Appl. No. 09/650,329 Amdt. dated April 23, 2004 Office Action dated February 25, 2004

## Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

## **Listing of Claims:**

## 1.-3. (Canceled)

(Currently Amended) A method for synchronizing a digital video host 4. system including a host computer; a receiver circuit and a decoder circuit coupled with the receiver circuit only through a host-system bus, the method comprising: (a) coupling the receiver circuit with the decoder circuit only through separate nodes of a bus in the host computer; (b)(a) receiving a first transport packet from a transmitter with the receiver circuit: (c)(b) capturing a first system time clock (STC) timestamp at a start of receiving the first transport packet, the first STC timestamp being captured into a latch; (d)(e) obtaining a program clock reference (PCR) timestamp from the transport packet; (e)(d) comparing the first STC timestamp to the PCR timestamp to generate a comparison result; (f)(e) adjusting an STC frequency based on the comparison result in order to maintain synchronization between the receiver circuit and the transmitter; (g)(f) capturing, with the decoder circuit, a system timestamp for an application system coupled with the decoder circuit but not with the receiver circuit; and (h)(g) adjusting the system timestamp with an offset based on a message delay time between the decoder circuit and the receiver circuit to maintain synchronization between the 20 decoder circuit and the receiver circuit. 5.-6. (Canceled)



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1

2

comprising:

7.

(Currently amended) The method according to claim 4 further

Appl. No. 09/650,329 Office Action dated February 25, 2004 Amendment dated April 23, 2004

| 3   | (a) receiving data from the decoder circuit into a first register in a bus interface              |
|-----|---------------------------------------------------------------------------------------------------|
| 4   | on the comprised by the host system bus in the host computer;                                     |
| 5   | (b) latching a second STC timestamp into a second register in the bus interface                   |
| 6   | after receiving the data from the decoder circuit; and                                            |
| 7   | (c) providing the second STC timestamp to the decoder circuit by way of the                       |
| 8   | second register.                                                                                  |
| 1   | 8. (Previously presented) The method according to claim 4 wherein the                             |
| 2   | application system comprises an audio-visual system and the decoder circuit comprises an audio-   |
| 3   | visual interface.                                                                                 |
| 1   | 9. (Previously presented) The method according to claim 4 wherein the                             |
| 2   | application system comprises a networked computer system and the decoder circuit comprises a      |
| Y.3 | computer network interface.                                                                       |
|     | 1012. (Canceled)                                                                                  |
| 1   | 13. (Currently Amended) A system for synchronizing a digital video host                           |
| 2   | system including a host computer, a receiver circuit and a decoder circuit coupled with the       |
| 3   | receiver circuit only through a host system bus, the system comprising:                           |
| 4   | (a) a bus in the host computer having the receiver circuit and the decoder circuit                |
| 5   | on separate nodes thereof;                                                                        |
| 6   | (b)(a) a parser adapted to obtain a program clock reference (PCR) timestamp                       |
| 7   | from a first transport packet, the first transport packet including the PCR timestamp;            |
| 8   | (c)(b) a first latch coupled to the parser, the first latch being adapted to capture a            |
| 9   | first system time clock (STC) timestamp near a beginning of receipt of a first transport packet   |
| 10  | from a transmitter by the receiver circuit;                                                       |
| 11  | (d)(e) a comparison device coupled to the parser and to the latch, the comparison                 |
| 12  | device being configured to compare the STC timestamp to the PCR timestamp so as to generate a     |
| 13  | comparison result;                                                                                |
| 14  | (e)(d) a first adjuster coupled to the comparison device, the first adjuster being                |
| 15  | adapted to adjust a frequency of the system time clock based on the comparison result in order to |
| 16  | maintain the synchronization between the receiver circuit and the transmitter;                    |

**PATENT** 

Appl. No. 09/650,329 Office Action dated February 25, 2004 Amendment dated April 23, 2004

| 17          | (f)(e) a second latch in the decoder circuit, the second latch being adapted to                   |
|-------------|---------------------------------------------------------------------------------------------------|
| 18          | capture a system timestamp for an application system coupled with the decoder circuit but not     |
| 19          | with the receiver circuit; and                                                                    |
| 20          | (g)(f) a second adjuster coupled to the decoder circuit, the second adjuster being                |
| 21          | adapted to adjust the system timestamp with an offset based on a message delay time between       |
| 22          | the decoder circuit and the receiver circuit to maintain synchronization between the decoder      |
| 23          | circuit and the receiver circuit.                                                                 |
|             | 14. – 15. (Canceled).                                                                             |
| 1           | 16. (Currently Amended) The system according to claim 13 further                                  |
| 2           | comprising:                                                                                       |
| 3           | (a) a first register in a bus interface comprised by the host system bus in the host              |
| 4           | computer, the first register being adapted to receive data from the decoder circuit; and          |
| <b>7.</b> 5 | (b) a second register in the bus interface, the second register being adapted to                  |
| 6           | latch a second STC timestamp after the first register receives the data from the decoder circuit, |
| 7           | wherein the second STC timestamp is provided to the decoder circuit by way of                     |
| 8           | the second register.                                                                              |
| 1           | 17. (Previously presented) The system according to claim 13 wherein the                           |
| 2           | application system comprises an audio-visual system and the decoder circuit comprises an audio-   |
| 3           | visual interface.                                                                                 |
| 1           | 18. (Previously presented) The system according to claim 13 wherein the                           |
| 2           | application system comprises a networked computer system and the decoder circuit comprises a      |
| 3           | computer network interface.                                                                       |
| 1           | 19. (Previously presented) The method according to claim 4 wherein the                            |
| 2           | offset is scaled by a nonunity value.                                                             |
| 1           | 20. (Currently amended) A method for synchronizing a digital video host                           |
| 2           | system including a host computer, a receiver circuit and a decoder circuit coupled with the       |
| 3           | receiver circuit only through a host system bus, the method comprising:                           |
| 4           | (a) coupling the receiver circuit with the decoder circuit only through a bus in the              |

host computer

5

**PATENT** 

Appl. No. 09/650,329 Office Action dated February 25, 2005 Amendment dated April 23, 2004

| 6   | (b)(a) receiving a first transport packet from a transmitter with the receiver              |
|-----|---------------------------------------------------------------------------------------------|
| 7   | circuit;                                                                                    |
| 8   | (c)(b) capturing a first system time clock (STC) timestamp at a start of receiving          |
| 9   | the first transport packet, the first STC timestamp being captured into a latch;            |
| 10  | (d)(e) obtaining a program clock reference (PCR) timestamp from the transport               |
| l 1 | packet;                                                                                     |
| 12  | (e)(d) comparing the first STC timestamp to the PCR timestamp to generate a                 |
| 13  | comparison result;                                                                          |
| 14  | (f)(e) adjusting an STC frequency based on the comparison result in order to                |
| 15  | maintain synchronization between the receiver circuit and the transmitter;                  |
| 16  | (g)(f) receiving data from the decoder circuit into a first register in a bus interface     |
| 17  | comprised by the host system bus in the host computer;                                      |
| 18  | (h)(g) latching a second STC timestamp into a second register in the bus interface          |
| 19  | after receiving the data from the decoder circuit; and                                      |
| 20  | (i)(h) providing the second STC timestamp to the decoder circuit by way of the              |
| 21  | second register.                                                                            |
| 1   | 21. (Previously presented) The method according to claim 20 wherein the                     |
| 2   | decoder circuit comprises an audio-visual interface.                                        |
| 1   | 22. (Previously presented) The method according to claim 20 wherein the                     |
| 2   | decoder circuit comprises a computer network interface.                                     |
| 1   | 23. (Previously presented) The system according to claim 13 wherein the                     |
| 2   | offset is scaled by a nonunity value.                                                       |
| 1   | 24. (Currently amended) A system for synchronizing a digital video host                     |
| 2   | system including a host computer, a receiver circuit and a decoder circuit coupled with the |
| 3   | receiver circuit only through a host system bus, the system comprising:                     |
| 4   | (a) a bus in the host computer that couples the receiver circuit with the decoder           |
| 5   | circuit;                                                                                    |
| 6   | (b)(a) a parser adapted to obtain a program clock reference (PCR) timestamp                 |
| 7   | from a first transport packet, the first transport packet including the PCR timestamp;      |

<u>PATENT</u>

Appl. No. 09/650,329 Office Action dated February 25, 2004 Office Action dated April 23, 2004

| 8  | (c)(b) a first latch coupled to the parser, the first latch being adapted to capture a            |
|----|---------------------------------------------------------------------------------------------------|
| 9  | first system time clock (STC) timestamp near a beginning of receipt of a first transport packet   |
| 10 | from a transmitter by the receiver circuit;                                                       |
| 11 | (d)(e) a comparison device coupled to the parser and to the latch, the comparison                 |
| 12 | device being configured to compare the STC timestamp to the PCR timestamp so as to generate a     |
| 13 | comparison result;                                                                                |
| 14 | (e)(d) a first adjuster coupled to the comparison device, the first adjuster being                |
| 15 | adapted to adjust a frequency of the system time clock based on the comparison result in order to |
| 16 | maintain the synchronization between the receiver circuit and the transmitter;                    |
| 17 | (f)(e) a first register in a bust interface comprised by the host-system bus, the first           |
| 18 | register being adapted to receive data from the decoder circuit; and                              |
| 19 | (g)(f) a second register in the bus interface, the second register being adapted to               |
| 20 | latch a second STC timestamp after the first register receives the data from the decoder circuit, |
| 21 | wherein the second STC timestamp is provided to the decoder circuit by way of the second          |
| 22 | register.                                                                                         |
| 1  | 25. (Previously presented) The system according to claim 24 wherein the                           |
| 2  | decoder circuit comprises an audio-visual interface.                                              |
| 1  | 26. (Previously presented) The system according to claim 24 wherein the                           |
| 2  | decoder circuit comprises a computer network interface.                                           |