591AA 21/22 - COMPITO 5

Data di scadenza: Questo compito non sarà raccolto per la valutazione. Invece, circa una settimana dopo che stato assegnato, le soluzioni saranno pubblicate.

Problema 1. Sia $T = \{y_1, y_2, y_3\} \subseteq \mathbb{R}^2$ i vertici di un triangolo. Sia L_i la linea che passa per y_i e il punto medio m_i del lato opposto. Dimostrare che L_i passa per il punto

$$\beta(T) = \frac{1}{3}(y_1 + y + 2 + y_3)$$

Problema 2. Il baricentro $\beta(S)$ di un insieme finito di punti

$$S = \{x_1, \dots, x_m\} \subset \mathbb{R}^n$$

è dato dalla formula

$$\beta(S) = \frac{1}{m} \sum_{k=1}^{m} x_k$$

Sia $T = \{y_1, \ldots, y_{n+1}\}$ un insieme di n+1 punti in \mathbb{R}^n che non sono contenuti in un iperpiano. Per $k = 1, \ldots, n+1$, sia L_k la retta passante per y_k e $\beta(T - \{y_k\})$. Dimostrare che tutte le rette L_1, \ldots, L_{n+1} si intersecano nel punto $\beta(T)$.

Problema 3. Verifica che se un iperpiano H contiene i punti P e Q allora H contiene la retta L che passa per P e Q.

Problema 4. Trova gli iperpiani che passano per le seguenti collezioni di punti.

- (a) $\{(0,0,0,0),(1,-1,0,0),(1,0,-1,0),(2,-1,-1,-1)\}.$
- (b) $\{(0,0,0,0),(1,-1,0,0),(1,0,0,-1),(2,-1,-1,-1)\}.$
- (c) $\{(0,0,0,0),(1,0,-1,0),(1,0,0,-1),(2,-1,-1,-1)\}$

Usa il problema 3 per trovare una linea contenuta nell'intersezione di questi tre iperpiani.

Problema 5. Sia

$$S(n) = \sum_{k=1}^{n} 2k + 1$$

(a) Trova il polinomio p(x) di grado 2 tale che

$$p(1) = s(1),$$
 $p(2) = s(2),$ $p(3) = s(3)$

(b) Dimostrare per induzione che p(n) = s(n) per tutti gli interi positivi n.

Problema 6. Verificare che se S è un insieme allora l'insieme \mathbb{R}^S di tutte le funzioni da S a \mathbb{R} soddisfa gli assiomi di uno spazio vettoriale (con le operazioni di addizione e moltiplicazione scalare definite nella lezione 5)