# Numerical Schemes for Scalar One-Dimensional Conservation Laws

Lecture 12

### Finite Volume Discretization

#### **Computational Cells**

$$x_j = j\Delta x$$

$$t^n = n\Delta t$$



### Finite Volume Discretization

#### Cell averages

We think of  $\hat{u}_{j}^{n}$  as representing cell averages

$$egin{aligned} \hat{m{u}}_j^n &pprox rac{1}{\Delta x} \int_{x_{j-rac{1}{2}}}^{x_{j+rac{1}{2}}} m{u}(x,t^n) \ dx \end{aligned}$$

#### **Definition**

#### Conservative Methods

Applying integral form of conservation law to a cell j

$$rac{d}{dt} \int_{x_{j-rac{1}{2}}}^{x_{j+rac{1}{2}}} u \, dx = - \left[ f(u(x_{j+rac{1}{2}},t)) - f(u(x_{j-rac{1}{2}},t)) 
ight]$$

suggests

$$rac{\hat{oldsymbol{u}}_j^{n+1} - \hat{oldsymbol{u}}_j^n}{\Delta t} \Delta x = -\left(F_{j+rac{1}{2}}^n - F_{j-rac{1}{2}}^n
ight)$$

$$\Rightarrow \quad \left| oldsymbol{\hat{u}}_j^{n+1} = oldsymbol{\hat{u}}_j^n - rac{\Delta t}{\Delta x} \left( F_{j+rac{1}{2}}^n - F_{j-rac{1}{2}}^n 
ight) 
ight|$$

#### Numerical Flux function

#### Conservative Methods

$$F_{j+rac{1}{2}}\equiv F\left(\hat{u}_{j-l},\hat{u}_{j-l+1},\ldots,\hat{u}_{j},\ldots,\hat{u}_{j+r}
ight)$$

and F is a numerical flux function of l+r+1 arguments that satisfies the following consistency condition

$$F(u,u,\ldots,u,u)=f(u)$$

$$j \stackrel{\longleftarrow}{-\ell} \quad \cdots \quad j-1 \qquad j \stackrel{\longleftarrow}{j+rac{1}{2}} j+1 \qquad \cdots \qquad j+r$$

#### Lax-Wendroff Theorem

If the solution of a conservative numerical scheme converges as  $\Delta x \to 0$  with  $\frac{\Delta t}{\Delta x}$  fixed, then it converges to a weak solution of the conservation law.

**N1** 

shock capturing schemes are possible

**N2** 

#### **Lax-Wendroff Theorem**

**Shock Capturing** 

In the exact problem:

$$rac{d}{dt}\int_{x_0}^{x_J} u \; dx = -(f_0 - f_J)$$

A conservative numerical scheme satisfies an analogous discrete condition:

**N3** 

$$egin{aligned} rac{\Delta x}{\Delta t} \sum_{j=0}^{J} (\hat{m{u}}_j^{n+1} - \hat{m{u}}_j^n) &= -\sum_{j=0}^{J} \left( F_{j+rac{1}{2}} - F_{j-rac{1}{2}} 
ight) \ &= -\left( F_{J+rac{1}{2}} - F_{-rac{1}{2}} 
ight) \end{aligned}$$

#### **First Order Upwind**

**Linear Advection Equation...** 

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$
  $a \text{ constant } > 0$ 

$$oldsymbol{\hat{u}_j^{n+1}} = oldsymbol{\hat{u}_j^n} - rac{\Delta t}{\Delta x} \left(F_{j+rac{1}{2}}^{UP} - F_{j-rac{1}{2}}^{UP}
ight)$$

Let 
$$F_{j+rac{1}{2}}^{UP}\equiv a\; m{\hat{u}_j} \quad \left(F_{j-rac{1}{2}}^{UP}=a\; m{\hat{u}_{j-1}}
ight)$$

$$\hat{m{u}}_j^{n+1} = \hat{m{u}}_j^n - rac{\Delta t \ a}{\Delta x} (\hat{m{u}}_j - \hat{m{u}}_{j-1})$$

#### **First Order Upwind**

...Linear Advection Equation...

What about a < 0?

We can write,

$$\hat{oldsymbol{u}}_j^{n+1} = \hat{oldsymbol{u}}_j^n - rac{a\Delta t}{\Delta x} \left\{ egin{array}{ll} \hat{oldsymbol{u}}_j^n - \hat{oldsymbol{u}}_{j-1}^n & a > 0 \ \hat{oldsymbol{u}}_{j+1}^n - \hat{oldsymbol{u}}_j^n & a < 0 \end{array} 
ight.$$

or

$$\hat{u}_{j}^{n+1} = \hat{u}_{j}^{n} - rac{a\Delta t}{2\Delta x}ig(\hat{u}_{j+1}^{n} - \hat{u}_{j-1}^{n}ig) + rac{|a|\Delta t}{2\Delta x}ig(\hat{u}_{j+1}^{n} - 2\hat{u}_{j}^{n} + \hat{u}_{j-1}^{n}ig)$$

#### First Order Upwind

...Linear Advection Equation

#### In conservative form:

$$\hat{oldsymbol{u}}_j^{n+1} = \hat{oldsymbol{u}}_j^n - rac{oldsymbol{\Delta} t}{oldsymbol{\Delta} oldsymbol{x}} \left( F_{j+rac{1}{2}}^{UPn} - F_{j-rac{1}{2}}^{UPn} 
ight)$$

$$oxed{F_{j+rac{1}{2}}^{UP}=rac{1}{2}a(\hat{u}_{j+1}+\hat{u}_{j})-rac{1}{2}|a|(\hat{u}_{j+1}-\hat{u}_{j})}$$

$$F_{j+rac{1}{2}}^{UP}=a\hat{u}_{j}$$

$$egin{aligned} F_{j+rac{1}{2}}^{UP} &= a\hat{u}_j \ F_{j+rac{1}{2}}^{UP} &= a\hat{u}_{j+1} \end{aligned}$$

#### **First Order Upwind**

**Nonlinear Case** 

In the nonlinear case,

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

the flux becomes

**N4** 

$$igg|F_{j+rac{1}{2}}^{UP} = rac{1}{2}ig(\hat{f}_{j+1} + \hat{f}_{j}ig) - rac{1}{2}|\hat{a}_{j+rac{1}{2}}|\left(\hat{u}_{j+1} - \hat{u}_{j}
ight)$$

$$oldsymbol{\hat{a}}_{j+rac{1}{2}} = egin{cases} rac{\hat{f}_{j+1}-\hat{f}_{j}}{\hat{u}_{j+1}-\hat{u}_{j}} & ext{if} & \hat{oldsymbol{u}}_{j+1} 
eq \hat{oldsymbol{u}}_{j} \ f'(\hat{oldsymbol{u}}_{j}) & ext{if} & \hat{oldsymbol{u}}_{j+1} = \hat{oldsymbol{u}}_{j} \end{cases}$$

#### Lax-Wendroff

### Conservative Methods

$$F_{j+rac{1}{2}}^{LW} = rac{1}{2}\,\left(\hat{f}_{j+1} + \hat{f}_{j}
ight) - rac{1}{2}\,\,\hat{a}_{j+rac{1}{2}}^{2}\,rac{\Delta t}{\Delta x}\left(\hat{u}_{j+1} - \hat{u}_{j}
ight)$$

#### For the linear equation

$$\hat{u}_{j}^{n+1} = \hat{u}_{j} - rac{C}{2} \left( \hat{u}_{j+1}^{n} - \hat{u}_{j-1}^{n} 
ight) + rac{C^{2}}{2} \left( \hat{u}_{j+1}^{n} - 2\hat{u}_{j}^{n} + \hat{u}_{j-1}^{n} 
ight)$$
 $C = a\Delta x/\Delta t$ 

#### Beam-Warming

#### Conservative Methods

$$egin{split} F^{BW}_{j+rac{1}{2}} &= rac{1}{4} \left( -\hat{f}_{j+2} + 3\hat{f}_{j+1} + 3\hat{f}_j - \hat{f}_{j-1} 
ight) - \hat{a}^2_{j+rac{1}{2}} rac{\Delta x}{4\Delta t} \left( \hat{u}_{j+2} - \hat{u}_{j+1} + \hat{u}_j - \hat{u}_{j-1} 
ight) \ &- rac{s_{j+rac{1}{2}}}{4} \left( -\hat{f}_{j+2} + 3\hat{f}_{j+1} - 3\hat{f}_j + \hat{f}_{j-1} 
ight) + s_{j+rac{1}{2}} a^2_{j+rac{1}{2}} rac{\Delta t}{4\Delta x} \left( \hat{u}_{j+2} - \hat{u}_{j+1} - \hat{u}_j + \hat{u}_{j-1} 
ight) \end{split}$$

$$s_{j+rac{1}{2}}=a_{j+rac{1}{2}}/|a_{j+rac{1}{2}}|$$

#### For the linear equation

$$egin{aligned} \hat{u}_{j}^{n+1} &= \hat{u}_{j}^{n} - rac{C}{2} \left( 3\hat{u}_{j}^{n} - 4\hat{u}_{j-1}^{n} + \hat{u}_{j-2}^{n} 
ight) + rac{C^{2}}{2} \left( \hat{u}_{j}^{n} - 2\hat{u}_{j-1}^{n} + \hat{u}_{j-2}^{n} 
ight) & a > 0 \ \hat{u}_{j}^{n+1} &= \hat{u}_{j}^{n} - rac{C}{2} \left( -3\hat{u}_{j}^{n} + 4\hat{u}_{j+1}^{n} - \hat{u}_{j+2}^{n} 
ight) + rac{C^{2}}{2} \left( \hat{u}_{j+2}^{n} - 2\hat{u}_{j+1}^{n} + \hat{u}_{j}^{n} 
ight) & a < 0 \end{aligned}$$

#### **Entropy Solutions**

### Methods

Conservative

### Do these schemes converge to the entropy satisfying solution?

#### **EXAMPLE:**

Consider a non-physical solution to Burgers' equation:

$$u(x,t) = egin{cases} 1 & x \geq 0 \ -1 & x < 0 \end{cases}$$

i.e. 
$$\hat{u}_j^n$$
 is either 1 or  $-1 \ \Rightarrow \ f_j = \frac{1}{2} \ \ orall j$ 

#### **Entropy Solutions**

**Example** 

First order upwind:

$$F_{j+rac{1}{2}}^{UP} = rac{1}{2} \left( \hat{f}_{j+1} + \hat{f}_{j} 
ight) - rac{1}{2} |\hat{a}_{j+rac{1}{2}}| \left( \hat{u}_{j+1} - \hat{u}_{j} 
ight)$$

Since either  $\hat{a}_{j+\frac{1}{2}}$  or  $\hat{u}_{j+1} - \hat{u}_{j}$  is zero orall j

$$\Rightarrow$$
  $F_{j+rac{1}{2}}^{UP}=rac{1}{2}$   $orall j \Rightarrow$   $F_{j+rac{1}{2}}^{UP}-F_{j-rac{1}{2}}^{UP}=0$   $orall j$ 

$$\Rightarrow \hat{u}_j^{n+1} = \hat{u}_j^n$$

The entropy-violating solution is preserved

**N5** 

#### **Monotone Schemes**

### **Entropy Satisfying Schemes**

If a scheme can be written in the form

$$\hat{oldsymbol{u}}_{j}^{n+1} = H\left(\hat{oldsymbol{u}}_{j-l}^{n}, \hat{oldsymbol{u}}_{j-l+1}^{n}, \ldots, \hat{oldsymbol{u}}_{j}^{n}, \ldots, \hat{oldsymbol{u}}_{j+r}^{n}
ight)$$

with 
$$rac{oldsymbol{\partial H}}{oldsymbol{\partial u_i}} \geq \mathbf{0}$$
  $i = j - l, \ldots, j, \ldots, j + r,$ 

then the scheme is monotone and is

- entropy satisfying
- at most first order accurate

**N6** 

### **Entropy Satisfying Schemes**

#### **Monotone Schemes**

Godunov's Method...



Assume piecewise constant solution over each cell. Compute interface flux by solving interface (Riemann) problem exactly.

### **Entropy Satisfying Schemes**

#### **Monotone Schemes**

...Godunov's Method...

$$egin{aligned} F_{j+rac{1}{2}}^{Gn} &= f\left(u(x_{j+rac{1}{2}}, t^{n+})
ight) \ &= egin{cases} \min_{u \in [u_j, u_{j+1}]} f(u) & u_j < u_{j+1} \ \max_{u \in [u_j, u_{j+1}]} f(u) & u_j > u_{j+1} \end{cases} \end{aligned}$$

Then,

$$oxed{\hat{u}_j^{n+1} = \hat{u}_j^n - rac{\Delta t}{\Delta x} \Big(F_{j+rac{1}{2}}^{Gn} - F_{j-rac{1}{2}}^{Gn}\Big)}$$

### **Entropy Satisfying Schemes**

#### **Monotone Schemes**

...Godunov's Method

#### Applied to Burgers' equation

$$F_{j+rac{1}{2}}^G = egin{cases} rac{1}{2} \hat{u}_{j+1}^2 & \hat{u}_j, \hat{u}_{j+1} < 0 \ rac{1}{2} \hat{u}_j^2 & \hat{u}_j, \hat{u}_{j+1} > 0 \ 0 & \hat{u}_j < 0 < \hat{u}_{j+1} & ext{(expansion)} \ rac{1}{2} \hat{u}_j^2 & \hat{u}_j > 0 > \hat{u}_{j+1} & rac{1}{2} (\hat{u}_{j+1} + \hat{u}_j) > 0 \ rac{1}{2} \hat{u}_{j+1}^2 & \hat{u}_j > 0 > \hat{u}_{j+1} & rac{1}{2} (\hat{u}_{j+1} + \hat{u}_j) < 0 \end{cases}$$

#### **E-Schemes**

### **Entropy Satisfying Schemes**

If the numerical flux  $F_{j+\frac{1}{2}}$  satisfies

$$\mathsf{sign}(\hat{oldsymbol{u}}_{j+1}^n - \hat{oldsymbol{u}}_j^n)(F_{j+rac{1}{2}}^n - f(oldsymbol{u})) \leq \mathbf{0} \quad orall oldsymbol{u} \in [\hat{oldsymbol{u}}_j, \hat{oldsymbol{u}}_{j+1}]$$

#### An E-scheme is

- entropy satisfying
- at most first order accurate

**N7** 

## **Entropy Satisfying Schemes**

#### **Summary**



#### Motivation

#### **TVD Methods**

First order schemes give poor resolution but can be made to produce entropy satisfying and non-oscillatory solutions

Higher order schemes (at least the ones we have seen so far) produce non-entropy satisfying and oscillatory solutions.

Good criterion to design "high order" oscillation free schemes is based on the **Total Variation** of the solution.

#### **First Order Upwind**

#### **TVD Methods**





 $J=100, \ \Delta x=1/100, \ C=0.5, \ N=200$ 

#### **Lax-Wendroff**

#### **TVD Methods**





 $J=100, \ \Delta x=1/100, \ C=0.5, \ N=200$ 

#### **Definition**

#### TVD Methods

Total Variation of the discrete solution

$$TV(\hat{oldsymbol{u}}^n) = \sum_{j} \left| \hat{oldsymbol{u}}_{j+1}^n - \hat{oldsymbol{u}}_{j}^n 
ight|$$

If new extrema are generated  $TV(\hat{u})$  will increase.

$$TV(\hat{oldsymbol{u}}^{n+1}) \leq TV(\hat{oldsymbol{u}}^n)$$

#### Total Variation Diminishing Schemes

#### **Some Properties**



- All E-Schemes are TVD
- Conservative TVD Schemes
  - → Converge to weak solutions

**N8** 

#### **Conditions for TVD schemes**

#### **TVD Methods**

If a scheme is written in the form

$$\hat{m{u}}_{j}^{n+1} = \hat{m{u}}_{j}^{n} + D_{j+rac{1}{2}} \Delta \hat{m{u}}_{j+rac{1}{2}}^{n} - C_{j-rac{1}{2}} \Delta \hat{m{u}}_{j-rac{1}{2}}^{n}$$

$$oldsymbol{\Delta} \hat{u}_{j+rac{1}{2}} = \hat{u}_{j+1} - \hat{u}_{j}$$

it is TVD iff

$$egin{array}{ccc} C_{j+rac{1}{2}} & \geq 0 \ D_{j+rac{1}{2}} & \geq 0 \ C_{j+rac{1}{2}} + D_{j+rac{1}{2}} \leq 1 \end{array}$$

**Example: Upwind** 

Upwind scheme for linear equation, a > 0:

$$oxed{u_j^{n+1} = u_j^n - rac{a\Delta t}{\Delta x} ig(u_j^n - u_{j-1}^nig)}$$

$$C_{j-rac{1}{2}}=rac{a\Delta t}{\Delta x}; \qquad D_{j+rac{1}{2}}=0$$

$$C_{j-rac{1}{2}}=rac{a\Delta t}{\Delta x}\leq 1$$

Stability-like condition!

#### Godunov's Theorem

#### **TVD Methods**

No second or higher order accurate constant coefficient (linear) scheme can be TVD.



→ Higher order TVD schemes must be non-linear

Consider the linear equation

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \qquad a > 0$$

First order upwind (Godunov) scheme is

$$egin{align} \hat{m{u}}_j^{n+1} &= \hat{m{u}}_j^n - m{C} \left( \hat{m{u}}_j^n - \hat{m{u}}_{j-1}^n 
ight) \ m{C} &= rac{m{a}m{\Delta}t}{m{\Delta}m{x}} \end{split}$$

Oscillation free but smeared solutions.

#### **TVD Methods**

Lax-Wendroff

$$\hat{m{u}}_{j}^{n+1} = \hat{m{u}}_{j}^{n} - rac{m{C}}{2} \left( \hat{m{u}}_{j+1}^{n} - \hat{m{u}}_{j-1}^{n} 
ight) + rac{m{C}^{z}}{2} \left( \hat{m{u}}_{j+1}^{n} - 2\hat{m{u}}_{j}^{n} + \hat{m{u}}_{j-1}^{n} 
ight)$$

#### Suffers from oscillations.





#### **TVD Methods**

#### **Anti-diffusion**

Re-write the Lax-Wendroff scheme:

$$\hat{u}_j^{n+1} = \underbrace{\hat{u}_j^n - C\left(\hat{u}_j^n - \hat{u}_{j-1}^n\right)}_{ ext{first order upwind}} - \underbrace{\frac{1}{2}C(1-C)\left(\hat{u}_{j+1}^n - 2\hat{u}_j^n + \hat{u}_{j-1}^n\right)}_{ ext{anti-diffusive flux}}$$
  $F_{j+rac{1}{2}}^{LW} = a\hat{u}_j + rac{a}{2}\left(1-C\right)\left(\hat{u}_{j+1} - \hat{u}_j
ight)$ 

Introduce flux limiter  $\phi_{j+\frac{1}{2}}$ :

$$F_{j+rac{1}{2}}^{TVD} = a\hat{u}_j + rac{a}{2}\left(1-C
ight)\phi_{j+rac{1}{2}}\left(\hat{u}_{j+1} - \hat{u}_j
ight)$$

#### **TVD Methods**

Flux Limiters...

$$egin{align} \hat{m{u}}_{j}^{n+1} &= \hat{m{u}}_{j}^{n} - C\left(\hat{m{u}}_{j}^{n} - \hat{m{u}}_{j-1}^{n}
ight) \ &- rac{1}{2}C(1-C)\left[m{\phi}_{j+rac{1}{2}}\left(\hat{m{u}}_{j+1}^{n} - \hat{m{u}}_{j}^{n}
ight) - m{\phi}_{j-rac{1}{2}}\left(\hat{m{u}}_{j}^{n} - \hat{m{u}}_{j-1}^{n}
ight)
ight] \end{split}$$

If 
$$\phi_j = \phi_{j-1} = 1 \Rightarrow \text{Lax-Wendroff (not TVD)}$$
  
If  $\phi_j = \phi_{j-1} = 0 \Rightarrow \text{Upwind (TVD)}$ 

Choose the limiter as close as possible to 1 but enforcing TVD conditions

#### **TVD Methods**

...Flux Limiters...

Re-write

$$egin{aligned} \hat{u}_{j}^{n+1} &= \hat{u}_{j}^{n} - C\Delta\hat{u}_{j-rac{1}{2}} - rac{1}{2}C(1-C)(\phi_{j+rac{1}{2}}\Delta\hat{u}_{j+rac{1}{2}} - \phi_{j-rac{1}{2}}\Delta\hat{u}_{j-rac{1}{2}}) \ &= u_{j}^{n} - C\left\{1 + rac{1}{2}(1-C)\left[rac{\phi_{j+rac{1}{2}}}{r_{j+rac{1}{2}}} - \phi_{j-rac{1}{2}}
ight]
ight\}\Delta\hat{u}_{j-rac{1}{2}} \ &\qquad \qquad r_{j+rac{1}{2}} = \Delta\hat{u}_{j-rac{1}{2}}/\Delta\hat{u}_{j+rac{1}{2}} \end{aligned}$$

Recall the TVD test:

$$\hat{u}_{j}^{n+1} = \hat{u}_{j}^{n} + D_{j+rac{1}{2}}\Delta\hat{u}_{j+rac{1}{2}}^{n} - C_{j-rac{1}{2}}\Delta\hat{u}_{j-rac{1}{2}}^{n}$$

#### **TVD Methods**

#### ...Flux Limiters

#### Take

$$C_{j+rac{1}{2}} = C \left\{ 1 + rac{1}{2} (1-C) \left[ rac{\phi_{j+rac{1}{2}}}{r_{j+rac{1}{2}}} - \phi_{j-rac{1}{2}} 
ight] 
ight\}$$

$$D_{j+\frac{1}{2}}=0$$

TVD criterion 
$$\Rightarrow$$
  $0 \le C_{j+\frac{1}{2}} \le 1$ 

#### **TVD Methods**

#### **Smoothness Monitor**

Choose  $\phi_{j+\frac{1}{2}}$  to be function of  $r_{j+\frac{1}{2}}$ 



#### **High Resolution Schemes**

TVD region

It can be seen that the above TVD conditions are satisfied if

$$\phi(r)=0$$
  $r\leq 0$ 

$$\mathbf{0} \leq rac{oldsymbol{\phi(r)}}{oldsymbol{r}} \leq \mathbf{2}$$

$$0 \le \phi(r) \le 2$$



#### **High Resolution Schemes**

#### 2nd Order TVD Region



#### **TVD Methods**

**Popular Choices** 

$$\mathsf{Minmod}\ \phi(r) = \max(\mathbf{0}, \min(\mathbf{1}, r))$$

Superbee 
$$\phi(r) = \max(0, \min(2r, 1), \min(r, 2))$$

Van Leer 
$$\phi(r) = \frac{r + |r|}{1 + |r|}$$

All produce **second order** schemes when the solution is smooth, and reduce to **upwind** at **discontinuities**.

#### **High Resolution Schemes**

Examples...





#### **High Resolution Schemes**

...Examples...





#### **High Resolution Schemes**

...Examples...





#### **High Resolution Schemes**

...Examples...





#### **High Resolution Schemes**

#### ...Examples





#### **High Resolution Schemes**

Non-linear extension

For a non-linear conservation law the formulation of flux limiters is extended to allow both positive and negative wave speeds