GNOme – A glycan naming and subsumption ontology

Nathan Edwards

Department of Biochemistry and Molecular & Cellular Biology

Georgetown University Medical Center

About me...

- Celera Genomics + Applied Biosystems
 - Proteomics pipelines, peptide identification software, informatics of new MS technologies
- NCI Clinical Proteomics Tumor Analysis Consortium (CPTAC Phases I,II,III):
 - Novel peptides using genomic/transcripts data
 - Data Coordinating Center (DCC/Portal)
 - Common Data Analysis Pipeline (AWS/Galaxy)
- Intact glycopeptide MS/MS / SWATH tools
 - w/ Rado Goldman (also Georgetown)

Glycans are complex molecules

- Difficult to completely characterize
 - Mass spectrometry, etc.
- Partial characterization is common
 - Prior (biological) knowledge can fill in some gaps
 - Sample manipulation (glycosidases, etc.), too...
- Difficult to describe extent of characterization
 - Complex "sequence" formats precisely describe known and missing details
- Accessions provide a stable identifier
 - Link to explicit sequence formats

Glycan Structure Descriptions

GlyTouCan: G39764AC

PubChem: SID252281000

GlycomeDb: 9088

Neu5Ac(a2-6)Gal(b1-4)GlcNAc(b1-4)Man(a1-3)[Neu5Ac(a2-6)Gal(b1-4)GlcNAc(b1-2)Man(a1-6)]Man(b1-4)GlcNAc(

WURCS=2.0/5,11,10/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5][a1122h-1a_1-5][a2112h-1b_1-5][Aad21122h-2a_2-6_5*NCC/3=O]/ 1-1-2-3-1-4-5/a4-b1_b4-c1_c3-d1_c6-h1_d4-e1_e4-f1_f6-g2_h2-i1_i4-j1_j6-k2

RES	LIN
1b:b-dglc-HEX-1:5	1:1d(2+1)2n
2s:n-acetyl	2:1o(4+1)3d
3b:b-dglc-HEX-1:5	3:3d(2+1)4n
4s:n-acetyl	4:3o(4+1)5d
5b:b-dman-HEX-1:5	5:5o(3+1)6d
6b:a-dman-HEX-1:5	6:6o(4+1)7d
7b:b-dglc-HEX-1:5	7:7d(2+1)8n
8s:n-acetyl	8:7o(4+1)9d
9b:b-dgal-HEX-1:5	9:9o(6+2)10d
10b:a-dgro-dgal-NON-2:6 1:a 2:keto 3:d	10:10d(5+1)11n
11s:n-acetyl	11:5o(6+1)12d
12b:a-dman-HEX-1:5	12:12o(2+1)13d
13b:b-dglc-HEX-1:5	13:13d(2+1)14n
14s:n-acetyl	14:13o(4+1)15d
15b:b-dgal-HEX-1:5	15:15o(6+2)16d
16b:a-dgro-dgal-NON-2:6 1:a 2:keto 3:d	16:16d(5+1)17n
17s:n-acetyl	

Glycan (Partial) Structure Descriptions

GlyTouCan: G27817LK

UniCarbKB: 4923

GlycomeDb: 39722

Neu5Ac(?2-?)Gal(?1-?)GlcNAc(?1-?)Man(a1-3)[Neu5Ac(?2-?)Gal(?1-?)GlcNAc(?1-?)Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc(?1-

 $WURCS=2.0/6,11,10/[a2122h-1x_1-5_2*NCC/3=O][a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5][a1122h-1a_1-5][a2112h-1x_$

DEC	LINI
RES	LIN
1b:x-dglc-HEX-1:5	1:1d(2+1)2n
2s:n-acetyl	2:1o(4+1)3d
3b:b-dglc-HEX-1:5	3:3d(2+1)4n
4s:n-acetyl	4:3o(4+1)5d
5b:b-dman-HEX-1:5	5:5o(3+1)6d
6b:a-dman-HEX-1:5	6:6o(-1+1)7d
7b:x-dglc-HEX-1:5	7:7o(-1+1)8d
8b:x-dgal-HEX-1:5	8:8o(-1+2)9d
9b:x-dgro-dgal-NON-2:6 1:a 2:keto 3:d	9:9d(5+1)10n
10s:n-acetyl	10:7d(2+1)11n
11s:n-acetyl	11:5o(6+1)12d
12b:a-dman-HEX-1:5	12:12o(-1+1)13d
13b:x-dglc-HEX-1:5	13:13o(-1+1)14d
14b:x-dgal-HEX-1:5	14:14o(-1+2)15d
15b:x-dgro-dgal-NON-2:6 1:a 2:keto 3:d	15:15d(5+1)16n
16s:n-acetyl	16:13d(2+1)17n

17s:n-acetyl

Glycan (Partial) Structure Descriptions

GlyTouCan: G97545TB

UniCarbKB: 4227

GlycomeDb: 39610

Neu5Ac(a2-?)Gal(b1-?)GlcNAc(?1-?)Man(a1-3)[Neu5Ac(a2-?)Gal(b1-?)GlcNAc(?1-?)Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc(?1-

 $WURCS=2.0/6,11,10/[a2122h-1x_1-5_2*NCC/3=O][a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5][a1122h-1b_1-5][a2112h-1b_1-5][a2112h-1b_1-5][a2112h-1b_1-5][a2112h-2a_2-6_5*NCC/3=O]/1-2-3-4-1-5-6/4-b1_b4-c1_c3-d1_c6-h1_d?-e1_e?-f1_f?-g2_h?-i1_i?-j1_j?-k2$

5b:b-dman-HEX-1:5 5:50(3+1)6d 6b:a-dman-HEX-1:5 6:60(-1+1)7d 7b:x-dglc-HEX-1:5 7:70(-1+1)8d 8b:b-dgal-HEX-1:5 8:80(-1+2)9d 9b:a-dgro-dgal-NON-2:6 1:a 2:keto 3:d 9:9d(5+1)10n 10s:n-acetyl 10:7d(2+1)11n 11s:n-acetyl 11:50(6+1)12d 12b:a-dman-HEX-1:5 12:12o(-1+1)13c 13b:x-dglc-HEX-1:5 13:13o(-1+1)14c 14b:b-dgal-HEX-1:5 14:14o(-1+2)15c 15b:a-dgro-dgal-NON-2:6 1:a 2:keto 3:d 15:15d(5+1)16n 16s:n-acetyl 16:13d(2+1)17n	d d 1
16s:n-acetyl 16:13d(2+1)17n 17s:n-acetyl	l

Glycans are complex molecules

- Manuscripts and tools often use a short-hand
 - Monosaccharide composition
 - 4 GlcNAc, 3 Man, 2 Gal, 2 Neu5Ac (4-3-2-2-0)
 - 4 HexNAc, 5 Hex, 2 Neu5Ac (4-5-2-0)
 - Words (!)
 - Bi-antennary di-sialated complex N-glycan
 - Abbreviations
 - A2G2S2, 2A2SA,
 - Pictures
- Linking with accessions is difficult...

Finding GlyTouCan Structure Descriptions

49 GlyTouCan glycans by composition

68 GlyTouCan glycans by mol. weight

95 GlyTouCan glycans by int. mol wt

Finding GlyTouCan Structure Descriptions

Glycan (Partial) Structure Subsumption

Glycan (Partial) Structure Subsumption

GlyGen Glycans

- Glycans from GlyTouCan
 - Primary accessions
 - Complete WURCS coverage GlycoCT partial
 - Species/Motif annotations
- Glycans from UniCarbKB
 - Connection to UniProt proteins (vital!)
 - Species / Protein-based species annotations
 - Accessions linked from GlyTouCan

GlyGen Glycans (Year 1)

- Require human and mouse glycans, but...
 - Species annotations are sparse
- Data-resources do not annotate consistent (partial) structure descriptions
 - Human curators extract structure descriptions from manuscripts inconsistently,
 - Different resources see different manuscripts
- Human Glycans:
 - GlyTouCan: 2261; UniCarbKB: 1854 (1471);
 - In common: 486

- Which compositions, topologies are human?
 - Use subsumption relationships to propagate annotation
 - Semantics: ...at least one glycan structure...
- Merged human annotation:

• (Partial?) Structures: 3455 (+621)

• Topologies: 1720 (+1707)

• Compositions: 0 (+1062)

GlyGen Glycoenzymes

- Glycosylation enzyme annotations
 - ID mapping: GlycO → GlycomeDb → GlyTouCan
- GlycO "tree" of potential structures
 - w/ species specific glycotransferase annotations
 - Glycan monosaccharide indexing

Will York, Alison Nairn, Kelley Moremen (CCRC)

GlyGen Glycan Data Integration

GlyGen Glycan Data Integration

G35370OW - SMW	× +						- d :	×
← → C ⊕	(i) edwards	slab.bmcb. georgetown.edu /smw/G3	5370OW		□ □ ☆	Search	III\ ⊗ 🗈	≡
Permanent link Page information	Identifiers						o Relationships 9 Sequence	^
Browse properties	GlyTouCan G353	70OW						
	UniCarbKB 7102							
	GlycomeDB 40175							
	Туре							п
	Type Saccharide							
	Motif							
	N-Linked Subsump	ption						
	Organism							ı
	Human Subsumption	on, UniCarbKB, UniCarbKB-Protein						
	Enzyme							
	Substrate							
	Human P04114 (UniCarbKB)							
	Groups							
	Molecular Weight	1599.5656228 (17 Saccharides)						
	Base Composition	G28541PG (17 Saccharides)						
	Composition	G55719HL (7 Saccharides)						
	Topology	G95951LZ (6 Saccharides)						
								~

Explore subsumption relationships

GlyGen Glycan Data Integration

G82312JY - SMW	X SVG glycan	× edwardslab.bmcb.	georgetown.edu/X +					-	đ	×
← → G Φ	(i) edwards	lab.bmcb. georgetown.edu /smw/G82	312JY	Ţ.	♥ ☆	Q Search	lil	⊗ □		≡
	Organism									^
	Enzyme Mouse Alg1 (208211, GlycO), Alg13 (67574, GlycO), Alg14 (66789, GlycO), Alg2 (56737, GlycO), Fut8 (53618, GlycO), Glt28d2 (320302, GlycO), Mgat1 (17308, GlycO), Mgat2 (217664, GlycO)									
Molecular Weight 1665.6238064 (25 Saccharides)										
	Base Composition	G88725PI (25 Saccharides)								
	Composition	G29913WR (8 Saccharides)								
	Topology G63253XC (6 Saccharides)									
	Relationships									
	Subsumed By G98	3855LF								
	Explore & Sequence									
	IUPAC Condensed GlcNAc (b1-2) Man (a1-3) [GalNAc (b1-4) GlcNAc (b1-2) Man (a1-6)]Man (b1-4) GlcNAc (b1-4) [Fuc (a1-6)]GlcNAc (
	IUPAC	[alpha-D-Fucp-(1->6)-[beta L-Manp-(1->4)]-beta-D-Glcp			ha-L-Manp-(1	->6)-beta-D-GlcpNAc-(1->2)-	alpha-L-Manp-(1->3)-beta	-	~

Explore Glycoenzymes

GlyGen Glycan Data Integration

GNOme

- Glycan Naming (and Subsumption)
 Ontology
- Pre-compute GlyTouCan subsumption relationships
 - Publish as OBO Foundry Ontology
- Ontologies good for structured terms
- Name/identifier resolution
 - Human terminology, synonyms, ID mapping

GNOme

 Provide browsing tools for interactive glycan (partial) structure description discovery

Help humans navigate glycan descriptions

Well defined (partial) structure levels

Glycan annotation propagation and inference

Acknowledgments

- GlyGen Glycoscience Portal Team
 - Will York (CCRC), Rene Ranzinger (CCRC, Glycome-DB), Raja Mazumder (GWU)
 - Kiyoko F Aoki-Kinoshita (GlyTouCan)
 - Matthew Campbell (UniCarbKB)

NIH Common Fund: U01 - GlyGen