PROTOTIPOS Y EVALUACIÓN

DESARROLLO

- 1. Introducción
- 2. Usabilidad
- 3. Prototipado: tipos
- 4. Evaluación: tipos
- 5. Coste y laboratorio de usabilidad

INTRODUCCIÓN

- La evaluación de la usabilidad es una parte básica en el diseño de un sistema centrado en el usuario.
- Sin hacer ningún tipo de evaluación es imposible conocer si un sistema cumple las expectativas de los usuarios y se adapta a su contexto social, físico y organizativo.
- Los prototipos facilitan la realización de evaluaciones de la usabilidad en las etapas iniciales del diseño centrado en el usuario.

DISEÑO CENTRADO EN EL USUARIO

DESARROLLO

- 1. Introducción
- 2. Usabilidad
- 3. Prototipado: tipos
- 4. Evaluación: tipos
- 5. Coste y laboratorio de usabilidad

USABILIDAD

- Medida en la que un producto puede ser usado por determinados usuarios para conseguir objetivos específicos con efectividad, eficiencia y satisfacción en un contexto de uso especificado. (ISO 9241-11. Guidance on Usability. 1998)
- *Efectividad*: precisión y plenitud con que los usuarios alcanzan los objetivos. Asociado a:
 - Facilidad de aprendizaje, tasa de errores, facilidad de recuerdo.
- Eficiencia: precisión y plenitud / recursos empleados.
- Satisfacción: comodidad y actitud positiva en el uso del producto. Es un factor subjetivo.

USABILIDAD

 Capacidad de un producto software de ser entendido, aprendido, usado y atractivo para el usuario, cuando es usado bajo unas condiciones específicas.

[ISO/IEC FDIS 9126-1: Software Engineering –Product Quality – Part . Quality Model (2000)].

USABILIDAD

- Un sistema es usable si los usuarios pueden hacer rápida y fácilmente sus tareas
- La usabilidad descansa en cuatro puntos:
 - Aproximación al usuario: usabilidad significa centrarse en el usuario.
 - Un amplio conocimiento del contexto de uso: las personas utilizan los productos para incrementar su productividad.
 - El producto ha de satisfacer las necesidades del usuario: los usuarios son personas ocupadas que tratan de realizar tareas.
 - Son los usuarios, y no los diseñadores o desarrolladores, quienes determinan cuándo un producto es fácil de usar.

USABILIDAD: BENEFICIOS (I)

- Tener en cuenta la usabilidad en el diseño permite:
 - Reducción de los costes de producción
 - Evitando el rediseño y reduciendo los cambios posteriores
 - Reducción de los costes de mantenimiento y apoyo
 - Los sistemas usables requieren menos entrenamiento y soporte
 - Reducción de los costes de uso
 - Los sistemas usables mejoran la productividad
 - Mejora en la calidad del producto
 - Importante en un mercado competitivo que demanda productos de fácil uso

USABILIDAD: BENEFICIOS (II)

- La usabilidad debe ser considerada en todo momento, desde el comienzo del desarrollo:
 - Antes de iniciar el proyecto es esencial tener una idea acerca de las características de los usuarios y de los aspectos del producto de mayor interés y necesidad.
 - Durante todo el desarrollo se han de realizar pruebas para comprobar que se está considerando la usabilidad del producto.
 - Incluso una vez que el producto está en el mercado se debería preguntar a los usuarios acerca de sus necesidades y actitud respecto del mismo.
- Los prototipos permiten participar al usuario en el desarrollo y poder evaluar el producto ya en las primeras fases del desarrollo

DESARROLLO

- 1. Introducción
- 2. Usabilidad
- 3. Prototipado: tipos
- 4. Evaluación: tipos
- 5. Coste y laboratorio de usabilidad

PROTOTIPOS

- Un prototipo es una representación limitada de un diseño que permite a los usuarios interaccionar con él y explorar sus posibilidades.
- En función de la reducción de costes y tiempo que supone su uso en la implementación del futuro sistema, cabe hablar de:
 - Prototipado vertical: Sistema implementando pocas características (una o más partes del sistema) pero totalmente funcionales.
 - Prototipado horizontal: Incluye toda la interfaz con todas sus características pero sin funcionalidad subyacente.

MAQUETAS

 Objetos construidos con materiales muy básicos para ser usados en la evaluación de una parte física del sistema.

PROTOTIPOS DE PAPEL

- Se basa en el empleo de papel, tijeras, lápiz, post-it o instrumentos que puedan ser usados para describir un diseño en un papel.
- Este sistema permite una gran velocidad y flexibilidad.

PROTOTIPOS DE PAPEL

- Normalmente, se realiza una hoja (viñeta) para cada una de las posibles interacciones.
- Implica un escenario de uso de futuro donde el diseñador actúa como coordinador.
- El prototipo será analizado por un posible usuario que intentará realizar algunas de las tareas a diseñar.
- Ofrece importantes ventajas: costes reducidos, rapidez en cambios, desinhibición del usuario para criticar...

Ejemplo prototipo en papel

STORYBOARD

 Serie de viñetas que muestran la evolución de la situación del usuario en la interacción. Narración gráfica de una historia en cuadros consecutivos. A veces se usa con escenarios.

ESCENARIO

 Historia de ficción con representación de personajes, sucesos, productos y entornos.
 Juega con: configuración –sitúa la acción – actores –realizan la acción – y diagrama de secuencia de acciones y eventos.

VÍDEO

 Permite el rodaje de un escenario. Útil en diseño de interfaces multimodales o de escenarios futuros a desarrollar.

PROTOTIPO SOFTWARE

- Primeras versiones de ciertas funcionalidades.
- Normalmente, llegar hasta aquí requiere varias iteraciones prototipado - evaluación.
- Puede ser incremental –por componentes separados – o evolutivo –es la base de sucesivos refinamientos en el diseño –

DESARROLLO

- 1. Introducción
- 2. Usabilidad
- 3. Prototipado: tipos
- 4. Evaluación: tipos
- 5. Coste y laboratorio de usabilidad

EVALUACIÓN

- Conjunto de metodologías y técnicas que analizan la usabilidad de un sistema interactivo en diferentes etapas del ciclo de vida.
- Permite crear mejores productos y ayudar a los usuarios a realizar sus tareas de un modo más productivo.
- ¡¡OJO!! Se tiende a primar funcionalidad frente a usabilidad.
- A considerar: coste, personas que evalúan y etapas del ciclo de vida.

TIPOS DE EVALUACIÓN

EVALUACIÓN Thinking Aloud.

Inspección: Heurística.

Recorrido Usabilidad Plural.

Recorrido Cognitivo.

Estándares.

Indagación: Observación de Campo.

Focus Group. Entrevistas. Logging. Cuestionarios.

Test: Medida de las Prestaciones.

Interacción Constructiva.

Test Retrospectivo. Método del Conductor.

INSPECCIÓN

- Un conjunto reducido de evaluadores examinan aspectos relacionados con la usabilidad de la interfaz. NO basada en usuarios.
- Los inspectores de la usabilidad pueden ser:
 - especialistas en usabilidad.
 - consultores de desarrollo de software con experiencia en guías de estilo de interfaces.
 - usuarios finales con conocimientos del dominio.
- Métodos de inspección más importantes:
 - Evaluación heurística.
 - Recorridos cognitivos.
 - Inspección de estándares.

INSPECCIÓN EVALUACIÓN HEURÍSTICA

- Analiza la conformidad de la interfaz con unos principios reconocidos de usabilidad (la "heurística") mediante la inspección de varios (tres a cinco) evaluadores expertos.
 - Cada evaluador realiza individualmente una revisión de la interfaz.
 - Al terminar las evaluaciones se permite a los evaluadores comunicar los resultados y sintetizarlos.
 - Este procedimiento es importante para asegurar evaluaciones independientes e imparciales de cada evaluador.
 - Los resultados de la evaluación se pueden registrar con informes escritos de cada evaluador o haciendo que los evaluadores comuniquen verbalmente sus comentarios a un observador mientras realizan la evaluación.

8 reglas de oro de usabilidad de Schneiderman

- 1. Esforzarse por la consistencia
- 2. Crear atajos para usuarios avanzados
- 3. Ofrecer realimentación graduada a las acciones del usuario
- 4. Diseñar el diálogo para mostrar trabajo pendiente
- 5. Gestión sencilla de errores
- 6. Fácil recuperación de acciones (deshacer)
- 7. Control por parte del usuario
- 8. Reducir la carga de memoria del usuario

10 reglas heurísticas de usabilidad (Nielsen)

- 1. El estado del sistema debe ser siempre visible
- 2. Utilizar el lenguaje de los usuarios
- 3. Control y libertad para el usuario
- 4. Consistencia y estándares
- 5. Prevención de errores
- 6. Minimizar la carga de la memoria del usuario
- 7. Flexibilidad y eficiencia de uso
- 8. Diálogos estéticos y de diseño minimalista
- Ayudar a los usuarios a reconocer, diagnosticar y recuperarse de los errores
- 10. Ayuda y documentación

INSPECCIÓN RECORRIDO COGNITIVO

- Es un método de inspección que se evalúa la facilidad de aprendizaje (por exploración, básicamente) y la comprensión.
- Está basado en los recorridos estructurales de la ingeniería de software.
- Se evalúa una propuesta de prototipo de interfaz en el contexto de una o más tareas.
- Es idónea en la etapa de diseño, pero se puede aplicar en el resto.

INSPECCIÓN RECORRIDO COGNITIVO

Datos iniciales:

- Diseño de la interfaz (prototipo de papel o de software).
- Escenario.
- Tareas a realizar (documento de análisis de tareas).
- Población de usuarios y contexto de uso.

• Ejecución:

- Selección de una tarea.
- Ejecución de las acciones de cada tarea.
- Para cada acción el usuario tratará de realizar la selección adecuada.
- El sistema debe realizar la realimentación correspondiente.
- Hemos de percibir el éxito y ver que vamos en el camino de resolver la tarea.

INSPECCIÓN ESTÁNDARES

- Un estándar es un requisito, regla o recomendación basada en principios probados y en la práctica. Representa un acuerdo de un grupo de profesionales oficialmente autorizados a nivel local, nacional o internacional.
- Este método se realiza por medio de un experto en un estándar de la interfaz que puede ser de facto o de iure.
- El experto realiza una inspección minuciosa a la interfaz para comprobar que cumple en todo momento y globalmente todos los puntos definidos en el estándar.

INDAGACIÓN

- La información acerca de los gustos y necesidades del usuario y la identificación de requisitos es indispensable en una etapa temprana del desarrollo.
- En este tipo de métodos se trabaja hablando con los usuarios, observándolos, usando el sistema en el trabajo real, obteniendo respuestas a preguntas verbalmente o por escrito.
- Métodos de indagación:
 - Grabación del uso (logging).
 - Observación de campo.
 - Grupos de discusión dirigidos (focus groups).
 - Entrevistas.
 - Cuestionarios.

INDAGACIÓN GRABACIÓN DEL USO

- Implica disponer en el ordenador de una ampliación del sistema que recoja automáticamente estadísticas sobre el uso detallado del sistema.
- El registro se realiza generalmente modificando los "drivers" del sistema, por ejemplo del ratón o del teclado u otras partes del sistema que permitan el registro de las acciones del usuario o modificando la aplicación que estamos probando.
- Es útil porque muestra cómo los usuarios realizan su trabajo real bajo diversas circunstancias.
- Datos recogidos:
 - Frecuencia de uso de cada característica del sistema.
 - Frecuencia de aparición de mensajes de error.
 - Frecuencia de uso de la ayuda en línea.

INDAGACIÓN OBSERVACIÓN DE CAMPO

- Hecha en el lugar de trabajo de usuarios representativos.
- Se les observa trabajando en el día a día para entender cómo están utilizando el sistema para lograr sus tareas y qué clase de modelo mental tienen sobre el sistema.
- Si es necesario, se les pregunta acerca de su trabajo y cómo lo realizan.
- Busca identificar:
 - Artefactos: objetos físicos en uso en el sitio (blocs de notas, formularios, informes, espacios, paredes...)
 - Afloramientos: rasgos físicamente identificables que marcan o caracterizan el sitio (tamaño de los cubículos, tamaño de las pizarras y que es lo que está escrito en ellos, tipos de uniformes).
- Este método se puede utilizar en las etapas iniciales del desarrollo y en la etapa de prueba del producto

INDAGACIÓN GRUPO DE DISCUSIÓN DIRIGIDO

- El "focus group" o grupo de discusión dirigido es una técnica de recolección de datos donde se reúne de 6 a 9 usuarios para discutir aspectos relacionados con el sistema.
- Un ingeniero de factores humanos (animador, comunicador, dinamizador...) hace las veces de moderador que tiene que preparar la lista de aspectos a discutir y recoger la información que necesita de la discusión.
- Esto puede permitir capturar reacciones espontáneas del usuario e ideas que evolucionan en el proceso dinámico del grupo.

INDAGACIÓN TÉCNICAS DE INTERROGACIÓN

- La mejor manera de saber si un sistema se adapta a los requisitos es interrogar al usuario.
- Esto permite tener directamente el punto de vista del usuario y por tanto encontrar opciones no contempladas en el diseño.
- Uno de los problemas es que esta información es subjetiva y puede ser difícil conseguir alternativas en el diseño, porque el usuario no tiene experiencia.
- Los dos tipos mas importantes son:
 - Entrevistas.
 - Cuestionarios.

INDAGACIÓN ENTREVISTAS

- Manera directa y estructurada de recoger información.
 Las cuestiones se pueden variar para ser adpatadas al contexto.
- Normalmente sigue una aproximación de arriba-abajo.
- Son efectivas para una evaluación de alto nivel, particularmente para extraer información sobre las preferencias del usuario, impresiones y actitudes.
- Pueden ayudar a encontrar problemas no previstos en el diseño.
- Para que sea lo más efectiva posible, ha de ser preparada con antelación, con un conjunto de preguntas básicas. El revisor puede adaptar la entrevista al entrevistado y obtener el máximo beneficio.

INDAGACIÓN CUESTIONARIOS

El cuestionario es menos flexible que la entrevista, pero puede llegar a un grupo más numeroso y se puede analizar con más rigor. Se pueden usar varias veces durante el diseño. Posibles tipos de preguntas

General

 Preguntas que ayudan a establecer el perfil de usuario y su puesto dentro de la población en estudio. Incluye cuestiones como edad, sexo, ocupación, lugar de residencia y otras

Abierta

 Preguntas útiles para recoger información general subjetiva.
 Pueden dar sugerencias interesantes y encontrar errores no previstos

Opción múltiple

- Se ofrecen una serie de respuestas y se pide responder a una de las opciones o a varias
- Ejemplo:

¿Tipo de software usado?

- Tratamiento de texto
- Hoja de cálculo
- Bases de datos
- Contabilidad
- Escalar (escala numérica –Likert –)

Ordenada

- Se presentan una serie de opciones que hay que ordenar.
- Ejemplo:
 - Ordena la utilidad de cómo ejecutar una acción: (1 la más útil, 2 la siguiente, etc. 0 si no se utiliza)
 - Por iconos
 - Selección de menú
 - Doble click

INDAGACIÓN CUESTIONARIOS-EJEMPLO

1.	Utilizar el programa ha sido:					
		Muy fácil	Fácil	Normal	Difícil	Muy difícil
	Comentarios:					
2.	Encontrar las características que querías en los menús ha sido:					
		Muy fácil	Fácil	Normal	Difícil	Muy difícil
	Comentarios:					
3.	Comprender los mensajes ha sido:					
		Muy fácil	Fácil	Normal	Difícil	Muy difícil
	Comentarios:					
4.	La recuperación de errores es:					
		Muy fácil	Fácil	Normal	Difícil	Muy difícil
	Comentarios:					
5.	El uso del manual ha sido:					
		Muy fácil	Fácil	Normal	Difícil	Muy difícil
6.	¿Te explica el manual todo el ámbito del programa? Sí No Comentarios:					
7.	¿Recomiendas que se compre este producto?					
8.	Comentario general:					

TEST PENSANDO EN VOZ ALTA

- Se pide a los usuarios que expresen en voz alta sus pensamientos, sentimientos y opiniones mientras interaccionan con el sistema ("Thinking aloud"). Ayuda a descubrir si un elemento de diseño es bueno o malo.
- Es muy útil en la captura de un amplio rango de actividades cognitivas
 - Modelo mental.
 - Terminología.
- Si intervienen dos usuarios a la vez, se tiene el método de Interacción constructiva. Resulta más natural para el usuario pero ambos usuarios pueden usar diferentes estrategias de aprendizaje.

TEST OTROS MÉTODOS

Test retrospectivo

 Se graba en vídeo la sesión de test y se revisa posteriormente con el usuario. Permite obtener más comentarios.

Método del conductor

- El evaluador conduce al usuario en la dirección correcta mientras éste usa el sistema. El usuario puede preguntar cualquier aspecto relacionado con el sistema.
- Este método se utiliza con usuarios inexpertos y permite descubrir sus necesidades de información.

TEST MEDIDA DE PRESTACIONES

Características:

- Los participantes representan usuarios reales.
- Los participantes tienen que hacer tareas reales.
- Se observa y se registra lo que los participantes hacen y dicen.
- Se analizan los datos, se diagnostican problemas reales y se recomiendan cambios.

• Es importante la selección de las tareas a evaluar:

- Tareas que demuestren problemas de usabilidad.
- Tareas sugeridas por la propia experiencia.
- Tareas que los usuarios harán con el producto.
- Tareas que son difíciles de recuperar después de un error.

• ¿Qué es lo que se puede medir?

- Medidas de rendimiento: contar las acciones y los comportamientos que se puedan ver.
- Medidas subjetivas: percepciones de las personas, opiniones y juicios.

Ejemplo Medidas de Rendimiento

- Tiempo para completar una tarea
 Tiempo consumido en menús de navegación
 Tiempo consumido en ayuda en línea
 Tiempo en buscar información en un manual
 Tiempo invertido en recuperarse de errores
- Número de opciones de menú erróneos Número de opciones incorrectas en cajas de dialogo Número de selección de iconos incorrectos Número de teclas de función mal seleccionadas
- Número de llamadas a la ayuda Número de pantallas de ayuda en línea
- Número de veces que se consulta el manual
- Observaciones de frustración Observaciones de confusión Observaciones de satisfacción

Ejemplo Medidas Subjetivas

- Relaciones de
 - facilidad de uso del producto.
 - facilidad de aprender el producto.
 - facilidad de hacer una determinada tarea.
 - facilidad de instalar el producto.
 - facilidad de encontrar información en el manual.
 - facilidad de comprender la información.
 - utilidad de los ejemplos de ayuda.
- Preferencias o razones de la preferencia
 - de una versión previa.
 - sobre un producto de la competencia.
 - de la manera como estamos haciendo las tareas ahora.
- Predicciones de comportamiento
 - ¿Comprará el producto?
- Comentarios espontáneos
 - Estoy totalmente perdido.
 - Ha sido fácil.
 - No comprendo el mensaje.

RESULTADOS DEL TEST DE PRESTACIONES

- Un test de prestaciones genera una cantidad importante de datos:
 - Lista de problemas que han surgido durante la realización del test.
 - Datos cuantitativos de tiempo, errores y medidas de rendimiento.
 - Datos cuantitativos de valoraciones subjetivas y cuestionarios posttarea y post-test.
 - Comentarios de los participantes de las grabaciones.
 - Notas escritas y comentarios del equipo de test.
 - Datos generales de los participantes, de sus perfiles o de cuestionarios de pre-test.
- El objetivo es encontrar problemas reales en el producto y en el proceso de desarrollo del mismo.

DESARROLLO

- 1. Introducción
- 2. Usabilidad
- 3. Prototipado: tipos
- 4. Evaluación: tipos
- 5. Coste y laboratorio de usabilidad

COSTE DE LA USABILIDAD

- El coste es un aspecto importante a tener en cuenta al decidir entre los diferentes métodos de evaluación de la usabilidad.
- Criterios para determinar el coste de un método de evaluación de la usabilidad:
 - Personal necesario, número de usuarios, expertos en usabilidad y desarrolladores de software.
 - Tiempo necesario para recogida de datos y análisis.
 - Necesidad de coordinación, si el método requiere que los participantes estén presentes simultáneamente.

COSTE DE LA USABILIDAD

BAJO

Evaluación heurística

MEDIO

- Recorrido cognitivo
- Inspección por características
- Observación de campo
- Entrevistas
- Grabación de uso
- Cuestionarios
- Lista de chequeo basado en escenarios

ALTO

- Focus group
- Medida de prestaciones
- Pensar en voz alta

LABORATORIO DE USABILIDAD

- Es un espacio especialmente adaptado para la realización de test de usabilidad.
- Permite realizar cómodamente la fase de recogida de datos de los participantes en el test.
- Dispone normalmente del siguiente equipamiento:
 - Cámaras de control remoto.
 - Micrófonos inalámbricos.
 - Mesa de mezcla digital.
 - Escáner de entrada.
 - Vídeo de grabación.