Examen

Nom: Prenom: No SCIPER:

Consignes:

- Les notes de cours et les notes d'exercices ne sont pas autorisées
- Le formulaire standard est autorisé.
- Une calculette simple (sans display graphique) est autorisée.
- Sauf mention explicite du contraire on a le droit d'admettre un résultat d'un autre exercice ou d'une question précédente du même exercice pour répondre à une question.
- Dans tout le texte, "symétrie" signifie "symétrie orthogonale".
- Les angles seront représentés sous forme de nombres complexes de modules 1.
- L'examen est long mais il n'est pas nécéssaire de le faire correctement intégralement pour obtenir la note maximale.

Exercice 1. (Questions de cours)

- 1. Enoncer le Théorème de Lagrange.
- 2. Esquisser une figure dont le groupe d'isométries est cyclique d'ordre 8.
- 3. Entourer le label des affirmations qui sont correctes (la détermination de leur véracité devrait, normalement, ne nécessiter que peu de calculs) :
 - a) Un groupe dihedral est commutatif.
 - b) La composée de la symétrie d'axe la droite d'équation x + y = 2 et de la symétrie d'axe la droite d'équation 2x + y = 3 est une symétrie dont l'axe passe par le point d'intersection des deux droites.
 - c) L'image du point (4, -4) par la symétrie d'axe la droite d'équation 2x+3y = 1 est le point (6, -2).
 - d) Le groupe des isométries d'un hexagone régulier est d'ordre 6.

Exercice 2. Soit φ defini par

$$\varphi(x,y) = \left(\frac{12}{13}x - \frac{5}{13}y + 1, -\frac{5}{13}x - \frac{12}{13}y + 2\right)$$

- 1. Quelle est la nature géométrique de φ : type de transformation, angle, points fixes (si ils existent).
- 2. Ecrire φ sous forme de transformations complexe.
- 3. Calculer φ^{2016} .

Exercice 3. Soit D la droite d'équation

$$x + y = 1$$
.

1. Soit s_D la symétrie orthogonale d'axe D. Pour $(x,y) \in \mathbb{R}^2$, on pose

$$s_D(x,y) = (X,Y).$$

Calculer (X, Y) en fonction de (x, y).

- 2. Exprimer s_D sous la forme d'une transformation sur les nombres complexes.
- 3. Soit r la rotation d'angle $\omega = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ et de centre (1,0). Exprimer r sous la forme d'une transformation sur les nombres complexes. Quel est l'ordre de r?
- 4. Soit D' = r(D) la transformée de D par la rotation r. Calculer l'isométrie composée $\varphi = s_{D'} \circ s_D$ en fonction de r (on pourra considérer les points fixes de s_D , r et $s_{D'}$).
- 5. Montrer que le groupe $G = \langle s_D, s_{D'} \rangle$ engendré par s_D et $s_{D'}$ est aussi le groupe engendré par s_D et φ et calculer son ordre.
- 6. Donner un polygone explicite \mathbf{P} et une isométrie du plan ψ tel que le groupe d'isométries de $\mathbf{P}' = \psi(\mathbf{P})$ soit G.

Soient (G, .) et (H, .) deux groupes finis (bien que les groupes G et H sont a priori distincts, on notera de la même manière leur lois de composition respectives.) Soit $G \times H$ le groupe produit

$$G \times H = \{(g, h), g \in G, h \in H\}$$

muni de la loi de groupe produit

$$(q,h) \times (q',h') := (q,q',h,h')$$

avec pour element neutre (e_G, e_H) . Le but de cet exercice est de montrer de deux manieres differentes l'enonce suivant :

Théorème. Si G et H sont des groupes finis, cycliques et d'ordres respectifs m et n premiers entre eux; alors le groupe produit $G \times H$ est egalement un groupe cyclique.

Bien entendu on ne pourra utiliser les résultats du premier exercice pour démontrer le second. **Exercice 4.** (Première méthode) Soit g_0 un génerateur de G et h_0 un génerateur de H.

- 1. Montrer que l'ordre de (g_0, h_0) dans le groupe produit $G \times H$ divise mn.
- 2. Montrer que l'ensemble des entiers $k \in \mathbb{Z}$ tels que la première coordonnée de $(g_0, h_0)^k = (g_0, h_0) \times \cdots \times (g_0, h_0)$ (k fois) vaut e_G est l'ensemble des multiples de m.
- 3. Effectuer un raisonnement similaire et en déduire l'ordre de (g_0, h_0) .
- 4. Conclure la preuve du Théorème.

Exercice 5. (Deuxième méthode) Soit $(\mathbb{C}^{\times}, .) = (\mathbb{C} - \{0\}, .)$ le groupe multiplicatif de \mathbb{C} (muni de la multiplication usuelle). Soient $\mu_m, \mu_n \subset \mathbb{C}^{\times}$ les sous-groupes des racines m-ièmes et n-ièmes de l'unité.

1. Montrer que l'application "produit"

$$\pi: \frac{\mu_m \times \mu_n}{(\zeta, \xi)} \xrightarrow{\mapsto} C^{\times}$$

est un morphisme de groupes.

- 2. Montrer que l'image $Im(\pi)$ est un groupe cyclique.
- 3. Montrer que le noyau $\ker(\pi)$ peut s'identifier à un sous-groupe de μ_m et a un sous-groupe de μ_n . En déduire que $\ker(\pi) = \{(1,1)\}.$
- 4. Montrer que $\mu_m \times \mu_n$ est cyclique et conclure la preuve du Théorème.
- 5. Quel sous-groupe de \mathbb{C}^{\times} est le groupe $\mathrm{Im}(\pi)$?