线性代数 A1 作业合集

原生生物

* 陈发来老师班作业, 题号以纸质版教材为准。

目录

第一周	3
第一次作业 线性方程组	 Ş
第二次作业 线性方程组通解、行列式	 4
课堂小测	 Ę
思考题	 Ę
第二周	6
第一次作业 行列式性质	 6
第二次作业 Cramer 法则	 7
思考题	 8
第三周	8
第一次作业 行列式计算	 8
第二次作业 矩阵的运算	 Ç
课堂小测	 (
第四周	10
第一次作业 矩阵的多项式	 10
第二次作业 矩阵的逆	 1
课堂小测	 12
思考题	 12
第五周	12
第一次作业 分块矩阵	 12
第二次作业 初等方阵	 12
第六周	14
第一次作业 秩的定义	 14
第七周	14
第一次作业 秩的应用	 14
第二次作业 秩的更多性质	 15
课堂小测	1.5

第丿	(周																							16
	第一次作业	模相	抵.																			 		16
	思考题																					 		16
第カ	1 国																							17
	第一次作业	不亦	田子																					17
	第二次作业																							
	界一次正型 期中考试 .																							18
	MIT JW			• •		•	 •	 •	•	• •	•	• •	•	 •	 •	• •	•	 •	 •	•	 •	 • •	•	10
第-	卜周																							19
	第一次作业	向量	组的	秩																		 		19
	第二次作业	向量	组秩	的性	生质	į.																 		20
△	├一周																							04
	「一周 第一次作业	乙穴	ांन																					20
	第一次作业 课堂小测																							20 21
	思考题																							2
	芯写越					•	 •	 •	•		•		٠	 •	 •		•	 •	 •		 •	 	•	2.
第一	卜二周																							21
	第一次作业	一般	线性	空门	间.																	 		2
	第二次作业	同态	与同	构																		 		22
	=																							
• • •	 一月	<u> </u>	.v L	THE	· –																			23
	第一次作业	父至	间与	和音	旦日].	 •	 •	•		•		•	 ٠	 •		•	 ٠	 ٠			 ٠.	•	23
第-	上四周																							2 4
	第一次作业	补空	间.																			 		2^{2}
	第二次作业	线性	映射																			 		2^{2}
	课堂小测																					 		2!
	思考题							 ٠														 		20
~ ~																								
• • •	- 五周	/ / /-	. 1}-																					27
	第一次作业																							2'
	第二次作业																							28
	思考题					•	 •	 •	•		•		•	 ٠	 •		•	 ٠	 •		 •	 	•	28
第-	上 六周																							28
	第一次作业	相似	.的概	念																		 		28
	第二次作业	特征	子空	间																		 		29
	思考题																					 		29
~ ~																								_
	上七周	.	<i>A</i>																					30
	第一次作业																							30
	思考题																					 		3

第一周

第一次作业 线性方程组

1. 习题 1.1-1

解线性方程组:

(1)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1\\ 2x_1 + 2x_2 + 5x_3 = 2\\ 3x_1 + 5x_2 + x_3 = 3 \end{cases}$$

(1)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1\\ 2x_1 + 2x_2 + 5x_3 = 2\\ 3x_1 + 5x_2 + x_3 = 3 \end{cases}$$
(2)
$$\begin{cases} x_2 + x_3 + x_4 = 1\\ x_1 + x_3 + x_4 = 2\\ x_1 + x_2 + x_4 = 3\\ x_1 + x_2 + x_3 = 4 \end{cases}$$

2. 习题 1.1-3

证明:

- (1) 线性组合的传递性: 若方程组 II 是方程组 I 的线性组合,方程组 III 是方程组 II 的线性组合, 则方程组 III 是方程组 I 的线性组合;
- (2) 等价的传递性: 若方程组 II 与方程组 I 等价,方程组 III 与方程组 II 等价,则方程组 III 与方 程组I等价。
- 3. 习题 1.2-1

用矩阵消元法解线性方程组:

(2)
$$\begin{cases} x_2 + x_3 + x_4 = 1 \\ x_1 + x_3 + x_4 = 2 \\ x_1 + x_2 + x_4 = 3 \\ x_1 + x_2 + x_3 = 4 \end{cases}$$

$$\begin{cases} x_2 + x_3 + x_4 = 1 \\ x_1 + x_3 + x_4 = 2 \\ x_1 + x_2 + x_4 = 3 \\ x_1 + x_2 + x_3 = 4 \end{cases}$$

$$(4) \begin{cases} 2x_1 + x_2 - 5x_3 + x_4 &= 8 \\ x_1 - 3x_2 - 6x_4 &= 9 \\ 2x_2 - x_3 + 2x_4 &= -5 \\ x_1 + 4x_2 - 7x_3 + 6x_4 &= 0 \end{cases}$$

4. 习题 1.2-3

已知 f(1) = 2, f(2) = 7, f(3) = 16, f(4) = 29, 问 f 是否可能是二次函数? 若可能, 求出所有可能结 果; 若不可能, 说明理由。

5. 习题 1.2-4

在实数范围内解线性方程组

$$\begin{cases} x + 3y + 2z = 4 \\ 2x + 5y - 3z = -1 \\ 4x + 11y + z = 7 \end{cases}$$

并说明解集在三维空间中的图像 Ⅱ。1

将每个方程右侧的常数项变为 0,重复上述过程,得到解集在三维空间中的图像 Π_0 。说明 Π 与 Π_0 的关系 (例如,二者相差怎样的变换?)。

第二次作业 线性方程组通解、行列式

1. 习题 1.3-1

确定 a,b 取何值时下方线性方程组有解,并在有解时求出其通解:

$$\begin{cases} 3x_1 + 2x_2 + ax_3 + x_4 - 3x_5 &= 4 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 &= 3 \\ x_1 + x_2 + 3x_3 + 2x_4 + x_5 &= 1 \\ x_2 + 2x_3 + 2x_4 + 6x_5 &= -3 \\ x_3 + bx_4 + x_5 &= 1 \end{cases}$$

2. 习题 1.3-2

确定 λ 取何值时下方线性方程组有解,并在有解时求出其通解:

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$$

- 3. 习题 1.3-3
 - (1) 求下方方程组 I 的通解:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 &= 1\\ x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 &= 6\\ x_1 - x_3 - 2x_4 - 3x_5 &= -4 \end{cases}$$

- (2) 将方程组 I 右侧常数项换为 0 得到方程组 II, 求 II 的通解,并用向量写成 II 的几个特解线性组合的形式。
- (3) 方程组 I 的通解能否写成 I 的几个特解线性组合的形式?若能则写出,若不能则说明理由。
- (4) 观察方程组 I、II 通解之间的关系,找到规律并证明你的规律(仍可考虑二者相差怎样的变换)。
- 4. 习题 3.1-7

将 λ 作为变量, a_{ij} 作为常数,则行列式

$$f(\lambda) = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

可看作 λ 的多项式。求其 n 次项与 n-1 次项的系数。

 $^{^1}$ 无关紧要的小知识: 这个符号是希腊字母 π 的大写,也读作 pi。

5

5. 习题 3.1-8

计算行列式 (不写的位置为 0):

$$\begin{vmatrix}
a_{11} & a_{12} \\
& a_{22} \\
& & b_{11} \\
& & b_{21} & b_{22} \\
& & b_{31} & b_{32} & b_{33}
\end{vmatrix}$$

6. 习题 3.2-1

计算行列式:

$$(1) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 9 \end{vmatrix}$$

$$(2) \begin{vmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1-a & 1 & 1 \\ 1 & 1 & 1+b & 1 \\ 1 & 1 & 1 & 1-b \end{vmatrix}$$

$$(3) \begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

课堂小测2

1. a 为何值时下方线性方程组有唯一解? a 为何值时无解?

$$\begin{cases} x_1 + x_2 + x_3 = 3 \\ x_1 + 2x_2 - ax_3 = 9 \\ 2x_1 - x_2 + 3x_3 = 6 \end{cases}$$

- 2. 求三次多项式 $f(x) = ax^3 + bx^2 + cx + d$, 使 y = f(x) 图像经过 (1,2), (-1,3), (3,0), (0,2)。
- 3. 证明:存在二次代数曲线 $Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$ 经过平面上任意五个不同点。这样的曲线一定唯一吗?

思考题3

1. 一条 n 次平面代数曲线

$$f(x,y) = \sum_{i,j \ge 0, i+j \le n} a_{ij} x^i y^j = 0$$

²课堂小测已在课堂提交,**无需写在作业中**,记录在此处是为方便复习,此后不特别说明。

³思考题**不计分数**,也不会带来任何加分,但欢迎同学们把思考写在作业本上,此后不特别说明。

最多能通过多少个一般位置的点?也即,给定至多多少个点时能保证有有解?

- 2. 给定平面上 n+1 个点 $(x_i, y_i), i = 0, 1, ..., n$,是否存在 n 次多项式 f(x) 使得 y = f(x) 的图像经过这些点? 何时 f(x) 唯一? ⁴
- 3. 两条次数分别为 m 与 n 的代数曲线最多有几个交点? ⁵

第二周

第一次作业 行列式性质

1. 习题 3.1-1

在直角坐标系中,已知 $A(a_1,a_2),B(b_1,b_2)$ 都位于第一象限,且 B 在 A 的**逆时针**方向。记 \vec{a} 为向量 OA, \vec{b} 为向量 OB,根据以下描述,利用几何图形的等面积变换计算 $\Delta = \det(\vec{a},\vec{b}) = S_{OAPB}$,这里 P 使得 OAPB 构成平行四边形。

(1) 作 AC 垂直于 x 轴于点 C,取 Q 使得 OCQB 形成平行四边形。将 BQ 沿 x 轴负方向平移至 B 点落在 y 轴上,记作 B_1 ,此时 Q 点为 Q_1 ;将 PQ 沿 y 轴负方向平移至 Q 点落在 x 轴上,记作 Q_2 ,此时 P 点为 P_2 ,证明下式并以此计算面积:

$$S_{OAPB} = S_{OCQB} - S_{CQPA} = S_{OCQ_1B_1} - S_{CQ_2P_2A}$$

(2) 作 AC 垂直于 x 轴于点 C,BD 垂直于 x 轴于点 D,证明下式并以此计算面积:

$$S_{\triangle OAB} = S_{\triangle ODB} + S_{DCAB} - S_{\triangle OCA}$$

(3) 将 AP 沿着向量 PA 方向平移至 A 点落在 x 轴上,记作 A_1 ,此时 P 点为 P_1 ,证明下式并以此计算面积:

$$S_{OAPB} = S_{OA_1P_1B}$$

利用上式证明:

$$\det(\vec{a}, \vec{b}) = \det(\vec{a} + \lambda \vec{b}, \vec{b})$$

2. 习题 3.1-5

写出以下行列式看作 x 多项式时 x^4 与 x^3 的系数:

$$\begin{vmatrix} x & 1 & 2 & 3 \\ x & x & 1 & 2 \\ 2 & 3 & x & 1 \\ x & 2 & 3 & x \end{vmatrix}$$

3. 习题 3.1-6

n 阶行列式 $\Delta(x)$ 的每个元素 $a_{ij}(x)$ 都是 x 的可导函数,则 $\Delta(x)$ 也可看作 x 的可导函数,证明:

$$\Delta'(x) = \sum_{i=1}^{n} \Delta_i(x)$$

 $\Delta_i(x)$ 表示将 $\Delta(x)$ 第 i 行的每个函数替换为其导数,其他函数不变所得到的行列式。

⁴前两个思考题的本质都是插值问题。

⁵详情请搜索代数几何中的贝祖定理(其实就是数论里裴蜀定理那人),这个问题事实上并不在线性代数的讨论范畴。

4. 习题 3.2-1

计算行列式:

(4)
$$\begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \\ c^2 & (c+1)^2 & (c+2)^2 & (c+3)^2 \\ d^2 & (d+1)^2 & (d+2)^2 & (d+3)^2 \end{vmatrix}$$
(5)
$$\begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

5. 习题 3.2-3

证明:

(1)
$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$$
(2)
$$\begin{vmatrix} 1 & a & a^2-bc \\ 1 & b & b^2-ac \\ 1 & c & c^2-ab \end{vmatrix} = 0$$

6. 习题 3.2-5

若 n 阶方阵 A 满足 $A^T = -A$,则称为 n 阶反对称方阵⁶。证明 n 为奇数时 n 阶反对称方阵的行列式为 0。

第二次作业 Cramer 法则

- 1. 习题 3.1-2
 - (1) 求 $\tau(n(n-1) \cdots 21)$, 并讨论排列 $(n(n-1) \cdots 21)$ 的奇偶性。
 - (2) 求 τ (678354921)、 τ (87654321) 的奇偶性。
 - (3) 确定 i, j 使 (1245i6j97) 为奇、偶排列。
- 2. 习题 3.2-4

计算 n 阶行列式 D,满足其元素 d_{ij} , i, j = 1, ..., n 为:

(1)
$$d_{ij} = a_i - b_j$$
;

(2)
$$d_{ij} = \begin{cases} a_i & i = j \\ b_j & i = 1, j > 1 \\ c_i & i > 1, j = 1 \end{cases};$$

$$0 \quad \text{其他}$$

(3)
$$d_{ij} = \begin{cases} i & i = j \\ 3 & i \neq j \end{cases}$$

⁶也称为斜对称方阵。

第三周 8

3. 习题 3.4-3

设 x_1, \ldots, x_n 是 n 个不同的数, y_1, \ldots, y_n 是任意 n 个数, 证明存在唯一次数小于 n 的多项式

$$f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$

满足 $f(x_i) = y_i, \forall i = 1, \ldots, n$ 。

思考题

排列 $(n(n-1)(n-2)\cdots 321)$ **至少**经过多少次相邻两数的对换能够变成顺序排列? 我们称一个排序算法的**最坏时间复杂度**代表需要的比较、交换次数之和对任何排列的上界。上述结论说明 了什么?思考如何构造一个最坏时间复杂度量级为 $n\log n$ 的排序算法。

第三周

第一次作业 行列式计算

1. 习题 3.3-1

计算 n 阶行列式 D, 满足其元素 d_{ij} , $i, j = 1, \ldots, n$ 为:

(2)
$$d_{ij} = \begin{cases} x & i = j \\ a & j > i; \\ -a & i > j \end{cases}$$
(3)
$$d_{ij} = \begin{cases} a+b & i = j \\ a & j = i+1 \\ b & i = j-1 \\ 0 & \not\exists \text{ the } \end{cases}$$

$$\begin{cases} x & i = j < n \\ -1 & i = j+1 \end{cases}$$

$$(4) d_{ij} = \begin{cases} x & i = j < n \\ -1 & i = j+1 \\ x+a_1 & i = j = n \\ a_{n+1-i} & j = n, i < n \end{cases}$$

2. 习题 3.3-2

证明偶数阶反对称方阵 A 的所有元素的代数余子式 A_{ij} , i, j = 1, ..., 2k 和为 0。

3. 习题 3.3-3

设 n 阶方阵 A 元素为 a_{ij} ,对应代数余子式 A_{ij} ,n 阶方阵 B 元素 b_{ij} 满足 $b_{ij} = a_{ij} + x_j$,求证

$$\det B = \det A + \sum_{j=1}^{n} x_j \sum_{k=1}^{n} A_{kj}$$

4. 习题 3.3-4

设 n 阶方阵 A 元素 $a_{ij}=a_i^{j-1}$,其中 a_1,\ldots,a_n 是正整数,求证 $\det A$ 是 $\prod_{k=1}^n k^{n-k}$ 的倍数。

⁷这就是第一周思考题之一。

5. 习题 3.5-1

计算 n 阶行列式 D,满足其元素 d_{ij} , i, j = 1, ..., n 为:

(1)
$$d_{ij} = \begin{cases} j - i + 1 & j \ge i \\ x & j < i \end{cases}$$
;

(2)
$$d_{ij} = 1 + x_i^j$$
.

6. 习题 3.5-2

设
$$n$$
 阶方阵 A 元素 $a_{ij} = \begin{cases} a_i + a_j & i \neq j \\ 0 & i = j \end{cases}$,且 $n \geq 2$, $a_1 a_2 \dots a_n \neq 0$,求 $\det A$ 。

7. 习题 3.5-3

设 n 阶方阵 A 为反对称方阵,其中 n 为偶数,且元素 a_{ij} 当 i < j 时为 1,计算 $\det A$ 。

第二次作业 矩阵的运算

1. 习题 4.1-1

设

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & -2 \\ 0 & 3 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 2 \\ -1 & 0 \\ 3 & 1 \end{pmatrix}$$

计算 AB, B^2, AC, CA, B^TA^T 。

比较 AC, CA 是否相等、 AB, B^TA^T 是否相等。

2. 习题 4.1-2

对以下 A,B, 计算 AB,BA, 并判断 AB,BA 是否相等:

$$(1) \ A = \begin{pmatrix} -1 & -2 & -4 \\ -1 & -2 & -4 \\ 1 & 2 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$

(2)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$

课堂小测

- 1. 计算 Hilbert 矩阵 H 的行列式,其元素满足 $h_{ij} = \frac{1}{i+j-1}$ 。
- 2. 计算 n 阶矩阵 D 的行列式,其元素满足

$$d_{ij} = \begin{cases} a_i^2 & i = j\\ a_i a_j + 1 & i \neq j \end{cases}$$

3. 证明 n 个变量, n 个方程的线性方程组有唯一解当且仅当系数行列式非零。

第四周

第一次作业 矩阵的多项式

1. 习题 4.1-3

计算:

$$(3) \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}^{2008}$$

(6)
$$\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}^n$$

(8)
$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix}^n$$
, 其中矩阵为 n 行 n 列。

$$(11) \begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end{pmatrix}^{2006}$$

2. 习题 4.1-5

对以下 A,求满足 AB = BA 的全部方阵 8B :

$$(2) \ A = \begin{pmatrix} 3 & & \\ & 2 & \\ & & 5 \end{pmatrix}$$

$$(3) \ A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(3) \ A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

3. 习题 4.1-6

求证:与全体 n 阶方阵都可交换的 n 阶方阵必然是标量阵 9 。

4. 习题 4.1-9

将满足 $A^T = A$ 的方阵称为**对称阵**,若实方阵 A 对称,且 $A^2 = O$,证明 A = O。

5. 习题 4.1-13

举出分别满足下列条件且四个元素均为整数的二阶方阵 A:

- (1) $A \neq \pm I$, $A^2 = I$;
- (2) $A^2 = -I$;
- (3) $A \neq I$, $\coprod A^3 = I$.
- 6. 习题 4.5-5

计算行列式 D,满足其元素 d_{ij} 为:

 $^{^8}$ 它们称为与 A 可交换的方阵。

 $^{^{9}}$ 即单位阵 I 的某个倍数 λI

(1)
$$(a_{i-1} + b_{i-1})^n$$
, $i, j = 1, ..., n+1$

(2)
$$\sin(j\theta_i)$$
, $i, j = 1, \dots, n$

第二次作业 矩阵的逆

1. 习题 4.3-1

求下列矩阵的逆矩阵:

$$(2) \begin{pmatrix} 1 & 5 & 3 & 0 \\ & 4 & 6 & 2 \\ & & 9 & 1 \\ & & & 1 \end{pmatrix}$$

2. 习题 4.3-2

设 A 是方阵, $A^k = O$ 对某个 k 成立, 求证下列方阵可逆, 并求其逆:

- (1) I A
- (2) I + A

(3)
$$I + A + \frac{1}{2!}A^2 + \dots + \frac{1}{(k-1)!}A^{k-1}$$

3. 习题 4.3-4(2)

解方程

$$X \begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -3 & 1 \\ 3 & -4 & 1 \end{pmatrix}$$

4. 习题 4.3-7

证明:

- (1) 上三角阵可逆的充分必要条件是对角元全不为 0;
- (2) 可逆上三角阵的逆仍然是上三角阵。
- 5. 习题 4.3-8

设 A^* 表示 n 阶方阵 A 的伴随方阵, 证明:

(1)
$$(\lambda A)^* = \lambda^{n-1} A^*, \forall \lambda;$$

(2)
$$(AB)^* = B^*A^*, \forall A, B \in \mathbb{R}^{n \times n}$$
;

(3)
$$n > 2$$
 时 $(A^*)^* = (\det A)^{n-2}A$, $n = 2$ 时 $(A^*)^* = A$.

第五周 12

课堂小测

- 1. 设 A 是对角元互不相等的对角阵,证明若 AB = BA,则 B 也是对角阵。
- 2. 存在正整数 k 使得 $A^k = 0$ 的方阵称为幂零方阵,证明上三角阵 A 幂零当且仅当对角元全为 0。
- 3. 设 A 为实矩阵,证明 A^TA 的主子式¹⁰都非负。

思考题

利用第一次作业的第一题的过程与结果,求(按难度排序):

$$\exp\begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end{pmatrix}, \quad \exp\begin{pmatrix} \lambda & 1 \\ & \lambda & \ddots \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix}, \quad \exp\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}, \quad \exp\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

这里 exp 即 e 的指数,矩阵指数通过级数定义,可参考上课讲义。

第五周

第一次作业 分块矩阵

- 1. 习题 4.2-2
 - 设 A 为 n 阶方阵, 证明存在非零 n 阶方阵 B 使 AB = O 当且仅当 $\det A = 0$ 。
- 2. 习题 4.2-4

已知 n 阶方阵 A, B 满足 AB = BA,求

$$\begin{pmatrix} A & B \\ 0 & A \end{pmatrix}^n$$

3. 习题 4.2-6

已知 n 阶方阵 A 满足 $A^3 = I$, 计算

(1)
$$\begin{pmatrix} O & -I \\ A & O \end{pmatrix}^{2000}$$

(2) $\begin{pmatrix} A/2 & -\sqrt{3}A/2 \\ \sqrt{3}A/2 & A/2 \end{pmatrix}^{2000}$

第二次作业 初等方阵

1. 习题 4.4-1

证明:只用初等行变换和将某两列对换,可以将任意矩阵 A 化为

$$\begin{pmatrix} I_r & B \\ O & O \end{pmatrix}$$

的形式,其中, $r = \operatorname{rank} A$ 。

¹⁰即行列相同的的子式。

- 2. 习题 4.4-4
 - (1) 设 $P \neq n$ 阶初等方阵, $A \neq n$ 阶方阵, 证明

$$det(PA) = det P det A, \quad det(AP) = det A det P$$

(2) 设

$$A = P_1 \cdots P_t \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} Q_1 \cdots Q_s$$

其中 P_i, Q_i 为初等方阵,证明

$$\det A = \det \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} \prod_{i=1}^t \det P_i \prod_{j=1}^s \det Q_j$$

- (3) 当 A, B 为 n 阶方阵时,从上一问出发证明 $\det(AB) = \det A \det B$ 。
- 3. 习题 4.4-5
 - (1) 已知二阶方阵

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

且 $a \neq 0$, 求二阶初等方阵 P,Q 使得

$$PAQ = \begin{pmatrix} a & 0 \\ 0 & d_1 \end{pmatrix}$$

(2) 设 A, B, C, D 为 n 阶方阵, 且 A 可逆, 求 2n 阶可逆方阵 P, Q 使

$$P\begin{pmatrix} A & B \\ C & D \end{pmatrix} Q = \begin{pmatrix} A & O \\ O & D_1 \end{pmatrix}$$

4. 习题 4.5-1

设 A 为 n 阶可逆方阵, α 为 n 阶列向量, 证明

$$\det(A - \alpha \alpha^T) = (1 - \alpha^T A^{-1} \alpha) \det A$$

5. 习题 4.5-2

设
$$\beta = (b_1, \dots, b_n)^T$$
,且 $b_i \neq 0$,设 $A = \operatorname{diag}(b_1, \dots, b_n)$,求 $\operatorname{det}(A - \beta \beta^T)$ 。¹¹

6. 习题 4.5-4

设 $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times n}$, 求证

$$\lambda^m \det(\lambda I_n - AB) = \lambda^n \det(\lambda I_m - BA)$$

 $^{^{11}\}mathrm{diag}(b_1,\ldots,b_n)$ 表示以 b_1,\ldots,b_n 为对角元的对角阵,此后用此记号简化对角阵的写法。

第六周

第一次作业 秩的定义

1. 习题 4.6-3

设 $A\in\mathbb{F}^{m\times n}$ 且 rank A=r>0,证明存在 $B\in\mathbb{F}^{m\times r}, C\in\mathbb{F}^{r\times n}$ 满足 rank $B={\rm rank}\,C=r$ 且 A=BC。 12

2. 习题 4.6-4

已知方阵 $A = (a_{ij})$ 的秩为 1, $\lambda = a_{11} + \cdots + a_{nn}$:

- (1) 求证 $A^2 = \lambda A$;
- (2) 求 $\det(I+A)$;
- (3) 当 I + A 可逆时求 $(I + A)^{-1}$ 。
- 3. 习题 4.6-5

设 A, B 行数相同,(A, B) 是二者拼接成的矩阵,求证

$$rank(A, B) \le rank A + rank B$$

4. 习题 4.6-6

设 n 阶方阵 A 满足 $A^2 = I$,求证

$$rank(A - I) + rank(A + I) = n$$

5. 习题 4.6-7

设 A^* 为 n 阶方阵 A 的伴随方阵, 求证:

- (1) $\operatorname{rank} A^* = n \Leftrightarrow \operatorname{rank} A = n$
- (2) $\operatorname{rank} A^* = 1 \Leftrightarrow \operatorname{rank} A = n 1$
- (3) $\operatorname{rank} A^* = 0 \Leftrightarrow \operatorname{rank} A < n 1$

第七周

第一次作业 秩的应用

1. 习题 4.7-2

设 n 阶方阵满足 $A^2 = A$, 求证 $\operatorname{rank} A = \operatorname{tr} A$ 。

2. 习题 4.7-3

求证不存在数域上的 n 阶方阵 $A \setminus B$ 使得 AB - BA = I。

3. 习题 4.7-4

设 A, B 是同阶方阵, 求证

$$rank(AB - I) \le rank(A - I) + rank(B - I)$$

¹²这称为满秩分解。

第七周

15

4. 习题 4.7-5

设 A 是秩为 r 的 $m \times n$ 阶方阵:

(1) 从 A 中任意取出 s 行组成 $s \times n$ 矩阵 B, 证明

$$\operatorname{rank} B \ge r + s - m$$

(2) 从 A 中指定 s 行、t 列,它们交叉位置的元素形成的 $s \times t$ 矩阵记为 D,证明

$$\operatorname{rank} D \ge r + s + t - m - n$$

5. 习题 4.7-6

对 n 阶方阵 A,B, 通过对等式

$$\det \begin{pmatrix} A & O \\ -I & B \end{pmatrix} = \det A \det B$$

左侧进行初等行变换证明 $\det(AB) = \det A \det B$ 。

第二次作业 秩的更多性质

1. 习题 4.7-7

计算 n+1 阶行列式 D,其元素 d_{ij} 满足

$$d_{ij} = \begin{cases} s_{i+j} & j \neq n \\ x^i & j = n \end{cases}, \quad s_k = \sum_{i=1}^n x_i^k, \quad i, j = 0, 1, \dots, n$$

2. 习题 4.7-8

若 A 为 n 阶方阵, 证明:

- (1) 若对某正整数 m 有 rank $A^m = \operatorname{rank} A^{m+1}$,则 rank $A^m = \operatorname{rank} A^{m+k}$ 对一切正整数 k 成立;
- (2) $\operatorname{rank} A^n = \operatorname{rank} A^{n+k}$ 对一切正整数 k 成立。
- 3. 习题 4.7-9

设 $A \in \mathbb{F}^{m \times n}$, 求证

$$rank(I_m - AA^T) - rank(I_n - A^TA) = m - n$$

课堂小测

- 1. 设 $A = \operatorname{diag}(\lambda_1 I_{n_1}, \lambda_2 I_{n_2}, \dots, \lambda_s I_{n_s})$,其中 λ_i 互不相同,若 AB = BA,求证 $B = \operatorname{diag}(B_1, \dots, B_s)$,其中 B_i 为 n_i 阶方阵。
- 2. 若 A,B 为 n 阶方阵,证明

$$\det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det(A+B)\det(A-B)$$

3. 若 A 为 n 阶复方阵且 $A^2 = O$,证明存在可逆方阵 P 使得

$$A = P \begin{pmatrix} O_{r \times (n-r)} & I_r \\ O_{n-r} & O_{(n-r) \times r} \end{pmatrix} P^{-1}$$

第八周

第一次作业 模相抵

1. 习题 7.5-1

利用初等变换将下列关于 λ 的多项式矩阵化为 Smith 标准形:

(2)
$$\begin{pmatrix} \lambda^2 + 1 & \lambda & \lambda^2 \\ -2\lambda & \lambda & -2\lambda \\ 2\lambda - 1 & -\lambda & 2\lambda \end{pmatrix}$$

(3) diag($\lambda^2 + \lambda, \lambda^2 - 4\lambda, (\lambda - 4)^2$)

$$(5) \begin{pmatrix} \lambda & 2 & 2 \\ & \lambda & 2 \\ & & \lambda \end{pmatrix}$$

(6)
$$n$$
 阶方阵 $a_{ij} = \begin{cases} \lambda & i = j \\ 1 & i < j \\ 0 & i > j \end{cases}$

2. 习题 7.5-2

证明数域 \mathbb{F} 上任何一 $k \times n$ 阶关于 λ 的多项式矩阵 $A(\lambda)$ 可写为

$$A(\lambda) = \sum_{i=0}^{m} \lambda^{i} A_{i}$$

其中 $A_i \in \mathbb{F}^{k \times n}$ 。

思考题13

- 1. 已知 n 阶方阵 A 满足 $A^2 = A$,求使 $\lambda I A$ 可逆的 λ ,并在可逆时求出其逆。
- 2. 若 n 阶方阵 A 每行元素和为 1,证明其所有代数余子式 A_{ij} 之和为 $n \det A$ 。
- 3. 计算 n 阶方阵 A 的行列式 $\det A$, A 的各元素为

$$a_{ij} = \begin{cases} x & |i-j| = 2\\ 0 & |i-j| \neq 2 \end{cases}$$

4. 计算 n 阶方阵 A 的行列式 $\det A$, A 的各元素为

$$a_{ij} = \begin{cases} 1 & i = j \\ x & |i - j| = 2 \\ 0 & \text{otherwise.} \end{cases}$$

5. 计算 n 阶方阵 A 的行列式 $\det A$, A 的各元素为

$$a_{ij} = \begin{cases} x & |i-j| = m \\ 0 & |i-j| \neq m \end{cases}$$

¹³本次思考题均为期中考试的复习题。

6. 已知 $A \in \mathbb{R}^{n \times m}$, 求以下方阵可逆的充要条件 (用 rank A 表示), 并在可逆时求出其逆:

$$\begin{pmatrix} I_n & A \\ A^T & O \end{pmatrix}$$

7. 已知 $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{n \times n}$, 求出以下方阵可逆的充要条件:

$$\begin{pmatrix} B & A \\ A^T & O \end{pmatrix}$$

8. 若 $A \in \mathbb{R}^{m \times n}$ 列满秩,证明 A 可以通过初等行变换成为

$$\begin{pmatrix} I_n \\ O_{(m-n)\times n} \end{pmatrix}$$

- 9. 设 $A \in \mathbb{R}^{m \times n}$, 若存在矩阵 B 使得 $AB = I_m$, 则称 B 为 A 的右逆。求 A 存在右逆的充要条件 (用 $\operatorname{rank} A$ 表示),并求出此时所有的右逆。
- 10. 求所有二阶方阵 A 使得 $e^A = I_2$ 。

第九周

第一次作业 不变因子

1. 习题 7.6-1

求下列关于 λ 的多项式矩阵的行列式因子、不变因子和初等因子组,由此写出其 β Smith标准形:

(1) diag(
$$\lambda^2 + \lambda, \lambda^2 - 4\lambda, (\lambda - 4)^2$$
)

$$(3) \begin{pmatrix} \lambda & 2 & 2 \\ & \lambda & 2 \\ & & \lambda \end{pmatrix}$$

$$(3) \begin{pmatrix} \lambda & 2 & 2 \\ \lambda & 2 \\ & \lambda \end{pmatrix}$$

$$(4) n 阶方阵 $a_{ij} = \begin{cases} \lambda & i = j \\ 1 & i < j \\ 0 & i > j \end{cases}$$$

2. 习题 7.6-2

求下列 n 阶方阵 $A = (a_{ij}), i, j = 1, ..., n$ 的特征方阵 $\lambda I - A$ 的行列式因子、不变因子和初等因子

(1)
$$a_{ij} = \begin{cases} 1 & j = i+1 \\ 1 & i = n, j = 1 \\ 0 & \text{otherwise.} \end{cases}$$

(2)
$$a_{ij} = \begin{cases} 1 & i = j+1 \\ -a_{i-1} & j = n \\ 0 & \text{otherwise.} \end{cases}$$

第二次作业 线性空间

1. 习题 2.1-2

判定 №4 中下述向量是否线性无关:

(1)
$$\alpha_1 = (2, 0, -1, 2), \quad \alpha_2 = (0, -2, 1, -3), \quad \alpha_3 = (3, -1, 2, 1), \quad \alpha_4 = (-2, 4, -7, 5)$$

(2)
$$\alpha_1 = (1, -1, 0, 0), \quad \alpha_2 = (0, 1, -1, 0), \quad \alpha_3 = (0, 0, 1, -1), \quad \alpha_4 = (-1, 0, 0, 1)$$

2. 习题 2.1-3

判断以下三维空间中四点是否共面:

- (1) A(1,1,1), B(1,2,3), C(1,4,9), D(1,8,27)
- (1) A(1,1,1), B(1,2,3), C(2,5,8), D(3,7,15)
- 3. 习题 2.1-7
 - (1) 若 $\alpha_1, \ldots, \alpha_n$ 线性无关, $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \ldots, \alpha_n + \alpha_1$ 是否一定线性无关? 说明理由或举出反例。
 - (2) 若 $\alpha_1, \ldots, \alpha_n$ 线性相关, $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \ldots, \alpha_n + \alpha_1$ 是否一定线性相关? 说明理由或举出反 例。
- 4. 习题 2.1-8

若复数域上向量 $\alpha_1, \ldots, \alpha_n$ 线性无关, λ 取何值时 $\alpha_1 - \lambda \alpha_2, \alpha_2 - \lambda \alpha_3, \ldots, \alpha_n - \lambda \alpha_1$ 线性无关?

5. 习题 2.1-9

设 $\alpha_1, \ldots, \alpha_n$ 均为 n 维向量,且可线性表出标准基向量 e_1, \ldots, e_n ,证明 $\alpha_1, \ldots, \alpha_n$ 线性无关。

期中考试

1. (1) 设矩阵

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

求 A^{-1} 与 A^n 。

(2) 设矩阵

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix}$$

求 A^* 。

(3) 设矩阵

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

求 $\det(A^T A)$ 。

(4) 求三维空间中三个不同平面

$$a_i x + b_i y + c_i z = d_i, \quad i = 1, 2, 3$$

相交于一条直线的充要条件 (写成 rank 的形式)。

- 2. 判断正误并给出理由:
 - (1) 存在 2024 阶实方阵 A 使得 $A^2 = -I$ 。
 - (2) 设 A, B, C 为矩阵, 从 AB = AC 可推出 B = C 当且仅当 A 列满秩。
 - (3) A 为 $m \times n$ 阶矩阵, $Ax = \mathbf{0}$ 有非零解当且仅当 $A^T \mathbf{y}$ 有非零解。
 - (4) 对任意矩阵 $A 与 k \leq \operatorname{rank} A$, A 存在 k 阶可逆子矩阵。
- 3. 求二阶复方阵 A 满足 $A^HA = AA^H$, 这里上标 H 表示共轭转置。
- 4. 设 n 阶方阵 A 元素 a_{ij} 满足

$$a_{ij} = \begin{cases} 1 & i = j \text{ or } j = n \text{ or } i = j+1 \\ 0 & \text{otherwise.} \end{cases}$$

求 det A 与 $(A-I)^{-1}$ 。

- 5. 设 A 为 n 阶复方阵,证明 $A^3+I=O$ 当且仅当 $\operatorname{rank}(A+I)+\operatorname{rank}(A^2-A+I)=n$ 。
- 6. 设 A, B 为 n 阶实方阵,且 $AB^T = O$,证明

$$\operatorname{rank} \begin{pmatrix} A \\ B \end{pmatrix} = \operatorname{rank} A + \operatorname{rank} B$$

第十周

第一次作业 向量组的秩

1. 习题 2.2-1

求下列向量构成的向量组的一个极大线性无关组与秩:

(1)
$$\alpha_1 = (6, 4, 1, -1, 2), \quad \alpha_2 = (1, 0, 2, 3, 4), \quad \alpha_3 = (1, 4, -9, -16, 22), \quad \alpha_4 = (7, 1, 0, -1, 3)$$

(2)
$$\alpha_1 = (1, -1, 2, 4), \quad \alpha_2 = (0, 3, 1, 2), \quad \alpha_3 = (3, 0, 7, 14), \quad \alpha_4 = (1, -1, 2, 0), \quad \alpha_5 = (2, 1, 5, 6)$$

2. 习题 2.2-3

求下列矩阵的秩,并求出行向量组合列向量组的一个极大线性无关组:

$$(1) \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$(2) \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{pmatrix}$$

3. 习题 2.2-4

证明若 $\alpha_1, \ldots, \alpha_n$ 线性无关, $\alpha_1, \ldots, \alpha_n, \beta$ 线性相关,则 β 可由 $\alpha_1, \ldots, \alpha_n$ 线性表出。

第十一周 20

4. 习题 2.2-6

设向量组 $\alpha_1, \ldots, \alpha_n$ 的秩是 r, 求证:

- (1) 其中任何 r 个线性无关向量都是极大线性无关组;
- (2) 设它们能被其中某r个向量 β_1, \ldots, β_r 线性表出,则 β_1, \ldots, β_r 线性无关。
- 5. 习题 2.2-7

证明: 若向量组 I 可以由向量组 II 线性表出,则 I 的秩不超过 II 的秩。

第二次作业 向量组秩的性质

1. 习题 2.2-2

设

$$\alpha_1 = (0, 1, 2, 3), \quad \alpha_2 = (1, 2, 3, 4), \quad \alpha_3 = (3, 4, 5, 6), \quad \alpha_4 = (4, 3, 2, 1), \quad \alpha_5 = (6, 5, 4, 3)$$

- (1) 证明 α_1, α_2 线性无关。
- (2) 把 α_1, α_2 扩充成上方五个向量的极大线性无关组。
- 2. 习题 2.2-5

证明: 若 β 可由 $\alpha_1, \ldots, \alpha_n$ 线性表出,则必可由 $\alpha_1, \ldots, \alpha_n$ 的极大线性无关组线性表出。

第十一周

第一次作业 子空间

1. 习题 2.3-1

以向量 $\alpha_1 = (3,1,0), \alpha_2 = (6,3,2), \alpha_3 = (1,3,5)$ 为基,求 $\beta = (2,-1,2)$ 的坐标。

2. 习题 2.3-2

设向量 $\alpha_1 = (1,0,1,0), \alpha_2 = (0,1,0,1),$ 将它们扩充成 \mathbb{R}^4 的一组基。

3. 习题 2.3-3

设向量

$$\alpha_1 = (1, 1, 1, 1), \quad \alpha_2 = (0, 1, -1, -1), \quad \alpha_3 = (0, 0, 1, -1), \quad \alpha_4 = (0, 0, 0, 1)$$

将标准正交基 e_1, e_2, e_3, e_4 用它们线性表出。

4. 习题 2.3-5

己知 📭 中向量

$$X_1 = (1, 2, 3, 4, 5), \quad X_2 = (1, -1, 1, -1, 1), \quad X_3 = (1, 2, 4, 8, 16)$$

求一个以它们为基础解系得齐次线性方程组。

5. 习题 2.3-6

设 S,T 时两个向量组, 求证 S 与 T 等价的充要条件是

$$\operatorname{rank} S = \operatorname{rank} T = \operatorname{rank}(S \cup T)$$

第十二周 21

课堂小测14

1. 判断以下三个向量是否线性相关:

$$\alpha_1 = (3, 1, 2, -4), \quad \alpha_2 = (1, 0, 5, 2), \quad \alpha_3 = (-1, 2, 0, 3)$$

- 2. 证明非零向量组 $\alpha_1,\dots,\alpha_n\in\mathbb{F}^m$ 线性相关当且仅当存在某个向量 α_j 是 $\alpha_1,\dots,\alpha_{j-1}$ 的线性组合。
- 3. 设 $P_i = (x_i, y_i, z_i), i = 1, 2, 3, 4$ 是三维空间中的四个点,求证它们共面当且仅当

$$\begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix} = 0$$

4. 已知方程

$$A_1x + B_1y + C_1z + D_1 = 0$$
, $A_2x + B_2y + C_2z + D_2 = 0$

代表两不平行的平面, 求证任何过它们交线的平面可以写成

$$\lambda(A_1x + B_1y + C_1z + D_1) + \mu(A_2x + B_2y + C_2z + D_2) = 0$$

其中 λ, μ 不全为 0。

5. 写出以下向量组的全部极大线性无关组:

$$\alpha_1 = (4, -1, 3, -2), \quad \alpha_2 = (8, -2, 6, -4), \quad \alpha_3 = (3, -1, 4, -2), \quad \alpha_4 = (6, -2, 8, -4)$$

6. 设 $A \in \mathbb{F}^{m \times n}$,且 rank A = r,在 A 中任取 s 行构成矩阵 B,求证

$$\operatorname{rank} B \geq r+s-m$$

- 7. 设 $A \in \mathbb{F}^{m \times n}$,且 rank A = r,证明 A 非零的 r 阶子式所在行构成 A 的行的极大线性无关组,对列 同理。
- 8. 设 n < m, 证明:

$$\operatorname{rank}(\alpha_1, \ldots, \alpha_m) - \operatorname{rank}(\alpha_1, \ldots, \alpha_n) \leq m - n$$

思考题

设 $A \in \mathbb{F}^{m \times n}$,且 rank A = r,证明 A 的行向量极大线性无关组与列向量极大线性无关组交叉出的 r 阶子式可逆。举例说明 A 的 k 个线性无关的行与 k 个线性无关的列交叉出的 k 阶子式未必可逆。

第十二周

第一次作业 一般线性空间

1. 习题 2.5-1

在区间 (-R,R) 上全体实函数组成的空间中, $1 \cdot \cos^2 t \cdot \cos(2t)$ 是否线性无关? 并说明理由。

¹⁴根据群内通知,本次小测不允许补交。

2. 习题 2.5-2

在全体实系数多项式组成的实数域上线性空间 $\mathbb{R}[x]$ 中,判断以下子集是否构成子空间(约定零多项式的次数 $\deg 0 = -\infty$):

- $(1) \ n \in \mathbb{N}^*, \{ f \in \mathbb{R}[x] \mid \deg f < n \}$
- $(2) \ n \in \mathbb{N}^*, \{ f \in \mathbb{R}[x] \mid \deg f > n \}$
- (3) $a \in \mathbb{R}, \{ f \in \mathbb{R}[x] \mid f(a) = 0 \}$
- $(4) \ a \in \mathbb{R}, \{ f \in \mathbb{R}[x] \mid f(a) \neq 0 \}$
- (5) $\{f \in \mathbb{R}[x] \mid f(x) = f(-x)\}$

3. 习题 2.5-3

设整数 $k \geq 2$, \mathbb{F} 上线性空间 V 中向量 $\alpha_1, \ldots, \alpha_k$ 线性相关,证明存在不全为 0 的数 $\lambda_1, \ldots, \lambda_k \in \mathbb{F}$,使得对任何 $\alpha_{k+1} \in V$,向量组

$$\alpha_1 + \lambda_1 \alpha_{k+1}, \dots, \alpha_k + \lambda_k \alpha_{k+1}$$

线性相关。

4. 习题 2.5-4

设向量组 $S = \{\alpha_1, \ldots, \alpha_s\}$ 线性无关,且可由向量组 $T = \{\beta_1, \ldots, \beta_t\}$ 线性表出,求证:

- (1) $T 与 S \cup T$ 等价;
- (2) 将 S 扩充为 $S \cup T$ 的极大线性无关组 $T_1 = \{\alpha_1, \dots, \alpha, \beta_{i_{s+1}}, \dots, \beta_{i_{s+k}}\}$,则 T_1 与 T 等价,且 $s + k \le t$;
- (3) 可以用向量 $\alpha_1, \ldots, \alpha_s$ 替换向量 β_1, \ldots, β_t 中某 s 个向量 $\beta_{i_1}, \ldots, \beta_{i_s}$,使得替换后的向量组与 T 等价¹⁵。

5. 习题 2.5-5

设向量组 S,T 的秩分别为 s,t,求证向量组 $S \cup T$ 的秩不超过 s+t。

6. 习题 2.5-7

证明所有次数不大于 n 的实系数多项式构成的 n+1 维实线性空间中, $1, x-c, ..., (x-c)^n$ 构成一组基,并求 $f(x) = a_0 + a_1x + ... + a_nx^n$ 在基下的坐标。

7. 习题 2.5-8

设 $V \in \mathbb{C}$ 上的 n 维线性空间,一组基为 $\alpha_1, \ldots, \alpha_n$,把它看作 \mathbb{R} 上的线性空间 $V_{\mathbb{R}}$,定义加法与数乘同 \mathbb{C} 上时(数乘将实数看作复数计算乘法),求 $V_{\mathbb{R}}$ 的维数与一组基。

第二次作业 同态与同构

1. 习题 2.6-1

设复数域上线性空间 V 中向量 $\alpha_1, \ldots, \alpha_n$ 线性无关,对复数 λ 的不同值,求向量组

$$\{\alpha_1 + \lambda \alpha_2, \dots, \alpha_{n-1} + \lambda \alpha_n, \alpha_n + \lambda \alpha_1\}$$

的秩。

¹⁵这称为 Steinitz 替换引理,事实上可以推广到无穷情况。

第十三周 23

2. 习题 2.6-2

将复数集合 \mathbb{C} 看成实数域上线性空间 $\mathbb{C}_{\mathbb{R}}$, 求 $\mathbb{C}_{\mathbb{R}}$ 到 \mathbb{R}^2 之间的同构映射 σ , 满足

$$\sigma(1+i) = (1,0), \quad \sigma(1-i) = (0,1)$$

3. 习题 2.6-3

设 V 是复数组成的无穷数列 $\{a_n\} = \{a_1, a_2, \ldots, a_n, \ldots\}$ 的全体组成的集合,定义任意两个数列的加法为逐项相加,任何数列与复数 λ 的乘法为每项乘 λ ,其即成为 $\mathbb C$ 上的线性空间:

- (1) 求证 V 中满足 $a_n = a_{n-1} + a_{n-2}$ 的全体数列组成 V 的子空间 W,求 W 的维数。
- (2) 对任意 $(a_1, a_2) \in \mathbb{C}$,定义 $\sigma(a_1, a_2) = \{a_1, a_2, \dots, a_n, \dots\} \in W$,求证 $\sigma \in \mathbb{C}^2$ 到 W 的同构。
- (3) 求证 W 存在一组由等比数列组成的基(即每个基都是等比数列),记为 M。
- (4) 设数列 $F_n \in W$ 满足 $F_1 = F_2 = 1$,求其在 M 下的坐标,并以此给出 F_n 的通项公式。

4. 习题 2.6-4

设 \mathbb{R}^+ 是正实数集,对其中任意 a,b 定义 $a \oplus b = ab$,对任意 $a \in \mathbb{R}^+$ 与 $\lambda \in \mathbb{R}$ 定义 $\lambda \circ a = a^{\lambda}$ 。

- (1) 求证 \mathbb{R}^+ 按照 ⊕ 定义加法,。 定义数乘后成为 \mathbb{R} 上的线性空间。
- (2) ℝ 按照通常方式定义加法乘法也可看成 ℝ 上的线性空间,求证它与 (1) 中的线性空间同构,并 给出全部同构映射。

第十三周

第一次作业 交空间与和空间

1. 习题 2.7-1

给定 \mathbb{F}^4 的子空间 W_1 , 一组基为 $\alpha_1 = (1,1,0,0), \alpha_2 = (0,1,1,0)$; 子空间 W_2 , 一组基为 $\beta_1 = (1,2,3,4), \beta_2 = (0,1,2,2)$, 求 $W_1 + W_2$ 与 $W_1 \cap W_2$ 的维数与一组基。

2. 习题 2.7-3

设 W_1 是 \mathbb{F} 上线性方程组 $x_1+x_2+\cdots+x_n=0$ 解空间的一组基, W_2 是 \mathbb{F} 上线性方程组 $x_1=x_2=\cdots=x_n$ 的一组基,求证 $\mathbb{F}^n=W_1\oplus W_2$ 。

3. 习题 2.7-4

举出满足下面条件的例子:子空间 W_1, \ldots, W_t 两两的交是 0,但它们的和 $W_1 + \cdots + W_t$ 不是直和。

4. 习题 2.7-5

考虑 \mathbb{F} 上的全体多项式构成的线性空间 $\mathbb{F}[x]$, 求证:

- (1) $S = \{f(x) \in \mathbb{F}[x] \mid f(-x) = f(x)\} \subseteq K = \{f(x) \in \mathbb{F}[x] \mid f(-x) = -f(x)\}$ 都是其子空间;
- (2) $\mathbb{F}[x] = S \oplus K_{\circ}$

第十四周

第一次作业 补空间

1. 设 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\lambda \in \mathbb{F}$, 求向量组

$$\alpha_1 - \lambda \alpha_2$$
, $\alpha_2 - \lambda \alpha_3$, $\alpha_3 - \lambda \alpha_1$

的秩。

2. 设向量组 $\alpha_1, \ldots, \alpha_r$ 可以由 β_1, \ldots, β_s 线性表出,并设系数

$$\alpha_i = \sum_{j=1}^s a_{ij} \beta_j$$

将 a_{ij} 拼成矩阵 $A_{r\times s}$, 求证 $\operatorname{rank}\{\alpha_1,\ldots,\alpha_r\}\leq \operatorname{rank} A$ 。

3. 给定

$$\alpha_1 = (1, 1, 0, 0), \quad \alpha_2 = (1, 0, 1, -1), \quad \alpha_3 = (0, 0, 1, 1), \quad V_1 = \langle \alpha_1, \alpha_2, \alpha_3 \rangle$$

$$\beta_1 = (1, 0, 1, 0), \quad \beta_2 = (0, 2, 1, 1), \quad \beta_3 = (1, 2, 1, 2), \quad V_2 = \langle \beta_1, \beta_2, \beta_3 \rangle$$

求 $V_1 \cap V_2$ 与 $V_1 + V_2$ 的一组基。

4. 在 𝔽²×² 中, 设

$$V_1 = \left\{ \begin{pmatrix} x & -x \\ y & z \end{pmatrix} \mid x, y, z \in \mathbb{F} \right\}$$

求证 V_1 为 $\mathbb{F}^{2\times 2}$ 子空间,并求它的一个补空间。

第二次作业 线性映射

1. 习题 6.1-1

判断以下哪些变换或映射是线性的:

- (1) \mathbb{F} 上线性空间 V 的变换 \mathcal{A} ,满足 $\mathcal{A}(\alpha) = \lambda \alpha + \beta$,其中 $\lambda \in \mathbb{F}, \beta \in V$ 给定。
- (2) \mathbb{R}^3 上的变换 \mathcal{A} ,满足 $\mathcal{A}(x,y,z) = (x+y+1,y-z,2z-3)$ 。
- (3) \mathbb{F} 上线性空间 $\mathbb{F}^{n\times n}$ 的变换 \mathcal{A} ,满足 $\mathcal{A}(X)=\frac{1}{2}(X+X^T)$ 。
- (4) \mathbb{C} 上线性空间 $\mathbb{C}^{n\times m} \to \mathbb{C}^{m\times n}$ 的映射 \mathcal{A} ,满足 $\mathcal{A}(X) = X^H$ 。
- (5) \mathbb{R} 上线性空间 \mathbb{C} 与 \mathbb{R} 之间的映射 \mathcal{A} ,满足 $\mathcal{A}(z)=|z|$ 。
- (6) \mathbb{C} 上线性空间 \mathbb{C} 的变换 \mathcal{A} ,满足 $\mathcal{A}(z) = \bar{z}$ 。
- (7) \mathbb{F} 上线性空间 $\mathbb{F}^{n\times n} \to \mathbb{F}$ 的映射 \mathcal{A} ,满足 $\mathcal{A}(X) = \det X$ 。
- (8) \mathbb{F} 上线性空间 $\mathbb{F}^{n\times n} \to \mathbb{F}$ 的映射 \mathcal{A} ,满足 $\mathcal{A}(X) = \operatorname{tr} X$ 。
- (9) \mathbb{F} 上线性空间 $\mathbb{F}^{n\times n}$ 的变换 A,满足 A(X)=AXA,其中方阵 A 给定。
- (10) \mathbb{F} 上线性空间 $\mathbb{F}^{n\times n}$ 的变换 A,满足 A(X)=XAX,其中方阵 A 给定。
- 2. 习题 6.1-3

由二阶可逆实方阵 A 在 \mathbb{R}^2 上定义线性变换 A,满足

$$\mathcal{A} \begin{pmatrix} x \\ y \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$$

(1) 设其将平行四边形 ABCD 变为平行四边形 A'B'C'D', 求证变换前后面积之比

$$k = \frac{S_{A'B'C'D'}}{S_{ABCD}} = |\det A|$$

由此得出任何图形经过变换后面积变为 | det A | 倍。

- (2) 设 A = diag(1, b/a),变换前图形为圆 $x^2 + y^2 = a^2$,求证变换后为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,并由第一问计算其面积。
- 3. 习题 6.1-4

己知

$$\alpha_1 = (1, -1, 1), \alpha_2 = (1, 2, 4), \alpha_3 = (1, -2, 4), \quad \beta_1 = (1, -1), \beta_2 = (1, -2), \beta_3 = (1, 2)$$

- (1) 是否存在线性映射 $A: \mathbb{R}^3 \to \mathbb{R}^2$ 使得 $A(\alpha_i) = \beta_i, i = 1, 2, 3$?
- (2) 是否存在线性映射 $A: \mathbb{R}^2 \to \mathbb{R}^3$ 使得 $A(\beta_i) = \alpha_i, i = 1, 2, 3$?
- 4. 习题 6.1-7

记 $\alpha_1 = (0,0,1), \alpha_2 = (0,1,1), \alpha_3 = (1,1,1),$ 设线性变换 \mathcal{A} 满足

$$\mathcal{A}(\alpha_1) = (2, 3, 5), \quad \mathcal{A}(\alpha_2) = (1, 0, 0), \quad \mathcal{A}(\alpha_3) = (0, 1, -1)$$

求 A 在 e_1, e_2, e_3 与 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵表示。

5. 习题 6.1-9

设
$$V = \mathbb{F}^{2 \times 2}$$
, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V$, 取 V 的一组基 $M = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ 。

- (1) 定义线性变换 $A_R(X) = XA$,求其在 M 下的矩阵表示。
- (2) 定义线性变换 $\mathcal{B}(X) = AX XA$, 求证其不可逆。
- (3) 对二阶方阵 A, B,定义线性变换 $A_L(X) = AX, \mathcal{B}_R(X) = XB$,求证 $A_L\mathcal{B}_R = \mathcal{B}_R\mathcal{A}_L$ 。
- 6. 习题 6.1-11

设 $\mathbb{F}_n[x]$ 是 \mathbb{F} 上低于 n 次的多项式构成的线性空间,满足 $\mathcal{A}(f(x)) = f(x+1)$ 的 \mathcal{A} 与满足 $\mathcal{D}(f(x)) = f'(x)$ 的 \mathcal{D} 是 $\mathbb{F}_n[x]$ 上的线性变换,求证

$$\mathcal{A} = \mathcal{I} + \sum_{k=1}^{n-1} \frac{\mathcal{D}^k}{k!}$$

课堂小测

1. 设 $V = \mathbb{F}^{2n}$,记

$$V_1 = \{ \alpha \in V \mid \alpha_i = \alpha_{i+n}, \quad i = 1, \dots, n \}, \quad V_2 = \{ \alpha \in V \mid \alpha_i = -\alpha_{i+n}, \quad i = 1, \dots, n \}$$

求证 V_1 、 V_2 是 V 的子空间,且 $V=V_1\oplus V_2$,并求商空间 V_1/V_2 的维数。

2. 设 V_1, V_2, V_3 是线性空间 V 的子空间, 证明

$$V_1 \cap (V_2 + V_1 \cap V_3) = V_1 \cap V_2 + V_1 \cap V_3$$

并举出 $V_1 \cap (V_2 + \cap V_3) \neq V_1 \cap V_2 + V_1 \cap V_3$ 的例子。

3. 设 $A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times p}, C \in \mathbb{F}^{p \times q}$, 用空间方法证明

$$\operatorname{rank}(AB) + \operatorname{rank}(BC) \le \operatorname{rank}(ABC) + \operatorname{rank} B$$

第十四周 26

思考题16

以下题目中涉及的空间,如无特殊说明,均属于同一线性空间的子空间,**若涉及维度则假设全空间有限维**,涉及商空间时默认右侧为左侧子空间:

- 1. 证明 $(V_1 + W) \cap V_2 + W = (V_1 + W) \cap (V_2 + W)$.
- 2. 证明或否定: $\dim(V_1 + V_2 + V_3)$ 等于

 $\dim V_1 + \dim V_2 + \dim V_3 - \dim V_1 \cap V_2 - \dim V_2 \cap V_3 - \dim V_1 \cap V_3 + \dim V_1 \cap V_2 \cap V_3$

- 3. 证明或否定: V_1 是 U_1 的某补空间, V_2 是 U_2 的某补空间, 则 $V_1 \cap V_2$ 是 $U_1 + U_2$ 的某补空间。
- 4. 证明或否定: V_1 是 U_1 的正交补空间, V_2 是 U_2 的正交补空间,则 $V_1 \cap V_2$ 是 $U_1 + U_2$ 的正交补空间。
- 5. U_1, U_2, \ldots, U_n 是维数相同的子空间,求证它们存在一个共同的补空间 W。
- 6. 对线性变换 $A:V\to V$,若 V 为有限维,证明其单、满、可逆等价。若无穷维,举出反例。
- 7. 对线性映射 $A: U \to V$, $\mathcal{B}: V \to W$,证明:
 - (1) $\operatorname{Ker} A \subset \operatorname{Ker} \mathcal{B} A$,且若取等,则存在 $\mathcal{C}: W \to V$,使得 $A = \mathcal{C} \mathcal{B} A$ 。
 - (2) $\operatorname{Im} \mathcal{BA} \subset \operatorname{Im} \mathcal{B}$,且若取等,则存在 $\mathcal{C}: V \to U$,使得 $\mathcal{B} = \mathcal{BAC}$ 。
- 8. 证明第一同构定理: 对某线性映射 $\mathcal{A}:U\to V$, $U/\operatorname{Ker}\mathcal{A}\cong\operatorname{Im}\mathcal{A}$ 。
- 9. 证明第二同构定理: $(U+W)/W \cong U/(U\cap W)$ 。
- 10. 证明第三同构定理: $U/V \cong (U/W)/(V/W)$ 。
- 11. 设 U 为 \mathbb{F} 上线性空间,考虑 $U \to \mathbb{F}$ 的线性映射构成的空间 U^{*17} :
 - (1) 定义 $A, B \in U^*$ 的加法 (A + B)u = Au + Bu、数乘 $(\lambda A)u = \lambda(Au)$, 验证其为线性空间。
 - (2) 设 U 为 n 维,一组基为 $\alpha_1, \ldots, \alpha_n$,求 U^* 的维数与一组基。
 - (3) 设 U 为 $\mathbb{F}[x]$, 即 \mathbb{F} 上全体多项式构成的线性空间,探究 U^* 的维数与可能的基。
 - (4) 设向量组 $S \subset U$,定义 Ann(S) 为 U^* 中满足 $S \subset Ker A$ 的 A 构成的集合,验证其为 U^* 的子空间。
 - (5) 若 U 有限维,证明 dim $Ann(S) = \dim U \operatorname{rank} S$,这里 rank表示向量组的秩。
 - (6) 设 V_1, V_2 为 U 子空间, 证明 $Ann(V_1 \cap V_2) = Ann(V_1) + Ann(V_2)$ 。
 - (7) 设 V_1, V_2 为 U 子空间,证明 $Ann(V_1 + V_2) = Ann(V_1) \cap Ann(V_2)$ 。
 - (8) 前两问的结论将 V_1 、 V_2 换成任意子集还成立吗?(集合加法定义为任取 V_1, V_2 元素相加构成的集合。)
 - (9) 若 $U = V_1 \oplus V_2$, 证明 $U^* = \text{Ann}(V_1) \oplus \text{Ann}(V_2)$ 。

¹⁶ 思考题可能涉及部分尚未学到的知识,已在习题课讲解。

 $^{^{17}}$ 称为 U 的对偶空间。

第十五周

第一次作业 像与核

1. 习题 6.3-1

设 V 的线性变换 \mathcal{A} 在基 $M=\{\alpha_1,\alpha_2,\alpha_3\}$ 下的矩阵是 $A=\begin{pmatrix} 1 & -3 & 2 \\ -3 & 9 & -6 \\ 2 & -6 & 4 \end{pmatrix}$ 。

- (1) 求 $\operatorname{Ker} A$ 与 $\operatorname{Im} A$;
- (2) 将 $\operatorname{Ker} A$ 的一组基扩充为 V 的一组基 M_1 ,求 A 在 M_1 下的矩阵。
- 2. 习题 6.3-2

设 $\mathbb{R}_n[x]$ 是次数 < n 的实系数多项式组成的线性空间,其上的变换 $\mathcal{D}(f) = f'$ 将每个多项式映射为导数。

- (1) 求 $\operatorname{Ker} \mathcal{D}$ 、 $\operatorname{Im} \mathcal{D}$ 与它们的维数,并验证 $\operatorname{dim} \operatorname{Ker} \mathcal{D} + \operatorname{dim} \operatorname{Im} \mathcal{D} = n$;
- (2) $\mathbb{R}_n[x] = \operatorname{Ker} \mathcal{D} \oplus \operatorname{Im} \mathcal{D}$ 是否成立? 为什么?
- 3. 习题 6.3-3

设 $A:U\to V$ 是有限维线性空间之间的线性映射, W 为 U 子空间, 求证

$$\dim \mathcal{A}(W) \ge \dim W - \dim U + \operatorname{rank} \mathcal{A}$$

4. 习题 6.3-4

设 A 是有限维线性空间 V 的线性变换,求证

$$\operatorname{rank} \mathcal{A} - \operatorname{rank} \mathcal{A}^2 = \dim(\operatorname{Ker} \mathcal{A} \cap \operatorname{Im} \mathcal{A})$$

5. 习题 6.3-5

已知 A 是有限维线性空间 V 的线性变换,满足 $A^2 = A$,求证:

- (1) $V = \operatorname{Im} A \oplus \operatorname{Ker} A$;
- (2) A 在任何一组基下的矩阵 A 满足 rank $A = \operatorname{tr} A$;
- (3) 可以找一组适当的基将 V 中的向量表示为坐标,使得 A 在这组基下可看成坐标变换 18

$$A(x_1,\ldots,x_r,x_{r+1},\ldots,x_n) = (x_1,\ldots,x_r,0,\ldots,0)$$

6. 习题 6.3-6

已知 A 是 n 维线性空间 V 的线性变换,设 $r = \operatorname{rank} A$,求证以下命题都是 $A^2 = \mathcal{O}$ 的充分必要条件:

- (1) $\operatorname{Im} \mathcal{A} \subset \operatorname{Ker} \mathcal{A}$;
- (2) \mathcal{A} 在适当的基下矩阵表示为 $\begin{pmatrix} O_r & X \\ O & O_{n-r} \end{pmatrix}$,且 $n-r \ge r$;
- (3) \mathcal{A} 在适当的基下矩阵表示为 $\begin{pmatrix} O_{r \times (n-r)} & I_r \\ O_{n-r} & O_{(n-r) \times r} \end{pmatrix}$,且 $n-r \geq r$ 。

¹⁸这事实上是投影变换。

第十六周 28

第二次作业 坐标变换

1. 习题 6.1-13

设 $f \in \mathbb{F}^{n \times n} \to \mathbb{F}$ 的满足 f(AB) = f(BA) 对任意 A, B 成立的线性函数,求证存在 $c \in \mathbb{F}$ 使得 $f(A) = c \operatorname{tr}(A)$ 。

2. 习题 6.2-2

设 $\mathbb{C}_n[x]$ 是次数 < n 的 \mathbb{C} 上多项式组成的线性空间,取其一组基 $M = \{1, x, \dots, x^{n-1}\}$ 。记

$$\omega_k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, \quad k = 0, 1, \dots, n-1$$

并记

$$f_i = \prod_{0 \le j \le n-1, j \ne i} (x - \omega_j)$$

- (1) 求证 $M_1 = \{f_0, f_1, \dots, f_{n-1}\}$ 也是 \mathbb{F}^n 的一组基;
- (2) 求 M 到 M_1 的过渡矩阵。
- 3. 习题 6.2-3

设线性变换 A 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵 $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$, 求 A 在下列基下的矩阵:

- (1) $\{\alpha_3, \alpha_1, \alpha_2\};$
- (2) $\{\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3\}$.
- 4. 习题 6.2-4

设 $\mathbb{R}_n[x]$ 是次数 < n 的实系数多项式组成的线性空间,且 $V = \{f(\cos x) \mid f \in \mathbb{R}_n[x]\}$,写出 V 的基 $M_1 = \{1, \cos x, ..., \cos^{n-1} x\}$ 到 $M_2 = \{1, \cos x, ..., \cos(n-1)x\}$ 的过渡矩阵(写为组合数形式)。

5. 习题 6.3-7

设 V 是 \mathbb{F} 上的 n 维线性空间,f,g 是 $V \to \mathbb{F}$ 的两个线性函数,且 $\operatorname{Ker} f = \operatorname{Ker} g$,求证存在非零常数 $c \in \mathbb{F}$ 使得 g = cf。

思考题

- 1. 证明或否定: A 是线性空间 V 的线性变换,满足 $A^2 = A$,则 $V = \operatorname{Im} A \oplus \operatorname{Ker} A$ 。
- 2. 证明或否定: V 是 $\mathbb F$ 上的线性空间,f,g 是 $V\to\mathbb F$ 的两个线性函数,且 Ker f= Ker g,则存在非零常数 $c\in\mathbb F$ 使得 g=cf。

第十六周

第一次作业 相似的概念

1. 习题 6.4-1(2)

判断下方两矩阵是否相似,并说明理由:

$$A = \begin{pmatrix} 1 & 2 & & \\ & 1 & 3 & \\ & & 1 & \\ & & & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & & \\ & 1 & & \\ & & 1 & 3 \\ & & & 1 \end{pmatrix}$$

第十六周 29

2. 习题 6.4-4

设 \mathbb{R}^2 的线性变换 \mathcal{A} 在基 $\alpha_1=(1,0),\alpha_2=(0,-1)$ 下的矩阵是 $\begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix}$,线性变换 \mathcal{B} 在基 $\beta_1=(0,1),\beta_2=(1,1)$ 下的矩阵是 $\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$,求线性变换 $\mathcal{A}+\mathcal{B},\mathcal{AB},\mathcal{BA}$ 在基 β_1,β_2 下的矩阵表示。

3. 习题 6.4-8

若 A, B 相似、C, D 相似,证明 $\operatorname{diag}(A, C)$ 与 $\operatorname{diag}(B, D)$ 相似。

4. 习题 6.5-1

求下列矩阵的全部特征值与特征向量,若其可对角化,求可逆方阵 P 使得 $P^{-1}AP$ 为对角阵:

第二次作业 特征子空间

1. 习题 6.5-2

已知矩阵 B 元素满足 $b_{ij} = a_k$, k 为 1 到 n 中与 i-j+1 模 n 同余的数:

(1) 将
$$B$$
 写为 $A = \begin{pmatrix} \mathbf{0} & I_{n-1} \\ 1 & \mathbf{0} \end{pmatrix}$ 的多项式。

- (2) 证明 A 可以相似对角化,由此证明 B 可以相似对角化,并构造与其相似的对角阵 D。
- (3) 利用 D 计算 B 的行列式。
- 2. 习题 6.5-5

证明若 n 阶方阵 A 的特征值为 λ_i , i = 1, ..., n,则

$$\sum_{i=1}^{n} \lambda_i^2 = \sum_{i,j=1}^{n} a_{ij} a_{ji}$$

3. 习题 6.6-3

设方阵 A 满足 $A^2 = A$, 证明 A 可对角化。

4. 习题 6.6-4

对给定 n 阶方阵 A,在 $\mathbb{F}^{n\times n}$ 上定义线性变换 $\mathcal{A}(X)=AX-XA$,若 A 可对角化,判断 A 是否可对角化,说明理由。

思考题

- 1. 已知 $A \in U \to V$ 的线性映射, $W \in \operatorname{Ker} A$ 的某补空间,求证限制映射 $A|_{W \to \operatorname{Im} A}$ 是同构。
- 2. 己知 $A \in U \to V$ 的线性映射, $\mathcal{B} \in V \to U$ 的线性映射:

第十七周 30

- (1) 若 ABA = A, BAB = B, 则称 B 为 A 的广义逆映射, 证明对任何 A 都存在这样的 B。
- (2) 证明广义逆唯一当且仅当 A 可逆或 $A = \mathcal{O}$ 。
- (3) 若 \mathcal{B} 是 \mathcal{A} 的广义逆,证明 $U = \operatorname{Ker} \mathcal{A} \oplus \operatorname{Im} \mathcal{B}$, $V = \operatorname{Ker} \mathcal{B} \oplus \operatorname{Im} \mathcal{A}$ 。此命题的逆命题成立吗?
- (4) 证明 $\mathcal{A}|_{\operatorname{Im}\mathcal{B}\to\mathcal{A}(\operatorname{Im}\mathcal{B})}$ 与 $\mathcal{B}|_{\operatorname{Im}\mathcal{A}\to\mathcal{B}(\operatorname{Im}\mathcal{A})}$ 互为逆映射。
- 3. 已知 $\mathcal{A}, \mathcal{B} \neq U \rightarrow V$ 的线性映射,且 $\operatorname{Im}(\mathcal{A} + \mathcal{B}) = \operatorname{Im} \mathcal{A} \oplus \operatorname{Im} \mathcal{B}$ 。证明存在 U 的子空间 U_1, U_2, U_3 使得 $\mathcal{A}|_{U_1 \rightarrow \operatorname{Im} \mathcal{A}}, \mathcal{B}|_{U_2 \rightarrow \operatorname{Im} \mathcal{B}}$ 可逆,且

$$U = U_1 \oplus U_2 \oplus U_3$$
, $\operatorname{Ker} A = U_2 \oplus U_3$, $\operatorname{Ker} B = U_1 \oplus U_3$

- 4. 己知 $A \in V$ 上的线性变换, 求证:
 - (1) $V = \operatorname{Im} A + \operatorname{Ker} A$ 等价于 $A|_{\operatorname{Im} A}$ 是满射。
 - (2) $V = \operatorname{Im} A \oplus \operatorname{Ker} A$ 等价于 $A|_{\operatorname{Im} A}$ 可逆。
- 5. 已知 A, B 是 V 上的线性变换,满足 $A^2 = A$, $B^2 = B$, 求证:

$$\operatorname{Im} \mathcal{A} = \operatorname{Im} \mathcal{B} \Leftrightarrow \mathcal{A}\mathcal{B} = \mathcal{B}, \mathcal{B}\mathcal{A} = \mathcal{A}$$

$$\operatorname{Ker} A = \operatorname{Ker} B \Leftrightarrow AB = A, BA = B$$

6. 若 $A^3 = A$, 证明 A = diag(-I, I, O) 相似。

第十七周

第一次作业 最小多项式

1. 习题 6.7-1

设 A 相似于上三角阵 $B = \begin{pmatrix} B_{11} & B_{12} \\ O & B_{22} \end{pmatrix}$,其中 B_{11} 、 B_{22} 为上三角方阵,且 B_{11} 对角元均为 λ_1 , B_{22} 对角元均为 λ_2 , $\lambda_1 \neq \lambda_2$ 。若 A 满足 $(A - \lambda_1 I)(A - \lambda_2 I) = O$,求证:

- (1) B_{11} 、 B_{22} 均为标量阵。
- (2) 存在 $P = \begin{pmatrix} I & S \\ O & I \end{pmatrix}$ 使得 $P^{-1}BP = \operatorname{diag}(\lambda_1 I, \lambda_2 I)$,由此得到 A 相似于对角阵。
- (3) 推广以上过程证明若 A 最小多项式无重根,则 A 可相似对角化。
- 2. 习题 6.7-2

对下列复矩阵 A,求复矩阵 P 使 $P^{-1}AP$ 是上三角阵,并计算出 $P^{-1}AP$,进一步得出 A 的最小多项式:

$$(1) A = \begin{pmatrix} 2 & 2 & 1 \\ -1 & 2 & 2 \\ 1 & -1 & -1 \end{pmatrix}$$

$$(2) A = \begin{pmatrix} 5 & -2 & -2 \\ -2 & 1 & 0 \\ -2 & 0 & 4 \end{pmatrix}$$

第十七周 31

3. 习题 6.7-5

求下方矩阵 A 的最小多项式,并计算 A^{-1} :

$$\begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 4
\end{pmatrix}$$

4. 习题 6.7-7

证明 diag (A_1, A_2, \ldots, A_k) 的最小多项式为 lcm $(d_{A_1}, \ldots, d_{A_k})$, 其中每个 A_k 为方阵。

5. 习题 6.7-8

举出两个特征多项式、最小多项式都相等但不相似的方阵。

6. 习题 6.8-1

计算
$$n$$
 阶行列式 D ,满足其元素 $d_{ij}, i, j = 1, \ldots, n$ 为
$$\begin{cases} a_{j-i+1} & j \geq i \\ ca_{j-i+n+1} & j < i \end{cases}$$

7. 习题 6.8-3

若 n > 1 阶复方阵 B 相似于 $I - E_{11} - E_{22} + E_{12} + E_{21}$,则称其为反射。证明若 n > 1 阶复方阵 A 满足 $A^2 = I$,则其可以分解为至多 n 个反射的乘积。

8. 习题 6.8-6

已知方阵 A 最小多项式 $d_A(\lambda) = \prod_{i=1}^t (\lambda - \lambda_i)^{m_i}$,其中 λ_i 互不相同,求证 $B = \begin{pmatrix} A & I \\ O & A \end{pmatrix}$ 的最小多项式

$$d_B(\lambda) = \prod_{i=1}^t (\lambda - \lambda_i)^{m_i + 1}$$

9. 习题 6.8-7

求复方阵 P 满足:

$$P^{-1} \begin{pmatrix} 1 & 2 & 3 & 4 \\ & 1 & 2 & 3 \\ & & 2 & 3 \\ & & & 2 \end{pmatrix} P = \begin{pmatrix} 1 & 2 & & \\ & 1 & & \\ & & 2 & 3 \\ & & & 2 \end{pmatrix}$$

思考题

本次思考题中提到的矩阵默认为复方阵。

- 1. 证明若 $A = A^H$,则 A 的特征值全为实数; $A = -A^H$,则 A 的特征值实部全为 0。
- 2. 对方阵 $A = (a_{ij})$, 证明对任何特征值 λ 存在 k 满足¹⁹

$$|\lambda - a_{kk}| \le \sum_{j \ne k} |a_{kj}|$$

- 3. 证明若 rank A = 1,则 A 可相似对角化当且仅当 $tr A \neq 0$ 。
- 4. 已知 A 的特征多项式 $\varphi_A(\lambda)$, 求 $\varphi_{A^k}(\lambda)$ 。

¹⁹称为 Gershgorin 圆盘定理。

第十七周 32

- 5. 已知同阶方阵 A, B 满足 AB = O,求证 $x^n \varphi_{A+B}(x) = \varphi_A(x) \varphi_B(x)$ 。
- 6. A, B 为同阶方阵,证明 $\varphi_{AB}(\lambda) = \varphi_{BA}(\lambda)$; 若 rank(ABA) = rank A 或 rank(ABA) = rank B,证 明 $AB \ni BA$ 相似。
- 7. 已知方阵 A 满足 a_{ij} 当 j < i-1 时为 0, j = i-1 时非零,求证 $d_A = \varphi_A$ 。
- 8. 已知方阵 A 满足 $d_A = \varphi_A$, 对多项式 f, 求证

$$rank f(A) = n - deg(gcd(f, d_A))$$

- 9. 证明线性变换 $\mathcal{P}(X) = AX XB$ 可逆当且仅当 A, B 没有公共特征值。
- 10. 证明线性变换 $\mathcal{P}(X) = X AXB$ 可逆当且仅当不存在 $\lambda \mu = 1$,其中 λ, μ 分别为 A, B 特征值。
- 11. 若一族方阵 $A_i, i \in I$ 两两可交换,证明它们存在公共特征向量 α ,由此说明存在 P 使得 $P^{-1}A_iP, i \in I$ 均为上三角阵。
- 12. 若 $\mathbb{F}^{n \times n}$ 子空间 V 满足其中任意矩阵都不可逆,求 V 最大维数。
- 13. 若 $\mathbb{C}^{n\times n}$ 子空间 V 满足其中除 O 外任意矩阵都可逆, 求 V 最大维数。