

CS120: Computer Networks

Lecture 1. Course Introduction

Zhice Yang

General Information

- Week 1-16
 - Zhice Yang (杨智策)
 - yangzhc@shanghaitech.edu.cn
 - Office hours:
 - Tuesday 10:30 a.m. 11:30 a.m.
 - Office 1A-404E

General Information (cont.)

- TAs:
 - Yihui Yan (严亦晖)
 - yanyh@shanghaitech.edu.cn
 - Hao Li (李昊)
 - lihao2023@shanghaitech.edu.cn
- WeChat Group
 - Q&A
 - Urgent Notifications
- Blackboard (互动教学平台)
 - Email Notifications
 - Course Materials
 - Homework Submission
- GitHub
 - https://github.com/sist-cs120/project-wiki
 - https://sist-cs120.github.io/project-doc/
 - Project Documentation and Discussion

亥二维码7天内(10月7日前)有效,重新

General Information (cont.)

- Textbook
 - Computer Networks: A System Approach 5th
 - by Larry Peterson, Bruce Davie
 - Computer Networks: A System Approach 6th
 - by Larry Peterson, Bruce Davie
 - https://item.jd.com/13015993.html
 - Open access version: https://book.systemsapproach.org/
- Reference Textbook
 - Computer Networking: A Top-Down Approach 8th
 - by James Kurose, Keith Ross
 - https://item.jd.com/13464817.html

Grading

- No Cheating!
 - Once confirmed. Fail the course
- 20% Homework
 - Four Homework Assignments (5% each)
- 35% Final Exam
 - No Midterm
- 45% Course Project
 - Group: <= 2 students
 - email TA (<u>lihao2023@shanghaitech.edu.cn</u>) your group members no later than Oct. 8
 - 40% for four subprojects (about 10% each)
 - Submit your project (code) to Blackboard
 - Ask TAs to check and grade your project before submitting your code
 - 5% if you finish all the four subprojects
 - "finish" means: obtain a minimum score of 60% of the compulsory parts of every subproject
 - Reference code of project 1 and 2 is provided after the due
 - Programming language: No restrictions (Java is suggested)
 - Estimated coding overhead (3000 lines)
 - You can use any open-source code (should be explicitly acknowledged with reference links)
 - Project checking is scheduled on weekends
 - Can only use the provided sound cards
- Up to 25% Bonus Score
 - For finishing Course Project optional parts
- Up to 5% Attendance
- Delayed Submissions
 - -10 % * N, N is the delayed time in unit of day (N<=10)
 - -5% for the first 0 12 Hours
 - -10 % for the first 12 24 Hours

START PROJECT EARLY

Week	Time		Time	
1	Sep. 16		Sep. 18	Course Introduction
2	Sep. 23	Bandwidth and Latency	Sep. 25	Physical Layer
3	Sep. 30	<u>Discussion: Audio Interface</u>	Oct. 2	
4	Oct. 7Oct. 12	ACK	Oct. 9	Framing & Error Detection
5	Oct. 14	Medium Access Control (Ethernet)	Oct. 16	Medium Access Control (Wi-Fi)
6	Oct. 21	Switching	Oct. 23	IP Address
7	Oct. 28	Intradomain Routing (RIP and OSPF)	Oct. 30	NAT and Router Design
8	Nov. 4	Discussion: Network Simulator	Nov. 6	Mobile Routing
9	Nov. 11	SDN	Nov. 13	Interdomain Routing (BGP)
10	Nov. 18	TCP 1	Nov. 20	TCP 2
11	Nov. 25	Congestion Control 1	Nov. 27	Congestion Control 2
12	Dec. 2	Other Topics in TCP	Dec. 4	Data Compression
13	Dec. 9	DNS	Dec. 11	HTTP & SMTP
14	Dec. 16	FTP & P2P	Dec. 18	Network Security 1
15	Dec. 23	Network Security 2	Dec. 25	Summary
16	Dec. 30		Jan. 1	Final Exam
18	Jan. 13		Jan. 15	Final Project Due

Week	Time	proj0 relea	ase	Time	proj1 release
1	Sep. 16			Sep. 18	Course Introduction
2	Sep. 23	Bandwidth and La	proj0 due	Sep. 25	Physical Layer
3	Sep. 30	Discussion: Audio	proj1 due	Oct. 2	
4	Oct. 7Oct. 12	ACK	or off due	Oct. 9	proj2 release Detection
5	Oct. 14	Medium Access Contro	ol (Ethernet)	Oct. 16	Control (Wi-Fi)
6	Oct. 21	Switching		Oct. 23	IP Address
7	Oct. 28	Intradomain Rout	ppoi2 duo	Oct. 30	NAT and Router Design
8	Nov. 4	Discussion: Netwo	proj2 due	Nov. 6	noi2 nologgo
9	Nov. 11	SDN		Nov. 13	uting (BGP)
10	Nov. 18	TCP 1	ppoi2 duo	Nov. 20	TCP 2
11	Nov. 25	Congestion Control	proj3 due	Nov. 27	proj4 release trol 2
12	Dec. 2	Other Topics in TCP		Dec. 4	On Old release on
13	Dec. 9	DNS		Dec. 11	HTTP & SMTP
14	Dec. 16	FTP & P2P		Dec. 18	Network Security 1
15	Dec. 23	Network Security	proj4 due	Dec. 25	Summary
16	Dec. 30			Jan. 1	Final Exam
18	Jan. 6			Jan. 8	Final Project Due

Withdraw Policy

According to University's Policies

What is a Computer Network

Internet

Device to Device Connections

Outlook Web App

Security (show explanation)							
This is a public or shared computerThis is a private computer							
Use the light version of Outlook	Web App						
User name:							
Password:							
	Sign in						
Connected to Microsoft Exchange © 2010 Microsoft Corporation. All rights reserved.							
Ema	il						

Wireless Connections

This Course is about...

- NOT
 - Coding networked apps
 - Configuring network devices

This Course is about...

How to design and implement computer networks

In this way

to understand how real computer networks work

Build a HTTP Service from Ground up?

- A Real Network Like Internet is too Complicated
 - Implement an http server (Apache, Nginx...)
 - Implement an http browser (Chrome, IE…)
 - Implement a TCP/IP stack (net/core, socket···)
 - Implement a link layer driver (ath9k, e1000…)
 - Implement a modem chip (ar9285, Intel i210···)

Too Much...

About the Course Project

A Toy Network over Acoustic Channel

- Acoustic Connection
 - Node to node connection through speakers and microphones

- Multiple Access
 - Efficiently handle the access of multiple nodes

- NAT
 - Implement a gateway to connect the network to the Internet

- Reliable Delivery and Network Applications
 - e.g.: FTP

About the Project

- Building an Acoustic Network
 - Basic Communication
 - Reliability
 - Resource Sharing
 - Scalability
 - etc.

Still Very Challenging ...

Shoulders of Giants

 We introduce and borrow existing designs from state-of-the-art network technologies (especially the Internet)

The Concept of Network Layering

- Benefit
 - Modular Design

How Laying Works?

- Protocols
 - One or more protocols implement the functionality of a certain layer
 - A protocol defines a communication service
 - Service Interface (for upper layer)
 - Peer to peer Interface (for the same layer)

How Laying Works?

How Laying Works?

Canonical Layer Model

OSI 7 Layer Model

Layering of the Real Internet

Layering of the Real Internet

