

Functions Ex 2.3 Q2

We have,
$$f(x) = x^2 + x + 1$$
 and $g(x) = \sin x$

Now,

$$f \circ g(x) = f(g(x)) = f(\sin x)$$

$$\Rightarrow f \circ g(x) = \sin^2 x + \sin x + 1$$

Again,
$$g \circ f(x) = g(f(x)) = g(x^2 + x + 1)$$

 $\Rightarrow g \circ f(x) = sin(x^2 + x + 1)$
Clearly

 $f \circ g \neq g \circ f$

Functions Ex 2.3 Q3

We have
$$f(x) = |x|$$

We assume the domain of f = RRange of $f = (0, \infty)$

- \therefore Range of $f \subset domain of f$
- $\therefore f \circ f$ exists.

Now,

$$f \circ f(x) = f(f(x)) = f(x) = |x| = f(x)$$

$$\therefore \ f\circ f=f$$

Functions Ex 2.3 Q4

$$f(x) = 2x + 5$$
 and $g(x) = x^2 + 1$

- \therefore Range of f = R and range of $g = [1, \infty]$
- \therefore Range of $f \subseteq Domain of <math>g(R)$ and range of $g \subseteq domain of <math>f(R)$
- .. both fog and gof exist.

i)
$$f \circ g(x) = f(g(x)) = f(x^2 + 1)$$

= $2(x^2 + 1) + 5$

$$\Rightarrow f \circ g(x) = 2x^2 + 7$$

ii)
$$g \circ f(x) = g(f(x)) = g(2x + 5)$$

= $(2x + 5)^2 + 1$

$$\Rightarrow g \circ f(x) = 4x^2 + 20x + 26$$

ii)
$$f \circ f(x) = f(f(x)) = f(2x + 5)$$

= $2(2x + 5) + 5$
 $f \circ f(x) = 4x + 15$

iv)
$$f^2(x) = [f(x)]^2 = (2x + 5)^2$$

= $4x^2 + 20x + 25$

∴ from (iii)&(iv)
$$f \circ f \neq f^2$$

Functions Ex 2.3 Q5

We have, $f(x) = \sin x$ and g(x) = 2x.

Domain of f and g is R

Range of
$$f = [-1, 1]$$

Range of $g = R$

- ∴ Range of f ⊂ Domain g and Range of g ⊆Domain f
- .. fog and gof both exist.

i)
$$g \circ f(x) = g(f(x)) = g(\sin x) = g \circ f(x) = 2\sin x$$

ii)
$$f \circ g(x) = f(g(x)) = f(2x) = \sin 2x$$

Functions Ex 2.3 Q6

f,g, and h are real functions given by $f(x) = \sin x$, g(x) = 2x and $h(x) = \cos x$. To prove: $f \circ g = g \circ (fh)$ L.H.S $f \circ g(x) = f(g(x))$ $= f(2x) = \sin 2x$ $\Rightarrow f \circ g(x) = 2 \sin x \cos x \dots (A)$ R.H.S $g \circ (fh)(x) = go(f(x).h(x))$ $= g(\sin x \cos x)$ $g \circ (fh)(x) = 2 \sin x \cos x \dots (B)$ from A & B $f \circ g(x) = g \circ (fh)(x)$

********* END *******