First Person Action Recognition Using Deep Learned Descriptors

Suriya Singh¹, Chetan Arora², and C.V. Jawahar¹ ² IIIT Delhi ¹ IIIT Hyderabad

1. OVERVIEW

First Person Action Recognition is challenging!

Large camera shakes due to head motion

Our contributions

- ★ Deep learned egocentric features using limited available data
- \bigstar Our features are complementary to popular features (DT, iDT, TDD³)
- ★ Three-stream architecture: Egocentric, spatial and temporal streams

2. EGO CONVNET

Wearer's hands, head motion and motion saliency are important cues for Egocentric video

Motion saliency computed after head motion compensation

2. EGO CONVNET (CONT'D.)

Pre-processed egocentric cues are stacked and used as input to 2D and 3D CNN.

3. THREE-STREAM ARCHITECTURE

Using deep learned egocentric, spatial and temporal features for first person action recognition

4. RESULTS

Dataset	State of the art	Ours	Ours (cross validated)
GTEA*	47.70^{1}	68.50	64.41
Kitchen	48.64 ²	66.23	66.23
ADL	N.A.	37.58	31.62
UTE	N.A.	60.17	55.97

Method	Features	Accuracy	Datacet	Accuracy			
Ego ConvNet 2D	H+C+M	57.61	Dataset	Frame level	Segment level	Chance lev	
Ego ConvNet 3D	H+C+M	55.79	GTEA*	68.50	82.40	11	
TDD ³	Spatial	58.61	Kitchen	66.23	71.88	3.4	
	•		ADL	37.58	39.02	4.7	
TDD ³	Temporal	57.12	UTE	60.17	65.30	4.7	
Combined	H+C+M+S+T	68.50	Results are in terms of percentage of accurac				

Note: For GTEA with 61 classes (action-object), Li et al ⁴. achieved state of the art segment level recognition accuracy of 66.8% (64.0% cross-validated)

Our method perform well across different challenging egocentric video datasets

Ego ConvNet features are complementary with deep learned spatial and temporal features

Error visualization for videos of Subject 2 from GTEA dataset. Most errors occur at the action boundaries!

5. CONCLUSIONS

- CNN for egocentric action recognition can be trained with limited available data.
- Egocentric stream alone can achieve state of the art accuracy.
- Egocentric features are complementary to features from third person video analysis.

REFERENCES

- . Fathi et. al. Understanding egocentric activities. ICCV, 2011.
- 2. Spriggs et. al. Temporal segmentation and activity classification from first-person sensing. CVPRW, 2009.
- 3. Wang et. al. Action recognition with trajectorypooled deep-convolutional descriptors. CVPR, 2015.
- 4. Li et al. Delving into egocentric actions. CVPR, 2015.

Codes and Datasets are available on Project Web Page

IIIT - Delhi, India

IIIT - Hyderabad, India

http://www.iiit.ac.in http://www.iiitd.ac.in

Thanks to Google India and MSR India for the travel grants