K3 surfaces, home assignment 4: quadratic lattices

Rules: This is a class assignment for this week. Please bring your solutions (written) next Monday. We will have a class discussion the Wednesday after.

Definition 4.1. For the purposes of this assignment **a lattice** is a finitely generated torsion-free \mathbb{Z} -module. **Quadratic form** on a lattice is a function $q:L \longrightarrow \mathbb{Z}$, q(l)=B(l,l), where B is a bilinear symmetric pairing $B:L \otimes_{\mathbb{Z}} L \longrightarrow \mathbb{Z}$. **Quadratic lattice** is a lattice equipped with a quadratic form. A quadratic form is **indefinite** if it takes positive and negative values, and **unimodular** if B is non-degenerate and defines an isomorphism $L \overset{\sim}{\longrightarrow} L^*$.

Exercise 4.1. Let (L,q) be a quadratic lattice, $L_{\mathbb{Q}} := L \otimes_{\mathbb{Z}} \mathbb{Q}$, and L^* the set of all $x \in L_{\mathbb{Q}}$ such that $q(x,L) \subset \mathbb{Z}$.

- a. Prove that L^* is a lattice of the same rank as L and $L \subset L^*$.
- b. The discriminant group of L is $\mathsf{Disc}_L := L^*/L$. Prove that L is unimodular if and only if $\mathsf{Disc}_L = \{0\}$.
- c. Let G be an abelian group. Construct a lattice (L,q) such that $\mathsf{Disc}_L = G$.

Exercise 4.2. Let (L,q) be an quadratic lattice, and $L_1 \subset L$ a sublattice.

- a. Prove that $L_1 \supset L^*$. Prove that any isometry $a \in O(L)$ takes L_1 to another lattice $L^* \subset a(L_1) \subset L$.
- b. Denote by $\delta(L_1)$ the image of L_1 in Disc_L . Prove that any isometry $a \in O(L)$ which satisfies $\delta(L_1) = \delta(a(L_1))$ preserves L_1 .

Definition 4.2. Two subgroups $G_1, G_2 \subset GL(n, \mathbb{R})$ are called **commensurable** if $G_1 \cap G_2$ has finite index in G_1 and in G_2 .

Exercise 4.3. Let (L,q) be an quadratic lattice, and $L_1 \subset L$ a sublattice. Prove that $O(L_1,q) \cap O(L,q)$ has finite index in O(L,q).

Hint. Use the previous exercise.

Exercise 4.4. Let $nL := \bigcup_{x \in L} nx$. Prove that $nL_1 \subset L$ for any integer lattices L, L_1 , and n sufficiently big. Prove that O(nL, q) = O(L, q).

Exercise 4.5. Let q be a quadratic form on $L_{\mathbb{Q}} := \mathbb{Q}^n$, and $L_1, L_2 \subset L_{\mathbb{Q}}$ two lattices such that q is integer on L_1, L_2 . Prove that $O(L_1)$ is commensurable to $O(L_2)$.

Hint. Use Exercise 4.4 and Exercise 4.3.

Definition 4.3. A lattice (L, B, q) is called **diagonal** if it admits an orthogonal basis, that is, a basis $z_1, ..., z_n$ such that $B(z_i, z_j) = 0$ for $i \neq j$.

Exercise 4.6. Prove that any quadratic lattice contains a diagonal sublattice of finite index.

Exercise 4.7 (*). Let (L,q) be an indefinite, non-degenerate integer lattice. Prove that O(L,q) is infinite.

Exercise 4.8. Construct a non-degenerate integer lattice of rank 2, not commensurable to a unimodular lattice.

Issued 23.09.2022 - 1 - Handouts Version 1.0, 23.09.2024