8. 0th LAW OF THERMODYNAMICS

THERMAL EQUILIBRIUM: When two bodies are in contact, heat flows from a body at higher temperature to a body at lower temperature until the both bodies attain same final temperature.

	1
ADIABATIC WALL: Doesn't permit heat transfer.	DIATHERMIC WALL: Permit heat transfer. E.g. All
E.g. Thermocol, Glass Wool.	metals.

STATEMENT OF ZEROTH LAW:

When two bodies are in thermal equilibrium with third body, then there are in thermal equilibrium with each other.

	0th Law: Concept of Temp.	1 st Law: Energy Conservation.	2 nd Law: Direction of heat transfer & Process Possibility.
--	---------------------------	---	--

TEMPERATURE MEASUREMENT:

THERMOMETRIC PROPERTY: Any property of body which is function of temperature only is called thermometric property. E.g. Pressure, Volume, Length, etc...

THERMOMETRIC SUBSTANCE: Substance which is used in temperature measurement is called thermometric substance. E.g. Mercury/ Alcohol in thermometer, etc...

TYPES OF THERMOMETERS:

1. **RESISTANCE THERMOMETER:** It works on bridge principle. Here, resistance is thermometric property.

$$P/Q = S/R$$
, Where $R = Resistance$

- 2. THERMOCOUPLE: It works based on see-back effect. When Two dissimilar metals joints together and maintained at different temperature, EMF or voltage is generated. So, EMF (Thermometric property) is measured.
- 3. CONSTANT VOLUME GAS THERMOMETER: It works based on ideal gas law. Here, gas is used as thermometric substance. It uses Gay-Lussac's law. Here, pressure (Thermometric property) is measured.

$$T = aP + b$$
, Where a, b are constant.

4. CONSTANT PRESSURE GAS THERMOMETER: It works based on ideal gas law. Here, gas is used as thermometric substance. It uses Charles law. Here, Volume (Thermometric property) is measured.

$$T = aV + b$$
, Where a, b are constant.

REFERENCE POINT: These are points with respect to which all temperatures are measured. These point remains constant everywhere. E.g. Freezing Point of water \Rightarrow Ice Point (0 °C), Boiling Point of Water \Rightarrow Steam Point (100 °C), Triple point of Water $(0.01 \, ^{\circ}C \, or \, 273.16 \, K)$.

TEMPERATURE MEASUREMENT METHODS:

BEFORE 1954: Two reference points (Steam point & Ice Point) are used in below equation.

$$T_i(in \,{}^{\circ}C) = al_i + b = \left[\frac{100}{l_{steam} - l_{ice}}\right](l_i - l_{ice}), Where \, l_i = Lenght \, of \, mercury \, at \, T_i \, Temp.$$
AFTER 1954: Single reference points (Triple Point of Water) is used in below equation.

$$SI(Kelvin)$$
 $Scale: \frac{T_i}{T_{TP}} = \frac{l_i}{l_{TP}}$, $Where \ l_i = Lenght \ of \ mercury \ at \ T_i \ (in \ K) \ Temp$

TEMPERATURE SCALE:

CENTIGRADE SCALE AND FAHRENHEIT:

It's arbitrary temperature scale. (Body Temp. 98.6 °C = 37 °F)

$T_F =$	(9/5)	T_{c}	+	32
* <i>F</i>	()	' ' ' '		0 4

100	S. P.	212
0	I. P.	32
°C		°F

IMP POINTS IN ZEROTH LAW:

- S.I. unit of temp is Kelvin. $(1K = 273.16 \,^{\circ}C)$
- Constant Volume Gas Thermometer is used in experiment and Tried to get 0 K as shown in figure.
- Ideal gas thermometer is independent thermometric substance.
- Ideal gas Temperature scale is identical to Kelvin scale.

