezultatul:

 - BACE
 - $\Box C$
 - DEC

Prima literă indică vârful de pornire, iar literele următoare arată vârfurile la care se ajunge (fie direct, fie trecând prin alte vârfuri), pornind din vârful de start

Algoritmul lui Warshall

- Algoritmul află dacă se poate ajunge într-un vârf, pornind din oricare alt vârf
- Se creează un tabel care va indica dacă se poate ajunge într-un vârf, pornind din oricare alt vârf
- Acest tabel se obține prin modificarea matricei de adiacență a grafului

Algoritmul lui Warshall

- Graful reprezentat de această matrice de adiacență revizuită reprezintă închiderea tranzitivă a grafului inițial
- În matricea de adiacență, pentru o anumită muchie, linia indică vârful de început al muchiei, iar coloana vârful de sfârșit

	Α	В	С	D	E
Α	0	0	1	0	0
В	1	0	0	0	1
C	0	0	0	0	0
D	0	0	0	0	1
E	0	0	1	0	0

.

- Se poate folosi algoritmul lui Warshall pentru a transforma matricea de adiacenţă în închiderea tranzitivă a grafului
- Algoritmul se bazează pe următoarea idee: Dacă se poate ajunge de la vârful L la vârful M, precum și de la vârful M la vârful N, atunci se poate ajunge de la vârful L la vârful N

- Matricea de adiacență arată toate căile posibile cu un singur pas, deci poate fi folosită pentru a obține căi cu doi pași
- Algoritmul construiește căi de lungime arbitrară, bazate pe căi cu mai multe muchii, descoperite anterior

Linia A

- Există 1 pe coloana C, care arată că există o cale de la A la C
- Muchiile posibile care se termină în A se află în coloana A
- Se examinează toate elementele din coloana A
- Se observă că există o muchie de la B la A

- Există o muchie de la B la A şi altă muchie de la A la C
- Se poate deduce că se poate ajunge de la B la C în doi pași
- Se pune 1 la intersecția liniei B cu coloana C

A to C and B to A so B to C

Linia B

- Se ajunge la linia B
- Prima celulă din coloana A indică existenţa unei muchii de la B la A
- Există muchii care se termină în B?
- Deoarece coloana B conţine doar 0-uri, se observă că nicio valoare 1 din linia B nu va duce la obţinerea unei căi mai lungi, deoarece nicio muchie nu se termină în B

Liniile C și D

- Linia C nu conține nicio valoare 1
- Se ajunge la linia D, unde se află o muchie de la D la E
- Deoarece coloana D conţine numai 0-uri, nu există muchii care se termină în D

Linia E

- În linia E există o muchie de la E la C
- Din coloana E se observă că există o muchie de la B la E
- Se poate deduce că există o cale de la B la C, deoarece există muchii de la B la E şi de la E la C
- Această cale a fost deja descoperită anterior

- Există 1 în coloana E, corespunzător liniei D
- Muchia de la D la E şi de la E la C formează calea de la D la C
- Se adaugă două valori 1 la matricea de adiacență, care arată nodurile la care se poate ajunge dintr-un alt nod, într-un anumit număr de pași

M

- Algoritmul folosește trei bucle imbricate
- Bucla exterioară parcurge fiecare linie
- Numim y variabila asociată
- Bucla interioară parcurge fiecare celulă de pe linie, folosind variabila x
- Dacă se găsește 1 în celula (y,x), atunci există o muchie de la y la x

- Se activează a treia buclă, cea mai interioară, care are asociată variabila z
- A treia buclă examinează celulele din coloana y, căutând o muchie care se termină în y
- y este folosit pentru linii în prima buclă și pentru coloane în a treia buclă

- Dacă există 1 la intersecția dintre coloana y și linia z, atunci există o muchie de la z la y
- Cu o muchie de la z la y şi altă muchie de la y la x, se obține calea de la z la x
- Se pune 1 în celula (x,z)

M

- Se consideră o matrice A cu valori logice
 (0 sau 1) și se aplică, la fiecare pas k, transformarea următoare:
- Formula arată că există o cale între i şi j, trecând prin vârfuri având numărul mai mic sau egal cu k, dacă:

M

- a) Există o cale între i și j, trecând prin vârfuri numerotate cel mult k-1, sau
- b) Există o cale între i și k, trecând prin vârfuri numerotate cel mult k-1 și o cale între k și j similară
- Doarece $A_k[i,k] = A_{k-1}[i,k]$ și $A_k[k,j] = A_{k-1}[k,j]$, determinarea închiderii tranzitive se poate realiza utilizând o singură copie a lui A

Pseudocod algoritmul lui Warshall

```
AlgoritmWarshall() {
pentru toate liniile i execută
      pentru toate coloanele i execută
      dacă există un drum de la i la j atunci A[i,j] ← 1
                                           altfel A[i,i] \leftarrow 0
      pentru k de la 1 la n execută
             pentru toate liniile i execută
                    pentru toate coloanele i execută
                           dacă (A[i,j] == 0) atunci
                                        A[i,i] \leftarrow A[i,k] \wedge A[k,i]
```