Concours Mathématiques et Physique 2011 Epreuve de Mathématiques II - Corrigé

PARTIE I

A - Etude des endomorphismes G_u , D_v et $G_u + D_v$

1. (a) Soit
$$R = \sum_{i=0}^{m} a_i X^i \in \mathbb{C}[X]$$
. Alors, pour tout $f \in \mathcal{L}(E)$,

$$R(G_u)(f) = \sum_{i=0}^m a_i G_u^i(f) = \sum_{i=0}^m a_i (u^i \circ f) = \left(\sum_{i=0}^m a_i u^i\right) \circ f = R(u) \circ f = G_{R(u)}(f).$$

D'où $R(G_u) = G_{R(u)}$.

(b)
$$R(u) = 0 \iff \forall f \in \mathcal{L}(E), \ R(u) \circ f = 0 \\ \iff \forall f \in \mathcal{L}(E), \ G_{R(u)}(f) = 0 \\ \iff G_{R(u)} = R(G_u) = 0.$$

- (c) u est diagonalisable \iff il existe $Q \in \mathbb{C}[X]$ scindé à racines toutes simples dans \mathbb{C} tel que $Q(u) = 0 \iff$ il existe $Q \in \mathbb{C}[X]$ scindé à racines toutes simples dans \mathbb{C} te que $Q(G_u) = 0 \iff G_u$ est diagonalisable.
- 2. Même raisonnement que dans 1.
- 3. (a) Pour tout $f \in \mathcal{L}(E)$, on a:

$$(G_u \circ D_v)(f) = G_u(f \circ v) = u \circ f \circ v = D_v(u \circ f) = (D_v \circ G_u)(f)$$

et donc $G_u \circ D_v = D_v \circ G_u$.

(b) Soit $\lambda \in \operatorname{Sp}_{c}(G_{u})$. Pour $g \in E_{\lambda}(G_{u})$, montrons que $D_{v}(g) \in E_{\lambda}(G_{u})$. En utilisant la question précédente, on a :

$$G_u(D_v(g)) = D_v(G_u(g)) = D_v(\lambda g) = \lambda D_v(g).$$

Donc $E_{\lambda}(G_u)$ est stable par D_v .

(c) u et v étant supposés diagonalisables, donc par 1. et 2., G_u et D_v sont diagonalisables On note $\lambda_1, \dots, \lambda_p$ les valeurs propres deux à deux distinctes de G_u , alors on a :

$$\mathcal{L}(E) = \bigoplus_{i=1}^{p} E_{\lambda_i}(G_u).$$

Par 3.(b), pour tout $i \in \{1, \dots, p\}$, $E_{\lambda_i}(G_u)$ est stable par D_v . Il en résulte que la restriction $D_{v,i}$ de D_v à $E_{\lambda_i}(G_u)$ est un endomorphisme diagonalisable de $E_{\lambda_i}(G_u)$. Soit \mathcal{B}_i une base de $E_{\lambda_i}(G_u)$ formée par des vecteurs propres de $D_{v,i}$ (donc de D_v). Alors $(\mathcal{B}_1, \dots, \mathcal{B}_p)$ est une base de $\mathcal{L}(E)$ formée par des vecteurs propres communs à G_u et D_v .

- (d) La matrice de $\Theta_{u,v}$ dans la base $(\mathcal{B}_1, \dots, \mathcal{B}_p)$, définie dans 3. (c), est diagonale (somme de deux matrices diagonales), donc $\Theta_{u,v}$ est diagonalisable.
- 4. (a) Soient $\lambda_1, \dots, \lambda_k$ les valeurs propres de u. On a $v \in \ker(\Theta_{u,-u}) \iff u \circ v = v \circ u$. Alors pour tout $j \in \{1, \dots, k\}, E_{\lambda_j}(u)$ est stable par v car pour tout $x \in E_{\lambda_j}(u)$, on a:

$$u(v(x)) = v(u(x)) = v(\lambda_j x) = \lambda_j v(x).$$

• Réciproquement, si pour tout $j \in \{1, \cdots, k\}$, $E_{\lambda_j}(u)$ est stable par v alors

$$\forall z \in E_{\lambda_j}(u), \quad (u \circ v)(z) = \lambda_j v(z) = v(\lambda_j z) = (v \circ u)(z).$$

Ainsi u et v commutent sur tout $E_{\lambda_j}(u), 1 \leqslant j \leqslant k$, d'où u et v commutent sur

$$E = \bigoplus_{j=1}^k E_{\lambda_j}(u)$$
, et $v \in \ker(\Theta_{u,-u})$. En conclusion

$$\ker(\Theta_{u,-u}) = \Big\{ v \in \mathcal{L}(E); \ \forall \lambda \in \mathrm{Sp}_{\mathbf{c}}(u), \ E_{\lambda}(u) \ \mathrm{est \ stable \ par} \ v \Big\}.$$

(b) Pour $j \in \{1, \dots, k\}$, on note par \mathcal{T}_j une base de $E_{\lambda_j}(u)$ et on pose $\mathcal{T} = (\mathcal{T}_1, \dots, \mathcal{T}_k)$. Alors $v \in \ker(\Theta_{u,-u})$ si et seulement si la matrice de v dans \mathcal{T} est de la forme

$$N = \left(\begin{array}{ccc} N_1 & & (0) \\ & \ddots & \\ (0) & & N_k \end{array}\right)$$

avec $N_j \in \mathcal{M}_{n_j}(\mathbb{C})$ et $n_j = \dim(E_{\lambda_j}(u))$. Il en résulte que

$$\dim(\ker(\Theta_{u,-u})) = \sum_{j=1}^k (\dim E_{\lambda_j}(u))^2.$$

(c) i. Soient $j \in \{1, \dots, n\}$ et $x_j \in E_{\lambda_j}(u) \setminus \{0\}$. A noter que (x_1, \dots, x_n) est une base de E formée par des vecteurs propres de u. Comme $E_{\lambda_j}(u)$ est stable par v alors $v(x_j) \in E_{\lambda_j}(u)$. Mais λ_j est une valeur propre simple, donc $\dim E_{\lambda_j}(u) = 1$ et $E_{\lambda_j}(u) = \operatorname{Vect}\{x_j\}$. Il existe alors $\mu_j \in \mathbb{C}$ tel que $v(x_j) = \mu_j x_j$ et x_j est un vecteur propre de v.

On conclut qu'une base de vecteurs propres de u est aussi base de vecteurs propres de v et donc v est diagonalisable.

ii. La notion des polynômes d'interpolation de Lagrange assure l'existence d'un polynôme $R\in\mathbb{C}[X]$ tel que

$$R(\lambda_j) = \mu_j, \quad \forall j \in \{1, \dots, n\}.$$

Donc pour tout $j \in \{1, \dots, n\}$, on a:

$$R(u)(x_j) = R(\lambda_j)x_j = \mu_j x_j = v(x_j).$$

Comme (x_1, \dots, x_n) est une base de E, alors R(u) = v.

B - Cas où dim(E) = 2.

- 1. (a) Supposons que pour tout $x \in E$, (x, u(x)) est liée. Alors, pour tout $x \in E$, il existe $\lambda_x \in \mathbb{K}$ tel que $u(x) = \lambda_x x$.
 - Pour x = 0, on a $u(x) = 0 = \lambda_x 0$ avec λ_x arbitraire dans \mathbb{K} .
 - Pour $x, y \in E \setminus \{0\}$, montrons que $\lambda_x = \lambda_y$.
 - Si (x, y) est liée, il existe $\alpha \in \mathbb{K}$ tel que $y = \alpha x$. Alors,

$$u(y) = \lambda_y y = u(\alpha x) = \alpha u(x) = \alpha \lambda_x x = \lambda_x y.$$

D'où $(\lambda_y - \lambda_x)y = 0 \Rightarrow \lambda_x = \lambda_y \operatorname{car} y \neq 0.$

• Si (x, y) est libre, alors

$$u(x+y) = \lambda_{x+y}(x+y) = \lambda_{x+y}x + \lambda_{x+y}y = u(x) + u(y) = \lambda_x x + \lambda_y y,$$

ce qui donne
$$(\lambda_{x+y} - \lambda_x)x + (\lambda_{x+y} - \lambda_y)y = 0$$
 et donc $\lambda_{x+y} = \lambda_x = \lambda_y$.

Par conséquent, il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$ pour tout $x \in E$, c'est-à-dire u est une homothétie vectorielle de E de rapport λ ; absurdité. En conclusion, il existe $\varepsilon_1 \in E$ tel que $(\varepsilon_1, u(\varepsilon_1))$ est libre.

(b) Il est clair que $\operatorname{Vect}(\operatorname{id}_E, u) \subset \ker(\Theta_{u,-u})$. Montrons l'autre inclusion. Soit $v \in \ker(\Theta_{u,-u})$. $(\varepsilon_1, u(\varepsilon_1))$ etant libre, elle forme une base de E. Il existe alors $\alpha, \beta \in \mathbb{K}$ tels que $v(\varepsilon_1) = \alpha \varepsilon_1 + \beta u(\varepsilon_1)$. Pour tout $x \in E$, il existe $a, b \in \mathbb{K}$ tels que $x = a\varepsilon_1 + bu(\varepsilon_1)$. Comme $u \circ v = v \circ u$, on aurra:

$$v(x) = av(\varepsilon_1) + bv(u(\varepsilon_1))$$

$$= a(\alpha\varepsilon_1 + \beta u(\varepsilon_1)) + bu(\alpha\varepsilon_1 + \beta u(\varepsilon_1))$$

$$= \alpha(a\varepsilon_1 + bu(\varepsilon_1)) + \beta u(a\varepsilon_1 + bu(\varepsilon_1))$$

$$= \alpha x + \beta u(x)$$

$$= (\alpha i d_E + \beta u)(x).$$

D'où $v = \alpha \mathrm{id}_E + \beta u \in \mathrm{Vect}(\mathrm{id}_E, u)$. En conclusion, $\ker(\Theta_{u,-u}) = \mathrm{Vect}(\mathrm{id}_E, u)$.

2. Soit $(\alpha_{ij})_{1\leqslant i,j\leqslant 2}$ une famille d'éléments de $\mathbb K$ telle que $\sum_{i,j=1}^2 \alpha_{ij} f_{ij} = 0$. Alors, pour tout

$$k \in \{1, 2\}$$
, on a:

$$\sum_{i,j=1}^{2} \alpha_{ij} f_{ij}(\varepsilon_k) = 0 = \sum_{i,j=1}^{2} \alpha_{ij} \delta_{jk} \varepsilon_i = \sum_{i=1}^{2} \alpha_{ik} \varepsilon_i.$$

D'où

$$\sum_{i=1}^{2} \alpha_{ik} \varepsilon_i = 0 \implies \alpha_{ik} = 0, \quad \forall \, 1 \leqslant i, k \leqslant 2.$$

Donc la famille $(f_{ij})_{1 \leq i,j \leq 2}$ est libre et ayant $2^2 = \dim(\mathcal{L}(E))$ éléments. Ceci prouve que $(f_{ij})_{1 \leq i,j \leq 2}$ est une base de $\mathcal{L}(E)$.

- 3. (a) Il est clair que la matrice de u dans la base \mathcal{U} est de la forme $\begin{pmatrix} 0 & \gamma \\ 1 & \delta \end{pmatrix}$.
 - (b) On calcul matriciellement et on trouve

$$\Theta_{u,-u}(f_{11}) = f_{21} - \gamma f_{12}, \quad \Theta_{u,-u}(f_{12}) = -f_{11} - \delta f_{12} + f_{22}$$

$$\Theta_{u,-u}(f_{21}) = \gamma f_{11} + \delta f_{21} - \gamma f_{22}$$
 et $\Theta_{u,-u}(f_{22}) = \gamma f_{12} - f_{21}$.

On en déduit que la matrice de $\Theta_{u,-u}$ dans la base $\mathcal{F}=(f_{11},f_{12},f_{21},f_{22})$ canoniquement associée à \mathcal{U} est donnée par :

$$\mathcal{M}_{\mathcal{F}}(\Theta_{u,-u}) = \begin{pmatrix} 0 & -1 & \gamma & 0 \\ -\gamma & -\delta & 0 & \gamma \\ 1 & 0 & \delta & -1 \\ 0 & 1 & -\gamma & 0 \end{pmatrix}.$$

- (c) On a $\operatorname{Tr}(\Theta_{u,-u}) = \operatorname{Tr}(\mathcal{M}_{\mathcal{F}}(\Theta_{u,-u})) = 0$.
- 4. D'aprés 1. (b) dim $\ker(\Theta_{u,-u}) = 2$, donc 0 est une valeur propre de $\Theta_{u,-u}$ de multiplicité supérieure ou égale à 2. Alors le polynôme caractéristique de $\Theta_{u,-u}$ est donné par :

$$P_{\Theta_{u,-u}}(X) = X^2(X^2 + \alpha X + \beta),$$

avec
$$\alpha = -\text{Tr}(\Theta_{u,-u}) = 0$$
 et $\beta \in \mathbb{K}$. D'où $P_{\Theta_{u,-u}}(X) = X^2(X^2 + \beta)$.

Remarque. En utilisant la matrice obtenue dans 3. (b), un calcule directe de $d\acute{e}t(\Theta_{u,-u} - X \operatorname{id}_{\mathcal{L}(E)})$ donne le même résultat.

- 5. Si $\beta = 0$ alors $P_{\Theta_{u,-u}}(X) = X^4$ et donc 0 est une valeur propre de multiplicité 4. Or la dimension de l'espace propre asociée à 0 est égale à 2. Donc $\Theta_{u,-u}$ n'est pas diagonalisable.
- 6. Supposons que $\beta \neq 0$.
 - Si $\mathbb{K} = \mathbb{C}$ alors $\Theta_{u,-u}$ admet 0 comme valeur propre double dont le sous-espace propre associé est de dimension 2, et deux valeurs propres simples qui sont les racines carrées de $-\beta$. Donc $\Theta_{u,-u}$ est diagonalisable.
 - Si $\mathbb{K} = \mathbb{R}$ alors on distingue les deux cas suivants :
 - Si $\beta < 0$ alors $\Theta_{u,-u}$ est diagonalisable (même raisonnement que dans le cas complèxe).
 - Si $\beta > 0$ alors le polynôme $P_{\Theta_{u,-u}}$ n'est pas scindé sur \mathbb{R} et $\Theta_{u,-u}$ n'est pas diagonalisable.
- 7. (a) Si $\Theta_{u,-u}$ est diagonalisable alors les racines de son polynôme caractéristique sont 0 et les racines carrées (distinctes) de $-\beta$. Ainsi $\operatorname{Sp}_{\mathbb{K}}(\Theta_{u,-u}) = \{0,\lambda,-\lambda\}$ avec $\lambda = \sqrt{-\beta} \in \mathbb{K} \setminus \{0\}$.

- (b) i. Comme $\Theta_{u,-u}(w_1) = \lambda w_1$ alors $w_1 \circ u = u \circ w_1 \lambda w_1$. Pour $t \in \mathbb{K}$, on a : $w_1 \circ u tw_1 = u \circ w_1 \lambda w_1 tw_1 \iff w_1 \circ (u t \operatorname{id}_E) = (u (\lambda + t)\operatorname{id}_E) \circ w_1.$
 - ii. Si $d\acute{e}t(w_1) \neq 0$ alors de l'identité dans 7. (b) i. on obtient

$$P_u(t) = P_u(t+\lambda), \quad \forall t \in \mathbb{K}.$$

Ceci est absurde car

$$\left| \begin{array}{cc} -t & \gamma \\ 1 & \delta - t \end{array} \right| = \left| \begin{array}{cc} -(t + \lambda) & \gamma \\ 1 & \delta - (t + \lambda) \end{array} \right| \iff t = \frac{\delta - \lambda}{2}.$$

Par conséquent $dét(w_1) = 0$. Comme par hypothèse $w_1 \neq 0$, on conclut que $rg(w_1) = 1$.

- En utilisant le fait que $Tr(u \circ w_1) = Tr(w_1 \circ u)$, on obtient $Tr(w_1) = 0$.
- Comme $\operatorname{rg}(w_1) = 1$, alors par le théorème du rang on a dim $\ker(w_1) = 1$. Soit $\varepsilon_1' \in \ker(w_1) \setminus \{0\}$ et $\varepsilon_2' \in E$ tel que $(\varepsilon_1', \varepsilon_2')$ est une base de E. Alors

$$M=\mathcal{M}_{(arepsilon_1',arepsilon_2')}(w_1)=\left(egin{array}{cc} 0 & a \ 0 & b \end{array}
ight).$$

Comme $Tr(w_1) = 0 = b$, alors $M = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$. La relation $M^2 = 0$ entraine $w_1^2 = 0$.

- (c) i. Si $w_1(\varepsilon_1) = 0$, de la relation $u \circ w_1 w_1 \circ u = \lambda w_1$ on aurra $w_1(u(\varepsilon_1)) = 0$ et ainsi $w_1 = 0$. Ceci est absurde car w_1 est un vecteur propre de $\Theta_{u,-u}$. Donc $w_1(\varepsilon_1) \neq 0$.
 - Soient $\alpha, \beta \in \mathbb{K}$ tel que $\alpha \varepsilon_1 + \beta w_1(\varepsilon_1) = 0$. Comme $w_1^2 = 0$, alors on a :

$$w_1(\alpha\varepsilon_1 + \beta w_1(\varepsilon_1)) = \alpha w_1(\varepsilon_1) + \beta w_1^2(\varepsilon_1) = \alpha w_1(\varepsilon_1) = 0 \Rightarrow \alpha = 0$$

et donc $\beta = 0$. Ainsi la famille $(\varepsilon_1, w_1(\varepsilon_1))$ est une base de E.

ii. Soient $a, b \in \mathbb{K}$ tels que $u(\varepsilon_1) = a\varepsilon_1 + bw_1(\varepsilon_1)$. Alors

$$u(w_1(\varepsilon_1)) = w_1(u(\varepsilon_1)) + \lambda w_1(\varepsilon_1) = aw_1(\varepsilon_1) + bw_1^2(\varepsilon_1) + \lambda w_1(\varepsilon_1) = (a+\lambda)w_1(\varepsilon_1).$$

Il en découle que la matrice de u dans la base $(\varepsilon_1, w_1(\varepsilon_1))$ est triangulaire inférieure:

$$\mathcal{M}_{(\varepsilon_1,w_1(\varepsilon_1))}(u)=\left(egin{array}{cc} a & 0 \ b & a+\lambda \end{array}
ight).$$

iii.
$$Tr(u) = 2a + \lambda \Longrightarrow a = \frac{Tr(u) - \lambda}{2}$$
. D'où

$$\mathrm{Sp}_{\mathbb{K}}(u) = \Big\{ \frac{Tr(u) - \lambda}{2}, \frac{Tr(u) + \lambda}{2} \Big\}.$$

Comme $\lambda \neq 0$, u est a spectre simple, donc diagonalisable.

(d) i. • Si $w_2 \circ w_1(\varepsilon_1) = 0$ alors, en utilisant $Tr(w_2) = 0$, on aura

$$\mathcal{M}_{(arepsilon_1,w_1(arepsilon_1))}(w_2)=\left(egin{array}{cc} a & 0 \ b & 0 \end{array}
ight)=\left(egin{array}{cc} 0 & 0 \ b & 0 \end{array}
ight)=b\left(egin{array}{cc} 0 & 0 \ 1 & 0 \end{array}
ight)=b\mathcal{M}_{(arepsilon_1,w_1(arepsilon_1))}(w_1).$$

D'où $w_2 = bw_1$ et (w_1, w_2) est une famille liée. Ceci est absurde car w_1 et w_2 sont deux vecteurs propres de $\Theta_{u,-u}$ associés à des valeurs propres distinctes. Donc

$$w_2 \circ w_1(\varepsilon_1) \neq 0.$$

- Avec le même raisonnement on obtient $w_1 \circ w_2(\varepsilon_1) \neq 0$.
- ii. On sait que dim $\ker(w_1) = 1$ et dim $\ker(w_2) = 1$. D'où pour montrer que $E = \ker(w_1) \oplus \ker(w_2)$, il suffit de montrer que $\ker(w_1) \cap \ker(w_2) = \{0\}$. Comme $\ker(w_1) = \operatorname{Vect}\{w_1(\varepsilon_1)\}$ et $\ker(w_2) = \operatorname{Vect}\{w_2(\varepsilon_1)\}$, il suffit de montrer que $(w_1(\varepsilon_1), w_2(\varepsilon_1))$ est libre. Soient $a, b \in \mathbb{K}$ tels que $aw_1(\varepsilon_1) + bw_2(\varepsilon_1) = 0$. En appliquant successivement w_1 et w_2 et en utilisant le fait que $w_1 \circ w_2(\varepsilon_1) \neq 0$ et $w_2 \circ w_1(\varepsilon_1) \neq 0$, on aura a = b = 0.
- iii. Des hypothèses $u \circ w_1 = w_1 \circ u + \lambda w_1$ et $u \circ w_2 = w_2 \circ u \lambda w_2$, on déduit après composition avec w_1 (resp. w_2):

$$w_1 \circ u \circ w_1 = 0$$
 et $w_2 \circ u \circ w_2 = 0$.

D'où $u(w_1(\varepsilon_1)) \in \ker(w_1)$ et $u(w_2(\varepsilon_1)) \in \ker(w_2)$. Il existe alors $\alpha, \beta \in \mathbb{K}$ tels que $u(w_1(\varepsilon_1)) = \alpha w_1(\varepsilon_1)$ et $u(w_2(\varepsilon_1)) = \beta w_2(\varepsilon_1)$. Il s'en suit que $(w_1(\varepsilon_1), w_2(\varepsilon_1))$ est une base de E formée par des vecteurs propres de u.

PARTIE II

A- Etude de $\Phi_{A,B}$ dans une structure euclidienne

- 1. La bilinéarité de $\langle \cdot, \cdot \rangle$ est une conséquence immédiate de la bilinéarité du produit matriciel, des linéarités de la trace et de la transposition.
 - Pour $M, N \in \mathcal{M}_n(\mathbb{R})$, on a:

$$\langle N, M \rangle = \frac{1}{n} \operatorname{Tr}(N^t M) = \frac{1}{n} \operatorname{Tr} \left[{}^t (N^t M) \right] = \frac{1}{n} \operatorname{Tr}(M^t N) = \langle M, N \rangle,$$

donc $\langle \cdot, \cdot \rangle$ est symétrique.

• Soit $M = (m_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$, alors $M^t M = \left(\sum_{k=1}^n m_{ik} m_{jk}\right)_{1 \leq i,j \leq n}$. D'où

$$\langle M, M \rangle = \frac{1}{n} \operatorname{Tr}(M^t M) = \frac{1}{n} \sum_{i,k=1}^n m_{ik}^2 \geqslant 0.$$

En plus,

$$\langle M, M \rangle = 0 \Longleftrightarrow \forall (i, k) \in \{1, \dots, n\}^2, \quad m_{ik} = 0 \Longleftrightarrow M = 0.$$

Ainsi $\langle \cdot, \cdot \rangle$ est une forme bilinéaire symétrique définie positive sur $\mathcal{M}_n(\mathbb{R})$. $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

2. Supposons que A est symétrique. Pour $M, N \in \mathcal{M}_n(\mathbb{R})$, on a :

$$\langle \Phi_{A}(M), N \rangle = \langle AM + MA, N \rangle = \frac{1}{n} \text{Tr} \Big[(AM + MA)^{t} N \Big]$$

$$= \frac{1}{n} \text{Tr} \Big(AM^{t} N \Big) + \frac{1}{n} \text{Tr} \Big(MA^{t} N \Big)$$

$$= \frac{1}{n} Tr \Big[M(^{t} NA + A^{t} N) \Big]$$

$$= \frac{1}{n} Tr \Big[M^{t} (AN + NA) \Big]$$

$$= \langle M, AN + NA \rangle$$

$$= \langle M, \Phi_{A}^{*}(N) \rangle.$$

D'où

$$\Phi_A^*(N) = AN + NA = \Phi_A(N), \quad \forall N \in \mathcal{M}_n(\mathbb{R}).$$

 Φ_A est donc un endomorphisme autoadjoint de l'espace euclidien $(\mathcal{M}_n(\mathbb{R}), \langle \cdot, \cdot \rangle)$.

3. • " \Longrightarrow " Soient λ une valeur propre de C et $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ tel que $CX = \lambda X$. On a :

$$0 < {}^{t}XCX = {}^{t}X\lambda X = \lambda {}^{t}XX = \lambda |X|^{2}.$$

On en déduit que $\lambda > 0$.

• " \Leftarrow " Supposons que $\operatorname{Sp}_{\mathbb{R}}(C) = (\lambda_i)_{1 \leqslant i \leqslant n} \subset \mathbb{R}_+^*$ et considérons une base orthonormée (V_1, \cdots, V_n) de $\mathcal{M}_{n,1}(\mathbb{R})$ formée par des vecteurs propres de C. Alors pour $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$, il existe une famille de réels non tous nuls $(\alpha_i)_{1 \leqslant i \leqslant n}$ telle que $X = \sum_{i=1}^n \alpha_i V_i$. On a :

$$(CX|X) = \sum_{i=1}^{n} \alpha_i^2 \lambda_i > 0.$$

D'où C est définie positive.

4. S étant symétrique définie positive, alors il existe une matrice orthogonale P et une matrice diagonale $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, où $\lambda_1, \dots, \lambda_n \in \mathbb{R}_+^*$, tels que $S = PD^tP$. La matrice

$$Q = P \operatorname{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n})^t P$$

est symétrique définie positive et vérifie $Q^2 = S$.

5. Soit $M \in \mathcal{M}_n(\mathbb{R}) \setminus \{0\}$, alors on a:

$$\langle \Phi_S(M), M \rangle = \langle SM + MS, M \rangle$$

$$= \frac{1}{n} \text{Tr}(SM^t M) + \frac{1}{n} \text{Tr}(MS^t M)$$

$$= \frac{1}{n} \text{Tr}(^t MQ^2 M) + \frac{1}{n} \text{Tr}(MQ^2 M)$$

$$= \|^t MQ\|^2 + \|MQ\|^2 > 0.$$

On en déduit que l'endomorphisme autoadjoint Φ_S est défini positif.

- 6. (a) Raisonnons par récurrence sur $k \ge 0$.
 - Pour k = 0 c'est évident.
 - De $\Phi_S M = \alpha M$ on déduit que $SM = M(\alpha I_n S)$, d'où la propriété est vraie pour k=1.
 - Supposons que c'est vraie pour tout $\ell \in \{0,1,\cdots,k\}$ et montrons-la pour k+1.

$$S^{k+1}M = S(S^kM) = SM(\alpha I_n - S)^k$$
 hypothèse de récurrence d'ordre k
 $= M(\alpha I_n - S)(\alpha I_n - S)^k$ hypothèse de récurrence d'ordre 1
 $= M(\alpha I_n - S)^{k+1}$.

Donc la propriété est vraie pour tout $k \in \mathbb{N}$.

(b) Soit
$$R(X) = \sum_{k=0}^{m} a_k X^k \in \mathbb{R}[X]$$
. On a:
$$R(S)M = \sum_{k=0}^{m} a_k S^k M = \sum_{k=0}^{m} a_k M(\alpha I_n - S)^k$$
$$= M \sum_{k=0}^{m} a_k (\alpha I_n - S)^k = MR(\alpha I_n - S).$$

(c) i. • En prenant $R = P_S$ (le polynôme caractéristique de S) dans 6. (b) et en utilisant $P_S(S) = 0$ on obtient

$$MP_S(\alpha I_n - S) = 0. (1)$$

- Si $P_S(\alpha I_n S)$ était inversible, en multipliant (1) à droite par $(P_S(\alpha I_n S))^{-1}$ on obtient M = 0 ceci contredit le fait que M est un vecteur propre.
- ii. S est une matrice symétrique réelle, d'où son polynôme caractéristique est scindé sur \mathbb{R} , i.e.,

$$P_S(X) = (-1)^n (X - \mu_1)^{n_1} \cdots (X - \mu_m)^{n_m}.$$

Par suite

$$P_S(\alpha I_n - S) = (-1)^n [(\alpha - \mu_1)I_n - S]^{n_1} \cdots [(\alpha - \mu_m)I_n - S]^{n_m}.$$

Si pour tout $k \in \{1, \dots, m\}$, $(\alpha - \mu_k)I_n - S$ est inversible alors $P_S(\alpha I_n - S)$ l'est également, ce qui n'est pas vraie d'après (c) i. Il existe alors $\beta \in \operatorname{Sp}_{\mathbb{R}}(S)$ tel que $(\alpha - \beta)I_n - S$ n'est pas inversible.

- (d) Par (c) ii. on a $\sigma := \alpha \beta \in \operatorname{Sp}_{\mathbb{R}}(S)$, d'où $\alpha = \sigma + \beta \in \operatorname{Sp}_{\mathbb{R}}(S) + \operatorname{Sp}_{\mathbb{R}}(S)$. Ceci prouve que $\operatorname{Sp}_{\mathbb{R}}(\Phi_S) \subset \mathbb{R}_+^*$. On conclut par 3.
- 7. Par 5. Φ_S est défini positif donc injectif. On a ${}^t(\Phi_S(M)) = \Phi_S({}^tM)$. D'où ${}^t(\Phi_S(M)) = \Phi_S(M) \Longleftrightarrow \Phi_S({}^tM) = \Phi_S(M) \Longleftrightarrow M = {}^tM$.

- 8. (a) " \Longrightarrow " Supposons que C est définie positive, alors C est diagonalisable sur $\mathbb R$ et $Sp_{\mathfrak{p}}(C) = \{\lambda_1, \lambda_2\}$ avec λ_1 et λ_2 deux réels strictement positifs. Alors Tr(C) = $\lambda_1 + \tilde{\lambda}_2 = a + c > 0$ et $d\acute{e}t(C) = \lambda_1 \lambda_2 = ac - b^2 > 0$. $ac > b^2$ et a + c > 0 donnent aet c de même signes positifs. Par conséquent a > 0 et $ac - b^2 > 0$.
 - " \Leftarrow " Supposons que a > 0 et $ac b^2 > 0$ alors c > 0 et donc $\lambda_1 + \lambda_2 > 0$ et $\lambda_1 \lambda_2 > 0$. Ainsi $\operatorname{Sp}_{\mathbf{R}}(C) \subset \mathbb{R}_+^*$ et C est définie positive d'après 3.
 - i. Soit $\lambda > 0$, alors on a :

$$\Phi_C(M_\lambda) = CM_\lambda + M_\lambda C = \begin{pmatrix} 2a\lambda & (1+\lambda)b \\ (1+\lambda)b & 2c \end{pmatrix}.$$

ii. Pour $b \neq 0$, on considère le trinôme en λ suivant :

$$R(\lambda) = \det(\Phi_C(M_\lambda)) = -b^2 \lambda^2 + (4ac - 2b^2)\lambda - b^2.$$

Comme $\Delta' = 4ac(ac - b^2) > 0$ alors R posséde deux racines réelles λ_1 et λ_2 qui vérifient

$$\lambda_1 + \lambda_2 = \frac{2ac + 2(ac - b^2)}{b^2} > 0$$
 et $\lambda_1 \lambda_1 = 1 > 0$.

Donc $\lambda_1 > 0$, $\lambda_2 > 0$ et $R(\lambda)$ change de signe sur \mathbb{R}_+^* . On en déduit que pour b>0, il existe $\lambda>0$ tel que $\Phi_{\mathcal{C}}(M_{\lambda})$ n'est pas définie positive.

B - Orthogonalité dans $(\mathcal{M}_n(\mathbb{R}), \langle \cdot, \cdot \rangle)$

1. Par hypothèse on a :

(a)
$$A = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & \cdots & \cdots & 0 & 1 \\ 1 & \ddots & & & 0 & 0 \\ 0 & \ddots & \ddots & & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}.$$

On montre aisément par récurrence que :

On montre aisément par récurrence que :
$$\begin{array}{c} 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & & & & \vdots \\ 0 & & & & \vdots \\ 1 & \ddots & & & & \vdots \\ 0 & \ddots & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ \end{array} \right) = (c_{i,j})_{1\leqslant i,j\leqslant n},$$

c'est-à-dire tous les coefficients sont nuls sauf $c_{p+j,j}=1$ pour $1\leqslant j\leqslant n-p$. Pour $p \geqslant n$, on a $A^p = 0$.

(b) • On montre aisément par récurrence que, pour tout $0 \le p \le n-1$, on a :

$$B^p = A^p + {}^t A^{n-p} = (d_{l,m})_{1 \le l,m \le n}$$

avec $d_{p+j,j}=1$ si $1\leqslant j\leqslant n-p,$ $d_{i,n-p+i}=1$ si $1\leqslant i\leqslant p$ et 0 pour les autres coefficients. En particulier $B^{n-1}=A^{n-1}+{}^tA={}^tB$.

• On déduit que $B^n = B^t B = I_n$. (Cette dernière égalité s'obtient par un calcule directe).

Remarquons que, pour $p \ge n$, on a $B^p = B^r$ où r est le reste de la division euclidienne de p par n.

- 2. Par le calcul ci-dessus, on a $B^tB = {}^tBB = I_n$. Donc B est une matrice orthogonale et il vient de suite que, pour tout entier naturel p, B^p est orthogonale.
- 3. (a) Il découle de 1. (a) que $\mathcal{E}_A = \text{Vect}\{I_n, A, \dots, A^{n-1}\}$ et que pour tout $(a_0, a_1, \dots, a_{n-1}, \dots, a_n)$ \mathbb{R}^n , on a :

$$a_0 I_n + a_1 A + \dots + a_{n-1} A^{n-1} = \begin{pmatrix} a_0 & 0 & \cdots & \cdots & 0 \\ a_1 & \ddots & \ddots & & \vdots \\ a_2 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ a_{n-1} & \cdots & a_2 & a_1 & a_0 \end{pmatrix}.$$

Donc (I_n, A, \dots, A^{n-1}) est une famille libre et génératrice de \mathcal{E}_A . On en déduit que (I_n, A, \dots, A^{n-1}) est une base de \mathcal{E}_A et que $\dim(\mathcal{E}_A) = n$.

• Il résulte de 1. (b) que $\mathcal{E}_B = \operatorname{Vect}(I_n, B, \dots, B^{n-1})$ et que pour tout $(x_0, \dots, x_{n-1}) \in \mathbb{R}^n$,

$$x_0I_n + x_1B + \dots + x_{n-1}B^{n-1} = \begin{pmatrix} x_0 & x_{n-1} & x_{n-2} & \dots & x_2 & x_1 \\ x_1 & x_0 & x_{n-1} & \dots & x_3 & x_2 \\ x_2 & x_1 & x_0 & \dots & x_4 & x_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n-1} & x_{n-2} & x_{n-3} & \dots & x_1 & x_0 \end{pmatrix}.$$

Donc (I_n, B, \dots, B^{n-1}) est une famille libre et génératrice de \mathcal{E}_B . Ainsi (I_n, B, \dots, B^{n-1}) est une base de \mathcal{E}_B et dim $(\mathcal{E}_B) = n$.

(b) Clairement

$$\sum_{i=0}^{n-1} a_i A^i = \sum_{j=0}^{n-1} x_j B^j \iff \begin{cases} a_0 = x_0 \\ \forall j \in \{1, \dots, n-1\}; \ a_j = x_j = 0. \end{cases}$$

D'où $\mathcal{E}_A \cap \mathcal{E}_B = \text{Vect}\{I_n\}.$

- 4. Pour tout $p \in \mathbb{N}^*$, A^p est une matrice triangulaire inférieure et ne contient que des zéros sur son diagonale. Par conséquent :
 - $\forall p \in \mathbb{N}^*, \det(A^p) = 0$ donc A^p n'est pas inversible.

- $\forall p \in \mathbb{N}^*$, A^p admet 0 pour unique valeur propre de multiplicité n donc A^p est diagonalisable si et seulement si $p \geqslant n$. En effet, pour $p \geqslant n$, $A^p = 0$ donc diagonalisable. Pour $p \in \{0, \dots, n-1\}$, si A^p était diagonalisable, elle serait d'aprés ce qui précède semblable à diag $(0, \dots, 0) = 0$, c'est-à-dire égale à 0, ce qui est faux.
- 5. On sait, d'après 1., que pour $p \in \{0, \dots, n-1\}$,

$$A^{p} = \sum_{j=1}^{n-p} E_{p+j,j} = \sum_{i=p+1}^{n} E_{i,i-p}.$$

Donc, pour $p,q\in\{0,\cdots,n-1\}^2$, en utilisant l'identité $E_{i,j}E_{l,m}=\delta_{jl}E_{i,m}$, on obtient :

$$A^{pt}(A^q) = \left(\sum_{i=p+1}^n E_{i,i-p}\right) \left(\sum_{j=q+1}^n E_{j-q,j}\right) = \sum_{i=p+1}^n \sum_{j=q+1}^n \delta_{i-p,j-q} E_{i,j}.$$

• Supposons que $p \neq q$, alors pour i = j on a $\delta_{i-p,j-q} = 0$. Donc

$$A^{p} (A^q) \in \text{Vect}\{E_{i,j}, 1 \leqslant i, j \leqslant n \text{ et } i \neq j\} \subset \ker(Tr).$$

D'où pour $p \neq q$ on a:

$$\langle A^p, A^q \rangle = \frac{1}{n} \operatorname{Tr}(A^{p\ t}(A^q)) = 0.$$

• Supposons que p = q, alors $A^{pt}(A^q) = \sum_{i=p+1}^n E_{i,i}$, donc

$$\langle A^p, A^q \rangle = \frac{1}{n} \operatorname{Tr} \left(\sum_{i=p+1}^n E_{i,i} \right) = \frac{n-p}{n}.$$

On en déduit que pour $p, q \in \{0, \dots, n-1\}$,

$$\langle A^p, A^q \rangle = \frac{n-p}{n} \, \delta_{pq}$$

- 6. D'après 3. et 5., il est clair que $\left(\sqrt{\frac{n}{n-p}}A^p\right)_{0\leqslant p\leqslant n-1}$ est une base orthonormée de \mathcal{E}_A .
- 7. D'après 2., pour tout $p \in \mathbb{N}$, B^p est une matrice orthogonale. D'où

$$\forall (p,q) \in \{1, \dots, n-1\}^2, \quad B^{pt}(B^q) = B^{p-q}.$$

Or il résulte de 1. et 5. que

$$\left\{ \begin{array}{ll} B^k \in \operatorname{Vect}\{E_{i,j}, 1 \leqslant i \neq j \leqslant n\} & \text{pour } k \in \mathbb{Z} \backslash n\mathbb{Z} \\ B^k = I_n & \text{pour } k \in n\mathbb{Z}. \end{array} \right.$$

Il vient

$$\langle B^p, B^q \rangle = \begin{cases} 0 & \text{si } p \neq q \\ 1 & \text{si } p = q. \end{cases}$$

Ainsi $(B^p)_{0 \leq p \leq n-1}$ est une base orthonormée de \mathcal{E}_B .

8. Soient $p, q \in \{0, \dots, n-1\}$. En utilisant 1., on obtient :

$$\langle A^p, B^q \rangle = \langle A^p, A^q + {}^t(A^{n-q}) \rangle = \langle A^p, A^q \rangle + \frac{1}{n} \operatorname{Tr}(A^p A^{n-q}).$$

Or $n+p-q\geqslant 1$ donc $\operatorname{Tr}(A^{n+p-q})=0$. On en déduit $\langle A^p,B^q\rangle=\langle A^p,A^q\rangle$.

9. • Pour tout $q \in \{0, \dots, n-1\}$, d'après 8., on a :

$$\langle A^q, B^p - A^p \rangle = \langle A^q, B^p \rangle - \langle A^q, A^p \rangle = 0.$$

Donc par linéarité $B^p - A^p \in \left(\operatorname{Vect}\{I_n, A, \cdots, A^{n-1}\} \right)^{\perp} = \mathcal{E}_A^{\perp}$.

• Soit $C \in \mathcal{E}_A$. Remarquons que pour tout $q \in \{0, \cdots, n-1\}$, on a :

$$\langle A^q, B^p - C \rangle = \langle A^q, B^p \rangle - \langle A^q, C \rangle = \langle A^q, A^p \rangle - \langle A^q, C \rangle.$$

 $\left(\sqrt{\frac{n}{n-a}}A^q\right)_{0\leqslant q\leqslant n-1}$ étant une base orthonormée de \mathcal{E}_A , d'où

$$C = \sum_{q=0}^{n-1} \frac{n}{n-q} \langle A^q, C \rangle A^q.$$

Par conséquent,

$$B^{p} - C \in \mathcal{E}_{A}^{\perp} \iff \langle A^{q}, B^{p} - C \rangle = 0, \quad \forall q \in \{0, \dots, n-1\} \\ \iff \langle A^{q}, C \rangle = \langle A^{q}, A^{p} \rangle, \quad \forall q \in \{0, \dots, n-1\}$$

D'où

$$C = \sum_{q=0}^{n-1} \frac{n}{n-q} \langle A^q, C \rangle A^q = \sum_{q=0}^{n-1} \frac{n}{n-q} \langle A^q, A^p \rangle A^q = A^p.$$

On en déduit que A^p est l'unique élément C de \mathcal{E}_A tel que $B^p-C\in\mathcal{E}_A^\perp$.

[©] Fin de la correction.