Brownian Motions

Hyunwoo Gu

1 Joint Probabilities for Brownian Motion

Theorem 2.1. The conditional density of X(t) for $t_1 < t < t_2$ given $X(t_1) = A$, $X(t_2) = B$ is a normal density with the mean

$$A + \frac{B - A}{t_2 - t_1}(t - t_1)$$

and the variance

$$\frac{(t_2 - t)(t - t_1)}{t_2 - t - 1}$$

Proof. Let H be the interoccurrence distribution for N(t). Then

1.1 Continuity of Paths and the Maximum Variables

The physical origins of the Brownian motion process suggest that the possible realizations X(t), (i.e. **sample path**) whose movements result from continuous collisions in the surronding medium are continuous functions.

Theorem 3.1. The probability that X(t) has at least one zero in the interval (t_0, t_1) , given X(0) = 0, is

$$\alpha = \frac{2}{\pi} \arccos \sqrt{t_0/t_1}$$

1.2 Variations and Extensions

If X(t) is a standard Brownian motion process, then the processes

$$X_1(t) = cX(t/c^2)$$

$$X_2(t) = \begin{cases} tX(1/t) & t > 0\\ 0 & t = 0 \end{cases}$$

$$X_3(t) = X(t+h) - X(h)$$

for c > 0, h > 0.

1.3 Brownian Motion Absorbed at the Origin