

CLAIMS

What is claimed is:

- 1 1. A method for analyzing particle systems of surface facets using polarized scattered light,
- 2 said method comprising the steps of:
 - 3 providing models of multiple particle systems, the particle systems comprising surface
 - 4 facets;
 - 5 performing ray-trace analysis with respect to the models over a range of scatter angles,
 - 6 the ray-trace analysis involving only use of second-order rays;
 - 7 receiving information corresponding to a particle system of interest; and
 - 8 predicting at least one characteristic of the particle system of interest using information
 - 9 generated during the ray-trace analysis.

- 1
- 1 2. The method of claim 1, wherein, in performing ray-trace analysis, Fresnel reflections are
- 2 used.

- 1
- 1 3. The method of claim 1, wherein, in performing ray-trace analysis, constructive
- 2 interference of the second-order rays is considered.

- 1
- 1 4. The method of claim 1, wherein, in performing ray-trace analysis, information
- 2 corresponding to polarization state at near-back-scatter angles is generated for each of the
- 3 models.

1

1 5. The method of claim 1, wherein providing models of multiple particle systems comprises
2 the step of:

3 providing a model for each of multiple values of a separation parameter (l) for a selected
4 particle size.

1

1 6. The method of claim 1, wherein predicting at least one characteristic of the particle
2 system of interest comprises the step of:

3 comparing the information corresponding to the particle system of interest to the
4 information generated to determine which model most closely corresponds to the particle system
5 of interest.

1

1 7. The method of claim 1, wherein, in comparing the information corresponding to the
2 particle system of interest to the information generated, the minimum values of polarization state
3 versus back-scatter angles are compared.

1

1 8. The method of claim 1, wherein:

2 the method additionally comprises the step of:

3 detecting values of the intensities I_{TM} and I_{TE} at various back-scatter angles with
4 respect to the

5 particle system of interest; and

6 the information received corresponds to the values of I_{TM} and I_{TE} detected.

1

1

1 9. A method for analyzing particle systems of surface facets using polarized scattered light,
2 said method comprising the steps of:
3 calculating relationships between polarization states and back-scatter angles with respect
4 to multiple arbitrary particle systems, at least some of the particle systems comprising surface
5 facets;
6 receiving information corresponding to a particle system of interest;
7 correlating the information received with the relationships calculated to determine a best
8 fit based, at least in part, on a minimum value of the polarization state of the particle system of
9 interest; and
10 using the best fit to estimate at least one characteristic of the particle system of interest.

1
1 10. The method of claim 9, wherein, in calculating relationships, Fresnel reflections are used.
1
1 11. The method of claim 10, in calculation relationships, second-order ray-trace analysis is
2 performed with respect to at least some of the particle systems that comprise surface facets.
1
1

1 12. A computer-readable medium having a computer program stored thereon, the computer
2 program being executable to perform computer-implemented method steps, said method steps
3 comprising:

4 receiving information corresponding to a model of a particle system that comprises
5 surface facets;

6 generating information corresponding to polarization state and back-scatter angle of the
7 model at multiple separation parameters (λ) using second-order ray-trace analysis;

8 receiving information corresponding to a particle system of interest; and

9 predicting at least one characteristic of the particle system of interest using the
10 information generated.

1
1 13. The computer-readable medium of claim 12, wherein the method step of generating
2 information comprises the step of using constructive interference of second-order rays.

1
1 14. The computer-readable medium of claim 12, wherein the method step of predicting at
2 least one characteristic of the particle system of interest comprises the steps of:

3 comparing the information corresponding to the particle system of interest to the
4 information generated; and

5 determining which separation parameter most closely corresponds to the particle system
6 of interest based on the comparing step.

1
1

1 15. The computer-readable medium of claim 14, wherein the method step of comparing the
2 information corresponding to the particle system of interest to the information accessed, the
3 minimum values of polarization state versus back-scatter angles are compared.

1

1 16. A computer-readable medium having a computer program stored thereon, the computer
2 program being executable to perform computer-implemented method steps, said method steps
3 comprising:

4 calculating relationships between polarization states and back-scatter angles with respect
5 to multiple arbitrary particle systems, at least some of the particle systems comprising surface
6 facets;

7 receiving information corresponding to a particle system of interest;

8 correlating the information received with the relationships calculated to determine a best
9 fit based, at least in part, on a minimum value of the polarization state of the particle system of
10 interest; and

11 using the best fit to estimate at least one characteristic of the particle system of interest.

1

1 17. The computer-readable medium of claim 16, wherein, in calculating relationships,
2 Fresnel reflections are used.

1

1 18. The computer-readable medium of claim 16, wherein, in calculating relationships,
2 second-order ray-trace analysis is performed with respect to at least some of the particle systems
3 that comprise surface facets.

1

1

- 1 19. A system for analyzing a particle system using polarized scattered light comprises:
 - 2 a model of multiple particle systems comprising surface facets, the model being
 - 3 configured to provide information corresponding to polarization state and back-scatter angle of
 - 4 the multiple particle systems at multiple separation parameters (l) using second-order ray-trace
 - 5 analysis; and
- 6 a computer operative to access the model, the computer being further operative to:
 - 7 receive information corresponding to a particle system of interest; and
 - 8 predict at least one characteristic of the particle system of interest using the
 - 9 information provided by the model.
- 1
- 1 20. The system of claim 19, further comprising:
 - 2 means for storing the model such that the model is accessible by the computer.