Рассмотрим дифференциальную задачу $\mathcal{L}u = f$ и разностную задачу $\mathcal{L}^h u_h = f^h$. Будем обозначать [u] — проекцию точного решения на сетку.

Пусть разностная задача аппроксимирует дифференциальную: $||\mathcal{L}^h[u] - f^h|| = O(h^p)$.

Предположим также, что имеет место устойчивость разностной задачи: если u_h и v_h — решения соответственно разностных задач $\mathcal{L}^h u_h = f^h$ и $\mathcal{L}^h v_h = g^h$, то $||u_h - v_h|| \leqslant C||f^h - g^h|| = ||\mathcal{L}^h u_h - \mathcal{L}^h v_h||$.

В этом случае положим в условии устойчивости $v^h = [u]$: будем иметь $||u_h - [u]|| \leqslant C||f^h - \mathcal{L}^h[u]|| = C \cdot O(h^p)$. Последнее означает сходимость.