Vector Calculus Logic and Set Summary

Dr. Paul L. Bailey September 4, 2017

Lines in \mathbb{R}^2

A line in \mathbb{R}^2 is determined by a point $P_0 = (x_0, y_0)$ on the line, together with either a normal vector $\vec{n} = \langle a, b \rangle$, or a direction vector $\vec{v} = \langle v_1, v_2 \rangle$. Let P = (x, y) denote an arbitrary point on the line.

Normal Vector

The vector from P_0 to P is perpendicular to the normal vector. This gives the first equation.

The normal equation of the line is

$$(P - P_0) \cdot \vec{n} = 0.$$

Now $P - P_0 = \langle x - x_0, y - y_0 \rangle$, so $\langle x - x_0, y - y_0 \rangle \cdot \langle a, b \rangle = 0$, whence $a(x - x_0) + b(y - y_0) = 0$. This gives the next equation.

The general equation of the line is

$$ax + by = c$$
,

where $c = ax_0 + by_0$. If $b \neq 0$, we divide through by it to get the final form of the equation.

The slope-intercept form of the equation of the line is

$$y = mx + k$$

where $m = -\frac{a}{b}$ and $k = \frac{c}{b}$.

Direction Vector

The vector \vec{v} is in the direction of the line, so if we set $t = \frac{|P - P_0|}{|\vec{v}|}$, then $t\vec{v} = P - P_0$. Turn this around, and view P as a function of t. This gives the first equation.

The vector equation of the line is

$$P = P_0 + t\vec{v},$$

where P depends on t. Traditionally, if we view P as the path of a particle in motion, we set $\vec{r}(t) = P$, so that

$$\vec{r}(t) = P_0 + t\vec{v}.$$

We call $\vec{r}(t)$ the position vector of the particle, and we call \vec{v} the velocity vector. Since \vec{r} depends on t, so do the x and y coordinates of \vec{r} , so they are also functions of t, and we may write $\vec{r}(t) = \langle x(t), y(t) \rangle$. Thus $\langle x(t), y(t) \rangle = \langle x_0, y_0 \rangle + t \langle v_1, v_2 \rangle$. This leads to the next equations.

The parametric equations of the line are

$$x = x_0 + tv_1$$
 and $y = y_0 + tv_2$.

Solving each of these equations for t and then equating the results give the next equation.

The *symmetric equation* of the line is

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2}.$$

Lines and Planes in \mathbb{R}^3

In three dimensions, only planes have normal vectors, and lines have direction vectors.

Normal Vector of a Plane

A plane in \mathbb{R}^3 is determined by a fixed point $P_0 = (x_0, y_0, z_0)$ on the plane, together with a normal vector $\vec{n} = \langle a, b, c \rangle$ for the plane.

Let P = (x, y, z) denote an arbitrary point on the plane. The vector from P_0 to P is perpendicular to the normal vector. This gives the first equation.

The normal equation of the plane is

$$(P - P_0) \cdot \vec{n} = 0.$$

Now
$$P - P_0 = \langle x - x_0, y - y_0, z - z_0 \rangle$$
, so

$$\langle x - x_0, y - y_0, z - z_0 \rangle \cdot \langle a, b, c \rangle = 0,$$

whence $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$. This gives the next equation.

The general equation of the plane is

$$ax + by + cz = d$$
,

where $d = ax_0 + by_0 + cz_0$.

Direction Vector of a Line

A line in \mathbb{R}^3 is determined by a point $P_0 = (x_0, y_0, z_0)$ on the line, together with a direction vector $\vec{v} = \langle v_1, v_2, v_3 \rangle$ for the line.

Let P = (x, y, z) denote an arbitrary point on the line. The vector \vec{v} is in the direction of the line, so if we set $t = \frac{|P - P_0|}{|v|}$, then $t\vec{v} = P - P_0$. Turn this around, and view P as a function of t. This gives the first equation.

The vector equation of the line is

$$P(t) = P_0 + t\vec{v},$$

or using the common "position vector" notation,

$$\vec{r}(t) = P_0 + t\vec{v}.$$

Since \vec{r} depends on t, so do the x, y and z coordinates of \vec{r} , so they are also functions of t, and we may write $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$. Thus $\langle x(t), y(t), z(t) \rangle = \langle x_0, y_0, z_0 \rangle + t \langle v_1, v_2, v_3 \rangle$. This leads to the next equations.

The $parametric\ equations$ of the line are

$$x = x_0 + tv_1$$
, $y = y_0 + tv_2$, and $z = z_0 + tv_3$.

Solving each of these equations for t and then equating the results give the next equations.

The symmetric equations of the line are

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}.$$