Introduction to Cryptography

Sushmita Ruj

People and Website

- Convenor: Sushmita Ruj
- Tutors: Vir Pathak, Nhi Nguyen
- Course Email: <u>cs6453@cse.unsw.edu.au</u>
- Course Website: https://webcms3.cse.unsw.edu.au/COMP6453/24T2
- Forum : Ed forum (please join in with the link on WebCMS)
- Please bookmark this page
- Consultation time: Tuesday 3-4 pm (in-person/online), by appointment

Why Study Cryptography?

- Logging in to your computer
- Online Transactions
- Secure Messaging

Cryptography is Everywhere

- Wifi
- Your access card
- Your online browser
- Apps on your phone
- myUNSW
- myGov Database...

Cryptology

- Crypt: Hidden
- Cryptology = Cryptography + Cryptanalysis
- Cryptography: Art of secret writing (Defender)
- Cryptanalysis: Art of revealing information from hidden messages (Attacker)

Secure Communication

- 1. Eavesdropper wants to read your message (passive attacker)
- 2. A malicious entity can even modify your message (active attacker)

Secure Storage

Alice's files: No one apart from Alice can access her files or modify content Bob's files: No one apart from Alice can access her files or modify content

Files are encrypted

What is Encryption

- Plaintext is garbled in a way that you cannot get any meaningful information from the garbled message
- What can I know from the Garbled Message (Ciphertext)
- Alice's student record is encrypted: Adversary can't get her DoB, but can an adversary get her address, or her phone number? (Important questions!)

Encryption (Building Block)

Algorithms are known to Everyone (Public information)
Key is secret (known only to Alice and Bob)

Kerckhoff's Law: The security of a cryptographic system should not rely on the secrecy of the algorithm

Authentication

Authentication: Verify if user is a legitimate entity

Very important to know the difference between Encryption and Authentication

Who Wants What?

- User
 - Confidentiality
 - Integrity
 - Authentication

Protect against Attacker Have a threat model

- Attacker:
 - Passive (eavesdropper)
 - Malicious/ Active: Modify content

Cryptography is...

- A powerful tool to protect against attackers
- Core of many secure systems and mechanisms
- NOT
 - A solution for all security problems
 - Dangerous if not implemented properly
 - Dangerous if not used properly
 - Dangerous if not analysed properly

Power of Cryptography

Compute without knowing the data (Secure Computing)

- E-voting: You don't want the system to know your vote, but count your vote
- Private Auction: You want to hide the bid, and the auctioneer is still able to determine the highest bidder?

Computing on Encrypted Data

Query can be a keyword search Complicated statistical query Some function f(x, y, ...)

Homomorphic Encryption, Searchable Encryption: Week 10

Anonymous Communication

Server does not know the IP Address

Freedom of information: Strict regime in certain countries Anonymous Messaging: Post Without disclosing identity

Buying on a dark web

Key exchange and digital signatures: Weeks 5 and 7

Verifiability

User has to reveal Date of Birth, Address etc Verify without revealing all information: Verifiable credentials

Prove that the result is correct, without disclosing the answers

Prove I have enough money in my bank account to buy a car worth \$X, without revealing my bank balance?

How do I verify a ML algorithm generates the correct models

Zero-Knowledge Proofs: Week 9

Cryptography in 3 Steps

Define the threat model precisely

Do this iteratively, playing the devil's advocate

Propose a construction

 Prove that breaking the construction under the threat model is hard

Similar to proving correctness of an algorithm

Course Objectives

- Understand cryptographic algorithms with an aim of using them to protect computer systems, networks, and data protection.
- Foundational aspects of encryption and authentication techniques with an aim to use them correctly and effectively in applications.

Course Goals

- Explain the foundations of cryptography, primitives, and protocols, including encryption and authentication.
- Perform Cryptanalysis on ciphers based on an understanding of the techniques of Cryptanalysis
- Formally analyse security of protocols based on an understanding of security considerations
- Implement cryptographic algorithms including practical encryption and authentication protocols.
- Design secure cryptographic protocols for a broad range of applications like blockchains, e-commerce and computer networks.
- Explain the implications of quantum computing on Cryptography and learn about existing quantum safe solutions.

Cryptography: Definition

- A cryptographic algorithm is a well-defined transformation, which on a given input value produces an output value, achieving certain security objectives.
- A cryptographic protocol is a distributed algorithm describing precisely the interactions between two or more entities, achieving certain security objectives.
- A cryptographic scheme is a suite of related cryptographic algorithms and cryptographic protocols, achieving certain security objectives.

What we will learn?

- Foundations
- Algorithms
- Cryptanalysis
- Cryptographic libraries
- Good and Bad implementations
- Security analysis
- Problem solving

What Jobs Require Cryptography?

- Cryptography everywhere!
- Defence: ASD, DSTG etc
- Government: State and Federal Governments
- Blockchain startups: Plethora of jobs + flexibility
- Industry: Tech jobs, Banking/finance, Telecom, Health
- Do Cryptography Research: Many many unsolved problems

Lectures/Tutorials

- Ask as many questions as you can
- Don't take anything for granted
- Build- Break-Build repeat!
- Security vs performance

Assessment

- Fortnightly assessments: Submissions on Week 3, 5, 7, 9 on Fridays 5 pm
- Term Project + Paper: Submission Week 10, Friday 5 pm
- Final Exam: Closed book in-person during exam period

Fortnightly Assessment

- Assessment released on the week before submission
- Combination of coding, short answer type questions and problem solving questions

Term Project

- Start thinking seriously about projects from day 1
- Group projects: group size 2-4
- Should be complete, a solid problem statement, algorithmic solution, implementation, security analysis
- Choose your group to have a good technical diversity (coding skills, analytical/math skills)
- Some ideas will be discussed in class.
- Abstract submission by Week 5. Should receive a good ahead from me. Earlier Submission will receive early review.
- Projects report/paper are published online in Week 10. Everyone's contribution will be documented along with the report/paper.
- Peer-reviewed. If you can find bugs in your peer's project, you get extra marks
- Your project will also be evaluated/graded by a tutor.
- This is a general practice for cryptography evaluation.

Page under construction

Marks Distribution

- ass = Fortnightly Assignments (out of 30)
- proj = mark for Project (out of 30)
- finalExam = mark for final exam (out of 40)
- mark = ass + proj + finalExam
- grade = HD|DN|CR|PS if mark >= 50
- = FL if mark < 50 or finalExam < 40
- Late penalties, Special considerations on Course Outline

Resources

- Cryptography, Theory and Practice, (4th Edition)
 by Douglas Stinson and Maura B Paterson published by Routledge.
- https://www.ic.unicamp.br/~rdahab/cursos/mo421-mc889/Welcome_files/Stinson-Paterson_CryptographyTheoryAndPractice-CRC Press (2019).pdf (freely available)
- Introduction to Modern Cryptography (3rd Edition) by Jonathan Katz, Yehuda Lindell, Routledge
- Handbook of Applied Cryptography (3rd Edition)
 by Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, CRC Press. Available online https://cacr.uwaterloo.ca/hac/
- A Graduate Course in Applied Cryptography (3rd Edition)
 by Dan Bones and Victor Shoup Available online http://toc.cryptobook.us
- Web recourse will be posted.
- The Code Book by Simon Singh. (Popular Science book.)

Ethics and Integrity

- Strict actions will be taken against plagiarism
- Acknowledge all help and resources in your assessments
- Use of Al Assisted tools in Assessments will lead to 0

Course Content

Crypto Timeline

Classical Ciphers

E: Encryption Algorithm

D: Decryption Algorithm

E and D Very simple functions Simple substitution, permutation

Symmetric Key Encryption

- Examples of Encryption algorithms: Stream and Block ciphers Weeks 1-2
- How does Alice and Bob decide the common key?
- Key Establishment Weeks 5
- Too cumbersome in many situations
- Public key Cryptography: Part of the key is public Weeks 4, 5

Integrity

Hash Functions: H

 $H: \{0,1\}^* \to \{0,1\}^l$

Week 3

Digital Signatures

Week 7

Post Quantum Cryptography

- PKC prone to attacks by Quantum Computers
- How to design new algorithms that are resilient to quantum threats?
- Week 8

Secret Sharing

At least 2 out of 3 keys are required to open the vault Threshold Cryptography: Threshold Signatures Multi-sig wallets etc

Week 10

Applications

- Secret Sharing
- Secure Communication
- Secure Computation
- Blockchains
- Verifiable credentials
- E-voting

Thank you