Função Exponencial

1 Exponenciação

1.1 Definição

A notação a^n foi inventada por $Ren\acute{e}$ Descartes

Algumas vezes desejamos multiplicar um número por ele mesmo várias vezes. Por exemplo, para calcular a área de um quadrado de lado l, nós usamos a seguinte fórmula:

$$A = l.l$$

Ou simplesmente

$$A = l^2$$

Figura 1: Paralelepípedo Reto-Retângulo

O produto do mesmo número repetidas vezes é chamado de **exponenciação**. O número dois que aparece no canto superior direito de l é o número que indica quantas vezes l deve ser multiplicado por si mesmo. Este número é chamado de expoente.

Exemplo 1. O volume de um paralelepípedo reto retângulo (Figura 1) é igual ao produto de sua altura (h), largura (l) e profundidade (p)

$$V = h.l.p$$

Chamamos de *cubo* o *paralelepipedo reto retângulo* que tem todos os lados iguais. Nesse caso

$$V = l.l.l \Rightarrow V = l^3$$

Quando o expoente é 2, dizemos que o número está elevado ao quadrado. Quando o expoente é 3, dizemos que o número está elevado ao cubo.

A exponenciação é amplamente utilizada nas ciências para descrever números muito grandes ou muito pequenos. A quantidade de moléculas de água em um copo de água é da ordem de 6.000.000.000.000.000.000.000.000.000, ou 6.10^{24} . Essa quantidade é praticamente incomensurável para nosso senso cotidiano: há mais moléculas de água em um copo de água do que copos de água no oceano!

Agora imagine que desejamos saber quantas moléculas de água existem no oceano e suponha que consiguimos estimar o número de copos de água no oceano em 10^{21} . Assim: moléculas de água no oceano $= 6.10^{24}.10^{21}$

Se desejamos obter o resultado, precisamos aprender a fazer cálculos com as exponenciações. Nosso primeiro conceito é que

$$a^n = \underbrace{a.a...a}_n$$

Definição 1. Exponenciação

Seja $a \in \mathbb{R}$, definimos a^n por:

$$a^n = \begin{cases} a, & \text{se } n = 1\\ a.a^{n-1}, & \text{se } n > 1 \end{cases}$$

Na expressão a^n chamamos a de base e n de expoente

Poderíamos igualmente definir a multiplicação por

$$a.n = \underbrace{a+a+\ldots+a}_{}$$

A definição anterior é o que chamamos de definição por recorrência. Para calcular a^{10} precisamos antes saber quanto é a^{9} , para calcular a^{9} , precisamos saber quanto é a^{8} e assim por diante. Esse tipo de definição é utilizada para evitar o uso das retiscências (...), que não têm precisão matemática.

Testando o Conceito 1. Escreva uma definição por recorrência da multiplicação

[Solução: Defina a.n = a, se n = 1 e a.n = a.(n-1) + a, se n > 1]

Exemplo 2. a) $7^4 = 7.7.7.7 = 2401$

b)
$$(-4)^3 = (-4) \cdot (-4) \cdot (-4) = -64$$

c)
$$(-4)^2 = (-4) \cdot (-4) = 16$$

d)
$$\left(\frac{1}{3}\right)^3 = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{27}$$

É importante salientar que a semelhança com a multiplicação não vai muito longe. Enquanto a multiplicação goza da propriedade comutativa (a.b=b.a), isso não acontece com a exponenciação. Ou seja, no geral $a^b \neq b^a$. Por exemplo:

Repare que $(-4)^3$ é negativo e $(-4)^2$ é positivo.

Exemplo 3. $2^3 \neq 3^2$, afinal $2^3 = 2.2.2 = 8$ enquanto $3^2 = 3.3 = 9$.

Exercícios Elementares 1.2

Exercício 1. Calcule utilizando a de- r) $(2.3)^2$ finição

- a) 2^2
- b) 3^2
- c) -2^4
- d) $(-2)^4$
- e) -2^3
- f) $(-2)^3$
- g) 2^5
- h) $0,5^2$
- i) 1^2
- $j) 1^3$
- k) 0^1
- 1) 0^4
- $(-1)^2$
- n) $(-1)^3$
- o) $(-1)^4$
- p) $-(-7)^2$
- q) $(-7)^2$

- s) $2^2.3^2$
- t) $(4+1)^3$
- u) $4^3 + 1^3$
- $v) \left(\frac{2}{3}\right)^5$
- $w) \frac{2^5}{3^5}$

Exercício 2 (FUVEST). (Modificado) - Calcule o valor da expressão $(0,2)^3 + (0,16)^2$

Exercício 3. Calcule a quantidade de algarismos dos seguintes números:

- a) 10^4
- b) 10^8
- c) 10^n , quando $n \in \mathbb{Z}_*^+$ Dica: Generalize o item a) e o item b)
- d) 352.10⁸
- e) $0, 2.10^3$
- f) 200.10^{n+2}

Exercício 4. Calcule o valor de ab^2 – a^3 para $a=-\frac{x}{2}$ e b=2x

1.3 Complemento da Teoria

Conforme pudemos observar nos exercícios, algumas vezes as exponenciações têm simplificações simples. As seguintes propriedades são válidas para todo $a \in \mathbb{R}$:

Propriedade 1. $a^p \ge 0$, onde p é um número par, ou seja, o resultado da exponenciação de qualquer número por um expoente par é sempre positivo, independente do sinal da base.

Propriedade 2. $0^n = 0$, para qualquer n inteiro positivo.

Propriedade 3. $1^n = 1$, para qualquer n inteiro positivo.

Propriedade 4. $(-1)^i = -1$ $e(-1)^p = 1$, onde i representa um inteiro positivo impar e p representa um inteiro positivo par.

Propriedade 5. $(a.b)^n = a^n.b^n$

Propriedade 6. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Atenção: $(a+b)^n \neq a^n + b^n$

Testando o Conceito 2. Calcule: $(-2)^3 + (-1)^2 + (-1)^{502} - 1^{55} + 0^1 \cdot (-5)^2$

[Solução: -8 + 1 + 1 - 1 + 0 = -7]

Exercício Resolvido 1. A esfera (Figura 2) tem seu volume dado pela fórmula $V = \frac{4}{3}\pi r^3$, onde r é o raio da esfera. Se duas esferas a e b são tais que seus raios são respectivamente r_a e $r_b = 4r_a$, calcule a $\frac{V_a}{V_b}$, onde V_a é o volume da esfera a e V_b é o volume da esfera b.

Solução

$$\frac{V_a}{V_b} = \frac{\frac{4}{3}\pi r_a^3}{\frac{4}{3}\pi r_b^3}$$

Simplificando:

$$\frac{V_a}{V_b} = \frac{r_a^3}{r_b^3} = \frac{r_a^3}{(4r_a)^3} = \frac{r_a^3}{4^3r_a^3} = \frac{1}{64}$$

Figura 2: Esfera

2 Exponenciação (cont.)

2.1 Mais propriedades da exponenciação

Nós aprendemos várias propriedades úteis para calcular a exponenciação de forma mais simples, sem precisarmos utilizar a definição por recorrência, que é longa e tediosa. Agora, veremos mais algumas propriedades que facilitam o cálculo da exponenciação. Antes, alguns exemplos:

Exemplo 4. a)
$$2^6 = \underbrace{2.2.2.2.2.2}_{6} = \underbrace{2.2.2}_{3} \underbrace{2.2.2}_{3} = 2^3.2^3$$

b)
$$5^{100} = \underbrace{5.5...5}_{100} = \underbrace{5.5.5}_{3}.\underbrace{5.5...5}_{97} = 5^{3}.5^{97}$$

c)
$$(-2)^8 = \underbrace{(-2).(-2)...(-2)}_{8} = \underbrace{(-2)(-2)(-2)(-2)}_{4} \cdot \underbrace{(-2)(-2)(-2)(-2)}_{4} = \underbrace{(-2)(-2)(-2)(-2)}_{4}$$

Essas propriedades vão nortear a nossa definição da exponenciação quando o expoente for negativo ou uma fração!

As demonstrações estão no apêndice.

Propriedade 7. $a^{m+n} = a^m.a^n$

Propriedade 8. $a^{m.n} = (a^m)^n$

Vamos explorar um pouco a propriedade 7. Conforme os exemplos anteriores, vimos que

$$5^{100} = 5^3.5^{97}$$

Isso também pode ser escrito da seguinte forma:

$$5^{97} = \frac{5^{100}}{5^3}$$

Assim, podemos escrever mais uma propriedade:

Propriedade 9.
$$a^{m-n} = \frac{a^m}{a^n}$$
, Para $a \neq 0$

Testando o Conceito 3. Simplifique: $\frac{(a^4.b^5)^2}{(a.b)^3}$

[Solução:
$$\frac{a^8.b^{10}}{a^3.b^3} = \frac{a^8}{a^3} \frac{b^{10}}{b^3} = a^5.b^7]$$

Testando o Conceito 4 (EsPCEx-Modificado). Efetuando-se $k^{p+1}:(-k^{1-2p})$, o que se obtem?

[Solução:
$$-\frac{k^{p+1}}{k^{1-2p}} = -k^{p+1-(1-2p)} = -k^{3p}$$
]

2.2 Expoentes Inteiros Negativos

Com as propriedades desenvolvidas até aqui estamos prontos para extender a nossa definição de exponenciação e englobar expoentes inteiros. Porém, devemos salientar, que com essa extensão virão restrições: até agora pudemos fazer a exponenciação para qualquer base, independentemente de ser positiva, negativa ou nula. Ao introduzirmos expoentes negativos vamos excluir a possibilidade da base nula. Nós já veremos o porquê. Seguindo as propriedades anteriores, vamos definir a^0 , para $a \neq 0$. Para isso, tome m = 1 e n = 1 na Propriedade 9. Isso nos dá:

$$a^{1-1} = \frac{a^1}{a^1} \Rightarrow a^0 = 1$$

Agora, vamos calcular a^{-1} . Tome m = 0 e n = 1, com isso:

$$a^{0-1} = \frac{a^0}{a^1} \Rightarrow a^{-1} = \frac{1}{a}$$

E finalmente, para um número inteiro negativo qualquer, vamos utilizar a Propriedade 8. Tome n=-1

$$a^{m.(-1)} = (a^m)^{-1} \Rightarrow a^{-m} = \frac{1}{a^m}$$

Com essas considerações, a única forma consistente de definir a exponenciação para expoentes inteiros é a que se segue:

Definição 2. Exponenciação de Inteiros Não Positivos

Seja $a \in R_*$, definimos:

$$a^n = \begin{cases} 1, & \text{Se } n = 0\\ \frac{1}{a^{-n}}, & \text{Se } n < 0 \end{cases}$$

Os expoentes negativos são muito utilizados para descrever grandezas muito pequenas. O sistema internacinal de unidades possui vários prefixos de unidades que são potências negativas de 10. Por exemplo, um miligrama são 10^{-3} gramas. Um mililitro são 10^{-3} litros e assim por diante (veja a tabela 1).

 0^0 é uma forma indeterminada. Isso vem da óbvia contradição entre a propriedade 2 e a definição 2. Frequentemente utilizamos $0^0 = 1$ para efeitos de simplificação.

Para frações também vale: $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$

Tabela 1: Prefixos do SI

Prefixo	Símbolo	Potência
deci	d	10^{-1}
centi	c	10^{-2}
mili	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}

2.3 Exercícios Elementares

Atenção! Não se esqueça de utilizar as d) $2^{-1} - 3^{-1} = 6^{-1}$ propriedades vistas na aula passada!

Exercício 5. Calcule

- a) 2^{-1}
- b) 2^{-2}
- c) -2^{-1}
- d) -2^{-2}
- e) $(-3)^{-6}$
- f) $(\frac{1}{5})^{-3}$
- g) $-\left(\frac{3}{2}\right)^{-2}$
- h) $\left(-\frac{3}{5}\right)^{-4}$
- i) $(0, 125)^{-2}$
- j) $\frac{1}{3-2}$

Exercício 6. Se $\pi^2 \approx 10$, calcule π^4 e π^6

Exercício 7. Calcule $\left(\frac{2^0+2^4+2-2^3}{2^{-1}+2-1}\right)^2$

Exercício 8. Quanto devemos somar a $(-2)^{-1}$ para obter $(-2)^{2}$?

Exercício 9. Classifique em (V) ou (F)

- a) $(2^4)^3 = 4^6$
- b) $\frac{2^3+2^2}{3 \cdot 2^2} = 3^{-1} + 3^{-1} + 3^{-1}$
- c) $(x+y)^{-2} = x^{-2} + y^{-2}$ Para qualquer $x, y \in \mathbb{R}_+$

- e) $\frac{1}{x^{-2}} = x^2$ Para qualquer $x \in \mathbb{R}_+$
- f) $(a^b)^c = a^{(b^c)}$ Para quaisquers $a, b, c \in \mathbb{R}_+$

Exercício 10 (PM). Calcule $\left(\frac{2}{3}-1\right)^2+2(-1)^3$

Exercício 11 (PM). Calcule $2^{-1}\frac{1}{2^5}$

Exercício 12 (CN-Modificado). Calcular: $\left(\frac{3}{7}\right)^{-2} + \frac{5}{2}(7)^{-1} + \left(\frac{1}{4}\right)^{-2}$

Exercício 13 (CN). Resolver a expressão $\frac{\frac{2}{3}+1}{\frac{4}{3}-1} - \left(\frac{\frac{2}{3}-2}{3-\frac{1}{2}}\right)^0 + \frac{1}{2^{-1}} +$ 0,43535...

Exercício 14. Simplifique $\frac{5^{2n+1}-25^n}{5^{4n}}$

Exercício 15. Simplifique $\frac{2^5-2^4}{3}$ + $\left(\frac{1}{2}\right)^{-1} + 0,125^{-3} + 0,25^{-2}$

Exercício 16. Calcule o inverso da expressão: $\frac{\left(\frac{3}{4} + \frac{2}{3}\right)\frac{1}{2} + \frac{0.5}{0.001}3.10^{-2}}{5}$

Exercício 17. Calcule n na expressão abaixo:

$$\frac{4^5 + 4^5 + 4^5 + 4^5}{3^5 + 3^5 + 3^5} \frac{5 \cdot 6^5 + 6^5}{2^5 + 2^5} = 2^n$$

Exercício 18 (CN). Na expressão abaixo a e b são números inteiros e positivos. Calcule a + b.

$$\frac{(0,125)^{b-a}}{8^{a-b}} + 21\left(\frac{b}{a}\right)^0 + a^b = 191$$

3 Raízes Enésimas e Expoentes Racionais

3.1 Função Inversa da Exponencial

Algumas vezes precisamos responder perguntas do tipo $qual\ potência\ de\ 2\ \acute{e}$ 64% e também do tipo $qual\ n\'umero\ elevado\ a\ 2\ \acute{e}$ 64%. Essas duas perguntas geram respostas e operações inversas muito diferentes. Antes de começarmos a explorar o conceito de exponenciação para expoentes racionais, vamos ver formas de definir a operação inversa da exponenciação. O problema surge da $n\~ao\ comutatividade\ da\ exponenciação\ .$ Ou seja, dados dois números $a\ e\ b\ podemos\ fazer\ duas\ perguntas:$

- 1) Qual potência de a é igual a b? $(a^x = b)$
- 2) Qual número elevado a a é igual a b? $(x^a = b)$

Exemplo 5. Se tomarmos a = 2 e b = 64 teremos duas equações:

$$2^x = 64(\text{ solução} : x = 6)$$

$$x^2 = 64$$
(solução : $x = 8$ ou $x = -8$)

Escreveremos o x da primeira equação, quando existir como $x = \log_a b$

Na multiplicação teríamos a mesma resposta para as duas perguntas: $x = \frac{b}{a}$

Por enquanto, vamos nos concentrar em responder a segunda pergunta.

3.2 Raízes Enésimas

Nessa seção nos concentraremos na pergunta: Dado um número qualquer b e um expoente inteiro a, é sempre possível encontrar uma base x tal que $x^a = b$?

Para respondermos essa pergunta, fixe $a \in \mathbb{Z}$ e seja

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^a$$

Queremos então encontrar x que satisfaça f(x) = b. Se essa função não for inversível podemos ter mais de uma resposta ou nenhuma.

Figura 3: Gráfico de $y = x^2$

Testando o Conceito 5. Seja $f(x) = x^2$ (veja a Figura 3). Discuta se é possível definir a inversa de f e sob quais restrições.

[Solução: Uma possível solução é tomar $\mathbb{D}(f) = \mathbb{R}_+$ e $\mathbb{CD}(f) = \mathbb{R}_+$, tornando a função bijetora e, logo, inversível]

Vamos estudar dois casos distintos:

2)
$$f(x) = x^a e a \text{ \'e impar}$$

Exemplo 6. Seja $f \colon \mathbb{R} \to \mathbb{R}$ tal que $x \mapsto x^6$. Então

$$f(-x) = (-x)^6 = (-1)^6 \cdot x^6 = x^6 = f(x)$$

e portanto f não é injetora, não sendo também inversível.

Figura 4: Gráficos de $y = x^3, y = x^5, y = x^7$

A palavra raiz é utilizada há muitos séculos com o sentido aqui definido. Sua origem é radix, do latim: lado. Raiz quadrada significaria, originalmente, o lado do quadrado. Assim o lado do quadrado de área 9 é 3, ou, como dizemos raiz quadrada de 9 é 3.

Poderíamos também definir $\sqrt[n]{a}$ como a menor raiz da equação. Algebricamente tudo continuaria consistente, mas perderíamos o sentido histórico da raiz quadrada

Por que $1024 = 2^{10}$? É a fatoração!

1024	2
512	2
256	2
128	2
64	2
32	2
16	2
8	2
4	2
2	2
1	$1024 = 2^{10}$

Prova-se utilizando o princípio da indução finita que quando a é ímpar, f é inversível (veja a Figura 4). Da discussão segue dois resultados importantes

- I Quando a é par, $f(x) = x^a$ só é inversível se limitarmos domínio e contradomínio.
- II Quando a é impar, $f(x) = x^a$ é inversível em todo \mathbb{R} .

Isso nos leva a seguinte definição:

Definição 3. Raiz Enésima

Seja
$$a \in \mathbb{R}$$

 $\sqrt[n]{a}$ é a maior raiz real da equação $x^n=a,$ caso exista

a é chamado de radicando e n de índice.

Exemplo 7. a) $\sqrt[3]{64} = 4$, pois $4^3 = 64$

b)
$$\sqrt[2]{36} = 6$$
, pois $6^2 = 36$. Embora $(-6)^2 = 36$ temos que $6 > (-6)$

c)
$$\sqrt[n]{0} = 0$$
, pois $0^n = 0$

d)
$$\sqrt[n]{1} = 1$$
, pois $1^n = 1$

e) Não existe $\sqrt[2]{-1}$, pois não existe $x^2 = -1$ em \mathbb{R}

f)
$$\sqrt[10]{1024} = 2$$
, pois $2^{10} = 1024$. Embora $(-2)^{10} = 1024$, $2 > -2$

g) $\sqrt[n]{x^n} = x$, se *n* for impar.

As raízes enésimas observam as seguintes propriedades:

Para $a, b \in \mathbb{R}_+$

Propriedade 10.

$$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$$

Propriedade 11.

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Propriedade 12.

$$\left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$$

Propriedade 13.

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n.m]{a}$$

Propriedade 14.

$$\sqrt[kn]{a^k} = \sqrt[n]{a}$$

Propriedade 15.

$$\sqrt[n]{a} < \sqrt[n]{b} \Rightarrow a < b$$

Exemplo 8. Para simplificarmos $\sqrt{18}$ primeiro fatoramos $18 = 2.3^2$ assim

$$\sqrt{18} = \sqrt{3^2 \cdot 2} \stackrel{P.10}{=} \sqrt{3^2} \sqrt{2} = 3\sqrt{2}$$

Tome cuidado ao aplicar as propriedades!

$$1 = \sqrt{(-1)^2} \neq (\sqrt{-1})^2$$

Afinal de contas $\sqrt{-1} \notin \mathbb{R}$

Exercício Resolvido 2. Coloque em ordem crescente: $\sqrt{2}$, $\sqrt[4]{15}$, $\sqrt[3]{10}$

Solução: Primeiro precisamos colocar as raízes no mesmo índice. O mmc entre 2, 4 e 3 é 12. Colocando todas as raízes no mesmo índice (Propriedade 14) temos

$$\sqrt[12]{2^6}$$
, $\sqrt[12]{15^3}$, $\sqrt[12]{10^4}$

$$\sqrt[12]{64}$$
, $\sqrt[12]{3375}$, $\sqrt[12]{1000}$

Assim, pela Propriedade 15: $\sqrt{2} < \sqrt[3]{10} < \sqrt[4]{15}$

Racionalizar significa eliminar os radicais do denominador

Exercício Resolvido 3. Racionalize: $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}+\sqrt{3}}, \frac{1}{\sqrt{3}-\sqrt{2}}$

Solução:
$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\frac{1}{\sqrt{2}+\sqrt{3}} = \frac{1}{\sqrt{2}+\sqrt{3}} \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} = \frac{\sqrt{2}-\sqrt{3}}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})} = \frac{\sqrt{2}-\sqrt{3}}{2-3} = \frac{\sqrt{2}-\sqrt{3}}{-1} = -(\sqrt{2}-\sqrt{3}) = \sqrt{3}-\sqrt{2}$$

$$\frac{1}{\sqrt{3}-\sqrt{2}} = \frac{1}{\sqrt{3}-\sqrt{2}} \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} = \frac{\sqrt{3}+\sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})} = \frac{\sqrt{3}+\sqrt{2}}{3-2} = \sqrt{3}+\sqrt{2}$$

3.3 Radicais Duplos

Uma curiosidade sobre radicais: É possível que dois radicais com formas diferentes correspondam ao mesmo número:

Exemplo 9. $\sqrt{8+\sqrt{15}} = \frac{\sqrt{2}}{2} \left(\sqrt{15}+1\right)$ pois ambos os lados quando elevados ao quadrado resultam em $8+\sqrt{15}$. Como são ambos positivos, necessariamente, são iguais

Testando o Conceito 6. Sejam $A, B \in \mathbb{Q}^+$ tais que $\sqrt{A^2 - B} \in \mathbb{Q}$. Então, escreva $\sqrt{A + \sqrt{B}}$ como a soma de dois radicais simples

[Solução: Se
$$\sqrt{A+\sqrt{B}}=\sqrt{x}+\sqrt{y}$$
 então $A+\sqrt{B}=x+y+2\sqrt{xy}$ Logo $A=x+y$ e $B=4xy$. Isolando y temos $A=x+\frac{B}{4x}$ assim $4xA=4x^2+B$ logo $x=\frac{A+\sqrt{A^2-B}}{2}$ e $y=\frac{A-\sqrt{A^2-B}}{2}$]

Exercício Resolvido 4 (EPCAR). Transformar $\sqrt{7+4\sqrt{3}}$

Solução Usando o exercício anterior temos A=7 e $B=3.4^2$ (porque a expressão anterior é $\sqrt{A+\sqrt{B}}$). Verificando, temos que $A^2-B=49-48=1$ é um quadrado perfeito, assim podemos escrever

$$\sqrt{7+4\sqrt{3}} = \sqrt{\frac{7+\sqrt{1}}{2}} + \sqrt{\frac{7-\sqrt{1}}{2}} = \sqrt{4} + \sqrt{6} = 2 + \sqrt{6}$$

Como ressaltamos anteriormente o radical duplo é uma curiosidade, assim como a racionalização. Apesar da grande quantidade de exercícios não é uma parte essencial para o entendimento da matéria e nem conceitualmente complicada, sendo um exercício técnico e tedioso diferente dos exercícios que utilizam habilidades matemáticas de fato.

3.4 Irracionalidade de algumas raízes

Tendo estabelecido via função inversa a existência das raízes quadradas e enésimas no geral, estamos aptos a apresentar concretamente números irracionais. O que é feito nessa seção é a demonstração clássica de que $\sqrt{2} \notin \mathbb{Q}$

Teorema 1 (Irracionalidade de $\sqrt{2}$). $\sqrt{2} \notin \mathbb{Q}$

Demonstração. Suponha por absurdo que $\sqrt{2} \in \mathbb{Q}$. Então existe uma fração $\frac{p}{q}$ irredutível (mdc(p,q)=1) de números inteiros tal que $x=\frac{p}{q}$. Logo

$$\left(\frac{p}{q}\right)^2 = 2$$
$$p^2 = 2q^2$$

Logo p^2 é par. A única possibilidade para p^2 ser par é se p também o for (caso contrário, se p for ímpar, p^2 também o será). Assim p=2k. Substituindo teremos:

$$(2k)^2 = 2q^2$$
$$q^2 = 2k^2$$

Assim q^2 também é par e, logo, q é par. Assim 2|p e 2|q e 2|mdc(p,q) contrariando a hipótese de que mdc(p,q)=1.

Na verdade a raiz quadrada de um número positivo que não é quadrado perfeito é sempre irracional. Embora seja um resultado simples exige um conhecimento mínimo de teoria dos números e não será feito aqui.

Testando o Conceito 7. Prove que $\sqrt{3}$ é irracional

[Solução: Se $\left(\frac{p}{q}\right)=3$ então $p^2=3q^2$ e logo $3|p^2\Rightarrow 3|p$. Logo p=3k assim $3k^2=q^2$ e 3|q de onde $\mathrm{mdc}(p,q)\geq 3$]

Corre a lenda no folclore matemático de que o primeiro homem que descobriu que não havia nenhuma proporção de números inteiros cujo quadrado fosse dois sofreu uma morte misteriosa por ação dos pitagóricos.

A escola pitagórica defendia que a natureza era composta por números e os *irracionais* não tinham espaço nessa filosofia.

3.5 Expoentes Racionais

Estamos aptos agora a definir os expoentes racionais. Vamos manter em mente a Propriedade 7 e tentar definir $a^{\frac{p}{q}}$ de forma a respeitá-la. Observe que:

$$\left(a^{\frac{p}{q}}\right)^q = a^p$$

Dessa forma, de acordo com a Definição 3

$$a^{\frac{p}{q}} = \sqrt[q]{a^p}$$

Assim a única forma natural de definirmos a exponenciação para expoentes racionais é:

Definição 4. Expoente Racional

Seja $a \in \mathbb{R}$ e $p, q \in \mathbb{Z}$ com $q \neq 0$ e $\mathrm{mdc}(p, q) = 1$ então

$$a^{\frac{p}{q}} = \sqrt[q]{a^p}$$

Se a < 0 então q deve ser ímpar.

Exemplo 10. a) $32^{\frac{2}{5}} = \sqrt[5]{32^2} = (\sqrt[5]{32})^2 = 2^2 = 4$

b)
$$27^{\frac{5}{3}} = (\sqrt[3]{27})^5 = 3^5 = 243$$

c)
$$8^{-0.333...} = 8^{\frac{-1}{3}} = (\sqrt[3]{8})^{-1} = \frac{1}{2}$$

d)
$$0,0625^{0,5} = 0,0625^{\frac{1}{2}} = \sqrt{0,0625} = \sqrt{\frac{1}{16}} = \frac{1}{4}$$

3.6 Exercícios Elementares

3.6.1 Raízes

Exercício 19. Classifique como (V) ou (F)

a)
$$\sqrt{100} = 10$$

b)
$$\sqrt{4} = \sqrt{-4}$$

c)
$$\sqrt{36} = \pm 6$$

$$d) \sqrt{x^2} = x$$

e)
$$\sqrt{x^4} = x^2$$

f)
$$\sqrt[n]{\sqrt[m]{x}} = \sqrt[nm]{x}$$

g)
$$\sqrt[3]{0.125} = \sqrt{0.25}$$

h)
$$\sqrt{x^14} = x^{\frac{1}{7}}$$

i)
$$-\sqrt{49} = -7$$

Exercício 20 (EPCAR-Mod.). Simplifique, $7\sqrt{32} - 5\sqrt{2} + \sqrt{8}$

Exercício 21. Simplifique e se possível resolva

a)
$$\sqrt{45}$$

b)
$$\sqrt{175}$$

c)
$$\sqrt{169}$$

d)
$$\sqrt{675}$$

e)
$$\sqrt[3]{-675}$$

f)
$$\sqrt[5]{\pi^{10}}$$

g)
$$\sqrt{27}$$

h)
$$\sqrt{100}$$

i)
$$\sqrt[4]{81^{-1}}$$

Exercício 22. Prove que $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3$ é uma função crescente e, logo, injetora.

Exercício 23. Simplifique

a)
$$(\sqrt{8} + \sqrt{2})\sqrt{32}$$

b)
$$\sqrt{50} + \sqrt{18} + \sqrt{98}$$

c)
$$\sqrt{3000} + \sqrt{300} + \sqrt{30} + \sqrt{3}$$

d)
$$\sqrt{76x^4}$$

e)
$$(\sqrt[3]{16} + 4\sqrt[3]{3})^2$$

f)
$$\sqrt{\frac{5}{4}}$$
: $\sqrt{\frac{2}{3}}$

g)
$$\frac{\sqrt[3]{3}}{\sqrt[2]{2}}$$

Exercício 24 (EsPCEx). Reduzir à expressão mais simples:

$$\sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}}.\sqrt[4]{b}$$

Exercício 25 (EsPCEx). A expressão $\frac{3\sqrt{a}}{\sqrt[4]{a}}$, é igual a:

$$A()$$
 $3a$

C ()
$$\sqrt{a}$$

D ()
$$3\sqrt[4]{a}$$

$$E()$$
 n.d.a

Exercício 26 (PM). Efetuando: $\left(\sqrt[3]{\sqrt{64}}\right)^2$ tem-se:

Exercício 27 (EsPCEx). A expressão $\sqrt{3} + \sqrt{12} - \sqrt{27} + \sqrt{867}$, é igual a:

A ()
$$17\sqrt{3}$$

B ()
$$3\sqrt{95}$$

D ()
$$3\sqrt{17}$$

Exercício 28 (EPCAR - Mod.). Escreva em ordem crescente $\sqrt{3}$, $\sqrt[4]{5}$ e $\sqrt[3]{4}$.

Exercício 29 (EsPCEx). A soma, $\sqrt[3]{a} + \sqrt[4]{a}$ é:

A ()
$$\sqrt[7]{2a}$$

B()
$$\sqrt[7]{a}$$

C ()
$$\sqrt[12]{a^7}$$

D ()
$$\sqrt[12]{a^3 + a^4}$$

Exercício 30 (EPCAR). Se $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}} = K(\sqrt{10}+5)$, então K é igual a:

A ()
$$\frac{\sqrt{5}}{5}$$

C ()
$$\frac{1}{5}$$

D ()
$$5\sqrt{2}$$

E ()
$$\frac{\sqrt{2}}{2}$$

Exercício 31 (EsPCEx). Substituir pelo sinal correspondente

$$(\sqrt{3}-1)^2 = \dots (1-\sqrt{3})^2$$

Exercício 32 (EsPCEx). Calcular a expressão $(3+2\sqrt{5})^2 - (3\sqrt{3}-2\sqrt{5})^2 + (3\sqrt{2})^2 - \sqrt{720} + \sqrt{2160}$

Exercício 33 (EsPCEx). Efetuar as operações: $6a\sqrt{63ab^3} - 3\sqrt{112a^3b^3} + 2ab\sqrt{343ab} - 5b\sqrt{28a^3b}$

Exercício 34 (EsPCEx). Efetue:

$$\sqrt[5]{a\sqrt[3]{a^2}} \cdot \sqrt[6]{\sqrt[4]{a^9}} \cdot \sqrt[3]{a^2\sqrt[8]{a^7}}$$

pressão:

$$\sqrt{16x^3y} - \sqrt{25xy^3} - (x - 5y)\sqrt{xy}$$

Exercício 36 (CN). Simplificar e efetuar:

$$3\sqrt[3]{a^4b^4} + 5a\sqrt[3]{b^4} + b\sqrt[3]{a^4b}$$

Exercício 37 (EPCAR). Calcular o valor da expressão $\frac{2\sqrt[6]{27}}{\sqrt[4]{9}}$

Exercício 38 (CN). Efetuar $\sqrt{24}\sqrt[4]{36}$

Exercício 39 (CN). Efetuar $\sqrt{200}\sqrt[3]{108}$

Exercício 40 (CN). Dê a expressão mais simples de:

$$\frac{\sqrt[4]{a}}{\sqrt[6]{a}} \colon \sqrt[8]{a}$$

$$\frac{\sqrt[3]{a}\sqrt[9]{a}}{\sqrt{a}}$$

Exercício 41. A expressão $\frac{\sqrt{2}\sqrt[5]{4}}{10\sqrt{16}}$ é igual a:

- A () $\sqrt[10]{2^3}$
- B () $\sqrt[5]{2}$
- $C()\sqrt{2}$
- D () $\sqrt[10]{2^4}$
- E () n.d.a.

Exercício 42 (EsPCEx). O resultado de: $\sqrt[4]{x\sqrt[3]{x^2}}$: $\sqrt[3]{\sqrt[4]{x^3}}$, é:

- A () $\sqrt[6]{x}$
- B () $\sqrt[12]{x}$
- C() $\sqrt[7]{x}$
- D () $\sqrt[12]{x^{-2}}$
- E () n.d.a.

Exercício 35 (CN). Simplificar a ex- Exercício 43 (EsPCEx-Mod). Reduza ao mesmo índice $\sqrt[6]{3m^2}$ e $\sqrt[10]{\frac{5mp^3}{4}}$.

> Exercício 44 (PM). Simplifique o radical:

$$\sqrt{\frac{144x^2}{x^2 - 2xy + y^2}}$$

Exercício 45 (EsPCEx). Efetuar e simplificar: $(\sqrt{a}+\sqrt{b}+\sqrt[4]{ab})(\sqrt{a}+\sqrt{b} \sqrt[4]{ab}$

Exercício 46 (CN-Mod). Simplifique a expressão: $\frac{\sqrt[3]{0,25} - \sqrt[3]{2}}{\sqrt[3]{2}}$

Exercício 47 (PM-Mod). Simplifique: $\sqrt{4050} - \sqrt{512} - \sqrt{648}$

3.6.2 **Expoentes Racionais**

Exercício 48. Expresse na forma de expoente racional

- a) $\sqrt{2}$
- b) $\sqrt[3]{2}$
- c) $\frac{1}{\sqrt[5/2]{2}}$
- d) $\sqrt{\sqrt{10}}$
- e) $\sqrt[3]{\sqrt{10}}$
- f) $\frac{\sqrt[4]{2}}{\sqrt[5]{2}}$
- g) $\sqrt{\frac{1}{\sqrt{2}}}$

Exercício 49. Expressa na forma de radical

- a) $(-1)^{\frac{1}{3}}$
- b) $2^{\frac{1}{2}}$
- c) $\sqrt{2}^{\frac{1}{2}}$
- d) $0.25^{\frac{1}{3}}$
- e) $0,333...^{-\frac{1}{3}}$
- f) $7^{0,25}$

g) $32^{-\frac{3}{10}}$

Exercício 50. Simplifique

- a) $32^{\frac{1}{2}}$
- b) $81^{\frac{1}{3}}$
- c) $27^{-\frac{2}{3}}$
- d) 100⁰
- e) $25^{-0.5}$

Exercício 51 (CN). Calcular o valor da expressão

$$\left[8\frac{1}{3} + \left(\frac{1}{25}\right)^{-\frac{1}{2}} + 0,017^{0}\right] \cdot \frac{1}{0,88\dots}$$

Exercício 52 (EsPCEx). Resolver a expressão abaixo:

$$5^0 - 2^3 - \sqrt[5]{-32} - (0, 16)^{\frac{1}{2}} - (-1)^3$$

Exercício 53 (EsPCEx). Calcular o valor da expressão

$$27^{\frac{2}{3}} + 4^{-0.5} + 8^{0.33...}$$

Exercício 54 (CN). Resolver

$$\frac{8^{\frac{1}{3}} + 0,33\ldots - 30^{-1}}{\sqrt{3}\sqrt[3]{3^{1,5}}}$$

Exercício 55 (CN). Calcular:

$$\sqrt{\frac{2,133\dots^{-3}}{53+\frac{1}{3}}}$$

Exercício 56 (EsPCEx). O resultado de: $(-8)^{\frac{2}{3}}$, é:

- A()4
- B () $-\frac{1}{4}$
- C () $\frac{16}{3}$
- D () $\frac{64}{3}$
- E () n.d.a.

Exercício 57 (EsPCEx). A expressão:

$$\left(-\frac{16}{15}\right)^{-17} \cdot \left(\frac{5}{18}\right)^{-17} : \left(\frac{-8}{27}\right)^{\left(\frac{-50}{3}\right)}$$

é igual a

- A () $-\frac{3}{2}$
- B()-1
- C () $-\frac{5}{3}$
- D () $-\frac{4}{9}$
- E () n.d.a.

Exercício 58 (EsPCEx). Calcule o valor da expressão abaixo, reduzindo-a à sua forma racional mais simples (fração ordinária):

$$\sqrt{0,01}$$
. $\left[\left(\frac{4}{100} \right)^{\frac{3}{2}} \cdot \left(\frac{1}{10} \right)^{-3} + \left(\frac{3}{2} \right)^{0} \right]^{-1} + 0,211 \dots$

4 Expoentes Irracionais e a Função Exponencial

4.1 Exponenciação Real

A teoria desenvolvida até aqui nos permite dizer o que significa a^b desde que a > 0 e $b \in \mathbb{Q}$. Nessa seção iremos extender o significado de a^b para quando $b \in \mathbb{R}$.

A definição formal de a^b com $b \in \mathbb{R}$ necessita do conceito de convergência de sequências e será feita no apêndice. No entanto, uma idéia de como essa definição poderia ser feita é dada abaixo:

Exemplo 11. Cálculo de $2^{\sqrt{2}}$: Para esse cálculo, vamos encontrar aproximações de $\sqrt{2}$ por falta e por excesso. Como $1^2 = 1$ e $2^2 = 4$, sabemos que $1 < \sqrt{2} < 2$, assim $2^1 < 2^{\sqrt{2}} < 2^2$, ou seja $2 < 2^{\sqrt{2}} < 4$. A tabela abaixo continua essa idéia:

Tabela 2: $2^{\sqrt{2}}$ com aproximação decimal de uma casa

X		у	2^x		2^y	
1	$<\sqrt{2}<$	2	2	$< 2^{\sqrt{2}} <$	4	$\Lambda_{\text{gains}} = 2\sqrt{2} \approx 2.6$
1.4	$<\sqrt{2}<$	1.5	2.63	$< 2^{\sqrt{2}} <$	2.82	Assim, $2^{\sqrt{2}} \approx 2.6$
				$< 2^{\sqrt{2}} <$		

O problema prático do método da tabela 2 é o cálculo das potências fracionárias de 2, por exemplo $2^{1.4} = 2^{\frac{7}{5}} =$ $\sqrt[5]{128}$, cujo cálculo necessitaria de um algoritmo para calcular raiz quínticas (o algoritmo da raiz enésima NÃO será apresentado aqui) ou de uma calculadora, o que torna a tabela irrelevante.

No entanto, a tabela ilustra o fato de que é possível definir expoentes reais a partir de expoentes racionais e essa é a sua utilidade.

4.2 A Função Exponencial

Definição 5. Função Exponencial

Dado
$$a \in \mathbb{R}_+$$
 seja $f : \mathbb{R} \to \mathbb{R}_+^*$ definida por

$$f(x) = a^x$$

Chamamos f de função exponencial de base a

Com a definição anterior, vamos esboçar o gráfixo de $f(x) = 2^x$ atribuindo valores para x

Tabela 3: Alguns valores de 2^x

x	$f(x) = 2^x$
-2	$\frac{1}{4}$
-1	$\frac{\overline{4}}{2}$
0	1
1	2
2	4
3	8
4	16

Marcando os pares ordenados nos eixos cartesianos, temos

Figura 5: Alguns valores para $f(x) = 2^x$

Unindo os pontos:

Figura 6: Gráfico de $f(x) = 2^x$

Exemplo 12. Usando a mesma técnica, o gráfico de $f(x) = \left(\frac{1}{2}\right)^x$ é

Figura 7: Gráfico de $f(x) = \left(\frac{1}{2}\right)^x$

A função exponencial, conforme vimos nos gráficos anteriores, goza das seguintes propriedades:

Seja f uma função exponencial de base a, então

Propriedade 16. f é crescente se a > 1, é decrescente se 0 < a < 1 e é constante se a = 1

Propriedade 17. $f \in injetora \ se \ a \neq 1$

Propriedade 18. $f \in sobrejetora se a \neq 1$

Propriedade 19. f é bijetora e inversível se $a \neq 1$

As demonstrações das propriedades estarão no apêndice.

4.3 Equações e Inequações Exponenciais

Equações Exponenciais são equações que apresentam incógnitas no expoente. Uma inequação exponencial é definida de forma análoga.

Exemplo 13. $2^x = 0.5$ é uma equação exponencial enquanto $x^2 = 9$ não é.

Nesse primeiro estudo de equações e inequações exponenciais, reduziremos as bases a um mesmo número e faremos uso das Propriedades 19 (para equações) e 16 (para inequações).

Exemplo 14. Para resolvermos a equação $3^x = 9^4$ escreveremos todas as potências em uma base comum, nesse caso, 3. Assim $3^x = (3^2)^4$ ou seja, $3^x = 3^8$. Pela Propriedade 19, x = 8.

Exercício Resolvido 5. Resolva $4^x = 2^6$

[Solução: x = 3]

Exemplo 15. Vamos ver uma técnica um pouco mais sofisticada. Vamos encontrar as soluções da equação $4^x - 6.2^x + 8 = 0$. O primeiro passo é escrevermos na mesma base. O truque aqui é transformar $4^x = (2^2)^x = (2^x)^2$ e assim escrevemos $(2^x)^2 - 6.2^x + 8 = 0$. Se substituirmos $t = 2^x$ teremos $t^2 - 6t + 8 = 0$, que é uma equação do segundo grau cujas raízes são 2 e 4. Assim teremos t = 2 ou t = 4. Se t = 2 então $2^x = 2$, de onde t = 1 e se t = 4 teremos t = 2 consequentemente t = 2. Assim as soluções são t = 1 ou t = 2.

Exemplo 16. A solução de $\left(\frac{1}{2}\right)^x > 0.125$ pode ser encontrada escrevendo $0.125 = \left(\frac{1}{2}\right)^3$. Assim $\left(\frac{1}{2}\right)^x > \left(\frac{1}{2}\right)^3$. Da Propriedade 16, temos que x < 3 (lembre-se de que a exponencial é decrescente quando a base é menor que um).

4.4 Exercícios

4.4.1 Exercícios Básicos

Exercício 59. Simplifique

- 1. $2^{\sqrt{2}}.2^{-\sqrt{2}}$
- 2. $(x^{\Pi})^{\Pi}$
- 3. $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$
- 4. $(\sqrt{5}^{\sqrt{2}-1})^{\sqrt{2}+1}$

Exercício 60. Esboce o gráfico das seguintes funções definidas de \mathbb{R} em \mathbb{R}

- a) $f(x) = 4^x$
- b) $f(x) = 2^x + 2$
- c) $f(x) = -2^x$
- d) $f(x) = 5.2^x$

Exercício 61. Resolva:

- a) $2^x = 4$
- b) $3^x = 1$
- c) $4^x = 16^5$
- d) $2^x = \sqrt[8]{64}$
- e) $25^x = 5$
- f) $2^x = 0.5$
- g) $2^x = 0.125$
- h) $4^x 2^x 2 = 0$
- i) $5.2^{2x} 4^{2x \frac{1}{2}} 8 = 0$
- j) $25^{\sqrt{x}} 124.5^{\sqrt{x}} = 125$

Exercício 62. Resolva: $4^x + 6^x = 2.9^x$ (Dica: Divida ambos os lados por 9^x)

Exercício 63. Determine o conjunto solução:

- 1. $2^x > 4$
- $2. \left(\frac{1}{2}\right)^x > 256$

3. $0,0001 < 10^x < 0,001$

4.
$$\sqrt[3]{3}^x \leq \frac{1}{9}$$

5.
$$4^x > 8$$

6.
$$(3^x)^{2x-7} > \frac{1}{27}$$

7.
$$\left(\frac{1}{2^x}\right)^{3x+1} \cdot 4^{1+2x-x^2} \ge \left(\frac{1}{8}\right)^{x-1}$$

Exercício 64. Encontre o conjunto solução de $x^{2x^2-9x+4} < 1$ em \mathbb{R}_+ . Dica: Considere isoladamente os casos x = 0, 0 < x < 1, x = 1 e x > 1.

Exercício 65. Resolver em \mathbb{R}_+ : $x^{(x^2)} > x^{2x}$

4.4.2 Exercícios Avançados

Exercício 66. Prove que existem dois números irracionais a e b tais que

 $a^b \in \mathbb{Q}.$ Dica: Considere a expressão $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$

Exercício 67 (PUC-Modificado). Qual é a soma das raízes de $5^{x^2-2x+1} = \frac{5625}{9}$?

Exercício 68 (ITA). Determine o conjunto solução da equação $3^{2x} + 5^{2x} - 15^x = 0$

Exercício 69. Seja $a \in \mathbb{R}$ tal que 0 < a < 1, resolva: $a^{2x} - (a+a^2).a^x + a^3 < 0$

Exercício 70 (IME). Resolva o sistema $\begin{cases} x^y = y^x \\ x^3 = y^5 \\ x > 0 \end{cases}$