PHYS 301 Formula Sheet

Vector Derivatives

Cartesian

$$d\mathbf{l} = dx\,\hat{\mathbf{x}} + dy\,\hat{\mathbf{v}} + dz\,\hat{\mathbf{z}} \qquad d\tau = dx\,dy\,dz$$

$$\nabla f = \frac{\partial f}{\partial x} \hat{\mathbf{x}} + \frac{\partial f}{\partial y} \hat{\mathbf{y}} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$

Divergence:

$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

Curl:

$$\nabla \times \mathbf{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \mathbf{\hat{x}} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \mathbf{\hat{y}} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \mathbf{\hat{z}}$$

Laplacian:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

Spherical

$$d\mathbf{l} = dr \,\hat{\mathbf{r}} + r \, d\theta \,\hat{\boldsymbol{\theta}} + r \sin\theta \, d\phi \,\hat{\boldsymbol{\phi}}$$
$$d\tau = r^2 \sin\theta \, dr \, d\theta \, d\phi$$

Gradient:
$$\nabla f = \frac{\partial f}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\boldsymbol{\phi}}$$

$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 v_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\theta}{\partial \phi}$$

Curl:

$$\nabla \times \mathbf{v} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta \, v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \hat{\mathbf{r}} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{\partial}{\partial r} (r v_{\theta}) \right] \hat{\boldsymbol{\theta}} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r v_{\theta}) - \frac{\partial v_r}{\partial \theta} \right] \hat{\boldsymbol{\phi}}$$

Laplacian:

$$\nabla^{2} f = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial f}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}$$

Cylindrical

$$d\mathbf{l} = ds\,\mathbf{\hat{s}} + s\,d\phi\,\mathbf{\hat{\phi}} + dz\,\mathbf{\hat{z}}$$

$$d\tau = s ds d\phi dz$$

$$\nabla f = \frac{\partial f}{\partial s} \hat{\mathbf{s}} + \frac{1}{s} \frac{\partial f}{\partial \phi} \hat{\boldsymbol{\phi}} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$

Divergence:

$$\nabla \cdot \mathbf{v} = \frac{1}{s} \frac{\partial}{\partial s} (s v_s) + \frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_z}{\partial z}$$

Curl:

$$\begin{bmatrix}
\nabla \times \mathbf{v} = \\
\left[\frac{1}{s} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z}\right] \hat{\mathbf{s}} + \left[\frac{\partial v_s}{\partial z} - \frac{\partial v_z}{\partial s}\right] \hat{\boldsymbol{\phi}} + \frac{1}{s} \left[\frac{\partial}{\partial s} (sv_\phi) - \frac{\partial v_s}{\partial \phi}\right] \hat{\mathbf{z}}$$

$$\nabla^2 f = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial f}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$$

Fundamental Theorems

Gradient Theorem:

$$\int_{\mathbf{a}}^{\mathbf{b}} (\nabla f) \cdot d\mathbf{l} = f(\mathbf{b}) - f(\mathbf{a})$$

Divergence Theorem:

$$\int (\mathbf{\nabla \cdot A}) \, d\mathbf{\tau} = \oint \mathbf{A} \cdot d\mathbf{a}$$

$$\int (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{a} = \oint \mathbf{A} \cdot d\mathbf{l}$$

Differential Maxwell's Equations

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Integral Maxwell's Equations

$$\oint \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0}$$

$$\oint \mathbf{B} \cdot d\mathbf{a} = 0$$

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi_B}{dt}$$

$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}} + \epsilon_0 \mu_0 \frac{d\Phi_E}{dt}$$

Electric Fields and Potential

$$\mathbf{E} = -\nabla V$$

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$$

Lorentz Force Law:

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Energy:

$$U = \frac{1}{2} \int \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) d\tau$$

Spherical Coordinates

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta$$

$$\hat{\mathbf{x}} = \sin\theta\cos\phi\,\hat{\mathbf{r}} + \cos\theta\cos\phi\,\hat{\boldsymbol{\theta}} - \sin\phi\,\hat{\boldsymbol{\phi}}$$

$$\hat{\mathbf{y}} = \sin\theta \sin\phi \,\hat{\mathbf{r}} + \cos\theta \sin\phi \,\hat{\boldsymbol{\theta}} + \cos\phi \,\hat{\boldsymbol{\phi}}$$

$$\hat{\mathbf{z}} = \cos\theta \,\hat{\mathbf{r}} - \sin\theta \,\hat{\boldsymbol{\theta}}$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \tan^{-1} \left(\sqrt{x^2 + y^2} / z \right)$$
$$\phi = \tan^{-1} (y/x)$$

$$\mathbf{\hat{r}} = \sin \theta \cos \phi \, \mathbf{\hat{x}} + \sin \theta \sin \phi \, \mathbf{\hat{y}} + \cos \theta \, \mathbf{\hat{z}}$$

$$\hat{\boldsymbol{\theta}} = \cos\theta\cos\phi\,\hat{\mathbf{x}} + \cos\theta\sin\phi\,\hat{\mathbf{y}} - \sin\theta\,\hat{\mathbf{z}}$$

$$\hat{\phi} = -\sin\phi\,\hat{\mathbf{x}} + \cos\phi\,\hat{\mathbf{y}}$$

Cylindrical Coordinates

$$x = s \cos \phi$$

$$y = s \sin \phi$$

$$z = z$$

$$\mathbf{\hat{x}} = \cos\phi\,\mathbf{\hat{s}} - \sin\phi\,\mathbf{\hat{\phi}}$$

$$\hat{\mathbf{y}} = \sin \phi \, \hat{\mathbf{s}} + \cos \phi \, \hat{\boldsymbol{\phi}}$$

$$\hat{\mathbf{z}} = \hat{\mathbf{z}}$$

$$s = \sqrt{x^2 + y^2}$$

$$\phi = \tan^{-1}(y/x)$$

$$z = z$$

$$\mathbf{\hat{s}} = \cos\phi\,\mathbf{\hat{x}} + \sin\phi\,\mathbf{\hat{y}}$$

$$\hat{\boldsymbol{\phi}} = -\sin\phi\,\hat{\mathbf{x}} + \cos\phi\,\hat{\mathbf{y}}$$

$$\hat{\mathbf{z}} = \hat{\mathbf{z}}$$

Updated November 30, 2018 https://github.com/DonneyF/formula-sheets