Homework 6

8. 28:

will result
$$T[A_1B_1C(r)] \bowtie T[C_1D_1E(r)] \implies as:$$

A B C D E

a1 b1 C1 d1 e1

a2 b2 C1 d1 e1

which proves that IA, B, C), (C, D, E) are lossy decomposition

Practice Problem 8.1:

if we do R. MRz, we will have:

 $(A,B,C) \cap (A,D,E) = (A)$

based on FD $A \rightarrow BC$, we will have $\{A, B, C\}$

Therefore, $(A,B,C) \sqcap (A,D,E) \Rightarrow (A,B,C)$

shows that (A,B,C), (A,D,E) are lossless decomposition

100

911

Wit a

8.29:

a. Stourts with $B \rightarrow D$, we had $\{B, D\}$, then $D \rightarrow A \quad leads to \{B, D, A\}, \quad then$ $A \rightarrow BCD \quad leads \quad to \{A, B, C, D\}, \quad then$ $BC \rightarrow DE \quad leads \quad to \{A, B, C, D, E\}$ Therefore, B^{+} is $\{A, B, C, D, E\}$

b. ·: A → BCD : A → ABCD

and BC -> DE

:. ABCD -> DE by opplying Reflexivity Rule

:. ABCD -> ABCDE

:. A -> ABCDE by applying Transitivity Rule
:. AF -> ABCDEF by applying Augmentation Rule
Therefore AF is a superkey

₹

- d. Because of the dependencies on the canonical cover,
 we had relations: (A,B,C), (B,D,E), (D,A)

 "F doesn't appear at initial functional Dependencies,
 and F are not included in the above newly formed relations,
 we need one more relation with superkey AF

 Therefore, the 3NF decomposition of r are relations:

 (A,B,C), (B,D,E), (D,A), (A,F)
- e. Because all of the dependencies violate BCNF: $A^{+}:\{A,B,C,D\}$ $BC^{+}:\{A,D,E\}$ $B^{+}:\{A,B,C,D,E\}$ $D^{+}:\{A,B,C,D,E\}$
 - So decompose the original relation based on $D \rightarrow A$, we had: (B,C,D,E,F), (D,A)To further decompose (BCDEF) because it still violates BCNF, we had (B,C,F), (B,C,D,E), (D,A)and now they are all in the BCNFTherefore, the BCNF decomposition of F are relations: (B,C,F), (B,C,D,E), (D,A).