Continued progress reports:

Scott:

Posted mass spectrometer code to Github, repository here: https://github.com/sbordvak/MassSpecMCMC-matlab

Changed the directories to make them internally consistent. Jim will wait until it can handle the five-isotope data stream

Jim:

Been plugging away at creating more 1D arrays (vectors) in preparation for the MCMC algorithm machinery.

At the top level: the notion of mass spectrometers. Mass spectrometer interface serves as the template for inputting data/metadata specific to each.

Noah:

If W_B is the width of the ion beam at the focal plane, W_C is the width of the collector opening, and R_{eff} the effective radius of the magnet, then the width of the top of the peak W_T in units of amu for a given mass

$$W_T = \frac{(WC - WB) \cdot mass}{Reff}$$

And the width of the entire peak $W_{\scriptscriptstyle P}$ in units of amu is

$$W_{p} = \frac{(WC + WB) \cdot mass}{Reff}$$

For instance, for commonly used values WB = 0.35 mm, WC = 1 mm, Reff = 540 mm, then WT is