1

The minimized POS expression for the given boolean expression through avr-gcc

M Shantipriya

CONTENTS

1	Abstract	1
2	Components	1
3	Truthtable	2
4	K-MAP	2
5	Procedure	2

1 Abstract

Abstract—This manual shows how to implement the minimized POS expression for the given boolean expression through avr-gcc.

In the ciruit a,b and c are digital inputs, f is digital output. The given boolean expression is $f=\bar{a}\bar{b}\bar{c}+\bar{a}b\bar{c}+a\bar{b}\bar{c}+abc+ab\bar{c}$

2 Components

Component	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Seven Segment		1
Display		
Decoder	7447	1
Jumper Wires	M-M	20
Breadboard		1

TABLE I

1.The table given below is the connections between 7447 BCD Decoder and Seven Segment Display

7447	ā	\bar{b}	ī	\bar{d}	ē	\bar{f}	Ē
Display	a	b	c	d	e	f	g

TABLE II

2. The figure given below is the pin diagram of Seven Segment Display.

Fig. 1

3. The diagram below shows the pin diagram of 7447 BCD Decoder. The output pins of 7447 is connected to Seven Segment Display using Table 2.

Fig. 2

3 TRUTHTABLE

a	b	c	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

4 K-MAP

bc

		00	01	11	10
a	0	1	0	0	1
	1	1	0	1	1

6. Verify the miinimized POS expression operation in avr-gcc using the following code and making pin connections according to fig 2, Table 2

Observe the truthtable and verify the program by executing the link provided below.

https://github.com/Shantipriya1919/fwc1

The minimized expression is $f=(b+\bar{c})(a+\bar{c})$

5 Procedure

1. The given boolean expression is

 $f = \bar{a}\bar{b}\bar{c} + \bar{a}b\bar{c} + a\bar{b}\bar{c} + abc + ab\bar{c}$

from this we can write the minimized POS expression as follows

 $f = \bar{a}\bar{b}\bar{c} + \bar{a}b\bar{c} + a\bar{b}\bar{c} + abc + ab\bar{c}$

 $f = \bar{a}\bar{c}(\bar{b}+b) + a\bar{c}(\bar{b}+b) + abc$

 $f = \bar{a}\bar{c} + a\bar{c} + abc$

(additive identity $[\bar{b}+b=1]$)

 $f=\bar{c}(\bar{a}+a)+abc$

 $f=\bar{c}+abc$

(additive identity $[\bar{a}+a=1]$)

 $f=(\bar{c}+b)(\bar{c}+a)(\bar{c}+c)$

(distributivelaw A+BC=(A+B)(A+C))

 $f=(b+\bar{c})(a+\bar{c})$

(additive identity $[\bar{c}+c=1]$)

2.connect the circuit using 7447 BCD-Seven segment display decoder and Arduino.

3.connect the seven segment pins to 7447 using Table 2.

4.connect the pin A of 7447 to D2 of Arduino and remaining pins B,C and D to GND.

5.connect the pins D8,D9,D10 to 0's and 1's.Change the pins simultaneously to verify the POS expression truth table.