

Hedy Lamarr, the mother of Wi-Fi

Frequency-Hop Spread Spectrum

• The type of spread spectrum in which the carrier hops randomly from one frequency to another is called *frequency-hop (FH) spread spectrum*

A common modulation format for FH system is that of a M-ary frequency-shift keying (MFSK)

• Since, the hopping does not cover the entire spread spectrum instantaneously, we are led to consider the rate at which the hops occur

Frequency Hopping Example

(a) Channel assignment

(b) Channel use

Frequency Hopping Example

Frequency-Hop Spread Spectrum

 Two basic (technology-independent) characterization of frequency hopping are identified as:

Slow-frequency hoping, in which the symbol rate R_s of the MFSK signal is an integer multiple of the hop rate R_h

Fast-frequency hoping, in which the hop rate R_h is an integer multiple of the MFSK signal R_s

• Frequency-hop M-ary frequency-shift keying:Transmitter

• Frequency-hop M-ary frequency-shift keying: Receiver

• The fig (a) shows the block diagram of an FH/MFSK transmitter, which involves *frequency* modulation followed by mixing

• In the receiver depicted in fig (b), the frequency hopping is first removed by *mixing* the received signal with the output of a local frequency synthesizer

- An individual FH/MFSK tone of shortest duration is referred to as a chip
- The *chip rate*, R_c , for an FH/MFSK system is given by: $R_c = max(R_h, R_s)$
- Here, R_h is the hop rate and R_s is the symbol rate

• In a slow FH/MFSK system, the bit rate R_b , the symbol rate R_s , the chip rate R_o and the hop rate R_h are related by:

$$R_c = R_s = \frac{R_b}{K} \ge R_b$$
 where, $K = \log_2 M$

• The spread-spectrum system is characterized by the symbol energy-to-noise spectral density ratio given by:

$$\frac{E}{N_0} = \frac{P/J}{W_c/R_s}$$

- Here, W_c is the FH bandwidth
- The ratio P/J is the reciprocal of jamming margin

• Also, the processing gain (PG) of the slow FH/MFSK system is given by:

$$PG = \frac{W_c}{R_s} = 2^k$$

• The processing gain (expressed in dB) is equal to $10 \log_{10} 2^k \cong 3k$

• Here, k is the length of the PN segment employed to select a fequency hop

Numerical

- Illustrate the variation of the frequency of a slow FH/MFSK signal with time for one complete period of the PN sequence. The FH/MFSK signal has the following parameters.
- Number of bits per MFSK symbol K=2
- Length of PN segment per hop k= 3
- Number of flip-slops in Shift register m= 4
- Number of MFSK tones M=?
- Total number of frequency hops = ?
- Period of PN sequence = ?
- Transmit two symbols in one hop

FIGURE 7.11 Illustrating slow-frequency hopping. (a) Frequency variation for one complete period of the PN sequence. (b) Variation of the dehopped frequency with time.

Slow Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

Slow Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

Fast-Frequency Hopping

- In general, a fast-frequency hopping is used to defeat a smart jammer's tactic that involves two functions:
- i. Measurement of the spectral content of the transmitted signal
- ii. Returning of the interfering signal to that portion of the frequency band

- To overcome the jammer, the transmitted signal must be hopped to a new carrier frequency before the jammer is able to process the two functions
- The data recovery at the receiver is noncoherent detection

Fast-Frequency Hopping

The detection procedure of a fast-frequency hopping are:

- For each FH/MFSK symbol, separate decisions are made on the *K* frequency-hop chips received
- ii. For each FH/MFSK symbol, likelihood functions are computed as functions of the total signal received over K chips, and the largest one is selected

Numerical

- Illustrate the variation of the frequency of a slow FH/MFSK signal with time. The FH/MFSK signal has the following parameters.
- Number of bits per MFSK symbol K=2
- Length of PN segment per hop k= 3
- Number of MFSK tones M=?
- Total number of frequency hops = ?
- Transmit one symbol in two hop

Fast Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

Fast Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

Concept of Direct Sequence Spread Spectrum

Concept of Frequency Hopping Spread Spectrum

Benefits of Spread Spectrum

