

PRÀCTICA 1:

ESTRUCTURA DE COMPUTADORS

Carlos Martínez i Genís Martínez

GEI 2021-2022

ÍNDEX

1. FASE 1

- 1.1.- Tarea 1
- 1.2.- Tarea 2
- 1.3.- Tarea 3

2. FASE 2

- 2.1.- Tarea 4
- 2.2.- Tarea 5
- 2.3.- Tarea 6
- 2.4.- Tarea 7
- 2.5.- Tarea 8

3. FASE 3

- 3.1.- Tarea 9
- 3.2.- Tarea 10

4. FASE 4

- 4.1.- Tarea 11
- 4.2.- Tarea 12
- 4.3.- Tarea 13
- 4.4.- Tarea 14
- 4.5.- Tarea 15

5. FASE 5

- 5.1.- Tarea 16
- 5.2.- Tarea 17
- 5.3.- Tarea 18

1.1.- Tarea 1:

RetardoC = $\frac{3T}{R}$

1.2.- Tarea 2:

RetardoC = $\frac{10T}{RetardoS}$ = $\frac{8T}{RetardoS}$

1.3.- Tarea 3:

Suponemos un retardo de la NAND de 3T.

RetardoS = 18T

Retardo C = $\frac{15T}{}$

2.1.- Tarea 4:

RetardoC = TC(bit0) + (n-1 bits)*(TC-ParteParalela) =
$$= 10T + (4-1) * (10T - 4T) = \frac{28T}{28T}$$
RetardoS = TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela) =
$$= 10T + (4-2) * (10T - 4T) + (8T - 4T) = \frac{30T}{2}$$

2.2.- Tarea 5:

TC=15; TS=18

RetardoC =
$$TC(bit0) + (n-1 bits)*(TC-ParteParalela) =$$

$$= 15T + (4T-1bits) * (15T-9T) = \frac{33T}{2}$$

RetardoS = $TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela) =$

$$= 15T + (4T-2bits) * (15T-9T) + (18T-9T) = \frac{36T}{2}$$

```
2.3.- Tarea 6:
```

IMPLEMENTACIÓ 1.

(4bits)

RetardoC =
$$TC(bit0) + (n-1 bits)*(TC-ParteParalela) =$$

= $10T + (4T-1bits) * (10T-4T) = \frac{28T}{}$

RetardoS =
$$TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela) = 10T + (4T-2bits) * (10T-4T) + (8T-4) = $\frac{30T}{10T}$$$

(16 bits)

RetardoC =
$$TC(bit0) + (n-1 bits)*(TC-ParteParalela) =$$

= $10T + (16-1 bits) * (10T-4T) = 100T$

RetardoS =
$$TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela) = 10T + (16-2bits)*(10T-4T) + (8T-4T) = $\frac{98T}{}$$$

(32bits)

RetardoC =
$$TC(bit0) + (n-1 bits)*(TC-ParteParalela) =$$

= $10T + (32-1bits)*(10T-4T) = \frac{196T}{100}$

RetardoS =
$$TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela) = 10T + (32T-2bits)*(10T-4T) + (8T-4T) = 194T$$

(128 bits)

RetardoC =
$$TC(bit0) + (n-1 bits)*(TC-ParteParalela) =$$

= $10T + (128T-1bits)*(10T-4T) = \frac{772T}{100}$

RetardoS =
$$TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela) = 10T + (128T-2bits)*(10T-4T) + (8T-4T) = $770T$$$

```
IMPLEMENTACIÓ 2.
TS= 18 ; TC= 15
(4bits)
RetardoC = TC(bit0) + (n-1 bits)*(TC-ParteParalela) =
           = 15T + (4T-1bits) * (15T-9T) = 33T
RetardoS = TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela)=
           = 15T + (4T-2bits) * (15T-9T) + (18T-9T) = 36T
(16 bits)
RetardoC = TC(bit0) + (n-1 bits)*(TC-ParteParalela) =
           = 15T + (16-1 \text{ bits}) * (15T-9T) = 105T
RetardoS = TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela)=
           = 15T + (16-2bits)*(15T-9T) + (18T-9T) = 108T
(32bits)
RetardoC = TC(bit0) + (n-1 bits)*(TC-ParteParalela) =
           = 15T + (32-1bits)*(15T-9T) = 201T
RetardoS = TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela)=
           = 15T + (32T-2bits)*(15T-9T) + (18T-9T) = 204T
(128 bits)
RetardoC = TC(bit0) + (n-1 bits)*(TC-ParteParalela) =
           = 15T + (128T-1bits)*(15T-9T) = 777T
RetardoS = TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela)=
           = 15T + (128T-2bits)*(15T-9T) + (18T-9T) = 780T
```

2.4.- Tarea 7:

TC=10T; TS=8T

RetardoC =
$$TC(bit0) + (n-1 bits)*(TC-ParteParalela) =$$

= $10T + (16-1 bits) * (10T-4T) = 100T$

RetardoS =
$$TC(bit0) + (n-2 bits)*(TC-ParteParalela) + (TS-ParteParalela) = 10T + (16-2bits)*(10T-4T) + (8T-4T) = $98T$$$

2.5.- Tarea 8:

Full Substractor

Restador 16 Bits

A=54

B=29

Cin activado

3.1.- Tarea 9:

S(0)=8T

Cout(0)=10T

Stotal=10T+(4-2)*(10T-4T)+(8-4T)=26T

Ctotal=10+(3)*(10-4)=28T

RetardoCSA = RetardoCPA + RetardoMux = 28T + 2T = 30T

Area Xor=8, AND=6, OR=6 Area total=8*(2*8)+8*(2*6)+8*(6)+5*8=312

3.2.- Tarea 10:

RetardoCSA16bits = RetardoCPA0 +(M_módulos-1) * RetardoMux =

4.1.- Tarea 11:

RetardoS = 8T

RetardoPi = 3T

RetardoGi = 3T

4.2.- Tarea 12:

Retardo CLA:

Generar y propagar	A, B	3 (AND)
C1 a Cn	P, G, C0	6 (Suma de productos)
Suma S	C, A, B	4 (XOR)
RETARDO TOTAL =		13

4.3.- Tarea 14:

CLA1	CLA2	CLA3	CLA4
Retardo	Retardo	Retardo	Retardo
C0=0T	C0=15T	C0=27T	C0=39T
C1=6T	C1=18T	C1=30T	C1=42T
C2=9T	C2=21T	C2=33T	C2=45T
C3=12T	C3=24T	C3=36T	C3=48T
C4=15T	C4=27T	C4=39T	C4=51T
S0=8T	S0=19T	S0=31T	S0=43T
S1=10T	S1=22T	S1=34T	S1=46T
S2=13T	S2=25T	S2=37T	S2=49T
S3=16T	S3=28T	S3=40T	S3=55T

4.5.- Tarea 15:
Resum temps de retard i área:
CPA (16 bits)
Retardo=100T
CSA (16 bits)
Retardo=34T

CLA (16 bits)

Retardo=55T

Si analizamos los tiempos de retardo obtenidos en los diferentes circuitos podemos llegar a la conclusión de que el sumador más rápido entre los 3 es el CSA de 16 bits, siendo el CPA de 16 bits el más lento.

5.1.- Tarea 16:

5.2.- Tarea 17:

5.3.- Tarea 18:

T total = 53T

Área Total =
$$(4*HA) + (8*FA) + (16*AND) =$$

= $(4*14) + (8*34) + (16*6) = 424$