

TÓPICOS EM CIÊNCIA DE DADOS PARA O ESPORTE

VARIÁVEIS ALEATÓRIAS

DIEGO RODRIGUES DSC

INFNET

CRONOGRAMA

NÚMERO	ÁREA	AULA	TRABALHOS
1	Intro	Introdução a Disciplina e Organização do Ambiente	
2	Dados	Coleta de Dados e Sensoriamento	
3	Estatística	Variáveis Aleatórias	Grupos
4		Análise Exploratória	
5		Estatísticas para Ranqueamento	
6		Ranqueamento Estatístico : ELO	
7		Ranqueamento Estatístico : Glicko	
8		Ranqueamento Estatístico : TrueSkill	
9		Ranqueamento Estatístico : XELO	Base de Dados
10	ML	Modelos de Aprendizado de Máquina	
11		Machine Learning: Classificação	
12		Machine Learning: Regressão	
13		Machine Learning: Agrupamento	Pesquisa
14		Machine Learning: Visão Computacional	
15		Aplicações & Artigos: Esportes Independentes	Modelo
16	Esportes	Aplicações & Artigos: Esportes de Objeto	
17		Aplicações & Artigos: Esportes de Combate	
18		Aplicações & Artigos : Betting	
19	Workshop	Workshop	
20		Apresentações de Trabalhos I	Apresentação
21		Apresentações de Trabalhos II	

AGENDA

- PARTE 1 : TEORIA
 - VARIÁVEL ALEATÓRIA
 - DISTRIBUIÇÃO DE PROBABILIDADE
 - FUNÇÃO DENSIDADE DE PROBABILIDADE
 - ESTATÍSTICAS DE UMA DISTRIBUIÇÃO
 - DISTRIBUIÇÃO DE BERNOULLI E ESTIMATIVA DE PARÂMETROS
 - DISTRIBUIÇÃO UNIFORME DISCRETA
 - DISTRIBUIÇÃO CATEGÓRICA
 - DISTRIBUIÇÃO BINOMIAL
 - TEOREMA CENTRAL DO LIMITE
 - DISTRIBUIÇÃO NORMAL (GAUSSIANA)
- PARTE 2 : PRÁTICA
 - PANDAS + MATPLOTLIB → VARIÁVEIS ALEATÓRIAS NO ESPORTE

VARIÁVEL ALEATÓRIA

 $https://www.inf.ufsc.br/{\sim} and re.zibetti/probabilidade/variave is_aleatorias.html [1]$

DISTRIBUIÇÃO DE PROBABILIDADE

Distribuição teórica, paramétrica, e a realização experimental, não paramétrica.

FUNÇÃO DENSIDADE DE PROBABILIDADE

Função Massa de Probabilidade (Discreta)

[2]

[2]

FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE ACUMULADA

$$F(x) = P(X \le x)$$

ESTATÍSTICAS DE UMA DISTRIBUIÇÃO

$$ar{x} = rac{x_1 + x_2 + \ldots + x_n}{n} = rac{1}{n} \sum_{i=1}^n x_i$$

MÉDIA - O MOMENTO CENTRAL

O DESVIO PADRÃO - DISPERSÃO DOS DADOS

CURTOSE - HOMOGENEIDADE

-3

-2 -1

0

DISTRIBUIÇÃO DE BERNOULLI E ESTIMATIVA DE PARÂMETROS

Parameters	$0 \leq p \leq 1$
	q=1-p
Support	$k \in \{0,1\}$
PMF	$\left\{egin{array}{ll} q=1-p & ext{if } k=0 \ p & ext{if } k=1 \end{array} ight.$
CDF	$\left\{egin{array}{ll} q=1-p & ext{if } k=0 \ p & ext{if } k=1 \end{array} ight. \ \left\{egin{array}{ll} 0 & ext{if } k<0 \ 1-p & ext{if } 0\leq k<1 \ 1 & ext{if } k\geq 1 \end{array} ight.$
Mean	p
Median	$\left\{egin{array}{ll} 0 & ext{if } p < 1/2 \ [0,1] & ext{if } p = 1/2 \ 1 & ext{if } p > 1/2 \end{array} ight.$
Mode	$\begin{cases} 0 & \text{if } p < 1/2 \\ 0, 1 & \text{if } p = 1/2 \\ 1 & \text{if } p > 1/2 \end{cases}$
Variance	p(1-p)=pq
MAD	$\frac{1}{2}$
Skewness	$\frac{q-p}{\sqrt{pq}}$
Ex. kurtosis	$\frac{1-6pq}{pq}$
Entropy	$-q \ln q - p \ln p$
MGF	$q+pe^t$
CF	$q+pe^{it}$
PGF	q+pz
Fisher information	$\frac{1}{pq}$

LEI DOS GRANDES NÚMEROS

DISTRIBUIÇÃO DE MASSA UNIFORME

Notation	$\mathcal{U}\{a,b\}$ or $\mathrm{unif}\{a,b\}$
Parameters	a,b integers with $b\geq a$
	n=b-a+1
Support	$k \in \{a,a+1,\dots,b-1,b\}$
PMF	$\frac{1}{n}$
CDF	$\frac{\lfloor k \rfloor - a + 1}{n}$
Mean	$\frac{a+b}{2}$
Median	$\frac{a+b}{2}$
Mode	N/A
Variance	$\frac{n^2-1}{12}$
Skewness	0
Ex. kurtosis	$-\frac{6(n^2+1)}{5(n^2-1)}$
Entropy	$\ln(n)$
MGF	$\frac{e^{at}-e^{(b+1)t}}{n(1-e^t)}$
CF	$\frac{e^{iat}-e^{i(b+1)t}}{n(1-e^{it})}$
PGF	$\frac{z^a-z^{b+1}}{n(1-z)}$

[2]

DISTRIBUIÇÃO CATEGÓRICA

The possible probabilities for the categorical distribution with k=3 are the 2-simplex $p_1+p_2+p_3=1$, embedded in 3-space.

[2]

Categorical

	- attoger to at
Parameters	k>0 number of categories (integer)
	p_1,\dots,p_k event probabilities
	$(p_i \geq 0, \Sigma p_i = 1)$
Support	$x \in \{1, \dots, k\}$
PMF	(1) $p(x=i)=p_i$ (2) $p(x)=p_1^{[x=1]}\cdots p_k^{[x=k]}$ (3) $p(x)=[x=1]\cdot p_1+\cdots+[x=k]\cdot p_k$ where $[x=i]$ is the Iverson bracket
Mode	$i ext{ such that } p_i = \max(p_1, \dots, p_k)$

DISTRIBUIÇÃO BINOMIAL

Notation	B(n,p)
Parameters	$n \in \{0,1,2,\ldots\}$ – number of trials
	$p \in [0,1]$ – success probability for
	each trial
	q = 1 - p
Support	$k \in \{0,1,\ldots,n\}$ – number of
	successes
PMF	$\binom{n}{k} p^k q^{n-k}$
CDF	$I_q(n-k,1+k)$ (the regularized
	incomplete beta function)
Mean	np
Median	$\lfloor np floor$ or $\lceil np ceil$
Mode	$\lfloor (n+1)p floor \lceil (n+1)p ceil -1$
Variance	npq
Skewness	$\frac{q-p}{\sqrt{npq}}$
	\sqrt{npq}
Ex. kurtosis	1-6pq
	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Entropy	$\frac{1}{2}\log_2(2\pi enpq) + O\left(\frac{1}{n}\right)$
	in shannons. For nats, use the natural
	log in the log.
MGF	$(q+pe^t)^n$
CF	$(q+pe^{it})^n$
PGF	$G(z)=[q+pz]^n$
Fisher	$g_n(p) = \frac{n}{pq}$
information	pq pq
	(for fixed n)

DISTRIBUIÇÃO BINOMIAL

https://anydice.com/

TEOREMA CENTRAL DO LIMITE

Lindeberg-Lévy CLT — Suppose $\{X_1,\ldots,X_n\}$ is a sequence of i.i.d. random variables with $\mathrm{E}[X_i]=\mu$ and $\mathrm{Var}[X_i]=\sigma^2<\infty$. Then, as n approaches infinity, the random variables $\sqrt{n}(\bar{X}_n-\mu)$ converge in distribution to a normal $\mathcal{N}(0,\sigma^2)$: [4]

$$\sqrt{n}\left(ar{X}_n-\mu
ight) \stackrel{a}{
ightarrow} \mathcal{N}\left(0,\sigma^2
ight).$$

DISTRIBUIÇÃO NORMAL (GAUSSIANA)

Notation	$\mathcal{N}(\mu,\sigma^2)$
Parameters	$\mu \in \mathbb{R}$ = mean (location)
	$\sigma^2 \in \mathbb{R}_{>0}$ = variance (squared scale)
Support	$x\in\mathbb{R}$
PDF	$rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma} ight)^2}$
CDF	$\Phi(rac{x-\mu}{\sigma}) = rac{1}{2} \left[1 + ext{erf} igg(rac{x-\mu}{\sigma \sqrt{2}}igg) ight]$
Quantile	$\mu + \sigma\sqrt{2}\operatorname{erf}^{-1}(2p-1)$
Mean	μ
Median	μ
Mode	μ
Variance	σ^2
MAD	$\sigma\sqrt{2}~{ m erf}^{-1}(1/2)$
Skewness	0
Ex.	0
kurtosis	
Entropy	$\frac{1}{2}\ln(2\pi\sigma^2)+\frac{1}{2}$
MGF	$\exp(\mu t + \sigma^2 t^2/2)$
CF	$\exp(i\mu t - \sigma^2 t^2/2)$
Fisher information	$\mathcal{I}(\mu,\sigma) = egin{pmatrix} 1/\sigma^2 & 0 \ 0 & 2/\sigma^2 \end{pmatrix}$
	$\mathcal{I}(\mu,\sigma^2) = \left(egin{array}{cc} 1/\sigma^2 & 0 \ 0 & 1/(2\sigma^4) \end{array} ight)$
Kullback- Leibler divergence	$\frac{1}{2}\left\{\left(\frac{\sigma_0}{\sigma_1}\right)^2+\frac{(\mu_1-\mu_0)^2}{\sigma_1^2}-1+\ln\frac{\sigma_1^2}{\sigma_0^2}\right\}$

SETUP INICIAL DO AMBIENTE PYTHON

4. Variáveis **Aleatórias**

5. Visualização

1. Editor de Código

2. Gestor de Ambiente

3. Ambiente Python do Projeto

3. Notebook Dinâmico

PRÓXIMA AULA LEITURA: ANÁLISE EXPLORATÓRIA (LIVRO OU ARTIGOS)

