Taller 10

Use aproximaciones con diferencias finitas hacia adelante y hacia atrás y centradas para estimar la primera y segunda derivada en x = 0,5 y h = 0,1 de la función f x = 0,25x⁴ - 0,35x² + 2,5
Calcule además el valor verdadero de las derivadas.

X=0,5	H=0,1
X _{i+1}	X=0,6
X _{i-1}	X=0,4

F(x)	$0.25x^4 - 0.35x^2 + 2.5$
F'(x)	$X^3 - 0.7x$
F''(x)	$3x^2 - 0.7$

X=0,5	$X^3 - 0.7x$	-0,225
X-0,5	$3x^2 - 0.7$	0,04

Primera derivada F'(x)

$0.25x^4 - 0.35x^2 + 2.5$		
X _{i+2} =0,7	2,388525	
X _{i+1} =0,6	2,4064	
$X_i = 0.5$	2,428125	
X _{i-1} =0,4	2,4504	
X _{i-2} =0,3	2,470525	

Hacia adelante	$f'(xi) = \frac{2,4064 - 2,428125}{0,1}$	-0,21725
Centrada	$f'(xi) = \frac{2,4064 - 2,4504}{0,2}$	-0,22
Hacia atrás	$f'(xi) = \frac{2,428125 - 2,4504}{0,1}$	-0,22275

Segunda derivada F''(x)

Hacia adelante	$f''(xi) = \frac{2,388525 - 2(2,4064) + 2,428125}{0,01}$	0,385
Centrada	$f''(xi) = \frac{2,4064 - 2(2,428125) + 2,4504}{0,01}$	0,055
Hacia atrás	$f''(xi) = \frac{2,428125 - 2(2,4504) + 2,470525}{0,01}$	-0,215

2. Realice los cálculos de la primera y segunda diferencias centradas para el mismo punto x = 0,5 y h = 0,05. Comparado con los valores verdaderos ¿es este resultado mejor que el anterior?

$0.25x^4 - 0.35x^2 + 2.5$	
X _{i+2} =0,6	2,4064
$X_{i+1}=0,55$	2,417
$X_i = 0.5$	2,428125
X _{i-1} =0,45	2,4393
X _{i-2} =0,4	2,4504

Primera derivada	$f'(xi) = \frac{2,417 - 2,4393}{0,1}$	-0,223
Segunda derivada	$f''(xi) = \frac{2,417 - 2(2,428125) + 2,4393}{0,002}$	0,025

Los resultados son mejores que el anterior