Diseño de software para cómputo científico V.2.0.

Juan Cabral

jbcabral@unc.edu.ar

Consideraciones

- La ciencia tiene una dependencia de grandes infraestructuras computacionales como super-computadoras e infraestructuras de redes.
- Las tareas del científico moderno también abarcan desarrollar herramientas confiables, optimizando el uso del cómputo, así como su tiempo en tareas de desarrollo.

Objetivo

- Explicar el correcto uso de lenguajes de alto y bajo nivel. (utilizar la simpleza de los primeros cuando se pueda y la eficiencia de los segundos cuando se necesite).
- Introducir técnicas y tecnologías modernas para la creación de software confiables.
- **En palabras simples:** Exprimir un lenguaje de alto nivel hasta el punto que se justifique el esfuerzo de utilizar bajo nivel. (en nuestro caso el alto nivel es Python)

Que NO es este curso

- No es un curso de programación en Python.
- No se va enseñar HPC (Eso es la materia de Nicolás Wolovick).
- No se va enseñar grandes volúmenes de datos (Esto es la materia de Damián Barsotti)
- Se va enseñar cuándo es útil alguna de esas dos técnicas.

Requisitos

- Es un curso doctoral.
- Saber algo de programación (Da lo mismo el lenguaje, R, Python, Julia)
- Opcional: Si tienen una idea de algo que necesite para su doc que se pueda generalizar mejor.

Aclaraciones Finales

- La ingeniería de software es un área imposible de barrer extensivamente en su totalidad en una materia.
- La idea es preparar al alumno en el uso eficiente de herramientas de alto nivel así como prácticas básicas para la mejora de la calidad de sus proyectos resultantes.
- Osea: como se trabaja en la industria.
- Ya hubo tres cohortes con un total 88 inscriptos con variopintos temas como: neurociencias, astronomía, física, Ing industrial, educación, química, economía o biología.

Ya hay trabajos salidos del curso

- Chalela, M., Sillero, E., Pereyra, L., García, M. A., Cabral, J. B., Lares, M., & Merchán, M.
 (2021). GriSPy: A Python package for fixed-radius nearest neighbors search. Astronomy and Computing, 34, 100443.
- Colazo, M., Cabral, J. B., Chalela, M., & Sánchez, B. O. (2022). Easy asteroid phase curve fitting for the Python ecosystem: Pyedra. Astronomy and Computing, 38, 100533.
- Daza, I., Alfaro, I. G., Benavides, J. A., Lares, M., Santucho, M. V., Cabral, J. B., ... & Koraj, M. (2021). PISCIS: Platform for Interactive Search and Citizen Science. Boletin de la Asociación Argentina de Astronomia La Plata Argentina, 62, 310-312.
- Y hay más en preparación