

TIPOS ESPECIALES DE MATRICES, FACTORACIONES LL^T Y LDL^T

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 09) 01.AGOSTO.2023

Definición

Una matriz $A \in \mathbb{R}^{n \times n}$ es **diagonalmente dominante** cuando cada entrada de la diagonal principal (en módulo) es mayor o igual que la suma del resto de entradas en la misma fila

$$|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|, \qquad \textit{para todo } i = 1, 2, \dots, n.$$

En caso las desigualdes sean todas estrictas, decimos que A es **estrictamente diagonal dominante**.

Ejemplo:

$$A = \begin{pmatrix} 4 & 2 & 0 \\ 3 & 6 & -1 \\ 0 & 3 & -5 \end{pmatrix}, \qquad B = \begin{pmatrix} 5 & 6 & -2 \\ 3 & -1 & 0 \\ -4 & 2 & 1 \end{pmatrix}$$

A es diagonalmente dominante, pero B no. De hecho, A es estrictamente diagonal dominante.

Teorema

Una matriz estrictamente diagonal dominante A es no singular. En este caso, la eliminación gaussiana se puede realizar en cualquier sistema lineal de la forma $A\mathbf{x} = \mathbf{b}$ sin intercambios de fila o columna, y los cálculos serán estables respecto al crecimiento del error de redondeo.

<u>Prueba</u>: Considere el sistema $A\mathbf{x} = \mathbf{o}$ y suponga que existe una solución no trivial $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ para este sistema. Sea k un índice para el que $0 < |x_k| = \max_{1 \le j \le n} |x_j|$. Como $\sum_{j=1}^n a_{ij}x_j = \mathbf{o}$, para cada $i = 1, 2, \dots, n$, entonces cuando i = k se tiene $a_{kk}x_k = -\sum_{j \ne k} a_{kj}x_j$. De la desigualdad triangular

$$|a_{kk}| |x_k| = \Big| \sum_{j \neq k} a_{kj} x_j \Big| \leq \sum_{j \neq k} |a_{kj}| |x_j| \qquad \Rightarrow \qquad |a_{kk}| \leq \sum_{j \neq k} |a_{kj}| \frac{|x_j|}{|x_k|} \leq \sum_{j \neq k} |a_{kj}|.$$

Esta desigualdad contradice la dominancia diagonal estricta de A. Por consiguiente, la única solución para $A\mathbf{x} = \mathbf{0}$ es $\mathbf{x} = \mathbf{0}$. Esto muestra que A es no singular.

Mostramos ahora que las matrices $U_1, U_2, \dots U_n$ generadas por el proceso de eliminación gaussiana son estrictamente diagonal dominantes. Eso garantiza que en cada etapa el elemento pivote es distinto a cero.

Como $A = U_1$ es estrictamente diagonal dominante, $a_{11} \neq 0$ y U_2 se puede calcular.

Además, para $i = 2, 3, n \ y \ j = 2, 3, \ldots, n$

$$u_{ij}^{(2)} = u_{ij}^{(1)} - \frac{u_{i1}^{(1)}}{u_{ii}^{(2)}} u_{1j}^{(2)}$$

Primero, $u_{i_1}^{(2)} = o$. La desigualdad triangular implica que

$$\sum_{j=2, j\neq i}^{n} |u_{ij}^{(2)}| = \sum_{j=2, j\neq i}^{n} \left|u_{ij}^{(1)} - \frac{u_{i1}^{(1)}}{u_{ii}^{(2)}} u_{1j}^{(2)}\right| \leq \sum_{j=2, j\neq i}^{n} |u_{ij}^{(1)}| + \sum_{j=2, j\neq i}^{n} \frac{|u_{i1}^{(1)}|}{|u_{ij}^{(2)}|} |u_{1j}^{(2)}|$$

Pero, siendo A es estrictamente diagonalmente dominante, sabemos

$$\sum_{j=2,\,j\neq i}^n |u_{ij}^{(1)}| \leq |u_{ii}^{(1)}| - |u_{i1}^{(1)}| \qquad y \qquad \sum_{j=2,\,j\neq i}^n |u_{1j}^{(1)}| \leq |u_{11}^{(1)}| - |u_{1i}^{(1)}|,$$

por lo que

$$\begin{split} \sum_{j=2, j \neq i}^{n} |u_{ij}^{(2)}| &< |u_{ii}^{(1)}| - |u_{i1}^{(1)}| + \frac{|u_{i1}^{(1)}|}{|u_{11}^{(2)}|} (|u_{11}^{(1)}| - |u_{1i}^{(1)}|) = |u_{11}^{(1)}| + \frac{|u_{i1}^{(1)}| |u_{1i}^{(1)}|}{|u_{11}^{(1)}|} \\ &< \left| |u_{11}^{(1)}| + \frac{|u_{i1}^{(1)}| |u_{1i}^{(1)}|}{|u_{11}^{(1)}|} \right| = |u_{ii}^{(2)}| \end{split}$$

Esto establece la diagonal dominancia para las filas 2, 3, ..., n. La primera fila de U_2 y de $U_1 = A$ son la misma, por lo que U_2 es estrictamente diagonal dominante.

Este proceso continúa de manera inductiva hasta que se obtiene U_n triangular superior y estrictamente diagonal dominante. Esto implica que todos los elementos diagonales son no-nulos, y se puede realizar la eliminación gaussiana sin intercambios de fila. La demostración de estabilidad para este procedimiento se puede encontrar en el libro de Wendroff, Theoretical Numerical Analysis.

Definición

Una matriz simétrica $A \in \mathbb{R}^{n \times n}$ es **positiva definida** ($A \succ o$), si $\mathbf{x}^T A \mathbf{x} > o$, $\forall \mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{o}$.

Observaciones:

- No todos los autores requieren la simetría. En el libro de Golub y van Loan, para que A sea positiva definida se requiere únicamente que $\mathbf{x}^T A \mathbf{x} > \mathbf{0}$, para todo $\mathbf{x} \neq \mathbf{0}$.
- Existen definiciones similares:
 - A es positiva semi-definida ($A \succeq o$) si $\mathbf{x}^T A \mathbf{x} \geq o$, $\forall \mathbf{x} \neq \mathbf{o}$,
 - A es negativa definida (A \prec o) si $\mathbf{x}^T A \mathbf{x} < \mathbf{o}$, $\forall \mathbf{x} \neq \mathbf{o}$,
 - A es negativa semi-definida (A \leq o) si $\mathbf{x}^T A \mathbf{x} \leq$ o, $\forall \mathbf{x} \neq$ o,
 - A es **no definida** si no cumple ninguna de las anteriores.
- El signo de $\mathbf{x}^T A \mathbf{x}$ clasifica las formas cuadráticas (recordar $\mathbf{x}^T A \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$).

Ejemplo: La matriz
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 es definida positiva.

Tomemos $\mathbf{x} = (x_1, x_2, x_3)^T \in \mathbb{R}^3$, $\mathbf{x} \neq \mathbf{0}$. Entonces

$$\mathbf{x}^{T} A \mathbf{x} = 2X_{1}^{2} - X_{1}X_{2} - X_{2}X_{1} + 2X_{2}^{2} - X_{2}X_{3} - X_{3}X_{2} + 2X_{3}^{2}$$

$$= X_{1}^{2} + (X_{1}^{2} - 2X_{1}X_{2} + X_{2}^{2}) + (X_{2}^{2} - 2X_{2}X_{3} + X_{3}^{2}) + X_{3}^{2}$$

$$= X_{1}^{2} + (X_{1} - X_{2})^{2} + (X_{2} - X_{3})^{2} + X_{3}^{2} \ge 0.$$

Mas aún, esta suma es cero, únicamente si todos los términos se anulan, y esto se cumple si, y sólo si, $x_1 = x_2 = x_3 = o$.

Entonces $\mathbf{x}^T A \mathbf{x} > \mathbf{0}$. Esto muestra que A es definida positiva.

Teorema

Una matriz simétrica A es definida positiva \Leftrightarrow todos sus autovalores son positivos.

<u>Prueba</u>: (\Rightarrow). Supongamos que $A \succ$ o, y sea λ un autovalor de A. Observe primero que, como A es simétrica, $\lambda \in \mathbb{R}$. Por otro lado, existe $\mathbf{x} \neq \mathbf{0}$ autovector asociado a λ $\Rightarrow A\mathbf{x} = \lambda \mathbf{x}$. Entonces $\mathbf{0} < \mathbf{x}^T A \mathbf{x} = \mathbf{x}^T (\lambda \mathbf{x}) = \lambda \mathbf{x}^T \mathbf{x} = \lambda ||\mathbf{x}||_2^2$. Como $||\mathbf{x}||_2^2 > \mathbf{0}$, entonces $\lambda > \mathbf{0}$.

(\Leftarrow) Suponga ahora que $\lambda_i > 0$ para todo autovalor de A. Por el Teorema Espectral, A posee una base ortonormal de autovectores $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$, con autovalores asociados $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n > 0$. Sea $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{0}$. Escribimos $\mathbf{x} = \sum_{i=1}^n c_i \mathbf{q}_i$, con al menos una $c_i \neq 0$. Entonces

Entonces
$$\mathbf{x}^{T}A\mathbf{x} = \left(\sum_{i=1}^{n} c_{i}\mathbf{q}_{i}\right)^{T}A\left(\sum_{i=1}^{n} c_{i}\mathbf{q}_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j} \mathbf{q}_{i}^{T}A\mathbf{q}_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j} \mathbf{q}_{i}^{T}(\lambda_{j}\mathbf{q}_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j} \lambda_{j}(\mathbf{q}_{i}^{T}\mathbf{q}_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}\lambda_{j} \delta_{ij} = \sum_{i=1}^{n} c_{i}^{2}\lambda_{i} > 0. \square$$

Propiedades

Si $A \in \mathbb{R}^{n \times n}$ es una matriz simétrica y positiva definida, entonces

- a) A es no singular,
- b) $\max_{1 \le j,k \le n} |a_{jk}| \le \max_{1 \le i \le n} |a_{ii}|$,
- c) $a_{ii} > 0$, para todo i = 1, 2, ..., n,
- d) $(a_{ii})^2 < a_{ii}a_{ii}$, para cada $i \neq j$.
- e) (Criterio de Sylvester) Todos los determinantes principales menores de $M_i = A[1:i,1:i]$ y $N_i = A[i:n,i:n]$, para i = 1,2,...,n son positivos.

<u>Prueba</u>: (a) Como todos los autovalores λ_i de A son positivos, entonces rank A = n y Ker $A = \{0\}$. Esto muestra que A es no singular.

(b) Para cada $i=1,2,\ldots,n$, tome $\mathbf{x}=\mathbf{e}_i$. Entonces o $<\mathbf{x}^TA\mathbf{x}=\sum_i\sum_ia_{ij}x_ix_j=a_{ii}$.

(c) Para cada $k \neq j$, definamos $\mathbf{x} \in \mathbb{R}^n$ por $\mathbf{x} = \mathbf{e}_j - \mathbf{e}_k = (0, \dots, 0, 1, 0, \dots, 0, -1, 0, \dots, 0)$, $\mathbf{y} = \mathbf{e}_j + \mathbf{e}_k = (0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0)$. Resulta

o
$$< \mathbf{x}^{T} A \mathbf{x} = a_{jj} - a_{jk} - a_{kj} + a_{kk} = a_{jj} - 2_{jk} + a_{kk},$$

o $< \mathbf{y}^{T} A \mathbf{y} = a_{jj} + a_{jk} + a_{kj} + a_{kk} = a_{jj} + 2_{jk} + a_{kk}. < \max_{1 < i < n} |a_{ji}|$

Entonces $2a_{jk} < a_{jj} + a_{kk}$ y $-2a_{jk} < a_{jj} + a_{kk}$. Luego

$$|a_{jk}| < \frac{a_{jj} + a_{kk}}{2} \le \max_{1 \le i \le n} |a_{ii}|, \qquad \Rightarrow \qquad \max_{1 \le k, j \le n} |a_{jk}| < \max_{1 \le i \le n} |a_{ii}|.$$

- (d) Para $i \neq j$, definimos $\mathbf{x} = \alpha \mathbf{e}_i + \mathbf{e}_j = (0, \dots, 0, \alpha, 0, \dots, 0, 1, 0, \dots, 0)$, con $\alpha \in \mathbb{R}$ arbitrario. Entonces $0 < \mathbf{x}^T A \mathbf{x} = a_{ii} \alpha^2 + 2 a_{ij} \alpha + a_{jj}$. Este polinomio cuadrático en α es siempre positivo, de modo que no posee raíces reales. Entonces su discriminante es negativo. Así, $4a_{ii}^2 4a_{ii}a_{jj} < 0 \Rightarrow a_{ij}^2 < a_{ii}a_{jj}$, para todo $i \neq j$.
- (e) Pendiente. Se deduce de la descomposición de Cholesky $A=R^TR$. \Box

Teorema

Una matriz simétrica $A \in \mathbb{R}^{n \times n}$ es positiva definida si, y sólo si, la eliminación gaussiana se puede realizar sin intercambios de fila, y todos los elementos pivote son positivos. Además, en este caso, los cálculos son estables respecto al crecimiento del error de redondeo.

<u>Prueba</u>: Ver libro de WENDROFF, Theoretical Numerical Analysis.

Eliminación Gaussiana Simétrica

Sea $A \in \mathbb{R}^{n \times n}$ positiva definida. Nos interesa descomponer A en factores triangulares LU. Si aplicamos un solo paso de la eliminación gaussiana a la matriz A, con un 1 en la primera ntrada ($a_{11} = 1$) obtenemos

$$\begin{pmatrix} \mathbf{1} & \mathbf{w}^T \\ \mathbf{w} & K \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{w} & I \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{w}^T \\ \mathbf{0} & K - \mathbf{w} \mathbf{w}^T \end{pmatrix}.$$

Ahora introducimos ceros en la segunda columna. Sin embargo, para mantener la simetría, se hace una variante de la descomposición *LU*, llamada la **factoración de Cholesky**, que primero introduce ceros en la primera fila para coincidir con los ceros recién introducidos en la primera columna de *U*. Podemos hacer esto por una operación triangular superior derecha que resta múltiplos de la primera columna de los siguientes:

$$\begin{pmatrix} \mathbf{1} & \mathbf{w}^{\mathsf{T}} \\ \mathbf{o} & K - \mathbf{w} \mathbf{w}^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{o} \\ \mathbf{o} & K - \mathbf{w} \mathbf{w}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{w}^{\mathsf{T}} \\ \mathbf{o} & I \end{pmatrix}.$$

Esta operación es la transpuesta de la triangular inferior arriba.

Tenemos

$$A = \begin{pmatrix} \mathbf{1} & \mathbf{w}^T \\ \mathbf{w} & K \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{w} & I \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & K - \mathbf{w} \mathbf{w}^T \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{w}^T \\ \mathbf{0} & I \end{pmatrix}.$$

La idea de la factorización de Cholesky es continuar este proceso, haciendo cero una columna y una fila de A simétricamente, hasta que se reduce a la identidad.

Para que la reducción triangular simétrica funcione en general, necesitamos una factoración que funcione para cualquier todo $a_{11} > 0$, no sólo el caso $a_{11} = 1$. La generalización se logra ajustando algunos de los elementos de la fila 1, por un factor de $\alpha = \sqrt{a_{11}}$:

$$A = \begin{pmatrix} a_{11} & \mathbf{w}^T \\ \mathbf{w} & K \end{pmatrix} = \begin{pmatrix} \alpha & \mathbf{0} \\ \frac{\mathbf{w}}{\alpha} & I \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & K - \frac{\mathbf{w}\mathbf{w}^T}{a_{11}} \end{pmatrix} \begin{pmatrix} \alpha & \frac{\mathbf{w}^T}{\alpha} \\ \mathbf{0} & I \end{pmatrix} = R_1^T A_1 R_1.$$

Si la entrada superior izquierda de la submatriz $K-\frac{\mathbf{w}\mathbf{w}^T}{a_{11}}$ es positiva, el proceso puede repetirse de la mismo forma, para factorizarla. Así, $A_1=R_2^TA_2R_2$ y $A=R_1^TR_2^TA_2R_2R_1$. Continuando este proceso, obtenemos eventualmente

$$A = \underbrace{R_1^T R_2^T \cdots R_n^T}_{R^T} I \underbrace{R_n \cdots R_2 R_1}_{R} = R^T R,$$

donde R es triangular superior, y $r_{jj} > o$, $\forall j$. Esta factoración se conoce como la **descomposición** LL^T o **factoración de** CHOLESKY.

La descripción anterior deja una pregunta. ¿Cómo sabemos que la entrada superior izquierda de la submatriz $K-\frac{\mathbf{w}\mathbf{w}^T}{a_{11}}$ es positiva? La respuesta es que debe ser positiva porque $K-\frac{\mathbf{w}\mathbf{w}^T}{a_{11}}$ es positiva definida, ya que es el $(n-1)\times (n-1)$ submatriz principal inferior derecha de la matriz definida positiva $R_1^{-T}AR_1^{-1}$. Por inducción, el mismo argumento muestra que todas las submatrices subsiguientes son definidas positivas, y por lo tanto el proceso no concluye con éxito.

Teorema

 $A \in \mathbb{R}^{n \times n}$ es simétrica y positiva definida \Leftrightarrow admite una factoración LL^T . \square

Algoritmo: (Factoración de Cholesky ó LL^T).

Inputs: $A \in \mathbb{R}^{n \times n}$ simétrica y positiva definida, Outputs: $R \in \mathbb{R}^{n \times m}$ tal que $A = R^T R$.

Initialize R = A.

for k = 1 to k

El número de operaciones aritméticas es $O(\frac{1}{3}n^3)$.

Teorema

Sea $A \in \mathbb{R}^{n \times n}$, simétrica y positiva definida. Si la descomposición de Cholesky de A se calcula mediante el algoritmo anterior en un computador que satisface los axiomas de la aritmética de punto flotante, , entonces ara todo ε_{maq} suficientemente pequeño, este proceso está garantizado de ejecutarse hasta el final (es decir, no surgirán entradas pivo cero o negativas r_{kk}), generando una matriz \widetilde{R} que satisface

$$\widetilde{R}^T\widetilde{R} = A + \delta A, \qquad \frac{||\delta A||}{||A||} \leq O(\varepsilon_{maq}),$$

para alguna $\delta A \in \mathbb{R}^{n \times n}$.

Teorema

Sea $A \in \mathbb{R}^{n \times n}$, simétrica y positiva definida. La solución del sistema $A\mathbf{x} = \mathbf{b}$ a través de la factoración Cholesky es estable hacia atrás, lo que genera una solución calculada que satisface $(A + \delta A)\widetilde{\mathbf{x}} = \mathbf{b}, \qquad \frac{||\delta A||}{||\mathbf{A}||} = O(\varepsilon_{mag}),$

para alguna $\delta A \in \mathbb{R}^{n \times n}$.

Descomposición *LDL*^T

Una variante de la descomposición de Cholesky es la **descomposición** LDL^T . Esta tiene la particularidad que evita calcular las raíces cuadradas $\sqrt{r_{kk}}$ necesarias en el algoritmo de Cholesky.

Para ello, en el primer paso, se factora la matriz como un producto de la forma

$$A = \begin{pmatrix} a_{11} & \mathbf{w}^T \\ \mathbf{w} & K \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \frac{\mathbf{w}}{a_{11}} & I \end{pmatrix} \begin{pmatrix} a_{11} & \mathbf{0} \\ \mathbf{0} & K - \frac{\mathbf{w}\mathbf{w}^T}{a_{11}} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \frac{\mathbf{w}^T}{a_{11}} \\ \mathbf{0} & I \end{pmatrix} = L_1 D_1 L_1^T,$$

donde L_1 es triangular inferior con 1s en la diagonal, y D_1 ahora tiene en si primera entrada el valor a_{11} en lugar de 1. Continuando este proceso, obtenemos eventualmente vspace-0.2cm

$$A = \underbrace{L_1 L_2 \cdots L_n}_{L} D \underbrace{L_n^T \cdots L_2^T L_1^T}_{I^T} = LDL^T,$$

donde L es triangular inferior con 1s en la diagona, D es diagonal, y $d_{jj} > 0$, $\forall j$. Esta factoración se conoce como la **descomposición** LDL^{T} .

Descomposición *LDL*^T

```
Algoritmo: (Factoración LDL^{T}). 
Inputs: A \in \mathbb{R}^{n \times n} simétrica y positiva definida, 
Outputs: R, D \in \mathbb{R}^{n \times m}, tales que A = R^{T}DR. 
Initialize R = A, D = I. 
for k = 1 to n: D_{kk} = R_{kk}, for j = k + 1 to n: R_{j,k:n} = R_{j,k:n} - (R_{kj}/D_{kk}) R_{k,k:n}, R_{k,k:n} = R_{k,k:n}/D_{kk}.
```

Teorema

 $A \in \mathbb{R}^{n \times n}$ es simétrica y positiva definida \Leftrightarrow admite una factoración LDL $^{\mathsf{T}}$. \Box

Relaciones entre Descomposiciones

Tenemos varias relaciones entre las factoraciones discutidas. Suponemos aquí que $A \in \mathbb{R}^{n \times n}$ es simétrica y positiva definida.

- Si $A = LDL^T$, entonces $R = D^{1/2}L^T$, resulta en una factoración de Cholesky para A: $R^TR = (LD^{1/2})(D^{1/2}L^T) = LDL^T = A$.
- Si $A = LDL^T$, entonces $U = DL^T$ es triangular superior, y LU resulta en una factoración de Doolitle para A:

$$LU = L(DL^T) = LDL^T = A.$$

 Si A = LDL^T, entonces Z = LD es triangular inferior, y ZL^T resulta en una factoración de Crout para A:

$$ZL^{\mathsf{T}} = (LD)L^{\mathsf{T}} = LDL^{\mathsf{T}} = \mathsf{A}.$$

• Si $A = R^T R$, entonces haciendo la factoración LU de R^T , obtenemos $R^T = LU$, con L triangular inferior con 1's en la diagonal, y U es diagonal. Luego, $D = UU^T$ es digaonal y resulta en una factoración LDL^T para A: $LDL^T = L(UU^T)L^T = (LU)(U^TL^T) = R^T R = A$.

Aplicaciones

La factoración de Cholesky es útil en muchas aplicaciones:

- mínimos cuadrados
- optimización no-lineal (método de NEWTON, DFP, BGFS)
- simulación Monte Carlo
- generación de matrices de covarianza
- filtros de KALMAN

Implementaciones computacionales:

- LAPACK (Linear Algebra Package, 1970's), Fortran 77.
- LINPACK (Linear Package, 1976, Argone Labs.) Fortran, C.
- BLAS (Basic Linear Algebra Subprograms).

