Nama: Mukhtada Billah Nasution

NIM : F1E122037

RISET OPERASI Sistem Informasi Semester 5

SOAL 1

Pt. KEMBANGARUM menghasilkan dua macam barang. Setiap unit barang pertama memerlukan bahan baku A 2 kg dan bahan baku B 2 kg. setiap unit produk kedua memerlukan bahan baku A 1 kg dan bahan baku B 3 kg. jumlah bahan baku A yang bisa disediakan perusahaan sebanyak 6.000 kg dan bahan baku B 9.000 kg. sumbangan terhadap laba dan biaya tetap (yang dihitung dengan harga jual per satuan dikurangi biaya variabel per satuan) setiap unit produk pertama sebesar Rp. 3,- dan setiap unit produk kedua Rp. 4,- Buat alokasi yang optimal dengan metode simpleks!

Jawaban

0) Mengkonversi ke permasalahan program linear.

Memaksimumkan Z = 3a + 4b

Terhadap Batasan

a.
$$2a + b \le 6000$$

b.
$$2a + 3b \le 9000$$

$$a, b \ge 0$$

1) Bentuk Kanonik

Memaksimumkan Z - 3a - 4b = 0

Terhadap Batasan

a.
$$2a + b + S1 \le 6000$$

b.
$$2a + 3b + S2 \le 9000$$

$$a, b, S1, S2 \ge 0$$

2) Mencari penyelesaian basis awal fisibel

Banyak variable disamadengankan nol, banyak variable – banyak fungsi maka 4-2=2 variabel disamadengankan nol. Yaitu a, b=0

$$S_1 = 6000$$
, $S_2 = 9000$, nilai awal fungsi tujuan $Z = 0$.

3) Menuangkan dalam table simpleks.

Keterangan	Variabel Basis	Z	а	b	S_{I}	S_2	Nilai Kanan	Rasio
Iterasi awal	Z	1	-3	-4	0	0	0	-
(0)	S_I	0	2	1	1	0	6000	6000
	S_2	0	2	3	0	1	9000	3000

0.1 Menentukan *ev*

Entering variable adalah b dengan nilai yang memenuhi syarat -4.

0.2 Menentukan ly

 S_1 memiliki rasio 6000/1= 6000, dan S_2 memilik rasio 9000/3 = 3000. Elemen pivot adalah S_2 .

0.3 Perbaiki nilai baris

Nilai baris pers pivot baru =
$$\frac{1}{3}$$
. [0 2 3 0 1 9000]
Nilai baris pers pivot baru = $\left[0\frac{2}{3} \ 1 \ 0\frac{1}{3} \ 3000\right]$

0.4 Perbaiki nilai baris fungsi tujuan

$$\begin{bmatrix}
1 - 3 - 4 & 0 & 0 & 0 \\
(-4) \cdot \begin{bmatrix} 0 & \frac{2}{3} & 1 & 0 & \frac{1}{3} & 3000 \end{bmatrix} \\
0 - \frac{8}{3} - 4 & 0 - \frac{4}{3} - 12,000
\end{bmatrix}$$

$$[1\frac{-1}{3} \ 0 \ 0 \ \frac{4}{3} \ 12,000]$$

0.5 Perbaiki nilai baris fungsi Batasan (1)

$$[0\ 2\ 1\ 1\ 0\ 6000]$$
$$[0\ \frac{2}{3}\ 1\ 0\ \frac{1}{3}\ 3000]$$

Hasil =
$$\left[0, \frac{4}{3}, 0, 1, -\frac{1}{3}, 3000\right]$$

Keterangan	Variabel Basis	Z	а	b	S_{I}	S_2	Nilai Kanan	Rasio
Iterasi awal	Z	1	-1/3	0	0	4/3	12000	-
(1)	S_I	0	4/3	0	1	-1/3	3000	2250
$\mathbf{e}\mathbf{v} = \mathbf{a}$	S_2	0	2/3	1	0	1/3	3000	4500

1.1 Menentukan ev

Entering variable adalah a dengan nilai yang memenuhi syarat -1/3.

1.2 Menentukan lv

 S_1 memiliki rasio 3000/(4/3) = 2250, dan S_2 memilik rasio 3000/(2/3) = 4500. Elemen pivot adalah S_1 .

1.3 Perbaiki nilai baris

Nilai baris pers pivot baru =
$$\frac{3}{4} \cdot \left[0 \cdot \frac{4}{3} \cdot 0 \cdot 1 - \frac{1}{3} \cdot 3000 \right]$$

Nilai baris pers pivot baru = $\left[0 \cdot 1 \cdot 0 \cdot \frac{3}{4} - \frac{3}{12} \cdot 2250 \right]$

1.4 Perbaiki nilai baris fungsi tujuan
$$\begin{bmatrix} 1 - \frac{1}{3} & 0 & 0 & \frac{4}{3} & 12000 \end{bmatrix}$$
$$(-\frac{1}{3}) \cdot \begin{bmatrix} 0 & 1 & 0 & \frac{3}{4} - \frac{3}{12} & 2250 \end{bmatrix}$$
$$\begin{bmatrix} 0 - \frac{1}{3} & 0 - \frac{1}{4} & \frac{1}{12} - 750 \end{bmatrix}$$

$$[1\ 0\ 0\ \frac{1}{4}\ \frac{5}{4}\ 12,750]$$

1.5 Perbaiki nilai baris fungsi Batasan (1)

$$\begin{bmatrix} 0 & \frac{2}{3} & 1 & 0 & \frac{1}{3} & 3000 \\ \frac{2}{3} & 1 & 0 & \frac{1}{3} & 3000 \end{bmatrix}$$
$$\begin{bmatrix} \frac{2}{3} & 0 & \frac{1}{4} & -\frac{3}{12} & 2250 \\ 0 & \frac{2}{3} & 0 & \frac{2}{4} & -\frac{1}{6} & 1500 \end{bmatrix}$$

$$[0\ 0\ 1\ -\frac{2}{4}\ -\frac{1}{2}\ 1500]$$

Keterangan	Variabel Basis	Z	а	b	S_I	S_2	Nilai Kanan	Rasio
Iterasi awal	Z	1	0	0	1/4	5/4	12750	-
(2)	S_I	0	1	0	3/4	-3/12	2250	
	S_2	0	0	1	-2/4	-1/2	1500	

Karena pada iterasi (2) semua nilai pada baris fungsi tujuan sudah non negative maka penyelesaian optimal telah tercapai.

$$(a,b) = (2.250, 1500), dengan Z_{maks} = 12,750$$

SOAL 2

Perusahaan makanan ROYAL merencanakan untuk membuat dua jenis makanan yaitu Royal Bee dan Royal Jelly. Kedua jenis makanan tersebut mengandung vitamin dan protein. Royal Bee paling sedikit diproduksi 2 unit dan Royal Jelly paling sedikit diproduksi 1 unit. Tabel berikut menunjukkan jumlah vitamin dan protein dalam setiap jenis makanan:

Vandungen nan unit			Kebutuhan Minum
Kandungan per unit	Royal Bee	Royal Jelly	Kebulunan Minum
Vitamin	2	1	8
Protein	2	3	12
Biaya per Unit	100	80	

Bagaimana menentukan kombinasi kedua jenis makanan agar meminimumkan biaya produksi menggunakan metode simpleks.

Jawaban

0) Mengkonversi ke permasalahan program linear.

Memaksimumkan Z = 100a + 80b

Terhadap Batasan

a.
$$2a + b \ge 8$$

b.
$$2a + 3b \ge 12$$

$$a, b \ge 0$$

1) Bentuk Kanonik

Memaksimumkan -Z + 100a + 80b = 0

Terhadap Batasan

a.
$$2a + b + S1 \ge 8$$

b.
$$2a + 3b + S2 \ge 12$$

$$a, b, S1, S2 \ge 0$$

2) Mencari penyelesaian basis awal fisibel

Banyak variable disamadengankan nol, banyak variable – banyak fungsi maka 4-2=2 variabel disamadengankan nol. Yaitu a, b=0

$$S_1 = 6000$$
, $S_2 = 9000$, nilai awal fungsi tujuan $Z = 0$.

3) Menuangkan dalam table simpleks.

Keterangan	Variabel Basis	Z	а	b	S_I	S_2	Nilai Kanan	Rasio
Iterasi awal	Z	-1	100	80	0	0	0	ı
(0)	S_I	0	2	1	1	0	8	4
	S_2	0	2	3	0	1	12	6

0.1) Menentukan ev

Entering variable adalah a dengan nilai yang memenuhi syarat 100.

0.2) Menentukan lv

 S_I memiliki rasio 8/2 = 4, dan S_2 memilik rasio 12/2 = 6. Elemen pivot adalah S_I .

0.3) Pebaiki nilai baris

Nilai baris pers pivot baru = $\frac{1}{2}$. [0 2 1 1 0 8] Nilai baris pers pivot baru = $\left[0 \ 1 \ \frac{1}{2} \ \frac{1}{2} \ 0 \ 4\right]$

0.4) Perbaiki nilai baris fungsi tujuan

 $[-1 \ 100 \ 80 \ 0 \ 0 \ 0]$ $(100) \left[0 \ 1 \ \frac{1}{2} \ \frac{1}{2} \ 0 \ 4 \right]$ [0 100 50 50 0 400]

$$[-1 \ 0 \ 30 \ -50 \ 0 \ -400]$$

0.5) Perbaiki nilai baris fungsi Batasan

[0230112](2) $\left[0 \ 1 \ \frac{1}{2} \ \frac{1}{2} \ 0 \ 4 \right]$ $[0\ 2\ 1\ 10\ 8]$

$$[0\ 0\ 2\ -1\ 1\ 4]$$

Keterangan	Variabel Basis	Z	а	b	S_I	S_2	Nilai Kanan	Rasio
Iterasi awal	Z	-1	0	30	-50	0	-400	-
(1)	S_I	0	1	1/2	1/2	0	4	8
	S_2	0	0	2	-1	1	4	2

1.1) Menentukan ev

Entering variable adalah b dengan nilai yang memenuhi syarat 30.

1.2) Menentukan lv

 S_1 memiliki rasio 4/(1/2) = 8, dan S_2 memilik rasio 4/2 = 2. Elemen pivot adalah S_2 .

1.3) Pebaiki nilai baris

Nilai baris pers pivot baru = $\left(\frac{1}{2}\right)$. [0 0 2 - 1 1 4] Nilai baris pers pivot baru = $\left[0 \ 0 \ 1 - \frac{1}{2} \frac{1}{2} \ 2\right]$

1.4) Perbaiki nilai baris fungsi tujuan

 $[-1 \ 0 \ 30 \ -50 \ 0 \ -400 \]$ $(30) \left[0 \ 0 \ 1 - \frac{1}{2} \frac{1}{2} \ 2 \ \right]$

 $[-1 \ 0 \ 0 \ -35 \ -15 \ -460]$

1.5) Perbaiki nilai baris fungsi Batasan

$$\begin{bmatrix} 0 & 1 & \frac{1}{2} & \frac{1}{2} & 0 & 4 \\ \frac{1}{2} & 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & \frac{1}{2} & -\frac{1}{4} & \frac{1}{4} & 1 \end{bmatrix}$$

$$\left[0\ 1\ 0\ \frac{3}{4} - \frac{1}{4}\ 3\right]$$

Keterangan	Variabel Basis	Z	а	b	S_I	S_2	Nilai Kanan	Rasio
Iterasi awal	Z	-1	0	0	-35	-15	-460	-
(1)	S_I	0	1	0	3/4	-1/4	3	-
	S_2	0	0	1	-1/2	1/2	2	-

Berdasarkan proses iterasi yang telah dilakukan, maka minimum biaya jelly adapt dicapai jika Royal Bee (a) diproduksi sebanyak 3 dan Royal Jelly (b) diproduksi sebnyak 2. Dengan biaya produksi minimum dapat diperoleh *Rp 460.000, 00*.

$$(a, b) = (3, 2), -Z_{maks} = 460$$