#### Počítačové sítě 1

aplikační vrstva

#### Martin Trnečka

Katedra informatiky Univerzita Palackého v Olomouci

# TCP/IP architektura

| L7 | aplikační vrstva   |
|----|--------------------|
| L6 | prezenční vrstva   |
| L5 | relační vrstva     |
| L4 | transportní vrstva |
| L3 | síťová vrstva      |
| L2 | linková vrstva     |
| L1 | fyzická vrstva     |
|    | 100.001            |

| aplikační vrstva                   |
|------------------------------------|
| transportní vrstva                 |
| síťová (internetová, IP)<br>vrstva |
| vrstva síťového<br>rozhraní        |

ISO OSI

TCP/IP

# Aplikační vrstva

- tvořena aplikačními protokoly (popisují podobu dat)
  - obecně žádný společný prvek
- aplikační protokol = služba
- napojení na transportní vrstvu → socket (Socket API)
  - použití služeb nižších vrstev (běžné)
  - surová data (ruční vytvoření zprávy)
- lacktriangle bezpečnost ightarrow obecně nelze spoléhat na doplňkové zabezpečení na nižších vrstvách

# Dynamická konfigurace hostitelského počítače

- Dynamic Host Configuration Protocol (DHCP)
  - IP adresa počítače
  - maska sítě
  - IP adresa výchozí brány
  - IP adresa jmenného (DNS) serveru
- klient-server služba
- klient port udp/68, server port udp/67

# DHCP: Postup zajištění konfigurace

- klient odešle broadcast DHCP discover zprávu (zjišťuje zda existuje DHCP server)
  - klient nezná adresu odesílatele (svoji IP adresu) → 0.0.0.0
  - klient nezná adresu příjemce (IP adresu serveru) → 255.255.255.255
- server zachytí zprávu a pošle DHCP offer zprávu (nabídne konfiguraci)
  - server odpoví broadcast nebo unicast
  - nabídnutá IP je blokována
- lacksquare pokud klient neobdrží DHCP offer (opakuje 4imes s prodlevou 2 s, pak pauza 5 m)
- klient zašle DHCP request zprávu (vyžádá si nabídnutou IP)
- server zašle DHCP pack zprávu, klient po jejím obdržení získává IP adresu
- přidělená IP adresa má omezenou platnost (expirace)
  - při 50 % je opět poslána DHCP (request) zpráva požadující prodloužení expirace
  - obdržení DHCP pack → prodloužení expirace
  - server může prodloužení zamítnou (klient musí znovu zažádat o IP adresu)
- klient může vrátit přidělenou IP adresu (DHCP release zpráva)

### **DHCP: Prakticky**

- je třeba určit rozsah použitelných IP adres
- doba expirace
- lze pevně určit vazbu mezi MAC a přidělenou IP (například pro síťovou tiskárnu)
- DHCP zprávy jsou standardně filtrovány na L3 zařízeních
- umístění serveru
  - DHCP server v lokální síti (obvykle domácí sítě, nepraktické u rozsáhlejších sítí)
  - DHCP server mimo lokální síť (broadcast neopustí lokální síť, nutný relay)
- lacktriangle v síti může být více DHCP ightarrow absence jednoho bodu selhání
- typicky různé rozsahy IP adres

### **DHCP:** Bezpečnost

- UDP je nespolehlivý
  - DHCP má vlastní kontrolní součet
  - časovače a možnost opětovného poslání požadavku
- v síti může být více DHCP → bezpečnostní riziko
  - součástí konfigurace je i výchozí brána
  - útočník vytvoří nový DHCP server, který může předběhnout původní
  - skrze nový DHCP server může být nabídnuta kompromitovaná výchozí brána
  - blokování komunikace

# Domain Name System (DNS)

- IP adresy
  - kopírují fyzickou strukturu sítě → uživatelé vyžadují logickou organizaci
  - IP adresy jsou obtížně zapamatovatelné
- ▼ řešení: doménové jméno
- lacktriangle hierarchická organizace doménových jmen ightarrow stromová struktura
- decentralizace
- záznamy (vazba mezi doménovým jménem a IP adresou) uloženy na jmenných (DNS) serverech
- konkrétní příklad jmenné služby

# Hierarchie doménových jmen

- doména, subdoména
- znak . oddělovač
- kořenová doména
  - nemá jméno (jméno je prázdný řetězec)
- top-level domény
  - generické např. com, net, info, edu, ...
  - národní např. cz, sk, us, ...
  - .cz vs cz
- doménové jméno
  - plně kvalifikované doménové jméno (FQDN), např. phoenix.inf.upol.cz. (tečka na konci)
  - částečně kvalifikované doménové jméno (PQDN), např. phoenix (resolver automaticky doplní suffix, včetně tečky)
- zóna = část záznamů spravovaných jmenným serverem

# Hierarchie doménových jmen



# **DNS** servery

- kořenový server
  - reálně 13 serverů (jména a–m)
  - každý v mnoha kopiích, řešeno anycast
  - snížení celkové zátěže na DNS
  - neudržuje informace o záznamech v doménách
  - deleguje zodpovědnost na další servery (top-level domény)
- jmenný server
  - udržuje informace o záznamech (spravuje svoji zónu)
  - deleguje zodpovědnost na jmenné servery (subdomény)
  - má IP adresy kořenových serverů
  - primární server: vytváří, udržuje a aktualizuje soubor uchovávající zónu
  - sekundární server: pouze přebírá data (zone transfer) od primárního (případně dalších sekundárních)

# Překlad doménového jména na IP adresu

- klient-server služba
- protokol DNS
- port udp/53 (pokud se odpověď vejde do 512 B) a tcp/53
- je třeba nalézt IP adresu k zadanému doménovému jménu
- řeší resolver
  - na klientovi část OS (služba poskytována aplikacím)
  - server (obvykle lokální jmenný server nebo veřejný resolver)
- dva typy dotazů
  - nerekurzivní předání dotazu na jiný server, server vrací seznam dalších jmenných serverů
  - rekurzivní klient požaduje a server vrací konečnou odpověď (server se stává řešitelem dotazu)

# Příklad: Překlad doménového jména na IP adresu



- Mlient chce zjistit IP adresu ke jménu www.example.com, klient prohledá svoji cache zda nezná odpověď
- 1 klient pošle rekurzivní dotaz na DNS resolver (musí být nastaven), pokud DNS resolver zná odpověď (má ji v chache) pošle jí klientovi
- ② pokud lokální jmenný server nezná odpověď pošle nerekurzivní dotaz na kořenový jmenný server

# Příklad: Překlad doménového jména na IP adresu



- 3 kořenový jmenný server nezná odpověď, ale ví kdo je zodpovědný za doménu com v dotazu, pošle DNS resolveru jeho adresu
- 4 DNS resolver pošle *nerekurzivní dotaz* na jmenný server spravující doménu . com
- jmenný server zodpovědný za doménu .com nezná odpověď, ale ví kdo je zodpovědný za doménu example.com, pošle DNS resolveru jeho adresu
- 6 DNS resolver pošle nerekurzivní dotaz na jmenný server spravující doménu example.com

# Příklad: Překlad doménového jména na IP adresu



- jmenný server spravující doménu example.com zná odpověď (1.2.3.4) a pošle ji DNS resolveru
- 8 DNS resolver předá 1.2.3.4 klientovi a uloží si údaje do cache
- 9 klient uloží 1.2.3.4 do cache a kontaktuje 1.2.3.4

### **DNS: Poznámky**

- vždy alespoň dva DNS servery (primární a sekundární)
  - všechny jsou vráceny v odpovědi (pořadí periodicky rotuje) → snížení zátěže
- typ odpovědi
  - autoritativní poskytována primárním nebo sekundárním jmenným serverem
  - neautoritativní odpověď vrácená z cache
- typy DNS serverů
  - primární, sekundární
  - cache
  - resolver (forwarder)

#### DNS: Reverzní překlad

- k IP adrese zjistit doménu
- typicky z důvodu bezpečnosti
- speciální top-level doména arpa se subdoménou in-addr
- postup
  - IP adresa se převrátí a přidá se in-addr.arpa
  - např. 158.184.80.13 ightarrow 13.80.194.158.in-addr.arpa
  - provede se klasický překlad

#### DNS: Uložení záznamů

- záznamy uloženy v tzv. RR záznamech (větách)
- (vybrané) typy záznamů

| popis                                          |
|------------------------------------------------|
| informace o primárním serveru pro danou doménu |
| (jméno, správce, TTL,)                         |
| autoritativní jmenný server pro danou doménu   |
| IPv4 adresa, uložení vazby doména IP adresa    |
| IPv6 adresa, uložení vazby doména IP adresa    |
| alias (alternativní jméno)                     |
| pro reverzní překlad                           |
| poštovní servery                               |
|                                                |

## **DNS** prakticky

- software: Knot DNS vyvinut (cz.nic), Bind, ...
- chybná konfigurace → prodlevy při práce se sítí, nebo zdánlivá nefunkčnost
- nástroje
  - nslookup
  - dig
  - dnswalk
- veřejné DNS resolvery
  - -8.8.8.8
  - 1.1.1.1
  - 193.17.47.1 a 185.43.135.1 (pro ČR vhodnější)
- registrace domén

# Ukázka interaktivní práce s nslookup

```
nslookup
> server
Default server: 158.194.80.254
Address: 158.194.80.254#53
> phoenix.inf.upol.cz
Name: phoenix.inf.upol.cz
Address: 158.194.80.13
> set type=ns
> inf.upol.cz
inf.upol.cz nameserver = ns1.inf.upol.cz.
inf.upol.cz nameserver = ns2.inf.upol.cz.
> set type=mx
> inf.upol.cz
inf.upol.cz mail exchanger = 12849 dx.spamfree.cz.
inf.upol.cz mail exchanger = 12801 ax.virusfree.cz.
inf.upol.cz mail exchanger = 12817 bx.virusfree.cz.
inf.upol.cz mail exchanger = 12833 cx.spamfree.cz.
```

# Ukázka interaktivní práce s nslookup

```
> server 8.8.8.8
Default server: 8.8.8.8
Address: 8.8.8.8#53
> trnecka.inf.upol.cz
Server: 8.8.8.8
Address: 8.8.8.8#53
Non-authoritative answer:
trnecka.inf.upol.cz canonical name = phantom.inf.upol.cz.
Name: phantom.inf.upol.cz
Address: 158.194.80.10
Name: phantom.inf.upol.cz
Address: 158.194.92.12
Name: phantom.inf.upol.cz
Address: 158.194.80.9
> exit
```

# Bezpečnost DNS

- doposud nebyl realizován úspěšný útok na (celosvětovou) DNS infrastrukturu
- zahlcení DNS serveru není jednoduché
  - cache, rotace v odpovědích, detekce automaticky generovaných dotazů
- lacktriangle hlavička DNS protokolu neobsahuje kontrolní součet ightarrow při použití UDP může znamenat bezpečnostní riziko
- odpovědi zneužívány pro DoS útoky (krátký dotaz, dlouhá odpověď)
- podvržení odpovědi → DNSSec
- DNS dotaz a odpověď jsou odposlechnutelné (nejsou šifrované)
  - např. v ČR využívané pro blokaci (lze triviálně obejít)
  - $\rightarrow$  DNS over TLS, DNS over HTTPS (velké rozdíly) případně VPN
  - stále problém důvěryhodnosti resolveru

# Secure shell (SSH)

- SSH-2 (SSH1-1 nebezpečné)
- port tcp/22
- čtyři komponenty
  - transportní protokol (SSH-TRANS) vytváří bezpečné připojení nad TCP (šifrování a integrita dat)
  - autentizační protokol (SSH-AUTH) autentizace klienta vůči serveru
  - spojovací protokol (SSH-CONN) správa (multiplexing a demultiplexing) bezpečných spojení
  - aplikační protokol data (využívají bezpečné kanály)
- SSH tunelování = použití bezpečného kanálu (např. telnet nebo SMTP skrze SSH), realizované přes forwardování portů (na klientovi a serveru)

# **Hypertext Transfer Protocol (HTTP)**

- přístup ke službě WWW
- HTTP/1, HTTP/1.1, HTTP/2, HTTP/3 (HTTP over QUIC)
- zaměříme se na HTTP/1.1
  - textová podoba (HTTP/2 je binární)
  - persistentní spojení (HTTP/1 je neperzistentní, vyžaduje TCP spojení pro každou zprávu)
  - absence šifrování → HTTPS (SSL/TLS)
- klient-server
- port tcp/80, port tcp/443 pro HTTPS
- bezstavový protokol (server neuchovává informace o klientovi)
  - cookies (uloženy na klientovi)
  - velikost a počet na doménu závisí na konkrétním klientovi

## HTTP: Zprávy

| metoda                                                              |    | SP | URL |      | SP   | verze |  | EOL |
|---------------------------------------------------------------------|----|----|-----|------|------|-------|--|-----|
| hlavič                                                              | ka | :  | SP  | hodi | nota | EOL   |  |     |
| hlavič                                                              | ka | :  | SP  | hodi | nota | EOL   |  |     |
| :                                                                   |    |    |     |      |      |       |  |     |
| hlavič                                                              | ka | :  | SP  | hodi | nota | EOL   |  |     |
| EOL                                                                 |    |    |     |      |      |       |  |     |
| tělo požadavku (proměnlivý počet řádků,<br>pouze u některých zpráv) |    |    |     |      |      |       |  |     |

| verze                                                           |   | SP | status |         | SP   | fráze |  | EOL |
|-----------------------------------------------------------------|---|----|--------|---------|------|-------|--|-----|
| hlavička                                                        |   |    | SP     | hodnota |      | EOL   |  |     |
| hlavička                                                        | l | :  | SP     | hodi    | nota | EOL   |  |     |
| :                                                               |   |    |        |         |      |       |  |     |
| hlavička                                                        | ι |    | SP     | hodi    | nota | EOL   |  |     |
| EOL                                                             |   |    |        |         |      |       |  |     |
| tělo odpovědi (proměnlivý počet řádků, pouze u některých zpráv) |   |    |        |         |      |       |  |     |

request

response

■ SP = mezera, EOL = nový řádek (CR + LF)

# Protokol HTTP: Zjednodušené zprávy

#### request

```
GET /pro-zajemce-o-studium HTTP/1.1
Host: www.inf.upol.cz
Connection: keep-alive
User-Agent: Mozilla/5.0
Accept-Language: cs
```

#### response

```
HTTP/1.1 200 OK
Date: Mon, 29 Nov 2021 00:52:50 GMT
Server: Apache/2.4.10 (Debian)
Content-Type: text/html; charset=UTF-8
data
```

# **HTTP:** Metody

| metoda  | popis                                              |
|---------|----------------------------------------------------|
| GET     | požadavek na dokument (webovou stránku) na serveru |
| HEAD    | pouze informace o dokumentu                        |
| POST    | odeslání informace na server                       |
| PUT     | odeslání dokumentu na server                       |
| TRACE   | výpis příchozího požadavku                         |
| CONNECT | rezervováno                                        |
| DELETE  | odstranění dokumentu ze serveru                    |
| PATCH   | změna dokumentu na serveru                         |
| OPTIONS | dostupné metody                                    |
|         |                                                    |

# HTTP: Hlavičky v request

| metoda           | popis                                          |
|------------------|------------------------------------------------|
| user-agent       | identifikace klientského programu (prohlížeče) |
| accept           | media                                          |
| accept-charset   | znaková sada                                   |
| accept-encoding  | kódování                                       |
| accept-language  | jazyk                                          |
| authorization    | oprávnění klienta                              |
| host             | host a port klienta                            |
| date             | aktuální datum                                 |
| upgrade          | preferovaný komunikační protokol               |
| cookie           | poslání cookie na server                       |
| if-modifed-since | podmíněný požadavek                            |

#### **HTTP: Status v response**

| inform        | nativní               |                                      |  |  |
|---------------|-----------------------|--------------------------------------|--|--|
| kód           | fráze                 |                                      |  |  |
| 100           | continue              | popis<br>začátek požadavku přijat    |  |  |
|               | continue              |                                      |  |  |
| 101           | switching             | serveru vyhovuje změna protokolu     |  |  |
| potvrz        |                       |                                      |  |  |
| kód           | fráze                 | popis                                |  |  |
| 200           | OK                    | požadavek byl úspěšný                |  |  |
| 201           | created               | URL bylo vytvořeno                   |  |  |
| 202           | accepted              | požadavek přijat, čeká na zpracování |  |  |
| 204           | no content            | odpověď nemá tělo                    |  |  |
| přesm         | ěrování               |                                      |  |  |
| kód           | fráze                 | popis                                |  |  |
| 301           | moved pernamently     | dané URL bylo trvale změněno         |  |  |
| 302           | moved temporarily     | dané URL bylo dočasně změněno        |  |  |
| 303           | not modified          | dokument nebyl změněn                |  |  |
|               | klienta               |                                      |  |  |
| kód           | fráze                 | popis                                |  |  |
| 400           | bad request           | syntaktická chyba v požadavku        |  |  |
| 401           | unauthorized          | není dostatečné oprávnění            |  |  |
| 403           | forbidden             | přístup odepřen                      |  |  |
| 404           | not found             | dokument nenalezen                   |  |  |
| 405           | method not allowed    | daná metoda není podporována         |  |  |
| 406           | not acceptable        | požadovaný formát není akceptován    |  |  |
| chyba serveru |                       |                                      |  |  |
| kód           | fráze                 | popis                                |  |  |
| 500           | internal server error | chyba na straně serveru              |  |  |
| 501           | not implemented       | danou akci nelze provést             |  |  |
| 503           | service unavailable   | služba je dočasně nedostupná         |  |  |
|               |                       |                                      |  |  |

# HTTP: Hlavičky v response

| metoda popis  date aktuální datum  upgrade preferovaný komunikační protokol server informace o serveru set-cookie požadavek na uložení cookie content-encoding kódování content-language jazyk content-length délka dokumentu content-type typ medií location požadání klienta o poslaní požadavku na jinou URL accept-ranges server akceptuje daný rozsah bajtů last-mofified čas poslední změny |                  |                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------|
| upgrade preferovaný komunikační protokol informace o serveru set-cookie požadavek na uložení cookie kódování content-language jazyk délka dokumentu content-type delka dokumentu typ medií požadání klienta o poslaní požadavku na jinou URL accept-ranges server akceptuje daný rozsah bajtů                                                                                                     | metoda           | popis                                             |
| server informace o serveru set-cookie požadavek na uložení cookie content-encoding kódování content-language jazyk content-length délka dokumentu content-type typ medií location požadání klienta o poslaní požadavku na jinou URL accept-ranges server akceptuje daný rozsah bajtů                                                                                                              | date             | aktuální datum                                    |
| set-cookie požadavek na uložení cookie content-encoding kódování content-language jazyk content-length délka dokumentu content-type typ medií location požadání klienta o poslaní požadavku na jinou URL accept-ranges server akceptuje daný rozsah bajtů                                                                                                                                         | upgrade          | preferovaný komunikační protokol                  |
| content-encoding kódování content-language jazyk content-length délka dokumentu content-type typ medií location požadání klienta o poslaní požadavku na jinou URL accept-ranges server akceptuje daný rozsah bajtů                                                                                                                                                                                | server           | informace o serveru                               |
| content-language jazyk content-length délka dokumentu content-type typ medií location požadání klienta o poslaní požadavku na jinou URL accept-ranges server akceptuje daný rozsah bajtů                                                                                                                                                                                                          | set-cookie       | požadavek na uložení cookie                       |
| content-length délka dokumentu content-type typ medií location požadání klienta o poslaní požadavku na jinou URL accept-ranges server akceptuje daný rozsah bajtů                                                                                                                                                                                                                                 | content-encoding | kódování                                          |
| content-type typ medií<br>location požadání klienta o poslaní požadavku na jinou URL<br>accept-ranges server akceptuje daný rozsah bajtů                                                                                                                                                                                                                                                          | content-language | jazyk                                             |
| location požadání klienta o poslaní požadavku na jinou URL accept-ranges server akceptuje daný rozsah bajtů                                                                                                                                                                                                                                                                                       | content-length   | délka dokumentu                                   |
| accept-ranges server akceptuje daný rozsah bajtů                                                                                                                                                                                                                                                                                                                                                  | content-type     | typ medií                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                   | location         | požadání klienta o poslaní požadavku na jinou URL |
| last-mofified čas poslední změny                                                                                                                                                                                                                                                                                                                                                                  | accept-ranges    | server akceptuje daný rozsah bajtů                |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                           | last-mofified    | čas poslední změny                                |

# Elektronická pošta: Přehled



- lacksquare UA = user agent, MTA = message transfer agent, MAA = message access agent
- web-based řešení využívá HTTPS pro spojení se serverem

# Elektronická pošta

- UA = user agent
  - poštovní klient (aplikace)
- MTA = message transfer agent
  - klient-server
  - realizace odeslání zprávy
  - Extended Simple Mail Transfer Protocol (ESMTP)
- MAA = message access agent
  - klient-server
  - realizace stažení zprávy
  - Internet Mail Access Protocol 4 (IMAP4)

# Elektronická pošta: Struktura zprávy



- Ize přenášet pouze ASCII znaky
- Multipurpose Internet Mail Extension (MINE) rozšíření hlavičky
  - neASCII znaky → zakódovány do ASCII
  - přílohy o zakódovány do ASCII o neefektivní

# Elektronická pošta: Bezpečnost

- žádné zabezpečení na úrovni ESMTP, IMAP4
  - podvržení odesílatele
  - podvržení zprávy
- zabezpečení pomocí SSL/TLS na konci → "S"
- zabezpečení pomocí aplikačních protokolů
  - Pretty Good Privacy (PGP)
  - Secure MINE (SMINE)
- obálka obsahuje informace o zprávě a záznamy její cesty skrze síť

#### **Decentralizace**

- doposud vždy klient-server → centralizace
- decentralizace
  - např. Content Delivery Network (CDN), DNS ightarrow stále částečná centralizace
  - peer-to-peer (P2P) architektura

#### **BitTorrent**

- peer-to-peer protokol pro výměnu souborů
- klienti se podílejí na distribuci částečného souboru (torrent) výměnou bloků stejné velikosti (obvykle 256 kB)
- infrastrukturní server s *tracker* souborem
  - udržuje informace o klientech, kteří distribuují bloky daného torrent souboru
- výměna bloků je založena na obchodním algoritmu

### BitTorrent: Zjednodušený postup sdílení

- Alice informuje tracker, že chce zahájit stahování torrent souboru, tracker ji eviduje a pošle ji podmnožinu již evidovaných klientů (mají bloky k výměně), Alice periodicky informuje tracker, že je aktivní
- Alice se pokusí navázat spojení s těmito klienty (klient, se kterým je navázáno spojení = soused, jejich počet se v průběhu mění (k trackeru se připojí se noví, kteří se stanou sousedy Alice, soused se odpojí, ...)
- Alice se pravidelně ptá sousedů na jejich seznam bloků, sousedé jí odpoví
- Alice si vybere (různé strategie, obvykle nejvzácnější), které bloky chce a pošle požadavek sousedům
- obchodní algoritmus (výměna požadovaných bloků): Alice udržuje 4 nejlepší (nejrychlejší) sousedy, kteří ji posílají bloky a posílá jim bloky na oplátku, přepočet cca každých 10 s, každých 30 s je náhodně zvolen další soused (Bob), kterému jsou poslány bloky, Alice se může stát nejlepší sousedkou Boba → Bob se může stát nejlepším sousedem Alice → princip "jak ty mě, tak já tobě"

#### Odbočka: CDN sítě

- distribuce dat v modelu klient-server
- centrální server + řady proxy serverů
- například: Google, Netflix, . . .

#### Odbočka: Zastaralé protokoly

- telnet (port tcp/23)
- FTP (porty tcp/20 a tcp/21)
- SMPT, POP3
- HTTP?
- zastaralé, ale jednoduché a elegantní
- při návrhu (programování) komunikace obvykle "znovuobjevování kola"

#### Další protokoly

- velké množství → ukázali jsme pouze zlomek
- správa sítě Simple Network Management Protocol (SNMP)
- multimédia Real-Time Transport Protocol (RTP), Real-Time Control Protocol (RTCP)
- synchronizace času Network Time Protocol (NTP)
- soubory Lightweight Directory Access Protocol (LDAP), Server Message Block (SMB)
- kvalita přenosu Quality of Service (QoS)

### Tvorba síťových aplikací

- napojení na síť pomocí socketu
- odesílání a příjem dat pomocí Socket API
  - ve většině jazyků (C/C++, Python, Java, C#, ...)
  - programátor obvykle potřebuje služby transportní vrstvy
  - lze obejít → konstrukce a odposlech (téměř) veškeré komunikace
- základní typy socketů
  - SOCK\_STREAM (TCP)
  - SOCK\_DGRAM (UDP)
  - SOCK\_SEQPACKET (SCTP)
  - SOCK\_RAW
- podpora různých typů adres, AF\_INET = IPv4

# Tvorba síťových aplikací: Socket API



# Tvorba síťových aplikací (v jazyce Python)

- pouze ukázka
- https://docs.python.org/3/library/socket.html
- v příkladech klient-server budeme uvažovat následující kód

```
import socket as s

# nastaveni
MSG_OK = b"ok"

# adress a port serveru
server_address = "127.0.0.1"
server_port = 1227
```

- v ukázkách nejsou (pro jednoduchost) ošetřeny chybové stavy!
- absence konkurentnního zpracování požadavků o složitější, vyžaduje použití vláken

## Tvorba síťových aplikací: UDP klient

```
# UDP klient
# otevření soketu, IPv4, UDP
client socket = s.socket(s.AF INET, s.SOCK DGRAM)
# zpráva, je vyžadována sekvence bajtů
message = b"Hello, World!"
# poslání zprávy na server
client_socket.sendto(message, (server_address, server_port))
# čekání na přijetí zprávy od serveru, 2048 je velikost bufferu
message_from_server, server_address = client_socket.recvfrom(2048)
print(message_from_server)
# uzavření soketu
client socket.close()
```

## Tvorba síťových aplikací: UDP server

```
# UDP server
# otevření soketu, IPv4, UDP
server_socket = s.socket(s.AF_INET, s.SOCK_DGRAM)
# nastavení socketu
server_socket.bind((server_address, server_port))
print(f"The server is listening on port {server_port}.")
while 1:
    # čekání na příjem zprávy
   message, client_address = server_socket.recvfrom(2048)
    # poslání potvrzení o přijetí
    server_socket.sendto(MSG_OK, client_address)
    print(f"Message {message} received from {client_address}.")
server_socket.close()
```

## Tvorba síťových aplikací: TCP klient

```
# TCP klient
# otevření soketu. IPv4. TCP
client_socket = s.socket(s.AF_INET, s.SOCK_STREAM)
# sekvence bajtů k přenosu
sequence = b"Hello, World!"
# navázání spojení se serverem
client_socket.connect((server_address, server_port))
# odeslání dat
client_socket.send(sequence)
# čekání na přijetí zprávy od serveru, 1024 je velikost bufferu
sequence_from_server = client_socket.recvfrom(1024)
print(sequence_from_server)
# uzavření soketu
client_socket.close()
```

# Tvorba síťových aplikací: TCP server

```
# TCP server
# otevření soketu, IPv4, TCP
server socket = s.socket(s.AF INET, s.SOCK STREAM)
# nastavení socketu
server_socket.bind((server_address, server_port))
# otevření portu
server_socket.listen(1)
while 1:
    # čekaní na spojení
    connection_socket, connection_address = server_socket.accept()
    # příjem dat, čeká se na zaplnění bufferu nebo konec spojení
    sentence = connection socket.recv(1024)
   print(f"Sentence {sentence} received from {connection_address}.")
    # poslání sekvence klientovi
    connection socket.send(MSG OK)
    connection_socket.close()
server_socket.close()
```

# Tvorba síťových aplikací: HTTP přes SSL/TLS

```
# SSI.
import socket as s
import ssl
hostname = "www.inf.upol.cz"
port = 443
# vytvoření SSL/TLS vrstvy
context = ssl.create default context()
# vytvoření spojení
socket = s.create_connection((hostname, port))
# zabalení do SSL/TLS
sslSocket = context.wrap_socket(socket, server_hostname=hostname)
# HTTP požadavek, ruční konstrukce (existuje knihovna)
request = f"GET / HTTP/1.1\r\nHost: {hostname}:{port}\r\n\r\n"
sslSocket.send(request.encode())
# odpověď serveru
response = sslSocket.recv(4096)
print(response)
```

### Tvorba síťových aplikací

- většina jazyků podporuje Socket API
  - C/C++ v UNIX a MacOS podpora přímo v C (BSD socket API), ve Windows Windows socket API (Winsock)
  - Java, součást java.net.Socket
  - C#, součást System.Net.Sockets
- přístup k nižším vrstvám TCP/IP
  - odlišné chování na různých architekturách
  - linkový rámec lze plnohodnotně manipulovat pouze na UNIXových systémech

#### Bezpečnost na aplikační vrstvě

- bezpečnost jednotlivých služeb
  - chyby v knihovnách a software
  - zadní vrátka
  - prolomení šifrování (matematické, hrubá síla)
- autentizace
  - ukradení/odposlechnutí hesla
  - sociální inženýrství
- chránění vnitřní sítě
  - firewall
  - demilitarizovaná zóna (DMZ)
  - honeypots, traffic monitoring

#### Závěr: Poslední slide

- úvod do počítačových sítí (Internet)
  - principy fungování → zastarávají pomaleji
  - technologie → zastarávají rychleji
- úvod do (základní) bezpečnosti
- řada dalších zajímavých síťových záležitostí → KMI/POS2