Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #3

2023/03/12

Name:		
Student Number:		

1. Suppose V is a vector space and $S, T \in \mathcal{L}(V, V)$ are such that

range
$$S \subset \text{null } T$$
.

Prove that $(ST)^2 = 0$.

设 V 是一个向量空间, $S,T\in\mathcal{L}(V,V)$,使得 range $S\subset \operatorname{null} T$, 证明 $(ST)^2=0$.

Proof. Let $v \in V$, then $(ST)^2v = ST(S(Tv))$

Since $S(Tv) \in \text{range} S \subset \text{null} T$, then T(S(Tv)) = 0, so $(ST)^2 v = 0$ for all $v \in V$, then $(ST)^2 = 0$.

2. Suppose V and W are finite-dimensional and that U is a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that null T = U if and only if $\dim U \geqslant \dim V - \dim W$.

设 V 和 W 是有限维的,且 U 是 V 的子空间. 证明存在 $T \in \mathcal{L}(V,W)$,使得 null T = U 当 且仅当 dim $U \ge$ dim V - dim W.

Proof. " \Rightarrow ": Assume there exists $T \in \mathcal{L}(V, W)$ such that null T = U, then by the Fundamental Theorem of Linear Maps, dim $V = \dim \operatorname{null} T + \dim \operatorname{range} T$. Since range T is a subspace of W, we have dim range $T \leq \dim W$, then

$$\dim U = \dim \operatorname{null} T = \dim V - \dim \operatorname{range} T \geqslant \dim V - \dim W.$$

" \Leftarrow ": Assume dim $U \geqslant \dim V - \dim W$, then dim $W \geqslant \dim V - \dim U$.

Let u_1, \dots, u_r be a basis for U and extend it to a basis $u_1, \dots, u_r, v_1, \dots, v_n$ for V. Let w_1, \dots, w_m be a basis for W.

For any $v \in V$, we can write $v = a_1u_1 + \cdots + a_ru_r + b_1v_1 + \cdots + b_nv_n$, we define a map $T: V \to W$

$$T(a_1u_1 + \cdots + a_ru_r + b_1v_1 + \cdots + b_nv_n) = b_1w_1 + \cdots + b_nw_n$$

Since dim $W \geqslant \dim V - \dim U$, we have $m \geqslant n$ and so T is well defined. Clearly $T \in \mathcal{L}(V, W)$ and null T = U.