圏論のノート

箱(@o_ccah)

2019年7月20日

概要

圏論の基礎事項をまとめた。特に、米田の補題を有効に用いて、随伴の諸性質を見通しよく記述すること に重点を置いた。

目次

1	圈,関手,自然変換	2
1.1	圈	2
1.2	簡単な圏論的概念	3
1.3	関手	4
1.4	自然変換	6
1.5	圈同値	7
1.6	関手圏	8
1.7	"圈", "関手", "自然変換"	10
2	米田の補題,"関手"の表現	11
2.1	米田の補題	11
2.2	コンマ圏	13
2.3	米田の補題が導く圏同型	14
2.4	"関手"の表現	15
3	余極限と極限	16
3.1	余極限と極限	16
3.2	余極限・極限の保存	16
4	随伴	17
4.1	とある一対一対応	17
4.2	随伴,単位と余単位	19
4.3	随伴と忠実性・充満性	22
4.4	随伴と圏同値	23
4.5	 晴伴と余極限・極限	24

記号と用語

- 本稿を通して、対象は a, b, c など、射は f, g, h など、圏は A, B, C など、関手は F, G, H など、自然変換は α , β , γ などで表すことが多い.
- 写像(特に関手による対象・射の対応)の適用 f(x) を、括弧を省いて fx とも書く.この記号法は右結合とする.したがって、gfx は g(f(x)) を表す.

1 圈,関手,自然変換

1.1 圏

定義 1.1 (圏) 圏 A とは,

- A の対象の集合 ob(A)
- $a, b \in ob(A)$ に対して、 $A \cap a$ から $b \cap a$ への射の集合 $Hom_A(a,b)$ を対応させる写像
- $a \in ob(A)$ に対して、a の恒等射 $1_a \in Hom_A(a,a)$ を対応させる写像
- $a,b,c \in \text{ob}(A)$ に対して、射の合成 $\text{Hom}_A(a,b) \times \text{Hom}_A(b,c) \to \text{Hom}_A(a,c)$; $(f,g) \mapsto g \circ f$ を対応させる写像

の組であって、2条件

(CAT1) 任意の $a, b \in ob(A)$ と $f \in Hom_A(a,b)$ に対して $f \circ 1_a = 1_b \circ f = f$ である.

(CAT2) 任意の $a, b, c, d \in ob(A)$ と $f \in Hom_A(a, b), g \in Hom_A(b, c), h \in Hom_A(c, d)$ に対して、 $h \circ (g \circ f) = (h \circ g) \circ f$ である.

を満たすものをいう. ob(A) を単に A とも書く. $a,b \in ob(A)$ に対して, $f \in Hom_A(a,b)$ を $f:a \to b$ とも書く.

定義 1.2(同型) A を圏, $a,b \in ob(A)$, $f: a \to b$ とする. $g: b \to a$ が $g \circ f = 1_a$ かつ $f \circ g = 1_b$ を満たすとき, g を f の逆射といい, $g = f^{-1}$ と書く. 逆射をもつ射を同型射あるいは単に同型という. 対象 a から b への同型射が存在するとき, a と b は同型であるといい, $a \cong b$ と書く.

f の逆射は、存在すれば一意である。また、合成可能な射 f, g がともに同型射ならば $g \circ f$ も同型射で $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ であり、f が同型射ならば f^{-1} も同型射で $(f^{-1})^{-1} = f$ である。したがって、圏 A における同型は、ob(A) 上の同値関係である。

定義 1.3 (反対圏) A を圏とする. A の反対圏 A^{op} を, 次のように定める.

- $a, b \in ob(A^{op})$ に対して、 $Hom_{A^{op}}(a, b) = Hom_A(b, a)$ とする.
- $a \in ob(A^{op})$ に対して、 A^{op} における a の恒等射を A における a の恒等射で定める.
- A^{op} の射 $f: a \to b$ と $g: b \to c$ との合成 $g \circ_{A^{\text{op}}} f: a \to c$ を, $g \circ_{A^{\text{op}}} f = f \circ_A g$ と定める.ここで, \circ_A は A における射の合成を表す.

明らかに、 $(A^{op})^{op} = A$ である.

定義 1.4 (積圏) A, B を圏とする. $A \, \subset \, B$ の積圏 $A \, \subset \, B$ を、次のように定める.

- $ob(A \times B) = ob(A) \times ob(B)$ とする.
- $(a,b),(a',b') \in ob(A \times B)$ に対して、 $Hom_{A \times B}((a,b),(a',b')) = Hom_A(a,a') \times Hom_B(b,b')$ とする.
- $(a,b) \in ob(A \times B)$ に対して、 $1_{(a,b)} = (1_a,1_b)$ とする.
- $A \times B$ の射 (f,g): $(a,b) \to (a',b')$ と (f',g'): $(a',b') \to (a'',b'')$ との合成を, $(f',g') \circ (f,g) = (f' \circ f, g' \circ g)$ と定める.

1.2 簡単な圏論的概念

定義 1.5 (終対象・始対象) A を圏とする.

- (1) A の始対象とは、 $a \in ob(A)$ であって、任意の $b \in ob(A)$ に対して a から b への射が一意に存在するものをいう.
- (2) A の終対象とは, $a \in ob(A)$ であって, 任意の $b \in ob(A)$ に対して b から a への射が一意に存在するものをいう.

 $a \in ob(A)$ について、a が A の始対象・終対象であることは、それぞれ a が A^{op} の終対象・始対象であることと同値である.

命題 1.6 A を圏とする.

- (1) a, a' がともに A の始対象ならば、a から a' への射 $f: a \to a'$ が一意に存在し、さらにこの f は同型射である.
- (2) a, a' がともに A の終対象ならば、a' から a への射 $f: a' \to a$ が一意に存在し、さらにこの f は同型射である.

証明 どちらも同様だから、(1) のみ示す. a が始対象であることより $f: a \to a'$ が一意に存在し、a' が始対象であることより $g: a' \to a$ が一意に存在する. $g \circ f$ と 1_a はともに a から a への射だから、a が始対象であることより $g \circ f = 1_a$ である. 同様に、 $f \circ g = 1_b$ である. よって、f は同型射である.

定義 1.7 (モノ射・エピ射) A を圏, $f: a \rightarrow b$ を A の射とする.

- (1) 任意の $c \in ob(A)$ と A の射 h, h': $b \to c$ に対して $h \circ f = h' \circ f$ ならば h = h' であるとき,f をエピ射 という
- (2) 任意の $c \in ob(A)$ と A の射 h, h': $c \to a$ に対して $f \circ h = f \circ h'$ ならば h = h' であるとき,f をモノ射 という.

また,

- (3) A の射 $g: b \rightarrow a$ であって $f \circ g = 1_b$ となるものが存在するとき, g を分裂エピ射という.
- (4) A の射 $g: b \rightarrow a$ であって $g \circ f = 1_a$ となるものが存在するとき、f を分裂モノ射という.

f が A のエピ射・モノ射・分裂エピ射・分裂モノ射であることは、それぞれ、f が A^{\circ} のモノ射・エピ射・分裂モノ射・分裂エピ射であることと同値である.

命題 1.8 A を圏, $f: a \rightarrow b$ を A の射とする.

- (1) f が分裂エピ射ならば、f はエピ射である.
- (2) f が分裂モノ射ならば、f はモノ射である.

証明 どちらも同様だから、(1) のみ示す.f が分裂エピ射であるとする.すると、A の射 $g:b\to a$ で あって $f\circ g=1_b$ となるものがとれる.A の射 h, $h':a\to c$ が $h\circ f=h'\circ f$ を満たすとすると、 $h=g\circ f\circ h=g\circ f\circ h'=h'$ である.よって、f はエピ射である.

命題 1.9 A を圏, $f: a \rightarrow b$ を A の射とする. 次の 4 条件は同値である.

- (a) f は同型射である.
- (b) f は分裂エピかつモノである.
- (c) f はエピかつ分裂モノである.
- (d) f は分裂エピかつ分裂モノである.

証明 (a) \Longrightarrow (d), (d) \Longrightarrow (b), (d) \Longrightarrow (c) は明らかだから,あとは (b) \Longrightarrow (a) と (c) \Longrightarrow (a) を示せばよい.どちらも同様だから,前者を示す.f が分裂エピかつモノであるとする.f が分裂エピであることより, $g: b \to a$ であって $f \circ g = 1_b$ となるものがとれる.このとき $f \circ g \circ f = f = f \circ 1_a$ だから,f がモノであることより $g \circ f = 1_a$ である.よって,f は g を逆射にもつ同型射である.

1.3 関手

定義 1.10 (関手) A, B を圏とする. A から B への関手 F とは,

- 写像 $ob(A) \rightarrow ob(B)$; $a \mapsto Fa$
- $a, b \in ob(A)$ に対して,写像 $Hom_A(a, b) \mapsto Hom_B(Fa, Fb)$; $f \mapsto Ff$ を対応させる写像

の組であって、2条件

(FUN1) 任意の $a \in ob(A)$ に対して、 $F1_a = 1_{Fa}$ である.

(FUN2) 任意の $a,b,c \in \text{ob}(A)$ と $f \in \text{Hom}_A(a,b), g \in \text{Hom}_A(b,c)$ に対して、 $F(g \circ f) = Fg \circ Ff$ である.

を満たすものをいう. F が A から B への関手であることを, F: $A \rightarrow B$ と書く.

圏 A から B への関手を、A から B への共変関手ともいう.これに対して、 A^{op} から B への関手を、A から B への反変関手という.

関手が恒等射と合成を保つことから、関手が同型を保つこともわかる。すなわち、A,Bを圏、 $F:A\to B$ を関手とするとき、 $f:a\to b$ が A の同型射ならば $Ff:Fa\to Fb$ も同型射であり、したがって $a\cong b$ ならば $Fa\cong Fb$ である。

定義 1.11 (恒等関手) A を圏とする. A から A への関手であって、対象の対応・射の対応がすべて恒等写像

であるようなものを、A の恒等関手といい、 1_A と書く.

定義 1.12 (関手の合成) A, B, C を圏, $F: A \rightarrow B, G: B \rightarrow C$ を関手とする. $F \subset G$ との合成 $G \circ F: A \rightarrow C$ を、対象の対応・射の対応を F による対応と G による対応との合成とすることで定める.

定義 1.13(圏同型) A, B を圏, F: $A \to B$ を関手とする。関手 G: $B \to A$ が $G \circ F = 1_A$ かつ $F \circ G = 1_B$ を満たすとき,G を F の逆関手といい, $G = F^{-1}$ と書く.逆関手をもつ関手を圏同型関手あるいは単に圏同型という.圏 A から B への圏同型関手が存在するとき,A と B は圏同型であるといい, $A \cong B$ と書く.

F の逆関手は,存在すれば一意である.また,合成可能な関手 F 、G がともに圏同型関手ならば $G \circ F$ も圏同型関手で $(G \circ F)^{-1} = F^{-1} \circ G^{-1}$ であり,F が圏同型関手ならば F^{-1} も圏同型関手で $(F^{-1})^{-1} = F$ である.

定義 1.14(反対関手) A, B を圏, $F: A \to B$ を関手とする.F による A から B への対象・射の対応により, A^{op} から B^{op} への関手が定まる.これを F の反対関手といい, F^{op} と書く.

反対関手をとる操作は,恒等関手と関手の合成を保つ. すなわち,圏 A について $(1_A)^{op} = 1_{A^{op}}$ であり,また圏 A, B, C の間の関手 F: $A \to B$, G: $B \to C$ について $(G \circ F)^{op} = G^{op} \circ F^{op}$ である. したがって,関手 F が圏同型ならば, F^{op} も圏同型であり, $(F^{op})^{-1}(F^{-1})^{op}$ が成り立つ.

定義 1.15 (忠実・充満・本質的全射) A, B を圏, $F: A \rightarrow B$ を関手とする.

- (1) F が忠実であるとは、任意の $a,b \in ob(A)$ に対して $F \colon \operatorname{Hom}_A(a,b) \to \operatorname{Hom}_B(Fa,Fb)$ が単射であることをいう.
- (2) F が充満であるとは、任意の $a,b \in ob(A)$ に対して $F \colon \operatorname{Hom}_A(a,b) \to \operatorname{Hom}_B(Fa,Fb)$ が全射であることをいう.
- (3) F が忠実充満であるとは、F が忠実かつ充満であることをいう.
- (4) F が本質的全射であるとは,任意の $b \in ob(B)$ に対してある $a \in ob(A)$ が存在し, $Fa \cong b$ となることをいう.

命題 1.16 A, B を圏, $F: A \rightarrow B$ を忠実充満関手とする.

- (1) A の射 $f: a \rightarrow b$ について、Ff が同型射ならば、f も同型射である.
- (2) A の対象 a, b について, $a \cong b$ と $Fa \cong Fb$ は同値である.
- 証明 (1) Ff が同型射であるとすると,逆射 $(Ff)^{-1}$ が考えられる.F の充満性より, $g:b\to a$ であって $Fg=(Ff)^{-1}$ となるものがとれる.このとき $F(g\circ f)=Fg\circ Ff=1_{Fa}$, $F(f\circ g)=Fg\circ Ff=1_{Fb}$ だから,F の忠実性より $g\circ f=1_a$, $f\circ g=1_b$ を得る.
- (2) $a \cong b$ ならば $Fa \cong Fb$ であることは,一般の関手に対して成り立つ.逆を示す. $Fa \cong Fb$ とすると,同型射 $h: Fa \to Fb$ がとれる.F の充満性より, $f: a \to b$ であって Ff = h となるものがとれる.(1) より f は同型射であり,したがって $a \cong b$ である.

1.4 自然変換

定義 1.17(自然変換) A,B を圏, $F,G:A\to B$ を関手とする. F から G への自然変換とは, $a\in ob(A)$ に対して $\alpha_a\colon Fa\to Ga$ を対応させる族 $\alpha=\{\alpha_a\}_{a\in ob(A)}$ であって,自然性条件

(NAT) A の任意の射 $f: a \to b$ に対して, $Gf \circ \alpha_a = \alpha_b \circ Ff$ である.

を満たすものをいう. α が F から G への自然変換であることを, α : $F \Rightarrow G$ と書く.

定義 1.18(恒等自然変換) A, B を圏, F: $A \to B$ を関手とする. F から F への自然変換であって,各 $a \in ob(A)$ に対して 1_{Fa} : $Fa \to Fa$ を与えるようなものを,F の恒等自然変換といい, 1_F と書く.

定義 1.19(垂直合成) A, B を圏, $F, G, H: A \rightarrow B$ を関手とする. 自然変換 $\alpha: F \Rightarrow G$ と $\beta: G \Rightarrow H$ に対して, $\beta \circ \alpha$ を

$$(\beta \circ \alpha)_a = \beta_a \circ \alpha_a \qquad (a \in A)$$

と定めると、これは F から H への自然変換となる.これを、 α と β の垂直合成あるいは単に合成という.

定義 1.20(水平合成) A, B, C を圏, $F, F': A \to B, G, G': B \to C$ を関手とする. 自然変換 $\alpha: F \to F'$ と $\beta: G \to G'$ に対して, $\beta*\alpha$ を

$$(\beta * \alpha)_a = G'\alpha_a \circ \beta_{Fa} = \beta_{F'a} \circ G\alpha_a \qquad (a \in A)$$

と定めると(右側の等号は β の自然性による),これは $G\circ F$ から $G'\circ F'$ への自然変換となる.これを, α と β の水平合成という. *1

定義 1.21(自然同型) A,B を圏, $F,G:A\to B$ を関手, $\alpha:F\Rightarrow G$ を自然変換とする. 自然変換 $\beta:G\Rightarrow F$ が $\beta\circ\alpha=1_F$ かつ $\alpha\circ\beta=1_G$ を満たすとき, β を α の逆自然変換といい, $\beta=\alpha^{-1}$ と書く. 逆自然変換をも つ自然変換を自然同型という. 関手 F から G への自然同型が存在するとき, F と G は自然同型であるといい, $F\cong G$ と書く.

 $\alpha = \{\alpha_a \colon Fa \to Ga\}_{a \in \text{ob}(A)}$ が自然同型であるための必要十分条件は、すべての $a \in \text{ob}(A)$ に対して $\alpha_a \colon Fa \to Ga$ が同型射であることであり、このとき α の逆自然変換は $\alpha^{-1} = \{\alpha_a^{-1} \colon Ga \to Fb\}_{a \in \text{ob}(A)}$ で与えられる。また、垂直合成可能な自然変換 α 、 β がともに自然同型ならば $\beta \circ \alpha$ も自然同型で $(\beta \circ \alpha)^{-1} = \alpha^{-1} \circ \beta^{-1}$ であり、 α が圏同型関手ならば α^{-1} も圏同型関手で $(\alpha^{-1})^{-1} = \alpha$ である。したがって、圏 α から α の関手の間の自然同型は、 α から α の関手全体のなす集合上の同値関係である。

命題 1.22 (1) A, B, C を圏, $F: A \rightarrow B, G: B \rightarrow C$ を関手とする. $1_G*1_F = 1_{G \circ F}$ が成り立つ.

- (2) A, B, C, D を圏, $F, F': A \rightarrow B$, $G, G': B \rightarrow C$, $H, H': C \rightarrow D$ を関手とする. 自然変換 $\alpha: F \Rightarrow F'$, $\beta: G \Rightarrow G'$, $\gamma: H \Rightarrow H'$ に対して, $\gamma*(\beta*\alpha) = (\gamma*\beta)*\alpha$ が成り立つ.
- (3) A, B, C を圏, F, F', F'': $A \to B$, G, G', G'': $B \to C$ を関手とする. 自然変換 α : $F \Rightarrow F'$, α' : $F' \Rightarrow F''$, β : $G \Rightarrow G'$, β' : $G' \Rightarrow G''$ に対して, $(\beta' * \alpha') \circ (\beta * \alpha) = (\beta' \circ \beta) * (\alpha' \circ \alpha)$ が成り立つ.

証明 (1) 明らかである.

^{*1} 本稿では用いないが、 $1_{G} * \alpha$ 、 $\beta * 1_{F}$ はそれぞれ $G * \alpha$ 、 $\beta * F$ と書かれることが多い.

(2) α, β, γ の自然性より、任意の $a \in ob(A)$ に対して次の図式中の小四角形はすべて可換となるのでよい:

(3) $\alpha, \alpha', \beta, \beta'$ の自然性より、任意の $a \in ob(A)$ に対して次の図式中の小四角形はすべて可換となるのでよい:

系 1.23 A, B, C を圏, $F, F': A \to B, G, G': B \to C$ を関手とする. 自然同型 $\alpha: F \Rightarrow F'$ と $\beta: G \Rightarrow G'$ に対して, $\beta*\alpha: G \circ F \Rightarrow G' \circ F'$ も自然同型であり, $(\beta*\alpha)^{-1} = \beta^{-1}*\alpha^{-1}$ である.

証明 命題 1.22(1), (3) より, $(\beta^{-1}*\alpha^{-1})\circ(\beta*\alpha)=(\beta^{-1}\circ\beta)*(\alpha^{-1}\circ\alpha)=1_G*1_F=1_{G\circ F}, (\beta*\alpha)\circ(\beta^{-1}*\alpha^{-1})=(\beta\circ\beta^{-1})*(\alpha\circ\alpha^{-1})=1_{G'}*1_{F'}=1_{G'\circ F'}$ を得る.

定義 1.24(反対自然変換) A, B を圏, $F, G: A \to B$ を関手, $\alpha: F \Rightarrow G$ を自然変換とする. α による B の射の族 $\{\alpha_a: Fa \to Ga\}_{a \in ob(A)}$ は, B^{op} の射の族 $\{\alpha_a: G^{op}a \to F^{op}a\}_{a \in ob(A^{op})}$ とみなすこともでき,これは G^{op} から F^{op} への自然変換を定める.これを α の反対自然変換といい, α^{op} と書く.

反対自然変換をとる操作は,恒等自然変換と自然変換の垂直合成を保つ.すなわち,関手 F について $(1_F)^{\mathrm{op}}=1_{F^{\mathrm{op}}}$ であり,また関手 F, G, H の間の自然変換 α : $F \Rightarrow G$, β : $G \Rightarrow H$ について $(\beta \circ \alpha)^{\mathrm{op}}=\alpha^{\mathrm{op}}\circ\beta^{\mathrm{op}}$ である.したがって,自然変換 α が自然同型ならば, α^{op} も自然同型であり, $(\alpha^{\mathrm{op}})^{-1}=(\alpha^{-1})^{\mathrm{op}}$ が成り立つ.さらに,反対自然変換をとる操作は,次の意味で自然変換の水平合成と整合的である:圏 A, B, C, 関手 F, F': $A \to B$, G, G': $B \to C$,自然変換 α : $F \Rightarrow F'$, β : $G \Rightarrow G'$ に対して, $(\beta * \alpha)^{\mathrm{op}}=\beta^{\mathrm{op}}*\alpha^{\mathrm{op}}$ が成り立つ.

1.5 圏同値

定義 1.25(圏同値) A, B を圏, $F: A \rightarrow B$ を関手とする.関手 $G: B \rightarrow A$ が $G \circ F \cong 1_A$ かつ $F \circ G \cong 1_B$ (自然同型)を満たすとき,G を F の準逆関手という.準逆関手をもつ関手を,圏同値関手あるいは単に圏同値という.圏 A から B への圏同値関手が存在するとき,A と B は圏同値であるといい, $A \simeq B$ と書く.

明らかに、圏同型関手は圏同値関手である.

命題 1.26 A, B を圏、 $F: A \to B$ を関手とする.関手 $G, G': B \to A$ がともに F の準逆関手ならば、 $G \cong G'$ (自然同型) である.

証明 G, G' がともに F の準逆関手とすると, $G = 1_A \circ G \cong G' \circ F \circ G \cong G' \circ 1_B = G'$ である(系 1.23 を用いた).

命題 1.27 A, B を圏、 $F: A \rightarrow B$ を関手とする. 次の 2 条件は同値である.

- (1) F は圏同値関手である.
- (2) F は忠実充満かつ本質的全射である.

証明 (a) \Longrightarrow (b) F が G を準逆にもつ圏同値関手であるとする. 自然同型 α : $G \circ F \cong 1_A$, β : $F \circ G \cong 1_B$ をとる.

任意の $b \in ob(B)$ に対して β_b : $FGb \cong b$ だから, F は本質的全射である.

F の忠実充満性を示す. $a, a' \in ob(A)$ を固定する. $f: a \to a'$ に対して,関手 F により $Ff: Fa \to Fa'$ が得られ,さらに関手 G によって $GFf: Fa \to Fa'$ が得られる.ここで, α の自然性より $\alpha_{a'} \circ GFf = f \circ \alpha_a$,したがって $GFf = \alpha_{a'^{-1}} \circ f \circ \alpha_a$ である. $\alpha_a, \alpha_{a'}$ は同型射だから対応 $f \mapsto \alpha_{a'}^{-1} \circ f \circ \alpha_a = GFf$ は全単射であり,したがって対応 $f \mapsto Ff$ は単射である.同様に,対応 $g \mapsto FGg$ は全単射であり,したがって対応 $f \mapsto Ff$ は忠実充満である.

- $(b) \Longrightarrow (a)$ F が忠実充満かつ本質的全射であるとする. 関手 $G: B \to A$ を、次のように定める.
 - F の本質的全射性より,各 $b \in ob(B)$ に対して, $a \in ob(A)$ であって Fa = b となるものものが存在する.このような対応を 1 つとり,G による対象の対応とする.
 - F の忠実充満性より,B の射 g: $b \to b'$ に対して,A の射 f であって Ff = g となるものが一意に存在する.この対応を,G による射の対応とする.

F が関手であることを確かめる。まず、 $b \in ob(B)$ に対して、 $F1_{Gb} = 1_{FGb} = 1_b$ より $G1_b = 1_{Gb}$ である。すなわち、G は恒等射を保つ。次に、B の射 $g: b \to b'$ と $g': b' \to b''$ に対して、 $F(Gg' \circ Gg) = FGg' \circ FGg = g' \circ g$ より $G(g' \circ g) = Gg' \circ Gg$ である。すなわち、G は合成を保つ。これで確かめられた。

G が F の準逆関手であることを示す。まず,G の定義より, $F\circ G=1_B$ である.次に, $G\circ F=1_A$ を示す. $F\circ G=1_B$ より, $a\in {\rm ob}(A)$ に対して FGFa=Fa である.F の忠実充満性より,F によって 1_{Fa} にうつされる射 $\alpha_a\colon GFa\to a$ が一意に存在し,さらにこれは同型射である(命題 1.16).こうして得られる射の族 $\alpha=\{\alpha_a\}_{a\in {\rm ob}(A)}$ は,GF から 1_A への自然同型である.実際,A の射 $f\colon a\to a'$ に対して, $F(GFf\circ\alpha_a)=FGFf\circ F\alpha_a=Ff=F\alpha_{a'}\circ Ff=F(\alpha_{a'}\circ f)$ だから,F の忠実性より $GFf\circ\alpha_a=\alpha_{a'}\circ f$ である.よって,G は F の準逆関手であり,したがって F は圏同値である.

1.6 関手圏

定義 1.28(関手圏) A,B を圏とする. A から B への関手を対象,関手の間の自然変換を射,恒等自然変換を恒等射,自然変換の垂直合成を射の合成として,圏が定まる. この圏を,A から B への関手のなす関手圏といい, B^A と書く.

関手圏における同型射は、自然同型に他ならない.

定義 1.29 (後合成関手・前合成関手) A, B, X を圏, $F: A \rightarrow B$ を関手とする.

- (1) F が誘導する後合成関手 F_* : $A^X \to B^X$ を、次のように定める.
 - A^X の対象 S に対して、 B^X の対象 $F \circ S$ を対応させる、
 - A^X の射 $\sigma: S \Rightarrow T$ に対して、 B^X の射 $1_F * \sigma: F \circ S \Rightarrow F \circ T$ を対応させる.
- (2) F が誘導する前合成関手 $F^*: X^B \to X^A$ を、次のように定める.
 - X^B の対象 S に対して、 X^A の対象 $S \circ F$ を対応させる.
 - X^B の射 $\sigma: S \Rightarrow T$ に対して、 X^A の射 $\sigma*1_F: S \circ F \Rightarrow T \circ F$ を対応させる.

後・前合成関手を誘導する操作は,恒等関手と関手の合成を保つ.すなわち,圏 X を固定すると,圏 A について $(1_A)_*=1_{A^X}$, $(1_A)^*=1_{X^A}$ であり,また圏 A, B, C の間の関手 $F:A\to B$, $G:B\to C$ について $(G\circ F)_*=G_*\circ F_*$, $(G\circ F)^*=F^*\circ G^*$ である.したがって,関手 F が圏同型ならば, F_* および F^* も圏同型であり, $(F_*)^{-1}=(F^{-1})_*$ および $(F^*)^{-1}=(F^{-1})^*$ が成り立つ.

定義 1.30(後合成自然変換・前合成自然変換) A,B,X を圏, $F,G:A\to B$ を関手, $\alpha:F\Rightarrow G$ を自然変換とする.

(1) α が誘導する後合成自然変換 α_* : $F_* \Rightarrow G_*$ を,

$$\alpha_{*,S} = \alpha * 1_S : F \circ S \Rightarrow G \circ S \qquad (S \in A^X)$$

と定める.

(2) α が誘導する前合成自然変換 α^* : $F^* \Rightarrow G^*$ を,

$$\alpha_S^* = 1_S * \alpha : S \circ F \Rightarrow S \circ G \qquad (S \in X^B)$$

と定める.

 $\alpha_* = \{\alpha*1_S\}_{S\in A^X}$ および $\alpha^* = \{1_S*\alpha\}_{S\in X^B}$ の自然性は、後・前合成関手の定義と命題 1.22 を用いて確かめられる.

後・前合成自然変換を誘導する操作は、恒等自然変換と自然変換の垂直合成を保つ。すなわち、圏 X を固定すると、関手 $F:A\to B$ について $(1_F)_*=1_{F_*}$ 、 $(1_F)^*=1_{F^*}$ であり、また関手 $F,G,H:A\to B$ の間の自然変換 $\alpha:F\Rightarrow G,\ \beta:G\Rightarrow H$ について $(\beta\circ\alpha)_*=\beta_*\circ\alpha_*,\ (\beta\circ\alpha)^*=\beta^*\circ\alpha^*$ である。後自然変換を誘導する操作は B^A から $(B^X)^{(A^X)}$ への関手であり、前自然変換を誘導する操作は B^A から $(X^A)^{(X^B)}$ への関手である、ともいえる。したがって、自然変換 α が自然同型ならば、 α_* および α^* も自然同型であり、 $(\alpha_*)^{-1}=(\alpha^{-1})_*$ および $(\alpha^*)^{-1}=(\alpha^{-1})^*$ が成り立つ。

命題 1.31 A, B, X を圏, F: $A \rightarrow B$, G: $B \rightarrow A$ を関手とし, F と G は互いに他を準逆にもつとする.

- (1) $F_*: A^X \to B^X \subset G_*: B^X \to A^X$ は互いに他の準逆である.
- (2) $F^*: X^B \to X^A$ と $G^*: X^A \to X^B$ は互いに他の準逆である.

証明 自然同型 α : $G \circ F \cong 1_A$ と β : $F \circ G \cong 1_B$ から,自然同型 α_* : $G_* \circ F_* \cong 1_{A^X}$ と β_* : $F_* \circ G_* \cong 1_{B^X}$, α^* : $F^* \circ G^* \cong 1_{X^A}$ と β^* : $G^* \circ F^* \cong 1_{X^B}$ が誘導されるのでよい.

さらに、後・前自然変換を誘導する操作は、次の意味で自然変換の水平合成と整合的である.

命題 1.32 A, B, C, X を圏, $F, F': A \rightarrow B, G, G': B \rightarrow C$ を関手, $\alpha: F \Rightarrow F', \beta: G \Rightarrow G'$ を自然変換とする.

- (1) $(G \circ F)_*$ から $(G' \circ F')_*$ への自然変換の等式 $(\beta * \alpha)_* = \beta_* * \alpha_*$ が成り立つ.
- (2) $(G \circ F)^*$ から $(G' \circ F')^*$ への自然変換の等式 $(\beta * \alpha)^* = \alpha^* * \beta^*$ が成り立つ.

証明 (1) $S \in ob(A^X)$ に対して

$$(\beta_* * \alpha_*)_S = \beta_{*,F'_*S} \circ G_*\alpha_{*,S}$$

$$= (\beta * 1_{F'} * S) \circ (1_G * \alpha * 1_S)$$

$$= \beta * \alpha * 1_S$$

$$= (\beta * \alpha)_{*,S}$$

だから(命題 1.22 (3) を用いた), $(\beta * \alpha)_* = \beta_* * \alpha_*$ が成り立つ.

(2) $S \in ob(X^C)$ に対して

$$(\alpha^* * \beta^*)_S = F'^* \beta_S^* \circ \alpha_{G^*S}^*$$

$$= (1_S * \beta * 1_{F'}) \circ (1_S * 1_G * \alpha)$$

$$= 1_S * \beta * \alpha$$

$$= (\beta * \alpha)_S^*$$

だから (命題 1.22 (3) を用いた), $(\beta * \alpha)^* = \alpha^* * \beta^*$ が成り立つ.

1.7 "圈", "関手", "自然変換"

すべての集合の全体は集合をなさないから、「すべての集合のなす圏 **SET**」を、先に正式に定義した意味での圏として定義することはできない。ところが、これを疑似的な圏とみなし、圏に関する用語を流用することはできる。たとえば、

- 圏 A から SET への "関手" F とは、対象 $a \in ob(A)$ に対して(小さいとは限らない)集合 Fa を対応させる写像と、A の射 $f: a \to b$ に対して写像 $Ff: Fa \to Fb$ を対応させる写像の族との組であって、恒等射および合成との整合性を満たすもののことである. *2
- 圏 A から **SET** への "関手" F から G への "自然変換" α とは、対象 $a \in ob(A)$ に対して写像 $\alpha_a \colon Fa \to Ga$ を対応させる族であって、自然性条件を満たすもののことである.
- 圏 A に対して、"関手圏" \mathbf{SET}^A を考えることができる.これも疑似的な圏である.上と同様に、圏 B から \mathbf{SET}^A への "関手" や、それらの間の "自然変換" を考えることができる.

以下,このような「用語の濫用」は,"圏","関手","自然変換"のように,二重引用符で囲むことによって示す.

定義 1.33 (Hom 関手) A を圏, $a \in ob(A)$ とする.

 $^{*^2}$ この場合, "関手"の「定義域」である A は正式な圏だから、大きさの問題は発生しない。一方で、SET を「定義域」とする "関手"を考えようとすれば、大きさの問題は避けては通れない。本稿では、大きさの問題が発生するような状況は考えない。

- (1) "関手" $\operatorname{Hom}_{A}(a,-)$: $A \to \operatorname{SET}$ を、次のように定める.
 - A の対象 u に対して、集合 $Hom_A(a,u)$ を対応させる.
 - A の射 $p: u \to v$ に対して,写像 $p \circ -:$ $\operatorname{Hom}_A(a,u) \to \operatorname{Hom}_A(a,v); h \mapsto p \circ h$ を対応させる.この 写像 $p \circ -$ を、 p_* や $\operatorname{Hom}_A(a,p)$ とも書く.
- (2) "関手" $\operatorname{Hom}_A(-,a): A^{\operatorname{op}} \to \mathbf{SET}$ を、次のように定める.
 - A の対象 u に対して、集合 $\operatorname{Hom}_A(u,a)$ を対応させる.
 - A の射 $p: u \to v$ に対して,写像 $-\circ p: \operatorname{Hom}_A(v,a) \to \operatorname{Hom}_A(u,a); h \mapsto h \circ p$ を対応させる.この 写像 $-\circ p$ を, p^* や $\operatorname{Hom}_A(p,a)$ とも書く.

これらの"関手"を総称して、Hom 関手という.

Hom 関手 $\text{Hom}_A(a,-)$ と $\text{Hom}_{A^{\text{op}}}(-,a)$ は等しい.

定義 1.34 (米田埋め込み) A を圏とする.

- (1) "関手" $y_A: A^{op} \to \mathbf{SET}^A$ を、次のように定める.
 - A の対象 a に対して、"関手" Hom_A(a,-) を対応させる.
 - A の射 $f: a \to b$ に対して、"自然変換" $-\circ f: \operatorname{Hom}_A(b,-) \Rightarrow \operatorname{Hom}_A(a,-)$ を対応させる.ここで、この "自然変換" は、各 $u \in A$ に対して写像 $\operatorname{Hom}_A(b,u) \to \operatorname{Hom}_A(a,u)$; $h \mapsto h \circ f$ を与える.この "自然変換" $-\circ f$ を、 f^* や $\operatorname{Hom}_A(f,-)$ とも書く.
- (2) "関手" $y^A: A \to \mathbf{SET}^{A^{op}}$ を,次のように定める.
 - A の対象 a に対して、"関手" $Hom_A(-,a)$ を対応させる.
 - A の射 $f: a \to b$ に対して、"自然変換" $f \circ -: \operatorname{Hom}_A(-,a) \Rightarrow \operatorname{Hom}_A(-,b)$ を対応させる.ここで、この "自然変換" は、各 $u \in A$ に対して 写像 $\operatorname{Hom}_A(u,a) \to \operatorname{Hom}_A(u,b)$; $h \mapsto f \circ h$ を与える.この "自然変換" $f \circ -$ を、 f_* や $\operatorname{Hom}_A(-,f)$ とも書く.

これらの"関手"を総称して、米田埋め込みという.

 $y_{A^{op}} = y^A$ である. 系 2.2 で、米田埋め込みが忠実充満であることを示す.

2 米田の補題, "関手"の表現

2.1 米田の補題

定理 2.1 (米田の補題) A を圏とする. "関手" $F: A \to \mathbf{SET}$ と $a \in A$ に対して,写像

 $\Phi_{F,a}$: $\operatorname{Hom}_{\mathbf{SET}^A}(\operatorname{Hom}_A(a,-),F) \to Fa,$ $\Psi_{F,a}$: $Fa \to \operatorname{Hom}_{\mathbf{SET}^A}(\operatorname{Hom}_A(a,-),F)$

を次のように定める.

- $\Phi_{F,a}$ は、"自然変換" α : $\operatorname{Hom}_A(a,-) \Rightarrow F$ に対して、 $\alpha_a(1_a)$ を対応させる.
- $\Psi_{F,a}$ は、 $x \in Fa$ に対して、次のように定まる"自然変換" α : $\operatorname{Hom}_A(a,-) \Rightarrow F$ を対応させる:

$$\alpha_c : \operatorname{Hom}_A(a,c) \to Fc; \quad f \mapsto Ff(x) \qquad (c \in A).$$

すると,

- (1) $\Phi_{F,a}$ と $\Psi_{F,a}$ は互いに他の逆写像である.
- (2) $\Phi_{F,a}$ と $\Psi_{F,a}$ は, $F \in \mathbf{SET}^A$ と $a \in A$ に関して自然である.すなわち, \mathbf{SET}^A の任意の射 $\sigma \colon F \Rightarrow G$ と任意の $a \in A$ に対して

は可換であり、任意の $F \in \mathbf{SET}^A$ と A の任意の射 $f: a \to b$ に対して

は可換である.

証明 (1) $x \in Fa$ に対して

$$\Phi_{F,a}(\Psi_{F,a}(x)) = \Psi_{F,a}(x)_a(1_a) = F1_a(x) = x$$

だから、 $\Phi_{F,a} \circ \Psi_{F,a}$ は Fa の恒等写像である.

 $\Psi_{F,a} \circ \Phi_{F,a}$ が $\operatorname{Hom}_{\mathbf{SET}^A}(\operatorname{Hom}_A(a,-),F)$ の恒等写像であることを示す。 $\alpha \in \operatorname{Hom}_{\mathbf{SET}^A}(\operatorname{Hom}_A(a,-),F)$ に対して、 $\Psi_{F,a}(\Phi_{F,a}(\alpha))$ の c-成分は

$$\Psi_{F,a}(\Phi_{F,a}(\alpha))_c$$
: $\operatorname{Hom}_A(a,c) \to Fc$; $f \mapsto Ff(\Phi_{F,a}(\alpha)) = Ff(\alpha_a(1_a))$

で与えられる. ここで、 α : $\operatorname{Hom}_A(a,-) \Rightarrow F$ の自然性より

$$F f(\alpha_a(1_a)) = \alpha_c(\operatorname{Hom}_A(a, f)(1_a)) = \alpha_c(f)$$

だから, $Ff(\alpha_a(1_a)) = \alpha_c(f)$ である. よって, $\Psi_{F,a}(\Phi_{F,a}(\alpha))$ と α の各成分は等しいから, $\Psi_{F,a}(\Phi_{F,a}(\alpha)) = \alpha$ である.

(2) 任意の $F \in \mathbf{SET}^A$ と $a \in A$ に対して $\Psi_{F,a}$ は $\Phi_{F,a}$ の逆写像だから, $\Phi_{F,a}$ の自然性のみを示せば十分である.

第一の図式の可換性を示す。 $\sigma: F \Rightarrow G$ を \mathbf{SET}^A の射, $a \in A$ とする。任意の $\alpha \in \mathrm{Hom}_{\mathbf{SET}^A}(\mathrm{Hom}_A(a,-),F)$ に対して,

$$\sigma_a(\Phi_{F,a}(\alpha)) = \sigma_a(\alpha_a(1_a)) = (\sigma \circ \alpha)_a(1_a) = \Phi_{G,a}(\sigma \circ \alpha).$$

したがって、第一の図式は可換である.

第二の図式の可換性を示す. $F \in \mathbf{SET}^A$, $f: a \to b$ を A の射とする. 任意の $\alpha \in \mathrm{Hom}_{\mathbf{SET}^A}(\mathrm{Hom}_A(a,-),F)$ に対して, α の自然性より,

$$\begin{split} &Ff(\varPhi_{F,a}(\alpha)) = Ff(\alpha_a(1_a)) = \alpha_b(\operatorname{Hom}_A(a,f)(1_a)) = \alpha_b(f) \\ &= \alpha_b(\operatorname{Hom}_A(f,-)_b(1_b)) = (\alpha \circ \operatorname{Hom}_A(f,-))_b(1_b) = \varPhi_{F,b}(\alpha \circ \operatorname{Hom}_A(f,-)). \end{split}$$

したがって、第二の図式は可換である.

米田の補題(定理 2.1)で A を A^{op} に置き換えると, "関手" F: A^{op} \rightarrow **SET** と $a \in A$ ^{op} に関して自然な, $Hom_{\mathbf{SET}}A^{op}(Hom_A(-,a),F)$ と Fa との間の全単射が得られることがわかる.

系 2.2 A を圏とする.米田埋め込み y_A : $A^{op} \to \mathbf{SET}^A$; $a \mapsto \mathrm{Hom}_A(a,-)$ は"忠実充満"である.すなわち,任意の $a,b \in A$ に対して,

$$\operatorname{Hom}_A(b,a) \to \operatorname{Hom}_{\mathbf{SET}^A}(\operatorname{Hom}_A(a,-),\operatorname{Hom}_A(b,-)); \quad f \mapsto \operatorname{Hom}_A(f,-)$$

は全単射である.

証明 米田の補題(定理 2.1 (1))で $F = \text{Hom}_A(b, -)$ と置けば、結論を得る.

双対的に、米田埋め込み y^A : $A \to \mathbf{SET}^{A^{op}}$; $a \mapsto \mathrm{Hom}_A(-,a)$ も "忠実充満" である.

系 2.3 A を圏とする. A の射 $f: a \rightarrow b$ に対して、次の 3 条件は同値である.

- (a) f は同型射である.
- (b) 任意の $c \in A$ に対して、 $f \circ -:$ $\operatorname{Hom}_A(c,a) \to \operatorname{Hom}_A(c,b)$ は全単射である.
- (c) 任意の $c \in A$ に対して、 $-\circ f$: $\operatorname{Hom}_A(a,c) \to \operatorname{Hom}_A(b,c)$ は全単射である.

証明 米田埋め込みの"忠実充満"性と(系 2.2),忠実充満関手が同型を映すこと(命題 1.16(1))の結果である *3 .

2.2 コンマ圏

次節以降で用いるため、コンマ圏を定義しておく.

定義 2.4(コンマ圏) A,B,C を圏, $K:A\to C,\ L:B\to C$ を関手とする. コンマ圏 $K\downarrow L$ を,次のように定める.

- $K \downarrow L$ の対象は、 $a \in A$ 、 $b \in B$ と h: $Ka \to Lb$ の組 (a,b,h) とする.
- $K \downarrow L$ の対象 (a,b,h) から (a',b',h') への射は、 $f: a \to a'$ と $g: b \to b'$ との組 (f,g) であって $h' \circ Ff = Gg \circ h$ を満たすものとする.
- $K \downarrow L$ の対象 (a,b,h) の恒等射は、 $1_{(a,b,h)} = (1_a,1_b)$ と定める.
- $K \downarrow L$ の射 (f,g): $(a,b,h) \to (a',b',h')$ と (f',g'): $(a',b',h') \to (a'',b'',h'')$ との合成は、 $(f',g') \circ (f,g) = (f' \circ f,g' \circ g)$ と定める.

A=1(ただ 1 つの対象と恒等射のみからなる圏)かつ K が 1 の唯一の対象を $c\in C$ に対応させる関手であるとき, $F\downarrow G$ を $c\downarrow G$ とも書く.B=1 である場合も同様とする.

C が "圏" で $K:A\to C$ と $L:B\to C$ が "関手" であっても,コンマ圏 $K\downarrow L$ を考えることができ,これは正式な圏となることに注意する.

 $^{^{*3}}$ 米田埋め込みは正式な関手ではなく、"忠実充満"であるというのも用語の濫用にすぎないから、厳密には、命題 $^{1.16}$ をただちに適用することはできない。しかし、命題 $^{1.16}$ の証明中の議論をたどることにより、問題なく結論が得られる。

2.3 米田の補題が導く圏同型

A を圏, $F: A \to \mathbf{SET}$ を "関手" とし, "関手" $y_A: A^{\mathrm{op}} \to \mathbf{SET}^A$ と $F: \mathbf{1} \to \mathbf{SET}^A$ から定まるコンマ圏 $y_A \downarrow F$ と, "関手" $\{*\}: \mathbf{1} \to \mathbf{SET}$ と $F: A \to \mathbf{SET}$ から定まるコンマ圏 $\{*\} \downarrow F$ を考える*⁴. $\{*\} \downarrow F$ の対象は $f \in A$ と $\{*\}$ から $f \in A$ の写像との組」だが,これは $f \in A$ と $f \in A$ と

定理 2.5 A を圏, $F: A \rightarrow SET$ を "関手" とする. また, $a \in A$ に対して,

 $\Phi_{F,a} \colon \operatorname{Hom}_{\operatorname{SET}^A}(\operatorname{Hom}_A(a,-),F) \to Fa,$ $\Psi_{F,a} \colon Fa \to \operatorname{Hom}_{\operatorname{SET}^A}(\operatorname{Hom}_A(a,-),F)$

を定理 2.1 のとおりに定める. 関手 $\widetilde{\Phi}_F$: $(y_A \downarrow F)^{op} \to \{*\} \downarrow F$ を

- $(y_A \downarrow F)^{\text{op}}$ の対象 (a,α) $(a \in A, \alpha: \text{Hom}_A(a,-) \Rightarrow F)$ に対して、 $\{*\} \downarrow F$ の対象 $(a,\Phi_{F,a}(\alpha))$ を対応させる.
- $(y_A \downarrow F)^{\text{op}}$ の射 $f: (a,\alpha) \to (b,\beta)$ $(A \text{ の射 } f: a \to b \text{ であって } \alpha \circ \operatorname{Hom}_A(f,-) = \beta \text{ を満たすもの})$ に対して、 $\{*\} \downarrow F$ の射 $f: (a,\Phi_{F,a}(\alpha)) \to (b,\Phi_{F,b}(\beta))$ を対応させる.

と定め、関手 $\widetilde{\Psi}_F$: $\{*\} \downarrow F \to (y_A \downarrow F)^{op}$ を

- $\{*\} \downarrow F$ の対象 (a,x) $(a \in A, x \in Fa)$ に対して、 $(y_A \downarrow F)^{op}$ の対象 $(a, \Psi_{Fa}(x))$ を対応させる.
- {*} $\downarrow F$ の射 $f: (a, x) \to (b, y)$ (A の射 $f: a \to b$ であって Ff(x) = y を満たすもの)に対して, $(y_A \downarrow F)^{\text{op}}$ の射 $f: (a, \Psi_{F,a}(x)) \to (b, \Psi_{F,b}(y))$ を対応させる.

と定める. すると, $\widetilde{\Phi}_F$ と $\widetilde{\Psi}_F$ とは互いに他の逆であり、圏同型 $(y_A \downarrow F)^{\mathrm{op}} \cong \{*\} \downarrow F$ を与える.

証明 $\widetilde{\Phi}_F$ が $(y_A \downarrow F)^{\mathrm{op}}$ から $\{*\} \downarrow F$ への関手を定めることを示す.示すべきことは,A の射 $f: a \to b$ について,f が $(y_A \downarrow F)^{\mathrm{op}}$ の射 $f: (a, \alpha) \to (b, \beta)$ であるならば,f は $\{*\} \downarrow F$ の射 $f: (a, \Phi_{F,a}(\alpha)) \to (b, \Phi_{F,b}(\beta))$ でもあることである.すなわち,

$$\alpha \circ \operatorname{Hom}_A(f,-) = \beta$$
 ならば $Ff(\Phi_{F,a}(\alpha)) = \Phi_{F,b}(\beta)$

である. これは, 定理 2.1 (2) で示した $\Phi_{F,-}$ の自然性そのものである.

 $\widetilde{\Psi}_F$ が $\{*\}$ $\downarrow F$ から $(y_A \downarrow F)^{op}$ への関手を定めることを示す.示すべきことは,A の射 $f: a \to b$ について,f が $\{*\}$ $\downarrow F$ の射 $f: (a,x) \to (b,y)$ であるならば,f は $(y_A \downarrow F)^{op}$ の射 $f: (a,\Psi_{F,a}(x)) \to (b,\Psi_{F,b}(y))$ でもあることである.すなわち,

$$Ff(x) = y$$
 ならば $\Psi_{F,a}(x) \circ \operatorname{Hom}_A(f,-) = \Psi_{F,b}(y)$

である. これは, 定理 2.1 (2) で示した $\Psi_{F,-}$ の自然性そのものである.

 $\tilde{\Phi}_F$ と $\tilde{\Psi}_F$ とが互いに他の逆であることは,任意の $a \in A$ に対して $\Phi_{F,a}$ と $\Psi_{F,a}$ とが互いに他の逆写像であるという米田の補題の主張(定理 2.1 (1))からただちに従う.

双対的に、"関手" $F: A^{op} \to \mathbf{SET}$ に対して、圏同型 $y^A \downarrow F \cong (\{*\} \downarrow F)^{op}$ が成り立つ.

^{*4} 前者と後者で F の扱いが異なることに注意せよ.

2.4 "関手"の表現

定義 2.6 (表現) A を圏とする. "関手" $F: A \to \mathbf{SET}$ の表現とは, $a \in A$ と"自然同型" $\alpha: \operatorname{Hom}_A(a, -) \cong F$ との組 (a, α) をいう. F が表現をもつとき, F は表現可能であるという.

"関手" $F: A^{\mathrm{op}} \to \mathbf{SET}$ の表現とは, $a \in A^{\mathrm{op}}$ と"自然同型" $\alpha: \operatorname{Hom}_{A^{\mathrm{op}}}(a, -) \cong F$ との組のことだが,これは $a \in A$ と"自然同型" $\alpha: \operatorname{Hom}_{A}(-, a) \cong F$ との組といっても同じである.

定理 2.7 A を圏, $F: A \to \mathbf{SET}$ を "関手"とする. $a \in A$ と "自然変換" $\alpha: \operatorname{Hom}_A(a, -) \Rightarrow F$ との組に対して、次の 3 条件は同値である.

- (a) (a,α) は F の表現である.
- (b) (a,α) は $(y_A \downarrow F)^{op}$ の始対象である.
- (c) $(a, \alpha_a(1_a))$ は $\{*\} \downarrow F$ の始対象である.

証明 $(a) \iff (c)$ (a,α) が F の表現であるとは,任意の $b \in A$ に対して写像 α_b : $\operatorname{Hom}_A(a,b) \to Fb$ が全単射であるということである.一方で, $(a,\alpha_a(1_a))$ が $\{*\} \downarrow F$ の始対象であるとは,任意の $b \in A$ と $y \in Fb$ に対して,A の射 f: $a \to b$ であって $Ff(\alpha(1_a)) = y$ を満たすものが一意に存在するということである.すなわち,任意の $b \in A$ に対して写像 $\operatorname{Hom}_A(a,b) \to Fb$; $f \mapsto Ff(\alpha(1_a))$ が全単射であるということである.ところで,米田の補題(定理 2.1 (1))より, $b \in A$ に対して

$$\alpha_b(f) = Ff(\alpha(1_a))$$

が成り立つ.よって、これらの2条件は同値である.

(b) \iff (c) 定理 2.5 が与える圏同型 $(y_A \downarrow F)^{op} \cong \{*\} \downarrow F$ から従う.

双対的に、A を圏、 $F: A^{op} \to \mathbf{SET}$ を "関手" とするとき、 $a \in A$ と "自然変換" $\alpha: \operatorname{Hom}_{A}(\neg, a) \Rightarrow F$ との組に対して、 (a,α) が F の表現であること、 (a,α) が $y^{A} \downarrow F$ の終対象であること、 $(a,\alpha_{a}(1_{a}))$ が $(\{*\} \downarrow F)^{op}$ の終対象であることは、すべて同値である.

系 2.8 A, B を圏, $b \in B, K: A \to B$ を関手とする。 $a \in A$ と "自然変換" $\alpha: \operatorname{Hom}_A(a, -) \Rightarrow \operatorname{Hom}_B(b, K-)$ との組に対して,次の 4 条件は同値である。

- (a) (a, α) は $\operatorname{Hom}_B(b, K-)$ の表現である.
- (b) (a,α) は $(v_A \downarrow \operatorname{Hom}_B(b,K_-))^{\operatorname{op}}$ の始対象である.
- (c) $(a, \alpha_a(1_a))$ は $\{*\} \downarrow \operatorname{Hom}_B(b, K-)$ の始対象である.
- (d) $(a, \alpha_a(1_a))$ は $b \downarrow K$ の始対象である.

証明 (a), (b), (c) の同値性は,定理 2.7 による.自然な圏同型 $\{*\}$ \downarrow $Hom_B(b,K-)\cong b\downarrow K$ から,(c) と (d) の同値性がわかる.

双対的に、A、B を圏、 $b \in B$ 、K: $A \to B$ を関手とするとき、 $a \in A$ と "自然変換" α : $\operatorname{Hom}_A(\neg,a) \Rightarrow \operatorname{Hom}_B(K\neg,b)$ との組に対して、 (a,α) が $\operatorname{Hom}_B(K\neg,b)$ の表現であること、 (a,α) が $y^A \downarrow \operatorname{Hom}_B(K\neg,b)$ の終対象であること、 $(a,\alpha_a(1_a))$ が $(\{*\} \downarrow \operatorname{Hom}_B(K\neg,b))^{\operatorname{op}}$ の終対象であること、 $(a,\alpha_a(1_a))$ が $K \downarrow b$ の終対象であることは、すべて同値である.

3 余極限と極限

3.1 余極限と極限

定義 3.1 (対角関手) I, A を圏とする. 対角関手 $\Delta_{I,A}: A \rightarrow A^I$ を、次のように定める.

- A の対象 a に対して, A^I の対象 $\Delta_{I,A}a$ を,I の任意の対象に a を対応させ,I の任意の射に 1_a を対応 させる関手として定める.
- A の射 $f: a \to b$ に対して, A^I の射 $\Delta_{I,A} f: \Delta_{I,A} a \Rightarrow \Delta_{I,A} b$ を,I の任意の対象に対して f を与える自然変換として定める.

混同のおそれがない場合, $\Delta_{I,A}$ を単に Δ_A や Δ とも書く.

I,A を圏とする。関手 $T:I\to A$ を、I を添字圏とする A 上の図式ともいう。図式 $I\to A;i\mapsto a_i$ を、射の対応は省略して $\{a_i\}_{i\in I}$ と書くこともある。

I,A を圏, $T:I\to A$ を図式とし、関手 $T:1\to A^I$ と $\varDelta:A\to A^I$ から定まるコンマ圏 $T\downarrow \varDelta$ 、あるいは $\varDelta\downarrow T$ を考える.

定義 3.2 (余極限・極限) I, A を圏, $T: I \rightarrow A$ を図式とする.

- (1) コンマ圏 $T \downarrow \Delta$ の始対象を、T の余極限という.
- (2) コンマ圏 $\Delta \downarrow T$ の終対象を, T の極限という.

始対象・終対象の一意性(命題 1.6)より、余極限・極限は、存在すれば同型を除いて一意である.

命題 3.3 I, A を圏、 $T: I \rightarrow A$ を図式とする.

- (1) $a \in A$ と "自然変換" α : $\operatorname{Hom}_A(a,-) \Rightarrow \operatorname{Hom}_{A^I}(T, \Delta -)$ との組に対して、次の 4 条件は同値である.
 - (a) (a,α) は $\operatorname{Hom}_{AI}(T,\Delta)$ の表現である.
 - (b) (a,α) は $(y_A \downarrow \operatorname{Hom}_{A^I}(T, \Delta -))^{\operatorname{op}}$ の始対象である.
 - (c) $(a, \alpha_a(1_a))$ は $\{*\} \downarrow \operatorname{Hom}_{A^I}(T, \Delta -)$ の始対象である.
 - (d) $(a, \alpha_a(1_a))$ は T の余極限である.
- (2) $a \in A$ と "自然変換" α : $\operatorname{Hom}_A(-,a) \Rightarrow \operatorname{Hom}_{A^I}(\Delta -,T)$ との組に対して、次の 4 条件は同値である.
 - (a) (a, α) は $\operatorname{Hom}_{A^I}(\Delta -, T)$ の表現である.
 - (b) (a,α) は $y^A \downarrow \operatorname{Hom}_{A^I}(\Delta -, T)$ の終対象である.
 - (c) $(a,\alpha_a(1_a))$ は $(\{*\}\downarrow \operatorname{Hom}_{A^I}(\Delta -,T))^{\operatorname{op}}$ の終対象である.
 - (d) $(a, \alpha_a(1_a))$ は T の極限である.

証明 系 2.8 (とその双対) の特別な場合である.

3.2 余極限・極限の保存

A,B,I を圏, $F:A\to B$ を関手, $T:I\to A$ を図式とする.関手 $F_*:T\downarrow \varDelta_A\to F\circ T\downarrow \varDelta_B$ が次のように定まる.

- $T \downarrow \Delta_A$ の対象 (a,α) に対して、 $F \circ T \downarrow \Delta_B$ の対象 $(Fa, 1_F * \alpha)$ を対応させる.
- $T \downarrow \Delta_A$ の射 $f: (a, \alpha) \to (b, \beta)$ に対して、 $F \circ T \downarrow \Delta_B$ の射 $Ff: (Fa, 1_F * \alpha) \to (Fb, 1_F * \beta)$ を対応させる.

同様に、関手 F_* : $\Delta_A \downarrow T \rightarrow \Delta_B \downarrow F \circ T$ が次のように定まる.

- $\Delta_A \downarrow T$ の対象 (a,α) に対して、 $\Delta_B \downarrow F \circ T$ の対象 $(Fa, 1_F * \alpha)$ を対応させる.
- $\Delta_A \downarrow T$ の射 $f: (a, \alpha) \to (b, \beta)$ に対して、 $\Delta_B \downarrow F \circ T$ の射 $Ff: (Fa, 1_F * \alpha) \to (Fb, 1_F * \beta)$ を対応させる.

定義 3.4 (余極限・極限の保存) A, B, I を圏, $F: A \rightarrow B$ を関手, $T: I \rightarrow A$ を図式とする.

- (1) 関手 $F_*: T \downarrow \Delta_A \to F \circ T \downarrow \Delta_B$ が T の余極限を $F \circ T$ の余極限にうつすとき(すなわち、始対象を保つとき)、F は T の余極限を保つという.
- (2) 関手 $F_*: \Delta_A \downarrow T \to \Delta_B \downarrow F \circ T$ が T の極限を $F \circ T$ の極限にうつすとき(すなわち、終対象を保つとき)、F は T の極限を保つという.

関手 $F: A \to B$ が、任意の圏 I と図式 $T: I \to A$ に対して T の余極限・極限を保つとき、それぞれ単に F は 余極限・極限を保つという。

4 随伴

4.1 とある一対一対応

A,B を圏, $F:A\to B,G:B\to A$ を関手とすると, $A^{\mathrm{op}}\times B$ から **SET** への "関手" $\mathrm{Hom}_B(F_-,-)$, $\mathrm{Hom}_A(-,G_-)$ が考えられることに注意する.

定理 4.1 A, B を圏、 $F: A \rightarrow B, G: B \rightarrow A$ を関手とする. 5 個の集合

- (A) $\operatorname{Hom}_B(F_{-,-})$ から $\operatorname{Hom}_A(-,G_{-})$ への"自然同型"の全体
- (B) 自然変換 η : $1_A \Rightarrow G \circ F$ であって,任意の $a \in A$, $b \in B$ に対して写像 $G \circ \eta_a$: $\operatorname{Hom}_B(Fa,b) \to \operatorname{Hom}_A(a,Gb)$ が全単射であるものの全体*5
- (C) 自然変換 ϵ : $F \circ G \Rightarrow 1_B$ であって、任意の $a \in A$ 、 $b \in B$ に対して写像 $\epsilon_b \circ F$ -: $\operatorname{Hom}_A(a,Gb) \to \operatorname{Hom}_B(Fa,b)$ が全単射であるものの全体*6
- (D) 自然変換 η : $1_A \Rightarrow G \circ F$, ϵ : $F \circ G \Rightarrow 1_B$ の組であって, $(\epsilon * F) \circ (F * \eta) = 1_F$, $(G * \epsilon) \circ (\eta * G) = 1_G$ (三角恒等式という) を満たすものの全体

を考える.

- (1) (A) の元 ϕ に対して、 $\eta_a = \phi_{a,Fa}(1_{Fa})$: $a \to GFa$ ($a \in A$) と定めると、 $\eta = \{\eta_a\}_{a \in A}$ は (B) の元 である。また、(B) の元 η に対して、 $\phi_{a,b} = G \circ \eta_a$: $\operatorname{Hom}_B(Fa,b) \to \operatorname{Hom}_A(a,Gb)$ と定めると、 $\phi = \{\phi_{a,b}\}_{(a,b)\in A^{op}\times B}$ は (A) の元である。さらに、これらの対応は互いに他の逆を与える。
- (2) (A) の元 ϕ に対して、 $\epsilon_b = \phi_{Gb,b}^{-1}(1_{Gb})$: $FGb \to b$ ($b \in B$) と定めると、 $\epsilon = \{\epsilon_b\}_{b \in B}$ は (C) の元 である。また、(C) の元 ϵ に対して、 $\psi_{a,b} = \epsilon_b \circ F$ -: $\operatorname{Hom}_A(a,Gb) \to \operatorname{Hom}_B(Fa,b)$ と定めると、

 $^{^{*5}}$ $\operatorname{Hom}_B(Fa,b) o \operatorname{Hom}_A(a,Gb); g \mapsto Gg \circ \eta_a$ という写像を $G \multimap \eta_a$ と書いている.以下同様.

 $^{^{*6}}$ $\operatorname{Hom}_A(a,Gb) \to \operatorname{Hom}_B(Fa,b); f \mapsto \epsilon_b \circ Ff$ という写像を $\epsilon_b \circ F$ - と書いている.以下同様.

 $\phi = \{\psi_{a,b}^{-1}\}_{(a,b)\in A^{\mathrm{op}}\times B}$ は (A) の元である. さらに、これらの対応は互いに他の逆を与える.

- (3) (A) の元 ϕ に対して、 $\eta_a = \phi_{a,Fa}(1_{Fa})$: $a \to GFa$ $(a \in A)$, $\epsilon_b = \phi_{Gb,b}^{-1}(1_{Gb})$: $FGb \to b$ $(b \in B)$ と 定めると、 $\eta = \{\eta_a\}_{a \in A}$ と $\epsilon = \{\epsilon_b\}_{b \in B}$ との組 (η, ϵ) は (D) の元である.さらに、この対応は (A) から (D) への全単射である.
- (4) (D) の元 (η, ϵ) に対して、 η は (B) の元である. さらに、この対応は (D) から (B) への全単射である.
- (5) (D) の元 (η, ϵ) に対して、 ϵ は (C) の元である. さらに、この対応は (D) から (C) への全単射である.

証明 (1) (A) の元 $\phi = \{\phi_{a,b}\}_{(a,b)\in A^{op}\times B}$ が与えられたとする. $a\in A$ を固定すると, $\phi_{a,-}=\{\phi_{a,b}\}_{b\in B}$ は $\operatorname{Hom}_B(Fa,-)$ から $\operatorname{Hom}_A(a,G-)$ への "自然同型"である.米田の補題(定理 2.1 (1))によれば, $\operatorname{Hom}_B(Fa,-)$ から $\operatorname{Hom}_A(a,G-)$ への "自然変換"と $\operatorname{Hom}_B(a,GFa)$ の元とは一対一に対応するのだった. $\phi_{a,-}$: $\operatorname{Hom}_B(Fa,-) \Rightarrow \operatorname{Hom}_A(a,G-)$ に対応する $\operatorname{Hom}_B(a,GFa)$ の元は, $\phi_{a,Fa}(1_{Fa})$ である.これが,(A) の元 ϕ に対して $\{\phi_{a,Fa}(1_{Fa})\}_{a\in A}$ を与える対応である.

逆に、 $a \in A$ に対して $\eta_a \in \operatorname{Hom}_B(a,GFa)$ が与えられたとして、それがいつ上のように (A) の元と 対応するかを考える。米田の補題(定理 2.1 (1))によって $\eta_a \in \operatorname{Hom}_B(a,GFa)$ と対応する "自然変換" $\phi_a \colon \operatorname{Hom}_B(Fa,-) \Rightarrow \operatorname{Hom}_A(a,G-)$ は、

$$\phi_{a,b}(g) = \operatorname{Hom}_A(a, Gg)(\eta_a) = Gg \circ \eta_a \qquad (b \in B, g \in \operatorname{Hom}_A(Fa, b))$$

で与えられる. 最初に与えられた $\{\eta_a\}_{a\in A}$ が (A) の元と対応することは, $\phi=\{\phi_{a,b}\}_{(a,b)\in A^{op}\times B}$ が "自然同型" であること, すなわち,

- (i) $\{\phi_{a,b}\}_{(a,b)\in A^{op}\times B}$ は $a\in A^{op}$ に関して自然であり、かつ
- (ii) 任意の $a \in A$, $b \in B$ に対して $\phi_{a,b}$ は全単射である

ことに他ならない.

条件 (ii) は、任意の $a \in A$ 、 $b \in B$ に対して写像 $\epsilon_b \circ F$ -: $\operatorname{Hom}_A(a,Gb) \to \operatorname{Hom}_B(Fa,b)$ が全単射であることを意味する.一方で、条件 (i) は、任意の $b \in B$ と A の射 $h \colon a' \to a$ に対して、図式

$$\begin{array}{ccc} \operatorname{Hom}_{B}(Fa,b) & \xrightarrow{G - \circ \eta_{a}} & \operatorname{Hom}_{A}(a,Gb) \\ & & \downarrow & & \downarrow \\ - \circ Fh & & \downarrow & \downarrow \\ \operatorname{Hom}_{B}(Fa',b) & \xrightarrow{G - \circ \eta_{a'}} & \operatorname{Hom}_{A}(a',Gb) \end{array}$$

が可換であるということである。上の図式の可換性は、任意の $g \in \operatorname{Hom}_B(Fa,b)$ に対して

$$Gg \circ \eta_a \circ h = Gg \circ GFh \circ \eta_{a'}$$

が成り立つということを意味する. 任意の $b \in B$, $h: a' \to a$ に対して上式が成り立つとすると, 特に b = Fa, $g = 1_{Fa}$ と置くことで, 任意の $h: a' \to a$ に対して $\eta_a \circ h = GFh \circ \eta_{a'}$ が成り立つこと, すなわち $\{\eta_a\}_{a \in A}$ が自然性条件を満たすことがわかる. 逆に, $\{\eta_a\}_{a \in A}$ が自然性条件を満たすならば, (i) は成り立つ.

以上より、 $a \in A$ に対して $\eta_a \in \operatorname{Hom}_B(a,GFa)$ が与えられたとき、それが (A) の元と対応するための条件は、 $\eta = \{\eta_a\}_{a \in A}$ が (B) の元であることである.よって、(A) の元 ϕ に対して $\{\phi_{a,Fa}(1_{Fa})\}_{a \in A}$ を与える対応は、(A) から (B) への全単射である.その逆写像は、上の議論ですでに示されているように、(B) の元 η に対して $\phi = \{\phi_{a,b}\}_{(a,b)\in A^{\operatorname{op}}\times B}, \phi_{a,b} = G - \circ \eta_a \colon \operatorname{Hom}_B(Fa,b) \to \operatorname{Hom}_A(a,Gb)$ を与える対応である.

(2) (1) の双対命題である.

- (3) (B) の元 η と (C) の元 ϵ との組 (η , ϵ) を考える. η は (1) によって (A) の元と対応し、 ϵ は (2) によって (A) の元と対応する. これら 2 つの (A) の元が一致するための条件は、任意の $a \in A$ と $b \in B$ に対して $G \circ \eta_a$: $\operatorname{Hom}_B(Fa,b) \to \operatorname{Hom}_A(a,Gb)$ と $\epsilon_b \circ F :$ $\operatorname{Hom}_A(a,Gb) \to \operatorname{Hom}_B(Fa,b)$ とが互いに他の逆写像となることである. $G \circ \eta_a$ と $\epsilon_b \circ F$ とが互いに他の逆写像となるとは、任意の $g \in \operatorname{Hom}_B(Fa,b)$ に対して $\epsilon_b \circ F G g \circ F \eta_a = g$ であり、かつ任意の $f \in \operatorname{Hom}_A(a,Gb)$ に対して $G \epsilon_b \circ G F f \circ \eta_a = f$ であることである. さらに、 η と ϵ の自然性に注意すると、これは結局
 - (i) 任意の $g \in \text{Hom}_B(Fa,b)$ に対して $g \circ \epsilon_{Fa} \circ F\eta_a = g$ であり、かつ
 - (ii) 任意の $f \in \text{Hom}_A(a,Gb)$ に対して $G\epsilon_b \circ \eta_{Gb} \circ f = f$ である

ということに他ならない.

任意の $a \in A$, $b \in B$ に対して上の 2 条件が成立するための条件を考えよう。 (i) が常に成立するとすると、特に b = Fa, $g = 1_{Fa}$ と置くことで、任意の $a \in A$ に対して $\epsilon_{Fa} \circ F\eta_a = 1_{Fa}$, すなわち $(\epsilon * F) \circ (F * \eta) = 1_F$ がわかる。逆に、 $(\epsilon * F) \circ (F * \eta) = 1_F$ ならば、(i) は常に成立する。よって、(i) が常に成立するための条件は、 $(\epsilon * F) \circ (F * \eta) = 1_F$ である。同様に、(ii) が常に成立するための条件は、 $(G * \epsilon) \circ (\eta * G) = 1_G$ である。以上の議論と (1)、(2) より、(3) に述べられた対応は、(A) の元と「(B) の元 η と (C) の元 ϵ との組 (η, ϵ) であって、三角恒等式を満たするの。との一対一対応を与える。とこるで、自然変換 $\eta: 1_{A} \to G \circ F$ と $\tau: F \circ G \to 1_{A}$

以上の議論と (1), (2) より, (3) に述べられた対応は, (A) の元と「(B) の元 η を (C) の元 ϵ との組 (η, ϵ) であって, 三角恒等式を満たすもの」との一対一対応を与える。ところで、自然変換 η : $1_A \Rightarrow G \circ F$ と ϵ : $F \circ G \Rightarrow 1_B$ が三角恒等式を満たすならば(すなわち、 (η, ϵ) が (D) の元ならば)、上の議論より $G \circ \eta_a$ と $\epsilon_b \circ F \circ F \circ G$ とは互いに他の逆写像となるから、ともに全単射となる。したがって、このとき η , ϵ はそれぞれ自動的に (B), (C) の元となる。よって、結局、(3) に述べられた対応は、(A) の元と (D) の元との間の一対一対応を与えることがわかった。

(4),(5) (1),(2),(3) から従う.

(1), (2), (2), (3) % 3 / (2).

- 定理 4.2 A, B を圏, $F: A \rightarrow B, G: B \rightarrow A$ を関手とする.
 - (1) 自然変換 $\eta: 1_A \Rightarrow G \circ F$ について、次の 2 条件は同値である.
 - (a) 任意の $a \in A$, $b \in B$ に対して, $G \circ \eta_a$: $\operatorname{Hom}_B(Fa,b) \to \operatorname{Hom}_A(a,Gb)$ は全単射である.
 - (b) 任意の $a \in A$ に対して、 (Fa, η_a) は $a \downarrow G$ の始対象である.
 - (2) 自然変換 ϵ : $F \circ G \Rightarrow 1_B$ について,次の2条件は同値である.
 - (a) 任意の $a \in A$, $b \in B$ に対して, $\epsilon_b \circ F$ -: $\operatorname{Hom}_A(a,Gb) \to \operatorname{Hom}_B(Fa,b)$ は全単射である.
 - (b) 任意の $b \in B$ に対して, (Gb, ϵ_b) は $F \downarrow b$ の終対象である.

証明 (1) のみ示す. $a \in A$ を固定する. 任意の $b \in B$ に対して $G - \circ \eta_a$: $\operatorname{Hom}_B(Fa,b) \to \operatorname{Hom}_A(a,Gb)$ が全 単射であるとは, "自然変換" $G - \circ \eta_a$: $\operatorname{Hom}_B(Fa,-) \to \operatorname{Hom}_A(a,G-)$ が "自然同型" であるということであり, これはすなわち $(Fa,G - \circ \eta_a)$ が "関手" $\operatorname{Hom}_A(a,G -)$ の表現であるということである. 系 2.8 より, これは, $(Fa,G1_{Fa} \circ \eta_a) = (Fa,\eta_a)$ が $a \downarrow G$ の始対象であることと同値である. これで示された.

4.2 随伴,単位と余単位

定義 4.3(随伴) A, B を圏とする。関手 $F: A \to B, G: B \to A$ と $A^{op} \times B$ から **SET** への "関手" の間の "自然同型" $\phi: \operatorname{Hom}_B(F_{-}, -) \cong \operatorname{Hom}_A(-, G_{-})$ との組 $(F, G; \phi)$ を,随伴という。このとき,(F, G) は ϕ によって随伴をなすという。また,このような"自然同型" ϕ が存在するとき,(F, G) は随伴対である,F は G の左

随伴である, G は F の右随伴であるという *7 .

定義 4.4 (単位・余単位) A, B を圏, $F: A \to B, G: B \to A$ を関手とし, $F \to G$ は"自然同型" $\phi: \operatorname{Hom}_B(F-,-) \cong \operatorname{Hom}_A(-,G-)$ によって随伴をなすとする.

- (1) 自然変換 η : $1_A \Rightarrow G \circ F$, $\eta_a = \phi_{a,Fa}(1_{Fa})$: $a \to GFa$ を, 随伴 $(F,G;\phi)$ の単位という.
- (2) 自然変換 ϵ : $F \circ G \Rightarrow 1_B$, $\epsilon_b = \phi_{Gb,b}^{-1}(1_{Gb})$: $FGb \to b$ を、随伴 $(F,G;\phi)$ の余単位という.

系 4.5(三角恒等式) A, B を圏, F: $A \to B$, G: $B \to A$ を関手とする. 自然変換 η : $1_A \Rightarrow G \circ F$, ϵ : $F \circ G \Rightarrow 1_B$ について, 次の 2 条件は同値である.

- (a) "自然同型" ϕ : $\operatorname{Hom}_B(F_{-},-)\cong\operatorname{Hom}_A(-,G_{-})$ であって,随伴 $(F,G;\phi)$ の単位・余単位がそれぞれ η , ϵ に一致するものが存在する.
- (b) 三角恒等式

$$(\epsilon * F) \circ (F * \eta) = 1_F,$$

 $(G * \epsilon) \circ (\eta * G) = 1_G$

を満たす.

さらに、これらの条件が満たされるとき、(a) の条件を満たす ϕ は一意であり、

$$\phi_{a,b} : \operatorname{Hom}_B(Fa,b) \to \operatorname{Hom}_A(a,Gb); \quad g \mapsto Gg \circ \eta_a,$$

$$\phi_{a,b}^{-1} : \operatorname{Hom}_A(a,Gb) \to \operatorname{Hom}_B(Fa,b); \quad f \mapsto \epsilon_b \circ Ff$$

で与えられる.

系 4.6 A, B を圏, $F: A \rightarrow B, G: B \rightarrow A$ を関手とする.

- (1) 自然変換 $\eta: 1_A \Rightarrow G \circ F$ について、次の 3 条件は同値である.
 - (a) "自然同型" ϕ : $\operatorname{Hom}_B(F_-,-)\cong \operatorname{Hom}_A(-,G_-)$ であって,随伴 $(F,G;\phi)$ の単位が η に一致するものが存在する.
 - (b) 任意の $a \in A$, $b \in B$ に対して、対応 $G \circ \eta_a$: $\operatorname{Hom}_B(Fa, b) \to \operatorname{Hom}_A(a, Gb)$ は全単射である.
 - (c) 任意の $a \in A$ に対して、 (Fa, η_a) は $a \downarrow G$ の始対象である.

さらに、これらの条件が満たされるとき、(a) の条件を満たす ϕ は一意であり、

$$\phi_{a,b}$$
: $\operatorname{Hom}_B(Fa,b) \to \operatorname{Hom}_A(a,Gb)$; $g \mapsto Gg \circ \eta_a$

で与えられる.

- (2) 自然変換 ϵ : $F \circ G \Rightarrow 1_B$ について,次の3条件は同値である.
 - (a) "自然同型" ϕ : $\operatorname{Hom}_B(F_-,-)\cong \operatorname{Hom}_A(-,G_-)$ であって,随伴 $(F,G;\phi)$ の余単位が ϵ に一致するものが存在する.
 - (b) 任意の $a \in A$, $b \in B$ に対して、対応 $\epsilon_b \circ F$ -: $\operatorname{Hom}_A(a,Gb) \to \operatorname{Hom}_B(Fa,b)$ は全単射である.
 - (c) 任意の $b \in B$ に対して、 (Gb, ϵ_b) は $F \downarrow b$ の終対象である.

^{*}⁷ 本稿では用いないが、(F,G) が随伴対であることを F + G と表すことが多い.

さらに、これらの条件が満たされるとき、(a) の条件を満たす ϕ は一意であり、

$$\phi_{a,b}^{-1}$$
: $\operatorname{Hom}_A(a,Gb) \to \operatorname{Hom}_B(Fa,b)$; $f \mapsto \epsilon_b \circ Ff$

で与えられる.

以上より,関手 $F:A\to B$ と $G:B\to A$ との間の随伴は,"自然同型" $\phi: \operatorname{Hom}_B(F_{-,-})\cong \operatorname{Hom}_A(-,G_{-})$ の他,単位 $\eta: 1_A\to G\circ F$ と余単位 $\epsilon:F\circ G\to 1_B$ との組や,あるは単位のみ,余単位のみによっても記述でき,それらはすべて等価である.そこで,以下では,「(F,G) は ϕ によって随伴をなす」というのと同様に,「(F,G) は η を単位として随伴をなす」、「(F,G) は ϵ を余単位として随伴をなす」などともいう.

A, B を圏, $F: A \to B$, $G: B \to A$ を関手とする。(F, G) は "自然同型" $\phi: \operatorname{Hom}_B(F_{\neg, \neg}) \cong \operatorname{Hom}_A(\neg, G_{\neg})$ によって随伴をなすとし,その単位を $\eta: 1_A \to G \circ F$,余単位を $\epsilon: F \circ G \to 1_B$ とする。 $F \succeq G$ の反対関 手 $F^{\operatorname{op}}: A^{\operatorname{op}} \to B^{\operatorname{op}} \succeq G^{\operatorname{op}}: A^{\operatorname{op}} \to B^{\operatorname{op}}$ を考える。すると, $(G^{\operatorname{op}}, F^{\operatorname{op}})$ は "自然同型" $\phi^{-1}: \operatorname{Hom}_{A^{\operatorname{op}}}(G^{\operatorname{op}}, \neg) \cong \operatorname{Hom}_{B^{\operatorname{op}}}(\neg, F^{\operatorname{op}})$ によって随伴をなし,その単位は $\epsilon^{\operatorname{op}}: 1_{B^{\operatorname{op}}} \to F^{\operatorname{op}} \circ G^{\operatorname{op}}$,余単位は $\eta^{\operatorname{op}}: G^{\operatorname{op}} \circ F^{\operatorname{op}} \to 1_{A^{\operatorname{op}}}$ で与えられる。

定理 4.7 A, B を圏, F: $A \to B$, G: $B \to A$ を関手とし, (F,G) は η を単位, ϵ を余単位として随伴をなすとする.

- (1) 後合成関手 G_* : $B^A \to A^A$ を考える. (F, η) は $1_A \downarrow G_*$ の始対象である.
- (2) 後合成関手 F_* : $A^B \to B^B$ を考える. (G,ϵ) は $F_* \downarrow 1_B$ の終対象である.

証明 (1) のみ示す. $(F',\eta') \in 1_A \downarrow G_*$ (関手 $F': A \to B$, 自然変換 $\eta': 1_A \Rightarrow G \circ F'$) を任意にとる. 各 $a \in A$ に対して, (Fa,η_a) は $a \downarrow G$ の始対象だから(系 4.6 (1)), $\theta_a: Fa \to F'a$ であって $\eta'_a = G\theta_a \circ \eta_a$ を満たすも のが一意に存在する.これにより定まる $\theta = \{\theta_a\}_{a \in A}$ は,F から F' への自然変換である.これを示そう.A の射 $f: a \to a'$ を任意にとる. η,η' の自然性および $\theta_a,\theta_{a'}$ の定め方より,次の図式中の小四角形および小三角形はすべて可換である:

これより $G(F'f \circ \theta_a) \circ \theta_a = \theta'_{a'} \circ f = G(\theta_{a'} \circ Ff) \circ \theta_a$ であり、したがって、普遍性が誘導する射の一意性と合わせて $F'f \circ \theta_a = \theta_{a'} \circ Ff$ を得る.よって、 $\theta = \{\theta_a\}_{a \in A}$ は自然性条件を満たす.さて、その定め方より、 $\theta \colon F \Rightarrow F'$ は $\eta' = G_*\theta \circ \eta$ を満たす唯一の自然変換である.以上より、 (F,η) は $1_A \downarrow G_*$ の始対象である. \square

系 4.8 (随伴の一意性) A, B を圏とする.

- (1) $F, F': A \rightarrow B$ がともに $G: B \rightarrow A$ の左随伴ならば、 $F \cong F'$ である.
- (2) $G, G': B \to A$ がともに $F: A \to B$ の右随伴ならば、 $G \cong G'$ である.

証明 (1) のみ示す. $F, F': A \to B$ がともに $G: B \to A$ の左随伴であるとし、対応する単位 η, η' をとる. すると、定理 4.7 (1) より $(F, \eta), (F', \eta')$ はともに $1_A \downarrow G_*$ の始対象だから、始対象の一意性(命題 1.6 (1))より

 $(F,\eta)\cong (F',\eta')$, 特に $F\cong F'$ である.

次の意味で、左随伴関手は、右随伴関手と単位(になるべき射の族)から復元できる(右随伴関手について も同様).

命題 4.9 A.B を圏とする.

- (1) $G: B \to A$ を関手とする. また、各 $a \in A$ に対して、 $a \downarrow G$ の始対象 (b_a, η_a) $(b_a \in B, \eta_a: a \to Gb_a)$ が与えられているとする. これに対して、関手 $F: A \to B$ であって、対象の対応が $a \mapsto b_a$ であり、 $\eta = \{\eta_a\}_{a \in A}$ が 1_A から $G \circ F$ への自然変換であるようなものが一意に存在する. さらに、このとき (F,G) は η を単位として随伴をなす.
- (2) $F: A \to B$ を関手とする. また、各 $b \in B$ に対して、 $F \downarrow b$ の終対象 (a_b, ϵ_b) $(a_b \in A, \epsilon_b: Fa_b \to b)$ が与えられているとする. これに対して、関手 $G: B \to A$ であって、対象の対応が $b \mapsto a_b$ であり、 $\epsilon = \{\epsilon_b\}_{b \in B}$ が $F \circ G$ から 1_B への自然変換であるようなものが一意に存在する. さらに、このとき (F,G) は ϵ を余単位として随伴をなす.

証明 (1) のみ示す.A の射 f: $a \to a'$ を任意にとる. (b_a,η_a) は $a \downarrow G$ の始対象だから, g_f : $b_a \to b_{a'}$ であって $Gg_a \circ \eta_a = \eta_{a'} \circ f$ を満たすものが一意に存在する.そこで,A の対象 a に対して B の対象 b_a を,A の射 f に対して B の射 g_f を与える対応 F を考えると,普遍性が誘導する射の一意性より,F が A から B への関 手であることがわかる.F による射の対応の定義より,f による射の対応は上のとおり定めるしかない.これは,f の一意性を示している.さらに,任意の f による射の対応は上のとおり定めるしかない.これは,f の一意性を示している.さらに,任意の f に対して f に対して f の始対象だったから,系 4.6 (1) より,f の f は f を単位として随伴をなす.

4.3 随伴と忠実性・充満性

命題 4.10 A, B を圏, $F: A \to B$, $G: B \to A$ を関手とし, $F \succeq G$ は $\eta: 1_A \Rightarrow G \circ F$ を単位, $\epsilon: F \circ G \Rightarrow 1_B$ を余単位として随伴をなすとする.

- (1) F が忠実であるための必要十分条件は、任意の $a \in A$ に対して η_a がモノ射であることである.
- (2) F が充満であるための必要十分条件は、任意の $a \in A$ に対して η_a が分裂エピ射であることである.
- (3) F が忠実充満であるための必要十分条件は、 η が自然同型であることである.

双対的に,

- (1') G が忠実であるための必要十分条件は、任意の $b \in B$ に対して ϵ_b がエピ射であることである.
- (2') G が充満であるための必要十分条件は、任意の $b \in B$ に対して ϵ_b が分裂モノ射であることである.
- (3') G が忠実充満であるための必要十分条件は、 ϵ が自然同型であることである.

証明 前半のみ示す.

(1) 必要性を示す. F が忠実であるとして,各 η_a がモノ射であることを示したい. $a, c \in A$, $f, f': c \to a$ であり, $\eta_a \circ f = \eta_a \circ f'$ が成り立っているとする. F でうつして $F\eta_a \circ Ff = F\eta_a \circ Ff'$ を得るが,三角恒等式(系 4.5)より $F\eta_a$ は(分裂)モノ射なので,Ff = Ff' である. F は忠実だったから,f = f' である.

よって, η_a はモノ射である.

十分性を示す.各 η_a がモノ射であるとして,F が忠実であることを示したい. $a,c\in A$, $f,f':c\to a$ であり,Ff=Ff' が成り立っているとする. η の自然性より, $\eta_a\circ f=GFf\circ \eta_c=GFf'\circ \eta_c=\eta_a\circ f'$ を得る. η_a はモノ射だったから,f=f' である.よって,F は忠実である.

(2) 必要性を示す. F が充満であるとして,各 η_a が分裂エピ射であることを示したい. $a \in A$ を任意にとる. F の充満性を用いて, $f: GFa \to a$ を $Ff = \epsilon_{Fa}$ なるようにとる. η の自然性より $\eta_a \circ f = GFf \circ \eta_{GFa} = G\epsilon_{Fa} \circ \eta_{GFa}$ を得るが,三角恒等式(系 4.5)より,この最右辺は 1_{GFa} に等しい.よって, η_a は分裂エピ射である.

十分性を示す.各 η_a が分裂エピ射であるとして,F が充満であることを示したい. $a,c \in A,g:Fc \to Fa$ を任意にとる. η_a は分裂エピ射だから, $f:GFa \to a$ を $\eta_a \circ f = 1_{GFa}$ なるようにとれる.このとき, $h = f \circ Gg \circ \eta_c: c \to a$ と置くと,Fh = g であることを示そう.まず, $\eta_a \circ f = 1_{GFa}$ より $F\eta_a \circ Ff = 1_{FGFa}$ である一方,三角恒等式(系 4.5)より $\epsilon_{Fa} \circ F\eta_a = 1_{Fa}$ だから,

$$Ff = \epsilon_{Fa} \circ F\eta_a \circ Ff = \epsilon_{Fa}$$

である. これと ϵ の自然性, 三角恒等式 (系 4.5) より,

$$Fh = Ff \circ FGg \circ F\eta_c$$

$$= \epsilon_{Fa} \circ FGg \circ F\eta_c$$

$$= g \circ \epsilon_{Fc} \circ F\eta_c$$

$$= g$$

を得る. よって、F は充満である.

(3) 同型射であることとモノかつ分裂エピであることとは同値だから(命題 1.9), (3) は (1), (2) から従う.

4.4 随伴と圏同値

命題 4.11 A, B を圏、 $F: A \to B$ 、 $G: B \to A$ を関手とし、 $\eta: 1_A \cong G \circ F$ 、 $\epsilon: F \circ G \Rightarrow 1_B$ を自然同型(したがって、F と G は互いに他を準逆にもつ圏同値関手)とする.

- (1) 自然変換 ϵ' : $F \circ G \Rightarrow 1_B$ であって,(F,G) が η を単位, ϵ' を余単位として随伴をなすようなものが一意に存在する. さらに,この ϵ' は自然同型である.
- (2) 自然変換 η' : $1_A \Rightarrow G \circ F$ であって,(F,G) が η' を単位, ϵ を余単位として随伴をなすようなものが一意に存在する. さらに,この η' は自然同型である.

証明 (1) のみ示す. $a \in A$, $b \in B$ を任意にとる. G は圏同値関手, したがって忠実充満だから(命題 1.27),G による射の対応 $\operatorname{Hom}_B(Fa,b) \to \operatorname{Hom}_A(GFa,Gb)$ は全単射である. また, η は自然同型だから, η_a : $a \to GFa$ は同型射であり,したがって $-\circ \eta_a$: $\operatorname{Hom}_A(GFa,Gb) \to \operatorname{Hom}_A(a,Gb)$ は全単射である. これらより, $G-\circ \eta_a$: $\operatorname{Hom}_B(Fa,b) \to \operatorname{Hom}_A(a,Gb)$ は全単射である. よって,系 4.6 (1) より,(F,G) は η を単位として随伴をなす.対応する余単位 ϵ' は一意である.さらに,G は忠実充満だから,命題 4.10 (3') より, ϵ' は自然同型である.

系 **4.12** A, B を圏とする. F: $A \to B$, G: $B \to A$ が互いに他を準逆にもつ圏同値関手ならば, (F,G) と (G,F) はともに随伴対である.

4.5 随伴と余極限・極限

定理 4.13 A, B を圏、 $F: A \rightarrow B, G: B \rightarrow A$ を関手とし、(F, G) は随伴対をなすとする.

- (1) 左随伴関手 F は、余極限を保つ.
- (2) 右随伴関手 G は、極限を保つ.

証明 (1) のみ示す. 一般に、随伴が与える自然同型によって $g \in \operatorname{Hom}_B(Fa,b)$ と対応する A の射を、 $\widetilde{g} \in \operatorname{Hom}_A(a,Gb)$ と書くことにする.

I を圏, $T: I \to A$ を A 上の図式とし, (a,α) を T の余極限, すなわち $T \downarrow \Delta_A$ の始対象とする. $(Fa, 1_F * \alpha)$ が $F \circ T$ の余極限, すなわち $F \circ T \downarrow \Delta_B$ の始対象であることを示したい.

 $(b,\beta) \in F \circ T \downarrow \Delta_B$ を任意にとる。圏 $F \circ T \downarrow \Delta_B$ における $(Fa,1_F*\alpha)$ から (b,β) への射とは、圏 B における射 $g\colon Fa\to b$ であって、 $\Delta_B g\circ (1_F*\alpha)=\beta$ 、すなわち任意の $i\in I$ に対して $g\circ F\alpha_i=\beta_i$ を満たすものに他ならない。ところで、随伴によって $g\colon Fa\to b$ に対応する射 $\widetilde{g}\colon a\to Gb$ 、 $\beta_i\colon FTi\to b$ に対応する射 $\widetilde{\beta}_i\colon Ti\to Gb$ を考えると、随伴の自然性より、

$$g \circ F\alpha_i = \beta_i \iff \widetilde{g} \circ \alpha_i = \widetilde{\beta_i}$$

である。さらに, $\widetilde{\beta}=\{\widetilde{eta_i}\}_{i\in I}$ と置くと,随伴の自然性より, \widetilde{eta} は T から $\varDelta_A Gb$ への自然変換となる.これを用いると,「任意の $i\in I$ に対して $\widetilde{g}\circ\alpha_i=\widetilde{eta_i}$ が成り立つ」ことは, $\varDelta_A\widetilde{g}\circ\alpha=\widetilde{eta}$ と表せる.これは, $\widetilde{a}:a\to Gb$ が圏 $T\downarrow\varDelta_A$ における (a,α) から (Gb,\widetilde{eta}) の射であるということに他ならない.以上より,圏 $F\circ T\downarrow\varDelta_B$ における $(Fa,1_F*\alpha)$ から (b,β) への射は,圏 $T\downarrow\varDelta_A$ における (a,α) から (Gb,\widetilde{eta}) への射と一対一に対応する.

 (a,α) は $T\downarrow \Delta_A$ の始対象だったから,圏 $T\downarrow \Delta_A$ における (a,α) から $(Gb,\widetilde{\beta})$ への射はただ 1 つ存在する. よって,上の対応より,圏 $F\circ T\downarrow \Delta_B$ における $(Fa,1_F*\alpha)$ から (b,β) への射もただ 1 つである.よって, $(Fa,1_F*\alpha)$ は $F\circ T\downarrow \Delta_B$ の始対象である.

系 4.14 圏同値関手は、極限・余極限を保つ.

証明 系 4.12 と定理 4.13 から従う.

参考文献

- [1] E. Riehl, Category Theory in Context, Dover Publications, 2016.
- [2] alg_d , 壱大整域「圏論」. 特に「極限」と「随伴関手」. (2019 年 5 月 26 日アクセス)

http://alg-d.com/math/kan_extension/