UNIT 6: Exploitation

1 Introduction

- Exploitation is when interactions between two species are good for one species and bad for the other
 - Typically, the "exploiter" is taking resources from the other species
- Exploitation is widespread and highly diverse

Examples

- Antelopes graze on trees
- Lions eat antelopes
- Ticks feed on lions
- Swallows eat ticks
- Bacteria reproduce inside the swallow
- Viruses infect the bacteria ...

Types of exploitation

- These words are usually not used precisely, and I'm not going to test you on them
 - Predation: a predator kills and eats prey
 - Parasitism: a parasite lives on or in a host and makes use of host resources
 - * Many parasites are *pathogens*, meaning that they cause disease
 - Parasitoidism: a parasitoid develops inside a host, but must kill the host to complete development
 - Grazing: a grazer takes food from another organism (typically a plant), and moves on

Borderline cases

- The categories listed above are useful, but not precise and not used precisely
 - Do rabbits predate small plants, or graze them?
 - Are small insects on large trees grazers, or parasites?
 - Do intestinal worms in healthy people count as pathogens?
 - Anthrax is usually referred to as a parasite (or predator!),
 but should probably really be a parasitoid

More vocabulary

- Often interactions are grouped by the taxonomy of the species participating in the interaction
 - Herbivores eat plants
 - Carnivores eat animals
 - Micro-organisms are more likely than macro-organisms to be called parasites
 - Insects living on animals are more likely to be called parasites than insects living on plants

Exploiters and resources

- When we talk about exploitation in general, we will refer generically to the species being exploited as the **resource species**
- There is a strong analogy between resource species, and **abi**otic resources like water, light and nitrogen
 - Both benefit the species that use them
 - Both may, or may not, be depleted significantly by the activities of the species in question

1.1 Balance and equilibrium

• In an exploiter-resource system, each species has an indirect, negative effect on itself. Why?

_

- Since each species has a negative effect on itself, these systems have a *tendency* to come to equilibrium
 - Equilibrium may be reached, or we may cycle around it

Equilibrium questions

- What factors determine the equilibrium levels of a resourceexploiter system?
- What factors determine whether neither, one or both species survive?
- What happens if people perturb the system (e.g., by eating a lot of one or the other species)?
- The equilibrium is of interest even if it is not reached:
 - if there are cycles, the equilibrium is what the system cycles around.

Reciprocal control

- Imagine a pair of exploiter and resource species whose population densities are mostly regulated by each other
 - The per capita growth rate of the exploiter population depends mostly on the density of the resource species
 - The per capita growth rate of the resource population depends mostly on the density of the exploiter species
- What will determine equilibrium values?

1.2 Tendency to oscillate

- In an exploiter-resource system, each species has an indirect, negative effect on itself
- This effect is delayed in time: it takes time for each species to respond to the other
- This means these systems have a tendency to oscillate
 - The same idea as from our population models, but with an explicit mechanism for delay

• There is a simple intuition for how these systems oscillate:

_

Persistence of oscillations

- Resource-exploiter systems have a *tendency* to oscillate
- In the simplest possible models, oscillations are **neutral**
 - e.g., they don't get larger or smaller
- In more realistic models, large oscillations will tend to get smaller
 - If small oscillations also tend to get smaller, we say that oscillations are damped
 - If small oscillations tend to get larger, we say that the system approaches a **limit cycle**

Damped oscillations

Neutral oscillations

Limit cycles

Limit cycles

Limit cycles

Neutral vs. limit cycles

- What is the difference between neutral cycles and limit cycles?
- •
- ___
- _

2 Models

 $\bullet\,$ We can investigate exploiter-resource systems using simple models

• Resource-species growth rate may depend on density of exploiter, or resource species, or both:

$$-\frac{dN_f}{dt} = r_f(N_e, N_f)N_f$$

• Exploiter growth rate may depend on density of exploiter, or resource species, or both:

$$-\frac{dN_e}{dt} = r_e(N_e, N_f)N_e$$

- At equilibrium:
 - _

-

Interactions

• What makes this a resource-exploiter system?

$$-\frac{dN_f}{dt} = r_f(N_e, N_f)N_f$$
$$-\frac{dN_e}{dt} = r_e(N_e, N_f)N_e$$

- •
- •
- Mnemonic: e for exploiter, f for food.

-r is already in too much demand

Simplest model

• The simplest model of resource-exploiter interaction is that their per-capita growth rates only respond to each other.

$$-\frac{dN_f}{dt} = r_f(N_e)N_f$$
$$-\frac{dN_e}{dt} = r_e(N_f)N_e$$

• This is a pure **reciprocal control** model: resource growth rate depends only on exploiter density, and vice verse

Ratios

- This model assumes:
 - The rate at which individual fish get eaten depends on the total number of sharks
 - The rate at which individual sharks eat fish depend on the total number of fish
- The ratio of sharks to fish does not matter directly
- Does this make sense? What happens in the model if there are too many sharks, for example?

_ _

2.1 More detailed models

Resource populations

• Why might we expect resource population to affect per-capita growth rate of the resource species?

_

Exploiter populations

• Why might we expect exploiter population to affect per-capita growth rate of the exploiter species?

Resource density-dependence

- The most unrealistic aspect of the current model is that, in the absence of the exploiter, the resource species increases without limit
 - In reality, we would expect it, eventually, to be regulated.
- We can change our equations to allow the resource species to have a (negative) effect on itself:

$$-\frac{dN_f}{dt} = r_f(N_e, N_f)N_f$$
$$-\frac{dN_e}{dt} = r_e(N_f)N_e$$

Predator satiation

• Another conceptual problem with the model is the idea that exploiter feeding is proportional to size of the resource population

__

• We address this problem with the same equations as above, but now the resource species can sometimes have a positive effect on itself, especially when exploiter densities are low.

3 Equilibrium and balance

3.1 Reciprocal control

• Imagine

$$-\frac{dN_f}{dt} = r_f(N_e)N_f$$
$$-\frac{dN_e}{dt} = r_e(N_f)N_e$$

- DIAGRAMS
- Exploiter per-capita growth rate depends *only* on resource density, and vice verse
- What happens to the *equilibrium* of this system if we reduce r_f , without changing r_e (for example, we start catching a lot more cod)?

*

*

*

Reciprocal control

• Imagine:

$$-\frac{dN_f}{dt} = r_f(N_e)N_f$$
$$-\frac{dN_e}{dt} = r_e(N_f)N_e$$

- If we are at equilibrium, and then we reduce r_e without changing r_f (for example, we start killing sharks):
 - _

Harvesting response

- Species under reciprocal control may respond to change in unexpected ways
- Imagine a community of sharks and large fish whose densities are primarily controlled by their exploitative interactions (the sharks eat the fish)
- What will happen to these populations in the *short term* if people start fishing on a large scale (and catching large numbers of both sharks and fish)?

—

Harvesting equilibrium

• What will happen to happen to these reciprocally controlled populations of sharks and fish in the *long term* if people start fishing on a large scale?

_

Real implications

- Until fairly recently, almost all species in the oceans were controlled primarily by interactions with other ocean species
 - Fishing food fish had little or no effect on the equilibrium number of fish at that **trophic level**

*

Catching sharks directly had little or no effect on the number of sharks

*

• As fishing increases, this link is eventually broken

_

3.2 More detailed models

Resource species density dependence

• In a more realistic system, we expect some effect of the resource species on its own growth rate

$$-\frac{dN_f}{dt} = r_f(N_e, N_f)N_f$$
$$-\frac{dN_e}{dt} = r_e(N_f)N_e$$

• What happens to the equilibrium if we start catching fish?

_

• What if we start catching sharks?

Predator satiation

• What if we also consider "satiation" – there is some limit to how much a predator can catch (or eat)

$$-\frac{dN_f}{dt} = r_f(N_e, N_f)N_f$$
$$-\frac{dN_e}{dt} = r_e(N_f)N_e$$

•	What happens to the equilibrium if we start catching fish
	_
	_
•	What if we start catching sharks?
	_

3.3 Who controls whom?

- These results tell us that how ecosystems respond to perturbation depends not only on the perturbation, but on how the ecosystems are regulated
- What controls populations of large fish in the ocean?
 - Sharks that eat them? Small fish that they eat?
- Studies of snowshoe hares
 - Very simple ecology: a few food species, one major predator
 - Food availability? Food edibility? Predators? Diseases?
- It's never a simple question

What controls ecosystem-level balance?

• Why is the earth green and the ocean blue?

- The question is: what trophic levels provide the primary control for which other trophic levels?
 - Top-down control theory: on land, herbivores are mostly controlled by carnivores, rather than by food
 - Plants fight back theory: plants invest enough in "defense" to escape herbivore control and compete with each other
- For each case, we can ask why the ocean is different

4 Examples

4.1 Oscillation

Simplest model

• The simplest models of reciprocal control lead to neutral cycles

- Cycles starting from any starting point will go back through that starting point
- These seem unrealistic; why should there be no tendency to spiral out or in for any cycle?
- What factors will tend to make cycles get smaller (approach equilibrium)?
- What factors will tend to make cycles get larger (move away from equilibrium)?

Prey density dependence

- Reduces prey reproduction the most when prey numbers are highest
- Tends to pull cycles towards the middle
- Makes cycles get smaller, leading to **damped** cycles

Prey density dependence

Predator density dependence

• If we go back to neutral cycles, and add predator density dependence, do we expect cycles to spiral out, or spiral in?

Predator density dependence

Pr

Predator density dependence
• Density dependence in the predator (exploiter species) has what effect on cycles?
_
_
_
Predator satiation
• What is the effect on feeding rates if the density of the <i>resource</i> species increases?
- From the point of view of the exploiter?
*
- From the point of view of the resource species?
*
Predator satiation
• The fact that predators can consume only limited amounts of prey has what effect on cycles?

• No pictures

Satiation with prey density dependence

- What sort of oscillations do we expect?
 - If density dependence is strong?

*

- If density dependence is weak?

*

*

*

DD plus predator satiation

Oscillation summary

- Neutral cycles repeat from any starting point
- Damped cycles spiral in to the equilibrium.
- *Unstable* cycles spiral out forever
 - Biologically unrealistic
- A *limit cycle* is approached by spiralling out from near the equilibrium, and by spiralling in from far away

Oscillations in a complex system

- All resource-exploiter systems have a tendency to oscillate
- It often takes a long time for damped oscillations to die out, or for stable oscillations to converge
- Other stuff is going on at the same time
 - Other interactions
 - Environmental perturbations weather, fire, people

Real-world implications

- If a resource-exploiter system is tightly linked, we expect to see some sort of noisy oscillations, with exploiter following resource (i.e., resource species goes up or down first)
- If the basic interaction leads to damped oscillations, we expect to see relatively small oscillations in reality
- If the basic interaction leads to stable oscillations, we expect to see relatively large oscillations in reality

4.2 Harvesting examples

- Is reciprocal control realistic?
 - In the long term, catching fish isn't bad for fish populations? Feeding grouse doesn't improve long-term grouse populations?
- What happens *first* in this model if I start feeding grouse?

• What happens *eventually* in this model if I start feeding grouse?

Harvesting dynamics

Harvesting dynamics

Harvesting dynamics

 \odot 2010–2017, Jonathan Dushoff and the 3SS teaching team. May be reproduced and distributed, with this notice, for non-commercial purposes only.