Augmented Ensemble MCMC with applications to Factorial HMMs

Kaspar Märtens, Michalis Titsias, Christopher Yau

Background

Bayesian inference for high-dimensional models is challenging: it is difficult to explore multimodal distributions.

Parallel tempering

Parallel tempering

Instead of simply targeting $\pi(x)$, introduce a temperature ladder $T_1 < T_2 < \ldots < T_K$ and run multiple MCMC chains, with chain k targeting

$$\pi(x)^{eta_k} ext{ where } eta_k = 1/T_k$$

1. **Swap move**: Propose to swap (using Metropolis-Hastings to accept/reject)

Inefficient in a high-dimensional setting

1. **Swap move**: Propose to swap (using Metropolis-Hastings to accept/reject)

Inefficient in a high-dimensional setting

2. Genetic algorithms:

One-point **crossover** (using Metropolis-Hastings to accept/reject)

Augmented Ensemble MCMC

We construct an auxiliary variable Gibbs sampler, using a one-point crossover

Augmented Ensemble MCMC

We construct an auxiliary variable Gibbs sampler, using a one-point crossover

- 1. Generate auxiliary $(\mathbf{u}, \mathbf{v}) \sim p(\mathbf{u}, \mathbf{v} | \mathbf{x}_i, \mathbf{x}_j)$
 - \circ Uniform distribution over all crossovers of $(\mathbf{x}_i, \mathbf{x}_j)$

Augmented Ensemble MCMC

We construct an auxiliary variable Gibbs sampler, using a one-point crossover

- 1. Generate auxiliary $(\mathbf{u}, \mathbf{v}) \sim p(\mathbf{u}, \mathbf{v} | \mathbf{x}_i, \mathbf{x}_j)$
 - Uniform distribution over all crossovers of $(\mathbf{x}_i, \mathbf{x}_j)$
- 2. Generate $(\mathbf{x}_i, \mathbf{x}_j) \sim p(\mathbf{x}_i, \mathbf{x}_j | \text{rest})$, where

$$egin{aligned} p(\mathbf{x}_i, \mathbf{x}_j | ext{rest}) &= rac{1}{Z} \pi_i(\mathbf{x}_i) \pi_j(\mathbf{x}_j) p(\mathbf{u}, \mathbf{v} | \mathbf{x}_i, \mathbf{x}_j) \ &= rac{1}{Z} \pi_i(\mathbf{x}_i) \pi_j(\mathbf{x}_j) p(\mathbf{x}_i, \mathbf{x}_j | \mathbf{u}, \mathbf{v}) \ &= rac{1}{Z} \pi_i(\mathbf{x}_i) \pi_j(\mathbf{x}_j) I((\mathbf{x}_i, \mathbf{x}_j) \in ext{Crossover}(\mathbf{u}, \mathbf{v})) \end{aligned}$$

Toy example

Consider the following distribution over binary vectors with two separated modes:

Toy example

Consider the following distribution over binary vectors with two separated modes:

Toy example extended

Divide x into B blocks, within each block bimodal distribution.

Results in a total of 2^B modes:

- Single chain Gibbs sampler
- Ensemble of Gibbs samplers (two chains: $T_1 = 1$, $T_2 = 4$),

- Single chain Gibbs sampler
- Ensemble of Gibbs samplers (two chains: $T_1 = 1$, $T_2 = 4$), using the following exchange moves
 - Swap (accept/reject)
 - Uniformly chosen crossover (accept/reject)
 - Augmented crossover

- Single chain Gibbs sampler
- Ensemble of Gibbs samplers (two chains: $T_1=1,\,T_2=4$), using the following exchange moves
 - Swap (accept/reject)
 - Uniformly chosen crossover (accept/reject)
 - Augmented crossover

Number of mode jumps (cumulative)

Factorial HMM

Extension of HMM: multiple latent sequences

Factorial HMM

$$egin{split} (w_1, \dots, w_K) &\sim \operatorname{Dir}(lpha, \dots, lpha) \ Y_t | X_{:,t}, w &\sim \mathcal{N}\left(\sum_{k=1}^K w_k X_{k,t}, \; \sigma^2
ight) \end{split}$$

Factorial HMM

$$egin{split} (w_1, \dots, w_K) &\sim \operatorname{Dir}(lpha, \dots, lpha) \ Y_t | X_{:,t}, w &\sim \mathcal{N}\left(\sum_{k=1}^K w_k X_{k,t}, \; \sigma^2
ight) \end{split}$$

Inference by Gibbs sampling:

- 1. Sample $\mathbf{w}|Y,X$
 - e.g. by random walk MH
- 2. Sample $X|\mathbf{w}, Y$
 - \circ Full FB recursion becomes quickly infeasible, due to complexity $O(2^{2K}T)$
 - Solutions:
 - Update one row of X conditional on the rest
 - Hamming Ball sampling (Titsias and Yau 2016)

Factorial HMM example

Motivated by a cancer genomics application.

Consider the following example (K=3) with multiple underlying explanations, where $w_1+w_2 pprox w_3$

$$|Y_t|X_{:,t}, w \sim \mathcal{N}\left(\sum_{k=1}^K w_k X_{k,t}, \; \sigma^2
ight)$$

Factorial HMM example

Factorial HMM example

Augmented Ensemble MCMC with applications to Factorial HMMs

Kaspar Märtens, Michalis Titsias, Christopher Yau

https://arxiv.org/abs/1703.08520

kaspar.martens@gmail.com

