

Merőlegesség ortogonalizáció, merőleges vetítés, legkisebb négyzetek

Wettl Ferenc

ALGEBRA TANSZÉK

Tartalomjegyzék

Merőleges vetítés

Legjobb közelítés

Pszeudoinverz

Ortogonalizáció

QR-felbontás

Ortogonális mátrixok

Speciális komplex mátrixok

Ismeretek, képességek, célok

- fel tudja írni egy független vektorrendszer Gram-mátrixát,
- ki tudja számítani vektor altérre eső merőleges vetületét az altér tetszőleges vagy ortonormált bázisa segítségével is,
- felismeri a vetítőmátrixot, és a merőleges vetítés mátrixát,
- ki tudja számítani egyenletrendszer optimális megoldásait és minimális abszolút értékű optimális megoldását,
- ki tudja számítani mátrix pszeudoinverzét, és azzal lineáris egyenletrendszer legkisebb abszolút értékű optimális megoldását,
- bázisával megadott altérben talál ortonormált bázist,
- felismeri a szemiortogonális, ortogonális, unitér mátrixokat, és az ortogonális trafókat geometriai tulajdonságaik alapján,
- jellemezni tudja a 2- és 3-D terek ortogonális transzformációit,
 - ki tudja számítani mátrix QR-felbontását, és annak segítségével lineáris egyenletrendszer optimális megoldását.

Merőleges vetítés

Alterek direkt összege

D $\mathcal{V} \leqslant \mathcal{U}$ és $\mathcal{W} \leqslant \mathcal{U}$ két tetszőleges altér. Azt mondjuk, hogy \mathcal{W} a \mathcal{V} kiegészítő altere, vagy komplementer altér, ha

$$V \cap W = \{0\}, \quad V + W = U,$$

és azt mondjuk, hogy $\mathcal U$ a $\mathcal V$ és $\mathcal W$ alterek direkt összege, amit $\mathcal V\oplus\mathcal W$ jelöl.

- T Ekvivalens állítások:
 - $V \cap W = \{0\}$ és V + W = U, azaz V és W kiegészítő alterek,
 - $\mathcal U$ minden vektora egyértelműen áll elő egy $\mathcal V$ és egy $\mathcal W$ -beli vektor összegeként,
 - $V \cap W = \{0\}$ és $\dim V + \dim W = \dim U$.
- P ha $A \in \mathbb{R}^{m \times n}$, akkor $S(A) \oplus \mathcal{N}(A) = \mathbb{R}^n$, $O(A) \oplus \mathcal{N}(A^T) = \mathbb{R}^m$.

Vetítés

- D $\mathcal{U} = \mathcal{V} \oplus \mathcal{W}$, így bármely $\mathbf{u} \in \mathcal{U}$ egyértelműen előáll $\mathbf{u} = \mathbf{v} + \mathbf{w}$ alakban, ahol $\mathbf{v} \in \mathcal{V}$, $\mathbf{w} \in \mathcal{W}$. A \mathbf{v} vektor az \mathbf{u} vektornak a \mathcal{V} altérre \mathcal{W} mentén való (vele párhuzamosan vett) vetülete. E lineáris transzformációt vetítésnek (projekciónak) nevezzük.
- **m** minden P vetítés az $\operatorname{Im} P$ -re $\operatorname{Ker} P$ mentén való vetítés.
- Á Mátrixa: $\mathcal{U} = \mathbb{R}^n$, \mathcal{V} bázisa $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$, \mathcal{W} bázisa $\{\mathbf{w}_1, \dots, \mathbf{w}_{n-r}\}$. Legyen

$$U = [v_1 \ v_2 \ \dots \ v_r | w_1 \ w_2 \ \dots \ w_{n-r}] = [V|W].$$

Mivel $P\mathbf{v}_i = \mathbf{v}_i$ (i = 1, 2, ..., r) és $P\mathbf{w}_j = \mathbf{0}$ (j = 1, 2, ..., n - r), ezért a P leképezés P mátrixára

$$PU = P[V|W] = [PV|PW] = [V|O].$$

U invertálható, ezért

$$P = [V|O]U^{-1} = [V|O][V|W]^{-1}.$$

Vetítés

- T A projekció tulajdonságai: Legyen $P: \mathbb{R}^n \to \mathbb{R}^n$ egy projekció.
- 1. \mathbb{R}^n -nek van olyan bázisa, melyben a mátrixa $P = \operatorname{diag}(1, 1, \dots, 1, 0, \dots, 0)$.
- 2. I P is projekció: Ker(I P) = Im P, Im(I P) = Ker P,
- 3. r(P) = trace(P).

Vetítőmátrix felírása

P Írjuk fel annak a P vetítésnek a P mátrixát, mely az $\mathcal{V} = \operatorname{span}(\mathbf{v}_1 = (1,1,0,0), \mathbf{v}_2 = (0,0,1,1)) \leqslant \mathbb{R}^4$ térre vetít a $\mathcal{W} = \operatorname{span}(\mathbf{w}_1 = (1,0,1,0), \mathbf{w}_2 = (0,1,1,0)) \leqslant \mathbb{R}^4$ tér mentén, és annak a \hat{P} vetítének a \hat{P} mátrixát, mely \mathcal{V} mentén \mathcal{W} -re vetít!

M A négy vektor független (determinánsuk nem 0), és $\textit{P}(\mathcal{V}) = \mathcal{V}$, $\textit{P}(\mathcal{W}) = \{0\}$, így $P[v_1|v_2|w_1|w_2] = [v_1|v_2|0|0] \leadsto$

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Hasonlóan megkapható P, de egyszerűbb:

$$\hat{\mathbf{P}} = \mathbf{I} - \mathbf{P} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Merőleges vetítés és tükrözés

- Á Egyenesre való merőleges vetítés mátrixa $P = \frac{1}{b^T b} b b^T (P = e e^T)$.
- $\acute{\mathbf{A}}$ (Hiper)síkra való merőleges vetítés mátrixa $\mathbf{P} = \mathbf{I} \mathbf{n}\mathbf{n}^{\mathsf{T}}$.
- \mathbf{A} (Hiper)síkra való tükrözés mátrixa $\mathbf{P} = \mathbf{I} 2\mathbf{n}\mathbf{n}^{\mathsf{T}}$.
- **Á** Síkbeli tükrözés mátrixa az x-tengellyel lpha/2 szöget bezáró

egyenesre:
$$\begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix}.$$

$$(\cos \alpha, \sin \alpha)$$

 $(\sin \alpha, -\cos \alpha)$

Merőleges vetítés \mathbb{R}^n egy alterére

- T Ha \mathcal{W} az \mathbb{R}^n egy altere, és az \mathbf{A} mátrix oszlopvektorai a \mathcal{W} egy bázisát alkotják (\mathbf{A} teljes oszloprangú), akkor a \mathcal{W} altérre való merőleges $\mathbf{proj}_{\mathcal{W}}$ vetítés mátrixa $\mathbf{A}(\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}$.
- \mathbf{B}^* Legyen a $\mathbf{v} \in \mathbb{R}^n$ vektor \mathcal{W} -re eső merőleges vetülete \mathbf{w} . A oszloptere \mathcal{W} , ezért létezik olyan \mathbf{x} vektor, hogy $\mathbf{A}\mathbf{x} = \mathbf{w}$. $\mathcal{W} = \mathcal{O}(\mathbf{A})$, így $\mathcal{W}^\perp = \mathcal{N}(\mathbf{A}^\mathsf{T})$, tehát $\mathbf{v} \mathbf{w}$ benne van \mathbf{A}^T nullterében.

Eszerint
$$\mathbf{A}^T(\mathbf{v}-\mathbf{w})=\mathbf{0}$$
, azaz $\mathbf{A}^T(\mathbf{v}-\mathbf{A}\mathbf{x})=\mathbf{0}$, innen
$$\mathbf{A}^T\mathbf{A}\mathbf{x}=\mathbf{A}^T\mathbf{v}.$$

Az A mátrix teljes oszloprangú, így A^TA invertálható, azaz $\mathbf{x} = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{v}$, amiből $\operatorname{proj}_{\mathcal{W}}\mathbf{v} = \mathbf{w} = \mathbf{A}\mathbf{x} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{v}$.

m Ha
$$A = b$$
 egy oszlopvektor ($b \neq 0$), akkor $A(A^TA)^{-1}A^T = b(b^Tb)^{-1}b^T = \frac{1}{b^Tb}bb^T$.

Melyik mátrix merőleges vetítés mátrixa?

Egy P mátrix pontosan akkor vetítés mátrixa, ha

$$P^2 = P$$
,

és pontosan akkor merőleges vetítés mátrixa, ha

$$P = P^T = P^2$$
.

$$\begin{split} \textbf{B}^{\star} & (\Rightarrow) \ \textbf{P} = \textbf{A}(\textbf{A}^{T}\textbf{A})^{-1}\textbf{A}^{T} \\ \textbf{P}^{2} &= \left(\textbf{A}(\textbf{A}^{T}\textbf{A})^{-1}\textbf{A}^{T}\right)^{2} = \textbf{A}(\textbf{A}^{T}\textbf{A})^{-1}\textbf{A}^{T}\textbf{A}(\textbf{A}^{T}\textbf{A})^{-1}\textbf{A}^{T} = \textbf{P}, \\ \textbf{P}^{T} &= \left(\textbf{A}(\textbf{A}^{T}\textbf{A})^{-1}\textbf{A}^{T}\right)^{T} = \textbf{A}\left((\textbf{A}^{T}\textbf{A})^{-1}\right)^{T}\textbf{A}^{T} = \textbf{A}(\textbf{A}^{T}\textbf{A})^{-1}\textbf{A}^{T} = \textbf{P}. \\ (\Leftarrow) \ \textbf{Tfh} \ \textbf{P} &= \textbf{P}^{T} = \textbf{P}^{2}. \end{split}$$

$$(\Leftarrow)$$
 Iff $P = P' = P^2$.

A $P^2 = P$ feltétel miatt $P(x - Px) = Px - P^2x = 0$, tehát $x - Px \in \mathcal{N}(P)$, de $P = P^T$, így $x - Px \in \mathcal{N}(P^T)$.

Eszerint $\mathbf{x} - \mathbf{P}\mathbf{x}$ merőleges $\mathcal{O}(\mathbf{P})$ -re, és ezt akartuk belátni.

Merőleges vetítés absztrakt tér egy alterére, Gram-mátrix

D A V euklideszi tér független $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ vektorainak Gram-mátrixa: a

$$G(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k) = \begin{bmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \langle \mathbf{v}_1, \mathbf{v}_2 \rangle & \dots & \langle \mathbf{v}_1, \mathbf{v}_k \rangle \\ \langle \mathbf{v}_2, \mathbf{v}_1 \rangle & \langle \mathbf{v}_2, \mathbf{v}_2 \rangle & \dots & \langle \mathbf{v}_2, \mathbf{v}_k \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{v}_k, \mathbf{v}_1 \rangle & \langle \mathbf{v}_k, \mathbf{v}_2 \rangle & \dots & \langle \mathbf{v}_k, \mathbf{v}_k \rangle \end{bmatrix}$$

T Merőleges vetület kiszámítása L! \mathcal{V} egy euklideszi tér, \mathcal{W} egy végesdimenziós altere, melynek $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ egy bázisa, $\mathbf{v} \in \mathcal{V}$. Ekkor

$$\mathsf{proj}_{\mathcal{W}}\,\mathsf{v}=c_1\mathsf{v}_1+c_2\mathsf{v}_2+\ldots c_k\mathsf{v}_k,$$

ahol a $\mathbf{c} = (c_1, c_2, \dots, c_k)$ vektor a $\mathbf{Gc} = \mathbf{b}$ egyenletrendszer megoldása, \mathbf{G} a \mathcal{B} vektoraihoz tartozó Gram-mátrix, és $[\mathbf{b}]_i = \langle \mathbf{v}_i, \mathbf{v} \rangle$.

Merőleges vetület kiszámítása Gram-mátrixszal

L! $\mathcal{V} = \mathbb{R}[x]$ a valós együtthatós polinomok euklideszi tere a

$$\langle p, q \rangle = \int_0^1 p(x)q(x) \, \mathrm{d}x,$$

skaláris szorzással és L! $W = \text{span}(1, x, x^2) \leq V$. Kérdés:

$$proi_{\mathcal{W}} x^3 = ?$$

M Az x^3 polinom vetülete W-re $c_1 + c_2x + c_3x^2$ alakú. Az ismeretlen c; együtthatókra

 \rightarrow $(c_1, c_2, c_3) = (1/20, -3/5, 3/2)$, azaz x^3 merőleges vetülete

$$\frac{1}{20} - \frac{3}{5}x + \frac{3}{2}x^2$$
.

Legjobb közelítés

Altértől való távolság

- **D** $\mathbf{x} \in \mathbb{R}^n$, $\mathcal{W} \leqslant \mathbb{R}^n$ altér. \mathbf{x} -nek a \mathcal{W} altértől való távolságán a \mathcal{W} altér \mathbf{x} -hez legközelebbi \mathbf{w} vektorának tőle való távolságát értjük.
- T Legjobb közelítés tétele: Az x vektornak egyetlen \mathcal{W} -beli legjobb $\hat{\mathbf{x}}$ közelítése van, nevezetesen $\hat{\mathbf{x}} = \mathbf{proj}_{\mathcal{W}} \mathbf{x}$.
- B $\mathbf{x} \mathbf{w} = (\mathbf{x} \mathsf{proj}_{\mathcal{W}} \, \mathbf{x}) + (\mathsf{proj}_{\mathcal{W}} \, \mathbf{x} \mathbf{w}).$ első kifejezés \mathcal{W}^{\perp} , a második \mathcal{W} eleme! $(\mathbf{x} \mathsf{proj}_{\mathcal{W}} \, \mathbf{x}) \perp (\mathsf{proj}_{\mathcal{W}} \, \mathbf{x} \mathbf{w})$ Pithagorász: $|\mathbf{x} \mathbf{w}|^2 = |\mathbf{x} \mathsf{proj}_{\mathcal{W}} \, \mathbf{x}|^2 + |\mathsf{proj}_{\mathcal{W}} \, \mathbf{x} \mathbf{w}|^2.$ $\Rightarrow |\mathbf{x} \mathbf{w}|^2 \geq |\mathbf{x} \mathsf{proj}_{\mathcal{W}} \, \mathbf{x}|^2$ egyenlőség csak akkor állhat fönn, ha $\mathbf{w} = \hat{\mathbf{x}} = \mathsf{proj}_{\mathcal{W}} \, \mathbf{x}$
- $K \mathbb{R}^n = \mathcal{W} \oplus \mathcal{W}^{\perp}.$

Altértől való távolság

- P Bontsuk fel az $\mathbf{x} = (8, 4, 2, 1)$ vektort $\mathcal{W} = \operatorname{span}((1, -1, 1, 0), (0, 1, -1, 0))$ -be eső és \mathcal{W} -re merőleges vektorok összegére.
- M A \mathcal{W} -re való merőleges vetítés mátrixa $P=W(W^TW)^{-1}W^T$, ahol W két oszlopa a megadott két bázisvektor:

$$\mathbf{W} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}, \text{ amib\'ol } \mathbf{P}\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & -1/2 & 0 \\ 0 & -1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 8 \\ 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ -1 \\ 0 \end{bmatrix}.$$

$$proj_{\mathcal{W}} x = Px = (8, 1, -1, 0) \text{ \'es } x - proj_{\mathcal{W}} x = (0, 3, 3, 1).$$

Egyenletrendszer optimális megoldása

- $\acute{\mathsf{A}}$ $\mathsf{A}\mathsf{x}=\mathsf{b}$ konzisztens $\iff \mathsf{b}\in\mathcal{O}(\mathsf{A}).$
- D Az Ax = b optimális megoldásain az $Ax = proj_{\mathcal{O}(A)} b$ megoldásait értjük.
- T Az Ax = b egyenletrendszer optimális megoldásai megegyeznek az $A^TA\hat{x} = A^Tb$ egyenletrendszer megoldásaival (normálegyenlet-rendszer). Ezek közül egyetlen egy esik az A mátrix sorterébe, a legkisebb abszolút értékű.

Lineáris és polinomiális regresszió

Megoldandó:

T Az (x_i, y_i) (i = 1, 2, ...n) párokhoz tartozó, $y = \hat{a} + \hat{b}x$ egyenletű regressziós egyenes paraméterei kielégítik az alábbi egyenletet, mely egyértelműen megoldható, ha van legalább két különböző x_i érték.

$$\begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}$$
$$\begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & y_i \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ \vdots \end{bmatrix}.$$

A hozzá tartozó normálegyenlet-rendszer

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

D Polinomiális regresszióról beszélünk, ha az

 $y=a_0+a_1x+\cdots+a_kx^k$ egyenlet a_i együtthatóira keresünk optimális becslést a legkisebb négyzetek módszerével, ismert (x_i,y_i) párok sorozata mellett, ahol $i=1,2,\ldots n$.

m Keresendő az n egyenletből álló k+1-ismeretlenes

$$a_0 + a_1 x_1 + \ldots + a_k x_1^k = y_1$$

 $a_0 + a_1 x_2 + \ldots + a_k x_2^k = y_2$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $a_0 + a_1 x_n + \ldots + a_k x_n^k = y_n$

egyenletrendszer megoldása az a_0 , a_1 ,..., a_k ismeretlenekre.

$$\begin{bmatrix} 1 & x_1 & \dots & x_1^k \\ 1 & x_2 & \dots & x_2^k \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^k \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_k \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

Optimális megoldása a normálegyenletből megkapható.

Másodfokú regresszió: Az x, y változók között egy y = a + bx + cx² összefüggés együtthatóit keressük, illetve azok legkisebb négyzetek elve szerinti legjobb becslését. n = 4

mérést végzünk, a mért adatok

k	X_k	y_k
1	-1	3
2	0	0
3	1	1
4	2	1

M A megadott adatok közti összefüggés mátrixszorzat alakja: $a + bx + cx^2 = y \rightsquigarrow$ az együtthatómátrix k-adik sorvektora $(1, x_k, x_b^2)$:

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

- A normálegyenlet

$$\begin{bmatrix} 4 & 2 & 6 \\ 2 & 6 & 8 \\ 6 & 8 & 18 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ 8 \end{bmatrix}.$$

A megoldás $(a, b, c) = \frac{1}{4}(3, -5, 3)$, így a megadott (x_k, y_k) pontokra legjobban illeszkedő másodfokú polinom:

$$y = \frac{3}{4} - \frac{5}{4}X + \frac{3}{4}X^2.$$

Pszeudoinverz

A pszeudoinverz fogalma

 \acute{A} A sortér és az oszloptér közt létezik természetes kölcsönösen egyértelmű megfeleltetés (Ax = b egyetlen sortérbe eső mo-a).

D Az A mátrix (Moore-Penrose-féle) pszeudoinverze az az A⁺ mátrix, melyre tetszőleges b esetén az Ax = b egyenletrendszer minimális abszolút értékű optimális megoldása A⁺b.

T A pszeudoinverz létezése

Jelölje az $\mathbf{A}\mathbf{x} = \mathbf{b}$ egyenletrendszer egyetlen sortérbe eső optimális megoldását $\hat{\mathbf{x}}$. Az $\mathbf{A}^+ : \mathbf{b} \mapsto \hat{\mathbf{x}}$ függvény lineáris leképezés, így van mátrixa, melyet \mathbf{A}^+ jelöl.

T Pszeudoinverz hatása a kitüntetett altereken

Legyen A valós vagy komplex mátrix.

- 1. Az X mátrix pontosan akkor pszeudoinverze **A**-nak,
 - (a) ha $\mathbf{x} \perp \mathcal{N}(\mathbf{A})$ esetén $\mathbf{X}(\mathbf{A}\mathbf{x}) = \mathbf{x}$, és
 - (b) ha $\mathbf{z} \perp \mathcal{O}(\mathbf{A})$ esetén $\mathbf{X}\mathbf{z} = \mathbf{0}$.
- 2. Ha A⁺ az A pszeudoinverze, akkor

$$\mathsf{A}\mathsf{A}^+ = \mathsf{proj}_{\mathcal{O}(\mathsf{A})} \quad \text{\'es} \quad \mathsf{A}^+\mathsf{A} = \mathsf{proj}_{\mathcal{O}(\mathsf{A}^\mathsf{H})} \,.$$

Tehát **AA**⁺, illetve **A**⁺**A** merőlegesen vetít az **A**, illetve az **A**^H oszlopterére.

Néhány pszeudoinverz

- $\dot{A} A^+ = A^{-1}$, ha A invertálható,
- $\mathbf{A} \quad \mathbf{O}_{m \times n}^+ = \mathbf{O}_{n \times m},$
- \hat{A} $[a]^+ = [1/a]$, ha $a \neq 0$, és $[0]^+ = [0]$,
- $A (A^+)^+ = A$
- $\acute{\mathbf{A}}$ ha $a_{ii} \neq 0$ (i = 1, 2, ..., r), akkor

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & \dots & a_{rr} \\ \hline & & & & & & & & \\ \end{bmatrix}_{m \times n}^{+} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \dots & 0 \\ 0 & \frac{1}{a_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & \dots & \frac{1}{a_{rr}} \\ \hline & & & & & & \\ \end{bmatrix}_{n \times n}^{+}$$

A pszeudoinverz létezése és kiszámítása

T Ha a valós A teljes oszloprangú, akkor $A^+ = (A^TA)^{-1}A^T$, ha teljes sorrangú, akkor $A^+ = A^T(AA^T)^{-1}$. Ha A = BC, ahol B teljes oszlop-, C teljes sorrangú (ld. bázisfelbontás), akkor

$$A^+ = C^+ B^+ = C^T (CC^T)^{-1} (B^T B)^{-1} B^T = C^T (B^T A C^T)^{-1} B^T.$$

B Ha A teljes oszloprangú, akkor $S(A) = \mathbb{R}^n$, és A^TA invertálható:

$$(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{x}.$$

Meg kell még mutatnunk, hogy ha $z \in \mathcal{N}(A^T)$, vagyis ha $A^Tz = 0$, akkor $A^+z = 0$: $(A^TA)^{-1}A^Tz = (A^TA)^{-1}0 = 0$.

Ha **A** teljes sorrangú, akkor $\mathcal{O}(\mathbf{A}) = \mathbb{R}^m$: $\forall \mathbf{y}$ -ra $\mathbf{A}\mathbf{x} = \mathbf{y}$ konzisztens.

Jelölje $\hat{\mathbf{x}}$ az egyetlen sortérbe eső megoldást, így minden más \mathbf{x} megoldásra $\operatorname{proj}_{\mathcal{S}(\mathbf{A})}\mathbf{x}=\hat{\mathbf{x}}$. \mathbf{A}^+ -ra fenn kell álljon $\mathbf{A}^+\mathbf{y}=\hat{\mathbf{x}}$:

$$\operatorname{\mathsf{proj}}_{\mathcal{S}(\mathsf{A})} \mathsf{x} = \mathsf{A}^\mathsf{T} (\mathsf{A} \mathsf{A}^\mathsf{T})^{-1} \mathsf{A} \mathsf{x} = \left(\mathsf{A}^\mathsf{T} (\mathsf{A} \mathsf{A}^\mathsf{T})^{-1} \right) (\mathsf{A} \mathsf{x}) = \mathsf{A}^+ \mathsf{y}.$$

Példák

P Számítsuk ki a következő mátrixok pszeudoinverzét!

$$\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \ \text{ \'es } \ \mathbf{M} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

M B teljes oszloprangú, így

$$B^{+} = (B^{T}B)^{-1}B^{T} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1/3 & 1/3 & 2/3 \\ 2/3 & 1/3 & -1/3 \end{bmatrix}.$$

- A C mátrix teljes sorrangú, így

$$\mathbf{C}^{+} = \mathbf{C}^{\mathsf{T}} (\mathbf{C} \mathbf{C}^{\mathsf{T}})^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \\ 1/3 & 1/3 \end{bmatrix}.$$

- M bázisfelbontása BC:

$$\mathbf{M}^{+} = \mathbf{C}^{+} \mathbf{B}^{+} = \begin{bmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \\ 1/3 & 1/3 \end{bmatrix} \begin{bmatrix} -1/3 & 1/3 & 2/3 \\ 2/3 & 1/3 & -1/3 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} -4 & 1 & 5 \\ 5 & 1 & -4 \\ 1 & 2 & 1 \end{bmatrix}$$

vagy

$$\begin{split} \mathbf{M}^{+} &= \mathbf{C}^{T} (\mathbf{B}^{T} \mathbf{M} \mathbf{C}^{T})^{-1} \mathbf{B}^{T} \\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \\ &= \frac{1}{9} \begin{bmatrix} -4 & 1 & 5 \\ 5 & 1 & -4 \\ 1 & 2 & 1 \end{bmatrix} \end{split}$$

A pszeudoinverz tulajdonságai

T Moore-Penrose-tétel: A valós vagy komplex A mátrixnak X pontosan akkor pszeudoinverze, ha az alábbi feltételek mind fennállnak:

a)
$$AXA = A$$
, b) $XAX = X$, c) $(AX)^H = AX$, d) $(XA)^H = XA$.

K Tetszőleges $\mathbf{A} \in \mathbb{R}^{m \times n}$ mátrix esetén

$$A^+A = \text{proj}_{\mathcal{S}(A)} \quad \text{\'es} \quad AA^+ = \text{proj}_{\mathcal{O}(A)} \,.$$

Tehát A^+A az \mathbb{R}^n teret merőlegesen vetíti A sorterére, míg AA^+ az \mathbb{R}^m teret merőleges vetíti A oszlopterére.

A pszeudoinverz és a min. absz. értékű opt. megoldás

P Keressük a minimális abszolút értékű optimális megoldást!

$$y + z = 3$$
$$x + y + 2z = 2$$
$$x + z = 2$$

M Inkonzisztens, ui.:
$$\begin{bmatrix} 0 & 1 & 1 & 3 \\ 1 & 1 & 2 & 2 \\ 1 & 0 & 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Pszeudoinverzzel
$$\hat{\mathbf{x}} = \mathbf{A}^{+}\mathbf{b} = \frac{1}{9} \begin{bmatrix} -4 & 1 & 5 \\ 5 & 1 & -4 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

Ortogonalizáció

Ortogonalizáció

Ortonormált és ortogonális bázis

OR és ONR lineáris függetlensége

- O A páronként merőleges vektorokból álló vektorrendszert ortogonális rendszernek (OR), az egységvektorokból álló OR-t ortonormált rendszernek (ONR) nevezzük.
- $\acute{\mathbf{A}}$ Egy valós euklideszi térben ha a $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}$ vektorrendszer vektorai zérusvektortól különbözőek és OR-t alkotnak, akkor
 - függetlenek,
- 2. $\{\mathbf{v}_i/\|\mathbf{v}_i\|\}$ ONR. B TFH valamely $c_1, c_2,..., c_b$ konstansokra
- $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k=\mathbf{0}.$
 - Mivel $i \neq j$ esetén $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$, ezért a \mathbf{v}_i vektorral beszorozva $c_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0$, amiből $\langle \mathbf{v}_i, \mathbf{v}_i \rangle \neq 0$ miatt következik, hogy $c_i = 0$.
 - 2. $\frac{\langle \mathbf{v}_i, \mathbf{v}_j \rangle}{\|\mathbf{v}_i\| \|\mathbf{v}_j\|} = \left\langle \frac{\mathbf{v}_i}{\|\mathbf{v}_i\|}, \frac{\mathbf{v}_j}{\|\mathbf{v}_j\|} \right\rangle$

K Egy zérusvektort nem tartalmazó OR, vagy ONR mindig bázisa az általa kifeszített altérnek. (Továbbiakban ONB)

Legjobb közelítés ONB esetén

T L! $\mathcal V$ valós euklideszi tér, $\mathcal E=\{e_1,e_2,\ldots,e_k\}\subset \mathcal V$ ONR és a $\mathbf v\in \mathcal V$ vektor. Ekkor a

$$\hat{\mathbf{v}} = \langle \mathbf{e}_1, \mathbf{v} \rangle \, \mathbf{e}_1 + \langle \mathbf{e}_2, \mathbf{v} \rangle \, \mathbf{e}_2 + \dots + \langle \mathbf{e}_k, \mathbf{v} \rangle \, \mathbf{e}_k \tag{1}$$

vektor az $\mathcal{A} = \operatorname{span}(\mathbf{e}_1, \dots, \mathbf{e}_k)$ altér **v**-hez legközelebb fekvő pontja, azaz $\hat{\mathbf{v}} = \operatorname{\mathsf{proj}}_A \mathbf{v}$.

B
$$\langle \mathbf{v} - \hat{\mathbf{v}}, \mathbf{e}_j \rangle = \langle \mathbf{v} - \sum_{i=1}^k \langle \mathbf{e}_i, \mathbf{v} \rangle \, \mathbf{e}_i, \mathbf{e}_j \rangle = 0 \ (j=1,2,\ldots,k)$$
, tehát $\mathbf{v} - \hat{\mathbf{v}} \perp \mathcal{A}$, azaz $\mathbf{v} - \hat{\mathbf{v}} \in \mathcal{A}^{\perp}$. Így a merőleges vetület definíciója szerint $\hat{\mathbf{v}} = \mathbf{proj}_{\mathcal{A}} \, \mathbf{v}$.

K ha V k-dimenziós (\mathcal{E} a V bázisa), akkor $\mathbf{v} = \langle \mathbf{e}_1, \mathbf{v} \rangle \, \mathbf{e}_1 + \langle \mathbf{e}_2, \mathbf{v} \rangle \, \mathbf{e}_2 + \cdots + \langle \mathbf{e}_k, \mathbf{v} \rangle \, \mathbf{e}_k$

K Ha
$$\mathcal{A}=\{a_1,a_2,\ldots,a_k\}\subset\mathcal{V}$$
 OR (0-t nem tartalmaz), akkor

 $\hat{\mathbf{v}} = \sum_{i=1}^k \frac{\langle \mathbf{a}_i, \mathbf{v} \rangle}{\|\mathbf{a}_i\|^2} \mathbf{a}_i, \text{ \'es ha } \mathcal{A} \text{ ortogon\'alis b\'azis, akkor } \mathbf{v} = \sum_{i=1}^n \frac{\langle \mathbf{a}_i, \mathbf{v} \rangle}{\|\mathbf{a}_i\|^2} \mathbf{a}_i.$

Legjobb közelítés ONB esetén 2

- m Az $\langle \mathbf{e}_i, \mathbf{v} \rangle$ skalárt a \mathbf{v} vektor \mathbf{e}_i -hez tartozó Fourier-együtthatójának is nevezik.
- P Határozzuk meg a (3,1,2) pontnak az (2,3,6) és (3,-6,2) vektorok által kifeszített síkra való merőleges vetületét!
- **M** E két vektor a síkban OR-t alkot! Normálás után $\mathbf{a}=\frac{1}{7}(2,3,6)$ és $\mathbf{b}=\frac{1}{7}(3,-6,2)$ ONR.

Behelyettesítés:

$$\begin{split} \hat{\mathbf{v}} &= \langle \mathbf{a}, \mathbf{v} \rangle \, \mathbf{a} + \langle \mathbf{b}, \mathbf{v} \rangle \, \mathbf{b} \\ &= \left\langle (\frac{2}{7}, \frac{3}{7}, \frac{6}{7}), (3, 1, 2) \right\rangle (\frac{2}{7}, \frac{3}{7}, \frac{6}{7}) + \left\langle (\frac{3}{7}, \frac{-6}{7}, \frac{2}{7}), (3, 1, 2) \right\rangle (\frac{3}{7}, \frac{-6}{7}, \frac{2}{7}) \\ &= 3(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}) + 1(\frac{3}{7}, \frac{-6}{7}, \frac{2}{7}) \\ &= (\frac{9}{7}, \frac{3}{7}, \frac{20}{7}). \end{split}$$

Ortogonalizáció

Gram-Schmidt-ortogonalizáció

Gram-Schmidt-ortogonalizáció

T Ha $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k\}$ egy független vektorrendszer egy \mathcal{V} euklideszi térben, akkor létezik olyan ortogonális $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ vektorrendszer, hogy minden $i = 1, 2, \dots, k$ esetén

$$\operatorname{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_i) = \operatorname{span}(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i). \tag{2}$$

Ebből normálással ortonormált rendszert kapunk:

$$\left\{\frac{b_1}{\|b_1\|}, \frac{b_2}{\|b_2\|}, \dots, \frac{b_k}{\|b_k\|}\right\}$$

m Igazolható, hogy a Gram–Schmidt-ortogonalizáció működik összefüggő vektorokból álló vektorrendszerre is, annyi változással, hogy pontosan akkor lesz $\mathbf{b}_i = \mathbf{0}$, ha \mathbf{a}_i nem független a kisebb indexű vektoroktól, azaz \mathbf{a}_i benne van a $\mathrm{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_{i-1})$ altérben.

B A $\mathrm{span}(a_1) = \mathrm{span}(b_1)$ összefüggés teljesül, ha $b_1 = a_1$. $\mathrm{span}(a_1, a_2) = \mathrm{span}(b_1, b_2)$ és $b_1 \perp b_2$ teljesül, ha b_2 az a_2 -nek a b_1 által kifeszített altérre merőleges összetevője:

$$b_2 := a_2 - \left\langle \frac{b_1}{\|b_1\|}, a_2 \right\rangle \frac{b_1}{\|b_1\|} = a_2 - \frac{\langle b_1, a_2 \rangle}{\|b_1\|^2} b_1$$

 $\mathbf{b}_2 \neq \mathbf{0}$, hisz $\mathbf{b}_2 = \mathbf{0}$ esetén $\mathbf{a}_2 = \frac{\langle \mathbf{b}_1, \mathbf{a}_2 \rangle}{\|\mathbf{b}_1\|^2} \mathbf{b}_1 = \frac{\langle \mathbf{b}_1, \mathbf{a}_2 \rangle}{\|\mathbf{b}_1\|^2} \mathbf{a}_1$ lenne, azaz \mathbf{a}_1 és \mathbf{a}_2 nem lenne független, ez ellentmondás.

$$\operatorname{span}(a_1,a_2)=\operatorname{span}(b_1,b_2)\;\checkmark$$

 $\mathbf{b}_i \Rightarrow \mathbf{b}_{i+1}$: az \mathbf{a}_{i+1} vektornak a

$$\mathrm{span}(\frac{b_1}{\|b_1\|}, \frac{b_2}{\|b_2\|}, \dots, \frac{b_i}{\|b_i\|})$$

altérre merőleges összetevője legyen \mathbf{b}_{i+1}

$$b_{i+1} := a_{i+1} - \sum_{j=1}^{i} \frac{\langle b_j, a_{i+1} \rangle}{\|b_j\|^2} b_j$$

 $\mathbf{b}_{i+1} \neq \mathbf{0}$, különben \mathbf{a}_{i+1} nem volna független az $\{\mathbf{a}_1, \dots, \mathbf{a}_i\}$ vektorrendszertől, azaz \mathcal{A} nem volna független.

$$b_{i+1} \in \text{span}(a_1, a_2, \dots, a_{i+1}), a_{i+1} \in \text{span}(b_1, b_2, \dots, b_{i+1}) \rightsquigarrow (2)$$
 \checkmark

Gram-Schmidt-ortogonalizáció: 1. példa

P Ortogonalizáljuk a $\{(3,6,2), (1,9,-4), (1,2,3)\}$ vektorrendszert! Adjuk meg a tér ortonormált bázisát is!

$$\begin{split} \textbf{M} & \ \, \textbf{b}_1 = (3,6,2) \\ & \ \, \textbf{b}_2 = (1,9,-4) - \frac{(3,6,2) \cdot (1,9,-4)}{(3,6,2) \cdot (3,6,2)} (3,6,2) = (-2,3,-6) \\ & \ \, \textbf{b}_3 = (1,2,3) - \frac{(3,6,2) \cdot (1,2,3)}{(3,6,2) \cdot (3,6,2)} (3,6,2) \\ & - \frac{(-2,3,-6) \cdot (1,2,3)}{(-2,3,-6) \cdot (-2,3,-6)} (-2,3,-6) = \frac{1}{7} (-6,2,3) \end{split}$$

- Az ONR:
$$\left\{\frac{1}{7}(3,6,2), \frac{1}{7}(-2,3,-6), \frac{1}{7}(-6,2,3)\right\}$$

Gram-Schmidt-ortogonalizáció: 2. példa

P Keressünk ortonormált bázist az (1,1,1,1), (3,-1,3,-1), (6,2,2,-2) vektorok által kifeszített altérben.

M OR:

$$\begin{split} b_1 &= (1,1,1,1) \\ b_2 &= (3,-1,3,-1) - \frac{(1,1,1,1) \cdot (3,-1,3,-1)}{(1,1,1,1) \cdot (1,1,1,1)} (1,1,1,1) = (2,-2,2,-2) \\ b_3 &= (6,2,2,-2) - \frac{(1,1,1,1) \cdot (6,2,2,-2)}{(1,1,1,1) \cdot (1,1,1,1)} (1,1,1,1) \\ &- \frac{(2,-2,2,-2) \cdot (6,2,2,-2)}{(2,-2,2,-2) \cdot (2,-2,2,-2)} (2,-2,2,-2) = (2,2,-2,-2) \end{split}$$

Az ONR (ONB):

$$\left\{ \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right), \left(\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2}\right), \left(\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right) \right\}$$

Gram-Schmidt-ortogonalizáció: 3. példa

P Keressünk ortonormált bázist az (1,1,1,1), (3,-1,3,-1), (4,0,4,0), (6,2,2,-2) vektorok által kifeszített altérben. M OR:

$$\mathbf{b}_1 = (1, 1, 1, 1)$$

$$\begin{aligned} \mathbf{b}_1 &= (1,1,1,1) \\ \mathbf{b}_2 &= (3,-1,3,-1) - \frac{(1,1,1,1) \cdot (3,-1,3,-1)}{(1,1,1,1) \cdot (1,1,1,1)} (1,1,1,1) = (2,-2,2,-2) \\ \mathbf{b}_3 &= (4,0,4,0) - \frac{(1,1,1,1) \cdot (4,0,4,0)}{(1,1,1,1) \cdot (1,1,1,1)} (1,1,1,1) \\ &- \frac{(2,-2,2,-2) \cdot (4,0,4,0)}{(2,-2,2,-2) \cdot (2,-2,2,-2)} (2,-2,2,-2) = (0,0,0,0) \\ \mathbf{b}_3 &= (6,2,2,-2) - \frac{(1,1,1,1) \cdot (6,2,2,-2)}{(1,1,1,1) \cdot (1,1,1,1)} (1,1,1,1) \\ &- \frac{(2,-2,2,-2) \cdot (6,2,2,-2)}{(2,-2,2,-2) \cdot (2,-2,2,-2)} (2,-2,2,-2) = (2,2,-2,-2) \end{aligned}$$

ONR, mint az előző példában.

Ortogonális polinomok

m Nevezetesek az ortogonális polinomok, melyek a polinomok terében adnak ortogonális rendszert a

$$\langle p, q \rangle = \int_{a}^{b} p(x)q(x)w(x) dx,$$

skalárszorzattal, ahol w(x) egy adott súlyfüggvény. Pl.:

	intervallum	W(X)	az első néhány polinom
Legendre-polinomok Csebisev-polinomok			1, x , $\frac{1}{2}(3x^2 - 1)$, $\frac{1}{2}(5x^3 - 3x)$, 1, x , $2x^2 - 1$, $4x^3 - 3x$,
Hermite-polinomok			1, x , $4x^2 - 2$, $8x^3 - 12x$,

Gram-Schmidt-ortogonalizáció: 4. példa

P Az $\{x - 1/3, x - 3\}$ függvények által generált euklideszi térben keressünk ortonormált $\{f_1(x), f_2(x)\}$ bázist az $\langle f, g \rangle = \int_0^1 fg$ skaláris szorzás mellett Gram–Schmidt-ortogonalizációval!

Skataris szorzas mettett Gram-Schmidt-ortogonalizaciovati
M GS-ort., majd normálás:
$$a_1(x) = b_1(x) = x - 1/3$$
, $a_2(x) = x - 3$, $b_2(x) = a_2(x) - \frac{\langle b_1(x), a_2(x) \rangle}{\langle b_1(x), b_1(x) \rangle} b_1(x) = x - 3 - \frac{\int_0^1 (x - \frac{1}{3})(x - 3) \, \mathrm{d}x}{\int_0^1 (x - \frac{1}{3})^2 \, \mathrm{d}x} (x - \frac{1}{3})$
 $= x - 3 - \frac{-1/3}{1/9} (x - \frac{1}{3}) = x - 3 + 3(x - \frac{1}{3}) = 4x - 4$

$$f_1(x) = \frac{b_1(x)}{\sqrt{\int_0^1 b_1^2(x) dx}} = \frac{x - \frac{1}{3}}{\frac{1}{3}} = 3x - 1$$

$$f_2(x) = \frac{b_2(x)}{\sqrt{\int_0^1 b_2^2(x) dx}} = \frac{4x - 4}{\frac{4}{\sqrt{3}}} = \sqrt{3}x - \sqrt{3}$$

QR-felbontás

QR-felbontás

Szemiortogonális mátrixok

Ortogonális és szemiortogonális mátrixok

- D Egy valós négyzetes mátrix ortogonális, ha oszlopvektorai vagy sorvektorai ONR-t alkotnak. Ha nem kötjük ki, hogy a mátrix négyzetes legyen, szemiortogonális mátrixról beszélünk.
- P Melyek ortogonálisak és melyek szemiortogonálisak?

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, C = \frac{1}{7} \begin{bmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{bmatrix}.$$

- M Mindhárom mátrix szemiortogonális, C ortogonális.
- m Szerencsétlen szóhasználat (ortogonális ortonormált).
- m Minden ortogonális mátrix szemiortogonális is.
- **m** Egy nem négyzetes mátrixnál vagy csak a sorai, vagy csak az oszlopai alkothatnak ONR-t, négyzetesnél mindkettő.
- **m** Az egységmátrix és minden permutáló mátrix ortogonális.

Szemiortogonális mátrixok

- T Legyen $m \ge n$ és $\mathbf{Q} \in \mathbb{R}^{m \times n}$. Az alábbi állítások ekvivalensek:
 - 1. Q szemiortogonális,
 - 2. $Q^{T}Q = I_{n}$.
- **m** Ha $m \leq n$, **Q** pontosan akkor szemiortogonális, ha $\mathbf{QQ}^{\mathsf{T}} = \mathbf{I}_m$.
- **m** $m \ge n$ esetén \mathbf{Q}^T a \mathbf{Q} bal inverze, $m \le n$ esetén a jobb inverze. (később látni fogjuk, hogy m = n esetén az inverze)

QR-felbontás és a GS-ortogonalizáció

QR-felbontás

QR-felbontás definíciója

- \mathbf{m} elemi sorműveletekkel háromszögalakra hozás ightarrow LU-felbontás
- ortogonalizációs eljárás eredménye ightarrow QR-felbontás
- D Legyen A teljes oszloprangú. AMH az A = QR felbontás QR-felbontás vagy redukált QR-felbontás, ha Q az A-val azonos méretű szemiortogonális mátrix, és R négyzetes felső háromszögmátrix, főátlójában pozitív elemekkel.
- **m** Ha a **Q**-t új oszlopvektorok hozzávételével kiegészítjük ortogonális mátrixszá, az **R**-et zérussorok hozzávételével egy $m \times n$ -es felső háromszögmátrixszá, akkor ezek szorzata is **A**:

$$A = \begin{bmatrix} Q & \hat{Q} \end{bmatrix} \begin{vmatrix} R \\ O \end{vmatrix} = QR + \hat{Q}O = QR.$$

D Teljes QR-felbontás (másutt QR-felbontás): A-t egy ortogonális és egy A-val azonos méretű felső háromszögmátrix szorzatára bontjuk.

Teljes és redukált QR-felbontás

Teljes: Q ortogonális, R az A-val azonos méretű

Redukált: **Q** az **A**-val azonos méretű szemiortog., **R** négyzetes

A QR-felbontás létezése és egyértelműsége

- T Bármely valós, teljes oszloprangú A mátrixnak létezik QR-felbontása, azaz létezik egy szemiortogonális Q mátrix és egy R felső háromszögmátrix pozitív főátlóbeli elemekkel, hogy A = QR. Az így kapott felbontás egyértelmű.
- B L! $\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_k] \in \mathbb{R}^{n \times k}$ (A teljes oszloprangú $\leadsto k \le n$). Létezés: Az ortogonalizáció egységvektorait jelölje \mathbf{q}_i $(i = 1, 2, \dots, k)$, tehát $\mathrm{span}(\mathbf{a}_1, \dots, \mathbf{a}_i) = \mathrm{span}(\mathbf{q}_1, \dots, \mathbf{q}_i)$. Így léteznek olyan r_{ij} skalárok, hogy

$$\mathbf{a}_{1} = r_{11}\mathbf{q}_{1}$$

$$\mathbf{a}_{2} = r_{12}\mathbf{q}_{1} + r_{22}\mathbf{q}_{2}$$

$$\vdots$$

$$\mathbf{a}_{k} = r_{1k}\mathbf{q}_{1} + r_{2k}\mathbf{q}_{2} + \dots + r_{kk}\mathbf{q}_{k}.$$
(3)

- Ezt mátrixszorzat-alakba írva

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_k \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \dots & q_k \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1k} \\ 0 & r_{22} & \dots & r_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & r_{kk} \end{bmatrix} = QR.$$

A Gram–Schmidt-eljárásból látható, hogy $r_{ii} = \|\mathbf{b}_i\| \rightsquigarrow r_{ii} > 0$.

- R kiszámolása: $A = QR \rightsquigarrow Q^TA = Q^TQR = I_kR = R \rightsquigarrow R = Q^TA$. * Egyértelműség*: Tfh $A = QR = \hat{Q}\hat{R}$, ahol $Q^TQ = \hat{Q}^T\hat{Q} = I$.

$$\begin{split} &A^TA = (QR)^TQR = R^TQ^TQR = R^TR, \\ &A^TA = (\hat{Q}\hat{R})^T\hat{Q}\hat{R} = \hat{R}^T\hat{Q}^T\hat{Q}\hat{R} = \hat{R}^T\hat{R}, \\ & \to R^TR = \hat{R}^T\hat{R} \leadsto (\hat{R}^{-1})^TR^T = \hat{R}R^{-1}. \end{split}$$

A bal oldal alsó, a jobb oldal felső háromszögmátrix \leadsto mindkét szorzat diagonális. Jelölje **R** (ill. $\hat{\mathbf{R}}$) főátlója elemeit r_i (ill. \hat{r}_i). $\frac{r_i}{\hat{r}_i} = \frac{\hat{r}_i}{r_i} \leadsto r_i = \hat{r}_i \ (r_i > 0 \text{ és } \hat{r}_i > 0 \text{ miatt}) \leadsto (\hat{\mathbf{R}}^{-1})^\mathsf{T} \mathbf{R}^\mathsf{T} = \hat{\mathbf{R}} \mathbf{R}^{-1} = \mathbf{I}$ $\leadsto \mathbf{R} = \hat{\mathbf{R}} \leadsto \mathbf{A} = \mathbf{Q} \mathbf{R} = \hat{\mathbf{Q}} \hat{\mathbf{R}} \text{ miatt } \mathbf{Q} = \hat{\mathbf{Q}}.$

QR-felbontás GS-ortogonalizációból

P Határozzuk meg az

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 6 \\ 1 & -1 & 2 \\ 1 & 3 & 2 \\ 1 & -1 & -2 \end{bmatrix}$$

mátrix QR-felbontását.

M A GS második példájában a (1,1,1,1), (3,-1,3,-1), (6,2,2,-2) bázisból az ONB: $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$, $\left(\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2}\right)$, $\left(\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$

Valóban,

- m Szokás a QR-felbontást úgy is definiálni, hogy A tetszőleges (nem kell, hogy teljes oszloprangú legyen) és R főátlóbeli elemei lehetnek negatívak (sőt, ha A nem teljes oszloprangú, akkor 0-k is).
- **m** A Matlab/Octave programok a fenti általánosabb feltételek szerint működnek.
- Á* Ha A = Q'R', ahol Q' szemiortogonális, de R' főátlójában az i-edik elemek negatívak, ahol i ∈ I és I egy indexhalmaz, akkor R' i-edik sorát és Q' i-edik oszlopát −1-gyel szorozva minden i ∈ I-re az A QR-felbontását kapjuk.
- B^* A = Q'R' = Q'EER', ahol E az I-ből az *i*-edik elem -1-re változtatásával kapható ($i \in \mathcal{I}$).

QR-felbontás

Egyenletrendszer megoldása

Egyenletrendszer optimális megoldása QR-felbontással

T Legyen $\mathbf{A} \in \mathbb{R}^{m \times n}$ teljes oszloprangú, $\mathbf{A} = \mathbf{Q}\mathbf{R}$ egy QR-felbontása, és $\mathbf{b} \in \mathbb{R}^n$. Ekkor az $\mathbf{A}\mathbf{x} = \mathbf{b}$ egyenletrendszer egyetlen sortérbe eső optimális megoldása $\hat{\mathbf{x}} = \mathbf{R}^{-1}\mathbf{Q}^{\mathsf{T}}\mathbf{b}$, ami megkapható az

$$R\hat{x} = Q^Tb$$

egyenletrendszerből egyszerű visszahelyettesítéssel is.

B A normálegyenletből indulva

 K Ha $\mathsf{A} \in \mathbb{R}^{m imes n}$ teljes oszloprangú, akkor $\mathsf{A}^+ = \mathsf{R}^{-1} \mathsf{Q}^\mathsf{T}$.

Egyenletrendszer optimális megoldása QR-felbontással

P Oldjuk meg az alábbi inkonzisztens egyrsz-t QR-felbontással:

$$x + 3y + 6z = 8$$

$$x - y + 2z = 2$$

$$x + 3y + 2z = 2$$

$$x - y - 2z = 0$$

Megoldás visszahelyettesítéssel: $(\hat{x}_1, \hat{x}_2, \hat{x}_3) = (1, 0, 1)$.

Ortogonális mátrixok

Ortogonális mátrixok

- T Legyen $\mathbf{Q} \in \mathbb{R}^{n \times n}$. Az alábbi állítások ekvivalensek:
 - 1. **Q** oszlopvektorai ortonormált rendszert alkotnak.
 - 2. $Q^{T}Q = I_{n}$.
 - 3. $Q^{-1} = Q^{T}$.
 - 4. $QQ^{T} = I_{n}$.
 - 5. Q sorvektorai ortonormált rendszert alkotnak.
- **B** 1 \Rightarrow 2: az előző állításban láttuk.
 - $2 \Rightarrow 3$: **Q** négyzetes \rightsquigarrow **Q**^T**Q** = **I** miatt **Q** invertálható \rightsquigarrow **Q**⁻¹ = **Q**^T.
 - $3 \Rightarrow 4$: $\mathbf{Q}^{-1} = \mathbf{Q}^{\mathsf{T}} \leadsto \mathbf{Q} \mathbf{Q}^{\mathsf{T}} = \mathbf{I}_n$.
 - $4 \Rightarrow 5$: $\mathbf{Q}\mathbf{Q}^{\mathsf{T}} = \mathbf{I}_n$ (sorvektorszor-oszlopvektor) $\leadsto \mathbf{Q}$ soravektorai ONB-t alkotnak.
 - $5 \Rightarrow 1$: Bizonyítottuk, hogy $1 \Rightarrow 5$. Alkalmazzuk ezt \mathbf{Q}^{T} -ra.

Ortogonális mátrix inverze a transzponáltja

P Számítsuk ki az

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, \quad \frac{1}{7} \begin{bmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{bmatrix}.$$

mátrixok inverzét!

M Mindhárom mátrix ortogonális, tehát az inverzek:

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}, \quad \frac{1}{7} \begin{bmatrix} 2 & 6 & 3 \\ 3 & 2 & -6 \\ 6 & -3 & 2 \end{bmatrix}.$$

Ortogonális mátrixhoz tartozó mátrixleképezés

- T Legyen $\mathbf{Q} \in \mathbb{R}^{n \times n}$. Az alábbi állítások ekvivalensek:
 - 1. **Q** ortogonális.
 - 2. $\|\mathbf{Q}\mathbf{x}\| = \|\mathbf{x}\|$ minden $\mathbf{x} \in \mathbb{R}^n$ vektorra.
 - 3. $Qx \cdot Qy = x \cdot y$ minden $x, y \in \mathbb{R}^n$ vektorra.
- **B** 1 \Rightarrow 2: Ha **Q** ortogonális, akkor minden $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ vektorra

$$\|Qx\|^2 = Qx \cdot Qx = (Qx)^T(Qx) = x^TQ^TQx = x^Tx = \|x\|^2.$$

- 2 \Rightarrow 3: Mivel $\|Q(x+y)\| = \|x+y\|$ és $\|Q(x-y)\| = \|x-y\|$, ezért minden $x, y \in \mathbb{R}^n$ vektorra (a polarizációs formulával):
- $Qx \cdot Qy = \frac{1}{4} \left(\|Qx + Qy\|^2 \|Qx Qy\|^2 \right) = \frac{1}{4} \left(\|Q(x + y)\|^2 \|Q(x y)\|^2 \right)$ $= \frac{1}{4} \left(\|x + y\|^2 \|x y\|^2 \right) = x \cdot y$
 - 3 \Rightarrow 1: $\mathbf{q}_i = \mathbf{Q}\mathbf{e}_i$ jelöléssel $\mathbf{q}_i \cdot \mathbf{q}_j = \mathbf{Q}\mathbf{e}_i \cdot \mathbf{Q}\mathbf{e}_j = \mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$.

Ortogonális mátrix további tulajdonságai

- **K** Egy valós euklideszi térben az ortogonális mátrixhoz tartozó leképezés (ortogonális leképezés) hossztartó, távolságtartó, skalárszorzattartó, szögtartó (nem körüljárás-tartó).
- m Az ortogonális mátrixok nem nagyítják fel a mérési és kerekítési hibákat, hisz távolságtartók!!!
- T 1. Ha \mathbf{Q} valós ortogonális mátrix, akkor $|\det(\mathbf{Q})| = 1$.
 - 2. Az $n \times n$ -es valós ortogonális mátrixok O(n) halmazából nem vezet ki a mátrixszorzás és invertálás művelete (az 1 determinánsúak SO(n) halmazából sem).
- B 1. $\det(\mathbf{Q}^T) \det(\mathbf{Q}) = \det(\mathbf{Q}^T \mathbf{Q}) = \det(\mathbf{I}) = 1$, $\det(\mathbf{Q}^T) = \det(\mathbf{Q})$ $\rightsquigarrow \det(\mathbf{Q}) = 1 \text{ vagy } \det(\mathbf{Q}) = -1$.
 - 2. **Q** ortogonális \rightsquigarrow **Q**⁻¹ = **Q**^T, ami ortogonális
 - Q_1 és Q_2 ortog. $\rightsquigarrow (Q_1Q_2)^TQ_1Q_2 = Q_2^TQ_1^TQ_1Q_2 = Q_2^TQ_2 = I \rightsquigarrow Q_1Q_2$ ortogonális.

Ortogonális mátrixok

2D és 3D ortogonális transzformációi

A sík ortogonális transzformációi

T 2D ortogonális transzformációi

Minden O(2)-be eső ortogonális mátrix vagy egy forgatás, vagy egy egyenesre való tükrözés mátrixa. Mátrixuk alakja

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \quad \text{vagy} \quad \begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix}$$

T 3D ortogonális transzformációi

SO(3) minden eleme forgatás mátrixa, O(3)-SO(3) eleme egy origóra való tükrözés és egy forgatás szorzata.

P Az 1 determinánsú ortogonális

$$\frac{1}{15} \begin{bmatrix} 14 & -5 & 2 \\ 5 & 10 & -10 \\ 2 & 10 & 11 \end{bmatrix}$$

mátrix milyen tengely körüli és mekkora szöggel való forgatás mátrixa?

M A forgástengely irányvektorára Ax = x, azaz (A - I)x = 0. Innen a forgástengely:

$$\frac{1}{15} \begin{bmatrix} -1 & -5 & 2 \\ 5 & -5 & -10 \\ 2 & 10 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

Forgásszög: egy v-re \perp w vektor képével (pl. w = (0,1,0)):

$$\mathbf{A}\mathbf{w} = \frac{1}{15} \begin{bmatrix} 14 & -5 & 2 \\ 5 & 10 & -10 \\ 2 & 10 & 11 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/3 \\ 2/3 \\ 2/3 \end{bmatrix} \implies \cos \alpha = \frac{\mathbf{w} \cdot \mathbf{A}\mathbf{w}}{\|\mathbf{w}\| \|\mathbf{A}\mathbf{w}\|} = \frac{2}{3}.$$

Ortogonális mátrixok

Primitív ortogonális transzformációk

Givens-forgatás

- m Az ℝⁿ forgatásai és tükrözései közül kiválaszthatunk olyan egyszerű, ún. primitív ortogonális transzformációkat, melyek mátrixai szorzataként az összes ortogonális mátrix előállítható.
- **D** Givens-forgatás: két koordinátatengely által kifeszített síkban való forgatás a többi koordinátatengely helyben hagyása mellett. Mátrixa

Givens-forgatás

P Keressük meg azt a forgatást, mely az (a, b) vektort az (r, 0)-ba viszi, ahol $r^2 = a^2 + b^2$.

$$\mathbf{M} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix}.$$

$$r = \sqrt{a^2 + b^2}$$

$$\cos \alpha = a/r$$

$$\sin \alpha = -b/r$$

$$\begin{bmatrix} a/r & b/r \\ -b/r & a/r \end{bmatrix}$$

- m Egy ilyen részmátrixot tartalmazó G Givens-forgatással elérhető, hogy egy X mátrix egy eleme helyén 0 legyen a GX-ben. (ritka mátrixok, párhuzamosítható számítások)
- m $r=\sqrt{a^2+b^2}$ kiszámítása a túl- vagy alulcsordulás elkerülésével $a\geqslant b$ esetén: $r=|a|\sqrt{1+\left(\frac{b}{a}\right)^2}$

Householder-tükrözés

D Householder-tükrözés: hipersíkra való tükrözés. Mátrixa (n normálvekorral vagy e egységnyi normálvektorral)

$$H = I - 2ee^{T} = I - \frac{2}{n^{T}n}nn^{T}$$

Á $a,b\in\mathbb{R}^n$, $a\neq b$, $\|a\|=\|b\|$, akkor az $(a-b)^\perp$ hipersíkra való Householder-tükrözés az a vektort b-be viszi és viszont.

Householder-tükrözés

- P Határozzuk meg azt a H mátrixot, mely az (1, -1, -1, 1) vektort a (2, 0, 0, 0)-ba viszi.
- **M** Az (1,-1,-1,1)-(2,0,0,0)=(-1,-1,-1,1) vektorra merőleges hipersíkra való tükrözés mátrixa

Valóban,
$$\mathbf{H} \cdot (1, -1, -1, 1) = (2, 0, 0, 0).$$

A Givens-forgatás és a Householder-tükrözés alkalmazásai

- · Givens-forgatás
 - mátrixelemek eliminálására pl. QR-felbontásnál
 - párhuzamosítható
 - ritka mátrixok esetén hatékonyabb a Householder-tükrözésnél
- Householder-tükrözés
 - QR-felbontás numerikus kiszámításához (a Gram–Schmidt-eljárás instabil)
 - nem ritka mátrixokra gyorsabb a Givens-forgatásnál a QR-felbontás kiszámításában
 - mátrix Hessenberg (a subdiagonális alatt minden elem 0) alakra hozásánál

Ortogonális mátrixok

QR primitív ortogonális transzformációval*

QR-felbontás Givens-forgatásokkal

P Határozzuk meg az

$$\mathbf{A} = \begin{bmatrix} 4 & 5 & 8 \\ 3 & 10 & 6 \\ 0 & 12 & 13 \end{bmatrix}$$

mátrix QR-felbontását Givens-forgatások segítségével!

M az első és második sorokat és oszlopokat figyelve elimináljuk a második sor első elemét: a=4, b=3, tehát $r=\sqrt{3^2+4^2}=5$, $\cos\alpha=4/5$, $\sin\alpha=-3/5$.

$$\mathbf{Q}_1 = \begin{bmatrix} 4/5 & 3/5 & 0 \\ -3/5 & 4/5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{Q}_1 \mathbf{A} = \begin{bmatrix} 5 & 10 & 10 \\ 0 & 5 & 0 \\ 0 & 12 & 13 \end{bmatrix}.$$

Következő lépésben a Q_1A mátrix harmadik sorának második elemét elimináljuk (a=5, b=12, tehát $r=\sqrt{5^2+12^2}=13$, $\cos\alpha=5/13$, $\sin\alpha=-12/13$):

$$\mathbf{Q}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5/13 & 12/13 \\ 0 & -12/13 & 5/13 \end{bmatrix}. \qquad \mathbf{R} = \mathbf{Q}_2 \mathbf{Q}_1 \mathbf{A} = \begin{bmatrix} 5 & 10 & 10 \\ 0 & 13 & 12 \\ 0 & 0 & 5 \end{bmatrix}.$$

és innen

$$\mathbf{Q} = (\mathbf{Q}_2 \mathbf{Q}_1)^{-1} = \mathbf{Q}_1^T \mathbf{Q}_2^T = \begin{bmatrix} 4/5 & -3/13 & 36/65 \\ 3/5 & 4/13 & -48/65 \\ 0 & 12/13 & 5/13 \end{bmatrix},$$

amely mátrixokkal A = QR valóban fennáll.

QR-felbontás Householder-tükrözésekkel (ötlet)

QR-felbontás Householder-tükrözésekkel

P Határozzuk meg az

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & -3 \\ -2 & 5 & -7 \end{bmatrix}$$

mátrix QR-felbontását Householder-módszerrel!

QR-felbontás Householder-tükrözésekkel – megoldás

M Az
$$(1,2,-2) \mapsto (3,0,0)$$
 transzformációhoz az

$$\mathbf{n} = (1, 2, -2) - (3, 0, 0) = (-2, 2, -2)$$

vektorral Householder-tükrözést végzünk:

$$\begin{aligned} \mathbf{Q}_1 &= \mathbf{I}_3 - \frac{2}{\mathbf{n}^T \mathbf{n}} \mathbf{n} \mathbf{n}^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{6} \begin{bmatrix} 4 & -4 & 4 \\ -4 & 4 & -4 \\ 4 & -4 & 4 \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix} \\ \mathbf{Q}_1 \mathbf{A} &= \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & -3 \\ -2 & 5 & -7 \end{bmatrix} = \begin{bmatrix} 3 & -2 & 3 \\ 0 & 4 & -5 \\ 0 & 3 & -5 \end{bmatrix} \end{aligned}$$

QR-felbontás Householder-tükrözésekkel

Ezután a Q₁A mátrixból képzeletben elhagyva az első sort és oszlopot a (4,3) → (5,0) transzformációhoz kell az
 n = (4,3) - (5,0) = (-1,3) vektorral Householder-tükrözést végezni:

$$\begin{split} & H_2 = I_2 - \frac{2}{n^T n} n n^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \frac{1}{5} \begin{bmatrix} 1 & -3 \\ -3 & 9 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \\ & Q_2 = \begin{bmatrix} \frac{1}{0} & 0 & 0 \\ 0 & \frac{4}{5} & \frac{3}{5} \\ 0 & \frac{3}{5} & -\frac{4}{5} \end{bmatrix}, \qquad R = Q_2 Q_1 A = \begin{bmatrix} 3 & -2 & 3 \\ 0 & 5 & -7 \\ 0 & 0 & 1 \end{bmatrix} \\ & Q = (Q_2 Q_1)^{-1} = Q_1^T Q_2^T = \frac{1}{15} \begin{bmatrix} 5 & 2 & 14 \\ 10 & 10 & -5 \\ -10 & 11 & 2 \end{bmatrix}. \end{split}$$

Speciális komplex mátrixok

Unitér mátrixok

- m az unitér mátrixok az ortogonálisok komplex analogonjai
- D Unitér mátrix: Egy $\mathbf{U} \in \mathbb{C}^{n \times n}$ mátrix unitér, ha $\mathbf{U}^H \mathbf{U} = \mathbf{I}$.
- T Egy $\mathbf{U} \in \mathbb{C}^{n \times n}$ mátrix pontosan akkor unitér, ha az alábbiak bármelyike teljesül:
 - 1. $UU^{H} = I$,
 - 2. $U^{-1} = U^{H}$,
 - 3. **U** oszlopvektorai ortonormált bázist alkotnak a komplex skalárszorzásra nézve,
 - 4. **U** sorvektorai ortonormált bázist alkotnak a komplex skalárszorzásra nézve,
 - 5. $\|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$ minden $\mathbf{x} \in \mathbb{C}^n$ vektorra,
 - 6. $Ux \cdot Uy = x \cdot y$.
- B Az ortogonális mátrixokhoz hasonlóan bizonyítható.

Komplex mátrix kitüntetett alterei

M Komplex mátrixok szorzatában NEM sorvektor és oszlopvektor skaláris szorzata szerepel!

$$m \ Ax = 0 \leadsto \mathbb{C}^n = \mathcal{S}(\bar{A}) \oplus \mathcal{N}(A) \text{, de } \mathcal{S}(\bar{A}) = \mathcal{O}(A^H).$$

- **T** Komplex mátrix kitüntetett alterei Ha $\mathbf{A} \in \mathbb{C}^{m \times n}$, akkor
 - 1. $\mathcal{O}(A^H) \perp \mathcal{N}(A)$, $\mathcal{O}(A) \perp \mathcal{N}(A^H)$,
 - 2. $\mathbb{C}^n = \mathcal{O}(A^H) \oplus \mathcal{N}(A)$, $\mathbb{C}^m = \mathcal{O}(A) \oplus \mathcal{N}(A^H)$,

GS-ortogonalizáció komplex terekben*

- P Ortogonalizáljuk az (i, 0, 0), (i, i, i), (i, i, 0) vektorokból álló vektorrendszert.
- \mathbf{M} $\mathbf{b}_1=(\mathrm{i},0,0)$, a továbbiakban használjuk a következő képlet valamelyik alakját:

$$\begin{aligned} b_{i+1} &= a_{i+1} - \sum_{k=1}^{i} \frac{b_k (b_k^H a_{i+1})}{b_k^H b_k} = a_{i+1} - \sum_{k=1}^{i} \frac{(b_k^H a_{i+1})}{b_k^H b_k} b_k \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -i & 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ i \\ i \end{bmatrix} = \begin{bmatrix} 0 \\ i \end{bmatrix} \end{aligned}$$

$$- b_2 = \begin{bmatrix} i \\ i \\ i \end{bmatrix} - \frac{\begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -i & 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ i \\ 0 \end{bmatrix}}{\begin{bmatrix} -i & 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}} = \begin{bmatrix} 0 \\ i \\ i \end{bmatrix}$$

GS-ortogonalizáció komplex terekben*

$$\begin{aligned} b_3 &= \begin{bmatrix} i \\ i \\ 0 \end{bmatrix} - \frac{\begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -i & 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ i \\ 0 \end{bmatrix}}{\begin{bmatrix} -i & 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}} - \frac{\begin{bmatrix} 0 \\ i \end{bmatrix} \begin{bmatrix} 0 & -i & -i \end{bmatrix} \begin{bmatrix} i \\ i \\ 0 \end{bmatrix}}{\begin{bmatrix} 0 & -i & -i \end{bmatrix} \begin{bmatrix} 0 \\ i \\ 0 \end{bmatrix}} = \begin{bmatrix} 0 \\ i/2 \\ -i/2 \end{bmatrix} \\ q_1 &= \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}, \ q_2 &= \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ i \\ i \end{bmatrix}, \ q_3 &= \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ i \\ -i \end{bmatrix} \end{aligned}$$

Önadjungált mátrixok

D Az A komplex mátrixot önadjungált vagy Hermite-féle mátrixnak nevezzük, ha

$$A^H = A$$
.

P Melyek önadjungáltak?

$$\begin{bmatrix} 1 & i & 1+i \\ -i & 2 & 2-3i \\ 1-i & 2+3i & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} i & 1+i \\ 1-i & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1+i \\ 1+i & 2 \end{bmatrix}$$

- m önadjungált mátrix főátlójában csak valósok állhatnak
- m Minden valós szimmetrikus mátrix önadjungált,

Ferdén önadjungált mátrixok

D $A \in \mathbb{C}^{n \times n}$ ferdén önadjungált, ha

$$A = -A^H$$

- $P \begin{bmatrix} 2i & 3-i \\ -3-i & 0 \end{bmatrix} ferdén önadjungált.$
- Á ferdén önadjungált mátrixok főátlójában tiszta imaginárius számok állnak (a 0 is annak tekintendő).
- Á ha A ferdén önadjungált, akkor iA és —iA önadjungált.
- Á Minden komplex négyzetes mátrix egyértelműen előáll egy önadjungált és egy ferdén önadjungált mátrix összegeként.
- B A=B+C, ahol $B=\frac{1}{2}(A+A^H)$, $C=\frac{1}{2}(A-A^H)$ és B önadjungált, C ferdén önadjungált.

Normális mátrixok

D Az adjungáltjával fölcserélhető mátrixokat normális mátrixoknak nevezzük:

$$AA^H = A^H A$$

- Á Minden valós szimmetrikus, ferdén szimmetrikus és ortogonális mátrix normális. Minden komplex önadjungált, ferdén önadjungált és unitér mátrix normális.
- **m** Van olyan mátrix, mely nem esik a fönt fölsorolt osztályokba, de normális:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \qquad \mathbf{A}\mathbf{A}^{\mathsf{H}} = \mathbf{A}^{\mathsf{H}}\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

Néhány elemi állítás

- $\mathsf{F} \quad \forall \, \mathsf{A} \in \mathbb{C}^{n \times n} \,\, \mathsf{mátrixra} \,\, \mathcal{N}(\mathsf{A}^\mathsf{H}\mathsf{A}) = \mathcal{N}(\mathsf{A}) \,\, \mathsf{\acute{e}s} \,\, \mathcal{O}(\mathsf{A}^\mathsf{H}\mathsf{A}) = \mathcal{O}(\mathsf{A}^\mathsf{H}).$
- $M \ \ X \in \mathcal{N}(A) \rightsquigarrow Ax = 0 \rightsquigarrow A^HAx = 0 \rightsquigarrow x \in \mathcal{N}(A^HA)$
- $\mathbf{x} \in \mathcal{N}(\mathbf{A}^H\mathbf{A}) \leadsto \mathbf{A}^H\mathbf{A}\mathbf{x} = \mathbf{0} \leadsto \mathbf{x}^H\mathbf{A}^H\mathbf{A}\mathbf{x} = \mathbf{0} \leadsto (\mathbf{A}\mathbf{x}) \cdot (\mathbf{A}\mathbf{x}) = \mathbf{0} \leadsto \mathbf{A}\mathbf{x} = \mathbf{0} \leadsto \mathbf{x} \in \mathcal{N}(\mathbf{A})$
- F Ha $\mathbf{A} \in \mathbf{C}^{n \times n}$ önadjungált és $\mathbf{U} \in \mathbf{C}^{n \times n}$ unitér mátrixok, akkor

$$U^{-1}AU$$

önadjungált! (Önadjungált mátrixhoz unitéren hasonló mátrix is önadjungált!)

- $M (U^{-1}AU)^H = U^HA^H(U^{-1})^H = U^{-1}A(U^H)^H = U^{-1}AU$
- F Legyen $S \in \mathbb{R}^{n \times n}$ szimmetrikus, $H \in \mathbb{C}^{n \times n}$ önadjungált mátrix. Ekkor minden $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, ill. $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ vektorra

$$(Su) \cdot v = u \cdot (Sv), \text{ ill. } (Hx) \cdot y = x \cdot (Hy)!$$