HOCHSCHULE **HANNOVER** UNIVERSITY OF APPLIED SCIENCES AND ARTS

$\begin{array}{c} \text{Br\"{u}ckenkurs Mathematik zum} \\ \text{Wintersemester 2015/2016} \end{array}$

Übungsblatt 6 (Differentialrechnung)

Aufgabe 1. Differenzieren Sie f(x) nach der Summenregel:

(a)
$$f(x) = \frac{3}{4}x^6 + \frac{1}{2}x^3 - 5x + 8$$
 (d) $f(x) = 2\sqrt{x^5} - 5\sqrt[4]{x}$

(d)
$$f(x) = 2\sqrt{x^5} - 5\sqrt[4]{x}$$

(b)
$$f(x) = ax^4 - 2bx^3 + cx^2 - 4dx$$
 (e) $f(x) = x^{-3} - x^{-7}$

(e)
$$f(x) = x^{-3} - x^{-7}$$

(c)
$$f(x) = a \sin x + b \cos x + cx$$
 (f) $f(x) = e^x + e^{3x} - \ln x$

(f)
$$f(x) = e^x + e^{3x} - \ln x$$

Aufgabe 2. Differenzieren Sie f(x) nach der Produktregel:

(a)
$$f(x) = \sin x \cdot \cos x$$

$$(b) \ f(x) = x^3 \cdot \ln x$$

(c)
$$f(x) = (4x^3 - 2x + 1) \cdot (x^2 - 2x + 5)$$

(d)
$$f(x) = e^{2x} \cdot \sin x$$

Aufgabe 3. Differenzieren Sie f(x) nach der Quotientenregel:

(a)
$$f(x) = \frac{x}{x+1}$$

$$(b) f(x) = \frac{\ln x}{x^4}$$

(c)
$$f(x) = \frac{\cos x}{e^{2x}}$$

Aufgabe 4. Differenzieren Sie f(x) nach der Kettenregel:

(a)
$$f(x) = 3(5x^2 + 2x + 3)^4$$

(c)
$$f(x) = \ln e^{2x} + x^2$$

(b)
$$f(x) = \sin(3x + 12)$$

(d)
$$f(x) = e^{\cos x}$$

Aufgabe 5. (Zusatzaufgabe) Differenzieren Sie geschickt:

(a)
$$f(x) = e^{\ln(\sin x)}$$

(c)
$$f(x) = \ln \frac{1}{x^2} + \ln \frac{x+4}{x}$$

(b)
$$f(x) = \cos^2(2x+3)$$

(d)
$$f(x) = \ln(\tan x)$$

Aufgabe 6. Bestimmen Sie die Definitionsmenge, die Bildmenge, alle Nullstellen, den Scheitelpunkt und die Umkehrfunktion von $f(x) = x^2 + 4x + 3$.

Aufgabe 7. Berechnen Sie Volumen des durch \vec{u}, \vec{v} und \vec{w} aufgespannten

Spates für
$$\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix}$ und $\vec{w} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.