Résumé de cours : Semaine 27, du 18 avril au 22.

Les matrices (suite)

1 Opérations sur les matrices (suite)

1.1 Le produit matriciel (suite)

Propriété. La multiplication matricielle est associative.

Propriété. La mutiplication matricielle est distributive par rapport à l'addition.

Propriété. Soit $A \in \mathcal{M}_{n,p}$, $B \in \mathcal{M}_{p,q}$ et $a \in \mathbb{K}$. Alors a(AB) = (aA)B = A(aB).

Propriété. Pour tout $M \in \mathcal{M}_{\mathbb{K}}(n,p)$, $I_nM = MI_p = M$.

Propriété. Soit $n, p \in \mathbb{N}^*$ et $M \in \mathcal{M}_{\mathbb{K}}(n, p)$. Pour tout $X \in \mathbb{K}^p$, $MX \in \mathbb{K}^n$.

Si
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$
, alors $\forall i \in \{1, \dots, n\}, \ [MX]_i = \sum_{j=1}^p M_{i,j} x_j$

et $MX = x_1M_1 + \cdots + x_pM_p$, en notant M_1, \ldots, M_p les colonnes de M.

Il faut savoir le démontrer.

Propriété. Si $M \in \mathcal{M}_{\mathbb{K}}(n,p)$, la j-ème colonne de M est Mc_j , où $c_j = (\delta_{i,j})_{1 \leq i \leq n} \in \mathbb{K}^p$.

Définition. Si $M \in \mathcal{M}_{\mathbb{K}}(n,p), \stackrel{\tilde{M}: \mathbb{K}^p}{X} \stackrel{\longrightarrow}{\longmapsto} \stackrel{\mathbb{K}^n}{MX}$ est une application linéaire que l'on appelle l'application linéaire canoniquement associée à la matrice M.

Propriété. $M_{\mathbb{K}}(n,p) \longrightarrow L(\mathbb{K}^p,\mathbb{K}^n)$ est un isomorphisme d'espaces vectoriels.

Il faut savoir le démontrer.

Remarque. On identifie souvent M et \tilde{M} , auquel cas, pour tout $X \in \mathbb{K}^p$, MX = M(X). Cela permet d'interpréter une matrice M comme une application linéaire.

Définition. Soit $M \in \mathcal{M}_{\mathbb{K}}(n,p) : \operatorname{Ker}(M) \stackrel{\Delta}{=} \{X \in \mathbb{K}^p / MX = 0\}$

et $\operatorname{Im}(M) \stackrel{\Delta}{=} \{MX \mid X \in \mathbb{K}^p\} = \operatorname{Vect}\{\text{colonnes de } M\}.$

Corollaire. Soit $(M, M') \in \mathcal{M}_{\mathbb{K}}(n, p) : (\forall X \in \mathbb{K}^p \quad MX = M'X) \Longleftrightarrow M = M'.$

Propriété. Soit $A \in \mathcal{M}_{\mathbb{K}}(n,p)$ et $B \in \mathcal{M}_{\mathbb{K}}(p,q)$. Alors $\widetilde{AB} = \widetilde{A} \circ \widetilde{B}$.

1.2 L'algèbre des matrices carrées de taille $n \in \mathbb{N}^*$

Propriété. $(\mathcal{M}_n(\mathbb{K}), +, ., \times)$ est une \mathbb{K} -algèbre, ni commutative ni intègre dès que $n \geq 2$.

Définition. $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente si et seulement si il existe $p \in \mathbb{N}^*$ tel que $A^p = 0$.

Propriété. $M_{\mathbb{K}}(n) \longrightarrow L(\mathbb{K}^n)$ est un isomorphisme d'algèbres.

Corollaire. Soit $A \in \mathcal{M}_{\mathbb{K}}(n)$. A est inversible dans $\mathcal{M}_{\mathbb{K}}(n)$ si et seulement si \tilde{A} est inversible dans $L(\mathbb{K}^n)$ et dans ce cas, $\widetilde{M}^{-1} = \widetilde{M}^{-1}$.

Corollaire. Soit $A \in \mathcal{M}_{\mathbb{K}}(n)$. A est inversible dans $\mathcal{M}_{\mathbb{K}}(n)$ si et seulement si, pour tout $X \in \mathbb{K}^n$, il existe un unique $Y \in \mathbb{K}^n$ tel que AX = Y.

Propriété. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

A inversible dans $\mathcal{M}_n(\mathbb{K}) \iff A$ inversible à droite dans $\mathcal{M}_n(\mathbb{K}) \iff A$ inversible à gauche dans $\mathcal{M}_n(\mathbb{K})$.

Formule : Dans $\mathcal{M}_2(\mathbb{K})$, $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible si et seulement si $\det(M) \stackrel{\triangle}{=} ad - cb \neq 0$, et dans ce cas $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Il faut savoir le démontrer.

Formule de Cramer : Soit $a, b, c, d, e, f \in \mathbb{K}^4$. Lorsque det $= ad - cb \stackrel{\triangle}{=} \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$,

$$\begin{cases} ax + by = e \\ cx + dy = f \end{cases} \Longleftrightarrow x = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix}}{\det} \ \land \ y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\det}.$$

Il faut savoir le démontrer

Notation. $GL_n(\mathbb{K})$ = groupe des inversibles de $\mathcal{M}_n(\mathbb{K})$. On l'appelle le groupe linéaire de degré n.

Exemple. Un automorphisme intérieur de $\mathcal{M}_n(\mathbb{K})$ est un automorphisme sur $\mathcal{M}_n(\mathbb{K})$ de la forme $M \longmapsto AMA^{-1}$ où $A \in GL_n(\mathbb{K})$.

Propriété. Les matrices diagonales de $\mathcal{M}_n(\mathbb{K})$ forment une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{K})$.

Propriété. Pour tout $i \in \mathbb{N}_n$, on pose $c_i = (\delta_{i,j})_{1 \leq j \leq n} \in \mathbb{K}^n$ et $F_i = \operatorname{Vect}(c_k)_{1 \leq k \leq i}$. Si $M \in \mathcal{M}_n(\mathbb{K})$, M est triangulaire supérieure ssi, pour tout $j \in \{1, \ldots, n\}$, F_j est stable par \tilde{M} . Il faut savoir le démontrer.

Propriété. On suppose que $n \geq 2$.

- L'ensemble des matrices triangulaires supérieures (respectivement : inférieures) de $\mathcal{M}_n(\mathbb{K})$ est une sous-algèbre non commutative de $\mathcal{M}_n(\mathbb{K})$.
- Le produit d'une matrice triangulaire supérieure dont la diagonale est (a_1, \ldots, a_n) par une matrice triangulaire supérieure dont la diagonale est (b_1, \ldots, b_n) est une matrice triangulaire supérieure dont la diagonale est (a_1b_1, \ldots, a_nb_n) .

Il faut savoir le démontrer.

Propriété. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure, dont la diagonale est notée (a_1, \ldots, a_n) . Alors A est inversible si et seulement si pour tout $i \in \{1, \ldots, n\}, a_i \neq 0$, et dans ce cas, A^{-1} est encore triangulaire supérieure et sa diagonale est $\left(\frac{1}{a_1}, \ldots, \frac{1}{a_n}\right)$.

Il faut savoir le démontrer.

1.3 Transposée d'une matrice

Définition. Soit $A \in \mathcal{M}_{\mathbb{K}}(n,p)$. On appelle *transposée de la matrice* A et on note tA la matrice de $\mathcal{M}_{\mathbb{K}}(p,n)$ définie par $[{}^{t}A]_{i,j} = A_{i,i}$.

Propriété. Pour tout $A \in \mathcal{M}_{\mathbb{K}}(n,p)$, t(tA) = A.

Propriété. L'application $M_{\mathbb{K}}(n,p) \longrightarrow M_{\mathbb{K}}(p,n)$ est un isomorphisme d'espaces vectoriels.

Propriété. Soit $(A, B) \in \mathcal{M}_{\mathbb{K}}(n, p) \times \mathcal{M}_{\mathbb{K}}(p, q)$. Alors, ${}^{t}(AB) = {}^{t}B$ ${}^{t}A$.

Il faut savoir le démontrer.

Corollaire. Si $A \in GL_n(\mathbb{K})$, ${}^tA \in GL_n(\mathbb{K})$ et $({}^tA)^{-1} = {}^t(A^{-1})$.

Définition. M est une matrice symétrique si et seulement si ${}^{t}M = M$.

M est une matrice antisymétrique si et seulement si ${}^{t}M = -M$.

Remarque. Lorsque $\operatorname{car}(\mathbb{K}) \neq 2$, si $M \in \mathcal{M}_n(\mathbb{K})$ est antisymétrique, sa diagonale est nulle.

Notation. $\mathcal{S}_n(\mathbb{K})$ désigne l'ensemble des matrices symétriques d'ordre n.

 $\mathcal{A}_n(\mathbb{K})$ désigne l'ensemble des matrices antisymétriques d'ordre n.

Propriété. $\mathcal{S}_n(\mathbb{K})$ et $\mathcal{A}_n(\mathbb{K})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{K})$, mais ce ne sont pas des sous-algèbres. Cependant, elles sont stables par passage à l'inverse.

Il faut savoir le démontrer.

Propriété. $S_n(\mathbb{K}) \oplus A_n(\mathbb{K}) = \mathcal{M}_n(\mathbb{K}), \dim(S_n(\mathbb{K})) = \frac{n(n+1)}{2}, \dim(A_n(\mathbb{K})) = \frac{n(n-1)}{2}.$ Il faut savoir le démontrer.

1.4 Différentes interprétations du produit matriciel

Au niveau des colonnes de la matrice de droite : Soit $A \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{p})$. Si B_1, \ldots, B_q sont des vecteurs colonnes de \mathbb{K}^p , $A \times B_1 B_2 \cdots B_q = AB_1 AB_2 \cdots AB_q$.

Au niveau des colonnes de la matrice de gauche :

— Si $M \in \mathcal{M}_{\mathbb{K}}(n,p)$ et $X \in \mathbb{K}^p$, MX est une combinaison linéaire des colonnes de M.

Plus précisément, si l'on note
$$M_1, \ldots, M_p$$
 les colonnes de M et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$,

$$MX = x_1 M_1 + \dots + x_p M_p.$$

— Soient $A \in \mathcal{M}_{\mathbb{K}}(n,p)$ et $B \in \mathcal{M}_{\mathbb{K}}(p,q)$. Les colonnes de AB sont des combinaisons linéaires des colonnes de A: en notant A_1, \ldots, A_p les colonnes de A et $B = (b_{i,j})$, la $j^{\text{ème}}$ colonne de ABest égale à $b_{1,j}A_1 + \cdots + b_{p,j}A_p$.

Au niveau des lignes de la matrice de gauche : Soit $A \in \mathcal{M}_{\mathbb{K}}(n, \mathbf{p})$ et $B \in \mathcal{M}_{\mathbb{K}}(\mathbf{p}, q)$. Notons

Au niveau des lignes de la matrice de gauche : Soit
$$A \in \mathcal{M}_{\mathbb{K}}$$
 $_{1}A, \ldots, _{n}A$ les lignes de A . Alors $AB = \begin{pmatrix} 1 & A \\ \vdots & A \end{pmatrix} \times B = \begin{pmatrix} 1 & A \\ \vdots & A \end{pmatrix}$.

Au niveau des lignes de la matrice de droite :

- Si $M \in \mathcal{M}_{\mathbb{K}}(n,p)$ et $X \in \mathcal{M}_{1,n}$, XM est une combinaison linéaire des lignes de M. Plus précisément, si l'on note $1M, \ldots, nM$ les lignes de M et $X = (x_1 \cdots x_n)$, $XM = x_1 \times {}_1M + \dots + x_n \times {}_nM.$
- Soient $A \in \mathcal{M}_{\mathbb{K}}(n,p)$ et $B \in \mathcal{M}_{\mathbb{K}}(p,q)$. Les lignes de AB sont des combinaisons linéaires des lignes de B: en notant $_1B,\ldots,_pB$ les lignes de B et $A=(a_{i,j})$, la $i^{\text{ème}}$ ligne de AB est égale à $a_{i,1} \times {}_{1}B + \cdots + a_{i,p} \times {}_{p}B$.

1.5 Trace d'une matrice

Définition. La trace de la matrice $M \in \mathcal{M}_n(\mathbb{K})$ est $Tr(M) = \sum_{i=1}^n m_{i,i}$.

Propriété. La trace est une forme linéaire de $\mathcal{M}_n(\mathbb{K})$.

Propriété. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$. Alors, Tr(AB) = Tr(BA). Il faut savoir le démontrer.

ATTENTION: Si $(A, B, C) \in \mathcal{M}_n(\mathbb{K})^3$, en général $Tr(ABC) \neq Tr(ACB)$.

Définition. Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. On dit que A et B sont semblables si et seulement si il existe $P \in GL_n(\mathbb{K})$ telle que $B = PAP^{-1}$.

La relation de similitude ("être semblable à") est une relation d'équivalence sur $\mathcal{M}_n(\mathbb{K})$.

Définition. Une matrice de $\mathcal{M}_n(\mathbb{K})$ est diagonalisable (resp : trigonalisable) si et seulement si elle est semblable à une matrice diagonale (resp : triangulaire supérieure).

Propriété. Deux matrices semblables ont la même trace, mais la réciproque est fausse. Il faut savoir le démontrer.

2 Matrices décomposées en blocs

2.1 Matrices extraites

Définition. Soit $n, p \in \mathbb{N}$ et soit I et J deux parties de \mathbb{N} telles que |I| = n et |J| = p. Notons $0 \le i_1 \le i_2 \le \cdots \le i_n$ les éléments de I et $0 \le j_1 \le i_2 \le \cdots \le j_p$ les éléments de J. Alors on convient d'identifier toute famille $(M_{i,j})_{(i,j)\in I\times J}$ de **scalaires** indexée par $I\times J$ avec la matrice $(M_{i_h,j_k})_{\substack{1\le h\le n \\ 1\le k\le n}} \in \mathcal{M}_{\mathbb{K}}(n,p)$.

Remarque. Lorsque I ou J est vide, $I \times J = \emptyset$ et $\mathbb{K}^{I \times J}$ possède un unique élément, que l'on appellera la matrice vide.

Définition. Soit $n, p \in \mathbb{N}^*$ et $M \in \mathcal{M}_{\mathbb{K}}(n, p)$. Une matrice extraite de M est une matrice de la forme $(M_{i,j})_{(i,j)\in I\times J}$, où $I\subset \mathbb{N}_n$ et $J\subset \mathbb{N}_p$.

2.2 Matrices blocs

Définition. Soient
$$(n_1, \ldots, n_a) \in (\mathbb{N}^*)^a$$
 et $(p_1, \ldots, p_b) \in (\mathbb{N}^*)^b$. On pose $n = \sum_{i=1}^a n_i$ et $p = \sum_{j=1}^b p_j$.

Pour tout $(i,j) \in \mathbb{N}_a \times \mathbb{N}_b$, considérons une matrice $M_{i,j} \in \mathcal{M}_{\mathbb{K}}(n_i,p_j)$. Alors la famille de ces matrices $M = (M_{i,j})_{\substack{1 \leq i \leq a \\ 1 \leq j \leq b}}$ peut être identifiée à une matrice possédant n lignes et p colonnes. On dit que M est une **matrice décomposée en blocs**, de dimensions (n_1,\ldots,n_a) et (p_1,\ldots,p_b) .

Définition. Avec ces notations, M est une matrice triangulaire supérieure par blocs si et seulement si, pour tout $(i, j) \in \mathbb{N}_a \times \mathbb{N}_b$ tel que i > j, $M_{i,j} = 0$.

De même on définit la notion de matrice triangulaire inférieure par blocs.

La matrice $M=(M_{i,j})_{\substack{1\leq i\leq a\\1\leq j\leq b}}$ est une **matrice diagonale par blocs** si et seulement si, pour tout $(i,j)\in\mathbb{N}_a\times\mathbb{N}_b$ tel que $i\neq j,\ M_{i,j}=0$.

2.3 Opérations sur les matrices blocs

Combinaison linéaire de matrices décomposées en blocs : Soient $M=(M_{i,j})_{1\leq i\leq a\atop j\neq i}$ et

 $N=(N_{i,j})_{\substack{1\leq i\leq a\\1\leq j\leq b}}$ deux matrices décomposées en blocs selon les mêmes partitions $(I_i)_{1\leq i\leq a}$ et $(J_j)_{1\leq j\leq b}$ respectivement de \mathbb{N}_n et de \mathbb{N}_p . Alors, $\forall u\in\mathbb{K},\ uM+N=(uM_{i,j}+N_{i,j})_{\substack{1\leq i\leq a\\1\leq j\leq b}}$.

Produit matriciel de deux matrices décomposées en blocs : soit $n, p, q \in \mathbb{N}^*$.

Soit $M=(M_{i,j})_{\substack{1\leq i\leq a\\1\leq j\leq b}}$ une matrice décomposée en blocs selon les partitions $(I_i)_{1\leq i\leq a}$ et $(J_j)_{1\leq j\leq b}$ respectivement de \mathbb{N}_n et de \mathbb{N}_p . Soit $N=(N_{j,k})_{\substack{1\leq j\leq b\\1\leq k\leq c}}$ une matrice décomposée en blocs selon la **même partition** $(J_j)_{1\leq j\leq b}$ de \mathbb{N}_p et une partition $(K_k)_{1\leq k\leq c}$ de \mathbb{N}_q .

Alors MN peut être vue comme une matrice décomposée en blocs selon les partitions $(I_i)_{1 \leq i \leq a}$ de

$$\mathbb{N}_n$$
 et $(K_k)_{1 \le k \le c}$ de \mathbb{N}_q et $MN = \left(\sum_{j=1}^b M_{i,j} N_{j,k}\right)_{\substack{1 \le i \le a \\ 1 \le k \le c}}$.

En résumé, le produit de deux matrices par blocs se comporte comme le produit matriciel usuel.

Application : Produit de matrices triangulaires (resp : diagonales) par blocs, puissances de telles matrices.

3 La notion de rang

3.1 Rang d'une famille de vecteurs

Définition. Soient E un espace vectoriel et x une famille de vecteurs de E.

Le rang de x est $\operatorname{rg}(x) \stackrel{\Delta}{=} \dim(\operatorname{Vect}(x)) \in \mathbb{N} \cup \{+\infty\}.$

Propriété. Pour une famille x de vecteurs d'un \mathbb{K} -espace vectoriel E,

- $rg(x) \le \#(x)$. Lorsque $rg(x) < +\infty$, il y a égalité si et seulement si x est libre.
- $\operatorname{rg}(x) \leq \dim(E)$. Lorsque $\operatorname{rg}(x) < +\infty$, il y a égalité si et seulement si x est génératrice.

Propriété.

Soit $u \in L(E, F)$ et x une famille de vecteurs de E.

Alors $\operatorname{rg}(u(x) \le \operatorname{rg}(x))$, avec égalité lorsque $\operatorname{rg}(x) < +\infty$ et u injective.

Il faut savoir le démontrer.

Propriété. Soit $(x_i)_{i \in I}$ une famille de vecteurs d'un \mathbb{K} -espace vectoriel E. Alors $\operatorname{rg}(x_i)_{i \in I}$ n'est pas modifié si l'on échange l'ordre de deux vecteurs, si l'on multiplie l'un des vecteurs x_i par un scalaire non nul, ou bien si l'on ajoute à l'un des x_i une combinaison linéaire des autres x_j .

3.2 Rang d'une application linéaire

Théorème. Soit $u \in L(E, F)$.

Si H est un supplémentaire de Ker(u) dans E, alors $u|_{H}^{Im(u)}$ est un isomorphisme. Il faut savoir le démontrer.

Définition. $\operatorname{rg}(u) = \dim(\operatorname{Im}(u)) \in \mathbb{N} \cup \{+\infty\}$: il s'agit du rang de l'application linéaire u.

Propriété. Si e est une base de E et $u \in L(E, F)$, alors rg(u) = rg(u(e)).

Formule du rang. Soit $u \in L(E, F)$ avec E de dimension finie.

Alors $\operatorname{rg}(u)$ est fini et $\operatorname{dim}(\operatorname{Im}(u)) + \operatorname{dim}(\operatorname{Ker}(u)) = \operatorname{dim}(E)$.

Propriété. Si $u \in L(E, F)$, alors $rg(u) \le min(dim(E), dim(F))$. De plus, lorsque E est de dimension finie, rg(u) = dim(E) si et seulement si u est injective

et lorsque F est de dimension finie, $rg(u) = \dim(F)$ si et seulement si u est surjective.

Théorème. $\operatorname{rg}(v \circ u) < \inf(\operatorname{rg}(u), \operatorname{rg}(v)).$

On ne modifie par le rang d'une application linéaire en la composant avec un isomorphisme (à sa gauche ou à sa droite).

3.3 Rang d'une matrice

Définition. Si $M \in \mathcal{M}_{\mathbb{K}}(n,p)$, le rang de M est $\operatorname{rg}(M) \stackrel{\Delta}{=} \operatorname{rg}(\tilde{M}) = \dim(\operatorname{Im}(M))$.

Le rang d'une matrice est aussi le rang de la famille de ses vecteurs colonnes.

Propriété. $M \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si rq(M) = n.

Propriété. Soit $(A, B) \in \mathcal{M}_{\mathbb{K}}(n, p) \times \mathcal{M}_{\mathbb{K}}(p, q)$. Alors, $\operatorname{rg}(AB) \leq \min(\operatorname{rg}(A), \operatorname{rg}(B))$. On ne modifie pas le rang d'une matrice en la multipliant par une matrice inversible.

4 Matrice d'une application linéaire

Définition. Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions respectives p > 0 et n > 0. Soient $e=(e_1,\ldots,e_p)$ une base de E et $f=(f_1,\ldots,f_n)$ une base de F. Si $u\in L(E,F)$, on appelle matricede l'application linéaire u dans les bases e et f la matrice notée $mat(u, e, f) = (\alpha_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n, p)$ définie par l'une des conditions équivalentes suivantes :

- pour tout $i \in \mathbb{N}_n$ et $j \in \mathbb{N}_p$, $\alpha_{i,j}$ est la $i^{\text{ème}}$ coordonnée du vecteur $u(e_j)$ dans la base f. pour tout $i \in \mathbb{N}_n$ et $j \in \mathbb{N}_p$, $[\max(u, e, f)]_{i,j} = f_i^*(u(e_j))$.
- $\operatorname{mat}(u, e, f)$ est l'unique matrice $(\alpha_{i,j}) \in \mathcal{M}_{\mathbb{K}}(n, p)$ vérifiant : $\forall j \in \mathbb{N}_p \quad u(e_j) = \sum_{i=1}^n \alpha_{i,j} f_i$.
- mat(u, e, f) est l'unique matrice dont la j-ème colonne, égale à $\Psi_f^{-1}(u(e_j))$, contient les coordonnées de $u(e_i)$ dans la base f.

Interprétation tabulaire : Avec les notations précédentes,

$$\operatorname{mat}(u, e, f) = \begin{pmatrix} u(e_1) & \cdots & u(e_p) \\ m_{1,1} & \cdots & m_{1,p} \\ \vdots & & \vdots \\ m_{n,1} & \cdots & m_{n,p} \end{pmatrix} \quad \begin{array}{c} f_1 \\ \vdots \\ f_n \end{array}.$$

Notation. Lorsque E = F et que l'on choisit e = f, on note mat(u, e) au lieu de mat(u, e, e).

Propriété. Pour tout $n, p \in \mathbb{N}^*$, pour tout $M \in \mathcal{M}_{\mathbb{K}}(n, p)$, $\left| \operatorname{mat}(\tilde{M}, c, c') = M \right|$, en notant c et c' les bases canoniques de \mathbb{K}^p et de \mathbb{K}^n .

Remarque. Nous disposons maintenant de deux manières équivalentes de définir l'application linéaire canoniquement associée à une matrice $M \in \mathcal{M}_{\mathbb{K}}(n,p)$: c'est l'application $\tilde{M}: \mathbb{K}^p \xrightarrow{\widetilde{}} \mathbb{K}^n$ $X \longmapsto \tilde{M}(X) = MX$ ou bien c'est l'unique application $\tilde{M} \in L(\mathbb{K}^p, \mathbb{K}^n)$ telle que $\max(\tilde{M}, c, c') = M$.