

Outline

Learning Goals

Requirement Analysis

System Architecture

Outlook

Learning Goals

Learning Goals

Know important terms in automotive E/E architectures

Understand how requirements of autonomous vehicles differ from existing architectures

Understand how these requirements affect E/E architecture and software

Requirement Analysis

Requirement Analysis

- What does an Autonomous Vehicle need to do?
- Everything a normal vehicle needs to do...
 - Powertrain management
 - Stability control (ESC/TCS/ABS)
- ...as well as perceive, plan, and control
 - Based on user input

VELASCO-HERNANDEZ, G. ET AL. Autonomous Driving Architectures, Perception and Data Fusion: A Review. 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), 2020

Perception

- Perception is one of the most difficult tasks in autonomous driving
 - Identify and interpret traffic signs, traffic lights and lane markings
 - Identify and estimate motion of pedestrians, bicycles, and other vehicles
- Many types of sensors available, each with their own benefits and issues
 - Use multiple with sensor fusion

	Camera	Lidar	RADAR	Fusion
Range		_	*	*
Resolution	*	_	×	*
Distance Accuracy	_	~	~	~
Velocity	_	×	~	~
Color Perception	~	×	×	~
Lane Detection	~	×	×	~
Object Classification	~	×	×	~
Illumination and Weather Conditions	×	_	~	*

IGNATIOUS, H. A., EL SAYED, H., and KHAN, M. An Overview of sensors in Autonomous Vehicles. *Procedia Computer Science* 198, 2022

Bandwidth and Processing Power

- Many of these sensor require high bandwidth
 - A single camera can produce more data than a typical CAN (1 Mbit/s) or FlexRay (10 Mbit/s) bus can handle
- Deep learning models require massive processing power
- Resulting in high power demand
 - Estimate: hundreds of watts to 1 kW
- Massively parallel processing (e.g., GPUs) can help offset the compute and energy requirements

MALAWADE A. ET AL. SAGE: A <u>Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control. ACM Trans. Embedd. Comput. Syst.</u> 20 (5s), 2021.

Planning

- High-level planning / decisions
 - What goals need to be achieved?
 - With which priorities?
- World trajectory planning
 - Route planning based on up-todate maps and information (→ car as an IoT device)
- Local trajectory planning
 - Navigation around obstacles, rerouting based on local map (-> SLAM)

© Google, GeoBasis-DE/BKG

Control

- Control—or actuation—can be achieved via existing drive-bywire systems
 - Throttle-by-wire
 - Brake-by-wire
 - Steer-by-wire
- Requires close interaction with local trajectory planning and SLAM
 - Only plan physically feasible trajectories (e.g., via simplified physical modeling)
 - Correct position and motion with feedback from SLAM, IMU, and GPS-RTC

System Architecture

Signal-oriented Architecture and ECUs

- Existing vehicle E/E architectures are typically signal-oriented
- Sensors produce signals, i.e., low-dimensional, scalar data
- ECUs perform one function and create output signals
- Signal routing and data rates are static

Show of Hands —**Number of ECUs**

- How many ECUs would you estimate are in a modern, high-end vehicle?
 - **<** 50
 - **■** 50–100
 - **1**01–200
 - **-** > 200

HAMMERSCHMIDT, C. Number of automotive ECUs continues to rise. *eeNews Automotive*, 2019
VETTER, A. ET AL. Development Processes in Automotive Service-oriented Architectures. *2020 9th Mediterranean Conference on Embedded Computing (MECO)*, 2020

Service-oriented Architecture and HCPs/HPCs

- Autonomous vehicles require...
 - Higher bandwidth ->
 Automotive Ethernet
 - More compute power → Highperformance computers
 - Adaptivity and over the air updates -> Wireless communication, IoT
- Data rates are dynamic

 Data are structured and higher-dimensional

AUTOSAR Classic Platform

- To improve compatibility, AUTOSAR was introduced
- Standardized operating system (OS) and runtime environment (drivers, APIs)
- Single function / application per ECU / μC
- Supports hard real-time requirements
- C APIs

© AUTOSAR

AUTOSAR Adaptive Platform

- For dynamic, connected vehicles
- Use of existing POSIX OSs (Linux, Android, iOS, ...)
- Multiple applications in separate processes or OS instances (hypervisor/VM)
- C++ APIs
- Compatible with ACP
 - Real-world vehicles are hybrid and include ECUs and HPCs

© AUTOSAR

Outlook

Outlook

- Real-time systems
- Embedded GPU computing
- Ferrocene Rust for critical systems (ASIL D, SIL 4 qualified)
- Distributed IoT architecture
- Time-sensitive networking
- Deeper dive into automotive E/E architecture including developments such as
 - Zonal architectures
 - Software-defined vehicles

Further Reading

Further Reading (and Viewing)

- E/E systems and AUTOSAR
 - Vector EnginEEring the Jigsaw https://www.youtube.com/@vectorinformatik
 - AUTOSAR https://www.autosar.org/
- GPUs for autonomous driving
 - NVIDIA Solutions for Self-Driving Cars https://www.nvidia.com/en-us/self-driving-cars/
- Ferrocene https://ferrous-systems.com/ferrocene/

Further Reading

- Review and survey papers
 - YURTSEVER, E. ET AL. A Survey of Autonomous Driving: Common Practices and Emerging Technologies. *IEEE Access* 8, 2020
 - VDOVIC, H., BABIC, J., and PODOBNIK, V. Automotive Software in Connected and Autonomous Electric Vehicles: A Review. IEEE Access 7, 2019
- Ethical and legal aspects
 - MAURER, M. ET AL. Autonomous Driving Technical, Legal and Social Aspects. Springer Berlin, Heidelberg, 2016 (CC BY)
 - BARTNECK, C. ET AL. An Introduction to Ethics in Robotics and AI.
 Springer Cham, 2021(CC BY)

Dr. Johannes S. Mueller-Roemer

h_da — 21. Dezember 2023

