Lecture 004

Regression strikes back

Edward Rubin January 2022

Admin

Admin

Today

In-class

- A roadmap (where are we going?)
- Linear regression and model selection

Admin

Upcoming

Readings

- Today
 - o ISL Ch. 3 and 6.1
- Next
 - o ISL Ch. 6 and 4

Problem sets

• Next one: Soon! Possibly the next few days?

Where are we?

We've essentially covered the central topics in statistical learning[†]

- Prediction and inference
- Supervised vs. unsupervised methods
- Regression and classification problems
- The dangers of overfitting
- The bias-variance tradeoff
- Model assessment
- Holdouts, validation sets, and cross validation^{††}
- Model training and tuning
- Simulation
- † Plus a few of the "basic" methods: OLS regression and KNN.
- tt And the bootstrap!

Where are we going?

Next, we will cover many common machine-learning algorithms, e.g.,

- Decision trees and random forests
- SVM
- Neural nets
- Clustering
- Ensemble techniques

Where are we going?

Next, we will cover many common machine-learning algorithms, e.g.,

- Decision trees and random forests
- SVM
- Neural nets
- Clustering
- Ensemble techniques

But first, we return to good old linear regression—in a new light...

- Linear regression
- Variable/model selection and LASSO/Ridge regression
- Plus: Logistic regression and discriminant analysis

Why return to regression?

Motivation 1

We have new tools. It might help to first apply them in a **familiar** setting.

Why return to regression?

Motivation 1

We have new tools. It might help to first apply them in a familiar setting.

Motivation 2

We have new tools. Maybe linear regression will be (even) **better now?** *E.g.*, did (cross) validation help you beat your old model?

Why return to regression?

Motivation 1

We have new tools. It might help to first apply them in a familiar setting.

Motivation 2

We have new tools. Maybe linear regression will be (even) **better now?** *E.g.*, did (cross) validation help you beat your old model?

Motivation 3

many fancy statistical learning approaches can be seen as **generalizations or extensions of linear regression**.

Source: ISL, p. 59; emphasis added

Regression regression

Recall Linear regression "fits" coefficients β_0, \ldots, β_p for a model

$$y_i = eta_0 + eta_1 x_{1,i} + eta_2 x_{2,i} + \dots + eta_p x_{p,i} + arepsilon_i$$

and is often applied in two distinct settings with fairly distinct goals:

- 1. Causal inference estimates and interprets the coefficients.
- 2. **Prediction** focuses on accurately estimating outcomes.

Regardless of the goal, the way we "fit" (estimate) the model is the same.

Fitting the regression line

As is the case with many statistical learning methods, regression focuses on minimizing some measure of loss/error.

$$e_i = y_i - \hat{y}_i$$

Fitting the regression line

As is the case with many statistical learning methods, regression focuses on minimizing some measure of loss/error.

$$e_i = y_i - \hat{y}_i$$

Linear regression uses the L_2 loss function—also called residual sum of squares (RSS) or sum of squared errors (SSE)

$$ext{RSS} = e_1^2 + e_2^2 + \dots + e_n^2 = \sum_{i=1}^n e_i^2$$

Specifically: OLS chooses the $\hat{\beta}_i$ that **minimize RSS**.

Performance

There's a large variety of ways to assess the fit[†] of linear-regression models.

Residual standard error (RSE)

$$ext{RSE} = \sqrt{rac{1}{n-p-1}} ext{RSS} = \sqrt{rac{1}{n-p-1} \sum_{i=1}^{n} \left(y_i - \hat{y}_i
ight)^2}$$

R-squared (R²)

$$R^2 = rac{ ext{TSS} - ext{RSS}}{ ext{TSS}} = 1 - rac{ ext{RSS}}{ ext{TSS}} \quad ext{where} \quad ext{TSS} = \sum_{i=1}^n \left(y_i - \overline{y}
ight)^2$$

Performance and overfit

As we've seen throughout the course, we need to be careful **not to overfit**.

Performance and overfit

As we've seen throughout the course, we need to be careful **not to overfit**.

R² provides no protection against overfitting—and actually encourages it.

$$R^2 = 1 - rac{ ext{RSS}}{ ext{TSS}}$$

Add a new variable: RSS \downarrow and TSS is unchanged. Thus, R² increases.

Performance and overfit

As we've seen throughout the course, we need to be careful **not to overfit**.

R² provides no protection against overfitting—and actually encourages it.

$$R^2 = 1 - rac{ ext{RSS}}{ ext{TSS}}$$

Add a new variable: RSS \downarrow and TSS is unchanged. Thus, R² increases.

RSE slightly penalizes additional variables:

$$ext{RSE} = \sqrt{rac{1}{n-p-1}} ext{RSS}$$

Add a new variable: RSS \downarrow but p increases. Thus, RSE's change is uncertain.

Example

Let's see how **R²** and **RSE** perform with 500 very weak predictors.

To address overfitting, we can compare **in-** vs. **out-of-sample** performance.

In-sample R² mechanically increases as we add predictors.

In-sample R² mechanically increases as we add predictors. **Out-of-sample R²** does not.

Despite its penalty for adding variables, in-sample RSE still can overfit,

Despite its penalty for adding variables, **in-sample RSE** still can overfit, as evidenced by **out-of-sample RSE**.

Penalization

RSE is not the only way to penalization the addition of variables.

Adjusted R² is another *classic* solution.

Adjusted
$$R^2 = 1 - \frac{\mathrm{RSS}/(n-p-1)}{\mathrm{TSS}/(n-1)}$$

Adj. R² attempts to "fix" R² by **adding a penalty for the number of variables**.

Penalization

RSE is not the only way to penalization the addition of variables.

Adjusted R² is another *classic* solution.

Adjusted
$$R^2=1-rac{ ext{RSS}/(n-p-1)}{ ext{TSS}/(n-1)}$$

Adj. R² attempts to "fix" R² by **adding a penalty for the number of variables**.

• RSS always decreases when a new variable is added.

Penalization

RSE is not the only way to penalization the addition of variables.

Adjusted R² is another *classic* solution.

Adjusted
$$R^2=1-rac{ ext{RSS}/(n-p-1)}{ ext{TSS}/(n-1)}$$

Adj. R² attempts to "fix" R² by **adding a penalty for the number of variables**.

- RSS always decreases when a new variable is added.
- RSS/(n-p-1) may increase or decrease with a new variable.

However, in-sample adjusted R² still can overfit.

However, **in-sample adjusted R²** still can overfit. Illustrated by **out-of-sample adjusted R²**.

A better way?

R², adjusted R², and RSE each offer some flavor of model fit, but they appear **limited in their abilities to prevent overfitting**.

A better way?

R², adjusted R², and RSE each offer some flavor of model fit, but they appear **limited in their abilities to prevent overfitting**.

We want a method to optimally select a (linear) model—balancing variance and bias and avoiding overfit.

A better way?

R², adjusted R², and RSE each offer some flavor of model fit, but they appear **limited in their abilities to prevent overfitting**.

We want a method to optimally select a (linear) model—balancing variance and bias and avoiding overfit.

We'll discuss two (related) methods today:

- 1. Subset selection chooses a (sub)set of our p potential predictors
- 2. Shrinkage fits a model using all p variables but "shrinks" its coefficients

Subset selection

In subset selection, We

- 1. whittle down the p potential predictors (using some magic/algorithm)
- 2. estimate the chosen linear model using OLS

Subset selection

In subset selection, we

- 1. whittle down the p potential predictors (using some magic/algorithm)
- 2. estimate the chosen linear model using OLS

How do we do the whittling (selection)?

Subset selection

In subset selection, we

- 1. whittle down the p potential predictors (using some magic/algorithm)
- 2. estimate the chosen linear model using OLS

How do we do the whittling (selection)? We've got options.

- Best subset selection fits a model for every possible subset.
- Forward stepwise selection starts with only an intercept and tries to build up to the best model (using some fit criterion).
- Backward stepwise selection starts with all p variables and tries to drop variables until it hits the best model (using some fit criterion).
- Hybrid approaches are what their name implies (i.e., hybrids).

Best subset selection

Best subset selection is based upon a simple idea: Estimate a model for every possible subset of variables; then compare their performances.

Best subset selection

Best subset selection is based upon a simple idea: Estimate a model for every possible subset of variables; then compare their performances.

Q So what's the problem? (Why do we need other selection methods?)

Best subset selection

Best subset selection is based upon a simple idea: Estimate a model for every possible subset of variables; then compare their performances.

Q So what's the problem? (Why do we need other selection methods?)

A "a model for **every possible subset**" can mean a lot (2^p) of models.

Best subset selection

Best subset selection is based upon a simple idea: Estimate a model for every possible subset of variables; then compare their performances.

Q So what's the problem? (Why do we need other selection methods?) A "a model for **every possible subset**" can mean **a lot** (2^p) of models.

E.g.,

- 10 predictors → 1,024 models to fit
- 25 predictors → >33.5 million models to fit
- 100 predictors → ~1.5 trillion models to fit

Best subset selection

Best subset selection is based upon a simple idea: Estimate a model for every possible subset of variables; then compare their performances.

Q So what's the problem? (Why do we need other selection methods?) A "a model for **every possible subset**" can mean **a lot** (2^p) of models.

E.g.,

- 10 predictors → 1,024 models to fit
- 25 predictors → >33.5 million models to fit
- 100 predictors → ~1.5 trillion models to fit

Even with plentiful, cheap computational power, we can run into barriers.

Best subset selection

Computational constraints aside, we can implement best subset selection as

- 1. Define \mathcal{M}_0 as the model with no predictors.
- 2. For k in 1 to p:
 - \circ Fit every possible model with k predictors.
 - \circ Define \mathcal{M}_k as the "best" model with k predictors.
- 3. Select the "best" model from $\mathcal{M}_0,\ldots,\mathcal{M}_p$.

As we've seen, RSS declines (and R^2 increases) with p, so we should use a cross-validated measure of model performance in step 3.[†]

[†] Back to our distinction between test vs. training performance.

Example dataset: Credit

We're going to use the Credit dataset from ISL's R package ISLR.

Example dataset: Credit

We're going to use the Credit dataset from ISL's R package ISLR.

ID 🌲	Income 🔷	Limit 🌲	Rating 🔷	Cards 🔷	Age 🔷	Education 🔷	Gender 🔷	Student 🔷	Married 🔷	Ethnicity 🔷	Balance 🔷
1	14.9	3606	283	2	34	11	Male	No	Yes	Caucasian	333
2	106.0	6645	483	3	82	15	Female	Yes	Yes	Asian	903
3	104.6	7075	514	4	71	11	Male	No	No	Asian	580
4	148.9	9504	681	3	36	11	Female	No	No	Asian	964
5	55.9	4897	357	2	68	16	Male	No	Yes	Caucasian	331
6	80.2	8047	569	4	77	10	Male	No	No	Caucasian	1151
7	21.0	3388	259	2	37	12	Female	No	No	African American	203

The Credit dataset has 400 observations on 12 variables.

Example dataset: Credit

We need to pre-process the dataset before we can select a model...

income 🔷	limit 🔷	rating 🔷	cards 🔷	age 🔷	education 🔷	i_female 🔷	i_student 🔷	i_married 🔷	i_asian 🔷	i_african_american 🔷	balance 🔷
14.9	3606	283	2	34	11	0	0	1	0	0	333
106.0	6645	483	3	82	15	1	1	1	1	0	903
104.6	7075	514	4	71	11	0	0	0	1	0	580
148.9	9504	681	3	36	11	1	0	0	1	0	964
55.9	4897	357	2	68	16	0	0	1	0	0	331
80.2	8047	569	4	77	10	0	0	0	0	0	1151
21.0	3388	259	2	37	12	1	0	0	0	1	203

Now the dataset on has 400 observations on 12 variables (2,048 subsets).

Best subset selection

From here, you would

- 1. Estimate cross-validated error for each \mathcal{M}_k .
- 2. Choose the \mathcal{M}_k that minimizes the CV error.
- 3. Train the chosen model on the full dataset.

Best subset selection

Warnings

- Computationally intensive
- Selected models may not be "right" (squared terms with linear terms)
- ullet You need to protect against overfitting when choosing across \mathcal{M}_k
- Also should worry about overfitting when p is "big"
- Dependent upon the variables (transformations) you provide

Benefits

- Comprehensive search across provided variables
- Resulting model—when estimated with OLS—has OLS properties
- Can be applied to other (non-OLS) estimators

Stepwise selection

Stepwise selection provides a less computational intensive alternative to best subset selection.

The basic idea behind stepwise selection

- 1. Start with an arbitrary model.
- 2. Try to find a "better" model by adding/removing variables.
- 3. Repeat.
- 4. Stop when you have the best model. (Or choose the best model.)

Stepwise selection

Stepwise selection provides a less computational intensive alternative to best subset selection.

The basic idea behind stepwise selection

- 1. Start with an arbitrary model.
- 2. Try to find a "better" model by adding/removing variables.
- 3. Repeat.
- 4. Stop when you have the best model. (Or choose the best model.)

The two most-common varieties of stepwise selection:

- Forward starts with only intercept (\mathcal{M}_0) and adds variables
- Backward starts with all variables (\mathcal{M}_p) and removes variables

Forward stepwise selection

The process...

- 1. Start with a model with only an intercept (no predictors), \mathcal{M}_0 .
- 2. For k = 0, ..., p:
 - \circ Estimate a model for each of the remaining p-k predictors, separately adding the predictors to model \mathcal{M}_k .
 - \circ Define \mathcal{M}_{k+1} as the "best" model of the p-k models.
- 3. Select the "best" model from $\mathcal{M}_0,\ldots,\mathcal{M}_p$.

Forward stepwise selection

The process...

- 1. Start with a model with only an intercept (no predictors), \mathcal{M}_0 .
- 2. For k = 0, ..., p:
 - \circ Estimate a model for each of the remaining p-k predictors, separately adding the predictors to model \mathcal{M}_k .
 - \circ Define \mathcal{M}_{k+1} as the "best" model of the p-k models.
- 3. Select the "best" model from $\mathcal{M}_0,\ldots,\mathcal{M}_p$.

What do we mean by "best"?

- 2: best is often RSS or R².
- 3: best should be a cross-validated fit criterion.

Forward stepwise selection with caret in R

```
train_forward = train(
    y = credit_dt[["balance"]],
    x = credit_dt %>% dplyr::select(-balance),
    trControl = trainControl(method = "cv", number = 5),
    method = "leapForward",
    tuneGrid = expand.grid(nvmax = 1:11)
)
```

Forward stepwise selection with caret in R

```
train_forward = train(
   y = credit_dt[["balance"]],
   x = credit_dt %>% dplyr::select(-balance),
   trControl = trainControl(method = "cv", number = 5),
   method = "leapForward",
   tuneGrid = expand.grid(nvmax = 1:11)
)
```

N vars 🖣	RMSE ♦	R2 ♦	MAE 🌲
1	230.72	0.750	175.1
2	162.98	0.878	122.1
3	104.27	0.950	84.5
4	102.44	0.952	82.5
5	100.57	0.954	80.3
6	101.59	0.953	81.7
7	101.82	0.953	81.7
8	101.96	0.953	81.7
9	101.71	0.953	81.5
10	101.61	0.953	81.5

Backward stepwise selection

The process for backward stepwise selection is quite similar...

Backward stepwise selection

The process for backward stepwise selection is quite similar...

- 1. Start with a model that includes all p predictors: \mathcal{M}_p .
- 2. For $k = p, p 1, \ldots, 1$:
 - \circ Estimate k models, where each model removes exactly one of the k predictors from \mathcal{M}_k .
 - \circ Define \mathcal{M}_{k-1} as the "best" of the k models.
- 3. Select the "best" model from $\mathcal{M}_0,\ldots,\mathcal{M}_p$.

Backward stepwise selection

The process for backward stepwise selection is quite similar...

- 1. Start with a model that includes all p predictors: \mathcal{M}_p .
- 2. For $k = p, p 1, \ldots, 1$:
 - \circ Estimate k models, where each model removes exactly one of the k predictors from \mathcal{M}_k .
 - \circ Define \mathcal{M}_{k-1} as the "best" of the k models.
- 3. Select the "best" model from $\mathcal{M}_0,\ldots,\mathcal{M}_p$.

What do we mean by "best"?

- 2: best is often RSS or R².
- 3: best should be a cross-validated fit criterion.

Backward stepwise selection with caret in R

```
train_backward = train(
  y = credit_dt[["balance"]],
  x = credit_dt %>% dplyr::select(-balance),
  trControl = trainControl(method = "cv", number = 5),
  method = "leapBackward",
  tuneGrid = expand.grid(nvmax = 1:11)
)
```

Backward stepwise selection with caret in R

```
train_backward = train(
   y = credit_dt[["balance"]],
   x = credit_dt %>% dplyr::select(-balance),
   trControl = trainControl(method = "cv", number = 5),
   method = "leapBackward",
   tuneGrid = expand.grid(nvmax = 1:11)
)
```

N vars 🛊	RMSE ♦	R2 ♦	MAE ♦
1	234.47	0.746	179.0
2	165.79	0.869	125.2
3	104.83	0.950	84.2
4	100.41	0.954	80.1
5	100.79	0.954	80.6
6	100.39	0.954	80.2
7	100.55	0.954	80.1
8	101.23	0.954	80.6
9	100.99	0.954	80.4
10	100.83	0.954	80.3

Note: forward and backward step. selection can choose different models.

Stepwise selection

Notes on stepwise selection

- Less computationally intensive (relative to best subset selection)
 - \circ With p=20, BSS fits 1,048,576 models.
 - \circ With p=20, foward/backward selection fits 211 models.
- There is **no guarantee** that stepwise selection finds the best model.
- Best is defined by your fit criterion (as always).
- Again, **cross validation is key** to avoiding overfitting.

Criteria

Which model you choose is a function of how you define "best".

Criteria

Which model you choose is a function of how you define "best".

And we have many options...

Criteria

Which model you choose is a function of how you define "best".

And we have many options... We've seen RSS, (R)MSE, RSE, MA, R², Adj. R².

Criteria

Which model you choose is a function of **how you define "best"**.

And we have many options... We've seen RSS, (R)MSE, RSE, MA, R², Adj. R².

Of course, there's more. Each **penalizes** the d predictors differently.

$$C_p = rac{1}{n} \Big(ext{RSS} + 2 d \hat{\sigma}^2 \Big)$$
 $ext{AIC} = rac{1}{n \hat{\sigma}^2} \Big(ext{RSS} + 2 d \hat{\sigma}^2 \Big)$
 $ext{BIC} = rac{1}{n \hat{\sigma}^2} \Big(ext{RSS} + \log(n) d \hat{\sigma}^2 \Big)$

Criteria

 C_p , AIC, and BIC all have rigorous theoretical justifications... the adjusted R^2 is not as well motivated in statistical theory

ISL, p. 213

In general, we will stick with cross-validated criteria, but you still need to choose a selection criterion.

Sources

These notes draw upon

• An Introduction to Statistical Learning (ISL) James, Witten, Hastie, and Tibshirani

Table of contents

Admin

- Today
- Upcoming
- Roadmap

Linear regression

- Regression regression
- Performance
- Overfit

Model selection

- A better way?
- Subset selection
 - Best subset selection
 - Stepwise selection
 - Forward
 - Backward
 - Notes
- Criteria

Other

• Sources/references