概率论与数理统计

孙旭磊 2023年2月

第一章 事件及概率

• 事件的运算

当事件不相容时,可以把"并"运算符号改写为通常的加号

基本模型

- 1. 从 n 个不同的元素中,有放回地取 r 个元素组成的组合(不考虑顺序),不同方式个数为 C^r_{n+r-1} (重复组合数)
- 2. 把 r 个球随机放到不同编号的 n 个盒子中去,球不可辨,每个盒中不限球的个数,不同的排法个数为 C_{n+r-1}^r
- 3. 把 n 个不同的元素分为有序的 k 个部分,第 i 部分有 r_i 个元素, $i=1,2,\cdots,k$, $r_1+r_2+\cdots+r_k=n$,则不同的分法个数为 $\frac{n!}{r_1!r_2!\cdots r_k!}$ (多项式系数)
- 4. 有 n 个元素,属于 k 个不同的类,同类元素之间不可辨认,各类元素分别有 n_1,n_2,\cdots,n_k 个,其中 $n_1+n_2+\cdots+n_k=n$,要把它们排成一列,则一共有 $\dfrac{n!}{n_1!n_2!\cdots n_k!}$ 种不同的排法

• 概率的公理化定义

- 1. 非负性: $0 \le P(A) \le 1$
- 2. 规范性:设 Ω 为必然事件,则 $P(\Omega)=1$
- 3. 可数可加性:对 Ω 中两两不相容事件 $A_1,A_2,\cdots,A_k\cdots$,有 $P\left(\bigcup_{k=1}^\infty A_k\right)=\sum_{k=1}^\infty P(A_k)$

• 概率的性质

- 1. $P(\emptyset) = 0$
- 2. 有限可加性:若 $A_k, k=1,2,\cdots,n$ 且两两不相容,则 $P\Big(\sum_{k=1}^n A_k\Big)=\sum_{k=1}^n P(A_k)$
- 3. 可减性: 若 $A \subset B$, 则 P(B A) = P(B) P(A)
- 4. 单调性: 若 $A \subset B$, 则 P(A) < P(B)
- 5. $P(\bar{A}) = 1 P(A)$
- 6. 容斥原理:

$$P\left(\bigcup_{k=1}^{n}A_{k}\right) = \sum_{k=1}^{n}P(A_{k}) - \sum_{1 \leq i \leq j \leq n}P(A_{i}A_{j}) + \sum_{1 \leq i \leq j \leq k \leq n}P(A_{i}A_{j}A_{k}) - \dots + (-1)^{n-1}P(A_{1}A_{2} \cdots A_{n})$$

7. 次可加性:对任意的事件列 $A_1,A_2,\cdots,A_n,\cdots$,有 $P\Big(igcup_{k=1}^\infty A_k\Big)\leq \sum_{k=1}^\infty P(A_k)$

• 条件概率

• $P(A|B) = \frac{P(AB)}{P(B)}$

• 对 Ω 中两两不相容事件 $A_1,A_2,\cdots,A_k\cdots$,有 $P\left(igcup_{k=1}^\infty A_k|B
ight)=\sum_{k=1}^\infty P(A_k|B)$

• 设 B_1, B_2, \cdots, B_n 是 Ω 的一个完备事件群,A 为 Ω 中任一事件,则有

 \circ 全概率公式: $P(A) = \sum P(A|B_i)P(B_i)$

 \circ 贝叶斯公式: $P(B_i|A) = \frac{P(B_iA)}{P(A)} = \frac{P(A|B_i)P(B_i)}{\sum P(A|B_i)P(B_i)}$

• 事件的独立性

- A, B相互独立 $\Leftrightarrow P(AB) = P(A)P(B) \Leftrightarrow P(B|A) = P(B)$ (若 P(A) > 0)
- 两两独立 ← 相互独立, 两两独立 ⇒ 相互独立

第二章 随机变量及其分布

分布	分布律/概率密度函数	期望	方差	性质
0-1 分布	$\begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$	p	p(1-p)	
二项分布 $B(n,p)$	$C_n^k p^k (1-p)^{n-k}$	np	np(1-p)	再生性
超几何分布	$\frac{C_M^m C_{N-M}^{n-m}}{C_N^n}$	$rac{nM}{N}$	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$	
几何分布 $G(p)$	$p(1-p)^{k-1}$	$\frac{1}{p}$	$rac{1-p}{p^2}$	无记忆性
负二项分布 $NB(r,p)$	$C_{k-1}^{r-1}p^r(1-p)^{k-r}$	$rac{r}{p}$	$\frac{r(1-p)}{p^2}$	
泊松分布 $P(\lambda)$	$rac{\lambda^k}{k!}e^{-\lambda}$	λ	λ	再生性
连续均匀分布 $U(a,b)$	$\frac{1}{b-a}I_{(a,b)}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
指数分布 $\mathrm{Exp}(\lambda)$	$\lambda e^{-\lambda x} I_{(0,\infty)}(x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	无记忆性
正态分布 $N(\mu,\sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$	μ	σ	再生性

离散型分布

- 1.0-1 分布 (伯努利分布/两点分布)
- 2. 离散均匀分布
- 3. 二项分布 B(n,p)
 - \circ 再生性:独立随机变量 $X \sim B(n,p), Y \sim B(m,p) \Rightarrow X + Y \sim B(n+m,p)$

- 4. 超几何分布:池塘中有 N 条鱼,捞 M 条鱼标记后再放回,现从中捞出 n 条鱼,恰有 m 条鱼有标记的概率(不放回抽样)
- 5. 几何分布 G(p): 伯努利实验成功前 (含) 的次数
 - 无记忆性: $P(X > m + n | X > m) = P(X > n) = (1 p)^n$
- 6. 负二项分布(帕斯卡分布) NB(r,p): 伯努利实验第 k 次时恰成功了 r 次
- 7. 泊松分布 $P(\lambda)$
 - ullet 泊松逼近定理:设 $X_n \sim B(n,p_n)$,若当 $n o \infty$ 时, $np_n o \lambda > 0$,则 $\lim_{n o \infty} P(X_n = k) = rac{\lambda^k}{k!} \, e^{-\lambda}$
 - 再生性:独立随机变量 $X \sim P(\lambda), Y \sim P(\mu) \Rightarrow X + Y \sim P(\lambda + \mu)$

• 连续型分布

- 1. 连续均匀分布 U(a,b)
- 2. 指数分布 $Exp(\lambda)$
 - 无记忆性: P(X > s + t | X > t) = P(X > s)
- 3. 正态分布 $N(\mu, \sigma^2)$
 - 。 标准正态分布: $\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$

$$\circ \ \ \mathrm{E}\left(X^{2}
ight)=\mu^{2}+\sigma^{2}, \mathrm{E}(|X-\mu|)=\sqrt{rac{2}{\pi}}\sigma^{2}$$

- 。 标准化变換: $rac{X-\mu}{\sigma}\sim N(0,1)$, $F(x)=\Phi\left(rac{x-\mu}{\sigma}
 ight)$
- 再生性:独立随机变量 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2) \Rightarrow X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

• 分布函数与概率密度函数

- $F(x) = P(X \le x)$, 右连续 (F(x+0) = F(x))
- $F(x) = \int_{-\infty}^{x} f(t) dt$, $X \sim f(x)$

• 连续型随机变量函数的分布

- 设 $X\sim f(x), Y=g(X)$,则随机变量 Y 的分布函数为 $F_1(y)=P(Y\leq y)=P(g(X)\leq y)=\int_{g(x)\leq y}f(x)\mathrm{d}x$
- 若 g(x) 是严格单调的且反函数 h(y) 可导,则有概率密度函数 $f_1(y) = \begin{cases} f(h(y))|h'(y)|, & \alpha < y < \beta \\ 0, & \text{其他} \end{cases}$,其中 $\alpha = \min\{g(-\infty), g(+\infty)\}, \beta = \max\{g(-\infty), g(+\infty)\}$

第三章 多维随机变量及其分布

• 联合分布函数与联合密度函数

若
$$f(x,y)$$
 在 (x_0,y_0) 处连续,则 $\left. \frac{\partial^2 F(x,y)}{\partial x \partial y} \right|_{(x_0,y_0)} = f(x_0,y_0)$

• 边缘分布

- $F_1(x) = F(x,\infty), F_2(y) = F(\infty,y)$
- $ullet f_1(x) = \int_{-\infty}^{+\infty} f(x,y) \mathrm{d}y, f_2(y) = \int_{-\infty}^{+\infty} f(x,y) \mathrm{d}x$

• 条件分布

- 离散型: $p_{i|j}=rac{p_{ij}}{p_{\cdot j}}$
- 连续型: $f_{X|Y}(x|y) = \frac{f(x,y)}{f_2(y)}, f_2(y) > 0$

• 随机变量的独立性

X,Y相互独立 $\Leftrightarrow F(x,y)=F_1(x)F_2(y) \Leftrightarrow$

- 离散型: p_{ij} = p_i.p_{·j}
- 连续型: $f(x,y)=f_1(x)f_2(y)\Leftrightarrow f(x,y)=g_1(x)g_2(y)$ 即 f(x,y) 可分离变量

• 随机向量函数的分布

- 设 $(X,Y)\sim f(x,y), Z=g(X,Y)$,则 $F_Z(z)=P(Z\leq z)=\iint_{g(x,y)\leq z}f(x,y)\mathrm{d}x\mathrm{d}y$
- 设 $Z_1=g_1(X,Y), Z_2=g_2(X,Y), u=g_1(x,y), v=g_2(x,y), x=arphi_1(u,v), y=arphi_2(u,v), \mathbf{J}=\begin{vmatrix} rac{\partial x}{\partial u} & rac{\partial x}{\partial v} \\ rac{\partial y}{\partial u} & rac{\partial y}{\partial v} \end{vmatrix}$,则 $F_Z(z_1,z_2)=\iint_{g_1(x,y)\leq z_1,g_2(x,y)\leq z_2} f(x,y)\mathrm{d}x\mathrm{d}y=\iint_{u\leq z_1,v\leq z_2} f(arphi_1(u,v),arphi_2(u,v))|\mathbf{J}|\mathrm{d}u\mathrm{d}v,$ $f_Z(z_1,z_2)=f(arphi_1(z_1,z_2),arphi_2(z_1,z_2))|\mathbf{J}||_{(u,v)=(z_1,z_2)}$
- 随机变量和的分布: $f_{X+Y}(z)=\int_{-\infty}^{+\infty}f(x,z-x)\mathrm{d}x$ $\Longrightarrow\int_{-\infty}^{+\infty}f_1(x)f_2(z-x)\mathrm{d}x\equiv f_1*f_2(z)$
- 随机变量积的分布: $f_{XY}(z) = \int_{-\infty}^{+\infty} \left| \frac{1}{t} \right| f\left(t, \frac{z}{t}\right) \mathrm{d}t$
- 随机变量商的分布: $f_{rac{X}{Y}}(z)=\int_{-\infty}^{+\infty}|t|f(zt,t)\mathrm{d}t$
- 独立随机变量最大 (小) 值的分布: $F_{\max}(z) = F_1(z)F_2(z), F_{\min}(z) = 1 (1 F_1(z))(1 F_2(z))$

第四章 随机变量的数学特征和极限定理

期望

- 期望存在的条件

- 离散型: $\sum_{i=1}^{\infty}|x_i|p_i<\infty$
- 连续型: $\int_{-\infty}^{+\infty} |x| f(x) \mathrm{d}x < \infty$
- 先判断存在性,再计算期望

- 期望的性质

- 1. 线性性: (无条件) $E(\sum X_i) = \sum E(X_i)$
- 2. 对于两两不相关随机变量, $\mathrm{E}(\prod X_i) = \prod \mathrm{E}(X_i)$
- 3. $\mathrm{E}(g(X)) = \int_{-\infty}^{+\infty} g(x) f(x) \mathrm{d}x$

- 条件期望

- 离散型: $E(Y|X=x_k) = \sum y_i P(Y=y_i|X=x_k)$
- 连续型: $\mathrm{E}(Y|X=x)=\int_{-\infty}^{+\infty}yf(y|x)\mathrm{d}y$
- E[E(Y|X)] = E(Y)

• 中位数

- $P(X \le m) \ge \frac{1}{2}, P(X \ge m) \ge \frac{1}{2}$, 不一定唯一
- $\min_a \operatorname{E}(|x-a|) = \operatorname{E}(|x-m|)$
- p 分位数 Q_p : $P(X \le Q_p) \ge p$, $P(X \ge Q_p) \ge 1-p$

• 方差和标准差

- 定义

方差: $Var(X) = E((X - E(X))^2)$

标准差: $\sigma = \sqrt{\operatorname{Var}(X)}$

- 方差的性质

- 1. $\operatorname{Var}(X) = \operatorname{E}\left(X^2\right) (\operatorname{E}(X))^2$ (常用此式计算)
- 2. $\operatorname{Var}(c_1X+c_2)=c_1^2\operatorname{Var}(X)$
- 3. 对于两两不相关随机变量, $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{Var}\left(X_i\right)$, $\operatorname{Var}\left(\sum_{i=1}^n c_i X_i\right) = \sum_{i=1}^n c_i^2 \operatorname{Var}\left(X_i\right)$; 对于独立同分布, $\operatorname{Var}\left(\sum_{i=1}^n \frac{1}{n} X_i\right) = \operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}$
- 4. $\operatorname{Var}(X) \leq \operatorname{E}\left((X-c)^2\right)$, 等号成立当且仅当 $c = \operatorname{E}(X)$

5. 方差分解公式: Var(X) = Var[E(X|Y)] + E[Var(X|Y)]

- 随机变量标准化

$$Y = rac{X - \mathrm{E}(X)}{\sqrt{\mathrm{Var}(X)}}$$
,则 $\mathrm{E}(Y) = 0, \mathrm{Var}(Y) = 1$

• 矩

- X 关于 c 点的 k 阶矩: $E((X-c)^k)$
 - \circ k 阶原点矩: $a_k = \mathrm{E}(X^k)$
 - \circ k 阶中心矩: $\mu_k = \mathrm{E}\left((X \mathrm{E}(X))^k\right)$
- 矩母函数: $M_X(s) = \mathrm{E}\left(e^{Xs}\right)$
 - o 存在的条件: $\exists a > 0$, 使得 $\forall s \in [-a, a]$, $M_X(s)$ 是有限的

$$\circ \ \ M_X(s) = \sum_{k=0}^{\infty} \mathrm{E}\left(X^k
ight) rac{s^k}{k!}$$

$$\circ \ \ \mathrm{E}(X^k) = rac{\mathrm{d}^k}{\mathrm{d} s^k} M_X(s) igg|_{s=0}$$

 \circ 若 $\exists a>0$,使得 $\forall s\in [-a,a]$, $M_X(s),M_Y(s)$ 有限且相等,则 $\forall t\in \mathbb{R},F_X(t)=F_Y(t)$

• 协方差和相关系数

- 定义

- 协方差: Cov(X,Y) = E[(X E(X))(Y E(Y))]
- 相关系数: $\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$

- 协方差的性质

- 1. Cov(X, Y) = Cov(Y, X)
- 2. Cov(X, X) = Var(X)
- 3. $\operatorname{Cov}(X,Y) = \operatorname{E}(XY) \operatorname{E}(X)\operatorname{E}(Y)$ (常用此式计算)
- 4. 双线性: $\operatorname{Cov}(aX+bY,cX+dY)=ac\operatorname{Var}(X)+(ad+bc)\operatorname{Cov}(X,Y)+bd\operatorname{Var}(Y)$
- 5. 若X与Y互相独立,则Cov(X,Y)=0
- 6. 柯西-施瓦茨不等式: $(\mathrm{Cov}(X,Y))^2 \leq \mathrm{Var}(X)\,\mathrm{Var}(Y)$,等号成立当且仅当 $c_1X+c_2Y+c_3=0$

- 随机变量的不相关

- X,Y 相互独立 $\Rightarrow
 ho=0$,反之不一定成立;若 $(X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,
 ho)$,则 X,Y 相互独立 $\Leftrightarrow
 ho=0$
- X,Y 不相关 $\Leftrightarrow \operatorname{Cov}(X,Y) = 0 \Leftrightarrow \operatorname{E}(XY) = \operatorname{E}(X)\operatorname{E}(Y) \Leftrightarrow \operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$

• 熵

• 离散型: $H(X) = -\sum_{k=1}^{\infty} p_k \log_2{(p_k)}$

• 连续型: $H(X) = -\int_{-\infty}^{\infty} f_X(x) \ln f_X(x) \mathrm{d}x$

• 马尔可夫不等式和切比雪夫不等式

• 马尔可夫不等式:若随机变量 $Y \geq 0$,则 $\forall \varepsilon > 0$,有 $P(Y \geq \varepsilon) \leq \frac{\mathrm{E}(Y)}{\varepsilon}$

• 切比雪夫不等式: 随机变量 X, $\forall \varepsilon>0$, 有 $P(|X-\mu|\geq \varepsilon)\leq rac{\mathrm{Var}(X)}{arepsilon^2}$

• 依概率和依分布收敛

• 依概率收敛 $(X_n \overset{P}{ o} X)$: $orall arepsilon > 0, \lim_{n o \infty} P(|X_n - X| \geq arepsilon) = 0$

• 依分布收敛/弱收敛 $(X_n \overset{\mathcal{L}}{ o} X)$: 对 F 的所有连续点 $x, \lim_{n o \infty} F_n(x) = F(x)$

 $\bullet \ \ X_n \overset{P}{\to} X \Rightarrow X_n \overset{\mathcal{L}}{\to} X \text{, } \ X_n \overset{\mathcal{L}}{\to} c \Rightarrow X_n \overset{P}{\to} c$

• 大数定律和中心极限定理

• 大数定律:设随机变量 X_1,X_2,\cdots 独立同分布,则 $orall arepsilon>0,\lim_{n o\infty}P\left(\left|\overline{X}_n-\mu\right|\geqslantarepsilon
ight)=0$

• 伯努利大数定律: 设 $\{X_k\}$ 为独立的 0-1 分布随机变量序列, $P(X_k=1)=p$,则 $\frac{1}{n}\sum_{k=1}^n X_k\overset{P}{
ightarrow} p$

• 林德伯格-莱维中心极限定理:设随机变量 X_1,X_2,\cdots 独立同分布,则 $\lim_{n \to \infty} P\left(rac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \leqslant x
ight) = \Phi(x)$

• 棣莫弗-拉普拉斯中心极限定理:设 $\{X_k\}$ 为独立的 0-1 分布随机变量序列, $P(X_k=1)=p$, $S_n=\sum_{k=1}^n X_k$,则 $\lim_{n\to\infty}P\left(\frac{S_n-np}{\sqrt{np(1-p)}}\leqslant x\right)=\Phi(x)$

第五章 统计学基本概念

基本概念

• 简单随机抽样:同分布且独立

• 统计量:由样本 $X=(X_1,X_2,\cdots,X_n)$ 决定的量,且只与样本有本,与任何未知参数无关

• 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

• 次序统计量 $X_{(1)}, \cdots, X_{(n)}$: 把样本排序后得到 $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$; 极差: $X_{(n)} - X_{(1)}$

• 抽样分布

- 1. χ^2 分布 χ^2_n : 设 X_1,X_2,\cdots,X_n 是来自标准正态总体 N(0,1) 的一个样本,则统计量 $X=X_1^2+X_2^2+\cdots+X_n^2$ 服从自由度为 n 的 χ^2 分布
 - $\circ \ \ k_n(x) = rac{1}{\Gamma(rac{n}{2})2^{rac{n}{2}}} e^{-rac{x}{2}} x^{rac{n-2}{2}} I_{(0,\infty)}(x)$
 - $\circ \ \mathrm{E}(X) = n, \mathrm{Var}(X) = 2n$
 - 。 再生性:独立随机变量 $X \sim \chi_m^2, Y \sim \chi_n^2 \Rightarrow X + Y \sim \chi_{m+n}^2$
- 2. t 分布 t_n : 设独立随机变量 $X\sim N(0,1), Y\sim \chi^2_n$,则 $T=\dfrac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布
 - \circ $n \geq 2$ 时 $\mathrm{E}(T) = 0$; $n \geq 3$ 时 $\mathrm{Var}(T) = \frac{n}{n-2}$
 - \circ n=1 时化为柯西分布, $f_1(t)=rac{1}{\pi(1+t^2)}$
 - \circ $n o \infty$ 时, $t_n o N(0,1)$
- 3. F 分布 $F_{m,n}$: 设独立随机变量 $X\sim\chi_m^2, Y\sim\chi_n^2$,则 $F=rac{X/m}{Y/n}$ 服从自由度为 m,n 的 F 分布
 - ullet $F\sim F_{m,n} \Rightarrow 1/F\sim F_{n,m}$
 - $\circ \ T \sim t_n \Rightarrow T^2 \sim F_{1,n}$
 - $F_{m,n}(1-\alpha)=1/F_{n,m}(\alpha)$ ($F(\alpha)$: 上 α 分位数)
- 设随机变量 X_1,X_2,\cdots,X_n i.i.d. $\sim N(\mu,\sigma^2)$,则 $\frac{(n-1)S^2}{\sigma^2}\sim\chi^2_{n-1}$, \overline{X} 和 S^2 相互独立, $\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}$
- 设 X_1,X_2,\cdots,X_m 是来自正态总体 $N\left(\mu_1,\sigma_1^2\right)$ 的样本,样本 Y_1,Y_2,\cdots,Y_n 来自正态总体 $N\left(\mu_2,\sigma_2^2\right)$,且 X 与 Y 相互独立,则
 - $\circ ~~ rac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{m-1,n-1}$
 - \circ 若 $\sigma_1^2=\sigma_2^2$,则 $\dfrac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_T\sqrt{\dfrac{1}{m}+\dfrac{1}{n}}}\sim t_{m+n-2}$,其中 $S_T=\sqrt{\dfrac{(m-1)S_1^2+(n-1)S_2^2}{m+n-2}}$
- Γ 函数
 - $\circ \ \Gamma(s) = \int_0^{+\infty} t^{s-1} e^{-t} \mathrm{d}t$
 - $\circ \ \Gamma(s+1) = s\Gamma(s), \ \Gamma(n+1) = n!$
 - \circ $\Gamma(rac{1}{2})=\sqrt{\pi}$, $\Gamma(n+rac{1}{2})=rac{(2n-1)!!}{2^n}\sqrt{\pi}$
 - $\circ \ \Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin s\pi}$
 - $\circ \ \ \Gamma(2s) = rac{2^{2s-1}}{\sqrt{\pi}} \Gamma(s) \Gamma\left(s + rac{1}{2}
 ight)$

第六章 参数点估计

• 矩估计 $\hat{ heta}_M$

样本矩:
$$a_k = \frac{1}{n} \sum_{i=1}^n X_i^k, m_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k$$

总体矩:
$$\alpha_k(\theta) = \mathrm{E}\left(X^k\right), \mu_k(\theta) = \mathrm{E}\left((X - \mathrm{E}(X))^k\right)$$

 $a_k \stackrel{P}{\to} \alpha_k, m_k \stackrel{P}{\to} \mu_k$,故用 a_k, m_k 估计 α_k, μ_k (尽量使用低阶矩) ,解方程得 $\hat{\theta}_i(X_1, \cdots, X_n)$,作为 θ 的估计 函数的矩估计:用 $g(\hat{\theta})$ 估计 $g(\theta)$

• 最大似然估计(MLE) $\hat{ heta}_L$

似然函数 $L(\theta)$ 或 $L(\theta;x)$: 等于联合概率密度函数 $f(x;\theta)$

最大似然估计:对于固定的 x,需满足 $L(\hat{\theta}) = \max_{\theta \in \Omega} L(\theta)$

对数似然函数
$$\ell(\theta) = \ln L(\theta)$$
: $\frac{\partial \ell(\theta)}{\partial \theta_i} = \frac{\partial L(\theta)}{\partial \theta_i} = 0$

• 优良性准则

- 无偏估计量:设 $\hat{g}(X_1,\dots,X_n)$ 为待估计参数函数 $g(\theta)$ 的一个估计量, $\forall \theta \in \Theta, \mathbf{E}_{\theta}[\hat{g}(X_1,\dots,X_n)] = g(\theta)$
- 均方误差 $MSE_{\theta}(\hat{\theta}) = E_{\theta}[(\hat{\theta} \theta)^2] = 波动 + 偏差 = Var_{\theta}(\hat{\theta}) + [E_{\theta}(\hat{\theta}) \theta]^2$
- 有效性:设 $\hat{\theta}_1, \hat{\theta}_2$ 都是总体参数 θ 的无偏估计,若 $\mathrm{Var}_{\theta}(\hat{\theta}_1) \leqslant \mathrm{Var}_{\theta}(\hat{\theta}_2), \forall \theta \in \Theta$,且至少存在一个 θ 使不等号成立,则 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 更有效
- 相合估计量: $\hat{\theta}(X_1, \dots, X_n) \stackrel{P}{\to} \theta$
- 渐近正态性: 记 $\operatorname{Var}_{\theta}(\hat{\theta}(X_1,\cdots,X_n)) = \sigma_n^2(\theta)$, 有 $\frac{\hat{\theta}(X_1,\cdots,X_n) \theta}{\sigma_n(\theta)} \stackrel{\mathcal{L}}{\to} N(0,1)$, 即 $\lim_{n \to \infty} P\left(\frac{\hat{\theta}(X_1,\cdots,X_n) \theta}{\sigma_n(\theta)} \le x\right) = \Phi(x), \forall x$

第七章 区间估计

• 基本概念

- 设 $\hat{\theta}_1, \hat{\theta}_2$ 为样本 X_1, \dots, X_n 的统计量, $P_{\theta}(\hat{\theta}_1 \leq \theta \leq \hat{\theta}_2) = 1 \alpha, \forall \theta \in \Theta$, $[\hat{\theta}_1, \hat{\theta}_2]$ 为置信区间估计,置信系数为 1α
- 上 α 分位数 w_{α} : $F(w_{\alpha}) = 1 \alpha$; 下 α 分位数 v_{α} : $F(v_{\alpha}) = F(w_{1-\alpha}) = \alpha$
- 置信上限: $P_{\theta}(\overline{\theta} \geq \theta) = 1 \alpha, \forall \theta \in \Theta;$ 置信下限: $P_{\theta}(\underline{\theta} \leq \theta) = 1 \alpha, \forall \theta \in \Theta$

• 枢轴变量法

- 1. 找到一个 θ 的良好点估计 T(X), 一般为最大似然估计
- 2. 构造枢轴变量 $S(T,\theta)$, 使得它的分布 F 已知 , 不能包含其他未知参数
- 3. 要求 $\forall a < b$, $a \leq S(T, \theta) \leq b$ 可改写为 $A \leq \theta \leq B$, 其中 A, B 只能与 T(X), a, b 有关,与 θ 无关
- 4. $P(w_{1-lpha/2} \leq S(T, heta) \leq w_{lpha/2}) = 1-lpha \Rightarrow A \leq heta \leq B$

• 正态总体参数的区间估计

- 均值 μ

$$\sigma$$
 已知:枢轴变量 $\dfrac{\sqrt{n}(\overline{X}-\mu)}{\sigma}\sim N(0,1)$,置信区间 $\overline{x}\pm\dfrac{\sigma}{\sqrt{n}}u_{lpha/2}$

$$\sigma$$
 未知:枢轴变量 $\dfrac{\sqrt{n}(\overline{X}-\mu)}{S}\sim t_{n-1}$,置信区间 $\overline{x}\pm\dfrac{s}{\sqrt{n}}t_{n-1}(lpha/2)$

- 方差 σ^2

$$\mu$$
 已知: 枢轴变量 $\frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\mu)^2\sim\chi_n^2$,置信区间 $\left[\frac{\sum_{i=1}^n(X_i-\mu)^2}{\chi_n^2(lpha/2)},\frac{\sum_{i=1}^n(X_i-\mu)^2}{\chi_n^2(1-lpha/2)}
ight]$

$$\mu$$
 未知: 枢轴变量 $\dfrac{(n-1)S^2}{\sigma^2}\sim\chi^2_{n-1}$,置信区间 $\left[\dfrac{(n-1)s^2}{\chi^2_{n-1}(lpha/2)},\dfrac{(n-1)s^2}{\chi^2_{n-1}(1-lpha/2)}
ight]$

- 两个正态总体均值差 $\mu_2-\mu_1$

$$\sigma_1^2,\sigma_2^2$$
 已知: 枢轴变量 $\dfrac{(\overline{Y}-\overline{X})-(\mu_2-\mu_1)}{\sqrt{\dfrac{\sigma_1^2}{m}+\dfrac{\sigma_2^2}{n}}}\sim N(0,1)$,置信区间 $(\overline{y}-\overline{x})\pm\sqrt{\dfrac{\sigma_1^2}{m}+\dfrac{\sigma_2^2}{n}}u_{lpha/2}$

$$\sigma_1^2,\sigma_2^2$$
 未知:若 $\sigma_1^2=\sigma_2^2$,记 $S_T=\sqrt{rac{(m-1)S_1^2+(n-1)S_2^2}{m+n-2}}$,枢轴变量 $rac{(\overline{Y}-\overline{X})-(\mu_2-\mu_1)}{S_T\sqrt{rac{1}{m}+rac{1}{n}}}\sim t_{m+n-2}$,

置信区间
$$\overline{y}-\overline{x}\pm\sqrt{rac{1}{m}+rac{1}{n}}s_Tt_{m+n-2}(lpha/2)$$

- 两个正态总体方差比 σ_1^2/σ_2^2

枢轴变量
$$rac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}\sim F_{m-1,n-1}$$
,置信区间 $\left[rac{s_1^2}{s_2^2}F_{n-1,m-1}(1-lpha/2),rac{s_1^2}{s_2^2}F_{n-1,m-1}(lpha/2)
ight]$

ullet 0-1 分布总体比例 p 的区间估计

每次发生概率 p, n 次实验, 发生 Y_n 次; $n \gg 1$

枢轴变量
$$\dfrac{Y_n-np}{\sqrt{np(1-p)}}\sim N(0,1)$$
,置信区间 $\dfrac{\hat{p}+\dfrac{u_{lpha/2}^2}{2n}}{1+\dfrac{u_{lpha/2}^2}{n}}\pm u_{lpha/2}\dfrac{\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}+\dfrac{u_{lpha/2}^2}{4n^2}}}{1+\dfrac{u_{lpha/2}^2}{n}}$ (得分区间),其中点估计

$$\hat{p}=rac{y_n}{n}$$
, 瓦尔德置信区间 $\hat{p}\pm u_{lpha/2}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$ (要求 $n\hat{p}>10, n(1-\hat{p})>10$,可忽略 $rac{u_{lpha/2}^2}{n}$)

• 一般总体均值 μ 的区间估计

若 $n\gg 1$,枢轴变量 $\dfrac{\sqrt{n}(\overline{X}-\mu)}{S}\sim N(0,1)$,置信区间 $\overline{x}\pm\dfrac{s}{\sqrt{n}}u_{lpha/2}$

第八章 假设检验

• 基本概念

- 检验函数: $\Psi(X) = \begin{cases} 1, & X \in$ 拒绝域 $D \\ 0, & X \in$ 接受域 $A \end{cases}$
- 功效函数: $\beta_{\Psi}(\theta) = P_{\theta}(在检验 \Psi \Gamma H_0 被否定)$
 - \circ 当真实参数 θ^* 属于 H_0 时,希望 $\beta_{\Psi}(\theta^*)$ 尽量小;反之亦然
 - \circ 若 $\forall \theta \in H_0, \beta_{\Psi}(\theta) \leq \alpha$, 则称 Ψ 为 H_0 的一个水平 α 的检验, 即为错误拒绝 H_0 所允许的最大概率
- 两类错误
 - 。 第一类(弃真错误): $\alpha_{1\Psi}(\theta)=egin{cases} eta_{\Psi}(\theta), & \theta\in H_0 \\ 0, & \theta\in H_1 \end{cases}$
 - 。 第二类(存伪错误): $\alpha_{2\Psi}(\theta)=egin{cases} 0, & \theta\in H_0 \\ 1-eta_\Psi(\theta), & \theta\in H_1 \end{cases}$

• 显著性检验的步骤

- 1. 求出未知参数 θ 的一个较优的点估计 $\hat{\theta}$, 如最大似然估计
- 2. 寻找检验统计量 $T=T(\hat{ heta}, heta_0)$ 使得当 $heta= heta_0$ 时,T 的分布已知(如 $N(0,1),t_n,F_{m,n}$)
- 3. 寻找拒绝域,由 $P(H_0$ 被拒绝 $|\theta \in \Theta_0) \le \alpha$ 得到临界值
- 4. 判断检验统计量是否落在拒绝域中

• 正态总体参数的检验

- 均值 μ

 σ 已知:检验统计量 $U=rac{\sqrt{n}(\overline{X}-\mu_0)}{\sigma}\sim N(0,1)$

- $H_0: \mu = \mu_0 \leftrightarrow H_1: \mu
 eq \mu_0$: 拒绝域 $|U| > u_{lpha/2}$
- $H_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu > \mu_0$: 拒绝域 $U > u_\alpha$
- $H_0: \mu \geq \mu_0 \leftrightarrow H_1: \mu < \mu_0$: 拒绝域 $U < -u_{lpha}$

 σ 未知:检验统计量 $T=rac{\sqrt{n}(\overline{X}-\mu_0)}{S}\sim t_{n-1}$

- $H_0: \mu = \mu_0 \leftrightarrow H_1: \mu
 eq \mu_0$: 拒绝域 $|T| > t_{n-1}(lpha/2)$
- $H_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu > \mu_0$: 拒绝域 $T > t_{n-1}(\alpha)$
- $H_0: \mu \geq \mu_0 \leftrightarrow H_1: \mu < \mu_0$: 拒绝域 $T < -t_{n-1}(\alpha)$

- 方差 σ^2

 μ 已知:检验统计量 $\chi^2=rac{1}{\sigma_0^2}\sum_{i=1}^n(X_i-\mu)^2\sim\chi_n^2$

- $H_0:\sigma^2=\sigma_0^2\leftrightarrow H_1:\sigma^2
 eq\sigma_0^2$: 拒绝域 $\chi^2>\chi_n^2(lpha/2)$ & $\chi^2<\chi_n^2(1-lpha/2)$
- $H_0:\sigma^2\leq\sigma_0^2\leftrightarrow H_1:\sigma^2>\sigma_0^2$: 拒绝域 $\chi^2>\chi_n^2(lpha)$
- $H_0:\sigma^2\geq\sigma_0^2\leftrightarrow H_1:\sigma^2<\sigma_0^2$: 拒绝域 $\chi^2<\chi_n^2(1-lpha)$

 μ 未知:检验统计量 $\chi^2=rac{1}{\sigma_0^2}\sum_{i=1}^n(X_i-\overline{X})^2\sim\chi_{n-1}^2$

- $H_0:\sigma^2=\sigma_0^2\leftrightarrow H_1:\sigma^2
 eq\sigma_0^2$:拒绝域 $\chi^2>\chi_{n-1}^2(lpha/2)$ & $\chi^2<\chi_{n-1}^2(1-lpha/2)$
- $H_0:\sigma^2\leq\sigma_0^2\leftrightarrow H_1:\sigma^2>\sigma_0^2$: 拒绝域 $\chi^2>\chi^2_{n-1}(lpha)$
- $H_0: \sigma^2 \geq \sigma_0^2 \leftrightarrow H_1: \sigma^2 < \sigma_0^2$: 拒绝域 $\chi^2 < \chi_{n-1}^2 (1-\alpha)$

- 两个正态总体均值差 $\mu_1-\mu_2$

成组比较

 $(X_1,\cdots,X_m)\sim N(\mu_1,\sigma), (Y_1,\cdots,Y_n)\sim N(\mu_2,\sigma)$

 σ 已知: 检验统计量 $U=rac{\overline{X}-\overline{Y}}{\sigma\sqrt{rac{1}{m}+rac{1}{n}}}\sim N(0,1)$

- $H_0: \mu_1 = \mu_2 \leftrightarrow H_1: \mu_1 \neq \mu_2$: 拒绝域 $|U| > u_{\alpha/2}$
- $H_0: \mu_1 \leq \mu_2 \leftrightarrow H_1: \mu_1 > \mu_2$: 拒绝域 $U > u_{\alpha}$
- $H_0: \mu_1 \geq \mu_2 \leftrightarrow H_1: \mu_1 < \mu_2$: 拒绝域 $U < -u_{\alpha}$

 σ 未知:检验统计量 $T=rac{\overline{X}-\overline{Y}}{S_T\sqrt{rac{1}{m}+rac{1}{n}}}\sim t_{m+n-2}$

- $H_0: \mu_1=\mu_2 \leftrightarrow H_1: \mu_1
 eq \mu_2$: 拒绝域 $|T|>t_{m+n-2}(lpha/2)$
- $H_0: \mu_1 \leq \mu_2 \leftrightarrow H_1: \mu_1 > \mu_2$: 拒绝域 $T > t_{m+n-2}(\alpha)$
- $H_0: \mu_1 \geq \mu_2 \leftrightarrow H_1: \mu_1 < \mu_2$: 拒绝域 $T < -t_{m+n-2}(\alpha/2)$

成对比较

 $Z=Y-X, Z_i=Y_i-X_i$,化归为单个正态总体的情形

- 两个正态总体方差比 σ_1^2/σ_2^2

 μ 未知:检验统计量 $F=rac{S_1^2}{S_2^2}\sim F_{m-1,n-1}$

- $H_0:\sigma_1^2=\sigma_2^2\leftrightarrow H_1:\sigma_1^2
 eq\sigma_2^2$: 拒绝域 $F>F_{m-1,n-1}(lpha/2)$ & $F<F_{m-1,n-1}(1-lpha/2)$
- $H_0: \sigma_1^2 \leq \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 > \sigma_2^2$: 拒绝域 $F > F_{m-1,n-1}(\alpha)$
- $H_0: \sigma_1^2 \geq \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 < \sigma_2^2$: 拒绝域 $F < F_{m-1,n-1}(1-\alpha)$

• 0-1 分布总体比例 p 的检验

$$X = \sum_{i=1}^n X_i \sim B(n,p)$$

$$H_0: p \leq p_0 \leftrightarrow H_1: p > p_0$$
: 功效函数 $eta_\Psi(p_0) = 1 - \sum_{i=0}^C inom{n}{i} p_0^i (1-p_0)^{n-i} = 1 - F_{p_0}(C) = lpha$

• p值

p 值 = P(得到当前样本下检验统计量的值或更极端的值|原假设下)

当 p 值 $< \alpha$ 时,拒绝原假设 H_0

第九章 非参数假设检验

• 理论分布完全已知且只取有限个值

$$H_0: P(X=a_i) = p_i, i=1,2,\cdots, k \leftrightarrow H_1: \exists j, ext{s.t.} P(X=a_j)
eq p_j$$

理论值 $E_i=np_i$,观测值 $O_i=n_i$

检验统计量
$$Z=\sum rac{(O-E)^2}{E}=\sum_{i=1}^krac{(np_i-n_i)^2}{np_i}=\sum_{i=1}^krac{n_i^2}{np_i}-n\stackrel{n o\infty}{\sim}\chi^2_{k-1}$$
,拒绝域 $Z>\chi^2_{k-1}(lpha)$

拟合优度
$$p(Z_0) = P(Z \geq Z_0) = 1 - F_{\chi_{b-1}^2}(Z_0)$$

• 理论分布类型已知但含有有限个未知参数

$$H_0: P(X=a_i)=p_i(\theta_1,\cdots,\theta_r), i=1,\cdots,k$$

检验统计量
$$Z = \sum \frac{(O - \hat{E})^2}{\hat{E}} = \sum_{i=1}^n \frac{n_i^2}{n\hat{p}_i} - n \overset{n \to \infty}{\sim} \chi^2_{k-r-1}$$
, 拒绝域 $Z > \chi^2_{k-r-1}(\alpha)$

• 列联表检验

 H_0 :属性 A, B 独立

检验统计量
$$Z = \sum_{i=1}^a \sum_{j=1}^b \frac{\left(n_{ij} - n_{i\cdot}n_{\cdot j}/n\right)^2}{n_{i\cdot}n_{\cdot j}/n} = \sum_{i=1}^a \sum_{j=1}^b \frac{\left(nn_{ij} - n_{i\cdot}n_{\cdot j}\right)^2}{nn_{i\cdot}n_{\cdot j}} \overset{n \to \infty}{\sim} \chi^2_{(a-1)(b-1)}$$

拒绝域
$$Z > \chi^2_{(a-1)(b-1)}(\alpha)$$