Лабораторная работа № 3. Апериодические сигналы.

3530901/80201, Шелаев Н. Р.

30 мая 2021 г.

Оглавление

1	Лин	нейный чирп	4
2	Спе	ектрограмма	6
3	Уте	ечки	8
4	Упр	ражнения	10
	4.1	Задание 1	10
	4.2	Задание 2	11
	4.3	Задание 3	
	4.4	Задание 4	
	4.5	Задание 5	14
	4.6	Задание 6	
5	Вы	ІВОЛ	20

Список иллюстраций

1.1	Начало сигнала
1.2	Конец сигнала
1.3	Спектр чирпа
2.1	Спектрограмма чирпа
3.1	Полученный сигнал
3.2	Сегмент сигнала с утечкой
3.3	Исправление утечки
4.1	Исправление утечки различными функциями
4.2	Спектрограмма полученного сигнала
4.3	Спектр пилообразного чирпа
4.4	Спектрограмма сигнала глиссандо
4.5	Спектрограмма полученного сигнала
4.6	Спектрограмма 5 гласных звуков
4.7	Сегмент со звуком А
4.8	Сегмент со звуком Э
4.9	Сегмент со звуком И
4.10	Сегмент со звуком О
	Сегмент со звуком У

Листинги

1.1	Линейный чирп	4
1.2	Строим спектр чирпа	5
2.1	Функция для построения спектрограммы	6
3.1	Спектр сигнала	8
3.2	Исправление сигнала функцией Хэмминга	9
4.1	Борьба с утечкой	0
4.2	Создание нового класса	1
4.3	Пилообразный чирп	2
4.4	Получение сигнала	3
4.5	Новый класс для изменения частоты сигнала	4
4.6	Получение требуемого сигнала	4
4.7	Получение сигнала	5
4.8	Сегменты для каждого звука	6

Линейный чирп

Строим линейный чирп.

```
from thinkdsp import Chirp

signal = Chirp(start = 220, end = 880)

wave = signal.make_wave(duration = 2)

wave.segment(start = 0, duration = 0.01).plot()

wave.segment(start = 0.9, duration = 0.01).plot()
```

Листинг 1.1: Линейный чирп

Рис. 1.1: Начало сигнала

Рис. 1.2: Конец сигнала

```
signal = Chirp(start = 220, end = 440)
wave = signal.make_wave(duration = 1)
spectrum = wave.make_spectrum()
spectrum.plot(high = 700)
```

Листинг 1.2: Строим спектр чирпа

Рис. 1.3: Спектр чирпа

Слушая этот чирп, мы заметили, что высота звука сначала резко нарастает, а затем рост замедляется.

Спектрограмма

Знакомимся с одним из способов визуализации кратковременного преобразования Φ урье (КВП Φ).

Листинг 2.1: Функция для построения спектрограммы

Рис. 2.1: Спектрограмма чирпа

Разрешение по времени спектрограммы зависит от длительности сегментов, соответствующих ширине ячеек спектрограммы. Разрешение по частоте спектрограммы - это частотный интервал между элементами спектра с одинаковой высотой ячеек.

Утечки

Знакомимся с утечками сигнала и способами их убрать.

```
from thinkdsp import SinSignal

signal = SinSignal(freq = 440)
duration = signal.period * 30.25
wave = signal.make_wave(duration)
wave.plot()
spectrum = wave.make_spectrum()
spectrum.plot(high = 880)
```

Листинг 3.1: Спектр сигнала

Рис. 3.1: Полученный сигнал

Рис. 3.2: Сегмент сигнала с утечкой

```
wave.hamming()
spectrum = wave.make_spectrum()
spectrum.plot(high = 880)
```

Листинг 3.2: Исправление сигнала функцией Хэмминга

Рис. 3.3: Исправление утечки

Упражнения

4.1 Задание 1

Использование различных функций для исправления утечки сигнала.

Листинг 4.1: Борьба с утечкой

Рис. 4.1: Исправление утечки различными функциями

Все 4 функции хорошо справляются с уменьшением утечки, но фильтр Хэмминга рассеивает наименьшее количество энергии.

4.2 Задание 2

Пилообразный сигнал с линейно увеличивающейся (или уменьшающейся) частотой.

```
from thinkdsp import normalize, unbias
           class SawtoothChirp(Chirp):
               def evaluate(self, ts):
                   freqs = np.linspace(self.start, self.end, len
     (ts))
                   dts = np.diff(ts, prepend = 0)
                   dphis = self.PI2 * freqs * dts
                   phases = np.cumsum(dphis)
                   cycles = phases / self.PI2
10
                   frac, _ = np.modf(cycles)
                   ys=normalize(unbias(frac), self.amp)
12
                   return ys
13
14
           signal = SawtoothChirp(start = 220, end = 880)
15
           wave = signal.make_wave(duration=1, framerate=8000)
           wave.apodize()
           sp = wave.make_spectrogram(256).plot()
18
19
```

Листинг 4.2: Создание нового класса

Рис. 4.2: Спектрограмма полученного сигнала

4.3 Задание 3

Создание пилообразного чирпа.

```
signal = SawtoothChirp(start = 2500, end = 3000)
wave = signal.make_wave(duration=1, framerate=20000)
wave.make_spectrum().plot()
```

Листинг 4.3: Пилообразный чирп

Рис. 4.3: Спектр пилообразного чирпа

4.4 Задание 4

Изучение сигнала глиссандо

```
wave=read_wave('72475__rockwehrmann__glissup02.wav')
wave.make_audio()
wave.make_spectrogram(512).plot(high = 5000)
```

Листинг 4.4: Получение сигнала

Рис. 4.4: Спектрограмма сигнала глиссандо

4.5 Задание 5

Изменение частоты сигнала глиссандо во времени.

Листинг 4.5: Новый класс для изменения частоты сигнала

```
low = 262
high = 349
signal = TromboneGliss(high, low)
wave1 = signal.make_wave(duration = 1)
wave1.apodize()
signal = TromboneGliss(low, high)
wave2 = signal.make_wave(duration = 1)
wave2.apodize()
wave = wave1 | wave2
sp = wave.make_spectrogram(1024)
```

```
sp.plot(high = 1000)
12
```

Листинг 4.6: Получение требуемого сигнала

Рис. 4.5: Спектрограмма полученного сигнала

Полученная спектрограмма больше напоминает линейный чирп.

4.6 Задание 6

Спектрограмма гласных звуков.

```
wave = read_wave('87778__marcgascon7__vocals.wav')
wave.make_spectrogram(1024).plot(high = 1000)
```

Листинг 4.7: Получение сигнала

Рис. 4.6: Спектрограмма 5 гласных звуков

```
segment = wave.segment(start = 1, duration = 0.25)
wave.make_spectrogram(1024).plot(high = 1000)
segment = wave.segment(start = 2.2, duration = 0.25)
segment.make_spectrum().plot(high = 1000)
segment = wave.segment(start = 3.5, duration = 0.25)
segment.make_spectrum().plot(high = 1000)
segment = wave.segment(start = 5.1, duration = 0.25)
segment.make_spectrum().plot(high = 1000)
segment = wave.segment(start = 6.5, duration = 0.25)
segment.make_spectrum().plot(high = 1000)
```

Листинг 4.8: Сегменты для каждого звука

9

10

Рис. 4.7: Сегмент со звуком А

Рис. 4.8: Сегмент со звуком Э

Рис. 4.9: Сегмент со звуком И

Рис. 4.10: Сегмент со звуком О

Рис. 4.11: Сегмент со звуком ${\bf y}$

По спектрограммам и сегментам очень сложно определить гласную.

Вывод

В данной работе мы познакомились с сигналом чирпа, спектрограммами и утечками сигналов. Утечки сигналов можно уменьшить, если использовать различные виды окон. В конце увидели спектрограмму 5 разных гласных звуков.