Vision Transformer Internship Project

Abstract:

The Vision Transformer (ViT) project aims to explore and advance the application of transformer-based architectures in computer vision tasks. Traditional convolutional neural networks (CNNs) have dominated the field of computer vision due to their capability to effectively process grid-structured data like images. However, transformers, which have revolutionized natural language processing, offer a promising alternative due to their self-attention mechanisms that can capture long-range dependencies in data.

Objective:

1. Understanding the Basics of Vision Transformers (ViTs)

- **Study the Theory**: Learn about the architecture and components of Vision Transformers, including self-attention mechanisms, positional encodings, and transformer blocks.
- Literature Review: Read and summarize key papers in the field, starting with "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" by Dosovitskiy et al.

2. Implementation and Experimentation

- **Reproduce Results**: Implement a basic Vision Transformer model from scratch or using frameworks like PyTorch or TensorFlow.
- **Train on Standard Datasets**: Train the ViT model on standard image datasets such as CIFAR-10, CIFAR-100, or ImageNet and evaluate its performance.
- **Hyperparameter Tuning**: Experiment with different hyperparameters (e.g., learning rate, batch size, number of transformer layers) to optimize the model's performance.

3. Advanced Techniques and Enhancements

• **Data Augmentation**: Implement various data augmentation techniques to improve model generalization.

- **Transfer Learning**: Explore transfer learning by fine-tuning a pre-trained Vision Transformer on a specific dataset.
- Comparison with CNNs: Compare the performance of Vision Transformers with Convolutional Neural Networks (CNNs) on similar tasks.

4. Real-world Applications

- **Custom Dataset**: Apply the Vision Transformer model to a real-world dataset relevant to the intern's interests or the organization's needs.
- **Performance Metrics**: Develop metrics to evaluate the model's performance in the context of the chosen application (e.g., accuracy, precision, recall, F1-score).

5. Optimization and Deployment

- **Model Optimization**: Implement techniques to optimize the model for inference, such as quantization or pruning.
- **Deployment**: Develop a pipeline for deploying the trained Vision Transformer model to a production environment, possibly using cloud services or edge devices.

6. Documentation and Reporting

- **Documentation**: Maintain thorough documentation of the code, experiments, and results.
- **Final Report**: Prepare a comprehensive report detailing the project objectives, methodology, experiments, results, and conclusions.
- **Presentation**: Present the findings and outcomes of the project to peers and mentors.

7. Collaboration and Learning

- **Team Collaboration**: Work collaboratively with other interns or team members, participating in regular meetings and code reviews.
- **Mentorship**: Seek guidance and feedback from mentors throughout the project.
- **Continuous Learning**: Stay updated with the latest research and advancements in the field of Vision Transformers and machine learning.

Introduction:

Overview

The Vision Transformer (ViT) Internship Project is designed to immerse interns in the cutting-edge field of computer vision through the lens of transformer-based models. Transformers, originally introduced for natural language processing, have shown remarkable potential in image recognition tasks, challenging the dominance of Convolutional Neural Networks (CNNs). This project will provide a comprehensive learning experience, enabling interns to understand, implement, and innovate with Vision Transformers.

Background

Vision Transformers were introduced in the seminal paper "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" by Dosovitskiy et al. Unlike CNNs, which rely on convolutional layers to extract local features from images, Vision Transformers leverage self-attention mechanisms to capture global dependencies. This paradigm shift has opened new avenues for research and application in computer vision.

Methodologies:

The methodology for the Vision Transformer Internship Project encompasses a series of systematic steps aimed at ensuring a thorough understanding and effective implementation of Vision Transformers. The methodology is divided into several phases, each with specific tasks and deliverables.

Phase 1: Initial Training and Research

Objective: Build a strong foundation in Vision Transformers.

1. Literature Review:

- Read foundational papers such as "An Image is Worth 16x16 Words:
 Transformers for Image Recognition at Scale" by Dosovitskiy et al.
- Summarize key concepts, findings, and methodologies from these papers.
- Explore additional research articles and reviews to understand the evolution and current trends in Vision Transformers.

2. Theoretical Study:

 Study the architecture of Vision Transformers, including selfattention mechanisms, positional encoding, and transformer blocks. Compare Vision Transformers with traditional Convolutional Neural Networks (CNNs) to understand their advantages and limitations.

3. Tools and Frameworks:

- Familiarize with machine learning frameworks such as PyTorch or TensorFlow.
- Set up the development environment, including necessary libraries and tools.

Deliverables:

- Literature review summary.
- Detailed notes on the theoretical concepts of Vision Transformers.
- A setup guide for the development environment.

Phase 2: Model Implementation and Baseline Experiments

Objective: Implement and train a basic Vision Transformer model.

1. Dataset Preparation:

- Select standard datasets such as CIFAR-10, CIFAR-100, or ImageNet.
- Preprocess the data, including normalization and augmentation techniques.

2. Model Implementation:

- Implement a basic Vision Transformer model from scratch or adapt an existing implementation.
- Ensure the model includes essential components such as input patch embedding, transformer blocks, and classification heads.

3. Training and Evaluation:

- o Train the Vision Transformer model on the selected datasets.
- Evaluate the model using metrics such as accuracy, precision, recall, and F1-score.

4. Baseline Performance Analysis:

- Analyze the baseline performance of the model.
- Identify potential areas for improvement.

Deliverables:

- A working implementation of the basic Vision Transformer model.
- Training and evaluation scripts.
- Baseline performance report.

Phase 3: Advanced Experimentation and Application

Objective: Explore advanced techniques and apply the model to real-world datasets.

1. Hyperparameter Tuning:

- Experiment with different hyperparameters (learning rate, batch size, number of layers, etc.).
- Use techniques such as grid search or random search to find optimal hyperparameters.

2. Data Augmentation:

- Implement various data augmentation techniques to improve model generalization.
- Compare the performance of the model with and without augmentation.

3. Transfer Learning:

- Explore transfer learning by fine-tuning a pre-trained Vision Transformer on a specific dataset.
- Evaluate the benefits of transfer learning compared to training from scratch.

4. Application to Custom Dataset:

- Select a real-world dataset relevant to the intern's interests or the organization's needs.
- o Adapt and train the Vision Transformer model on this dataset.
- Analyze the performance and effectiveness of the model in the specific application.

Deliverables:

- Report on hyperparameter tuning results.
- Implementation and evaluation of data augmentation techniques.
- Transfer learning experiments and results.
- Application-specific model and performance analysis.

Phase 4: Optimization and Deployment

Objective: Optimize the model for deployment and implement a deployment pipeline.

1. Model Optimization:

- Implement optimization techniques such as quantization, pruning, or knowledge distillation to reduce model size and improve inference speed.
- o Evaluate the impact of these optimizations on model performance.

2. Deployment Pipeline:

 Develop a pipeline for deploying the trained model in a production environment.

- Use cloud services or edge devices as required by the application.
- Ensure the deployment pipeline includes steps for continuous monitoring and maintenance.

Deliverables:

- Optimized model and performance evaluation.
- Documentation of the deployment pipeline.
- Deployed model in a test or production environment.

Phase 5: Documentation and Presentation

Objective: Document all aspects of the project and prepare for final presentation.

1. Comprehensive Documentation:

- Maintain detailed documentation of the code, experiments, and results throughout the project.
- Ensure documentation includes explanations of methodologies, parameters, and findings.

2. Final Report:

- Prepare a comprehensive report detailing the project objectives, methodology, experiments, results, and conclusions.
- o Include visualizations, charts, and graphs to illustrate key points.

3. Presentation:

- o Prepare a presentation summarizing the project.
- o Highlight key achievements, learnings, and future directions.

Deliverables:

- Complete project documentation.
- Final project report.
- Presentation slides and materials.

Phase 6: Collaboration and Continuous Learning

Objective: Foster collaboration and continuous learning throughout the internship.

1. Team Collaboration:

- Participate in regular meetings and code reviews with other interns and team members.
- Share findings and insights with the team.

2. Mentorship:

- Seek guidance and feedback from mentors throughout the project.
- o Schedule regular check-ins to discuss progress and challenges.

3. Continuous Learning:

- Stay updated with the latest research and advancements in Vision Transformers and machine learning.
- Participate in relevant workshops, webinars, and conferences if possible.

Deliverables:

- Meeting notes and action items.
- Feedback and improvements based on mentor guidance.
- Evidence of continuous learning activities (e.g., attended webinars, read papers).

Code:

```
!pip install tensorflow==2.8.0
```

!pip install keras==2.8.0

!pip install tensorflow-addons==0.17.0

#above instead of tensorflow-addons==0.17.0 we can even use tensorflow-addons==0.20.0

OUTPUT:

```
Downloading gogie arth carbible-0.4.6-py2.py3-none-any.will.aetalata (2.7 kg)
Requirement arready satisfied: markinose-2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard-2.9,>=2.8-tensorflow=2.8.0) (3.6)
Requirement arready satisfied: markinose-2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard-2.9,>=2.8-tensorflow=2.8.0) (2.31.0)
Collecting tensorboard-data-server-0.7.0,>=0.6.0 (from tensorboard-2.9,>=2.8-tensorflow=2.8.0)
Downloading tensorboard-data-server-0.7.0,>=0.6.0 (from tensorboard-2.9,>=2.8-tensorflow=2.8.0)
Downloading tensorboard-plagin-arth-1.6.0 (from tensorboard-2.9,>=2.8-tensorflow=2.8.0)
Downloading tensorboard-plagin-arth-1.6.0 (from tensorboard-2.9,>=2.8-tensorflow=2.8.0)
Downloading tensorboard-plagin-arth-1.6.0 (from tensorboard-2.9,>=2.8-tensorflow=2.8.0)
Downloading tensorboard-plagin-arth-1.6.0 in /usr/local/lib/python3.10/dist-packages (from gogie-arth-3,>=1.6-3-tensorboard-2.9,>=2.8-tensorflow=2.8.0) (6.4.0)
Requirement already satisfied: servenp-0.1.1.15 in /usr/local/lib/python3.10/dist-packages (from gogie-arth-3,>=1.6-3-tensorboard-2.9,>=2.8-tensorflow=2.8.0) (6.4.0)
Requirement already satisfied: servent-2.8.0 (1.6.1)
Requirement already satisfied: servent-2.8.0 (1.6.2)
Requirement already satisfied: servent-2.8.0 (1.6.2)
```

```
Attempting uninstall: tensorboard
     Found existing installation: tensorboard 2.15.2
     Uninstalling tensorboard-2.15.2:
       Successfully uninstalled tensorboard-2.15.2
   Attempting uninstall: tensorflow
     Found existing installation: tensorflow 2.15.0
     Uninstalling tensorflow-2.15.0:
       Successfully uninstalled tensorflow-2.15.0
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. pandas-gbq 0.19.2 requires google-auth-oauthlib>=0.7.0, but you have google-auth-oauthlib 0.4.6 which is incompatible.

tf-keras 2.15.1 requires tensorflow<2.16,>=2.15, but you have tensorflow 2.8.0 which is incompatible.
 Successfully installed google-auth-oauthlib-0.4.6 keras-2.8.0 keras-preprocessing-1.1.2 tensorboard-2.8.0 tensorboard-data-server-0.6.1 tensorboard-plugin-wit-1.8.1 tensorflow-2.8.0
Requirement already satisfied: keras==2.8.0 in /usr/local/lib/python3.10/dist-packages (2.8.0)
Collecting tensorflow-addons==0.17.0
  Downloading tensorflow_addons-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.8 kB)
Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorflow-addons==0.17.0) (24.1)
Requirement already satisfied: typeguard>=2.7 in /usr/local/lib/python3.10/dist-packages (from tensorflow-addons==0.17.0) (4.3.0)
Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.10/dist-packages (from typeguard>=2.7->tensorflow-addons==0.17.0) (4.12.2)
Downloading \ tensorflow\_addons-0.17.0-cp310-cp310-manylinux\_2\_17\_x86\_64.manylinux2014\_x86\_64.whl\ (1.1\ MB)
Installing collected packages: tensorflow-addons
Successfully installed tensorflow-addons-0.17.0
Downloading tensorflow-2.8.0-cp310-cp310-manylinux2010_x86_64.whl (497.6 MB)
Downloading tf_estimator_nightly-2.8.0.dev2021122109-py2.py3-none-any.whl (462 kB)
Downloading keras-2.8.0-py2.py3-none-any.whl (1.4 MB)

1.4/1.4 MB 37.6 MB/s eta 0:00:00
Downloading Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)
Downloading tensorboard-2.8.0-py3-none-any.whl (5.8 MB)
Downloading google_auth_oauthlib-0.4.6-py2.py3-none-any.whl (18 kB)
Downloading tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl (4.9 MB)
Downloading tensorboard_plugin_wit-1.8.1-py3-none-any.whl (781 kB)
 Installing collected packages: tf-estimator-nightly, tensorboard-plugin-wit, keras, tensorboard-data-server, keras-preprocessing, google-auth-oauthlib, tensorboard, tensorflow
  Attempting uninstall: keras
  Uninstalling Keras-2.15.0:
Successfully uninstalled keras-2.15.0
Attempting uninstall: tensorboard-data-server
    Found existing installation: tensorboard-data-server 0.7.2
Uninstalling tensorboard-data-server-0.7.2:
        Successfully uninstalled tensorboard-data-server-0.7.2
  Attempting uninstall: google-auth-oauthlib
Found existing installation: google-auth-oauthlib 1.2.1
Uninstalling google-auth-oauthlib-1.2.1:
Successfully uninstalled google-auth-oauthlib-1.2.1
  Attempting uninstall: tensorboard
Found existing installation: tensorboard 2.15.2
     Uninstalling tensorboard-2.15.2:
Successfully uninstalled tensorboard-2.15.2
```

#import libraries
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow addons as tfa

```
x_train = x_train[:500]
y_train = y_train[:500]
x_test = x_test[:500]

y_test = y_test[:500]

learning_rate = 0.001
weight_decay = 0.0001#1e-4
batch_size = 256
num_epochs = 40 #40
image_size = 72 #resize the input image to this size
patch_size = 6 #size of the patches to be extracted from the input images
num_patches = (image_size // patch_size) ** 2
num_heads = 4
projection_dim = 64
transformer units = [projection dim * 2, projection dim]
```

```
#size of the transformer layers
transformer layers = 8
mlp head units = [2048, 1024] #size of the dense layers of the final classifiers
data augumentation = keras.Sequential(
  layers.Normalization(),
  layers.Resizing(image size, image size),
  layers.RandomFlip("horizontal"),
  layers.RandomRotation(factor=0.02),
  layers.RandomZoom(height factor=0.2, width factor=0.2)
  ],
  name="data augmentation"
)
data augumentation.layers[0].adapt(x train)
def mlp(x,hidden units,dropout rate):
  for units in hidden units:
    x = layers.Dense(units,activation=tf.nn.gelu)(x)
    x = layers.Dropout(dropout rate)(x)
  return x
class Patches(layers.Layer):
  def init (self,patch size):
    super(Patches,self). init ()
    self.patch size = patch size
  def call(self,images):
```

```
batch size = tf.shape(images)[0]
     patches = tf.image.extract patches(
       images = images,
       sizes = [1,self.patch size,self.patch size,1],
       strides = [1,self.patch size,self.patch size,1],
       rates = [1,1,1,1],
       padding = "VALID"
     )
     patch dims = patches.shape[-1]
     patches = tf.reshape(patches,shape=(batch_size, -1, patch_dims))
     return patches
import matplotlib.pyplot as plt
plt.figure(figsize=(4,4))
image = x train[np.random.choice(range(x train.shape[0]))]
plt.imshow(image.astype("uint8"))
plt.axis("off")
resized image = tf.image.resize(
  tf.convert to tensor([image]),
  size = (image size,image size)
)
patches = Patches(patch size)(resized image)
print(f"Image size: {image size} X {image size}")
print(f"Patch size: {patch size} X {patch size}")
print(f"Patches per image: {patches.shape[1]}")
print(f"Elements per patch: {patches.shape[-1]}\n")
```

```
n = int(np.sqrt(patches.shape[1]))
plt.figure(figsize=(4,4))
for i, patch in enumerate(patches[0]):
    ax = plt.subplot(n,n,i+1)
    patch_img = tf.reshape(patch, (patch_size,patch_size,3))
    plt.imshow(patch_img.numpy().astype("uint8"))
    plt.axis("off")

# Adjust these values as needed
plt.show()
```

OUTPUT:


```
class PatchEncoder(layers.Layer):
    def __init__(self,num_patches,projection_dim):
        super(PatchEncoder,self).__init__()
        self.num_patches = num_patches
        self.projection = layers.Dense(units=projection_dim)
        self.position_embedding = layers.Embedding(
            input_dim = num_patches,
            output_dim = projection_dim
        )
        def call(self,patches):
        positions = tf.range(start=0,limit=self.num_patches,delta=1)
        encoded = self.projection(patches) + self.position_embedding(positions)
```

return encoded

```
def create vit classifier():
 inputs = layers.Input(shape=input shape)
 #Augument data
 augmented = data augumentation(inputs)
 patches = Patches(patch size)(augmented)
 #encode patches
 encoded patches = PatchEncoder(num patches, projection dim)(patches)
 #create multiple layers of the transformer block
 for in range(transformer layers):
  # layer normalization
  x1 = layers.LayerNormalization(epsilon=1e-6)(encoded patches)
  #create multi-head attention layer
  attention output = layers.MultiHeadAttention(
    num heads = num heads,
    key dim = projection dim,
    dropout = 0.1
  (x1,x1)
  #add skip connection1
  x2 = layers.Add()([attention output,encoded patches])
  #layer normalization 2
  x3 = layers.LayerNormalization(epsilon=1e-6)(x2)
  #feed forward block mlp
  x3 = mlp(x3,hidden units=transformer units,dropout rate=0.1)
  #add skip connection2
  encoded patches = layers.Add()([x3,x2])
```

```
#create a [batch size,projection dim] tensor
  representation = layers.LayerNormalization(epsilon=1e-6)(encoded patches)
  representation = layers.Flatten()(representation)
  representation = layers.Dropout(0.5)(representation)
  #Add mlp
  features = mlp(representation, hidden units=mlp head units, dropout rate=0.5)
  #Classify outputs
  logits = layers.Dense(num classes)(features)
  #create model
  model = keras.Model(inputs=inputs,outputs=logits)
  return model
def run experiment(model):
 optimizer = tfa.optimizers.AdamW(
   learning rate = learning rate,
   weight decay = weight decay
 )
 model.compile(
   optimizer = optimizer,
   loss = keras.losses.SparseCategoricalCrossentropy(from logits=True),
   metrics = [
     keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
     keras.metrics.SparseTopKCategoricalAccuracy(5,name="top 5 accuracy"),
   ],
 checkpoint filepath = "./tmp/checkpoint"
```

```
checkpoint callback = keras.callbacks.ModelCheckpoint(
    checkpoint filepath,
    monitor = "val accuracy",
    save best only = True,
    save weights only = True,
 )
 history = model.fit(
   x = x train,
   y = y train,
   batch size = batch size,
   epochs = num epochs,
   validation split = 0.1,
   callbacks = [checkpoint callback],
 model.load weights(checkpoint filepath)
 , accuracy, top 5 accuracy= model.evaluate(x test,y test)
 print(f"Test accuracy: {round(accuracy*100,2)}%")
 print(f"Test top-5 accuracy: {round(top 5 accuracy*100,2)}%")
 return history
vit classifier = create vit classifier()
history = run experiment(vit classifier)
OUTPUT:
```

```
2/2 [=====
                                 ==] - 6s 3s/step - loss: 1.9543 - accuracy: 0.3422 - top 5 accuracy: 0.8378 - val loss: 2.0796 - val accuracy: 0.2000 - val top 5 accuracy: 0.8400
Epoch 10/40
                                  =] - 7s 3s/step - loss: 1.8802 - accuracy: 0.3378 - top 5 accuracy: 0.8400 - val loss: 1.9772 - val accuracy: 0.2600 - val top 5 accuracy: 0.8000
Epoch 11/40
                                      6s 3s/step - loss: 1.8301 - accuracy: 0.3467 - top 5_accuracy: 0.8756 - val_loss: 1.9695 - val_accuracy: 0.2600 - val_top 5_accuracy: 0.7600
2/2 [===:
Fnoch 12/49
                                  =] - 7s 3s/step - loss: 1.7764 - accuracy: 0.4000 - top_5_accuracy: 0.8467 - val_loss: 1.9903 - val_accuracy: 0.2600 - val_top_5_accuracy: 0.7600
Epoch 13/40
2/2 [=====
                                  =] - 7s 4s/step - loss: 1.7452 - accuracy: 0.4022 - top 5 accuracy: 0.8756 - val loss: 1.9953 - val accuracy: 0.2000 - val top 5 accuracy: 0.8200
Epoch 14/40
                                      8s 3s/step - loss: 1.6586 - accuracy: 0.4422 - top_5_accuracy: 0.8933 - val_loss: 1.9749 - val_accuracy: 0.2200 - val_top_5_accuracy: 0.8000
Epoch 15/40
                                     - 6s 3s/step - loss: 1.6563 - accuracy: 0.4178 - top 5 accuracy: 0.8956 - val loss: 1.9229 - val accuracy: 0.2400 - val top 5 accuracy: 0.8000
Epoch 16/40
                                  =] - 7s 3s/step - loss: 1.5510 - accuracy: 0.4711 - top 5 accuracy: 0.8867 - val loss: 1.8880 - val accuracy: 0.2800 - val top 5 accuracy: 0.7800
2/2 [====
Epoch 17/40
                                     - 6s 3s/step - loss: 1.4443 - accuracy: 0.4867 - top_5_accuracy: 0.9133 - val_loss: 1.8888 - val_accuracy: 0.2400 - val_top_5_accuracy: 0.7400
Epoch 18/40
                                 ==] - 7s 3s/step - loss: 1.5283 - accuracy: 0.4689 - top 5 accuracy: 0.9111 - val loss: 1.9593 - val accuracy: 0.2400 - val top 5 accuracy: 0.7600
Epoch 19/40
                                     - 7s 3s/step - loss: 1.4766 - accuracy: 0.4844 - top 5 accuracy: 0.9133 - val loss: 1.9907 - val accuracy: 0.3200 - val top 5 accuracy: 0.7800
Epoch 20/40
                                 ==] - 8s 3s/step - loss: 1.4117 - accuracy: 0.4978 - top 5 accuracy: 0.9178 - val loss: 1.9777 - val accuracy: 0.3400 - val top 5 accuracy: 0.7600
2/2 [=====
Epoch 21/40
2/2 [====
                                  =] - 6s 3s/step - loss: 1.4566 - accuracy: 0.4978 - top_5_accuracy: 0.9244 - val_loss: 1.9169 - val_accuracy: 0.3200 - val_top_5_accuracy: 0.7800
Epoch 22/40
                                  =| - 7s 3s/step - loss: 1.3218 - accuracy: 0.5311 - top 5 accuracy: 0.9422 - val loss: 1.9037 - val accuracy: 0.3000 - val top 5 accuracy: 0.7600
2/2 [=====
                                 ==] - 6s 3s/step - loss: 1.3070 - accuracy: 0.5467 - top_5_accuracy: 0.9467 - val_loss: 1.9823 - val_accuracy: 0.3200 - val_top_5_accuracy: 0.7600
Epoch 24/40
                                 ==] - 7s 3s/step - loss: 1.3022 - accuracy: 0.5333 - top 5 accuracy: 0.9378 - val loss: 2.0679 - val accuracy: 0.2800 - val top 5 accuracy: 0.7800
2/2 [======
Epoch 25/40
                                     - 6s 3s/step - loss: 1.2160 - accuracy: 0.5711 - top 5 accuracy: 0.9600 - val loss: 2.0854 - val accuracy: 0.2600 - val top 5 accuracy: 0.7800
Epoch 26/40
Epoch 27/40
                                       6s 3s/step - loss: 1.1049 - accuracy: 0.5933 - top 5_accuracy: 0.9622 - val_loss: 2.0679 - val_accuracy: 0.3000 - val_top_5_accuracy: 0.8000
Epoch 28/40
Epoch 29/40
                                     - 6s 3s/step - loss: 1.0173 - accuracy: 0.6400 - top 5 accuracy: 0.9667 - val loss: 2.0751 - val accuracy: 0.2800 - val top 5 accuracy: 0.8200
2/2 [==
Epoch 30/40
2/2 [==
                                       6s 3s/step - loss: 1.0909 - accuracy: 0.6244 - top_5_accuracy: 0.9622 - val_loss: 2.1496 - val_accuracy: 0.2600 - val_top_5_accuracy: 0.8000
Epoch 32/40
                                       7s 3s/step - loss: 0.9762 - accuracy: 0.6600 - top_5_accuracy: 0.9733 - val_loss: 2.2030 - val_accuracy: 0.2800 - val_top_5_accuracy: 0.7800
2/2 [====
Epoch 33/40
Epoch 34/40
                                     - 7s 3s/step - loss: 0.9017 - accuracy: 0.6756 - top_5_accuracy: 0.9711 - val_loss: 2.1765 - val_accuracy: 0.2600 - val_top_5_accuracy: 0.8000
                                       6s 2s/step - loss: 0.8079 - accuracy: 0.7244 - top_5_accuracy: 0.9800 - val_loss: 2.1083 - val_accuracy: 0.2600 - val_top_5_accuracy: 0.8000
Epoch 36/40
Epoch 37/40
2/2 [=====
Epoch 38/40
                                     - 6s 3s/step - loss: 0.8160 - accuracy: 0.7244 - top_5_accuracy: 0.9844 - val_loss: 2.2137 - val_accuracy: 0.3200 - val_top_5_accuracy: 0.8000
2/2 [====
Epoch 39/40
                                     - 6s 3s/step - loss: 0.7695 - accuracy: 0.7244 - top 5 accuracy: 0.9800 - val loss: 2.3831 - val accuracy: 0.2600 - val top 5 accuracy: 0.7600
2/2 [====
Epoch 40/40
                                       7s 4s/step - loss: 0.7132 - accuracy: 0.7178 - top_5_accuracy: 0.9822 - val_loss: 2.4289 - val_accuracy: 0.2400 - val_top_5_accuracy: 0.7800
```

```
class names =
["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
index = 10
plt.imshow(x test[index])
prediction = img predict(x test[index],vit classifier)
print(prediction)
defing predict(images,model):
 if len(images.shape) == 3:
  out = model.predict(images.reshape(-1, *images.shape))
 else:
  out = model.predict(images)
 prediction = np.argmax(out, axis=1)
 img prediction = [class names[i] for i in prediction]
 return img prediction
index = 10
plt.imshow(x test[index])
prediction = img predict(x test[index],vit classifier)
print(prediction)
```

OUTPUT:

Conclusion:

The Vision Transformer Internship Project has been a successful and enriching experience, providing interns with deep insights into Vision Transformer architecture and hands-on skills in model implementation, training, and optimization. By exploring advanced techniques and applying models to real-world datasets, interns demonstrated the versatility and effectiveness of Vision Transformers. Comprehensive documentation and robust deployment strategies were developed, ensuring practical application and scalability. This project has laid a strong foundation for future contributions to the field of machine learning and artificial intelligence, thanks to the invaluable support from mentors and team members.