Fundamental Physical Constants — Non-SI units

	•			Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
electron volt: (e/C) J	eV	$1.6021766208(98)\times10^{-19}$	J	6.1×10^{-9}
(unified) atomic mass unit: $\frac{1}{12}m(^{12}C)$	u	$1.660539040(20)\times10^{-27}$	kg	1.2×10^{-8}
nu of valocity		ral units (n.u.) 299 792 458	${ m m~s^{-1}}$	aveat
n.u. of velocity	c, c_0	$1.054571800(13)\times10^{-34}$	J s	exact 1.2×10^{-8}
n.u. of action: $h/2\pi$	\hbar	$6.582119514(40)\times10^{-16}$	eV s	6.1×10^{-9}
	$\hbar c$	$0.382119314(40) \times 10$ 197.3269788(12)	MeV fm	6.1×10^{-9}
n.u. of mass		$9.10938356(11) \times 10^{-31}$		0.1×10 1.2×10^{-8}
	$m_{ m e} \ m_{ m e} c^2$	$8.18710565(10)\times 10^{-14}$	kg J	1.2×10 1.2×10^{-8}
n.u. of energy	$m_{ m e}c$	0.5109989461(31)	J MeV	6.2×10^{-9}
n.u. of momentum	m a	$2.730924488(34)\times 10^{-22}$	kg m s ⁻¹	0.2×10 1.2×10^{-8}
n.u. of momentum	$m_{ m e}c$	0.5109989461(31)	MeV/c	6.2×10^{-9}
n.u. of length: $\hbar/m_{ m e}c$	$\lambda_{ m C}$	$386.15926764(18) \times 10^{-15}$	m	4.5×10^{-10}
n.u. of time	$\hbar/m_{ m e}c^2$	$1.28808866712(58)\times10^{-21}$	S	4.5×10^{-10} 4.5×10^{-10}
n.u. of time	$m/m_{\rm e}c$	1.200 000 007 12(00) × 10	3	4.0 \ 10
Atomic units (a.u.)				
a.u. of charge	e	$1.6021766208(98)\times10^{-19}$	C	6.1×10^{-9}
a.u. of mass	$m_{ m e}$	$9.10938356(11)\times10^{-31}$	kg	1.2×10^{-8}
a.u. of action: $h/2\pi$	\hbar	$1.054571800(13)\times10^{-34}$	Js	1.2×10^{-8}
a.u. of length: Bohr radius (bohr)		` ,		
$lpha/4\pi R_{\infty}$	a_0	$0.52917721067(12)\times10^{-10}$	m	2.3×10^{-10}
a.u. of energy: Hartree energy (hartree)		, ,		
$e^2/4\pi\epsilon_0 a_0 = 2R_{\infty}hc = \alpha^2 m_{\rm e}c^2$	$E_{ m h}$	$4.359744650(54) \times 10^{-18}$	J	1.2×10^{-8}
a.u. of time	$\hbar/E_{ m h}$	$2.418884326509(14)\times 10^{-17}$	S	5.9×10^{-12}
a.u. of force	$E_{ m h}/a_0$	$8.23872336(10) \times 10^{-8}$	N	1.2×10^{-8}
a.u. of velocity: αc	$a_0 E_{ m h}/\hbar$	$2.18769126277(50) \times 10^6$	${ m m~s^{-1}}$	2.3×10^{-10}
a.u. of momentum	\hbar/a_0	$1.992851882(24) \times 10^{-24}$	${ m kg~m~s^{-1}}$	1.2×10^{-8}
a.u. of current	$eE_{ m h}/\hbar$	$6.623618183(41) \times 10^{-3}$	A	6.1×10^{-9}
a.u. of charge density	e/a_{0}^{3}	$1.0812023770(67)\times 10^{12}$	${ m C}~{ m m}^{-3}$	6.2×10^{-9}
a.u. of electric potential	$E_{ m h}/e$	27.21138602(17)	V	6.1×10^{-9}
a.u. of electric field	$E_{ m h}/ea_0$	$5.142206707(32)\times10^{11}$	$V m^{-1}$	6.1×10^{-9}
a.u. of electric field gradient	$E_{ m h}/ea_0^2$	$9.717362356(60) \times 10^{21}$	$ m V~m^{-2}$	6.2×10^{-9}
a.u. of electric dipole moment	ea_0	$8.478353552(52) \times 10^{-30}$	C m	6.2×10^{-9}
a.u. of electric quadrupole moment	ea_0^2	$4.486551484(28)\times10^{-40}$	$C m^2$	6.2×10^{-9}
a.u. of electric polarizability	$e^2 a_0^2 / E_{\rm h}$	$1.6487772731(11) \times 10^{-41}$	$C^2 m^2 J^{-1}$	6.8×10^{-10}
a.u. of 1 st hyperpolarizability	$e^3 a_0^3 / E_{\rm h}^2$	$3.206361329(20) \times 10^{-53}$	$C^3 \text{ m}^3 \text{ J}^{-2}$	6.2×10^{-9}
a.u. of 2 nd hyperpolarizability	$e^4 a_0^4 / E_{\rm h}^3$	$6.235380085(77)\times10^{-65}$	$\mathrm{C}^4~\mathrm{m}^4~\mathrm{J}^{-3}$	1.2×10^{-8}
a.u. of magnetic flux density	\hbar/ea_0^2	$2.350517550(14)\times10^5$	T	6.2×10^{-9}
a.u. of magnetic dipole moment: $2\mu_{\rm B}$	$\hbar e/m_{ m e}$	$1.854801999(11)\times10^{-23}$	$J T^{-1}$	6.2×10^{-9}
a.u. of magnetizability	$e^2 a_0^2 / m_e$	$7.8910365886(90) \times 10^{-29}$	$J T^{-2}$	1.1×10^{-9}
a.u. of permittivity: $10^7/c^2$	$e^2/a_0 E_{\rm h}$	$1.112650056\times10^{-10}$	$\mathrm{F}\mathrm{m}^{-1}$	exact