EFISIENSI PERENCANAAN JEMBATAN PILE SLAB DENGAN BENTANG BERVARIASI

(Studi Kasus: Jalan Tol Nusa Dua-Ngurah Rai-Benoa)

Gede Arya Wibawa¹, Made Sukrawa², I Nyoman Sutarja²

¹Alumni Teknik Sipil, Universitas Udayana, Bali ²Dosen Teknik Sipil, Universitas Udayana, Bali E-mail: bow bul9@yahoo.com

Abstrak: Perbandingan efisiensi perencanaan jembatan *pile slab* pada jalan tol Nusa Dua-Ngurah Rai-Benoa telah dilakukan dengan membuat tiga model jembatan dengan panjang bentang 7,5, 10, dan 15 m. Pelat dimodel dengan *element shell* sedangkan *pile cap* dan tiang pancang dimodel dengan *element frame*. Interaksi tanah dengan tiang pancang dimodel sebagai spring dengan nilai konstanta bervariasi sesuai jenis tanahnya. Ketiga model dibebani sesuai RSNI T-02-2005 dan direncanakan dengan dimensi minimal yang memenuhi syarat kekuatan dan kelayanan. Kemudian ketiganya dibandingkan harga dan waktu pelaksaaan strukturnya. Hasil perencanaan menunjukkan bahwa model jembatan dengan panjang bentang 10 m paling efisien di antara ketiga disain. Selain itu, disain dengan bentang 10 m membutuhkan waktu pelaksanaan lebih pendek dari disain dengan bentang 7,5 m.

Kata kunci: efisiensi, jembatan, bentang, volume, waktu

EFFICIENCY OF PILE-SLAB BRIDGE DESIGN WITH VARIED SPAN LENGTH (A Case Study of Nusa Dua-Ngurah Rai-Benoa Toll Road)

Abstract: Comparison of the efficiency of slab on pile bridge design on Nusa Dua-Ngurah Rai-Benoa toll road has been done by making three models with span length of 7.5, 10, and 15 m. The slab was modeled with shell element, while pile cap and piles were modeled with frame elements. Interaction between soil and pile was modeled as a spring with a constant value varies according to the type of soil. All three models were loaded in accordance with RSNI T-02-2005 and designed using minimum dimensions to satisfy strength and serviceability requirements. Then the three models structure were compared in term of cost and construction time. The results showed that the model bridge design with span length of 10 m is most efficient among the three designs. In addition, the design of the 10 m span requires a shorter construction time than that of 7.5 m span.

Keywords: efficiency, bridge, pile slab, construction time

PENDAHULUAN

Jalan Tol Nusa Dua-Ngurah Rai-Benoa telah dibangun dan telah beroperasi pada tanggal 24 September 2013 dengan panjang ± 8,122 km. Tujuan dibangunnya Jalan Tol Nusa Dua-Ngurah Rai-Benoa adalah untuk mengurangi kepadatan lalu lintas kendaraan yang terjadi pada jalan eksisting Tohpati-Nusa Dua. Untuk mengurangi kepadatan dengan memperlebar jalan sangat tidak mungkin dilakukan mengingat pada kondisi eksisting tidak ada lahan untuk memperlebar jalan.

Namun pada masa konstruksi proyek Jalan Tol Nusa Dua-Ngurah Rai-Benoa yang dimulai pada tanggal 1 Maret 2012 mengalami keterlambatan di mana jalan tol direncanakan beroperasi pada tanggal 25 April 2013, tetapi mulai beroperasi pada tanggal 24 September 2013. Penyebab keterlambatan pada proyek ini salah satunya adalah proses pemancangan, hal ini dikarenakan konstruksinya menggunakan tiang pancang yang disebar sepanjang jalan tol dengan jarak antar portal 7,5 m dengan bantuan kapal ponton. Kapal ponton ini hanya dapat berpindah dengan menyesuaikan kondisi pasang surut air laut, sehingga jika air laut surut kapal tidak dapat melakukan perpindahan jika pekerjaan pemancangan pada satu baris portal telah selesai. Untuk mengatasi keterlambatan ini maka muncul suatu gagasan dengan memvariasikan panjang bentang awal yaitu 7,5 m menjadi bentang

10 m dan 15 m agar nantinya mempercepat proses pekerjaan pemancangan. Namun dalam memvariasikan bentang ini akan membuat dimensi struktur awal menjadi membesar.

Pada proyek pembangunan jalan tol Nusa Dua-Ngurah Rai-Benoa terdapat lebih dari 200 portal yang mengakibatkan kapal ponton harus melakukan perpindahan sebanyak 200 kali. Namun jika panjang bentang divariasikan dengan panjang bentang 10 m dan panjang panjang 15 m, maka kapal ponton hanya akan melakukan perpindahan kurang dari 200 kali. Hal ini akan mempercepat proses pemancangan.

Dari latar belakang tersebut, perlu dilakukan penelitian dengan menganalisis efisiensi waktu pemancangan dari jembatan pile slab dengan bentang yang bervariasi.

MATERI DAN METODE

Rancangan Perencanaan

Analisis efisiensi waktu pemancangan dilakukan dengan bentang bervariasi pada struktur Jalan Tol Nusa Dua-Ngurah Rai-Benoa yang merupakan struktur jembatan pile slab yang berada di atas air laut. Penelitian dilakukan khusus pada bagian jalan lurus yaitu pada segmen 2 dengan panjang sampel 60 m, Gambar 1-2. Analisis dilakukan dengan program SAP 2000 versi 14.

Gambar 1. Lokasi proyek jalan tol Nusa Dua-Ngurah Rai-Benoa

Gambar 2. Segmen 2 dengan panjang diambil 60 m

Direncanakan tiga variasi panjang bentang yang berbeda yaitu 7,5 m, 10 m, dan 15 m. Untuk panjang bentang 7,5 m merupakan panjang bentang eksisting, namun dilakukan analisis kembali dengan mengacu pada beberapa referensi yang nantinya akan dibandingkan dengan kondisi eksisting. Sedangkan untuk panjang bentang 10 m dan 15 m dilakukan analisis hingga mendapakan struktur yang efisien dan aman.

Pada kondisi eksisting diketahui bahwa lebar jembatan satu lajur adalah 14,8 m, Gambar 3. Struktur jembatan jalan tol Nusa Dua-Ngurah Rai- Benoa merupakan struktur jembatan pile slab dengan pelat berada di atas pile cap dan tiang pancang. Jarak antara tiang pancang untuk panjang bentang 7,5 m adalah 4,13 m dengan jumlah titik tiang pancang adalah 4 titik. Jarak antara tiang pancang untuk panjang bentang 10 m adalah 3,1 m dengan jumlah titik tiang pancang adalah 5 titik, sedangkan jarak antara tiang pancang untuk panjang bentang 15 m adalah 2,48 m dengan jumlah titik tiang pancang adalah 6 titik.

Pada struktur jembatan pile slab jalan tol Nusa Dua-Ngurah Rai-Benoa direncanakan menggunakan pelat menerus dengan tulangan prategang. Namun sebelum pelat ini menerus, pelat merupakan beberapa segmen dengan nantinya dilakukan cast in place pada bagian penghubung, Gambar 4.

Gambar 3. Denah struktur satu jalur panjang 60 m

Gambar 4. Potongan melintang dan memanjang struktur jalan tol

Dalam merencanakan tulangan prategang pada pelat perlu dilakukan kontrol tegangan pada saat pelat belum menerus dengan memodelkannya sebagai pelat perletakan sederhana dengan hanya menerima beban berat sendiri.

$$f_{ss} = \frac{P}{A_C} \pm \frac{M_{Pe}}{S} \pm \frac{M_{MS}}{S} \tag{1}$$

P adalah gaya efektif prategang setelah kehilangan tegangan 17,5%, Ac adalah luas dimensi beton, $M_{\rm Pe}$ adalah momen akibat eksentrisitas gaya prategang, S adalah statis momen dan $M_{\rm MS}$ adalah momen akibat berat sendiri. Setelah itu pelat dimodelkan sebagai pelat menerus dengan menerima beban lalu lintas SL.

$$f_{cont} = \frac{P}{A_C} \pm \frac{M_{Pe}}{S} \pm \frac{M_{SL}}{S} \tag{2}$$

Namun, sebelum merencanakan tulangan pada pelat perlu dilakukan kontrol tebal pelat yaitu dengan mengontrol gaya geser.

$$k_{x} = \frac{8}{2 - \nu} Gr \tag{3}$$

Direncanakan bahwa hubungan antara tanah dan struktur dimodelkan sebagai *spring*, kondisi ini disebut dengan Interaksi Struktur-Tanah. Untuk memodelkan tanah sebagai *spring* diperlukan nilai kekakuan tanah (Tabel 1) dengan menggunakan rumus empiris (Stewert et al., 1999).

$$G = \frac{E_S}{2(1+n)} \tag{4}$$

Gambar 5. 3D model struktur jembatan

Tabel 1. Kekakuan spring pada tanah

Soil Type	Modulus Elastisitas Tanah, Es (kN/m²)	Poisson's rasio, _V	Modulus Geser Tanah, G (kN/m²)	Kekakuan Spring, k _x ,k _y (kN/m)
Silty _Sand	8,400	0.25	3360	4608
Looses Sand	10,500	0.25	4200	5760
Coral	350,000	0.25	140000	192000
Clay with	310,000	0.25	124000	170057,14
Gravel Coral	505,556	0.25	202222,4	277333,58

Pada pelat jembatan direncanakan tebal minimum menurut AASTHO LRFD (2012) diberikan t = 0.027 L. L adalah panjang bentang jembatan dan didapat tebal minimum pada bentang 7,5 m, 10 m, dan 15 m masing-masing sebesar 202, 270, dan 450 mm, dengan tebal pada bentang eksisting adalah 350 mm. Namun, tebal minimum pada masing-masing bentang tersebut telah dianalisis dan tidak memenuhi syarat, sehingga perlu dilakukan estimasi dimensi struktur pada masing-masing bentang. Berikut ini tabel estimasi dimensi struktur pada masing-masing bentang.

Tabel 2. Estimasi dimensi struktur

Bentang	7,5 m	10 m	15 m
Pelat			
Tebal (mm)	300	360	520
Lebar (mm)	1000	1000	1000
Pile cap			
Tinggi (mm)	600	600	600
Lebar (mm)	1000	1000	1000
Tiang Pancang			
Dia. (mm)	600	600	600

Data Material

Analisis dan perancanaan akan digunakan mutu material yang didapat dari PT. Lapi Ganeshatama Consulting. Data materialnya sebagai berikut:

1. Mutu Beton (fc')

Pelat : 41,5 MPa Tiang Pancang : 50 MPa Pile cap : 35 MPa

2. Berat jenis beton bertulang (c): 2400 kg/m³

3. Mutu Tulangan

D < 10 mm : 240 MPa D 10 mm : 400 MPa

4. Jenis Kabel Strain : Multi-stand Posttensioning System Super Strand 0,5"

Low Relaxation : 2,5% at 70% UTS.

Nominal Diameter: 12,7 mm

: 98,7 mm² Nonimal Area Tensile Strength : 1860 MPa -: 1670 MPa Yield Strength Modulus Elastisitas: 195000 MPa

Pembebanan

Analisis dan perencanaan pada jembatan pile slab ini digunakan pembebanan sesusi denganRSNI T 02-2005, dengan beban sebagai berikut:

Tabel 3. Pembebanan untuk jembatan

Group	Beban	Keterangan
Beban Tetap	Berat Sendiri Beban Tambahan - Aspal - Railing Penyusutan &Rangkak	Berat Jenis Beton 24kN/m³ Asphalt unit weight 22.4 kN/m³ εcsh-u = 0.0005, εsh = 0.0002
Beban Lalu Lintas	Beban Lajur (D): BTR + BGT Gaya Rem	BTR, q = 9.0 kN/m². BGT, P = 49 kN/m 5% dari D
Beban Aksi Lingkungan	Gempa (Ex and Ey) Angin Temperature (Temp)	Respon spectrum wil.5 tanah sedang $\Delta T = 27 - 17 = 10^{\circ} \text{ C}$

Kombinasi beban dalam disain digunakan kombinasi akibat beban layan SL dan beban ultimit UL. SL adalah beban layan seperti berat sendiri, railing, aspal, penyusutan dan rangkak, beban lajur dan temperatur. UL adalah beban ultimit dengan kombinasi 1,2 (MS+Temp) + 1,8 Beban Lajur + Penyusutan dan Rangkak + 2 Railing. UL-Ex adalah beban ultimit dengan beban gempa arah X yaitu 1,2 (MS+Temp) + Penyusutan dan Rangkak + Lajur + Ex. UL-Ey adalah beban ultimit dengan beban gempa arah Y yaitu 1.2 (MS+Temp) + Penyusutan dan Rangkak + Beban Lajur + Ey.

HASIL DAN PEMBAHASAN

Hasil dari analisis gaya-gaya dalam yang terjadi pada masing-masing bentang disajikan pada Tabel 4 untuk pelat, Tabel 5 untuk pile cap, dan Tabel 6 untuk tiang pancang. Pada Tabel 4 dapat dilihat bahwa peningkatan gaya-gaya yang terjadi jika bentang semakin panjang.

Tabel 4. Gaya momen dan geser pada pelat

	Bentang 7,5 m ($t = 300 \text{ mm}$)		Bentang	Bentang $10 \text{ m} \text{ (t} = 360 \text{ mm)}$			Bentang 15 m ($t = 520$ mm)		
Beban	M-Neg (kN-m)	M-Pos (kN-m)	Geser (kN)	M-Neg (kN-m)	M-Pos (kN-m)	Geser (kN)	M-Neg (kN-m)	M-Pos (kN-m)	Geser (kN)
Berat Sendiri	0	49,29	21,55	0	105,8	35,63	0	344,27	79,53
Railing	-16,17	14,20	23,39	-29,45	21,50	26,60	-76,99	44,50	42,40
Susut &Rangkak	-17,21	0	14,95	-22,43	0	24,64	-32,56	0	26,08
Aspal	-4,47	4,81	6,28	-9,97	8,38	9,68	-43,23	26,36	23,58
Lajur	-61,41	87,61	80,48	-96,52	120,39	88,25	-275,19	220,00	175,35
Temp.	-5,64	0	4,54	-6,96	0	6,38	-7,21	0	7,78
Ex (trans)	17,12	4,61	25,29	25,55	4,95	76,37	55,08	5,69	122,87
Ey (long)	47,17	9,27	37,82	63,06	14,77	65,61	101,14	22,86	79,97
SL	-104,9	155,91	151,19	-165,33	256,07	191,18	-435,18	635,13	354,72
UL	-175,79	254,86	250,46	-283,36	403,42	306,46	-776,99	950,84	578,44
UL-Ex	-95,39	192,17	222,71	-161,67	316,49	331,91	-471,42	787,39	585,02
UL-Ey	-74,36	195,43	231,48	-135,42	323,36	324,38	-439,18	799,41	554,99
Max. Value	175,80	254,86	250,46	283,36	403,42	331,91	776,99	950,84	585,02

Tabel 5. Gaya momen dan geser pada pile cap

Beban	Bentang	Bentang 7,5 m (1000x600)			Bentang 10 m (1000x600)			Bentang 15 m (1000x600)		
Kombinasi	M-Neg (kN-m)	M-Pos (kN-m)	Shear (kN)	M-Neg (kN-m)	M-Pos (kN-m)	Shear (kN)	M-Neg (kN-m)	M-Pos (kN-m)	Shear (kN)	
SL	-211,05	186,11	538,65	-149,39	114,73	591,79	-148,64	74,60	652,05	
UL	-344,75	306,71	903,8	-245,99	186,46	952,66	-231,81	117,00	1002,70	
UL-Ex	-84,26	250,11	790,67	-15,17	162,97	916,01	0,54	117,62	1092,02	
UL-Ey	-209,13	229,88	707,76	-139,65	139,44	799,93	-125,53	93,11	933,02	
Max Value	344,75	306,71	903,80	245,99	186,46	952,66	231,81	117,62	1092,02	

Tabel 6. Gaya momen dan aksial pada tiang pancang

Beban Bentang 7,5 m (4 D600)		Bentang 10 m (5 D600)			Bentang 15 m (6 D600)				
Kombinasi	Mx (kN-m)	My (kN-m)	Axial (kN)	Mx (kN-m)	My (kN-m)	Axial (kN)	Mx (kN-m)	My (kN-m)	Axial (kN)
SL	37,68	109,77	902,13	37,59	113,56	901,67	34,52	136,85	1434,70
UL	59,12	125,02	1476,13	63,07	127,13	1438,13	58,71	155,04	2117,34
UL-Ex	223,58	9,52	399,83	245,48	4,25	280,15	299,08	4,75	266,07
UL-Ey	14,54	178,93	441,25	19,44	190,88	351,31	20,77	255,66	372,94
Max Value	223,58	178,93	1476,13	245,48	190,88	1438,13	299,08	255,66	2117,34

Tabel 7. Hasil disain pada masing-masing jembatan

Tabel 7. Hasil disa	in pada masing-masi	ng jembatan				
Bentang		7,5 m (existing)	7,5 m	10 m	15 m	Keterangan
Pelat Tebal (mm)		350	300	360	520	
Lebar (mm)		1000	1000	1000	1000	
Strand no/dia. (mm)	1	8/12,7	8/12,7	6/25,4	9/25,4	Per 1 meter
	atas	d19-125	d19-100	d22-100	d22-60	
Tulangan	bawah	d13-200	d13-75	d16-125	d19-100	
Tegangan serat	bentang sederhana	-5,24	-5,53	-7,34	-7,03	Tekan
bawah	bentang menerus	3,63	3,12	1,76	1,99	Tarik
Kapasitas geser (kN)	349,522	271,252	351,198	600,522	
Rasio kapasitas gese	er	0,71	0,92	0,94	0,97	Vu/фVc
Pile cap						•
Tinggi (mm)		600	600	600	600	
Lebar (mm)		1000	1000	1000	1000	
Tulangan lentur	tumpuan	8d19	8 d19	7 d19	7 d19	
	lapangan	7d19	7 d19	7 d19	7 d19	
Tulangan geser	tumpuan	3d13-90	4d12-125	4d12-125	4d12-100	
Tulangan gesei	lapangan	3d13-150	2d12-200	2d12-200	2d12-200	
Kapasitas geser (kN)	1550,99	964,35	964,35	1107,73	
Rasio kapasitas gese	er	0,53	0,85	0,89	0,98	Vu/фVn
Pile, No		4	4	5	6	Class A3 D600
Kapasitas momen	retak (kN-m)	-	220	220	220	
Rasio kapasitas mo	omen retak	-	0,51	0,53	0,63	M-SL/Mcr
Kapasitas ijin aksial	(kN)	-	2432	2432	2432	
Beban aksial layan		-	902,13	901,67	1434,70	
Rasio beban aksial: l	ayan	-	0,37	0,38	0,60	Ps/P-allowable
ultin	nit	-	0,62	0,61	0.88	Pu/P-allowable
Kapasitas momen (k	N-m)	-	330	330	330	
Ratio kapasitas mom	nen	-	0.69	0.76	0.92	Mu/ ф Mn

Analisis Waktu Pekerjaan Konstruksi Jembatan

Analisis waktu pekerjaan kosntruksi jembatan terbagi menjadi tiga pekerjaan, yaitu pekerjaan pemancangan, pekerjaan *pile cap* dan pekerjaan pemasangan pelat. Analisis ini didapat berdasarkan pengamatan di lapangan dan beberapa informasi dari pengawas di lapangan (Wibawa, 2013).

Data:

Bentang : 7,5 m
Jumlah baris : 9 baris

Jumlah titik 1 baris : 8 Titik tiang

pancang (1 titik 3 bagian tiang pancang)
Diameter Tiang : 600 mm

Alat yang dipakai:

Single acting drop hammer

Waktu siklus pemancangan:

Tiang Bawah	
Pengangkatan tiang	= 5 menit
Pemasangan tiang	= 5 menit
Pemancangan	= 5 menit
Pelepasan	= 5 menit
Total	= 20 menit

Tiang Tengah

Pengangkatan tiang = 5 menit= 5 menit Pemasangan tiang Pemancangan = 15 menit Pelepasan = 5 menit= 30 menitTotal

Tiang Atas

Pengangkatan tiang = 5 menit= 5 menit Pemasangan tiang Pemancangan = 25 menit = 5 menit Kalendering = 5 menit Pelepasan = 45 menitTotal

Pengelasan Join Tiang Pancang = 40 menit Waktu Pemindahan Mobile Crane= 5 menit Waktu yang dibutuhkan untuk pemancangan tiang satu titik (T1)

Tiang bawah + pengelasan + tiang tengah + pengelasan + tiang atas

$$T_1 = \frac{20 + 40 + 30 + 40 + 45}{60} = 2,91 jam \approx 3 jam$$

Dalam melakukan perhitungan waktu lamanya pemancangan digunakan waktu siklus pemancangan dengan memperhatikan waktu pasang surut air laut. Perhitungan waktu pemancangan mengacu pada waktu kerja normal yaitu mulai pukul 08.00 hingga 16.00 (8 Jam).

Pergerakan mobile crane dilakukan setelah pemancangan dua titik, sedangkan pergerakan dari kapal ponton dilakukan pada saat air laut mengalami pasang dengan waktu tunggu air pasang rata-rata 8 jam per hari. Setelah kapal ponton bergerak menuju baris lainnya, maka dilakukan proses pemancangan.

Pekerjaan pemasangan pile cap diketahui bahwa kecepatan waktu pengerjaan adalah 2 pile cap per hari, sedangkan untuk pekerjaan pemasangan pelat diketahui bahwa kecepatan waktu pengerjaan adalah 4 bentang per hari.

Gambar 6. Pergerakan proses pemancangan

Gambar 7. Proses pekerjaan pile cap

Gambar 8. Proses pekerjaan pemasangan pelat

Tabel 8. Analisis waktu pemancangan satu bari

Dontono	Waktu	Ket.		
Bentang	7,5 m	10 m	15 m	Ket.
Jumlah titik tiang per baris	8	10	12	buah
Pemancangan tiang per baris	1440	1800	2160	
Pergerakan mobile crane per baris	20	25	30	
Total waktu pemancangan	1460	1825	2190	
Total waktu pemancangan (hari)	3,04	3,80	4,56	1 hari = 8 jam

Tabel 9. Analisis waktu konstruksi untuk 60 m

D (Wak	T Z 4		
Bentang	7,5 m	10 m	15 m	- Ket.
Jumlah baris per 60 m	9	7	5	buah
Pemancangan pada 60 m	27,36	26,6	22,8	
Jumlah pergerakan kapal ponton	8	6	4	kali
Waktu pergerakan kapal ponton	8	6	4	
Waktu pekerjaan pile cap	9	7	5	
Waktu pekerjaan pelat	4	3	2	
Total waktu pekerjaan	48,36	42,6	33,8	
Efisien waktu terhadap 7,5 m	-	5,76	14,56	

Dari Tabel 9 terlihat bahwa waktu pemancangan dalam dua lajur untuk masingmasing bentang adalah 27,36, 26,6, dan 22,8 hari, dengan waktu pergerakan kapal ponton pada masing-masing bentang adalah 8, 6, dan 4 hari. Dengan asumsi awal bahwa waktu tunggu pasang terjadi setiap 8 jam per hari. Waktu pekerjaan pile cap pada masing-masing adalah 9, 7, dan 5 hari. Penjelasannya adalah: kecepatan pekerjaan pile cap adalah 2 pile cap per hari dengan jumlah pile cap untuk 2 jalur pada masing-masing bentang adalah 18, 14, dan 10 buah. Sedangkan untuk pekerjaan pemasangan pelat pada bentang 7,5 m, 10 m dan 15 m adalah 4, 3, dan 2 hari. Penjelasannya adalah kecepatan pile adalah 4 bentang per hari dengan jumlah bentang untuk 2 jalur pada masing-masing bentang adalah 16, 12, 8 buah.

Analisis Efisiensi Jembatan

Analisis efisiensi pada masing-masing jembatan dilakukan perbandingan antara waktu pekerjaan konstruksi jembatan, volume dan biaya struktur pada masing-masing jembatan.

Tabel 10. Volume struktur masing-masing jembatan

Dantana	Volume Struktur (m³)				
Bentang	7,5 m	10 m	15 m		
Pelat	540	648	936		
Pile cap	150	114	77		
Besi Tulangan	1,5	1,6	2,5		
Tiang Pancang (buah)	72	70	60		

Tabel 11. Asumsi harga struktur

Material	Harga/ m³ (Rp.)	Ket.
Beton Mutu 41,5 MPa	1.200.000	
Beton Mutu 35 MPa	980.000	
Besi Tulangan	9.600	Per kilo gram
Tiang Pancang (buah)	750.000	Per meter

Tabel 12. Biaya struktur jembatan

Struktur	Biaya Struktur (Rp.)		
	7,5 m	10 m	15 m
Pelat	648.000.000	777.600.000	1.123.200.000
Pile cap	147.000.000	111.720.000	75.460.000
Tulangan	126.000.000	134.400.000	210.000.000
Tiang	1.890.000.000	1.837.500.000	1.575.000.000
Total	2.811.000.000	2.861.220.000	2.983.660.000

Gambar 8. Perbandingan waktu dan volume

Gambar 9. Perbandingan biaya dan waktu konstruksi

Biaya waktu konstruksi diasumsikan bahwa satu hari pekerjaan biaya yang dihabiskan adalah Rp.10.000.000,00.-. Waktu konstruksi pada masing-masing bentang adalah 48,36, 42,6 dan 33,8 hari, sehingga biaya waktu konstruksi pada masing-masing bentang adalah Rp.483.600.000,00.-, Rp.426.000.000,00.- dan Rp.338.000.000,00.-.

Gambar 10. Perbandingan biaya konstruksi pada masing-masing bentang

SIMPULAN DAN SARAN

Simpulan

Efisiensi perencanaan jembatan dengan bentang bervariasi telah dilakukan dengan variasi betang 7,5 m (existing), 10 m dan 15 m. Dari hasil analisis masing-masing bentang diperoleh simpulan sebagai berikut:

- Dari dimensi struktur, diperoleh bahwa 1. tebal pelat pada bentang 7,5 m, 10 m, dan 15 m adalah 300 mm, 360 mm, 520 mm. Sedangkan untuk pile cap pada bentang 7,5 m, 10 m dan 15 m adalah sama yaitu 1000x600 mm dengan jumlah tiang pancang untuk satu pile cap pada bentang 7,5 m, 10 m, dan 15 m adalah 4, 5, dan 6 buah.
- Pada kondisi di proyek diketahui bahwa 2. tebal pelat adalah 350 mm, sedangkan dari hasil analisis didapatkan tebal pelat adalah 300 mm. Disimpulkan bahwa tebal pelat kurang efisien dari segi volume pelat.
- 3. Volume pelat pada ketiga bentang bahwa pada bentang 7,5 m memiliki volume pelat lebih efisien dibandingkan bentang 10 m dan 15 m, yaitu 540, 648 dan 936 m³.
- 4. Volume pile cap pada ketiga bentang bahwa bentang 15 m memilki volume pile cap lebih efisien diandingkan bentang 7,5 m dan 10 m, yaitu 77, 150, dan 114 m³.
- 5. Jumlah tiang pancang pada ketiga bentang bahwa bentang 15 memiliki jumlah tiang lebih efisien dibandingkan bentang 7,5 m dan 10 m yaitu 60, 72 dan 70 buah.
- 6. Jumlah waktu pekerjaan konstruksi pada ketiga bentang bahwa bentang 15 m waktu pekerjaannya lebih cepat dibandingkan bentang 7,5 dan 10 m.
- Efisien waktu terhadap bentang 7,5 m pada 7. bentang 10 m dan 15 m memiliki selisih waktu adalah 5,76 dan 14,56 hari, sehingga bentang 15 m memiliki saving time lebih banyak.
- 8. Biaya konstruksi pada masing-masing bentang adalah Rp.2.811.000.000,00.-, Rp.2.861.220.000,00.-Rp.2.983.660.000,00.-.
- Jika dilihat dari total biaya, bentang 9. yang paling efisien adalah bentang 10 m dengan biaya seluruh konstruksi adalah Rp.3.287.220.000,00.-. Penghematan biaya

seluruh konstruksi terhadap bentang 7,5 m dan 15 m adalah Rp.7.380.000,00.- dan Rp.34.440.000,00.-

Saran

Perlu adanya studi analisis terhadap biaya waktu konstruksi dan studi analisis terhadap perilaku dan kinerja struktur jembatan pada masing-masing bentang.

DAFTAR PUSTAKA

- AASTHO LRFD. 2012. Brigde Design Specification 6th. American Association of State Highway and Transportation Official, Washington, D.C.
- PT. Lapi Ganeshatama Consulting. Laporan Disain Struktur Pembangunan Jalan Tol Nusa Dua-Ngurah Rai-Benoa. Bandung.
- Badan Standar Nasional. 2005. Pembebanan Untuk Jembatan (RSNI T 02-2005). Jakarta.
- Badan Standar Nasional. 2008. Standar Perencanaan Ketahanan Gempa Untuk Jembatan (SNI 2833:2008). Jakarta.
- Badan Standar Nasional. 2002. Tata Cara Perencanaan Struktur Beton Bertulang Untuk Bangunan Gedung (SNI 03-2847-2002). Jakarta.
- Computer and Structures, Inc. 2011. CSI Analysis Reference Manual For SAP2000, ETABS, SAFE and CSi Bridge. Berkeley, California, USA. Badan Standar Nasional. 2004. Perencanaan Struktur Beton Untuk Jembatan (RSNI T-12-2004). Jakarta. Computer and Structures, Inc. 2011.
- CSI Analysis Reference Manual For SAP2000, ETABS, SAFE and CSi Bridge. Berkeley, California, USA.
- Lin, T.Y. and Burns, N.H. 1981. Disain of Prestressed Concrete Structures. Jhon Wiley & Sons, Inc. New York
- Nilson, A.H. 1987. Design of Prestressed Concrete Second Editions. Jhon Wiley & Sons, Inc. New York
- Stewert, J.P., Fenves, G.L., and Seed, R.B. (1999). "Seismic soil-structure interaction in buildings: I Analytical Methods." Journal of Geotechnical and Geoenvironmental Engineering, P26-27.

Supriyadi, B. & Muntohar, A.S. (2000), Jembatan, Beta Offset, Yogyakarta.

Wibawa, G.A. (2013). Laporan Kerja Praktek Proyek Pembangunan Jalan Tol Nusa Dua-Ngurah Rai-Benoa Paket 2. Jurusan Teknik Sipil Fakultas Teknik Universitas Udayana. Bali.