白血病醫學文件分類研究

報告人:蘇佳益

指導老師: 陳聰毅

國立高雄科技大學電子工程系

Agenda

- Introduction
- Introduction to Database
- Introduction to System
- Overview of Dataset
- Model Evaluation
- Classification Algorithm
- Reference

Introduction to Bioinformation

- 生物資訊所包含的範圍
 - 病理影像
 - 病例
 - 醫學資料
- 本研究主要利用文本資料分類出白血病的類別

Introduction to the Categories in this Research

- AML
- ALL
- CML
- CLL
- AML&ALL
- AML&CML
- ALL&CML
- ALL&CLL,其中有四個為有相同的基因表示名稱,也就是說兩個類別有交集, 所以將兩個結合成一個類別。在此研究中,分別比較三種演算法,Neural Network、Naïve Bayes、Decision Tree,並探討其效能。

Overview of Leukemia

- 什麼是白血病?
- 白血病種類
 - 急性淋巴性白血病(ALL)
 - ▶好發於小孩,成人約占20%,此類別有可以分成三型。
 - 急性骨隨性白血病(AML)
 - > 好發於成年人,此疾病又可分為七型。
 - 慢性淋巴性白血病(CLL)
 - ▶ 常發生於50~55歲以上的老年人,此疾病又分為三型。
 - 慢性骨隨性白血病(CML)
 - > 源自於造血細胞的一種惡性腫瘤,由於染色體的病變。

Introduction to Database

PubMed

- PubMed 系統簡介
- PubMed 查詢法則
 - 1. 自然語言搜尋
 - 2. MeSH(Medical Subject Headings)
- MeSH搜尋結果(以鳥(Bird)為例)
 - ▶搜尋結果
- 現今有許多醫學研究都是採用此資料庫

Entrez Gene

- What is Entrez Gene?
- 可以找出與PubMed相對應的ID

pa	attribute	description		
tax_id The unique identifier provided by NCBI Taxonomy for the species or s				
ne2p	GeneID	The unique identifier for a gene.		
gene	PubMed ID	The unique identifier in PubMed for a citation.		

```
#tax id GeneID PubMed ID
               1246500 9873079
               1246501 9873079
               1246502 9873079
               1246503 9873079
               1246504 9873079
               1246505 9873079
               1246509 10984505
               1246510 10984505
1 #tax_id GeneID Symbol LocusTag Synonyms dbXrefs chromosome map_location description type_of_gene Symbol_from_nomenclature_authority
  Full name from nomenclature authority Nomenclature status Other designations Modification date Feature type
2 7 5692769 NEWENTRY - - - - Record to support submission of GeneRIFs for a gene not in Gene (Azotirhizobium caulinodans. Use when strain,
  subtype, isolate, etc. is unspecified, or when different from all specified ones in Gene.). other - - - 20190202
3 9 1246500 repA1 pLeuDn_01 - - - putative replication-associated protein protein-coding - - - 20180129
     1246501 repA2 pLeuDn_03 - - - putative replication-associated protein protein-coding - - -
     1246502 leuA pLeuDn 04 - - - 2-isopropylmalate synthase protein-coding - - - 20180129
                 pLeuDn_05 - - - 3-isopropylmalate dehydrogenase protein-coding - - -
```

Cancer Gene Census

- What is Cancer Gene Census?
- 此研究採用此資料集及Entrez Gene 所提供的gene2pubmed來做特徵選取

Introduction to System

System Architecture

Stemmer

- What is Stemmer?
- Problem?
- The difference between Stemmer and Lemmatization?

12

Feature Selection

- 1. 從gene2pubmed 及 Cancer Gene Census 中建立基因表示名稱 並各自建立一個list。
- 2. 將文件進行編碼並進行統計分析
- 3. 將基因名稱的list做成參考依據。

Architecture of Feature Selection

Overview of Dataset

Genetic Type List – Single Type

Symbol	Gene ID	Tumor
ABL2	27	AML
AF15Q14	57082	AML
ARHGEF12	23365	AML
ARNT	405	AML
CEBPA	1050	AML
CREBBP	1387	AML

Symbol	Gene ID	Tumor
AF1Q	10962	ALL
AF3p21	51517	ALL
AF5q31	27125	ALL
CDK6	1021	ALL
EWSR1	2130	ALL
FBXW7	55294	ALL

Symbol	Gene ID	Tumor
D10S170	8030	CML
HOXA11	3207	CML
MSI2	124540	CML

Symbol	Gene ID	Tumor		
BCL3	602	CLL		
BTG1	694	CLL		
CCND2	894	CLL		
FSTL3	10272	CLL		
MYC	4609	CLL		
TCL1A	8115	CLL		

Genetic Type List – Combination

Symbol	Gene ID	Tumor
FLT3	2322	AML, ALL
JAK2	3717	AML, ALL
MLL	4297	AML, ALL
NUP214	8021	AML, ALL
PICALM	8301	AML, ALL
RUNX1	861	AML, ALL

Symbol	Gene ID	Tumor
BCL11B	64919	ALL,CLL
BCL9	607	ALL,CLL
CCND1	595	ALL,CLL
IGH@	3492	ALL,CLL

Symbol	Gene ID	Tumor
EVI1	2122	AML, CML
PDGFRB	5159	AML, CML
RPL22	6146	AML, CML

Symbol	Gene ID	Tumor		
ABL1	25`	ALL, CML		
BCR	613	ALL, CML		

Crude Dataset

quantity of label Documents

Tumor Types	ALL	AML	CLL	CML	ALL,CLL	ALL, CML	AML, ALL	AML, CML
No. of doc.	532	512	538	128	475	500	521	468

quantify of genetic documents

How to deal with this data?

Gene	EWSR1	ARNT	CCND2	HOXA11	CCND1	BCR	RUNX1	PDGFRB
No. of doc.	161	175	200	101	180	223	181	195
Tumor Types	ALL	AML	CLL	CML	ALL,CLL	ALL, CML	AML, ALL	AML, CML

Normalized Dataset

quantity of label documents

Tumor Types	ALL	AML	CLL	CML	ALL,CLL	ALL, CML	AML, ALL	AML, CML
No. of doc.	500	500	500	500	500	500	500	500

quantity of genetic documents

Gene	EWSR1	ARNT	CCND2	HOXA11	CCND1	BCR	RUNX1	PDGFRB
No. of doc.	100	100	100	100	100	100	100	100
Tumor Types	ALL	AML	CLL	CML	ALL,CLL	ALL, CML	AML, ALL	AML, CML

Model Evaluation

Parameters for Evaluation

- True Positive(TP) –The ground-truth value is true and the predicted value is true as well.
- False Positive(FP) The ground-truth value is false and the predicted value is true as well.
- True Negative(TN) The ground-truth value is false and the predicted value is false as well.
- False Negative(FN) The ground-truth value is true and the predicted value is false as well.

Evaluation Methods

- Definition of Precision, Recall and F1-Score
- Formulae
- 1. Precision $\frac{TP}{TP+FP}$
- 2. Recall $\frac{TP}{TP+FN}$
- 3. F1-Score $\frac{2*Precision*Recall}{Precision+Recall}$
- Why do we need these ways to evaluate model?

Result of the Best Performance

Category	TFIDF	dim	precision	recall	F1
ALL	40	256	0.9151	0.9857	0.9491
AML	40	223	0.8937	0.9762	0.9331
CLL	35	253	0.9011	0.9883	0.9427
CML	35	355	0.9213	0.9891	0.9540
ALLCLL	40	225	0.8949	0.9910	0.9405
ALLCML	40	224	0.8607	0.9719	0.9129
AMLALL	35	284	0.8873	0.9864	0.9342
AMLCML	35	271	0.8872	0.9981	0.9338

F1-Score in Different TF-IDF

Classification Algorithms

Decision Tree

Information Theory

Entropy

- ➤ Entropy defines the amount of information provided by an event. The lower the probability is, the more information load is.
- > Formula of Entropy

$$Entropy(p) = -\sum_{i=1}^{n} p_i * log_2(p_i)$$
, n = the number of sample

Gain Information

- > Gain tells us how much information about the specific class we get from the feature.
- > Formula of Gain Information

$$Gain(p,T) = Entropy(p) - \sum_{j=1}^{n} (p_j * Entropy(p_j))$$

Gain Ratio

- > Gain Ratio is the normalized term of Gain Information
- > Formula of Gain Ratio

Gain Ratio=
$$\frac{Gain(p,T)}{splitinfo(p,T)}$$

ID3 Algorithm - Introduction

- ID3 is used to construct tree based on information gain.
- Suppose we want to classify "whether we should play ball or not"

Day	Outlook	Temperature	Humidity	Wind	Play
D1	Sun	Hot	High	Low	No
D2	Sun	Hot	High	High	No
D3	Overcast	Hot	High	Low	Yes
D4	Rain	Sweet	High	Low	Yes
D5	Rain	Cold	Normal	Low	Yes
D 6	Rain	Cold	Normal	High	No
D 7	Overcast	Cold	Normal	High	Yes
D8	Sun	Sweet	High	Low	No
D 9	Sun	Cold	Normal	Low	Yes
D 10	Rain	Sweet	Normal	Low	Yes
D11	Sun	Sweet	Normal	High	Yes
D12	Overcast	Sweet	High	High	Yes
D13	Overcast	Hot	Normal	Low	Yes
D14	Rain	Sweet	High	High	No

ID3 Algorithm – Example

- Example of wind attribute
- ightharpoonup Entropy(S) = $-\frac{9}{14} * log_2\left(\frac{9}{14}\right) \frac{5}{14} * log_2\left(\frac{5}{14}\right) = 0.94$
- > Gain(S, Wind)=Entropy(S) $-\frac{8}{14}*Entropy(Low) \frac{6}{14}*Entropy(High) = 0.048$
- $\triangleright Entropy(Low) = -\frac{2}{8} * log_2\left(\frac{2}{8}\right) \frac{6}{8} * log_2\left(\frac{6}{8}\right)$
- $ightharpoonup Entropy(High) = -3/6*log_2\left(\frac{3}{6}\right) 3/6*log_2\left(\frac{3}{6}\right)$
- Gain of all attributes
 - > Gain(S, Wind) =0.048
 - Gain(S, Temperature) =0.0289
 - ➤ Gain(S, Humidity) =0.1515
 - ➤ Gain(S, Outlook) =0.246

the most largest one

ID3 Algorithm – Result

C4.5 Algorithm - Introduction

- C4.5 has some improvements on ID3. C4.5 also employs Gain Ratio instead of Gain.
- Advantages of C4.5 Algorithm
 - > unknown value
 - > values on continuous interval
 - reducing overfitting
 - > more accurate and efficient while comparing with ID3

Size of Data Set	Algorithm			
	ID3 (%)	C4.5 (%)		
14	94.15	96.2		
24	78.47	83.52		
35	82.2	84.12		

Size of Data Set	Algorithm					Algorithm		
	ID3 (%)	C4.5 (%)						
14	0.215	0.0015						
24	0.32	0.17						
35	0.39	0.23						

C4.5 Algorithm - Pruning

- Pruning is a technique to reduce our tree for avoiding "overfitting".
- Reduced Error Pruning

Application on Text Classification

- 1. Treating every keywords as our attribute
- 2. Quantilizing our data e.g. TF, TF-IDF
- 3. Calculating the values that we need for decision tree

Naïve Bayes

- Based on Bayes Theory
- Having i.i.d. assumption
- However: It is hard to satisfy this assumption in the real data.
- Naïve Bayes still performs very well.
- We will discuss Naïve Bayes by using text classification problem.

Posterior Probability

- Determining the probability that the sentence belongs which class given a set of words
- Formula

```
posterior\ probability = \frac{(conditional\ probability)*(prior\ probability)}{evidence} \alpha\ (conditional\ prob.)*(prior\ prob.)
```

Prior Probability

- Determining the probability of each class
- Usually uniformly distributed
- The posterior probability will depend on conditional probability when the prior probability is an uniform distribution
- Formula of Prior Probability
 - $P(c_j) = \frac{N_j}{N}$, j = 1, 2..., (Number of Words)
 - N_i: the number of words in the specific class
 - N: the number of all words

Conditional Probability

- Determining the probability of the specific word in the specific class.
- Formula of Conditional Probability
 - $P(w_j | c_i) = \frac{N_{c_i, w_j}}{N_{c_i}}$, i = 1,..., Number of Categories, j = 1, ..., Number of Words
 - N_{c_i,w_j} : the number of word j in the class i
 - N_{c_i} : the number of word in the class i

Naïve Bayes: Practical Discussion

- Problem: The posterior probability will be 0 when the specific word does not appear in the specific class.
- Resolution: In order to prevent this situation, we will add smoothing term.
- Problem: too many digits after decimal point
- Resolution: Using log probability

Naïve Bayes: Additive Smoothing

- Smoothing term is called α .
- We also call Laplace Smoothing when thelpha is one
- The revised formula is as follows:
- $P(w_j | c_i) = \frac{N_{X_i, w_j + \alpha}}{N_{c_i} + \alpha D}$, i = (1, ..., Number of Categories), <math>j = (1, ..., Number of Words)
- D: the number of all words

K-nearest Neighbor – Distance Metric

- There are two distance metrics for K-nearest Neighbor. Those are illustrated as follows.
- Distance Metric
- > L1 Distance

$$> D_1 = \sum_p |I_1^p - I_2^p|$$

- Algorithm Complexity
 - > Training Complexity
 - > Test Complexity

L2 Distance

$$D_2 = \sqrt{\sum_p \left(I_1^p - I_2^p\right)^2}$$

O(1)

O(N), where N is the number of Examples.

K-nearest Neighbor (CONT.)

- Steps of KNN
 - > Store Data
 - > Calculate Distance Metric
 - > Find k nearest neighbor
 - > Find the label that appears the most

41

Experimental Result

F1 measure		Classifier			
		ANN	BP	DT	
	EWSR1	0.9531	0.9258	0.9343	
Gene doc.	ARNT	0.9323	0.9119	0.9237	
	CCND2	0.9576	0.9343	0.9412	
	HOXA11	0.9751	0.8423	0.9478	
	CCND1	0.9453	0.9117	0.9132	
	BCR	0.9053	0.9137	0.9122	
	RUNX1	0.9257	0.9147	0.9152	
	PDGFRB	0.8957	0.8973	0.9153	

References

李俊宏, 類神經網路與癌症基因統計資訊應用於醫學文件分類研究

Badr HSSINA et al., A comparative study of decision tree ID3 and C4.5

Raschka, Naive Bayes and Text Classification I Introduction and Theory

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford University

Machine Learning Crash Course, Google

Decision Tree Puning

白血病簡介

<u>PubMed</u>

PubMed 規則

Entrez 資料