IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) A method of correcting video data signals for addressing an active matrix display device, the device comprising a power line (10) arranged to supply current to n electroluminescent display elements (11), the current supplied to each element being controllable by a respective drive transistor (20), each drive transistor being addressable by video data signals and having an electrical characteristic parameter X, the method comprising the steps of:
 - (i) storing an X value for each drive transistor;
- (ii) receiving a set of video data signals, each having a value $v_{\text{d}}; \\$
- (iii) determining from the stored X values and the received v_d values an expected current through the power line i_p using a model which relates the power line current to the v_d and X values of the drive transistors;
- (iv) measuring the current i_m through the power line when the drive transistors are each addressed with the received set of video data signals;
- (v) calculating the difference g between the expected current i_{p} and the measured current i_{m} ;

- (vi) repeating steps (ii) to (v) for at least n-1 further
 sets of video data signals;
- (vii) calculating an X value for each transistor using the calculated g values;
- (viii) replacing the stored X values with the calculated X
 values; and
- (ix) correcting subsequent video data signals in accordance
 with the stored X values.
- 2. (original) A method according to claim 1, wherein the method further comprises the steps of:
- (x) storing the g values in a column vector G having a length n; and,
- (xi) performing an iterative Newton Linearisation process using vector G to obtain an X value for each transistor.
- 3. (original) A method according to claim 2, wherein said Newton Linearisation process includes the steps of:
 - (xii) differentiating vector G to obtain an n x n matrix G';
 (xiii) solving the equation:

$$G'(X).\delta X = -G(X)$$

for δx ;

- (xiv) calculating an updated value for X for each transistor according to $\delta \text{X}\,;$
- (xv) calculating updated g_i values using the updated X value; and,
- (xvi) repeating steps (xii) to (xv) until the g values are within a predetermined range around zero.
- 5. (currently amended) A method according to any preceding claim 1, wherein steps (ii) to (vii) are repeated periodically.
- 6. (currently amended) A method according to any preceding claim 1 carried out in response to the switching on of said display device.
- 7. (currently amended) A method according to any preceding claim 1, wherein said electrical characteristic parameter X is the threshold voltage v_t of the transistor.

8. (original) A method according claim 7, wherein said model is based upon the relationship given by the equation:

$$i_{LED} = K(v_d - v_t)^2$$

in which i_{LED} is the current controlled by one drive transistor and K is a constant.

- 9. (original) Apparatus for correcting video data signals for addressing an active matrix display device, the device comprising a power line (10) arranged to supply current to n electroluminescent display elements (11), the current supplied to each element being controllable by a respective drive transistor (20), each drive transistor being addressable by video data signals each having a value v_d and having an electrical characteristic parameter X, the apparatus comprising
 - means (30) for storing an X value for each drive transistor;
- means for applying a model to determine an expected current through the power line using the stored X values and video data signal values $v_{\rm d}$;
 - means (32) for measuring the current through the power line;
- means for applying an algorithm to said expected current and said measured current for a plurality of sets of video data signals

to determine X values for each drive transistor;

- correction circuitry for modifying received video data signals in accordance with the stored X values.
- 10. (original) An integrated circuit chip (25) comprising the apparatus according to claim 9.
- 11. (original) An active matrix display device comprising a plurality of power lines (10), each arranged to supply current to a respective plurality of electroluminescent display elements (11), the current supplied to each element being controllable by a respective drive transistor (20), each drive transistor being addressable by respective video data signals, wherein the display device further comprises apparatus according to claim 9 for correcting video data signals supplied to said transistors associated with each power line.