Principal component analysis I: one-dimensional projection

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- 1 The variance of a projection
- 2 Finding the best single direction

The best direction

Suppose we need to map our data $x \in \mathbb{R}^d$ into just **one** dimension:

 $x \mapsto u \cdot x$ for some unit direction $u \in \mathbb{R}^d$

What is the direction u of maximum variance?

Useful fact 1:

- Let Σ be the $d \times d$ covariance matrix of X.
- The variance of X in direction u (the variance of $X \cdot u$) is:

$$u^T \Sigma u$$
.

Best direction: example

Here covariance matrix
$$\Sigma \ = \ \begin{pmatrix} 1 & 0.85 \\ 0.85 & 1 \end{pmatrix}$$

The best direction

Suppose we need to map our data $x \in \mathbb{R}^d$ into just **one** dimension:

 $x \mapsto u \cdot x$ for some unit direction $u \in \mathbb{R}^d$

What is the direction u of maximum variance?

Useful fact 1:

- Let Σ be the $d \times d$ covariance matrix of X.
- The variance of X in direction u is given by $u^T \Sigma u$.

Useful fact 2:

- $u^T \Sigma u$ is maximized by setting u to the first **eigenvector** of Σ .
- The maximum value is the corresponding eigenvalue.

Best direction: example

Direction: **first eigenvector** of the 2×2 covariance matrix of the data.

Projection onto this direction: the top **principal component** of the data