서울대학교 4 차 산업혁명 아카데미 빅데이터 플랫폼

딥러닝 (강유 교수님) 숙제 3

출제: 2017 년 11 월 16 일 목요일

제출: 2017 년 11 월 23 일 목요일

본 숙제의 목표는 TensorFlow 를 이용하여 시계열(time-series) 데이터 예측을 위한 RNN 모델을 만들어 보는 것입니다. 다른 라이브러리도 자유롭게 사용할 수 있으나 모델 부분은 TensorFlow 로만 이루어져 있어야 합니다. LSTM 등 기존 RNN 구조에서 발전한 형태를 사용하는 것도 허용됩니다. 숙제에 사용할 데이터와 뼈대 코드가 제공됩니다.

1. 데이터 정보

숙제에 사용되는 데이터는 호주 멜버른에서 측정된 10 년 동안의 일별 기온입니다. 하루 중에서 최저 기온만 기록되며 하루에 한 개씩 총 3650 개의 측정치가 존재합니다. 기온 값은 섭씨로 주어지며 모든 값은 -0.8 부터 26.3 사이의 범위를 가지고 있습니다. 주어진 데이터는 단순한 시계열 데이터로서 피처와 클래스를 따로 포함하지 않습니다.

2. 문제 정의

본 숙제에서 풀어야 할 문제는 6 일 동안의 기온이 주어졌을 때 7 일 째의 최저 기온을 예측하는 것입니다. 예를 들어 2017 년 11 월 6 일부터 11 월 12 일까지의 기온이 주어졌을 때 11 월 13 일의 기온을 예측해야 합니다. 이와 같이 부분적인 시계열이 주어졌을 때 다음에 나타날 값을 예측하는 문제를 시계열 예측 문제(time-series prediction problem)라고 합니다. 정해진 클래스 중 하나로 분류하는 것이 아니라 값을 예측하는 것이 목표이므로 분류(classification) 문제가 아니라 회귀(regression) 문제라고 할 수 있습니다. 따라서 실습에서와는 달리 딥 러닝 네트워크의 마지막 레이어를 소프트맥스(softmax)가 아닌 형태로 사용해야 합니다. 소프트맥스는 주어진 인스턴스가 각 라벨에 속할 확률을 계산하는 함수이기 때문입니다.

3. 평가 방법

모델의 평가는 예측한 값과 실제 값 사이의 평균 제곱 오차(mean squared error)에 기반해이루어집니다. 이는 회귀 문제에서 널리 쓰이는 방식으로 두 벡터의 L2 거리를 계산하는 것과같은 방식입니다. 평균 제곱 오차에 기반한 로스(loss)는 다음과 같이 계산됩니다.

$$L(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

여기서 \mathbf{y} 는 원래 기온, $\hat{\mathbf{y}}$ 는 예측한 기온, n은 인스턴스의 수를 나타냅니다. 예측한 값이 실제 값과 가까울수록 로스의 값은 낮아지며, 두 벡터가 완전히 일치할 경우 0 이 됩니다.

4. 제공 데이터

본 숙제에는 세 개의 데이터 파일이 제공됩니다. 첫 번째 파일은 별도로 처리하지 않은 원래 데이터이고, 두 번째와 세 번째 파일은 훈련과 테스트에 사용할 파일입니다. 자세한 정보는 다음과 같습니다. 본 숙제에서는 따로 검증(validation) 데이터를 제공하지 않으므로 훈련 데이터를 나누어 하이퍼 파라미터 검증을 위해 사용해야 합니다.

- 시계열 데이터(raw.csv): 1981 년부터 1989 년까지의 시계열 데이터입니다. 본 파일을 이용하여 데이터가 가지고 있는 특징(패턴이나 범위 등)을 분석할 수 있습니다.
- 훈련 데이터(train.csv): 1981 년부터 1989 년까지의 시계열 데이터를 피처(feature) 와 라벨(label) 형태로 가공한 데이터입니다. 피처로는 매 6 일 동안의 기온과 날짜가, 라벨로는 7 일 째의 기온이 들어갑니다. 훈련에 사용하길 권장합니다. 이 데이터를 사용하여 훈련과 검증을 모두 진행해야 합니다.
- **테스트 데이터(test.csv):** 테스트를 위해 사용할 1990 년의 데이터입니다. 월요일부터 토요일까지의 기온이 피처로 주어지며 매주 일요일의 값이 라벨이 됩니다. 모든 라벨이 가려져 있습니다.

5. 코드 구현

여러분의 코드(main.py)는 훈련 데이터(train.csv)를 읽어서 모델을 만든 다음 테스트 데이터 (test.csv)를 읽어서 예측한 라벨을 파일(result.csv)로 출력해야 합니다. 코드 구현에 대해서는 뼈대 코드를 참고하기 바랍니다.

6. 보고서 작성

여러분은 <u>2 페이지 이내</u>의 간단한 보고서를 작성하여 제출해야 합니다. 본 숙제는 모델의 객관적인 성능 뿐 아니라 여러분이 좋은 모델을 찾기 위해 노력한 과정을 기반으로 채점됩니다. 따라서 여러분의 보고서는 다음과 같은 내용을 필수적으로 포함해야 합니다.

- RNN 네트워크 구조: 구현한 RNN 네트워크의 구조를 명확하게 서술해야 합니다. 그림이나 도표 등을 사용하면 좋습니다.
- **인자 탐색 과정 및 결과:** 여러분이 사용한 모델의 최적 인자를 탐색하는 과정, 방법, 그로 인해 찾은 최적 인자를 서술해야 합니다.
- **데이터 조작 과정 및 결과:** 주어진 데이터를 조작해서 사용한다면, 데이터 조작 과정과 그 결과에 대해 서술해야 합니다.

7. 제출 방법

완성된 숙제는 압축하여 유재민 조교(jaeminyoo@snu.ac.kr)에게 보내면 됩니다. 압축 파일의 이름에는 제출자의 이름이 반드시 포함되어 있어야 합니다. 압축 파일에 포함되어야 하는 파일의 목록은 다음과 같습니다. 이중 코드 파일(main.py)은 Python 3 환경에서 실행 가능해야하며, 데이터 파일(test.csv)이 주어졌을 때 결과 파일(result.csv)을 만들어야 합니다.

- HW1 {이름}.zip (예: HW1 유재민.zip)
 - o report.pdf: 보고서 파일입니다. PDF 형식이어야 합니다.
 - o main.py: 결과 코드입니다.
 - o result.csv: 여러분의 코드를 실행한 예측 결과입니다.
 - o README.txt: (선택사항) 추가적으로 언급할 내용을 적으면 됩니다.

8. 주의 사항

다음과 같은 주의 사항을 지키지 않을 경우 감점될 수 있습니다.

- 보고서는 2 페이지 이내여야 합니다.
- 보고서는 코드를 포함하지 않는 편이 낫습니다.
- 제출한 코드는 <u>하이퍼 파라미터 탐색 과정을 포함하지 않는</u> 상태여야 합니다. 채점 시 코드를 돌려볼 때 지나치게 오랜 시간이 걸리기 때문입니다.