手征微扰场论

王旭

2021年12月10日

目录

1	介绍		1
	1	简介	1
	2	流代数	2
2	介子	的手征拉氏量	4
	1	手征的 power-counting	4
	2	外源	5
	3	两个常数	6
	4	最低阶手征拉氏量	8
	5	$\pi - \pi$ 散射的例子	9

1 介绍

该章主要参考[?][?]。

1 简介

首先 QCD 的拉氏量具有如下形式 (仅考虑 u、d、s 夸克)

$$\mathcal{L} = \sum_{i=1}^{3} (\bar{q}_i i \not \! D q_i - m_i \bar{q}_i q_i) - \frac{1}{4} \mathcal{G}^a_{\mu\nu} \mathcal{G}^{a\mu\nu}$$

$$\tag{1.1}$$

其中 $D_{\mu} = \partial_{\mu} - igT^a A^a_{\mu}$, $T^a = \lambda^a/2$ 。 仅考虑动能项时,具有 $U(3)_L \times U(3)_R$ 的对称性。量子化之后 $U(1)_A$ 被破坏,系统的对称群为 $SU(3)_L \times SU(3)_R \times U(1)_V$,其中 $U(1)_V$ 对应着重子数。由于质量项的存在, $SU(3)_L \times SU(3)_R$ 遭到了破坏,但当粒子质量相同时,依旧会保持 $SU(3)_V$ 的对称性。

考虑质量项,

$$\sum_{i} m_{i} \bar{q}_{i} q_{i} = \sum_{i,j} \bar{q}_{R,i} M_{ij} q_{L,j}$$
(1.2)

其中 $M = diag(m_u, m_d, m_s)$ 。如果我们将质量项升级为场,在最后结果的时候在取回常数,并假设其在手征变换下进行如下变换,

$$M \to RML^{\dagger}$$
 (1.3)

则拉氏量依然在 $SU(3)_L \times SU(3)_R$ 变换下不变,由于质量项引起的系统对称性破缺是显式破缺。 但除质量项的显式破缺外,当考虑夸克凝聚的时候,系统也会自发破缺,考虑 QCD 真空

$$\langle 0|\bar{q}_{R,i}q_{L,j}|0\rangle = \Lambda^3 \delta_{ij} \tag{1.4}$$

其中 Λ 具有质量量纲 [?]。上式在 $SU(3)_L \times SU(3)_R$ 下按照 $(3,\bar{3})$ 变换如下,

$$L_{im}\langle 0|\bar{q}_{R,n}q_{L,m}|0\rangle R_{nj}^{\dagger} = \Lambda^3 U_{ij} \tag{1.5}$$

其中 $U_{ij} = (LR^{\dagger})_{ij}$ 为 SU(3) 中的矩阵。当 L = R 时, $\Sigma_{ij} = \delta_{ij}$,对应真空没有变化,说明 QCD 凝聚在 $SU(3)_V$ 下不变。当 $L \neq R$ 时, Σ_{ij} 代表此时系统已经变换到了一个和(1.4)不同的真空。如果此时没有质量项的显式破缺,则两个真空简并。

我们可以采用和质量类似的方式,将 U 升级为场,并将其参数化为

$$U(x) = \exp\left[\frac{2i}{f}\phi(x)\right], \ \phi(x) = T^a\phi^a(x)$$
(1.6)

其中, $\phi^a(x)$ 为破缺生成的 8 个 Goldstone 玻色子, T^a 是 SU(3) 群的生成元。

当 N=2 时,

$$\phi \equiv \sum_{a=1}^{3} \phi_a \sigma^a = \begin{pmatrix} \phi_3 & \phi_1 - i\phi_2 \\ \phi_1 + i\phi_2 \end{pmatrix} = \begin{pmatrix} \pi^0 & \sqrt{2}\pi^+ \\ \sqrt{2}\pi^- & \pi^0 \end{pmatrix}$$
(1.7)

当 N=3 时,

$$\phi \equiv \sum_{a=1}^{8} \phi_a \lambda^a = \begin{pmatrix} \pi^0 + \frac{\eta}{3} & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{\eta}{3} & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\bar{K}^0 & -\frac{2\eta}{3} \end{pmatrix}$$
(1.8)

2 流代数

在正式考虑手征拉氏量的写法之前,我们首先讨论与手征相关的流代数。在手征极限下,拉 氏量可以写为

$$\mathcal{L}_{0} = \sum_{l=u,d,s} (\bar{q}_{R,l} i \not \!\! D q_{R,l} + \bar{q}_{L,l} i \not \!\! D q_{L,l}) - \frac{1}{4} \mathcal{G}_{a\mu\nu} \mathcal{G}_{a}^{\mu\nu}. \tag{1.9}$$

由于上述协变导数是作用到色空间中,因此在 $U(3)_L \times U(3)_R$ 味群作用下保持不变。

考虑局域的 $U(3)_L \times U(3)_R$ 群变换,则场的变化如下

$$\begin{pmatrix} u_L \\ d_L \\ s_L \end{pmatrix} \mapsto U_L \begin{pmatrix} u_L \\ d_L \\ s_L \end{pmatrix} = exp\left(-i\sum_{a=1}^8 \varepsilon_{La} \frac{\lambda_a}{2}\right) e^{-i\varepsilon_L} \begin{pmatrix} u_L \\ d_L \\ s_L \end{pmatrix}$$

$$\begin{pmatrix} u_R \\ d_R \\ s_R \end{pmatrix} \mapsto U_R \begin{pmatrix} u_R \\ d_R \\ s_R \end{pmatrix} = exp\left(-i\sum_{a=1}^8 \varepsilon_{Ra} \frac{\lambda_a}{2}\right) e^{-i\varepsilon_R} \begin{pmatrix} u_R \\ d_R \\ s_R \end{pmatrix}$$
(1.10)

拉氏量的变换为

$$\delta \mathcal{L}_0 = \bar{q}_R \left(\sum_{a=1}^8 \partial_\mu \varepsilon_{Ra} \frac{\lambda_a}{2} + \partial_\mu \varepsilon_R \right) \gamma^\mu q_R + \bar{q}_L \left(\sum_{a=1}^8 \partial_\mu \varepsilon_{La} \frac{\lambda_a}{2} + \partial_\mu \varepsilon_R \right) \gamma^\mu q_L \tag{1.11}$$

因此产生的左手流和右手流分别为

$$L_a^{\mu} = \bar{q}_L \gamma^{\mu} \frac{\lambda_a}{2} q_L, R_a^{\mu} = \bar{q}_R \gamma^{\mu} \frac{\lambda_a}{2} q_R$$

$$L^{\mu} = \bar{q}_L \gamma^{\mu} q_L, R^{\mu} = \bar{q}_R \gamma^{\mu} q_R$$

$$(1.12)$$

其中带有下指标 a 的流称为八重态、不带有的称为单态。定义两个单态矢量流和轴矢流为

$$V^{\mu} = R^{\mu} + L^{\mu} = \bar{q}\gamma^{\mu}q, A^{\mu} = R^{\mu} - L^{\mu} = \bar{q}\gamma^{\mu}\gamma_{5}q \tag{1.13}$$

定义两个八重态矢量流和轴矢流为

$$V_a^{\mu} = R_a^{\mu} + L_a^{\mu} = \bar{q}\gamma^{\mu}\frac{\lambda_a}{2}q, A_a^{\mu} = R_a^{\mu} - L_a^{\mu} = \bar{q}\gamma^{\mu}\gamma_5\frac{\lambda_a}{2}q$$
(1.14)

单态矢量流即使在量子化之后依旧守恒,对应重子数守恒,而单态轴矢流在考虑量子修正之后 出现反常 $\partial_{\mu}A^{\mu}=\frac{3g_{3}^{2}}{32\pi^{2}}\epsilon_{\mu\nu\rho\sigma}\mathcal{G}_{a}^{\mu\nu}\mathcal{G}_{a}^{\rho\sigma}$ 。

但是实际的 QCD 是具有质量项的,因此手征对称性遭到破坏,矢量流和轴矢流在经典情况下也不严格守恒,有

$$\partial_{\mu}V_{a}^{\mu} = i\bar{q}\left[\mathcal{M}, \frac{\lambda_{a}}{2}\right]q,$$

$$\partial_{\mu}A_{a}^{\mu} = i\bar{q}\gamma_{5}\left\{\frac{\lambda_{a}}{2}, \mathcal{M}\right\}q,$$

$$\partial_{\mu}V^{\mu} = 0,$$

$$\partial_{\mu}A^{\mu} = 2i\bar{q}\gamma_{5}\mathcal{M}q,$$

$$(1.15)$$

其中 $\mathcal{M} = diag\{m_u, m_d, m_s\}$ 为质量矩阵。可以看出,如果三种夸克质量一样,则质量矩阵为单位矩阵,矢量流严格守恒。如果质量矩阵很小,矢量流和轴矢流也近似守恒。由于 u、d 夸克质量相近,且远小于 s 夸克质量,因此 $SU(2)_L \times SU(2)_R$ 群对称性就比 $SU(3)_L \times SU(3)_R$ 对称性要好很多。

根据(1.12)定义三个荷算符:

$$Q_{La}(t) = \int d^3x q_L^{\dagger}(t, \vec{x}) \frac{\lambda_a}{2} q_L(t, \vec{x})$$

$$Q_{Ra}(t) = \int d^3x q_R^{\dagger}(t, \vec{x}) \frac{\lambda_a}{2} q_R(t, \vec{x})$$

$$Q_V(t) = \int d^3x q^{\dagger}(t, \vec{x}) q(t, \vec{x})$$
(1.16)

三个荷算符之间的对易关系恰好对应着 $SU(3)_L \times SU(3)_R \times U(1)_V$ 的李代数

$$[Q_{La}, Q_{Lb}] = i f_{abc} Q_{Lc}, [Q_{Ra}, Q_{Rb}] = i f_{abc} Q_{Rc}$$

$$[Q_{La}, Q_{Rb}] = [Q_{La}, Q_{V}] = [Q_{Ra}, Q_{V}] = 0$$
(1.17)

验证第一个对易关系:

$$[Q_{La}, Q_{Lb}] = \int d^3x d^3y \left[q_L^{\dagger}(t, \vec{x}) \frac{\lambda^a}{2} q_L(t, \vec{x}), q_L^{\dagger}(t, \vec{y}) \frac{\lambda^a}{2} q_L(t, \vec{y}) \right]$$

$$= \int d^3x d^3y \left[q^{\dagger}(t, \vec{x}) P_L \frac{\lambda^a}{2} q(t, \vec{x}), q^{\dagger}(t, \vec{y}) P_L \frac{\lambda^a}{2} q(t, \vec{y}) \right]$$

$$= \int d^3x d^3y \delta^3(\vec{x} - \vec{y}) q^{\dagger}(t, \vec{x}) P_L \frac{\lambda_a}{2} \frac{\lambda_b}{2} q(t, \vec{y})$$

$$- \int d^3x d^3y \delta^3(\vec{x} - \vec{y}) q^{\dagger}(t, \vec{y}) P_L \frac{\lambda_a}{2} \frac{\lambda_b}{2} q(t, \vec{x})$$

$$=\mathrm{i} f_{abc}\int\mathrm{d}^3x q^\dagger(t,\vec{x}) P_L \frac{\lambda_c}{2} q(t,\vec{x}) = \mathrm{i} f_{abc} Q^{Lc}$$

除此之外,还可以得到流之间的对易关系如下:

$$\begin{split} &[V_a^0(t,\vec{x}),V_b^\mu(t,\vec{y})] = \delta^3(\vec{x}-\vec{y})\mathrm{i} f_{abc}V_c^\mu(t,\vec{X}), \\ &[V_a^0(t,\vec{x}),V^\mu(t,\vec{y})] = 0, \\ &[V_a^0(t,\vec{x}),A_b^\mu(t,\vec{y})] = \delta^3(\vec{x}-\vec{y})\mathrm{i} f_{abc}A_c^\mu(t,\vec{X}), \\ &[A_a^0(t,\vec{x}),V_b^\mu(t,\vec{y})] = \delta^3(\vec{x}-\vec{y})\mathrm{i} f_{abc}A_c^\mu(t,\vec{X}), \\ &[A_a^0(t,\vec{x}),V^\mu(t,\vec{y})] = \delta^3(\vec{x}-\vec{y})\mathrm{i} f_{abc}A_c^\mu(t,\vec{X}), \\ &[A_a^0(t,\vec{x}),V^\mu(t,\vec{y})] = 0, \\ &[A_a^0(t,\vec{x}),A_b^\mu(t,\vec{y})] = \delta^3(\vec{x}-\vec{y})\mathrm{i} f_{abc}V_c^\mu(t,\vec{X}). \end{split}$$

2 介子的手征拉氏量

1 手征的 power-counting

手征拉氏量一般具有如下形式

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \cdots, \tag{2.1}$$

其中只包含偶数项。这主要是由于 Lorentz 不变性以及质量项是 $\sim \mathcal{O}(q^2)$ 的。

对于给定费曼图, 在 $p_i \mapsto tp_i$ 以及 $m_q \mapsto t^2 m_q$ 变换下, 若不变振幅变换如下

$$M(tp_i, t^2m_q) = t^D M(p_i, m_q),$$
 (2.2)

则称 D 是一个图的手征阶数。手征阶数的计算公式如下

$$D = nN_L - 2N_I + \sum_{k=1}^{\infty} 2kN_{2k}, \tag{2.3}$$

其来源简单阐述如下, 在上述标度变化下, 传播子的变换如下

$$\int \frac{\mathrm{d}^{n}k}{(2\pi)^{n}} \frac{\mathrm{i}}{k^{2} - M^{2} + \mathrm{i}\epsilon} \mapsto \int \frac{\mathrm{d}^{n}k}{(2\pi)^{n}} \frac{\mathrm{i}}{t^{2}(k^{2}/t^{2} - M^{2} + \mathrm{i}\epsilon)}
\stackrel{k = tk'}{=} t^{n-2} \int \frac{\mathrm{d}^{n}k'}{(2\pi)^{n}} \frac{\mathrm{i}}{k'^{2} - M^{2} + \mathrm{i}\epsilon}, \tag{2.4}$$

因此内线的变换为 t^{n-2} , 而顶点的变换为

$$\delta^n(q)q^{2k} \mapsto t^{2k-n}\delta^n q q^{2k},\tag{2.5}$$

因此内线的变化为 t^{2k-n} ,此外由于散射矩阵的不变性,以及 $S\sim \delta^n(q)M$,因此需要加上一个 n来补偿 δ 函数的影响,此时我们可以得到

$$D = n + (n-2)N_I + \sum_{k=1}^{\infty} N_{2k}(2k - n).$$
(2.6)

再考虑到一张图中独立圈数、内线数、顶点数之间的关系 $N_L = N_I - (N_V - 1)$,其中 $N_V = \sum_{k=1}^{\infty} N_{2k}$,即可得到上式。

2 外源

该章主要参考[?]。

通常在量子场论中,紫外的微观理论与红外的理论可以截然不同,如 QCD。低能有效作用量是通过积掉一些高能的自由度来得到的。但是在实际操作中很难实行,我们往往首先猜测红外的场以及可能的对称性,然后写下与对称性自洽的有效有效作用,最后再在实验中进行检验。

首先考虑 QCD 的拉氏量如下,

$$\mathcal{L}_{QCD}^{0} = \sum_{i=1}^{3} \bar{q}_{i} i \not \! D q_{i} - \frac{1}{4} \mathcal{G}_{\mu\nu}^{a} \mathcal{G}^{a\mu\nu}, \qquad (2.7)$$

上述拉氏量具有 $SU(3)_L \times SU(3)_R$ 的味道对称性,如果想要引入局域的味道空间的变换,我们需要引入以下外源(类似于规范理论中的规范场),

$$\mathcal{L} = \mathcal{L}_{QCD}^0 + \mathcal{L}_{ext},\tag{2.8}$$

其中

$$\mathcal{L}_{ext} = \sum_{a=1}^{8} v_{a}^{\mu} \bar{q} \gamma_{\mu} \frac{\lambda_{a}}{2} q + v_{(s)}^{\mu} \frac{1}{3} \bar{q} \gamma_{\mu} q + \sum_{a=1}^{8} a_{a}^{\mu} \bar{q} \gamma_{\mu} \gamma_{5} \frac{\lambda_{a}}{2} q
- \sum_{a=0}^{8} s_{a} \bar{q} \lambda_{a} q + \sum_{a=0}^{8} p_{a} i \bar{q} \gamma_{5} \lambda_{a} q
= \bar{q} \gamma_{\mu} \left(v^{\mu} + \frac{1}{3} v_{(s)}^{\mu} + \gamma_{5} a^{\mu} \right) q - \bar{q} (s - i \gamma_{5} p) q,$$
(2.9)

其中

$$v_{\mu} = v_{\mu}^{a} \frac{\lambda_{a}}{2}, a_{\mu} = a_{\mu}^{a} \frac{\lambda_{a}}{2}, s_{\mu} = s_{\mu}^{a} \frac{\lambda_{a}}{2}, p_{\mu} = p_{\mu}^{a} \frac{\lambda_{a}}{2},$$
 (2.10)

分别是引入的矢量、轴矢量、标量和赝标量外场。当我们取外源 $v^\mu=v^\mu_{(s)}=a^\mu=p=0$ 以及 $s=diag(m_u,m_d,m_s)$ 是,上述拉氏量回到原始 QCD 拉氏量。

我们可以将上述拉氏量通过手征投影算符改写为

$$\mathcal{L} = \mathcal{L}_{QCD}^{0} + \bar{q}_{L}\gamma^{\mu} \left(l_{\mu} + \frac{1}{3} v_{\mu}^{(s)} \right) q_{L} + \bar{q}_{R}\gamma_{\mu} \left(r_{\mu} + \frac{1}{3} v_{\mu}^{(s)} \right)$$

$$- \bar{q}_{R}(s + ip) q_{L} - \bar{q}_{L}(s - ip) q_{R},$$
(2.11)

其中 $r_{\mu} = v_{\mu} + a_{\mu}, l_{\mu} = v_{\mu} - a_{\mu}$ 。如果想要上述拉氏量在 $SU(3)_L \times SU(3)_R$ 下保持不变,即

$$q_R \mapsto V_R(x)q_R$$

$$q_L \mapsto V_L(x)q_L,$$
(2.12)

则需要外场作如下变换

$$r_{\mu} \mapsto V_{R} r_{\mu} V_{R}^{\dagger} + i V_{R} \partial_{\mu} V_{R}^{\dagger},$$

$$l_{\mu} \mapsto V_{L} l_{\mu} V_{L}^{\dagger} + i V_{L} \partial_{\mu} V_{L}^{\dagger},$$

$$v_{\mu}^{(s)} \mapsto v_{\mu} - \partial_{\mu} \Theta,$$

$$s + i p \mapsto V_{R} (s + i p) V_{L}^{\dagger},$$

$$s - i p \mapsto V_{L} (s - i p) V_{R}^{\dagger}.$$

$$(2.13)$$

除了要求拉氏量在上述局域 $SU(3)_L \times SU(3)_R$ 下保持不变之外,我们还要求拉氏量能够满足 C、P、T 对称。由于 CPT 定理的存在,因此我们可以只考虑 C、P 变换下上述外场的变换情况。

在 P 变换下, 夸克场和拉氏量的变换为

$$q_f(t, \vec{x}) \stackrel{P}{\mapsto} \gamma_0 q_f(t, -\vec{x}), \mathcal{L}(t, \vec{x}) \stackrel{P}{\mapsto} \mathcal{L}(t, -\vec{x}),$$
 (2.14)

因此外场的变换为

$$v^{\mu} \stackrel{P}{\mapsto} v_{\mu}, v_{(s)}^{\mu} \stackrel{P}{\mapsto} v_{\mu}^{(s)}, a^{\mu} \stackrel{P}{\mapsto} -a_{\mu}, s \stackrel{P}{\mapsto} s, p \stackrel{P}{\mapsto} -p. \tag{2.15}$$

同理可得 C 变换下外场的变换为

$$v_{\mu} \stackrel{C}{\mapsto} -v_{\mu}^{T}, v_{\mu}^{(s)} \stackrel{C}{\mapsto} -v_{\mu}^{(s)T}, a_{\mu} \stackrel{C}{\mapsto} a_{\mu}^{T}, s \stackrel{C}{\mapsto} s^{T}, p \stackrel{C}{\mapsto} p^{T}. \tag{2.16}$$

考虑一个简单的例子,QED 是 U(1) 规范理论,而 U(1) 群是 $SU(3)_L \times SU(3)_R$ 的子群。我们可以令

$$r_{\mu} = l_{\mu} = -e\mathcal{A}_{\mu}Q,\tag{2.17}$$

其中 Q = diag(2/3, -1/3, -1/3), 此时可以得到

$$\mathcal{L}_{\text{ext}} = -e\mathcal{A}_{\mu}(\bar{q}_{L}Q\gamma_{\mu}q_{L} + \bar{q}_{R}Q\gamma_{\mu}q_{R}) = -e\mathcal{A}_{\mu}\bar{q}Q\gamma_{\mu}q$$

$$= -e\mathcal{A}_{\mu}\left(\frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s\right) = -e\mathcal{A}_{\mu}J^{\mu},$$
(2.18)

即光子场和夸克场的耦合。

3 两个常数

首先我们已经将破缺的8个Goldstone玻色子参数化为

$$U(x) = \exp\left(\frac{i\phi(x)}{F_0}\right),\tag{2.19}$$

其中 ϕ 取自 (1.8) 式, F_0 为手征极限下 π 介子的真空衰变常数, 带有质量量纲。U 在 $SU(3)_L \times SU(3)_R$ 群下的变换方式为

$$U(x) \mapsto RU(x)L^{\dagger}.$$
 (2.20)

此时,我们能写下的包含最少导数且保证手征不变的拉氏量为

$$\mathcal{L}_{\text{eff}} = \frac{F_0^2}{4} \text{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}). \tag{2.21}$$

考虑无穷小的 $SU(3)_L$ 变换,可以得到左手流为

$$J_{La}^{\mu} = i \frac{F_0^2}{4} \text{Tr}(\lambda_a \partial^{\mu} U^{\dagger} U), \qquad (2.22)$$

同理可得右手流为

$$J_{Ra}^{\mu} = -i\frac{F_0^2}{4} \text{Tr}(\lambda_a U \partial^{\mu} U^{\dagger}). \tag{2.23}$$

定义矢量流和轴矢流分别为

$$J_{Va}^{\mu} = J_{Ra}^{\mu} + J_{La}^{\mu} = -i\frac{F_0^2}{4} \text{Tr}(\lambda_a [U, \partial^{\mu} U^{\dagger}]), \qquad (2.24)$$

$$J_{Aa}^{\mu} = J_{Ra}^{\mu} - J_{La}^{\mu} = -i\frac{F_0^2}{4} \text{Tr}(\lambda_a \{ U, \partial^{\mu} U^{\dagger} \}).$$
 (2.25)

将 U 做泰勒展开,我们可以得到轴矢流最低阶为

$$J_{Aa}^{\mu} = -F_0 \partial^{\mu} \phi_a + \cdots, \qquad (2.26)$$

此时我们可以计算轴矢流在 Goldstone 玻色子和真空态之间的矩阵元为

$$\langle 0|J_{Aa}^{\mu}(x)|\phi_b(p)\rangle = \langle 0|-F_0\partial^{\mu}\phi_a(x)|\phi_b(x)\rangle = ip^{\mu}F_0\exp(-ip\cdot x)\delta_{ab}, \qquad (2.27)$$

从中我们可以看到 F_0 的物理意义。

严格的对称性破缺我们可以得到严格的零质量 Goldstone 玻色子,但是通过实验我们知道 π , K 等介子是有质量的,因此我们必须引入 QCD 中显式的质量破缺项,且假设质量矩阵按照 (1.3) 进行变换。则此时我们能写下的拉氏量为

$$\mathcal{L}_{\text{s.b.}} = \frac{F_0^2 B_0}{2} \text{Tr}(\mathcal{M}U^{\dagger} + U\mathcal{M}^{\dagger}), \tag{2.28}$$

其中下标 s.b. 代表对称性破缺。通过比较其基态能量密度关于夸克质量的导数和 QCD 中相应量

$$\langle \mathcal{H}_{\text{eff}} \rangle_{min} = -F_0^2 B_0 (m_u + m_d + m_s),$$
 (2.29)

$$\frac{\partial \langle 0|\mathcal{H}_{\text{QCD}}|0\rangle}{\partial m_q}\Big|_{m_u=m_d=m_s=0} = \frac{1}{3}\langle \bar{q}q\rangle_0$$
 (2.30)

可得,

$$3F_0^2 B_0 = -\langle \bar{q}q \rangle_0, \tag{2.31}$$

即 B₀ 与标量单态夸克凝聚有关。

接着将 U 进行泰勒展开, 我们可以得到

$$\mathcal{L}_{\text{s.b.}} = -\frac{B_0}{2} \text{Tr}(\phi^2 \mathcal{M}) + \cdots$$
 (2.32)

代入(1.8)式,我们可以得到

$$\operatorname{Tr}(\phi^{2}\mathcal{M}) = 2(m_{u} + m_{d})\pi^{+}\pi^{-} + 2(m_{u} + m_{s})K^{+}K^{-} + 2(m_{d} + m_{s})K^{0}\bar{K}^{0} + (m_{u} + m_{d})\pi^{0}\pi^{0} + \frac{2}{\sqrt{3}}(m_{u} - m_{d})\pi^{0}\eta + \frac{m_{u} + m_{d} + 4m_{s}}{3}\eta^{2}.$$
(2.33)

为简单起见,令 $m_u = m_d = \hat{m}$,因此我们可以得到在最低阶 Goldstone 玻色子质量和夸克质量的关系

$$M_{\pi}^2 = 2B_0 \hat{m},\tag{2.34}$$

$$M_k^2 = B_0(\hat{m} + m_s), \tag{2.35}$$

$$M_{\eta}^2 = \frac{2}{3}B_0(\hat{m} + 2m_s). \tag{2.36}$$

此时我们可以得到著名的 Gell-Mann-Okubo 关系:

$$4M_K^2 = 3M_\eta^2 + M_\pi^2. (2.37)$$

4 最低阶手征拉氏量

有了上面的准备之后,我们就可以开始构造手征拉氏量了。

首先,我们需要定义场算符的协变导数,以场算符 A 为例,协变导数为

$$D_{\mu}A = \partial_{\mu}A - ir_{\mu}A + iAl_{\mu}. \tag{2.38}$$

可以验证,协变导数在 $SU(3)_L \times SU(3)_R$ 群下的变换方式为

$$D_{\mu}A \mapsto R(D_{\mu}A)L^{\dagger}. \tag{2.39}$$

由于有效拉氏量中会包含任意高阶的导数项,因此我们还需要引入外场的场强张量

$$f_{R\mu\nu} = \partial_{\mu}r_{\nu} - \partial_{\nu}r_{\mu} - i[r_{\mu}, r_{\nu}], \qquad (2.40)$$

$$f_{L\mu\nu} = \partial_{\mu}l_{\nu} - \partial_{\nu}l_{\mu} - \mathrm{i}[l_{\mu}, l_{\nu}]. \tag{2.41}$$

接着我们定义一个标量和赝标量外场的线性组合项 $\chi = 2B_0(s+ip)$ 。

由于手征拉氏量是按照外动量阶数展开的,因此我们需要知道它们关于外动量的阶数,如 下所示,

$$U = \mathcal{O}(q^0), D_{\mu}U = \mathcal{O}(q), r_{\mu}, l_{\mu} = \mathcal{O}(q), f_{L,R\mu\nu} = \mathcal{O}(q^2), \chi = \mathcal{O}(q^2),$$
(2.42)

因此可以写出满足对称性要求的二阶的手征拉式量如下,

$$\mathcal{L}_{2} = \frac{F_{0}^{2}}{4} Tr[D_{\mu}U(D^{\mu}U)^{\dagger}] + \frac{F_{0}^{2}}{4} Tr[\chi U^{\dagger} + U\chi^{\dagger}], \tag{2.43}$$

其中包含两个低能常数 F_0 和 B_0 。

5 π-π 散射的例子

考虑一个 $SU(2)_L \times SU(2)_R$ 的二阶拉氏量,即 $m_u = m_d = 0$,而 m_s 依旧取其物理值,且 令 $r_\mu = l_\mu = 0$,

$$\mathcal{L}_2 = \frac{F^2}{4} \text{Tr}(\partial_\mu U \partial^\mu U^\dagger) + \frac{F^2}{4} \text{Tr}(\chi U^\dagger + U \chi^\dagger), \tag{2.44}$$

其中

$$\chi = 2B\mathcal{M} = 2B \begin{pmatrix} \hat{m} & 0 \\ 0 & \hat{m} \end{pmatrix},$$

$$U = \exp\left(i\frac{\phi}{F}\right), \phi = \sum_{i=1}^{3} \phi_i \tau_i = \begin{pmatrix} \pi^0 & \sqrt{2}\pi^+ \\ \sqrt{2}\phi^- & -pi^0 \end{pmatrix}.$$