Steenrod operations in the cohomology of exceptional Lie groups

Haibao Duan and Xuezhi Zhao Institute of Mathematics, Chinese Academy of Sciences, Department of Mathematics, Capital Normal University

August 10, 2009

Abstract

Let G be an exceptional Lie group with a maximal torus T, and let \mathcal{A}_p be the mod-p Steenrod algebra. Based on common properties in the Schubert presentation of the cohomology $H^*(G/T; \mathbb{F}_p)$, we obtain a complete characterization for the \mathcal{A}_p -algebra $H^*(G; \mathbb{F}_p)$.

2000 Mathematical Subject Classification: 57T15; 14M15. Email addresses: dhb@math.ac.cn; zhaoxye@mail.cnu.edu.cn

1 Introduction

Let \mathcal{A}_p be the mod-p Steenrod algebra with $\mathcal{P}^k \in \mathcal{A}_p$, $k \geq 1$, the k^{th} reduced power [SE] and $\delta_p \in \mathcal{A}_p$ the Bockstein operator. If p = 2 it is also customary to write Sq^{2k} instead of \mathcal{P}^k , Sq^1 in the place of δ_2 .

Let G be an 1–connected simple Lie group with $T \subset G$ a maximal torus. Based on common properties in the Schubert presentation of the integral cohomology $H^*(G/T)$, the ring $H^*(G;\mathbb{F})$ was constructed uniformly for all G and $\mathbb{F} = \mathbb{Z}, \mathbb{Q}, \mathbb{F}_p$ in terms of primary generators in $[DZ_2]$. In this sequel to $[DZ_2]$ we determine the \mathcal{A}_p action on $H^*(G;\mathbb{F}_p)$ with respect to these generators for all exceptional G. We may restrict ourself to the cases where the integral cohomology $H^*(G)$ contain non–trivial p–torsion subgroup, for exactly in these cases the rings $H^*(G;\mathbb{F}_p)$ fail to be primitive generated exterior algebras. The results are requested in $[DZ_2]$ to determine the integral cohomology ring $H^*(G)$ for all exceptional G.

The main idea in our approach is to describe the ring $H^*(G; \mathbb{F}_p)$ by the p-transgressive generators constructed explicitly from certain polynomials emerging from Schubert presentation of the ring $H^*(G/T; \mathbb{F}_p)$, and to reduce the computation in $H^*(G; \mathbb{F}_p)$ to calculation in these polynomials.

In Theorem 1 below we present the \mathcal{A}_p -algebra $H^*(G; \mathbb{F}_p)$ with respect to the p-transgressive generators α_i (deg $\alpha_i = i$), together with the χ^* -images x_{2t} of the special Schubert classes y_t on G/T (see in §2 and §3 for their definition). Theorem 2 in §4 decides the relationship between the p-primary generators utilized in [DZ₂] and the p-transgressive generators α_i constructed in this paper. Combining these two results completes the project of this paper, see Remark 3 in §4.

Theorem 1. Let (G,p) be a pair with G exceptional and $H^*(G)$ containing non-trivial p-torsion. Then

(1.1) with respect to the presentations of $H^*(G; \mathbb{F}_2)$

$$H^{*}(G_{2}; \mathbb{F}_{2}) = \mathbb{F}_{2}[x_{6}]/\langle x_{6}^{2}\rangle \otimes \Delta_{\mathbb{F}_{2}}(\alpha_{3}, \alpha_{5});$$

$$H^{*}(F_{4}; \mathbb{F}_{2}) = \mathbb{F}_{2}[x_{6}]/\langle x_{6}^{2}\rangle \otimes \Delta_{\mathbb{F}_{2}}(\alpha_{3}, \alpha_{5}, \alpha_{15}, \alpha_{23});$$

$$H^{*}(E_{6}; \mathbb{F}_{2}) = \mathbb{F}_{2}[x_{6}]/\langle x_{6}^{2}\rangle \otimes \Delta_{\mathbb{F}_{2}}(\alpha_{3}, \alpha_{5}, \alpha_{9}, \alpha_{15}, \alpha_{17}, \alpha_{23});$$

$$H^{*}(E_{7}; \mathbb{F}_{2}) = \frac{\mathbb{F}_{2}[x_{6}, x_{10}, x_{18}]}{\langle x_{6}^{2}, x_{10}^{2}, x_{18}^{2}\rangle} \otimes \Delta_{\mathbb{F}_{2}}(\alpha_{3}, \alpha_{5}, \alpha_{9}, \alpha_{15}, \alpha_{17}, \alpha_{23}, \alpha_{27});$$

$$H^{*}(E_{8}; \mathbb{F}_{2}) = \frac{\mathbb{F}_{2}[x_{6}, x_{10}, x_{18}, x_{30}]}{\langle x_{6}^{2}, x_{10}^{4}, x_{18}^{2}, x_{30}^{2}\rangle} \otimes \Delta_{\mathbb{F}_{2}}(\alpha_{3}, \alpha_{5}, \alpha_{9}, \alpha_{15}, \alpha_{17}, \alpha_{23}, \alpha_{27}, \alpha_{29}),$$

$$\text{In postrivial actions of } A_{2}, \text{ on } H^{*}(G; \mathbb{F}_{2}) \text{ are given by}$$

all nontrivial actions of A_2 on $H^*(G; \mathbb{F}_2)$ are given by

$$\delta_{2}(\alpha_{5}) = x_{6} \text{ in } G_{2}, F_{4}, E_{6}, E_{7}, E_{8};$$

$$\delta_{2}(\alpha_{2r-1}) = x_{2r}, r = 5, 9;$$

$$\delta_{2}(\alpha_{15}) = x_{6}x_{10}; \quad \delta_{2}(\alpha_{27}) = x_{10}x_{18} \text{ in } E_{7}, E_{8}$$

$$\delta_{2}(\alpha_{23}) = x_{6}x_{18} \text{ in } E_{7};$$

$$\delta_{2}(\alpha_{23}) = x_{6}x_{18} + x_{6}^{4}; \quad \delta_{2}(\alpha_{29}) = x_{30} + x_{6}^{2}x_{18} \text{ in } E_{8},$$

$$\mathcal{P}^{1}\alpha_{3} = \alpha_{5} \text{ in } G_{2}, F_{4}, E_{6}, E_{7}, E_{8};$$

$$\mathcal{P}^{4}\alpha_{15} = \alpha_{23} \text{ in } F_{4}, E_{6}, E_{7}, E_{8};$$

$$\mathcal{P}^{2}\alpha_{5} = \alpha_{9}; \mathcal{P}^{4}\alpha_{9} = \mathcal{P}^{1}\alpha_{15} = \alpha_{17} \text{ in } E_{6}, E_{7}, E_{8};$$

$$\mathcal{P}^{2}\alpha_{23} = \alpha_{27} \text{ in } E_{7}, E_{8};$$

$$\mathcal{P}^{3}\alpha_{23} = \mathcal{P}^{1}\alpha_{27} = \alpha_{29} \text{ in } E_{8}.$$

(1.2) with respect to the presentations of $H^*(G; \mathbb{F}_3)$

$$H^{*}(F_{4}; \mathbb{F}_{3}) = \mathbb{F}_{3}[x_{8}] / \langle x_{8}^{3} \rangle \otimes \Lambda_{\mathbb{F}_{3}}(\alpha_{3}, \alpha_{7}, \alpha_{11}, \alpha_{15});$$

$$H^{*}(E_{6}; \mathbb{F}_{3}) = \mathbb{F}_{3}[x_{8}] / \langle x_{8}^{3} \rangle \otimes \Lambda_{\mathbb{F}_{3}}(\alpha_{3}, \alpha_{7}, \alpha_{9}, \alpha_{11}, \alpha_{15}, \alpha_{17});$$

$$H^{*}(E_{7}; \mathbb{F}_{3}) = \mathbb{F}_{3}[x_{8}] / \langle x_{8}^{3} \rangle \otimes \Lambda_{\mathbb{F}_{3}}(\alpha_{3}, \alpha_{7}, \alpha_{11}, \alpha_{15}, \alpha_{19}, \alpha_{27}, \alpha_{35});$$

$$H^{*}(E_{8}; \mathbb{F}_{3}) = \mathbb{F}_{3}[x_{8}, x_{20}] / \langle x_{8}^{3}, x_{20}^{3} \rangle \otimes \Lambda_{\mathbb{F}_{3}}(\alpha_{3}, \alpha_{7}, \alpha_{15}, \alpha_{19}, \alpha_{27}, \alpha_{35}, \alpha_{39}, \alpha_{47})$$

all nontrivial actions of A_3 on $H^*(G; \mathbb{F}_3)$ are given by

$$\delta_{3}(\alpha_{7}) = -x_{8}; \quad \delta_{3}(\alpha_{15}) = x_{8}^{2} \text{ in } F_{4}, E_{6}, E_{7}, E_{8};$$

$$\delta_{3}(\alpha_{19}) = -x_{20}; \quad \delta_{3}(\alpha_{27}) = x_{8}x_{20}; \quad \delta_{3}(\alpha_{35}) = -x_{8}^{2}x_{20};$$

$$\delta_{3}(\alpha_{39}) = -x_{20}^{2}; \quad \delta_{3}(\alpha_{47}) = -x_{8}x_{20}^{2} \text{ in } E_{8}$$

$$\mathcal{P}^{1}\alpha_{3} = \alpha_{7} \text{ in } F_{4}, E_{6}, E_{7}, E_{8};$$

$$\mathcal{P}^{1}\alpha_{11} = \alpha_{15} \text{ in } F_{4}, E_{6}, E_{7};$$

$$\mathcal{P}^{1}\alpha_{15} = \mathcal{P}^{3}\alpha_{7} = \alpha_{19}; \mathcal{P}^{3}\alpha_{15} = \alpha_{27} \text{ in } E_{7}, E_{8};$$

$$\mathcal{P}^{2}\alpha_{11} = -\alpha_{19} \text{ in } E_{7};$$

$$\mathcal{P}^{1}\alpha_{35} = \mathcal{P}^{3}\alpha_{27} = \alpha_{39}; \mathcal{P}^{3}\alpha_{35} = \alpha_{47} \text{ in } E_{8}.$$

(1.3) with respect to the presentation of $H^*(E_8; \mathbb{F}_5)$

$$\mathbb{F}_5[x_{12}]/\langle x_{12}^5\rangle \otimes \Lambda(\alpha_3,\alpha_{11},\alpha_{15},\alpha_{23},\alpha_{27},\alpha_{35},\alpha_{39},\alpha_{47})$$

all nontrivial actions of A_5 on $H^*(E_8; \mathbb{F}_5)$ are given by

$$\delta_5(\alpha_{11}) = -x_{12}; \ \delta_5(\alpha_{23}) = -x_{12}^2; \ \delta_5(\alpha_{35}) = x_{12}^3; \ \delta_5(\alpha_{47}) = 2x_{12}^4$$

 $\mathcal{P}^1\alpha_i = \alpha_{i+8}, \ i = 3, 15, 27, 39.$

In the classical descriptions of $H^*(E_7; \mathbb{F}_2)$ and $H^*(E_8; \mathbb{F}_2)$ in [Ar, AS, T, Ko₁, KN, Ka, Mi] the generators were specified mainly up to the degrees and the action of $Sq^1 = \delta_2$ on the generators in degrees 15, 23, 27 was absent. With respect to our explicit construction, results in (1.1) constitutes a complete characterization of $H^*(G; \mathbb{F}_2)$ as an algebra over \mathcal{A}_2 , see Corollary 1 and Remark 1 in §4.

In [KM] Kono and Mimura largely determined the \mathcal{A}_3 action on $H^*(E_7; \mathbb{F}_3)$ and $H^*(E_8; \mathbb{F}_3)$ with respect also to a set of transgressive generators, except an indeterminacy $\epsilon = \pm 1$ occurred in their expressions of \mathcal{P}^1e_{11} , \mathcal{P}^2e_{11} , \mathcal{P}^1e_{15} in E_7 , and of \mathcal{P}^1e_{15} , \mathcal{P}^1e_{35} in E_8 . Again, with respect to our explicit construction these ambiguities are clarified in (1.2).

Results in (1.3) essentially agrees with the calculation by Kono in [Ko₂, Theorem 5.15], whose generators $x_3, x_{15}, x_{27}, x_{39}$ are also transgressive, and correspond to our $\alpha_3, 2\alpha_{15}, 3\alpha_{27}, 2\alpha_{39}$ respectively.

Since 1950's there have been extensive works concerning the \mathcal{A}_p -algebra $H^*(G; \mathbb{F}_p)$, for references see Kane [Ka], Lin [L]. However, the classical results fail to imply Theorem 1 because traditionally $H^*(G; \mathbb{F}_p)$ was presented by generators specified mainly by their degrees regardless of the crucial fact that the algebra $H^*(G; \mathbb{F}_p)$ may admits many sets of generators subject to a given presentation and in contrast, the algebra $H^*(G; \mathbb{F}_p)$ in Theorem 1 is presented by explicitly constructed generators. It is also for this reason that Theorem 1 plays a role in determining the integral cohomology $H^*(G)$ while the classical descriptions fall short of this advantage (e.g. discussion prior to Corollary 2 in §4.3). In addition, our approach applies uniformly to all G and p while, historically, the calculation were performed case by case depending on G and p ([L₁]).

From 1970's there have been important and deep approaches to the \mathcal{A}_p -algebras $H^*(G; \mathbb{F}_p)$ from much more general point of view. The theory of James Lin and Richard Kane on finite H-spaces [Ka] may be applied to determine the \mathcal{A}_p -algebra $H^*(G; \mathbb{F}_p)$ from the rational cohomology $H^*(G; \mathbb{Q})$ [Ka, KLN]. There are also extensive results of Kono, Hara, Hamanaka, Lin, Nishimura, Kozima using the adjoint action to determine the \mathcal{A}_p action, for references see Lin [L]. It would be interesting to see that these methods can be so developed as to be functional uniformly to all G and G are also extensive results of the space of the second content of the second conten

2 Schubert presentation of $H^*(G/T; \mathbb{F}_p)$

For a Lie group G with a maximal torus T consider the fibration

$$(2.1) \ G/T \stackrel{\psi}{\hookrightarrow} BT \stackrel{\pi}{\rightarrow} BG$$

induced by the inclusion $T \subset G$, where BT (resp. BG) is the classifying space of T (resp. G). Since $H^{odd}(BT) = H^{odd}(G/T) = 0$, the cohomology exact sequence of the pair (BT, G/T) in the \mathbb{F}_p coefficients contains the section

$$(2.2) \ 0 \to H^{even}(BT, G/T; \mathbb{F}_p) \stackrel{j}{\to} H^*(BT; \mathbb{F}_p) \stackrel{\psi_p^*}{\to} H^*(G/T; \mathbb{F}_p)$$

where as is classical $H^*(BT; \mathbb{F}_p)$ can be identified with the free polynomial ring $\mathbb{F}_p[\omega_1, \dots, \omega_n]$ in a set of fundamental dominant weights $\omega_1, \dots, \omega_n \in H^2(BT; \mathbb{F}_p)$ of G, and where the ring map ψ_p^* induced by the fiber inclusion ψ is called the *Borel's characteristic map* in characteristic p [BH, B₁].

It is well known from Borel [B₁] that if the integral cohomology $H^*(G)$ is free of p-torsion, then ψ_p^* is surjective and induces an isomorphism

$$H^*(G/T; \mathbb{F}_p) = H^*(BT; \mathbb{F}_p) / \langle H^+(BT; \mathbb{F}_p)^{W(G)} \rangle$$

where $\langle H^+(BT; \mathbb{F}_p)^{W(G)} \rangle$ is the ideal in $H^*(BT; \mathbb{F}_p)$ generated by Weyl invariants in positive degrees (see Demazure [D] for another proof of this fact). Without any restriction on the torsion subgroup of $H^*(G)$ Lemma 1 below extends this classical result.

For simplicity, we make no difference in notation between a polynomial $\theta \in H^*(BT; \mathbb{F}_p)$ and its ψ_p^* -image in $H^*(G/T; \mathbb{F}_p)$. Given a subset $\{f_1, \dots, f_m\}$ in a ring write $\langle f_1, \dots, f_m \rangle$ for the ideal generated by f_1, \dots, f_m .

Lemma 1 ([DZ₁, Proposition 3]). For each 1-connected Lie group G with rank n and and a prime p, there exist

a set
$$\{\theta_{s_1}, \dots, \theta_{s_n}\} \subset H^*(BT; \mathbb{F}_p)$$
 of n polynomials; and a set $\{y_{t_1}, \dots, y_{t_k}\} \subset H^*(G/T; \mathbb{F}_p)$ of Schubert classes on G/T

with deg $\theta_s = 2s$, deg $y_t = 2t > 2$, so that

i)
$$\ker \psi_p^* = \langle \theta_{s_1}, \cdots, \theta_{s_n} \rangle;$$

ii)
$$H^*(G/T; \mathbb{F}_p) = \mathbb{F}_p[\omega_1, \dots, \omega_n, y_t] / \left\langle \theta_s, y_t^{k_t} + \beta_t \right\rangle_{s \in r(G, p), \ t \in e(G, p)};$$

iii) the three sets r(G, p), e(G, p) and $\{k_t\}_{t \in e(G, p)}$ of integers are subject to the constraints

$$e(G, p) \subset r(G, p);$$
 $\dim G = \sum_{s \in r(G, p)} (2s - 1) + \sum_{t \in e(G, p)} 2(k_t - 1)t,$

where
$$r(G,p) = \{s_1, \dots, s_n\}, e(G,p) = \{t_1, \dots, t_k\}$$
 and $\beta_t \in \langle \omega_1, \dots, \omega_n \rangle$.

Since the set $\{\omega_1, \dots, \omega_n\}$ of fundamental dominant weights consists of all Schubert classes on G/T with cohomology degree 2, ii) of Lemma 1 describes the ring $H^*(G/T; \mathbb{F}_p)$ by certain Schubert classes on G/T and therefore, will be called a Schubert presentation of $H^*(G/T; \mathbb{F}_p)$. In addition to $\{\omega_1, \dots, \omega_n\}$ elements in the set $\{y_t\}_{t\in e(G,p)}$ will be called the p-special Schubert classes on G/T. For each exceptional G and prime p, a set of p-special Schubert classes on G/T has been determined in $[DZ_1]$, and is specified by their Weyl coordinates in the table below:

y_i	G_2/T	F_4/T	$E_n/T, \ n=6,7,8$	p
y_3	$\sigma_{[1,2,1]}$	$\sigma_{[3,2,1]}$	$\sigma_{[5,4,2]}, n = 6,7,8$	2
y_4		$\sigma_{[4,3,2,1]}$	$\sigma_{[6,5,4,2]}, n = 6,7,8$	3
y_5			$\sigma_{[7,6,5,4,2]}, n = 7,8$	2
y_6			$\sigma_{[1,3,6,5,4,2]}, n = 8$	5
y_9			$\sigma_{[1,5,4,3,7,6,5,4,2]}, n = 7,8$	2
y_{10}			$\sigma_{[1,6,5,4,3,7,6,5,4,2]}, n = 8$	3
y_{15}			$\sigma_{[5,4,2,3,1,6,5,4,3,8,7,6,5,4,2]}, n = 8$	2

The p-special Schubert classes on G/T and their abbreviations

In view of i) of Lemma 1 we shall call $\{\theta_s\}_{s\in r(G,p)}$ a set of generating polynomials for $\ker \psi_p^*$. These polynomials have been emphasized by Kač [K] as a regular sequence of homogeneous generators for $\ker \psi_p^*$; notified by Ishitoya, Kono and Toda [IKT, Theorem 1.1] as the transgressive imagines of a set of transgressive generators on $H^*(G; \mathbb{F}_p)$. However, it is in the context of [DZ₁, §6] that concrete presentation of a set of such polynomials is available for every exceptional G and prime p.

Assume in the remainder of this section that (G, p) is a pair with G exceptional and $H^*(G)$ containing non-trivial p-torsion. Explicitly, we shall have

$$p = 2$$
: $G = G_2, F_4, E_6, E_7, E_8$;
 $p = 3$: $G = F_4, E_6, E_7, E_8$; and
 $p = 5$: $G = E_8$.

For these cases a set of generating polynomials for ker ψ_p^* are presented in Propositions 2–4 in §5.2; and the sets r(G,p), e(G,p) and $\{k_t\}_{t\in e(G,p)}$ of integers appearing in Lemma 1 are tabulated below, where e(G,p) is given as the subset of r(G,p) whose elements are underlined:

$\overline{(G,p)}$	$e(G,p) \subset r(G,p)$	$\{k_t\}_{t\in e(G,p)}$
$(G_2,2)$	$\{2,\underline{3}\}$	{2}
$(F_4, 2)$	$\{2, \overline{3}, 8, 12\}$	$\{2\}$
$(E_6, 2)$	$\{2, \overline{3}, 5, 8, 9, 12\}$	$\{2\}$
$(E_7, 2)$	$\{2, \underline{3}, \underline{5}, 8, \underline{9}, 12, 14\}$	$\{2, 2, 2\}$
$(E_8, 2)$	$\{2, \underline{3}, \underline{5}, 8, \underline{9}, 12, 14, \underline{15}\}$	$\{8,4,2,2\}$
$(F_4, 3)$	$\{2, \underline{4}, 6, 8\}$	{3}
$(E_6, 3)$	$\{2, \underline{4}, 5, 6, 8, 9\}$	{3}
$(E_7, 3)$	$\{2, \underline{4}, 6, 8, 10, 14, 18\}$	$\{3\}$
$(E_8, 3)$	$\{2, \underline{4}, 8, \underline{10}, 14, 18, 20, 24\}$	$\{3, 3\}$
$(E_8,5)$	$\{2,\underline{6},8,12,14,18,20,24\}$	{5}

Combining (2.2) with i) of Lemma 1 we get the short exact sequence

$$(2.3) \ \ 0 \to H^{even}(BT,G/T;\mathbb{F}_p) \xrightarrow{j} H^*(BT;\mathbb{F}_p) \xrightarrow{\psi_p^*} \frac{H^*(BT;\mathbb{F}_p)}{\langle \theta_s \rangle_{s \in r(G,p)}} \to 0.$$

It implies that j identifies $H^{even}(BT, G/T; \mathbb{F}_p)$ with $\ker \psi_p^* = \langle \theta_i \rangle_{i \in r(G,p)}$. In particular, $\{\theta_i\}_{i \in r(G,p)} \subset H^*(BT, G/T; \mathbb{F}_p)$. It follows that, for any pair $\{s,t\} \subset r(G,p)$ with t=s+k(p-1), there exists a unique $b_{s,t} \in \mathbb{F}_p$ so that a relation of the form

(2.4)
$$\mathcal{P}^k(\theta_s) = b_{s,t}\theta_t + \tau_t \text{ with } \tau_t \in \langle \theta_s \rangle_{s \in r(G,p), s < t}$$

holds in $H^*(BT, G/T; \mathbb{F}_p)$ (resp. in $H^*(BT; \mathbb{F}_p)$ via the injection j). Based on the concrete presentation of $\{\theta_i\}_{i \in r(G,p)}$ in §5.2 the next result is proved in §5.3 by direct computation in the simpler ring $H^*(BT; \mathbb{F}_p)$:

Lemma 2. With respect to the degree set r(G, p) of the generating polynomials for ker ψ_p^* (§5.2) specified in the table, all non-zero $b_{s,t}$ in (2.4) are given by

$$p=2:\ b_{2,3}=1\ \text{for}\ G_2,F_4,E_6,E_7,E_8;$$

$$b_{8,12}=1\ \text{for}\ F_4,E_6,E_7,E_8;$$

$$b_{3,5}=b_{5,9}=b_{8,9}=1\ \text{for}\ E_6,E_7,E_8;$$

$$b_{12,14}=1 \text{ for } E_7, E_8;$$

$$b_{12,15}=b_{14,15}=1 \text{ for } E_8.$$

$$p=3: b_{2,4}=1 \text{ for } F_4, E_6, E_7, E_8;$$

$$b_{6,8}=1 \text{ for } F_4, E_6, E_7;$$

$$b_{4,10}=b_{8,14}=b_{8,10}=1 \text{ for } E_7, E_8;$$

$$b_{6,10}=-1 \text{ for } E_7;$$

$$b_{18,20}=b_{14,20}=b_{18,24}=1 \text{ for } E_8;$$

$$p=5: b_{k,k+4}=1 \text{ for } G=E_8 \text{ and } k=2,8,14,20.$$

3 $H^*(G; \mathbb{F}_p)$ as a module over \mathcal{A}_p

In this section we construct $H^*(G; \mathbb{F}_p)$ from the presentation of $H^*(G/T; \mathbb{F}_p)$ in ii) of Lemma 2, and specify the \mathcal{P}^k action on $H^*(G; \mathbb{F}_p)$ by $b_{s,t} \in \mathbb{F}_p$ in (2.4). The pull back of the universal T-bundle $E_T \to BT$ via the fiber inclusion ψ in (2.1) gives rise to the principle T-bundle

(3.1)
$$T \to G \xrightarrow{\chi} G/T$$
.

Since G/T is 1-connected, the Borel transgression $\tau: H^1(T; \mathbb{F}_p) \to H^2(G/T; \mathbb{F}_p)$ defines a basis $\{t_i\}_{1 \leq i \leq n}$ of $H^1(T; \mathbb{F}_p)$ by $\tau(t_i) = \omega_i$. Consequently, $H^*(T; \mathbb{F}_p) = \Lambda_{\mathbb{F}_p}^*(t_1, \ldots, t_n)$, and in the Leray-Serre spectral sequence $\{E_r^{*,*}(G; \mathbb{F}_p), d_r\}$ of (3.1) one has

$$(3.2) E_2^{s,t}(G; \mathbb{F}_p) = H^s(G/T) \otimes \Lambda_{\mathbb{F}_p}^t(t_1, \dots, t_n);$$

(3.3) the differential
$$d_2: E_2^{s,t}(G; \mathbb{F}_p) \to E_2^{s+2,t-1}(G; \mathbb{F}_p)$$
 is given by $d_2(x \otimes t_k) = x\omega_k \otimes 1, x \in H^s(G/T; \mathbb{F}_p), 1 \leq k \leq n.$

Over \mathbb{F}_p the subring $H^+(BT; \mathbb{F}_p)$ has the canonical additive basis $\{\omega_1^{b_1} \cdots \omega_n^{b_n} \mid b_i \geq 0, \sum b_i \geq 1\}$. Consider the \mathbb{F}_p -linear map

$$(3.4) \mathcal{D}: H^+(BT; \mathbb{F}_p) \to E_2^{*,1}(G; \mathbb{F}_p) = H^*(G/T; \mathbb{F}_p) \otimes \Lambda_{\mathbb{F}}^1$$

by $\mathcal{D}(\omega_1^{b_1}\cdots\omega_n^{b_n})=\omega_1^{b_1}\cdots\omega_s^{b_s-1}\cdots\omega_n^{b_n}\otimes t_s$, where $s\in\{1,\cdots,n\}$ is the least one with $b_s\geq 1$. Immediate but useful properties of the map \mathcal{D} are:

Lemma 3. Let $\beta_1, \beta_2 \in H^+(BT; \mathbb{F}_p)$, and write $[\theta] \in E_3^{s,t}(G; \mathbb{F}_p)$ for the cohomology class of a d_2 -cocycle $\theta \in E_2^{s,t}(G; \mathbb{F}_p)$. Then

$$i)\ D(\ker\psi_p^*)\subset\ker d_2;\quad ii)\ D(\beta_1\beta_2)-\beta_1D(\beta_2)\in\operatorname{Im} d_2.$$

In particular, $[\mathcal{D}(\beta_1\beta_2)] = 0$ if either β_1 or $\beta_2 \in \ker \psi_p^*$. **Proof.** i) is shown by $d_2(\mathcal{D}(\theta)) = \theta = 0$ in $H^*(G/T; \mathbb{F}_p)$ for all $\theta \in \ker \psi_p^*$. For ii) it suffices to consider the cases where β_1, β_2 are monomials in $\omega_1, \dots, \omega_n$, and the result comes directly from the definition of $\mathcal{D}.\square$

By i) of Lemma 3, \mathcal{D} assigns each generating polynomial θ_s an element

$$(3.5) \ \alpha_{2s-1} =: [\mathcal{D}(\theta_s)] \in E_3^{2s-2,1}(G; \mathbb{F}_p).$$

Since $E_2^{s,t}(G;\mathbb{F})=0$ for s odd, one has the *canonical* monomorphism

$$E_3^{2k,1}(G; \mathbb{F}_p) = E_{\infty}^{2k,1}(G; \mathbb{F}_p) = \mathcal{F}^{2k}H^{2k+1}(G; \mathbb{F}_p) \subset H^{2k+1}(G; \mathbb{F}_p)$$

which interprets directly α_{2s-1} as a cohomology class of G, where \mathcal{F} is the filtration on $H^*(G; \mathbb{F}_p)$ induced from χ . Furthermore, by Lemma 3 if we write \mathcal{T} for the subspace of $H^*(G; \mathbb{F}_p)$ spanned by the set $\{\alpha_{2s-1}\}_{s \in r(G,p)}$, the map \mathcal{D} in (3.4) restricts to a surjection

$$(3.6) \ [\mathcal{D}] : \ker \psi_p^* = H^+(BT, G/T; \mathbb{F}_p) \to \mathcal{T} \subset H^{odd}(G; \mathbb{F}_p).$$

Let $\{y_t\}_{t\in e(G,p)}$ be the set of p-special Schubert classes on G/T and put $x_{2t}:=\chi^*y_t\in H^{2t}(G;\mathbb{F}_p)$. Denote by $\Delta(\alpha_{2s-1})_{s\in r(G,p)}$ the \mathbb{F}_p -module in the simple system $\{\alpha_{2s-1}\}_{s\in r(G,p)}$ of generators. We formulate $H^*(G;\mathbb{F}_p)$ from the presentation of $H^*(G/T;\mathbb{F}_p)$ in ii) of Lemma 1, and specify \mathcal{P}^k action on $H^*(G;\mathbb{F}_p)$ in terms of the coefficients $b_{s,t}\in\mathbb{F}_p$ in (2.4).

Lemma 4. The inclusion $\{\alpha_{2s-1}\}_{s\in r(G,p)}$, $\{x_{2t}\}_{t\in e(G,p)}\subset H^*(G;\mathbb{F}_p)$ induces an isomorphism of \mathbb{F}_p -modules

i)
$$H^*(G; \mathbb{F}_p) = \mathbb{F}_p[x_{2t}] / \left\langle x_{2t}^{k_t} \right\rangle_{t \in e(G,p)} \otimes \Delta(\alpha_{2s-1})_{s \in r(G,p)}$$

Moreover, \mathcal{T} is an invariant subspace of all P^k and

ii) (2.4) implies that
$$P^k \alpha_{2s-1} = b_{s,t} \alpha_{2t-1}$$
.

Proof. Assertions i) may be considered as known, see Kač [K, Theorem 3] or Ishitoya, Kono and Toda [IKT; Theorem 1.1]. We outline a proof for it because certain ideas in the process are required by showing ii).

From ii) of Lemma 1 and (3.3) we find that

$$E_3^{*,0} = \operatorname{Im} \chi^* = \mathbb{F}_p[x_{2t}] / \left\langle x_{2t}^{k_t} \right\rangle_{t \in e(G,p)} \subset H^*(G;\mathbb{F}_p).$$

The same method as that used in establishing [DZ₂, Lemma 3.2] is applicable to show that $E_3^{*,1}$ is spanned by $\{\alpha_{2s-1}\}_{s\in r(G,p)}$ (as a module over $E_3^{*,0}$). Further, since $E_3^{*,*}$ is generated multiplicatively by $E_3^{*,0}$ and $E_3^{*,1}$ [K, S], and since

$$E_3^{\dim G-n,n}=E_2^{\dim G-n,n}=\mathbb{F}_p$$

(for $E_2^{\dim G - n - 2, n + 1} = E_2^{\dim G - n + 2, n - 1} = 0$), we get from iii) of Lemma 1 that

$$E_3^{*,*} = \mathbb{F}_p[x_{2t}] / \left\langle x_{2t}^{k_t} \right\rangle_{t \in e(G,p)} \otimes \Delta(\alpha_{2s-1})_{s \in r(G,p)}.$$

The proof for i) is completed by $E_3^{*,*}=E_\infty^{*,*}=H^*(G;\mathbb{F}_p)$, where the first equality comes from $E_3^{*,0}$, $E_3^{*,1}\subset H^*(G;\mathbb{F}_p)$.

Turning to ii) the short exact sequence (2.3) induces the exact sequence of complexes

$$0 \to H^*(BT, G/T; \mathbb{F}_p) \otimes \Lambda^* \to H^*(BT; \mathbb{F}_p) \otimes \Lambda^* \to \mathcal{A}_2^{*,*} \to 0,$$

in which
$$\Lambda^* = \Lambda^*_{\mathbb{F}_p}(t_1, \dots, t_n), \, \mathcal{A}^{*,*}_2 = \frac{H^*(BT; \mathbb{F}_p)}{\langle \theta_i \rangle_{i \in r(G,p)}} \otimes \Lambda^*$$
 and

$$H^*(BT, G/T; \mathbb{F}_p) \otimes \Lambda^* = E_2^{*,*}(E_T, G; \mathbb{F}_p);$$

$$H^*(BT; \mathbb{F}_p) \otimes \Lambda^* = E_2^{*,*}(E_T; \mathbb{F}_p),$$

where E_T is the total space of the universal T-bundle on BT. It is clear that $\mathcal{A}_2^{*,*}$ is a subcomplex of $E_2^{*,*}(G; \mathbb{F}_p)$ with

$$\mathcal{A}_3^{*,1} = \mathcal{T}$$
 and $\mathcal{A}_3^{*,*} = \Delta(\alpha_{2i-1})_{i \in r(G,p)} \subset H^*(G; \mathbb{F}_p),$

Since $E_3^{*,*}(E_T; \mathbb{F}_p) = 0$ the connecting homomorphisms in cohomologies give rise to the isomorphisms

$$\beta: \mathcal{A}_3^{*,1} = \mathcal{T} \to E_3^{*,0}(E_T, G; \mathbb{F}_p);$$

$$\beta': H^{odd}(G; \mathbb{F}_p) \to H^{even}(E_T, G; \mathbb{F}_p)$$

that fit in the commutative diagrams

$$(3.7) \quad 0 \to H^{odd}(G; \mathbb{F}_p) \quad \stackrel{\beta'}{\cong} \quad H^{even}(E_T, G; \mathbb{F}_p) \quad \to 0$$

$$\cup \qquad \qquad \cup \qquad \qquad$$

where the inclusion κ identifies $E_3^{even,0}(E_T,G;\mathbb{F}_p)$ with the subring

$$\operatorname{Im} \chi^*[H^{even}(BT, G/T; \mathbb{F}_p) \to H^{even}(E_T, G; \mathbb{F}_p)].$$

(by a standard property of Leray–Serre spectral sequence). Since $[\mathcal{D}] = (\beta')^{-1} \circ \chi^*$ by (3.7) and since β' and χ^* commute with \mathcal{P}^k , we obtain ii).

In the context of [IKT; Theorem 1.1] the class $\alpha_{2s-1} \in H^{odd}(G; \mathbb{F}_p)$ are called transgressive with transgressive image θ_s , $s \in r(G, p)$. So it is appropriate to introduced the next definition (in view of i) of Lemma 4).

Definition 1. Elements in the set $\{\alpha_{2s-1}\}_{s\in r(G,p)}$ are called p-transgressive generators on $H^*(G; \mathbb{F}_p)$. \square

4 Main results

Assume in this section that G is exceptional with $H^*(G)$ containing non–trivial p–torsion. Let $\{\alpha_{2s-1}\}_{s\in r(G,p)}$ be the set of p–transgressive generators on $H^*(G; \mathbb{F}_p)$ with $\alpha_{2s-1} =: [\mathcal{D}(\theta_s)]$ ((3.5)), where θ_s is given as that in Proposition 2–4 of §5.

In §4.1 we determine the relationship between p-primary generators introduced in $[DZ_2, Definition 2.3]$ and the p-transgressive generators on $H^*(G; F_p)$

defined above. Combining Lemma 4, Lemma 2 and Theorem 2, a proof of Theorem 1 is given in §4.2. Results in Theorems 1 and 2 suffice to determine the structure of $H^*(G; \mathbb{F}_p)$ as an \mathcal{A}_p -module with respect to the p-primary generators. This is explained in §4.3.

4.1. Relationship between the p-primary and the p-transgressive generators on $H^*(G; \mathbb{F}_p)$. Let $\mathcal{O}_{G,\mathbb{F}_p} = \left\{\xi_{2s-1}\right\}_{s \in r(G,p)} \subset E_3^{*,1}(G; \mathbb{F}_p)$ be the set of p-primary generators introduced in [Definition 2.3, DZ₂]. Since $E_3^{*,1}(G,\mathbb{F}_p)$ is a $E_3^{*,0}$ module with basis $\{\alpha_{2s-1}\}_{s \in r(G,p)}$ by the proof of Lemma 4, each $\xi_{2s-1} \in \mathcal{O}_{G,\mathbb{F}_p}$ has an expression in the form

$$(4.1) \ \xi_{2s-1} = \sum_{i \in r(G,p), i \le s} g_i \alpha_{2i-1} \text{ with } g_i \in E_3^{*,0} = \mathbb{F}_p[x_{2t}] / \left\langle x_{2t}^{k_t} \right\rangle_{t \in e(G,p)}.$$

Theorem 2. We have $\xi_{2s-1} = \alpha_{2s-1}$ with the following exceptions

i) for p = 2 and in E_7, E_8 :

$$\begin{array}{ll} \xi_{15} = \alpha_{15} + x_6\alpha_9; & \xi_{27} = \alpha_{27} + x_{10}\alpha_{17} \text{ in } E_7, E_8, \\ \xi_{23} = \alpha_{23} + x_6\alpha_{17} \text{ in } E_7; \\ \xi_{23} = \alpha_{23} + x_6\alpha_{17} + x_6^3\alpha_5; & \xi_{29} = \alpha_{29} + x_6^2\alpha_{17} \text{ in } E_8. \end{array}$$

ii) for p=3

$$\begin{array}{l} \xi_{15} = \alpha_{15} - x_8\alpha_7 \text{ in } F_4, E_6, E_7, E_8; \\ \xi_{35} = \alpha_{35} + x_8\alpha_{27} \text{ in } E_7, E_8; \\ \xi_{27} = \alpha_{27} + x_8\alpha_{19}; \quad \xi_{39} = \alpha_{39} - x_{20}\alpha_{19}; \quad \xi_{47} = \alpha_{47} - x_8\alpha_{39} \text{ in } E_8. \end{array}$$

iii) for p = 5 and in E_8 :

$$\xi_s = \begin{cases} 3\alpha_{15} \text{ for } s = 15; \\ 3\alpha_{23} + 2x_{12}\alpha_{11} \text{ for } s = 23; \\ -\alpha_{35} - x_{12}^2\alpha_{11} \text{ for } s = 35; \\ 3\alpha_{47} + x_{12}^3\alpha_{11} \text{ for } s = 47. \end{cases}$$

Proof. Given a subset $I \subseteq e(G,p)$ and a function $r: I \to \mathbb{Z}^+$ denote by $y_I^{r(I)} \in H^*(G/T; \mathbb{F}_p)$ the monomial $\prod_{t \in I} y_t^{r(t)}$, where \mathbb{Z}^+ is the set of all positive

integers. We call $y_I^{r(I)}$ p-monotonous if $r(t) < k_t$ for all $t \in I$ ([DZ₁, §5]).

Let $\Phi_{G,\mathbb{F}_p} = \{\gamma_s\}_{s \in r(G,p)}$, $\deg \gamma_s = 2s$ be the set of p-primary polynomials on G ([DZ₁, Definition 4]). In the context of [DZ₁, §6] each $\gamma_s \in \Phi_{G,\mathbb{F}_p}$ can be presented as

(4.2)
$$\gamma_s = \beta_s + \sum \beta_{I,r} y_I^{r(I)}$$
 with $\beta_s, \beta_{I,r} \in \ker \psi_p^*$,

where the sum is over all p-monotonous $y_I^{r(I)}$ with

$$\deg(y_I^{r(I)}) = 2(r_1 i_1 + \dots + r_t i_t) \le 2s.$$

Applying the operator φ in [DZ₂; (2.7)] to (4.2) yields in $E_3^{2s-2,1}(G; \mathbb{F}_p)$ the relation

(4.3)
$$\xi_{2s-1} = [\varphi(\gamma_s)] = \mathcal{D}(\beta_s) + \sum_i x_i^{r(I)} \mathcal{D}(\beta_{I,r}),$$

where the first equality comes from the definition of the class ξ_{2s-1} [DZ₂; Definition 2.3], the second is obtained by comparing the definitions of φ in [DZ₂; (2.7)] with \mathcal{D} in (2.4), and where $\mathcal{D}(\beta_s)$, $\mathcal{D}(\beta_{I,r}) \in \mathcal{T}$ by (3.6).

Assume that $\deg \beta_{I,r}=c$. By i) of Lemma 1 $\beta_s,\,\beta_{I,r}\in\ker\psi_p^*$ implies that

$$(4.4) \ \beta_s = b_s \theta_s + \tau_s, \, \beta_{I,r} = \left\{ \begin{array}{l} \tau_c \text{ if } c \notin r(G,p) \\ b_{I,r} \theta_c + \tau_c \text{ if } c \in r(G,p) \end{array} \right.,$$

where $b_s, b_{I,r} \in \mathbb{F}_p$, $\tau_c \in \langle \theta_s \rangle_{t \in r(G,p), t < c}$. Consequently

$$(4.5) \ \mathcal{D}(\beta_s) = b_s \alpha_{2s-1}; \ \mathcal{D}(\beta_{I,r}) = \left\{ \begin{array}{l} 0 \ \text{if} \ c \notin r(G,p) \\ b_{I,r} \alpha_{2c-1} \ \text{if} \ c \in r(G,p) \end{array} \right..$$

by Lemma 3. Substituting (4.5) in (4.3) we get the desired expression (4.1) of ξ_{2s-1} in terms of α_{2c-1} 's.

Finally, we remark that, in the context of $[DZ_1]$, all the polynomials γ_s have been concreted presented in the form of (4.2) (as examples, see in $[DZ_1; (6.2), (6.3)]$ for the cases $G = E_7$ and p = 2, 3) and the method in §5.3 to compute $b_{s,t}$ in (2.4) are applicable to determine b_s and $b_{I,r}$ in (4.5). This explains the algorithm obtaining the relations in Theorem $2.\Box$

4.2. Proof of Theorem 1. The presentations of $H^*(G; \mathbb{F}_p)$ in Theorem 1 come from i) of Lemma 4, together the degree set r(G, p) given in the table in §2. It should be noticed that, in a characteristic $p \neq 2$, the factor $\Delta(\alpha_{2s-1})_{s \in r(G,p)}$ in Lemma 4 can be replaced by the exterior algebra $\Lambda(\alpha_{2s-1})_{s \in r(G,p)}$ because odd dimensional cohomology classes are all square free.

According to ii) of Lemma 4, results on $\mathcal{P}^k(\alpha_{2s-1})$ are verified by Lemma 2. It remains to decide $\delta_p(\alpha_{2s-1})$.

It was shown in [DZ₂; (3.10)] that, with respect to the inclusion $e(G, p) \subset r(G, p)$ (see iii) of Lemma 1), one has

$$\delta_p(\xi_{2s-1}) = \begin{cases} -x_{2s} & \text{if } s \in e(G, p); \\ 0 & \text{if } s \notin e(G, p). \end{cases}$$

Applying δ_p to the expressions of ξ_{2s-1} in Theorem 2 then verifies the results on $\delta_p(\alpha_{2s-1})$ in Theorem 1.

4.3. Applications: the algebra $H^*(G; \mathbb{F}_2)$. It follows from the proof of Lemma 4 that the set of 2-transgressive generators on $H^*(G; \mathbb{F}_2)$ is unique. Moreover, one can deduce from (1.1) of Theorem 1 the next result, that expresses the ring $H^*(G; \mathbb{F}_2)$ solely by these generators (without resorting to the 2-special Schubert classes on G/T).

Corollary 1. With respect to the 2-transgressive generators on $H^*(G; \mathbb{F}_2)$ one has the isomorphisms of algebras

$$H^*(G_2; \mathbb{F}_2) = \mathbb{F}_2[\alpha_3] / \langle \alpha_3^4 \rangle \otimes \Lambda_{\mathbb{F}_2}(\alpha_5);$$

$$H^*(F_4; \mathbb{F}_2) = \mathbb{F}_2[\alpha_3] / \langle \alpha_3^4 \rangle \otimes \Lambda_{\mathbb{F}_2}(\alpha_5, \alpha_{15}, \alpha_{23});$$

$$H^*(E_6; \mathbb{F}_2) = \mathbb{F}_2[\alpha_3] / \langle \alpha_3^4 \rangle \otimes \Lambda_{\mathbb{F}_2}(\alpha_5, \alpha_9, \alpha_{15}, \alpha_{17}, \alpha_{23});$$

$$H^*(E_7; \mathbb{F}_2) = \frac{\mathbb{F}_2[\alpha_3, \alpha_5, \alpha_9]}{\langle \alpha_3^4, \alpha_5^4, \alpha_9^4 \rangle} \otimes \Lambda_{\mathbb{F}_2}(\alpha_{15}, \alpha_{17}, \alpha_{23}, \alpha_{27});$$

$$H^*(E_8; \mathbb{F}_2) = \frac{\mathbb{F}_2[\alpha_3, \alpha_5, \alpha_9, \alpha_{15}]}{\langle \alpha_1^{16}, \alpha_5^8, \alpha_9^4, \alpha_{15}^4 \rangle} \otimes \Lambda_{\mathbb{F}_2}(\alpha_{17}, \alpha_{23}, \alpha_{27}, \alpha_{29}).$$

Proof. In view of (1.1) it suffices to show that

$$(4.6) \ \alpha_{2s-1}^2 = \left\{ \begin{array}{l} x_6 \ \text{for} \ s=2 \ \text{and in} \ G_2, F_4, E_6, E_7, E_8; \\ x_{4s-2} \ \text{for} \ s=3, 5 \ \text{and in} \ E_7, \ E_8; \\ x_{30} + x_6^2 x_{18} \ \text{for} \ s=15 \ \text{and in} \ E_8, \end{array} \right.$$

and that

(4.7) $\alpha_{2s-1}^2 = 0$ for those α_{2s-1} belonging to the exterior part.

These can be deduced directly from $\alpha_{2s-1}^2 = \delta_2 \mathcal{P}^{s-2} \alpha_{2s-1}$ and (1.1), together with the Adem relation [A] and the fact $\mathcal{P}^{s-2} \alpha_{2s-1} \in \mathcal{T}$ by Lemma 4.

Remark 1. The rings $H^*(G; \mathbb{F}_2)$ (together with the \mathcal{P}^k action on $H^*(G; \mathbb{F}_2)$) were first obtained by Borel, Araki, Shikata and Thomas [B, Ar, AS, T] which, in terms of generator and relations, agree with those given in Corollary 1. However, in these classical results there is no indication on the effect of Sq^1 action on the generators in the exterior part. The formulae for $\delta_2(\alpha_{2s-1})$ in (1.1) of Theorem 1 implies that these actions are highly nontrivial:

$$Sq^{1}(\alpha_{15}) = \alpha_{3}^{2}\alpha_{5}^{2}, Sq^{1}(\alpha_{27}) = \alpha_{5}^{2}\alpha_{9}^{2} \text{ in } E_{7}, E_{8};$$

 $Sq^{1}(\alpha_{23}) = \alpha_{3}^{2}\alpha_{9}^{2} \text{ in } E_{7};$
 $Sq^{1}(\alpha_{23}) = \alpha_{3}^{2}\alpha_{9}^{2} + \alpha_{3}^{8}; Sq^{1}(\alpha_{29}) = \alpha_{15}^{2} \text{ in } E_{8}.\square$

Traditionally, the cohomologies $H^*(G; \mathbb{F}_p)$ for exceptional G were calculated case by case, presented using generators from quite different origins (this happened, even for the case p=2, see [B; A; AS; T, Ko₁; KN]), and without referring to the integral cohomology $H^*(G)$. As a result one could hardly analyzing $H^*(G)$ from information about $H^*(G; \mathbb{F}_p)$. In comparison, since the primary generators on $H^*(G; \mathbb{F})$ ([DZ₂, Definition 2.3]) in various coefficients \mathbb{F} stemming solely from Schubert presentation of the ring $H^*(G/T)$, the relationship between $H^*(G)$ and $H^*(G; \mathbb{F}_p)$ (for all prime p) are transparent with respect to these generators (see [DZ₂; Lemma 2.5; Lemma 3.3]). It is for this reason we are more interested in the presentation of the \mathcal{A}_p -module $H^*(G; \mathbb{F}_p)$ by the p-primary generators.

In [DZ₂; Theorem 1] $H^*(G; \mathbb{F}_2)$ is presented by the set $\{\xi_{2s-1}\}_{s \in r(G,p)}$ of p-primary generators as

$$H^*(G;\mathbb{F}_2) = \mathbb{F}_2[x_{2t}] / \left\langle x_{2t}^{k_t} \right\rangle_{t \in e(G,2)} \otimes \Delta(\xi_{2s-1})_{s \in r(G,2)}.$$

To specify the ring structure of $H^*(G; \mathbb{F}_2)$ with respect to $\{\xi_{2s-1}\}_{s \in r(G,2)}$ it suffices to find the expressions of all the squares ξ_{2s-1}^2 in the above presentation. This has been done in views of i) of Theorem 2, (4.6) and (4.7).

Corollary 2. With respect to the 2-primary generators on $H^*(G; \mathbb{F}_2)$, one has the isomorphisms of algebras

$$\begin{split} H^*(G_2; \mathbb{F}_2) &= \mathbb{F}_2[x_6] / \left\langle x_6^2 \right\rangle \otimes \Delta_{\mathbb{F}_2}(\xi_3) \otimes \Lambda_{\mathbb{F}_2}(\xi_5); \\ H^*(F_4; \mathbb{F}_2) &= \mathbb{F}_2[x_6] / \left\langle x_6^2 \right\rangle \otimes \Delta_{\mathbb{F}_2}(\xi_3) \otimes \Lambda_{\mathbb{F}_2}(\xi_5, \xi_{15}, \xi_{23}); \\ H^*(E_6; \mathbb{F}_2) &= \mathbb{F}_2[x_6] / \left\langle x_6^2 \right\rangle \otimes \Delta_{\mathbb{F}_2}(\xi_3) \otimes \Lambda_{\mathbb{F}_2}(\xi_5, \xi_9, \xi_{15}, \xi_{17}, \xi_{23}); \\ H^*(E_7; \mathbb{F}_2) &= \frac{\mathbb{F}_2[x_6, x_{10}, x_{18}]}{\left\langle x_6^2, x_{10}^2, x_{18}^2 \right\rangle} \otimes \Delta_{\mathbb{F}_2}(\xi_3, \xi_5, \xi_9) \otimes \Lambda_{\mathbb{F}_2}(\xi_{15}, \xi_{17}, \xi_{23}, \xi_{27}); \\ H^*(E_8; \mathbb{F}_2) &= \frac{\mathbb{F}_2[x_6, x_{10}, x_{18}, x_{30}]}{\left\langle x_6^8, x_{10}^4, x_{18}^2, x_{30}^2 \right\rangle} \otimes \Delta_{\mathbb{F}_2}(\xi_3, \xi_5, \xi_9, \xi_{15}, \xi_{23}) \otimes \Lambda_{\mathbb{F}_2}(\xi_{17}, \xi_{27}, \xi_{29}), \end{split}$$

where

$$\xi_3^2 = x_6 \text{ in } G_2, F_4, E_6, E_7, E_8,$$

 $\xi_5^2 = x_{10}, \, \xi_9^2 = x_{18} \text{ in } E_7, E_8,$
 $\xi_{15}^2 = x_{30}; \, \xi_{23}^2 = x_6^6 x_{10} \text{ in } E_8. \square$

Remark 2. Corollary 2 was applied in $[DZ_2; \S 6]$ to determine the integral cohomology ring $H^*(G)$ with respect to the integral primary generators. \square Remark 3. In $[DZ_2;$ Theorems 3–5] the rings $H^*(G; \mathbb{F}_p)$ were presented by p-primary generators. Combining Theorems 1 and 2 with the Cartan formula [SE] determines the \mathcal{A}_p action on $H^*(G; \mathbb{F}_p)$ with respect to these generators. \square

5 Proof of Lemma 2

In §5.1 we obtain formulae for the \mathcal{P}^k action on the universal Chern classes of complex vector bundles. In §5.2 we present, for each exceptional G and prime p=2,3,5, a set $\{\theta_s\}_{s\in r(G,p)}$ of generating polynomials for the ideal ker ψ_p^* in terms of Chern classes of certain vector bundle on BT. With these preliminaries Lemma 2 is establishes in §5.3.

5.1. The mod p-Wu formulae. Let U(n) be the unitary group of rank n, and let BU(n) be its classifying space. It is well known that, for a prime p,

$$H^*(BU(n), \mathbb{F}_n) = \mathbb{F}_n[c_1, \dots, c_n]$$

where $1 + c_1 + \cdots + c_n \in H^*(BU(n), \mathbb{F}_p)$ is the total Chern class of the universal complex n-bundle ξ_n on BU(n). This implies that each $\mathcal{P}^k c_m$ can be written as a polynomial in the c_1, \ldots, c_n , and such expression may be called the mod p-Wu formula for $\mathcal{P}^k c_m$ [P, Sh]. In the next result we present such formulae for certain $\mathcal{P}^k c_m$ that are barely sufficient for a proof of Lemma 2.

Proposition 1. The following relations hold in $H^*(BU(n), \mathbb{F}_p)$

i)
$$p = 2$$
:
$$\mathcal{P}^r c_m = \sum_{0 \le t \le r} {r-m \choose t} c_{r-t} c_{m+t}, \text{ where } {n \choose i} = n(n-1) \cdots (n-i+1)/i!.$$

ii)
$$p = 3$$
:

$$\mathcal{P}^1 c_m = (m+2)c_{m+2} - c_1 c_{m+1} + (c_1^2 + c_2) c_m;$$

$$\mathcal{P}^2 c_m = c_2^2 c_m + c_1 c_3 c_m - c_4 c_m - c_1 c_2 c_{1+m} + (m+1)c_1^2 c_{2+m} + (m-1)c_2 c_{2+m} - (m+1)c_1 c_{3+m} + \frac{1}{2}(m^2 + 3m + 2)c_{4+m};$$

$$\mathcal{P}^{3}c_{m} = c_{3}^{2}c_{m} + c_{2}c_{4}c_{m} - c_{1}c_{5}c_{m} + c_{6}c_{m} - c_{2}c_{3}c_{1+m} + c_{5}c_{1+m}$$

$$+ mc_{2}^{2}c_{2+m} + (1+m)c_{1}c_{3}c_{2+m} - (1+m)c_{4}c_{2+m} - mc_{1}c_{2}c_{3+m}$$

$$- c_{3}c_{3+m} + \frac{1}{2}(m^{2} + m)c_{1}^{2}c_{4+m} - m^{2}c_{2}c_{4+m} - \frac{1}{2}(m^{2} + m)c_{1}c_{5+m}$$

$$+ \frac{1}{6}(m^{3} + 3m^{2} + 2m - 6)c_{6+m}$$

iii) p = 5: $\mathcal{P}^1 c_m = (m+4)c_{m+4} - c_1 c_{m+3} + (c_1^2 - 2c_2)c_{m+2} + (-c_1^3 - 2c_1 c_2 + 2c_3)c_{m+1} + (c_1^4 + c_1^2 c_2 + 2c_2^2 - c_1 c_3 + c_4)c_m.$

Proof. For p = 2 the expansion of $\mathcal{P}^r c_m$ comes from the classical Wu–formula [W] as $c_r \mod 2$ is the $2r^{th}$ Stiefel–Whitney class of the real reduction of ξ_n .

For p > 2 we have the general expansion of $\mathcal{P}^k c_m$ in terms of the Schur symmetric functions s_{λ} by the formula in [Du, (1.2)]

$$(5.1) \mathcal{P}^k(c_m) \equiv \sum_{\lambda} K_{(1^{m-k}, p^k), \lambda}^{-1} s_{\lambda} \mod p,$$

where $K_{(1^{m-k},p^k),\lambda}^{-1}$ is the *inverse Kostka number* associated to the pair $\{\mu = (1^{m-k}, p^k); \lambda\}$ of partitions, and where the sum is over all partitions λ of m + 2k(p-1). We note in (5.1) that

- (5.2) for those (p, k) concerned by Proposition 1, [ER, Corollary 2] and [Du, Corollary 5] can be applied to evaluate the coefficients $K_{(1^{m-k}, p^k), \lambda}^{-1}$;
- (5.3) each Schur function s_{λ} can be expanded as a polynomial in the c_r 's by the classical Giambelli formula $s_{\lambda} = \det(c_{\lambda'_j+j-i})$ [M, p.36], where $\lambda' = (\lambda'_1, \lambda'_2, \ldots)$ is the partition conjugate to λ .

Combining (5.2) and (5.3) one obtains the relations in the Proposition.

Remark 4. We record below the presentation of (5.1) from which the relevant inverse Kostka numbers are transparent. For p = 3 we have

$$\begin{split} \mathcal{P}^1c_m &= ms_{(1^{m+2})} + s_{(1^{m-1},3)} - s_{(1^m,2)} - s_{(1^{m-2},2^2)}; \\ \mathcal{P}^2c_m &= s_{(1^{m-2},3^2)} + (m-1)s_{(1^{m+1},3)} - s_{(1^{m-1},2,3)} - s_{(1^{m-3},2^2,3)} \\ &+ \frac{m(m-1)}{2}s_{(1^{m+4})} - (m-1)s_{(1^{m+2},2)} - (m-2)s_{(1^m,2^2)} + 2s_{(1^{m-2},2^3)} \\ &+ s_{(1^{m-4},2^4)}; \\ \mathcal{P}^3c_m &= s_{(1^{m-3},3^3)} + (m-2)s_{(1^m,3^2)} - s_{(1^{m-2},2,3^2)} - s_{(1^{m-4},2^2,3^2)} \\ &+ \frac{(m-1)(m-2)}{2}s_{(1^{m+3},3)} - (m-2)s_{(1^{m+1},2,3)} - (m-3)s_{(1^{m-1},2^2,3)} \\ &+ 2s_{(1^{m-3},2^3,3)} + s_{(1^{m-5},2^4,3)} + \frac{m(m-1)(m-2)}{6}s_{(1^{m+6})} - \frac{(m-1)(m-2)}{2}s_{(1^{m+4},2)} \\ &- \frac{(m-2)(m-3)}{2}s_{(1^{m+2},2^2)} + (2m-5)s_{(1^m,2^3)} + (m-5)s_{(1^{m-2},2^4)} \\ &- 3s_{(1^{m-4},2^5)} - s_{(1^{m-6},2^6)} \end{split}$$

For p = 5 we have

$$\mathcal{P}^{1}c_{m} = ms_{(1^{m+4})} + s_{(1^{m-1},5)} - s_{(1^{m},4)} - s_{(1^{m-2},2,4)} + s_{(1^{m+1},3)} + s_{(1^{m-1},2,3)} + s_{(1^{m-3},2^{2},3)} - s_{(1^{m+3},2)} - s_{(1^{m},2^{2})} - s_{(1^{m-2},2^{3})} - s_{(1^{m-4},2^{4})}.\square$$

5.2. Generating polynomials for $\ker \psi_p^*$. For n indeterminacies t_1, \dots, t_n of degree 2 we set

(5.4)
$$1 + e_1 + \dots + e_n = \prod_{1 \le i \le n} (1 + t_i),$$

That is, e_i is the i^{th} elementary symmetric functions in t_1, \dots, t_n with degree 2i. For an exceptional G with rank n, assume that the set $\{\omega_i\}_{1\leq i\leq n}\subset H^2(BT)$ of fundamental weights (cf. Lemma 1) is so ordered as the vertices in the Dynkin diagram of G in [Hu, p.58]. We introduce a set of polynomials $c_k(G)\in H^{2k}(BT)$ in ω_1,\dots,ω_n for $G=F_4,E_6,E_7,E_8$.

Definition 2. If $G = F_4$ we let $c_k(F_4)$, $1 \le k \le 6$, be the polynomial obtained from $e_k(t_1, \dots, t_6)$ in (5.4) by letting

$$t_1 = \omega_4;$$
 $t_2 = \omega_3 - \omega_4;$ $t_3 = \omega_2 - \omega_3;$ $t_4 = \omega_1 - \omega_2 + \omega_3;$ $t_5 = \omega_1 - \omega_3 + \omega_4;$ $t_6 = \omega_1 - \omega_4.$

If $G = E_n$, n = 6, 7, 8, we let $c_k(E_n)$, $1 \le k \le n$, be the polynomial obtained from $e_k(t_1, \dots, t_n)$ in (5.4) by letting

$$t_1 = \omega_n; \quad t_2 = \omega_{n-1} - \omega_n; \quad \cdots;$$

 $t_{n-3} = \omega_4 - \omega_5; \quad t_{n-2} = \omega_3 - \omega_4 + \omega_2;$
 $t_{n-1} = \omega_1 - \omega_3 + \omega_2; \quad t_n = -\omega_1 + \omega_2.\square$

We emphasis at this stage that

Lemma 5. The class $1 + c_1(F_4) + \cdots + c_6(F_4) \in H^*(BT)$ (resp. $1 + c_1(E_n) + \cdots + c_n(E_n) \in H^*(BT)$, n = 6, 7, 8) is the total Chern class of a 6-dimensional (resp. n-dimensional) complex bundle ξ_G on BT.

Moreover, $c_1(G) \in H^2(BT)$ can be expressed in terms of weights as

$$c_1(G) = \begin{cases} 3\omega_1 \text{ for } G = F_4; \\ 3\omega_2 \text{ for } G = E_6, E_7, E_8. \end{cases}$$

Proof. For a 2-dimensional cohomology class $t \in H^2(BT)$ let L_t be the complex line bundle on BT with Euler class t. Then

$$\xi_{F_4} = \bigoplus_{1 \le i \le 6} L_{t_i} \text{ (resp. } \xi_{E_n} = \bigoplus_{1 \le i \le n} L_{t_i}, n = 6, 7, 8),$$

where t_i is the linear form in the weights given in Definition 2.

The expressions of all $c_r(G)$ by the special Schubert classes on G/T were deduced in $[DZ_1$; Lemma 4], by which the formula for $c_1(G)$ is a special case. \square

Let (G, p) be a pair with $H^*(G)$ containing non-trivial p-torsion. In Propositions 2–4 we present, in accordance to p = 2, 3, 5, a set $\{\theta_s\}_{s \in r(G,p)} \subset H^*(BT; \mathbb{F}_p) = \mathbb{F}_p[\omega_1, \cdots, \omega_n]$ of generating polynomial for $\ker \psi_p^*$ (derived from the set of p-primary polynomials on G [DZ₁; Definition 4] by the method illustrated in the proof of [DZ₁; Proposition 3])

Proposition 2. For $G = G_2$, F_4 and E_8 , a set $\{\theta_i\}_{i \in r(G,2)}$ of generating polynomials for $\ker \psi_2^*$ is given by

$\{\theta_i\}_{i\in r(G,2)}$	G_2	F_4	E_8
θ_2	$\omega_1^2 + \omega_1\omega_2 + \omega_2^2$	c_2	c_2
θ_3	ω_2^3	c_3	c_3
θ_5			$c_5 + \omega_2 c_4$
θ_8		$c_4^2 + \omega_1^2 c_6$	
θ_9			$\omega_2^2 c_7 + \omega_2 c_8 + \omega_2^3 c_6$
θ_{12}		$c_6^2 + c_4^3$	$c_6^2 + c_4^3$
θ_{14}			$c_7^2 + c_4^2 c_6 + \omega_2^2 c_6^2$
θ_{15}			$c_7c_8 + \omega_2^7c_8 + \omega_2^3c_4c_8$

and for $G = E_6, E_7$ by

$$\{\theta_i\}_{i \in r(E_6,2)} = \{\theta_i \mid_{c_7 = c_8 = 0}\}_{i \in r(E_8,2) \setminus \{14,15\}};$$

$$\{\theta_i\}_{i \in r(E_7,2)} = \{\theta_i \mid_{c_8=0}\}_{i \in r(E_8,2) \setminus \{15\}}.\square$$

Proposition 3. For an exceptional G with $G \neq G_2$, a set $\{\theta_i\}_{i \in r(G,3)}$ of generating polynomials for $\ker \psi_3^*$ is given by

(0)	T.	E	T.
$\{ heta_i\}$	F_4	E_6	E_7
θ_2	$\omega_1^2 - c_2$	$\omega_2^2 - c_2$	$\omega_2^2 - c_2$
θ_4	$c_2^2 - c_4$	$c_2^2 - c_4$	$c_2^2 - c_4$
θ_5		$c_5 + c_2 c_3$	
θ_6	$c_2c_4 - c_6$	$c_2c_4 + c_3^2 - c_6$	$-\omega_2^3 c_3 + c_2 c_4 - \omega_2 c_5 + c_3^2 - c_6$
θ_8	$-c_{2}c_{6}$	$-c_4^2$	$-c_4^2 + c_2c_3^2 - \omega_2c_7 + c_3c_5$
θ_9		$c_6 c_3$	
θ_{10}			$-c_4c_3^2 + c_2c_3c_5 + c_3c_7 - c_5^2$
θ_{14}			$c_4c_5^2 + c_2c_5c_7 + c_7^2$
θ_{18}			$c_2c_3^3c_7+c_3^6+c_3^2c_5c_7+c_3c_5^3$

$\{\theta_i\}$	E_8
θ_2	$\omega_2^2-c_2$
θ_4	$c_2^2 - c_4$
θ_8	$-\omega_2^5 c_3 - \omega_2^3 c_5 - \omega_2^2 c_3^2 - \omega_2^2 c_6 - \omega_2 c_7 + c_3 c_5$
θ_{10}	$-c_4c_3^2 + c_2c_3c_5 + c_2c_8 + c_3c_7 - c_5^2$
θ_{14}	$c_4c_3c_7 + \omega_2^3c_3c_8 + c_2c_3^2c_6 + c_2c_5c_7 - \omega_2c_5c_8 - c_3^2c_8 + c_3c_5c_6 + c_7^2$
θ_{18}	$-c_2c_4^4 + c_4c_3^2c_8 + c_4c_6c_8 - c_4c_7^2 - c_2c_3^3c_7 - c_2c_3c_5c_8 + c_2c_3c_6c_7$
	$-\omega_2 c_3 c_6 c_8 - c_3^6 - c_3^2 c_6^2 - c_5 c_6 c_7 + c_6^3$
θ_{20}	$-c_2c_3c_7c_8 + \omega_2c_3c_8^2 + c_3^2c_6c_8 + c_5c_7c_8$
θ_{24}	$c_8^3 + c_2 c_3^2 c_8^2 - \omega_2 c_3 c_6^2 c_8 + c_2 c_3 c_5 c_6 c_8 - c_3^2 c_5^2 c_8 - \omega_2 c_3 c_5 c_7 c_8 - c_3 c_7^3$
	$-\omega_2 c_3 c_6 c_7^2 - c_2 c_3 c_5 c_7^2 + c_5^2 c_7^2 + c_2 c_4^2 c_7^2 - c_5 c_6^2 c_7 - c_3^2 c_5 c_6 c_7 + c_3^4 c_5 c_7$
	$-c_2c_5^3c_7-c_3^2c_6^3+c_2c_4c_6^3+c_3^4c_6^2$

Proposition 4. For $G = E_8$, a set of generating polynomials for $\ker \psi_5^*$ is given by

$$\begin{array}{l} \theta_2 = -\omega_2^2 - c_2; \\ \theta_6 = 2\omega_2^6 - 2\omega_2^3c_3 - 2\omega_2c_5 - 2c_3^2 - c_6; \\ \theta_8 = -\omega_2^8 - \omega_2^4c_4 - 2\omega_2^3c_5 - \omega_2c_3c_4 - \omega_2c_7 - c_3c_5 - c_4^2 - c_8; \\ \theta_{12} = -2\omega_2^4c_4^2 - \omega_2^4c_8 + \omega_2^3c_3^3 + 2\omega_2^3c_4c_5 - 2\omega_2^2c_3^2c_4 - \omega_2^2c_3c_7 - 2\omega_2c_3c_4^2 \\ + c_3^4 - c_3c_4c_5 - 2c_5c_7 + 2c_6^2; \end{array}$$

$$\begin{array}{l} \theta_{14} = -2\omega_2^{10}c_4 + 2\omega_2^8c_3^2 - 2\omega_2^7c_7 + \omega_2^5c_3c_6 - 2\omega_2^4c_3c_7 + 2\omega_2^4c_5^2 + \omega_2^3c_3^2c_5 \\ + \omega_2^3c_4c_7 + \omega_2c_3c_4c_6 - \omega_2c_4^2c_5 + \omega_2c_5c_8 - 2\omega_2c_6c_7 + c_3^2c_4^2 - c_3^2c_8 \\ + 2c_3c_4c_7 + c_4^2c_6 + c_4c_5^2 + c_7^2; \\ \theta_{18} = -2\omega_2^8c_5^2 + 2\omega_2^7c_3^2c_5 - 2\omega_2^6c_3^2c_6 + \omega_2^6c_3c_4c_5 + 2\omega_2^5c_3^2c_7 + 2\omega_2^4c_3^2c_8 \\ + \omega_2^4c_4c_5^2 + 2\omega_2^3c_3c_4^3 - \omega_2^3c_3c_5c_7 + 2\omega_2^3c_4^2c_7 - 2\omega_2^3c_5^3 - \omega_2^2c_3^4c_4 - 2\omega_2^2c_3^3c_7 \\ + \omega_2^2c_3c_4^2c_5 + 2\omega_2^2c_4^4 - \omega_2^2c_4^2c_8 - \omega_2c_3^4c_5 - 2\omega_2c_3c_7^2 + \omega_2c_3^4c_5 - 2\omega_2c_4c_5c_8 \\ + \omega_2c_5^2c_7 - c_3^2c_4c_8 + c_3^2c_5c_7 - 2c_3c_4^2c_7 + 2c_3c_4c_5c_6 - c_3c_5^3 - 2c_3c_7c_8 + c_4c_7^2; \\ \theta_{20} = -\omega_2^{17}c_3 - \omega_2^{13}c_7 + 2\omega_2^{12}c_4^2 + 2\omega_2^{12}c_8 + 2\omega_2^{11}c_3c_6 + \omega_2^{10}c_3^2c_4 - \omega_2^9c_4c_7 \\ + 2\omega_2^8c_4^3 - \omega_2^7c_3c_5^2 - \omega_2^6c_3^3c_5 - \omega_2^6c_3^2c_8 + \omega_2^6c_4c_5^2 - 2\omega_2^5c_5^3 + \omega_2^5c_3c_4^4 \\ + \omega_2^5c_4^2c_7 + 2\omega_2^5c_5^3 - \omega_2^4c_3^4c_4 - 2\omega_2^4c_3c_4^2c_5 - 2\omega_2^4c_4c_5c_7 + \omega_2^3c_3^4c_5 \\ - 2\omega_2^3c_3^2c_4c_7 - \omega_2^3c_3c_4c_5^2 + \omega_2^2c_3^4 + 2\omega_2^2c_3^2c_5^3 - 2\omega_2c_3^3c_5 + 2\omega_2^2c_3^2c_5c_7 - 2\omega_2c_3^5c_4 \\ + 2\omega_2c_3^3c_5^2 + 2\omega_2c_3^2c_6c_7 + \omega_2c_4c_5^3 + 2c_3^4c_8 + c_3^3c_4c_7 + c_3^2c_7^2 + 2c_3c_3^4c_5 \\ + 2c_4^5 + c_4^3c_8 - 2c_5^4; \\ \theta_{24} = -\omega_2^{16}c_8 - \omega_2^{13}c_3c_8 - 2\omega_2^9c_3c_4c_8 + 2\omega_2^7c_4c_5c_8 + \omega_2^4c_5c_7c_8 + \omega_2^2c_3^2c_5c_8 \\ + 2\omega_2^5c_3c_8^2 + \omega_2^5c_4c_7c_8 - \omega_2^5c_5c_6c_8 + 2\omega_2^4c_4c_8^2 - \omega_2^4c_5c_7c_8 + \omega_2^2c_3^2c_5c_8 \\ - 2\omega_2^3c_3^2c_7c_8 + \omega_2^3c_3c_4c_6c_8 - 2\omega_2^3c_3c_5c_8 + \omega_2^3c_6c_7c_8 + \omega_2^2c_6c_8^2 \\ - 2\omega_2c_3c_4c_8^2 - \omega_2c_4c_5c_6c_8 - 2\omega_2c_7c_8^2 + c_3^4c_4c_8 + 2c_3c_5c_8^2 + c_3c_6c_7c_8 \\ - 2\omega_2c_3c_4c_8^2 - \omega_2c_4c_5c_6c_8 - 2\omega_2c_7c_8^2 + c_3^4c_4c_8 + 2c_3c_5c_8^2 + c_3c_6c_7c_8 \\ - 2\omega_2c_3c_4c_8^2 - \omega_2c_4c_5c_6c_8 - 2\omega_2c_7c_8^2 + c_3^4c_4c_8 + 2c_3c_5c_8^2 + c_3c_6c_7c_8 \\ - 2c_5^2c_6c_8. \Box$$

5.3. Proof of Lemma 2. Let (G, p) be a pair with G exceptional and $H^*(G)$ containing non–trivial p–torsion. Granted with the concrete expressions of the set $\{\theta_s\}_{s\in r(G,p)}$ of generating polynomials for $\ker \psi_p^*$ in §5.2 and the mod p Wu–formulae in §5.1, we complete the proof of Theorem 1 by showing Lemma 2.

If $(G, p) = (G_2, 2)$, Lemma 2 is directly shown by the computation (see in Proposition 2 for the expressions of θ_2 , θ_3 in G_2)

$$\mathcal{P}^{1}\theta_{2} = \mathcal{P}^{1}(\omega_{1}^{2} + \omega_{1}\omega_{2} + \omega_{2}^{2}) = \omega_{1}^{2}\omega_{2} + \omega_{1}\omega_{2}^{2} = \theta_{3} + \omega_{1}\theta_{2}.$$

So we can assume from now on that $G \neq G_2$.

Let $\mathbb{F}_p[G]$ be the subring of $H^*(BT; \mathbb{F}_p)$ generated by $c_i = c_i(G)$ and the weight ω_r with r=1 for F_4 , r=2 for E_6 , E_7 , E_8 . Then $\{\theta_i\}_{i\in r(G,p)}\subset \mathbb{F}_p[G]$ by Proposition 2–4. Since the $c_r(G)$'s are the mod p reduction of the Chern classes of a vector bundle on BT, the Wu–formulae in Proposition 1, together with the Cartan–formula [SE], are applicable to express each $\mathcal{P}^k\theta_r$ as an element in $\mathbb{F}_p[G]$. It remains to sort out the number $b_{s,t}\in \mathbb{F}_p$ in the equation (2.4).

The expressions of $\mathcal{P}^k\theta_r \in \mathbb{F}_p[G]$ may appear lengthy (in particular, this happens when $G = E_8$ and p = 3 and 5). However, we have two practical methods implementing $b_{s,t} \in \mathbb{F}_p$. The first utilizes *Mathematica*, while the second lifts the computation to an appropriate S^1 -bundle on BT at where, θ_r and $\mathcal{P}^k c_m$ admit much simpler expressions.

Proof of Lemma 2 (Method I). Based on certain build-in functions of *Mathematica* the procedure to compute $b_{s,t}$ in (2.4) is given as follows.

For an $i \in r(G, p)$ denote by $\mathcal{G}_i(G, p) \subset \mathbb{F}_p[G]$ a Gröbner basis of the ideal generated by the subset $\{\theta_j\}_{j \in r(G, p), j < i}$. Let $\{s, t\} \subset r(G, p)$ be a pair with t = s + k(p-1).

Step 1. Call GroebnerBasis[,] to compute $\mathcal{G}_t(G, p)$;

Step 2. Call PolynomialReduce[,,] to compute the residue h_a of $P^k\theta_s - a\theta_t$ module $\mathcal{G}_t(G,p)$, $a \in \mathbb{F}_p$;

Step 3. Take $b_{s,t} = \{a \in \mathbb{F}_p \mid h_a = 0\}.\square$

To demonstrate the second method a few notations are required. Let κ : $S(BT) \to BT$ be the oriented S^1 -bundle on BT with Euler class $\omega_r \in H^2(BT)$, where r = 1 for F_4 and r = 2 for E_6, E_7, E_8 . Then we have

$$H^*(S(BT); \mathbb{F}_p) = H^*(BT; \mathbb{F}_p) \mid_{\omega_r = 0}$$

and the induced ring map κ^* on cohomology is given simply by $\kappa^*\theta = \theta \mid_{\omega_r=0}$.

Example. Let $\{\theta_i\}_{i\in r(G,p)}$ be the set of generating polynomials for $\ker \psi_p^*$. Then $\kappa^*\theta_i$ has simpler expression than that of θ_i . As an example consider the case $(G,p)=(E_8,5)$. We get from Proposition 4 that

$$\begin{split} \kappa^*\theta_2 &= -c_2 \\ \kappa^*\theta_6 &= -c_6 - 2c_3^2; \\ \kappa^*\theta_8 &= -c_8 - c_3c_5 - c_4^2; \\ \kappa^*\theta_{12} &= -2c_5c_7 + 2c_6^2 - c_3c_4c_5 + c_3^4; \\ \kappa^*\theta_{14} &= -c_3^2c_8 + c_7^2 + 2c_3c_4c_7 + c_4^2c_6 + c_4c_5^2 + c_3^2c_4^2; \\ \kappa^*\theta_{18} &= -2c_3c_7c_8 - c_3^2c_4c_8 + c_4c_7^2 + c_3^2c_5c_7 - 2c_3c_4^2c_7 + 2c_3c_4c_5c_6 - c_3c_5^3; \\ \kappa^*\theta_{20} &= c_4^3c_8 + 2c_3^4c_8 + c_3^2c_7^2 + c_3^3c_4c_7 - 2c_5^4 + 2c_3c_3^3c_5 + 2c_5^4; \\ \kappa^*\theta_{24} &= 2c_3c_5c_8^2 + c_3c_6c_7c_8 - 2c_5^2c_6c_8 + c_3^4c_4c_8. \end{split}$$

Moreover, on the subring $\kappa^* \mathbb{F}_5[E_8] = \mathbb{F}_5[c_2, \cdots, c_8]$, one has

$$\mathcal{P}^{1}c_{m} = (m+4)c_{m+4} - 2c_{2}c_{m+2} + 2c_{3}c_{m+1} + (2c_{2}^{2} + c_{4})c_{m}$$

by Proposition 1, where we have reserved c_r for $\kappa^* c_r$, and where $\kappa^* c_1 = 0$ by Lemma 5.

The second proof of Lemma 2 may appear elaborate, but is useful in confirming the results obtained from the first one, and may be free of computer.

Proof of Lemma 2 (Method II). The proof is divided into two cases in accordance with $\kappa^* \theta_t = 0$ and $\kappa^* \theta_t \neq 0$.

Case 1. $\kappa^*\theta_t = 0$. This happens precisely when p = 2, t = 9 and $G = E_6, E_7, E_8$ by Proposition 2–4. Direct computation shows that

$$\mathcal{P}^{1}\theta_{8} = \theta_{9} + \omega_{2}^{4}\theta_{5}$$

$$\mathcal{P}^{4}\theta_{5} = \theta_{9} + c_{4}\theta_{5} + (\omega_{2}^{2}c_{4} + c_{6})\theta_{3} + (\omega_{2}^{2}c_{5} + c_{7})\theta_{2}.$$

These verify the assertions $b_{5,9} = b_{8,9} = 1$ in Lemma 2.

Case 2. $\kappa^* \theta_t \neq 0$. Applying κ^* to the relation (2.4) we get in $H^*(S(BT); \mathbb{F}_p)$ that

(5.5)
$$\mathcal{P}^k(\kappa^*\theta_s) = b_{s,t}\kappa^*\theta_t + \tau_t \text{ with } \tau_t \in \langle \kappa^*\theta_s \rangle_{s \in r(G,p), s < t}$$

Computation in the case $(G,p) = (E_8,5)$ is typical enough of the remaining cases. Carrying on the discussion in the Example we find that

$$\mathcal{P}^{1}\kappa^{*}\theta_{2} = \kappa^{*}\theta_{6} + (c_{4} - 2c_{2}^{2})\kappa^{*}\theta_{2};$$

$$\mathcal{P}^{1}\kappa^{*}\theta_{8} = \kappa^{*}\theta_{12} + (-c_{2}^{2} + 2c_{4})\kappa^{*}\theta_{8} + (-2c_{3}^{2} + 2c_{6})\kappa^{*}\theta_{6}$$

$$+(2c_{2}c_{8} + 2c_{3}c_{7} - c_{4}c_{6} + 2c_{5}^{2})\kappa^{*}\theta_{2}$$

$$\mathcal{P}^{1}\kappa^{*}\theta_{14} = \kappa^{*}\theta_{18} - (c_{2}^{2}c_{3}^{2} + c_{2}c_{8} + c_{3}^{2}c_{4} + 2c_{3}c_{7} - c_{4}c_{6} + 2c_{5}^{2})\kappa^{*}\theta_{8}$$

$$+2c_{4}^{3}\kappa^{*}\theta_{6} - (c_{2}c_{3}^{3}c_{5} - c_{2}c_{3}^{2}c_{4}^{2} + 2c_{2}c_{3}c_{4}c_{7} + c_{2}c_{4}^{2}c_{6} + c_{2}c_{4}c_{5}^{2} - c_{2}c_{7}^{2}$$

$$+c_{3}^{2}c_{4}c_{6} + c_{3}c_{4}^{2}c_{5} + c_{3}c_{6}c_{7} - c_{4}^{2}c_{8} + 2c_{4}c_{5}c_{7} + c_{4}c_{6}^{2} - 2c_{5}^{2}c_{6} + c_{8}^{2})\kappa^{*}\theta_{2}$$

$$\mathcal{P}^{1}\kappa^{*}\theta_{20} = \kappa^{*}\theta_{24} + c_{6}\kappa^{*}\theta_{18} + (c_{3}^{2}c_{4} - c_{3}c_{7} - c_{4}c_{6} + 2c_{5}^{2})\kappa^{*}\theta_{14}$$

$$-(-c_{3}c_{4}c_{5} + c_{4}^{3} - 2c_{4}c_{8} + c_{5}c_{7})\kappa^{*}\theta_{12}$$

$$-(c_{2}c_{4}^{2}c_{6} + 2c_{3}c_{5}c_{8} + c_{4}^{2}c_{8} - c_{4}c_{5}c_{7} + c_{4}c_{6}^{2})\kappa^{*}\theta_{8}$$

$$-(c_{2}^{2}c_{7}^{2} + c_{2}c_{3}c_{6}c_{7} + 2c_{3}^{3}c_{4}c_{5} + c_{3}^{2}c_{4}^{3} + 2c_{3}^{2}c_{5}c_{7} - c_{3}c_{4}c_{5}c_{6} - c_{3}c_{7}c_{8}$$

$$+c_{4}^{2}c_{5}^{2} - 2c_{5}^{2}c_{8} + 2c_{5}c_{6}c_{7})\kappa^{*}\theta_{6}$$

$$-(-2c_{2}c_{4}^{3}c_{8} - c_{2}c_{5}^{4} + c_{2}c_{6}c_{7}^{2} - c_{3}^{3}c_{5}c_{8} - c_{3}^{2}c_{4}c_{5}c_{7} + c_{3}c_{4}^{2}c_{7} - c_{3}c_{4}^{2}c_{5}c_{6}$$

$$+c_{3}c_{5}c_{7}^{2} + c_{3}c_{6}^{2}c_{7} + c_{4}^{4}c_{6} + c_{3}^{4}c_{5}^{2} + c_{5}^{2}c_{7})\kappa^{*}\theta_{2}$$

These imply that $b_{s,s+4} = 1$ for s = 2, 8, 14, 20 by $(5.5).\square$

References

- [A] J. Adem, The iteration of the Steenrod squares in algebraic topology. Proc. Nat. Acad. Sci. U. S. A. 38(1952), 720–726.
- [Ar] S. Araki, Cohomology modulo 2 of the compact exceptional groups E_6 and E_7 , J. Math. Osaka City Univ. 12(1961), 43–65.
- [AS] S. Araki and Y. Shikata, Cohomology mod 2 of the compact exceptional group E_8 , Proc. Japan Acad. 37(1961), 619–622.
- [B] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76(1954), 273–342.
- [B₁] A. Borel, Topics in the homology theory of fiber bundles, Berlin, Springer, 1967.
- [BH] A. Borel; F Hirzebruch, Characteristic classes and homogeneous space I, J. Amer. Math. Soc, vol 80 (1958), 458-538.
 - [D] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287-301.
- [Du] H. Duan, On the inverse Kostka matrix, J. Combinatorial Theory. A. 103(2003), 363–376.
- [DZ₁] H. Duan, Xuezhi Zhao, The integral cohomology of complete flag manifolds, arXiv: math.AT/0801.2444.
- [DZ₂] H. Duan and Z. Zhao, The cohomology of simple Lie groups, arXiv: math.AT/0711.2541.
- [ER] O. Egecioglu and J. B. Remmel, A combinatorial interpretation of the inverse Kostka matrix, Linear and Multilinear algebra, 26(1990), 59-84.

- [H] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduated Texts in Math. 9, Springer-Verlag New York, 1972.
- [IKT] K. Ishitoya, A. Kono, H. Toda, Hopf algebra of mod 2 cohomology of simple Lie groups, Publ. RIMS, Kyoto Univ. 12(1976), 141-167.
 - [K] V.G. Kač, Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups. Invent. Math. 80(1985), no. 1, 69–79.
- [Ka] R. Kane, The homology of Hopf spaces, North-Holland, Amsterdam, New York, Oxford and Tokyo, 1988.
- [Ko₁] A. Kono, On the cohomology mod 2 of E_8 , J. Math. Kyoto Univ. 24(1984), 275–280.
- [Ko₂] A. Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ., 17-2(1977), 259-298.
- [KM] A. Kono and M. Mimura, Cohomology operations and the Hopf algebra structures of the compact, exceptional Lie groups E and E, Proc. London Math. Soc. 35(1977), 345-359.
- [KN] A. Kono, O. Nishimura, On the cohomology mod 2 of E_8 , II. J. Math. Kyoto Univ. 42(2002), 181-183.
- [KLN] A. Kono, J. Lin and O. Nishimura, Characterization of the mod3 cohomology of E₇, Proc AMS Vol. 131, (2003), 3289-3295.
 - [L] J. P. Lin, Homology rings of homotopy associative H-spaces, Topology and its applications 156 (2008), 420-432.
 - [L₁] J. P. Lin, Lie groups from a homotopy point of view, Algebraic topology (Arcata, CA, 1986), 258–273, Lecture Notes in Math., 1370, Springer, Berlin, 1989.
 - [M] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford University Press, Oxford, second ed., 1995.
 - [Mi] M. Mimura, Homotopy Theory of Lie Groups, in: Handbooks of Algebraic Topology, North-Holland, 1995, pp. 953-983, Chapter 19.
 - [P] F. Peterson, A mod-p Wu formula, Bol.Soc.Mat.Mexicana 20(1975), 56-58.
 - [S] J. P. Serre, Algére locale. Multiplicités, Lecture Notes in Mathematics, vol.11, Springer-Verlag, Berlin-New York 1965.
 - [SE] N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 1962.
 - [Sh] B. Shay, mod–p Wu formulas for the Steenrod algebra and the Dyer-Lashof algebra, Proc. AMS, 63(1977), 339-347.
 - [T] E. Thomas, Exceptional Lie groups and Steenrod squares. Michigan Math. J. 11(1964), 151–156.
 - [W] T. Wu, Les i—carrés dans une variété grassmanniene, C. R. Acad. Sci. Paris 230 (1950), 918–920.