Introduction to Smooth Manifolds: Chapter #4

Chris Phelps

Problem 1

Use the inclusion map $\mathbb{H}^n \hookrightarrow \mathbb{R}^n$ to show that Theorem 4.5 does not extend to the case in which M is a manifold with boundary.

Let $p \in \partial \mathbb{H}^n$ and note that:

- 1. The inclusion $\mathbb{H}^n \hookrightarrow \mathbb{R}^n$ is smooth.
- 2. $d\iota_p$ is invertible. [NOTE: why? look up definition]

However, there are no neighborhoods $U\ni p, V\ni F(P)$, s.t. $\iota|_U:U\mapsto V$ is a diffeomorphism. To see this, note that every U is open in \mathbb{H}^N but each $V\ni F(p)$ is not open in \mathbb{R}^n .

Problem 2

Suppose M is a smooth manifold (without boundary), N is a smooth manifold with boundary, and $F:M\mapsto N$ is smooth. Show that if $p\in M$ is a point such that dF_p is nonsingular, then $F(p)\in \mathbf{Int}N$.

Problem 3

Formulate and prove a version of the rank theorem for a map of constant rank whose domain is a smooth manifold with boundary.

Problem 4

Let $\gamma: \mathbb{R} \mapsto \mathbb{T}^2$ be the curve of Example 4.20. Show that the image set $\gamma(R)$ is dense in \mathbb{T}^2 .

Let $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1 \subseteq \mathbb{C}^2$ denote the torus and let α be any irrational number and consider the map $\gamma : \mathbb{R} \mapsto \mathbb{T}^2$ given by

$$\gamma(t) = \left(e^{2\pi it}, e^{2\pi i\alpha t}\right)$$

Let $(a,b)\in\mathbb{T}^2$. To show that the $\gamma(\mathbb{R})$ is dense in \mathbb{T}^2 , we demonstrate a sequence in $\gamma(\mathbb{R})$ that converges to (a,b). L

Let $\beta \in \mathbb{R}$ s.t. $a = e^{2\pi i \beta}$. Consider the set

$$\begin{split} \{\gamma(k+\beta)\}_{k\in\mathbb{Z}} &= \left\{ \left(e^{2\pi i(k+\beta)}, e^{2\pi i\alpha(k+\beta)}\right) \right\}_{k\in\mathbb{Z}} \\ &= \left\{ \left(a, e^{2\pi i\alpha\beta}e^{2\pi i\alpha k}\right) \right\}_{k\in\mathbb{Z}} \end{split}$$

 $\alpha k \mod 1$ is dense in [0,1] because it is an irrational rotation rotation of the circle, therefore $e^{2\pi i\alpha k}$ is dense in $\mathbb C$, therefore there is a subsequence $e^{2\pi i\alpha k_j}\to be^{-2\pi i\alpha\beta}$, therefore

$$\{\gamma(k+\beta)\}_{k\in\mathbb{Z}} = \left\{\left(a, e^{2\pi i \alpha \beta} e^{2\pi i \alpha k}\right)\right\}_{k\in\mathbb{Z}} \to (a, b)$$

Problem 5

Let \mathbb{CP}^n denote the n- dimensional complex projective space, as defined in Problem 1-9.

- a) Show that the quotient map $\pi:\mathbb{C}^{n+1}\setminus\{0\}\mapsto\mathbb{CP}^n$ is a surjective smooth submersion.
- b) Show that \mathbb{CP}^1 is diffeomorphic to \mathbb{S}^2 .

Problem 6

Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F:M\mapsto \mathbb{R}^k$ for any k>0.

Let M be compact and $F: M \mapsto \mathbb{R}^k$ be smooth. Note that

- 1. F(M) is compact because M is compact and F is continuous.
- 2. F(M) is open because F is a smooth submersion.

Because all non-empty compact sets in \mathbb{R}^k are closed, this is a contradiction and such a map cannot exist.

Problem 7

TODO

Problem 8

This problem shows that the converse of Theorem 4.29 is false. Let $\pi:\mathbb{R}^2:\mapsto\mathbb{R}$ be defined by $\pi(x,y)=xy$. Show that π is surjective and smooth, and for each smooth manifold P, a map $F:\mathbb{R}\mapsto P$ is smooth if and only if $F\circ\pi$ is smooth; but π is not a smooth submersion.

Problem 9

Let M be a connected smooth manifold, and let $\pi: E \mapsto M$ be a topological covering map. Complete the proof of Proposition 4.40 by showing that there is only one smooth structure on E such that pi is a smooth covering map. [Hint: use the existence of smooth local sections]

Problem 10

Show that the map $q: \mathbb{S}^n \mapsto \mathbb{RP}^n$ defined in Example 2.13(f) is a smooth covering map.

Define $q: \mathbb{S}^n \to \mathbb{RP}^n$ as the restriction of $\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{RP}^n$ to $\mathbb{S}^n \subseteq \mathbb{R}^n \setminus \{0\}$. TODO: Complete.

Problem 11

Show that a topological covering map is proper iff its fibers are finite, and therefore the converse of Proposition 4.46 is fale.

Suppose $\pi: E \mapsto X$ is a topological covering map.

 \Longrightarrow

Suppose π is proper.

Let $p \in X$.

Suppose $\pi^{-1}(p)$ is infinite, then it admits an infinite cover (the open ball around each point in the fiber) with no finite subcover, and therefore is not compact. Since $\{p\}$ is compact, this is a contradiction.

Suppose π has finite fibers.

Let $K \subseteq X$ be compact, let $L = \pi^{-1}(K)$, $D \subseteq L \subset E$ be an infinite set, and $Y = \pi(D)$.

Because $D = \bigcup_{y \in Y} \pi^{-1}(y)$ is infinite and $\pi^{-1}(y)$ is finite, Y must be infinite. Because $K \supseteq Y$ is compact, Y must contain a limit point \bar{y} . We show that $\pi^{-1}(\bar{y})$ is a limit point of D.

Let U be an evenly covered neighborhood of y_i and $U\supseteq\{y_i\}\to \bar{y}$. Because the fiber $\pi_{-1}(\bar{y})$ is finite, π^U contains components V_j mapped homeomorphically onto U by π and therefore, for each i,j there exist $e_{i,j}\in V_j$ s.t. $\pi(e_{i,j})=y_i$. Because $\{y_i\}\subseteq \pi(D)$, for each i, there is at least one j s.t. $e_{i,j}\in D$. Because there are finitely many j and infinitely many j, there must be a \hat{j} s.t. $e_{i,\hat{j}}\in D$ for infinitely many j. Because $e_{i,\hat{j}}$ converges, $\lim_i e_{i,\hat{j}}$ is a limit point of D.

Therefore π is proper.

Problem 12

Using the covering map $\epsilon^2:\mathbb{R}^2\mapsto\mathbb{T}^2$ (see Example 4.35), show that the immersion $X:\mathbb{R}^2\mapsto\mathbb{R}^3$ defined in example 4.2(d) descends to a smooth embedding of \mathbb{T}^2 into \mathbb{R}^3 . Specifically, show that X passes to the quotient to define a smooth map $\tilde{X}:\mathbb{T}^2\mapsto\mathbb{R}^3$, and then show that \tilde{X} is a smooth embedding whose image is the given surface of revolution.

Let
$$\epsilon^2:\mathbb{R}^2\mapsto\mathbb{T}^2$$
, $X:\mathbb{R}^2\mapsto\mathbb{R}^3$ be given by
$$\epsilon^2\left(x^1,x^2\right)=\left(e^{2\pi ix^1},e^{2\pi ix^2}\right)$$

$$X(u,v)=\left((2+\cos2\pi u)\cos2\pi v,(2+\cos2\pi u)\sin2\pi v,\sin2\pi u\right)$$

Problem 13

Define a map $F: \mathbb{S}^2 \mapsto \mathbb{R}^4$ by $F(x,y,z) = (x^2-y^2,xy,xz,yz)$. Using the smooth covering map of Example 2.13(f) and Problem 4-10, show that F descends to a smooth embedding of \mathbb{RP}^2 into \mathbb{R}^4 .