食品機能学 今後の進め方

第9回 食品と医薬品の相互作用

第10回 機能性食品の制度(関連法規)

第11回 海外の健康食品(健康チェック)

第12回 食事評価・栄養計算

第13回 機能性表示食品データベース

第14回 健康食品管理士模擬試験(2回分)

第15回 補足講義·期末試験(manaba)

第13.5回補 機能性食品成分(オンデマント)

食品機能学 今後の進め方

第14回 健康食品管理士模擬試験(2回分)

http://www.jafsra.or.jp/approval/index5.html

- ① 2020年 秋期 認定試験問題
- ② 2021年 春期 認定試験問題

食品機能学 第9回 食品と医薬品の相互作用

食品•医薬品相互作用

医薬品の働きが(医薬品でない)飲食品の影響を受ける

- (1) **くすりの効果が減弱される → 病状が好転しない**(吸収の阻害、過剰な分解) (本来期待されるくすりの効果が得られない)
- (2) **くすりの効果が増強される** → 副作用も増強される (吸収の促進、分解の阻害、 (身体に負担をかけ死に至ることもある。) 類似成分の同時摂取)
- (3) 複合変化が発生する → 予期せぬ作用が起こる

(化学変化、別の有害物質の分解の阻害) (想定しなかった影響が現れる)

p.132

p.133

血中濃度と有効性・副作用の関係

食品•医薬品相互作用

医薬品の働きが(医薬品でない)飲食品の影響を受ける

- •薬物動態における相互作用 Pharmacokinetics (PK)
- ·薬理学(薬力学)的相互作用 Pharmacodynamics (PD)

食品医薬品相互作用

p.135

薬が効能を発揮するために

※血中濃度(薬物動態)と影響する因子

薬物動態における相互作用

GER: Gastric Emptying Ratio

消化管管腔内

胃内滞留時間 (胃酸)

脂溶性 キレート

消化管上皮細胞での代謝

CYP3A4 (GFJ/SJW)

P糖たんぱく質 (GFJ/SJW)

OATP(Organic Acid Toransporter) 有機アニオントランスポーター

肝臓での代謝

初回通過効果 (肝血流量) CYP2E1 (アルコール)

CYP2E1 CYP1A2

OTTIME

分布-排泄過程

血漿タンパク質

ペク質 (栄養条件・結合競合)

薬理学的相互作用

作用の拮抗 薬物化学変化 栄養素化学変化

薬物吸収への胃内滞留時間の影響

<空腹による短縮>

薬物吸収への食品成分物理的の影響

カロテノイドの血漿中濃度に及ぼす牛乳の影響

野菜ジュースと牛乳との組合せ 飲用後の血漿中カロテノイド濃度(με/ml)

	ジュースのみ	牛乳同時摂取
トマトジュース	0. 18	0. 30
キャロットジュース	0. 15	0. 52

薬物吸収への食品成分物理的の影響

p.137 差し替え

表5 微量金属(ミネラル)で吸収が低下する可能性のある医薬品			
カルシウム	医姜品分别	医聚晶	
マグネシウム	ピスポスポネート薬	エチドロン酸ナトリウム	
亚维	(骨粗湿素)	アレンドロン酸ナトリウム	
アルミニウム	テトラサイクリン系	テトラサイクリン、ミノサイクリン	
	抗生物質	7 17 7 1 2 9 2 , 3 2 7 1 2 9 2	
	ニューキノロン系	シブロキボシン、オフロキサシン、ノルフロキサシン	
	台成抗菌素	7704177, 1704177, 70704177	
	抗リウマチ炎	ベニシテミン	
50:	モフェム系抗化物質	セプジニル	
370	甲状胞ホルモン	レポチロキシン、リチオロニン	
	市等例	クンニン酸アルブミン	

エストラムスチンの血漿中濃度に及ぼす牛乳の影響 (前立腺抗がん剤)

Gunnarson, P.O. et al., Eur. J. Clin. Pharmacol. 38(1990) 189.

※カルシウムとマグネシウム量を炭酸カルシウム量に換算した値

薬物吸収への胃内滞留時間の影響

<食事による延長> p.137-8

p.139 表6

チトクロームP-450

CYPの特徴

- ① 肝のミクロソームに局在(他の臓器は1/5~1/30)
- ② 約50 kDa
- ③ ヘムタンパク質 (プロトヘム構造) (COとCN-と反応)
- ④ 低い基質特異性
- ⑤ 電子伝達系と共役した一原子酸素添加反応

GFJに影響される薬剤 p.136 表 4

グレープフルーツジュースで阻害される代表的な医薬品

薬効分類	一般名	商品名
J.	ニフェジピン	アダラート
	ニカルジピン	ペルジピン
	マニラジピン	カルスロット
	ベニジピン	' コニール
	バルニジピン	ヒポカ
カルシウム拮抗薬	ニルバジピン	ニバジール
降圧薬)	ニソルジピン	バイミカード
	エホニジピン	ランデル
	フェロジピン	スプレンジール
	シルニジピン	アテレック
	ベラパミル	ワラソン
抗血小板薬	シロスタゾール	プレンタール
	シクロスポリン	サンディミュン
免疫抑制薬	タクロリムス	プログラフ

GFJ中に含まれる阻害物質

ベルガモチン

- ·ザボン(pomelo)やハッサクにも含まれる 果実にもあり
- · CYP3A4 を阻害
- ・作用が持続(3~7日)することもあるので注意

CYPファミリー p.140 表7

薬物の代謝に関わる主なCYP

酵素名	代謝される代表的な医薬品	酵素を阻害する食品	酵素を誘導する食品
CYP1A2	テオフィリン カフェイン		焼肉のお焦げ (喫煙)
CYP2C9	アセトアミノフェン		
CYP2C19	オメプラゾール		
CYP2D6	カプトプリル		
CYP2E1	エタノール		飲酒 (アルコール)
CYP3A4	シクロスポリン タクロリムス ニフェジピン	グレープフルーツジュース	セントジョーンズワート (セイヨウオトギリソウ)

第Ⅱ相解毒酵素 p.141 表8

抱合化反応 (第11相反応) の種類と関与する転移酵素

抱合化反応の種類	転移酵素	
グルクロン酸抱合	UDP-グルクロニルトランスフェラーゼ	
硫酸抱合	スルホトランスフェラーゼ	
グリシン抱合	グリシンN-アシルトランスフェラーゼ	
グルタチオン抱合	グルタチオン-S-トランスフェラーゼ	
アセチル抱合	N-アセチルトランスフェラーゼ	
メチル抱合	メチルトランスフェラーゼ	

小腸における代謝酵素とP糖タンパク質の誘導 (SJWなど)

SJWによる肝臓の代謝酵素CYP3A4の誘導

CYP1A2や2C9の誘導も生じる

SJWに影響される薬剤

セントジョーンズワートによる代謝誘導で薬効が減弱する代表的な医薬品

薬効分類	一般名	
気管支拡張薬	テオフィリン、アミノフィリン、コリンテオフィリン	
免疫抑制薬	シクロスポリン, タクロリムス	
抗HIV薬	リトナビル, サキナビル, インジナビル	
抗てんかん薬	フェニトイン、カルバマゼピン、フェノバルビタール	
抗不整脈薬	ジソピラミド、アミオダロン、リドカイン、キニジン、プロパフェノン	
狭心症薬	ジギトキシン, ジゴキシン, メチルジゴキシン	
抗凝固薬	ワルファリン	
経口避妊薬	エチニルエストラジオール・ノルエチステロン, エチニルエストラジオ ール・デソゲストレル	

アセトアミノフェンの医療用医薬品の添付文書には・・・

<慎重投与>

アルコール多量常飲者(肝障害があらわれやすくなる。)

<相互作用>

アルコール(飲酒)

アルコール多量常飲者がアセトアミノフェンを服用したところ 肝不全を起こしたとの報告がある。

機序:アルコール常飲によるCYP2E1の誘導により、 アセトアミノフェンから肝毒性を持つN -アセチル-p -ベンゾ キノンイミンへの代謝が促進される。

喫煙者と非喫煙者のテオフィリンAUCの比較 (気管支喘息治療薬)

喫煙は肝代謝酵素CYP1A1、CYP1A2を誘導して、生物学的利用率(F)を減少させる

薬物動態におよぼす栄養状態の影響

アルブミン

α,-酸性糖タンパク質

酸性の薬物

標的細胞

p.142-3 排泄過程で生じる相互作用

1)胆汁排泄

肝実質細胞取り込み→細胞内代謝→毛細胆管排泄 トランスポーター関与(P-糖たんぱく質など)

2) 尿中排泄

糸球体濾過→尿細管再吸収→尿細管分泌 尿細管再吸収: 分子型(塩基性尿)>イオン型(酸性尿) トランスポーター関与(P-糖たんぱく質など)

3)尿酸排泄

ビダジKを含有する主な食品

食品名	VK ₁ 含有量 (μ g/100g)	食品名	VK ₁ 含有量 (μg/100g)
クロレラ	3,600	クレソン	390
納豆	345*	ほうれん草	260
ケール	780	ニラ	250
(青汁)			
パセリ	730	ブロッコリー	230
シソ	650	サニーレタス	210

* 腸内で納豆菌がVKを産生

p.146

カフェイン

覚醒作用, 鎮痛作用, 利尿作用

CYP1A2で代謝される

CYP1A2阻害薬で作用増強 シメチジン, シプロフロキサン, エノキサンなど

テオフィリンの代謝を阻害し作用増強

p.147-8

その他

高塩分含有食品

高糖分含有食品

ニンニク→サキナビル効果減弱 抗HIV薬

イチョウ葉, DHA, ノコギリヤシ, ギムネマなど

レボドパ と バナナジュース

(パーキンソン病治療薬)

栄養素の化学変化

ヒスタミン中毒

マグロ、サンマ、イワシなどで、ヒスチジンから産生 イソニアジドなどヒスタミナーゼ、MAO阻害で中毒発生 (抗結核薬)

チラミン含有食品

チーズ、赤ワイン、チョコレートに含まれる イソニアジドなどMAO阻害で高血圧発症

イソニアジド と ビタミンB6

(抗結核薬)

(ピリドキサール)

ピリドキサールーヒドラゾン(シッフ塩基)

※ ビタミンB6の消失 → 欠乏症(末梢神経障害)の発生

食品の安全性

p.259 表

p.262-264 原因食品

患者数(人)

図2 食中毒患者数年次変化 厚生労働省食中毒統計(1)を基に作品

食品有害物質汚染(公害)

p.268-269