Exercise 1: Information Coding & Data Structures

Exercise 1 for the lecture 'Foundations of Data Science'

Prof. Dr. Karsten Donnay, Assistant: Marcel Blum

This session covers

- General data science process
- Introduction to git
- Introduction to our working case
- Data import in R

14.6.2021

Data science process

Data science process

"Make sense of new and/or large data and communicate insight"

- Access innovative and large data resources.
- Process data to make it machine readable.
- Use statistical methods or machine learning to detect structure in the data.
- Provide meaningful insights.

Data science process

What is good science?

- peer review, transparency and replicability (Apart from other criteria)
 - Karl Popper (1934): "non-reproducible single occurrences are of no significance to science".
 - Emphasizes the need for publication of employed methods, documentation of the data collection and cleaning process, and the provision of datasets.

Data science process

Why is reproducibility in data science difficult?

- Available resources (e.g. computing power, storage)
- Data on the Internet often in flux (e.g. websites change, Tweets get deleted...)
- Permission to use data (e.g. Facebook data)
- Git is one way to improve on one part of the reproducibility crisis: make method transparent and easily accessible.

Introduction to git

Git (Version control)

- The 'Dropbox' for programming
- Documents the different stages (versions) of files
- Makes it easy to track changes and restore previous versions.
- Enables controlled collaborations with others
- Eases the publication of work and increases transparency

Version control with git

- What's the fundamental idea?
 - We want to systematically keep track of files for multiple people working on the same project while avoiding editing conflict
 - Need people to be able to work on it locally (offline) but regularly merge their edits into a central (online) repository
 - Requires a set of standard procedures and methods to avoid/handle conflicts and standardize how changes are tracked
- Two step-process for making changes
 - "committing" (local) changes to the data/ files
 - "pushing/pulling" to/from the remote repository

Version control with git

- How does it work concretely?
 - If a repository already exists, we need to "clone" it to our local machine, i.e., we
 download a full copy of the remote repository including history of changes etc.
 - If we add a new file that has to be version tracked, we need to "add" it to the system so that it knows that you are now tracking it
 - If you make a local change, you have to "commit" it to the remote repository and you should document your change (with a short title and, optional, a more detailed info)
 - The synchronization with the remote repository is then via "pushing" changes to the remote or "pulling" changes from the remote
 - If there are any conflicts, they have to be resolved at this stage

Popular platform: Github (alternatives: bitbucket, Gitlab)

- Go to https://github.com/
- Select your role (student) and the purpose of usage and confirm the email.
- Create your first repositorye.g. github.com/css-zurich/datascience
- Download and install git
 - Easiest is to use one of the GUI Git clients
 - Great overview: https://git-scm.com/downloads/guis
 - Alternatively: install Git directly, use command line tools to do the same things
 - Introduction: https://git-scm.com/book/en/v2/Getting-Started-The-Command-Line

14.6.2021

Version control with GitHub

- If you decide to use one of the Git clients, then all of the procedures described above are already conveniently implemented and the client even reminds you what to do next...
- If you want to use GitHub for your work, you can apply for educational discount (GitHub Pro for free) that allows "private" repositories:

https://education.github.com/

- While we talk about the case, you can already "clone" the repository to get the exercise files.
 - https://github.com/css-zurich/fds-2020/
 - All files are also available through OLAT

- Hypothetical use case: How do characteristics of news articles relate to reactions on social media?
- Our two examples: The Guardian for news and Twitter for social media data

- Goal: combine news data with social media data
- There are already established packages in R that retrieve data from these platforms. However, we will use these platforms to build some applications from scratch and demonstrate core concepts of data science using R.
- Keep in mind: before starting to build your own application, do some research on existing work.
 Often there are already established ways that work efficiently.
- After the five exercises you will be able to...
 - ...manage and process data efficiently.
 - ...manipulate text into formats that you can work with.
 - ...read data from websites into R.
 - ...retrieve data from application programming interfaces (APIs)

Introduction to our working case

Why use the **Internet** to collect data?

- Has a plethora of useful data sources:
 - Government publishes data (e.g. speeches, voting...)
 - Social media data to analyze human communication
 - News data for public discourse and attention to events
 - User interactions with e.g. products (Amazon reviews), Films (IMDB)...
- Why is this relevant?
 - Re-evaluation of existing research with new data
 - Enables entirely new research questions
 - Cost and time efficient
 - Theoretically easily reproducible

Introduction to our working case

Why use the R?

- Free and open source
- Excels in data visualization and application of statistical methods
- Also: can be used to collect data on the Internet
- Beginner friendly for people with no programming background

Can be used at **every stage** of our **workflow** (no need to switch programs)!

Data import in R

Data import in R

- You can save R objects (e.g. a dataframe) in in .Rda-files
- You use "load()" to import an .Rda file into R.
- Most datasets will not be prepared for R (e.g. .csv-files, Excel files, etc.) and we will learn in the next exercise more about the ways to recognize data formats and how to import them.

Outlook

- There are many packages suitable to load specific types of data into R:
 - jsonlite: for JSON data
 - xml2: for XML data
 - readr: for Text data
 - haven: for SPSS, SAS, Stata files
 - readxl: for Microsoft excel files (.xls or .xlsx)
 - DBI: for connections to data bases
 - httr: to retrieve data from APIs
 - rvest: to retrieve data from websites/html