Linear Model in High Dimensions, II: Estimation and Inference

Jesper Riis–Vestergaard Sørensen

University of Copenhagen, Department of Economics

October 14, 2022

Recap

Last time:

High-dimensional framework:

$$p = p_n$$
 with $p/n \to \text{const.} > 0$ as $n \to \infty$.

▶ Allows 'wide' data sets $(p/n \text{ not } \approx 0)$.

OLS poorly behaved in high dimensions $(p/n \rightarrow 0)$.

Introduced sparsity and Lasso.

Talked about tuning penalty selection.

... and implementation in Python.

Overview

Estimation Error Control

Least Squares

Lasso

Inference

Post-Double Lasso

Orthogonalized Moments

Other Methods for High-Dimensional Regression

Dantzig Selector

Ridge Regression

Elastic Net

Estimation Error Control

Least Squares

Consistency in Low Dimensions, I

Linear mean regression model:

$$Y = \sum_{j=1}^{\rho} \beta_j X_j + \varepsilon = X'\beta + \varepsilon, \quad \mathbf{E}[\varepsilon|X] = 0.$$

Least squares (LS) estimator:

$$\widehat{eta}^{\mathrm{LS}} = \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{Y}.$$

Low-dimensional regime (p fixed).

Consistency conditions?

Consistency in Low Dimensions, II Main Conditions

$$\widehat{\beta}^{LS} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{Y}, \qquad (Estimator)$$

$$\Rightarrow \widehat{\beta}^{LS} - \beta = (\mathbf{X}'\mathbf{X}/n)^{-1} (\mathbf{X}'\varepsilon/n). \qquad (Estimation Error)$$

Consistency follows from two conditions + Slutsky:

- 1. $\mathbf{X}'\mathbf{X}/n \to_{\mathbf{P}}$ to nonsingular matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$.
 - ▶ In 1D: Just ruling out division by zero.
- 2. $\mathbf{X}' \boldsymbol{\varepsilon} / n \rightarrow_{\mathbf{P}}$ to zero vector $\mathbf{0} \in \mathbb{R}^p$.

Then
$$(\mathbf{X}'\mathbf{X}/n)^{-1}(\mathbf{X}'\varepsilon/n) \to_{\mathbf{P}} \mathbf{A}^{-1} \cdot \mathbf{0} = \mathbf{0}$$
.

Consistency in Low Dimensions, III

Singularity, Definiteness and Eigenvalues

For **M** positive semidefinite (p.s.d.),

 ${\sf M}$ invertible $\Leftrightarrow {\sf M}$ positive definite (p.d.) \Leftrightarrow all positive eigenvalues.

Let $\Lambda_{min}(\mathbf{M}) = \text{smallest eigenvalue of } \mathbf{M}$.

By CMT, ' $\mathbf{X}'\mathbf{X}/n \rightarrow_{\mathrm{P}} \mathbf{A}$ nonsingular' means

$$\Lambda_{\min}(\mathbf{X}'\mathbf{X}/n) \stackrel{\mathrm{P}}{\to} \text{const.} > 0.$$

Error Bound in Low Dimensions

Estimation error:

$$\widehat{\beta}^{LS} - \beta = \left(\mathbf{X}' \mathbf{X} / n \right)^{-1} \left(\mathbf{X}' \varepsilon / n \right).$$
 (in \mathbb{R}^p)

In ℓ^2 (Euclidean) norm:

$$\|\widehat{\beta}^{LS} - \beta\|_2 = \| (\mathbf{X}'\mathbf{X}/n)^{-1} (\mathbf{X}'\varepsilon/n) \|_2.$$
 (in \mathbb{R})

Linear algebra [skipped] shows error bound:

$$\|\widehat{\beta}^{LS} - \beta\|_2 \leqslant \frac{\|\mathbf{X}'\varepsilon/n\|_2}{\Lambda_{\min}(\mathbf{X}'\mathbf{X}/n)}.$$

Impossibility of OLS with p > n

$$\widehat{\beta}^{LS} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}.$$

Inversion not possible when p > n...

Lemma

If p > n, then $\mathbf{X}'\mathbf{X}$ is (always) singular.

▶ RHS variables must be perfectly colinear in sample.

Proof: rank $(\mathbf{X}'\mathbf{X}) = \operatorname{rank}(\mathbf{X}) \leqslant \min(n, p)$

Illustration of Impossibility of Least Squares

Figure: Sum of squares function in p > n setting

Always flat in some direction.

Lasso

Consistency in High Dimensions, I

Lasso:
$$\widehat{\beta}(\lambda) \in \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \left\{ \underbrace{\frac{1}{n} \sum_{i=1}^{n} (Y_i - X_i' b)^2}_{\text{(mis)fit}} + \underbrace{\lambda \|b\|_1}_{\text{penalty}} \right\},$$

Penalty level $\lambda \ge 0$ of our choosing.

High-dimensional regime: $p/n \to \text{const.} > 0$ as $n \to \infty$.

Consistency? Error bounds?

Consistency in High Dimensions, II

Conditions for Lasso analogous to LS

- 1. Want $\mathbf{X}'\boldsymbol{\varepsilon}/n$ 'small'
- 2. Want X'X/n 'well behaved'

RE 1: We will *choose* λ to force $\mathbf{X}' \boldsymbol{\varepsilon} / n$ 'small.'

RE 2: Smallest eigenvalue of $\mathbf{X}'\mathbf{X}/n$ may be zero,

... but may *hope* small submatrices have nonzero eigenvalues.

Consistency in High Dimensions, III

Let X_J be submatrix of X with $\emptyset \neq J \subseteq \{1, 2, ..., p\}$ columns.

Recall
$$s = \sum_{j=1}^{p} \mathbf{1} \{ \beta_j \neq 0 \}.$$

Smallest (s-)sparse eigenvalue,

$$\phi_{\mathsf{min}}(s) := \phi_{\mathsf{min}}(s)(\mathbf{X}'\mathbf{X}/n) := \min_{1 \leqslant |J| \leqslant s} \Lambda_{\mathsf{min}}(\mathbf{X}'_J\mathbf{X}_J/n).$$

Lasso only relies on invertibility of small submatrices

... OLS needs full invertibility.

Lasso Error Guarantees

Theorem

Let c > 1. Then $\lambda \geqslant c \max_{1 \leqslant j \leqslant p} |n^{-1} \sum_{i=1}^{n} \varepsilon_i X_{ij}|$ implies

$$\|\widehat{\beta}(\lambda) - \beta\|_2 \leqslant \text{const.}(c) \times \frac{\lambda \sqrt{s}}{\phi_{\min}(s)}.$$

[Proof: Skipped.]

Digest

$$\lambda \geqslant c \max_{1 \leqslant j \leqslant p} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} X_{ij} \right|, \qquad \text{(Qualifier)}$$

$$\Rightarrow \|\widehat{\beta}(\lambda) - \beta\|_{\mathbf{z}} \leqslant \text{const.}(c) \times \frac{\lambda \sqrt{s}}{\phi_{\min}(s)}. \qquad \text{(Error Bound)}$$

Nonasymptotic: Holds for finite n and p.

Conditional: Qualifier suggests penalty (BRT rule...)

Trade-off: Want good bound $(\lambda \downarrow)$ with high probability $(\lambda \uparrow)$.

Bickel-Ritov-Tsybakov Rule, Again

Lemma

Let $\varepsilon \sim N(0, \sigma^2)$ be independent of X and $\lambda = \widehat{\lambda}^{BRT}$ chosen according to the Bickel-Ritov-Tsybakov rule,

$$\widehat{\lambda}^{\text{BRT}} = \frac{2c\sigma}{\sqrt{n}} \Phi^{-1} \left(1 - \frac{\alpha}{2p} \right) \max_{1 \leqslant j \leqslant p} \sqrt{\frac{1}{n} \sum_{i=1}^{n} X_{ij}^{2}}.$$

Then $\lambda \geqslant c \max_{1 \leqslant j \leqslant p} |n^{-1} \sum_{i=1}^n \varepsilon_i X_{ij}|$ with probability at least $1 - \alpha$.

Moreover, λ satisfies upper bound

$$\widehat{\lambda}^{\text{BRT}} \leqslant 2c\sigma\sqrt{\frac{2\ln(2p/\alpha)}{n}} \max_{1\leqslant j\leqslant p} \sqrt{\frac{1}{n}\sum_{i=1}^{n} X_{ij}^{2}}.$$

[Proof: Skipped.]

High-Probability Lasso Error Bound

Combine theorem and lemma: If

- errors are independent normal,
- ▶ BRT penalty, $\lambda = \hat{\lambda}^{BRT}$,

then with probability at least $1 - \alpha$, have error bound

$$\|\widehat{\beta}(\lambda) - \beta\|_2 \leqslant C\sqrt{\frac{s \ln p}{n}}.$$

for some constant C > 0.

Lasso Consistency

If $\alpha = \alpha_n \to 0$, then error bnd holds with prob. approaching one.

Consistency follows if $(s/n)(\ln p) \to 0$.

Much weaker than $p/n \to 0$.

p may be much (e.g. exponentially) larger than n.

Extensions:

BCCK rule imply similar results w/o normality/homosked.

Chetverikov & Sørensen [2021] go beyond linear model.

Inference

21 / 55

Motivation

Suppose regressors X = (D, Z')', where

- ▶ D: Variable of interest ('treatment').
- \triangleright Z: Vector of controls. Possibly very long.

Model still

$$Y = \alpha_0 D + Z' \gamma_0 + \varepsilon$$
, $E[\varepsilon \mid D, Z] = 0$.

Object of interest: α_0

 $(\underline{low}$ -dimensional)

Q: How to construct confidence interval?

Lasso?

One possibility: Plain Lasso

1. Lasso Y_i using D_i and Z_i .

Yields $\widehat{\alpha}$ and $\widehat{\gamma}$ (for appropriate penalty).

Idea: Base CI on $\widehat{\alpha}$.

Lasso?

Issues:

- 1. $\widehat{\alpha}$ not analytically available, $\widehat{\alpha} = ?$
- 2. Exact distribution unknown/complicated, $\widehat{\alpha} \stackrel{d}{=} ?$
 - ▶ Orthonormal case: $\widehat{\alpha} = \operatorname{sgn}(\widehat{\alpha}^{LS}) \left(|\widehat{\alpha}^{LS}| \frac{\lambda}{2} \right)_+$
- 3. Asymptotic distribution unknown: $\sqrt{n}(\hat{\alpha} \alpha_0) \stackrel{d}{\rightarrow} ?$
- \Rightarrow No good approximation: $\widehat{\alpha} \stackrel{d}{\approx} ?$
- ⇒ Difficult to construct CI

Post-Lasso?

Another possibility:

- 1. Lasso Y_i using D_i and $Z_i \Rightarrow \widehat{\alpha}$ and $\widehat{\gamma}$
 - Gather selection $\widehat{J} := \{j; \widehat{\gamma}_j \neq 0\}.$
- 2. THEN: Least squares Y_i using D_i and $Z_{i\hat{j}} \Rightarrow \tilde{\alpha}$

Called Post-(Single)Lasso.

Q: Distribution?

REF: Belloni, Chernozhukov [2013 Bernoulli] "Least squares after model selection in high-dimensional sparse models."

Post-Lasso?

Figure: Post-Lasso (Normalized) vs. Standard Normal

Post-Lasso?

What went wrong?

▶ Refitting after Lasso selection.

- ▶ Relies on (unrealistic) perfect model selection.
- ▶ Very sensitive to mistakes.

ightharpoonup Omission of relevant control \Rightarrow bias.

Post-Double Lasso

Strategy

Augment

$$Y = \alpha_0 D + Z' \gamma_0 + \varepsilon$$
, $E[\varepsilon \mid D, Z] = 0$,

with 'first stage'

$$D = Z'\psi_0 + \nu, \quad E[\nu \mid Z] = 0.$$

Added structure implies moment condition

$$\mathrm{E}\left[\left(D-Z'\psi_{0}\right)\left(Y-\alpha_{0}D-Z'\gamma_{0}\right)\right]=0.$$

Hence

$$\alpha_0 = \frac{\mathrm{E}\left[\left(D - Z'\psi_0\right)\left(Y - Z'\gamma_0\right)\right]}{\mathrm{E}\left[\left(D - Z'\psi_0\right)D\right]}.$$

Suggests strategy.

Construction

Post-Double Lasso consists of three steps:

- 1. Lasso D_i using $Z_i \Rightarrow \widehat{\psi}$
- 2. Lasso Y_i using D_i and $Z_i \Rightarrow \widehat{\alpha}$ and $\widehat{\gamma}$
- 3. Estimate α_0 per analogy principle:

$$\check{\alpha} := \frac{\sum_{i=1}^{n} (D_i - Z_i' \widehat{\psi}) (Y_i - Z_i' \widehat{\gamma})}{\sum_{i=1}^{n} (D_i - Z_i' \widehat{\psi}) D_i}.$$

Result

Under (sparsity+) conditions, Post-Double Lasso satisfies

$$\frac{\sqrt{n}(\check{\alpha} - \alpha_0)}{\sigma_0} \stackrel{d}{\to} \mathrm{N}\left(0,1\right), \quad \text{as } n \to \infty, \quad \sigma_0^2 := \frac{\mathrm{E}\left[\varepsilon^2 \nu^2\right]}{\left(\mathrm{E}\left[\nu^2\right]\right)^2}.$$

... even with p (much) greater than n!

⇒ Normal approximation valid even in high-dim. regime.

REF: Belloni, Chernozhukov, Hansen [2014 ReStud, EconPersp].

► Changed field of econometrics!

Numerical Illustration

Figure: Post-Double Lasso $\sqrt{n}(\check{\alpha} - \alpha_0)$ vs. N $(0, \sigma_0^2)$

Variance Estimation

For $\sqrt{n}(\check{\alpha} - \alpha_0)/\sigma_0 \stackrel{d}{\to} N(0,1)$ useful need to estimate

$$\sigma_0^2 = \frac{\mathrm{E}\left[\varepsilon^2 \nu^2\right]}{\left(\mathrm{E}\left[\nu^2\right]\right)^2}.$$

Analogy principle suggests:

$$\begin{split} \check{\sigma}^2 &:= \frac{n^{-1} \sum_i \widehat{\varepsilon}_i^2 \widehat{\nu}_i^2}{\left(n^{-1} \sum_i \widehat{\nu}_i^2\right)^2}, \\ \text{where} \quad \widehat{\varepsilon}_i &:= Y_i - \widehat{\alpha} D_i - Z_i' \widehat{\gamma} \quad \text{and} \quad \widehat{\nu}_i := D_i - Z_i' \widehat{\psi}. \end{split}$$

Under regularity conditions, Post-Double Lasso satisfies

$$\frac{\sqrt{n}(\check{\alpha}-\alpha_0)}{\check{\sigma}}\stackrel{d}{\to} \mathrm{N}\left(0,1\right).$$

Confidence Interval with Post-Double Lasso

$$\xi \in (0,1)$$
: Significance level (e.g. $\xi = .05$)

$$q_{\xi} := \Phi^{-1}(\xi)$$
: N (0, 1) quantile function (e.g. $q_{.025} = 1.96$)

Then

$$P\left(\alpha_0 \in \left[\check{\alpha} \pm q_{1-\xi/2} \frac{\check{\sigma}}{\sqrt{n}}\right]\right) \to 1-\xi.$$

Define $100 \times (1 - \xi)$ % confidence interval (CI):

$$\check{\mathrm{CI}}(1-\xi) := \left[\check{\alpha} \pm q_{1-\xi/2} \frac{\check{\sigma}}{\sqrt{n}}\right].$$

Asymptotically valid—even in high-dim. regime!

Post-Double Lasso as Feasible IV

Estimator

$$\check{\alpha} = \frac{\sum_{i=1}^{n} (D_i - Z_i' \widehat{\psi}) (Y_i - Z_i' \widehat{\gamma})}{\sum_{i=1}^{n} (D_i - Z_i' \widehat{\psi}) D_i}.$$

IF we knew γ_0 and ψ_0 , we observe

$$\widetilde{Y}_i := Y_i - Z_i' \gamma_0$$
 ('outcome')
 $\widetilde{D}_i := D_i - Z_i' \psi_0$ ('instrument')

$$\widetilde{D}$$
 function of $X=(D,Z')',$ so $E[\widetilde{\varepsilon D}]=0.$

Suggests

$$\widetilde{\alpha}^{\text{IV}} := \frac{\sum_{i} \widetilde{D}_{i} \widetilde{Y}_{i}}{\sum_{i} \widetilde{D}_{i} D_{i}}.$$

 $\check{\alpha}$ operationalizes this idea.

Orthogonalized Moments

A Moment Approach

From $E[Y|D,Z] = \alpha_0 D + Z'\gamma_0$ we see $(\alpha_0,\gamma_0')'$ solves

$$E\left[\left(Y - \alpha_0 D - Z'\gamma_0\right)\left(egin{array}{c} D \\ Z \end{array}
ight)\right] = \mathbf{0}.$$

Moment condition. Starting point of estimation.

 α_0 of interest. γ_0 pure nuisance.

 γ_0 long \Rightarrow possibly very noisy (biased) estimate.

Want moment condition for α_0 which is 'insensitive' to error in γ_0 .

Orthogonalized Moments, I

$$E\left[\left(Y-\alpha_0D-Z'\gamma_0\right)\left(egin{array}{c}D\\Z\end{array}
ight)\right]=\mathbf{0},$$

Consider (other) moment condition for α_0 :

$$E\left[\left(Y - \alpha_0 D - Z'\gamma_0\right)\left(D - Z'\psi_0\right)\right] = 0.$$

Has following zero derivative property:

$$\frac{\partial}{\partial \gamma_0} E\left[\left(Y - \alpha_0 D - Z' \gamma_0 \right) \left(D - Z' \psi_0 \right) \right] = E\left[\left(-Z \right) \left(D - Z' \psi_0 \right) \right] = \mathbf{0}.$$

Moment orthogonalized wrt. γ_0 .

Interpret: (Limited) nuisance estimation error has little impact.

Orthogonalized Moments, II

But we introduced new (nuisance) parameters ψ_0 .

So how did we progress?

Luckily, by choice of moment condition

$$\frac{\partial}{\partial \psi_0} E\left[(Y - \alpha_0 D - Z' \gamma_0) (D - Z' \psi_0) \right] = E\left[(Z' \psi_0) \right] = \mathcal{E}\left[(Z' \psi_0) \right]$$

Another zero derivative. Also orthogonalized wrt. ψ_0 .

Constructing/exploiting such zero derivatives active research topic.

Other Methods for High-Dimensional Regression

Other Methods

Our focus: Lasso.

- ▶ In part due to (solid) theoretical foundation.
- ► In part due to popularity.

Other high-dim. methods exist.

Could take the place of Lasso in (most of) the above.

▶ à la "Post-Double X"

Dantzig Selector

Dantzig Selector, I

To develop intuition, recall OLS:

$$\widehat{\beta} = \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (Y_i - X_i'b)^2.$$

Corresponding FOCs:

$$\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-X_{i}'\widehat{\beta})X_{ij}=0 \quad \text{for all } j=1,\ldots,p$$

Lasso changes criterion:

$$\widehat{\beta}(\lambda) = \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^n (Y_i - X_i' b)^2 + \lambda \|b\|_1 \right\}.$$

Alternatively: Modify FOCs.

Dantzig Selector, II

Dantzig Selector (DS)

$$\widehat{\beta}(\lambda) = \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \|b\|_1$$
s.t.
$$\left| \frac{1}{n} \sum_{i=1}^n (Y_i - X_i' b) X_{ij} \right| \leqslant \lambda \text{ for all } j = 1, \dots, p$$

Thus, we relax

- ► Ensure OLS FOCs
- ▶ Encourage sparsity (minimize ℓ_1 -norm)

DS important because of straightforward IV extension.

REF: Candes & Tao (2007), "The Dantzig selector: statistical estimation when p is much larger than n" Annals of Statistics

44 / 55

Ridge Regression

Ridge Regression

$$\widehat{\beta}(\lambda) = \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^n (Y_i - X_i' b)^2 + \lambda \|b\|_2^2 \right\}$$

Akin to Lasso: Replaces ℓ_1 penalty $\|b\|_1$ with ℓ_2 penalty $\|b\|_2^2$ Explicit solution:

$$\widehat{\beta}(\lambda) = \left(\frac{1}{n} \sum_{i=1}^{n} X_i X_i' + \lambda \mathbf{I}_p\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} X_i Y_i\right)$$

Ridge does <u>not</u> perform variable selection $(x \mapsto x^2 \text{ flat around zero})$ Lasso now more popular because of automatic variable selection.

Shrinkage: Orthonormal Design, I

With $n^{-1} \sum_{i} X_i X_i' = \mathbf{I}_p$, Ridge solution

$$\widehat{eta}_{j}^{ exttt{Ridge}}\left(\lambda
ight) = rac{\widehat{eta}_{j}^{ exttt{LS}}}{1+\lambda}, \quad j=1,2,\ldots,p.$$

Proportional shrinkage.

Recall soft-thresholding:

$$\widehat{eta}_j^{ extsf{Lasso}}(\lambda) = \operatorname{sgn}(\widehat{eta}_j^{ extsf{LS}}) \left(|\widehat{eta}_j^{ extsf{LS}}| - rac{\lambda}{2}
ight)_+, \quad j = 1, 2, \dots, p.$$

Amounts to fixed shrinkage.

Shrinkage: Orthonormal Design, II

Figure: Ridge and Lasso vs. Least Squares

Implementing Ridge in Python

```
import numpy as np
from sklearn import datasets
from sklearn.linear_model import Ridge
boston = datasets.load_boston()

X = boston.data
y = boston.target
fit = Ridge(alpha = 1).fit(X,y) # alpha = penalty
y_pred = fit.predict(X)
coef = fit.coef_
print(np.round(coef,2))
```

Cross-Validation and Ridge

Ridge penalty typically determined by sample splitting/cross-validation

▶ Implementation and discussion analogous to Lasso

To implement Ridge with cross-validation in Python:

- 1. import RidgeCV instead
- 2. and replace Ridge(alpha = 1) with RidgeCV(cv = 5)

Ridge Path with Basic Boston Housing Data

Vertical line = CV penalty.

Elastic Net

Elastic Net

Elastic Net: Somewhere in between Lasso and Ridge:

$$\widehat{\beta}\left(\lambda,\ell\right) := \operatorname*{argmin}_{b \in \mathbf{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n (Y_i - X_i'b)^2 + \lambda \left[\ell \left\| b \right\|_1 + (1 - \ell) \left\| b \right\|_2^2 \right] \right\}.$$

Idea: When some regressors highly correlated, Lasso may perform poorly.

- ▶ "A bit of Ridge" provides stability.
- ▶ Orthonormal case: Part fixed/proportional shrinkage.

Elastic Net in Python

```
# Basic implementation
from sklearn.linear_model import ElasticNet
fit=ElasticNet(alpha=1,l1_ratio=0.1).fit(X,y)
```

May choose penalty parameters λ and ℓ via splitting/CV:

```
from sklearn.linear_model import ElasticNetCV
fit = ElasticNetCV(cv = 5).fit(X,y)
```

Normalization warning still applies.

Where are we going?

Part	Topic	Parameterization non-linear	Estimation non-linear	Dimension	Numerical optimization	M-estimation (Part III)	Outcome (y_i)	Panel (c_i)
I	OLS	÷	÷	low	÷	✓	\mathbb{R}	✓
II	LASSO	÷	✓	high	✓	÷	R	÷
	Probit	✓	✓	low	✓	✓	{0,1}	÷
	Tobit	√	✓	low	✓	✓	[0;∞)	÷
IV	Logit	√	✓	low	✓	✓	{1, 2,, <i>J</i> }	÷
	Sample selection	√	✓	low	✓	✓	$\mathbb R$ and $\{0,1\}$	÷
	Simulated Likelihood	✓	✓	low	✓	✓	Any	✓
	Quantile Regression	÷	✓	(low)	✓	✓	R	÷
	Non-parametric	√	(√)	∞	÷	÷	\mathbb{R}	÷