MATH 243 Quiz 4

- 1. Select all vector fields that are conservative
 - A. Reverse alphabet: $\mathbf{F}(v, w, x, y, z) = \langle z, y, x, w, v \rangle$
 - B. Garfield: $\mathbf{F}(x, y, z) = \langle z, z, z \rangle$
 - C. $\mathbf{F}(x,y) = \langle e^x \cos(y) + e^{x-y}, e^{y-x} e^x \sin(y) \rangle$
 - D. $\mathbf{F}(x,y) = \langle y^2(1+\cos(x+y)), 2xy 2y + y^2\cos(x+y) + 2y\sin(x+y) \rangle$
- 2. The Fundamental Theorem of Line Integrals and its consequences have been a benefit to the human race. Select all of the following that are true:
 - A. If C is some path starting at **a** and ending at $\mathbf{b} \neq \mathbf{a}$, -C is the same path but in the reverse direction, and **F** is not conservative, then $\int_C \mathbf{F} \cdot d\mathbf{r} = -\int_{-C} \mathbf{F} \cdot d\mathbf{r}$
 - B. If **F** is conservative, C_1 is the upper semicircle $y = \sqrt{1 x^2}$ taken counterclockwise, and C_2 is the lower semicircle $y = -\sqrt{1 x^2}$ taken clockwise, then $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$
 - C. If **F** is conservative, C is some closed curve parametrized by **r**, and ds is the arc length differential, then $\int_C (\mathbf{F} \cdot \mathbf{r}) ds = 0$
 - D. If **F** is conservative, T is the triangle with vertices (0,0),(1,0),(0,1) traversed counterclockwise, and 2T is the same triangle but doubled in size (so (0,1),(1,0) are sent to (0,2),(2,0) respectively), then $\int_{2T} \mathbf{F} \cdot d\mathbf{r} = 2 \int_{T} \mathbf{F} \cdot d\mathbf{r}$
- **3.** Find $\iiint_E 11xy \, dV$ where E is the region bound by z = 7 and $z = x^2 + y^2 9$
- **4.** Let C be the helix represented by $x^2+y^2=2, z=\tan^{-1}(\frac{y}{x})$. Let γ be half a turn of this helix, starting at $(1,-1,-\frac{\pi}{4})$ and ending at $(1,1,\frac{\pi}{4})$. For $\mathbf{F}=(x^2,y^2,z)$, let $L=\int_{\gamma}\mathbf{F}\cdot d\mathbf{r}$. We have $L=\frac{a}{b}$ in reduced form for integers a,b. Find 10a+b
- **5.** Let B_1, B_2 be balls with radii 1 and centers (4, 5, 6), (5, 6, 7) respectively. Find the volume of the intersection of B_1 and B_2
- **6.** Let E be the region bound by x=z, x=z+1, and $x^2+y^2+2z^2=2xz-2yz+1$. Find $\iiint_E y\,dV$
- 7. Extra Credit: Calculate $\iint_S \frac{dx\,dy}{1-xy}$ by any means necessary, where $S=[0,1]^2$ is the unit square Hint: one way is using the substitution (x,y)=(u+v,u-v)