Grandes Desviaciones

Alexander A. Ramírez M. (alexanderramirez.me) 09/01/2017

Contents

2.6	3 Grandes Desviaciones	1
	Lemma 2.6.1	2
	Ejercicio 2.6.1	5
	Ejercicio 2.6.2	5
	Lemma 2.6.2	7
	Ejemplo 2.6.1. Distribución Normal	9
	Ejemplo 2.6.2. Distribución Exponencial con parámetro λ	9
	Ejemplo 2.6.3. Lanzamientos de monedas	9
	Ejemplo 2.6.4. Exponencial "pervertida"	10
	Ejercicio 2.6.3.	10
	Teorema 2.6.3	10
	Lemma 2.6.4	11
	Ejercicio 2.6.4	12
	Ejercicio 2.6.5	13
	Ejercicio 2.6.6	14
	Ejercicio 2.6.7	14
	Teorema 2.6.5	15
	Ejercicio 2.6.8	16
	Ejercicio 2.6.9	16

Agradecimiento

Profesor Muchas gracias por el esfuerzo y el empeño en el curso. Sigo interesado en trabajar con Ud. en otros cursos. A pesar de las circunstancias, Ud. es un ejemplo de amor por su oficio y profesionalismo. Se que a Ud. no le interesan los agradecimientos sino que realmente trabajemos en la materia. Espero esta sea una pequeña muestra. Mis respetos. Un abrazo. AARM

2.6 Grandes Desviaciones

Sean X_1, X_2, \ldots variables aleatorias independientes e idénticamente distribuidas (i.i.d) y sea $S_n = X_1 + X_2 + \cdots + X_n = \sum_{i=1}^n X_i$. En esta sección vamos a investigar la tasa (la velocidad)

a la cual $P(S_n > na) \to 0$ para $a > \mu = \mathbb{E}X_i$. Finalmente concluiremos que si la **función** generadora de momento $\varphi(\theta) = \mathbb{E}(e^{\theta X_i}) < \infty$ para algún $\theta > 0$, $P(S_n > na) \to 0$ a una velocidad exponencial e identificaremos

$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na)$$

Nuestro primer paso será demostrar que el límite existe. Esto está basado en la observación que será de utilidad en varias oportunidades más adelante. Sea $\pi_n = P(S_n \ge na)$.

$$\pi_{m+n} \ge P(S_m \ge ma, S_{m+n} - S_m \ge na) = \pi_m \pi_n$$

dado que S_m y $S_{m+n}-S_m$ son independientes.

Detalles:

Sea $\pi_n = P(Sn \ge na)$ definido para cada n. Como la suma y resta de variables aleatorias independientes, es una variable aleatoria independiente, para cada m, n tenemos que las variables aleatorias S_m y $S_{m+n} - S_m$ son independientes.

Por otra parte el evento $S_{m+n} \ge (m+n)a$ contiene $S_m \ge ma$ y $S_{m+n} - S_m \ge na$ entonces como la probabilidad es una función monótona y por independencia de las variables aleatorias tenemos

$$\pi_{m+n} = P(S_{m+n} \ge (m+n)a) \ge P(S_m \ge ma, S_{m+n} - S_m \ge na)$$

$$\ge P(S_m \ge ma)P(S_{n+m} - S_m \ge na)$$

$$\ge \pi_m \pi_n$$

Si dejamos a $\gamma_n = \log \pi_n$ transformamos el producto en sumas.

Detalles:

Sea $\gamma_n = \log \pi_n$, como $\pi_{m+n} \ge \pi_m \pi_n$ como ya vimos. Entonces

$$\gamma_{m+n} = \log \pi_{m+n} \ge \log \pi_m \pi_n = \log \pi_m + \log \pi_n = \gamma_m + \gamma_n$$

entonces γ_n transforma el producto en sumas.

Lemma 2.6.1

Si $\gamma_{m+n} \ge \gamma_m + \gamma_n$ entonces así como $n \to \infty$, $\frac{\gamma_n}{n} \to \sup_m \frac{\gamma_m}{m}$.

Prueba. Claramente, $\limsup \gamma_n/n \leq \sup \gamma_m/m$. Para completar la demostración, es suficiente probar que para cualquier m, $\liminf \gamma_n/n \geq \gamma_m/m$. Escribiendo $n = km + \ell$ con $0 \leq \ell < m$ y haciendo uso de la hipótesis varias veces nos dá $\gamma_n \geq k\gamma_m + \gamma_\ell$. Dividiendo por $n = km + \ell$ obtenemos

$$\frac{\gamma_n}{n} \ge \left(\frac{km}{km+\ell}\right) \frac{\gamma_m}{m} + \frac{\gamma_\ell}{n}$$

Si hacemos $n \to \infty$ y recordando que $n = km + \ell$ con $0 \le \ell < m$ obtenemos el resultado deseado. \square

Detalles:

Desarrollemos la demostración paso a paso. Se desea demostrar que si $\gamma_{m+n} \geq \gamma_m + \gamma_n$ entonces $\lim_{n \to \infty} \frac{\gamma_n}{n} = \sup_m \frac{\gamma_m}{m}$. Por definición de lim sup e inf

$$\limsup_{n \to \infty} \frac{\gamma_n}{n} = \inf_{n > 1} \sup_{m > n} \frac{\gamma_m}{m} \le \sup_{m > 1} \frac{\gamma_m}{m}$$

Para completar la demostración, es suficiente probar que para cualquier m, lim inf $\frac{\gamma_n}{n} \geq \frac{\gamma_m}{m}$. Tenemos que

$$\frac{\gamma_m}{m} \le \liminf_{n \to \infty} \frac{\gamma_n}{n}$$

$$\le \limsup_{n \to \infty} \frac{\gamma_n}{n}$$

$$\le \sup_{m} \frac{\gamma_m}{m}$$

Entonces para cada m, $\liminf_{n\to\infty} \frac{\gamma_n}{n}$ es una cota superior para $\frac{\gamma_m}{m}$. Por definición de supremo es $\sup_{m} \frac{\gamma_m}{m} \leq \liminf_{n\to\infty} \frac{\gamma_n}{n}$, entonces

$$\frac{\gamma_m}{m} \le \sup_{m} \frac{\gamma_m}{m} \le \liminf_{n \to \infty} \frac{\gamma_n}{n} \le \limsup_{n \to \infty} \frac{\gamma_n}{n}$$

así

$$\liminf_{n \to \infty} \frac{\gamma_n}{n} = \limsup_{n \to \infty} \frac{\gamma_n}{n} = \frac{\gamma_m}{m}$$

se sigue que el límite $\lim_{n\to\infty}\frac{\gamma_n}{n}$ existe y es igual a $\lim_{n\to\infty}\frac{\gamma_n}{n}=\frac{\gamma_m}{m}$.

Ahora vamos a ver que $\liminf_{n\to\infty} \frac{\gamma_n}{n} \geq \frac{\gamma_m}{m}$.

Escribiendo $n = km + \ell$ con $0 \le \ell < m$ por hipótesis

$$\gamma_n = \gamma_{km+\ell} \ge \gamma_{km} + \gamma_\ell$$

tenemos además que

$$\gamma_{km} = \gamma_{m+(k-1)m} \ge \gamma_m + \gamma_{(k-1)m} \ge \gamma_m + \gamma_m + \gamma_{(k-2)m} \ge \cdots \ge (k-1)\gamma_m + \gamma_m = k \gamma_m$$

sustituyendo queda

$$\gamma_n = \gamma_{km+\ell} \ge k \ \gamma_m + \gamma_\ell$$

y haciendo uso de la hipótesis varias veces nos dá $\gamma_n \ge k \ \gamma_m + \gamma_\ell$. Dividiendo por $n = km + \ell$ obtenemos

$$\frac{\gamma_n}{n} = \frac{k \ \gamma_m + \gamma_\ell}{km + \ell} \ge \left(\frac{km}{km + \ell}\right) \frac{\gamma_m}{m} + \frac{\gamma_\ell}{n}$$

Si hacemos $n \to \infty$ y recordando que $n = km + \ell$ con $0 \le \ell < m$ obtenemos el resultado deseado.

$$\lim_{n \to \infty} \frac{\gamma_n}{n} \ge \lim_{n \to \infty} \left(\frac{km}{km+\ell}\right) \frac{\gamma_m}{m} + \lim_{n \to \infty} \frac{\gamma_\ell}{n}$$

$$= \lim_{n \to \infty} \left(\frac{n-\ell}{n}\right) \frac{\gamma_m}{m} + \lim_{n \to \infty} \frac{\gamma_\ell}{n}$$

$$= \lim_{n \to \infty} \frac{\gamma_\ell}{n}$$

$$= \frac{\gamma_m}{m}$$

entonces $\liminf_{n\to\infty} \frac{\gamma_n}{n} \geq \frac{\gamma_m}{m}$, que es lo que se quería demostrar. \square

El Lemma 2.6.1 implica que $\lim_{n\to\infty}\frac{1}{n}\log P(S_n\geq na)=\gamma(a)\leq 0$ existe. Se sigue de la fórmula para el límite que

$$P(S_n \ge na) \le e^{n \gamma(a)} \tag{2.6.1}$$

Las últimas dos observaciones nos ofrecen información muy útil sobre $\gamma(a)$.

Detalles:

El Lemma 2.6.1 implica que $\lim_{n\to\infty}\frac{1}{n}\log P(S_n\geq na)=\gamma(a)\leq 0$ existe.

$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) = \lim_{n \to \infty} \frac{\gamma_n}{n} = \sup_m \frac{1}{m} \log P(S_m \ge ma)$$

Como $0 \le \pi_m = P(S_m \ge ma) \le 1$ entonces $\log \pi_m = \log P(S_m \ge ma) \le 0$ así la sucesión $\left\{\frac{\gamma_m}{m}\right\}_{m>1}$ es acotada y su supremo es $\sup_m \frac{\gamma_m}{m} \le 0$, queda que para m

$$\frac{\gamma_m}{m} \le \sup_m \frac{\gamma_m}{m} = \gamma(a)$$

$$\gamma_m \le m \ \gamma(a)$$

$$\log \pi_m \le m \ \gamma(a)$$

$$\pi_m \le \exp(m \ \gamma(a))$$

$$P(S_m \ge ma) \le e^{m \ \gamma(a)}$$

Se sigue de la fórmula para el límite que $\gamma(a) \leq 0$ y

$$P(S_m \ge ma) \le e^{m \ \gamma(a)} \tag{2.6.1}$$

Las últimas dos observaciones nos ofrecen información muy útil sobre $\gamma(a)$.

Ejercicio 2.6.1.

Las proposiciones siguientes son equivalentes: (a) $\gamma(a) = -\infty$, (b) $P(X_1 \ge a) = 0$ y (c) $P(S_n \ge na) = 0$ para todo n.

Podemos ver que si $\gamma(a) = \sup_{m} \frac{\gamma_m}{m} = -\infty$ entonces $\frac{\gamma_m}{m} = -\infty$ y Tomando n = 1 tenemos que $\gamma_1 = \log P(X_1 \ge a) = -\infty$ entonces $P(X_1 \ge a) = 0$.

Si $S_n \ge na$ entonces $X_m \ge a$ para algún $m \le n$ así si (b) $P(X_1 \ge a) = 0$ entonces (c) $P(S_n \ge na) = 0$.

Finalmente si (c) $\pi_n = P(S_n \ge na) = 0$ para todo n entonces $\frac{\gamma_n}{n} = -\infty$, se sigue que (a) $\gamma(a) = \sup_m \frac{\gamma_n}{n} = -\infty$.

Ejercicio 2.6.2.

Use la definición para concluir que si $\lambda \in [0,1]$ y $\lambda \in \mathbb{Q}$ es racional entonces $\gamma(\lambda a + (1-\lambda)b) \ge \lambda \gamma(a) + (1-\lambda)\gamma(b)$. Use la monotonía para concluir que la última relación se cumple para todo $\lambda \in [0,1]$, así γ es cóncava y por lo tanto Lipschitz contínua en subconjuntos compactos de $\gamma(a) > -\infty$.

Sea $a \leq \lambda a + (1 - \lambda)b \leq b$. Vamos a tomar $\frac{1}{n}\log$ en ambos lados y luego hacemos $n \to \infty$. Recordemos que $\gamma_{n(\lambda + (1-\lambda))} \geq \gamma_{\lambda n} + \gamma_{(1-\lambda)n}$ y $\gamma_{\lambda n} = \lambda \gamma_n$

$$\log P(S_n \ge n\{\lambda a + (1-\lambda)b\}) \ge \log P(S_{n\lambda} \ge n\lambda a) + \log P(S_{n(1-\lambda)} \ge n(1-\lambda)b)
\frac{1}{n} \log P(S_n \ge n\{\lambda a + (1-\lambda)b\}) \ge \frac{1}{n} \log P(S_{n\lambda} \ge n\lambda a) + \frac{1}{n} \log P(S_{n(1-\lambda)} \ge n(1-\lambda)b)
\frac{1}{n} \log P(S_n \ge n\{\lambda a + (1-\lambda)b\}) \ge \frac{\lambda}{n} \log P(S_n \ge na) + \frac{1-\lambda}{n} \log P(S_n \ge nb)
\lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge n\{\lambda a + (1-\lambda)b\}) \ge \lim_{n \to \infty} \frac{\lambda}{n} \log P(S_n \ge na) + \lim_{n \to \infty} \frac{1-\lambda}{n} \log P(S_n \ge nb)
\lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge n\{\lambda a + (1-\lambda)b\}) \ge \lambda \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) + (1-\lambda) \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge nb)
\gamma(\lambda a + (1-\lambda)b) \ge \lambda \gamma(a) + (1-\lambda)\gamma(b)$$

Sea q_{nn} una sucesión tal que $q_n \uparrow \lambda$ donde q_n son irracionales y usando la monotonía se extiende el resultado a los irracionales λ .

Para una función cóncava f, haciendo crecer a o h > 0 decrece (f(a+h) - f(a))/h. De esta observación se sigue la continuidad de Lipschitz.

Las conclusiones anteriores son válidas para cualquier distribución. Para el resto de la sección vamos a suponer:

(H1)
$$\varphi(\theta) = \mathbb{E}(e^{\theta X_i}) < \infty$$
 para algún $\theta > 0$

Sea
$$\theta_+ = \sup\{\theta : \varphi(\theta) < \infty\}, \ \theta_- = \inf\{\theta : \varphi(\theta) < \infty\} \ \text{y note que } \varphi(\theta) < \infty \ \text{para } \theta \in (\theta_-, \theta_+).$$
(H1) implica que $\mathbb{E}X_i^+ < \infty \ \text{y } \mu = \mathbb{E}X^+ - \mathbb{E}X^- \in (-\infty, \infty).$

Detalle:

Recordemos que si $f \ge 0$ es una función, A un conjunto medible, $i_A = \inf\{f(y) : y \in A\}$, por Chebyshev tenemos

$$i_A P(X \in A) \le \mathbb{E}f(X)$$

Sea $f(x)=e^{\theta x},\ A=[na,\infty)$ y $X=S_n$ entonces $i_A=\inf\{e^{\theta y}:y\geq na\}=e^{\theta na}$ y por el Teorema 2.1.9 y el Teorema 3.3.2 del durrett y considerando que $\mathbb{E}e^{\theta X_1}<\infty$

$$e^{\theta na}P(S_n \ge na) \le \mathbb{E}e^{\theta S_n}$$

$$= \mathbb{E}e^{\theta(X_1 + X_2 + \dots + X_n)}$$

$$= \mathbb{E}e^{\theta X_1 + \theta X_2 + \dots + \theta X_n}$$

$$= \mathbb{E}e^{\theta X_1}e^{\theta X_2} \dots e^{\theta X_n}$$

$$= \mathbb{E}e^{\theta X_1}\mathbb{E}e^{\theta X_2} \dots \mathbb{E}e^{\theta X_n}$$

$$= \varphi(\theta)^n$$

la desigualdad de Chebyshev implica que

$$e^{\theta na}P(S_n \ge na) \le \mathbb{E}(e^{\theta S_n}) = \varphi(\theta)^n$$

Detalle:

$$e^{\theta na}P(S_n \ge na) \le \mathbb{E}(e^{\theta S_n}) = \varphi(\theta)^n$$

 $P(S_n \ge na) \le e^{-\theta na}\varphi(\theta)^n$

si dejamos $\kappa(\theta) = \log \varphi(\theta)$

$$P(S_n \ge na) \le e^{-n\{a\theta - \kappa(\theta)\}} \tag{2.6.2}$$

Nuestro primer objetivo es mostrar:

Lemma 2.6.2

Si $a > \mu$ y $\theta > 0$, entonces $a\theta - \kappa(\theta) > 0$

Prueba. $\kappa(0) = \log \varphi(0) = \log \mathbb{E}(e^{0X_i}) = \log \mathbb{E}(e^0) = \log \mathbb{E}(1) = \log(1) = 0$, entonces es suficiente demostrar el lema que (i) κ es contínua en 0, (ii) diferenciable en $(0, \theta_+)$ y (iii) $\kappa'(\theta) \to \mu$ así como $\theta \to 0$. Para luego motrar que

$$a\theta - \kappa(\theta) = \int_0^\theta a - \kappa'(x) \ dx > 0$$

para θ pequeño.

Sea $F(x) = P(X_i \le x)$. Para probar (i) notamos que si $0 < \theta < \theta_0 < \theta_-$

$$e^{\theta x} \le 1 + e^{\theta_0 x} \tag{*}$$

así que por el teorema de convergencia dominada,

Detalles:

Si $Y_n \to Y$ cási seguramente, $|Y_n| \le Z$ para todo n y $\mathbb{E}Z < \infty$ entonces $\mathbb{E}Y_n \to \mathbb{E}Y$, si definimos $\{\theta_n\}_n \subseteq [0,\theta_0]$ y $\theta_n \to 0$ así como $n \to \infty$ para $n \ge 1$ definamos $Y_n = e^{\theta_n X_i}$

$$\lim_{n \to \infty} Y_n = \lim_{n \to \infty} e^{\theta_n X_i} = e^0 = 1$$

como $\theta_n \leq \theta_0$

$$|Y_n| = |e^{\theta_n X_i}| = e^{\theta_n X_i} \le e^{\theta_0 X_i} = Z$$

es decir está acotada y $\mathbb{E}Z < \infty$ ya que por definición de θ_- y θ_+ , $\theta_0 \in (\theta_-, \theta_+)$

queda que así como $\theta_n \to 0$

$$\mathbb{E}e^{\theta_n x} = \int e^{\theta_n x} dF \to \int 1 dF = 1$$

Detalles:

Como $\mathbb{E}Y_n \to 1$ así como $n \to \infty$, entonces para cada n, $\varphi(\theta_n) = \mathbb{E}Y_n$ así $\varphi(\theta_n) \to 1$ así como $n \to \infty$, queda

$$\lim_{\theta \to 0} \kappa(\theta) = \lim_{\theta \to 0} \log \varphi(\theta) \\
= \lim_{n \to \infty} \log \varphi(\theta_n) \\
= \log(\lim_{n \to \infty} \varphi(\theta_n)) \\
= \log(1) \\
= 0$$

entonces κ es contínua en 0.

Para probar (ii) notamos que si $|h| < h_0$ entonces

$$|e^{hx} - 1| = \left| \int_0^{hx} e^y dy \right| \le |hx| e^{h_0 x}$$

así una aplicación del teorema de convergencia dominada muestra que

$$\varphi'(\theta) = \lim_{h \to 0} \frac{\varphi(\theta + h) - \varphi(\theta)}{h}$$

$$= \lim_{h \to 0} \int \frac{e^{hx} - 1}{h} e^{\theta x} dF(x)$$

$$= \int x e^{\theta x} dF(x) \operatorname{para} \theta \in (0, \theta_{+})$$

De la última ecuación, se sigue que $\kappa(\theta) = \log \varphi(\theta)$ tiene $\kappa'(\theta) = \varphi'(\theta)/\varphi(\theta)$. Usando (*) y el teorema de convergencia dominada nos da (iii) y la prueba está completa.

Habiendo encontrado una cota superior para $P(S_n \ge na)$, es natural optimizarla encontrando el máximo de $\theta a - \kappa(\theta)$:

$$\frac{d}{d\theta} \{ \theta a - \log \varphi(\theta) \} = a - \frac{\varphi'(\theta)}{\varphi(\theta)} = 0$$

así que (suponiendo que things are nice) el máximo ocurre cuando, $a = \varphi'(\theta)/\varphi(\theta)$. Para cambiar la proposición en el paréntesis en una hipótesis matemática empezamos por definir

$$F_{\theta}(x) = \frac{1}{\varphi(\theta)} \int_{-\infty}^{x} e^{\theta y} dF(y)$$

cuando $\varphi(\theta) < \infty$. Se sigue de la pruega del Lemma 2.6.2 que si $\theta \in (\theta_-, \theta_+)$, F_θ es una función de distribución con media

$$\int x \ dF_{\theta}(x) = \frac{1}{\varphi(\theta)} \int_{-\infty}^{\infty} x e^{\theta x} dF(x) = \frac{\varphi'(\theta)}{\varphi(\theta)}$$

Repitiendo la prueba en el Lemma 2.6.2, es fácil ver que si $\theta \in (\theta_-, \theta_+)$ entonces

$$\varphi''(\theta) = \int_{-\infty}^{\infty} x^2 e^{\theta x} dF(x)$$

Entonces tenemos

$$\frac{d}{d\theta} \frac{\varphi'(\theta)}{\varphi(\theta)} = \frac{\varphi''(\theta)}{\varphi(\theta)} - \left(\frac{\varphi'(\theta)}{\varphi(\theta)}\right)^2 = \int x^2 dF_{\theta}(x) - \left(\int x dF_{\theta}(x)\right)^2 \ge 0$$

dado que la última expresión es la variancia de F_{θ} . Si suponemos que

(H2) la función de distribución F no es un punto de masa en μ

entonces $\varphi'(\theta)/\varphi(\theta)$ es estríctamente creciente y $a\theta - \log \varphi(\theta)$ es cóncava. Como tenemos $\varphi'(0)/\varphi(0) = \mu$, esto muestra que para cada $a > \mu$ hay a lo sumo un $\theta_a \ge 0$ que resuelve $a = \varphi'(\theta_a)/\varphi(\theta_a)$ por inyectividad, y este valor de θ maximiza $a\theta - \log \varphi(\theta)$. Antes de discutir la existencia de θ_a consideremos algunos ejemplos.

Ejemplo 2.6.1. Distribución Normal.

$$\int e^{\theta x} (2\pi)^{-\frac{1}{2}} e^{-\frac{x^2}{2}} dx = e^{\frac{\theta^2}{2}} \int \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\theta)^2}{2}} dx$$

El integrando en la última integral (a la derecha) es la función de densidad de una distribución normal con media θ y variancia 1, tal que $\varphi(\theta) = e^{\frac{\theta^2}{2}}$, $\theta \in (-\infty, \infty)$. En este caso, $\varphi'(\theta)/\varphi(\theta) = \theta$ y

$$F_{\theta}(x) = e^{-\frac{\theta^2}{2}} \int_{-\infty}^{x} e^{\theta x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

es una disribución normal con media θ y variancia 1.

Ejemplo 2.6.2. Distribución Exponencial con parámetro λ .

Si $\theta < \lambda$

$$\int_0^\infty e^{\theta x} \lambda e^{-\lambda x} dx = \frac{\lambda}{\lambda - \theta}$$
$$\frac{\varphi'(\theta)}{\varphi(\theta)} = \frac{1}{\lambda - \theta}$$
$$F_{\theta}(x) = \frac{\lambda}{\lambda - \theta} \int_0^x e^{\theta x} \lambda e^{-\lambda y} dy$$

es una distribución exponencial con parámetro $\lambda - \theta$ y por lo tanto con media $1/(\lambda - \theta)$.

Ejemplo 2.6.3. Lanzamientos de monedas

Sea
$$P(X_i = 1) = P(X_i = -1) = 1/2$$

$$\varphi(\theta) = \frac{(e^{\theta} + e^{-\theta})}{2}$$

$$\frac{\varphi'(\theta)}{\varphi(\theta)} = \frac{(e^{\theta} - e^{-\theta})}{(e^{\theta} + e^{-\theta})}$$

$$\frac{F_{\theta}(\{x\})}{F(\{x\})} = \frac{e^{\theta x}}{\varphi(\theta)}$$

entonces

$$F_{\theta}(\{1\}) = \frac{e^{\theta}}{e^{\theta} + e^{-\theta}}$$

у

$$F_{\theta}(\{-1\}) = \frac{e^{-\theta}}{e^{\theta} + e^{-\theta}}$$

Ejemplo 2.6.4. Exponencial "pervertida"

Sea $g(x) = Cx^{-3}e^{-x}$ para $x \ge 1$, g(x) = 0 en otro caso y escoge C tal que g es una función de densidad de probabilidad. En este caso,

$$\varphi(\theta) = \int e^{\theta x} g(x) dx < \infty$$

sí y sólo si $\theta \le 1$ y cuando $\theta \le 1$, tenemos

$$\frac{\varphi'(\theta)}{\varphi(\theta)} \le \frac{\varphi'(1)}{\varphi(1)} = \frac{\int_{1}^{\infty} Cx^{-2} dx}{\int_{1}^{\infty} Cx^{-3} dx} = 2$$

Recordemos $\theta_+ = \sup\{\theta : \varphi(\theta) < \infty\}$. En los Ejemplos 2.6.1 y 2.6.2, tenemos $\varphi'(\theta)/\varphi(\theta) \uparrow \infty$ así como $\theta \uparrow \theta_+$ así que podemos resolver $a = \varphi'(\theta)/\varphi(\theta)$ para todo $a > \mu$. En el Ejemplo 2.6.3, $\varphi'(\theta)/\varphi(\theta) \uparrow 1$ como $\theta \to \infty$ pero no podemos esperar mucho más dado que F y por lo tanto F_θ es soportada en $\{-1, 1\}$.

Ejercicio 2.6.3.

Sea $x_0 = \sup\{x : F(x) < 1\}$. Muestre que si $x_0 < \infty$ entonces $\varphi(\theta) < \infty$ para todo $\theta > 0$ y $\varphi'(\theta)/\varphi(\theta) \to x_0$ como $\theta \uparrow \infty$.

Dado que $P(X \le x_0) = 1$, $\mathbb{E}e^{\theta X} < \infty$ para todo $\theta > 0$. Como F_{θ} está concentrada en $(-\infty, x_0]$ su media $\mu_0 = \varphi'(\theta)/\varphi(\theta) \le x_0$. Por otra parte si $\delta > 0$, entonces $P(X \ge x_0 - \delta) = c_{\delta} > 0$, $\mathbb{E}e^{\theta X} \ge c_{\delta}e^{\theta(x_0 - \delta)}$, entonces

$$F_{\theta}(x_0 - 2\delta) = \frac{1}{\varphi(\theta)} \int_{-\infty}^{x_0 - 2\delta} e^{\theta x} dF(x) \le \frac{e^{(x_0 - 2\delta)\theta}}{c_{\delta} e^{(x_0 - \delta)\theta}} = \frac{e^{\theta \delta}}{c_{\delta}} \to 0$$

Como $\delta > 0$ es arbitrario se sigue que $\mu_0 \to x_0$ así como $\theta \to \infty$.

El Ejemplo 2.6.4 presenta un problema que no podemos resolver $a = \varphi'(\theta)/\varphi(\theta)$ cuando a > 2. El Teorema 2.6.5 cubre este caso, pero primero trataremos los casos en los cuales se puede resolver la ecuación.

Teorema 2.6.3.

Suponga, además de (H1) y (H2) que existe un $\theta_a \in (0, \theta_+)$ tal que $a = \varphi'(\theta_a)/\varphi(\theta_a)$. Entonces, así como $n \to \infty$,

$$\frac{1}{n}\log P(S_n \ge na) \to -a\theta_a + \log \varphi(\theta_a)$$

Prueba. El hecho de que el lim sup del lado izquierdo de la desigualdad sea menor o igual (\leq) al lado derecho se sigue de (2.6.2).

Detalles:

Por (2.6.2), se sigue que para cada n,

$$P(S_n \ge na) \le e^{-n\{a\theta - \kappa(\theta)\}}$$
$$\log P(S_n \ge na) \le -n\{a\theta - \kappa(\theta)\}$$
$$\frac{1}{n}\log P(S_n \ge na) \le -a\theta + \kappa(\theta)$$

así, para $m \ge 1$

$$\limsup_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) \le \inf_{m > 1} \sup_{n \ge m} \frac{1}{n} \log P(S_n \ge na)$$
$$\le \sup_{n \ge m} \frac{1}{n} \log P(S_n \ge na)$$
$$\le \sup_{n \ge 1} \frac{1}{n} \log P(S_n \ge na)$$
$$\le -a\theta + \kappa(\theta)$$

Para probar la otra desigualdad, tome $\lambda \in (\theta_a, \theta_+)$, siendo $X_1^{\lambda}, X_2^{\lambda}, \ldots$ variables aleatorias i.i.d. con distribución F_{λ} y sea $S_n^{\lambda} = X_1^{\lambda} + \cdots + X_n^{\lambda}$. Escribiendo dF/dF_{λ} para la derivada de Radon-Nikodym de la medida asociada, inmediatamente de la definición de $dF/dF_{\lambda} = e^{-\lambda x} \varphi(\lambda)$.

Si denotamos a F_{λ}^n y F^n como las funciones de distribución S_n^{λ} y S_n , entonces

Lemma 2.6.4.

$$\frac{dF^n}{dF_\lambda^n} = e^{-\lambda x} \varphi(\lambda)^n$$

Prueba. Vamos a realizar la demostración por inducción. El resultado se cumple cuando n=1. Para n>1, notamos que

$$F^{n} = F^{n-1} * F(z) = \int_{-\infty}^{\infty} dF^{n-1}(x) \int_{-\infty}^{z-x} dF(y)$$

$$= \int dF_{\lambda}^{n-1}(x) \int dF_{\lambda}(y) 1_{(x+y \le z)} e^{-\lambda(x+y)} \varphi(\lambda)^{n}$$

$$= E\left(1_{(S_{n-1}^{\lambda} + X_{n}^{\lambda} \le z)} e^{-\lambda(S_{n-1}^{\lambda} + X_{n}^{\lambda})} \varphi(\lambda)^{n}\right)$$

$$= \int_{-\infty}^{z} dF_{\lambda}^{n}(u) e^{-\lambda u} \varphi(\lambda)^{n}$$

donde en las últimas dos desigualdades hemos usado el Teorema 1.6.9 para $(S_{n-1}^{\lambda}, X_n^{\lambda})$ y S_n^{λ} . \square Si $\nu > a$, entonces el Lemma 2.6.4 y la monotonía implican

$$P(S_n \ge na) \ge \int_{na}^{n\nu} e^{-\lambda x} \varphi(\lambda)^n dF_{\lambda}^n(x) \ge \varphi(\lambda)^n e^{-\lambda n\nu} (F_{\lambda}^n(n\nu) - F_{\lambda}^n(na)) \tag{*}$$

 F_{λ} tiene media $\varphi'(\lambda)/\varphi(\lambda)$, así que si tenemos $a < \varphi'(\lambda)/\varphi(\lambda) < \nu$, entonces por la ley débil de los grandes números tenemos

$$F_{\lambda}^{n}(n\nu) - F_{\lambda}^{n}(na) \to 1$$
, así como, $n \to \infty$

De la última conclusión y (*) se sigue que

$$\liminf_{n \to \infty} \frac{1}{n} \log P(S_n > na) \ge -\lambda \nu + \log \varphi(\lambda)$$

Como $\lambda > \theta_a$ y $\nu > a$ son arbitrarios, la demostración queda completa. \square

Para tener una idea de cómo puede ser la respuesta, consideremos los ejemplos. Para prepararnos para los cálculos, recordemos una información importante:

$$\kappa(\theta) = \log \varphi(\theta) \qquad \kappa'(\theta) = \frac{\varphi'(\theta)}{\varphi(\theta)} \qquad \theta_a \quad \text{resuelve} \quad \kappa'(\theta_a) = a$$
$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) = -a\theta_a + \kappa(\theta_a)$$

Distribución Normal (Ejemplo 2.6.1)

$$\kappa(\theta) = \theta^2/2 \qquad \kappa'(\theta) = \theta \qquad \theta_a = a$$

$$\gamma(a) = -a\theta_a + \kappa(\theta_a) = -a^2/2$$

Ejercicio 2.6.4

Chequee el último resultado observando que S_n tiene una distribución normal con media 0 y variancia n, y luego usando el Teorema 1.2.3.

Sea χ la distribución normal estándar entonces para a>0

$$P(S_n \ge na) = P(\chi \ge a\sqrt{n}) \sim \frac{1}{a\sqrt{n}}e^{-\frac{a^2n}{2}}$$

entonces
$$\frac{1}{n}\log P(S_n \ge na) \to -\frac{a^2}{2}$$
.

Distribución Exponencial (Ejemplo 2.6.2) con $\lambda = 1$

$$\kappa(\theta) = -\log(1 - \theta) \qquad \kappa'(\theta) = \frac{1}{1 - \theta} \qquad \theta_a = 1 - \frac{1}{a}$$
$$\gamma(a) = -a\theta_a + \kappa(\theta_a) = -a + 1 + \log a$$

Con esos dos ejemplos como modelo, el lector debería ser capaz de hacer

Ejercicio 2.6.5

Sea X_1, X_2, \ldots variables aleatorias i.i.d. Poisson con media 1, y sea $S_n = X_1 + \cdots + X_n$. Encuentre $\lim_{n\to\infty} (1/n) \log P(S_n \ge na)$ para a > 1. La respuesta y otra demostración se puede encontrar en el Ejercicio 3.1.4.

$$\varphi(\theta) = \mathbb{E}e^{\theta X} = \sum_{n=0}^{\infty} \frac{1}{e} \frac{e^{\theta n}}{n!} = \frac{1}{e} \sum_{n=0}^{\infty} e^{\theta n} \cdot \frac{1}{n!} = e^{e^{\theta} - 1}$$

así para a > 1, $\kappa(\theta) = \log \varphi(\theta) = \log e^{\theta-1} = e^{\theta} - 1$.

$$a\theta - \kappa(\theta) = a\theta - (e^{\theta} - 1) = a\theta - e^{\theta} + 1.$$

$$\varphi'(\theta)/\varphi(\theta) = \kappa'(\theta) = (e^{\theta} - 1)' = e^{\theta}, y \theta_a = \log a.$$

Reemplazando nos da

$$\gamma(a) = -a\theta_a + \kappa(\theta_a) = -a\log a + e^{\log a} - 1 = -a\log a + a - 1 = a(1 - \log a) - 1$$

Lo cual implica que

$$\lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) = a(1 - \log a) - 1$$

Por otra parte

$$I(a) = -\gamma(a) = \sup_{\theta} (a\theta - \log \varphi(\theta)) = a\theta_a - \kappa(\theta_a)$$

= $a \log a - e^{\log a} + 1 = a \log a - a + 1 = a(\log a - 1) + 1$

Lanzamientos de monedas (Ejemplo 2.6.3) En este caso lo hacemos de una forma diferente. Para encontrar θ que hace que la media de $F_{\theta} = a$, igualamos $F_{\theta}(\{1\}) = e^{\theta}/(e^{\theta} + e^{-\theta}) = (1+a)/2$. Dejando a $x = e^{\theta}$ tenemos

$$2x = (1+a)(x+x^{-1}) (a-1)x^2 + (1+a) = 0$$

así
$$x = \sqrt{(1+a)/(1-a)}$$
 y $\theta_a = \log x = {\log(1+a) - \log(1-a)}/2$.

$$\varphi(\theta_a) = \frac{e^{\theta_a} + e^{-\theta_a}}{2} = \frac{e^{\theta_a}}{1+a} = \frac{1}{\sqrt{(1+a)(1-a)}}$$

$$\gamma(a) = -a\theta_a + \kappa(\theta_a) = -\{(1+a)\log(1+a) + (1-a)\log(1-a)\}/2$$

En el Ejercicio 3.1.3, este resultado será demostrado a través de un cálculo directo. Dado que la fórmula de $\gamma(a)$ es un poco fea, la cota siguiente, que es más simple, es útil

Ejercicio 2.6.6.

Demuestre que para lanzamientos de monedas $\varphi(\theta) \leq \exp(\varphi(\theta) - 1) \leq \exp(\beta \theta^2)$ para $\theta \leq 1$ donde $\beta = \sum_{n=1}^{\infty} 1/(2n)! \approx 0.586$ y use (2.6.2) para concluir que $P(S_n \geq an) \leq \exp(-na^2/4\beta)$ para todo $a \in [0, 1]$. Es usual simplificar mucho más utilizando $\beta \leq \sum_{n=1}^{\infty} 2^{-n} = 1$.

Como $0 \le x_0$, $1 = e^0 \le e^{x_0}$, $\frac{e^x - 1}{x} \ge 1$, así tenemos que $1 + x \le e^x$ con $x = \varphi(\theta) - 1$ resulta $\varphi(\theta) \le e^{\varphi(\theta) - 1}$.

Para probar la otra desigualdad, notamos que

$$\varphi(\theta) - 1 = \frac{e^{\theta} + e^{-\theta}}{2} - 1 = \cos h(\theta) = \sum_{n=1}^{\infty} \frac{\theta^{2n}}{(2n)!} \le \beta \theta^2$$

entonces

$$e^{\varphi(\theta)-1} \le e^{\beta \theta^2}$$

Como $\varphi(\theta) = e^{\beta\theta^2}$, $\kappa(\theta) = \log \varphi(\theta) \le \log \exp^{\beta\theta^2} = \beta\theta^2$ (2.6.3) implica que $P(S_n \ge na) \le \exp -n\{a\theta - \beta\theta^2\}$. Tomando $\theta = a/2\beta$ para minimizar la cota superior tenemos

$$-n\left(\frac{a}{2\beta}a - \beta\left[\frac{a}{2\beta}\right]^2\right) = -n\left(\frac{a^2}{2\beta} - \frac{\beta a^2}{4\beta^2}\right) = -n\left(\frac{2a^2 - a^2}{4\beta}\right) = -n\left(\frac{a^2}{4\beta}\right)$$

así $P(S_n \ge an) \le \exp(-na^2/4\beta)$.

Ahora vamos a concentrarnos en los valores "problemáticos" para los cuales no podemos calcular $a = \varphi'(\theta_a)/\varphi(\theta_a)$, empezamos observando que si $x_0 = \sup\{x : F(x) < 1\}$ y F no es un punto de masa en x_0 entonces $\varphi'(\theta)/\varphi(\theta) \uparrow x_0$ como $\theta \uparrow \infty$ pero $\varphi'(\theta)/\varphi(\theta) < x_0$ para todo $\theta < \infty$. Sin embargo, el resultado para $a = x_0$ es trivial:

$$\frac{1}{n}\log P(S_n \ge nx_0) = \log P(X_i = x_0) \quad \forall n$$

Ejercicio 2.6.7.

Muestre que así como $a \uparrow x_0, \gamma(a) \downarrow \log P(X_i = x_0)$.

Dado que $\gamma(a)$ es decreciente y mayor que (\geq) log $P(X=x_0)$ para todo $a < x_0$, sólo se debe demostrar que $\limsup \gamma(a) \leq P(P=x_0)$.

Para hacer esto empezamos observando que los cálculos para los lamzamientos de monedas, muestran que el resultado es verdadero para distribuciones que tienen dos puntos.

Si $\bar{X}_i = x_0 - \delta$ cuando $X_i \leq x_0 - \delta$ y $\bar{X}_i = x_0$ cuando $x_0 - \delta < X_i \leq x_0$ entonces $\bar{S}_n \geq S_n$ y por tanto $\bar{\gamma}(a) \geq \gamma(a)$, pero $\bar{\gamma}(a) \downarrow P(\bar{X}_i = x_0) = P(x_0 - \delta < X_i \leq x_0)$. Como δ es arbitrario se sigue el resultado deseado.

Cuando $x_0 = \infty$, $\varphi'(\theta)/\varphi(\theta) \uparrow \infty$ como $\theta \uparrow \infty$, así que el único caso que queda está cubierto por

Teorema 2.6.5.

Suponga $x_0 = \infty$, $\theta_+ < \infty$ y $\varphi'(\theta)/\varphi(\theta)$ creciente a un límite finito a_0 como $\theta \uparrow \theta_+$. Si $a_0 \le a < \infty$

$$\frac{1}{n}\log P(Sn \ge na) \to -a\theta_+ + \log \varphi(\theta_+)$$

sí y sólo si $\gamma(a)$ es lineal cuando $a \geq a_0$.

Prueba. Dado que $(\log \varphi(\theta))' = \varphi'(\theta)/\varphi(\theta)$, integrando de 0 a θ_+ nos dá que $\log(\varphi(\theta_+)) < \infty$. Sea $\theta = \theta_+$ en 2.6.2 obtenemos que el lim sup del lado izquierdo de la desigualdad es menor o igual (\leq) al lado derecho de la desigualdad. Para obtener la otra dirección de la implicación vamos a utilizar la distribución transformada F_λ con $\lambda = \theta_+$. Haciendo que $\theta \uparrow \theta_+$ y aplicando el teorema de convergencia dominada para $x \leq 0$ y el teorema de convergencia monótona para $x \geq 0$, podemos ver que F_λ tiene media a_0 . De (*) en la prueba del Teorema 2.6.3, podemos ver que si $a_0 \leq a < \nu = a + 3\epsilon$

$$P(S_n \ge na) \ge \varphi(\lambda)^n e^{-n\lambda\nu} (F_{\lambda}^n(n\nu) - F_{\lambda}^n(na))$$

y por tanto

$$\frac{1}{n}\log P(S_n \ge na) \ge \log \varphi(\lambda) - \lambda \nu + \frac{1}{n}\log P(S_n^{\lambda} \in (na, n\nu])$$

Sea $X_1^{\lambda}, X_2^{\lambda}, \ldots$ variables aleatorias i.i.d. con función de distribución F_{λ} y $S_n^{\lambda} = X_1^{\lambda} + \cdots + X_n^{\lambda}$ tenemos

$$P(S_n^{\lambda} \in (na, n\nu]) \ge P\{S_{n-1}^{\lambda} \in ((a_0 - \epsilon)n, (a_0 + \epsilon)n]\} P\{X_n^{\lambda} \in ((a - a_0 + \epsilon)n, (a - a_0 + 2\epsilon)n]\}$$

$$\ge \frac{1}{2} P\{X_n^{\lambda} \in ((a - a_0 + \epsilon)n, (a - a_0 + \epsilon)(n + 1)]\}$$

para n grande, por la ley débil de los grandes números. Para obtener una cota inferior del lado derecho de la desigualdad de la última ecuación, observamos que

$$\limsup_{n \to \infty} \frac{1}{n} \log P(X_1^{\lambda} \in ((a - a_0 + \epsilon)n, (a - a_0 + \epsilon)(n + 1)]) = 0$$

si el lim sup es < 0, podríamos tener $\mathbb{E} \exp(\eta X_1^{\lambda}) < \infty$ para algún $\eta > 0$ por lo cual $\mathbb{E} \exp((\lambda + \eta)X_1) < \infty$, contradice la definición de $\lambda = \theta_+$. Para finalizar el argumento ahora recordemos que el Teorema 2.6.1 implica que

$$\lim_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) = \gamma(a)$$

existe, así que nuestra cota inferior del lim sup es suficientemente buena.□

Adaptando/Ajustando la demostración del último resultado, Ud. puede demostrar que (H1) es necesario para la convergencia exponencial:

Ejercicio 2.6.8.

Suponga $\mathbb{E}X_i = 0$ y $\mathbb{E}\exp(\theta X_i) = \infty$ para todo $\theta > 0$. Entonces

$$\frac{1}{n}\log P(S_n \ge na) \to 0 \quad \forall a > 0$$

Cláramente, $P(S_n \ge na) \ge P(S_{n-1} \ge -ne)P(X_n \ge n(a+\epsilon))$. El hecho de que $\mathbb{E}e^{\theta X} = \infty$ para todo $\theta > 0$ implica que $\limsup_{n \to \infty} \frac{1}{n} \log P(S_n \ge na) = 0$, y el resultado deseado se sigue como en la demostración de (2.6.6).

Ejercicio 2.6.9.

Suponga $\mathbb{E}X_i = 0$. Demuestre que si $\epsilon > 0$ entonces

$$\liminf_{n \to \infty} \frac{P(S_n \ge na)}{nP(X_1 > n(a + \epsilon))} \ge 1$$

Pista: Defina $F_n = \{X_i \ge n(a+\epsilon) \text{ para exactamente un } i \le n\}.$

Sea $p_n = P(X_i > (a + \epsilon)n)$. $\mathbb{E}|X_i| < \infty$ implica

$$P\bigg(\max_{i\leq n} X_i > n(a+\epsilon)\bigg) \leq np_n \to 0$$

entonces $P(F_n) = np_n(1 - p_n)^{n-1} \sim np_n$.

Si subdividimos el evento F_n e piezas (conjuntos) disjuntos de acuerdo al índice de gran valor (large value), y notando

$$P\left(|S_{n-1}| < n\epsilon \middle| \max_{i \le n} X_i \le n(a+\epsilon)\right) \to 0$$

por la la ley débil de los grandes números y el hecho de que el evento condicionante tiene una probabilidad que tiende a 1 $(\rightarrow 1)$, se sigue el resultado deseado.