Team 4

Tracking and Predicting the State of a Building

Faculty Mentors

Kostas Christidis Bobby Compton

Spencer Hitchins	Sensor Control Module Manager, UI Design Specialist, Sponsor Contact
Andrew Kofink	Web Application Manager, Software Specialist, Documentation Specialist
Scott Whalen	PCB Manager, Project Leader, Hardware Specialist

Introduction

- IBM is sponsoring this internet of things (IoT) project
- Track multiple sensor variables about a building
- Display historic data and make forecasts via a web app
- Motivations:
 - Inexpensive electronics
 - Many devices in the IoT
 - Need a common data interface

Project Requirements

- IoT devices push data to DB
- web application displays data
- system is easy to use
- IBM technology is showcased
- multiple sensor data per module

Change Summary

- no more detailed prediction algorithms
- web app overhaul
- switched database
- shifted focus from extensibility to ease of use
- sound sensor dropped
- enclosure added

Project Architecture

Web Logic

IBM's Bluemix with 512MB RAM, 1 running process

PostgreSQL
Database on IBM's
Compose with 1GB
storage, auto-scalable IO

Web Interface

Data sent at 1 reading per sensor per 30 minutes

Raspberry Pi Custom PCB Temperature Sensor Barometric Pressure Sensor Luminosity Sensor Motion Detection Sensor

multiple buildings and sensor modules

Raspberry Pi

- 5.2 power supply
- 16GB Sandisk microSD card
- Kootek wifi dongle

PCB

- 2 layer board
- 56mm x 58mm(2.2" x 2.3") dimensions
- daughter board for Raspberry Pi
- .016" routes
- neater than breadboard

Sensors

- have light, temperature, barometric pressure, motion
- I2C
- 3.3v power supply
- sparkfun
 - easy breakout board

Light

- range: of 0.1 40k+ Lux
 - o troxler ~380 Lux
- .6" x .6" dimensions
- URL: https://www.sparkfun.com/products/12055

Temperature

- .0625° C resolution, .5° C accuracy
- range: -25° C(-13° F) 85° C(185° F)
- .6" x .6" dimensions
- URL: https://www.sparkfun.com/products/11931

Barometric Pressure

- .02 hPa accuracy
- range: 300-1100 hPa
 - o standard atmosphere 1013.25 hPa
- .6" x .8" dimensions
- URL: https://www.sparkfun.com/products/11824

Motion

- 4"-8" detection range
- gesture detection, proximity sensing
- .6" x .75" dimensions
- URL: https://www.sparkfun.com/products/12787

Enclosure for PCB and Raspberry Pi

http://www.amazon.com/dp/B00MQLB1N6/

Power Budget

- Raspberry Pi takes up to 50mA per pin
- temperature sensor uses up to 10μA
- BMP sensor uses up to 5μA
- motion sensor uses up to 250µA
- luminostiy sensor up to uses .6mA
- total = $10\mu A + 5\mu A + 250\mu A + .6mA = .$ 865mA power budget (well below 50mA)

Hardware Testing

- solder on headers to PCB
 - easy connect/disconnect for sensors and from Raspberry Pi
- check connections are good with PCB
 - make sure Raspberry Pi can read from sensors and get valid data
- use multimeter/oscilloscope to debug issues
 - have vias and other holes that can be used as test points

Hardware Testing (cont)

 double check that solder points aren't soldered together by accident

Design Challenges

- sound sensor
- Raspberry Pi vs. Beaglebone Black
- why not 3D-printed enclosure

Raspberry Pi Software Architecture

Sensor Control Module

- Consists of Raspberry Pi and daughter board with sensors
- Preloaded with unique module ID and IDs for each sensor
- Ships with microSD card preloaded with golden image
 - Software and packages pre-installed

Sensor Software Requirements

- Raspbian
- Python v2.7.9
- Pip v1.5.6
- Python Packages
 - o psycopg2 v2.6.1
 - o smbus-cffi v0.5.1
- Git v1.7.10

Sensor Software

#!/bin/bash

Bash Scripts

source /home/pi/scm-scripts/scmenv/bin/activate
/home/pi/.pyenv/bin/python-local-exec /home/pi/scm-scripts/capture_data.py

- Run on system startup
- Activate Python scripts
- Python Scripts
 - Communicate with sensors
 - Push data to web application
- Python Configuration Files
 - Provide information about sensors

Sensor Software Test Plan

- Unit tests for functions using PyUnit
- Test integration with database
 - Manually ensure data actually sent to database
- Test integration with PCB
 - Ensure PCB connections correctly allow I2C communication with each sensor

Shipping

- Before
 - Unique module and sensor IDs loaded in database
 - Unit testing to ensure module integrity
- After
 - Ships with instructions and sticker with unique ID
 - Plug in Pi
 - Visit URL in instructions
 - Register with unique ID on sticker
- Data immediately begins pushing to DB

Sensor Software Timeline

Item Description	Expected Completion
Integrate temperature sensor with database	2015-09-07
Integrate luminosity sensor with database	2015-09-16
Integrate barometric pressure sensor with database	2015-09-30
Test PCB integration with temperature sensor, luminosity sensor, and barometric pressure sensor	2015-10-05 (Alpha Demo)
Test PCB integration with proximity sensor	2015-10-14
Integrate proximity sensor with database	2015-10-21
Complete registration workflow for module	2015-11-04 (Beta Demo)
Design Day, Version 1.0.0 locked	2015-12-01

Design Challenges

- Ease of use vs. Extensibility
- Differences in sensors
 - Data addresses
 - Control signals
 - Power signals
- Data format

MVC Software Architecture

Web Application DB Schema

```
dashboards
integer "id"
integer "user_id"
text "config"
string "name"
datetime "created_at"
datetime "updated_at"
```

```
sensor_accesses
  integer "id"
  integer "sensor_id"
  integer "user_id"
  datetime "created_at"
  datetime "updated_at"
```

```
users
integer "id"
string "username"
string "password_digest"
```

```
data_points
integer "id"
integer "sensor_id"
float "data"
datetime "timestamp"
datetime "created_at"
datetime "updated_at"
```

```
sensors
  integer "id"
  string "name"
  integer "sensor_module_id"
  datetime "created_at"
  datetime "updated_at"
```

```
sensor_modules
integer "id"
string "name"
string "location"
integer "user_id"
datetime "created_at"
datetime "updated_at"
```

```
sensor_module_accesses
  integer "id"
  integer "sensor_module_id"
  integer "user_id"
  datetime "created_at"
  datetime "updated_at"
```

Web Application Routes

User
#new
#create
#edit
#update
#destroy
#index

Dashboard
#new
#create
#edit
#update
#destroy
#index

Session
 #new
#create
#destroy

Sensor
Module
#new
#create
#edit
#update
#destroy
#index

Module
Access
#new
#create
#edit
#update
#destroy
#index

Sensor

Sensor
#new
#create
#edit
#update
#destroy
#index

Access
#new
#create
#edit
#update
#destroy
#index

Sensor

Data
Point
#new
#create
#edit
#update
#destroy
#index

Web UI Libraries

- Bootstrap v.3.3.5
- D3.js v.3.5.6
- HAML v.4.0.6
- Font Awesome v.4.4.0
- SASS v.3.2.19
- jQuery v.2.1.4
- Uglifier v.2.7.0
- Turbolinks v.2.5.3

Web Management Libraries/Tools

- Bundler v.1.10.6
- Rake v.10.4.2
- Cloud Foundry v.6.12.2
- Pry v.0.10.1
- Git v.2.2.2

Web Testing/Analysis Libraries

- Capybara v.2.4.4
- RSpec v.3.1.0
- Rspec Mocks v. 3.1.3
- SimpleCov v.0.9.1
- Guard v.2.11.1

Web Backend Libraries

- Bcrypt v.3.1.9
- ActiveRecord v.4.0.13
- ActiveModel v.4.0.13
- AREL v.4.0.2
- PostgreSQL v.9.4.4
- Rack v.1.5.2
- Unicorn v.4.9.0

Resource Hosting

- Bluemix by IBM (Ruby on Rails)
- Compose by IBM (PostgreSQL)
- Users must purchase internet service
- Users must have an 802.11abg 2.5Ghz AP

D3 Flowchart (FC) - simple_plot()

D3 FC - load_data()

Control Module Identification FC

Web Application Test Plan

- Unit tests written for all models using RSpec
 - data_point, sensor_access, sensor_module_access, dashboard, sensor, sensor module, user
- Integration tests written for all controllers/views using RSpec Mocks
 - O data_points, sensor_accesses, sensor_module_accesses,
 dashboards, sensors, sensor_modules, users
- Acceptance Test list for manual exercising requirements

Black Box Acceptance Tests

- Users can create a user account
- Users can log in
- Users can add sensor modules
- Users can edit sensor metadata
- Users can delete data points
- Users can grant/revoke access to their sensors
- Users can grant/revoke access to their control modules
- Users can create new dashboards
- Users can edit and delete their dashboards

Web Application Timeline

Item Description	Expected Completion
Adding strict authorization	2015-09-16
Adding web encryption	2015-09-23
Adding an administrative system	2015-09-30
Allowing users to switch sensors shown on the dashboard plot	2015-10-05
Allowing users to add multiple plots per graph	2015-10-05 (Alpha Demo)
Allow displaying of historical data (user-specified date range)	2015-10-14
Allowing users to save/edit the dashboard configuration	2015-10-14
Allowing users to add multiple graphs on the dashboard	2015-11-04 (Beta Demo)
Adding basic prediction mechanism	2015-11-11
Design Day, Version 1.0.0 locked	2015-12-01

Manufacture/Running Cost

- Luminosity: https://www.sparkfun.com/products/12055 \$5.95
- Temperature: https://www.sparkfun.com/products/11931 \$5.95
- Barometric Pressure: https://www.sparkfun.com/products/11824 \$9.95
- Motion: https://www.sparkfun.com/products/12787 \$14.95
- Raspberry Pi B+: ~\$30.00
- PCB: ~\$30.00
- MicroSD card: \$10
- wifi dongle: \$8
- Bluemix Hosting (1 instance at 512MB RAM) free (scalable)
- Compose PostgreSQL Hosting \$17.50/month minimum (scalable)

Total: ~\$114.80 + \$17.50 / month

Alpha Demo (2015-10-05)

- 3 sensors
- Authorization on the web application
- TLS on the web application
- Multiple plots per graph

Beta Demo (2015-11-04)

- All sensors
- PCB mounted to control module
- Control module housed in the enclosure
- Add UUID sticker for the Pi
- Multiple graphs on a dashboard
- Save/edit dashboard configuration
- Complete user unboxing web workflow

Final Design Day Demo (2015-12-04)

- Example sensor control module
- Web application demo
- Data from three modules tracking Troxler lab for the week prior to design day
 - One by each door
 - One near a window

Demo

http://tpsb.mybluemix.net

Q & A - IBM Team 4

Team Members:

Scott Whalen

Spencer Hitchins

Andrew Kofink

Bill of Materials

- Luminosity: https://www.sparkfun.com/products/12055 \$5.95
 - Datasheet: http://cdn.sparkfun.com/datasheets/Sensors/LightImaging/TSL2561.pdf
- Temperature: https://www.sparkfun.com/products/11931 \$5.95
 - Datasheet: http://www.sparkfun.com/datasheets/Sensors/Temperature/tmp102.pdf
- Barometric Pressure: https://www.sparkfun.com/products/11824 \$9.95
 - Datasheet: http://cdn.sparkfun.com/datasheets/Sensors/Pressure/BMP180.pdf
- Pi Camera: http://www.adafruit.com/products/1367?qclid=CNW1zuesickCFYc8qQod3dAKOQ \$29.95
 - Datasheet: http://www.element14.com/community/servlet/JiveServlet/downloadBody/54413-102-1-273177/Unofficial%20quide%20to%20qetting%20up%20and%20running%20with%20the%20Raspberry%20Pi%20Camera.pdf
- Raspberry Pi B+: http://www.amazon.com/Raspberry-Pi-Model-512MB-Computer/dp/B00LPESRUK/ref=sr_1_3? ie=UTF8&gid=1449783772&sr=8-3&keywords=raspberry+pi+b%2B \$30.00
- PCB: http://www.4pcb.com/pcb-student-discount.html \$33.00
- MicroSD card: <a href="http://www.amazon.com/SanDisk-microSDHC-Standard-Packaging-SDSQUNC-032G-GN6MA/dp/B010Q57T02/ref=sr_1_2?s=pc&ie=UTF8&qid=1449783848&sr=1-2&keywords=microSD+card-\$10.95
- WiFi dongle: http://www.amazon.com/Edimax-EW-7811Un-150Mbps-Raspberry-Supports/dp/B003MTTJOY/ref=sr_1_1? s=pc&ie=UTF8&gid=1449783920&sr=1-1&keywords=wifi+dongle \$9.99
- Raspberry Pi B+ case: http://www.amazon.com/Premium-Clear-Case-Raspberry-Model/dp/B00MQLB1N6/ref=sr_1_1? ie=UTF8&qid=1446562138&sr=8-1&keywords=raspberry+pi+b%2B+enclosure \$8.92
- Bluemix Hosting (1 instance at 512MB RAM) free (scalable)
- Compose PostgreSQL Hosting \$17.50/month minimum (scalable)

Total: \$144.66 + \$17.50 / month

Final Prototype Cost

- 4x Sensor Modules (\$144.66)
- 2x Extension Cords (\$15.99)
- 4x Sound Detectors (\$10.95, unused)
 - Datasheet: http://cdn.sparkfun.com/datasheets/Sensors/Sound/LMV324.pdf
- 2x Long Range IR sensor (\$14.95, unused)
 - Datasheet: https://www.sparkfun.com/datasheets/Sensors/Infrared/gp2y0a02yk_e.pdf
- Adafruit ADS1015 12-Bit ADC (\$9.95, unused)
 - Datasheet: http://adafruit.com/datasheets/ads1015.pdf

Total: \$609.26

Not all items had to be purchased because the department owned them already.