UNIVERSITY OF LAGOS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

BSc (Hons.) FIRST SEMESTER DEGREE EXAMINATIONS (TEST)

2019/2020 Academic Session

CPE 435 (PROTOTYPING TECHNIQUES)

INSTRUCTION: Answer all questions
Time Allowed: _____

Ouestion 1

Using transistor BFR-193, design a two-stage class A, capacitor coupled Radio Frequency Amplifier (RFA) having collector current (I_c) of 10mA, DC current gain (β) of 100 and DC rail voltage (V_{cc}) of 12V. AC input signal voltage is 5mV, frequency (VHF) at -3dB is 30MHz and base-emitter junction voltage (V_{bej}) is 0.7V as shown in figure Q1. See attached transistor datasheet for details.

Figure Q1

	State: -	
i.	any design assumptions	2 marks
ii.	any design equations	2 marks
iii.	Draw the DC equivalent circuit	2 marks
	Calculate	
iv.	VCE1, VCE2, VRC1, VRC2, VRE1, VRE2,	6 marks
V.	R _{c1} , R _{E1} , R _{c2} , and R _{E2}	4 marks
vi.	I _{B1} , I _{B2}	2 marks
vii.	V _{RB12} , V _{RB22}	2 marks
viii.	I _{RB12} , I _{RB22}	2 marks
ix.	R _{B12} , R _{B22}	2 marks
х.	V_{RB11} , V_{RB21}	4 marks
xi.	I _{RB11} , I _{RB21} ,	2 marks
xii.	R _{B11} , R _{B21}	2 marks
xiii.	Draw the AC equivalent circuit	2 marks

Cal	cu	late
Ou.	ou.	uu

xiv.	Ce1, Ce2, Cin1, Cin2, Cout	5 marks
XV.	Sketch the estimated frequency response for the circuit	2 marks
xvi.	Comment on the behavior of the circuit as an amplifier	1 mark
xvii.	With the first stage the disconnected, redraw and convert only the second	
	stage of the RFA to a Colpitts oscillator	2 marks
xviii.	Assume a total capacitance of 12nF, calculate the value of i	nductance
	required to generate oscillations at 90MHz	4 marks
xix.	Sketch the frequency response of the oscillator	1 mark
XX.	Considering the transition frequency f_T from the attached datasheet,	
	comment on the suitability of this transistor for this design	1 mark
	Total	50 marks

Ouestion 2

With respect to grounding/earthing (GND) protection and use of diagrams where necessary, define ground and grounding (GND) in electronic systems 2 marks

a. In a grounded electronic system, illustrate how to connect

i.	Digital ground (DGND) connection	2 marks
ii.	Analog ground (AGND) connection	2 marks
b.	Explain the effect of not grounding an electronic system	1 mark
c.	Explain the procedure for grounding an electronic system	1 mark
d.	Explain the function of inspection-chamber in a system ground.	1 mark

- e. Explain the effect of the following on earth resistance in electronic system grounding soil type, moisture, salt, depth of earth electrode 4 marks
- f. In a ground connection, it was found that the ground path has a resistance of 0.5Ω and the system to be protected has a resistance of 0.45Ω , explain what you will do and why as the manager of the project 2 marks
- g. In a 200-floor building, a client wants to install a communication equipment on the 120th floor. What advice would you give the client concerning system grounding?
 2 marks
- h. A telecommunication equipment is to be installed in an electric power generating station, what advice will you give concerning the grounding of the telecommunications equipment.
 2 marks
- i. What is the importance of copper as a conductor in an earthing system instead of any other conductor such as aluminum?2 marks
- j. List four methods of earthing 4 marks

Total 25 marks

Question 3

Figure Q3

a.	Define power de-coupling	2 marks
b.	Explain with diagrams one method of power decoupling	5 marks
C.	Differentiate between a decoupling capacitor and bypass capacitor	4 marks
d.	Redraw Figure Q3 by including a decoupling capacitor	4 marks
e.	Explain the function of feed-through capacitors	5 marks
f.	Explain the need for de-coupling in an electronic system	5 marks
	Total 2	25 Marks

Question 4 Define soldering

Define soldering		1 mark
a.	Differentiate between soldering and welding	2 marks
b.	Differentiate between soldering and brazing	2 marks
C.	List and explain three methods of soldering	3 marks
d.	List and explain the types of component placements with respect to	soldering
	and printed circuit board	3 marks
e.	Explain the function of any three items used in the soldering and de	e-soldering
	process	3 marks
f.	List four merits and four demerits of any type of component placem	ent listed
	in (d)	4 marks
g.	As an alternative to electronic component physical on-board placer	ment and
	connection fastening, explain the use of electronic design automati	on (EDA) in
	electronic circuit designs	3 marks
h.	List some EDA software that you know.	1 mark
i.	List 3 advantages and 3 disadvantages of EDA	3 marks
j.	In your opinion, how can EDA simulation results be made to be as close as	
	possible to physical circuits construction and testing results	2 marks
	Total	25 marks

Question 5

Explain the economic importance and design constraint in flexibility and speed between physical PCB and CAD based PCB in electronic design 6 marks

a. List five merits and five de-merits of using physical PCB
b. List five merits and five de-merits of using CAD based PCB
c. State your view with simulation or real-life designs environment
d. At what level should CAD be introduced to students
e. List three materials used in making high frequency PCB
3 marks

Total 25 marks