

PLANO DE ENSINO

Curso:	Engenharia de Redes	Professor:	Cláudia J. Barenco Abbas
Campus:	Darcy Ribeiro	Inicial:	23/03/2025

Disciplina	Cód.	Pré- Requisito	Carga Horária	Sem	Período Ministrado
Computação para engenharia	ENE 0334		60h	1º	01/2025

Ementa

Princípios dos paradigmas de programação funcional e orientada a objetos. Tipos de dados. Operadores. Estruturas de controle. Modularização e funções. Coleção de dados homogêneos (arranjos). Coleção de dados heterogêneos (struct). Operações de entrada e saída. Ponteiros. Implementação de programas computacionais em linguagem C++. Princípios e boas práticas de codificação, depuração e documentação.

Objetivo

A disciplina se propõe a apresentar uma introdução ao desenvolvimento de algoritmos e de programas (em linguagem C++) para a solução de problemas computacionais. Ao final do curso, espera-se que o aluno seja capaz de:

- 1. Entender os princípios básicos da programação de computadores;
- 2. Compreender e desenvolver algoritmos elementares;
- 3. Ler, escrever e entender códigos computacionais escritos em linguagem de alto nível;
- 4. Entender as estruturas básicas de programação (abstração de dados, operações, subprogramas e modularização, endereçamento de memória);
- 5. Desenvolver e implementar, em linguagem C++, programas de pequeno e médio porte.

Conteúdo programático

- **I. Introdução.** Computação. Arquitetura e organização de computadores. Algoritmos e lógica de programação. Paradigma de programação funcional.
- **II. Fundamentos da Linguagem C++.** Estrutura geral de um programa em linguagem C++. Variáveis e tipos de dados. Operadores aritméticos, lógicos e relacionais. Entrada e saída formatadas.
- III. Laços e Comandos de Repetição. Comandos for, do, while, break.
- IV. Testes Condicionais. Comandos if, else, switch.
- **V. Funções.** Princípios de modularização e de estruturação de programas. Declaração e definição de funções. Passagem de argumentos por valor e por referência. Recursividade.
- VI. Arranjos. Arranjos unidimensionais (vetores) e multidimensionais (matrizes). Organização de arranjos na memória.
- VII. Ponteiros. Definições. Endereçamento da memória. Aritmética e operações com ponteiros. Aplicações.
- **VIII. Cadeias de Caracteres.** Representação de cadeias na linguagem C. Funções de manipulação de *strings* da biblioteca padrão. Aplicações.
- **IX. Manipulação de Arquivos.** Definição e formas de acesso a arquivos. Funções e operações sobre arquivos de texto. Funções e operações sobre arquivos binários.
- X. Orientação a objetos. Classes e objetos. Aplicação e manipulação de objetos.

Metodologia de ensino

Aulas de cunho expositivo, com o auxílio do quadro negro e projetor multimídia, e de natureza prática, objetivando a implementação dos conceitos e soluções dos problemas abordados.

Avaliação

A avaliação da disciplina será feita por meio de:

PLANO DE ENSINO

- 2 (duas) provas escritas (P1 e P2), de caráter obrigatório e individual, e conteúdo acumulativo, com consulta a qualquer material didático, para serem resolvidas em sala de aula. O aluno só poderá realizar a prova na turma em que estiver regularmente matriculado;
- 1 (um) trabalho final (T), a ser realizado individualmente, com o tema ser definido pelo aluno e discutido previamente com o professor.
- Trabalhos Casa (C), de caráter individual, que versam sobre os tópicos abordados em sala de aula.

A nota final da disciplina (NF) será obtida por meio da expressão:

NF = 0.30P1 + 0.35P2 + 0.25T + 0.10C

Não haverá, em hipótese alguma, prova de reposição para fins de substituição ou complemento de nota. Para as provas P1 e P2 não realizadas pelo aluno nas suas datas oficiais de aplicação será atribuída a nota 0,00 (zero). Entretanto, mediante falta por motivo de saúde, devidamente comprovada por meio de atestado médico, uma avaliação de reposição cobrindo todo o conteúdo da disciplina será aplicada. A data será devidamente acertada com o(s) aluno(s) interessado(s) no decorrer do período letivo.

As datas finais para apresentação dos trabalhos serão definidas através de sorteio.

Critérios de aprovação. Para ser aprovado, o aluno deverá obter nota final igual ou superior a 5,00 (cinco) e ter percentual de faltas menor ou igual 25% nas aulas (o percentual de faltas é obtido pelo número de aulas com faltas registradas dividido pelo número de aulas ministradas). Caso o percentual de faltas seja superior a 25%, será atribuída a nota 0,00 (zero) à nota final. A nota final NF será então convertida em uma menção final de acordo com a regra geral adotada pela UnB. Não há arredondamento da nota final NF.

Nota Final	Menção			
NF = 0,00	SR			
0,00 < NF < 3,00	II			
3,00 =< NF < 5,00	MI			
5,00 =< NF < 7,00	MM			
7,00 =< NF < 9,00	MS			
NF >= 9,00	SS			

Bibliografia

Livro: Beej's Guide to C Programming Brian "Beej Jorgensen" Hall v0.9.22, February 20, 2025.