Name:	Teacher:
-------	----------

SYDNEY TECHNICAL HIGH SCHOOL

Year 11 Mathematics Extension 1

Preliminary Assessment Task 1

May 2012

Time allowed:

70 minutes

Instructions: Please take notice and act upon ALL of these.

- · Show full working.
- Start each question on a new page.
- Full marks may not be awarded for careless or badly arranged work.
- Non-programmable calculators may be used.
- This paper must be handed in on top of your answer booklets.
- Answers must be written in blue or black pen.
- Answers must be arranged in order and stapled securely.

Question 1

9 marks

(a) Factorise fully $x(x-y)^2 - xz^2$.

2

(b) Simplify $\frac{\frac{x}{y} + \frac{y}{x}}{\frac{x}{y} - \frac{y}{x}}$.

2

(c) Factorise $64 - 27 k^3$.

1

(d) Solve $\frac{x}{3} - 2 < \frac{x}{2} - 3$.

1

3

(e) Find the points of intersection of $x^2+y^2=16$ and x-y=2.

3

Question 2 (Start a new page)

10 marks

- In quadrilateral ABCD there are no parallel sides.
- Use triangle and other geometric properties to show that the interior angle sum of such a quadrilateral is 360°.
- Show reasoning.
- (b) For $y = \sqrt{x-2}$:
 - (i) Is it a function? (Show reasoning)

1

(ii) State its domain and range.

2

(iii) Sketch the curve showing any significant features.

2

(c) (i) Factorise $x^2 - x - 6$.

1

(ii) Hence sketch $y = |x^2 - x - 6|$.

2

Question 3 (Start a new page)

9 marks

(a) Find rational numbers a and b such that $a + b\sqrt{5} = \frac{\sqrt{5}}{3 + \sqrt{5}}$.

(b) The curve shown is a translation of $y = \frac{1}{x}$. Write its equation.

- (c) Show whether the function $f(x) = \frac{8x}{x^2 + 9}$ is odd, even or neither. 2
- (d) Solve the inequality and graph the solution on a number line. $\frac{3}{x-1} < \frac{5}{2}$

Question 4 (Start a new page)

10 marks

2

(a) Solve
$$2\sin\theta = \sqrt{2}$$
 for $0^{\circ} \le \theta \le 360^{\circ}$.

(b) Solve
$$\cos 2\theta = \frac{1}{2} \text{ for } 0^{\circ} \le \theta \le 360^{\circ}$$
.

(c) Find the exact value of sec 315°.

(d) Prove the identity
$$(1 - \cos \theta)(1 + \sec \theta) = \sin \theta \tan \theta$$
.

Question 5 (Start a new page)

9 marks

(a) If $\tan \theta = -\frac{3}{4}$ and θ is obtuse, find $\sin \theta$ and $\cos \theta$.

3

(b) Eliminate θ from the set of equations $x = asec\theta$ and $y = btan\theta$.

2

(c) A ship sails from O to a point A 60 km on a bearing of 125° . It then changes to a bearing of 200° and sails to a point B, which has a bearing from O of 150° .

- (i) Copy the diagram into your workbook and find the values of the internal angles of the triangle *OAB*.
- (ii) What is the distance of B from O?

2

2

Question 6 (Start a new page)

10 marks

(a) Find the largest angle in the triangle (to the nearest minute).

2

(b) (i) Sketch $y = 2 - x^2$.

1

(ii) Hence or otherwise, solve $|x| + x^2 \ge 2$

3

(c) (i) Find any vertical asymptotes of the curve $y = \frac{x^2 - 3}{x^2 - 4}$.

1

(ii) Sketch the curve, including any vertical and horizontal asymptotes.

3

End of Paper

	No.:	Date: 1771 2012
	SOLUTIONS PRELIMINARY EXTENSION 1 ASS	ESSMENT 1
		x ² +y ²
	$= \chi \left[(x-y)^2 - z^2 \right] \qquad \frac{5}{} \chi =$	×y
	$= \chi(\chi - y - z)(\chi - y + z) \qquad = \chi(\chi - y - z)$	x²-y-
		~~~
	$(3) (4-27k^3 - 4^3 - (3k)^3) =$	x2+y2 x2-y2
	$= (4-3k)(16+12k+9k^2)$	x2-y2
	d) $x-2/x-3$ e) $x^2+y^2=16$	
	$3 \cdot \gamma = 2$	
	$2x - 12 < 3x - 18$ $y^2 = (2-x)^2$	
	$6 < x$ $-1 + (2-x)^2 = 16$	
	.'.x >6 -: x2+4-4x+x2=16	
	$\therefore 2x^2 - 4x - 12 = 0$	
	$x^{2}-2x-6=0$	
	$- \times = 2 \pm \sqrt{4 - 4x1x^{-1}b}$	
	2 2 ± \( \frac{128}{2} \)	
	$J.x = 1 + \sqrt{7}$	
	i y = -1 ± J7 S	
	92	
<u>_</u>	a) In 1 ADE, 0+6+6=180 b) (i) y=	x-2
		is a function as
	Int ACBE, EZB=18-x the convention.	is to take the positive
		for each x make
	there is at most	one y value.
	·· 0=180-((180-8)+(180-B)	
		in {x: x > 2 }
		e fy: 470}
		(y)
	: the interior anglesum of a	y=Jo(-2
	quachilateral with no parallel	
	sides in 360°.	
		2
	<u> </u>	Section of



