TD opérations sur les ensembles

Exercice 1:

Montrer que:

1.
$$(A \subset B \ et \ B \subset C) \Longrightarrow (A \subset C)$$

Solution:

L'hypothèse ici est $A \subset B$ et $B \subset C$, c'est ce que l'on suppose vrai, et on doit prouver que $A \subset C$. Soit $\underline{x \in A}$, or $A \subset B$ donc $x \in B$ et comme $B \subset C$ donc $x \in C$ aussi ; donc $A \subset C$.

Exercice 2:

1. Décrire l'ensemble des parties des ensembles suivants et déterminer le cardinal de chacun d'eux :

$$\emptyset$$
, $A = \{a\}$, $B = \{a, b\}$, $C = \{a, b, c\}$ $D = \{a, b, c, d\}$

2. En déduire que si card(E) = n alors $card(\mathcal{P}(E)) = 2^n$

Solution:

1.
$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

 $\mathcal{P}(A) = \{\emptyset, \{a\}\}$ $\mathcal{P}(B) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}$
 $\mathcal{P}(C) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}$
 $\mathcal{P}(D) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\}$

On a:

$$Card(\emptyset) = 1$$
; $card(A) = 2$; $card(B) = 4$; $card(C) = 8$; $card(D) = 16$
Remarquons que $1 = 2^0$; $2 = 2^1$; $4 = 2^2$; $8 = 2^3$; $16 = 2^4$

2. On va faire un raisonnement par recurrence:

Posons pour cela
$$p(n)$$
: ($card(E) = n$) \Rightarrow ($card(\mathcal{P}(E)) = 2^n$)
On a p(0): ($card(E) = 0$) \Rightarrow ($card(\mathcal{P}(E)) = 2^0$), or si $card(E) = 0$ alors $E = \emptyset$ et on a vu que $Card(\emptyset) = 1 = 2^0$; donc p(0) est vraie

Supposons que p(n) soit vraie c'est-à-dire (card(E) = n) $\Longrightarrow (card(\mathcal{P}(E)) = 2^n)$

Montrons que p(n + 1) est vraie aussi, c'est-à-dire

$$(card(E) = n + 1) \Longrightarrow (card(\mathcal{P}(E)) = 2^{n+1})$$

Si card(E) = n + 1, on peut choisir un élément x appartenant E, et on a $E = F \cup \{x\}$, avec card(F) = n, donc $card(\mathcal{P}(F)) = 2^n$

On procède ainsi pour faire apparaître un ensemble de cardinal égal à n pour pouvoir utiliser l'hypothèse de récurrence.

Dans l'ensemble $\mathcal{P}(E)$, il y a les parties de E qui ne contiennent pas x, et celles qui contiennent x, celles qui ne contiennent pas x sont toutes les parties de F, leur nombre est égale à $card(\mathcal{P}(F))=2^n$

Les parties qui contiennent x peuvent etre former en ajoutant à chaque partie de F l'élément x, donc dans il y a 2^n parties de E contenant x, donc a total il y a $2^n + 2^n = 2^{n+1}$, donc $card(\mathcal{P}(E)) = 2^{n+1}$.

Exercice 3:

- 1. Montrer que pour touts ensembles A et B on a : $A \subset A \cup B$
- 2. Montrer que pour touts ensembles A et B on a : $A \cap B \subset A$

Solution:

- 1. Soit $\underline{x \in A}$, la propositon $x \in A$ ou $x \in B$ est vraie car dans cette disjonction il y a une proposition vraie, celle de l'hypothèse $x \in A$, $\underline{\text{donc } x \in A \cup B}$, $\underline{\text{donc } A \subset A \cup B}$.
- 2. Soit $\underline{x} \in A \cap B$, donc $\underline{x} \in A$ et $\underline{x} \in B$, donc $\underline{x} \in A$, donc $\underline{A} \cap B \subset A$

Exercice 4:

Montrer que pour tous ensembles A, B, C on a :

1.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$2. A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Solution:

def

1.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 \iff $[x \in A \cap (B \cup C) \iff x \in (A \cap B) \cup (A \cap C)]$ On peut donc utiliser une table de vérité :

Pour chaque ensemble figurant dans l'égalité in faut une colonne, et le nombre de ligne est égale aux nombres de possibiliés qui est égales à 8

On a:

$x \in A$	$x \in B$	$x \in C$	х	$x \in A \cap C$	x	x	x
			$\in A \cap B$		$\in B \cup C$	$\in A \cap (B$	$\in (A \cap B)$
						∪ <i>C</i>)	$\cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	0	1	1	1
1	0	1	0	1	1	1	1
0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	0
0	1	0	0	0	1	0	0
0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0

On remarque que les lignes de même niveau des deux dernières colonnes ont les mêmes valeurs de vérités, donc on a bien $x \in A \cap (B \cup C) \iff x \in (A \cap B) \cup (A \cap C)$, c'est-à-dire $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Exercice5:

A, B, C sont des parties d'un ensemble E. Montrer que :

$$1. \quad A - B = A \cap \bar{B}^E$$

2.
$$A \cap \bar{A}^E = \emptyset$$

3.
$$A \triangle B = (A \cup B) - (A \cap B)$$

4.
$$A - (B \cup C) = (A - B) \cap (A - C)$$

Solution:

1. Rappelons que pour montrer que deux X et Y ensembles sont égaux, on peut le faire au moins de deux façons, soit on montre que pour tout X on a $X \in X \iff X \in Y$, soit on montre que $X \subset Y$ et $Y \subset X$.

Dans notre cas on va montrer l'égalité en utilisant l'équivalence :

$$x \in A - B \iff x \in A \text{ et } x \notin B \iff x \in A \text{ et } x \in \overline{B}^E \iff x \in A \cap \overline{B}^E$$

2. Ici on va utiliser un raisonnement par l'absurde pour montrer l'égalité : Supposons qu'il existe un $x \in A \cap \bar{A}^E$, on a : $x \in A \cap \bar{A}^E \iff (x \in A \text{ et } x \notin A)$, or la proposition $x \in A \text{ et } x \notin A$ est fausse, il en est de même donc pour la proposition $x \in A \cap \bar{A}^E$, donc $x \notin A \cap \bar{A}^E$, donc pour tout x dans E $x \notin A \cap \bar{A}^E$, donc $A \cap \bar{A}^E = \emptyset$

3.
$$(A \cup B) - (A \cap B) \stackrel{1}{=} (A \cup B) \cap \overline{(A \cap B)} \stackrel{morgan}{=} (A \cup B) \cap (\overline{A} \cup \overline{B})$$

$$= (A \cap \overline{A}) \cup (A \cap \overline{B}) \cup (B \cap \overline{A}) \cup (B \cap \overline{B})$$

$$= (A \cap \overline{B}) \cup (B \cap \overline{A}) \text{ car } A \cap \overline{A} = B \cap \overline{B} = \emptyset$$

$$\stackrel{1}{=} (A - B) \cup (B - A) = A \triangle B$$
4. $A - (B \cup C) \stackrel{norgan}{=} A \cap \overline{(B \cup C)} \stackrel{morgan}{=} A \cap (\overline{B} \cap \overline{C}) = (A \cap \overline{B}) \cap (A \cap \overline{C}) \stackrel{1}{=} (A - B) \cap (B - A)$