Digital Signal Processing Fundamentals (5ESC0)

Fourier Analysis

Sveta Zinger, Piet Sommen, Elisabetta Peri

e.peri@tue.nl

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

1

Notation

* The book's notation:

Book : $\omega \cdot T_s = 2\pi f \cdot \frac{1}{f_s}$

where $f, \omega = \text{Absolute frequency}$

* In the slides we will use:

Slides : $\theta = 2\pi \left(\frac{f}{f_s}\right)$,

where $\theta = \text{Normalized frequency}$

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

4

3

Fourier analysis

- * Fourier representation of signals plays an important in both continuous-time and discrete-time signal processing
- * It maps signals into **another "domain"** in which we can manipulate them, perform filtering
- * Fourier representation is useful due to one of its properties: convolution operation is mapped to multiplication
- Fourier transform provides a different way to interpret signals and systems

Fac. EE, SPS

Continuous time Fourier transform

5

- * We will start with the continuous time Fourier transform and then continue in the digital domain
- * Fourier Transform Continuous time signals (FTC):
- * X(f) via $\omega = 2\pi f$ $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \quad \leadsto \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega$

Example: FTC of pulse train

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT) \, \leadsto \, S(\omega) = \sum_{n = -\infty}^{\infty} e^{-j\omega nT}$$

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

6

Fourier series

- * Only valid for periodic signals: $x(t) = x(t + T_0)$
- If the signal is periodic, it can be described by a sum of weighted exponents

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{j\frac{2\pi}{T_0}nt}$$

* To find the weights c_n we look at the frequency components present in the signal and integrate them over one period and then we normalize:

$$c_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) \, e^{-j\frac{2\pi}{T_0}nt} dt$$

Fac. EE, SPS

Fourier series example

Note: Difference FTC and FS for periodic signals

$$x(t) = \cos(2\pi F_0 t)$$
 , where $F_o = \frac{1}{T_0}$

From Euler's expression we know: $\cos(2\pi F_0 t) = \frac{1}{2}(e^{j2\pi F_0 t} + e^{-j2\pi F_0 t})$

$$c_{n} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} \frac{1}{2} (e^{j2\pi F_{0}t} + e^{-j2\pi F_{0}t}) e^{-j2\pi F_{0}tn} dt$$

$$= \frac{1}{2T_{0}} \int_{-T_{0}/2}^{T_{0}/2} e^{j2\pi F_{0}t(1-n)} + e^{-j2\pi F_{0}t(n+1)} dt$$

$$= \frac{1}{2T_{0}} \left(\int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} e^{j2\pi F_{0}t(1-n)} dt + \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} e^{-j2\pi F_{0}t(n+1)} dt \right)$$

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

3

Fourier series example

$$c_n = \frac{1}{2T_0} \left(\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{j2\pi F_0 t(1-n)} dt + \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{-j2\pi F_0 t(n+1)} dt \right)$$

We will work out one of the two integrals above, since the approach is the same.

$$\frac{1}{2T_0}(\int_{-T_0}^{T_0\over 2}e^{j2\pi F_0t(1-n)}\,dt)$$

If n=1, the exponent equals $e^{j0}=1$ and we integrate 1 over one period, which yields $\frac{1}{2T_0}\left(t|\frac{T_0}{2}\right)=\frac{1}{2T_0}\left(\frac{T_0}{2}-\frac{T_0}{2}\right)=\frac{1}{2}$

Fac. EE, SPS

Fourier series example

$$\frac{1}{2T_0}(\int_{-T_0}^{T_0} e^{j2\pi F_0 t(n-1)} \, dt)$$

If $n \neq 1$, this equals

$$\begin{split} &\frac{1}{2T_0}(\frac{1}{j2\pi F_0(n-1)}e^{j2\pi F_0t(n-1)})|\frac{T_0}{\frac{T_0}{2}}\\ &=\frac{1}{2T_0}\frac{1}{j2\pi F_0(n-1)}(e^{\frac{j2\pi\frac{1}{T_0}T_0}{2}(n-1)}-e^{-j2\pi\frac{1}{T_0}T_0})\\ &(e^{\frac{j2\pi\frac{1}{T_0}T_0}{2}(n-1)}-e^{-j2\pi\frac{1}{T_0}(n-1)})=(e^{j\pi(n-1)}-e^{-j\pi(n-1)})\\ &=\cos(\pi(n-1))+j\sin(\pi(n-1))-\cos(-\pi(n-1))-j\sin(-\pi(n-1)) \end{split}$$

Because cos(x) = cos(-x) the cosines cancel out and because n is an integer and $sin(\pm n\pi) = 0$, the term above is equal to 0.

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0 /** Fourier Analysis

10

9

Fourier series example

$$x(t) = \cos(2\pi F_0 t) \text{ , where } F_o = \frac{1}{T_0}$$

$$c_n = \frac{1}{2T_0} \left(\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{j2\pi F_0 t(n-1)} dt + \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{-j2\pi F_0 t(n+1)} dt \right)$$

- * We know that the only nonzero values are at n = 1 and n = -1
- * $c_1 = c_{-1} = \frac{1}{2}$
- * The frequency domain spectrum is shown in the figure below

Fac. EE, SPS

Special case FTC: pulse train (necessary for Ch3)

Proof of: $S(\omega) = \sum_{n=-\infty}^{\infty} e^{-j\omega nT} \equiv P(\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k \frac{2\pi}{T})$

With $P(\omega)$ periodic with period $\frac{2\pi}{T}$ \Rightarrow we can compute the FS :

$$P(\omega) = \sum_{n=-\infty}^{\infty} p_n e^{jn\omega T}$$
, with $p_n = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \frac{2\pi}{T} \delta(\omega) e^{-jTn\omega} d\omega = 1$

$$\Rightarrow P(\omega) = \sum_{n=-\infty}^{\infty} 1e^{jn\omega T} = \sum_{n=-\infty}^{\infty} 1e^{-jn\omega T} \equiv S(\omega)$$

⇒ FTC of pulse train

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT) - S(\omega) = \frac{2\pi}{T} \sum_{n = -\infty}^{\infty} \delta(\omega - nT) - \frac{2\pi}{T}$$
 proportion

Pulse train with distance proportional to $2 \pi /$

12

11

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

Fourier Transform of Discretetime (FTD) signals

- In this course we work in the digital domain, therefore we will look at the Fourier Transform of discrete-time signals
- * Because the time is discrete, the integral becomes a summation

$$X(e^{j\theta}) \stackrel{FTD}{\cong} \sum_{n=-\infty}^{\infty} x[n]e^{-jn\theta}$$

- * Notation:
 - θ is the relative frequency and we use a capital X to denote that we are in the frequency domain
 - The only variable X depends on is θ
 - θ is continuous, so X is continuous, therefore we use round brackets
 - We could write $X(\theta)$ because θ is the only variable, but we write $X(e^{j\theta})$ to stress that this is a periodic function

Fac. EE, SPS

14

Fourier Transform of Discretetime (FTD) signals

 To go back to the discrete-time domain, we use the Inverse Fourier Transform for Discrete-time signals (IFTD)

* Because $X(e^{j\theta})$ is continuous and periodic, we have to integrate over one period:

$$x[n] \stackrel{\text{IFTD}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) e^{jn\theta} d\theta$$

* We normalize over one period with the factor $\frac{1}{2\pi}$

* Note: the Fundamental Interval (FI) is usually: $|\theta| \le \pi$, integrating from 0 to 2π also works

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

Fourier Transform of Discretetime (FTD) signals

$$X(e^{j\theta}) \stackrel{FTD}{\cong} \sum_{n=-\infty}^{\infty} x[n]e^{-jn\theta} \sim x[n] \stackrel{IFTD}{\cong} \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta})e^{jn\theta}d\theta$$

 For common signals/ sequences we have FTD pairs that can be used without derivation

* This saves time and possible mistakes

* Example sequence: $\delta[n]$

FTD of a delta pulse: $\sum_{n=-\infty}^{\infty} \delta[n] e^{-jn\theta} = \delta[0] e^{-j\cdot 0\cdot \theta} = 1$

Fac. EE, SPS

Common FTD pairs

 $X(e^{j\theta}) \stackrel{FTD}{\cong} \sum_{n=-\infty}^{\infty} x[n]e^{-jn\theta} \sim x[n] \stackrel{IFTD}{\cong} \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta})e^{jn\theta}d\theta$

Time Sequence	FTD
$\delta[n]$	1
$\delta[n-n_0]$	$e^{-jn_0\theta}$
1	$2\pi\delta(\theta)$
$e^{jn\theta_0}$	$2\pi\delta(\theta-\theta_0)$
$\boxed{ \qquad a^n u[n], \qquad a < 1}$	$\frac{1}{1 - ae^{-j\theta}}$
$-a^n u[-n-1], \qquad a > 1$	$\frac{1}{1 - ae^{-j\theta}}$
$\cos(n\theta_0)$	$\pi\delta(\theta+\theta_0)+\pi\delta(\theta-\theta_0)$

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

16

15

Example: FTD pair

Find FTD of the sequence $x[n] = a^n u[n]$, |a| < 1.

The FTD of this sequence is

$$X(e^{j\theta}) = \sum_{n=0}^{\infty} a^n e^{-jn\theta} = \sum_{n=0}^{\infty} (ae^{-j\theta})^n$$

Using the geometric series, |a| < 1, this sum is

$$X(e^{j\theta}) = \frac{1}{1 - ae^{-j\theta}}.$$

Fac. EE, SPS

FTD properties

- * Periodicity : $X\left(e^{j\theta}\right) = X(e^{j\theta+l\cdot 2\pi})$ $l\in\mathbb{N}$ $X\left(e^{j\theta}\right)$ is periodic, meaning its behavior repeats every 2π
- * Symmetry :

x[n]	$X(e^{j\theta})$
Real, even	Real, even
Real, odd	Imaginary, odd
Imaginary, even	Imaginary, even
Imaginary, odd	Real, odd

For FTD, forms of symmetry will hold as listed in the table above

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / Fourier Analysis

18

FTD properties

- * Linearity : $ax_1[n] + bx_2[n] \leadsto aX_1(e^{j\theta}) + bX_2(e^{j\theta})$ Additive and homogeneous
- * Shifting : $x[n-n_0] \leadsto e^{-jn_0\theta} \cdot X(e^{j\theta})$ Shifting in time domain is a modulation operation in frequency domain
- * Time-reversal: $x[-n] \leadsto X(e^{-j\theta})$
- * Modulation : $e^{jn\theta_0} \cdot x[n] \hookrightarrow X(e^{j(\theta-\theta_0)})$ Modulation in time domain is shifting in frequency domain Example using Euler's expression:

$$\cos(n\theta_0)x[n] \sim \frac{1}{2}X(e^{j(\theta+\theta_0)}) + \frac{1}{2}X(e^{j(\theta-\theta_0)})$$

Fac. EE, SPS

13-9-2023

FTD properties

* Convolution :
$$x[n] * y[n] \leadsto X(e^{j\theta}) \cdot Y(e^{j\theta})$$

* Multiplication:
$$x[n] \cdot y[n] \leadsto \frac{1}{2\pi} \int_{\varphi=-\pi}^{\pi} X(e^{j\varphi}) Y(e^{j(\theta-\varphi)}) d\varphi$$

Because $X(e^{j\theta})$ and $Y(e^{j\theta})$ are continuous, the convolution requires integration. Multiplication in one domain is convolution in the other domain.

* Parseval :
$$\sum_{n=-\infty}^{\infty}|x[n]|^2=\frac{1}{2\pi}\int_{\theta=-\pi}^{\pi}|X(e^{j\theta})|^2\,d\theta$$
 The energy in one domain equals the energy in the other domain; a transform does not introduce or use energy.

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

21

Frequency response LTI system

- So far we had an introduction on FTD, now we will use it on an LTI system
- We know that we find the output by convolving the input with the impulse response

$$y[n] = x[n] * h[n] \stackrel{LTI}{\cong} \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

* Now we use a complex exponent with a single frequency θ as input:

$$x[n] = e^{jn\theta}$$

Fac. EE, SPS

Frequency response LTI system

* Now we use a complex exponent as input: $x[n] = e^{jn\theta}$

$$y[n] = e^{jn\theta} * h[n] = h[n] * e^{jn\theta} \stackrel{LTI}{=} \sum_{k=-\infty}^{\infty} h[k]e^{j(n-k)\theta}$$

* Since the summation has index k, we can take n out of the summation

$$\sum_{k=-\infty}^{\infty} h[k] e^{j(n-k)\theta} = \left(\sum_{k=-\infty}^{\infty} h[k] e^{-jk\theta}\right) \cdot e^{jn\theta}$$

* Now we notice a product of our input $e^{jn\theta}$ and the part between brackets. The part between brackets does not depend on n, but only on the impulse response

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

23

Frequency response LTI system

$$\begin{array}{c|c}
\hline
\mathbf{z}[\mathbf{n}] \\
\hline
e^{jn\theta}
\end{array}
\begin{array}{c|c}
\hline
\mathbf{h}[\mathbf{n}] \\
\mathsf{LTI}
\end{array}
\begin{array}{c|c}
\mathbf{y}[\mathbf{n}] \\
H(e^{j\theta}) \cdot e^{jn\theta}
\end{array}$$

* We can write the part between brackets as $H(e^{j\theta})$

$$\left(\sum_{k=-\infty}^{\infty} h[k]e^{-jk\theta}\right) \cdot e^{jn\theta} = H(e^{j\theta}) \cdot e^{jn\theta}$$

- * The relation above holds for all θ
- * The system's response to a frequency θ only depends on h[n]
- * We can conclude that the impulse response h[n] and the frequency response $H(e^{j\theta})$ are an FTD pair:

$$H(e^{j\theta}) = \sum_{k=-\infty}^{\infty} h[k]e^{-jk\theta} \quad \leadsto \quad h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\theta}) e^{jn\theta} d\theta$$

Fac. EE, SPS

Properties frequency response

- * Complex: $H(e^{j\theta}) = H_r(e^{j\theta}) + jH_I(e^{j\theta}) = |H(e^{j\theta})| \cdot e^{j\varphi(e^{j\theta})}$ We can write the frequency response as a real and an imaginary part or in polar notation (magnitude and phase)
- * Periodicity: $H(e^{j\theta_0}) = H(e^{j(\theta_0 + l \cdot 2\pi)})$ for $l \in \mathbb{N}$ As denoted by $e^{j\theta}$ in $H(e^{j\theta})$, the frequency response is periodic
- * Conjugate symmetry: For real valued $h[k] \Rightarrow H(e^{-j\theta}) = H^*(e^{j\theta})$ The magnitude is symmetric, but the phase is antisymmetric
- * Let us consider an example: $h[n] = \sum_{i=0}^{2} \delta[n-i]$
- * Find $H(e^{j\theta})$ and draw the magnitude and phase plots

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

25

Frequency response example

- * $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$
- $x^{[n]}$ T T $y^{[n]}$
- * We want to find the frequency response $H(e^{j\theta})$, which is an FTD pair with h[n]
- * We take the FTD of h[n] and use the known FTD pair of a delayed delta pulse: $\delta[n-n_0] \ \leadsto \ e^{-jn_0\theta}$
- * $h[n] \rightsquigarrow H(e^{j\theta}) = 1 + e^{-j\theta} + e^{-2j\theta}$
- * We can take the factor $e^{-j\theta}$ outside of brackets: $H(e^{j\theta}) = 1 + e^{-j\theta} + e^{-2j\theta} = e^{-j\theta}(e^{j\theta} + 1 + e^{-j\theta})$
- * We can rewrite this to use an Euler expression:

$$e^{-j\theta}\left(e^{j\theta}+1+e^{-j\theta}\right)=e^{-j\theta}\left(1+2\left(\frac{e^{j\theta}+e^{-j\theta}}{2}\right)\right)$$

Fac. EE, SPS

Frequency response example

- * $h[n] = \sum_{i=0}^{2} \delta[n-i]$
- * $H(e^{j\theta}) = e^{-j\theta} \left(1 + 2\left(\frac{e^{j\theta} + e^{-j\theta}}{2}\right) \right) = (1 + 2\cos\theta)e^{-j\theta}$
- * From the complex property we know that $(1+2\cos\theta)$ describes the magnitude and $-\theta$ describes the phase
- * Now we plot the magnitude and phase as a function of θ

TU/e

Signals II) / 5ESC0 /

27

Frequency response example

- * $(1 + 2\cos\theta)$ describes the magnitude and $-\theta$ describes the phase
- * In practice, both the magnitude and phase are plotted within the fundamental interval: $|\theta| \leq \pi$
- * The magnitude $|H(e^{j\theta})|$ is often taken absolute and the phase $\angle\{H(e^{j\theta})\}$ is limited from $-\pi$ to π
- * When taken absolute, where the magnitude would cross zero the value is made positive. In other words: a phase shift of π . The phase plot follows this behavior by a π phase shift
- * In the phase plot, π is added or subtracted so that the phase stays within the limits of $-\pi$ to π when the magnitude plot crosses zero

Fac. EE, SPS

Properties frequency response

* Solving DE:

$$y[n] = -\sum_{k=1}^{p} a_k y[n-k] + \sum_{k=0}^{q} b_k x[n-k]$$

$$\sim Y(e^{j\theta}) = -\sum_{k=1}^{p} a_k e^{-jk\theta} Y(e^{j\theta}) + \sum_{k=0}^{q} b_k e^{-jk\theta} X(e^{j\theta})$$

$$H(e^{j\theta}) = \frac{Y(e^{j\theta})}{X(e^{j\theta})} = \frac{\sum_{k=0}^{q} b_k e^{-jk\theta}}{1 + \sum_{k=1}^{p} a_k e^{-jk\theta}}$$

- A difference equation in frequency domain can be solved with linear algebra
- * Convolution: $x[n] * h[n] \rightsquigarrow X(e^{j\theta}) \cdot H(e^{j\theta})$

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

29

Example FTD

Find the FTD of $x[n] = a^n \sin(n\theta_0) u[n]$

Solution

Express the sinusoid as a sum of two complex numbers using *Euler's* formula:

$$\sin(n\theta_0) = \frac{1}{2i} \left(e^{jn\theta_0} - e^{-jn\theta_0} \right)$$

Therefore, the expression becomes:

$$x[n] = a^{n} \frac{1}{2j} (e^{jn\theta_{0}} - e^{-jn\theta_{0}}) u[n]$$

= $\frac{1}{2j} a^{n} e^{jn\theta_{0}} u[n] - \frac{1}{2j} a^{n} e^{-jn\theta_{0}} u[n]$

Fac. EE, SPS

Example FTD

Let's take the FTD of the first term which is equal to $\frac{1}{2i}a^ne^{jn\theta_0}u[n]$:

$$X_1(e^{j\theta}) = \frac{1}{2i} \sum_{n=0}^{\infty} a^n e^{jn\theta_0} e^{-jn\theta}$$

Take the common power n outside the bracket and join the powers of eover a single exponential

$$X_1(e^{j\theta}) = \frac{1}{2j} \sum_{n=0}^{\infty} (ae^{-j(\theta-\theta_0)})^n$$

Use the geometric series definition for $\alpha^n u[n]$ where $\alpha=ae^{-j(\theta-\theta_0)}$ $X_1\Big(e^{j\theta}\Big)=\frac{1}{2j}\frac{1}{1-ae^{-j(\theta-\theta_0)}}$

$$X_1(e^{j\theta}) = \frac{1}{2j} \frac{1}{1 - ae^{-j(\theta - \theta_0)}}$$

Fac. EE, SPS

DSP Fundamentals (Signals II) / 5ESC0 / **Fourier Analysis**

31

Example FTD

Take the FTD of the second term using the same steps:

$$X_{2}(e^{j\theta}) = -\frac{1}{2j} \sum_{n=0}^{\infty} a^{n} e^{-jn\theta_{0}} e^{-jn\theta}$$
$$= -\frac{1}{2j} \sum_{n=0}^{\infty} (ae^{-j(\theta+\theta_{0})})^{n}$$
$$= -\frac{1}{2j} \frac{1}{1 - ae^{-j(\theta+\theta_{0})}}$$

The final expression for $X(e^{j\theta}) = X_1(e^{j\theta}) + X_2(e^{j\theta})$ is:

$$X(e^{j\theta}) = \frac{1}{2j} \left(\frac{1}{1 - ae^{-j(\theta - \theta_0)}} - \frac{1}{1 - ae^{-j(\theta + \theta_0)}} \right)$$

Fac. EE, SPS

Filters

- Digital filter is often used to refer to a discrete-time system
- * A definition¹ of digital filter "...computational process or algorithm by which a sampled signal or sequence of numbers (acting as the input) is transformed into a second sequence of numbers termed the output signal. The computational process may be that of lowpass filtering (smoothing), bandpass filtering, interpolation, the generation of derivatives, etc."
- * Filters may be characterized in terms of their system properties, such as linearity, shift-invariance, causality, stability, etc.

 $^{^{\}rm 1}$ System Analysis by Digital Computer. F. F. Kuo and J. F. Kaiser, Eds.. John Wiley and Sons, New York. 1966

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0 /** Fourier Analysis

33

Examples: Averaging filter

Time domain	00	Frequency domain
Averaging filter		Dirichlet function
h[n] = u[n] - u[n - N]	0-0	$H(e^{j\theta}) = e^{-j\frac{N-1}{2}\theta} \cdot \frac{\sin(\frac{N}{2}\theta)}{\sin(\frac{1}{2}\theta)}$

- * The values of the impulse response h[n] should be multiplied by 1/N to obtain the averaging effect
- * An array of *N* delta pulses can be described in the frequency domain by the Dirichlet function
- We will look at the derivation and the magnitude plot

Fac. EE, SPS

Examples: Averaging filter

We take a factor $\frac{2je^{-j\theta N/2}}{2je^{-j\theta/2}}$ out of brackets to use an Euler equation:

$$\frac{1 - e^{-j\theta N}}{1 - e^{-j\theta}} = \frac{\left(\frac{e^{-\frac{j\theta N}{2}} - e^{\frac{j\theta N}{2}}}{2j}\right)}{\left(\frac{e^{j\theta/2} - e^{-j\theta/2}}{2j}\right)} \cdot \frac{2je^{-\frac{j\theta N}{2}}}{2je^{-\frac{j\theta}{2}}} = \frac{\sin(\frac{\theta N}{2})}{\sin(\frac{\theta}{2})} \cdot e^{-\frac{j\theta N}{2} + \frac{j\theta}{2}}$$
$$= \frac{\sin(\frac{\theta N}{2})}{\sin(\frac{\theta}{2})} \cdot e^{-j\theta(\frac{N-1}{2})}$$

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

35

Examples: Averaging filter

- There are many zero crossings in the magnitude (not in the figure because it is taken absolute)
- The main lobe of the magnitude is quite narrow
- Our time domain block (array of delta pulses) has length 21
- Stretching in one domain is shrinking in the other domain

TU/e

Fac. EE, SPS

Examples: Low Pass Filter

Time domain	00	Frequency domain
Sinc function $\frac{\theta_c}{\pi} \left(\frac{\sin(\theta_c n)}{\theta_c n} \right)$	⊶	Ideal Low Pass Filter (LPF) $H(e^{j\theta}) = \begin{cases} 1, & \theta \le \theta_c \\ 0, & \text{elsewhere} \end{cases}$

- * If we want to filter out higher frequencies, we use a LPF
- * An ideal Low Pass Filter is shown in the figure below

TU/e

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

37

36

Examples: Low Pass Filter

 We can obtain the time-domain function that will give us a Low Pass Filter through the IFTD

$$\begin{split} H\!\left(e^{j\theta}\right) &= \begin{cases} 1, & |\theta| \leq \theta_c \\ 0, & \text{elsewhere} \end{cases} \\ h[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \! H\!\left(e^{j\theta}\right) e^{jn\theta} d\theta = \frac{1}{2\pi} \int_{-\theta_c}^{\theta_c} \! 1 \, e^{jn\theta} d\theta \\ &= \frac{1}{2\pi} \! \left(\frac{1}{jn} e^{jn\theta}\right)_{-\theta_c}^{\theta_c} = \frac{1}{\pi n} \cdot \frac{1}{2j} \! \left(e^{jn\theta_c} - e^{-jn\theta_c}\right) = \frac{\sin(n\theta_c)}{\pi n} \end{split}$$

This can be written as: $h[n] = \frac{\theta_c}{\pi} \cdot \frac{\sin(n\theta_c)}{n\theta_c}$, because $\operatorname{sinc}(x) = \frac{\sin(x)}{x}$

Fac. EE, SPS

Examples: Low Pass Filter

* So the time-domain function that will give us a Low Pass Filter in frequency domain is a sinc function: $h[n] = \frac{\theta_c}{\pi} \cdot \frac{\sin(n\theta_c)}{n\theta_c}$

* The sinc function spans from $-\infty$ to ∞ , so it is infinite and we cannot make it in practice sinc function for -10 \le n \le 10, with θ_c =2 π /3

* This means the LPF will not be ideal: there will be a ripple and the transition will not be a straight line but a slope.

 On the right, a sinc pulse and the sampled version are shown

TU/e

Fac. EE, SPS

Example: windowing

- * We cannot make infinitely long sequences/ signals. What will the spectrum of these signals look like in practice?
- * We will consider an example: $x[n] = \cos(0.28\pi n)$
- We know from the Fourier Series that this will result in a spectrum of two weighted delta pulses
- * The cosine function spans infinitely long, so in practice we cannot generate it. We can only generate a part of it

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / Fourier Analysis

41

Example: windowing

- $* x[n] = \cos(0.28\pi n)$
- * To make it finite, we multiply x[n] with a weight function (or a rectangular window) $w_R[n] = \begin{cases} 1, & n = 0, ..., N-1 \\ 0, & \text{elsewhere} \end{cases}$
- * $w_R[n]$ is an averaging filter, as we have seen before
- * Say we name the signal $\tilde{x}[n] = x[n] \cdot w_R[n]$
- Now we observe what happens when we use the FTD on both signals

Fac. EE, SPS

Example: windowing

- * Why do we see this behavior?
- * We multiply the time domain cosine with an averaging filter that gives us only the windowed part of the cosine
- * In frequency domain this means that we have two delta pulses that are convolved with the Dirichlet function
- Convolving with a delta pulse shifts (modulates) the function you are convolving with to the position of the delta pulse

TU/e

Fac. EE, SPS

Interconnection of systems

- Frequency response properties of interconnecting systems
- We can describe interconnecting systems as one system
- Cascaded: convolution in time domain is multiplication in frequency domain
- Parallel: addition is the same in both domains

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / **Fourier Analysis**

45

Example: system connections

- * The cascade of a low-pass filter with a high-pass filter may be used to implement a bandpass filter.
- For example, the ideal bandpass filter shown in (c) may be realized by cascading a low-pass filter with a high-pass filter that has lower cutoff frequency
- * Similarly, the bandstop filter shown in (d) may be realized with a parallel connection of a low-pass filter and a high-pass filter

Fac. EE, SPS

Summary

- We had an introduction on the Fourier Transform of Continuous time signals (FTC).
- * We considered the Fourier Transform of Discrete-time signals (FTD)
 - FTD pairs
 - FTD properties
- * We introduced the frequency response
 - The system's response to an input signal $e^{jn\theta}$
 - It forms an FTD pair with the impulse response
 - Frequency response properties
- We looked at some filter examples in time domain and frequency domain: the averaging filter and the low pass filter
- * We saw an example of what happens when we window a signal
- We examined interconnection of systems in time domain and frequency domain

Fac. EE, SPS

DSP Fundamentals (Signals II) / **5ESC0** / Fourier Analysis

47

Reference

M. H. Hayes, "Schaum's Outline of Theory and Problems of Digital Signal Processing", McGraw-Hill, 1999; Chapter 2.

Fac. EE, SPS