3. Truth Tables

Language & Logic

Dave Parker

University of Birmingham 2017/18

Timetable

- Mon 4pm: lecture (logic & truth tables)
- Tue 11am / Thur 10am: class (exercises/discussion)
 - on Tuesday, if your surname is in the range A-J (by default)
 - on Thursday, if your surname is in the range K-Z (by default)
- Reminder: practice quizzes online (basic logic + grammars)
 - solutions online; questions? see me in office hours (Tue 1pm, Thur 2pm) or classes/lectures, or ask on the Facebook group
- First continuous assessment next week

Syllabus

- Syntax of formal & natural languages
 - grammars, parsing
- Propositional logic
 - truth tables, semantics, proofs via natural deduction
- Predicate calculus
 - proofs via natural deduction
- Program correctness
 - structural induction

Recap (arguments)

- A proposition is a sentence which states a fact
 - i.e. a statement that can (in principle) be true or false
- An argument is a collection of propositions
 - comprising 0 or more premises and 1 conclusion
- An argument is valid if (and only if), whenever the premises are true, then so is the conclusion

Example arguments

Examples

- If John is at home, then his television is on His television is not on Therefore, John is not at home
- If the control software crashes, then the car's brakes will fail
 The car's brakes failed
 Therefore, the control software crashed
 [invalid]

Today

- Propositional logic
 - atomic propositions
 - conjunction, disjunction, negation, material implication
- Truth tables
 - representing semantics of logical connectives
 - deduction: checking validity of arguments

Atomic propositions

Propositions

– (recall: check whether you ask "is it true that X?")

Atomic propositions:

- propositions that cannot be broken into smaller parts
- combined into more complex propositions with connectives

Examples

- If the control software crashes, then the car's brakes will fail
- The car's brakes failed
- The control software crashed and the car's brakes failed

Conjunction

Conjunction

- logical connective corresponding to "and"
- − denoted by symbol ∧
- true if both individual propositions are true

Example propositions

- 1. There is smoke and there is a fire
- 2. It is late and I want to go home
- 3. The car is small and red
- 4. Alice and Bob are married

Conjunction

Conjunction

- logical connective corresponding to "and"
- − denoted by symbol ∧
- true if both individual propositions are true

Example propositions

- 1. There is smoke and there is a fire
- 2. It is late and I want to go home
- 3. The car is small and red the car is red
- 4. Alice and Bob are married

Semantics of conjunction

 We can define the semantics of a logical connective using a truth table. For example, for P ∧ Q (i.e. "P and Q"):

P	Q	$P \wedge Q$
Т	Т	
Т	F	
F	Т	
F	F	

Format

- one row for each possible logical combination
- i.e. $2^2 = 4$ rows for 2 atomic propositions, P and Q
- abbreviate true to T and false to F

Semantics of conjunction

 We can define the semantics of a logical connective using a truth table. For example, for P ∧ Q (i.e. "P and Q"):

P	Q	P \(\) Q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Format

- one row for each possible logical combination
- i.e. $2^2 = 4$ rows for 2 atomic propositions, P and Q
- abbreviate true to T and false to F

Disjunction

- Disjunction ("or")
 - e.g., Either the control software crashes or there is a power failure
 - connective denoted by symbol \lor

Р	Q	$P \lor Q$
Т	Т	
Т	F	
F	Т	
F	F	

Disjunction

- Disjunction ("or")
 - e.g., Either the control software crashes or there is a power failure
 - connective denoted by symbol ∨

P	Q	$P \vee Q$
Т	Т	T
Т	F	Т
F	Т	Т
F	F	F

- Note: English sentences will often translate to "exclusive or"
 - e.g., Your mark will either be "pass" or "fail"
- But logical disjunction is always defined as above

Negation

- Negation ("not")
 - e.g., This connective is not difficult to understand
 - unary connective denoted by symbol ¬

Р	¬P
Т	F
F	Т

Material implication

- Material implication ("if... then...")
 - e.g., If there is smoke then there is a fire
 - denoted by symbol →
 - we say: "if P then Q", or "P implies Q"

Р	Q	$P \rightarrow Q$
Т	Т	
Т	F	
F	Т	
F	F	

Material implication

- Material implication ("if... then...")
 - e.g., If there is smoke then there is a fire
 - denoted by symbol →
 - we say: "if P then Q", or "P implies Q"

P	Q	$P \rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- Sometimes confusing at first sight
 - just remember the truth table!

Another example

- If there is an exam and you do not study, you will not pass
- How do we represent this proposition as a truth table?

Checking validity

- How do we tell if a given argument is valid?
 - (this is one of the key topic studied in this module)
- Example
 - If John is at home, then his television is on His television is not on Therefore, John is not at home
- One way: use a truth table...
 - 1. identify and abbreviate atomic propositions
 - 2. translate premises/conclusion into propositional logic
 - 3. construct a truth table for premises and conclusion
 - 4. check the definition of validity
 - · when all premises are true, the conclusion must also be true
 - or, in other words: there is <u>no</u> situation where the premises are true but the conclusion is false

Example 1

• Argument:

P1: If John is at home, then his television is on \longrightarrow H \rightarrow O

P2: His television is not on

C: Therefore, John is not at home

Atomic propositions

– H = "John is at home"

- O = "his television is on"

argument

Н	0	H → O	¬O	¬Н
Т	Т	Т	F	F
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

P1

Example 2

Argument:

P1: If the control software crashes, then the car's brakes will fail

P2: The car's brakes failed

C: Therefore, the control software crashed

Atomic propositions

– C = "control software crashes"

– B = "brakes fail"

argument invalid P2

С	В	C → B	В	С
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	F	F

P1

Summary

• Propositions, arguments, validity

Propositional logic

- atomic propositions
- logical connectives
- conjunction (and), disjunction (or), negation (not),
 material implication (if ... then)

Truth tables

- defining connective semantics
- deduction: checking argument validity

Next session

- Tue 11am / Thur 10am: class (exercises/discussion)
 - on Tuesday, if your surname is in the range A-J (by default)
 - on Thursday, if your surname is in the range K-Z (by default)
- Topic: truth tables