Progetto e
implementazione di
un sistema
embedded per il
monitoraggio remoto
di piante e fiori

Candidato: Riccardo Parosi

Relatore: Riccardo Berta

24 Luglio 2020

Introduzione

Il sistema complessivo può essere suddiviso in tre parti: il sistema di acquisizione e invio dei dati, l'applicazione smartphone per il monitoraggio da remoto e infine Measurify che permette la comunicazione tra le parti precedenti.

Measurify

Measurify (precedentemente chiamato Atmosphere) é un framework open-source che fornisce gli strumenti necessari per la gestione di "smart things" in un ecosistema IoT. Ha il compito di memorizzare i dati che gli vengono inviati dal microcontrollore, per poi renderli disponibili all'applicazione smartphone.

Acquisizione Dati

Il sistema di acquisizione dei dati é formato da un microcontrollore, Arduino UNO Wifi Rev 2, al quale sono collegati tre sensori necessari a misurare I 'umidità dell'aria e del terreno, la temperatura e la luce. Inoltre al microcontrollore é collegato anche un display LCD per permettere la visualizzazione dei dati in locale.

Componenti Hardware

Sparkfun TSL2561 Sensore di luminosità, comunica con arduino tramite il protocollo I2C.

DHT 22 Pro v1.3 Sensore di umidità e temperatura dell'aria.

Seno193 Sensore capacitivo di umidità del terreno.

Arduino UNO Wifi Rev 2 Microcontrollore, dotato di connettività wifi, pensato per applicazioni nel campo dell'IoT.

Schermo Arduino TFT

Display LCD TFT da 160 x 128 pixel. Comunica con arduino attraverso l'interfaccia SPI.

Librerie

Durante la scrittura del codice per Arduino, sono state usate svariate librerie. Queste hanno permesso di utilizzare i sensori in modo più efficiente e di semplificare molte operazoni. Le librerie usate, sono le seguenti:

- Arduino WiFiNINA
- Arduino Wire
- Adafruit TSL2561
- Adafruit DHT
- Arduino TFT
- ArduinoJson

Sketch

Si tratta del programma caricato su Arduino, tramite il suo IDE. Si divide in due parti:

- Fase di setup: consiste nel far partire le comunicazioni con i dispositivi collegati ad Arduino.
 É eseguita solamente una volta all'avvio del sistema.
- Fase di loop: é caratterizzata da un algoritmo che viene iterato per tutto il tempo di funzionamento del sistema.

Applicazione Smartphone

L'applicazione smartphone é stata sviluppata mediante l'utilizzo del framework open-source Flutter, realizzato da Google. É stata chiamata Plant Monitor ed é disponibile per i sistemi operativi IOS e Android.

L'applicazione é formata da sei schermate: InitialLoadingScreen, LogInScreen, HomeScreen, PlantScreen, SettingsScreen e AccountScreen.

InitialLoadingScreen

LogInScreen

HomeScreen

Applicazione Smartphone

PlantScreen e SettingsScreen sono le due schermate più importanti.

La prima permette di visualizzare i grafici delle misure, in base alle date scelte dall'utente.

La seconda permette di cambiare il valore di Scan Interval, ovvero il tempo che vi é tra una rilevazione e l'altra.

PlantScreen

Drawer

SettingsScreen

Applicazione Smartphone

Di seguito vi é un video che mostra il funzionamento dell'applicazione:

Grazie per l'attenzione