Security Attacks on RSA A Computational Number Theoretic Approach

Pratik Poddar

Department of Computer Science and Engineering IIT Bombay

April 10, 2009

Contents

Introduction

- 1 Introduction
 - Introduction to RSA Cryptosystem
 - Introduction to RSA Signatures
 - Basic Ideas of RSA
- 2 Factoring Attacks
 - Some Factoring Algorithms
 - Breaking RSA v/s Factoring
 - Exposing d v/s Factoring
 - Guessing $\phi(N)$ v/s Factoring
 - Are Strong Primes Needed?
 - Conclusion
- 3 Elementary Attacks
 - Dictionary Attack
 - Common Modulus Attack
 - Blinding Attack
- 4 Low Private Exponent Attack
 - Theory of Continued Fractions
 - Wiener's Attack
 - Avoiding Wiener's Attack

Low Private Exponent Attack

Adi Shamir, Ron Rivest, Len Adleman in 1977

The Math behind RSA

p and q are two distinct large prime numbers

$$N = pq$$
 and $\phi(N) = (p-1)(q-1)$

• Choose a large random number d > 1 such that $\gcd(d,\phi(N)) = 1$ and compute the number $e, 1 < e < \phi(N)$ satisfying the congruence

$$ed \equiv 1 \mod \phi(N)$$

- The numbers N, e, d are referred to as the modulus. encryption exponent and decryption exponent respectively.
- The public key is the pair (N, e) and the secret trapdoor is d.

Introduction to RSA Cryptosystem

Introduction

Simplified Model of RSA Cryptosystem

Why it it simplified?

Difference between RSA cryptosystem and RSA function

Introduction to RSA Signatures

0000

Simplified Model of RSA Signatures

Basic Ideas of RSA

Based on the idea that ... Factorization is difficult

But ...

There is no formal proof that

- Factorization is difficult
- Factorization is needed for cryptanalysis of RSA

Contents

- 1 Introduction
 - Introduction to RSA Cryptosystem
 - Introduction to RSA Signatures
 - Basic Ideas of RSA
- 2 Factoring Attacks
 - Some Factoring Algorithms
 - Breaking RSA v/s Factoring
 - Exposing d v/s Factoring
 - Guessing $\phi(N)$ v/s Factoring
 - Are Strong Primes Needed?
 - Conclusion
- 3 Elementary Attacks
 - Dictionary Attack
 - Common Modulus Attack
 - Blinding Attack
- 4 Low Private Exponent Attack
 - Theory of Continued Fractions
 - Wiener's Attack
 - Avoiding Wiener's Attack

Factoring Algorithm 1: Fermat's Factorization Method

- First improvement over the \sqrt{n} trial-division method
- Every odd composite number can be represented as a difference of two squares

$$n = cd$$

$$n = \left[\frac{c+d}{2}\right]^2 - \left[\frac{c-d}{2}\right]^2$$

- Start from $k = \sqrt{n}$, go on incrementing k till $k^2 n$ is a perfect square
- Might be worse than trial division . . .

Introduction

■ Effect on RSA ... Special case $p - q \le 4n^{\frac{1}{4}}$

Factoring Algorithm 2: Euler's Factorization Method

 Based upon representing a positive integer n as the sum of two squares in two different ways

$$n = a^2 + b^2 = c^2 + d^2$$

If n can be represented as a sum of two squares in two different ways, it can be factorized!!

$$(a-c)(a+c) = (d-b)(d+b)$$

Let k be the gcd of a-c and d-b, so that a-c=kl and d-b=km.

$$I(a+c) = m(d+b)$$
 and $a+c = mr$ and $d+b = Ir$ (Why?)

$$n = \left\lceil \left(\frac{k}{2}\right)^2 + \left(\frac{r}{2}\right)^2 \right\rceil \cdot (m^2 + l^2) \text{ (Are } k \text{ and } r \text{ always even?)}$$

- Start from $k = \sqrt{\frac{n}{2}}$, go on decrementing k till $n k^2$ is a perfect square
- Historically important!! Flaws!!

Introduction

- Basic idea
- Effect on RSA

Pollard's p-1 algorithm

end for

```
Require: A composite integer N
Ensure: A non-trivial factor of N or failure
B \Leftarrow Chosen \ Smoothness \ Bound
a \Leftarrow Random \ number \ coprime \ to \ N
for q=1 to B do
if q is prime then
e \leftarrow \left\lfloor \frac{\log N}{\log q} \right\rfloor
a \leftarrow a^{q^e} \mod N
end if
```

Pollard's p-1 algorithm

```
g \leftarrow \gcd(a-1,N)

if 1 < g < N then

return g

else if g=1 then

Select a higher B and go to step 2 or return failure

else

Go to step 2 or return failure

end if
```

- Example... Factorize 5917
- Say B = 5, we make $\alpha = 2^{13}3^85^6$
- \blacksquare So, $\beta = 2^{\alpha} 1$
- $\gcd(\beta, 5917) = 61 !!$

Factoring Algorithm 4: Pollard's ρ Method

Ideas:

Introduction

- Birthday Paradox
- Floyd's cycle finding algorithm

Require: n, the integer to be factored; x_1 , such that $0 \le x_1 \le n$; and f(x), a

Factoring Algorithm 4: Pollard's ρ Method

Pollard's ρ algorithm

```
pseudo-random function modulo n.
Ensure: A non-trivial factor of n or failure
     i \Leftarrow 1; v \Leftarrow x_1; k \Leftarrow 2
     loop
         i \Leftarrow i + 1
         x_i \leftarrow (x_{i-1}^2 - 1) \mod n
         d \Leftarrow \gcd(y - x_i, n)
         if d \neq 1 and d \neq n then
             return d
         end if
         if i = k then
             y \Leftarrow x_i
             k \leftarrow 2k
         end if
```

Example... Factorize 1387

end loop

Example... Factorize 1387

Factoring Algorithm 4: Pollard's ρ Method .. Example

Example... Factorize 1387 Take $x_1 = 2$ and $f(x) = x^2 - 1 \mod 1387$

i	Xi	$\gcd(x_i-y,1387)$	y
1	2	-	2
2	3	$\gcd(3-2,1387)=1$	3
3	8	$\gcd(8-3,1387)=1$	
4	63	$\gcd(63-3,1387)=1$	63
5	1194	$\gcd(1194-63,1387)=1$	
6	1186	$\gcd(1186 - 83, 1387) = 1$	
7	177	$\gcd(177-63,1387)=19$	
8	814	gcd(814 - 63, 1387)	814
9	996	gcd(996 - 814, 1387)	

Complexity??

Breaking RSA v/s Factoring

- Breaking RSA ≤ Factoring (Obvious!)
- Open Problem: Factoring ≤ Breaking RSA??
- Expectation: No!!! Factoring is expected to be strictly > Breaking RSA

Exposing d v/s Factoring

Theorem

Exposing the private key d and factoring N are equivalent

Proof

- Determining $d \leq$ Factoring N (Why??)
- Determining $d \ge \text{Factoring } N \text{ (Non-obvious algorithm)}$

We will now present a randomized algorithm by which knowing d, factors of N can be *easily* determined.

Exposing d v/s Factoring ... Miller Rabin Test

Miller Rabin Test

- Randomized primality testing algorithm
- Miller version · · · Rabin version

Exposing $d \sqrt{s}$ Factoring ... Miller Rabin Test

Miller Rabin Test

Require: n > 2, an odd integer to be tested for primality **Ensure:** Composite if n is composite, otherwise probably Prime

```
Write n-1 as 2^s d with d odd a \Leftarrow Random number between <math>1 and n-1 x_0 \Leftarrow a^d \mod n if x = 1 OR x = n-1 then return Probably Prime end if
```

Exposing d v/s Factoring ... Miller Rabin Test

Miller Rabin Test

```
\begin{array}{l} \text{for } i=1 \text{ to } s-1 \text{ do} \\ x_i \Leftarrow x_{i-1}^2 \mod n \\ \text{if } x_i=1 \text{ and } x_{i-1} \neq 1 \text{ and } x_{i-1} \neq n-1 \text{ then} \\ \text{return } Composite \\ \text{end if} \\ \text{end for} \\ \text{if } x_t \neq 1 \text{ then} \\ \text{return } Composite \\ \text{else} \\ \text{return } Probably \ Prime \\ \text{end if} \end{array}
```

Exposing d v/s Factoring ... Miller Rabin Test

Miller Rabin Error Rate Analysis

If n is a composite number, then the number of witnesses to the compositeness of n is at least $\frac{n-1}{2}$.

Proof

- Prove that number of non-witnesses is at most $\frac{n-1}{2}$
- Creating a subgroup B, which is a subgroup of \mathbb{Z}_n^* , which contains all the non-witnesses
- Show the existence of an element in $\mathbb{Z}_n^* B$,
- Order of $B \leq \frac{n-1}{2}$. Number of non-witnesses $\leq \frac{n-1}{2}$

We break the proof into two cases.

Case 1: There exists an $x \in \mathbb{Z}_n^*$ such that $x^{n-1} \not\equiv 1 \mod n$

- Let $B = \{b \in \mathbb{Z}_n^* : b^{n-1} \equiv 1 \pmod{n}\}$
- Since there exists an element x for which $x^{n-1} \not\equiv 1 \mod n$, $\mathbb{Z}_n^* B$ is non-empty
- Number of non-witnesses $\leq \frac{n-1}{2}$

Exposing d v/s Factoring ... Miller Rabin Test

Case 2: For all $x \in \mathbb{Z}_n^*$, $x^{n-1} \equiv 1 \mod n$

Introduction

Represent n as $n_1 n_2$ where n_1 and n_2 are relatively prime

Note that $n-1=2^su$ and for *input* a, we can compute the following sequence modulo n: a^u , a^{2^u} , a^{2^3u} , a^{2^4u} ... a^{2^5u}

Let us call a pair of integers (v,j) acceptable if $v \in \mathbb{Z}_n^*$, $j = 0, 1, 2, \dots, s$ and

$$v^{2^{j_u}} \equiv -1 \pmod{n}$$

Set of acceptable pairs contains (n-1,0). So, the set is non-empty. Pick the largest possible j for which there exists an v such that (v,j) is an acceptable pair. We will use this j in the proof.

$$B = \{x \in \mathbb{Z}_n^* : x^{2^j u} \equiv \pm 1 \pmod{n}\}$$

Clearly, B is a subgroup of \mathbb{Z}_n^* . Also note that the sequence produced by a non-witness must be either all 1's or contain -1 no later than the jth position (due to maximality of j). So, every non-witness belongs to B.

Exposing d v/s Factoring ... Miller Rabin Test

Case 2: For all $x \in \mathbb{Z}_n^*$, $x^{n-1} \equiv 1 \mod n$

To complete the proof, we have to prove that \mathbb{Z}_n^*-B is non-empty. Note that there exists a w such that

$$w \equiv v \pmod{n_1}$$
 and $w \equiv 1 \pmod{n_2}$

where v is an element in B such that $v^{2^j u} \equiv -1 \pmod{n}$. So,

$$w^{2^j u} \equiv -1 \pmod{n_1}$$
 and $w^{2^j u} \equiv 1 \pmod{n_2}$

This implies $w^{2^j u} \not\equiv -1 \pmod n$ and $w^{2^j u} \not\equiv 1 \pmod n$. So, $w \not\in B$. All we need to prove is that $w \in \mathbb{Z}_n^*$. Since $v \in \mathbb{Z}_n^*$, $\gcd(v,n)=1$, which implies $\gcd(v,n_1)=1$. Since $\gcd(w,n_1)=\gcd(v,n_1)$, $\gcd(w,n_1)=1$. By construction of w, $\gcd(w,n_2)=1$. So, $\gcd(w,n_1n_2)=\gcd(w,n)=1$.

Exposing d v/s Factoring . . . The Randomized Algorithm

The Algorithm... knowing d, factors of N can be easily determined

- Let k = ed 1
- If g is chosen at random from \mathbb{Z}_n^* , the with probability at least $\frac{1}{2}$, one of the elements in the sequence $g^{k/2}, g^{k/4}, g^{k/8}, ..., g^{k/2^t} \mod N$ is a witness for the compositeness of N
- A witness of compositeness of Miller Rabin test reveals a factor of N as square roots of $1 \mod N$ (other than $1 \mod -1$) would be x and -x where $x \equiv 1 \mod p$ and $x \equiv -1 \mod q$
- \blacksquare gcd(x-1,N) would get the factor of N

Guessing $\phi(N)$ and factoring N are equivalent

- Guessing $\phi(N) \ge$ Factoring (Obvious!)
- Factoring \geq Guessing $\phi(N)$ (Why??)

Strong Primes

What are strong primes?

A prime p is considered to be a "strong prime" if it satisfies the following conditions:

- **p** is a large prime (say $|p| \ge 256$)
- The largest prime factor of p-1, say p^- , is large (say $|p^-| \ge 100$)
- The largest prime factor of $p^- 1$, say p^{--} , is large (say $|p^{--}| \ge 100$)
- The largest prime factor of p+1, say p^+ , is large (say $|p^+| \ge 100$)

A prime is

- p^- -strong if p^- is large
- p^{--} -strong if p^{--} is large
- p^+ -strong if p^+ is large
- (p^-, p^+) -strong if both p^- and p^+ are large
- strong if all p^- , p^{--} and p^+ are large

Are Strong Primes Needed?

- Believed that p and q in RSA have to be strong
- Original RSA paper, Cycling Attack, X.509 Standard
- Rivest and Silverman proved that use of strong primes is unnecessary
- PKCS#1 v2.1 does not recommend strong primes

Conclusion

- We discussed about the factoring algorithms present at the time of RSA publication
- How those factorization algorithms affected RSA paper
- We discussed various other ways to attempt RSA breaking and compared them to factoring
- The myth of RSA needing strong primes

Contents

- 1 Introduction
 - Introduction to RSA Cryptosystem
 - Introduction to RSA Signatures
 - Basic Ideas of RSA
- 2 Factoring Attacks
 - Some Factoring Algorithms
 - Breaking RSA v/s Factoring
 - Exposing d v/s Factoring
 - Guessing $\phi(N)$ v/s Factoring
 - Are Strong Primes Needed?
 - Conclusion
- 3 Elementary Attacks
 - Dictionary Attack
 - Common Modulus Attack
 - Blinding Attack
- 4 Low Private Exponent Attack
 - Theory of Continued Fractions
 - Wiener's Attack
 - Avoiding Wiener's Attack

Elementary Attack 1: Dictionary Attack

- One-to-one mapping between ciphertext and plaintext : vulnerable to Dictionary Attack
- Security measure: Random Padding (PKCS#1 v1.5)

Elementary Attack 2: Common Modulus Attack

- RSA modulus should not be used by more than one entity
- Alice recieves the ciphertext $C = M^{e_a} \mod N$
- Mallory does not have d_a , but using e_b and d_b , Mallory can factor N
- d_a can be calculated and Mallory can decrypt the message intended for Alice

Elementary Attack 3: Blinding Attack

- Attack specific to RSA signatures
- Suppose attacker A wants to get a document M signed by B
- A needs $M^d \mod N \cdots$ A sends $r^e M \mod N$ for B to sign
- Signing the sent message gives

$$r^{ed}M^d \mod N = rM^d \mod N$$

■ Security measure: Random Padding, Signing Hash

Contents

Introduction

- 1 Introduction
 - Introduction to RSA Cryptosystem
 - Introduction to RSA Signatures
 - Basic Ideas of RSA
- 2 Factoring Attacks
 - Some Factoring Algorithms
 - Breaking RSA v/s Factoring
 - Exposing d v/s Factoring
 - Guessing $\phi(N)$ v/s Factoring
 - Are Strong Primes Needed?
 - Conclusion
- 3 Elementary Attacks
 - Dictionary Attack
 - Common Modulus Attack
 - Blinding Attack
- 4 Low Private Exponent Attack
 - Theory of Continued Fractions
 - Wiener's Attack
 - Avoiding Wiener's Attack

Low Private Exponent Attack

Wiener's Attack

Let N = pq with p and q approximately of the same size, i.e. $q . Let <math>d < \frac{1}{3}N^{1/4}$. Given (N, e) with $ed \equiv 1 \mod \phi(N)$, the attacker can easily recover d.

Continued Fractions

Definition

The function of n+1 variables

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cdots + \cfrac{1}{a_n}}}}$$

or

$$[a_0, a_1, a_2, a_3 \cdots, a_n]$$

is defined as a continued fraction. We consider only simple and positive continued fractions, i.e. all $a_i's$ are integral and positive. $[a_0, a_1, a_2, a_3 \cdots, a_i]$, $0 \le i \le n$ are said to be the *convergents* of $[a_0, a_1, a_2, a_3 \cdots, a_n]$.

Theorem 1

The continued fraction

$$[a_0, a_1, a_2, \cdots, a_n] = [a_0, a_1, \cdots, a_{m-1}, [a_m, \cdots, a_n]]$$

Theorem 2

The continued fraction

$$[a_0, a_1, a_2, \cdots, a_{m-1}, a_m] = \frac{p_m}{q_m} = \frac{a_m p_{m-1} + p_{m-2}}{a_m q_{m-1} + q_{m-2}}$$

Theorem 3

Continued Fraction Algorithm: Any rational number x can be represented as a simple finite continued fraction.

Proof

$$x=\frac{h_0}{k_0}$$

Comparing x with $[a_0, a_1, a_2, \cdots, a_N, a_{N+1}]$,

$$x = a_0 + \xi_0$$
 where $\xi_0 < 1$ i.e. $h_0 = a_0 k_0 + \xi_0 k_0$

If $\xi_0 \neq 0$

$$\frac{1}{\xi_0} = \frac{k_0}{h_0 - a_0 k_0}$$

Let $k_1 = h_0 - a_0 k_0$, (since, $k_1 = \xi_0 k_0$, we have $k_1 < k_0$)

$$\frac{k_0}{k_1} = a_1 + \xi_1 \text{ and } k_0 = a_1 k_1 + \xi_1 k_1$$

Proof Contd · · ·

Doing this repeatedly gives a system of equations

$$h_0 = a_0 k_0 + k_1$$
, $k_0 = a_1 k_1 + k_2$

$$h_1 = a_1k_1 + k_2$$
, $k_1 = a_2k_2 + k_3$

. . .

as long as $k_{N+1} \neq 0$.

Equations same as when executing Euclid's extended algorithm to compute gcd of h_0 and k_0 .

So, Continued fraction algorithm terminates and the number of convergents for x is $\Theta(\min(\log h_0, \log k_0))$.

Theorem 4

lf

$$\left|\frac{p}{q} - x\right| \le \frac{1}{2q^2}$$

then $\frac{p}{q}$ is a convergent of continued fraction expansion of x.

Proof

Assuming that the statement is true, then

$$\frac{p}{q} - x = \frac{\epsilon \theta}{q^2}$$

where $\epsilon=\pm 1$ and $0<\theta<\frac{1}{2}$. Let $\frac{p_n}{q_n}$ and $\frac{p_{n-1}}{q_{n-1}}$ be the last and second last convergents of continued fraction of $\frac{p}{q}$. Note that $\frac{p_n}{q_n}=\frac{p}{q}$. We can write, for some ω ,

$$x = \frac{\omega p_n + p_{n-1}}{\omega q_n + q_{n-1}}$$

Proof Contd · · ·

$$heta=rac{q_n}{\omega q_n+q_{n-1}}$$
 and $\omega=rac{1}{ heta}-rac{q_{n-1}}{q_n}$

Note that since $\theta < \frac{1}{2}$, we have, $\omega > 1$

Let
$$\frac{p}{q} = [a_0, a_1, \cdots a_{m1}]$$

Let
$$\omega = [b_0, b_1, b_2 \cdots b_{m2}]$$

$$[a_0, a_1, a_2 \cdots a_{m1}, \omega] = [a_0, a_1, a_2 \cdots a_{m1}, [b_0, b_1, b_2 \cdots b_{m2}]]$$
$$= \frac{\omega p_m + p_{m-1}}{\omega q_m + q_{m-1}} = x$$

So,
$$x = [a_0, a_1, a_2 \cdots a_{m1}, b_0, b_1, \cdots b_{m2}].$$

So, by construction, we have proved that $\frac{p}{q}$ is a convergent of continued fraction expansion of x.

Wiener's Attack

Attack by Wiener, 1990

Let N=pq with p and q approximately of the same size, i.e. q< p< 2q. Let $d<\frac{1}{3}N^{1/4}$. Given (N,e) with $ed\equiv 1 \bmod \phi(N)$, the attacker can easily recover d.

Proof

There exists k such that $ed - k\phi(N) = 1$. We will first show that that $\frac{k}{d}$ is an approximation of $\frac{e}{N}$. Also note that $N - \phi(N) < 3\sqrt{N}$.

$$\left| \frac{e}{N} - \frac{k}{d} \right| = \left| \frac{1 - k(N - \phi(N))}{Nd} \right|$$
$$\left| \frac{e}{N} - \frac{k}{d} \right| \le \frac{3k}{d\sqrt{N}}$$

Also, since $k\phi(N)=ed-1< ed$ and $e<\phi(N)$, we have k< d. In the case when $d<\frac{1}{3}N^{1/4}$, we obtain $k< d<\frac{1}{3}N^{1/4}$ and so

$$\left|\frac{e}{N} - \frac{k}{d}\right| \le \frac{1}{d\sqrt[4]{N}} \le \frac{1}{3d^2} < \frac{1}{2d^2}$$

Proof Contd···

- $\frac{k}{d}$ is a convergent of continued fraction expansion of $\frac{e}{N}$
- Number of fractions to be checked for $\frac{k}{d}$ is bounded by $\Theta(\log N)$
- One of the $\Theta(\log N)$ convergents of continued fraction for $\frac{e}{N}$ is $\frac{k}{d}$
- $\frac{k}{d}$ is a reduced fraction
- We have $\Theta(\log N)$ available options for d

Avoiding Wiener's Attack

Method 1: Large e

- Instead of using e < N, use $e' = e + t\phi(N)$ for a large t
- This would mean e' > N
- Large e' would mean a large k which would counter Wiener's attack
- If $e' > N^{1.5}$, Wiener's attack is not possible even for very small d

Avoiding Wiener's Attack

Method 2: Using CRT

- Use CRT to reduce the decryption time (and signing time) even while using large d
- lacksquare Choose d such that $d_p = d \mod (p-1)$ and $d_q = d \mod (q-1)$ are small
- lacksquare For decryption, compute $M_p=C^{d_p} mod p$ and $M_q=C^{d_q} mod q$
- Then using CRT, compute M satisfying $M \in \mathbb{Z}_n$ $M = M_p \mod p$ and $M = M_q \mod q$ Note that here $M = C^d \mod N$

References

- D. Boneh. "Twenty Years of Attacks on the RSA Cryptosystem." Notices of the American Mathematical Society, 46(2):203–213, 1999.
- M. Wiener. "Cryptanalysis of short RSA secret exponents."
 IEEE Transactions on Information Theory, 36:553 558, 1990
- Ron Rivest and Robert Silverman. "Are 'Strong' Primes Needed for RSA?", Cryptology ePrint Archive: Report 2001/007
- Rivest, R.; A. Shamir; L. Adleman. "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems".
 Communications of the ACM 21 (2): pp.120-126.