In [31]: import pandas as pd

In [33]: df = pd.read_csv("C:\\Users\\Atwongire Vianney\\Desktop\\AI_PRAC\\Iris_Data.csv
df.head()

Out[33]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

In [34]: df.head(20)

Out[34]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1
10	5.4	3.7	1.5	0.2
11	4.8	3.4	1.6	0.2
12	4.8	3.0	1.4	0.1
13	4.3	3.0	1.1	0.1
14	5.8	4.0	1.2	0.2
15	5.7	4.4	1.5	0.4
16	5.4	3.9	1.3	0.4
17	5.1	3.5	1.4	0.3
18	5.7	3.8	1.7	0.3
19	5.1	3.8	1.5	0.3

In [35]: | df.tail()

Out[35]:

	sepal_length	sepal_width	petal_length	petal_width
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

In [37]: df.tail(10)

Out[37]:

	sepal_length	sepal_width	petal_length	petal_width
140	6.7	3.1	5.6	2.4
141	6.9	3.1	5.1	2.3
142	5.8	2.7	5.1	1.9
143	6.8	3.2	5.9	2.3
144	6.7	3.3	5.7	2.5
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

In [38]: df

Out[38]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

```
In [39]: #appropriate 200 data sample
sepal_length_df = df['sepal_length']
sepal_length_df
```

```
Out[39]: 0
                  5.1
                  4.9
          1
          2
                  4.7
          3
                  4.6
          4
                  5.0
                 . . .
          145
                  6.7
          146
                  6.3
          147
                  6.5
          148
                  6.2
          149
                  5.9
```

Name: sepal_length, Length: 150, dtype: float64

```
petal_length_df = df['petal_length']
In [40]:
         petal_length_df
Out[40]: 0
                 1.4
                 1.4
          1
          2
                 1.3
          3
                 1.5
          4
                 1.4
                . . .
          145
                 5.2
          146
                 5.0
          147
                 5.2
                 5.4
          148
          149
                 5.1
         Name: petal_length, Length: 150, dtype: float64
In [41]:
         petal_length_list = petal_length_df.tolist()
         sepal_length_list = sepal_length_df.tolist()
In [42]: petal_length_list
Out[42]: [1.4,
          1.4,
           1.3,
           1.5,
           1.4,
          1.7,
           1.4,
           1.5,
           1.4,
           1.5,
          1.5,
           1.6,
           1.4,
           1.1,
           1.2,
           1.5,
           1.3,
           1.4,
           1.7,
```

```
sepal_length_list
In [43]:
Out[43]: [5.1,
          4.9,
          4.7,
          4.6,
          5.0,
          5.4,
          4.6,
          5.0,
          4.4,
          4.9,
          5.4,
          4.8,
          4.8,
          4.3,
          5.8,
          5.7,
          5.4,
          5.1,
          5.7,
In [50]:
         #plotting a graph of petal_length_list against sepal_length_list
         def line_of_the_best_fit(xs,ys):
             slope=((mean(xs)*mean(ys))-(mean(xs*ys))/(mean(xs)*mean(xs)-mean(xs*xs)))
             y intercept=mean(ys)-slope*mean(xs)
             return slope, y_intercept
In [51]:
         #introducing numpy library
         import numpy as np
         xs=np.array(petal length list, dtype = np.float64)
         ys=np.array(sepal_length_list, dtype = np.float64)
In [53]: xs
Out[53]: array([1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4,
                1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1. , 1.7, 1.9, 1.6,
                1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.5, 1.3,
                1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5,
                4.9, 4., 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4., 4.7, 3.6,
                4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4., 4.9, 4.7, 4.3, 4.4, 4.8, 5.,
                4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4., 4.4,
                4.6, 4., 3.3, 4.2, 4.2, 4.2, 4.3, 3., 4.1, 6., 5.1, 5.9, 5.6,
                5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5., 5.1, 5.3, 5.5,
                6.7, 6.9, 5. , 5.7, 4.9, 6.7, 4.9, 5.7, 6. , 4.8, 4.9, 5.6, 5.8,
                6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1,
                5.9, 5.7, 5.2, 5., 5.2, 5.4, 5.1])
```

```
In [46]: ys
```

```
Out[46]: array([5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.6, 5. , 4.4, 4.9, 5.4, 4.8, 4.8, 4.8, 5.7, 5.2, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5. , 5.5, 4.9, 4.4, 5.1, 5. , 4.5, 4.4, 5. , 5.1, 4.8, 5.1, 4.6, 5.3, 5. , 7. , 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5. , 5.9, 6. , 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.1, 5.8, 5. , 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6. , 6.9, 5.6, 7.7, 6.3, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6. , 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9])
```

In [52]: #plottinga graph of xs and ys import matplotlib.pyplot as plt from statistics import mean from matplotlib import style style.use('seaborn') plt.scatter(xs,ys, label = 'petal_length and sepal_length')

C:\Users\Atwongire Vianney\AppData\Local\Temp\ipykernel_4692\2344462897.py:6: MatplotlibDeprecationWarning: The seaborn styles shipped by Matplotlib are de precated since 3.6, as they no longer correspond to the styles shipped by sea born. However, they will remain available as 'seaborn-v0_8-<style>'. Alternat ively, directly use the seaborn API instead. style.use('seaborn')

Out[52]: <matplotlib.collections.PathCollection at 0x27aaafd17d0>


```
In [53]: #to visualise data
style.use('seaborn')
plt.scatter(xs,ys, label = 'petal_length and sepal_length' ,alpha=0.5,color = '
plt.xlabel('petal_length')
plt.ylabel('sepal_length')
plt.title('Scatter plot of length of petals and sepals')
```

C:\Users\Atwongire Vianney\AppData\Local\Temp\ipykernel_4692\1546589265.py:2: MatplotlibDeprecationWarning: The seaborn styles shipped by Matplotlib are de precated since 3.6, as they no longer correspond to the styles shipped by sea born. However, they will remain available as 'seaborn-v0_8-<style>'. Alternat ively, directly use the seaborn API instead.

style.use('seaborn')

Out[53]: Text(0.5, 1.0, 'Scatter plot of length of petals and sepals')


```
In [67]: #building a linear regression
    slope,y_intercept = line_of_the_best_fit(xs,ys)
    regression_line = [slope*x + y_intercept for x in xs]
    #predictions
    petal_length = 1.1
    sepal_length = slope*petal_length + y_intercept
```

```
In [66]: petal_length
```

Out[66]: 45.37847289964432

```
In [68]: style.use('seaborn')
   plt.scatter(xs,ys, label = 'petal_length and sepal_length' ,alpha=0.5,color = '
   plt.scatter(petal_length,sepal_length,label='prediction of sepal_length', color
   plt.plot(xs,regression_line,label='line of the best fit',color='blue',linewidth
   plt.xlabel('petal_length')
   plt.ylabel('sepal_length')
   plt.title('Scatter plot of length of petals and sepals')
```

C:\Users\Atwongire Vianney\AppData\Local\Temp\ipykernel_4692\1222711858.py:1: MatplotlibDeprecationWarning: The seaborn styles shipped by Matplotlib are de precated since 3.6, as they no longer correspond to the styles shipped by sea born. However, they will remain available as 'seaborn-v0_8-<style>'. Alternat ively, directly use the seaborn API instead. style.use('seaborn')

Out[68]: Text(0.5, 1.0, 'Scatter plot of length of petals and sepals')

