# Intuitive Understanding of Newton-Raphson Method

Xinyu Chen

February 22, 2022

#### Abstract

Newton-Raphson method is a classical and powerful algorithm for numerically determining the root of some equations. This post will introduce some simple and intuitive examples for showing how does the Newton-Raphson method work for finding the root of equations.

### 1 Start with a Quadratic Equation

Quadratic equation is one of the most classical equation in math, which takes the form of  $ax^2 + bx + c = 0$ . If we have a quadratic equation  $x^2 - 4 = 0$ , then as we know, the positive solution is x = 2.

For graphical convenience, we define a function as  $f(x) = x^2 - 4$ . The derivative of the function is f'(x) = 2x.



Figure 1:  $f(x) = x^2 - 4$  (blue curve).

If we use  $x_0 = 4$  as starting point, then (4, 12) is the point of intersection.



Figure 2:  $f(x) = x^2 - 4$  (blue curve); x = 4 (dashed orange line); (4, 12) (orange dot).

For the point (4, 12), the tangent line is f(x) = 8x - 20.



Figure 3:  $f(x) = x^2 - 4$  (blue curve); x = 4 (dashed orange line); (4,12) (orange dot); y = 8x - 20 (red line).

The point of intersection of tangent line and x axis is  $(\frac{5}{2}, 0)$ . If we use  $x_1 = \frac{5}{2}$  as a new point, then  $(\frac{5}{2}, \frac{9}{4})$  is the point of intersection.



**Figure 4:**  $f(x) = x^2 - 4$  (blue curve);  $x = \frac{5}{2}$  (dashed orange line);  $(\frac{5}{2}, \frac{9}{4})$  (orange dot); y = 8x - 20 (red line).

For the point  $(\frac{5}{2}, \frac{9}{4})$ , the tangent line is  $f(x) = 5x - \frac{41}{4}$ .



**Figure 5:**  $f(x) = x^2 - 4$  (blue curve);  $x = \frac{5}{2}$  (dashed orange line);  $(\frac{5}{2}, \frac{9}{4})$  (orange dot);  $y = 5x - \frac{41}{4}$  (red line).

The point of intersection of tangent line and x axis is  $(\frac{41}{20}, 0)$ . As can be seen, the x coordinate  $\frac{41}{20} = 2.05$  is very close to the solution x = 2.

#### 2 Revisit Newton's Motivation

In the rather early stage, Newton tried to motivate the idea using equation  $x^3 - 2x - 5 = 0$ . As we know, the solution is very close to 2. Perhaps, we can try to use  $x_0 = 2$  as starting point.



**Figure 6:**  $f(x) = x^3 - 2x - 5$  (blue curve).

Recall that  $f'(x) = 3x^2 - 2$ .

- 1. Use  $x_0 = 2$ , then  $(x_0, f(x_0)) = (2, -1)$  and  $f'(x_0) = 10$ .
- 2. Tangent line is f(x) = 10x 21, and the point of intersection of tangent line and x axis is (2.1, 0).
- 3. Use  $x_1 = 2.1$ , then  $(x_1, f(x_1)) = (2.1, 0.061)$  and  $f'(x_1) = 11.23$ .
- 4. Tangent line is f(x) = 11.23x 23.522, and the point of intersection of tangent line and x axis is (2.094568, 0).

Note that  $x_2 = 2.094568$  is very close to the final estimate achieved by Newton, i.e., x = 2.09455148.

## 3 Explain Newton-Raphson Iteration

For any equation f(x) = 0, the Newton-Raphson iteration is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Suppose  $x^3 - 2x^2 - 11x + 12 = 0$ , how to use the Newton-Raphson iteration to obtain the solution with the starting point  $x_0 = 2$ ?



**Figure 7:**  $f(x) = x^3 - 2x^2 - 11x + 12$  (blue curve).

Note that  $f'(x) = 3x^2 - 4x - 11$ . If  $x_0 = 2$ , then

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{f(2)}{f'(2)} = 0.5714285714285714$$



Figure 8:  $f(x) = x^3 - 2x^2 - 11x + 12$  (blue curve);  $x_0 = 2, x_1 = 0.57143$  (orange line).

As  $x_1 = 0.5714285714285714$ , then

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.9978678038379531$$



**Figure 9:**  $f(x) = x^3 - 2x^2 - 11x + 12$  (blue curve);  $x_0 = 2, x_1 = 0.57143, x_2 = 0.99787$  (orange line).