MOS Symbols:

MOS I/V characteristics:generation & transport of charge
as a function of terminal voltage.

1. Threshold Voltage

Figure 2.6 (a) A MOSFET driven by a gate voltage; (b) formation of depletion region; (c) onset of inversion; (d) formation of inversion layer.

when V6 increases from OV,

o V6 becomes more + ve

holes in p-substrate repelled
from gote area
from your inns

It resembles like 2 capacifors in

oride cap

deple² region cap — Cox

deple² region cap — Cdep

o when Va 1, interface potential

onterface potential

so, at certain interface potential

the electric field blw

there are some free electrons even in the P-type region. The electric field produced by the capacitive action will attract the electrons

e flows from source to interface E eventually to drain. channel" of charge carriers formed under gate oxide blu 5 & II. hez!! our tronsistor is now turned on. interface is inverted channel = inversion layer Threshold Voltage: - The value of Va for which channel inversion occurs. In Semiconductor Physics. VTH = gate voltage for which the interface is as much in-type as the

50000

a fant C

Con per unit orea tox = 20 A° => Cox = 17.25 fF/um² But, in practice the native VTH value may not be suited to VTH is typically adjusted by into into dopants into device fabrication. channel area during device fabrication. cinuit design.

Figure 2.7 Implantation of p+ dopants to alter the threshold.

for pmos, turn-on phenomenon, an polorities of NMOS reversed

Figure 2.8 Formation of inversion layer in a PFET.